3.6.0.2 I'= I+ NEIN shell middle ×(0,02) 易在 在 reference onface π $n(\theta',\theta^2)$ At strech of the shell n (0',02) $\lambda t = \lambda t(\theta', \theta^2)$ only and $\frac{\partial \lambda t}{\partial \theta'} = \frac{\partial \lambda t}{\partial \theta^2} = \frac{\partial \lambda t}{\partial \theta}$ x'=x + 2fn N $\frac{\partial \alpha}{\partial x_i} \cdot \frac{\partial \alpha}{\partial x_i} = \left(\frac{\partial \alpha}{\partial x_i} + \lambda + \lambda + \lambda \frac{\partial \alpha}{\partial x_i}\right) \left(\frac{\partial \alpha}{\partial x_i} + \lambda + \lambda \frac{\partial \alpha}{\partial x_i}\right)$ $+ \frac{34 \int_{3}^{6} \frac{904}{9u} \frac{301}{9u} \frac{904}{9x_{1}} \frac{904}{9x_{1}} + \frac{904}{3u} \frac{904}{3x_{1}} + \frac{304}{3x_{1}} \frac{904}{3x_{1}} \frac{304}{3x_{1}} \frac{304}{3x_{1}}$ $\frac{392}{9X_1} \frac{900}{9X_1} + 344 \left(\frac{300}{91} \frac{900}{9X_1} + \frac{900}{91} \frac{900}{9X_1} \right)$ = gar + hth bap $\beta AB = \frac{90890}{900800} \times \frac{904}{500} \times \frac{904}{500}$ is an approximation to the curvature tensoric second fundamental term form) of the reference surface 13 n. 3x curvature 20x curvature ten u - Jap = to 21/2 = Fup & Borp 733 33 APH = 817 - 4141 = II 1: focul prendicing

扫描全能王 创建

Finite - Studin Shell 3.6.5 Geo Description Element Formulation $\chi(S_i) = \overline{\chi}(S_i) + f_{33}(S_i) + f_{33}(S_i)$ subscript and other Roman subscripts 1-3 N, 5 : 1-2 千: 包形梯度 张曼 $\begin{cases} \frac{92b}{9x} = \frac{32b}{9x} + \frac{23}{2} = \frac{32b}{943} \\ \end{cases}$ $\frac{\partial x}{\partial s_3} = \frac{1}{2} + \frac{1}{3} + \frac{1}{3}$ titij = 6+3 +++ = I local orthonormal shell elements Jap = to 35 = Fab Bab fas 12 $F_{VR} = \frac{1}{25} \left| \frac{1}{25} \right|_{353} = \frac{32}{353} + \frac{1}{53} \frac{3}{353} \frac{1}{353} \frac$ 350 = 350 + 3T3 S 1X = 10 2X / + 1/3/3 for = Ta - DX for = Ta - DX Tasp = Tar (2X) $= T_{\alpha}(T_{\beta} + \frac{2T_{\beta}}{3\zeta_{\beta}}T_{\beta})$ $= \delta\alpha\beta + T_{\alpha}\frac{3T_{\beta}}{3\zeta_{\beta}}T_{\beta}$ $= \delta\alpha\beta + T_{\alpha}\frac{3T_{\beta}}{3\zeta_{\beta}}T_{\beta}$ $= \delta\alpha\beta + T_{\alpha}\frac{3T_{\beta}}{3\zeta_{\beta}}T_{\beta}$ $= \delta\alpha\beta + T_{\alpha}\frac{3T_{\beta}}{3\zeta_{\beta}}T_{\beta}$ $= \frac{3T_{\alpha}}{3\zeta_{\beta}}T_{\beta}$ $= \frac{3T_{\alpha}}{3\zeta_{\beta}}T_{\beta}$ $= \frac{3T_{\alpha}}{3\zeta_{\beta}}T_{\beta}$ $= \frac{3T_{\alpha}}{3\zeta_{\beta}}T_{\beta}$ $= \frac{3T_{\alpha}}{3\zeta_{\beta}}T_{\beta}$ Bop = Tong To 3T2 Ref plane 2× + 273(50) 57 + 15 13 135 = 0 + To · Sz + Tz Si, Si Sa 足坐村. = T₃. Si. Si在Ref Plane 内且 正交、 TITITI是 三个方的单位的角色、干土工工艺。

