Københavns Universitet LinAlgDat - Project A

Victor Vangkilde Jørgensen - kft410 kft410@alumni.ku.dk Hold 13 Mach

25. april 2025

Indhold

1	Opgave	
	1.a	
	1.b	۷
	1.c	ţ
2	Opgave	Ę
3	Opgave	ţ
4	Opgave	ţ

1 Opgave

1.a

Vi omskriver ligningssystemet til totalmatrix-form:

$$\left[\begin{array}{ccc|c}
1 & 2 & 8 & a \\
a & a & 4a & a \\
2 & 2 & 2a^2 & 0
\end{array} \right]$$

Vi benytter Gauss-Jordan elimination til at omskrive totalmatrix'en til en reduceret rækkeeechelonform.

Først vælger vi, at tilføje $-ar_1$ til r_2 :

$$\begin{bmatrix}
1 & 2 & 8 & a \\
0 & -a & -4a & a - a^2 \\
2 & 2 & 2a^2 & 0
\end{bmatrix}$$

Herefter tilføjer vi $-2r_1$ til r_3 :

$$\begin{bmatrix} 1 & 2 & 8 & a \\ 0 & -a & -4a & a - a^2 \\ 0 & -2 & 2a^2 - 16 & -2a \end{bmatrix}$$

Vi tilføjer $\frac{2r_2}{-a}$ til r_3 :

$$\begin{bmatrix} 1 & 2 & 8 & a \\ 0 & -a & -4a & a - a^2 \\ 0 & 0 & 2a^2 - 8 & -2a - \frac{2(a-a^2)}{a} = -2 \end{bmatrix}$$

Vi tilføjer $\frac{2r_2}{a}$ til r_1 :

$$\begin{bmatrix}
1 & 0 & 0 & 2-a \\
0 & -a & -4a & a-a^2 \\
0 & 0 & 2a^2-8 & -2
\end{bmatrix}$$

Vi tilføjer $\frac{2ar_3}{a^2-4}$ til r_2 :

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & 2a^2 - 8 \end{bmatrix} \begin{vmatrix} 2 - a \\ a - a^2 - \frac{4a}{(a^2 - 4)} \\ -2 \end{bmatrix}$$

Vi dividerer $r_3 \mod 2a^2 - 8$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} 2-a \\ a-a^2 - \frac{4a}{(a^2-4)} \\ -\frac{2}{2a^2-8} = -\frac{2}{2(a^2-4)} = \frac{1}{(4-a^2)} \end{bmatrix}$$

Til sidst dividerer vi $r_2 \mod -a$:

$$\begin{bmatrix} 1 & 0 & 0 & 2-a \\ 0 & 1 & 0 & \frac{(a^3-a^2-4a+8)}{(a^2-4)} \\ 0 & 0 & 1 & \frac{1}{(4-a^2)} \end{bmatrix} \square$$

Vi har nu fået den løsning vi ledte efter, så vi er dermed færdige.

1.b

Vi opskriver igen vores ligningssystem som en totalmatrix, og erstatter denne gang a med 0:

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 0 & 0 & 4 \cdot 0 & 0 \\ 2 & 2 & 2 \cdot 0^{2} & 0 \end{bmatrix} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \end{bmatrix} r_{2} \text{ bytttes med } r_{3} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - 2r_{1} \text{ til } r_{2} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} r_{2} \cdot \left(-\frac{1}{2}\right) \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 0 & -2 & -16 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} r_{2} \cdot \left(-\frac{1}{2}\right) \rightsquigarrow$$

$$\begin{bmatrix} 1 & 2 & 8 & 0 \\ 0 & 1 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - 2r_{2} \text{ til } r_{1} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 0 & -8 & 0 \\ 0 & 1 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Vi kan nu aflæse løsningerne til:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 8 \\ -8 \\ 1 \end{bmatrix}$$

Vi ser nu, hvad vi får, når vi bruger den rækkereducerede totalmatrix fra tidligere, når vi erstatter $a \mod 0$:

$$\begin{bmatrix} 1 & 0 & 0 & 2 - a \\ 0 & 1 & 0 & \frac{(a^3 - a^2 - 4a + 8)}{(a^2 - 4)} \\ 0 & 0 & 1 & \frac{1}{(4 - a^2)} \end{bmatrix} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & 2 - 0 \\ 0 & 1 & 0 & \frac{(0^3 - 0^2 - 4 \cdot 0 + 8)}{(0^2 - 4)} \\ 0 & 0 & 1 & \frac{1}{(4 - 0^2)} \end{bmatrix} \rightsquigarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & \frac{1}{4} \end{bmatrix}$$

Denne matrix antyder en unik løsning, hvilket ikke afspejler hvad vi fandt lige før, hvor vi fandt uendelig mange løsninger. Dette skete sandstnligvis fordi at den rækkereducerede totalmatrix er lavet ud fra antagelsen, at $a \neq 0$.

1.c

Vi opskriver igen vores ligningssystem som en totalmatrix, og erstatter denne gang a med 2:

$$\begin{bmatrix} 1 & 2 & 8 & 2 \\ 0 & 0 & 4 \cdot 2 & 2 \\ 2 & 2 & 2 \cdot 2^{2} & 0 \end{bmatrix} \leadsto$$

$$\begin{bmatrix} 1 & 2 & 8 & 2 \\ 0 & 0 & 8 & 2 \\ 2 & 2 & 8 & 0 \end{bmatrix} r_{2} \text{ bytttes med } r_{3} \leadsto$$

$$\begin{bmatrix} 1 & 2 & 8 & 2 \\ 2 & 2 & 8 & 0 \\ 0 & 0 & 8 & 2 \end{bmatrix} - 2r_1 \ til \ r_2 \leadsto$$

$$\begin{bmatrix} 1 & 2 & 8 & 2 \\ 0 & -2 & -8 & -4 \\ 0 & 0 & 8 & 2 \end{bmatrix} r_2 \cdot \left(-\frac{1}{2} \right) \leadsto$$

- 2 Opgave
- 3 Opgave
- 4 Opgave