LOAN DOCUMENT

		рното	GRAPH THIS	SHEET	
NUMBER	LEVEL				INVENTORY
DTIC ACCESSION NUMBER	Plan	OCUMENT IDENTIFICATION		pionenting S	ystem
		DISTRIBUT Approved Distribu		c Release	A N D
			DISTRIBUTIO	ON STATEMENT	L
DISTRIBUTION AVAILABILITY AND/OR SPECIAL DISTRIBUTION STAMP				DATE ACC	E W I T H C A R R E
				DATER	ETURNED
20001122	035				
DATE RECEIVE				REGISTERED OR CI	RTIFIED NUMBER
PHO'	TOGRAPH THIS	S SHEET AND RETUR	N TO DTIC-FE	DAC	
DTIC JUN 90 70A		DOCUMENT PROCESSING SE		PREVIOUS STOCK IS	EDITIONS MAY BE USED UNTIL EXCHAUSTED.

DAUG CATTLE FIRESCED &

Work Plan for Expanded Bioventing System Aircraft Ground Equipment (AGE) Maintenance Area IRP Site 11

BEALE AIR FORCE BASE CALIFORNIA

Prepared for

Air Force Center for Environmental Excellence
Brooks Air Force Base
San Antonio, Texas
and
9 CES/CEVR

Beale Air Force Base, California

December 1995

Prepared by

PARSONS ENGINEERING SCIENCE, INC.

1301 MARINA VILLAGE PARKWAY, ALAMEDA, CALIFORNIA 94501 (510) 769-0100 OFFICES IN PRINCIPAL CITIES

DEFENSE TECHNICAL INFORMATION CENTER REQUEST FOR SCIENTIFIC AND TECHNICAL REPORTS

	REQUEST FOR SCIENTIFIC AND	TECHN	IICAL REPO	RTS
Tit	AFCEE Collection	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- Date Company of the
L.,	harantantantantantan kananan k	******************	188 198 1 1 186 1 a 15 250 co - 1800 / c - (2) 2 a 19 1 1 4 9 > c -	
1.	Report Availability (Please check one box)		imber of	2b. Forwarding Date
128	This report is available. Complete sections 2a - 2f.	Copies	Forwarded	
	This report is not available. Complete section 3.		each	July /2001
Żc.	Distribution Statement (Please check ONE box)	<u> </u>		Jugaros
Dol. des	O Directive 5230.24, "Distribution Statements on Technical Documents cribed briefly below. Technical documents MUST be assigned a distri	s." 18 Mar E bution star	97, contains séver tement.	n distribution statements, as
×	DISTRIBUTION STATEMENT A: Approved for public re	lease. D	istribution is u	nlimited.
	DISTRIBUTION STATEMENT B: Distribution authorized	to U.S.	Government A	Agencies only,
П	DISTRIBUTION STATEMENT C: Distribution authorized contractors.	i to U.S.	Government A	Agencies and their
	DISTRIBUTION STATEMENT D: Distribution authorized DoD contractors only.	I to U.S.	Department of	f Defense (DoD) and U.S
П	DISTRIBUTION STATEMENT E: Distribution authorized components only.	l to U.S.	Department of	f Defense (DoD)
	DISTRIBUTION STATEMENT F: Further dissemination indicated below or by higher authority.	only as o	lirected by the	controlling DoD office
	DISTRIBUTION STATEMENT X: Distribution authorized individuals or enterprises eligible to obtain export-control Directive 5230.25, Withholding of Unclassified Technical	lled techi Data fro	nical data in a m Public Disc	ccordance with DoD losure, 6 Nov 84.
	Reason For the Above Distribution Statement (in accordance)			,
Z e.	Controlling Office		Date of Distremental	ibution Statement
	HQ AFLEE			2000
3.	This report is NOT forwarded for the following reason	s. (Pleas	e check appropri	ato box)
	It was previously forwarded to DTIC on(c	iate) and	the AD numbe	r is
	It will be published at a later date. Enter approximate da		•	· · · · · · · · · · · · · · · · · · ·
	In accordance with the provisions of DoD Directive 3200 because:		*********	ument is not supplied
		***************************************	6639 >34953485485484444444	***************************************
	abangana man			***************************************
Prir	nt or Type Name	-		
10	Signa Signa	ture) —
Tele	ephone	un,	(For DTIC Use Of	y a
21	ephone 10-536-1431		AQ Number	01-01-0321

WORK PLAN FOR EXPANDED BIOVENTING SYSTEM AIRCRAFT GROUND EQUIPMENT (AGE) MAINTENANCE AREA IRP SITE 11

at

BEALE AIR FORCE BASE, CALIFORNIA

Prepared for

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE BROOKS AIR FORCE BASE SAN ANTONIO, TEXAS

and

9 CES/CEVR BEALE AIR FORCE BASE, CALIFORNIA

DECEMBER 1995

Prepared by

PARSONS ENGINEERING SCIENCE, INC.
PLANNING • DESIGN • CONSTRUCTION MANAGEMENT
1301 MARINA VILLAGE PARKWAY, ALAMEDA, CA 94501 • 510/769-0100
OFFICES IN PRINCIPAL CITIES
726876.20142/ALA-25-04

TABLE OF CONTENTS

WORK PLAN FOR EXPANDED BIOVENTING SYSTEM AIRCRAFT GROUND EQUIPMENT (AGE) MAINTENANCE AREA IRP SITE 11

		Page
SECTION 1	INTRODUCTION	1-1
SECTION 2	SITE BACKGROUND 2.1 Site Location and History 2.2 Site Geology 2.3 Site Contamination	2-1 2-1
SECTION 3	PILOT TEST DESIGN AND CONSTRUCTION 3.1 Test Configuration	3-1 3-1 3-3
SECTION 4	EXPANDED BIOVENTING SYSTEM. 4.1 Objective	4-1 4-2 4-2 4-5 4-5 4-5 4-6 4-7 4-7
50 BASE SI	IPPORT REQUIREMENTS	5_1

TABLE OF CONTENTS (continued)

6.0 KEY POIN	NTS OF CONTACT	6-1
7.0 REFEREN	ICES	7-1
APPENDIX A	SOIL BORING LOG FOR 11L009SB	
APPENDIX B	SUMMARY OF RESULTS FROM PREVIOUS SITE INVESTIGATIONS	

LIST OF FIGURES

Figure	Page
1.1	Vicinity Map1-3
1.2	Bioventing Removal Action and The Air Force IRP1-4
2.1	Site Location Map2-2
2.2	Site Plan 2-3
2.3	Previous Soil Boring, Shallow Soil Sampling, and Monitoring Well Locations
2.4	Soil Vapor Concentration Contours for TPH and TCE2-10
3.1	As-Built VW, VMP, and Blower Locations
4.1	Existing and Proposed VWs and VMPs4-3
4.2	Construction Details for Proposed VWs and VMPs4-4
	LIST OF TABLES
<u>Table</u>	. Page
2.1	Soil, Soil Vapor, and Groundwater Analytical Data, Maximum Detected Concentrations
2.2	Summary of Soil Vapor Analytical Data Collected in 1994 at Locations within the Influence of the Proposed Bioventing system2-8
2.3	Summary of Soil Analytical Data Collected in 1994 at Locations within the Influence of the Proposed Bioventing system2-9
3.1	Respiration and Biodegradation Rates
3.2	Initial and One-Year Soil and Soil Gas Analytical Results

ALA-25-04.R0 12/11/95 iv

INTRODUCTION

INTRODUCTION

This Work Plan presents the scope for an expanded bioventing system for *in situ* treatment of fuel-contaminated soils at the Aircraft Ground Equipment (AGE) Maintenance Area at Beale Air Force Base (AFB), Yuba County, California. The AGE Maintenance Area has been designated as Installation Restoration Program (IRP) Site 11. Beale AFB is located approximately 10 miles east of Marysville and 130 miles northeast of San Francisco (Figure 1.1). The proposed expanded system activities will be performed by Parsons Engineering Science, Inc. (Parsons ES) [formerly Engineering-Science, Inc. (ES)] for the Air Force Center for Environmental Excellence (AFCEE), Technology Transfer Division (ERT), under contract F41624-92-D-8036, Delivery Order 0017.

The primary objectives of the system upgrade are:

- To supply oxygen throughout the remaining contaminated soil volume;
- To continue *in situ* remediation of fuel-contaminated soils by aerobic biodegradation; and
- To sustain *in situ* biodegradation until fuel-contaminated soils within the unsaturated zone are remediated to regulatory-approved standards.

Additional background information on the development and recent success of the bioventing technology is found in the document entitled "Test Plan and Technical Protocol for a Field Treatability Test for Bioventing" (Hinchee et al 1992). This protocol document will also serve as the primary reference for well designs and detailed procedures which will be used during site testing and sampling.

The U.S. Air Force considers bioventing a proven source-removal technology for fuel-hydrocarbon contaminated soils and an appropriate implementation of the "presumptive remedy" approach and the USEPA's Superfund Accelerated Cleanup Model (SACM). Under these approaches, during site assessment activities early short-term actions, such as the proposed expanded bioventing system described in this report, are taken to reduce contaminant sources while further site investigations are continued and long-term remedial strategies are evaluated. These early short-term actions are limited to presumptive remedies that are known or proven to be effective at sites with similar characteristics to the site in question.

Following short-term removal actions, the site remedial decision is evaluated with additional investigation results, taking into account other contamination such as halogenated VOCs or

ALA-25-04.R0 12/11/95 1-1

groundwater contamination and any remaining residual fuel-hydrocarbon contamination. Figure 1.2 shows the integration of bioventing within the U.S. Air IRP. Law Environmental, Inc. (LAW) prepared a Site Characterization Summary Report describing extent of contamination (LAW 1995a) and have prepared a draft screening report of soil and groundwater remedial alternatives for Site 11 (LAW 1995b). One of the feasible cost effective options identified in the draft screening report was bioventing. The proposed expanded bioventing system described in this work plan is intended to be a short-term action to remediate the remaining fuel-hydrocarbon contamination in the soils. The groundwater affected by chlorinated hydrocarbons will be addressed as part of a multi-site evaluation in the flight line area.

A one-year bioventing pilot test was performed by Parsons ES at this site from May 1993 to June 1994 to determine if *in situ* bioventing would be a feasible remediation technology for the fuel-contaminated soils within the unsaturated zone in the source area (ES, 1993a; HQ AFCEE/ERT 1995). The radius of oxygen influence during the pilot test was estimated to be between approximately 55 and 70 feet from the vent well (VW). The air injection flow rate used during the pilot test was approximately 55 standard cubic feet per minute (scfm).

Following the one-year pilot test, confirmatory soil and soil vapor samples were collected for laboratory analysis. Based on laboratory results from soil and soil vapor samples taken from the most contaminated areas, a reduction in soil vapor concentrations between 91% and 99% occurred at the VW and the vapor monitoring points (VMPs). Results after one year of air injection showed order of magnitude reductions of total volatile hydrocarbons (TVH) and BTEX in soil vapor; however reductions in soil were not observed, probably due to a heterogeneous distribution of contamination and the inherent variability of *in situ* soil samples. The most recent oxygen-utilization measurements indicate fuel biodegradation is still progressing at a measurable rate at the site. The success of bioventing at this site supports the recommendation of an expanded bioventing system as the most economical approach of remediating the remaining fuel-contaminated soils within the source area.

Pilot test data and previous site investigation results have been used to design the expanded remediation system. The expanded system will employ a total of three air injection vent wells: one installed previously during the initial one-year pilot test (VW-1), and two additional VWs to provide oxygen throughout the significantly contaminated soils which remain at the site.

This document is divided into six sections including this introduction. Section 2 discusses the site background and history and previous investigation results. Section 3 summarizes the results of the one-year pilot test conducted at the former UST excavation area at Site 11. Section 4 identifies the areas to be influenced by the system upgrade, provides construction details of the expanded system, recommends a proven, cost-effective approach for the remediation of the remaining fuel-contaminated soils at the site, and briefly discusses other remedial actions conducted and proposed to be conducted at Site 11. Section 5 provides key points of contact at Beale AFB, AFCEE, and Parsons ES. Section 6 provides the references cited in this document. Appendix A and Appendix B contain summary information from previous site investigations.

ALA-25-04.R0 12/11/95 1-2

SITE BACKGROUND

SITE BACKGROUND

2.1 SITE LOCATION AND HISTORY

IRP Site 11 consists of Building 1225, three above ground storage tanks (ASTs), a small pump island, a backfilled underground storage tank (UST) excavation, paved vehicle parking areas, landscaped areas, and unlined drainage channels (Figures 2.1 and 2.2).

AGE maintenance activities have been performed at Site 11 over the past 30 years. These activities have included storage of gasoline, diesel, and JP-4 jet fuel in three former USTs connected to a fuel pump island. In addition, aircraft ground support vehicles have been stored and operated from the paved areas south of Building 1225 and these vehicles have been known to leak oil and hydraulic fluids.

In June 1992, three existing USTs were removed and replaced by the three ASTs shown on Figure 2.2. During soil excavation and UST removal operations, soil contamination was observed in the soil beneath all three USTs. Although soil around and beneath the tanks was removed, some contaminated soil was left in place. The maximum depth of the excavation was 30 feet below ground surface (bgs), and the excavated area was backfilled to the surface with clean fill. An initial bioventing pilot test was completed in the vicinity of the former UST area. A summary of results from this pilot test are presented in Section 3.

