SECTION 95 – BITUMINOUS GROTING (PENETRATION MACADAM)

2216. General. Bituminous grouting, although extravagant in binder is a quick and easy method of laying a strong, durable surface, but a sound and well compacted base is essential because, in the event of failure the surface cannot be restored by scarifying and reworking. Either hot binder or emulsion can be used. Two processes are available-semi-grout and full grout.

RESTRICTED
TABLE 22.1 – SURFACE DRESSING WITH HOT BINDERS RECOMMENDED GRADES

Serial No	Type of dressing	Recommended grade*				
		Te	mperate climate	es	Tropical or sul	tropical climates
		Bitume	n	Road tar	Bitumen	
		UK grades	US grades	Type	UK grades	US grades
(a)	(b)	(c)	(d)	(e)	(f)	(g)
1.	First of double dressing	20/30 secs at 40°c	MC 3	24-29°c	50/700 secs at	RC 2, 3, 4 and 5
	(waterbound macadam	or 100/200 secs	MC 4	EVT	25°c or	MC 3, 4 and 5
	and similar)	at 25°c			150/300 PEN	
	(Serial No 6 and 9 in					
	Table 56					
2.	Normal dressing (Serial	20/60 secs at 40°c	RC 2	29-40°c	50/700 secs at	RC 2, 3, 4 and 5
	No 1,2,3,5 and 8 in Table	or 100/400 secs	2, 4,5	EVT	25°c or	MC 3, 4 and 5
	56)	at 25°c	MC 2, 3, 4,		800/300 PEN	
			5			
3.	Soil priming coat	-	MC 0	13-20°c	-	MC 0, 1 and 2
			MC 1	EVT		
4.	Normal soil dressings	20/60 secs at 40°c	MC 3	25-35°c	100/700 secs	MC 3
	(Serial No 4,7 and 10 in	or 100/400 secs	MC 4	EVT	at 25°c or	MC 4
	Table 56)	at 25°c			150/300 PEN	

^{*}Use lower limits of viscosity for winter laying and whenever using small chippings.

Use upper limits of viscosity for summer laying and whenever using large chippings.

TABLE 22.2-SURFACE DRESSING WITH HOT BINDERS-RECOMMENDED SPRAYING TEMPREATURES

Serial	Ride	Spraying temperature		Grade	Spraying to	emperature
No		°F	°C		°F	°C
(a)	(b)	(c)	(d)	(e)	(f)	(g)
	US cut-backs-			str	aight-run bitumen	
				280/320 OPEN	300-350	150-175
1	MC 0	100 150	35 65	180/200 OPEN	310-360	155-185
2	MC 1	130 175	55 80	80/100 OPEN	330-380	165-195
3	MC 2 RC 2	150 225	65 105			
4	MC 3 RC 3	175 275	80 120			
5	MC 4 RC 4	200 275	95 135			
6	MC 5 RC 5	225 300	105 150			
7	UK cut-backs			UK type A road tars-		

8	20/10 sacs at 40°C	200-250	95-100	13 to 20°C EVT	110-140	45-60
9	40/60 sacs at 40°C	225-275	105-135	20 to 27°C EVT	140-160	60-71
10	50/100 to 00/150 sacs at 25°C	200-250	95-120	27 to 34°C EVT	160-200	71-93
11	150/200 to 200/300 sacs at 25°C	225-275	105-135	34 to 41°C EVT	200-240	93-115
12	300/400 to 500/700 sacs at 25°C	250-300	120-150	211		

Notes:

- 1. RC cut-backs should be heated to lower limits.
- 2. All bitumen's should be heated to lower limits for hand spraying and ie upper limit for tank spraying.
- 3. Road tar temperatures given are for hand spraying from open tar boilers. If tank spraying is used, temperature for all viscosities should be within the range of $220-280^{\circ}$ F ($105-140^{\circ}$ C).

$\frac{\text{TABLE 22.3-SURFACE DRESSING (HOT BINDER)-RATES OF}}{\text{APPLICATION}}$

