$Solutions \ Exercices \ MP/MP^*$

Table des matières

1	Algèbre Générale	2
2	Séries numériques et familles sommables	45
3	Probabilités sur un univers dénombrable	108
4	Calcul matriciel	144
5	Réduction des endomorphismes	172
6	Espaces vectoriels normés	197
7	Fonction d'une variable réelle	239
8	Suites et séries de fonctions	250
9	Séries entières	251
10	Intégration	252
11	Espaces préhilbertiens	253
12	Espaces euclidiens	254
13	Calcul différentiel	255
14	Équation différentielles linéaires	256

1 Algèbre Générale

Solution 1.1. Soit $(x,y) \in G^2$. On a d'abord

$$x \cdot y = (x \cdot y)^{p+1} (x \cdot y)^{-p} \tag{1.1}$$

$$= x^{p+1} \cdot y^{p+1} \cdot y^{-p} \cdot x^{-p} \tag{1.2}$$

$$=x^{p+1} \cdot y \cdot x^{-p} \tag{1.3}$$

On cherche maintenant à montrer que x^{p+1} et y commutent. On a

$$y^{p+2} \cdot x^{p+2} = (y \cdot x)^{p+2} \tag{1.4}$$

$$= (y \cdot x)^{p+1} \cdot y \cdot x \tag{1.5}$$

$$= y^{p+1} \cdot x^{p+1} \cdot y \cdot x \tag{1.6}$$

Donc on a $y \cdot x^{p+1} = x^{p+1} \cdot y$. En reportant dans (1.3), on a $x \cdot y = y \cdot x$ et donc

$$G$$
 est abélien. (1.7)

Remarque 1.1.

- Pour (Σ_3, \cdot) , on a f_0, f_1 et f_6 des morphismes mais Σ_3 n'est pas commutatif.
- Si f_2 est un morphisme, alors on a $(x \cdot y)^2 = x \cdot y \cdot x \cdot y = x^2 \cdot y^2$ d'où $y \cdot x = x \cdot y$.

Solution 1.2. A est non vide car $\omega(e_G) = 1$ et $e_G \in A$. Soit $x \in A$ tel que $\omega(x) = 2p + 1$. Soit $k \in \mathbb{Z}$, on a

$$x^{2k} = e_G \Leftrightarrow 2p + 1 \mid 2k \tag{1.8}$$

$$\Leftrightarrow 2p+1 \mid k \tag{1.9}$$

d'après le théorème de Gauss.

Ainsi, $\omega(x^2) = 2p + 1$ et $x^2 \in A$, donc

$$\varphi: A \to A$$
$$x \mapsto x^2$$

est bien définie. Soit $x \in A$, il existe $p \in \mathbb{N}$ tel que $x^{2p+1} = e_G$ donc $x^{2p+2} = x$ d'où $(x^{p+1})^2 = x$. Il suffit donc de vérifier que $x^{p+1} \in A$ pour montrer que l'application est surjective. Comme A est fini, elle sera bijective.

On a $gr\{x^{p+1}\} \subset gr\{x\}$ et $(x^{p+1})^2 = x$ donc $gr\{x\} = gr\{x^{p+1}\}$ donc $\omega(x) = \omega(x^{p+1}) = 2p + 1$ et donc $x^{p+1} \in A$.

Donc
$$A$$
 est bijective. (1.10)

Solution 1.3. On note $m = \theta(\sigma)$. On suppose que σ se décompose en produit de cycle de longueur l_1, \ldots, l_m avec $l_1 + \cdots + l_m = n$. Comme

$$(a_1, \dots, a_l) = [a_1, a_2] \circ [a_2, a_3] \circ \dots \circ [a_{l-1}, a_l]$$
(1.11)

Donc σ se décompose en $\sum_{i=1}^{m} (l_i - 1) = n - m$ transpositions. Montrons par récurrence sur k, $\mathcal{H}(k)$:
"Un produit de k transpositions possède au moins n - k orbites".

Pour k = 0, $\sigma = id$ possède n orbites.

Pour k = 1, soit τ une transposition, on a $\theta(\tau) = n - 2 + 1 = n - 1$.

Soit $k \in \mathbb{N}$, supposons \mathcal{H}_k , soit $\sigma \in \Sigma_n$ qui se décompose en produit de k+1 transpositions.

$$\sigma = \underbrace{\tau_1 \circ \dots \tau_k}_{\sigma'} \circ \tau_{k+1} \tag{1.12}$$

D'après \mathcal{H}_k , on a $\theta(\sigma') \geqslant n - k$. Notons $\tau_{k+1} = [a, b]$.

Si a et b appartiennent à la même orbite. On note (a_1, \ldots, a_r) le cycle correspondant avec $a_r = a$ et $a_s = b$ où $s \in [1, n-1]$. On a

$$\begin{cases}
(a_1, \dots, a_{r-1}, a_r) \circ [a, b](a_i) = a_{i+1} & \text{où } i \notin \{r, s\} \\
(a_1, \dots, a_{r-1}, a_r) \circ [a, b](a_r) = a_{s+1} \\
(a_1, \dots, a_{r-1}, a_r) \circ [a, b](a_s) = a_1
\end{cases}$$
(1.13)

On n'a pas perdu d'orbites, donc $\theta(\sigma) \ge n - k - 1$.

Si a et b n'appartiennent pas à la même orbite, notons (a_1, \ldots, a_r) et (b_1, \ldots, b_s) ces orbites avec $a = a_r$ et $b = b_s$. On a

$$\begin{cases}
\underbrace{(a_{1}, \dots, a_{r-1}, a_{r}) \circ (b_{1}, \dots, b_{s}) \circ [a_{r}, b_{s}]}_{\sigma''}(a_{i}) = a_{i+1} & \text{où } i \in [1, \dots, r-1] \\
(a_{1}, \dots, a_{r-1}, a_{r}) \circ (b_{1}, \dots, b_{s}) \circ [a_{r}, b_{s}](b_{j}) = b_{j+1} & \text{où } j \in [1, \dots, s-1] \\
(a_{1}, \dots, a_{r-1}, a_{r}) \circ (b_{1}, \dots, b_{s}) \circ [a_{r}, b_{s}](a_{r}) = b_{1} \\
(a_{1}, \dots, a_{r-1}, a_{r}) \circ (b_{1}, \dots, b_{s}) \circ [a_{r}, b_{s}](b_{s}) = a_{1}
\end{cases}$$
(1.14)

Donc

$$\sigma'' = (a_1, \dots, a_r, b_1, \dots, b_s) \tag{1.15}$$

On a perdu une orbite et donc $\theta(\sigma) \ge n - k - 1$.

Solution 1.4. On note par \overline{k} les éléments de $\mathbb{Z}/n\mathbb{Z}$ et par \widetilde{l} les éléments de $\mathbb{Z}/m\mathbb{Z}$.

Soit f un morphisme. On pose $f(\overline{1}) = \widetilde{x}$ où $x \in [0, m-1]$. On a donc $nf(\overline{1}) = f(\overline{0}) = \widetilde{0}$.

On a donc $\widetilde{nx} = \widetilde{0}$ donc $m \mid nx$. On écrit $m = m_1(m \wedge n)$ et $n = n_1(m \wedge n)$. D'après le théorème de Gauss, on a donc $m_1 \mid x$. Donc $x = km_1$ avec $k \in [0, (n \wedge m) - 1]$.

Réciproquement, soit $k \in [\![0,(n \wedge m)-1]\!].$ On définit

$$f_k: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$$

$$\bar{l} \mapsto \widetilde{lkm_1}$$

Si $\overline{l} = \overline{l'}$, alors $n \mid l - l'$ et donc $nm_1 \mid (l - l')km_1$ puis $n_1(n \wedge m)m_1 \mid (l - l')km_1$ donc $m \mid (l - l')km_1$ d'où $\widetilde{lkm_1} = \widetilde{l'km_1}$ donc f est bien définie et c'est évidemment un morphisme.

Soit $k, k' \in [0, n \land m - 1]$ avec $k \neq k'$. Si $\widetilde{km_1} = \widetilde{k'm_1}$ alors $m \mid (k - k')m_1$ et donc $n \land m \mid k - k'$ et $|k - k'| < n \land m$ donc k = k' ce qui est absurde. Ainsi, les f_k sont distincts.

On a donc
$$n \wedge m$$
 morphismes. (1.17)

Remarque 1.2. Exemple pour l'exercice précédent : morphisme de $\mathbb{Z}/4\mathbb{Z}$ dans $\mathbb{Z}/6\mathbb{Z}$. On a $f(\overline{1}) = \widetilde{x}$ d'où $\widetilde{4x} = \widetilde{0}$ donc $3 \mid x$ d'où $x \in \{0,3\}$. On a donc le morphisme trivial $f_0 : \overline{l} \mapsto \widetilde{0}$ et $f_1 : \overline{l} \mapsto \widetilde{3l}$.

Solution 1.5. On considère $H = \{x \in G \mid x^2 = e_G\}$. Si $x \notin H$, alors $x^{-1} \neq x$ et donc

$$P = \prod_{x \in H} x \tag{1.18}$$

H est le noyau du morphisme $x \mapsto x^2$ (morphisme car G est abélien) donc H est un sous-groupe. Soit K un sous-groupe de H et $a \in H \setminus K$. Montrons que $K \cup aK$ est un sous-groupe de H.

On a $e_G \in K \cup aK$. Soit $x \in K \cup aK \subset H$, on a $x^{-1} = x \in K \cup aK$. Soit $(x_1, x_2) \in (K \cup aK)^2$, si $(x_1, x_2) \in K^2$, c'est ok. Si $(x_1, x_2) \in (aK)^2$, on note $x_1 = a \cdot k_1$ et $x_2 = a \cdot k_2$ avec $(k_1, k_2) \in K^2$. On a $x_1 \cdot x_2 = a^2 \cdot k_1 \cdot k_2 = k_1 \cdot k_2 \in K$. Si $x_1 \in K$ et $x_2 \in aK$, alors $x_1 \cdot x_2 = a \cdot k_1 \cdot k_2 \in aK$. Donc $K \cup aK$ est un sous-groupe de H.

Soit $x \in K \cap aK$, il existe $(k_1, k_2) \in K^2$ tel que $k_1 = a \cdot k_2$ et $a \in K$ ce qui est impossible. Donc $K \cap aK = \emptyset$.

On construit alors par récurrence K_n : on pose $K_0 = \{e_G\}$ et à l'étape n, si $K_n = H$ on arrête, sinon il existe $a_{n+1} \in H \setminus K_n$ et on pose $K_{n+1} = K_n \cup a_{n+1}K$. Alors $|K_{n+1}| = 2|K_n|$. Comme H est fini, il existe $n_0 \in \mathbb{N}$ tel que $H = K_{n_0}$. On a alors $|H| = 2^{n_0}$.

Ainsi, si $n_0 = 0$, on a $H = \{e_G\}$ et

$$P = e_G \tag{1.19}$$

Si $n_0 = 1$, on a $H = \{e_G, a_1\}$ et

$$P = a_1 \neq e_G \tag{1.20}$$

Si $n_0 \ge 2$, comme chaque a_k apparaît un nombre pair de fois dans le produit, on a

$$P = e_G \tag{1.21}$$

Solution 1.6. Soit $x_0 \in \mathbb{R}$. $(\overline{kx_0})_{0 \leqslant k \leqslant n}$ ne sont pas deux à deux distincts. Donc il existe $l \neq l' \in [0, n]^2$ tel que $\overline{lx_0} = \overline{l'x_0}$ d'où $0 < |l-l'| \leqslant n$. Donc il existe $j \in [1, n]$ avec $jx_0 \in G$. Ainsi, $n!x_0 \in G$ (itéré de jx_0). Ce raisonnement est vrai pour $x = \frac{x_0}{n!}$ donc $x_0 \in G$. Ainsi,

$$\boxed{G = \mathbb{R}}\tag{1.22}$$

Solution 1.7. Soit f un isomorphisme de $\mathbb{Z}/n\mathbb{Z}$ dans lui-même. Soit $k \in [0, n-1]$, on a $f(\overline{k}) = kf\overline{1}$). Par isomorphisme, $\omega(f(\overline{1})) = \omega(\overline{1}) = n$. Notons alors $\overline{x} = f(\overline{1})$ avec $x \in [0, n-1]$.

Si $x \wedge n = 1$, il existe $(u, v) \in \mathbb{Z}^2$ tel que ux + vn = 1, donc $u\overline{x} = \overline{1} \in gr\{\overline{x}\}$. Ainsi, $Zn\mathbb{Z} = gr\{\overline{x}\}$ (car les éléments de $\mathbb{Z}/n\mathbb{Z}$ sont des itérés de $\overline{1}$) donc $\omega(\overline{x}) = n$.

Réciproquement, si $\omega(\overline{x}) = n$, $\overline{1} \in gr\{\overline{x}\}$ donc il existe $u \in \mathbb{Z}$ tel que $u\overline{x} = 1 = \overline{ux}$. Donc $n \mid ux - 1$, c'est-à-dire qu'il existe $v \in \mathbb{Z}$ tel que ux - 1 = vn, d'où ux + vn = 1. D'après Bézout, on a $x \wedge n = 1$. Finalement, on a $\omega(\overline{x}) = n$ si et seulement si $x \wedge n = 1$.

Ainsi, les isomorphismes sont nécessairement de la forme

$$\begin{vmatrix}
f_x : \mathbb{Z}/n\mathbb{Z} & \to \mathbb{Z}/n\mathbb{Z} \\
\overline{k} & \mapsto \overline{kx}
\end{vmatrix}$$
(1.23)

où $x \in \llbracket 0, n-1 \rrbracket$ et $x \wedge n = 1.$

Réciproquement, si $x \in [0, n-1]$ est tel que $x \wedge n = 1$, f_x est évidemment un morphisme. Si $\overline{k} \in \ker(f_x)$, on a $f_x(\overline{k}) = \overline{0}$ si et seulement si $\overline{kx} = \overline{0}$ si et seulement si $n \mid kx$ et comme $n \wedge x = 1$, d'après le théorème de Gauss, on a $n \mid k$ donc $\overline{k} = \overline{0}$ donc $\ker(f_x) = \{\overline{0}\}$. Donc f_x est injective, donc bijective car $|\mathbb{Z}/n\mathbb{Z}| = |\mathbb{Z}/n\mathbb{Z}| = n$.

Solution 1.8. Si $y \in \text{Im}\varphi$, y possède $|\ker \varphi|$ antécédents. En effet, il existe $x_0 \in G$ tel que $y = \varphi(x_0)$. Pour tout $x \in G$, on a $\varphi(x) = y$ si et seulement si $\varphi(x) = \varphi(x_0)$ si et seulement si $\varphi(x_0^{-1} \cdot x) = e_G$ si et seulement si $x_0^{-1} \cdot x \in \ker \varphi$ si et seulement si $x \in x_0 \ker \varphi$. Comme

$$g: \ker \varphi \to x_0 \ker \varphi$$
$$x \mapsto x \cdot x_0$$

est bijective, on a $|\ker \varphi| = |x_0 \varphi|$. Ainsi, on a $|G| = |\operatorname{Im} \varphi| \times |\ker \varphi|$.

Dans tous les cas, on a $\ker \varphi \subset \ker \varphi^2$ et $\operatorname{Im} \varphi^2 \subset \operatorname{Im} \varphi$. On a ensuite

$$\operatorname{Im}\varphi^2 = \operatorname{Im}\varphi \iff |\operatorname{Im}\varphi^2| = |\operatorname{Im}\varphi| \tag{1.24}$$

$$\iff |\ker \varphi^2| |\operatorname{Im} \varphi^2| = |\ker \varphi^2| |\operatorname{Im} \varphi| = |G| = |\ker \varphi| |\operatorname{Im} \varphi| \tag{1.25}$$

$$\iff |\ker \varphi^2| = |\ker \varphi| \tag{1.26}$$

$$\iff \ker \varphi^2 = \ker \varphi \tag{1.27}$$

Solution 1.9. On considère

$$f: G \to G$$
$$x \mapsto x^m$$

l'exercice revient à montrer que f est bijective. D'après le théorème de Bézout, il existe $(a,b) \in \mathbb{Z}^2$ tel que am + bn = 1. Soit $y \in G$, on a

$$y^{1} = y = y^{am+bn} = y^{am} \cdot \underbrace{y^{bn}}_{=e_{G}} = y^{am} = (y^{a})^{m}$$
 (1.28)

Donc f est surjective et comme G est fini,

Solution 1.10.

1. On a $e_G \in S_g$, si $(x,y) \in S_g^2$ alors $x \cdot y \cdot g = x \cdot g \cdot y = g \cdot x \cdot y$ donc $x \cdot y \in S_g$ et si $x \in S_g$ alors $x \cdot g = g \cdot x$ implique $g \cdot x^{-1} = x^{-1} \cdot g$ en multipliant par l'inverse de x à gauche et à droite donc

$$x^{-1} \in S_g \tag{1.30}$$

2. Soit $(h, h') \in G^2$. On a $h \cdot g \cdot h^{-1} = h' \cdot g \cdot h'^{-1}$ si et seulement si $g \cdot h^{-1} \cdot h' = h^{-1} \cdot h \cdot g$ si et seulement si $h^{-1} \cdot h \in S_g$ si et seulement si $h' \in hS_g$. Or $|hS_g| = |S_g|$ car

$$I_h: S_g \rightarrow hS_g$$

$$x \mapsto h \cdot x$$

est bijective de réciproque $I_{h^{-1}}$. Soit la relation d'équivalence \mathcal{R}_0 sur G définie par $h\mathcal{R}_0h'$ si et seulement si $h\cdot g\cdot h^{-1}=h'\cdot g\cdot h'^{-1}$. Chaque classe à $|S_g|$ éléments et il y y a |C(g)| classes dans G d'où

$$|G| = |S_g| |C(g)|$$

$$(1.31)$$

3. On a $Z(G) = \bigcap_{g \in G} S_g$ donc Z(G) est un sous-groupe et pour tout $g \in G$,

$$Z(G) \subset S_g \tag{1.32}$$

4. Pour $x \in G$, on note $\overline{x} = \{h \cdot x \cdot h^{-1} \mid h \in G\} = C(x)$.

On a $|\overline{x}| = 1$ si et seulement si pour tout $h \in G$, $h \cdot x \cdot h^{-1} = x$ si et seulement si $x \in Z(G)$. Soit \mathcal{A} une partie de G telle que $(\overline{x})_{x \in \mathcal{A}}$ forme une partition de $G \setminus Z(G)$. On a

$$|G| = p^{\alpha} = |Z(G)| + \sum_{x \in A} |C(x)|$$
 (1.33)

Si $x \in \mathcal{A}$, $x \notin Z(G)$ donc $|S_x| < |G|$ (car $x \in Z(G)$ si et seulement si $S_x = G$) et donc

$$|C(x)| = \frac{|G|}{|S_x|}$$
 (1.34)

d'après 2. Donc $|C(x)|=p^{\beta}$ avec $\beta\in [\![1,\alpha]\!]$ car $|C(x)|\neq 1.$ Donc

$$p \mid \sum_{x \in A} |C(x)| \tag{1.35}$$

d'où

$$p \mid |Z(G)| \tag{1.36}$$

donc

$$|Z(G)| \neq 1 \tag{1.37}$$

5. On a

$$p^{2} = |Z(G)| + \sum_{x \in \mathcal{A}} |C(x)| \tag{1.38}$$

D'après la question 4, on a $|Z(G)| \neq 1$ et $|Z(G)| \mid |G|$.

Si $Z(G) \neq G$, alors |Z(G)| = p. Pour $x \in \mathcal{A}$, $Z(G) \subset S_x \neq G$ donc $|S_x| = p$ (car $|S_x| \mid |G|$) et donc $Z(G) = S_x$. Or $x \in S_x$ et $x \notin Z(G)$ ce qui n'est pas possible, donc $|Z(G)| = p^2$ et Z(G) = G.

S'il existe un élément d'ordre p^2 . G est cyclique et est isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$. Sinon, pour tout $x \in G \setminus \{e_G\}$, on a $\omega(x) = p$. Soit $x_1 \in G \setminus \{e_G\}$ et $x_2 \in G \setminus gr\{x_1\}$. Soit

$$f: (\mathbb{Z}/p\mathbb{Z})^2 \to G$$
$$(\overline{k}, \overline{l}) \mapsto x_1^k \cdot x_2^l$$

f est bien définie car si $\overline{k} = \overline{k'}$ et $\overline{l} = \overline{l'}$, on a $p \mid k - k'$ et $p \mid l - l'$ donc $x_1^k \cdot x_2^l = x_1^{k'} \cdot x_2^{l'}$. Comme G est abélien, f est un morphisme.

Montrons que f est injective. Soit $(\overline{k},\overline{l}) \in \ker(f)$ avec $(k,l) \in [0,p-1]^2$, on a $x_1^k \cdot x_2^l = e_G$ donc $x_2^l = x_1^{-k}$. Si $l \in [1,p-1]$ or p est premier donc $l \wedge p = 1$ donc il existe $(u,v) \in \mathbb{Z}^2$ tel que lu + pv = 1. Alors on a

$$x_2 = x_2^{lu+pv} = x_2^{lu} \cdot x_2^{pv} = x_2^{lu} = x_1^{-k} \in gr\{x_1\}$$
(1.40)

ce qui n'est pas possible. Donc $\bar{l}=\bar{0}$ et de même $\bar{k}=\bar{0}$ donc f est injective et ainsi $|\mathbb{Z}/p^2\mathbb{Z}|=|G|$ donc

Remarque 1.3. Les groupes de cardinal p^3 ne sont pas nécessairement abélien, par exemple le groupe des isométries du carré \mathcal{D}_4 de cardinal 8.

Solution 1.11. Soit f un morphisme de $(\mathbb{Z}, +)$ dans (\mathbb{Q}_+^*, \times) . Pour tout $n \in \mathbb{Z}$, $f(n) = f(1)^n$ donc il existe $r_0 \in \mathbb{Q}_+^*$ tel que $f(1) = r_0$ donc

$$f \colon n \mapsto r_0^n \tag{1.42}$$

Soit f un morphisme de $(\mathbb{Q}, +)$ dans (\mathbb{Q}_+^*, \times) . Pour tout $a \in \mathbb{N}^*$, $f(1) = f(\frac{1}{a})^a$. Pour tout p premier, on a $\nu_p(f(1)) = a\nu_p(f(\frac{1}{a}))$ donc pour tout $a \in \mathbb{N}^*$, $a \mid \nu_p(f(1))$ donc $\nu_p(f(1)) = 0$ pour tout p premier, donc f(1) = 1. Ainsi, pour tout $p \in \mathbb{Z}$, $f(n) = f(1)^n = 1$ et $f(b \times \frac{a}{b}) = f(a) = 1 = f(\frac{a}{b})^b$ donc $f(\frac{a}{b}) = 1$. Donc

$$f \colon r \mapsto 1 \tag{1.43}$$

Solution 1.12. On a $xy = y^2x$, $x^2y = xy^2x = y^4x^2$, $x^3y = x^2y^2x = xy^4x^2 = y^8x^3$, $x^5y = y^{32}x^5$ donc $y^{31} = e_G$ et $\omega(y) = 31$.

Tout élément de G peut s'écrire $y^{\lambda}x^{\mu}$ avec $(\lambda, \mu) \in [0, 30] \times \{0, 4\}$. Soit

$$f: [0,30] \times [0,4] \rightarrow G$$
$$(\lambda,\mu) \mapsto y^{\lambda}x^{\mu}$$

est surjective par construction. Soit $((\lambda, \mu), (\lambda', \mu')) \in (\llbracket 0, 30 \rrbracket \times \llbracket 0, 4 \rrbracket)^2$ tel que $y^{\lambda}x^{\mu} = y^{\lambda'}x^{\mu'}$ donc $y^{\lambda-\lambda'} = x^{p'-p}$ d'où $y^{5(\lambda-\lambda')} = x^{5(\mu'-\mu)} = e_G$. Or $\omega(y) = 31$ donc $31 \mid 5(\lambda - \lambda')$ et d'après le théorème de Gauss, $31 \mid \lambda - \lambda'$. Or $(\lambda, \lambda') \in \llbracket 0, 30 \rrbracket^2$ donc $\lambda = \lambda'$ et de même $\mu = \mu'$ donc f est injective donc bijective et

$$\boxed{|G| = 155} \tag{1.44}$$

Soit G' un autre tel groupe engendré par x' et y', on forme

$$g: \quad G \quad \to \quad G$$
$$y^p x^\mu \quad \mapsto \quad y'^\lambda x'^\mu$$

et on vérifie que g est un isomorphisme.

Solution 1.13.

1. Soit $i \in [1, r]$, il existe nécessairement $y_i \in G$ tel que $\nu_{p_i}(\omega(y_i)) = p_i^{\alpha_i}$ (où ν_p est la valuation p-adique), sinon on ne pourrait pas avoir ce terme dans le ppcm. Donc

$$p_i^{\alpha_i} \mid \omega(y_i)$$
 (1.45)

2. Il existe $n \in \mathbb{N}$ tel que $\omega(y_i) = p_i^{\alpha_i} n$. Posons $x_i = y_i^n \in G$. Alors pour $k \in \mathbb{N}$,

$$x_i^k = e_G \iff y_i^{nk} = e_G \iff \omega(y_i) \mid nk \iff p_i^{\alpha_i} \mid k$$
 (1.46)

Donc

$$\omega(x_i) = p_i^{\alpha_i} \tag{1.47}$$

3. On pose $x = \prod_{i=1}^r x_i$. Soit $k \in \mathbb{N}$, alors

$$x^k = e_G \Longleftrightarrow \prod_{i=1}^r x_i^k = e_G \tag{1.48}$$

Pour $i \in [1, r]$, on met le tout à la puissance $M_i = \prod_{\substack{j=1 \ j \neq i}}^r p_j^{\alpha_j}$. On a alors, pour tout $i \in [1, r]$,

$$x_i^{kM_i} = e_G \iff p_i^{\alpha_i} \mid kM_i \iff p_i^{\alpha_i} \mid k \tag{1.49}$$

la dernière équivalence venant du théorème de Gauss. Donc pour tout $i \in [\![1,r]\!], \, p_i^{\alpha_i} \mid k,$ ce qui équivaut donc à $N \mid k$ et donc

$$\omega(x) = N \tag{1.50}$$

Solution 1.14. Sur un corps commutatif, un polynôme de degré n admet au plus n racines. Montrons qu'il existe $x_1 \in \mathbb{K}^*$ tel que $\omega(x_i) = |\mathbb{K}^*|$. Par définition de N, pour tout $x \in \mathbb{K}^*$, $\omega(x) \mid N$. D'où $x^N = 1_{\mathbb{K}}$. Donc x est racine de $X^N - 1$. Ainsi, $|\mathbb{K}^*| \leq N$. Par ailleurs, $N \mid |\mathbb{K}^*|$ car pour tout $x \in \mathbb{K}^*$, $x^{|\mathbb{K}^*|} = 1_{\mathbb{K}^*}$. Donc $|\mathbb{K}^*| = N$ et ainsi

$$\mathbb{K}^* = gr\left\{x_1\right\}$$
 (1.51)

On a $|\mathbb{Z}/13\mathbb{Z}^*|=12$ donc pour tout $\overline{x}\in(\mathbb{Z}/13\mathbb{Z})^*$, $\omega(\overline{x})\in\{1,2,3,4,6,12\}$. On a $\overline{2}^2=\overline{4}$, $\overline{2}^3=\overline{8}$, $\overline{2}^4=\overline{16}=\overline{3}$, $\overline{2}^6=\overline{12}$ donc $\omega(\overline{2})=12$ et

$$\boxed{\mathbb{Z}/13\mathbb{Z}^* = gr\left\{\overline{2}\right\} = \left\{\overline{2}^k \mid k \in \llbracket 0, 11 \rrbracket\right\}}$$
(1.52)

Solution 1.15.

1. Soit $(x,y) \in G^2$, on a $(x \cdot y)^2 = (x \cdot y) \cdot (x \cdot y) = e_G$ donc $x \cdot y = y^{-1} \cdot x^{-1}$ et comme $x^2 = e_G$, $x^{-1} = x$ d'où xy = yx et

$$G$$
 est abélien. (1.53)

2. Soit (x_1, \ldots, x_n) une famille génératrice minimale de G: pour tout $x \in G$, il existe $(\varepsilon_i) \in \{0,1\}^n$ tel que $x = \prod_{i=1}^n x_i^{\varepsilon_i}$ (car G est abélien). Soit

$$f: \quad (\mathbb{Z}/2\mathbb{Z})^n \quad \to \quad G$$
$$(\overline{\varepsilon_1}, \dots, \overline{\varepsilon_n}) \quad \mapsto \quad \prod_{i=1}^n x_i^{\varepsilon_i}$$

Si pour tout $i \in [1, n]$ on a $\overline{\varepsilon_i} = \overline{\varepsilon_i'}$, alors $x^{\varepsilon_i} = x^{\varepsilon_i'}$ car $x_i^2 = e_G$ et $2 \mid \varepsilon_i - \varepsilon_i'$. Donc f est bien définie.

f est clairement un morphisme (car G est abélien). D'après la première question, f est surjective. Montrons que f est injective. Soit $(\overline{\varepsilon_1}, \dots, \overline{\varepsilon_n})$ tel que $\prod_{i=1}^n x_i^{\varepsilon_i} = e_G$. Soit $i \in [1, n]$, supposons ε_i impair, on a alors $x_i = \varepsilon_i = x_i$. D'où $x_i = \prod_{j=1}^n x_j^{-\varepsilon_j} = \prod_{j=1}^n x_j^{\varepsilon_j}$ car $x^2 = e_G$. Donc $x_i \in gr(x_j, j \in [1, n], j \neq i)$, ce qui contredit le caractère minimal de (x_1, \dots, x_n) .

Remarque 1.4. En notant + la loi sur G, on peut définir

$$f: \ \mathbb{Z}/2\mathbb{Z} \times G \to G$$

 $(\varepsilon, x) \mapsto x^{\varepsilon}$

. Alors $(G, +, \cdot)$ est un $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel, de dimension finie n car G est fini, et le choix d'une base réalise un isomorphisme de $((\mathbb{Z}/2\mathbb{Z})^n, +)$ dans (G, +).

Remarque 1.5. Par isomorphisme, on a

$$\prod_{x \in G} x = f\left(\sum_{(\overline{\varepsilon_1}, \dots, \overline{\varepsilon_n}) \in (\mathbb{Z}/2\mathbb{Z})^n} (\overline{\varepsilon_1}, \dots, \overline{\varepsilon_n})\right)$$
(1.55)

Pour n=1, on a $\overline{0}+\overline{1}=\overline{1}$, pour n=2, on a $(\overline{0},\overline{0})+(\overline{0},\overline{1})+(\overline{1},\overline{0})+(\overline{1},\overline{1})=(\overline{0},\overline{0})$. Pour n>2, $\overline{1}$ apparaît 2^{n+1} fois sur chaque coordonnée (donc un nombre pair de fois), donc la somme fait $(\overline{0},\ldots,\overline{0})$.

Solution 1.16.

1. Si G est abélien, on a

$$D(G) = \{e_G\} \tag{1.56}$$

- 2. Soit $\sigma \in \mathcal{A}_n$, σ se décompose en un produit d'un nombre pair de transpositions. Soient [a, b] et [c, d] deux transpositions.
 - Si $\{a, b\} = \{c, d\}$, alors $[a, b] \circ [c, d] = id$.
 - Si $a \in \{c, d\}$, supposons par exemple a = c et $b \neq d$. On a alors $[a, b] \circ [c, d] = [a, b] \circ [a, d] = [b, a, d]$.
 - Si $\{a,b\} \cap \{c,d\} = \emptyset$, on a

$$[a,b] \circ [c,d] = [a,b] \circ \underbrace{[b,c] \circ [b,c]}_{=id} \circ [c,d] = [a,b,c] \circ [b,c,d]$$

$$\tag{1.57}$$

Donc les 3-cycles engendrent
$$\mathcal{A}_n$$
. (1.58)

3. On a

$$\sigma \circ (a_1, a_2, a_3) \circ \sigma^{-1} = (\sigma(a_1), \sigma(a_2), \sigma(a_3)) \tag{1.59}$$

On peut trouver $\sigma \colon \llbracket 1, n \rrbracket \to \llbracket 1, n \rrbracket$ telle que a_i soit envoyé sur b_i pour $i \in \{1, 2, 3\}$ et les éléments $\llbracket 1, n \rrbracket \setminus \{a_1, a_2, a_3\}$ dans $\llbracket 1, n \rrbracket \setminus \{b_1, b_2 b_3\}$.

Donc les 3-cycles sont conjugués dans
$$\Sigma_n$$
. (1.60)

Si $n \geqslant 5$ et σ impair, soit $(c_1, c_2) \in \llbracket 1, n \rrbracket \setminus \{a_1, a_2, a_3\}$. $\sigma' = \sigma \circ [c_1, c_2]$ est pair et $\sigma'(a_i) = b_i$.

Donc les trois cycles sont conjugués dans
$$\mathcal{A}_n$$
 pour $n \geqslant 5$. (1.61)

C'est cependant faux pour n = 3 et n = 4.

4. Soit $(\sigma, \sigma') \in \Sigma_n^2$. En notant \mathcal{E} la signature d'une permutation (morphisme de (Σ_n, \circ) dans $(\{-1, 1\}, \times)$), on a

$$\mathcal{E}(\sigma \circ \sigma^{-1} \circ \sigma' \circ \sigma'^{-1}) = 1 \tag{1.62}$$

donc $\sigma \circ \sigma^{-1} \circ \sigma' \circ \sigma'^{-1} \in \mathcal{A}_n$. Donc $D(\Sigma_n) \subset \mathcal{A}_n$.

Soit ensuite (a_1, a_2, a_3) un 3-cycle. On a $(a_1, a_3, a_2)^2 = (a_1, a_2, a_3)$ puis

$$(a_1, a_3, a_2)^{-1} = (a_1, a_2, a_3)$$
. Ainsi, on a

$$\sigma \circ (a_1, a_3, a_2) \circ \sigma^{-1} \circ (a_1, a_2, a_3) = (a_1, a_3, a_2)^2 = (a_1, a_2, a_3)$$
(1.63)

On pose $\sigma = [a_2, a_3]$, et alors (a_1, a_2, a_3) est un commutateur. Ainsi, $(a_1, a_2, a_3) \in D(\Sigma_n)$ et donc $\mathcal{A}_n \subset D(\Sigma_n)$ (d'après la première question).

Finalement, on a

$$D(\Sigma_n) = \mathcal{A}_n \tag{1.64}$$

Remarque 1.6. Pour $n \ge 5$, on a $D(A_n) = A_n$.

Solution 1.17.

1. Pour $g \in G$, τ_g est bijective de réciproque $\tau_{g^{-1}}$. On a notamment $\tau_{g \cdot g'} = \tau_g \circ \tau_{g'}$ donc τ est un morphisme. Si $g \in G$ est tel que $\tau_g = id$, pour tout $x \in G$, on a gx = x donc $g = e_G$. Donc τ est un morphisme injectif et

G est isomorphe à
$$\operatorname{Im} \tau = \tau(G)$$
, sous-groupe de $\Sigma(G)$, lui-même isomorphe à Σ_n (1.65)

2. Soit

$$f: \Sigma_n \to GL_n(\mathbb{C})$$

 $\sigma \mapsto (\delta_{i,\sigma(j)})_{1 \leq i,j \leq n} = P_{\sigma}$

 P_{σ} est la matrice de permutation associée à σ . f est un morphisme, et est injectif, donc

G est isomorphe à un sous-groupe de
$$GL_n(\mathbb{C})$$
. (1.66)

Solution 1.18. Soit $(x, y, z, t) \in \mathbb{N}^4$ tel que $x^2 + y^2 + z^2 = 8t + 7$. Dans $\mathbb{Z}/8\mathbb{Z}$, on a $\overline{0}^2 = \overline{0}$, $\overline{1}^2 = \overline{1}$, $\overline{2}^2 = \overline{4}$, $\overline{3}^2 = \overline{1}$, $\overline{4}^2 = \overline{0}$, $\overline{5}^2 = \overline{1}$, $\overline{6}^2 = \overline{4}$ et $\overline{7}^2 = \overline{1}$. Donc la somme de 3 de ces classes ne donnent pas $\overline{7}$.

Par récurrence, prouvons la propriété. Soit $(x,y,z,t) \in \mathbb{N}^4$ tel que $x^2 + y^2 + z^2 = (8t+7)4^{n+1}$. Parmi x,y,z les trois sont pairs ou deux d'entre eux sont impairs. Si x,y impairs et z pair, on écrit x=2x'+1,y=2y'+1,z=2z', alors $x^2+y^2+z^2\equiv 2[4]$ mais $(8t+7)4^{n+1}\equiv 0[4]$: contradiction. Nécessairement, x,y et z sont pairs. En divisant par 4, on se ramène donc à l'hypothèse de récurrence.

14

Solution 1.19. On raisonne sur $\mathbb{Z}/7\mathbb{Z}$. On a $\overline{10^{10^n}}=\overline{3^{10^n}}$. Dans le groupe $((\mathbb{Z}/7\mathbb{Z})^*,\times)$, $\overline{3}$ a un ordre qui divise $|\mathbb{Z}/7\mathbb{Z}^*|=6$. On a $\overline{3}^2=\overline{2}$, $\overline{3}^3=\overline{-1}$ et $\overline{3}^6=\overline{1}$. Donc $\overline{3}^{6k}=\overline{1}$, $\overline{3}^{6k+1}=\overline{3}$, $\overline{3}^{6k+2}=\overline{2}$, $\overline{3}^{6k+3}=\overline{1}$, $\overline{3}^{6k+4}=\overline{4}$ et $3^{6k+5}=\overline{5}$..

On se place maintenant dans $\mathbb{Z}/6\mathbb{Z}$: $\overline{10} = \overline{4}$, $\overline{10}^2 = \overline{4}$ et donc par récurrence sur $n \in \mathbb{N}^*$, $\overline{10}^n = \overline{4}$. Donc il existe $k \in \mathbb{Z}$ tel que $10^n = 6k + 4$. Ainsi,

$$\boxed{\overline{10^{10^n}} = \overline{4}} \tag{1.68}$$

Solution 1.20.

1. On a $F_1 = 5$ et $2 + \prod_{k=0}^{0} F_k = 2 + 3 = 5$. Soit $n \ge 1$, supposons que $F_n = 2 + \prod_{k=0}^{n-1} F_k$. Alors

$$F_{n+1} - 2 = 2^{2^{n+1}} - 1 = (2^{2^n})^2 - 1 (1.69)$$

$$= (2^{2^n} + 1)(2^{2^n} - 1) (1.70)$$

$$= F_n(F_n - 2) (1.71)$$

$$= F_n \times \prod_{k=0}^{n-1} F_k \tag{1.72}$$

$$=\prod_{k=0}^{n} F_k \tag{1.73}$$

2. Soit p un facteur premier de F_n . S'il existe $k \in [0, n-1]$ tel que $p \mid F_k$, alors d'après la première question on a $p \mid F_n - \prod_{k=0}^{n-1} F_k = 2$. Donc p = 2. Or F_n est impair, donc non divisible par deux, ce qui est absurde. Donc p ne divise aucun F_k pour $k \in [0, n-1]$. Les F_n étant distincts deux à deux,

Remarque 1.7. Si $n \neq m$ alors $F_n \wedge F_m = 1$.

Solution 1.21.

1. On teste uniquement les puissances qui divisent 32 : 2,4,8,16,32. On a $\overline{5}^2 = \overline{-7}, \overline{5}^4 = \overline{-15}, \overline{5}^8 = \overline{1}$. Donc

$$\omega(\overline{5}) = 8 \tag{1.76}$$

2. On note

$$\psi: \ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \ \to \ U$$
$$(\dot{k}, \tilde{l}) \ \mapsto \ \overline{-1}^k \times \overline{5}^l$$

On a $\omega(\overline{-1})=2$ et $\gamma(\overline{5})=8$ donc ψ est bien définie. ψ est bien un morphisme de groupes. Soit $(\dot{k},\tilde{l})\in\ker(\psi)$, on a $\overline{-1}^k\times\overline{5}^l=\overline{1}$. Si $\dot{k}=\dot{1}$, alors $\overline{-1}^k=\overline{-1}=\overline{5}^{-l}=\overline{5}^l\in gr\{\overline{5}\}$. Donc $\overline{5}^{2l}=\overline{1}$ et ainsi $8\mid 2l$ d'où $4\mid l$. Mais alors $l\in\{0,4\}$ ce qui est impossible. Donc $\dot{k}\neq\dot{1}$. De ce fait, $\dot{k}\neq\dot{1}$. Ainsi, $\overline{5}^l=\overline{1}$ donc $\tilde{l}=\tilde{0}$. Ainsi, $\ker(\psi)=\left\{(\dot{0},\tilde{0})\right\}$ donc ψ est injective, puis bijective car $|\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/8\mathbb{Z}|=|U|$. Donc

$$U = gr\left\{\overline{-1}, \overline{5}\right\}$$
 (1.77)

Remarque 1.8. U n'est pas cyclique car, par isomorphisme, ses éléments ont un ordre qui divise 8.

Solution 1.22.

1. Soit

$$f: G_n \times G_m \to U_{nm}$$

 $(\xi, \xi') \mapsto \xi \times \xi'$

Soit $(\xi, \xi') \in G_n \times G_m$, Soit $k \in \mathbb{Z}$ tel que $(\xi \times \xi')^k = 1$. Alors $(\xi \times \xi')^{km} = 1$ d'où $\xi^{km} = 1$ donc $n \mid km$ et $n \mid k$ d'après le théorème de Gauss. De même pour n, on a $m \mid k$ et donc $nm \mid k$. La réciproque est immédiate : $\xi \times \xi' \in G_{nm}$. Donc $f(G_n \times G_m) \subset G_{nm}$ et $|G_n \times G_m| = \varphi(n) \times \varphi(m) = \varphi(nm) = |G_{nm}|$ où φ est l'indicatrice d'Euler.

Montrons que f est injective : soit $(x, y, x', y') \in G_n^2 \times G_m^2$ tel que xx' = yy'. On a alors $x^m = y^m$ et $x'^n = y'^n$ d'où $(xy^{-1})^m = 1$ d'où $\omega(xy^{-1}) \mid m$ et $\omega(xy^{-1}) \mid n$. Donc $\omega(xy^{-1}) = 1$ donc x = y et en reportant, on a x' = y'. Donc f est injective puis bijective (égalité des cardinaux).

On a alors

$$\mu(n)\mu(m) = \sum_{\xi \in G_n} \xi \times \sum_{\xi' \in G_m} \xi'$$
(1.78)

$$= \sum_{(\xi,\xi')\in G_n\times G_m} \xi \xi' \tag{1.79}$$

$$=\sum_{\xi \in G_{nm}} \xi \tag{1.80}$$

$$= \boxed{\mu(nm)} \tag{1.81}$$

2. On a $\mu(1) = 1$. Soit p premier. On a

$$\sum_{k=0}^{p-1} e^{\frac{2ik\pi}{p}} = 0 \tag{1.82}$$

donc

$$\mu(p) \sum_{k=1}^{p-1} e^{\frac{2ik\pi}{p}} = -1 \tag{1.83}$$

Soit alors $\alpha \in \mathbb{N}$ avec $\alpha \geqslant 2$, on a

$$\mu(p^{\alpha}) = \sum_{\substack{k=1\\k \land p=1}}^{p^{\alpha}} e^{\frac{2ik\pi}{p^{\alpha}}} = \sum_{k=1}^{p^{\alpha}} e^{\frac{2ik\pi}{p^{\alpha}}} - \sum_{k=1}^{p^{\alpha-1}} e^{\frac{2ik\pi}{p^{\alpha-1}}} = 0$$
(1.84)

Si $n=p_1^{\alpha_1}\dots p_r^{\alpha_r}$, s'il existe $i\in [\![1,r]\!]$ tel que $\alpha_i\geqslant 2$ alors $\mu(n)=0$. Sinon, on a

$$\mu(n) = \prod_{i=1}^{r} \mu(p_i) = (-1)^r$$
(1.85)

3. Soit $(f,g) \in (\mathbb{C}^{\mathbb{N}^*})^2$, on a

$$(f \star g)(n) = \sum_{d_1 d_2 = n} f(d_1)g(d_2) \tag{1.86}$$

$$= \sum_{d_1 d_2 = n} g(d_1) f(d_2) \tag{1.87}$$

$$= (g \star f)(n) \tag{1.88}$$

Donc
$$\star$$
 est commutative. (1.89)

Soit $(f, g, h) \in (\mathbb{C}^{\mathbb{N}^*})^3$, on a

$$(f \star (g \star h))(n) = \sum_{d_1 d = n} f(d_1)(g \star h)(d) \tag{1.90}$$

$$= \sum_{d_1 d = n} \left[f(d_1) \times \sum_{d_2 d_3 = d} g(d_2) h(d_3) \right]$$
 (1.91)

$$= \sum_{d_1 d_2 d_3 = n} f(g_1)g(d_2)h(d_3)$$
(1.92)

$$= ((f \star g) \star h)(n) \tag{1.93}$$

donc
$$\star$$
 est associative. (1.94)

On vérifie maintenant que l'élément neutre est $e: \mathbb{N}^* \to \mathbb{C}$ qui à 1 associe 1 et 0 si $n \geqslant 2$. Soit

$$\psi: \mathbb{N} \to \mathbb{Z}$$

$$n \mapsto \sum_{d|n} \mu(d)$$

On a $\psi(1) = 1$. Soit $n \ge 2$ avec $n = \prod_{i=1}^r p_i^{\alpha_r}$. Les diviseurs de n sont dans $D = \{\prod_{i=1}^r p_i^{\beta_i} \mid \beta_i \le \alpha_i\}$. Ainsi, $\psi(n) = \sum_{d \in D} \mu(d)$. Or $\mu(d)$ vaut 0 s'il existe $\beta_i \ge 2$ et $(-1)^k$ si k β_i valent 1 et les autres 0. Il y a $\binom{r}{k}$ choix possibles pour que k β_i valent 1. Ainsi,

$$\psi(n) = \sum_{k=0}^{r} 1^{r-k} (-1)^k \binom{r}{k} = 0$$
 (1.95)

Donc $\mu \star 1 = e$, et $\mu^{-1} = 1$: $n \mapsto 1$ pour tout $n \in \mathbb{N}$.

4. On note

$$\begin{array}{ccc} id: & \mathbb{N}^* & \to & \mathbb{N}^* \\ & n & \mapsto & n \end{array}$$

Alors

$$\sum_{d|n} d\mu(\frac{n}{d}) = (\mu \star id)(n) \tag{1.96}$$

$$= (id \star \mu)(n) \tag{1.97}$$

$$= (1 \star (\varphi \star \mu))(n) \tag{1.98}$$

$$= \varphi(n) \tag{1.99}$$

la troisième égalité venant du fait que $id=1\star \varphi$ car $n=\sum_{d|n}\varphi(d).$

Solution 1.23. Pour $k \in [1, p-1]$, on a

$$\binom{p+k}{k} = \frac{(p+k) \times \dots \times (p+1)}{k \times \dots \times 1} = 1 + \alpha k p \tag{1.100}$$

car $(p+k) \times \cdots \times (p+1) = k! + p \times qq$ chose. On a $p \mid \binom{p}{k}$ donc

$$\sum_{k=1}^{p-1} \binom{p}{k} \binom{p+k}{k} \equiv \sum_{k=1}^{p-1} \binom{p}{k} [p^2]$$
 (1.101)

Pour k=0, on a $\binom{p}{0}\binom{p}{0}=1$ et pour k=p, on a $\binom{p}{p}\binom{2p}{p}=\binom{2p}{p}$. Et

$$\sum_{k=1}^{p-1} \binom{p}{k} = \sum_{k=0}^{p} \binom{p}{k} - 2 = 2^p - 2 \tag{1.102}$$

Il reste donc à prouver que $\binom{2p}{p} \equiv 2[p^2]$.

Or

$$\binom{2p}{p} = \sum_{k=0}^{p} \binom{p}{k} \binom{p}{p-k} \equiv 2[p^2] \tag{1.103}$$

la première égalité venant de l'égalité du terme en X^p dans $(1+X)^{2p} = (1+X)^p(1+X)^p$, et la deuxième venant du fait que seuls les termes en k=0 et k=p ne contiennent pas de p^2 , et valent chacun 1.

Finalement, on a

$$\sum_{k=0}^{p} \binom{p}{k} \binom{p+k}{k} \equiv 2^p - 2 + 1 + 2[p^2] \equiv 2^p + 1[p^2]$$
 (1.104)

Solution 1.24.

1. Soit G un sous-groupe de (\mathbb{U}, \times) . On note |G| = d. On a donc $G \subset \mathbb{U}_d$ car pour tout $x \in G$, $x^d = 1$.

Donc
$$G = \mathbb{U}_d$$
 est cyclique. (1.105)

2. On pose

$$\psi: SO_2(\mathbb{R}) \to (\mathbb{U}, \times)$$

$$R_{\theta} \mapsto e^{i\theta}$$

qui est un isomorphisme. Donc les sous-groupes de $SO_2(\mathbb{R})$ sont les G_n pour $n \geqslant 1$ avec

$$G_n = \left\{ R_{\frac{2k\pi}{n}} \mid k \in \llbracket 0, n-1 \rrbracket \right\}$$

$$(1.106)$$

3. φ est bilinéaire et symétrique. Pour tout $X \in \mathbb{R}^2$, on $\varphi(X,X) = \sum_{M \in G} \|MX\|^2 \geqslant 0$ et si $\varphi(X,X) = 0$, on a pour tout $M \in G$, X = 0. Notamment, $I_2 \in G$ et donc X = 0.

Donc
$$\varphi$$
 est bien un produit scalaire. (1.107)

Pour tout $(M_0, X, Y) \in G \times (\mathbb{R}^2)^2$, on a $\varphi(M_0X, M_0Y) = \sum_{M \in G} \langle MM_0X, MM_0Y \rangle$ et $M \mapsto MM_0$ est bijective de G dans G donc $\varphi(M_0X, M_0Y) = \varphi(X, Y)$.

Soit \mathcal{B}_0 la base canonique de \mathbb{R}^2 et \mathcal{B}_1 une base orthonormée pour φ . On note $P_0 = \operatorname{mat}_{\mathcal{B}_0 \to \mathcal{B}_1}$. Pour tout $M \in G$, $P_0^{-1}MP_0$ est la matrice d'une isométrie pour φ dans une base orthonormée pour φ . Donc $P_0^{-1}MP_0$ est orthogonale, et $\det(P_0^{-1}MP_0) = 1$ car pour tout $M \in G$, $\det(M) = 1$. Ainsi, $\{P_0^{-1}MP_0 \mid M \in G\}$ est un sous-groupe fini de $SO_2(\mathbb{R})$, donc cyclique. Il est isomorphe à G donc

$$G$$
 est cyclique. (1.108)

Solution 1.25.

1. On a $1=1+0\sqrt{2}\in E$. On remarque ensuite que pour tout $s=x+y\sqrt{2}\in E$, on a $ss^{-1}=1$ avec $s^{-1}=x-y\sqrt{1}\in E$. Soit $(s,s')\in E^2$ avec $s=x+y\sqrt{2}$ et $s'=x'+y'\sqrt{2}$. Notons déjà que $x+y\sqrt{2}>0$ car $x=\sqrt{1+2y^2}>|y|\sqrt{2}$. On a donc

$$ss' = \underbrace{xx' + 2yy'}_{\in \mathbb{Z}} + \sqrt{2}\underbrace{(yx' + y'x)}_{\in \mathbb{Z}}$$
 (1.109)

On a $xx' \in \mathbb{N}$ et $x > \sqrt{2}|y| \geqslant 0$ et $x' > \sqrt{2}|y'| \geqslant 0$ donc xx' > 2|yy'| et ainsi $xx' + 2yy' \in \mathbb{N}^*$.

Enfin, on a

$$(xx' + 2yy')^{2} - 2(yx' + y'x)^{2} = (xx')^{2} + 4(yy')^{2} - 2(yx')^{2}2(y'x)^{2}$$
(1.110)

$$= (x^2 - 2y^2)(x'^2 - 2y'^2) (1.111)$$

$$=1 \tag{1.112}$$

Donc $ss' \in E$. Finalement,

E est un sous-groupe de
$$(\mathbb{R}_+^*, \times)$$
. (1.113)

2. In est un isomorphisme de E sur $\ln(E)$, sous-groupe de $(\mathbb{R}, +)$. On sait que si

$$\underbrace{\inf(\ln(E) \cap \mathbb{R}_+)}_{\alpha} > 0 \tag{1.114}$$

alors $\ln(E) = \alpha \mathbb{Z}$ (sous-groupe de $(\mathbb{R}, +)$ dans le cas $\alpha > 0$, pour rappel si $\alpha = 0$ alors le sous-groupe est dense dans \mathbb{R}). On cherche la borne inférieure de $E \cap]1 + \infty[$ que l'on note β . β existe car cet ensemble est non vide, par exemple $3 + 2\sqrt{2}$ y appartient.

Si $\beta=1$, on peut trouver une suite de termes de E strictement décroissante convergeant vers 1. Alors pour tout $n\in\mathbb{N}$, on a

$$1 < x_{n+1} + y_{n+1}\sqrt{2} < x_n + y_n\sqrt{2} \tag{1.115}$$

On sait que

$$x_n - y_n\sqrt{2} = (x_n + y_n\sqrt{2})^{-1} < 1 < x_n + y_n\sqrt{2}$$
 (1.116)

donc $-y_n\sqrt{2} < 1 - x_n < 0$ donc $y_n > 0$. Ainsi,

$$y_n = \sqrt{\frac{x_n^2 - 1}{2}} \tag{1.117}$$

Si $x_{n+1} \geqslant x_n$, alors $y_{n+1} \geqslant y_n$ d'où $x_{n+1} + \sqrt{2}y_{n+1} > x_n + \sqrt{2}y_n$ ce qui est absurde. Donc $x_{n+1} < x_n$ et on obtient une suite strictement décroissante d'entiers naturels ce qui est impossible. Donc $\beta > 1$ et

$$E = \left\{ (x_0 + y_0 \sqrt{2})^n \mid n \in \mathbb{Z} \right\} \text{ est monogène.}$$
 (1.118)

On peut identifier β :

$$x_0 = \min\left\{x \in \mathbb{N}^* \setminus \{1\}, \exists y \in \mathbb{Z}, x + y\sqrt{2} \in E\cap], +\infty[\right\}$$
 (1.119)

Donc $\beta = 3 + 2\sqrt{2}$ Finalement, $x^2 - 2y^2 = 1$ avec $x \in \mathbb{N}, y \in \mathbb{N}$ si et seulement s'il existe $n \in \mathbb{N}$ tel que $x_n + y_n\sqrt{2} = \beta^n$.

Remarque 1.9. En fait, on a

$$\begin{cases} x_n &= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} 2^{2k} 3^{n-2k} \\ y_n &= \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2k+1} 2^{2k+1} 3^{n-2k-1} \end{cases}$$
(1.120)

Solution 1.26. On a $7 \mid n^n - 3$ si et seulement si $\overline{n}^n = \overline{3}$ dans $\mathbb{Z}/7\mathbb{Z}$. $(\mathbb{Z}/7\mathbb{Z}^*, \times)$ est un groupe de cardinal 6. Donc l'ordre de ses éléments divisent 6, et sont donc 1,2,3 ou 6. Notamment, on vérifie que $\omega(\overline{3}) = 6$ et donc le groupe engendré par $\overline{3}$ est exactement $(\mathbb{Z}/7\mathbb{Z}^*, \times)$. Ainsi,

$$(\mathbb{Z}/7\mathbb{Z}^*, \times) = \left\{ \overline{3}^k \mid k \in \llbracket 0, 5 \rrbracket \right\}$$

$$(1.121)$$

(c'est un groupe cyclique). Les générateurs sont $\left\{\overline{3}^k, k \wedge 6 = 1\right\} = \left\{\overline{3}, \overline{3}^5 = \overline{-2} = \overline{5}\right\}$. Donc $\overline{n} = \overline{3}$ ou $\overline{n} = \overline{5}$.

Si $\overline{n} = 3$, $\overline{3}^n = \overline{3}$ si et seulement si $n \equiv 1[6]$ donc $n \equiv 3[7]$ et $n \equiv 1[6]$. D'après le théorème des restes chinois, on vérifie que ceci équivaut à $n \equiv 31[42]$. La réciproque est immédiate.

Si $\overline{n} = 5$, $\overline{5}^n = \overline{3}$ si et seulement si $n \equiv 5[6]$ et $n \equiv 5[7]$. D'après le théorème des restes chinois, on vérifie que ceci équivaut à $n \equiv 5[42]$.

Donc les solutions sont
$$n \in \mathbb{N}^*$$
 tels que $n \equiv 31[42]$ ou $n \equiv 5[42]$. (1.122)

Solution 1.27. On a

$$\sum_{k=1}^{p-1} \frac{1}{k} + \frac{1}{p-k} = \frac{2a}{(p-1)!} \Longleftrightarrow \sum_{k=1}^{p-1} \frac{p}{k(p-k)} = \frac{2a}{(p-1)!}$$
 (1.123)

$$\iff \sum_{k=1}^{p-1} \frac{p(p-1)!}{k(p-k)} = 2a$$
 (1.124)

$$\iff p \sum_{k=1}^{p-1} \frac{(p-1)!^3}{k(p-k)} = 2a \underbrace{(p-1)!^2}_{p \wedge (p-1)!^2 = 1}$$
 (1.125)

donc $p \mid a$ d'après le théorème de Gauss.

On écrit alors $a = p \times b$ avec $b \in \mathbb{N}$. On a alors

$$\sum_{k=1}^{p-1} \frac{1}{k(p-k)} = \frac{2b}{(p-1)!} \tag{1.126}$$

comme (p-1)!, k et p-k $(1 \leqslant k \leqslant p)$ sont inversibles dans $\mathbb{Z}/p\mathbb{Z}$, on a alors

$$\sum_{k=1}^{p-1} \overline{-k}^{-2} = \overline{2b} \times \underbrace{(p-1)!}^{-1}$$
 (1.127)

d'après le théorème de Wilson.

Donc

$$\overline{2b} = \sum_{k=1}^{p-1} \overline{k}^{-2} \tag{1.128}$$

Comme

$$\begin{array}{cccc} f: & \mathbb{Z}/p\mathbb{Z}^* & \to & \mathbb{Z}/p\mathbb{Z}^* \\ & \overline{k} & \mapsto & \overline{k}^{-1} \end{array}$$

est bijective, on a

$$\overline{2} \times \overline{b} = \sum_{k=1}^{p-1} \overline{k}^2 = \frac{\overline{p(p-1)(2p-1)}}{6}$$
 (1.129)

Or $p\geqslant 5$ est premier, donc p-1 est pair et p est congru) 1 ou 2 modulo 3. Donc $p-1\equiv 0[3]$ ou $2p-1\equiv 0[3]$ donc $\frac{(p-1)(2p-1)}{6}\in\mathbb{N}$. Ainsi,

$$\overline{2} \times \overline{b} = \sum_{k=1}^{p-1} \overline{k}^2 = \overline{p} \times \frac{\overline{(p-1)(2p-1)}}{6} = 0$$
 (1.130)

et donc $p \mid b$ par le théorème de Gauss. Donc

$$p^2 \mid a \tag{1.131}$$

Solution 1.28. Les racines réelles de P ont une multiplicité paire, le coefficient dominant est positif (car la limite en $+\infty$ est positive) et les racines complexes non réelles sont 2 à 2 conjuguées :

$$(X - \alpha)(X - \overline{\alpha}) = X^2 - 2\Re(\alpha)X + |\alpha|^2 = (X - \Re(\alpha))^2 + |\Im(\alpha)|^2$$
(1.132)

avec $\Im(\alpha) \neq 0$.

D'où le résultat en décomposant P sur
$$\mathbb{C}[X]$$
. (1.133)

Solution 1.29.

1. $G = \mathbb{Z} + \alpha \mathbb{Z}$ est un sous-groupe de \mathbb{R} engendré par α et 1. S'il existait $a \in \mathbb{R}_+^*$ tel que $G = a\mathbb{Z}$, alors il existait $(n, m) \in (\mathbb{Z}^*)^2$ tel que 1 = na et $\alpha = ma$, d'où $\alpha = \frac{m}{n} \in \mathbb{Q}$ ce qui est absurde. Donc G est dense dans \mathbb{R} .

Le fait que
$$\mathbb{Z} + \alpha \mathbb{N}$$
 est dense dans \mathbb{R} est alors immédiate. (1.134)

2. Posons $\beta = \frac{\alpha}{2\pi} \notin \mathbb{Q}$. Alors $\mathbb{Z} + \beta \mathbb{N}$ est dense dans \mathbb{R} . Soit $c < d \in \mathbb{R}^2$. Comme $\frac{c}{2\pi} < \frac{d}{2\pi}$, il existe $x \in \mathbb{Z} + \beta \mathbb{N} \cap]\frac{c}{2\pi}$, $\frac{d}{2\pi}[$ et alors $2\pi x \in 2\pi \mathbb{Z} + \alpha \mathbb{N} \cap]c$, d[. On pose $c = \arcsin(a)$ et $d = \arcsin(b)$ avec a < b. On a bien c < d car arcsin est strictement croissante. Alors il existe $(m, n) \in \mathbb{Z} \times \mathbb{N}$ tel que $2\pi m + \alpha m = 2\pi x \in]c$, d[donc $\sin(2\pi x) = \sin(2\pi m + 2\pi m)$

Alors il existe $(m, n) \in \mathbb{Z} \times \mathbb{N}$ tel que $2\pi m + \alpha m = 2\pi x \in]c, d[$ donc $\sin(2\pi x) = \sin(2\pi m + \alpha n) = \sin(\alpha n) \in]a, b[$.

Donc
$$(\sin(n\alpha))_{n\in\mathbb{N}}$$
 est dense dans $]-1,1[.$ (1.135)

En particulier, cela vaut pour $\alpha = 1$ car $\pi \notin \mathbb{Q}$. Donc $(\sin(n))_{n \in \mathbb{N}}$ est dense dans [-1, 1].

3. Soit $n \in \mathbb{N}$. 2^n commence par 7 en base 10 si et seulement s'il existe $p \in \mathbb{N}$ avec

$$7 \times 10^p \le 2^n < 8 \times 10^p \iff \ln(7) + p\ln(10) \le n\ln(2) < \ln(8) + p\ln(10)$$
 (1.136)

$$\iff \frac{\ln(7)}{\ln(10)} \leqslant \frac{n\ln(2)}{\ln(10)} - p < \frac{\ln(8)}{\ln(10)} \tag{1.137}$$

On a alors

$$p = \left| \frac{n \ln(2)}{\ln(10)} \right| \in \mathbb{N} \tag{1.138}$$

On étudie donc $\mathbb{N}^{\frac{\ln(2)}{\ln(10)}} + \mathbb{Z}$. Supposons que $\frac{\ln(2)}{\ln(10)} = \frac{p}{q} \in \mathbb{Q}$. Alors on a $2^q = 10^p$ mais comme $p \neq 0$, on a $5 \mid 10^p$ mais $5 \nmid 2^q$, donc $\frac{\ln(10)}{\ln(2)} \notin \mathbb{Q}$.

On sait que

$$u_n = n \frac{\ln(2)}{\ln(10)} - \left\lfloor \frac{n \ln(2)}{\ln(10)} \right\rfloor \in \left\lfloor \frac{\ln(7)}{\ln(10)}, \frac{\ln(8)}{\ln(10)} \right\rfloor$$
 (1.139)

Par densité, on peut donc construire par récurrence $(u_{n_p})_{p\in\mathbb{N}}$ telle que

$$\frac{\ln(7)}{\ln(10)} < u_{n_{p+1}} < u_{n_p} < \frac{\ln(8)}{\ln(10)} \tag{1.140}$$

Donc on a bien une infinité de puissance de 2 commençant par 7 en base 10. (1.141)

Remarque 1.10. $(e^{in\alpha})_{n\in\mathbb{N}}$ est de la même façon dense dans \mathbb{U} . On peut montrer qu'elle est équirépartie, c'est à dire que pour tout $a < b \in [0, 2\pi[^2, on a]]$

$$\lim_{N \to +\infty} \left| \left\{ n \in [1, N] \middle| n\alpha - \frac{\lfloor 2\pi n\alpha \rfloor}{2\pi} \in]a, b[\right\} \right| \times \frac{1}{N} = \frac{b-a}{2\pi}$$
 (1.142)

Remarque 1.11. Par équirépartition dans [0,1] des

$$\left\{ n \frac{\ln(2)}{\ln(10)} - \left\lfloor \frac{n \ln(2)}{\ln(10)} \right\rfloor \mid n \in \mathbb{N} \right\}$$
 (1.143)

la probabilité pour qu'une puissance de 2 commence par k en base 10 est $(k \in [1, 9])$

$$\frac{\ln(k+1) - \ln(k)}{\ln(10)} = \frac{\ln(1+\frac{1}{k})}{\ln(10)} \tag{1.144}$$

Solution 1.30.

1. Pour $\alpha = a + ib$, on définit le module au carré : $|\alpha|^2 = a^2 + b^2$. Soit $\beta = c + id \neq 0$. Si $\alpha = \beta q + r$ avec $q, r \in \mathbb{Z}[i]^2$ et $|r|^2 < |\beta|^2$, alors $|\alpha - \beta q|^2 < |\beta|^2$ et $\beta \neq 0$ donc

$$\left| \frac{\alpha}{\beta} - \underbrace{q}_{\in \mathbb{Z}[i]} \right| < 1 \tag{1.145}$$

On pose $\frac{\alpha}{\beta} = x + iy$. On pose

$$u_x = \begin{cases} \lfloor x \rfloor & \text{si } x \in \lfloor \lfloor x \rfloor, \lfloor x \rfloor + \frac{1}{2} \\ \lfloor x \rfloor + 1 & \text{si } x \in \lfloor \lfloor x \rfloor + \frac{1}{2}, \lfloor x \rfloor + 1 \end{cases}$$
 (1.146)

et de même pour u_y . On a alors $q = u_x + \mathrm{i} u_y \in \mathbb{Z}[\mathrm{i}]$ et

$$\left| \frac{\alpha}{\beta} - q \right|^2 = |x - u_x|^2 + |y - u_y|^2 \leqslant 2 \times \left(\frac{1}{2}\right)^2 = \frac{1}{2} < 1 \tag{1.147}$$

On pose donc $r = \alpha - \beta q \in \mathbb{Z}[i]$ et ainsi

l'anneau
$$\mathbb{Z}[i]$$
 est euclidien. (1.148)

2. Soit A un anneau euclidien et I un idéal de A non réduit à $\{0\}$. Il existe $x \in I$ tel que

$$v(x_0) = \min\{v(x) \mid x \in I\{0\}\}$$
(1.149)

On a $x_0A \subset I$. Soit $x \in I$. Il existe $q, r \in A$ tel que

$$x = x_0 q + r \tag{1.150}$$

avec $v(r) < v(x_0)$ ou r = 0. Or $r \in I$ donc r = 0. Ainsi $x \in x_0 A$ et donc $I = x_0 A$.

Remarque 1.12. C'est encore vrai avec $\mathbb{Z}[i\sqrt{2}] = \{a + ib\sqrt{2} \mid (a,b) \in \mathbb{Z}^2\}.$

Solution 1.31.

1. Si $\overline{x} = \overline{y}^2$ est un carré, d'après le petit théorème de Fermat, on a $\overline{x}^{\frac{p-1}{2}} = \overline{y}^{p-1} = \overline{1}$. Soit

$$\begin{array}{cccc} f: & \mathbb{Z}/p\mathbb{Z}^* & \to & \mathbb{Z}/p\mathbb{Z}^* \\ & \overline{y} & \mapsto & \overline{y}^2 \end{array}$$

f est un morphisme multiplicatif, $\operatorname{Im}(f)$ est un sous-groupe de $(\mathbb{Z}/p\mathbb{Z}^*,\times)$.

Comme \mathbb{F}_p est un corps, chaque carré possède exactement deux antécédents. Il y a p-1 antécédents, donc il y a $\frac{p-1}{2}$ carrés dans $\mathbb{Z}/p\mathbb{Z}^*$. Donc $|\mathrm{Im}(f)| = \frac{p-1}{2}$ et si \overline{x} est un carré, x est racine de $X^{\frac{p-1}{2}} - \overline{1}$. Le polynôme $X^{\frac{p-1}{2}} - \overline{1}$ possède au plus $\frac{p-1}{2}$ racines et tout carré est racine. Donc les racines sont exactement les carrés et

$$\overline{\overline{x}^{\frac{p-1}{2}}} = \overline{1} \text{ si et seulement si } \overline{x} \text{ est un carr\'e.}$$
 (1.152)

2. On a $p \equiv 1[4]$ si et seulement si $\frac{p-1}{2}$ est pair si et seulement si $(-1)^{\frac{p-1}{2}} = \overline{1}$ si et seulement si $\overline{-1}$ est un carré dans \mathbb{F}_p . Supposons qu'il y ait un nombre fini de nombres premiers p_1, \ldots, p_r tous congrus à 1 modulo 4. On pose $n = (p_1 \times \cdots \times p_r)^2 + 1$. Soit p un facteur premier de n, on a $n \equiv 1[n_i]$ donc $p \notin \{p_1, \ldots, p_r\}$. Dans $\mathbb{Z}/p\mathbb{Z}$, on a $\overline{n} = \overline{0}$ donc $\overline{-1} = \overline{p_1 \times \cdots \times p_r}^2$ donc $p \equiv 1[4]$ ce qui est une contradiction.

Solution 1.32.

1. On pose $P_1 = \sum_{i=0}^n r_i' X^i$, et $\nu_p(r_i')$ est positif par définition de c(P). Donc

$$P_1 \in \mathbb{Z}[X] \tag{1.154}$$

Pour tout $p \in \mathcal{P}$, il existe $i_0 \in [1, n]$ tel que

$$\min_{i \in [1,n]} \nu_p(r_i) = \nu_p(r_{i_0}) \tag{1.155}$$

et $\nu_p(r'_{i_0}) = 0$ donc $p \nmid r'_{i_0}$ donc

$$\bigwedge_{i=1}^{n} r_i' = 1 \tag{1.156}$$

Si on a $P = \alpha_1 P_1 = \alpha_2 P_2$ avec les conditions requises, soit $p \in \mathcal{P}$, si $\nu_p(\alpha_2) > \nu_p(\alpha_1)$, alors p divise tous les coefficients de P_1 ce qui n'est pas possible, donc $\nu_p(\alpha_2) = \nu_p(\alpha_1)$. Ceci étant vrai pour tout $p \in \mathcal{P}$, on a aussi $\alpha_1 = \alpha_2$ et donc $P_1 = P_2$.

2. On a $P = c(P)P_1$ et $Q = c(Q)Q_1$ donc $PQ = c(P)c(Q)P_1Q_1$ et $P_1Q_1 \in \mathbb{Z}[X]$.

Soit $p \in \mathcal{P}$ divisant tous les coefficients de P_1Q_1 . On définit, si $R = \sum_{i \in \mathbb{N}} \gamma_i X^i \in \mathbb{Z}[X]$, $\overline{R} = \sum_{i \in \mathbb{N}} \overline{\gamma_i} X^i \in \mathbb{Z}/p\mathbb{Z}[X]$. $R \mapsto \overline{R}$ est un morphisme d'anneaux. Par hypothèse, on a $\overline{P_1Q_1} = \overline{0} = \overline{P_1Q_1}$ et par intégrité de $\mathbb{Z}/p\mathbb{Z}[X]$, on a $\overline{P_1} = \overline{0}$ ou bien $\overline{Q_1} = \overline{0}$, ce qui est exclu par les hypothèses. Donc

$$c(PQ) = c(P)c(Q)$$
(1.158)

3. Soit alors P irréductible dans $\mathbb{Z}[X]$ (les inversibles de $\mathbb{Z}[X]$ étant -1 et 1). Posons

$$P = QR \in \mathbb{Q}[X]^2 \tag{1.159}$$

$$= c(Q)c(R)\underbrace{Q_1R_1}_{\in \mathbb{Z}[X]} \tag{1.160}$$

Or c(Q)c(R) = c(P) d'après le lemme de Gauss et nécessairement, c(P) = 1. Donc $P = Q_1R_1$, et alors $Q_1 = \pm 1$ et $R_1 = \pm 1$, et Q ou R est constant,

donc P est irréductible sur
$$\mathbb{Q}[X]$$
. (1.161)

Pour la réciproque, on a 2X est irréductible sur $\mathbb{Q}[X]$ car de degré 1, mais pas sur $\mathbb{Z}[X]$ car ni 2 ni X ne sont inversibles.

4. Soit $\theta = \frac{2\pi p}{q}$ avec $p \wedge q = 1$ et $\cos(\theta) \in \mathbb{Q}$. Sur $\mathbb{C}[X]$, on a $P = (X - e^{i\theta})(X - e^{-i\theta}) = X^2 - 2\cos(\theta)X + 1 \in \mathbb{Q}[X]$.

Et $e^{i\theta} \neq e^{-i\theta}$ car $\theta \not\equiv 0[\pi]$. On a $\theta = \frac{2\pi p}{q}$ donc $e^{i\theta} \in \mathbb{U}_q$, et $e^{i\theta}$ et $e^{-i\theta}$ sont des racines de A. Donc, dans $\mathbb{C}[X]$, on a $P \mid A$ et $A \in \mathbb{Q}[X]$, donc il existe $B \in \mathbb{Q}[X]$ tel que

$$\underbrace{A}_{\in \mathbb{Q}[X]} = \underbrace{B}_{\in \mathbb{C}[X]} \times \underbrace{P}_{\in \mathbb{Q}[X]} \tag{1.162}$$

Or B s'obtient par la division euclidienne de A par P, qui est indépendante du corps de référence, il vient $B \in \mathbb{Q}[X]$ et donc $A \mid P$ dans $\mathbb{Q}[X]$.

On a c(A) = 1 = c(B)c(P) et $A = c(B)c(P)B_1P_1 = B_1P_1 \in \mathbb{Z}[X]$ et le coefficient dominant de A est donc 1. Donc le coefficient dominant de B_1 et de P_1 est aussi 1. En reportant, on a $P = P_1 \in \mathbb{Z}[X]$.

Donc $2\cos(\theta) \in \mathbb{Z} \cap [-2,2]$ donc $\cos\{\theta\} \in \left\{-\frac{1}{2},\frac{1}{2},0\right\}$ (-1 et 1 ne peuvent y être car on a supposé $\theta \not\equiv 0[\pi]$). Les solutions sont donc

$$\theta \in \left\{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}\right\}$$
 (1.163)

(en rajoutant $\theta = 0$ et π).

Remarque 1.13. On a $\frac{\arccos(\frac{1}{3})}{\pi} \notin Q$ car $\cos(\theta) = \frac{1}{3}$ n'est pas dans l'ensemble solutions.

Solution 1.33.

1. Soit $P = a \prod_{i=1}^{s} (X - a_i)^{\alpha_i}$ avec les a_i distincts et $\alpha_i \ge 1$. a_i est racine de P' de multiplicité $\alpha_i - 1$. Il manque donc s racines. Si $\alpha = 0$, le résultat est évident, sinon on pose

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto P(x)e^{\frac{x}{\alpha}}$$

et on a pour tout $x \in \mathbb{R}$,

$$f'(x) = \frac{e^{\frac{x}{\alpha}}}{\alpha} (P(x) + \alpha P'(x))$$
 (1.164)

Comme P est scindé sur \mathbb{R} , P' est scindé sur \mathbb{R} (appliquer le théorème de Rolle entre les racines distinctes de P), donc f' s'annule s-1 fois entre les racines de P donc

$$P + \alpha P'$$
 aussi. (1.165)

La dernière racine est réelle car sinon, le conjugué de la racine complexe supposée serait aussi racine.

2. On pose $R = \mu \prod_{i=0}^r (X - \beta_i)$. On pose

$$\begin{array}{ccc} \Delta: & \mathbb{R}[X] & \to & \mathbb{R}[X] \\ & P & \mapsto & P' \end{array}$$

On a alors

$$\sum_{i=0}^{r} a_i P^{(i)} = \sum_{i=0}^{r} a_i \Delta^i(P) = R(\Delta)(P) = \mu \prod_{i=0}^{r} (\Delta - \beta_i id)(P)$$
 (1.166)

Par récurrence sur r, on montre que

$$\left| \prod_{i=0}^{r} (\Delta - \beta_i id)(P) \text{ est scind\'e} \right|$$
 (1.167)

d'après la première question.

