MATH2089 Numerical Methods Lecture 6

Interpolation and Polynomial Approximation, Curve Fitting

Interpolation and Curve Fitting

- For a set of data available at discrete points, we may require to fit a smooth and continuous function to this set of data
- Two approaches for curve fitting
 - Interpolation methods (used when the data are known to be accurate or generated by evaluating a complicated function at a discrete set of points)
 - Least Square Regression (is useful when there are more data points than the number of unknown coefficients or when the data appear to have significant error or noise)

Interpolation Methods

- Curve passes through every data point
- Four approaches
 - Interpolation using different degree-polynomials
 - Lagrange interpolating polynomial
 - Newton interpolating polynomial

Splines

Examples of interpolating different degree-polynomials

Interpolation of Different Degree-Polynomials

- Interpolation using a fourth degree-polynomials
- Fit a curve to a series of data and estimate density of helium gas of 17 K
- Five data points

$$\rho(T) = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4$$

$$a_0 + a_1 (4.22) + a_2 (4.22)^2 + a_3 (4.22)^3 + a_4 (4.22)^4 = 16.9$$

$$a_0 + a_1 (7) + a_2 (7)^2 + a_3 (7)^3 + a_4 (7)^4 = 7.53$$

$$a_0 + a_1 (10) + a_2 (10)^2 + a_3 (10)^3 + a_4 (10)^4 = 5.02$$

$$a_0 + a_1 (20) + a_2 (20)^2 + a_3 (20)^3 + a_4 (20)^4 = 2.44$$

$$a_0 + a_1 (30) + a_2 (30)^2 + a_3 (30)^3 + a_4 (30)^4 = 1.62$$

Example

Set of equations in matrix form

$$\begin{bmatrix} 1 & 4.22 & 17.801 & 75.151 & 317.14 \\ 1 & 7 & 49 & 343 & 2401 \\ 1 & 10 & 100 & 1000 & 10^4 \\ 1 & 20 & 400 & 8000 & 1.6 \times 10^5 \\ 1 & 30 & 900 & 27000 & 8.1 \times 10^5 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 16.9 \\ 7.53 \\ 5.02 \\ 2.44 \\ 1.62 \end{bmatrix}$$

Using Gaussian elimination and pivoting

Example (continue)

Density equation

$$\rho(T) = 56.811 - 14.669T + 1.4821T^{2} - 0.062386T^{3} + (9.0796 \times 10^{-4})T^{4}$$

Interpolated density at 17 K becomes

$$= 56.811 - 14.6699(17) + 1.4821(17)^{2} - 0.062386(17)^{3} + (9.0796 \times 10^{-4})(17)^{4}$$
$$= 5.084 \text{ kg/m}^{3}$$

General Polynomial Fit

Consider a polynomial of order n with n + 1 data points

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

 \rightarrow If the polynomial passes through (x_i, y_i)

$$y_i = a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_{n-1} x_i^{n-1} + a_n x_i^n$$

General Polynomial Fit (continue)

In matrix form

$$\begin{bmatrix} A \end{bmatrix} \vec{a} = \vec{y} \qquad \begin{bmatrix} 1 & x_0 & x_0^2 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

[A] is known as a Vandermonde matrix, prone to ill conditioning

Polynomial Fit - example

Suppose we want to fit the parabola $f(x) = a_0 + a_1x + a_2x^2$ that passes through the last three density values from previous example

$$x_0 = 10 \ f(x_0) = 5.02$$

 $x_1 = 20 \ f(x_1) = 2.44$
 $x_2 = 30 \ f(x_2) = 1.62$

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \end{bmatrix}$$

Helium gas **T** (K) ρ (kg/m³) 4.22 16.9 7 7.53 10 5.02 20 2.44 30 1.62

Lagrange Interpolating Polynomial

Lagrange polynomial of order 2

$$f(x) = y = b_0(x - x_1)(x - x_2) + b_1(x - x_0)(x - x_2) + b_2(x - x_0)(x - x_1)$$

