EXAMEN CALCUL DIFERENTIAL SI INTEGRAL SERIA 13

OFICIU: 1 punct

SUBIECTUL 1. (2 puncte)

Sa se studieze natura seriei $\sum_{n=1}^{\infty} \frac{a^n (n!)^2}{(1+1^2)(1+2^2)\cdots(1+n^2)}, \text{ unde } a>0.$ Surficciul 2 (a result)

SUBIECTUL 2. (2 puncte)

Sa se determine punctele de extrem local ale functiei $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) =$ $x^4 + 4xy^3 + 4y^3 \ \forall (x, y) \in \mathbb{R}^2.$

SUBIECTUL 3. (2 puncte)

Sa se calculeze lim inf x_n si lim sup x_n pentru sirul de numere reale $x_n = \frac{\left(1+\frac{(-1)^n}{n}\right)^{n+1}}{2-\cos\frac{n\pi}{2}}, n \in \mathbb{N}^*.$

- SUBIECTUL 4. (3 puncte)
 a) Sa se calculeze $\iint_D \frac{y}{\sqrt{x^2+y^2}} dx dy$, unde $D = \{(x,y) \in \mathbb{R}^2 \mid y \le x^2 + y^2 \le 2y\}$.
 b) Fie $f: [a,b] \to \mathbb{R}$ o functie de clasa C^1 pe [a,b]. Sa se demonstreze ca $\lim_{n \to \infty} \int_a^b f(x) \sin(nx) dx = 0$.