Remarque 1.14. On a aussi pour tout $\lambda \in \mathbb{R}$, $P' + \lambda P$ est aussi scindé sur \mathbb{R} si P est scindé sur \mathbb{R} .

Solution 1.34. Soit $F = \frac{P'}{P}$ définie sur $\mathbb{R} \setminus \{a_1, \dots, a_n\}$ où a_i sont les racines de P. On note α le coefficient dominant de P, et on a

$$P' = \alpha \sum_{i=1}^{n} \left(\prod_{\substack{j=1\\j\neq i}}^{n} (X - a_j) \right)$$
 (1.168)

On a donc $F = \sum_{i=1}^{n} \frac{1}{X - a_i}$ et on a

$$F' = -\sum_{i=1}^{n} \frac{1}{(X - a_i)^2} = \frac{P''P - P'P'}{P^2}$$
(1.169)

Pour $x \notin \{a_1, \ldots, a_n\}$, on a

$$(n-1)(P'^{2}(x))(x) \geqslant nP(x)P''(x) \iff n(P''(x)P(x) - P'^{2}(x)) \leqslant -P'^{2}(x) \tag{1.170}$$

$$\iff \frac{P'^2(x)}{P^2(x)} \leqslant n(P''(x)P(x) - P'^2(x)) \times \frac{1}{P^2(x)} \tag{1.171}$$

$$\iff F^2(x) \leqslant n(-F'(x)) \tag{1.172}$$

$$\iff \left(\sum_{i=1}^{n} \frac{1}{(X - a_i)}\right)^2 \leqslant \left[n \times \sum_{i=1}^{n} \frac{1}{(X - a_i)^2}\right] \tag{1.173}$$

qui est l'inégalité de Cauchy-Schwarz dans \mathbb{R}^2 avec $(1\dots 1)$ et $(\frac{1}{x-a_1}\dots \frac{1}{x-a_n})$.

Remarque 1.15. Si $P = \alpha (X - a_1)^{m_1} (X - a_r)^{m_r}$, alors

$$\frac{P'}{P} = \sum_{i=1}^{r} \frac{m_i}{X - a_i} \tag{1.174}$$

Solution 1.35.

1. $P' \in \mathbb{C}[X]$ et $\deg(P') = \deg(P) - 1$. On a $P \wedge P' = 1$ car P est irréductible sur $\mathbb{Q}[X]$. Comme le pgcd est obtenu par l'algorithme d'Euclide qui est indépendant du corps de référence, on a $P \wedge P' = 1$ sur $\mathbb{C}[X]$ donc

$$P$$
 n'a que des racines simples sur \mathbb{C} . (1.175)

2. Notons $P \in \mathbb{Q}[X]$ le polynôme minimal de α sur \mathbb{Q} (défini car $A(\alpha) = 0$ donc α est algébrique). Comme $A(\alpha) = 0$, on a $P \mid A$ et P est irréductible sur $\mathbb{Q}[X]$. Si $\alpha \notin \mathbb{Q}$, on a $\deg(P) \geqslant 2$, on peut donc décomposer sur $\mathbb{Q}[X]$:

$$A = P^r \times P_1^{r_1} \times \dots P_s^{r_s} \tag{1.176}$$

avec les P_i irréductibles sur $\mathbb{Q}[X]$ non associés.

 α n'est pas racine d'un P_i car sinon $P \mid P_i$ ce qui est impossible. α est racine simple de P donc $m(\alpha) = r > \frac{\deg(A)}{2}$. Par ailleurs, $\deg(P)^r \geqslant 2r > \deg(A)$ ce qui est impossible.

Donc

$$\alpha \in \mathbb{Q} \tag{1.177}$$

Solution 1.36. Soit $x \in A$. Il existe $(n, m) \in \mathbb{N}^2$ avec n < m tel que $x^n = x^m$. Alors $x^{m-n} = e_G \in A$.

$$f: \mathbb{N}^* \to A$$
$$n \mapsto x^n$$

n'est pas injective, car \mathbb{N}^* est infini et A est fini. Or $m-n\in\mathbb{N}^*$ donc

$$x^{m-n} = e_G \Rightarrow x = x \cdot x^{m-n-1} = e_G \tag{1.178}$$

donc $x^{-1} = x^{m-n-1} \in A$ et ainsi

A est un sous-groupe.
$$(1.179)$$

Solution 1.37. Pour $\alpha = 0$, on a $1 + p \equiv 1 + p[p^2]$. Pour $\alpha = 1$, on a

$$(1+p)^p = \sum_{k=0}^p \binom{p}{k} p^k = 1 + p^2 + \binom{p}{2} p^2 \sum_{k=3}^p \binom{p}{k} p^k$$
 (1.180)

Or $\binom{p}{2}p^2 = \frac{p(p-1)p^2}{2} \equiv 0[p^3]$ car p est premier plus grand que trois donc impair, et la somme est aussi congru à 0 modulo p^3 .

Soit $\alpha \geqslant 1$, supposons que l'on ait

$$(1+p)^p \equiv 1 + p^{\alpha+1}[p^{\alpha+2}] \tag{1.181}$$

Il existe $l \in \mathbb{N}$ tel que

$$(1+p)^{p^{\alpha}} = 1 + p^{\alpha+1} + lp^{\alpha+2}$$
(1.182)

Alors

$$(1+p)^{p^{\alpha+1}} = (1+\underbrace{p^{\alpha+1}+lp^{\alpha+2}})^p \tag{1.183}$$

Or

$$(1+x)^p = \sum_{k=0}^p \binom{p}{k} x^k = 1 + px + \sum_{k=2}^p \binom{p}{k} x^k = 1 + p^{\alpha+2} + lp^{\alpha+3} + \sum_{\substack{k=2 \text{divisible par } x^2}}^p \binom{p}{k} x^k$$
 (1.184)

Comme $p^{\alpha+1}\mid x,\, p^{2\alpha+2}\mid x^2$ avec $2\alpha+2\geqslant \alpha+3 \ (\alpha\geqslant 1).$ D'où

$$p^{\alpha+3} \mid x^2 \mid \sum_{k=2}^p \binom{p}{k} x^k \tag{1.185}$$

et donc

$$(1+p)^{p^{\alpha+1}} \equiv 1 + p^{\alpha+2}[p^{\alpha+3}]$$
(1.186)

Remarque 1.16. Pour $p = 2, \alpha = 1$, on a $3^2 = 9 \not\equiv 5[8]$.

Solution 1.38. Si $7 = 2x^2 - 5y^2$, on a $\overline{0} = 2\overline{x}^2 - 5\overline{y}^2 = \overline{2}(\overline{x}^2 + \overline{y}^2)$ dans $\mathbb{Z}/7\mathbb{Z}$. Comme 2 et 7 sont premiers entre eux donc $\overline{2}$ est inversible. Donc $\overline{x}^2 + \overline{y}^2 = \overline{0}$. La seule possibilité est $\overline{x} = \overline{0}$ et $\overline{y} = \overline{0}$. Donc $7 \mid x$ et $y \mid y$. Si x = 7k alors $x^2 = 49k^2$ donc $49 \mid x^2$ et $49 \mid y^2$ donc $47 \mid 2x^2 - 5y^2 = 7$ ce qui est faux.

Ainsi, pour tout $(x, y) \in \mathbb{Z}^2$,

$$7 \neq 2x^2 - 5y^2 \tag{1.187}$$

Solution 1.39. \mathbb{F}_{19} est un corps car 19 est premier. On a donc $\overline{x}^3 = \overline{1}$ si et seulement si $(x - \overline{1})(x^2 + x - \overline{1}) = \overline{0}$. On a donc $x = \overline{1}$ ou $x^2 + x + \overline{1} = \overline{0}$. On a

$$x^{2} + x + \overline{1} = (x + \overline{2}^{-1})^{2} + \overline{3} \times \overline{4}^{-1} = (x + \overline{10})^{2} + \overline{3} \times \overline{50}$$
 (1.188)

Donc $(x + \overline{10})^2 = \overline{4}$ d'où

$$x = \overline{-8} = \overline{11} \text{ ou } x = \overline{-12} = \overline{7}.$$
 (1.189)

Solution 1.40.

1. m est inversible si et seulement si $m \wedge 2^n = 1$ si et seulement si $m \wedge 2 = 1$ si et seulement si m est impair.

Il y a donc
$$2^{n-1}$$
 inversibles. (1.190)

2. On a $5^{2^{3-3}} = 5 \equiv 1 + 2^2[2^3]$. Par récurrence, soit $n \geqslant 3$. Il existe $k \in \mathbb{Z}$ avec $5^{2^{n-3}} = 1 + 2^{n-1} + k2^n$ donc

$$5^{2^{n-1}} = 1 + 2^n + k2^{n+1} + 2^{2n-2}(1+2k)^2 \equiv 1 + 2^n[2^{n+1}]$$
(1.191)

 $car 2n - 2 \ge n + 1 \ (n \ge 3).$

3. On a $5^{2^{n-2}} \equiv 1 + 2^n [2^{n+1}] \equiv 1[2^n]$ et $5^{2^{n-3}} \not\equiv 1[2^n]$.

Donc l'ordre de
$$\overline{5}$$
 est 2^{n-2} . (1.192)

4. $gr\left\{\overline{-1}\right\} = \left\{\overline{-1},\overline{1}\right\}$. $\overline{5}$ n'engendre pas $\overline{-1}$ car si $\overline{5}^k = \overline{-1}$, on a $\overline{5}^{2k} = \overline{1}$ d'où $2^{n-2} \mid 2k$ donc $2^{n-3} \mid k$. Ainsi, $k \in \{2^{n-3}, 2^{n-2}, 2^{n-1}\}$. Mais $\overline{5}^{2^{n-2}} = \overline{1}, \overline{5}^{2^{n-3}} = \overline{1+2^{n-1}} \neq \overline{-1}$ donc un tel k n'existe pas.

Posons

$$\varphi: (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z}, +) \to (\mathbb{Z}/2^{n}\mathbb{Z}^{\times}, \times)$$
$$(\widetilde{a}, \dot{b}) \mapsto \overline{-1}^{a}\overline{5}^{b}$$

Elle est bien définie car $\omega(\overline{-1}) = 2$ et $\omega(\overline{5}) = 2^{n-2}$. C'est évidemment un morphisme, on a égalité des cardinaux des ensembles de départ et d'arrivée, et on vérifie qu'elle est injective, et donc

Solution 1.41. Soit $(x, x') \in G^2$ tel que $x \cdot x' = e$. Alors

$$e \cdot x = x \cdot x' \cdot x = x \cdot e \cdot x' \cdot x \tag{1.194}$$

si et seulement si

$$e \cdot x \cdot x' = e = x \cdot e \cdot x' \cdot x \cdot x' = x \cdot e \cdot x' \tag{1.195}$$

Soit $(x, x', x'') \in G^3$ tel que $x \cdot x' = e$ et $x' \cdot x'' = e$. On a alors

$$x \cdot x' \cdot x'' = x \cdot e = x = e \cdot x'' \tag{1.196}$$

Donc $x = e \cdot x''$ et $e = e \cdot x'' \cdot x'$. Si on prouve que $e \cdot x'' = x''$, alors x = x'' et $x' \cdot x = e$.

Montrons donc que pour tout $x \in G$, $e \cdot x = x$. Notons que s'il existe $e' \in G$ tel que pour tou $tx \in G$, $e' \cdot x = x$, alors $e' \cdot e = e' = e$. Il vient donc

$$x' \cdot x = x' \cdot e \cdot x'' = x' \cdot x'' = e \tag{1.197}$$

Donc pour tout $x \in G$, l'élément x' est inverse à droite et à gauche : $x \cdot x' = e$.

Donc

$$x \cdot x' \cdot x = e \cdot x = x \cdot x' \cdot x = x \cdot e = x \tag{1.198}$$

Et donc e est neutre à gauche. Finalement,

$$(G,\cdot)$$
 est un groupe. (1.199)

34

Remarque 1.17. Si $f: \mathbb{R} \to \mathbb{R}$ est surjective, on peut définir

$$g: \mathbb{R} \to \mathbb{R}$$
$$y \mapsto f(x)$$

pour un certain $x \in \mathbb{R}$. On a $f \circ g = id$. Si f n'est pas injective : s'il existait $h : \mathbb{R} \to \mathbb{R}$ telle que $h \circ f = id$, soit $(x, x') \in \mathbb{R}^2$ telle que f(x) = f(x'). En composant par h, on aurait x = x' donc f serait injective ce qui n'est pas.

On peut donc avoir un inverse à droite mais pas à gauche.

Solution 1.42. Soit $n \in \mathbb{N}^*$.

$$\underbrace{1\dots1}_{\text{n fois en base }10} = 1 + 10 + \dots + 10^{n-1} = \frac{10^n - 1}{9}$$
(1.200)

On a

$$21 \mid \frac{10^n - 1}{9} \iff 3 \mid \frac{10^n - 1}{9} \text{ et } 7 \mid \frac{10^n - 1}{9}$$
 (1.201)

$$\iff$$
 27 | 10ⁿ - 1 et 7 | 10ⁿ - 1 (1.202)

car $7 \wedge 9 = 1$. Dans $\mathbb{Z}/7\mathbb{Z}$, on a $\overline{10} = \overline{3}$ donc pour tout $k \in \mathbb{N}$, $\overline{10}^{6k} = \overline{1}$ d'après le petit théorème de Fermat. Dans $\mathbb{Z}/27\mathbb{Z}$, $\widetilde{10}$ est inversible car $10 \wedge 27 = 1$. $((\mathbb{Z}/27\mathbb{Z})^{\times}, +, \times)$ comporte 18 éléments donc pour tout $k' \in \mathbb{N}$, on a $\widetilde{10}^{18k'} = \widetilde{1}$.

Lorsque $81 \mid n$, on a $21 \mid 1 \dots 1$.

Cherchons plus précisément les ordres de $\overline{10}$ dans $((\mathbb{Z}/7\mathbb{Z})^*, \times)$ et de $\widetilde{10}$ dans $((\mathbb{Z}/27\mathbb{Z})^*, \times)$. Dans $(\mathbb{Z}/7\mathbb{Z})^*$, groupe de cardinal 6, on vérifie que l'ordre de 10 est 6. Dans l'autre groupe, on vérifie que l'ordre de $\widetilde{10}$ est 3. Ainsi, $21 \mid 1 \dots 1$ si et seulement si $6 \mid n$.

Il y a donc une infinité de multiples de 21 qui s'écrivent avec uniquement des 1 en base 10. (1.203)

Remarque 1.18. Il suffit de trouver l'ordre de 10 dans les deux ensembles et de prendre le ppcm.

Solution 1.43.

1. $X^d - 1$ a au plus d racines dans \mathbb{K} . Pour tout $k \in [0, d - 1]$, x_0^k est racine de $X^d - 1_{\mathbb{K}}$ car $gr\{x_0\}$ a pour cardinal d. Donc les racines sont exactement les puissances de x_0 .

Soit $x \in \mathbb{K}^*$ d'ordre d. On a $x \in gr\{x_0\}$ car $x^d = 1$ (racine du polynôme de $X^d = 1_{\mathbb{K}}$). Or, dans le groupe cyclique engendré par x_0 ,

il y a
$$\varphi(d)$$
 éléments. (1.204)

2. On a ou bien $\varphi(d)$ ou bien aucun élément d'ordre d dans \mathbb{K} . Soit d tel que $d \mid n$, on note $H_d = \{x \in K \mid \omega(x) = d\}$. On a

$$\mathbb{K}^* = \bigcup_{d|n} H_d \tag{1.205}$$

Alors

$$n = \sum_{d|n} |H_d| \leqslant \sum_{d|n} \varphi(d) = n \tag{1.206}$$

Alors pour tout d tel que $d \mid n$, on a $|H_d| = \varphi(d)$. En particulier, on a $|H_n| = \varphi(n) \geqslant 1$ donc H_n est non vide. Donc il existe (au moins) un élément d'ordre n, donc

$$(\mathbb{K}^*, \times)$$
 est cyclique. (1.207)

Solution 1.44.

1. Soit $x \in M$. On a $\overline{1} - \overline{x}^{-1}$ si et seulement si $\overline{x} = \overline{1}$ et $\overline{1} - \overline{x}^{-1} = \overline{1}$ si et seulement si $\overline{x} = \overline{0}$, ce qui n'est pas possible pour les deux cas.

Soit $x \in M$, on a

$$f^{2}(x) = f(\overline{1} - \overline{x}^{-1}) \tag{1.209}$$

$$= \overline{1} - (\overline{1} - \overline{x}^{-1})^{-1} \tag{1.210}$$

$$= (\overline{1} - \overline{x}^{-1})^{-1} (\overline{1} - \overline{x}^{-1} - \overline{1}) \tag{1.211}$$

$$= -\overline{x}^{-1}(\overline{1} - \overline{x}^{-1})^{-1} \tag{1.212}$$

Donc

$$f^{3}(x) = \overline{1} - (\overline{1} - (\overline{1} - \overline{x}^{-1})^{-1})^{-1}$$
(1.213)

$$= \overline{1} - (-x\overline{x}^{-1}(\overline{1} - \overline{x}^{-1})^{-1})^{-1}$$
(1.214)

$$= \overline{1} + \overline{x}(\overline{1} - \overline{x}^{-1}) \tag{1.215}$$

$$= \overline{1} + \overline{x} - \overline{1} \tag{1.216}$$

$$= \overline{x} \tag{1.217}$$

Donc

$$f^3 = id_M (1.218)$$

2. Soit $x \in M$, on a

$$f(x) = x \Longleftrightarrow \overline{1} - \overline{x}^{-1} = x \tag{1.219}$$

$$\iff \overline{x}^2 - \overline{x} + \overline{1} = \overline{0} \tag{1.220}$$

$$\iff (\overline{x} - \overline{2}^{-1})^2 + \overline{3} \times \overline{4}^{-1} = \overline{0} \tag{1.221}$$

$$\iff \overline{-3} = (\overline{2}\overline{x} - \overline{1})^2 \tag{1.222}$$

f admet un point fixe si et seulement $\overline{-3}$ est un carré dans $\mathbb{Z}/p\mathbb{Z}$ car $\overline{y}=\overline{2}\overline{x}-\overline{1}$ si et seulement si $\overline{x}=\overline{2}^{-1}(\overline{y}+\overline{1})$.

Donc

$$\overline{-3}$$
 est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si f admet un point fixe. (1.223)

3. Comme p est premier plus grand que 5, on a $p \equiv 1$ ou 2[3] donc $p-2 \equiv 0$ ou 2[3] car $f^3 = id_M$, les longueurs des cycles qui composent f valent 1 ou 3.

Si f n'a pas de point fixe, tous les cycles sont de longueur 3, donc $3 \mid p-2$ donc $p \equiv 2[3]$. Si $p \equiv 2[3]$, alors $3 \mid p-2$, le nombre de points fixes est un multiple de 3 donc aussi du nombre de racine carrés de $\overline{-3}$. Et puisque l'on est dans un corps, il y a au plus 2 racines de $\overline{-3}$. Donc si $p \equiv 2[3]$, il n'y a pas de point fixe.

Donc

$$\overline{-3}$$
 est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $p \equiv 1[3]$. (1.224)

Solution 1.45. Soit $x \in \mathbb{R}$. Supposons que x possède un développement décimal périodique. Alors il existe $(n_0, T) \in \mathbb{N} \times \mathbb{N}^*$ tels que pour tout $n \ge n_0$, $a_{n+T} = a_n$. On a alors

$$|x| = \underbrace{b_m \dots b_0, a_0 \dots a_{n_0 - 1}}_{\in \mathbb{Q}} + \frac{1}{10^{n_0 - 1}} \underbrace{(0, a_{n_0} \dots a_{n_0 + T - 1} a_{n_0} \dots)}_{=y}$$
 (1.225)

$$10^T y - y = a_{n_0} \dots a_{n_0 + T - 1} \in \mathbb{N}$$
(1.226)

et donc

$$y = \frac{a_{n_0} \dots a_{n_0 + T - 1}}{10^T - 1} \in \mathbb{Q}$$
 (1.227)

Donc $x \in Q$.

Réciproquement, soit $x=\frac{p}{q}\in\mathbb{Q}$ avec $q\in\mathbb{N}^*$. Il existe $(a,b)\in\mathbb{Z}\times\mathbb{N}^*$ tel que p=aq+b avec $b\in[0,q-1]$. Si b=0, on arrête. On a sinon

$$x = a + \frac{1}{10^k} \frac{10^k b}{q} \tag{1.228}$$

où $k = \min\{m \ge 1 \mid 10^m b > q\}$. On réitère l'algorithme avec $\frac{10^k b}{q}$ car on a $\left\lfloor \frac{10^k b}{q} \right\rfloor \in [1, 9]$ par définition de k.

Il y a q restes possibles dans la division euclidienne par q. Ainsi, au bout d'au plus de q+1 itérations, on retrouve un reste précédent. Par unicité de la division euclidienne, on obtient un développement décimal périodique.

Donc

$$x \in \mathbb{Q} \text{ si et seulement si } \exists n_0 \in \mathbb{N}, \exists T \in \mathbb{N}^*, \forall n \geqslant n_0, a_{n+T} = a_n.$$
 (1.229)

Remarque 1.19. On peut écrire $q=2^a5^bq'$ avec $q'\wedge 2=q'\wedge 5=1$. On se ramène alors à $q\wedge 2=q\wedge 5=1$. En reportant dans l'écriture décimale de x, on a

$$\frac{\alpha}{q} = \frac{\beta}{10^T - 1} \tag{1.230}$$

avec $\alpha \wedge q = 1$. On a donc $q \mid 10^T - 1$ d'après le lemme de Gauss. T revient donc à l'ordre de $\overline{10}$ dans $\left(\left(\mathbb{Z}/q\mathbb{Z} \right)^{\times}, \times \right)$ qui contient $\varphi(q)$ éléments. Par défaut, on a donc $T = \varphi(q)$.

Solution 1.46.

1. Soit $m \in \mathbb{Z}$. Si $m \in [0, n-1]$, on a $H_n(m) = 0 \in \mathbb{Z}$. Si $m \ge n$, on a $H_n(m) = {m \choose n} \in \mathbb{Z}$. Si m < 0, on a

$$H_n(m) = \frac{m(m-1)\dots(m-n+1)}{n!} = (-1)^n \binom{-m+n-1}{-m-1} \in \mathbb{Z}$$
 (1.231)

Donc

$$H_n(\mathbb{Z}) \subset \mathbb{Z}$$
 (1.232)

2. Supposons qu'il existe $n \in \mathbb{N}$ et $(a_0, \ldots, a_n) \in \mathbb{Z}^{n+1}$ et $P = \sum_{k=0}^n a_k H_k$. On a $H_k(\mathbb{Z}) \subset \mathbb{Z}$ donc $P(\mathbb{Z}) \subset \mathbb{Z}$. Supposons $P(\mathbb{Z}) \subset \mathbb{Z}$. $(H_k)_{k \in \mathbb{N}}$ est une base étagée en degré de $\mathbb{C}[X]$. Donc il existe $(a_0, \ldots, a_n) \in \mathbb{C}^{n+1}$ tel que $P = \sum_{k=0}^n a_k H_k$. Par récurrence, on a $P(0) = a_0 \in \mathbb{Z}$. Soit $k \in [0, n-1]$, supposons $(a_0, \ldots, a_k) \in \mathbb{Z}^{k+1}$. On a alors

$$P(k+1) = \sum_{i=0}^{k} \underbrace{a_k}_{\in \mathbb{Z}} H_k + a_{k+1} \underbrace{H_{k+1}(k+1)}_{=1}$$
 (1.233)

Donc $a_{k+1} \in \mathbb{Z}$.

Donc

$$P(\mathbb{Z}) \subset \mathbb{Z} \text{ si et seulement si } \exists n \in \mathbb{N}, \exists (a_0, \dots, a_n) \in \mathbb{Z}^{n+1}, P = \sum_{k=0}^n a_k H_k.$$
 (1.234)

Remarque 1.20. Les translation $X + \alpha$ sont les seules pour lesquelles on a $(X + \alpha)(\mathbb{Z}) = \mathbb{Z}$. En effet, si $P \in \mathbb{C}[X]$ est tel que $P(\mathbb{Z}) = \mathbb{Z}$, on a $P \in \mathbb{Q}[X]$ d'après ce qui précède. Si $\deg(P) \geqslant 2$, quitte à remplacer P par -P, on peut supposer le coefficient dominant de P strictement positif. On a alors $\lim_{x \to +\infty} P'(x) = +\infty$ donc il existe A > 0 tel que P est strictement croissant sur $[A, +\infty[$. De plus, $P(x+1) - P(x) \to +\infty$ quand $x \to +\infty$. Donc il existe A' > 0 tel que P(x+1) > P(x) + 1. Pour $n \geqslant \max(A, A')$, on a $P(n+1) \geqslant P(n) + 2$ ce qui contredit $P(\mathbb{Z}) = \mathbb{Z}$. Donc le degré de P est inférieur à 1.

Solution 1.47. Le coefficient en X^k s'écrit $a_{k-1} - \alpha a_k \in \mathbb{Q}$. Si $a_k \in \mathbb{Q}$, on a donc $a_{k-1} \in \mathbb{Q}$. Il est donc impossible d'avoir deux coefficients consécutifs rationnels. Or $x_{n-1} \in \mathbb{Q}$ car c'est le coefficient

dominant de P. Donc

$$\alpha$$
 est nécessairement racine simple. (1.235)

Solution 1.48. Soit $\Delta = P \wedge P' = \Delta$. On a deg $(\Delta) \in \{1, 2, 3, 4\}$ car $\Delta \mid P'$.

Si $\deg(\Delta) = 4$, alors $\Delta = P'$ (car associé). Donc il existe $\beta \in \mathbb{C}$ d'où $\underbrace{P}_{\in \mathbb{Q}[X]} = (X - \beta) \underbrace{P'}_{\in \mathbb{Q}[X]}$. Par division euclidienne, $X - \beta \in \mathbb{Q}[X]$ et $\beta \in \mathbb{Q}$ d'après l'algorithme de la division euclidienne.

Si $deg(\Delta) = 1$, on a $P = X - \beta$ avec $\beta \in \mathbb{Q}$ racine de P.

Si $\deg(\Delta) = 2$, si $\Delta = (X - \beta)^2$, on a $\Delta' = 2(X - \beta) \in \mathbb{Q}[X]$ donc $\beta \in \mathbb{Q}$ racine de Δ donc de P. Si $\Delta = (X - \alpha_1)(X - \alpha_2)$ avec $\alpha_1 \neq \alpha_2$. α_1 et α_2 sont racines doubles de P donc $P = (X - \beta)\underbrace{(X - \alpha_1)^2(X - \alpha_2)^2}_{=\Delta^2 \in \mathbb{Q}[X]}$ Par division euclidienne, $X - \beta \in \mathbb{Q}[X]$ et donc $\beta \in \mathbb{Q}$.

Si $\deg(\Delta) = 3$, si $\Delta = (X - \beta)^3$, on a $\Delta^{(2)} = 6(X - \beta) \in \mathbb{Q}[X]$ donc $\beta \in \mathbb{Q}$. Si $\Delta = (X - \alpha_1)(X - \alpha_2)(X - \alpha_3)$ avec α_1, α_2 et α_3 distinctes. α_1, α_2 et α_3 seraient racines doubles de P ce qui contredit $\deg(P) = 5$. Si $\Delta = (X - \alpha)^2(X - \beta)$, α est racine triple de P et β racine double de P donc $P = (X - \alpha)^3(X - \beta)^2 \in \mathbb{Q}[X]$. Par division euclidienne, $(X - \alpha)(X - \beta) \in \mathbb{Q}[X]$ et

$$X - \alpha = \frac{\Delta}{(X - \alpha)(X - \beta)} \in \mathbb{Q}[X]$$
 (1.236)

donc $\alpha \in \mathbb{Q}$.

Donc

Solution 1.49.

1. $1 \in \mathbb{Z}[i], 0 \in \mathbb{Z}[i], i \in \mathbb{Z}[i]$. Soit $(a, b, a', b') \in \mathbb{Z}^4$:

$$\begin{cases} (a+ib) - (a'+ib') = (a-a') + i(b-b') \in \mathbb{Z}[i] \\ (a+ib) \times (aa'-bb') + i(ab'+ba') \in \mathbb{Z}[i] \end{cases}$$
(1.238)

Donc $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} contenant i.

Soit A un sous anneau de \mathbb{C} contenant i. A est stable par x donc $i^4 = 1 \in A$. A est stable par + donc $\mathbb{Z} \subset A$, puis $\mathbb{Z} \subset A$ donc $\mathbb{Z}[\mathbb{I}] \subset A$.

$$\mathbb{Z}[i]$$
 est donc le plus petit sous anneau de \mathbb{C} contenant i. (1.239)

2. Si $|z|^2 = 1$ c'est-à-dire $a^2 + b^2 = 1$, alors

$$\frac{1}{z} = \frac{a - \mathrm{i}b}{|z|^2} = a - \mathrm{i}b \in \mathbb{Z}[\mathrm{i}] \tag{1.240}$$

Si z est inversible dans $\mathbb{Z}[i]$, il existe $' \in \mathbb{Z}[i]$ tel que zz' = 1 donc $|z|^2|z'|^2 = 1$ donc $|z|^2 = 1$. Donc

$$z$$
 est inverse dans $\mathbb{Z}[i]$ si et seulement si $|z|^2 = 1$. (1.241)

Soit $(a, b) \in \mathbb{Z}^2$. Si $|a| \ge 2$ ou $|b| \ge 2$, alors $a^2 + b^2 \ge 4$ donc si $|z|^2 = 1$, alors $a^2 + b^2 = 1$ et (|a| = 1 et |b| = 0) ou (|a| = 0 et |b| = 1). Donc

$$U = \{1, -1, i, -i\}$$
 (1.242)

3. (a) Si $x \in \mathbb{R}$, il existe $n \in \mathbb{Z}$ tel que $|x - n| \leqslant \frac{1}{2}$ (faire un dessin et le montrer grâce aux parties entières). Soit alors $z_0 = x_0 + \mathrm{i} y_0 \in \mathbb{C}$, on prend un $(a,b) \in \mathbb{Z}^2$ tel que $|x_0 - a| \leqslant \frac{1}{2}, |y_0 - b| \leqslant \frac{1}{2}$. Et pour $z = a + \mathrm{i} b \in \mathbb{Z}[\mathrm{i}]$, on a

$$|z - z_0|^2 = (x_0 - a)^2 + (y_0 - b)^2 \leqslant \frac{1}{2}$$
(1.243)

(b) Soit $(q,r) \in \mathbb{Z}[i]^2$, on a $z_1 = qz_2 + r$ si et seulement si $\frac{z_1}{z_2} - q = \frac{r}{z_2}$. On a $|r| < |z_1|$ si et seulement si $\left|\frac{z_1}{z_2} - q\right| < 1$. On a $\frac{z_1}{z_2} \in \mathbb{C}$ donc d'après 3.(a), il existe $q \in \mathbb{Z}[i]$ tel que $\left|\frac{z_1}{z_2} - q\right| \leqslant \frac{\sqrt{2}}{2} < 1$. On pose alors $r = z_1 - qz_2 \in \mathbb{Z}[i]$ par stabilité. Il vient donc $|r| < |z_2|$. Ainsi,

$$\exists (q,r) \in \mathbb{Z}[i]^2, z_1 = qz_2 + r \text{ et } |r| < |z_1|.$$
 (1.244)

Si $z_2 = 1$ et $z_1 = \frac{1+i}{2}$, on peut prendre $q \in \{0, 1, i, 1+i\}$. Donc

(c) Soit $I \neq \{0\}$ un idéal de $\mathbb{Z}[i]$. On note $n_0 = \min\{|z|^2 \mid z \in I \setminus \{0\}\}$ (partie non vide de \mathbb{N}^*). Soit $z_0 \in I \setminus \{0\}$ tel que $|z_0|^2 = n_0$. On a directement $z_0\mathbb{Z}[i] \subset I$ (I est un idéal). Réciproquement, soit $z \in I$, d'après 3.(b), il existe $(q, r) \in \mathbb{Z}[i]^2$ tel que

$$r = \underbrace{z}_{\in I} - \underbrace{z_0}_{\in I} \underbrace{q}_{\in \mathbb{Z}[i]}$$
 (1.246)

et $|r|^2 < n_0$. Nécessairement, r=0 et $z=z_0q\in z_0\mathbb{Z}[\mathrm{i}]$. Donc $I=z_0\mathbb{Z}[\mathrm{i}]$. Finalement,

$$\mathbb{Z}[i]$$
 est principal. (1.247)

4. Si $|z|^2 = 1$, alors $z \in U$ donc c'est bon. On travaille ensuite par récurrence sur $n \in \mathbb{N}^*$. Supposons que la décomposition existe pour $z \in \mathbb{Z}[i]$ avec $|z|^2 \leqslant n$. Soit $z \in \mathbb{Z}[i]$ tel que $|z|^2 = n + 1$. On a $|z|^2 \geqslant 2$ donc $z \in U$. Si z est irréductible, c'est bon. Sinon, il existe $(z_1, z_2) \in \mathbb{Z}[i]^2$ tel que $z = z_1 z_2$ et z_1 et z_2 non inversibles. Alors $|z_1|^2 \geqslant 2$ et $|z_2|^2 \geqslant 2$. Or $|z|^2 = n + 1 = |z_1|^2 |z_2|^2$ donc $|z_1|^2 \leqslant n$ et $|z_2|^2 \leqslant n$. Par hypothèse de récurrence, on peut décomposer z_1 et z_2 , donc z est décomposable

Pour l'unicité, soit $z \in \mathbb{Z}[i] \setminus \{0\}$ tel que $z = u \prod_{\rho \in \mathcal{P}_0} \rho^{\nu_{\rho}(z)} = v \prod_{\rho \in \mathcal{P}_0} \rho^{\mu_{\rho}(z)}$. Le théorème de Gauss est valable dans $\mathbb{Z}[i]$, car c'est un anneau principal. S'il existe $\rho_0 \in \mathcal{P}_0$ tel que $\nu_{\rho_0}(z) < \mu_{\rho_0}(z)$, alors

$$\rho_0 \mid \prod_{p \in \mathcal{P}_0 \setminus \{\rho_0\}} \rho^{\nu_\rho(z)} \tag{1.249}$$

ce qui est proscrit par le théorème de Gauss. On a donc pour tout $\rho \in \mathcal{P}_0$, $\nu_{\rho}(z) = \mu_{\rho}(z)$. En reportant, on a u = v.

Solution 1.50.

1. On a $\overline{1} \in R$. Soit $(\overline{x_1}, \overline{x_2}) \in R^2$, il existe $(\overline{y_1}, \overline{y_2}) \in (\mathbb{F}_p^*)^2$ tel que $\overline{x_1} = \overline{y_1}^2$ et $\overline{x_2} = \overline{y_2}^2$. On a alors

$$\overline{x_1 x_2}^{-1} = (\overline{y_1 y_2}^{-1})^2 \in R \tag{1.251}$$

donc

$$R$$
 est un sous groupe de (\mathbb{F}_p^*, \times) . (1.252)

Soit

$$\varphi: \quad \mathbb{F}_p^* \quad \to \quad \mathbb{F}_p^*$$

$$\overline{y} \quad \mapsto \quad \overline{y}^2$$

On a $\operatorname{Im}(\varphi) = R$. Comme \mathbb{F}_p est un corps, chaque éléments de R a exactement 2 antécédents par φ . Donc $|R| = \frac{|\mathbb{F}_p^*|}{2} = \frac{p-1}{2}$.

S'il existe $\overline{y} \in \mathbb{F}_p^*$ tel que $\overline{a} = \overline{y}^2$, on a $\overline{a}^{\frac{p-1}{2}} = \overline{y}^{p-1} = \overline{1}$ par le théorème de Fermat.

Réciproquement, si $\overline{a}^{\frac{p-1}{2}} = \overline{1}$, $X^{\frac{p-1}{2}} - \overline{1}$ admet au plus $\frac{p-1}{2}$ racines dans \mathbb{F}_p^* . Tous les éléments de R sont racines de ce polynôme, ce sont donc ses seules racines. Donc $a \in R$.

Donc
$$a \in R$$
 si et seulement si $a^{\frac{p-1}{2}} = 1$. (1.253)

2. Si $p = a^2 + b^2$, alors $\overline{0} = \overline{a}^2 + \overline{b}^2$. Si $\overline{a} = \overline{b} = \overline{0}$, on a $p \mid a$ et $p \mid b$ donc $p^2 \mid p$ ce qui est exclu. Par exemple, si $\overline{a} \neq \overline{0}$, on a $\overline{1} = -\overline{b}^2 \overline{a}^{-2}$ donc $\overline{-1} = (\overline{a}^{-1} \overline{b})^2 \in R$ d'après 1. On a donc $(\overline{-1})^{\frac{p-1}{2}} = \overline{1}$ si et seulement si $2 \mid \frac{p-1}{2}$ (car p est premier plus grand que 3) d'où $4 \mid p-1$ donc

$$p \equiv 1[4] \tag{1.254}$$

3. On a $|\mathbb{F}_p| = p$, $E(\sqrt{p}) \leq \sqrt{p} < E(\sqrt{p}) + 1$ et $|\{0, \dots, E(\sqrt{p})\}|^2 = (E(\sqrt{p}) + 1)^2 > p$ (p est premier, ce n'est pas un carré) donc (cardinalité)

$$f$$
 n'est pas injective. (1.255)

Donc il existe

$$((a_1, b_1), (a_2, b_2)) \in (\{0, \dots, E(\sqrt{p})\}^2)^2$$
 (1.256)

avec $(a_1, b_1) \neq (a_2, b_2)$ et $f(a_1, b_1) = f(a_2, b_2)$. Donc

$$\overline{a_1} - \overline{kb_1} = \overline{a_2} - \overline{kb_2} \Rightarrow \overline{a_1} - \overline{a_2} = \overline{k}(\overline{b_1} - \overline{b_2}) \tag{1.257}$$

Si $\overline{b_1} = \overline{b_2}$, alors $\overline{a_1} = \overline{a_2}$ donc $p \mid b_1 - b_2$ et $p \mid a_1 - a_2$ donc $(a_1, b_1) = (a_2, b_2)$ ce qui n'est pas vrai. Donc $\overline{b_1} \neq \overline{b_2}$. Posons $b_0 = b_1 - b_2$ et $a_0 = a_1 - a_2$. On a $\overline{b_0} \neq \overline{0}$. Il vient donc $(|a_0|, |b_0|) \in [1, E(\sqrt{p})]^2$, $\overline{a_0} = \overline{kb_0}$ donc

$$\overline{\overline{k} = \overline{a_0}\overline{b_0}^{-1}} \tag{1.258}$$

4. Si $p \equiv 1[4]$, en remontant les calculs, on a $(\overline{-1})^{\frac{p-1}{2}} = \overline{1}$ donc $\overline{-1} \in R$ et il existe $\overline{k} \in \mathbb{F}_p^*$ tel que $\overline{-1} = \overline{k}^2$. Alors d'après 3., il existe (a_0, b_0) tels que $\overline{k} = \overline{a_0}\overline{b_0}^{-1}$. Il vient alors $\overline{-1} = \overline{a_0}^2(\overline{b_0}^{-1})^2$ donc $\overline{-b_0}^2 = \overline{a_0}^2$. On a

$$p \mid a_0^2 + b_0^2 \in [2, 2E(\sqrt{p})]^2 \subset [2, 2p - 1]$$
 (1.259)

Nécessairement, $a_0^2 + b_0^2 = p$ et

$$p$$
 est somme de deux carrés. (1.260)

Solution 1.51.

1. Soit $(m,n) \in A^2$. Il existe $(a,b,c,d) \in \mathbb{N}^4$ tel que $m=a^2+b^2=|a+\mathrm{i}b|^2$ et $n=c^2+d^2=|c+\mathrm{i}d|^2$. Donc

$$m \times n = |ac - bd6i(bc + ad)|^2 = (ac - bd)^2 + (bc + ad)^2 \in A$$
(1.261)

2. On a

$$n = \prod_{\substack{p \in \mathcal{P}_1 \\ \in A \text{ car } \mathcal{P}_1 \subset A}} p^{\nu_p(n)} \times \prod_{\substack{p \in \mathcal{P}_2 \\ = \prod_{p \in \mathcal{P}_2} p^{2\alpha_p} \in A}} p^{\nu_p(n)} \in A$$

$$(1.262)$$

3. Soit $n \in A$, il existe $(a,b) \in \mathbb{N}^2$ avec $n = a^2 + b^2$. Soit $p \in \mathcal{P}_1 \cup \mathcal{P}_2$, on a $p \mid a^2 + b^2$ donc $\overline{a^2 + b^2} = \overline{0}$ dans $\mathbb{Z}/p\mathbb{Z}$. Si $p \nmid a$ ou $p \nmid b$, alors $\overline{1 + \frac{b^2}{a^2}} = \overline{0}$ donc $\overline{-1} \in R$ (résidus quadratiques, voir exercice précédent). Donc p = 2 ou $p \equiv 1[4]$.

Si $p \mid a$ et $p \mid b$, $a = p^k a'$, $b = p^l b'$ avec $p \nmid a'$ et $p \nmid b'$. On suppose $1 \leqslant k \leqslant l$ (quitte à échanger a et b). On a

$$a^{2} + b^{2} = p^{2k}(a^{2} + p^{2(l-k)}b^{2}) = n$$
(1.263)

donc

$$p \mid a'^2 + p^{2(l-k)b'^2} \tag{1.264}$$

et $\overline{a'}^2 + \overline{p^{2(l-k)}}\overline{b'}^2 = \overline{0}$. Nécessairement, l = k. De même $p \in \mathcal{P}_1$. Par contraposée, ν_p est pair.

44

2 Séries numériques et familles sommables

Solution 2.1.

1. On a $b_0 = a_1 = 5$, $b_1 = a_3 = 13$ et pour $p \ge 2$, $b_p = 2b_{p-1} + 3b_{p-2}$.

On a donc l'équation caractéristique $x^2 - 2x - 3 = 0$. Les deux solutions sont 3 et -1. Donc il existe $(\lambda, \mu) \in \mathbb{R}^2$, $b_p = \lambda 3^p + \mu (-1)^p$.

On a alors $b_0 = 5 = \lambda + \mu$ et $b_1 = 13 = 3\lambda - \mu$. On trouve alors

$$\lambda = \frac{9}{2} \text{ et } \mu = \frac{1}{2}$$
 (2.1)

- 2. On le montre par récurrence sur $p \in \mathbb{N}$.
- 3. Si $3^p \le n < 3^{p+1}$, on a $a_n = b_p = \frac{9}{2}3^p + \frac{1}{2}(-1)^p$. Alors

$$\frac{3}{2} + \frac{1}{2}(-1)^p \frac{1}{3^{p+1}} < \frac{a_n}{n} \leqslant \frac{9}{2} + \frac{1}{2}(-1)^p \frac{1}{3^p}$$
 (2.2)

Soit $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que

$$\frac{a_{\sigma(n)}}{\sigma(n)} \xrightarrow[n \to +\infty]{} \lambda \tag{2.3}$$

Soit $p_n \in \mathbb{N}$ tel que $3^{p_n} \leqslant \sigma(n) < 3^{p_n+1}$. On a

$$p_n = \lfloor \log_3(\sigma(n)) \rfloor \xrightarrow[n \to +\infty]{} +\infty$$
 (2.4)

En reportant, on a $\frac{3}{2} \leqslant \lambda \leqslant \frac{9}{2}$.

Si $\sigma(n) = 3^n$, on a

$$\frac{a_{3^n}}{3^n} = \frac{b_n}{3^n} = \frac{9}{2} + \frac{1}{2} \frac{(-1)^n}{3^n} \xrightarrow[n \to +\infty]{} \frac{9}{2}$$
 (2.5)

Si $\sigma(n) = 3^{n+1} - 1$, on a

$$\frac{a_{3^n}}{3^n} = \frac{b_n}{3^{n+1} - 1} \xrightarrow[n \to +\infty]{} \frac{3}{2} \tag{2.6}$$

Soit $\mu \in [1,3[$ et $\sigma(n) = \lfloor 3^n \mu \rfloor \underset{n \to +\infty}{\sim} 3^n \mu$. Alors

$$\frac{a_{\sigma(n)}}{\sigma(n)} = \frac{b_n}{\left[3^n \mu\right]} \underset{n \to +\infty}{\sim} \frac{b_n}{3^n \mu} = \frac{9}{2\mu} + \frac{1}{2\mu} \frac{(-1)^n}{3^n} \xrightarrow[n \to +\infty]{} \frac{9}{2\mu}$$
 (2.7)

Donc tout réel compris dans
$$\left[\frac{3}{2}, \frac{9}{2}\right]$$
 est valeur d'adhérence. (2.8)

Solution 2.2.

1.

$$g: [a,b] \rightarrow \mathbb{R}$$

$$x \mapsto f(x) - x$$

est continue, $g(a) \ge 0$ et $g(b) \le 0$, donc le théorème des valeurs intermédiaires affirme qu'il existe $l \in [a, b]$ avec g(l) = 0, d'où

$$f(l) = l (2.9)$$

2. On note $A = \{\lambda \mid \lambda \text{ est valeur d'adhérence}\}$. Le théorème de Bolzano-Weierstrass indique que A est non vide. De plus, A est borné car $A \subset [a,b]$. Soit $\lambda = \inf(A)$ et $\mu = \sup(A)$.

Si
$$\lambda = b$$
, on a $\mu = b$ et $A = \{b\} = \{\lambda\} = \{\mu\}$.

Si $\lambda < b$, soit $\varepsilon > 0$. Si $\lambda \notin A$, $\{k \in \mathbb{N} \mid x_k \in]\lambda, \lambda + \varepsilon[\}$ est infini. Par définition, λ est valeur d'adhérence. Donc $\lambda \in A$, et de même $\mu \in A$.

Soit $\nu \in]\lambda, \mu[$ avec $\lambda < \mu$. Si $\nu \notin A$, il existe $\varepsilon_0 > 0$ tel que $\{k \in \mathbb{N} \mid |x_k - \nu| < \varepsilon_0\}$ est fini. Donc il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0, x_n \notin]\nu - \varepsilon_0, \nu + \varepsilon_0[$. Comme $\lim_{n \to +\infty} |x_{n+1} - x_n| = 0$, il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \geqslant N_1, |x_{n+1} - x_n| < 2\varepsilon_0$. Soit alors $n \geqslant \max(N_0, N_1)$. Si $x_n \leqslant \nu - \varepsilon_0$, alors $x_{n+1} \leqslant \nu - \varepsilon_0$. Si $x_n \geqslant \nu + \varepsilon_0$, alors $x_{n+1} \geqslant \nu + \varepsilon_0$. Ceci contredit que λ et μ sont valeur d'adhérence.

Ainsi, $\nu \in A$ et

$$[\lambda, \mu]$$
 est le segment des valeurs d'adhérence. (2.10)

3. Si (x_n) converge, alors $\lim_{n\to +\infty} x_{n+1} - x_n = 0$. Réciproquement, si $\lim_{n\to +\infty} x_{n+1} - x_n = 0$, d'après 2., on a $A = [\lambda, \mu]$. On suppose $\lambda < \nu$. Ainsi, $\frac{\lambda+\nu}{2} = \alpha$ est valeur d'adhérence. Donc il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $x_{\sigma(n)} \xrightarrow[n\to +\infty]{} \alpha$. Alors $\lim_{n\to +\infty} x_{\sigma(n)+1} = f(\alpha)$ par continuité de f et c'est aussi égale à $\lim_{n\to +\infty} x_{\sigma(n)} = \alpha$ car $\lim_{n\to +\infty} x_{n+1} - x_n = 0$. Ainsi,

$$f(\alpha) = \alpha \tag{2.11}$$

Par ailleurs, il existe $n_0 \in \mathbb{N}$ tel que $x_{n_0} \in [\lambda, \mu]$ et $f(x_{n_0}) = x_{n_0} \in A$, alors pour tout $n \geqslant n_0$, on a $x_n = x_{n_0}$. Donc $(x_n)_{n \in \mathbb{N}}$ converge et $\lambda = \mu : (x_n)_{n \in \mathbb{N}}$ est bornée et a une unique valeur

d'adhérence.

Donc
$$(x_n)_{n\in\mathbb{N}}$$
 converge. (2.12)

Solution 2.3. On a $u_n = e^{i2^n\theta}$ pour tout $n \in \mathbb{N}$.

Si $(u_n)_{n\in\mathbb{N}}$ converge vers l, alors $\lim_{n\to+\infty}u_n=1$ car $l=l^2$ et |l|=1.

Si $(u_n)_{n\in\mathbb{N}}$ est périodique au-delà d'un certain rang, il existe $T\in\mathbb{N}^*$, il existe $N_0\in\mathbb{N}$ tel que pour tout $n\geqslant N_0,\ u_{n+T}=u_n$. En particulier, $u_{N_0+T}=u_{N_0}$. On veut alors $2^{N_0+T}\theta\equiv 2^{N_0}\theta[2\pi]$. D'où $2^{N_0+T}\theta=2\theta+2k\pi$ donc $2^{N_0}(2^T-1)\theta=2k\pi$. Donc $\frac{\theta}{2\pi}\in\mathbb{Q}$.

Réciproquement, si $\frac{\theta}{2\pi} \in \mathbb{Q}$, son développement binaire est périodique à partir d'un certain rang, et donc $(u_n)_{n\in\mathbb{N}}$ l'est aussi.

Si $(u_n)_{n\in\mathbb{N}}$ est stationnaire, il existe $N\in\mathbb{N}$ tel que pour tout $n\geqslant N$, $U_{N+1}=U_N=U_{N^2}$. Comme $|U_N|=1$, alors $2^n\theta\in 2\pi\mathbb{N}$ et $\frac{\theta}{2\pi}$ est dyadique.

Réciproquement, s'il existe $p \in \mathbb{N}$, $u_0 \in \mathbb{N}$ tel que $\frac{\theta}{2\pi} = \frac{p}{2^{n_0}}$ (nombre dyadique). Alors pour tout $n \ge n_0$, $2^n \theta \in 2\pi \mathbb{N}$ et $u_n = u_{n_0} = 1$.

Pour la densité, on prend une suite $(a_n)_{n\in\mathbb{N}}$ en écrivant successivement, pour tout $k\in\mathbb{N}^*$, tous les paquets de k entiers sont dans $\{0,1\}^k$. Soit $x\in[0,1[$ tel que

$$x = \sum_{n=1}^{+\infty} \frac{a_n}{2^n} \tag{2.13}$$

Soit $N \in \mathbb{N}$, il existe $p_N \in \mathbb{N}$,

$$2^{p_N}\theta = 2\pi \underbrace{(\dots)}_{\in \mathbb{N}} + 2\pi (\frac{a_1}{2} + \dots + \frac{a_N}{2^N} + \underbrace{\dots}_{\in [0, \frac{1}{2^N}[})$$
 (2.14)

On a alors

$$e^{i2^{p_N}\theta} = e^{i2\pi(\frac{a_1}{2} + \dots + \frac{a_N}{2^N} + \dots)}$$
(2.15)

et

$$\left| \frac{a_1}{2} + \dots + \frac{a_N}{2^N} - x \right| \leqslant \frac{1}{2^N}$$
 (2.16)

D'où $\lim_{N\to+\infty} u_{p_N} = e^{\mathrm{i}2\pi x}$ et $(u_n)_{n\in\mathbb{N}}$ est dense dans \mathbb{U} .

Solution 2.4. Si a = 0 et b = 0, $u_n \xrightarrow[n \to +\infty]{} 0$.

Si a = 0 et $b \neq 0$ (ou inversement), $u_n \underset{n \to +\infty}{\sim} \left(\frac{1}{2}\right)^{n^2} \xrightarrow[n \to +\infty]{} 0$.

Si a > 0 ou b > 0, on a

$$u_n = \exp\left(n^2 \ln\left(\frac{e^{\frac{1}{n}\ln(a)} + e^{\frac{1}{n}\ln(b)}}{2}\right)\right)$$
 (2.17)

$$= \exp\left(n^2 \ln\left(1 + \frac{1}{2n}\ln(ab) + \frac{1}{4n^2}(\ln(a)^2 + \ln(b)^2)\right) + o\left(\frac{1}{n^2}\right)\right)$$
(2.18)

$$= \exp\left(\frac{n}{2}\ln(ab) + \frac{1}{4}(\ln(a)^2 + \ln(b)^2 + o(1))\right)$$
 (2.19)

Si ab > 1, on a

$$\lim_{n \to +\infty} u_n = +\infty$$
(2.20)

Si ab < 1, on a

$$\lim_{n \to +\infty} u_n = 0 \tag{2.21}$$

Si ab = 1, on a

$$\lim_{n \to +\infty} u_n = e^{\frac{1}{2}\ln(a)^2}$$
 (2.22)

Solution 2.5.

1. Soit $M = \sup_{n \in \mathbb{N}} x_n > 0$ (car $\sum_{n \in \mathbb{N}} x_n = +\infty$).

$$J = \left\{ k \in \mathbb{N} \mid x_k \geqslant \frac{M}{2} \right\} \tag{2.23}$$

est fini car $x_n \xrightarrow[n \to +\infty]{} 0$ et est non vide. On définit

$$\varphi(0) = \min \left\{ k \in J \mid x_k = \max\{x_n \mid n \in J\} \right\}$$
 (2.24)

Pour tout $n \in J$, $x_{\varphi(0)} \geqslant x_n$. Si $n \notin J$, $x_n \leqslant \frac{M}{2} < x_{\varphi(0)}$. Ainsi,

$$x_{\varphi(0)} = \max\{x_n \mid n \in \mathbb{N}\}$$
(2.25)

Puis on recommence avec

$$\left\{ x_n \mid n \in \mathbb{N} \setminus \{\varphi(0)\} \right\} \tag{2.26}$$

2. Pour l=0, pour tout $\varepsilon>0$, il existe $n\in\mathbb{N}$ tel que $x_N<\varepsilon$. On pose

$$\boxed{I = \{N\}} \tag{2.27}$$

et on a bien

$$\left| \sum_{k \in I} x_k - l \right| \leqslant \varepsilon \tag{2.28}$$

Si $l = +\infty$, soit A > 0. Il existe $N \in \mathbb{N}$ tel que $\sum_{k=0}^{N} x_k > A$ (car $\sum_{n \in \mathbb{N}} x_n = +\infty$). Donc on peut prendre

$$\boxed{I = \{0, \dots, N\}} \tag{2.29}$$

Si $l \in \mathbb{R}_+^*$. Soit $\varepsilon > 0$, on peut supposer sans perte de généralité que $\varepsilon < l$. Il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$, on a $x_n < \varepsilon$ et $\sum_{n=N_0}^{+\infty} x_n = +\infty$. Donc il existe un plus petit entier N_1 tel que $\sum_{n=N_0}^{N_1} x_n \geqslant l - \varepsilon$. Comme $x_{N_1} < \varepsilon$, on a $\sum_{n=N_0}^{N_1} x_n \leqslant l + \varepsilon$. Donc

$$I = \{N_0, \dots, N_1\}$$
 (2.30)

Solution 2.6. On pose

$$S_n = \sum_{k=0}^n u_k^2 \tag{2.31}$$

Montrons que $S_n \xrightarrow[n \to +\infty]{} +\infty$. D'abord, il existe $n_0 \in \mathbb{N}$ tel que $u_{n_0} > \operatorname{donc} \lim_{n \to +\infty} S_n = l \in \overline{R}_+^*$. Si $l < +\infty$, on a $u_n \xrightarrow[n \to +\infty]{} \frac{1}{l}$ et donc $u_n^2 \xrightarrow[n \to +\infty]{} \frac{1}{l^2}$ et la série diverge. Donc $l = +\infty$ et comme $u_n \underset{n \to +\infty}{\sim} \frac{1}{S_n}$, on a $u_n \xrightarrow[n \to +\infty]{} 0$.

On observe ensuite que $S_n - S_{n-1} = u_n^2 = o(1)$ donc $S_{n-1} \underset{n \to +\infty}{\sim} S_n$. Ainsi,

$$\underbrace{u_n^2 S_n^2}_{n \to +\infty} \xrightarrow[n \to +\infty]{} 1 \tag{2.32}$$

et on a

$$\frac{S_n^2 + S_n S_{n-1} + S_{n-1}^2}{S_n^2} = 1 + \frac{S_{n-1}}{S_n} + \frac{S_{n-1}^2}{S_n^2} \xrightarrow[n \to +\infty]{} 3$$
 (2.33)

donc

$$\underbrace{(S_n - S_{n-1})(S_n^2 + S_n S_{n-1} + S_{n-1}^2)}_{= S_n^3 - S_{n-1}^3} \xrightarrow[n \to +\infty]{} 3$$
(2.34)

On applique le théorème de Césaro à la suite $S_n^3 - S_{n-1}^3$:

$$\frac{S_n^3 - S_0^3}{n} \xrightarrow[n \to +\infty]{} 3 \tag{2.35}$$

donc $S_n \underset{n \to +\infty}{\sim} \sqrt[3]{3n}$, et comme $u_n \underset{n \to +\infty}{\sim} \frac{1}{S_n}$, on a bien

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{\sqrt[3]{3n}} \tag{2.36}$$

Réciproquement, soit $u_n = \frac{1}{\sqrt[3]{3n}}$ avec $u_0 = 1$. On a

$$u_n^2 = \frac{1}{(3n)^{\frac{2}{3}}} \tag{2.37}$$

Par comparaison série-intégrale, on a

$$\sum_{k=0}^{n} u_k^2 \underset{n \to +\infty}{\sim} \frac{1}{3^{\frac{2}{3}}} \times 3n^{\frac{1}{3}} = (3n)^{\frac{1}{3}}$$
 (2.38)

et donc

$$u_n \times \sum_{k=0}^n u_k^2 \underset{n \to +\infty}{\sim} \frac{\sqrt[3]{3n}}{\sqrt[3]{3n}} = 1$$
 (2.39)

Remarque 2.1. On rappelle que l'on a la comparaison série-intégrale, pour $\alpha < 1$,

$$\sum_{k=1}^{N} \frac{1}{k^{\alpha}} \underset{n \to +\infty}{\sim} \int_{1}^{N} \frac{dt}{t^{\alpha}} \underset{n \to +\infty}{\sim} \frac{1}{1-\alpha} N^{1-\alpha}$$
(2.40)

Solution 2.7. Tout d'abord, on montre que pour tout $x \in [0,1]$,

$$0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant x^4$$
 (2.41)

en posant

$$\begin{array}{ccc} f: & [0,1] & \to & \mathbb{R} \\ & x & \mapsto & \cosh(x) - 1 - \frac{x^2}{2} \end{array}$$

de classe C^{∞} sur [0,1] et on a $f''(x) = \cosh(x) - 1 \ge 0$ et f'(0) = 0. Comme f(0) = 0, on a pour tout $x \in [0,1], f(x) \ge 0$.

Avec l'inégalité de Taylor-Lagrange à l'ordre 4 sur f, on a

$$0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant \frac{x^4}{24} \times \underbrace{\sup_{t \in [0,1]} |\cosh^{(4)}(t)|}_{\leqslant \cosh(1)} \leqslant x^4$$
 (2.42)

Figure $1 - 0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant x^4$ pour $x \in \mathbb{R}$.

On a

$$-x_n = \sum_{k=1}^n \left[\cosh\left(\frac{1}{\sqrt{k+n}}\right) - 1 \right]$$
 (2.43)

Ainsi,

$$0 \leqslant x_n - \sum_{k=1}^n \frac{1}{2n+k} \leqslant \sum_{k=1}^n \frac{1}{(n+k)^2} \leqslant \frac{n}{(n+1)^2} \xrightarrow[n \to +\infty]{} 0 \tag{2.44}$$

On a

$$\sum_{k=1}^{n} \frac{1}{n+k} = H_{2n} - H_n = \ln(2n) + \gamma + o(1) - \ln(n) - \gamma = \ln(2) + o(1)$$
 (2.45)

Donc

$$\lim_{n \to +\infty} x_n = -\frac{\ln(2)}{2} \tag{2.46}$$

Solution 2.8. φ est dérivable sur \mathbb{R} et on a pour tout $x \in \mathbb{R}$, $\varphi'(x) = e^x - 1$.

FIGURE $2 - e^x - x - 1 \geqslant -x - 1$ pour $x \in \mathbb{R}$.

On a

$$0\varphi(a_n) \leqslant \varphi(a_n) + \varphi(b_n) + \varphi(c_n) \xrightarrow[n \to +\infty]{} 0$$
(2.47)

donc

$$\lim_{n \to +\infty} \varphi(a_n) = 0 \tag{2.48}$$

Par l'absurde, soit $\varepsilon > 0$. Supposons qu'il existe une infinité d'entiers $k \in \mathbb{N}$ tel que $|a_k| > \varepsilon$. Cela implique alors

$$\varphi(a_k) \geqslant \min(\varphi(\varepsilon), \varphi(-\varepsilon)) > 0$$
(2.49)

ce qui contredit $\lim_{n\to+\infty} \varphi(a_n) = 0$. Donc

$$\left| \lim_{n \to +\infty} a_n = 0 \right| \tag{2.50}$$

et c'est pareil pour b_n et c_n .

Solution 2.9.

1. Soit

$$f: \]0,1[\ \rightarrow \ \mathbb{R}$$
$$x \ \mapsto \ x(1-x)$$

On a $f(x) \in]0, \frac{1}{4}]$. Pour tout $n \in \ge 1$, $u_n \in]0, \frac{1}{4}]$. Par récurrence, on a donc $u_{n+1} \le u_n$ et $\lim_{n \to +\infty} u_n = 0$.

Donc v_n est bien définie. (2.51)

FIGURE $3 - x(1 - x) \in \left]0, \frac{1}{4}\right]$ pour $x \in]0, 1[$.

2. On a

$$\frac{1}{u_{n+1}} = \frac{1}{u_n} \times \frac{1}{1 - u_n} = \frac{1}{u_n} (1 + u_n + o(u_n)) = \frac{1}{u_n} + 1 + o(1)$$
 (2.52)

Donc $v_{n+1}-v_n \xrightarrow[n \to +\infty]{} 1$. D'après le théorème de Césaro, on a

$$\frac{v_n - v_0}{n} \xrightarrow[n \to +\infty]{} 1 \tag{2.53}$$

donc $v_n \underset{n \to +\infty}{\sim} n$ et $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$.

On a

$$\frac{1}{u_{n+1}} = \frac{1}{u_n} (1 + u_n + u_n^2 + O(u_n^3)) = \frac{1}{u_n} + 1 + u_n + \underbrace{O(u_n^2)}_{= O(\frac{1}{n^2})}$$
(2.54)

donc

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = 1 + u_n + O\left(\frac{1}{n^2}\right) \tag{2.55}$$

et $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$ donc $\sum_{k=0}^n u_k \underset{n \to +\infty}{\sim} \ln(n)$. En sommant, on a donc

$$v_n - v_0 = n + \ln(n) + o(\ln(n))$$
 (2.56)

On a alors

$$u_n = \frac{1}{n + \ln(n) + o(\ln(n))}$$
 (2.57)

$$= \frac{1}{n} \times \frac{1}{1 + \frac{\ln(n)}{n} + o(\frac{\ln(n)}{n})}$$
 (2.58)

$$= \frac{1}{n} \left(1 - \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right) \right) \tag{2.59}$$

$$= \frac{1}{n} - \underbrace{\frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)}_{= \alpha_n} \tag{2.60}$$

 α_n est le terme genéral d'une série à termes positifs convergentes car $\alpha_n = O\left(\frac{1}{n^{\frac{3}{2}}}\right)$. Donc

$$v_{n+1} - v_n = 1 + \frac{1}{n} + \alpha_n + O\left(\frac{1}{n^2}\right)$$
 (2.61)

et en sommant,

$$v_n = n + \ln(n) + O(1)$$
 (2.62)

et comme montré auparavant,

$$u_n = \frac{1}{n} - \frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)$$
 (2.63)

Solution 2.10.

1. Soit

$$f_n: \mathbb{R}^+ \to \mathbb{R}$$

$$x \mapsto x^n - x - n$$

On a $f'_n(x) = nx^{n-1} - 1 = 0$ si et seulement si

$$x = \left(\frac{1}{n}\right)^{\frac{1}{n-1}} = \alpha_n \tag{2.64}$$

 $f_n(0) = 0$ et $f_n(x) \xrightarrow[x \to +\infty]{} +\infty$. f_n est monotone strictement sur $]\alpha_n, +\infty[$.

Donc il existe un unique
$$x_n \in \mathbb{R}^+$$
 tel que $f_n(x_n) = 0$ (2.65)

On a $f_n(1) = -n < 0$ donc $x_n > 1$ et $f_n(2) = 2^n - 2 - n > 0$ pour $n \ge 3$ (on a $x_2 = 2$). Donc pour $n \ge 3$, $x_n \in]1, 2[$.

FIGURE $4-x\mapsto x^3-x-3$ a exactement un zéro sur \mathbb{R}_+ .

2. On a $x_n^n = x_n + n \le 2 + n$ donc

$$1 \leqslant x_n \leqslant (2+n)^{\frac{1}{n}} = e^{\frac{1}{n}\ln(2+n)} \xrightarrow[n \to +\infty]{} 1$$
 (2.66)

Donc

$$\lim_{n \to +\infty} x_n = 1 \tag{2.67}$$

3. On peut poser $x_n=1+\varepsilon_n$ avec $\varepsilon_n>0$ et $\lim_{n\to+\infty}\varepsilon_n=0$. On a

$$(1 + \varepsilon_n)^n = 1 + \varepsilon_n + n \tag{2.68}$$

donc

$$n\ln(1+\varepsilon_n) = \ln(1+\varepsilon_n+n) = \ln(n) + \underbrace{\ln\left(1+\frac{1+\varepsilon_n}{n}\right)}_{\substack{n \to +\infty} \frac{1}{n}}$$
(2.69)

et donc

$$\varepsilon_n \underset{n \to +\infty}{\sim} \frac{\ln(n)}{n} \tag{2.70}$$

On a donc

$$x_n = 1 + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right) \tag{2.71}$$

On a enfin

$$(1 + \varepsilon_n)^n = 1 + \varepsilon_n + n = 1 + n + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$
(2.72)

d'où

$$\ln(1+\varepsilon_n) = \frac{1}{n}\ln(n+1+\frac{\ln(n)}{n}+o\left(\frac{\ln(n)}{n}\right))$$
 (2.73)

$$= \frac{1}{n} \left[\ln(n) + \ln\left(1 + \frac{1}{n} + \underbrace{\frac{\ln(n)}{n^2} + o\left(\frac{\ln(n)}{n^2}\right)}_{= o\left(\frac{1}{n}\right)} \right) \right]$$
(2.74)

$$= \frac{\ln(n)}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \tag{2.75}$$

donc

$$1 + \varepsilon_n = e^{\frac{\ln(n)}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)} = 1 + \frac{\ln(n)}{n} + \frac{\ln(n)^2}{2n^2} + o\left(\frac{\ln(n)^2}{n^2}\right)$$
(2.76)

puis

$$\varepsilon_n = \frac{\ln(n)}{n} + \frac{\ln(n)^2}{2n^2} + o\left(\frac{\ln(n)^2}{n^2}\right)$$
 (2.77)

et ainsi

$$x_n = 1 + \frac{\ln(n)}{n} + \frac{\ln(n)^2}{2n^2} + o\left(\frac{\ln(n)^2}{n^2}\right)$$
 (2.78)

Solution 2.11. On note

$$v_n = \lim_{n \to +\infty} \frac{u_n a_0 + u_{n-1} a_1 + \dots + u_0 a_n}{u_0 + \dots + u_n}$$
(2.79)

Si pour tout $n \in \mathbb{N}$, $a_n = a$ alors $v_n = a \xrightarrow[n \to +\infty]{} a$. De manière générale, on a

$$v_n - a = v_n - a \frac{u_n + \dots + u_0}{u_0 + \dots + u_n} = \frac{\sum_{k=0}^n u_{n-k}(a_k - a)}{u_0 + \dots + u_n}$$
(2.80)

Ainsi,

$$|u_n - a| \leqslant \frac{\sum_{k=0}^n u_{n-k} |a_k - a|}{u_0 + \dots + u_n}$$
(2.81)

Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $k \geqslant N$, $|a_k - a| \leqslant \frac{\varepsilon}{2}$. Comme $(a_k)_{k \in \mathbb{N}}$ converge, on note $M = \sup_{k \in \mathbb{N}} |a_k - a|$. Soit $n \geqslant N$, on a

$$|v_n - a| \leqslant \frac{\sum_{k=0}^{N-1} u_{n-k} |a_k - a| + \sum_{k=N}^n |a_k - a|}{u_0 + \dots + u_n}$$
(2.82)

$$\leq \frac{\sum_{k=n-N+1}^{n} u_k M}{u_0 + \dots + u_n} + \underbrace{\frac{\sum_{k=N}^{n} u_{n-k} \frac{\varepsilon}{2}}{u_0 + \dots + u_n}}_{\leq \frac{\varepsilon}{2}}$$

$$(2.83)$$

car les u_i sont positifs.

On remarque enfin que

$$u_{n} = o(u_{0} + \dots + u_{n})$$

$$u_{n-1} = o(u_{0} + \dots + u_{n-1}) = o(u_{0} + \dots + u_{n})$$

$$\vdots$$

$$u_{n-N+1} = o(u_{0} + \dots + u_{n})$$
(2.84)

Donc

$$M \xrightarrow{\sum_{k=n-N+1}^{n} u_k} \xrightarrow[n \to +\infty]{} 0 \tag{2.85}$$

et il existe $N' \in \mathbb{C}$ tel que pour tout $n \geqslant N'$, on a

$$M\frac{\sum_{k=n-N+1}^{n} u_k}{u_0 + \dots + u_n} \leqslant \frac{\varepsilon}{2} \tag{2.86}$$

et donc pour tout $n \ge \max(N, N')$, on a $|v_n - a| \le \frac{\varepsilon}{2}$ et ainsi

$$\lim_{n \to +\infty} v_n = a \tag{2.87}$$

Solution 2.12.

1. Pour $n \ge 2$, (iii) donne

$$x - \frac{a_2}{2} - \dots - \frac{a_n}{n!} = \sum_{k=n+1}^{+\infty} \frac{a_k}{k!}$$
 (2.88)

Ainsi,

$$0 \leqslant x - \frac{a_2}{2} - \dots - \frac{a_n}{n!} < \sum_{k=n+1}^{+\infty} \frac{k-1}{k!} = \sum_{k=n+1}^{+\infty} \frac{1}{(k-1)!} - \frac{1}{k!} = \frac{1}{n!}$$
 (2.89)

où l'inégalité est stricte d'après (ii). Pour $n \ge 2$, on a

$$x - \frac{a_2}{2} < \frac{1}{2!} \tag{2.90}$$

donc

$$0 \leqslant 2x - \underbrace{a_2}_{\in \mathbb{N}} < 1 \tag{2.91}$$

Donc $a_2 = \lfloor 2x \rfloor$. On a ensuite

$$0 \leqslant n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) - \underbrace{a_n}_{\in \mathbb{N}} < 1$$
 (2.92)

donc

$$a_n = \left[n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) \right]$$
 (2.93)

On a donc bien unicité.

Soit maintenant $(a_n)_{n\in\mathbb{N}}$ définie comme ci-dessus. On a, pour tout $n\geqslant 2$, on a

$$0 \leqslant n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) - \underbrace{a_n}_{\in \mathbb{N}} < 1$$
 (2.94)

Or

$$0 - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \le \frac{1}{(n-1)!}$$
 (2.95)

donc

$$a_n \in \{0, \dots, n-1\} \tag{2.96}$$

et (i) est vérifié.

On a

$$0 \leqslant x - \sum_{k=2}^{n} \frac{a_k}{k!} < \frac{1}{n!} \xrightarrow[n \to +\infty]{} 0 \tag{2.97}$$

donc (iii) est vérifié, et supposons qu'il existe $n_0 \ge 2$ tel que pour tout $m \ge n_0 + 1$, on a $a_m = m - 1$. Alors

$$x = \sum_{k=0}^{n_0} \frac{a_k}{k!} + \sum_{k=n_0+1}^{+\infty} \frac{k-1}{k!}$$
 (2.98)

et

$$x - \sum_{k=0}^{n_0} \frac{a_k}{k!} = \sum_{k=n_0+1}^{+\infty} \frac{k-1}{k!} = \frac{1}{n_0!}$$
 (2.99)

donc

$$n_0! \left(x - \sum_{k=0}^{n_0} \frac{a_k}{k!} \right) = 1 \tag{2.100}$$

et

$$n_0! \left(x - \sum_{l=0}^{n_0-1} \frac{a_{n_0-1}}{(n_0-1)!} \right) - a_{n_0} = 1$$
 (2.101)

En prenant la partie entière, on a donc 0 = 1 ce qui est absurde.

Donc (ii) est vérifié.

2. S'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $a_n = 0$ alors $x \in \mathbb{Q}$.

Si $x = \frac{p}{q} \in \mathbb{Q}$, on a

$$x = \frac{a_2}{2} + \dots + \frac{a_n}{n!} \tag{2.102}$$

si et seulement si

$$a_n = n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right)$$
 (2.103)

si et seulement si

$$n! \left(x - \frac{a_2}{2} - \dots - \frac{a_{n-1}}{(n-1)!} \right) \in \mathbb{N}$$
 (2.104)

ce qui est vrai dès que $n \ge q$. Donc pour tout n > q, on a $a_n = 0$ par unicité.

3. Soit $l \in [-1, 1]$. Soit $x \in [0, 1[$ avec

$$x = \sum_{k=2}^{+\infty} \frac{a_k}{k!}$$
 (2.105)

On a alors

$$n!2\pi x = \underbrace{\sum_{k=2}^{n} \frac{2\pi a_k n!}{k!}}_{\in 2\pi \mathbb{Z}} + \frac{2\pi a_{n+1}}{n+1} + \underbrace{\sum_{k \geqslant n+2} \frac{2\pi a_k n!}{k!}}_{= \varepsilon_n}$$
(2.106)

On a

$$0 \leqslant \varepsilon_n < \frac{2\pi n!}{(n+1)!} = \frac{2\pi}{n+1} \xrightarrow[n \to +\infty]{} 0 \tag{2.107}$$

Donc

$$\sin(n!2\pi x) = \sin\left(\frac{2\pi a_{n+1}}{n+1} + \varepsilon_n\right) \tag{2.108}$$

et il suffit d'avoir, comme $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$,

$$\frac{a_n}{n} \xrightarrow[n \to +\infty]{} \frac{\arcsin(l)}{2\pi} \in \left[0, \frac{1}{4}\right]$$
 (2.109)

On pose alors

$$a_n = \left\lfloor \frac{n \arcsin(l)}{2\pi} \right\rfloor \tag{2.110}$$

pour $n \ge 2$ et on a $0 \le a_n \le \frac{n}{4} < n-1$ pour tout $n \ge 2$. On a donc le résultat.

Remarque 2.2. Il n'y a pas unicité. Par exemple, pour l=0, x=0 ou $x=\frac{1}{2}$ convient. Plus généralement, pour tout $\frac{p}{q} \in \mathbb{Q}$, pour tout $n \geqslant q$, on a

$$\sin\left(n!2\pi\left(x+\frac{p}{q}\right)\right) = \sin(n!2\pi x) \tag{2.111}$$

Solution 2.13. Par récurrence, on a $u_n > 0$ pour tout $n \in \mathbb{N}$. Soit

$$g: \mathbb{R}_+ \to \mathbb{R}$$

$$x \mapsto 2\ln(1+x) - x$$

et

$$f: \mathbb{R}_+ \to \mathbb{R}$$
$$x \mapsto 2\ln(1+x)$$

g est dérivable est

$$g'(x) = \frac{1-x}{1+x} \tag{2.112}$$

donc g est croissante sur [0,1] et décroissante sur $[1,+\infty[$. Comme g(0)=0 et $\lim_{x\to+\infty}g(x)=-\infty$, d'après le théorème des valeurs intermédiaires, il existe un unique réel $l\in]0,+\infty[$ tel que g(l)=0 d'où f(l)=l.

FIGURE $5 - x \mapsto 2 \ln(1 + x)$ admet un unique point fixe sur \mathbb{R}_+^* .

Pour tout $x \in]0, l]$, on a $x \leq f(x) \leq l$ et pour tout x > l, on a $l \leq f(x) \leq x$.

