Airline Data Case Study Metadata

Author - Soumya Bhandari

1. Project Purpose

The objective of this case study is to analyze Q1 2019 U.S. domestic airline data to identify the top 5 round-trip routes for investment. The analysis includes route profitability, operational performance, break-even modeling, and KPI tracking. The codebase supports a data-driven investment decision using reproducible Python functions and visual analytics.

2. Input Datasets

- Flights.csv: Flight-level operational data including delays, distance, occupancy
- Tickets.csv: Ticket fares and passenger estimates for each route
- Airport_Codes.csv: Airport metadata including IATA codes and size classification

3. Functional Modules

- load_data() Loads CSVs into pandas DataFrames.
- data_quality_checks() Performs null, duplicate, outlier, and data type validation across
 datasets.
- **clean_all_data()** Filters Q1 data, removes canceled/invalid flights, handles airport types and distances.
- calculate_busiest_routes() Identifies top 10 busiest round-trip routes by flight count.
- calculate_profitability() Estimates profit based on ticket, baggage revenue and cost structure.
- **recommend_top_investment_routes()** Ranks routes using a weighted scoring system based on multiple KPIs.
- **calculate_break_even_roundtrips()** Computes the number of trips to recover a \$90M aircraft cost.

5. Metadata: New Columns created during the analysis

Key / Column Name	Description
ROUTE	A directional route string in format ORIGIN-DEST
ROUNDTRIP_ROUTE	A sorted combination of ORIGIN and DEST to represent bidirectional round trips
Passengers	Estimated number of passengers on a flight (OCCUPANCY * 200)
Ticket_Revenue	Revenue from ticket sales (Passengers * Ticket Price)
Baggage_Revenue	Revenue from baggage fees (Passengers * 50% * \$35)
Total_Revenue	Total revenue from a flight = Ticket + Baggage revenue
Variable_Cost	Cost based on distance (DISTANCE * [\$8 fuel + \$1.18 maintenance)
Airport_Cost	Fixed airport usage costs based on airport size (Medium=\$5K, Large=\$10K per leg)
Delay_Cost	Penalty for delays beyond 15 minutes (\$75 per extra minute of DEP or ARR delay)
Total_Cost	Sum of all costs: Variable + Airport + Delay
Profit	Net income per flight: Total_Revenue - Total_Cost
ON_TIME_DEP	Binary flag (1/0) showing if a flight departed within 15 minutes of schedule.
ON_TIME_ARR	Binary flag (1/0) showing if a flight arrived within 15 minutes of schedule
BreakEven_RoundTrips	Number of round trips required to recover \$90M aircraft cost (90M / Profit per trip)
score	Composite score used for route recommendation, weighted by KPIs
TOTAL_ROUNDTRIP_FLIGHTS	Total number of round-trip flights on the route (one round trip = two one-way flights).
AVG_DELAY_COST	Average cost per flight incurred due to departure and arrival delays.
AVG_REVENUE_TO_COST_RATIO	Average ratio of revenue to cost per flight. Indicates how efficiently revenue is being generated.
ON_TIME_DEP_PCT	Percentage of flights on the route that departed on time.
ON_TIME_ARR_PCT	Percentage of flights on the route that arrived on time.
COMBINED_ON_TIME_PCT	Average of departure and arrival punctuality rates, reflecting overall on-time reliability.

5. Outputs & Visuals

- Data Quality checks Code
- Data Cleaning code Code + EDA
- Top 10 Busiest Routes Table + Horizontal bar plot
- Top 10 Most Profitable Routes Table + Bar and Pie plots (also has 2 other graphs on the cost and revenue)
- Investment Recommendations Table + Bubble chart
- Break-Even Analysis Table + Horizontal bar plot
- KPI recommendation for dashboard

6. Business Assumptions

- Each plane services one round trip route
- Aircraft cost = \$90 million (one-time fixed investment)
- Max capacity = 200 passengers per flight; 50% check bags
- Delay cost = \$75/minute after first 15 minutes
- Baggage fee = \$35 per bag
- Routes > 3000 miles are excluded (domestic filter)

7. Completion Summary

- Data Load & Quality Checks
- Data Cleaning & Processing
- Exploratory Data Analysis on Clean Data
- Busiest Route Identification
- Revenue & Cost Modeling
- Scoring-based Recommendations
- Break-even Profitability Analysis
- KPI Recommendations