PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-195138

(43)Date of publication of application: 19.07.2001

(51)Int.Cl.

G05F 1/10 H02M 3/155

(21)Application number: 2000-006579 (71)Applicant: FUJI ELECTRIC CO

LTD

(22)Date of filing: 14.01.2000 (72)Inventor:

MIZOE KIMIYOSHI

HYOGO AKIRA

NAKAZAWA HIDEKI SHIROICHI KOJI

SEKINE KEITARO

(54) SERIES REGULATOR POWER SUPPLY CIRCUIT

(57) Abstract:

PROBLEM TO BE SOLVED: To improve the removing ratio of ripples included in the power supply voltage of a series regulator power supply circuit to be used as a power supply for electronic equipment or the like.

SOLUTION: The MO of a PMOS FET is used as an output, and the intermediate voltage between resistors R1, R2 connected between the PMOS FET and ground is compared with a reference voltage applied from a reference voltage circuit 2 and the output stage 3 of an amplifier circuit 1 using input power supply VIN or an output as a power supply (terminal 5) is provided with a constant current source with a filter in order to control the MO by the circuit 1 and output required output voltage. Thus the removing ratio of ripples can be improved by allowing high

frequency ripples included in the power supply (terminal 5) of the circuit 1 to pass the output.

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-195138

(P2001 - 195138A)

(43)公開日 平成13年7月19日(2001.7.19)

(51) Int.Cl.7

H02M

識別記号

FΙ

テーマコート*(参考)

G05F 1/10 304

G05F 1/10

5H410 304Z

H02M 3/155 E 5H730

審査請求 未請求 請求項の数6 OL (全 7 頁)

(21)出願番号

(22)出願日

特願2000-6579(P2000-6579)

3/155

平成12年1月14日(2000.1.14)

(71)出願人 000005234

富士電機株式会社

神奈川県川崎市川崎区田辺新田1番1号

(72) 発明者 三添 公義

神奈川県川崎市川崎区田辺新田1番1号

富士電機株式会社内

(72)発明者 兵庫 明

千葉県野田市山崎2641 東京理科大学内

(72)発明者 中澤 秀樹

千葉県野田市山崎2641 東京理科大学内

(74)代理人 100075166

弁理士 山口 巌 (外2名)

最終頁に続く

(54) 【発明の名称】 シリーズレギュレータ電源回路

(57)【要約】

【課題】 電子機器等の電源として用いられるシリーズ レギュレータ電源回路の電源電圧に含まれるリップルの 除去率を向上させる。

【解決手段】 出力にPMOS-FETのMOを用い、 これとグランドとの間に接続された抵抗R1,R2の中 間電圧を、基準電圧回路 2 から与えられる基準電圧と比 較し、入力電源VINまたは出力を電源(端子5)とす るアンプ回路1にて上記M0を制御し所望の出力電圧を 出力させるに当たり、上記アンプ回路1の出力段3をフ ィルタ付き定電流源を備えたものとすることにより、ア ンプ回路1の電源(端子5)に含まれる高周波リップル をその出力に通過させるようにし、リップル除去率を高 める。

【特許請求の範囲】

【請求項1】 出力として用いられる出力PMOS-FETとグランドとの間に接続された2つの抵抗の中間電圧を基準電圧と比較する比較増幅部を有し、入力電源または出力をその電源とするアンプ回路からなり、前記出力PMOS-FETを制御することにより所望の出力電圧を得るシリーズレギュレータ電源回路において、

前記アンプ回路の出力段を、フィルタを備えた定電流源と増幅用トランジスタとから構成し、前記フィルタを備えた定電流源により入力電源に含まれる高周波リップル成分をアンプ回路の出力に通過させることを特徴とするシリーズレギュレータ電源回路。

【請求項2】 前記定電流源の一方を前記電源に接続し、グランドに接続された前記増幅用トランジスタの定電流負荷として用いることを特徴とする請求項1に記載のシリーズレギュレータ電源回路。

