Classifying Hate Speech on Twitter

About Me

Mathematician

Master of Arts

Twice-published

Programmer + Data Geek

Educator

9 years teaching undergraduate courses Rowan, Rutgers Universities Camden and Cumberland CC's

Millenial

Musician

Athlete

World Traveler

If you don't have anything nice to say...

If you don't have anything nice to say...

The Process

Step 1:

Clean the tweets into normal, standardized language so they are comparable.

Step 2:

Determine that hate speech measurably different from normal speech through EDA.

The Process

Step 3:

Develop various features from the cleaned data set for training ML algorithms.

Step 4:

Train, test, tune, and stack ML models for best results.

Cleaning Raw Data

1. Remove unhelpful characters

2. Drop unhelpful words

(as the his etc)

3. Tokenize remaining words for standard language across all tweets.

(loving -> love)

[2/2] huge fan fare and big talking before they leave. chaos and pay disputes when they get there. #allshowandnogo

huge fare talk befor they leav chao disput when they there #allshowandnogo

Most popular hashtags in normal tweets

Most popular hashtags in tweets

Feature Selection:

Bag of Words: select 1000 of the most common words for classification

TFIDF: Like Bag of Words, but with trained weights on key words

Word to Vector: Select 200 words, whose combinations create context

Trained using a neural network, and vectorized

Document to Vector: Like Words to Vector, but with the entire tweet.

Stacked Machine Learning:

The Twice-Cooked
Technique

Stacked Machine Learning:

The Level 1

Start with the best ingredients:

<u>Classifier</u>	F1 Score
-------------------	----------

LogReg (TFIDF) .544

Random Forest (TFIDF) .562

SVM (Word to Vector) .571

LogReg (Word to Vector) .533

Light GBM (Word to Vector) .622

Best Single Model Score

Light GBM (Tuned):

64.7%

accuracy

Stacked Machine Learning:

Feed predictions from Level 1 to Level 2:

<u>Classifier</u> <u>Competition Score</u>

Log Reg 70.7% accuracy

Level 2

Light GBM

73.5% accuracy

As of 03/31/19, this result places in the top 25% of 650 competitors.

Next Steps

Continued stacking

Feature Engineering

Data Set Balancing

Score to beat: 85.8%

117 🚣	singhajeet	0.7366771160	
118 🚢	scorp95	0.7359550562	
119 🚨	amitamb	0.7355982275	
120 📤	vasco	0.7350901526	
121 📥	stephen0132	0.7348242812	
122 🚢	mabusalah	0.7346278317	
123 🚨	emdepe	0.7334410339	