

TEST REPORT

No. I19D00121-SRD08

For

Client: Shanghai Sunmi Technology Co.,Ltd.

Production: Smart POS system

Model Name: T6900

Brand Name: SUNMI

FCC ID: 2AH25T6900

Hardware Version: B1691_MAIN_PCB

Software Version: V1.0.1

Issued date: 2019-08-28

NOTE

- 1. The test results in this test report relate only to the devices specified in this report.
- 2. This report shall not be reproduced except in full without the written approval of East China Institute of Telecommunications.
- 3. KDB 789033 standard has not been accredited by A2LA.
- 4. For the test results, the uncertainty of measurement is not taken into account when judging the compliance with specification, and the results of measurement or the average value of measurement results are taken as the criterion of the compliance with specification directly.

Test Laboratory:

East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: +86 21 63843300 FAX: +86 21 63843301

E-Mail: welcome@ecit.org.cn

Revision Version

Report Number	Revision	Date	Memo
I19D00121-SRD08	00	2019-08-28	Initial creation of test report

CONTENTS

1. TEST L	.ABORATORY	6
1.1.	TESTING LOCATION	6
1.2.	TESTING ENVIRONMENT	6
1.3.	PROJECT DATA	6
1.4.	SIGNATURE	6
2. CLIEN	Γ INFORMATION	7
2.1.	APPLICANT INFORMATION	7
2.2.	MANUFACTURER INFORMATION	7
3. EQUIP	MENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1.	ABOUT EUT	8
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
4. REFER	ENCE DOCUMENTS	9
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4.2.	REFERENCE DOCUMENTS FOR TESTING	9
5. TEST F	RESULTS	10
5.1.	SUMMARY OF TEST RESULTS	10
5.2.	STATEMENTS	11
6. TEST E	EQUIPMENTS UTILIZED	12
6.1.	CONDUCTED TEST SYSTEM	12
6.2.	RADIATED EMISSION TEST SYSTEM	12
7. MEASU	JREMENT UNCERTAINTY	13
8. TEST E	ENVIRONMENT	14
ANNEX A	A. DETAILED TEST RESULTS	15
ANNEX A	A.1. MEASUREMENT METHOD	15

ANNEX A.2.	MAXIMUM AVERAGE OUTPUT POWER-CONDUCTED	16
ANNEX A.3.	PEAK POWER SPECTRAL DENSITY (CONDUCTED)	17
ANNEX A.4.	OCCUPIED 6DB BANDWIDTH(CONDUCTED)	22
ANNEX A.5.	TRANSMITTER SPURIOUS EMISSION	27
ANNEX A.6.	BAND EDGES COMPLIANCE	48
ANNEX A.7.	AC POWERLINE CONDUCTED EMISSION	56
ANNEX B.	ACCREDITATION CERTIFICATE	58

1. Test Laboratory

1.1. Testing Location

Company Name	East China Institute of Telecommunications
Address	7-8/F., Area G, No.668, Beijing East Road, Shanghai, China
Postal Code	200001
Telephone	+86 21 63843300
Fax	+86 21 63843301
FCC registration No	CN1177

1.2. Testing Environment

Normal Temperature	15℃-35℃
Relative Humidity	20%-75%

1.3. Project Data

Project Leader	Chen Minfei
Testing Start Date	2019-08-06
Testing End Date	2019-08-08

1.4. Signature

Wang Liang

(Prepared this test report)

Fan Songyan

(Reviewed this test report)

Zheng Zhongbin

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name	Shanghai Sunmi Technology Co.,Ltd.		
Address	Room 605, Block 7, KIC Plaza, No.388 Song Hu Road, Yang Pu District,		
Address	Shanghai, China		
Telephone	86-18721763396		
Postcode			

