Eine Woche, ein Beispiel 6.4. Grothendieck topology, site and topos

Top. space	space	continuous map	Covering of	24	cohomology
Site = Category Groth cover	Object	Morphism	Grothendieck Top.	topos	new cohomology
X _{za} , (Sch/X) _{za} , Xét (Sch/X)ét	open immersion over X Ob(Sch/X) étale + l.f.p over X Ob(Sch/X)	Mor (Sch/X) full sub of Sch/X Mor (Sch/X)	<u> </u>		
(Sch/X) sm	Ob(Sch/X)	Mor (Sch/X)	smooth+lfp		
(Sch/X) first	Ob(Sch/X)	Mor (Sch/X)	f.flat + l.f.p		
(Sch/X) fpge	Ob(Sch/X)	Mor (Sch/X)	f·flot+f:(q.o) locally qc		

https://pbelmans.ncag.info/notes/etale-cohomology.pdf

(80) [Hilbert's theorem 90 (no non-trivial line bundle on speck

https://math.stackexchange.com/questions/1424102/relationship-between-galois-cohomology-and-etale-cohomology

https://mathoverflow.net/questions/247044/small-fppf-syntomic-smooth-sites it tells us why we don't have small site for most condition.

Thm. O equiv. of categories

Sets ((Spec K)
$$e_t$$
) \longleftrightarrow Disc G_k -Set

Ab ((Spec K) e_t) \longleftrightarrow Disc Mod G_k

(a)

(b)

Preserve cohomology

H'((Spec(K)) e_t , F) = H_{cont} (G_k , F_k)

Ex. describe sheaf on (Spec C) e_t

Spec C e_t

Spec C e_t

Spec C

Think the conjugation of the capacity of the conjugation of the co

```
Sub Ex. \mathcal{F} is shouf \longrightarrow \mathcal{F}(R) = \mathcal{F}(C)^{Gal}

Gal:=Gal(\mathbb{C}/R)

Partial \mathcal{F} is seperated \longrightarrow \mathcal{F}(R) \longrightarrow \mathcal{F}(C) inj

Penults: C_{omm} diagram \longrightarrow \mathcal{F}(R) \subseteq \mathcal{F}(C)^{Gal}

F sheef: O \longrightarrow \mathcal{F}(V) \longrightarrow \mathcal{T}\mathcal{F}(U, 1) \Longrightarrow \mathcal{T}\mathcal{F}(U, 1)

in this case O \longrightarrow \mathcal{F}(S_{pec}R) \longrightarrow \mathcal{F}(S_{pec}C) \Longrightarrow \mathcal{F}(S_{pec}C) \coprod S_{pec}C

F(Spec C) \longrightarrow \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C)

IIS

F(Spec C) \longrightarrow \mathcal{F}(S_{pec}C) \longrightarrow \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C)

IIS

F(Spec C) \longrightarrow \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C)

L2: S_{pec}C \subseteq \frac{(\mathcal{F}(IJ),\mathcal{F}(G))}{(\mathcal{F}(IJ,G))} = \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C)

Abuse \mathcal{F}(C) \subseteq \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C)

L1: \mathcal{F}(C) \subseteq \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C) \cong \mathcal{F}(S_{pec}C)
```

Ex. describe the global section of sheaf under the equivalence
$$\Gamma(S_{pec} \, K, \mathcal{F}) = \mathcal{F}(S_{pec} \, K) = \mathcal{F}_{k^{sep}} \qquad \mathcal{F}_{k^{sep}} = \lim_{\substack{l \neq l \\ \text{finite}}} \mathcal{F}(S_{pec} \, L)$$

Ex describe the stalk & fiber at
$$p \in \operatorname{Spec} k$$

 $F_p := \lim_{p \in V} F(U) = F_{k^{np}}$ $F|_{p} := F_p \otimes_{\operatorname{Spec} k, p} k(p) = F_p = F_{k^{np}}$

https://math.stackexchange.com/questions/2856987/computing-%C3%A9tale-cohomology-group-h1-texts peck-mu-n-and-h1-texts

https://math.stackexchange.com/questions/2856987/computing-%C3%A9tale-cohomology-group-h1-texts peck-mu-n-and-h1-texts