【請求項3】 前記定電流源を、ドレインに基準電流源が接続される第1のPMOSーFETと、この第1PMOSーFETと、この第1PMOSーFETのドレインとゲートとの接続点に接続されるローパスフィルタと、このローパスフィルタの出力に接続される第2のPMOSーFETとから構成し、前記第1,第2の各PMOSーFETのソースを電源にそれぞれ接続したことを特徴とする請求項2に記載のシリーズレギュレータ電源回路。

【請求項4】 前記ローパスフィルタを抵抗とコンデンサとから構成することを特徴とする請求項3に記載のシリーズレギュレータ電源回路。

【請求項5】 前記ローパスフィルタを構成する抵抗を MOS-FETのMOS抵抗を含むアクティブ抵抗とす ることを特徴とする請求項4に記載のシリーズレギュレ ータ電源回路。

【請求項6】 前記定電流源と並列に、基準電流源に比例した電流を流す定電流バイアス回路を接続し、その電流の総和を前記増幅用トランジスタのバイアス電流とすることを特徴とする請求項1ないし5のいずれかに記載のシリーズレギュレータ電源回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、シリーズレギュレータ電源回路、特に小型化,低電圧化された電子機器および半導体集積回路に電源を供給するシリーズレギュレータ電源回路に関する。

[0002]

【従来の技術】この種の回路として、出願人は図8に示すもの(特願平11-092677号:以下提案済み回路ともいう)を提案している。1はアンプ回路、2は基準電圧回路、4は出力コンデンサを示す。これは、出力電圧を抵抗R1、R2で分圧し、その電圧と基準電圧と

 $v_0 = v_{rip} / \{1 + j (\omega/\omega_1)\}$

【0006】上記(1)式からも分かるように、高い周

をM1~M15のMOS-FET (Metal Oxide Semiconductor Field Effect Transistor: M3, M4, M8, M9, M10はN-channel、それ以外はP-channel)から構成される演算増幅器で比較し、出力トランジスタ (PMOS-FET) M0を制御することにより所望の出力電圧を得るものである。この演算増幅器のM1~M8のMOS-FETにより差動段が、M9~M12のMOS-FETにより増幅段が、そしてM13~M15のMOS-FETによりパッファ出力段がそれぞれ構成されている。

【0003】上記差動段は、M5~M8の高出力抵抗のカレントミラー回路により、入力電源VINに含まれるリップルの影響を受けないため、差動段出力には電源からの直接的なリップル成分は発生しない。また、次段の増幅段は、カスコード増幅器とすることで、M9, M10の増幅部の出力抵抗よりも定電流負荷であるM11の出力抵抗の方が小さくなり、入力電源のリップル成分を増幅段の出力に畳み込むことができる。最後のバッファ出力段をソースフォロワ回路とすることにより、アンプ回路1の最大出力電圧を、入力電圧からM0のスレッショルド電圧である0.3V差し引いた値以上にすることを可能とし、増幅段からのリップル成分をゲイン1でそのまま出力して出力抵抗を低くするようにしている。

【0004】バッファ出力段の出力抵抗、すなわち演算 増幅器の出力抵抗を低くするのは、出力トランジスタM 0のゲート容量で生じるボール(極点)の影響を小さくして、閉ループの安定性を確保するためである。演算増幅器の出力に電源のリップル成分を出力させることにより、出力トランジスタM 0において、電源であるソースのリップル成分とゲートのリップル成分が同じとなり、ゲート・ソース間電圧はリップルの影響を受けなくなり、ポート・ソース間電圧はリップルの影響を受けなくなり、ポート・ソース間電圧はリップルの影響を受けなくなり、ポート・ソース間電圧はリップルの影響を受けなくなり、ポート・ソース間電圧はリップルの影響を受けなくなり、カート・ソースでは、カート・ソースでは、カート・ソースでは、カート・ソースである。これにより、出力負荷電流にはリップル成分が発生せず、その結果、レギュレータ出力にもリップルは生じず、リップル除去率を上げることができる。