2.2. Manufacturer Information

Company Name	Shanghai Sunmi Technology Co.,Ltd.	
Address	Room 605, Block 7, KIC Plaza, No.388 Song Hu Road, Yang Pu District,	
Address	Shanghai, China	
Telephone	86-18721763396	
Postcode	/	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Production	Smart POS system
Model name	T6900
WLAN(5G)	802.11 a/n20/n40
Frequency Range	ISM Bands: 5725MHz-5850MHz
WLAN type of modulation	OFDM
Extreme Temperature	0/+45℃
Nominal Voltage	7.6V
Extreme High Voltage	8.7V
Extreme Low Voltage	6.8V
Maximum of Antenna Gain	WIFI5.8Ghz: 0.74dBi

Note:

- a. Photographs of EUT are shown in ANNEX A of this test report.
- b. The value of the antenna gain is provided by the customer. For specific antenna information, please check the antenna specifications of the customer.

3.2.Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt	
N02	865150030742925	B1691 MAIN PCB	V1.0.1	2010 08 06	
NU2	865150030742926	D 1091_WAIN_PCD		2019-08-06	
N04	865150030742925	B1691 MAIN PCB	V1.0.1	2019-08-06	
1104	865150030742926	D 1091_WAIN_PCD	V 1.0.1	2019-00-00	

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	Manufacturer
AE1	RF cable		AE1

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

All technical documents are supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general requirements;	2018-10-01
	Subpart E—Unlicensed National Information Infrastructure	
	Devices	
	Methods of Measurement of Radio-Noise Emissions from	
ANSI 63.10	Low-Voltage Electrical and Electronic Equipment in the	2013
	Range of 9 kHz to 40 GHz	
KDB 700033	Information Infrastructure (U-NII) Devices - Part 15,	2017
KDB 789033	Subpart E	2017

5. Test Results

5.1. Summary of Test Results

Measurement Items	Sub-clause of Part15C	Sub-claus e of IC	Verdict
Maximum Output Power	15.407	/	Р
Power Spectral Density	15.407	/	Р
Occupied 6dB Bandwidth	15.403	/	Р
Band edge compliance	15.407	/	Р
Transmitter Spurious Emission - Conducted	15.407	/	Р
Transmitter Spurious Emission - Radiated	15.407	/	Р
AC Powerline Conducted Emission	15.407	/	Р

Note: Please refer to section 6 for detail; please refer to Annex A in this test report for the detailed test results.

The following terms are used in the above table.

Р	Pass, the EUT complies with the essential requirements in the standard.
NP	Not Perform, the test was not performed by ECIT.
NA	Not Applicable, the test was not applicable.
F	Fail, the EUT does not comply with the essential requirements in the standard.

Test Conditions

Tnom	Normal Temperature	
Tmin	Low Temperature	
Tmax	High Temperature	
Vnom	Normal Voltage	
Vmin	Low Voltage	
Vmax	High Voltage	
Hnom	Norm Humidity	
Anom	Norm Air Pressure	

For this report, all the test case listed above are tested under Normal Temperature and Normal Voltage, and also under norm humidity, the specific conditions as following:

Temperature	Tnom	25℃
Voltage	Vnom	7.6V
Humidity	Hnom	48%
Air Pressure	Anom	1010hPa

5.2. Statements

The T6900 is an initial product for testing.

ECIT only performed test cases which identified with P/NP/NA/F results in Annex A.

ECIT has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.

6. Test Equipments Utilized

6.1. Conducted Test System

Item	Instrument Name	Туре	SN	Manufacturer	Cal. Date	Cal. interval
1	Vector Signal Analyzer	FSQ40	200063	R&S	2019-05-10	1 year
2	DC Power Supply	ZUP60-14	LOC-220Z0 06-0007	TDL-Lambda	2019-05-10	1 year

6.2. Radiated Emission Test System

Item	Instrument Name	Туре	Serial Number	Manufacturer	Cal. Date	Cal. interval
1	Universal Radio Communication Tester	CMU200	123123	R&S	2019-05-10	1 year
2	EMI Test Receiver	ESU40	100307	R&S	2019-05-10	1 year
3	TRILOG Broadband Antenna	VULB9163	VULB9163- 515	Schwarzbeck	2017-02-25	3 years
4	Double- ridged Waveguide Antenna	ETS-3117	00135890	ETS	2017-01-11	3 years
5	2-Line V-Network	ENV216	101380	R&S	2019-05-10	1 year
6	Loop Antenna	AL-130R	121083	COM-POWER	2016-11-21	3 years

Anechoic chamber

Fully anechoic chamber by ETS.

