# Code, Chat and Collab 13:00, Feb 17, 2023





A brief tutorial on exploring clinical associations in cancer samples using SEAS

## **Analysis in Systems Biology using genomic** and clinical features of samples

Genomic Insights such as: Enriched Pathways, Genesets, PAGS, etc.

Co-membership and regulatory gene AND/OR protein networks.

Metabolic models with Gene perturbation.

Genomic **Analysis** 

7897620 11.58961496 11.51082781 11.67322239 11.34210418 11.5495066

Samples

**Gene Expression Profiling of patient samples** 

Gene Expression Matrix

## Clinical Features i.e., Clinotypes

81.57

34.85

GSM1830170 49 Control

GSM1830171 70 COPD

Correlation, Enrichment, etc. Analysis

**Clinical Analysis** 

age disease fev1 fvc fev1 predicted sex smoking status statin user GSM1830157 57 COPD 43.13 Former smoker N GSM1830158 72 COPD 48.21 GSM1830159 70 COPD 59.93 Former smoker N GSM1830160 57 COPD 40.2 Former smoker GSM1830161 62 Control 76.93 GSM1830162 67 COPD 43.07 Former smoker N GSM1830163 60 COPD 28.97 Former smoker Y GSM1830164 66 COPD 43.52 GSM1830165 74 COPD Former smoker | N 42.04 GSM1830166 61 COPD Former smoker N GSM1830167 70 COPD GSM1830168 68 COPD 45.52 Former smoker | N GSM1830169 71 COPD 57.02

UMAP, PCA, **tSNE** 

Genotypically AND/OR Phenotypically resolved patient embedding.

Former smoker Y

Former smoker N

| sample_id  | X1           | X2           |
|------------|--------------|--------------|
| GSM1830157 | 2.998425653  | -1.391358321 |
| GSM1830158 | -1.401068876 | 1.81903131   |
| GSM1830159 | -0.396056858 | -2.896121068 |
| GSM1830160 | 1.55616542   | -1.620665901 |
| GSM1830161 | 0.160953406  | 2.76096781   |
| GSM1830162 | 0.030356896  | -2.519666312 |
| GSM1830163 | -2.740846083 | -0.013063805 |
| GSM1830164 | 0.939161057  | -1.217158655 |
| GSM1830165 | -1.645087191 | -0.856133376 |
| GSM1830166 | 1.132666571  | -0.6928069   |
| GSM1830167 | -1.612448305 | -0.466482063 |
| GSM1830168 | 1.175554088  | -0.42713845  |
| GSM1830169 | 2.117619142  | 0.180591641  |
| GSM1830170 | 2.284750197  | 1.673612929  |
| GSM1830171 | 2.215471982  | 1.133465544  |

