

வணிகக் கணிதம் மற்றும் புள்ளியியல்

மேல்நிலை முதலாம் ஆண்டு தொகுதி 2

தமிழ்நாடு அரசு விலையில்லாப் பாடநூல் வழங்கும் திட்டத்தின் கீழ் வெளியிடப்பட்டது

பள்ளிக் கல்வித்துறை

தீண்டாமை மனிதநேயமற்ற செயலும் பெருங்குற்றமும் ஆகும்

தமிழ்நாடு அரசு

முதல்பதிப்பு - 2018

(புதிய பாடத்திட்டத்தின்கீழ் வெளியிடப்பட்ட நூல்)

விற்பனைக்கு அன்று

பாடநூல் உருவாக்கமும் தொகுப்பும்

மாநிலக் கல்வியியல் ஆராய்ச்சி மற்றும் பயிற்சி நிறுவனம் © SCERT 2018

நூல் அச்சாக்கம்

தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்

www.textbooksonline.tn.nic.in

பொருளடக்கம்

6	வகையீட்டின் பயன்பாடுகள்	1-61
6.1	வணிகம் மற்றும் பொருளாதாரத்தில் வகையீடுகளின் பயன்பாடுகள்	2
6.2	பெருமம் மற்றும் சிறுமம்	23
6.3	பெருமம் மற்றும் சிறுமம் ஆகியவற்றின் பயன்பாடுகள்	34
6.4	பகுதி வகையிடல்	45
6.5	பகுதி வகையிடலின் பயன்பாடுகள்	50
7	நிதியியல் கணிதம்	62-90
7.1	தவணை பங்கீட்டு தொகை	62
7.2	சரக்கு முதல்கள், பங்குகள், கடன் பத்திரங்கள் மற்றும் தரகு	74
8	விவரப் புள்ளியியல் மற்றும் நிகழ்தகவு	91-146
8.1	மையப் போக்கு அளவைகள்	91
8.2	சிதறல் அளவைகள்	111
8.3	நிகழ்தகவு	125
9	ஒட்டுறவு மற்றும் தொடர்புப் போக்கு பகுப்பாய்வு	147-190
9.1	ஒட்டுறவு	147
9.2	தர ஒட்டுறவுக் கெழு	156
9.3	தொடர்புப் போக்கு பகுப்பாய்வு	162
10	செயல்முறைகள் ஆராய்ச்சி	191-224
10.1	நேரியல் திட்டமிடல் கணக்குகள்	192
10.2	வலையமைப்பு பகுப்பாய்வு	206
	விடைகள்	225-234
	கலைச்சொற்கள்	235-236
	அட்டவணைகள்	237-242
	துணை நூற் பட்டியல்	243

மின்னூல்

மதிப்பீடு

இணைய வளங்கள்

பாடத்திட்டம் (தொகுதி – II)

6. வகையீட்டின் பயன்பாடுகள்

(25 பிரிவுவேளைகள்)

வகையீடுகளின் பயன்பாடுகள் – தேவை,அளிப்பு,செலவு, வருவாய் மற்றும் இலாப சார்புகள் –நெகிழ்ச்சி. பெருமம் மற்றும் சிறுமம் – கூடும் மற்றும் குறையும் சார்புகள் – சார்பின் தேக்க நிலை மதிப்பு – இடம் சார்ந்த பெருமம் மற்றும் சிறுமம் , மீப்பெரு பெருமம் மற்றும் மீச்சிறு சிறுமம். பெருமம் மற்றும் சிறுமம் ஆகியவற்றின் பயன்பாடுகள் – பெரும இலாபம் மற்றும் சிறுமம் சிறுமச்செலவு சார்ந்த கணக்குகள் – சரக்கு நிலைக் கட்டுப்பாடு – மிகு ஆதாயக் கோருதல் அளவு. பகுதி வகையிடல் – தொடர்ச்சியான பகுதி வகைக் கெழுக்கள் – ஆய்லரின் தேற்றம் மற்றும் அதன் பயன்பாடுகள். பகுதி வகையிடலின் பயன்பாடுகள் – இரு மாறிகளின் உற்பத்திச் சார்பு, இறுதி நிலை உற்பத்தித் திறன் – பகுதி தேவை நெகிழ்ச்சி.

7. நிதியியல் கணிதம்

(15 பிரிவுவேளைகள்)

தவணை பங்கீட்டு தொகை– தவணைப் பங்கீட்டுத் தொகையின் வகைகள். **சரக்கு** மு**தல்கள், பங்குகள், கடன் பத்திரங்கள் மற்றும் தரகு**– பங்குகளின் வகைகள்– வரையறைகள்.

8. விவரப் புள்ளியியல் மற்றும் நிகழ்தகவு

(25 பிரிவுவேளைகள்)

மையப் போக்கு அளவைகள்– சராசரி– நிலையைப் பொறுத்த சில அளவைகள்– கால்மானங்கள், பத்துமானங்கள் மற்றும் நூற்றுமானங்கள்– நிலையைப் பொறுத்த அளவைகளைக் கணக்கீடு செய்யும் முறைகள்– பெருக்குச் சராசரி– இசைச் சராசரி. **சிதறல்** அளவைகள்– கால்மான விலக்கம்– சராசரி விலக்கம். **நிகழ்தகவு**– நினைவு கூறுதல்– நிகழ்தகவின் அடிப்படைக் கருத்துருக்கள்– சாரா மற்றும் சார்ந்த நிகழ்வுகளின் கருத்துருக்கள்– நிபந்தனைக்குட்பட்ட நிகழ்தகவு– பேயின் தேற்றம்.

9. ஒட்டுறவு மற்றும் தொடர்புப் போக்கு பகுப்பாய்வு

(20 பிரிவுவேளைகள்)

ஒட்டுறவு – ஒட்டுறவின் பொருள்– ஒட்டுறவின் வகைகள்– சிதறல் விளக்கப்படம்– கார்ல்பியர்சனின் ஒட்டுறவுக் கெழு. தர ஒட்டுறவுக் கெழு – ஸ்பியர்மென்னின் தர ஒட்டுறவுக் கெழு. தொடர்புப் போக்கு பகுப்பாய்வு – சார்புள்ள மாறி மற்றும் சார்பற்ற மாறி– தொடர்புப் போக்கு சமன்பாடுகள்.

10. செயல்முறைகள் ஆராய்ச்சி

(20 பிரிவுவேளைகள்)

நேரியல் திட்டமிடல் கணக்குகள் – நேரியல் திட்டமிடல் கணக்கின் கணிதவியல் அமைப்பை உருவாக்குதல்– நேரியல் திட்டமிடல் கணக்குகளுக்கு வரைபடம் மூலம் தீர்வு காணல். **வலையமைப்பு பகுப்பாய்வு** – வலைப்பின்னலை வரைதல்– தீர்வுக்குகந்தப் பாதை பகுப்பாய்வு

6

வகையீட்டின் பயன்பாடுகள்

கற்றல் நோக்கங்கள்

இந்த அத்தியாயத்தை படித்தபின்பு பின்வரும் பாடக் கருத்துகளை மாணவர்கள் புரிந்துக்கொள்ள இயலும்

- தேவை மற்றும் அளிப்பு என்பனவற்றின் கருத்துருக்கள்.
- செலவு, வருவாய் மற்றும் இலாபச் சார்பு என்பதன் பொருள் மற்றும் பயன்கள்.
- சராசரி மற்றும் இறுதிநிலை எனும் கருத்துருக்கள்.
- தேவை மற்றும் அளிப்பு நெகிழ்ச்சிகள்
- சராசரி வருவாய், இறுதிநிலை வருவாய் மற்றும் தேவை
 நெகிழ்ச்சிகளுக்கு இடையேயுள்ள தொடர்பு.
- கூடும் மற்றும் குறையும் சார்பின் பயன்பாடுகள்
- பெருமம் மற்றும் சிறுமங்களின் பயன்பாடுகள்
- மிகு ஆதாய கோருதல் அளவு ஏனும் கருத்துரு
- பகுதி வகையீடுகளின் கருத்துருக்கள்
- பொருளாதாரத்தில் பகுதி வகையீடுகளின் பயன்பாடுகள்
- பகுதி தேவை நெகிழ்ச்சிகள்.

அறிமுகம்

நவீன பொருளாதார கருத்தியல்கள் வகை நுண்கணிதம் மற்றும் தொகை நுண்கணிதத்தின் தத்துவங்களை அடிப்படையாகக் கொண்டது. பொருளாதாரத்தில் வகை நுண்கணிதமானது இறுதிநிலைச் செலவு, இறுதிநிலை வருவாய், பெருமம் மற்றும் சிறுமம், நெகிழ்ச்சிகள், பகுதி நெகிழ்ச்சிகளைக் கணக்கிடுவதற்குப் பயன்படுகிறது. மேலும் இது ஒரு குறிப்பிட்ட அமைப்பில் மீப்பெரு இலாபத்தை அல்லது மீச்சிறு நட்டத்தைக் கணிக்க பொருளாதார வல்லுநர்களுக்கு உதவுகிறது. இந்த அத்தியாயத்தில், நாம் வகையீடுகளின் வாயிலாக வணிகம் மற்றும் பொருளாதாரம் பற்றிய சில முக்கியமானக் கருத்துருக்கள் மற்றும் அதன் பயன்பாடுகள் பற்றி இங்கு பயில்வோம்.

பொருளாதாரத்தில் ஆய்லரின் தேற்றம்

ஒரு உற்பத்தி சார்பின் காரணிகள் அதனுடைய இறுதி நிலை உற்பத்தி காரணிகளின் பெருகற்பலனாகக் கணக்கிடப்பட்டால் அவற்றின் மொத்த உற்பத்தியானது உற்பத்தி சார்பு மற்றும் அதனுடைய ஒர்நிலைத்தன்மைப் படியின் பெருக்கற்பலனுக்குச் சமமாகும்.

6.1 வணிகம் மற்றும் பொருளாதாரத்தில் வகையீடுகளின் பயன்பாடுகள் (Applications of differentiation in business and economics)

ஒரு பொருளாதாரச் சூழ்நிலையில், விலை மற்றும் அளவு என்பன மாறிகள் எனக் கருதுக. p என்பது ஒரு பொருளின் அலகு விலை ரூபாயிலும் மற்றும் x என்பது நுகர்வோரால் கோரப்பட்ட (அல்லது) உற்பத்தியாளரால் வழங்கப்பட்ட அப்பொருளின் உற்பத்தி (வெளியீடு / அளவு) என்க.

6.1.1 தேவை, அளிப்பு, செலவு, வருவாய் மற்றும் இரைபச் சார்புகள் (Demand, supply, cost, revenue and profit functions)

தேவைச் சார்பு: (Demand function)

சந்தையில், நுகர்வோரால் கோரப்பட்ட ஒரு பொருளின் அளவானது, அப்பொருளின் விலையைச் சார்ந்துள்ளது. எனவே பொருளின் விலை அதிகரிக்கும் பொழுது, கோரப்படும் அளவு குறைகிறது மற்றும் பொருளின் விலை குறையும் பொழுது கோரப்படும் அளவு அதிகரிக்கிறது.

நுகர்வோர்களால் கோரப்பட்ட ஒரு பொருளின் அளவுக்கும் அதன் அலகு விலைக்கும் இடையேயுள்ள தொடர்பு **தேவைச் சார்பு** எனப்படும். மேலும் இது x=f(p) அல்லது p=f(x), x>0 மற்றும் p>0 என வரையறுக்கப்படுகிறது.

x = f(p) என்ற தேவைச் சார்பின் வரைபடம்:

"தேவை — விலை" தொடர்பு வளைவரையானது விலை மற்றும் கோரப்படும் அளவு ஆகியவற்றிற்கு இடையே உள்ள எதிர்மறை தொடர்பை விளக்குகிறது.

கூர்நோக்கு :(Observations)

- (i) தேவைச் சார்பில், விலை மற்றும் அளவு எதிர் விகிதத்தில் இருக்கும்.
- (ii) தேவைச் சார்பின் வளைவரை முதல் கால் பகுதியில் மட்டுமே அமையும்.
- (iii) தேவை வளைவரையில், எந்த ஒரு தொடுகோட்டுக்கும், அதன் மிகை திசைக்கான x –அச்சுக்கும், இடையேயுள்ள கோணம் எப்பொழுதும் விரிகோணம் ஆகும்.
- (iv) தேவை வளைவரையின் சாய்வு, ஒரு குறை எண் (–ve) ஆகும்.

அளிப்புச் சார்பு: (Supply function)

சந்தையில், உற்பத்தியாளரால் வழங்கப்பட்ட ஒரு பொருளின் அளவானது அப்பொருளின் விலையைச் சார்ந்துள்ளது. எனவே பொருளின் விலை அதிகரிக்கும்பொழுது, வழங்கப்படும் அளவானதும் அதிகரிக்கிறது மற்றும் பொருளின் விலை குறையும்பொழுது வழங்கப்படும் அளவானதும் குறைகிறது.

உற்பத்தியாளரால் வழங்கப்படும் ஒரு பொருளின் அளவுக்கும் அதன் அலகு விலைக்கும் இடையேயுள்ள தொடர்பு **அளிப்புச் சார்பு** எனப்படும். மேலும் இது x=g(p) (அல்லது) $p=g(x),\,x>0$ மற்றும் p>0 என வரையறுக்கப்படுகிறது.

x=g(p) எனும் அளிப்புச் சார்பின் வரைபடம்:

"அளிப்பு — விலை" தொடர்பு வளைவரையானது விலை மற்றும் வழங்கப்படும் அளவு ஆகியவற்றிற்கு இடையே உள்ள நேர்மறை தொடர்பை விளக்குகிறது.

படம் : 6.2

கூர்நோக்கு: (Observations)

- (i) அளிப்பு சார்பில், விலை மற்றும் அளவு நேர்விகிதத்தில் இருக்கும்.
- (ii) அளிப்பு சார்பின் வளைவரை முதல் கால் பகுதியில் மட்டுமே அமையும்.
- (iii) அளிப்பு வளைவரையில், எந்த ஒரு தொடுகோட்டுக்கும் அதன் மிகை திசைக்காண x–அச்சுக்கும், இடையேயுள்ள கோணம் எப்பொழுதும் குறுங்கோணம் ஆகும்.
- (iv) அளிப்பு வளைவரையின் சாய்வு, ஒரு மிகை எண் (+ve) ஆகும்.

தேவை / அளிப்பு விதியானது மாற்றத்தின் திசையை தான் நமக்குச் சொல்கிறது, அதில் நடைபெறுகின்ற மாற்றத்தின் விகிதத்தை அல்ல.

சமன்நிலை விலை: (Equilibrium Price)

ஒரு பொருளின் தேவை மற்றும் அதன் அளிப்பு சமநிலையை அடையும்பொழுது கிடைக்கப்பெறும் விலையே சமன்நிலை விலையாகும். மேலும் இதனை p_E எனக் குறிக்கலாம்.

சமன்நிலை அளவு: (Equilibrium Quantity)

ஒரு பொருளின் தேவை மற்றும் அதன் அளிப்பு சமநிலையை அடையும்பொழுது கிடைக்கப்பெறும் அளவே சமன்நிலை அளவாகும். மேலும் இதனை $x_{\scriptscriptstyle F}$ எனக் குறிக்கலாம்.

குறிப்பு:

பொதுவாக, தேவை மற்றும் அளிப்பு சார்புகளில், அளவு x ஆனது விலை p –ன் வாயிலாக வெளிப்படுத்தப்படுகிறது. எனவே சமன்நிலை விலை p_E - யை தேவைச் சார்பு (அல்லது) அளிப்புச் சார்பில் பிரதியிட்டு சமன்நிலை அளவானது பெறப்படுகிறது.

சமன்நிலைப் புள்ளி: (Equilibrium Point)

தேவை மற்றும் அளிப்பு வளைவரைகளின் வெட்டுப் புள்ளி, (p_E, x_E) –ஐ சமன்நிலைப் புள்ளி எனபோம்.

சமன்நிலை விலை, சமன்நிலை அளவு மற்றும் சமன்நிலைப் புள்ளிக்கான விளக்கப்படம்: (Diagrammatical explanation of equilibrium price, equilibrium quantity and equilibrium point)

சராசரி மற்றும் இறுதிநிலை கருத்துருக்கள்: (Average and Marginal concepts)

பொதுவாக 'x' எனும் சாரா மாறியின் அளவைப் பொறுத்து 'y' என்ற சார்ந்த மாறியின் அளவில் ஏற்படும் மாறுபாட்டை இரு கருத்துருக்களின் அடிப்படையில் விவரிக்கலாம், அவையாவன

(i) சராசரி கருத்துரு

(ii) இறுதிநிலை கருத்துரு.

(i) சராசரியின் கருத்துரு : (Average concept)

சராசரி கருத்துருவானது x இன் முழு வீச்சு மீதான y இன் மாறுபாடாகும். இதனை $\frac{y}{x}$ எனக் குறிக்கலாம்.

(ii) இறுதிநிலையின் கருத்துரு:(Marginal concept)

இறுதிநிலை கருத்துருவானது x – ஐ பொறுத்து y இல் ஏற்படக்கூடிய உடனடி மாறுவீதமாகும். இதனை $\dfrac{dy}{dx}$ எனக் குறிக்கலாம்.

மேற்குறிப்பு:

y=f(x) என்ற சார்பில் Δx என்பது x இல் ஏற்படும் ஒரு சிறு மாற்றம் எனவும் Δy என்பது அதன் தொடர்பாக y இல் ஏற்படும் மாற்றம் எனில் $\dfrac{\Delta y}{\Delta x}=\dfrac{f\left(x+\Delta x\right)-f\left(x\right)}{\Delta x}$ ஆகும்.

x –ஐ பொறுத்து y இல் ஏற்படக்கூடிய உடனடி மாறுவீதமானது வரம்பிடப்பட்ட எல்லையில் ஏற்படும் y இன் மாற்றத்திற்கும், x இன் மாற்றத்திற்கும் உள்ள விகிதமாகும்.

அ. து.
$$\frac{dy}{dx}=\lim_{\Delta x o 0} \frac{\Delta y}{\Delta x}=\lim_{\Delta x o 0} \frac{f\left(x+\Delta x\right)-f\left(x\right)}{\Delta x}$$

படம்: 6.4 (a)

படம்: 6.4 (b)

செவைச் சார்பு: (Cost function)

ஒரு பொருளை உற்பத்தி செய்வதற்காக செலவிடப்படும் தொகை செலவுச் சார்பு எனப்படும். பொதுவாக, மொத்த செலவுச் [TC] சார்பானது, இரு பகுதிகளை உள்ளடக்கியது. அவை

- (i) மாறும் செலவு
- (ii) மாறாச் செலவு (நிலையான செலவு)

மாறும் செவை: (Variable cost)

மாறும் செலவு என்பது, கிட்டத்தட்ட உற்பத்தி அளவுக்கு நேரடி விகிதத்தில் மாறுகின்ற செலவு ஆகும்.

மாறாச் செவை: (Fixed cost)

மாறாச் செலவு என்பது உற்பத்தி அளவுடன் நேரடியாக தொடர்பு அல்லாதச் செலவு ஆகும்.

x அலகுகள் உற்பத்திக்கான ஒரு பொருளின் மாறும் செலவு $f\!(x)$ மற்றும் மாறாச் செலவு k எனில் மொத்த செலவுச் சார்பானது $C(x) = f\!(x) + k, x > 0$ ஆகும்.

குறிப்பு

- (i) மாறும் செலவு f(x) ஆனது உற்பத்தியின் ஒரு மதிப்பு உடையச் சார்பாகும்.
- (i) மாறாச் செலவு k ஆனது உற்பத்தி அளவைச் சார்ந்தது அல்ல.
- (i) ƒ(x) மாறிலி உறுப்பைக் கொண்டிருக்காது.

சில திட்டமான முடிவுகள்: (Some standard results)

C(x) = f(x) + k என்பது மொத்த செலவுச் சார்பு எனில்

$$(i)$$
 சராசரி செலவு $[AC]=rac{$ மொத்த செலவு $=rac{C(x)}{x}=rac{f(x)+k}{x}$

$$(ii)$$
 சராசரி மாறும் செலவு $[AVC]=rac{$ மாறும் செலவு $}{$ உற்பத்தி $}=rac{f(x)}{x}$

$$(iii)$$
 சராசரி மாறாச் செலவு $[AFC]=rac{ ext{ iny DID}}{ ext{ iny Did}}$ = $rac{k}{x}$

(iv) இறுதி நிலைச் செலவு
$$[MC] = \frac{dC}{dx} = \frac{d}{dx}[C(x)] = C'(x)$$

$$(v)$$
 இறுதி நிலைச் சராசரிச் செலவு $[MAC] = \frac{d}{dx}(AC)$

- $({
 m vi})$ மொத்தச் செலவு $[\ [TC]$ = சராசரிச் செலவு imes உற்பத்தி
- $({
 m vii})\ MC=AC$ எனும்போது சராசரி $[{
 m AC}]$ செலவானது சிறுமத்தை அடையும்.

மேற்குறிப்பு:

இறுதிநிலைச் செலவு [MC] என்பது தோராயமாக உற்பத்தியின் அளவு x அலகுகளாக இருக்கும்போது $(x\!+\!1)$ வது அலகின் உற்பத்திச்செலவு ஆகும்.

இறுதிநிலைச் செலவுக்கான வரைபட விளக்கம் (Diagrammatical explanation of marginal cost [MC])

உற்பத்தி வெளியீட்டின் அளவில் ஒரு அலகு அதிகரிக்கப்படும் போது அல்லது ஒரு அலகு குறைக்கப்படும் போது மொத்தச் செலவில் ஏற்படும் மாற்றமே இறுதிநிலைச் செலவு ஆகும்.

வருவாய்ச் சார்பு:(Revenue function)

ஒரு பொருள் உற்பத்தி செய்யப்பட்டு, விற்கப்படும் போது கிடைக்கக்கூடிய தொகை வருவாய் எனப்படும். உற்பத்தி செய்யப்பட்ட x அலகுப் பொருளை, ஒரு அலகு p என்ற விலையில் விற்கப்படும் போது கிடைக்கும் தொகையானது மொத்த வருவாய் R(x) = px என வரையறுக்கப்படுகிறது. இங்கு x மற்றும் p என்பன மிகை எண்களாகும்.

உற்பத்தியளார், அதிக விலையில் அதிக அளவை வழங்கும் போது வருவாய் அதிகரிக்கும்.

சில திட்டமான முடிவுகள்: (Some standard results)

R(x)=px என்பது வருவாய்ச் சார்பு எனில்

$$({
m i})$$
 சராசரி வருவாய் $[AR]=rac{{
m Giorn}\,\dot{
m s}}{{
m உற்ப}\dot{
m s}}$ வருவாய் $=rac{R\Big(x\Big)}{x}=p$

(ii) இறுதி நிலை வருவாய்
$$[MR]=rac{dR}{dx}=rac{d}{dx}(R(x))=R'(x)$$

$$(iii)$$
 இறுதி நிலைச் சராசரி வருவாய் $[MAR]=rac{d}{dx}\left(AR
ight)=AR'(x)$

மேற்குறிப்பு:

- $({
 m i})$ சராசரி வருவாயும் [AR] மற்றும் விலையும் (p) ஒன்றே. (அ.து. $AR\!=\!p$)
- (ii)விற்பனை அளவு x அலகுகளாக இருக்கும் பொழுது, (x+1) வது அலகு உற்பத்தி செய்யப்பட்டு விற்கப்பட்டதால் கிடைக்கும் தோராயமான கூடுதல் வருவாயே இறுதி நிலை வருவாய் [MR] ஆகும்.

இறுதிநிலை வருவாய்க்கான வரைபட விளக்கம் [(Diagrammatical explanation of Marginal Revenue [MR])

விற்பனை அளவின் அலகுகளில் ஒரு அலகு அதிகரிக்கும்போது மொத்த வருவாயில் எற்படும் மாற்றமே இறுதிநிலை வருவாய் ஆகும்.

படம் : 6.6

இரைபச் சார்பு: (Profit function)

மொத்த உற்பத்தி வருவாயில், மொத்தச் செலவுக்கும் மேல் உள்ள உபரித் தொகையே, இலாபம் எனப்படும். R(x) என்பது மொத்த வருவாய், C(x) என்பது மொத்தச் செலவு எனில், இலாபச் சார்பு P(x) என்பது P(x) = R(x) - C(x) என வரையறுக்கப்படுகிறது.

சில திட்டமான முடிவுகள்:

P(x)=R(x) - C(x) என்பது இலாபச் சார்பு எனில்

- (i) சராசரி இலாபம் $[AP]=rac{$ மொத்த இலாபம் $}{$ உற்பத்தி $}=rac{\mathrm{P}\left(x
 ight) }{x}$
- (ii) இறுதி நிலை இலாபம் $[MP] = \frac{dP}{dx} = \frac{d}{dx}(P(x)) = P'(x)$
- (iii) இறுதி நிலை சராசரி இலாபம் $[MAP]=rac{d}{dx}(AP)=AP'(x)$
- (iv) MR=MC எனும்போது இலாபச் சார்பு [P(x)] பெருமத்தை அடையும்.

6.1.2 நெகிழ்ச்சி: (Elasticity)

x என்ற புள்ளியில் y=f(x) என்ற சார்பின் நெகிழ்ச்சி ' η ' ஆனது, y –ன் சார் மாற்றத்திற்கும், x –ன் சார் மாற்றத்திற்கும் உள்ள விகிதத்தின் வரம்பிடப்பட்ட எல்லை என வரையறுக்கப்படுகிறது.

$$\therefore \quad \eta = \frac{E_y}{E_x} = \lim_{\Delta x \to 0} \frac{\frac{\Delta y}{y}}{\frac{\Delta x}{x}} = \frac{\frac{dy}{y}}{\frac{dx}{x}}$$

$$\Rightarrow \quad \eta = \frac{x}{y} \cdot \frac{dy}{dx}$$

$$\eta = \frac{\dfrac{dy}{dx}}{\dfrac{y}{y}} = \dfrac{x-2}{x}$$
 பொறுத்த y —ன் இறுதிநிலை அளவு

(i) விலையின் தேவை நெகிழ்ச்சி (Price elasticity of demand)

விலையின் தேவை நெகிழ்ச்சி என்பது விலை மாற்றத்தினால், கோரப்பட்ட அளவில் ஏற்படும் மாற்றத்தின் பிரதிபலிப்பு அளவு ஆகும்.

தேவைச் சார்பு x=f(p) —ல், x என்பது தேவை மற்றும் p என்பது அலகு விலை எனில் விலையைப் பொறுத்த தேவை நெகிழ்ச்சியானது $\eta_d=-rac{p}{x}\cdotrac{dx}{dp}$ என வரையறுக்கப்படுகிறது.

(ii) விலையின் அளிப்பு நெகிழ்ச்சி (Price elasticity of supply)

விலையின் அளிப்பு நெகிழ்ச்சி என்பது விலை மாற்றத்தினால், வழங்கப்பட்ட அளவில் ஏற்படும் மாற்றத்தின் பிரதிபலிப்பு அளவு ஆகும்.

அளிப்பு சார்பு x=g(p) —ல், x என்பது அளிப்பு மற்றும் p என்பது அலகு விலை எனில் விலையைப் பொறுத்த அளிப்பு நெகிழ்ச்சியானது $\eta_s=rac{p}{x}\cdotrac{dx}{dp}$. என வரையறுக்கப்படுகிறது.

நெகிழ்ச்சி['] என்பது [']விலையின் நெகிழ்ச்சி['] என்பதன் சுருக்கமாகும். நெகிழ்ச்சி முக்கியமாக விலை மாற்றத்தின் விளைவாக ஏற்படும் நுகர்வோர் தேவை மாற்றத்தை மதிப்பீடு செய்யப் பயன்படுகிறது.

விலை நெகிழ்ச்சியின் முக்கிய முடிவுகள்: (Some important results on price elasticity)

- (i) | η |>1, எனும்போது, தேவை (அ) அளிப்பு அளவானது மீள்த்தன்மைக் கொண்டது எனலாம்.
- $(ii) \mid \eta \mid =1$, எனும்போது, தேவை (அ) அளிப்பு அளவானது அலகு மீள்த்தன்மை கொண்டது எனலாம்.
- $(iii) \mid \eta \mid <1,$ எனும்போது, தேவை (அ) அளிப்பு அளவானது மீள்த்தன்மையற்றது எனலாம்.

மேற்குறிப்பு:

- (i) **மீள்த்தன்மை**: : ஒரு தேவை (அ) அளிப்பு அளவானது அதன் விலையின் மாற்றங்களை பெரிதும் பிரதிபலிக்கிறது எனில், அளவு மீள்தன்மைக் கொண்டது எனலாம்.
 - உதாரணம்: வெங்காயத்தின் நுகர்வும் அதன் விலையும்.
- (ii) **மீள்த்தன்மையற்றது**: ஒரு தேவை (அ) அளிப்பு அளவானது அதன் விலையின் மாற்றங்களை மிகக் சிறிய அளவில் பிரதிபலிக்கிறது எனில், அளவு மீள்தன்மையற்றது எனலாம்.
 - உதாரணம்: அரிசியின் நுகர்வும் அதன் விலையும்.
- (iii) **அலகு மீள்த்தன்மை**: ஒரு தேவை (அ) அளிப்பு அளவானது அதன் விலையின் மாற்றத்தை சமவிகிதத்தில் பிரதிபலிக்கிறது எனில், அளவு அலகு மீள்தன்மைக் கொண்டது எனலாம்.

இறுதி நிலை வருவாய் [MR], சராசரி வருவாய் [AR] மற்றும் தேவை நெகிழ்ச்சி [η_d] களுக்கு இடையே உள்ளத் தொடர்பு: (Relationship among Marginal revenue [MR], Average revenue [AR] and Elasticity of demand $[\eta_d]$)

அதாவது,
$$R=px$$
 மற்றும் $\eta_d=-rac{p}{x}\cdotrac{dx}{dp}$ என்பதை நாம் அறிவோம். இப்போது, $\mathrm{MR}=rac{d}{dx}(R)$
$$=rac{d}{dx}(px)=p+xrac{dp}{dx}$$

$$=p\left[1+rac{1}{p}\cdotrac{dx}{dp}\right]$$

$$=p\left[1-rac{1}{-rac{p}{x}\cdotrac{dx}{dp}}\right]$$

$$=p\left[1-rac{1}{\eta_d}\right]$$

அதாவது,
$$MR=ARigg[1-rac{1}{\eta_d}igg]$$
 (அல்லது)
$$\eta_d\,=\,rac{AR}{AR-MR}$$

x அலகுகள் உற்பத்திக்கான ஒரு பொருளின் மொத்த செலவுச் சார்பு

$$C\left(x
ight)=rac{1}{3}x^{3}+4x^{2}-25x+7$$
 . எனில்

- (i) சராசரிச் செலவு
- (ii) சராசரி மாறும் செலவு
- (iii) சராசரி மாறாச் செலவு
- (iv) இறுதி நிலைச் செலவு
- (v) இறுதி நிலைச் சராசரி செலவு ஆகியவற்றைக் காண்க.

தீர்வு

$$C(x) = \frac{1}{3}x^3 + 4x^2 - 25x + 7$$

(i) சராசரிச் செலவு
$$(A\,C)$$
 $= \frac{C}{x}$ $= \frac{1}{3}\,x^2 + 4x - 25 + \frac{7}{x}$

(ii) சராசரி மாறும் செலவு
$$(AVC)=rac{f\left(x
ight)}{x}$$

$$=rac{1}{3}x^2+4x-25$$

$$(iii)$$
 சராசரி மாறாச் செலவு $(AFC)=rac{k}{x}$

$$(iv)$$
 இறுதி நிலைச் செலவு (MC) $= \frac{dC}{dx} (or) \frac{d}{dx} (C(x))$ $= \frac{d}{dx} \left[\frac{1}{3} x^3 + 4x^2 - 25x + 7 \right]$

$$ax \mid 3$$

$$= x^2 + 8x - 25$$

$$({
m v})$$
 இறுதிநிலைச் சராசரிச் செலவு $(\mathit{MAC}) = \dfrac{d}{dx} \left[\mathit{AC}\right]$

$$= \frac{d}{dx} \left[\frac{1}{3}x^2 + 4x - 25 + \frac{7}{x} \right]$$
$$= \frac{2}{3}x + 4 - \frac{7}{x^2}$$

x அலகுகள் கொண்ட ஒரு பொருளின் உற்பத்திக்கான மொத்த செலவு C ரூபாயில் $C\left(x\right)=50+4x+3\sqrt{x}$. எனில், g அலகுகள் உற்பத்திக்கான இறுதி நிலைச் செலவு யாது?

தீர்வு

$$C(x) = 50 + 4x + 3\sqrt{x}$$

இறுதிநிலைச் செலவு
$$(MC)=rac{dC}{dx}=rac{d}{dx}\Big[\mathrm{C}\Big(x\Big)\Big]$$

$$=rac{d}{dx}\Big[50+4x+3\sqrt{x}\Big]=4+rac{3}{2\sqrt{x}}$$
 $x=9$, எனும்போது,
$$rac{dC}{dx}=4+rac{3}{2\sqrt{9}}$$

$$=4rac{1}{2}=\ \ensuremath{\mp}\ 4.50$$

∴ 9 அலகுகள் உற்பத்திக்கான இறுதி நிலைச் செலவு ₹ 4.50 ,

எடுத்துக்காட்டு 6.3

பின்வரும் தேவை மற்றும் அளிப்புச் சார்புகளைக் கொண்டு சமன்நிலை விலை மற்றும் சமன்நிலை அளவு காண்க.

தேவை:
$$x=rac{1}{2}ig(5-pig)$$
 மற்றும் அளிப்பு : $x=2p-3$

தீர்வு

சமன்நிலையில், தேவை = அளிப்பு

$$\Rightarrow \frac{1}{2}(5-p) = 2p-3$$

$$5-p = 4p-6$$

$$\Rightarrow p = \frac{11}{5}$$

 \therefore சமன்நிலை விலை: $p_E = \frac{11}{5}$

இப்போது,
$$p = \frac{11}{5}$$
 –ஐ $x = 2p - 3$ –ல் பிரதியிட

நாம் பெறுவது,
$$x = 2\left(\frac{11}{5}\right) - 3 = \frac{7}{5}$$

$$\therefore$$
 சமன் நிலை அளவு $x_E = \frac{7}{5}$

 $x=rac{20}{p+1}$, என்ற தேவைச் சார்புக்கு, p=3 –ல் விலையைப் பொறுத்து தேவை நெகிழ்ச்சியை காண்க. மேலும் இது p=3 –ல் மீள்த்தன்மை கொண்டதா என ஆராய்க .

தீர்வு:

$$x = \frac{20}{p+1}$$

$$\frac{dx}{dp} = \frac{-20}{(p+1)^2}$$

தேவை நெகிழ்ச்சி:
$$\eta_d=-rac{p}{x}\cdotrac{dx}{dp}$$

$$=-rac{p}{\left(rac{20}{\left(p+1
ight)}
ight)}\cdotrac{-20}{\left(p+1
ight)^2}$$

$$=rac{p}{p+1}$$
 $p=3,$ -ல் $\eta_{
m d}=rac{3}{4}$ (அ) 0.75

இங்கு, $|\eta_{\rm d}|$ <1

∴ தேவை மீள்த்தன்மையற்றது.

எடுத்துக்காட்டு 6.5

 $x = 2p^2 - 5p + 1$ என்ற அளிப்புச் சார்புக்கு அளிப்பு நெகிழ்ச்சியைக் காண்க.

தீர்வு:

$$x = 2p^2 - 5p + 1$$

$$\frac{dx}{dp} = 4p - 5$$

அளிப்பு நெகிழ்ச்சி $\eta_s = \frac{p}{x} \cdot \frac{dx}{dp}$

$$= \frac{p}{2p^2 - 5p + 1} \cdot (4p - 5)$$
$$= \frac{4p^2 - 5p}{2p^2 - 5p + 1}$$

$$y = \frac{2x+1}{3x+2}$$
 எனில் $x = 1$ –ல் நெகிழ்ச்சி மதிப்பைக் காண்க.

தீர்வு:

$$y = \frac{2x+1}{3x+2}$$

$$\frac{dy}{dx} = \frac{(3x+2)(2)-(2x+1)(3)}{(3x+2)^2}$$

$$= \frac{1}{(3x+2)^2}$$
 நெகிழ்ச்சி: $\eta = \frac{x}{y} \cdot \frac{dy}{dx}$
$$= \frac{x}{\left(\frac{2x+1}{3x+2}\right)} \cdot \frac{1}{(3x+2)^2}$$

$$= \frac{x}{(2x+1)(3x+2)}$$

$$x = 1 - \dot{\omega} \eta = \frac{1}{15}$$

எடுத்துக்காட்டு 6.7

 $xp^n=k$ என்ற தேவைச் சார்பில் n மற்றும் k என்பன மாறிலிகள் எனில், தேவை நெகிழ்ச்சி எப்போதும் ஒரு மாறிலி என நிறுவுக.

தீர்வு:

$$xp^n=k$$

$$x=kp^{-n}$$

$$\frac{dx}{dp}=-nkp^{-n-1}$$
 தேவை நெகிழ்ச்சி : $\ \eta_d=-rac{p}{x}\cdotrac{dx}{dp}$
$$=-rac{p}{kp^{-n}}\Big(-nkp^{-n-1}\Big)$$

p=40-x, என்ற தேவைச் சார்பில் தேவை நெகிழ்ச்சியின் ($\eta_{\rm d}$) மதிப்பு 1 எனில் உற்பத்தி அளவை காண்க.

தீர்வு:

$$p = 40-x$$

$$x = 40-p$$

$$\frac{dx}{dp} = -1$$

தேவை நெகிழ்ச்சி:
$$\eta_d = -\frac{p}{x} \cdot \frac{dx}{dp}$$

$$= \frac{40-x}{x}$$

கணக்கின் படி, $\eta_d=1$

$$\therefore$$
 $\frac{40-x}{x}=1$ $2x=40$ \therefore $x=20$ அலகுகள்.

எடுத்துக்காட்டு 6.9

 $p=\left(a-bx\right)^{\frac{1}{2}}$. என்ற தேவை விதிக்கு, x – ல் தேவை நெகிழ்ச்சியைக் காண்க. மேலும் தேவை நெகிழ்ச்சி 1 எனும்போது x இன் மதிப்பை காண்க.

தீர்வு:

$$p = \left(a - bx\right)^{\frac{1}{2}}.$$

் p் ஐ பொறுத்து வகையிட, நாம் பெறுவது

$$1 = \frac{1}{2} \left(a - bx \right)^{\frac{-1}{2}} (-b) \cdot \frac{dx}{dp}$$

$$\therefore \frac{dx}{dp} = \frac{2 \left(a - bx \right)^{\frac{1}{2}}}{-b}$$

தேவை நெகிழ்ச்சி:
$$\eta_d = -\frac{p}{x}\cdot\frac{dx}{dp}$$

$$= -\frac{(a-bx)^\frac{1}{2}}{x}\cdot\frac{2(a-bx)^\frac{1}{2}}{-b}$$

$$= \frac{2(a-bx)}{bx}$$

$$\eta_{\rm d}=1$$
 எனும்போது, $\frac{2(a-bx)}{bx}=1$
$$2(a-bx)=bx$$
 $\therefore \qquad x=\frac{2a}{3b}$ அலகுகள்.

p=50-3x என்ற தேவை விதியைக் கொண்டு தேவை நெகிழ்ச்சி, சராசரி வருவாய் மற்றும் இறுதிநிலை வருவாய்க்கு இடையேயுள்ள தொடர்பினைச் சரிபார்.

தீர்வு:

$$p = 50 - 3x$$

$$\frac{dp}{dx} = -3$$

$$\frac{dx}{dp} = -\frac{1}{3}$$

தேவை நெகிழ்ச்சி:
$$\eta_d=-rac{p}{x}\cdotrac{dx}{dp}$$

$$=-rac{50-3x}{x}igg(-rac{1}{3}igg)$$

$$=rac{50-3x}{3x} \qquad \dots (1)$$

இப்போது, வருவாய்:
$$R = px$$

$$= (50 - 3x)x$$

$$= 50x - 3x^2$$

சராசரி வருவாய்:
$$AR = p$$
 = $50-3x$

இறுதிநிலை வருவாய்:
$$MR = \frac{dR}{dx}$$
 = $50-6x$

$$\frac{AR}{AR - MR} = \frac{50 - 3x}{(50 - 3x) - (50 - 6x)}$$

$$= \frac{50 - 3x}{3x} \qquad \dots (2)$$

(1) மற்றும் (2) லிருந்து, நாம் பெறுவது

$$\eta_d = \frac{AR}{AR - MR}$$

எனவே, சரி பார்க்கப்பட்டது.

எடுத்துக்காட்டு 6.11

 $x=rac{p}{p+5}$ என்ற அளிப்பு விதிக்கு p=20–ல் அளிப்பு நெகிழ்ச்சியைக் காண்க. மேலும் விடைக்கு விளக்கம் தருக.

தீர்வு:

$$x = \frac{p}{p+5}$$

$$\frac{dx}{dp} = \frac{(p+5)-p}{(p+5)^2}$$

$$= \frac{5}{(p+5)^2}$$

அளிப்பு நெகிழ்ச்சி:
$$\eta_s = rac{p}{x} \cdot rac{dx}{dp}$$

$$=ig(p+5ig)rac{5}{ig(p+5ig)^2}$$
 p $=$ 20 , எனில் , $\qquad \eta_s = rac{5}{20+5}$ $\qquad = 0.2$

பொருள் விளக்கம்: (Interpretation)

- p = ₹ 20-லிருந்து விலையானது 1% அதிகரித்தால், அளிப்பின் அளவு தோராயமாக 0.2% அதிகரிக்கிறது.
- p = ₹ 20–லிருந்து விலையானது 1% குறைந்தால் அளிப்பின் அளவு தோரயமாக 0.2% குறைகிறது.

எடுத்துக்காட்டு 6.12

செலவுச் சார்பு $C=2x\left(\frac{x+5}{x+2}\right)+7$, ல் உற்பத்திச் செலவு x அதிகரிக்கும்பொழுது இறுதி நிலைச் செலவானது தொடர்ச்சியாகக் குறைகிறது என நிறுவுக.

தீர்வு:

$$C = 2x \left(\frac{x+5}{x+2}\right) + 7$$
$$= \frac{2x^2 + 10x}{x+2} + 7$$

இறுதி நிலைச் செலவு:

$$MC = \frac{dC}{dx}$$

$$= \frac{d}{dx} \left[\frac{2x^2 + 10x}{x+2} + 7 \right]$$

$$= \frac{(x+2)(4x+10) - (2x^2 + 10x)}{(x+2)^2}$$

$$= \frac{2(x^2 + 4x + 10)}{(x+2)^2}$$

$$= \frac{2\left[(x+2)^2 + 6\right]}{(x+2)^2}$$

$$= 2\left[1 + \frac{6}{(x+2)^2}\right]$$

 $\therefore x$ அதிகரிக்கும் பொழுது இறுதி நிலைச் செலவு (MC) தொடர்ச்சியாகக் குறைகிறது. எடுத்துக்காட்டு 6.13

உற்பத்திக்கானச் சராசரி செலவு சார்பு $\overline{C}=0.05x^2+16+\frac{100}{x}$ உற்பத்தி அளவு 50 அலகுகள் எனும்போது இறுதி நிலை மதிப்பு யாது? மற்றும் விடைக்கு விளக்கம் தருக.

தீர்வு:

மொத்தச் செலவு
$$C=AC imes x$$

$$=\overline{C} imes x$$

$$=0.05x^3+16x+100$$

இறுதி நிலைச் செலவு:
$$MC=\frac{dC}{dx}$$
 = $0.15x^2+16$ $\left(\frac{dC}{dx}\right)_{x=50}$ = $0.15\left(50\right)^2+16$ = $375+16$

பொருள் விளக்கம்: (Interpretation)

உற்பத்தி அளவானது x=50–லிருந்து ஒரு அலகு அதிகரிக்கும் பொழுது, கூடுதல் அலகுக்கான உற்பத்திச் செலவு தோராயமாக ₹ 391 ஆகும்.

எடுத்துக்காட்டு 6.14

 $y=x^3+19$, என்ற சார்பின் இறுதி நிலை மதிப்பு 27–க்குச் சமமெனில், x–ன் மதிப்புகளைக் காண்க.

தீர்வு:

$$y=x^3+19$$

$$\frac{dy}{dx}=3x^2 \qquad ... (1)$$
 கணக்கின் படி,
$$\frac{dy}{dx}=27 \qquad ... (2)$$

(1) மற்றும் (2) லிருந்து, நாம் பெறுவது

$$3x^2 = 27$$

$$\therefore$$
 $x = \pm 3$

எடுத்துக்காட்டு 6.15

ஒரு பொருளின் தேவைச் சார்பு $p=rac{4}{\chi}$ இல் 'p' என்பது அலகு விலையாகும். விலை p=4 எனில் விலையைப் பொறுத்து, தேவையின் உடனடி மாறுவீதம் காண்க. மேலும் விடைக்கு விளக்கம் தருக.

தீர்வு:

$$p = \frac{4}{x}$$

$$\Rightarrow \qquad x = \frac{4}{p}$$

$$\therefore \qquad \frac{dx}{dp} = -\frac{4}{p^2}$$

$$p = 4 - \dot{\omega}, \frac{dx}{dp} = -\frac{1}{4} = -0.25$$

 $\therefore p = ₹ 4$ –ல் விலையைப் பொறுத்து தேவையின் உடனடி மாறுவீதம் – 0.25 ஆகும்.

பொருள் விளக்கம்: (Interpretation)

p = ₹ 4–லிருந்து விலையானது 1% அதிகரிக்கும் பொழுது, தேவை 0.25% குறைகிறது.

ஒரு நிறுவனத்தின் தேவை மற்றும் செலவுச் சார்புகள் முறையே p=497-0.2x மற்றும் C=25x+10000 ஆகும். இலாபம் பெருமத்தை அடையும்பொழுது உற்பத்தி அளவு மற்றும் விலையைக் காண்க.

தீர்வு:

இறுதி நிலை வருவாய் [MR] = இறுதி நிலைச் செலவு [MC] எனும்போது, இலாபமானது பெருமத்தை அடையும் என்பதை நாம் அறிவோம்.

வருவாய்:
$$R = px$$
 $= (497-0.2x)x$
 $= 497x-0.2x^2$
 $MR = \frac{dR}{dx}$
 $\therefore MR = 497-0.4x$
செலவு $C = 25x+10000$
 $\therefore MC = 25$
 $MR = MC \Rightarrow 497-0.4x = 25$
 $\Rightarrow 472-0.4x = 0$
 $\Rightarrow x = 1180$ அதைகள்.

இப்போது, $p = 497-0.2x$
 $x = 1180$ –ல் $p = 497-0.2(1180)$
 $= ₹ 261$.

எடுத்துக்காட்டு 6.17

ஒரு நிறுவனத்தின் செலவுச் சார்பு $C=rac{1}{3}x^3-3x^2+9x$. சராசரி செலவு சிறுமத்தை அடையும் பொழுது அதன் உற்பத்தி அளவு (x>0)காண்க.

தீர்வு:

சராசரி செலவு $[A\,C]$ = இறுதிநிலைச் செலவு [MC] எனும் பொழுது சராசரி செலவானது சிறுமத்தை அடையும் என்பதை நாம் அறிவோம்.

சെவை:
$$C = \frac{1}{3}x^3 - 3x^2 + 9x$$

$$AC = \frac{1}{3}x^2 - 3x + 9$$
 மற்றும்

$$MC = x^2 - 6x + 9$$

இப்போது,
$$AC = MC \implies \frac{1}{3}x^2 - 3x + 9 = x^2 - 6x + 9$$

$$\Rightarrow \qquad 2x^2 - 9x = 0$$

$$\Rightarrow$$
 $x=rac{9}{2}$ அலகுகள் $[\because x>0]$

1. ஒரு நிறுவனம் x டன்கள் உற்பத்தி செய்யும் பொழுது அதன் மொத்தச் செலவு

$$C(x) = \frac{1}{10}x^3 - 4x^2 - 20x + 7$$
 எனில்

- (i) சராசரிச் செலவு
- (ii) சராசரி மாறும் செலவு
- (iii) சராசரி மாறாச் செலவு
- (iv) இறுதி நிலைச் செலவு
- (v) இறுதி நிலை சராசரிச் செலவு ஆகியவற்றைக் காண்க.
- 2. ஒரு நிறுவனத்தின் x அலகுகள் உற்பத்திக்கான மொத்தச் செலவு $C=rac{2}{3}x+rac{35}{2}$. எனில்
 - (i) உற்பத்தி 4 அலகுகளாக இருக்கும்பொழுது அதன் செலவு
 - (ii) உற்பத்தி 10 அலகுகளாக இருக்கும்பொழுது அதன் சராசரிச் செலவு
 - (iii) உற்பத்தி 3 அலகுகளாக இருக்கும்பொழுது அதன் இறுதி நிலைச் செலவு ஆகியவற்றைக் காண்க.
- 3. $R = 14x x^2$ மற்றும் $C = x(x^2 2)$. என்பன முறையே வருவாய்ச் சார்பு மற்றும் செலவுச் சார்பு எனில்,
 - (i) சராசரிச் செலவு
 - (ii) இறுதி நிலைச் செலவு
 - (iii) சராசரி வருவாய் மற்றும்
 - (iv) இறுதி நிலை வருவாய் ஆகியவற்றைக் காண்க.

- $p=10e^{-rac{x}{2}}$ என்ற தேவை விதிக்கு, தேவை நெகிழ்ச்சியைக் காண்க.
- 5. கீழ்க்காணும் தேவை விதிகளுக்கு x –ல் தேவை நெகிழ்ச்சிக் காண்க. மேலும் தேவை நெகிழ்ச்சியின் மதிப்பு ஒன்று எனக் கொண்டு x–ன் மதிப்பைக் காண்க.
 - (i) $p = (a bx)^2$ (ii) $p = a bx^2$
- 6. p = 3 –ல் $x = 2p^2 + 5$ அளிப்பு சார்பின் அளிப்பு நெகிழ்ச்சியைக் காண்க.
- 7. ஒரு பொருளின் தேவை வளைவரை $p=\frac{50-x}{5}$, உற்பத்தி அளவான எந்த ஒரு x–க்கும் இறுதி நிலை வருவாய் காண்க. மேலும் x=0 மற்றும் x=25–ல் இறுதி நிலை வருவாய் மதிப்புகளைக் காண்க.
- 8. ஒரு குறிப்பிட்ட பொருளின் அளிப்புச் சார்பு $x=a\sqrt{p-b}$, p>b ஆகும் இதில் p என்பது அலகு விலை, a மற்றும் b என்பன மாறிலிகள். $p=2\,b$ –ல் அளிப்பு நெகிழ்ச்சியைக் காண்க.
- p —ஐ அலகு விலையாகவும், x —ஐ உற்பத்தி அளவாகவும் கொண்ட தேவைச் சார்பு $p = 400 2x 3x^2 \text{ க்கு } MR = p \left[1 \frac{1}{\eta_d}\right]$ எனக் காட்டுக.
- p —ஐ அலகு விலையாகவும், x—ஐ உற்பத்தி அளவாகவும் கொண்ட தேவைச் சார்பு $p = 550 3x 6x^2 \dot{\mathbf{o}} \ MR = p \left[1 \frac{1}{\eta_d}\right]$ எனக் காட்டுக.
- $11. \qquad x=rac{25}{p^4},\ 1\leq p\leq 5$, என்ற தேவைச் சார்புக்கு தேவை நெகிழ்ச்சியைக் காண்க.
- 12. ஒரு பொருளின் தேவை மற்றும் அதன் செலவுச் சார்புகள் முறையே $p=200-\frac{x}{100}$ மற்றும் C=40x+12000 ஆகும். இங்கு p என்பது அலகு விலை ரூபாயில் மற்றும் x என்பது உற்பத்தி செய்யப்பட்டு விற்கப்பட்ட அளவு எனில்,
 - (i) இலாபச் சார்பு
 - $({
 m ii})$ உற்பத்தி அளவு 10 அலகுகள் எனும்போது சராசரி இலாபம்
 - (iii) உற்பத்தி அளவு 10 அலகுகள் எனும்போது இறுதி நிலை இலாபம்
 - (iv) உற்பத்தி அளவு 10 அலகுகள் எனும்போது இறுதி நிலைச் சராசரி இலாபம் ஆகியவற்றைக் காண்க.
- 13. $y=x^3+10x^2-48x+8$. என்ற சார்பின் இறுதி நிலையானது x –ஐ போல் இருமடங்கு எனில் x –ன் மதிப்புகள் யாது?
- 14. x அலகுகளுக்கான மொத்த செலவுச் சார்பு $y=3x\left(\frac{x+7}{x+5}\right)+5$. -ல் உற்பத்தி அளவு அதிகரிக்கும்பொழுது, இறுதி நிலைச் செலவானது தொடர்ச்சியாகக் குறைகிறது எனக் காண்க.

- 16. பின்வரும் தேவை மற்றும் அளிப்பு சார்புகளைக் கொண்டு அதன் சமன்நிலை விலை மற்றும் சமன்நிலை அளவு காண்க.

தேவை:
$$x = 100 - 2p$$
 மற்றும் அளிப்பு:: $x = 3p - 50$

- 17. ஒரு நிறுவனத்தின் தேவை மற்றும் செலவு சார்புகள் முறையே $x=6000-30\,p$ மற்றும் $C=72000+60\,x$ ஆகம். இலாபம் பெருமத்தை அடையும்பொழுது உற்பத்தி அளவு மற்றும் விலையைக் காண்க.
- 18. ஒரு நிறுவனத்தின் செலவுச் சார்பு $C=x^3-12x^2+48x$, எனில் சராசரிச் செலவு சிறுமத்தை அடையும்பொழுது அதன் உற்பத்தி அளவு (x>0) காண்க.

6.2 பெருமம் மற்றும் சிறுமம் (Maxima and minima)

பெருமம் மற்றும் சிறுமம் ஆகியவற்றை அன்றாட வாழ்க்கையிலும், இயற்பியல், வேதியியல், பொறியியல் மற்றும் பொருளாதாரம் ஆகிய பல துறைகளிலும் நாம் பயன்படுத்துகிறோம்.

குறிப்பாக கீழ்க்காணும் நிலைகளில் நாம் பெருமம் மற்றும் சிறுமம் ஆகியவற்றின் பயன்பாடுகளைக் காணலாம்.

- (i) இலாபம், திறன், நிறுவனத்தின் உற்பத்தி போன்ற பயன்தரத்தக்க மதிப்புகளை பெருமம் அடையச் செய்வதற்கு.
- (ii) செலவுகள், உழைப்பு போன்றவற்றைக் குறைப்பதற்கு.
- (iii) சரக்குநிலைக் கட்டுப்பாடு, மிகு ஆதாயக் கோருதல் அளவு போன்றவற்றைக் கற்றறிவதற்கு.

6.2.1 கூடும் மற்றும் குறையும் சார்புகள்: (Increasing and decreasing functions)

பெருமம் மற்றும் சிறுமம் என்ற கருத்துருக்களை அறிந்துகொள்வதற்கு முன் கொடுக்கப்பட்ட ஒரு சார்புக்கான வளைவரையின் தன்மையை வகையீடல் மூலம் எவ்வாறு காண்பது என்பதை பயில்வோம்.

(i) கூடும் சார்பு: (Increasing function)

y=f(x) என்ற சார்பு $[\,a,b\,]$ என்ற மூடிய இடைவெளியில் $x_1 < x_2 \Rightarrow f\left(x_1
ight) \le f\left(x_2
ight)$ அனைத்து $x_1,x_2 \in \left[a,b
ight]$

என அமையுமானால், அது கூடும் சார்பு எனப்படும். $y = f(x) \quad \text{என்ற சார்பு } \left[\, a,b \, \right] \quad \text{என்ற மூடிய இடைவெளியில்} \\ x_1 < x_2 \Rightarrow f\left(x_1\right) < f\left(x_2\right) \, \text{அனைத்து } x_1, x_2 \in \left[a,b\right] \\ \text{என இருப்பின், அது திட்டமாகக் கூடும் சார்பு எனப்படும்.}$

(ii) குறையும் சார்பு: (Decreasing function)

 $y=\mathit{f}(x)$ என்ற சார்பு [a,b] என்ற மூடிய இடைவெளியில்

$$x_{_1} < x_{_2} \Rightarrow f\left(x_{_1}
ight) \geq f\left(x_{_2}
ight)$$
 அனைத்து $x_{_1}, x_{_2} \in \left[a,b
ight]$

என இருப்பின், அது குறையும் சார்பு எனப்படும்.

y=f(x) என்ற சார்பு $[\,a,b\,]$ என்ற மூடிய இடைவெளியில்

$$x_{_1} < x_{_2} \Rightarrow f\left(x_{_1}\right) > f\left(x_{_2}\right)$$
 அனைத்து $x_{_1}, x_{_2} \in \left[a, b
ight]$

என இருப்பின், அது திட்டமாகக் குறையும் சார்பு எனப்படும்.

படம்: 6.8

கொடுக்கப்பட்ட இடைவெளி முழுவதும் ஒரு சார்பு கூடும் சார்பாகவோ அல்லது குறையும் சார்பாகவோ இருந்தால் அது ஒரியல்புச் சார்பு என அழைக்கப்படும்.

கூடும் மற்றும் குறையும் சார்புக்கான வகைக்கெழுச் சோதனை: (Derivative test for increasing and decreasing function)

தேற்றம்: 6.1 (நிரூபணமின்றி)

f என்ற ஒரு சார்பு [a,b] என்ற மூடிய இடைவெளியில் தொடர்ச்சியானதாகவும் (a,b) என்ற திறந்த இடைவெளியில் வகையிடத்தக்கதாகவும் இருந்து, மேலும்

- (i) $f'(x) \geq 0$ எனில் f ஆனது [a.b] யில் கூடும் சார்பு அல்லது ஏறும் சார்பு எனப்படும்.
- $f'(x) \leq 0$ எனில் f ஆனது [a.b] யில் குறையும் சார்பு அல்லது இறங்கும் சார்பு எனப்படும்.

மேற்குறிப்பு

- (i) (a,b) –ல் உள்ள x –ன் அனைத்து மதிப்புகளுக்கும் f'(x)>0 எனில் (a,b) –ல் f ஒரு திட்டமான கூடும் சார்பு எனப்படும்.
- (ii) (a,b) –ல் உள்ள x –ன் அனைத்து மதிப்புகளுக்கும் f'(x) < 0 எனில் (a,b) –ல் f ஒரு திட்டமான குறையும் சார்பு எனப்படும்.
- (iii) f'(x)=0 எனில் f(x) ஒரு மாறிலிச் சார்பு எனப்படும்.

6.2.2 சார்பின் தேக்கநிலை மதிப்பு (Stationary Value of a function)

f(x) என்ற சார்பு [a,b] என்ற மூடிய இடைவெளியில் தொடர்ச்சியானதாகவும் (a,b) என்ற திறந்த இடைவெளியில் வகையிடத்தக்கதாகவும் கொள்க.

x=a –ல் f(x) தேக்கநிலையை அடைகிறது எனில் f'(a)=0 என அமைய வேண்டும். f(x) –ன் தேக்கநிலை மதிப்பு f(a) எனவும், (a,f(a)) என்பது தேக்கநிலைப் புள்ளி எனவும் அழைக்கப்படுகிறது.

P, Q, R என்பன தேக்க நிலைப் புள்ளிகள்

ப∟ம் 6.9

வரைபடம் 6.9 –ல் y=f(x) என்ற சார்பு x=a,x=b மற்றும் x=c என்ற மதிப்புகளில் தேக்க நிலை அடைகிறது. அந்த புள்ளிகளில் f'(x)=0 என இருக்கும் . அவற்றின் வழியாக வரையப்படும் தொடுகோடுகள் x—அச்சுக்கு இணையாக அமையும்.

பொருளாதார புள்ளி விவரங்களுக்கு தொடர்புடைய வரைபடத்தின் மூலம், வியாபாரத்தின் போக்கை அறிந்து கொண்டு முன்னேற்பாடுடன் இருக்கலாம்.

எடுத்துக்காட்டு 6.18

 $f(x)=x^3-3x^2+4x,\ x\in R$ என்ற சார்பு R – ல் திட்டமாக கூடும் சார்பு என நிறுவுக.

தீர்வு :

$$f(x) = x^3 - 3x^2 + 4x, x \in R$$
 $f'(x) = 3x^2 - 6x + 4$ $= 3x^2 - 6x + 3 + 1$ $= 3(x-1)^2 + 1 > 0$, அனைத்து $x \in R$

அதாவது, இங்கு அனைத்து x \in R -க்கும் f '(x) > 0 ஆகும்.

f என்ற சார்பு $(-\infty,\infty)$ என்ற இடைவெளியில் திட்டமாகக் கூடும் சார்பாகும்.

எடுத்துக்காட்டு 6.19

 $f(x)=x^2-4x+6$ என்ற சார்பு எந்தெந்த இடைவெளிகளில் திட்டமாகக் கூடும் அல்லது திட்டமாகக் குறையும் எனக் காண்க.

தீர்வு :

 \Rightarrow

$$f(x) = x^2 - 4x + 6$$

x –ஐ பொறுத்து வகைப்படுத்த,

$$f'(x) = 2x-4$$

$$f'(x) = 0 \Rightarrow 2x-4=0$$

$$x = 2.$$

ப∟ம் : 6.10

x=2 என்ற புள்ளி மெய்யெண் கோட்டை $(-\infty,2)$ மற்றும் $(2,\infty)$ என பிரிக்கின்றது.

[இடைவெளிகளில் f'(x) –க்கான குறியீடு (+ அல்லது –) யைக் காண, அவ்விடைவெளிகளில் இருந்து x–க்கான ஏதேனும் ஒரு மதிப்பை f'(x) -ல் பிரதியிட்டு காணலாம்.]

இடைவெளிகள்	$oldsymbol{f'}ig(oldsymbol{x}ig) = 2oldsymbol{x} - 4$ —ன் குறியீடு	சார்பின் தன்மை
(-∞, 2)	< 0	$f\!(x)$ ஆனது $(-\infty,2)$ ல் திட்டமாகக் குறையும் சார்பு
(2, ∞)	> 0	$f(x)$ ஆனது $(2,\infty)$ ல் திட்டமாகக் கூடும் சார்பு

அட்டவணை:6.1

எடுத்துக்காட்டு 6.20

 $f(x)=4x^3-6x^2-72x+30$ என்ற சார்பு எந்தெந்த இடைவெளிகளில் கூடும் அல்லது குறையும் சார்பு எனக் காண்க.

தீர்வு :

$$f(x) = 4x^3 - 6x^2 - 72x + 30$$

$$f'(x) = 12x^2 - 12x - 72$$

$$= 12(x^2 - x - 6)$$

$$= 12(x - 3)(x + 2)$$

$$f'(x) = 0 \Rightarrow 12(x - 3)(x + 2) = 0$$

$$x = 3 \text{ (or) } x = -2$$

x=3 மற்றும் x=-2 என்ற புள்ளிகளில் f(x) தேக்கநிலையை அடையும்.

இங்கு மெய்யெண் கோடு $(-\infty,-2),(-2,3)$ மற்றும் $(3,\infty)$ என மூன்று பிரிவுகளாகப் பிரிக்கப்படுகிறது.

இடைவெளிகள்	$f'\left(x ight)$ –ன் குறியீடு	கூடும் / குறையும் இடைவெளி
(-∞, -2)	(-) (-) > 0	இடைவெளி (−∞, −2] −ல் கூடும் சார்பு
(-2,3)	(-)(+) < 0	இடைவெளி [–2, 3] –ல் குறையும் சார்பு
(3, ∞)	(+)(+) > 0	இடைவெளி [3, ∞) −ல் கூடும் சார்பு

அட்டவணை: 6.2

எடுத்துக்காட்டு 6.21

 $f(x)=x^2+2x-5$. என்ற சார்பின் தேக்கநிலைப் புள்ளி மற்றும் தேக்கநிலை மதிப்பினைக் காண்க.

தீர்வு :

$$f(x) = x^2 + 2x - 5$$
 ... (1)

x- ஐ பொறுத்து வகைப்படுத்தும் போது நாம் பெறுவது

$$f'(x) = 2x + 2$$

தேக்கநிலைப் புள்ளியில், f'(x) = 0

$$\Rightarrow$$
 $2x + 2 = 0$

$$\Rightarrow$$
 $x = -1$

x=-1 –ல் f(x) ஆனது தேக்கநிலை மதிப்பை பெற்றிருக்கும்

x = -1, எனில், சமன்பாடு (1) —ல் இருந்து

$$f(-1) = (-1)^2 + 2(-1) - 5$$
$$= -6$$

f(x) இன் தேக்கநிலை மதிப்புf(x) = -6

எனவே தேக்கநிலைப் புள்ளி (-1,-6) மற்றும் தேக்கநிலை மதிப்பு -6 ஆகும்.

 $f(x)=2x^3+9x^2+12x+1$ என்ற சார்பின் தேக்கநிலைப் புள்ளி மற்றும் தேக்கநிலை மதிப்பினைக் காண்க.

தீர்வு :

$$f(x) = 2x^3 + 9x^2 + 12x + 1.$$

x- ஐ பொறுத்து வகைப்படுத்தும் போது நாம் பெறுவது

$$f'(x) = 6x^{2} + 18x + 12$$

$$= 6(x^{2} + 3x + 2)$$

$$= 6(x + 2)(x + 1)$$

$$f'(x) = 0 \Rightarrow 6(x + 2)(x + 1) = 0$$

$$\Rightarrow x + 2 = 0 \text{ (a) } x + 1 = 0.$$

$$x = -2 \text{ (a) } x = -1$$

x = -2 மற்றும் x = -1 ல் f(x) ஆனது தேக்கநிலைப் புள்ளிகளை பெறுகிறது.

x=-2 மற்றும் x=-1 என f(x) இல் பிரதியிடும் போது தேக்கநிலை மதிப்புகள் கிடைக்கிறது.

x = -2 எனில்,

$$f(-2) = 2(-8)+9(4)+12(-2)+1$$
$$= -3$$

x = -1 எனில்,

$$f(-1) = 2(-1)+9(1)+12(-1)+1$$
$$= -4$$

தேக்கநிலைப் புள்ளிகள் (-2,-3) மற்றும் (-1,-4) ஆகும்.

எடுத்துக்காட்டு 6.23

ஒரு நிறுவனம் x அலகுகள் உற்பத்தி செய்வதற்கான இலாபச் சார்பு $P(x) = \frac{x^3}{3} + x^2 + x$. அந்த நிறுவனம் இலாபத்தில் இயங்குகிறதா, இல்லையா என கணிக்கவும்.

தீர்வு :

$$P(x) = \frac{x^3}{3} + x^2 + x.$$

$$P'(x) = x^2 + 2x + 1$$

= $(x+1)^2$

x –ன் அனைத்து மதிப்புகளுக்கும் P'(x)>0 என்பது தெளிவாகிறது.

். நிறுவனமானது இலாபத்தில் இயங்குகிறது.

R(x) மற்றும் C(x) என்பன முறையே x அலகுகள் உற்பத்தி செய்வதற்கான வருவாய் மற்றும் செலவுச் சார்பு என்க. அனைத்து x>0 —க்கும் P(x)=R(x)-C(x) என்பது பெரும மதிப்பை அடையும்பொழுது இறுதி நிலை வருவாய் = இறுதி நிலைச் செலவு என அமையும், அதாவது R'(x)=C'(x) எனும் பட்சத்தில் மேற்கூறிய கருத்து உண்மையாகும். தேக்க நிலைப் புள்ளியில் இலாபம் பெருமத்தை அடைகிறது.

எடுத்துக்காட்டு 6.24

முயியிவ

 $C(x) = \frac{x^2}{6} + 5x + 200$ மற்றும் p(x) = 40 - x என்பது x அலகுகள் உற்பத்தி செய்வதற்கான மொத்த செலவு சார்பு மற்றும் தேவைச் சார்பு எனில் பெரும லாபம் கிடைப்பதற்கான உற்பத்தியின் அளவைக் காண்க.

தீர்வு :

$$C(x) = \frac{x^2}{6} + 5x + 200 \dots (1)$$

$$v(x) = 40 - x \dots (2)$$

இறுதிநிலை வருவாய் [R'(x)] = இறுதிநிலை செலவு [C'(x)] என இருக்கும்பொழுது, இலாபம் பெருமமாகிறது.

சமன்பாடு (1)-லிருந்து
$$C'(x)=\frac{2x}{6}+5$$
 $=\frac{x}{3}+5$ சமன்பாடு (2)-லிருந்து $R=p\cdot x$ $=40x-x^2$ $R'(x)=40-2x$ எனவே $40-2x=\frac{x}{3}+5$ $x=15$

 $x = 15 - \dot{\mathbf{o}}$ இலாபம் பெருமத்தை அடைகிறது.

6.2.3 இடம் சார்ந்த பெருமம் மற்றும் சிறுமம் , மீப்பெரு பெருமம் மற்றும் மீச்சிறு சிறுமம்: (Local and Global(Absolute) Maxima and Minima)

வரையறை 6.1:(Definition)

இடம் சார்ந்த பெருமம் மற்றும் இடம்சார்ந்த சிறுமம்

c–ஐ உள்ளடக்கிய ஏதேனும் ஒரு திறந்த இடைவெளி (a,b)–ல் $f(c) \geq f(x)$ அனைத்து $x \in (a,b)$ எனுமாறு அமைந்தால் f ஆனது இடம்சார்ந்த பெருமம் (அல்லது சார்ந்த பெருமம்) பெற்றிருக்கிறது எனலாம்.

c–ஐ உள்ளடக்கிய ஏதேனும் ஒரு திறந்த இடைவெளி (a,b) –ல் $f(c) \leq f(x)$ அனைத்து $x \in (a,b)$ எனுமாறு அமைந்தால் f ஆனது இடம்சார்ந்த சிறுமம் (அல்லது சார்ந்த சிறுமம்) பெற்றிருக்கிறது எனலாம்.

வரையறை: 6.2 (Definition)

மீப்பெரு பெருமம் மற்றும் மற்றும் மீச்சிறு சிறுமம்:

f –ன் அரங்கத்திலுள்ள அனைத்து x–க்கும், $f(c) \geq f(x)$ என இருக்குமானால் f ஆனது c–யில் **மீப்பெரு பெருமத்தை** அடைகிறது என்போம். f(c) என்பது f–ன் அரங்கத்தில் f–ன் மீப்பெரு மதிப்பு ஆகும்.

இதேபோல் f—ன் அரங்கத்திலுள்ள அனைத்து x –க்கும், $f(c) \leq f(x)$ என அமையுமானால் f ஆனது c–ல் **மீச்சிறு சிறுமத்தை** அடைகிறது எனலாம். f(c) என்பது f —ன் அரங்கத்தில் f–ன் மீச்சிறு மதிப்பாகும். f –ன் மீப்பெரு மற்றும் மீச்சிறு மதிப்புகள் என்பன முறையே முகட்டுப் புள்ளிகள்(அறுதி நிலைப் புள்ளிகள்) எனப்படும்.

குறிப்பு

(a,b)–ல் f என்ற சார்பின் மீப்பெரு மதிப்பு மற்றும் மீச்சிறு மதிப்புகள் முழுதளாவிய பெருமம் மற்றும் முழுதளாவிய சிறுமம் எனவும் அழைக்கப்படும்.

இடம்சார்ந்த பெருமம் மற்றும் இடம் சார்ந்த சிறுமம் ஆகியவற்றிற்கான நிபந்தனைகள்:

c–ஐ உள்ளடக்கிய (a,b) என்ற திறந்த இடைவெளியில் f என்ற சார்பானது வகையிடத்தக்கது மற்றும் $f^{\prime\prime}(c)$ காணத்தக்கது என்க.

- (i) f'(c) = 0 மற்றும் f''(c) > 0, எனில் f ஆனது c–ல் இடம் சார்ந்த சிறுமத்தை அடைகிறது.
- (ii) f'(c) = 0 மற்றும் f''(c) < 0, எனில் f ஆனது c–ல் இடம் சார்ந்த பெருமத்தை அடைகிறது.

பொருளாதாரத்தில், y=f(x) என்பது செலவுச் சார்பு அல்லது வருவாய் சார்பை குறிக்கும் எனில், $\frac{dy}{dx}=0$, என்ற புள்ளியில், செலவு அல்லது வருவாய் பெருமம் அல்லது சிறுமமாக இருக்கும்.

எடுத்துக்காட்டு 6.25

 $f(x)=2x^3+3x^2-12x$ என்ற சார்பிற்கு அறுதி நிலை (முகட்டு) மதிப்புகளைக் காண்க.

தீர்வு :

$$f(x) = 2x^{3} + 3x^{2} - 12x \qquad ... (1)$$

$$f'(x) = 6x^{2} + 6x - 12$$

$$f''(x) = 12x + 6$$

$$f'(x) = 0 \Rightarrow 6x^{2} + 6x - 12 = 0$$

$$\Rightarrow 6(x^{2} + x - 2) = 0$$

$$\Rightarrow 6(x + 2)(x - 1) = 0$$

$$\Rightarrow x = -2; x = 1$$

x=-2 எனில்

$$f''(-2) = 12(-2) + 6$$
$$= -18 < 0$$

x = -2 –ல் f(x) ஆனது இடம் சார்ந்த பெருமத்தை அடைகிறது.

மேலும் (1)–ல் x=-2-ஐ பிரதியிட, இடம் சார்ந்த பெருமத்தை அடையலாம்.

$$f(-2) = 2 (-2)^3 + 3(-2)^2 - 12(-2)$$
$$= -16 + 12 + 24$$
$$= 20.$$

x=1 எனில்

$$f''(1) = 12(1) + 6$$
$$= 18 > 0$$

x=1–ல் f(x) ஆனது இடம் சார்ந்த சிறுமத்தை அடைகிறது.

மேலும் (1)–ல் x=1 –ஐப் பிரதியிட, இடம் சார்ந்த சிறுமத்தை அடையலாம்.

$$f(1) = 2(1) + 3(1) - 12(1)$$
$$= -7$$

அறுதி நிலை (முகட்டு) மதிப்புகள் – 7 மற்றும் 20 ஆகும்.

எடுத்துக்காட்டு 6.26

[-2,2] என்ற இடைவெளியில் $f(x)=3x^5-25x^3+60x+1$ என்ற சார்பிற்கு முழுதளாவிய பெரும மற்றும் சிறும மதிப்புகளைக் காண்க.

தீர்வு:

$$f(x) = 3x^5 - 25x^3 + 60x + 1$$
 ... (1)
 $f'(x) = 15x^4 - 75x^2 + 60$
 $= 15(x^4 - 5x^2 + 4)$
 $f'(x) = 0 \Rightarrow 15(x^4 - 5x^2 + 4) = 0$
 $\Rightarrow (x^2 - 4)(x^2 - 1) = 0$
 $x = \pm 2$ (அ) $x = \pm 1$
 $-2, \pm 1 \in [-2,1]$ மற்றும் $2 \not\in [-2,1]$

x= −2 எனில்

$$f(-2) = 3(-2)^5 - 25(-2)^3 + 60(-2) + 1$$
$$= -15$$

x=1 எனில்

$$f(1) = 3(1)^5 - 25(1)^3 + 60(1) + 1$$
$$= 39$$

x=-1 எனில்

$$f(-1) = 3(-1)^5 - 25(-1)^3 + 60(-1) + 1$$
$$= -37.$$

மீப்பெரு பெருமம் = 39

மீச்சிறு சிறுமம் = -37

- 6.3 பெருமம் மற்றும் சிறுமம் ஆகியவற்றின் பயன்பாடுகள் (Applications of maxima and minima)
- 6.3.1 பெரும் இரைபம் மற்றும் சிறுமச்செவை சார்ந்த கணக்குகள்: (Problems on profit maximization and minimization of cost function)

எடுத்துக்காட்டு 6.27

குறிப்பிட்ட செலவுச் சார்பு $C=56-8x+x^2$ ஆகும். இங்கு C என்பது ஒரு அலகிற்கான செலவு மற்றும் x என்பது உற்பத்தி செய்யப்படும் மொத்த அலகுகள் என்க. உற்பத்திச் செலவின் மீச்சிறு மதிப்பினையும் அதற்குத் தகுந்த உற்பத்தி அளவுகளின் எண்ணிக்கையும் காண்க

தீர்வு:

$$C = 56 - 8x + x^2$$

x-ஐ பொறுத்து வகையிட,

$$\frac{dC}{dx} = -8 + 2x$$

$$\frac{d^2C}{dx^2} = 2$$

$$\frac{dC}{dx} = 0 \Rightarrow -8 + 2x = 0$$

$$\therefore$$
 $x = 4$

$$x=4$$
 எனில் $\frac{d^2C}{dx^2}=2>0$

 $\therefore x = 4$ -ல் C ஆனது பெருமத்தை அடைகிறது.

 \therefore உற்பத்தி செலவின் மீச்சிறு மதிப்பு C (4) = 56 - 32 + 16

$$= 40$$

மேலும் அதற்கான உற்பத்தி அளவு x=4 அலகுகள்

எடுத்துக்காட்டு 6.28

ஒரு நிறுவனத்தின் மொத்தச் செலவுச் சார்பானது $C(x)=\frac{x^3}{3}-5x^2+28x+10$, இங்கு x ஆனது உற்பத்தி ஆகும். உற்பத்தியின் ஒவ்வொரு அலகிற்கும் $\gtrless 2$ வீதம் விதிக்கப்பட்ட வரியை உற்பத்தியாளர் தன் செலவோடு இணைத்துக் கொள்கிறார். வியாபாரச் சந்தைக்கான தேவைச் சார்பு p=2530-5x, என கொடுக்கப்பட்டால், பெரும இலாபம் அடைவதற்கான உற்பத்தியின் அளவையும், விலையையும் காண்க. இங்கு p என்பது உற்பத்தியின் ஒவ்வொரு அலகின் விலையைக் குறிகிறது.

தீர்வ:

x அலகுகள் உற்பத்திற்கான மொத்த வருவாய்: $R=p\ x$

$$= (2530 - 5x)x$$
$$= 2530x - 5x^2$$

அலகிற்கான வரி $\ref{2}$ வீதம் செலுத்தப்பட்ட வரித் தொகை = 2x.

$$C(x) + 2x = \frac{x^3}{3} - 5x^2 + 28x + 10 + 2x$$

இலாபம் = மொத்த வருவாய் – (மொத்த செலவு + வரி)

$$P = (2530-5x)x - (\frac{x^3}{3} - 5x^2 + 28x + 10 + 2x)$$

$$= -\frac{x^3}{3} + 2500x - 10$$

$$\frac{dP}{dx} = -x^2 + 2500$$

$$\frac{d^2P}{dx^2} = -2x$$

$$\frac{dP}{dx} = 0 \Rightarrow 2500 - x^2 = 0$$

$$x^2 = 2500$$

$$x = 50$$
 $(-50$ ஏற்புடையதல்ல)

$$x = 50$$
 எனில், $\frac{d^2P}{dx^2} = 2 \times 50 < 0$

 \Rightarrow

x=50 —ல் P ஆனது பெருமம் அடைகிறது

$$P = 2530 - 5(50)$$
$$= ₹ 2280.$$

எடுத்துக்காட்டு 6.29

உற்பத்திக்கான மேற்பார்வை செலவு $\stackrel{?}{=} 1600$. ஒரு அலகிற்கான பொருட்செலவு $\stackrel{?}{=} 30$ மற்றும் x அலகுகள் உற்பத்தி செய்வதற்கான ஊதியம் $\stackrel{?}{=} \left(\frac{x^2}{100}\right)$ ஆகும். சராசரி செலவு சிறுமமாக இருக்க எத்தனை அலகுகள் உற்பத்தி செய்யப்பட வேண்டும்.