Substitution 3 data points

$$y_0 = b_0(x_0 - x_1)(x_0 - x_2) \qquad b_0 = y_0/(x_0 - x_1)(x_0 - x_2)$$

$$y_1 = b_1(x_1 - x_0)(x_1 - x_2) \implies b_1 = y_1/(x_1 - x_0)(x_1 - x_2)$$

$$y_2 = b_2(x_2 - x_0)(x_2 - x_1) \qquad b_2 = y_2/(x_2 - x_0)(x_2 - x_1)$$

Example

1st order Lagrange interpolating polynomial

$$f_1(x) = y_0 \frac{(x - x_1)}{(x_0 - x_1)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)} = 5.02 \frac{(x - 20)}{(10 - 20)} + 2.44 \frac{(x - 10)}{(20 - 10)}$$

> 2 points

20 2.44

30 1.62

$$f_1(17) = -0.502(17 - 20) + 0.244(17 - 10) = 3.214 \text{ kg/m}^3$$

Example (continue)

2nd order Lagrange interpolating polynomial

$$f(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

> 3 points

$$\begin{split} f_2(x) &= 7.53 \frac{(x-10)(x-20)}{(7-10)(7-20)} + 5.02 \frac{(x-7)(x-20)}{(10-7)(10-20)} + 2.44 \frac{(x-7)(x-10)}{(20-7)(20-10)} \\ f_2(17) &= 0.1931(17-10)(17-20) - 0.1673(17-7)(17-20) + 0.01877(17-7)(17-10) \\ &= 2.279 \text{ kg/m}^3 \end{split}$$

Example (continue)

- 3rd order Lagrange interpolating polynomial
- 4 points

$$\begin{split} f_3(x) &= 7.53 \frac{(x-10)(x-20)(x-30)}{(7-10)(7-20)(7-30)} + 5.02 \frac{(x-7)(x-20)(x-30)}{(10-7)(10-20)(10-30)} \\ &+ 2.44 \frac{(x-7)(x-10)(x-30)}{(20-7)(20-10)(20-30)} + 1.62 \frac{(x-7)(x-10)(x-20)}{(30-7)(30-10)(30-20)} \\ f_3(x) &= -0.008395(x-10)(x-20)(x-30) + 0.008367(x-7)(x-20)(x-30) \\ &- 0.001877(x-7)(x-10)(x-30) + 0.0003522(x-7)(x-10)(x-20) \\ f_3(17) &= 2.605 \text{ kg/m}^3 \end{split}$$

Compact Form

General form of nth degree

$$f(x) = \sum_{i=0}^{n} y_i L_i = \sum_{i=0}^{n} y_i \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

Newton Interpolating Polynomial

- Disadvantages of Lagrange interpolation polynomial
 - A large of number arithmetic operations
 - Cannot be used if data points are changed
 - Estimation of error in interpolation is not easy
- nth degree Newton interpolating polynomial

$$f_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

▶1st order - liner interpolation

$$\frac{DE}{AE} = \frac{BC}{AC} \text{ or } \frac{f_1(x_0) - f(x_0)}{x_0 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

$$f_{1}(x) = c_{0} + c_{1}(x - x_{0})$$

where
$$c_0 = f(x_0)$$

$$c_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f[x_1, x_0]$$

>2nd order quadratic interpolation

$$f_2(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1)$$

where

$$c_0 = f(x_0)$$

$$c_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f[x_1, x_0]$$

$$c_2 = \frac{1}{(x_2 - x_0)} \left\{ \frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \right\} = f[x_2, x_1, x_0]$$

- Substituting (x_0, y_0) , we obtain $f_n(x_0) = c_0 = y_0$
- Substituting (x_1, y_1) , and use $c_0 = y_0$, we obtain

$$f_n(x_1) = c_0 + c_1(x_1 - x_0) = y_1$$

$$c_1 = f[x_1, x_0] = \frac{y_1 - y_0}{x_1 - x_0}$$
 First divided difference between x_0 and x_1

$$c_2 = f[x_2, x_1, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0} = \frac{1}{x_2 - x_0} \left(\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0} \right)$$

$$c_{3} = f[x_{3}, x_{2}, x_{1}, x_{0}] = \frac{f[x_{3}, x_{2}, x_{1}] - f[x_{2}, x_{1}, x_{0}]}{x_{3} - x_{0}}$$

