Přednáška #10: Kolektivní komunikační algoritmy I

Kolektivní komunikační operace (KKO)

- vysílání jeden-všem (OAB)
- vysílání skupině (MC)
- rozesílání jeden-všem (OAS)
- vysílání všichni-všem (AAB)
- rozesílání všichni-všem (AAS)

Komunikační modely

- Počet portů: 1-portový, výstupně všeportový, nebo všeportový model.
- <u>Směrovost kanálů</u>: simplexní, poloduplexní, nebo plně-duplexní.
- Technika přepínání: ulož-a-pošli-dál (SF) nebo červí (WH) přepínání.
- Možnosti manipulace s pakety: kombinující nebo nekombinující model.
- lacktriangle Velikost paketu: μ

Parametry pro měření komunikační složitosti

- Časová složitost kolektivní operace XXX:
 - ullet Model <u>konstantního času</u>: počet kroků (kol): spodní mez $ho_{
 m XXX}(G)$, horní mez $r_{
 m XXX}(G)$.
 - * SF sítě: 1 krok = množina sou \overline{b} ěžných hopů mezi sousedy.
 - * WH sítě: 1 krok = množina současně použitých linkově disjunktních cest.
 - ullet Model <u>lineárního času</u>: kom. zpoždění v sek.: spodní mez $au_{
 m XXX}(G)$, horní mez $t_{
 m XXX}(G)$.
- Komunikační práce: celkový počet hopů (SF) či paketo-hran (WH). Spodní mez $\eta_{\text{XXX}}(G)$, horní mez $h_{\text{XXX}}(G)$.
- Požadavky na velikost pomocných front uvnitř směrovačů β : vztahuje se většinou pouze na SF sítě, WH směrovače mívají $\beta=0$.
- Komunikační efektivnost: efektivní kolektivní komunikační algoritmy by měly
 - plně využívat propustnost (bisekční/síťovou) sítě
 - = být schopny využít všech použitelných kanálů a front během celé operace.
 - eliminovat redundantní komunikaci
 - * podmínka NODUP = NO-DUPlication,
 - * podmínka NOHO = NO-node-Hears-its-Own-information.

Příklad výpočtů spodních mezí složitosti KKO

Lemma 1. Spodní meze počtu kroků a kom. práce KKO pro všeportovou plně-duplexní SF nekombinující Q_n .

kom. operace XXX	$\rho_{ ext{XXX}}(Q_n)$	$\eta_{ ext{XXX}}(Q_n)$
OAB	n	$2^{n}-1$
AAB	$\lceil (2^n-1)/n \rceil$	$\boxed{2^n(2^n-1)}$
OAS	$\lceil (2^n-1)/n \rceil$	$n2^{n-1}$
AAS	2^{n-1}	$n2^{2n-1}$

Důkaz.

- 1. $\rho_{\text{OAB}}(Q_n) = \text{diam}(Q_n)$. $\eta_{\text{OAB}}(Q_n) = \text{počet cílových uzlů}$.
- 2. $ho_{AAB}(Q_n)$: Každý uzel má přijmout 2^n-1 různých paketů a přitom může přijmout nejvýše n paketů v 1 kroku. $\eta_{AAB}(Q_n)=2^n\eta_{OAB}(Q_n)$.
- 3. $ho_{\mathrm{OAS}}(Q_n)$: Každý zdroj má vyslat 2^n-1 různých paketů a přitom v 1 kroku může vyslat nejvýše n paketů. Ve vzdálenosti k od zdroje existuje $\binom{n}{k}$ vrcholů Q_n , proto $\eta_{\mathrm{OAS}}(Q_n) = \sum_{k=1}^n k \binom{n}{k} = n2^{n-1}$.
- 4. AAS = 2^n operací OAS běžících současně, proto $\eta_{AAS}(Q_n) = 2^n \eta_{OAS}(Q_n) = n2^{2n-1}$. Plně-duplexní všeportová Q_n může realizovat $n2^n$ hopů (paketo-hran) v 1 kroku, proto $\rho_{AAS}(Q_n) = \left(n2^{2n-1}\right)/(n2^n) = 2^{n-1}$.

