- a) $R \subseteq T$ proves it wrong then you are done
- 2.) Given sets A and B under what condition does A-B=B-A need to prove that $A=B \iff A-B=B-A$

starting with
$$A=B\to A-B=B-A$$
 if $A=B,$ then $A-B=B-A=\emptyset$

continuing with $A = B \leftarrow A - B = B - A$

PBC if $A \neq B$ then $A \not\subseteq B \lor B \not\subseteq A$ then $\exists x \in A \mid x \notin B \text{ OR } \exists x \in B \mid x \notin A$ but by definition of difference of sets:

$$A - B = \{x \mid x \in A \land x \notin B\}$$
$$B - A = \{x \mid x \in B \land x \notin A\}$$

if
$$A - B = B - A$$

then it means that $\exists x \in A \mid x \not\in B$

because of the equality but the same ${\bf x}$ must exists in B not in A we can see that no element satisfies this condition

We can then conclude that

 $A-B=\emptyset$ $B-A=\emptyset$ proving also that $\forall x\in A\mid x\in B\ \forall x\in B\mid x\in A$ therefor proving the equality

- i. Define $T\subseteq A2$ st $XTy\iff (xRyANDxSY)$ show T is refl sym and transitive to prove it
 - 4. Given poset (x, smaller Eq) prove or disprove (a) x ξ = y iff y ξ =-1 x
 - $R-1 = (b,a) (a,b) \in R$ $(y,x) \in j = so it mean <math>(x,y) \in j = -1$
 - (b) $x := y \iff y := x (2,2)$ will prove it false;