Previous investigations have adequately defined the extent of contamination (LAW, 1995a). The extent of subsurface soil contamination seems to be limited to the area near the oil/water separator, the unlined drainage channel east of Building 1225, the former UST location, and the areas surrounding the pump island. Groundwater at the site is also impacted. Appendix B contains tables from previous reports summarizing soil, soil vapor, and groundwater sampling results. Soil boring, shallow soil sampling, and groundwater monitoring well locations are shown on Figure 2.3.

2.2 SITE GEOLOGY

The uppermost geologic unit in the western portion of Beale AFB, including Site 11, has been mapped as the Laguna Formation. This formation consists of Plio-Pleistocene alluvial sequence of silt, sand, clay, and unsorted gravels. Sediments encountered during drilling completed during the fall of 1994 indicated a generalized sequence of interbedded silty sands and sandy gravels (LAW, 1995a).

ALA-25-04.R0 12/11/95 2-1

PARSONS ENGINEERING SCIENCE

PARSONS ENGINEERING SCIENCE

PARSONS ENGINEERING SCIENCE, INC.

Sampling conducted by Parsons ES during installation of the bioventing pilot test system indicated layers of gravelly sand, silts, and clays (ES, 1993a). The backfill materials for the former excavation is composed of silty clay with common gravel-sized fragments up to 2 inches in diameter. The base of this backfill material was found in VMP-1, VMP-2 and VW-1 at depths between 15 and 20 feet bgs.

Groundwater levels were measured between 95 and 102 feet bgs in site monitoring wells during field monitoring conducted in November 1994 (LAW, 1995a). The first groundwater flow zone is generally unconfined and is expected to flow in a southwest direction based on these groundwater levels. The first flow zone is composed of slightly silty sand and slightly gravely sand.

2.3 SITE CONTAMINATION

Subsurface soil contaminants at Site 11 are primarily fuel hydrocarbons, although low levels of chlorinated VOCs were detected in some prior investigations. Lead was detected in surface soil samples at concentrations ranging from 9 mg/kg to 200 mg/kg. The maximum detected concentrations in soil, soil vapor, and groundwater at the time of UST removal and for the two most recent sampling events are shown in Table 2.1. The soil vapor and soil analytical sampling results within the radius of the proposed bioventing system for the two most recent sampling events are shown in Table 2.2 and 2.3, respectively. Sampling locations are shown on Figure 2.3. Appendix B is a summary of the analytical results from previous site investigations for Site 11.

The maximum contaminant concentrations in soil were found in the vicinity of the pump island and former USTs. The maximum concentrations of fuel hydrocarbons were: 6,000 mg/kg total petroleum hydrocarbons as diesel (TPH-d), 860 mg/kg total petroleum hydrocarbons as gasoline (TPH-g), 2,900 mg/kg SR-71 jet fuel (JP-7), 1,200 mg/kg test grade jet fuel (JP-TS), 48 mg/kg benzene, and 721 mg/kg total BTEX.

Soil vapor samples were taken during the bioventing pilot test in the vicinity of the former USTs and, during the 1994 site characterization by Law Environmental, at locations throughout the site at depths between 3 and 10 feet bgs. Soil vapor concentration contours for TPH and TCE based on 1994 site characterization activities, are shown on Figure 2.4. The highest concentrations of TPH and benzene in soil vapor samples were found north and east of the pump island. These contours do not include any samples collected from the VMPs of the bioventing pilot test system, which was operating during the 1994 sampling activities. Soil vapor sampling results from the bioventing pilot test system are discussed in Section 3.

The concentrations of HVOCs detected during site characterization activities in the fall of 1994 are in the low part per million by volume (ppmv) range for vapor samples collected at Site 11. The highest concentration of HVOCs appears to be located at the eastern edge of the paved area near soil vapor sampling point 008VP. HVOCs are also found in the groundwater at Site 11 and upgradient and downgradient of the site, and appear to be a part of a larger area of affected sites along the flight line area.

ALA-25-04.R1 12/12/95

Based on photoionization detector (PID) readings and petroleum odors indicated on the soil boring log for soil boring 11L009SB (Appendix A) and based on the TPH vapor concentration contours shown on Figure 2.4, it is likely that significant soil contamination also exists north and west of the pump island. However, no soil samples for laboratory analysis were collected between the ground surface and 75 feet bgs in 11L009SB or at other borings in this area during the 1994 investigation. A possible source of contamination in these areas is runoff from the paved area in the vicinity of the pump island onto the unpaved area.

ALA-25-04.R0 12/11/95 2-6

TABLE 2.1 Soil, Soil Vapor, and Groundwater Analytical Data Maximum Detected Concentrations IRP Site 11 - AGE Maintenance Area Beale AFB, California

		Max. Detected	Sample	Depth
M edium	Analyte	Concentration	Location	(ft bgs)
Soil	TPH-g	860 mg/kg	UST Excavation Pit	10
Soil	TPH-d	6,000 mg/kg	UST Excavation Pit	30
Soil	JP-7	2,900 mg/kg	11L002SB	9-10.5
Soil	JP-TS	1,200 mg/kg	11L002SB	61.5-63.0
Soil	Benzene	48 mg/kg	UST Excavation Pit	30
Soil	Toluene	190 mg/kg	UST Excavation Pit	30
Soil	Ethylbenzene	83 mg/kg	UST Excavation Pit	30
Soil	Total Xylenes	400 mg/kg	UST Excavation Pit	30
Soil	1,2-DCA	0.003 mg/kg	11L008SB	100
Soil	Lead	200 mg/kg	11L0009SS	0.2-0.7
Soil Vapor	TPH	190,500 ppmv	11L009VP	10
Soil Vapor	Benzene	260 ppmv	11L024VP	8
Soil Vapor	Toluene	170 ppmv	11L009VP	10
Soil Vapor	Ethylbenzene	5 ppmv	11L023VP	9
Soil Vapor	Total Xylenes	19 ppmv	11L023VP	9
Soil Vapor	· 1,2-DCE	31 ppmv	11L008VP	7
Soil Vapor	1,2-DCA	5.80 ppmv	11L009VP	10
Soil Vapor	TCE	2.81 ppmv	11L008VP	7
Soil Vapor	PCE	0.33 ppmv	11L001VP	9
Groundwater	TPH-g	330 µg/L	11L002MW	
Groundwater	Toluene	22 µg/L	11L002MW	
Groundwater	Total Xylenes	48 µg/L	11L002MW	
Groundwater	TCE	15 µg/L	11L004MW	
Groundwater	trans-1,2-dichloroethene	0.5 μg/L	11L004MW	
Groundwater	Chloroform	1 µg/L	11L002MW	
Groundwater	1,1,2,2-Tetrachloroethane	13 μg/L	11L002MW	

Notes:

bgs - below ground surface

TPH-d - total petroleum hydrocarbons as diesel

TPH-g - total petroleum hydrocarbons as gasoline

TPH - total petroleum hydrocarbons

JP-7 - SR-71 jet fuel

JP-TS - volatile jet fuel

1,2-DCE - 1,2-dichloroethene

1,2-DCA - 1,2-dichloroethane

TCE - Trichlorethene

Sources:

1. LAW 1995

2. ES 1993

TABLE 2.2 SUMMARY OF SOIL VAPOR ANALYTICAL DATA COLLECTED IN 1994 AT LOCATIONS WITHIN INFLUENCE OF PROPOSED BIOVENTING SYSTEM IPP SITE 11

IRP SITE 11 BEALE AFB, CALIFORNIA

				Petroleu	Petroleum Hydrocarbons	arbons					HVOCs	S		
						Ethyl-	Total			1,2-	1,1-	1,2-	1,1,1-	Methylene
Sample	Sample	Depth	ТРН	Benzene	Toluene	benzene	Xylenes	TCE	PCE	DCE	DCE	DCA	TCA	Chloride
Location	Date	(ft bgs)					all re	all results in	ppmv					
11L008VP	8/15/94	0.7	1,572	10.15	3.46	66.0	1.52	2.81	QN	31.0	0.27	QN	QN	QN
11L009VP	8/16/94	10.0	190,500	242.44	170.05	4 .84	17.83	0.11	QN	0.42	0.50	5.8	QN	0.75
11L010VP	8/16/94	8.0	1,860	6.3	2.45	0.14	0.64	0.02	0.01	0.09	QN	0.05	0.02	QN
11L013VP	8/16/94	10.0	11	0.17	0.24	0.02	0.15	QN	QN	QN	QN	QN	ND	QN
11L014VP	8/16/94	10.0	3,047	28.08	18.88	4.51	17.16	0.04	QN	0.12	QN	0.16	QN	QN
11L016VP	8/16/94	10.0	14	QN	QN	QN	QN	ON	QN	QN	QN	QN	ND	QN
11L017VP	8/16/94	10.0	3	QN	QN	QN	QN	ON	QN	QN	ND	ON	QN	QN
11L018VP	8/16/94	10.0	7	0.03	0.14	80'0	0.73	QN	QN	ON	ON	QN	QN	QN
11L019VP	8/16/94	10.0	37	0.1	0.29	69.0	5.41	QN	QN	ON	ND	ON	QN	QN
11L020VP	8/16/94	10.0	9	ON	QN	QN	QN	QN	QN	DN	ND	QN	QN	QN
11L021VP	8/16/94	4.5	13,040	70.58	1.57	QN	0.25	QN	QN	ON	ON	QN	ND	QN
11L022VP	8/16/94	5.0	873	6.56	0.61	0.91	3.72	QN	QN	QN	QN	QN	QN	ND
11L023VP	8/16/94	9.0	37,700	114.72	80.12	4.78	19.02	0.23	QN	QN	QN	ON	ND	ND
11L024VP	8/17/94	8.0	106,000	259.65	87.14	QN	6.41	0.02	QN	QN	QN	0.71	ND	0.15
11L037VP	9/14/94	7.5	345	3.77	1.45	0.27	0.44	ON	ON	QN	ON	ON	QN	QN
VW1	7/12/94	10-50	7	0.008	QN	0.006	0.12	NA	AN	NA	NA	NA	NA	NA
VMP1	7/12/94	24.0	3,500	1.2	12	10	140	NA	NA	NA	NA	AN	NA	NA
VMP3	7/12/94	24.0	4,900	2.7	26	12	390	NA	NA	NA	AN	NA	NA	NA

Notes:

ppmv - parts per million, by volume

ft bgs - feet below ground surface

ND - Not Detected

NA - Not Analyzed

TPH and BTEX analyses by EPA Methods 8015 and 8020, respectively for all sample results except for VW1, VMP1, and VMP3.

Samples collected from VW1, VMP1, and VMP3 were analzed by EPA T0-3.

Halogenated volatile organic compounds (HVOCs) by EPA Method 8010.

Source: Law 1995 and HQ AFCEE/ERT 1995

SITE11.XLS Table 2.3 12/11/95

TABLE 2.3 SUMMARY OF SOIL ANALYTICAL DATA COLLECTED IN 1994 AT LOCATIONS WITHIN INFLUENCE OF PROPOSED BIOVENTING SYSTEM IRP SITE 11

	4	Ć
	5	
	ō	2
	Ē	ز
	ŭ	
•	Ξ	Ī
ı	٩	٤
	C	2
)	α	
	Ĭ	
	<	ĺ
•	Ц	J
	_	
	:	Į
) L	
	_	

Analytical Method: Sample Depth Location (ft bgs) 11L002SB 5.0 ND 11L002SB 15.0 610 J 11L002SB 34.5 ND	TPH-d		-	Total Petroleum Hydrocarbons	drocarbons							
cal Method:		TPH-jf	JP-ts	ТКРН	Benzene	Toluene	Ethyl- benzene	Total Xylenes	1,2-DCA	2-Butanone	2-Hexanone	4-Methyl-2- Pentanone
(ft bgs) (ft		SW8015M		EPA 418.1		SW8260 o	SW8260 or SW8020			SWI	SW8260	
(ft bgs) 58 5.0 58 10.0 58 15.0 61 58 34.5												
5.0 10.0 15.0 61 34.5						ā	all results in mg/kg	ı				
10.0 15.0 61 34.5	D 24	QN t	QN	ON	QN	Q	QN	Q	Q	Q	ON	QN
15.0 61	D 2,000	2,900	QN	QN	ON	9 JH	5 JH	39	QN	QN	QN N	Q
34.5	ON C	QN C	320	ON	0.05	0.56	0.27	3.6	ND	QN	QN	QN
	QN Q	QN	QN	ON	QN	QN	ND	QN	QN	ON	ON	QN
11L002SB 39.5 ND	QN Q	QN	QN	QN	ON	QN	QN	0.001 J	ND	ON	0.015 J	0.006 J
11L002SB 45.5 0.56 J	ON C	QN	QN	QN	QN	QN	0.002	0.002	ON	ON	QN	0.007 J
11L002SB 46.5 0.64	QN r	QN	Q	QN	QN	QN	QN	QN	ND	ND	QN	ON
11L002SB 47.5 1.0 J	J 6.0 J	QN	QN	QN	QN	QN	DN	QN	ND	0.016 JH	QN	ON
11L002SB 49.5 ND	QN Q	QN (QN	QN	QN	QN	ND	0.003	ND	ON	QN	ND
11L002SB 62.5 760 J	ON C	QN C	1,200	QN	QN	QN	1 JH	16 JH	ON	ON	QN	QN
11L008SB 75.0 ND	ON O	QN (QN	QN	QN	QN	ND	0.001	QN	QN	ON.	QN
11L008SB 100.0 ND	an a	QN C	DN	QN	QN	ON	ND	QN	0.003	0.002 R	QN	QN
11L009SB 75.0 ND	D 20	QN	QN	QN	QN	QN	ND	QN	ON	ON	QN	ON
11L009SB 105.5 ND	QN Q	QN (DN	QN	QN	90.0	0.004	0.4	QN	QN	QN	QN
11L009SS 0.4 ND	D 390	QN	QN	QN	QN	DN	ND	QN		ND	QN	0.005 J
VW-1 30.0 NA	NA NA	AN NA	NA	98	0.0005	0.013	0.0076	0.074		NA	NA	NA
VMP-1 24.5 NA	NA NA	NA	NA	1,010	ON	ON	ND	10		NA	NA	AN
VMP-2 25.5 NA	AN NA	NA NA	AN	3,680	Q	QN	13	720		NA	NA	NA

ppmv - parts per million, by volume

ft bgs - feet below ground surface

ND - Not Detected

NA - Not Analyzed

TPH-d: Total Petroleum Hydrocarbons-diesel

TPH-g: Total Petroleum Hydrocarbons-gasoline TPH-jf: Total Petroleum Hydrocarbons-Jet fuel

TPH-ts: Total Petroleum Hydrocarbons-Test grade jet fuel

TRPH: Total Recoverable Petroleum Hydrocarbons

Data Qualifiers:

JH - Resuts are estimated due to high bias is indicated for positive results.

