衣 1: 矢空时见明		
Rn	R^n	向量类型
dae_f	$R^n \times R^n \times R \mapsto R^n$	微分代数方程类型 $f(x,u,t)$
opt_int	$R^n \times R^n \times R \mapsto R^n$	拉格朗日目标型
opt_phi	$R^n \times R \times R^n \times R \mapsto R^n$	拉格朗日目标型
Rn_f	$R \mapsto R^n$	向量函数 f(t)

表 1: 类型的说明

- 抽象类统一各种方程求解方法。
- 优化问题中需要调用微分方程求解器和一般的优化器。

表 2: 函数的说明

Legendre::P_n(int n)	n 次多项式的系数
Legendre::Initial_Guess(int i,int m);	切比雪夫点初值猜测
Legendre::Legendre_Root(int m);	勒让德多项式的零点
Legendre:: Legendre_Wk(int m);	高斯勒让德求积系数

1 求解器使用说明

类 Euler_Ode_Sol 继承自 DAE_Solver 类 DAE_Solver 计划设计一个代数微分方程求解器 类 Euler_Ode_Sol 是线性微分方程求解器 dx/dt=Ax+Bu

- 第一步 Euler_Ode_Sol(dimx,dimu,t0,tf, 分点数);//构造函数
- 第二步 Euler_Ode_Sol.set(Rmn tA,Rmn tB,Rn_f tu,Rn x0);//矩阵 输入函数初值
- 第三步 Euler_Ode_Sol.sol();//求解

double* Legendre::P_n(int n); 计算 n 次勒让德多项式的系数 double Poly_Sub(double x,double* a_n,int N); 秦九韶算法计算多项式的值