[0005]

【発明が解決しようとする課題】図8の提案済み回路では、電源に含まれる低い周波数のリップル成分を演算増幅器から同位相または逆位相で出力させ、出力トランジスタM0のゲート・ソース間電圧はそのリップルの影響を受けず略一定に保たれ、リップルのない一定の出力負荷電流が流れるため、シリーズレギュレータ出力にリップル成分が出ず、リップル除去率が向上する。ところで、演算増幅器の出力の交流成分 $_{0}$ は、次の(1)式のように表わされる。なお、 $_{0}$ は増幅段の出力抵抗と内部の容量による角周波数、 $_{1}$ は電源のリップル成分である。

波数のリップル成分は演算増幅器を構成しているMOS

- FETの内部抵抗や補償用のコンデンサや寄生コンデ ンサで生じるフィルタ成分で減衰してしまい、リップル 成分が演算増幅器から出力されないため、出力トランジ スタMOのゲート・ソース間電圧はリップルの変動と追 従し、その変動した電圧に比例した出力負荷電流が流れ

$$v_{gs0} = - (v_{rip} - v_0)$$

$$= - j (\omega/\omega_1) \cdot v_{rip} / \{1 + j (\omega/\omega_1)\}$$

このようなことは、演算増幅器などの通常のアンプ回路 を用いても、リップルの大きさ(振幅)の違いはあるが 周波数特性としては同様な現象が生じるという問題を有 することになる。したがって、この発明の課題は、高い 周波数域におけるリップル除去率を悪化させないように することにある。

[0007]

【課題を解決するための手段】上記課題の解決を図るた め、請求項1の発明では、出力として用いられる出力P MOS-FETとグランドとの間に接続された2つの抵 抗の中間電圧を基準電圧と比較する比較増幅部を有し、 入力電源または出力をその電源とするアンプ回路からな り、前記出力PMOS-FETを制御することにより所 望の出力電圧を得るシリーズレギュレータ電源回路にお いて、前記アンプ回路の出力段を、フィルタを備えた定 電流源と増幅用トランジスタとから構成し、前記フィル タを備えた定電流源により入力電源に含まれる高周波リ ップル成分をアンプ回路の出力に通過させることを特徴 とする。この請求項1の発明においては、前記定電流源 の一方を前記電源に接続し、グランドに接続された前記 増幅用トランジスタの定電流負荷として用いることがで きる(請求項2の発明)。

【0008】上記請求項2の発明においては、前記定電 流源を、ドレインに基準電流源が接続される第1のPM OS-FETと、この第1PMOS-FETのドレイン とゲートとの接続点に接続されるローパスフィルタと、 このローパスフィルタの出力に接続される第2のPMO S-FETとから構成し、前記第1,第2の各PMOS - FETのソースを電源にそれぞれ接続することができ (請求項3の発明)、この請求項3の発明においては、 前記ローパスフィルタを抵抗とコンデンサとから構成す ることができ(請求項4の発明)、この請求項4の発明 においては、前記ローパスフィルタを構成する抵抗をM

$$i_{01} \propto v_{rip} / \{1 + j (\omega/\omega_1)\}$$
 ... (3)
 $i_{02} \propto v_{rip} \cdot j (\omega/\omega_2) / \{1 + j (\omega/\omega_2)\}$... (4)

