PROJECT REPORT

PROJECT TITLE : Car Resale value Prediction

TEAM ID : PNT2022TMID103604

: GEORGE RIYAS (LEADER)

DEVA PRAVEEN

TEAM MEMBERS JOEL T ABRAHAM

GOKUL V R

1.INTRODUCTION

1.1 Project overview

The Car Valuation Tool is a free tool designed to help you get the estimated resale value of your car within seconds. Our automobile valuation algorithm is real-time updated, so it keeps up with the most recent modifications and market trends. However, the amounts displayed during the online assessment are only estimates and might alter when the retailer inspects your automobile. You don't even need to register to have your automobile valued; all you need to do is provide some basic information about it, such as its make, model, amount of miles driven, city of residence, and contact information.

1.2 Purpose

In 2019, the Indian used automobile resale industry was valued at \$24.2 billion USD. There is a critical need to close this gap between sellers and buyers due to the enormous demand for used automobiles and the shortage of professionals who can evaluate the proper valuation. The goal of this research is to create a system that can impartially forecast a car's resale value based on little information such as the number of miles travelled and the year of purchase. The process of determining the current used automobile pricing in a certain location is known as used car value. By selecting the brand, model, year, trim, and the number of kilometers travelled, a user of OBV may quickly determine the used car's price. The value of a used automobile is based on a number of variables, including its state right now, when it was bought, etc. Used automobile valuation will never have a precise price; instead, it will always fall within a reasonable price range.

2.LITERATURE SURVEY 2.1Existing problem

Car Resale value prediction is one of the best to sell our in this market for an best and better price. Rather than giving our car to an less price, the customer those who uses the car will be benefited and the seller will also be benefitted. The goal of this research is to create a system that can impartially forecast a car's resale value based on little information such as the number of miles travelled and the year of purchase. You don't even need to register to have your automobile valued; all you need to do is provide some basic information about it, such as its make, model, amount of miles driven, city of residence, and contact information.

2.2 References

- [1] Pudaruth Sameerchand, Pudaruth Sameerchand, Predicting the price of Used Car Using Machine Learning Techniques
- [2] Enis gegic, Becir ,Isakovic, Dino Keco, ,Zerina Masetic,Jasmin Kevric Car Price Prediction Using Machine Learning
- [3] Ning sun, Hongxi Bai, Yuxia Geng, Huizhu Shi Price Evaluation model in second hand car system
- [4] Doan Van Thai, Luong Ngoc Son, Pham Vu Tien, Nguyen Nhat Anh, Nguyen Thi Ngoc Anh Prediction car prices using qualify qualitative data and knowledge-based system

2.3 Problem Statement Definition

Car Resale value prediction is used to predict the value of the used cars to an reasonable price which satisfies the customer.

3 IDEATIOIN AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstroming

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

① 5 minutes

Idea prioritation:

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	To predict the resale value of second hand car or used car considering its features.
2.	Idea / Solution description	To develop a Machine learning algorithm which predicts the resale value of any used car which is shown in web design.
3.	Novelty / Uniqueness	The model predicts the resale value of car with high accuracy.
4.	Social Impact / Customer Satisfaction	A good platform with more reliability and portability.
5.	Business Model (Revenue Model)	The model deployed in cloud so anyone can access it anywhere and anytime.
6.	Scalability of the Solution	It is a web page model so it can be viewed and accessed in both computer as well as mobile phones.

3.4 Problem Solution Fit

4 REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Website
FR-2	User Confirmation	Confirmation via Website
FR-3	Car Registration	Registration through Website
FR-4	Car Information	Getting the car details through Website
FR-5	Value Prediction	Shows the resale value of the car through website

4.2 Non-Functional requirement

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The model predicts the resale value of the car with more accuracy.
NFR-2	Security	Protect the user information as well as their car details.
NFR-3	Reliability	The model performs consistently well and also it begins trust to the user.
NFR-4	Performance	The model performance has high accuracy and with portable from one machine to another machine.
NFR-5	Availability	The model can be available anywhere at anytime.
NFR-6	Scalability	The model can be viewed and accessed in both computer as well as mobile phone.

