MATH 341 Project

Convex Functions

Mohammed Alghudiyan

Department of Mathematics KFUPM

December 8, 2024

- Convex Functions
- 2 Epigraphs
- 3 Convex Sets
- **4** Theorems

- Convex Functions
- 2 Epigraphs

Convex Functions

- 3 Convex Sets

Definition

Definition 1.1

Let $I \subseteq \mathbb{R}$ be an interval. A function $f: I \longrightarrow \mathbb{R}$ is said to be **convex** on I if for any t satisfying $0 \le t \le 1$ and any points $x_1, x_2 \in I$, we have:

$$f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2).$$

Examples

Example 1.2

The function $f(x) = x^2$ is **convex**. For $0 \le t \le 1$ and any points $a, b \in \mathbb{R}$, we have the following:

$$(ta^{2} + (1-t)b^{2}) - (ta + (1-t)b)^{2} = ta^{2} + (1-t)b^{2} - t^{2}a^{2} - (1-t)^{2}b^{2} - 2abt(1-t) = ta^{2}(1-t) + (1-t)b^{2}(1-(1-t)) - 2abt(1-t) = t(1-t)(a^{2} + b^{2} - 2ab) = t(1-t)(b-a)^{2} \ge 0.$$
Thus, $(ta^{2} + (1-t)b^{2}) \ge (ta + (1-t)b)^{2}$

- Convex Functions
- 2 Epigraphs
- 3 Convex Sets
- 4 Theorems

Definition

Definition 1.3

Let $f: A \longrightarrow \mathbb{R}$ be a function. The **epigraph** of f is the following set: epi $f = \{ (x, y) \in A \times \mathbb{R} | x \in A, y \ge f(x) \}$

Figure 1: Epigraph of a function

7 / 16

December 8, 2024

- Convex Functions
- 2 Epigraphs
- 3 Convex Sets
- 4 Theorems

Definition

Definition 1.4

A subset $\Omega \in \mathbb{R}^2$ is **convex** if the line segment between any two points in Ω lies in Ω .

That is, $\forall \vec{u}, \vec{v} \in \Omega$ and $\forall t \in [0, 1], t\vec{u} + (1 - t)\vec{v} \in \Omega$.

Note, the empty set \emptyset is a **convex** set.

Figure 2: A convex set

- Convex Functions
- 2 Epigraphs
- 3 Convex Sets
- **4** Theorems

Epigraphs

Theorem 1.5

Let $f: A \longrightarrow \mathbb{R}$ be a function. Then a necessary and sufficient condition for f to be **convex** is that epi f is a **convex** subset of \mathbb{R}^2 .

Proof of Necessary Part

Assume that f is convex and fix pairs $(x_1, t_1), (x_2, t_2) \in \text{epi } f$ and a number $\lambda \in [0, 1]$. Then we have $f(x_1) \leq t_1$ and $f(x_2) \leq t_2$. Hence, the covexity of f ensures that

$$f((1-\lambda)x_1+\lambda x_2) \leq (1-\lambda)f(x_1) + \lambda f(x_2) \leq (1-\lambda)t_1 + \lambda t_2$$

Therefore, this implies that

$$(1 - \lambda)(x_1, t_1) + \lambda(x_2, t_2) = ((1 - \lambda)x_1 + \lambda x_2, (1 - \lambda)t_1 + \lambda t_2) \in \operatorname{epi} f$$

Thus, epi f is a convex subset of \mathbb{R}^2 .

Proof of Sufficient Part

Suppose that epi f is a convex subset of \mathbb{R}^2 and fix $x_1, x_2 \in A$ and a number $\lambda \in [0, 1]$ Then $(x_1, f(x_1)), (x_2, f(x_2)) \in \text{epi } f$. Hence,

$$((1-\lambda)x_1 + \lambda x_2, (1-\lambda)f(x_1) + \lambda f(x_2)) = (1-\lambda)(x_1, f(x_1)) + \lambda (x_2, f(x_2)) \in \operatorname{epi} f$$

Therefore, this implies that

$$f((1-\lambda)x_1 + \lambda x_2) \le (1-\lambda)f(x_1) + \lambda f(x_2)$$

Thus, f is a convex function.

Theorem 1.6

Let $f: A \longrightarrow \mathbb{R}$ be a convex function and let $g: B \longrightarrow \mathbb{R}$ be an increasing convex function on a convex set B such that $f(A) \subseteq B$. Then the composition $g \circ f$ is a convex function.

Proof

Let $x_1, x_2 \in A$ and $t \in [0, 1]$, then, by the convexity of f, we have

$$f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2)$$

Since *g* is an increasing convex function, it follows that

$$(g \circ f)((1-t)x_1 + tx_2) = g(f((1-t)x_1 + tx_2)) \le g((1-t)f(x_1) + tf(x_2))$$

$$\le (1-t)g(f(x_1)) + tg(f(x_2)) = (1-t)(g \circ f)(x_1) + t(g \circ f)(x_2)$$

Thus, the composition $g \circ f$ is a convex function.

Thank you for listening!

Mohammed Alghudiyan s202266040@kfupm.edu.sa