$$= \frac{1}{x_{3} - x_{0}} \left(\frac{f[x_{3}, x_{2}] - f[x_{2}, x_{1}]}{x_{3} - x_{1}} - \frac{f[x_{2}, x_{1}] - f[x_{1}, x_{0}]}{x_{2} - x_{0}} \right)$$

$$f_{n}(x) = c_{0} + c_{1}(x - x_{0}) + c_{2}(x - x_{0})(x - x_{1}) + \dots + c_{n}(x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

$$c_4 = f[x_4, x_3, x_2, x_1, x_0] = \frac{f[x_4, x_3, x_2, x_1] - f[x_3, x_2, x_1, x_0]}{x_4 - x_0}$$

$$c_n = f[x_n, x_{n-1}, \dots, x_1, x_0] = \frac{f[x_n, x_{n-1}, \dots, x_2, x_1] - f[x_{n-1}, x_{n-2}, \dots, x_1, x_0]}{x_n - x_0}$$

$$f_{n}(x) = c_{0} + c_{1}(x - x_{0}) + c_{2}(x - x_{0})(x - x_{1}) + \dots + c_{n}(x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

Coefficients c₀, c₁,, c_n determined from divided differences from tabulated values

$$i$$
 x y c_1 1st Diff., c_2 2nd Diff., c_3 3rd Diff., c_4 4th Diff.,

$$0 \quad x_0 \quad y_0 \to f[x_1, x_0] \to f[x_2, x_1, x_0] \to f[x_3, x_2, x_1, x_0] \to f[x_4, x_3, x_2, x_1, x_0]$$

1
$$x_1$$
 $y_1 \to f[x_2, x_1] \to f[x_3, x_2, x_1] \to f[x_4, x_3, x_2, x_1]$

2
$$x_2$$
 $y_2 \to f[x_3, x_2] \to f[x_4, x_3, x_2]$

$$3 \quad x_3 \quad y_3 \to f[x_4, x_3]$$

4
$$x_4$$
 y_4

Example

> 1st order

$$c_0 = y_0 = 5.02$$

$$c_1 = f[x_1, x_0] = \frac{y_1 - y_0}{x_1 - x_0} = \frac{2.44 - 5.02}{20 - 10} = -0.258$$

$$f_1(x) = 5.02 - 0.258(x - 10)$$

$$f_1(17) = 5.02 - 0.258(17 - 10) = 3.214 \text{ kg/m}^3$$

Example (continue)

> 2nd order

Helium gas

i	х	у	First	Second
0	7	7.53	-0.8367	0.04451
1	10	5.02	-0.2580	
2	20	2.44		

$$\begin{split} f_2(x) &= 7.53 - 0.8367(x - 7) + 0.04451(x - 7)(x - 10) \\ f_2(17) &= 7.53 - 0.8367(17 - 7) + 0.04451(17 - 7)(17 - 10) = 2.279 \text{ kg/m}^3 \end{split}$$

Note: Curve fitting from Lagrange and Newton interpolating polynomials are the same as that of the polynomial fit

Newton-Gregory Formulas

- Applicable for uniformly spaced data
- Newton interpolating polynomial can be simplified

$$h = (x_n - x_0)/n \qquad x_i = x_0 + ih$$

$$c_{0} = \frac{\Delta^{0} f_{0}}{h^{0}} = f_{0}$$
 $c_{1} = \left\{ \frac{f_{1} - f_{0}}{x_{1} - x_{0}} \right\} = \frac{\Delta^{1} f_{0}}{h^{1}} = \frac{\Delta f_{0}}{h}$

$$c_{2} = \frac{1}{\left(x_{2} - x_{0}\right)} \left\{ \frac{f_{2} - f_{1}}{\left(x_{2} - x_{1}\right)} - \frac{f_{1} - f_{0}}{\left(x_{1} - x_{0}\right)} \right\} = \frac{f_{2} - 2f_{1} + f_{0}}{2h^{2}} = \frac{\Delta^{2} f_{0}}{2!h^{2}}$$

