STROKE PREDICTION ANALYSIS

Volha Puzikava June, 2022

Overview

Stroke Statistics:

- the 2nd leading cause of death globally
- responsible for 11% of total death
- the leading cause of serious long-term disability

Every:

- 40 seconds someone gets a stroke in the US
- 3.5 minutes someone dies of stroke in the US
- year 795,000 people in the US get a stroke

THIS PROJECT:

- 1. predicts if patients will develop stroke in their lifetime
- 2. identifies key factors leading to stroke

Outline

- Business Problem
- Data
- Data Preparation and Exploration
- Modeling
- Evaluation
- Recommendations
- Conclusions

Business Problem

The World Health Organization wants to more frequently monitor people prone to stroke in order to prevent the illness incidences.

Goals:

- 1. analyze the stroke dataset;
- 2. identify the key factors that likely increase the occurrence of stroke;
- 3. provide predictive recommendations and suggestions.

Data

- was taken from <u>kaggle website</u>
- provided 11 clinical features for predicting stroke effect:
 - □ gender,
 □ age,
 □ hypertension,
 □ marital status,
 □ work type,
 □ average glucose level
 □ residence type,
 □ body mass index
- contained information about 5,110 patients

Data Preparation and Exploration

- 1. The stroke incidences were compared among clinical features. Factors that influence on the stroke occurrence:
 - age (average is 67)
 - hypertension and/or heart disease
 - high glucose level

- marital	status	(married)
-----------	--------	-----------

- work type (self-employed, private or government jobs)
- smoking status (smoke or smoked in the

past)

	age	hypertension	heart_disease	avg_glucose_level
stroke				
0	41.971545	0.088871	0.047110	104.795513
1	67.728193	0.265060	0.188755	132.544739

Data Preparation and Exploration Cont'd

- 2. Missing values were replaced with the column mean value
- 3. All categorical variables were transformed into numbers
- 4. The strength of the relationship between the variables was visualized (AKA correlation)

Modeling

- Dependent variable was assigned to "stroke" column; all other features served as predictors
- The data was split into training set and testing set to estimate how well the learned model will generalize to new data
- The dataset was imbalanced, so synthetic data was generated in the training set to oversample a minority target class (SMOTE-NC)

Percentages: 0 0.951272 1 0.048728

Modeling Cont'd

- The data was represented at the same scale to avoid "leaking" of information from one set to another
- Ten different machine learning models were built, tuned and run
- Models ability to correctly predict the positives out of actual positives (recall score) were checked
- The model with the highest recall score was selected

Evaluation

- the best model is naive bayes model
- it has the highest recall score of 98%

BUT:

- it classifies 68% of patients as prone to stroke
- is 37% accurate

Recommendations

- pay more attention to people who:
 - over 45 years old, married,
 - hypertension,
 - heart disease,
 - high glucose level,
- self-employed,
- smoke,
- smoked in the past.

2. closely monitor 68% of the patients in order to successfully treat 98% of the ones who will develop stroke

Conclusions

- The model should be utilized only if there is a special kind of treatment or particular monitoring practices developed for the patients prone to get stroke.
- If the stakeholder changes the direction of the research and sets different goals the model should be changed

Next Step:

• gather more information: family history, diet, presence of diabetes, alcohol consumption, etc.

Thank you!

Email: helga.mikel@gmail.com

GitHub: @VolhaP87

LinkedIn: linkedin.com/in/volha-puzikava-2319294a