Soit $n \ge 1$. Si $u_n \ge l$ et $u_{n-1} \ge l$, on a $m_n = l$ et $M_n \in \{u_n, u_{n-1}\}$. Il vient donc

$$u_{n+1} = \frac{1}{2}(f(u_n) + f(u_{n-1})) \geqslant f(l) = l$$
(2.113)

 et

$$u_{n+1} \leqslant \frac{1}{2}(u_n + u_{n-1}) \leqslant M_n \tag{2.114}$$

Donc $m_{n+1} = l = m_n$ et $M_{n+1} \leqslant M_n$.

Par récurrence, on a pour tout $k \ge n$, $u_k \ge l$ et $(M_k)_{k \ge n}$ converge vers $\lambda \ge l$ (car décroissante et plus grande que l) et $m_k = l$ pour tout $k \ge n$.

De plus pour tout $k \ge n$, on a

$$u_{k+1} = \frac{1}{2}(f(u_k) + f(u_{k-1})) \leqslant f(M_k)$$
(2.115)

car f est croissante et donc

$$u_{k+2} \leqslant f(M_{k+1}) \leqslant f(M_k)$$
 (2.116)

Par passage à la limite, on a $\lambda \leqslant f(\lambda)$ donc $\lambda = f(\lambda)$ et donc $\lambda = l$. Or pout tout $k \geqslant n$, on a

$$\underbrace{m_k}_{=l} \leqslant u_k \leqslant M_k \xrightarrow[k \to +\infty]{} l \tag{2.117}$$

donc

$$\boxed{u_k \xrightarrow[k \to +\infty]{} l}$$
(2.118)

S'il existe $n_0 \in \mathbb{N}^*$ tel que $u_{n_0-1} \geqslant l$ et $u_{n_0} \geqslant l$ alors $\lim_{n \to +\infty} u_n = l$. Or même s'il existe $n_1 \in \mathbb{N}^*$ tel que $u_{n_1-1} \leqslant l$ et $u_{n_1} \leqslant l$, alors on inverse les rôles de M_{n_1} et m_{n_1} .

Si pour tout $n \in \mathbb{N}$,

$$(u_n - l)(u_{n+1} - l) \le 0 (2.119)$$

Supposons par exemple $u_0 \ge l$ et $u_1 \le l$. Alors

$$0 \leqslant u_2 - l \leqslant \frac{u_0 - l}{2} \tag{2.120}$$

et par récurrence, pour tout $k \in \mathbb{N}$, on a $0 \leqslant u_{2k} - l \leqslant \frac{u_0 - l}{2^k}$. Donc $u_{2k} \xrightarrow[k \to +\infty]{} l$ et de même $u_{2k+1} \xrightarrow[k \to +\infty]{} l$ (par valeurs inférieures). Donc

$$\boxed{u_k \xrightarrow[k \to +\infty]{} l}$$
(2.121)

Solution 2.14. Soit $(\theta, \theta') \in [2, 2\pi]^2$ tel que

$$\lim_{k \to +\infty} e^{ipx_n} = e^{i\theta} \tag{2.122}$$

 et

$$\lim_{k \to +\infty} e^{iqx_n} = e^{i\theta'} \tag{2.123}$$

Soient x,x' deux valeurs d'adhérence de $(x_n)_{n\in\mathbb{N}}$ distinctes. On a

$$\begin{cases}
e^{ipx} = e^{i\theta} = e^{ipx'} \\
e^{iqx} = e^{i\theta'} = e^{iqx'}
\end{cases}$$
(2.124)

Il existe $(k, k') \in \mathbb{Z}^2$ tel que

$$\begin{cases} px = px' + 2k\pi \\ qx = qx' + 2k\pi \end{cases}$$
(2.125)

et donc $p(x-x')=2k\pi$ et $q(x-x')=2k'\pi$ et alors $\frac{p}{q}\in\mathbb{Q}$ ce qui contredit l'hypothèse. Donc $(u_n)_{n\in\mathbb{N}}$ possède une unique valeur d'adhérence. Comme elle est bornée,

$$(x_n)_{n\in\mathbb{N}}$$
 converge. (2.126)

Si $(x_n)_{n\in\mathbb{N}}$ n'est pas bornée, on peut prendre

$$x_n = n!$$
 (2.127)

On a

$$e^{2i\pi n!} = 1 (2.128)$$

et

$$n!e = n! \sum_{k=0}^{+\infty} \frac{1}{k!} = \sum_{k=0}^{n} \frac{n!}{k!} + \sum_{k=n+1}^{+\infty} \frac{n!}{k!}$$
(2.129)

Si on veut x_n divergente dans $\overline{\mathbb{R}}$, on peut prendre

$$x_n = (-1)^n n! (2.130)$$

Solution 2.15.

1. On a

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k!} \leqslant \boxed{\frac{n^k}{k!}}$$
(2.131)

2. On a

$$\left(1 + \frac{z}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{z}{n}\right)^k \tag{2.132}$$

donc

$$\left| \sum_{k=0}^{n} \frac{z^k}{k!} - \binom{n}{k} \frac{z^k}{n^k} \right| \leqslant \sum_{k=0}^{n} |z|^k \underbrace{\left| \frac{1}{k!} - \binom{n}{k} \frac{1}{n^k} \right|}_{>0}$$
 (2.133)

$$\leq \sum_{k=0}^{n} \frac{|z|^k}{k!} - \sum_{k=0}^{n} {n \choose n} \frac{|z|^k}{n^k}$$
 (2.134)

3. On sait que

$$\sum_{k=0}^{n} \frac{|z|^k}{k!} \xrightarrow[k \to +\infty]{} e^{|z|} \tag{2.136}$$

et

$$\left(1 + \frac{|z|}{n}\right)^n = e^{n\ln\left(1 + \frac{|z|}{n}\right)} = e^{n\left(\frac{|z|}{n} + o\left(\frac{|z|}{n}\right)\right)} = e^{|z|}e^{o(1)} \xrightarrow[n \to +\infty]{} e^{|z|} \tag{2.137}$$

En reportant dans la question précédente, on a donc

$$\lim_{n \to +\infty} \left(1 + \frac{z}{n} \right)^n = \sum_{k=0}^{+\infty} \frac{z^k}{k!} = e^z$$
 (2.138)

Remarque 2.3. Une autre méthode est d'écrire, pour z = a + ib,

$$1 + \frac{z + ib}{n} = 1 + \frac{a}{n} + i\frac{b}{n} = \rho_n e^{i\theta_n}$$
 (2.139)

. On a alors

$$\left| 1 + \frac{a + ib}{n} \right| = \sqrt{\left(1 + \frac{a}{n} \right)^2 + \frac{b^2}{n^2}} = \rho_n$$
 (2.140)

et alors

$$\rho_n^n = \left| \left(1 + \frac{z}{n} \right) \right|^n \tag{2.141}$$

$$=e^{\frac{n}{2}\ln\left(\left(1+\frac{a}{n}\right)^2+\frac{b^2}{n^2}\right)} \tag{2.142}$$

$$=e^{\frac{n}{2}\ln\left(1+\frac{2a}{n}+o\left(\frac{1}{n}\right)\right)} \tag{2.143}$$

$$= e^{a+o(1)} \xrightarrow[n \to +\infty]{} e^a = |e^z| \tag{2.144}$$

On écrit ensuite

$$1 + \frac{a + ib}{n} = \rho_n \left(\underbrace{\frac{1 + \frac{a}{n}}{\rho_n}}_{= \cos(\theta_n)} + i \underbrace{\frac{b}{n\rho_n}}_{= \sin(\theta_n)} \right)$$
 (2.145)

On a alors

$$\lim_{n \to +\infty} \frac{b}{n\rho_n} = 0 \text{ et } \lim_{n \to +\infty} \frac{1 + \frac{a}{n}}{\rho_n} = 1$$

$$(2.146)$$

On peut imposer $\theta_n \in]-\pi,\pi]$ et il existe alors $N \in \mathbb{N}$ tel que pour tout $n \geqslant N$, $\cos(\theta_n) \geqslant 0$. Pour $n \geqslant N$, on a alors $\theta_n \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc

$$\theta_n = \arcsin\left(\frac{b}{n\rho_n}\right) \tag{2.147}$$

et $n\theta_n = n \arcsin\left(\frac{b}{n\rho_n}\right) \underset{n \to +\infty}{\sim} b$. Finalement, on a bien

$$\left(1 + \frac{z}{n}\right)^n = \rho_n^n e^{i\theta_n} \xrightarrow[n \to +\infty]{} e^a e^{ib} = e^z \tag{2.148}$$

Solution 2.16. Pour tout $n \ge 2$, $u_n > 0$. On a

$$u_{n+1} = \underbrace{\frac{\sqrt{n+1}-1}{\sqrt{n+1}+1}}_{\le 1} u_n \tag{2.149}$$

donc $(u_n)_{n\in\mathbb{N}}$ est décroissante donc converge. On a

$$\ln(u_n) = \sum_{k=2}^{n} \frac{\ln\left(1 - \frac{1}{\sqrt{k}}\right) - \ln\left(1 + \frac{1}{\sqrt{k}}\right)}{= v_k} < 0$$
 (2.150)

Ensuite,

$$v_k = -\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k}} + o\left(\frac{1}{\sqrt{k}}\right) \underset{k \to +\infty}{\sim} -\frac{2}{\sqrt{k}}$$
 (2.151)

Comme $\sum_{k\geqslant 2} \frac{1}{\sqrt{k}}$ diverge, on a $\lim_{n\to +\infty} \ln(u_n) = -\infty$.

Ainsi,

$$\lim_{n \to +\infty} u_n = 0 \tag{2.152}$$

On a ensuite

$$u_n = \exp\left(\sum_{k=2}^n \left[\ln\left(1 - \frac{1}{\sqrt{k}}\right) - \ln\left(1 + \frac{1}{\sqrt{k}}\right)\right]\right)$$
 (2.153)

et

$$\ln\left(1 \pm \frac{1}{\sqrt{k}}\right) = \pm \frac{1}{\sqrt{k}} - \frac{1}{2k} + O\left(\frac{1}{k^{\frac{3}{2}}}\right) \tag{2.154}$$

Donc

$$v_k = -\frac{2}{\sqrt{k}} + O\left(\frac{1}{k^{\frac{3}{2}}}\right) \tag{2.155}$$

Le terme dans le O est le terme générale d'une série absolument convergent donc convergent, on note ce terme α_k . On a alors

$$\sum_{k=2}^{n} v_k = \sum_{k=2}^{n} \left(-\frac{2}{\sqrt{k}} + \alpha_k \right) = -2 \sum_{k=2}^{n} \frac{1}{\sqrt{k}} + \sum_{k=2}^{+\infty} \alpha_k + o(1)$$
 (2.156)

Par comparaison série-intégrale, on a

$$\sum_{k=2}^{n} \frac{1}{\sqrt{k}} \underset{k \to +\infty}{\sim} \int_{2}^{n} \frac{dt}{\sqrt{t}} \underset{k \to +\infty}{\sim} 2\sqrt{n}$$
(2.157)

Posons

$$w_n = \sum_{k=2}^n \frac{1}{\sqrt{k}} - 2\sqrt{n} \tag{2.158}$$

On étudie la série de terme général $w_n - w_{n-1}$. On a

$$w_n - w_{n-1} = \frac{1}{\sqrt{n}} - 2\left(\sqrt{n} - \sqrt{n-1}\right)$$
 (2.159)

$$= \frac{1}{\sqrt{n}} - 2\left(1 - \sqrt{1 - \frac{1}{n}}\right) \tag{2.160}$$

$$= \frac{1}{\sqrt{n}} - 2\left(1 - \left(1 - \frac{1}{2n} + O\left(\frac{1}{n^2}\right)\right)\right)$$
 (2.161)

$$= \frac{1}{\sqrt{n}} - \frac{\sqrt{n}}{n} + O\left(\frac{1}{n^{\frac{3}{2}}}\right) \tag{2.162}$$

$$=O\left(\frac{1}{n^{\frac{3}{2}}}\right) \tag{2.163}$$

Donc la série de terme général $w_n - w_{n-1}$ converge et ainsi $(w_n)_{n \ge 2}$ converge : il existe $C' \in \mathbb{R}$ tel que

$$\sum_{k=2}^{n} \frac{1}{\sqrt{n}} = 2\sqrt{n} + C' + o(1) \tag{2.164}$$

On a donc

$$\ln(u_n) = \sum_{k=2}^{n} v_k = -4\sqrt{n} - 2C' + C + o(1)$$
(2.165)

Ainsi,

$$u_n = \exp\left(-4\sqrt{n} - 2C' + C + o(1)\right) \underset{n \to +\infty}{\sim} Ke^{-4\sqrt{n}}$$
 (2.166)

où $K = e^{-2C' + C} > 0$.

Donc

$$u_n^{\alpha} \underset{n \to +\infty}{\sim} K^{\alpha} e^{-4\alpha\sqrt{n}}$$
 (2.167)

Si $\alpha \leq 0$, $\lim_{n \to +\infty} u_n^{\alpha} \not\to 0$ donc

$$\boxed{\sum u_n^{\alpha} \text{ diverge.}}$$
(2.168)

Si $\alpha>0,\,u_n^\alpha=o\left(\frac{1}{n^2}\right)$ donc d'après le critère de Riemann,

$$\boxed{\sum u_n^{\alpha} \text{ converge.}}$$
(2.169)

Solution 2.17. Soit $S_n = \sum_{k=0}^n u_k$. On a

$$u_{n+1} + \dots + u_{2n} \geqslant nu_{2n} \geqslant 0 \tag{2.170}$$

Si (S_n) converge alors $S_{2n} - S_n \xrightarrow[n \to +\infty]{} 0$. Alors $\lim_{n \to +\infty} nu_{2n} = 0$ et $\lim_{n \to +\infty} 2nu_{2n} = 0$.

Comme on a $(2n+1)u_{2n} \ge (2n+1)u_{2n+1} \ge 0$, on a aussi $\lim_{n\to+\infty} (2n+1)u_{2n} = 0$. Finalement, on a bien

$$\lim_{n \to +\infty} n u_n = 0 \text{ et donc } u_n = o\left(\frac{1}{n}\right)$$
 (2.171)

Si $\{p \in \mathbb{N} | pu_p \geqslant 1\}$ est infini, alors $u_p \neq o\left(\frac{1}{p}\right)$ donc

$$\sum u_p \text{ diverge.}$$
(2.172)

Remarque 2.4. Ce n'est pas vrai si $(u_n)_{n\in\mathbb{N}}$ n'est pas décroissante, par exemple si $u_n = \frac{1}{n}$ si n est un carré et 0 sinon.

Solution 2.18. 1. C'est une série à termes positifs. On a

$$n^{\frac{1}{n}} = e^{\frac{1}{n}\ln(n)} \xrightarrow[n \to +\infty]{} 1 \tag{2.173}$$

Ainsi

$$n^{-1-\frac{1}{n}} \underset{n \to +\infty}{\sim} \frac{1}{n} \tag{2.174}$$

et donc

$$\sum u_n$$
 diverge. (2.175)

2. C'est une série à termes positifs. On a

$$u_n \geqslant \int_1^{\frac{\pi}{2}} t^n \sin(1) dt = \frac{\sin(1)}{n+1} \times \left(\left(\frac{\pi}{2} \right)^{n+1} - 1 \right) \xrightarrow[n \to +\infty]{} + \infty$$
 (2.176)

donc

$$\sum u_n$$
 diverge grossièrement. (2.177)

3. On écrit

$$\frac{n!}{e} = \sum_{k=0}^{+\infty} \frac{n!}{k!} (-1)^k = \underbrace{\sum_{k=0}^{n} \frac{n!}{k!} (-1)^k}_{\in \mathbb{Z}} + \frac{(-1)^{n+1}}{n+1} + \sum_{k=n+2}^{+\infty} \frac{n!}{k!} (-1)^k$$
(2.178)

et

$$\left| \sum_{k=n+2}^{+\infty} \frac{n!}{k!} (-1)^k \right| < \frac{1}{(n+1)(n+2)}$$
 (2.179)

d'après le critère spécial des séries alternées.

Donc

$$\sin\left(2\pi\frac{n!}{e}\right) = \sin\left(\frac{2\pi(-1)^{n+1}}{n+1} + O\left(\frac{1}{n^2}\right)\right) \tag{2.180}$$

$$=\underbrace{\frac{2\pi(-1)^{n+1}}{n+1}}_{\text{terme général d'une série alternée convergente}} + \underbrace{O\left(\frac{1}{n^2}\right)}_{\text{terme général d'une série absolument convergente}}$$
(2.181)

Donc

4. Si $\alpha \leq 0$, $u_n \underset{n \to +\infty}{\sim} \frac{1}{\ln(n)}$ et comme $\frac{1}{n} = O\left(\frac{1}{\ln(n)}\right)$,

$$\boxed{\sum u_n \text{ diverge.}}$$
(2.183)

Si $\alpha > 1$, $|u_n| \underset{n \to +\infty}{\sim} \frac{1}{n^{\alpha}}$ donc d'après le critère de Riemann,

$$\sum u_n \text{ converge absolument donc converge.}$$
 (2.184)

Si $\alpha \in]0,1]$, on écrit

$$u_n = \frac{(-1)^n}{n^{\alpha}} \times \frac{1}{1 + \underbrace{(-1)^n \frac{\ln(n)}{n^{\alpha}}}_{n \to +\infty}}$$

$$(2.185)$$

$$= \frac{(-1)^n}{n^{\alpha}} \left(1 - (-1)^n \frac{\ln(n)}{n^{\alpha}} + o\left(\frac{\ln(n)}{n^{\alpha}}\right) \right)$$
 (2.186)

$$=\underbrace{\frac{(-1)^n}{n^{\alpha}}}_{\text{terme général d'une série alternée convergente}}\underbrace{-\frac{\ln(n)}{n^{2\alpha}} + o\left(\frac{\ln(n)}{n^{2\alpha}}\right)}_{\text{terme général d'une série convergente}} \underbrace{-\frac{\ln(n)}{n^{2\alpha}} < 0}_{\text{terme général d'une série convergente}}$$

$$(2.187)$$

$$\sum u_n \text{ converge si et seulement si } \alpha > \frac{1}{2}.$$
 (2.188)

Remarque 2.5. Soit $\alpha \in [0,1]$ et

$$u_n = \int_0^\alpha t^n \sin(t)dt \geqslant 0 \tag{2.189}$$

Si $\alpha < 1$, $u_n \leqslant \alpha^{n+1}$, terme général d'une série convergente donc $\sum u_n$ converge.

Si $\alpha = 1$, on utilise

$$\forall t \in \left[0, \frac{\pi}{2}\right], \sin(t) \geqslant \frac{2}{\pi}t\tag{2.190}$$

Alors $u_n \geqslant \frac{2}{\pi(n+2)}$, terme générale d'une série divergente donc $\sum u_n$ diverge.

Figure 6 – $\sin(t) \geqslant \frac{2}{\pi}t$ pour $t \in \left[0, \frac{\pi}{2}\right]$.

Solution 2.19.

On a

$$u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k} \tag{2.191}$$

 u_n est le reste d'ordre n d'une série alternée, donc u_n est du signe de $\frac{(-1)^n}{n}$. Donc on a

$$u_{n+1} \times u_n \leqslant 0 \tag{2.192}$$

Par ailleurs,

$$|u_n| = \underbrace{\frac{1}{n} - \frac{1}{n+1}}_{= \frac{1}{n(n+1)}} + \underbrace{\frac{1}{n+2} - \frac{1}{n+3}}_{= \frac{1}{(n+2)(n+3)}} + \dots = \sum_{p=0}^{+\infty} \frac{1}{(n+2p)(n+2p+1)}$$
(2.193)

Donc $(|u_n|)_{n\geqslant 1}$ est décroissante.

D'après le critère des séries alternées,

Pour calculer la somme, on peut chercher si la famille $(u_{n,p})_{\substack{n\geqslant 1\\p\in\mathbb{N}}}$ est sommable où

$$u_{n,p} = \frac{(-1)^n}{(n+2p)(n+2p+1)} \tag{2.195}$$

Soit $p \ge 0$, on a

$$\sum_{n=1}^{+\infty} \frac{1}{(n+2p)(n+2p+1)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n+2p} - \frac{1}{n+2p+1} \right) = \frac{1}{2p+1}$$
 (2.196)

Donc

$$\sum_{p \in \mathbb{N}} \sum_{n \geqslant 1} |u_{n,p}| = +\infty \tag{2.197}$$

Ainsi, cette famille n'est pas sommable. Essayons plutôt de calculer u_n d'abord : soit $n \ge 1$ fixé et $N \ge n$. On a

$$\sum_{k=n}^{N} \frac{(-1)^k}{k} = \sum_{k=n}^{N} (-1)^k \int_0^1 t^{k-1} dt$$
 (2.198)

$$= -\sum_{k=n}^{N} \int_{0}^{1} (-t)^{k-1} dt \tag{2.199}$$

$$= -\int_0^1 \sum_{k=n}^N (-t)^{k-1} dt \tag{2.200}$$

$$= \int_0^1 (-t)^n \frac{1 - (-t)^{N-n+1}}{1+t} dt$$
 (2.201)

Ainsi,

$$\sum_{k=n}^{N} \frac{(-1)^k}{k} = -\int_0^1 \frac{(-t)^n}{1+t} dt + \int_0^1 \frac{(-t)^{N+1}}{1+t} dt$$
 (2.202)

et

$$\left| \int_0^1 \frac{(-t)^{N+1}}{1+t} dt \right| \leqslant \int_0^1 t^{N+1} dt = \frac{1}{N+2}$$
 (2.203)

Donc

$$u_n = -\int_0^1 \frac{(-t)^n}{1+t} dt \tag{2.204}$$

Soit alors $M \ge 1$. On a

$$\sum_{n=1}^{M} u_n = \sum_{n=1}^{M} \left(-\int_0^1 \frac{(-t)^n}{t+1} dt \right)$$
 (2.205)

$$= -\int_0^1 \frac{1}{1+t} \sum_{n=1}^M (-t)^n dt \tag{2.206}$$

$$= -\int_0^1 \frac{-t}{1+t} \frac{1 - (-t)^M}{1+t} dt \tag{2.207}$$

$$= \int_0^1 \frac{t}{(1+t)^2} dt + \int_0^1 \frac{(-t)^{M+1}}{(1+t)^2} dt$$
 (2.208)

Comme

$$\left| \int_0^1 \frac{(-t)^{M+1}}{(1+t)^2} dt \right| \le \int_0^1 t^{M+1} dt = \frac{1}{M+2} \xrightarrow[M \to +\infty]{} 0 \tag{2.209}$$

on a

$$\sum_{n=1}^{+\infty} u_n = \int_0^1 \frac{t}{(1+t)^2} dt \tag{2.210}$$

$$= \int_0^1 \frac{(t+1)-1}{(1+t)^2} dt \tag{2.211}$$

$$= \int_0^1 \frac{1}{1+t} dt - \int_0^1 \frac{1}{(1+t)^2} dt$$
 (2.212)

$$= \left[\ln\left(1+t\right)\right]_0^1 + \left[\frac{1}{2} - 1\right] \tag{2.213}$$

$$= \ln(2) - \frac{1}{2} \tag{2.214}$$

Finalement,

$$\sum_{n=1}^{+\infty} u_n = \ln(2) - \frac{1}{2}$$
 (2.215)

$$\frac{1}{(3n)!} = \left(\frac{1}{n^2}\right) \tag{2.216}$$

donc d'après le critère de Riemann,

$$\sum u_n \text{ converge.}$$
 (2.217)

Posons

$$\begin{cases}
S_0 = \sum_{n=0}^{+\infty} \frac{1}{(3n)!} \\
S_1 = \sum_{n=0}^{+\infty} \frac{1}{(3n+1)!} \\
S_2 = \sum_{n=0}^{+\infty} \frac{1}{(3n+2)!}
\end{cases} (2.218)$$

On a

$$\begin{cases}
S_0 + S_1 + S_2 &= e \\
S_0 + jS_1 + j^2S_2 &= \exp(j) \\
S_0 + j^2S_1 + jS_2 &= \exp(j^2)
\end{cases}$$
(2.219)

où $j = \exp\left(\frac{2i\pi}{3}\right)$. En sommant les trois lignes, on a

$$3S_0 = e + \exp(j) + \exp(j^2) = e + e^{-\frac{1}{2}} \left(2\cos\left(\frac{\sqrt{3}}{2}\right) \right)$$
 (2.220)

Donc

$$\sum_{n=0}^{+\infty} u_n = \frac{1}{3} \left(e + e^{-\frac{1}{2}} \left(2 \cos \left(\frac{\sqrt{3}}{2} \right) \right) \right)$$
 (2.221)

S'il existe $p \ge 0$ tel que $n = p^3$, alors

$$\left| n^{\frac{1}{3}} \right| = p \tag{2.222}$$

et

$$\left| (n-1)^{\frac{1}{3}} \right| = \left| (p^3 - 1)^{\frac{1}{3}} \right| = p - 1$$
 (2.223)

Sinon, $n^{\frac{1}{3}} \notin \mathbb{N}$. Soit $k = \lfloor n^{\frac{1}{3}} \rfloor$. Alors $k^3 < n \leqslant (k+1)^3$ donc $k^3 \leqslant n-1 < (k+1)^3$ d'où $k \leqslant (n-1)^{\frac{1}{3}} < k+1$. Donc $\lfloor (n-1)^{\frac{1}{3}} \rfloor = k$.

Donc $\sum u_n$ est une série lacunaire. Comme $u_{p^3} = O\left(\frac{1}{p^3}\right)$, d'après le critère de Riemann,

$$\sum u_n \text{ converge.}$$
 (2.224)

Sa somme vaut

$$\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} \frac{1}{4p^3 - p} \tag{2.225}$$

On décompose en éléments simples :

$$\frac{1}{4x^3 - x} = \frac{1}{x(4x^2 - 1)} = \frac{-1}{x} + \frac{1}{2x - 1} + \frac{1}{2x + 1}$$
 (2.226)

Donc la somme partielle jusqu'au rang n vaut

$$S_n = -\sum_{p=1}^n \frac{1}{p} + \sum_{p=1}^n \frac{1}{2p-1} + \sum_{p=1}^n \frac{1}{2p+1}$$
(2.227)

$$= -H_n + 1 + \frac{1}{2n+1} + 2\sum_{p=1}^{n-1} \frac{1}{2p+1}$$
 (2.228)

$$= -H_n + 1 + \frac{1}{2n+1} + 2 \left(\sum_{k=1}^{2n-1} \frac{1}{k} - 1 - \sum_{k=1}^{n-1} \frac{1}{2k} \right)$$

$$= -H_n + 1 + \frac{1}{2n+1} + 2 \left(\sum_{k=1}^{2n-1} \frac{1}{k} - 1 - \sum_{k=1}^{n-1} \frac{1}{2k} \right)$$

$$= \frac{1}{2} H_{n-1}$$
(2.229)

$$= -H_n + 2H_{2n-1} - H_{n-1} - 1 + \frac{1}{2n+1}$$
(2.230)

$$= -\ln(n) + 2\ln(2n-1) - \ln(n-1) - 1 + \underbrace{\frac{1}{2n+1}}_{=o(1)} + o(1)$$
 (2.231)

$$= \ln\left(\frac{(2n-1)^2}{n(n-1)}\right) - 1 + o(1) \xrightarrow[n \to +\infty]{} \ln(4) - 1 \tag{2.232}$$

Donc

$$\sum_{n=1}^{+\infty} u_n = \ln(4) - 1 \tag{2.233}$$

Solution 2.20. Soit $\varepsilon > 0$ tel que $a + \varepsilon < 0$. Il existe A > 0 tel que pour tout x > A,

$$a - \varepsilon \leqslant \frac{f'(x)}{f(x)} \leqslant a + \varepsilon$$
 (2.234)

Alors

$$(a - \varepsilon)f(x) \leqslant f'(x) \leqslant (+\varepsilon)f(x) \tag{2.235}$$

On voit donc que

$$f'(x) - f(x)(a+\varepsilon) \leqslant 0 \tag{2.236}$$

On pose alors (sorte d'inéquation différentielle)

$$g_1(x) = f(x)e^{-(a+\varepsilon)x}$$
(2.237)

On a

$$g_1'(x) = e^{-(a+\varepsilon)x} \left(f'(x) - f(x)(a+\varepsilon) \right) \leqslant 0 \tag{2.238}$$

pour tout $x \ge A$. Donc g_1 est décroissante sur $[A, +\infty[$. Alors

$$0 < g_1(x) \le g_1(A) = f(A)e^{-(a+\varepsilon)A}$$
(2.239)

Alors

$$0 < f(x) \leqslant \left(f(A)e^{-(a+\varepsilon)A} \right) e^{(a+\varepsilon)x} \tag{2.240}$$

De même, pour $x \geqslant A$,

$$\left(f(A)e^{-(a+\varepsilon)A}\right)e^{(a-\varepsilon)x} \leqslant f(x) \tag{2.241}$$

car $g_2(x) = f(x)e^{-(a-\varepsilon)x}$ est croissante sur $[A, +\infty[$.

Donc

$$f(n) \leqslant (f(A)e^{-(a+\varepsilon)A})e^{(a+\varepsilon)n}$$
 (2.242)

Comme $a + \varepsilon < 0$,

$$\sum_{n\geqslant 1} f(n) \text{ converge.}$$
 (2.243)

De plus

$$f(A)e^{-(a-\varepsilon)A}\frac{e^{(a-\varepsilon)N}}{1-e^{a-\varepsilon}} \leqslant R_N = \sum_{n=N}^{+\infty} f(n) \leqslant f(A)e^{-(a+\varepsilon)A}\frac{e^{(a+\varepsilon)N}}{1+e^{a+\varepsilon}}$$
(2.244)

Donc

$$R_N = \underset{n \to +\infty}{O} \left(e^{aN} \right) \text{ et } e^{aN} = \underset{n \to +\infty}{O} \left(R_N \right)$$
 (2.245)

Solution 2.21. On a

$$S_n = \sum_{k=1}^n \underbrace{\frac{e^k}{k}}_{\underset{k \to +\infty}{\longrightarrow} +\infty} + \infty \tag{2.246}$$

On utilise la règle d'Abel : on écrit $e^k = B_k - B_{k-1}$ avec

$$\begin{cases}
B_k = \sum_{j=0}^k e^j = \frac{e^{k+1}-1}{e-1} \\
B_{-1} = 0
\end{cases}$$
(2.247)

Alors

$$S_{n} = \sum_{k=1}^{n} \frac{B_{k}}{k} - \sum_{k=0}^{n-1} \frac{B_{k}}{k+1} = -1 + \sum_{k=1}^{n-1} \underbrace{\frac{B_{k}}{k(k+1)}}_{k \to +\infty} + \underbrace{\frac{B_{n}}{n}}_{n \to +\infty} \underbrace{\frac{e^{n}e}{n(e-1)}}_{n \to +\infty}$$

$$= \underbrace{\sum_{k=1}^{n} \frac{B_{k}}{k} - \sum_{k=0}^{n-1} \frac{B_{k}}{k+1}}_{n \to +\infty} = -1 + \sum_{k=1}^{n-1} \underbrace{\frac{B_{k}}{k(k+1)}}_{n \to +\infty} + \underbrace{\frac{B_{n}}{n}}_{n \to +\infty}$$

$$= \underbrace{\sum_{k=1}^{n} \frac{B_{k}}{k} - \sum_{k=0}^{n-1} \frac{B_{k}}{k+1}}_{n \to +\infty} = -1 + \underbrace{\sum_{k=1}^{n-1} \frac{B_{k}}{k(k+1)}}_{n \to +\infty} + \underbrace{\sum_{k=1}^{n} \frac{B_{k}}{n(e-1)k^{2}}}_{n \to +\infty} + \underbrace{\sum_{k=1}^{n} \frac{B_{k}}{k(k+1)}}_{n \to +\infty} + \underbrace{\sum_{k=1}^{n} \frac{B_{k}}{n(e-1)k^{2}}}_{n \to +\infty} + \underbrace{\sum_{k=1}^{n} \frac{B_{k}}{n(e-$$

Donc

$$S_n \underset{n \to +\infty}{\sim} \frac{e^{n+1}}{n(e-1)}$$
 (2.249)

Solution 2.22.

1. $u_n > 0$ et

$$u_n = e^{n^{\alpha} \ln\left(1 - \frac{1}{n}\right)} = e^{n^{\alpha}\left(-\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right)} = e^{-n^{\alpha - 1}} + O\left(n^{\alpha - 2}\right)$$
(2.250)

Si $\alpha < 1$, $u_n \xrightarrow[n \to +\infty]{} 1$ donc

$$\sum u_n$$
 diverge grossièrement. (2.251)

Si $\alpha = 1$, $u_n \xrightarrow[n \to +\infty]{} \frac{1}{2}$ donc

Si $\alpha > 1$, on a

$$-n^{\alpha-1} + O\left(n^{\alpha-2}\right) \underset{n \to +\infty}{\sim} -n^{\alpha-1} \tag{2.253}$$

donc il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$,

$$-n^{\alpha-1} + O\left(n^{\alpha-1}\right) \leqslant \frac{-n^{\alpha-1}}{2} \tag{2.254}$$

d'où

$$u_n \leqslant e^{-\frac{n^{\alpha-1}}{2}} = \underset{n \to +\infty}{o} \left(\frac{1}{n^2}\right) \tag{2.255}$$

donc

$$\sum u_n \text{ converge.}$$
 (2.256)

2. On a $u_n > 0$ et

$$\left(\frac{1}{k}\right)^{\frac{1}{k}} e^{-\frac{1}{k}\ln(k)} \xrightarrow[k \to +\infty]{} 1 \tag{2.257}$$

donc par comparaison des sommes partielles, on a

$$\sum_{k=1}^{n} \left(\frac{1}{k}\right)^{\frac{1}{k}} \underset{n \to +\infty}{\sim} n \tag{2.258}$$

Donc $u_n \sim \frac{1}{n \to +\infty}$ et

$$\sum u_n$$
 diverge. (2.259)

3. On écrit $n!e = \lfloor n!e \rfloor + \alpha_n$. Alors

$$\sin(n!\pi e) = (-1)^{\lfloor n!e \rfloor} \sin(\alpha_n \pi) \tag{2.260}$$

On écrit

$$n!e = \sum_{k=0}^{n-2} \frac{n!}{k!} + n + 1 + \frac{1}{n+1} + \sum_{k=n+1}^{+\infty} \frac{n!}{k!}$$
 (2.261)

On pose $v_n = \sum_{k=0}^n \frac{1}{k!}$ et $w_n = v_n + \frac{1}{n \times n!}$. On a

$$v_n \leqslant e \leqslant w_n \tag{2.262}$$

donc

$$0 \leqslant e - v_n \leqslant \frac{1}{n \times n!} \tag{2.263}$$

d'où

$$0 \leqslant \sum_{k=n+1}^{+\infty} \frac{n!}{k!} \leqslant \frac{n!}{(n+1)(n+1)!} = \frac{1}{(n+1)^2}$$
 (2.264)

Donc

$$n!e\pi = \underbrace{\sum_{k=0}^{n-2} \frac{n!}{k!}}_{\text{pair}} \pi + (n+1)\pi + \frac{\pi}{n+1} + O\left(\frac{1}{n^2}\right)$$
 (2.265)

Finalement,a

$$\frac{\sin(n!e\pi)}{\ln(n)} = (-1)^{n+1} \frac{\sin\left(\frac{\pi}{n+1} + O\left(\frac{1}{n^2}\right)\right)}{\ln(n)} = \underbrace{\frac{(-1)^{n+1}\pi}{\ln(n)(n+1)}}_{\text{terme général d'une série alternée convergente}} + \underbrace{O\left(\frac{1}{n^2\ln(n)}\right)}_{\text{terme général d'une série absolument convergente}}$$
(2.266)

Donc

$$\sum u_n \text{ converge.}$$
 (2.267)

Solution 2.23.

1. On a

$$u_n = (a+b+c)\ln(n) + b\ln\left(1+\frac{1}{n}\right) + c\ln\left(1+\frac{2}{n}\right) = (a+b+c)\ln(n) + \frac{b+2c}{n} + O\left(\frac{1}{n^2}\right)$$
(2.268)

Donc $\sum u_n$ converge si et seulement si

$$\begin{cases} a+b+c = 0 \\ b+2c = 0 \end{cases} \tag{2.269}$$

si et seulement si

$$\begin{cases}
 a = c \\
 b = -2c
\end{cases}$$
(2.270)

Donc

$$\sum u_n \text{ converge si et seulement si} a = b \text{ et } b = -2c \text{ avec } c \in \mathbb{R}$$
 (2.271)

Prenons c=1 pour calculer la somme. On a

$$\sum_{n=1}^{N} u_n = \sum_{n=1}^{N} \ln(n) - 2\ln(n+1) + \ln(n+2)$$
(2.272)

$$= \sum_{n=1}^{N} \ln(n) - \ln(n+1) + \sum_{n=1}^{N} \ln(n+2) - \ln(n+1)$$
 (2.273)

$$= -\ln(N+1) - \ln(2) + \ln(N+2) \tag{2.274}$$

$$= \ln\left(\frac{N+2}{N+1}\right) - \ln(2) \xrightarrow[n \to +\infty]{} - \ln(2) \tag{2.275}$$

Donc

$$\sum_{n=1}^{+\infty} u_n = -\ln(2)$$
 (2.276)

2. On a $u_n = \underset{n \to +\infty}{O} \left(\frac{1}{n^2}\right)$ donc d'après le critère de Riemann,

$$\boxed{\sum u_n \text{ converge.}}$$
(2.277)

On écrit

$$u_n = \frac{2^n \left(3^{2^{n-1}} - 1\right)}{\left(3^{2^{n-1}} + 1\right)\left(3^{2^n} - 1\right)} = \frac{2^n \left(3^{2^{n-1}} + 1 - 2\right)}{3^{2^n} - 1} = \underbrace{\frac{2^n}{3^{2^{n-1}} - 1}}_{= v_n} - \underbrace{\frac{2^{n+1}}{3^{2^n} - 1}}_{= v_{n+1}}$$
(2.278)

Donc

$$\sum_{n=1}^{+\infty} u_n = v_1 = 1 \tag{2.279}$$

3. On remarque que $k-n\left\lfloor\frac{k}{n}\right\rfloor$ est le reste de la division euclidienne de k par n. Donc ce reste est borné par k-1. Donc $u_n=\mathop{O}\limits_{n\to+\infty}\left(\frac{1}{n^2}\right)$. D'après le critère de Riemann,

$$\boxed{\sum u_n \text{ converge.}}$$
(2.280)

On note alors

$$J_r = \{ n \in \mathbb{N}^* | n \equiv r[k] \}$$

$$(2.281)$$

 $(J_r)_{r\in\{0,\dots,k-1\}}$ forme une partition de $\mathbb{N}^*.$ On a

$$\sum_{n \in J_r} \frac{r}{n(n+1)} = 0 \tag{2.282}$$

si r = 0. Si $r \in \{1, \dots, k-1\}$, on a

$$S_r = r \sum_{p=0}^{+\infty} \frac{1}{(kp+r)(kp+r+1)}$$
 (2.283)

et par sommabilité on a

$$S = \sum_{k=1}^{+\infty} \frac{n - k \left\lfloor \frac{n}{k} \right\rfloor}{n(n+1)} = \sum_{r=1}^{k-1} S_r = \sum_{p=0}^{+\infty} \sum_{r=1}^{k-1} \frac{1}{(kp+r)(kp+r+1)}$$
 (2.284)

Soit $p \in \mathbb{N}$ fixé. On a

$$v_p = \sum_{r=1}^{k-1} \frac{r}{(kp+r)(kp+r+1)}$$
 (2.285)

$$=\sum_{r=1}^{k-1} \frac{r}{kp+r} - \sum_{r=1}^{k-1} \frac{r}{kp+r+1}$$
 (2.286)

$$=\sum_{r=1}^{k-1} \frac{r}{kp+r} - \sum_{r=2}^{k} \frac{r-1}{kp+r}$$
 (2.287)

$$= \frac{1}{kp+1} + \sum_{r=2}^{k-1} \frac{1}{kp+r} - \frac{k-1}{k(p+1)}$$
 (2.288)

$$=\sum_{r=1}^{k} \frac{1}{kp+r} - \frac{1}{p+1} \tag{2.289}$$

Ainsi,

$$\sum_{p=0}^{N} v_p = \sum_{n=1}^{k(N+1)} \frac{1}{n} - \sum_{n=1}^{N+1} \frac{1}{n} = \ln\left(\frac{k(N+1)}{N+1}\right) + \underset{n \to +\infty}{o}(1) = \ln(k) + \underset{n \to +\infty}{o}(1)$$
 (2.290)

Donc

$$\sum_{n=1}^{+\infty} u_n = \ln(k) \tag{2.291}$$

4. On a

$$\arctan(u) + \arctan(v) = \arctan\left(\frac{u+v}{1-uv}\right)$$
 (2.292)

donc

$$\arctan\left(\frac{1}{n^2+n+1}\right) = \arctan(n+1) - \arctan(n)$$
 (2.293)

Ainsi,

$$\left| \sum_{n=0}^{+\infty} \arctan\left(\frac{1}{n^2 + n + 1}\right) = \frac{\pi}{2} \right| \tag{2.294}$$

Solution 2.24. On a

$$\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} k u_k - \sum_{k=2}^{n+1} (k-1)u_k = u_1 - nu_{n+1} + \sum_{k=2}^{n} u_k = \sum_{k=1}^{n} u_k - nu_{n+1}$$
 (2.295)

Si $(nu_n)_{n\geqslant 1}$, on a donc évidemment d'après ce qui précède

$$\sum_{k=1}^{+\infty} v_k = \sum_{k=1}^{+\infty} u_k \tag{2.296}$$

Si $(u_n)_{n\geqslant 1}$ décroît, $v_n\geqslant 0$ et on a

$$\frac{v_k}{k} = u_k - u_{k+1} \tag{2.297}$$

et donc

$$\sum_{k=n}^{+\infty} \frac{v_k}{k} = u_n = \sum_{k=1}^{+\infty} w_{k,n}$$
 (2.298)

en définissant $w_{n,k} = \frac{v_k}{k}$ si $k \ge n$ et 0 sinon. On a $w_{k,n} \ge 0$ car $(u_n)_{n \ge 1}$ est décroissante.

Ainsi, $\sum_{n\geqslant 1} u_n$ converge si et seulement si $(u_n)_{n\in\mathbb{N}^*}$ sommable si et seulement si $(w_{n,k})_{k\in\mathbb{N}^*}$ si et seulement si (d'après le théorème de Fubini)

$$\sum_{k=1}^{+\infty} \sum_{n=1}^{+\infty} w_{n,k} < +\infty \tag{2.299}$$

Et dans ce cas (toujours d'après le théorème de Fubini),

$$\sum_{n=1}^{+\infty} \sum_{k=1}^{+\infty} w_{n,k} = \sum_{k=1}^{+\infty} \sum_{n=1}^{+\infty} w_{n,k} < +\infty$$
(2.300)

donc

$$\sum_{k=1}^{+\infty} v_k = \sum_{k=1}^{+\infty} u_k$$
 (2.301)

On pose

$$u_n = \frac{1}{n(n+1)\dots(n+p)}$$
 (2.302)

et

$$v_n = \frac{1}{(n+1)\dots(n+p)} - \frac{n}{(n+1)\dots(n+p+1)} = \frac{p+1}{(n+1)\dots(n+p+1)}$$
(2.303)

Soit

$$S_p = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+p)} = (p+1)\sum_{n=2}^{+\infty} \frac{1}{n(n+1)\dots(n+p)} = (p+1)\left(S_p - \frac{1}{p!}\right)$$
(2.304)

Ainsi,

$$\left| \sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+p)} \right| = \frac{p+1}{p(p!)}$$
 (2.305)

Solution 2.25. Montrons d'une manière générale que si $(u_k)_{k\in\mathbb{N}}\in\left(\mathbb{R}_+^*\right)^{\mathbb{N}}$ est telle que

$$u_k = \underset{k \to +\infty}{o} (u_{k+1}) \tag{2.306}$$

, alors $\sum u_k$ diverge et $\sum_{k=0}^n u_k \underset{n\to+\infty}{\sim} u_n$.

En effet, on a alors $\lim_{k\to +\infty} \frac{u_{k+1}}{u_k} = +\infty$ et d'après la règle de d'Alembert, $\sum u_k$ diverge. Soit ensuite $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que pour tout $k \geqslant N$,

$$0 \leqslant \frac{u_k}{u_{k+1}} \leqslant \varepsilon \tag{2.307}$$

Soit $n \ge N$. Pour $k \ge N + 1$, on a

$$u_k \leqslant \varepsilon u_{k+1} \leqslant \dots \leqslant \varepsilon^{n-k} u_n$$
 (2.308)

pour $k \leqslant n - 1$.

Alors

$$0 \leqslant \sum_{k=0}^{n-1} u_k \leqslant \sum_{k=0}^{N} u_k + \sum_{k=N+1}^{n-1} u_k \leqslant \left(\varepsilon + \varepsilon^2 + \dots + \varepsilon^{n-N-1} u_n\right)$$
 (2.309)

On peut supposer que $\varepsilon < \frac{1}{2}$ et alors

$$0 \leqslant \sum_{k=0}^{n-1} u_k \leqslant \frac{\varepsilon}{1-\varepsilon} u_n \leqslant 2\varepsilon u_n \tag{2.310}$$

Donc on a bien le résultat voulu.

Pour revenir à l'exercice, on a alors

$$v_n \underset{n \to +\infty}{\sim} \frac{n!}{(n+q)!} \underset{n \to +\infty}{\sim} \frac{1}{n^q}$$
 (2.311)

qui est le terme général d'une série absolument convergente. Donc

$$\sum v_n$$
 converge. (2.312)

Solution 2.26. On a

$$\left| \frac{z^{nb}}{z^{na+c} + 1} \right| = \frac{|z|^{nb}}{|1 + z^{na+c}|} \underset{n \to +\infty}{\sim} |z|^{nb}$$
 (2.313)

car $|z|<1.\;|z|^{nb}$ est le terme général d'une série absolument convergente.

Pour n fini, on a

$$\frac{1}{1+z^{na+c}} = \sum_{k=0}^{+\infty} (-z^{na+c})^k \tag{2.314}$$

Montrons donc que $\left(z^{nb}\left((-z^{na+c})^k\right)\right)_{(k,n)\in\mathbb{N}^2}$ est sommable. On a

$$\sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} |z|^{nb} |z|^{k(na+c)} = \sum_{n=0}^{+\infty} \frac{|z|^{nb}}{1 - |z|^{na+c}} < +\infty$$
 (2.315)

d'après ce qui précède. On a sommabilité, donc d'après le théorème de Fubini,

$$\sum_{n=0}^{+\infty} \frac{z^{nb}}{1+z^{na+c}} = \sum_{k=0}^{+\infty} \sum_{n=0}^{+\infty} z^{nb} (-z^{na+c})^k$$
 (2.316)

$$= \sum_{k=0}^{+\infty} (-1)^k z^{ck} \left(\sum_{n=0}^{+\infty} z^{n(b+ak)} \right)$$
 (2.317)

$$= \sum_{k=0}^{+\infty} \frac{(-1)^k z^{ck}}{1 - z^{b+ak}} \tag{2.318}$$

Ainsi, on a bien

$$\left| \sum_{n=0}^{+\infty} \frac{z^{nb}}{1 + z^{na+c}} = \sum_{k=0}^{+\infty} \frac{(-1)^k z^{ck}}{1 - z^{b+ak}} \right|$$
 (2.319)

Solution 2.27. On a

$$b_q = \sum_{n=1}^q u_{n,q} = \sum_{n=1}^{+\infty} u_{n,q}$$
 (2.320)

Montrons donc que la famille des $(u_{n,q})_{(n,q)\in(\mathbb{N}^*)^2}$ est sommable. On a

$$\sum_{n=1}^{+\infty} \sum_{q=1}^{+\infty} |u_{n,q}| = \sum_{n=1}^{+\infty} \sum_{q=n}^{+\infty} \frac{n|a_n|}{q(q+1)}$$
(2.321)

$$= \sum_{n=1}^{+\infty} n|a_n| \left(\sum_{q=n}^{+\infty} \frac{1}{q} - \frac{1}{q+1} \right)$$
 (2.322)

$$=\sum_{n=1}^{+\infty}|a_n|<+\infty\tag{2.323}$$

Donc le théorème de Fubini s'applique et on a

$$\sum_{q=1}^{+\infty} \sum_{n=1}^{+\infty} u_{n,q} = \sum_{q=1}^{+\infty} b_q = \sum_{n=1}^{+\infty} \sum_{q=1}^{+\infty} u_{n,q} = \sum_{n=1}^{+\infty} a_n$$
 (2.324)

Donc

$$\left| \sum_{q=1}^{+\infty} b_q = \sum_{n=1}^{+\infty} a_n \right| \tag{2.325}$$

Solution 2.28. D'après l'exercice précédent, $\sum v_n$ converge et

$$\sum_{n=1}^{+\infty} v_n = \sum_{n=1}^{+\infty} u_n \tag{2.326}$$

On applique l'inégalité de la moyenne géométrique et arithmétique à $(u_1, 2u_2, \dots, nu_n)$:

$$\sqrt[n]{u_1 \times 2u_2 \times \dots \times nu_n} = w_n \sqrt[n]{n!} \leqslant \frac{1}{n} (u_1 + 2u_2 + \dots + nu_n) = (n+1)v_n$$
 (2.327)

Donc on a

$$w_n \leqslant \frac{(n+1)v_n}{\sqrt[n]{n!}} \tag{2.328}$$

On étudie donc $\sqrt[n]{n!}$:

$$\sqrt[n]{n!} = \exp\left(\frac{1}{n}\ln(n!)\right) \tag{2.329}$$

$$= \exp\left(\frac{1}{n}\ln\left(n^n e^{-n}\sqrt{2\pi n}\left(1 + \underset{n \to +\infty}{o}(1)\right)\right)\right) \tag{2.330}$$

$$= \exp\left(\frac{1}{n}\left(n\ln\left(n\right) - n + \frac{1}{2}\ln\left(\pi n\right) + \ln\left(1 + \underset{n \to +\infty}{o}(1)\right)\right)\right) \tag{2.331}$$

$$= n \exp\left(-1 + \underset{n \to +\infty}{o}(1)\right) \tag{2.332}$$

$$\underset{n \to +\infty}{\sim} \frac{n}{e} \tag{2.333}$$

Donc

$$\lim_{n \to +\infty} \frac{n+1}{\sqrt[n]{n!}} = e \tag{2.334}$$

Ainsi, $w_n = \underset{n \to +\infty}{O}(v_n)$ donc

$$\sum w_n \text{ converge.}$$
 (2.335)

Montrons que pour tout $n \ge 1$,

$$\frac{n+1}{\sqrt[n]{n!}} \leqslant e \tag{2.336}$$

Cela équivaut à $(n+1)^n \leqslant e^n n!$ si et seulement si

$$\sum_{k=0}^{n} \binom{n}{k} n^k \leqslant n! e^n \tag{2.337}$$

ce qui est vrai car pour tout $k \in \{0, ..., n\}$ on a $\frac{1}{(n-k)!} \leq 1$. Donc $w_n \leq ev_n$ pour tout $n \geq 1$ et donc

$$\sum_{n=1}^{+\infty} w_n \leqslant e \sum_{n=1}^{+\infty} v_n = e \sum_{n=1}^{+\infty} u_n$$

$$(2.338)$$

Pour montrer que e est la meilleure constante possible, on forme pour $N \in \mathbb{N}^*$, $u_{n,N} = \frac{1}{n}$ si $n \leq N$ et 0 sinon. On a

$$\sum_{n=1}^{+\infty} = H_n < +\infty \tag{2.339}$$

Dans ce cas, on a

$$w_{n,N} = \sqrt[n]{u_{1,N} \dots w_{n,N}} = \frac{1}{\sqrt[n]{n!}} = \frac{n+1}{\sqrt[n]{n!}} v_n$$
 (2.340)

pour $n \leq N$ et 0 sinon. On a alors

$$\sum_{n=1}^{+\infty} w_{n,N} = \sum_{n=1}^{N} w_{n,N} = \sum_{n=1}^{N} \frac{n+1}{\sqrt[n]{n!}} v_n$$
 (2.341)

En divisant par $\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n$, on a donc

$$\frac{\sum_{n=1}^{+\infty} w_{n,N}}{\sum_{n=1}^{+\infty} u_{n,N}} = \frac{\sum_{n=1}^{N} v_{n,N} \times \frac{n+1}{\sqrt[n]{n!}}}{\sum_{n=1}^{+\infty} v_{n,N}} \xrightarrow[n \to +\infty]{} e$$
 (2.342)

d'après le théorème de Césaro.

On a trouvé une suite donc la constante C est égale à e. D'après ce qui précède,

$$e$$
 est la meilleure constante possible. (2.343)

Remarque 2.6. Pour la fin de l'exercice précédent, on peut utiliser le fait que $H_N \underset{N \to +\infty}{\sim} \ln(N)$ et alors

$$\sum_{n=1}^{N} w_{n,N} \sum_{n=1}^{N} \underbrace{\frac{n+1}{\sqrt[n]{n!}} \times \frac{1}{n+1}}_{\substack{n \to +\infty}} \underset{n \to +\infty}{\sim} e \sum_{n=1}^{N} \frac{1}{n} \underset{N \to +\infty}{\sim} e \ln(N)$$
(2.344)

par le théorème de sommation des relations de comparaison.

Solution 2.29.

1. Soit $n \in \mathbb{N}^*$ et

$$I_n = \{(p,q) \in \mathbb{N}^2 \setminus \{(0,0)\} | p+q = n\}$$
(2.345)

On a alors

$$\Sigma_n = \sum_{(p,q)\in I_n} \frac{1}{(p+q)^{\alpha}} = \sum_{(p,q)\in I_n} \frac{1}{n^{\alpha}} = \frac{n+1}{n^{\alpha}} \underset{n\to+\infty}{\sim} \frac{1}{n^{\alpha-1}}$$
 (2.346)

Donc la condition nécessaire et suffisante est
$$\alpha > 2$$
. (2.347)

Dans ce cas, par le théorème des sommation par paquets, on a

$$\sum_{(p,q)\in\mathbb{N}^2\setminus\{(0,0)\}} \frac{1}{(p+q)^{\alpha}} = \sum_{n=0}^{+\infty} \frac{1}{n^{\alpha-1}} + \frac{1}{n^{\alpha}} = \zeta(\alpha-1) + \zeta(\alpha)$$
 (2.348)

2. Pour tout $(p,q) \in \mathbb{N}^2 \setminus \{(0,0)\}$, on a

$$\frac{(p+q)^2}{2} \leqslant p^2 + q^2 \leqslant (p+q)^2 \tag{2.349}$$

Pour $\alpha \leq 0$, il est clair que l'on a divergence. Pour $\alpha > 0$, on a donc

$$\frac{1}{(p+q)^{2\alpha}} \leqslant \frac{1}{(p^2+q^2)^{\alpha}} \leqslant \frac{2^{\alpha}}{(p+q)^{2\alpha}} \tag{2.350}$$

Donc la condition nécessaire et suffisante est
$$\alpha > 1$$
. (2.351)

d'après le 1.

Solution 2.30. On fixe $n \in \mathbb{N}^*$. On a

$$\sum_{m=0}^{+\infty} \frac{1}{(m+n^2)(m+n^2+1)} = \sum_{m=0}^{+\infty} \frac{1}{m+n^2} - \frac{1}{m+n^2-1} = \frac{1}{n^2} = \Sigma_n$$
 (2.352)

par téléscopage. $\sum_{n\geqslant 1} \Sigma_n$ converge et

$$\sum_{n\geq 1} \Sigma_n = \frac{\pi^2}{6} \tag{2.353}$$

Donc
$$\left(\frac{1}{(m+n^2)(m+n^2+1)}\right)_{(m,n)\in\mathbb{N}\times\mathbb{N}^*}$$
 est sommable et la somme vaut $\frac{\pi^2}{6}$. (2.354)

Posons, pour $k \geqslant 1$,

$$I_k = \left\{ (m, n) \in \mathbb{N} \times \mathbb{N}^* \middle| m + n^2 = k \right\}$$
 (2.355)

On a $n^2 \in \{1, \dots, k\}$ si et seulement si $n \in \{1, \dots, \lfloor \sqrt{k} \rfloor\}$ et $(m, n) \in I_k$ si et seulement si $m = k - n^2$.

On a $|I_k| = \lfloor \sqrt{k} \rfloor$ et par sommation par paquets,

$$\boxed{\frac{\pi^2}{6} = \sum_{k=1}^{+\infty} \sum_{(m,n)\in I_k} \frac{1}{(m+n^2)(m+n^2+1)} = \sum_{k=1}^{+\infty} \frac{\lfloor k \rfloor}{k(k+1)}}$$
(2.356)

Remarque 2.7. Grâce à une transformation d'Abel, on a aussi, pour $N \ge 1$,

$$\sum_{k=1}^{N} \frac{\lfloor k \rfloor}{k(k+1)} = \sum_{k=1}^{N} \frac{\lfloor k \rfloor}{k} - \sum_{k=1}^{N} \frac{\lfloor k \rfloor}{k+1}$$

$$(2.357)$$

$$=1+\sum_{k=2}^{N}\underbrace{\frac{\lfloor k\rfloor-\lfloor k-1\rfloor}{k}}_{\neq 0 \ ssi \ k=p^2}+\underbrace{\frac{\lfloor N\rfloor}{N+1}}_{N\to+\infty}$$
(2.358)

et on retrouve le résultat.

Solution 2.31.

1.

$$\prod_{k \ge 1} \frac{1}{1 - \frac{1}{p_k}} \tag{2.359}$$

converge si et seulement si

$$\sum_{k\geqslant 1} -\ln\left(\frac{1}{1-\frac{1}{p_k}}\right) \tag{2.360}$$

converge si et seulement si

$$\sum_{k\geqslant 1} -\ln\left(1 - -\frac{1}{p_k}\right) \tag{2.361}$$

converge si et seulement si (car $-\ln\left(1-\frac{1}{p_k}\right) \underset{k\to+\infty}{\sim} p_k > 0$ vu que $p_k \geqslant k$ pour tout $k\geqslant 1$)

$$\sum_{k\geqslant 1} \frac{1}{p_k} \tag{2.362}$$

converge.

Donc

$$\prod_{k\geqslant 1} \frac{1}{1-\frac{1}{p_k}} \text{ converge si et seulement si } \sum_{k\geqslant 1} \frac{1}{p_k} \text{ converge.}$$
(2.363)

Fixons alors $N \in \mathbb{N}^*$. On a

$$\prod_{k=1}^{N} \frac{1}{1 - \frac{1}{p_k}} = \prod_{k=1}^{N} \left(\sum_{n_k=0}^{+\infty} \frac{1}{p_k^{n_k}} \right)$$
 (2.364)

où la série est à termes positifs et est convergent. Par produit de Cauchy,

$$\left(\frac{1}{p_1^{n_1}\dots p_N^{n_N}}\right)_{n_1,\dots,n_N\in\mathbb{N}^N} \tag{2.365}$$

est sommable et on a

$$\prod_{k=1}^{N} \frac{1}{1 - \frac{1}{p_k}} = \sum_{(n_1, \dots, n_N) \in \mathbb{N}^N} \frac{1}{p_1^{n_1} \dots p_N^{n_N}}$$
(2.366)

$$\geqslant \sum_{k=1}^{p_{N+1}-1} \frac{1}{k} \xrightarrow[N \to +\infty]{} +\infty \tag{2.367}$$

car dans la première somme, tous les inverses (et une seule fois) des nombres dont les facteurs premiers sont dans $\{p_1, \ldots, p_N\}$ apparaissent.

Donc

$$\sum_{k\geqslant 1} \frac{1}{p_k} \text{ diverge.}$$
 (2.368)

2. Posons

$$\Pi_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k^s}} \tag{2.369}$$

On a

$$\ln\left(\Pi_{n}\right) = \sum_{k=1}^{n} -\ln\left(1 - \frac{1}{1 - \frac{1}{p_{k}^{s}}}\right)$$

$$\sim \frac{\frac{1}{p_{k}^{s}} - O\left(\frac{1}{k^{s}}\right)}{1 - \frac{1}{p_{k}^{s}}}$$
(2.370)

 $\operatorname{car} p_k \geqslant k$. Donc

$$(\Pi_n)$$
 converge dans \mathbb{R}_+^* . (2.371)

Par produit de Cauchy,

$$\left(\frac{1}{\left(p_1^s\right)^{j_1}\dots\left(p_n^s\right)^{j_n}}\right)_{(j_1,\dots,j_n)\in\mathbb{N}^n} \tag{2.372}$$

Ainsi, on a

$$\Pi_n = \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^s \leqslant \sum_{k=1}^{+\infty} \frac{1}{k^s}$$
 (2.373)

$$= \zeta(s) \tag{2.374}$$

car dans la première somme, par unicité de la décomposition en facteurs premiers, chaque k n'apparaît qu'une unique fois. Comme on a

$$\sum_{k=1}^{p_{n+1}-1} \frac{1}{k^s} \leqslant \Pi_n \tag{2.375}$$

Donc $\Pi_n \xrightarrow[n \to +\infty]{} \zeta(s)$ et ainsi

$$\prod_{k=1}^{+\infty} \frac{1}{1 - \frac{1}{p_k^s}} = \zeta(s)$$
 (2.376)

3. Soit $z = a + \mathrm{i} b \in \mathbb{C}$. Si a > 1, on a

$$\left|\frac{1}{n^z}\right| = \frac{1}{n^a} \tag{2.377}$$

Donc $\sum \frac{1}{n^z}$ converge absolument. On peut donc prolonger ζ à $\{z \in \mathbb{C} | \Re(z) > 1\}$.

De même que précédemment, puisque

$$\left| \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z \right| = \frac{1}{\left(p_1^{j_1} \dots p_n^{j_n} \right)^a} \tag{2.378}$$

la famille

$$\left(\left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z \right)_{(j_1, \dots, j_n) \in \mathbb{N}^n} \tag{2.379}$$

est sommable. On peut aussi développer et

$$\Pi_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k^z}} = \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z$$
 (2.380)

On a

$$|\Pi_n - \zeta(z)| = \left| \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \left(\frac{1}{p_1^{j_1} \dots p_n^{j_n}} \right)^z - \sum_{k=1}^{+\infty} \frac{1}{k^z} \right|$$
 (2.381)

$$= \left| \sum_{k \in \mathbb{N} \setminus J_n} \frac{1}{k^z} \right| \tag{2.382}$$

$$\leqslant \sum_{k \in \mathbb{N} \setminus J_n} \frac{1}{k^a} \xrightarrow[n \to +\infty]{} 0 \tag{2.383}$$

où l'on a noté $J_n = \{k \ge 1 | \text{ les facteurs premiers de } k \text{ sont dans } \{p_1, \dots, p_n\}\}$ et où l'on a appliqué l'inégalité triangulaire et le résultat de 2. pour conclure.

Ainsi, on a bien

$$\zeta(z) = \prod_{k=1}^{+\infty} \frac{1}{1 - \frac{1}{p_k^s}}$$
 (2.384)

Solution 2.32. Pour $\alpha > 2$, puisque $\varphi(n) \ge n$, on a

$$\frac{\varphi(n)}{n^{\alpha}} \leqslant \frac{1}{n^{\alpha - 1}} \tag{2.385}$$

qui est le terme général d'une série absolument convergente.

Pour $\alpha = 2$, si $n = p_k$ est premier, on a $\varphi(p_k) = p_k - 1$ et

$$\frac{\varphi(p_k)}{p_k^2} = \frac{p_k - 1}{p_k^2} \underset{k \to +\infty}{\sim} \frac{1}{p_k} \tag{2.386}$$

et $\sum_{k\geqslant 1} \frac{1}{p_k}$ diverge.

De même pour $\alpha < 2$, $\sum \frac{\varphi(n)}{n^{\alpha}}$ diverge car $\frac{\varphi(n)}{n^2} = O(\frac{\varphi(n)}{n^{\alpha}})$.

Donc

$$\sum \frac{\varphi(n)}{n^{\alpha}} \text{ converge si et seulement si } \alpha > 2.$$
 (2.387)

Pour $\alpha > 1$, on calcule

$$S = \sum_{n_1=1}^{+\infty} \frac{\varphi(n_1)}{n_1^{\alpha}} \times \sum_{n_2=1}^{+\infty} \frac{1}{n_2^{\alpha}} = \sum_{(n_1, n_2) \in \mathbb{N}^2} \frac{\varphi(n_1)}{(n_1 n_2)^{\alpha}}$$
 (2.388)

ce qui est légitime car il s'agit de deux séries à termes positifs convergentes. Soit, pour $n \ge 1$, $D_n = \{(n_1, n_2) \in (\mathbb{N}^*)^2 | n = n_1 n_2 \}$. Par sommation par paquets, on a,

$$S = \sum_{n=1}^{+\infty} \sum_{(n_1, n_2) \in D_n} \frac{\varphi(n_1)}{n^{\alpha}} = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \left(\sum_{n_1 \mid n} \varphi(n_1) \right)$$
 (2.389)

et grâce à la formule d'Euler-Möbius, on a

$$\sum_{n_1|n} \varphi(n_1) = n \tag{2.390}$$

Ainsi, $S = \zeta(\alpha - 1)$ et donc

$$\left| \sum_{n \geqslant 1} \frac{\varphi(n)}{n^{\alpha}} = \frac{\zeta(\alpha - 1)}{\zeta(\alpha)} \right| \tag{2.391}$$

Solution 2.33. Soit $A \in \mathbb{C}$ et R > 0. S'il y a n indices $k \in \mathbb{N}$ tels que $z_k \in B(A, R)$, alors pour ces indices k, on a $B(z_k, \frac{1}{2}) \subset B(A, R + \frac{1}{2})$. Donc (faire un dessin!), on a

$$n\frac{\pi}{4} \leqslant \pi \left(R + \frac{1}{2}\right)^2 \tag{2.392}$$

On pose, pour tout $n \in \mathbb{N}$, $B_n = \{i \in \mathbb{N} | z_i \in B(0,n)\}$. De l'inégalité précédente, pour tout $n \in \mathbb{N}$, D_n est fini. Il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ bijective qui permet d'ordonner les z_n par module croissante et à même module par indice croissant.

Pour $n \in \mathbb{N}$ et $R = |z_{\sigma(n)}|$, on a pour tout $k \leq n$, $z_{\sigma(k)} \in B(0, R)$.

Donc

$$n\frac{\pi}{4} \leqslant \pi \left(\left| z_{\sigma(n)} \right| + \frac{1}{2} \right)^2 \tag{2.393}$$

d'où

$$\left|z_{\sigma(n)}\right| \geqslant \left|z_{\sigma(n)} + \frac{1}{2}\right| - \frac{1}{2} \geqslant \frac{\sqrt{n}}{2} - \frac{1}{2}$$
 (2.394)

Donc

$$\left| \frac{1}{z_{\sigma(n)}} \right|^3 = O_{n \to +\infty} \left(\frac{1}{n^{\frac{3}{2}}} \right) \tag{2.395}$$

Donc

$$\sum \frac{1}{z_{\sigma(n)}^3} \text{ est absolument convergente.}$$
 (2.396)

Solution 2.34. On a $k = \lfloor n \rfloor$ si et seulement si $k^2 \leqslant n < (k+1)^2$. Il y a $(k+1)^2 - k^2 = 2k+1$ entiers.

Posons

$$B_p = \sum_{n=1}^{p} (-1)^{\lfloor n \rfloor} \tag{2.397}$$

et $B_{-1} = 0$. Si $k^2 \le p \le (k+1)^2$, on a

$$B_p = \underbrace{B_k^2}_{\text{signe de } (-1)^k} + (-1)^k \underbrace{(p-k)^2}_{|\cdot| \leqslant 2k+1}$$
 (2.398)

Par récurrence, pour tout $p \in \mathbb{N}$,

$$|B_p| \leqslant 2 |p| + 1 \tag{2.399}$$

Donc avec une transformation d'Abel, on a

$$\sum_{n=1}^{N} \frac{(-1)^{\lfloor n \rfloor}}{n} = \sum_{n=1}^{N} \frac{(B_n - B_{n-1})}{n}$$
 (2.400)

$$=\sum_{n=1}^{N} \frac{B_n}{n} - \sum_{n=0}^{N-1} \frac{B_n}{n+1}$$
 (2.401)

$$=\underbrace{\frac{B_N}{N}}_{N\to+\infty} -B_0 + \underbrace{\sum_{n=1}^{N-1} \frac{B_n}{n(n+1)}}_{=\underset{N\to+\infty}{0} \left(\frac{1}{\sqrt{N}}\right)}$$
(2.402)

D'après le critère de Riemann, la dernière somme converge absolument et donc

$$\sum_{n\geqslant 1} \frac{(-1)^{\lfloor n\rfloor}}{n} \text{ converge.}$$
 (2.403)

Solution 2.35.

1. Pour tout $n \in \mathbb{N}$, on a $u_n \neq 0$. Il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geq N_0$, $u_n u_{n+1} > 0$. On a

$$\ln\left(\frac{u_n}{u_{N_0}}\right) = \sum_{k=N_0+1}^n \ln\left(\frac{a+k}{n+k}\right) = \sum_{k=N_0+1} \ln\left(1+\frac{a}{k}\right) - \ln\left(1+\frac{b}{k}\right) \tag{2.404}$$

Alors

$$\ln\left(\frac{u_n}{u_{N_0}}\right) = \sum_{k=N_0+1}^n \frac{a-b}{k} + \underbrace{O\left(\frac{1}{k^2}\right)}_{\text{terme général d'une série convergente}} = (a-b)\ln(n) + \underbrace{C}_{\in\mathbb{R}} + \underbrace{O}_{n\to+\infty}(1)$$

$$(2.405)$$

Ainsi,

$$u_n = u_{N_0} n^{a-b} \underbrace{k^{1+ o(1)}_{n \to +\infty}}_{N_0} \sim U_{N_0} n^{a-b} k$$
 (2.406)

Donc

$$\sum u_n \text{ converge si et seulement si } b - a > 1$$
 (2.407)

2. On a

$$u_{n+1}(b+n+1) = u_n(a+n+1)$$
(2.408)

donc

$$(a+1)u_n = bu_{n+1} + (n+1)u_{n+1} - nu_n (2.409)$$

En sommant sur \mathbb{N} , on a

$$(a+1)\sum_{n=0}^{+\infty} u_n = b\sum_{n=1}^{+\infty} u_n + u_1 = b\sum_{n=1}^{+\infty} + \underbrace{u_1 - bu_0}_{=\frac{a(a+1)}{b(b+1)} - a}$$
(2.410)

Ainsi,

$$\sum_{n=0}^{+\infty} u_n = \frac{a(a+1-b(b+1))}{b(b+1)(a+1-b)} = a\left(\frac{1}{b(b+1)} - \frac{b}{(b+1)(a+1-b)}\right)$$
(2.411)

3. Pour $a = -\frac{1}{2}$ et b = 1, on a

Solution 2.36.

1. u_n est une série à termes positifs et

$$\frac{1}{n} = \underset{n \to +\infty}{O} \left(\frac{\ln(n)}{n} \right) \tag{2.413}$$

donc

$$\sum u_n \text{ diverge.}$$
 (2.414)

 $\sum v_n$ est une série alternée. On a $\lim_{n\to +\infty}v_n=0$ et en formant

$$f: [2, \infty[\to \mathbb{R}]$$

$$x \mapsto \frac{\ln(x)}{x}$$

On a $f'(x) = \frac{1 - \ln(x)}{x^2}$ qui est négatif dès que x > e. Donc $(v_n)_{n \geqslant 3}$ décroît. D'après le critère des séries alternées,

$$\sum v_n$$
 converge. (2.415)

2. f décroît sur $[+\infty)$ donc pour tout $k \ge 4$, on a

$$\int_{k}^{k+1} \frac{\ln(x)}{x} dx \leqslant \frac{\ln(k)}{k} \leqslant \int_{k-1}^{k} \frac{\ln(x)}{x} dx \tag{2.416}$$

d'où

$$\underbrace{\int_{4}^{N+1} \frac{\ln(x)}{x} dx}_{=\frac{1}{2} \left[\ln^{2}(N+1) - \ln^{2}(4)\right]} \leqslant \sum_{k=4}^{N} \frac{\ln(k)}{k} \leqslant \underbrace{\int_{3}^{N} \frac{\ln(x)}{x} dx}_{=\frac{1}{2} \left[\ln^{2}(N) - \ln^{2}(3)\right]}$$
(2.417)

Donc

$$S_N \underset{N \to +\infty}{\sim} \frac{1}{2} \ln^2(N)$$
 (2.418)

Formons $w_n = S_n - \frac{\ln^2(n)}{2}$. $(w_n)_{n \in \mathbb{N}}$ converge si et seulement si $\sum_{n \in \mathbb{N}^*} w_n - w_{n-1}$ converge.

On a

$$w_n - w_{n-1} = \frac{\ln(n)}{n} - \frac{\ln^2(n)}{2} + \frac{\ln^2(n-1)}{2}$$
 (2.419)

On a

$$\ln(n-1) = \ln(n) + \ln\left(1 - \frac{1}{n}\right) = \ln(n) - \frac{1}{n} + \mathop{O}_{n \to +\infty}\left(\frac{1}{n^2}\right)$$
 (2.420)

et

$$\ln^{2}(n-1) = \ln^{2}(n) - \frac{2\ln(n)}{n} + \underbrace{O}_{n \to +\infty} \left(\frac{\ln(n)}{n^{2}}\right)$$

$$= \underbrace{O}_{n \to +\infty} \left(\frac{1}{3}\right)$$
(2.421)

Donc

$$w_n - w_{n-1} = \underbrace{O}_{n \to +\infty} \left(\frac{1}{n^{\frac{3}{2}}} \right) \tag{2.422}$$

terme général d'une série absolument convergente

Donc il existe $L \in \mathbb{R}$ tel que

$$S_n = \frac{\ln^2(n)}{2} + L + \underset{n \to +\infty}{o}(1)$$
 (2.423)

3. On a

$$\sum_{n=2}^{2N} v_n = \underbrace{\sum_{k=1}^{N} \frac{\ln(2k)}{2k}}_{=I_N} - \underbrace{\sum_{k=1}^{N-1} \frac{\ln(2k+1)}{2k+1}}_{=J_N}$$
(2.424)

Donc

$$\sum_{n=2}^{2N} v_n = I_N - (S_{2N} - I_N) \tag{2.425}$$

On a

$$S_{2N} = \frac{\ln^2(2N)}{2} + L + \underset{N \to +\infty}{o}(1) = \frac{\ln^2(2)}{2} + \frac{\ln^2(N)}{2} + \ln(2)\ln(N) + L + \underset{N \to +\infty}{o}(1) \quad (2.426)$$

De plus,

$$I_{N} = \sum_{k=1}^{N} \frac{\ln(2)}{2k} + \sum_{k=1}^{N} \frac{\ln(k)}{2k}$$

$$= \frac{\ln(2)}{2} \left(\ln(N) + \gamma + \underset{N \to +\infty}{o} (1) \right) = \frac{1}{2} S_{N} = \frac{\ln^{2}(N)}{4} + \frac{L}{2} + \underset{N \to +\infty}{o} (1)$$
(2.427)

Finalement, on a bien

$$\sum_{n=2}^{2N} v_n = 2I_n - S_{2N} \tag{2.428}$$

$$= \ln(2)\gamma - \frac{\ln^2(2)}{2} + \underset{N \to +\infty}{o}(1)$$
 (2.429)

Donc

$$\sum_{n=2}^{+\infty} v_n = \ln(2)\gamma - \frac{\ln^2(2)}{2}$$
 (2.430)

Solution 2.37. Si $\alpha_0 = 2$ et $\alpha_{n+1} = 10^{\alpha_n - 1}$. Alors $q_1(\alpha_{n+1}) = \alpha_n$, $q_k(\alpha_n) = \alpha_{n-k}$, $q_n(\alpha_n) = 2$ et $q_{n+1}(\alpha_n) = 1$.

Si $k < \alpha_n, q_n(k) = 1$. Soit

$$S_n = \sum_{k=\alpha_n}^{\alpha_{n+1}-1} u_k \tag{2.431}$$

Comme c'est une série à termes positifs, $\sum_{k\geqslant 1}u_k$ converge si et seulement $\sum_{n\geqslant 0}S_n$ converge.