•

$$c_n = \frac{\Delta^n f_0}{n!h^n}$$
 Forward difference

Newton-Gregory Formulas (continue)

nth order Newton-Gregory forward interpolating polynomial

$$f_{n}(x) = f(x_{0}) + \frac{\Delta f_{0}}{h}(x - x_{0}) + \frac{\Delta^{2} f_{0}}{2!h^{2}}(x - x_{0})(x - x_{0} - h) + \dots + \frac{\Delta^{n} f_{0}}{n!h^{n}}(x - x_{0})(x - x_{0} - h) \dots (x - x_{0} - (n - 1)h)$$

nth order Newton-Gregory backward interpolating polynomial

$$f_{n}(x) = f(x_{n}) + \frac{\nabla f_{n}}{h}(x - x_{n}) + \frac{\nabla^{2} f_{n}}{2!h^{2}}(x - x_{n})(x - x_{n} + h) + \dots + \frac{\nabla^{n} f_{n}}{n!h^{n}}(x - x_{n})(x - x_{n} + h) \dots (x - x_{n} + (n - 1)h)$$

- If x is close to \mathcal{X}_0 , choose forward difference
- If x is close to \mathcal{X}_n , choose backward difference

Splines

- For Lagrange and Newton interpolation polynomials, although the polynomial pass through all the data points, errors of a single polynomial tend to increase drastically as its order n becomes large
- Often, a high-order polynomial introduces unnecessary oscillations or wiggles when the function undergoes an abrupt change in the range of interpolation

Splines (continue)

Linear Spline

- Linear spline represents a straight line joining any two neighboring data points (knots), see figure below
- A linear polynomial in the *i*th interval between point (x_i, y_i) and (x_{i+1}, y_{i+1}) is $f_i(x) = a_i(x x_i) + b_i$

Example

- Fit the data with a linear spline
- Interval [0.0,1.0]

$$f_0(x_0) = a_0(x_0 - x_0) + b_0 = y_0$$

$$f_0(x_1) = a_0(x_1 - x_0) + b_0 = y_1$$

$$b_0 = 2$$

$$a_0(1 - 0) + b_0 = 4.4366, a_0 = 2.4366$$

Interval [1.0,1.5]

$$f_1(x_1) = a_1(x_1 - x_1) + b_1 = y_1$$

$$f_1(x_2) = a_1(x_2 - x_1) + b_1 = y_2$$

$$b_2 = 6.7134$$

$$a_2(2.25 - 1.5) + b_2 = 13.913, a_2 = 9.5995$$

i	х	f(x)
0	0.0	2.0000
1	1.0	4.4366
2	1.5	6.7134
3	2.25	13.913

Example (continue)

Interval [1.5,2.25]

$$f_2(x_2) = a_2(x_2 - x_2) + b_2 = y_2$$

$$f_2(x_3) = a_2(x_3 - x_2) + b_2 = y_3$$

$$b_2 = 6.7134$$

$$a_2(2.25 - 1.5) + b_2 = 13.913, a_2 = 9.5995$$

i	х	f(x)	
0	0.0	2.0000	
1	1.0	4.4366	
2	1.5	6.7134	
3	2.25	13.913	

Problem with the linear spline is that the slope is

discontinuous at the points

Cubic Spline

- Cubic spline represents a cubic equation between any two neighboring data points (knots)
- A cubic polynomial in the *i*th interval between point (x_i, y_i) and (x_{i+1}, y_{i+1}) is $f_i(x) = a_i(x x_i)^3 + b_i(x x_i)^2 + c_i(x x_i) + d_i$

Satisfies the following conditions:

$$f_{i}(x_{i}) = y_{i}$$
 and $f_{n}(x_{n}) = y_{n}$
 $f_{i}(x_{i+1}) = f_{i+1}(x_{i+1})$ continuous

 $f'_{i}(x_{i+1}) = f'_{i+1}(x_{i+1})$ slope

 $f''_{i}(x_{i+1}) = f''_{i+1}(x_{i+1})$ curvature

▶ Based on $f_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$ $f_i(x_i) = a_i(x_i - x_i)^3 + b_i(x_i - x_i)^2 + c_i(x_i - x_i) + d_i$ $f_i(x_i) = d_i \qquad d_i = y_i$

