Contents

1	Orthogonality and determinant	2
2	Polynomial derivation	3
3	Binomial theorem	4

1 Orthogonality and determinant

Orthogonality

To proove: $\vec{v_1} \perp \vec{v_2} <=> \vec{v_1} * \vec{v_2} = 0$:

Be
$$\vec{v_1} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = |\vec{v_1}| \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}, \ \vec{v_2} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = |\vec{v_2}| \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix}$$
 with $\alpha = \angle \vec{v_1}, \ \beta = \angle \vec{v_2}$

$$\vec{v_1} * \vec{v_2} = |\vec{v_1}| \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} |\vec{v_2}| \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix} = |\vec{v_1}| |\vec{v_2}| (\cos \alpha \cos \beta + \sin \alpha \sin \beta) = \underline{|\vec{v_1}| |\vec{v_2}| \cos(\alpha - \beta)}.$$

Be
$$\vec{v_1} \perp \vec{v_2} \ll \alpha = \beta + \frac{\pi}{2}$$
, w.l.o.g.

=>
$$|\vec{v_1}||\vec{v_2}|\cos(\alpha - \beta) = |\vec{v_1}||\vec{v_2}|\cos(\beta + \frac{\pi}{2} - \beta) = 0$$

Determinant

Let's choose sin() instead of cos() in the above equation:

$$|\vec{v_1}||\vec{v_2}|\sin(\alpha-\beta) = |\vec{v_1}||\vec{v_2}|(\sin\alpha\cos\beta - \cos\alpha\sin\beta)$$

$$\begin{split} &=|\vec{v_1}||\vec{v_2}|\begin{pmatrix}\sin\alpha\\\cos\beta\\-\sin\beta\end{pmatrix} = \begin{pmatrix}|\vec{v_1}|\sin\alpha\\|\vec{v_1}|\cos\alpha\end{pmatrix} \begin{pmatrix}|\vec{v_2}|\cos\beta\\-|\vec{v_2}|\sin\beta\end{pmatrix} = \begin{pmatrix}y_1\\x_1\end{pmatrix}\begin{pmatrix}x_2\\-y_2\end{pmatrix}\\ &=\det\begin{pmatrix}x_2 & x_1\\y_2 & y_1\end{pmatrix} = \underline{\det\begin{pmatrix}\vec{v_2} & \vec{v_1}\end{pmatrix}}. \end{split}$$

If
$$\alpha = \beta + k * \pi$$
, w.l.o.g, $k \in \mathbb{N}$

$$=$$
 $\det (\vec{v_2} \vec{v_1}) = |\vec{v_1}||\vec{v_2}|\sin(\alpha - \beta) = |\vec{v_1}||\vec{v_2}|\sin(\beta + k * \pi - \beta) = 0$

 $=> \vec{v_1}$ and $\vec{v_2}$ are linear dependent and the determinant in general determines linear dependency.

2 Polynomial derivation

To proove: $(x^n)' = nx^{n-1}$

$$\frac{f(x+\Delta x) - f(x)}{\Delta x}$$

$$= \frac{(x+\Delta x)^n - x^n}{\Delta x}$$

$$= \frac{\sum_{k=0}^n \binom{n}{k} (x^{n-k} \Delta x^k) - x^n}{\Delta x}$$

$$= \frac{x^n \Delta x^0 + \sum_{k=1}^n \binom{n}{k} (x^{n-k} \Delta x^k) - x^n}{\Delta x}$$

$$= \frac{\sum_{k=1}^n \binom{n}{k} (x^{n-k} \Delta x^k)}{\Delta x}$$

$$= \frac{\sum_{k=1}^n \binom{n}{k} (x^{n-k} \Delta x^{k-1})}{\Delta x}$$

$$= \sum_{k=1}^n \binom{n}{k} (x^{n-k} \Delta x^{k-1})$$

$$= \sum_{k=1}^n \frac{n!}{k!(n-k)!} (x^{n-k} \Delta x^{k-1})$$

$$= nx^{n-1} + \sum_{k=2}^n \binom{n}{k} (x^{n-k} \Delta x^k)$$

$$\lim_{\Delta x \to 0} \left(nx^{n-1} + \sum_{k=2}^n \binom{n}{k} (x^{n-k} \Delta x^k) \right) = nx^{n-1}$$

3 Binomial theorem

To proof: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} (x^{n-k}y^k)$

Induction:

n=0:

$$(x+y)^0 = 1 = \sum_{k=0}^{0} {0 \choose k} (x^{0-k}y^k)$$

 $n \rightarrow n+1$:

$$(x+y)^{n+1} = (x+y)^n (x+y) \stackrel{\text{i.p.}}{=} \sum_{k=0}^n \binom{n}{k} (x^{n-k}y^k) (x+y)$$
$$= \sum_{k=0}^n \binom{n}{k} (x^{n+1-k}y^k) + \sum_{k=0}^n \binom{n}{k} (x^{n-k}y^{k+1})$$
$$= \sum_{k=0}^n \binom{n}{k} (x^{n+1-k}y^k) + \sum_{k=1}^{n+1} \binom{n}{k-1} (x^{n+1-k}y^k)$$

$$= \binom{n}{0} x^{n+1} y^0 + \sum_{k=1}^n \binom{n}{k} (x^{n+1-k} y^k) + \binom{n}{n} x^0 y^{n+1} + \sum_{k=1}^n \binom{n}{k-1} (x^{n+1-k} y^k)$$

$$= \binom{n+1}{0} x^{n+1} y^0 + \sum_{k=1}^n \binom{n}{k} (x^{n+1-k} y^k) + \binom{n+1}{n+1} x^0 y^{n+1} + \sum_{k=1}^n \binom{n}{k-1} (x^{n+1-k} y^k)$$

$$= \binom{n+1}{0} x^{n+1} y^0 + \sum_{k=1}^n \binom{n}{k-1} (x^{n+1-k} y^k) + \sum_{k=1}^n \binom{n}{k} (x^{n+1-k} y^k) + \binom{n+1}{n+1} x^0 y^{n+1}$$

$$= \binom{n+1}{0} x^{n+1} y^0 + \sum_{k=1}^n \left(\binom{n}{k-1} + \binom{n}{k} \right)^* (x^{n+1-k} y^k) + \binom{n+1}{n+1} x^0 y^{n+1}$$

$$= \binom{n+1}{0} x^{n+1} y^0 + \sum_{k=1}^n \binom{n+1}{k} (x^{n+1-k} y^k) + \binom{n+1}{n+1} x^0 y^{n+1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} (x^{n+1-k} y^k)$$

$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!}$$

$$= \frac{n!k}{k!(n-k+1)!} + \frac{n!(n-k+1)}{k!(n-k+1)!}$$

$$= \frac{n!k + n!(n-k+1)}{k!(n+1-k)!}$$

$$= \frac{n!(k+n+1-k)}{k!(n+1-k)!}$$

$$= \frac{(n+1)!}{k!(n+1-k)!}$$

$$= \binom{n+1}{k}$$