5 PROJECT DESIGN

5.1 Data Flow Diagram

User Stories

User Type	Functional requirement	User story number	User story/task	Acceptance criteria	Priority	Release
Customer	Registration	USN-1	As a user, I	I can access	High	Sprint-1
(Mobile user,			can register	my account/		
Web user,			for the	dashboard		
Care			application			
executive,			by entering			
Administrator)			my mail, password, and confirming my password			
		USN-2	As a user, I	I can receive	High	Sprint-1
			will receive	confirmation		
			confirmation	email & click		
			email once I have registered for the application	confirm		
	Dashboard	USN-3	As a user, I	I can register	Low	Sprint-2
			can register	& access the		
			for the	dashboard		
			application	with Internet		
			through internet	login		
		USN-4	As a user, I	I can confirm	Medium	Sprint-1
			can register	the		

		for the	registration in		
		application through Gmail	Gmail		
Login	USN-5	As a user, I	I can login	High	Sprint-1
		can log into	with my id		
		the application by entering email & password	and password		

6 PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story / Task	Story Point s	Priority	Team Members
Sprint-1	Resources Initialization	We have to create and initialize accounts in various public APIs like OpenWeatherMap API.	1	LOW	George Riyas Gokul V R
Sprint-1	Local Server/Software Run	Write a Python program that outputs results given the inputs like weather and location through the software		MEDIUM	George Riyas Gokul V R
Sprint-2	Push the server/software to cloud	Push the code from Sprint 1 to cloud so it can be accessed from anywhere	2	MEDIUM	Deva Praveen Joel T Abraham

Sprint-3	Hardware initialization	Integrate the hardware to be able to access the cloud functions and provide inputs to the same.		HIGH	Deva Praveen Gokul V R
Sprint-4	UI/UX Optimization & Debugging	Optimize all the shortcomings and provide better user experience.	2	LOW	George Riyas Joel T Abraham

Sprint	Functional Requirem ent(Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Membe rs
Sprint-3	Home Page	USN-1	Description about car resale process	2	Low	George Riyas
Sprint-3	Registration/Login	USN-2	As a user, I can register for the application byentering my username, email, phone number, and password and verify it. As a user, I can log in to the web application by entering my Username &password.	5	Medium	Gokul V R
Sprint-3	Form Page	USN-3	As a user, I submit my car details.	5	Medium	Joel T Abraham
Sprint-3	Result	USN-4	The predicted resale price for the given carmodel will be displayed.	9	High	Deva Praveen
Sprint-1	Data collection andData preprocessing	USN-5	Collect the required data and read the data.	6	High	Gokul V R
Sprint-1	Data collection andData preprocessing	USN-6	Clean and analyse the data to avoid duplications	9	High	George Riyas

6.2 Sprint Delivery Schedule

Sprint-1	Data collection andData preprocessi ng	USN-7	Split the data into Dependent and Independentvariables	6	High	Deva Praveen
Sprint-2	Model Building	USN-8	Build the model using a Random Forestregression to classify the data.	9	High	Joel T Abraham
Sprint-2	Model Building	USN-9	Check the metrics	7	High	Gokul V R Joel T Abraham
Sprint-2	Model Building	USN-10	Save the model	5	High	Gokul V R Deva Praveen
Sprint-4	Deploy the model	USN-11	Deployment of ML model using IBM WatsonStudio, object storage.	13	High	George Riyas Deva Praveen
Sprint-4	Integrate the webapp with the IBM model	USN-12	Use flask for the integrationpurpose.	8	Medium	George Riyas Joel T Abraham

7 CODING & SOLUTIONING

7.1 Feature 1

- IoT device
- IBM Watson Platform
- Node red
- Cloudant DB
- Web UI
- MIT App Inventor
- Python code

7.2 Feature2

- Login
- Wokwi

8 TESTING AND RESULTS

8.1 Test Cases

Test case 1:

Test case 2:

9 Result

10.

10.1 ADVANTAGES

- This will reduced installation cost.
- It will monitor 24/7.
- Very useful to sale the car for reasonable price

10.2 DISADVANTAGES

- Car Resale value can not be used by the person who doesn't have access to the internet.
- Very hard to use for targeted range of people

11 CONCLUSION

Price prediction analyses a good or service based on its attributes, demand, and current market trends using an algorithm. The pricing is then adjusted by the programme at a level that it believes would both draw people and optimise sales. The method is known as price forecasting or predictive pricing in some quarters.