Page Number: 13 of 58

Report Issued Date: Aug. 28, 2019

7. Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in ECIT documents . The detailed measurement uncertainty is defined in ECIT documents.

Measurement Items	Range	Confidence Level	Calculated Uncertainty
Peak Output Power-Conducted	5100MHz-5850MHz	95%	±1.024dB
Peak Power Spectral Density	5100MHz-5850MHz	95%	±1.024dB
Occupied 6dB Bandwidth	5100MHz-5850MHz	95%	±62.04Hz
Frequency Band Edges-Conducted	5100MHz-5850MHz	95%	±1.024dB
Conducted Emission	30MHz-2GHz	95%	±0.90dB
Conducted Emission	2GHz-3.6GHz	95%	±0.88dB
Conducted Emission	3.6GHz-8GHz	95%	±0.96dB
Conducted Emission	8GHz-20GHz	95%	±0.94dB
Conducted Emission	20GHz-22GHz	95%	±0.88dB
Conducted Emission	22GHz-26GHz	95%	±0.86dB
Transmitter Spurious Emission-Radiated	9KHz-30MHz	95%	±5.66dB
Transmitter Spurious Emission-Radiated	30MHz-1000MHz	95%	±4.98dB
Transmitter Spurious Emission-Radiated	1000MHz -18000MHz	95%	±5.06dB
Transmitter Spurious Emission-Radiated	18000MHz -40000MHz	95%	±5.20dB
AC Power line Conducted Emission	0.15MHz-30MHz	95%	$\pm 3.66\mathrm{dB}$

8. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 35 $^{\circ}$ C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

ANNEX A. Detailed Test Results

ANNEX A.1. Measurement Method

A.1.1. Conducted Measurements

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode.
- 3). Set the EUT to the required channel.
- 4). Set the spectrum analyzer to start measurement.
- 5). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

The measurement is made according to ANSI C63.10.

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

ANNEX A.2. Maximum Average Output Power-Conducted

Measurement Limit and Method:

Standard	Limit (dBm)
FCC CRF Part 15.407(a)	< 30

Method of Measurement: See ANSI C63.10-clause 12.3.2.2 Method SA-1

Set the spectrum analyzer in the following:

Detector: RMS. RBW=1MHz. VBW=3MHz.

Sweep time = AUTO.

Span:30MHz (for 20MHz); 50MHz (for 40MHz).

802.11a mode U-NII-3

Mode	Data	Teat Result(dBm)			Teat Result(dBm)		
Wode	Rate(Mbps)	5745MHz(Ch149) 5785MHz(Ch157) 5825MH		5825MHz(Ch149)			
802.11a	6	11.84	12.02	12.02			

The data rate 6Mbps is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode U-NII-3

Modo	Data		Teat Result(dBm)
Mode	Rate(Index)	5745MHz	5785MHz	5825MHz
802.11n(20MH z)	MCS0	11.87	12.00	11.90

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode U-NII-3

Mode	Data		Teat Result(dBm)
Mode	Rate(Index)	5755MHz	1	5795MHz
802.11n(40MH z)	MCS0	13.55	/	13.65

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: PASS

ANNEX A.3. Peak Power Spectral Density (conducted)

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.407(a)	< 30 dBm/500 kHz

The measurement is made according to ANSI C63.10 and KDB789033 D02

Measurement Results:

