第三次作业

2024.06.03 课上提交

1. For a zero mean Gaussian stationary process X(t), whose power spectrum is:

$$S_X(\omega) = \begin{cases} A, & ||\omega| - \omega_0| < \frac{\Delta \omega}{2} \\ 0, & \text{others} \end{cases}$$

Where $\omega_0 > \Delta \omega$. Calculate the 1-D pdf of it. (10 points)

2. Assuming that a stationary Gaussian white noise with power spectrum A is fed into a filter $H(\omega) = \frac{2}{j\omega+1}$, calculate the one-dimensional pdf of the output. (20 points)

3. A stationary stochastic process X(t) is fed into a low-pass filter $h(t) = \alpha e^{-\alpha t} U(t)$. The autocorrelation of X(t) is $\delta(\tau)$. Calculate the output autocorrelation $R_Y(\tau)$. (20 points)

4. Given an input z(t) = x(t) + n(t), where x(t) is a deterministic signal as follows (triangular wave), and n(t) is stationary Gaussian white noise with power spectrum of q. (30 points)

a) Calculate the maximum signal-to-noise ratio of the output if this z(t) is fed into its matched filter. (10 points)

b) There is another input $z_1(t) = \frac{1}{3}x(t) + n(t)$, calculate the maximum signal-to-noise ratio of the output of this input if it is fed into its matched filter. (10 points)

c) Calculate the matched filter $H(\omega)$ of the signal. (10 points)

5. The stochastic process $Y(t) = X\cos(\omega_0 t + \theta)$, where ω_0 is a constant, X and θ are independent random variables, X is zero mean white Gaussian variable with variance c^2 where c is a constant, and θ follows uniformly distributed in $(-\pi, \pi)$. (20 points)

a) Calculate the power spectrum of Y(t).

b) Is Y(t) an ergodicity process? Prove it.