Flight Agent System Security

Security Team 2 June 9, 2025

Team Introduction

TripleS - Security Team 2

No	Name	Role
0	Bradley Schmerl	Mentor
1	Sungyoung Choi	Team Leader
2	Taemin Noh	Learning Manager
3	Hwajung Lee	Lunch Manager
4	Soyoon Kim	Photographer
5	Pradeep Kumar C	Time Manager

Scheduling and Role Assignment

"Parallel When Needed, Unified When It Matters"

							М	ay									June	!				
Phase	Milestone	Key Activity	Assignee	22	23	24	25	26	27	28	29	30	31	1	2	3	4	5	6	7	8	9
		ADSBHub Account Setup	Noh																			
	Environment Setup	BigQuery Setup	Choi																			
	Environment Setup RUI Setup		Pradeep																			
		Raspberry Pi Configuration	Lee, Kim																			
		Code Review(Display 2, dump 3)	All																			
	Existing System Analysis	System Architecture Design/Analysis	All																			
		System Architecture Design/Analysis All																				
		Feature Design	Pradeep, Choi, Kim																			
Phase	New Feature Development	Feature Implementation / Development	Pradeep, Choi, Kim									•										
1		Test Case Development	Pradeep, Choi, Kim														0					
	Vulnerability	Vulnerability Analysis	Noh, Lee								•	•	•	0								
	Analysis & Remediation	Security Patch Development	Noh, Lee												•							
	Allatysis & Nemediation	Test Case Development	Noh, Lee													0	0					
	System Integration	Component Integration	All														0					
	System Integration & Quality Review	Integrated System Testing	All															0				
	& Quality Review	Overall Quality Review	All															0				
	Presentation	Artifact Documentation	All																0			
	רוכטכוונמנוטוו	Presentation and Q&A	Kim																	0		

Planned == Actual

Delayed

Early started

Planned only

Data Flow Diagram(DFD)

Asset

- RAW Data(Reliable Data)
- Google Cloud Credential Key
- RUI Program
- Dump1090 service

Security Goals

[SG-1] Integrity

RAW data should be ensured not tampered

[SG-2] Credential

Google Cloud Credential Key must be kept secure

[SG-3] Integrity

RUI must ensure the program runs only as intended

[SG-4] Authentication

Only authenticated users should be allowed to access the dump1090 service

Spoofing

Persona	Aviation geek
Motivation	Studying aviation data for fun and knowledge
Goal	Supply fake ADS-B dat a
Method	Send tampered or processed data in RAW for mat to port 30001
Expected Impact	False aircraft shown, Trust lost

Spoofing

Persona	Aviation geek
Motivation	Studying aviation data for fun and knowledge
Goal	Supply fake ADS-B dat a
Method	Send tampered or processed data in RAW for mat to port 30001
Expected Impact	False aircraft shown, Trust lost

Spoofing

Persona	Aviation geek
Motivation	Studying aviation data for fun and knowledge
Goal	Supply fake ADS-B dat a
Method	Send tampered or processed data in RAW for mat to port 30001
Expected Impact	False aircraft shown, Trust lost

Tampering

Persona	Competing system admin
Motivation	Making users use a diffe rent(competing service
Goal	Make it seem like the service is down
Method	Distribution of incorrect sample files online Modification of network data via man-in-the-mid dle (MITM) attacks
Expected Impact	Data is not visible to the user on the UI Program aborted

Tampering

Persona	Competing system admin
Motivation	Making users use a diffe rent(competing service
Goal	Make it seem like the service is down
Method	Distribution of incorrect sample files online Modification of network data via man-in-the-mid dle (MITM) attacks
Expected Impact	Data is not visible to the user on the UI Program aborted

Wifi Router

10

Repudiation

VViFi

Information Disclosure

Persona	Future Hacker
Motivation	Information gathering prior to launching a cy berattack
Goal	Monitor the data exchanged by the user
Method	Network packet sniffi ng w/ Wireshark
Expected Impact	An attacker gathers in formation on users who receive dump data

Information Disclosure

Persona	Future Hacker
Motivation	Information gathering prior to launching a cy berattack
Goal	Monitor the data exchanged by the user
Method	Network packet sniffi ng w/ Wireshark
Expected Impact	An attacker gathers in formation on users who receive dump data

Denial of Service

Persona	The server admin's friend
Motivation	Personal revenge
Goal	Exhaust dump resourdes
Method	Send excessive data using automative script or tool
Expected Impact	Slowdown or crash Service