Mode	Channel	Power Spectral Density (dBm/500kHz)		Conclusion
	149	Fig.1	3.917	Р
802.11a	157	Fig.2	4.686	Р
	165	Fig.3	3.896	Р
000 11 5	149	Fig.4	3.950	Р
802.11n HT20	157	Fig.5	4.511	Р
H120	165	Fig.6	3.739	Р
802.11n	151	Fig.7	1.083	Р
HT40	159	Fig.8	1.413	Р

Conclusion: PASS

Date: 9.AUG.2019 08:16:51

Fig. 1 Power Spectral Density (802.11a, Ch 149)

Date: 9.AUG.2019 08:18:14

Fig. 2 Power Spectral Density (802.11a, Ch 157)

Date: 9.AUG.2019 08:19:58

Fig. 3 Power Spectral Density (802.11a, Ch 165)

Date: 9.AUG.2019 08:20:58

Fig. 4 Power Spectral Density (802.11n-HT20, Ch 149)

Date: 9.AUG.2019 08:21:40

Fig. 5 Power Spectral Density (802.11n-HT20, Ch 157)

Date: 9.AUG.2019 08:22:20

Fig. 6 Power Spectral Density (802.11n-HT20, Ch 165)

Date: 9.AUG.2019 08:23:32

Fig. 7 Power Spectral Density (802.11n-HT40, Ch 151)

Date: 9.AUG.2019 08:24:13

Fig. 8 Power Spectral Density (802.11n-HT40, Ch 159)

ANNEX A.4. Occupied 6dB Bandwidth(conducted)

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.403 (i)	/

The measurement is made according to KDB 789033

Measurement Result:

Mode	Channel	Occupied 6dB Bandwidth (MHz)		conclusion
	149	Fig.9	19.31	Р
802.11a	157	Fig.10	19.63	Р
	165	Fig.11	19.71	Р
000.44	149	Fig.12	19.47	Р
802.11n HT20	157	Fig.13	19.55	Р
H120	165	Fig.14	19.55	Р
802.11n	151	Fig.15	38.46	Р
HT40	159	Fig.16	38.62	Р

Conclusion: PASS
Test graphs as below:

Date: 9.AUG.2019 07:26:33

Fig. 9 Occupied 6dB Bandwidth (802.11a, Ch 149)

Date: 9.AUG.2019 07:27:27

Fig. 10 Occupied 6dB Bandwidth (802.11a, Ch 157)

Date: 9.AUG.2019 07:28:18

Fig. 11 Occupied 6dB Bandwidth (802.11a, Ch 165)

Date: 9.AUG.2019 07:29:26

Fig. 12 Occupied 6dB Bandwidth (802.11n-HT20, Ch 149)

Date: 9.AUG.2019 07:30:18

Fig. 13 Occupied 6dB Bandwidth (802.11n-HT20, Ch 157)

Date: 9.AUG.2019 07:31:09

Fig. 14 Occupied 6dB Bandwidth (802.11n-HT20, Ch 165)

Date: 9.AUG.2019 07:33:21

Fig. 15 Occupied 6dB Bandwidth (802.11n-HT40, Ch 151)

Date: 9.AUG.2019 07:34:25

Fig. 16 Occupied 6dB Bandwidth (802.11n-HT40, Ch 159)

ANNEX A.5. Transmitter Spurious Emission

Measurement Limit:

Standard	Frequency (MHz)	Limit (dBm/MHz)
FCC 47 CFR Part 15.407	5725MHz~5850MHz	< -27

The measurement is made according to ANSI C63.10.

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

3 10.200 (a) (cod 3 10.200 (c)).				
Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)		
(MHz)				
0.009-0.490	2400/F(kHz)	/		
0.490-1.705	24000/F(kHz)	/		
1.705-30	30	1		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

A.5.1 Transmitter Spurious Emission - Conducted

Modulation type and data rate tested (Only worst case result is given below):

Mode	Data rate	Channel
802.11a	6Mbps	149(5745MHz)
802.11n-HT20	MCS0	149(5745MHz)
802.11n-HT40	MCS0	151(5755MHz)

Measurement Results:

