Contents

1	Lecture 1: Blackbody Radiation		2
	1.1	What is Physics?	2
	1.2	The Potter's Problem: Blackbody Radiation	2
	1.3	A Formal Derivation	3
2 Lecture 2: Blackbody Radiation		5	
	2.1	Formal Blackbody Radiation, continued	5
	2.2	The Quantum Calculation	6

Notes

1 Lecture 1: Blackbody Radiation

1.1 What is Physics?

Why do we need quantum mechanics? The older (classical) theory was wrong!

Physics doesn't tell you "why" things work—it tells you "how" things work. The reality is not observable, quantum mechanics "describes" observations rather than helping you "understand" some. By throwing away our philosophical concerns, we instead directly study the mathematics.

1.2 The Potter's Problem: Blackbody Radiation

Take a cube of some solid and heat it up to some temperature *T*. When you do this, it emits light (it glows). For a long time, no one knew how this phenomenon worked. Here are some observations throw the ages:

- 1792: Wedgewood notes that all objects (at a certain T) glow the same color.
- 1800s: With improvements in spectroscopy, we can now measure the frequency content of light.
- 1859: Kirchoff proposes a model. R is the "emissive power/area", λ is wavelength of the light and T is the temperature.

$$R(\lambda, T)$$

The idea is that there are multiple collisions between the walls and the radiation field. The blackbody (as a perfect absorber) is absorbing all light at all frequencies. It looked something like this. The left-side is near 0 because you have no wave at that wavelength. The right side must be bounded because we want total emissive power to be finite (or do we?).

• 1879: Stefan's Law

$$\int_0^\infty R(\lambda, T) \, \mathrm{d}\lambda = \sigma T^4$$

i.e. the total radiation emitted is proportional to T^4 , which $\sigma \approx 5.67 \times 10^{-8} \frac{W}{m^2 K^4}$

• ????: Wien's Law

$$\lambda_{max}T \approx 2.898 \times 10^{-3} m \cdot K$$

i.e. these curves all have the same constant for the quantity. For example, in the following graph, $T_1 > T_2$.

• ????: Rayleigh-Jeans Law

$$R(\lambda, T) \propto \frac{8\pi k_B T}{\lambda^4}$$

which only works at longer frequencies (the area is unbounded). The original derivation was similar to many observations in astronomy (guess a power law and add fudge factors).

1.3 A Formal Derivation

Let's derive the last law using thermodynamic principles and waves. We will analyze the energy density that the light trapped in the solid produces. The energy of a light wave increases with frequency, which in turn is proportional to the number of wave modes. In other words:

Energy = Number of modes \times Energy per mode

Suppose our blackbody is a cube of length L.

Let's find the waves that are stable in the cube. First, we write the wave equation.

$$\nabla^2 \Psi({\bf r},t) = \frac{1}{c^2} \frac{\partial}{\partial t^2} \Psi({\bf r},t)$$

where

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

In addition, we need boundary conditions—consider a standing wave in 1-d. At the ends it is fixed at 0. For 3-d this is:

$$\Psi(x = 0, y, z, t) = \Psi(x = L, y, z, t) = 0, \forall y, z, t$$

$$\Psi(x, y = 0, z, t) = \Psi(x, y = L, z, t) = 0, \forall x, z, t$$

$$\Psi(x, y, z = 0, t) = \Psi(x, y, z = L, t) = 0, \forall x, y, t$$

The solution is:

$$\Psi(\mathbf{r},t) = A(t)\sin(k_x x)\sin(k_y y)\sin(k_z z)$$

where $k_i = \frac{n_i \pi}{L}$ for $n_i \in \mathbb{N}$. n_i is the number of nodes along the *i*th axis. Each tuple of n_i is a valid mode (configuration) of the wave.

This looks like:

$$\Psi(\mathbf{r},t) = A(t)B(x,y,z)$$

So we are modulating the space component of the wave with some A(t) that changes over the time. This is true for any standing wave.

2 Lecture 2: Blackbody Radiation

2.1 Formal Blackbody Radiation, continued

To use our DE solution, we need a few partials:

$$\nabla^2 \Psi(\mathbf{r}, t) = \left(A(t) \sin\left(k_y y\right) \sin\left(k_z z\right) \frac{\partial^2 \sin\left(k_x x\right)}{\partial x^2} \right) + \dots$$
$$= -k_x^2 (A(t) \sin\left(k_x x\right) \sin\left(k_y y\right) \sin\left(k_z z\right)) + \dots$$
$$= -\left(n_x^2 + n_y^2 + n_z^2\right) \frac{\pi^2}{L^2} A(t) B(x, y, z)$$

Another one, letting $A(t) = A_0 \cos \omega t + \phi$.

$$\frac{\partial^2 \Psi(\mathbf{r}, t)}{\partial t^2} = -\omega^2 A(t) B(x, y, z)$$

Let's plug our solution back into the wave equation.