Poznámka: \exists optimální hyperkubické algoritmy dosahující přesně těchto spodních mezí.

OAB v SF sítích

Dolní meze

Lemma 2. Mějme d-portovou propojovací síť G se SF přepínáním a uvažujme OAB ze $zdroje \ s \in V(G)$. Pak

- $\blacksquare \eta_{OAB,d}(G,s) = |V(G)| 1,$
- lacksquare spodní mez na součet délek použitých cest $\gamma_{\mathrm{OAB,d}}(G,s) = \mathrm{exc}(s,G)$,

Důkaz.

- Počet informovaných uzlů se v každém kroku může v nejlepším případě nejvýše d-násobit a růst řadou 1, 1+d, $1+d+d(d+1)=(d+1)^2$,
- lacktriangle Obecně, v kroku i jich může být nejvýše $(1+d)^i \implies$ i v tom nejlepším případě nemůže OAB skončit dříve než mocnina d+1 přeroste |V(G)|.
- Současně platí omezení, že se informace předává vždy pouze sousedům, proto je počet kroků OAB limitován excentricitou nebo průměrem.
- Délka žádné cesty nemůže být menší než excentricita.
- lacktriangle V každém kroku se posílají paralelně pakety o velikosti m po linkách s rychlostí t_m .

Optimální OAB ve výstupně-všeportových SF sítích

Lemma 3. Jakákoli výstupně-všeportová SF síť G má triviální krokově-optimální OAB algoritmus, zvaný záplavový.

Algoritmus FLOODINGOAB(G, s)Zdroj s: pošli paket všem svým sousedům. Ostatní uzly: if (paket přišel poprvé) then nech si kopii a pošli ho všem zbývajícím sousedům else ignoruj ho.

Důkaz.

- Vysílací vlna dosáhne každý uzel poprvé po nejkratší cestě, čili $r_{\text{OAB}}(G,s) = \text{exc}(s,G)$.
- Obsahuje-li G cykly, některé uzly mohou obdržet paket více než jednou, čili není obecně NODUP.

Diskuze:

- Funguje pro ortogonální i hyperkubické sítě.
- Zajištění NODUP: nutné používat kostry nejkratších cest (= BFS stromy).

SF OAB: 1-portové a *d*-portové sítě

- Optimalita OAB v 1-portové síti: v nejlepším případě se počet informovaných uzlů může zdvojovat.
- lacktriangle Zjistit, zda \exists optimální OAB algoritmus v 1-portové síti G, je NP-úplný problém.

Příklad: 1-portový úplný binární strom

- 1-portový záplavový algoritmus: v případě volby ze 2 směrů strategie FF.
- $r_{OAB}(CBT_m) = 3m 1 > \varrho_{OAB}(CBT_m) = diam(CBT_m) = 2m$ \implies nelze dosáhnout přesně spodní meze.

Rekurzivní zdvojování (RD)

Zdvojování = binární množení (obrácená paralelní binární redukce)

```
Algoritmus \operatorname{GENRECDOUBL}(G,s)
Rozděl graf G do 2 podgrafů G_1 a G_2 téže velikosti tak, že zdroj s \in V(G_1) a \exists jeho soused s' \in V(G_2);
Zdroj s pošle paket tomuto sousedu s';
do_in_parallel
\left\{ \begin{array}{c} \operatorname{GENRECDOUBL}(G_1,s); \\ \operatorname{GENRECDOUBL}(G_2,s') \end{array} \right\}
```


- (a) RD v EREW PRAM: $r_{\mathrm{OAB}}(EREW) = \lceil \log p \rceil$ optimální
- (b) RD v U_p : $r_{\mathrm{OAB}}(U_p) = \lceil \log p \rceil$ optimální