Let $h_i = x_{i+1} - x_i$ be the width of *i*th interval

$$f_i(x_{i+1}) = a_i(x_{i+1} - x_i)^3 + b_i(x_{i+1} - x_i)^2 + c_i(x_{i+1} - x_i) + d_i$$

$$a_i h_i^3 + b_i h_i^2 + c_i h_i + y_i = y_{i+1}$$

> Slope and curvature, differentiate $f_i(x)$

$$f_i'(x) = 3a_i h_i^2 + 2b_i h_i + c_i$$
$$f_i''(x) = 6a_i h_i + 2b_i$$

▶ Let $S_i = f_i''(x_i)$ and $S_n = f_{n-1}''(x_n)$

$$S_{i} = 6a_{i}(x_{i} - x_{i}) + 2b_{i}$$

$$S_{i+1} = 6a_{i}(x_{i+1} - x_{i}) + 2b_{i}$$

$$b_{i} = \frac{S_{i}}{2} \qquad a_{i} = \frac{S_{i+1} - S_{i}}{6h_{i}}$$

Solve for c_i , using a_i , b_i and d_i , recalling $d_i = y_i$

$$\left(\frac{S_{i+1} - S_{i}}{6h_{i}}\right)h_{i}^{3} + \left(\frac{S_{i}}{2}\right)h_{i}^{2} + c_{i}h_{i} + y_{i} = y_{i+1}$$

$$c_{i} = \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{2h_{i}S_{i} + h_{i}S_{i+1}}{6}$$

Invoke the condition where the slopes are the same that join (x_i, y_i)

$$f'_{i-1}(x_i) = f'_i(x_i)$$

$$3a_{i-1}(x_i - x_{i-1})^2 + 2b_{i-1}(x_i - x_{i-1}) + c_{i-1} = 3a_i(x_i - x_i)^2 + 2b_i(x_i - x_i) + c_i$$

$$a_{i-1}h_{i-1}^2 + b_{i-1}h_{i-1} + c_{i-1} = c_i$$

 \triangleright Substituting a_i , b_i , c_i and d_i and simplifying

$$h_{i-1}S_{i-1} + 2(h_{i-1} + h_i)S_i + h_iS_{i+1} = 6\left(\frac{y_{i+1} - y_i}{h_i} - \frac{y_i - y_{i-1}}{h_{i-1}}\right)$$

- For natural spline, $S_0 = 0$ and $S_n = 0$
- \triangleright We can write S_i in matrix form

$$\begin{bmatrix} 2(h_0 + h_1) & h_1 \\ h_1 & 2(h_1 + h_2) & h_2 \\ & h_2 & 2(h_2 + h_3) & h_3 \\ & & \ddots & \\ & & h_{n-2} & 2(h_{n-2} + h_{n-1}) \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ \vdots \\ S_{n-1} \end{bmatrix} = 6 \begin{cases} f[x_2, x_1] - f[x_1, x_0] \\ f[x_3, x_2] - f[x_2, x_1] \\ f[x_4, x_3] - f[x_3, x_2] \\ \vdots \\ f[x_n, x_{n-1}] - f[x_{n-1}, x_{n-2}] \end{cases}$$

After S_i values are obtained

$$a_i = \frac{S_{i+1} - S_i}{6h_i}$$
 $b_i = \frac{S_i}{2}$ $c_i = \frac{y_{i+1} - y_i}{h_i} - \frac{2h_i S_i + h_i S_{i+1}}{6}$ $d_i = y_i$

Example

- Fit the data with a cubic spline
- For 4 points, $S_0 = 0$ $S_3 = 0$

$$\begin{bmatrix} 2(h_0 + h_1) & h_1 \\ h_1 & 2(h_1 + h_2) \end{bmatrix} \begin{Bmatrix} S_1 \\ S_2 \end{Bmatrix} = 6 \begin{Bmatrix} f[x_2, x_1] - f[x_1, x_0] \\ f[x_3, x_2] - f[x_2, x_1] \end{Bmatrix}$$