Serial	chi	pping	Rate of application of binder				
No	Nominal	Rate of	Angular o	chippings	Rounded Chippings		
	size	spread	(crushe	(crushed rock)		ravel)	
	(Ins)	(sq yds/ton)	(sq	(gals/sq	(sq	(gals/sq	
			yds/gal)	yd)	yds/ g-	yd)	
					1)		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	
	Road tars						
1.	$\frac{3}{4}$	70-80	$3\frac{1}{2}-4\frac{1}{2}$	0.30-0.22	3-4	0.33-0.25	
2.		90-100	32 - 2	0.22-0.17	$3\frac{1}{2}$ -5 $4\frac{1}{2}$ -6 6-5	0.29-0.20	
3.	$\frac{1}{2}$	100-120	$4\frac{1}{1}$ -6	0.18-0.14	32 -3	0.22-0.17	
4.		140-170	12 0	0.15-0.12	$4\frac{1}{1}$ -6	0.17-0.14	
	$\frac{3}{8}$		$5\frac{1}{2}$ -7		.2		
			2		6-5		
	$\frac{1}{4}$		$4\frac{1}{2} - 6$ $5\frac{1}{2} - 7$ $6\frac{1}{2} - 8$				
	Bitumen's-						
5.	$\frac{3}{4}$	45-50	3.4	0.33-0.25	$2\frac{1}{2} - 3\frac{1}{2}$	0.40-0.30	
6.		60-70	$4.5\frac{1}{2}$ $4\frac{1}{2}-6$	0.25-0.18	2 2	0.33-0.22	
7.	$\frac{1}{2}$	75-95	2	0.22-0.17	$3-4\frac{1}{2}$	0.28-0.20	
8.		100-120	$4\frac{1}{2}$ -6	0.20-0.14	1	0.22-0.17	
	$\frac{3}{8}$		5-7		$2\frac{1}{2} - 3\frac{1}{2}$ $3 - 4\frac{1}{2}$ $3\frac{1}{2} - 5$ $4\frac{1}{2} - 6$		
			5 /		.1		
	$\frac{1}{4}$				$4\frac{1}{2}$ -6		

Notes -

- 1. <u>Road tars</u>. In general, the lower limit of binder quantity applies to an existing surface rich in binder: the upper limit to a lean surface.
- 2. <u>Bitumen's</u>. In general, the lower limits apply to existing bituminous surfaces: the upper limits to untreated surfaces.
- 3. The use of rounded chippings with a bitumen binder should be avoided if possible.

TABLE 22.4-SURFACE DRESSING (COLD BINDER)- RATES OF APPLICATION

Serial	chi	pping	Ra	te of applicat	ion of bine	der
No	Nominal	Rate of	Angular o	chippings	Rounded Chippings	
	size	spread	(crushe	ed rock)	(gı	ravel)
	(Ins)	(sq yds/ton)	(sq	(gals/sq	(sq	(gals/sq
			yds/gal)	yd)	yds/ g-	yd)
					1)	
(a)	(b)	(b) (c)		(e)	(f)	(g)
	Roa	ad tars				
1.	$\frac{1}{2}$	80-110	$\frac{1}{3}$ $\frac{1}{4}$ 0.29-0.22		$2^{\frac{1}{2}}$ $3^{\frac{1}{2}}$	0.40-0.30
2.		120-150	$3\frac{1}{2}-4\frac{1}{2}$	0.25-0.20	$2\frac{1}{2} - 3\frac{1}{2}$	0.33-0.25
3.	$\frac{3}{8}$	150-190	3.4	0.20-0.17	3.4	0.25-0.20
4.	8	180-220	4.5	0.17-0.14	4.5	0.20-0.17
	$\frac{1}{4}$		5-6		5-6	
	4					
	$\frac{1}{8}$					
	8					

Notes -

- 1. The emulsion used for this work should be class 1A or 1B Labile. In general class 1A is more suitable for open textured surfaces and for use with the larger chipping.
- 2. The use of rounded chippings should be avoided if possible.

RESTRICTED **TABLE 22.5-SURFACE DRESSING-SIZE OF CHIPPINGS**

Serial	Type of surface to which applied	Nominal size	e of chipping
No		Using hot	Using cold
		binders	emulsion
(a)	(b)	(c)	(d)
1.	Bituminous surface (heavy traffic)-Single surface dressing of second of double dressing	$\frac{3}{4}$ -in	$\frac{1}{2}$ -in
2.	Bituminous surface (medium traffic)-Single surface dressing of second of double dressing	$\frac{1}{2}$ -in	$\frac{3}{8}$ -in or
			$\frac{1}{2}$
3.	Water-bound macadam or concrete-second of double dressing	ditto	ditto
4.	Natural compacted soil-single dressing of second of double dressing		ditto
5.	Bituminous surface (light traffic)	$\frac{3}{8}$ -in or	$\frac{3}{8}$ -in or
		$\frac{1}{4}$	$\frac{1}{4}$
6.	Water-bound macadam-First dressing	ditto	ditto
7.	Natural compacted soil-First of double dressing	ditto	ditto
8.	Bituminous surface (medium and heavy traffic) open textured surface-First of double dressing	$\frac{1}{4}$	ditto

9.	Concrete-First dressing	ditto	$\frac{1}{8}$ - in
10.	Stabilized soil	ditto	$\frac{1}{8}$ - in or $\frac{1}{4}$

*For roads carrying heavy traffic and using cold emulsion as a binder, two dressings should be carried out using $\frac{1}{2}$ in chippings. An interval of 2 to 3 months should elapse between dressings.