- lacktriangle n-úrovňová binomiální kostra SBT_n (izomorfní se stromem pro binární D&C na Q_n).
- $lacktriangleq SBT_n$ je rekurzivní: $SBT_n=$ spodní SBT_{n-1} a horní SBT_{n-1} s propojenými kořeny.
- Optimální jak pro 1-portovou (RD) tak pro všeportovou (řízená záplava) hyperkrychli.
- Počet uzlů, které obdrží paket v kroku i, je
 - 2^{i-1} v 1-portovém modelu,
 - $\binom{n}{i}$ ve všeportovém modelu (\Longrightarrow proto název binomiální kostra).
- Oba případy jsou optimální i co do komunikační práce, neboť každý uzel obdrží paket přesně jednou a od svého souseda:

$$h_{\text{OAB}}(Q_n) = \sum_{i=1}^n 2^{i-1} = \sum_{i=1}^n \binom{n}{i} = 2^n - 1 = \eta_{\text{OAB}}(Q_n).$$

SF OAB: Mřížky

Dimenzionálně uspořádané kostry (dimension-ordered trees, DOT).

- Zobecnění hyperkubických SBT.
- \blacksquare Každý uzel používá dimenze ve stejném pořadí, např. $0, 1, 2, \ldots$
- Řízená záplava ⇒ zajištění NODUP.

Výstupně všeportové mřížky

Algoritmus DOTMESHALLPORTOAB(M(...), s)

Zdroj s: Pošli paket všem svým sousedům

Ostatní uzly:

if (paket přišel z kanálu v dimenzi i, kde $0 \le i \le n-1$) then pošli ho dál v dimenzi i (je-li to možné) & ho pošli všem sousedům ve směrech $(i+1)^+, (i+1)^-, \ldots, (n-1)^+, (n-1)^-$ (pokud \exists)

$$t_{\text{OAB}}(M(\ldots), \mu, s) = (t_s + t_d + \mu t_m) \operatorname{exc}(s, M(\ldots)).$$

1-portové mřížky - statické uspořádání směrů

Nechť $z_0 \geq z_1 \geq \cdots \geq z_{n-1}$.

```
Algoritmus DOTMESH1PORTOAB(M(...), s)
```

Zdroj s: Pošli paket postupně sousedům ve směrech $0^+, 0^-, \ldots, (n-1)^-, (n-1)^+$

Ostatní uzly:

```
if (paket přišel z kanálu v dimenzi i, kde 0 \le i \le n-1) then  \{ \text{ if (nejsi poslední uzel ve dimenzi } i \text{) then pošli paket v dimenzi } i \text{ dále; } \\ \text{for } j := (i+1)^+, (i+1)^-, \dots, (n-1)^+, (n-1)^- \text{ do\_sequentially} \\ \text{ if (nejsi krajní uzel ve směru } j \text{)} \\ \text{ then pošli paket tímto směrem } j \ \}
```


(b) 1-portová mřížka - statické pořadí směrů.

$$t_{\text{OAB}}(M(\ldots), \mu, s) \ge (t_s + t_d + \mu t_m) \operatorname{exc}(s, M(\ldots)).$$

1-portové mřížky: dynamické uspořádání směrů = FF

■ Při volbě ze 2 směrů dané dimenze se řídíme strategií FF.

$$t_{\text{OAB}}(M(\ldots), \mu, s) \ge (t_s + t_d + \mu t_m) \operatorname{exc}(s, M(\ldots)).$$

SF OAB: Toroidy

■ Toroidy jsou uzlově symetrické, takže můžeme použít

předchozí mřížkový algoritmus se zdrojem umístěným *uprostřed* mřížky.

■ Nutnost ošetření duplikací paketů v kružnicích.

WH OAB: Spodní a horní meze

■ Komunikace necitlivá na vzdálenost ⇒ průměr/excentricita neovlivní počet kroků.

Lemma 4. Mějme d-portovou propojovací síť G se WH přepínáním a uvažujme OAB ze zdroje $s \in V(G)$. Pak

- $\eta_{OAB,d}(G,s) = |V(G)| 1$,
- $\rho_{\text{OAB,d}}(G, s) = \lceil \log_{d+1} |V(G)| \rceil$
- spodní mez na součet délek použitých cest $\gamma_{OAB,d}(G,s) = exc(s,G)$,
- $\tau_{\text{OAB,d}}(G, s) = \varrho_{\text{OAB,d}}(G, s)(t_s + mt_m) + \gamma_{\text{OAB,d}}(G, s)t_d$.
- Dosažení spodní meze je <u>snadné</u> na 1-portových mřížkách a toroidech:

simulováním hyperkubického RD OAB.