_i	Х	h	у
0	0.0	1.0	2.0000
1	1.0	0.5	4.4366
2	1.5	0.75	6.7134
3	2.25		13.913

$$\begin{bmatrix} 2(1+0.5) & 0.5 \\ 0.5 & 2(0.5+0.75) \end{bmatrix} \begin{Bmatrix} S_1 \\ S_2 \end{Bmatrix} = 6 \begin{Bmatrix} \frac{6.7134 - 4.4366}{0.5} - \frac{4.4366 - 2}{1.0} \\ \frac{13.913 - 6.7134}{0.75} - \frac{6.7134 - 4.4366}{0.5} \end{Bmatrix}$$

$$\begin{bmatrix} 3 & 0.5 \\ 0.5 & 2.5 \end{bmatrix} \begin{Bmatrix} S_1 \\ S_2 \end{Bmatrix} = \begin{Bmatrix} 12.702 \\ 30.2754 \end{Bmatrix} \qquad \begin{Bmatrix} S_1 \\ S_2 \end{Bmatrix} = \begin{Bmatrix} 2.292 \\ 11.6518 \end{Bmatrix}$$

$$a_0 = \frac{S_1 - S_0}{6h_0} = \frac{2.292 - 0}{6(1)} = 0.382$$
 $b_0 = \frac{S_0}{2} = 0$ $d_0 = y_0 = 2$

$$c_0 = \frac{y_1 - y_0}{h_0} - \frac{2h_0S_0 + h_0S_1}{6} = \frac{4.4366 - 2}{1.0} - \frac{2(1)(0) + (1)(2.292)}{6} = 2.0546$$

Example (continue)

Interval [0.0,1.0]

$$f_0(x) = 0.382(x-0)^3 + 2.0546(x-0) + 2$$

i	х	h	у
0	0.0	1.0	2.0000
1	1.0	0.5	4.4366
2	1.5	0.75	6.7134
3	2.25		13.913

Interval [1.0,1.5]

$$f_1(x) = 3.1199(x-1)^3 + 1.146(x-1)^2 + 3.2005(x-1) + 4.4366$$

Interval [1.5,2.25]

$$f_2(x) = -2.5893(x-1.5)^3 + 5.8259(x-1.5)^2 + 6.6866(x-1.5) + 6.7134$$

Least Square Regression

- Approach is useful when there are more data points than the number of unknown coefficients
- Four approaches
 - Linear Regression
 - Nonlinear Regression
 - Polynomial Regression
 - Multiple Regression

Linear Regression

Linear regression is fitting the best straight line (linear equation) to the data

Height	Velocity
x (m)	y (m/s)
10	2.2
15	4.6
20	4.2
25	7
30	6.6
35	9.2

Linear Regression (continue)

- ► An approximate function y(x) = ax + b
- From or deviation of the points (x_i, y_i) from the function $e_i = y_i y(x_i) = y_i (ax_i + b)$
- Minimize the magnitude of errors, least-square principle – sum of squares of errors

$$S = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Determine the best values of a and b by

$$\frac{\partial S}{\partial b} = 0 = \sum_{i=1}^{n} 2(y_i - ax_i - b)(-1) \qquad \frac{\partial S}{\partial a} = 0 = \sum_{i=1}^{n} 2(y_i - ax_i - b)(-x_i)$$

$$a\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} b = \sum_{i=1}^{n} y_i \qquad a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i$$

$$\begin{bmatrix} \sum x_i & n \\ \sum x_i^2 & \sum x_i \end{bmatrix} \begin{cases} a \\ b \end{cases} = \begin{cases} \sum y_i \\ \sum x_i y_i \end{cases}$$

$$\begin{bmatrix} 135 & 6 \\ 3475 & 135 \end{bmatrix} \begin{Bmatrix} a \\ b \end{Bmatrix} = \begin{Bmatrix} 33.8 \\ 870 \end{Bmatrix}$$

$$\begin{cases} a \\ b \end{cases} = \begin{cases} 0.250286 \\ 0.00190476 \end{cases}$$

$$y = 0.250286x + 0.00190476$$

	Height	Velocity		
	x (m)	y (m/s)	x ²	ху
	10	2.2	100	22
	15	4.6	225	69
	20	4.2	400	84
	25	7	625	175
	30	6.6	900	198
	35	9.2	1225	322
Sum	135	33.8	3475	870

Accuracy of Linear Regression

Correlation coefficient

$$r = \left(\frac{S_0 - S}{S_0}\right)^{1/2} \qquad S_0 = \sum_{i=1}^n (y_i - \overline{y})^2 \qquad \overline{y} = \frac{1}{n} \sum_{i=1}^n y_i \qquad S = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - ax_i - b)^2$$