上海 東京 扫描全能王 创建 xa interpolation: 3 知有限元形之义 对于 reference surface positions: 见一样的. $x(y) = N^{I}(x) \times I$

The gradient of the position with respect to S_{β} ove: $\frac{\partial \overline{X}}{\partial S_{\beta}} = \frac{\partial N^{T}}{\partial S_{\beta}} \overline{X}^{T};$

$$\frac{\partial X}{\partial x} = \frac{\partial X}{\partial x} \times X$$

工代表 nodes of an element.

$$T_{7} = \frac{2\overline{X}}{2\xi_{1}} \times \frac{2\overline{X}}{2\xi_{2}}$$

$$T_{7} = \frac{2\overline{X}}{2\xi_{1}} \times \frac{2\overline{X}}{2\xi_{2}}$$

$$\left|\frac{\partial X}{\partial \xi_{1}} \times \frac{\partial X}{\partial \xi_{2}}\right|$$

$$\frac{\partial S\alpha}{\partial \xi_{\beta}} = T_{Y} \frac{\partial X}{\partial \xi_{\beta}} = T_{Y} \cdot X^{T} \frac{\partial N^{T}}{\partial \xi_{\beta}}$$

$$\frac{\partial S\beta}{\partial S\beta} = \left[\frac{\partial S\beta}{\partial S\beta}\right]^{-1}$$

(回 扫描全能王 创建

$$\frac{\partial S^{\alpha}}{\partial S^{\alpha}} = \frac{\partial S^{\alpha}}{\partial S^{\alpha}} \frac{\partial S^{\alpha}}{\partial S^{\alpha}}$$

T3: nodal normals.

Membrane deformation and curvature

The gradient operator in the current state can also be seen as the derivative of with respect to odistance

measuring coordinates so along the base vector to,

since
$$t_{x}, \frac{\partial \overline{x}}{\partial s\rho} = t_{x}, \frac{\partial \overline{x}}{\partial s\rho}, \overline{k}_{y} = \overline{f}_{x}, \overline{k}, \overline{k}_{y} = \overline{f}_{x}, \overline{k}_{y} = \overline{f}_{x}, \overline{k}_{y} = \overline{f}_{x}, \overline{k}, \overline{k}_{y} = \overline{f}_{x}, \overline{k}, \overline{k$$

o hap = to astat box = tx. ot3 = Byr hrp

orientation

to \$ surface 正切. fre= f. ox OR11=OFTZ=WSOV to = a Rortr $fan = \psi = \frac{\hat{f}_{12} - \hat{f}_{21}}{\hat{f}_{11} + \hat{f}_{22}}$

扫描全能王 创建

Curvature Change so: finite incremental rotation vector. Δ= wot = NI(30) WI at = NI(34) 4. of 或 { o f } fp } 或市均的意 のするかか of def lab $\{p\} = \frac{\{o\phi\}}{a\phi}$ 1093: the rotation quaternion (四元数) $\{\Delta q\}^{\text{def}} = (\cos \frac{\Delta \phi}{2}, \sin \frac{\Delta \phi}{2} \{p\})$ An updated shell normal; 1 to + ot = {0 9) t 3/0 9} 逛1卖介质力学里的刚体旋转,客观性.