Par définition, pour tout $k \in \{\alpha_n, \dots, \alpha_{n+1} - 1\}$, on a $q_{n+1}(k) = 1$ et pour tout $p \ge n + 1$, $q_p(k) = 1$. Donc

$$S_n = \sum_{k=\alpha_n}^{\alpha_{n+1}-1} \frac{1}{kq_1(k) \dots \underbrace{q_n(k)}_{\geqslant 2}}$$
 (2.432)

Posons

$$f: \mathbb{R}_+^* \to \mathbb{R}$$

$$t \mapsto \log_{10}(t) = \frac{\ln(t)}{\ln(10)}$$

Il vient $q_1(t) = \lfloor f(t) \rfloor + 1 > f(t)$. Par récurrence, on a

$$q_n(t) \geqslant f^n(t) \tag{2.433}$$

défini pour $t \geqslant \alpha_n$. On a donc

$$S_n \sum_{k=\alpha_n}^{\alpha_{n+1}-1} \frac{1}{k(f(k))\dots f^n(k)}$$
 (2.434)

On forme

$$g_n: [\alpha_n, \alpha_{n+1} - 1 \rightarrow \mathbb{R}]$$

$$t \mapsto \frac{1}{tf(t)...f^n(t)}$$

qui est décroissante. Ainsi, pour tout $k \in \{\alpha_n, \alpha_{n+1} - 1\}$, on a

$$\int_{k}^{k+1} g_n(t) \leqslant u_k \leqslant \int_{k-1}^{k} g_n(t) \tag{2.435}$$

d'où en faisant le changement de variables $u = \log_{10}(t)$, on a

$$\int_{\alpha_{n-1}-1}^{\alpha_n-1} g_{n-1}(u) du(\ln(10)) \leqslant S_n \leqslant \int_{\alpha_n-1}^{\alpha_{n+1}-1} g_n(t) dt$$
 (2.436)

On obtient donc une minoration par $C \times (\ln(10))^n$ donc

Solution 2.38.

1. Montrons le résultat par récurrence sur $n \in \mathbb{N}^*$. On a $P_0 = 1 > 0$ et $P_1(x) = 1 + x$ s'annule en -1. Soit $n \in \mathbb{N}^*$, supposons le résultat au rang n. On a $P'_{2n+2}(x) = P_{2n+1}(x)$, par hypothèse P_{2n+1} s'annule uniquement en $\alpha_{2n+1} < 0$. Donc $P_{2n+2}(\alpha_{2n+1}) = \frac{(\alpha_{2n+1})^{2n+2}}{(2n+2)!} > 0$ donc $P_{2n+2} > 0$. Comme $P'_{2n+3} = P_{2n+2} > 0$ donc P_{2n+3} est strictement croissante sur \mathbb{R} . On a $\lim_{x \to \pm \infty} P_{2n+3} = \pm \infty$. Donc il existe un unique $\alpha_{2n+3} \in \mathbb{R}$ tel que $P_{2n+3}(\alpha_{2n+3}) = 0$. Comme $P_{2n+3}(0) = 1 \geqslant 1$, $\alpha_{2n+3} < 0$.

2. Soit x < 0, on a $\lim_{n \to +\infty} P_n(x) = e^x > 0$. Donc il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $P_{2n+1}(x) > 0$. En particulier, $\alpha_{2n+1} < x$ donc

$$\lim_{n \to +\infty} \alpha_{2n+1} = -\infty \tag{2.439}$$

Solution 2.39. On pose $f_n(x) = e^x - x - n$, on a $f'_n(x) = e^x - 1$. Donc $x_1 = 0$ et ainsi

$$\forall n \geqslant 2, \exists ! x_n \geqslant 0 \colon e^{x_n} = x_n + n$$
(2.440)

Pour tout $x \ge 0$, on a $f_{n+1}(x) - f_n(x) = -1 < 0$ donc $f_{n+1}(x) < f_n(x)$ et ainsi $f_{n+1}(x_n) < 0$ et $x_n < x_{n+1}$.

 $(x_n)_{n\in\mathbb{N}}$ est strictement croissante, de plus $e^{x_n}=x_n+n\geqslant n$ donc $x_n\geqslant \ln(n)$ et donc

$$\lim_{n \to +\infty} x_n = +\infty \tag{2.441}$$

De plus, $x_n = \ln(x_n + n)$ et $f_n(n) = e^n - 2n > 0$ (par récurrence), donc $x_n < n$ par stricte croissante de f_n donc

$$x_n = \ln(x_n + n) \le \ln(2n) = \ln(n) + \ln(2)$$
 (2.442)

Ainsi, $x_n = \underset{n \to +\infty}{O}(\ln(n))$. En reportant, on a

$$x_n = \ln(n + O_{n \to +\infty}(\ln(n))) = \ln(n) + \ln(1 + O_{n \to +\infty}\left(\frac{\ln(n)}{n}\right)) = \ln(n) + O_{n \to +\infty}(1)$$
 (2.443)

donc

$$\boxed{n \underset{n \to +\infty}{\sim} \ln(n)}$$
(2.444)

En reportant, on a

$$x_n = \ln(n) + \frac{\ln(n)}{n} + \underset{n \to +\infty}{o} \left(\frac{\ln(n)}{n}\right)$$
 (2.445)

Solution 2.40.

1. Si $S_n \xrightarrow[n \to +\infty]{} S \in \mathbb{R}_+^+$, on a

$$v_n \underset{n \to +\infty}{\sim} \frac{u_n}{S^{\alpha}} \tag{2.446}$$

Comme u_n est le terme générale d'une série convergente donc

$$\sum v_n$$
 converge. (2.447)

2. On a $\alpha = 1$ donc $v_n = \frac{u_n}{S_n}$, soit $(n, p) \in \mathbb{N}^2$. On a

$$\sum_{i=n+1}^{n+p} v_i = \sum_{i=1}^{n+p} \frac{u_i}{S_i} \tag{2.448}$$

où $(S_i)_{i\in\mathbb{N}}$ est croissante donc pour tout $i\in\{n+1,n+p\},\,S_i\leqslant S_{n+p}$ donc

$$\sum_{i=n+1}^{n+p} v_i \geqslant \frac{1}{S_{n+p}} \sum_{i=n+1}^{n+p} u_i = \frac{1}{S_{n+p}} \left(S_{n+p} - S_n \right) = 1 - \frac{S_n}{S_{p+n}}$$
 (2.449)

et ainsi,

$$\sum_{i=n+1}^{n+p} v_i \geqslant 1 - \frac{S_n}{S_{n+p}}$$
 (2.450)

Supposons que $\sum v_n$ converge. Pour n fixé, on a $\lim_{p\to +\infty} S_{n+p} = +\infty$ (car $\sum u_n$ diverge). Donc lorsque $p\to +\infty$, on a pour tout $n\in\mathbb{N}$,

$$\sum_{i=n+1}^{+\infty} v_i \geqslant 1 \tag{2.451}$$

ce qui est absurde puisque la limite en $+\infty$ du reste est 0. Ainsi,

$$\sum v_n \text{ diverge.}$$
 (2.452)

3. On a $\lim_{n\to+\infty} S_n = +\infty$ et

$$v_n = \frac{1}{\alpha - 1} \left(S_{n-1}^{1-\alpha} - S_n^{1-\alpha} \right) \tag{2.453}$$

avec $(S_n^{1-\alpha})_{n\in\mathbb{N}}$ tend vers 0 quand $n\to +\infty$. Donc $\sum w_n$ est une série téléscopique convergente. Comme $t\mapsto \frac{1}{t^{\alpha}}$ est décroissante, on a

$$\frac{u_n}{S_n^{\alpha}} \leqslant w_n \leqslant \frac{u_n}{S_{n-1}^{\alpha}} \tag{2.454}$$

car $u_n = S_n - S_{n-1}$. Comme $\sum w_n$ converge,

$$\sum \frac{u_n}{S_n^{\alpha}} \text{ converge.}$$
 (2.455)

Si $\alpha < 1$, comme $\lim_{n \to +\infty} S_n^{\alpha - 1} = 0$,

$$\frac{u_n}{S_n} = \underset{n \to +\infty}{o} \left(\frac{u_n}{S_n^{\alpha}} \right) \tag{2.456}$$

donc

$$\sum v_n$$
 diverge. (2.457)

4. On a $\lim_{n\to+\infty} R_n = 0$ par convergence et $\lim_{n\to+\infty} u_n = 0$ et de plus $u_n = R_n - R_{n+1}$. On pose

$$\alpha_n = \int_{R_{n+1}}^{R_n} \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1} \left(R_{n+1}^{1-\alpha} - R_n^{1-\alpha} \right)$$
 (2.458)

si $\alpha \neq 1$.

Si $0 < \alpha < 1$, $\lim_{n \to +\infty} R_n^{1-\alpha} = 0$ donc $\sum \alpha_n$ est une série téléscopique convergente et de même que précédemment, on a

$$\frac{u_n}{R_n^{\alpha}} \leqslant \alpha_n \tag{2.459}$$

donc $w_n \leqslant \alpha_n$ et

$$\sum w_n \text{ converge.}$$
 (2.460)

Si $\alpha = 1$, on a

$$\alpha_n = \ln(R_n) - \ln(R_{n+1}) \tag{2.461}$$

où $\ln(R_n) \xrightarrow[n \to +\infty]{} -\infty$. Donc $\sum \alpha_n$ est une série téléscopique divergente. De plus

$$\frac{u_n}{R_n} = \frac{R_n - R_{n+1}}{R_n} = 1 - \frac{R_{n+1}}{R_n} \tag{2.462}$$

donc

$$\ln\left(\frac{R_{n+1}}{R_n}\right) = \ln\left(1 - \frac{u_n}{R_n}\right) \underset{n \to +\infty}{\sim} \frac{-u_n}{R_n}$$
(2.463)

On a donc

$$\frac{u_n}{R_n} \underset{n \to +\infty}{\sim} \alpha_n \tag{2.464}$$

donc

$$\sum w_n \text{ diverge.}$$
 (2.465)

Si $\alpha > 1$, on a

$$\frac{u_n}{R_n} = \underset{n \to +\infty}{o} \left(\frac{u_n}{R_n^{\alpha}} \right) \tag{2.466}$$

donc

$$\sum w_n \text{ diverge.}$$
 (2.467)

Solution 2.41.

1. Pour tout $x \in [0, 1[$ il existe un unique $q_x \in \{0, \dots, n-1\}$ tel que $x \in [\frac{q_x}{n}, \frac{q_x+1}{n}]$ avec $q_x = \lfloor nx \rfloor$ et

$$h: \{0,\ldots,n\} \rightarrow \{0,\ldots,n-1\}$$

$$k \mapsto q_{x_k} = |nx_k|$$

n'est pas injective donc il existe k>k' tel que $|x_k-x_{k'}|<\frac{1}{n}$ avec $(k,k')\in\{0,\dots,n\}^2$ d'où

$$|kx - \lfloor kx \rfloor - (k'x - \lfloor k'x \rfloor)| < \frac{1}{n}$$
 (2.468)

d'où

$$|(k - k')x - p| < \frac{1}{n} \tag{2.469}$$

avec $p \in \mathbb{Z}$ et pour $q = (k - k') \in \{1, \dots, n\}$, on a

$$\left| \left| x - \frac{p}{q} \right| < \frac{1}{qn} \right| \tag{2.470}$$

2. D'après ce qui précède, pour tout $n \geqslant 1$, il existe $(p_n,q_n) \in \mathbb{Z} \times \{1,\ldots,n\}$ tels que

$$\left| x - \frac{p_n}{q_n} \right| < \frac{1}{nq_n} \leqslant \frac{1}{q_n^2} \tag{2.471}$$

car $n \geqslant q_n$. Donc

$$\left| \left| x - \frac{p_n}{q_n} \right| < \frac{1}{q_n^2} \right| \tag{2.472}$$

On a donc $\frac{p_n}{q_n} \xrightarrow[n \to +\infty]{} x \in \mathbb{R} \setminus \mathbb{Q}$. Si q_n ne tend pas vers $+\infty$, il existe A > 0 tel que pour tout $N \in \mathbb{N}$ il existe n > N avec $q_n < A$. Donc $\{n \in \mathbb{N} | q_n < A\}$ est infini : on peut

extraire $(q_{\sigma(n)})$ telle que pour tout $n \in \mathbb{N}$, on a $q_{\sigma(n)} < A$. D'après le théorème de Bolzano-Weierstrass, on peut extraire $(q_{\varphi(n)})$ qui converge vers $q \in \mathbb{R}$. Notons que toute suite d'entiers relatifs qui converge est stationnaire à partir d'un certain rang donc $q \in \mathbb{N}^*$. Or pour tout $n \in \mathbb{N}$, on a $p_{\varphi(n)} = \frac{p_{\varphi(n)}}{q_{\varphi(n)}} q_{\varphi(n)} \xrightarrow[n \to +\infty]{} \alpha q$. $(p_{\varphi(n)})_{n \in \mathbb{N}}$ est une suite convergente d'entiers relatifs stationnaire, donc $\alpha q \in \mathbb{Z}$ et $\alpha \in \mathbb{Q}$ ce qui est absurde.

Donc

$$\lim_{n \to +\infty} q_n = +\infty \tag{2.473}$$

3. On sait qu'il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ croissante telle que $\sin(\sigma(n)) \xrightarrow[n \to +\infty]{} 1$ alors

$$\lim_{n \to +\infty} \frac{1}{\sigma(n)\sin(\sigma(n))} = 0 \tag{2.474}$$

donc si la suite converge, alors elle converge vers 0.

Appliquons ce qui précède à $\alpha = \frac{1}{\pi} \notin \mathbb{Q}$. Il existe $(p_n, q_n) \in \mathbb{Z}^{\mathbb{N}} \times (\mathbb{N}^*)^{\mathbb{N}}$ avec $\lim_{n \to +\infty} q_n = 0$ et

$$\left| \frac{1}{\pi} - \frac{p_n}{q_n} \right| < \frac{1}{q_n^2} \tag{2.475}$$

Alors

$$|q_n - \pi p_n| < \frac{\pi}{q_n} \leqslant \frac{\pi}{2} \tag{2.476}$$

pour n suffisamment grand. Quitte à extraire, on peut supposer que $(q_n)_{n\in\mathbb{N}}$ est croissante. On a

$$|\sin(x)| = |\sin(q_n - \pi q_n)| \tag{2.477}$$

donc

$$|\sin(q_n)| \le \left|\sin\left(\frac{\pi}{q_n}\right)\right| \le \frac{\pi}{q_n}$$
 (2.478)

car sin est croissant sur $\left[0, \frac{\pi}{2}\right]$ et $|\sin(x)| \leq |x|$.

Donc

$$\underbrace{\frac{1}{|q_n \sin(q_n)|}}_{n \to +\infty} \geqslant \frac{1}{\pi} \tag{2.479}$$

ce qui est absurde.

Donc

$$\left(\frac{1}{n\sin(n)}\right)_{n\geqslant 1} \text{ ne converge pas.}$$
 (2.480)

Solution 2.42.

1. On a

$$\left| \sum_{p=1}^{n} a_{n,p} - \sum_{p=1}^{+\infty} a_p \right| = \left| \sum_{p=1}^{n} (a_{n,p} - a_p) - \sum_{p=n+1}^{+\infty} a_p \right| = \leqslant \sum_{p=1}^{n} |a_{n,p} - a_p| + \sum_{p=n+1}^{+\infty} |a_p| \quad (2.481)$$

Soit $N \in \mathbb{N}^*$. Si $n \geq N$, on a

$$\sum_{p=1}^{n} |a_{n,p} - a_p| = \sum_{p=1}^{N} |a_{n,p} - a_p| + \sum_{p=N+1}^{n} |a_{n,p} - a_p|$$
 (2.482)

Pour p fixé, on a $|a_p| \leq b_p$ donc

$$\sum_{p=N+1}^{n} |a_{n,p} - a_p| \leqslant 2 \sum_{p=N+1}^{n} b_p \tag{2.483}$$

Ainsi,

$$\left| \sum_{p=1}^{n} a_{n,p} - \sum_{p=1}^{+\infty} a_p \right| \leqslant \sum_{p=1}^{N} |a_{n,p} - a_p| + 3 \sum_{p=N+1}^{+\infty} b_p$$
 (2.484)

Soit $\varepsilon > 0$. Comme $\sum_{p \ge 1} b_p$ converge, il existe $N_1 \in \mathbb{N}$ tel que

$$3\sum_{p=N_1+1}^{+\infty} b_p \leqslant \frac{\varepsilon}{2} \tag{2.485}$$

donc pour tout $n \ge N_1$, on a

$$\left| \sum_{p=1}^{n} a_{n,p} - \sum_{p=1}^{+\infty} a_p \right| < \frac{\varepsilon}{2} + \sum_{p=1}^{N_1} |a_{n,p} - a_p|$$
 (2.486)

 N_1 étant fixé, il existe $N_2 \in \mathbb{N}$ tel que pour tout $n \geqslant N_2$, on a

$$\sum_{p=1}^{N_1} |a_{n,p} - a_p| < \frac{\varepsilon}{2} \tag{2.487}$$

car

$$\lim_{n \to +\infty} \sum_{p=1}^{N_1} |a_{n,p} - a_p| = 0 \tag{2.488}$$

Donc pour tout $n \ge \max(N_1, N_2)$, on a

$$\left| \sum_{p=1}^{n} a_{n,p} - \sum_{p=1}^{+\infty} a_p \right| < \varepsilon \tag{2.489}$$

Ainsi,

$$\lim_{n \to +\infty} \sum_{p=1}^{+\infty} a_{n,p} = \sum_{p=1}^{+\infty} a_p$$
 (2.490)

2. On fixe $p \in \mathbb{N}$, on a

$$\lim_{n \to +\infty} \left(1 - \frac{p}{n}\right)^n = e^{-p} \tag{2.491}$$

Pour $x \ge -1$, on a $\ln(1+x) \le x$ donc $\ln\left(1-\frac{p}{n}\right) \le -\frac{p}{n}$ et $a_{n,p} = e^{n\ln\left(1-\frac{p}{n}\right)} \le e^{-p} = b_p$ Donc d'après ce qui précède,

$$\lim_{n \to +\infty \left(\left(\frac{1}{n}\right)^n + \dots + \left(\frac{n-1}{n}\right)^n \right)} = \frac{1}{e-1}$$
 (2.492)

FIGURE 7 – $\ln(1+x) \leqslant x$ pour x > -1.

Remarque 2.8. C'est faux si on n'a pas l'hypothèse (ii). Par exemple,

$$a_{n,p} = \frac{1}{\sqrt{n}} \xrightarrow[n \to +\infty]{} 0 \tag{2.493}$$

pour p fixé mais

$$\sum_{p=1}^{n} \frac{1}{\sqrt{n}} = \sqrt{n} \xrightarrow[n \to +\infty]{} + \infty \tag{2.494}$$

Solution 2.43.

1. Pour tout $k \ge 1$, $(u_{kn})_{n\ge 1}$ est une sous-famille de $(u_n)_{n\ge 1}$ sommable, donc $(u_{kn})_{n\ge 1}$ est sommable.

Donc
$$S_k$$
 existe. (2.495)

2. On a

$$\begin{cases} S_{1} - S_{2} &= u_{1} + u_{3} + \dots + u_{2n+1} + \dots = 0 \\ S_{1} - S_{2} - S_{3} + S_{6} &= u_{1} + u_{5} + u_{7} + u_{11} + \dots = 0 \\ S_{1} - S_{2} - S_{3} - S_{5} + S_{6} + S_{10} + S_{15} - S_{10} &= u_{1} + u_{7} + u_{11} + \dots = 0 \\ &= 0 \end{cases}$$

$$(2.496)$$

A la première ligne on enlève les multiples de 2, à la deuxième ligne on enlève les multiples de 2 et 3, à la troisième ligne on enlève les multiples de 2, 3 et 5. Et ainsi de suite.

Soient donc p_1, \ldots, p_N les N premiers nombres premiers. On a

$$0 = \sum_{k=1}^{p_1...p_N} \mu(k) S_k = \sum_{k \in \{p_1^{\alpha_1}...p_N^{\alpha_N} | (\alpha_1,...,\alpha_N) \in \{0,1\}^N\}} \mu(k) S_k$$
 (2.497)

où si $k = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, $\mu(k) = 0$ s'il existe $\alpha_i \ge 2$ et $\mu(p_{i_1} \dots p_{i_s}) = (-1)^s$ sinon (fonction de Möbius).

Soit $n = p_1^{\beta_1} \dots p_N^{\beta_N}$. On cherche le coefficient en u_n dans la somme. Si n = 1, c'est 1. Si $n \ge 1$, on a

$$\sum_{k|n} \mu(k) = 0 \tag{2.498}$$

donc

$$\sum_{k \in \{p_1^{\alpha_1} \dots p_N^{\alpha_N} | (\alpha_1, \dots, \alpha_N) \in \{0, 1\}^N\}} \mu(k) S_k = u_1 + \alpha_N$$
(2.499)

avec

$$\alpha_N = \sum_{k \in B_N} u_k \tag{2.500}$$

où $B_N \subset \mathbb{N}^*$ est tel que min $(B_N) = p_{N+1}$. On a

$$|\alpha_N| \leqslant \sum_{k \geqslant p_{N+1}} |u_k| \xrightarrow[N \to +\infty]{} 0 \tag{2.501}$$

car c'est le reste de $\sum_{n\geqslant 1} |u_n|$ convergente.

Donc $u_1 + \alpha_N = 0 \xrightarrow[N \to +\infty]{} u_1$ donc $u_1 = 0$.

Avec $u_1 = 0$,

$$\begin{cases} S_n = u_n + u_{2n} + u_{3n} + \dots = 0 \\ S_{2n} = u_{2n} + u_{4n} + u_{6n} + \dots = 0 \end{cases}$$
 (2.502)

et en recommençant avec u_n pour tout $n \ge 1$, on obtient bien

$$\boxed{u_n = 0} \tag{2.503}$$

Solution 2.44.

1. On prend $u_n = 0$ pour tout $n \in \mathbb{N}$. Alors $\sum u_n = 0$ converge donc $\sum f(u_n) = \sum f(0)$ converge. Donc

$$f(0) = 0 (2.504)$$

Supposons que f n'est pas continue en 0. Alors il existe $\varepsilon_0 >$ tel que pour tout $\alpha > 0$, il existe $x \in [-\alpha, \alpha] : |f(x)| \ge \varepsilon_0$. Pour $\alpha \equiv \alpha_n = \frac{1}{n^2}$, il existe $x_n \in [-\frac{1}{n^2}, \frac{1}{n^2}] : |f(x_n)| \ge \varepsilon_0$. $\sum x_n$ converge absolument mais $\sum f(x_n)$ diverge grossièrement ce qui est absurde.

f est continue en
$$0$$
. (2.505)

2. Supposons que pour tout $\alpha > 0$, il existe $x \in]-\alpha, \alpha[: f(-x) \neq -f(x)]$. On définit $(x_n)_{n \in \mathbb{N}} \xrightarrow[n \to +\infty]{} 0$ telle que $f(-x_n) + f(x_n) \neq 0$. Il existe $N_n \in \mathbb{N}^*$ tel que

$$N_n |f(-x_n) + f(x_n)| \ge 1$$
 (2.506)

(il suffit de prendre $N_n = \left\lfloor \frac{1}{|f(x_n) + f(-x_n)|} \right\rfloor + 1$)

On définit

$$(u_n)_{n\in\mathbb{N}} = (x_0, -x_0, x_0, -x_0, \dots, x_n, -x_n, \dots, \dots)$$
(2.507)

où $(x_n, -x_n)$ apparaît N_n fois. On a $\sum_{k=0}^{2N} u_k = 0$ et $\sum_{k=0}^{2N+1} u_k = x_n \xrightarrow[n \to +\infty]{} 0$. Donc $\sum u_n$ converge.

Si $\sum f(u_n)$ convergeait, alors il existerait $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$ alors

$$\left| \sum_{k=n+1}^{+\infty} f\left(x_k\right) \right| < \frac{1}{2} \tag{2.508}$$

De plus, pour $n \ge n_0$, on a

$$|f(x_n) + f(-x_n) + \dots + f(x_n) + f(-x_n) + f(x_{n+1}) + f(-x_{n+1}) + \dots| < \frac{1}{2}$$
 (2.509)

où $(f(x_n), f(-x_n))$ apparaît N_n fois. Comme

$$|f(x_{n+1}) + f(-x_{n+1}) + \dots| < \frac{1}{2}$$
 (2.510)

on a

$$|f(x_n) + f(-x_n) + \dots + f(x_n) + f(-x_n)| = N_n |f(x_n) + f(-x_n)| < 1$$
 (2.511)

ce qui est absurde.

3. Supposons que pour tout $\beta > 0$, il existe $(x,y) \in]-\beta, \beta[^2$ avec $f(x+y) \neq f(x) + f(y)$. Alors il existe $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ qui tendent vers 0 telles que pour tout $n \in \mathbb{N}$, il existe $M_n \in \mathbb{N}$,

$$M_n |f(x_n + y_n) - f(x_n) - f(y_n)| \ge 1$$
 (2.513)

On définit alors

$$(u_n)_{n\in\mathbb{N}} = (x_0 + y_0, -x_0, -y_0, \dots, x_0 + y_0, -x_0, -y_0, \dots, x_n + y_n, -x_n, -y_n, \dots)$$
 (2.514)

où $(x_n + y_n, -x_n, -y_n)$ apparaît M_n fois. On a

$$\sum_{k=0}^{N} u_k = \begin{cases} 0 & \text{si } N \equiv 0[3] \\ x_n + y_n & \text{si } N \equiv 1[3] \xrightarrow[N \to +\infty]{} 0 \\ y_n & \text{si } N \equiv 2[3] \end{cases}$$
 (2.515)

donc $\sum u_n$ converge.

Si $\sum f(u_n)$ convergeait, alors il existerait $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$,

$$\left| \sum_{k=n+1}^{+\infty} f\left(u_k\right) \right| < \frac{1}{2} \tag{2.516}$$

De plus, d'après 2., il existe $n_1 \in \mathbb{N}$ tel que pour tout $n \ge n_1$, on a $f(-x_n) + f(-y_n) = -f(x_n) - f(y_n)$ donc pour tout $n \ge \max(n_0, n_1)$, on a

$$|f(x_n + y_n) + f(-x_n) + f(-y_n)| \times M_n = |f(x_n + y_n) - f(x_n) - f(y_n)| \times M_n < 1$$
 (2.517)

ce qui est absurde.

4. Soit $k \in \mathbb{Z}^*, x \in \mathbb{R}, |x| \leqslant \frac{\beta}{|k|}$. Par récurrence, on a f(kx) = kf(x).

Si $|x| < \beta$ et si $\frac{x}{\beta} \in \mathbb{Q}$, on a

$$\frac{x}{\frac{\beta}{2}} = \frac{p}{q} \tag{2.519}$$

donc en posant $\lambda = \frac{2}{\beta} f\left(\frac{\beta}{2}\right)$, on a

$$f(x) = f\left(\frac{p\beta}{2q}\right) = \frac{p}{q}f\left(\frac{\beta}{2}\right) = \frac{p}{q}\frac{\beta}{2}\lambda = \lambda x$$
 (2.520)

Si $\frac{x}{\beta} \notin \mathbb{Q}$, il existe une suite de rationnels $(r_n)_{n \in \mathbb{N}}$ telle que $\lim_{n \to +\infty} r_n = \frac{x}{\frac{\beta}{2}}$. On a alors

$$f(x) = f\left(\left(x - \frac{r_n \beta}{2}\right) + r_n \frac{\beta}{2}\right) \tag{2.521}$$

$$= f\left(x - \frac{r_n \beta}{2}\right) + f\left(\frac{r_n \beta}{2}\right) \tag{2.522}$$

et $x - \frac{r_n \beta}{2} \xrightarrow[n \to +\infty]{} 0$ et donc $f\left(x - \frac{r_n \beta}{2}\right) \xrightarrow[n \to +\infty]{} 0$ d'après 1. et $r_n f\left(\frac{\beta}{2}\right) \xrightarrow[n \to +\infty]{} \lambda x$

3 Probabilités sur un univers dénombrable

Solution 3.1.

1. On note P :'le lancer initial donne pile', F :'le lancer initial donne face', B_k :'la k-ième boule est blanche', N_k :'la k-ième boule est noire'.

On a

$$\mathbb{P}(B_k) = \mathbb{P}(P)\,\mathbb{P}_P(B_k) + \mathbb{P}(F)\,\mathbb{P}_F(B_k) = \frac{1}{2}\frac{k}{k+1} + \frac{1}{2}\frac{1}{k+1}$$
(3.1)

donc

$$\boxed{\mathbb{P}(B_k) = \frac{1}{2}} \tag{3.2}$$

2. On a

$$\boxed{\mathbb{P}_{B_k}(P) = \mathbb{P}_P(B_k) \frac{\mathbb{P}(P)}{\mathbb{P}(B_k)} = \frac{k}{k+1} \xrightarrow[k \to +\infty]{} 1}$$
(3.3)

3. On a

$$\mathbb{P}\left(B_1 \bigcap \dots \bigcap B_k\right) = \frac{1}{2}\mathbb{P}_P\left(B_1 \bigcap \dots \bigcap B_k\right) + \frac{1}{2}\mathbb{P}_F\left(B_1 \bigcap \dots \bigcap B_k\right)$$
(3.4)

$$= \frac{1}{2} \left(\prod_{j=1}^{k} \frac{j}{j+1} + \prod_{j=1}^{k} \frac{1}{j+1} \right)$$
 (3.5)

$$= \frac{1}{2} \left(\frac{1}{k+1} + \frac{1}{(k+1)!} \right) \tag{3.6}$$

4. On a

$$\mathbb{P}\left(B_k \cap B_{k+1}\right) = \frac{1}{2} \left(\frac{k}{k+1} \times \frac{k+1}{k+2} + \frac{1}{k+1} \times \frac{1}{k+2}\right)$$
(3.7)

$$= \frac{1}{2} \left(\frac{k(k+1)+1}{(k+1)(k+2)} \right) \tag{3.8}$$

Donc on a indépendance si et seulement si

$$\mathbb{P}\left(B_{k} \cap B_{k+1}\right) = \mathbb{P}\left(B_{k}\right) \mathbb{P}\left(B_{k+1}\right) = \frac{1}{4} \Leftrightarrow \frac{k(k+1)+1}{(k+1)(k+2)} = \frac{1}{2}$$
(3.9)

$$\Leftrightarrow 2k(k+1) + 2 = (k+2)(k+2)$$
 (3.10)

$$\Leftrightarrow 2k^2 + 2k = k^2 + 3k \tag{3.11}$$

$$\Leftrightarrow \boxed{k=1} \tag{3.12}$$

Ainsi, seuls les deux premiers tirages sont indépendants.

Remarque 3.1. Seuls les deux premiers tirages sont indépendants car le premier tirage est indépendant du lancer de pièce.

Solution 3.2.

1.

$$p_0 = 1, q_0 = 0, p_N = 0, q_N = 1$$
(3.13)

2. Soit $a \in [1, N-1]$. Puisque les lancers de pièce sont indépendants, on peut partitionner selon le résultat du premier lancer. On a donc [probabilités conditionnelles]

$$p_a = p \times p_{a+1} + q \times p_{a-1}$$

$$(3.14)$$

L'équation caractéristique est

$$pX^2 - x + q = 0 (3.15)$$

On a $\Delta = 1 - 4pq = 1 - 4(1 - p)p = 4p^2 - 4p + 1 = (1 - 2p)^2$.

Ainsi, si $p \neq \frac{1}{2}$, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tels que pour tout $a \in [0, N]$, on a

$$p_a = \alpha + \beta \left(\frac{q}{p}\right)^a \tag{3.16}$$

Grâce aux valeurs en a = 0, a = N, on en déduit que

$$p_a = \frac{1}{1 - \left(\frac{q}{p}\right)^N} \times \left(\left(\frac{q}{p}\right)^a - \left(\frac{q}{p}\right)^N\right)$$
 (3.17)

Si $p = \frac{1}{2}$, il existe $(\alpha, \beta) \in \mathbb{R}^2$ tels que

$$p_a = \alpha a + \beta \tag{3.18}$$

Grâce aux valeurs en a=0, a=N, on en déduit que

$$p_a = \frac{1}{N} \left(N - a \right) \tag{3.19}$$

3. Pour tout $a \in \llbracket 1, N-1 \rrbracket$, on a

$$q_a = pq_{a+1} + qp_{a-1} (3.20)$$

donc pour tout $a \in [1, N-1]$, on a

$$p_a + q_a = p(p_{a+1} + q_{a+1}) + q(p_{a-1} + q_{a-1})$$
(3.21)

Comme $p_0 + q_0 = p_N + q_N = 1$, on a pour tout $a \in [0, N]$,

$$p_a + q_a = 1 \tag{3.22}$$

Ainsi, le jeu s'arrête presque sûrement en temps fini.

Solution 3.3.

1. Les tirs sont indépendants donc

$$\mathbb{P}(A_n) = (1-a)^n \times (1-b)^n \times a$$

$$\mathbb{P}(B_n) = (1-a)^n \times (1-b)^n \times (1-a) \times b$$
(3.23)

2. On a

$$G_A = \bigcup_{n \in \mathbb{N}} A_n \tag{3.24}$$

réunion disjointe. Donc

$$\mathbb{P}(G_A) = \sum_{n=0}^{+\infty} \mathbb{P}(A_n) = \frac{a}{1 - (1 - a)(1 - b)} = \frac{a}{a + b - ab}$$

$$\mathbb{P}(G_B) = \sum_{n=0}^{+\infty} \mathbb{P}(B_n) = \frac{b(1 - a)}{a + b - ab}$$
(3.25)

Ainsi,

$$\boxed{\mathbb{P}(G_A) + \mathbb{P}(G_B) = 1}$$
(3.26)

3. On a $\mathbb{P}(G_A) = \mathbb{P}(G_B)$ si et seulement si

$$\frac{a}{1-a} = b \tag{3.27}$$

Cela implique que $\frac{a}{1-a}\in]0,1[$ ce qui est possible uniquement (après étude de fonction) si

$$a \in \left] 0, \frac{1}{2} \right[\text{ et } b = \frac{a}{1-a} \right]$$
 (3.28)

Solution 3.4.

1. Pour $n \in \mathbb{N}^*$, on pose E_n : 'Le joueur gagne au bout du n-ième lancer' (évènement disjoints) et G: 'Le joueur gagne'. On a $G \cup_{n \in \mathbb{N}^*} E_n$. Donc

$$\mathbb{P}(G) = \sum_{n \in \mathbb{N}^*} \mathbb{P}(E_n) = \sum_{n \in \mathbb{N}^*} \left(\frac{1}{2}\right)^n \times \frac{1}{n} = \ln(2)$$
(3.29)

2. On note P_n : 'le joueur obtient pile au n-ième lancer', P : 'il obtient pile'. On a

$$\mathbb{P}_{G}(P_{n}) = \frac{\mathbb{P}(G \cap P_{n})}{\mathbb{P}(G)} = \frac{\mathbb{P}_{P_{n}}(G) \times \mathbb{P}(P_{n})}{\mathbb{P}(G)}$$
(3.30)

donc

$$\mathbb{P}_{G}(P_{n}) = \frac{\frac{1}{n} \left(\frac{1}{2}\right)^{n}}{\ln(2)}$$
(3.31)

Puis

$$\mathbb{P}_{G}(P) = \sum_{n \in \mathbb{N}^{*}} \mathbb{P}_{G}(P_{n}) = 1$$
(3.32)

Remarque 3.2. On a utilisé le résultat suivant : pour tout $x \in]0,1[$,

$$\sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x) \tag{3.33}$$

Soit on connaît le résultat avec les séries entières, soit on le redémontre à la main : pour $N\geqslant 1$, on a

$$\sum_{n=1}^{N} \frac{x^n}{n} = \int_0^1 \sum_{n=1}^{N} x^n t^{n-1} dt$$
 (3.34)

$$=x\int_{0}^{1} \frac{1-(xt)^{N}}{1-xt}dt\tag{3.35}$$

$$= \underbrace{\int_{0}^{1} \frac{x}{1 - xt} dt}_{=[\ln(1 - xt)]_{0}^{1}} + R_{N}$$
(3.36)

avec $|R_N| \leqslant \frac{x^{N+1}}{1-x} \xrightarrow[N \to +\infty]{} 0$ d'où le résultat.

Solution 3.5.

1. On a

$$\sum_{k=0}^{+\infty} p_k = p_0 + p_1 + \sum_{k=2}^{+\infty} \frac{1 - 2\alpha}{2^{k-1}} = 2\alpha + (1 - 2\alpha) \times \sum_{k=1}^{+\infty} \frac{1}{2^k} = 1$$
 (3.37)

donc

c'est une probabilité sur
$$\mathbb{N}$$
. (3.38)

2. Pour tout $k \in \mathbb{N}$, on note E_k : 'la famille a k enfants et exactement 2 garçons', E: 'la famille a exactement 2 garçons', A_k : 'la famille a k enfants'.

On a alors

$$\mathbb{P}(E) = \sum_{k=2}^{+\infty} \mathbb{P}_{A_k}(E_k) \times \mathbb{P}(A_k)$$
(3.39)

$$= \sum_{k=2}^{+\infty} {k \choose 2} \left(\frac{1}{2}\right)^k \times p_k \tag{3.40}$$

$$= \sum_{k=2}^{+\infty} \frac{k(k-1)}{2^{k+1}} \times \frac{1-2\alpha}{2^{k-1}}$$
 (3.41)

$$= (1 - 2\alpha) \sum_{k=2}^{+\infty} \frac{k(k-1)}{2^{2k}}$$
 (3.42)

$$= (1 - 2\alpha) \sum_{k=0}^{+\infty} \frac{(k+1)(k+2)}{2^{2k+4}}$$
(3.43)

$$= \frac{1}{16} (1 - 2\alpha) \sum_{k=0}^{+\infty} \frac{(k+1)(k+2)}{4^k} = \frac{1}{16} (1 - 2\alpha) \times \frac{1}{\left(\frac{3}{4}\right)^3}$$
 (3.44)

$$=\frac{4\left(1-2\alpha\right)}{27}\tag{3.45}$$

3. On note F: 'la famille a au moins 2 filles', F_k : 'la famille a exactement k filles et au moins 4 enfants', G: 'la famille a au moins 2 garçons', G_k : 'la famille a exactement k garçons et au moins 4 enfants'.

On a

$$\mathbb{P}_{G}(G) = \frac{\mathbb{P}(F \cap G)}{\mathbb{P}(G)}$$
(3.46)

et $\overline{F \cap G} = \overline{F} \cup \overline{G} = F_0 \cup F_1 \cup G_0 \cup G_1$. Donc, comme $\mathbb{P}(F_0) = \mathbb{P}(G_0)$ et $\mathbb{P}(F_1) = \mathbb{P}(G_1)$, on a $\mathbb{P}(F \cap G) = 1 - 2(\mathbb{P}(G_0) + \mathbb{P}(G_1))$.

On a alors

$$\mathbb{P}(G_0) = \sum_{k=4}^{+\infty} \binom{k}{0} \left(\frac{1}{2}\right)^k p_k \tag{3.47}$$

$$=\sum_{k=4}^{+\infty} \frac{1-2\alpha}{2^{2k-1}} \tag{3.48}$$

$$= 2\left(1 - 2\alpha\right)\frac{1}{4^4} \times \frac{1}{1 - \frac{1}{4}} \tag{3.49}$$

$$= 2(1 - 2\alpha) \times \frac{1}{4^3} \times \frac{1}{3} \tag{3.50}$$

et

$$\mathbb{P}(G_1) = \sum_{k=4}^{+\infty} \binom{k}{1} \left(\frac{1}{2}\right)^k p_k \tag{3.51}$$

$$= \sum_{k=4}^{+\infty} k \times \frac{1}{2^k} \times \frac{1 - 2\alpha}{2^{k-1}}$$
 (3.52)

$$= (1 - 2\alpha) \sum_{k=4}^{+\infty} \frac{k}{2^{2k-1}}$$
 (3.53)

$$= (1 - 2\alpha) \times \frac{2}{4} \sum_{k=4}^{+\infty} \frac{k}{4^{k-1}}$$
 (3.54)

$$= \frac{1 - 2\alpha}{2} \sum_{k=3}^{+\infty} \frac{k+1}{4^k}$$
 (3.55)

$$= \frac{1 - 2\alpha}{2} \times \left(\frac{1}{\left(1 - \frac{1}{4}\right)^2} - 1 - \frac{2}{4} - \frac{3}{4^2}\right) \tag{3.56}$$

et on calcule enfin

$$\boxed{\mathbb{P}(G) = 1 - \mathbb{P}(G_0) - \mathbb{P}(G_1)}$$
(3.57)

Solution 3.6. Pour tout $k \ge 1$, on note A_k : 'A gagne à son lancé k' et B_k de manière équivalente pour le joueur B. On note G_A : 'A gagne' et de même pour B. On a ainsi

$$G_A = \bigcup_{k \ge 1} A_k \tag{3.58}$$

(réunion disjointe) et pareil pour G_B . On a

$$\mathbb{P}(A_k) = \left(1 - \frac{5}{36}\right)^{k-1} \times \left(1 - \frac{1}{6}\right)^{k-1} \times \frac{5}{36}$$
 (3.59)

d'où

$$\mathbb{P}(G_A) = \frac{5}{36} \times \frac{1}{1 - \left(1 - \frac{5}{36}\right)\left(1 - \frac{1}{6}\right)}$$
(3.60)

et pareil

$$\mathbb{P}(G_B) = \frac{1}{6} \times \left(1 - \frac{5}{36}\right) \times \frac{1}{1 - \left(1 - \frac{5}{36}\right)\left(1 - \frac{1}{6}\right)} > \mathbb{P}(G_A)$$
(3.61)

et

$$\mathbb{P}(G_A) + \mathbb{P}(G_B) = 1 \tag{3.62}$$

donc $G_A \cup G_B$ est presque sur.

Solution 3.7. Soit $k \in [0, \lfloor \frac{n}{2} \rfloor]$. La probabilité que l'on tire 2k boules blanches est (loi binomiale) :

$$\binom{n}{2k} \times \left(\frac{a}{a+b}\right)^{2k} \times \left(\frac{b}{a+b}\right)^{n-2k} \tag{3.63}$$

donc la probabilité que le nombre de boules blanches tirées soit pair est

$$\mathbb{P}_{P} = \sum_{0 \le 2k \le n} \binom{n}{2k} \times \left(\frac{a}{a+b}\right)^{2k} \times \left(\frac{b}{a+b}\right)^{n-2k} \tag{3.64}$$

De même, la probabilité que le nombre de boules blanches tirées soit impair est

$$\mathbb{P}_I = \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} \times \left(\frac{a}{a+b}\right)^{2k+1} \times \left(\frac{b}{a+b}\right)^{n-2k-1} \tag{3.65}$$

On a alors

$$\mathbb{P}_P + \mathbb{P}_I = 1 \tag{3.66}$$

et

$$\mathbb{P}_{P} - \mathbb{P}_{I} = \sum_{k'=0}^{n} \binom{n}{k'} (-1)^{k'} \left(\frac{a}{a+b}\right)^{k'} \left(\frac{b}{a+b}\right)^{n-k'} = \left(\frac{b-a}{a+b}\right)^{n}$$
(3.67)

On a donc

$$\boxed{\mathbb{P}_P = \frac{1}{2} \left(1 + \left(\frac{b-a}{a+b} \right)^n \right)} \tag{3.68}$$

Remarque 3.3. Si on note \mathbb{P}_3 la probabilité que le nombre de boules blanches tirées soit multiple de 3:

$$\mathbb{P}_3 = \sum_{0 \le 3k \le n} \binom{n}{3k} \left(\frac{a}{a+b}\right)^{3k} \left(\frac{b}{a+b}\right)^{n-3k} \tag{3.69}$$

On note \mathbb{P}_2 la probabilité pour que le nombre de boules blanches tirées soit congru à 2 module 3, et on définit \mathbb{P}_1 de même. Alors on a

$$\begin{cases}
\mathbb{P}_1 + \mathbb{P}_2 + \mathbb{P}_3 &= 1 \\
j\mathbb{P}_1 + j^2\mathbb{P}_2 + \mathbb{P}_3 &= \left(\frac{b+ja}{a+b}\right)^n \\
j^2\mathbb{P}_1 + j\mathbb{P}_1 + \mathbb{P}_3 &= \left(\frac{b+j^2a}{a+b}\right)^n
\end{cases}$$
(3.70)

et donc

$$\mathbb{P}_3 = \frac{1}{3} \left(1 + \left(\frac{b + ja}{a+b} \right)^n + \left(\frac{b + j^2 a}{a+b} \right)^n \right) \tag{3.71}$$

Solution 3.8. Soit pour $i \in [1, n]$,

$$A_i = \{ \sigma \in \Sigma_n | \sigma(i) = i \} \tag{3.72}$$

$$A = \{ \sigma \in \Sigma_n | \sigma \text{ a un point fixe} \}$$
 (3.73)

On a

$$A = \bigcup_{i=1}^{n} A_i \tag{3.74}$$

On a

$$|A| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{\substack{J \subset [1,n] \\ |J|=k}} \left| \bigcap_{i \in J} A_i \right|$$
 (3.75)

Il y a $\binom{n}{k}$ tels J, et on a

$$\left| \bigcap_{i \in J} A_i \right| = \left| \left\{ \sigma \in \Sigma_n | \forall i \in J, \sigma(i) = i \right\} \right| = (n - k)! \tag{3.76}$$

Ainsi,

$$|A| = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} (n-k)!$$
(3.77)

donc

$$p_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k!} \xrightarrow[n \to +\infty]{} \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k!} = -\left(\frac{1}{e} - 1\right) = 1 - \frac{1}{e}$$
 (3.78)

Solution 3.9.

1.

$$p_N(0) = 0, p_N(1) = 1$$
(3.79)

2. Pour tout $n \in [1, N-1]$, on a

$$p_N(n) = p \times p_N(n+1) + (1-n) \times p_N(n-1)$$
(3.80)

et l'équation caractéristique est $X^2 - \frac{1}{p}X + \frac{1-p}{p}$ et le discriminant vaut $\Delta = \left(\frac{1}{p} - 2\right)^2 \geqslant 0$. Donc les solutions sont $r_1 = 1$ et $r_2 = \frac{q}{p}$. Ainsi, pour tout $n \in [1, N-1]$,

$$p_N(n) = \lambda + \mu \left(\frac{q}{p}\right)^n \tag{3.81}$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

Avec les conditions initiales, on trouve

$$\begin{cases}
\mu = \frac{1}{\left(\frac{q}{p}\right)^{N} - 1} \\
\lambda = \frac{1}{1 - \left(\frac{q}{p}\right)^{N}}
\end{cases}$$
(3.82)

donc

$$p_N(n) = \frac{1 - \left(\frac{q}{p}\right)^n}{1 - \left(\frac{q}{p}\right)^N} \xrightarrow[N \to +\infty]{} \begin{cases} 0 & \text{si } q > p \text{ i.e. } p < \frac{1}{2} \\ 1 - \left(\frac{q}{p}\right)^n & \text{si } q < p \text{ i.e. } p > \frac{1}{2} \end{cases}$$

$$(3.83)$$

On vérifie d'ailleurs que l'arrêt en temps fini est presque sûr : $p_N(n) + q_N(n) = 1$ (utiliser la relation de récurrence et les conditions initiales).

Solution 3.10.

1. On note A_n : 'la première boule blanche apparaît au n-ième tirage' et B_n : 'on tire une boule noire au n-ième tirage'. On a

$$A_n = \bigcap_{i=1}^{n-1} B_i \bigcap \overline{B_n} \tag{3.84}$$

ce qui implique donc

$$\mathbb{P}\left(A_n\right) = p_n \tag{3.85}$$

$$= \mathbb{P}(B_1) \,\mathbb{P}_{B_1}(B_2) \dots \mathbb{P}_{B_1 \cap \dots \cap B_{n-1}}(\overline{B_n})$$
(3.86)

$$= \frac{1}{2} \times \frac{2}{3} \times \dots \times \frac{n-1}{n} \times \frac{1}{n+1} \tag{3.87}$$

$$= \boxed{\frac{1}{n(n+1)}} \tag{3.88}$$

et par sommation téléscopique, on a

$$\sum_{n=1}^{+\infty} p_n = 1 \tag{3.89}$$

Donc on tire une boule blanche presque sûrement.

2. On utilise le même principe : pour $n \ge 1$,

$$\boxed{\mathbb{P}(A_n) = p_n = \frac{1}{2} \times \frac{c+1}{c+2} \times \frac{2c+1}{2c+2} \times \dots \times \frac{(n-2)c+1}{(n-2)c+2} \times \frac{1}{(n-1)c+2}}$$
(3.90)

Comme les $(A_n)_{n\in\mathbb{N}^*}$ sont incompatibles, on a

$$\sum_{n\geqslant 1} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_{n\geqslant 1} A_n\right) \leqslant 1 \tag{3.91}$$

donc

On peut montrer à nouveau que le tirage d'une boule blanche reste presque sûr. En effet, on a

$$\frac{p_{n+1}}{p_n} = \frac{nc+2-c-1}{nc+2} = 1 - \frac{c+1}{nc+2} = a - \frac{c+1}{nc} + O\left(\frac{1}{n^2}\right)$$
(3.93)

D'après la règle de Raabe-Duhamel, il existe K > 0 tel que

$$p_n \underset{n \to +\infty}{\sim} \frac{K}{n^{\frac{c+1}{c}}} \tag{3.94}$$

avec $\frac{c+1}{c} > 1$. Notamment, $\lim_{n \to +\infty} np_n = 0$. Comme

$$(nc+2) p_{n+1} = ((n-1)c+1) p_n$$
(3.95)

on a

$$\sum_{n=1}^{+\infty} ncp_{n+1} - (n-1) cp_n = \sum_{n=1}^{+\infty} p_n - 2p_{n+1}$$
(3.96)

$$= \sum_{n=1}^{+\infty} p_n - 2\left(\sum_{n=1}^{+\infty} p_n - u_1\right)$$
 (3.97)

La première somme est téléscopique et vaut 0, et $u_1 = \frac{1}{2}$ donc on trouve bien

$$\sum_{n=1}^{+\infty} p_n = 1 \tag{3.98}$$

Remarque 3.4. On peut contourner la règle de Raabe-Duhamel. On écrit

$$\ln(p_{n+1}) = -\ln(2) + \sum_{k=1}^{n-1} \ln\left(\frac{kc+1}{kc+2}\right) - \ln(nc+2)$$
(3.99)

$$= \sum_{k=1}^{n-1} \ln\left(1 - \frac{1}{kc+2}\right) - \ln(n) + \ln(c) - \ln(2) + \underset{n \to +\infty}{o}(1)$$
 (3.100)

$$= -\sum_{k=1}^{n-1} \left(\frac{1}{kc} + O_{k \to +\infty} \left(\frac{1}{k^2} \right) \right) - \ln(n) - A + O_{n \to +\infty} (1)$$
 (3.101)

$$= -\frac{1}{c} \left(\ln(n) + \gamma + \underset{n \to +\infty}{o} (1) \right) - \ln(n) - A + \underset{n \to +\infty}{o} (1)$$
 (3.102)

$$= -\ln(n)\left(1 + \frac{1}{c}\right) + A' + \mathop{o}_{n \to +\infty}(1) \tag{3.103}$$

Ainsi,

$$p_{n+1} \underset{n \to +\infty}{\sim} \frac{K}{n^{1+\frac{1}{c}}} \tag{3.104}$$

donc la série converge.

Solution 3.11. On a

$$u_{n+1} = q \times 1 + p \times u_n^2 \tag{3.105}$$

car soit la bactérie meure au premier jour, soit les deux descendants n'ont plus de lignée au n-ième jour (on a u_n^2 car les lignées des deux descendants sont indépendantes).

Soit

$$f: [0,1] \to \mathbb{R}$$
$$x \mapsto q + px^2$$

Si $x \in [0,1]$, on a $f(x) \in [0,1]$ car f(1) = q + p = 1. Soit g(x) = f(x) - x. On a

$$g(x) = p(x-1)\left(x - \frac{p}{q}\right) \tag{3.106}$$

— Si $1\leqslant \frac{p}{q}$: on a pour tout $x\in [0,1[,\,g(x)>0$ et g(1)=0. Donc si

$$\lim_{n \to +\infty} u_n = 1 \tag{3.107}$$

car c'est une suite croissante, majorée, convergente vers le point fixe 1.

— Si $1 > \frac{q}{p}$: si $x \in \left[0, \frac{q}{p}\right[$, on a g(x) > 0, si $x \in \left]\frac{q}{p}, 1\right[$, g(x) < 0 et $g\left(\frac{q}{p}\right) = 0$. Par récurrence, comme $u_0 = 0$, pour tout $n \in \mathbb{N}$, $u_n \in \left[0, \frac{q}{p}\right[$ donc (suite croissante majorée qui converge vers le point fixe $\frac{q}{p}$) donc

$$\lim_{n \to +\infty} u_n = \frac{q}{p} \tag{3.108}$$

On a bien

$$\lim_{n \to +\infty} u_n = \min\left(1, \frac{q}{p}\right) \tag{3.109}$$

Ainsi, la lignée s'éteint presque sûrement si et seulement si $\frac{q}{p} \geqslant 1$ i.e. $p \leqslant \frac{1}{2}$. Sinon, la probabilité d'extinction est $\frac{q}{p}$.

Si $p = \frac{1}{2}$, on pose $\varepsilon_n = 1 - u_n \xrightarrow[n \to +\infty]{} 0$. On a

$$u_{n+1} = \frac{1}{2} \left(1 + u_n^2 \right) \tag{3.110}$$

d'où

$$\varepsilon_{n+1} = 1 - u_{n+1} = \varepsilon_n \left(1 - \frac{\varepsilon}{2} \right)$$
 (3.111)

Soit $\alpha \in \mathbb{R}$, on a

$$\varepsilon_{n+1}^{\alpha} = \varepsilon_n^{\alpha} \left(1 - \frac{\varepsilon_n}{2} \right)^{\alpha} = \varepsilon_n^{\alpha} - \frac{\alpha \varepsilon_n^{\alpha+1}}{2} + \underset{n \to +\infty}{o} \left(\varepsilon_n^{\alpha+1} \right)$$
 (3.112)

On choisit $\alpha = -1$, on a

$$\frac{1}{\varepsilon_{n+1}} - \frac{1}{\varepsilon_n} \xrightarrow[n \to +\infty]{} \frac{1}{2} \tag{3.113}$$

D'après le lemme de Césaro, on a $\frac{1}{\varepsilon_n} \underset{n \to +\infty}{\sim} \frac{n}{2}$ d'où

$$\left[\varepsilon_n \underset{n \to +\infty}{\sim} \frac{2}{n} \right] \tag{3.114}$$

Solution 3.12. On note E_n : 'la puce est en 0 à l'instant 2n' et B_n : 'la puce repasse pour la première fois en 0 à l'instant 2n'.

Soit E: 'la puce repasse par l'origine'. On a

$$E = \bigcup_{n \in \mathbb{N}^*} E_n = \bigcup_{n \in \mathbb{N}^*} B_n \tag{3.115}$$

où les B_n sont disjoints donc $\mathbb{P}(E) = \sum_{n \in \mathbb{N}^*} \mathbb{P}(B_n)$.

On a

$$\mathbb{P}(E_n) = \binom{2n}{n} p^n q^n \tag{3.116}$$

On écrit alors

$$E_n = \bigcup_{1 \le k \le n} (E_n \cap B_k) \tag{3.117}$$

où la réunion est disjointe (on partitionne selon le premier passage en 0). D'où

$$u_n = \mathbb{P}(E_n) = \sum_{k=1}^n \mathbb{P}(B_k) \mathbb{P}_{B_k}(E_n)$$
 (3.118)

On pose $b_k = \mathbb{P}(B_k)$ et on a $\mathbb{P}_{B_k}(E_n) = \mathbb{P}(E_{n-k}) = u_{n-k}$: c'est comme si on repartait de 0 à l'étape k. On a donc $u_0 = \mathbb{P}(E_0) = 1$ et pour tout $n \ge 1$,

$$u_n = \sum_{k=1}^n b_k u_{n-k} = \sum_{k=0}^n b_k u_{n-k}$$
 (3.119)

en posant $b_0 = 0$.

Or, on a

$$u_n = \frac{(2n)!}{(n!)^2} (pq)^n \underset{n \to +\infty}{\sim} \frac{\sqrt{4\pi n} \left(\frac{2n}{e}\right)^{2n}}{2\pi n \left(\frac{n}{e}\right)^{2n}} (pq)^n$$
(3.120)

d'où

$$u_n \underset{n \to +\infty}{\sim} \frac{(4pq)^n}{\sqrt{\pi n}} \tag{3.121}$$

et on a 4pq < 1 si et seulement si $p \neq \frac{1}{2}$ donc $\sum_{n \in \mathbb{N}} u_n$ converge si et seulement si $p \neq \frac{1}{2}$.

Dans le cas $p \neq \frac{1}{2}$, on pose $S = \sum_{n=0}^{+\infty} u_n$. On a

$$\sum_{n=1}^{+\infty} u_n = S - u_0 \tag{3.122}$$

$$=S-1\tag{3.123}$$

$$=\sum_{n=1}^{+\infty}\sum_{k=0}^{n}b_{k}u_{n-k} \tag{3.124}$$

$$=\sum_{n=0}^{+\infty}\sum_{k=0}^{n}b_{k}u_{n-k} \tag{3.125}$$

$$= \left(\sum_{n=0}^{+\infty} b_n\right) \left(\sum_{l=0}^{+\infty} u_l\right)$$

$$= S \sum_{n=0}^{+\infty} b_n$$
 (3.126)

donc

$$\left| \sum_{n=0}^{+\infty} b_n = \mathbb{P}(E) = \frac{S-1}{S} < 1 \right|$$
 (3.127)

Comme dans ce cas, on a $\sum_{n\geqslant 1} \mathbb{P}(E_n) < \infty$, le lemme de Borel-Cantelli indique que le nombre de retours à l'origine est presque sûrement fini.

Remarque 3.5. Avec les séries entières, on peut vérifier que

$$S = \frac{1}{\sqrt{1 - 4pq}} \tag{3.128}$$

d'où

$$\mathbb{P}(E) = 1 - \sqrt{1 - 4pq} \tag{3.129}$$

Dans le cas $p = \frac{1}{2}$, $\sum_{n \in \mathbb{N}^*} u_n$ diverge. Comme on a pour $p \neq \frac{1}{2}$, on a

$$\sum_{n=0}^{+\infty} b_n(p) = 1 - \sqrt{4p(1-p)}$$
(3.130)

et $b_n(p) \leqslant b_n\left(\frac{1}{2}\right)$, on peut passer à la limite donc

$$\sum_{n=0}^{+\infty} b_n \left(\frac{1}{2}\right) = 1 \tag{3.131}$$

et la retour en 0 est presque sûr si $p = \frac{1}{2}$.

Remarque 3.6. Pour montrer que

$$l(x) = \sum_{n=0}^{+\infty} {2n \choose n} x^n = \frac{1}{1-4x}$$
 (3.132)

lorsque $0 \leqslant x < \frac{1}{4}$. On effectue un produit de Cauchy

$$l(x)^{2} = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} {2k \choose k} {2n-2k \choose n-k} \right) x^{n} = \sum_{n=0}^{+\infty} 4^{n} x^{n} = \frac{1}{1-4r}$$
 (3.133)

en dénombrant les parties d'un ensemble à 2n éléments séparées en n éléments dans A et n éléments dans B.

Solution 3.13. On note P_n : 'on obtient pile au n-ième lancer' et F_n : 'on obtient face au n-ième lancer'.

1. On a

$$a_1 = 0, a_2 = p^2, a_3 = qp^2$$
(3.134)

2. Pour $n \ge 4$, on a

$$A_n = \bigcap_{k=1}^{n-3} \overline{A_k} \bigcap F_{n-2} \bigcap P_{n-1} \bigcap P_n \tag{3.135}$$

Comme les évènements concernant des lancers différents sont supposés indépendants, on a

$$a_n = \mathbb{P}\left(\bigcap_{k=1}^{n-3} \overline{A_k}\right) q p^2 \tag{3.136}$$

On écrit

$$\mathbb{P}\left(\bigcap_{k=1}^{n-3} \overline{A_k}\right) = 1 - \mathbb{P}\left(\bigcup_{k=1}^{n-3} A_k\right) = 1 - \sum_{k=1}^{n-3} a_k \tag{3.137}$$

car les A_k sont incompatibles. Ainsi,

$$a_n = p^2 q \left(1 - \sum_{k=1}^{n-3} a_k \right) \tag{3.138}$$

et $\sum_{k\geqslant 1} a_k$ converge puisque

$$\sum_{k=1}^{N} a_k \leqslant \mathbb{P}\left(\bigcup_{k\geqslant 1}\right) \leqslant 1 \tag{3.139}$$

Pour calculer a_n , on remarque que

$$B_n = \bigcap_{k=1}^n \overline{A_k} \tag{3.140}$$

est exactement l'évènement 'on n'a pas deux piles consécutifs dans les lancers $\{1, \ldots, n\}$ '. Si P_n , on a nécessairement F_{n-1} et B_{n-2} , si F_n on a nécessairement B_{n-1} . Ainsi,

$$\mathbb{P}(B_n) = qp\mathbb{P}(B_{n-2}) + q\mathbb{P}(B_{n-1}) \tag{3.141}$$

On a l'équation caractéristique $X^2 - qX - pq$, le discriminant est $\Delta = q^2 + 4pq > 0$. On en déduit les racines $\lambda_1 = \frac{q+\sqrt{\Delta}}{2}$ et $\lambda_2 = \frac{q-\sqrt{\Delta}}{2}$, et on utilise les conditions aux limites $\mathbb{P}(B_0) = \mathbb{P}(B_1) = 1$ et $\mathbb{P}(B_n) = A\lambda_1^n + B\lambda_2^n$.

Remarque 3.7. La probabilité d'obtenir une séquence fixée de longueur N est égale à 1. En effet, on pose pour tout $n \in \mathbb{N}$, A_n : 'la séquence apparaît entre les lancers nN + 1 et (n + 1)N'. Les A_n sont clairement indépendants et on a $\mathbb{P}(A_n) = \mathbb{P}(A_1) = \alpha > 0$ et $\sum_{n \geq 1} \mathbb{P}(A_n)$ diverge. Notamment,

$$\mathbb{P}\left(\overline{\bigcup_{n\in\mathbb{N}} A_n}\right) = \mathbb{P}\left(\bigcap_{n\in\mathbb{N}} \overline{A_n}\right) = \lim_{k\to+\infty} \mathbb{P}\left(\bigcap_{n=0}^k \overline{A_n}\right) = \lim_{k\to+\infty} \prod_{n=0}^k (1-\alpha) = 0$$
 (3.142)

On a donc presque sûrement la séquence. D'après le lemme de Borel-Cantelli, on a presque sûrement une infinité de fois la séquence.

Solution 3.14. On note N_n : 'on tire une boule noire au n-ième tirage', et B_n : 'on tire une boule blanche au n-ième tirage'.

On a

$$\mathbb{P}_{N}(n) = \mathbb{P}_{B_{1} \cap \dots \cap B_{n}}(B_{n+1}) = \frac{\mathbb{P}(B_{1} \cap \dots \cap B_{n+1})}{\mathbb{P}(B_{1} \cap \dots \cap B_{n})}$$
(3.143)

Or

$$\mathbb{P}(B_1 \cap \dots \cap B_n) = \sum_{k=0}^N \frac{1}{N+1} \left(\frac{k}{n}\right)^n \xrightarrow[N \to +\infty]{} \int_0^1 x^n dx = \frac{1}{n+1}$$
 (3.144)

car pour k fixé, $\frac{1}{N+1}$ est la probabilité d'avoir l'urne k et $\left(\frac{k}{n}\right)^n$ est la probabilité d'avoir une blanche sachant qu'on a pris l'urne k, et la limite vient d'une somme de Riemann.

Donc

$$\mathbb{P}_{N}(n) \xrightarrow[N \to +\infty]{\frac{1}{n+2}} = \frac{n+1}{n+2}$$
 (3.145)

Remarque 3.8. Pour n = 0, on a

$$\mathbb{P}_N(0) = \frac{\frac{1}{N} \sum_{k=0}^N k}{N+1} = \frac{1}{2}$$
 (3.146)

Solution 3.15. Si cette probabilité est définie, on note p la probabilité recherchée. Soit $d \in \mathbb{N}^*$, pour tout $(n_1, n_2) \in (\mathbb{N}^*)^2$, on a $n_1 \wedge n_2 = d$ si et seulement si $n_1 = dn'_1$ et $n_2 = dn'_2$ avec $n'_1 \wedge n'_2 = 1$. Ainsi, la probabilité pour que $n_1 \wedge n_2 = d$ est $\frac{p}{d^2}$ et

$$\sum_{d>1} \frac{p}{d^2} = 1 \tag{3.147}$$

d'où

$$p = \frac{6}{\pi^2} \tag{3.148}$$

Remarque 3.9. Pour justifier un peu plus précisément, on note que dans l'ensemble [1, dN], la proportion de multiplies de d est de $\frac{1}{d}$, donc sur $[1, dN]^2$, la proportion de couples de multiples de d est $\frac{1}{d^2}$.

Solution 3.16. On note $q_n = \mathbb{P}(X_n = 1)$ (qui détermine la loi de X_n car c'est une variable de Bernouilli). On a $q_1 = p_2$ et pour $n \ge 2$,

$$q_n = p_1 q_{n-1} + p_2 (1 - q_{n-1}) = (p_1 - p_2) q_{n-1} + p_2$$
(3.149)

La relation est vraie pour n = 1 en posant $q_0 = 0$.

— Si $p_1 = 1$ et $p_2 = 0$, on a $q_n = q_{n-1} + p_2$ d'où

$$\boxed{q_n = 0} \tag{3.150}$$

— Si $(p_1, p_2) \neq (1, 0)$, on a $p_1 - p_2 \neq 1$ donc

$$q_n = (p_1 - p_2)^n \times \frac{-p_2}{1 - (p_1 - p_2)} + \frac{p_2}{1 - (p_1 - p_2)}$$
(3.151)

$$= \boxed{\frac{p_2}{1 - (p_1 - p_2)} \left(1 - (p_1 - p_2)^n\right) = \mathbb{E}(X_n)}$$
(3.152)

— Si $p_1 - p_2 = -1$, i.e. $p_1 = 0$ et $p_2 = 1$,

$$q_n$$
 n'a pas de limite. (3.153)

— Si $p_1 - p_2 \neq -1$,

$$q_n \xrightarrow[n \to +\infty]{} \frac{p_2}{1 - (p_2 - p_1)} \tag{3.154}$$

Solution 3.17.

1. Pour tout $k \in [1, 6]$, on veut

$$\mathbb{P}(X \leqslant k) = \mathbb{P}\left((D_1 \leqslant k) \cap (D_2 \leqslant k)\right) = \mathbb{P}(D_1 \leqslant k)\mathbb{P}(D_2 \leqslant k) = \frac{k^2}{36} \tag{3.155}$$

Or on a (avec $P(X \leq 0) = 0$)

$$P(X = k) = P(X \le k) - \mathbb{P}(X \le k - 1) = \frac{2k - 1}{36}$$
(3.156)

De même, on a $P(Y \geqslant k) = \frac{(7-k)^2}{36}$ donc

$$\mathbb{P}(Y=k) = \frac{13 - 2k}{36} \tag{3.157}$$

A chaque fois, on vérifie que $\sum_{k=1}^{6} \mathbb{P}(X=k) = \sum_{k=1}^{6} \mathbb{P}(Y=k) = 1$.

Pour les calculs de variance et d'espérance, on calcule $\sum_{k=1}^6 k \mathbb{P}(X=k)$ et $\sum_{k=1}^6 k^2 \mathbb{P}(X=k) - (\sum_{k=1}^6 k \mathbb{P}(X=k))$, de même pour Y.

- 2. Soit $(i,j) \in [1,6]^2$, si i < j on a $\mathbb{P}((X=i) \cap (Y=j)) = 0$ mais $P(X=i)\mathbb{P}(Y=j) \neq 0$, on n'a donc pas indépendence.
- 3. Si $P(D_i = k) = p_{k,i}$, on a

$$\mathbb{P}(X \leqslant k) = \left(\sum_{l=1}^{k} p_{l,1}\right) \left(\sum_{l=1}^{k} p_{l,2}\right) = \sum_{1 \leqslant l,r \leqslant k} p_{l,1} \times p_{r,2}$$
(3.158)

et on calcule ensuite $P(X=k)=\mathbb{P}(X\leqslant k)-\mathbb{P}(X\leqslant k-1)$ et cela vaut ce que cela vaut.

Solution 3.18.

1. On a

$$\sum_{(i,j)\in\mathbb{N}^2} = \sum_{i=0}^{+\infty} \sum_{j=0}^{i} \frac{a^j (1-a)^{i-j}}{j!(i-j)!} (b^i e^{-b})$$
(3.159)

$$= \sum_{i=0}^{+\infty} \frac{b^i e^{-b}}{i!} \sum_{j=0}^{i} {i \choose j} a^j (1-a)^{i-j}$$
 (3.160)

$$=\sum_{i=0}^{+\infty} \frac{b^i e^{-b}}{i!}$$
 (3.161)

$$= e^b e^{-b} (3.162)$$

$$=1 \tag{3.163}$$

donc la définition est cohérente.

2. On a

$$p_{i,\cdot} = \sum_{j=0}^{i} p_{i,j} = \frac{b^i e^{-b}}{i!}$$
(3.164)

et

$$p_{\cdot,j} = \sum_{i=j}^{+\infty} \frac{e^{-b}a^j}{j!} \left(\frac{b^i (1-a)^{i-j}}{(i-j)!} \right)$$
(3.165)

$$= \frac{e^{-b}a^{j}b^{j}}{j!} \sum_{i=0}^{+\infty} \frac{b^{i}(1-a)^{i}}{i!}$$
 (3.166)

$$= \boxed{\frac{e^{-ab}(ab)^j}{j!}} \tag{3.167}$$

On a $p_{i,j} \neq p_{i,\cdot} \neq p_{\cdot,j}$ donc les variables ne sont pas indépendantes.

3. Z est à valeurs dans \mathbb{N} (car $p_{i,j} = 0$ si i < j). On a

$$\mathbb{P}(X - Y = k) = \sum_{j=0}^{+\infty} \mathbb{P}(X = j + k, Y = j)$$
 (3.168)

$$=\sum_{j=0}^{+\infty} \frac{b^{j+k}e^{-b}a^{j}(1-a)^{k}}{j!k!}$$
(3.169)

$$= \frac{e^{-b}b^k(1-a)^k}{k!} \sum_{j=0}^{+\infty} \frac{(ba)^j}{j!}$$
 (3.170)

$$= \frac{e^{b(a-1)}(b(1-a))^k}{k!}$$
 (3.171)

De plus,

$$\mathbb{P}(Z=k,Y=j) = \mathbb{P}((X,Y)=(k+j,j)) = p_{k+j,j} = \frac{b^{j+k}e^{-b}a^{j}(1-a)^{k}}{j!k!}$$
(3.172)

et

$$\mathbb{P}(Z=k)\mathbb{P}(Y=j)) = \frac{e^{b(a-1)b^k(1-a)^k}}{k!} \frac{e^{-ab}(ab^j)}{j!}$$

$$= \frac{e^{-b}b^{k+j}a^j(1-a)^k}{k!j!}$$
(3.173)

$$=\frac{e^{-b}b^{k+j}a^{j}(1-a)^{k}}{k!j!}$$
(3.174)

donc Z et Y sont indépendantes.

Remarque 3.10. On a $X \sim \mathcal{P}(b)$ et $Y \sim \mathcal{P}(ab)$ donc X et Y ont des espérances.

Solution 3.19.

1. On a $S_n - S_{n-1} = T_n$ pour tout $n \ge 2$, donc

$$S_n = \sum_{i=1}^n T_i \tag{3.175}$$

2. Pour tout $k \in \mathbb{N}^*$, comme $T_n \sim \mathcal{G}(1-x)$, on a

$$\boxed{\mathbb{P}(T_n = k) = x^{k-1}(1-x)}$$
 (3.176)

et

$$\mathbb{E}(T_n) = \sum_{k=1}^{+\infty} kx^{k-1}(1-x) = \frac{1}{1-x}$$
 (3.177)

et

$$\boxed{\mathbb{V}(T_n) = \frac{x}{(1-x)^2}} \tag{3.178}$$

3. On a

$$\mathbb{E}(S_n) = \sum_{i=1}^n \mathbb{E}(T_i) = \frac{n}{1-x}$$
(3.179)

Comme les $(T_i)_{1 \leq i \leq n}$ sont indépendants, on a

$$\mathbb{V}(S_n) = \sum_{i=1}^n \mathbb{V}(T_i) = \frac{nx}{(1-x)^2}$$
 (3.180)

Pour k < n, on a $\mathbb{P}(S_n = k) = 0$ et sinon, on a

$$\mathbb{P}(S_n = k) = \binom{k-1}{n-1} (1-x)^n x^{k-n}$$
(3.181)

(choisir les n-1 succès parmi k-1 épreuves).

4. On a $\sum_{k=n}^{+\infty} \mathbb{P}(S_n = k) = 1$ donc

$$\left| \sum_{k=n}^{+\infty} {k-1 \choose n-1} x^k = \frac{x^n}{(1-x)^n} \right|$$
 (3.182)

Solution 3.20. On a $\mathbb{P}(X > n) = \sum_{k=n+1}^{+\infty}$. On pose

$$u_{k,n} = \begin{cases} \mathbb{P}(X = k) \text{ si k>n} \\ 0 \text{ sinon} \end{cases}$$
 (3.183)

Alors $\sum_{n\in\mathbb{N}} \mathbb{P}(X>n)$ converge si et seulement si $(u_{k,n})_{(k,n)\in\mathbb{N}^2}$ est sommable $(u_{k,n}\geqslant 0)$ si et seulement si $\sum_{k=1}^{+\infty}\sum_{n=0}^{+\infty}u_{k,n}$ converge (théorème de Fubini). Or

$$\sum_{k=1}^{+\infty} \sum_{n=0}^{+\infty} u_{k,n} = \sum_{k=1}^{+\infty} \sum_{n=0}^{k-1} \mathbb{P}(X=k) = \sum_{k=1}^{+\infty} k \mathbb{P}(X=k)$$
 (3.184)

Solution 3.21. On cherche $\sup_{k \in \mathbb{N}} \left(\frac{\lambda^k}{k!} e^{-\lambda} \right) = \sup_{k \in \mathbb{N}} u_k \text{ avec } u_k >.$ On a

$$\frac{u_{k+1}}{u_k} = \frac{\lambda}{k+1} \geqslant 1 \tag{3.185}$$

si et seulement si $k \leq \lambda - 1$. On a donc $u_k \leq u_{k+1}$ si et seulement si $k \leq \lfloor \lambda \rfloor - 1$ et le maximum est donc atteint pour $k = \lfloor \lambda \rfloor$.

Si $\lambda = n \in \mathbb{N}^*$, le maximum vaut

$$\frac{n^n e^{-n}}{n!} \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{2\pi n}} \tag{3.186}$$

Solution 3.22.

1. On a

$$\mathbb{P}(X=k) = \frac{9}{10} \times \frac{8}{9} \times \dots \times \frac{10 - (k-1)}{10 - (k-2)} \times \frac{1}{10 - (k-1)} = \frac{1}{10}$$
(3.187)

donc $X \sim \mathcal{U}([1, 10])$ et $Y \sim \mathcal{G}(\frac{1}{10})$ donc $\mathbb{E}(X) = \frac{11}{2}$, $\mathbb{V}(X) = \frac{10^2 - 1}{12} = \frac{33}{4}$, $\mathbb{E}(Y) = 10$, $\mathbb{V}(Y) = \frac{9}{10} \times 100 = 90$.

2. Soit S l'événement 'le gardien est sobre' et Z compte le nombre d'essais au bout desquels il a réussi. Alors

$$\mathbb{P}_{Z\geqslant 9}(5) = \frac{\mathbb{P}(S)\mathbb{P}_S(Z\geqslant 9)}{\mathbb{P}(Z\geqslant 9)} = \frac{\mathbb{P}(S)\mathbb{P}(X\geqslant 9)}{\frac{1}{3}\mathbb{P}(Y\geqslant 9) + \frac{2}{3}\mathbb{P}(X\geqslant 9)}$$
(3.188)

On a $\mathbb{P}(X \geqslant 9) = \frac{1}{5}$ et

$$\mathbb{P}(Y \geqslant 9) = \sum_{n=9}^{+\infty} \left(\frac{9}{10}\right)^{n-1} \times \frac{1}{10} = \left(\frac{9}{10}\right)^{8} \tag{3.189}$$

d'où

$$\mathbb{P}_{Z\geqslant 9}(5) = \frac{2}{5 \times \left(\frac{9}{10}\right)^8 + 2} < \frac{1}{2}$$
 (3.190)

Solution 3.23.

