05_Scheduling of Periodic Tasks

05_Scheduling of Periodic Tasks

1. Basic Concepts

- 1.1. Task Model
- 1.2. Target
- 1.3. Hyperperiod

2. Schedulability Tests

2.1. Introduction

Necessary Test:

Sufficient Test:

Exact

2.2. Utilization

Definition

Important Bounds

Judgement

2.3. Critical Instant

3. Some intuitive yet not efficient Algorithms

- 3.1. Proportional Share Algorithm
- 3.2. Work-and-Sleep Algorithm

4. Timeline Scheduling (Smart Round Robin)

Main Idea

Property:

Important Issues

Implementation

5. Priority-based Scheduling

- 5.1. Basic Idea
- 5.2. Rate Monotonic
- 5.3. Deadline Monotonic
- 5.4. Earliest Deadline First

6. Guarantee Tests

- 6.1. LUB
- 6.2. Guarantee Tests for RM
 - 6.2.1. Test 1 (sufficient)
 - 6.2.2. Proof of Test 1
 - 6.2.3. RM Test with Hyperbolic Bound
 - 6.2.4. Properties
 - 6.2.5. RM for Harmonic Periods
- 6.3. Guarantee Check of DM

A too pessimistic method

Response Time Analysis (RTA)

6.4. Guarantee Tests for EDF

An exact test (for $D_i=T_i$)

Test for $D_i < T_i$

7. Summary

- 7.1. Summary For Tests
- 7.2. RM VS EDF

When Permanent Overload Happens

- How to schedule periodic Tasks in 1 Processor?
 - Basic Concepts and Definitions
 - The Schedulability Problem
 - Algorithms that do not work!
 - Time Sharing Algorithms

1. Basic Concepts

1.1. Task Model

Consider a computing system that needs to execute a set Γ of n periodic real-time tasks:

$$\Gamma = \{ au_1, au_2, \dots au_n\}$$

Each task τ_i is characterized by:

 C_i : worst-case computation time

 T_i : activation period

 D_i : relative deadline

 Φ_i : initial arrival time (phase)

1.2. Target

We want to ensure that for each task i:

• Each job k will be activated at:

$$a_{ik} = \Phi_i + (k-1)T_i$$

• Each job k will be completed before its deadline

$$d_{ik} = a_{ik} + D_i$$

1.3. Hyperperiod

- The minimum time interval after which the schedule repeats
- If the tasks are activated at t=0, then it is given by the least common multiple (lcm) of their periods

$$H = \operatorname{lcm}\left(T_1, T_2, \dots, T_n\right)$$

2. Schedulability Tests

2.1. Introduction

A task set Γ is **feasible** if each task i=1,...,n in Γ can be executed for C_i time units in every interval $[a_{ik}, d_{ik}]$, k=1, 2,....

Necessary Test:

If the task set **does not pass** the test, then it is **certainly not schedulable** by this algorithm.

Sufficient Test:

If the task set **passes the test**, then it is **certainly schedulable** by this algorithm.

Exact

Both Necessary and Sufficient

- If the task set passes the test, then it is certainly schedulable by this algorithm.
- If the task set does not pass the test, then it is certainly not schedulable

2.2. Utilization

Definition

The **task utilization** factor U_i is the fraction of processor time spent in the execution of task i:

$$U_i = rac{C_i}{T_i}$$

The **processor utilization** factor U is the fraction of processor time spent in the execution of the given task set:

$$U = \sum_i U_i$$

Important Bounds

Utilization depends on task set Γ and the algorithm A:

$$U_{ub}(\Gamma, A)$$

Upper bound of processor utilization for task set Γ under a given algorithm A

• if we increase further the computation time of any task, it becomes infeasible

$$U_{lub}(A) = \min_{\Gamma} U_{ub}(\Gamma,A)$$

For a given algorithm A, it is the **minimum of the utilization factors** over **all** task sets that fully utilize the processor

 any task set whose utilization is less than or equal to this bound, is schedulable by A

Judgement

• U > 1: no algorithm can schedule the task set: (H for hyperperiod)

$$\mathrm{U}>1\Rightarrow\mathrm{HU}>\mathrm{H}\Rightarrow\sum_{i=1}^{n}rac{C_{i}}{T_{i}}H=\sum_{i=1}^{n}rac{H}{T_{i}}C_{i}=\sum_{i=1}^{n}m_{i}C_{i}>H$$

