2021 学年第二学期期中考试九年级数学学科试卷

(考试时间: 100 分钟)

- 1. 本试卷含三个大题, 共 25 题. 答题时, 考生务必按答题要求在答题纸规定的位置上作答, 在草稿纸、本试卷上答题一律无效.
- 2. 除第一、二大题外, 其余各题如无特别说明, 都必须在答题纸的相应位置上写出证明或 计算的主要步骤.
- 一、选择题(本大题共6题,每题4分,满分24分)
- 1、下列各数中,无理数是(▲)
 - (A) $\frac{22}{7}$;
- (B) $\sqrt{9}$; (C) π ; (D) $\sqrt[3]{8}$.

- 2、一次函数 y = -x + 4 的图像**不经过** (▲)
 - (A) 第一象限; (B) 第二象限; (C) 第三象限; (D) 第四象限.

- 3、将抛物线 $y = (x+2)^2$ 向上平移 2 个单位后,所得抛物线的表达式为(▲)

- (A) $y = x^2$; (B) $y = x^2 2$; (C) $y = (x+2)^2 + 2$; (D) $y = (x+2)^2 2$.
- 4、某公司80名全体职工的月工资如下:

月工资(元)	18000	12000	8000	6000	4000	2500	2000	1500	1200
人数	1	2	3	4	10	20	22	12	6

该公司月工资数据的中位数和众数分别是(▲)

(A) 2000 和 2250

(**B**) 2500 和 2000

(**C**) 2000 和 2000

- (D) 2250和2000
- 5、下列命题中正确的是(▲)
 - (A) 对角线相等的梯形是等腰梯形;
 - (B) 有两个角相等的梯形是等腰梯形;
 - (C) 一组对边平行的四边形一定是梯形;
 - (D) 一组对边平行,另一组对边相等的四边形一定是等腰梯形.
- 6、如图 1, 在梯形 ABCD 中, AD//BC, ∠B=90°, AD=2, AB=4, BC=6. 点 O 是边 BC 上 一点,以 O 为圆心, OC 为半径的 $\odot O$,与边 AD 只有一个公共点时,则 OC 的取值范围是

(A)
$$4 < OC \le \frac{13}{3}$$
; (B) $4 \le OC \le \frac{13}{3}$;

(B)
$$4 \le OC \le \frac{13}{3}$$
;

(C)
$$4 < OC \le \frac{14}{3}$$
; (D) $4 \le OC \le \frac{14}{3}$.

$$(D) 4 \le OC \le \frac{14}{3}$$

二、填空题(本大题共12题,每题4分,满分48分)

7、化简:
$$\frac{x}{1-x} - \frac{1}{1-x} =$$

8、分解因式: $a^3 - a =$ \blacktriangle .

9、不等式组
$$\begin{cases} -2x+5 < 1 \\ \frac{x-1}{3} \le 2 \end{cases}$$
的解集是_____

10、方程 $x = \sqrt{x}$ 的解是 \triangle .

11、如果关于 x 的方程 x^2 – 2√3x + k = 0 有两个相等的实数根, 那么 k 的值是 \triangle .

12、在-3, -2, 1, 2, 3五个数中随机选取一个数作为二次函数 $y = ax^2 + 4x - 2$ 中a的值, 则该二次函数图象开口向上的概率是 ▲ ...

13、我国古代数学名著《张邱建算经》中记载: "今有清洒一斗直粟十斗,醑酒一斗直粟三 斗. 今持粟三斛,得酒五斗,问清、醑酒各几何?"意思是:现在一斗清酒价值 10 斗谷子, 一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设 清酒x斗,醑酒v斗,那么可列方程组为 \triangle .

14、如图 2, 在 $\triangle ABC$ 中, D 是边 BC 上一点, BD = 2DC, $\overrightarrow{BA} = \vec{a}$, $\overrightarrow{BC} =$

15、已知直线 y = kx + b(k ≠ 0) 与 x 轴和 y 轴的交点分别是(3.0)和

(0,-2), 那么关于 x 的不等式 kx+b<0 的解集是 \triangle .

16、在 \triangle ABC 中, 点 D、E 分别是边 AB、AC 的中点,那么 \triangle ADE 的面积与 \triangle ABC 的面积的比是 \blacktriangle .

