Probabilité

Brandon LIN

October 14, 2023

Contents

1.1 Cardinal d'un ensemble fini	2
Cardinal d'un ensemble fini — 2 • Cardinal d'une partie — 2 • Application entropérations sur les cardinaux — 3 • Cardinal de l'ensemble des applications d'un en — 3 • Nombre de parties d'un ensemble fini — 3	
1.2 Liste et combinaisons $p\text{-listes} = 3 \bullet \text{Permutations} = 4 \bullet p\text{-combinaisons} = 4 \bullet \text{Règles de calcul sur les combinaisons}$	3 coefficients binomiaux — 5
Chapter 2 Probabilités sur un univers fini	Page 7
2.1 Définition Expériences et événements aléatoire — 7 • Variable aléatoire — 8	7
2.2 Espaces probabilisés finis Probabilité — 8 • Probabilité uniforme sur un ensemble fini — 8 • Propriétés des p	8 probabilités finies — 8
2.3 Conditionnement Probabilité conditionnelles — 9 • Formules — 9	9
2.4 Indépendance en probabilité Indépendance de deux événements — 10 • Mutuellement indépendants — 10	10
2.5 Lois Loi uniforme — 11 • Loi de Bernoulli — 11 • Loi binomiale — 11	11
2.6 Couples de variables aléatoires discrètes	11
2.7 Indépendance de variable aléatoires	11
2.8 Espérance	11
2.9 Variance	12
2.10 Variables aléatoires à valeurs naturelles	12
Chapter 3 Espérance et variance	Page 13
3.1 Espérance d'une variable aléatoire réelle ou complexe	13
3.2 Variance d'une variable aléatoire réelle	13

Chapter 1

Dénombrement

1.1 Cardinal d'un ensemble fini

1.1.1 Cardinal d'un ensemble fini

Definition 1.1.1: Ensemble fini, cardinal d'un ensemble fini

E un ensemble non vide est dit **ensemble fini** s'il existe $n \in \mathbb{N}^*$ et une bijection de E dans [1, n]. n est unique et appelé **cardinal** de E: $\boxed{\operatorname{Card}(E)}$.

1.1.2 Cardinal d'une partie

Theorem 1.1.1 Cardinal des parties

Soit E un ensemble fini et A une partie de E. Alors,

- A est un **ensemble fini** et $card(A) \le card(E)$
- $A = E \iff \operatorname{card}(A) = \operatorname{card}(E)$

1.1.3 Application entre deux ensembles

Proposition 1.1.1

Soit f une application de E dans F, où E et F sont deux ensembles finis. Si (il 'existe) f (qui) est

- injective, $card(A) \leq card(E)$
- surjective, $card(A) \ge card(E)$
- bijective, card(A) = card(E)

Theorem 1.1.2

Soit E et F deux ensembles finis <u>de même cardinal</u>, et f une application de E et F. Les propriétés suivantes sont équivalentes :

- f est injective
- f est surjective
- f est bijective

1.1.4 Opérations sur les cardinaux

Theorem 1.1.3 Produit cartésien de deux ensembles finis

$$\operatorname{card}(E \times F) = \operatorname{card}(E) \times \operatorname{card}(F)$$
 (1.1)

Theorem 1.1.4 Réunion de deux ensembles finis

$$\operatorname{card}(E \cup F) = \operatorname{card}(E) + \operatorname{card}(F) - \operatorname{card}(E \cap F) \tag{1.2}$$

De plus, si les deux ensembles sont disjoints, alors

$$\operatorname{card}(E \cup F) = \operatorname{card}(E) + \operatorname{card}(F) \tag{1.3}$$

Corollary 1.1.1 Complémentaire

$$\operatorname{card}(C_E A) = \operatorname{card}(E) - \operatorname{card}(A) \tag{1.4}$$

1.1.5 Cardinal de l'ensemble des applications d'un ensemble fini dans un autre

Theorem 1.1.5

$$\operatorname{card}(\mathcal{F}(E,F)) = (\operatorname{card}(F))^{\operatorname{card}(E)}$$
(1.5)

Proof: Pour chaque x_i dans E, on choisit $f(x_i)$ dans E donc pour chaque élément on a card(F) possibilités. Cela implique que il y

$$\operatorname{card}(F) \times \operatorname{card}(F) \times \cdots \times \operatorname{card}(F)$$
 (1.6)

possibilités.