802.11a mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		30 MHz ~ 1 GHz	Fig.17	Р
802.11a	149(5745MHz)	1 GHz ~ 5.7 GHz	Fig.18	Р
		5.9 GHz ~ 40 GHz	Fig.19	Р

802.11n-HT20 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
802.11n HT20	149(5745MHz)	30 MHz ~ 1 GHz	Fig.20	Р
		1 GHz ~ 5.7 GHz	Fig.21	Р
		5.9 GHz ~ 40 GHz	Fig.22	Р

802.11n-HT40 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
802.11n HT40	151(5755MHz)	30 MHz ~ 1 GHz	Fig.23	Р
		1 GHz ~ 5.7 GHz	Fig.24	Р
		5.9 GHz ~ 40 GHz	Fig.25	Р

Conclusion: PASS

Test graphs as below:

Date: 3.AUG.2019 13:36:27

Fig. 17 Conducted Spurious Emission (802.11a, Ch149, 30 MHz-1 GHz)

Date: 3.AUG.2019 13:36:56

Fig. 18 Conducted Spurious Emission (802.11a, Ch149, 1 GHz -5.7 GHz)

Date: 3.AUG.2019 13:37:26

Fig. 19 Conducted Spurious Emission (802.11a, Ch149, 5.9 GHz-40 GHz)

Date: 3.AUG.2019 13:44:23

Fig. 20 Conducted Spurious Emission (802.11n-HT20, Ch149, 30 MHz-1 GHz)

Date: 3.AUG.2019 13:44:53

Fig. 21 Conducted Spurious Emission (802.11n-HT20, Ch149, 1 GHz -5.7 GHz)

Date: 3.AUG.2019 13:47:56

Fig. 22 Conducted Spurious Emission (802.11n-HT20, Ch149, 5.9 GHz-40 GHz)

Date: 3.AUG.2019 13:52:25

Fig. 23 Conducted Spurious Emission (802.11n-HT40, Ch151, 30 MHz-1 GHz)

Date: 3.AUG.2019 14:06:42

Fig. 24 Conducted Spurious Emission (802.11n-HT40, Ch151, 1 GHz -5.7 GHz)

Date: 3.AUG.2019 13:53:24

Fig. 25 Conducted Spurious Emission (802.11n-HT40, Ch151, 5.9 GHz-40 GHz)

A.5.2 Transmitter Spurious Emission - Radiated

Modulation type and data rate tested (Only worst case result is given below):

Mode	Data rate	Channel	
802.11a	6Mbps	165(5825MHz)	
802.11n-HT20	MCS0	165(5825MHz)	
802.11n-HT40	MCS0	159(5795MHz)	

Measurement Uncertainty:

Frequency Range	Uncertainty(dB)
f≤1GHz	3.9
f>1GHz	4.3

Measurement Results:

802.11a mode

Mode	Channel	Frequency Range	Test Results	Conclusion
	30 MHz ~1 GHz	Fig.26	Р	
		1 GHz ~ 8 GHz	Fig.27	Р
802.11a	a 165(5825MHz)	8 GHz ~ 18 GHz	Fig.28	Р
		18 GHz ~ 26.5 GHz	Fig.29	Р
		26.5 GHz~ 40 GHz	Fig.30	Р

802.11n-HT20 mode

Mode	Channel	Frequency Range	Test Results	Conclusion
	30 MHz ~1 GHz	Fig.31	Р	
902.115	165(5825MHz)	1 GHz ~ 8 GHz	Fig.32	Р
802.11n		8 GHz ~ 18 GHz	Fig.33	Р
(HT20)		18 GHz ~ 26.5 GHz	Fig.34	Р
	26.5 GHz~ 40 GHz	Fig.35	Р	

802.11n-HT40 mode

Mode	Channel	Frequency Range	Test Results	Conclusion
	30 MHz ~1 GHz	Fig.36	Р	
000 44.5	802.11n (HT40) 159(5795MHz)	1 GHz ~ 8 GHz	Fig.37	Р
		8 GHz ~ 18 GHz	Fig.38	Р
(1140)		18 GHz ~ 26.5 GHz	Fig.39	Р
		26.5 GHz~ 40 GHz	Fig.40	Р

