Arbitrary order virtual element method for linear elastostatics

Elias Pescialli

Advanced Programming for Scientific Computing Prof. Luca Formaggia, Matteo Caldana Supervisor: Prof. Paola F. Antonietti

A.Y. 2022/2023

Contents

- Outline
- Virtual element method
- Algorithms
- 4 c++ implementation
- Numerical tests
- Future developments

Outline

Outline

Virtual element method (VEM)

- numerical pde solution method as "ultimate evolution of the mimetic finite differences approach"
- application to 3D linear elastostatics, through a mixed variational formulation based on three-field Hu-Washizu functional

Algorithms and implementation

- adopted algorithms for geometry handling, integration over polytopes embedded in \mathbb{R}^1 , \mathbb{R}^2 and \mathbb{R}^3 and symbolic calculus for monomials
- c++ implementation, from mesh to visualization

Numerical tests

- h-refinement
- p-refinement

Future developments

Virtual element method

Virtual element method

Features

- addition to usual FE spaces of suitable non-polynomial functions as in generalized/extended FEM
- avoid explicit computation of shape functions, hence the name virtual.

Highlights

- supports general, possibly non-convex elements even with curved boundaries, handles hanging nodes
- a can guarantee high-order continuity requirements between elements
- can be integrated in standard FEM environment

Degrees of freedom

Four types of DOFs:

- vertex-type
- edge-type
- face-type
- polyhedron-type

pointwise values $\varphi|_V$

internal moments $\int_{\Omega} \varphi m \, d\Omega$

Projection operator

To construct the **local stiffness matrix** and **equivalent nodal loads** we exploit:

- the shape functions are polynomials on the skeleton of the element (its edges), uniquely determined by pointwise DOFs
- internal moments on the faces and in the interior of the element.

When no information is directly available, a **projection operator** is introduced from the virtual space $V_k(\Omega)$ into the polynomial space $\mathcal{P}_k(\Omega)$.

$$\Pi_{\Omega,k}^{\nabla}: V_k(\Omega) \to \mathcal{P}_k(\Omega)$$

$$\int_{\Omega} \nabla p_k \cdot \nabla \left(\prod_{\Omega,k}^{\nabla} v - v \right) d\Omega = 0 \qquad \forall p_k \in \mathcal{P}_k(\Omega), \quad v \in V_k(\Omega)$$

This operation requires the introduction of a **stabilization part** to account for the non-polynomial functions filtered out by the projection.

 \implies local stiffness matrix = consistent + stabilizing part

$$\boldsymbol{K}_e = \boldsymbol{K}_e^c + \boldsymbol{K}_e^s$$

8/32

Elias Pescialli Politecnico di Milano APSC, 2022/2023

Algorithms

Gauss-Lobatto quadrature rule

Pointwise DOFs on each edge of k^{th} -order VEM correspond to **Gauss-Lobatto** (k+1)-point rule. The internal k-1 GL points over [-1,1] correspond to the stationary points of the k^{th} Legendre polynomial.

Each point X_i and the corresponding weight W_i of the internal k-1 points of GL (k+1)-point rule can be found by solving

$$P'_k(x) = \frac{kxP_k(x) - kP_{k-1}(x)}{x^2 - 1} = 0$$
 $W_i = \frac{2}{k(k-1)[P_{k-1}(X_i)]^2}$

in the intervals generated by the **GL** k-point rule.

Elias Pescialli Politecnico di Milano APSC, 2022/2023 10/32

Outward normal unit vector and area of polygons

Newell's algorithm allows to compute the outward normal vector n for a general polygon and its area with the coordinates of its vertices $oldsymbol{V}$ through

$$ilde{m{n}} = rac{1}{2} \sum_{i=1}^{N_V} \left(m{V}_i imes m{V}_{i+1}
ight)$$

Normalizing \tilde{n} yields to n while the magnitude $\|\tilde{n}\|$ is the area.

Elias Pescialli

Integration of monomials over polytopic domains

Quadrature-free integration scheme from Antonietti, Houston, Pennesi.