1.1.6 Nombre de parties d'un ensemble fini

Theorem 1.1.6

$$\operatorname{card}(\mathcal{P}(E)) = 2^{\operatorname{card}(E)} \tag{1.7}$$

Proof: Pour une partie de E: A, considérer la fonction $\mathbb{1}_A: E \to \{0,1\}$

1.2 Liste et combinaisons

1.2.1 *p*-listes

Definition 1.2.1: p-liste d'élément de E

Soit E un ensemble fini. Une p-liste d'éléments de E est un élément de la forme $(x_1, \ldots, x_p) \in E^p$.

Theorem 1.2.1 Nombre de p-listes

Le nombre de p-listes de E est $(card(E))^p$.

Proof: $card(E) \times \cdots \times card(E)$

Theorem 1.2.2 Nombre de *p*-listes d'éléments distincts

Soit $n = \operatorname{card}(E)$. Le nombre de p-listes de E d'éléments **distincts** de E est égal à

$$\frac{n!}{(n-p)!} = n \times (n-1) \times \dots \times (n-p+1) \tag{1.8}$$

Theorem 1.2.3 Nombre d'injections

Le nombre d'applications injectives d'un ensemble de cardinal p dans <u>unsemble de cardinal n</u> est :

$$\frac{n!}{(n-p)!} \tag{1.9}$$

Note:-

Application injective \iff p-listes d'éléments distincts, tout x_i correpond y_i unique, ensuite il y a p éléments dans l'ensemble $\{y_1, \ldots, y_n\}$ selectionnés.

1.2.2 Permutations

Definition 1.2.2: Permutation

Une **permutation** est une bijection de *E* dans lui-même.

Theorem 1.2.4 Nombre de permutations

Soit E un ensemble fini de cardinal $n \in \mathbb{N}^*$, le nombre de permutations de E dans lui-même est

$$n! = n \times (n-1) \times \dots \times 1 \tag{1.10}$$

Theorem 1.2.5 Nombre de bijections

$$n! = n \times (n-1) \times \dots \times 1 \tag{1.11}$$

1.2.3 p-combinaisons

Definition 1.2.3: p-combinaison

Soit E un ensemble fini. p-combinaison de E est toute partie de E à p éléments.

Theorem 1.2.6

Le nombre de p-combinaisons de E:

$$\binom{n}{p} = \begin{cases} \frac{n!}{p!(n-p)!} & \text{si } p \in \llbracket 0, n \rrbracket \\ 0 \end{cases}$$
 (1.12)

Proof: Récurrence : Pour $a \in E$ avec card(E) = n + 1 fixé. Nombre p-combinaison = Nombre de parties contenant a + Nombre de parties ne contenant pas a

$$\binom{n+1}{p} = \binom{n}{p} + \binom{n}{p-1} \tag{1.13}$$

٨

Theorem 1.2.7

Nombre de parties à p éléments dans un ensemble à n éléments :

$$\begin{pmatrix} n \\ p \end{pmatrix} \tag{1.14}$$

1.2.4 Règles de calcul sur les coefficients binomiaux

Theorem 1.2.8

$$\forall p \in \llbracket 0, n \rrbracket, \begin{pmatrix} n \\ p \end{pmatrix} = \begin{pmatrix} n \\ n - p \end{pmatrix} \tag{1.15}$$

Theorem 1.2.9

$$\forall p \in [1, n], \binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1} \tag{1.16}$$

Theorem 1.2.10

$$\sum_{p=0}^{n} \binom{n}{p} = 2^n \tag{1.17}$$

Proof: Tous les parties dans un ensemble de cardinal n

(2)

Theorem 1.2.11 Formule de Pascal

$$\forall p \in \llbracket 1, n-1 \rrbracket, \begin{pmatrix} n \\ p \end{pmatrix} = \begin{pmatrix} n-1 \\ p \end{pmatrix} + \begin{pmatrix} n-1 \\ p-1 \end{pmatrix} \tag{1.18}$$

Theorem 1.2.12 Formule du binôme de Newton

$$\forall (x,y) \in \mathbb{C}^2, \ (x+y)^n = \sum_{p=0}^n \binom{n}{p} x^n y^{n-p}$$
 (1.19)

Chapter 2

Probabilités sur un univers fini

2.1 Définition

2.1.1 Expériences et événements aléatoire

Definition 2.1.1: Expérience aléatoire, univers des possibles

- Une expérience aléatoire est une expérience dont on ne peut prédire avec certitude le résultat.
- L'ensemble des résultats possibles est appelé univers des possibles, noté Ω .