Elevation of Privilege

Persona	Malicious hacker
Motivation	Profit
Goal	Obtaining system cont rol and extracting GCS credential
Method	Download malicious Python script via phish ing emails or Git repos itory
Expected Impact	Privilege gain System compromise

Elevation of Privilege

Persona	Malicious hacker
Motivation	Profit
Goal	Obtaining system cont rol and extracting GCS credential
Method	Download malicious P ython script via phishi ng emails or by distrib uting through a fake G it repository
Expected Impact	Privilege gain System compromise

Risk Assessment : Prioritizing

TN ID	Threat Summary	Impact	Priority	Priority Basis
TN-01	Spoofed aircraft signal transmission (attacker → dump1090)	Destruction of data trust foundation Incorrect decision-making based on forged data	3	Since the system relies on data accuracy, Spoofing shake its foundation, leading to real-time m alfunctions.
TN-02	Spoofed aircraft signal transmission (attacker \rightarrow RUI)	Inducing user/organization confusion Distortion of alarm and automation judgment Loss of customer trust → Risk of contract terminat	-	This spoofing was not prioritized because it required a phishing attack that would lead the victim to enter
TN-03	Spoofed aircraft signal transmission (attacker → ADSBHub)	ion	-	the attacker's IP address.
TN-04	Data tampering during transmission (dump1090 → ADSBHub)	Integrity breach, automation malfunction, analysis error, system corruption	2	Since the system relies on data accuracy, Tampering shake its foundation, leading to real-time
TN-05	Tampered playback file provision (attacker \rightarrow PC)	Analysis system contamination, malicious file, misj udgment, attacker influence		malfunctions.
TN-06	Responsibility for file manipulation (attacker \rightarrow PC)	Change untraceable, tampering unprovable, <u>unclea</u> <u>r accountability</u> , trust degradation	4	There may be <u>issues with responsibility</u> when a problem occurs, but it <u>is not fatal to the system.</u>
TN-07	Plain-text communication interception (dump1090 \rightarrow RUI)	Unintended data leak	5	Mitigated by TLS (to some extent)
TN-08	Plain-text communication interception (dump1090 → ADSBHub)	Communication interception risk	-	Hard to access, low damage potential, blocked in internal network
TN-09	Induction of high traffic to port 30001 (attacker → dump1090)	Temporary overload, delayed reception	-	No impact on system reliability
TN-10	Execution of malicious file/script (attacker → PC)	Root privilege escalation, <u>total system control loss</u> , sensitive data exfiltration	1	Elevation of Privilege poses fundamental risks due to
TN-11	Modification/deletion of key system file s (attacker \rightarrow RUI)	File tampering/deletion, privilege escalation, servic e disruption		the potential for complete system takeover

Security Requirements

SR#	TN#	SG#	Security Requirement
SR-01	TN-01 TN-09	SG-01	Access control for port 30001 of dump1090
SR-02	TN-04 TN-07	SG-01	Data communication between dump and RUI must be encrypted, ensured protection against tampering
SR-03	TN-05 TN-06	SG-01	It must be possible to verify the integrity of the RAW data file to detect any tampering
SR-04	TN-10	SG-02 SG-03	The system shall verify the integrity and authenticity of Python scripts before execution
SR-05	-	SG-04	As part of the business policy, an authentication system must be implemented to manage users
SR-06	TN-11	SG-03	The system must enforce that data is not written outside the intended storage location.
SR-07	-	SG-04	The server must enforce the principle of least privilege.

To achieve the security objectives, apply a defense-in-depth strategy

SR#	Security Requirement	Mitigation Method
SR-01	Access control for port 30001 of dump1090	Filtering external incoming IPs based on whitelist

SR#	Security Requirement	Mitigation Method	
SR-01	Access control for port 30001 of dump1090	Filtering external incoming IPs based on whiteli	ist
F	Ig@raspberrypi: ~/dump1090_choi/SEC2_TripleS_dump1090	Microsoft Windows [Version 10.0.19045.4894] (c) Microsoft Corporation. All rights reserved. D: WeDevDocs>	ker
After	I		
			19

SR#	Security Requirement	Mitigation Method	
SR-02	l	Apply TLS to prevent forgery and ensure encrypted communication	