J - Results are estimated due to lack of precision.

R - The sample results are rejected as unusable.

Source: Law 1995 and HQ AFCEE/ERT 1995

PILOT TEST DESIGN AND CONSTRUCTION

PILOT TEST DESIGN AND CONSTRUCTION

A bioventing pilot test was conducted by Parsons ES at Site 11 between May 1993 and June 1994. The objectives of the initial bioventing pilot test were:

- to assess the potential for supplying oxygen throughout the contaminated soil zone;
- to determine the rate at which indigenous microorganisms will degrade the fuel in the soil when stimulated by oxygen-rich soil vapor, and;
- to evaluate the potential for sustaining these rates of fuel biodegradation until the contamination is remediated below regulatory standards.

If bioventing proved to be a feasible technology for this site, the pilot test data would then be used to design a full-scale remediation system.

3.1 TEST CONFIGURATION

Based on site investigation data collected through 1993, the maximum contamination was expected to be in the former UST excavation area. One vent well (VW), designated VW-1, three vapor monitoring points (VMPs), and a regenerative blower were installed within or near the former UST excavation area between 19 and 22 April 1993. Figure 3.1 shows the location of the VW, the three VMPs, and the blower.

VW-1 was located near the center of the former UST excavation area. The radius of venting influence around the VW-1 was expected to be at least 60 feet based on the composition of the soils. The three VMPs were located within a 55-foot radius of the VW-1 including one VMP (VMP-3) located outside the former UST excavation area. The VMPs were screened at discrete depths between 24 and 50 feet bgs. The VMPs were installed to monitor the *in situ* biodegradation rates, as well as to determine the radius of oxygen influence.

3.2 AIR INJECTION BIOVENTING

3.2.1 System Operation

An initial air permeability (AP) test was conducted on 11 and 12 May 1993. Air was injected into VW-1 for approximately 18 hours at a rate of 33 standard cubic feet per minute (scfm).

ALA-25-04.R0 12/11/95 3-1

Calculated permeability values ranged from 22 to 43 darcys, values typical for the sandy soils which were found at Site 11. The permeability values indicate the site soils are very permeable to air. Based on measured pressure response, which is an indicator of long-term oxygen transport, and the change in oxygen levels during the AP test, it was anticipated that the radius of oxygen influence at the site would be at least 55 feet from VW-1. Follow-up monitoring of oxygen levels and pressure response in the VMPs during the one-year pilot test confirmed that the radius of influence was at least 55 feet and may be as high as 70 feet from VW-1. Weekly system checks were conducted to ensure consistent operation and performance.

3.2.2 In Situ Biodegradation Rates

Initial, six-month, and one-year *in situ* respiration (ISR) tests were conducted in May 1993, December 1993, and July 1994, respectively. Soil and soil vapor sampling for laboratory analysis was also conducted during the May 1993 and June 1994 events. These monitoring and sampling events were designed to evaluate the long-term performance of the bioventing system. Table 3.1 shows the estimated fuel biodegradation rates in mg TPH per kg soil per year at the three VMPs, based on the initial, six-month, and one-year ISR tests.

Initial biodegradation rates ranged from 50 to 530 mg TPH per kg soil per year. At the end of the one-year testing period, biodegradation rates decreased or remained generally the same as initial degradation rates. A decrease in the biodegradation rate over time is an indicator of contaminant removal and is expected as the contaminant levels in the soil drop due to continued biodegradation. Biodegradation rates measured during the ISR test conducted in July 1994, the most recent test, indicate that fuel residuals remain in the soil.

3.2.3 Initial and One-Year Soil and Soil Vapor Sampling Results

Upon completion of the one-year study, confirmatory soil and soil vapor samples were collected from the initial sample locations. Table 3.2 provides a summary of initial and one-year soil and soil vapor sampling results for total recoverable petroleum hydrocarbons (TRPH), total volatile hydrocarbons (TVH), and BTEX. Results after one year of air injection showed order of magnitude reductions of TVH and BTEX in soil vapor; however, reductions in soil were not observed, probably due to a heterogeneous distribution of contamination and the inherent variability of *in situ* soil samples.

3.2.4 Recommendation for Full-Scale Bioventing

Based on the one-year testing results, AFCEE has provided funding and contractual support for an expanded bioventing system at the Site 11. AFCEE has retained Parsons ES to continue bioventing services at Beale AFB and to complete installation of an expanded bioventing system at Site 11. Section 4 provides details on the design, construction, and operation of the expanded system.

ALA-25-04.R0 12/11/95

TABLE 3.1
SITE 11
RESPIRATION AND BIODEGRADATION RATES
BEALE AFB, CALIFORNIA

	Init	Initial - May 1993		6-Mont	6-Month-December 1993	33	1 - Y	1-Year-July 1994	
	O ₂ -utilization	D ₂ -utilization Biodegradation	Soil	O ₂ -utilization	O ₂ -utilization Biodegradation	Soil	O ₂ -utilization	O ₂ -utilization Biodegradation	Soil
	Rate, k _o	Rate, K _b	Temp.	Rate, k _o	Rate, K _b	Temp.	Rate, k _o	Rate, K _b	Temp.
Location-Depth	(%O ₂ /hr)	(mg/kg/year) ¹	(၁့)	(%O ₂ /hr)	(mg/kg/year) ²	(၁)	(%0 ₂ /hr)	(mg/kg/year)	(၁)
VMP1-24	0.12	50	21.6	0.039	47	23.5	0.036	71	20.7
VMP1-40.5	, SN	SN	22.8	SN	NS	20.4	NS	SN	20.6
VMP2-24	0.047	130	NS	0.038	110	SN	0.023	63	NS
VMP3-30.5	0.18	530	NS	0.016	47	NS	0.039	110	SN
				₩7. **					

Notes:

¹ Milligrams of hydrocarbons per kilogram of soil per year.

² Assumes moisture content of soil is average of initial and final moistures.

3 NS = Not Sampled

7/31/95 s11tbl1.xls

INITIAL AND 1-YEAR SOIL AND SOIL GAS ANALYTICAL RESULTS **BEALE AFB, CALIFORNIA TABLE 3.2** SITE 11

			Sample Locations-Depth	ations-Depth		
Analyte (Units) ¹			(feet below ground surface)	ound surface)		
		VW1	VMP1-24	24	VMP3-24	-24
Soil Gas Hydrocarbons	s Initial ²	1-Year ³	Initial	1-Year	Initial	1-Year
TVH (ppmv)	51,000	7.4	72,000	3,500	55,000	4,900
Benzene (ppmv)	30	0.008	430	1.2	280	2.7
Toluene (ppmv)	74	<0.002	550	12	970	26
Ethylbenzene (ppmv)	13	900.0	40	10	29	12
Xylenes (ppmv)	310	0.12	240	140	350	390
	5	VW1-30	VMP1-24.5	24.5	VMP2-25.5	25.5
Soil Hydrocarbons	Initial ⁴	1-Year ⁵	Initial	1-Year	Initial ⁶	1-Year
TRPH (mg/kg)	< <u>\$</u>	82.8	<5	1,010	1,186/309	3,680
Benzene (mg/kg)	0.0035	0.0005	1.8	<0.61	<4.0/<3.9	<3.0
Toluene (mg/kg)	0.020	0.013	1.8	<0.61	150/48	<3.0
Ethylbenzene (mg/kg)	0.0043	0.0076	0.11	<0.61	68/27	13
Xylenes (mg/kg)	0.039	0.074	0.65	10	510/190	720
Moisture (%)	12.6	3.4	23.6	18.4	15.3/15.8	15.6
						7/31/95
¹ TVH = total volatile hydrocarbons;		ppmv = parts per million by volume;	volume;			s11tbl2.xds

TVH = total volatile hydrocarbons; ppmv = parts per million by volume;

TRPH = total recoverable petroleum hydrocarbons; mg/kg = milligrams per kilogram;

² Initial soil gas samples collected on May 11, 1993.

³ Final soil gas samples collected on July 12, 1994.

⁴ Initial soil samples collected between April 19 and 21, 1993.

Final soil samples collected on July 20, 1994.

⁶ Results of primary sample/field duplicte.

EXPANDED BIOVENTING SYSTEM

EXPANDED BIOVENTING SYSTEM

The purpose of the expanded bioventing system is to provide oxygen and to stimulate aerobic biodegradation of the remaining soil contamination present at Site 11. Based upon the previous site investigation studies, two additional air injection VWs along with the existing VW (VW-1), should be capable of providing oxygen to the soils at the site with the highest levels of fuel hydrocarbon contamination.

4.1 OBJECTIVE

The primary objectives of the expanded bioventing system are:

- Optimize the system in order to fully influence the contaminated area;
- Monitor the system to ensure continuous operation;
- Reduce the existing contamination levels in soil to acceptable regulatory cleanup criteria;
- Provide the most cost-effective remediation alternative for contaminated site soils, while eliminating unnecessary impacts to the operations of this area of the base.

The bioventing system is not specifically designed to remediate the low levels of HVOCs detected at site 11. However, recent laboratory and field-scale studies have shown that some HVOCs, notably TCE and TCA, can be degraded under certain site conditions resulting in the production of DCE and DCA as intermediate byproducts (Bower, et al. 1981; Nelson, et al. 1987; Vogel, et al. 1987). The detection of these compounds in soil vapor at the site provides good evidence that these processes are occurring at Site 11. However, the investigation of the degradation of HVOCs is beyond the scope of this project.

4.2 SYSTEM DESIGN

The proposed upgrade to the existing bioventing system will incorporate the addition of two new VWs and two new VMPs. The additional VWs, to be designated VW-2 and VW-3, will be located north and northeast of VW-1 (Figure 4.1). Based on the most recent bioventing pilot test results, the radius of influence of the VWs is as large as 70 feet. The two new VMPs, to be designated VMP-4 and VMP-5, will be placed at the edge of the expected radius of influence of VW-2 and VW-3 and used to monitor oxygen influence and soil vapor concentrations at discrete depths. It is anticipated that significant TPH contamination is present in the vicinity of VMP-4 due to the strong petroleum odors and the PID

ALA-25-04.R0 12/11/95 4-1

measurements indicated on the log for soil boring 11L009SB (Appendix A) and based on the TPH vapor concentration contours (see Figure 2.4).

4.2.1 Construction of Vent Wells (VWs)

Figure 4.2 shows construction details for the proposed VWs. The VWs will be constructed of 2- or 4-inch inside diameter (ID) Schedule 40 polyvinyl chloride (PVC) casing, with an interval of 0.04-inch slotted screen set between a minimum of 10 feet bgs down to the base of contamination as determined by field organic vapor analysis (OVA) of soil samples. Flush-threaded PVC casing and screen will be used with no organic solvents or glues. The filter pack will be clean Lone Star sand with a 6-12 grain size and will be placed in the annular space of the screened interval. A 3-foot layer of bentonite will be placed directly over the filter pack. The remainder of the annular space, except for a 2-foot open area directly below the ground surface, will be filled with a bentonite/cement grout. A complete seal is critical to prevent the short-circuiting of air from the surface during air injection. Additional details on VW construction are found in Section 4 of the protocol document.