Algorithm Integration of a monomial over a polytopic domain

$$\mathcal{I}(N,\mathcal{E},k_1,\ldots,k_d) = \int_{\mathcal{E}} x_1^{k_1} \ldots x_d^{k_d} d\sigma_N(x_1,\ldots,x_d)$$

- 1: if N=0 $(\mathcal{E}=(v_1,\ldots,v_d)\in\mathbb{R}^d \text{ is a point})$ then
- 2: **return** $\mathcal{I}(N,\mathcal{E},k_1,\ldots,k_d)=v_1^{k_1}\ldots v_d^{k_d}$
- 3: else if $1 \leq N \leq d-1$ ($\mathcal E$ point if d=1 or edge if d=2 or face if d=3) then
- 4: **return** $\mathcal{I}(N,\mathcal{E},k_1,\ldots,k_d) = \frac{1}{N+\sum_{n=1}^d k_n} \left(\sum_{i=1}^m d_i \mathcal{I}(N-1,\mathcal{E}_i,k_1,\ldots,k_d) + x_{0,1}k_1\mathcal{I}(N,\mathcal{E},k_1-1,\ldots,k_d) + \cdots + x_{0,d}k_d\mathcal{I}(N,\mathcal{E},k_1,\ldots,k_d-1)\right)$
- 5: else if N=d $(\mathcal{E}$ interval if d=1 or polygon if d=2 or polyhedron if d=3) then
- 6: return $\mathcal{I}(N,\mathcal{E},k_1,\ldots,k_d)=\frac{1}{N+\sum_{i=1}^d k_i}\left(\sum_{i=1}^m b_i \mathcal{I}(N-1,\mathcal{E}_i,k_1,\ldots,k_d)\right)$
- 7: end if

Elias Pescialli Politecnico di Milano APSC, 2022/2023

c++ implementation

13/32

Elias Pescialli Politecnico di Mila

General outlook

The main class Problem reads the parameters, including the mesh. The code is divided into **7 macro-components**:

- parameters, handles the parameters and parsing through GetPot
- geometrical entities, defines objects Point, ..., Mesh, reads from Gmsh
- monomials and polynomials, suite for symbolic calculus
- integration, Gauss-Lobatto rules, quadrature-free, Gaussian rules
- virtual space, virtual DOFs and projections
- solver, assembly with OpenMP, boundary conditions, solution
- visualization of results, exports for Paraview

4 D > 4 A > 4 B > 4 B >

Geometrical entities

Five classes Point, Edge, Polygon, Polyhedron and Mesh define the corresponding objects through **template programming**.

Highlights:

- N-dimensional points with wide range of methods implemented (dot and cross product, transform coordinates,...)
- automatic numbering of IDs
- edges stored as half-edges
- polygons ordered sequence of half-edges, methods to check the consistency of a polygon
- every object contains references to the lower-dimensional entity: an edge exists only if the two points already exist
- a Mesh object constructed reading a .geo file, easily generated with Gmsh

Monomials and polynomials

Monomials are extensively manipulated in the VEM ⇒ symbolic calculus tool. Templated base class Monomial

- supports monomials embedded in N-dimensional spaces
- overloaded operator*, method to compute the derivative and evaluate a monomial in a point
- two derived classes Monomial2D and Monomial3D to specialize the general monomial and handle a vector of ordered monomials, their gradients and their Laplacians.

Templated base class Polynomial

- map of Monomials
- derived class LinearTrinomialPower handles a polynomial generated by the $n^{\rm th}$ power of a trinomial of the kind ax+by+c, useful to pass from polyhedron to face reference frame.

```
template <unsigned int Dimension>
class Monomial
{private:
    std::vector<unsigned int> exponents;
    real coefficient;};
```

4 D > 4 A > 4 B > 4 B >

Integration

Three namespaces:

GaussLobatto

- ullet computes points and weights of the GL rule over [-1,1] storing them in a cache
- exploits toms748_solve from boost
- maps the abscissas and weights for an edge

IntegrationMonomial

- defines the templated function integrateMonomial, which allows to integrate
 a Monomial 2D or Monomial 3D over a 2D or 3D domain
- accepts parameters to perform change of coordinates
- methods to compute centroid and volume

Gauss

- points and weights of Gauss quadrature over the standard tetrahedron
- subtetrahedralization for star-shaped polyhedra w.r.t. centroid, all convex faces

Virtual space

Two parts:

- virtual degrees of freedom
 - Polymorphism: base virtual class VirtualDof, four derived classes
 VertexDof, EdgeDof, FaceDof, PolyhedronDof
 - class VirtualDofsCollection gathers all DOFs through shared pointers
 - class LocalVirtualDof maps global to local DOFs and vice-versa
- virtual projections
 - computes face projections
 - computes polyhedra projections, local matrices
 - relies on Eigen, exploits SparseMatrix and upper part storage

```
class VirtualFaceProjections
{private:
    map<size_t, vector<Polynomial<2>>> faceProjections;};

class VirtualPolyhedronProjections
{private:
    map<size_t, SparseMatrix<real>> polyhedronProjections; // C
    map<size_t, SparseMatrix<real>> elastic_matrices; // E, upper part
    map<size_t, SparseMatrix<real>> deformation_RBM_matrices; // Tdr
    map<size_t, VectorXd> forcingProjections; // F
};
```

4 D > 4 P > 4 E > 4 E >

Solver

Handles **assembly** of local matrices into global system, exploits parallelization through **OpenMP**, enforces **boundary conditions** and **solves** the linear algebraic system.