- $U(\Gamma,A) \leq U_{\mathrm{lub}}(A)$: set Γ can be scheduled with Algorithm A
- $U_{lub}(A) < U(\Gamma,A) \le 1$: cannot really tell! Depends on the relation of the task periods, computation times, etc

2.3. Critical Instant

- **Critical instant** of a task = arrival time inducing the **largest response time** R.
- This occurs when the task arrives concurrently with all higher priority tasks

3. Some intuitive yet not efficient Algorithms

3.1. Proportional Share Algorithm

Rules:

- Divide the time into slots of length: $\Delta = G.C.D.(T_1, T_2, \dots T_n)$
- In each slot serve each task for time proportional to its utilization

$$\delta_i = U_i \cdot \Delta$$

Property:

- If $\sum_i U_i \leq 1$, then it will be feasible
- But if Δ is very small, **overhead can be very high** (too many context switch)
- If switching induces delay, it may infeasible

3.2. Work-and-Sleep Algorithm

Rules:

- ullet A task is executed for C_i units and suspends for T_i – C_i units
- Preemption is used when a higher-priority task wakes

	Task	C_{i}	T_{i}	Sleep time
	A	1	5	4
	В	2	10	8
	C	3	20	17
A (1/5) B (2/10) 8	10	4	15	20 25 30
	11	12	 	21 22
C (3/20)	11 	13	, 	21 23 31

Property:

- easy to implement
- **starves** the low priority tasks.

4. Timeline Scheduling (Smart Round Robin)

Main Idea

- Time is divided into slots of equal length. for the task set Γ , we define:
 - the small cycle (Δ) : $\Delta = GCD(Periods)$
 - the large cycle (T): T = LCM(Periods)
- Each task is statically allocated to a slot, the algorithm does not care about how to map the tasks to slots

task	C _i	T _i
A	10 ms	25 ms
В	10 ms	50 ms
С	10 ms	100 ms

GCD (25,50,100)=**25**

LCM (25,50,100)=100

The schedule is feasible if: $C_A + C_B \leq \Delta$ $C_A + C_C \leq \Delta$

Property:

- Advantages:
 - Simple to implement
 - consistently low jitter
- Disadvantages:

- Difficulties handling overloading
- Sensitivity to application changes

Important Issues

- 1. If any task does not finish on time, then we
 - either terminate it, endangering inconsistent system state
 - wait for it to finish, endangering a domino effect
- 2. If the compute time of a task changes, we need to reschedule
- 3. If the frequency of a task changes, the impact is even worse

Implementation

- program a timer to interrupt with period equal to minor cycle
- call the tasks in the order given in the major cycle by inserting a synch point at the start of each minor cycle

```
#define
           MTNOR
                      25
                                  //minor cycle = 25ms
     initialize timer(MINOR);//interrupt every 25ms
                                                                             <u> tim</u>er
     while (1) {
                                                                                       minor
                           // block until interrupt
           sync();
                                                                                       cycle
           function A();
                                                                             <u> tim</u>er
           function_B();
                                                                                           major
                           // block until interrupt
           sync();
                                                                                           cycle
           function A();
                                                                            <u> tim</u>er
           function C();
                            // block until interrupt
           sync();
           function A();
                                                                            🖊 timer
           function B();
           sync();
                            // block until interrupt
           function A();
```

5. Priority-based Scheduling

5.1. Basic Idea

- 1. **Assign priorities** to tasks based on their timing constraints
- 2. **Verify** the schedule feasibility using analytical techniques.
- 3. Execute tasks on a priority-based kernel.

5.2. Rate Monotonic

Assumption

- C_i and T_i are constant for every task i.
- The relative deadline is equal to task period: $D_i = T_i$
- Tasks are preemptable;
- Context switching and preemption induce zero overheads;
- Tasks are independent:
 - No precedence relations, no resource constraints or blocking on I/O.