Radiated Spurious Emission (9kHz-30MHz)

Mode	Channel	Frequency Range	Test Results	Conclusion
802.11n	140/F74FMLI=\	OLU- 20 MU-	Fig. 44	р
(HT40)	149(5745MHz)	9kHz ~ 30 MHz	Fig.41	Ρ

Conclusion: PASS

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and

including the gain of receive antenna, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

802.11aChannel 165 (30MHz ~ 1GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
34.4	12.76	-27.3	40.06	V
51.5	12.89	-25.2	38.09	Н
72.8	7.21	-30.1	37.31	V
195.2	8.91	-28.1	37.01	V
300.0	16.95	-25.7	42.65	Н
900.0	35.45	-13.9	49.35	V

Channel 165 (1GHz ~ 8GHz) (Peak)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
6365.6	47.2	5.6	41.6	V
6694.8	47.54	6.6	40.94	V
7029.2	46.48	7.3	39.18	V
7258.4	46.45	7.3	39.15	V
7654.8	46.41	7.9	38.51	Н
7897.4	49.08	8.8	40.28	V

Channel 165 (8GHz ~ 18GHz) (Peak)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
10170.4	40.38	12	28.38	V
11393.2	43.24	14.7	28.54	Н
12494.4	45.25	16.5	28.75	Н
13996.4	47.13	19.1	28.03	V
15477.8	49.19	21.2	27.99	Н
16645.2	51.77	23.2	28.57	Н

Channel 165 (8GHz ~ 18GHz) (Average)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
13707.0	41.87	18.8	23.07	V
15657.0	43.04	21.6	21.44	Н
17164.2	44.5	24.1	20.4	Н
13707.0	41.87	18.8	23.07	V
15657.0	43.04	21.6	21.44	Н

Channel 165 (18GHz ~ 26.5GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
19094.0	39.27	-5.5	44.77	V
20305.2	41.29	-4.7	45.99	V
21394.0	43.03	-3.5	46.53	V
22601.9	43.93	-2.8	46.73	Н
24100.4	44.57	-2.8	47.37	Н
24990.4	45.11	-2.5	47.61	Н

Channel 165 (26.5GHz ~ 40GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
27904.0	45.42	-0.3	45.72	V
30284.0	44.69	-0.8	45.49	Н
32774.8	43.65	0.6	43.05	Н
34933.4	46.17	-0.2	46.37	V
36301.0	46.44	0.6	45.84	V
38196.4	47.08	1.9	45.18	Н

802.11n-HT20

Channel 165 (30MHz ~ 1GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
34.0	12.71	-27.3	40.01	V
73.7	16.05	-30.3	46.35	V

122.9	12.48	-29.4	41.88	V
220.9	15.38	-27.5	42.88	V
300.0	18.76	-25.7	44.46	V
900.0	34.46	-13.9	48.36	V

Channel 165 (1GHz ~ 8GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
4660.2	48.51	2.5	46.01	V
6329.2	46.09	5.6	40.49	V
6820.4	47.88	6.7	41.18	V
7094.0	46.72	7.3	39.42	Н
7435.0	46.25	7.3	38.95	Н
7650.6	46.63	7.8	38.83	Н

Channel 165 (8GHz ~ 18GHz) (Peak)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
11649.0	56.87	15.2	41.67	Н
13271.0	53.53	18.1	35.43	V
14311.2	54.39	19.1	35.29	Н
15138.2	54.12	20.6	33.52	Н
15703.2	56.7	21.8	34.9	Н
17469.0	64.79	24.4	40.39	Н

Channel 165 (8GHz ~ 18GHz) (Average)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
11649.0	43.76	15.2	28.56	Н
14311.2	41.72	19.1	22.62	Н
15138.2	42.35	20.6	21.75	Н
15703.2	43.32	21.8	21.52	Н
17469.0	49.82	24.4	25.42	Н

