DAY 6

1. ਚਿੱਤਰ ਵਿੱਚ
$$\frac{QR}{OS} = \frac{QT}{PR}$$
ਅਤੇ ∠1 = ∠2 ਦਿਖਾਓ ਕਿ △PQS ~ △TQR

[Ex 6.3, Q4]

ਹੱਲ: ਦਿੱਤਾ ਹੈ :
$$\frac{\ddot{QR}}{QS} = \frac{QT}{PR} \dots \dots \dots i)$$

ਅਤੇ
$$\angle 1 = \angle 2$$
 \Rightarrow PR = PQ

$$i) \Rightarrow \frac{QR}{QS} = \frac{QT}{PQ}$$

 ΔTQR ਅਤੇ ΔPQS ਵਿੱਚ

$$\Delta TQR$$
 ਅੰਤ ΔPQS ਵਿੱਚ ΔTQR ਦੀਆਂ ਭੂਜਾਵਾਂ ਸਮਾਨ ਅਨੁਪਾਤ ΔTQR ਦੀਆਂ ਭੂਜਾਵਾਂ ਸਮਾਨ ਅਨੁਪਾਤ ΔTQR = ΔTQR ਵਿੱਚ ਅੰਸ਼ ਤੇ ਹਨ। $\Delta TQR \sim \Delta PQS$ (AA ਸਮਰੁਪਤਾ)

2. CD ਅਤੇ GH ਕ੍ਰਮਵਾਰ \angle ACB ਅਤੇ \angle EGF ਦੇ ਅਜਿਹੇ ਸਮਦੁਭਾਜਕ ਹਨ ਕਿ ਬਿੰਦੂ D ਅਤੇ H ਕ੍ਰਮਵਾਰ \triangle ABC ਅਤੇ \triangle EFG ਦੀਆਂ ਭੂਜਾਵਾਂ \triangle AB ਅਤੇ FE ਉੱਤੇ ਸਥਿਤ ਹਨ। ਜੇਕਰ \triangle ABC \sim \triangle FEG ਹੋਵੇ ਤਾਂ ਦਿਖਾਓ

$$ii) \frac{CD}{GH} = \frac{AC}{FG}$$

[Ex 6.3, Q10]

ਹੱਲ: ਦਿੱਤਾ ਹੈ : ∆ABC ~ ∆EFG

$$\Rightarrow \angle A = \angle E, \angle B = \angle F, \angle C = \angle G \dots \dots i)$$

CD ਅਤੇ GH ਕੋਣ ਦੁਭਾਜਕ ਹਨ

$$\therefore \quad \angle C = \angle G \qquad \Rightarrow \frac{1}{2} \angle C = \frac{1}{2} \angle G \qquad \Rightarrow \angle 1 = \angle 2$$

ਹੁਣ, ΔDCA ਅਤੇ ΔHGF ਵਿੱਚ

$$\angle 1 = \angle 2$$

$$\angle A = \angle F$$
 (i) $\vec{\exists}$

∴∆DCA ~ ∆HGF (AA ਸਮਰੁਪਤਾ)

$$\Rightarrow \frac{AD}{HF} = \frac{CD}{GH} = \frac{AC}{GF}$$

$$\overrightarrow{H}^{\dagger} \frac{CD}{GH} = \frac{AC}{GF}$$

3. ਇੱਕ $\triangle ABC$ ਦੀਆਂ ਕ੍ਰਮਵਾਰ ਭੁਜਾਵਾਂ AB,BC ਅਤੇ ਮੱਧਿਕਾ AD ਕਿਸੇ ਹੋਰ $\triangle PQR$ ਦੀਆਂ ਕ੍ਰਮਵਾਰ PQ, QR ਅਤੇ ਮੱਧਿਕਾ PM ਦੇ ਸਮਾਨ ਅਨੁਪਾਤੀ ਹਨ। ਦਿਖਾਓ ਕਿ $\triangle ABC \sim \triangle PQR$ [Ex 6.3, Q12]