12 FUTURE SCOPE

When compared to February 2020, average prices were up 42.5% in September 2022. While it's possible that used vehicle prices have peaked, new car prices are expected to be high through the end of 2022. Prices are anticipated to drop for both neward used automobiles in 2023, by 2.5% to 5% for new cars and 10% to 20% for used cars.

13 APPENDIX

Source Code

```
HTML FILES:
home.hmtl
<!DOCTYPE html>
<html lang="en">
<style> a:link,
a:visited
{ background-color:
 white;color: black;
 border: 2px solid
 black;border-radius:
 25px; padding:
 10px 20px;
```

```
text-align: center; text-
    decoration: none;display:
    inline-block;
    }
    a:hover, a:active
    background-color:
    beige; color:
                   black;
    text-decoration: none;
    </style>
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge"> <link
rel="styleshe et"
href="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css"
integrity="sha384-
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRx
T2MZw1T" crossorigin="anonymous">
  <link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='style.css') }}" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Home</title>
</head>
<body>
  <div class="col-md-8">
   {% with messages = get_flashed_messages(with_categories=true) %}
```

```
{% endif %}
 {% endwith %}
   {% block content %} {% endblock %}
 </div>
 <center>
 <h1>Car Resale Value Predictor</h1> <br>
 <a href="{{ url_for('login') }}">Click to Login</a><br> <br>
 <a href="{{ url_for('register') }}">Register here</a><br> <br>
 <a href="{{ url_for('update') }}">Update Password</a><br> <br>
 </center>
                     <script
                               src="https://code.jquery.com/jquery-
3.3.1.slim.min.js"
                                                        integrity="sha384-
q8i/X + 965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH + 8abtTE1Pi
6jizo" crossorigin="anonymous"></script>
       <script
               src="https://cdn.jsdelivr.net/npm/popper.js@1.14.7/dist/umd/p
               0
pper.min.js" integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86
dIHNDz0W1" crossorigin="anonymous"></script>
        <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/js/bootst</pre>
rap.min.js"integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B0
7jRM" crossorigin="anonymous"></script>
</body>
</html>
```

```
<meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
           name="viewport"
                               content="width=device-width,
                                                                initial-scale=1.0">
 <meta
 <title>Welcome Page</title>
</head>
<body>
 <marquee>Welcome!</marquee> <br>
 <center>
 <h3>Enter
                Car
                        details</h3>
 </center>
 <center>
 <form method="POST" action="/predict">
   <label for="sell">Choose a Seller:</label>
   <select id="sell" name="sell">
   <option value=0>Commercial</option>
   <option value=1>Private</option>
   </select>
   <br>
   <label for="ot">Choose a OfferType:</label>
   <select id="ot" name="ot">
   <option value=0>Offer</option>
   <option value=1>Request</option>
   </select>
   <br/>br>
   <label for="vt">Choose a Vehicle type:</label>
   <select id="vt" name="vt">
   <option value=3>Coupe</option>
```

```
<option value=1>Combination</option>
```

```
<option value=8>SUV</option>
<option value=6>Others
<option value=5>Not Declared
</select>
<br>
<label for="gb">Choose a Gearbox:</label>
<select id="gb" name="gb">
<option value=0>Automatic</option>
<option value=1>Manual
<option value=2>Not Declared
</select>
<hr>>
PowerPs
<input name="pps" required>
kilometers
<input name="km" required>
<br>
<label for="ft">Choose a FuelType:</label>
<select id="ft" name="ft">
<option value=7>Petrol</option>
<option value=1>Diesel</option>
<option value=0>CNG</option>
<option value=4>LPG</option>
<option value=3>Hybrid
<option value=2>Electric</option>
<option value=5>Not Declared
<option values=6>Others
</select>
<br>
```

```
<label for="brand">Choose a Brand:</label>
```

```
<option value=3>Chevrolet</option>
```

```
<option value=34>Subaru</option>
```