TABLE 22.6-SURFACE DRASSING-PROCEDURE

Serial	Operation	Normal method, using hot binder	Cold process, using	Remark
No			emulsion	
(a)	(b)	(c)	(d)	(e)
1.	Preparation of site	Reshape irregularities and repair potholes. Sweep off organic matter and loose stones. On stabilized or compacted soil apply in correct proportions	As in column (c). A very dry surface may have to be "damped" to ensure proper penetration	

2	Duamanation -f	Heat hinder of appropriate and to	Dindon doos not marrier	Can Dama 501 for
2.	Preparation of	Heat binder of appropriate grade to correct	Binder does not require	See Para 501 for use
	material	temperature (see Table 22.2). Use dry	heating. Dampness of	of coating agents
		chippings of correct size (see Table 22.5).	chippings does not affect	with damp stone
		Organize regular supply in correct	results.	(hot binder method)
		proportions.		
3.	Application of	Tanker sprayers give more even distribution	Vacuum or pressure	See Para 502 for
	binder	and better output than hand spraying. Rates	pumps give excellent	notes on control of
		of application are given in Table 22.3.	results, but mechanical	spraying.
		Check rate of spread over a measured area.	pumping causes	
		•	premature breaking. I	
			hand spreading. Pour	
			emulsion direct from	
			containers or cans and	
			brush in one direction	
			only. Rates of application	
			are given in Table 22.4.	
4.	Application of	Spread as evenly as possible immediately	(a) Normal chippings $(\frac{1}{4}$ -	
	chipping	after applying binder. Time lag should not	(a) From an emppings (4	
		exceed 10 mins in temperate climates.	in and up)Spread before	
		Rates of application are given in Table	emulsion starts to break)	
		22.3.	(b) Coarse sand, or	
			chippings with a high	
			proportion of finesAllow	

			braking to start before spreading. Rates of application are given in Table 22.4	
5.	Rolling	Aim is to press chippings into binder without crushing them. Use smooth wheel or pneumatic-tired roller of not more than 6 tons weight. Consolidation by traffic is also possible after initial adhesion has occurred, but acceleration and sharp braking must be prevented	As in column (c). Roll as soon as possible after breaking of emulsion is complete	

- 2217. <u>Tools and plant</u>. Work can be done with a minimum of tools and plant; especially if emulsion is used. Requirements are:
 - a. Bitumen heater (hot binder process only).
 - b. Binder sprayer, either mechanical or hand-operated. If necessary, watering cans can be used.
 - c. Water sprayer (semi-grout process only).
 - d. Smooth-wheel roller, 6 to 10 tons.
 - e. Shovels, stone forks, rakes.
- 2218. <u>Specifications.</u> The effects of correct and incorrect penetration are illustrated in Figure 45.

Recommended aggregate grading and application for binder are summarized in Table 58. Recommended types and viscosities of binder are given in Table 59.

- 2219. Semi-grout process. -The procedure is:
 - a. Spread a_2^1 inch layer of sand or stone dust over the base.
 - b. Spread aggregate to the required thickness and camber allowing for compaction.
 - c. Roll to produce water bound bottom layer in the surfacing applying enough water to enable the fine material on the base to form a slurry and to work up into the interstices in the aggregate. They should be filled to within $\frac{1}{3}$ 1 inch from the top surface.
 - d. Make good any depressions.
 - e. When the surface is firm, apply binder at the required rate, either by pressure sprayer of from watering cans. If a hot binder is used the aggregate must be allowed to dry out. A wet surface is preferable when using emulsion.
 - f. Immediately after applying the binder, blind the surface with chippings.
 - g. Complete compaction.
 - h. When the surface has cured and hardened, apply a sealing coat or surface dressing.
- 2220. <u>Full grout process.</u> The procedure is exactly the same as for the semi-grout process, except that no water is used and that the initial rolling (see Para 507 (c)) Is limited to one or two passes. As the grout has to penetrate the full

depth of the surfacing a more fluid binder is desirable and a greater quantity is required. Emulsion is commonly used. In this process the function of the $\frac{1}{2}$ inch layer of fine material on the base is to prevent the bind escaping into the base.