தீர்வ:

கொடுக்கப்பட்ட தகவலின்படி, ஒரு குறிப்பிட்ட பொருளின் x– அலகுகள் தயாரிப்பதற்கான மொத்த செலவு C(x)=(உற்பத்தி செய்வதற்கான ஊதியம்)+(பொருட்செலவு)+(உற்பத்திக்கான மேற்பார்வைச் செலவு)

$$C(x) = \frac{x^2}{100} + 30x + 1600$$

$$AC = \frac{C(x)}{x}$$

$$= \frac{\frac{x^2}{100} + 30x + 1600}{x}$$

$$= \frac{x}{100} + 30 + \frac{1600}{x}$$

$$\frac{d(AC)}{dx} = \frac{1}{100} - \frac{1600}{x^2}$$

$$\frac{d^2(AC)}{dx^2} = \frac{3200}{x^3}$$

$$\frac{d(AC)}{dx} = 0 \Rightarrow -\frac{1600}{x^2} + \frac{1}{100} = 0$$

$$\Rightarrow \frac{1}{100} = \frac{1600}{x^2}$$

$$x^2 = 160000$$

$$x = 400 (-400$$
 ஏற்புடையதல்ல)

$$x = 400$$
 எனில், $\frac{d^2(AC)}{dx^2} = \frac{3200}{400^3} > 0$

அதாவது, x=400 எனில் AC ஆனது சிறுமத்தை அடைகிறது.

சராசரி செலவு சிறுமமாக இருக்க 400 அலகுகள் உற்பத்தி செய்யப்பட வேண்டும்.

- 1. x அலகுகள் கொண்ட ஒரு பொருளுக்கான உற்பத்தி மற்றும் சந்தைப்படுத்தலுக்கான சராசரிச் செலவுச் சார்பு $AC=2x-11+rac{50}{x}$. AC ஆனது கூடும் சார்பாக அமைவதற்கான உற்பத்தி அளவு (x) ஏற்க்கும் மதிப்புகளைக் காண்க.
- 2. ஒரு தொலைக்காட்சி உற்பத்தியாளர் x எண்ணிக்கை கொண்ட தொலைக்காட்சிப் பெட்டிகளை உற்பத்தி செய்வதற்கும், சந்தைப்படுத்துவதற்குமான செலவுச் சார்பு $C(x) = 300x^2 + 4200x + 13,500$. ஒவ்வொரு தொலைக்காட்சி பெட்டியும் ₹ 8,400-க்கு விற்பனை செய்யப்படுகிறது எனில், நிறுவனத்தின் இலாபம் அதிகமாகிறது என நிறுவுக.
- 3. ஒரு முற்றுரிமையாளரின் தேவைப்பாட்டின் வளைவரை x=106-2p மற்றும் சராசரி செலவுச் சார்பின் வளைவரை $AC=5+\frac{x}{50}$, இங்கு p என்பது உற்பத்திற்கான ஒரு அலக விலை மற்றும் x என்பது உற்பத்தி செய்யப்படும் பொருட்களின் எண்ணிக்கை ஆகும். மொத்த வருவாய் R=px, எனில் அதிகப்படியான இலாபம் தரும் உற்பத்தி அளவு மற்றும் மீப்பெரு இலாபம் ஆகியவற்றைக் காண்க.
- 4. ஒரு சுற்றுலா ஏற்பாட்டாளர் ஒரு பயணிக்கு ₹ 136 வீதத்தில் 100 பயணிகளுக்கு மேற்பட்ட ஒவ்வொரு பயணிகளுக்கும் 40 பைசாக்கள் வீதம் தள்ளுபடி தருகிறார். குறைந்தது 100 பயணிகள் கலந்துகொண்டல்தான் சுற்றுலா மேற்கொள்ளப்படும். அவர் மீப்பெரு தொகையைப் பெறுவதற்கான பயணிகளின் எண்ணிக்கையைக் காண்க.
- 5. $y = 2x^3 3x^2 36x + 10$ –க்கு இடம் சார்ந்த சிறுமம் மற்றும் இடம் சார்ந்த பெருமம் ஆகியவற்றைக் காண்க.
- 6. x எனும் ஒரு பொருளின் மொத்த வருவாய் சார்பானது $R = 15x + \frac{x^2}{3} \frac{1}{36}x^4$ எனில், சராசரி வருவாயின் மீப்பெரு புள்ளியில் சராசரி வருவாயானது இறுதி நிலை வருவாய்க்குச் சமம் என நிறுவுக.

6.3.2 சரக்கு நிலைக் கட்டுப்பாடு (Inventory control)

நடைமுறை மற்றும் எதிர்கால தேவைக்கேற்ப மூலப்பொருட்களைக் கையிருப்பு செய்வதே சரக்குநிலைக் கட்டுப்பாடு ஆகும். மூலப்பொருட்கள், மற்றும் முழுமையடைந்த உற்பத்தி பொருட்கள் என்பன சரக்கு இருப்பிற்கான எடுத்துக்காட்டுகள் ஆகும்.

தேவையான மூலப்பொருட்களில் தேவையான அளவை சீரான இடைவெளியில் கோருதல் மற்றும் பெறுதல் மூலம், கோருதல் செலவை குறைப்பதே சரக்குநிலைக் கணக்கின் உள் நோக்கமாகும்.

சரக்கு நிலைத் தீர்மானங்கள்: (An inventory decisions)

ஒவ்வொரு முறையும் சரக்கின் அளவானது,

1. எவ்வளவு கோரப்பட வேண்டும்? 2. அவை எப்பொழுது கோரப்பட வேண்டும்?

சரக்கு நிலை கணக்கில் விலைக் காரணிகளின் பங்கு (Costs involved in an inventory problems)

(i) தக்க வைத்தல் செவவு (அல்லது) இருப்புச் செவவு (அல்லது) சரக்குத் தேக்கச் செவவு C₁ (Holding cost or storage cost or inventory carrying cost)

ஒரு அலகு அளவு கொண்ட பொருட்களை ஒரு அலகு கால அளவிற்கு தேக்கிவைப்பது (அல்லது) கையிருப்பு செய்வதின் தொடர்பாக ஏற்படும் செலவே சரக்கு தேக்கச் செலவாகும்.

(ii) பற்றாக்குறை விலை: (Shortage cost : C₂)

சரக்கு இருப்பு வைப்பதற்கான கொள்முதல் பொருளின் பற்றாக்குறையால் ஏற்படும் அதிகப்படிச் செலவு பற்றாக்குறைச் செலவாகும்.

(iii) உட்கட்டமைப்புச் செவை (அல்லது) கோருதல் செவை (அல்லது) கொள்முதல் செவை C_3 (Setup cost or ordering cost or procurement cost)

பொருட்களை வாங்குவதற்கான கோருதல் வைப்புச் செலவு அல்லது உற்பத்தியின் வசதிக்காக, உற்பத்தி உபகரணங்களை மாற்றி அமைப்பதற்கான ஆரம்ப கட்டச் செலவு.

6.3.3 மிகு ஆதாயக் கோருதல் அளவு (Economic Order Quantity(EOQ):

வருடாந்திர சரக்குத் தேக்க செலவு மற்றும் நிச்சயிக்கப்பட்ட சூழ்நிலையில், வருடாந்திர தேவைக்கேற்ப நிறுவன அமைப்புச் செலவு போன்றவைகளை குறைப்பதற்குத் ஏற்றவகையில் கோருதல் அளவை, சீர்படுத்துவதே மிகு ஆதாய கோருதல் அளவு ஆகும்.

> கூத்திரத்தை தருவிக்கும் முறை கற்றல் திறனை மேம்படுத்துவதற்காகக் கொடுக்கப்பட்டுள்ளது. தருவிக்கும் முறை தேர்வில் கேட்கப்படமாட்டாது.

தேவை தெரிந்தும், குறைபாடுகளின்றியும், சீரானதாகவும் உள்ள பொழுது, பொருளாதார நோக்கின் கீழ் அமைந்த கோருதல் அளவையும், அடுத்தடுத்த சாதகமான இடைவெளிகளில் கோருதல் அளவைத் தீர்மானிப்பதற்கும், இந்த வாய்பாடு பயன்படுகிறது.

EOQ ஐப் பெற பின்வருவனவற்றைக் கருதுவோம்.

- (i) ஒரு கால அளவிற்குச் சீரான தேவை R அலகுகள் என்க.
- (ii) சரக்கு நிலை உருப்படிகளின் அளிப்பு அல்லது உற்பத்தி உடனடியாகப் பெறப்படுகிறது என்க.
- $(ext{iii})$ சரக்குத் தேக்கச் செலவு $otin C_1$ என்க.
- (iv) ஒரு ஆண்டில் கோரப்படும் எண்ணிக்கை 'n' எனவும், ஒவ்வொரு முறையும் 'q' அலகுகள் கோரப்படுகின்றன (உற்பத்தி செய்யப்படுகின்றன) என்க.
- (v) ஒவ்வொரு கோருதலுக்கும் கோருதல் செலவு $otin C_3$ எனவும், அடுத்தடுத்த இரு கோருதல்களுக்கு இடைப்பட்ட கால அளவு 't' என்க.

இந்த கட்டமைப்பின் விளக்கப் படமானது கீழே கொடுக்கப்பட்டுள்ளது (Model)

படம். 6.12

ஓர் உற்பத்தி ஓட்டமானது t இடைவெளியில் அமைகிறது எனில், ஒரு தேவையின் அளவு q=Rt யானது ஒவ்வொரு ஓட்டத்திற்கும் உற்பத்தி செய்ய வேண்டும். சிறிய கால அளவு dt –ல் கையிருப்பானது $Rt\,dt$, என்பதால் கால அளவு t –ல் கையிருப்பானது

$$\int_{0}^{t} Rt \, dt = \frac{1}{2} Rt^{2}$$

$$= \frac{1}{2} qt \quad (\because Rt = q)$$

= சரக்கு நிலை முக்கோணம் OAP–ன் பரப்பளவு (படம் 6.12 –ஐ பார்க்க)

ஒவ்வொரு உற்பத்தி ஓட்டத்தின் சரக்குத் தேக்கச் செலவு $=rac{1}{2}C_{
m l}Rt^2$

ஒவ்வொரு உற்பத்தி ஓட்டத்தின் கோருதல் செலவு $\ = \ C_3$.

ஒவ்வொரு உற்பத்தி ஓட்டத்தின் மொத்த செலவு = $rac{1}{2} C_{
m l} R t^2 + \ C_3$

ஒரு கால அளவிற்கான மொத்த சராசரி செலவு $C(t) = \frac{1}{2} C_1 R t + \frac{C_3}{t}$... (1)

$$\frac{d}{dt}C(t) = \frac{1}{2}C_1R - \frac{C_3}{t^2} \qquad ... (2)$$

$$\frac{d^2C(t)}{dt^2} = \frac{2C_3}{t^3} \qquad ... (3)$$

$$C(t)$$
 ஆனது சிறும மதிப்பைப் பெற, $\frac{d}{dt}C(t)=0$ அல்லது $\frac{d^2}{dt^2}C(t)>0$

$$\frac{d}{dt}C(t) = 0 \Rightarrow \frac{1}{2}C_1R - \frac{C_3}{t^2} = 0$$

$$t = \sqrt{\frac{2C_3}{C_1R}} \text{ எனும்போது, } \frac{d^2C(t)}{dt^2} = \frac{2C_3}{\left(\frac{2C_3}{C_1R}\right)^{\frac{3}{2}}} > 0$$

இவ்வாறாக, உகந்த (optimum) கால இடைவெளி $t_0 = \sqrt{\frac{2C_3}{C_1R}}$ —ல் C(t) ஆனது சிறும மதிப்பைப் பெறுகிறது.

$$\therefore$$
மிகு ஆதாய கோருதல் அளவு : $EOQ = q_0 = Rt_0 = \sqrt{rac{2C_3R}{C_1}}$

இதுவே வில்சனின் உகந்த கோருதல் அளவைக் கணக்கிடும் சூத்திரமாகும்.

(i) ஒரு ஆண்டிற்கு, உகந்த கோருதலின் எண்ணிக்கை

$$n_0 = rac{{
m B}$$
 തെഖ $}{EOQ} = R\sqrt{rac{C_1}{2C_3R}} = \sqrt{rac{RC_1}{2C_3}} = rac{1}{t_0}$

- $({
 m ii})$ ஒர் அலகு காலத்தில், சராசரிச் சிறும செலவு, $C_0=\sqrt{2C_1C_3R}$
- (iii) சரக்குத் தேக்கச் செலவு $= rac{q_0}{2} imes C_1$ மற்றும் கோருதல் செலவு $= rac{R}{q_0} imes C_3$
- (iv) EOQ –ல், கோருதல் செலவு = சரக்கு தேக்கச் செலவு.

எடுத்துக்காட்டு 6.30

ஒரு நிறுவனம் வருடத்திற்கு 48000 அலகுகள் கச்சாப் பொருட்களைப் பயன்படுத்துகிறது. அவற்றின் ஓர் அலகின் விலை ₹ 2.50 ஒரு கோருதலுக்கானக் கோருதல் செலவு ₹ 45. ஓர் ஆண்டிற்கு தேக்கச் செலவு கையிருப்பின் சராசரியில் 10.8 %ஆகும் எனில் மிகு ஆதாயக் கோருதல் அளவு, ஒரு ஆண்டிற்கான கோருதல்களின் எண்ணிக்கை மற்றும் ஒவ்வொரு கோருதலுக்கும் இடைப்பட்ட கால அளவு ஆகியவற்றைக் காண்க. மேலும் மிகு ஆதாயக் கோருதல் அளவில், சரக்கு தேக்கச் செலவும், கோருதல் செலவும் சமம் என்பதை சரிபார்க்கவும்.

தீர்வு:

இங்கு, தேவை R = 48000

தேக்கச் செலவு
$$C_1 = 2.50$$
 இல் $10.8\% = \frac{10.8}{100} \times 2.50 = 0.27$

கோருதல் செலவு $C_3 = 45$

மிகு ஆதாயக் கோருதல் அளவு
$$\ q_0 = \sqrt{rac{2C_3R}{C_1}} \ = \sqrt{rac{2 imes45 imes48000}{0.27}} = 4000$$
 அலகுகள்

ஒரு ஆண்டுக்கான கோருதல்களின் எண்ணிக்கை
$$= \frac{R}{q_0}$$
 $= \frac{48000}{4000} = 12$

ஒவ்வொரு கோருதலுக்கும் இடைப்பட்டக் கால அளவு :
$$t_0 = \frac{q_0}{R}$$

$$= \frac{1}{12} = 0.083 \,\,$$
ஆண்டு

மிகு ஆதாயக் கோருதல் அளவில், சரக்கு தேக்கச் செலவு
$$= = \frac{q_0}{2} \times C_1$$
 $= \frac{4000}{2} \times 0.27 = ₹ 540$

மிகு ஆதாயக் கோருதல் அளவில், சரக்கு கோருதல் செலவு
$$= \frac{R}{q_0} \times C_3$$
 $= \frac{48000}{4000} \times 45 = ₹ 540$

எனவே மிகு ஆதாய கோருதல் அளவில், சரக்கு தேக்கச் செலவும், கோருதல் செலவும் சமம் ஆகும்.

எடுத்துக்காட்டு 6.31

ஒரு உற்பத்தியாளர் தன்னுடைய வாடிக்கையாளர்களுக்கு வருடந்தோறும் 12,000 அலகுகள் வழங்குவதற்கு ஒத்துக் கொண்டுள்ளார். கோருதல் செலவு (C_3) ₹ 100 மற்றும் சரக்குத் தேக்கச் செலவு, ஒரு அலகிற்கு, ஒரு மாதத்திற்கு ₹ 0.80 எனக் கணக்கிடப்படுகிறது. பற்றாக்குறை அனுமதிக்கப்படுவதில்லை மற்றும் கோருதலுக்கான வழங்கல் உடனுக்குடன் ஏற்றுக் கொள்ளப்படுகிறது எனில்,

- (i) மிகு ஆதாயக் கோருதல் அளவு காண்க.
- (ii) இரண்டு கோருதலுக்கு இடைப்பட்டக் கால அளவு
- (iii) ஆண்டு ஒன்றுக்கு வழங்கப்படும் கோருதலின் எண்ணிக்கை ஆகியவற்றைக் காண்க.

தீர்வு :

$$R=$$
 வருடத் தேவை $=12{,}000$ அலகுகள்

$$C_3$$
= கோருதல் செலவு = ₹ 100 கோருதல் ஒன்றிற்கு

$$C_1$$
= சரக்குத் தேக்கச் செலவு = $₹$ 0.80 /லிட்டர் / மாதம் ஒன்றிற்கு = $₹$ 0.80×12 வருடத்திற்க = $₹$ 9.6 வருடத்திற்க

$${
m EOQ}=$$
 மிகு ஆதாயக் கோருதல் அளவு $=\sqrt{rac{2C_3R}{C_1}}=\sqrt{rac{2 imes100 imes12000}{9.6}}$ $=500$ அலகுகள்

$$(ii)$$
 ஒரு வருடத்திற்கான உகந்த கோருதலின் எண்ணிக்கை $=\frac{{\sf Gg mon}}{EOQ}=\frac{12,000}{500}=24$

$$(iii)$$
 உகந்த நேரம், வருடம் ஒன்றிற்க $=rac{1}{t_0}=rac{1}{24}$ வருடம் $=rac{12}{24}$ மாதம் $=rac{1}{2}$ மாதம் $=15$ நாட்கள்

எடுத்துக்காட்டு 6.32

ஒரு நிறுவனம் மாதம் ஒன்றிற்கு 1000 அலகுகள் சீரான விலையில் வழங்குகிறது மற்றும் ஒவ்வொரு முறையும் உற்பத்தி செலவு $\ref{200}$ –ல் ஆரம்பிக்கிறது. ஒரு பொருளுக்கு ஒரு மாதத்திற்கு தேக்க நிலைச் செலவு $\ref{20}$ ஒரு ஓட்டத்திற்கு உற்பத்தி செய்யப்படும் பொருட்களின் எண்ணிக்கை உறுதி செய்யப்பட வேண்டும். 500, 600, 700 மற்றும் 800 ஆகிய ஓட்ட அளவிற்கு மொத்த உள்கட்டமைப்புச் செலவு மற்றும் சராசரி சரக்கு தேக்கச் செலவுகளைக் காண்க. மேலும் EOQ சூத்திரத்தைப் பயன்படுத்தி, உற்பத்தி ஓட்டச் செலவைக் காண்க.

தீர்வு:

தேவை: R = 1000 அலகுகள் / மாதம்

கோருதல் செலவு : C_3 = ₹ 200~ ஒரு கோருதலுக்கு

சரக்குத் தேக்கச் செலவு : $\ C_{\scriptscriptstyle 1} = \ {\ensuremath{\,^{>}}}\ 20$ / உருப்படி/ மாதம்

ஓட்ட அளவு <i>q</i>	கோருதல் செலவு $\dfrac{R}{q}\! imes\!C_{_3}$	சராசரி சரக்கு நிலைச் $rac{q}{2}\! imes\!C_{_1}$	மொத்தச் செலவு
500	$\frac{1000}{500} \times 200 = 400$	$\frac{500}{2}$ ×20 = 5000	5400
600	$\frac{1000}{600} \times 200 = 333.3$	$\frac{600}{2}$ ×20 = 6000	6333.3
700	$\frac{1000}{700} \times 200 = 285.7$	$\frac{700}{2}$ ×20 = 7000	7285.7
800	$\frac{1000}{800} \times 200 = 250$	$\frac{800}{2}$ ×20 = 8000	8250

அட்டவணை: 6.3

$$EOQ = \sqrt{rac{2RC_3}{C_1}} = \sqrt{rac{2 imes 1000 imes 200}{20}}$$
 $= \sqrt{20000}$
 $= 141$ அலகுகள் (கோராயமாக)

எடுத்துக்காட்டு 6.33

ஒரு தயாரிப்பு நிறுவனம், சீரான விலையில் 4000 அலகுகள் உற்பத்தியினை வழங்குவதற்கு ஒத்துக்கொண்டுள்ளது. இருப்புச் செலவு அலகு ஒன்றிற்கு ஒரு ஆண்டிற்கு ₹ 50 மற்றும் சரக்கு இருப்புச் செலவு ஒரு ஒட்ட உற்பத்திற்கு pprox 160 என தீர்மானிக்கப்பட்டுள்ளது. உற்பத்தியானது உடனடியாக தொடங்குவதற்கு ஒத்துக்கொள்ளப்பட்டுள்ளது மற்றும் பற்றாக்குறை அனுமதிக்கப்படுவதில்லை எனில், ஓட்டம் ஒன்றுக்கு மொத்த செலவு, சிறுமம் அடைவதற்கு எத்தனை அலகுகள் உற்பத்தி செய்ய வேண்டும் எனக் கணக்கிடுக.

தீர்வு:

வருடத் தேவை : R = 4000 அலகுகள்

இருப்புச் செலவு : $C_1 = 750$

ஒரு உற்பத்திக்கு கோருதல் செலவு: C_3 = ₹160

$$EOQ = \sqrt{rac{2Rc_3}{c_1}}$$

$$= \sqrt{rac{2 imes 4000 imes 160}{50}} = 160$$
 அலகுகள்.

உற்பத்தி செலவினைக் குறைப்பதற்கு ஓட்டம் ஒன்றிக்கு 160 அலகுகள் உற்பத்தி செய்யப்பட வேண்டும்.

எடுத்துக்காட்டு 6.34

ஒரு நிறுவனமானது 500 பெட்டிகளை மூன்று மாதங்களில் வாங்கியுள்ளது. ஒரு பெட்டியின் விலை ₹ 125, கோருதல் செலவு ₹150 ஆகும். ஓர் அலகிற்கு சரக்குத் தேக்கச் செலவு 20% –ஆக மதிப்பிடப்பட்டுள்ளது.

- (i) தற்போதைய சரக்கு நிலைக் கொள்கைக்கான மொத்தச் செலவுத் தொகையைக் காண்க.
- (ii) மிகு ஆதாய கோருதல் அளவைப் பயன்படுத்தி வேலை செய்வதன் மூலம் எவ்வளவு பணம் சேமிக்க இயலும்?

தீர்வு:

கணக்கின்படி,

ஒரு கோருதலின் கோருதல் செலவு : $C_{\rm 3}$ = ₹150

ஓர் அலகு கோருதலின் எண்ணிக்கை :q=500 அலகுகள்

வருடத் தேவை
$$=500 imes 4 = 2000$$
 அலகுகள்

தேக்கச் செலவு := ஓர் அலகுக்கு 20%

$$C_1 = \frac{20}{100} \times 125 = ₹25$$

(i) தற்போதைய சரக்குநிலை கொள்கைக்கான மொத்த வருடாந்திர செலவு

$$= \frac{R}{q} \times C_3 + \frac{q}{2} C_1$$
$$= \frac{2000}{500} \times 150 + \frac{500}{2} \times 25$$

(ii)
$$EOQ = \sqrt{\frac{2RC_3}{C_1}}$$
$$= \sqrt{\frac{2 \times 2000 \times 150}{25}}$$
$$= \sqrt{12 \times 2000}$$
$$= 155 \text{ (app.)}$$

சிறும் வருடாந்திர செலவு =
$$\sqrt{2RC_3C_1}$$
 = $\sqrt{2\times2000\times150\times25}$ = $₹3873$.

மிகு ஆதாய கோருதல் அளவினைப் பயன்படுத்தி, நிறுவனம் சேமித்த பணம் = 6850–3873 = ₹2977.

1. வருடாந்திர தேவை மற்றும் 3 பொருட்களின் ஓரலகு விலை கீழே கொடுக்கப்பட்டுள்ளது.

பொருட்கள்	வருடத் தேவை (அலகுகளில்)	அலகு விலை (ரூபாயில்)
A	800	0.02
В	400	1.00
С	13,800	0.20

கோருதல் செலவு ஒரு கோருதருலுக்கு ₹ 5 மற்றும் இருப்புச் செலவு அலகு ஒன்றிற்கு ₹ 10 ஆகும் எனில்,

- (i) மிகு ஆதாயக் கோருதல் அளவினை அலகு மதிப்பில் காண்க.
- (ii) சிறும் சராசரி செலவு.
- (iii) மிகு ஆதாயக் கோருதல் அளவைப் ரூபாயில் காண்க.
- (iv) மிகு ஆதாயக் கோருதல் அளவை வருட வழங்கல் அடிப்படையில் காண்க.
- (v) ஒரு வருடத்திற்கான கோருதல்களின் எண்ணிக்கையைக் காண்க.
- 2. ஒரு விற்பனையாளர் தன்னுடைய வாடிக்கையாளருக்கு ஒரு வாரத்திற்கு 400 அலகுகள் கொண்ட பொருட்களை வழங்குகிறார். விற்பனையாளர் உற்பத்தியாளரிடமிருந்து ஒர் அலகு பொருளை ₹ 50 –க்கு வாங்குகிறார். உற்பத்தியாளரிடமிருந்து வாங்கப்படும் கோருதல் செலவு, ஒரு கோருதலுக்கு ₹ 75 ஒரு வருடத்திற்கான சரக்கு நிலை தேக்கச் செலவானது உற்பத்தி செலவின் 7.5 % எனில்
 - (i) மிகு ஆதாயக் கோருதல் அளவு (EOQ)
 - மொத்த உகந்த செலவு ஆகியவற்றைக் காண்க. (ii)

6.4 பகுதி வகையிடல் : (Partial Derivatives)

பல மாறிகளைக் கொண்ட ஒரு சார்பின் பகுதி வகையிடல் என்பது மாறிகளில் ஏதேனும் ஒன்றைப் பொறுத்து (மற்ற மாறிகளை மாறிலிகளாகக் கொண்டு) சார்பின் வகையிடல் ஆகும். இப்பகுதியில் நாம் இரண்டு சாரா மாறிகளை கொண்ட சார்புகளை மட்டும் எடுத்துக்கொண்டு அவற்றின் வகையீடுகளை காண்போம்.

u = f(x, y) என்பது x, y என்ற இரண்டு சாரா மாறிகளைக் கொண்ட சார்பு என்க.

y – ஐ மாறிலியாகக் கொண்டு x – ஐ பொறுத்து u = f(x,y) – யை வகையீடு செய்து கிடைப்பது x – ஐ பொறுத்து u – ன் பகுதி வகைக்கெழு ஆகும். இதை $\frac{\partial u}{\partial x}$ அல்லது u_x எனும் குறியீட்டில் குறிப்பது வழக்கம்

$$\frac{\partial u}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

என்ற எல்லை இருக்கும்போது, y – என்பது மாறாதது, $\triangle x$ என்பது x –ல் ஏற்படும் சிறு மாற்றமாகும். x–ஐ மாறிலியாகக் கொண்டு y – ஐப் பொறுத்து u= f(x,y) –ஐ வகையீடு செய்து கிடைப்பது y—ஐ பொறுத்த u –ன் பகுதி வகையிடல் ஆகும். இதை $\frac{\partial u}{\partial v}$ அல்லது u_y குறியீட்டில் குறிப்பது வழக்கம்

$$\frac{\partial u}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

என்ற எல்லை இருக்கும்போது, x – என்பது மாறாதது, Δy என்பது y–ல் ஏற்படும் சிறு மாற்றமாகும்.

$$\frac{\partial u}{\partial x}$$
 –ஐ $\frac{\partial}{\partial x}$ $f(x,y)$ (அல்லது) $\frac{\partial f}{\partial x}$ என எழுதலாம். இதே போல் $\frac{\partial u}{\partial y}$ –ஐ $\frac{\partial}{\partial y}$ $f(x,y)$ (அல்லது

 $\frac{\partial f}{\partial v}$ என எழுதலாம். பகுதி வகைக்கெழுக்களைக் காணும் முறையை பகுதி வகையிடல் என்கிறோம்.

தொடர்ச்சியான பகுதி வகைக்கெழுக்கள்: (Successive partial derivatives) 6.4.1

u=f(x,y) என்ற சார்பை எடுத்துக்கொள்வோம். இதிலிருந்து $\frac{\partial u}{\partial x}$ மற்றும் $\frac{\partial u}{\partial y}$ காணலாம். $rac{\partial u}{\partial x}$ மற்றும் $rac{\partial u}{\partial y}$ என்பன, y —ன் சார்புகளாக இருந்தால் அவற்றை x மற்றும் y–ஐ பொறுத்து மீண்டும் பகுதி வகையிடலாம். இந்தப் பகுதி வகைக்கெழுக்கள் $u(x,\ y)$ –ன் இரண்டாம் வரிசை பகுதி வகைக்கெழுக்கள் ஆகும். அதாவது $\frac{\partial^2 u}{\partial v^2}$, $\frac{\partial^2 u}{\partial x^2}$ $\frac{\partial^2 u}{\partial y \partial x}$, $\frac{\partial^2 u}{\partial x \partial y}$ ஆகியவை இரண்டாம் வரிசை பகுதி வகைக்கெழுக்கள்.

இதேபோல் மூன்றாம் வரிசை , நான்காம் வரிசை பகுதி வகைக்கெழுக்களை(காண முடியுமானால்) நாம் காணலாம். தொடர்ச்சியாக பகுதி வகைக்கெழு காணும் முறையை தொடர்ச்சியான பகுதி வகைக்கெழுக்கள் என்போம்.

u=f(x,y) —ஐ x —ஐ பொறுத்து பகுதி வகையீடு செய்து மீண்டும் y, ஐ பொறுத்து பகுதி வகைப்படுத்தினால் நாம் பெறுவது $\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)$ அதாவது $\frac{\partial^2 u}{\partial v \partial x}$ ஆகும்.

அதே போல் u=f(x,y) - ஐ y - ஐ பொறுத்து பகுதி வகையீடு செய்து மீண்டும் x - ஐ பொறுத்த பகுதி வகையிடலை $\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial u} \right)$ அதாவது $\frac{\partial^2 u}{\partial x \partial v}$ என்று குறிப்போம்.

u(x,y) என்பது x மற்றும் y—ல் தொடர்ச்சியான சார்பு எனில், $\frac{\partial^2 u}{\partial v \partial x} = \frac{\partial^2 u}{\partial x \partial v}$.

சம்படித்தான சார்புகள்:(Homogeneous functions)

u=f(x,y) என்பது $x\,,y\,$ என்ற இரு சாரா மாறிகளைக்கொண்ட சார்பு என்க.

$$f(tx,ty) = t^n f(x,y), t > 0.$$

எனில் u=f(x,y) என்பது 'n' படியுள்ள சமபடித்தான சார்பு எனப்படும்.

6.4.2 ஆய்லரின் தேற்றம் மற்றும் அதன் பயன்பாடுகள் (Euler's theorem and its applications) இரு மாறிகளை கொண்ட ஆய்லரின் தேற்றம்: (Euler's theorem for two variables)

u=f(x,y) என்பது x,y –ல் அமைந்த n', படியுள்ள சமபடித்தான சார்பு எனில்

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu$$

எடுத்துக்காட்டு 6.35

$$u=x^2(y-x)+y^2$$
 $(x-y)$, எனில் $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=-2\;(x-y)^2$ எனக் காட்டுக.

தீர்வு:

$$u = x^{2}y - x^{3} + xy^{2} - y^{3}$$

$$\frac{\partial u}{\partial x} = 2xy - 3x^{2} + y^{2}$$

$$\frac{\partial u}{\partial y} = x^{2} + 2xy - 3y^{2}$$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = -2x^{2} - 2y^{2} + 4xy$$

$$= -2(x^{2} + y^{2} - 2xy)$$

$$= -2(x - y)^{2}$$

எடுத்துக்காட்டு 6.36

$$u = \log(x^2 + y^2)$$
 எனில், $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ எனக்காட்டுக.

தீர்வு:

$$u = \log(x^2 + y^2)$$

$$\frac{\partial u}{\partial x} = \frac{1}{x^2 + y^2} (2x) = \frac{2x}{x^2 + y^2}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\left(x^2 + y^2\right) \cdot 2 - 2x \cdot 2x}{\left(x^2 + y^2\right)^2} = \frac{2\left(y^2 - x^2\right)}{\left(x^2 + y^2\right)^2}$$

$$\frac{\partial u}{\partial y} = \frac{1}{x^2 + y^2} (2y) = \frac{2y}{x^2 + y^2}$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{(x^2 + y^2) \cdot 2 - 2y \cdot 2y}{(x^2 + y^2)} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}$$

$$\therefore \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

எடுத்துக்காட்டு 6.37

 $u=xy+\sin(xy)$, எனில் $\frac{\partial^2 u}{\partial x\partial y}=\frac{\partial^2 u}{\partial y\partial x}$ எனக் காட்டுக.

தீர்வு:

$$u = xy + \sin(xy)$$

$$\frac{\partial u}{\partial x} = y + y \cos(xy)$$

$$\frac{\partial u}{\partial y} = x + x \cos(xy)$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right)$$

$$= 1 + x \left(-\sin(xy) \cdot y \right) + \cos(xy)$$

$$= 1 - xy \sin(xy) + \cos(xy) \dots \quad (1)$$

$$\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial}{\partial y} \left(y + y \cos(xy) \right)$$

$$= 1 + \cos(xy) + y \left(-\sin(xy)x \right)$$

$$= 1 - xy \sin(xy) + \cos(xy) \dots \quad (2)$$

(1) மற்றும் (2) –லிருந்து

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}.$$

எடுத்துக்காட்டு 6.38

 $u=rac{1}{\sqrt{\chi^2+\gamma^2}}$ என்ற சார்பிற்கு ஆய்லரின் தேற்றத்தைச் சரிபார்க்க.

தீர்வு:

$$u(x,y) = (x^{2} + y^{2})^{-\frac{1}{2}}$$

$$u(tx,ty) = (t^{2}x^{2} + t^{2}y^{2})^{-\frac{1}{2}} = t^{-1} (x^{2} + y^{2})^{-\frac{1}{2}}$$

 \therefore u என்ற சமப்படித்தான சார்பின் படி -1 ஆகும்.

ஆய்லரின் தேற்றத்தின் படி, $x.\frac{\partial u}{\partial x}+y.\frac{\partial u}{\partial y}=(-1)u=-u$

சரிபார்த்தல்:(Verification)

$$u = (x^{2} + y^{2})^{-\frac{1}{2}}$$

$$\frac{\partial u}{\partial x} = -\frac{1}{2}(x^{2} + y^{2})^{-\frac{3}{2}} \cdot 2x = \frac{-x}{(x^{2} + y^{2})^{\frac{3}{2}}}$$

$$x \cdot \frac{\partial u}{\partial x} = \frac{-x^2}{\left(x^2 + y^2\right)^{\frac{3}{2}}}$$

$$\frac{\partial u}{\partial y} = -\frac{1}{2}\left(x^2 + y^2\right)^{-\frac{3}{2}} \cdot 2y = \frac{-y}{\left(x^2 + y^2\right)^{\frac{3}{2}}}$$

$$y \cdot \frac{\partial u}{\partial y} = \frac{-y^2}{\left(x^2 + y^2\right)^{\frac{3}{2}}}$$

$$x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y} = \frac{-(x^2 + y^2)}{(x^2 + y^2)^{\frac{3}{2}}}$$

$$= (-1)\frac{1}{\sqrt{x^2 + y^2}} = (-1)u = -u$$

எனவே ஆய்லரின் தேற்றம் சரிப்பார்க்கபட்டது.

எடுத்துக்காட்டு 6.39

$$u = \log \frac{x^4 + y^4}{x + y}$$
 என்க. ஆய்லரின் தேற்றத்தைப் பயன்படுத்தி $x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y} = 3$ எனக்

காட்டுக.

தீர்வு:

$$u = \log \frac{x^4 + y^4}{x + y}$$
 $e^u = \frac{x^4 + y^4}{x + y} = f(x, y)$... (1)
 $f(x, y) = \frac{x^4 + y^4}{x + y}$ என்பதை எடுத்துக்கொள்வோம்.
 $f(tx, ty) = \frac{t^4 x^4 + t^4 y^4}{tx + ty} = t^3 \left(\frac{x^4 + y^4}{x + y}\right) = t^3 f(x, y)$

 \therefore f என்ற சமப்படித்தான சார்பின் படி 3 ஆகும்.

ஆய்லரின் தேற்றத்தைப் பயன்படுத்த, $x\cdot \frac{\partial u}{\partial x} + y\cdot \frac{\partial u}{\partial y} = 3f$

 $f(x,y) = e^u$ என்பதை எடுத்துக்கொள்வோம்.

$$x \cdot \frac{\partial e^{u}}{\partial x} + y \cdot \frac{\partial e^{u}}{\partial y} = 3e^{u}$$

$$\therefore \qquad e^{u}x \cdot \frac{\partial u}{\partial x} + e^{u}y \cdot \frac{\partial u}{\partial y} = 3e^{u}$$

$$x \cdot \frac{\partial u}{\partial x} + y \cdot \frac{\partial u}{\partial y} = 3$$

- z=(ax+b)(cy+d), எனில் $\frac{\partial z}{\partial x}$ மற்றும் $\frac{\partial z}{\partial y}$ என்பனவற்றைக் காண்க.
- $u=e^{xy}$, எனில் $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial v^2}=u\big(x^2+y^2\big)$ எனக்காட்டுக.
- $u = x \cos y + y \cos x$. எனில் $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ என்பதைச் சரி பார்க்க.
- $u=x^3+y^3+3xy^2$ என்ற சார்பிற்கு ஆய்லரின் தேற்றத்தைச் சரி பார்க்க.
- $u=x^2y^3\cos\left(\frac{x}{y}\right)$ என்க. ஆய்லரின் தேற்றத்தைப் பயன்படுத்தி $x.\frac{\partial u}{\partial x}+y.\frac{\partial u}{\partial y}=5u$ எனக்

6.5. பகுதி வகையிடலின் பயன்பாடுகள் (Applications of partial derivatives)

தொழில் துறையில் நேரடி பங்கு வகிக்கக் கூடிய கணக்குகளை பகுதி வகையிடல் மூலம் இங்கு காணலாம்.

6.5.1 இரு மாறிகளின் உற்பத்திச் சார்பு, இறுதி நிலை உற்பத்தித் திறன்(Production function and marginal productivities of two variables)

(i) உற்பத்திச் சார்பு:(Production function)

Pஎன்ற ஒரு நிறுவனத்தின் உற்பத்தியானது, மூலதனம் (K), ஊதியம் (L), மூலப்பொருள்கள் (R), இயந்திரங்கள் (M) போன்ற பல பொருளாதாரக் காரணிகளைச் சார்ந்திருக்கிறது. எனவே $P=f(K,L,R,M,\ldots)$ என்பது உற்பத்திச் சார்பு எனப்படும். P என்பது முதலீடு மற்றும் ஊதியம் மட்டுமே சார்ந்து இருப்பின் P = f(L, K) என எழுதலாம்.

(ii) இறுதி நிலை உற்பத்தித் திறன்:(Marginal productivities)

P=f(L,K) என்பது உற்பத்திச் சார்பு எனில் $\frac{\partial P}{\partial L}$ என்பது ஊதியம் சார்ந்த இறுதிநிலை உற்பத்திச் சார்பு எனவும், $\frac{\partial P}{\partial K}$ என்பது மூலதனம் சார்ந்த இறுதிநிலை உற்பத்திச் சார்பு எனவும் அழைக்கப்படும்.

P(L,K) என்ற ஒரு படி சீரான உற்பத்திச் சார்பிற்கான ஆயிலரின் தேற்றமானது $L\frac{\partial P}{\partial I} + K\frac{\partial P}{\partial K} = P$ ஆகும்.

6.5.2 பகுதி தேவை நெகிழ்ச்சிகள் (Partial elasticity of demand)

 $A,\ B$ ஆகிய பொருள்களின் விலைகள் முறையே p_1 , p_2 எனில் A என்ற பொருளின் தேவை $q = f(p_1, p_2)$ ஆகும்.

 $p_{\scriptscriptstyle 1}$ ஐப் பொறுத்து q–ன் தேவையின் பகுதி நெகிழ்ச்சி

$$\eta_{qp_{_{1}}}=rac{Eq}{Ep_{_{1}}}=rac{-p_{_{1}}}{q}rac{\partial\,q}{\partial\,p_{_{1}}}$$
 என வரையறுக்கப்படுகிறது.

 p_γ ஐப் பொறுத்து q –ன் தேவையின் பகுதி நெகிழ்ச்சி

$$\eta_{qp_2}=rac{Eq}{Ep_2}=rac{-p_2}{q}rac{\partial\,q}{\partial\,p_2}$$
 என வரையறுக்கப்படுகிறது.

எடுத்துக்காட்டு 6.40

 $P=10L+0.1L^2+5K-0.3K^2+4KL$ என்ற உற்பத்திச் சார்புக்கு ${\rm K}={\rm L}=10$ எனில் மூலதனம் (K) மற்றும் ஊதியம் (L) ஆகியவற்றினை சார்ந்த இறுதிநிலை உற்பத்திகளைக் காண்க.

தீர்வு:

$$P = 10L + 0.1L^{2} + 5K - 0.3K^{2} + 4KL$$
$$\frac{\partial P}{\partial L} = 10 + 0.2L + 4K$$
$$\frac{\partial P}{\partial K} = 5 - 0.6K + 4L$$

K=L=10 அலகுகள் எனில்

ஊதியம் சார்ந்த இறுதிநிலை உற்பத்தி: $\left(\frac{\partial P}{\partial L}\right)_{\scriptscriptstyle (10,10)}=10+2+40=52$ அலகுகள்

மூலதனம் சார்ந்த இறுதிநிலை உற்பத்தி: $\left(\frac{\partial P}{\partial K}\right)_{(10.10)}=5-6+40=39$ அலகுகள்

எடுத்துக்காட்டு 6.41

ஒரு நிறுவனத்தின் உற்பத்திச் சார்பு $P = 10L - 0.1L^2 + 15K - 0.2K^2 + 2KL$ இங்கு L என்பது ஊதியம் மற்றும் K என்பது மூலதனத்தைக் குறிக்கிறது.

- (i) ஊதியம் மற்றும் மூலதனம் ஒவ்வொன்றும் 10 அலகுகள் எனில் இறுதிநிலை உற்பத்திச் சார்புகளைக் கணக்கிடுக.
- (ii) மூலதனத்தில் 10 அலகுகள் பயன்படுத்தப்பட்டால் ஊதியத்திற்கான உச்ச வரம்பைக் காண்க.

தீர்வு:

$$(i) \ \ P = 10L - 0.1L^2 + 15K - 0.2K^2 + 2KL$$
 (கொடுக்கப்பட்டுள்ளது)

$$\frac{\partial P}{\partial L} = 10 - 0.2L + 2K$$
$$\frac{\partial P}{\partial K} = 15 - 0.4K + 2L$$

L=K=10 அலகுகள் எனில்,

ஊதியம் சார்ந்த இறுதிநிலை உற்பத்தி: $\left(\frac{\partial P}{\partial L}\right)_{(10,10)}=10-2+20=28$ அலகுகள்

மூலதனம் சார்ந்த இறுதிநிலை உற்பத்தி: $\left(\frac{\partial P}{\partial K}\right)_{(10,10)}=15-4+20=31$ அலகுகள்

 $(ext{ii})$ K=10 எனும் போது ஊதியத்திற்கான உச்ச வரம்பு $\left(rac{\partial P}{\partial L}
ight)$ ≥ 0 ஆகும்.

$$10 - 0.2L + 20 \ge 0$$

$$30 \ge 0.2L$$

அதாவது,

$$L \le 150$$

். ஊதியத்திற்கான உச்ச வரம்பானது 150 அலகுகள் ஆகும்.

எடுத்துக்காட்டு 6.42

ஒரு நிறுவனத்தின் உற்பத்திச் சார்பு $P=4L^{\frac{3}{4}}K^{\frac{1}{4}}$ எனில், மூலதனம் சார்ந்த இறுதி நிலை உற்பத்தி மற்றம் ஊதியம் சார்ந்த இறுதிநிலை உற்பத்தி ஆகியவற்றைக் காண்க. மேலும் $L\frac{\partial P}{\partial L}+K\frac{\partial P}{\partial K}=P$ என நிருபி.

தீர்வு:

$$P = 4L^{\frac{3}{4}} K^{\frac{1}{4}}$$

ஊதியம் சார்ந்த இறுதிநிலை உற்பத்தி :

$$\frac{\partial P}{\partial L} = 4 \times \frac{3}{4} L^{\frac{-1}{4}} K^{\frac{1}{4}} = 3 \left(\frac{K}{L}\right)^{\frac{1}{4}}$$

மூலதனம் பொறுத்த இறுதி நிலை உற்பத்தி:

$$\frac{\partial P}{\partial K} = 4L^{\frac{3}{4}} \times \frac{1}{4}K^{\frac{-3}{4}} = \left(\frac{L}{K}\right)^{\frac{3}{4}}$$

$$L\frac{\partial P}{\partial L} + K\frac{\partial P}{\partial K} = 3L\left(\frac{K}{L}\right)^{\frac{1}{4}} + K\left(\frac{L}{K}\right)^{\frac{3}{4}}$$
$$= 3L^{\frac{3}{4}}K^{\frac{1}{4}} + L^{\frac{3}{4}}K^{\frac{1}{4}}$$
$$= 4L^{\frac{3}{4}}K^{\frac{1}{4}} = P$$

எடுத்துக்காட்டு 6.43

x என்ற பொருளின் தேவை $q=5-2p_1+p_2-p_1^2p_2$ எனில் $\frac{Eq}{EP_1}$ மற்றும் $\frac{Eq}{EP_2}$ என்ற பகுதி நெகிழ்ச்சிகளை p_1 =3 மற்றும் p_2 =7 எனும் பொழுது காண்க.

தீர்வு:

$$q = 5 - 2p_1 + p_2 - p_1^2 p_2$$

$$\frac{\partial q}{\partial p_1} = -2 - 2p_1 p_2$$

$$\frac{\partial q}{\partial p_2} = 1 - p_1^2$$

$$\frac{Eq}{Ep_1} = -\frac{p_1}{q} \frac{\partial q}{\partial p_1} = \frac{-p_1}{5 - 2p_1 + p_2 - p_1^2 p_2} (-2 - 2p_1 p_2)$$

$$= \frac{2p_1 + 2p_1^2 p_2}{5 - 2p_1 + p_2 - p_1^2 p_2}$$

இங்கு p_1 = 3 மற்றும் p_2 = 7

$$\frac{Eq}{Ep_1} = \frac{2(3) + 2(9)(7)}{5 - 6 + 7 - (9)(7)} = \frac{132}{-57} = \frac{-132}{57}$$

$$\frac{Eq}{Ep_2} = -\frac{p_2}{q} \frac{\partial q}{\partial p_2} = \frac{-p_2(1 - p_1^2)}{5 - 2p_1 + p_2 - p_1^2 p_2}$$

$$= \frac{-p_2 + p_2 p_1^2}{5 - 2p_1 + p_2 - p_1^2 p_2}$$

இங்கு p_1 = 3 மற்றும் p_2 = 7

$$\frac{Eq}{Ep_2} = \frac{-7+7(9)}{5-6+7-(9)(7)} = \frac{56}{-57} = \frac{-56}{57}$$

- $1. \qquad P = 8L 2K + 3K^2 2L^2 + 7KL$ என்ற உற்பத்திச் சார்பிற்கு K = 3 மற்றும் L = 1 என்ற மதிப்புகளின் மூலதனம் (K) மற்றும் ஊதியம் (L) சார்ந்த இறுதிநிலை உற்பத்திகளைக் காண்க.
- 2. ஒரு நிறுவனத்தின் உற்பத்திச் சார்பு $P=4LK-L^2+K^2$, L>0 , K>0 , எனில் $L\frac{\partial P}{\partial L}+K\frac{\partial P}{\partial K}=2$ P என நிரூபி.
- $z = 3x^2 4xy + 3y^2$ என்பது ஒரு உற்பத்திச் சார்பு. இங்கு x என்பது ஊதியம் மற்றும் y என்பது மூலதனம் ஆகும். $x=1,\ y=2$ எனில் இறுதிநிலை உற்பத்தி சார்புகளைக் காண்க

- $P=3(L)^{0.4}\,(K)^{0.6}$ என்பது ஒரு உற்பத்திச் சார்பு இங்கு L என்பது ஊதியம் மற்றும் K என்பது மூலதனம் எனில் L=10 மற்றும் K=6 என இருக்கும்பொழுது இறுதிநிலை உற்பத்திகளை ьпооть. [use: $(0.6)^{0.6} = 0.736, (1.67)^{0.4} = 1.2267$]
- A என்ற பொருளின் தேவை $q=13-2p_1-3p_2^2$ எனில் $p_1=p_2=2$ என்ற மதிப்புகளுக்கு $Eq\over Ep_1$ மற்றும் $Eq\over Ep_2$ என்ற பகுதி நெகிழ்ச்சிகளைக் காண்க. 5.
- A என்ற பொருளின் தேவை $q=80-{p_1}^2+5\,p_2-p_1p_2$ எனில் $p_1\!=\!2$ மற்றும் $p_2\!=\!1$ என்ற 6. மதிப்புகளுக்கு $\frac{Eq}{Ep_1}$ மற்றும் $\frac{Eq}{Ep_2}$ என்ற பகுதி நெகிழ்ச்சிகளைக் காண்க.

ஏற்புடைய விடையைத் தெரிவு செய்க:

- $C(x) = 2x^3 + 5x^2 14x + 21$ என்ற செலவு சார்பின் சராசரி மாறாச் செலவானது
 - (a) $\frac{2}{3}$ (b) $\frac{5}{x}$
- (c) $-\frac{14}{x}$ (d) $\frac{21}{x}$
- 2. p=20-3x என்ற தேவைச் சார்பின் இறுதி நிலை வருவாய்
 - (a) 20-6x
- (b) 20-3x
- (c) 20+6x
- (d) 20+3x
- ஒரு நிறுவனத்தின் தேவை மற்றும் அதன் செலவுச் சார்பு முறையே p=2-x மற்றும் 3. $C = -2x^2 + 2x + 7$ எனில், இதன் இலாபச் சார்பானது
 - (a) $x^2 + 7$
- (b) $x^2 7$
- (c) $-x^2 + 7$ (d) $-x^2 7$
- 4. தேவைச் சார்பு மீள்தன்மை கொண்டது எனில்,

- (a) $|\eta_d| > 1$ (b) $|\eta_d| = 1$ (c) $|\eta_d| < 1$ (d) $|\eta_d| = 0$
- 5. $x = \frac{1}{p}$ என்ற தேவை சார்பின் தேவை நெகிழ்ச்சி
 - (a) 0
- (b) 1
- $(c) -\frac{1}{p}$
- (d) ∞
- MR,AR மற்றும் $\eta_{\scriptscriptstyle d}$ க்களுக்கு இடையேயுள்ள தொடர்பானது
 - (a) $\eta_d = \frac{AR}{4R MR}$ (b) $\eta_d = AR MR$ (c) $MR = AR = \eta_d$
- (d) $AR = \frac{MR}{n}$
- 7. $C = \frac{1}{25}e^{5x}$, என்ற செலவுச் சார்புக்கான இறுதிநிலைச் செலவு
- (b) $\frac{1}{5}e^{5x}$ (c) $\frac{1}{125}e^{5x}$
- (d) $25e^{5x}$

8.	$x=2$ –ல் x –ஐப் பொறுத்து $y=2x^2+5x$ –ன் உடனடி மாறு வீதம்						
	(a) 4	(b) 5	(c)	13	(d) 9		
9.	ஒரு குறிப்பிட்ட நிறுவனத்தின் சராசரி வருவாய் ₹ 50 மற்றும் அதன் தேவை நெகிழ் எனில் அதனுடைய இறுதி நிலை வருவாய்						
	(a) ₹ 50	(b) ₹ 25	(c)	₹ 100	(d) ₹ 75		
10.	P(x) என்ற இலாபச் சார்பு பெருமத்தை அடைய தேவையான கட்டுப்பாடு						
	(a) $MR = MC$	(b) $MR = 0$	(c)	MC = AC	(d) $TR = AC$		
11.	$f(x) = \sin x$ என்ற சா	$\mathit{f}(\mathit{x}) = \sin\!\mathit{x}$ என்ற சார்பின் மீப்பெரு மதிப்பானது					
	(a) 1	(b) $\frac{\sqrt{3}}{2}$	(c)	$\frac{1}{\sqrt{2}}$	(d) $-\frac{1}{\sqrt{2}}$		
12.	$f(x,y)$ என்பது n , படியுள்ள சமபடித்தான சார்பு எனில் $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ —க்குச் சமமானது				ர் y		
		(b) $n(n-1)f$			(d) <i>f</i>		
13.	$If u = 4x^2 + 4xy + y$	$^2 + 4x + 32y + 16$ என	ரில்	$\frac{\partial^2 u}{\partial y \partial x}$ –ன் மதிப்	ÜŲ		
	(a) $8x + 4y + 4$	(b) 4	(c)	2y + 32	(d) 0		
14.	If $u=x^3+3xy^2+y^3$ எனில் $\frac{\partial^2 u}{\partial y\partial x}$ –ன் மதிப்பு						
	(a) 3	(b) 6 <i>y</i>	(c)	6 <i>x</i>	(d) 2		
15.	$u=e^{x^2}$ எனில் $rac{\partial u}{\partial x}$	$u=e^{x^2}$ எனில் $rac{\partial u}{\partial x}$ –ன் மதிப்பு					
	(a) $2xe^{x^2}$	(b) e^{x^2}	(c)	$2e^{x^2}$	(d) 0		
16.	சராசரிச் செலவு சிறுமம் எனில்						
	(a) இறுதி நிலைச் செலவு = இறுதி நிலை வருவாய் (b) சராசரிச் செலவு = இறுதி நிலைச் செலவு						
	(c) சராசரிச் செலவு = இறுதி நிலை வருவாய்						
	(d) சராசரி வருவாய்	ı = இறுதி நிலைச் செவ	ാഖ്വ				
17.	ஒரு நிறுவனம் லாப	ததை அடைவது					
	(a) மீப்பெரு புள்ளியி	ါလံ	(b)	சமபாட்டுப் புள்ள	ിധിல்		
	(c) தேக்கநிலைப் பு	ள்ளியில்	(d)	சீரான புள்ளியி	ல்		

2

- 18. தேவைச் சார்பு எப்பொழுதும்
 - (a) கூடும் சார்பு ஆகும்.

- (b) குறையும் சார்பு ஆகும்.
- c) குறையற்ற சார்பு ஆகும்.
- (d) வரையறுக்கப்படாத சார்பு ஆகும்.
- $19. \qquad q$ = $1000+8p_1-p_2$ எனில், $\dfrac{\partial q}{\partial p_{_1}}$ இன் மதிப்பு
 - (a) -1
- (b) 8
- (c) 1000
- $(d) 1000 p_2$
- 20. R=5000 அலகுகள்/வருடம் C_1 = 20 பைசாக்கள், C_3 = ₹20 எனில் EOQ இன் மதிப்பு
 - (a)5000
- (b) 100
- (c) 1000
- (d) 200

இதரக் கணக்குகள் (Miscellaneous Problems)

- 1. x அலகுகள் உற்பத்திக்கான ஒரு பொருளின் மொத்தச் செலவு சார்பு $C = 10 4x^3 + 3x^4$ எனில்
 - (i) சராசரிச் செலவு

- (ii) இறுதிநிலைச் செலவு
- (iii) இறுதி நிலை சராசரிச் செலவு ஆகியவனவற்றை காண்க.
- 2. பின்வரும் சார்புகளுக்கான தேவை நெகிழ்ச்சியைக் காண்க.
 - (i) $p = xe^x$
 - (ii) $p = xe^{-x}$
 - (iii) $p = 10e^{-\frac{x}{3}}$
- $3. \quad p=1$ –ல் $x=2\,p^2+5$ எனும் அளிப்பு சார்புக்கான அளிப்பு நெகிழ்ச்சியைக் காண்க.
- $p=100-6x^2$,எனும் தேவைச் சார்புக்கு இறுதி நிலை வருவாய் காண்க. மேலும் $M\!R=p\left[1-rac{1}{n_d}
 ight]$ என்பதனையும் சரிபார்க்க.
- 5. மொத்த செலவுச் சார்பு $y=4x\left(\frac{x+2}{x+1}\right)+6$ –ல் உற்பத்தி அளவு x ஆனது அதிகரிக்கும் பொழுது அதன் இறுதி நிலை செலவானது தொடர்ச்சியாகக் குறைகிறது என நிறுவுக.
- 6. செலவுச் சார்பு $C = 2000 + 1800x 75x^2 + x^3$ –க்கு எப்பொழுது அதன் மொத்த செலவு கூடுகிறது மற்றும் எப்பொழுது குறைகிறது என்பதைக் காண்க.
- 7. ஒரு தொழில் நிறுவனத்தின் மொத்த செலவுச் சார்பு $C=15+9x-6x^2+x^3$. எனில் மொத்த செலவு சிறும மதிப்பைப் பெறுவதற்கான x–ஐ காண்க.

- 8. $u = \log \frac{x^4 y^4}{x y}$ என்ற சார்புக்கு ஆய்லரின் தேற்றத்தை பயன்படுத்தி $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$ எனக் காட்டுக.
- 9. $u = x^3 + 3x^2y^2 + y^3$ எனில் $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ என்பதனை சரிபார்க்க.
- $f(x,y)=3x^2+4y^3+6xy-x^2y^3+7$ எனில் $f_{yy}(1,1)=18$ எனக்காட்டுக.

தொகுப்புரை

- தேவை என்பது ஒரு பொருளின் தேவை அளவுக்கும் அதன் விலைக்கும் இடையேயுள்ள தொடர்பு ஆகும்.
- அளிப்பு என்பது ஒரு பொருளின் அளிப்பு அளவுக்கும் அதன் விலைக்கும் இடையேயுள்ள தொடர்பு ஆகும்.
- 🔍 செலவு என்பது ஒரு பொருளின் மீது உற்பத்திக்காகச் செலவிடப்பட்டத் தொகை ஆகும்.
- வருவாய் என்பது உற்பத்தி செய்யப்பட்டப் பொருளை விற்கும்பொழுது கிடைக்கும்
 தொகை ஆகும்.
- இலாபம் என்பது வருவாயில் செலவு போக கிடைக்கும் உபரித் தொகை ஆகும்.
- y = f(x) என்ற சார்பின் நெகிழ்ச்சி என்பது y இன் சார் மாற்றத்திற்கும், x இன் சார் மாற்றத்திற்கும் உள்ள விகிதத்தின் வரம்பிடப்பட்ட எல்லையாகும்
- ஒரு பொருளின் சமன்நிலை விலை என்பது தேவை மற்றும் அளிப்புச் சார்புகள் சமன்நிலையை அடையும்பொழுது பெறப்படும் விலையாகும்.
- இறுதி நிலைச் செலவின் பொருள் விளக்கமானது, உற்பத்தியின் அளவு x அலகுகளிலிருந்து (x+1) அலகுகளாக மாறும்போது உற்பத்தி செலவில் ஏற்படும் தோராயமான மாற்றம் ஆகும்.
- **®** இறுதிநிலை வருவாயின் பொருள் விளக்கமானது, விற்பனை அளவு x அலகுகளாக இருக்கும் பொழுது, (x+1) ஆவது அலகு உற்பத்தி செய்யப்பட்டு விற்கப்பட்டதால் கிடைக்கும் தோராயமான வருவாயே இறுதி நிலை வருவாய் ஆகும்.
- ullet y=f(x) என்ற சார்பு [a,b] என்ற மூடிய இடைவெளியில் $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$, அனைத்து $x_1, x_2 \in [a,b]$ என அமையுமானால், அது கூடும் சார்பு எனப்படும்.
- ullet y=f(x) என்ற சார்பு $[a,\ b]$ என்ற மூடிய இடைவெளியில் $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$, அனைத்து $x_1, x_2 \in [a,b]$ என இருப்பின், அது திட்டமாகக் கூடும் சார்பு எனப்படும்.
- ullet y=f(x) என்ற சார்பு [a,b] என்ற மூடிய இடைவெளியில் $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$, அனைத்து $x_1,x_2 \in [a,b]$ என இருப்பின், அது குறையும் சார்பு எனப்படும்.

- ullet y=f(x) என்ற சார்பு [a,b] என்ற மூடிய இடைவெளியில் $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$, அனைத்து $x_1, x_2 \in [a,b]$ என இருப்பின், அது **திட்டமாகக் குறையும் சார்பு** எனப்படும்.
- ullet c–ஐ உள்ளடக்கிய (a,b) என்ற திறந்த இடைவெளியில் f என்ற சார்பானது வகையிடத்தக்கது மற்றும் $f^{\circ}(c)$ காணத்தக்கது என்க.
 - f'(c) = 0 மற்றும் f''(c) > 0, எனில் f ஆனது c–ல் இடம் சார்ந்த சிறுமத்தை அடைகிறது.
 - (ii) f'(c) = 0 மற்றும் f''(c) < 0, ஆனது c–ல் இடம் சார்ந்த பெருமத்தை அடைகிறது.
- lacktriangle u=f(x,y) என்பது $x,\ y$ என்ற இரு சாரா மாறிகளைக்கொண்ட சார்பு என்க.

மேலும் $f(tx,ty)=t^nf(x,y)$, t>0 எனில் u=f(x,y) என்பது 'n' படியுள்ள சமபடித்தான சார்பு எனப்படும்.

ullet u=f(x,y) என்பது $x,\ y$ —ல் அமைந்த 'n', படியுள்ள சமபடித்தான சார்பு எனில்

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu$$
 ஆகும்.

- ullet p_1 –ஐ பொறுத்து q–ன் தேவை பகுதி நெகிழ்ச்சி $oldsymbol{\eta}_{qp_1} = rac{Eq}{Ep_1} = rac{-p_1}{q}rac{\partial q}{\partial p_1}$ ஆகும்.
- $lackbox{$p$}_2$ –ஐப் பொறுத்து q–ன் தேவை பகுதி நெகிழ்ச்சி $lackbox{$\eta$}_{qp_2}=rac{Eq}{Ep_2}=rac{-p_2}{q}rac{\partial q}{\partial p_2}$ ஆகம்.

முக்கியமான சூத்திரங்கள்(Some standard results)

- 1. மொத்தச் செலவு C(x) = f(x) + k
- 2. சநாசநிச் செலவு: $AC = \frac{f(x) + k}{x} = \frac{c(x)}{x}$
- 3. சராசரி மாறும் செலவு: $AVC = \frac{f(x)}{x}$
- 4. சராசரி மாறாச் செலவு: $AFC = \frac{k}{x}$
- 5. இறுதி நிலைச் செலவு: $MC=rac{dC}{dx}$
- 6. இறுதி நிலைச் சராசரி செலவு: $MAC = \frac{d}{dx}(AC)$
- 7. மொத்தச் செலவு: $C\left(x
 ight)=A\,C imes x$

- 8. வருவாய்: R = px
- 9. சராசரி வருவாய்: $AR = \frac{R}{x} = p$
- 10. இறுதி நிலை வருவாய்: $MR = \frac{dR}{dx}$
- 11. இலாபம்: P(x) = R(x) C(x)
- 12. நெகிழ்ச்சி: $\eta = \frac{x}{y} \cdot \frac{dy}{dx}$
- 13. தேவை நெகிழ்ச்சி: $\eta_d = -rac{p}{x} \cdot rac{dx}{dp}$
- 14. அளிப்பு நெகிழ்ச்சி: $\,\eta_s = rac{p}{x} \cdot rac{dx}{dp}\,$
- 15. MR, AR மற்றும் $\eta_{
 m d}$ –களுக்கு இடையேயுள்ள தொடர்பு $MR = AR \left[1 \frac{1}{\eta_d} \right]$ அல்லது $\eta_d = \frac{AR}{AR MR}$ ஆகும்.
- $16. \quad x$ —ஐ பொறுத்து y இன் இறுதி நிலை சார்பு (அல்லது) x —ஐ பொறுத்து y இன் உடனடி மாறுவீதம் $\frac{dy}{dx}$ ஆகும்.
- MC = AC எனும்பொழுது சராசரிச் செலவு [AC] சிறுமத்தை அடையும்.
- $18. \qquad MR=0$ எனும்பொழுது மொத்த வருவாய் [TR] பெருமத்தை அடையும்.
- MR = MC எனும் பொழுது இலாபம் [P(x)] பெருமத்தை அடையும்.
- 20. சார்பின் விலையைப் பொறுத்த நெகிழ்ச்சியில்
 - $(a) \ |\eta| > 1$, எனில் சார்பு மீள் தன்மைக் கொண்டது.
 - $|\eta|=1,$ எனில் சார்பு அலகு மீள் தன்மைக் கொண்டது .
 - $(c) \ |\eta| < 1$, எனில் சார்பு மீள் தன்மை அற்றது.
- 21. $EOQ = q_0 = Rt_0 = \sqrt{\frac{2C_3R}{C_1}}$
- 22. ஓர் ஆண்டிற்கான உகந்த கோருதலின் எண்ணிக்கை :

$$n_0=$$
 ________ = $R\sqrt{rac{C_1}{2C_3R}}=\sqrt{rac{RC_1}{2C_3}}=rac{1}{t_0}$

- 23. ஓர் அலகு காலத்தில் சராசரிச் சிறும செலவு, $C_0 = \sqrt{2C_1C_3R}$
- 24. சரக்குத் தேக்கச் செலவு $=rac{q_0}{2} imes C_1$ மற்றும் கோருதல் செலவு $=rac{R}{q_0} imes C_3$
- EOQ –ல் கோருதல் செலவு = சரக்கு தேக்கச் செலவு
- 26. u(x,y) என்பது x மற்றும் y–ல் தொடர்ச்சியான சார்பு எனில், $\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$ ஆகும்.

கலைச் சொற்கள் (GLOSSARY)				
அளவு	Quantity			
அளிப்பு	Supply			
இலாபம்	Profit			
இறுதிநிலை / விளிம்பு	Marginal			
உற்பத்தி வெளியீடு	Production Output			
உற்பத்தியாளர்	Producer			
ஒரே விலை / மாறா விலை	Fixed cost			
சமநிலை	Equilibrium			
சராசரி	Average			
சார்ந்த மாற்றம்	Relative change			
சிறுமம்	Minimum			
செலவுச் சார்பு	Cost function			
தேவை	Demand			
தோரயமான	Approximately			
நுகர்வோர்	Consumer			
நெகிழ்ச்சி	Elasticity			
பெருமம்	Maximum			
பொருள்	Commodity			
மாறும் விலை	Variable cost			
மாறுவீதம்	Rate of change			
மிகுதியான	Excess			
வருவாய் சார்பு	Revenue function			
விகிதம்	Ratio			

இணையச் செயல்பாடு

படி – 1 இறுதியில் கிடைக்கப்பெறும் படம்

கீழ்க்காணும் உரலி / விரைவுக் குறியீட்டைப் பயன்படுத்தி GeoGebra வின் "11th Business Maths Volume–2" பக்கத்திற்குச் செல்க. உங்கள் பாடம் சார்ந்த பல பணித்தாள்கள் இப்பக்கத்தில் இருக்கும்.

"Marginal function" என்பதைத் தேர்வு செய்யவும். பொருத்தமான கட்டத்தைத் தேர்வு செய்து இடப்பக்கத்தில் வரைபடங்களைக் காண்க.

மேலும் "Total cost function" மதிப்புகளை வலப்பக்கம் மேற்புறம் உள்ள கட்டத்தில் உள்ளீடு செய்து கணக்குகளைத் தொடரவும்..

செயல்பாட்டிற்கான உரலி :

https://ggbm.at/q4tsyvys (or) scan the QR Code

நிதியியல் கணிதம்

கற்றல் நோக்கங்கள்

இந்த அத்தியாயத்தை படித்தபின்பு பின்வரும் பாடக் கருத்துகளை மாணவர்கள் புரிந்துக்கொள்ள இயலும்

- தவணைப் பங்கீட்டு தொகை தவணைப் பங்கீட்டுத் தொகையின் வகைகள்.
- தவணைப் பங்கீட்டுத் தொகையின் நிகழ்கால மற்றும் வருங்கால மதிப்புகள்.
- சரக்கு முதல் விற்பது அல்லது வாங்குவதில் ஏற்படும்
 இலாபம் அல்லது நட்டம் பற்றிய கருத்தியல்.
- பங்கு பரிவர்த்தணையில் தரகு வியாபாரம்.
- மெய் வருமான விகிதம்/பயனுள்ள வருமான விகிதம்.

அறிமுகம்

நம்முடைய நடைமுறை வாழ்க்கையில் ஒவ்வொரு நாளும் நிறைய பண பரிமாற்றத்தை கையாளுகிறோம். பெரும்பாலான பணப் பரிமாற்றங்களில் ஒரே தவணை அல்லது சமமான பல தவணைகளில் ஒரு குறிப்பிட்ட காலத்தில் நடைபெறுகிறது. இந்த தவணைகளில் தொகைகள் அவற்றிற்கான காத்திருப்பு காலத்தினை சமன் செய்யும் வகையில் கணக்கிடப்படுகிறது. மற்ற வகைகளில் எதிர்கால திட்டமிட்ட செலவுகளை சந்திப்பதற்கு ஒரு தொடர்ச்சியான சேமிப்பு செய்யப்படலாம். அதாவது சீரான கால இடைவெளியில் சேமிக்கப்படும் ஒரு குறிப்பிட்ட தொகை வட்டி பயன் பெறும் விதத்தில், ஒதுக்கப்படுகிறது. இவ்வகை கூழ்நிலைகளில் தவணை பங்கீட்டுத் தொகை என்ற கருத்துருவாக்கம் பயன்படுகிறது.

7.1 தவணை பங்கீட்டுத் தொகை

சீரான இடைவெளியில் தொடர்ச்சியான சமபங்கு தொகையை செலுத்துவது அல்லது பெறுவது என்பது தவணை பங்கீட்டுத் தொகையாகும். தவணை பங்கீட்டுத் தொகையில் சீராக செலுத்தப்படும் தொகைக்கு தவணைத் தொகை எனப்படும். அடுத்தடுத்த இருதவணைத் தொகைகளுக்கு இடைப்பட்ட கால இடைவெளி தவணை இடைவெளி அல்லது தவணைக்காலம் எனப்படும். இங்கு தவணைக் காலம் என்பது ஓராண்டாகவோ, அரையாண்டாகவோ, காலாண்டாகவோ, ஒரு மாதமாகவோ அல்லது குறிப்பிட்ட கால இடைவெளியாகவோ இருக்கலாம் என்பது குறிப்பிடத்தக்கது. தவணை பங்கீட்டுத் தொகையின் முதல் தவணைக்கும் கடைசி தவணைக்கும் இடைப்பட்ட காலம் தவணை பங்கீட்டுத் தொகையின் பருவம் எனப்படும். தவணை பங்கீட்டுத் தொகையின் பருவம் எனப்படும். தவணை பங்கீட்டுத் தொகையின் கூடுதல் மற்றும் தவணை பங்கீட்டுத் தொகையின் கூடுதல் மற்றும் தவணை

பங்கீட்டுப் பருவத்தில் அத்தொகை ஈட்டித்தரும் வட்டி ஆகியவைகள் தவணைப் பங்கீட்டுத் தொகையின் எதிர்கால மதிப்பு எனப்படும். தவணைப் பங்கீட்டுத் தொகையின் தற்போதைய அல்லது முதலீட்டுத் தொகை மதிப்பு என்பது தவணை பங்கீட்டுத் தொகையின் பருவம் முழுவதும் செலுத்தப்படும் தவணைத் தொகைகளில் நிகழ்கால மதிப்புகளின் கூடுதல் ஆகும். இங்கு தவணைக் காலம் குறிப்பிடப்படாத நிலையில் தவணைக் காலம் ஒராண்டாக கருதப்பட வேண்டும்.

7.1.1 தவணைப் பங்கீட்டுத் தொகையின் வகைகள்

- a) தவணைகளின் எண்ணிக்கை சார்ந்து / காலங்களின் எண்ணிக்கையின் அடிப்படையில்
- (i) **நிலையான தவணைப் பங்கீட்டுத் தொகை**: குறிப்பிடப்பட்ட வருடங்களுக்குள் செலுத்தப்படும் தவணைப் பங்கீட்டுத் தொகை நிலையான தவணைப் பங்கீட்டுத் தொகை எனப்படும்.

வீட்டுமனைகள், வங்கி பாதுகாப்பு வைப்புநிதி, வீட்டு உபயோகப் பொருட்கள் வாங்கியது ஆகியவற்றிற்கு செலுத்தப்படும் தவணைத் தொகை நிலையான தவணைப் பங்கீட்டு தொகைக்கு உதாரணங்களாகும். எந்த தேதிகளில் தவணைத்தொகை கட்டப்படவேண்டும் என்பதை வாங்குபவர் தெரிந்து வைத்திருப்பார்.

(ii) தற்காலிக தவணை பங்கீட்டுத் தொகை (Annuity Contigent)

சீரான இடைவெளியில் செலுத்தப்படும் தொகையின் காலத்தை முன்கூட்டியே தீர்மானிக்க முடியாத அல்லது ஒரு குறிப்பிட்ட நிகழ்வு வரை செலுத்தப்படும் தொகையை தற்காலிக தவணை பங்கீட்டுத் தொகை என்கிறோம்.

உதாரணமாக அறக்கட்டளைக்கு வழங்கப்படும் நன்கொடை. இந்த நன்கொடை மூலம் கிடைக்கும் வட்டியானது நலத் திட்டங்களுக்கு மட்டுமே பயன்படுத்தப்படுகிறது. இங்கு வைப்புத் தொகை(நன்கொடை) நிலையானது மற்றும் கிடைக்கும் வட்டியின் மூலம் நடைபெறும் நலத் திட்டங்கள் எப்பொழுதும் தொடர்ந்தபடியே இருக்கும்.

b) தவணை செலுத்தும் முறையின் அடிப்படையில்

- (i) **சாதாரண பங்கீட்டுத் தொகை:** தவணை காலத்தின் முடிவில் செலுத்தப்படும் தவணை பங்கீட்டுத் தொகை சாதாரண தவணை பங்கீட்டுத் தொகை அல்லது உடனடி தவணை பங்கீட்டுத் தொகை எனப்படும்.
 - உதாரணமாக வீட்டுக்கடன், வாகனக் கடன் ஆகியவற்றிற்காக செலுத்தப்படும் தொகை.

(ii) காத்திருப்பு தவணைப் பங்கீட்டுத் தொகை

ஒவ்வொரு கால இடைவெளியின் துவக்கத்திலும் தவணைத் தொகை செலுத்தப்படின் அது காத்திருப்பு தவணை பங்கீட்டுத் தொகை எனப்படும். காத்திருப்பு தவணை பங்கீட்டுத் தொகையில் , செலுத்தப்படும் ஒவ்வொரு தொகையும் முதலீடாகவும், வட்டி ஈட்டித் தருபவையாகவும் இருக்கும். முதல் காத்திருப்பு தவணை தொகையானது ஈட்டித் தரும் வட்டியை விட அடுத்த தவணை தொகையானது ஒரு தவணைக் காலம் குறைவாக வட்டி ஈட்டித்தரும். இவ்வாறாக கடைசி தவணை தொகையானது ஒரு தவணைக் காலம் மட்டும் வட்டி ஈட்டித்தரும்.

நீண்ட காலமாக பல தவணைகள் செலுத்தப்படாமல் இருந்து பின்னர் செலுத்தப்படும் மொத்த தவணை ஒத்தி வைக்கப்பட்ட தவணை பங்கீட்டுத் தொகையாகும்.

உதாரணமாக சேமிப்புத் திட்டம் மற்றும் ஆயுள் காப்பீட்டுத் திட்டம் ஆகியவற்றில் செலுத்தப்படும் தொகைகள்.

பின்வரும் சூத்திரங்களின் நிரூபணம் மாணவர்கள் நன்கு புரிந்து கொள்வதற்காக வழங்கப்பட்டுள்ளது தேர்விலிருந்து விலக்கு அளிக்கப்பட்டுள்ளது.

(i) உடனடித் தவணைப் பங்கீட்டுத் தொகை (அல்லது) எளிய தவணைப் பங்கீட்டுத் தொகை (அல்லது)உறுதியான தவணைப் பங்கீட்டு தொகைக்கான தொகைக்காணல்:–

a என்பது சாதாரண தவணை பங்கீட்டுத் தொகை என்க. i என்பது ஒரு குறிப்பிட்ட காலத்திற்கான வட்டி விகிதமாகும் சாதாரண தவணைப் பங்கீட்டுத் தொகையில், முதல் தவணை முதல் காலத்தின் முடிவிற்குப் பிறகு செலுத்தப்படுவதாகும். எனவே, அது (n-1) காலத்திற்கான வட்டியை பெற்றுத்தரும். இரண்டாவது தவணை (n-2) காலத்திற்கான வட்டியைப் பெற்றும் இதே போன்று தொடரும் கடைசி தவணை (n-n) காலத்திற்கான வட்டியைப் பெற்றுத் தரும். அதாவது எவ்வித வட்டியையும் பெற்றுத் தராது.

(n-1) காலத்திற்கான

முதல் தவணை பங்கீட்டுத் தொகைக்கான தொகை $=a(1+i)^{n-1}$ இரண்டாவது தவணைப் பங்கீட்டுத் தொகைக்கான தொகை $=a(1+i)^{n-2}$ மூன்றாவது தவணைப் பங்கீட்டுத் தொகைக்கான தொகை $=a(1+i)^{n-2}$ இதே போன்று மற்றவைகளை கணக்கிடலாம்.

 \cdot ். i சதவிகித வட்டியில் n காலத்திற்கான மொத்த தவணைப் பங்கீட்டுத் தொகைக்கான தொகை A யை கீழ்கண்டவாறு கணக்கிடலாம்.

$$A = a(1+i)^{n-1} + a(1+i)^{n-2} + ...a(1+i) + a$$
 $= a[(1+i)^{n-1} + (1+i)^{n-2} + ... + (1+i) + 1]$
 $= a[1+(1+i) + (1+i)^2 + ... + (1+i)^{n-1}]$
 $= a[1+r+r^2 + ... + r^{n-1}],$ இங்கு $1+i=r$
 $= a[\frac{r^n-1}{r-1}],$ G.P பொது வித்தியாசம் $r > 1$
 $= a[\frac{(1+i)^n-1}{1+i-1}]$
 $A = \frac{a}{i}[(1+i)^n-1]$

(ii) உடனடி தவணை பங்கீட்டுத் தொகை அல்லது சாதாரண பங்கீட்டுத் தொகை ஆகியவற்றின் தற்போதைய மதிப்பு (Present Value) காணல்:

ia' என்பது சாதாரண தவணை பங்கீட்டுத் தொகையின் வருடாந்திர தவணைத் தொகை என்க. n என்பது வருடங்களின் எண்ணிக்கை மற்றும் i என்பது ஒரு வருடத்தில் ஒரு ரூபாய்க்கான வட்டி விகிதத்தைக் குறிக்கிறது மற்றும் P என்பது தவணைப் பங்கீட்டுத் தொகையின் தற்போதைய மதிப்பாகும். உடனடி தவணைப் பங்கீட்டுத் தொகையின் போது தவணைத் தொகை ஒவ்வொரு குறிப்பிட்ட காலத்தின் முடிவிலும் தொடர்ச்சியாக செலுத்தப்படுகிறது.