17、已知正三角形 ABC的弦心距为a,那么 ΔABC 的周长是 _____. (用含a的式子表示).

18、如图 3, 在 $\triangle ABC$ 中,已知AB = AC, $\angle BAC = 30^{\circ}$,将 $\triangle ABC$ 绕着点 A逆时针旋转 30° ,记点 C 的对应点为点 D, AD、BC 的延长线相交于点 E. 如果线段 DE 的长 为 $\sqrt{2}$,那么边 AB 的长为 \blacktriangle .

- 三、解答题(本大题共7题,满分78分)
- 19、(本题满分10分)

计算:
$$(-1)^{2019} - \left|1 - \sqrt{2}\right| + \frac{1}{\sqrt{2} - 1} + (-\frac{1}{3})^{-2}$$
.

20、(本题满分10分)

解方程组:
$$\begin{cases} x^2 + xy - 6y^2 = 0; & ① \\ 2x + y = 1. & ② \end{cases}$$

21、(本题满分10分,每小题满分各5分)

如图 4, 已知梯形 ABCD中, AD//BC, $AC \setminus BD$ 相交于点 O, $AB \perp AC$, AD = CD,

$$AB = 3$$
, $BC = 5$.

- 求: (1) tan ∠ACD 的值;
 - (2) 梯形 *ABCD*的面积.

22、(本题满分10分,每小题满分各5分)

简车是我国古代利用水利驱动的灌溉工具,如图所示,半径为4m的简车 $\odot O$ 按逆时针方向,每秒旋转4度,简车与水面分别交于A、B,简车的轴心O距离水面的高度OC长为2m,简车上均匀分布着若干个盛水简,水筒P与A点重合时开始计算时间.

- (1) 3.5 秒后,盛水筒 P 距离水面(即直线 AB)的高是多少米?
- (2) 若接水槽 MN 所在直线是 $\odot O$ 的切线,且与直线 AB 交于点 M , MO = 20m ,求盛水筒 P 从最高点开始,至少经过多长时间恰好在直线 MN 上?(参考数据:

$$\sin 16^\circ = \cos 74^\circ \approx 0.275$$
$$\sin 12^\circ = \cos 78^\circ \approx 0.2$$
$$\sin 6^\circ = \cos 84^\circ \approx 0.1$$

图 5

23、(本题满分12分,每小题满分各6分)

已知:如图 6,在矩形 ABCD 中,E、F 分别是边 CD、AD 上的点, $AE \perp BF$,且 AE = BF.

- (1) 求证: 矩形 ABCD 是正方形;
- (2) 联结 $BE \setminus EF$, 当 $DF^2 = AF \cdot AD$ 时,求证: $\angle DEF = \angle ABE$.

21、(本题满分12分,每小题满分各4分)

如图 7,在平面直角坐标系中,点 O 为坐标原点,抛物线 $y=ax^2+bx+c$ 的顶点是 A (2,

- 3) ,点 B(3, -2) 恰好在抛物线上,OB 与抛物线的对称轴交于点 C.
 - (1) 求抛物线的解析式;
 - (2) P 是线段 AC 上一动点,且不与点 A, C 重合,过点 P 作平行于 x 轴的直线,与 \triangle OAB 的边分别交于 M, N 两点,将 $\triangle AMN$ 以直线 MN 为对称轴翻折,得到 $\triangle A'$ MN,设点 P 的纵坐标为 m. 当点 A' 在 $\triangle OAB$ 的内部时,求 m 的取值范围;
 - (3) 点 Q 在抛物线上,且 $\angle OBQ = 45^{\circ}$,求点 Q 的横坐标.

25、 (本题满分 14 分, 其中第(1)、(2) 小题满分各 4 分, 第(3) 小题满分 6 分)

已知 $\odot O$ 的直径 AB=4,点 P 为弧 AB 上一点,联结 PA、PO,点 C 为劣弧 AP 上一点 (点 C 不与点 A、P 重合),联结 BC 交 PA、PO 于点 D、E.

- (1) 如图 8, 当AD = DP时, 求 $\frac{DE}{EB}$;
- (2) 当点 C 为劣弧 AP 的中点,且 ΔEDP 与 ΔAOP 相似时,求 $\angle ABC$ 的度数;
- (3) 当 AD=2DP,且 $\triangle BEO$ 为直角三角形时,求 BC 的长.