Rule:

Each task is assigned a fixed priority proportional to its rate (=inverse of period)

Properties

RM is **optimal** among **all fixed priority** algorithms (w.r.t. feasibility):

- If there is a fixed priority assignment which leads to a feasible schedule, then the RM schedule is also feasible.
- If a task set is not schedulable by RM, then it cannot be scheduled by any fixed priority assignment

RM **Optimality**

We try to prove: If a set is schedulable by some priority assignment, then it is also schedulable by RM

Consider this example where priorities are: Task 1 > Task 2

- ullet In this scenario, the schedule is feasible if and only $C_1+C_2\leq T_1$
- We will show that this condition is sufficient for the feasibility with RM

One point to be explained here: in general, it should be $FC_1 + C_2 < \min(..., ...)$, However, it can be easily proved that (by the relations between C_1 and $T_2 - FT_1$):

- when case 1: $T_2 C_1 > FT_1$,
- when case 2: $T_2 C_1 < FT_1$

- Case 1 means in the less in T1 part, can complete 1 more C1
- Case 2 means in the less in T1 part, can not complete 1 more C1
- Then we can from the graph found right two inequation, then we need to prove it

5.3. Deadline Monotonic

Assumption

- Extension to Tasks with D<T
- We drop the assumption that D = T

Rule

Similar with Rate Monotonic, but for relative deadlines smaller than tasks period

• At any time-instant, execute the task with **the shortest relative deadline**.

It is a **preemptive** algorithm.

Property

- Static method
- DM is **optimal** (wrt **feasibility**) among all **fixed priority algorithms**.

5.4. Earliest Deadline First

Rule

• Each new job k of each task i, gets priority inversely proportional to its absolute deadline (so it is dynamic)

$$P_{ik} = rac{1}{d_{ik}} \quad d_{ik} = r_{ik} + D_i$$

- A **preemptive** policy, where at each time we execute the task with the smaller absolute deadline (sooner-to-expire)
- Works equally well for aperiodic and for periodic tasks.
- EDF assigns priorities to each job as it is generated.

Optimality of EDF

• EDF is **optimal among all** scheduling algorithms.

- If there exists a feasible schedule for a task set Γ , then EDF will generate a feasible schedule.
- If Γ is not schedulable by EDF, then it cannot be scheduled by any algorithm.

6. Guarantee Tests

6.1. LUB

• Different task set yields a different upper bound: if we increase any C, we will have an infeasible schedule

 U_{lub} is a value on "all" Test sets. But we cannot enumerate all test sets, we will introduce some methods to calculate U_{lub} with some analyze ways.

6.2. Guarantee Tests for RM

6.2.1. Test 1 (sufficient)

$$U_{lub}^{RM}=n\left(2^{rac{1}{n}}-1
ight),\quad n o\infty\Rightarrow U_{lub}^{RM} o \ln 2=0.69$$

The task set is schedulable if

$$U_p = \sum_{n=1}^n rac{C_i}{T_i} \leq U_{lub}^{RM} = n \left(2^{rac{1}{n}} - 1
ight)$$

6.2.2. Proof of Test 1

- Assume the **worst-case scenario** for the task set; simultaneous arrivals, critical instants of tasks;
- Increase all C values to fully utilize the processor;
- Compute the upper bound U_{ub} ;
- Minimize U_{ub} with respect to all remaining variables (yields Least U_{ub}).

$$C_2^{\text{max}} = T_2 - (F+1)C_1$$

$$U_{ub} = \frac{C_1}{T_1} + \frac{T_2 - (F+1)C_1}{T_2} = 1 + \frac{C_1}{T_2} \left[\frac{T_2}{T_1} - (F+1) \right]$$

• Case 2:
$$C_1 \ge T_2 - FT_1$$
 where $F = \left| \frac{T_2}{T_1} \right|$

$$F = \left[\frac{T_2}{T_1} \right]$$

$$C_2^{\max} = F(T_1 - C_1)$$

$$U_{ub} = \frac{C_1}{T_1} + \frac{F(T_1 - C_1)}{T_2} = F \frac{T_1}{T_2} + \frac{C_1}{T_2} \left(\frac{T_2}{T_1} - F \right)$$

This can be seen as a function of C₁

 $\mathbf{r} \mathbf{1}_1$

$$U_{ub} = F \frac{T_I}{T_2} + \frac{C_I}{T_2} \left(\frac{T_2}{T_I} - F \right)$$