## A snapshot of Clinical Features associated to 389 TCGA GBM patients

| A B            | C         | D       | E                  | F    | G     | Н     | 1     | J     | K     | L        | M              | N     | 0     | P     | Q     | R   | S     | T     | U   | V     | W     | Х     | Υ     | Z     | AA    | AB    |
|----------------|-----------|---------|--------------------|------|-------|-------|-------|-------|-------|----------|----------------|-------|-------|-------|-------|-----|-------|-------|-----|-------|-------|-------|-------|-------|-------|-------|
|                | Cluster   |         | Discrete_CDE_chemo |      |       |       |       |       |       |          |                |       |       |       |       |     |       |       |     |       |       |       |       |       |       |       |
| TCGA-02-C TCGA | Cluster 1 |         | <=100              | <=50 | >300  | >300  | <=250 | >250  | <=200 | >80<=100 |                | FALSE | FALSE | FALSE | FALSE | 0   |       | FALSE |     | FALSE | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA |           | >50<=65 | <=100              | <=50 | <=300 | <=300 | <=250 | >250  | <=200 |          |                | FALSE | FALSE | FALSE | FALSE | 0   | FALSE | FALSE |     | FALSE | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUI  |
| TCGA-02-C TCGA |           | >50<=65 | >100               | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 59.18          |       | TRUE  | TRUE  | TRUE  | 110 | TRUE  | TRUE  | 110 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUI  |
| TCGA-02-C TCGA | Cluster 1 |         | >100               | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 40.53          |       | TRUE  | TRUE  | TRUE  | 306 | TRUE  | TRUE  | 306 | TRUE  | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA |           | >50<=65 | <=100              | <=50 | >300  | >300  | >250  | >250  | >200  | >80<=100 |                | FALSE | FALSE | FALSE | FALSE | 0   | FALSE | FALSE |     | FALSE | FALSE | FALSE | TRUE  | FALSE | FALSE | TRUI  |
| TCGA-02-C TCGA | Cluster 1 | <=50    | <=100              | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 20.4           |       | TRUE  | TRUE  | TRUE  | 61  | TRUE  | TRUE  | 61  | TRUE  | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUI  |
| TCGA-02-C TCGA | Cluster 1 | <=50    | >100               | >50  | >300  | >300  | <=250 | <=250 | >200  | >80<=100 | 18.96          | TRUE  | TRUE  | TRUE  | TRUE  | 125 | TRUE  | TRUE  | 125 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUI  |
| TCGA-02-C TCGA | Cluster 2 | <=50    | <=100              | <=50 | >300  | >300  | >250  | >250  | >200  |          | 25.65          |       | FALSE | FALSE | TRUE  | 0   | FALSE | TRUE  | 0   | FALSE | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUI  |
| TCGA-02-C TCGA | Cluster 2 | >50<=65 | <=100              | <=50 | >300  | >300  | >250  | >250  | >200  | >80<=100 | 50.39          |       | TRUE  | FALSE | TRUE  | 0   | FALSE | FALSE |     | FALSE | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUI  |
| TCGA-02-C TCGA | Cluster 1 | <=50    | >100               | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 43.9           | FALSE | TRUE  | TRUE  | TRUE  | 119 | TRUE  | TRUE  | 119 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRU   |
| TCGA-02-C TCGA | Cluster 2 | <=50    | <=100              | <=50 | >300  | >300  | >250  | >250  | >200  | >80<=100 | 38.34          | TRUE  | TRUE  | TRUE  | TRUE  | 44  | TRUE  | TRUE  | 44  | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRU   |
| TCGA-02-C TCGA | Cluster 1 | <=50    | >100               | >50  | >300  | >300  | >250  | >250  | >200  |          | 35.91          | FALSE | TRUE  | TRUE  | TRUE  | 551 | TRUE  | TRUE  | 551 | TRUE  | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUI  |
| TCGA-02-CTCGA  | Cluster 1 | <=50    | >100               | >50  | >300  | >300  | >250  | >250  | >200  |          | 47.64          | FALSE | TRUE  | TRUE  | TRUE  | 539 | TRUE  | TRUE  | 539 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUI  |