முதல் தவணை முதல் வருடத்தின் முடிவில் செலுத்தப்படுவதால் அதன் நிகழ்கால மதிப்பு $\frac{a}{1+i}$ ஆகும். இரண்டாவது தவணையின் நிகழ்கால மதிப்பு $\frac{a}{(1+i)^2}$ ஆகும். இதே போன்று மற்ற நிகழ்கால மதிப்புகளையும் பெறலாம். கடைசி தவணையின் நிகழ்கால மதிப்பு $\frac{a}{(1+i)^n}$ எனில்

$$P = \frac{a}{1+i} + \frac{a}{(1+i)^2} + \frac{a}{(1+i)^3} + \dots \frac{a}{(1+i)^n}$$

$$= \frac{a}{(1+i)^n} + \frac{a}{(1+i)^{n-1}} + \dots + \frac{a}{(1+i)}$$

$$= \frac{a}{r^n} [1+r+r^2+\dots+r^{n-1}], \text{ with } 1+i=r$$

$$= \frac{a}{r^n} \left[\frac{r^n-1}{r-1}\right], \text{ G.P. Sunsy all solution } r>1$$

$$= \frac{a}{(1+i)^n} \left[\frac{(1+i)^n-1}{1+i-1}\right]$$

$$= \frac{a}{i} \left[1 - \frac{1}{(1+i)^n}\right]$$

$$P = \frac{a}{i} \left[1 - \frac{1}{(1+i)^n}\right]$$

(iii) n காலத்தின் முடிவில் தவணை பங்கீட்டுத் தொகையின் காத்திருப்பு தவணைத் தொகைக்காணல்:

முன்பு வரையறுத்தப்படி காத்திருப்பு தவணை பங்கீட்டுத் தொகை என்பது ஒவ்வொரு தவணைக் காலத்தின் துவக்கத்திலும் செலுத்தப்படும் தவணை தொகையாகும். முதல் தவணை ஒரு குறிப்பிட்ட காலத்தில் i வட்டி வீதத்தில் n தவணைக் காலத்திற்கு வட்டியைப் பெற்றுத் தரும். இதே போன்று இரண்டாம் தவணை (n-1) தவணைக் காலத்திற்கான வட்டியை பெற்றுத் தரும் மற்றும் இதே போன்று தொடரும். எனவே காத்திருப்பு பங்கீட்டுத் தொகையின் மொத்தம்

$$A = a(1+i)^n + a(1+i)^{n-1} + \dots + a(1+i)^1$$
 $= a(1+i)[(1+i)^{n-1} + (1+i)^{n-2}) + \dots + 1]$
 $= a(1+i)[1+(1+i)+(1+i)^2 + \dots + (1+i)^{n-1}]$
 $= ar[1+r+r^2 + \dots + r^{n-1}], \ 1+i=r,$ என்க.
 $= ar[\frac{r^n-1}{r-1}], \quad \text{G.P Gungy}}$ வித்தியாசம், $r>1$
 $= a(1+i)\left[\frac{(1+i)^n-1}{1+i-1}\right]$
 $= \frac{a(1+i)}{i}[(1+i)^n - 1]$
 $A = \frac{a(1+i)}{i}[(1+i)^n - 1]$

(iv) காத்திருப்பு தவணை பங்கீட்டுத் தொகையின் (annuity due) தற்போகைய மதிப்பு:

முதல் தவணை முதல் தவணை காலத்தின் (வருடத்தின்) துவக்கத்தில் செலுத்தப்படுவதால் அதன் நிகழ்கால மதிப்பு 'a', க்கு சமமாக இருக்கும். 'a' என்பது காத்திருப்பு தவணை பங்கீட்டு தொகை வருடாந்திர செலுத்தும் தொகையாகும். இரண்டாம் தவணை இரண்டாவது வருடத்தின் ஆரம்பத்தில் செலுத்தப்படுகிறது ஆகவே அதன் நிகழ்கால மதிப்பு என்பது $\frac{a}{(1+i)}$ ஆகும் மற்றும் இதே போன்று தொடர்ந்து நிகழ்கால மதிப்புகள் கணக்கிடப்பட வேண்டும். கடைசி தவணை n காலத்தின் ஆரம்பத்தில் செலுத்தப்படுகிறது. ஆகவே அதன் நிகழ்கால மதிப்பு $\frac{a}{(1+i)^{n-1}}$, P என்பது தவணை பங்கீட்டுத் தொகை நிலுவையின் நிகழ்கால மதிப்பை குறிக்கிறது எனில்

$$P = a + \frac{a}{1+i} + \frac{a}{(1+i)^2} + \frac{a}{(1+i)^3} + \dots + \frac{a}{(1+i)^{n-1}}$$

$$= a \left[1 + \frac{1}{1+i} + \frac{1}{(1+i)^2} + \frac{1}{(1+i)^3} + \dots + \frac{1}{(1+i)^{n-1}} \right]$$

$$= a \left[\frac{1 - \left(\frac{1}{1+i}\right)^n}{1 - \frac{1}{1+i}} \right]$$

$$= a \left[\frac{\frac{(1+i)^n - 1}{(1+i)^n}}{\frac{(1+i) - 1}{1+i}} \right]$$

$$= \frac{a(1+i)}{i} \left[\frac{(1+i)^n - 1}{(1+i)^n} \right]$$

$$P = \frac{a(1+i)}{i} \left[1 - \frac{1}{(1+i)^n} \right]$$

நிரந்தரமான தவணை பங்கீட்டுத் தொகை (Perpetual Annuity)

எப்பொழுதும் தொடரக்கூடிய, தொடர்ந்து செலுத்தக் கூடிய தவணை பங்கீட்டுத் தொகை என்பது நிரந்தரமான தவணை பங்கீட்டுத் தொகையாகும். நிரந்தரமான தவணை பங்கீட்டுத் தொகை வரையறுக்கப்படாததால் எவ்வித எல்லையும் இன்றி காலங்கள் அதிகரிக்கும் பொழுது உடனடி தவணை பங்கீட்டுத் தொகையின் நிகழ்கால மதிப்பு தொகையும் அதிகரிக்கும். $P = \frac{a}{i} \left[1 - \frac{1}{(1+i)^n} \right]$ என்பது நாம் அனைவரும் அறிந்தது. நிரந்தரமான தவணை பங்கீட்டுத் தொகை தற்பொழுது உள்ள வரையறையின் படி $n o \infty$, $\frac{1}{(1+i)^n} o 0$ என்பது நாம் அறிந்தது ൃതെതിல് 1+i > 1.

இங்கு
$$P$$
 = $\frac{a}{i}[1-0]$ P = $\frac{a}{i}$

குறிப்பு:

மேலே குறிப்பிட்டுள்ள அனைத்து கூத்திரங்களிலும் காலம் என்பது ஒரு வருடமாகும். தவணை தொகை ஒரு வருடத்திற்கு ஒரு முறைக்கு மேல் செலுத்தப்படுமாயின் என்பதனை $\frac{\imath}{k}$ எனவும் மற்றும் n என்பதை nk, எனவும் பிரதியிடவும். இங்கு k என்பது ஒரு வருடத்திற்கு செலுத்தப்படும் தவணை தொகைகளின் எண்ணிக்கை ஆகும்.

எடுத்துக்காட்டு 7.1

நபர் ஒருவர் வருடத்திற்கு ₹ 64,000 வீதம் 12 வருடங்களுக்கு ஆண்டுக்கு 10% வட்டி வீதம் செலுத்தி வருகின்ற தவணை பங்கீட்டின் தொகையை காண்க $[(1.1)^{12}=3.3184]$

தீர்வு

இங்கு
$$a=64{,}000,\,n=12$$
 மற்றும் $i=\frac{10}{100}=0.1$ சாதாரண தவணை பங்கீட்டுத் தொகை, $A=\frac{a}{i}\left[(1+i)^n\text{-}1\right]$
$$=\frac{64000}{0.1}\left[(1+0.1)^{12}\text{-}1\right]$$

$$= 6,40,000[(1.1)^{12}-1]$$

$$= 6,40,000[3.3184 - 1]$$

$$= 6,40,000[2.3184]$$

$$= 64 \times 23184$$

$$= ₹ 14,83,776$$

எடுத்துக்காட்டு 7.2

ஆண்டுக்கு 15% வட்டி வீதம் எனில் 16 வருடங்கள் கழித்து ஒரு நபர் ரூபாய்1,67,160 பெறுவதற்கு எவ்வளவு தொகையை ஆண்டு தோறும் செலுத்த வேண்டும். $[(1.15)^{16}=9.358]$

தீர்வு

இங்கு
$$A=1,67,160,\ n=16$$
 வருடங்கள் $i=\frac{15}{100}=0.15$ $a=?$

$$A=\frac{a}{i}\left[(1+i)^n-1\right]$$

$$1,67,160=\frac{a}{0.15}\left[(1+0.15)^{16}-1\right]$$

$$=\frac{a}{0.15}\left[(1.15)^{16}-1\right]$$

$$a=\frac{1,67,160\times0.15}{(1.15)^{16}-1}$$

$$a=\frac{1,67,160\times0.15}{9.358-1}$$

$$=\frac{1,67,160\times0.15}{8.358}$$

$$=3,000$$

$$a=₹3,000$$

எடுத்துக்காட்டு 7.3

மகளின் வயது 2 ஆகிறது. அந்த மகளின் தந்தை மகளுக்கு 22 வயது ஆகும் பொழுது ரூபாய் ₹20,00,000 பெறுவதற்கு விருப்பப்படுகிறார். அவர் ஆண்டுக்கு 10% கூட்டு வட்டி வழங்கக்கூடிய வங்கியில் தன் கணக்கை தொடங்குகிறார். கூட்டுச் சேர்ப்பு கணக்கில் ஒவ்வொரு மாதத்தின் முடிவிலும் எவ்வளவு தொகை செலுத்த வேண்டும் [(1.0083)²⁴⁰=6.194].

தீர்வு

இங்கு
$$A=20,00,000$$
 ; $i=\frac{10}{100}=0.1$ $n=20$ மற்றும் $k=12$ $A=\frac{a}{i/k}\left[(1+\frac{i}{k})^{nk}-1\right]$

$$20,00,000 = \frac{\frac{a}{0.1}}{12} \left[\left(1 + \frac{0.1}{12} \right)^{20 \times 12} - 1 \right]$$

$$= \frac{12a}{0.1} \left[\left(1 + \frac{0.1}{12} \right)^{240} - 1 \right]$$

$$= 120a \left[\left(\frac{12.1}{12} \right)^{240} - 1 \right]$$

$$= 120a \left[(1.0083)^{240} - 1 \right]$$

$$= 120a \left[(6.194 - 1) \right]$$

$$= 120a \left[(5.194) \right]$$

$$a = \frac{20.00,000}{120 \times 5.194}$$

$$= ₹ 3,209$$

ஒவ்வொரு மாதமும் ₹3,209 செலுத்த வேண்டும்.

எடுத்துக்காட்டு 7.4

ஒரு நபர் ஒவ்வொரு வருடத்தின் ஆரம்பத்திலும் $\mathbf{₹4,000}$ முதலீடு செய்கிறார். ஆண்டுக்கு 14% சதவீதம் கூட்டு வட்டி கிடைக்குமெனில் 1O வருடங்கள் கழித்து கிடைக்கும் தொகையினைக் காண்க $[(1.14)^{10}=3.707]$

தீர்வு

இங்கு
$$a=4{,}000$$
 ; $i=0.14$ மற்றும் $n=10$ வருடம்.

$$A = (1+i) \frac{a}{i} [(1+i)^{n}-1]$$

$$= (1+0.14) \frac{4000}{0.14} [(1+0.14)^{10}-1]$$

$$= (1.14) \frac{4000}{0.14} [(1.14)^{10}-1]$$

$$= 1.14 \times \frac{4000}{0.14} (3.707-1)$$

$$= 1.14 \times \frac{4000}{0.14} (2.707) = 88,170.$$

$$A = ₹88,170$$

எடுத்துக்காட்டு 7.5

ஒரு நபர் ஒரு இயந்திரத்தை. சனவரி—1, 2009–ம் வருடம் வாங்குகிறார் மற்றும் 15% கூட்டு வட்டியுடன், 10 சமமான தவணைகளில் ஒவ்வொரு ஆண்டின் முடிவிலும் ₹12,000 செலுத்துவதற்கு ஒப்புக் கொள்கிறார் எனில் இயந்திரத்தின் தற்போதைய மதிப்பு என்ன? [(1.15)¹⁰=4.016].

தீர்வு

இங்கு
$$n=10$$
, $a=12{,}000$ மற்றும் $i=0.15$
$$P=\frac{a}{i}\left[1-\frac{1}{(1+i)^n}\right]$$

$$=\frac{12{,}000}{0.15}\left[1-\frac{1}{(1+0.15)^{10}}\right]$$

$$=\frac{12{,}000}{0.15}\left[1-\frac{1}{(1.15)^{10}}\right]$$

$$=\frac{12{,}00{,}000}{15}\left[1-\frac{1}{4.016}\right]$$

$$=80{,}000\left[\frac{4.016-1}{4.016}\right]$$

$$=80{,}000\left[\frac{3.016}{4.016}\right]=60{,}080.$$

P = ₹60,080

·

எடுத்துக்காட்டு 7.6

ஒரு நிழற்படக் கலைஞர் ஒரு புகைபடக் கருவியை தவணைமுறையில் வாங்குகிறார் வாங்கிய தேதியிலிருந்து ஒவ்வொரு தவணைக்கும் ₹36,000 வருடாந்திர தவணைகளில் செலுத்த வேண்டும். வட்டியானது 16% கூட்டு வட்டி எனில் புகைப்படக் கருவியின் அசல் விலையைக் காண்க. $[(1.16)^7 = 2.2828]$

தீர்வு

இங்கு
$$a = 36,000$$
; $n = 7$ மற்றும் $i = 0.16$

$$P = (1+i) \frac{a}{i} \left[1 - \frac{1}{(1+i)^n} \right]$$

$$= (1+0.16) \frac{36,000}{0.16} \left[1 - \frac{1}{(1+0.16)^7} \right]$$

$$= \frac{1.16}{0.16} (36,000) \left[1 - \frac{1}{(1+0.16)^7} \right]$$

$$= \frac{116 \times 36000}{16} \left[1 - \frac{1}{2.828} \right]$$

$$= \frac{116 \times 36,000 \times 1.828}{16 \times 2.828}$$

$$= \frac{116 \times 36,000 \times 1.828}{16 \times 2.828}$$

$$= \frac{116 \times 36,000 \times 1.828}{16 \times 2.828} = 1,68,709.$$

ஒரு நிதி நிறுவனத்திலிருந்து ஒருவர் 16% வட்டி விகிதத்தில் ₹7,00,000 கடனாக பெறுகிறார். திருப்பி செலுத்துவதற்கான கால அளவு 15 வருடங்கள் எனில் ஒவ்வொரு மாதத்தின் ஆரம்பத்தில் அவர் செலுத்தக் கூடிய தவணைத் தொகையினைக் காண்க. [(1.0133)¹⁸⁰=9.772]

தீர்வு

இங்கு
$$P = 7,00,000$$
; $n = 15$; $i = 0.16$ மற்றும் $k = 12$.
$$P = \left(1 + \frac{i}{k}\right) \left(\frac{a}{\frac{i}{k}}\right) \left[1 - \frac{1}{\left(1 + \frac{i}{k}\right)^{nk}}\right]$$

$$7,00,000 = \left(1 + \frac{0.16}{12}\right) \left(\frac{a}{\frac{0.16}{12}}\right) \left[1 - \frac{1}{\left(1 + \frac{0.16}{12}\right)^{15 \times 12}}\right]$$

$$= \left(\frac{12.16}{12}\right) \left(\frac{12a}{0.16}\right) \left[1 - \frac{1}{\left(\frac{12.16}{12}\right)^{180}}\right]$$

$$= \frac{(1216)a}{16} \left[1 - \frac{1}{(1.0133)^{180}}\right]$$

$$= \frac{1216}{16} a \left[\frac{9.772 - 1}{9.772}\right]$$

$$= \frac{1216}{16} a \left[\frac{8.772}{9.772}\right]$$

$$= \frac{7,00,000 \times 16 \times 9772}{1216 \times 8772} = 10,261$$

எடுத்துக்காட்டு 7.8

ஒரு கூட்டுறவு சங்கத்தின் தலைவர் வணிக கணிதத்தில் அதிக மதிப்பெண் பெறுகின்ற மாணவர்களுக்கு தங்கப் பதக்கத்தை விருதாக அளிக்க விரும்புகிறார். அப்பதக்கத்திற்கான செலவு ஒவ்வொரு ஆண்டிற்கும் ₹9,000 மற்றும் இத்தொகைக்கான கூட்டு வட்டி ஆண்டிற்கு 15% எனில், தற்போது அவர் எவ்வளவு முதலீடு வைப்புத் தொகையாக அளிக்க வேண்டும்?

தீர்வு

இங்கு
$$a = 9,000$$
 மற்றும் $i = 0.15$

$$P = \frac{a}{i}$$

$$= \frac{9000}{0.15}$$

$$= \frac{9,00,000}{15}$$

$$= 60,000.$$

முதலீடு தொகை = ₹ 60,000.

எடுத்துக்காட்டு 7.9

ஒரு வரையறுக்கப்பட்ட நிறுவனம் நெருக்கடியான சூழல்களில் தனது தொழிலாளர்களுக்கு உதவுவதற்க்காக ஒரு நிதியை உருவாக்க விரும்புகிறது. ஒவ்வொரு மாதத்திற்கும் மதிப்பிடப்பட்ட செலவு ₹18,000. இந்நிதிக்காக நிறுவனம்15% கூட்டு வட்டியில், முதலீடு செய்ய வேண்டிய தொகையைக் காண்க.

தீர்வு

இங்கு
$$a=18{,}000$$
 ; $i=0.15$ மற்றும் $k=12$.
$$P=\frac{\frac{a}{i}}{k}$$

$$=\frac{\frac{18{,}000}{0.15}}{12}$$

$$=\frac{18{,}000}{0.15}\times 12=\frac{18{,}00{,}000\times 12}{15}=14{,}40{,}000$$

முதலீடு செய்ய வேண்டிய தொகை ₹14,40,000.

எடுத்துக்காட்டு 7.10

தற்போதைய மதிப்பு ₹30,000/ அரை வருடத்திற்கான ஒரு நிரந்தர தவணை பங்கீட்டுத் தொகையாக ₹675 பெறுவதற்கான அரையாண்டு வட்டி வீதத்தைக் காண்க.

தீர்வு

இங்கு
$$P=30,000$$
; $a=675$; $k=2$, $i=?$

$$P = \frac{\frac{a}{i}}{k}$$

$$30,000 = \frac{675}{\frac{i}{2}}$$

$$= \frac{675}{\frac{i}{2}}$$

$$= \frac{1350}{i}$$

$$= \frac{1350}{30,000}$$

$$= \frac{135}{3000}$$

$$= 0.045$$

வட்டி வீதம் =
$$0.045 \times 100\%$$

- 1. ஆண்டிற்கு 10% வட்டி விகிதத்தில் சாதாரண தவணை பங்கீட்டுத் தொகை₹3,200 க்கு 12 ஆண்டுகளுக்கான தொகையினைக் காண்க $[(1.1)^{12} = 3.3184]$
- காலாண்டுக்கு ஒருமுறை 8% வட்டியில் ₹2,000–த்தை 10 ஆண்டுகளுக்கு செலுத்தினால் தவணை பங்கீட்டுத் தொகையின் தொகையினைக் காண்க. [(1.02)⁴⁰=2.2080
- 3. ஆண்டிற்கு 12%மாதந்திர கூட்டு வட்டியை ஈட்டக்கூடிய சாதாரண தவணை பங்கீட்டுத் தொகை ₹1,500க்கு 12 மாதங்களுக்கான தொகையினைக் காண்க. $[(1.01)^{12}=1.1262]$
- 4. ஒரு வங்கி ஆண்டிற்கு 8% வட்டியை காலாண்டிற்கு ஒரு முறை கூட்டு வட்டியாக தருகிறது. ₹30,200 பெறுவதற்காக ஒவ்வொரு காலாண்டின் முடிவிலும் 1O வருடங்களுக்கு எத்தனை சமமான முதலீடுகளைச் செய்ய வேண்டும்? [(1.02)⁴0 =2.2080]
- 5. ஒரு நபர் அவருடைய வருமானத்திலிருந்து ₹2,000 த்தை தன் பங்கீட்டு ஒய்வூதியக் கணக்கில் செலுத்துகிறார். அதே அளவுத் தொகையை நிர்வாகமும் செலுத்துகிறது. 8% கூட்டு வட்டி அளிக்கப்படுகிறது. 20 ஆண்டுகளுக்குப் பிறகு அவருக்கு கிடைக்கும் மொத்த தொகையைக் காண்க. [(1.00667)²⁴⁰ = 3.3266]
- 6. ஆண்டிற்கு 10% வட்டியில் 14 வருடங்களுக்கான ரூபாய் ₹2,000 ன் தற்போதைய மதிப்பினைக் காண்க $[~(1.1)^{-14}=0.2632]$
- 7. ஆண்டிற்கு 8% கூட்டு வட்டியில், ஒவ்வொரு ஆறு மாதங்களின் முடிவில் 6 வருடங்களுக்கு செலுத்தப்படும் ₹900 க்கு தற்போதைய தவணை பங்கீட்டுத் தொகையினைக் காண்க. [(1.04)-12=0.6252]
- 8. 10% கூட்டு வட்டியில் ஒவ்வொரு வருடத்தின் ஆரம்பத்தில் செலுத்தக் கூடிய தவணை பங்கீட்டுத் தொகை ₹5,000 க்கு 12 வருடங்களின் முடிவில் கிடைக்கும் தொகையினைக் காண்க.

- 9. ஆண்டிற்கு 8% வட்டிவிகிதத்தில் 16 வருடங்களுக்கு செலுத்தப்படும் நிகழ்கால பங்கீட்டு தொகை ₹1,500 தற்போதைய மதிப்பைக் காண்க. [(1.08)¹⁵ = 3.1696]
- 10. ஆண்டிற்கு 5% கூட்டு வட்டியில் நிரந்தர தவணைப் பங்கீட்டுத் தொகை ₹50க்கான தொகையைக் காண்க.

7.2 சரக்கு முதல்கள், பங்குகள், கடன் பத்திரங்கள் மற்றும் தரகு (Stocks, shares, debentures and Brokerage)

ஏதேனும் ஒரு பெரிய வியாபாரம் தொடங்குவதற்கு, மிகப் பெரிய தொகை தேவைப்படுகிறது. பொதுவாக ஒரு தனி நபரால் மிகப் பெரிய தொகையை முதலீடு செய்ய முடியாது, எனவே தொழில் தொடங்குவதற்கு தேவைப்படும் மொத்த தொகை சமபாகங்களாக பிரிக்கப்படும், ஒவ்வொரு சமபாகமும் ஒரு பங்கு எனப்படும். இந்த பங்குகளை வைத்து இருப்பவர்கள் பங்குதாரர்கள் எனப்படுவர்.

7.2.1 பங்குகளின் வகைகள் (Types of shares):

இரண்டு வகையான பங்குகள் உள்ளன. அதாவது பொதுவான பங்கு (அல்லது சாதாரண பங்கு) மற்றும் முன்னுரிமைப் பங்கு.

நிறுவனத்தால் பெற்ற இலாபம் பங்குதாரர்களிடையே வினியோகிக்கப்படுகிறது. முன்னுரிமைப் பங்கு வைத்திருப்பவர்களுக்கு ஈவுத்தொகை மீது முதல் உரிமை உள்ளது. அவர்களுக்கு பணம் செலுத்தப்பட்ட உடன், மீதமுள்ள இலாபம் பொதுவான பங்குதாரர்களிடையே வினியோகிக்கப்படுகிறது.

7.2.2 வரையறைகள் (Definitions)

- (i) மூலதனம் என்பது ஒரு நிறுவனம் தொடங்க முதலீடு செய்யப்படும் மொத்த தொகை ஆகும்.
- (ii) தனிப்பட்ட நபர்கள் வாங்கிய பங்குகள் சரக்கு முதல்கள் என்று அழைக்கப்படுகிறது.
- (iii) பங்குகளை வாங்கும் நபர்கள் பங்குதாரர்கள் என அழைக்கப்படுகிறார்கள்.
- ஒரு பங்கின் சந்தை மதிப்பானது நேரத்துக்கு நேரம் மாறுபட்டுக் கொண்டிருக்கும்.
- (iv) முகமதிப்பு (Face value): நிறுவனம் முதலீட்டாளர்களுக்கு விற்கும் / வாங்கும் ஒரு பங்குக்கான அசல் மதிப்பை முக மதிப்பு அல்லது ஒப்பு மதிப்பு அல்லது சம மதிப்பு என அழைக்கப்படுகிறது. பங்குகளின் அசல் மதிப்பானது பங்கு மூலதனச் சான்றிதழில் அச்சிடப்படுகிறது.
- (v) சந்தை மதிப்பு (Market value) : சந்தையில் வாங்கப்படும் மற்றும் விற்கப்படும் ஒரு பங்கின் விலை சந்தை மதிப்பு (அல்லது பண மதிப்பு) என்றழைக்கப்படுகிறது.

மேற்குறிப்புகள் (Remarks):

- (i) பங்குகளின் சந்தை மதிப்பானது முகமதிப்பைக் காட்டிலும் அதிகமாக இருந்தால், பங்கு அதிக விலையில் உள்ளது என்போம்.
- (ii) பங்குகளின் சந்தை மதிப்பானது அதன் முக மதிப்பின் அதே அளவாக இருந்தால், பங்கு சம விலையில் உள்ளது என்போம்.
- (iii) பங்குகளின் சந்தை மதிப்பு முகமதிப்பைக் காட்டிலும் குறைவாக இருந்தால் பங்கு கழிவு விலையில் உள்ளது என்போம்.

ஈவுத்தொகை (Dividend) :

பங்குதாரர்களிடையே வினியோகிக்கப்படும் ஒரு நிறுவனத்தால் பெறப்பட்ட இலாபமானது ஈவுத்தொகை என்றழைக்கப்படுகிறது. இது பங்கின் முகமதிப்பில் கணக்கிடப்படுகிறது.

நூ**ய்!** ஈவு தொகை சதவீதமாக வெளிப்படுத்தப்படுகிறது.

சில பயனுள்ள முடிவுகள் (Some useful results):

(i) முதலீடு (Investment):

பங்கு முதலீடு = பங்குகளின் எண்ணிக்கைimes பங்குகளின் சந்தை மதிப்பு

(ii) வருமானம் (Income):

ஆண்டு வருமானம் = பங்குகளின் எண்ணிக்கை × பங்குகளின் முக மதிப்பு × ஈவுத் தொகையின் வீதம்(பங்கு வீதம்)

(iii) திரும்பப் பெறும் தொகையின் சதவீதம் (அல்லது) விளைச்சல் சதவீதம் (Return percentage (or) yield percentage):

திரும்பப் பெறும் தொகையின் சதவீதம் =
$$\frac{$$
வருமானம் $}{$ முதலீடு $} imes 100$

(iv) பங்குகளின் எண்ணிக்கை (Number of shares):

பங்குச் சந்தை (Stock exchange):

பங்குகள் வர்த்தகம் செய்யப்படும் இடம் பங்குச் சந்தை என்றழைக்கப்டுகிறது.

தரக (Brokerage):

பங்குச் சந்தை மூலம் பங்குகளை வாங்குவது மற்றும் விற்பது போன்ற கோருதல்களை நிறைவேற்றும் ஒருவர் பங்கு தரகர் என்றழைக்கப்படுகிறார். தரகரின் சேவைக்கான கட்டணம் தரகு என்றழைக்கப்படும்.

தரகு, பொதுவாக முக மதிப்பை அடிப்படையாகக் கொண்டது, இது சதவீதத்தில் குறிக்கப்படுகிறது.

குறிப்பு:

- (i) சரக்கு முதல் வாங்கப்படும் போது தரகு, வாங்கிய விலையுடன் சேர்க்கப்படும்.
- (ii) சரக்கு முதல் விற்கப்படும் போது தரகு, விற்ற விலையிருந்து கழிக்கப்படும்.

எடுத்துக்காட்டு 7.11

₹18 அதிக விலையில் உள்ள ₹100 மதிப்பைக் கொண்ட 325 பங்குகளின் சந்தை மதிப்பைக் காண்க.

தீர்வு

ஒரு பங்கின் முகமதிப்பு = ₹100

ஒரு பங்கிற்கான அதிக விலை = ₹18

ஒரு பங்கின் சந்தை மதிப்பு = ₹118

325 பங்குகளின் சந்தை மதிப்பு = பங்குகளின் எண்ணிக்கை imes ஒரு பங்கின் சந்தை மதிப்பு

$$= 325 \times 118$$

= ₹38,350

325 பங்குகளின் சந்தை மதிப்பு =₹38,350.

எடுத்துக்காட்டு 7.12

தீர்வு

பங்குகளின் எண்ணிக்கை = 500

ஒரு பங்கின் முகமதிப்பு = ₹100

கழிவு = ₹14

ஒரு பங்கின் சந்தை மதிப்பு = 100 - 14 (முக மதிப்பு - கழிவு)

= ₹86.

500 பங்குகளின் சந்தை மதிப்பு = பங்குகளின் எண்ணிக்கைimes ஒரு பங்கின் சந்தை மதிப்பு

ஒரு நிறுவனத்திலிருந்து சமமதிப்பு ₹10 உடைய 9% பங்கு வீதம் அளிக்கும் 20 பங்குகளை ஒருவர் வாங்குகிறார். அந்த 20 பங்குகள் மூலம் கிடைக்கும் பணத்தில் 12% பங்கு வீதம் பெற வேண்டுமெனில் ஒரு பங்கின் சந்தை மதிப்பு காண்க.

தீர்வு

பங்கின் முக மதிப்பு = ₹10
20 பங்குகளின் முக மதிப்பு = ₹200
ஈவுத் தொகை =
$$\frac{9}{100} \times 200$$
= ₹18 $\left[S.I = \frac{PNR}{100}, N = 1\right]$
முதலீடு = $\frac{18 \times 100}{1 \times 12}$ $\left[P = \frac{100I}{NR}, (N=1)\right]$
= ₹150
20 பங்குகளின் வாங்கிய விலை ₹150
ஒரு பங்கின் சந்தை விலை = ₹ $\frac{150}{20}$
= ₹7.50

எடுத்துக்காட்டு 7.14

தீர்வு

பங்குகளின் எண்ணிக்கை x என்க.

∴ *x* பங்குகளின் சந்தை மதிப்பு = ₹25 *x*

ഒങ്ങും
$$\frac{10}{100} \times 25x = ₹2,000$$
 \Rightarrow $x = \frac{2000 \times 100}{25 \times 10} = 800.$

எனவே பங்குகளின் எண்ணிக்கை = 800

₹100 முக மதிப்புள்ள 12% சரக்கு முதலின் ஆண்டு வருமானம் ₹3,600 எனில் பங்குகளின் எண்ணிக்கையைக் காண்க.

தீர்வு

பங்குகளின் எண்ணிக்கை ' χ ' என்க

பங்கின் முக மதிப்பு = ₹100

்x' பங்குகளின் சந்தை மதிப்பு = ₹100x

$$\frac{12}{100}$$
 ×100 $x = ₹3600$

$$12 x = 3600 \Rightarrow x = 300$$

எனவே பங்குகளின் எண்ணிக்கை = 300

எடுத்துக்காட்டு 7.16

சந்தை மதிப்பு ₹80க்கு கிடைக்கும் ₹100 முக மதிப்புள்ள பங்குகளில் ஒரு நபர் ₹96,000 முதலீடு செய்கிறார். பங்கு நிறுவனம் வழங்கும் பங்கு வீதம் 18% எனில் பின் வருவனவற்றைக் காண்க.

- (i) அவர் வாங்கிய பங்குகளின் எண்ணிக்கை
- (ii) மொத்த ஈவுத் தொகை
- (iii) பங்குகளின் மீதான அவர் திரும்ப பெறும் தொகையின் சதவீதம்

தீர்வு

வாங்கப்பட்ட பங்குகளின் எண்ணிக்கை = $\frac{\text{(முதலீடு}}{\text{ஒரு பங்கின் சந்தை மதிப்பு}}$ = $\frac{96,000}{80}$

= 1200 பங்குகள்

(ii) மொத்த ஈவுத் தொகை = பங்குகளின் எண்ணிக்கை imes ஈவுத் தொகை வீதம் imes பங்கின் முக மதிப்பு

= 1200×
$$\frac{18}{100}$$
 ×100

= ₹21,600

(iii) ₹ 96000 க்கான வருமானம் = ₹21600

வருமான வீதம் = $\frac{21,600}{96,000}$ ×100%

= $\frac{45}{2}$ %

= 22,5%

ஒருவர் 17% கழிவில் 12% சரக்கு முதல்களை ₹54,000 –க்கு வாங்கினார். அவர் செலுத்திய தரகு 1% எனில் அவரின் வருமானத்தின் சதவிகதத்தைக் காண்க.

தீர்வு

முகமதிப்பு
$$= ₹100$$
சந்தை மதிப்பு $= ₹(100 - 17 + 1)$
 $= ₹84$
 \therefore வருமான வீதம் $= \frac{(12 \times 100)}{84}$
 $= \frac{100}{7} = 14\frac{2}{7}$
 \therefore $= 14\frac{2}{7}\%$

எடுத்துக்காட்டு 7.18

தீர்வு

x என்பது ஒவ்வொரு பங்கிற்கும் தொகை முதலீடு என்க.

முகமதிப்பு
$$= ₹100$$
, சந்தை மதிப்பு $= ₹(89+1) = ₹90$ பங்குகளின் எண்ணிக்கை $= \frac{\text{முதலீடு}}{\text{ஒரு பங்கின் சந்தை மதிப்பு}}$ $= \frac{x}{90}$ ஆண்டு வருமானம் $= \frac{x}{90} \times \frac{10}{100} \times 100$

$$=\frac{x}{9}$$
 ... (1) சந்தை மதிப்பு $=$ ₹ $(90+1)$ $=$ ₹ 91 பங்குகளின் எண்ணிக்கை $=\frac{\text{முதலீடு}}{\text{ஒரு பங்கின் சந்தை மதிப்பு}}$ $=\frac{x}{91}$ ஆண்டு வருமானம் $=\frac{x}{91} \times \frac{7}{100} \times 100$ $=\frac{x}{13}$... (2) $\frac{x}{9}-\frac{x}{13}=100$ என கொடுக்கப்பட்டுள்ளது. $x=$ ₹ 2925

∴. ஒவ்வொரு பங்கிலும் செய்யும் முதலீடு = ₹ 2925

எடுத்துக்காட்டு 7.19

ஒரு நிறுவனத்தின் மூலதனம் 16% பங்கு வீதம் கொண்ட 1,00,000 முன்னுரிமைப் பங்குகளையும் 50,000 சாதாரணப் பங்குகளையும் கொண்டதாக உள்ளது. முன்னுரிமை மற்றும் சாதாரண பங்குகள் ஒவ்வொன்றின் முக மதிப்பு ₹10 ஆகும். அந்த நிறுவனத்திற்கு கிடைத்த மொத்த இலாபம் ₹ 3,20,000 ல் இருந்து ₹40,000 நிறுத்திவைப்பு நிதிக்காகவும், ₹20,000 மதிப்பிறக்க நிதியாகவும் ஒதுக்கப்படுகிறது எனில், சாதாரணப் பங்குதாரர்களுக்கு கொடுக்கப்படும் பங்கு வீதத்தை காண்க.

தீர்வு

முன்னுரிமை மற்றும் சாதாரணப் பங்குகளின்

முன்னுரிமைப் பங்குகளின் முதலீடு
$$= ₹1,00,000 \times 10 = ₹10,00,000$$
 சாதாரணப் பங்குகளின் முதலீடு $= ₹50,000 \times 10 = ₹5,00,000$ மொத்த வருமானம் $= ₹(3,20,000 - 40,000 - 20,000) = ₹2,60,000$ முன்னுரிமைப் பங்குகளின் வருமானம் $= \frac{16}{100} \times 10,00,000 = ₹1,60,000$ சாதாரணப் பங்கின் வருமானம் $= ₹2,60,000 - ₹1,60,000 = ₹1,00,000$ சாதாரணப் பங்கின் வருமான வீதம் $= \frac{\text{андиптати}}{\text{முதலீடு}} \times 100\%$ $= \frac{1,00,000}{5,00,000} \times 100\% = 20\%$

முகமதிப்பு ₹10,000 ம் உள்ள 20% சரக்கு முதலை ஒருவர் 42% அதிக விலைக்கு விற்கிறார். விற்று வந்த பணத்தைக் கொண்டு 22% கழிவு, 15% சரக்கு முதலை வாங்குகிறார். வழங்கப்பட்ட தரகு 2% எனில், அவர் தம் வருமானத்தில் ஏற்படும் மாற்றத்தைக் காண்க.

தீர்வு

முகமதிப்பு = ₹10000
வருமானம் =
$$\frac{20}{100} \times 10000$$

= ₹ 2,000 ... (1)

ഖകെ (i)

முதலீடு = ₹10,000 முகமதிப்பு = ₹100 சந்தை மதிப்பு = ₹(100 + 42 - 2) = ₹140 பங்குகளின் எண்ணிக்கை =
$$\frac{$$
 முதலீடு முக மதிப்பு = $\frac{10,000}{100}$ = 100 விற்றுக் கிடைக்கும் தொகை = 100×140 = ₹14,000

ഖകെ (ii)

சந்தை மதிப்பு = ₹(100 – 22 + 2)

= ₹80

பங்குகளின் எண்ணிக்கை = முதலீடு
முக மதிப்பு

=
$$\frac{14000}{80}$$

= 175
வருமானம் = 175 × $\frac{15}{100}$

= ₹2625

எது சிறந்த முதலீடு? 12% ₹20 முகமதிப்புள்ள ₹ 16 (அல்லது)15% ₹ 20 முகமதிப்புள்ள ₹24.

தீர்வு

ஒவ்வொரு சரக்கு முதலிலும் ₹ (16× 24) செய்வதாக கொள்வோம்.

ഖഞക (i)

12 % ₹20 முகமதிப்புள்ள ₹ 16 –ன் வருமானம்

$$= \frac{12}{16} \times (16 \times 24)$$

வகை (ii)

15% ₹20 முகமதிப்புள்ள ₹ 24 –ன் வருமானம்

$$= \frac{15}{24} \times (16 \times 24)$$

எனவே, முதலாவது முதலீடு சிறந்ததாகும்.

- 1. ₹100 சம மதிப்புள்ள ₹132 –ல் கிடைக்கும் 62 பங்குகளின் சந்தை மதிப்பினைக் காண்க.
- ₹7 கழிவிற்கு ₹25 மதிப்புள்ள பங்குகள் கிடைக்குமெனில் 125 பங்குகள் வாங்குவதற்கு
 தேவைப்படும் தொகை எவ்வளவு?
- ₹20 மதிப்புள்ள, 9% பங்கு வீதமுடைய பங்குகள் மூலம் கிடைக்கின்ற ஈவுத் தொகை ₹1,620
 எனில், வாங்கப்படும் பங்குகளின் எண்ணிக்கையைக் காண்க.
- 4. ஒரு நிறுவனம் 20%. அதிக விலையில் ₹100 முகமதிப்புள்ள 15% பங்குகளை அறிவித்துள்ளது. திரு.மோகன் என்பவர் ₹29,040 முதலீடு செய்கிறார் எனில் பின்வருவனவற்றை காண்க.
 - (i) திரு.மோகனால் வாங்கப்படும் பங்குகளின் எண்ணிக்கை
 - (ii) பங்குகளிலிருந்து அவருக்கு கிடைக்கும் வருடாந்திர வருமானம்
 - (iii) அவருடைய முதலீட்டிருந்து கிடைக்கும் வருமான சதவீகிதம்
- 5. ஒரு நபர் ₹2.50 அதிக விலைக்கு கிடைக்கும் ₹10 மதிப்புள்ள 400 பங்குகளை வாங்கினார். பங்கு வீதம்12% எனில் கீழ்க்கண்டவற்றை கணக்கிடுக.
 - (i) அவரது முதலீடு
 - (ii) அவருக்கு கிடைக்கும் ஆண்டு ஈவுத் தொகை
 - (iii) அவரது முதலீடுக்கு கிடைக்கும் வட்டி வீதம்

- 6. ₹10 மதிப்புள்ள பங்குகளை ஆண்டு 2% தரகு செலுத்தி சுந்தர் என்பர் 4500 பங்குகளை வாங்குகிறார். பங்குநிலை ₹23 ஆக அதிகரிக்கும் பொழுது பங்குகளை விற்று அதன் மூலம் கிடைக்கும் தொகையை ₹25 மதிப்புள்ள 10% பங்குகளில் ₹18-க்கு முதலீடு செய்கிறார். அவரது வருமானத்தில் ஏற்படும் மாற்றத்தைக் காண்க.
- 7. ஒரு நபர் ₹13,500 –ன் ஒரு பகுதியை, ₹100மதிப்புள்ள 6% பங்குகளில் ₹140 க்கும், மீதமுள்ள தொகையை ₹100 மதிப்புள்ள 5% பங்குகளில் ₹125 க்கும் முதலீடு செய்கிறார். அவருடைய மொத்த வருமானம் ₹560 எனில் ஒவ்வொன்றிலும் அவர் எவ்வளவு முதலீடு செய்திருக்க வேண்டும்.
- 8. பாபு என்பவர் ₹100 மதிப்புள்ள பங்குகளை 10% கழிவிற்கு விற்று கிடைக்கும் தொகையில் ₹50 மதிப்புள்ள 15% பங்குகளில் ₹33 –க்கு முதலீடு செய்கிறார். 10% கழிவிற்கு பதிலாக 10% அதிகவிலைக்கு அவருடைய பங்குகளை விற்றிருப்பாரேயினால் அவருக்கு ₹450 அதிகமாக இலாபம் ஈட்டியிருப்பார் எனில், அவர் விற்ற பங்குகளின் எண்ணிக்கையைக் காண்க.
- 9. ₹100 மதிப்புள்ள 7% பங்குகள் ₹120 க்கு அல்லது ₹100 மதிப்புள்ள 10% பங்குகள் ₹135 க்கு, இவற்றுள் எது சிறந்த முதலீடு?

10. ₹140 –ல் உள்ள 20% சரக்கு முதல் அல்லது ₹ 70–ல் உள்ள 10% சரக்கு முதல், இவற்றுள் எது சிறந்த முதலீடு?

சரியான விடையை தேர்ந்தெடுக்க.

1.	₹100 முகமதிப்பு	உடைய 8%	சரக்கு	முதலின்	200	பங்குகளிலிருந்து	கிடைக்கும்	ஈவுத்
	தொகை							

- (a) 1600
- (b) 1000
- (c) 1500
- (d) 800
- முக மதிப்பு 100 உடைய 8% சரக்கு முதலின் 200 பங்குகளை ₹50க்கு விற்பதன் மூலம் கிடைக்கும் தொகை.
 - (a) 16,000
- (b) 10,000
- (c) 7,000
- (d) 9,000
- ஒரு நபர் ₹100 முகமதிப்புடைய சரக்கு முதல் ₹20,000 –யை அதிகவிலை 20% வாங்குகிறார் எனில், அவரது முதலீடு
 - (a) ₹ 20,000
- (b) ₹ 25,000
- (c) ₹ 22,000
- (d) ₹ 30,000
- 4. ₹100 முகமதிப்புடைய 10% சரக்கு முதல் மூலம் ஒருவருக்கு கிடைக்கும் ஈவுத் தொகை ₹25,000 எனில், அவர் வாங்கிய பங்குகளின் எண்ணிக்கை
 - (a) 3500
- (b) 4500
- (c)2500
- (d)300
- 5. ₹100 முகமதிப்புடைய 400 பங்குகளை விற்பதற்கான தரகு வீதம்1% எனில், அவர் செலுத்திய

	தரகு தொகை			
	(a) ₹ 600	(b) ₹ 500	(c) ₹ 200	(d) ₹ 400
6.	₹100 முகமதிப்புடை எனில், அந்த பங்கின்	_	sழிவு விலைக்கு, $rac{1}{2}\%$	தரகு வீதத்தில் கிடைக்கும்
	(a) ₹89	(b) ₹90	(c) ₹91	(d) ₹95
7.		்பய 9% சரக்கு முத அதன் சரக்கு முதல் ம		ள 10% , கழிவிற்கு ஒருவர்
	(a) ₹9000	(b) ₹6000	(c) ₹5000	(d) ₹4000
8.	7% சரக்கு முதலில்	₹80 க்கு வாங்கினால்	கிடைக்கும் வருமான	ரம்
	(a) 9%	(b) 8.75%	(c) 8%	(d) 7%
9.	₹100 முகமதிப்புடை	ய 15% க்கு கிடைக்கு $oldsymbol{ ilde{b}}$	் 500 பங்குகளின் ஆ	ண்டு வருமானம்
	(a) ₹7,500	(b) ₹ 5,000	(c) ₹8,000	(d) ₹ 8,500
10.		லுத்தப்படுகிறது எனில்	•	வருடமும் ₹ 5000, 10% ா பங்கீட்டுத தொகையின்
	(a) ₹60,000	(b) ₹ 50,000	(c) ₹10,000	(d) ₹ 80,000
11.	என்பது ₹1 –க்கான		ு ணை பங்கீட்டுத் தொ	பகளின் எண்ணிக்கை, $\emph{`i}$ கையின் எதிர்கால தொகை -1
	(c) $P = \frac{a}{i}$		(d) $P = \frac{a}{i}(1+i)[1$	$-(1+i)^{-n}]$
12.	_	முதலில் B என்பவர் மு		ழதலீடு செய்கிறார். அதற்கு ல் அவர் வாங்க வேண்டிய
	(a) ₹80	(b) ₹115.20	(c) ₹120	(d) ₹125.40
13.	ஒவ்வொரு தவணை	ா காலத்தின் ஆரம்பத்த	நில் செலுத்தப்படும் தெ	ாகை
	(a) காத்திருப்பு தவ	ணை பங்கீட்டுத் தொல	றக (b) உடனடி பர்	ங்கீட்டுத் தொகை
	(c) நிலையான தவ	ணை பங்கீட்டுத் தொல	றக (d) இவை ஏது	 மில்லை
14.	மாதா மாதம் செலுத்த கூட்டுவட்டியில் தற்கே		வணை பங்கீட்டுத் தெ	தாகை ₹ 2000-க்கு 10 %

(c) ₹20,40,000

(d) ₹ 2,00,400

(a) ₹2,40,000

(b) ₹ 6,00,000

- 15. தற்காலிக தவணை பங்கீட்டுத் தொகைக்கான எடுத்துக்காட்டு
 - (a) ஆயுள் காப்பீட்டு சந்தா தொகை
 - (b) மாணவர்களுக்கு உதவி தொகை அளிக்கும் நன்கொடை நிதி
 - (c) வங்கியின் தனி நபர் கடன்
 - (d) மேற்கண்ட அனைத்தும்

இதரக் கணக்குகள்

- 1. ஆண்டுக்கு 10% கூட்டு வட்டி சேர்க்கப்படும் போது ஒவ்வொரு ஆண்டின் இறுதியிலும் ₹2000 வீதம் 4 ஆண்டுகளுக்கு செலுத்தப்படும் தவணைப் பங்கீட்டுத் தொகையின் மொத்தத் தொகையைக் காண்க. [$\log(1.1) = 0.0414$; anti $\log(0.1656) = 1.464$]
- 2. ஒரு கருவி தவணை முறையில் வாங்கப்படுகிறது. வாங்கும் சமயம் ₹5000 செலுத்தி பின்னர் முதல், இரண்டாம், மூன்றாம் மற்றும் நான்காம் வருட முடிவில் ஒவ்வொரு முறையும் ₹300 தவணை செலுத்தப்படுகிறது. ஆண்டு வட்டி வீதம் 5% எனில் கருவியின் கொள்முதல் விலையைக் காண்க. [log(1.05) = 0.0212; antilog(-1.9152=0.8226)]
- 3. (i) ஆண்டுக்கு 7% சதவீதம் கூட்டு வட்டி சேர்க்கப்படும் போது ஒவ்வொரு ஆண்டின் இறுதியிலும் ₹500 வீதம் 7 ஆண்டுகளுக்குச் செலுத்தப்படும் தவணைப் பங்கீட்டுத் தொகையின் மொத்தத் தொகையைக் காண்க.
 - (ii) அரையாண்டுக்கு ஒருமுறை வட்டி சேர்த்து 10% வட்டி கொடுக்கப்படுகிறது. ஒவ்வொரு அரையாண்டு முடிவிலும் ₹10,000 தொகை செலுத்தினால் 5 ஆண்டுகளுக்குச் செலுத்தப்படும் தவணைப் பங்கீட்டுத் தொகையின் மொத்தத் தொகையைக் காண்க.
 - (iii) காலாண்டுக்கு ஒருமுறை வட்டி சேர்த்து 4% வட்டி கொடுக்கப்படுகிறது. ஒவ்வொரு காலாண்டுமுடிவிலும் ₹600 தொகை செலுத்தினால் 10 ஆண்டுகளுக்குச் செலுத்தப்படும் தவணைப் பங்கீட்டுத் தொகையின் மொத்தத் தொகையைக் காண்க.
 - (iv) மாதந்தோறும் வட்டி சேர்த்து 6% வட்டி கொடுக்கப்படுகிறது. ஒவ்வொரு மாத முடிவிலும் ₹2000 தொகை செலுத்தினால் 5 ஆண்டுகளுக்குச் செலுத்தப்படும் தவணைப் பங்கீட்டுத் தொகையின் மொத்தத் தொகையைக் காண்க.
 - 4. நவீன் என்பவர் ஒவ்வொரு மாதத்தின் ஆரம்பத்தில் ₹250 கணக்கில் செலுத்துகிறார். 6%ஆண்டு கூட்டு வட்டியில் மாதந்தோறும் கூட்டு வட்டி சேர்க்கப்படுகிறது. அவரின் வைப்புத் தொகை குறைந்தது ₹6390 எத்தனை மாதங்களில் கிடைக்கும்.
 - 5. பொருளியியல் தேர்வில் முதல் மதிப்பெண் பெரும் மாணவர்களுக்கு ஒரு நபர் ₹1,500யை பரிசுத் தொகையாக ஒவ்வொரு வருடமும் வழங்குகிறார். இத்தொகையை வழங்குவதற்கு அவர் முதலீடு செய்வதற்கு தேவைப்படும் மொத்ததொகை காண்க. ஆண்டிற்கு 12% வட்டி கணக்கிடப்படுகிறது.

- 6. இயந்திரிம் A வின் விலை ₹15,000 இயந்திரம் B யின் விலை ₹20,000 அவற்றிலிருந்து கிடைக்கும் ஆண்டு வருமானம் முறையே ₹4,000 மற்றும் ₹7,000 ஆகும். இயந்திரம் A- ன் ஆயுட்காலம் A ஆண்டுகள் மற்றும் B ன் ஆயுட்காலம் A ஆண்டுகள் எனில், எந்த இயந்திரத்தை வாங்குவது சிறந்தது. (ஆண்டுக்கு B% கழிவு எனக் கொள்க.)
- 7. ₹27,000-க்கு பங்கில் முதலீடு செய்ய விஜய் அவர்கள் விரும்புகிறார். பின்வரும் நிறுவனங்களின் பங்குகள் அவருக்கு கிடைக்கின்றன. சம மதிப்பில் நிறுவனம் A இன் பங்கில் விலை ₹100 . அதிக விலை₹25 உடைய நிறுவனம் Bல் பங்கின் விலை ₹100 . கழிவு ₹10. உடைய C ன் பங்குகள் ₹100 . அதிக விலை 20% உடைய நிறுவனம் D ல் பங்கின் விலை ₹50 எனில் (i)A (ii) B (iii) C (iv) D ஆகிய நிறுவனங்களில் அவர் பங்குகளை வாங்கினால் எத்தனை பங்குகள் கிடைக்கும்.
- 8. ₹80 க்கு 100 மதிப்புள்ள பங்கின் 7% ல் ₹8,000 கோபால் என்பவர் முதலீடு செய்துள்ளார். ஒரு வருடத்திற்குப் பிறகு அந்தப் பங்குகளை, 1 பங்கிற்கு ₹75 க்கிற்கு விற்கிறார். (வருமானம் உட்பட) மற்றும் ₹41-க்கு ₹75 மதிப்புள்ள பங்கின்18% ல் முதலீடு செய்ய முன்வருகிறார் எனில்
 - (i) முதல் வருடத்தில் அவருடைய ஈவுத் தொகை
 - (ii) இரண்டாம் வருடத்தில் அவருடைய ஆண்டு வருமானம்
 - (iii) அவருடைய அசல் மூலதனத்திற்கு அதிகரித்த சதவீதம் ஆகியவைகளைக் காண்க
- 9. ஒரு பங்கிற்கு ₹33 –ல் 25 சதவீத ஈவுத் தொகை கொடுக்கக் கூடிய ஒரு தேயிலை நிறுவனத்தில் 2000 சாதாரண பங்கினை ஒருவர் விற்கிறார். ஒரு பங்கிற்கு ₹44 –ல்15 சதவீத ஈவுத் தொகை தரக்கூடிய பருத்தி ஆடை நிறுவனத்தில் முதலீடு செய்ய முன்வருகிறார் எனில்,
 - (i) பருத்தி ஆடை நிறுவனத்தில் இருந்து வாங்கிய பங்குகளின் எண்ணிக்கை
 - (ii) அவரின் ஈவுத் தொகை வருமானத்தின் மாற்றம்.
- 10. ஒரு நிறுவனத்தின் மூலதனம் 16% பங்குவீதம் கொண்ட 50,000 முன்னுரிமைப் பங்குகளையும் 25,000 சாதாரணப் பங்குகளையும் கொண்டதாக உள்ளது. முன்னுரிமை மற்றும் சாதாரணப் பங்குகள் ஒவ்வொன்றின் முகமதிப்பு ₹10 ஆகும். அந்த நிறுவனத்திற்குக் கிடைத்த மொத்த இரைபம் ₹1,60,000 இல் இருந்து ₹20,000 சேமிப்பு நிதிக்காகவும் ₹10,000 மதிப்பிறக்க நிதிக்காகவும் ஒதுக்கப்படுகிறது எனில் சாதாரணப் பங்குதாரர்களுக்குக் கொடுக்கப்படும் பங்குவீதம் காண்க.

தொகுப்புரை

தவணைப் பங்கீட்டுத் தொகையின் வகைகள்

- நன்கொடை அல்லது உதவித் தொகை
 - $({
 m i})$ உதவித்தொகை முடிவின்றி வழங்கப்படும் எனில் $P\!=\!rac{a}{i}$
 - (ii) ஒரு குறிப்பிட்ட காலத்திற்கு உதவி தொகை வழங்கப்படும் (n –ஆண்டுகள்) எனில்

$$P = \frac{a}{i} \left[1 - \left(1 + i \right)^{-n} \right]$$

- முகமதிப்பு: ஒரு பங்கின் உண்மை மதிப்பு என்பது அதனின் ஒப்பு மதிப்பு அல்லது
 முக மதிப்பு அல்லது அச்சிடப்பட்ட மதிப்பு என அழைக்கப்படுகிறது
- **சந்தை மதிப்பு:** ஒரு பங்கு விற்கப்படும் விலை அல்லது பங்கு சந்தை மூலமாக மூதலீட்டுச் சந்தையில் வாங்கப்படுவது என்பது சந்தை மதிப்பு என அழைக்கப்படுகிறது.
- ஒரு பங்கின் சந்தை மதிப்பு அதனுடைய முக மதிப்புக்கு சமம் எனில் அல்லது
 அதனுடைய ஒப்பு மதிப்புக்கு சமம் எனில் அப்பங்கு சமமதிப்புப் பெற்றிக்கிறது எனக் கூறலாம்,
- ஒரு பங்கின் சந்தை மதிப்பு அதனுடைய முக மதிப்புக்கு சமம் எனில் அல்லது
 அதனுடைய ஒப்பு மதிப்புக்கு சமம் எனில் அப்பங்கு சமமதிப்புப் பெற்றிக்கிறது எனக் கூறலாம்.

- ஒரு பங்கின் சந்தை மதிப்பு அதனுடைய ஒப்பு மதிப்பிற்கு அதிகமாக இருக்கிறது எனில்
 அப்பங்கு சம மதிப்பிற்கு மேல் அல்லது அதிக நிலையை பெற்றிருக்கிறது எனலாம்.
- ஒரு பங்கின் சந்தை மதிப்பு அதனுடைய ஒப்பு மதிப்பிற்கு அதிகமாக இருக்கிறது எனில்
 அப்பங்கு சம மதிப்பிற்கு மேல் அல்லது அதிக நிலையை பெற்றிருக்கிறது எனலாம்.
- ஒரு பங்குதாரர் அவருடைய முதலீட்டிற்கான வருடாந்திர இலாபத்தில் ஒரு நிறுவனத்திடமிருந்து பெறுகின்ற ஒரு பகுதி ஈவுத் தொகை எனப்படும்.
- ஈவுத் தொகை என்பது எப்பொழுதும் ஒரு பங்கின் முக மதிப்பு கொண்டு அறிவிக்கப்படுவதாகும் மற்றும் ஈவுத் தொகை வீதம் என்பது ஒரு வருடத்தின் ஒரு பங்கின் ஒப்பு மதிப்பை சதவீதத்தில் விவரிப்பதாகும்.
- பங்குதாரர்களின் ஆண்டு வருமானம் $=\frac{n \times r \times F.V}{100}$ இங்கு n= பங்குதாரர்கள் வைத்துள்ள பங்குகளின் எண்ணிக்கை r= ஈவுத் தொகை வீதம்,
- ullet ஆண்டு ஈவு $= rac{$ ஆண்டு வருமானம்} imes 100 பங்குகளின் முதலீடு
- கையிருப்பு பங்குகளின் எண்ணிக்கை =

$$rac{}{}$$
 வருடாந்திர வருமானம் $}{}$ $imes 100$ (அ) $rac{}{}$ ஒரு பங்கிலிருந்து கிடைக்கும் வருமானம் $}$ $imes 100$ (அ) $rac{}{}$ ஒரு பங்கின் முக மதிப்பு $}{}$

இரண்டு சரக்கு முதலுக்கான முதலீட்டில் எது சிறந்தது

ஒவ்வொரு வகையின் முதலீடு = (முதல் சரக்கின் சந்தை மதிப்பு imes இரண்டாம் சரக்கின் சந்தை மதிப்பு)

வகை (i) $r_{_1}$ % லிருந்து பெறுகின்ற வருமானம்

$$= rac{r_1}{$$
ஒவ்வொரு சரக்கின் மீதான முதலீடு

வகை (ii) $r_{_2}\%$ லிருந்து பெறுகின்ற வருமானம்

$$=$$
 $\frac{r_2}{$ ஒவ்வொரு சரக்கின் மீதான முதலீடு

கலைச் வெ	சாற்கள் (GLOSSARY)
கடன் பத்திரங்கள்	Debentures
காலமுறை செலுத்துதல்	Periodic payment
சந்தை விலை	Market price
சம பங்கு	Equity shares
சரக்கு முதல்கள்	Stocks
செலுத்தும் கால இடைவெளி	Payment interval
த்ரகு	Brokerage
தவணை பங்கீட்டு தொகை	Immediate annuity
தவணை பங்கீட்டு தொகை	Term of annuity
காலம் நிரந்தர தவணை பங்கீட்டு தொகை	Perpetual annuity
பங்குகள்	Shares
பங்குச் சந்தை	Stock exchange
பங்குதாரர்கள்	Share holders
பரிவர்த்தனை	Transaction
முக மதிப்பு	Face value
முன்னுரிமை	Preference shares
மூலதன மதிப்பு	Capital value
வட்டி	Interest
ഖിற்பனை ഖിതര	Selling price

இணையச் செயல்பாக

⊔LQ - 1

இறுதியில் கிடைக்கப்பெறும் படம்

கீழ்க்காணும் உரலி / விரைவுக் குறியீட்டைப் பயன்படுத்தி GeoGebra வின் "11th Business Maths Volume–2 பக்கத்திற்குச் செல்க. உங்கள் பாடம் சார்ந்த பல பணித்தாள்கள் இப்பக்கத்தில் இருக்கும்.

படி - 2

(iv)His percentage return on the shares $=\frac{21600}{96000}$ X100 =22.5%["]Dividend["] என்பதைத் தேர்வு செய்து, படிகளைப் பார்ப்பதற்கு நழுவலை நகர்த்தவும்.Select the work sheet "Dividend" Move the sliders to see the steps.

A man invest Rs.96000 on Rs.100 shares at Rs.80,
Amount invested=96000

 $(i) The \ number \ shares \ bought \ \ = \frac{Invested \ amount}{Market \ Value} = \frac{96000}{80} = 1200 \ shares$

 $(ii) Total\ Share\ Value \\ = No, of\ shares\ X\ FV = 1200X100 = Rs.120000$

(iii) His total dividend = No. of shares XFace value X rate of Dividend $= 1200X100X \frac{18}{100} = Rs.21600$

Rate of dividend = 18

A man invest Rs.96000 on Rs.100 on R

(i)the number of shares he buys (ii)Total Share Value

(iv) his percentage return on the shares.

(iii) his total dividend

முதலீடு செய்யப்பட்ட தொகை (Amount invested), பங்குச்சந்தையின் மதிப்பு (Market value of one share) மற்றும் லாபப்பங்கின் வீதம்(dividend rate)ஆகியவற்றை வலப்பக்கம் உள்ள கட்டத்தில் உள்ளீடு செய்து, கணக்குகளைத் தொடரவும்.

山瓜 2

DIVIDEND	Enter new values in the box below	
A man invest Rs.96000 on Rs.100 shares at R		-
If the company pays him 18% dividend, find	Amount invested= 96000	
(i)the number of shares he buys	Market value of one share= 80	
(ii)Total Share Value	Rate of dividend = 18	
(iii) his total dividend	Steps	
(iv) his percentage return on the shares.	•	
$(i) The \ number \ shares \ bought$		
(ii)Total Share Value		
(iii)His total dividend		
$(iv)His\ percentage\ return\ on\ the\ shares$		

செயல்பாட்டிற்கான உரலி :

Type here to search

https://ggbm.at/q4tsyvys (or) scan the QR Code

விவரப் புள்ளியியல் மற்றும் நிகழ்தகவு

கற்றல் நோக்கங்கள்

இந்த அத்தியாயத்தை படித்தபின்பு பின்வரும் பாடக் கருத்துருக்களை மாணவர்கள் நன்கு புரிந்துகொள்ள இயலும் .

- A.M, G.M மற்றும் H.Mபோன்ற மையப் போக்கு அளவைகள்.
- சராசரிகளுக்கு இடையேயான தொடர்புகள்.
- கால்மானங்கள், பத்துமானங்கள், நூற்றுமானங்கள்
 என்பன போன்ற தொடர்புடைய நிலை அளவைகள்.
- கால்மானவிலக்கம், சராசரிவிலக்கம் என்பன போன்ற சிதறல் அளவைகள்.
- கால்மான விலக்கக் கெழு, சராசரி விலக்கக் கெழு போன்ற தொடர்புடைய அளவைகள்.
- நிபந்தனை நிகழ்த்தகவின் கருத்துருக்கள், நிகழ்த்தகவின் பெருக்கல் தேற்றம்.
- பெயிஸ் தேற்றம் மற்றும் அதன் பயன்பாடுகள்

8.1 மையப் போக்கு அளவைகள் (Measures of central tendency)

அறிமுகம்:

புள்ளியியல் பகுப்பாய்வின் முக்கியமான குறிக்கோள்களில் ஒன்று, கொடுக்கப்பட்ட மொத்த விவரங்களின் தன்மையை ஒரு தனிமதிப்பைக் கொண்டு விவரித்தல் ஆகும். அத்தகைய மதிப்பு முழுமையான விவரங்களுக்கான மையபோக்கு அளவைகள் எனப்படுகிறது. "சராசரி" என்பதுப் பொதுவாக அன்றாட வாழ்க்கையில் பயன்படுத்தப்படும் வார்த்தை ஆகும். உதாரணமாக பேச்சு வழக்கில் "இவன் வகுப்பில் ஒரு சராசரிப் பையன், சராசரி உயரம், ஒரு இந்தியனின் சராசரி வாழ்க்கை, சராசரி வருமானம்" என்பன நடைமுறையில் உள்ள வார்த்தைகள் ஆகும். சர். ரொனல்ட் பிஷர் என்பவர் புள்ளியியலின் தந்தை என அறியப்பட்டவர்

மற்றும் அவர் பல்வேறு துறைகளில் புள்ளியியலின் செயல்பாட்டிற்கு ஆரம்ப கால பங்களிப்பை அளித்தவர் ஆவார்.

8.1.1 சராசரி

- மீள்பார்வை

கொடுக்கப்பட்ட விவரங்களுக்கு பல மையபோக்கு அளவைகள் உள்ளன. அவைகள்,

- கூட்டுச் சராசரி
- இடைநிலை
- முக்டு
- பெருக்குச் சராசரி
- இசைச் சராசரி

கூட்டுச் சராசரி (தொடர்ச்சியற்ற விவரங்கள்) (Arithmetic Mean (Discrete case))

விவரங்களின் தொகுப்பிற்கானக் கூட்டுச் சராசரி என்பது அவற்றின் கூடுதலை, விவரங்களின் எண்ணிக்கையால் வகுக்கக் கிடைப்பது ஆகும். விவரங்களை a) தொகுக்கப்படாத விவரங்கள் மற்றும் b) தொகுக்கப்பட்ட விவரங்கள் என இரு வகைப்படுத்தலாம்.

a) தொகுக்கப்படாத விவரங்கள் (Ungrouped data)

(i) நேரடி முறை (Direct Method):

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots X_n}{n} = \frac{\sum X}{n}$$

இங்கு \overline{X} என்பது கூட்டுச்சராசரி $\sum X$ என்பது X என்ற மாறியின் எல்லா மதிப்புகளின் கூடுதல் மற்றும் n என்பது விவரங்களின் எண்ணிக்கை.

(ii) சுருக்கு முறை (Short-cut method)

 $\overline{X}=A+rac{\sum d}{n}$ இங்கு d=X-A,A என்பது ஏதேனும் ஒரு தன்னிச்சையான மதிப்பு மற்றும் d என்பது X என்ற மாறியின் விலக்கம் எனப்படும்

b) தொகுக்கப்பட்ட விவரங்கள் (Grouped data)

(i) நேரடி முறை Direct method

நேரடி முறையில் கூட்டுச் சராசரியைக் கணக்கிடுவதற்கானச் சூத்திரம் $\overline{X}=\frac{\sum fx}{N}$ ஆகும். இங்கு f என்பதுஅலைவெண்; X – என்பது மாறி; மேலும் $N=\sum f$ (அலைவெண்களின் கூடுதல்)

(ii) சுருக்கு முறை (Short-cut method)

கீழ்கண்ட சூத்திரத்தைப் பயன்படுத்தி கூட்டுச் சராசரியைக் காணலாம்.

$$\overline{X} = A + \ rac{\Sigma f d}{N}$$
 இங்கு A என்பது ஊகச் சராசரி, $d = X - A \; ; \; N = \sum f$

தொடர்ச்சியுடைய விவரங்களுக்கான கூட்டுச் சராசரி (தொகுக்கப்பட்ட விவரங்கள்)

கூட்டுச் சராசரியை கீழ்க்கண்ட முறைகளில் கணக்கீடு செய்யலாம்.

- (i) நேரடி முறை
- (ii) சுருக்கு முறை
- (iii) படி விலக்க முறை

(i) நேரடி முறை (Direct method)

நேரடி முறையைப் பயன்படுத்தி கூட்டுச் சராசரி $\overline{X}=rac{\Sigma fm}{N}$ என வரையறுக்கப்படுகிறது.

இங்கு m என்பது ஒவ்வொரு இடைவெளிகளின் மைய மதிப்பு

f என்பது ஒவ்வொரு இடைவெளியின் அலைவெண்

 $N=\sum f$ என்பது அலைவெண்களின் கூடுதல்

(ii) சுருக்கு முறை (Short-cut method)

கீழ்க்கண்டச் சூத்திரத்தைப் பயன்படுத்திக் கூட்டுச் சராசரி கணக்கிடலாம்.

$$\overline{X} = A + \frac{\sum fd}{N}$$

இங்கு A என்பது ஊகச் சராசரி

d=m–A என்பது ஊகச் சராசரியிலிருந்து மைய மதிப்புகளின் விலக்கங்கள் N= $\sum f$

(iii) படிவிலக்க முறை (Step Deviation Method)

தொகுக்கப்பட்ட அல்லது தொடர் அலைவெண் பரவலுக்கானக் கூட்டுச் சராசரிக் காணும் முறை,

$$\overline{X}=A+\left(rac{\Sigma fd}{N} imes c
ight)$$
 இங்கு $d=rac{(m-A)}{c}$,

A என்பது ஏதேனும் ஒரு தன்னிச்சையான மதிப்பு அல்லது ஒரு ஊகச் சராசரி

c என்பது இடைவெளியின் அளவு

முக்டு (Mode):

கொடுக்கப்பட்டுள்ள விவரங்களில், அதிக எண்ணிக்கையில் திரும்பத்திரும்ப வரும் மதிப்பு முகடு ஆகும்

இடைநிலை (Median):

இடைநிலை என்பது ஒரு சரியான நடுமதிப்பு ஆகும். இடைநிலைக்கு இரு புறமும் உள்ள விவரங்களின் எண்ணிக்கை சமமாக இருக்கும். இடைநிலை என்பது ஒரு நிலை அளவையாகும். மேலும் சில தொடர்புடைய நிலை அளவைகள் கீழே விவரிக்கப்பட்டுள்ளன. மாணவர்களுக்கு மேற்கூறியக் கருத்துக்கள் நன்கு அறிந்தவை என நம்பப்படுகிறது. நமது தற்போதைய பாடத்திட்டத்தினை கீழ்வரும் பிரிவுகளிலிருந்து தொடங்குவோம்.

8.1.2 நிலையைப் பொறுத்த சில அளவைகள்– கால்மானங்கள், பத்துமானங்கள் மற்றும் நூற்றுமானங்கள் (Related Positional Measures - Quartiles, Deciles and Percentiles):

இடைநிலையைத் தவிர கொடுக்கப்பட்ட விவரங்களை, சமபாகங்களாக பிரிக்கக் கூடிய மேலும் சில அளவைகளை இப்பகுதியில் காண்போம். இவ்வளவைகளில், கால்மானங்கள் , பத்துமானங்கள் மற்றும் நூற்றுமானங்கள் ஆகியவை மிகவும் முக்கியமானவை ஆகும்.

(i) கால்மானங்கள் (Quartiles):

வரிசைப்படுத்தப்பட்ட எண் விவரங்களை நான்கு சமப் பாகங்களாகப் பிரிக்கும் வகையில் உள்ள அளவுகள், கால்மானங்கள் எனப்படும்.

ஒவ்வொரு பிரிவும், சம எண்ணிக்கையிலான உறுப்புகளைப் பெற்றிருக்கும். முதல்பிரிவு, முதல் கால்மானம் (Q_1) எனவும் இரண்டாவது பிரிவு இரண்டாவது கால்மானம் (Q_2) எனவும், மூன்றாம் பிரிவு, மூன்றாம் கால்மானம் (Q_3) எனவும் குறிக்கப்படுகிறது. இங்கு இரண்டாவது கால்மானம் (Q_3) என்பது இடைநிலை அளவாகும்.

முதல் கால்மானம் (Q_1) அல்லது கீழ்கால்மானம் என்பது பரவலின் 25~% உறுப்புகளைத் தனக்குக் கீழேக் கொண்டதாகவும் மற்றும் பரவலின் 75% உறுப்புகள் கால்மானத்திற்கு மேல் அமைந்திருக்கும். இரண்டாவது கால்மானம் (Q_2) (அல்லது) இடை நிலை அளவு பரவலின் 50% உறுப்புகளைத் தனக்குக் கீழேயும் மற்றும் 50% உறுப்புகளைத் தனக்கு மேலேயும் கொண்டதாக இருக்கும். மூன்றாவது கால்மானம் (Q_3) அல்லது பரவலின் 75% உறுப்புகளைத் தனக்கு கீழேயும் மற்றும் 25% உறுப்புகளை தனக்கு மேலேயும் பெற்றிருக்கும். இவ்வாறே மற்ற இரு இடம் சார்ந்த அளவைகளை வரையறுக்கலாம்.

(ii) பத்துமானங்கள் (Deciles):

வரிசைபடுத்தப்பட்ட எண் விவரங்களை பத்து சம பாகங்களாகப் பிரிக்கும் அளவைகள் பத்துமானங்கள் எனப்படும் அதாவது பத்துமானங்கள் என்பது ஒரு தொடர் வரிசையை, பத்து சம பகுதிகளாக பிரிக்கும் மதிப்புகள் ஆகும். நாம் பெறுகின்ற D_1, D_2, \dots, D_9 என்கிற 9 பிரிவு நிலைகள் பத்துமானங்கள் என அழைக்கப்படுகின்றன. இங்கு D_5 என்பது இடைநிலையைக் குறிக்கும் என்பதை நினைவில் கொள்க.

(iii) நூற்றுமானங்கள் (Percentiles):

வரிசைப்படுத்தப்பட்ட எண் விவரங்களை நூறு சம பாகங்களாக பிரிக்கும் அளவைகள் நூற்றுமானங்கள் எனப்படும்

அதாவது எண் தொடர் வரிசையை, 100 சம பாகங்களாகப் பிரிக்கும் அளவுகள் நூற்றுமானங்கள் எனப்படும்.

நாம் பெறுகின்ற P_1 , P_2,\ldots,P_{99} என்ற 99 பிரிவு நிலைகள் நூற்றுமானங்கள் என அழைக்கப்படுகின்றன. இங்கு P_{50} என்பது இடைநிலையைக் குறிக்கும் என்பதை நினைவில் கொள்க.

8.1.3 தொடர்புடைய நிலை அளவைகளைக் கணக்கீடு செய்யும் முறைகள் (Computations for Related positional measure)

இடைநிலை அளவைக் கணக்கீடு செய்யும் முறையைப் போன்றே, கால்மானங்கள், பத்துமானங்கள் மற்றும் நூற்றுமானங்களைக் கணக்கீடு செய்யலாம்.

(i) தொகுக்கப்படாத விவரங்கள் (Ungrouped data):

படிநிலைகள்:

- விவரங்களைத் தனித்த விவரங்களுக்கான அளவையைப் பொறுத்து, ஏறுவரிசை அல்லது இறங்கு வரிசையில் எழுதவும்.
- 2. கீழ்க்காணும் சூத்திரத்தைப் பயன்படுத்துக

$$Q_1 = \left(rac{n+1}{4}
ight)$$
 ஆவது உறுப்பு $Q_3 = \left(rac{3(n+1)}{4}
ight)$ ஆவது உறுப்பின் மதிப்பு $D_1 = \left(rac{n+1}{4}
ight)$ ஆவது உறுப்பின் மதிப்பு $D_2 = 2 \left(rac{n+1}{10}
ight)$ ஆவது உறுப்பின் மதிப்பு $P_{60} = 60 \left(rac{n+1}{100}
ight)$ ஆவது உறுப்பின் மதிப்பு $P_{99} = 99 \left(rac{n+1}{100}
ight)$ ஆவது உறுப்பின் மதிப்பு

$$Q_2 = D_5 = P_{50} =$$
 இடைநிலை ஆகம்.

 $22,\,4,\,2,\,12,\,16,\,6,\,10,\,18,\,14,\,20,\,8$ என்ற தொடரின் $D_{_2}$ மற்றும் $D_{_6}$ காண்க.

தீர்வு :

இங்கு n= எண் விவரங்களின் எண்ணிக்கை =11, இதனை ஏறுவரிசையில் அமைக்க,

$$D_{\scriptscriptstyle 2}$$
= $2\Big(rac{n+1}{10}\Big)$ ஆவது உறுப்பின் மதிப்பு

$$D_6 = 6\left(\frac{n+1}{10}\right)$$
 ஆவது உறுப்பின் மதிப்பு

$$D_2\!=\!2.4$$
 ஆவது உறுப்பின் மதிப்பு $pprox 2$ ஆவது உறுப்பின் மதிப்பு $=4$

$$D_6$$
 = 7.2 ஆவது உறுப்பின் மதிப்பு $pprox 7$ ஆவது உறுப்பின் மதிப்பு $=\!14$

எடுத்துக்காட்டு 8.2

கீழ்க்காணும் புள்ளிவிவரங்களுக்கு $\operatorname{Q}_1,\,\operatorname{Q}_3,\,\operatorname{D}_6$ மற்றும் P_{50} ஆகியவற்றைக் காண்க .

வரிசை எண்	1	2	3	4	5	6	7
மதிப்பெண்கள்	20	28	40	12	30	15	50

50

தீர்வு:

மதிப்பெண்கள் ஏறுவரிசையில் அமைக்கப்பட்டுள்ளன.

$$n=$$
 விபரங்களின் எண்ணிக்கை $=7$

$$Q_1=\left(rac{n+1}{4}
ight)$$
 ஆவது உறுப்பின் மதிப்பு $=\left(rac{7+1}{4}
ight)$ ஆவது உறுப்பின் மதிப்பு

$$=2$$
 ஆவது உறுப்பின் மதிப்பு $=15$

$$Q_3=\left(rac{3(n+1)}{4}
ight)$$
 ஆவது உறுப்பின் மதிப்பு $=\left(rac{3 imes 8}{4}
ight)$ ஆவது உறுப்பின் மதிப்பு

$$=6$$
 ஆவது உறுப்பின் மதிப்பு $=40$

$$D_6 = \left(rac{6(n+1)}{10}
ight)$$
 ஆவது உறுப்பின் மதிப்பு

$$=\left(rac{6 imes8}{10}
ight)$$
 $=4.8$ ஆவது உறுப்பின் மதிப்பு
 $pprox5$ ஆவது உறுப்பின் மதிப்பு $=30$
 $P_{50}=\left(rac{50(n+1)}{100}
ight)$ ஆவது உறுப்பின் மதிப்பு
 $=4$ ஆவது உறுப்பின் மதிப்பு $=28$
எனவே Q_1 = $15,\ Q_3$ = $40,\ D_6=30$ மற்றும் P_{50} = 28

(ii) தொகுக்கப்பட்ட விவரங்கள் (தொடர்ச்சியற்ற அளவுகள்) (Grouped data - Discrete case):

படிநிலைகள்:

- 1. விவரங்களை அளவைப் பொறுத்து ஏறுவரிசை அல்லது இறங்கு வரிசையில் எழுதவும்.
- 2. குவிவு அலைவெண்களைக் காண்க.
- கீழ்காணும் கூத்திரத்தைப் பயன்படுத்துக.

$$Q_{_1}=\left(rac{N+1}{4}
ight)$$
 ஆவது உறுப்பின் மதிப்பு
$$Q_{_3}=\left(rac{3(N+1)}{4}
ight)$$
 ஆவது உறுப்பின் மதிப்பு

 $\left(\frac{N+1}{4}\right)$ ன் மதிப்பு (அல்லது) அதற்கு அடுத்த அதிகமான குவிவு அலைவெண் மதிப்பிற்கு தொடர்புடைய மாறி x—ன் மதிப்பு Q_1 ஆகும். இவ்வாறே $\frac{3(N+1)}{4}$ அல்லது அதற்கு அடுத்த அதிகமான அலைவெண் மதிப்பிற்கு தொடர்புடைய மதிப்பு Q_3 ஆகும்.

