Semaine du 25/11 - Colle MP2I v.hanecart@orange.fr

I Questions de cours

- 1 Énoncer et démontrer les propriétés sur la composition et le lien avec injectivité/surjectivité.
- 2 Soit \sim une relation d'équivalence sur un ensemble E non vide. Montrer que l'ensemble des classes d'équivalences forme une partition de E.
 - 3 Montrer que toute partie non vide et majorée de N possède un plus grand élément.

II Exercices sur les relations binaires

Exercice 1:

Pour toutes parties A et B de \mathbb{R} , on définit $A \leq B$ par :

$$A \leq B \iff (A \cap \mathbb{R}^+ \subseteq B \cap \mathbb{R}^+) \text{ et } (B \cap \mathbb{R}^* \subseteq A \cap \mathbb{R}^*)$$

- 1 Montrer que \leq est une relation d'ordre sur $\mathcal{P}(\mathbb{R})$.
- 2 Pour toute partie de \mathbb{R} , montrer que :

$$\emptyset \leq B \iff B \subseteq \mathbb{R}^+$$

- 3 Donner une condition nécessaire et suffisante sur A pour que $A \prec \mathbb{R}.$
- 4 Pour toute partie A de \mathbb{R} , montrer que $A \leq \mathbb{R}_+$.
- 5 Existe-t-il un plus petit élément au sens de \preceq dans $\mathcal{P}(\mathbb{R})$?

Exercice 2:

Une relation binaire sur un ensemble non vide E peut-elle être symétrique et antisymétrique, tout en n'étant pas réflexive?

Exercice 3:

Sur \mathbb{R} , on considère la relation \mathcal{R} définie par :

$$x\mathcal{R}y \iff x^3 - y^3 = 3(x - y).$$

- 1 Montrer que \mathcal{R} est une relation d'équivalence sur \mathbb{R} .
- 2 Pour $a \in \mathbb{R}$, déterminer le nombre d'éléments de la classe de a.

III Exercices sur les applications

Exercice 4:

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = \frac{2x}{1+x^2}$.

- 1 f est-elle injective? Surjective?
- 2 Montrer que $f(\mathbb{R}) = [-1; 1]$.
- 3 Montrer que la restriction de f à [-1;1] est une bijection de [-1;1] sur lui-même.

Exercice 5:

Soient E et F deux ensembles et $f: E \longrightarrow F$ une fonction.

On considère les deux propositions suivantes :

 P_1 : Pour toutes parties A et B de E, on a $(A \cap B = \emptyset) \implies (f(A) \cap f(B) = \emptyset)$.

 $P_2: f$ est injective.

- 1 Écrire la négation de P_1 et P_2 .
- 2 Montrer que P_1 et P_2 sont équivalentes.

Exercice 6:

On considère l'application

$$f: \left| \begin{array}{ccc} \mathbb{C}^* & \longrightarrow & \mathbb{C} \\ z & \longmapsto & z + \frac{1}{z} \end{array} \right|$$

- 1 L'application f est-elle injective? Surjective?
- 2 Déterminer l'image par f de \mathbb{R}^* et de $\mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$.

Exercice 7.

- 1 Montrer que l'application $\varphi: z \longmapsto \frac{z-i}{z+i}$ définit une bijection de $\mathbb{C}\setminus\{-i\}$ sur $\mathbb{C}\setminus\{1\}$ et préciser φ^{-1} .
- 2 Déterminer $\varphi^{-1}(\mathbb{R})$, $\varphi(\mathbb{R})$ et $\varphi(\mathbb{U}\setminus\{-i\})$.