Channel 165 (18GHz ~ 26.5GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
19343.0	39.65	-5.7	45.35	Н
20755.7	40.92	-4.3	45.22	Н
21791.8	43.08	-3.4	46.48	V
22971.6	43.8	-3	46.8	Н
24112.4	44.58	-2.8	47.38	Н
25180.8	44.4	-2.3	46.7	V

Channel 165 (26.5GHz ~ 40GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
28051.2	45.28	-0.2	45.48	V
30203.0	43.36	-0.9	44.26	Н
32068.8	44.6	0.4	44.2	Н
33869.6	45.77	1.5	44.27	Н
35504.5	46.84	1.5	45.34	Н
37935.8	45.02	1.3	43.72	V

802.11n-HT40

Channel 159 (30MHz ~ 1GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBμV/m)	Polarity
34.4	12.76	-27.3	40.06	V
51.5	12.89	-25.2	38.09	Н
72.8	7.21	-30.1	37.31	V
195.2	8.91	-28.1	37.01	V
300.0	16.95	-25.7	42.65	Н
900.0	35.45	-13.9	49.35	V

Channel 159 (1GHz ~ 8GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
6275.8	45.75	5.5	40.25	V

6551.6	46.69	6.1	40.59	V
6883.8	46.24	6.9	39.34	Н
7180.0	46.87	7.2	39.67	V
7501.6	45.91	7.4	38.51	Н
7868.8	48.65	8.6	40.05	V

Channel 159 (8GHz ~ 18GHz) (Peak)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
11596.4	56.04	15.2	40.84	V
12552.6	52.92	16.7	36.22	V
13820.6	53.97	18.7	35.27	Н
14947.4	54.64	20.2	34.44	V
16065.6	55.77	22.5	33.27	V
17387.8	64.16	24.1	40.06	V

Channel 159 (8GHz ~ 18GHz) (Average)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
11596.4	42.46	15.2	27.26	V
14947.4	42.19	20.2	21.99	V
16065.6	43.9	22.5	21.4	V
17387.8	49.63	24.1	25.53	V

Channel 159 (18GHz ~ 26.5GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
19258.0	39.52	-5.7	45.22	Н
20573.8	41.64	-4.4	46.04	Н
21608.2	43.24	-3.4	46.64	Н
22896.0	43.88	-3	46.88	Н
24175.2	44.82	-2.9	47.72	V
25316.8	45.14	-2.4	47.54	V

Channel 159 (26.5GHz ~ 40GHz)

Frequency (MHz)	Result (dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Polarity
27831.1	44.95	-0.4	45.35	Н
30135.6	43.49	-1.1	44.59	Н
32271.2	43.45	0.5	42.95	V
34169.4	47.05	1.6	45.45	Н
35620.6	47.42	1.4	46.02	V
37431.0	45.76	0.9	44.86	Н

Test graphs as below:

Fig. 26 Radiated Spurious Emission (802.11a, Ch165, 30 MHz-1 GHz)

Fig. 27 Radiated Spurious Emission (802.11a, Ch165, 1 GHz-8 GHz)

Fig. 28 Radiated Spurious Emission (802.11a, Ch165, 8 GHz-18 GHz)

Fig. 29 Radiated Spurious Emission (802.11a, Ch165, 18 GHz-26.5 GHz)

Fig. 30 Radiated emission: 802.11n, (802.11a, Ch165, 26.5 GHz - 40 GHz)

Fig. 31 Radiated Spurious Emission (802.11n-HT20, Ch165, 30 MHz-1 GHz)

Fig. 32 Radiated Spurious Emission (802.11n-HT20, Ch165, 1 GHz-8 GHz)

Fig. 33 Radiated Spurious Emission (802.11n-HT20, Ch165, 8 GHz-18 GHz)

Fig. 34 Radiated Spurious Emission (802.11n-HT20, Ch165, 18 GHz-26.5 GHz)

