CS2510 MODERN PROGRAMMING LANGUAGES

Logic Programming 1

Prof. Peter Edwards p.edwards@abdn.ac.uk

Logic

- Aristotle described syllogisms
 2300 years ago.
- Sample syllogism:

Socrates is a man.
All men are mortal.
Therefore, Socrates is mortal.

 A syllogism gives two premises, then asks:

"What can we conclude?"

- This is forward reasoning from premises to conclusions.
- Inefficient when lots of premises.
- Alternative:
 - Use backward reasoning from (potential) conclusions to facts.
 - Is Socrates mortal?

Logic

- Symbolic logic can be used for the basic needs of formal logic:
 - Used to express *propositions*
 - A logical statement that may or may not be true;
 - Consist of objects and relationships of objects to each other.
 - Describe how new propositions can be inferred from other propositions.

Example Propositions

All cows are brown.
The Earth is further from the sun than Venus.
There is life on Mars.

 Particular form of symbolic logic used for logic programming called *predicate calculus*.

Predicate Calculus Examples

dog(fido) friends(owen, john) $\forall(x): man(X) \Rightarrow mortal(X)$

Prolog

- Prolog
 - Programming in logic
 - Represents facts, rules and queries.
- Prolog is a *declarative programming* language unlike most
 common programming languages.
- In a declarative language, the programmer specifies a goal to be achieved and the Prolog system works out how to achieve it.

1974 - R.A. Kowalski: 'Predicate logic as a programming language'

- First-order predicate logic for the specification of data and relations among data
- Computation = logical deduction
- 1972 A. Colmerauer & P. Roussel: first Prolog-like interpreter
- 1980s Adopted as language for Japanese 5th Generation project.

Logic Programming in *Prolog*

Socrates is a man.

All men are mortal.

Is Socrates mortal?

Logic Programming: Logic + Control

• Logic: What

- Logical Formulae: $\forall x (p(x) \rightarrow q(x))$

• Control: How

- Logical <u>Deduction</u>: if $A \rightarrow B$ and A, then B

What: Problem Description

- Horn clause: $A \leftarrow \overline{B_1,...,B_n}$
 - $-A_1,...,B_n$ are predicates, i.e., $p(a_1,...,a_m)$
- Meaning:
 - A is **true** if B_1 , B_2 ,...., and B_n are **true**
- Horn clauses allow us to specify
 - Facts
 - Rules
 - Queries

about objects and relations between them.

What: Problem Description

• Facts are represented as *A* ←

has(owen, jaguar) ← "owen has a jaguar"

• Rules are represented as $A \leftarrow B_1,...,B_n$ rich(X) \leftarrow has(X, jaguar) "someone is rich if they have a jaguar"

• Queries are represented as $\leftarrow B_1,...,B_n$ $\leftarrow \text{rich}(Y)$ "who is rich?"

• Facts + Rules: Knowledge Base (KB)

- Computation as *resolution*, a deduction mechanism.
- A query starts up a computation which uses rules and facts (KB) to answer the query.
- A query is answered as true or false, and its variables are (possibly) assigned values.
- Queries may loop!
 - as in any programming language programs may loop...


```
resolution(KB, Query): boolean

let Query be \leftarrow C_1,...,C_n

for i=1 to n do

if there is a fact A \leftarrow in KB such that A = C_i

then true

else if there is a rule A \leftarrow B_1,...,B_n in KB

such that A = C_i

then resolution(KB, \leftarrow B_1,...,B_n)

else false

if all C_i are true then return true

else return false
```