■ Dosažení spodní meze

$$\rho_{\text{OAB}}(G) = \log_{k+1} |V(G)|.$$

je mnohem obtížnější na všeportových mřížkách, toroidech, hyperkrychlích.

WH OAB: 1-portová hyperkrychle

WH přepínání neposkytuje žádné zlepšení ve srovnání se SF případem, protože

SF algoritmus založený na SBT_n (Slajd 8) s časovou složitostí $(t_s+t_d+\mu t_m)n$ je optimální.

WH OAB: RD v 1-portových toroidech a mřížkách

Algoritmus 1-DTORUSRECDOUBLOAB(K(z), s)

Fáze 1.1: Zdroj s rozdělí toroid do 2 polovin (lineárních polí):

Je-li z liché, pak si s podrží menší část.

Fáze 1.2: Zdroj s pošle paket svému protějšku v 2.polovině (varinta (a) nebo (b)).

Fáze 2: Opakuj Fázi 1 rekurzivně v obou polovinách souběžně.

(a)
$$t_{\text{OAB}}(K(z), \mu) = \sum_{i=1}^{\lceil \log z \rceil} (t_s + \left\lceil \frac{z}{2^i} \right\rceil t_d + \mu t_m) = (t_s + \mu t_m) \lceil \log z \rceil + t_d(z-1).$$

(c)
$$t_{OAB}(M(z), \mu, a) = \lceil \log z \rceil (t_s + \mu t_m) + \max(z - a - 1, a) t_d$$

4 3 4 4 3 4 4 3 4 4 3 4

WH OAB: 1-portové více-D mřížky

Simulace hyperkubického 1-portového RD.

- Uvažujme $M(z_1, \ldots, z_n)$ se zdrojem (a_1, \ldots, a_n) .
- OAB strom se vytváří ve fázích podle pořadí dimenzí
 - ve fázi i, všechny informované uzly tvoří podmřížku $M(*^i, a_{i+1}, \ldots, a_n)$.

WH OAB: Všeportová hyperkrychle

$$\rho_{\text{OAB}}(Q_n) = \lceil n/\log(n+1) \rceil.$$

Algoritmus dvojitého stromu

■ $r_{OAB}(Q_n) = \lceil n/2 \rceil$ kroků pro všeportovou WH Q_n (optimální pro $n \leq 6$).

Algoritmus DoubleTreeOAB (Q_n, s)

Fáze 1: Zdroj s pošle v 1.kroku n kopií paketu:

1 kopii svému doplňku s^\prime prostřednictvím svého MSB-souseda w a

n-1 kopií svým sousedům vyjma w.

Fáze 2: Oba s i s' provedou částečné OAB založené na neúplných SBT.

(a) 1. krok a ustanovení 2. kořene s'.

(b) Částečné SBTy v 2. kroku.

Popis HoKaoOAB

- Předpokládejme <u>e-cube</u> směrování s porovnáváním bitů zleva doprava.
- **Definice:** Je-li dáno $d \le n$, pak jednoduchá dimenzionálně rostoucí cesta je každá cesta u_0, \ldots, u_d v Q_n taková, že $\varrho(u_{j-1}, u_j) = i_j$ a $0 \le i_1 < \cdots < i_d \le n-1$.
- **Lemma:** Je-li použito e-cube směrování a u_0, \ldots, u_d je j.d.r.c. v Q_n , pak je všech d cest $u_0 \rightarrow u_j$ je po dvojicích uzlově disjunktních $\implies u_0$ může při WH přepínání poslat d paketů všem u_i současně.

