MARKSCHEME

November 2000

MATHEMATICS

Higher Level

Paper 1

1.
$$\begin{vmatrix} k-4 & 3 \\ -2 & k+1 \end{vmatrix} = 0$$

$$\Rightarrow (k-4)(k+1)+6=0$$

$$\Rightarrow k^2 - 3k + 2 = 0$$

$$\Rightarrow (k-2)(k-1) = 0$$

$$\Rightarrow k = 2 \text{ or } k = 1$$
(A1) (C3)

[3 marks]

[3 marks]

2.
$$(f \circ g): x \mapsto x^3 + 1$$
 (M1)
 $(f \circ g)^{-1}: x \mapsto (x-1)^{1/3}$ (M1)(A1) (C3)

3. $f(x) = x^{2} \ln x$ $f'(x) = 2x \ln x + x^{2} \left(\frac{1}{x}\right)$ $= 2x \ln x + x$ $f': x \mapsto 2x \ln x + x$ (A1) (C3)

[3 marks]

4. (a) Required percentage =
$$25\%$$
 (A1) (C1)
(b) Required percentage = 75% (A1) (C1)
(c) Mean height of the male students is ≈ 172 cm ± 1 cm (A1) (C1)

[3 marks]

5.
$$x \sin(x^2) = 0$$
 when $x^2 = 0 (+k\pi, k \in \mathbb{Z})$, i.e. $x = 0 (+\sqrt{k\pi})$ (A1)
The required area $= \int_0^{\sqrt{\pi}} x \sin(x^2) dx$ (M1)
 $= 1$ (G1) (C3)

OR

Area =
$$\int_0^{\sqrt{\pi}} x \sin(x^2) dx$$

= $-\frac{1}{2} \left[\cos(x^2) \right]_0^{\sqrt{\pi}}$ (M1)
= $-\frac{1}{2} (-1 - 1)$
= 1 (A1) (C3)

(M1)

6. Method 1: (Venn diagram)

$$P(A \cap B) = P(A)P(B)$$
 (M1)
 $0.3 = 0.6 \times P(B)$
 $P(B) = 0.5$

Therefore,
$$P(A \cup B) = 0.8$$
 (A1)

Method 2:
$$P(A \cap B') = P(A) - P(A \cap B)$$

$$0.3 = P(A) - 0.3$$

$$P(A) = 0.6$$

$$P(A \cap B) = P(A)P(B) \text{ since } A, B \text{ are independent}$$
(A1)

$$0.3 = 0.6 \times P(B)$$

$$P(B) = 0.5$$

$$P(A + B) = P(A + B) \cdot P(A + B)$$
(A1)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.6 + 0.5 - 0.3
= 0.8 (A1) (C3)

[3 marks]

7. Arithmetic progression: 85, 78, 71, ...

$$u_1 = 85, d = -7$$

 $u_n = u_1 + (n-1)d = 85 - 7(n-1) = 92 - 7n$ (M1)
Thus, $u_n > 0$ provided $n \le 13$.

The required sum =
$$S_{13} = \frac{13}{2}(u_1 + u_{13}) = \frac{13}{2}(85 + 1)$$
. (M1)
= 559 (A1)

$$8. \qquad f(x) = \frac{1}{2}\sin 2x + \cos x$$

$$f'(x) = \cos 2x - \sin x \tag{M1}$$

$$=1-2\sin^2 x-\sin x$$

$$= (1 + \sin x)(1 - 2\sin x)$$
 (M1)

= 0 when
$$\sin x = -1$$
 or $\frac{1}{2}$ (C3)

[3 marks]

9. (a)
$$M = \begin{pmatrix} \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} \\ \sin\frac{\pi}{3} & \cos\frac{\pi}{3} \end{pmatrix}$$
 (M1)

M represents a rotation about the origin through $\frac{\pi}{3}$ or 60°. (A1)

(b) The smallest value of
$$n$$
 is 6. (A1)

