

CS489/698: Intro to ML

Lecture 16: Decision Trees

Trees Recalled

Example: EnjoySport?

Decision trees can represent any boolean function

Classification And Regression Tree

LEARNing a Decision Tree

Which variables to split in each stage?

What threshold to use?

setup a cost/objective

When to stop? — regularization: early stopping / pruning

What to put at the leaves?

regression / classification / other

Algorithm

```
function DTL(examples, attributes, default) returns a decision tree
   if examples is empty then return default
   else if all examples have the same classification then return the classification
   else if attributes is empty then return Mode (examples)
   else
        best \leftarrow \text{Choose-Attributes}, examples
        tree \leftarrow a new decision tree with root test best
        for each value v_i of best do
            examples_i \leftarrow \{elements of examples with best = v_i\}
             subtree \leftarrow DTL(examples_i, attributes - best, Mode(examples))
            add a branch to tree with label v_i and subtree subtree
        return tree
```

Yao-Liang Yu

Which and How

Yao-Liang Yu

- For categorical features, simply try each
- What should T_i be?

Stopping criterion

- Maximum depth exceeded
- Maximum running time exceeded
- All children nodes are sufficiently homogeneous
- All children nodes have too few training examples
- Cross-validation
- Reduction in cost is small

$$\Delta = \ell(\mathcal{D}) - \left(\frac{|\mathcal{D}_L|}{|\mathcal{D}|}\ell(\mathcal{D}_L) + \frac{|\mathcal{D}_R|}{|\mathcal{D}|}\ell(\mathcal{D}_R)\right)$$
waterioo

Regression cost

$$\ell(\mathcal{D}) = \min_{y} \sum_{i=1}^{} (y_i - y)^2 = \sum_{i \in \mathcal{D}} (y_i - \bar{y})^2$$
 average of y_i in D stored on leaves

Yao-Liang Yu

Can of course use other loss than least-squares

Can also fit any regression model on D

Classification cost

$$\hat{p}_c = rac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} 1(y_i = c)$$
 $\hat{y} = rg \max_{c} \hat{p}_c$ majority vote

• Misclassification error: $\ell(\mathcal{D}) = 1 - \hat{p}_{\hat{y}}$

• Entropy:
$$\ell(\mathcal{D}) = -\sum_{c=1}^C \hat{p}_c \log \hat{p}_c$$

• Gini index:
$$\ell(\mathcal{D}) = \sum_{c=1}^{C} \hat{p}_c (1 - \hat{p}_c) = 1 - \sum_{c=1}^{c} \hat{p}_c^2$$

Comparison

Example

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Type or Patrons

 A better feature split should lead to nearly all positives or all negatives

Result

Yao-Liang Yu

Pruning

- Early stopping can be myopic
- Grow a full tree and then prune in bottom-up

Generic Tree Pruning Procedure

input:

```
function f(T, m) (bound/estimate for the generalization error of a decision tree T, based on a sample of size m), tree T.
```

```
foreach node j in a bottom-up walk on T (from leaves to root): find T' which minimizes f(T', m), where T' is any of the following: the current tree after replacing node j with a leaf 1. the current tree after replacing node j with a leaf 0. the current tree after replacing node j with its left subtree. the current tree after replacing node j with its right subtree. the current tree.
```

let T := T'.

Decision Stump

Yao-Liang Yu

A binary tree with depth 1

Performs classification based on one feature

Easy to train but underfits; interprettable

Questions?