Algoritmus $HoKaoOAB(Q_n, u_0)$

- **Fáze 1.1:** Zkonstruuj jednoduchou dimenzionálně rostoucí cestu u_0, \ldots, u_n takovou, že
 - lacksquare Q_n lze rozdělit do n+1 disjunktních podkrychlí S_i stejné nebo téměř stejné velikosti,
 - každá podkrychle S_i obsahuje u_i , $0 \le i \le n$.
- **Fáze 1.2:** Zdroj u_0 pošle paket všem u_i do všech podkrychlí S_i paralelně.
- **Fáze 2:** Opakuj Fázi 1 rekurzivně, dokud není Q_n rozdělena do podkrychlí dimenze ≤ 6 téměř stejné velikosti.
- Fáze 3: Použij DoubleTreeOAB uvnitř těchto podkrychlí.

Ho-Kao-ův algoritmus

Časově-optimální HoKaoOAB algoritmus ve všeportové WH Q_7 .

WH OAB: Všeportové mřížky a toroidy

- $lacktriangledown
 ho_{\mathrm{OAB}}() = \log_{2n+1} N$ pro n-rozměrnou WH všeportovou mřížku nebo toroid s N uzly.
- Aby tato spodní mez byla dosažena, každý uzel, jakmile je zapojen do OAB, v každém kroku musí
 - nalézt 2n neinformovaných uzlů,
 - doručit jim paket po cestách, hranově disjunktních se všemi paralelně existujícími cestami v daném kroku.
- To je velmi obtížný problém. Existují přístupy založené
 - na rekurzivním dělení,
 - na dominujících množinách,
 - na zobecněné diagonále.

Algoritmus Zobecněná diagonála: obrázky

Faze 1 – krok 1

Faze 1 – krok 2

Faze 2

Fáze 3 – krok 1

Fáze 3 – krok 2

Algoritmus Zobecněná diagonála: popis

- Funguje optimálně pro $K(5^k, 5^k)$.
- Předpokládejme pro jednoduchost čtvercový toroid K(n,n). (Algoritmus lze zobecnit pro libovolný 2-D toroid použitím zobecněné (dilatované) diagonály.)

Fáze 1: Zdrojový uzel doručí 1 paket do každého řádku ($\lceil \log_5 n \rceil$ kroků):

- 1. Rozděl K(n,n) do 5 horizontálních pásů přibližně stejné šířky.
- 2. Pošli paket ze zdrojového pásu do všech ostatních 4 pásů v 1 kroku pomocí hranově disjunktních cest použitím XY směrování.
- 3. Proveď rekurzivně totéž v každém horizontálním pásu.

Fáze 2: Seřaď pakety na hlavní diagonálu paralelně ve všech řádcích (1 krok).

Fáze 3: Diagonální uzly informují zbývající uzly ($\lceil \log_5 n \rceil$ kroků):

- 1. Rozděl rekurzivně K(n,n) do 5 <u>diagonálních pásů</u> přibližně téže šířky, hlavní diagonála je uprostřed prvního z nich.
- 2. V 1 kroku, každý uzel na hlavní diagonále informuje 4 uzly na středních diagonálách ostatních 4 pásů tak, že všechny 4 cesty jsou po dvojicích hranově disjunktní.
- 3. Proveď totéž rekurzivně v každém diagonálním pásu.

Vysílání skupině (MC)

- Zdroj vysílá paket <u>libovolné</u> podmnožině \mathcal{M} uzlů sítě G.
- Ve SF sítích lze použít modifikaci standardního OAB algoritmu.
- Ve WH sítích je standardní OAB algoritmus velmi neefektivní, zvl. je-li $|\mathcal{M}| \ll |V(G)|$.
- lacktriangle Problém: je-li dána všeportová WH síť se směrováním R a několik požadavků na komunikaci typu MC
 - ⇒ nalezni bezkolizní cesty, které nezpůsobí zablokování.
- Řádově obtížnější než problém OAB.
- Ukážeme si pouze 2 řešení: pro 1-portové WH hyperkrychle a mřížky.

