ECE 417/598: Review Homework 4

Max marks: 30 marks (more problems coming)

Due on March 9th, 2021, midnight, 11:59 PM.

All notes so far are linked here.

1 Trignometry and triangle laws of vector addition

Problem 1 The magnitude of vector $\mathbf{a} \in \mathbb{R}^n$ is given to be $\|\mathbf{a}\| = \alpha$. Using the following figure, write **a** in terms of α , θ , vector **b** $\in \mathbb{R}^n$ and $\mathbf{c} \in \mathbb{R}^n$. All three vectors lie in the same plane. **b** and **c** are perpendicular to each other. The angle between **a** and **b** is given by θ .

(5 min, 5 marks)

Problem 2 The magnitude of vector $\mathbf{a} \in \mathbb{R}^n$ is given to be $\|\mathbf{a}\| = \alpha$. Using the following figure, write **a** in terms of α , θ , ϕ vector $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{c} \in$ \mathbb{R}^n . All three vectors lie in the same plane. The angle between **a** and **b** is given by θ . The angle between **a** and **c** is given by ϕ . Assume $\theta + \phi \neq 0$. When $\theta + \phi = \frac{\pi}{7}2$, is the solution is same as Problem 1? (Hint: You can convert this to Problem 1, by drawing a unit-vector perpendicular to **b**. Call it $\hat{\mathbf{d}}$. First write $\hat{\mathbf{d}}$ in terms of \mathbf{c} and others knowns and then write \mathbf{a} in terms of $\hat{\mathbf{d}}$ and other knowns. You might want to use trignometric Problem 4 Find identities. The simplest form is not required.). terms of unit-vectors $\hat{\mathbf{x}}_w$, $\hat{\mathbf{y}}_w$ and

(5 min, 5 marks)

unit-vector

Problem 5 Let the coordinates of a vector \mathbf{p} in terms of $\hat{\mathbf{x}}_c$ and $\hat{\mathbf{y}}_c$ be $\mathbf{p}_c = \begin{bmatrix} p_{cx} \\ p_{cy} \end{bmatrix}$, so that: $\mathbf{p} = p_{cx}\hat{\mathbf{x}}_c + p_{cy}\hat{\mathbf{y}}_c$. Using the results from Prob 3 and Prob 4, write \mathbf{p} in terms of $\hat{\mathbf{x}}_w$ and $\hat{\mathbf{y}}_w$. Thus derive the formula for rotation matrix $R(\theta)$ that converts coordinates from \mathbf{p}_c to $\mathbf{p}_w = \begin{bmatrix} p_{wx} \\ p_{wy} \end{bmatrix}$.

(5 min, 5 marks)

Problem 6 We know that $\|\mathbf{v}_{\perp,rot}\| = \|\mathbf{v}_{\perp}\|$. Write $\mathbf{v}_{\perp,rot}$ in terms of \mathbf{v}_{\perp} , \mathbf{w} and θ . \mathbf{v}_{\perp} and \mathbf{w} are known to be orthogonal to each other.