எடுத்துக்காட்டு 8.3

கொடுக்கப்பட்ட விவரங்களுக்கு $Q_1,\,D_2$ மற்றும் $\,P_{90}\,$ –ஆகியவற்றை காண்க.

மதிப்பெண்	10	20	30	40	50	60
மாணவர்களின் எண்ணிக்கை	4	7	15	8	7	2

தீர்வு :

மதிப்பெண்	ക്തെഖെൽ്ത	ക്രഖിഖ് அതെഖെഞ്ഞ
\boldsymbol{X}	f	cf
10	4	4
20	7	11

30	15	26
40	8	34
70	-	41
50	7	41
60	2	<i>N</i> = 43

அட்டவணை: 8.1

$$Q_{I}=\left(rac{N+1}{4}
ight)$$
 ஆவது உறுப்பின் மதிப்பு $=rac{43+1}{4}$ -ன் அளவு $=11$ ஆவது உறுப்பின் மதிப்பு $=20$ $D_{2}=\left(rac{2(N+1)}{10}
ight)$ ஆவது உறுப்பின் மதிப்பு $=rac{88}{10}$ -ன் அளவு $=8.8$ ஆவது உறுப்பின் மதிப்பு $=20$ $P_{90}=\left(rac{90(N+1)}{100}
ight)$ ஆவது உறுப்பின் மதிப்பு

 $=rac{3960}{100}$ –ன் அளவு =39.6 ஆவது உறுப்பின் மதிப்பு =50

(iii) தொகுக்கப்பட்ட விவரங்கள் (தொடர்ச்சியான அளவுகள்) (Grouped data (Continuous case)):

தொடர் அலைவெண் பரவலில் இடைவெளிகளை ஏறுவரிசை அல்லது இறங்கு வரிசையில் எழுத வேண்டும் மற்றும் தொடர் அலைவெண் பரவலில் $\frac{N}{4}$ அல்லது

அதிகமான குவிவு அலைவெண்ணுக்கு தொடர்புடைய இடைவெளி Q_1 இடைவெளி எனப்படும்.

 $\mathbf{Q}_{_{1}}$ காணச் சூத்திரம் :

$$Q_1 = L + \left(\frac{\frac{N}{4} - pcf}{f}\right) \times c$$

இங்கு $\,L\,$ என்பது $\,Q_{_1}\,$ இடைவெளியின் கீழ்எல்லை,

f என்பது $\mathcal{Q}_{_1}$ இடைவெளியின் அலைவெண்,

c என்பது \mathcal{Q}_1 இடைவெளியின் நீளம்,

 pcf என்பது Q_1 இடைவெளிக்கு முந்தைய இடைவெளியின் குவிவு அலைவெண்.

இவ்வாறே , மேற்கண்ட முறையினைப் பயன்படுத்தி $Q_{_3}\,$ –யை காணலாம்.

 $\mathbf{Q}_{_3}$ காணச் சூத்திரம் :

$$Q_3 = L + \left(\frac{\frac{3N}{4} - pcf}{f}\right) \times c$$

L என்பது மூன்றாம் கால்மான இடைவெளியின் கீழ்எல்லை,

f என்பது மூன்றாம் கால்மான இடைவெளியின் அலைவெண்,

c என்பது மூன்றாம் கால்மான இடைவெளியின் நீளம்,

pcf என்பது மூன்றாம் கால்மான இடைவெளிக்கு முந்தைய இடைவெளியின் குவிவு அலைவெண்

இதேப் போன்று பத்துமானங்கள் மற்றும் நூற்றுமானங்களின் நிலைப்புள்ளிகள் கணக்கிடுவதற்கான வாய்பாடுகள்,

$$D_4 = L + \left(\frac{\frac{4N}{10} - pcf}{f}\right) \times c$$

$$P_{60} = L + \left(\frac{\frac{60N}{100} - pcf}{f}\right) \times c$$

எடுத்துக்காட்டு 8.4

கீழ்க்காணும் விவரங்களுக்கு மேல்கால்மானங்கள் , கீழ்கால்மானங்கள், $\, D_4^{} \,$ மற்றும் $\, P_{60}^{} \,$ ஆகியவற்றைக் காண்க.

இடைவெளி	10 – 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
அலைவெண்	12	19	5	10	9	6	6

தீர்வு :

இடைவெளி <i>CI</i>	அலைவெண் f	ക്രഖിഖ്
10 – 20	12	12
20 – 30	19	31
30 – 40	5	36
40 - 50	10	46
50 - 60	9	55
60 - 70	6	61
70 – 80	6	N= 67
	N = 67	

அட்டவணை : 8.2

 $Q_{\rm l}=\left(rac{N}{4}
ight)$ ஆவது உறுப்பின் மதிப்பு = $\ rac{67}{4}=\ 16.75$ ஆவது உறுப்பின் மதிப்பு. எனவே $Q_{\rm l}$ ஆனது (20-30) என்ற இடைவெளியில் அமைந்துள்ளது மற்றும் அதன் தொடர்புடைய மதிப்புகள்

$$L = 20$$
; $\frac{N}{4}$ =16.75; pcf =12; f =19 ; c = 10 ஆகம்.

$$Q_1 = \ L \ + \left(\frac{\frac{N}{4}-cf}{f}\right) \times c$$

$$Q_1 = 20 \ + \ \left(\frac{16.75-12}{19}\right) \times 10 \ = \ 20 + 2.5 \ = \ 22.5$$

$$Q_3 \ = \ \left(\frac{3N}{4}\right)$$
 ஆவது உறுப்பின் மதிப்பு $= \ 50.25$ ஆவது உறுப்பின் மதிப்பு

 $Q_{\scriptscriptstyle 3}$ ஆனது (50-60) என்ற இடைவெளியில் அமைந்துள்ளது மற்றும் அதன் தொடர்புடைய மதிப்புகள்

$$L = 50, \left(\frac{3N}{4}\right) = 50.25; pcf = 46, f = 9, c = 10$$

$$Q_3 = L + \left(\frac{\frac{3N}{4} - pcf}{f}\right) \times c$$

$$Q_3 = 50 + \left(\frac{50.25 - 25}{9}\right) \times 10 = 54.72$$

$$D_4 = L + \left(\frac{\frac{4N}{10} - pcf}{f}\right) \times c$$

 $D_4 = \left(\frac{4N}{10}\right)$ ஆவது உறுப்பின் மதிப்பு = 26.8 ஆவது உறுப்பின் மதிப்பு. D_4 ஆனது (20 = 30) என்ற இடைவெளியில் அமைந்துள்ளது மற்றும் அதன் தொடர்புடைய மதிப்புகள்

$$L = 20, \frac{4N}{10} = 26.8;$$
 $pcf = 12, f = 19, c = 10.$
$$D_4 = 20 + \left(\frac{26.8 - 12}{19}\right) \times 10$$

$$= 27.79$$

 $P_{75} = \left(rac{75N}{100}
ight)$ ஆவது உறுப்பின் மதிப்பு = 50.25 ஆவது உறுப்பின் மதிப்பு. P_{75} (50-60) என்ற இடைவெளியில் அமைந்துள்ளது மற்றும் அதன் தொடர்புடைய மதிப்புகள்

$$L = 50; \frac{75N}{100} = 50.25; pcf = 46, f = 9,c = 10.$$

$$P_{75} = L + \left(\frac{\frac{75N}{100} - pcf}{f}\right) \times c$$

$$= 50 + \left(\frac{50.25 - 46}{9}\right) \times 10$$

$$= 54.72$$

8.1.4 பெருக்குச் சராசரி (Geometric mean)

n – விவரங்கள் அல்லது மதிப்புகளின் பெருக்குத் தொகையின் n – வது வர்க்க மூலம்
 பெருக்குச் சராசரி ஆகும்.

இரு விவரங்கள் இருப்பின் வர்க்க மூலம் எடுக்க, மூன்று விவரங்கள் இருப்பின் முப்படி மூலம் எடுக்க மற்றும் இவ்வாறே தொடருக.

$$GM = \sqrt[n]{X_1.X_2.X_3...X_n} = (X_1, X_2, X_3, ...X_n)^{1/n}$$

இங்கு $X_1, X_2, X_3,, X_n$ என்பன தொடரின் பல்வேறு மிகை மதிப்பு உறுப்புகளை குறிக்கிறது மற்றும் n என்பது மொத்த விவரங்களின் எண்ணிக்கையை குறிக்கிறது.

இவ்வாறாக 2,3,4 ஆகியவற்றின் பெருக்குச்சராசரி

$$GM = \sqrt[3]{(2)(3)(4)} = 2.885$$

மூன்று அல்லது மூன்றுக்கு மேற்பட்ட எண்களுக்கான பெருக்குச்சராசரி கணக்கிடும்பொழுது. அவைகளின் பெருக்குத் தொகைக்கான n — வது வர்க்கமூலம் காண்பது என்பது மிகக்கடினமானது. எனவே மடக்கையைப் பயன்படுத்திப் பெருக்குச் சராசரியை எளிதாக காணலாம்

பெருக்குச் சராசரி, கீழ்கண்டவாறு கணக்கிடப்படுகிறது.

$$\log GM = \frac{\log X_1 + \log X_2 + \ldots + \log X_n}{n}$$
 (அல்லது) $\log GM = \left(\frac{\Sigma \log X}{n}\right)$ $GM = Anti \log \left(\frac{\Sigma \log X}{n}\right), \, n$ என்பது மொத்த விவரங்களின் எண்ணிக்கை

(i) தொடர்ச்சியற்ற மாறியின் பெருக்குச் சராசரி

$$GM = Anti \log \left(\frac{\sum f \log X}{N} \right)$$
; இங்க $N = \sum f$

(ii) தொடர்ச்சியான மாறியின் பெருக்குச் சராசரி

$$\mathrm{GM} = Anti\log\left[\frac{\sum f\log m}{N}\right]$$
; இங்கு m என்பது மையப்புள்ளி, $N=\sum f$

எடுத்துக்காட்டு 8.5

ஓரிடத்தில் வசிக்கும் 1O குடும்பங்களின் ஒரு நாள் வருமானம் (ரூபாயில்) கீழேக் கொடுக்கப்பட்டுள்ளது. இவற்றின் பெருக்குச் சராசரியைக் காண்க.

தீர்வு:

X	log X
85	1.9294
70	1.8451
15	1.1761
75	1.8751
500	2.6990
8	0.9031
45	1.6532
250	2.3979
40	1.6021
36	1.5563
	$\Sigma \log X = 17.6373$

அட்டவணை : 8.3

$$GM = Anti \log \left(\frac{\Sigma \log X}{n} \right)$$
; Qrays $n=10$

$$GM = Anti \log \left(\frac{17.6373}{10} \right)$$

$$= Anti \log (1.7637)$$

எடுத்துக்காட்டு 8.6

GM = 58.03

காஞ்சிபுரம் மாவட்டத்தின். ஒரு கிராமத்தில் உள்ள பல்வேறுப் பிரிவு மக்களின், தனிநபர் விவரங்களும், குடும்பங்களின் எண்ணிக்கையும் கீழேத் தரப்பட்டுள்ளன. வருமான இவ்விவரங்களின் பெருக்குச் சராசரியைக் காண்க.

மக்களின் (தொழில்சார்ந்த)பிரிவு	குடும்பங்களின் எண்ணிக்கை	1990–ல் தனிநபர் வருமானம் ரூபாயில்
நிலக்கிழார்	1	1000
விவசாயிகள்	50	80
கூலித்தொழிலாளர்கள்	25	40
கடன் வழங்குபவர்கள்	2	750

பள்ளி ஆசிரியர்கள்	3	100
கடைக்காரர்கள்	4	150
தச்சு தொழிலாளிகள்	3	120
நெசவாளர்கள்	5	60

தீர்வு:

பெருக்குச் சராசரியின் கணக்கீடு

மக்களின் (தொழில்சார்ந்த) பிரிவு	1990–ல் தனிநபர் வருமானம் <i>X</i>	குடும்பங்களின் எண்ணிக்கை f	$\log X$	$f\log X$
நிலக்கிழார்கள்	1000	1	3.0000	3.0000
விவாசாயிகள்	80	50	1.9031	95.1550
கூலித்தொழிலாளிகள்	40	25	1.6021	40.0525
கடன் வழங்குபவர்கள்	750	2	2.8751	5.7502
பள்ளி ஆசிரியர்கள்	100	3	2.0000	6.0000
கடைக்காரர்கள்	150	4	2.1761	8.7044
தச்சு தொழிலாளிகள்	120	3	2.0792	6.2376
நெசவாளர்கள்	60	5	1.7782	8.8910
		N = 93		$\Sigma f \log X = 173.7907$

ചட்டவணை: 8.4

$$GM = Anti \log \left(\frac{\sum f \log X}{N} \right)$$
$$= Anti \log \left(\frac{173.7907}{93} \right)$$
$$= Anti \log (1.8687)$$
$$GM = 73.95$$

எடுத்துக்காட்டு 8.7

கீழேக் கொடுக்கப்பட்ட விவரங்களுக்கு பெருக்குச் சராசரியைக் கணக்கிடுக.

மதிப்பெண்கள்	0-10	10-20	20-30	30-40	40-50
மாணவர்களின் எண்ணிக்கை	8	12	18	8	6

தீர்வு : பெருக்குச் சராசரியின் கணக்கீடு

மதிப்பெண்கள்	m	f	logm	$f \log m$
0-10	5	8	0.6990	5.5920
10-20	15	12	1.1761	14.1132
20-30	25	18	1.3979	25.1622
30-40	35	8	1.5441	12.3528
40-50	45	6	1.6532	9.9192
		N = 52		$\Sigma f \log m = 67.1394$

அட்டவணை : 8.5

$$GM = Anti \log \left(\frac{\sum f \log m}{N} \right)$$
$$= Anti \log \left(\frac{67.1394}{52} \right)$$
$$= Anti \log (1.2911)$$

GM = 19.55

பெருக்குச் சராசரியின் குறிப்பிடத்தக்கப் பயன்பாடுகள்:

மாறுவீதங்களைச் சராசரிபடுத்துவதென்பது, பெருக்குச் சராசரியின் மிக முக்கியமானப் பயன்பாடாகும். உதாரணமாக, 2006–ம் ஆண்டிலிருந்து2008–ம் ஆண்டு வரை விலைகள் 5%, 10% மற்றும் 18% என முறையே உயர்கின்றது. கூட்டுச் சராசரி அளவீடுபடி $\left(\frac{5+10+18}{3}=11\right)$ வருடாந்திர சராசரி உயர்வு 11% அல்ல. ஆனால் பெருக்குச் சராசரியின்படி வருடாந்திர சராசரி உயர்வு 10.9% மட்டுமே. மேலும் இச்சராசரி மக்கள் பெருக்கத்தை அளவிடப் பயன்படுகிறது. ஏனெனில் மக்கள் தொகைப் பெருக்கம் பெருக்குத் தொடரில் உள்ளது.

எடுத்துக்காட்டு 8.8

1995–ஆம் ஆண்டுக்கான மேல்நிலைச் செலவுகள், முந்தைய ஆண்டை விட 32% அதிகரிக்கிறது. அடுத்த ஆண்டு இச்செலவுகள் 40% அதிகரிக்கிறது. மேலும் அதற்கு அடுத்துவரும்

ஆண்டில் 50% ஆக அதிகரிக்கிறது எனில், அந்த மூன்றாண்டுகளின் மேல்நிலைச் செலவின் சராசரி சதவீத உயர்வு வீதத்தைக் கணக்கீடுக.

தீர்வு:

சராசரி சதவீத விகிதங்களைக் கணக்கீடு செய்வதற்கு பெருக்கல் சராசரி உகந்தது. இங்கு X என்பது ஓர் ஆண்டின் மேல்நிலைச் செலவை குறிக்கட்டும்.

% Rise	X	log X
32	132	2.1206
40	140	2.1461
50	150	2.1761
		$\Sigma \log X = 6.4428$

ചட்டவணை: 8.6

$$GM = Anti \log \left(\frac{\Sigma \log X}{n} \right)$$

$$= Anti \log \left(\frac{6.4428}{3} \right)$$

$$= Anti \log (2.1476)$$

$$GM = 140.5$$

0M - 140.5

மேல்நிலைச் செலவின் சராசரி சதவீத உயர்வு வீதம்

$$140.5 - 100 = 40.5 \%$$

8.1.5 இசைச்சராசரி (Harmonic mean)

தனித்த விவரங்களின் தலைகீழ்களின் தலைகீழ் கூட்டுச் சராசரி, இசைச்சராசரி எனப்படும். இது HM என குறிக்கப்படுகிறது

$$HM = \frac{n}{\left(\frac{1}{X_1} + \frac{1}{X_2} + \dots + \frac{1}{X_n}\right)}$$

எண் விவரங்களின் எண்ணிக்கை அதிகமாக இருக்கும்பொழுது, இசைச்சராசரியின் கணக்கீடு கடினமாக இருக்கும். கணக்கீட்டை எளிமையாக்க மதிப்புகளின் தலைகீழிகளை, அதற்கான அட்டவணையிலிருந்துப் பெறலாம். இதற்குக் கீழ்காணும் சூத்திரங்களைப் பயன்படுத்தலாம்.

தனித்த விவரங்களின் இசைச்சராசரி (i)

$$HM = \frac{n}{\left(rac{1}{X_1} + rac{1}{X_2} + \ldots + rac{1}{X_n}
ight)}$$
 அல்லது $HM = rac{n}{\Sigma\left(rac{1}{X}
ight)}$

இங்கு n என்பது விவரங்கள் அல்லது உறுப்புகள் அல்லது மதிப்புகள்

தொடர்சியற்ற அலைவெண் பரவலுக்கு,

$$HM = rac{N}{\Sigma igg(rac{f}{X}igg)}$$
 இங்கு $N =$ அலைவெண்களின் கூடுதல் $= \sum f$

(iii) தொடர்ச்சியான அலைவெண் பரவல்

$$HM = \frac{N}{\Sigma\left(\frac{f}{m}\right)}$$

இங்கு $\,m\,$ என்பது மையப்புள்ளி மற்றும் $\,{
m N}$ என்பது மொத்த அலைவெண்

எடுத்துக்காட்டு 8.9

கீழ்கண்ட விவரங்களுக்கு, இசைச் சராசரியைக் காண்க.

தீர்வு:

X	$\frac{1}{X}$
1	1.0000
0.5	2.0000
10	0.1000
45	0.0222
175	0.0057
0.01	100.0000
4.0	0.2500
11.2	0.0893
	$\Sigma\left(\frac{1}{X}\right) = 103.4672$

அட்டவணை: 8.7

$$n = 8$$

$$HM = \frac{n}{\Sigma \left(\frac{1}{X}\right)} = \frac{8}{103.467} = 0.077$$

எடுத்துக்காட்டு 8.10

கொடுக்கப்பட்ட விவரங்களுக்கு இசைச்சராசரியைக் கணக்கிடுக.

மதிப்பெண்கள்:	10	20	25	40	50
மாணவர்களின் எண்ணிக்கை:	20	30	50	15	5

தீர்வு:

மதிப்பெண்கள் $$	மாணவர்களின் எண்ணிக்கை <i>f</i>	$\frac{f}{X}$
10	20	2.000
20	30	1.500
25	50	2.000
40	15	0.375
50	5	0.100
	N = 120	$\Sigma \left(\frac{f}{X}\right) = 5.975$

ചட்டவணை: 8.8

$$HM = \frac{N}{\Sigma(\frac{f}{X})} = \frac{120}{5.975} = 20.08$$

எடுத்துக்காட்டு 8.11

கொடுக்கப்பட்ட விவரங்களுக்கு இசைச்சராசரியைக் கணக்கிடுக.

மதிப்பு	0-10	10-20	20-30	30-40	40-50
அலைவெண்	8	12	20	6	4

தீர்வு:

இசைச்சராசரியின் கணக்கீடு

மதிப்பு	இடைநிலை <i>m</i>	f	$\left(\frac{f}{m}\right)$
0-10	5	8	1.60
10-20	15	12	0.80
20-30	25	20	0.80
30-40	35	6	0.17
40-50	45	4	0.09
		N = 50	$\Sigma\left(\frac{f}{m}\right) = 3.46$

அட்டவணை: 8.9

$$HM = \frac{N}{\Sigma\left(\frac{f}{m}\right)} = \frac{50}{3.46} = 14.45$$

இசைச்சராசரியின் சிறப்புப் பயன்பாடுகள்

இசைச்சராசரி அதன் பயன்பாட்டுக் களத்தின் வரையறைக்குட்பட்டது. ஒரு நிறுவனத்தின், சராசரி இலாப வளர்ச்சி வீதத்தினை அல்லது மேற்கொள்கிற பயணத்தின் சராசரி வேகம் அல்லது விற்கக்கூடிய ஒரு பொருளின் சராசரி விலை ஆகியவற்றை கணக்கிடுவதற்கு இசைச்சராசரி பயன்படுகிறது. இவ்வீதம் பொதுவாகத் தலைகீழாக விவரிக்கப்படுகிற இரு வேறு வகையிலான அளவிடும் அலகுகளுக்குகிடையே உள்ள தொடர்பைக் குறிக்கிறது.

உதாரணமாக, ஒரு நபர் 5 மணி நேரத்தில் 20 கி.மீ. நடைப்பயணம் மேற்கொள்கிறார் எனில், அவருடைய நடைவேக வீதம் $\dfrac{20 \text{ கி.மீ.}}{5 \text{ மணி}} = 4 \text{ கி.மீ. / மணி}$

இங்கு முதல் உறுப்பின் அலகு கி.மீ மற்றும் இரண்டாவது உறுப்பின் அலகு மணி அல்லது தலைகீழாக, $\frac{5\ \text{boso}}{20\ \text{fb}\ \text{lb}} = \frac{1}{4}\ \text{ fb}$.மீ. / மணி

இங்கு முதல் உறுப்பின் அலகு மணி மற்றும் இரண்டாம் உறுப்பின் அலகு கி.மீ.

எடுத்துக்காட்டு 8.12

ஒரு மோட்டர் ஒட்டுநர் சமதளப் பரப்பிலிருந்து, மலைப் பிரதேசத்திற்கு 100கி.மீ தூரத்தை சராசரியாக மணிக்கு 30கி.மீ வேகத்தில் பயணிக்கிறார். மீண்டும் அதேப் பாதையில் சராசரியாக மணிக்கு 20கி.மீ வேகத்தில் திரும்புகிறார். எனில், மொத்த தூரம் 200 கிமீ–யையும் பயணித்த அவரது பயணத்தின் சராசரி வேகம் எவ்வளவு?

தீர்வு:

பொதுவாக, இதைக் கணக்கிட ஒருவர் கூட்டுச் சராசரியைப் பயன்படுத்துவார். அதாவது

i.e.,
$$\overline{X} = \frac{30+20}{2} = 25$$
 கி.மீ. / மணி

இது சரியான சராசரி அல்ல. இங்கு இசைச்சராசரியைக் காண்பதே சாலச்சிறந்தது. 30 மற்றும் 20 –ன் இசைச்சராசரி

$$HM = \frac{2}{\left(\frac{1}{20}\right) + \left(\frac{1}{30}\right)} = \frac{2}{\left(\frac{5}{60}\right)} = \frac{2(60)}{5}$$

= 24 கி.மீ. / மணி

கி.மீ/மணி, கி.மீ/லிட்டர், பாடவேளை/பருவத்தேர்வு, டன்/மாதம் போன்ற விகிதங்களின் கணக்கிற்கு மைய நோக்கு அளவையான இசைச் சராசரியைப் பயன்படுத்துவதுப் பொருத்தமானது.

சராசரிகளுக்கு இடையேயானத் தொடர்பு (Relationship among the averages)

அனைத்து விதமானப் பரவல்களிலும், மூலஉறுப்புகள், அளவில் வேறுபடும்பொழுது, கூட்டுச் சராசரி, பெருக்குச் சராசரி மற்றும் இசைச்சராசரி ஆகியவற்றின் மதிப்புகளும், பின்வரும் அளவில் மாறுபடும்.

$$AM \ge GM \ge HM$$

எடுத்துக்காட்டு 8.13

பின்வரும் விவரங்களுக்கு A.M, G.M மற்றும் H.M. இடையேயுள்ள தொடர்பை சரிபார்க்க.

							25	
f	10	22	24	28	19	9	12	16

தீர்வு:

X	f	Xf	logX	$f \log X$	f/X
7	10	70	0.8451	8.4510	1.4286
10	22	220	1	22.0000	2.2000
13	24	312	1.1139	26.7346	1.8462
16	28	448	1.2041	33.7154	1.7500
19	19	361	1.2788	24.2963	1.0000
22	9	198	1.3424	12.0818	0.4091
25	12	300	1.3979	16.7753	0.4800
28	16	448	1.4472	23.1545	0.5714
	$\sum f = N = 140$	$\sum fX = 2357$		$\sum f \log x $ 167.209	$\sum \frac{f}{x} = 9.6852$

அட்டவணை : 8.10

$$AM = \frac{\sum fX}{N} = \frac{2357}{140} = 16.84$$

$$GM = Anti \log \left(\frac{\sum f \log X}{N}\right) = Anti \log \left(\frac{167.209}{140}\right) = Anti \log(1.1944) = 15.65$$

$$HM = \frac{N}{\Sigma \left(\frac{f}{X}\right)} = \frac{140}{9.6852} = 14.46$$

$$\therefore AM > GM > HM$$

எடுத்துக்காட்டு 8.14

A என்பவரின் இருசக்கர வாகனம் சராசரியாக ஒரு லிட்டருக்கு 4O கிமீ தூரம் இயங்குகிறது. B என்பவரின் இருசக்கர வாகனம் சராசரியாக ஒரு லிட்டருக்கு 3O கிமீ தூரம் இயங்குகிறது.

- (i) ஒவ்வொருவரும் 120 கிமீ பயணிக்கிறார்கள் எனில், சராசரியைக் காண்க.
- (ii) ஒவ்வொருவரும் தலா 2 லிட்டர் திரவ எரிபொருள் (பெட்ரோல்) பயன்படுத்துகிறார்கள் எனில், சராசரியைக் காண்க.

தீர்வு:

 (i) இங்கு இருவரும் கடக்கும் தூரம் மாறாதது. எனவே இங்கு இசைச்சராசரியைக் கொண்டு சராசரியைக் காண்பது பொருத்தமானது..

$$HM = \frac{n}{\frac{1}{a} + \frac{1}{b}}$$

$$= \frac{2}{\frac{1}{40} + \frac{1}{30}} = \frac{2}{\frac{7}{120}}$$

$$= \frac{2 \times 120}{7} = 34.3 \text{ ຮhb/shilp}$$

(ii) இங்கு திரவ எரிபொருளின் பயன்பாடு நிலையானது. எனவே இங்கு கூட்டுச் சராசரியை கணக்கிடுவது மிகச் சரியான தீர்வு ஆகும்.

$$\overline{X}=rac{$$
பயணித்த மொத்த தூரம் $\overline{X}=rac{}{}$ திரவ எரிபொருளின் மொத்த பயன்பாடு

$$\overline{X} = \frac{40 \times 2 + 30 \times 2}{4} = 35$$

∴ எனவே, சராசரி வேகம் = 35 கிமீ/லிட்டர்.

எடுத்துக்காட்டு 8.15

ரூபாய் ஒன்றுக்கு ஒருவர் நான்கு வெவ்வேறு இடங்களில் 1கி.கி, 2கி.கி, 3கி.கி மற்றும் 4 கி.கி அளவில் தக்காளியை வாங்குகிறார் எனில், சராசரியாக, ஒரு ரூபாய்க்கு எத்தனை கிலோ கிராம் தக்காளி அவரால் வாங்கப்பட்டது?

தீர்வ:

கொடுக்கப்பட்ட விவரங்கள் ஒரு ரூபாய்க்கு என்பதால், இங்கு இசைச்சராசரியை பயன்படுத்துவதே சிறந்தது..

$$HM = \frac{n}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

$$= \frac{4}{\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}}$$

$$= \frac{4 \times 12}{25}$$

= 1.92 கிலோ கிராம் / ரூபாய்.

8.2 சிதறல் அளவைகள் (Measures of dispersion)

ஒரு பரவலின் மையப் பகுதியில் உள்ள விவரங்களின் அடர்வு பற்றியக் கருத்தை சராசரி உருவாக்குகிறது. ஆனால் சராசரியை மட்டும் கொண்டு, ஒரு பரவலை பற்றிய முழுமையான

கருத்தைத் தெரிவிக்க இயலாது, என்பதை பின்வரும் எடுத்துக்காட்டிலிருந்து சுலபமாகப் புரிந்துக் கொள்ளலாம்.

கொடுக்கப்பட்ட எண் விவரங்களை கருதுக. (i) 7,8,9,10,11 (ii) 3,6,9,12,15 மற்றும் (iii) 1,5,9,13,17.

மேற்கண்ட வகைகள் அனைத்திலும், 5 விவரங்களின் சராசரி 9 என காண்கிறோம். 5 விவரங்களுக்கு சராசரி 9 எனக் கொடுக்கப்பட்டால், முதல் தொடரின் சராசரியா அல்லது இரண்டாவதுத் தொடரின் சராசரியா அல்லது மூன்றாவதுத் தொடரின் சராசரியா அல்லது 5 விவரங்களின் கூடுதல் 45 உடைய வேறு ஏதாவது ஒரு தொடரின் சராசரியா என்ற முடிவுக்கும் நம்மால் வர இயலாது.

எனவே மையப்போக்கு அளவைகள், ஒரு பரவலின் முழுமையான விவரத்தைத் தரப் போதுமானவை அல்ல. எனவே, அவை வேறு சில அளவைகளால் மேம்படுத்தப்பட வேண்டும். அத்தகைய அளவைகளில் ஒன்று சிதறல் ஆகும். எனவே சிதறல் அளவைகளின் பயன்பாடு தேவைபடுகிறது. இது அளவைகளின் பரவலின் தன்மையை வழங்குகிறது.

சிதறல் அளவைகளை பேச்சு வழக்கில் சிதறல்கள் என்கிறோம், சிதறல் அளவைகள் என்பது ஒரு பரவலின், ஒருமைத் தன்மை அல்லது பன்முகத்தன்மைப் பற்றியதாகும். மேற்கூறிய மூன்று தொடரிகளில் முதல் தொடர் இரண்டு அல்லது மூன்றாவது தொடரைக் காட்டிலும் அதிக ஒருமைத்தன்மை (குறைவான சிதறல்கள்) உடையது அல்லது மூன்றாவது தொடர் முதல் அல்லது இரண்டாவது தொடரை விட அதிகப் பன்முகத் தன்மை உடைய (அதிக சிதறல்கள்) விவரங்களைக் கொண்டிருக்கிறது எனக் கூறலாம்.

பல்வேறு சிதறல் அளவைகள், இரண்டு விரிவான வகைகளாகப் பிரிக்கப்படுகிறது

(a) தேர்ந்தெடுக்கப்பட்ட விவரங்களின் மதிப்புகளுக்கு இடைப்பட்ட தூரத்தைப் பொறுத்துப் பரவும் விவரங்களை விவரிக்கும் அளவைகள் தூர அளவைகள் எனப்படும்.

எடுத்துக்காட்டு:– வீச்சு, இடைக்கால்மான வீச்சு (அல்லது) கால்மான விலக்கம்

கொடுக்கப்பட்ட விவரங்களின், மைய அளவைகளிலிருந்து, விலக்கச் சராசரிகளை விவரிக்கும் அளவைகள்.

எடுத்துக்காட்டு:- (அ) சராசரி விலக்கம் (ஆ) திட்ட விலக்கம்

8.1.1 கால்மான விலக்கம்

கால்மான விலக்கம் என்பது $QD = \frac{1}{2}(Q_3 - Q_1)$ என வரையறுக்கப்படுகிறது.

இதனை அரை இடைக்கால்மானம் எனவும் அழைக்கலாம். இங்கு $Q_{_1}$ மற்றும் $Q_{_3}$ என்பது முறையே முதல் மற்றும் மூன்றாம் கால்மானம் ஆகும். $Q_{\mathfrak{z}}-Q_{\mathfrak{z}}$ என்பது கால்மானங்களின் வீச்சு ஆகும்.

(i) QD ன் தொடர்பான ஒப்பிட்டு அளவைகள்

கால்மான விலக்கம் என்பது ஒரு முழுமையான சிதறல் அளவைகள் ஆகும். QD தொடர்பான சார்பளவைகள் கால்மானக் கெழு எனப்படும். இதனைக் கீழ்கண்டவாறு கணக்கிடலாம்.

கால்மான விலக்கக்கெழு
$$\ = \ \frac{Q_3 - Q_1}{Q_3 + \ Q_1}$$

பல்வேறுப் பரவல்களின் மாறுபாட்டு அளவை ஒப்பிடுவதற்குக் கால்மானக் கெழு பயன்படுகிறது.

கால்மான விலக்கத்தின் கணக்கீடு

கால்மான விலக்கக் கெழுவின் கணக்கீட்டுமுறை மிகவும் எளிதானது. கீழ்கால்மானம் $Q_{_3}$ மற்றும் மேல்கால்மானம் $Q_{_1}$ ஆகியவற்றைக் கணக்கிட்டால் போதுமானது.

எடுத்துக்காட்டு 8.16

கீழ்காணும் விவரங்களுக்கு கால்மான விலக்கத்தையும் அதன் கெழுவையும் காண்க.

வரிசை எண்	1	2	3	4	5	6	7
மதிப்பெண்கள்	20	28	40	12	30	15	50

தீர்வு :

மதிப்பெண்களை ஏறுவரிசையில் எழுதவும்

n= எண் விவரங்களின் எண்ணிக்கை =7

$$Q_{
m l}=\left(rac{(n+1)}{4}
ight)$$
 ஆவது உறுப்பின் மதிப்பு $=\left(rac{7+1}{4}
ight)$ ஆவது உறுப்பின் மதிப்பு $=$ 2 ஆவது உறுப்பின் மதிப்பு $=$ 15

அதாவது $Q_1 = 15$

$$Q_3=\left(rac{3(n+1)}{4}
ight)$$
 ஆவது உறுப்பின் மதிப்பு $=\left(rac{3 imes 8}{4}
ight)$ ஆவது உறுப்பின் மதிப்பு $=$ 6 ஆவது உறுப்பின் மதிப்பு $=$ 40

அதாவது $Q_3=40$

$$QD = \frac{1}{2}(Q_3 - Q_1) = \frac{40 - 15}{2} = 12.5$$

கால்மான விலக்கக் கெழு
$$QD=rac{Q_3-Q_1}{Q_3+Q_1}=rac{40-15}{40+15}=rac{25}{55}=~0.455$$

கால்மான விலக்கக் கெழு m QD = 0.455

எடுத்துக்காட்டு 8.17

பின்வரும் விவரங்களுக்குக் கால்மான விலக்கக் கெழுவைக் காண்க.

மதிப்பெண்கள்	10	20	30	40	50	60
எண்ணிக்கை	4	7	15	8	7	2

தீர்வு:

மதிப்பெண்கள்	அலைவெண்	க്രഖിഖ്വ அலைவெண்
X	f	cf
10	4	4
20	7	11
30	15	26
40	8	34
50	7	41
60	2	43
		$N = \sum f = 43$

அட்டவணை : 8.11

$$Q_{_1}\!\!=\!\left(\!rac{N+1}{4}\!
ight)$$
 -வது உறுப்பின் மதிப்பு $=rac{\left(43+1
ight)}{4}$ ஆவது உறுப்பின் மதிப்பு $=$ 11–வது

உறுப்பின் மதிப்பு = 20

$$\mathbf{Q}_{\scriptscriptstyle 3}\!=\!\left(\!rac{3ig(N+1ig)}{4}\!
ight)$$
 -வது உறுப்பின் மதிப்பு $=33$ -வது உறுப்பின் மதிப்பு $=40$

$$QD = \frac{1}{2} (Q_3 - Q_1) = \frac{40 - 20}{2} = 10$$

கால்மானக் கெழு
$$\mathrm{QD} \; = \; \; \; \; \frac{Q_{\scriptscriptstyle 3} - Q_{\scriptscriptstyle 1}}{Q_{\scriptscriptstyle 3} + \; Q_{\scriptscriptstyle 1}} = \frac{40 - 20}{40 + 20} = \frac{20}{60} = \; 0.333$$

எடுத்துக்காட்டு 8.18

பின்வரும் விவரங்களுக்கு கால்மான விலக்கத்தைக் காண்க

	10 – 20						
f	12	19	5	10	9	6	6

தீர்வு :

கால்மான விலக்கம் கணக்கீடு

CI	f	cf
10 - 20	12	12
20 - 30	19	31
30 - 40	5	36
40 - 50	10	46
50 - 60	9	55
60 - 70	6	61
70 - 80	6	67
	N = 67	

அட்டவணை: 8.12

$$Q_{_{1}} = \left(rac{N}{4}
ight)$$
 ஆவது உறுப்பின் மதிப்பு $= \left(rac{67}{4}
ight) = \ 16.75$ ஆவது உறுப்பின் மதிப்பு

எனவே $\,Q_{_1}\,$ ஆனது $(20-30)\,$ என்ற இடைவெளியில் அமைந்துள்ளது.

$$L=20,\,rac{N}{4}=\,16.75\,;\;pcf=\,12,\,f=19,\,\,c=\,10$$

$$Q_1=L+\left(rac{N}{4}-pcf\over f
ight) imes c$$

$$Q_1=20\,+\left(rac{16.75-12}{19}
ight)\, imes\,10\,=\,20+2.5\,=\,22.5$$

$$Q_3=\left(rac{3N}{4}
ight)$$
 ஆவது உறுப்பின் மதிப்பு $=\,50.25$ ஆவது உறுப்பின் மதிப்பு

எனவே $Q_{_3}$ ஆனது (50-60) என்ற இடைவெளியில் அமைந்துள்ளது.

L= 50;
$$\frac{3N}{4}$$
 = 50.25; $pcf = 46, f = 9, c = 10$

$$Q_{3} = L + \left(\frac{3N}{4} - pcf\right) \times c$$

$$Q_{3} = 50 + \left[\frac{50.25 - 46}{9}\right] \times 10 = 54.72$$

$$QD = \frac{1}{2} (Q_{3} - Q_{1})$$

$$= \frac{54.72 - 22.5}{2} = 16.11$$

$$\therefore QD = 16.11$$

8.2.2 சராசரி விலக்கம்

ஒரு பரவலில் உள்ள உறுப்புகள் மற்றும் அவற்றின் சராசரி (அல்லது) இடைநிலை இடையேயான முழுமையான வேறுபாட்டின் சராசரியே சராசரி விலக்கம் ஆகியவற்றின் எனப்படுகிறது.

(i) சராசரி விலக்கக் கணக்கீடு (தனித்த விவரங்கள்) (Individual observations)

 $X_1,X_2,X_3,...X_n$ என்பன கொடுக்கப்பட்ட n தனித்த விவரங்கள் எனில், இவற்றின் சராசரியைப் பொறுத்தச் சராசரி விலக்கம் அல்லது இடைநிலையைப் பொறுத்தச் சராசரி விலக்கம் ஆகியவைக் கீழ்கண்டவாறு வரையறுக்கப்படுகிறது.

சராசரியை பொறுத்தச் சராசரி விலக்கம்
$$\mathrm{MD} = \frac{\sum \left|X - \overline{X}\right|}{n} = \frac{\sum \left|D\right|}{n}$$

இங்கு $\left|D\right|=\left|X-ar{X}\right|$ மற்றும் n என்பது விவரங்களின் எண்ணிக்கை.

இடைநிலையைப் பொறுத்தச் சராசரி விலக்கம்
$$=rac{\Sigma \left| X - \text{இடைநிலை}
ight|}{n} = rac{\Sigma \left| \mathrm{D}
ight|}{n}$$

இங்கு |D|=|X–இடைநிலை| மற்றும் N என்பது விவங்களின் எண்ணிக்கை.

குறிப்பு:

இடைநிலையிலிருந்து சராசரி விலக்கம் காணப்படும் நிலையில், |D| என்பது குறிகள் நீங்கலாக இடைநிலையிலிருந்து பெறப்படும் உறுப்புகளின் விலக்கம் ஆகும்.

(ii) சராசரி விலக்கம் கணக்கிடும் முறை (தொடர்ச்சியற்ற விவரங்கள்)

சராசரியைப் பொறுத்தச் சராசரி விலக்கம்
$$= \frac{\sum f \left| X - \overline{X} \right|}{N} = \frac{\sum f \left| D \right|}{N}$$

இங்கு $\left|D\right|=\left|X-\overline{X}\right|$ மற்றும் N அலைவெண்களின் கூடுதல்.

இடைநிலையைப் பொறுத்தச் சராசரி விலக்கம்
$$\mathrm{MD} = \frac{\sum f \left| X$$
 – இடைநிலை $\right|}{N} = \frac{\sum f \left| \mathrm{D} \right|}{n}$

இங்கு |D|=|X -இடைநிலை| (குறை மதிப்பு நீங்கலாக) மற்றும் N என்பது விவரங்களின் எண்ணிக்க.

$({ m iii})$ சராசரி விலக்கம் கணக்கிடும் முறை — தொடர்ச்சியான விவரங்கள்

தொடர்ச்சியான விவரங்களுக்கான சராசரி விலக்கம் கணக்கிடும் முறையில், பல்வேறு

இடைவெளிகளின் மையப்புள்ளிகளைக் கண்டு, இவற்றின் விலக்கத்தைச் சராசரி அல்லது இடைநிலையை பொறுத்து காண வேண்டும்.

சராசரியை பொறுத்த சராசரி விலக்கம்

சராசரியைப் பொறுத்த
$$\operatorname{MD}$$
 $=$ $\frac{\sum f \left| M - \overline{X} \right|}{N}$ அல்லது $=$ $\frac{\sum f \left| D \right|}{N}$

இங்கு M என்பது மைய மதிப்பு, $|D| = \left| M - ar{X} \right|$ (குறை மதிப்பு நீங்கலாக) மற்றும் Nஎன்பது அலைவெண்களின் கூடுதல்.

இடைநிலையைப் பொறுத்தச் சராசரி விலக்கம்
$$=$$
 $\frac{\sum f \left| M - \text{இடைநிலை} \right|}{N}$ அல்லது $=$ $\frac{\sum f \left| D \right|}{N}$

இங்கு M என்பது மைய மதிப்பு, |D|=|M—இடைநிலை| (குறை மதிப்பு நீங்கலாக) மற்றும் N என்பது அலைவெண்களின் கூடுதல்.

(iv) சராசரி விலக்கத்திற்கு தொடர்புடைய அளவை(Relative Measure for Mean Deviation)

சராசரி விலக்கத்திற்கு தொடர்புடைய அளவையே சராசரி விலக்கக் கெழு எனப்படும். மேலும் அது கீழ்கண்டவாறு பெறப்படுகிறது.

சராசரியைப் பொறுத்துச் சராசரி விலக்கக் கெழு

இடைநிலையைப் பொறுத்துச் சராசரி விலக்கக் கெழு

குறிப்பு:

நடைமுறையில் சராசரி விலக்கம் காண அதிக அளவில் கூட்டுச் சராசரி பயன்படுத்தப் குறிப்பாக இடைநிலையைப் பொறுத்து சராசரி விலக்கம் கணக்கிட வேண்டுமெனில் இடைநிலைப் பயன்படுத்தப்படுகிறது.

எடுத்துக்காட்டு 8.19

ஐந்து குழுக்களின் வருமானம் கீழேக் கொடுக்கப்பட்டுள்ளது. இவற்றின் சராசரியைப் பொறுத்து சராசரி விலக்கம் மற்றும் அதன் விலக்கக் கெழு காண்க.

வருமானம்	4000	4200	4400	4600	4800
(ന്ദ്ര.)	1000	1200	1100	1000	1000

தீர்வு:

ਰਗੁਸਰਸ਼ੀ=
$$\frac{\sum X}{n} = \frac{22000}{5} = 4400$$

வருமானம் (ரூ)	D = (X - 4400)
4000	400
4200	200
4400	0
4600	200
4800	400
$\sum X = 22000$	$\sum D = 1200$

அட்டவணை: 8.13

சராசரியைப் பொறுத்தச் சராசரி விலக்கம் $MD=rac{\Sigma |D|}{n}$;

$$MD = \frac{1200}{5} = 240$$

சராசரி விலக்கக் கெழு
$$\ MD \ = \ rac{240}{4400} = 0.055$$

எடுத்துக்காட்டு 8.20

கொடுக்கப்பட்ட ஏழு எண் விவரங்களுக்கு இடைநிலையைப் பொறுத்தச் சராசரி விலக்கத்தையும் அதன் தொடர்புடைய அளவையையும் காண்க. 55, 45, 40, 20, 60, 80, 30.

தீர்வு:

எண் விவரங்களை ஏறுவரிசையில் எழுதுக. 20, 30, 40, 45, 55, 60, 80

இடைநிலை
$$=$$
 $\left(\frac{(n+1)}{2}\right)$ ஆவது உறுப்பின் மதிப்பு (nஒரு ஒற்றை எண்) இடைநிலை $=$ $\left(\frac{(7+1)}{2}\right)$ ஆவது உறுப்பின் மதிப்பு $=4$ ஆவது உறுப்பின் மதிப்பு $=4$ ஆவது உறுப்பின் மதிப்பு $=45$

X	X – இடைநிலை $ = X - 45 $
20	25
30	15
40	5

45	0
55	10
60	15
80	30
	= 100

அட்டவணை: 8.14

இடைநிலையைப் பொறுத்தச் சராசரி விலக்கம்
$$\mathrm{MD} = \frac{\Sigma \left| X - \text{இடைநிலை} \right|}{n} = \frac{100}{7} = 14.29$$
 இடைநிலையைப் பொறுத்தச் சராசரி விலக்க கெழு = $\frac{14.29}{45} = 0.32$

எடுத்துக்காட்டு 8.21

கொடுக்கப்பட்ட விவரங்களுக்கு சராசரியைப் பொறுத்த சராசரி விலக்கம் காண்க.

அளவு	2	4	6	8	10	12	14	16
அலைவெண்	2	2	4	5	3	2	1	1

தீர்வு:

சராசரியைப் பொறுத்தச் சராசரி விலக்கத்திற்காண கணக்கீடு

X	f	fX	D = X - 8	f D
2	2	4	6	12
4	2	8	4	8
6	4	24	2	8
8	5	40	0	0
10	3	30	2	6
12	2	24	4	8
14	1	14	6	6
16	1	16	8	8
	<i>N</i> = 20	$\Sigma f X = 160$		$\Sigma f \mid D \mid = 56$

அட்டவணை: 8.15

$$\overline{X} = \frac{\Sigma fX}{N} = \frac{160}{20} = 8$$

சராசரியைப் பொறுத்தச் சராசரி விலக்கம்
$$=\frac{\Sigma f\left|D\right|}{N}=\frac{56}{20}=2.8$$

எடுத்துக்காட்டு 8.22

கொடுக்கப்பட்ட விவரங்களுக்கு இடைநிலையைப் பொறுத்தச் சராசரி விலக்கத்தையும் அதன் தொடர்பு அளவையையும் காண்க.

X	15	25	35	45	55	65	75	85
அலைவெண்	12	11	10	15	22	13	18	19

தீர்வு:

அளவுகள் X என்பது ஏறுவரிசையில் உள்ளது.

X	f	cf
15	12	12
25	11	23
35	10	33
45	15	48
55	22	70
65	13	83
75	18	101
85	19	120
	N = 120	

அட்டவணை : 8.16

இடைநிலை
$$=\left(\frac{(n+1)}{2}\right)$$
 ஆவது உறுப்பின் மதிப்பு $=\left(\frac{(120+1)}{2}\right)$ ஆவது உறுப்பின் மதிப்பு $=60.5$ ஆவது உறுப்பின் மதிப்பு $=55$

குவிவு அலைவெண் உறுப்புக்கு தொடர்புடைய X-ன் மதிப்பு =55

இடைநிலையைப் பொறுத்தச் சராசரி விலக்கம்
$$=rac{\sum f\left|X-$$
இடைநிலை $\right|}{N}=rac{\sum f\left|D\right|}{N}$

X	f	D = X- 55	f D
15	12	40	480
25	11	30	330
35	10	20	200

45	15	10	150
55	22	10	220
65	13	10	130
75	18	20	360
85	19	30	570
	N = 120		$\Sigma f \mid D \mid = 2440$

அட்டவணை: 8.17

இடைநிலையைப் பொறுத்தச் சராசரி விலக்கம்
$$=$$
 $\frac{2440}{120}$ $=$ 20.33

இடைநிலையைப் பொறுத்தச் சராசரி விலக்கக் கெழு =
$$\frac{20.33}{55} = 0.37$$

எடுத்துக்காட்டு 8.23

கீழ்கண்ட விவரங்களுக்கு இடைநிலையைப் பொறுத்தச் சராசரி விலக்கக் கெழுவைக் காண்க.

வயது (ஆண்டில்)	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
நபர்களின்	20	25	32	40	42	35	10	8
எண்ணிக்கை								

விடையை இருதசம் இட திருத்தமாக காணவும்.

தீர்வு:

இடைநிலைக்கான கணக்கீடு பின்வருமாறு

X	f	cf
0-10	20	20
10-20	25	45
20-30	32	77
30-40	40	117
40-50	42	159
50-60	35	194
60-70	10	204
70-80	8	N=212

அட்டவணை : 8.18

$$\frac{N}{2} = \frac{212}{2} = 106$$
. குவிவு அலைவெண் 106 – க்கான பிரிவு இடைவெளி (30 – 40) ஆகையால்,

பிரிவு இடைநிலை அளவுக்கான ஒத்த மதிப்புகள் $L=30,\,pcf=77,\,f=40$ மற்றும் c=10.

இடைநிலை
$$=L+\left(\frac{\left(\frac{N}{2}\right)-pcf}{f}\right)\times c$$

இடைநிலை $=30+\left(\frac{106-77}{40}\right)\times 10$

:. இடைநிலை = 37.25 (இருதசம இடதிருத்தமாக)

இடைநிலையிலிருந்து சராசரி விலக்கத்திற்கான கணக்கீடு

\boldsymbol{X}	f	M	D = X-37.25	f D
0-10	20	5	32.25	645
10-20	25	15	22.25	556.25
20-30	32	25	12.25	392
30-40	40	35	2.25	90
40-50	42	45	7.75	325.5
50-60	35	55	17.75	621.25
60-70	10	65	27.75	277.5
70-80	8	75	37.75	302
	N=212			$\Sigma f \mid D \mid = 3209.5$

அட்டவணை: 8.19

இடைநிலையைப் பொறுத்தச் சராசரி விலக்கம்
$$=rac{\sum f \left|D\right|}{N} = rac{3209.5}{212} = 15.14$$

இடைநிலையைப் பொறுத்தச் சராசரி விலக்கக் கெழு

= இடைநிலையைப் பொறுத்துச் சராசரி விலக்கம் =
$$\frac{15.14}{37.25}$$

= 0.4064 = 0.41(இருதசம் இடதிருத்தமாக).

குறிப்பு:

கணக்கை இடைநிலைக்குப் பதிலாக சராசரியைப் பொறுத்தச் சராசரி விலக்கமும் காணலாம்.

1. கொடுக்கப்பட்ட விவரங்களுக்கு முதல் கால்மானம் மற்றும் மூன்றாம் கால்மானம் ஆகியவற்றைக் காண்க.

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22

2. கொடுக்கப்பட்டுள்ள விவரங்களுக்கு $\,Q_{_1}\,,\,Q_{_3},\,D_{_8}\,$ மற்றும் $\,P_{_{67}}\,$ ஆகியவற்றைக் காண்க::

பங்குகளின் அளவு	4	4.5	5	5.5	6	6.5	7	7.5	8
அலைவெண்	10	18	22	25	40	15	10	8	7

3. பின்வரும் விவரங்களுக்கு கீழ்கால்மானம் , மேல்கால்மானம், 5–வது பத்துமானம், 7 ஆவது பத்துமானம், 60–வது நூறுமானம் ஆகியவற்றைக் காண்க.

தினக்கூலி	10-20	20-30	30-40	40-50	50-60	60-70	70-80
அலைவெண்	1	3	11	21	43	32	9

31 நபர்களின் எடைகள் கீழ்காணும் அட்டவணையில் கொடுக்கப்பட்டுள்ளது.
 இவ்விவரங்களுக்கு பெருக்குச் சராசரியைக் காண்க.

எடை (பவுண்டில்)	130	135	140	145	146	148	149	150	157
அலைவெண்	3	4	6	6	3	5	2	1	1

- 5. ஒரு பொருளின் விலை 2004–2005 –ல் 5% அதிகரிக்கப்படுகிறது. 2005–2006 ம் ஆண்டில் 8% –ம் 2006–2007 –ல் 77%–ம் அதிகரிக்கிறது எனில், 2004–2007–ம் ஆண்டு வரை பொருளின் சராசரி விலை ஏற்றத்தைக் கணக்கிடுக.
- 6. விமானம் ஒரு சதுரத்தின் நான்கு பக்கங்களின் வழியாக முறையே மணிக்கு 100 கி.மீ, 200 கி.மீ, 300 கி.மீ மற்றும் 400 கி.மீ. பறக்கிறது. சதுரப்பக்கங்களின் மீது சுற்றி வரும் விமானத்தின் சராசரி வேகத்தை காண்க
- 7. ஒரு நபர் மகிழ்வுந்தில் (Car) 3 நாட்கள் பயணிக்கிறார். நாள் ஒன்றுக்கு 480 கி.மீ தூரம் பயணிக்கிறார். முதல் நாள் அன்று மணிக்கு 48 கி.மீ வேகத்தில் 10 மணி நேரம் பயணிக்கிறார். இரண்டாம் நாள் மணிக்கு 40 கி.மீ வேகத்தில் 12 மணி நேரம் பயணிக்கிறார் மற்றும் கடைசி நாள் அன்று மணிக்கு 32 கி.மீ வேகத்தில் 15 மணி நேரம் பயணம் செய்கிறார். அவர் பயணிக்கும் சராசரி வேகத்தை கணக்கிடுக.
- 8. ஒரு குறிப்பிட்ட வட்டாரப் பகுதியில் வசிக்கும் 8 குடும்பங்களின் மாத வருமானம் (ரூபாயில்) கீழே கொடுக்கப்பட்டுள்ளது. இவ்விவரங்களின் கூட்டுச்சராசரி, பெருக்கல் சராசரி மற்றும் இசைச் சராசரி ஆகியவற்றைக் கணக்கிட்டு சராசரிகளுக்கு இடைப்பட்ட தொடர்பை சரிபார்க்க.

குடும்பங்கள்:	A	В	С	D	Е	F	G	Н
வருமானம் (ரூ.):	70	10	50	75	8	25	8	42

9. பின்வரும் விவரங்களுக்கு கூட்டுச்சராசரி, இசைச்சராசரி மற்றும் பெருக்கல் சராசரி ஆகியவற்றைக் காண்க. சராசரிகளுக்கு இடையேயான தொடர்பினை சரிபார்.

X	5	15	10	30	25	20	35	40
f	18	16	20	21	22	13	12	16

10. பின்வரும் அட்டவணையில் உள்ள விவரங்களுக்கு கூட்டுச்சராசரி, பெருக்கல் சராசரி மற்றும் இசைச்சராசரி ஆகியவற்றை கணக்கிடுக. இச்சராசரிகளுக்கு இடையே உள்ள தொடர்புகளைக் காண்க.

மதிப்பெண்கள்	0-10	10-20	20-30	30-40	40-50	50-60
மாணவர்களின் எண்ணிக்கை	5	10	25	30	20	10

11. பின்வரும் விவரங்களுக்கு கால்மானம் மற்றும் கால்மான விலக்கக்கெழுவைக் காண்க.

வயது (வருடங்களில்):	20	30	40	50	60	70	80
நபர்களின் எண்ணிக்கை:	13	61	47	15	10	18	36

12. பின்வரும் விவரங்களுக்கு கால்மான விலக்கம் மற்றும் அதன் தொடர்பு அளவையும் காண்க.

X	0-10	10-20	20-30	30-40	40-50	50-60
f	5	10	13	18	14	8

13. பின்வரும் விவரங்களுக்கு இடைநிலையைப் பொறுத்துச் சராசரி விலக்கத்தையும் அதன் தொடர்பு அளவையும் காண்க.

உயரம் (அங்குலங்களில்)	மாணவர்களின் எண்ணிக்கை	உயரம் (அங்குலங்களில்)	மாணவர்களின் எண்ணிக்கை		
58	15	63	22		
59	20	64	20		
60	32	65	10		
61	35	66	8		
62	35				

14. பின்வரும் விவரங்களுக்கு சராசரி விலக்கத்தை அதன் சராசரியைக் கொண்டு காண்க.

பிரிவு இடைவெளி:	0-5	5-10	10-15	15-20	20-25
ക്താെവെൽ്ന	3	5	12	6	4

15. பின்வரும் விவரங்களுக்கு இடைநிலையைப் பொறுத்து சராசரி விலக்கத்தைக் காண்க.

வயது (வருடங்களில்)	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
நபர்களின் எண்ணிக்கை	8	12	16	20	37	25	19	13

8.3.3 நிகழ்தகவு

்நிகழ்தகவு['] அல்லது [']வாய்ப்பு['] என்கிற வார்த்தை அன்றாட உரையாடலில் அதிகமாகப் பயன்படுத்தப்படுகிறது. மேலும் அதன் பொருள் பற்றி பொதுவாக மக்கள் ஓரளவு அறிந்திருக்கிறார்கள். உதாரணமாக,

"நாளை மழை வருவதற்கு வாய்ப்பு இருக்கிறது"

 $^{"}A$ மற்றும் B அணிகள் ஒரு குறிப்பிட்டப் போட்டியில் வெற்றி பெறுவதற்குச் சமமான வாய்ப்பிருக்கிறது. $^{"}$

சாத்தியம், உத்தேசம் போன்ற வார்த்தைகள் ஒரே விதமான பொருளைத் தருகின்றன. அதாவது, இந்த நிகழ்வு நடைபெறும் என்பது உறுதியில்லை அல்லது அந்த நிகழ்வு நடைபெறுவதற்கான வாய்ப்புப் கேள்விக்குரியதாக உள்ளது. சமானியர்களின் பேச்சுவழக்கில் நிகழ்தகவு என்கிற வார்த்தை இவ்வாறாக என்ன நடைபெறுகிறது என்பது பற்றி சிறிதளவு உறுதியற்ற நிலையில் காணப்படுகிறது. எவ்வாறாயினும், கணிதவியல் மற்றும் புள்ளியியலில் உறுதியற்ற நிலைமைப் பற்றி சில நிபந்தனைகள் மூலமாக அறிவுப் பூர்வமான, எண் வடிவிலான வாக்கியத்தை அமைக்க முயற்சி செய்கிறோம் மற்றும் சில முறைகளைச் செயல்படுத்தி நிகழ்தகவிற்கான எண் மதிப்பைக் கணக்கிடுகிறோம்.

கலிலியோ (1564–1642), என்கிற இத்தாலிய கணிதவியலாளர் முதன்முதலில் சூதாட்டப் பந்தயத்தில் பகடைக்கான கருத்தியலில் சிலப் பிரச்சனைகளைச் சந்திக்கும்பொழுது எண்ணளவில் அளவிடக்கூடிய நிகழ்தகவைக் காண்பதற்கு முதன்முதலில் முயற்சி செய்தார்.

கீழேக் கொடுக்கப்பட்டுள்ளப் படம் நிகழ்தகவின் அடிப்படைக் கருத்துருக்களைக் பிரதிபலிக்கிறது.

8.3.1 நிகழ்தகவின் அடிப்படைக் கருத்துருக்கள் (Basic concepts of Probability)

மீள்பார்வை (Recall)

(i) சமவாய்ப்புச் சோதனை (Random Experiment)

ஒரே மாதிரியான அடிப்படையில் ஒரு சோதனைப் பன்முறை திரும்பத் திரும்ப நடத்தப்படுகிறது. மேலும் வெளிப்படுகின்ற மொத்த எண்ணிக்கையை கணக்கிட முடியும். ஆனால் தனித்த முடிவு அதாவது ஒரு தனித்த வெளிப்பாட்டினை முன்கூட்டியே கணிக்க முடியாதவாறு உள்ளச் சோதனையே சமவாய்ப்புச் சோதனை எனப்படும்.

உதாரணமாக, ஒரு நாணயத்தைச் சுண்டுதல், ஒருப் பகடையை உருட்டுதல் சீட்டுக்கட்டில் இருந்து சீட்டு ஒன்றைத் தேர்ந்தெடுத்தல் என்பன.

(ii) வெளிப்பாடு: (Outcome)

சமவாய்ப்புச் சோதனைகளின் முடிவே வெளிப்பாடு எனப்படும்.

(iii) முயற்சி மற்றும் நிகழ்வு: (Trial and Event)

ஒரு சமவாய்ப்புச் சோதனையில் ஏதேனும் ஒரு குறிப்பிட்டச் செயல்பாடு முயற்சி எனப்படும். வெளிப்பாடு அல்லது வெளிப்பாடுகளின் சேர்க்கை நிகழ்வுகள் எனப்படும்.

முழுமையான நிகழ்வுகள் (Exhaustive Events) (iv)

ஒரு சமவாய்ப்புச் சோதனையின், சாத்தியப்பட்ட மொத்த வெளிப்பாடுகளின் தொகுப்பே முழுமையான நிகழ்வுகள் எனப்படும்.

(\mathbf{v}) சாத்தியமான நிகழ்வுகள் (Favourable Events)

ஒரு சோதனையில் ஒரு நிகழ்வு நிகழும் என்பதை உறுதிபடுத்தும் சாத்திய கூறுகளின் எண்ணிக்கை சாத்தியமான நிகழ்வுகள் எனப்படும்.

(vi) ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் (Mutually Exclusive events)

நடைபெறுகின்ற ஏதேனும் ஒரு நிகழ்வு நடைபெறவிருக்கின்ற ஏனைய நிகழ்வுகள் நடைபெறுவதை தவிர்க்கும் எனில், அதாவது இரண்டு அல்லது அதற்கு மேற்பட்ட நிகழ்வுகள் ஒரே சோதனையில் ஒரே நேரத்தில் நடைபெறாது எனில் நிகழ்வுகள் ஒன்றையொன்று விலக்கும் நிகழ்வுகள் எனப்படும். நிகழ்வுகள் A மற்றும் B ஆகியவைகள் ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் எனில் $A \cap B = \emptyset$

(vii) சமவாய்ப்பு நிகழ்ச்சிகள் (Equally Likely Events)

ஒரு சோதனையின் நிகழ்ச்சிகளில் (இரண்டு அல்லது அதற்கு மேற்பட்ட) ஏதேனும் ஒரு நிகழ்ச்சி மற்றவற்றை விட நிகழக்கூடிய வாய்ப்பு அதிகமுள்ளது என்று எதிர்பார்க்க இயலாதெனில், அச்சோதனையின் நிகழ்ச்சிகள் யாவும் சமவாய்ப்புடைய நிகழ்ச்சிகள் என அழைக்கப்படுகிறது.

(viii)நிகழ்தகவின் தொன்மையான வரையறை (Classical definition of Probability)

ஒரு சமவாய்ப்புச் சோதனையின் முடிவுகள், 'n' முழுமையான, ஒன்றையொன்று விலக்கும் மற்றும் சமவாய்ப்பு வெளிப்பாடுகளாக உள்ளது அவற்றில் நிகழ்வு E நடைபெறுவதற்கு m சாத்தியக்கூறுகள் உள்ளது. E நிகழ்வின் நிகழ்தகவு 'p', பொதுவாக P(E) என குறிக்கப்படுகிறது.

$$p=Pig(Eig)=rac{$$
 சாத்தியக் கூறுகளின் எண்ணிக்கை $=rac{m}{n}$ முழுமையான நிகழ்வுகளின் எண்ணிக்கை

(ix) பண்புகள் (Properties)

- (i) $0 \le P(E) \le 1$
- (ii) நிகழ்தகவின் கூடுதல் '1' –க்கு சமமாகும்.
- (iii) P(E)=0 எனில், E என்பது சாத்தியமில்லா நிகழ்வு.

உதாரணத்திற்கு

ஒரு நாணயம் சுண்டப்படுகிறது தலை விழுவதற்கான நிகழ்தகவு காண்க.

தீர்வு: சோதனையின் மொத்த சாத்தியமான வெளிப்பாடுகள் $\{H,T\}$ ஆகும்.

$$n=2$$

தலை விழுவதற்கான சாத்திய வெளிப்பாடுகள் = $\{H\}$.

$$m=1$$
.

தலை விழுவதற்கான நிகழ்தகவு= $\frac{m}{n} = \frac{1}{2}$

(x) நிகழ்தகவின் நவீன வரையறை (Modern Definition of Probability)

நிகழ்தகவிற்கான நவீன அணுகுமுறை என்பது முழுவதும் அடிக்கோள்களை அடிப்படையாகக் கொண்டது மற்றும் அது கணவியல் கருத்துருவாக்கங்களை சார்ந்திருக்கிறது. நிகழ்தகவின் கருத்தியலை அடிகோள்களின் அணுகுமுறையில் கற்க வேண்டுமெனில் சில அடிப்படைக் கருத்துருக்களை வரையறுப்பது அவசியமாகிறது.

அவையாவன:

- (i) **கூறுவெளி :** ஒரு சோதனையின் ஒவ்வொரு இயலக் கூடிய வெளிப்பாடு கூறு புள்ளி எனவும் மற்றும் கூறு புள்ளிகளின் தொகுப்பு கூறுவெளி எனப்படும் அது S என்று குறிக்கப்படுகிறது.
- (ii) **நிகழ்வு:** ஒரு கூறுவெளியின் ஏதேனும் ஒரு உட்கணம் நிகழ்வு எனப்படும்.

(iii) ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் :

 $A\cap B=\phi$ எனில் A மற்றும் B ஆகிய நிகழ்வுகள் ஒன்றையொன்று விலக்கும் நிகழ்வுகள் எனப்படும். அதாவது A மற்றும் B ஆகியவை சேராக் கணங்களாகும்.

எடுத்துக்காட்டு:
$$S = \{1,2,3,4,5\}$$
 என்க.

$$B =$$
இரட்டைப் படை எண்கள் $= \{2,4\}$ என்க.

$$A \cap B = \phi$$

A மற்றும் B ஒன்றையொன்று விலக்கும் நிகழ்ச்சியாகும்.

(xi) கூர்நோக்கு (Observation):

கணத்தின் வாயிலான கூற்றுகள்

- (i) $A \cup B \Rightarrow A, B$ நிகழ்ச்சியில் ஏதேனும் ஒன்று நிகழ்வது.
- (ii) $A \cap B \Rightarrow A$ மற்றும் B ஆகிய இரண்டும் நிகழும்
- (iii) $\overline{A} \cap \overline{B} \Rightarrow A$ மற்றும் B ஆகியவைகள் நிகழாது.
- (iv) $A\cap\overline{B}$ \Rightarrow A நிகழும் மற்றும் B நிகழாது.

(xii) நிகழ்தகவின் வரையறை (அடிக்கோள் அணுகுமுறை) (Definition of **Probability**)

E என்பது சோதனை என்க. S என்பது E– யோடு தொடர்புடைய கூறுவெளி என்க. S–ல் உள்ள ஒவ்வொரு நிகழ்வோடு P(A) என்று குறிக்கப்படுகின்ற ஒரு மெய் எண்ணை நாம் தொடர்புப்படுத்துவோம். மேலும் P(A)) என்பது A–என்ற நிகழ்வின் நிகழ்தகவு எனக் கொண்டால், P(A) கீழ்காணும் அடிக்கோள்களை நிவர்த்திச் செய்யும்.

அடிக்கோள்
$$1$$
 : $P(A) \ge 0$

அடிக்கோள்
$$2$$
 : $P(S)=1$

அடிக்கோள் 3 : A_1,A_2,\ldots,A_n என்பன S கூறுவெளியில் உள்ள ஒன்றையொன்று விலக்கும் n நிகழ்வுகள் எனில்

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$

(xiii) நிகழ்தகவின் அடிப்படைத் தேற்றங்கள்

தேற்றம் 1:

 $P(\emptyset) = 0$, அதாவது சாத்தியமில்லா நிகழ்வின் நிகழ்தகவு பூச்சியமாகும்.

தேற்றம் 2:

S என்பது கூறுவெளி மற்றும் A என்பது S–ல் உள்ள ஒரு நிகழ்வு $P(\overline{A}) = 1 - P(A)$

தேற்றம் 3: கூட்டல் தேற்றம்

A மற்றும் B என்பன ஏதேனும் இரு நிகழ்வுகள் எனில் $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

(xiv) கூர்நோக்கு:

(i) A மற்றும் B என்ற இரு நிகழ்வுகள் ஒன்றையொன்று விலக்கும் நிகழ்வுகள் எனில் $A \cap B = \emptyset$

$$\therefore \qquad P(A \cap B) = 0$$

$$\Rightarrow \qquad P(A \cup B) = P(A) + P(B)$$

(ii) A,B,Cஎன்ற ஏதேனும் மூன்று நிகழ்வுகளுக்கு கூட்டல் தேற்றத்தை விரித்துரைக்கலாம்

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C)$$
$$+P(A \cap B \cap C)$$

மாணவர்களுக்கு மேற்கூறியக் கருத்துக்கள் நன்கு அறிந்தவை என நம்பப்படுகிறது. நமது தற்போதைய பாடத்திட்டத்தினை கீழ்வரும் பிரிவுகளிலிருந்து தொடங்குவோம்.

சாரா மற்றும் சார்ந்த நிகழ்வுகளின் கருத்துருக்கள் (Independent and Dependent events)

(i) சாரா நிகழ்வுகள் :- (Independent Events)

நிகழக்கூடிய ஒரு நிகழ்வு நிகழக்கூடிய மற்றொரு நிகழ்வைப் பாதிக்காது எனும்பொழுது இரண்டு அல்லது அதற்கு மேற்பட்ட நிகழ்வுகள் சாரா நிகழ்வுகள் எனப்படும். உதாரணமாக, ஒரு நாணயம் இரண்டு முறை சுண்டப்படுகிறது எனில் இரண்டாம் வீச்சின் முடிவை, முதல் வீச்சின் முடிவு எந்த வகையிலும் பாதிக்காது.

ii) **சார்ந்த நிகழ்வுகள்:**– ஏதேனும் ஒரு முயற்சியில் சார்ந்த நிகழ்வுகள் என்பது நிகழ்ந்த அல்லது நிகழாத ஒரு நிகழ்வு ஏனைய முயற்சிகளில் நிகழக்கூடிய நிகழ்வுகளைப் பாதிக்கக்கூடியது.

52 சீட்டுகள் கொண்ட ஒரு சீட்டுக்கட்டிலிருந்து ஒரு ராணிச்சீட்டை தேர்ந்தெடுப்பதற்கான நிகழ்தகவு $\frac{4}{52}$ அல்லது $\frac{1}{13}$ ஆகும். ஆனால் அந்த (ராணி) சீட்டு மீண்டும் சீட்டுகட்டில் சேர்க்கப்படவில்லை எனில் மறுபடியும் ராணிச் சீட்டை தேர்ந்ததெடுக்கப்படுவதற்கான நிகழ்தகவு $\frac{3}{51}$ ஆகும்.

நிபந்தனைக்குட்பட்ட நிகழ்தகவு (Conditional Probability) 8.1.3

A மற்றும் B ஆகியன இரு சார்ந்த நிகழ்வுகள் எனில், நிகழ்வு A ஏற்கனவே நடந்துள்ளபோது, நிகழ்வு B –ன் நிபந்தனைக்குட்பட்ட நிகழ்தகவு,

$$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A) \neq 0$$

இதேப் போல்

$$P(A/B) = \frac{P(A \cap B)}{P(B)}; P(B) \neq 0$$

(i) பெருக்கல் தேற்றம் (Multiplication Theorem)

ஒரே நேரத்தில் நிகழும் இரு நிகழ்வுகள் $A,\,B\,$ எனில்

$$P(A \cap B) = P(A).P(B/A)$$
 அல்லது

$$P(A \cap B) = P(B).P(A/B)$$

குறிப்பு:

- (i) A மற்றும் B ஆகியன சாரா நிகழ்வுகள் எனில் $P(A ext{ மற்றும்} B) = P(A \cap B) = P(A) P(B)$
- (ii) மேற்கண்ட தேற்றம் மூன்று அல்லது அதற்கு மேற்பட்ட சாரா நிகழ்வுகளுக்கு விரிவாக்கம் செய்ய முடியும். இவ்வாறாக மூன்று நிகழ்வுகளுக்கு பெருக்கல் தேற்றம், P(A மற்றும் B மற்றும் $C) = P(A \cap B \cap C) = P(A) P(B) P(C)$

எடுத்துக்காட்டு 8.24

ஒரு சீரான பகடை உருட்டப்படுகிறது A என்ற நிகழ்வு "பகடையில் தோன்றும் எண் 3 '–ன் மடங்கு " எனவும் B நிகழ்வு "பகடையில் தோன்றும் எண் இரட்டை படை எண் " எனில், A மற்றும் B ஆகிய நிகழ்வுகள் சாரா நிகழ்வுகளா என ஆராய்க?

தீர்வு :

 $S = \{1, 2, 3, 4, 5, 6\}$ என்பது கூறுவெளி என அறிகிறோம்.

இங்கு
$$A=\{3,6\}\;;B=\{\ 2,4,6\}$$
 எனவே $(A\cap B)=\{6\}$ $P(A)=rac{2}{6}=rac{1}{3}$

$$P(B) = \frac{3}{6} = \frac{1}{2}$$
 மற்றும் $P(A \cap B) = \frac{1}{6}$

தெளிவாக, $P(A \cap B) =$ P(A) P(B)

எனவே A மற்றும் B ஆகியவை சாரா நிகழ்வுகளாகும்.

எடுத்துக்காட்டு 8.25

 $P(A)=rac{3}{5}$ மற்றும் $P(B)=rac{1}{5}$ என்க.. A,B என்பன சாரா நிகழ்வுகள் எனில் $P(A\cap B)$ —ஐ காண்க.

தீர்வு :

A மற்றும் B ஆகியவை சாரா நிகழ்வுகள் என்பதால்

$$P(A \cap B) = P(A) P(B)$$

கணக்கின்படி
$$P(A)=rac{3}{5}$$
 மற்றும் $\mathrm{P}(\mathrm{B})=rac{1}{5}$,

எனவே,
$$P(A \cap B) = \frac{3}{5} \times \frac{1}{5} = \frac{3}{25}$$

எடுத்துக்காட்டு 8.26

மூன்று நாணயங்கள் ஒரே நேரத்தில் சுண்டப்படுகின்றன.

A - நிகழ்வு "மூன்று தலைகள் அல்லது மூன்று பூக்கள்"

B - நிகழ்வு "குறைந்தபட்சம் 2 தலைகள்"

C - நிகழ்வு "அதிகபட்சம் 2 தலைகள் " என்று கருதவும் $(A,B),\;(A,C)$ மற்றும் $(B,C),\;$ ஆகியவற்றில் எவை சாரா நிகழ்வுகள் ? எவை சார்ந்த நிகழ்வுகள்?

தீர்வு :

இங்கு சோதனையின் கூறுவெளி

$$S = \{HHH, HHT, HTH, HTT, THH, TTH, THT, TTT\}$$

தெளிவாக,
$$A = \{$$
மூன்று தலைகள் (அல்லது) மூன்று பூக்கள் $\} = \{HHH, TTT\}$

$$B = \{$$
குறைந்த பட்சம் 2 தலைகள் $\} = \{HHH, HHT, HTH, THH\}$

மற்றும்
$$C = \{$$
அதிகபட்சம் 2 தலைகள் $\} = \{HHT, HTH, HTT, THH, TTH, THT, TTT\}$

மேலும்
$$(A \cap B) = \{HHH\}; (A \cap C) = \{TTT\}$$
 மற்றும் $(B \cap C) = \{HHT, HTH, THH\}$

$$Arr$$
 $Arr P(A) = rac{2}{8} = rac{1}{4} \; ; P(B) = rac{1}{2} \; ; P(C) = rac{7}{8}$ மற்றும் $Arr P(A \cap B) = rac{1}{8} \; , P(A \cap C) = rac{1}{8} \; , P(B \cap C) = rac{3}{8}$ மேலும் $Arr P(A)$. $Arr P(B) = rac{1}{4} \cdot rac{1}{2} = rac{1}{8}$ $Arr P(A)$. $Arr P(C) = rac{1}{4} \cdot rac{7}{8} = rac{7}{32}$ மற்றும் $Arr P(B)$. $Arr P(B)$ $Arr P(A \cap B) =
Arr P(A)$. $Arr P(B)$ $Arr P(A \cap C)
equation P(A \cap C)
equation P(B) $Arr P(A)$ $Arr P(B)$$

எனவே, (A,B)) சாரா நிகழ்வுகள் (A,C) மற்றும் ((B,C) ஆகியவைகள் சார்ந்த நிகழ்வுகள். \mathbf{a} \mathbf{b} $\mathbf{$

ஒரு புத்தகத்திலுள்ள கணக்குகளில் A என்பவர் 90% கணக்குளையும் மற்றும் B என்பவர் 70% கணக்குளையும் தீர்க்க முடியும். சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்பட்ட ஒரு கணக்கைக் குறைந்தபட்சம் அவர்களில் ஒருவர் தீர்ப்பதற்கான நிகழ்தகவு என்ன?

தீர்வு :

A என்பவர் கணக்கை தீர்ப்பதற்கான நிகழ்தகவு $=rac{90}{100}=rac{9}{10}$ மற்றும் B என்பவர் கணக்கை

தீர்ப்பதற்கான நிகழ்தகவு
$$=rac{70}{100}=rac{7}{10}$$

அதாவது,
$$P(A) = \frac{9}{10}$$
 மற்றும் $P(B) = \frac{7}{10}$

$$P(\overline{A}) = 1 - P(A) = \frac{9}{10} = \frac{1}{10}$$

இதேப் போன்று
$$P(\bar{B}) = 1 - P(B) = \frac{7}{10} = \frac{3}{10}$$

P (குறைந்தபட்சம் ஒரு நபர் கணக்கைக் தீர்ப்பதற்கான நிகழ்தகவு) $\qquad = \qquad P(A \bigcup B)$

$$= 1 - P(\overline{A \cup B}) = 1 - P(\overline{A} \cap \overline{B})$$

$$= 1 - P(\overline{A}) \cdot P(\overline{B})$$

$$= 1 - \frac{3}{100} = \frac{97}{100}$$

கணக்கை குறைந்த பட்சம் அவர்களில் ஒருவர் தீர்ப்பதற்கான நிகழ்தகவு = $\frac{97}{100}$

எடுத்துக்காட்டு 8.28

ஒரு பையில் 5 வெள்ளை மற்றும் 3 கருப்பு நிறப்பந்துகள் உள்ளன. சமவாய்ப்பு முறையில் இரண்டு பந்துகள், ஒன்றன்பின் ஒன்றாக திருப்பி வைக்காத முறையில் தேர்தெடுக்கப்படுகிறது எனில், இரண்டு பந்துகளும் கருப்பு நிறப்பந்துகளாக இருக்க நிகழ்தகவு காண்க.