Fig. 35 Radiated emission: 802.11n, (802.11n-HT20, Ch165, 26.5 GHz - 40 GHz)

Fig. 36 Radiated Spurious Emission (802.11n-HT40, Ch165, 30 MHz-1 GHz)

Fig. 37 Radiated Spurious Emission (802.11n-HT40, Ch159, 1 GHz-8 GHz)

Fig. 38 Radiated Spurious Emission (802.11n-HT40, Ch159, 8 GHz-18 GHz)

Fig. 39 Radiated Spurious Emission (802.11n-HT40, Ch159 18 GHz-26.5 GHz)

Fig. 40 Radiated emission: 802.11n, (802.11n-HT40, Ch159, 26.5 GHz - 40 GHz)

Fig. 41 Radiated Spurious Emission (9kHz-30MHz)

ANNEX A.6. Band Edges Compliance

Band Edges - Radiated

Measurement Limit:

- (1) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (5) In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Set the spectrum analyzer in the following:

- (a) Sweep mode: SweepAnalyzer6db.
- (b) PEAK: RBW=1MHz / VBW=3MHz / Sweep=2.5ms, Sweep point;5001
- (c) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=2.5ms, Sweep point;5001

Measurement Result:

Mode	Channel	Test Results	Conclusion
902.446	5745 MHz	Fig.42	Р
802.11a	5825 MHz	Fig.43	Р
802.11n	5745 MHz	Fig.44	Р
HT20	5825 MHz	Fig.45	Р
802.11n	5755 MHz	Fig.46	Р
HT40	5795 MHz	Fig.47	Р

Conclusion: PASS
Test graphs as below:

Peak

Average Fig. 42 Band Edges (802.11a, 5745MHz)

Average Fig. 43 Band Edges (802.11a, 5825MHz)

Average Fig. 44 Band Edges (802.11n-HT20, 5745MHz)

Average Fig. 45 Band Edges (802.11n-HT20, 5825MHz)

Average Fig. 46 Band Edges (802.11n-HT40, 5755MHz)

Average Fig. 47 Band Edges (802.11n-HT40, 5795MHz)

ANNEX A.7. AC Powerline Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)		
110	60		

Measurement Result and limit:

WLAN (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Result With cl	Conclusion	
(141112)	Ellilit (dBµV)	802.11a	Idle	
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.4	Р	
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

WLAN (Average Limit)

Frequency range (MHz)	Average Limit	Result (Conclusion	
(IVITIZ)	(dBμV)	802.11a	ldle	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.4	Р	
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

The measurement is made according to ANSI C63.10.

Conclusion: PASS
Test graphs as below:

Fig. 48 AC Powerline Conducted Emission-802.11a

Measurement Result:

Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
					(ms)				
0.586556		38.22	46.00	7.78	15000.0	9.000	L1	ON	9.8
0.586556	49.52		56.00	6.48	15000.0	9.000	L1	ON	9.8
0.627600		40.82	46.00	5.18	15000.0	9.000	L1	ON	9.8
0.627600	49.02		56.00	6.98	15000.0	9.000	L1	ON	9.8
0.661181		34.51	46.00	11.49	15000.0	9.000	L1	ON	9.8
0.661181	47.30		56.00	8.70	15000.0	9.000	L1	ON	9.8
1.191019		31.74	46.00	14.26	15000.0	9.000	L1	ON	9.9
1.191019	41.50		56.00	14.50	15000.0	9.000	L1	ON	9.9
3.217088		29.96	46.00	16.04	15000.0	9.000	L1	ON	10.2
3.217088	39.72		56.00	16.28	15000.0	9.000	L1	ON	10.2
16.030200		28.85	50.00	21.15	15000.0	9.000	L1	ON	13.0
16.030200	39.90		60.00	20.10	15000.0	9.000	L1	ON	13.0

Page Number: 58 of 58

Report Issued Date: Aug. 28, 2019

ANNEX B. Accreditation Certificate

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 6th day of May 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2021

For the fests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

********END OF REPORT*******