misc

SCHWARZ $[0,1] \xrightarrow{f} \mathbb{R}$ continuous, $f(x+h) + f(x-h) - 2f(x) = o(h^2)$ for all $x \in (0,1)$ implies f(x) = ax + b is affine. Proof wlog f(0) = f(1) = 0. let $g_{\varepsilon}(t) = f(t) - \varepsilon t(1-t)$. then $\frac{g(t+h) + g(t-h) - 2g(t)}{h^2} \to 2\varepsilon$ for $t \in (0,1)$ meaning g_{ε} has maximum at 0 or 1. hence $g_{\varepsilon} \leq 0$ for all ε and $f \leq 0$. similarly $f \geq 0$.

Claim $a_n = o(n)$ (weakly) increasing sequence of positive integers $\Longrightarrow \frac{n}{a_n}$ contains all positive integers.

Proof as ka_n has the same properties, it suffices to show $a_n = n$ has a solution. at n = 1 we have \geq , and at some point <. we cannot however have a flip from > to < as $a_n > n \implies a_{n+1} \geq n+1$.