- ightharpoonup A perfect straight line is obtained if r = 1 or S = 0
- A worst straight line if r = 0 or $S = S_0$

	Height	Velocity			So	S
	x (m)	y (m/s)	x ²	ху	$(y-y_m)^2$	(y-ax-b) ²
	10	2.2	100	22	11.7878	0.0928816
	15	4.6	225	69	1.06778	0.712007
	20	4.2	400	84	2.05444	0.652258
	25	7	625	175	1.86778	0.549000
	30	6.6	900	198	0.934444	0.828982
	35	9.2	1225	322	12.7211	0.191919
Sum	135	33.8	3475	870	30.4333	3.02705
b =	0.00190476				r =	0.948965
a =	0.250286				r^2 =	0.900535

Still need to inspect the data plot even though *r* is close to 1

Example: heat transfer

The heat transfer coefficient (h) in a forced convection heat transfer in a cross flow past a cylinder is found to vary with the velocity of the fluid (V) flowing past the cylinder as follows:

V _i (m/s)	2	4	6	8
h _i	6.0	10.0	13.0	15.0
(W/m ² K)				

Fit a linear equation between *h* and *V* using the method of least squares.

Nonlinear Regression

Fit with first degree polynomial

$$y = ax^b$$
 $y = ae^{bx}$

By taking logarithms

$$ln y = ln a + b ln x \qquad ln y = ln a + bx$$

$$\begin{bmatrix} \sum \ln x_i & n \\ \sum (\ln x_i)^2 & \sum \ln x_i \end{bmatrix} \begin{cases} b \\ \ln a \end{cases} = \begin{cases} \sum \ln y_i \\ \sum \ln x_i \ln y_i \end{cases} \qquad \begin{bmatrix} \sum x_i & n \\ \sum x_i^2 & \sum x_i \end{bmatrix} \begin{cases} b \\ \ln a \end{cases} = \begin{cases} \sum \ln y_i \\ \sum x_i \ln y_i \end{cases}$$

- Fit $y = ax^b$ to the following data
- ► Linearization by $\ln y = \ln a + b \ln x$

$$\begin{bmatrix} \sum \ln x_i & n \\ \sum (\ln x_i)^2 & \sum \ln x_i \end{bmatrix} \begin{cases} b \\ \ln a \end{cases} = \begin{cases} \sum \ln y_i \\ \sum \ln x_i \ln y_i \end{cases}$$

$$\begin{bmatrix} 4.7875 & 5 \\ 6.1995 & 4.7875 \end{bmatrix} \begin{cases} b \\ \ln a \end{cases} = \begin{cases} 4.93 \\ 7.5503 \end{cases}$$

$$\begin{cases} b \\ \ln a \end{cases} = \begin{cases} 1.7517 \\ -0.69128 \end{cases}$$

$$\ln y = -0.69128 + 1.7517 \ln x$$

$$a = \exp(-0.69128) = 0.50093$$

$$y = 0.50093x^{1.7517}$$

х	у	ln x	In y	$(\ln x)^2$	(ln x)(ln y)
1	0.5	0	-0.69315	0	0
2	1.7	0.69315	0.53063	0.48045	0.36780
3	3.4	1.0986	1.2238	1.2069	1.3445
4	5.7	1.3863	1.7405	1.9218	2.4128
5	8.4	1.6094	2.1282	2.5903	3.4253
	Sum =	4.7875	4.9300	6.1995	7.5503
	b = 1.7517				
	In a =	-0.69128	a =	0.50093	

Polynomial Regression

Fit with second order degree polynomial or quadratic

$$y = a_0 + a_1 x + a_2 x^2 + e$$

$$e_i = y_i - a_0 - a_1 x_i - a_2 x_i^2$$

$$S = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$$

Differentiating

$$\frac{\partial S}{\partial a_0} = 0 = -2\sum_{i=1}^n \left(y_i - a_0 - a_1 x_i - a_2 x_i^2 \right) \qquad \frac{\partial S}{\partial a_1} = 0 = -2\sum_{i=1}^n x_i \left(y_i - a_0 - a_1 x_i - a_2 x_i^2 \right)$$

$$\frac{\partial S}{\partial a_2} = 0 = -2\sum_{i=1}^n x_i^2 \left(y_i - a_0 - a_1 x_i - a_2 x_i^2 \right)$$