<option value=35>Suzuki</option> <option value=36>Toyota</option>

<option value=38>Volkswagen</option>

<option value=39>Volvo</option>

```
<br>
   <label for="nr">Repaired?</label>
   <select id="nr" name="nr">
   <option value=1>Yes</option>
   <option value=0>No</option>
   <option value=2>Not Declared
   </select>
   <br>
   Age(in months)
   <input name="age" required>
   <br>
   <br>
   <button type="submit">Submit</button>
  </form>
  </center>
 <br/>br>
 <br>
 <a href="{{url_for('logout')}}">Press here to logout</a>
                    <script
                               src="https://code.jquery.com/jquery-
3.3.1.slim.min.js"
                                                        integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi
6jizo" crossorigin="anonymous"></script>
       <script
               src="https://cdn.jsdelivr.net/npm/popper.js@1.14.7/dist/umd/p
pper.min.js" integrity="sha384-
```

</select>

UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86 dIHNDz0W1" crossorigin="anonymous"></script>

<script

src = "https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/js/bootstrap.min.js" integrity = "sha384-"

JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B0 7jRM" crossorigin="anonymous"></script>

</body>

</html>

Predict.html(For displaying the output)

```
<!DOCTYPE html>
 <html lang="en">
   <style>
    body{
      background-color:
      pink;color:black;
   </style>
<head>
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Car Value</title>
</head>
<body>
   <h1>Car Value Predicted is</h1>
   <h1>{{predict1}}</h1>
  <br/>br>
  <br/>br>
</body>
</html>
 app-ibm.py(FLASK FRAMEWORK)
 from flask import Flask,request, render_template, url_for, redirect, flash from
 flask_login import UserMixin, login_user, LoginManager, login_required,
 logout_user,current_user
```

from wtforms.validators import InputRequired, Length, ValidationErrorfrom flask_bcrypt import Bcrypt

```
from wtforms import StringField, PasswordField,
SubmitField, IntegerFieldfrom flask_wtf import FlaskForm
import sqlite3 import joblib
from sklearn.preprocessing import
OrdinalEncoderimport pandas as pd
import requests
# NOTE: you must manually set API_KEY below using information retrieved from
your IBM Cloud account.
API_KEY = "iX5xF0JyPhYIfWGg37VPe14p1D7OMDPgPG1cl1yQJfJg"
token_response = requests.post('https://iam.cloud.ibm.com/identity/token',
data={"apikey":API_KEY,
                                                         "grant_type":
'urn:ibm:params:oauth:granttype:apikey'})
                                                  mltoken
                                                     {'Content-Type':
token_response.json()["access_token"]
                                       header
'application/json', 'Authorization': 'Bearer ' +
mltoken app = Flask(name_-)
bcrypt
                      Bcrypt(app)
app.config['SECRET_KEY'] = 'B7-
1A3E'
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view
        @login_manager.user_loa
'login'
derdef load_user(user_id): conn =
```

connect_db()

