

COGS 17 section A02

structure & function of cells in the nervous system

week 2 guiding questions

section resources repo

reminders

- homework 2 due wednesday @ 11:59 PM
- homework 3 due next **monday** (4/21) @ 11:59 PM
- midterm 1 next tuesday!! (range: week 1-3)
 - o during class time, 125 points

basic subcellular features

phospholipid bilayer

Neuron membrane

© 1992 Wadsworth, Inc.

neurons ≠ glia !!

neurons

- = soma (cell body) + axon (wrapped in myelin sheath) + dendrites
- specialized for information transfer
- via processes
 - o **dendrites:** *incoming* message receiver
 - branching from soma
 - receptor sites interact with NT
 - o **axon:** *outgoing* message sender
 - ends in presynaptic terminals → NT released
- via membrane (selective permeability)
 - controls the cell's electrochemical state via ion gates/channels

neurons ≠ glia!!

glia ("glue") cells

- 10x as many in brain and 1/10 size compared to neurons
- not involved in information transfer; supports structural & chemical integrity of neurons and nervous system

astrocytes: nutrients & cleaning, form BBB, recycle NTs **microglia:** immune cells, remove toxins, repair neural damage

schwann cells: myelination in PNS

oligodendrocytes: myelination in CNS

ependymal cells: line ventricles, secrete CSF

radial glia: migration and growth of neurons during

development

important concepts before we jump into nerve impulses...

nature always seeks balance: gradients naturally move toward equilibrium

- concentration gradient
 - molecules move from high to low concentration (diffusion)
- electrical gradient
 - like charges (+/+, -/-) repel, opposite (+/-) charges attract (electrostatic pressure)

in the neuron

- ion (charged particles) distribution inside vs outside cell is controlled
 - recall BBB selective permeability of membranes
- membrane potential
 - o difference in *electrical charge* across membrane
 - measured in millivolts (mV)
- key ions: sodium (Na⁺), potassium (K⁺), calcium (Ca²⁺), chloride (Cl⁻)

resting potential

typical neuron: -70 mV (more positive outside)

established by sodium/potassium pump

- actively transport 3 Na⁺ out and 2 K⁺ in
 - Na⁺ concentration outside : inside = 10:1 → wants to enter cell but membrane impermeable to charged ions
 - K⁺ concentration outside : inside = 1:10 → wants to exit cell but blocked by electrical gradient (outside is positive)

other ions and factors

- closed Ca²⁺ gates keep Ca²⁺ out of the cell
- negative proteins inside cell too large to get out
- Cl⁻ stays outside, attracted to positive environment

result

• neuron is **polarized** (strong electrochemical difference across membrane)

action potential = **depolarization** of neuron \rightarrow cell fires

propagation process

electricals stimulation from presynaptic neuron → NTs release
 → NTs bind to postsynaptic neuron → trigger action potential at axon hillock (where axon joins soma)

mechanism (depolarization occurs *locally* throughout the entire axon)

- Na+ channels open \rightarrow *influx* of Na+ depolarizes membrane to +50 mV
 - o adjacent Na⁺ gates open down axon, previous gates close
- at peak, K^+ gates open (as Na+ gates close) \rightarrow efflux of K^+ repolarizes membrane
- when depolarization reaches axon terminal
 - \circ Ca²⁺ channels open at axon terminal and Ca²⁺ enters \rightarrow NTs release
- restoration
 - \circ K⁺ outflow makes membrane positive outside (hyperpolarize) \rightarrow K⁺ gates start closing
 - o repolarization: Na⁺/K⁺ pump actively restores resting potential to -70 mV (3 Na⁺ out / 2 K⁺ in)
 - Ca²⁺ pump actively removes Ca²⁺ from terminal
 - o cells cannot fire during repolarization **refractory period**

action potential

all-or-none law

- action potential is always the same size (amplitude) and speed (velocity) regardless of stimulus intensity
- stimulus intensity depends on
 - frequency of firing (spikes/second)
 - o pattern of firing (timing between spikes)

myelination

- speeds up action potentials
- **myelin:** insulating sheath of glial cells wrapped around axons
 - o oligodendrocytes in CNS; schwann cells in PNS
- **electrical conduction** travels fast along myelinated segments but weakens fast too
 - solution: nodes of ranvier (rechargers)
 - unmyelinated gaps of axon
 - electric signal boosted by slow ionic conduction
 - moves fast under next myelinated segment (no ions moving here)
 - "jumping" from node to node –saltatory conduction
- multiple sclerosis
 - neurodegenerative disease
 - o degraded myelin → signal decay quickly and action potentials fail
 - no Na+ gates under previously sheathed axon

graded potentials – variable signal strength

neurons don't always need action potential to trigger NT release!

