Eigen-10

Title

Eigenvalue analysis of a skewed cantilever plate

Description

A skewed cantilever plate is analyzed to determine the first 2 natural frequencies. Determine the natural frequencies and modes.

Structural geometry and analysis model

MODEL

Analysis Type

3-D eigenvalue analysis

Unit System

m, N

Dimension

Length 1 m Width 1 m

Element

Plate element

Material

Modulus of elasticity $E = 2.1 \times 10^5 \text{ MPa}$ Poisson's ratio v = 0.3Weight density $\gamma = 7.80 \text{ tf/m}^3$

Sectional Property

Rectangular cross-section: width 1 m, thickness 0.01 m

Boundary Condition

Node 1~11: Constrain all DOFs

Analysis Case

Eigenvalue analysis

Results

EIGEN VALUE AN ALYSIS						
Mode	Frequ	iency	Period	Tolerance		
No	(rad/sec)	(cycle/sec)	(sec)	Tolerance		
1	54,239348	8,632460	0,115842	3,0915e-016		
2	131.878739	20,989153	0.047644	2,0918e-016		

the first 2 natural frequencies ($\alpha = 0^{\circ}$)

EIGENVALUE ANALYSIS					
	Mode	Frequ	iency	Period	Tolerance
	No	(rad/sec)	(cycle/sec)	(sec)	Tolerance
	1	55,960117	8,906329	0,112280	1,1617e-015
	2	134,769863	21,449290	0,046622	1,0015e-015

the first 2 natural frequencies ($\alpha = 15^{\circ}$)

EIGENVALUE ANALYSIS					
	Mode	Frequency		Period	Tolerance
	No	(rad/sec)	(cycle/sec)	(sec)	Tolerance
	1	61,247760	9,747884	0,102586	0,0000e+000
	2	145,570464	23,168259	0.043163	1.0301e-015

the first 2 natural frequencies ($\alpha = 30^{\circ}$)

EIGENVALUE ANALYSIS					
	Mode	Frequ	iency	Period	Tolerance
	No	(rad/sec)	(cycle/sec)	(sec)	Tolerance
	1	70,112587	11,158765	0,089616	0,0000e+000
	2	173.283105	27.578863	0.036260	3.6347e-016

the first 2 natural frequencies ($\alpha = 45^{\circ}$)

the first 2 mode shapes ($\alpha = 0$ °)

the first 2 mode shapes ($\alpha = 15^{\circ}$)

the first 2 mode shapes ($\alpha = 30^{\circ}$)

the first 2 mode shapes ($\alpha = 45^{\circ}$)

Comparison of Results

Unit: Hz

Frequency						
Skew Angle	Mode	Theoretical	MIDAS/Civil			
. 00	1 st	8.727	8.632			
$\alpha = 0^{\circ}$	2^{nd}	21.304	20.989			
n. 150	1 st	8.999	8.906			
$\alpha = 15^{\circ}$	2^{nd}	22.171	21.449			
200	1 st	9.899	9.748			
$\alpha = 30^{\circ}$	2^{nd}	25.465	23.168			
a. 450	1 st	11.150	11.159			
$\alpha = 45^{\circ}$	2^{nd}	27.000	27.579			

References

Afnor (1990). "Guide de Validation des Progiciels de Calcul de Structures", SFM, Afnor Technique, France.

Barton, M. V. (1951). "Vibration of Rectangular and Skew Cantilever Plates" J. Appl. Mech. 18, 129-134.