Juglio 3 21/10/2023

Esercizio 1. Determinare il MCD ed un'identità di Bezout per a=14322 e b=6153.

1.1.)
$$a=14322$$
 $b=6153$ $r=2016$ $b=6153$ $r=2016$ $r=2$

Esercizio 2. Trovare tutte le soluzioni mod 33 dell'equazione congruenziale $121X \equiv 22(33)\,.$

121
$$\times = 38$$
 22 / 11 $\rightarrow 3$ $\times = 2$

11 $\times + 3y = 2$

12 $\times + 3y = 2$

13 $\times + 3y = 2$

14 $\times + 3y = 2$

15 $\times + 3y = 2$

16 $\times + 3y = 2$

17 $\times + 3y = 2$

18 $\times + 3y = 2$

19 $\times + 3y = 2$

11 $\times + 3y = 2$

12 $\times + 3y = 2$

13 $\times + 3y = 2$

14 $\times + 3y = 2$

15 $\times + 3y = 2$

16 $\times + 3y = 2$

17 $\times + 3y = 2$

18 $\times + 3y = 2$

19 $\times + 3y = 2$

11 $\times + 3y = 2$

12 $\times + 3y = 2$

13 $\times + 3y = 2$

14 $\times + 3y = 2$

15 $\times + 3y = 2$

16 $\times + 3y = 2$

17 $\times + 3y = 2$

18 $\times + 3y = 2$

19 $\times + 3y = 2$

19 $\times + 3y = 2$

10 $\times + 3y = 2$

11 $\times + 3y = 2$

11 $\times + 3y = 2$

11 $\times + 3y = 2$

12 $\times + 3y = 2$

13 $\times + 3y = 2$

14 $\times + 3y = 2$

15 $\times + 3y = 2$

16 $\times + 3y = 2$

17 $\times + 3y = 2$

18 $\times + 3y = 2$

19 $\times + 3y = 2$

19 $\times + 3y = 2$

10 $\times + 3y = 2$

10 $\times + 3y = 2$

11 $\times + 3y = 2$

11 $\times + 3y = 2$

11 $\times + 3y = 2$

12 $\times + 3y = 2$

13 $\times + 3y = 2$

14 $\times + 3y = 2$

15 $\times + 3y = 2$

16 $\times + 3y = 2$

17 $\times + 3y = 2$

18 $\times + 3y = 2$

19 $\times + 3y = 2$

19 $\times + 3y = 2$

10 $\times + 3y = 2$

10 $\times + 3y = 2$

11 $\times + 3y = 2$

11 $\times + 3y = 2$

11 $\times + 3y = 2$

12 $\times + 3y = 2$

13 $\times + 3y = 2$

14 $\times + 3y = 2$

15 $\times + 3y = 2$

16 $\times + 3y = 2$

17 $\times + 3y = 2$

18 $\times + 3y = 2$

19 $\times + 3y = 2$

19 $\times + 3y = 2$

10 $\times + 3y = 2$

10 $\times + 3y = 2$

11 $\times + 3y = 2$

11 $\times + 3y = 2$

12 $\times + 3y = 2$

13 $\times + 3y = 2$

14 $\times + 3y = 2$

15 $\times + 3y = 2$

16 $\times + 3y = 2$

17 $\times + 3y = 2$

18 $\times + 3y = 2$

19 $\times + 3y = 2$

19 $\times + 3y = 2$

10 $\times + 3y = 2$

10 $\times + 3y = 2$

11 $\times + 3y = 2$

11 $\times + 3y = 2$

11 $\times + 3y = 2$

12 $\times + 3y = 2$

13 $\times + 3y = 2$

14 $\times + 3y = 2$

15 $\times + 3y = 2$

16 $\times + 3y = 2$

17 $\times + 3y = 2$

18 $\times + 3y = 2$

19 $\times + 3y = 2$

19 $\times + 3y = 2$

10 $\times + 3y = 2$

10

$$(x=-1, y=4)$$
 $2 = a - b \cdot 3$
 $1 = b - (a - b \cdot 3)$
 $1 = b - a + b \cdot 3$
 $1 = 4b - a$
 $[-1] = inverso oh [11] [-1] = [2] = [2]$
 $[x] = [4] in = [2] = [2]$
 $[x] = [4] in = [3]$

Esercizio 3.

- 1. Verificare che i numeri 897 e 4403 sono coprimi.
- **2.** Determinare una soluzione $(\tilde{x}, \tilde{y}) \in \mathbb{Z} \times \mathbb{Z}$ dell'equazione diofantea

$$897x + 4403y = 1$$

3. Verificare che se $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ è una soluzione dell'equazione omogonea associata, 897x + 4403y = 0, allora $(\tilde{x} + x_0, \tilde{y} + y_0)$ è una soluzione di (1).

Viceversa, verificare che se $(x', y') \in \mathbb{Z} \times \mathbb{Z}$ è soluzione di (1) allora esiste (x_0, y_0) tale che $(x', y') = (\tilde{x}, \tilde{y}) + (x_0, y_0)$.

Suggerimento: $(x', y') = (\tilde{x}, \tilde{y}) + ((x', y') - (\tilde{x}, \tilde{y})).^{1}$.

4. Determinare tutte le soluzioni di (1).

Suggerimento: per risolvere l'equazione omogenea il Lemma di Euclide può risultare utile.

Esercizio 4. Verificare che [8] è invertibile in \mathbb{Z}_{385} . Determinare tale inverso ed utilizzarlo per risolvere l'equazione congruenziale

 $8x \equiv 3 \pmod{385}.$

8 & month: in
$$\mathbb{Z}_{385}$$
 se e' copiems con 385

Coe' re McD(8 385) = 1

**COCHOE'
a = 385 b = 8 R = 1

[:]

VERO, 8 & c' copiems con n = 385 quind e'invertible.

[B] e' invertible.

X = 8.1

(8 · 8.1) = 1 (mod 385) \iff (8 · 8.1 - 1 = 385y (DIVISIBNEREN)

8 (-48! - 385(-1) = 1

X = 48

Y = -1

Outpubli [-48] e' l'invers ol [8]

-> [8][X] = [3] mool 385

[48][8][X] = [3][-48] mod 385

[X] = [-144] = [241]

375