THETA: a Framework for Abstraction Refinement-Based Model Checking

Tamás Tóth¹, <u>Ákos Hajdu^{1,2}</u>, András Vörös^{1,2}, Zoltán Micskei¹, István Majzik¹

¹Budapest University of Technology and Economics Department of Measurement and Information Systems

²MTA-BME Lendület Cyber-Physical Systems Research Group

FMCAD 2017, Vienna, Austria, 05.10.2017.

Introduction

- Motivation: a framework for
 - Abstraction refinement-based algorithms
 - Easy development, evaluation and combination
 - Supporting various formalisms
 - Applicable where systems have different aspects (e.g. CPS)

- Our solution: Theta
 - Open source: github.com/FTSRG/theta

Theta — Characteristics

Generic

Various kinds of formal models

Configurable

Different algorithms and strategies

Modular

Reusable and combinable modules

Generic – Formalisms

Symbolic transition systems

- Low level formalism
- Based on SMT formulas
- Control flow automata
 - Programs as graphs
 - Edges annotated with statements
- Timed automata
 - Clock variables
 - Operations over clocks
- Support for new formalisms
 - Reusable components, e.g. expressions

$$I := x = 0 \land y = 0$$

 $T := x' = y + 1 \land y' = 2 * y$

Generic – Language frontends

THETA: a Framework for Abstraction Refinement-Based Model Checking

- Symbolic transition systems [FORTE'16]
 - AIGER format
 - Intermediate language for PLCs

- Control flow automata [VPT'17]
 - Subset of C
 - Size reduction techniques

- Timed automata [FORMATS'17]
 - O UPPAAL XTA

Modular – Architecture

THETA: a Framework for Abstraction Refinement-Based Model Checking

Modular – Extensibility

New algorithms

Modular – Extensibility

New formalisms

Configurable – Parameters

Abstract domain

- Predicate
- Explicit value
- Zone
- Location
- Composition

Refinement strategy

- Binary interp. forw.
- Binary interp. backw.
- Sequence interp.
- Unsat core

Search strategy

- **BFS**
- DFS
- Dist. to error
- Random

Initial precision

- **Empty**
- Property-based

Precision granularity

- Global
- Local

Predicate split

- **Atoms**
- Conjuncts
- Whole

78 configs for control flow automata

THETA: a Framework for Abstraction Refinement-Based Model Checking

- 52 configs for transition systems
- 15 configs for timed automata

Configurable – Use Cases

- Developing and evaluating new algorithms
 - Extending predicate abstraction with explicit values [FORTE'16]
 - Lazy reachability checking of timed automata [FORMATS'17]
- Diverse results support configurability

Comparison of execution time in case of different analysis configurations on various models

Conclusions

- Theta: Model checking framework
 - Generic, modular, configurable
 - Various formalisms and frontends
 - Abstraction refinement algorithms
- Current and future work
 - Extend the C frontend (LLVM)
 - Experiment with novel algorithms
 - Increase input models in experiments
 - Automatic configuration selection

→ github.com/FTSRG/theta

References

- [FORTE'16] A Configurable CEGAR Framework with Interpolation-based Refinements. Hajdu, Á.; Tóth, T.; Vörös, A.; and Majzik, I. In Formal Techniques for Distributed Objects, Components and Systems, vol. 9688 of LNCS, pages 158--174. Springer, 2016.
- [MiniSym'17] Exploratory Analysis of the Performance of a Configurable CEGAR Framework. Hajdu, Á.; and Micskei, Z. In Proceedings of the 24th PhD Mini-Symposium, pages 34--37, 2017. Budapest University of Technology and Economics, Department of Measurement and **Information Systems**
- [VPT'17] Towards Evaluating Size Reduction Techniques for Software Model Checking. Sallai, Gy.; Hajdu, Á.; Tóth, T.; and Micskei, Z. In Proceedings of the Fifth International Workshop on Verification and Program Transformation, vol. 253 of EPTCS, pages 75--91. Open Publishing Association, 2017.
- [FORMATS'17] Lazy Reachability Checking for Timed Automata using Interpolants. Tóth, T.; and Majzik, I. In Formal Modelling and Analysis of Timed Systems, vol. 10419 of LNCS, pages 264--280. Springer, 2017.