The depth selected as the base of contamination will be based on an evaluation of physical and visual evidence of contamination (e.g. odors and staining), site lithology, as well as headspace screening using both hydrocarbon vapor analyzer and a photoionization detector. Two to three additional headspace readings will be taken at increasing depths beyond the apparent end of contamination to ensure that the vertical extent of contamination has been delineated. Based on previous soil borings and soil vapor monitoring, it is estimated that the maximum depth of the VWs will be between 50 and 100 feet bgs. A Total Hydrocarbon Vapor Analyzer (THVA) will be used for field OVA readings. This platinum catalyst combustion detector is calibrated with hexane, which provides a conservative reading representative of total petroleum hydrocarbon vapors present.

4.2.2 Construction of Vapor Monitoring Points (VMP)s

Figure 4.2 showed the construction detail for the proposed VMPs. Two additional VMPs will be installed at the site to monitor oxygen influence throughout the treatment area. The VMPs will be constructed of 0.50-inch ID, Schedule 80 PVC casing and 1-inch ID slotted screen intervals (0.020-inch slot size). Flush threaded PVC casing and screen will be used with no organic solvents or glues. The annular space between the vapor monitoring screen filter packs will be sealed with bentonite to isolate the monitoring intervals.

The VMPs will be screened to a maximum of three depths. Depths will be selected which provide good vertical coverage between the ground surface and the base of contamination and through different soil types. Multi-depth monitoring will determine the concentration of oxygen across the entire soil profile and will be used to calculate oxygen-utilization rates and fuel biodegradation rates at all monitored depths. The deepest screen will be placed at or near the bottom of contamination as determined by field instrumentation. Oxygen and carbon dioxide concentrations in soil vapor will be monitored using these vapor monitoring screens.

ALA-25-04.R0 12/11/95 4-2

REV. 1 BE400-17.DWG 07/31/86

PARSONS ENGINEERING SCIENCE, INC.

4.2.3 Air Supply and Flow Rate

Air supply piping that will be used as the conduit for the injected air to flow from the blower to the VWs will be constructed of solid 2-inch ID, Schedule 80 PVC. The two new VWs and the existing VW will be manifolded to a new, larger capacity air blower which will replace the existing blower. All electrical work will be performed by a Parsons ES subcontractor with base approval. The new blower will be located in the same location as the existing blower. A separate flow control valve and pressure gauge will be installed for each VW in order to adjust individual air flows to each VW.

Based on data collected during the bioventing pilot test, a maximum injection rate of 50 scfm at each VW should be sufficient to supply oxygen to the contaminated soils within the influence of the three VWs and sustain *in situ* fuel biodegradation. The radius of influence around each VW is expected to be between 55 and 80 feet, based on data collected during the bioventing pilot test.

4.3 SYSTEM OPERATION

Following system installation, preparation of an operation and maintenance (O&M) plan, monitoring plan, and as-built system drawings will be prepared.

4.3.1 System Start-up

At startup, air will not be injected into VW-1, but only into VW-2 and VW-3, for the first two to three weeks in order to assess the potential for vapor migration from the two new VWs. All five VMPs will be used to evaluate potential vapor migration from the areas of the site undergoing air injection for the first time.

Flow rate optimization of the air injection rate will be completed for VW-2 and VW-3 to ensure proper operation of the blower system. Flow rate optimization is accomplished by gradually increasing the flow rate to each VW until all VMPs within the radius of influence of VW-2 and VW-3 reach a minimum oxygen concentration of approximately 10 percent. Oxygen levels in excess of 10 percent at the outer VMPs may indicate that the volume of air passing through the soil exceeds the biological oxygen demand. The blower system will be optimized to ensure that it is producing the required flow rate and pressure for air injection.

During system start-up, ambient air monitoring will be conducted with a photoionization detector and a total hydrocarbon meter as detailed in the Health and Safety Plan (Parsons ES 1995). Based on previous surface air sampling results during pilot testing of bioventing systems at IRP Sites 10 and 11 and at bioventing sites nationwide, significant atmospheric emissions of either hydrocarbons or HVOCs is not expected. In the unlikely event that the hand-held meters indicate significant atmospheric emissions may be occurring, the system flow rate will be lowered as needed or the system will be shutdown pending more thorough surface air emissions sampling.

It is expected that the system will reach steady-state pressure and *in situ* oxygen and vapor concentrations within the first few weeks of operation. Soil vapor sampling as described in Section 4.4 will be conducted after two to three weeks of operation to assess potential vapor

ALA-25-04.R0 12/11/95 4-5

migration. If results indicate that no vapor migration is occurring, the system will be adjusted so that air is injected at all three VWs. The air injection rate at VW-1 will be optimized such that VMP-1 and VMP-2 will reach a minimum oxygen concentration of approximately 10 percent. The flow rate at VW-2 and VW-3 will remain unchanged.

4.3.2 System Operation and Maintenance

Bioventing systems have minimal O&M requirements. Regenerative blowers are virtually maintenance-free. The only recurring maintenance required on these units is a monthly check of the air filter, which is generally replaced when a pressure difference of 10 to 15 inches of water is reached across the inlet filter. The time period between filter changes is dependent on site conditions, but is typically every three to six months.

4.4 SOIL AND SOIL VAPOR SAMPLING

One soil sample will be collected from each new boring from the most contaminated interval. Soil samples will be analyzed for purgeable and extractable petroleum hydrocarbons (EPA Method 8015 modified), BTEX using EPA Method 8020, HVOCs by EPA Method 8010, moisture content, and soluble petroleum hydrocarbons (California Title 22 DI-WET Method). All peaks in the extractable petroleum hydrocarbon range will be reported and quantified.

Soil samples will be collected using a split-spoon sampler containing brass tube liners. Soil samples collected in the brass tubes will be immediately trimmed and the ends sealed with Teflon® tape held in place by plastic caps. Soil samples will be labeled following the nomenclature specified in Section 5.5 of the protocol document, wrapped in plastic, and placed in an ice chest for shipment. A chain-of-custody form will be filled out and the ice chest shipped for analysis to an analytical laboratory which has been audited by the U.S. Air Force and which meets all quality assurance/quality control and certification requirements for the State of California.

A maximum of five soil vapor samples will be collected in SummaTM canisters from the additional VWs and VMPs. Samples will be analyzed for BTEX and TVH using EPA Method TO-3 and HVOCs by EPA Method TO-14. These initial soil vapor samples will be used to determine the reduction in contaminant concentrations over time, and future soil vapor sampling will be used as screening indicators. After two or three weeks of operation, soil vapor samples will be recollected from the same locations in order to evaluate potential vapor migration.

Soil vapor samples will be packed to prevent excessive movement during shipment. They will not be sent on ice in order to prevent condensation of hydrocarbons. A completed chain-of-custody record will accompany the ice chest, which will be shipped to the Air Toxics Ltd. laboratory in Folsom, California for analysis.

Sampling for HVOCs in soil or soil vapor described above may be decreased or eliminated if the results of the analysis of the initial soil and soil vapor samples show HVOCs present only in an isolated area of the site and that vapor migration of HVOCs is not occurring. If the future elimination of HVOC sampling is recommended, analytical and monitoring results in

ALA-25-04.R0 12/11/95 4-6

support of the recommendation will be submitted to local regulatory agencies for concurrence before proceeding.

4.5 SYSTEM MONITORING

Monitoring of the bioventing system will include weekly system checks by base personnel of the blower operation, including outlet pressures, inlet vacuum, and exhaust temperature. Additionally, system performance monitoring will include a system monitoring event after two to three weeks to evaluate the potential of vapor migration and one annual visit. The results of the system monitoring after two to three weeks of operation will be summarized in a Letter Report and submitted to the local regulatory agencies. Additional monitoring after the first two to three weeks will be subject to the results of the monitoring event or conducted only when changes are made to the system air flow rates.

During the annual visit a comprehensive system check will be completed to ensure that oxygen continues to reach all VMPs in the contaminated soils and to perform an *in situ* respiration (ISR) test at the VMPs to ensure that biodegradation is continuing at acceptable levels. Additional details on ISR testing are found in the protocol document.

Confirmation of the contaminant removal rates is predicted from the data collected during the ISR tests, quantitative estimates of the long-term biodegradation rates, and decreases in soil vapor concentrations. Oxygen-utilization data from the one-year ISR test will be used to estimate biodegradation rates and to evaluate the progress of contaminant removal and system effectiveness. Typically, as the fuel residuals in the soil are depleted, the respiration activity of the indigenous microorganisms is reduced and slower oxygen-utilization rates result. Once oxygen-utilization rates in previously contaminated areas approach the values in uncontaminated (background) soil, confirmatory sampling and analysis should be conducted. The use of oxygen-utilization rates and soil vapor chemistry as screening indicators decreases the likelihood of premature and expensive soil sampling events. Soil and soil vapor sampling and analyses methods are discussed in Section 4.5.

The monitoring schedule for the full-scale system will be:

Event Frequency

Blower Vacuum, Pressure, and Temperature Weekly

Soil Vapor Sampling System start-up, after two to three weeks, and after one year

In Situ Respiration Testing After one year

Soil Sampling Initially, then as required

4.6 HANDLING OF DRILL CUTTINGS AND CONSTRUCTION DEBRIS

All drill cuttings will be collected in labeled drums or bins after each borehole is drilled. Drill cuttings will be characterized prior to disposal. Characterization will determine the method of disposal in accordance with local regulatory and Beale AFB requirements (California RWQCB, 1995). Parsons ES or its subcontractor will transport characterized drill cuttings to appropriate base disposal facilities, unless characterization results indicate that

ALA-25-04.R1 12/12/95 4-7

off-base disposal is required. Parsons ES will subcontract off-Base disposal of the drums, if necessary. Beale AFB will be responsible for providing their USEPA generator identification and signing the manifest prior to disposal.

4.7 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

To achieve all QA/QC objectives, procedures for all aspects of this project will follow protocols outlined in the Quality Assurance Project Plan (ES, 1993b).

4.8 CONSTRUCTION SCHEDULE

Following review and approval of the system upgrade work plan by AFCEE/ERT, Beale AFB, and local regulatory agencies, field work will begin. The following schedule is contingent upon timely approval of this work plan:

Event	<u>Date</u>
Draft Work Plan to AFCEE and Beale AFB	11 August 1995
Final Work Plan to AFCEE and Beale AFB	13 December 1995
Approval of Work Plan/Notice To Proceed	5 January 1996
Begin Field Activities/ Construction of Expanded System	16 January 1996
Complete Construction/System Startup	26 January 1996

ALA-25-04.R1 12/12/95 4-8

BASE SUPPORT REQUIREMENTS

BASE SUPPORT REQUIREMENTS

The following base support is needed prior to the arrival of a driller and the Parsons ES test team:

- Obtain all necessary regulatory permits for the installation of the vent well and vapor monitoring points.
- Obtain any required base digging permits or permits to install wells.
- Obtain the required permits so that photographs may be taken at the site.
- Obtain any written permission necessary to allow Parsons ES subcontractors to perform electrical work.
- Provide any paperwork required to obtain gate passes and security badges for approximately three Parsons ES employees and one driller. Vehicle passes will be needed for two trucks and a drill rig. The passes must be valid for the expected duration of drilling operations and the initial testing (about one month).

Following the initial testing and for the duration of remediation activities, the following additional base support is required:

- Base personnel are required to check the blower system once each week to ensure that
 it is operating, change filters as needed, and to record air injection pressures and
 temperatures. Parsons ES will provide a maintenance procedures manual, data
 collection sheets, and a brief training session.
- If any blowers stop working, notify: Mr. Michael Phelps, Parsons ES-Alameda, (510) 769-0100 or Mr. John Ratz, Parsons ES-Denver, (303) 831-8100.

ALA-25-04.R0 12/11/95 5-1

KEY POINTS OF CONTACT

KEY POINTS OF CONTACT

John Gullock 9 CES/CEVR 6541 B Street Beale Air Force Base, CA 95903-1708 (916) 634-2642 Fax (916) 634-2845

Carol Gaudette
9 CES/CEVR
6541 B Street
Beale Air Force Base, CA 95903-1708
(916) 634-2619
Fax (916)634-2845

Lt. Maryann M. Jenner AFCEE/ERT 8001 Arnold Drive Brooks Air Force Base, TX 78235-5357 (210) 536-4364 Fax (210) 536-4330

Michael Phelps
Parsons Engineering Science, Inc.
1301 Marina Village Parkway, Suite 200
Alameda, CA 94501
(510) 769-0100
Fax (510) 769-9244

John Ratz Parsons Engineering Science, Inc. 1700 Broadway, Suite 900 Denver, CO 80290 (303) 831-8100 Fax (303) 831-8208

REFERENCES

REFERENCES

- Bower, E.S., B.C. Rittman and P.L. McCarty 1981. Anaerobic Degradation of Halogenated 1- and 2-Carbon Compounds. Envir. Sci. Tech. 15:596-599.
- California Regional Water Quality Control Board 1995. Letter to Beale Air Force Base, Subject: Hydrocarbon Contaminated Soil Treatment Cell Draft Waste Discharge Requirements, Beale Air Force Base. 4 April
- Engineering-Science, Inc. 1993a. Bioventing Pilot Test Work Plan (Part I) and Draft Interim Pilot Test Results (Part II) for Aircraft Ground Equipment Maintenance Area (Site 11), Beale Air Force Base, California
- Engineering-Science, Inc. 1993b. Project Management Plan, AFCEE Bioventing Pilot Tests. Updated January 1993
- HQ AFCEE/ERT 1995. Memorandum to Beale Air Force Base, Subject: Completion of One Year Bioventing Test, Site 11. 2 February
- Hinchee et al. 1992. Test Plan and Technical Protocol for a Field Treatability Test for Bioventing, U.S. Air Force Center for Environmental Excellence (AFCEE). January
- Law Environmental, Inc. 1995a. Site Characterization Summary Informal Technical Information Report for Site 11, Beale Air Force Base, California (Draft). March
- Law Environmental, Inc. 1995b. Initial Screening of Remedial Alternatives, Site 11, Aircraft Ground Equipment Maintenance Area, Beale Air Force Base, California (Draft). August
- Nelson, M.J.K., S. Montgomery, W.R. Mahaffey and P.H. Pritchard 1987. Biodegradation of Trichloroethylene and Involvement of an Aromatic Biodegradation Pathway, Appl. Environ. Micro. 53:949-954.
- Parsons ES, Inc. 1995 Addendum to the Program Health and Safety Plan for the Bioventing Test Initiative (Draft). July
- Vogel, T.M. and P.L. McCarty 1987. Abiotic and Biotic Transformations of 1,1,1-Trichloroethane under Methanogenic Conditions. Envir. Sci. Tech. 21:1208-1213.