- class Solver exploits Eigen::ConjugateGradient, easily adaptable for other problems, e.g. extend to elastodynamics, iterative solution for nonlinear constitutive laws
- derived class SolverVEM assembles and enforces homogeneous Dirichlet BC, computes the strain L^2 -norm of the error, adopted for convergence tests

$$||e_{\varepsilon}||_{L^{2}} = \sqrt{\sum_{P \in \mathcal{P}} \int_{P} ||\varepsilon - \varepsilon^{h}||^{2} d\Omega}$$

Visualization of results - 1

Displacements, **strains** and **stresses** in nodal values can be exported in .vtk format, to be read with, e.g., **Paraview**. Visualization of **deformed** and **undeformed** configuration is possible with the filter **Warp By Vector** and the interior can be viewed with **Slice** or **Cut**.

Elias Pescialli Politecnico di Milano

Visualization of results - 2

Numerical tests

Data of the problem

$$\begin{cases} -\nabla \cdot [\boldsymbol{D}\boldsymbol{\varepsilon}(\boldsymbol{u})] = \boldsymbol{f} & \text{in } \Omega = (0,1)^3 \\ \boldsymbol{u} = \boldsymbol{0} & \text{on } \partial \Omega \end{cases}$$

$$oldsymbol{arepsilon} oldsymbol{arepsilon} (oldsymbol{u}) = rac{
abla oldsymbol{u} +
abla^{ ext{T}} oldsymbol{u}}{2} \qquad \qquad D_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{kj}
ight)$$

$$\boldsymbol{f}(x,y,z) = C \begin{cases} -\pi^2 \left[(\lambda + \mu) \cos(\pi x) \sin(\pi y + \pi z) - (\lambda + 4\mu) \sin(\pi x) \sin(\pi y) \sin(\pi z) \right] \\ -\pi^2 \left[(\lambda + \mu) \cos(\pi y) \sin(\pi x + \pi z) - (\lambda + 4\mu) \sin(\pi x) \sin(\pi y) \sin(\pi z) \right] \\ -\pi^2 \left[(\lambda + \mu) \cos(\pi z) \sin(\pi x + \pi y) - (\lambda + 4\mu) \sin(\pi x) \sin(\pi y) \sin(\pi z) \right] \end{cases}$$

$$\lambda = 1$$
 $\mu = 1$ $C = 0.1$

Units of measurements are not specified, but they are taken in a consistent way (e.g. N/mm^3 for body forces; N/mm^2 for surface tractions, stresses, Young's modulus and Lamé constants; mm for lengths)

Elias Pescialli Politecnico di Milano APSC, 2022/2023

Exact solution

$$u_{ex}(x, y, z) = C \sin(\pi x) \sin(\pi y) \sin(\pi z) \begin{cases} 1 \\ 1 \\ 1 \end{cases}$$

Elias Pescialli Politecnico di Milano APSC, 2022/2023 24/32

h-refinement test - k = 1

Average size of the elements, h

h-refinement test - k=2

Average size of the elements, \boldsymbol{h}

h-refinement test - k=3

Average size of the elements, h

Elias Pescialli

p-refinement

p-refinement - another problem visualized

Magnitude of the displacement vector field displayed on the deformed body through a 8-element, $1^{\rm st}$ to $4^{\rm th}$ order 8-element VEM, constant body force field $f_x=0.2,~\lambda=1,~\mu=1$, homogeneous Dirichlet boundary conditions applied on the plane z=0.

Future developments

Future developments

- extend to account for dynamic effects or material nonlinearities
- exploit modularity of the present code, adapt the solver to handle iterative methods
- possible improvement for integration of general functions over general polyhedra needed in rhs computation
- adopt graph partitioning techniques (e.g. Metis) to agglomerate elements in tetrahedral meshes generated in complex geometries to further test the effectiveness of the VFM.

Thank you!