• In both cases the min bound is obtained when:

$$C_1 = T_2 - FT_1$$
 and $C_2^{\text{max}} = T_2 - (F+1)C_1$

And we get:

$$U_{\text{lub}} = U_{ub}|_{C_1 = T_2 - FT_1} = \frac{T_1}{T_2} \left[F + \left(\frac{T_2}{T_1} - F \right)^2 \right]$$

- What else can we optimize to find the LB?
 - Increases with F; hence we set the minimum possible (F=1)
 - And we can further minimize wrt $k=T_2/T_1$

$$U_{\text{lub}} = \frac{1 + (k-1)^2}{k} \qquad \frac{dU_{\text{lub}}}{dk} = \frac{k^2 - 2}{k^2}$$

$$\frac{dU/dk = 0 \quad \text{for}}{k = \sqrt{2}}$$

$$U_{\text{lub}} = 2(\sqrt{2} - 1) \approx 0.83$$

• In the first line, the second equation meet the "max utility", the first equation meet "min bound"

Above case is an special case for:

6.2.3. RM Test with Hyperbolic Bound

If Γ is a set of n periodic tasks, where each task τ_i , induces processor utilization U_i , Γ is schedulable with RM if:

$$\Pi_{i=1}^{\mathrm{n}}\left(\mathrm{U}_{i}+1
ight)\leq2$$

6.2.4. Properties

All these two methods are pessimistic, that means, they are **sufficient test**. If some test set not pass, it does not mean it is not schedullable.

Comparison of the two tests using the utilization space

8

0.9

 τ_1

10

18

0.8

0.05

10

18

Additional Example #1

- Yes, because
$$U = 0.85 \le 1$$

- Does the task set pass the LL test?
 - No, because $U = 0.85 > 2(2^{1/2} 1) \approx 0.83$
- Does it pass the HB test?

- Yes, because
$$(0.8 + 1)(0.05 + 1) = 1.89 < 2$$

- Is the task set schedulable by RM?
 - Yes, because it passes the HB test (sufficient test).

Necessary Test Sufficient LL Test Sufficient HB Test
$$\sum_{i=1}^n U_i \le 1 \qquad \sum_{i=1}^n U_i \le n(2^{\frac{1}{n}}-1) \qquad \prod_{i=1}^n (U_i+1) \le 2$$

6.2.5. RM for Harmonic Periods

RM is optimal if the task periods are harmonic (i.e., each period divides exactly the larger ones).

e.g. Harmonic set: $\{T_1 = 4, T_2 = 8, T_3 = 16\}$

In this case the condition $U \leq 1$ is an exact test

6.3. Guarantee Check of DM

A too pessimistic method

$$U_p = \sum_{n=1}^n rac{C_i}{D_i} \leq U_{lub}^{RM} = n\left(2^{rac{1}{n}}-1
ight)$$

• The opportunity to use the T– D time is ignored

Using C_i/T_i would be also incorrect, as task i cannot execute after D_i

$$U_p = \frac{2}{3} + \frac{3}{6} = 1.16 > 1$$

Response Time Analysis (RTA)

Main Idea

Focus on the critical instances (synchronous arrivals)

- Assume, w.l.o.g., that task **indexes are ordered by increasing relative** deadlines.
- Compute the longest response time for each task i, as

WCRT: the maximum response time among all jobs of the task

• Interference on au_i by high priority tasks

$$I_i = \sum_{k=1}^{i-1} \lceil rac{R_i}{T_k}
ceil C_k$$

But: But when scheduling, we would not know R_i at the first time

• So we will use recursion way "fixed point iteration"

$$R_i = C_i + I_I = C_i + \sum_{k=1}^{i-1} \lceil rac{R_i}{T_k}
ceil C_k$$

- 1. Define as X, the WCRT of Task i, which of course is larger than C_i ;
- 2. Calculate the interference Y that Task i will experience in X;
- 3. If X is smaller than Y+ C_i , then our estimation was wrong, and we replace X with Y+ C_i . And we return to Step 2.
- 4. If X is larger than Y+ C_i , then our fixed iteration terminates.