Figure 22-2: Correct and Incorrect Grouting

TABLE 22.7 BITUMINOUS GROUTING-GRADING AND RATES OF APPLICATON

Serial	Thickness	Aggre	gate grading	Rat	e of	Rate of application of		
no	of			applica	ation of	sea	sealing coat	
	surfacing			bin	der			
		Sieve	Percentage	Semi	Full	Chippi	ngs	Binder
		size	by weight	grout	Grout	Nominal	Rate	Rate
			passing	(gals/	(gals/	size	(sq	(sq
				sq	sq	(ins)	yds/	yds/
				yd)	yd)		tion)	gal)
1.	Hot							
	binders -							
	3 ins	2 in	100	1 to	1 1/2	3/4	120	4 to 6
				1 1/2	to 2		to	
							180	
		1 1/2	40			1/2	100	3 to 5
		in					to	
		3⁄4 in	10				150	
2.	2 ½ ins	2 in	100	3⁄4 to	1 1/4	3/4	120	4 to 6

			TCLS I TC	CILD				
				1 1/4	to 1		to	
					3/4		180	
		1 1/2	40			1/2	100	3 to 5
		in					to	
		3⁄4 in	10				150	
3.	2 ins	1 1/2	100	½ to	1 to	3/4	120	4 to 6
		in		1	1		to	
					1/2		180	
		1 in	40			1/2	100	3 to 5
		1/3	10				to	
		in					150	
Cold b	inder (bitume	n emulsi	on)					
4.	3 ins	2 in	60	1 to	1 1/2	1/2	120	4 to 5
				11/2	to 2		to	
							150	
		1 1/2	30				80	3 1/2
		in					to	to 4 ½
		3⁄4 in	10				110	
5.	2 ½ ins	2 in	60	3/4 to	1 to	3/8	120	4 to 5
				1 1/4	1 1/4		to	
							150	
		1 1/2	30			1/2	80	3 1/2
		in					to	to 4 ½
		3⁄4 in	10				110	
6.	2 1/2 ins	2 in	60	½ to	1 1/4	3/8	120	4 to 5
				1	to 1		to	
					3/4		150	
		1 in	30			1/2	80	3 1/2
		1/3	10				to	to 4 ½
		in					110	
		3/4 in						

Notes: (i) All bitumen's should be heated to lower limits for hand spraying and to upper limits for tank spraying.

- (ii) RC cut-backs should be heated to lower limits.
- (iii) For hand spraying from open tar boilers. If tank spraying is used, temperatures for all $\,$ viscosities should be within the range of 220-280 F (105-140 C).

TABLE-22.8- BINDER FOR BITUMINOUS GROUTING

	Bitumen (i) Road tar						tar	Bitumen emulsion				
			UK		US	Straight	Tempe-	Type	Visco-	Temper-	Type	Grade
Sarial	Climatic	Season	grades		grades	run	ratute		sity	ature of		
No	conditions		Available	Avallable	Desig-	PEN at	of			application		
			in UK	abroad	nation	25° C	applica-			(iii)		
			STV at	STV at			tion (i),					
			40 0C	250C			(ii)					
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(k)	(1)	(m)	(n)
1	Moderate	Winter	20/60	100/400	MC 4	-	110-	A	27-	75-95°C	Not	-
	climates-						$125^{\circ}C$		30^{0} C	(167-	recom-	
	NW						(230-		EVT	203^{0} F)	mended	
	Europe,						257^{0} F					
	etc											
2	ditto	Summer	80/240	500/1125	MC-5	-	110-	A	33-	75-95 ⁰ C	Labile	
							$125^{0}C$		$35^{0}C$	(167-		
							(230-		EVT	203^{0} F)		

95-14 RESTRICTED

							257^{0} F					
						100/500	170-					Class
							190^{0} C					IA or
							(338-					Class
							374^{0} F					IB
3.	Extreme	Winter	20/30	100/150	RC 4	-	110-	A if	27-	75-95 ⁰ C	No	-
	con-						$125^{\circ}C$	avail-	30^{0} C	(167-	reco-	
	ditions-						(230-	able	EVT	203^{0} F)	mmen-	
	Northern						275^{0} F				ded	
	Europe,											
	etc											
4	ditto	Summer	-	-	-	40/70	170-	A if	40-	100-110°C	Labile	Class
							190^{0} C	avail-	50^{0} C	(112-		IA
							(338-	able	EVT	203^{0} F)		
							374^{0} F					Class
												IB

5	Tropical	All	-	300/1125	MC-5	-	110-	A if	40-	100-110°C	Labile	Class
	and sud-	Year					125°C	avail-	50^{0} C	(212-		IA
	tropical						(230-	able	EVT	$230^{0}E$)		
	areas-						257^{0} F					
	Middle					30/100	170-					
	and Far						190°C					Class
	East, etc						(338-					IB
							374^{0} F					

Notes:- (i) All bitumens should be heated to lower limits for hand spraying, and to upper limits for tank spraying.

- (ii) RC cut-backs should be heated to lower limits.
- (iii) For hand spraying from open tar boilers, If tank spraying is used, temperatures for all viscosities should be within the range of $220-280^{0}F$ ($105-140^{0}C$)