தீர்வு :

 $A,\,B$ என்பன முதல், இரண்டாம் முயற்சியில் எடுக்கப்படும் பந்து கருப்பு நிறப்பந்து என்க.

முதல் முயற்சியில், கருப்பு நிறப் பந்தை தேர்ந்தெடுப்பதற்கான நிகழ்தகவு

$$P(A) = \frac{3}{5+3} = \frac{3}{8}$$

முதலில் தேர்ந்தெடுக்கப்பட்டப் பந்து கருப்புநிறப்பந்து எனக் கொடுக்கப்பட்ட நிலையில் இரண்டாம் பந்தும், கருப்பு நிறப்பந்தாக தேர்ந்தெடுப்பதற்கான நிகழ்தகவு

$$P(B/A) = \frac{2}{5+2} = \frac{2}{7}$$

். இரண்டு பந்துகளும் கருப்பு நிறமாக இருப்பதற்கான நிகழ்தகவு

$$P(A \cap B) = P(A) P(B/A) = \frac{3}{8} \times \frac{2}{7} = \frac{3}{28}$$

எடுத்துக்காட்டு 8.29

ஒரு துப்பாக்கி சுடும் போட்டியில் இலக்கைச் சரியாகச் சுடுவதற்கான நிகழ்தகவு A க்கு $\frac{3}{4}$

B க்கு $\frac{1}{2}$ மற்றும் C க்கு $\frac{2}{3}$. அனைவரும் ஒரே நேரத்தில் இலக்கை நோக்கி சுடுகிறார்கள் எனில்,

- (i) மூவரும் இலக்கைச் சரியாகச் சுடுவதற்கான நிகழ்தகவு
- ஒருவர் மட்டும் இலக்கைச் சரியாகச் சுடுவதற்கான நிகழ்தகவு
- குறைந்தது ஒருவராவது இலக்கை சரியாகச் சுடுவதற்கான நிகழ்தகவு ஆகியவற்றைக் காண்க.

தீர்வு :

கணக்கின்படி
$$P(A)=rac{3}{4}$$
 , $P(B)=rac{1}{2}$, $P(C)=rac{2}{3}$ Then $P(\overline{A})=1-rac{3}{4}=rac{1}{4}$; $P(\overline{B})=1-rac{1}{2}=rac{1}{2}$ மற்றும் $P(\overline{C})=1-rac{2}{3}=rac{1}{3}$

(i) P(A) = (மூவரும் இலக்கை சரியாக சுடுவதற்கான)

$$= P(A \cap B \cap C) = P(A)P(B)P(C)$$
 $(A,B,C$ சாரா நிகழ்வுகள்)

$$=\frac{3}{4}\cdot\frac{1}{2}\cdot\frac{2}{3}=\frac{1}{4}$$

(ii) P(ஒருவர் மட்டுமே இலக்கை சரியாக சுடுவதற்கான)

$$= P\{(A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C)\}$$

$$= P\{(A \cap \overline{B} \cap \overline{C}) + P(\overline{A} \cap B \cap \overline{C}) + P(\overline{A} \cap \overline{B} \cap C)\}$$

$$= \left(\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{1}{3}\right) + \left(\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{3}\right) + \left(\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{2}{3}\right) = \frac{1}{4}$$

(iii) P(குறைந்தபட்சம் ஒருவர் இலக்கை சுடுவதற்கான)

$$=1-P$$
(ஒருவரும் சுடாமல் இருப்பதற்கான) $=1-P(\overline{A}\cap \overline{B}\cap \overline{C})$ $=1-P(\overline{A})P(\overline{B})P(\overline{C})$ $=1-rac{1}{24}=rac{23}{24}$

எடுத்துக்காட்டு 8.30

ஒரு சீட்டுகட்டிலிருந்து, மூன்று சீட்டுகள் ஒன்றன்பின் ஒன்றாக, தேர்தெடுக்கப்படுகின்றன. சீட்டுகள் திரும்ப வைக்கபடாத நிலையில், தேர்ந்தெடுக்கப்படும் சீட்டுகள் முறையே ஒரு அரசி சீட்டு (Queen),), ஒரு அரசன் சீட்டு (a King) மற்றும் ஒரு காலாட்படை (a Jack) வீரன் சீட்டாக இருப்பதற்கான நிகழ்தகவைக் காண்க.

தீர்வு :

A : அரசி சீட்டைத் தேர்ந்தெடுத்தல்

B: அரசன் சீட்டைத் தேர்ந்தெடுத்தல்

C: காலாட்படை வீரன் சீட்டைத் தேர்ந்தெடுத்தல் (jack)

$$P$$
(அரசி சீட்டைத் தேர்ந்தெடுப்பதற்கான) = $P(A) = \frac{4}{52}$

P(அரசி சீட்டு ஏற்கனவே தேர்ந்தெடுக்கப்பட்டதால் அரசன் சீட்டு தேர்ந்தெடுப்பதற்கான)

$$= P(B/A) = \frac{4}{51}$$

P(அரசி மற்றும் அரசன் சீட்டுகள் ஏற்கனவே தேர்ந்தெடுக்கப்பட்டதால் ஒரு காலாட் படை வீரன் சீட்டை தேர்ந்தெடுப்பதற்கான) = $P(C/AB) = \frac{4}{50}$

இவைகள் சார்ந்த நிகழ்வுகள் ஆகையால் தேவையான கூட்டு நிகழ்வுகளின் நிகழ்தகவு

$$P(ABC) = P(A) P(B/A) P(C/AB) = \frac{4}{52} \times \frac{4}{51} \times \frac{4}{50} = \frac{64}{132600}$$

= 0.00048

8.3.4 பேயின் தேற்றம் (Baye's Theorem)

S என்ற கூறுவெளியில், ஒன்றை ஒன்று விலக்கும், முழுமையான நிகழ்ச்சிகள் $E_1, E_2, E_3..., E_n$ என்க. அதாவது $P(E_i) \neq 0 \; (i=1,2,3...,n)$, S –ஐச் சார்ந்த A என்ற ஏதேனும் ஒரு நிகழ்ச்சி $P(A) \geq 0$, , எனுமாறு உள்ளது எனில்

$$P(E_i / A) = \frac{P(E_i)P(A / E_i)}{\sum_{i=1}^{n} P(E_i)P(A / E_i)}$$
; $i = 1,2,3,...,n$;

இங்க
$$P(A) = \sum_{i=1}^{n} P(E_i) P(A / E_i)$$

எடுத்துக்காட்டு 8.31

முதல் பையில் 3 சிவப்பு நிறப்பந்துகள் மற்றும் 4 நீல நிறப்பந்துகளும், இரண்டாவது பையில் 5 சிவப்பு நிறப்பந்துகள் மற்றும் 6 நீல நிறப்பந்துகளும் உள்ளன. ஏதேனும் ஒரு பையிலிருந்து, தேர்ந்தெடுக்கப்பட்ட பந்து சிவப்பு பந்து எனில், அப்பந்து இரண்டாவது பையிலிருந்து தேர்ந்தெடுக்கப்படுவதற்கான நிகழ்தகவு யாது? .

தீர்வ:

 $E_{_1}$ முதல் பையைத் தேர்ந்தெடுக்கும் நிகழ்ச்சி மற்றும்

 $E_{\scriptscriptstyle 2}$ என்பது இரண்டாவதுப் பையைத் தேர்ந்தெடுக்கும் நிகழ்ச்சி என்க.

$$P(E_1) = P(E_2) = \frac{1}{2}$$

A என்பது சிவப்பு நிறப்பந்தைத் தேர்ந்தெடுப்பதற்கான நிகழ்ச்சி எனில்

 $P(A/E_1)$ =P(முதல் பையில் இருந்து சிவப்பு நிறப்பந்து எடுக்கும் நிகழ்ச்சி $I)=rac{3}{7}$

 $P(A/E_2) = P($ இரண்டாவது பையில் இருந்து சிவப்பு நிறப்பந்து எடுக்கும் நிகழ்ச்சி $II) = \frac{5}{11}$

தேர்ந்தெடுக்கப்டும் சிவப்பு பந்து, இரண்டாவது பையிலிருந்து எடுப்பதற்கான நிகழ்தகவு, $P(E_{\gamma}/A)$.

பேயிஸ் தேற்றபப்டி

$$P(E_{2}/A) = \frac{P(E_{2})P(A/E_{2})}{\sum_{i=1}^{2} P(E_{i})P(A/E_{i})}$$

$$= \frac{P(E_{2})P(A/E_{2})}{P(E_{1})P(A/E_{1}) + P(E_{2})P(A/E_{2})} = \frac{\frac{1}{2} \cdot \frac{5}{11}}{\left(\frac{1}{2} \times \frac{3}{7}\right) + \left(\frac{1}{2} \times \frac{5}{11}\right)} = \frac{35}{68}$$

எடுத்துக்காட்டு 8.32

X என்பவர் 5–ல் 4 முறை உண்மைப் பேசுபவர். ஒரு பகடை உருட்டப்படுகிறது. கிடைத்த எண் 6 என்று திருX கூறுகிறார். உண்மையாகவே ஆறு விழுந்துள்ளதற்கான நிகழ்தகவு யாது? தீர்வு :

 $E_+\,:X$ உண்மை பேசுவதற்கான நிகழ்ச்சி;

 $E_{_{2}}\ : X$ பொய் பேசுவதற்கான நிகழ்ச்சி;

: X ஆறு விழுந்துள்ளதாக கூறுகிறார்

$$P(E_1) = \frac{4}{5}$$
; $P(E_2) = \frac{1}{5}$; $P(E/E_1) = \frac{1}{6}$; $P(E/E_2) = \frac{5}{6}$

பேயின் தேற்றப்படி உண்மையில் ஆறு விழுந்துள்ளதற்கான நிகழ்தகவு

 $P(E_1) P(E/E_1)$

$$P(E_{1}/E) = \frac{P(E_{1})P(E/E_{1})}{P(E_{1})P(E/E_{1}) + P(E_{2})P(E/E_{2})} = \frac{\frac{4}{5} \times \frac{1}{6}}{\left(\frac{4}{5} \times \frac{1}{6}\right) + \left(\frac{1}{5} \times \frac{5}{6}\right)} = \frac{4}{9}$$

எடுத்துக்காட்டு 8.33

ஒரு தொழிற்சாலையில் உள்ள $A_{\scriptscriptstyle 1},A_{\scriptscriptstyle 2},A_{\scriptscriptstyle 3}$ என்ற 3 இயந்திரங்கள் முறையே1000,2000,திருகுகள் ஒவ்வொரு நாளும் உற்பத்தி செய்கின்றன. அவற்றில் $A_{_1}$ என்பது 1% –ம், A_2 என்பது 1.5%–ம், A_3 என்பது 2%–ம் குறையுள்ள திருகுகளை உற்பத்தி செய்கின்றன. ஒரு நாளின் முடிவில், உற்பத்தியிலிருந்து சமவாய்ப்பு முறையில் ஒரு திருகு தேர்ந்தெடுக்கப்பட்டபோது, $A_{\scriptscriptstyle 1}$ –ன் உற்பத்தியிலிருந்து வந்தது அது குறையுள்ளதாக காணப்பட்டது. அது இயந்திரம் என்பதற்கான நிகழ்தகவு என்ன?

தீர்வு:

$$P(A_1) \ = \ P(\text{இயந்திரம்}\ A_1 \ \text{உற்பத்தி செய்தத் திருகுகளுக்கான}\) = \frac{1000}{6000} = \frac{1}{6}$$

$$P(A_2) \ = \ P(\text{இயந்திரம்}\ A_2 \ \text{உற்பத்தி செய்தத் திருகுகளுக்கான}) = \frac{2000}{6000} = \frac{1}{3}$$

$$P(A_3) \ = \ P(\text{இயந்திரம்}\ A_3 \ \text{உற்பத்தி செய்தத் திருகுகளுக்கான}) = \frac{3000}{6000} = \frac{1}{2}$$

தேர்ந்தெடுக்கப்பட்டத் திருகு குறையுடையதாக இருப்பதற்கான நிகழ்ச்சியை B என்க.

$$P(B/A_1)=P$$
(குறையுள்ள திருகு இயந்திரம் A_1 – லிருந்து வருவதற்கான)= 0.01 $P(B/A_2)=P$ (குறையுள்ள திருகு இயந்திரம் A_2 –லிருந்து வருவதற்கான)= 0.015 மற்றும் $P(B/A_3)=P$ (குறையுள்ள திருகு இயந்திரம் A_3 – லிருந்து வருவதற்கான)= 0.02

நாம் காண வேண்டியது $P(A_1/B)$

எனவே பேயின் தேற்றப்படி நாம் பெறுவது

$$P(A_{1}/B) = \frac{P(A_{1})P(B/A_{1})}{P(A_{1})P(B/A_{1}) + P(A_{2})P(B/A_{2}) + P(A_{3})P(B/A_{3})}$$

$$= \frac{\left(\frac{1}{6}\right)(0.01)}{\left(\frac{1}{6}\right)(0.01) + \left(\frac{1}{3}\right)(0.015) + \left(\frac{1}{2}\right)(0.02)}$$

$$= \frac{0.01}{0.01 \oplus 0.03 \oplus 0.06} = \frac{0.01}{0.1} = \frac{1}{10}$$

- 1. ஒரு குடும்பத்தில் இரு குழந்தைகள் உள்ளனர். அவ்விருவரில், குறைந்தது ஒருவராவது பெண் மற்றும், இருவரும் பெண்களாக இருப்பதற்கான நிகழ்தகவு யாது?
- 2. ஒரு பகடை இரு முறை உருட்டப்படுகிறது, அப்போது தோன்றும் எண்களின் கூடுதல் ஆறு என கண்டறியப்படுகிறது. குறைந்தது ஒரு முறையாவது 4 என்ற எண் கிடைக்க நிபந்தனைக்குட்பட்ட நிகழ்தகவு என்ன?
- 3. ஒரு சீரான பகடை இருமுறை உருட்டப்படுகிறது. முதல் முறை உருட்டப்படும் பொழுது ஒற்றைப்படை எண் பெறுவது எனும் நிகழ்வை A எனவும், இரண்டாம் முறை உருட்டப்படும்பொழுது இரட்டைப் படை எண் பெறும் நிகழ்வை $\,B\,$ எனவும் கொண்டால் , நிகழ்வுகள் Aயும், Bயும் ஒன்றை ஒன்று சாரா நிகழ்வுகளா என ஆராய்க?

- 4. ஒரு குறிப்பிட்டக் கணக்கை A,B என்ற இரு நபர்கள் ஒருவரை ஒருவர் சாராமல் தீர்ப்பதற்கான நிகழ்தகவுகள் முறையே $\frac{1}{2}$, $\frac{1}{3}$ என்க. இருவரும் ஒரே சமயத்தில் ஒருவரை ஒருவர் சாராமல், தீர்ப்பதற்கு முயல்கின்றனர் எனில், அவர்கள் அந்தக்
 - (i) கணக்கை தீர்ப்பதற்கான நிகழ்தகவைக் காண்க.
 - (ii) யாரேனும் ஒருவர் மட்டும் தீர்ப்பதற்கான நிகழ்தகவைக் காண்க.
- 5. 100 நபர்கள் கொண்ட ஒரு குழுவிலிருந்து, ஒருவர் தேர்ந்தெடுக்கப்படுகிறார். குழுவின் விபரம், கீழே கொடுக்கப்பட்டுள்ளது. குழுவிலிருந்து தேர்ந்தெடுக்கப்படும் ஒரு ஆண், உளவியளாலராக இருப்பதற்கான நிகழ்தகவு யாது?

நபர்	உளவியளாலர்	சமூகநலவாதி	ஜனநாயகவாதி	கூடுதல்
ஆண்	15	25	10	50
பெண்	20	15	15	50
கூடுதல்	35	40	25	100

6. இரண்டு பெட்டிகளில் உள்ள பந்துகளின் விவரங்கள் பின்வருமாறு உள்ளன.

	வெள்ளை	சிவப்பு	கருப்பு
கலன் 1	10	6	9
கலன் 2	3	7	15

ஒவ்வொரு பெட்டியிலிருந்தும் ஒரு பந்து எடுக்கப்படுகிறது

- (i) இரண்டும் சிவப்புப் பந்தாக இருப்பதற்கான நிகழ்தகவைக் காண்க
- (ii) இரண்டும் ஒரே நிறமாக இருப்பதற்கான நிகழ்தகவைக் காண்க.
- 7. முதல் பையில் 3 சிவப்பு மற்றும் 4 கருப்பு நிறப்பந்துகளும் இரண்டாம் பையில் 5 சிவப்பு மற்றும் 6 கருப்பு நிறப்பந்துகளும் உள்ளன. ஒரு பந்து சமவாய்ப்பு முறையில் ஏதேனும் ஒரு பையிலிருந்து தேர்ந்தெடுக்கப்பட்டு அது சிவப்பு எனக் கண்டறியப்படுகிறது.அது முதலாம் பையிலிருந்து தேர்ந்தெடுக்கப்படுவதற்கான நிகம்தகவு என்ன?
- 8. முதல் பெட்டியில் 7 வெள்ளை மற்றும் 10 கருப்பு நிறப்பந்துகளும், இரண்டாவது பெட்டியில் 5 வெள்ளை மற்றும் 12 கருப்பு நிறப்பந்துகளும், மூன்றாவது பெட்டியில் 17 வெள்ளைப் பந்துகள் மட்டுமே உள்ளன. ஒருவர் மூன்று பெட்டிகளில் ஏதேனும் ஒன்றைத்தேர்ந்து எடுத்து, தேர்ந்தெடுக்கப்பட்டப் பெட்டியில் இருந்து ஒரு பந்து தேர்ந்தெடுக்கிறார். தேர்ந்தெடுக்கப்பட்ட வெள்ளைப் பந்து
 - (i) முதல் பெட்டியிலிருந்து தேர்ந்தெடுக்கப்பட நிகழ்தகவு காண்க
 - (ii) இரண்டாவது பெட்டியிலிருந்து தேர்ந்தெடுக்கப்பட நிகழ்தகவு காண்க
 - (iii) மூன்றாவது பெட்டியிலிருந்து தேர்ந்தெடுக்கப்பட நிகழ்தகவு காண்க.

- 9. $B_{_1},\ B_{_2}$ மற்றும் $B_{_3}$ என்பன குமிழ்விளக்குகளை உடைய மூன்று பெட்டிகள் என்க. அவ்விளக்குகளில், சில விளக்குகள் குறையுடையன. பெட்டிகள் B_1 , B_2 மற்றும் B_3 -ல் உள்ள குறையுடைய குமிழ்விளக்குகளின் விகிதாச்சாரங்கள் முறையே $\frac{1}{2}$, $\frac{1}{8}$ மற்றும் $\frac{3}{4}$ என்க. மூன்று பெட்டிகளில், ஏதேனும் ஒரு பெட்டியிலிருந்து தேர்ந்தெடுக்கப்பட்ட குமிழ்விளக்கு குறையுடையது எனக் கண்டறியப்பட்டால், அந்த விளக்கு, பெட்டி $B_{\scriptscriptstyle 1}$ –லிருந்து தேர்ந்தெடுக்கப்படுவதற்கான நிகழ்தகவைக் காண்க.
- 10. ஒரு பந்தயத்தில் உள்ள மூன்று பந்தயக்குதிரைகளை முறையே A, B மற்றும் C என்க. A வெற்றிபெறுவதற்கான வாய்ப்பு B —யைப் போல் இருமடங்காக உள்ளது. பெறுவதற்கான வாய்ப்பு C —யைப் போல் இருமடங்கு உள்ளது எனில், அக்குதிரைகள் ஒவ்வொன்றும் பந்தயத்தில் வெற்றிபெறுவதற்கான நிகழ்தகவுகளைக் காண்க.
- 11. ஒரு பகடை உருட்டப்படும்பொழுது,
 - (i) ஒரு பகா எண் பெறுவதற்கான நிகழ்தகவு காண்க.
 - (ii) மூன்று அல்லது மூன்றை விட பெரிய எண்ணைப் பெறுவதற்கான நிகழ்தகவு காண்க.
- 12. ஒன்று முதல் பத்து வரை குறிக்கப்பட்ட 10 சீட்டுகள் ஒருப் பெட்டியில் உள்ளன. பெட்டி நன்கு குலுக்கப்பட்டு, ஒரு சீட்டுச் சம வாய்ப்பு முறையில் தேர்ந்தெடுக்கப்படுகிறது. தேர்ந்தெடுக்கப்பட்ட சீட்டு 4 —யை விடப் பெரிய எண் கொண்ட சீட்டு எனில், அதில் உள்ள எண் இரட்டைப்பட எண்ணாக இருப்பதற்கான நிகழ்தகவைக் காண்க
- 13. ஒரு பள்ளியில் பயிலும்1000 பேர்களில், 450 பேர் மாணவிகள்.450மாணவிகளில் 20%மாணவிகள் XI-.ஆம் வகுப்பில் பயலுகிறார்கள். 1000 பேர்களில் ஒருவர் சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்படுகிறார். தேர்ந்தெடுக்கப்பட்டவர், XI.ஆம் வகுப்பில் உள்ள மாணவியாக இருப்பதற்கான நிகழ்தகவு யாது?
- 14. 52 சீட்டுகளைக் கொண்ட சீட்டுக்கட்டிலிருந்து, 2 சீட்டுகள் சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்படுகிறது. அவற்றில் ஒன்று ராஜா சீட்டாகவும், மற்றொன்று ராணி சீட்டாகவும் இருப்பதற்கான நிகழ்தகவு என்ன?
- 15. ஒரு சீட்டுக்கட்டிலிருந்து, ஒரு சீட்டு எடுக்கப்படுகிறது. அதன்பின் முதல் சீட்டு மீண்டும் சீட்டுக்கட்டில் சேர்க்கப்படாத நிலையில், மற்றொரு சீட்டு எடுக்கப்படுகிறது.
 - (i) இரண்டும் ஏஸ் ஆக இருப்பதற்கு நிகழ்தகவு என்ன?
 - (ii) இரண்டும் ஸ்பேட் ஆக இருப்பதற்கு நிகழ்தகவு என்ன?
- 16. முறையே 20%, 30% மற்றும் 50% பொருட்களை உற்பத்தி செய்யக்கூடிய A, B, Cஎன்ற இயந்திரங்களை ஒரு நிறுவனம் கொண்டுள்ளது. அவற்றின் குறைபாடு சதவீதங்கள் முறையே 7,3 மற்றும் 5 ஆகும். இந்த உற்பத்தி செய்யப்பட்ட பொருட்களிலிருந்து ஒன்று தேர்ந்தெடுக்கப்பட்டுப் பரிசோதிக்கப்படுகிறது. அது குறைபாடுள்ளது எனில், அது இயந்திரம் C-யினால் உற்பத்தி செய்யப்பட்டதற்கான நிகழ்தகவு யாது?

சரியான விடையைத் தேர்வு செய்க

_								1100	<u>- </u>
1.	கீழ்க்கண்டவற்ற	ள் எது நிலை	அளவை?						
	(a) வீச்சு	(b) முகமு		(c)	சராசரி விலக்கம்		(d) [நூற்றுமா	னம்
2.	பொருளாதார பொருத்தமான ச	வளர்ச்சியின் ராசரி?	சராசரியை	åL	கணக்கிடும்பொ	ழுத	J LI	யன்படுத்	தப்ப டுப்
	(a) நிறையிட்ட க	சராசரி		(b)	கூட்டுச் சராசரி				
	(c) பெருக்கல் சர	ாசரி		(d)	இசைச்சராசரி				
3.	விவரங்களில் ஒ	ரு உறுப்பு பூச்சி	ியம் எனில்,	அவ்	விவரங்களின் LL	பருக்	கல் ச	ராசரி	
	(a) குறை எண்			(b)	மிகை எண்				
	(c) பூச்சியம்			(d)	கணக்கிட இயல	ாது			
4.	மைய போக்கின்	சிறந்த அளை	வ என்பது						
	(a) கூட்டுச்சராச	:प्री		(b)	இசைச்சராசரி				
	(c) பெருக்கல் சர	ாசரி		(d)	இடைநிலை				
5.	2,3,4 ஆகிய என்	ரகளின் இசை	ச்சராசரி						
	(a) $\frac{12}{13}$	(b) 12		(c)	$\frac{36}{13}$	(d)	$\frac{13}{36}$		
6.	8 மற்றும் 18 ஆகி	ியவற்றின் பெ	ருக்கல் சராச	Fffl					
	(a) 12	(b) 13		(c)	15	(d)	11.0	8	
7.	A.M.,G.M. மற்று	<u>ற</u> ம் H.M.களுக்	க்கு இடையேயான பொருத்தமானத் தொடர்பு						
	(a) A.M. <g.m.<h.m.< td=""><td colspan="5">(b) $G.M. \ge A.M. \ge H.M.$</td><td></td></g.m.<h.m.<>			(b) $G.M. \ge A.M. \ge H.M.$					
	(c) H.M.≥G.M	.≥A.M.		(d)	$A.M. \ge G.M. \ge H$	<i>I.M.</i>			
8.	இசைச்சராசரி எ	ன்பது தலைகீ <u>ழ</u> ்	ģ						
	(a) மதிப்புகளின்	ர் இடை நிலை)	(b)	மதிப்புகளின் பெ	ருக்	கல் ச	ராசரி	
	(c) மதிப்புகளின் கூட்டுச்சராசரி			(d) மதிப்புகளின் கால்மானம்					
9.	பின்வருவனவற்	றுள் எது இடை	_நிலையை	க் குற	றிக்கும்;				
	(a) Q_1	(b) Q_2		(c)	Q_3	(d)	D_2		
10.	10,14,11,9,8,12,	,6 ஆகியவற்றி	ன் இடைநின	ກຄ					
	(a) 10	(b) 12		(c)	14	(d)	9		

11.	11,12,13,14 and 15	் ஆகியவைகளின் கூட்	Ŀ(ЬĚ	சராசரி	
	(a) 15	(b) 11	(c)	12.5	(d) 13
12.	1,2,3,, n என்பதல்	ன் சராசரி $\frac{6n}{11}$, எனில் 1	n –ങ്	ர் மதிப்பு	
	(a) 10	(b) 12			(d) 13
13.	பின்வரும் எவ்விவரா	ங்களுக்கு மற்ற சராசரி	கை	ள விட இசைச்ச	சராசரி சிறந்தது
	(a) வேகம் அல்லது எ	வீதங்கள்			
	(b) உயரம் அல்லது ந	நீளம்			
	(c) 0 மற்றும் 1 என்ப	பன போன்ற ஈரடிமான	ம்.		
	(d) விகிதங்கள் அல்	லது விகிதாச்சாரங்கள்			
14.	முதல் கால்மானம் எல	ன்பதை பின்வருமாறும்) அഒ	றழக்கலாம்.	
	(a) இடைநிலை	(b) கீழ்க்கால்மானம்		(c) முகர (d) மூன்றாம் பத்துமானம்
15.	$Q_1 = 30$ மற்றும் $Q_3 =$	50, எனில் கால்மான	ഖിல	க்கக் கெழு	
	(a) 20	(b) 40	(c)	10	(d) 0.25
16.	இடைநிலை = 45 ப பொறுத்த சராசரி வில		ഖിഒ	oக்க கெழு 0.2	25 எனில், இடைநிலையை
	(a) 11.25	(b) 180	(c)	0.0056	(d) 45
17.	A யும், B யும் ஒன்றை	ற ஒன்று விலக்கும் நிக	ழ்ச்ச	கள் எனில்	
	(a) $P(A \cap B) = 0$	(b) $P(A \cap B) = 1$	(c)	$P(A \cup B) = 0$	(d) $P(A \cup B) = 1$
18.	A மற்றும் B என்ற இ	ரு நிகழ்வுகள் சார்பற்ற	ഞഖ	ப எனில்,	
	(a) $P(A \cap B) = 0$		(b)	$P(A \cap B) = P(A \cap B)$	$A) \times P(B)$
	(c) $P(A \cap B) = P(A) +$	-P(B)	(d)	$P(A \cup B) = P($	$A) \times P(B)$
19.	A,B என்ற இரு நிகழ் $P(B/A)$ என்பது	வுகள் ஒன்றை ஒன்று க	சார்ந்	த நிகழ்வுகள் எ	rனில், நிபந்தனை நிகழ்தகவு
	(a) $P(A) P(B/A)$		(b)	$\frac{P(A \cap B)}{P(B)}$	
	(c) $\frac{P(A \cap B)}{P(A)}$			P(A) P(A/B)	
20.	சீட்டுக் கட்டிலிருந்து எ	ஸ்பேடு சீட்டை தேர்ந்தெ	தடுப்	பதற்கான நிகழ்	றதகவு
	(a) 1/52	(b) 1/13	(c)	4/13	(d) 1/4

- 21. ஒரு நிகழ்ச்சியின் வெளிப்பாடு, மற்றோர் நிகழ்ச்சியின் நிகழ்வை பாதிக்கவில்லை எனில், அவ்விரு நிகழ்ச்சிகள்
 - (a) ஒன்றை ஒன்று விலக்கும் நிகழ்ச்சிகள்;
 - (b) ஒன்றை ஒன்று சார்ந்த நிகழ்ச்சிகள்
 - (c) ஒன்றை ஒன்று விலக்கா நிகழ்ச்சிகள்;
 - (d) ஒன்றை ஒன்று சாரா நிகழ்ச்சிகள்
- ஒரு சோதனையின் கூறுவெளி $S = \left\{ E_1, E_2, ..., E_n \right\}$ எனில், $\sum_{i=1}^n P(E_i) =$ (a) 0 (b) 1 (c) $\frac{1}{2}$ (d) $\frac{1}{3}$ 22.

- 23. இரு பகடை உருட்டப்படும் போது இருபகடையில் ஒவ்வொன்றிலும் இரட்டை பகா எண் பெறுவதற்கான நிகழ்தகவு
 - (a) 1/36
- (b) 0
- (c) 1/3
- (d) 1/6

- 24. சாத்தியமற்ற நிகழ்வின் நிகழ்தகவு என்பது
 - (a) 1
- (b) 0
- (c) 0.2
- (d) 0.5
- 25. A,B என்ற நிகழ்வில் குறைந்தபட்சம் ஏதேனும் ஒரு நிகழ்வு நடைபெறுவதற்கான நிகழ்தகவு
 - (a) $P(A \cup B)$
- (b) $P(A \cap B)$
- P(A/B)(c)
- $(d) (A \cup B)$

இதர கணக்குகள்

1. கீழ்காணும் விவரங்களுக்கு பெருக்கல் சராசரியைக் காண்க.

நெல்லின் விளைச்சல் (டன்னில்)	பண்ணைகளின் எண்ணிக்கை
7.5-10.5	5
10.5-13.5	9
13.5-16.5	19
16.5-19.5	23
19.5-22.5	7
22.5-25.5	4
25.5-28.5	1

2. ஒரு பங்கு முதலீட்டாளர், ஒரு நிறுவனத்தின், ₹1500 மதிப்புள்ள பங்குகளை ஒவ்வொரு மாதமும் வாங்குகிறார். முதல் நான்கு மாதங்களில், அவர் வாங்கிய பங்குகளில் ஒரு பங்கின் விலை முறையே ₹10, ₹15, ₹20 மற்றும் ₹30 ஆகும். இந்த நான்கு மாதங்களில் வாங்கப்பட்ட பங்குகளுக்கு செலுத்தப்பட்ட சராசரி விலையைக் காண்க. உனது விடையை சரிபார்.

3. பின்வரும் விவரங்களுக்கு இடைநிலையைப் பொறுத்து சராசரி விலக்கத்தைக் காண்க.

மதிப்பு	0-10	10-20	20-30	30-40	40-50	50-60
அலைவெண்	6	7	15	16	4	2

பின்வரும் விவரங்களுக்கு சராசரியைப் பொறுத்து சராசரி விலக்கத்தைக் காண்க. 4.

X	2	5	6	8	10	12
f	2	8	10	7	8	5

5. பின்வரும் விவரங்களுக்கு கால்மான விலக்கத்தையும் மற்றும் கால்மான விலக்கக் கெழுவையும் காண்க.

மதிப்பெண்கள்	0	10	20	30	40	50	60	70
மாணவர்களின் எண்ணிக்கை	150	142	130	120	72	30	12	4

- 6. ஒரு திருகு தயாரிக்கும் தொழிற்சாலையின் மொத்த உற்பத்தியில் $30\%,\,40\%$ மற்றும் 30%உற்பத்தியினை முறையே இயந்திரங்கள் A,B மற்றும் C ஆகியவை உருவாக்குகின்றன. 2% , 4% உற்பத்தியில் மற்றும் 6% திருகுகள் பழுதுள்ளவையாக உள்ளன. உற்பத்தியிலிருந்து சமவாய்ப்பு முறையில் ஒரு திருகு தேர்ந்தெடுக்கப்பட்டு அது பழுதானது எனக் கண்டு பிடிக்கப்படுகிறது. அந்த பழுதான திருகு இயந்திரம் C –ன் மூலம் உருவாக்கப்பட்டிருப்பதற்கான நிகழ்தகவு காண்க.
- 7. 3 ஆண்கள் மற்றும் 2 பெண்களிலிருந்து இரண்டு நபர் கொண்ட ஒரு குழு அமைக்கப்பட வேண்டும் எனில் அந்தக் குழுவில்
 - (i) பெண்கள் இல்லாமல் இருப்பதற்கான நிகழ்தகவு காண்க.
 - (ii) ஒரே ஒரு ஆண் இருப்பதற்கான நிகழ்தகவு காண்க.
 - ஆண்களே இல்லாமல் இருப்பதற்கான நிகழ்தகவு காண்க.
- 8. ஒரு பழுது பார்க்கும் நிலையத்தில் முறையே A, B மற்றும் C என்ற கார்கள் (மகிழுந்துகள்) 50%, 30% மற்றும் 20%உள்ளன. 5%, 7% மற்றும் 3% மகிழுந்துகளில் உள்ள கண்ணாடிகள் சுத்தம் செய்யபடவில்லை. சுத்தம் செய்யப்பட்ட மகிழுந்துகள் சோதனை செய்யப்படுகின்றன, எனில் கண்ணாடி சுத்தம் செய்யப்பட்டிருப்பதற்கான நிகழ்தகவு காண்க.
- 9. நாளிதழ் வாசிப்பவர் கணக்கெடுப்பின்படி 30 வயதுக்குமேல் உள்ள ஆண் வாசிப்பாளர்கள் O.3O மற்றும் 3O வயதுக்குக் கீழ் உள்ள ஆண் வாசிப்பாளர்கள் O.2O விகிதம் என உள்ளது. 30 வயதுக்குக் கீழ் உள்ள வாசிப்பாளர்களின் விகிதம் 0.80. சமவாய்ப்பின்படி தேர்ந்தெடுக்கப்படும் ஒரு ஆண் வாசிப்பாளர் 30 வயதுக்குக் கீழ் உள்ளவராய் இருப்பதற்கான நிகழ்தகவு காண்க.

10. ஒரே இலக்கை நோக்கி துப்பாக்கி 1 மற்றும் துப்பாக்கி 2 ஆகியன சுடுகின்றன. சராசரியாக ஒரே நேரத்தில் துப்பாக்கி–1, 9 முறையும், துப்பாக்கி–2, 10 முறையும் சுடுகின்றன. இரண்டு துப்பாக்கிகளின் துல்லியத்தன்மை ஒன்று போல் அமைவதில்லை. சராசரியாக துப்பாக்கி–2 சுடுகின்ற 10 முறைகளில் 7 முறைகள் இலக்கின் மீது சுடப்படுகிறது. அப்படி சுடப்படும் நேரத்தில் இலக்கின் மீது ஒரு குண்டு சரியாக சுடப்படுகிறது. ஆனால் அது எந்தத் துப்பாக்கியில் இருந்து சுடப்பட்டது என்பது தெரியவில்லை. அந்த இலக்கானது துப்பாக்கி 2–ல் சுடப்படுவதற்கான நிகழ்தகவு காண்க.

தொகுப்புரை

- ஒரு வரிசையை நான்கு சம பாகங்களாக பிரிக்கக் கூடிய ஒரு அளவை என்பது கால்மானங்கள் எனப்படும்
- ஒரு வரிசையை பத்து சம பாகங்களாக பிரிக்கக் கூடிய ஒரு அளவை என்பது
 பத்துமானங்கள் எனப்படும்
- ஒரு வரிசையை நூறு சம பாகங்களாக பிரிக்கக் கூடிய ஒரு அளவை என்பது நூற்றுமானங்கள் எனப்படும்.
- $\mathbf{Q}_{2} = D_{5} = P_{50} =$ இடை நிலை
- lacktriangle கால்மானங்களுக்கு இடையேயான வீச்சு $= Q_{_3} Q_{_1}$

$$lacktriangled$$
 இசைச் சராசரி = $= rac{n}{rac{1}{X_1} + rac{1}{X_2} + rac{1}{X_3} + \cdots rac{1}{X_n}} = rac{n}{\sum rac{1}{X}}$

- $QD = \frac{Q_3 Q_1}{2}$
- lacksquare தனித்த தொடருக்கான சராசரியை பொறுத்துச் சராசரி விலக்கம் $\mathrm{MD} = rac{\sum \left| X \overline{X} \right|}{n} = rac{\sum \left| D \right|}{n}$
- A மற்றும் B ஆகியன இரு சார்ந்த நிகழ்வுகள் எனில், நிகழ்வு B ஏற்கனவே நடந்துள்ளபோது,
 நிகழ்வு A –ன் நிபந்தனைக்குட்பட்ட நிகழ்தகவு,

$$P(A/B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Oபயின் தேற்றம் (Baye's Theorem):

S என்ற கூறுவெளியில், ஒன்றை ஒன்று விலக்கும், முழுமையான நிகழ்ச்சிகள் என்க. $E_1, E_2, E_3, ..., E_n$ அதாவது $P(E_i) \neq 0 \; (i=1,2,3\ldots,n), \; S$ –ஐச் சார்ந்த A என்ற ஏதேனும் ஒரு நிகழ்ச்சி $S = \bigcup_{i=1}^n E_i$ எனில் $P(A) \geq 0,$

$$P(E_i / A) = \frac{P(E_i)P(A / E_i)}{\sum_{i=1}^{n} P(E_i)P(A / E_i)} ; \quad i = 1, 2, 3 ..., n ;$$

இங்க
$$P(A) = P(A) = \sum_{i=1}^{n} P(E_i) P(A/E_i)$$

56	
அலைவெண் / நிகழ்வெண்	Frequency
ஒன்றை ஒன்று விலக்கும் நிகழ்வுகள்	Mutually exclusive events/ disjoint events
கால்மான விலக்கம்	Quartile deviation
கால்மானம்	Quartile
ക <u>്</u> ത്വവെബി	Sample space
சம வாய்ப்புள்ள நிகழ்வுகள்	Equally likely events
சமவாய்ப்பு சோதனை	Random experiment
சராசரி விலக்கம்	Mean deviation
சார்பில்லா நிகழ்வுகள்	Independent events
சார்பு நிகழ்வுகள்	Dependent events
தனித்த தொடர்	Discrete series
தொகுக்கப்பட்ட விவரங்கள்	Grouped data
தொடர்ச்சியான தொடர்	Continuous series
நிகழ்தகவு	Probability
நிபந்தனைக்குட்பட்ட நிகழ்தகவு	Conditional probability
நூற்றுமானம்/ சதமானம்	Percentile
பதின்மானம்	Decile
முகடு	Mode
முழுமையான நிகழ்வுகள்	Exhaustive events
வீச்சு	Range

இணையச் செயல்பாக

இறுதியில் கிடைக்கப்பெறும் படம்

⊔LQ - 1

கீழ்க்காணும் உரலி / விரைவுக் குறியீட்டைப் பயன்படுத்தி GeoGebra வின் "11th Business Maths Volume–2" பக்கத்திற்குச் செல்க. உங்கள் பாடம் சார்ந்த பல பணித்தாள்கள் இப்பக்கத்தில் இருக்கும்.

CONTRA Dissertion 6: (A. M. S. March and A. M. Contractive for the contractive for

படி - 2

"Probability–Bayes theorem" என்பதைத் தேர்வு செய்து, கொடுத்திருக்கும் கட்டங்களைத் தேர்வு செய்து, படிப்படியாக நிகழ்தகவினை அறிக. Select the work sheet "Probability–Bayes theorem" Find each probabilities step by step as shown and Click on the respective boxes to see the answers.

UIQ 1 | Compared the finance of th

⊔LQ 2

செயல்பாட்டிற்கான உரலி :

https://ggbm.at/q4tsyvys (or) scan the QR Code

ஒட்டுறவு மற்றும் தொடர்புப் போக்கு பகுப்பாய்வு

கற்றல் நோக்கங்கள்

இந்த அத்தியாயத்தை படித்தபின்பு பின்வரும் பாடக் கருத்துகளை மாணவர்கள் புரிந்துக்கொள்ள இயலும்

- கார்ல் பியர்சன் ஒட்டுறவுக் கெழுவின் கருத்துரு மற்றும்
 அதனைக் கணக்கிடும் முறைகள்.
- ஸ்பியர்மேனின் தர ஒட்டுறவுக் கெழு
- தொடர்பு போக்குகளின் கருத்துரு மற்றும் தொடர்பு போக்குக் கெழு.
- y ன் மீது x ன் தொடர்பு போக்கு கோடுகள் மற்றும் x ன் மீது
 y ன் தொடர்பு போக்கு கோடுகள்.

அறிமுகம்

முந்தைய பாடத்தில் நாம் ஒரே ஒரு மாறியின் பண்புகளைக் கற்றோம்.
உதாரணமாக, மதிப்பெண்கள், நிறைகள், உயரங்கள், மழைப்பொழிவுகள், விலைகள், விற்பனைகள் போன்றவைகள் ஆகும். இவ்வகைப் பகுப்பாய்வுகள் ஒற்றை மாறுபாட்டுப் பகுப்பாய்வு எனப்படும். சில நேரங்களில் இரு மாறிகளுக்கிடையேயான தொடர்பைக் காண்பதில் நாம் விருப்பம் கொள்வோம். உதாரணமாக பொருளின் விலை மற்றும் அதன் விற்பனை, தந்தையின் உயரம் மற்றும் மகனின் உயரம், விலை மற்றும் தேவை,

விளைச்சல் மற்றும் மழை பொழிவு, உயரம் மற்றும் எடை போன்றவை ஆகும். கார்ல் பியர்சன் இவ்வாறாக ஒட்டுறவின் கருத்துருவானது இரண்டு அல்லது அதற்கு மேற்பட்ட மாறிகளுக்கிடையேயானத் தொடர்பை ஒன்றையொன்று சார்ந்து, ஏற்ற இறக்கம் காணும் இருமாறிகளின் படியை அல்லது நீட்சியை அளவிடுவதும், பகுப்பாய்வு செய்வதுமான புள்ளியியல் பகுப்பாய்வு ஒட்டுறவாகும்.

9.1.1 ஒட்டுறவின் பொருள் (Meaning of Correlation)

ஒட்டுறவு என்பது இரண்டு அல்லது அதற்கு மேற்பட்ட மாறிகளுக்கு இடையே உள்ள தொடர்பின் அளவை குறிக்கின்றது. ஒரு மாறியின் மாற்றம் மற்ற மாறியில் மாற்றத்தை ஏற்படுத்தினால் அவ்விரு மாறிகளையும் ஒட்டுறவு மாறிகள் (தொடர்புள்ள மாறிகள்) என்போம்.

ஓட்டுறவின் வகைகள் (Types of correlation) 9.1.2

ஒட்டுறவு பலப் பிரிவுகளாக வகைப்படுத்தப்பட்டுள்ளது. அவற்றுள் முக்கியமானவை

- (i) நேரிடை ஒட்டுறவு
- (ii) எதிரிடை ஒட்டுறவு

நேரிடை மற்றும் எதிரிடை ஒட்டுறவானது மாறிகளின் மாற்றத்தின் திசையைச் சார்ந்தது.

நேரிடை ஒட்டுறவு (Positive Correlation)

இரு மாறிகளின் மதிப்புகளும் ஒரே திசையில் மாறுபட்டால், அதாவது, ஒரு மாறியின் மதிப்பு அதிகரிக்கும்பொழுது, அதனுடன் தொடர்புடைய மற்றோரு மாறியின் மதிப்பு அதிகரித்தாலோ அல்லது ஒரு மாறியின் மதிப்பு குறையும்பொழுது அதனுடன் தொடர்புடைய மற்றோரு மாறியின் மதிப்பு குறைந்தாலோ, அவ்விரு மாறிகளுக்கிடையே உள்ளத் தொடர்பை நேரிடை ஒட்டுறவு என்கிறோம்.

எடுத்துக்காட்டுகள் (Example)

- (i) தனி மனிதர்களின் உயரம் மற்றும் எடை
- (ii) விலை மற்றும் அளிப்பு
- (iii) மழைப்பொழிவு மற்றும் பயிர்களின் விளைச்சல்
- (iv) வருவாய் மற்றும் செலவு

எதிரிடை ஒட்டுறவு (Negative Correlation)

இரு மாறிகளின் மதிப்புக்கள் எதிர்திசையில் மாறுபட்டால், அதாவது ஒரு மாறியின் மதிப்பு அதிகரிக்கும் பொழுது (அல்லது குறையும் பொழுது) அதனுடன் தொடர்புடைய மற்ற மாறியின் மதிப்பு குறைந்தாலோ (அல்லது அதிகரித்தாலோ) அவ்விரு மாறிகளுக்கிடையே உள்ள தொடர்பை எதிரிடை ஒட்டுறவு என்கிறோம்.

எடுத்துக்காட்டுகள் (Example)

- (i) விலை மற்றும் தேவை
- (ii) திருப்பிச் செலுத்த வேண்டியக் காலம் மற்றும் சுலப மாதத்தவணை
- (iii) பயிர்களின் விளைச்சல் மற்றும் விலை

ஒட்டுறவு இன்மை (No Correlation)

ஒரு மாறியில் ஏற்படும் மாற்றத்தின் மதிப்பு மற்றொரு மாறியில் ஏற்படும் மாற்றத்தின் மதிப்பிற்குக் காரணமாக அமையவில்லை எனில், அவ்விரு மாறிகளும் ஒட்டுறவு அற்றவை எனப்பரும்.

எடுத்துக்காட்டு: (For example)

தனி மனிதனின் நிறை மற்றும் அவரின் தலை முடியின் நிறம் அல்லது தனிமனிதனின் உயரம் மற்றும் அவரின் தலை முடியின் நிறம் ஆகியவற்றிற்கிடையே பூச்சிய ஒட்டுறவு இருப்பதை நாம் கண்டிப்பாக பார்க்க இயலும்.

எளிய ஒட்டுறவு (Simple correlation)

இரண்டு மாறிகளுக்கு இடையேயான ஒட்டுறவு, எளிய ஒட்டுறவு எனப்படும். இரண்டிற்கு மேற்பட்ட மாறிகளுக்கு இடையேயான ஒட்டுறவு, பன்முக ஒட்டுறவு எனப்படும்.

பின்வருவன ஒட்டுறவுக் கெழுவின் கணித முறைகளாகும்.

- (i) சிதறல் விளக்கப்படம் (வரைபடம்) (Scatter diagram)
- (ii) கார்ல் பியர்சனின் ஒட்டுறவுக்கெழு (Karl Pearson's Coefficient of Correlation)

9.1.3 சிதறல் விளக்கப்படம் (Scatter Diagram)

 $(X_1,Y_1),(X_2,Y_2)\dots(X_N,Y_N)$ என்பவை X மற்றும் Y மாறிகளின் N இணை மதிப்புகள் என்க. X ன் மதிப்புகளை x அச்சுத் திசையிலும் அதனுடன் தொடர்புடைய , Y –ன் மதிப்புகளை y அச்சுத் திசையிலும் குறிக்கும்பொழுது கிடைக்கப் பெறும் வரைபடம் சிதறல் விளக்கப்படம் என அழைக்கப்படுகிறது. X மற்றும் Y மாறிலிகளின் மதிப்புக்களுக்கிடையே உள்ளத் தொடர்பை இவ்விளக்கப் படம் பிரதிபலிக்கின்றது.

எளிய நேர்கோட்டு ஒட்டுறவிற்கான சிதறல் விளக்கப்படங்கள் கீழேக் கொடுக்கப்பட்டுள்ளன.

Fig 9.1

- (i) குறிக்கப்பட்ட புள்ளிகள் மேல்நோக்கியப் போக்கினைக் கொண்டிருந்தால், மாறிகளுக்கிடையே நேரிடை ஒட்டுறவு உள்ளது எனலாம்.
- (ii) குறிக்கப்பட்ட புள்ளிகள் கீழ்நோக்கியப் போக்கினைக் கொண்டிருந்தால்,மாறிகளுக்கிடையே எதிரிடை ஒட்டுறவு உள்ளது எனலாம்.
- (iii) குறிக்கப்பட்ட புள்ளிகள் எவ்வித போக்கினையும் கொண்டிருக்கவில்லை எனில், அம்மாறிகள் ஒட்டுறவு அற்றது எனலாம்.

9.1.4 கார்ல்பியர்சனின் ஒட்டுறவுக் கெழு (Karl Pearson's Correlation Coefficient)

தலைசிறந்த உயிரியல் ஆய்வாளரும் மற்றும் புள்ளியல் நிபுணருமான கார்ல் பியர்சன் என்பவர் இரு மாறிகளுக்கிடையே உள்ள நேர்க்கோட்டு தொடர்பின் அளவை விவரிக்க (அளக்கக்கூடிய) கணித முறையை உருவாக்கினர். நடைமுறையில், பெருமளவில் பயன்படுத்தப்படும் கார்ல்பியர்சனின் முறையானது, பியர்சனின் ஒட்டறவுக்கெழு என அழைக்கப்படுகிறது. இது r என்ற குறியீட்டால் குறிப்பிடப்பட்டு பின்வருமாறு வரையறுக்கப்படுகிறது.

$$r = \frac{\operatorname{cov}(X,Y)}{\overline{\sigma_x}\,\overline{\sigma_y}}$$
, which $\operatorname{cov}(X,Y) = \frac{1}{N}\sum_i (X-\overline{X})(Y-\overline{Y})$
$$\sigma_x = \sqrt{\frac{1}{N}\sum_{i=1}^N (X_i-\overline{X})^2}$$

$$\sigma_y = \sqrt{\frac{1}{N}\sum_{i=1}^N (Y_i-\overline{Y})^2}$$

எனவே கார்ல்பியர்சனின் ஒட்டுறவுக் கெழுவினைக் கணக்கிடுவதற்கானச் கூத்திரம்

$$r = \frac{\frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^2} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (Y_i - \overline{Y})^2}}$$
$$\sum_{i} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$r = \frac{\sum_{i} (X_{i} - X)(Y_{i} - Y)}{\sqrt{\sum_{i=1}^{N} (X_{i} - \overline{X})^{2}} \sqrt{\sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}}}$$

ஒட்டுறவுக் கெழுவிற்கான விளக்கம்: (Interpretation of Correlation coefficient)

ஒட்டுறவுக் கெழு –1 லிருந்து +1 க்கு இடையே ஓர் மதிப்பைப் பெற்றிருக்கும்.

குறியீட்டில் $-1 \le r \le +1$

- ullet r=+1, எனில் மாறிகளுக்கிடையேயான ஒட்டுறவு முழுமையான நேரிடை ஒட்டுறவு எனப்படும்.
- r=-1, எனில் மாறிகளுக்கிடையேயான ஒட்டுறவு முழுமையான எதிரிடை ஒட்டுறவு எனப்படும்.
- ullet $r{=}0$ எனில் மாறிகளுக்கிடையே எவ்வித தொடர்பும் இல்லை அதாவது ஒட்டுறவு அற்றது எனப்படும்.

எனவே ஒட்டுறவுக் கெழுவானது ஒட்டுறவின் அளவு மற்றும் திசையை விவரிக்கிறது.

ஒட்டுறவுக் கெழுவை காணும் முறைகள் (Methods of computing Correlation Coefficient)

(i) சராசரியைப் பொறுத்து விலக்கம் எடுக்கப்படும் போது: (When deviations are taken from Mean)

ஒட்டுறவை அளக்கும் பல்வேறு கணித முறைகளுள் பெருமளவில் நடைமுறையில் பயன்படுத்தப்படுவது, பிரபலமாக பியர்சனின் ஒட்டறவுக் கெழு என அழைக்கப்பெறும் கார்ல் பியர்சன் முறை ஆகும்.

$$r = \frac{\sum_{i} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\sqrt{\sum_{i=1}^{N} (X_{i} - \overline{X})^{2}} \sqrt{\sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}}} = \frac{\sum_{i} xy}{\sqrt{\sum_{i} x^{2} \sum_{i} y^{2}}}$$

இங்கு
$$x=(X_i-\overline{X})$$
 மற்றும் $y=(Y_i-\overline{Y})$; $i=1,2\ldots N$

உருப்படிகளின் விலக்கங்கள் சராசரியிலிருந்து எடுக்கப்படும் பொழுது மட்டுமே இம்முறையை பயன்படுத்த வேண்டும்.

கணக்குகளின் தீர்வு காண படிகள்: (Steps to solve the problems)

- (i) இரண்டு தொடர்களின் சராசரி, அதாவது $ar{X}$ மற்றும் $ar{Y}$ காண்க.
- (ii) இரண்டு தொடர்களின் விலக்கங்கள் முறையே $ar{X}$ மற்றும் $ar{Y}$ களிலிருந்து எடுத்து இதனை x மற்றும் y எனக் குறிப்பிடுக.
- (iii) x மற்றும் y ஆகியவற்றின் விலக்கங்களின் வர்க்க கூடுதல் கணக்கிட்டு, அவற்றை $\sum x^2$ மற்றும் $\sum y^2$ எனக் குறிப்பிடுக.
- (iv) x மற்றும் y களின் விலக்கங்களைப் பெருக்கி, அவற்றின் கூடுதல் $\sum xy$ காண்க.
- (v) $\sum xy$, $\sum x^2$ மற்றும் $\sum y^2$ ஆகியவற்றின் மதிப்புகளை மேற்கண்டச் சூத்திரத்தில் பிரதியிடுக.

எடுத்துக்காட்டு 9.1

பின்வரும் விவரங்களுக்கு கார்ல் பியர்சனின் ஒட்டுறவுக் கெழுவினைக் கணக்கிடுக

<i>X</i> :	6	8	12	15	18	20	24	28	31
Y :	10	12	15	15	18	25	22	26	28

தீர்வு:

X	x = (X-18)	x^2	Y	y = (Y-19)	y^2	xy
6	-12	144	10	-9	81	108
8	-10	100	12	-7	49	70
12	-6	36	15	-4	16	24
15	-3	9	15	-4	16	12
18	0	0	18	-1	1	0
20	2	4	25	6	36	12
24	6	36	22	3	9	18
28	10	100	26	7	49	70
31	13	169	28	9	81	117
$\sum X = 162$	$\sum x = 0$	$\sum x^2 = 598$	$\sum Y = 171$	$\sum y = 0$	$\sum y^2 = 338$	$\sum xy = 431$

அட்டவணை 9.1

$$N=9, \ \overline{X} = \frac{\Sigma X}{N} = \frac{162}{9} = 18, \overline{Y} = \frac{\Sigma Y}{N} = \frac{171}{9} = 19$$
 $r = \frac{\Sigma xy}{\sqrt{\Sigma x^2 \Sigma y^2}}$ இங்க $x=(X-\overline{X})$ மற்றும் $y=(Y-\overline{Y})$ $\Sigma xy = 431, \ \Sigma x^2 = 598, \ \Sigma y^2 = 338$

 $r = \frac{431}{\sqrt{598 \times 338}} = \frac{431}{449.582} = +0.959$

மதிப்புகள் குறிப்பிடத்தக்க அளவில் சிறியதாக இருக்கும் நிலையில் பின்வரும் சூத்திரம் பயன்படுத்தப்படுகின்றது

$$r = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{\sqrt{N\Sigma X^2 - (\Sigma X)^2} \times \sqrt{N\Sigma Y^2 - (\Sigma Y)^2}}$$

எடுத்துக்காட்டு 9.2

பின்வரும் விவரங்களிலிருந்து ஒட்டுறவுக் கெழுவினைக் கணக்கிடுக

X	12	9	8	10	11	13	7
Y	14	8	6	9	11	12	3

தீர்வு:

இரண்டு தொடர்களில் உள்ள எண் விவரங்கள் சிறிய எண்களாக உள்ளன. எனவே சராசரி அல்லது ஊகச் சராசரியிலிருந்து விலக்கு எடுக்காமல் ஒட்டுறவுக் கெழுவினை காணலாம்.

X	Y	X^2	Y^2	XY	
12	14	144	196	168	
9	8 81		64	72	
8	6	64	36	48	
10	9	100	81	90	
11	11	121	121	121	
13	12	169	144	156	
7	3	49	9	21	
$\sum X = 70$	$\sum Y = 63$	$\sum X^2 = 728$	$\sum Y^2 = 651$	$\sum XY = 676$	

அட்டவணை 9.2

$$r = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{\sqrt{N\Sigma X^2 - (\Sigma X)^2} \times \sqrt{N\Sigma Y^2 - (\Sigma Y)^2}}$$

$$= \frac{7(676) - (70)(63)}{\sqrt{7(728) - (70)^2} \times \sqrt{7(651) - (63)^2}}$$

$$= \frac{322}{339.48}$$

$$r = +0.95$$

(iii) ஊகச் சராசரியிலிருந்து விலக்கம் எடுக்கப்படும் நிலையில் (When deviations are taken from an Assumed mean)

சராசரி முழு எண்ணாக இல்லாத நிலையில், அதாவது X மற்றும் Y தொடர்களில் சரசாரி 20.167 மற்றும் 29.23 எனில் மேற்கண்ட முறையில் ஒட்டுறவுக் காணும்பொழுது கணக்கீடு கடினமானதாகவும், அதிக நேரம் எடுப்பதாகவும் இருக்கும். அவ்வாறான நிலையில் ஊகச் சராசரி முறை மூலம் ஒட்டுறவுக் கெழுவினைக் காணலாம். விலக்கமானது ஊகச் சராசரியிலிருந்து எடுக்கப்படும் நிலையில் பின்வரும் கூத்திரத்தைப் பயன்படுத்தலாம்.

$$r = \frac{N\Sigma \, dx \, dy - (\Sigma dx)(\Sigma dy)}{\sqrt{N\Sigma dx^2 - (\Sigma dx)^2} \times \sqrt{N\Sigma dy^2 - (\Sigma dy)^2}}$$

இங்கு dx=X-A மற்றும் dy=Y-B . A மற்றும் B என்பன ஊகச் சராசரிகள்.

ஊகச் சராசரி முறையைப் பயன்படுத்தும்பொழுது எந்த மதிப்பை ஊகச் சராசரியாக எடுத்தாலும் ஒரே விடைதான் கிடைக்கும். இருந்தபோதிலும் ஊகச் சராசரியைச் சராசரிக்கு அருகாமையில் எடுக்கும்போது, கணக்கீடு எளிமையானதாக இருக்கும்.

ஊகச் சராசரி கணக்குகளின் தீர்வு காண படிகள் (Steps to solve the problems)

- (i) X தொடருக்கு ஊகச் சராசரியிலிருந்து விலக்கம் எடுத்து, இவ்விலக்கங்களை dx எனக் குறித்து Σdx காண்க..
- (ii) Y தொடருக்கு ஊகச் சராசரியிலிருந்து விலக்கம் எடுத்து, இவ்விலக்கங்களை dy என குறித்து Σdy காண்க.
- (iii) dx–ஐ வர்க்கப்படுத்தி Σdx^2 காண்க.
- (iv) dy–ஐ வர்க்கப்படுத்தி Σdy^2 காண்க.
- (v) dx மற்றும் dy ஆகிய இரண்டையும் பெருக்கிக் $\sum dx\ dy$ காண்க.
- (vi) $\sum dxdy$, $\sum dx$, $\sum dy$, $\sum dx^2$ மற்றும் $\sum dy^2$ ஆகியவற்றின் மதிப்புகளை மேலேக் கொடுக்கப்பட்டச் சூத்திரத்தில் பிரதியிடுக.

எடுத்துக்காட்டு 9.3

பின்வருவனவற்றுக்கு ஒட்டுறவுக் கெழுவினைக் காண்க. மேலும் அதன் உட்பொருளை வெளிப்படுத்து.

தந்தையின் உயரம் (அங்குலங்களில்)	65	66	67	67	68	69	71	73
மகனின் உயரம் (அங்குலங்களில்)	67	68	64	68	72	70	69	70

தீர்வு:

தந்தையின் உயரம் (அங்குலங்களில்) X எனவும், மகனின் உயரம் (அங்குலங்களில்) Y எனவும் கொள்க.

X	dx = (X - 67)	dx^2	Y	dy = (Y - 68)	dy^2	dxdy
65	-2	4	67	-1	1	2
66	-1	1	68	0	0	0
67	0	0	64	-4	16	0
67	0	0	68	0	0	0

68	1	1	72	4	16	4
69	2	4	70	2	4	4
71	4	16	69	1	1	4
73	6	36	70	2	4	12

$$\sum X = 546 \quad \sum dx = 10 \quad \sum dx^2 = 62 \sum Y = 548 \quad \sum dy = 4 \quad \sum dy^2 = 4 \sum dx dy = 26$$

அட்டவணை 9.3

$$r = \frac{N \sum dx \, dy - (\sum dx)(\sum dy)}{\sqrt{N\sum dx^2 - (\sum dx)^2} \times \sqrt{N\sum dy^2 - (\sum dy)^2}}$$

இங்கு

$$\Sigma dx = 10, \ \Sigma dx^2 = 62, \ \Sigma dy = 4, \ \Sigma dy^2 = 42$$
 where $\Sigma dx dy = 26$
$$r = \frac{(8 \times 26) - (10 \times 4)}{\sqrt{(8 \times 62) - (10)^2} \times \sqrt{(8 \times 42) - (4)^2}}$$

$$r = \frac{168}{\sqrt{396} \times \sqrt{320}}$$

$$r = \frac{168}{355.98} = 0.472$$

$$r = +0.472$$

தந்தையரின் உயரங்கள் மற்றும் அவர்களுக்கு தொடர்புடைய மகன்களின் உயரங்கள் ஆகியவற்றிற்கிடையே நேரடியான ஒட்டுறவு உள்ளது.

எடுத்துக்காட்டு 9.4

பின்வரும் விவரங்களிலிருந்து ஒட்டுறவுக் கெழுவைக் கணக்கிடுக.

$$N=9$$
, $\sum X = 45$, $\sum Y = 108$, $\sum X^2 = 285$, $\sum Y^2 = 1356$, $\sum XY = 597$

தீர்வு:

ஓட்டுறவுக் கெழு
$$r=rac{N\Sigma XY-(\Sigma X)(\Sigma Y)}{\sqrt{N\Sigma X^2-(\Sigma X)^2}\sqrt{N\Sigma Y^2-(\Sigma Y)^2}}$$

$$=rac{9(597)-(45\times 108)}{\sqrt{9(285)-(45)^2}\times\sqrt{9(1356)-(108^2)}}$$
 $r=+0.95$

எடுத்துக்காட்டு 9.5

கீழ்கண்ட விவரங்களுக்கு ஒட்டுறவுக் கெழுவைக் கணக்கிடுக.

$$\Sigma xy = 120$$
, $\Sigma x^2 = 90$, $\Sigma y^2 = 640$

தீர்வு:

 $\Sigma xy = 120, \ \Sigma x^2 = 90, \ \Sigma y^2 = 640$ என கொடுக்கப்பட்டுள்ளது

$$r = \frac{\sum xy}{\sqrt{\sum x^2 \sum y^2}} = \frac{120}{\sqrt{90(640)}} = \frac{120}{\sqrt{57600}} = \frac{120}{240} = 0.5$$

$$\therefore r = 0.5$$

9.2 தூ ஒட்டுறவுக் கெழு (Rank correlation)

ஸ்பியர்மென்னின் தர ஒட்டுறவுக் கெழு (Spearman's Rank Correlation Coefficient)

1904–ல் சார்லஸ் எட்வர்ட் ஸ்பியர்மென் என்ற பிரிட்டிஷ் உளவியல் வல்லுனரால் ஒட்டுறவுக் கெழுவைத் தரத்தின் மூலம் காணும் முறையைக் கண்டுபிடித்தார். இம்முறை தரத்தை அடிப்படையாகக் கொண்டது. இம்முறை தர பண்புகளான அதாவது அறிவு, அழகு, நடத்தை, குணம் போன்றவைகளை அளவீடு செய்யப் பயன்படுகிறது. இதனை பியர்சனின் ஒட்டுறவுக்கெழு போல் எண்ணளவில் அளவீடு செய்ய இயலாது.

தனித்த விவரங்களுக்கு மட்டுமே தர ஒட்டுறவுக் கெழுவை பயன்படுத்த இயலும். இம்முறையில் பெரும்பாலும் முடிவு தோராயமானது, ஏனெனில் இம்முறையில் உண்மையான மதிப்பு கணக்கில் கொள்ளப்படுவதில்லை. ஸ்பியர்மென்னின் தர ஒட்டுறவுக் கெழு " row" என்று உச்சரிக்கப்பட்டு, 'ho' என்றக் குறியீட்டின் மூலம் குறிப்பிடப்படுகின்றது. ஸ்பியர்மென்னின் தர ஒட்டுறவுக் கெழு காண்பதற்கான கூத்திரம்,

$$\rho = 1 - \frac{6\Sigma d^2}{N(N^2 - 1)}$$

அல்லகு

$$\rho = 1 - \frac{6\Sigma d^2}{N^3 - N}$$

இங்கு d = இரண்டு தரங்களின் வேறுபாடு = $R_X - R_Y$ மற்றும்

N= இணை உறுப்புகளின் எண்ணிக்கை..

தர ஒட்டுறவுக் கெழு –1லிருந்து +1 க்கு இடையே ஓர் மதிப்பைப் பெற்றிருக்கும்.

குறியீட்டில்
$$-1 \leq \rho \leq +1$$

ஸ்பியர்மென்னின் தர ஒட்டுறவு கணக்கிடும் பொழுது, நாம் இரண்டு வகையான கணக்குகளை காணலாம்

- (i) தரங்கள் கொடுக்கப்பட்டிருக்கும் பொழுது
- (ii) தரங்கள் கொடுக்கப்படாத பொழுது

எடுத்துக்காட்டு 9.6

புள்ளியியல் மற்றும் கணிதவியலில் 10 மாணவர்கள் பெற்ற தரவரிசைகள் கீழேக் கொடுக்கப்பட்டுள்ளன.

புள்ளியியல்	1	2	3	4	5	6	7	8	9	10
கணிதவியல்	1	4	2	5	3	9	7	10	6	8

தர ஒட்டுறவுக் கெழுவைக் காண்க.

தீர்வு:

 $R_{_{X}}$ என்பது புள்ளியியல் பாடத்தில் மாணவர்கள் பெற்றத் தரவரிசை என்க. $R_{_{Y}}$ என்பது கணிதவியல் பாடத்தில் மாணவர்கள் பெற்றத் தரவரிசை என்க.

$R_{_{X}}$	$R_{_Y}$	$d = R_X - R_Y$	d^2
1	1	0	0
2	4	-2	4
3	2	1	1
4	5	-1	1
5	3	2	4
6	9	-3	9
7	7	0	0
8	10	-2	4
9	6	3	9
10	8	2	4
			$\sum d^2 = 36$

அட்டவணை 9.4

தர ஒட்டுறவுக் கெழு கீழேக் கொடுக்கபட்டுள்ளது.

$$\rho = 1 - \frac{6\Sigma d^2}{N(N^2 - 1)}$$

$$= 1 - \frac{6(36)}{10(10^2 - 1)}$$

$$= 1 - 0.218$$

$$\therefore \qquad \rho = 0.782$$

எடுத்துக்காட்டு 9.7

அழகுப் போட்டியில் பங்கேற்ற 10 போட்டியாளர்களுக்கு, மூன்று நீதிபதிகள் தூவரிசை கீழே கொடுக்கப்பட்டுள்ளது.

முதல் நீதிபதி	1	4	6	3	2	9	7	8	10	5
இரண்டாம் நீதிபதி	2	6	5	4	7	10	9	3	8	1
மூன்றாம் நீதிபதி	3	7	4	5	10	8	9	2	6	1

தர ஒட்டுறவுக் கெழுவைப் பயன்படுத்தி எந்த இரு நீதிபதிகளுக்கு அழகியல் கருத்தில் பொதுவான அணுகுமுறை உள்ளது எனக் காண்க?

தீர்வு:

 $R_{_{X}}\!,\!R_{_{Y}}\!,\!R_{_{Z}}$ dஎன்பன முறையே முதல், இரண்டாம் மற்றும் மூன்றாம் நீதிபதிகள் போட்டியாளர்களுக்கு அளித்தத் தரவரிசையைக் குறிக்கின்றது.

$R_{\mathbf{x}}$	$R_{ m Y}$	$R_{ m z}$	$\begin{vmatrix} d_{XY} \\ = R_X - R_Y \end{vmatrix}$	$\begin{vmatrix} d_{YZ} \\ = R_Y - R_Z \end{vmatrix}$	$\begin{vmatrix} d_{ZX} \\ = R_Z - R_X \end{vmatrix}$	d_{XY}^2	$d_{Y\!Z}^2$	d_{ZX}^2
1	2	3	-1	-1	2	1	1	4
4	6	7	-2	-1	3	4	1	9
6	5	4	1	1	-2	1	1	4
3	4	5	-1	-1	2	1	1	4
2	7	10	-5	-3	8	25	9	64
9	10	8	-1	2	-1	1	4	1
7	9	9	-2	0	2	4	0	4
8	3	2	5	1	-6	25	1	36
10	8	6	2	2	-4	4	4	16
5	1	1	4	0	-4	16	0	16
						$\sum d_{XY}^2 = 82$	$\sum d_{YZ}^2 = 22$	$\sum d_{ZX}^2 = 158$

அட்டவணை 9.5

$$\rho_{XY} = 1 - \frac{6\Sigma d_{XY}^2}{N(N^2 - 1)} = 1 - \frac{6(82)}{10(10^2 - 1)} = 1 - 0.4969 = 0.5031$$

$$\begin{split} \rho_{YZ} &= 1 - \frac{6\Sigma d_{YZ}^2}{N(N^2 - 1)} = 1 - \frac{6(22)}{10(10^2 - 1)} = 1 - \frac{132}{990} \\ &= 1 - 0.1333 = 0.8667 \end{split}$$

$$\rho_{ZX} = 1 - \frac{6\Sigma d_{ZX}^2}{N(N^2 - 1)} = 1 - \frac{6(158)}{10(10^2 - 1)} = 1 - 0.9576 = 0.0424$$

இரண்டாம் மற்றும் மூன்றாம் நீதிபதிகளுக்கு இடையேயான தரஒட்டுறவுக் கெழு அதாவது ho_{YZ} என்பது மூன்று கெழுக்களிடையே, மிகை மற்றும் அதிக நிறை கொண்டுள்ளது. எனவே, இரண்டாம் மற்றும் மூன்றாம் நீதிபதிகளுக்கிடையே அழகியல் பற்றி ஒரு பொதுவான அணுகுமுறை காணப்படுகிறது.

எடுத்துக்காட்டு 9.8

கீழே கொடுக்கப்பட்டுள்ள விவரங்களுக்குத் தர ஒட்டுறவுக் கெழுவை காண்க.

பாடம் 1	40	46	54	60	70	80	82	85	87	90	95
பாடம் 2	45	46	50	43	40	75	55	72	65	42	70

தீர்வு:

X என்பது பாடம் 1 எனவும் மற்றும் Y என்பது பாடம் 2 எனவும் கருதவும்.

X	Y	$R_{_{X}}$	$R_{_Y}$	$d = R_X - R_Y$	d^2
40	45	1	4	-3	9
46	46	2	5	-3	9
54	50	3	6	-3	9
60	43	4	3	1	1
70	40	5	1	4	16
80	75	6	11	-5	25
82	55	7	7	0	0
85	72	8	10	-2	4
87	65	9	8	1	1
90	42	10	2	8	64
95	70	11	9	2	4
					$\sum d^2 = 142$

அட்டவணை 9.6

$$\rho = 1 - \frac{6\Sigma d^2}{N(N^2 - 1)}$$

$$\rho = 1 - \frac{6(142)}{11(11^2 - 1)}$$

$$\rho = 1 - \frac{852}{1320} = 0.354$$

1. பின்வரும் விவரங்களுக்கு ஒட்டுறவுக் கெழுவினை கணக்கிடுக.

X	5	10	5	11	12	4	3	2	7	1
Y	1	6	2	8	5	1	4	6	5	2

2. பின்வரும் விவரங்களுக்கு ஒட்டுறவுக் கெழுவினை கணக்கிடுக.

ഖിതെ (ரூ.)	14	19	24	21	26	22	15	20	19
விற்பனை (ரூ.)	31	36	48	37	50	45	33	41	39

 கணவர்கள் மற்றும் அவர்தம் மனைவியர்களின் வயதிற்கிடையேயான ஒட்டுறவுக் கெழுவை காண்க.

கணவர்களின் வயது	23	27	28	29	30	31	33	35	36	39
மனைவிகளின் வயது	18	22	23	24	25	26	28	29	30	32

4. பின்வரும் விவரங்களிலிருந்து Xமற்றும் Y தொடர்களுக்கிடையே ஒட்டுறவுக் கெழுவினை கணக்கிடுக.

	X	Y
இணை சோடிகளின் விவரங்களின் எண்ணிக்கை	15	15
கூட்டுச் சராசரி	25	18
திட்ட விலக்கம்	3.01	3.03
சராசரியிலிருந்துப் பெறப்பட்ட விலக்கங்களின் வர்க்கங்களின் கூடுதல்	136	138

X மற்றும் Y தொடர்களுக்கு முறையே அவற்றின் சராசரிகளிலிருந்து பெறப்பட்ட விலக்கங்களின் பெருக்கல்களின் கூடுதல் 122 ஆகும்.

5. பின்வரும் விவரங்களுக்கு ஒட்டுறவுக்கெழு கணக்கிடுக

X	25	18	21	24	27	30	36	39	42	48
Y	26	35	48	28	20	36	25	40	43	39

6. பின்வரும் விவரங்களுக்கு ஒட்டுறவுக் கெழுவினை காண்க.

X	78	89	96	69	59	79	68	62
Y	121	72	88	60	81	87	123	92

7. கணக்காளர் பதவிக்கு விண்ணப்பம் செய்த 11 விண்ணப்பதாரர்களுக்கு ஒரு நிறுவனம் நடத்திய போட்டித் தேர்வில் திறனாய்வுத் தேர்வு மற்றும் தர்க்க அறிவுத்தேர்வில் அவர்கள் பெற்ற மதிப்பெண்களின் விவரம் கீழே கொடுக்கப்பட்டுள்ளது.

விண்ணப்பதாரர்	A	В	С	D	Е	F	G	Н	I	J	K
தர்க்க அறிவுத் தேர்வு	20	50	28	25	70	90	76	45	30	19	26
திறனாய்வுத் தேர்வு	30	60	50	40	85	90	56	82	42	31	49

மேலே கொடுக்கப்பட்ட விவரங்களிலிருந்து ஸ்பியர்மென்னின் தர ஒட்டுறவுக் கெழுவினை கணக்கிடுக.

8. பத்து மாணவர்கள் வணிகவியல் மற்றும் கணக்குப் பதிவியல் பாடத்தில் பெற்றத் தரங்கள் பின்வருமாறு

வணிகவியல்	6	4	3	1	2	7	9	8	10	5
கணக்குப் பதிவியல்	4	1	6	7	5	8	10	9	3	2

இரு பாடங்களில் மாணவர்களின் அறிவு எந்த அளவிற்குத் தொடர்புடையது?

9. சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்பட்டச் சமீபத்தியப் பழுது வேலைகளின் மதிப்பிடப்பட்ட விலை மற்றும் அசல் விலை பதிவுச் செய்யப்பட்டுள்ளது.

மதிப்பிடப்பட்ட செலவு	300	450	800	250	500	975	475	400
அசல் செலவு	273	486	734	297	631	872	396	457

ஸ்பியர்மென்னின் தர ஒட்டுறவுக் கெழுவினை கணக்கிடுக.

10. ஒரே ஆண்டில் படித்த 10 மாணவர்கள் A மற்றும் B பாடங்களில் பெற்ற தரங்கள் கீழேக் கொடுக்கப்பட்டுள்ளன. தர ஒட்டுறவுக் கெழுவினை கணக்கிடுக.

A–ன் தரவரிசை	1	2	3	4	5	6	7	8	9	10
B –ன் தரவரிசை	6	7	5	10	3	9	4	1	8	2

9.3 தொடர்புப் போக்கு பகுப்பாய்வு (Regression Analysis)

இதுவரையில் நாம் இரு மாறிகளுக்கிடையேயான திசை மற்றும் உறவின் வலிமை ஆகியவற்றை அளவிடும் ஒட்டுறவுப் பகுப்பாய்வினைப் பற்றிக் கற்றோம். இங்கு கொடுக்கப்பட்ட ஒரு மாறியின் மதிப்பிலிருந்து மற்றொரு மாறியின் மதிப்பை நாம் மதிப்பிடவோ அல்லது கணிக்கவோ இயலும். எடுத்துக்காட்டாக, விலை மற்றும் தேவை என்பன ஒட்டுறவுப் பெற்றவை. கொடுக்கப்பட்ட விலைக்கு ஏற்ப எதிர்பார்க்கப்படும் தேவையின் அளவையோ அல்லது கொடுக்கப்பட்ட தேவையின் அளவிற்கேற்ப தேவைப்படும் விலையின் அளவையோ நாம் காணலாம்.

"தொடர்புப் போக்கு" என்பதன் பொருள் யாதெனில் "சராசரியை நோக்கி பின்நோக்கி செல்லுதல்" என்பதாகும். சர் பிரான்ஸிஸ் கால்டன் (1822 – 1911) என்ற ஒரு பிரிட்டன் உயிர் நுட்பவியலாளர், மரபுவழித் தொடர்கிற குணாதிசயங்களை ஆராயும்பொழுது இதனை முதன் முதலில் பயன்படுத்தினார். மிகவும் உயரமான அல்லது குள்ளமான பெற்றோர்களின் வாரிசுகளின் மக்கள் தொகையானது சராசரியான உயரத்தை அடைவதைக் கால்டன் கண்டார். ஆனால் தற்போது தொடர்புப் போக்கு என்கிற வார்த்தை உயிர்நுட்பவியலில் தொடர்பு இல்லாமல் புள்ளியியலில் மட்டும் சாதகமாக பயன்படுத்தப்படும் ஓர் வார்த்தையாக உள்ளது.