Definition 2.1.2: Événement aléatoire

Un **événement aléatoire** est un événement qui <u>peut se produire ou non</u>. Il s'agit donc d'<u>une partie de Ω </u> : $A \in \mathcal{P}(\Omega)$.

- L'événement A est réalisé si le résultat ω de cette expérience est élément de A.
- Ω est l'événement certain, \emptyset est l'événement impossible.

Definition 2.1.3

- Événement A et B
- Événement A ou B
- Événement \overline{A} , contraire de A.

Definition 2.1.4: Événement incompatibles

$$A \cap B = \emptyset \tag{2.1}$$

Definition 2.1.5: Système complet d'événements (SCE)

Une famille finie d'événements deux à deux incompatibles et recouvrent Ω :

$$\bigcup_{i \in I} A_i = \Omega, \ \forall (i,j) \in I^2, i \neq j \implies A_i \cap A_j = \emptyset$$
 (2.2)

2.1.2 Variable aléatoire

Definition 2.1.6: Variable aléatoire

Variable aléatoire sur Ω toute application $X:\Omega\to E$ définie sur l'univers Ω et à valeurs dans un ensemble E.

- $X(\Omega) = \{x_1, \ldots, x_n\} \in E^n$
- On note pour tout $x \in E$,

$$(X = x) = X^{-1}(\{x\}) = \{\omega \in \Omega, \ X(\omega) = x\}$$
 (2.3)

• Pour tout partie A de E,

$$(X \in A) = X^{-1}(A) = \{ \omega \in \Omega, \ X(\omega) \in A \}$$

$$(2.4)$$

2.2 Espaces probabilisés finis

2.2.1 Probabilité

Definition 2.2.1: Probabilité

Soit Ω un ensemble fini non vide. Toute application $P: \mathcal{P}(\Omega) \to [0,1]$ est appellé **probabilité** sur Ω si elle vérifie :

- $P(\Omega) = 1$
- ullet et si A et B deux événements incompatibles, alors

$$P(A \cup B) = P(A) + P(B) \tag{2.5}$$

On dit alors (Ω, P) est un **espace probabilisé fini**. $\forall A \in \mathcal{P}(\Omega), P(A) \in [0, 1]$

2.2.2 Probabilité uniforme sur un ensemble fini

Definition 2.2.2: Probabilité uniforme

$$P(A) = \frac{\text{card}(A)}{\text{card}(\Omega)} = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$$
(2.6)

2.2.3 Propriétés des probabilités finies

Theorem 2.2.1 Formule d'additivité finie

Si (A_i) deux à deux incompatibles, alors

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i) \tag{2.7}$$

2.3 Conditionnement

2.3.1 Probabilité conditionnelles

Definition 2.3.1: Probabilité conditionnelles

Soit (Ω, P) espace probabilisé et B un événement non négligeable. La **probabilité conditionnelle de** $A \in \mathcal{P}(\Omega)$ sachant B:

$$P(A|B) = P_B(A) = \frac{P(A \cap B)}{P(B)} \tag{2.8}$$

Proposition 2.3.1

 P_B est un probabilité sur Ω

2.3.2 Formules

Corollary 2.3.1

$$P(A \cap B) = P(B) \times P_B(A) \tag{2.9}$$

Proof: A, B ont lieu en même temps = B déjà a lieu + de plus, A aura lieu

Corollary 2.3.2 Inversion des conditionnements

$$P_B(A) = \frac{P(A) \times P_A(B)}{P(B)} \tag{2.10}$$

Proposition 2.3.2 Formule des probabilités composées

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = P(A_{1}) \times P_{A_{1}} \times P(A_{2}) \times \dots P_{\bigcup_{i=1}^{n-1} A_{i}}(A_{n})$$
(2.11)

Proposition 2.3.3 Formule des probabilités totales

Soit $(A_i)_{i \in [\![1,n]\!]}$ système complet d'événements non négligeables. Pour tout événements $B \in \mathcal{P}(\Omega)$,

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(A_i) P_{A_i}(B)$$
 (2.12)

Theorem 2.3.1 Formule de Bayes

Soit $(A_i)_{i \in [\![1,n]\!]}$ système complet d'événements non négligeables. Pour tout événements $B \in \mathcal{P}(\Omega)$, et pour tout $j \in [\![1,n]\!]$,

$$P_B(A_j) = \frac{P(A_j) \times P_{A_j}(B)}{\sum_{i=1}^{n} P(A_i) \times P_{A_i}(B)}$$
(2.13)

Proof: Combinaison des propositions précédantes.