1. On a

$$N = \frac{n(n+1)}{2} \tag{3.191}$$

2. Soit $(i,j) \in [1,n]^2$, si i < j on a $p_{i,j} = 0$ (où $p_{i,j}$ est la loi conjointe). Si $j \leqslant i$, on a

$$p_{i,j} = \frac{1}{N} = \frac{2}{n(n+1)} \tag{3.192}$$

On a ensuite

$$p_{i,\cdot} = \sum_{j=1}^{i} \frac{2}{n(n+1)} = \frac{2i}{n(n+1)}$$
 (3.193)

et

$$\boxed{p_{j,\cdot}} = \sum_{i=j}^{n} \frac{2}{n(n+1)} = \frac{2(n-j+1)}{n(n+1)}$$
(3.194)

3. On calcule

$$\mathbb{E}(B) = \sum_{i=1}^{n} p_{i,\cdot} = \frac{2}{n(n+1)} \sum_{i=1}^{n} i^2 = \frac{2n+1}{3}$$

$$\mathbb{E}(R) = \sum_{j=1}^{n} j p_{\cdot,j} = \frac{2}{n(n+1)} \sum_{j=1}^{n} j (n+1-j) = \frac{n(n+1)^2}{2} - \frac{n(n+1)(2n+1)}{6}$$
(3.195)

On laisse le reste en calcul facile en utilisant $\mathbb{V}(G) = \mathbb{V}(R) + \mathbb{V}(B) - 2\text{cov}(B, R)$ et

$$\mathbb{E}(BR) = \sum_{(i,j) \in [\![1,n]\!]^2} ijp_{i,j} \tag{3.196}$$

Solution 3.24.

1. On écrit

$$\mathbb{P}(X_{n+1} = k) = \mathbb{P}_{X_n = k-1}(X_{n+1} = k)\mathbb{P}(X_n = k-1) = \frac{k}{k+1}\mathbb{P}(X_n = k)$$
(3.197)

2. On a $\mathbb{P}(X_n = k) = 0$ si k > n, sinon on écrit

$$\mathbb{P}(X_n = k) = \frac{k}{k+1} \mathbb{P}(X_{n-1} = k-1)$$
(3.198)

$$= \frac{k}{k+1} \times \frac{k-1}{k} \times \frac{k-2}{k-1} \times \dots \times \frac{2}{3} \times \frac{1}{2} \times u_{n-k}$$
 (3.199)

$$= \boxed{\frac{1}{k+1} u_{n-k}} \tag{3.200}$$

3. On a $\sum_{j=0}^{n} \mathbb{P}(X_n = j) = 1$ donc

$$\sum_{j=0}^{n} \frac{u_n}{n-j+1} = 1 \tag{3.201}$$

et on a $u_0 = 1, u_1 = \frac{1}{2}, u_2 = \frac{5}{12}, u_3 = \frac{3}{8}$ (en utilisant la formule précédente).

4. On écrit

$$(k+1)\mathbb{P}(X_{n+1} = k) = k\mathbb{P}(X_n = k-1)$$
(3.202)

donc pour tout $k \in [1, n+1]$,

$$k\mathbb{P}(X_{n+1} = k) = (k-1)\mathbb{P}(X_n = k-1) + \mathbb{P}(X_n = k-1) - \mathbb{P}(X_{n+1} = k)$$
 (3.203)

En sommant sur $k \in [1, n+1]$, on trouve donc

$$\mathbb{E}(X_{n+1}) = \mathbb{E}(X_n) + 1 - (1 - u_{n+1}) = \mathbb{E}(X_n) + u_{n+1}$$
(3.204)

Par récurrence, on a directement

$$\mathbb{E}(X_n) = u_n + \dots + u_1 + \underbrace{\mathbb{E}(X_0)}_{= 0}$$
(3.205)

5. On écrit

$$\mathbb{P}(T=n) = \mathbb{P}((X_0=0) \cap (X_1=1) \cap \dots \cap (X_{n-1}=n-1) \cap (X_n=0))$$
 (3.206)

$$= \mathbb{P}(X_0 = 0) \times \mathbb{P}_{X_0 = 0}(X_1 = 1) \times \dots \times \mathbb{P}_{(X_0 = 0) \cap \dots \cap (X_{n-1} = n-1)}(X_{n=0})$$
 (3.207)

$$= \mathbb{P}(X_0 = 0) \times \mathbb{P}_{X_0 = 0}(X_1 = 1) \times \dots \times \mathbb{P}_{(X_{n-1} = n-1)}(X_{n=0})$$
(3.208)

$$=1\times\frac{1}{2}\times\frac{2}{3}\times\cdots\times\frac{n-1}{n}\times\frac{1}{n+1}$$
(3.209)

$$= \boxed{\frac{1}{n(n+1)}} \tag{3.210}$$

Comme $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, on a

$$\sum_{n=1}^{+\infty} \mathbb{P}(T=n) = 1 \tag{3.211}$$

donc

$$\boxed{\mathbb{P}(T=0)=0} \tag{3.212}$$

Donc le retour en temps fini à l'origine est presque sûr.

6. Non au vu de la formule donnée par $\mathbb{P}(T=n)$.

Solution 3.25.

1. Soit $k \in [0, n]$, on a

$$\mathbb{P}_{N=n}(X_1 = k) = \binom{n}{k} \left(\frac{1}{m}\right)^k \left(1 - \frac{1}{m}\right)^{n-k}$$
(3.213)

(loi binomiale, car les m caisses sont équiprobables).

2. On a $\mathbb{P}_{N=n}(X_1=k)=0$ si k>n donc si $k\in\mathbb{N}$,

$$\mathbb{P}_{X_1=k} = \sum_{n=0}^{+\infty} \mathbb{P}_{N=n}(X_1 = k) \mathbb{P}(N=n)$$
(3.214)

$$= \sum_{n=k} {n \choose k} \left(\frac{1}{m}\right)^k \left(1 - \frac{1}{m}\right)^{n-k} \frac{\lambda^n}{n!} e^{-\lambda}$$
(3.215)

$$= \frac{1}{k!} e^{-\lambda} \left(\frac{1}{m}\right)^k \lambda^k \sum_{n=k}^{+\infty} \lambda^{n-k} \left(1 - \frac{1}{m}\right)^{n-k} \frac{1}{(n-k)!}$$
(3.216)

On reconnaît la série exponentielle, après un changement d'indice, appliquée en $\lambda \left(1 - \frac{1}{m}\right)$. Ainsi,

$$\mathbb{P}(X_1 = k) = e^{-\frac{\lambda}{n}} \frac{\left(\frac{\lambda}{n}\right)^k}{k!}$$
(3.217)

et donc $X_1 \sim \mathcal{P}\left(\frac{\lambda}{n}\right)$.

Solution 3.26.

1. Si $(i, j) \in \{0, 1, 2\} \times \{-1, 0, 1\}$, on a

$$\mathbb{P}\left((U,V) = (i,j)\right) = \mathbb{P}\left(X = \frac{i+j}{2}, Y = \frac{-j}{2}\right)$$
(3.218)

Cette probabilité vaut 0 si i et j n'ont pas la même parité. Sinon, on a

$$\mathbb{P}((U,V) = (0,0)) = \mathbb{P}(X = 0, Y = 0) = q^{2}$$

$$\mathbb{P}((U,V) = (1,-11)) = \mathbb{P}(X = 0, Y = 1) = qp$$

$$\mathbb{P}((U,V) = (1,1)) = qp$$

$$\mathbb{P}((U,V) = (2,0)) = \mathbb{P}(X = 1, Y = 1) = p^{2}$$
(3.219)

2. On a

$$cov(U, V) = \mathbb{E}\left(\left(U - \mathbb{E}(U)\right)\left(V - \mathbb{E}(V)\right)\right) \tag{3.220}$$

$$= \mathbb{E}(UV) - \mathbb{E}(U)\mathbb{E}(V) \tag{3.221}$$

$$= \mathbb{E}(X^{2} - Y^{2}) - [(\mathbb{E}(X) + \mathbb{E}(Y)) (\mathbb{E}(X) - \mathbb{E}(Y))]$$
(3.222)

$$= \mathbb{E}(X^2 - Y^2) - \left[\mathbb{E}(X)^2 - \mathbb{E}(Y)^2 \right]$$
 (3.223)

$$= \mathbb{V}(X) - \mathbb{V}(Y) \tag{3.224}$$

$$=0 (3.225)$$

3. Les variables U et V ne sont pas indépendantes, il suffit de voir que

$$\mathbb{P}((U,V) = (1,0)) = 0 \neq \mathbb{P}(U=1)\mathbb{P}(V=0) = 2pq \times (q^2 + p^2)$$
(3.226)

Solution 3.27.

1. $P \sim \mathcal{G}(p)$ et $F \sim \mathcal{G}(q)$ donc

$$\mathbb{E}(P) = \frac{1}{p}$$

$$\mathbb{V}(P) = \frac{q}{p^2}$$

$$\mathbb{E}(F) = \frac{1}{q}$$

$$\mathbb{V}(F) = \frac{p}{q^2}$$
(3.227)

- 2. On a $\mathbb{P}((P=1) \cap (F=1)) = 0 \neq \mathbb{P}(P=1)\mathbb{P}(F=1)$ donc P et F ne sont pas indépendantes.
- 3. Soit $(i,j) \in (\mathbb{N}^*)^2$, on note $p_{i,j} = \mathbb{P}(X=i,Y=j)$. On partitionne selon si P=1 ou F=1 et donc

$$p_{i,j} = p^{i+1}q^j + q^{i+1}p^j$$
(3.228)

On note

$$p_{i,\cdot} = \sum_{j=1}^{+\infty} p_{i,j} = p^{i+1} \frac{q}{1-q} + q^{i+1} \frac{p}{1-p} = p^i q + q^i p$$

$$p_{\cdot,j} = \sum_{i=1}^{+\infty} p_{i,j} = \frac{p^2}{1-p} q^j + \frac{q^2}{1-q} p^j = q^{j-1} p^2 + p^{j-1} q^2$$
(3.229)

De plus, on a $p_{1,1}=p^2q+q^2p=pq$ et $p_{1,\cdot}\times p_{\cdot,1}=(pq+qp)(p^2+q^2)=2pq(p^2+q^2)$ dp,c si X et Y sont indépendantes, on a $1=2(p^2+q^2)$ d'où $p=\frac{1}{2}$. Réciproquement, si $p=\frac{1}{2}$, on a $p_{i,\cdot}=\frac{1}{2^i},\ p_{\cdot,j}=\frac{1}{2^j}$ et $p_{i,j}=\frac{1}{2^{i+j}}=p_{i,\cdot}p_{\cdot,j}$. Ainsi, X et Y sont indépendantes si et seulement si $p=\frac{1}{2}$.

4. On a

$$\mathbb{E}(X) = \sum_{i=1}^{+\infty} i p_{i,.} = q \sum_{i=1}^{+\infty} i p^{i} + p \sum_{i=1}^{+\infty} i q^{i}$$
(3.230)

On utilise alors le fait que $\sum_{n=1}^{+\infty} nz^{n-1} = \frac{1}{(1-z)^2}$ si |z| < 1 et donc

$$\boxed{\mathbb{E}(X) = \frac{p^2 + q^2}{pq} \geqslant 2} \tag{3.231}$$

 $\operatorname{car} (p-q)^2 \geqslant 0.$

5. On a

$$\mathbb{P}(X=Y) = \sum_{i=1}^{+\infty} p_{i,i} = \sum_{i=1}^{+\infty} p^i q^i (p+q) = pq \times \frac{1}{1-pq}$$
 (3.232)

6. Si $p = \frac{1}{2}$, X et Y sont indépendantes, donc par convolution,

$$| \mathbb{P}(X+Y=k) = \sum_{i=1}^{k-1} \mathbb{P}(X=i)\mathbb{P}(Y=k-i) = \sum_{i=1}^{k-1} p_{i,\cdot} p_{\cdot,k-i} = \sum_{i=1}^{k-1} \frac{1}{2^k} = \frac{k-1}{2^k} |$$
 (3.233)

Solution 3.28.

1. On a

$$e^{\lambda x} = \sum_{k=0}^{+\infty} \frac{(\lambda x)^{2k}}{(2k)!} + \sum_{k=0}^{+\infty} \frac{(\lambda x)^{2k+1}}{(2k+1)!} \le \sum_{k=0}^{+\infty} \frac{\lambda^{2k}}{2^k k!} + x \sinh(\lambda) = e^{\frac{\lambda^2}{2}} + x \sinh(\lambda)$$
(3.234)

car $|x^2| \leq 1$ et pour tout $k \in \mathbb{N}^*$, $(2k)! \geqslant 2^k k!$ (par récurrence).

2. $e^{\lambda X}$ admet une espérance car $|e^{\lambda X}| \leq e^{\lambda}$. Comme X est centrée, on a d'après l'inégalité précédente, en prenant l'espérance,

$$\mathbb{E}\left(e^{\lambda X}\right) \leqslant \mathbb{E}\left(e^{\frac{\lambda^2}{2}}\right) + \sinh(\lambda)\mathbb{E}(X) = e^{\frac{\lambda^2}{2}}$$
(3.235)

En appliquant l'inégalité à -X, on a l'autre inégalité.

3. Grâce à l'inégalité de Markov, on en déduit que

$$\boxed{\mathbb{P}(X \geqslant a) = \mathbb{P}\left(e^{\lambda X} \geqslant e^{\lambda a}\right)} \leqslant \frac{\mathbb{E}\left(e^{\lambda X}\right)}{e^{\lambda a}} = e^{-\lambda a}\mathbb{E}\left(e^{\lambda X}\right)$$
(3.236)

4. On pose $X = \frac{1}{n} \sum_{k=1}^{n} X_i$. X est centrée dans [-1,1] ainsi que -X. On a donc, pour tout $\lambda \geqslant 0$,

$$\mathbb{P}(|X| \geqslant a) = \mathbb{P}(X \geqslant a) + \mathbb{P}(-X \geqslant a) \leqslant 2e^{-\lambda a} e^{\frac{\lambda^2}{2}}$$
(3.237)

On optimise ensuite cette inégalité en $\lambda \ge 0$ (le minimum est en $\lambda = a$) et on a bien

$$\left| \mathbb{P}\left(\left| \frac{1}{n} \sum_{i=1}^{n} X_i \right| \geqslant a \right) \leqslant 2e^{-\frac{a^2}{2}} \right| \tag{3.238}$$

Solution 3.29.

1. Comme $\mathbb{E}(Y) < +\infty$, on a d'après le théorème de Fubini et le fait que $(X = l)_{l \in \mathbb{N}}$ est un système complet d'événements :

$$\mathbb{E}(Y) = \sum_{l=0}^{+\infty} l \mathbb{P}(Y=l) \sum_{l=0}^{+\infty} \sum_{k=0}^{+\infty} \mathbb{P}_{(X=k)}(Y=l) \mathbb{P}(X=k) = \sum_{k=0}^{+\infty} \mathbb{E}_{(X=k)}(Y) \mathbb{P}(X=k)$$
(3.239)

2. Pour $\lambda = X_{n+1}$ et $X = X_n$, et en utilisant le fait que les poules sont indépendantes, on a

$$\mathbb{E}(X_{n+1}) = \sum_{k=0}^{+\infty} \mathbb{E}_{(X_n = k)} \mathbb{P}(X_n = k) = \sum_{k=0}^{+\infty} k \lambda \mathbb{P}(X_n = k) = \lambda \mathbb{E}(X_n)$$
(3.240)

Par récurrence, on a

$$\mathbb{E}(X_n) = \lambda^n \mathbb{E}(X_0) = \lambda^n N$$
(3.241)

On note que si $\lambda > 1$, $\mathbb{E}(X_n) \xrightarrow[n \to +\infty]{} +\infty$ donc la descendance est assurée. Si $\lambda < 1$, on a $\mathbb{E}(X_n) \xrightarrow[n \to +\infty]{} 0$.

Solution 3.30. Soit $k \in \mathbb{N}$, on a

$$\mathbb{P}(K=k) = \sum_{n=0}^{+\infty} \mathbb{P}_{(N=n)}(K=k)\mathbb{P}(N=n)$$
 (3.242)

$$= \sum_{n=k}^{+\infty} \binom{n}{k} p^k (1-p)^{n-k} e^{-\lambda} \frac{\lambda^n}{n!}$$
 (3.243)

$$= e^{-\lambda p} \frac{(\lambda p)^k}{k!} \tag{3.244}$$

Donc $K \sim \mathcal{P}(\lambda p)$ et

$$\boxed{\mathbb{E}(K) = \lambda p} \tag{3.245}$$

Solution 3.31.

1. On a $\chi_{A_k} \sim \mathcal{B}\left(\frac{1}{k}\right)$. Ainsi,

$$\mathbb{E}(S_n) = \sum_{k=1}^n \frac{1}{k} \underset{n \to +\infty}{\sim} \ln(n)$$
(3.246)

Comme les $(A_n)_{n\geqslant 1}$ sont indépendants, on a aussi

$$\mathbb{V}(S_n) = \sum_{k=1}^n \mathbb{V}(\chi_{A_k}) = \sum_{k=1}^n \frac{1}{k} \left(1 - \frac{1}{k} \right) \underset{n \to +\infty}{\sim} \ln(n)$$
(3.247)

2. Soit $X_n = \frac{S_n}{\ln(n)}$. On a $\mathbb{E}(X_n) \xrightarrow[n \to +\infty]{} 1$ et $\mathbb{V}(X_n) = \frac{1}{\ln^2(n)} \mathbb{V}(S_n) \xrightarrow[n \to +\infty]{} 0$.

D'après l'inégalité de Bienaymé-Tchebychev,

$$\mathbb{P}\left(|X_n - \mathbb{E}(X_n)| \geqslant \frac{\varepsilon}{2}\right) \leqslant 4 \frac{\mathbb{V}(X_n)}{\varepsilon^2} \xrightarrow[n \to +\infty]{} 0 \tag{3.248}$$

Or, si $|X_n - \mathbb{E}(X_n)| < \frac{\varepsilon}{2}$ et $|\mathbb{E}(X_n) - 1| < \frac{\varepsilon}{2}$, alors $|X_n - 1| < \varepsilon$. Par contraposée, si $|X_n - 1| \geqslant \varepsilon$, alors ou bien $|X_n - \mathbb{E}(X_n)| \geqslant \frac{\varepsilon}{2}$ ou $|\mathbb{E}(X_n) - 1| \geqslant \frac{\varepsilon}{2}$. Ainsi,

$$\mathbb{P}\left(|X_n - 1| \geqslant \varepsilon\right) \leqslant 4\frac{\mathbb{V}(X_n)}{\varepsilon^2} + \mathbb{P}\left(|\mathbb{E}(X_n) - 1| \geqslant \frac{\varepsilon}{2}\right) \tag{3.249}$$

A partir d'un certain rang $N_0 \in \mathbb{N}$, on a $|\mathbb{E}(X_n) - 1| < \frac{\varepsilon}{2}$, donc pour tout $n \geqslant N_0$, on a $\mathbb{P}\left(|\mathbb{E}(X_n) - 1| \geqslant \frac{\varepsilon}{2}\right) = 0$. Ainsi,

$$\left| \lim_{n \to +\infty} \mathbb{P}\left(\left| \frac{S_n}{\ln(n)} - 1 \right| \geqslant \varepsilon \right) = 0 \right| \tag{3.250}$$

Solution 3.32.

1. Soit $k \in \mathbb{N}^*$. On a

$$\mathbb{P}(U \geqslant k) = \mathbb{P}\left(\bigcap_{i=1}^{n} (X_i \geqslant k)\right) = \prod_{i=1}^{k} \mathbb{P}(X_i \geqslant k) = \prod_{i=1}^{n} \sum_{j=k}^{+\infty} q^{j-1} p = (q^{k-1})^n$$
 (3.251)

Ainsi,

$$\mathbb{P}(U = k) = \mathbb{P}(U \ge k) - \mathbb{P}(U \ge k + 1) = q^{(k-1)n}(q^n - 1)$$
(3.252)

U possède une espérance car $0\leqslant U\leqslant X\sim \mathcal{G}(p)$ et on a

$$\mathbb{E}(U) = \sum_{k=1}^{+\infty} k \mathbb{P}(U = k)$$
(3.253)

$$= \sum_{k=1}^{+\infty} k \left((q^n)^{k-1} - (q^n)^k \right)$$
 (3.254)

$$= \frac{1}{(1-q^n)^2} - \frac{q^n}{(1-q^n)^2} \tag{3.255}$$

$$= \boxed{\frac{1}{1 - q^n}} \tag{3.256}$$

où l'on a utilisé le fait que $\sum_{n=0}^{+\infty} n x^{n-1} = \frac{1}{(1-x)^2}$ si |x| < 1.

2. Soit $k \in \mathbb{N}^*$. On a $\mathbb{P}(V \leqslant k) = (1 - q^k)^n$ donc

$$\mathbb{P}(V = k) = (1 - q^k)^n - (1 - q^{k-1})^n \underset{n \to +\infty}{\sim} nq^{k-1} (1 - q) \xrightarrow[k \to +\infty]{} 0$$
(3.257)

Comme $k\mathbb{P}(V=k) = \underset{k\to+\infty}{O}\left(\frac{1}{k^2}\right)$, V admet une espérance est

$$\mathbb{E}(V) = \sum_{k=1}^{+\infty} k \mathbb{P}(V = k)$$
(3.258)

$$= \sum_{k=1}^{+\infty} k \left[\left(1 - q^k \right)^n - \left(1 - q^{k-1} \right)^n \right]$$
 (3.259)

$$= \sum_{k=1}^{+\infty} k \sum_{i=1}^{n} \binom{n}{i} \left[(-1)^{i} q^{ki} - (-1)^{i} q^{(k-1)i} \right]$$
 (3.260)

$$= \sum_{k=1}^{+\infty} k \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} q^{(k-1)i} (1-q^i)$$
(3.261)

$$= \sum_{k=1}^{+\infty} (-1)^{i+1} \binom{n}{i} (1-q^i) \sum_{k=1}^{+\infty} k \left(q^i\right)^{k-1}$$
 (3.262)

$$= \sum_{i=1}^{n} \binom{n}{i} (-1)^{i+1} \frac{1}{1-q^i}$$
 (3.263)

Solution 3.33.

1. $1-p^N$ correspond à la probabilité que le joueur perde au moins une partie sur N consécutives donc c'est aussi la probabilité pour qu'il perde une partie entre la nN+1-ième et la (n+1)N-ième (inclus), car les parties sont indépendantes. On note $A_{nN+1,(n+1)N}$:'le joueur perd une partie entre la nN+1-ième et la (n+1)N-ième (au sens large)'. $\{t_k > nN\}$ et $A_{nN+1,(n+1)N}$ sont des événements indépendants car les différentes parties sont indépendantes. Ainsi,

$$\boxed{\mathbb{P}(t_k > nN) (1 - p^N) = \mathbb{P}\left((t_k > nN) \cap A_{nN+1,(n+1)N}\right) \geqslant \mathbb{P}(t_k > n(N+1))}$$
(3.264)

car s'il avait gagné toutes les parties entre nN + 1 et (n + 1)N on aurait $t_k \leq n(N + 1)$.

On sait que si X est une variable aléatoire discrète à valeurs dans \mathbb{N}^* , X possède une espérance finie si et seulement si $\sum_{k\in\mathbb{N}} \mathbb{P}(X>k)$ converge et on a (théorème de Fubini) $\mathbb{E}(X)=\sum_{k\in\mathbb{N}} \mathbb{P}(X>k)$.

On a donc

$$\mathbb{P}(t_k > Nn) \leqslant (1 - p^n)\mathbb{P}(t_k > 0) = 1 - p^n \tag{3.265}$$

par récurrence sur n d'après 1. Pour $l \in \mathbb{N}$, soit $n = \lfloor \frac{l}{N} \rfloor$, on a $nN \leq l < (n+1)N$ donc

$$\mathbb{P}(t_k > l) \leqslant \mathbb{P}(t_k > nN) \leqslant (1 - p^N)^{\left\lfloor \frac{l}{N} \right\rfloor} \leqslant (1 - p^N)^{\frac{l}{N}}$$
(3.266)

et le membre de droite est le terme général d'une série converge car $(1-p^N)^{\frac{1}{N}} < 1$. Donc t_k admet une espérance.

2. On note b_i : 'le joueur gagne au i-ième coup'. Alors

$$T_k = \sum_{l=0}^{+\infty} l \mathbb{P}(t_k = l) \tag{3.267}$$

$$= \sum_{l=0}^{+\infty} l \left(\mathbb{P}_{b_i}(t_k = l) \mathbb{P}(b_i) + \mathbb{P}_{\overline{b_i}}(t_k = l) \mathbb{P}(\overline{b_i}) \right)$$
 (3.268)

$$= p \sum_{l=1}^{+\infty} l \mathbb{P}(t_{k+1} = l - 1) + q \sum_{l=1}^{+\infty} l \mathbb{P}(t_{k-1} = l - 1)$$
(3.269)

$$= p \left(\sum_{l=1}^{+\infty} (l-1) \mathbb{P}(t_{k+1} = l-1) + \sum_{l=1}^{+\infty} 1 \times \mathbb{P}(t_{k+1} = l-1) \right)$$

$$+ q \left(\sum_{l=1}^{+\infty} (l-1) \mathbb{P}(t_{k-1} = l-1) + \sum_{l=1}^{+\infty} 1 \times \mathbb{P}(t_{k-1} = l-1) \right)$$
 (3.270)

$$= p(T_{k-1} + 1) + q(T_{k+1} + 1)$$
(3.271)

3. On a $qT_{k+1} - T_k + pT_{k-1} = -1$. Comme $q\alpha(k+1) - \alpha k + p\alpha(k-1) = 1$ si et seulement si $\alpha = \frac{1}{1-2p}$, on pose $U_k = T_k - \frac{k}{1-2p}$ si $p = \frac{1}{2}$. Alors

$$qU_{k+1} - U_k + pU_{k-1} = -1 - q\frac{k+1}{1-2p} + \frac{k}{1-2p} - p\frac{k-1}{1-2p} = 0$$
(3.272)

car p + q = 1.

L'équation caractéristique est $qr^2 - r + p = 0$, les racines sont 1 et $\frac{p}{q}$ (qui est différent de 1 car $p \neq \frac{1}{2}$). Donc

$$q\left(1 - \frac{p}{q}\right)(1 - 1) = 0\tag{3.273}$$

On a $T_0 = T_N = 0$ donc

$$T_k = \frac{1}{q-p} \left(k - N \left(\frac{1 - \left(\frac{q}{p} \right)^k}{1 - \left(\frac{q}{p} \right)^N} \right) \right)$$
 (3.274)

si $p \neq \frac{1}{2}$. Si $p = \frac{1}{2}$, on a

$$T_{k+1} - 2T_k + T_{k-1} = -2 (3.275)$$

Ainsi, si $V_k = T_{k-1} - T_k$, on a

$$V_{k+1} = -2 + V_k (3.276)$$

On en déduit grâce aux conditions aux limites $T_0 = T_N = 0$ que

$$T_k = k(N-k) \tag{3.277}$$

Solution 3.34.

1. On a

$$\sum_{n \ge 1} \mathbb{P}(\{n\}) = \sum_{n \ge 1} \frac{1}{\zeta(s)n^s} = 1$$
 (3.278)

2. On a

$$\mathbb{P}(A_n) = \sum_{k \in A_n} \mathbb{P}(\{k\}) = \sum_{r=1}^{+\infty} \frac{1}{\zeta(s)r^s n^s} = \frac{1}{n^s}$$
 (3.279)

3. Soient p_1, \ldots, p_k des nombres premiers distincts. On a $A_{p_1} \cap \cdots \cap A_{p_r} = A_{p_1 \times \cdots \times p_k}$ donc

$$\boxed{\mathbb{P}\left(A_{p_1} \cap \dots \cap A_{p_k}\right)} = \frac{1}{(p_1 \dots p_k)^s} = \prod_{i=1}^k \frac{1}{p_i^s} = \prod_{i=1}^k \mathbb{P}(A_{p_i})$$
(3.280)

donc les $(A_p)_{p\in\mathcal{P}}$ sont indépendants.

On remarque que l'on a $\{1\} = \bigcap_{p \in \mathcal{P}} \overline{A_p}$. On pose p_k le k-ième nombre premier et $B_k = \bigcap_{i=1}^k \overline{A_{p_i}}$ qui est une suite décroissante d'événements. Comme les $(A_{p_i})_i$ sont indépendants, c'est aussi le cas des $(\overline{A_{p_i}})_i$, et on a donc

$$\mathbb{P}(\{1\}) = \lim_{k \to +\infty} \mathbb{P}(B_k) = \lim_{k \to +\infty} \prod_{i=1}^k \left(1 - \mathbb{P}(A_{p_i})\right) = \prod_{i=1}^{+\infty} \left(1 - \frac{1}{p_i^s}\right)$$
(3.281)

Or $\mathbb{P}(\{1\}) = \frac{1}{\zeta(s)}$ donc

$$\zeta(s) = \left(\prod_{i=1}^{+\infty} \left(1 - \frac{1}{p_i^s}\right)\right)^{-1}$$
 (3.282)

139

Solution 3.35. On a $\mathbb{P}(E_1) = \frac{1}{2}, \mathbb{P}(E_2) = \frac{1}{2}(1-b)$ et pour tout $n \ge 2$,

$$\mathbb{P}(E_n) = \frac{1}{2}b^{n-1}(1-b)$$
(3.283)

Les événements E_n sont incompatibles donc

$$\mathbb{P}\left(\bigcup_{n=1}^{+\infty} E_n\right) = \sum_{n=1}^{+\infty} \mathbb{P}(E_n) = 1$$
(3.284)

Il est donc presque sûr qu'on finisse par utiliser A.

On a

$$\mathbb{P}(U_n) = \frac{1}{2}a^n + \frac{1}{2}b^n$$
 (3.285)

 $(U_n)_{n\in\mathbb{N}}$ forme une suite décroissante d'événements, donc

$$\mathbb{P}\left(\bigcap_{n=1}^{+\infty} U_n\right) = \lim_{n \to +\infty} \mathbb{P}(U_n) = 0$$
 (3.286)

Solution 3.36.

1. On a

$$\mathbb{P}(A_n) = \sum_{k=1}^n p(1-p)^{k-1} = 1 - (1-p)^n$$
(3.287)

2. $B_n = \bigcap_{i=1}^N A_{i,n}$ et les $A_{i,n}$ sont indépendants donc

$$\mathbb{P}(B_n) = \prod_{i=1}^{N} \mathbb{P}(A_{i,n}) = (1 - (1-p)^n)^N$$
 (3.288)

3. On note $C_n = B_n \setminus B_{n-1}$ et $B_{n-1} \subset B_n$ donc

$$\mathbb{P}(C_n) = \mathbb{P}(B_n) - \mathbb{P}(B_{n-1}) = (1 - (1-p)^n)^N - (1 - (1-p)^{n-1})^N$$
 (3.289)

Solution 3.37.

1. On a

$$\mathbb{K}_{< n}[X] = \left\{ a_0 + \dots + a_{n-1} X^{n-1} \middle| (a_0, \dots, a_{n-1}) \in \mathbb{K}^n \right\}$$
 (3.290)

donc $|\mathbb{K}_{\leq n}[X]| = p^n$. De même, on a

$$\mathbb{K}_{=n}[X] = \left\{ a_0 + \dots + a_{n-1} X^{n-1} + a_n X^n \middle| (a_0, \dots, a_n) \in \mathbb{K}^n, a_n \neq \overline{0} \right\}$$
 (3.291)

donc $|\mathbb{K}_{=n}[X]| = p^n(p-1)$ d'où $|\Omega| = p^{2n}(p-1)$.

On a $\mathbb{P}(\deg(Q) = -\infty) = \frac{1}{p^n}$ et si $k \in [0, n-1],$

$$\mathbb{P}\left(\deg(Q) = k\right) = \frac{p^k(p-1)}{p^n}$$
(3.292)

2. On a $(Q, P) \in A$ si et seulement si $Q \mid P$ si et seulement si il existe $A \in \mathbb{K}_{\leq n}[X]$ tel que P = AQ et $\deg(A) + \deg(Q) = n$. Ainsi, $\left(Q, \frac{P}{Q}\right) \in B$ et f est bien définie. On a directement

$$f^{-1}: B \rightarrow A$$

 $(Q,A) \mapsto (Q,AQ)$

donc f est bijective et |A| = |B|.

On a

$$B = \bigcup_{k=0}^{n-1} \{ (Q, A) \in \mathbb{K}_{=k}[X] \times \mathbb{K}_{=n-k}[X] \}$$
 (3.293)

donc

$$|B| = \sum_{k=0}^{n-1} p^k(p-1) \times p^{n-k}(p-1) = np^n(p-1)^2 = |A|$$
(3.294)

Ainsi,

$$\mathbb{P}(Q \mid P) = \frac{np^n(p-1)^2}{p^{2n}(p-1)} = \frac{n(p-1)}{p^n}$$
 (3.295)

3. On a $R_1 = R$ si et seulement si il existe $A \in \mathbb{K}[X]$ tel que P = AQ + R avec $\deg(R) < \deg(Q)$ si et seulement si $Q \mid P - R$ et $\deg(R) < \deg(Q)$. Comme $\deg(Q) < \deg(P)$, $\deg(R) < \deg(P)$ implique $\deg(P - R) = \deg(P)$.

Or

$$\varphi: \mathbb{K}_{=n}[X] \to \mathbb{K}_{=n}[X]$$

$$P \mapsto P - R$$

est bijective donc les lois de P-R et de P sont les mêmes. En notant $r=\deg(R)$, on a donc

$$\mathbb{P}(R_1 = R) = \mathbb{P}\left((Q \mid P - R) \cap (\deg(Q) > \deg(R))\right) \tag{3.296}$$

$$= \sum_{q=r+1}^{n-1} \frac{p^{n-q}(p-1)}{(p-1)^2} \times \frac{p^d(p-1)}{p^{2n}}$$
 (3.297)

$$= \boxed{\frac{1}{p^n} \times (n-r-1)} \tag{3.298}$$

et

$$\mathbb{P}_{\deg(Q)=q}(R_1=R) = \frac{\mathbb{P}\left((R_1=R) \cap (\deg(Q)=q)\right)}{\mathbb{P}\left(\deg(Q)=s\right)}$$
(3.299)

$$= \frac{\frac{1}{p^{n}}}{\frac{p^{q}(p-1)}{p^{n}}}$$

$$= \boxed{\frac{1}{p^{q}(p-1)}}$$
(3.300)

$$=\boxed{\frac{1}{p^q(p-1)}}\tag{3.301}$$

Solution 3.38.

1. (X_1, X_2) prend ses valeurs dans $[1, n]^2 \setminus \{(i, i) | i \in [1, n]\}$. Soit $(i, j) \in [1, n]^2$ avec $i \neq j$, alors

$$\mathbb{P}(X_1 = i, X_2 = j) = \frac{1}{n(n-1)}$$
 (3.302)

La loi conjointe est uniforme.

2. X_2 prend ses valeurs dans [1, n]. On a

$$\mathbb{P}(X_2 = j) = \sum_{\substack{i=1^n \\ i \neq j}} \mathbb{P}(X_1 = i, X_2 = j) = \frac{n-1}{n(n-1)} = \frac{1}{n}$$
 (3.303)

donc $X_2 \sim \mathcal{U}([\![1,n]\!])$.

 $X_{1_{\mid X_2=j}}$ prend ses valeurs dans $[\![1,n]\!]\setminus\{j\}$ et

$$\mathbb{P}(X_{1_{|X_2=j}}=i) = \frac{\mathbb{P}(X_1=i, X_2=j)}{\mathbb{P}(X_2=j)} = \frac{1}{n-1}$$
 (3.304)

donc $X_{1_{|X_2=j}} \sim \mathcal{U}(\llbracket 1, n \rrbracket \setminus \{j\}).$

- 3. D'après ce qui précède, les lois de X_1 et X_2 sont différentes et X_1 et X_2 ne sont pas indépendantes.
- 4. On écrit

$$(X_1, \dots, X_k) = \{(x_1, \dots, x_k) \in [1, n]^k | \forall i \neq j, x_i \neq x_j \}$$
 (3.305)

ensemble que l'on note $A_{n,k}$. On a $|A_{n,k}| = n(n-1)\dots(n-k+1)$. Pour $(x_1,\dots,x_k) \in A_{n,k}$, on a donc

$$\boxed{\mathbb{P}(X_1 = x_1, \dots, X_k = x_k) = \frac{1}{n(n-1)} \dots (n-k+1)}$$
(3.306)

et pour tout $i \in [1, n], X_i \sim \mathcal{U}([1, n])$ et les X_i ne sont pas indépendants.

5. On a

$$\mathbb{E}(X_1, X_2) = \sum_{\substack{(i,j) \in [1,n]^2 \\ i \neq j}} (i,j) \times \frac{1}{n(n-1)}$$
(3.307)

$$= \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} \left(\sum_{j \neq i} i \right), \sum_{j=1}^{n} \left(\sum_{i \neq j} j \right) \right)$$
 (3.308)

$$= \frac{1}{n(n-1)} \left(\frac{n(n-1)(n+1)}{2}, \frac{n(n-1)(n+1)}{2} \right)$$
(3.309)

$$= \left[\frac{n+1}{2}, \frac{n+1}{2} \right] \tag{3.310}$$

143

4 Calcul matriciel

Solution 4.1. Soit $(k, m) \in (\mathbb{N}^*)^2$, on a

$$\left[M\overline{M}\right]_{k,m} = \sum_{j=1}^{n} \omega^{(k-1)(j-1)} \overline{\omega}^{(j-1)(m-1)}$$

$$\tag{4.1}$$

$$=\sum_{j=0}^{n-1} \left[\omega^{k-1}\overline{\omega}^{m-1}\right]^j \tag{4.2}$$

$$= \sum_{j=0}^{n-1} \left[\omega^{k-m} \right]^j \tag{4.3}$$

Or $\omega^{k-m}=1$ si et seulement si $n\mid k-m$ si et seulement si k=m car $|k-m|\in [0,n-1]$. Si k=m, on a $[M\overline{M}]_{k,m}=n$ et si $k\neq m,$ on a

$$[M\overline{M}]_{k,m} = \frac{1 - (\omega^{k-m})^n}{1 - \omega^{k-m}} = 0 \tag{4.4}$$

Donc $M\overline{M} = nI_n$. Ainsi, $M \in GL_n(\mathbb{C})$ et

$$M^{-1} = \frac{1}{n}\overline{M} \tag{4.5}$$

On a $\det(M\overline{M}) = \det(M)\det(\overline{M}) = n^n = \det(M)\overline{\det(M)} = \left|\det(M)\right|^2 \operatorname{donc}\left|\det(M)\right| = n^{\frac{n}{2}}$.

On calcul M^2 . On a

$$[M^{2}]_{k,m} = \sum_{j=1}^{n} \omega^{(k-1)(j-1)+(j-1)(m-1)} = \sum_{j=0}^{n-1} \left[\omega^{k+m-2} \right]^{j}$$
(4.6)

On a $k+m-2 \in [0,2n-2]$ donc $n \mid k+m-2$ si et seulement si k+m=n+2 ou k+m=2 si et seulement si m=n+2-k ou k=m=1. Donc

$$M^{2} = \begin{pmatrix} n & 0 & \dots & 0 \\ 0 & & & n \\ \vdots & & n & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & n & \dots & \dots & 0 \end{pmatrix}$$

$$(4.7)$$

En développant par rapport à la première ligne (ou colonne), on a

$$\det(M^2) = n^n(-1)^{\frac{n(n+1)}{2}} \tag{4.8}$$

donc

$$\det(M) = \begin{cases} \pm n^{\frac{n}{2}} & \text{si } \frac{n(n+1)}{2} \text{ est pair i.e.} \\ 0 & \text{ou} \\ n \equiv 3[4] \\ \pm in^{\frac{n}{2}} & \text{si } \frac{n(n+1)}{2} \text{ est impair i.e.} \end{cases} \begin{cases} n \equiv 0[4] \\ \text{ou} \\ n \equiv 3[4] \\ \text{ou} \\ n \equiv 2[4] \end{cases}$$

$$(4.9)$$

Solution 4.2.

1. Si $A \ge 0$, soit $X \ge 0$, on a

$$[AX]_i = \sum_{j=1}^n a_{i,j} x_j \geqslant 0 \tag{4.10}$$

donc $AX \geqslant 0$.

Réciproquement, soit $j \in [\![1,n]\!]$, on prend

$$X_{j} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \tag{4.11}$$

où le 1 est en j-ième position. $X_j \geqslant 0$ et

$$AX = \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{n,j} \end{pmatrix} \geqslant 0 \tag{4.12}$$

donc $A \geqslant 0$.

2. Soit $A \in GL_n(\mathbb{R})$ avec $A = (A_{i,j})_{1 \le i,j \le n} \ge 0, A^{-1} = (A^{-1})_{1 \le i,j \le n} \ge 0$. Soit $(i,j) \in [1,n]^2$ avec $i \ne j$. On a

$$\sum_{k=1}^{n} A_{i,k} A_{k,j}^{-1} = 0 (4.13)$$

donc pour tout $k \in [1, n]$ on a $A_{i,j} = 0$ ou $A_{k,j}^{-1} = 0$.

i étant fixé, comme $A \in Gl_n(\mathbb{R})$, il existe $k_0 \in [\![1,n]\!]$ tel que $A_{i,k_0} > 0$. Alors pour tout $j \in [\![1,n]\!] \setminus \{i\}$, on a $A_{k_0,j}^{-1} = 0$ et $A_{k_0,i}^{-1} > 0$ (car A^{-1} est inversible). Supposons qu'il existe $k_1 \neq k_0$ tel que $A_{i,k_1} > 0$. Alors pour tout $j \neq i$, on a $A_{k,j}^{-1} = 0$ et $A_{k_1,i}^{-1} > 0$, mais alors les lignes k_0 et k_1 sont liées, ce qui est impossible. Donc il existe un unique $k_i \in [\![1,n]\!]$, $A_{i,k_i} > 0$. Comme A est inversible, pour $i \neq i'$, on a $k_i \neq k_{i'}$, sinon on aurait deux lignes proportionnelles. Donc

$$\Delta: [1, n] \rightarrow [1, n]$$

$$i \mapsto k_i$$

Ainsi il existe une unique permutation $\sigma \in \Sigma_n$ telle que pour tout $i \in [1, n]$, $A_{i,\sigma(i)} > 0$ et pour tout $j \neq \sigma(i)$, $A_{ij} = 0$. Donc

$$A = \operatorname{diag}(a_1, \dots, a_n) P_{\sigma}$$
(4.14)

avec $P_{\sigma} = (\delta_{i,\sigma(j)})_{i,j}$ et $a_i > 0$.

Réciproquement, si A est de cette forme, on a $A \ge 0$ et

$$A^{-1} = P_{\sigma}^{-1} \operatorname{diag}\left(\frac{1}{a_1}, \dots, \frac{1}{a_n}\right) = P_{\sigma^{-1}} \operatorname{diag}\left(\frac{1}{a_1}, \dots, \frac{1}{a_n}\right)$$
(4.15)

donc $A^{-1} \geqslant 0$.

Remarque 4.1. Soit

$$A = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}$$
(4.16)

Si $AX \ge 0$, en définissant $x_0 = x_{n+1} = 0$, on a pour tout $k \in [1, n]$,

$$-x_{k-1} + 2x_k - x_{k+1} \geqslant 0 \tag{4.17}$$

 $Si \ x_{i_0} = \min(x_0, \dots, x_{n+1}), \ on \ a$

$$2x_{i_0} \geqslant x_{i_0-1} + x_{i_0+1} \geqslant 2x_{i_0} \tag{4.18}$$

donc $x_{i_0-1} = x_{i_0+1} = x_{i_0}$. De proche en proche, on a $x_{i_0} = x_0 = 0$. Donc $X \ge 0$.

Si AX = 0, on a $AX \ge 0$ et A(-X) = 0 donc $X \ge 0$ et $-X \ge 0$ donc X = 0 et $A \in GL_n(\mathbb{R})$ et pour tout $Y = AX \ge 0$, on a $A^{-1}Y = X \ge 0$ donc $A^{-1} \ge 0$.

Solution 4.3. Soit

$$u: \mathbb{R}_{n-1}[X] \to \mathbb{R}_{n-1}[X]$$

$$P \mapsto P(X+1)$$

Pour tout $j \in [1, n]$,

$$(X+1)^{j-1} = \sum_{i=0}^{j-1} {j-1 \choose i} X^i = \sum_{i=1}^{j} {j-1 \choose i-1} X^{i-1}$$
(4.19)

On note $P_i = X^{i-1}$ et $\mathcal{B} = (P_1, \dots, P_n)$ la base canonique de $\mathbb{R}_{n-1}[X]$. On note $A = \operatorname{mat}_{\mathcal{B}}(u)$. $u^{-1} \colon P \mapsto P(X-1)$ donc A est inversible et pour tout $k \in [1, n]$,

$$(X-1)^{j-1} = \sum_{i=0}^{j-1} {j-1 \choose i} X^{i} (-1)^{j-i-1} = \sum_{i=1}^{j} {j-1 \choose i-1} X^{i-1} (-1)^{j-i}$$
(4.20)

donc

$$A^{-1} = \left(\binom{j-1}{i-1} (-1)^{j-i} \right)_{1 \le i, j \le n}$$
(4.21)

Pour tout $k \in \mathbb{N}$, on a $u^k \colon P \mapsto P(X+k)$ et pour tout $j \in [1, n]$,

$$(X+k)^{j-1} = \sum_{i=0}^{j-1} {j-1 \choose i} X^i k^{j-i-1} = \sum_{i=1}^{j} {j-1 \choose i-1} X^{i-1} k^{j-i}$$
(4.22)

donc

$$A^{k} = \left(\binom{j-1}{i-1} k^{j-i} \right)_{1 \le i, j \le n}$$

$$(4.23)$$

Solution 4.4.

1. Pour $n \in \mathbb{N}^*$, on note H(n): 'si dim(E) = n et si $u \in \mathcal{L}(E)$ vérifie $\mathrm{Tr}(u) = 0$, alors il existe une base \mathcal{B} de E telle que

$$\operatorname{mat}_{\mathcal{B}}(u) = \begin{pmatrix} 0 & \star & \dots & \star \\ \star & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \star \\ \star & \dots & \star & 0 \end{pmatrix}$$

$$(4.24)$$

,

Pour n = 1, on a u = 0 si Tr(u) = 0. Pour $n \ge 1$, on suppose H(n), soit E de dimension n + 1 et $u \in \mathcal{L}(E)$ tel que Tr(u) = 0. S'il existe $\lambda \in \mathbb{K}$ tel que $u = \lambda i d_E$, on a $Tr(u) = (n + 1)\lambda = 0$ donc $\lambda = 0$ donc u = 0.

Sinon, il existe $e_1 \neq 0$ tel que $(e_1, u(e_1))$ est libre (résultat classique, redémontré en remarque ci-dessous). On pose $e_2 = u(e_1)$ et on complète (e_1, e_2) en une base de $E : (e_1, e_2, \dots, e_{n+1}) = \mathcal{B}_1$. Alors $\text{mat}_{\mathcal{B}_1}(u)$ est de la forme

$$\begin{pmatrix} 0 & \star & \dots & \star \\ 1 & & & \\ 0 & & A' \\ \vdots & & & \\ 0 & & & \end{pmatrix} \tag{4.25}$$

avec Tr(u) = Tr(A') = 0. Posons $F = \text{Vect}(e_2, \dots, e_{n+1})$. On note Π la projection sur F parallèlement à $\text{Vect}(e_1)$. Alors si

$$u': F \rightarrow F$$

 $x \mapsto \Pi(u(x))$

et $A' = \max_{(e_2,\dots,e_{n+1})}(u')$ donc $\operatorname{Tr}(u') = 0$. D'après H(n), il existe (f_2,\dots,f_{n+1}) une base de F telle que

$$\operatorname{mat}_{(f_2,\dots,f_{n+1})}(u') = \begin{pmatrix} 0 & \star & \dots & \star \\ \star & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \star \\ \star & \dots & \star & 0 \end{pmatrix} \tag{4.26}$$

Soit donc $\mathcal{B}_2 = (e_1, f_2, \dots, f_{n+1})$ base de E. On a $u(e_1) \in F$ donc

$$\operatorname{mat}_{\mathcal{B}_{2}}(u) = \begin{pmatrix} 0 & \star & \dots & \star \\ \star & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \star \\ \star & \dots & \star & 0 \end{pmatrix}$$

$$(4.27)$$

2. Soit $M = (a_{i,j})_{1 \leq i,j \leq n}$ et $D = (i\delta_{i,j})_{1 \leq i,j \leq n}$. On a

$$[DM]_{i,j} = \sum_{k=1}^{n} i\delta_{i,k} a_{k,j} = ia_{i,j}$$
(4.28)

et

$$[MD]_{i,j} = \sum_{k=1}^{n} a_{i,k} k \delta_{k,j} = j a_{i,j}$$
(4.29)

On a $M \in \ker(\varphi)$ si et seulement si pour tout $i \neq j$, $a_{i,j} = 0$ si et seulement si $M \in D_n(\mathbb{K})$ (ensemble des matrices diagonales). Donc $\dim(\ker(\varphi)) = n$ et $\dim(\operatorname{Im}(\varphi)) = n^n - n$. Or pour tout $M \in \mathcal{M}_n(\mathbb{K})$, $[MD - DM]_{i,i} = 0$. Notons Δ_n l'ensemble des matrices de diagonale nulle. On a $\operatorname{Im}\varphi \subset \Delta_n$ et $\dim(\Delta_n) = n^2 - n$ (une base de Δ_n est $(E_{i,j})_{i \neq j}$, matrices élémentaires) donc $\operatorname{Im}(\varphi) = \Delta_n$.

Soit alors $A \in \mathcal{M}_n(\mathbb{K})$ telle que $\operatorname{Tr}(A) = 0$. D'après 1. il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP \in \Delta_n = \operatorname{Im}(\varphi)$ donc il existe $M \in \mathcal{M}_n(\mathbb{K})$ telle que $P^{-1}AP = MD - DM$ donc

$$A = P(MD - DM)P^{-1} (4.30)$$

$$= PMDP^{-1} - PDMP^{-1} (4.31)$$

$$= \boxed{XY - YX} \tag{4.32}$$

avec $X = PMP^{-1}$ et $Y = PDP^{-1}$.

Remarque 4.2. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ tel que pour tout $x \in E \setminus \{0\}$, (x, u(x)) est liée i.e. pour tout $x \in E \setminus \{0\}$, $u(x) = \lambda_x x$. Alors u est une homothétie.

En effet, soit $(x,y) \in (E \setminus \{0\})^2$, si (x,y) est liée, il existe $\mu \in \mathbb{K}^*$ tel que $y = \mu x$. On a alors

$$u(y) = \lambda_y y = \mu u(x) = \mu \lambda_x x = \lambda_x y \tag{4.33}$$

On a $y \neq 0$ donc $\lambda_x = \lambda_y$.

Si(x,y) est libre, on a

$$u(x+y) = \lambda_{x+y}(x+y) = \lambda_x x + \lambda_y y \tag{4.34}$$

Par liberté de (x, y), on a $\lambda_{x+y} = \lambda_x = \lambda_y$.

Ainsi, λ_x ne dépend pas de x: il existe $\lambda \in \mathbb{K}$ tel que pour tout $x \in E$, $u(x) = \lambda x$, i.e. $u = \lambda i d_E$.

Solution 4.5.

1. Si
$$X = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^\mathsf{T}$$
 et $Y = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^\mathsf{T}$, on a

$$XY^{\mathsf{T}} = \begin{pmatrix} x_1 y_1 & \dots & x_1 y_n \\ \vdots & & \vdots \\ \vdots & & \vdots \\ x_n y_1 & \dots & x_n y_n \end{pmatrix}$$

$$(4.35)$$

est de rang 1. On a

$$(XY^{\mathsf{T}})^2 = X(Y^{\mathsf{T}}X)Y^{\mathsf{T}} = \left(\sum_{i=1}^n x_i y_i\right) XY^{\mathsf{T}}$$
 (4.36)

Si $\lambda = 0$, c'est évident.

Si $\lambda \neq 0$ et $B = I_n + \lambda X Y^{\mathsf{T}}$, on a

$$XY^{\mathsf{T}} = \frac{B - I_n}{\lambda} \tag{4.37}$$

et

$$(XY^{\mathsf{T}})^2 = \frac{(B - I_n)^2}{\lambda^2}$$
 (4.38)

soit

$$(XY^{\mathsf{T}})^2 = \frac{B^2 - 2B + I_n}{\lambda^2} = \left(\sum_{i=1}^n x_i y_i\right) \left(\frac{B - I_n}{\lambda}\right)$$
 (4.39)

d'où

$$\lambda (Y^{\mathsf{T}}X) (B - I_n) = B^2 - 2B + I_n$$
 (4.40)

d'où

$$B^{2} + \left(-2 - \lambda \left(Y^{\mathsf{T}}X\right)\right)B + I_{n}\left(1 + \lambda \left(Y^{\mathsf{T}}X\right)\right) = 0 \tag{4.41}$$

Si $1 + \lambda Y^{\mathsf{T}} X \neq 0$, alors B est inversible et

$$B^{-1} = -\frac{1}{1 + \lambda Y^{\mathsf{T}} X} \left(B - \left(2 + \lambda Y^{\mathsf{T}} X \right) I_n \right)$$

$$(4.42)$$

Si $1 + \lambda Y^{\mathsf{T}} X = 0$, on a

$$B\left(B - I_n\right) = 0\tag{4.43}$$

Si B est inversible, on aura $B = I_n$ et $\lambda XY^{\mathsf{T}} = O_{\mathcal{M}_n(\mathbb{K})}$. Or $\lambda \neq 0$ donc X = Y = 0 et 1 = 0: absurde. Donc $B \notin GL_n(\mathbb{K})$.

2. On a

$$M = A + \lambda X Y^{Y} = A \left(I_{n} + \lambda A^{-1} X Y^{\mathsf{T}} \right) \tag{4.44}$$

donc $M \in GL_n(\mathbb{R})$ si et seulement si $(I_n + \lambda A^{-1}XY^{\mathsf{T}})$ est inversible si et seulement si $1 + \lambda Y^{\mathsf{T}}A^{-1}X$ est inversible d'après 1. Alors

$$M^{-1} = \left(I_n - \frac{\lambda A^{-1} X Y^{\mathsf{T}}}{1 + \lambda Y^{\mathsf{T}} A^{-1} X}\right) A^{-1}$$
(4.45)

Solution 4.6. On a dim($\mathbb{R}_n[X]$) = n+1 donc il faut montrer que (S_0, \ldots, S_n) est libre. Soit donc $\alpha = (\alpha_0, \ldots, \alpha_n) \in \mathbb{R}^{n+1}$ tel que

$$\alpha_0 S_0 + \dots + \alpha_n S_n = 0 \tag{4.46}$$

Si $\alpha \neq 0$, on pose $k_0 = \max{(k \in [0, n] | \alpha_k \neq 0)}$. On a

$$\alpha_0(1-X)^n + \dots + \alpha_{k_0}X^{k_0}(1-X)^{n-k_0} = 0$$
(4.47)

 soit

$$\alpha_0 (1 - X)^{k_0} + \dots + \alpha_{k_0} X^{k_0} = 0 \tag{4.48}$$

En évaluant en 1, on a $\alpha_{k_0} = 0$ ce qui est absurde. Donc (S_0, \ldots, S_n) est une base de $\mathbb{R}_n[X] = n + 1$.

Pour tout $k \in [0, n]$, on a

$$S_j = X^j (1 - X)^{n-j} (4.49)$$

$$= X^{j} \left(\sum_{k=0}^{n-j} {n-j \choose k} (-1)^{k} X^{k} \right)$$
 (4.50)

$$=\sum_{k=0}^{n-j} \binom{n-j}{k} (-1)^k X^{k+j}$$
(4.51)

$$= \sum_{k=j}^{n} {n-j \choose k-j} (-1)^{k-j} X^k \tag{4.52}$$

donc

$$A = P_{(1,\dots,X^n)\to(S_0,\dots,S_n)} = \left(\binom{n-j}{k-j} (-1)^{k-j} \right)_{0 \le k,j \le n}$$
(4.53)

On considère $u \in \mathcal{L}(\mathbb{R}[X])$ tel que $u(X^j) = S_j$ pour tout $j \in [0, n]$. On a $u(X^j) = \left(\frac{X}{1-X}\right)^j (1-X)^{-j}$ $(X)^n$. Pour tout $P \in \mathbb{R}_n[X]$, on a $u(P) = P\left(\frac{X}{1-X}\right)(1-X)^n$. Soit $(P,Q) \in \mathbb{R}_n[X]^2$, on a u(P) = Q si et seulement si $P\left(\frac{X}{1-X}\right)(1-X)^n=Q(X)$ si et seulement si $P(Y)\left(\frac{1}{1+Y}\right)^n=Q\left(\frac{Y}{1+Y}\right)$ soit u(P)=Qsi et seulement si $P(Y) = Q\left(\frac{Y}{1+Y}\right)(1+Y)^n$. Ainsi $u^{-1}(X^j) = X^j(1+X)^{n-j}$, donc $A^{-1} = \operatorname{mat}_{(1,\dots,X^n)}(u^{-1}) = \left(\binom{n-j}{k-j}\right)_{0 \le k, j \le n}$

$$A^{-1} = \operatorname{mat}_{(1,\dots,X^n)}(u^{-1}) = \left(\binom{n-j}{k-j} \right)_{0 \leqslant k,j \leqslant n}$$
 (4.54)

Solution 4.7. Si on a $H \cap GL_n(\mathbb{K}) = \emptyset$, on a $I_n \notin H$. On écrit donc

$$\mathcal{M}_n(\mathbb{K}) = H \oplus \mathbb{K}I_n \tag{4.55}$$

Soit $i \neq j$, on prend $E_{i,j} = M + \lambda I_n$ (décomposition précédente) avec $\lambda \in \mathbb{K}$. Si $\lambda \neq 0$, on a

$$M = E_{i,j} - \lambda I_n \in GL_n(\mathbb{K}) \tag{4.56}$$

donc $M \in GL_n(\mathbb{K}) \cap H$: absurde. Donc $\lambda = 0$ et $E_{i,j} \in H$, d'où $\text{Vect}(E_{i,j})_{,\neq i} \subset H$. Or

$$\begin{pmatrix}
0 & \dots & 0 & 1 \\
1 & \ddots & & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \dots & 0 & 1 & 0
\end{pmatrix}$$
 $\in (GL_n(\mathbb{K}) \cap \text{Vect}(E_{i,j})_{i \neq j}) \subset (GL_n(\mathbb{K}) \cap H)$ (4.57)

donc $H \cap GL_n(\mathbb{K}) \neq \emptyset$: absurde.

Remarque 4.3. Il existe une forme linéaire non nulle $\varphi \colon \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ telle que $H = \ker(\varphi)$.

En effet, pour toute forme linéaire φ sur $\mathcal{M}_n(\mathbb{K})$, il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que

$$\varphi(M) = \text{Tr}(AM) \tag{4.58}$$

Pour le montrer : si A existe, pour tout $(i,j) \in [1,n]^2$, $\varphi(E_{i,j}) = \operatorname{Tr}(AE_{i,j}) = a_{j,i}$. Réciproquement, soit $A = (\varphi(E_{j,i}))_{1 \leq i,j \leq n}$. On a pour tout $M \in \mathcal{M}_n(\mathbb{K})$, $\varphi(M) = \operatorname{Tr}(AM)$ car cex deux formes linéaires coïncident sur les $(E_{i,j})_{1 \leq i,j \leq n}$.

Il existe donc $A \in \mathcal{M}_n(\mathbb{K}) \setminus \{0\}$,

$$H = \{ M \in \mathcal{M}_n(\mathbb{K}) | \text{Tr}(AM) = 0 \}$$

$$\tag{4.59}$$

Si r = rg(A), il existe $(P,Q) \in GL_n(\mathbb{K})^2$ telles que $A = Q^{-1}J_{n,n,r}P$ $(J_{n,n,r} : matrice de taille <math>n \times n$ avec les r premiers coefficients diagonaux valant 1). Alors pour tout $M \in \mathcal{M}_n(\mathbb{K})$, on a

$$\operatorname{Tr}(AM) = \operatorname{Tr}(J_{n,n,r} \underbrace{MPQ^{-1}}_{=M'}) \tag{4.60}$$

et il suffit de prendre

$$M' = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 1 & \ddots & & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$
 (4.61)

Remarque 4.4. Si F est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ vérifie $\dim(F) \geqslant n^2 - n + 1$ alors

$$G \cap GL_n(\mathbb{K}) \neq \emptyset \tag{4.62}$$

Solution 4.8.

1. On prend $\lambda = 0$ et $N(0 \times 0) = 0 \times N(0) = 0$ donc

$$\boxed{N(0) = 0} \tag{4.63}$$

2. On a pour $j \neq i$, $E_{i,j} \times E_{j,j} = E_{i,j}$ et $E_{j,j}E_{i,j} = 0$ donc $N(E_{i,j}) = N(E_{i,j}E_{j,j}) = N(E_{j,j}E_{i,j})$ d'où

$$N(E_{i,j}) = 0 (4.64)$$

- 3. Déjà traité à l'exercice 4.
- 4. Si $\operatorname{Tr}(A) = 0$, alors il existe $P \in GL_n(\mathbb{C})$ telle que

$$P^{-1}AP = \sum_{i \neq j} \alpha_{i,j} E_{i,j} \tag{4.65}$$

donc

$$N(A) = N(P^{-1}AP) \leqslant \sum_{i \neq j} \alpha_{i,j} N(E_{i,j}) = 0$$
(4.66)

5. Soit $A' = A - \frac{\text{Tr}(A)}{n} I_n$. On a N(A') = 0 d'après ce qui précède. Montrons que pour tout $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$,

$$|N(A) - N(B)| \leqslant N(A - B) \tag{4.67}$$

On écrit A = A - B + B et $N(A) \leq N(A - B) + N(B)$ d'où $N(A) - N(B) \leq N(A - B)$ et on a le résultat par symétrie de A et B.

On a donc

$$\left| N(A) - N\left(\frac{\operatorname{Tr}(A)}{n}I_n\right) \right| \leqslant N\left(A - \frac{\operatorname{Tr}(A)}{n}I_n\right) = 0 \tag{4.68}$$

d'où

$$N(A) = N\left(\frac{\operatorname{Tr}(A)}{n}I_n\right) = |\operatorname{Tr}(A)| \times \underbrace{N\left(\frac{I_n}{n}\right)}_{=a\geqslant 0}$$
(4.69)

Solution 4.9. On écrit

$$f + g = f \circ \left(id + f^{-1} \circ g\right) \tag{4.70}$$

avec $f^{-1}\circ g$ de rang 1. Il existe une base $\mathcal B$ de E telle que

$$\operatorname{mat}_{\mathcal{B}}(f^{-1} \circ g) = \begin{pmatrix} 0 & \dots & 0 & \star \\ \vdots & & & \vdots & \vdots \\ \vdots & & & \vdots & \vdots \\ 0 & \dots & \dots & 0 & \alpha \end{pmatrix}$$
(4.71)

avec $\alpha = \text{Tr}(f^{-1} \circ g)$ et donc $\text{mat}_{\mathcal{B}}(id + g^{-1} \circ g)$ est inversible si et seulement si $1 + \alpha \neq 0$ si et seulement si $\text{Tr}(f^{-1} \circ g) \neq 1$.

Solution 4.10. Par symétrie du problème, il suffit de déterminer les

$$a_{n,j} = |\{\text{chemins de longueur } n \text{ de } 1 \text{ vers } j \in \{2, 3, 4\}\}|$$
 (4.72)

On pose

$$X_{n} = \begin{pmatrix} a(n,1) \\ a(n,2) \\ a(n,3) \\ a(n,4) \end{pmatrix}$$
(4.73)

On a alors

$$X_{n+1} = \underbrace{\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}}_{= A} X_n \tag{4.74}$$

car (en raisonnant modulo 4) il y a autant de chemins de longueur n+1 reliant 1 à j que de chemins de longueur n reliant 1 à j-1 + chemins de longueur n reliant 1 à j+1. d'où $X_n = A^n X_0$ avec

$$X_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \tag{4.75}$$

On a

$$A = \begin{pmatrix} B & B \\ B & B \end{pmatrix} \tag{4.76}$$

avec

$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{4.77}$$

On a $B^2={\cal I}_2$ et on montre par récurrence

$$\begin{cases} A^{2p} = 2^{2p-1} \begin{pmatrix} I_2 & I_2 \\ I_2 & I_2 \end{pmatrix} & p \geqslant 1 \\ A^{2p+1} = 2^{2p} \begin{pmatrix} B & B \\ B & B \end{pmatrix} & p \geqslant 0 \end{cases}$$
(4.78)

Ainsi,

$$a(2p,1) = 2^{2p-1} = a(2p,3)$$

$$a(2p,2) = 0 = a(2p,4)$$

$$a(2p+1,1) = 0 = a(2p+1,3)$$

$$a(2p+1,4) = 2^{2p} = a(2p+1,4)$$

$$(4.79)$$

Ici, on a

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$(4.80)$$

En deux itérations, il y a chaque fois deux possibilités pour relier deux sommets différents de

même partié, et 3 pour revenir au même sommet. On a donc

On applique le binôme de Newton pour calculer les puissances paires de A, puis on déduit les puissances impaires en multipliant par A.

Solution 4.11. Soit $X = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^\mathsf{T} \in \mathcal{M}_{n,1}(\mathbb{C})$. Supposons AX = 0. Alors pour tout $i \in [1, n]$,

$$\sum_{j=1}^{n} a_{i,j} x_j = 0 \Rightarrow -a_{i,i} x_i = \sum_{\substack{j=1\\j \neq i}}^{n} a_{i,j} x_j$$
 (4.82)

donc

$$\left| \sum_{\substack{j=1\\j\neq i}}^{n} a_{i,j} x_{j} \right| = |a_{i,i} x_{i}| \leqslant \sum_{\substack{j=1\\j\neq i}}^{n} |a_{i,j} x_{j}| \tag{4.83}$$

Soit $i_0 \in [1, n]$ tel que

$$x_{i_0} = \max\{|x_i|, i \in [1, n]\}$$
 (4.84)

On a alors

$$|a_{j,i_0}| |x_{i_0}| \le |x_{i_0}| \sum_{\substack{j=1\\j\neq i}}^n |a_{i_0,j}|$$
 (4.85)

D'après l'hypothèse, on a $|x_{i_0}| = 0$ donc X = 0 et A est inversible.

Il faut l'inégalité stricte, un contre-exemple est donnée par une ligne nulle.

Remarque 4.5. Si pour tout $j \in [1, n]$, $|a_{j,j}| > \sum_{i \neq j} |a_{i,j}|$ alors $A^{\mathsf{T}} \in GL_n(\mathbb{C})$ et donc $A \in GL_n(\mathbb{C})$.

Solution 4.12. On écrit, pour tout $(i, j) \in [1, n]^2$,

$$i \wedge j = \sum_{k|i \wedge j} \varphi(k) \tag{4.86}$$

$$= \sum_{\substack{k|i\\k|j}} \varphi(k) \tag{4.87}$$

$$=\sum_{k=1}^{n}b_{k,i}b_{k,j}\varphi(k) \tag{4.88}$$

avec $b_{k,i} = 1$ si $k \mid i$ et 0 sinon. On a alors, si $A = (i \land j)_{1 \leqslant i,j \leqslant n}$, $A = B^{\mathsf{T}}C$ avec $B = (b_{k,i})_{1 \leqslant i,k \leqslant n}$ (triangulaire supérieure) et $C = (\varphi(k)b_{k,j})_{1 \leqslant k,j \leqslant n}$ (triangulaire supérieure). Donc

$$\det(A) = \prod_{i=1}^{n} \varphi(i)$$
(4.89)

Solution 4.13. Pour l'unicité, si $A = L_1U_1 = L_2U_2$ telles que proposées. Comme A est inversible, on a $\det(A) = \det(L_i) \det(U_i) \neq 0$ pour $i\{1,2\}$ et donc L_i et U_i sont inversibles. Ainsi,

$$L_2^{-1}L_1 = U_2U_1^{-1} \in \mathcal{T}_n^-(\mathbb{C}) \cap \mathcal{T}_n^+(\mathbb{C})$$
 (4.90)

avec des 1 sur la diagonale, c'est donc I_n , d'où l'unicité.

Pour l'existence, on travaille par récurrence sur $n \in \mathbb{N}$: pour n = 1 on a $A = (1) \times (a_{1,1})$. Soit $A_{n+1} \in \mathcal{M}_{n+1}(\mathbb{C})$ vérifiant l'hypothèse, alors A_n vérifie l'hypothèse $A_n = L_n U_n$ avec

$$A_{n+1} = \begin{pmatrix} A_n & Y \\ X^\mathsf{T} & a_{n+1,n+1} \end{pmatrix} \tag{4.91}$$

On veut

$$A_{n+1} = \begin{pmatrix} 0 \\ L' & \vdots \\ & 0 \\ X_1^\mathsf{T} & 1 \end{pmatrix} \times \begin{pmatrix} U' & Y_1 \\ 0 & \dots & 0 & u_{n+1,n+1} \end{pmatrix}$$
(4.92)

On a $(X,Y) \in \mathcal{M}_{n+1}(\mathbb{C})$, par produits par blocs, on a $A_n = L'U' = L_nU_n$ et par unicité, $L' = L_n$ et $U' = U_n$. On a $X^{\mathsf{T}} = X_1^{\mathsf{T}}U'$ et donc $X_1^{\mathsf{T}} = X^{\mathsf{T}}U_n^{-1}$ et $Y = L_nY_1$ donc $Y_1 = L_n^{-1}Y$.

Enfin, $a_{n+1,n+1} = X_1^{\mathsf{T}} Y_1 + u_{n+1,n+1}$ et donc

$$u_{n+1,n+1} = a_{n+1,n+1} - X_1^{\mathsf{T}} Y_1 = a_{n+1,n+1} - X^{\mathsf{T}} U_n^{-1} L_n^{-1} Y$$
(4.93)

Réciproquement, en définissant ainsi U et L, on a bien A = Lu en remontant les calculs.

Solution 4.14. On a $\sum_{k \in A_i} a_k - \sum_{k \in B_i} a_k = 0$ (combinaison linéaire des a_k avec des coefficients ± 1), donc

$$\begin{pmatrix}
0 & \pm 1 & \dots & \pm 1 \\
\pm 1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
\pm 1 & \dots & \pm 1 & 0
\end{pmatrix}
\underbrace{\begin{pmatrix}
a_1 \\
\vdots \\
a_{2n+1}
\end{pmatrix}}_{=X} = 0$$

$$(4.94)$$

Sur chaque ligne, il y a n fois 1 et n fois -1 (car les A_i et B_i sont disjoints). On veut montrer que $X = \alpha \mathbf{1}$. On a $X \in \ker(A)$ et $\mathbf{1} \in \ker(A)$ (car il y a n 1 et n -1 par ligne). On veut donc montrer que $\dim(\ker(A)) = 1$, soit $\operatorname{rg}(A) = 2n$.

On doit donc montrer qu'il existe une sous-matrice de taille 2n inversible car $\dim(\ker(A)) \ge 1$. Comme on est bloqué par les ± 1 , on se place dans $\mathbb{Z}/2\mathbb{Z}$. Soit donc

$$\overline{B_n} = \begin{pmatrix}
\overline{0} & \overline{1} & \dots & \overline{11} \\
\overline{1} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \overline{11} \\
\overline{11} & \dots & \overline{11} & \overline{0}
\end{pmatrix} \in \mathcal{M}_n(\mathbb{Z}/2\mathbb{Z}) \tag{4.95}$$

Si $\det(\overline{B_n}) \neq 0$, on a $\det(B_n) \neq 2k$ pour tout $k \in \mathbb{N}$ où B_n est obtenue en enlevant à A sa dernière ligne et sa dernière colonne, et donc $\det(A) \neq 0$.

On cherche un polynôme annulateur de $\overline{B_n}$. On a

$$\left(\overline{B_n} + \overline{I_{2n}}\right)^2 = \overline{B_n}^2 + 2\overline{B_n} + I_{2n} = \begin{pmatrix} \overline{1} & \dots & \overline{1} \\ \vdots & & \vdots \\ \overline{1} & \dots & \overline{1} \end{pmatrix}^2 = 2n \begin{pmatrix} \overline{1} & \dots & \overline{1} \\ \vdots & & \vdots \\ \overline{1} & \dots & \overline{1} \end{pmatrix} = \begin{pmatrix} \overline{0} \end{pmatrix}$$
(4.96)

Ainsi,

$$\overline{B_n}\left(\overline{B_n} + 2\overline{I_{2n}}\right) = -\overline{I_{2n}} = \overline{I_{2n}} \tag{4.97}$$

donc $\overline{B_n} \in GL_n(\mathbb{Z}/2\mathbb{Z})$ et donc $B_n \in GL_{2n}(\mathbb{R})$, ce qui démontre bien que $\operatorname{rg}(A) = 2n$ et $\ker(A) = \operatorname{Vect}(\mathbf{1})$, d'où

$$\boxed{a_1 = \dots = a_{2n+1}} \tag{4.98}$$

Solution 4.15. On note $T_{i,j}(\lambda) = I_n + \lambda E_{i,j}$ pour i < j. On rappelle que la multiplication à gauche par $T_{i,j}(\lambda)$ remplace la i-ième ligne de la matrice L_i par $L_i + \lambda L_j$: on ajoute à une ligne λ fois une ligne d'indice supérieur. La multiplication à droite par $T_{i,j}(\lambda)$ remplace la j-ième colonne de la matrice C_j par $C_j + \lambda C_i$: on ajoute à une colonne λ foi une colonne d'indice inférieur. Ces matrices sont des matrices de transvection.

On note aussi $D_i(\lambda)$ la matrice de dilatation qui contient des 1 sur la diagonale sauf en i position où il y a un λ . On rappelle que la multiplication à gauche par $D_i(\lambda)$ revient à multiplier L_i par λ et la multiplication à droite revient à multiplier C_i par λ .

Sur la première colonne de M, il y a au moins un coefficient non nul car $M \in GL_n(\mathbb{C})$. Soit

 $i_1 = \max\{i \in \llbracket, n \rrbracket, m_{i,1} \neq 0\}.$ On effectue alors

$$D_{i_{1}}\left(\frac{1}{m_{i_{1},1}}\right)M = \begin{pmatrix} \star & \star & \dots & \star \\ \vdots & \vdots & & & \vdots \\ \star & \vdots & & & \vdots \\ 1 & \vdots & & & \vdots \\ 0 & \vdots & & & \vdots \\ \vdots & \vdots & & & \vdots \\ 0 & \star & \dots & & \star \end{pmatrix}$$
(4.99)

Par produite de transvections (qui sont des matrices triangulaires supérieures, i.e. dans \mathcal{T}_n^+) à gauche, on obtient

$$\begin{pmatrix}
0 & \star & \dots & \star \\
\vdots & \vdots & & \vdots \\
0 & \vdots & & \vdots \\
1 & \vdots & & \vdots \\
0 & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
0 & \star & \dots & \star
\end{pmatrix} (4.100)$$

Par produite de transvections $\in \mathcal{T}_n^+$ à droite, on obtient

$$\begin{pmatrix}
0 & \star & \dots & \star \\
\vdots & \vdots & & \vdots \\
0 & \star & \dots & \star \\
1 & 0 & \dots & \ddots & 0 \\
0 & \star & \dots & \ddots & \star \\
\vdots & \vdots & & \vdots \\
0 & \star & \dots & \star
\end{pmatrix}$$
(4.101)

Soit $M' \in GL_n(\mathbb{C})$ la matrice extraite de M en ôtant la première colonne et la i_1 -ième ligne. On

procède par récurrence avec M'. Donc il existe $\sigma \in \Sigma_n, (T, T') \in (\mathcal{T}_n^+)^2$ telle que

$$M = TP_{\sigma}T' \tag{4.102}$$

Montrons que tout matrice de \mathcal{T}_n^+ inversible est produit de matrices de transvections dans \mathcal{T}_n^+ et de dilatations.