Wireshark view

Before

After

```
Transmission Control Protocol, Src Port: 5002, Dst Port: 56145, Seq: 8035304, Ack: 1, Len: 1380
    Source Port: 5002
    Destination Port: 56145
    [Stream index: 217]
    [Conversation completeness: Incomplete, DATA (15)]
    [TCP Segment Len: 1380]
    Sequence Number: 8035304
                                (relative sequence number)
    Sequence Number (raw): 1198123020
    [Next Sequence Number: 8036684
                                      (relative sequence number)]
    Acknowledgment Number: 1
                                (relative ack number)
    Aslenandadament number (no.) . 2754224000
0000 f8 9e 94 05 a4 7e 00 1f 26 41 f0 00 08 00 45 00
                                                          ••••~ &A•••• €
     05 8c 5f b0 40 00 2f 06 59 43 5e 82 17 e9 ac 1a
                                                          · · · @ · / · YC^ · · · ·
                                                          j QGi * P
0020 6a f3 13 8a db 51 47 69 e8 0c a4 2a 17 ac 50 10
0030 ff ff 49 14 00 00 2f 30 36 2c 31 39 3a 30 30 3a
                                                          \cdot \cdot I \cdot \cdot \cdot / 0 6,19:00:
0040 31 34 2e 30 30 30 2c 47 4c 4f 31 32 30 38 2c 2c
                                                          14.000,G L01208,,
0050 2c 2c 2c 2c 2c 2c 2c 2c 2c 0a 4d 53 47 2c 33 2c
                                                          ,,,,,,,, , • <mark>MSG,3,</mark>
0060 30 2c 30 2c 45 34 39 35 32 36 2c 30 2c 32 30 32
                                                          0,0,E495 26,0,202
0070 35 2f 30 36 2f 30 36 2c 31 39 3a 30 30 3a 31 35
                                                          5/06/06, 19:00:15
0080 2e 30 30 30 2c 32 30 32 35 2f 30 36 2f 30 36 2c
                                                          .000,202 5/06/06
0090 31 39 3a 30 30 3a 31 34 2e 30 30 30 2c 2c 31 34
                                                          19:00:14 .000,,14
00a0 32 35 2c 2c 2c 2d 32 37 2e 36 32 35 37 31 37 2c
                                                          25,,,-27 .625717,
                                                          -48.6259 54,,,,,
00b0 2d 34 38 2e 36 32 35 39 35 34 2c 2c 2c 2c 2c 2c
00c0 0a 4d 53 47 2c 34 2c 30 2c 30 2c 45 34 39 35 32
                                                           MSG,4,0 ,0,E4952
```

```
    [Timestamps]
      [Time since first frame in this TCP stream: 0.327462000 seconds]
      [Time since previous frame in this TCP stream: 0.280141000 seconds]
  → [SEQ/ACK analysis]
    TCP payload (46 bytes)

    Transport Layer Security

  TLSv1.2 Record Layer: Application Data Protocol: Application Data
      Content Type: Application Data (23)
      Version: TLS 1.2 (0x0303)
      Length: 41
      Encrypted Application Data: 55517d41d589513f33cf26dc55ea0aba17ce444916425e7ad04fe0c0e0085832d4
      f8 9e 94 05 a4 7e 2c cf 67 e4 16 1a 08 00 45 00
0010 00 56 df cd 40 00 40 06 51 a8 ac 1a 46 04 ac 1a
0020 6a f3 75 32 d8 85 fa b5 35 bb 3e e1 c3 0e 50 18
0030 01 f5 80 e2 00 00 17 03 03 00 29 55 51 7d 41 d5
0040 89 51 3f 33 cf 26 dc 55 ea 0a ba 17 ce 44 49 16
                                                          -Q?3-&-U ----DI-
0050 42 5e 7a d0 4f e0 c0 e0 08 58 32 d4 cf 2f a6 8f
                                                         B^z · 0 · · · · X2 · · / · ·
0060 cf 65 4f 16
```

Plain text can be seen with sniffing

Encrypted text can not be seen with sniffing

SR#	Security Requirement	Mitigation Method	
SR-03		Perform CRC validation by timestamp when saving or loading RAW data.	

SR#	Security Requirement	Mitigation Method
SR-04		Compare the hash value of the Python script before execution to ensure integrity

Before

SR#	Security Requirement	Mitigation Method
SR-04		Compare the hash value of the Python script before execution to ensure integrity

After

SR#	Security Requirement	Mitigation Method
SR-05		Implement a login function to allow access only to authorized users.

SR#	Security Requirement	Mitigation Method
I NR-UD	The system must enforce that data is not written outside the intended storage location.	Restrict the storage path for RAW files.

