

IIC1253 — Matemáticas Discretas — 1' 2018

PAUTA TAREA 4

Pregunta 1

Pregunta 1.1

Se debía demostrar la implicancia hacia ambos lados. Primero, asumimos que $R_1 \subseteq R_2$ y tomamos un $x \in A/R_1$. Para la clase de equivalencia de x, $X = [x]_{R_1}$, consideramos $Y = [x]_{R_2}$ y queda demostrar que $X \subseteq Y$. Para la otra dirección, asumimos que A/R_1 refina a A/R_2 y tomamos un par $(x,y) \in R_1$. Ya que A/R_1 refina a A/R_2 , entonces existe un Y en A/R_2 tal que $[x]_{R_1} \subseteq Y$, de aqui se puede concluir que $(x,y) \in R_2$.

- (4 puntos) Por lograr la demostración en su totalidad.
- (3 puntos) Por lograr la demostración, pero tener algunos errores en una de las direcciones.
- (0 puntos) En otros casos.

Pregunta 1.2

La solución consistía en demostrar que $S_1 \preceq S_2$ si S_1 refina a S_2 es un orden parcial. Para esto hay que mostrar que es una relación refleja, antisimétrica y transitiva. Para demostrar que es refleja, basta con tomar $X \in S$ y Y = X, por tanto $X \subseteq Y$. Para la antisimetría, asumimos $S_1 \preceq S_2$ y $S_2 \preceq S_1$ tomamos un $X \in S_1$. Por las hipótesis, tenemos que existe $Y \in S_2$ tal que $X \subseteq Y$. Además, existe $X' \in S_1$ tal que $Y \subseteq X'$. Finalmente $X \subseteq Y \subseteq X'$. Por tanto X = Y y $X \in S_2$. Para la transitividad, suponemos que $S_1 \preceq S_2$ y $S_2 \preceq S_3$. Por la primera relación, tenemos que para $X \in S_1$, existe $Y \in S_2$ tal que $X \subseteq Y$. Por la segunda relación, existe $Z \in S_3$ tal que $Z \subseteq X$. Finalmente $Z \subseteq X$ por lo tanto, $Z \subseteq X$ y entonces $Z \subseteq X$ entonces $Z \subseteq X$ y entonces $Z \subseteq X$ entonce $Z \subseteq X$ en

- (4 puntos) Por lograr la demostración en su totalidad, es decir, demostrar que la relación es refleja, antisimétrica y transitiva.
- (3 puntos) Por lograr la demostración, pero tener algunos errores en alguna de las demostraciones.
- (0 puntos) En otros casos.

Pregunta 1.3

Para esta pregunta se debía demostrar que para todo par de particiones S_1 y S_2 , el conjunto $\{S_1, S_2\}$ tiene un ínfimo. La solución que se propone a este problema es constructiva y se define S_{inf}

$$S_{\text{inf}} := \{X \cap Y | X \in S_1, Y \in S_2, X \cap Y \neq \emptyset\}$$

Luego se debía demostrar que S_{inf} es el ínfimo de $\{S_1, S_2\}$, esto es, (1) S_{inf} es partición, (2) S_{inf} refina a ambas S_1 y S_2 y (3) S_{inf} es la mayor cota inferior. Para demostrar (1) se debe argumentar que cubre todo

el espacio A y que separa el espacio en conjuntos disjuntos y distintos de vacío. Todo esto, se desprende de la construcción. Para demostrar (2) usamos también la construcción. Si tomamos $Z = X \cap Y$, tenemos que claramente $Z \subseteq X$ y $Z \subseteq Y$. Por último, para (3) tomamos cualquier otro S^* tal que $S^* \preceq S_1$ y $S^* \preceq S_2$ y demostramos que $S^* \preceq S_{\inf}$. Para un $Z \in S^*$ existe $X \in S_1$ y $Y \in S_2$ tal que $Z \subseteq X$ y $Z \subseteq Y$. Por lo tanto $Z \subseteq X \cap Y$. De aqui se concluye que S_{\inf} es ínfimo.

- (4 puntos) Por lograr la demostración en su totalidad, tener la construcción correcta y demostrar que es efectivamente el ínfimo.
- (3 puntos) Por tener la construcción del ínfimo correcta, pero tener errores en demostrar que es correcta.
- (0 puntos) En otros casos.

Pregunta 2

Pregunta 2.1

La solución consistía a grandes rasgos en notar que, dado que la secuencia $a_n = f^n(a)$ es infinita y A es un conjunto finito, entonces la secuencia será cíclica existiendo i, j tales que $f^i(a) = f^j(a)$. Esto, sumado a que f es una biyección, nos permite demostrar un f tal que $f^n(a) = f^n(a) = f^n(a)$ para todo f0. Luego f1 y por lo tanto f2 es refleja.

- (4 puntos) Demostración correcta con todos los detalles.
- (3 puntos) Demostración con pequeños errores.
- (0 puntos) En otro caso.

Pregunta 2.2

La solución consistía en encontrar un n^* tal que si existe un n_1 con $f^{n_1}(a) = b$, entonces $f^{n^*}(b) = a$. Como R_f es refleja se cumple que existe un n_2 tal que $f^{n_2}(a) = a$. Luego, tomamos $n^* = (n_2 - n_1)$ que cumple $a = f^{n_2}(a) = f^{(n_2 - n_1)} \circ f^{n_1}(a) = f^{n^*}(b)$. Así (b, a) también pertenece a R_f .

- (4 puntos) Demostración correcta con todos los detalles.
- (3 puntos) Demostración con pequeños errores.
- (0 puntos) En otro caso.

Pregunta 2.3

La solución consistía en encontrar un n^* tal que, si existe n_1 y n_2 tal que $f^{n_1}(a) = b$ y $f^{n_2}(b) = c$ (esto es, $(a,b) \in R_f$ y $(b,c) \in R_f$), entonces $f^{n^*}(a) = c$ (esto es, $(a,c) \in R_f$). Tomando $n^* = n_1 + n_2$ se cumple lo anterior, demostrando que $(a,c) \in R_f$.

- (4 puntos) Demostración correcta con todos los detalles.
- (3 puntos) Demostración con pequeños errores.
- (0 puntos) En otro caso.