It is because, when X is larger than $Y+C_i$, in the next iteration, the value will have no change, so we can directly use $Y+C_i$ as next X

Note: I think, if we start directly from D_i , we can get result after only 1 iteration

Property

RTA is an exact test: sufficient and necessary

6.4. Guarantee Tests for EDF

An exact test (for $D_i = T_i$)

A set of periodic tasks, with $D_i = T_i$, for every i, is schedulable **if and only if** it holds:

$$U \leq U_{lub}^{EDF} = 1$$

Proof

Necessity (only if)

that $U_{arGamma}>1$ means no algorithm can schedule task set Γ

Sufficiency (if)

With the condition that the EDF is the optimal wrt feasibility

If schedulable with proportional sharing (which is true if $U \le 1$), then it is also schedulable with EDF (since EDF is optimal)

Test for $D_i < T_i$

In any interval $[t_1, t_2]$ the **computational demand** $g(t_1, t_2)$ of the task set must be no greater than the available time:

$$g(t_1, t_2) \le (t_2 - t_1), \quad \forall t_1, t_2 > 0$$

When tasks are activated simultaneously, we can rewrite this as

$$g(0,L) \leq L, \quad \forall L > 0$$

Calculation

$$g\left(t_{1},t_{2}
ight)=\sum_{i=1}^{n}g_{i}\left(t_{1},t_{2}
ight)=\sum_{i=1}^{n}\eta_{i}\left(t_{1},t_{2}
ight)C_{i}\leq\left(t_{2}-t_{1}
ight)$$

When cocurrent activations:

Fasten Calculation

1. Check only when we have a task deadline (g is a step function, i.e., **remains constant between task deadlines**.)

$$g\left(0,d_{k}
ight) < d_{k} \Rightarrow g(0,L) < L, \quad orall L: d_{k} \leq L < d_{k+1}$$

- 2. If all tasks are activated at t=0, we need only to check for $L \leq H$ (Hyperperiod)
- 3. We can further limit the checkpoints by using a refined function that <u>upperbounds G</u>

<u>Upper-bounds G</u>

$$egin{aligned} g(0,L) &= \sum_{i=1}^n \left\lfloor rac{L+T_i-D_i}{T_i}
ight
floor C_i \leq \sum_{i=1}^n \left(rac{L+T_i-D_i}{T_i}
ight) C_i \Rightarrow \ g(0,L) &\leq \sum_{i=1}^n \left(T_i-D_i
ight) U_i + L \cdot U riangleq G(0,L) \end{aligned}$$

If we know that G(0,L) is smaller than L (for some values of L), then we know that g(0,L) is also smaller than L.

However, G(0,L) is not always smaller than L. We can find an L^{st}

Synchronous Periodic Case Theorem:

A set of synchronous periodic tasks with relative deadlines less than or equal to periods can be scheduled by EDF if and only if

$$g(0,L) \leq L, \quad orall L \in D = \left\{ d_k \mid d_k \leq \min \left\{ H, \max \left\{ D_{\max}, L^*
ight\}
ight\}$$

where

H: Hyperperiod

 D_{max} : the maximum relative deadline in the task set L^* : the parameter related to function G

7. Summary

7.1. Summary For Tests

	$D_i = T_i$	$D_i \leq T_i$
RM	Sufficient tests; O(n) complexity LL: $\sum U_i \leq n(2^{1/n}-1)$ HB: $\Pi(U_i+1) \leq 2$ Exact test; pseudo-poly. RTA Exact test; O(n) compl. $\sum U_i \leq 1$ (for harmonic periods)	Exact test; pseudo-poly. Response Time Analysis (RTA) $R_i \leq D_i, \forall i$ $R_i = C_i + \sum_{k=1}^{i-1} \left\lceil \frac{R_i}{T_k} \right\rceil C_k$
EDF	Exact test; O(n) complexity $\sum U_i \leq 1$	Exact test; pseudo-poly. Processor Demand Analysis $g(0,L) \leq L, \qquad \forall L>0$ (Special criteria can be used to reduce complexity)

7.2. RM VS EDF

- RM is easier to implement as it suffices to have a kernel that can handle fixed priorities.
- EDF presumes more sophisticated priority-handling, but induces fewer preemptions and fewer context switches.
- EDF achieves higher utilization (up to 1). RM achieves smaller utilization unless special conditions hold.
- EDF is able to handle overloads in a more predictable way.

When Permanent Overload Happens

Permanent Overload: When the total utilization value increases (and stays there)

RM under permanent overload

- High priority tasks are executed at the necessary rate;
- Low priority tasks are blocked.

EDF under permanent overload

- All tasks are executed at a slower rate;
- No task is blocked.