SR#	Security Requirement	Mitigation Method
SR-07		Create a service account and grant it only the permissions necessary for service operation.

	Service	Guest
Public Key	Read	Read
Private Key	Read	1
Password	Read/Write	-

```
lg@raspberrypi:~ $ ls -la /etc/ssl/tripleS/
total 20
drwxr-xr-x 2 root tripleS 4096 Jun 6 07:33 .
drwxr-xr-x 5 root root 4096 Jun 3 20:12 ...
-rw-r--r-- 1 root tripleS 1322 Jun 3 20:13 cert.pem
-rw-rw---- 1 root tripleS 138 Jun 6 07:33 config.json
-rw-r---- 1 root tripleS 1704 Jun 3 20:12 key.pem
lg@raspberrypi:~ $ cat /etc/ssl/tripleS/key.pem
cat: /etc/ssl/tripleS/key.pem: Permission denied
lg@raspberrypi:~ $ sudo -u tripleS cat /etc/ssl/tripleS/key.pem
----BEGIN PRIVATE KEY----
MIIEvAIBADANBgkqhkiG9w0BAQEFAASCBKYwggSiAgEAAoIBAQChF7I90mefVeQv
I4ZbxEIsXkrsXEmFlHezfi3aA3Igr+wNXulhsclrJ3GUySOJ9MWP7VUulq+xQzYZ
ka2+c2LAKBhP+01/MDivW0GgkGKoio0QUbCunXJr3n+xtvpP0J7bWM+fdliDvcLo
```

Secure coding & Supply Chain Security

In-house Vulnerability Scanning System: Snyk.
It shows known vulnerability of the open source library
We are going to apply vulnerability patch using <u>vulnerability list</u>.

CRITICAL 0	Threat Level	HIGH 1
MEDIUM		LOW
85		0

Issue details		A1: 1		DICAIE					
	SCORE ↓	Aligned w	ith OVVAS	SP/CVVE	PROJECT	EXPLOIT MATURITY	COMPUTED FIXABILITY	INTRODUCED	SNYK PRODUCT
H	804	Vulnerability Hardcoded Secret	Not Available	CWE-547 ☑	hwajung7lee/SEC2_TripleS _dump1090(master)		Not Applicable	Jun 8, 2025	Snyk Code
М	581	Vulnerability Potential buffer overflow from usage of unsafe function	Not Available	CWE-122 ☑	hwajung7lee/SEC2_TripleS _RUI(main)		Not Applicable	Jun 8, 2025	Snyk Code
М	581	Vulnerability Potential buffer overflow from usage of unsafe function	Not Available	CWE-122 ☑	hwajung7lee/SEC2_TripleS _RUI(main)		Not Applicable	Jun 8, 2025	Snyk Code
М	581	Vulnerability Use After Free	Not Available	CWE-416 ☑	hwajung7lee/SEC2_TripleS _RUI(main)		Not Applicable	Jun 8, 2025	Snyk Code
М	581	Vulnerability Use After Free	Not Available	CWE-416 ☑	hwajung7lee/SEC2_TripleS _RUI(main)		Not Applicable	Jun 8, 2025	Snyk Code
М	581	Vulnerability Potential buffer overflow from usage of unsafe function	Not Available	CWE-122 ☑	hwajung7lee/SEC2_TripleS _RUI(main)		Not Applicable	Jun 8, 2025	Snyk Code

SCRM (A-SQUARE-Based Security Assessment)

Component : OpenSSL 3.5

Application Context: TLS channel for transmitting user ID/password during authentication

- Defined Role: Supports secure user authentication
- Security: Utilizes verified cryptographic algorithms
- Maintainability: Maintained by the OpenSSL Project foundation
- Release: Long-Term Support (LTS) versions available
- Risk & Mitigation : Incompatibility with past API and Update it
- Operational Trustworthiness: Security scanning tools integrated in CI/CD pipeline

- * Identified risks are manageable and mitigated
- * Meets all A-SQUARE evaluation criteria

Accepted and safely integrated as a trusted component

Learning points

Hwajung

I realized that it is important to identify the entry points of a system from an attacker's perspective, rather than just searching for vulnerabilities in the code.

Sungyoung

Implementing encryption and TLS, it was interesting to see how it actually worked in the code phase.

Pradeep

Learned that AI can help in clearing majority of concepts and helps in developing concepts quickly, it can also mislead and can not answer some queries correctly like specific to open source code like indy TLS.

Taemin

Through various vulnerability analyses and security designs, I have come to realize the importance of collaboration and systematic thinking skills.