வரையறை 9.1

தொடர்புப் போக்கு என்பது இரண்டு அல்லது அதற்கு மேற்பட்ட மாறிகளுக்கிடையே உள்ளச் சரசாரித் தொடர்பை கொடுக்கப்பட்ட விவரங்களின் அலகில் அறியும் கணக்கியல் அளவு ஆகும்.

9.3.1 சார்புள்ள மாறி மற்றும் சார்பற்ற மாறி (Dependent and independent variables)

வரையறை 9.2

தொடர்புப் போக்கு ஆய்வில் இரு வகையான மாறிகள் உள்ளன. கணிக்கக்கூடிய மாறி சார்புள்ள மாறி எனவும் கணிப்பதற்குப் பயன்படக்கூடிய மாறி சார்பற்ற மாறி எனவும் வரையறுக்கப்படுகிறது.

ஒரு மாறியின் மதிப்பு கொடுக்கப்பட்டால் மற்றொரு மாறியின் மதிப்பைக் கணக்கிட தொடர்புக் போக்கு நமக்கு பயன்படுகிறது. ஒரு மாறியின் மதிப்பு தெரியாத நிலையில், அதனை மதிப்பிடுவதற்கு, அதனுடன் தொடர்புடைய மற்றொரு மாறியின் மதிப்பை பயன்படுத்தும் புள்ளியியல் முறை, தொடர்புப் போக்கு எனப்படும்.

9.3.2 தொடர்புப் போக்கு சமன்பாடுகள் (Regression Equations)

தொடர்புப் போக்கு சமன்பாடுகள் என்பன தொடர்புப் போக்கு கோடுகளின் இயற்கணித அமைப்பாகும். இரண்டு தொடர்புப் போக்கு கோடுகள் உள்ளதால், இரண்டு தொடர்புப் போக்கு சமன்பாடுகள் உள்ளன. கொடுக்கப்பட்ட Y–ன் மதிப்பில் ஏற்படும் மாற்றத்திற்கேற்ப X–ன் மதிப்பில்

ஏற்படும் மாற்றத்தை விவரிக்க Y–ன் மீதான X–ன் தொடர்புப் போக்குச் சமன்பாடு பயன்படுத்தப்படுகிறது மற்றும் கொடுக்கப்பட்ட X–ன் மதிப்பில் ஏற்படும் மாற்றத்திற்கேற்ப Y ன் மதிப்பில் ஏற்படும் மாற்றத்தை விவரிக்க X–ன் மீதான Y –ன் தொடர்புப் போக்குச் சமன்பாடு பயன்படுத்தப்படுகிறது. தொடர்புப் போக்குச் சமன்பாடுகள் (i) Y –ன் மீதான X –ன் சமன்பாடு (ii) X–ன் மீதான Y –ன் சமன்பாடு மற்றும் அவற்றின் கெழுக்கள் பல்வேறு வகைகளில் கீழ்கண்டவாறு விவரிக்கப்படுகிறது.

வகை 1: கொடுக்கப்பட்ட மதிப்புகளை அவ்வாறே எடுத்துக்கொள்ளும் பொழுது

X மற்றும் Y மாறிகளில் கொடுக்கப்பட்ட மதிப்புகளை அவ்வாறே எடுத்துக்கொள்ளும் பொழுது தொடர்புப் போக்குச் சமன்பாடுகள் மற்றும் அவைகளின் கெழுக்கள் கீழ்க்கண்டவாறு எழுதப்படுகின்றது.

 ${
m Y}$ ன் மீது ${
m X}$ ன் தொடர்புப் போக்குச் சமன்பாடு : ${
m X}=b_{_{{
m X}{
m Y}}}({
m Y}-\overline{{
m Y}})$ (i)

இங்கு X தொடரின் சராசரி \overline{X} ,

Y தொடரின் சராசரி \overline{Y} ,

 $b_{xy} = r \; rac{\sigma_x}{\sigma_y} = \; rac{N\Sigma XY - (\Sigma X)\,(\Sigma Y)}{N\Sigma Y^2 - (\Sigma Y)^2} \;$ என்பது Y–ன் மீதான X–ன் தொடர்புப் போக்குக் கெழு மற்றும் r என்பது X மற்றும் Y ஆகியவற்றின் ஒட்டுறவுக்கெழு, $\sigma_{_{_{X}}}$ மற்றும் $\sigma_{_{_{V}}}$ ஆகியன முறையே X மற்றும் Y திட்ட விலக்கங்கள் ஆகும்.

(ii) X ன் மீது Y– ன் தொடர்புப் போக்குச் சமன்பாடு:Y– \overline{Y} = $b_{yx}(X$ – \overline{X})

இங்கு X தொடரின் சராசரி X ,

Y தொடரின் சராசரி \overline{Y} ,

 $b_{yx}=r~rac{\sigma y}{\sigma x}=rac{N\Sigma XY-(\Sigma X)(\Sigma Y)}{N\Sigma X^2-(\Sigma X)^2}$ என்பது X–ன் மீதான Y–ன் தொடர்புப் போக்குக் கெழு மற்றும் r என்பது X மற்றும் Y ஆகியவற்றின் ஒட்டுறவுக் கெழு, $\sigma_{_{_{\! X}}}$, $\sigma_{_{_{\! Y}}}$ ஆகியன முறையே X மற்றும் Y ஆகியவற்றின் திட்ட விலக்கங்கள் ஆகும்.

வகை 2 : X மற்றும் Y ஆகியவைகளின் கூட்டுசராசரியிலிருந்து விலக்கங்கள் பெற்று கணக்கிடுதல்

X மற்றும் Y ஆகியவைகளின் மதிப்புகளுக்கு பதிலாக X மற்றும் Y தொடர்களின் சராசரியிலிருந்து விலக்கம் கண்டு கணக்கிடுவது மிக எளிது. அவ்வாறான நிலையில் இரண்டு போக்குச் சமன்பாடுகள் மற்றும் அவைகளின் கெழுக்கள் கீழ்க்கண்டவாறு தொடர்புப் எழுதப்படுகின்றது.

Y –ன் மீது X –ன் தொடர்புப் போக்குச் சமன்பாடு: $X-\overline{X}=b_{xy}$ $(Y-\overline{Y})$ (i) இங்கு X தொடரின் சராசரி X ,

Y தொடரின் சராசரி \overline{Y} ,

$$b_{xy} = r \frac{\sigma x}{\sigma y} = \frac{\sum xy}{\sum y^2}$$
 என்பது Y –ன் மீதான X –ன் உடன் தொடர்புப் போக்குக் கெழு, $x = (X - \overline{X})$ மற்றும் $y = (Y - \overline{Y})$

(ii) X ன் மீது Y– ன் தொடர்புப் போக்குச் சமன்பாடு:

$$Y - \overline{Y} = b_{yx}(X - \overline{X})$$

இங்கு X தொடரின் சராசரி \overline{X} ,

Y தொடரின் சராசரி \overline{Y} ,

 $b_{yx} = r \; rac{\sigma y}{\sigma x} = rac{\sum xy}{\sum x^2}$ என்பது Y–ன் மீதான X–ன் உடன் தொடர்புப் போக்குக் கெழு,

$$x = (X - \overline{X})$$
 மற்றும் $y = (Y - \overline{Y})$

குறிப்பு:

ஒட்டுறவுக் கெழு σ_{X} , σ_{Y} காண்பதற்குப் பதிலாக $\sum xy$, $\sum y^{2}$ ஆகியவற்றின் மதிப்புகளைக் கணக்கிட்டு தொடர்புப் போக்குக் கெழுவைக் காணலாம்.

வகை 3: ஊகச் சராசரிகளிலிருந்து விலக்கம் பெறுதல்

X மற்றும் Y மாறிகளின் சராசரிகள் பின்னமாக இருக்கையில் ஊகச் சராசரிகளிலிருந்து விலக்கங்கள் பெறப்பட்டு கணக்கீடுகளை எளிதாக்க முடியும். இரண்டு தொடர்புப் போக்குச் சமன்பாடுகள் மற்றும் அவைகளின் கெழுக்கள் கீழ்கண்டவாறு எழுதப்படுகின்றது.

(i) X –ன் மீது Y –ன் தொடர்புப் போக்குச் சமன்பாடு:

$$Y - \overline{Y} = b_{yx}(X - \overline{X})$$

$$b_{yx} = \frac{N\Sigma dx dy - (\Sigma dx)(\Sigma dy)}{N\Sigma dx^2 - (\Sigma dx)^2}$$

(ii) Y–ன் மீது X– ன் தொடர்புப் போக்குச் சமன்பாடு:

$$X - \overline{X} = b_{xy}(Y - \overline{Y})$$

$$b_{xy} = \frac{N\Sigma dx dy - (\Sigma dx)(\Sigma dy)}{N\Sigma dy^2 - (\Sigma dy)^2}$$

இங்கு dx=X-A, dy=Y-B, A மற்றும் B ஆகியவைகள் ஊகச் சராசரிகள் அல்லது X மற்றும் Y ஆகியவற்றிலிருந்து முறையே பெறப்படும் தன்னிச்சையான மதிப்புகள் ஆகும்.

தொடர்புப் போக்குக் கெழுவின் பண்புகள்

(i) ஒட்டுறவுக் கெழுவானது தொடர்புப் போக்குக்கெழுக்களின் பெருக்கல் சராசரி ஆகும்.

$$r = \pm \sqrt{b_{xy} \times b_{yx}}$$

- (ii) ஒரு தொடர்புப் போக்குக் கெழுவின் மதிப்பு 1-ஐ விடப் பெரியது எனில் மற்றொன்றின் மதிப்பு 1-ஐ விடச் சிறியதாகத் தான் இருக்கும்.
- (iii) இரு தொடர்புப் போக்குக் கெழுக்களும் ஒரே குறியைப் பெற்றிருக்கும்.

எடுத்துக்காட்டு 9.9

பின்வரும் விவரங்களிலிருந்து தொடர்புப் போக்குக் கெழுக்கள் மற்றும் தொடர்புப் போக்குக் கோடுகளை காண்க.

X	1	2	3	4	5	6	7
Y	9	8	10	12	11	13	14

தீர்வு:

X	Y	X^2	Y^2	X^{Y}
1	9	1	81	9
2	8	4	64	16
3	10	9	100	30
4	12	16	144	48
5	11	25	121	55
6	13	36	169	78
7	14	49	196	98
$\sum X = 28$	$\sum Y = 77$	$\sum X^2 = 140$	$\sum Y^2 = 875$	$\sum XY = 334$

அட்டவணை 9.7

$$\overline{X} = \frac{\Sigma X}{N} = \frac{28}{7} = 4,$$

$$\overline{Y} = \frac{\Sigma Y}{N} = \frac{77}{7} = 11$$

Y–ன் மீது X –ன் தொடர்புப் போக்குக் கெழு

$$b_{xy} = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{N\Sigma Y^2 - (\Sigma Y)^2}$$

$$= \frac{7(334) - (28)(77)}{7(875) - (77)^2}$$

$$= \frac{2338 - 2156}{6125 - 5929}$$

$$= \frac{182}{196}$$

$$b_{xy} = 0.929$$

Y–ன் மீது X –ன் தொடர்புப் போக்குச் சமன்பாடு

$$X - \overline{X} = b_{xy}(Y - \overline{Y})$$

 $X - 4 = 0.929(Y - 11)$
 $X - 4 = 0.929Y - 10.219$

$\therefore Y$ –ன் மீது X –ன் தொடர்பு போக்குச் சமன்பாடு

$$X = 0.929Y - 6.219$$

X –ன் மீது Y–ன் தொடர்புப் போக்குக் கெழு

$$b_{yx} = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{N\Sigma X^2 - (\Sigma X)^2}$$
$$= \frac{7(334) - (28)(77)}{7(140) - (28)^2}$$
$$= \frac{2338 - 2156}{980 - 784}$$
$$= \frac{182}{196}$$

$$\therefore \qquad b_{yx} = 0.929$$

X –ன் மீது Y–ன் தொடர்புப் போக்குச் சமன்பாடு

$$Y - \overline{Y} = b_{yx}(X - \overline{X})$$

 $Y - 11 = 0.929 (X - 4)$
 $Y = 0.929X - 3.716 + 11$
 $Y = 0.929X + 7.284$

\therefore X –ன் மீது Y–ன் தொடர்புப் போக்குச் சமன்பாடு

$$Y = 0.929X + 7.284$$

எடுத்துக்காட்டு 9.10

கீழேத் தரப்பட்டுள்ள விவரத்திற்கு X மற்றும் Y ன் சராசரிகளிலிருந்து விலக்கம் கண்டு Y ன் மீதான X மற்றும் X–ன் மீதான Y–ன் இரு தொடர்புப் போக்குக் கெழுக்களைக் காண்க.

விலை (ரூபாய்களில்)	10	12	13	12	16	15
தேவைப்படும் அளவு	40	38	43	45	37	43

விலை ரூ 20 எனும்போது எதிர் பார்க்கப்படும் தேவையை மதிப்பிடுக.

தீர்வு:

\boldsymbol{X}	x = (X - 13)	x^2	Y	y = (Y - 41)	y^2	xy
10	-3	9	40	-1	1	3
12	-1	1	38	-3	9	3
13	0	0	43	2	4	0
12	-1	1	45	4	16	-4
16	3	9	37	-4	16	-12
15	2	4	43	2	4	4
$\sum X = 78$	$\sum x = 0$	$\sum x^2 = 24$	$\sum Y = 246$	$\sum y = 0$	$\sum y^2 = 50$	$\sum xy = -6$

அட்டவணை 9.8

(i) Y ன் மீது X ன் தொடர்புப் போக்குச் சமன்பாடு

$$X - \overline{X} = r \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$

$$\overline{X} = \frac{78}{6} = 13, \ \overline{Y} = \frac{246}{6} = 41$$

$$b_{xy} = r \frac{\sigma_x}{\sigma_y} = \frac{\sum xy}{\sum y^2} = \frac{-6}{50} = -0.12$$

$$X - 13 = -0.12 (Y - 41)$$

$$X - 13 = -0.12Y + 4.92$$

$$X = -0.12Y + 17.92$$

(ii) X ன் மீது Yன் தொடர்புப் போக்குச் சமன்பாடு

Y-
$$\overline{Y} = r \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$

 $b_{yx} = r \frac{\sigma_y}{\sigma_x} = \frac{\sum xy}{\sum x^2} = -\frac{6}{24} = -0.25$

$$Y-41 = -0.25 (X-13)$$

$$Y-41 = -0.25 X+3.25$$

$$Y = -0.25 X + 44.25$$

X=20, எனில் Y- ன் மதிப்பு

$$Y = -0.25(20) + 44.25$$

= -5 + 44.25

= 39.25 (விலை ₹ 20 எனும் போது வாய்ப்புத் தேவை 39.25)

எடுத்துக்காட்டு 9.11

கீழ்க்கண்டவற்றிலிருந்து X —ன் மீது Y —ன் தொடர்புப் போக்குச் சமன்பாடு மற்றும் X=55 எனும்போது Y —ன் மதிப்பீடு காண்க.

X	40	50	38	60	65	50	35
Y	38	60	55	70	60	48	30

தீர்வு:

X	Y	dx = (X - 48)	dx^2	dy = (Y - 50)	dy^2	dxdy
40	38	-8	64	-12	144	96
50	60	2	4	10	100	20
38	55	-10	100	5	25	-50
60	70	12	144	20	400	240
65	60	17	289	10	100	170
50	48	2	4	-2	4	-4
35	30	-13	169	-20	400	260
$\sum X = 33$	Y = 3	$61 \sum dx = 2 \sum$	$\int dx^2 = 77$	$74\sum dy = 11$	$\sum dy^2 = 1173$	$\sum dxdy = 732$

அட்டவணை 9.9

$$\overline{X} = \frac{\Sigma X}{N} = \frac{338}{7} = 48.29$$

$$\overline{Y} = \frac{\Sigma Y}{N} = \frac{361}{7} = 51.57$$

(i) X ன் மீது Y–ன் தொடர்புப் போக்குக் கெழு

$$b_{yx} = \frac{N\Sigma dx \, dy - (\Sigma dx)(\Sigma dy)}{N \, \Sigma dx^2 - (\Sigma dx)^2}$$

$$= \frac{7(732) - (2)(11)}{7(774) - (2)^2}$$

$$= \frac{5124 - 22}{5418 - 4}$$

$$= \frac{5102}{5414}$$

$$= 0.942$$

$$b_{yx} = 0.942$$

(ii) X -ன் மீது Y-ன் தொடர்புப் போக்குச் சமன்பாடு

$$Y - \overline{Y} = b_{yx}(X - \overline{X})$$

 $Y - 51.57 = 0.942(X - 48.29)$
 $Y = 0.942X - 45.49 + 51.57 = 0.942 \times -45.49 + 51.57$
 $Y = 0.942X + 6.08$

 $\therefore X$ –ன் மீது Y–ன் தொடர்புப் போக்குச் சமன்பாடு Y= 0.942X+6.08

எனும்பொழுது Y ன் மதிப்பீடு X= 55

$$Y = 0.942(55) + 6.08 = 57.89$$

எடுத்துக்காட்டு 9.12

பின்வரும் தொடர்புப் போக்குச் சமன்பாட்டுகளிலிருந்து X,Y மாறிகளின் சராசரிகள் மற்றும் அவற்றிற்கிடையேயான ஒட்டுறவுக் கெழுவினை காண்க.

$$2Y - X - 50 = 0$$

$$3Y-2X-10 = 0$$
.

தீர்வு :

$$2Y - X - 50 = 0$$
 ... (1)

$$3Y-2X-10 = 0$$
 ... (2)

(1) யும் (2) யும் தீர்க்க

நாம் பெறுவது Y = 90

Y = 90 என (1) ல் பிரதியிட

$$X = 130$$

ஆகையால் $\overline{X}=130$ மற்றும் $\overline{Y}=90$

ஒட்டுறவுக் கெழுவைக் கணக்கிடுதல்

(1) ஐ X–ன் மீது Y–ன் சமன்பாடாகக் கொள்க

$$2Y = X + 50$$

$$Y = \frac{1}{2}X + 25$$
 $b_{yx} = \frac{1}{2}$

(2) ஐ Y ன் மீது X ன் சமன்பாடாகக் கொள்க

$$3Y-2X-10 = 0$$

$$2X = 3Y - 10$$

$$X = \frac{3}{2} Y - 5$$
 $b_{xy} = \frac{3}{2}$

ஒட்டுறவுக் கெழு r= $\pm \sqrt{b_{xy} imes b_{yx}}$

$$r = \sqrt{\frac{1}{2} \times \frac{3}{2}} = 0.866$$

குறிப்பு:

மேலேக் கொடுக்கப்பட்டுள்ளக் கணக்கில் ஒரு தொடர்புப் போக்குக் கெழுவின் மதிப்பு ஒன்றை விடப் பெரியதாகவும் மற்றும் மற்றொரு கெழுவின் மதிப்பு ஒன்றை விட சிறியதாகவும் இருப்பதைக் கவனிக்கலாம். எனவே கொடுக்கப்பட்ட சமன்பாடுகளின் மீதான நம்முடைய அனுமானம் சரியானது ஆகும்..

எடுத்துக்காட்டு 9.13

மாறிகள் X,Y–ன் சராசரிகளையும் அவற்றிக்கிடையேயான ஒட்டுறவுக் கெழுவையும் கீழேக் கொடுக்கப்பட்டுள்ள இரு தொடர்புப் போக்குச் சமன்பாடுகளிலிருந்து காண்க.

$$4X - 5Y + 33 = 0$$

$$20X-9Y-107 = 0$$

தீர்வு:

$$4X - 5Y + 33 = 0 ... (1)$$

$$20X-9Y-107 = 0$$

... (2) எனக் கொடுக்கப்பட்டுள்ளது.

சமன்பாடுகள் (1) மற்றும் (2) ஐ தீர்க்க,

நாம் பெறுவது
$$Y=17$$

Y–ன் மதிப்பை சமன்பாடு (1)–ல் பிரதியிட,

நாம் பெறுவது X=13

எனவே
$$\overline{X}=13$$
 மற்றும் $\overline{Y}=17$

ஒட்டுறவுக் கெழுவைக் கணக்கிடுதல்

சமன்பாடு (1) என்பதனை Y ன் மீது X ன் தொடர்புப் போக்குச் சமன்பாடு என்க.

$$4X = 5Y - 33$$

$$X = \frac{1}{4} (5Y - 33)$$

$$X = \frac{5}{4} Y - \frac{33}{4}$$

$$b_{yy} = \frac{5}{4} = 1.25$$

சமன்பாடு (2) என்பதனை X–ன் மீது Y–ன் தொடர்புப் போக்குச் சமன்பாடு என்க.

$$9Y = 20X-107$$

$$Y = \frac{1}{9}(20X-107)$$

$$Y = \frac{20}{9}X - \frac{107}{9}$$

$$b_{yx} = \frac{20}{9} = 2.22$$

ஆனால் இது சாத்தியமல்ல ஏனெனில் இரண்டு தொடர்புப் போக்குக் கெழுக்களின் மதிப்புமே, ஒன்றை விட பெரியதாக இருக்கிறது. எனவே நம்முடைய மேற்கண்ட அனுமானம் தவறு. எனவே சமன்பாடு (1) என்பதனை X–ன் மீது Y–ன் தொடர்புப் போக்குச் சமன்பாடு எனவும் மற்றும் சமன்பாடு (2) என்பதனை Y ன் மீது X ன் தொடர்புப் போக்குச் சமன்பாடு எனவும் கருதவும். ஆதலால் நாம் பெறுவது,

$$b_{yx}=rac{4}{5}$$
= 0.8
மற்றும் $b_{xy}=rac{9}{20}$ = 0.45
ஒட்டுறவுக் கெழு $r=\pm\sqrt{b_{xy} imes b_{xy}}$ $r=\sqrt{0.45 imes 0.8}$ = 0.6

எடுத்துக்காட்டு 9.14

கீழ்கண்ட அட்டவணை விற்பனை மற்றும் விளம்பரச் செலவுகளைக் காண்பிக்கிறது.

	விற்பனை	விளம்பரச் செலவு (₹ கோடிகளில்)
சராசரி	40	6
திட்ட விலக்கம்	10	1.5

ஒட்டுறவுக் கெழு r= 0.9. தீர்மானிக்கப்பட்ட விளம்பரச் செலவு $\stackrel{?}{ ext{ tensor}}$ 10 கோடி. எனில், விற்பனையை மதிப்பீரு செய்க.

தீர்வு:

X என்பது விற்பனை மற்றும் Y என்பது விளம்பர செலவு என்க

$$\overline{X}$$
 =40, \overline{Y} =6, $\sigma_{_{_{\! X}}}$ =10, $\sigma_{_{_{\! Y}}}$ =1.5 மற்றும் r =0.9 என கொடுக்கப்பட்டுள்ளது.

y ன் x மீது ன் தொடர்புப் போக்குச் சமன்பாடு

$$X - \overline{X} = r \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$

$$X - 40 = (0.9) \frac{10}{1.5} (Y - 6)$$

$$X - 40 = 6Y - 36$$

$$X = 6Y + 4$$

விளம்பரச் செலவு ₹10 கோடி அதாவது Y = 10 எனில், விற்பனை X = 6(10) + 4 = 64 ஆகும்.

எடுத்துக்காட்டு 9.15

இரண்டு குறியீட்டு எண்களின் வரிசைகள் உள்ளன. P என்பது விலை குறியீட்டையும் மற்றும் S என்பது பொருட்களின் இருப்பையும் குறிக்கிறது. P–ன் சராசரி மற்றும் திட்டவிலக்கங்கள் முறையே 100 மற்றும் 8 ஆகும். S –ன் சராசரி மற்றும் திட்டவிலக்கங்கள் முறையே 103 மற்றும் 4. இரண்டு குறியீட்டு எண்களின் வரிசைக்கு இடையேயான ஒட்டுறவு கெழு 0.4. இவ்விவரங்களை கொண்டு, S ன் மீது P ன் தொடர்புப் போக்குச் சமன்பாடு மற்றும் P ன் மீது S–ன் தொடர்புப் போக்குச் சமன்பாடு ஆகியவற்றைக் காண்க.

தீர்வு:

X என்பது P–ன் விலை மற்றும் Y என்பது S –ன் இருப்பு என்க.

P–ன் சராசரி மற்றும் திட்டவிலக்கங்கள் ஆகியவை முறையே \overline{X} =100, σ =8 . மேலும் S–ன்

சராசரி மற்றும் திட்டவிலக்கங்கள் முறையே \overline{Y} =103 , σ_Y =4 என கருதவும். இரண்டு வரிசைக்கு இடையேயான ஒட்டுறவுக் கெழு r(X,Y) = 0.4 ஆகும்.

Y–ன் மீது X –ன் தொடர்புப் போக்குச் சமன்பாடு

Y = 0.2 X + 83

$$X-\overline{X}=r\,rac{\sigma_x}{\sigma_y}\,\left(\mathrm{Y-\overline{Y}}\,
ight)$$
 $X-100=(0.4)\,rac{8}{4}\,(\mathrm{Y-103})$
 $X-100=0.8(\mathrm{Y-103}\,)$
 $X-0.8\mathrm{Y-17.6}=0$ or $X=0.8\mathrm{Y+17.6}$
 X -ன் மீது Y -ன் தொடர்புப் போக்குச் சமன்பாடு $Y-\overline{Y}=r\,rac{\sigma_y}{\sigma_x}\,(\mathrm{X-}\,\overline{X}\,)$
 $Y-103=(0.4)\,rac{4}{8}\,(X-100\,)$
 $Y-103=0.2\,(X-100\,)$
 $Y-103=0.2\,\mathrm{X-20}$

எடுத்துக்காட்டு 9.16

5 இணைகளின் உறுப்புகளுக்கான முடிவுகள் கீழே கொடுக்கப்பட்டுள்ளது. $\Sigma X = 15, \Sigma Y = 25, \Sigma X^2 = 55, \Sigma Y^2 = 135, \Sigma XY = 83$ தொடர்புப் போக்குக் கோடுகளின் சமன்பாடுகள் காண்க. மேலும் முதல் கோட்டில் Y = 12 எனில் X- ன் மதிப்பும் இரண்டாம் கோட்டில் X = 8 எனில் X- ன் மதிப்பு ஆகியவற்றைக் காண்க.

or 0.2 X-Y+83=0

தீர்வு:

இங்கு
$$N$$
=5, $\overline{X}=\frac{\Sigma X}{N}=\frac{15}{5}$ =3 , $\overline{Y}=\frac{\Sigma Y}{N}=\frac{25}{5}$ =5 மற்றும் தொடர்புப் போக்குக் கெழு
$$b_{xy}=\frac{N\Sigma XY-\Sigma X\Sigma Y}{N\Sigma Y^2-(\Sigma Y)^2}=\frac{5(83)-(15)(25)}{5(135)-(25)^2}$$
=0.8

Y- ன் மீது X –ன் தொடர்புப் போக்கு சமன்பாடு

$$X-\overline{X} = b_{xy} (Y-\overline{Y})$$

$$X-3 = 0.8(Y-5)$$

$$X = 0.8 Y-1$$

Y=12, எனும் பொழுது X –ன் மதிப்பீடு

$$X = 0.8 (12) - 1 = 8.6$$

தொடர்புப் போக்குக் கெழு

$$b_{yx} = \frac{N\Sigma XY - \Sigma X\Sigma Y}{N\Sigma X^2 - (\Sigma X)^2}$$
$$= \frac{5(83) - (15)(25)}{5(55) - (15)^2} = 0.8$$

இவ்வாறாக $b_{_{_{\!\mathit{V\!X}}}}\!\!=\!0.8$ எனில் X –ன் மீது Y –ன் தொடர்புப் போக்குச் சமன்பாடு

$$Y - \overline{Y} = b_{yx} (X - \overline{X})$$

$$Y-5 = 0.8(X-3)$$

$$Y = 0.8X + 2.6$$

X=8 எனும் பொழுது Y–ன் மதிப்பீடு

$$Y = 0.8(8) + 2.6$$

$$Y = 9$$

எடுத்துக்காட்டு 9.17

இரண்டு தொடர்புப் போக்குக் கோடுகள் என்பன 3X+2Y=26 மற்றும் 6X+3Y=31 ஆகும். ஒட்டுறவுக் கெழுவைக் காண்க.

தீர்வு:

X- ன் மீது Y –ன் தொடர்புப் போக்குச் சமன்பாடு

$$3X+2Y = 26$$

$$2Y = -3X+26$$

$$Y = \frac{1}{2}(-3X+26)$$

$$Y = -1.5X+13$$

$$r \frac{\sigma_y}{\sigma_x} = -1.5$$

$$b_{yx} = r \frac{\sigma_y}{\sigma_x} = -1.5$$

Yன் மீது X –ன் தொடர்புப் போக்குச் சமன்பாடு

$$6X+3Y = 31$$
$$X = \frac{1}{6}(-3Y+31)=-0.5Y+5.17$$

$$r = -0.866$$

எடுத்துக்காட்டு 9.18

ஒட்டுறவு ஆய்வின் மீதான ஆய்வகச் சோதனையில் கிடைக்கப்பெற்ற இரண்டு தொடர்பு சமன்பாடுகள் 2X-Y+1=0 மற்றும் 3X-2Y+7=0 ஆகும். X மற்றும் Y ஆகியவற்றின் சராசரியைக் காண்க. மேலும் X மற்றும் Y ஆகியவற்றின் தொடர்பு போக்குக் கெழுக்கள் மற்றும் ஒட்டுறவுக் கெழு காண்க.

தீர்வு:

இரண்டு தொடர்புப் போக்குச் சமன்பாடுகளைத் தீர்க்க நமக்கு X மற்றும் Y ஆகியவற்றின் சராசரிகள் கிடைக்கும்

$$2X-Y = -1$$
 ... (1)

$$3X-2Y = -7$$
 ... (2)

சமன்பாடு (1) மற்றும் (2) –லிருந்து நாம் பெறுவது $X{=}5$ மற்றும் $Y{=}11$

எனவே, தொடர்புப் போக்கு சமன்பாடுகள் $\overline{X}=5$ மற்றும் $\overline{Y}=11$ சராசரிகளின் வழியே செல்கிறது.

X ன் மீது Y –ன் தொடர்புப் போக்குச் சமன்பாடு 3X - 2Y = -7

$$2Y = 3X+7$$

$$Y = \frac{1}{2}(3X+7)$$

$$Y = \frac{3}{2}X + \frac{7}{2}$$

$$b_{yx} = \frac{3}{2}(>1)$$

Yன் மீது X–ன் தொடர்புப் போக்குச் சமன்பாடு

$$2X-Y = -1$$
$$2X = Y-1$$

$$X = \frac{1}{2} (Y-1)$$

$$X = \frac{1}{2} Y - \frac{1}{2}$$

$$b_{xy} = \frac{1}{2}$$

தொடர்புப் போக்கு கெழுக்கள் மிகை மதிப்பை பெற்றிருக்கும்.

$$r = \pm \sqrt{b_{xy}.b_{yx}} = \pm \sqrt{\frac{3}{2} \times \frac{1}{2}}$$
$$= \sqrt{\frac{3}{2} \times \frac{1}{2}}$$
$$= \sqrt{\frac{3}{4}}$$
$$= 0.866$$

$$r = 0.866$$

எடுத்துக்காட்டு 9.19

3X–2Y=5 மற்றும் X–4Y=7 என்ற தொடர்புப் போக்குக் கோடுகளுக்கு

- (i) தொடர்பு போக்குக் கெழுக்கள் மற்றும்
- (ii) ஒட்டுறவுக் கெழு

ஆகியவற்றைக் கண்டுபிடிக்கவும்.

தீர்வு:

(i) முதலில் கொடுக்கப்பட்ட X–ன் மீது Y –ன் தொடர்புப் போக்குச் சமன்பாடு மற்றும் Y–ன் மீது X –ன் தொடர்புப் போக்குச் சமன்பாடு ஆகியவற்றை இயல்பான வடிவில் மாற்றியமைக்கவும். பின்பு தொடர்பு போக்குக் கெழுக்களை கண்டுபிடிக்கவும்.

கொடுக்கப்பட்டுள்ள தொடர்புப் போக்குக் கோடுகள்

$$3X-2Y = 5$$
 ... (1)

$$X-4Y = 7$$
 ... (2)

X – ன் மீது Y ன் தொடர்புப் போக்கு 3X – 2Y = 5 என்க.

$$3X = 2Y+5$$

$$X = \frac{1}{3}(2Y+5)$$

$$X = \frac{1}{3}(2Y+5)$$

$$X = \frac{2}{3}Y+\frac{5}{3}$$

Y – ன் மீது X –ன் தொடர்புப் போக்குக் கெழு

$$b_{xy} = \frac{2}{3}(<1)$$

X –ன் மீது Y – ன் தொடர்புப் போக்குச் சமன்பாடு

$$X-4Y = 7$$

$$-4Y = -X+7$$

$$4Y = X-7$$

$$Y = \frac{1}{4}(X-7)$$

$$Y = \frac{1}{4}X - \frac{7}{4}$$

 $\therefore X$ –ன் மீது Y தொடர்புப் போக்குக் கெழு

$$b_{yx} = \frac{1}{4}(<1)$$

ii) ஒட்டுறவுக் கெழு (Coefficient of correlation)

இரண்டு தொடர்புப் போக்குக் கெழுக்களும் மிகை குறியீடு பெற்றிருப்பதால் r–ம் மிகை குறியீடு பெற்றதாக இருக்கும் மற்றும்

$$r = \sqrt{b_{yx} \cdot b_{xy}}$$

$$= \sqrt{\frac{2}{3} \cdot \frac{1}{4}}$$

$$= \sqrt{\frac{1}{6}}$$

$$= 0.4082$$

$$r = 0.4082$$

1. கீழே தரப்பட்ட விவரங்களிலிருந்து

··.

பொருளியலில் மதிப்பெண்கள்	25	28	35	32	31	36	29	38	34	32
புள்ளியியலில் மதிப்பெண்கள்	43	46	49	41	36	32	31	30	33	39

- (a) இரண்டு தொடர்புப் போக்குச் சமன்பாடுகள்.
- (b) பொருளியல் மற்றும் புள்ளியியல் பாடங்களின் மதிப்பெண்களுக்கு இடையேயான ஒட்டுறவுக் கெழு.

- (c) பொருளியலில் 30 மதிப்பெண்கள் பெற்ற நிலையில் புள்ளியியலில் பெரிதும் பெற வாய்ப்பான மதிப்பெண் ஆகியவற்றைக் காண்க.
 - 2. தந்தையர் மற்றும் அவர்தம் மகன்களின் உயரங்கள் (செ.மீ–ல்) கீழேக் கொடுக்கப்பட்டுள்ளன.

தந்தையின் உயரம்:	158	166	163	165	167	170	167	172	177	181
அவர்தம் மகனின் உயரம்:	163	158	167	170	160	180	170	175	172	175

இவற்றிக்கான தொடர்புப் போக்குக் கோடுகளைக் காண்க. மேலும் தந்தையின் உயரம் 164 செ.மீ எனும்போது மகனின் உயரத்தை மதிப்பிடுக.

3. 17 வயது மாணவர்களின் குழுவிலிருந்து 10 மாணவர்கள் கொண்டக் கூறில், உயரம் (அங்குலங்களில்) X மற்றும் Y நிறை (பவுண்ட்) உள்ள விவரங்கள் பின்வருமாறு

X	61	68	68	64	65	70	63	62	64	67
Y	112	123	130	115	110	125	100	113	116	125

69 அங்குலம் உயரம் உள்ள மாணவனின் நிறையை மதிப்பிடுக.

- 4. பின்வரும் விவரங்களுக்கான இரு தொடர்புப் போக்குச் சமன்பாடுகளைக் கணக்கிடுக. N=20, ΣX =80, ΣY =40, ΣX 2=1680, ΣY 2=320 மற்றும் ΣXY =480
- 5. கொடுக்கப்பட்ட விவரங்களுக்கு, மழைப்பொழிவு 29 எனில், இயலக்கூடிய விளைச்சல் என்ன.

	மழைப்பெழ <u>ி</u> வு	விளைச்சல்
சராசரி	25``	ஓர் ஏக்கருக்கு 40 அலகுகள்
திட்ட விலக்கம்	3``	ஓர் ஏக்கருக்கு 6 அலகுகள்

மழைப்பொழிவு மற்றும் விளைச்சலுக்கான ஒட்டுறவு கெழு 0.8 ஆகும்.

6. பின்வரும் விவரங்கள் குறிப்பது, விளம்பர செலவு (ரூ லட்சங்களில்) அவற்றுடன் தொடர்புடைய விற்பனைகள் (ரூ கோடிகளில்)

ഖിണம்பர செலவு	40	50	38	60	65	50	35
விற்பனைகள்	38	60	55	70	60	48	30

விளம்பர செலவு ரூ 30 லட்சங்கள் எனும் போது தொடர்புடைய விற்பனையை மதிப்பிடுக.

7. பின்வரும் விவரங்கள் கீழேக் கொடுக்கப்பட்டுள்ளன.

	X	Y
சராசரி	36	85
திட்ட விலக்கம்	11	8

X மற்றும் Y களுக்கு இடையேயான ஒட்டுறவுக் கெழு 0.66 எனில்

- (i) இரு தொடர்புப் போக்குக் கெழுக்கள்
- (ii) X=10 எனும் பொழுது பொருத்தமான Y –ன் மதிப்பு ஆகியவற்றைக் காண்க.
- 8. (X_i, Y_i) விவரங்கள் பின்வருவன (1,4) (2,8) (3,2) (4,12) (5,10) (6,14) (7,16) (8,6) (9,18) எனில் X–ன் மீது Y–ன் தொடர்புப் போக்குச் சமன்பாட்டைக் காண்க.
- 9. தங்குமிடம் செலவு (X) உணவு மற்றும் பொழுது போக்கு செலவு (Y) ஆகியவற்றிற்கிடையேயான தொடர்பு அறியும் வகையில் ஆய்வு நடத்தப்பட்டு, கண்டறியப்பட்ட ஆய்வில் முடிவுகள் பின்வறுமாறு :

	சராசரி	திட்டவிலக்கம்
தங்குமிடம் செலவு	ரூ. 178	63.15
உணவு மற்றும் பொழுது போக்கு செலவு	ரூ 47.8	22.98
ஒட்டுறவுக் கெழு	0.43	3

தொடர்புப் போக்குச் சமன்பாடு காண்க. மேலும், தங்குமிடம் செலவு ரூ 200 எனில் உணவு மற்றும் பொழுது போக்கு மீதான இயலக்கூடிய செலவை காண்க.

X மற்றும் Y மாறிகளின் 5 விவரங்களின் (X,Y) –க்கான பெறப்பட்ட பின்வரும் முடிவுகள் $\Sigma X = 15, \Sigma Y = 25, \Sigma X^2 = 55, \Sigma Y^2 = 135, \Sigma XY = 83$. தொடர்புப் போக்கு கோடுகளின் சமன்பாடுகள் காண்க. மேலும் Y = 8 எனில் இயலக்கூடிய Xம், X = 12 எனில் இயலக்கூடிய Y –ம் காண்க.

- 4X-5Y+33=0 மற்றும் 20X-9Y-107=0. X, Yக்கு இடையிலான சராசரி மதிப்புகள் மற்றும் ஒட்டுறவுக்கெழு ஆகியவற்றைக் காண்க.
- 11. ஒட்டுறவுக்கெழு பகுப்பாய்வின் இரு தொடர்புப் போக்குச் சமன்பாடுகளாவன 2X = 8 3Y மற்றும் 2Y = 5 X ஆகும். தொடர்புப் போக்குக் கெழுக்கள் மற்றும் ஒட்டுறவுக் கெழு ஆகியவற்றைக் காண்க.

சரியான விடையைத் தேர்ந்தெடுத்து எழுதுக.

1.	பின்வருனவற்றில் எவை நேரிடை ஒட்டுற	றவுக்கான எடுத்துக்காட்டாகும்?							
	(a) வருவாய் மற்றும் செலவு								
	(b) விலை மற்றும் தேவை								
	(c) திருப்பிச் செலுத்தும் காலம் மற்றும் சு	லப மாதத் தவணை							
	(d) நிறை மற்றும் வருவாய்								
2.	இரு மாறிகளின் மதிப்புகள் ஒரே திசையின்	ம் நகரும் எனில் ஒட்டுறவு							
	(a) எதிரிடை	(b) நேரிடை							
	(c) முழுமையான நேரிடை	(d) ஒட்டுறவு இன்மை							
3.	இரு மாறிகளின் மதிப்புகள் எதிர்த்திசையி	ில் நகரும் எனில் ஒட்டுறவு							
	(a) எதிரிடை	(b) நேரிடை							
	(c) முழுமையான நேரிடை	(d) ஒட்டுறவு இன்மை							
4.	ஒட்டுறவுக் கெழு அமைவது								
	$(a) 0$ முதல் ∞ வரை $(b) -1$ முதல் $+1$	(c) -1 முதல் 0 (d) -1 முதல் ∞							
5.	r(X,Y)=0 எனில் மாறிகள் X மற்றும் Y (பெற்றிருப்பது							
	(a) நேரிடை ஒட்டுறவு	(b) எதிரிடை ஒட்டுறவு							
	(c) ஒட்டுறவு இன்மை	(d) முழுமையான நேரிடை ஒட்டுறவு							
6.	N =25, ΣX =125, ΣY =100, ΣX^2 =650, Σ ஒட்டுறவுக் கெழுவானது	$Y^2 {=} 436, \Sigma XY {=} 520$ என்ற விவரங்களில் இருந்து							
	(a) 0.667 (b) -0.006	(c) -0.667 (d) 0.70							
<i>7</i> .	N = 11 , ΣX = 117 , ΣY = 260 , ΣX^2 = 132 விவரங்களிலிருந்து ஒட்டுறவுக் கெழுவான	$13,~~\Sigma Y^2 {=}6580, \! \Sigma XY {=}2827$ என்ற பின்வரும் ரது							
	(a) 0.3566 (b) -0.3566	(c) 0 (d) 0.4566							

(a)
$$r(X,Y) = \frac{\sigma_x \sigma_y}{\text{cov}(x,y)}$$

(b)
$$r(X,Y) = \frac{cov(x,y)}{\sigma_x \sigma_y}$$

(c)
$$r(X,Y) = \frac{\operatorname{cov}(x,y)}{\sigma_y}$$

(d)
$$r(X,Y) = \frac{\operatorname{cov}(x,y)}{\sigma_x}$$

- 9. தாக்கத்தை ஏற்படுத்தக் கூடிய அல்லது கணித்துச் சொல்லப்படக் கூடிய மாறி என்பது
 - (a) சார்ந்த மாறி

(b) சார்பற்ற மாறி

(c) தொடர்புப் போக்கு

- (d) விளக்கமளிக்கும் மாறி ஆகும்
- 10. தாக்கத்தை ஏற்படுத்தக் கூடிய அல்லது கணித்துச் சொல்வதற்கு பயன்படுத்தப்படக் கூடிய மாறி
 - (a) சார்ந்த மாறி

(b) சார்பற்ற மாறி

(c) விளக்கமளிக்கும் மாறி

(d) தொடர்புப் போக்குடையது

11. ஒட்டுறவுக் கெழுவானது

(a)
$$r=\pm\sqrt{b_{xy}\times b_{yx}}$$

(b)
$$r = \frac{1}{b_{xy} \times b_{yx}}$$

(c)
$$r = b_{xy} \times b_{yx}$$

(b)
$$r = \frac{1}{b_{xy} \times b_{yx}}$$

(d) $r = \pm \sqrt{\frac{1}{b_{xy} \times b_{yx}}}$

12. Y– ன் மீதான X– ன் ஒட்டுறவுக் கெழு

(a)
$$b_{xy} = \frac{N\Sigma dx \, dy - (\Sigma dx)(\Sigma dy)}{N \, \Sigma dy^2 - (\Sigma dy)^2}$$

(b)
$$b_{yx} = \frac{N\Sigma dx dy - (\Sigma dx)(\Sigma dy)}{N \Sigma dv^2 - (\Sigma dy)^2}$$

(c)
$$b_{yx} = \frac{N\Sigma dx dy - (\Sigma dx)(\Sigma dy)}{N\Sigma dx^2 - (\Sigma dx)^2}$$

(d)
$$b_{xy} = \frac{N\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{N\Sigma x^2 - (\Sigma x)^2} \times \sqrt{N\Sigma y^2 - (\Sigma y)^2}}$$

X ன் மீதான Y –ன் ஒட்டுறவுக் கெழு 13.

(a)
$$b_{xy} = \frac{N\Sigma dx \, dy - (\Sigma dx)(\Sigma dy)}{N \, \Sigma dy^2 - (\Sigma dy)^2}$$

(b)
$$b_{yx} = \frac{N\Sigma dx dy - (\Sigma dx)(\Sigma dy)}{N\Sigma dy^2 - (\Sigma dy)^2}$$

(c)
$$b_{xy} = \frac{N\Sigma dx dy - (\Sigma dx)(\Sigma dy)}{N\Sigma dx^2 - (\Sigma dx)^2}$$

(d)
$$b_{xy} = \frac{N\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{N\Sigma x^2 - (\Sigma x)^2} \times \sqrt{N\Sigma y^2 - (\Sigma y)^2}}$$

14.	ஒரு தொடர்புப் போக்	குக் கெழு குறையாக (இருக்	கும் நிலைய	ில் ம	ற்றொன்ற <u>ு</u>					
	(a) குறை	(b) மிகை	(c)	பூச்சியம்	(d)	இவற்றில் ஏதுமில்லை					
15.	X மற்றும் Y என்பன	் இரு மாறிகள் எனில் எ	அதிக	பட்சமாக இ)ருப்ப	பது					
	(a) ஒரு தொடர்புப் ே	பாக்குக் கோடு									
	(b) இரண்டு தொடர்ட	புப் போக்குக் கோடுகள்	Г								
	(c) மூன்று தொடர்பு	ப் போக்குக் கோடுகள்									
	(d) பல தொடர்புப் போக்குக் கோடுகள்										
16.	Y ன் மீதான X – ன்	தொடர்புப் போக்குக் ே	காடு	மதிப்பிடுவத	Į						
	(a) கொடுக்கப்பட்ட Y	X —ன் மதிப்பிற்கு X	(b)	கொடுக்கப்ப	JĽL Ž	X $-$ ன் மதிப்பிற்கு Y					
	(c) Y —லிருந்து X ம	ற்றும் X $-$ லிருந்து Y	(d)	இவற்றில் ஒ	ஏதுமி	ில்லை					
17.	(X,Y) மாறிகளின் ம	திப்புகளின் சிதறல் வி	ளக்க	ப்படம் விளக்	கும் (கரு <u>த்</u> தானது					
	(a) சார்புகளின் மீதா	ன தொடர்பு	(b)	தொடர்புப் ઉ	போக்	கு வடிவம்					
	(c) பிழைகளின் பர ெ	വல்	(d)	தொடர்பு இ	ன்ன	ம					
18.	X – ன் மீதான Y – எபோக்கு கெழு	ன் தொடர்புப் போக்கு 6	றகழு	2 எனில்,	Y— ю́	ா மீதான X – ன் தொடர்புப்					
	$(a) \leq \frac{1}{2}$	(b) 2	(c)	$>\frac{1}{2}$		(d) 1					
19.	இரண்டு மாறிகள் இந	றங்கு திசையில் நகர்கி	ிறது	எனில் ஒட்டு	றவுக்	6 கெழுவானது					
	(a) நேரிடை										
	(b) எதிரிடை										
	(c) முழுமையான எ	திரிடை									
	(d) ஒட்டுறவு இன்மை	۵									
20.		இரு மாறிகளுக்கிடை றையை அறிமுகப்படுத்த			க்கோ	ட்டு தொடர்பின் அளவை					
	(a) கார்ல் பியர்சன்		(b)	ஸ்பியர்மெக்)						
	(c) கிரக்ஸ்டன் மற்று	ும் கௌடன்	(d)	யா லன் சூ							
182	11 ஆம் வகுப்பு வணி	ிகக் கணிதம் மற்றும் புள்	ளியி	யல்							

- 21. தொடர்புப் போக்குக் கோடுகள் வெட்டிக்கொள்ளும் புள்ளி
 - (a)(X,Y)
- $(b)(\overline{X}, \overline{Y})$
- (c)(0,0)
- (d) (σ_{r}, σ_{v})

- 22. தொடர்புப் போக்கை அறிமுகப்படுத்தியவர்
 - (a) R.A பிஷர்

(b) சர்ஃபிரான்சிஸ் கால்டன்

(c) கார்ல் பியர்சன்

- (d) இவர்களில் எவரும் இல்லை
- 23. r=-1 , எனில் மாறிகளுக்கிடையேயான ஒட்டுறவுக் கெழு
 - (a) முழுமையான நேரிடையானது
 - (b) முழுமையான எதிரிடையானது
 - (c) எதிரிடையானது
 - (d)ஒட்டுறவு இன்மை
- 24. ஒட்டுறவுக் கெழு விவரிப்பது
 - (a) எண்ணளவு மற்றும் திசை
- (b) எண்ணளவு மட்டும்

(c) திசை மட்டும்

- (d) எண்ணளவு இல்லை மற்றும் திசை இல்லை
- 25. Cov(x,y)=-16.5, $\sigma_x^2=2.89$, $\sigma_y^2=100$. எனில் ஒட்டுறவு கெழுவைக் காண்க.
 - (a)-0.12
- (b) 0.001
- (c)-1
- (d)-0.97

இதரக் கணக்குகள்

1. பின்வரும் விவரங்களுக்கு ஒட்டுறவுக் கெழுவினை காண்க.

X	35	40	60	79	83	95
Y	17	28	30	32	38	49

2. பின்வரும் விவரங்களிலிருந்து ஒட்டுறவுக்கு கெழுவினை கணக்கிடுக.

$$\Sigma X = 50, \Sigma Y = -30, \Sigma X^2 = 290, \Sigma Y^2 = 300, \Sigma XY = -115, N = 10$$

3. கீழேயுள்ள விவரங்களிலிருந்து ஒட்டுறவுக் கெழுவினைக் கணக்கிடுக.

X	1	2	3	4	5	6	7	8	9
Y	9	8	10	12	11	13	14	16	15

4. பின்வரும் விவரங்களிலிருந்து ஒட்டுறவுக் கெழுவினைக் கணக்கிடுக.

$$\Sigma X=125$$
, $\Sigma Y=100$, $\Sigma X^2=650$, $\Sigma Y^2=436$, $\Sigma XY=520$, $N=25$

5. சமீபத்திய பழுது நீக்கு வேலைகள் சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்பட்டன. மேலும் எதிர்ப்பார்க்கப்பட்ட செலவு ,அசல் செலவு பதியப்பட்டுள்ளது.

மதிப்பிடப்பட்ட செவவு	30	45	80	25	50	97	47	40
அசல் செலவு	27	48	73	29	63	87	39	45

ஸ்பியர்மனின் ஒட்டுறவுக் கெழுவின் மதிப்பினைக் கணக்கிடுக

- 6. பின்வரும் ஒரு குறிப்பிட்ட தேர்வில் A மற்றும் B என்ற இரு பாடங்களின் மதிப்பெண்கள் தொடர்புடையவை A —ன் சராசரி மதிப்பெண்= 39.5. B—ன் சராசரி மதிப்பெண்= 47.5 A—ன் மதிப்பெண்களின் திட்ட விலக்கம் = 10.8 மற்றும் B—ன் மதிப்பெண்களின் திட்டவிலக்கம் = 16.8. A மற்றும் B ஆகியவற்றின் மதிப்பெண்களுக்கு இடையேயான ஒட்டுறவுக்கெழு 0.42. பாடம் A—ல் 51 மதிப்பெண்கள் பெற்ற மாணவன் பாடம் B—ல் எதிர்பார்க்கும் மதிப்பெண்ணை மதிப்பிடுக.
- 7. X மற்றும் Y என்பன தொடர்புபடுத்தப்பட்ட இணை மாறிகள். அவற்றின் 10 விபரங்களுக்கான முடிவுகள், $\Sigma X = 55$, $\Sigma XY = 350$, $\Sigma X^2 = 385$, $\Sigma Y = 55$, X ன் மதிப்பு 6. Y ன் மதிப்பை தீர்மானிக்கவும்.
- X -ன் மீது Y -ன் தொடர்புப் போக்குக் கோட்டின் சமன்பாடு காண்க.

X	1	2	3	4	5	8	10
Y	9	8	10	12	14	16	15

- 9. பின்வரும் விவரங்களை பயன்படுத்தி (i) X–ன் மீது Y–ன் தொடர்புப் போக்குக் கோட்டின் சமன்பாடு காண்க. (ii) சோதனைச் செலவு ரூ. 28,000 எனும்பொழுது விநியோகிக்கப்பட்ட குறையுள்ள பொருட்களின் அளவை மதிப்பிடுக. ΣX =424, ΣY =363, ΣX^2 =21926, ΣY^2 =15123, ΣXY =12815 , N=10. இங்கு X என்பது சோதனைச் செலவு, Yஎன்பது விநியோகிக்கப்பட்ட குறை பொருட்கள் ஆகும்.
- 10. கீழே கொடுக்கப்பட்டுள்ள விவரங்களுக்கு,

	X(in Rs.)	Y (in Rs.)
சராசரி	6	8
திட்ட விலக்கம்	5	40 3

X மற்றும் Y ஆகியவற்றின் ஒட்டுறவுக் கெழு $\frac{8}{15}$.

- $(i) \ X$ ன் மீது Y–ன் தொடர்புப் போக்குக் கெழு
- $(ii)\ X= ரு 100$ எனும்போது மிகப் பொருத்தமான Y–ன் மதிப்பு ஆகியவற்றைக் காண்க.

நிகழ்வு ஆய்வு-1

திரு.பீன் 2018 ஆம் ஆண்டு மார்ச் மாதம் 1 ஆம் தேதி சென்னையில் திருவல்லிக்கேணியில் உள்ள ஒரு பல்பொருள் அங்காடிக்கு சென்று 15 வகையான உணவு வகைகளை தேர்ந்தெடுக்கிறார். அனைத்து வகையான உணவு பெட்டிகளிலிலும் சத்து விவரங்கள் பற்றிய தகவல் இடம்பெற்றுள்ளது. திரு பீன் ஒவ்வொரு உணவு பொருளையும் கண்டு அதில் பதிவு செய்யப்பட்டுள்ள கொழுப்பு (gm $/100~{
m gms}$) மற்றும் சோடியம் உள்ளடக்கம் (${
m mgs}/100{
m gms}$)அளவை கண்டறிந்து பின்வருமாறு அட்டவணையில் பதிவு செய்துள்ளனர்.

வ.எண்.	உற்பத்தி பொருட்கள்	கொழுப்பு (gm/100gms)	சோடியம் (mg / 100gms)
1	பேரீட்சை பழங்கள்	0.4	74.4
2	அப்பளம்	0.26	1440
3	சத்து பானம்	1.8	136
4	குளோப்ஜாமூன் பவுடர்	10.4	710
5	கோதுமை	2.2	4.97
6	அத்தி பழங்கள்	0.14	2
7	உருளை – பச்சை பட்டாணி கலவை	5	440
8	பாப்கார்ன்	2.32	51.38
9	பெருங்காயம்	0.37	40
10	காளான்	31	11.73
11	பழரசம்	0.1	74
12	இனிப்பு மிட்டாய்	0.8	0.09
13	ரவை	9	575
14	பிஸ்கட்	19.7	498
15	நொருக்கு தீனி	33.5	821

மேலே குறிப்பிடப்பட்ட உணவு உள்ளடக்கங்களுக்கிடையில் சில புள்ளிவிவர உறவை திரு.பீன் நிர்மானிக்க விரும்புகிறார். ஆய்வுக்கு உட்படுத்தப்படும் மாறிகள் X மற்றும் முறையே ஒவ்வொரு உணவு பொருட்களின் கொழுப்பு உள்ளடக்கம் மற்றும் சோடியம் உள்ளடக்கத்தின் அளவு ஆகியவற்றைக் குறிக்கிறது. ஆகையால் திரு பீன் ஒவ்வொரு உணவு பொருட்களுக்கான ஒரு ஜோடி மதிப்புகள் (X , Y) பெறுகிறார். மேலும் திரு. பீன் அனைத்து 15 பொருட்களின் சராசரி கொழுப்பு உள்ளடக்கம் \overline{X} = $7.8~(\mathrm{gm}/100\mathrm{gms})$ மற்றும் சராசரி சோடியம் உள்ளடக்கம் $\overline{Y} = 325.23 (\mathrm{gm}/100 \mathrm{gms})$. என்பதை காண்கிறார். மேலும், பழச்சாறில் உள்ள கொழுப்பு குறைந்தபட்சம் அளவு $0.1(\mathrm{gm}/100\mathrm{gms})$ என்று அறியப்பட்டது. இதனால் அனைத்து 15உணவுகள் உள்ள கொழுப்பு 0.1~(gm/100~gms)-லிருந்து 33.5(gm/100gms) வரை உள்ளது. இதே போல், இனிப்பு மிட்டாயில் உள்ள சோடியம் உள்ளடக்கம் குறைந்தபட்ச அளவு 0.09(mg/100gms)மற்றும் அப்பளத்தில் உள்ள சோடியம் உள்ளடக்கம் அதிகபட்ச அளவு 1440(mg/100gms).

ஆகையால் அனைத்து 15 பொருட்களின் கொழுப்பு உள்ளடக்கம் மற்றும் சோடியம் உள்ளடக்கம் ஆகியவற்றின் வீச்சு அளவை முறையே 33.4 gm மற்றும் 1439.91(mg/100gms) அனைத்து விவரங்களிள் சராசரியிலிருந்து ஒவ்வொரு தனி விவரத்தின் மாறுபாட்டை அறிய திரு. பீன் விரும்பினார். திட்ட விலக்கம் என அழைக்கப்படும் மற்றொரு சிதறல் அளவையை காண முயற்சி மேற்கொண்டார். அனைத்து 15 உணவு பொருட்களின் கொழுப்பு உள்ளடக்கத்தின் சராசரி 11.3 (gm/100gm) மற்றும் சோடியம் உள்ளடக்கத்திள் விலக்கம் சராசரி 420.14 (mg/100 gms) மேலும் திரு. பீன் மாறிகள் X மற்றும் Y ஆகியவற்றிற்கு இடையேயான தொடர்பைக் கண்டுபிடிப்பதில் ஆர்வம் கொண்டார். எனவே ஒட்டுறவு பகுப்பாய்வு மேற்கொள்ளப்பட்டது. ஒட்டுறவுக் கெழு r(X,Y) = 0.2285 என்பது சோடியம் உள்ளடக்கம் மற்றும் கொழுப்பு உள்ளடக்கம் ஆகியவற்றிற்கிடையே 22.85% நேரிடையான தொடர்பு உள்ளதை குறிக்கிறது. இந்த ஆய்வில் இருந்து திரு. பீன் ஒவ்வொரு உணவு பொருளின் பெட்டிகளிலும் இடம் பெற்றுள்ள ஊட்டச்சத்து தகவல் போதுமானது என திருப்திப்படுவதாக அறிகிறார்.

நிகழ்வு ஆய்வு-2

2018 பிப்ரவரி 20 முதல் 2018 மார்ச் 1 வரையிலான பத்து நாட்களுக்கு இரு இடங்களில், சென்னை சந்தை மற்றும் மும்பை சந்தை ஆகியவற்றில் தங்கம் விலை (கிராமுக்கு) தொடர்பான விவரங்களை நாங்கள் சேகரித்தோம் மற்றும் அளவை கீழே பதியப்பட்டுள்ளது.

தேதி	பிப்ரவரி 20	பிப்ரவரி 21	பிப்ரவரி 22	பிப்ரவரி 23	பிப்ரவரி 24	பிப்ரவரி 25	பிப்ரவரி 26	பிப்ரவரி 27	பிப்ரவரி 28	បញ្ជំទំ1
சென்னை X	2927	2912	2919	2912	2921	2921	2927	2924	2908	2893
மும்பை Y	2923	2910	2907	2920	2919	2919	2925	2918	2902	2895

சென்னை சந்தையில் தங்கத்தின் விலை அதன் தாக்கத்தை மும்பை சந்தையின் மீது ஏற்படுத்தும் என்பதை நாம் ஒத்துக்கொள்ள இயலுமா?

சென்னை சந்தையில் தங்கத்தின் விலை (கிராமுக்கு) X எனவும் மும்பை சந்தையில் தங்கத்தின் விலை (கிராமுக்கு) Y எனவும் கொள்க. மேற்கண்ட அட்டவணையில் தரப்பட்ட விவரத்திலிருந்து சென்னை சந்தையில் தங்கத்தின் விலையின் ஏற்றம் ரூ.2893 (கிராமுக்கு) லிருந்து ரூ. 2927 (கிராமுக்கு) வரையும் மும்பை சந்தையில் தங்கத்தின் விலையில் ஏற்றம் ரூ. 2895 (கிராமுக்கு) –லிருந்து ரூ.2925 (கிராமுக்கு) வரையும் உள்ளது. மேலும் பிப்ரவரி 20 முதல் பிப்ரவரி 24 வரையிலான தேதியிட்ட நாட்களில் தங்க விலை வீதத்தில் சில அலைவுகளும் பிப்ரவரி 24 மற்றும் 25. ஒரே மாதிரியாகவும் உள்ளது குறிப்பிடத்தக்கது. இது தங்க சந்தைகளுக்கு விடுமுறை காரணமாக இருக்கலாம். தங்க விலை வீதம் பிப்ரவரி 27 முதல் மார்ச் 1 வரை வேகமாக குறைவது அட்டவணையிலிருந்து தெளிவாகிறது. இதே போன்ற ஏற்ற இறக்கம் மும்பை சந்தையில் பிப்ரவரி 20 முதல் 24 ஆம் தேதி வரையும் 24 மற்றும் 25 ஆம் தேதிகளில் ஒரே மாதிரியாகவும், பிப்ரவரி 27 முதல் மார்ச் 1 வரை வேகமாகவும் குறைந்து வருகின்றன. எனவே, தங்க சந்தை வீதத்தில் சந்தை போக்கு இரண்டு சந்தைகளிலும் ஒரே நிலையில் உள்ளது. இந்த 10 நாட்களில் சென்னை சந்தையில் சராசரி தங்க விலை ரூ. 2916.4 (கிராமுக்கு) மற்றும் மும்பை சந்தையில் சராசரி தங்க விலை ரூ..2913.8(கிராமுக்கு) என்பதை நாம் காண்கிறோம்.

10 நாட்களில் தங்க விலைகளுக்கிடையேயான மாறுபாடு

அனைத்து விவரங்களின் சராசரியிலிருந்து ஒவ்வொரு தனி விவரத்தின் மாறுபாட்டை காண வேண்டும். திட்ட விலக்கத்தை சிறந்த அளவையாக நாம் பயன்படுத்தலாம். இந்த ஆய்வில், தங்கத்தின் விலையானது, சராசரி விலக்கமாக சென்னை சந்தையில் ரூ. 10 (தோராயமாக) மும்பை சந்தையில் ரூ. 9 (தோராயமாக) என தெரிய வருகிறது. இரண்டு நகரங்களுக்கும் இடையே உள்ள விலைகளின் நிலைத்தன்மையை சரிபார்க்க. மாறுபாட்டின் சதவீதத்தை வெளிப்படுத்துகின்ற மாறுவிகிதக் கெழுவை நாங்கள் முயற்சிக்கிறோம். சென்னை சந்தையில் தங்கத்தின் விலையின் மாறுவிகிதக் கெழுவானது

$$CV_X = \frac{\sigma_X}{\overline{X}} \times 100 = \frac{10}{2916.4} \times 100 = 0.343\%$$

இதே போல், மும்பை சந்தையில் தங்கத்தின் விலையின் மாறுவிகிதக் கெழுவானது

$$CV_{Y} = \frac{\sigma_{Y}}{Y} \times 100 = \frac{9}{2913.8} \times 100 = 0.31\%$$

இக்கெழுக்களை ஒப்பிடுவதன் மூலம் மும்பை சந்தையில் தங்கத்தின் விலையானது, மிகவும் நிலையானதாக இருப்பதை நாம் கண்டறிந்துள்ளோம்.

மேலும் இரண்டு மாறிகள் X மற்றும் Y -க்கு இடையேயான நேர்கோட்டு உறவை ஆராய்வதற்கு ஒட்டுறவு பகுப்பாய்வு முடிவு r(X,Y)=0.8682. என காண்கிறோம். இது மும்பை சந்தை மற்றும் சென்னை சந்தைக்கு இடையே தங்கத்தின் விலையில் நேரிடையான ஒட்டுறவு உள்ளது என்பதை இது குறிக்கிறது.

தொடர்புப் போக்குக் கோட்டை கண்டுபிடிப்பதை அறிவுபூர்வமானதாக **இங்**கு உணருகிறீர்களா?

தொகுப்புரை

- ஒட்டுறவு என்பது இரண்டு அல்லது அதற்கு மேற்பட்ட மாறிகளுக்கு இடையே உள்ள தொடர்பின் அளவை குறிக்கின்றது.
- சிதறல் வரைபடம் என்பது இரு மாறிகளுக்கு இடையேயான ஒட்டுறவை காணுவதற்கான ஒரு வரைபட கருவி ஆகும்.
- lacktriangle கார்ல் பியர்சனின் ஒட்டுறவுக் கெழு $r(x,y) = rac{\mathrm{cov}(X,Y)}{\sigma_x \sigma_y}$
- ullet ஒட்டுறவுக் கெழு -1 லிருந்து +1 க்கு இடையே ஓர் மதிப்பைப் பெற்றிருக்கும். குறியீட்டில் $-1 \le r \le 1$
- r=+1 , எனில் மாறிகளுக்கிடையேயான ஒட்டுறவு முழுமையான நேரிடை ஒட்டுறவு எனப்படும்.
- r=-1 , எனில் மாறிகளுக்கிடையேயான ஒட்டுறவு முழுமையான எதிரிடை ஒட்டுறவு எனப்படும்.
- r=0, எனில் மாறிகளுக்கிடையே எவ்வித தொடர்பும் இல்லை அதாவது ஒட்டுறவு இல்லை எனலாம் .
- தர ஒட்டுறவு கருத்தியல் பண்பளவையின் குணங்கள் அளவிடுகிறது.
- ெஸ்பியர்மெனின் தர ஒட்டுறவு கெழு சூத்திரம் ρ

$$\rho = 1 - \frac{6\Sigma d^2}{N(N^2 - 1)}$$

இங்கு $d = R_x - R_y$

N = இணை உறுப்புகளின் எண்ணிக்கை

- ஒட்டுறவு மாறிகளின் இடையே உள்ள நேரிடை தொடர்பை விளக்குகின்றது. ஆனால் தொடர்புப் போக்கு ஒரு மாறியின் மதிப்பை பயன்படுத்தி மற்றொரு மாறியின் மதிப்பை கணக்கிட உதவுகின்றது.
 - (i) Y –ன் மீதான ${
 m X}$ –ன் தொடர்புப் போக்குக் கோடு ${
 m X}$ – \overline{X} = $b_{_{xy}}({
 m Y}$ $-\overline{{
 m Y}}$)
 - (ii) X –ன் மீதான ${
 m Y}$ –ன் தொடர்புப் போக்குக் கோடு ${
 m Y}$ – ${
 m \overline{Y}}$ = $b_{_{{
 m y}_{X}}}$ (X – ${
 m \overline{X}}$)
- 🔍 இரண்டு தொடர்புப் போக்குக் கோடுகள் , சராசரிகளின் வழியே செல்கின்றது.

$$b_{xy} = r - rac{\sigma_x}{\sigma_y}$$
 and $b_{yx} = r rac{\sigma_y}{\sigma_x}$ ஆகிய தொடர்புப் போக்குக் கெழுக்கள் கணக்கிடப்படுகின்றன.

- ஒட்டுறவுக் கெழுவின் பண்புகள்
 - (i) $r = \sqrt{b_{yx} \times b_{xy}}$
 - (ii) இரண்டு தொடர்புப் போக்குக் கெழுக்களும் எண் ஒன்றை விட பெரியதாக இருக்க முடியாது.
- (iii) இரண்டு தொடர்புப் போக்குக் கெழுக்களும் ஒரே குறியீட்டை உடையதாக இருக்கும்.

கலைச் சொற்கள் (GLOSSARY)				
அசாதாரனமான	Abnormal			
இருமாறி பகுப்பாய்வு	Bivariate analysis			
ஊகிக்கப்பட்ட சராசரி	Assumed Mean			
எதிர்மறை ஒட்டுறவு	Negative Correlation			
ஏற்ற இறக்கம்	fluctuate			
ஒட்டுறவு	Corrleation			
ஒருமாறி பகுப்பாய்வு	Univariate analysis			
சமவாய்ப்பு மாறிகள்	Random variables			
சார்ந்த மாறி	Relative Variable			
தொடர்புப் போக்கு ஆய்வு	Regression analysis			
தோராயமாக	Approximate			
நேரிடை ஒட்டுறவு	Positive Correlation			
பண்புகள்	Characteristics			
பொருத்தமுடைய	Closeness			
விலக்கம்	Deviations			

இணையச் செயல்பாக

இறுதியில் கிடைக்கப்பெறும் படம்

⊔L4 – 1

கீழ்க்காணும் உரலி / விரைவுக் குறியீட்டைப் பயன்படுத்தி GeoGebra வின் 11th Business Maths Volume–2 பக்கத்திற்குச் செல்க. உங்கள் பாடம் சார்ந்த பல பணித்தாள்கள் இப்பக்கத்தில் இருக்கும்.

"Regression lines" என்பதைத் தேர்வு செய்து, கொடுக்கப்பட்டிருக்கும் படிகளைக் கொண்டு தரவுகளைக் கணக்கிட்டுச் சரிபார்க்கவும். வரைபடத்தில் x யைச் சார்ந்த y யும், y யைச் சார்ந்த x யும், அவை இரண்டு கோடும் வெட்டும் புள்ளிகளையும் மீளாய்வு செய்க. New Problem என்னும் விரிதாளில் X (x ன் சராசரி) மற்றும் Y (y ன் சராசரி)மதிப்புகளை உள்ளீடு செய்து புதிய கணக்குகளைச் செய்க.

山頃 1

⊔LQ 2

		A	В	С	D	E
$\Sigma X = 28; \ \Sigma Y = 77; \ N = 7$	1	х	Y	X^2	Y^2	XY
	2	1	9	1	81	9
$\Sigma X^2 = 140; \ \Sigma Y^2 = 875; \ \Sigma XY = 334$	3	2	8	4	64	16
	4	3	10	9	100	30
$\bar{X} = \frac{28}{7} = 4$ $\bar{Y} = \frac{77}{7} = 11$	5	4	12	16	144	48
7 7 7	6	5	11	25	121	55
$N\Sigma XY - (\Sigma X)(\Sigma Y)$	7	6	13	36	169	78
$b_{xy} = rac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{N\Sigma Y^2 - (\Sigma Y)^2}$	8	7	14	49	196	98
	9	28	77	140	875	334
$= \frac{7(334) - (28)(77)}{7(875) - (77)^2} = 0.929$	10					
$7(875) - (77)^2$	11					
Regression line X on $Y:(x-\bar{x})=b_{xy}(y-\bar{y})$	12					
0.000	13					
x - 0.929y = -6.214	14					
$b_{yx} = rac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{N\Sigma X^2 - (\Sigma X)^2}$	15					
$\sigma_{yx} = \frac{1}{N\Sigma X^2 - (\Sigma X)^2}$	16					
7(334) = (28)(77)	17					
$= \frac{7(334) - (28)(77)}{7(140) - (28)^2} = 0.929$						
	19					
Regression line Y on $X: (y - \bar{y}) = b_{yx}(x - \bar{x})$	20					
-0.929x + y = 7.286	21					
-0.929x + y = 7.200	22					-

செயல்பாட்டிற்கான உரலி :

https://ggbm.at/q4tsyvys (or) scan the QR Code

in 10

செயல்முறைகள் ஆராய்ச்சி

கற்றல் நோக்கங்கள்

இந்த அத்தியாயத்தைப் படித்த பின் மாணவர்கள் கீழ்க்கண்டவைகளை புரிந்த கொள்ள முடியும்.

- நேரியல் செயல் திட்டக் கணக்குகளை வடிவமைத்தல்.
- நேரியல் செயல் திட்டக் கணக்குகளுக்கான தீர்வுகளை வரைபடம் மூலம் காணல்.
- திட்டத்தின் வலையமைப்பை வரைதல்.
- தீர்வுக்கு உகந்த பாதையைக் கொண்டு திட்டம் முடிய ஆகும் காலம் கணக்கிடல்.

அறிமுகம்

இரண்டாம் உலகப் போரின்போது இங்கிலாந்து நாட்டு நிர்வாகத்தினர், அறிவியலாளர்கள், பொறியியலாளர்கள் மற்றும் கணிதவியலாளர்கள் கொண்ட ஒரு குழுவை ஆகாயம் மற்றும் நிலப் பாதுகாப்புக்குத் தேவையான வியூ கங்கள் மற்றும் செயல்பாடுகள் பற்றி ஆராய்ந்தனர். போருக்கு தேவையான வெடிபொருள்கள், உணவு மற்றும் இதர பொருள்கள் ஆகிய அளவான இராணுவ வளங்களில் சிறந்த பயன்பாட்டிற்குரியவற்றை கணிப்பது அவர்களின் நோக்கமாக செயல்முறை இருந்தது. இதுதான் ஆராய்ச்சிக்காக உருவாக்கப்பட்ட முதல் குழு. இராணுவ செயல்முறைகள் குறித்து ஆராய்ச்சி செய்தமையால் செயல்முறைகள் ஆராய்ச்சி

L.V. கான்ட்ரோவிச்

எனப்பெயர்வரக்காரணமாயிற்று. இந்த செயல்முறைகள் ஆராய்ச்சிக்குழு சுரங்க செயல்பாட்டிற்கான வியூ கங்களை உருவாக்குதல், புதிய விமான வடிவமைப்பை கண்டுபிடிப்பது மற்றும் கடல் சுரங்கங்கள் திட்டமிடல் ஆகியவற்றிற்கு உதவி புரிந்தது. இப்போருக்குப் பின் தொழிற்சாலை நிர்வாகிகள் தங்களுடைய சிக்கலான பிரச்சனைகளுக்குத் தீர்வு காண செயல்முறைகள் ஆராய்ச்சிக் குழுவின் உதவியை நாடினர்.

செயல்முறை ஆராய்ச்சியை அனைவரும் ஏற்றுக்கொள்ளும்படி ஒரே மாதிரியாக வரையறுக்க முடியாது. UK செயல்முறை ஆராய்ச்சிக் குழு சார்பாக செயல்முறை ஆராய்ச்சியானது பின்வருமாறு வரையறுக்கப்பட்டுள்ளது, "தொழிற்சாலைகள், வணிகம், அரசாங்கம் மற்றும் இராணுவம் ஆகியவற்றிக்குப் பயன்படுத்தப்படும் இயந்திரங்கள், பொருள்கள், மனிதர்கள் மற்றும் பணம் ஆகியவற்றால் ஏற்படும் சிக்கலான பிரச்சனைக்குத் தீர்வு காணப் பயன்படும் அறிவியல் முறை ஆகும்.

செயல்முறைகள் ஆராய்ச்சி மாதிரி என்பது ஒரு பொருளின் பிரதிநிதித்துவம் அல்லது சில வாழ்வியல் ஆழலின் அமைப்பு ஆகும். இந்த மாதிரியின் நோக்கமானது குறிப்பிடத் தக்க காரணிகள் மற்றும் அவற்றிற்கிடையேயான தொடர்பை கண்டறிதல் ஆகும். இங்கு நாம் நேரியல் திட்டமிடல் கணக்கு மற்றும் வலையமைப்பு பகுப்பாய்வு ஆகிய இரண்டு வகைகளைப் பற்றி மட்டும் படிக்க உள்ளோம்.

10.1. நேரியல் திட்டமிடல் கணக்குகள்

ரஷ்ய கணித வல்லுநரான L.V. கான்ட்ரோவிச் என்பவர் முதன்முறையாக நேரியல் திட்டமிடல் கணக்குகளைத் தீர்க்க கணித மாதிரிகளைப் பயன்படுத்தினார். அவர் 1939–ல் உற்பத்தியில் உருவாகும் பலவகையான பிரச்சினைகளைக் கணித வடிவில் வரையறை செய்ய முடியும் என்றும், எனவே அவற்றை எண்மான முறையில் தீர்க்க இயலும் என்றும் குறிப்பிட்டுக் காட்டினார். இந்த முடிவெடுக்கும் நுணுக்கம் அல்லது முறை பிற்காலத்தில் ஜார்ஜ் B. டான்ட்சிக் எனும் வல்லுநரால் மேம்படுத்தப்பட்டது. அவர் பொது நேரியல் திட்டமிடல் உருவாக்கினார். மேலும் அவர் அத்தகைய கணக்குகளைத் தீர்க்க பயன்படும் எளிய நேரிடல் முறையை (simplex method 1947) மேம்படுத்தினார். கருத்தியல், பயன்பாடு, கணக்கீடுகள் ஆகியவற்றின் அடிப்படையில் நோக்கும்போது இன்று நேரியல் திட்டமிடல், உகந்த தீர்வு நுணுக்கங்களில் மிகச்சிறந்த ஒன்றாக இருக்கிறது.

வரையறை

நேரியல் திட்டமிடல் கணக்கு என்பது கிடைக்கக் கூடிய அளவான வள ஆதாரங்களை ஒதுக்கீடு செய்து உகம (மீப்பெரு அல்லது மீச்சிறு) மதிப்பினை காண்பதற்கான ஒரு கணிதவியல் அமைப்பு உத்தியாகும்.

கணித அடிப்படையில், நேரியல் திட்டமிடல் கணக்கின் பொதுவடிவத்தைக் கீழே உள்ளவாறு கூறலாம்.

என்ற **கட்டுபாடுகளுக்கு** இணங்க $Z=c_1x_1+c_2$ $x_2+\ldots+c_n$ x_n - ன் **மீப்பெருமதிப்பு** அல்லது **மீச்சிறு மதிப்பைக் காண்க**.

LPP**–ன் சுருக்கமான வடிவம்**

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq ($$
 அல்லது = அல்லது \geq) b_{i} , $i = 1, 2, 3, ..., m$... (1)

மற்றும் $x_j \ge 0$... (2) என்ற **கட்டுபாடுகளுக்கு இ**ணங்க $Z = \sum_{j=1}^n c_j x_j$ **மீப்பெருமதிப்பு** அல்லது **மீச்சிறு மதிப்பைக் காண்க**.

சில பயனுள்ள வரையறைகள்

குறிக்கோள் சார்பு (Objective function):

உகம மதிப்பு (மீப்பெரு அல்லது மீச்சிறு) காண வேண்டிய நேரியல் சார்பு $Z=c_1\,x_1^{}+c_2^{}x_2^{}+\ldots+c_n^{}x_n^{}$ என்பது குறிக்கோள் சார்பு ஆகும்.

தீர்மான மாறிகள் (Decision variables):

குறிக்கோள் சார்பின் உகம மதிப்பைக் காண்பதற்கு தேவைப்படும் x_j , $j=1,2,3,\ldots,n$, எனும் மாறிகள் தீர்மான மாறிகள் ஆகும்.