- vary in amplitude depends on stimulus strength
- proportional to NT release more input = more output
- NOT ALL-OR-NONE, electrical signal scales with intensity

examples

- receptor cells (eg. retina, cochlea) can react to outside world with graded potential
 - o strong stimulus → more NT released vice versa
- lateral inhibitor cells
 - suppress neighboring cells to strengthen signal of center cell
 - cell more excited → stronger neighboring inhibition
- local neurons
 - o rapid electrical conduction can cause NT release
 - o small size with no axon/dendrites & nearby cell communication → signal doesn't degrade over short distance

the synapse = presynaptic cell + synaptic cleft + postsynaptic cell

presynaptic cell releases NT into synaptic cleft via
exocytosis

- NTs are packaged in vesicles
- depolarization → Ca²⁺ channels open and Ca²⁺ enters
 → vesicle fuses w/ presynaptic cellular membrane →
 vesicle releases NT into cleft

following exocytosis, NTs *passively* diffuse across cleft and bind to specific receptors on postsynaptic cell

after binding:

- NT detaches from receptors and float around
- NTs deactivated (to prevent continuous stimulation)
 - by enzymes / glial cells / presynaptic cell reuptake

polarity of postsynaptic cells

EPSP (excitatory postsynaptic potential)

- increases cell's likelihood of releasing NTs → more likely to fire
- cell becomes *hypo*(less)polarized, usually by Na⁺ entering cell

IPSP (inhibitory postsynaptic potential)

- decreases cell's likelihood of releasing NTs \rightarrow less likely to fire
- cell becomes *hyper*(more)polarized, usually by K⁺ exiting or Cl⁻ entering

summation

- neuron's response = total effect of all EPSPs + IPSPs
 - threshold reached → action potential
- temporal summation: one or more cells repeatedly stimulate another in rapid succession
- spatial summation: multiple cells converge on single location of cell at the same time

^{*} note: some neurons can fire spontaneously without NT input (typically in graded potentials) – spontaneous activity

synaptic mechanisms

ionotropic receptors

- directly affects ion gates
- rapid and short-lived responses
- best for sending info about rapidly changing inputs

metabotropic receptors

- cause metabolic changes in postsynaptic cell
- NT triggers G-protein activation and second messenger to open ion channel
- slower but longer-lasting effects

neurotransmitters & their functions

Neurotransmitter	Functions
Acetycholine (Ach)	- All neuro-muscular junctions - Cortical arousal
GABA	- Suppress cortical activity - Regulate anxiety
Glutamate	- Most common NT - Learning - Perception - Schizophrenia
Serotonin (5HT)	- Often acts as a neuromodulator - Mood, sleep, perception
Dopamine	- Reinforcement - Attention - Motor control
Norepinephrine	- Arousal - Attention
Epinephrine (adrenalin)	- Arousal - Attention
Substance P	- Pain (damage, itch, extreme temperatures, etc)
Endorphins	- Counter effects of Substance P
Hormones	- Testosterone, estrogen, cortisol, oxytocin, endorphins, etc

agonists vs antagonists

agonist: *increases* effect of an NT **antagonist:** *decreases* effect of an NT

examples

- acetylcholinesterase breaks down ACh in the cleft
 - AChE blocker = ACh <u>agonist</u> (blocks breakdown, prolongs effect)
 - o choline reuptake blocker = ACh <u>antagonist</u> (reduces ACh synthesis)
- serotonin (5-HT) reuptake
 - Prozac (antidepressant): blocks reuptake 5-HT <u>agonist</u>
 - MAO: converts 5-HT to its inactive form 5-HT antagonist
- can also act in presynaptic cell to affect NT release
 - o antagonists (eg. Reserpine) prevent NT packaging in vesicles
 - o agonists (eg. black widow spider venom) cause massive NT release

other factors affecting function

- 1. DNA sequence activation can initiate protein production for structural/chemical changes in cell
- 2. receptor site plasticity
 - a. repeated activity → more dendritic spines & more receptors
 - b. some drugs block receptors by mimicking NTs
- 3. NT transport and production efficiency
 - a. some NTs take hours/days to replenish
 - i. transported to terminal by kinesin proteins along microtubules
 - b. some NTs (eg. Ach) are produced directly in terminal and recycled efficiently
- 4. some precursors for NTs are dependent on diet

exception: presynaptic receptor sites

- autoreceptors
 - o some axons have receptors for their own NT
 - activation triggers *negative* feedback (inhibitory)
- axoaxonic synapses
 - one axon terminal regulates another terminal's NT release
 - o presynaptic terminal may have receptor sites for inhibitory/excitatory NT from another cell

kahoot

https://play.kahoot.it/v2/oauth2/authenticated?code=RfHr2c9joYUwmZFKwpto_xGsRSAU3 FJD5F3nlPu9upY&state=fc19a26822df483ebde3361e94ebd9df