1. Use the ratio test to determine whether the series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges or diverges.

$$\lim_{n \to \infty} \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}}$$

$$= \lim_{n \to \infty} \frac{2^n \cdot (n+1)^2}{2^{n+1} \cdot n^2}$$

$$= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{2n^2}$$

$$= \frac{1}{2}$$

Excellent work 10/10. Perhaps an easier argument for your postscript in question 2 is that the number of edges in a tree is always one less than the number of vertices, so 5–1=4 edges in this case. For question 5, using a GDC for this trigonometric result may not be considered a complete and correct proof by an IB examiner; perhaps in a question worth 5 marks this would score 4 because of this. I have attached my solution using Ptolemy's theorem (Three times: BPCA, BPCE, BPCD and set the side length to unit can obtain the result easily).

So according to the ratio test, since $L = \frac{1}{2} < 1$, the series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges.

2. Define spanning tree. Draw all the non-isomorphic spanning trees of K_5 .

Spanning tree is a subgraph of a connected graph that contains no cycles while containing every vertex in that connected graph.

These are the only three spanning trees for K_5 , since f = 1 when there're no cycles, and any e > 4 makes f > 1 according to Euler's formula.

3. Consider the matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$.

(a) What elementary row operation is needed to transform A into row echelon form?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix} \xrightarrow{R_3 - 2R_2 \to R_3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 3 \end{pmatrix}$$

(b) What is the corresponding elementary matrix for the above row operation?

$$R_3 - 2R_2 \to R_3 : E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

- 4. A permutation of the form $(a_1 a_2 \dots a_n)$ is called a cycle of length n or an n-cycle. A 2-cycle is called a transposition.
 - (a) Write the 5-cycle (12345) as a product of transpositions.

$$(12) \circ (23) \circ (34) \circ (45)$$

- (b) What is the order of an n-cycle? n, since the nth product of the cycle with itself gets to the identity element.
- (c) If α and β are disjoint cycles of length 180 and 216 respectively, what is the order of the product $\alpha\beta$?

 The order for α is 180, and the order for β is 216, so the order for $\alpha\beta$ is lcm(180, 216) = 1080.
- 5. The regular pentagon ABCDE is inscribed in a circle and point P is on \widehat{BC} . Prove PA + PD = PB + PC + PE.

Let
$$\angle BOP = 2\theta$$
.

Then
$$\angle POA = 72^{\circ} + 2\theta$$
.

$$\therefore PA = 2 \cdot r \cdot \sin\left(\frac{1}{2} \angle POA\right)$$
$$= 2r \sin\left(36^{\circ} + \theta\right)$$

Similarly,

$$PB = 2r\sin\theta.$$

$$PC = 2r\sin(36^{\circ} - \theta).$$

$$PD = 2r\sin(72^{\circ} - \theta).$$

$$PE = 2r\sin(72 + \theta).$$

$$\therefore PA + PD - PB - PC - PE$$

$$= 2r \left[\sin(36^{\circ} + \theta) + \sin(72^{\circ} - \theta) - \sin\theta - \sin(36^{\circ} - \theta) - \sin(72^{\circ} + \theta) \right]$$

$$= 2r[\sin 36^{\circ} \cos \theta + \cos 36^{\circ} \sin \theta + \sin 72^{\circ} \cos \theta - \cos 72^{\circ} \sin \theta - \sin \theta - \sin 36^{\circ} \cos \theta + \cos 36^{\circ} \sin \theta - \sin 72^{\circ} \cos \theta - \cos 72^{\circ} \sin \theta]$$

$$= 2r \sin \theta [\cos 36^{\circ} - \cos 72^{\circ} - 1 + \cos 36^{\circ} - \cos 72^{\circ}]$$

$$=2r\sin\theta\cdot0$$
 (GDC)

=0

Therefore, PA + PD = PB + PC + PE.