கட்டுப்பாடுகள் (Constraints):

அளவான வள ஆதாரங்களைப் பயன்படுத்துவதற்கானக் குறிப்பிட்ட வரையறைகள், கட்டுப்பாடுகள் ஆகும்.

$$\sum_{j=1}^n a_{ij} x_j \leq$$
 (அல்லது = அல்லது \geq) b_i , $i=1,2,3,\ldots,m$ என்பவைகள் கட்டுப்பாடுகள்.

ស្វីថ្នាំ (Solutions):

எல்லா கட்டுப்பாடுகளையும் நிறைவு செய்யக் கூடிய தீர்மான மாறிகளின் $(x_j, j=1,2,3,...,n)$ தொகுப்பு மதிப்புகள் அந்தக் கணக்கின் தீர்வுகள் ஆகும்.

ஏற்புடையத் தீர்வு (Feasible solution):

குறை குறியற்ற நிபந்தனைகளுக்கு உட்பட்டு எல்லாக் கட்டுபாடுகளையும் நிறைவு செய்யும் தீர்மான மாறிகளின் மதிப்புகளின் தொகுப்பு ஏற்புடையத் தீர்வு ஆகும்.

உகமத் தீர்வு (Optimal solution):

குறிக்கோள் சார்பின் பெரும அல்லது சிறும மதிப்பைத் தரும் ஏற்புடையத் தீர்வு, உகமத் தீர்வு என்றழைக்கப்படும்.

தீர்வுக்கு உகந்தப் பகுதி (Feasible region):

ஒரு நேரியல் திட்டமிடல் கணக்கில் குறை குறியற்ற நிபந்தனைகள் $x_{j} \ge 0$ உட்பட்ட எல்லாக் கட்டுப்பாடுகளையும் சேர்ந்துக் கணிக்கக் கூடிய பொதுவான, தக்கணக்கின் தீர்வுக்கு உகந்த பகுதி (அல்லது ஏற்புடைய பகுதி) எனப்படும்.

விவசாயிகளுக்கு இடர்பாடுகளை சிறுமமாகவும் மற்றும் இலாபத்தை பெருமமாகவும் அளிக்கக்கூடிய நல்ல மக்கூல் பெறுவதற்கு நேரியல் திட்டமிடல் கணக்குகள் உதவுகிறது.

10.1.1 நேரியல் திட்டமிடல் கணக்கின் கணிதவியல் அமைப்பை உருவாக்குதல் (Mathematical formulation of a linear programming problem)

ஒரு நேரியல் திட்டமிடல் கணக்கை ஒரு கணித வடிவமாக அமைப்பதற்கு பின்வரும் வழிமுறைகளைக் கையாள வேண்டும்.

- (i) தீர்மான மாறிகளைக் கண்டறிய வேண்டும்.
- (ii) குறிக்கோள் சார்பினை மீப்பெரிதாக்க அல்லது மீச்சிறிதாக்க என அடையாளம் கண்டு அதை தீர்மான மாறிகளைக் கொண்டு நேரியல் சார்பாக எழுத வேண்டும்.
- (iii) கணக்கில் உள்ள கட்டுப்பாடுகளுக்கு ஏற்றாற்போல் தீர்மான மாறிகளை அசமன்பாடுகளாகவோ அல்லது சமன்பாடுகளாகவோ எழுத வேண்டும்.

எடுத்துக்காட்டு 10.1

ஒரு மர வியாபாரி மேசை, நாற்காலி ஆகிய இரு பொருள்களை மட்டுமே வியாபாரம் செய்கிறார். அவரிடம் முதலீடு $\overline{<}10,000$ /- உள்ளது. மேலும் 60 எண்ணிக்கையிலான பொருள்களை மட்டுமே வைப்பதற்கான இடவசதியும் உள்ளது. ஒரு மேசையின் விலை ₹ 500 /- மற்றும் ஒரு நாற்காலியின் விலை ₹200/- ஆகும். அவர் வாங்குகின்ற எல்லாப் பொருள்களையும் விற்றுவிடுவார். ஒரு மேசையிலிருந்து ${
m ₹}50$ இலாபமும், ஒரு நாற்காலியிருந்து ${
m ₹}~15$ இலாபமும் பெறுகிறார் எனில், அவர் மீப்பெரு இலாபம் பெறுவதற்கான நேரியல் திட்டமிடல் கணக்கினை வடிவாக்குக.

தீர்வு :

- (i) **மாறிகள்**
- (ii) x_1 , x_2 முறையே மேசை மற்றும் நாற்காலிகளின் எண்ணிக்கை என்க.
- (iii) குறிக்கோள் சார்பு

$$x_1$$
 மேசைகளின் இலாபம் = $50 \ x_1$ x_2 நாற்காலிகளின் இலாபம் = $15 \ x_1$ மொத்த இலாபம் = $50 \ x_1 + 15 x_2$

இதனை $Z=50\;x_1+15\;x_2\;,\,\,$ என எழுதலாம் மீப்பெரு இலாபம் பெற $Z=50\;x_1+15\;x_2\;,$ —ஐ மீப்பெரிதாக்க வேண்டும்.

(iv) **கட்டுப்பாடுகள்**

வியாபாரியிடம் அதிக பட்சமாக 60 பொருள்களை வைப்பதற்கான இடவசதி உள்ளது.

$$x_1 + x_2 \le 60$$

$$x_2$$
 நாற்காலிகளின் விலை = $\stackrel{?}{\sim} 200 x_2$

மொத்த விலை =
$$500 x_1 + 200 x_2$$
,

மொத்த விலை 10000க்கு மேல் இருக்கக் கூடாது.

$$500x_1 + 200 x_2 \le 10000$$

$$5x_1 + 2x_2 \le 100$$

(v) குறை குறியற்ற நிபந்தனைகள்:

மேசை மற்றும் நாற்காலிகளின் எண்ணிக்கை குறை குறியற்றவை என்பதால் $x_1 \ge 0, x_2 \ge 0$ ஆகும்.

எனவே நேரியல் திட்டமிடல் கணக்கு (L.P.P) கீழ்க்கண்ட வடிவத்தைப் பெறுகிறது.

$$x_1 + x_2 \le 60$$

$$5x_1 + 2 x_2 \le 100$$

 $x_1, x_2 \ge 0$ என்ற **கட்டுப்பாடுகளுக்கு** இணங்க,

 $Z = 50x_1 + 15x_2$ –ன் மீப்பெருமதிப்பைக் காண்க.

எடுத்துக்காட்டு 10.2

ஒரு நிறுவனம் உற்பத்தி செய்யும் மூன்று வகையான பொருள்கள் $A,\ B$ மற்றும் Cஆகியவைகள் ஒரு அலகிற்கு முறையே ₹ 20, ₹25 மற்றும் ₹15 என இலாபம் ஈட்டுகிறது. ஒரு அலகு உற்பத்திக்கு தேவையான வள ஆதாரங்கள் மற்றும் மொத்த இருப்புகள் கீழே கொடுக்கப்பட்டுள்ளது.

உற்பத்தி	P ₁	P_2	P_3	மொத்த இருப்பு
மனித நேரம் / அலகு	6	3	12	200
இயந்திர நேரம் / அகை	2	5	4	350
மூலப்பொருள்கள் / அலகு	1 கி.கி	2 கி.கி	1 கி.கி.	100 கி.கி

இவற்றிக்கு நேரியல் திட்டமிடல் கணக்கினை வடிவமைக்கவும்.

தீர்வு :

(i) **மாறிகள்**

 $x_1^{}$, $x_2^{}$, $x_3^{}$ என்பவை முறையே உற்பத்தி செய்யப்பட வேண்டிய பொருள்கள் $P_1^{}$, $P_2^{}$ and $P_3^{}$ ஆகியவற்றின் எண்ணிக்கை என்க.

(ii) குறிக்கோள் சார்பு

 x_1 அலகுகள் கொண்ட உற்பத்தி பொருள் P_1 –ன் இலாபம் = $20~{
m x_1}$

 x_2 அலகுகள் கொண்ட உற்பத்தி பொருள் $\ P_2$ –ன் இலாபம்= $25\ x_2$

 $x_{\scriptscriptstyle 3}$ அலகுகள் கொண்ட உற்பத்தி பொருள் $P_{\scriptscriptstyle 3}$ –ன் இலாபம்= $15x_{\scriptscriptstyle 3}$

மொத்த இலாபம் = $20 x_1 + 25 x_2 + 15 x_3$

மொத்த இலாபம் மீப்பெரிதாக்கப்பட, $Z=20\ x_1+25\ x_2+15\ x_3$ —ஐ மீப்பெரிதாக்கவேண்டும்.

$$6x_1 + 3 x_2 + 12 x_3 \le 200$$

$$2 x_1 + 5 x_2 + 4 x_3 \le 350$$

$$x_1 + 2 x_2 + x_3 \le 100$$

(iv) குறை குறியற்ற நிபந்தனைகள்:

A,B மற்றும் C ஆகிய உற்பத்தி பொருள்களின் எண்ணிக்கை குறை குறியற்றவை எனவே $x_1,\,x_2,\,x_3\geq 0$

இந்த நேரியல் திட்டமிடல் கணக்கை(L.P.P) நாம் கணித வடிவில் அமைப்போம்.

$$6 x_1 + 3 x_2 + 12 x_3 \le 200$$

$$2x_1 + 5x_2 + 4 x_3 \le 350$$

$$x_1 + 2 x_2 + x_3 \le 100$$

$$x_1, x_2, x_3 \ge 0$$

என்ற கட்டுப்பாடுகளுக்கு இணங்க, Z=20 x_1+25 x_2+15 x_3 -ன் மீப்பெருமதிப்பைக் காண்க.

எடுத்துக்காட்டு 10.3

ஒரு இல்லத்தரசி F_1 மற்றும் F_2 என்ற இரண்டு வகையான உணவுகளைக் குறைந்த பட்சம் 6 அலகுகள் வைட்டமின் A மற்றும் 9 அலகுகள் வைட்டமின் B உள்ள கலவையாக அமைக்க விரும்புகிறார். F_1 வகை உணவு ஒரு கிலோ 70 மற்றும் 80 மற்றும் 81 வகை உணவு ஒரு கிலோ 83 மற்றும் 84 அலகு வைட்டமின் 84 யையும் மற்றும் 84 அலகு வைட்டமின் 85 யையும் உள்ளடக்கியுள்ளது. 85 என்ற உணவில் ஒரு கிலோவிற்கு 85 அலகு வைட்டமின் 85 யையும் உள்ளடக்கியுள்ளது. 86 வைட்டமின் 86 யையும் மற்றும் 87 அலகு வைட்டமின் 88 யையும் மற்றும் 89 அலகு வைட்டமின் 88 வையும் உள்ளடக்கியுள்ளது. 89 கலவையின் விலையைக் குறைக்கும் விதத்தில் மேற்கண்டவற்றை நேரியல் திட்டமிடல் கணக்காக அமைக்கவும்.

தீர்வு:

- (i) மாறிகள்:
- $({
 m ii})$ கலவையில் ${
 m F_1}$ உணவு x_1 கி.கி மற்றும் ${
 m F_2}$ உணவு x_2 கி.கி உள்ளது என்க.
- (iii) **குறிக்கோள் சார்பு:** x_1 கி.கி F_1 உணவின் விலை = $50\,x_1$ x_2 கி.கி F_2 உணவின் விலை = $70x_2$ விலையானது சிறுமமாக்கப்படவேண்டும்.

எனவே $Z=50x_1+70\;x_2$ –ஐ மீச்சிறிதாக்குக.

(iv) **கட்டுப்பாடுகள்**:

கொடுக்கப்பட்ட விவரங்களிலிருந்து நாம் பின்வரும் அட்டவணையை அமைப்போம்

	உணவ	பு (கிகி)		
வளங்கள்	$\left \begin{array}{c c} \mathbf{F}_1(x_1) & \mathbf{F}_2(x_2) \end{array} \right $		தேவை	
வைட்டமின் A (அலகுகள் / கிகி)	4	5	6	
வைட்டமின் B (அலகுகள் / கிகி)	6	3	9	
ഖിതെ (₹/ கிகி)	50	70		

அட்டவணை 10.1

 $4\;x_1+5x_2\ge 6$ (குறைந்தப்பட்சம் 6 அலகுகள் வைட்டமின் A தேவைப்படுவதால்) $6\;x_1+3x_2\ge 9$ (குறைந்தப்பட்சம் 9 அலகுகள் வைட்டமின் B தேவைப்படுவதால்)

(v) **குறை குறியற்ற நிபந்தனைகள்**:

வைட்டமின் ${\bf A}$ மற்றும் வைட்டமின் ${\bf B}$ அளவுகள் குறை குறியற்றவையாக இருப்பதால், $x_{1,2}$ $x_{2,3}$

எனவே நேரியல் திட்டமிடல் கணக்கை (LPP) நாம் கணித வடிவில் அமைப்போம்.

$$4 x_1 + 5x_2 \ge 6$$

$$6 x_1 + 3x_2 \ge 9$$

மற்றும் $x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2}{\ge}0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க

 $Z = 50 \; x_{_1} + 70 x_{_2} \;$ –ன் மீச்சிறு மதிப்பைக் காண்க.

எடுத்துக்காட்டு 10.4

ஒரு மென் பானம் (Soft drinks) தயாரிக்கும் நிறுவனம், இரண்டு குப்பி ஆலைகள் C_1 மற்றும் C_2 – ஐக் கொண்டுள்ளது. ஒவ்வொரு ஆலையும் மூன்று விதமான மென் பானங்கள் S_1 , S_2 மற்றும் S_3 – ஐத் தயாரிக்கின்றன. இரு ஆலைகளிலும் ஒரு நாளில் தயாரித்து இருப்பு வைக்கப்படும் குப்பிகளின் எண்ணிக்கை, பின்வரும் அட்டவணையில் கொடுக்கப்பட்டுள்ளது.

0.	ஆതെ			
தயாரிப்பு	C_1	C_2		
S_1	3000	1000		
S_2	1000	1000		
S_3	2000	6000		

அட்டவணை 102

ஒரு சந்தைக் கணக்கெடுப்பு ஏப்ரல் மாதத்தில் S_1 குப்பிகள் 24000மும் S_2 குப்பிகள் 16000–ம் S_3 குப்பிகள் 48000–ம் தேவைபடுவதைக் குறிக்கின்றது. ஒரு நாள் P மற்றும் Q ஆலைகள் முறையே செயல்படுபவதற்கான செலவு ₹ 600 மற்றும் ₹ 400 ஆகிறது. ஏப்ரல் மாதம் ஒவ்வொரு ஆலையும் குறைந்தபட்சத் தயாரிப்புச் செலவில் சந்தைத் தேவையை எதிர்நோக்குவதற்கு எத்தனை நாட்கள் செயல்பட வேண்டும் எனக் காண்க. மேற்கண்டக் கணக்கை நேரியல் திட்டமிடல் வகையில் அமைக்கவும்.

தீர்வு:-

- (i) **மாறிகள்** : C_1 , C_2 என்ற ஆலைகள் செயல்படத் தேவையான நாட்களை x_1 , x_2 என்க.
- (ii) **குறிக்கோள் சார்பு:** மீச்சிறிதாக்கு $Z = 600 x_1 + 400 x_2$
- (iii) கட்டுப்பாடுகள்: $3000x_1 + 1000x_2 \ge 24000 \ (24000$ குப்பிகள் Aக்குத் தேவைப்படுவதால் 24000க்குக் குறையாமல் இருக்க வேண்டும்)

$$1000 x_1 + 1000 x_2 \ge 16000$$
$$2000 x_1 + 6000 x_2 \ge 48000$$

(iv) **குறை குறியற்ற நிபந்தனைகள்:** ஆலைகளின் வேலை நாட்கள் குறை குறியற்றவையாக இருக்கும். எனவே $x_1, x_2 \ge 0$. இந்த நேரியத் திட்டமிடல் கணக்கை (L.P.P) கணிதவடிவில் அமைப்போம்.

$$3000 x_1 + 1000 x_2 \ge 24000$$
$$1000 x_1 + 1000 x_2 \ge 16000$$
$$2000 x_1 + 6000 x_2 \ge 48000$$

மற்றும் $x_1, x_2 \! \ge \! 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க

 ${
m Z}=600~x_1^{}+400~x_2^{}$ –ன் மீச்சிறு மதிப்பைக் காண்க.

10.1.2 நேரியல் திட்டமிடல் கணக்குகளுக்கு (LPP) வரைபடம் மூலம் தீர்வு காணல் (Solution of LPP by graphical method)

நேரியல் திட்டமிடல் கணக்கை அமைத்த பிறகு, குறிக்கோள் சார்பின் உகமத் தீர்வை (பெருமம் அல்லது சிறும மதிப்பு) நாம் காண வேண்டும். இரு மாறிகளைக் கொண்ட நேரியல் திட்டமிடல் கணக்குகளுக்கு வரைபடம் முறை மூலம் தீர்வு காணலாம். இரு மாறிகளுக்கு மேல் உள்ள நேரியல் திட்டமிடல் கணக்குகளை வரைபடம் மூலம் தீர்க்க இயலாது.

மேற்குறிப்பிட்ட முறை மூலம் தீர்வு காண்பதற்கான முக்கியப் படிகள்

- (i) கொடுக்கப்பட்டுள்ளவற்றைக் கணித வடிவமைப்பில் எழுதுதல்.
- (ii) கணக்கில் உள்ள கட்டுப்பாடுகளைச் சமன்பாடு வடிவில் எழுதி வரைபடமாக வரைதல்
- (iii) ஏற்புடையப் பகுதி (தீர்வுப் பகுதியை) காணுதல்.
- (iv) ஒவ்வொரு முனைப் புள்ளியின் (முடிவுப் புள்ளியின்) ஆயத்தொலைகளின் உகந்த பகுதியைக் காண்க. முனைகளின் ஆயத்தொலைகளைப் பார்வைக் கணிப்பு

மூலமாகவோ அல்லது அந்தப் புள்ளி வழியேச் செல்லும் கோடுகளின் சமன்பாடுகளைத் தீர்ப்பதன் மூலமாகவோ காணலாம்.

- (v) முனைப்புள்ளிகளின் மதிப்பை குறிக்கோள் சார்பில் சமனிடுவதன் மூலம் குறிக்கோள் சார்புகளின் மதிப்புகளை கணக்கிடலாம்.
- (vi) கொடுக்கப்பட்ட கணக்கில் மீப்பெரு மதிப்பைக் காணவேண்டும் எனில் மேலே கணக்கிடப்படும் மதிப்புகளில் மிகப்பெரிய மதிப்பே உகம மதிப்பு ஆகும். கொடுக்கப்பட்ட கணக்கில் மீச்சிறு மதிப்பைக் காணவேண்டும் எனில் மேலே கணக்கிடப்படும் மதிப்புகளில் மிகச்சிறிய மதிப்பே உகம மதிப்பு ஆகும்.

எடுத்துக்காட்டு 10.5

கீழ்க்கண்ட நேரியத் திட்டமிடல் கணக்கை (LPP) தீர்க்க $x_1 + 4x_2 \le 24, \ 3x_1 + x_2 \le 21$

 $x_1+x_2 \leq 9$ மற்றும் x_1 , $x_2 \geq 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க Z=2 x_1+5x_2 –ன் மீப்பெரு மதிப்பைக் காண்க.

தீர்வ:–

முதலில் கொடுக்கப்பட்டுள்ள கட்டுப்பாடுகளுக்கு இணங்க ஏற்புடைய பகுதியைக் காண்க.

இரண்டு பொதுவான தீர்மான மாறிகள் x_1 மற்றும் x_2 குறை குறியற்றவையாக $(x_1,\ x_2\geq 0)$ இருப்பதால் ஏற்புடையப் பகுதி, முதல் கால்மானப் பகுதியில் அமையும் அனைத்துக் கட்டுப்பாடுகளையும் சமன்பாடு வடிவில் எழுதுக.

$$x_1 + 4x_2 = 24$$

$$3x_1 + x_2 = 21$$

$$x_1 + x_2 = 9$$

 $x_1 + 4x_2 = 24$ என்ற நேர்க்கோடானது $(0 \ , \, 6)$ மற்றும் $(24 \ , \, 0)$ என்றப் புள்ளிகள் வழியாகச் செல்லும்.

$$[x_{_1}+4x_{_2}=24$$
 இல் $x_{_1}\!\!=\!\!0$ எனப் பிரதியிட $x_{_2}\!=\!6$ எனக் கிடைக்கும்.

அதேபோல்
$$x_2 = 0$$
 எனப் பிரதியிட $x_1 = 24$ எனக் கிடைக்கும்.]

 $x_1 + 4x_2 = 24$ என்ற கோட்டின் மீதோ அல்லது அதற்குக் கீழோ வரும் புள்ளிகள் $x_1 + 4x_2 \le 24$ என்ற கட்டுப்பாட்டைப் பூர்த்தி செய்யும்.

 $3x_1^{}+x_2^{}=21$ என்ற நேர்கோடானது $(0\;,\,21)$ மற்றும் $(7\;,\,0)$ என்ற புள்ளிகள் வழியாகச் செல்லும்.

 $3x_1+x_2=21$ என்ற கோட்டின் மீதோ அல்லது அதற்குக் கீழோ வரும் புள்ளிகள் $3x_1+x_2\leq 21$ என்ற கட்டுப்பாட்டைப் பூர்த்தி செய்யும்.

 $x_1^+ \ x_2^- = 9$ என்ற நேர்கோடானது $(0 \ , \ 9)$ மற்றும் $(\ 9 \ , \ 0)$ என்ற புள்ளிகள் வழியாகச் செல்லும்.

 $x_1+x_2=9$ என்ற கோட்டின் மீதோ அல்லது அதற்குக் கீழோ வரும் புள்ளிகள் $x_1+x_2\leq 9$ கட்டுப்பாட்டைப் பூர்த்தி செய்யும்.

கணக்கில் கொடுக்கப்பட்டுள்ளக் கட்டுப்பாட்டிற்கிணங்க வரைபடமானது வரையப்பட்டுள்ளது. நிழலிடப்பட்ட OABCD என்ற பகுதியே தீர்வுப் பகுதி ஆகும். தீர்வுப் பகுதியின் முனைப்புள்ளிகள் முறையே O(0,0) A(7,0); B(6,3) [x_1+ $x_2=$ 9 மற்றும் 3 x_1+ $x_2=$ 21 என்ற வெட்டும் புள்ளி B ஆகும்)];C(4,5) x_1+ $x_2=$ 9 மற்றும் x_1+ $4x_2=$ 24] என்ற கோடுகள் வெட்டும் புள்ளி C ஆகும்) D(0,6).

முனைப்புள்ளிகள்	$Z = 2x_1 + 5x_2$
O(0,0)	0
A(7,0)	14
B(6,3)	27
C(4,5)	33
D(0,6)	30

அட்டவணை 10.2

குறிக்கோள் சார்பின் பெரும மதிப்பானது C என்ற புள்ளியில் கிடைக்கிறது. எனவே $x_1=4,$ $x_2=5,$ $Z_1=6,$ – ன் பெரும மதிப்பு $Z_1=6,$ $Z_2=6,$ – ன் பெரும மதிப்பு $Z_1=6,$ – க்கிறது. எனவே $Z_1=6,$ – க்கிறது. எனவே $Z_1=6,$ – க்கிறது. எனவே $Z_1=6,$ – க்கிறது.

எடுத்துக்காட்டு 10.6

கீழ்க்கண்ட நேரியல் திட்டமிடல் கணக்கைத் தீர்க்க.

 $4x_1+x_2\ge 40;\ 2x_1+3x_{22}\ge 90$ மற்றும் $x_1,\ x_2\ge 0$ என்ற கட்டுப்பாடுகளுக்கிணங்க

 $Z=5x_1+4x_2$ – ன் மீச்சிறு மதிப்பைக் காண்க.

தீர்வ:

 x_1 மற்றும் x_2 குறை குறியற்றவையாக இருப்பதால் ஏற்புடைய பகுதி முதல் கால் பகுதியில் அமையும்.

 $4x_1+x_2=40$ என்ற நேர்க்கோடானது $(0,\ 40)$ மற்றும் $(10,\ 0)$ என்ற புள்ளிகள் வழியாகச் செல்லும். மேலும் $4x_1+x_2=40$ என்றக் கோட்டின் மீதோ அல்லது அதற்கு மேலோ வரும் புள்ளிகள் $4x_1+x_2\ge 40$ என்றக் கட்டுப்பாட்டை பூர்த்தி செய்கிறது.

 $2x_1+3x_2=90$ என்ற நேர்கோடானது $(0,\ 30)$ மற்றும் $(45,\ 0)$ என்ற புள்ளிகள் வழியாக செல்லும். மேலும் $2x_1+3x_2=90$ என்றக் கோட்டின் மீதோ அல்லது அதற்கு மேலோ வரும் புள்ளிகள் $2x_1+3x_2\geq 90$ என்றக் கட்டுப்பாட்டைப் பூர்த்தி செய்கிறது.

கணக்கில் கொடுக்கப்பட்டுள்ள கட்டுப்பாடிற்கிணங்க வரைபடமானது வரையப்பட்டுள்ளது.

ப∟ம் 10.2

நிழலிடப்பட்ட ABC என்ற பகுதியே தீர்வுப் பகுதி ஆகும்.

தீர்வு பகுதியின் முனைப்புள்ளிகள் A(45,0) , B(3,28), C(0,40)

முனைப்புள்ளிகள்	$Z = 5x_1 + 4x_2$
A(45,0)	225
B(3,28)	127
C(0,40)	160

அட்டவணை 10.4

குறிக்கோள் சார்பின் சிறும மதிப்பானது B(3,28) என்ற புள்ளியில் கிடைக்கிறது.

எனவே
$$x_1$$
 =3, x_2 =28 Z மீச்சிறு மதிப்பு = 127

எடுத்துக்காட்டு 10.7

கீழ்க்கண்ட நேரியல் திட்டமிடல் கணக்கைத் தீர்க்க. $x_1 + x_2 \le 30; \;\; x_2 \le 12;$

 $x_1 \le 20$ மற்றும் x_1 , $x_2 \ge 0$ என்றக் கட்டுபாடுகளுக்கு இணங்க $Z = 2x_1 + 3x_2$ – ன் மீப்பெரு மதிப்பைக் காண்க.

தீர்வு:

முதலில் கொடுக்கப்பட்டுள்ள கட்டுப்பாடுகளுக்கு இணங்க ஏற்புடையப் பகுதியைக் காண்க.

இரண்டு பொதுவான தீர்மான மாறிகள் x_1 மற்றும் x_2 குறை குறியற்றவையாக இருப்பதல் x_1 , $x_2 \geq 0$ ஆகும். ஏற்புடையப் பகுதி முதல் கால்பகுதியில் அமையும்.

அனைத்துக் கட்டுப்பாடுகளையும் சமன்பாடு வடிவில் எழுதுக.

$$x_1 + x_2 = 30$$

$$x_2 = 12$$

$$x_1 = 20$$

 x_1 + x_2 = 30 என்ற நேர்கோடானது (0, 30) மற்றும் (30,0) என்ற புள்ளிகள் வழியாகச் செல்லும்.

 $x_{_2}$ = 12 என்ற கோடானது $x_{_1}$ க்கு இணையாகச் செல்லும்,

 $x_{_{1}}$ = 20 என்ற கோடானது $x_{_{2}}$ க்கு இணையாகச் செல்லும்.

$$x_1 + x_2 \le 30$$
;

$$x_2 \le 12$$
;

 $x_1 \leq 20$ மற்றும் x_1 , $x_2 \geq 0$ என்றக் கட்டுபாடுகளுக்கு இணங்க உகந்த தீர்வுப் பகுதி கீழ்க்கண்ட வரைபடத்தில் குறிக்கப்பட்டுள்ளது.

கணக்கில் கொடுக்கப்பட்டுள்ளக் கட்டுபாட்டிற்கிணங்க வரைபடமானது வரையப்பட்டுள்ளது. நிழலிடப்பட்ட OABCD என்ற பகுதியே தீர்வுப் பகுதி ஆகும்.

தீர்வுப் பகுதியின் முனைப்புள்ளிகள் முறையே O(0,0) ; A(20,0); B(20,10) ; C(18,12) மற்றும் D(0,12).

முனைப்புள்ளிகள்	$Z = 2X_1 + 3X_2$
O (0,0)	0
A (20,0)	40
B (20,10)	70
C (18,12)	72
D (0,12)	36

அட்டவணை 10.3

குறிக்கோள் சார்பின் பெரும மதிப்பானது C– என்ற புள்ளியில் $x_1=18$, $x_2=12$ எனக் கிடைக்கிறது. எனவே Z – ன் பெரும மதிப்பு = 72.

எடுத்துக்காட்டு 10.8

கீழ்க்கண்ட நேரியல் திட்டமிடல் கணக்கைத் தீர்க்க.

$$x_1 - x_2 \le -1;$$

- $x_1 + x_2 \le 0$ and $x_1, x_2 \ge 0$

 ${
m Z} = 3x_1^{} + 4x_2^{}$ – ன் மீப்பெரு மதிப்பைக் காண்க.

தீர்வு:-

முதலில் கொடுக்கப்பட்டுள்ள கட்டுபாடுகளுக்கு இணங்க ஏற்புடைய பகுதியைக் காண்க.

 $x_1,\ x_2\ge 0$ ஆக இருப்பதனால் ஏற்புடைய பகுதி முதல் கால்மானப் பகுதியில் அமையும் அனைத்துக் கட்டுபாடுகளையும் சமன்பாடு வடிவில் எழுதுக.

 x_1 – $x_2=-1$ என்ற நேர்க்கோடானது (0,1) மற்றும் (-1,0) என்ற புள்ளிகள் வழியாகச் செல்லும்.

 $-x_1+x_2=0$ என்ற நேர்க்கோடானது (0,0) என்ற புள்ளி வழியாகச் செல்லும் கணக்கில் கொடுக்கப்பட்டுள்ள $x_1-x_2 \le -1; -x_1+x_2 \le 0$ மற்றும் $x_1,x_2 \ge 0$ கட்டுபாட்டிற்கிணங்க வரைபடமானது வரையப்பட்டுள்ளது.

கொடுக்கப்பட்ட கட்டுப்பாடுகளை நிறைவு செய்யும் பொதுவான பகுதி இல்லை. எனவே நேரியத் திட்டமிடல் கணக்கிற்குத் தீர்வு இல்லை.

- ஒரு நிறுவனம் A மற்றும் B என்ற பேனாக்களைத் தயார் செய்கிறது. பேனா A ஆனது உயர் தரம் கொண்டது மற்றும் பேனா B என்பது குறைந்த தரம் கொண்டது. பேனா A மற்றும் B முறையே ஒரு பேனாவிற்கு ₹5, ₹3 என இலாபம் ஈட்டுகிறது. பேனா A—ஐ உற்பத்தி செய்யத் தேவைப்படும் மூலப்பொருள்கள் பேனா B—ஐ உற்பத்தி செய்யத் தேவைப்படும் மூலப்பொருள்களைப் போல இரு மடங்கு ஆகும். 1000 பேனாக்கள் மட்டுமே தயாரிக்கப் போதுமான மூலப்பொருள்களின் அளிப்பு உள்ளது. பேனா A—விற்கு சிறப்புக் கிளிப்புகள் தேவைப்படுகிறது, மற்றும் அவ்வாறான கிளிப்புகள் ஒரு நாளைக்கு 400 மட்டுமே கிடைக்கப்பெறுகிறது. பேனா வகை B—க்கு ஒரு நாளைக்கு 700 கிளிப்புகள் கிடைக்கப்பெறுகிறது. இந்தக் கணக்கை நேரியத் திட்டமிடல் முறையில் வடிவமைக்கவும்.
- 1. A மற்றும் B இரு வகையான பொருள்களை ஒரு நிறுவனம் உற்பத்தி செய்கிறது. இந்த இருவகையான பொருள்களின் மூலம் இலாபம் ₹30/- மற்றும் ₹40/- ஒவ்வொரு கிலோ கிராமுக்கும் கிடைக்கிறது. தேவைப்படும் வளங்கள் மற்றும் கிடைக்கக்கூடிய வளங்கள் ஆகிவற்றின் விவரங்கள் கீழே கொடுக்கப்பட்டுள்ளன.

	தேவை	இருப்பின் அளவு		
	பொருள் $f A$	பொருள் B	மாதத்திற்கு	
மூலப் பொருள்கள் (கி.கி)	60	120	12000	
இயந்திரம் இயங்கும் (நேரம் / அலகு)	8	5	600	
ஒன்றிணைத்தல் (மனித உழைப்பு நேரம்)	3	4	500	

பெரும் இலாபத்தை ஈட்ட இந்தக் கணக்கை நேரியத் திட்டமிடல் அமைப்பில் எழுதுக.

2. ஒரு நிறுவனமானது சாதாரணமான மற்றும் தானியங்கி நிலைப்படுத்திகளை உற்பத்தி செய்கிறது. இதற்குத் தேவையான உபகரணங்கள் அனைத்தும் வெளியிலிருந்து வாங்கப்பட்டு ஒன்றிணைத்தல் மற்றும் சோதித்தல் மட்டுமே நிறுவனத்தில் செய்யப்படுகிறது. ஒவ்வொரு சாதாரணமான மற்றும் தானியங்கி ஒன்றிணைத்தல் மற்றும் சோதித்தலுக்கான நேரம் முறையே 0.8 மணி மற்றும் 1.20 மணியாகும். தற்போது ஒரு வாரத்திற்கு 720 மணி நேரம் உற்பத்தி திறனாக கிடைக்கிறது. வார விற்பனைப் பெருமமாக இருப்பதற்கான சந்தை நிலவரம் சாதாரணமான நிலைப்படுத்திக்கு 600 அலகுகளாகவும் தானியங்கி நிலைப்படுத்திக்கு 400 அலகுகளாகவும் வரையறுக்கப்பட்டுள்ளது. சாதாரண மற்றும் தானியங்கிற்கான இலாபம் அலகு ஒன்றிக்கு ₹100, ₹150 என கணக்கிடப்பட்டுள்ளது. நேரியல் கணக்கிடல் முறையினை வடிவமைக்கவும்.

- 3. கீழ்க்கண்ட நேரியல் திட்டமிடல் கணக்குகளை வரைபடம் மூலம் தீர்க்க.
 - ${\rm (i)} \ \ 30x_{_1} + 20x_{_2} \leq 300 \ \ 5x_{_1} + 10x_{_2} \leq 110 \qquad \text{மற்றும்} \ \ x_{_1}, \ x_{_2} \ \geq \ 0 \ \ {\rm என்ற} \ \ {\rm கட்டுப்பாடுகளுக்கு}$ இணங்க $Z = 6x_1 + 8x_2$ –ன் பெரும மதிப்பைக் காண்க.
 - $960x_{_1}+640x_{_2}\leq 15360\,;\quad x_{_1}+x_{_2}\leq 20\quad {
 m and}\quad x_{_1},x_{_2}\geq 0$ என்ற கட்டுப்பாடுகளுக்கு (ii) இணங்க $Z = 22x_1 + 18x_2$ –ன் பெரும மதிப்பைக் காண்க.
 - (iii) $5x_1+\ x_2\ge 10;\ x_1+\ x_2\ge 6;\ x_1+\ 4\ x_2\ge 12\ x_1,\ x_2\ge 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க $Z=3x_1+2x_2$ –ன் மீச்சிறு மதிப்பைக் காண்க.
 - (iv) $30x_{_1}+x_{_2}\leq 9\,;$ $x_{_1}+2x_{_2}\leq 8$ and $x_{_1},x_{_2}\geq 0$ என்ற கட்டுப்பாடுகளுக்கிணங்க $Z=40x_{\scriptscriptstyle 1}+50x_{\scriptscriptstyle 2}$ – ன் பெரும மதிப்பைக் காண்க.
 - (v) $3x_1 + 3x_2 \le 36$; $5x_1 + 2x_2 \le 50$; $2x_1 + 6x_2 \le 60$ which $x_1, x_2 \ge 0$ என்ற கட்டுப்பாடுகளுக்கிணங்க $Z=20x_1+30x_2$ –ன் பெரும மதிப்பைக் காண்க.
 - (vi) $36x_1 + 6x_2 \ge 108$, $3x_1 + 12x_2 \ge 36$, $20x_1 + 10x_2 \ge 100$ upingio $x_1, x_2 \ge 0$ என்ற கட்டுப்பாடுகளுக்கிணங்க $Z=20x_1+40x_2$ –ன் மீச்சிறு மதிப்பைக் காண்க.

10.2 வலையமைப்பு பகுப்பாய்வு (Network Analysis)

போக்குவரத்து அமைப்பான சாலைகள், இரயில் பாதைகள், குழாய் இணைப்புகள் மற்றும் இரத்த நாளங்கள் போன்றவற்றை எளிய வரைபடங்களாகக் காண்பதே வலையமைப்புகள் எனப்படும்.

ஒரு திட்டம் என்பது பல வேலைகளைக் கொண்டதாகும். குறிப்பிட்ட சில வேலைகளை வேறு சில வேலைகள் முடிந்த பின்னரே தொடங்க முடியும். சில வேலைகள் மற்ற வேலைகளைச் சாராமலும் இருக்கலாம். திட்டம் மற்றும் திட்ட நிறைவுக் காலம் தொடர்பான பல வேலைகளின் வரிசைகளை நிர்ணயிப்பதற்கு உதவும் நுட்பமே வலையமைப்பு திட்டமிடல் ஆகும். இருவிதமான அடிப்படைத் திட்டமிடல் மற்றும் கட்டுப்படுத்தும் நுட்பங்கள் ஆகியவை வலையமைப்பை பயன்படுத்தி நுண் கணிக்கப்பட்ட அட்டவணையை நிறைவு செய்ய பயன்படுத்துகின்றன. அவையாவன: திட்ட மதிப்பீடு மற்றும் கண்காணிப்பு நுட்பம் (Program Evaluation and Review Technique -PERT) மற்றும் தீர்வுக்குகந்த பாதை முறை (Critical Path Method -CPM) ஆகும். ரெமிங்டன் ரேண்ட் நிறுவனத்தின் J.E. கெய்லி (JE Kelly) என்பவரும் ரூபான்ட் நிறுவனத்தின் M.R. வாக்கர் (M.R. Walker) என்பவரும் சேர்ந்து இரசாயன ஆலைகளின் பராமரிப்பை வரிசைப்படுத்துவதில் உதவுவதற்காக 1957 – ல் தீர்வுக்குகந்த பாதை உத்தி முறையை (CPM) மேம்படுத்தினார்கள். இந்த நுணுக்கம், பொதுவாக செயல்களை நடத்துவதற்கான கால அட்டவணை மிகச் சரியாகத் தீர்மானிக்க முடிந்த திட்டங்களில் பயன்படுத்தப்படுகிறது.

வலையமைப்பின் சில முக்கிய வரையறைகள் (Some important definitions in network) செயல் (Activity):

நேரம் மற்றும் முயற்சி அல்லது வேறு வகையான வள ஆதாரங்களை உபயோகிக்கும் எந்த தனித்த செயல்பாட்டுக்கும் செயல் என்று பெயர். இது ஆரம்ப நிகழ்வு, இறுதி நிகழ்வு ஆகிய இரண்டு இருக்கிறது. நிகழ்வுகளுக்கு இடையில் பொதுவாகச் செயலைக் குறிக்க அம்புக்குறி உபயோகப்படுத்தப்படுகிறது. அதன் தலைப்பகுதி திட்டத்தின் முன்னேற்ற திசையைக் குறிக்கும்.

நிகம்வ (Event):

செயல்களின் ஆரம்பம் அல்லது நிறைவைக் குறிப்பது நிகழ்வு எனப்படும். நிகழ்வு என்பது காலத்தைக் குறிக்கும் ஒரு புள்ளி. மேலும் நிகழ்வானது வள ஆதாரத்தை கணக்கில் எடுத்துக் கொள்வதில்லை. தொடக்க மற்றும் இறுதி செயல்கள் ஆரம்ப (தலை) நிகழ்வு மற்றும் இறுதி (வால்) நிகழ்வு என அடையாளம் காணப்படுகிறது. பொதுவாக நிகழ்வு ஒரு எண் வட்டத்தால் குறிக்கப்படுகிறது. ஆரம்ப நிகழ்வின் (J - வது நிகழ்வு) எண்ணானது இறுதி நிகழ்வு (I - வதுநிகழ்வு) எண்ணைவிட பெரியது (J>I)

முந்தைய செயல் (Predecessor Activity):

குறிப்பிட்ட செயல்கள் துவங்குவதற்கு முன்பு நடைபெறுகின்ற முழுமையடைந்த செயல்கள் முந்தைய செயல் எனப்படும். செயல் B உடைய முந்தைய செயல் A , இதனை எளிய முறையில் $A {<} B$ (அதாவது செயல் A முழுமையடைந்தால் தான் செயல் B ஆரம்பிக்க முடியும்) என குறிப்பிடுவோம்

பிந்தைய செயல் (Successor Activity):

ஒன்று அல்லது அதற்கு மேற்பட்ட செயல்கள் முழுமையடையாமல் இருந்தால் அடுத்த செயலை துவங்க முடியாது. அவ்வாறு உடனடியாகத் தொடரும் செயலை, பிந்தைய செயல் என்போம்.

வலையமைப்பு (Network):

வலையமைப்பு என்பது தர்க்க அடிப்படையில் ஒழுங்குபடுத்தப்பட்ட திட்டம் பற்றிய பல்வேறு செயல்களின் வரைபட குறியீடு ஆகும்.

பாதை (Path):

வலையமைப்புப் பாதை என்பது செயல்களின் வரிசை, ஆரம்ப நிகழ்வில் தொடங்கி இறுதி நிகழ்வு வரை செல்வதாகும்.

10.2.1 வலைப்பின்னலை வரைதல் (Construction of network:)

வலைப்பின்னலை வரைவதற்கான விதிகள் (Rules for constructing network)

வலைப்பின்னலை வரைவதற்கு பொதுவாகக் கீழ்க்கண்ட விதிகளை பின்பற்ற வேண்டும்.

- (i) ஒவ்வொரு செயலும் ஒரே ஒரு அம்புக்குறியால் மட்டுமே குறிக்கப்பட வேண்டும். அதாவது எந்த இரண்டு நிகழ்வுகளும் ஒரே ஒரு அம்புக்குறியால் மட்டுமே இணைக்கப்பட வேண்டும்.
- (ii) எந்த இரண்டு செயல்களுக்கும் ஒரே மாதிரியான ஆரம்ப மற்றும் இறுதி நிகழ்வுகளை அடையாளப்படுத்த முடியாது.
- (iii) குறிப்பிட்ட ஒரு செயலினை அடையாளப்படுத்துவதன் பொருட்டு நிகழ்வுகள் ஒருமைத்தன்மையுடன் வரிசைப்படுத்தப்பட்டுள்ளன. ஒரு செயலில் இறுதி நிகழ்வானது தலை நிகழ்வை விட சிறியதாக இருக்க வேண்டும்.
- (iv) அம்புக்குறிகள் ஒன்றை ஒன்று வெட்டிக்கொள்ளக்கூடாது.
- (v) அம்புக்குறிகள் நேராக மட்டுமே இருக்கவேண்டும். அவை வளைந்து இருக்கக் கூடாது.
- (vi) ஆரம்ப நிகழ்வு மற்றும் இறுதி நிகழ்வு தவிர ஏனைய ஒவ்வொரு நிகழ்வுக்கும் குறைந்தது ஒரு முந்தைய செயல் மற்றும் தொடர் செயல் இருக்க வேண்டும்.

நிகழ்வுகளுக்கு எண் இடல் (Numbering the Events)

தர்க்க தொடர்களின் படி வலையமைப்பு வரைந்த பின்பு, ஒவ்வொரு நிகழ்விற்கும் ஒரு எண்ணை நியமிக்க வேண்டும். அந்த எண் தொடர் வலைப்பின்னலின் தொடர்ச்சியை பிரதிபலிப்பதாக இருக்க வேண்டும்.

நிகழ்வு எண் இடலில் கீழ்க்கண்ட விதிகளை பின்பற்ற வேண்டும்.

- (i) நிகழ்வுகள் ஒவ்வொன்றுக்கும் தனித்த எண்கள் வழங்கப்பட வேண்டும்.
- (ii) நிகழ்வு எண் இடல் இடதுபக்கத்திலிருந்து வலது புறமாக வரிசை அடிப்படையில் அமைக்கப்படல் வேண்டும்.
- (iii) தொடக்க நிகழ்விற்கு O அல்லது 1 என்று எண் இட வேண்டும்.
- (iv) அம்பின் வால்பகுதியில் உள்ள எண்ணை விட அம்பின் தலைப்பகுதியில் உள்ள எண் எப்போதும் பெரியதாக இருக்க வேண்டும்.
- (v) தொடர் நிகழ்வு எண்ணிடலுக்கு இடையே ஏதேனும் தொடர்புடைய செயலைசேர்ப்பதற்கு ஏதுவாகப் போதிய இடைவெளி இருக்க வேண்டும்.

குறிப்பு:

வலையமைப்பின் பல்வேறு நிகழ்வுகளுக்கு எண்ணிடும் மேற்கண்ட வழிமுறைகள் **ஃபல்கெர்ஸன்ஸ் விதி** எனப்படும்.

எடுத்துக்காட்டு 10.9

பின்வரும் விபரங்களுக்கு தர்க்க வலையமைப்பு வரைக.

செயல்கள் C மற்றும் D ஆகிய இரண்டும் A வைப் பின்தொடர்கிறது. செயல் E ஆனது C–ஐப் பின்தொடர்கிறது. செயல் F ஆனது செயல் D – ஐப் பின்தொடர்கிறது. செயல் E மற்றும் செயல் F ஆனது B யின் முந்தைய செயல்களாகும்.

தீர்வு:

கொடுக்கப்பட்டுள்ள விவரங்களுக்கான வலையமைப்பு.

எடுத்துக்காட்டு 10.10

பின்வரும் விவரங்களைக் கொண்டு ஒரு வலையமைப்பை உருவாக்குக.

செயல்:	A	В	С	D	Е	F	G	Н
உடனடி முந்தைய நிகழ்வு	-	-	A	В	C,D	C,D	Е	F

தீர்வு:

உடனடி முந்தைய உறவுகளைப் பயன்படுத்தி கொடுக்கப்பட்ட விதிகளின் படி வலையமைப்புகளை உருவாக்குவோம். தேவையான வலையமைப்பினை கீழே கொடுக்கப்பட்டுள்ள படத்தில் காணலாம்.

ப∟ம் 10.6

ஒப்புக்கான செயல் (Dummy activity):

ஒரு செயல் எவ்வித வளங்களையோ அல்லது நேரத்தையே உட்கொண்டிருக்காமல், தொழில் நுட்பச் சார்பினை மட்டுமே விளக்கக் கூடியதாக அமைந்தால் அச்செயல் ஒப்புக்கான செயல் எனப்படும். இதனை புள்ளிக் கோடுகள் (dotted lines) மூலம் குறிக்கலாம்.

எடுத்துக்காட்டு 10.11

கீழே கொடுக்கப்பட்டுள்ள ஒரு திட்டத்தின் செயல்பாடுகளும் மற்றும் அவைகளின் முன்னிலைத் தொடர்புகளும் கீழே கொடுக்கப்பட்டுள்ளன. இதற்கான வலையமைப்பை வரைக.

செயல்:	A	В	С	D	Е	F	G	Н	Ι	J	K
முந்தைய செயல்பாடுகள்:	-	-	-	A	В	В	С	D	F	Н,І	F,G

தீர்வு:

முன்னிலை தொடர்புகளையும் மற்றும் வலையமைப்பு உருவாக்குவதற்கான விதியைப் பயன்படுத்தி, தேவையான வலைப்பின்னல் வரைபடம் கீழே உள்ள படத்தில் காண்பிக்கப்படுகிறது.

எடுத்துக்காட்டு 10.12

கீழ்கண்ட கூழ்நிலைகளுக்கு ஏற்ப வலையமைப்பு வரைபடத்தை வரைக.

$$A < D, E;$$
 $B, D < F;$ $C < G$ மற்றும் $B < H$.

தீர்வு:

முன்னிலைத் தொடர்புகளையும் மற்றும் வலையமைப்பு உருவாக்குவதற்கான விதியைப் பயன்படுத்தி, தேவையான வலைப்பின்னல் வரைபடம் கீழேஉள்ள படத்தில் காண்பிக்கப்படுகிறது.

10.2.2 தீர்வுக்குகந்தப் பாதை பகுப்பாய்வு (Critical path analysis)

ஒவ்வொரு செயலுக்கும் அந்த செயல் சிறப்பாக முடிவடைவதற்காக செலவிடப்படும் காலத்தை மதிப்பீடு செய்ய வேண்டும். மதிப்பீடுகள் நேரம், நாட்கள் மற்றும் வாரங்கள் அல்லது ஏதாவது வசதியான அலகு நேரங்களில் கொடுக்கப்பட்டிருக்கும். திட்டமிட்ட நேரம் பொதுவாக வலையமைப்பில் அம்புகுறியின் மேலே எழுதலாம்.

நிகழ்வுகள் மற்றும் செயல்பாடுகள் ஆகியவற்றிகான பல்வேறு நேரங்கள் கணக்கிடும் நோக்கத்திற்காகக் கீழ்கண்ட வார்த்தைகளை நன்கு உகந்த பாதை கணக்கிடுதலில் பயன்படுத்தலாம்.

 E_i = நிகழ்வு i –ன் முன்கூட்டி ஆரம்பிக்கக்கூடிய நேரம்

 $L_{_{j}}$ = நிகழ்வு j –ன் சமீபத்திய தொடக்க நேரம்

 $t_{ij}^{}=$ செயல் (i,j) –ன் கால அளவு

நேரம் மதிப்பீடுகளைக் குறித்தபின்பு கீழ்க்கண்ட வழிகளில் கணக்கீடுகளை மேற்கொள்ள முடியும்:

- a) முன்னோக்கி நகரும் கணக்கீடுகள்
- b) பின்னோக்கி நகரும் கணக்கீடுகள்

முன்னோக்கி நகரும் கணக்கீடுகள்: (Forward pass calculations)

திட்டத்தின் ஆரம்ப நேரம் பூச்சியம் எனக் கொண்டு நாம் தொடக்க நிகழ்வு 1–லிருந்து ஆரம்பிக்க வேண்டும். வலையமைப்பை நிகழ்வுகளில் உள்ள எண்களின் ஏறு வரிசையில் ஒவ்வொரு நிகழ்வாக சென்று இறுதி நிகழ்வில் முடிக்க வேண்டும். ஒவ்வொரு நிகழ்விலும், ஒவ்வொரு செயலுக்கான முந்தைய தொடக்க நேரம் E_i என்பதனைக் கருத்தில் கொண்டு கணக்கிட வேண்டும். E_i என்பது நிகழ்வு i –ன் முந்தைய நிகழ்வு.

இம்முறை கீழே குறிப்பிடப்பட்டுள்ளது:

படி 1.
$$E_{_1}=0$$
 ; $i=1$ (ஆரம்ப நிகழ்வு)

படி 2. i என்ற நிகழ்விலிருந்து ஆரம்பிக்கும் ஒவ்வொரு செயலுக்கும் முந்தைய தொடக்க நேரத்தை (EST) பின்வருமாறு அமைக்கவும்.

 $ES_{ij} = E_i$; (i என்ற நிகழ்விலிருந்து தொடங்கும் (i,j) எனும் அனைத்து செயல்களுக்கும்).

படி 3. i என்ற நிகழ்விலிருந்து ஆரம்பிக்கும் ஒவ்வொரு செயலுக்குமான முந்தைய முடிவு நேரத்தை (EFT) கணக்கிட முந்தைய தொடக்க நேரத்தை

செயல் எடுத்துகொள்ளும் காலத்துடன் கூட்ட வேண்டும்.

எனவே
$$EF_{ij} = ES_{ij} + t_{ij} = E_i + t_{ij}$$

படி 4. அடுத்த நிகழ்வு j -க்கு (j>i) நகரும் போது j இடத்து முந்தைய தொடக்க நேரத்தை பின் வருமாறு கணக்கிடவேண்டும்.

$$E_{i}=$$
 பெரும $_{i}$ $\{EF_{ii}\}=$ பெரும $_{i}\{E_{i}+t_{ii}\}$

இவ்வாறு உடனடி முந்தைய செயல்பாடுகள் அனைத்திற்கும் கணக்கிடலாம்.

படி 5. j=n (இறுதி நிகழ்வு) எனில், திட்டத்திற்கான முந்தைய முடிவு நேரத்தை $E_{i}=$ பெரும $\{EF_{ii}\}=$ பெரும $\{E_{n-1}+t_{ii}\}$ என கணக்கிடலாம்.

பின்னோக்கி நகரும் கணக்கீடுகள்: (Backward pass calculations)

வலையமைப்பை n என்ற இறுதி நிகழ்வில் தொடங்கி வலையமைப்பின் அனைத்து நிகழ்வுகளின் வழியாக நிகழ்வுகளில் உள்ள எண்களின் இறங்கு வரிசையில் சென்று ஆரம்ப நிகழ்வு 1–ல் முடிக்க வேண்டும். L_{j} என்பது நிகழ்வு j–ன் சமீபத்திய நிகழ்வு என எடுத்துக்கொண்டு ஒவ்வொரு நிகழ்வுக்கும் அந்தந்த செயலுக்கான சமீபத்திய முடிவுறும் நேரம் மற்றும் சமீபத்திய தொடங்கும் நேரம் ஆகியவற்றை கணக்கிடவேண்டும்.

இம்முறை சுருக்கமாக கீழே கொடுக்கப்பட்டுள்ளது:

படி 1.
$$j=n$$
–க்க $L_n=E_n$ ஆகும்

படி 2. j என்ற நிகழ்வில் முடிவடையும் ஒவ்வொரு செயலுக்கும் சமீபத்திய முடிவு நேரத்தை (LFT) LF_{ii} = L_i என அமைக்கலாம்.

படி 3. j என்ற நிகழ்வில் முடிவடையும் ஒவ்வொரு செயலுக்குமான சமீபத்திய ஆரம்ப நேரத்தை (LST) கணக்கிட செயல் முடிய ஆகும் காலத்தை சமீபத்திய முடிவு நேரத்திலிருந்து கழிக்க வேண்டும்.

எனவே
$$LS_{ij} = LF_{ij} - t_{ij} = L_j - t_{ij}$$

படி 4. அடுத்த நிகழ்வு i -க்கு (i < j) பின் நோக்கி நகரும்போது i - இடத்து சமீபத்திய ஆரம்ப நேரத்தை (LST) பின் வறுமாறு கணக்கிடவேண்டும்.

$$L_i$$
 = சிறும $_i$ $\{LS_{ii}\}$ = சிறும $_i\{L_i-t_{ii}\}$

படி 5. j=1 (ஆரம்ப நிகழ்வு), எனில்

$$L_1 = \operatorname{
m Amjin} \; \{LS_{ij}\} = \operatorname{
m Amjin} \{L_2 - t_{ij}\}$$

தீர்வுக்கு உகந்த பாதை (Critical path)

வலையமைப்பு வரைபடத்தில் செயல்களை இணைக்கும் நீண்ட பாதை தீர்வுக்கு உகந்த பாதையைக் குறிக்கிறது. அதாவது மிக நீண்ட காலம் எடுத்துக்கொள்ளும் பாதை தீர்வுக்கு உகந்த பாதை ஆகும்.

தீர்வுக்கு உகந்த பாதையில் அமைகின்ற (i,j), என்ற செயல் கீழ்கண்ட நிபந்தனைகளை நிவர்த்தி செய்தல் வேண்டும்.

$$(i)$$
 $E_i=L_i$ மற்றும் $E_j=L_j$ (ii) $E_j-E_i=L_j-L_i=t_{ij}$

எடுத்துக்காட்டு 10.13

கீழே கொடுக்கப்பட்டுள்ள எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க நேரம் (EST), முந்தைய முடிவு நேரம் (EFT), சமீபத்திய தொடக்க நேரம் (LST) மற்றும் சமீபத்திய முடிவு நேரம் (LFT) ஆகியவற்றைக் கணக்கிடுக:

செயல்	1-2	1-3	2-4	2-5	3-4	4-5
காலம் (நாட்களில்)	8	4	10	2	5	3

தீர்வு:

கீழே ஒவ்வொரு செயலுக்கான வலையமைப்பில் முந்தைய ஆரம்ப நேரம் மற்றும் சமீபத்திய முடிவு நேரம் கொடுக்கப்பட்டுள்ளது.

$$E_1=0$$
 $L_5=21$ $E_2=E_1+t_{12}=0+8=8$ $L_4=L_5-t_{45}=21-3=18$ $E_3=E_1+t_{13}=0+4=4$ $L_3=L_4-t_{34}=18-5=13$ $E_4=E_2+t_{24}$ அல்லது $E_3+t_{34}=8+10=18$ $L_2=L_5-t_{25}$ அல்லது $L_4-t_{24}=18-10=8$ $(E_2+t_{24}$ அல்லது E_3+t_{34} (E_2+t_{24}) அல்லது E_3+t_{34} (E_3+t_{24}) (சிறும்மாக உள்ளதை எடுக்க வேண்டும்) $E_5=(E_2+t_{25})$ அல்லது $E_4+t_{45}=18+3=21$ $E_5=(E_2+t_{25})$ அல்லது $E_4+t_{45}=18+3=21$

(
$$E_{2}+t_{25}$$
 அல்லது $E_{4}+t_{45}$

$$(L_2 - t_{12}$$
 அல்லது $L_3 - t_{13}$

(பெருமமாக உள்ளதை எடுக்க வேண்டும்)

(சிறுமமாக உள்ளதை எடுக்க வேண்டும்)

இங்கு தீர்வுக்கு உகந்த பாதை 1-2-4-5 இரு கோடுகளால் குறிக்கப்படுகிறது.

செயல்	காலம் ($t_{\it ij}$)	EST	$\boxed{\text{EFT=EST} + t_{ij}}$	$\boxed{\textbf{LST=LFT-}t_{ij}}$	LFT
1-2	8	0	8	0	8
1–3	4	0	4	9	13
2–4	10	8	18	8	18
2-5	2	8	10	19	21
3–4	5	4	9	13	18
4–5	3	18	21	18	21

அட்டவணை 10.5

இந்தத் திட்டத்தை நிறைவு செய்யும் நீண்ட காலம் 21 நாட்கள்.

தீர்வுக்கு உகந்த பாதை 1-2-4-5 மற்றும் திட்டம் நிறைவு செய்யும் காலம் 21 நாட்கள்.

எடுத்துக்காட்டு 10.14

கீழேக் கொடுக்கப்பட்டுள்ள எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க காலம் (EST), முந்தைய முடிவு காலம் (EFT), சமீபத்திய தொடக்க காலம் (LST) மற்றும் சமீபத்திய முடிவு காலம் (LFT) காண்க. தீர்வுக்கு உகந்த பாதையையும், திட்டம் முடிவடைய ஆகும் காலத்தையும் காண்க.

செயல்	1-2	1-3	1-5	2-3	2-4	3-4	3-5	3-6	4-6	5-6
காலம்(வாரங்களில்)	8	7	12	4	10	3	5	10	7	4

தீர்வு:

படம் 10.10

செயல்	காலம்(வாரங்களில்)	EST	EFT	LST	LFT
1-2	8	0	8	0	8
1-3	7	0	7	8	15
1-5	12	0	12	9	21
2-3	4	8	12	11	15
2-4	10	8	18	8	18
3-4	3	12	15	15	18
3-5	5	12	17	16	21
3-6	10	12	22	15	25
4-6	7	18	25	18	25
5-6	4	17	21	21	25

அட்டவணை 10.6

தீர்வுக்கு உகந்த பாதை 1-2-4-6 மற்றும் திட்டம் நிறைவு செய்யும் காலம் 25 வாரங்கள்

- 1. கீழ்க்கண்ட செயல்களைக் கொண்ட திட்டத்தின் வலையமைப்பை வரைக. செயல்கள் A,D,E ஒரே நேரத்தில் ஆரம்பிக்கப்படும்; B,C>A; G,F>D,C; H>E,F.
- 2. கீழ்க்கண்ட நிகழ்வுகளை கொண்ட திட்டத்தின் வலையமைப்பை வரைக.

நிகழ்வுகள்	1	2	3	4	5	6	7
உடனடி முந்தைய நிகழ்வு	-	1	1	2,3	3	4,5	5,6

- 3. கீழ்க்கண்ட செயல்களைக் கொண்ட திட்டத்தின் வலையமைப்பை வரைக. செயல்கள்A,B,C ஒரே நேரத்தில் ஆரம்பிக்கப்படும் A<F,E; B<D,C; E,D<G
- 4. கட்டுமானத் திட்டத்தின் செயல்கள் மற்றும் அது தொடர்பான தகவல்கள் கீழ்க்காணும் அட்டவணையில் தரப்படுள்ளது.இதற்கான வலையமைப்பை வரைக.

செயல்	A	В	С	D	Е	F	G	Н	I	J	K
உடனடி முந்தைய செயல்கள்	-	-	-	A	В	В	С	D	Е	H,I	F,G

5. கட்டுமானத் திட்டத்தின் செயல்கள் மற்றும் அதுத் தொடர்பானத் தகவல்கள் கீழ்க்காணும் அட்டவணையில் தரப்படுள்ளது. இதற்கான வலையமைப்பை வரைக. மேலும் எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க காலம் (EST), முந்தைய முடிவு காலம் (EFT), சமீபத்திய தொடக்க காலம் (LST) மற்றும் சமீபத்திய முடிவு காலம் (LFT) காண்க. தீர்வுக்கு உகந்த பாதையையும், திட்டம் முடிவடைய ஆகும் காலத்தையும் காண்க.

செயல்	0-1	1-2	1-3	2-4	2-5	3-4	3-6	4-7	5-7	6-7
காலம்(வாரங்களில்)	3	8	12	6	3	3	8	5	3	8

6. ஒரு திட்டத்திற்கான பல்வேறு செயல்கள் மற்றும் அதற்கான நேரம் கீழேத் தரப்பட்டுள்ளது.

செயல்	1-2	1-3	2-4	3-4	3-5	4-9	5-6	5-7	6-8	7-8	8-10	9-10
நேரம்	4	1	1	1	6	5	4	8	1	2	5	7

இதற்கான வலையமைப்பை வரைக. மேலும் எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க காலம் (EST) , முந்தைய முடிவு காலம் (EFT), சமீபத்திய தொடக்க காலம் (LST) மற்றும் சமீபத்திய முடிவு காலம் (LFT) காண்க. தீர்வுக்கு உகந்த பாதையையும், திட்டம் முடிவடைய ஆகும் காலத்தையும் காண்க

7. கீழே தரப்பட்டுள்ள தகவல்களுக்கு வலையமைப்பை வரைக. மேலும் எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க காலம் (EST), முந்தைய முடிவு காலம் (EFT), சமீபத்திய தொடக்க காலம் (LST) மற்றும் சமீபத்திய முடிவு காலம் (LFT) காண்க. தீர்வுக்கு உகந்த பாதையையும், திட்டம் முடிவடைய ஆகும் காலத்தையும் காண்க.

வேலை	1-2	1-3	2-4	3-4	3-5	4-5	4-6	5-6
காலம்	6	5	10	3	4	6	2	9

8. ஒரு திட்டத்தின் செயல்களும் அவற்றுக்கான கால அளவுகளும் (நாட்களில்) பின்வரும் அட்டவணையில் கொடுக்கப்பட்டுள்ளது.

செயல்	1-2	1-3	2-3	2-4	3-4	3-5	4-5
கால அளவு	5	8	6	7	5	4	8

இதற்கான வலையமைப்பை வரைக. மேலும் எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க காலம் (EST), முந்தைய முடிவு காலம் (EFT), சமீபத்திய தொடக்க காலம் (LST) மற்றும் சமீபத்திய முடிவு காலம் (LFT) காண்க. தீர்வுக்கு உகந்த பாதையையும், திட்டம் முடிவடைய ஆகும் காலத்தையும் காண்க.

9. ஒரு திட்டத்தின் கால அட்டவணை பின்வருமாறு :

செயல்	1-2	1-6	2-3	2-4	3-5	4-5	6-7	5-8	7-8
கால அளவு (நாட்களில்)	7	6	14	5	11	7	11	4	18

இதற்கான வலையமைப்பை வரைக. மேலும் எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க காலம் (EST) , முந்தைய முடிவு காலம் (EFT), சமீபத்திய தொடக்க காலம் (LST) மற்றும் சமீபத்திய முடிவு காலம் (LFT) காண்க. தீர்வுக்கு உகந்த பாதையையும், திட்டம் முடிவடைய ஆகும் காலத்தையும் காண்க

10. ஒரு கட்டுமானத் திட்டத்தின் செயல்கள் மற்றும் அது தொடர்பான தகவல்கள் கீழ்க்காணும் அட்டவணையில் தரப்பட்டுள்ளது.

செயல்	1-2	1-3	2-3	2-4	3-4	4-5
கால அளவு (வாரங்களில்)	22	27	12	14	6	12

இதற்கான வலையமைப்பை வரைக. மேலும் எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க காலம் (EST), முந்தைய முடிவு காலம் (EFT), சமீபத்திய தொடக்க காலம் (LST) மற்றும் சமீபத்திய முடிவு காலம் (LFT) காண்க. தீர்வுக்கு உகந்த பாதையையும்திட்டம் முடிவடைய ஆகும் காலத்தையும் காண்க.

கீழே கொடுக்கப்பட்டுள்ள வலைபின்னலுக்குத் தீர்வுக்குகந்தப் பாதை

1. கீழே கொடுக்கப்பட்டுள்ள வலைபின்னலுக்குத் தீர்வுக்குகந்தப் பாதை

(a)
$$1 - 2 - 4 - 5$$

(b)
$$1 - 3 - 5$$

(c)
$$1-2-3-5$$
 (d) $1-2-3-4-5$

2. கொடுக்கப்பட்ட நேரியல் திட்டமிடல் கணக்கு $2x_1 + x_2 \le 40$, $2x_1 + 5x_2 \le 180$, $x_1, x_2 \ge 0$. என்றக் கட்டுபாடுகளுக்கு இணங்க $z = 3x_1 + 4x_2$ என்ற குறிக்கோள் சார்பை மீப்பெரிதாக்க கிடைக்கும் ஏற்புடைய முனைப் புள்ளி.

(a)
$$x_1 = 18, x_2 = 24$$

(b)
$$x_1 = 15, x_2 = 30$$

(c)
$$x_1 = 2 \cdot 5, x_2 = 35$$

(d)
$$x_1 = 20 \cdot 5, x_2 = 19$$

3. (*i,j*) என்ற செயலானது தீர்வுக்கு உகந்த பாதையில் இருப்பதற்கான நிபந்தனைகளில் ஒன்று

(a)
$$E_{i} - E_{i} = L_{i} - L_{i} = t_{ij}$$

(b)
$$E_{i} - E_{j} = L_{j} - L_{i} = t_{ij}$$

(c)
$$E_{i} - E_{i} = L_{i} - L_{j} = t_{ij}$$

(d)
$$E_i - E_i = L_i - L_i \neq t_{ij}$$

- 4. வலைப்பின்னலை வரைவதற்கு பின்பற்ற வேண்டிய கீழ்க்கண்ட விதிகளில் எந்த ஒன்று தவறான கூற்று?
 - (a) ஒவ்வொரு செயலும் ஒரே ஒரு அம்புக்குறியால் மட்டுமே குறிக்கப்பட வேண்டும்

அதாவது எந்த இரண்டு நிகழ்வுகளும் ஒரே ஒரு அம்புக்குறியால் மட்டுமே இணைக்கப்பட வேண்டும்.

- (b) எந்த இரண்டு செயல்களுக்கும் ஒரே மாதிரியான ஆரம்ப மற்றும் இறுதி நிகழ்வுகளை அடையாளப்படுத்த முடியும்.
- (c) குறிப்பிட்ட ஒரு செயலினை அடையாளப்படுத்துவதன் பொருட்டு நிகழ்வுகள் ஒருமைத்தன்மையுடன் வரிசைப்படுத்தப்பட்டுள்ளன. ஒரு செயலில் இறுதி நிகழ்வானது தலை நிகழ்வை விட சிறியதாக இருக்க வேண்டும்.
- (d) அம்புக்குறிகள் ஒன்றை ஒன்று வெட்டிக்கொள்ளக்கூடாது.
- 5. நிகழ்வு எண் இடலில் பின்பற்ற வேண்டிய கீழ்க்கண்ட விதிகளில் எந்த ஒன்று தவறான கூற்று?
 - (a) நிகழ்வுகள் ஒவ்வொன்றுக்கும் தனித்த எண்கள் வழங்கப்பட வேண்டும்.
 - (b) நிகழ்வு எண் இடல் இடதுபக்கத்திலிருந்து வலது புறமாக வரிசை அடிப்படையில் அமைக்கப்படல் வேண்டும்.
 - (c) தொடக்க நிகழ்விற்கு O அல்லது 1 என்று எண் இட வேண்டும்.
 - (d) அம்பின் வால்பகுதியில் உள்ள எண்ணை விட அம்பின் தலைப்பகுதியில் உள்ள எண் எப்போதும் சிறியதாக இருக்க வேண்டும்.
- 6. கொடுக்கப்பட்ட நேரியல் திட்டமிடல் கணக்கில் மீப்பெருமங்கள் அல்லது மீச்சிறுமங்கள் தீர்வானது எவ்வாறு அழைக்கப்படுகிறது.
 - (a) ஒரு தீர்வு (b) ஒரு ஏற்புடைய தீர்வு (c) ஒரு உகம தீர்வு (d) இவற்றில் ஏதுவுமில்லை
- 7. கொடுக்கப்பட்ட வரைபடத்தில் $M_{\scriptscriptstyle 1}$ –ன் ஆயத்தொலைவுகள்

(a) $x_1 = 5, x_2 = 30$

(b) $x_1 = 20, x_2 = 16$

(c) $x_1 = 10, x_2 = 20$

(d) $x_1 = 20, x_2 = 30$

8. $2x + 5y \le 10$ x > 0, y > 0 என்றக் கட்டுபாடுகளுக்கு இணங்க Z = 3x + 5y என்ற குறிக்கோள் சார்பின் மீப்பெரு மதிப்பு.

- (a) 6
- (b) 15
- (c) 25
- (d) 31

9. $2x + y \le 20, x + 2y \le 20, x > 0$, y > 0 என்றக் கட்டுபாடுகளுக்கு இணங்க Z = x + 3y என்ற குறிக்கோள் சார்பின் மீச்சிறு மதிப்பு.

- (a) 10
- (b) 20
- (c) 0
- (d) 5

10. பின்வருவனவற்றின் எது சரி அல்ல?

- (a) மீச்சிறிதாக்குதல் அல்லது மீப்பெரிதாக்குதலே நமது குறிக்கோள் ஆகும்.
- (b) கட்டுப்பாடுகளை நாம் அவசியமாகக் குறிப்பிட வேண்டும்.
- (c) தீர்மான மாறிகளைக் கண்டுபிடிக்க வேண்டும்.
- (d) தீர்மான மாறிகள் கட்டுபாடற்றவையாக இருக்கும்.

11. வலையமைப்பு சூழலில் கீழ்க்கண்டவற்றில் எது சரியல்ல?

- (a) வலையமைப்பு என்பது வரைபட அமைப்பு.
- (b) ஒரு திட்ட வலையமைப்பில் பல ஆரம்ப மற்றும் இறுதி நிகழ்வு (கணு) இருக்கமுடியாது.
- (c) அம்புகுறி வரைபடம் மூடிய வலையமைப்பாக இருக்கும்.
- (d) செயலைக் குறிக்கும் அம்புக்குறி நீளம் மற்றும் வடிவம் கொண்டிராது.

12. வலையமைப்புப் பகுப்பாய்வின் குறிக்கோளானது,

- (a) மொத்த திட்ட செலவினை சிறுமமாக்குதல்.
- (b) மொத்த திட்ட காலத்தை சிறுமமாக்குதல்.
- (c) உற்பத்தித் தாமதம், குறிக்கீடுகள், முரண்பாடுகள் ஆகியவற்றை சிறுமமாக்குதல்.
- (d) மேற்கண்ட அனைத்தும்.

13. வலையமைப்பு கணக்குகளால் திட்டத்திற்கு கிடைக்கும் நன்மைகள்

- (a) அட்டவணைப்படுத்துதல்
- (b) திட்டமிடல்
- (c) கட்டுப்படுத்துதல்
- (d) மேற்கண்ட அனைத்தும்

- 14. CPM என்பதன் விரிவாக்கம்
 - (a) தீர்வுக்கு உகந்த பாதை முறை
 - (b) செயலிழப்பு திட்ட மேலாண்மை
 - (c) சிக்கலான திட்ட மேலாண்மை
 - (d) தீர்வுக்கு உகந்த பாதை மேலாண்மை
- 15. $x_1+x_2\leq 1,\ 5x_1+5x_2\geq 0\,,\ x_1\geq 0,\ x_2\geq 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க $Z=2x_1+3x_2$ ஐ, வரைபட தீர்வு முறையில் மீப்பெரிதாக்கும் போது,
 - (a) ஏற்புடைய தீர்வு இல்லை
 - (b) ஒரே ஒரு உகந்த தீர்வு
 - (c) பல உகமத் தீர்வுகள்
 - (d) இவற்றில் எதுவும் இல்லை

இதரக் கணக்குகள்

- ஒரு நிறுவனம் A மற்றும் B என்ற இருவகைப் பொருள்களைத் தயார் செய்து, முறையே $\ 3$ 0 மற்றும் $\ 4$ 0 என் இலாபம் ஈட்டுகிறது. M_1 0 மற்றும் M_2 0 என்ற இயந்திரங்கள் இந்த இரண்டுப் பொருள்களைத் தயார் செய்கின்றன. A0 என்ற பொருளைத் தயாரிக்க M_1 0 க்கு ஒரு நிமிடமும் மற்றும் M_2 0 –க்கு இரண்டு நிமிடங்களும் ஆகின்றன. B0 என்ற பொருளைத் தயாரிக்க M_1 0 —க்கு ஒரு நிமிடமும் மற்றும் M_2 0 —க்கு ஒரு நிமிடமும் ஆகின்றன. ஒரு வேலைநாளில் M_1 1 இயந்திரம், M_2 1 மணி M_2 2 மனி M_2 3 நிமிடங்களுக்கு மேல் வேலை செய்வதில்லை. M_2 3 இயந்திரம் M_2 4 மணி நேரம் தான் வேலை செய்கிறது. பெரும இலாபம் கிடைக்க இந்த கணக்கை நேரியல் திட்டமிடல் அமைப்பில் எழுதுக.
- 16. ஒரு நிறுவனம் A மற்றும் B என்ற இரு அளவில் தலைவலி மாத்திரைகளைத் தயார் செய்கிறது. A-ல் 2 மில்லிகிராம் ஆஸ்பிரினும், 5 மில்லிகிராம் பை–கார்பனேட்டும் மற்றும் 1 மில்லிகிராம் கொடைனும் உள்ளது. B- ல் ஒரு மில்லி கிராம் ஆஸ்பிரினும் 8 மில்லி கிராம் பைகார்பனேட் மற்றும் 6 மில்லிகிராம் கொடைனும் உள்ளது. உடனடி வலி நிவாரணத்திற்கு குறைந்த பட்சம் 12 மில்லிகிராம் ஆஸ்பிரினும் 74 மில்லிகிராம் பை–கார்பனேட்டும் மற்றும் 24 மில்லிகிராம் கொடைனும் தேவை என உணரப்படுகிறது. ஒரு நோயாளி உடனடி நிவாரணம் பெற குறைந்தது எத்தனை மாத்திரைகளை உட்கொள்ள வேண்டும் என்பதைத் தீர்மானிக்க. இந்தக் கணக்கை நேரியல் திட்டமிடல் முறையில் எழுதுக.
- $17. \quad x_1+x_2 \leq 50; \quad 3x_1+x_2 \leq 90$ மற்றும் $x_1 \geq 0, \quad x_2 \geq 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க $Z=4x_1+x_2$ –ன் சிறும மதிப்பைக் காண்க.

- 18. $x_1+2x_2\geq 10;$ $3x_1+4x_2\leq 24$ மற்றும் $x_1\geq 0, x_2\geq 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க $Z=200x_1+500x_2$ –ன் சிறும மதிப்பைக் காண்க.
- $x_1+x_2 \leq 6, \, x_1 \leq 4; \, x_2 \leq 5$, மற்றும் $x_1,x_2 \geq 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க $Z=3x_1+5x_2$ –ன் பெரும மதிப்பைக் காண்க.
- $x_1+x_2 \leq 50; \ 3x_1+x_2 \leq 90$ மற்றும் $x_1,x_2 \geq 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க $Z=60x_1+15x_2$ –ன் பெரும மதிப்பைக் காண்க.
- 21. கீழேக் கொடுக்கப்பட்டுள்ள செயல்களுக்கு வலைப்பின்னல் வரைக.

செயல்	A	В	С	D	Е	F	G	Н	I	J	K
முந்தைய செயல்	-	A	A	A	В	С	С	C,D	E,F	G,H	I,J

22. கீழேக் கொடுக்கப்பட்ட செயல்களுக்கு வலைபின்னல் வரைக.

செயல்	A	В	С	D	E	F	G
முந்தைய செயல்	-	-	A	A	В	С	D,E

23. ஒரு திட்டத்தின் கால அட்டவணை பின்வருமாறு

செயல்	1-2	2-3	2-4	3-5	4-6	5-6
கால அளவு (நாட்களில்)	6	8	4	9	2	7

இதற்கான வலையமைப்பை வரைக. மேலும் எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க காலம் (EST), முந்தைய முடிவு காலம் (EFT), சமீபத்திய தொடக்க காலம் (LST) மற்றும் சமீபத்திய முடிவு காலம் (LFT) காண்க. தீர்வுக்கு உகந்த பாதையையும், திட்டம் முடிவடைய ஆகும் காலத்தையும் காண்க

24. பின்வரும் அட்டவணை ஒரு திட்டத்திற்கான விவரங்களைக் கொடுக்கிறது.

செயல்	1-2	1-3	2-3	3-4	3-5	4-6	5-6	6-7	
கால அளவு (நாட்களில்)	5	10	3	4	6	6	5	5	

இதற்கான வலையமைப்பை வரைக. மேலும் எல்லா திட்ட செயலுக்கும் முந்தைய தொடக்க காலம் (EST), முந்தைய முடிவு காலம் (EFT), சமீபத்திய தொடக்க காலம் (LST) மற்றும் சமீபத்திய முடிவு காலம் (LFT) காண்க. தீர்வுக்கு உகந்த பாதையையும், திட்டம் முடிவடைய ஆகும் காலத்தையும் காண்க.