| TCGA-02-CTCGA  | Cluster 2 | <=50    | >100               | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 27.44          | FALSE | TRUE  | TRUE  | TRUE  | 327 | TRUE  | TRUE  | 327 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA | Cluster 1 | <=50    | >100               | >50  | >300  | >300  | >250  | >250  | >200  |          | 33.86          | TRUE  | TRUE  | TRUE  | TRUE  | 230 | TRUE  | TRUE  | 230 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA | Cluster 1 | <=50    | >100               | >50  | >300  | >300  | >250  | >250  | >200  |          | 39.16          | FALSE | TRUE  | TRUE  | TRUE  | 366 | TRUE  | TRUE  | 366 | TRUE  | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA | Cluster 1 | >50<=65 | <=100              | <=50 | <=300 | <=300 | <=250 | <=250 | >200  |          | 54.95          | FALSE | FALSE | FALSE | FALSE | 0   | FALSE | FALSE | 0   | FALSE | FALSE | FALSE | TRUE  | FALSE | FALSE | TRUE  |
| TCGA-02-C TCGA | Cluster 2 | >50<=65 | <=100              | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 60.69          | FALSE | TRUE  | TRUE  | TRUE  | 71  | TRUE  | TRUE  | 71  | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA | Cluster 1 | <=50    | <=100              | <=50 | >300  | >300  | <=250 | <=250 | >200  | >80<=100 | 48.59          | FALSE | FALSE | FALSE | FALSE | 0   | FALSE | FALSE | 0   | FALSE | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUI  |
| TCGA-02-C TCGA | Cluster 2 | >50<=65 | <=100              | <=50 | >300  | >300  | <=250 | <=250 | >200  | >60<=80  | 54.93          | FALSE | FALSE | FALSE | FALSE | 0   | FALSE | FALSE | 0   | FALSE | FALSE | FALSE | TRUE  | FALSE | FALSE | TRUI  |
| TCGA-02-CTCGA  | Cluster 1 | >50<=65 | <=100              | <=50 | >300  | >300  | >250  | >250  | >200  | >80<=100 | 54.43          | FALSE | TRUE  | FALSE | TRUE  | 63  | TRUE  | FALSE | 0   | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA | Cluster 1 | >50<=65 | <=100              | <=50 | <=300 | <=300 | <=250 | <=250 | >200  | >60<=80  | 61.37          | FALSE | FALSE | FALSE | FALSE | 0   | FALSE | FALSE | 0   | FALSE | FALSE | FALSE | TRUE  | FALSE | FALSE | TRUE  |
| TCGA-02-CTCGA  | Cluster 1 | >65     | <=100              | <=50 | >300  | >300  | <=250 | <=250 | >200  | >80<=100 | 78.74          | FALSE | FALSE | FALSE | FALSE | 0   | FALSE | FALSE | 0   | FALSE | FALSE | FALSE | TRUE  | FALSE | FALSE | TRUE  |
| TCGA-02-CTCGA  | Cluster 2 | >65     | <=100              | <=50 | <=300 | <=300 | <=250 | <=250 | >200  |          | 80.22          | FALSE | FALSE | FALSE | FALSE | 0   | FALSE | FALSE | 0   | FALSE |
| TCGA-02-C TCGA | Cluster 2 | <=50    | <=100              | >50  | >300  | >300  | <=250 | <=250 | >200  |          | 43.76          | TRUE  | TRUE  | TRUE  | TRUE  | 69  | TRUE  | TRUE  | 69  | TRUE  | FALSE | FALSE | TRUE  | FALSE | FALSE | TRUE  |
| TCGA-02-C TCGA | Cluster 1 | <=50    | >100               | >50  | >300  | >300  | <=250 | <=250 | >200  | >80<=100 | 49.45          | TRUE  | TRUE  | TRUE  | TRUE  | 171 | TRUE  | TRUE  | 171 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA | Cluster 1 | <=50    | <=100              | <=50 | <=300 | <=300 | <=250 | <=250 | >200  | >80<=100 | 44.42          | TRUE  | TRUE  | TRUE  | TRUE  | 46  | TRUE  | TRUE  | 46  | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA | Cluster 1 | >65     | >100               | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 66.09          | FALSE | TRUE  | FALSE | TRUE  | 331 | TRUE  | TRUE  | 331 | TRUE  | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  | Cluster 1 | <=50    | >100               | >50  | <=300 | <=300 | <=250 | <=250 | >200  | >80<=100 | 28.79          | TRUE  | TRUE  | TRUE  | TRUE  | 123 | TRUE  | TRUE  | 123 | TRUE  | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA | Cluster 2 | >65     | <=100              | <=50 | <=300 | <=300 | <=250 | >250  | <=200 | >80<=100 | 68.71          | TRUE  | TRUE  | TRUE  | TRUE  | 43  | TRUE  | TRUE  | 43  | TRUE  | FALSE | FALSE | TRUE  | FALSE | FALSE | TRUE  |