[3 marks]

10.
$$(1+ki)^2 + k(1+ki) + 5 = 0$$
 (M1)

$$1 + 2k\mathbf{i} - k^2 + k + k^2\mathbf{i} + 5 = 0$$

$$(6+k-k^2)+ki(2+k)=0$$

Thus,
$$k(2+k) = 0$$
 and $6+k-k^2 = 0$ (M1)

This gives
$$k = -2$$
 (A1)

11. Method 1: Let the angle be
$$\alpha$$
, then $\cos \alpha = \frac{a \cdot b}{|a||b||}$

$$= \frac{2 \sin \theta \cos \theta}{(1)(1)}$$

$$= \sin 2\theta$$
(M1)

$$=\cos\left(\frac{\pi}{2}-2\theta\right)$$

$$\alpha = \frac{\pi}{2} - 2\theta \text{ or } \alpha = \arccos(\sin 2\theta)$$
 (C3)

Method 2:

Q is the image of P under a reflection in y = x (M1)

$$\theta + \frac{\alpha}{2} = \frac{\pi}{4}$$

$$\alpha = \frac{\pi}{2} - 2\theta$$
(A1)
(C3)

[3 marks]

12. Method 1:
$$T_{r+1} = {7 \choose r} x^{7-r} \left(\frac{1}{ax^2}\right)^r = {7 \choose r} \left(\frac{1}{a}\right)^r x^{7-3r}$$
 (M1)

$$r = 2 \tag{A1}$$

Now,
$$\binom{7}{2} \frac{1}{a^2} = \frac{7}{3}$$

 $\Rightarrow \qquad a^2 = 9$
 $\Rightarrow \qquad a = \pm 3$.

$$\Rightarrow a^2 = 9$$

$$\Rightarrow a = \pm 3.$$
(A1) (C3)

Method 2:
$$\left(x + \frac{1}{ax^2}\right)^7 = x^7 \left(1 + \frac{1}{ax^3}\right)^7$$
 (M1)

Coefficient of
$$x = {7 \choose 2} \left(\frac{1}{a}\right)^2$$
 (A1)

Thus,
$$\frac{21}{a^2} = \frac{7}{3}$$
 which leads to $a = \pm 3$ (A1)

13. **Method 1:**
$$y = 4 - x^2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -2x = m \text{ when } x = -\frac{m}{2}$$
 (M1)

Thus,
$$\left(-\frac{m}{2}, 4 - \frac{m^2}{4}\right)$$
 lies on $y = mx + 5$. (R1)

Then,
$$4 - \frac{m^2}{4} = -\frac{m^2}{2} + 5$$
, so $m^2 = 4$

$$m = \pm 2. \tag{A1}$$

Method 2: For intersection:
$$mx + 5 = 4 - x^2$$
 or $x^2 + mx + 1 = 0$. (M1)

For tangency: discriminant =
$$0$$
 (M1)

Thus,
$$m^2 - 4 = 0$$

 $m = \pm 2$ (A1) (C3)

[3 marks]

14.
$$y^2 = x^3 \text{ so } 2y \frac{dy}{dx} = 3x^2$$
.

At P(1,1),
$$\frac{dy}{dx} = \frac{3}{2}$$
. (M1)

The tangent is
$$3x - 2y = 1$$
, giving $Q = \left(\frac{1}{3}, 0\right)$ and $R = \left(0, -\frac{1}{2}\right)$. (A1)

Therefore, PQ : QR =
$$\frac{2}{3}$$
 : $\frac{1}{3}$ or 1: $\frac{1}{2}$ = 2:1. (A1)

[3 marks]

15.
$$\frac{u_1}{1-r} = \frac{27}{2}$$
 and $u_1 + u_1 r + u_1 r^2 = 13$ (M1)

$$\frac{27}{2}(1-r)(1+r+r^2) = 13$$
(M1)

$$1-r^3 = \frac{26}{27}$$
 giving $r = \frac{1}{3}$

Therefore,
$$u_1 = 9$$
. (A1)