Soyoon

It was a new and challenging experience, unlike previous projects. It's a pity I couldn't apply SecDevOps or a logging system.

Thank you

Why was hTMM used in the threat modeling phase, and why was STRIDE specifically applied?"

By incorporating AI feedback throughout the security design, including threat identification, vulnerability classification, and data flow protection, we were able to build a more reliable system.

Even though it was an English document-based project, Al enabled us to accurately organize concepts, and in particular, the security requirements analysis and documentation process was carried out efficiently.

Why was a centralized login mechanism based on the Pi selected instead of aircraft-specific authentication?

Way1	RUI-Based Login	Raspberry Pi-Based Login	RUI Sends Credentials to Pi (Securely)	
	 Centralized UI, consistent login experience. Flexibility in UI and authentication logic. Potentially simpler Raspberry Pi code. 	 Control sending RAW data(Stop sending data if not authenticated) Enhanced security, credential storage on Raspberry Pi. 	 Centralized UI in RUI. Security: Authentication handled by Raspberry Pi. Simplified Raspberry Pi code. Clear separation of concerns. 	
Cons	 Network dependency: Requires connection before RUI is usable Security considerations: RUI handles credentials (even temporarily) Potential redundancy if Pi also needs a uthentication. 	 No UI (tied to Pi). Increased Raspberry Pi resource usage. 	 Network dependency. Complexity of secure transmission (TLS/SSL). Potential latency due to authentication process. 	

What was the primary purpose of utilizing AI?

By incorporating AI feedback throughout the security design, including threat identification, vulnerability classification, and data flow protection, we were able to build a more reliable system.

Even though it was an English document-based project, Al enabled us to accurately organize concepts, and in particular, the security requirements analysis and documentation process was carried out efficiently.

How can an attacker replace a victim's files?

1st step:

The attacker impersonates the operator and sends a phishing email to the victim.

2nd step:

The victim thinks he is the operat or and downloads the file and ove rwrites it.

Do you think this came from the operator?

Protocol: TCP (Transmission Control Protocol) is used for reliable, connection-orient ed communication.

Socket: The Raspberry Pi acts as a server, listening for incoming TCP connections on a specific port (e.g., 30003 or 5001). The RUI (Windows PC) acts as a client, initiating a TCP connection to the Raspberry Pi's IP address and port.

Data Format: Raw ADS-B data is sent as plain text over the TCP connection. This m eans the data is **unencrypted** and can be intercepted and read by anyone with acces s to the network traffic.

Security: There is <u>no encryption</u> or authentication. Any device that can connect to the Raspberry Pi's IP address and port can receive the ADS-B data

How TLS/SSL Protects Against Sniffing and Manipulation:

Encryption: TLS encrypts the data being transmitted, making it unrea dable to a sniffer. Even if the sniffer captures the packets, it won't be able to see the contents.

Authentication: TLS uses certificates to verify the identity of the serv er (and optionally the client). This prevents man-in-the-middle attack s where an attacker tries to impersonate the server.

Integrity Protection: TLS includes mechanisms to detect if the data h as been tampered with during transit. If a sniffer modifies a packet, t he TLS connection will be broken.

SCRM (A-SQUARE-Based Security Assessment)

Component: OpenSSL 3.5

Application Context: TLS channel for transmitting user ID/password during authentication

- Defined Role
 - Provides TLS 1.3-based encrypted communication
 - Ensures confidentiality and integrity of ID/passw ord transmission
 - Supports secure user authentication
- Security
 - Utilizes verified cryptographic algorithms
 - Offers optional FIPS-compliant mode
 - Regularly releases patches for critical CVEs
- Maintainability and Community Activity
 - Maintained by the OpenSSL Project foundation
 - Active community (GitHub issues/PRs)
 - Timely security updates
 - Long-term sustainability ensured

- Release Strategy
 - No fixed release cycle; somewhat flexible
 - Long-Term Support (LTS) versions available
 - Emergency security patches provided when necessary
- Risk & Mitigation
 - Risks: Past CVEs, API incompatibility, irregular release sc hedule
 - Mitigations: Use of static analysis tools (e.g., Coverity, T rivy), automated monitoring of security updates
- Operational Trustworthiness
 - Security scanning tools integrated in CI/CD pipeline
 - o Certificate and cipher suite validation
 - o Integrity of TLS components maintained at runtime

^{*} Identified risks are manageable and mitigated

^{*} Meets all A-SQUARE evaluation criteria