| TCGA-02-CTCGA  | Cluster 1 |         | >100               | >50  | <=300 | <=300 | <=250 | <=250 | >200  | >80<=100 | 66.12          | TRUE  | TRUE  | TRUE  | TRUE  | 168 | TRUE  | TRUE  | 168 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-C TCGA | Cluster 2 | >50<=65 | >100               | >50  | >300  | >300  | >250  | >250  | >200  |          | 50.05          | TRUE  | TRUE  | TRUE  | TRUE  | 336 | TRUE  | TRUE  | 336 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  |           | >50<=65 | >100               | >50  | >300  | >300  | <=250 | >250  | <=200 | >80<=100 | 57.93          | TRUE  | TRUE  | TRUE  | TRUE  | 166 | TRUE  | TRUE  | 166 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  |           | >50<=65 | <=100              | <=50 | <=300 | <=300 | <=250 | <=250 | >200  | >80<=100 | 53.18          |       | FALSE | FALSE | FALSE | 0   | FALSE | FALSE | 0   | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALS  |
| TCGA-02-CTCGA  | Cluster 2 |         | >100               | >50  | >300  | >300  | <=250 | <=250 | >200  | >80<=100 | 68.19          |       | TRUE  | TRUE  | TRUE  | 233 | TRUE  | TRUE  | 233 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  |           | >50<=65 | <=100              | <=50 | >300  | >300  | >250  | >250  | >200  | >80<=100 | 63.53          |       | TRUE  | TRUE  | TRUE  | 21  | TRUE  | TRUE  | 21  | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  |           | >50<=65 | <=100              | <=50 | >300  | >300  | >250  | >250  | >200  | >80<=100 | 57.97          |       | TRUE  | TRUE  | TRUE  | 42  | TRUE  | TRUE  | 42  | TRUE  | FALSE | FALSE | TRUE  | FALSE | FALSE | TRUE  |
| TCGA-02-CTCGA  | Cluster 2 |         | <=100              | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 28.22          |       | TRUE  | TRUE  | TRUE  | 92  | TRUE  | TRUE  | 92  | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  |           | >50<=65 | >100               | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 59.21          |       | TRUE  | TRUE  | TRUE  | 337 | TRUE  | TRUE  | 337 | TRUE  | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  | Cluster 2 |         | <=100              | <=50 | >300  | >300  | >250  | >250  | >200  | >80<=100 | 36.31          |       | FALSE | FALSE | FALSE | 0   | FALSE | FALSE |     | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALS  |
| TCGA-02-CTCGA  |           | >50<=65 | <=100              | <=50 | >300  | >300  | >250  | >250  | >200  | >80<=100 | 63.76          |       | TRUE  | TRUE  | TRUE  | 46  | TRUE  | TRUE  | 46  | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  | Cluster 2 |         | <=100              | >50  | <=300 | <=300 | <=250 | <=250 | >200  | ×30/-100 | 45.89          |       | TRUE  | TRUE  | TRUE  | 73  | TRUE  | TRUE  | 73  | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  |           |         | >100               | >50  | >300  | >300  | >250  | >250  | >200  |          | 45.89<br>52.66 |       | TRUE  | TRUE  | TRUE  | 216 | TRUE  | TRUE  |     | TRUE  | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  |
|                |           | >50<=65 |                    |      |       |       |       |       |       | >00/-100 |                |       |       |       |       |     |       |       | 216 |       |       |       |       |       |       | TRUE  |
| TCGA-02-CTCGA  | Cluster 2 |         | >100               | >50  | <=300 | <=300 | >250  | >250  | >200  | >80<=100 | 46.76          |       | TRUE  | TRUE  | TRUE  | 137 | TRUE  | TRUE  | 137 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  |       |
| TCGA-02-CTCGA  | Cluster 2 |         | >100               | <=50 | >300  | >300  | >250  | >250  | >200  | -004-405 | 42.87          |       | TRUE  | FALSE | TRUE  | 246 | TRUE  | FALSE | 0   | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRUE  | TRUE  |
| TCGA-02-CTCGA  | Cluster 2 | K=50    | >100               | >50  | >300  | >300  | >250  | >250  | >200  | >80<=100 | 29.29          | TRUE  | TRUE  | TRUE  | TRUE  | 251 | TRUE  | TRUE  | 251 | TRUE  | FALSE | FALSE | TRUE  | TRUE  | TRUE  | TRU   |