$$\nabla^{2}\Psi(x, y, z, t) = \frac{1}{c^{2}} \frac{\partial^{2}\Psi(x, y, z, t)}{\partial t^{2}}$$
$$-\left(n_{x}^{2} + n_{y}^{2} + n_{z}^{2}\right) \frac{\pi^{2}}{L^{2}} A(t) B(x, y, z) = \frac{-\omega^{2}}{c^{2}} A(t) B(x, y, z)$$
$$\omega^{2} = \frac{c^{2} \pi^{2}}{L^{2}} \left(n_{x}^{2} + n_{y}^{2} + n_{z}^{2}\right)$$

This equation relates the angular frequency of the wave to its mode configurations. To find the number of modes for a given wavelength we define notion of density of states:

$$g(\omega) = \frac{\mathrm{d}N(\omega)}{\mathrm{d}\omega}$$

We choose to work with densities since ω is a continuous quantity. Differentiating both sides yields:

$$N(\omega) = \int_0^{\omega} g(\omega) \, \mathrm{d}\omega$$

This quantity will encapsulate all (n_x, n_y, n_z) such that:

$$n_x^2 + n_y^2 + n_z^2 \le \frac{\omega^2 L^2}{c^2 \pi^2}$$

(because we are looking at frequencies less than ω). Note that this looks like a sphere equation (with $n_i \ge 0$). The volume of this first octant is

$$N(\omega) = \frac{1}{8} \left(\frac{4}{3} \pi \frac{\omega^3 L^3}{c^3 \pi^3} \right) = \frac{\omega^3 L^3}{6c^3 \pi^3}$$

Let $V = L^3$ be the volume of the blackbody. Converting from angular to linear frequency:

$$N(f) = \frac{(2\pi f)^3 V}{6c^3 \pi^2} = \frac{4\pi f^3 V}{3c^3}$$
$$g(f) = \frac{dN(f)}{df} = \frac{4\pi f^2 V}{c^3}$$

However, this is slightly incomplete. This assumes a certain polarization of the electric field. However, there are two degrees of freedom in which this field can polarize, so the amount of states is actually double. This means:

$$g(f) = \frac{8\pi f^2 V}{c^3}$$

In classical statistical mechanics, the equipartition each mode of a system is excited with energy equal to k_BT (??), so the total energy for frequency f to f + df is:

$$g(f) df \cdot k_B T = \frac{8\pi}{c^3} f^2 V k_B T df$$

This means the energy density (by volume) is:

$$\kappa = \frac{8\pi}{c^3} f^2 k_B T \, \mathrm{d}f$$

and note since $f = \frac{c}{\lambda}$, $df = \frac{-c}{\lambda^2} d\lambda$ and:

$$\rho(\lambda, T) := \frac{\mathrm{d}\kappa}{\mathrm{d}\lambda} = \frac{8\pi}{\lambda^4} k_B T$$

where we dropped the negative sign (it just changes the order of integration). Note that our *R* is proportional to this density (the outward rate is just constant). We have produced the Rayleigh-Jean law (which is inaccurate!).

2.2 The Quantum Calculation

To solve our ultraviolet catastrophe, Planck postulated that light waves cannot have arbitrary energy values. Instead, for a fixed frequency f, he proposed that energy is quantized in discrete packets as

$$E_n = nhf$$

where hf is a quanta and $n \in \mathbb{N}$. He then calculated the expected energy of a wave as:

$$\bar{E} = \sum_{n=0}^{\infty} nhf \frac{\exp\left(-\frac{nhf}{k_BT}\right)}{\sum_{m=0}^{\infty} \exp\left(-\frac{mhf}{k_BT}\right)}$$

where the fraction term is the Boltzmann factor normalized to a probability. Can we simplify this? Let $x = \exp\left(-\frac{hf}{k_BT}\right)$.

$$\begin{split} \bar{E} &= hf \sum_{n=0}^{\infty} n \frac{x^n}{\sum_{m=0}^{\infty} x^m} \\ &= hf \frac{1 + x \sum_{n=0}^{\infty} (n+1)x^n}{(\frac{1}{1-x})} \\ &= hf (1-x) \left(0 + x \frac{d \sum_{n=0}^{\infty} x^{n+1}}{dx} \right) \\ &= hf (1-x) \left(x \frac{d \frac{x}{1-x}}{dx} \right) \\ &= hf x (1-x) \left(\frac{(1-x)+x}{(1-x)^2} \right) \\ &= hf \frac{x}{1-x} \\ &= hf \frac{1}{x^{-1}-1} \\ &= hf \frac{1}{\exp\left(\frac{hf}{k_BT}\right)-1} \end{split}$$

Then, our energy is:

$$\frac{g(f) \, \mathrm{d}f}{V} \bar{E} = \frac{8\pi h f^3}{c^3} \frac{1}{\frac{hf}{k_B T}) - 1} \, \mathrm{d}f$$

By converting from f to λ , the correct formula is:

$$\rho(\lambda, T) = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

Quantum mechanics is all about things that can be *quantized*. How far can we take this idea? Planck successfully applied it to energy radiated from a blackbody. What about an atom? Bohr applied this concept to the model of the Hydrogen atom, as we will soon see.