16. Note: Award full marks for exact answers or answers given to three significant figures.

Method 1:

Using the sine rule:
$$\frac{\sin C}{6} = \frac{\sin 30^{\circ}}{3\sqrt{2}}$$
$$\sin C = \frac{1}{\sqrt{2}}$$
$$C = 45^{\circ}, 135^{\circ}.$$
 (M1)

Again,
$$\frac{3\sqrt{2}}{\sin 30^\circ} = \frac{BC}{\sin 105^\circ}$$
 or $\frac{BC}{\sin 15^\circ}$

Thus, BC =
$$6\sqrt{2} \sin 105^{\circ}$$
 or $6\sqrt{2} \sin 15^{\circ}$
BC = 8.20 cm or BC = 2.20 cm. (A1)(A1) (C3)

Method 2:

Using the cosine rule:
$$AC^2 = 6^2 + BC^2 - 2(6)(BC)\cos 30^\circ$$

 $18 = 36 + BC^2 - 6\sqrt{3}BC$ (M1)

Therefore, $BC^2 - (6\sqrt{3})BC + 18 = 0$

Therefore, $(BC - 3\sqrt{3})^2 = 27 - 18 = 9$

Therefore, BC = $3\sqrt{3} \pm 3$, *i.e.* BC = 8.20 cm or BC = 2.20 cm. (A1)(A1) (C3)

Method 3:

In
$$\triangle ABD$$
, $AD = 3$ cm, (A1)

and BD = $\sqrt{27} = 3\sqrt{3}$ cm.

In
$$\triangle AC_1D$$
, $C_1D=3$ (A1)

Also, $C_2D = 3$.

Therefore BC =
$$(3\sqrt{3} \pm 3)$$
 cm, *i.e.* BC = 8.20 cm or BC = 2.20 cm. (A1)

Note: If only one answer is given, award a maximum of (M1)(A1).

17.
$$xy \frac{dy}{dx} = 1 + y^2 \Rightarrow \int \frac{y}{1 + y^2} dy = \int \frac{1}{x} dx$$
 (M1)

$$\frac{1}{2}\ln(1+y^2) = \ln x + \ln c \tag{M1}$$

$$1 + y^2 = kx^2$$
 $(k = c^2)$

 $1+y^2 = kx^2$ $(k = c^2)$ y = 0 when x = 2, and so 1 = 4k

Thus,
$$1+y^2 = \frac{1}{4}x^2$$
 or $x^2 - 4y^2 = 4$. (A1)

[3 marks]

18. Let
$$z = x + iy, x, y \in \mathbb{R}$$
.

Then,
$$|z+16|^2 = 16|z+1|^2$$

 $\Rightarrow (x+16)^2 + y^2 = 16\{(x+1)^2 + y^2\}$
 $\Rightarrow x^2 + 32x + 256 + y^2 = 16x^2 + 32x + 16 + 16y^2$
(M1)

$$\Rightarrow x^2 + 32x + 256 + y^2 = 16x^2 + 32x + 16 + 16y^2$$

$$\Rightarrow 15x^2 + 15y^2 = 240$$

$$\Rightarrow \quad x^2 + y^2 = 16 \tag{A1}$$

Therefore,
$$|z|=4$$
. (A1)

[3 marks]

19. The first student can receive x coins in
$$\binom{6}{x}$$
 ways, $1 \le x \le 5$. (M1)

[The second student then receives the rest.]

Therefore, the number of ways =
$$\binom{6}{1} + \binom{6}{2} + \binom{6}{3} + \binom{6}{4} + \binom{6}{5}$$
 (A1)
= $2^6 - 2$
= 62 . (A1)

[3 marks]

20.

(A1)(A1)(A1)(C3)

Note: Award (A1) for maxima and minima, (A1) for symmetry, (A1) for zeros.