9/3/2018

SCALE TERMOMETRICHE

SCALA CELSIUS (°C) SCALA KELVIN (S.I.) (K)

TEMPERATURE IN GRABI CFI SIUS T = t + 273

TEMPERATURA ASSOLUTA (IN KELVIN)

ESEMPLO_

20°C coninjondons a (20+273) K ~> 293 K

400 K coningondors a (400-273)°C ~> 127°C

Le voiotioni di temperatura hams la stess valore numerico in °C e in K

$$\Delta T = \Delta t$$

$$35+273$$

$$\uparrow$$

$$T_{IN} = 35 °C$$

$$\Delta t = t_{FIN} - t_{IN} = 10 °C$$

$$T_{FIN} = 318 K$$

$$= 10 K$$

$$45+273$$

2 FRO ASSOLUTO ~> OK = -273 °C

MINIMA TEMPERATURA CONCEPIBILE!

DILATAZIONE TERMICA

D16474210	DUE TERMICE	LINEARE	e not a	11mg DD 00	. 1. ·	F-00-
				une shar	e ou h	neroco
				LUNGI	IEZZA C	ome
	Lo=lu	ighesso inis	riole	dimen	sione f	ome crincipale
T _{IN}						
T _{FIN}	L = lu	glesso findo	CoFF	FICIFUTE DI		
T _{FIN} > T _{IN}		L= Lo (1+		DICATAZIONE TI LINFARE (°	C-1 & 1	<-1)
	lunghers alla temp. T	EIN T	FIN - TIN	DIPENDE ! MATEMA	(E	
	nolts fical	·!		,		
	Lype s.	ACCIAIO ha o	L = 11 × 1	10-6 K ⁻¹		
		L = Lo + Lo	, LDT			
	L	<u></u>				
		AL allengamen	A3 			
		IL = Lo X DT	-			

$$L_{0} = ? \qquad \Delta t = 50 °C \qquad L = 10,085 m$$

$$L = L_{0} (1 + \alpha \Delta t) \qquad \qquad L_{0} = \frac{L}{1 + \alpha \Delta t} = \frac{L}{1 + \alpha \Delta t} = \frac{L}{1 + \alpha \Delta t} = \frac{10,085 m}{1 + (11 \times 10^{-6})(50)} = \frac{10,085 m}{1 + (11 \times 10^{-6})(50)} = \frac{10,079 m}{1 + (11 \times 10^{-6})(50)}$$

Una sbarra di 5 m si allunga di 1 cm se la sua temperatura si innalza da 10 °C a 100 °C. Quanto vale il coefficiente di dilatazione lineare? Di quale materiale è presumibilmente composta la sbarra?

[22,2 · 10⁻⁶ K⁻¹; stagno]

$$\Delta L = L_0 \Delta \Delta t$$

$$\Delta L = 100^{\circ}C - 10^{\circ}C = 30^{\circ}C$$

$$\Delta L = 1 \text{ Cm} = 0,01 \text{ m}$$

$$\Delta = \frac{\Delta L}{L_0 \Delta t} = \frac{0,01 \text{ m}}{(5 \text{ m})(30^{\circ}C)} = 0,0000222^{\circ}C^{-1} =$$

$$= 22,2 \times 10^{-6} \text{ °C}^{-1}$$

$$V CIBRO 18.325$$

$$N \text{ noteriole on cefficients}$$

$$\text{simile e quells torots e ls STAGNO}$$