ALA-25-04.R1 12/12/95 7-1

APPENDIX A

SOIL BORING LOG FOR 11L009SB (excerpted from LAW 1995)

ï

ELEVATION (FEET MSL)		DESCRIPTION	WL	Symbol		Sample Interval		REMARKS	
85.6	40.0	SC continued.			10				
3 EK-1 2:0	-	SAND, silty: (SM); fine to medium grain sand, rounded; dense; dry; grayish brown {10YR 5/2}; low plasticity; trace gravel to 20mm; [SDSL].			10				
85.6 85.6 80.6 80.6	45.0-	at 44 feet, increase in clay content; color changes to reddish brown.	,						
75.6-	50.0								
70.6-	55.0-	SAND, clean: (SP); medium grain sand; dense; dry; light gray {10YR 7/2}; (SD).	:				•		
•		at 56 feet, increase in sand size; gravels to 30mm.		C					
65.6	60.0	at 60 feet, gravels are reddish and volcanic. at 60.5 feet, sand is gray {N 6/1}; gravels are andesitic.		0 \$ 0 \$ 0	10				
60.6-	65.0	at 64 feet, becomes slightly moist.		800					·
55.6-	70.0-	SAND, gravelly, clean: (SW); medium to coarse grain sand; fine to medium gravel, subrounded to rounded; light gray {10YR 7/2}; gravel to 80mm in diameter; hornblende crystals; some granitic gravel; [SDGR]. at 70 feet, encounter 2-5cm lense of dark reddish brown {5YR 3/4}.	l		7				
50.6	75.0-	at 73 feet, encounter 100mm granitic cobble.					11L0095	SB-001SO	
	-	at 76 feet, becomes moist to wet; pocket of well graded sand. at 77 feet decrease in moisture content; andesitic gravel to 60mm; increasing silt content.		0	6			ter, moderate drilling r	ate
45.6	80.0					****			
COMM	1ENTS:	DRILLED BY METHOD: BORING DIA LOGGED BY CHECKED B	:	Water D Sonic 4.8 inch EK CWW	evelo	pment	Соф.	PROJECT DATE STARTED DATE COMPLETED NORTHING: EASTING:	2216-40004 02 SEP 94 02 SEP 94 541486.94 2161159.70

02 SEP 94

541486.94

2161159.70

DATE COMPLETED

NORTHING:

EASTING:

BORING DIA:

LOGGED BY

CHECKED BY CWW

cement/bentonite grout.

4.8 inch

EΚ

APPENDIX B

SUMMARY OF RESULTS FROM PREVIOUS SITE INVESTIGATIONS

SUMMARY OF ORGANIC COMPOUNDS DETECTED IN SOIL VAPOR SAMPLES Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Result (ppmv)	0.38	0.41	0.33	0.15	19	31	91	0.02	0.05	22	0.02	0.05	20	0.22	0.08	0.13	25	0.01	0.02	0.01	15	ς.	0.27	7.64	23.36	2.81	10.15	3.46	0.39	1.52	1572
Detected Compound	cis-1,2-DCE	TCE	PCE	Benzene	TPH	TPH	TPH	trans-1,2-DCE	TCE	TPH	trans-1,2-DCE	TCE	TPH	trans-1,2-DCE	cis-1,2-DCE	TCE	TPH	trans-1,2-DCE	cis-1,2-DCE	TCE	TPH	TPH	1,1-DCE	trans-1,2-DCE	cis-1,2-DCE	TCE	Benzene	Toluene	Ethylbenzene	Total Xylenes	TPH
Sample Depth (ft bgs)	9.0					5.0	5.5	5.5			5.5			4.5				10.0				6.5	7.0								
Total Depth (fi bgs)	9.0					5.0	5.5	5.5			5.5			4.5				10.0				6.5	7.0								
Sample Date	8/15/94					8/15/94	8/15/94	8/15/94			8/15/94			8/15/94				8/15/94				8/12/94	8/15/94								
Sample Number	- 001SV					. 001SV	. 001SV	VS100 -			- 002SV			VS100 -				- 001SV				· 001SV	- 001SV								
Location Number	4V100111					111.002VP	11L003VP	11L004VP	1		11L004VP			11L005VP				11L006VP				11L007VP	11L008VP								

SUMMARY OF ORGANIC COMPOUNDS DETECTED IN SOIL VAPOR SAMPLES Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Result (ppmv)	0.50	0.42	5.80		170.05	4 84	17.83	190,500	0.0	0.02	0.05	0.02	0.01	6.30	2.45	0.14	0.64	1860	0.10	0.09	0.04	8.55	5.02	0.12	0.56	21
Detected	1,1-DCE Methylene chloride	cis-1,2-DCE	1,2-DCA	1CE	Benzene	Toluene	Total Videons	TPH	cis-1.2-DCE	1.1.1-TCA	I.I-DCA	TCE	PCE	Benzene	Toluene	Ethylbenzene	Total Xylenes	ТРН	cis-1,2-DCE	1.2-DCA	TCE	Benzene	Toluene	Ethylbenzene	Total Xvienes	ТРН
Sample Depth (ft bgs)	10.0								6	0.0									7.5	3						
Total Depth (ft bgs)	10.0									0.0									ī	C'/						
Sample Date	8/16/94									8/16/94									9	8/16/94						
Sample Number	- 001SV									- 001SV										. 001SV						
Location	ے ا									11L010VP										11L011VP						

SUMMARY OF ORGANIC COMPOUNDS DETECTED IN SOIL VAPOR SAMPLES Site Characterization Summary ITIR

Site 11, AGE Maintenance Area Beale Air Force Base, California

Location	Sample	Sample	Total Depth	Sample Depth	Detected	Result
Number	Number	Date	(It bgs)	(ft bgs)	Compound	(bbmv)
11L012VP	. 001SV	8/16/94	10.0	10.0	Benzene	0.22
					Toluene	0.22
					Total Xylenes	0.13
					TPH	12
11L013VP	- 001SV	8/16/94	10.0	10.0	Benzene	0.17
					Toluene	0.24
	•				Ethylbenzene	0.05
					Total Xylenes	0.15
					ТРН	=
11L014VP	. 001SV	8/16/94	10.0	10.0	trans-1,2-DCE	0.01
					cis-1,2-DCE	0.11
					1,2-DCA	91.0
					TCE	0.04
					Benzene	28.08
					Toluene	18.88
					Ethylbenzene	4.51
					Total Xylenes	17.16
					ТРН	3,047
11L015VP	- 001SV	8/16/94	0.01	10.0	Methylene chloride	0.03
					1,2-DCA	0.05
					Benzene	4.54
					Toluene	4.49
					Ethylbenzene	0.75
					Total Xylenes	4.65
					TPH	317
11L016VP	. 001SV	8/16/94	10.0	10.0	TPH	14
11L017VP	. 001SV	8/16/94	10.0	10.0	ТРН	Ю
11L018VP	· 001SV	8/16/94	10.0	10.0	Benzene	0.03
					Toluene	0.14
					Ethylbenzene	0.08
					Total Xylenes	0.73

SUMMARY OF ORGANIC COMPOUNDS DETECTED IN SOIL VAPOR SAMPLES Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Result (ppmv)	7 0.10	0.29	0.63	5.41	37	~	70.58	1.57	0.25	13,040	92.9	19:0	0.91	3.72	873	0.23	114.72	80.12	4.78	19.05	37,700			0.02	259.65	87.14	6.41	106,000
Detected Compound	TPH	Toluene	Ethylbenzene	Total Xylenes	TPH	TPH	Benzene	Toluene	Total Xylenes	TPH	Benzene	Toluene	Ethylbenzene	Total Xylenes	TPH	TCE	Benzene	Toluene	Ethylbenzene	Total Xylenes	TPH	Methylene chloride	1.2-DCA	TCE	Benzene	Toluene	Total Xylenes	TPH
Sample Depth (ft bgs)		10.0				10.0	4.5				5.0					9.0	!					0.8						
Total Depth (ft bgs)	•	10.0				10.0	4.5	-			7.0					0.6	?					C &	2					
Sample Date		8/16/94				8/16/94	8/16/94				8/16/94	5				8/16/94	100100					P0/L1/8	£(3116		1480			
Sample Number		. 001SV				VS100	VS100				V2100	2				V2100						VOICO						
Location Number		11L019VP				WOOD III	11 02 1 VP	1150211			WCCO 111	11502241				971600	11102376					0,110	11LU24VF					

SUMMARY OF ORGANIC COMPOUNDS DETECTED IN SOIL VAPOR SAMPLES

Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

	Sample	Sample	i otal Depth	Sample Depth	Detected	Kesult
2	Number	Date	(fi bgs)	(ft bgs)	Compound	(ymdd)
11L025VP - 001SV	SV	8/17/94	10.0	10.0	Benzene	0.07
					Toluene	0.13
					Ethylbenzene	0.05
					Total Xylenes	0.11
					TPH	7
11L025VP - 002SV	- AS	8/11/94	10.0	10.0	Benzene	90.0
					Toluene	0.12
					Ethylbenzene	0.04
					Total Xylenes	0.10
					TPH	က
11L026VP - 001SV	SV	8/17/94	7.5	3.0	cis-1,2-DCE	0.03
					Benzene	0.23
					Toluene	0.35
					Ethylbenzene	0.03
					Total Xylenes	0.18
					TPH	22
- 001SV	Sv.	8/11/94	0.9	5.5	Benzene	0.04
					Toluene	0.02
					ТРН	4
11L028VP - 001SV	S<	8/17/94	10.0	7.0	ТРН	4
11L029VP - 001	SV	8/17/94	10.0	10.0	1,2-DCA	0.04
					Benzene	4.18
					Toluene	2.23
					Ethylbenzene	0.05
					Total Xylenes	0.20
					TPH	979
· 001SV	-S	9/14/94	0.6	0.6	ТРН	-
	SV	9/14/94	9.5	9.5	TPH	-
11L035VP - 001SV	SV	9/14/94	9.0	0.6	TCE	0.01

i

SUMMARY OF ORGANIC COMPOUNDS DETECTED IN SOIL VAPOR SAMPLES Site Characterization Summary ITIR Site 11, AGE Maintenance Area

			Beale Air Force Base, California	3ase, California		
1	Sample	Sample Date	Total Depth (ft bgs)	Sample Depth (ft bgs)	Detected Compound	Resu (ppm
'	11L036VP - 001SV	9/14/94	6.0	5.0	TCE Benzene	0.0
11L037VP -	. WISV	9/14/94	7.5	7.5	Toluene TPH Benzene Toluene Ethylbenzene	3.6 3.6 9.6 9.6 9.6
11L037VP	- 002SV	9/14/94	7.5	7.5	Total Xylenes TPH Benzene Toluene Ethylbenzene	3.5. 7.6. 7.7.

