Authors: Rafaela Lorena da Silva Santos, Eduardo Freitas Moreira, Danilo Boscolo, Lucas A. Garibaldi e Raíssa Silva Fernandes

Objective

General objective: Model a possible cause and effect mechanism by which landscape heterogeneity influences populations and communities of bees with different characteristics

Methods

NetLogo world layers

- Closed square world
- Each patch measuring 10m x 10m
- Each side 10km
- Grid Cells:
 - Floral feature (NDVI: 2 layers or more)
 - Type of environment (land use map)

NetLogo mobile agents

- Mobile agents are incorporated into the model representing 1 bee profile:
 - Bee size: DIT

 field data (20 individuals of each species)
 - Small bees: 2mm
 - Average bees: 4mm
 - Big bees: 6mm

Agent behavior

- Bees move from the patch of origin collecting floral resources until they reach their maximum resource carrying limit or their maximum flight distance.
- When one of these conditions is reached, the bee returns and deposits the energy balance (energy collected energy consumed) in the nest.

Model simulations

1.620.000.000 simulated bees

BEEFOR-ABM: an agent-based simulation to model bee foraging movement in heterogeneous landscapes

Rafaela Lorena da Silva Santos Eduardo Freitas Moreira Raíssa Silva Fernandes Lucas Alejandro Garibaldi Danilo Boscolo

ABM predictive power

Results and Discussion

Results and Discussion

- Greater resource variability penalizes smaller bees due to lower probability of finding resources within their foraging range
- Contrary pattern for larger bees
- Landscape complexity favors species richness
- Complementation and supplementation effects

Results and Discussion

- Greater resource variability penalizes smaller bees due to lower probability of finding resources within their foraging range
- Contrary pattern for larger bees
- Landscape complexity favors species richness
- Complementation and supplementation effects

Thank

you!

rafaelalorena@gmail.com