Soit $T \in \mathcal{T}_n^+ \cap GL_n(\mathbb{C})$ avec

$$T = \begin{pmatrix} t_{1,1} & \star & \dots & \star \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \star \\ 0 & \dots & \dots & 0 & t_{n,n} \end{pmatrix}$$

$$(4.103)$$

On a $t_{1,1} \neq 0$ car sinon la colonne 1 est nulle. On a donc

$$TD_{1}\left(\frac{1}{t_{1,1}}\right) = \begin{pmatrix} 1 & \star & \dots & \star \\ 0 & \star & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \star \\ 0 & \dots & \dots & 0 & \star \end{pmatrix}$$

$$(4.104)$$

Puis, par produit de transvections à droite, on a

$$\begin{pmatrix}
1 & 0 & \dots & 0 \\
0 & \star & \dots & \star \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \star \\
0 & \dots & 0 & \star
\end{pmatrix}$$
(4.105)

On procède ensuite par récurrence sur n, et on a

$$T \times B_1 \times \dots \times B_l = I_n \tag{4.106}$$

donc

$$T = B_1^{-1} \times \dots \times B_1^{-1} \tag{4.107}$$

où $B_i \mathcal{T}_n^+$ transvection ou dilatation.

Soit donc (T, T', P_{σ}) vérifiant les hypothèses telles que $M = TP_{\sigma}T'$, alors on a

$$T^{-1}MT'^{-1} = P_{\sigma} = \underbrace{B_l^{-1} \times \dots \times B_1^{-1}}_{\text{transvections ou dilatations}} \times M \times \underbrace{B_l'^{-1} \times \dots \times B_1'^{-1}}_{\text{transvections ou dilatations}}$$
(4.108)

Nécessairement, on a $\sigma(1)=i$ défini plus haut. Donc de proche en proche, σ est univoquement déterminée.

Cependant, on peut écrire

$$I_{2} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \times I_{2} \times \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = I_{2} = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \times I_{2} \times \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$
(4.109)

donc il n'y a pas unicité de T et T'.

Solution 4.16.

1. Soit $A \in J \cap GL_n(\mathbb{K})$, on a pour tout $M \in \mathcal{M}_n(\mathbb{K})$, on a

$$M = \underbrace{M \times A}_{\in J} \times A^{-1} \in J \tag{4.110}$$

2. Soit $A_0 \in J \setminus \{0\}$ de rang $r \neq 0$. Il existe $(P,Q) \in GL_n(\mathbb{K})$ telle que $Q^{-1}A_0P = J_r \in J$, on a alors

$$\boxed{J_r \times J_1 = J_1 \in J} \tag{4.111}$$

3. Deux matrices de rang 1 sont équivalentes donc toutes les matrices de rang 1 son dans J. Or si $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$ s'écrit

$$A = \sum_{1 \leqslant i,j \leqslant n} \underbrace{a_{i,j} E_{i,j}}_{\text{de rang 1 ou 0}} \in J$$
(4.112)

163

Solution 4.17. On a

$$(\lambda A + I_n)(\lambda B + I_n) = \lambda^2 A B + \lambda A + \lambda B + I_n = I_n \tag{4.113}$$

donc $\lambda B + I_n$ est inversible. De plus, $A(\lambda B + I_n) = -B$ donc

$$A = -(\lambda B + I_n)^{-1} B (4.114)$$

Or $(\lambda B + I_n)^{-1}$ et B commutent. En effet, comme $\lambda \neq 0$, on a

$$B(\lambda B + I_n)^{-1} = \left(\left[B + \frac{1}{\lambda I_n} \right] - \frac{1}{\lambda} I_n \right) (\lambda B + I_n)^{-1} = \frac{1}{\lambda} I_n - \frac{1}{\lambda} (\lambda B + I_n)^{-1}$$
(4.115)

et on montre de même que

$$(\lambda B + I_n)^{-1}B = \frac{1}{\lambda}I_n - \frac{1}{\lambda}(\lambda B + I_n)^{-1}$$
(4.116)

Ainsi,

$$BA = -B(\lambda B + I_n)^{-1}B = -(\lambda B + I_n)^{-1}BB = AB$$
(4.117)

Solution 4.18. Soit $X = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^\mathsf{T}$ et $Y = \begin{pmatrix} y_1 & \dots & y_n \end{pmatrix}^\mathsf{T}$

On a AX = Y si et seulement si

$$\begin{cases} x_1 - a_2 x_2 - \dots - a_n x_n &= y_1 & [1] \\ a_2 x_1 + x_2 &= y_2 & [2] \\ \vdots & & & \\ a_n x_1 + x_n &= y_n & [n] \end{cases}$$

$$(4.118)$$

si et seulement si $(L_1 \leftarrow L_1 + \sum_{i=2}^n a_i L_i)$

$$\begin{cases}
(1 + \sum_{i=2}^{n} a_i^2) x_1 &= y_1 + \sum_{i=2}^{n} a_i y_i \quad [1] \\
a_2 x_1 + x_2 &= y_2 \quad [2] \\
\vdots && \\
a_n x_1 + x_n &= y_n \quad [n]
\end{cases}$$
(4.119)

si et seulement si

$$\begin{cases} x_1 = \frac{y_1 + a_2 y_2 + \dots + a_n y_n}{1 + \sum_{i=2}^n a_i^2} \\ x_j = y_j - a_j x_1 & \forall j \in [2, n] \end{cases}$$
(4.120)

En posant

$$\lambda = \frac{1}{1 + \sum_{i=2}^{n} a_i^2} \tag{4.121}$$

cela équivaut à (en posant $a_1 = 1$)

$$\begin{cases} x_1 = \lambda(y_1 + a_2y_2 + \dots + a_ny_n) \\ x_j = \lambda \left[\sum_{\substack{i=1 \ i \neq j}} a_i y_i - \left(1 + \sum_{\substack{i=1 \ i \neq j}} a_i^2 \right) y_j \right] \quad \forall j \in [2, n] \end{cases}$$
(4.122)

Donc
$$A \in GL_n(\mathbb{R})$$
.

Remarque 4.6. On pourrait se poser la question si $A \in GL_n(\mathbb{C})$? Si $1 + a_2^2 + \cdots + a_n^2 \neq 0$, on sait que $A \in GL_n(\mathbb{C})$. Cependant, on vérifie que si $X = \begin{pmatrix} 1 & -a_2 & \dots & -a_n \end{pmatrix}^\mathsf{T} \neq 0$, on a AX = 0 et donc $A \notin GL_n(\mathbb{C})$.

Solution 4.19.

1. Soit $X = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} \in \ker(A) \cap H$, on a $\sum_{i=1}^n x_i = 0$ et AX = 0. Notons que l'on a

$$A + A^{\mathsf{T}} = \begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \dots & \dots & 1 & 0 \end{pmatrix} = N \tag{4.123}$$

On a

$$NX = -X \tag{4.124}$$

et $N^{\mathsf{T}} = N$.

On a alors

$$X^{\mathsf{T}}AX + X^{\mathsf{T}}A^{\mathsf{T}}X = X^{\mathsf{T}}NX = -X^{\mathsf{T}}X = -\sum_{i=1}^{n} x_i^2$$
 (4.125)

Comme AX=0, on a aussi $X^\mathsf{T}AX=0$ et $X^\mathsf{T}A^\mathsf{T}X=(AX)^\mathsf{T}X=0$ donc on a $\sum_{i=1}^n x_i^2=0$ d'où $x_i=0$ et X=0. Donc

Donc $\dim(\ker(u)) \in \{0,1\}$ et le théorème du rang assure alors que $\operatorname{rg}(A) \in \{n-1,n\}$.

2. Comme $A + A^{\mathsf{T}} = N$, on a $A = \frac{1}{2}N + S$ avec $S \in \mathcal{A}_n(\mathbb{R})$. Or, pour S = 0, on a

$$N = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & 1 \\ 1 & \dots & 1 \end{pmatrix} - I_n \tag{4.127}$$

et $(N+I_n)^2 = n(M+I_n)$ donc $N \in GL_n(\mathbb{R})$. De même, pour

$$S = \frac{1}{2} \begin{pmatrix} 0 & -1 & \dots & -1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & -1 \\ 1 & \dots & \dots & 1 & 0 \end{pmatrix}$$
 (4.128)

on a

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 1 & \dots & 1 & 0 \end{pmatrix}$$
 (4.129)

et rg(A) = n - 1.

Donc on peut avoir les deux possibilités.

Solution 4.20. Soit $u \in \mathcal{L}(\mathbb{C}^n)$ de range 1 telle que $\mathrm{Tr}(u) = \lambda$. On a $\dim(\ker(u)) = n-1$

En prenant une base de $\ker(u)$ (e_1,\ldots,e_{n-1}) que l'on complète en $\mathcal{B}=(e_1,\ldots,e_{n-1},e_n)$ une

base de \mathbb{C}^n , on a

$$\operatorname{mat}_{\mathcal{B}}(u) = \begin{pmatrix} 0 & \dots & 0 & \alpha_1 \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots & \alpha_{n-1} \\ 0 & \dots & 0 & \lambda \end{pmatrix} \tag{4.130}$$

Si $\lambda \neq 0$, posons $f_n = \beta_1 e_1 + \dots + \beta_{n-1} e_n + e_n$, on a

$$u(f_n) = \lambda f_n \tag{4.131}$$

si et seulement si

$$\alpha_1 e_1 + \dots + \alpha_{n-1} e_{n-1} + \lambda e_n = \lambda f_n \tag{4.132}$$

On pose $\beta_1 = \frac{\alpha}{\lambda}, \dots, \beta_{n-1} = \frac{\alpha_{n-1}}{\lambda}$ et si $\mathcal{B}' = (e_1, \dots, e_{n-1}, f_n)$, on a

$$\operatorname{mat}_{\mathcal{B}'}(u) = \begin{pmatrix} 0 & \dots & 0 & 0 \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots & 0 \\ 0 & \dots & 0 & \lambda \end{pmatrix}$$

$$(4.133)$$

Si $\lambda = 0$, il existe $i_0 \in [1, n-1]$ tel que $\alpha_{i_0} \neq 0$ (sinon $\operatorname{rg}(u) = 0$). On pose $f_n = e_n$ et $\{f_1 = \alpha_1 e_1 + \dots + \alpha_{n-1} e_{n-1} \in \ker(u) \setminus \{0\}\}$ et on complète (f_1, \dots, f_{n-1}) en une base de $\ker(u)$. On pose $\mathcal{B}' = (f_1, \dots, f_n)$ base de \mathbb{C}^n et on a alors

$$mat_{\mathcal{B}'}(u) = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & & 0 & 0 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{pmatrix} \tag{4.134}$$

Ainsi, dans les deux cas, deux matrices sont de rang 1 et de même trace si et seulement si elles sont semblables.

Solution 4.21.

- 1. Soit $M \in F$, telle que $\operatorname{rg}(M) = r$. M est équivalente à J_r , donc il existe $(P_0, Q_0) \in GL_n(\mathbb{R})^2$ telle que $P_0^{-1}J_rQ_0 = M \in F$.
- 2. Soit

$$\varphi: F \to F_0$$

$$M \mapsto P_0 M Q_0^{-1}$$

est linéaire surjective par définition de F_0 de réciproque $\varphi^{-1} \colon M_0 \to P_0^{-1} M_0 Q_0$ donc F et F_0 sont isomorphes.

Pour tout $M \in F$, $\operatorname{rg}(M) = \operatorname{rg}(\varphi(M)) : \varphi$ étant bijective, on a $r = \max \{\operatorname{rg}(M_0) | M_0 \in F_0\}$

3. Il suffit de choisir les coefficients de B et C donc

$$\boxed{\dim(G_0) = n(n-r)} \tag{4.135}$$

4. On écrit

$$\begin{pmatrix} \lambda I_r & B^\mathsf{T} \\ B & C \end{pmatrix} = \lambda J_r + M_0 \in F_0 \tag{4.136}$$

Si on avait

$$\det\begin{pmatrix} \lambda I_r & b_{j,1} \\ \vdots \\ b_{j,r} \\ \hline b_{i,1} & \dots & b_{i,r} & c_{i,j} \end{pmatrix} \neq 0 \tag{4.137}$$

(déterminant d'une sous-matrice de taille r+1 de la matrice précédente), on aurait

$$\operatorname{rg}\begin{pmatrix} \lambda I_r & B^{\mathsf{T}} \\ B & C \end{pmatrix} \geqslant r + 1 > r \tag{4.138}$$

ce qui est exclu d'après 2.

5. En effectuant $L_{r+1} \leftarrow L_{r+1} - \frac{b_{i,1}}{\lambda} L_1 - \dots - \frac{b_{i,r}}{\lambda} L_r$, en notant $f(\lambda) = c_{i,j} - \sum_{k=1}^r \frac{b_{i,k}}{\lambda} b_{j,k}$, on obtient

$$\det \begin{pmatrix} \lambda I_r & \vdots \\ b_{j,r} \\ \hline 0 & \dots & 0 & f(\lambda) \end{pmatrix} = 0 \tag{4.139}$$

D'où $f(\lambda) = 0$ et comme $\lambda \neq 0$, on a

$$\lambda f(\lambda) = 0 = \lambda c_{i,j} - \sum_{k=1}^{r} b_{i,k} b_{j,k}$$
 (4.140)

qui est nulle sur \mathbb{R}^* donc $c_{i,j} = 0$ et $\sum_{k=1}^r b_{i,k} b_{j,k} = 0$. Ceci implique C = 0 et pour i = j, on a $\sum_{k=1}^r b_{j,k}^2 = 0$ donc B = 0.

6. On a donc $G_0 \cap F_0 = \{0\}$ (dim $(G_0) = n(n-r)$). G_0 et F_0 sont en somme directe, donc

$$\dim(G_0 \oplus F_0) = \dim(G_0) + \dim(F_0) \leqslant n^2 \tag{4.141}$$

donc

$$\dim(F) = \dim(F_0) \leqslant n^2 - n(n-r) = nr$$
 (4.142)

- 7. Si $F \cap GL_n(\mathbb{R}) = \emptyset$, on a $r \leq n-1$ et $\dim(F) \leq n(n-1)$. Par contraposée, si $\dim(F) \geq n^2 n + 1$, on a $F \cap GL_n(\mathbb{R}) \neq \emptyset$.
- 8. Soit

$$G_{1} = \left\{ \begin{pmatrix} 0 & B^{\mathsf{T}} \\ B & C \end{pmatrix} \middle| B \in \mathcal{M}_{n-r,r}(\mathbb{C}), C \in \mathcal{M}_{r}(\mathbb{C}) \right\}$$

$$(4.143)$$

sous- \mathbb{R} -espace-vectoriel de $\mathcal{M}_n(\mathbb{C})$. Par les mêmes arguments que précédemment, on a $G_1 \cap F_0 = \{0\}$ et $\dim_{\mathbb{R}}(G_1) = 2n(n-r)$ et $\dim_{\mathbb{R}} \mathcal{M}_n(\mathbb{C}) = 2n^2$ donc

$$\dim_{\mathbb{R}} F_0 = 2\dim_{\mathbb{C}} F_0 \leqslant 2nr \tag{4.144}$$

Le résultat est donc encore valable.

Solution 4.22. On a $f(I_n) = f(I_n)^2$ donc $f(I_n \in \{0,1\})$. Si $f(I_n) = 0$, alors f = 0 ce qui est exclu.

Si M est inversible, on a

$$f(M \times M^{-1}) = f(M) \times f(M^{-1}) = 1 \tag{4.145}$$

donc $f(M) \neq 0$.

Si M n'est pas inversible, posons $r = rg(M) \leq n - 1$. M est équivalente la matrice nilpotente

$$M' = \begin{pmatrix} 0 & 1 & 0 & \dots & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & 1 & \ddots & \vdots \\ \vdots & & & \ddots & 0 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & \dots & 0 & 0 \end{pmatrix}$$
(4.146)

Donc il existe $(P,Q) \in (GL_n(\mathbb{C}))^2$ telles que $M = P^{-1}M'Q$. On a

$$f(M'^n) = (f(M'))^n = f(0)$$
(4.147)

Comme $f(0) = f(0)^2$, on a aussi $f(0) \in \{0, 1\}$. Si f(0) = 1, pour tout $A \in \mathcal{M}_n(\mathbb{C})$, on a $f(A \times 0) = f(A) \times f(0) = 1$ ce qui est impossible car f n'est pas constante. Donc f(0) = 0. Ainsi, f(M') = 0 et donc f(M) = 0.

Remarque 4.7. f induit donc un morphisme de $(GL_n(\mathbb{C}), \times) \to (\mathbb{C}^*, \times)$.

Remarque 4.8. On peut montrer que pour $n \ge 2$, pour tout $i \ne j \in \{1, n\}^2$, $\forall \lambda \in \mathbb{C}$, il existe $(A, B) \in GL_n(\mathbb{C})^2$,

$$T_{i,j}(\lambda) = ABA^{-1}B^{-1} \tag{4.148}$$

en écrivant

$$T_{i,k}(\alpha)T_{k,j}(\beta)T_{i,k}(-\alpha)T_{k,j}(-\beta) = (I_n + \alpha E_{i,k} + \beta E_{k,j} + \alpha \beta E_{i,j})$$

$$\times (I_n - \alpha E_{i,k} - \beta E_{k,j} + \alpha \beta E_{i,j})$$

$$(4.149)$$

$$=I_n + \alpha \beta E_{i,j} \tag{4.150}$$

Il vient

$$f(T_{i,j}(\lambda)) = f(A)f(B)f(A)^{-1}f(B)^{-1} = 1$$
(4.151)

Si $M \in GL_n(\mathbb{C})$ s'écrit comme produit de transvections $T_{i,j}(\lambda)$ et de dilatations $D_n(\det(M))$.

Il vient $f(M) = f(D_n(\det(M)))$. Or

$$\varphi: (\mathbb{C}^*, \times) \to (\mathbb{C}^*, \times)$$

$$\alpha \mapsto f(D_n(\alpha))$$

est un morphisme de groupe (car $D_n(\alpha\beta) = D_n(\alpha)D_n(\beta)$).

Finalement, $f(M) = \varphi(\det(M))$.

Si de plus f est continue, φ aussi et on peut montrer qu'il existe $k \in \mathbb{R}$ tel que pour tout $z \in \mathbb{C}^*$, $\varphi(z) = z^k$.

5 Réduction des endomorphismes

Solution 5.1.

1. On a

$$f^k: E \to E$$

$$M \mapsto A^k M$$

donc pour tout polynôme P, on a P(f) = P(A)M par combinaison linéaire. Si P(A) = 0, alors P(f) = 0. Donc si A est diagonalisable, f l'est aussi. Si P(f) = 0 alors avec $M = I_n$, on a P(A) = 0 et A est diagonalisable si f l'est.

Même résultat avec q et B.

2. Soit $(\lambda_{i,j})_{1\leqslant i,j\leqslant n}$ tel que $\sum_{(i,j)\in [\![1,n]\!]^2}\lambda_{i,j}X_iY_j^\mathsf{T}=0$. Alors on a

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \lambda_{i,j} X_i \right) Y_j^{\mathsf{T}} = 0 \tag{5.1}$$

Soit $k \in [1, n]$, la k-ième ligne de notre matrice est

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \lambda_{i,j} X_{i,k} \right) Y_j^{\mathsf{T}} = 0 \tag{5.2}$$

Puisque $(Y_j^{\mathsf{T}})_{1 \leq j \leq n}$ est libre, on a pour tout $j \in [1, n]$,

$$\sum_{i=1}^{n} \lambda_{i,j} X_{i,k} = 0 (5.3)$$

Puisque $(X_i)_{1 \le i \le n}$ est libre, pour tout $(i, j) \in [1, n]^2$, $\lambda_{i,j} = 0$, d'où le résultat.

3. Puisque B est diagonalisable, B^{T} l'est aussi. On prend $(X_i)_{1 \leq i \leq n}$ une base de vecteurs propres de A avec pour tout $i \in [\![1,n]\!]$, $AX_i = \lambda_i X_i$. Prenons $(Y_j)_{1 \leq j \leq n}$ une base de vecteurs propres de B^{T} avec pour tout $j \in [\![1,n]\!]$, $B^{\mathsf{T}}Y_j = \mu_j Y_j$ et $Y_j B^{\mathsf{T}} = \mu_j Y_j^{\mathsf{T}}$. Ainsi,

$$h\left(X_{i}Y_{j}^{\mathsf{T}}\right) = AX_{i}Y_{j}^{\mathsf{T}}B = \mu_{j}AX_{i}Y_{j}^{\mathsf{T}} = \mu_{j}\lambda_{i}X_{i}Y_{j}^{\mathsf{T}} \tag{5.4}$$

et les $(X_iY_j^{\mathsf{T}})_{1\leqslant i,j\leqslant n}$ forment une base de E d'après ce qui précède. Donc h est diagonalisable. Réciproquement, on a le contre-exemple A=0 et B non diagonalisable : h est l'endomorphisme nul.

Remarque 5.1. Généralement, soit $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_p(\mathbb{K})$, on définit

$$h_{A,B}: \mathcal{M}_{n,p}(\mathbb{K}) \to \mathcal{M}_{n,p}(\mathbb{K})$$

$$M \mapsto AMB$$

La matrice de $h_{A,B}$ dans la base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ s'appelle le produit tensoriel de A et B noté

$$A \otimes B = \begin{pmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & & \vdots \\ a_{n,1}B & \dots & a_{n,n}B \end{pmatrix}$$

$$(5.5)$$

On a toujours

$$\operatorname{Tr}(A \otimes B) = \sum_{i=1}^{n} a_{i,i} \operatorname{Tr}(B) = \operatorname{Tr}(A) \operatorname{Tr}(B)$$
(5.6)

Si A et B sont diagonalisables, $h_{A,B}$ l'est.

Solution 5.2. On pose $P = DP_1$ et $Q = DQ_1$ avec $P_1 \wedge Q_1 = 1$. Il existe $(U, V) \in \mathbb{K}[X]^2$ telles que $UP_1 + VQ_1 = 1$. On a MD = PQ donc $M = DP_1Q_1 = PQ_1 = P_1Q$.

1. Soit $x \in \ker(D(f))$. On a

$$P(f)(x) = DP_1(f)(x) = P_1(f) \circ D(f)(x) = 0$$
(5.7)

De même pour Q(f)(x) = 0, donc

$$\ker(D(f)) \subset \ker(P(f)) \cap \ker(Q(f))$$
 (5.8)

Soit $x \in \ker(P(f)) \cap \ker(Q(f))$. On a

$$DUP_1 + DVQ_1 = 0 (5.9)$$

d'où

$$UP + VQ = 0 (5.10)$$

et

$$D(f)(x) = UP(f)(x) + VQ(f)(x) = 0$$
(5.11)

Donc

$$\ker(D(f)) = \ker(P(f)) \cap \ker(M(f))$$
(5.12)

2. On a $P \mid M$ donc $\ker(P(f)) \subset \ker(M(f))$. De même, $\ker(Q(f)) \subset \ker(M(f))$ donc

$$\ker(P(f)) + \ker(Q(f)) \subset \ker(M(f)) \tag{5.13}$$

Si $x \in \ker(M(f))$, on a

$$x = \underbrace{UP_1(f)(x)}_{\in \ker(Q(f))} + \underbrace{VQ_1(f)(x)}_{\in \ker(P(f))}$$
(5.14)

car $M = P_1Q = Q_1P$. Donc

$$\ker(M(f)) = \ker(P(f)) + \ker(Q(f))$$
(5.15)

3. Si $i \in \text{Im}(P(f))$, il existe $x \in E$ tel que $y = P(f)(x) = D(f) \circ P_1(f)(x) \in \text{Im}(D(f))$. De même pour $\text{Im}(Q(f)) \subset \text{Im}(D(f))$. Donc

$$\operatorname{Im}(P(f)) + \operatorname{Im}(Q(f)) \subset \operatorname{Im}(D(f)) \tag{5.16}$$

Soit $y \in \text{Im}(D(f))$, alors il existe $x \in E$ tel que

$$y = D(f)(x) = \underbrace{UP(f)(x)}_{\in \operatorname{Im}(P(f))} + \underbrace{VQ(f)(x)}_{\in \operatorname{Im}(Q(f))}$$
(5.17)

Donc

$$Im(D(f)) = Im(P(f)) + Im(Q(f))$$
(5.18)

4. On a $P \mid M$ d'où $\operatorname{Im}(M(f)) \subset \operatorname{Im}P(f)$ et $\operatorname{Im}(M(f)) \subset \operatorname{Im}Q(f)$. Ainsi,

$$\operatorname{Im}(M(f)) \subset \operatorname{Im}(Q(f)) \cap \operatorname{ImIm}(Q(f)) \tag{5.19}$$

Si $y \in \operatorname{Im}(P(f)) \cap \operatorname{Im}(Q(f))$ alors il existe $(x, x') \in E^2$ tels que

$$y = P(f)(x) = P(f)(x')$$
 (5.20)

Or $M = P_1Q = PQ_1$ donc

$$y = UP_1(f)(y) + VQ_1(f)(y) = UP_1Q(f)(x') + VQ_1P(f)(x) \in Im(M(f))$$
(5.21)

donc

$$\boxed{\operatorname{Im}(M(f)) = \operatorname{Im}(P(f)) \cap \operatorname{Im}(Q(f))}$$
(5.22)

Solution 5.3. On a

$$A\left(\frac{-1}{5}A + \frac{4}{5}I_n\right) = I_n \tag{5.23}$$

donc A est inversible.

$$X^{2} - 4X + 5 = (X - 2 + i)(X - 2 - i)$$
(5.24)

est scindé à racines simples sur \mathbb{C} . Donc A est diagonalisable sur \mathbb{C} , semblable sur \mathbb{C} à

$$\begin{pmatrix}
\lambda_1 I_{n_1} & 0 \\
0 & \lambda_2 I_{n_2}
\end{pmatrix}$$
(5.25)

où $\lambda_1=2+\mathrm{i}$ et $\lambda_2=2-\mathrm{i}$. $A\in\mathcal{M}_n(\mathbb{R})$ donc $\mathrm{Tr}(A)=n_1\lambda_1+n_2\lambda_2\in\mathbb{R}$

Donc

$$\Im(n_1\lambda_1 + n_2\lambda_2) = 0 = n_1 - n_2 \tag{5.26}$$

Ainsi $n_1 = n_2$ donc n est pair.

Aest semblable sur $\mathbb C$ à

$$\begin{pmatrix}
\lambda_1 & 0 & \dots & 0 \\
0 & \overline{\lambda_1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \lambda_1 & 0 \\
0 & \dots & \dots & 0 & \overline{\lambda_1}
\end{pmatrix}$$
(5.27)

Soit

$$A_0 = \begin{pmatrix} 0 & -5 \\ 1 & 4 \end{pmatrix} \tag{5.28}$$

On a $\chi_{A_0} = X^2 - 4X + 5$. A_0 est diagonalisable sur \mathbb{C} et est semblable à

$$\begin{pmatrix}
\lambda_1 & 0 \\
0 & \overline{\lambda_1}
\end{pmatrix}$$
(5.29)

Donc A est semblable sur $\mathbb C$ à

$$\begin{pmatrix}
A_0 & & \\
& \ddots & \\
& & A_0
\end{pmatrix}$$
(5.30)

donc A est semblable sur $\mathbb R$ à cette même matrice.

Soit $l \in \mathbb{N}$, on a

$$X^{l} = Q_{p}(X^{2} - 4X + 5) + \alpha_{l}X + \beta_{l}$$
(5.31)

par division euclidienne. Donc

$$A^{l} = \alpha_{l}A + \beta_{l}I_{n} \tag{5.32}$$

On a notamment

$$\begin{cases} (2+i)^{l} = \alpha_{l}(2+i) + \beta_{l} \\ (2-i)^{l} = \alpha_{l}(2-i) + \beta_{l} \end{cases}$$
 (5.33)

On a donc

$$\begin{cases} \alpha_l = \frac{(2+i)^l - (2-i)^l}{2i} \\ \beta_l = (2+i)^l - \frac{(2+i)}{2i} \left[(2+i)^l - (2-i)^l \right] \end{cases}$$
 (5.34)

Remarque 5.2. On a $2 + i = \sqrt{5}e^{i\theta}$ avec $\theta = \arccos\left(\frac{2}{\sqrt{5}}\right) \in]0, \pi[$. Donc $\alpha_l = (\sqrt{5})^l \sin(l\theta)$.

Remarque 5.3. On a

$$I_n - 4A^{-1} + 5A^{-2} = 0 (5.35)$$

De même, $\left(X - \frac{1}{2-i}\right)\left(X - \frac{1}{2+i}\right)$ annule A^{-1} et on a pour tout $l \in -\mathbb{N}^*$,

$$A^l = \alpha_l A + \beta_l I_n \tag{5.36}$$

Remarque 5.4. $(A - 2I_n)^2 = -I_n \ donc \ det(-I_n) = (-1)^n > 0 \ donc \ n \ est \ pair.$

Solution 5.4.

1. On a

$$A \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \tag{5.37}$$

et
$$(1 \dots 1)^{\mathsf{T}} \neq 0$$
 donc
$$\boxed{1 \in \mathrm{Sp}_{\mathbb{R}}(A)} \tag{5.38}$$

2. Soit $X = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^\mathsf{T} \neq 0$ associé à λ . Pour tout $i \in [1, n]$, on a

$$\lambda x_i = \sum_{j=1}^n a_{i,j} x_j \tag{5.39}$$

Soit $i_0 \in [1, n]$ tel que $|x_{i_0}| = \max_{i \in [1, n]} |x_i| > 0$ car $X \neq 0$. On a alors

$$|\lambda| |x_{i_0}| = \left| \sum_{j=1}^n a_{i_0,j} x_j \right| \leqslant \sum_{j=1}^n a_{i_0,j} |x_j| \leqslant \left(\sum_{j=1}^n a_{i_0,j} \right) |x_{i_0}|$$
 (5.40)

donc

$$|\lambda| \leqslant 1 \tag{5.41}$$

3. Soit $J_i = \{j \in [1, n] | a_{i,j} > 0\}$. On a

$$|\lambda| |x_{i_0}| = \left| \sum_{j \in J_{i_0}}^n a_{i_0, j} x_j \right| \leqslant \sum_{j \in J_{i_0}}^n a_{i_0, j} |x_j| \leqslant \left(\sum_{j \in J_{i_0}}^n a_{i_0, j} \right) |x_{i_0}| = |x_{i_0}|$$
 (5.42)

On a égalité partout donc pour tout $j \in J_{i_0}, |x_j| = |x_{i_0}|$ et $x_j = |x_{i_0}| e^{i\theta}$. En reportant, on a

$$\lambda |x_{i_0}| = \sum_{j \in J_{i_0}} a_{i_0,j} |x_{i_0}| \tag{5.43}$$

donc

$$\boxed{\lambda = 1} \tag{5.44}$$

4. Si $|\lambda| = 1$ et $\lambda \neq 1$, on a $i_0 \notin J_{i_0}$ car sinon $\lambda = 1$. Donc il existe $i_1 \in J_{i_0} \setminus \{i_0\}$ tel que $x_{i_1} = |x_{i_0}| e^{i\theta} = \lambda x_{i_0}$. Ainsi, il existe $i_2 \neq i_1$ tel que $x_{i_2} = \lambda x_{i_1}$. De proche en proche, il existe $i_q \neq i_{q-1}$ tel que $x_{i_q} = \lambda x_{i_{q-1}}$ (avec $q \geq 1$) et $x_{i_q} = \lambda^q x_{i_0}$. Or

$$\varphi: \mathbb{N} \to \llbracket 1, n \rrbracket$$
$$k \mapsto i_k$$

n'est pas injective. Donc il existe k>l tel que $i_k=i_l$ et $x_{i_k}=\lambda^{k-k}x_{i_k}$ et k-l>1 donc

$$\lambda \in \mathbb{U}_{k-l} \tag{5.45}$$

5. L'identité convient, les matrices de permutation aussi. En effet, si $\sigma \in \Sigma_n$, on a $P_{\sigma}^{n!} = I_n$ donc les valeurs propres sont racines de $X^{n!} - 1$ donc $\operatorname{Sp}_{\mathbb{C}}(P_{\sigma}) \subset \mathbb{U}_{n!}$.

Réciproquement, soit A stochastique telle que $\operatorname{Sp}_{\mathbb{C}}(A) \subset (\mathbb{U})$. Soit $i \in [\![1,n]\!]$, supposons $|J_{i_0}| \geqslant 2$. D'après la décomposition de Dunford, il existe D diagonale et N nilpotente qui commutent telles que A = D + N et $\operatorname{Sp}_{\mathbb{C}}(D) = \operatorname{Sp}_{\mathbb{C}}(A)$. Si N est nilpotente d'indice $r \geqslant 2$, on a pour tout $k \in \mathbb{N}^*$ avec $k \geqslant r$, on a

$$A^{k} = \sum_{j=1}^{k} {k \choose j} N^{j} D^{k-j} = \sum_{j=1}^{r} {k \choose j} N^{j} D^{k-j}$$
 (5.46)

Pour tout $j \in [1, r]$, on a

$$\binom{k}{j} = \frac{k(k-1)\dots(k-j+1)}{j!} \underset{k\to+\infty}{\sim} \frac{k^j}{j!}$$
 (5.47)

Comme $N^{r-1} \neq 0$, on a

$$A^{k} \underset{k \to +\infty}{sim} \frac{k^{r-1}}{(r-1)!} N^{r-1} D^{k-r+1}$$
(5.48)

et les coefficients de D^{k-r+1} sont bornés car $\mathrm{Sp}(D)\subset \mathbb{U}.$

Or, notons que si A et B sont stochastiques, AB l'est aussi (1 est toujours valeur propre). Par récurrence, A^k l'est. Donc $A^k \in \mathcal{M}_n([0,1])$, et l'équivalent est impossible si $r \ge 2$. Donc r = 1 donc N = 0 et A = D est diagonalisable.

Les valeurs propres de A sont des racines de l'unité, soit m le ppcm des ordres de ces racines (dans (\mathbb{U}, \times)). On a alors

$$A = P\operatorname{diag}(\lambda_1, \dots, \lambda_n)P^{-1} \tag{5.49}$$

d'où

$$A^{m} = P\operatorname{diag}(\lambda_{1}^{m}, \dots, \lambda_{n}^{m})P^{-1}$$
(5.50)

Notons $M = \max_{j \in J_{i_0}} |a_{i_0,j}| < 1$ (car $|J_{i_0}| \ge 2$ donc pour tout $j \in J_{i_0}$, $a_{i_0,j} \ne 1$). On note $a_{i_0,i_0}^{(m)}$ le coefficient (i_0, i_0) de A^m . On a alors

$$a_{i_0,i_0}^{(m)} = 1 = \sum_{j \in J_{i_0}} a_{i_0,j} a_{j,i_0}^{(m-1)} \leqslant M \sum_{j \in J_{i_0}} a_{j,i_0}^{(m-1)} \leqslant M \sum_{j=1}^n a_{j,i_0}^{(m-1)} = M$$
 (5.51)

car A^{m-1} est stochastique. Donc M=1 ce qui n'est pas possible (par définition de M). Ainsi, pour tout $i \in [\![1,n]\!]$, on a $|J_i|=1$ donc il existe un unique $j_i \in [\![1,n]\!]$ avec $a_{i,j_i}=1$ et pour tout $j \neq j_i$, $a_{i,j}=0$.

 $i \mapsto j_i$ est injective, sinon $rg(A) \leqslant n - 1$ et $0 \in Sp(A)$.

Remarque 5.5. On peut avoir $|\lambda| < 1$ pour la question 2, par exemple

$$A = \begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}$$
 (5.52)

On $a A^2 = A \ et \ rg(A) = 1$, $Sp(A) = \{0, 1\}$.

Remarque 5.6. Par exemple, pour 4, on a

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{5.53}$$

On a $\chi_A = X^2 - 1$ et $Sp(A) = \{-1, 1\}$.

Remarque 5.7. Si pour tout $(i,j) \in [1,n]$, $a_{i,j} > 0$ (i.e. pour tout $i \in [1,n]$, $J_i = [1,n]$). D'après 3, on a $\operatorname{Sp}_{\mathbb{C}}(A) \cap \mathbb{U} = \{1\}$. De plus, si $X = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^{\mathsf{T}} \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ vérifie AX = X, d'après ce qui précède, on a $x_1 = \dots = x_n$ et le sous-espace propre associé à 1 est de dimension 1.

Solution 5.5.

1. Soit $(\lambda, \mu) \in \operatorname{Sp}_{\mathbb{C}}(A) \times \operatorname{Sp}_{\mathbb{C}}(B)$. On a $\mu \in \operatorname{Sp}_{\mathbb{C}}(B^{\mathsf{T}})$. Soit $(X, Y) \in \mathcal{M}_{n-1}(\mathbb{C}) \setminus \{0\}$ vecteurs propres associés respectivement à λ et à μ . On pose $M = XY^{\mathsf{T}}$. Alors

$$\Phi_{A,B}(M) = AXY^{\mathsf{T}} - XY^{\mathsf{T}}B = (\lambda - \mu)XY^{\mathsf{T}} = (\lambda - \mu)M \tag{5.54}$$

donc

$$\lambda - \mu \in \operatorname{Sp}(\Phi_{A,B})$$
 (5.55)

Réciproquement, soit $\alpha \in \operatorname{Sp}(\Phi_{A,B})$. Il existe $M \in \mathcal{M}_n(\mathbb{C}) \setminus \{0\}$ tel que l'on ait $AM - MB = \alpha M$ d'où $AM = M(\alpha I_n + B)$. Par récurrence, $A^k M = M(\alpha I_n + B)^k$ et par combinaison linéaire, pour tout $P \in \mathbb{C}[X]$ on a $P(A)M = MP(\alpha I_n + B)$. En particulier, on prend $P = \chi_A$. D'après le théorème de Cayley-Hamilton, on a

$$0 = M\chi_A(\alpha I_n + B) \tag{5.56}$$

On a $M \neq 0$ donc $\chi_A(\alpha I_n + B)$ n'est pas inversible. On écrit

$$\chi_A(X) = \prod_{k=1}^n (X - \lambda_k) \tag{5.57}$$

d'où

$$\chi_A(\alpha I_n + B) = \prod_{k=1}^n (B + (\alpha - \lambda_k)I_n)$$
(5.58)

donc il existe $k_0 \in [1, n]$ tel que $B + (\alpha - \lambda_{k_0})I_n$ est non inversible. Donc $\lambda_{k_0} - \alpha \in \operatorname{Sp}(B)$ et donc α est une différence d'un élément de $\operatorname{Sp}(A)$ et de $\operatorname{Sp}(B)$.

2. On forme

$$f_A: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$$

$$M \mapsto AM$$

et

$$g_B: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$$

$$M \mapsto MB$$

Toujours par récurrence et combinaison linéaires, pour tout $P \in \mathbb{C}[X]$,

$$P(f_A)M = P(A)M (5.59)$$

Si P(A) = 0, on a $P(f_A) = 0$. Si $P(f_A) = 0$, pour $M = I_n$, on a P(A) = 0. De même pour B. Donc $\Pi_A = \Pi_{f_A}$ (polynômes minimaux) et A est diagonalisable si et seulement si $f_A(M)$ est diagonalisable. f_A et g_B commutent car

$$(f_A \circ g_B)(M) = AMB = (g_B \circ f_A)(M) \tag{5.60}$$

Donc f_A et g_B sont codiagonalisables et donc $\Phi_{A,B}$ l'est.

Remarque 5.8. Si $(X_1, ..., X_n)$ (respectivement $(Y_1, ..., Y_n)$) est une base de vecteurs propres de A (respectivement de B^{T}), alors $(X_i Y_j^{\mathsf{T}})_{1 \leq i,j \leq n}$ est une base de vecteurs propres pour $\Phi_{A,B}$.

Remarque 5.9. C'est faux sur \mathbb{R} , par exemple

$$A = B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \tag{5.61}$$

On a $\operatorname{Sp}_{\mathbb{R}} = \emptyset$ et $\Phi_{A,A}(I_2) = 0$ donc $0 \in \operatorname{Sp}_{\Phi_{A,A}}$.

Remarque 5.10. Si $\Phi_{A,B}$ est diagonalisable, soit $(M_{i,j})_{1 \leq i,j \leq n}$ une base de vecteurs propres de $\Phi_{A,B}$. Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(B)$ et $X \in \mathcal{M}_{n,1}(\mathbb{C}) \setminus \{0\}$ tel que $BX = \lambda X$. On a

$$AM_{i,j} = M_{i,j}(B + \lambda_{i,j}I_n) \tag{5.62}$$

avec $\Phi_{A,B}(M_{i,j}) = \lambda_{i,j} M_{i,j}$. Donc

$$AM_{i,j}X = (\lambda + \lambda_{i,j})M_{i,j}X \tag{5.63}$$

Pour tout $X_0 \in \mathcal{M}_{n,1}(\mathbb{C})$, il existe $M \in \mathcal{M}_n(\mathbb{C})$ tel que $X_0 = MX$. $M \in \text{Vect}(M_{i,j})_{1 \leqslant i,j \leqslant n}$ donc

$$Vect(M_{i,j}X)_{1 \leqslant i,j \leqslant n} = M_{n,1}(\mathbb{C})$$
(5.64)

On peut donc en extraire une base : c'est une base de vecteurs propres de A.

Solution 5.6.

- 1. Par récurrence, pour tout $k \in \mathbb{N}$, on a $A^k M = \theta^k M A^k$, or F est un sous-espace vectoriel donc par combinaisons linéaires, pour tout $P \in \mathbb{K}[X]$, on a $P(A)M = MP(\theta A)$.
- 2. Soit $X \in \ker(A \lambda I_n)$. On a $AMX = \theta MAX = \lambda \theta MX$. On a donc $MX \in \ker(A \lambda \theta I_n)$. Si pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, on a $\theta \lambda \notin \operatorname{Sp}_{\mathbb{C}}(A)$, alors si $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et $X \in \ker(A - \lambda I_n)$, alors $\ker(A - \lambda \theta I_n) = \{0\}$. Donc MX = 0. Or les vecteurs propres forment une famille génératrice donc M = 0 et $F = \{0\}$.

S'il existe $\lambda_0 \in \operatorname{Sp}_{\mathbb{C}}(A)$ tel que $\theta \lambda_0 \in \operatorname{Sp}_{\mathbb{C}}(A)$. Soit X_1 un vecteur propre de A associé à λ_0 . On complète (X_1) en $\mathcal{B} = (X_1, \dots, X_n)$ base de \mathbb{C}^n formé de vecteurs propres de A. On définit $MX_1 = Y_1 \in \ker(A - \lambda_0 \theta I_n) \setminus \{0\}$ et pour tout $i \in [2, n]$, on a $MX_i = 0$. Ainsi, pour tout $i \in [2, n]$, on a

$$AMX_i = 0 = \theta MAX_i = \theta \lambda_i MX_i \tag{5.65}$$

 et

$$AMX_1 = AY_1 = \lambda_0 \theta Y_1 = \theta MAX_1 = \theta \lambda_0 X_1 \tag{5.66}$$

Donc $M \neq 0$ et $M \in F$. Finalement, on a $F = \{0\}$ si et seulement si pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A), \theta \lambda \notin \operatorname{Sp}_{\mathbb{C}}(A)$.

3. On écrit $\chi_A = \prod_{j=1}^r (X - \lambda_j)^{m_j}$ avec λ_j distincts et $m_j \ge 1$. D'après le théorème de Cayley-Hamilton et le lemme des noyaux, on a

$$\mathbb{C}^n = \bigotimes_{j=1}^r \ker(A - \lambda_j I_n)^{m_j} \tag{5.67}$$

Supposons $\theta \neq 0$. Si $M \in F$ et si $x \in \ker(A - \lambda_j I_n)^{m_j}$. On a

$$\left(\left(\frac{X}{\theta} - \lambda_j\right)^{m_j}\right)(A)(Mx) = M\left(A - \lambda_j I_n\right)^{m_j}(x) = 0$$
(5.68)

Donc

$$Mx \in \ker\left(\frac{1}{\theta}A - \lambda_j I_n\right)^{m_j} = \ker\left(A - \theta \lambda_j I_n\right)^{m_j}$$
 (5.69)

 $car \theta \neq 0.$

De plus, $\ker(A - \theta \lambda_j I_n)^{m_j} \neq \{0\}0$ si et seulement si $\ker(A - \theta \lambda_j I_n) \neq \{0\}$ car

$$\det\left[(A - \theta \lambda_j I_n)^{m_j} \right] = \det\left[(A - \theta \lambda_j I_n) \right]^{m_j} \tag{5.70}$$

Si pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, $\lambda \theta \notin \operatorname{Sp}_{\mathbb{C}}(A)$, soit $x \in \ker(A - \lambda_j I_n)^{m_j}$. On a

$$Mx \in \ker(A - \theta\lambda_j I_n)^{m_j} = \{0\}$$
(5.71)

donc M = 0 car $\mathbb{C}^n = \bigotimes_{j=1}^r \ker(A - \lambda_j I_n)^{m_j}$.

S'il existe $\lambda_0 \in \operatorname{Sp}_{\mathbb{C}}(A)$ tel que $\lambda_0 \theta \in \operatorname{Sp}_{\mathbb{C}}(A)$, soit $x_1 \in \ker(A - \lambda_0 I_n) \neq \{0\}$. On pose

$$Mx_1 = y_1 \in \ker(A - \lambda_0 \theta I_n) \setminus \{0\}$$
 (5.72)

On complète (x_1) en $\mathcal{B}=(x_1,\ldots,x_n)$ base de \mathbb{C}^n formée de vecteurs appartenant à

$$\bigcup_{j=1}^{r} \ker(A - \lambda_j I_n)^{m_j} \tag{5.73}$$

On a pour tout $i \in [2, n]$, $Mx_i = 0$. On a $M \neq 0$ et

$$AMx_1 = Ay_1 = \theta \lambda_0 y_1 = \theta \lambda_0 Mx_1 \tag{5.74}$$

Pour tout $i \in [2, n]$, on a $AMx_i = 0$ si $x_i \in \ker(A - \lambda_{j_i}I_n)^{m_{j_i}}$ et si $\lambda_{j_i} \neq \lambda_0$. On a $Ax_i \in \ker(A - \lambda_{j_i}I_n)^{m_{j_i}}$ donc

$$Ax_i \in \text{Vect}(x_2, \dots, x_n) \tag{5.75}$$

et $MAx_i = 0$ donc $AMx_i = \theta MAx_i$.

Si $F \neq \{0\}$, il existe $M \neq 0$ tel que $AM = \theta MA$. Pour tout $P \in \mathbb{C}[X]$, on a $P(A)M = MP(\theta A)$. En particulier, pour $P = \chi_A$, on a

$$M\chi_A(\theta A) = 0 (5.76)$$

 $M \neq 0$ et donc $\chi_A(\theta A)$ n'est pas inversible. Si $\chi_A = \prod_{k=1}^n (X - \lambda_k)$, il existe $k \in [1, n]$, $(\theta A - \lambda_k I_n)$ est non inversible, d'où

$$\lambda_k \in \operatorname{Sp}_{\mathbb{C}}(A) \cap \operatorname{Sp}_{\mathbb{C}}(\theta A)$$
(5.77)

183

Solution 5.7. On a

$$\chi_A(\lambda) = \begin{vmatrix}
\lambda - 1 & -1 & 0 & -1 \\
-1 & \lambda - 1 & -1 & 0 \\
-1 & 0 & \lambda - 1 & -1 \\
0 & -1 & -1 & \lambda - 1
\end{vmatrix}$$
(5.78)

$$\begin{vmatrix} 0 & -1 & -1 & \lambda - 1 \\ 1 & 1 & 1 & 1 \\ -1 & \lambda - 1 & -1 & 0 \\ -1 & 0 & \lambda - 1 & -1 \\ 0 & -1 & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} 1 & 0 & 0 & 0 \\ -1 & \lambda - 1 & -1 & 0 \\ -1 & 0 & \lambda - 1 & -1 \\ 0 & -1 & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda & 0 & 1 \\ 1 & \lambda & 0 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3) \begin{vmatrix} \lambda & 0 & 1 \\ 1 & \lambda & 0 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$

$$(5.80)$$

$$= (\lambda - 3) \begin{vmatrix} 1 & 0 & 0 & 0 \\ -1 & \lambda - 1 & -1 & 0 \\ -1 & 0 & \lambda - 1 & -1 \\ 0 & -1 & -1 & \lambda - 1 \end{vmatrix}$$
 (5.80)

$$= (\lambda - 3) \begin{vmatrix} \lambda & 0 & 1 \\ 1 & \lambda & 0 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$
 (5.81)

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$
 (5.82)

$$= (\lambda - 3) \begin{vmatrix} \lambda - 1 & 0 & 1 \\ 1 - \lambda & \lambda & 0 \\ 1 - \lambda & -1 & \lambda - 1 \end{vmatrix}$$

$$= (\lambda - 3)(\lambda - 1) \begin{vmatrix} 1 & 0 & 1 \\ -1 & \lambda & 0 \\ -1 & -1 & \lambda - 1 \end{vmatrix}$$
(5.82)

$$= (\lambda - 3)(\lambda - 1) \begin{vmatrix} 1 & 0 & 1 \\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \end{vmatrix}$$
 (5.84)

$$= (\lambda - 3)(\lambda - 1)(\lambda^2 + 1) \tag{5.85}$$

où l'on a fait successivement les opérations suivantes : $L_1 \leftarrow L_1 + L_2 + L_3 + L_4$, $C_i \leftarrow C_i - C_1$ pour $i \in \{2,3,4\}, \text{ développement selon la première ligne}, C_1 \leftarrow C_1 - C_2 - C_3, L_i \leftarrow L_i + L_1 \text{ pour } i \in \{2,3\},$ développement selon la première colonne.

 χ_A est scindé à racines simples sur \mathbb{C} donc A est diagonalisable. On trouve ensuite un vecteur propre dans chaque sous-espace propre (qui sont de dimension un).

Solution 5.8.

1. On a $\lambda \in \operatorname{Sp}_{\mathbb{R}}(A)$ si et seulement s'il existe $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ telle que $AX = \lambda X$ si et seulement si

$$\begin{cases}
\sum_{i \neq 1} a_i x_i = \lambda x_1 \\
\vdots \\
\sum_{i \neq j} a_i x_i = \lambda x_1 \\
\vdots \\
\sum_{i \neq n} a_i x_i = \lambda x_1
\end{cases}$$
(5.86)

Soit $S = \sum_{i=1}^{n} a_i x_i$. Ce système équivaut à

$$S = (\lambda + a_1)x_1 = \dots = (\lambda + a_n)x_n \tag{5.87}$$

Si S=0, pour tout $i \in [1, n]$, on a $\lambda = -a_i$ ou $x_i = 0$ (et $X \neq 0$). Les $(a_i)_{1 \leq i \leq n}$, il existe un unique $i_0 \in [1, n]$ tel que $\lambda = -a_{i_0}$ et pour tout $i \neq i_0$, on a $x_i = 0$. En reportant, on a $S=0=\lambda x_{i_0}$ donc $\lambda = 0$ ce qui est impossible car $0=\lambda = -a_{i_0} > 0$.

Donc $S \neq 0$ et pour tout $i \in [1, n]$, $\lambda + a_i \neq 0$ et pour tout $i \in [1, n]$, $x_i = \frac{S}{\lambda + a_i}$. On a alors

$$S = \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} \frac{a_i S}{\lambda + a_i}$$
 (5.88)

donc

$$\sum_{i=1}^{n} \frac{a_i}{\lambda + a_i} = 1 \tag{5.89}$$

Réciproquement, on prend $x_i = \frac{1}{\lambda + a_i}$ et on a bien $AX = \lambda X$.

2. On définit

$$f: \mathbb{R} \setminus \{-a_n, \dots, -a_1\} \rightarrow \mathbb{R}$$

$$x \mapsto \sum_{i=1}^n \frac{a_i}{x + a_i}$$

3. Posons $-a_{n+1} = -\infty$ et $-a_0 = +\infty$. Sur $] - a_{k+1}, -a_k[$, on a

$$f'(x) = \sum_{i=1}^{n} \frac{-a_i}{(x+a_i)^2}$$
 (5.90)

Les $(a_i)_{1 \le i \le n}$ étant positifs, on a $\lim_{x \to -a_{k+1}^+} f(x) = +\infty$ et $\lim_{x \to -a_k^-} f(x) = -\infty$ (si $k \ne n$) (et $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$).

D'après le théorème des valeurs intermédiaires, pour tout $k \in [0, n-1]$, il existe un unique $\lambda_k \in]-a_{k+1}, -a_k[$ tel que $f(\lambda_k)=1$. Donc A admet exactement n valeurs propres réelles distinctes. Donc A est diagonalisable sur \mathbb{R} .

Remarque 5.11. Soit

$$F(X) = -\sum_{k=1}^{n} \frac{a_k}{X + a_k} + 1 = \frac{P(X)}{(X + a_1 \dots (X + a_n))}$$
 (5.91)

avec $P = (X + a_1) \dots (X + a_n) - \sum_{k=1}^n a_k P_k$ où $P_k = \prod_{\substack{i=1 \ i \neq k}} (X + a_i)$ de degré n-1. On a $\deg(P) = n$ et son coefficient dominant est 1. De plus, pour tout $\lambda \in \mathbb{R}$, on a $P(\lambda) = 0$ si et seulement si $\sum_{k=1}^n \frac{a_k}{\lambda + a_k} = 1$ si et seulement si $\lambda \in \operatorname{Sp}(A)$ donc $P = \chi_A$.

Solution 5.9. On a

où le coefficient est à la *i*-ième ligne et la *j*-ième colonne. La matrice à gauche est diagonalisable car son polynôme caractéristique est scindé à racines simples. Donc les matrices de transvections sont dans G. De plus, les matrices de dilatations sont aussi dans G. Donc $G = GL_n(\mathbb{R})$.

Solution 5.10. Supposons u diagonalisable, il existe un base \mathcal{B} telle que

$$\operatorname{mat}_{\mathcal{B}}(u) = A = \operatorname{diag}(0, \dots, 0, \lambda_1, \dots, \lambda_r)$$
(5.93)

avec $\lambda_i \neq 0$. Donc $\operatorname{mat}_{\mathcal{B}}(u^p) = A^p) \operatorname{diag}(0, \dots, 0, \lambda_1^p, \dots, \lambda_r^p)$ donc u^p est diagonalisable. On a toujours $\ker(u) \subset \ker(u^2)$ et la forme diagonale implique $\ker(u) = \ker(u^2)$.

Supposons u^p diagonalisable, on écrit $\Pi_{u^p} = (X - \lambda_0) \dots (X - \lambda_r) = R$ (avec $\lambda_k \neq 0$ pour tout $k \geq k$) qui est scindé à racines simples. On a

$$P(u^p) = 0 = (u^p - \lambda_0 i d_E) \circ \dots \circ (u^p - \lambda_r i d_E) = Q(u)$$

$$(5.94)$$

avec $Q(X) = P(X^p)$.

Si $\lambda_0 \neq 0$, chaque λ_k admet p racines p-ièmes distinctes et si μ_k est l'une de ses racines, on a

$$X^{p} - \lambda_{k} = \prod_{j=1}^{p} \left(X - \mu_{k} e^{i\frac{2j\pi}{p}} \right)$$
 (5.95)

De plus, les racines p-ièmes des $(\lambda_k)_{kk \in [\![1,r]\!]}$ sont deux à deux distinctes. Donc Q est scindé à racines simples, et donc u est diagonalisable.

Si $\lambda_0 = 0$, on a $Q = X^p A(X)$ avec A scindé à racines simples non nulles et $X^p \wedge A = 1$. D'après le lemme des noyaux, on a

$$\ker(Q(u)) = \mathbb{C}^n = \ker(u^p) \bigotimes \ker(A(u)) = \ker(u^p) \bigotimes_{i \in I} \ker(u - \mu_i id)$$
(5.96)

car A est scindé à racines simples. Montrons que $\ker(u) = \ker(u^p)$. L'inclusion directe est évidente. Réciproquement, montrons que pour tout $k \in \mathbb{N}$, on a $\ker(u^k) \subset \ker(u^{k+1})$ et si $\ker(u^k) = \ker(u^{k+1})$, alors $\ker(u^{k+1}) = \ker(u^{k+2})$. L'inclusion est évidente, et si on a l'égalité, si $x \in \ker(u^{k+2})$, on a $u(x) \in \ker(u^{k+1}) = \ker(u^k)$ donc $x \in \ker(u^{k+1})$. Comme $\ker(u) = \ker(u^2)$, d'après ce qui précède, par récurrence, on a $\ker(u) = \ker(u^p)$, donc u est diagonalisable.

Solution 5.11. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{C}^n , u canoniquement associée à

$$J_{n} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & & & \ddots & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$
 (5.97)

. On a

$$\begin{cases}
 u(e_1) &= e_n \\
 u(e_2) &= e_1 \\
 \vdots \\
 u(e_n) &= e_{n-1}
\end{cases} (5.98)$$

d'où

$$\begin{cases} u^{k}(e_{1}) &= e_{n+1-k} \\ \vdots u^{k}(e_{k-1}) &= e_{n-1} \\ \vdots \\ u^{k}(e_{n}) &= e_{n-k} \end{cases}$$
(5.99)

et donc

$$J_n^k = \begin{pmatrix} 0 & \dots & \dots & 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & & & \ddots & \ddots & 0 \\ 0 & & & \ddots & & & \ddots & 1 \\ 1 & \ddots & & & & \ddots & & \ddots & \vdots \\ 0 & \ddots & \ddots & & & & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & & & & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$
 (5.100)

où les 1 commencent à la k + 1-ième colonne sur la première ligne et à la n - k + 1-ième ligne sur la première colonne. Notamment, le 1 sur la dernière colonne est à la n - k-ième ligne.

On a $A(a_0,\ldots,a_n)=\sum_{k=0}^{n-1}a_kJ_n^k$. En développant par rapport à la première ligne, on a

Le premier déterminant vaut X^{n-1} et le deuxième vaut $-(-1)^n \times (-1)^{n-2} = -1$ donc $\chi_{J_n}(X) = X^n - 1$. Ainsi, χ_{J_n} est scindé à racines simples sur \mathbb{C} donc J_n est diagonalisable avec des sous-espaces propres de dimension 1. Soit $\omega = e^{\frac{2i\pi}{n}}$, on a $\operatorname{Sp}(J_n) = \{\omega^k, 0 \leqslant k \leqslant n-1\}$. On a $J_nX = \omega^k X$ si et seulement si

$$\begin{cases} x_2 = \omega^k x_1 \\ \vdots \\ x_n = \omega^k x_{n-1} \\ x_1 = \omega^k x_n \end{cases}$$

$$(5.102)$$

si et seulement si

$$X = x_1 \begin{pmatrix} 1 \\ \omega^k \\ \omega^{2k} \\ \vdots \\ (\omega^k)^{n-1} \end{pmatrix} = x_1 X_k \tag{5.103}$$

avec X_k vecteur propre de J_n associé à ω^k . Posons

$$P = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \vdots & \omega & & \omega^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \dots & (\omega^{n-1})^{n-1} \end{pmatrix}$$
 (5.104)

et $P^{-1}J_nP=\operatorname{diag}(1,\omega,\ldots,\omega^{n-1})$. On a donc $P^{-1}A(a_0,\ldots,a_n)P=\operatorname{diag}(Q(1),Q(\omega),\ldots,Q(\omega^{n-1}))$ où $Q=\sum_{k=0}^{n-1}a_kX^k$. Donc A est diagonalisable de valeurs propres $Q(1),\ldots,Q(\omega^{n-1})$ et donc

$$\det(A) = \prod_{k=0}^{n-1} Q(\omega^k)$$
(5.105)

Remarque 5.12. On a

$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = (a+b+c)(a+jb+j^2c)(a+j^2b+jc) = (a+b+c)(a^2+b^2+c^2-ab-bc-ac)$$
(5.106)

Si $a, b, c \in \mathbb{R}_+$ vérifient a + b + c = 1, on a

$$|a + jb + j^{2}c| = |a + j^{2}b + jc| \le a + b + c = 1$$
 (5.107)

si et seulement si a, jb, j^2c ont même argument si et seulement si $\{a, b, c\} = \{1, 0, 0\}$.

Solution 5.12. On sait que que $f^n = 0$ d'après le théorème de Cayley-Hamilton et que pour tout $k \in \mathbb{N}$, $\ker(f^k) \subset \ker(f^{k+1})$ et si $\ker(f^k) = \ker(f^{k+1})$, alors $\ker(f^k) = \ker(f^m)$ pour tout $m \ge k$.

Soit $k \in [0, n-1]$ et

$$u: \ker(f^{+1}) \to \ker(f^k)$$

 $x \mapsto u(x)$

est bien définie car si $x \in \ker(f^{k+1}), f(x) \in \ker(f^k)$. Comme $\ker(f) \subset \ker(f^{k+1}), \ker(u) = \ker(f)$ et $\dim(\ker(u)) = 1$. D'après le théorème du rang, on a $\dim(\ker(f^{k+1})) = \operatorname{rg}(u) + 1 \leq \dim(\ker(f^k)) + 1$. Par récurrence, on a pour tout $k \in \mathbb{N}$, $\dim(\ker(f^k)) \leq k$ (car on ne peut croître au lus de 1 à chaque itération).

Si $f^{n-1} = 0$, on a dim $(\ker(f^{n-1})) = n \le n-1$ ce qui est absurde. Donc

$$\boxed{f^{n-1} \neq 0} \tag{5.108}$$

Soit $x \notin \ker(f^{n-1})$. Soit $(\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{K}^n$. Si $\alpha_0 x + \dots + \alpha_{n-1} f^{n-1}(x) = 0$, en appliquant f^{n-1} , on a $\alpha_0 f^{n-1}(x) = 0$ donc $\alpha_0 = 0$. Puis on applique f^{n-2} , etc. De proche en proche, $\alpha_0 = \alpha_1 = \dots = \alpha_{n-1} = 0$. Ainsi, $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ est libre en dimension n, c'est donc une base et on a

$$\operatorname{mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & \dots & \dots & 0 \\ 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \tag{5.109}$$

qui est une matrice nilpotente d'indice n. Matriciellement, on a $\ker(f^k) = \operatorname{Vect}(e_{n-k+1}, \dots, e_n)$.

Solution 5.13. Supposons qu'il existe $x \in V$, $(x, u(x), \dots, u^{n-1}(x))$ soit une base de V. Notons $u^n(x) = a_0x + \dots + a_{n-1}u^{n-1}(x)$. Soit $y \in V$ tel que $u(y) = \lambda y$. Pour $y = \sum_{i=0}^{n-1} y_i u^i(x)$. On a donc

$$u(y) = \sum_{i=0}^{n-1} y_i u^{i+1}(x) = \sum_{i=0}^{n-1} \lambda y_i u^i(x) = \sum_{i=1}^{n-1} y_{i-1} u^i(x) + y_{n-1} \sum_{i=0}^{n-1} a_i u^i(x)$$
 (5.110)

Donc $u(y) = \sum_{i=1}^{n-1} u^i(x)(y_{i-1} + y_{n-1}a_i) + y_{n-1}a_0x$ donc

donc par récurrence

$$\begin{cases}
\lambda y_{n-2} &= (\lambda - a_{n-1})y_{n-1} \\
\lambda y_{n-3} &= (\lambda(\lambda - a_{n-1}) - a_{n-2})y_{n-1} \\
\vdots \\
\lambda y_0 &= (\lambda^{n-1} - a_{n-1}\lambda^{n-2} - \dots - a_1)y_{n-1}
\end{cases} (5.112)$$

Donc les sous-espaces propres sont de dimension 1.

Supposons que les sous-espaces propres de u sont de dimension 1. On écrit $\chi_u = \prod_{i=1}^r (X - \lambda_i)^{n_i}$. D'après le théorème de Cayley-Hamilton et le lemme des noyaux, on a

$$V = \bigotimes_{i=1}^{r} \underbrace{\ker(u - \lambda_i i d_V)^{n_i}}_{F_i}$$
 (5.113)

et les sous-espaces caractéristiques F_i sont stables par u. Soit $v_i = u_{|F_i} - \lambda_i i d_{F_i}$. On a $\chi_u = \prod_{i=1}^r \chi_{u_{|F_i}}$ (matrice diagonale par blocs dans un base adaptée). $(X - \lambda_i)^n$ annule $u_{|F_i}$ et $\operatorname{Sp}_{F_i}(u_{|F_i}) = \{\lambda_i\}$. Alors $\chi_{u_{|F_i}} = (X - \lambda_i)^{\dim(F_i)}$. En reportant, on a $\dim(F_i) = n_i$. De plus, $V_i^{n_i} = 0$ donc v_i est nilpotent. On a donc $\dim(\ker(v_i)) = \dim(\ker(u - \lambda_i i d_E)) = 1$. Donc il existe $x_i \in F_i$ tel que $(x_i, v_i(x_i), \dots, v_i^{n_i-1}(x_i))$ soit une base de F_i .

On forme $x = \sum_{i=1}^r x_i$. Soit $(\alpha_0, \dots, \alpha_{r-1})$ tel que $\sum_{j=0}^{n-1} \alpha_j u^j(x) = 0 = \sum_{i=1}^r \left(\sum_{j=0}^{n-1} \alpha_j u^j(x_i)\right)$. Les F_i sont en somme directe donc

$$\sum_{i=0}^{n-1} \alpha_j u^j(x_i) = 0 (5.114)$$

Soit $P(X) = \sum_{j=0}^{n-1} \alpha_j X^j$. $I_{x_i} = \{A \in \mathbb{C}[X] | A(u)(x_i) = 0\}$ est un idéal de $\mathbb{C}[X]$ donc est principal et il existe $\Pi_i \in I_{x_i}$ minimal et

$$\Pi_i \mid P \tag{5.115}$$

On a $(X - \lambda_i)^{n_i}(u)(x_i) = 0$ et $(x_i, u(x_i), \dots, u^{n_i-1}(x))$ est libre, donc si $P \in I_{x_i}$, $\deg(P) \geqslant n_i$ donc $\deg(\Pi_i) = n_i$ et $\Pi_i = (X - \lambda_i)^{n_i}$. Ainsi, pour tout $i \in [1, r]$, $\Pi_i \mid P$ et donc

$$\prod_{i=1}^{r} (X - \lambda_i)^{n_i} \mid P \tag{5.116}$$

Mais P est de degré $\leq n-1$, nécessairement P=0 et $(x,u(x),\ldots,u^{n-1}(x))$ est libre.

Remarque 5.13. Autre méthode pour le sens direct : on a

$$mat_{(x,u(x),\dots,u^{n-1}(x))}(u) = \begin{pmatrix} 0 & \dots & 0 & a_0 \\ 1 & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & a_{n-1} \end{pmatrix} = A$$
(5.117)

 $Si \lambda \in Sp(u)$, on a

$$A - \lambda I_{n} = \operatorname{mat}_{(x,u(x),\dots,u^{n-1}(x))}(u) = \begin{pmatrix} -\lambda & \dots & 0 & a_{0} \\ 1 & \ddots & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & -\lambda & \vdots \\ 0 & \dots & 0 & 1 & a_{n-1} - \lambda \end{pmatrix}$$
 (5.118)

qui est non inversible, mais donc les (n-1) première colonnes sont libres, donc est de rang n-1.

Solution 5.14.

1. On utilise le fait que pour tout $k \in \mathbb{N}$ tel que $\operatorname{Im}(f^{k+1}) \subset \operatorname{Im}(f^k)$. S'il existe $k \in \mathbb{N}$, $\operatorname{Im}(f^{k+1}) = \operatorname{Im}(f^k)$ alors pour tout $l \geqslant k$, $\operatorname{Im}(f^k) = \operatorname{Im}(f^l)$.

En effet, si $x = f^{k+1}(x') \in \text{Im}(f^{k+1})$,, on a $x = f^k(f(x)) \in \text{Im}(f^k)$. Si on a égalité des espaces, soit $x = f^{k+1}(x') = f(f^k(x')) \in \text{Im}(f^{k+1})$. Alors $f^k(x') \in \text{Im}(f^k) = \text{Im}(f^{k+1})$ donc il existe

x'' tel que $f^k(x') = f^{k+1}(x'')$, mais alors $x = f^{k+2}(x'') \in \text{Im}(f^{k+2})$. On a donc le résultat en itérant.

Ainsi, pour tout $n \ge d$, on a $\operatorname{rg}(f^n) = \operatorname{rg}(f^d)$ donc $(\operatorname{rg}(f^n))_{n \in \mathbb{N}}$ est stationnaire au moins à partir de d et $r(f) = \operatorname{rg}(f^d)$.

2. Comme f et g commutent, on a

$$(f+g)^{2d} = \sum_{k=0}^{2d} {2d \choose k} f^k g^{2d-k}$$
 (5.119)

Pour tot $k \in [0, 2d]$, on a $k \ge d$ ou $2d - k \ge d$ donc

$$\begin{cases}
\operatorname{Im}(f^k g^{2d-k}) \subset \operatorname{Im}(f^d) \\
\operatorname{ou} \\
\operatorname{Im}(f^k g^{2d-k}) \subset \operatorname{Im}(g^d)
\end{cases}$$
(5.120)

et donc $\operatorname{Im}(f^k g^{2d-k}) \subset \operatorname{Im}(f^d) + \operatorname{Im}(g^d)$. Finalement, $\operatorname{Im}(f+g)^{2d} \subset \operatorname{Im}(f^d) + \operatorname{Im}(g^d)$. On a donc

$$r(f+g) = \dim(\operatorname{Im}(f+g)^{2d})$$
 (5.121)

$$\leq \dim(\operatorname{Im}(f^d) + \operatorname{Im}(g^d))$$
 (5.122)

$$\leq \dim(\operatorname{Im}(f^d)) + \operatorname{Im}(g^d)$$
 (5.123)

$$\leqslant r(f) + r(g) \tag{5.124}$$

Pour un contre-exemple, on utilise $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $B = A^{\mathsf{T}}$. On a $A^2 = B^2$ donc $r(A^2) = r(B^2) = 0$ et A + B inversible donc r(A + B) = 2 > r(A) + r(B).

3. On a $\chi_f = X^{m_0}Q$ avec $\deg(Q) = d - m_0$ et Q(0) = 0. D'après le lemme des noyaux, on a

$$V = \ker(f^{m_0}) \bigotimes \ker(Q(f)) \tag{5.125}$$

Dans une base adaptée \mathcal{B} , on a $\operatorname{mat}_{\mathcal{B}}(f) = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ avec $A^{m_0} = 0$ et B inversible. Alors

pour tout
$$k \ge m_0$$
, $\operatorname{mat}_{\mathcal{B}}(f^k) = \begin{pmatrix} 0 & 0 \\ 0 & B^k \end{pmatrix}$ et $\operatorname{rg}(f^k) = \operatorname{rg}(B^k) = d - m_0 = r(f)$.

Solution 5.15. Si on a (i), soit x un vecteur propre associé à $\rho(u) = \rho e^{i\theta}$. On a $||u(x)|| = ||\rho(u)x|| = \rho(u)||x||$ et comme $x \neq 0$, on a $\rho(u) \leq |||\rho(u)||| < 1$ d'où (ii).

Si (ii), on utilise la décomposition de Dunford u = n + d avec n nilpotent, d diagonalisable et dn = nd. Soit $m = \dim(E)$. Pour tout $p \ge m$, on a

$$u^{p} = \sum_{k=0}^{p} \binom{p}{k} n^{k} d^{p-k} = \sum_{k=0}^{m-1} \binom{p}{k} n^{k} \underbrace{d^{p-k}}_{p \to +\infty}$$
 (5.126)

En effet, on a $k \ge m-1$ fixé, il existe une base \mathcal{B} de E telle que

$$\binom{p}{k} \operatorname{mat}_{\mathcal{B}}(d^p) = \binom{p}{k} \operatorname{diag}(\lambda_1^p, \dots, \lambda_m^p) \xrightarrow[p \to +\infty]{} 0$$
 (5.127)

 $\operatorname{car} |\lambda_i| < 1 \text{ pour tout } i \in \{1, \dots, m\} \text{ et}$

$$\binom{p}{k} \underset{p \to +\infty}{\sim} \frac{p^k}{k!} = \underset{p \to +\infty}{o} \left(\frac{1}{\rho(u)^p}\right) \tag{5.128}$$

donc on a (iii).

Si (iii), soit x un vecteur propré associé à $\lambda \in \mathbb{C}$, on a $u^p \xrightarrow[p \to +\infty]{} 0$ donc en particulier, $u^p(x) = \lambda^p \xrightarrow[p \to +\infty]{} 0$, donc $\rho(u)^p \xrightarrow[p \to +\infty]{} 0$ et $\rho(u) \geqslant 0$ donc $\rho(u) < 1$. Posons encore u = d + n la décomposition de Dunford de u. Soit $\varepsilon > 0$, il existe $\mathcal{B}_0 = (e_1, \dots, e_n)$ base de E dans laquelle les coefficients de $\text{mat}_{\mathcal{B}_0}(n)$ sont en module $\leqslant \varepsilon$. Définissons sur E

$$\left\| \sum_{i=1}^{m} x_i e_i \right\|_{\infty} = \max_{1 \leqslant i \leqslant m} |x_i| \tag{5.129}$$

Soit $M = \max_{\mathcal{B}_0}(u) = (m_{i,j})_{1 \leq i,j \leq m}$ triangulaire supérieure avec $m_{ii} = \lambda_i$ et pour tout $j \neq i, |m_{i,j}| < \varepsilon$. Soit donc $x = \sum_{i=1}^m x_i e_i \in \mathbb{C}^m$, on a

$$||Mx||_{\infty} = \max_{1 \leqslant i \leqslant n} \left| \underbrace{\sum_{j=1}^{m} m_{i,j} x_j}_{(|\lambda_i| + (m-1)\varepsilon)||x||_{\infty}} \right|$$

$$(5.130)$$

donc

$$|||u||| \leqslant \underbrace{\rho(u)}_{\leq 1} + (m-1)\varepsilon \tag{5.131}$$

et on choisit

$$\varepsilon < \frac{1 - \rho(u)}{\underbrace{m - 1}_{>0}} \tag{5.132}$$

d'où $\|\|u\|\|<1$ et donc on a (i) et finalement on a bien l'équivalence.

Remarque 5.14. $u \mapsto \rho(u)$ n'est pas une norme car pour u nilpotente non nulle, $\rho(u) = 0$.

Solution 5.16. Supposons (i), soit Y un vecteur propre de A avec $AY = \lambda Y$ pour $\lambda \in \mathbb{C}$. Pour tout $k \in \mathbb{N}, BA^kY = \lambda^k BY$ et il existe $k_0 \in \mathbb{N}$ tel que $\lambda^{k_0}BY \neq 0$ et $BY \neq 0$ donc on a (ii).

Si (ii), supposons qu'il existe $Y \in \mathbb{C}^n \setminus \{0\}$ tel que $\varphi = 0$. On note

$$\chi_A = \prod_{i=1}^{\tau} (X - \lambda_i)^{m_i} \tag{5.133}$$

avec les λ_i distincts. Alors $Y = \sum_{i=1}^r Y_i$ où $Y_i \in \ker(A - \lambda_i I_n)$. Il existe $i_0 \in \{1, \dots, n\}$ tel que $Y_{i_0} \neq 0$ car $Y \neq 0$. On a alors, pour $t \in \mathbb{R}$,

$$B\exp(tA)Y = \sum_{i=1}^{r} B\exp(t\lambda_i)Y_i = 0$$
(5.134)

Pour tout $k \in \{0, \dots, r-1\}$, on a $\varphi^{(k)}(t) = \sum_{i=1}^r B \lambda_i^k \exp(t\lambda_i) Y_i = 0$. Pour t = 0 on a $\sum_{i=1}^r \lambda_i^k B Y_i = 0$ ce qui, pour t = 0, donne le système

$$\begin{cases}
BY_1 + \dots + BY_r &= 0 \\
\lambda_1 BY_1 + \dots + \lambda_r BY_r &= 0 \\
\vdots &\vdots \\
\lambda_1^{r-1} BY_1 + \dots + \lambda_r^{r-1} BY_r &= 0
\end{cases}$$
(5.135)

Pour tout $P \in \mathbb{C}_{r-1}[X]$, on a donc $\sum_{i=1}^r P(\lambda_i)BY_i = 0$. Pour $i \in \{0, \dots, r-1\}$ et $P = \prod_{i \neq j} \frac{(X-\lambda_j)}{\lambda_i - \lambda_j}$, on obtient pour tout $i \in \{1, \dots, r\}$, $BY_i = 0$. En particulier, $BY_{i_0} = 0$ et Y_{i_0} est un vecteur propre de A car non nul. C'est une contradiction. On a donc (iii).

