

Ch8 Sequential Logic Design Practices

Main contents:

- (1) Timing diagram时序图
- (2) Registers寄存器
- (3) Counters计数器(重点)

以74x163为代表的电路分析与应用,包含:电路功能分析;任意模m计数器设计;序列发生器;控制各种不同器件

(4) Shift registers移位寄存器(重点)

以74x194为代表的电路分析与应用,包含:

- 8.5.1 Shift-Register Structure 8.5.4 Ring Counters
- 8.5.2 MSI Shift Registers 8.5.5 Johnson Counters
- **8.5.3 Shift-Register Counters**
- 8.5.6 Linear Feedback Shift-Register Counters(LFSR)

Johnson counter with 74x194

Self-correcting design (1)

1、decide which state circle is normal circle相对性 确定有效的状态循环

2. process the abnormal state circle, let them get into normal circle

对无效状态进行处理, 使其进入有效循环

$$D0 = Q3' + Q2' \cdot Q0$$

Self-correcting design (1)

扭环形计数器

Self-correcting design (1)

扭环形计数器

扭环形计数器

问题的提出: 无效状态 X10X After some periods, it has 10XX, and next state is 0XX0, 如何进行校正?

扭环形计数器

Conclusion:

n-bit Johnson counter: 2n normal states, 2n-2n abnormal states

8.5.6 Linear Feedback Shift Register (LFSR) counters

n-bit LFSR: 2ⁿ-1 states(有效)

—maximum-length sequence generator

LFSR counters的一般结构

反馈方程

n	Feedback Equation
2	X2 = X1 ⊕ X0
3	X3 = X1 ⊕ X0
4	X4 = X1 ⊕ X0
5	X5 = X2 ⊕ X0
6	X6 = X1 ⊕ X0
7	X7 = X3 ⊕ X0
8	$X8 = X4 \oplus X3 \oplus X2 \oplus X0$
12	$X12 = X6 \oplus X4 \oplus X1 \oplus X0$
16	$X16 = X5 \oplus X4 \oplus X3 \oplus X0$
20	X20 = X3 ⊕ X0
24	$X24 = X7 \oplus X2 \oplus X1 \oplus X0$
28	X28 = X3 ⊕ X0
32	X32 = X22 ⊕ X2 ⊕ X1 ⊕ X0

All 0 state, what is next state?

The next state is still all 0

Odd-parity circuits奇校验电路

Thinking: LFSR counters如何自校正?

参见教材: P738-740(英文第4版)

Linear Feedback shift-register (LFSR) counters

Ex:以3位LFSR计数器为例

状态序列 (未校正序列)

Original Sequence					
X2	X1	X0			
1	0	0			
0	1	0			
1	0	1			
1	1	0			
1	1	1			
0	1	1			
0	0	1			
1	0	0			

如何加入000状态?

(即如何实现自校正?)

Linear Feedback shift-register (LFSR) counters

Shift registers的其他应用(1):

Sequence generator

Example: generate 8-bit periodic sequence 000 101 11

$Q_2Q_1Q_0$	D ₀	刚好完全覆盖8种不同状态: 000~111,
0 0 0	1	且Q2输出就为设计所需序列
0 0 1	0	反馈方程D ₀ Q ₁ Q ₀
0 1 0	1	
1 0 1	1	Q_2 00 01 11 10
0 1 1	1	0 1 0 1 1
1 1 1	0	
1 1 0	0	- 0 1 0 0
1 0 0	0	

$$D_0 = Q_2 \cdot Q_1' \cdot Q_0 + Q_2' \cdot Q_1 + Q_2' \cdot Q_0'$$

Solution 1:分立元件—D触发器

$$D_0 = Q_2 \cdot Q_1' \cdot Q_0 + Q_2' \cdot Q_1 + Q_2' \cdot Q_0'$$

Solution 2: MSI芯片—74x194

$$D_0 = LIN = Q_2 \cdot Q_1' \cdot Q_0 + Q_2' \cdot Q_1 + Q_2' \cdot Q_0'$$

Conclusion: Sequence generator design method (using shift register)

Example: generating 8-bit sequence 110 110 01

1) number of flip-flops: n

2ⁿ>length(sequence): 8 bits sequence, need at least 3 flip-flops;

If choose 3 flip-flops, 110 states occurs 2 times, so n should be 4.

2) steps:

State-machine design procedure.

Need only one excitation equation: $D_0 = F(Q_0, Q_1, ..., Q_{n-1})$

思考: 写出反馈方程D₀=F(Q₀,Q₁,...Q_{n-1})=?

Review: sequence generator using counter and multiplexer

Example: generating 8-bit periodic sequence 00010111

Shift registers的其他应用(2):

Sequence detector

Example: design 110 sequence detector, When 110 is detected on input A, Output Z is 1. complete the function using shift register.

Solution 2

思考:如果是A是从RIN输入呢?

Review: 110 sequence detector using state machine See also chapter 7

6	Α		—
S	0	1	Z
STA	STA	A1	0
A1	STA	A11	0
A11	OK	A11	0
OK	STA	A1	1
	S*		

Moore state machine

$$D_{0} = A'Q_{1}''Q_{0}' + A''Q_{1}'Q_{0}' + A'Q_{1}'Q_{0}$$

$$D_{1} = Q_{0}''Q_{1} + A'Q_{0}'Q_{1}'$$

$$Z = Q_{0}'Q_{1}$$

Summary of Chap.8

- SSI latches and flip-flops
- MSI
 - Multi-bit latches and registers
 - * Counter: 74x163
 - Shift register: 74x194

Counters

- Application of Counter
- Ripple counters, Synchronous counters
- ---Arbitrary modulo-m counter
- ---Sequence generators
- --- Decoding binary counter states

Shift Registers

- Shift Register types
- Application of shift register
- ---Shift register counters: Ring counters, Johnson counters, LFSR counters
- ---Sequence generator, sequence detector

第7章 要求

重点学习掌握:

- 1) 锁存器、触发器的区别;
- 2) D型、J-K型、T型触发器的时序特性,功能表,特征方程表达式,不同触发器之间的相互转换;
- 3) 钟控同步状态机的模型图,状态机类型及基本分析方法和步骤,使用状态图表示状态机状态转换关系;
- 4) 钟控同步状态机的设计: 状态转换过程的建立, 状态的化简与编码赋值、未用状态的处理——风险最小方案和成本最小方案、使用状态转换表的设计方法、使用状态图的设计方法。

第8章 要求

重点学习掌握:学习利用基本的逻辑门、时序元件 作为设计的基本元素完成规定的钟控同步状态机电路的 设计任务:计数器、移位寄存器、序列检测电路和序列 发生器的设计;学习利用基本的逻辑门和已有的中规模 集成电路(MSI)时序功能器件作为设计的基本元素完成 更为复杂的时序逻辑电路设计的方法。