ਹੱਲ : ਦਿੱਤਾ ਹੈ :
$$\frac{AB}{PQ} = \frac{AC}{QR} = \frac{AD}{PM} \dots \dots \dots i)$$

AD ਅਤੇ PM ਮੱਧਿਕਾਵਾਂ ਹਨ।

ਸਿੱਧ ਕਰਨਾ : ∆ABC~∆PQR

ਹੱਲ : AD ਅਤੇ PM ਮੱਧਿਕਾਵਾਂ ਹਨ BD = DC
$$i.e.$$
 BC = 2BD ਅਤੇ

$$QM = MR i.e. QR = 2QM$$

$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$

$$\Rightarrow$$
 \triangle ABD ~ \triangle PQM (SSS ਸਮਰੁਪਤਾ)

$$\Rightarrow \angle B = \angle Q$$

ਹੁਣ, ∆ABC ਅਤੇ ∆PQR

$$\angle B = \angle Q$$

ਅਤੇ
$$\frac{AB}{PQ} = \frac{BC}{QR}$$

∴∆ABC ~ ∆PQR (SAS ਸਮਰੂਪਤਾ)

4. ਚਿੱਤਰ ਵਿੱਚ $\triangle ABE \cong \triangle ACD$ ਹੈ ਤਾਂ ਦਿਖਾਓ ਕਿ $\triangle ADE \sim \triangle ABC$

$$\Rightarrow$$
 AB = AC i)

$$\frac{AD}{AB} = \frac{AE}{AC}$$

ਤਾਂ ਥੇਲਸ ਥਿਉਰਮ ਦੇ ਉਲਟ ਅਨੁਸਾਰ, DE||BC

$$\Rightarrow$$
 $\angle ADE = \angle ABC$

ਹੁਣ, ΔADE ਅਤੇ ΔABC ਵਿੱਚ

$$\angle A = \angle A$$
 (ਸਾਂਝਾ)

∴ ∆ADE ~ ∆ABC (AA ਸਮਰੂਪਤਾ)

5. AD ਅਤੇ PM ਤ੍ਰਿਭੁਜਾਂ ABC ਅਤੇ PQR ਦੀਆਂ ਕ੍ਰਮਵਾਰ ਮੱਧਿਕਾਵਾਂ ਹਨ, ਜਦੋਂ ਕਿ $\Delta ABC \sim \Delta PQR$ ਹੈ, ਸਿੱਧ ਕਰੋ ਕਿ $\frac{AB}{PO} = \frac{AD}{PM}$ ਹੈ।

ਹੱਲ : ਦਿੱਤਾ ਹੈ :
$$\triangle ABC \sim \triangle PQR$$
 $\Rightarrow \frac{AB}{PO} = \frac{BC}{OR} = \frac{AC}{PR}$

$$\angle A = \angle P, \angle B = \angle Q, \angle C = \angle R \dots \dots i)$$

ਅਤੇ AD, PM ਮੱਧਿਕਾਵਾਂ ਹਨ, BD = DC ਅਤੇ QM = MR

ਸਿੱਧ ਕਰਨਾ :
$$\frac{AB}{PO} = \frac{AD}{PM}$$

ਹੱਲ : AD ਅਤੇ PM ਮੱਧਿਕਾਵਾਂ ਹਨ, BD = DC
$$i.e.$$
 BC = 2BD and

$$QM = MR i.e. QR = 2QM$$

i)
$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{2BD}{2QM} = \frac{BD}{QM}$$

ਹੁਣ, ∆ABD ਅਤੇ ∆PQM

$$\angle B = \angle Q$$
 { i) ਤੋਂ}

ਅਤੇ
$$\frac{AB}{PQ} = \frac{BD}{QM}$$

∴∆ABD ~ ∆PQM (SAS ਸਮਰੂਪਤਾ)

$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM} \Rightarrow \frac{AB}{PQ} = \frac{AD}{PM}$$

$$\Rightarrow \frac{AB}{PO} = \frac{AD}{PM}$$