【0011】電流 i₀₁, i₀₂を合成したときに、周波数 の依存性を持たないように、角周波数ω2 や出力段内部 のトランジスタのパラメータを決定する。この段の定電 流源で生じるリップル電圧は図2の一点破線12とな り、これと点線11とを合成した実線13が出力段のリ

$$v_{gs} = -(v_{rip} - K \cdot v_0) = 0$$

となり、電源リップルの影響を受けない。なお、Kは一 定の定数である。

るため、最終的にはシリーズレギュレータの出力に電源 のリップル成分が出ることになり、リップル除去率が悪 化することになる。つまり、出カトランジスタM0のゲ ート・ソース間電圧の交流成分 vgs0 は、次の(2)式 のように表わされる。

$$\langle \{1+i (\omega/\omega_1)\} \cdots (2)$$

OS-FETのMOS抵抗を含むアクティブ抵抗とする ことができる(請求項5の発明)。さらに、上記請求項 1~5のいずれかの発明においては、前記定電流源と並 列に、基準電流源に比例した電流を流す定電流バイアス 回路を接続し、その電流の総和を前記増幅用トランジス タのバイアス電流とすることができる(請求項6の発

[0009]

【発明の実施の形態】図1はこの発明の第1の実施の形 態としての基本的な回路構成を示す。1はアンプ回路 (演算増幅器)、2は基準電圧回路、3はフィルタ付き 定電流源を持つ出力段、4は出力コンデンサ、5は入力 電源VINまたはシリーズレギュレータ出力VOUTが 入力されるアンプ回路電源端子である。前述のように、 演算増幅器などの一般のアンプ回路では、電源のリップ ル成分vrip とアンプ回路の出力におけるリップル成分 vo との関係は、上記(1)式のようになる。したがっ て、角周波数ω1 より低い周波数では一定のリップル成 分がアンプ回路より出力されるが、ω1 より高い周波数 ではリップル成分が減衰して出力される。この様子を図

【0010】ところで、図1では出力段の定電流源に、 電源の高い周波数を通過させるためのフィルタ付きのバ イアス回路3を用いることにより、高い周波数の電源リ ップルをアンプ回路の出力に畳み込むようにしている。 このバイアス回路3を付加することにより、次の

(3), (4) 式で示すような電流成分 i ol, i o2が発 生する。電流 iolは出力段 3のリップル電圧 vrip に対 する電流成分であり、電流 io2はリップル電圧 vrip に 対するバイアス回路の電流成分である。また、バイアス 回路のフィルタ特性である-3 d B 角周波数を、ω2 と する。

【0012】図3はこの発明の第2の実施の形態を示す 回路図である。6は比較増幅段、7は定電流源、8は増 幅用トランジスタで、その他は図1と同様である。同図 からも明らかなように、前段には差動増幅器などを含む 比較増幅段6を有し、出力段には比較増幅段6の出力に 接続される増幅用トランジスタ8の一方をグランドに接 続し、フィルタを含む定電流源7の一方を電源5に、そ の他方を増幅用トランジスタ8に接続することにより、 高い周波数の電源リップルをアンプ回路1の出力に畳み 込むものである。

【0013】図4はこの発明の第3の実施の形態を示す 回路図である。これは、図3の定電流源7を具体化した もので、PMOS-FETであるM14, M15とロー パスフィルタ9よりなる定電流負荷とする。ローパスフ ィルタ9の-3dB周波数をω2とすると、M14の出 力電流 i 14は次の (3) 式のようになる。 gml4 はM1 4のトランス(伝達)コンダクタンスである。

$$i_{14} = g_{m14} \cdot v_{rip} \cdot j (\omega/\omega_2) / \{1 + j (\omega/\omega_2)\}$$

 $g_{m14} = \{2 \mu_0 C_{0X} (W/L)_{14} \cdot l_{14}\}^{1/2} \cdots (6)$

なお、μ0 、COXは半導体プロセスから決まるパラメー タであり、W、LはPMOS-FETのチャンネル幅、 チャンネル長を示す。また、I14はM14の直流バイア ス電流である。