2.4 Indépendance en probabilité

2.4.1 Indépendance de deux événements

Definition 2.4.1: Indépendants pour la probabilité P

Deux événements A et B sont indépendants pour la probabilité P lorsque

$$P(A \cap B) = P(A) \times P(B) \tag{2.14}$$

En particulier, si P(B) > 0, donc ils sont indépendants si et seulement si

$$P_B(A) = P(A) \tag{2.15}$$

2.4.2 Mutuellement indépendants

Definition 2.4.2: Mutuellement indépendants

Pour tous $i_1, ..., i_k \in [[1, n]],$

$$P(A_{i_1} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \times \dots P(A_{i_k})$$
(2.16)

Proposition 2.4.1

Mutuellement indépendant \implies Deux à deux indépendant, maix la réciproque est fausse en général.

Definition 2.4.3: Variable aléatoire discrète

On appelle variable aléatoire discrète sur l'espace probabilisé Ω et à valeurs dans E toute application $X:\Omega\to E$ vérifiant

- $\{X(\Omega)\}$ est fini ou dénombrable
- $\forall x \in X(\Omega), X^{-1}(\{x\})$ est élément de la tribu \mathcal{A} .

Note:-

Une variable aléatoire discrète est une $\underline{\text{fonction}}$ parfaitement déterminée. Ce sont les valeurs de X qui vont varier.

 $X : \text{Événement} \rightarrow \text{Résultat}$

Definition 2.4.4: Événements valeurs

Soit $X: \Omega \to E$.

On note pour tout $x \in E$,

$$(X = x) = X^{-1}(\{x\}) = \{\omega \in \Omega, \ X(\omega) = x\}$$
 (2.17)

Pour tout partie A de E,

$$(X \in A) = X^{-1}(A) = \{ \omega \in \Omega, \ X(\omega) \in A \}$$
 (2.18)

Il s'agit d'un événement, et l'on peut en calculer la probabilité : P(X = x)

Proposition 2.4.2

$$(X \in A) = \bigcup_{x \in X(\omega) \cap A} (X = x) \tag{2.19}$$

Definition 2.4.5

Si X une variable aléatoire discrète réelle, $a \in \mathbb{R}$,

$$(X \le a) = X^{-1}(] - \infty, a]) = \{\omega \in \Omega, \ X(\omega) \le a\}$$
 (2.20)

2.5 Lois

Definition 2.5.1: Loi d'une variable aléatoire discrète

Loi de la variable $X: \Omega \to E$:

$$\forall A \in X(\Omega), \ P_X(A) = P(X \in A) \tag{2.21}$$

Corollary 2.5.1

La loi est entièrement déterminée par les valeurs

$$\forall x \in P(\Omega), \ p_x = P_X(x) = P(X = x) \tag{2.22}$$

et

$$\sum_{x \in X(\omega)} p_x = 1 \tag{2.23}$$

- 2.5.1 Loi uniforme
- 2.5.2 Loi de Bernoulli
- 2.5.3 Loi binomiale

Definition 2.5.2: Loi binomiale

$$X \sim \mathcal{B}(n,p) = \left\{ X(\omega) = [0,n], \ \forall k \in [0,n], \ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \right\}$$
 (2.24)

- 2.6 Couples de variables aléatoires discrètes
- 2.7 Indépendance de variable aléatoires
- 2.8 Espérance

Definition 2.8.1: Espérance

On dit que X admet une **espérance** si la famille $(xP(X=x))_{x\in\Omega}$ est <u>sommable</u>. L'**espérance** vaut :

$$E(X) = \sum_{x \in X(\Omega)} x P(X = x)$$
 (2.25)

ne dépend que la loi de la variable X.

Example 2.8.1

Si
$$X \sim \mathcal{B}(n, p)$$
,
$$E(X) = \sum_{k=0}^{n} k \cdot \binom{n}{k} p^k (1-p)^{(n-k)} = np$$
 (2.26)

2.9 Variance

2.10 Variables aléatoires à valeurs naturelles

Chapter 3

Espérance et variance

- 3.1 Espérance d'une variable aléatoire réelle ou complexe
- 3.2 Variance d'une variable aléatoire réelle