user

```
def
        connect_db():
  conn =
  sqlite3.connect('database.db')
return conn class User:
  def__init (self, id, email,
    username):self.id = id
    self.username
    usernameself.email =
    email
  def to_json(self):
    return {"username":
        self.username,"email":
        self.email}
  def
    is_authenticated(self):
    return True
  def
    is_active(sel
    f):return
    True
           is_anonymous(self):
  def
    return False
```

```
InputRequired(), Length(min=4, max=20)], render_kw={"placeholder":
"Username" })
                   rollnumber
                                    =
 StringField(validators=[
   InputRequired(), Length(min=5, max=10)], render_kw={"placeholder":
 "RollNumber"})password = PasswordField(validators=[
                  InputRequired(), Length(min=8, max=20)], render_kw={"placeholder":
"Password" })
                  submit
                               =
 SubmitField('Register')
 def validate_username(self,
   username):conn = connect_db() existing_user_username =
   conn.execute('SELECT * FROM user WHERE username =
   ?',(username.data,)).fetchone()
   conn.comm
   it()
   conn.close()
   if
     existing_user_usern
     ame:raise
     ValidationError(
       'That username already exists. Try another one.')
             LoginForm(FlaskForm):
class
 username =
 StringField(validators=[
                  InputRequired(), Length(min=4, max=20)], render_kw={"placeholder":
```

```
"Username"}) password =

PasswordField(validators=[
   InputRequired(), Length(min=8,
   max=20)], render_kw={"placeholder":
"Password"})   submit =
   SubmitField('Login')

class UpdateForm(FlaskForm):
```

```
username = StringField(validators=[
                  InputRequired(), Length(min=4, max=20)], render_kw={"placeholder":
"Username" })
 oldpassword = PasswordField(validators=[
        InputRequired(),
                                     Length(min=8,
                                                                 \max = 20)],
render_kw={"placeholder": "PreviousPassword"})
 password = PasswordField(validators=[
                  InputRequired(), Length(min=8, max=20)], render_kw={"placeholder":
"Password" })
                  submit
                              =
 SubmitField('Update')
@app.route('
/')def
home():
                              return
 render_template('home.html')
@app.route('/login',
methods=['GET', 'POST'])def
login(): form = LoginForm()
 if
   form.validate_on_submit
                              ():conn
                                            connect_db()
    conn.execute('SELECT * FROM user WHERE username = ?',
             (form.username.data,)).fetchone()
    conn.comm
```

```
else:
        print('Hi') flash(f'Invalid credentials, check and try logging
        in again.',
        'danger')return
                             redirect(url_for('login'))
  return render_template('login.html', form=form)
@app.route('/welcome', methods=['GET',
'POST'])@login_required def welcome():
return render_template('welcome.html')
@app.route('/predict',
methods=['POST'])def
predictSpecies():
  sell
  float(request.form['sell'])ot
  = float(request.form['ot'])
  vt =
  float(request.form['vt'])
  gb =
  float(request.form['gb'])
  pps=float(request.form['p ps'])
  km=float(request.form['k m'])
  ft=float(request.form['ft'])
  brand=float(request.form['brand']
  ) nr=float(request.form['nr'])
  age=float(request.form['age']) arr
```

```
= [[sell, ot, vt,
gb,pps,km,ft,brand,nr,age]]

payload_scoring = {"input_data": [{"field": [['sell', 'ot', 'vt',
'gb','pps','km','ft','brand','nr','age']], "values":arr}]}

response_scoring
```

= requests.post('https://ussouth.ml.cloud.ibm.com/ml/v4/deployments/a4a92034-8fcd-4e79-ab7c-

```
521a5d8cb7d5/predictions?version=2022-11-15', json=payload_scor
ing,headers={'Authorization': 'Bearer ' + mltoken})
 print(response scoring) predictions =
 response_scoring.json() pr =
 predictions['predictions'][0]['values'][0][0]
 print("final
                     prediction",pr)
                                            return
 render_template('predict.html',predict1=pr)
@app.route('/logout', methods=['GET',
'POST'])@login required
def logout(): logout_use
 r()
                         return
 redirect(url_for('login'))
@ app.route('/register', methods=['GET',
'POST'])def register(): form =
 RegisterForm()
 conn =
                             if
 connect_db()
 form.validate on submit():
   hashed_password = bcrypt.generate_password_hash(form.password.data)
    conn.execute('INSERT INTO user (email, username, roll_number,
   pass_word) VALUES (?,
?, ?, ?)',
```

(form.email.data, form.username.data, form.rollnumber.data, hashed_password))conn.commit() conn.close() return redirect(url_for('login')) return render_template('register.html', form=form)

@ app.route('/update', methods=['GET',
'POST'])def update():

```
form =
  UpdateForm()conn
                             =
                             if
  connect_db()
  form.validate_on_submit():
   conn = connect_db() user = conn.execute('SELECT * FROM user
    WHERE username = ?',
             (form.username.data,)).fetchone()
   if user:
     if bcrypt.check_password_hash(user[4],
       form.oldpassword.data):print(user)
       hashed_password1 =
         bcrypt.generate_password_hash(form.passw
         ord.data)
      conn.execute('UPDATE user set pass_word = ? where username = ?',
              (hashed_password1,
       form.username.data)) conn.commit()
       conn.close() flash(f'Password changed
       successfully.',
                           redirect(url_for('home'))
       'success')return
     else:
       flash(f'Invalid password, Enter valid password.',
       'danger')return
                           redirect(url_for('update'))
   else:
     flash(f'Invalid user, Enter valid User.',
     'danger')return
                          redirect(url_for('update'))
  return render_template('update.html', form=form)
if name == " main ": app.run(debug=True)
```

13.1 GitHub & Project Demo Link:
https://github.com/IBM-EPBL/IBM-Project-30991-1660193960
DEMO LINK:
https://drive.google.com/file/d/1z0LOt
uJ0KoiLS8zVh1SyrXrXZgh0oJpF/vie
w?usp=sharing