தொகுப்புரை

- நேரியல் திட்டமிடல் கணக்கு என்பது கிடைக்கக் கூடிய அளவான வளங்களை ஒதுக்கீடு செய்து குறிக்கோள் உகம (மீப்பெரு அல்லது மீச்சிறு) மதிப்பினை காண்பதற்கான ஒரு கணிதவியல் அமைப்பு உத்தியாகும்.
- LPP –ன் சுருக்கமான வடிவம்:

$$\sum_{j=1}^n a_{ij}\,x_j \leq ($$
அல்லது = அல்லது $\geq)b_i,\;\;i=1,\,2,\,3,\,...,\,m$

 $\sum_{j=1}^n a_{ij}\,x_j \leq ($ அல்லது = அல்லது $\geq)b_i,\ i=1,\,2,\,3,\,...,\,m$ மற்றும் $x_j \geq 0$ கட்டுப்பாடுகளுக்கு இணங்க $Z=\sum_{j=1}^n c_j x_j$ மீப்பெருமதிப்பு அல்லது மீச்சிறு மதிப்பைக் காண்க

- குறிக்கோள் சார்பு $Z=c_{_1}x_{_1}$ $+c_{_2}x_{_2}$ $+\ldots +c_{_n}x_{_n}$ என்ற உகமப்படுத்தக் கூடிய (மீப்பெரு அல்லது மீச்சிறு) சார்பு, குறிக்கோள் சார்பு ஆகும்.
- **தீர்மான மாறிகள்** குறிக்கோள் சார்பின் உகம மதிப்பை(மீப்பெரு அல்லது மீச்சிறு) காண்பதற்கு தேவைப்படும் x_{i} , $j=1,2,3,\ldots,n$, எனும் மாறிகள் தீர்மான மாறிகள் ஆகும்.
- எல்லா கட்டுப்பாடுகளையும் நிறைவு செய்யக் கூடிய தீர்மான மாறிகளின் x_{i} j=1,2,3,...,n தொகுப்பு மதிப்புகள் அந்தக் கணக்கின் தீர்வுகள் ஆகும்.
- **ஏற்புடையத் தீர்வு** குறையற்ற நிபந்தனைகளுக்கு உட்பட்டு எல்லாக் கட்டுபாடுகளையும் நிறைவு செய்யும் தீர்மான மாறிகளின் மதிப்புகளின் தொகுப்பு ஏற்புடையத் தீர்வு ஆகும்.
- **உகமத் தீர்வு** குறிக்கோள் சார்பின் உகம (பெரும அல்லது சிறும) மதிப்பைத் தரும் ஏற்புடையத் தீர்வு, உகமத் தீர்வு என்றழைக்கப்படும்.
- **தீர்வுக்கு உகந்தப் பகுதி** ஒரு நேரியல் திட்டமிடல் கணக்கில் குறையற்ற நிபந்தனைகள் $x_{;}{\geq}0$ உட்பட்ட எல்லாக் கட்டுப்பாடுகளையும் சேர்த்துக் கணிக்கக் கூடிய பொதுவானப் பகுதி, அக்கணக்கின் ஏற்புடையப் பகுதி (அல்லது தீர்வுப் பகுதி) எனப்படும்.
- இரு மாறிகளைக் கொண்ட நேரியல் திட்டமிடல் கணக்கிற்கான உகந்தத் தீர்வை வரைபட முறை மூலம் காணலாம்.
- ஏற்புடைய பகுதியின் முனைப்புள்ளிகளில் ஏதாவதொன்று நேரியல் திட்டமிடல் கணக்கின் உகந்த மதிப்பு ஆகும்.
- வலையமைப்பு என்பது தர்க்க அடிப்படையில் ஒழுங்கப்படுத்தப்பட்ட திட்டம் பற்றிய பல்வேறு செயல்களின் வரைப்பட குறியீடு ஆகும்.
- நேரம் மற்றும் முயற்சி அல்லது வேறு வகையான வள ஆதாரங்களை உபயோகிக்கும் எந்த தனித்த செயல்பாட்டுக்கும் செயல் என்று பெயர்.

- நிகழ்வு என்பது செயல்களின் ஆரம்பம் அல்லது நிறைவைக் குறிப்பதாகும். நிகழ்வு எந்த வள ஆதாரத்தையோ நேரத்தையோ எடுத்துக்கொள்வதில்லை.
- வலையமைப்பு வரைபடத்தில் நீண்ட தொடர்ச்சியான சங்கிலி போன்ற செயல்கள், தீர்வுக்கு உகந்த பாதையைக் குறிக்கிறது. அதாவது மிக நீண்ட காலம் எடுத்துக் கொள்ளும் பாதை தீர்வுக்கு உகந்த பாதை ஆகும்.

கலைச் செ	ாற்கள் (GLOSSARY)
ஆரம்ப நிகழ்வு	head event
இறுதி நிகழ்வு	tail event
ஏற்புடைய தீர்வு	feasible solution
ஒப்புக்கான செயல்	dummy activities
சமீபத்திய தொடங்கும் நேரம்	latest start time
செயல்பாடு	activity
தர்க்க தொடர் வரிசை	logical sequence
தீர்மான மாறிகள்	decision variables
தீர்வுக்கு உகந்த பகுப்பாய்வு	critical path analysis
தீர்வுக்கு உகந்த முறை	critical path method
நிகழ்வு	event
நேரியல் திட்டமிடல் கணக்கு	linear programming problem
பண்புத் தொகை	abstract
பிந்தைய செயல்	successor activity
பின் நோக்கி செல்லும் கணக்கீடு	backward pass calculations
முந்தைய செயல்	predecessor activity
முன் நோக்கி செல்லும் கணக்கீடு	forward pass calculations
முன்கூட்டியே தொடங்கும் நேரம்	earliest start time
ഖതെധതെഥப്பு பகுப்பாய்வு	network analysis
உகம் / உகந்த	optimal

இணையச் செயல்பாக

இறுதியில் கிடைக்கப்பெறும் படம்

⊔LQ - 1

கீழ்க்காணும் உரலி / விரைவுக் குறியீட்டைப் பயன்படுத்தி GeoGebra வின் 11th Business Maths Volume–2 பக்கத்திற்குச் செல்க. உங்கள் பாடம் சார்ந்த பல பணித்தாள்கள் இப்பக்கத்தில் இருக்கும்.

"Linear Programming Problem" என்பதைத் தேர்வு செய்து, கணக்குகளைச் செய்வதற்கு உள்ள படிகளை

அறிய வலப்புறம் உள்ள நழுவலை நகர்த்தவும். கொடுத்திருக்கும் கணக்குகளைச் செய்து இடப்புறம் உள்ள வரைபடத்தில் காண்கவும். "Inequality video" என்பதைச் சொடுக்கி, காணாளியில் விரிவாகக் காண்க. Select the work sheet "Linear Programming Problem" Move the slider on Right side to see the steps for working Linear Programming Problem. Work out the problem as given. Graphical representation is given on left side. Also refer the worksheet "Inequality video" in the work book.

Tith Business Maths Vol. x Secure | https://www.geogetra.org/m/qktsyrys GOGGebra 11th Business Maths Volume 2 Author Division Rig This work book in for 10 standard Tamil Node State Board Business Marginal functions Dividend PROBABILITY-BAYE... Regression Lines Fingswering Problem Type here to search Type here to search Type here to search Type here to search

□□□ 2

செயல்பாட்டிற்கான உரலி :

https://ggbm.at/q4tsyvys (or) scan the QR Code

விடைகள்

6. வகையீட்டின் பயன்பாடுகள்

பயிற்சி 6.1

1.
$$AC = \frac{1}{10}x^2 - 4x - 20 + \frac{7}{x}$$
, $AVC = \frac{1}{10}x^2 - 4x - 20$, $AFC = \frac{7}{x}$

$$MC = \frac{3}{10}x^2 - 8x - 20$$
, $MAC = \frac{2}{5}x - 4 - \frac{7}{x^2}$

2.
$$C = \frac{7}{16}, \quad AC = \frac{29}{12}, \quad MC = \frac{2}{3}$$

3.
$$AC = x^2 - 2$$
, $MC = 3x^2 - 2$, $AR = 14 - x$, $MR = 14 - 2x$

4.
$$n_d = \frac{2}{x}$$

5(i)
$$n_d = \frac{a - bx}{2bx}$$
, $x = \frac{a}{3b}$ (ii) $n_d = \frac{a - bx^2}{2bx^2}$, $x = \sqrt{\frac{a}{3b}}$

6.
$$\frac{4p^2}{2p^2+5}$$
, $\frac{36}{26}$ 7. $MR = \frac{50-2x}{5}$, 10.0

8.
$$\frac{p}{2(p-b)}$$
, 1

12.
$$P = -\frac{x^2}{100} + 160x - 120$$
, $AP = \frac{-x}{100} + 160 - \frac{120}{x}$, ₹147.9 $MP = \frac{-2x}{100} + 160$, 159.8, $MAP = -\frac{1}{100} + \frac{120}{x^2}$, 1.19

$$13. \;\; x = -8, 2 \qquad \;\; 15. \;\;\; n_{_d} = rac{p}{10-p}, \; \left| n_{_d}
ight| > 1 \Rightarrow$$
 மீள்த்தன்மைக் கொண்டது.

 $18. \ \ x = 6$ அலகுகள்

பயிற்சி 6.2

- $1. \ x>5$ எனும் போது AC என்பது கூடும் மதிப்பாக அமைகிறது.
- x = 46, எனும் போது P என்பது மீப்பெரு மதிப்பை அடைகிறது. மீப்பெரு லாபம் ₹ 107.68.
- 4. x=220 எனும் போது வருவாய் மீப்பெரு மதிப்பை அடைகிறது.
- 5. இடம்சார்ந்த சிறுமம் -71, இடம்சார்ந்த பெருமம் 62

1.

பொருட்கள்	EOQ அலகுகளில்	சராசரி சிறும செலவு	EOQ ரூபாயில்	EOQ வருட வழங்குதலில்	வருட கோரிக்கைகளின் எண்ணிக்கை
A	2000	₹4	40	2.5	0.4
В	200	₹20	200	0.5	2
С	2627	₹52.54	525.40	0.19	5.26

- 2 (i) 912 அலகுகள்/ கோருதல்
- (ii) ₹20, 065.80 / வாரம்.

பயிற்சி 6.4

1.
$$\frac{\partial z}{\partial x} = a(cy+d), \frac{\partial z}{\partial y} = c(ax+b)$$

பயிற்சி 6.5

- 1. 23, 25 3. 2, 8 4. 0.8832 5. $-\frac{4}{3}$, -8 6. $\frac{10}{79}$, $-\frac{3}{79}$

பயிற்சி 6.6

1	2	3	4	5	6	7	8	9	10
(d)	(a)	(b)	(a)	(b)	(a)	(b)	(c)	(b)	(a)
11	12	13	14	15	16	17	18	19	20
(a)	(c)	(b)	(b)	(a)	(b)	(b)	(b)	(b)	(c)

இதரக்கணக்குகள்

1.
$$AC = \frac{10}{x} - 4x^2 + 3x^3$$
, $MC = -12x^2 + 12x^3$, $MAC = \frac{-10}{x^2} - 8x + 9x^2$

$$2.(\mathrm{i}) \quad n_{_{\! d}} = \frac{-1}{x+1} \qquad (\mathrm{ii}) \quad n_{_{\! d}} = \frac{1}{x-1} \qquad (\mathrm{iii}) \quad n_{_{\! d}} = \frac{3}{x}$$

(ii)
$$n_d = \frac{1}{x-1}$$

(iii)
$$n_{\scriptscriptstyle d} = \frac{3}{x}$$

$$3. \quad n_s = \frac{4p^2}{2p^2 + 5}, \frac{4}{7}$$

7. நிதியியல் கணிதம்

பயிற்சி 7.1

- 1. ₹ 68,428.28 2. ₹ 1,20,800
 - **3**. ₹ 18,930
- 4. ₹ 500

- **5**. ₹ 13,59,164 **6**. ₹ 14,736
- 7. ₹ 8,433
- **8**. ₹ 1,17,612

- 9. ₹ 1,67,952 10. ₹ 1,000

பயிற்சி 7.2

1. ₹ 8,184

2. ₹ 2,250

3. 900 பங்குகள்

4.(i) 242

(ii) ₹ 3630

(iii) $12\frac{1}{2}\%$

5.(i) ₹ 4,000

(ii) ₹ 5,000

(iii) 9.6%

6. ₹ 8,975

7.(i) ₹ 6000,

(ii) ₹ 7500

8. 99 பங்குகள்

9.(i) ₹ 945

(ii) ₹ 960 இரண்டாவது முதலீடே சிறந்தது.

10.(i) 1400

(ii) 1400.

ஒரே முதலீட்டிற்கு இரு சரக்கு முதல்களும் சமமான

வருமானம் தருகின்றன.எனவே இரண்டும் சமமான சரக்கு முதல்களாகும்

பயிற்சி 7.3

														15
(a)	(b)	(c)	(c)	(d)	(c)	(b)	(b)	(b)	(c)	(b)	(a)	(c)	(c)	(c)

இதரக்கணக்குகள்

1. ₹ 9280

2. ₹ 15644

3. ₹ 4328.57, ₹ 125800, ₹ 29340, ₹ 139600.

4. தேவைப்படும் மாதங்கள் = 24

5. ₹ 12500

6. ₹ 13240, ₹ 36420, இயந்திரம் *B* வாங்கலாம்

7. ₹ 270, ₹ 216, ₹ 300, ₹ 450

8. ₹ 700, ₹ 900, ₹ 200, 2.5%

9. 500 பங்குகள், ₹ 625 10. 20%

8. விவரப் புள்ளியியல் மற்றும் நிகழ்தகவு

பயிற்சி 8.1

$$1. \ \ Q_1 = 6 \; , \; Q_3 = 18 \qquad 2.Q_1 = \; 5, \; Q_3 = 6.5, \; D_8 = \; 6.5$$
 மற்றும் $P_{67} = 6$

$${\cal Q}_1 = 47.14, \, {\cal Q}_3 = \, 63.44, \, \, \, D_5 = \, 55.58, \, \, D_7 = 61.56$$
 மற்றும் $P_{60} = 58.37$

4. GM = 142.5 lbs

5. GM = 26.2%

192 கிமீ/மணி

7. 38.92 கிமீ/மணி

8. *AM*=36 *GM*=25.46 *HM*=17.33

9. AM=21.96 GM=18.31 HM=14.32

10. AM=33, GM=29.51, HM=24.10

 $11. \ \ Q_1 = 30, \ \ Q_3 = 70, \ \ \ Q_D = 20 \ , \ \ QD$ -ன் கெழு = 0.4

- 12.~~QD=11.02~,~QD~-ன் கெழு=0.3384
- 13. இடைநிலை = 61, MD = 1.71

14.சராசரி = 13, MD = 21.67

15. இடைநிலை = 45.14 , MD = 14.30

பயிற்சி 8.2

- 1. 1/3
- 2. 2/5
- 3. A மற்றும் B என்பன சாரா நிகழ்வுகள் 4.(i) 2/3
- (ii) ½

- **5.** 3/10
- 6.(i) 42/625
- (ii) 207/625

- 7. 35/68
- 8.(i) 7/29
- (ii) 5/29
- (iii) 17/29

- 9. 4/11
- 10. P(A)=4/7 P(B)=2/7 P(C)=1/7
- 11.(i) $\frac{1}{2}$
- (ii) $\frac{2}{3}$
- 12. $\frac{1}{2}$
- 13. 0.2

- 14. 0.012
- 15.(i) 1/221
- (ii) 1/7
- 16. P(C/D) = 0.5208

பயிற்சி 8.3

1	2	3	4	5	6	7	8	9	10	11	12	13
(d)	(c)	(c)	(a)	(c)	(a)	(d)	(c)	(b)	(a)	(d)	(c)	(a)
14	15	16	17	18	19	20	21	22	23	24	25	
(b)	(d)	(a)	(b)	(b)	(c)	(b)	(d)	(b)	(a)	(b)	(a)	

இதரக்கணக்குகள்

- 1. 16.02 tons
- 2. 16

3. இடைநிலை=28, MD = 10.16

4. egnegf = 7.5, MD = 2.3

5. QD=8.33, QD-ன் கெழு=0.21

- 6. 0.45
- 7.(i) 3/10
- (ii) 3/5
- (iii) 1/10

- 8. 0.948
- 9. 0.727
- 10. 0.493

9. ஒட்டுறவு மற்றும் தொடர்புப் போக்குப் பகுப்பாய்வு

பயிற்சி 9.1

- 1. 0.575
- 2. 0.94
- 3. 0.996
- 4. 0.891

- **5**. 0.225
- **6.** −0.0734
- 7. 0.9
- 8. 0.224

- 9. 0.905
- **10.** -0.37

பயிற்சி 9.2

1.(a) Y=-0.66X+59.12; X=-0.234Y+40.892

(b)
$$r=-0.394$$

(c)
$$Y = 39.32$$

Y=0.6102X+66.12; X=0.556Y+74.62 மகனின் உயரம் = 166.19

3. Y=2.3X-35.67; மாணவனின் எடை = 125.79 lb

4.
$$Y=0.24X+1.04$$
; $X=1.33Y+1.34$

- 5. Y=1.6X; இயலக்கூடிய விளைச்சல் =46.4 அலகுகள்/ ஏக்கர்
- 6. Y=0.942X+6.08; இயலக்கூடிய விற்பனை = ₹34.34 (கோடிகளில்)
- 7. Y=0.48X+67.72; X=0.91Y-41.35; Y=72.52
- 8. b_{xy} =0.33; b_{yx} =1.33; r=0.6667
- 9. Y=0.1565X+19.94; உணவு மற்றும் பொழுது போக்கு மீதான இயலக்கூடிய செலவு (Y) = 51.24
- $10. \;\; X = 0.8 \, Y 1 \;\;$ மற்றும் $\; Y = 8 \;$ எனில் இயலக்கூடிய X -ன் மதிப்பு $= 5.4 \;$

Y = 0.8X + 2.6 மற்றும் X = 12 எனில் இயலக்கூடிய Y -ன் மதிப்பு = 12

$$11. \quad \overline{X} = 13; \quad \overline{Y} = 17$$
 மற்றும் $r = 0.6$

11.
$$ar{X}=13; \ \ ar{Y}=17$$
 மற்றும் $r=0.6$ 12. $b_{xy}=-rac{3}{2}; b_{yx}=-rac{1}{2}; r=-0.866$

பயிற்சி 9.3

1	2	3	4	5	6	7	8	9	10	11	12	13
(a)	(b)	(a)	(b)	(c)	(a)	(a)	(b)	(a)	(b)	(a)	(a)	(c)
14	15	16	17	18	19	20	21	22	23	24	25	
(a)	(b)	(a)	(a)	(a)	(a)	(a)	(b)	(b)	(b)	(a)	(d)	

இதரக்கணக்குகள்

- 1. 0.906
- 2. 0.382
- 3. 0.95
- 4. 0.667

- 5. 0.905
- 6. Y=0.653X+21.71; B-ன் மதிப்பெண்கள் = 55.67
- 7. Y=0.576X+2.332; Y=5.788
- 8. Y=1.138X+80.78; X=0.706Y-46.742
- 9. $\overline{X} = 20$, $\overline{Y} = 25$, r = 0.8
- 10. b_{vx} =1.422, Y = 141.67

10. செயல்முறைகள் ஆராய்ச்சி

பயிற்சி: 10.1

- $1. \ \ 2x_{_1}+x_{_2} \leq 1000$; $x_{_1} \leq 400; x_{_2} \leq 700$ மற்றும் $x_{_1}, x_{_2} \geq 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க $Z=5x_{_1}+3x_{_2}$ என்ற குறிக்கோள் சார்பின் பெரும மதிப்பைக் காண்க
- $2. \quad 60x_1 + 120x_2 \leq 12000 \quad 8x_1 + 5x_2 \leq 600; 3x_1 + 4x_2 \leq 500$ மற்றும் x_1 , $x_2 \geq 0$ என்ற கட்டுபாடுகளுக்கு இணங்க $Z=30x_{_1}+40x_{_2}$ என்ற குறிக்கோள் சார்பின் பெரும மதிப்பு காண்க.
- $3. \ \ 0.8 \, x_1^{} + 1.2 x_2^{} \leq 720; x_1^{} \leq 600; \ \ x_2^{} \leq 400$ மற்றும் $\ \ x_1^{}, \ x_2^{} \geq 0$ என்ற கட்டுப்பாடுகளுக்கு இணங்க $Z=10x_1+150x_2$ என்ற குறிக்கோள் சார்பின் பெரும மதிப்பைக் காண்க.

$$4.(i)$$
 $x_1 = 4$; $x_2 = 9$ மற்றும் $Z_{max} = 96$

(ii)
$$x_1 = 8$$
; $x_2 = 12$ மற்றும் $Z_{max} = 392$

(iii)
$$x_1 = 1; \; x_2 = 5$$
 மற்றும் $Z_{min} = 13$ (iv) $x_1 = 2; \; x_2 = 3$ மற்றும் $Z_{max} = 230$

(iv)
$$x_1 = 2$$
; $x_2 = 3$ மற்றும் $Z_{max} = 230$

$$(v)$$
 $x_1 = 3;$ $x_2 = 9$ மற்றும் $Z_{max} = 330$ (vi) $x_1 = 4;$ $x_2 = 2$ மற்றும் $Z_{min} = 160$

$$(vi)$$
 $x_1 = 4$; $x_2 = 2$ மற்றும் $Z_{min} = 160$

பயிற்சி: 10.2

தீர்வுக்கு உகந்த பாதை 0-1-3-6-7 மற்றும் மொத்தக் கால அளவு 31 வாரங்கள்

தீர்வுக்கு உகந்த பாதை 1-3-5-7-8-10 மற்றும் மொத்தக் கால அளவு 22 அலகுகள்

தீர்வுக்கு உகந்த பாதை 1-2-4-5-6 மற்றும் மொத்தக் கால அளவு 31 நாட்கள்

தீர்வுக்கு உகந்த பாதை 1-2-3-4-5 மற்றும் திட்டம் நிறைவு செய்யும் காலம் 24 நாட்கள்

தீர்வுக்கு உகந்த பாதை 1-2-3-5-8 மற்றும் திட்டம் நிறைவு செய்யும் காலம் 36 நாட்கள்

8

தீர்வுக்கு உகந்த பாதை 1-2-3-4-5 மற்றும் திட்டம் நிறைவு செய்யும் காலம் 52 நாட்கள்

பயிற்சி-10.3

										11				
(d)	(c)	(a)	(b)	(d)	(c)	(c)	(b)	(c)	(d)	(d)	(b)	(d)	(a)	(a)

இதரக் கணக்குகள்

- $1. \ \ x_{_1}+x_{_2} \leq 450\,; \ \ 2x_{_1}+x_{_2} \leq 600$ மற்றும் $x_{_1},x_{_2} \geq 0$ என்ற கட்டுபாடுகளுக்கு இணங்க $Z=3x_{_{\! 1}}+4x_{_{\! 2}}$ என்ற குறிக்கோள் சார்பின் பெரும மதிப்பு காண்க
- $2. \ \ 2\,x_{_1}+x_{_2}\geq 720; 5x_{_1}+8x_{_2}\geq 74; \ x_{_1}+6x_{_2}\geq 24$ மற்றும் $x_{_1},x_{_2}\geq 0$ என்ற கட்டுபாடுகளுக்கு இணங்க $Z=x_{_{\! 1}}+x_{_{\! 2}}$ என்ற குறிக்கோள் சார்பின் பெரும மதிப்பு காண்க
- 3. x_1 =30; x_2 = 0 மற்றும் Z_{max} = 120
- $4. \,\, x_1^{} = 4; \, x_2^{} = 3$ மற்றும் $Z_{\min}^{} = 2300$
- 5. $x_1 = 1$; $x_2 = 5$ மற்றும் $Z_{max} = 28$ 6. $x_1 = 20$; $x_2 = 30$ மற்றும் $Z_{max} = 1650$

7.

10.

தீர்வுக்கு உகந்த பாதை 1-2-3-5-6 மற்றும் திட்டம் நிறைவு செய்யும் காலம் 30 நாட்கள்

தீர்வுக்கு உகந்த பாதை 1-3-5-6-7 மற்றும் திட்டம் நிறைவு செய்யும் காலம் 26 நாட்கள்

	சாற்கள் (GLOSSARY) Abnormal
ഷതെഖെൽ / நிகழ்வெൽ	Frequency
भवा ञ	Quantity
antiq Antiuq	Supply
ளப்பு நரம்ப நிகழ்வு	head event
ന്നമാ തരുള്ളു പ്രമാതി പര്യാവസ്ഖ	Bivariate analysis
ബന്റ	Profit
	tail event
றுதி நிகழ்வு	
വ്വதிநிலை/ விளிம்பு • •	Marginal
ற்பத்தி ÷ ÷	Output
ற்பத்தியாளர் ூ:	Producer Assumed Mass
கிக்கப்பட்ட சராசரி	Assumed Mean
<u>]</u> ந்மறை ஒட்டுறவு	Negative Correlation
புடைய தீர்வு	feasible solution
ற இறக்கம்	fluctuate
<u> </u>	Corrleation
புக்கான செயல்	dummy activities
மாறி பகுப்பாய்வு	Univariate analysis
ர விலை/ மாறா விலை	Fixed cost
ாறை ஒன்று விலக்கும் நிகழ்வுகள்	Mutually exclusive events/ disjoint events
ன் பத்திரங்கள்	Debentures
முறை செலுத்துதல்	Periodic payment
மான விலக்கம்	Quartile deviation
மானம்	Quartile
றுவெளி	Sample space
ന്റെ ഖിതെ	Market price
பங்கு	Equity shares
வாய்ப்புள்ள நிகழ்வுகள்	Equally likely events
ിതെ	Equilibrium
ாய்ப்பு சோதனை	Random experiment
ாய்ப்பு மாறிகள்	Random variables
	latest start time
ந்கு முதல்கள்	Stocks
रम् सम्ब	Average
சரி விலக்கம்	Mean deviation
ந்த மாறி	Relative Variable
ர்ந்த மாற்றம்	Relative change
பில்லா நிகழ்வுகள்	Independent events
ர்பு நிகழ்வுகள்	Dependent events
വരു പ്രത്യം പ്രവ്യം പ്രത്യം പ്രത്യം പ്രത്യം പ്രത്യം പ്രവ്യം പ്രവ്യം പ്രവ്യം പ്രവ്യം പ	Minimum
:யல்பா(₅	activity
வல்பாரு வவுச் சார்பு	Cost function
ംബുട ബുப്ப ബ്ലുத்தும் கால இடைவெளி	Payment interval
இ இற்றும் வால் இடைவள்ளா	Brokerage
த் க்க தொடர் வரிசை	logical sequence
க்க தொடர் வரிசை பணை பங்கீட்டு தொகை	Immediate annuity
பணை பங்கீட்டு தொகை காலம் சிக்க கொக்	Term of annuity
ரித்த தொடர் 	Discrete series
றான மாறிகள்	decision variables

©• • - • • •	oritical reath analysis
தீர்வுக்கு உகந்த பகுப்பாய்வு	critical path analysis
தீர்வுக்கு உகந்த முறை	critical path method
தேவை - · · · · · · · · · · · · · · · · · · ·	Demand
தொகுக்கப்பட்ட விவரங்கள்	Grouped data
தொடர்ச்சியான தொடர்	Continuous series
தொடர்பு போக்கு ஆய்வு	Regression analysis
தோரயமான	Approximately
தோராயமாக	Approximate
நிகழ்தகவு	Probability
நிகழ்வு	event
நிபந்தனைக்குட்பட்ட நிகழ்தகவு	Conditional probability
நிரந்தர தவணை பங்கீட்டுத் தொகை	Perpetual annuity
நுகர்வோர்	Consumer
நூற்றுமானம்/ சதமானம்	Percentile
நெகிழ்ச்சி	Elasticity
நேரிடை ஒட்டுறவு	Positive Correlation
நேரிய திட்டமிடல் கணக்கு	linear programming problem
பங்குகள்	Shares
பங்குச் சந்தை	Stock exchange
பங்குதாரர்கள்	Share holders
பண்புத் தொகை	abstract
பண்புகள்	Characteristics
பதின்மானம்	Decile
பரிவர்த்தனை	Transaction
பிந்தைய செயல்	successor activity
பின் நோக்கி செல்லும் கணக்கீடு	backward pass calculations
பெருமம்	Maximum
பொருத்தமுடைய	Closeness
பொருள்	Commodity
மாறும் விலை	Variable cost
மாறுவீதம்	Rate of change
<u>த</u>	Excess
முக மதிப்பு	Face value
முகடு	Mode
முந்தைய செயல்	predecessor activity
	1
முமுமையான நிகம்வகள்	Exhaustive events
முழுமையான நிகழ்வுகள் முன் நோக்கி செல்லம் கணக்கீடு	
முன் நோக்கி செல்லும் கணக்கீடு	forward pass calculations
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம்	forward pass calculations earliest start time
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை	forward pass calculations earliest start time Preference shares
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை மூலதன மதிப்பு	forward pass calculations earliest start time Preference shares Capital value
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை மூலதன மதிப்பு வட்டி	forward pass calculations earliest start time Preference shares Capital value Interest
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை மூலதன மதிப்பு வட்டி வருவாய் சார்பு	forward pass calculations earliest start time Preference shares Capital value Interest Revenue function
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை மூலதன மதிப்பு வட்டி வருவாய் சார்பு வலையமைப்பு பகுப்பாய்வு	forward pass calculations earliest start time Preference shares Capital value Interest Revenue function network analysis
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை மூலதன மதிப்பு வட்டி வருவாய் சார்பு வலையமைப்பு பகுப்பாய்வு விகிதம்	forward pass calculations earliest start time Preference shares Capital value Interest Revenue function network analysis Ratio
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை மூலதன மதிப்பு வட்டி வருவாய் சார்பு வலையமைப்பு பகுப்பாய்வு விகிதம்	forward pass calculations earliest start time Preference shares Capital value Interest Revenue function network analysis Ratio Deviations
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை மூலதன மதிப்பு வட்டி வருவாய் சார்பு வலையமைப்பு பகுப்பாய்வு விகிதம் விலக்கம்	forward pass calculations earliest start time Preference shares Capital value Interest Revenue function network analysis Ratio Deviations Interpretation
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை மூலதன மதிப்பு வட்டி வருவாய் சார்பு வலையமைப்பு பகுப்பாய்வு விகிதம் விலக்கம் விளக்கம்	forward pass calculations earliest start time Preference shares Capital value Interest Revenue function network analysis Ratio Deviations Interpretation Selling price
முன் நோக்கி செல்லும் கணக்கீடு முன்கூட்டியே தொடங்கும் நேரம் முன்னுரிமை மூலதன மதிப்பு வட்டி வருவாய் சார்பு வலையமைப்பு பகுப்பாய்வு விகிதம் விலக்கம்	forward pass calculations earliest start time Preference shares Capital value Interest Revenue function network analysis Ratio Deviations Interpretation

மடக்கை அட்டவணை

													M	lean	Diffe	rend	e		
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
1.0	0.0000	0.0043	0.0086	0.0128	0.0170	0.0212	0.0253	0.0294	0.0334	0.0374	4	8	12	17	21	25	29	33	37
1.1	0.0414	0.0453	0.0492	0.0531	0.0569	0.0607	0.0645	0.0682	0.0719	0.0755	4	8	11	15	19	23	26	30	34
1.2	0.0792	0.0828	0.0864	0.0899	0.0934	0.0969	0.1004	0.1038	0.1072	0.1106	3	7	10	14	17	21	24	28	31
1.3	0.1139	0.1173	0.1206	0.1239	0.1271	0.1303	0.1335	0.1367	0.1399	0.1430	3	6	10	13	16	19	23	26	29
1.4	0.1461	0.1492	0.1523	0.1553	0.1584	0.1614	0.1644	0.1673	0.1703	0.1732	3	6	9	12	15	18	21	24	27
1.5	0.1761	0.1790	0.1818	0.1847	0.1875	0.1903	0.1931	0.1959	0.1987	0.2014	3	6	8	11	14	17	20	22	25
1.6	0.2041	0.2068	0.2095	0.2122	0.2148	0.2175	0.2201	0.2227	0.2253	0.2279	3	5	8	11	13	16	18	21	24
1.7	0.2304	0.2330	0.2355	0.2380	0.2405	0.2430	0.2455	0.2480	0.2504	0.2529	2	5	7	10	12	15	17	20	22
1.8	0.2553	0.2577	0.2601	0.2625	0.2648	0.2672	0.2695	0.2718	0.2742	0.2765	2	5	7	9	12	14	16	19	21
1.9	0.2788	0.2810	0.2833	0.2856	0.2878	0.2900	0.2923	0.2945	0.2967	0.2989	2	4	7	9	11	13	16	18	20
2.0	0.3010	0.3032	0.3054	0.3075	0.3096	0.3118	0.3139	0.3160	0.3181	0.3201	2	4	6	8	11	13	15	17	19
	0.0010	0.0002	0.0001	0.0070	0.0070	0.0110	0.0107	0.0.00	0.0.0.	0.020.	_	·				"	"	.,	.,
2.1	0.3222	0.3243	0.3263	0.3284	0.3304	0.3324	0.3345	0.3365	0.3385	0.3404	2	4	6	8	10	12	14	16	18
2.2	0.3424	0.3444	0.3464	0.3483	0.3502	0.3522	0.3541	0.3560	0.3579	0.3598	2	4	6	8	10	12	14	15	17
2.3	0.3617	0.3636	0.3655	0.3674	0.3692	0.3711	0.3729	0.3747	0.3766	0.3784	2	4	6	7	9	11	13	15	17
2.4	0.3802	0.3820	0.3838	0.3856	0.3874	0.3892	0.3909	0.3927	0.3945	0.3962	2	4	5	7	9	11	12	14	16
2.5	0.3979	0.3997	0.4014	0.4031	0.4048	0.4065	0.4082	0.4099	0.4116	0.4133	2	3	5	7	9	10	12	14	15
2.6	0.4150	0.4166	0.4183	0.4200	0.4216	0.4232	0.4249	0.4265	0.4281	0.4298	2	3	5	7	8	10	11	13	15
2.7	0.4314	0.4330	0.4346	0.4362	0.4378	0.4393	0.4409	0.4425	0.4440	0.4456	2	3	5	6	8	9	11	13	14
2.8	0.4472	0.4487	0.4502	0.4518	0.4533	0.4548	0.4564	0.4579	0.4594	0.4609	2	3	5	6	8	9	11	12	14
2.9	0.4624	0.4639	0.4654	0.4669	0.4683	0.4698	0.4713	0.4728	0.4742	0.4757	1	3	4	6	7	9	10	12	13
3.0	0.4771	0.4786	0.4800	0.4814	0.4829	0.4843	0.4857	0.4871	0.4886	0.4900	1	3	4	6	7	9	10	11	13
2.1	0.4014	0.4020	0.4042	0.4055	0.4040	0.4002	0.4997	0 5011	0 5034	0 5020	1	2	1		7	0	10	11	12
3.1	0.4914	0.4928	0.4942	0.4955	0.4969	0.4983		0.5011	0.5024	0.5038	1	3	4	6		8	9	11	12
3.2	0.5051	0.5065	0.5079	0.5092	0.5105	0.5119	0.5132	0.5145	0.5159	0.5172		3	4	5	7	8		11	12
3.3	0.5185	0.5198	0.5211	0.5224	0.5237	0.5250	0.5263	0.5276	0.5289	0.5302	1	3	4	5	6	8	9	10	12
3.4	0.5315	0.5328	0.5340	0.5353	0.5366	0.5378	0.5391	0.5403	0.5416	0.5428	1	3	4	5	6	8	9	10	11
3.5	0.5441	0.5453	0.5465	0.5478	0.5490	0.5502	0.5514	0.5527	0.5539	0.5551	1	2	4	5	6	7	9	10	11
3.6	0.5563	0.5575	0.5587	0.5599	0.5611	0.5623	0.5635	0.5647	0.5658	0.5670	1	2	4	5	6	7	8	10	11
3.7	0.5682	0.5694	0.5705	0.5717	0.5729	0.5740	0.5752	0.5763	0.5775	0.5786	1	2	3	5	6	7	8	9	10
3.8	0.5798	0.5809	0.5821	0.5832	0.5843	0.5855	0.5866	0.5877	0.5888	0.5899	1	2	3	5	6	7	8	9	10
3.9	0.5911	0.5922	0.5933	0.5944	0.5955	0.5966	0.5977	0.5988	0.5999	0.6010	1	2	3	4	5	7	8	9	10
4.0	0.6021	0.6031	0.6042	0.6053	0.6064	0.6075	0.6085	0.6096	0.6107	0.6117	1	2	3	4	5	6	8	9	10
4.1	0.6128	0.6138	0.6149	0.6160	0.6170	0.6180	0.6191	0.6201	0.6212	0.6222	1	2	3	4	5	6	7	8	9
4.2	0.6232	0.6243	0.6253	0.6263	0.6274	0.6284	0.6294	0.6304	0.6314	0.6325	1	2	3	4	5	6	7	8	9
4.3	0.6335	0.6345	0.6355	0.6365	0.6375	0.6385	0.6395	0.6405	0.6415	0.6425	1	2	3	4	5	6	7	8	9
4.4	0.6435	0.6444	0.6454	0.6464	0.6474	0.6484	0.6493	0.6503	0.6513	0.6522	1	2	3	4	5	6	7	8	9
4.5	0.6532	0.6542	0.6551	0.6561	0.6571	0.6580	0.6590	0.6599	0.6609	0.6618	1	2	3	4	5	6	7	8	9
16	0.6620	0.6627	0.4444	0.4454	0.4445	0.4475	0.4404	0.6693	0.6702	0.6712	1	2	2	4	E	4	7	7	8
4.6	0.6628	0.6637	0.6646	0.6656	0.6665 0.6758	0.6675	0.6684	0.6693	0.6702	0.6712	1	2	3	4	5	6			
4.7	0.6721 0.6812	0.6730		0.6749		0.6767 0.6857		0.6875	0.6794	0.6803	1	2	3	4	5	5 5	6	7	8
4.8 4.9		0.6821	0.6830	0.6928	0.6848		0.6866	0.6964			1	2	3	4	4	5 5	6	7	8
	0.6902 0.6990	0.6911	0.6920	0.7016	0.6937	0.6946 0.7033		0.7050	0.6972	0.6981	1		3	4	4	5	6		8
5.0	0.0990	0.6998	0.7007	0.7016	0.7024	0.7033	0.7042	0.7050	0.7059	0.7067	1	2	3	3	4)	6	7	8
5.1	0.7076	0.7084	0.7093	0.7101	0.7110	0.7118	0.7126	0.7135	0.7143	0.7152	1	2	3	3	4	5	6	7	8
5.2	0.7160	0.7168	0.7177	0.7185	0.7193	0.7202	0.7210	0.7218	0.7226	0.7235	1	2	2	3	4	5	6	7	7
5.3	0.7243	0.7251	0.7259	0.7267	0.7275	0.7284	0.7292	0.7300	0.7308	0.7316	1	2	2	3	4	5	6	6	7
		0.7332	0.7340	0.7348	0.7356	0.7364	0.7372	0.7380	0.7388	0.7396	1	2	2	3	4	5	6	6	7

மடக்கை அட்டவணை

													M	3 4 5 5 5 3 4 5 5 3 4 4 5 5 3 3 4 5 5 3 3 4 5 5 3 3 4 5 5 3 3 4 5 5 3 3 4 5 5 3 3 4 5 5 3 3 4 5 5 3 3 4 5 5 3 3 4 5 5 3 3 4 5 5 5 3 3 4 5 5 5 5					
	0	1	2	3	4	5	6	7	8	9	1	2 3 4 5 6 7 8 2 2 3 4 5 5 6 2 2 3 4 5 5 6 2 2 3 4 5 5 6 1 2 3 4 4 5 6						8	9
5.5	0.7404	0.7412	0.7419	0.7427	0.7435	0.7443	0.7451	0.7459	0.7466	0.7474	1	2	2	3	4	5	5	6	7
5.6	0.7482	0.7490	0.7497	0.7505	0.7513	0.7520	0.7528	0.7536	0.7543	0.7551	1	2	2	3	4	5	5	6	7
5.7	0.7559	0.7566	0.7574	0.7582	0.7589	0.7597	0.7604	0.7612	0.7619	0.7627	1								7
5.8	0.7634	0.7642	0.7649	0.7657	0.7664	0.7672	0.7679	0.7686	0.7694	0.7701	1							6	7
5.9	0.7709	0.7716	0.7723	0.7731	0.7738	0.7745	0.7752	0.7760	0.7767	0.7774	1	1	2					6	7
6.0	0.7782	0.7789	0.7796	0.7803	0.7810	0.7818	0.7825	0.7832	0.7839	0.7846	1	1	2					6	6
6.1	0.7853	0.7860	0.7868	0.7875	0.7882	0.7889	0.7896	0.7903	0.7910	0.7917	1	1	2	3	4	4	5	6	6
6.2	0.7924	0.7931	0.7938	0.7945	0.7952	0.7959	0.7966	0.7973	0.7980	0.7987	1	1	2	3	3	4	5	6	1
6.3	0.7993	0.8000	0.8007	0.8014	0.8021	0.8028	0.8035	0.8041	0.8048	0.8055	1	1	2	3	3	4	5	5	1
6.4	0.8062	0.8069	0.8075	0.8082	0.8089	0.8096	0.8102	0.8109	0.8116	0.8122	1	1	2	3	3	4	5	5	1
6.5	0.8129	0.8136	0.8142	0.8149	0.8156	0.8162	0.8169	0.8176	0.8182	0.8189	1	1	2	3	3	4	5	5	6
6.6	0.8195	0.8202	0.8209	0.8215	0.8222	0.8228	0.8235	0.8241	0.8248	0.8254	1	1	2	3	3	4	5	5	1
6.7	0.8261	0.8267	0.8274	0.8280	0.8287	0.8293	0.8299	0.8306	0.8312	0.8319	1	1	2	3	3	4	5	5	1
6.8	0.8325	0.8331	0.8338	0.8344	0.8351	0.8357	0.8363	0.8370	0.8376	0.8382	1	1	2	3	3	4	4	5	1
6.9	0.8388	0.8395	0.8401	0.8407	0.8414	0.8420	0.8426	0.8432	0.8439	0.8445	1	1	2	2	3	4	4	5	1
7.0	0.8451	0.8457	0.8463	0.8470	0.8476	0.8482	0.8488	0.8494	0.8500	0.8506	1	1	2	2	3	4	4	5	6
7.1	0.8513	0.8519	0.8525	0.8531	0.8537	0.8543	0.8549	0.8555	0.8561	0.8567	1	1	2	2	3	4	4	5	
7.2	0.8573	0.8579	0.8585	0.8591	0.8597	0.8603	0.8609	0.8615	0.8621	0.8627	1	1	2	2	3	4	4	5	!
7.3	0.8633	0.8639	0.8645	0.8651	0.8657	0.8663	0.8669	0.8675	0.8681	0.8686	1	1	2	2	3	4	4	5	!
7.4	0.8692	0.8698	0.8704	0.8710	0.8716	0.8722	0.8727	0.8733	0.8739	0.8745	1	1	2	2	3	4	4	5	
7.5	0.8751	0.8756	0.8762	0.8768	0.8774	0.8779	0.8785	0.8791	0.8797	0.8802	1	1	2	2	3	3	4	5	
7.6	0.8808	0.8814	0.8820	0.8825	0.8831	0.8837	0.8842	0.8848	0.8854	0.8859	1	1	2	2	3	3	4	5	[
7.7	0.8865	0.8871	0.8876	0.8882	0.8887	0.8893	0.8899	0.8904	0.8910	0.8915	1	1	2	2	3	3	4	4	!
7.8	0.8921	0.8927	0.8932	0.8938	0.8943	0.8949	0.8954	0.8960	0.8965	0.8971	1	1	2	2	3	3	4	4	!
7.9	0.8976	0.8982	0.8987	0.8993	0.8998	0.9004	0.9009	0.9015	0.9020	0.9025	1	1	2	2	3	3	4	4	!
8.0	0.9031	0.9036	0.9042	0.9047	0.9053	0.9058	0.9063	0.9069	0.9074	0.9079	1	1	2	2	3	3	4	4	1
8.1	0.9085	0.9090	0.9096	0.9101	0.9106	0.9112	0.9117	0.9122	0.9128	0.9133	1	1	2	2	3	3	4	4	į
8.2	0.9138	0.9143	0.9149	0.9154	0.9159	0.9165	0.9170	0.9175	0.9180	0.9186	1	1	2	2	3	3	4	4	!
8.3	0.9191	0.9196	0.9201	0.9206	0.9212	0.9217	0.9222	0.9227	0.9232	0.9238	1	1	2	2	3	3	4	4	!
8.4	0.9243	0.9248	0.9253	0.9258	0.9263	0.9269	0.9274	0.9279	0.9284	0.9289	1	1	2	2	3	3	4	4	!
8.5	0.9294	0.9299	0.9304	0.9309	0.9315	0.9320	0.9325	0.9330	0.9335	0.9340	1	1	2	2	3	3	4	4	!
8.6	0.9345	0.9350	0.9355	0.9360	0.9365	0.9370	0.9375	0.9380	0.9385	0.9390	1	1	2	2	3	3	4	4	!
8.7	0.9395	0.9400	0.9405	0.9410	0.9415	0.9420	0.9425	0.9430	0.9435	0.9440	0	1	1	2	2	3	3	4	۱.
8.8	0.9445	0.9450	0.9455	0.9460	0.9465	0.9469	0.9474	0.9479	0.9484	0.9489	0	1	1	2	2	3	3	4	۱
8.9	0.9494	0.9499	0.9504	0.9509	0.9513	0.9518	0.9523	0.9528	0.9533	0.9538	0	1	1	2	2	3	3	4	۱,
9.0	0.9542	0.9547	0.9552	0.9557	0.9562	0.9566	0.9571	0.9576	0.9581	0.9586	0	1	1	2	2	3	3	4	
9.1	0.9590	0.9595	0.9600	0.9605	0.9609	0.9614	0.9619	0.9624	0.9628	0.9633	0	1	1	2	2	3	3	4	
9.2	0.9638	0.9643	0.9647	0.9652	0.9657	0.9661	0.9666	0.9671	0.9675	0.9680	0	1	1	2	2	3	3	4	4
9.3	0.9685	0.9689	0.9694	0.9699	0.9703	0.9708	0.9713	0.9717	0.9722	0.9727	0	1	1	2	2	3	3	4	4
9.4	0.9731	0.9736	0.9741	0.9745	0.9750	0.9754	0.9759	0.9763	0.9768	0.9773	0	1	1	2	2	3	3	4	۱
9.5	0.9777	0.9782	0.9786	0.9791	0.9795	0.9800	0.9805	0.9809	0.9814	0.9818	0	1	1	2	2	3	3	4	
9.6	0.9823	0.9827	0.9832	0.9836	0.9841	0.9845	0.9850	0.9854	0.9859	0.9863	0	1	1	2	2	3	3	4	
9.7	0.9868	0.9872	0.9877	0.9881	0.9886	0.9890	0.9894	0.9899	0.9903	0.9908	0	1	1	2	2	3	3	4	4
9.8	0.9912	0.9917	0.9921	0.9926	0.9930	0.9934	0.9939	0.9943	0.9948	0.9952	0	1	1	2	2	3	3	4	4
9.9	0.9956	0.9961	0.9965	0.9969	0.9974	0.9978	0.9983	0.9987	0.9991	0.9996	0	1	1	2	2	3	3	3	4

எதிர் மடக்கை அட்டவணை

													IV	lean	Diffe	erend	ce		
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.00	1.000	1.002	1.005	1.007	1.009	1.012	1.014	1.016	1.019	1.021	0	0	1	1	1	1	2	2	2
0.01	1.023	1.026	1.028	1.030	1.033	1.035	1.038	1.040	1.042	1.045	0	0	1	1	1	1	2	2	2
0.02	1.047	1.050	1.052	1.054	1.057	1.059	1.062	1.064	1.067	1.069	0	0	1	1	1	1	2	2	2
0.03	1.072	1.074	1.076	1.079	1.081	1.084	1.086	1.089	1.091	1.094	0	0	1	1	1	1	2	2	2
0.04	1.096	1.099	1.102	1.104	1.107	1.109	1.112	1.114	1.117	1.119	0	1	1	1	1	2	2	2	2
0.05	1.122	1.125	1.127	1.130	1.132	1.135	1.138	1.140	1.143	1.146	0	1	1	1	1	2	2	2	2
0.06	1.148	1.151	1.153	1.156	1.159	1.161	1.164	1.167	1.169	1.172	0	1	1	1	1	2	2	2	2
0.07	1.175	1.178	1.180	1.183	1.186	1.189	1.191	1.194	1.197	1.199	0	1	1	1	1	2	2	2	2
0.08	1.202	1.205	1.208	1.211	1.213	1.216	1.219	1.222	1.225	1.227	0	1	1	1	1	2	2	2	3
0.09	1.230	1.233	1.236	1.239	1.242	1.245	1.247	1.250	1.253	1.256	0	1	1	1	1	2	2	2	3
0.10	1.259	1.262	1.265	1.268	1.271	1.274	1.276	1.279	1.282	1.285	0	1	1	1	1	2	2	2	3
0.11	1.288	1.291	1.294	1.297	1.300	1.303	1.306	1.309	1.312	1.315	0	1	1	1	2	2	2	2	3
0.12	1.318	1.321	1.324	1.327	1.330	1.334	1.337	1.340	1.343	1.346	0	1	1	1	2	2	2	2	3
0.13	1.349	1.352	1.355	1.358	1.361	1.365	1.368	1.371	1.374	1.377	0	1	1	1	2	2	2	3	3
0.14	1.380	1.384	1.387	1.390	1.393	1.396	1.400	1.403	1.406	1.409	0	1	1	1	2	2	2	3	3
0.15	1.413	1.416	1.419	1.422	1.426	1.429	1.432	1.435	1.439	1.442	0	1	1	1	2	2	2	3	3
0.16	1.445	1.449	1.452	1.455	1.459	1.462	1.466	1.469	1.472	1.476	0	1	1	1	2	2	2	3	3
0.17	1.479	1.483	1.486	1.489	1.493	1.496	1.500	1.503	1.507	1.510	0	1	1	1	2	2	2	3	3
0.18	1.514	1.517	1.521	1.524	1.528	1.531	1.535	1.538	1.542	1.545	0	1	1	1	2	2	2	3	3
0.19	1.549	1.552	1.556	1.560	1.563	1.567	1.570	1.574	1.578	1.581	0	1	1	1	2	2	3	3	3
0.20	1.585	1.589	1.592	1.596	1.600	1.603	1.607	1.611	1.614	1.618	0	1	1	1	2	2	3	3	3
0.21	1.622	1.626	1.629	1.633	1.637	1.641	1.644	1.648	1.652	1.656	0	1	1	2	2	2	3	3	3
0.22	1.660	1.663	1.667	1.671	1.675	1.679	1.683	1.687	1.690	1.694	0	1	1	2	2	2	3	3	3
0.23	1.698	1.702	1.706	1.710	1.714	1.718	1.722	1.726	1.730	1.734	0	1	1	2	2	2	3	3	4
0.24	1.738	1.742	1.746	1.750	1.754	1.758	1.762	1.766	1.770	1.774	0	1	1	2	2	2	3	3	4
0.25	1.778	1.782	1.786	1.791	1.795	1.799	1.803	1.807	1.811	1.816	0	1	1	2	2	2	3	3	4
0.26	1.820	1.824	1.828	1.832	1.837	1.841	1.845	1.849	1.854	1.858	0	1	1	2	2	3	3	3	4
0.27	1.862	1.866	1.871	1.875	1.879	1.884	1.888	1.892	1.897	1.901	0	1	1	2	2	3	3	3	4
0.28	1.905	1.910	1.914	1.919	1.923	1.928	1.932	1.936	1.941	1.945	0	1	1	2	2	3	3	4	4
0.29	1.950	1.954	1.959	1.963	1.968	1.972	1.977	1.982	1.986	1.991	0	1	1	2	2	3	3	4	4
0.30	1.995	2.000	2.004	2.009	2.014	2.018	2.023	2.028	2.032	2.037	0	1	1	2	2	3	3	4	4
0.31	2.042	2.046	2.051	2.056	2.061	2.065	2.070	2.075	2.080	2.084	0	1	1	2	2	3	3	4	4
0.32	2.089	2.094	2.099	2.104	2.109	2.113	2.118	2.123	2.128	2.133	0	1	1	2	2	3	3	4	4
0.33	2.138	2.143	2.148	2.153	2.158	2.163	2.168	2.173	2.178	2.183	0	1	1	2	2	3	3	4	4
0.34	2.188	2.193	2.198	2.203	2.208	2.213	2.218	2.223	2.228	2.234	1	1	2	2	3	3	4	4	5
0.35	2.239	2.244	2.249	2.254	2.259	2.265	2.270	2.275	2.280	2.286	1	1	2	2	3	3	4	4	5
0.36	2.291	2.296	2.301	2.307	2.312	2.317	2.323	2.328	2.333	2.339	1	1	2	2	3	3	4	4	5
0.37	2.344	2.350	2.355	2.360	2.366	2.371	2.377	2.382	2.388	2.393	1	1	2	2	3	3	4	4	5
0.38	2.399	2.404	2.410	2.415	2.421	2.427	2.432	2.438	2.443	2.449	1	1	2	2	3	3	4	4	5
0.39	2.455	2.460	2.466	2.472	2.477	2.483	2.489	2.495	2.500	2.506	1	1	2	2	3	3	4	5	5
0.40	2.512	2.518	2.523	2.529	2.535	2.541	2.547	2.553	2.559	2.564	1	1	2	2	3	4	4	5	5
0.41	2.570	2.576	2.582	2.588	2.594	2.600	2.606	2.612	2.618	2.624	1	1	2	2	3	4	4	5	5
0.42	2.630	2.636	2.642	2.649	2.655	2.661	2.667	2.673	2.679	2.685	1	1	2	2	3	4	4	5	6
0.43	2.692	2.698	2.704	2.710	2.716	2.723	2.729	2.735	2.742	2.748	1	1	2	3	3	4	4	5	6
0.44	2.754	2.761	2.767	2.773	2.780	2.786	2.793	2.799	2.805	2.812	1	1	2	3	3	4	4	5	6
0.45	2.818	2.825	2.831	2.838	2.844	2.851	2.858	2.864	2.871	2.877	1	1	2	3	3	4	5	5	6
0.46	2.884	2.891	2.897	2.904	2.911	2.917	2.924	2.931	2.938	2.944	1	1	2	3	3	4	5	5	6
0.47	2.951	2.958	2.965	2.972	2.979	2.985	2.992	2.999	3.006	3.013	1	1	2	3	3	4	5	5	6
0.48	3.020	3.027	3.034	3.041	3.048	3.055	3.062	3.069	3.076	3.083	1	1	2	3	4	4	5	6	6
0.49	3.090	3.097	3.105	3.112	3.119	3.126	3.133	3.141	3.148	3.155	1	1	2	3	4	4	5	6	6

எதிர் மடக்கை அட்டவணை

													N	lean	Diffe	erend	е		
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.50	3.162	3.170	3.177	3.184	3.192	3.199	3.206	3.214	3.221	3.228	1	1	2	3	4	4	5	6	7
0.51	3.236	3.243	3.251	3.258	3.266	3.273	3.281	3.289	3.296	3.304	1	2	2	3	4	5	5	6	7
0.52	3.311	3.319	3.327	3.334	3.342	3.350	3.357	3.365	3.373	3.381	1	2	2	3	4	5	5	6	7
0.53	3.388	3.396	3.404	3.412	3.420	3.428	3.436	3.443	3.451	3.459	1	2	2	3	4	5	6	6	7
0.54	3.467	3.475	3.483	3.491	3.499	3.508	3.516	3.524	3.532	3.540	1	2	2	3	4	5	6	6	7
0.55	3.548	3.556	3.565	3.573	3.581	3.589	3.597	3.606	3.614	3.622	1	2	2	3	4	5	6	7	7
0.00	0.040	0.000	0.000	0.070	0.001	0.000	0.007	0.000	0.014	0.022	'	-	-		7	"	"	′	′
0.56	3.631	3.639	3.648	3.656	3.664	3.673	3.681	3.690	3.698	3.707	1	2	3	3	4	5	6	7	8
											l		1					l	1
0.57	3.715	3.724	3.733	3.741	3.750	3.758	3.767	3.776	3.784	3.793	1	2	3	3	4	5	6	7	8
0.58	3.802	3.811	3.819	3.828	3.837	3.846	3.855	3.864	3.873	3.882	1	2	3	4	4	5	6	7	8
0.59	3.890	3.899	3.908	3.917	3.926	3.936	3.945	3.954	3.963	3.972	1	2	3	4	5	5	6	7	8
0.60	3.981	3.990	3.999	4.009	4.018	4.027	4.036	4.046	4.055	4.064	1	2	3	4	5	6	6	7	8
0.61	4.074	4.083	4.093	4.102	4.111	4.121	4.130	4.140	4.150	4.159	1	2	3	4	5	6	7	8	9
0.62	4.169	4.178	4.188	4.198	4.207	4.217	4.227	4.236	4.246	4.256	1	2	3	4	5	6	7	8	9
0.63	4.266	4.276	4.285	4.295	4.305	4.315	4.325	4.335	4.345	4.355	1	2	3	4	5	6	7	8	9
0.64	4.365	4.375	4.385	4.395	4.406	4.416	4.426	4.436	4.446	4.457	1	2	3	4	5	6	7	8	9
0.65	4.467	4.477	4.487	4.498	4.508	4.519	4.529	4.539	4.550	4.560	1	2	3	4	5	6	7	8	9
0.00												-							ľ
0.66	4.571	4.581	4.592	4.603	4.613	4.624	4.634	4.645	4.656	4.667	1	2	3	4	5	6	7	9	10
0.67	4.677	4.688	4.699	4.710	4.721	4.732	4.742	4.753	4.764	4.775	1	2	3	4	5	7	8	9	10
											l	1	1	1	ł	l	l	l	1
0.68	4.786	4.797	4.808	4.819	4.831	4.842	4.853	4.864	4.875	4.887	1	2	3	4	6	7	8	9	10
0.69	4.898	4.909	4.920	4.932	4.943	4.955	4.966	4.977	4.989	5.000	1	2	3	5	6	7	8	9	10
0.70	5.012	5.023	5.035	5.047	5.058	5.070	5.082	5.093	5.105	5.117	1	2	4	5	6	7	8	9	11
0.71	5.129	5.140	5.152	5.164	5.176	5.188	5.200	5.212	5.224	5.236	1	2	4	5	6	7	8	10	11
0.72	5.248	5.260	5.272	5.284	5.297	5.309	5.321	5.333	5.346	5.358	1	2	4	5	6	7	9	10	11
0.73	5.370	5.383	5.395	5.408	5.420	5.433	5.445	5.458	5.470	5.483	1	3	4	5	6	8	9	10	11
0.74	5.495	5.508	5.521	5.534	5.546	5.559	5.572	5.585	5.598	5.610	1	3	4	5	6	8	9	10	12
0.75	5.623	5.636	5.649	5.662	5.675	5.689	5.702	5.715	5.728	5.741	1	3	4	5	7	8	9	10	12
0.76	5.754	5.768	5.781	5.794	5.808	5.821	5.834	5.848	5.861	5.875	1	3	4	5	7	8	9	11	12
0.77	5.888	5.902	5.916	5.929	5.943	5.957	5.970	5.984	5.998	6.012	1	3	4	5	7	8	10	11	12
0.78	6.026	6.039	6.053	6.067	6.081	6.095	6.109	6.124	6.138	6.152	1	3	4	6	7	8	10	11	13
															ł		l	l	1
0.79	6.166	6.180	6.194	6.209	6.223	6.237	6.252	6.266	6.281	6.295	1	3	4	6	7	9	10	11	13
0.80	6.310	6.324	6.339	6.353	6.368	6.383	6.397	6.412	6.427	6.442	1	3	4	6	7	9	10	12	13
													_				١		l
0.81	6.457	6.471	6.486	6.501	6.516	6.531	6.546	6.561	6.577	6.592	2	3	5	6	8	9	11	12	14
0.82	6.607	6.622	6.637	6.653				6.714	6.730	6.745	2	3	5	6	8	9	11	12	14
0.83	6.761	6.776	6.792	6.808	6.823	6.839	6.855	6.871	6.887	6.902	2	3	5	6	8	9	11	13	14
0.84	6.918	6.934	6.950	6.966	6.982	6.998	7.015	7.031	7.047	7.063	2	3	5	6	8	10	11	13	15
0.85	7.079	7.096	7.112	7.129	7.145	7.161	7.178	7.194	7.211	7.228	2	3	5	7	8	10	12	13	15
0.86	7.244	7.261	7.278	7.295	7.311	7.328	7.345	7.362	7.379	7.396	2	3	5	7	8	10	12	13	15
0.87	7.413	7.430	7.447	7.464	7.482	7.499	7.516	7.534	7.551	7.568	2	3	5	7	9	10	12	14	16
0.88	7.586	7.603	7.621	7.638	7.656	7.674	7.691	7.709	7.727	7.745	2	4	5	7	9	11	12	14	16
0.89	7.762	7.780	7.798	7.816	7.834	7.852	7.870	7.889	7.907	7.925	2	4	5	7	9	11	13	14	16
0.90											2	4	l	7			l		17
0.90	7.943	7.962	7.980	7.998	8.017	8.035	8.054	8.072	8.091	8.110	~	4	6	′	9	11	13	15	' '
0.04	0.400	0.447	0.400	0.405	0.004	0.000	0.044	0.000	0.070	0.000		4			_	44	40	4.5	4-
0.91	8.128	8.147	8.166	8.185	8.204	8.222	8.241	8.260	8.279	8.299	2	4	6	8	9	11	13	15	17
0.92	8.318	8.337	8.356	8.375	8.395	8.414	8.433	8.453	8.472	8.492	2	4	6	8	10	12	14	15	17
0.93	8.511	8.531	8.551	8.570	8.590	8.610	8.630	8.650	8.670	8.690	2	4	6	8	10	12	14	16	18
0.94	8.710	8.730	8.750	8.770	8.790	8.810	8.831	8.851	8.872	8.892	2	4	6	8	10	12	14	16	18
0.95	8.913	8.933	8.954	8.974	8.995	9.016	9.036	9.057	9.078	9.099	2	4	6	8	10	12	15	17	19
0.96	9.120	9.141	9.162	9.183	9.204	9.226	9.247	9.268	9.290	9.311	2	4	6	8	11	13	15	17	19
0.97	9.333	9.354	9.376	9.397	9.419	9.441	9.462	9.484	9.506	9.528	2	4	7	9	11	13	15	17	20
0.98	9.550	9.572	9.594	9.616	9.638	9.661	9.683	9.705	9.727	9.750	2	4	7	9	11	13	16	18	20
0.98	9.772	9.795	9.817	9.840	9.863	9.886	9.908	9.703	9.954	9.977	2	5	7	9	11	14	16	l	20
	3.114	9.190	9.017	9.040	9.003	9.000	9.900	9.931	9.904	9.911)	/	9	11	14	10	18	120

அடுக்குச்சார்புக்கான அட்டவணை

அடுக்குச்சார்புக்கான அட்டவணை

П	00	11	11	28	20	9,0	13	24	34	28	27	Q	80	35	20	60	51	74	28	22	77	15	17	73	59	22	36	1	27	33	21	77	74	92	74	44	75	77	93	23	18	31	45	92	8/	ဂ္ဂ	43	71
6	13493.99431650	13629.61121401	13766.59108401	3904.94762458	14044.69467150	14185.84619960	14328.41632413	14472.41930224	14617.86953434	14764.78156558	14913.1700872		15214.43610708	15367.34373205	15521.78810420	15677.78466809	15835.34902351	15994.49692704	16155.24429358	16317.60719802		16647.24472945	16814.55232047	16983.54138073	17154.22880929	17326.63167502	17500.76721836	17676.65285301	17854.30616767	18033.74492783	18214.98707751	18398.05074107	18582.95422504	18769.71601992	18958.35480204	19148.88943544	19341.33897375	19535.72266207	19732.05993893	19930.37043823	20130.67399118	20332.99062831	20537.34058145	20743.74428576	20952.22238178	21162.79571750	21375.48535043	21590.31254971
			_	_				┢	+-		_	-				_					▙	╄	-	-	_	-				-				_	-		_	_	_						\dashv	-	_	_
8	4964.16308832	5014.05375679	5064.44583482	5115.34436165	5166.75442718	5218.68117245	5271.12979019	5324.10552531	5377.61367541	5431.65959136	5486,24867780	5541.38639368	5597.07825281	5653.32982444	5710.14673375	5767.53466250	5825.49934952	5884.04659134	5943.18224271	6002.91221726	6063,24248804	6124.17908811	6185.72811120	6247.89571226	6310.68810809	6374.11157799	6438.17246436	6502.87717335	6568.23217547	6634.24400628	6700.91926702	6768.26462527	6836.28681562	6904.99264036	6974.38897011	7044.48274457	7115.28097317	7186.79073580	7259.01918349	7331.97353916	7405.66109828	7480.08922969	7555.26537625	7631.19705565	7707.89186111	7785.35746218	7863.60160548	7942.63211550
7	1826.21354282	1844.56729405	1863.10550356	1881.83002516	1900.74273134	1919.84551337	1939.14028156	1958.62896539	1978.31351375	1998.19589510	2018.27809772	2038.56212982	2059.05001984	2079.74381657	2100.64558942	2121.75742858	2143.08144525	2164.61977185	2186.37456223	2208.34799189	2230.54225819	2252.95958057	2275.60220079	2298.47238312	2321.57241461	2344.90460528	2368.47128836	2392.27482054	2416.31758219	2440.60197762	2465.13043529	2489.90540804	2514.92937342	2540.20483383	2565.73431683	2591.52037541	2617.56558819	2643.87255970	2670.44392068	2697.28232827	2724.39046634	2751.77104573	2779.42680452	2807.36050830	2835.57495047	2864.07295251	2892.85736422	2921.93106408
9	671.82641759	678.57838534	685.39821149	692.28657804	699.24417382	706.27169460	713.36984313	720.53932925	\vdash	Н	H	┢	757.48217064	765.09499302	772.78432554	780.55093713	788.39560446	796.31911202	804.32225214	812.40582517	t	81751148	H	845.56073585	┢	+	871.31189399	880.06872411	888.91356183	897.84729165	906.87080695	915.98501008		934.48913473	-	_	_	_	982.40141722	992.27471561	Н	-	1022.49397962	_	-	1053.63355724	1064.22275054	1074.91836700
2		249.63503719	252.14391102	254.67799946	257.23755591	259.82283632	262.43409924	265.07160579	Ė	-	▙	Ľ			284.29146582	287.14864256	290.03453439	292.94942992	295.89362064	298.86740097	!	┡	307.96926838	311.06441098	<u> </u>	₩	320.53773265	323.75919042	327.01302438	330.29955991	333.61912567		_	343.77934066	_		-	-	361.40528437	365.03746787	368.70615541 1	-	376.15451382 1	_	_	387.61012424	391.50567075 1	395.44036816 1
4	90.92181851	91.83559798	92.75856108	93.69080012	94.63240831	95.58347983	96.54410977	97.51439421	98.49443016	_		-	102.51406411	-	104.58498558	105.63608216	=	107.77007257	108.85317981	109.94717245	111.05215991	112.16825267	113.29556235	114.43420168		_	117.91924196	119.10435004	120.30136866	121.51041752	_	123.96509078	125.21096065	126.46935173	-	_	_	131.63066389	132.95357405	134.28977968	135.63941441	_	138.37951234	139.77024956	141.17496392	142.59379590	144.02688737	145.47438165
3	Н	33.78442846	34.12396761	34.46691919	34.81331749	35.16319715	35.51659315	-	-	-	-	_	_	38.09183673	-		39.25190586	39.64639407	40.04484696	40.44730436	40.85380653	-	41.67910816	42.09799016	-	-	43.38006484	43.81604174	44.25640028	44.70118449	45.15043887	45.60420832	_	46.52547444	_	-	-	-	48.91088652	49.40244911	Н	-	50.90697767	_	_	_	_	53.51703423
2	-	12.42859666	12.55350614	12.67967097	12.80710378	12.93581732	13.06582444	13.19713816	₩	-	-	+-	+	┢	Н	_	_	14.58509330	14.73167592	14.87973172	-	-	+	-		-	15.95863401	┢	16.28101980	16.44464677	16.60991822	_	_	-	-	-	-	-	-	-	Н	-	18.72763050	_	-	-		19.68781664
1	9 4.52673079	5 4.5722520	1 4.61817682	5 4.66459027	2 4.71147018	0 4.75882125	5 4.80664819	\vdash	+	-	-	+	-	┢	-	3 5.25931084	_	3 5.3655597	3 5.41948071	1 5.47394739	╌	\vdash	-	┢	-	+	_	7 5.92985642	3 5.98945247	3 6.04964746	9 6.11044743	-	_	-	-	-	\rightarrow	-		_	Н	-	3 6.88951024	\dashv	-	-		4 7.24274299
0	1.66529119	1.68202765	1.69893231	1.71600686	1.73325302	1.75067250	1.76826705	1.78603843	1.80398842	1.82211880	1.84043140	1.85892804	1.87761058	1.89648088	1.91554083	1.93479233	1.95423732	1.97387773	1.99371553	2.01375271	2,03399126	2.05443321	2.07508061	2.09593551	2.11700002	2.13827622	2.15976625	2.18147227	2.20339643	2.22554093	2.24790799	2.27049984	2.29331874	2.31636698	2.33964685	2.36316069	2.38691085	2.41089971	2.43512965	2.45960311	2.48432253	2.50929039	2.53450918	2.55998142	2.58570966	2.61169647	2.63794446	2.66445624
	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	09.0	0.61	0.62	0.63	0.64	0.65	99'0	0.67	0.68	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80	0.81	0.82	0.83	0.84	0.85	98'0	0.87	0.88	0.89	06'0	0.91	0.92	0.93	0.94	0.95	96.0	0.97	0.98

துணை நூற் பட்டியல்

- 1. Introduction to Matrices, S.P.Gupta, S.Chand & Company
- 2. Matrices, Shanthi Narayanan, S. Chand & Company
- 3. Matrices and Determinants, P.N. Arora, S. Chand & Company
- 4. Topics in Algebra, I.N.Herstein, Vikas Publishing Company
- 5. Algebra A Complete Course, R.D.Sharma, Sultan Chand & Sons
- 6. Analytical Geometry, T.K.Manicavachagon Pillay, S.Narayanan, S.Viswanathan Publishers
- 7. Analytical Geometry, P.K. Mittal, Shanthi Narayanan, Durai Pandiyan, S. Chand & Company
- 8. Trigonometry, R.D.Sharma, Sulatan Chand & Sons
- 9. A Text Book of Trigonometry, M.D Raisingania and Aggarwal
- 10. Trigonometry, D.C.Sharma, V.K.Kapoor, Sulatan Chand & Sons
- 11. Trignonometry, S.Arumugam , S.Narayanan, T.K.Manicavachagon Pillay, New Gama Publications, S.Viswanathan Printers and Publishers Pvt. Ltd.
- 12. Calculus, Mohamd Arif, S.Narayanan, T.K.Manicavachagon Pillay, S.Viswanathan Printers and Publishers Pvt. Ltd.
- 13. Differential and Integral Calculus, N.Piskunov, Mir Publishers, Moscow
- 14. Differential and Integral Calculus, Schamum's Outline Series, Frank Ayres
- 15. Calculus (Volume I & II), Tom.M.Apostol, John Wiley Publications
- 16. Calculus: An Historical Approach, W.M, Priestly (Springer)
- 17. Calculus with Analytic Geometry (Second Edition) George F.Simmons, The Mcgraw Hill
- 18. Application of Differentiation, S.Narayanan, T.K.Manicavachagon Pillay, , S.Viswanathan Printers and Publishers Pvt. Ltd.
- 19. Application of Differentiation, P.N. Arora, S. Arora, S. Chand & Company
- 20. Financial Mathematics, O.P.Malhotra, S.K.Gupta, Anubhuti Gangal, S.Chand & Company
- 21. Financial Mathematics ,Kashyap Trivedi, Chirag Trivedi, Pearson India Education Services Pvt. Ltd
- 22. Descriptive Statistics, Richard I.Levin, David S.Rubin, Prentice Hall Inc, Englewood, N.J.U.S.A
- 23. Statistical Methods, S.K.Gupta, Prentice Hall Inc, Englewood, N.J.U.S.A
- 24. Descriptive Statistics, Anderson, Sweenas, Williams, Library of Congress Cataloging in Publication Data
- 25. Correlation and Regression Analysis, Dr.S.P.Gupta, P.K. Gupta, Dr.Manmohan, Sultan Chand & Sons
- 26. Correlation and Regression Analysis, John.S. Croucher, Mc Graw-Hill Australia Pvt Limited
- 27. Operations Research, Dr.S.P.Gupta, P.K. Gupta, Dr.Manmohan, Sultan Chand & Sons
- 28. Operations Research, A.Ravindran, James J.Solberg, Willey Student Edition
- 29. Operations Research, Nita H.Shah, Ravi.M.Gor, Hardik Soni, Kindle Edition
- 30. Operations Research, Frederick S.Hilton, Gerald J.Lieberman, Mc Graw Hill Education
- 31. Business Mathematics, HSC First & Second Year, Tamilnadu Text Book Corporation, Reprint 2017
- 32. Mathematics, HSC First & Second Year, Tamilnadu Text Book Corporation, Reprint 2017

வணிகக் கணிதம் மற்றும் புள்ளியியல் — மேல் நிலை முதலாமாண்டு வல்லுநர்கள், மேலாய்வாளர்கள் மற்றும் நூலாசிரியர்கள் பெயர் பட்டியல்

பாடத் தயாரிப்புக்குழு தலைவர்

திரு. ந. இரமேஷ்

இணைப் பேராசிரியர் (ஓய்வு),

கணிதத்துறை, அரசு கலைக் கல்லூரி (ஆண்கள்), நந்தனம், சென்னை.

மேலாய்வாளர்கள்

முனைவர் மா. ரெ. சீனிவாசன்

பேராசிரியர் மற்றும் துறைத் தலைவர்,

புள்ளியியல் துறை, சென்னை பல்கலைக் கழகம், சென்னை.

முனைவர் தெ. அறிவுடைநம்பி

இணைப் பேராசிரியர்,

கணிதத்துறை, அண்ணா பல்கலைக் கழகம், சென்னை.

பாடப் பொருள் வல்லுநர்கள்

முனைவர் வேணு பிரகாஷ்

புள்ளியியல் துறை, மாநிலக் கல்லூரி , சென்னை.

முனைவர் இரா. திருமலைச்சாமி

இணைப் பேராசிரியர்,

கணிதத்துறை, அரசு கலைக் கல்லூரி (ஆண்கள்), நந்தனம், சென்னை.

முனைவர் ச. ஜெ. வெங்கடேசன்

இணைப் பேராசிரியர்,

கணிதத்துறை, அரசு கலைக் கல்லூரி (ஆண்கள்), நந்தனம், சென்னை.

திருமதி மே. திலகம்

உதவிப் பேராசிரியர்,

புள்ளியியல் துறை, மாநிலக் கல்லூரி, சென்னை.

பாடக்குழு பொறுப்பாளர்

திரு. இரவிகுமார் ஆறுமுகம்

துணை இயக்குநர்,

மாநிலக் கல்வியியல் ஆராய்ச்சி மற்றும் பயிற்சி நிறுவனம், சென்னை.

பாட நூல் ஒருங்கிணைப்பாளர்

திரு. சு. பாபு

உதவி பேராசிரியர்,

மாநிலக் கல்வியியல் ஆராய்ச்சி மற்றும் பயிற்சி நிறுவனம், சென்னை.

கலை மற்றும் வடிவமைப்புக் குழு

புத்தக வடிவமைப்பாளர்

ஜாய் கிராஃபிக்ஸ்,

சென்னை.

QC

மனோகர் இராதாகிருஷ்ணண்

கோபு இராசுவேல்

அட்டை வடிவமைப்பு

கதிர் ஆறுமுகம்

ஒருங்கிணைப்பு

ரமேஷ்

தட்டச்சு

பெ. துளசி

DIET, சென்னை

நாலாசிரியர்கள்

திரு. தி.பி. சுவாமி நாதன்

முதுகலை கணித ஆசிரியர்,

மறைமலை அடிகளார் அரசு மேல்நிலைப் பள்ளி, பல்லாவரம் சென்னை

திரு. ஹரி. வெங்கடேஷ்

முதுகலை கணித ஆசிரியர்,

சர் இராமசாமி முதலியார் மேல்நிலைப்பள்ளி, அம்பத்தூர், சென்னை.

திரு. ஆ. மாரியப்பன்

முதுகலை கணித ஆசிரியர்,

அறிஞர் அண்ணா நகராட்சி ஆண்கள், மேல்நிலைப் பள்ளி, செங்கல்பட்டு, காஞ்சிபுரம் மாவட்டம்

திரு. எஸ்.எப். முகமது முகைதீன் சுலைமான்

முதுகலை கணித ஆசிரியர்,

மறைமலை அடிகளார் அரசு மேல்நிலைப் பள்ளி, பல்லாவரம், சென்னை.

திரு. த. ராஜ சேகர்

முதுகலை கணித ஆசிரியர்,

அரசு ஆண்கள் மேல்நிலைப் பள்ளி, குரோம் பேட்டை, காஞ்சிபுரம்.

திருமதி. அ. சுகன்யா

முதுகலை கணித ஆசிரியர்,

அரசு மேல்நிலைப் பள்ளி, கோவிலம்பாக்கம், காஞ்சிபுரம்.

திரு. வெ. கணேசன்

முதுகலை கணித ஆசிரியர்,

நேரு அரசினர் ஆண்கள் மேல்நிலைப் பள்ளி, நங்கைநல்லூர், சென்னை.

பாடப் பொருள் வாசிப்பாளர்கள்

திரு. ஜேம்ஸ் குழந்தை ராஜ்

முதுகலை கணித ஆசிரியர்,

புனித சூசையப்பர் மேல்நிலைப் பள்ளி, செங்கல்பட்டு, காஞ்சிபுரம்.

திருமதி பியுலா சுகுணா சீலி

முதுகலை கணித ஆசிரியர்,

P.G. கார்லி மேல்நிலைப் பள்ளி, தாம்பரம்.

திருமதி S. சுபாஷினி

முதுகலை கணித ஆசிரியர்,

அரசு பெண்கள் மேல்நிலைப் பள்ளி, குன்றத்தூர், காஞ்சிபுரம்.

திரு. கா. சரவணன்

கிரேஸ் மெட்ரிக் மேல்நிலைப் பள்ளி, போரூர், சென்னை.

ICT ஒருங்கிணைப்பாளர்

தா. வாசுராஜ்

பட்டதாரி ஆசிரியர் (கணிதம்) (ஓய்வு)

ஊ.ஒ.ந.நி. பள்ளி, கொசப்பூர், திருவள்ளுர் மாவட்டம்.

விரைவுக் குறியீடு மேலாண்மைக் குழு

இரா. ஜெகநாதன்

இடைநிலை ஆசிரியர், (மா.தி.ஒ.)

ஊ.ஒ.ந.நி. பள்ளி, கணேசபுரம் – போளூர், திருவண்ணாமலை மாவட்டம்.

ந. ஜெகன்

பட்டதாரி ஆசிரியர்,

அ.ஆ.மே.நி. பள்ளி, உத்திரமேரூர், காஞ்சிபுரம் மாவட்டம்.

ஜே.எப். பால் எட்வின் ராய்

பட்டதாரி ஆசிரியர்,

ஊ.ஒ.ந.நி. பள்ளி, இராக்கிப்பட்டி, வீரபாண்டி, சேலம் மாவட்டம்.

இந்நூல் 80 ஜி.எஸ்.எம். எலிகண்ட் மேப்லித்தோ தாளில் அச்சிடப்பட்டுள்ளது. ஆப்செட் முறையில் அச்சிட்டோர்: