Prediction with Linear Modelling

Kevin Li

12/11/2020

Summary

The objective of my analysis is to construct a fitted model based on the 1946 observations of computer-generated structures for the Covid-19 protein, and use that fitted model to predict the values of the response variables of another data set with a further 1946 observations. I decided to start off by constructing the full model with all the predictors based on the multiple linear regression model. I then decided to remove multicollinearity from the 685 predictors in protein-train.csv. I assessed regression model assumptions, and addressed outliers, then tested different model selection methods on a single train/validation set. I considered forwards selection, backwards selection, and forwards/backwards selection, with both Akaike information criterion (AIC) and Bayesian information criterion (BIC). I also considered Iterative conditional minimization (ICM) as a selection method, with AIC and BIC, and a harsher penalty than BIC. I then chose the best candidates and cross validated them, and found the best model selection method, which I then applied on the full data set in order to get the final model. I then assessed multiple linear regression assumptions for my final model. Finally, I used my final model to predict the values of the response variables of protein-test.csv. I found in my main results that forward selection with AIC as criteria had the lowest average root mean squared error (RMSPE), after cross validation, and so the model constructed with forward selection with AIC criteria would be my final model.

Exploratory analysis of dataset

In the data, there are 1946 observations and 685 predictors with 1 response. I observed that in the data, there are no categorical predictors, and that there are cases of perfect multicollinearity, indicating I should remove those predictors. In order to take a closer look at the data, I decided to construct a full multiple linear regression model based on all the observations and predictors given, and plot the residuals. In the residuals vs fitted values, we see that the data is randomly scattered around y=0, indicating the independence assumption is satisfied. We see that since the data was generated in temporal order, we also look at the residuals vs index plot, which also satisfies model assumptions. From the histogram and QQ plot of the residuals, we see that the normality assumption is also satisfied. The R squared value of the model is 0.9482963, which is very large and either indicates the full model is very accurate at predicting or overfitting. So we have an idea on reducing predictors to get a better model for prediction.

Methods

In order to remove multicollinearity from the data, I used the vif function from the "faraway" package in order to determine the variance inflation factor (VIF) of each predictor and I then used the method of removing the predictor with the largest VIF in a while loop until the largest VIF was less than 10.

In order to determine whether or not I should use a model transformation, I examined residual plots (residuals vs fitted values, residuals vs index, as well as the QQ plot and histogram of residuals). I did not look at residuals vs predictors since there are too many. Since the residual plots did not reveal any problems with assumptions, I decided not to use any transformations with my multiple linear regression model.

I also considered the effects of individual observations on my fitted multiple linear regression model. I recorded the studentized residuals, leverages and Cook's distances for my model (after removing multicollinearity). I then plotted studentized residuals vs fitted values, and noted the observations that lay outside of 3 standard deviations. I also plotted the leverages and noted the leverages greater than twice the average. Then, to put it together, I looked at a plot of the Cook's distances. Cook's distances of > 0.5 are generally considered outliers. Thus, I found no outliers in the data. However, I would like to note that I used 0.5 as a cutoff point since it is the one used in the lectures, but some other general rule of thumb cutoff points are 4/(number of observations), or 4/(number of observations - number of predictors - 1). When testing the latter cutoff point, I got around 200 outliers. Due to time constraints, I decided not to test its impact on prediction in a train/validation split, but I would have if time was not an issue.

Now that I removed multicollinearity and considered the effects of individual observations, I began to consider different model selection strategies.

I noted that since there were more than 500 predictors even after removing multicollinearity, it was too difficult to do an all possible regressions search. Thus I started off with a single train/validation split (80/20) and tested out each of forward/backward/forward-backward selections with both AIC and BIC as criteria. I then also tested ICM with BIC and AIC as criteria. Additionally, I tested out ICM with a harsher penalty of 2 * BIC's. I narrowed down to a few model selection methods by comparing the root mean squared error for train and validation from each model selection method. I noticed that backward selection took much longer than forward selection or forward/backward selection and ICM was the fastest. AIC was also generally slower than BIC.

I cross validated the final candidates with K=5 folds. I compared the average of each model's root mean square error (RMSE) to find the lowest in order to determine the best procedure/selection method. To get my final model, I applied this method on the full dataset. Using this final model, I predicted the response values of protein-test.csv.

Results and discussion

Results of removing multicollinearity

After removing multicollinearity, I ended up with 551 predictors, so a total of 134 predictors were removed to get rid of multicollinearity.

Results of assessing the effects of individual observations

Using a Cook's distance cutoff point of 0.5, I observed 0 outliers in the data.

As seen in the plot, there are no points higher than y = 0.5.

Results of model selection

During my single train/validation split, I tested a total of 9 selection methods. Forward/backward/forward-backward, each with both AIC and BIC criteria, and ICM with AIC, BIC and a 2*BIC penalty. I recorded the train RMSE and validation RMSE for each model constructed with each of the 9 methods.

Selection method	Train RSME	Validation RMSE	AIC/BIC
Forward with AIC	0.4101569	0.6022125	2151.3292283
Backward with AIC	0.3987215	0.6339674	2109.2762061
Forward-backward with AIC	0.4115107	0.6168919	2123.5912774
Forward with BIC	0.5195751	0.6122045	2982.4444807
Backward with BIC	0.4872484	0.6298803	2988.2240144
Forward-backward BIC	0.5158826	0.6404971	2967.5852432
ICM with AIC	0.4030746	0.4512895	2103.0893615
ICM with BIC	0.5132434	0.5708434	2929.5618959
ICM with 2*BIC penalty	0.5943295	0.5708434	
Full model	0.380513	0.6227402	

Firstly, I see that both BIC and AIC values are lowest when I used ICM, with AIC/BIC when compared to the stepwise methods.

Since train RMSE can be made arbitrarily small by adding linearly independent predictors, we mainly care about the lowest validation RMSE, as long as they are approximately equal.

Since this is only a single train/validation split, I use this data to help me narrow down a few candidates for K fold cross validation.

I will note here that I tested out the ICM methods multiple times, and I got varying RMSE's for both train and validation. Sometimes they were better than the stepwise methods and sometimes they were worse, indicating a level of variability that I tested further with cross validation.

We can see that the validation RMSE is lower in forward with AIC(253 predictors) than the full model, which means the full model(551 predictors) is overfitting, so my exploratory analysis was correct in predicting we should get rid of some predictors. The stepwise methods with BIC as criteria yielded models with around 80 predictors, and had higher RMSE than forward with AIC, so I concluded they were underfitting.

With these results, I conclude that I should cross validate forward with AIC, forward with BIC, ICM with AIC and ICM with BIC to further evaluate selection strategies.

I decided on cross validation with 5 folds. If I had more time, I would have liked to use more folds.

The results of cross validation are

Selection method	Average RMSE (RMSPE)
Forward AIC	0.6054771
ICM AIC	0.6093815
Forward BIC	0.6409394
ICM BIC	0.6251201

Thus I can conclude that the model constructed with forward with AIC has the lowest

RMSPE and so I can conclude that it is the best model selection method for prediction. I then apply this selection method to the entire data set to get my final model.

My final model selection method evaluated 112158 models before finishing. The R squared value for my final model is 0.9159083, and my final model has 267 predictors and 1 response. A full list of these predictors can be found in the appendix. The regression coefficient for the first 3 predictors are 0.033416, -0.097572, and -0.052900. They are all statistically significant since the corresponding p-values are much less than 0.005. (< 1.51e-05)

Overall my final model fits the data very well. All the regression assumptions are reasonably satisfied by my final model. In the residuals vs fitted values and residuals vs index plot, the points are randomly scattered around y=0. In the QQplot and histogram, normality seems to be satisfied.

I would predict the MSPE to be 0.3666026, if I applied the fitted model on new data. I am fairly confident my model should generalize well to doing prediction on new data since my model selection strategy yielded the lowest MSPE with cross validation, but since I only cross validated with 5 folds, I know I'm not as confident as I could be. If I had more time I would try 10 or even more folds.

Some interesting findings are that I noticed ICM with AIC sometimes yielded lower RMSE's than forward selection with AIC, but there was more variability, so the average RMSE was still lower. In addition, my final model did not include angles, a predictor that represents a score based on the configuration of angles in the computer generated structure of each

Covid-19 spike protein.

Appendix

```
# Detect and remove multicollinearity / commented since I saved after running
library("faraway")
## Warning: package 'faraway' was built under R version 4.0.3
ptrain <- read.csv ("protein-train.csv")</pre>
i <- 0
pred <- c()
# full model
pfull <- lm(accuracy ~ .,data = ptrain)</pre>
# vector of VIF's of predictors
# npred <- vif(pfull)</pre>
# vifpred <- unname(npred)</pre>
# copy of full model
ctrain <- ptrain[]</pre>
load("ptrain")
# # while the largest VIF >= 10
# while(max(vifpred) >= 10)
# {
#
    # find the index of the max VIF
#
    j <- which.max(vifpred) + 1</pre>
#
  ptrain \leftarrow ptrain[,-j]
   # vifpred only includes the predictors (685) while ptrain has the
    # response as well (686), so we add 1 to j
#
#
#
# premov <- lm(accuracy ~ .,data = ptrain) # fit new model without predictor</pre>
   # with largest VIF
#
    npred <- vif(premov)</pre>
   vifpred <- unname(npred) # find new vector of VIF's and loop until
#
   # every VIF is less than 10
```

```
#
# i <- i + 1 # count of how many predictors removed
#
# }
load("premov")</pre>
```



```
qqnorm(premov$residuals)
qqline(premov$residuals, col="blue", lwd = 2)
```

Normal Q-Q Plot

hist(premov\$residuals)

Histogram of premov\$residuals


```
# of 0
which(abs(sres) > 3) # find the observations that don't lie within 3

## 23 226 527 846 1196 1324 1344 1686 1733
## 23 226 527 846 1196 1324 1344 1686 1733

# standard deviations
# 23 226 527 846 1196 1324 1344 1686 1733

qqnorm(sres)
qqline(sres, col = "blue", lwd = 2)
```

Normal Q-Q Plot


```
#leverage
plot(lev, ylab = "Leverage")
abline(h = 2 * mean(lev), col = "red", lty = 2) # leverages twice than average
```



```
# leverage are considered high
which(lev > 2 * mean(lev)) # 1635

## 1635

## 1635

# Cook's distance

plot(cd, ylab = "Cook's distance")
abline(h = 0.5, col = "red", lty = 2)
```



```
h <- unname(which(cd > 0.5))
# Cook's distance greater than 0.5 is generally considered large
# Thus, there are no outliers
# Other rules of thumb are 4/n, and 4/n-k-1
otrain <- ptrain[-h,]</pre>
new <- lm(accuracy ~ .,data = ptrain)</pre>
# summary(new)
# Check model regression assumptions after outliers removed
# plot(new$fitted.values, new$residuals, xlab = "Fitted Values",
       ylab = "Residuals")
# qqnorm(new$residuals)
# qqline(new$residuals, col="blue", lwd = 2)
# hist(new$residuals)
# First we test out different model selection methods with a single
# train/validation split.
library(MASS)
```

```
N <- nrow(ptrain)</pre>
set.seed(20688307)
trainInd <- sample(1: N ,round(N*0.8) ,replace = F)</pre>
# 80/20 train/validation split
trainSet <- ptrain[trainInd ,]</pre>
validSet <- ptrain[-trainInd ,]</pre>
full <- lm(accuracy ~ ., data = trainSet)</pre>
empty <- lm(accuracy ~ 1, data = trainSet)</pre>
# stepwise forward with aic
load("m_aicf")
#m_aicf <- stepAIC(object = empty, scope = list(upper = full, lower = empty), direction</pre>
# stepwise backward with aic
load("m_aicb")
#m_aicb <- stepAIC(object = full, scope = list(upper = full, lower = empty), direction</pre>
# stepwise forward/backward with aic
load("m aich")
#m_aich <- stepAIC(object = empty, scope = list(upper = full, lower = empty), direction</pre>
#= "both")
# stepwise forward with bic
load("m bicf")
#m_bicf <- stepAIC(object = empty, scope = list(upper = full, lower = empty), direction</pre>
```

```
# stepwise backward with bic
load("m bicb")
#m_bicb <- stepAIC(object = full, scope = list(upper = full, lower = empty), direction</pre>
#stepwise forward-backward with bic
load("m bich")
#m_bich <- stepAIC(object = empty, scope = list(upper = full, lower = empty), directio</pre>
# We calculate the RMSE on train and validation for each model
# Full model (after removing multicollinearity)
 predfull <- predict(full, newdata = validSet)</pre>
 fullv <- sqrt(mean((validSet$accuracy - predfull)^2)) #RMSE for validation</pre>
 fullt <- sqrt(mean(full$residuals^2)) # RMSE for train</pre>
# AIC-forward selection
 predaf <- predict(m_aicf, newdata = validSet)</pre>
 aicfv <- sqrt(mean((validSet$accuracy - predaf)^2))</pre>
 aicft <- sqrt(mean(m_aicf$residuals ^2))</pre>
 faic <- AIC(m_aicf)</pre>
# AIC-backward selection
 predab <- predict(m_aicb, newdata = validSet)</pre>
 aicbv <- sqrt(mean((validSet$accuracy - predab)^2))</pre>
 aicbt <- sqrt(mean(m_aicb$residuals^2))</pre>
baic <- AIC(m_aicb)</pre>
# AIC-forward/backward selection
 predah <- predict(m_aich, newdata = validSet)</pre>
```

```
aichv <- sqrt(mean((validSet$accuracy - predah )^2))</pre>
 aicht <- sqrt(mean(m aich$residuals ^2))</pre>
haic <- AIC(m_aich)
# BIC-forward selection
 predbf <- predict (m_bicf , newdata = validSet)</pre>
 bicfv <- sqrt(mean((validSet$accuracy - predbf )^2))</pre>
 bicft <- sqrt(mean(m bicf$residuals^2))</pre>
 fbic <- BIC(m bicf)</pre>
# BIC-backward selection
 predbb <- predict(m bicb, newdata = validSet)</pre>
 bicbv <- sqrt(mean((validSet$accuracy - predbb)^2))</pre>
 bicbt <- sqrt(mean(m_bicb$residuals^2))</pre>
bbic <- BIC(m bicb)</pre>
# BIC-forward/backward selection
 predbh <- predict(m bich, newdata = validSet)</pre>
 bichv <- sqrt(mean((validSet$accuracy - predbh)^2))</pre>
 bicht <- sqrt(mean(m_bich$residuals ^2))</pre>
hbic <- BIC(m bich)</pre>
#ICM with no penalty (AIC)
library(MASS)
N <- nrow(ptrain)</pre>
load("m_bestA")
#set.seed(20688307)
# trainInd <- sample(1: N , round(N*0.8) , replace = F)
# # 80/20 train/validation split
# trainSet <- ptrain[trainInd ,]</pre>
# validSet <- ptrain[-trainInd ,]</pre>
```

```
# full <- lm(accuracy ~ ., data = trainSet)</pre>
# empty <- lm(accuracy ~ 1, data = trainSet)</pre>
# varlist = c()
# varnames = names(trainSet)
\# n = nrow(trainSet)
# varoder <- sample(1:ncol(trainSet)) #random order of variables
# minCrit = Inf
# noChange = F
# while(!noChange) {
  noChange = T
    for (i in varoder) {
#
#
      if (i == 1)
#
        next
#
      if (i %in% varlist & length(varlist) > 1) {
#
#
        index = c(1, varlist[varlist != i])
#
      trainVars = trainSet[, index]
#
#
        fit = lm(accuracy \sim ., data = trainVars)
#
        if (AIC(fit) < minCrit) {</pre>
#
            minCrit = AIC (fit)
#
            varlist = varlist[varlist != i]
#
#
            #print(paste0(" Criterion : ", round(minCrit, 1) , ", variables : ",
#
                           paste0 (varnames[varlist], collapse = " ")))
#
            bestA_model = fit
#
            noChange = F
        }
#
#
      } else if (!i %in% varlist) {
#
#
        index = c(1, varlist, i)
        trainVars = trainSet[, index]
#
#
#
        fit = lm(accuracy \sim ., data = trainVars)
#
#
        if (AIC(fit) < minCrit) {</pre>
#
            minCrit = AIC(fit)
#
            varlist = c(varlist, i)
#
           # print(pasteO(" Criterion : ", round(minCrit, 1), ", variables : ",
#
                      # pasteO(varnames[varlist], collapse = " ")))
#
            bestA\_model = fit
```

```
# noChange = F
# }
# }
# }
# }
# }
```

```
# ICM with BIC penalty
library (MASS)
N <- nrow(ptrain)</pre>
#set.seed(20688307) different AIC each time without seed
load("m_bestB")
\# trainInd \leftarrow sample(1: N, round(N*0.8), replace = F)
# # 80/20 train/validation split
# trainSet <- ptrain[trainInd ,]</pre>
# validSet <- ptrain[-trainInd ,]</pre>
# full <- lm(accuracy ~ ., data = trainSet)</pre>
# empty <- lm(accuracy ~ 1, data = trainSet)</pre>
# pen <- log (nrow (trainSet))</pre>
# varlist = c()
# varnames = names(trainSet)
\# n = nrow(trainSet)
# varoder <- sample(1:ncol(trainSet)) #random order of variables
# minCrit = Inf
# noChange = F
# while(!noChange) {
    noChange = T
#
    for (i in varoder) {
     if (i == 1)
#
#
        next
#
#
      if (i %in% varlist & length(varlist) > 1) {
#
        index = c(1, varlist[varlist != i])
#
      trainVars = trainSet[, index]
#
        fit = lm(accuracy ~ ., data = trainVars)
#
#
#
        if (AIC(fit, k=pen) < minCrit) {</pre>
             minCrit = AIC (fit, k = pen)
```

```
#
            varlist = varlist[varlist!= i]
          # print(pasteO(" Criterion : ", round(minCrit, 1) , ", variables : ",
#
#
                           paste0 (varnames[varlist], collapse = " ")))
#
            bestB model = fit
#
            noChange = F
#
        }
#
#
      } else if (!i %in% varlist) {
#
        index = c(1, varlist, i)
        trainVars = trainSet[, index]
#
#
        fit = lm(accuracy \sim ., data = trainVars)
#
#
        if (AIC(fit, k = pen) < minCrit) {
            minCrit = AIC(fit, k = pen)
#
#
            varlist = c(varlist, i)
          # print(pasteO(" Criterion : ", round(minCrit, 1), ", variables : ",
#
#
                         pasteO(varnames[varlist], collapse = " ")))
#
#
            bestB_model = fit
            noChange = F
#
         }
      7
#
#
# ICM with 2*BIC penalty
library(MASS)
N <- nrow(ptrain)</pre>
#set.seed(20688307) different AIC each time without seed
load("m bestC")
# trainInd <- sample(1: N ,round(N*0.8) ,replace = F)</pre>
# # 80/20 train/validation split
# trainSet <- ptrain[trainInd ,]</pre>
# validSet <- ptrain[-trainInd ,]</pre>
# full <- lm(accuracy ~ ., data = trainSet)</pre>
# empty <- lm(accuracy ~ 1, data = trainSet)</pre>
# pen <- 2 * log (nrow (trainSet))
```

varlist = c()

```
# varnames = names(trainSet)
\# n = nrow(trainSet)
# varoder <- sample(1:ncol(trainSet)) #random order of variables</pre>
# minCrit = Inf
# noChange = F
# while(!noChange) {
    noChange = T
    for (i in varoder) {
#
     if (i == 1)
#
#
        next
#
#
      if (i %in% varlist & length(varlist) > 1) {
#
        index = c(1, varlist[varlist != i])
      trainVars = trainSet[, index]
#
#
#
        fit = lm(accuracy \sim ., data = trainVars)
#
#
        if (AIC(fit, k=pen) < minCrit) {</pre>
#
            minCrit = AIC (fit, k = pen)
            varlist = varlist[varlist!= i]
          # print(pasteO(" Criterion : ", round(minCrit, 1) , ", variables : ",
#
#
                           paste0 (varnames[varlist], collapse = " ")))
#
            bestC_model = fit
#
            noChange = F
#
        }
#
#
      } else if (!i %in% varlist) {
        index = c(1, varlist, i)
#
#
        trainVars = trainSet[, index]
#
#
        fit = lm(accuracy \sim ., data = trainVars)
#
#
        if (AIC(fit, k = pen) < minCrit) {
#
            minCrit = AIC(fit, k = pen)
#
            varlist = c(varlist, i)
#
          # print(pasteO(" Criterion : ", round(minCrit, 1), ", variables : ",
#
                        pasteO(varnames[varlist], collapse = " ")))
#
            bestC_model = fit
#
            noChange = F
         }
#
#
    7
```

```
# }
# ICM RMSE - we get varying RMSE's since different orderings for ICM
# Sometimes we get a higher RMSE, sometimes lower. So we can cross validate to
# check further.
# ICM - no penalty
 bestA <- predict(bestA model, newdata = validSet)</pre>
 bestAv <- sqrt(mean((validSet$accuracy - bestA)^2))</pre>
 bestAt <- sqrt(mean(bestA model$residuals ^2))</pre>
 bestaic <- AIC(bestA model)</pre>
# ICM -BIC penalty
 bestB <- predict(bestB_model, newdata = validSet)</pre>
 bestBv <- sqrt(mean((validSet$accuracy - bestB)^2))</pre>
 bestBt <- sqrt(mean(bestB_model$residuals ^2))</pre>
 bestbic <- BIC(bestB_model)</pre>
 # ICM -2 * BIC penalty
 bestC <- predict(bestC_model, newdata = validSet)</pre>
 bestCv <- sqrt(mean((validSet$accuracy - bestC)^2))</pre>
 bestCt <- sqrt(mean(bestC model$residuals ^2))</pre>
load("RMSE1")
load("RMSE2")
load("RMSE3")
load("RMSE4")
RMSPE1 <- mean(RMSE1)
RMSPE2 <- mean(RMSE2)
RMSPE3 <- mean(RMSE3)
RMSPE4 <- mean(RMSE4)
# Cross Validation to determine the best selection method
# library (MASS)
# N <- nrow(ptrain)
# set.seed(20688307)
```

```
# K<-5
# validSetSplits <- sample((1:N)%/K + 1)</pre>
# RMSE1 <- c()
# RMSE2 <- c()
# RMSE3 <- c()
# RMSE4 <- c()
# for (p in 1:K) {
   validSet <- ptrain[validSetSplits == p ,]</pre>
    trainSet <- ptrain[validSetSplits != p ,]</pre>
#
#
    full <- lm (accuracy ~ . , data = trainSet)</pre>
    empty <- lm (accuracy ~ 1 , data = trainSet)</pre>
#
#
# m1 <- stepAIC(object = empty, scope = list(upper = full, lower = empty), direction =
# pred1 <- predict( m1, newdata = validSet)</pre>
# RMSE1[p] <- sqrt(mean((validSet$accuracy - pred1)^2))</pre>
#
# varlist = c()
# varnames = names(trainSet)
\# n = nrow(trainSet)
# varoder <- sample(1:ncol(trainSet)) #random order of variables
# minCrit = Inf
# noChange = F
# while(!noChange) {
#
   noChange = T
    for (i in varoder) {
#
#
     if (i == 1)
#
        next
#
#
     if (i %in% varlist & length(varlist) > 1) {
#
        index = c(1, varlist[varlist != i])
#
      trainVars = trainSet[, index]
#
        fit = lm(accuracy ~ ., data = trainVars)
#
#
#
        if (AIC(fit) < minCrit) {</pre>
```

```
#
            minCrit = AIC (fit)
            varlist = varlist[varlist != i]
#
#
            #print(pasteO(" Criterion : ", round(minCrit, 1) , ", variables : ",
#
                          #paste0 (varnames[varlist], collapse = " ")))
#
            m2 = fit
#
            noChange = F
        7
#
#
#
      } else if (!i %in% varlist) {
        index = c(1, varlist, i)
#
#
        trainVars = trainSet[, index]
#
#
        fit = lm(accuracy \sim ., data = trainVars)
#
#
        if (AIC(fit) < minCrit) {</pre>
#
            minCrit = AIC(fit)
#
            varlist = c(varlist, i)
           # print(pasteO(" Criterion : ", round(minCrit, 1), ", variables : ",
#
#
                     # pasteO(varnames[varlist], collapse = " ")))
#
#
             m2 = fit
#
             noChange = F
#
          7
#
       }
     }
#
# }
#
#
  pred2 <- predict(m2 ,newdata = validSet)</pre>
  RMSE2[p] <- sqrt(mean((validSet$accuracy - pred2)^2))</pre>
#
#
#
#
  m3 <- stepAIC(object = empty, scope = list(upper = full, lower = empty), direction
  pred3 <- predict(m3 , newdata = validSet )</pre>
  RMSE3[p] <- sqrt(mean(( validSet$accuracy - pred3)^2))</pre>
#
#
#
# pen <- log (nrow (trainSet))</pre>
# varlist = c()
# varnames = names(trainSet)
\# n = nrow(trainSet)
```

```
# varoder <- sample(1:ncol(trainSet)) #random order of variables
# minCrit = Inf
# noChange = F
# while(!noChange) {
   noChange = T
#
   for (z in varoder) {
      if (z == 1)
#
        next
#
#
      if (z %in% varlist & length(varlist) > 1) {
        index = c(1, varlist[varlist != z])
#
      trainVars = trainSet[, index]
#
#
#
        fit = lm(accuracy ~ ., data = trainVars)
#
#
        if (AIC(fit, k=pen) < minCrit) {
            minCrit = AIC (fit, k = pen)
#
#
            varlist = varlist[varlist!= z]
#
            #print(pasteO(" Criterion : ", round(minCrit, 1) , ", variables : ",
                         #paste0 (varnames[varlist], collapse = " ")))
#
#
            m4 = fit
#
            noChange = F
        }
#
#
#
      } else if (!z %in% varlist) {
#
        index = c(1, varlist, z)
#
        trainVars = trainSet[, index]
#
#
        fit = lm(accuracy \sim ., data = trainVars)
#
        if (AIC(fit, k = pen) < minCrit) {
#
#
            minCrit = AIC(fit, k = pen)
#
            varlist = c(varlist, z)
#
           # print(pasteO(" Criterion : ", round(minCrit, 1), ", variables : ",
                       #pasteO(varnames[varlist], collapse = " ")))
#
#
#
            m4 = fit
#
            noChange = F
#
#
   }
#
# }
```

```
# pred4 <- predict(m4, newdata = validSet)
# RMSE4[p] <- sqrt(mean((validSet$accuracy - pred4)^2))
#
#
#
#
#
#
#</pre>
```

```
# We apply selected procedure to the full dataset
load("mfinal")

# full <- lm(accuracy ~ ., data = ptrain)
# empty <- lm(accuracy ~ 1, data = ptrain)
#
# mfinal <- stepAIC(object = empty, scope = list(upper = full, lower = empty), direction
mfinal$coefficients</pre>
```

```
##
                     (Intercept)
                                        aliph1HC_aliph2HC_long
##
                     3.085736324
                                                   0.033415822
##
               scLysN_bbC_vlong
                                         aliph2HC_bbN_medshort
##
                    -0.097572193
                                                  -0.052900348
##
    aliph1HC_aromaticC_medshort
                                  aromaticC_hydroxylO_medlong
##
                     0.110722520
                                                  -0.039630202
##
      carbonylC_aromaticC_short
                                     aliph1HC_aromaticC_vlong
##
                     0.110159934
                                                   0.080347635
##
                  bbC bbO short
                                       aliph1HC aliph1HC vlong
##
                    -0.027907824
                                                   0.149503560
                                              sulfur_bbC_vlong
##
         carboxylC_scLysN_vlong
##
                     0.041247792
                                                  -0.017002155
##
        aliph1HC_aromaticC_long
                                     aromaticC_hydroxylO_long
##
                     0.082598536
                                                  -0.030726393
          aliph2HC_scLysN_vlong
##
                                            aliph3HC_bbC_vlong
##
                     0.037928555
                                                   0.010450667
##
             aliph1HC bbN vlong
                                                  bbN bbO long
##
                    -0.013684296
                                                  -0.011956478
##
                                            sulfur bbC medlong
             aliph2HC bbN vlong
##
                     0.001059020
                                                  -0.063075774
##
            carboxy10_bbC_vlong
                                         aromaticC sulfur long
                     0.024634615
                                                   0.037697347
##
##
     aliph1HC_aromaticC_medlong
                                         aromaticC_scAGN_short
##
                     0.070662023
                                                   0.012264308
##
              aliph1HC bb0 long
                                         aliph1HC bbC medshort
```

##	-0.080248036	0.076676022
##	aliph2HC_aromaticC_vlong	scLysN_bbN_vlong
##	0.012469819	-0.074743867
##	bbN_bbC_medshort	bb0_bb0_short
##	-0.023752349	-0.022324954
##	aliph1HC_sulfur_short	aliph3HC_bbN_short
##	0.198692224	0.100834275
##	aliph1HC_bb0_medlong	aliph2HC_carboxy10_vlong
##	-0.126807275	-0.009171958
##	aliph3HC_aliph3HC_short	scAGN_bbN_long
##	0.038660284	0.034621603
##	aliph3HC_aromaticC_long	aliph2HC_scArgN_vlong
##	-0.016014025	0.113686020
##	aliph2HC_aliph3HC_short	aliph1HC_aliph3HC_short
##	0.035877308	0.145722316
##	${\tt scArgN_bb0_medlong}$	aliph1HC_bbCA_vlong
##	0.465020986	0.006617271
##	carboxylC_bbN_long	carboxy10_carboxy10_vlong
##	0.074742456	-0.010173256
##	$scAGN_bbN_medlong$	aliph1HC_bbProN_medlong
##	0.014973172	0.283258729
##	bbCA_bbO_vshort	aliph1HC_scArgN_long
##	-0.362888385	0.362998718
##	sulfur_bbCA_short	scLysN_carboxy10_long
##	-0.126617592	0.132046893
## ##	carbonylC_hydroxylO_vlong -0.055209272	aliph2HC_aliph3HC_vlong
##	aliph2HC_hydroxy1O_long	0.013393611
##	0.011610725	carbonylC_bbProN_medlong -0.154285898
##	bbN_bbN_medshort	aliph3HC_scArgN_vlong
##	-0.051056941	0.268086387
##	aliph1HC bbProN vlong	aromaticC_bbO_vlong
##	0.048928470	0.013720180
##	aliph2HC aliph2HC short	scLysN_bbN_medlong
##	0.044249959	-0.026692625
##	aliph1HC_aliph3HC_medlong	aliph1HC_bbN_medshort
##	-0.044883584	-0.099658805
##	aliph1HC_aliph1HC_long	carboxylC_aromaticC_long
##	0.139026676	0.009206965
##	carbonylC_bbProN_long	sulfur_bb0_vlong
##	-0.097289640	-0.031887005
##	bbN_bbC_medlong	aliph2HC_aromaticC_long
##	-0.016180792	0.004385553
##	${\tt scAGN_carbonyl0_medshort}$	bbProN_carboxy10_vlong
##	-0.080649720	0.091184664

##	bb0_bb0_vshort	bbProN_bbO_long
##	0.146228095	0.035606456
##	bbCA_bbO_medshort	aliph1HC_hydroxy1O_vlong
##	-0.028972857	0.077876330
##	aliph3HC_aromaticC_vlong	carboxylC_carboxylC_vlong
##	-0.018148494	-0.230068159
##	carboxylC_hydroxylO_short	carboxy10_bbCA_medlong
##	-0.247938453	0.059548280
##	aliph2HC_hydroxy10_medlong	aliph3HC_aromaticC_medlong
##	0.010365249	-0.014508451
##	aromaticC_bbO_medlong	aromaticC_bbO_vshort
##	0.016919610	-0.189646813
##	aromaticC_bbC_short	aromaticC_aromaticC_vlong
##	0.098443505	-0.008677942
##	aromaticC_bbProN_vlong	aliph3HC_hydroxylO_short
##	-0.043302601	-0.080619545
##	bbC_bbC_long	aliph1HC_bbO_medshort
##	-0.001633968	-0.083598662
##	aliph3HC_hydroxy1O_long	carbonylC_bbProN_vlong
##	0.002522520	-0.084920281
##	${\tt carbonylC_aliph3HC_medlong}$	carbonylC_sulfur_vlong
##	0.016342590	-0.051448147
##	${ t aromaticC_scLysN_vlong}$	carboxy10_bbCA_long
##	-0.059700876	0.037532441
##	aromaticC_carbonylO_medlong	carbonylC_sulfur_short
##	0.015775515	-0.160344227
##	${\tt aliph2HC_scLysN_medshort}$	scAGN_hydroxylO_long
##	-0.112110634	-0.044511253
##	hydroxy10_sulfur_short	hydroxy10_sulfur_medshort
##	0.169724232	0.141965152
##	hydroxy10_sulfur_long	hydroxy10_sulfur_vlong
##	0.055146213	0.037033233
##	sulfur_bbCA_medshort	carbonylC_scLysN_vlong
##	-0.033038837	0.017447277
## ##	carbonylC_bbN_vlong -0.026666517	aliph3HC_hydroxylO_medlong 0.001390584
##	aliph2HC_aliph3HC_vshort	carbonylC_bbC_medlong
##	0.093825630	-0.031946936
##	scAGN_bbO_medlong	aliph1HC_bb0_short
##	0.034180334	-0.104519186
##	aliph2HC_scLysN_long	sulfur_bb0_long
##	0.012691939	-0.028302323
##	bbProN_bbCA_medshort	scAGN_bbO_short
##	0.053310119	0.077763462
##	aromaticC_sulfur_medlong	aromaticC_hydroxylO_vshort

##	0.036376737	-0.139132948
##	aliph1HC_hydroxy1O_long	aliph3HC_bbN_medlong
##	0.094946454	0.010331282
##	aliph3HC_bbN_long	bbN_bbO_medlong
##	0.009687819	-0.006754636
##	bbProN_bbN_long	hydroxy10_bbC_medlong
##	0.059957710	0.019037832
##	aromaticC_bbProN_medlong	bbN_bbO_medshort
##	-0.062357352	-0.015189454
##	<pre>carbonylC_hydroxylO_medshort</pre>	aliph2HC_aromaticC_medshort
##	-0.030684302	0.020226009
##	aliph1HC_hydroxylO_medshort	aliph1HC_hydroxylO_medlong
##	0.133336205	0.143327723
##	aliph3HC_hydroxylO_medshort	carboxy10_bbC_medshort
##	-0.052614362	-0.003362942
##	aliph2HC_bbC_vlong	$aliph3HC_bb0_medshort$
##	0.005501942	0.024198115
##	aliph2HC_bb0_vshort	aliph1HC_aliph3HC_vlong
##	0.078716145	-0.045279213
##	hydroxy10_sulfur_medlong	sulfur_bb0_short
##	0.057980490	-0.045000808
##	aliph2HC_bbProN_medlong	scLysN_bbCA_long
##	-0.036046483	-0.061679233
##	carboxylC_aliph2HC_long	scLysN_hydroxy10_long
##	-0.033814766	0.034865570
##	scLysN_bbC_medlong -0.038809919	aliph3HC_aliph3HC_vlong 0.042269473
## ##		
##	aliph3HC_bbProN_medlong -0.046140394	aromaticC_scAGN_long 0.016416593
##	aliph1HC_bbN_medlong	bbProN_bbN_medlong
##	-0.033305850	0.049402040
##	scAGN carboxy10 vshort	scAGN_carbonylO_vshort
##	-0.103702815	-0.181275377
##	bbN bbC vshort	aliph2HC_aliph3HC_medshort
##	-0.034485953	0.013959357
##	scAGN_bbO_long	carbonylC aliph3HC short
##	0.020451777	-0.054674429
##	aliph1HC_carbonylO_medshort	aliph3HC_scArgN_long
##	0.049188422	0.147521127
##	scArgN_bbO_long	aliph3HC_scAGN_medshort
##	-0.167596507	0.037133114
##	$scAGN_bbC_vlong$	aliph3HC_bbCA_short
##	-0.011720693	0.032853035
##	$aromaticC_sulfur_vlong$	carbonylC_bbO_short
##	0.006866154	-0.053511772

##	aliph1HC_bbCA_medshort	sulfur_sulfur_vlong
##	0.089850472	0.101705497
##	carbonylC_scLysN_long	carbonylC_carbonylO_vlong
##	-0.063068273	0.053671218
##		aromaticC_hydroxylO_medshort
##	0.005685735	-0.034600715
##	hydroxyl0_carboxyl0_long	hydroxylO carboxylO vshort
##	-0.040825251	0.128573027
##	aliph3HC_sulfur_medshort	aliph1HC sulfur medshort
##	0.091243632	-0.065549264
##	aliph3HC_sulfur_medlong	aliph3HC_carboxy10_vlong
##	0.070642595	-0.039253563
##	carbonylC_carbonylO_short	aromaticC_sulfur_short
##	0.125956082	-0.049771200
##	aliph3HC_sulfur_vlong	carbony10 bbN medlong
##	0.035178195	-0.022447784
##	hydroxy10_bbN_medlong	carboxy10_sulfur_medlong
##	0.018727370	0.064175413
##	carboxy10_sulfur_vlong	aliph2HC_bbC_medshort
##	0.049402755	0.015149426
##	bbCA_bbO_short	bbProN_sulfur_vlong
##	-0.037120901	-0.077863378
##	${\tt carboxy10_sulfur_medshort}$	aliph3HC_sulfur_long
##	0.055188545	0.035887993
##	carbonylC_sulfur_medlong	scLysN_carbony10_vlong
##	-0.080799206	-0.045165791
##	aliph1HC_scAGN_short	carboxylC_aliph2HC_medlong
##	-0.035500366	-0.023592740
##	carboxylC_bbN_vlong	bbProN_bbN_medshort
##	0.033677823	0.036127352
##		aliph3HC_carbonylO_medshort
##	-0.050357059	0.057780707
##	scAGN_bbO_medshort	scAGN_carbonylO_short
	0 = 0 =	
	-	9 - 0 - 0 -
##	-0.066846762	0.015064798
##	hydroxy10_carboxy10_short	carbonylC_sulfur_long
##	0.052280040	-0.067967872
##	aliph2HC_carbony1O_vlong	${\tt carbonylC_carbonylC_vlong}$
## ## ## ## ## ## ##	0.033740243 carbonylC_carbonylO_medshort 0.070085778 aliph3HC_bbProN_vlong 0.034847864 bbProN_bbO_vlong 0.028829040 aliph1HC_bbN_short -0.066846762 hydroxylO_carboxylO_short 0.052280040	-0.092842141 aliph2HC_carbonyl0_long

##	0.013665337	-0.053412695
##	scAGN_bbProN_medshort	scAGN_bbO_vshort
##	-0.110165410	0.058690082
##	carboxylC_bbC_vlong	aromaticC_scLysN_medlong
##	-0.023729055	-0.074723138
##	carboxy10_bbC_medlong	aliph3HC_sulfur_short
##	-0.046276599	0.059825467
##	aliph1HC_aliph2HC_short	aromaticC_bbCA_vlong
##	-0.099632709	0.006726620
##	${\tt aliph1HC_aliph2HC_medshort}$	$aromaticC_bbC_vlong$
##	-0.032012144	-0.007449817
##	aliph2HC_aliph3HC_long	bbCA_bbO_long
##	-0.013490532	-0.005993055
##	aliph2HC_sulfur_medshort	scLysN_bbO_medlong
##	-0.021344664	0.051987113
##	aliph2HC_carbonylO_vshort	carboxylC_aliph2HC_vlong
##	0.065010336	0.029854412
##	scArgN_carboxy10_long	aromaticC_bbN_long
## ##	-0.062484734	0.005016098
##	carboxylC_aliph3HC_vlong -0.029941360	carbony10_bb0_short 0.026266941
##	aliph2HC_carboxy10_medshort	aliph2HC_scLysN_medlong
##	-0.032709942	-0.042976497
##	aliph3HC_bb0_medlong	aliph1HC_carbonylO_vlong
##	0.014514297	0.019793344
##	aliph2HC_aliph2HC_vlong	carboxylC_bbC_medlong
##	0.005725962	0.037538066
##	aliph3HC_aromaticC_medshort	carboxy10_bbN_vshort
##	0.010878726	0.101576622
##	${\tt carboxy10_bbCA_medshort}$	carboxylC_bbO_vlong
##	0.052583382	-0.024579277
##	${\tt aliph1HC_scAGN_vlong}$	aliph1HC_carboxy1O_vlong
##	0.019577410	-0.052434293
##	carbonylC_bbN_long	aliph3HC_aliph3HC_long
##	-0.008464008	0.041788129
##	aliph3HC_aliph3HC_medlong	hydroxylO_bbN_long
##	0.032817099	0.010621954
## ##	aliph3HC_carbonylO_medlong 0.019437489	carbonylC_aliph1HC_medshort -0.051558885
##	hydroxylO_hydroxylO_medlong	bbProN_carbonylO_medlong
##	0.029409867	0.044446613
##	scAGN_scLysN_medlong	aliph3HC_carbonylO_short
##	-0.071215490	0.027438451
##	carboxy10_bb0_vlong	scLysN_bbN_long
##	0.009993058	-0.058036401
	0.000000	0.00000101

```
##
            carbony10 bbCA long
                                                  bbN bbN long
##
                    -0.010172362
                                                  -0.011761693
##
                  bbN_bbN_vlong
                                     aliph2HC_hydroxy10_vlong
##
                   -0.011307629
                                                   0.005828448
##
          aliph3HC scLysN vlong
                                               sulfur bbN long
##
                     0.054436693
                                                   0.015240198
##
         aliph3HC_bbCA_medshort
                                           sulfur_bbN_medshort
##
                   -0.016090571
                                                   0.031679472
##
               sulfur bbN short
                                    carboxylC carboxylO vlong
##
                    0.053296717
                                                   0.026011662
## hydroxy10_carboxy10_medshort
                                     carboxy10_carboxy10_long
                                                   0.056920368
##
                    -0.073726235
             aromaticC bbO long
##
                                    aromaticC aromaticC short
##
                     0.006316804
                                                  -0.009064569
                                    carbonyl0_sulfur_medshort
##
         aromaticC_bbN_medshort
##
                    -0.009741127
                                                   0.033785599
##
              aliph2HC_bbC_long
                                  aliph3HC carboxy10 medshort
##
                    0.004397429
                                                   0.049722809
```


Theoretical Quantiles

Histogram of mfinal\$residuals


```
# use final model to predict response for protein-test.csv

ptest <- read.csv ("protein-test.csv")

predfinal <- predict(mfinal, newdata = ptest)

writeLines(as.character(predfinal), "mypreds1.txt.txt")</pre>
```