# Statistical Enrichment Analysis of Sample Clinical Attributes Using SEAS

- Embedding techniques has gained popularity in visualizing the highdimensional gene expression profiles of patient samples yet the systematic extraction of sample set composition based on shared labels instead of shared embedding neighbourhood remains a major challenge.
- SEAS can be used to perform exploratory analysis of embedded sample data by focusing on the "clinotypes" of selected sample sets.
- Clinotypes: Clinotypes are referred as the clinical/phenotypical features
  of a sample. For SEAS analysis clinotypes are classified in two i.e.,
  discrete and continuous clinotypes.
- Discrete Clinotypes are the clinotypes which take specific value in quantitative or qualitative data. For examples, age groups, cancer subtypes, treatment method, etc.
- Continuous Clinotypes are the clinotypes which take continuous quantitative values. For example, age, survival days, treatment days, dose levels, etc.
- CFEA: Clinical Feature Enrichment Analysis is a method defined in SEAS to identify clinotypes which are over-represent in a selected cohort from population.
- We used Hypergeometric Test, KS-test, and Kaplan-Meier Method to perform discrete clinotype enrichment, continuous clinotype enrichment and survival analysis, respectively.

#### **SEAS Workflow**



https://github.com/informaticsclub/ccc presentations

Functional Enrichment Analysis of GBM patients uncovers clinical/phenotypic difference in additional chemotherapy lacking cohort.

We acquired and preprocessed TCGA-GBM dataset, which consists of 389 patients, according to the pipeline in Jia et al. (2018). The dataset had both the genetic and the clinical sections. We also used 45 GBM tumor-samples hosted in patient-derived xenograft (PDX) models (Willey et al., 2020). We performed SEAS analysis to test enrichment in the patient samples where no additional chemotherapy was given

#### 5 of 50 Enriched Discrete Clinotypes

| Show 5 rows v Copy Excel     |                   | Searc     | h:               |            |             |             |            |      |
|------------------------------|-------------------|-----------|------------------|------------|-------------|-------------|------------|------|
| Clinotype                    | <b>♦ Variable</b> | P-Value   | Adjusted P-value | Enriched - | <b>N</b> \$ | <b>n</b> \$ | <b>K</b> ( | k    |
| Discrete_CDE_DxAge           | >65               | 1.826e-06 | 3.579e-05        | Yes        | 389         | 192         | 128        | 85   |
| Discrete_CDE_chemo_alk_days  | <=100             | 2.571e-06 | 4.725e-05        | Yes        | 389         | 192         | 245        | 143  |
| Discrete_CDE_chemo_tmz_days  | <=50              | 1.073e-03 | 9.279e-03        | Yes        | 389         | 192         | 245        | 136  |
| Discrete_CDE_survival_time   | <=300             | 4.200e-15 | 2.470e-13        | Yes        | 389         | 192         | 157        | 115  |
| Discrete_days_to_death       | <=300             | 1.667e-15 | 1.226e-13        | Yes        | 389         | 192         | 156        | 115  |
| Showing 1 to 5 of 50 entries | '                 |           | Previous 1       | 2 3 4      | 5           |             | 10         | Next |

#### 5 Enriched Continuous Clinotypes



#### UMAP Embedding of 434 GBM cancer samples



#### Survival Difference Between Cohort and Population.



- We found 50 discrete and 5 continuous enriched clinotypes in the selected cohort. Performing survival analysis we found a significant p-value of 0.0001 suggesting there's a significant effect of additional chemotherapy on survival of GBM cancer patients.
- GBM cancer patients who didn't receive additional chemotherapy died earlier.

Exploratory Analysis of COPD Patient Profiles using SEAS reveal understandings in clinotype-explained genomic variation.

We acquired and preprocessed clinical and genetic data of 617 COPD patient samples publicly accessible at GEO: GSE71220. We perform a basic exploratory analysis of data using SEAS to demonstrate how researchers can identify clinotype showing high association with sample embedding.



UMAP embedding of 617 COPD patient samples

### Clinotype: By Smoking Status







- We showed a simple exploratory analysis using SEAS on COPD patient samples revealing sample embedding highly associated by gender difference than originally studied smoking status clinotype.
- COPD patient transcriptomes were highly influenced by gender difference than smoking status.