Transverse shear treatment.

ts: skew-symmetric tensor with axis axial vector tz

$$\overline{\gamma}_{1} = \frac{1}{2} \left[(1-\eta) \gamma_{1}^{B} + (1+\eta) \gamma_{1}^{D} \right]$$

$$\overline{\gamma}_{2} = \frac{1}{2} \left[(1-\varsigma) \gamma_{2}^{A} + (1+\varsigma) \gamma_{2}^{C} \right]$$

$$\overline{T}_2 = \frac{1}{2} \left[(1-5) \Upsilon_2^A + (1+5) \Upsilon_2^C \right]$$

$$\Upsilon_2^A = t^A \cdot \overline{\chi}_{,2}^A - T^A \cdot \overline{\chi}_{,7}^A$$

 $\gamma_{1}^{c} = t^{c} \cdot \overline{\chi}_{1}^{c} - T^{c} \cdot \overline{\chi}_{1}^{c}$ $\gamma_{1}^{p} = t^{p} \cdot \overline{\chi}_{1}^{p} - T^{p} \overline{\chi}_{1}^{p}$ $\gamma_{1}^{p} = t^{p} \cdot \overline{\chi}_{1}^{p} - T^{p} \cdot \overline{\chi}_{1}^{p}$

回流回 扫描全能王 创建

朝应变

扫描全能王 创建

$\widehat{B}_{SL} = \frac{1}{4} \begin{bmatrix} (1-\eta) \eta_{1}^{BT} & (1-\eta) \eta_{2}^{BT} & (1+\eta) \\ (1-s) \eta_{2}^{AT} & (1+s) \eta_{2}^{CT} & (1+s) \end{bmatrix}$) N2 ^T (I-5) N ^T
transverse shear force Q	(22-22) 产 = 写左
transverse shear strains F	x, = ± (x2-x4)
$\begin{cases} o_1 \\ o^2 \end{cases} = C_s \begin{Bmatrix} \bar{n} \\ \bar{r}_2 \end{Bmatrix}$	72: Hot = 1.23.4 Liter = 2 09. to - 3 to 5 666 = 2(664+66) XM
Cs: transperse shear skffness.	8+x (1/2++8/1) x = 8+3/2+8/1/2+
$C_{S} = \frac{5}{6} G_{S} h \begin{bmatrix} A^{n} & A^{12} \\ A^{21} & A^{22} \end{bmatrix}$	24x(642+648) 7 = 249
[A*P] = [A*p]-1.	$\frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}}$
$Aog = \overline{X}, \sigma' \overline{X}, \beta$	with the second
Cauchy or true transvorse shear jurce	components in the
shell orthonormal system 391, 923.	
the coordinate transformation f_{α}^{α} =	as
$[x] = \begin{cases} 2! \\ 2! \end{cases} = \frac{A}{a} \left[\begin{cases} f'_1 \\ f'_2 \end{cases} \right] $	En = = = = = = = = = = = = = = = = = = =
A: elements reference area.	12 + 16x 22 08 = 18X
i. Childia arew.	
Initial Stress stiffness	1/2 + 10x 7/2 - 1/2 = 10x
Initial Stress stiffness	dx1 dx4 and animary out dx1 dx2 dx2

	196 C
1-λ	大年 月 HAV 日
193d8F = S6n·Ks·unda	
I: 3x3-identity	: \$30, % 6
$A = Q^{2}(1-3)(sym\{+\Lambda(7,2)^{T}\} - r_{2}^{\Lambda}I$	
B= Q-(1-1) E SYM (+B(X, 1)) - 7, BI	
$C = Q^2 (1+3) C symit^{c} (\bar{x}, 2)^{-7} - r_2^{c} I$	
D= Q'(1+7)[symit](x,1)]- x	P7] 873 334
Also define skew-symmetric matric	१८ मिलि
2 = 03(1-3)fA	MARE
$\hat{\beta} = \alpha' (1-\eta) \hat{t}^{\beta}$	··里爾及罗馬亨斯翰
£ = Q2 (H5) +c	
2 = Q' (1+n) fo	(1) 271,00000.1 点 4 绝流通量
Ks is the transverse shear contribution to	the initial atress 的量钢.
能呈記在在模型中行用了	之后从子吃中原始,是人 西 都原基个
	के निकारण है सम्बद्ध

NAV.	
4,0	
	40 cas 450 cas
ensis	が 型質語と低級:分析 → 対象 一
1863	
The second secon	第 页 .