Prepared/Date: MRM/3-14-95 Checked/Date: KTL/3-14-95

0.27 0.44 345 0.01

> Total Xylenes TPH TCE TPH

> > 7.0

7.5

9/14/94

. 001SV

11L039VP

Notes:

 Dicholoroethene - Dichloroethane DCE

= Feet below ground surface n bgs

= Tetrachloroethene

 Parts per million by volume ppmv PCE

= Soil vapor sample S

= Trichloroethane TCA

 Total petroleum hydrocarbons = Trichloroethene TCE T?H VP

- Vapor point

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN SOIL SAMPLES Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Sample	Sample		Preparation/			
Number	Interval	Analyte	Analytical Method	Concentration	Units	RDI.
Soil Boring Samples						
111.002SB-001SO	4.5 - 5.5	Lead	SW3050/SW7421	21	mg/kg	3
		TF11-Diesel	SW3550/SW8015M-D	24	mg/kg	2
		Methylene chloride	SW8260	0.002	ที่รุ _{่ว} ลีแ	0.002
111.002SB-002SO	9.5 - 10.5	Lead	SW3050/SW7421	8.9	mg/kg	m
		TEIL-Diesel	SW3550/SW8015M-D	2000	mg/kg	630
		7-df	SW3550/SW8015M-D	2900	mg/kg	030
		Ethylbenzene	. SW8260	5 111	mg/kg	-
		Toluene	SW8260	H 6	mg/kg	-
		Xylenes (Total)	SW8260	39	mg/kg	-
OSE003SB-003SC)	14.5 - 15.5	Lead	SW3050/SW7421	3.9	mg/kg	9.0
		S.Idf	SW3550/SW8015M-D	350	mg/kg	120
		That-Gasoline	SW5030/SW8015M-G	f 019	mg/kg	1200
:		Benzene	SW8260	0.02	mg/kg	0.02
		Ethylbenzene	SW8260	0.27	mg/kg	0.03
·		Toluene	SW8260	0.56	mg/kg	0.03
		Xylenes (Total)	SW8260	3.6	mo/ko	CV U

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN SOIL SAMPLES Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Sample Number	Sample Interval	Analyte	Preparation/ Analytical Method	Concentration	Units	RDL
111.002SB-004SO	34.0 - 35.0	l.cad	SW3050/SW7421	2.8	mg/kg	9.0
· · ·		Acetone	SW8260	0.016 JB	nıg/kg	0.012
		Methylene chloride	SW8260	0.016 JB	mg/kg	0.002
111.00.2813-00580	39.0 - 40.5	Lead	SW3050/SW7421	8.7	mgAg	m
		2-Hexanone	SW8260	0.015 J	mg kg	0.011
		4-Methyl-2-Pentanone	SW8260	0.000	mg/kg	0.011
		γεςτουε	SW8260	0.052 JB	mg/kg	0.011
		Methylene chloride	SW8260	0.003	mg/kg	0.005
		Xylenes (Total)	SW8260	0.001	my/kg	0.002
11L002SB-006SO	45.0 - 46.0	[read	SW3050/SW7421	3.3 J	mg⁄kg	0.5
		TFH-Gasoline	SW5030/SW8015M-G	0.56 J	mg/kg	0.1
		4-Methyl-2-Pentanone	SW8260	U.007	mg/kg	0.010
:		Acetone	SW8260	0.011 JB	mg/kg	0.010
		Ethylbenzene	SW8260	0.002	mg⁄kg	0.003
		Methylene chloride	SW8260	0.006 JB	mg/kg	0.003
		Xylenes (Total)	SW8260	0.002	mg/kg	0.002

. ...

Site Characterization Summary lTIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Sample	Sample	-	Preparation/		,	
Number	Interval	Analyte	Analytical Method	Concentration	Units	KDL
111.002StB-007SQ	46.0 - 47.0	l.ead	SW3050/SW7421	8.9 J	mg/kg	3
		TFH-Gasoline	SW5030/SW8015M-G	0.64	mg/kg	Ξ
		Acetone	SW8260	0.019 JB	mg/kg	0.011
		Methylene chloride	SW8260	0.012 JB	រាម្វ <i>ា</i> ម្	0.002
111.002SB-008SO	17.0 - 18.0	L.cad	SW3050/SW7421	7.4	mg/kg	e.
		TTTI-Diesel	SW3550/SW8015M-D	6.0 J	mg/kg	Ë
		TFH-Gasoline	SW5030/SW8015M-G	1.0 J	mg/kg	
		2-Butanone	SW8260	0.016	mg/kg	0.013
		Acetone	SW8260	0.045 JB	mg/kg	0.013
		Methylene chloride	SW8260	81 610.0	mg/kg	0.002
OS600-813-00581	49.0 50.5	l.ead	SW3050/SW7421	4.1	mg/kg	9.0
		Methylene chloride	SW8260	0.002 JB	mg/kg	0.007
··		Xylenes (Total)	SW8260	0.003	mg/kg	0.002
111,002SB-010SO	62.0 - 63.0	1.end	SW3050/SW7421	3.2	mg/kg	9.0
		JP-TS	SW3550/SW8015M-D	1200	mg/kg	110
		TFH-Gasofine	SW5030/SW8015M-G	f 09L	mg⁄kg	1100

.

Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

	1) in the second			
Sample	Sample Interval	Analyte	Analytical Method	Concentration	Units	RDI.
111 002SB-010SO	62.0 - 63.0	Ethylbenzene	SW8260	= -	mg/kg	-
		Xylenes (Total)	SW8260	111 91	mg/kg	_
H1.003SB-001SO	98.5 - 100 0	pea-1	SW3050/SW7421	'n	mg/kg	0.6
H.004SB-001SO	101.5 - 102.5	l.cad	SW3050/SW7421	3.6	มีสู่/รีแ	0.0
111.005S18-001SC)	9.1.0 - 9.1.9	Lead Methylene chloride	SW3050/SW7421 SW8260	8 0.00.0	mg;kg mg/kg	0.002
111.005SB-002SC	94.9 - 95.6	Lend Methylene chloride	SW3050/SW7421 SW8260	7 0.004 JB	mg/kg mg/kg	3 0.002
111.006SB-001SO	9.1.5 - 95.5	Lead Acetone Methylene chloride	SW3050/SW7421 SW8260 SW8260	6.5 0.035 JB 0.003 JB	mg/kg mg/kg mg/kg	0.012
111.007SB-001SO	100.0 - 101.0	Lend	SW3050/SW7421 SW8260	4.6	mg/kg mg/kg	0.7
111.008SB-001SO	74.5 - 75.5	pear]	SW3050/SW7421	9:1	mg/kg	9.6

Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

	Camala		Preparation/			
Sample Number	Interval	Analyte	Analytical Method	Concentration	Units	RDI.
OS 100 8SB - 001 SO	74.5 - 75.5	Acetone	SW8260	0.007 JB	mg/kg	0.011
i		Methylene chloride	SW8260 .	900.0	mg/kg	0.003
		Xylenes (Total)	SW8260	0.001	mg⁄kg	0.002
111.008SB-002SO	99.5 - 100.5	Lead	SW3050/SW7421	12	myky	7
		1,2-Dichloroethane	SW8260	0.003	mgAkg	0.003
		2-Butanone	SW8260	0.002 R	my.kg	0.016
		Acetone	SW8260	0.000	mg/kg	0.016
		Methylene chloride	SW8260	0.01	mgÆg	0.003
OS100-8IS600TH	7.4.5 - 75.5	l.cnd	SW3050/SW7421	61	mg/kg	æ
		TEH-Diesel	SW3550/SW8015M-D	. 20	mg/kg	=
		Acetone	SW8260	0.000	mg/kg	0.011
		Methylene chloride	SW8260	0.003	mgÆg	0.003
H1,009SB-002SO	105.0 - 106.0	Lend	SW3050/SW7421	ਚ: •	mg/kg	0.8
		Acetone	SW8260	0.04	mg/kg	0.083
	•	Ethylbenzene	SW8260	1.0.0	mg/kg	0.02
		Methylene chloride	SW8260	0.02 JB	mg/kg	0.02
		_				

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN SOIL SAMPLES Site Characterization Summary ITIR

Site 11, AGE Maintenance Area Beale Air Force Base, California

Sample	Sample		Preparation/			
Number	Interval	Analyte	Analytical Method	Concentration	Units	RDI.
111.009SB-002SO	105.0 - 106.0	Toluene	SW8260	90.0	mg/kg	0.05
		Xylenes (Total)	SW8260	0.40	mg/kg	0.02
	101.5 - 102.5	Fread	SW3050/SW7421	2.9 Jl.	mg/kg	0.6
OS100-181101111	98.5 - 99.5	Lead	SW3050/SW7421	· .	mg/kg	0.6
111.0(2SB-001SO	88.5 - 89.5	Lead	SW3050/SW7421	. .5.	શકુ:કુલ	9.0
		Methylene chloride	SW8260	0.012	mg/kg	0.003
OS10013SB-001SO	5.0 - 6.0	Lend	SW3050/SW7421	29	mg/kg	9
		TFH-Diesel	SW3550/SW8015M-D	100	mg/kg	12
		2-Bittanone	SW8260	0.027; JH	mg/kg	0.054
		Acetone	SW8260	0.10 JB	mg/kg	0.024
		Methylene chloride	SW8260	0.001 JB	mg/kg	0.004
111.013SB-002SO.	15.0 - 16.0	Lead	SW3050/SW7421	. 01	mg/kg	9
		TFH-Diesel	SW3550/SW8015M-D	38	mg/kg	=
		Acetone	SW8260	0.021 JB	mg/kg	0.011
		Methylene chloride	SW8260	0.002 JB	mg/kg	0.002

Site Characterization Summary I'TIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Sample	Sample		Preparation/			
Number	Interval	Analyte	Analytical Method	Concentration	Units	RIM.
111.013SB-003SO	21.0 - 22.0	l.ead	SW3050/SW7421	4.7	mg/kg	9.0
		Methylene chloride	SW8260	0.003	mg/kg	0,002
111.013SB 064SO	25.0 - 26.0	Lead	SW3050/SW7421		mg/kg	0.0
		Methylene chloride	SW8260	0.005 JB	mg/kg	0.002
H1013SB 005SO	26.0 - 27.0	l.ead	SW3050/SW7421	3.3	mg/kg	9.0
		TFIL-Diesel	SW3550/SW8015M-D	23	mg/kg	13
		Methylene chloride	SW8260	0.002 JIS	mg/kg	0.002
U11.013SB-006SO	30.0 - 31.0	l.end	SW3050/SW7421	c: 89:	mg/kg	9.0
		Acetone	SW8260	0.020 JB	mgÆg	0.013
111.013SB-007SO	35.0 - 36.0	l.ead	SW3050/SW7421	7.1	mg/kg	9
		Acetone	SW8260	0.015 JB	mg/kg	0.012
111.013SB-008SO	15.0 - 46.0	Lead	SW3050/SW7421	3.6	mg⁄kg	9.0
		Methylene chloride	SW8260	0.001 ' JIS	mg/kg	0.002
111.013SB-009SO	\$6.5 - 27.5	Lead	SW3050/SW7421	8.1	mgÆg	9.0
		Methylene chloride	SW8260	0.001 JB	meÆe	0.002

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN SOIL SAMPLES Site Characterization Summary ITHR

Surface Soil Samples 0.0 - 0.5 Lead 111.0015S-001SO 0.0 - 0.5 Lead 111.0015S-001SO 0.0 - 0.5 TFH-L	Lead Lead TET-Diesel Acetone	SW3050/SW7421 SW3050/SW7421	2.1	me/kg	
5.0 - 0.0	Lead TFH-Diesel Acetone	SW3050/SW7.121		0	9.0
111.1	TFII-Diesel Acetone	CLUS (Manualus et in a	09	mg/kg	. e
	Acetone	CI-INIC ION W CALCUC W C	520	mg/kg	100
Acetor		SW8260	0.20 J1.	mg/kg	0.051
. Nethy	Methylene chloride	SW8260	0.006 JB	my/kg	0.01
111.002SS-001SO 0.0 - 0.5 Lead	(Presid	SW3050/SW7421	2	mg/kg	m
1.11.1.	TFII-Diesel	SW3550/SW8015M-D	8	mg/kg	12
111.003SS-001SO 0.0 - 0.5 Lead	l.ead	SW3050/SW7421	0	mg/kg	m
THH.	TFH-Diesel	SW3550/SW8015M-D	011	mg/kg	7
111.004SS-001SU 0.0 - 0.5 Lead	Fead	SW3050/SW7421	6	mg⁄kg	n
7-114.L	TFII-Diesel	SW3550/SW8015M-D	<u>&</u>	mg/kg	13
111.005SS-001SO 0.5 - 0.8 Lead	Lead	SW3050/SW7421	30	mg/kg	· ^
3-Hat.	TFH-Diesel	SW3550/SW8015M-D	33	mg/kg	01
Aceton	Acetone	SW8260	0.037 JB	mg/kg	0.010

.....

Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Simple	Sample		Preparation/			
Number	Interval	Analyte	Analytical Method	Concentration	Units	RDI.
111.005SS-001SO	0.5 - 0.8	Methylene chloride	SW8260	0.002 JB	mg/kg	0.005
111.006SS-001SO	0.2 - 0.7	l.end	SW3050/SW7421	87	mg/kg	01
		TEH-Diesel	SW3550/SW8015M-D	38	mg/kg	10
		2-Butanone	SW8260	0.000 J	my/kg	0.020
		4-Methyl-2-Pentanone	SW8260	0.007 J	mg/kg	0.020
		Acetone	SW8260	0.091	mg/kg	0.020
		Ethylbenzene	SW8260	0.002 J	mg/kg	0.004
		Methylene chloride	SW8260	0.11 113	mg/kg	0.004
		Toluene	SW8260	0.004	mg/kg	0.004
111.006SS-002SO	0.2 - 0.7	Lead	SW3050/SW7421	70	mg/kg	01
		TF11-Diesel	SW3550/SW8015M-D	7	mg/kg	0
		2-Butanone	SW8260	0.006	mg/kg	0.010
·		Acetone	SW8260	0.042	mg/kg	0.010
		Methylene chloride	SW8260	0.008 JB	mg/kg	0.002
111.007SS-001SO	90-10	1.ead	SW3050/SW7421	130	mg/kg	30
		TF11-Diesel	SW3550/SW8015M-D	72	mg/kg	Ξ

1

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN SOIL SAMPLES Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Cample	alumes		Prenaration/			
Number	Interval	Analyte	Analytical Method	Concentration	Units	RDI.
111.007SS-001SO	0.1 - 0.6	Acetone	SW8260	0.026	mg/kg	0.011
		Methylene chloride	SW8260	0.002 JB	mg/kg	0.002
OS100-SS800111	0.1 - 0.3	1.cad	SW3050/SW7421	08	mg/kg	0
		TFIL-Diesel	SW3550/SW8015M-D	260	mg/kg	110
OS100-88-00111	0.2 - 0.7	L.cad	SW3050/SW7-121	200	mg/kg	
		TFH-Diesel	SW3550/SW8015AI-D	390	mg/kg	120
-		4-Methyl-2-Pentanone	SW8260	0.005	mg/kg	0.012
		Methylene chloride	SW8260	0.025 JB	mg/kg	0.002
OS1002S-0018O	0.2 - 0.3	1.ead	SW3050/SW7421	76	mg/kg	20
		TFH-Diesel	SW3550/SW8015M-D	380	mg/kg	180
		2-Butanone	SW8260	0.003 J	mg/kg	0.018
		Acetone	SW8260	0.076 J	mg/kg	0.018
÷		Methylene chloride	SW8260	0.007 JB	mg/kg	0.004
111.011SS-001SO	7.0 - 0.7	Lend	SW3050/SW7421	180	my/kg	30
		TFH-Diesel	SW3550/SW8015M-D	69	mg/kg	01
		2-Butanone	SW8260	0.039 J	mg/kg	0.020

Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

			Description			
Cample	Sample		reparation			
Nimba	Interval	Analyte	Analytical Method	Concentration	Units	RIJI.
					•	: 00 ::
111.011SS-001SO	0.1-0.7	Acetone	SW8260	0.11	mg/kg	0.020
		Methylene chloride	SW8260	0.029 JB	mg/kg	0.004

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN SOIL SAMPLES Site Characterization Summary ITIR

Site 11, AGE Maintenance Area Beale Air Force Base, California

Data Qualifiers:

The sample results are estimated. This qualifier is used in cases where a lack of precision is a cause for qualification. This may be caused by poor precision of the matrix spike and duplicate matrix spike, poor correlation of the initial calibration curve, or interference. Sample concentrations that are between the method detection limit and the reporting detection limit are qualified as estimated.

Milligrams per kilograms

mg/kg

Diesel Gasoline

Notes:

Modified

- The sample results are estimated. Analytes detected in the sample are also detected in a method blank, equipment blank, trip blank, or ambient blank above the method detection limit. The sample concentration is less than ten times the blank concentration for common laboratory contaminants, or five times the amount for other compounds. JB
- The sample results are estimated. This qualifier is used in cases where positive results are reported but the quality control checks indicate a low bias. The low or low laboratory control standard recoveries that are outside of the acceptance bias may be indicated by low matrix spike recoveries, low surrogate recoveries, 二
- high surrogate recoveries, or high laboratory control standard recoveries that are The sample results are estimated. This qualifier is when a high bias is indicated for positive results. High bias may be caused by high matrix spike recoveries, outside of the acceptance limits. H
- The sample results are rejected as unusable. Rejection of the sample results may be caused by very low or very high recoveries of the matrix spikes, surrogates, or laboratory control standards. \simeq

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN GROUNDWATER SAMPLES Site Characterization Summary 171R

Site 11, AGE Maintenance Area Beale Air Force Base, California

Sample Number	Date Collected	Sample Interval	Analyte	Preparation/ Analytical Method	Concentration	Units	RDI.
Ground Water Samples			1.ead	SW3020/SW7421	0.012	mg/l.	0.005
			TFH-Gasoline	SW5030/SW8015M-G	12 J	ug/l.	50
			1,1,2,2-Tetrachloroethane	SW8260	2	ug/l.	CI
			Toluene	SW8260	0.0 J	ug/l.	_
			Trichloroethene	SW8260	. 0	ug.l.	-
HLOUINIW-OOLWG	10/21/94	95.1 - 115.1	. pead	SW3020/SW7421	0.005 J	mg/l.	0.005
Sincer and the second	11/10/9.1	95.1 - 115.1	l.end	SW3020/SW7421	0.004	mg/l.	0.005
DW-00-WINIO01111	5		1,1,1-Trichloroethane	SW8260	0.5 U	ug/l.	-
			Methylene chloride	SW8260	er i	ug/L	-
			Trichloroethene	SW8260	0.5	ug/L	-
	10/1/01	94.6 - 114.6	1.ead	SW3020/SW7421	0.004	mg/l.	0.005
1.00-WIN200.11			TFII-Gasoline	SW5030/SW8015M-G	8.2 J	ug/L	20
:			1,1,2,2-Tetrachloroethane	SW8260	ਬ	ug/I.	C 1
			Chloroform	SW8260	-	ug/l.	-
			Trichloroethene	SW8260	4	ug/L	-

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN GROUNDWATER SAMPLES

Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

		Camark		Preparation/			
Sample	Collected	Interval	Analyte	Analytical Method	Concentration	Units	RDL
Number Many Constitution	F6/60/11	94.6 - 114.6	TFH-Gasoline	SW5030/SW8015M-G	330 J	ug/l.	200
11.00±N1X	•		1,1,2,2-Tetrachloroethane	SW8260	12	ug/I.	C1
			Chloroform	SW8260	0.6 J	ug/I.	
			Ethylbenzene	SW8260	m	ug/l.	CI
			Methylene chloride	SW8260	_	ug/l.	-
			Tolucine	SW8260	25.	ug/l.	- `
			Trichloroethene	SW8260	7	ug/l.	-
			Xylenes (Total)	SW8260	\$	ug/L	CI
: /WEDD WINDACTOR	11,00,01	9.1.6 - 114.6	TFH-Gasoline	SW5030/SW8015M-G	290 J	ug/l.	200
11.(UZN1N200-W1N200)			1,1,2,2-Tetrachloroethane	SW8260	13	ug/L	CI
			Chloroform	SW8260	0.5 J	ug/1.	-
			Ethylbenzene	SW8260	CI	ug/l.	CI
			Tolucue	SW8260	8	ug/l.	-
,			Trichloroethene	SW8260	7	ug/L	-
			Xylenes (Total)	SW8260	39	ng/L	(1
SWIDO WIASHA	10/18/91	93.0 - 113 0	1.end	SW3020/SW7421	0.004	mg/l.	0.005
C W 100- W 1950(1) 1			1,1,2,2-Tetrachloroethane	SW8260	9	ug/L	61

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN GROUNDWATER SAMPLES Site Characterization Summary FFIR

Site II, AGE Maintenance Area Beale Air Force Base, California

Samuel.	Date	Sample		Preparation/			
Number	Collected	Interval	Analyte	Analytical Method	Concentration	Units	RDL
111.003MW-001WG	10/18/9-1	93.0 - 113.0	Methylene chloride	SW8260	ar ı	ng/l.	-
			Trichloroethene	SW8260	CI	ug/l.	- .
111 003MW-002WG	11/09/61	93.0 - 113.0	l.ead	SW3020/SW7421	0.006	mg/l.	0.005
			Methylene chloride	SW8260		ug/I.	
			Trichloroethene	SW8260	_	ug/L	-
5W100-WINI-00 111	10/18/0:1	97.0 - 117.0	1,1,2,2-Tetrachloroethane	SW8260	m	ug/l.	CI
			Methylene chloride	SW8260	श ।	ug/l.	_
			Trichloroethene	SW8260	15	ug/L	-
111 003WC	1.6/60/11	97.0 - 117.0	1,1,2,2-Tetrachloroethane	SW8260	~	ug/l.	CI
			Trichloroethene	SW8260	01	ug/l.	
			trans-1,2-Dichloroethene	SW8260	0.5 J	ug/l.	_
111 005MW-001WG	10/18/61	5.111.5	Lead	SW3020/SW7421	0.004	mg/l.	0.005
			1,1,2,2-Tetrachloroethane	SW8260	m	ug/L	C 1
			Methylene chloride	SW8260	al I	ug/L	_
			Trichloroethene	SW8260	m	ug/L	-

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN GROUNDWATER SAMPLES Site Characterization Summary ITIR

...

Site 11, AGE Maintenance Area Beale Air Force Base, California

	Date	Sample		Preparation/			;
Sample	Collected	Interval	Analyte	Analytical Method	Concentration	Units	RDL
111.005MW-002WG	10/18/94	91.5 - 111.5	1.cad	SW3020/SW7421	0.003	mg/L	0.005
			1,1,2,2-Tetrachloroethane	SW8260	Э	ug/L	CI
			Methylene chloride	SW8260	2 JB	ug/L	-
		-	Trichloroethene	SW8260	E	ug/L	
111 005MW-003WG	11/10/94	91.5 - 111.5	. pra-l	SW3020/SW7421	. 0.017	mg/l.	0.005
			Methylene chloride	SW8260	8f 1	ug/L	-
			Trichloroethene	SW8260	CI	ug/1.	•••
Groundwater Screening Samples					<u>ç</u>		S
111.003SB-001WG		107.0 - 110.0	TF11-Gasoline	SW5030/SW8015M-C	4.1 JB	ngh.	00
			2-Putanone	SW8260	f \$	ug/l.	S
			Acetone	SW8260	20 J	ug/I.	v.
:3WC00-112500 111		0.011.0	piarj`	SW3020/SW7421	ĸ	mg/l.	0.2
:			JP-TS	SW3520/SW8015M-D	1100	ug/L	250
5W100-812E00111		108.0 - 113.0	pea-1	SW3020/SW7421	0.22	mg/L	0.05
			TPH-Diesel	SW3520/SW8015M-D	820	ug/L	250
			TF11-Gasoline	SW5030/SW8015M-G	2.5 J	ug/1.	20

Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Samole	Sample		Preparation/			
Number	Interval	Analyte	Analytical Method	Concentration	Units	RDL
111.004SB-001WG	108.0 - 113.0	Acetone	SW8260	8r 01	ug/L	5
111.005SB-001WG	104.0 - 106.0	Fead	SW3020/SW7421	2.9	mg/L	0.5
		TF11-Diesel	SW3520/SW8015M-D	130 J	ug/L	250
		TF11-Gasoline	SW5030/SW8015M-G	180	ug/l.	50
		Acetone	SW8260	EL 01	ug/L	\$
		Ethylbenzene	SW8260	'n	ug/1.	
		Methylene chloride	SW8260	1 18	ug/L	_
		Toluene	SW8260	17	ug/L	-
		Trichloroethene	SW8260	C I	ug/L	-
		Xylenes (Total)	SW8260	98	ug/L	C1
111.006SB-001WG	101.5 - 104.0	pea-1	SW3020/SW7421	2.1	mg/l.	0.3
		TFH-Diesel	SW3520/SW8015M-D	550	ug/l.	250
		Acetone	SW8260	J JB	ug/L	\$
		Trichloroethene	SW8260	CI.	ug/l.	-
111.008SB-001WG	100.5 - 104.0	Lead	SW3020/SW7421	. :	mg/L	0.3
		TFH-Diesel	SW3520/SW8015M-D	009	ug/L	250

c

SUMNIARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN GROUNDWATER SAMPLES Site Characterization Summary ITIR

Site 11, AGE Maintenance Area Beale Air Force Base, California

	Cample		Preparation/			
Sample	Interval	Analyte	Analytical Method	Concentration	Units	RDI.
111,008SB-001WG	100.5 - 104.0	Acetone	SW8260	4 18	ug/L	S
111 0095B-001WG	106.0 - 110.0	1.cad	SW3020/SW7421	0.046	mg/L	0.005
		TFII-Diesel	SW3520/SW8015M-D	770	ng/L	250
		TF11-Gasoline	SW5030/SW8015M-G	0.7	ug/l.	20
		Acetone	SW8260	14 18	ug/L	8
111,0105B-001WG	102.5 - 105.5	Lead	SW3020/SW7421	0.072	mg/L	0.005
		TF11-Gasoline	SW5030/SW8015M-G	2.9 J	ug/L	20
		Acetone	SW8260	ย 9	ug/l.	S
		Methylene chloride	SW8260	at 1	ug/L	-
		Trichloroethene	SW8260	7	ng/L	-
111.011SB-001WG	103.0 - 111.0	Lead	SW3020/SW7421	0.4	mg/L	0.05
		TITH-Diesel	SW3520/SW8015M-D	290	ug/l.	250
		TFH-Gasoline	SW5030/SW8015M-G	4.8 J	ug/L	20
		Acctone	SW8260	21 18	ug/L	8
DW100-88C10111	103.0 - 106.0	Lead	SW3020/SW7421	3.6	mg/L	0.5
		TEH-Diesel	SW3520/SW8015M-D	1900	ug/l.	250

SUMMARY OF ORGANIC COMPOUNDS AND LEAD DETECTED IN GROUNDWATER SAMPLES Site Characterization Summary ITIR