- Recursive formulation of resolution.
- Exhaustive:
 - in order to say "no" resolution must try all possibilities!!
- Simple & general definition of computation.


```
KB={ has(owen, jaguar) \leftarrow, rich(X) \leftarrow has(X, jaguar) } \leftarrow rich(Y)

resolution(KB, \leftarrow rich(Y))

let Query be \leftarrow rich(Y)

for i = 1 to 1 do

if there is a fact A \leftarrow in KB such that A = rich(Y)

then true

else if there is a rule A \leftarrow B_1, ..., B_n in KB

such that A = C_i

then resolution(KB, \leftarrow B_1, ..., B_n)

else false

if all C_i are true then return true

else return false
```



```
KB={ has(owen, jaguar) \leftarrow, rich(X) \leftarrow has(X, jaguar) } \leftarrow rich(Y)

resolution(KB, \leftarrow rich(Y))

let Query be \leftarrow rich(Y)

for i = 1 to 1 do

if there is a fact A \leftarrow in KB such that A = rich(Y)

then true

else if there is a rule A \leftarrow B_1, ..., B_n in KB

such that A = rich(Y)

then resolution(KB, \leftarrow B_1, ..., B_n)

else false

if all C_i are true then return true

else return false
```



```
KB={ has(owen, jaguar) \leftarrow, rich(X) \leftarrow has(X, jaguar) } \leftarrow rich(Y)

resolution(KB, \leftarrow rich(Y))

let Query be \leftarrow rich(Y)

for i = 1 to 1 do

if there is a fact A \leftarrow in KB such that A = rich(Y)

then true

else if there is a rule A \leftarrow B_1, ..., B_n in KB

such that A = rich(Y)

then resolution(KB, \leftarrow B_1, ..., B_n)

else false

if all C_i are true then return true

else return false
```



```
KB={ has(owen, jaguar) \leftarrow, rich(X) \leftarrow has(X, jaguar) } \leftarrow rich(Y)

resolution(KB, \leftarrow rich(Y))

let Query be \leftarrow rich(Y)

for i = 1 to 1 do

if there is a fact A \leftarrow in KB such that A = rich(Y)

then true

else if there is a rule A \leftarrow B_1,...,B_n in KB

such that A = rich(Y)

then resolution(KB, \leftarrow has(Y, jaguar))

else false

if all C_i are true then return true

else return false
```



```
\leftarrow rich(Y)
KB=\{ has(owen, jaguar) \leftarrow, rich(X) \leftarrow has(X, jaguar) \}
              resolution(KB, \leftarrow has(Y, jaguar))
                                                                                  Yes, If Y = owen
                   let Query be ← has(Y, jaguar)
                   for i = 1 to 1 do
                        if there is a fact A \leftarrow in KB such that A = has(Y, jaguar)
                        then true
                        else if there is a rule A \leftarrow B_1,...,B_n in KB
                             such that \mathbf{A} = \mathbf{C}_i
                        then resolution(KB, \leftarrow B_1,...,B_n)
                        else false
                   if all C<sub>i</sub> are true then return true
                        else return false
```



```
KB={ has(owen, jaguar) \leftarrow, rich(X) \leftarrow has(X, jaguar) } \leftarrow rich(Y)

resolution(KB, \leftarrow rich(Y))

let Query be \leftarrow rich(Y)

for i = 1 to 1 do

if there is a fact A \leftarrow in KB such that A = rich(Y)

then true

else if there is a rule A \leftarrow B_1, ..., B_n in KB

such that A = rich(Y)

then resolution(KB, \leftarrow has(owen, jaguar))

else false

if all C_i are true then return true

else return false
```



```
KB={ has(owen, jaguar) \leftarrow, rich(X) \leftarrow has(X, jaguar) } \leftarrow rich(Y)

resolution(KB, \leftarrow rich(Y))

let Query be \leftarrow rich(Y)

for i = 1 to 1 do

if there is a fact A \leftarrow in KB such that A = rich(Y)

then true

else if there is a rule A \leftarrow B_1, ..., B_n in KB

such that A = rich(Y)

then resolution(KB, \leftarrow has(owen, jaguar))

else false

if all rich(Y) is true then return true

else return false
```



```
resolution(KB, Query): boolean

let Query be \leftarrow C_1,...,C_n

for i=1 to n do

if there is a fact A \leftarrow in KB such that A = C_i

then true

else if there is a rule A \leftarrow B_1,...,B_n in KB such that A = C_i

then resolution(KB, \leftarrow B_1,...,B_n)

else false

if all C_i are true then return true

else return false
```

Non-determinism:

— If there is more than one, which one to choose?

• Unification:

Is it possible to find values of variables that would make A and C_i equal?