Soit $Y \in \mathbb{C}^n \setminus \{0\}$, supposons que pour tout $k \in \{0, \dots, n-1\}$, $BA^kY = 0$. Soit $k \ge n$, il existe $(Q_k, R_k) \in \mathbb{C}[X] \times \mathbb{C}_{n-1}[X]$ tel que

$$X^k = Q_k \chi_A + R_k \tag{5.136}$$

et le théorème de Cayley-Hamilton donne donc $A^k=R_k(A)$ d'où $BA^kY=BR_k(A)Y=0$. Alors pour tout $t\in\mathbb{R}$,

$$B\exp(tA)Y = B\sum_{k=0}^{+\infty} \frac{t^k A^k}{k!} Y$$
 (5.137)

$$= \sum_{k=0}^{+\infty} \frac{t^k (BA^k Y)}{k!}$$
 (5.138)

$$=0 (5.139)$$

Par contraposée, on a bien ce qu'il faut, d'où l'équivalence.

6 Espaces vectoriels normés

Solution 6.1.

1. A $(x,y) \in \mathbb{R}^2$ fixé, la fonction

$$\varphi: \mathbb{R} \to \mathbb{R}$$

$$t \mapsto x\cos(t) + y\sin(2t)$$

est bornée, donc le sup sur \mathbb{R} existe. Pour la séparation, prendre t=0 et $t=\frac{\pi}{4}$. Pour l'inégalité triangulaire, montrer l'inégalité à t fixé puis passer au sup sur \mathbb{R} .

2. Si $|x| + |y| \le 1$, alors $N(x, y) \le 1$ donc on a la première inclusion.

Si $N(x,y) \leqslant 1$, utiliser t=0 pour avoir $|x| \leqslant 1$ et $t=\frac{\pi}{4}$ puis $t=-\frac{\pi}{4}$ pour pouvoir justifier

$$|2y| \leqslant \left| x \frac{\sqrt{2}}{2} + y \right| + \left| y - x \frac{\sqrt{2}}{2} \right| \leqslant 2 \tag{6.1}$$

et donc $|y| \leq 1$. D'où la deuxième inclusion.

3. On fixe $(x,y) \in S_N(0,1) \cap (\mathbb{R}_+)^2$. φ est 2π -périodique, $\varphi(\pi-t) = \varphi(t)$ et $\sup_{t \in \mathbb{R}} |\varphi(t)| = 1$. On peut donc se limite à un intervalle de longueur 2π pour l'étude de φ .

On note que si $t \in [-\pi, 0]$, $\cos(t)$ et $\sin(2t)$ sont de signes opposés. Donc

$$|\varphi(t)| \leqslant x|\cos(t)| + y|\sin(2t)| = |\varphi(-t)| \tag{6.2}$$

et $-t \in [0, \pi]$. Donc le sup est atteint sur $[0, \pi]$.

On note maintenant, comme $|\varphi(\pi - t)| = |\varphi(t)|$ sur $[0, \frac{\pi}{2}]$, que si $t \in [\frac{\pi}{4}, \frac{\pi}{2}]$,

$$0 \leqslant \varphi(t) = x \underbrace{\cos(t)}_{\in [0, \frac{\sqrt{2}}{2}]} + y \sin(2t) \leqslant x \underbrace{\cos(\frac{\pi}{2} - t)}_{\in [\frac{\sqrt{2}}{2}, 1]} + y \sin(2 \times (\frac{\pi}{2} - t)) = \varphi(\frac{\pi}{2} - t) \tag{6.3}$$

Donc le sup est atteint sur $[0, \frac{\pi}{4}]$. Soit maintenant $t_0 \in [0, \frac{\pi}{4}]$ tel que $\varphi(t_0)$ réalise le sup (existe car φ est continue sur un compact). Comme c'est aussi le sup sur \mathbb{R} qui est ouvert, on a la condition d'Euler du premier ordre : $\varphi'(t_0) = 0$.

On a donc $x\cos(t_0) + y\sin(2t_0) = 1$ et $-x\sin(t_0) + 2y\cos(2t_0) = 0$. On en déduit les valeurs de x et y en fonction de t_0 , en faisant attention que $\cos(t_0) \neq 0$ sinon $\sin(t_0) = 0$ aussi ce qui n'est pas le cas, et au cas où $t_0 = 0$.

Réciproquement, s'il existe $t_0 \in [0, \frac{\pi}{4}]$ tel que x et y s'écrivent de la façon demandée, alors t_0 est l'unique point satisfaisant $\varphi(t_0) = 1$ et $\varphi'(t_0) = 0$. Mais alors le sup de φ sur $[0, \frac{\pi}{4}]$ est atteint en un point t_1 qui vérifie les mêmes choses, donc $t_1 = t_0$ d'où N(x, y) = 1.

Solution 6.2.

1. Pour l'inégalité triangulaire, introduire la forme bilinéaire symétrique positive sur E

$$\varphi: E \times E \rightarrow \mathbb{R}$$

$$(f,g) \mapsto f(0)g(0) + \int_0^1 f'(t)g'(t)dt$$

Alors $N(f) = \sqrt{\varphi(f, f)}$ et on utilise l'inégalité de Minkowski.

- 2. Pour $x \in [0,1]$, écrire |f(x)| = |f(0) + f(x) f(0)|, $f(x) f(0) = \int_0^x f'(t) dt$, utiliser Cauchy-Schwarz avec f' et 1 puis que $\sqrt{a} + \sqrt{b} \leqslant \sqrt{2}\sqrt{a+b}$, pour enfin passer au sup sur x.
- 3. Utiliser, pour $n \in \mathbb{N}^*$, la fonction

$$f_n: [0,1] \to \mathbb{R}$$

$$t \mapsto t^n$$

Solution 6.3. Si f est ouverte, $f(\mathbb{R}^n)$ est un sous-espace vectoriel ouvert de \mathbb{R}^p . Donc f est surjective.

Si f est surjective, on prend F un supplémentaire de $\ker(f)$ dans \mathbb{R}^n avec $\dim(\ker(f)) = n - p$ et $\dim(F) = p$. Soit (e_1, \ldots, e_p) une base de F et (e_{p+1}, \ldots, e_n) une base de $\ker(f)$. On vérifie que $(f(e_1, \ldots, f(e_p)))$ est une base de \mathbb{R}^p . On définit

$$N_1: \mathbb{R}^n \to \mathbb{R}$$

$$\sum_{i=1}^n x_i e_i \mapsto \max_{1 \leq i \leq n} |x_i|$$

norme sur \mathbb{R}^n et

$$N_2: \mathbb{R}^p \to \mathbb{R}$$

$$\sum_{i=1}^p y_i f(e_i) \mapsto \max_{1 \le i \le p} |y_i|$$

norme sur \mathbb{R}^p .

Soit Θ un ouvert de \mathbb{R}^n , soit $y_0 \in f(\Theta)$, il existe $x_0 \in \Theta$: $y_0 = f(x_0)$. Si $x_0 = \sum_{i=1}^n \alpha_i e_i$, alors $y_0 = \sum_{i=1}^p \alpha_i f(e_i)$. Comme Θ est un ouvert, il existe $r_0 > 0$ tel que

$$B_{N_1}(x_0, r_0) \subset \Theta \tag{6.4}$$

Soit $y = \sum_{i=1}^p \beta_i f(e_i) \in \mathbb{R}^p$, si $N_2(y - y_0) < r_0$, pour tout $i \in \{1, \dots, p\}, |\beta_i - \alpha_i| < r_0$ et

$$y = f\left(\sum_{i=1}^{p} \beta_i e_i + \sum_{i=p+1}^{n} \alpha_i e_i\right) \stackrel{\text{def}}{=} f(x)$$
(6.5)

avec $N_1(x-x_0) = \max_{1 \le i \le p} |\beta_i - \alpha_i| < r_0$. Ainsi $x \in \Theta$ et $y \in f(\Theta)$, donc $B_{N_2}(y_0, r_0) \subset f(\Theta)$ et $f(\Theta)$ est un ouvert.

Solution 6.4.

1. Classique.

2.

$$|f(x)| \le |f(0)| + |f(x) - f(0)| \le |f(0)| + \kappa(f)x \le N(f) \tag{6.6}$$

car $x \leq 1$, donc $N_{\infty} \leq N$. Pour la non-équivalence, prendre

$$f_n: [0,1] \rightarrow \mathbb{R}$$

$$t \mapsto t^n$$

3. On a $|f(0)| \leq N_{\infty}(f)$ donc $N(f) \leq N'(f)$. Ensuite, $N_{\infty} \leq N$ donne $N' \leq N + \kappa \leq 2N$. Donc N est N' sont équivalentes.

Remarque 6.1. Exemple de normes qui, en dimension infinie, ne se dominent pas mutuellement. On prend $(e_i)_{i\in I}$ une base (de Hamel), $J=(i_n)_{n\in\mathbb{N}}\subset I$ dénombrable. Si $x=\sum_{i\in I}x_ie_i$, on peut vérifier que

$$N_1(x) = \sum_{n \in \mathbb{N}} |x_{i_n}| + \sum_{i \in I \setminus J} |x_i|$$
 (6.7)

et

$$N_2(x) = \sum_{n \in \mathbb{N}} n|x_{i_{2n}}| + \sum_{n \in \mathbb{N}} \frac{1}{n+1} |x_{i_{2n+1}}| + \sum_{i \in I \setminus J} |x_i|$$
(6.8)

ne se dominent pas.

Solution 6.5. Il existe $\alpha > 0$ tel que $B_{\|\cdot\|_{\infty}}(I_n, \alpha) \subset G$. Soient $i \neq j$ et $\lambda \in \mathbb{C}$. Il existe $p \in \mathbb{N}^*$ tel que $\frac{|\lambda|}{p} < \alpha$. Alors

$$\left\| T_{i,j} \left(\frac{\lambda}{p} \right) - I_n \right\|_{\infty} = \left| \frac{\lambda}{p} \right| < \alpha \tag{6.9}$$

donc $T_{i,j}(\lambda) \in G$ $(T_{i,j} \text{ est la matrice de transvection} : T_{i,j}(\lambda) = I_n + \lambda E_{i,j}).$

Ainsi,

$$T_{i,j}(\lambda) = \left(T_{i,j}\left(\frac{\lambda}{p}\right)\right)^p \in G$$
 (6.10)

Soit $\delta = \rho e^{\mathrm{i}\theta} \in \mathbb{C}^*$. On a $\lim_{n \to +\infty} \rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} = 1$ donc il existe $p \in \mathbb{N}^*$ tel que $|\rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} - 1| < \alpha$.

On a alors

$$\left\| D_n \left(\rho^{\frac{1}{p}} e^{i\frac{\theta}{p}} \right) - I_n \right\|_{\infty} < \alpha \tag{6.11}$$

donc $D_n(\delta) = D_n(\rho^{\frac{1}{p}} e^{i\frac{\theta}{p}})^p \in G$ (matrice de dilatation).

Comme les matrices de transvection et de dilatation engendrent $GL_n(\mathbb{C})$, on a bien $G = GL_n(\mathbb{C})$.

Remarque 6.2. C'est faux sur \mathbb{R} . Contre-exemple : matrices de déterminant positif.

Solution 6.6. Si f n'est pas continue en 0, il existe $\varepsilon_0 > 0$ tel que pour tout $\alpha > 0$, il existe $h \in E$ avec $||h|| \le \alpha$ et $||f(h)|| > \varepsilon_0$. On prends $\alpha_n = \frac{1}{n+1}$, d'où $||nh_n|| \le 1$ mais $||f(nh_n)|| > n\varepsilon_0 \xrightarrow[n \to +\infty]{} +\infty$. Donc f est continue en 0. Comme f est linéaire, pour tout $x \in E$,

$$\lim_{\|h\| \to 0} f(x+h) = \lim_{\|h\| \to 0} f(x) + f(h) = f(x)$$
(6.12)

donc f est continue.

On a f(px) = p(fx) pour tout $p \in \mathbb{Z}$ puis $qf(\frac{p}{q}x) = f(px) = pf(x)$ pour tout $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ donc pour tout $r \in \mathbb{Q}$, f(rx) = rf(x). Soit $\lambda \in \mathbb{E}$, il existe une suite de rationnels telle que $\lim_{n \to +\infty} r_n = \lambda$.

Comme f est continue, on a

$$f(\lambda x) = \lim_{n \to +\infty} f(r_n x) \tag{6.13}$$

$$= \lim_{n \to +\infty} r_n f(x) \tag{6.14}$$

$$= \lambda f(x) \tag{6.15}$$

Donc f est linéaire.

Remarque 6.3. Soit $e_0 = 1$ et $e_1 = \sqrt{2}$ et $(e_i)_{i \in I}$ une \mathbb{Q} -base de \mathbb{R} $(0 \in I)$. On définie

$$f\left(\sum_{i\in I}\lambda_i e_i\right) = \lambda_0 e_0 + \sqrt{2} \sum_{i\in I\setminus\{0\}} \lambda_i e_i \tag{6.16}$$

f vérifie f(x+y) = f(x) + f(y), mais si $(r_n)_{n \in \mathbb{N}}$ est une suite de rationnels tendant vers $\sqrt{2}$, $f(r_n) = r_n \to \sqrt{2} \neq f(\sqrt{2}) = 2$.

Solution 6.7.

- 1. On a $\alpha(A) \subset \overline{A}$ donc $\overline{\overline{A}} \subset \overline{A}$ donc $\alpha(\alpha(A)) \subset \alpha(A)$. Comme $\alpha(A)$ est un ouvert inclus dans $\overline{\overline{A}} \subset \overline{A}$ donc $\alpha(A) \subset \alpha(\alpha(A))$.
- 2. Si $\beta(A) = \overline{\mathring{A}}$, on montre aussi que $\beta(\beta(A)) = \beta(A)$. On a donc $A, \overline{A}, \mathring{A}, \overline{\mathring{A}}, \overline{\mathring{A}}, \overline{\mathring{A}}$ et c'est tout.

Solution 6.8.

1. Si $d_A = d_B$,

$$\overline{A} = \{x \in E \mid d_A(x) = 0\} = \{x \in E \mid d_B(x) = 0\} = \overline{B}$$
 (6.17)

Réciproquement, soit $x \in E$ et $\varepsilon > 0$, il existe $a_1 \in \overline{A}$, $||x - a_i|| \le d_{\overline{A}}(x) + \frac{\varepsilon}{2}$ (par définition de l'inf). Il existe $a_2 \in A$, $||a_1 - a_2|| \le \frac{\varepsilon}{2}$ (par définition de la fermeture). Ainsi,

$$d_A(x) \le ||x - a_2|| \le ||x - a_1|| + ||a_1 - a_2|| \le d_{\overline{A}}(x) + \varepsilon \tag{6.18}$$

Ceci valant pour tout $\varepsilon > 0$, $d_A(x) \leqslant d_{\overline{A}}(x)$. Comme $A \subset \overline{A}$, $d_{\overline{A}} \leqslant d_A$, on a $d_A = d_{\overline{A}} = d_{\overline{B}} = d_B$.

2. Soit $x \in A$, on a $d_B(x) = |d_B(x) - d_A(x)| \le \rho(A, B)$ donc $\sup_{x \in A} d_B(x) \le \rho(A, B)$, de même pour $\sup_{x \in A} d_A(y)$ donc on on a un première inégalité.

Réciproquement, soit $x \in E$ et $\varepsilon > 0$, il existe $a \in A$ et $b \in B$ tel que $||x - a|| \le d_A(x) + \varepsilon$ et $||x - b|| \le d_B(x) + \varepsilon$. On a alors

$$d_A(x) \le ||x - a|| \le ||a - b|| + ||x - b|| \le d_B(x) + \varepsilon + \alpha(A, B)$$
(6.19)

Ceci vaut pour tout $\varepsilon > 0$, donc $d_A(x) \leq d_B(x) + \alpha(A, B)$. De même, $d_B(x) \leq d_A(x) + \alpha(A, B)$ donc $\rho(A, B) \leq \alpha(A, B)$.

Solution 6.9.

- 1. Soit $(y_n)_{n\in\mathbb{N}}\in P(F)^{\mathbb{N}}$ qui converge vers $y\in\mathbb{C}$ donc il existe $(x_n)\in F^{\mathbb{N}}$ telle que l'on ait pour tout $n\in\mathbb{N},\ P(x_n)=y_n.\ (x_n)_{n\in\mathbb{N}}$ est bornée car $\lim_{z\to+\infty}|P(z)|=+\infty$ (car P est non constant), donc on peut extraire (Bolzano-Weierstrass) $x_{\sigma(n)}\to x$ et $x\in F$ car F est fermé. Par continuité de $z\mapsto P(z)$ sur \mathbb{C} , on a $y=P(x)\in P(F)$.
- 2. Soit Θ un ouvert de \mathbb{C} , soit $y \in P(\Theta)$, $\exists x \in \Theta$ tel que P(x) = y et il existe r > 0, $B(x,r) \subset \Theta$. Soit $y' \in \mathbb{C}$, supposons que pour tout $x' \in \mathbb{C}$ tel que P(x') = y', on a |x - x'| > r. Soit $Q(X) = P(X) - y' = a \prod_{i=1}^{n} (X - x_i)$ non constant où a est le coefficient dominatrice de P. Par hypothèse, pour tout $i \in \{1, ..., n\}$: $|x_i - x| > r$ (car $P(x_i) = y'$), ainsi

$$|Q(x)| = |y - y'| \geqslant |a|r^n \tag{6.20}$$

Par contraposée, si $|y-y'| \leq \frac{|a|r^n}{2}$, alors il existe $x' \in \mathbb{C}$ tel que P(x') = y' et |x'-x| < r. Ainsi, $x' \in B(x,r) \subset \Theta$ et $y' \in P(\Theta)$. Donc $B(y,|a|r^n) \subset P(\Theta)$ et $P(\Theta)$ est un ouvert.

Solution 6.10.

1. Si $P \notin \mathcal{S}$, il existe $z_0 \in \mathbb{C} \setminus \mathbb{R}$ tel que $P(z_0) = 0$ et $|\Im(z_0)|^n > 0 = P(z_0)$. Par contraposée, si pour tout $z \in \mathbb{C}$, $|P(z)| \geqslant |\Im(z)|^n$, alors $P \in \mathcal{S}$.

Réciproquement, si $P = \prod_{i=1}^n (X - \lambda_i) \in \mathcal{S}$ avec $(\lambda_i)_{1 \leq i \leq n}$ réels, soit $z = a + ib \in \mathbb{C}$. On a

$$|P(z)| = \prod_{i=1}^{n} |a - \lambda_i + ib| \ge |b|^n$$
 (6.21)

- 2. Soit $(P_p)_{p\in\mathbb{N}}\in\mathcal{S}^{\mathbb{N}}$ telle que $P_p\xrightarrow[p\to+\infty]{}P\in F$. Soit $z\in\mathbb{C}$, on a pour tout $p\in\mathbb{N}$, $|P_p(z)|\geqslant |\Im(z)|^n$ donc quand $p\to+\infty$, $|P(z)|\geqslant |\Im(z)|^n$ donc $P\in\mathcal{S}$ et S est fermé.
- 3. Soit $(M_p)_{p\in\mathbb{N}}$ une suite de matrice trigonalisable sur \mathbb{R} qui converge vers $M\in\mathcal{M}_n(\mathbb{R})$. Ib bite χ_p le polynôme caractéristique de M_p . Pour tout $p\in\mathbb{N}$, $\chi_p\in\mathcal{S}$ et $\chi_p\xrightarrow[p\to+\infty]{}\chi_M$. Comme \mathcal{S} est fermé, $\chi_M\in\mathcal{S}$ et M est trigonalisable sur \mathbb{R} .

Solution 6.11.

1. φ est linéaire et $\dim(\mathbb{K}_{m-1}[X] \times \mathbb{K}_{n-1}[X]) = m + n + = \dim(\mathbb{K}_{n+m-1}[X])$. Si φ est bijective, elle est surjective et il existe $(U, V) \in \mathbb{K}[X]^2$ tel que UA + BV = 1 et

Si φ est bijective, elle est surjective et il existe $(U, V) \in \mathbb{K}[X]^2$ tel que UA + BV = 1 et d'après le théorème de Bézout, on a $A \wedge B = 1$.

Réciproquement, si φ n'est pas surjective, il existe $(U, V) \in (\mathbb{K}_{m-1}[X] \times \mathbb{K}_{n-1}[X]) \setminus \{(0, 0)\}$ tel que $\varphi(U, V) = 0$ d'où AU = -BV. Soit $\delta = A \wedge B$, on écrit $A = \delta A_1$ et $B = \delta B_1$ avec $A_1 \wedge B_1 = 1$ et on a $A_1U = -B_1V$. D'après le théorème de Gauss, on a $A_1 \mid V$ et $B_1 \mid U$. Si U = 0, on a V = 0 et de même si V = 0, on a U = 0. On peut donc supposer $U \neq 0$ et $V \neq 0$, et on a alors $\deg(A_1) \leqslant \deg(V) \leqslant n-1 < n = \deg(A)$ mais $A = \delta A_1$ donc $\deg(\delta) \geqslant 1$ et $A \wedge B \neq 1$.

- 2. Φ est continue car $R_{A,B}$ est un polynôme en les coefficients de A et B.
- 3. Comme on est dans \mathbb{C} , $\Delta = \{P \in \mathbb{C}_p[X] \mid P \wedge P' = 1\} = \{P \in \mathbb{C}_p[X] \mid R_{P,P'} \neq 0\}$. $\Phi_{P,P'}$ est continue d'après la question précédente, $\delta = \Phi_{P,P'}^{-1}(\mathbb{C}^*)$ donc Δ est ouvert.

Sur \mathbb{R} , on n'a pas la caractérisation de scindé à racines simples si et seulement si $P \wedge P' = 1$ (contre-exemple : $P = X^2 + 1$). Dans $\mathbb{R}_3[X]$, X est scindé à racines simples et $X(1+\varepsilon X)^2 \xrightarrow[\varepsilon \to 0]{} X$ et $-\frac{1}{\varepsilon}$ est racine double, donc Δ n'est pas ouvert.

Remarque 6.4. On peut cependant considérer

$$\Delta_n = \{ P \in \mathbb{C}_p[X] \mid P \text{ scind\'e à racines simples sur } \mathbb{R} \text{ et } \deg(P) = n \}$$
 (6.22)

 $Si \lambda_1 < \lambda_2 < \cdots < \lambda_n \text{ sont les racines (distinctes) de } R \text{ sur } \mathbb{R}, \text{ on choisit } \alpha_0 \in]-\infty, \lambda_1, \alpha_n \in]\lambda_n, +\infty[$ et $\alpha_i \in]\lambda_i, \lambda_{i+1}[\text{ si } i=1,\ldots,n-1.$

Pour tout $k \in \{0, ..., n-1\}$, on a $P(\alpha_k)P(\alpha_{k+1}) < 0$ (car les racines de P provoquent des changements de signe). Soit

$$\Psi: \mathbb{R}_n[X] \to \mathbb{R}^n$$

$$Q \mapsto (Q(\alpha_k)Q(\alpha_{k+1}))_{0 \le k \le n-1}$$

 Ψ est continue $\sup \mathbb{R}_n[X]$ et $\Psi(P) \in (\mathbb{R}_+^*)^n$ qui est ouvert, donc il existe r > 0 tel que $\inf \|P - Q\| < r$, alors $\Psi(Q) \in (\mathbb{R}_+^*)^n$. Donc Q change n fois de signe, et admet au moins n racines. Mais $\deg(Q) = n$, donc Q est scindé à racines simples $\sup \mathbb{R}$, donc Δ_n est ouvert dans $\{P \in \mathbb{R}[X] \mid \deg(P) = n\}$.

Remarque 6.5.

 $\{M \in \mathcal{M}_n(\mathbb{C}) \mid M \text{ diagonalisable à racines simples}\} = \{M \in \mathcal{M}_n(\mathbb{C}) \mid \chi_M \text{ scind\'e à racines simples}\}$ (6.23)

est un ouvert de $\mathcal{M}_n(\mathbb{C})$ car $M \mapsto \chi_M$ est continue sur $\mathcal{M}_n(\mathbb{C})$, et c'est aussi vrai sur \mathbb{R} .

Solution 6.12.

1. Soit

$$f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$$

$$A \mapsto A^n$$

f est continue et $F = f^{-1}(\{0\})$ donc $F = \overline{F}$.

Soit $M_0 \in F$, X^n annule M_0 donc M_0 est trigonalisable : on écrit M_0 dans une base où les coefficients diagonaux sont tous nuls. Soit alors M_{ε} la même matrice dans la même base en rajoutant simplement ε en première position de la diagonale. Alors $M_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} M_0$ et $M_{\varepsilon} \notin F$ donc $\mathring{F} = \emptyset$. Notons que cela signifie que F est dense.

2. La norme dérive du produit scalaire $(A|B) \mapsto \operatorname{Tr}(A^{\mathsf{T}}B)$. Soit $M \in F$, on a $||M - I_n||^2 = ||M||^2 + ||I_n||^2 - 2(M|I_n)$. On a $(M|I_n) = \operatorname{Tr}(M) = 0$ car M est nilpotente. Donc $||M - I_n||^2$ est minimale pour $||M||^2$ minimale, donc pour $M = 0 \in F$. Donc $d(I_n, F) = ||I_n|| = \sqrt{n}$ (et la distance est atteinte pour $0_{\mathcal{M}_n(\mathbb{R})}$).

Solution 6.13.

- 1. $A \mapsto \det(A)$ est continue et $GL_n(\mathbb{K}) = \det^{-1}(\mathbb{K}^*)$ est donc ouvert. Si $A \in \mathcal{M}_n(\mathbb{K})$, pour $p \in \mathbb{N}$, on pose $A_p = A \frac{1}{p+1}I_n$. Comme $\operatorname{Sp}(A)$ est fini, il existe $N \in \mathbb{N}$, tel que pour tout $p \geqslant N$, $\frac{1}{p+1} \notin \operatorname{Sp}(A)$. Donc pour tout $p \geqslant N$, $A_p \in GL_n(\mathbb{K})$, et $A_p \xrightarrow[p \to +\infty]{} A$ donc $GL_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.
- 2. On fixe $B \in \mathcal{M}_n(\mathbb{K})$. Soit $A \in GL_n(\mathbb{K})$. On écrit $BA = A^{-1}(AB)A$ donc AB et BA sont semblables donc $\chi_{AB} = \chi_{BA}$. Comme, à B fixé, $A \mapsto \chi_{AB}$ et $A \mapsto \chi_{BA}$ sont continues sur $\mathcal{M}_n(\mathbb{K})$, on a le résultat par densité.

Solution 6.14.

1. On a $v_p \circ (id_E - u) = (id_E - u) \circ v_p = \frac{1}{p} (id_E - u^p)$, donc $||v_p \circ (id_E - u)|| \leq \frac{1}{p} (||id_E|| + ||u^p||) \xrightarrow[p \to +\infty]{} 0$.

Soit $x \in \ker(u - id_E) \cap \operatorname{Im}(u - id_E)$, on a u(x) = x et il existe $y \in E$, $x = (u - id_E)(y)$. On a $v_p(x) = \frac{1}{p}(px) = x$ et $v_p(x) = v_p \circ (u - id_E)(y) \xrightarrow[p \to +\infty]{} 0$ d'où x = 0. Le théorème du rang permet de conclure.

2. Soit $x \in E$, on écrit $x = x_1 + x_2$ avec $\Pi(x) = x_1$ et $x_2 = (u - id_E)(y_2)$. Alors $v_p(x) = x_1 + v_p \circ (u - id_E)(y_2) \xrightarrow[p \to +\infty]{} x_1 = \Pi(x)$.

Solution 6.15.

1. Pour tout $x \in A$, $f_n(x) \in A$ car A est convexe. Soit $(x,y) \in A^2$, on a

$$||f_n(x) - f_n(y)|| = \left(1 - \frac{1}{n}\right)||f(x) - f(y)|| \le \left(1 - \frac{1}{n}\right)||x - y||$$
(6.24)

Donc f_n est $(1 - \frac{1}{n})$ -lipschitzienne. On forme

$$g_n: A \rightarrow \mathbb{R}$$

$$x \mapsto ||f_n(x) - x||$$

qui est continue. Soit $x_n \in A$ telle que $g_n(x_n) = \min_{x \in A} g_n(x)$ (existe car A est compact et g_n continue). On a $x_n \in A$, d'où $f_n(x_n) \in A$ et

$$g_n(f_n(x_n)) = \|f_n(f_n(x_n)) - f_n(x_n)\| \le \left(1 - \frac{1}{n}\right) \|f_n(x_n) - x_n\| = \left(1 - \frac{1}{n}\right) g_n(x_n)$$
 (6.25)

Si $g_n(x_n) \neq 0$, alors on aurait $g_n(f(x_n)) < g_n(x_n)$ ce qui n'est pas possible. Donc $g_n(x_n) = 0$ et $f_n(x_n) = x_n$.

Soit y_n un autre point fixe, on a

$$||f_n(x_n) - f_n(y_n)|| = ||x_n - y_n|| \le \left(1 - \frac{1}{n}\right) ||x_n - y_n||$$
(6.26)

donc $x_n = y_n$.

2. On a $(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ et on extrait (car A est compact) et on a

$$x_{\sigma(n)} \xrightarrow[n \to +\infty]{} x \in A \tag{6.27}$$

On a

$$f_{\sigma(n)}(x_{\sigma(n)}) = x_{\sigma(n)} = \underbrace{\frac{1}{\sigma(n)} f(x_0)}_{\substack{n \to +\infty \\ p \to +\infty}} + \underbrace{\left(1 - \frac{1}{\sigma(n)}\right) f(x_{\sigma(n)})}_{\substack{n \to +\infty \\ p \to +\infty}}$$
(6.28)

par continuité de f. Donc f(x) = x.

3. Soit $(x,y) \in A^2$, points fixes de f, et $t \in [0,1]$, on pose z = tx + (1-t)y. On a

$$||x - y|| = ||f(x) - f(y)||$$
(6.29)

$$\leq ||f(x) - f(z)|| + ||f(z) - f(y)||$$
 (6.30)

$$\leq ||x - z|| + ||z - y||$$
 (6.31)

$$= (1 - t)||x - y|| + t||x - y||$$
(6.32)

$$= \|x - y\| \tag{6.33}$$

On a donc égalité partout : ||f(x) - f(y)|| = ||f(x) - f(z)|| + ||f(z) - f(y)|| et ||f(x) - f(z)|| = ||x - z||, ||f(z) - f(y)|| = ||z - y|| car f est 1-lipschitzienne.

Comme la norme est euclidienne, il existe $\lambda \in \mathbb{R}_+$ tel que $f(x) - f(z) = \lambda(f(z) - f(y))$ d'où $f(x) + \lambda f(y) = (\lambda + 1)f(z)$ d'où $f(z) = \frac{x + \lambda y}{\lambda + 1} = t'x + (1 - t')y$ avec $t' = \frac{1}{\lambda + 1} \in [0, 1]$. En reportant, on a

$$||f(x) - f(z)|| = ||x - t'x - (1 - t')y|| = (1 - t')||x - y|| = ||x - z|| = (1 - t)||x - y||$$
 (6.34)

Si $x \neq y$, alors t = t' et f(z) = tx + (1 - t)y = z.

4. Soit dans \mathbb{R}^2 , $\overline{B_{\|\cdot\|}(0,1)} = [-1,1]^2 = A$. Soit

$$\begin{array}{cccc} f: & A & \to & A \\ & (x,y) & \mapsto & (x,|x|) \end{array}$$

On a

$$||f(x_1, y_1) - f(x_2, y_2)||_{\infty} = ||(x_1, |x_1|)(x_2, |x_2|)||_{\infty}$$
(6.35)

$$= \max\{|x_1 - x_2|, ||x_1| - |x_2||\}$$
(6.36)

$$= |x_1 - x_2| \tag{6.37}$$

$$\leq \|(x_1, y_1) - (x_2, y_2)\|_{\infty}$$
 (6.38)

Donc f est 1-lipschitzienne, on a f(x,y)=(y,x) si et seulement si y=|x|. Donc ici, F n'est pas convexe.

Solution 6.16.

1. On a pour tout $(x,y) \in E^2$, f(x+y) = f(x) + f(y) et par récurrence, pour tout $n \in \mathbb{Z}$, f(nx) = nf(x). Pour $r = \frac{p}{q} \in \mathbb{Q}$, on a f(qrx) = qf(rx) = f(px) = pf(x) donc f(rx) = rf(x). Par densité de \mathbb{Q} dans \mathbb{R} et continuité de f, on a pour tout $\lambda \in \mathbb{R}$, $f(\lambda x) = \lambda f(x)$. Donc f est linéaire.

Pour $\mathbb{K} = \mathbb{C}$, cela ne marche pas. Contre-exemple : la conjugaison dans \mathbb{C} .

2. On étudie la série, pour x fixé de terme général

$$||v_{n+1}(x) - v_n(x)|| = \frac{1}{2^n} ||f(2^{n+1}x) - 2f(2^nx)|| \leqslant \frac{M}{2^{n+1}}$$
(6.39)

qui est donc convergente. Donc $(v_n)_{n\in\mathbb{N}}$ converge.

- 3. On a $v_0(x) = f(x)$, donc $\sum_{n=0}^{+\infty} v_{n+1}(x) v_n(x) = g(x) f(x)$. f étant continue, v_n l'est aussi, et pour tout $n \in \mathbb{N}$, comme pour tout $x \in E$, $||(v_{n+1} v_n)(x)|| \leq \frac{M}{2^{n+1}}$, donc g est continue.
- 4. On a, pour tout $(x, y) \in E^2$,

$$||v_n(x+y) - v_n(x) - v_n(y)|| = ||\frac{1}{2^n} f(2^n(x+y)) - \frac{1}{2^n} (f(2^n x) + f(2^n y))|| \le \frac{M}{2^n}$$
 (6.40)

Donc quand $n \to +\infty$, g(x+y) = g(x) + g(y).

On a pour tout $x \in E$,

$$||g(x) - f(x)|| = \left\| \sum_{n=0}^{+\infty} v_{n+1}(x) - v_n(x) \right\| || \leqslant \sum_{n=0}^{+\infty} ||v_{n+1}(x) - v_n(x)|| \leqslant \sum_{n=0}^{\infty} \frac{M}{2^n} = M \quad (6.41)$$

Soit maintenant h linéaire continue telle que h-f soit bornée, soit $M'=\sup_{x\in E}\|h(x)-f(x)\|$. On a donc

$$||v_n(x) - h(x)|| = \left\| \frac{1}{2^n} f(2^n x) - \frac{1}{2^n} h(2^n x) \right\| \leqslant \frac{M'}{2^n}$$
 (6.42)

car h est linéaire. Donc quand $n \to +\infty$, g(x) = h(x) car $\lim_{n \to +\infty} v_n(x) = g(x)$.

Solution 6.17. En particulier, pour t = f(0), $f^{-1}(\{f(0)\}) = \{x \in E \mid f(x) = f(0)\}$ est borné (car compact). Donc il existe A tel que $f^{-1}(\{f(0)\}) \subset \overline{B(0,A)}$. Par contraposée, pour tout $x \in E$, si ||x|| > A, alors $f(x) \neq f(0)$.

On montre alors que $E \setminus \overline{B(0,A)}$ est connexe par arcs (faire le tour de la boule par l'extérieur).

f étant continue, d'après le théorème des valeurs intermédiaires, on a soit pour tout $x \in E \setminus \overline{B(0,A)}$, f(x) > f(0) soit f(x) < f(0). Quitte à remplacer f par -f, on se place dans le cas f(x) > f(0). Comme on est en dimension finie sur $\overline{B(0,A)}$ compact, f atteint son minimum et ce minimum est plus petit que f(0), c'est donc un minimum global.

Remarque 6.6. C'est faux pour n = 1. Contre-exemple : $f = id_{\mathbb{R}}$.

Solution 6.18. Si c'était le cas, on prend un cercle \mathcal{C} compact (et connexe par arcs). $f(\mathcal{C})$ est compact connexe par arc dans \mathbb{R} . On note $f(\mathcal{C}) = [a,b]$ (avec a < b car f injective). Si $x \in \mathcal{C}$ est tel que $f(x) = \frac{a+b}{2}$, on $\underbrace{f(\mathcal{C} \setminus \{x\})}_{\text{connexe par arc}} = \underbrace{[a,b] \setminus \left\{\frac{a+b}{2}\right\}}_{\text{pas connexe par arc}}$ donc une telle fonction n'existe pas.

Solution 6.19.

1. Pour tout $n \in \mathbb{N}$, $||e_n||_{l^1} = 1$ et $|K_n| = |\varphi(e_n)| \leq |||\varphi|||$ donc $(K_n)_{n \in \mathbb{N}}$ est bornée. On note $M = \sup |K_n| \leq |||\varphi|||$.

Soit maintenant $u = (u_n)_{n \in \mathbb{N}} \in l^1$. On a, pour $N \in \mathbb{N}$,

$$\left\| u - \sum_{n=0}^{N} u_n e_n \right\|_1 \leqslant \sum_{n=N+1}^{\infty} |u_n| \xrightarrow[N \to +\infty]{} 0 \tag{6.43}$$

(reste d'une série convergente). Par continuité de φ , on a donc

$$|\varphi(u)| \leqslant \sum_{n=0}^{\infty} |u_n| |K_n| \leqslant M ||u||_1$$
 (6.44)

Ainsi, $\| \varphi \| \leq M$ et donc $\| \varphi \| = M$.

2. F est linéaire et une isométrie d'après la question précédente, donc injective.

Soit $(K_n)_{n\in\mathbb{N}}\in l^{\infty}$. On définit

$$\varphi: l^1 \to \mathbb{R}$$

$$u = (u_n)_{n \in \mathbb{N}} \mapsto \sum_{n=0}^{\infty} u_n K_n$$

Elle est bien définie car $\sum_{n=0}^{+\infty} |u_n| < +\infty$ et $(K_n)_{n \in \mathbb{N}}$ est bornée. Elle est linéaire, et continue car $|\varphi(u)| \leq ||(K_n)_{n \in \mathbb{N}}||_{\infty} ||u||_1$.

Enfin, pour tout $n \in \mathbb{N}$, $\varphi(e_n) = K_n$. Donc $F(\varphi) = (K_n)_{n \in \mathbb{N}}$ et F est surjective. Donc F est une isométrie bijective et le dual topologique de l^1 est équivalent à l^{∞} .

Solution 6.20.

1. Soit φ une forme linéaire non nulle telle que $K = \ker(\varphi)/$ Si F est dense, φ est discontinue. Soit $(a,b) \in (E \setminus H)^2$ et $(x_n)_{n \in \mathbb{N}} \in H^{\mathbb{N}}$ qui converge vers b-a (existe car H est dense). La suite $(a+x_n)_{n \in \mathbb{N}}$ converge vers b. Pour $n \in \mathbb{N}$, on a $\varphi(a+x_n) = \varphi(a) \neq 0$, et pour $t \in [0,1]$, $\varphi(t(a+x_n)+(1-t)(a+x_{n+1})) = \varphi(a) \neq 0$. Donc $[a+x_n,a+x_{n+1}] \subset E \setminus H$.

Soit $\gamma:[0,1]\to E\setminus H$ telle que

$$\begin{cases} \gamma(t) = \alpha_n t + \beta_n \in [a + x_n, a + x_{n+1}] \subset E \setminus H & \text{si } t \in [1 - \frac{1}{n}, 1 - \frac{1}{n+1}] \\ \gamma(1) = b & \\ \gamma(t) = a + tx_0 & \text{si } t \in [0, \frac{1}{2}] \end{cases}$$
(6.45)

On cherche à définir α_n et β_n : on veut $\gamma(1-\frac{1}{n})=a+x_n$ et $\gamma(1-\frac{1}{n+1})=a+x_{n+1}$ (pour la continuité en se raccordant au x_n). En résolvant le système, on trouve $\alpha_n=n(n+1)(x_n-x_{n+1})$ et $\beta_n=a+x_n-(n-1)(n+1)(x_n-x_{n+1})$.

Soit alors $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$: $||x_n + a - b|| < \varepsilon$ et pour tout $n \ge N$, pour tout $t \in [1 - \frac{1}{n}, 1 - \frac{1}{n+1}[, \gamma(t) \in [a + x_n, a + x_{n+1}] \subset B(b, \varepsilon)$ par convexité de la boule. Donc $\lim_{t \to 1} \gamma(t) = b$ et γ est continue. Donc $E \setminus H$ est connexe par arcs.

- 2. Soit φ une forme linéaire telle que ker(f) = H est fermé. Alors φ est continue (à redémontrer). Soit x ∈ E \ H, on a φ(x)φ(-x) < 0 et d'après le théorème des valeurs intermédiaires, si E \ H était connexe par arcs, φ s'annulerait sur E \ H ce qui n'est pas vrai. Donc E \ H n'est pas connexe par arcs.</p>
- 3. Si $\mathbb{K} = \mathbb{C}$, si H est dense alors $E \setminus H$ est connexe par arc d'après la première question. Si H est fermé, soit φ une forme linéaire continue telle que $\ker(f) = H$. Soit $(x_1, x_2) \in (E \setminus H)^2$.
 - Si $\frac{\varphi(x_1)}{\varphi(x_2)} \notin \mathbb{R}_-^*$, alors pour tout $t \in [0,1]$, $\varphi(\underbrace{tx_1 + (1-t)x_2}_{\in E \setminus H}) \neq 0$ et on peut relier directement x_1 et x_2 .
 - Sinon, il existe $\theta \in \mathbb{R}$, $(\rho, \rho') \in (\mathbb{R}_+^*)^2$ avec $\varphi(x_1) = \rho e^{i\theta}$ et $\varphi(x_2) = \rho' e^{i(\theta + \pi)}$. Alors $x_3 = ix_1$ est tel que $[x_1, x_3] \subset E \setminus H$ et $[x_2, x_3] \subset E \setminus H$ (on contourne l'origine par une rotation de l'angle $\frac{\pi}{2}$). Par conséquent, on peut utiliser x_3 pour relier x_1 et x_2 donc $E \setminus H$ est connexe par arcs.

Solution 6.21. Soit

$$\varphi: \mathbb{R}_+^* \to \mathbb{R}$$
$$x \mapsto ((x, \sin(\frac{1}{x})))$$

 φ est continue et $\Gamma)\varphi(\mathbb{R}_+^*)$ est connexe par arcs.

On a $\overline{\Gamma} = \Gamma \cup \Gamma'$ avec $\Gamma' = \{(0,y) \mid y \in [-1,1]\}$. En effet, pour tout $y \in [-1,1]$, on pose $x_k = \frac{1}{\arcsin(y) + 2k\pi}$. On a $\sin(\frac{1}{x_k}) = y \xrightarrow[k \to +\infty]{} y$ donc $(0,y) = \lim_{k \to +\infty} (x_k, \sin(\frac{1}{x_k})) \in \overline{\Gamma}$.

Réciproquement, si $(x,y) \in \overline{\Gamma}$, il existe $(x_k) \in (\mathbb{R}_+^*)^{\mathbb{N}}$ avec $x = \lim_{k \to +\infty} x_k$ et $y = \lim_{k \to +\infty} \sin(\frac{1}{x_k})$. Si x > 0, par continuité, $y = \sin(\frac{1}{x})$ et $(x,y) \in \Gamma$. Si x = 0, $y \in [-1,1]$ donc $(x,y) \in \Gamma'$.

Si $\overline{\Gamma}$ est connexe par arcs, il existe

$$\begin{array}{cccc} \gamma: & [0,1] & \to & \overline{\Gamma} \\ & t & \mapsto & (x(t),y(t)) \end{array}$$

continue telle que $\gamma(0) = (0,0)$ et $\gamma(1) = (\frac{1}{\pi},0)$. La première projection $t \mapsto x(t)$ est continue avec x(0) = 0 et $x(1) = \frac{1}{\pi}$. On définit maintenant $t_1 = \sup\{t \in [0,1] \mid x(t) = 0\}$. Par continuité, $x(t_1) = 0$ et donc $t_1 < 1$. Donc pour tout $t > t_1$, x(t) > 0 et $\gamma(t) = (x(t), \sin(\frac{1}{x(t)}))$ pour $t > t_1$ et $\gamma(t_1) = (0, y_1)$ avec $y_1 \in [-1, 1]$.

Or, -1 et 1 n'appartiennent pas simultanément à $]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$. On peut supposer que $1 \notin]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$. Comme γ est continue, il existe $t_2 > t_1$ tel que pour tout $t \in]t_1, t_2]$, $\sin(\frac{1}{x(t)}) \in]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$. Or $x(t_2) > 0$ et $x(t_1) = 0$ donc il existe $k \in \mathbb{N}^*$, $t_0 \in]t_1, t_2]$ tel que $x(t_0) = \frac{1}{2k\pi + \frac{\pi}{2}}$ (théorème des valeurs intermédiaires). Mais alors $\sin(\frac{1}{x(t_0)}) = 1 \notin]y_1 - \frac{1}{2}, y_1 + \frac{1}{2}[$ ce qui contredit ce qui précède.

Donc $\overline{\Gamma}$ n'est pas connexe par arcs.

Solution 6.22.

1. Pour tout $n \in \mathbb{N}$, $u_n \in K$ car u_n est le barycentre de $(a, T(a), \dots, T^n(a))$ et K est convexe. Comme K est compact, on peut extraire $u_{\sigma(n)} \xrightarrow[n \to +\infty]{} u \in K$. Alors

$$(id_E - T)(u_{\sigma(n)}) = \frac{1}{\sigma(n) + 1}(id_E - T^{\sigma(n)+1})(a)$$
(6.46)

d'où

$$||(id_E - T)(u_{\sigma(n)})|| \leqslant \frac{1}{\sigma(n) + 1} \times 2M \xrightarrow[n \to +\infty]{} 0 \tag{6.47}$$

avec $M = \sup_{x \in K} \|x\|$ (existe car K est compact donc borné). Par continuité de T, on a T(u) = u.

2. Posons $F' = \{u \in K \mid T(u) = u\}$ fermé car $K' = K \cap \left(\underbrace{(id_E - T)^{-1}}_{\text{continu}}^{-1}\{0\}\right)$. Donc K' est compact et non vide d'après la première question. De plus, pour tout $(u_1, u_2) \in K'^2$, pour tout $t \in [0, 1]$, par linéarité de T, on a

$$T(tu_1 + (1-t)u_2) = tu_1 + (1-t)u_2$$
(6.48)

donc K' convexe. De plus, comme $U \circ T = T \circ U$, pour tout $u \in K'$, on a T(U(u)) = U(T(u)) = U(u) donc $U(u) \in K'$. On applique alors la question 1 à K' est il existe $y \in K'$: U(y) = y et T(y) = y.

Solution 6.23.

- 1. C'est le théorème du rang car $\operatorname{rg}(u) \leq n \leq p-2$, et $H = \{(\alpha_1, \dots, \alpha_p) \mid \sum_{i=1}^p \alpha_i = 0\}$ est de dimension p-1 donc $H \cap \ker(u) \neq \{0\}$ (formule de Grassmann).
- 2. On a

$$\sum_{i=1}^{p} (\lambda_i + t\alpha_i) x_i = \sum_{i=1}^{p} \lambda_i x_i + t \sum_{i=1}^{p} \alpha_i x_i = x$$
 (6.49)

et

$$\sum_{i=1}^{p} (\lambda_i + t\alpha_i) = \sum_{i=1}^{p} \lambda_i + t \sum_{i=1}^{p} \alpha_i = 1$$
 (6.50)

Soit $I_{+} = \{i \in \{1, \dots, p\} \mid \alpha_{i} > 0\}$ et $I_{-} = \{i \in \{1, \dots, p\} \mid \alpha_{i} < 0\}$. On a $I_{+} \neq \emptyset$ et $I_{-} \neq \emptyset$ car $\sum_{i=1}^{p} \alpha_{i} = 0$ et $(\alpha_{1}, \dots, \alpha_{p}) \neq (0, \dots, 0)$. Soit $t \geqslant 0$. Pour tout $i \in I_{+}$, $\lambda_{i} + t\alpha_{i} \geqslant 0$. Pour $i \in I_{-}$, $\lambda_{i} + t$ $\alpha_{i} \geqslant 0$ si et seulement si $t \leqslant -\frac{\lambda_{i}}{\alpha_{i}}$. Prenons alors

$$t = \min_{i \in I_{-}} \left(-\frac{\lambda_i}{\alpha_i} \right) \tag{6.51}$$

On au aussi pour tout $i \in I_-$, $\lambda_i + t\alpha_i \ge 0$ et il existe $i_0 \in I_-$ tel que $\lambda_{i_0} + t\alpha_{i_0} = 0$.

- 3. Par récurrence descendante, on se ramène à n+1 points car si x est barycentre de p points avec $p \ge n+2$, alors il est barycentre de p-1 points.
- 4. Soit $A = \{(\lambda_1, \dots, \lambda_{n+1}) \in \mathbb{R}^{n+1}_+ \mid \sum_{i=1}^{n+1} \lambda_i = 1\}$ fermé et borné en dimension finie donc compact. Soit

$$f: A \times K^{n+1} \to \operatorname{conv}(K)$$
$$((\lambda_1, \dots, \lambda_n), (x_1, \dots, x_{n+1})) \mapsto \sum_{i=1}^{n+1} \lambda_i x_i$$

f est surjective et continue, donc conv(K) est l'image continue d'un compact donc conv(K) est compact.

Solution 6.24. Pour tout $u \in A_p$, $\operatorname{Sp}(u) \subset \{\alpha_1, \ldots, \alpha_r\}$ distincts et u est diagonalisable. Réciproquement, si u est diagonalisable et $\operatorname{Sp}(u) \subset \{\alpha_1, \ldots, \alpha_r\}$ alors dans une base la matrice de u est diagonale avec des α_i (éventuellement plusieurs selon leur multiplicités), donc $u \in A_p$.

Si $u \in A_p$, on écrit donc le polynôme caractéristique de u

$$\chi_u = \prod_{i=1}^r (X - \alpha_i)^{m_i}$$
 (6.52)

avec $0 \le m_i \le \dim(E) = n$ et $\sum_{i=1}^r m_i = n$. $u \mapsto \chi_u$ est continue. Pour $(m_1, \dots, m_r) \in \{0, \dots, n\}^r$ tel que $\sum_{i=1}^r m_i = n$, notons

$$A_{m_1,\dots,m_r} = \left\{ u \in A_p \mid \chi_u = \prod_{i=1}^r (X - \alpha_i)^{m_i} \right\}$$
 (6.53)

et

$$\left[u \mapsto \chi_u(A_p)\right] = \left\{ \bigcup_{(m_1, \dots, m_r) \in D_{n,r}} \left\{ \prod_{i=1}^r (X - \alpha_i)^{m_i} \right\} \right\}$$

$$(6.54)$$

οù

$$D_{n,r} = \left\{ (m_1, \dots, m_r) \in \{0, \dots, n\}^r \mid \sum_{i=1}^r m_i = n \right\}$$
 (6.55)

Donc d'après la contraposée du théorème des valeurs intermédiaires, si $(m_1, \ldots, m_r) \neq (m'_1, \ldots, m'_r)$, alors A_{m_1, \ldots, m_r} et $A_{m'_1, \ldots, m'_r}$ ne sont pas dans la même composante connexe par arcs car

$$\left[u \mapsto \chi_u \left(A_{m_1,\dots,m_p} \bigcup A_{m'_1,\dots,m'_r}\right)\right] = \underbrace{\left\{\prod_{i=1}^r (X - \alpha_i)^{m_i}\right\}\right\} \bigcup \left\{\prod_{i=1}^r (X - \alpha_i)^{m'_i}\right\}\right\}}_{\text{pas connexe par arcs}} \tag{6.56}$$

Si $\gamma \colon [0,1] \to A_p$ est continue, $t \mapsto \chi_{\gamma(t)} = a_0(t) + a_1(t)X + \dots + a_{n-1}(t)X^{n-1} + X^n$ est continue sur [0,1] et prend un nombre fini de valeurs donc est constante. $a_i \colon [0,1] \to \mathbb{R}$ continues et prend un nombre fini de valeurs donc est constante.

Soit $u_0 \in A_{m_1,\dots,m_r}$, soit $u \in A_{m_1,\dots,m_r}$, alors il existe une base \mathcal{B}_0 base de E telle que $\operatorname{mat}_{\mathcal{B}_0}(u_0) = M_0$ soit diagonale avec des α_1 sur les m_1 premières lignes de la diagonale, α_2 sur les m_2 lignes suivantes, etc. Soit $M = \operatorname{mat}_{\mathcal{B}_0}(u)$. M est semblable à M_0 donc il existe $P \in GL_n(\mathbb{C})$ telle que $M = PM_0P^{-1}$.

Or $GL_n(\mathbb{C})$ est connexe par arcs, donc il existe $\varphi \colon [0,1] \to GL_n(\mathbb{C})$ continue telle que $\varphi(0) = P$ et $\varphi(1) = I_n$. On pose alors

$$\Phi: [0,1] \rightarrow A_{m_1,\dots,m_r}$$

$$t \mapsto \varphi(t)M_0\varphi^{-1}(t)$$

Alors $A_{m_1,...,m_r}$ est connexe par arcs.

Le nombre de composantes est donc égal au cardinal de

$$D_{n,r} = \left\{ (m_1, \dots, m_r) \in \{0, \dots, n\}^r \mid \sum_{i=1}^r m_i = n \right\}$$
 (6.57)

qui vaut $\binom{m+r-1}{r-1}$ possibilités (place n points sur une droite et les séparer avec r-1 barres : le nombre de points dans chaque segment donne un m_i , il y a m+r-1 possibilités pour placer les r-1 barres).

Solution 6.25.

- 1. Pour tout $i \in \{1, \dots, n\}$, $|AX|_i = \sum_{j=1}^n \underbrace{a_{i,j} x_j}_{>0} \geqslant 0$. Si $|AX|_i = 0$ alors pour tout $j \in \{1, \dots, n\}$, $\underbrace{a_{i,j}}_{>0} x_j = 0$ donc $x_j = 0$, impossible car $X \neq 0$.
- 2. Si |AX| = A|X|. On a pour tout $i \in \{1, ..., n\}$,

$$\left| \sum_{j=1}^{n} a_{i,j} x_j \right| = \sum_{j=1}^{n} a_{i,j} |x_j| \tag{6.58}$$

donc les $(a_{i,j}x_j)_{1 \leq j \leq n}$ ont tous même argument. On prend $\theta = \arg(x_j)$.

3. K est fermé et borné en dimension finie : c'est un compact. On a $I_x \neq \emptyset$ car $AX \geqslant 0$ donc $0 \in I_x$. Soit $(t_n)_{n \in \mathbb{N}} \in I_x^{\mathbb{N}}$ convergeant vers $t \in \mathbb{R}$. Pour tout $k \in \mathbb{N}$, $AX - t_k X \geqslant 0$ donc pour tout $i \in \{1, \ldots, n\}$, $(AX - t_k X)_i \geqslant 0$ et par passage à la limite, $AX - tX \geqslant 0$ donc I_x est fermé.

Si $t \in I_x$,

$$|tX|_1 = t = \sum_{i=1}^n t \underbrace{x_i}_{\geqslant 0} \leqslant \sum_{i=1}^n \underbrace{\sum_{j=1}^n a_{i,j} x_j}_{=(AX)_i} \leqslant n \max_{1 \leqslant i,j \leqslant n} |a_{i,j}|$$
 (6.59)

car $\sum_{j=1}^{n} x_j = 1$. On note $M = n \max_{1 \leq i,j \leq n} |a_{i,j}|$.

- 4. Pour tout $x \in K$, $\theta(X) \leq M$ donc θ est bien borné sur K. Par définition de r_0 , il existe $(X_k)_{k \in \mathbb{N}} \in K^{\mathbb{N}}$ tel que $\lim_{k \to +\infty} \theta(X_k) = r_0$. On note $\theta(X_k) = t_k$. Comme K est compact, il existe $\sigma \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $X_{\sigma(k)}$ converge vers $X^+ \in K$. A priori, $\theta(X^+) \leq r_0$. On a $AX_{\sigma(k)} t_{\sigma(k)}X_{\sigma(k)} \geq 0$ pour tout $k \in \mathbb{N}$ donc par passage à la limite, $AX^+ r_0X^+ \geq 0$ et donc $r_0 \leq \theta(X^+)$ donc $r_0 = \theta(X^+)$.
- 5. Soit $Y=A^+-r_0X^+\geqslant 0$. Si $Y\neq 0$, alors AY>0 d'après la question 1 donc

$$AY = A\underbrace{(AX^{+})}_{>0} - r_0\underbrace{(AX^{+})}_{>0} > 0$$
 (6.60)

On a $AY > \varepsilon AX^+$ si et seulement si pour tout $i \in \{1, ..., n\}, |AY|_i > \varepsilon |AX^+|_i$ (car AY > 0). On pose alors

$$\varepsilon = \frac{1}{2} \min_{1 \le i \le n} \frac{|AY|_i}{|AX^+|_i} \tag{6.61}$$

On a alors $AY - \varepsilon AX^+ > 0$ d'où

$$A \underbrace{\frac{AX^{+}}{\|AX^{+}\|_{1}}}_{\in K} - (r_{0} + \varepsilon) \frac{AX^{+}}{\|AX^{+}\|_{1}} > 0$$
 (6.62)

donc $r_0+\varepsilon\in I_{\frac{AX^+}{\|AX^+\|_1}}$ c'est-à-dire

$$r_0 + \varepsilon \leqslant \theta \left(\frac{AX^+}{\|AX^+\|_1} \right) \leqslant r_0 \tag{6.63}$$

ce qui est impossible. Nécessairement Y = 0.

6. Pour tout $i \in \{1, \ldots, n\}$, on a

$$|AV|_i = \left|\sum_{j=1}^n a_{i,j} v_j\right| \leqslant \sum_{i=1}^n a_{i,j} |v_j| = (A|V|)_i$$
 (6.64)

donc $|\lambda| = |AV| \le A|V|$. De plus, $|V| \in K$ donc $|\lambda| \le \theta(|V|) \le r_0$. Notons que cela implique que le rayon spectral de A est $\rho(A)$ est plus petit que r_0 et que l'on a même égalité.

7. Si $|\lambda| = r_0$, on a $|\lambda| = \theta(|V|) = r_0$ et d'après la question 5 on a $A|V| = r_0|V| = |AV|$. D'après la question 2, il existe $\theta \in \mathbb{R}$ tel que $V = e^{i\theta}|V|$. Or

$$AV = \lambda V = e^{i\theta} A|V| = e^{i\theta} r_0|V| \tag{6.65}$$

et comme $|K| \in K, |V| \neq 0$ et on a donc $\lambda = r_0$.

8. Soit $V \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que $||V||_1 = 1$ et $AV = r_0V$. D'après la question précédente, on a $V = e^{i\theta}|V|$ et $A|V| = r_0|V|$. Soit alors $t \in \mathbb{R}$, on a

$$A(X^{+} + t|V|) = r_0(X^{+} + t|V|)$$
(6.66)

Notons maintenant que si $Y \ge 0$ avec $Y \ne 0$ vérifie $AY = r_0Y$, alors Y > 0. En effet, d'après la première question, AY > 0. On a $r_0 \ne 0$ car sinon $\operatorname{Sp}_{\mathbb{C}} = \{0\}$ et $A^n = 0$ ce qui est impossible car ses coefficients sont strictement positifs. D'où Y > 0.

Ainsi, par définition de X^+ , on a $X^+ > 0$ et |V| > 0. On a alors

$$(X^+)_i + t|v_i| \geqslant 0 \tag{6.67}$$

si et seulement si

$$t \geqslant -\frac{|X^+|_i}{|v_i|} \tag{6.68}$$

On prend

$$t = \min_{1 \le i \le n} -\frac{|X^+|_i}{|v_i|} \tag{6.69}$$

Finalement, on a $X^+ + t|V| \ge 0$ et une de ses coordonnées vaut 0 (car on a pris le minimum sur les i). Nécessairement, $X^+ + t|V| = 0$ (car $A(X^+ + t|V|) = r_0(X^+ + t|V|)$) et donc $|V| \in \mathbb{R}X^+$. Donc $V = e^{\mathrm{i}\theta}|V| \in \mathbb{C}X^+$ et ainsi

$$\dim(\ker(A - r_0 I_n)) = 1 \tag{6.70}$$

Solution 6.26. Soit

$$\varphi: \ U \times V \ \to \ \mathbb{R}$$
$$(x,y) \ \mapsto \ \|x-y\|$$

On a

$$|\varphi(x,y)-\varphi(x',y')| = |||x-y|| - ||x'-y'|| \le ||(x-y)-(x'-y')|| \le ||x-x'|| + ||y-y'|| \le 2||(x,y)-(x',y')||_{\infty}$$
(6.71)

donc φ est continue.

 $U \times V$ est compact, donc il existe $(x_1, y_1) \in (U \times V)$ telle que $\varphi(x_1, y_1) = \min_{(x,y) \in U \times V} \varphi(x,y)$. Comme U et V sont disjoints, $x_1 \neq y_1$ et $\varphi(x_1, y_1) = 0$.

Soit $\alpha = \frac{d(U,V)}{3}$. On pose $U' = \{x \in E \mid d(x,U) < \alpha\}$ et $V' = \{x \in E \mid d(x,V) < \alpha\}$. $x \mapsto \|x\|$ est continue car 1-lipschitzienne donc U' est V' sont des ouverts et on a bien $U \subset U'$ et $V \subset V'$. Soit ensuite $x \in U' \cap V'$, on a $d(x,U) < \alpha$ et $d(x,V) < \alpha$ donc il existe $(u,v) \in U \times V$, $d(x,u) < \alpha$ et $d(x,v) < \alpha$. Alors $d(u,v) \leq 2\alpha$ ce qui est absurde. Donc $U' \cap V' = \emptyset$.

Solution 6.27.

1. f est 1-lipschitzienne donc est continue. On forme

$$g: K \to \mathbb{R}$$
$$x \mapsto \|x - f(x)\|$$

g est continue, K est compact donc il existe $a \in K$ tel que $g(a) = \min_{x \in K} g(x)$. Si $a \neq f(a)$, alors $||f(a) - f^2(a)|| = g(f(a)) < ||a - f(a)|| = g(a)$ ce qui est impossible par définition de a. Donc f(a) = a. S'il existe $a' \neq a$ tel que f(a') = a', alors ||f(a) - f(a')|| = ||a - a'|| < ||a - a'|| ce qui est impossible. Donc a est unique.

2. S'il existe $n_0 \in \mathbb{N}$ tel que $u_{n_0} = a$ alors pour tout $n \ge n_0$, $u_n = a$ et $\lim_{n \to +\infty} u_n = a$. Si pour tout $n \in \mathbb{N}$, $u_n \ne a$, alors pour tout $n \in \mathbb{N}$, on a

$$||u_{n+1} - a|| = ||f(u_n) - f(a)|| < ||u_n - a||$$
(6.72)

donc la suite $(\|u_n - a\|)_{n \in \mathbb{N}}$ est strictement décroissante dans \mathbb{R}_+ donc elle converge vers $l \geqslant 0$. Par compacité de K, il existe une extraction σ telle que $\lim_{n \to +\infty} u_{\sigma(n)} = \alpha \in K$. Par continuité,

$$\lim_{n \to +\infty} \|u_{\sigma(n)} - a\| = \|\alpha - a\| = l \tag{6.73}$$

et

$$\lim_{n \to +\infty} \| \underbrace{u_{\sigma(n)+1}}_{f(u_{\sigma(n)})} - f(a) \| = \| f(\alpha) - f(a) \| = l = \| \alpha - a \|$$
(6.74)

par continuité de f. Ainsi, on a $\alpha = a$ et l = 0 donc $\lim_{n \to +\infty} u_n = a$.

3. f est \mathcal{C}^1 sur \mathbb{R} . Soit $x < y \in \mathbb{R}^2$, il existe $z \in]x,y[$ tel que (égalité des accroissements finis)

$$\left| \frac{f(x) - f(y)}{x - y} \right| = |f'(z)| = \left| \frac{z}{\sqrt{z^2 + 1}} \right| < 1$$
 (6.75)

donc f vérifie bien l'hypothèse de contraction. Cependant, pour tout $a \in \mathbb{R}$, on a $\sqrt{a^2 + 1} > a$ donc pas de point fixe. La démonstration tombe en défaut car \mathbb{R} n'est pas compact.

Solution 6.28. La condition est équivalente à pour tout $(M_1, M_2, M_3) \in K_1 \times K_2 \times K_3$, M_1, M_2 et M_3 ne sont pas alignés.

On forme alors

$$f: K_1 \times K_2 \times K_3 \to \mathbb{R}_+$$

 $(M_1, M_2, M_3) \mapsto R(M_1, M_2, M_3)$

où $R(M_1, R_2, M_3)$ est le rayon du cercle circonscrit au triangle formé par M_1, M_2 et M_3 .

On note $M_i = (x_i, y_i)$ et Δ_i la médiatrice de $[M_j M_k]$. Établissons une équation de Δ_i . On a $M = (x, y) \in \Delta_i$ si et seulement si $\|M\vec{M}_j\|_2^2 = \|M\vec{M}_k\|_2^2$ si et seulement si $(M\vec{M}_j + M\vec{M}_k \mid M\vec{M}_j - M\vec{M}_k) = 0$ (produit scalaire), si et seulement si $(M\vec{C}_i \mid M_j M_k) = 0$ où C_i est le milieu de $[M_j M_k]$, si et seulement si (calculer le produit scalaire)

$$\left(\frac{x_j + x_k}{2} - x\right)(x_k - x_j) + \left(\frac{y_j + y_k}{2} - y\right)(y_k - y_j) = 0$$
(6.76)

Soit alors $M_0 = (x_0, y_0)$ le centre du cercle circonscrit. $M_0 \in \Delta_i \cap \Delta_j$ avec $i \neq j$. Par exemple, $M_0 \in \Delta_3 \cap \Delta_1$ si et seulement si

$$\begin{cases}
\left(\frac{x_2 + x_1}{2} - x_0\right)(x_2 - x_1) + \left(\frac{y_2 + y_1}{2} - y_0\right)(y_2 - y_1) = 0 \\
\left(\frac{x_3 + x_2}{2} - x_0\right)(x_3 - x_2) + \left(\frac{y_3 + y_2}{2} - y_0\right)(y_3 - y_2) = 0
\end{cases}$$
(6.77)

si et seulement si $(L_2 \leftarrow L_1(x_3 - x_2) + L_2(x_1 - x_2))$

$$\begin{cases}
 x_0(x_1 - x_2) + y_0(y_1 - y_2) &= \frac{x_1^2 - x_2^2 + y_1^2 - y_2^2}{2} \\
 x_0(x_2 - x_3) + y_0(y_2 - y_3) &= \frac{x_2^2 - x_3^2 + y_2^2 - y_3^2}{2}
\end{cases} (6.78)$$

si et seulement si $(L_1 \leftarrow L_2(y_2 - y_1) + L_1(y_2 - y_3))$

$$\begin{cases}
x_0 = \frac{\frac{x_1^2 - x_2^2 + y_1^2 - y_2^2}{2}(y_2 - y_3) - (y_1 - y_2) \frac{x_2^2 - x_3^2 + y_2^2 - y_3^2}{2}}{(x_1 - x_2)(y_2 - y_3) - (x_2 - x_3)(y_1 - y_2)} \\
y_0 = \frac{\frac{x_2^2 - x_3^2 + y_2^2 - y_3^2}{2}(x_1 - x_2) - (x_2 - x_3) \frac{x_1^2 - x_2^2 + y_1^2 - y_2^2}{2}}{(x_1 - x_2)(y_2 - y_3) - (x_2 - x_3)(y_1 - y_2)}
\end{cases} (6.79)$$

et $R(M_1, M_2, M_3) = \sqrt{(x_0 - x_3)^2 + (y_0 - y_3)^2}$. En reportant, f est continue sur $K_1 \times K_2 \times K_3$ compact donc f atteint son minimum.

Solution 6.29.

1. Pour tout $f \in E$, T(f) est C^1 et (T(f))' = f, T(f)(0) = 0. T est clairement linéaire, soit ensuite $x \in [0, 1]$, on a

$$|T(f)(x)| = \left| \int_0^x f(t)dt \right| \le \int_0^x |f(t)|dt \le x ||f||_{\infty} \le ||f||_{\infty}$$
 (6.80)

Donc $||T(f)||_{\infty} \le ||f||_{\infty}$ donc T est continue et $|||T||| \le 1$. Pour f = 1, on a $||f||_{\infty} = 1$ et pour tout $x \in [0, 1]$, T(f)(x) = x donc $||T(1)||_{\infty} = 1$. Ainsi, |||T||| = 1.

2. $id_E - T$ est continue. Soit $(f,g) \in E^2$, on a g = f - T(f) si et seulement si g = y' - y et y(0) = 0. On a $g(x)e^{-x} = \underbrace{e^{-x}(y'(x) - y(x))}_{(e^{-x}y(x))'}$ donc en intégrant de 0 à x on a

$$y(x) = e^x \int_0^x e^{-t} g(t)dt$$
 (6.81)

Donc T(f) vérifie le problème de Cauchy si et seulement si pour tout $x \in \mathbb{R}$, $T(f)(x) = e^x \int_0^x e^{-t} g(t) dt$ si et seulement si pour tout $x \in [0, 1]$,

$$f(x) = g(x) + e^x \int_0^x e^{-t} g(t) dt$$
 (6.82)

Donc $id_E - T$ est bijective. Enfin, on a pour tout $x \in [0, 1]$,

$$|f(x)| \le |g(x)| + \left| \int_0^x g(t)e^{x-t}dt \right| \le ||g||_{\infty} (1+xe^x) \le ||g||_{\infty} (1+e)$$
 (6.83)

Ainsi,

$$||f||_{\infty} = ||(id_E - T)^{-1}(g)||_{\infty} \leqslant ||g||_{\infty} (1 + e)$$
(6.84)

donc $(id_E - T)^{-1}$ est continue. Ainsi, $id_E - T$ est un homéomorphisme.

Solution 6.30.

- (i) \Rightarrow (ii) $f^{-1}(K)$ est fermé car f est continue. K est borné, donc il existe M > 0, tel que pour tout $y \in K$, $||y|| \leq M$. Donc pour tout $x \in f^{-1}(K)$, $||f(x)|| \leq M$. Par contraposée de (i) pour A = M+1, il existe B > 0 tel que $||f(x)|| < A \Rightarrow ||x|| < B$. Donc pour $x \in f^{-1}(K)$, ||x|| < B donc $f^{-1}(K)$ est borné. C'est donc un compact.
- (ii) \Rightarrow (i) Soit $A \geqslant 0$. Soit $K = \overline{B(0,A)}$ compact car fermé et borné en dimension finie. D'après (ii), $f^{-1}(K)$ est compact donc borné : il existe B > 0 tel que pour tout $x \in f^{-1}(K)$, $||x|| \leqslant B$. Par contraposée, si ||x|| > B alors $x \notin f^{-1}(K)$ et $f(x) \notin K$ donc ||f(x)|| > A. Ainsi, $\lim_{||x|| \to +\infty} ||f(x)|| = +\infty$.

219

Remarque 6.7. Exemple pour l'exercice précédent : les fonctions polynômiales non constantes. Contre-exemple : l'exponentielle, cf $\exp([0,1]) = \mathbb{R}_-$ non compact.

Solution 6.31.

1. Soit $(x,y) \in K^2$ compact. Soit σ un extraction telle que

$$(f^{\sigma(n)}(x), f^{\sigma(n)}(y)) \xrightarrow[n \to +\infty]{} (l, l') \in K^2$$

$$(6.85)$$

On a

$$f^{\sigma(n+1)}(x) - f^{\sigma(n)}(x) \xrightarrow[n \to +\infty]{} 0 \tag{6.86}$$

de même pour y. Soit $\varepsilon > 0$,

$$\begin{cases}
\exists N_1 \in \mathbb{N}, \forall n \geqslant N_1, ||f^{\sigma(n+1)}(x) - f^{\sigma(n)}(x)|| \leqslant \varepsilon \\
\exists N_1 \in \mathbb{N}, \forall n \geqslant N_1, ||f^{\sigma(n+1)}(y) - f^{\sigma(n)}(y)|| \leqslant \varepsilon
\end{cases}$$
(6.87)

Pour $N = \max(N_1, N_2)$ et $p = \sigma(N+1) - \sigma(N) \in \mathbb{N}^*$, on a

$$d(x, f^p(x)) \leqslant d(f^{\sigma(n+1)}(x), f^{\sigma(n)}(x)) \leqslant \varepsilon$$

et de même pour y avec le même p.

2. On a

$$d(x,y) \leqslant d(f(x), f(y)) \tag{6.88}$$

$$\leqslant d(f^p(x), f^p(y)) \tag{6.89}$$

$$\leq d(f^p(x), x) + d(x, y) + d(y, f^p(y))$$
 (6.90)

$$\leq 2\varepsilon + d(x, y)$$
 (6.91)

Ceci valant pour tout $\varepsilon > 0$, on a égalité tout du long. On a donc notamment, ||x - y|| = ||f(x) - f(y)|| et donc f est une isométrie.

3. f est 1-lipschitzienne donc continue. Donc f(K) est compact donc fermé. Il suffit donc de montrer que f(K) est dense dans K. Soit $x \in K$ et $\varepsilon > 0$, il existe $p \in \mathbb{N}^*$ tel que $\|x - f^p(x)\| \le \varepsilon$ d'après la première question. Donc f(K) est dense dans K et f(K) = f(K) = K.

Remarque 6.8. Exemple pour l'exercice précédent : une rotation sur la sphère unité.

Solution 6.32. Soit

$$f:\ K\ \to\ \mathbb{R}$$

$$M\ \mapsto\ f(M)=\text{rayon du cercle circonscrit au triangle MAB}$$

On a F = f(K). Soit (C, i, j) un repère orthonormé où C est le milieu de [AB] et $A(-\alpha, 0)$ et $B(\alpha, 0)$ avec $\alpha > 0$. La médiatrice Δ de [A, B] a pour équation x = 0. Si M(x, y), soit $\varphi(M)$ le centre du cercle circonscrit. On a $\varphi(M) \in \Delta$ donc $\varphi(M)(0, y_1)$ et $\varphi(M)$ appartient à la médiatrice de [MA]. On a $y_1 \neq 0$ car $M \notin (AB)$.

Notons M' le milieu de [MA]. On a $M'(\frac{x-\alpha}{2}, \frac{y}{2})$ d'où $M'\vec{\varphi(M)} \cdot \vec{MA} = 0$ d'où (en développant le produit scalaire),

$$y_1 = \left((\alpha + x) \left(\frac{\alpha - x}{2} \right) - \frac{y^2}{2} \right) \left(-\frac{1}{y} \right) \tag{6.92}$$

 φ est donc continue donc f également et f(K) = F est compact.

Solution 6.33.

- 1. Soit $\lambda \in \operatorname{Sp}(\tau)$ et $P \in \mathbb{R}[X] \setminus \{0\}$ avec $\tau(P) = \lambda P$. Si P n'est pas constant, notons $\alpha \in \mathbb{C}$ alors $P(\alpha) = 0$. Alors $P(\alpha + 1) = 0$. En itérant, pour tout $n \in \mathbb{N}$, $P(\alpha + n) = 0$, impossible car P n'est pas constant donc pas nul. Finalement, P est constant et $\lambda = 1$: $\operatorname{Sp}(\tau) = \{1\}$.
- 2. $f: x \mapsto P(x)e^{-x}$ est continue et $\lim_{x \to +\infty} f(x) = 0$ donc le sup est bien défini. Il est ensuite facile de vérifier que $\|P\|$ est une norme.
- 3. On a

$$\|\tau(P)\| = \sup_{x \ge 0} |P(x+1)e^{-x}| = \sup_{x' \ge 1} |P(x')e^{-x'}e| \le \sup_{x' \ge 0} |P(x')e^{-x'}e| \le e\|P\|$$
 (6.93)

4. Utiliser P = X.

Solution 6.34.

1. Pour x fixé, $\min(x, \varphi(t)) = \frac{x + \varphi(t) - |x - \varphi(t)|}{2}$ est continue. Donc T(f) est définie.

Si $x \leqslant \varphi(0)$,

$$T(f)(x) = \int_0^1 x f(t)dt = x \int_0^1 f(t)dt$$
 (6.94)

et si $x \geqslant \varphi(1)$,

$$T(f)(x) = \int_0^1 \varphi(t)f(t)dt \tag{6.95}$$

et si $\varphi(0) \leqslant x \leqslant \varphi(1)$, il existe un unique $t_1 = \varphi^{-1}(x)$ (car φ induit un homéomorphisme de [0,1] dans $\varphi([0,1])$).