Lemma 5. Mějme d-portovou propojovací síť G se WH přepínáním a uvažujme MC ze zdroje $s \in V(G) - \mathcal{M}$ do podmnožiny uzlů \mathcal{M} . Pak

- lacksquare $\eta_{\mathrm{MC,d}}(G,s)=|\mathcal{M}|$,
- lacksquare spodní mez na součet délek použitých cest $\gamma_{MC,d}(G,s) = \operatorname{exc}(s,G,\mathcal{M})$,

Dimenzionálně uspořádané posloupnosti uzlů v hyperkrychli

- lacktriangle Uvažujeme Q_n s e-cube směrováním a porovnáváním bitů zleva doprava.
- Dimenzionálně uspořádaná posloupnost uzlů v hyperkrychli = posloupnost uzlů lexikograficky seřazených dle adres, kdy pořadí dimenzí je indukováno e-cube směrováním. Např.: 0100 < 0101 < 1000 < 1011 pro n=4.

.

Lemma 6. Je-li čtveřice uzlů u < v < w < z dimenzionálně uspořádaná v hyperkrychli, pak e-cube směrováním indukované cesty

- 1. $u \rightarrow v$ a $w \rightarrow z$ jsou hranově disjunktní,
- 2. $v \rightarrow u$ a $z \rightarrow w$ jsou hranově disjunktní,
- 3. $v \rightarrow u$ a $w \rightarrow z$ jsou hranově disjunktní,
- 4. $u \rightarrow v$ a $u \rightarrow z$ nejsou hranově disjunktní, $u \rightarrow z$ má přednost (FF),
- 5. $u \rightarrow z$ a $v \rightarrow w$ nejsou hranově disjunktní, $u \rightarrow z$ má přednost (FF).

MC: Dimenzionálně uspořádané posloupnosti uzly v hyperkrychlích (pokr.)

- Uzlová symetrie \implies můžeme uvažovat pouze MC ze zdroje $s=0^n$.
- MC = Rekurzivní zdvojování (RD) na posloupnosti dimenzionálně uspořádaných uzlů množiny \mathcal{M} .
- Logaritmický počet kroků
- 1-portový hyperkubický OAB algoritmus na SBT = speciální případ

MC: Mřížky

- Mřížky nejsou uzlově symetrické
 - zdroj se může objevit uvnitř dimenzionálně uspořádané posloupnosti cílových uzlů.

■ Algoritmus:

- Rozděl dimenzionálně uspořádanou posloupnost na dolní a horní polovinu.
- Je-li zdroj v dolní polovině, pošli paket prvnímu uzlu v horní polovině.
- Jinak, pošli paket poslednímu uzlu v dolní polovině.
- Použij rekurzivně totéž dělící schéma na obě poloviny.

0,2 0,4 1,2 2,0 2,1 2,3 2,4 3,0 dimenzionalne usporadany retezec uzlu v 2–D mrizce, zdroj je [1,2]

Rozesílání 1-všem (OAS)

- Zdrojový uzel posílá individuální (osobní) paket každému uzlu.
- lacktriangle Na počátku: zdroj má vyslat celkově N-1 paketů velikosti $\mu.$
- Na konci: každý uzel získá 1 paket o velikosti μ .
- Podobná složitost jako AAB (kde každý uzel má *obdržet* N-1 různých paketů).
- Kombinující vs. nekombinující model.

OAS: Spodní meze pro nekombinující modely

Lemma 7. Mějme d-portovou propojovací síť G a uvažujme **nekombinující** OAS ze zdroje $s \in V(G)$. Pak

$$lacksquare
ho_{\mathrm{OAS,d}}(G,s) = \left\lceil \frac{|V(G)|-1}{d} \right\rceil$$
 ,

- lacksquare spodní mez na součet délek použitých cest $\gamma_{\mathrm{OAS,d}}(G,s) = \max(\mathrm{exc}(s,G),\left\lceil rac{|V(G)|-1}{d}
 ceil)$,

Důkaz. Zdrojový uzel musí do sítě injektovat N-1 paketů a v 1 kroku jich dokáže injektovat nejvýše d. Jeden krok je nemůže být menší než přesun 1 paketu sousedovi.

OAS: Spodní meze pro kombinující modely

Lemma 8. Mějme d-portovou propojovací síť G a uvažujme **kombinující** OAS ze zdroje $s \in V(G)$. Pak

- lacksquare spodní mez na součet délek použitých cest $\gamma_{\mathrm{OAS,d}}(G,s) = \mathrm{exc}(s,G)$,

Nekombinující OAS: horní meze

Zdroj posílá všech N-1 paketů jako samostatné jednotky.