【0014】図5はこの発明の第4の実施の形態を示す 回路図である。これは、定電流源7のローパスフィルタ

$$R10 \cdot C10 = 1/2 \cdot 1/\omega_1$$

$$g_{m13} = g_{m14}$$

【0015】図6はこの発明の第5の実施の形態を示す 回路図である。これは、図5の抵抗R10をPMOS-FETであるM16のMOS抵抗で置き換えたもので、 PMOS-FETのM17, M18はM16のバイアス 回路となる。増幅段の角周波数ω1 が低い場合、R1 0, C10の時定数を大きくしなければならず、集積回 路に組み込むコンデンサの容量はおおよそ数10pFと 限られるため、抵抗R10を大きくしなければならな い。抵抗の占める面積は抵抗値によって大きくなるた め、MOS抵抗に置き換えることで、より小さい面積で

$$R 1 0 \cdot C 1 0 = 1/2 \cdot 1/\omega_1$$

$$(W/L)_{14}/(W/L)_{13}=(I_{14}+I_{19})/I_{14}$$
 ...

[0017]

【発明の効果】この発明によれば、低い周波数から高い 周波数までの電源リップルのリップル除去率を高めたシ リーズレギュレータ電源回路を実現し、デジタルシステ ムや無線システムに使われる電池やスイッチング電源な ど、高い周波数のリップルを含んだ電圧源を入力源とす るシステムにおける安定化電源として効果を発揮するこ とができる。特に、高い周波数におけるリップル除去率 を、出力段のフィルタ特性により変えることができるの で、所望のリップル除去率の周波数特性を得るための設 計が容易となる。また、図5から図7の例に示すよう に、出力段をすべてPMOS-FETで構成することに より、半導体プロセスのばらつきによる回路特性のばら つきを最小限にすることが可能となる利点が得られる。

【図面の簡単な説明】

【図1】この発明の第1の実施の形態を示す回路構成図

【図2】この発明の原理説明図である。

【図3】この発明の第2の実施の形態を示す回路図であ

を抵抗R10とコンデンサC10で構成したもので、こ のフィルタの-3dB周波数 ω_2 は、 $\omega_2 = 1/(R1)$ 0·C10) となる。M13からM15のPMOS-F ETとR10, C10からなる出力段の出力v0 をv0 $= v_{rip}$ とするための条件は次のようになる。

髙い抵抗値を実現できるようにしている。

【0016】図7はこの発明の第6の実施の形態を示す 回路図である。これは、図3~図6の出力段の定電流源 7と並列に、PMOS-FETのM19, M20からな る定電流パイアス回路10を設けた構成となっている。 このように構成されたアンプ回路の出力 v0 が、 v0 = vrip となるための条件は次のようになる。なお、 114, 119はPMOS-FETのM14, M19のバイ アス電流を示す。

【図4】この発明の第3の実施の形態を示す回路図であ

【図5】この発明の第4の実施の形態を示す回路図であ

【図6】この発明の第5の実施の形態を示す回路図であ

【図7】この発明の第6の実施の形態を示す回路図であ る.

【図8】提案済回路を示す回路構成図である。 【符号の説明】

1…アンプ回路(演算増幅器)、2…基準電圧回路、3 …出力段、4…出力コンデンサ、5…電源端子、6…比 較増幅段、7…フィルタ付き定電流源、8…増幅用トラ ンジスタ、9…ローパスフィルタ、10…定電流バイア ス回路、11…従来のアンプ回路のリップル出力周波数 特性、12…出力段のフィルタ付き定電流源バイアス回 路のリップル出力周波数特性、13…この発明に用いた アンプ回路のリップル出力周波数特性。

【図7】

[図8]

フロントページの続き

(72)発明者 代市 幸司

千葉県野田市山崎2641 東京理科大学内

(72)発明者 関根 慶太郎

千葉県野田市山崎2641 東京理科大学内

Fターム(参考) 5H410 BB04 CC02 DD02 EA11 EB16

EB37 FF03 FF25

5H730 AA00 AS01 BB00 DD04 FD01

FF01