Polynomial Regression (continue)

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} \\ \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \sum_{i=1}^{n} x_{i}^{4} \end{bmatrix} \begin{Bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{Bmatrix} = \begin{Bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \\ \sum_{i=1}^{n} x_{i}^{2} y_{i} \end{Bmatrix}$$

Fit a second order polynomial to the following

data

 x
 0
 1
 2
 3
 4
 5

 y
 2.1
 7.7
 13.6
 27.2
 40.9
 61.1

Solution

$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 22 & 225 & 979 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{bmatrix}$$

$$y = 2.47857 + 2.35929x + 1.8607x^2$$

х	у	x ²	x ³	x ⁴	ху	x²y
0	2.1	0	0	0	0	0
1	7.7	1	1	1	7.7	7.7
2	13.6	4	8	16	27.2	54.4
3	27.2	9	27	81	81.6	244.8
4	40.9	16	64	256	163.6	654.4
5	61.1	25	125	625	305.5	1527.5
15	152.6	55	225	979	585.6	2488.8

Example – electric motor

The vertical displacement of a large electric motor mounted on isolators due to the forced vibration caused by the rotating unbalance in the rotor is shown in the following table:

Speed of motor,	100	200	300	400	500
v_i (rpm)					
Displacement, d_i	0.1	0.35	0.70	0.40	0.35
(mm)	0				

You are required to develop a suitable polynomial relationship between v and d and fit a curve through data points.

Multiple Regression

Extension of linear regression with two or more independent variables

$$y = a_0 + a_1 x_1 + a_2 x_2 + e$$

For this 2-D case, the regression "line" becomes a "plane"

$$S = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - a_{0} - a_{1}x_{1i} - a_{2}x_{2i})^{2}$$

$$\frac{\partial S}{\partial a_{0}} = 0 = -2\sum_{i=1}^{n} (y_{i} - a_{0} - a_{1}x_{1i} - a_{2}x_{2i}) \qquad \frac{\partial S}{\partial a_{1}} = 0 = -2\sum_{i=1}^{n} x_{1i} (y_{i} - a_{0} - a_{1}x_{1i} - a_{2}x_{2i})$$

$$\frac{\partial S}{\partial a_{2}} = 0 = -2\sum_{i=1}^{n} x_{2i} (y_{i} - a_{0} - a_{1}x_{1i} - a_{2}x_{2i})$$

Multiple Regression (continue)

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{1i} & \sum_{i=1}^{n} x_{2i} \\ \sum_{i=1}^{n} x_{1i} & \sum_{i=1}^{n} x_{1i}^{2} & \sum_{i=1}^{n} x_{1i} x_{2i} \\ \sum_{i=1}^{n} x_{2i} & \sum_{i=1}^{n} x_{1i} x_{2i} & \sum_{i=1}^{n} x_{2i}^{2} \end{bmatrix} \begin{Bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{Bmatrix} = \begin{Bmatrix} \sum_{i=1}^{n} x_{1i} y_{i} \\ \sum_{i=1}^{n} x_{2i} y_{i} \end{Bmatrix}$$

- Use linear multiple regression to the following
 - data

Solution

$$\begin{bmatrix} 6 & 16.5 & 14 \\ 16.5 & 76.25 & 48 \\ 14 & 48 & 54 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 54 \\ 243.5 \\ 100 \end{bmatrix}$$

$$\begin{cases}
 a_0 \\
 a_1 \\
 a_2
 \end{cases} =
 \begin{cases}
 5 \\
 4 \\
 -3
 \end{cases}$$
 Gaussian elimination

x1	x2	у	x ₁ ²	x_2^2	X 1 X 2	x ₁ y	x ₂ y
0	0	5	0	0	0	0	0
2	1	10	4	1	2	20	10
2.5	2	9	6.25	4	5	22.5	18
1	3	0	1	9	3	0	0
4	6	3	16	36	24	12	18
7	2	27	49	4	14	189	54
16.5	14	54	76.25	54	48	243.5	100