- \blacksquare 1-portový SF model \implies hamiltonovská cesta + strategie FF.
- 1-portový WH model ⇒ cíle jsou vybírány v libovolném pořadí.

(a) 5. krok OAS v SF 1-portovém K(8).

(b) 3. krok OAS v SF 2-portovém K(8).

- Výstupně všeportový model:
 - Konstrukce OAS kostry D, skládající se z d přibližně stejné velkých podstromů D_i .
 - * <u>SF</u> \Longrightarrow hloubky D_i by měly být stejné.
 - * $\underline{\text{WH}}$ \implies hloubky D_i se mohou různit, ale cesty mají být hranově disjunktní.

OAS: Všeportová nekombinující hyperkrychle

Příklad optimálního OAS stromu ve všeportové SF nekombinující Q_4 .

Tabulka pro n = 6.

D_0	D_1	D_2	D_3	D_4	D_5
L_{11} : {000001	000010	000100	001000	010000	100000}
L_{21} : {000011	000110	001100	011000	110000	100001}
L_{22} : {000101	001010	010100	101000	010001	100010}
L_{23} : {001001	010010	100100 $\}\ I$	$ u_{31}$: $\{111000$	110001	100011
000111	001110	011100 $\} \ I$	$ u_{32}$: $\{011001$	110010	100101
001011	010110	101100} <i>L</i>	$ u_{33}$: $\{101001$	010011	100110
001101	011010	110100 $\}\ I$	$ u_{34}$: $\{101010$	010101 $\}$ L_4	₁₁ : {100111
001111	011110	111100	111001	110011 $\}$ L_4	₁₂ : {101110
011101	111010	110101	101011	010111 $\}$ L_4	₁₃ : {101101
011011	110110 $\}\ L_5$	$_{1}$: $\{111110$	111101	111011	110111
101111	011111 $\} L_6$	₁ : {111111}			

OAS: Kombinující sítě

- lacktriangle Kombinující model: OAS pprox OAB až na to, že se velikost zprávy zmenšuje.
 - $SF \implies pipelining zpráv.$
 - WH \implies rekurzivní zdvojování či <u>znásobování</u>.

SF OAS: Kombinující mřížky a toroidy

- Kombinování je kontraproduktivní v případě 1-D SF toroidů a mřížek, lepší řešení je nekombinovat, viz Slajd 28.
- Nicméně: Potřebné jako stavební kámen pro AAS v 1-D toroidech.

WH OAS: Kombinující mřížky a toroidy

- Rekurzivní zdvojování či <u>znásobování</u>, podobně jako u OAB
- Protichůdnost mezi délkami cest a velikostmi zpráv, pokud velikost mřížky není mocnina dvou.
- lacktriangle Přibližná formule pro časovou složitost OAS v 1-portové K(z) je

$$t_{\text{OAS}}(K(z), \mu) = \sum_{i=1}^{\lceil \log z \rceil} (t_s + \left\lceil \frac{z}{2^i} \right\rceil t_d + \mu \left\lceil \frac{z}{2^i} \right\rceil t_m) = t_s \lceil \log z \rceil + (t_d + \mu t_m)(z - 1).$$

(a) Kratsi WH cesta, ale vetsi kombinovana zprava

(b) Delsi WH cesta, ale mensi kombinovana zprava

WH OAS: Kombinující 1-portová hyperkrychle

- SF binomiální kostra (SBT_n) , kde velikost zprávy klesá na polovinu.
- Celkový čas je

$$t_{\text{OAS}}(Q_n, \mu) = \sum_{i=1}^{n} (t_s + \mu 2^{n-i} t_m) = t_s n + \mu t_m (2^n - 1).$$

3-krokový OAS v kombinující 1-portové hyperkrychli Q_3 .

WH OAS: Kombinující více-portová hyperkrychle

OAS varianta algoritmů dvojitého stromu nebo Ho-Kao-ova, viz Slajdy 15-17