Sife 11, AGE Maintenance Area	Beale Air Force Base, California

Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

Notes:

mg/L = Milligrams per liter
RDL = Reporting detection limit
ug/L = Micrograms per liter
M = Modified
D =' Diesel
G = Gasoline

Data Qualifiers:

- Sample results are not detected. This qualifier is used in cases when analytes are not present above the method detection limit. \supset
- = The sample results are estimated. This qualifier is used in cases where a lack of precision is a cause for qualification. This amy be caused by poor precision of the matrix spike and duplicate matrix spike, poor correlation of the initial calibration curve, or interference. Sample concentrations that are between the method detection limit and the reporting detection limit are qualified as estimated.
- detected in a method blank, equipment blank, trip blank, or ambient blank above the method detection limit. The sample concentration is less than ten times the The sample results are estimated. Analytes detected in the sample are also blank concentration for common laboratory contaminants, or five times the amount for other compounds. JB
- The sample results are estimated. This qualifier is when a high bias is indicated high surrogate recoveries, or high laboratory control standard recoveries that are for positive results. high bias may be caused by high matrix spike recoveries, outside of the acceptance limits. 11 H

SUMMARY OF ANALYTES DETECTED IN PREVIOUS SOIL INVESTIGATIONS
Site Characterization Summary ITIR
Site 11, AGE Maintenance Area

California
Base,
Force
Air
Beale

			13 1 11	11.1.63	11.2 6.1	11 2 67	11.201	11 2 62	.07	30 7 11
	•		10-1-1-1	70-1-11	10-7-11	70-7-11	10-0-1	70-6-11	10-4-11	72-4-1
	•	-	6.5'	16.5'	1.5'	6.5'	1.5'	6.5	1.5'	6.5
PARAMETER	METHOD	UNITS	10/24/85	10/24/85	10/24/85	10/24/85	10/24/85	10/24/85	10/24/85	10/24/85
Methylene chloride	SW8010	8/8m	0.007	0.015	0.033	0.029	0.031	0.016	0.003	0.014
Trans 1,2-Dichloroethene	SW8010	mg/g	S	S	0.0002	0.0001	0.0004	£	R	£
Chloroform	SW8010	mg/g	0.0007	0.001	9000	0.002	0.002	0.001	0.0001	£
1,1,1-Trichloroethane	SW8010	mg/g	Ę	S	0.0001	S S	0.0001	Ę	0.0001	£
Trichloroethene	SW8010	mg/g	0.0001	0.0001	0.003	N Q	0.005	£	S	£
Tetrachloroethane	SW8010	mg/g	£	£	Ą	Ę	0.002	£	S	Ð
1,1,2-Trichloroethane	SW8010	m8/8	£	S	£	Ę	0.0001	£	S	£
Dichlorobenzene	SW8020	mg/g	£	Q.	0.0005	e E	0.0055	0.0032	<0.02	0.013
Chlorobenzene	SW8020	mg/g	£	Q Q	0.032	S	0.001	90000	3.4	0.004
Benzene	SW8020	mg/g	S S	S	0.011	Ę	0.0007	0.0015	1.6	0.0045
Toluene	SW8020	mg/g	£	S	0.034	ΩN	0.0014	0.0005	1.3	0.0015
Ethylbenzene	SW8020	mg/g	Ω	2	0.03	S	90000	0.0003	2.4	0.002
Xylenes	SW8020	mg/g	Ž	Ş	0.03	S	0.0003	0.0002	1.6	0.001
Phenols	SW8270	mg/g	⊽	v	9.1	v	_	⊽	⊽	⊽
Oil and Grease	E413.2	mg/g	×100	<100	7000	<100	3900	<100	1500	<100

SUMMARY OF ANALYTES DETECTED IN PREVIOUS SOIL INVESTIGATIONS
Site Characterization Summary ITIR
Site 11, AGE Maintenance Area
Beale Air Force Base, California

			===	11-2-111	11-2-112	11-3-111	11-3-H2	11-4-111	11-4-1-12
			0.5	0.5'	1.5'	0.5	1.5	0,5	1.5
PARAMETER	METHOD	UNITS	10/25/85	10/25/85	10/25/85	10/25/85	10/25/85	10/25/85	10/25/85
Methylene chloride	SW8010	g/gm	0.002	0.002	0.003	0.004	0.003	0.002	0.002
Chloroform	SW8010	mg/g	0.00057	0.00043	0.00069	0.00037	0.00042	0.00042	0.00039
1,1,1-Trichloroethane	SW8010	mg/g	0.00002	S	S	QX	2	Ę	Ę
Chlorobenzene	SW8020	mg/g	Z	S	QZ	0.0003	2	Ē	Ę
Toluene	SW8020	mg/g	Ž	N QN	S S	0.0003	2	0.0002	0000
Ethylbenzene	SW8020	mg/g	0.0012	0.0021	0.0017	0.001	0.0011	0.0011	0.000
									00000

SUMMARY OF ANALYTES DETECTED IN PREVIOUS SOIL INVESTIGATIONS Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

			11-C-1SB	11-C-1SB	11-C-2SB	11-C-2SB	11-C-3SB	11-C-3SB f	11-C-3SB
			1.5'	6.5	1.5'	7.5'	1.5'	3.0'	6.5'
	METHOD	STINI	12/9/88	12/9/88	12/16/88	12/16/88	1/13/89	1/13/89	1/13/89
PAKAMETEK	TELLOI	morko	E	QZ	R	Ð	84	Ð	QN Q
TFH-Diesel	TEH.GA	mo/ka	£	QX	32	£	£	Ð	£
	CWROID	mo/ko	2	S	Ş	£	0.053	0.050 a	0.009 a
Methylene chionde	SW8240	marka	0.036	0.025	0.008 b	0.025	0.053	0.35 a	0.035 a
Acetone	SW8240	mo/ka	£	S	R	Ą	0.006 b	0.007 a	£
Carbon Disultide	SW8240	mo/ka	2	2	Ą	0.095	0.012 b	0.027 a	0.012 b
Z-Butanone	SW8240	mo/ka	2	S	Ð	S	0.014	£	£
	SW8240	mo/kg	0.047	0.030	0.056	0.063	0.14	0.017	0.065
Ioluene	SW8270	mo/ka	2	Ş	QV	Ş	0.063 b,R	0.077 b,R	0.093 b,R
N-mitrosodimetray immine	SW8270	ma/ka	2.1 a	2.3 8	£	£	NOR	NOR	NOR
Phenol	SW8270	mo/kg	0.048 b	QZ	S	£	NDR	ND R	NDR
N-mitrosogipheny lainine	CW8270	mo/ka	0.081 a.b	1.0 8	S	0.18 b	NDR	NO.R	NDR
Di-n-butyipnungiate	SW8270	mg/kg	0.22 a,b	0.33 a,b	0.087 a,b	0.16 a,b	0.65 R	0.14 b,R	NDR
01s(z-culyllicxyl)pludiate									

SUMMARY OF ANALYTES DETECTED IN PREVIOUS SOIL INVESTIGATIONS Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

			SI	SZ	S3	S4	SS	<u>%</u>	M M N
			30,	30,	30,	30,	30,	30,	10,
PARAMETER	MEITIOD	UNITS	Jun-92	Jun-92	Jun-92	Jun-92	Jun-92	Jun-92	Jun-92
TDU Gasolina	SW5030/801	me/kg	٧×	٧X	٧X	Ϋ́N	NA	NA	£
Thu Disel	SW3550/801	me/ke	1500	1000	2800	920	2600	0009	2.4
I rri-Diesei	SW8020	me/kg	9.5	0.15	48	4.0	8.6	28	£
Benzene	SW8020	mo/ku	99	1.4	190	52	80	140	£
Toluene	SW8020	me/ke	45	0.98	83	18	41	51	Ą
Emylogenzene Total Xvlenes	SW8020	mg/kg	250	5.3	400	120	230	250	QN ON

SUMMARY OF ANALYTES DETECTED IN PREVIOUS SOIL INVESTIGATIONS Site Characterization Summary ITIR

Site 11, AGE Maintenance Area Beale Air Force Base, California

			NEW	SWW	SEW	NWBC	SWBC
			10.	۶	30,	15'	10.
PARAMETER	METHOD	UNITS	Jun-92	Jun-92	Jun-92	Jun-92	Jun-92
TDLI Gusolina	SW5030/801	mg/kg	QN	6.0	QN	540	098
TDI Discal	SW3550/801	mø⁄kg	1.5	45	1.9	1300	1000
Description	SW8020	ma/kg	R	£	£	2.4	1.7
Tolings	SW8020	mg/kg	QZ	Ę	Ę	19	22
Discussion of the Control of the Con	SW8020	mg/kg	Q.	Ą	Ę	9.8	11
Total Xvlenes	SW8020	mg/kg	Ž	0.55	S	48	25
I otal A Julian							

Prepared/Date: MRM/3-14-95 Checked/Date: KTL/3-14-95

- Milligram per kilogram mg/kg

- Not analyzed

- Not detected **₹** ₽

- Analyte detected in blank - Total fuel hydrosarbons

. Estimated value, below quantification limit

- Resumpled on 05/03/89

Reference; Installation Restoration Program Stage 2-1, Remedial Investigation, CH2M HILL, January 1991

SUMMARY OF ANALYTES DETECTED IN PREVIOUS GROUNDWATER SAMPLING EVENTS

Site Characterization Summary ITIR Site 11, AGE Maintenance Area Beale Air Force Base, California

			11A001MW	11A001MW	11A001MW	11A001MW	I A001MW C
			Ref. 1	Ref. 1	Ref. 2	Ref 2	Per 2
Parameter	METHOD	UNITS	98/9/1	4/16/86	4/4/89	8/31/89	8/31/89
Methylene chloride	SW8010/E601/8260	HgA.	0.6 ₽	ON	ND	QN	S
Trichlowethene	SW8010/E601/8260	Hg/L	0.4	QN	S	2	Ş
Ethylbenzene	SW8010/E601/8260	Jec	6:0	QN	S	S	2
N-Nitrosodiphenylamine	SW 8270	1/8/1	٧×	٧×	QX.	Sed	2.5
Tolucne	SW8020/E601/8260	IE/L	16 b	QX		2	2
Oil and Grease	E413.2	mg/L	3.3	7.2	. CX	2	Ž Ž
Phenois	E420.1	mVL.	⊽	9	S	ž	
TFII-Diesel	SW8015M	m L/L	ž	ž	2	X X	<u> </u>
Calcium	SW 6010	me/L	ž	× ×	=======================================	22	¥ .
Iron	SW 6010	my/L	ž	: <	2	0.128	777
Magnesium	SW 6010	mg/L	٧X	Z X	4.28	4.70	2 F
Sodium	. 0109 WS	mg/L	٧X	٧X	27.9	27.3	1.66
Potassium	SW 6010	mg/L	¥2	NA		S	C Z

SUMMARY OF ANALYTES DETECTED IN PREVIOUS GROUNDWATER SAMPLING EVENTS Site Characterization Summary ITIR

Site 11, AGE Muintenance Area Benle Air Force Buse, California

			11A001MW	11A001MW-311WL	11A001MW-321WL
			Ref. 3	Ref. 4	Ref. 5
PARAMETER	METHOD	UNITS	11/11/92	8/26/93	12203
Methylene chloride	SW8010/E601/8260	1/3ri	٧×	QN	ND
Trichloroethene	SW8010/E601/8260	hg/L	٧X	GN	NO.
Ethylbenzene	SW8010/E601/8260	J/3rl	QN	QN	S
N-Nitrosodiphenylamine	SW 8270	Hg/L	QN	ND	£
Toluene	SW8020/E601/8260	Hg/L	QN	QN	S
Oil and Grease	E413.2	mg/L	××	42	NA
Phenois	E420.1	µg/L	٧×	4	٧Z
TFH-Diesel	SWROISM	mg/L	٧×	QN	0.071 JB
Calcium	SW 6010	mg/L	××	4 2	٧X
Iron	SW 6010	mg/L	٧X	××	٧×
Magnesium	SW 6010	myL	ž	Y Z	٧×
Sodium	SW 6010	mg/L	٧×	Š	¥
Potassium	SW 6010	mg/L	NA	. VA	NA

Prepared/Date: MRM/3-14-95 Checked/Date: KTL/3-14-95

- Analyte detected in ambient blank

NA - Not analyzed

ND - Not detected

1997. - Micrograms per liter

1191. - Milligrams per liter

1791. - Total fuel hydrocarbons

Below nomini laboratory background level

Confirmed by GCA(S Method 624

· Batimated value, below quantification limit - Amlyte detected in blank

References;

- Installation Restoration Program Stage 1, Plass II Confirmation/Quantification, AcroVironment, Inc., May 1987
 - Installation Restoration Program Stays 2-1, Remedial Investigation, CHIM HILL, January 1991
- = Analytical Data Informal Technical Information Report, Basewide Groundwater Monitoring D.O. 2 Round 92-1, Law Environmental, Inc., December 1993
 - Analytical Data Informal Technical Information Report, Basewide Groundwater Monitoring D.O. 17 Round 93-1, Law Environmental, Inc., April 1994
 Analytical Data Informal Technical Information Report, Basewide Groundwater Monitoring D.O. 17 Round 93-2, Law Environmental, Inc., April, 1994