Si $t \leqslant t_1$, on a $\varphi(t) \leqslant x$, donc $\min(x, \varphi(t)) = \varphi(t)$. Si $t \geqslant t_1$, on a $\min(x, \varphi(t)) = x$. On a donc

$$T(f)(x) = \int_0^{t_1} \varphi(t)f(t)dt + \int_{t_1}^1 xf(t)dt$$
 (6.96)

$$= \underbrace{\int_{0}^{\varphi^{-1}(x)} \varphi(t)f(t)dt}_{=F_{1}(\varphi^{-1}(x))} + x \underbrace{\int_{\varphi^{-1}(x)}^{1} f(t)dt}_{=F_{2}(\varphi^{-1}(x))}$$
(6.97)

et f et φ étant continues, F_1 et F_2 sont continues.

Donc T(f) continue et T linéaire, c'est un endomorphisme de E.

2. On a

$$|T(f)(x)| \le ||f||_{\infty} \underbrace{\int_0^1 \min(x, \varphi(t)) dt}_{=A(x)}$$

donc

$$||T(f)||_{\infty} \le ||f||_{\infty} ||A||_{\infty}$$
 (6.98)

donc T est continue et $|||T||| \leq ||A||_{\infty}$. De plus pour f = 1, on a $|||T||| = ||A||_{\infty}$.

3. On a

$$A(x) = \int_0^1 \min(x, \varphi(t)) dt = \begin{cases} x & \text{si } x \leqslant \varphi(0) \\ \int_0^1 \varphi(t) dt & \text{si } x \geqslant \varphi(1) \end{cases}$$
 (6.99)

Dans tous les cas,

$$||A||_{\infty} \leqslant \int_0^1 \varphi(t)dt \tag{6.100}$$

donc

$$||A||_{\infty} = \int_0^1 \varphi(t)dt \tag{6.101}$$

Solution 6.35.

1. φ est une forme linéaire, et on a

$$|\varphi(P)| \leqslant \sum_{k \in \mathbb{N}} \left| \frac{a_k}{2^k} \right| \leqslant 2||P|_{\infty} \tag{6.102}$$

donc φ est continue et $\|\|\varphi\|\| \le 2$. Pour $p \ne 0$, $|\varphi(P)| < 2\|P\|_{\infty}$: pour avoir égalité, il faudrait pour tout $k \in \mathbb{N}$, $a_k = \text{constante} \ne 0$ ce qui n'est pas possible. Pour $P_n = \sum_{k=0}^n X^k$, on a $\|P_n\|_{\infty} = 1$ et $\lim_{n \to +\infty} |\varphi(P_n)| \xrightarrow[n \to +\infty]{} 2$ donc $\|\|\varphi\|\| = 2$. De plus, $\ker(\varphi) = \varphi^{-1}(\{0\})$ est fermé.

2. Soit $P = \sum_{k \in \mathbb{N}} a_k X^k \in \ker(\varphi)$. On a $\varphi(P) = 0$ d'où $a_0 = -\sum_{k=1}^{+\infty} \frac{a_k}{2^k}$ (et il existe $N_0 \in \mathbb{N}, \forall n \geqslant N_0, a_n = 0$). On a donc

$$P(X) - 1 = (a_0 - 1) + \sum_{k \in \mathbb{N}^*} a_k X^k$$
(6.103)

et si $||P-1||_{\infty} \leqslant \frac{1}{2}$, on a

$$\begin{cases} |a_0 - 1| \leqslant \frac{1}{2} \\ \forall k \in \mathbb{N}^*, |a_k| \leqslant \frac{1}{2} \end{cases}$$
 (6.104)

et

$$|a_0| = \left| \sum_{k=1}^{+\infty} \frac{a_k}{2^k} \right| \leqslant \sum_{k=1}^{+\infty} \frac{|a_k|}{2^k} \leqslant \sum_{k=1}^{+\infty} \frac{1}{2^{k+1}} = \frac{1}{2}$$
 (6.105)

Et $\frac{1}{2} \leqslant 1 - |a_0| \leqslant |1 - a_0| \leqslant \frac{1}{2}$. Donc $|a_0| = \frac{1}{2}$ et $|1 - a_0| = \frac{1}{2}$.

$$a_0 = \frac{1}{2}e^{i\theta} \Rightarrow \left|1 - \frac{1}{2}e^{i\theta}\right|^2 = \frac{1}{4}$$
 (6.106)

$$\Rightarrow \left(1 - \frac{1}{2}\cos(\theta)\right)^2 + \left(\frac{1}{2}\sin(\theta)\right)^2 = \frac{1}{4} \tag{6.107}$$

$$\Rightarrow 1 - \cos(\theta) + \frac{1}{4} = \frac{1}{4} \tag{6.108}$$

$$\Rightarrow \cos(\theta) = 1 \tag{6.109}$$

et donc $a_0 = \frac{1}{2}$.

Par ailleurs, on a

$$\frac{1}{2} = \sum_{k=1}^{+\infty} \frac{|a_k|}{2^k} = \sum_{k=1}^{+\infty} \frac{1}{2^{k+1}}$$
 (6.110)

Donc pour tout $k \in \mathbb{N}$, $|a_k| = \frac{1}{2}$, impossible car $P \in \mathbb{C}[X]$, ainsi $||P - 1||_{\infty} > \frac{1}{2}$.

3. On définit, pour $n \ge 1$, $P_n = \frac{1}{2} + \sum_{k=1}^n (-\frac{1}{2} + \varepsilon_n) X^k$ avec $\varepsilon_n \in \mathbb{R}$ tel que $P_n \in \ker(\varphi)$. On a

$$P_n \in \ker(\varphi) \Rightarrow \frac{1}{2} + \sum_{k=1}^n \left(-\frac{1}{2} + \varepsilon_n\right) \frac{1}{2^k} = 0 \tag{6.111}$$

$$\Rightarrow \varepsilon_n = -\frac{1}{2^{n+1}} \times \frac{1}{1 - \frac{1}{2^n}} \tag{6.112}$$

et donc $\varepsilon_n \xrightarrow[n \to +\infty]{} 0$ (et $\varepsilon_n < 0$). On a donc $||P_n - 1||_{\infty} = \frac{1}{2} - \varepsilon_n \xrightarrow[n \to +\infty]{} \frac{1}{2}$.

Donc $d(1, \ker(\varphi)) = \frac{1}{2}$ et cette distance n'est pas atteinte.

Solution 6.36. Prouvons d'abord l'existence. Soit $M \in \mathbb{R}^n$, on définit $r(M) = \sup\{\|M - A\| \mid A \in K\}$ et $\varphi \colon A \mapsto \|M - A\|$ est continue sur K compact donc le sup est en fait un max. On a notamment $r(M) = \{R > 0 \mid K \subset B(M, R)\}$. Soit

$$r: \mathbb{R}^n \to \mathbb{R}$$

$$M \mapsto r(M)$$

Soit $(M, M') \in (\mathbb{R}^n)^2$. Pour tout $A \in K$, on a

$$||M - A|| \le ||M - M'|| + ||M' - A|| \le ||M - M'|| + r(M')$$
(6.113)

En particulier, on a

$$r(M) \leqslant ||M - M'|| + r(M') \tag{6.114}$$

et en échangeant M et M', on a $|r(M) - r(M')| \leq ||M - M'||$. Donc r est 1-lipschitzienne donc continue. Soit $A_0 \in K$, $R(M) \geq ||M - A_0|| \geq ||M|| - ||A_0|| \xrightarrow{||M|| \to +\infty} +\infty$. Donc il existe $M_0 \in \mathbb{R}^n$ tel que $r(M_0) = \min_{M \in \mathbb{R}^n} r(M) = r_0$, d'où l'existence d'une boule fermée de rayon minimal.

Pour l'unicité, soit $(M_1, M_2) \in (\mathbb{R}^n)^2$ tel que $r(M_1) = r(M_2) = r_0$. On suppose que $||M_1 - M_2|| = \varepsilon > 0$. Soit M_3 le milieu de $[M_1 M_2]$. On a $K \subset B_{M_1, r_0} \cap B_{M_2, r_0}$. On prend $r^2 + \left(\frac{\varepsilon}{2}\right)^2 = r_0^2$ d'où

$$r = \sqrt{r_0^2 - \frac{\varepsilon^2}{4}} < r_0 \tag{6.115}$$

Soit $M \in B(M_1, r_0) \cap B(M_2, r_0)$, on a

$$||M - M_3||^2 = \frac{1}{4} (||M - M_1 + M - M_2||^2)$$
(6.116)

$$= \frac{1}{4} \left(2\|M - M_1\|^2 + 2\|M - M_2\|^1 - \underbrace{\|M_1 - M_2\|^2}_{=-2} \right)$$
 (6.117)

$$\leqslant \frac{1}{4}(2r_0^2 + 2r_0^2 - \varepsilon^2) \tag{6.118}$$

$$\leqslant r_0^2 - \frac{\varepsilon^2}{4} = r^2 \tag{6.119}$$

Donc $B_1 \cap B_2 \subset \overline{B(M_3, r)}$ d'où $K \subset \overline{B(M_3, r)}$, ce qui est absurde car $r < r_0$. Donc $M_1 = M_2$.

Solution 6.37. φ est évidemment définie et linéaire. Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$.

$$|\varphi(f)| = \left| \int_0^{\frac{1}{2}} f - \int_{\frac{1}{2}}^1 f \right|$$
 (6.120)

$$\leq \left| \int_0^{\frac{1}{2}} f \right| + \left| \int_{\frac{1}{2}}^1 f \right|$$
 (6.121)

$$\leqslant \int_{0}^{\frac{1}{2}} |f| + \int_{\frac{1}{2}}^{1} |f| \tag{6.122}$$

$$\leqslant \int_0^1 ||f||_{\infty} = ||f||_{\infty} \tag{6.123}$$

Donc φ est continue et $\|\|\varphi\|\| \le 1$. Notons que si l'on a $|\varphi(f)| = \|f\|_{\infty}$, alors on a égalité partout au-dessus et pour tout $t \in [0,1]$, $|f(t)| = \|f\|_{\infty}$ et comme $\left| \int f \right| = \int |f|$ implique que f est de signe constant sur l'intervalle d'intégration, si l'on a $|\varphi(f)| = \|f\|_{\infty}$, alors f est de signe constant sur $[0,\frac{1}{2}]$ et sur $[\frac{1}{2},1]$. Or $|\int_0^{\frac{1}{2}} f - \int_{\frac{1}{2}}^1 f| = |\int_0^{\frac{1}{2}} f| + |\int_{\frac{1}{2}}^1 f|$, f est de signe opposé sur les deux segments. Or f est continue en $\frac{1}{2}$, donc f est nulle. Donc pour f non nulle, on a $|\varphi(f)| < \|f\|_{\infty}$ donc la norme triple n'est pas atteinte. Enfin, pour montrer que $\|\|\varphi\|\| = 1$, on utilise pour $n \ge 1$,

$$f_n(t) = \begin{cases} 1 & \text{si } t \in [0, \frac{1}{2} - \frac{1}{n}] \\ (\frac{1}{2} - t)n & \text{si } t \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}] \\ -1 & \text{si } t \in [\frac{1}{2} + \frac{1}{n}, 1] \end{cases}$$

$$(6.124)$$

On a bien $||f_n||_{\infty} = 1$.

Solution 6.38.

- 1. Non car on applique l'application trace.
- 2. On a le résultat par récurrence.
- 3. On a

$$(n+1)||v^n|| = ||u \circ v^n \circ v - v^n \circ v \circ r|| \le 2||u|| ||v|| ||v^n||$$

$$(6.125)$$

Si pour tout $n \in \mathbb{N}$, on a $v^n = 0$, alors pour tout $n \in \mathbb{N}$,

$$n + 1 \leqslant 2|||u|||||v||| \tag{6.126}$$

ce qui est impossible. Donc il existe $n \in \mathbb{N}^*$ tel que $v^n = 0$. Alors $u \circ v^n - v^n \circ u = nv^{n-1} = 0$ donc $v^{n-1} = 0$ et de proche en proche v = 0: contradiction.

4. Pour tout $P \in \mathbb{R}[X]$,

$$(D \circ T - T \circ D)(P) = (XP)' - XP' = P \tag{6.127}$$

donc $D \circ T - T \circ D = id$. D'après ce qui précède, T et D ne peuvent pas être continus simultanément.

Solution 6.39.

1. $\sum_{k\geqslant 0} (A-I_n)^k$ converge absolument car $||A-I_n||^k \leqslant \alpha_k$ et $\alpha <$. Si AX = 0, $||(A-I_n)X|| = ||X|| \leqslant \alpha ||X||$ donc ||X|| = 0 et X = 0 donc $A \in GL_n(\mathbb{C})$, idem pour B. On a alors

$$A\sum_{k=0}^{+\infty} (I_n - A)^k = ((A - I_n) + I_n)\sum_{k=0}^{+\infty} (I_n - A)^k = I_n$$

par téléscopage. Donc

$$A^{-1} = \sum_{k=0}^{+\infty} (I_n - A)^k \tag{6.128}$$

et

$$|||A^{-1}||| \le \sum_{k=0}^{+\infty} \alpha^k = \frac{1}{1-\alpha}$$
 (6.129)

et de même pour B. On écrit alors

$$ABA^{-1}B^{-1} - I_n = (AB - BA)A^{-1}B^{-1} = ((A - I_n)(B - I_n) - (B - I_n)(A - I_n))A^{-1}B^{-1})$$
(6.130)

d'où

$$|||ABA^{-1}B^{-1} - I_n||| \le \frac{2||A - I_n||| ||B - I_n||}{(1 - \alpha)(1 - \beta)}$$
(6.131)

- 2. On prend $\alpha = \beta = \frac{1}{4}$.
- 3. Pour tout $M \in G$, il existe r > 0 tel que $B(M,r) \cap G = \{M\}$. Montrons que G est discret si et seulement si I_n est isolé. En effet, si I_n est isolé, il existe $r_0 > 0$ tel que $B(I_n, r_0) \cap G = \{I_n\}$. Soit $M \in G$, alors pour tout $M' \in G$, $M M' = M(I_n M^{-1}M')$ d'où $I_n M^{-1}M' = M^{-1}(M M')$. Si

$$|||M - M'||| < \frac{r_0}{|||M^{-1}|||} \tag{6.132}$$

on a $||I_n - M^{-1}M'|| < r_0$ et donc M' = M et M est isolé. Ainsi G est isolé. La réciproque est évidente.

C est dans le commutant si et seulement si C commute avec A et B si et seulement si

$$\begin{cases}
ACA^{-1}C^{-1} = I_n \\
BCB^{-1}C^{-1} = I_n
\end{cases}$$
(6.133)

Notons maintenant que

$$\overline{B_{\|\cdot\|}(I_n, \frac{1}{4})} \cap G = \mathcal{A} \tag{6.134}$$

est fini. En effet, si cet ensemble était infini, il existerait $(M_p)_{p\in\mathbb{N}}$ une suite injective dans \mathcal{A} . La suite étant bornée, on peut extraite $(M_{\sigma(p)})_{p\in\mathbb{N}}$ qui converge et alors pour tout $p\in I_n$

$$\underbrace{M_{\sigma(p)}M_{\sigma(p+1)}^{-1}}_{\stackrel{pto+\infty}{\longrightarrow} I_n} \in G \setminus \{I_n\}$$
(6.135)

ce qui est impossible car I_n est isolé.

Comme $A \in \mathcal{A} \setminus \{I_n\}$, il existe $C \in \mathcal{A} \setminus \{I_n\}$ telle que $|||C - I_n|||$ soit minimale et $|||c - I_n||| \leq \frac{1}{4}$. D'après la question 2 on a

$$|||ACA^{-1}C^{-1} - I_n||| < |||C - I_n|||$$
 (6.136)

et même chose pour B. Donc nécessairement, $ACA^{-1}C^{-1} = I_n$ et de même pour B. Ainsi, C commute avec toutes les matrices de G.

Solution 6.40.

1. $\mathbb{C}_{n-1}[A]$ est un sous-espace vectoriel de dimension finie donc c'est un fermé. Par division euclidienne par χ_A , d'après le théorème de Cayley-Hamilton, $\mathbb{C}[A] = \mathbb{C}_{n-1}[A]$. Comme

$$\exp(A) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{A^k}{k!}$$
(6.137)

 $\exp(A) \in \mathbb{C}[A] = \mathbb{C}_{n-1}[A].$

2. Si A est diagonalisable, il existe $P \in GL_n(\mathbb{C})$ tel que

$$A = P^{-1}\operatorname{diag}(\lambda_1, \dots, \lambda_n)P \tag{6.138}$$

et donc

$$\exp(A) = P^{-1}\operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})P \tag{6.139}$$

et $\exp(A)$ est diagonalisable.

Si $\exp(A)$ est diagonalisable, on utilise la décomposition de Dunford : A=D+N avec $DN=ND,\,D$ diagonalisable et N nilpotente. On a donc

$$\exp(A) = \exp(D) \underbrace{\exp(N)}_{=\sum_{k=0}^{n-1} \frac{N^k}{k!}} = \exp(D) + \exp(D) \left(\sum_{k=1}^{n-1} \frac{N^k}{k!} \right) = \exp(D) + N'$$
 (6.140)

avec N' nilpotente et $\exp(D)$ est diagonalisable d'après le sens direct. N' commute avec $\exp(D)$. Par unicité de la décomposition de Dunford, $\exp(A)$ étant diagonalisable, on a N' = 0. Comme $\exp(D)$ est inversible,

$$N \times \underbrace{\sum_{k=1}^{n-1} \frac{N^{k-1}}{k!}}_{=I_n + N''} = 0 \tag{6.141}$$

avec N'' nilpotente. $I_n + N''$ est donc inversible et ainsi N = 0 et A est diagonalisable.

3. D'après ce qui précède, $\exp(A) = I_n$ est diagonalisable et

$$\operatorname{Sp}_{\mathbb{C}}(\exp(A)) = \{e^{\lambda} \mid \lambda \in \operatorname{Sp}_{\lambda}(\mathbb{C})\} = \{I_n\}$$
(6.142)

Donc $\operatorname{Sp}_{\mathbb{C}}(A) \subset 2i\pi\mathbb{Z}$.

Réciproquement, si A est diagonalisable avec $\operatorname{Sp}(A) \subset 2i\pi\mathbb{Z}$, en diagonalisant, on a bien $\exp(A) = I_n$.

4. Sur \mathbb{R} , si A est diagonalisable, $\exp(A)$ l'est aussi. Cependant, la réciproque n'est pas vrai, par exemple

$$M = \begin{pmatrix} 2i\pi & 0\\ 0 & -2i\pi \end{pmatrix} \text{ semblable à } \begin{pmatrix} 0 & -4\pi^2\\ 1 & 0 \end{pmatrix} = A$$
 (6.143)

On a $\chi_M = X^2 + 4\pi^2$, $\exp(A) = I_2$ et A n'est pas diagonalisable sur \mathbb{C} .

Solution 6.41.

1. On a $\ln(1-x) = P(x) + x^2 O(1)$ et $\exp(y) = Q(y) + y^n O(1)$ d'où

$$\exp(\ln(1+x)) = 1 + x = Q(\ln(1+x)) + \underbrace{\ln(1+x)^n O(1)}_{O(x^n)}$$
(6.144)

alors $1+x=Q(P(x)+O(x^n))+O(x^n)=Q(P(x))+O(x^n)$. Soit $B(X)=Q(P(X))+O(x^n)\in\mathbb{R}[X]$, on a $\frac{B(x)}{x^n}=O(1)$ donc $X^n\mid B$ et

$$Q(P(X)) = 1 + X + B(X) = 1 + X + X^{n}A(X)$$
(6.145)

2. On a $N^n = 0$ donc P(N) est aussi nilpotente et on a

$$\exp(P(N)) = \sum_{k=0}^{n-1} \frac{P(N)^k}{k!} = Q(P(N)) = I_n + N + 0$$
 (6.146)

3. Soit $M \in GL_n(\mathbb{C})$ et sa décomposition de Dunford : M = D + N avec D diagonalisable, N nilpotente et DN = ND. On a $\operatorname{Sp}(D) = \operatorname{Sp}(M) \subset \mathbb{C}^*$ et on écrit

$$M = D\left(I_n + \underbrace{D^{-1}N}_{\text{nilpotente}}\right)$$

$$= \exp(P(D^{-1}N))$$
(6.147)

si $D = P_1 \operatorname{diag}(\lambda_1, \dots, \lambda_n) P_1^{-1}$, pour tout $k \in \{1, \dots, n\}$ il existe $\mu_k \in \mathbb{C}$ tel que $\lambda_k = \exp(\mu_k)$ (car exp est surjectif sur \mathbb{C}^*). Alors

$$D = \exp(P_1 \operatorname{diag}(\mu_1, \dots, \mu_n) P_1^{-1}) \in \mathbb{C}[D]$$
(6.148)

puis

$$M = \exp(P_1 \operatorname{diag}(\mu_1, \dots, \mu_n) P_1^{-1}) \exp(P(D^{-1}N))$$
(6.149)

$$= \exp\left(P_1 \operatorname{diag}(\mu_1, \dots, \mu_n) P_1^{-1} + P(D^{-1}N)\right)$$
(6.150)

car les matrices commutent.

Donc exp est surjective.

Solution 6.42. On a $A \subset \overline{A}$, $0 = \lim_{n \to +\infty} (\frac{2}{n})^{2n} \in \overline{A}$ et $e = \lim_{n \to +\infty} (1 + \frac{1}{n})^{n+1} \in \overline{A}$.

Si $n \ge 2$ et $p \ge 2$, $(\frac{1}{n} + \frac{1}{p})^{n+p} \le 1$. Donc si $(\frac{1}{n} + \frac{1}{p})^{n+p} \ge 1$, alors n = 1 ou p = 1.

Si x > e, à partir d'un certain rang, on a $(1 + \frac{1}{n})^{n+1} \leqslant \frac{e+x}{2}$ et si $x \notin A$, $x \notin \overline{A}$. Si $1 \leqslant x < e$, à partir d'un certain rang, on a $(1 + \frac{1}{n})^{n+1} > x$ donc si $x \notin A$, $x \notin \overline{A}$.

Soit x < 1, si $n \ge 2$ et $p \ge 3$ ou $n \ge 3$ et $p \ge 2$, on a $\frac{1}{n} + \frac{1}{p} \leqslant \frac{5}{6}$ et

$$\left(\frac{1}{n} + \frac{1}{p}\right)^{n+p} = \exp\left((n+p)\ln\left(\frac{1}{n} + \frac{1}{p}\right)\right) \tag{6.151}$$

$$\leq \exp\left((n+p)\ln\left(\frac{5}{6}\right)\right)$$
 (6.152)

$$\leq \max\left(\underbrace{\left(\frac{5}{6}\right)^n}_{n \to +\infty}, \underbrace{\left(\frac{5}{6}\right)^p}_{n \to +\infty}\right)$$
 (6.153)

Il existe N_0 tel que pour tout $n \ge N_0$, $(\frac{5}{6})^n \le \frac{x}{2}$. Si n ou p est plus grand que N_0 , on a donc

$$\left(\frac{1}{n} + \frac{1}{p}\right)^{n+p} \leqslant \frac{x}{2} \tag{6.154}$$

Donc il n'y a qu'un nombre fini d'éléments de A plus grand que $\frac{x}{2}.$ Ainsi,

$$\overline{A} = A \cup \{e, 0\} \tag{6.155}$$

Solution 6.43. On note

$$\mathbb{V} = \bigcup_{m \geqslant 1} \mathbb{U}_m = \left\{ e^{\frac{2ik\pi}{m}} \mid m \geqslant 1, k \in \{0, \dots, m-1\} \right\}$$

$$(6.156)$$

Soit $M \in H$. $X^m - 1$ est scindé à racines simples sur $\mathbb C$ donc M est diagonalisable sur $\mathbb C$ avec ses valeurs propres dans $\mathbb V$. Réciproquement, si M est diagonalisable sur $\mathbb C$ et $\mathrm{Sp}_{\mathbb C}(M) \subset \mathbb V$. Alors pour tout $\lambda \in \mathrm{Sp}_{\mathbb C}(M)$, $\exists m_{\lambda} \in \mathbb N^*$, $\lambda \in \mathbb U_{m_{\lambda}}$ et soit $m = \mathrm{ppcm}_{\lambda \in \mathrm{Sp}_{\mathbb C}(M)}(m_{\lambda})$. Alors $M^m = I_n$.

Soit $A \in \overline{H}$, il existe $(M_p)_{p \in \mathbb{N}} \in H^{\mathbb{N}}$ telle que $\lim_{p \to +\infty} M_p = A$. Comme le polynôme caractéristique est une fonction continue des coefficients, pour tout $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, on a

$$\lim_{p \to +\infty} \chi_{M_p}(\lambda) = \chi_A(\lambda) = 0 \tag{6.157}$$

Or

$$|\chi_{M_p}(\lambda)| = |\lambda - \lambda_{1,p}| \dots |\lambda - \lambda_{n,p}| \geqslant d(\lambda, \mathbb{U})^n$$
(6.158)

avec $\lambda_{i,p} \in \mathbb{V}$ pour tout $i \in \{1, \ldots, n\}$. Donc $d(\lambda, \mathbb{U}) = 0$ et comme \mathbb{U} est fermé, $\lambda \in \mathbb{U}$.

Réciproquement, soit $A \in \mathcal{M}_n(\mathbb{C})$ tel que $\mathrm{Sp}_{\mathbb{C}}(A) \subset \mathbb{U}$. Soit

$$\left\{e^{\mathrm{i}\theta_1},\dots,e^{\mathrm{i}\theta_r}\right\} \tag{6.159}$$

les valeurs propres distinctes de A de multiplicités m_1, \ldots, m_r . Il existe $Q \in GL_n(\mathbb{C})$ tel que

$$A = Q \operatorname{diag}(\underbrace{e^{i\theta_1}, \dots, e^{i\theta_1}}_{m_1 \text{ fois}}, \dots, \underbrace{e^{i\theta_r}, \dots, e^{i\theta_r}}_{m_r \text{ fois}})Q^{-1}$$

$$(6.160)$$

On a

$$\theta = \lim_{k \to +\infty} \frac{2\pi}{k} \lfloor k \frac{\theta}{2\pi} \rfloor \tag{6.161}$$

donc on peut former, pour $p \in \mathbb{N}^*$,

$$A = Q \operatorname{diag}(\underbrace{e^{i\theta_{1,p}}, \dots, e^{i\theta_{1,p}}}_{m_1 \text{ fois}}, \dots, \underbrace{e^{i\theta_{r,p}}, \dots, e^{i\theta_{r,p}}}_{m_r \text{ fois}})Q^{-1}$$

$$(6.162)$$

avec $\theta_{i,p} = \frac{2\pi}{p} \lfloor p \frac{\theta_j}{2\pi} \rfloor + \frac{2j\pi}{p}$. Pour p suffisamment gand, les $(\theta_{j,p})$ sont deux à deux distincts donc A_p est diagonalisable et $A_p \in H$, et donc $A \in \overline{H}$.

Solution 6.44.

- 1. On a l'inégalité triangulaire et l'homogénéité. On a cependant $N_a(X^k) = |a_k|$ et pour tout $k \in \mathbb{N}$, $X^k \neq 0$. Donc N_a est une norme implique que a ne s'annule pas sur \mathbb{N} . Réciproquement, si pour tout $k \in \mathbb{N}$, $a_k \neq 0$, si $P \neq 0$, il existe $k \in \mathbb{N}$ avec p_k et donc $N_a(P) > 0$. Donc N_a est une norme si et seulement si pour tout $k \in \mathbb{N}$, $a_k \neq 0$.
- 2. Si N_a et N_b sont équivalentes, alors il existe $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ tel que pour tout $k \in \mathbb{N}$,

$$\beta N_b(X^k) \leqslant N_a(X^k) \leqslant \alpha N_b(X^k) \tag{6.163}$$

d'où

$$\beta|b_k| \leqslant N_a(X^k) \leqslant \alpha|b_k| \tag{6.164}$$

Donc a = O(b) et b = O(a).

Réciproquement, si a = O(b) et b = O(a), alors on a l'inégalité précédente sur les a_k et b_k , d'où

$$\beta \sum_{k=0}^{+\infty} |p_k b_k| \leqslant \sum_{k=0}^{+\infty} |p_k a_k| \leqslant \alpha \sum_{k=0}^{+\infty} |p_k b_k| \tag{6.165}$$

et donc pour tout $P \in \mathbb{C}[X]$

$$\beta N_b(P) \leqslant N_a(P) \leqslant \alpha N_b(P) \tag{6.166}$$

et N_a et N_b sont équivalentes.

3. Δ est continue pour N_a si et seulement s'il existe $c \geqslant 0$ tel que pour tout $P \in \mathbb{C}[X]$, $N_a(\Delta P) \leqslant CN_a(P)$. Si Δ est continue alors il existe $c \geqslant 0$ tel que $N_a(kX^k) \leqslant cN_a(X^k)$ alors pour tout $k \in \mathbb{N}^*$,

$$|ka_{k-1}| \leqslant c|a_k| \tag{6.167}$$

Réciproquement, si on a (6.167), pour tout $P \in \mathbb{C}[X] = N_a(\Delta P) \leqslant cN_a(P)$. Pour tout $k \in \mathbb{N}, a_k = k!$, (6.167) est vérifiée pour c = 1. Si $b_k = 1$ pour tout $k \in \mathbb{N}$, (6.167) n'est pas vérifiée donc Δ n'est pas continue pour N_b .

Solution 6.45.

1. On a d(x, A) = 0 si et seulement si $\inf_{a \in A} ||x - a|| = 0$ si et seulement si $\varepsilon > 0, \exists a \in A : ||x - a|| < \varepsilon$ si et seulement si $x \in \overline{A}$.

On a $A \subset \overline{A}$ donc $d(x, \overline{A}) \leq d(x, A)$. Soit $\varepsilon > 0$, il existe $a' \in \overline{A}$ tel que $||x - a'|| < d(x, \overline{A}) + \varepsilon$ et il existe $a \in A$ tel que $||a - a'|| < \varepsilon$. Ainsi,

$$d(x,A) \leqslant ||x-a|| \leqslant d(x,\overline{A}) + 2\varepsilon \tag{6.168}$$

Ceci calant pour tout $\varepsilon > 0$, on a $d(x, A) \leq d(x, \overline{A})$ et donc on a égalité.

2. $A \times B \subset \overline{A} \times \overline{B}$ donc $d(A, B) \geqslant d(\overline{A}, \overline{B})$. De plus, pour tout $\varepsilon > 0$, il existe $(a', b') \in \overline{A} \times \overline{B}$ tel que $\|a' - b'\| < d(\overline{A}, \overline{B}) + \varepsilon$ et il existe $(a, b) \in A \times B$ tel que $\|a - a'\| < \varepsilon$ et $\|b - b'\| \varepsilon$. En utilisant l'inégalité triangulaire, on a donc

$$d(A,B) \leqslant ||a-b|| < d(\overline{A},\overline{B}) + 3\varepsilon \tag{6.169}$$

Ceci valant pour tout $\varepsilon > 0$, on a bien l'égalité.

Solution 6.46. φ_{x_0} est une forme linéaire. Elle est continue si et seulement C > 0 tel que pour tout $P \in \mathbb{C}[X]$,

$$|P(x_0)| \leqslant C||P||_{\infty} \tag{6.170}$$

Si $P = \sum_{k=0}^{n} a_k X^k$, on a

$$|P(x_0)| \le ||P||_{\infty} \sum_{k=0}^{n} |x_0|^k$$
 (6.171)

Si $|x_0| < 1$, on a

$$|P(x_0)| \le ||P||_{\infty} \frac{1}{1 - |x_0|} \tag{6.172}$$

donc φ_{x_0} est continue et si $x_0 = |x_0|e^{\mathrm{i}\theta_0}$, soit $n \in \mathbb{N}$ et $P_n = \sum_{k=0}^n e^{-\mathrm{i}k\theta_0} X^k$, on a $||P_n||_{\infty} = 1$ et

$$|\varphi_{x_0}(P_n)| = \sum_{k=0}^n |x_0|^k \xrightarrow[n \to +\infty]{} \frac{1}{1 - |x_0|}$$
 (6.173)

donc $\||\varphi_{x_0}|\| = \frac{1}{1-|x_0|}$.

Si $|x_0| \geqslant 1$,

$$|\varphi_{x_0}(P_n)| = \sum_{k=0}^n |x_0|^k \xrightarrow[n \to +\infty]{} +\infty \tag{6.174}$$

donc φ_{x_0} n'est pas continue.

Solution 6.47. Pour le sens indirect, soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)$. Pour tout $p \in \mathbb{N}$, $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M_p)$ donc $\det(M_p - \lambda I_n) = 0$. Par continuité du déterminant, on a $0 = \det(M_p - \lambda I_n) \xrightarrow[p \to +\infty]{} \det(-\lambda I_n)$. Donc $\lambda = 0$ et $\operatorname{Sp}_{\mathbb{C}}(M) = \{0\}$ donc M est nilpotente.

Pour le sens direct, soit $u \in \mathcal{L}(\mathbb{C}^n)$ canoniquement associée à M. On trigonalise u sur une base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ avec $u(\varepsilon_1) = 0, u(\varepsilon_2) = a_{1,2}\varepsilon_1, \dots, u(\varepsilon_n) = a_{1,n}\varepsilon_1 + \dots + a_{n-1,n}\varepsilon_{n-1}$. Posons pour $i \in \{1, \dots, n\}$, $\varepsilon_{i,p} = \frac{\varepsilon_i}{p^{i-1}}$. On pose $\mathcal{B}_p = (\varepsilon_{1,p}, \dots, \varepsilon_{n,p})$ et $M_p = \operatorname{mat}_{B_p}(u)$, semblable à M et $M_p \xrightarrow[p \to +\infty]{} 0$ car $\|M_p\| \leqslant \frac{1}{p} \|M_1\|$.

Solution 6.48. On pose $u \in \mathcal{L}(\mathbb{C}^n)$ canoniquement associée à M.

Pour le sens indirect, si M n'est pas diagonalisable, il existe une base $B=(\varepsilon_1,\ldots,\varepsilon_n)$ de \mathbb{C}^n telle que

$$mat_{\mathcal{B}}(u) = D + N \tag{6.175}$$

où D est diagonale et N est nilpotente (décomposition de Dunford). En reprenant les bases \mathcal{B}_p définies à l'exercice précédent, on a

$$\operatorname{mat}_{\mathcal{B}_p}(u) = D + N_p \xrightarrow[p \to +\infty]{} D \tag{6.176}$$

Si $D \in S_M$, alors M est diagonalisable ce qui est exclu par hypothèse. Donc S_M n'est pas fermé.

Pour le sens direct, si M est diagonalisable, soit $(M_p)_{p\in\mathbb{N}}\in (S_M)^{\mathbb{N}}$ avec $M_p\xrightarrow[p\to+\infty]{}M'$. Soit $\lambda\in\mathbb{C}$. On a $\chi_{M_p}(\lambda)=\det(\lambda I_n-M_p)=\chi_M(\lambda)$ car M et M_p sont semblables. Par continuité du déterminant, on a $\chi_{M'}(\lambda)=\chi_M(\lambda)$, donc $\chi_{M'}=\chi_M$. De plus, $A\mapsto \Pi_M(A)$ (polynôme minimal) est continue sur $\mathcal{M}_n(\mathbb{C})$ et pour tout $p\in\mathbb{N}$, on a $\Pi_M(M_p)=0$ donc $\Pi_M(M')=0$. M' est donc annulée par Π_M , donc M' est diagonalisable et comme $\chi_M=\chi_{M'}, M$ et M' ont les mêmes valeurs propres avec les mêmes multiplicités. Donc $M'\in S_M$.

Remarque 6.9. Le polynôme caractéristique est une fonction continue de la matrice, mais c'est faux pour le polynôme minimal, par exemple pour

$$M_p = \begin{pmatrix} \frac{1}{p} & 0\\ 0 & \frac{2}{p} \end{pmatrix} \tag{6.177}$$

On a $M_p \xrightarrow[p \to +\infty]{} 0$ et $\Pi_{M_p} = (X - \frac{1}{p})(X - \frac{2}{p}) \xrightarrow[p \to +\infty]{} X^2 \neq X = \Pi_{M_\infty}$ donc $\lim_{p \to +\infty} \Pi_{M_p} \neq \prod_{\substack{\lim \\ p \to +\infty}} M_p$.

Solution 6.49. On note $A_h = \{ |\varphi(x) - \varphi(y)| \mid (x, y) \in I^2 \text{ et } |x - y| \leqslant h \}.$

- 1. ω_{φ} est bien défini car $|\varphi(x) \varphi(y)| \leq 2\|\varphi\|_{\infty}$). Si $0 < h \leq h'$, alors $A_h \subset A_{h'}$ donc $\sup(A_h) \leq \sup(A_{h'})$ donc $\omega_{\varphi}(h) \leq \omega_{\varphi}(h')$.
- 2. Soit $(h, h') \in (\mathbb{R}_+^*)^2$, soit $(x, y) \in I^2$ tel que $|x y| \leq h + h'$ (où on peut supposer que $x \leq y$).
 - Si $y \in [x, x + h]$, alors $|x y| \le h$ donc $|\varphi(x) \varphi(y)| \le \omega_{\varphi}(h) \le \omega_{\varphi}(h) + \omega_{\varphi}(h')$
 - Si $y \in [x+h, x+h+h']$, $|\varphi(x)-\varphi(y)| \leq |\varphi(x)-\varphi(x+h)|+|\varphi(x+h)-\varphi(y)| \leq \omega_{\varphi}(h)+\omega_{\varphi}(h')$ car $|x-(x+h)| \leq h$ et $|x+h-y| \leq h'$.

Donc $\omega_{\varphi}(h+h') \leq \omega_{\varphi}(h) + \omega_{\varphi}(h')$.

3. Par récurrence sur $n \in \mathbb{N}$, on a $\omega_{\varphi}(nh) = n\omega_{\varphi}(h)$. Si $\lambda \in \mathbb{R}_{+}^{*}$, on a $\lambda h \leq (\lfloor \lambda \rfloor + 1)h$ et par croissance et ce qui précède, on a

$$\omega_{\varphi}(\lambda h) \leqslant (\lfloor \lambda \rfloor + 1)\omega_{\varphi}(h) \leqslant (\lambda + 1)\omega_{\varphi}(h) \tag{6.178}$$

4. Soit $\varepsilon > 0$. φ étant uniformément continue, il existe $\alpha > 0$ tel que pour tout $(x,y) \in I^2$, si $|x - y|\alpha$ on a $|\varphi(x) - \varphi(y)| \le \varepsilon$ et on a pour $h \le \alpha$, $\omega_{\varphi}(h) \le \varepsilon$ d'où $\lim_{h \to 0} \omega_{\varphi}(h) = 0$.

Soit alors $h_0 > 0$ fixé et h > 0,

- si $h_0 \leqslant h$, on a $0 \leqslant \omega_{\varphi}(h) \omega_{\varphi}(h_0) \leqslant \omega_{\varphi}(h h_0)$.
- si $h \leqslant h_0$, on a $0 \leqslant \omega_{\varphi}(h_0) \omega_{\varphi}(h) \leqslant \omega_{\varphi}(h_0 h)$.

Dans tous les cas, on a $|\omega_{\varphi}(h) - \omega_{\varphi}(h_0)| \leq \omega_{\varphi}(|h_0 - h|)$. Donc on a bien $\lim_{h \to h_0} \omega_{\varphi}(h) = \omega_{\varphi}(h_0)$. Donc ω_{φ} est continue (et même uniformément).

Solution 6.50. G est borné car si $M \in G$, $||M||| \leq ||I_n||| + \mu = 1 + \mu$. Montrons donc que si G_0 est un sous-groupe borné de $GL_n(\mathbb{C})$, alors les valeurs propres de ses éléments sont de module 1, et ceux-ci sont diagonalisables.

En effet, soit $M \in G$ et $\lambda \in \operatorname{Sp}(M)$, soit X un vecteur propre associé. On a $||MX|| = |\lambda| ||X|| \le ||M|| ||X||$ donc $|\lambda| \le ||M|| \le \sup_{M \in G} ||M||$. Pour tout $k \in \mathbb{Z}$, $M^k \in G$ et $\lambda^k \in \operatorname{Sp}(M^k)$, donc si $|\lambda| > 1$, on a $\lim_{k \to +\infty} |\lambda|^k = +\infty$, et si $|\lambda|^{\lambda} < 1$, on a $\lim_{k \to -\infty} |\lambda|^k = +\infty$. Comme G est borné, $|\lambda| = 1$.

On utilise ensuite la décomposition de Dunford pour M:M=D+N avec DN=ND, D diagonalisable et N nilpotente. Grâce au binôme de Newton, pour $k\geqslant r$ p* r est l'indice de

nilpotence de N, on a

$$M^{k} = \sum_{p=0}^{k} {k \choose p} N^{p} D^{k-p} = \underbrace{D^{k}}_{\text{born\'e}} + kND + \sum_{p=2}^{r-1} \underbrace{\binom{k}{p}}_{\substack{k \\ p \to +\infty}} N^{p} \underbrace{D^{k-p}}_{\substack{\text{born\'e} \text{ car Sp}(D) \subset \mathbb{U}}}$$
(6.179)

Donc

$$M^{k} \underset{k \to +\infty}{\sim} \underbrace{\frac{k^{r-1}}{(r-1)!} \underbrace{N^{r-1}}_{\neq 0} D^{k-r+1}}_{\text{non born\'e si } N \neq 0}$$

$$(6.180)$$

Donc N = 0 et M = D est diagonalisable.

Revenons donc à l'exercice. Soit $M \in G$ et $\lambda = e^{\mathrm{i}\theta} \in \mathrm{Sp}(M)$ avec $\theta \in]-\pi, pi]$. Si X est un vecteur propre associé à λ , on a

$$(\lambda - 1)||X|| = ||(M - I_n)X|| \le \mu ||X|| \tag{6.181}$$

donc
$$|\lambda - 1| = 2|\underbrace{\sin(\frac{\theta}{2})}_{\geq 0}| \leq \mu$$
. Donc $\theta \in [-\theta_0, \theta_0]$ où $\theta_0 = \arcsin(\frac{\mu}{2}) \in [0, \pi[$.

Si $\frac{\theta}{\pi} \notin \mathbb{Q}$, $e^{\mathrm{i}k\pi} \in \mathrm{Sp}(M^k)$, $|e^{\mathrm{i}k\theta} - 1| \leqslant \mu$. Alors $\{k\theta + 2l\pi \mid (k,l) \in \mathbb{Z}^2\}$ est un sous-groupe de $(\mathbb{R},+)$ non monogène et donc dense, et alors $(e^{\mathrm{i}k\theta})_{k\in\mathbb{Z}}$ est dense dans \mathbb{U} , donc il existe $k_0 \in \mathbb{Z}$ tel que $|e^{\mathrm{i}k_0\theta} + 1| = |2 - (1 - e^{\mathrm{i}k_0\theta_0})| < 2 - \mu$, ce qui est impossible car $|2 - (1 - e^{\mathrm{i}k_0\theta})| \geqslant 2 - |1 - e^{\mathrm{i}k_0\theta_0}| \geqslant 2 - \mu$.

Ainsi, $\frac{\theta}{\pi} \in \mathbb{Q}$ et il existe $m \in \mathbb{N}^*$ tel que $\lambda = e^{\mathrm{i}\theta} \in \mathbb{U}_m$. Ce n'est pas forcément le même m pour tout les M dans G. Notons alors pour

$$\lambda \in \bigcup_{M \in G} \operatorname{Sp}(M) = \mathcal{A} \tag{6.182}$$

 $\omega(\lambda)$ l'ordre (multiplicatif) de λ dans \mathbb{U} .

Si $\omega(\lambda) = m$, on a $gr(\lambda) = \mathbb{U}_m$ donc il existe $k \in \mathbb{Z}$ tel que $\lambda^k = e^{\frac{2i\pi}{m}} \in \mathcal{A}$ (car $\lambda^k \in \operatorname{Sp}(M^k)$). Supposons que $\{\omega(\lambda) \mid \lambda \in \mathcal{A}\}$ non borné. Alors il existe $(m_k)_{k \in \mathbb{N}}$ tel que $m_k \xrightarrow[k \to +\infty]{} +\infty$ et $e^{\frac{2i\pi}{m_k}} \in \mathcal{A}$. Alors

$$\underbrace{e^{2i\lfloor\frac{m_k}{2}\rfloor\frac{\pi}{m_k}}}_{k\to+\infty} \in \mathcal{A} \tag{6.183}$$

ce qui est impossible car $|\lambda + 1| \ge 2 - \mu > 0$. On peut donc noter

$$m = \bigvee_{\lambda \in \mathcal{A}} \omega(\lambda) \tag{6.184}$$

et pour tout $M \in G$, pour tout $\lambda \in \operatorname{Sp}(M)$, $\lambda^m = 1$. Or M est diagonalisable, donc $M^m = I_n$.

Solution 6.51. Si $M \in \mathcal{G}_q$, $P(X) = X^q - 1$ annule M donc M est diagonalisable à valeurs propres dans \mathbb{U}_q . Réciproquement, si M est diagonalisable et $\mathrm{Sp}_{\mathbb{C}}(M) \subset \mathbb{U}_q$ alors il existe $P \in GL_n(\mathbb{C})$ avec

$$M = P\operatorname{diag}(\lambda_1, \dots, \lambda_n)P^{-1}$$
(6.185)

et donc

$$M^{q} = P\operatorname{diag}(\lambda_{1}^{q}, \dots, \lambda_{n}^{q})P^{-1} = I_{n}$$
(6.186)

Si $M \in \mathcal{G}_q$ n'est pas une homothétie, il existe $\lambda \neq \mu \in \mathrm{Sp}_{\mathbb{C}}(M)^2$ et $P \in GL_n(\mathbb{C})$ tel que

$$M = P \begin{pmatrix} \lambda & & \\ \mu & & \\ & \ddots & \end{pmatrix} P^{-1} \tag{6.187}$$

Soit $k \in \mathbb{N}^*$ tel que

$$M = P \begin{pmatrix} \lambda & \frac{1}{k} \\ \mu & \\ & \ddots \end{pmatrix} P^{-1} \xrightarrow[k \to +\infty]{} M \tag{6.188}$$

Or

$$\begin{pmatrix} \lambda & \frac{1}{k} \\ 0 & \lambda \end{pmatrix} \text{ est semblable } \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
 (6.189)

car $\chi_A = (X - \lambda)(X - \mu)$ donc est diagonalisable. Donc $M_k \sim M$ et $M_k \in \mathcal{G}_q$ et M n'est pas isolé.

Montrons le petit lemme suivante : soit $\|\cdot\|$ une norme sur \mathbb{C}^n et $\|\cdot\|$ la norme subordonnée, soit $\lambda \in \mathbb{C}$ et $M \in \mathcal{M}_n(\mathbb{C})$ et $\varepsilon > 0$. Si $\|M - \lambda I_n\| \le \varepsilon$ alors $\operatorname{Sp}_{\mathbb{C}}(M) \subset \overline{B(\lambda, \varepsilon)}$. En effet, soit X un vecteur propre de M associé à $\mu \in \operatorname{Sp}_{\mathbb{C}}(M)$. On a

$$||(M - \lambda I_n)X|| = |\mu - \lambda|||X|| \le ||M - \lambda I_n||||X|| \le \varepsilon ||X||$$
(6.190)

donc $|\mu - \lambda| \leqslant \varepsilon$.

Pour $\varepsilon = \sin(\frac{\pi}{q}) > 0$ et $\lambda \in \mathbb{U}_q$; si $M \in B_{\|\cdot\|}(\lambda I_n, \varepsilon) \cap \mathcal{G}_q$ alors pour tout $\mu \in \operatorname{Sp}_{\mathbb{C}}(M)$, on a $|\lambda - \mu| \leq \sin(\frac{\pi}{q})$ donc $\lambda = \mu$. Donc si $M = \lambda I_n$ alors M est isolé (avec $\lambda \in \mathbb{U}_q$). Donc les matrices scalaires sont isolées.

7 Fonction d'une variable réelle

Solution 7.1. Tout d'abord, $\deg(L_n) = n$ et son coefficient dominant et $\frac{(2n)!}{2^n(n!)^2}$.

1. Soit $f \in C^0([0,1], \mathbb{R})$. -1 et 1 sont racines d'ordre n de P_n donc pour tout $k \in \{0, \ldots, n-1\}$ $P_n^{(k)}(-1) = P_n^{(k)}(-1) = 0$. Ainsi, on a par intégrations par parties successives :

$$(f|L_n) = (-1)^n \int_{-1}^1 f^{(n)}(t) P_n(t) dt$$
(7.1)

Notamment, si $P \in \mathbb{R}_{n-1}[X]$, $P^{(n)} = 0$ et $(P|L_n) = 0$. En particulier, pour tout m < n, $\deg(L_m) \leq n - 1$ et $(L_m|L_n) = 0$ donc $(L_n)_{n \in \mathbb{N}}$ est orthogonale. Notons dès maintenant que l'on peut calculer la norme de L_n grâce aux intégrales de Wallis :

$$||L_n||_2^2 = (L_n|L_n) (7.2)$$

$$= (-1)^n \int_{-1}^1 L_n^{(n)} (t^2 - 1)^n dt \tag{7.3}$$

$$= \frac{(2n)!}{2^{2n}(n!)^2} \int_{-1}^{1} (1-t^2)^n dt$$
 (7.4)

On pose $t = \cos(\theta)$ d'où $dt = -\sin(\theta)d\theta$, d'où

$$\int_{-1}^{1} (1 - t^2)^n dt = \int_{0}^{\pi} \sin(\theta)^{2n+1} d\theta \tag{7.5}$$

$$=2I_{2n+1} \text{ [Wallis]} \tag{7.6}$$

On a classiquement $I_{n+2} = \frac{n+1}{n+2}I_n$. D'où

$$I_{2n+1} = \frac{2n}{2n+1} \times \frac{2n-2}{2n-1} \times \dots \times \frac{2}{3} \times I_1 = 1$$
 (7.7)

$$=\frac{2^{2n}(n!)^2}{(2n+1)!}\tag{7.8}$$

d'où

$$||L_n||_2^2 = \frac{(2n)!}{2^{2n}(n!)^2} \times 2 \times \frac{2^{2n}(n!)^2}{(2n+1)!} = \frac{2}{2n+1}$$
(7.9)

- 2. On utilise la formule de Leibniz en écrivant $X^2 1 = (X + 1)(X 1)$.
- 3. On montre le résultat par récurrence sur $k \in \{0, ..., n\}$ en invoquant le théorème de Rolle. On trouve donc que $L_n = P_n^{(n)}$ s'annule au moins n fois sur]-1,1[. Or $\deg(L_n) = n$, donc ces zéros sont simples et ce sont les seuls.

4. (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$ (étagée en degré). Donc il existe $(\alpha_{n,0}, \ldots, \alpha_{n,k}) \in \mathbb{R}^{k+1}$ tel que $XL_{n-1} = \sum_{k=0}^n \alpha_{n,k} L_k$. Si $k \leq n-3$, on a

$$(XL_{n-1}L_k) = \alpha_{n,k} ||L_k||_2^2 = (L_{n-1}XL_k) = 0$$
(7.10)

 $\operatorname{car} \operatorname{deg}(XL_k) = k + 1 \leqslant n - 2$. Donc

$$XL_{n-1} = \alpha_{n,n-2}L_{n-2} + \alpha_{n,n-1}L_{n-1} + \alpha_{n,n}L_n \tag{7.11}$$

Pour calculer les coefficients, on fait tout simplement les produits scalaires :

$$(Xl_{n-1}|L_{n-1}) = \int_{-1}^{1} tL_{n-1}(t)^{2} dt$$
 (7.12)

Or P_n est paire, donc L_n est de la parité de n et donc L_n^2 est paire puis XL_n^2 est impaire. Donc $\alpha_{n,n-1}=0$.

$$(XL_{n-1}|L_{n-2}) = \alpha_{n,n-2} \underbrace{\|L_{n-2}\|_2^2}_{=\frac{2}{2_{n-3}}}$$
(7.13)

$$= (-1)^n \int_{-1}^1 P_{n-1}(t) \underbrace{(XL_{n-2})^{(n-1)}(t)}_{\underbrace{\frac{(2n-4)!(n-1)}{2^{n-2}(n-2)!}}}$$
(7.14)

Par ailleurs,

$$(-1)^{n-1} \int_{-1}^{1} P_{n-1}(t)dt = \frac{1}{2^{n-1}(n-1)!} \underbrace{\int_{-1}^{1} (1-t^2)^{n-1} dt}_{2I_{2n-1}}$$
(7.15)

$$= \frac{1}{2^{n-1}(n-1)!} \times 2 \times \frac{2^{2n-2}(n-1)!}{(2n-1)!}$$
 (7.16)

$$=\frac{2^n(n-1)!}{(2n-1)!}\tag{7.17}$$

donc $\frac{\alpha_{n,n-2}}{\alpha_{n,n}} = \frac{n-1}{n}$. D'où le résultat.

Solution 7.2. On forme

$$g: [a,b] \rightarrow \mathbb{R}$$

$$x \mapsto \underbrace{\Delta f(x_0, \dots, x_{n-1}, x)}_{\varphi(x)} - \underbrace{\prod_{i=0}^{n-1} (x - x_i) A}_{P(x)}$$

On a $g(x_n) = 0$. On suppose les $(x_i)_{1 \le i \le n}$ distincts, et on pose

$$A = \frac{V(x_0, \dots, x_n)}{\prod_{i=0}^{n-1} (x_n - x_i)}$$
(7.18)

g est de classe \mathcal{C}^n et pour tout $i \in \{0, \dots, n\}$, on a $g(x_i) = 0$. Donc il existe $\xi \in]a, b[$ tel que $g^{(n)}(\xi) = 0$ (théorème de Rolle appliqué n fois. $\deg(P) = n$ et son coefficient dominant est A donc $P^{(n)}(\xi) = An! = \varphi^{(n)}(\xi)$.

On développe maintenant $\varphi(x)$ par rapport à la dernière colonne :

$$\varphi(x) = f(x) \times V_n(x_0, \dots, x_{n-1}) + Q(X)$$
(7.19)

avec $\deg(Q) \leq n-1$ et $V_n(x_0,\ldots,x_{n-1}) = \prod_{0 \leq j < i \leq n-1} (x_i-x_j)$ (déterminant de Vandermonde). On a donc

$$\varphi^{(n)}(x) = f^{(n)}(x) \prod_{0 \le j < i \le n-1} (x_j - x_i)$$
(7.20)

et en reportant, on a

$$\frac{f^{(n)}(\xi)}{n!} = \frac{A}{\prod_{0 \le i \le j \le n-1} (x_j - x_i)} = \Delta f(x_0, \dots, x_n)$$
 (7.21)

Solution 7.3. On utilise le développement de Taylor avec reste intégral.

$$f(0) = f\left(\frac{1}{2}\right) - \frac{1}{2}f'\left(\frac{1}{2}\right) + \int_{\frac{1}{2}}^{0} -tf''(t)dt$$
 (7.22)

et de même

$$f(1) = f\left(\frac{1}{2}\right) - \frac{1}{2}f'\left(\frac{1}{2}\right) + \int_{\frac{1}{2}}^{1} (1-t)f''(t)dt$$
 (7.23)

D'où

$$A(f) = f(0) - f\left(\frac{1}{2}\right) + f(1) - f\left(\frac{1}{2}\right) \tag{7.24}$$

$$= \int_0^{\frac{1}{2}} t f''(t)dt + \int_{\frac{1}{2}}^1 (1-t)f''(t)dt$$
 (7.25)

$$\leqslant \int_0^{\frac{1}{2}} t dt + \int_{\frac{1}{2}}^1 (1 - t) dt \tag{7.26}$$

$$=\frac{1}{4}\tag{7.27}$$

Et c'est atteint pour $f(t) = \frac{t^2}{4}$.

Solution 7.4. Pour tout $(x,h) \in \mathbb{R}^2$, f(x+h) - f(x-h) = 2hf'(x) donc

$$f'(x) = \frac{1}{2}(f(x+1) - f(x-1)) \tag{7.28}$$

donc f' est \mathcal{C}^1 et donc f est \mathcal{C}^2 . On fixe alors x et on dérive deux fois (7.28) en fonction de h. On a alors

$$f''(x+h) = f''(x-h) (7.29)$$

pour tout $(x,h) \in \mathbb{R}^2$ donc f'' est constante et f est polynômiale de degré 2.

Réciproquement, si $f(x) = ax^2 + bx + c$, on a bien la relation de l'énoncé.

Solution 7.5.

1. Soit a > 0,

$$\tau_a: \mathbb{R} \to [a, +\infty[$$

$$x \mapsto \frac{f(x) - f(a)}{x - a}$$

est croissante. Donc il existe $l=\lim_{x\to +\infty} \tau_a(x)\in \overline{\mathbb{R}}.$ On écrit alors

$$\frac{f(x)}{x} = \frac{f(x) - f(a)}{x - a} \times \frac{x - a}{x} + \frac{f(a)}{x} \xrightarrow[x \to +\infty]{} l \tag{7.30}$$

- 2. S'il existe $a < b \in (\mathbb{R}_+^*)^2$ tel que f(a) < f(b), alors $\tau_a(b) > 0$. Comme τ_a est croissante, $l \ge \tau_a(b) > 0$. Par contraposée, si $l \ge 0$, f est décroissante.
- 3. Posons pour tout $x \in \mathbb{R}_+^*$, $\varphi(x) = f(x) lx$. Pour x < y, on a

$$\frac{\varphi(y) - \varphi(x)}{y - x} = \frac{f(y) - f(x)}{y - x} - l \leqslant 0 \tag{7.31}$$

Donc φ est décroissante et $\lim_{x\to +\infty} \varphi(x) \in \overline{\mathbb{R}}$ existe.

Solution 7.6.

1. On forme

$$g: [0,1] \to \mathbb{R}$$
$$x \mapsto \frac{1}{\frac{1}{p}+x}$$

Alors

$$\sum_{k=0}^{np} \frac{1}{n+k} = \frac{1}{np} \sum_{k=0}^{np} \frac{1}{\frac{1}{p} + \frac{k}{np}} \xrightarrow[n \to +\infty]{} \int_{0}^{1} \frac{dx}{\frac{1}{p} + x} = \ln(p+1) = l_{p}$$
 (7.32)

2. On note $f(x) = f(0) + xf'(0) + x\varepsilon(x)$ avec $\varepsilon(x) \xrightarrow[\varepsilon \to 0]{} 0$.

Soit $\varepsilon_0 > 0$. Il existe $\alpha_0 > 0$ tel que si $0 < x < \alpha_0$, alors $|\varepsilon(x_0)| \le \varepsilon_0$, et il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \ge N_0$, $\frac{1}{n} \le \alpha_0$. Alors pour tout $n \ge N_0$, pour tout $k \in \{0, \ldots, np\}$,

$$\frac{1}{k+n} \Rightarrow \left| \varepsilon \left(\frac{1}{k+n} \right) \right| \leqslant \frac{\varepsilon_0}{p} \tag{7.33}$$

et

$$\left| \sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{k+n})}{k+n} \right| \leqslant \sum_{k=0}^{np} \frac{\frac{\varepsilon_0}{p}}{k+n} \leqslant \frac{\varepsilon_0}{p} \frac{np+1}{n+1} \leqslant \varepsilon_0$$
 (7.34)

On a donc

$$v_n = \sum_{k=0}^{np} \frac{1}{n+k} f'(0) + \sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{n+k})}{n+k} \xrightarrow[n \to +\infty]{} \ln(p+1) f'(0)$$
 (7.35)

3. On peut penser à $f: x \mapsto \sqrt{x}$ continue et f(0) = 0. De plus,

$$\sum_{k=0}^{np} \frac{1}{\sqrt{n+k}} \geqslant \frac{np+1}{\sqrt{n(p+1)}} \xrightarrow[n \to +\infty]{} +\infty$$
 (7.36)

donc v_n diverge.

4. On écrit $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + x^2\varepsilon(x)$ avec $\varepsilon(x) \xrightarrow[\varepsilon \to +\infty]{} 0$. Ainsi,

$$v_n = \sum_{k=0}^{np} \frac{f''(0)}{2(n+k)^2} + \sum_{k=0}^{bp} \frac{\varepsilon(\frac{1}{k+n})}{(k+n)^2}$$
 (7.37)

Soit $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, pour tout $k \in \{0, \dots, np\}$, $|\varepsilon(\frac{1}{n+k})| \le \varepsilon$ et donc

$$\left| \sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{n+k})}{(n+k)^2} \right| \leqslant \sum_{k=0}^{np} \frac{\varepsilon}{(n+k)^2}$$
 (7.38)

donc

$$\sum_{k=0}^{np} \frac{\varepsilon(\frac{1}{n+k})}{(n+k)^2} = O\left(\sum_{k=0}^{np} \frac{f''(0)}{2} \times \frac{1}{(n+k)^2}\right)$$
(7.39)

puis

$$v_n \underset{n \to +\infty}{\sim} \sum_{k=0}^{np} \frac{f''(0)}{2(n+k)^2}$$
 (7.40)

Or

$$\sum_{k=0}^{np} \frac{1}{(n+k)^2} = \frac{1}{(np)^2} \sum_{k=0}^{np} \frac{1}{(\frac{1}{p} + \frac{k}{np})^2}$$
 (7.41)

$$= \frac{1}{np} \times \underbrace{\frac{1}{np} \sum_{k=0}^{np} \frac{1}{(\frac{1}{p} + \frac{k}{np})^2}}_{\xrightarrow[n \to +\infty]{} \int_0^1 \frac{dx}{(\frac{1}{n} + x)^2}}$$
(7.42)

donc

$$v_n \underset{n \to +\infty}{\sim} \frac{f''(0)p}{n(p+1)} \tag{7.43}$$

Solution 7.7. Supposons que f' ne tend pa vers 0 en $+\infty$: il existe $\varepsilon_0 > 0, \forall A > 0, \exists x_A \geqslant A, |f'(x_A)| \geqslant \varepsilon_0 > 0$. Par continuité uniforme, il existe $\alpha_0 \geqslant 0, \forall (x,y) \in (\mathbb{R}_+)^2$, si $|x-y| \leqslant \alpha_0$ alors $|f'(x) - f'(y)| \leqslant \frac{\varepsilon_0}{2}$. Alors pour tout $t \in [x_A - \alpha, x_A + \alpha]$, on a

$$|f'(t)| \ge |f'(x_A)| - |f'(x_A) - f'(t)| \ge \varepsilon_0 - \frac{\varepsilon_0}{2} \ge \frac{\varepsilon_0}{2}$$
 (7.44)

et pour A = n, pour tout $n \in \mathbb{N}, \exists x_n \geqslant n, \forall t \in [x_n - \alpha, x_n + \alpha], |f'(t)| \geqslant \frac{\varepsilon_0}{n}$. D'après le théorème des valeurs intermédiaires, f' est de signe constant sur $[x_n - \alpha, x_n + \alpha]$. Quitte à changer f en -f, on peut supposer qu'il existe une infinité de $n \in \mathbb{N}$ tels que f' > 0 sur les $[x_n - \alpha, x_n + \alpha]$. Alors

$$f(x_n + \alpha_0) - f(x_n - \alpha_0) = \int_{x_n - \alpha_0}^{x_n + \alpha_0} f'(t)dt \geqslant \varepsilon_0 \alpha_0 > 0$$
 (7.45)

mais comme $\lim_{x\to +\infty} f(x) \in \mathbb{R}$, on a

$$\lim_{n \to +\infty} f(x_n + \alpha_0) - f(x_n - \alpha_0) = 0$$
 (7.46)

d'où la contradiction.

Si $f \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{C})$, on applique ce qui précède à $\Im(f)$ et $\Re(f)$.

Si f' n'est pas uniformément continue, ce n'est plus valable, par exemple

$$f(x) = \frac{\sin(x^2)}{x} \xrightarrow[x \to +\infty]{} 0 \tag{7.47}$$

 $\operatorname{car} |f(x)| \leqslant \frac{1}{x} \operatorname{et}$

$$f'(x) = \underbrace{-\frac{1}{x^2}\sin(x^2)}_{\text{x} \to +\infty} + \underbrace{\frac{2x\cos(x^2)}{x}}_{\text{n'a pas de limite en } +\infty}$$
(7.48)

Solution 7.8. Soit $x \in \mathbb{R}$ et $h \neq 0$, on a

$$\frac{f(x+h) - f(x)}{h} = g(x+\frac{h}{2}) \xrightarrow[h\to 0]{} g(x)$$

$$(7.49)$$

par continuité de g. Donc f est dérivable et f'=g. Par ailleurs, pour $y=\frac{1}{2},$ on a

$$f'(x) = f(x + \frac{1}{2}) - f(x - \frac{1}{2})$$
(7.50)

par récurrence f est \mathcal{C}^{∞} .

En outre, en fixant x et en dérivant la relation de départ deux fois par rapport à y, on a

$$f''(x+y) - f''(x-y) = 0 (7.51)$$

Donc f'' est constante donc f est un polynôme de degré plus petit que 2.

Réciproquement, on vérifie que ces fonctions marchent (avec f' = g).

Solution 7.9. On a

$$S_n = \sum_{k=1}^{n-1} \frac{1}{2} (f(k) + f(k+1)) - \int_k^{k+1} f(t)dt$$
 (7.52)

On note $F(x) = \int_1^x f(t)dt$ de classe C^2 .

On a

$$F(b) = F(a) + F'(a)(b-a) + \int_{a}^{b} F''(t)(b-t)dt$$
 (7.53)

Pour a = k et $b = k + \frac{1}{2}$, on a

$$F(k+\frac{1}{2}) = F(k) + \frac{1}{2}F'(k) + \int_{k}^{k+\frac{1}{2}} (k+\frac{1}{2}-t)f'(t)dt = F(k) + \frac{1}{2}F'(k) + \int_{0}^{\frac{1}{2}} uf'(k+\frac{1}{2}-u)du$$
 (7.54)

et pour $a = k + 1, b = k + \frac{1}{2}$,

$$F(k+\frac{1}{2}) = F(k+1) - \frac{1}{2}F'(k+1) + \int_{k+1}^{k+\frac{1}{2}} (k+\frac{1}{2}-t)f'(t)dt = F(k+1) - \frac{1}{2}F'(k+1) + \int_{0}^{\frac{1}{2}} uf'(k+\frac{1}{2}+u)du$$
(7.55)

On a donc

$$\frac{1}{2}(f(k) - f(k+1)) - \int_{k}^{k+1} f(t)dt = \int_{0}^{\frac{1}{2}} u(f'(k+\frac{1}{2}+u) - f'(k+\frac{1}{2}-u))du$$
 (7.56)

d'où

$$S_n = \int_0^{\frac{1}{2}} u \sum_{k=1}^{n-1} \underbrace{f'(k + \frac{1}{2} + u) - f'(k + \frac{1}{2} - u)}_{\geqslant 0 \text{ car } u \geqslant 0 \text{ et } f' \text{ croissante}} du$$
 (7.57)

et $f'(k+\frac{1}{2}+u)-f'(k+\frac{1}{2}-u)\leqslant f'(k+1)-f'(k)$ d'où

$$S_n \leqslant \underbrace{\int_0^{\frac{1}{2}} u du(f'(n) - f'(1))}_{=\frac{1}{2}}$$
 (7.58)

Solution 7.10.

1. D'après l'inégalité de Taylor-Lagrange, on a

$$\begin{cases} ||A|| \leqslant \frac{h^2}{2} M_2 \\ ||B|| \leqslant \frac{h^2}{2} M_2 \end{cases}$$
 (7.59)

On a B-A-f(x-h)+f(x+h)=2hf'(x) d'où

$$||f'(x)|| \leqslant \frac{hM_2}{2} + \frac{M_0}{h} \tag{7.60}$$

Donc f' est bornée sur \mathbb{R} . On a ensuite un majorant qui dépend de h que l'on peut optimiser, et on trouve la borne demandée.

2. L'inégalité de Taylor-Lagrange donne à nouveau

$$\forall k \in \{1, \dots, n-1\}, ||A_k|| \le \frac{k^n}{n!} M_n$$
 (7.61)

On forme alors

$$\begin{pmatrix}
A_{1} - f(x+1) \\
\vdots \\
A_{k} - f(x+k) \\
\vdots \\
A_{n} - f(x+n)
\end{pmatrix} = \underbrace{\begin{pmatrix}
-1 & -1 & \dots & \frac{-1}{(n-1)!} \\
\vdots & \vdots & & \vdots \\
-1 & -k & \dots & \frac{-k^{n-1}}{(n-1)!} \\
\vdots & \vdots & & \vdots \\
-1 & -n & \dots & \frac{-n^{n-1}}{(n-1)!}
\end{pmatrix}}_{=M} \begin{pmatrix}
f(x) \\
\vdots \\
f^{(k)}(x) \\
\vdots \\
f^{(n-1)}(x)
\end{pmatrix} (7.62)$$

On a

$$\det(M) = \frac{(-1)^n}{1! \times 2! \times \dots \times (n-1)!} V(1, \dots, n)$$
 (7.63)

où V est le déterminant de Vandermonde. Donc $\det(M) \neq 0$. On peut former les $f^{(j)}(x)$ en fonction des $(A_i - f(x+i))_{1 \leq i \leq n}$: il existe $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ tel que pour tout $x \in \mathbb{R}$, $f^{(j)}(x) = \sum_{i=1}^n \alpha_i (A_i - f(x+i))$. Donc

$$||f^{(j)}(x)|| \le \sum_{i=1}^{n} |\alpha_i| \left(\frac{n}{n!} M_n + M_0\right)$$
 (7.64)

Donc $f^{(j)}$ est bornée pour tout $j \in \{1, \dots, n-1\}$.

Solution 7.11.

1.

$$l_{\sigma,\gamma} = \sum_{i=0}^{n-1} \left\| \int_{a_i}^{a_{i+1}} \gamma'(t) dt \right\| \leqslant \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} \|\gamma'(t)\| dt = \int_a^b \|\gamma'(t)\| dt$$
 (7.65)

2. On a

$$\left| l_{\sigma,\gamma} - \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i) \right| = \left| \sum_{i=0}^{n-1} \|\gamma(a_{i+1}) - \gamma(a_i)\| - \|\underbrace{(a_{i+1} - a_i)}_{>0} \gamma'(a_i)\| \right|$$
(7.66)

$$\leq \sum_{i=0}^{n-1} \|\gamma(a_{i+1}) - \gamma(a_i) - (a_{i+1} - a_i)\gamma'(a_i)\|$$
 (7.67)

$$\leq \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} \|\gamma'(t) - \gamma'(a_i)\| dt$$
 (7.68)

3. $\|\gamma'\|$ est continue donc

$$\int_{a}^{b} \|\gamma'(t)\| dt = \lim_{\delta(\sigma) \to 0} \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i)$$
 (7.69)

Donc α_0 existe.

 γ' est continue sur [a,b] donc uniformément continue sur [a,b], et il existe $\alpha_1 > 0$ tel que pour tout $(x,y) \in [a,b]^2$, on a

$$|x - y| \leqslant \alpha \Rightarrow ||\gamma'(x) - \gamma'(y)|| \leqslant \frac{\varepsilon}{2(b - a)}$$
 (7.70)

Alors si $\delta(\sigma) \leq \alpha_1$, pour tout $i \in \{0, \dots, n-1\}$, pour tout $t \in [a_i, a_{i+1}]$, on a

$$|t - a_i| \leqslant (a_{i+1} - a_i) \leqslant \alpha_1 \tag{7.71}$$

d'où

$$\|\gamma'(a_i) - \gamma'(t)\| \leqslant \frac{\varepsilon}{2(b-a)} \tag{7.72}$$

et d'après la question 2, on a donc

$$\left| l_{\sigma,\gamma} - \sum_{i=0}^{n-1} \|\gamma'(a_i)\| (a_{i+1} - a_i) \right| \leqslant \frac{\varepsilon}{2}$$
 (7.73)

Finalement, si $@d(\sigma) \leq \min(\alpha_0, \alpha_1)$, on a

$$\left| l_{\sigma,\gamma} - \int_{a}^{b} \|\gamma'(t)\| dt \right| \leqslant \varepsilon \tag{7.74}$$

Donc

$$l(\gamma) = \int_{a}^{b} \|\gamma'(t)\| dt \tag{7.75}$$

4. On a

$$\gamma'(t) = \begin{pmatrix} -R\sin(t) \\ R\cos(t) \end{pmatrix} \tag{7.76}$$

donc $\|\gamma'(t)\| = R$ et $l(\gamma) = 2\pi R$.

Solution 7.12.

1. Pour tout $t \in I$, on a

$$\gamma(t) = |\gamma(t)|e^{i\theta_1(t)} = |\gamma(t)|e^{i\theta_2(t)}$$

$$(7.77)$$

donc

$$e^{i(\theta_1(t) - \theta_2(t))} = 1$$
 (7.78)

Ainsi, pour tout $t \in I$, il existe $k(t) \in \mathbb{Z}$ telle que $\theta_2(t) - \theta_1(t) = 2k(t)\pi$. On a

$$k(t) = \frac{\theta_2(t) - \theta_1(t)}{2\pi}$$
 (7.79)

qui est continue et à valeurs entières, donc constante égale à k_0 d'après le théorème des valeurs intermédiaires.

2. Si $\gamma(t) = x(t) + iy(t)$,

$$|\gamma(t)| = \sqrt{x(t)^2 + y(t)^2}$$
 (7.80)

Comme $\sqrt{\cdot}$ est \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} , par composition, f est \mathcal{C}^{k} . On a alors

$$f(t) = e^{i\theta(t)} \Rightarrow f'(t) = i\theta'(t)e^{i\theta(t)} = i\theta'(t)f(t)$$
(7.81)

Donc

$$\theta(t) = -i\frac{f'(t)}{f(t)} \tag{7.82}$$

De plus, on a

$$\theta(t) = \theta(t_0) - i \int_{t_0}^t \frac{f'(u)}{f(u)} du$$
 (7.83)

pour $t_0 \in I$.

3. On fixe $t_0 \in I$. Soit θ_0 un argument de $\gamma(t_0)$, on pose

$$\theta(t) = \theta_0 - i \int_{t_0}^t \frac{f'(u)}{f(u)} du$$
 (7.84)

Comme $\frac{f'}{f}$ est \mathcal{C}^{k-1} , θ est bien \mathcal{C}^k . On forme $g(t)=e^{\mathrm{i}\theta(t)}$ qui est de classe \mathcal{C}^k . On a

$$g'(t) = i\theta'(t)g(t) = \frac{f'(t)}{f(t)}g(t)$$
 (7.85)

donc $\left(\frac{g}{f}\right)'=0$, donc $\frac{g}{f}$ est constante sur I et $g(t_0)=e^{\mathrm{i}\theta_0}=f(t_0)$ donc g=f sur I. Ainsi, pour tout $t\in I$, on a $|f(t)|=|e^{\mathrm{i}\theta(t)}|=1$ et si $\theta(t)=a(t)+\mathrm{i}(t)$, on a donc

$$e^{i\theta(t)} = e^{-b(t)}e^{ia(t)}$$
 (7.86)

donc b(t) = 0 et $\theta(t) \in \mathbb{R}$.

8 Suites et séries de fonctions

9 Séries entières

10 Intégration

11 Espaces préhilbertiens

12 Espaces euclidiens

13 Calcul différentiel

14 Équation différentielles linéaires

Table des figures

1	$0 \leqslant \cosh(x) - 1 - \frac{x^2}{2} \leqslant x^4 \text{ pour } x \in \mathbb{R}. \dots \dots \dots \dots \dots \dots \dots$	51
2	$e^x - x - 1 \geqslant -x - 1$ pour $x \in \mathbb{R}$	52
3	$x(1-x) \in \left]0, \frac{1}{4}\right] \text{ pour } x \in]0, 1[. \dots \dots$	53
4	$x \mapsto x^3 - x - 3$ a exactement un zéro sur \mathbb{R}_+	55
5	$x \mapsto 2\ln(1+x)$ admet un unique point fixe sur \mathbb{R}_+^*	60
6	$\sin(t) \geqslant \frac{2}{\pi}t \text{ pour } t \in \left[0, \frac{\pi}{2}\right]. \dots$	69
7	$\ln(1+x) \le x \text{ pour } x > -1.$	103