Set 03: Average Case Analysis and Randomized Algorithms

CS240: Data Structures and Data Management

Jérémy Barbay

Random Variables and Probability Distributions

Given a random source R,

▶ a random variable *X* is a function which associates to each event of *R* a value for *X*.

Example

- ▶ The roll of a dice with six faces is a random event.
- ► The value on the up face is a random variable, on the domain $\{1, 2, 3, 4, 5, 6\}$.
- ▶ the **probability distribution** of a variable *X* is the function associating a probability to each possible value of *X*.

Example

If the dice is fair, the probability distribution of X in function of $i \in \{1, 2, 3, 4, 5, 6\}$ is Pr(X = i) = 1/6.

Outline

Basics on probabilities

Random Variables and Probability Distributions Expectation

Average Case Analysis

Input Distributions
Randomized Algorithms

Deterministic and Randomized QuickSort

General QuickSort Randomized QuickSort Randomized Analysis

Properties of Probability Distributions

Consider two independant random variables X and Y on a finite domain $D = \{x_1, \ldots, x_n\}$, and a probability distribution $(p_i)_{i \in D}$:

- $ightharpoonup \forall i \in D, p_i \in [0,1]$
- $ightharpoonup \Pr[X = i \text{ and } Y = j] = p_i \times p_j$
- $ightharpoonup \Pr[X = i \text{ or } Y = j] = p_i + p_j$
- $ightharpoonup \Pr[X = i \text{ or } X = j] = p_i + p_j p_i p_j$

Operations on Random Variables

- ► Combination of two random variables is a random variable.
- ▶ The probability distribution is not always trivial though.

Example

- ▶ Roll two dices, sum the values *X* and *Y* of their top faces.
- ▶ The sum X + Y has values in $\{2, ..., 12\}$.

i	2	3	4	5	6	7
$\Pr[X + Y = i]$	1/36	2/36	3/36	4/36	5/36	6/36
i	12	11	10	9	8	7

Expectation is Linear

The expectation is linear:

$$E[X + Y] = E[X] + E[Y]$$

$$E[\sum_{i} X_{i}] = \sum_{i} E[X_{i}]$$

Example

The expected value of the sum of two dice rolls is

$$E[X + Y] = E[X] + E[Y] = 2 \cdot 3.5 = 7$$

Expectation

The **Expectation** of a random variable X is

$$E[X] = \sum_{x} x \cdot \Pr(X = x).$$

Example

The expected value of a roll of a fair dice is 3.5:

$$E[X] = \sum_{i=1}^{6} i \cdot \Pr(\text{dice rolls to side } i)$$

$$= \frac{1+2+3+4+5+6}{6}$$

$$= \frac{21}{6} = \frac{7}{2} = 3.5$$

Summary

- ► A probability is a real number in [0, 1]
- ► The distribution of the combination of two random variables can be counter-intuitive.
- ▶ Expectation is linear: E[X + Y] = E[X] + E[Y]

Outline

Basics on probabilities

Random Variables and Probability Distributions Expectation

Average Case Analysis

Input Distributions Randomized Algorithms

Deterministic and Randomized QuickSor

General QuickSort Randomized QuickSort Randomized Analysis

Input Distributions

In many cases, the worst case complexity is irrelevant, and statistical information about the instances is available:

- ▶ Trafic Jams
- ► Internet Routing
- Compression Schemes

Example

- ► The average lenght k of a query is 3.2 words. \Rightarrow don't optimize algorithms for large k.
- ▶ On average, each keyword matches E(n) = 10,800,000 pages. \Rightarrow algorithms must be optimized for large values of n.

Output Distribution

Given

- ▶ a deterministic algorithm,
- \triangleright and a random distribution \mathcal{D} on the input.

one can compute its average performance.

Given

- ▶ a random distribution
- several algorithms,

one can compare the average performances using the same techniques and notations as for the worst case analysis.

Randomized Algorithms

What's a randomized algorithm?

Two definitions:

- ► Algorithm using Randomized Instructions.
- ▶ Probabilistic Distribution on Deterministic Algorithms.

A deterministic algorithm is a particular case of a randomized algorithm.

The reverse is not true: randomized algorithms are more powerfull than deterministic ones.

Running time of a Randomized Algorithm

- ▶ The running time $T_A(x, R)$ of a randomized algorithm A for a particular input x and a random source R is a random variable $T_A(x, R)$.
- ▶ The expected running time $T_A^{(exp)}(x)$ of a randomized algorithm A for a particular input x and a random source R is the expectation of $T_A(x,R)$.
- ► The worst-case expected running time $T_A^{(exp)}(n)$ of a randomized algorithm is a function of the size n of the input:

$$T_A^{(\exp)}(n) = \max\{T_A^{(\exp)}(x) \mid |x| = n\}$$

Advantages of Randomized Algorithm

- ► In security, cryptography.
- ▶ to "smoothen" real world behaiour and amortize costs.
- > stronger model.

But...Finding good Random sources is difficult!

Summary

- ▶ Often, average case more interesting than worst case.
- ▶ Randomized algorithm = distribution on det. algorithms.
- ► Randomized is stronger than Deterministic.

Outline

Basics on probabilities

Random Variables and Probability Distributions Expectation

Average Case Analysis

Input Distributions
Randomized Algorithms

Deterministic and Randomized QuickSort

General QuickSort Randomized QuickSort Randomized Analysis

General QuickSort

Recall the QuickSort algorithm from CS134:

```
QuickSort(from,to):
   if to>from
   | i:=Partition(from,to);
   | QuickSort(from,i-1);
   | QuickSort(i+1,to);
```

Specific QuickSort

The following implementation of the Partition chooses deterministically the right-most element as the pivot.

```
Partition(from,to):
  pivot:=A[to];
  i:=from-1;
  for j:=from to to
  | if A[j]<=pivot
  | | i:=i+1
  | | swap(A[j],A[i])
  return i;</pre>
```

Running Time

- Worst-case:
 - when all the elements of the array are the same: $\Theta(n^2)$
 - when the array is already sorted: $\Theta(n^2)$
- ► Best-case:
 - ▶ if we always find the median value.
 - $ightharpoonup \Theta(n \log n)$
- ► **Average-case:** (Over all permutations of *n* elements)
 - $ightharpoonup \Theta(n \log n)$

Randomizing Partition:

```
Pick the pivot randomly:

RandomizedPartition(from,to):
   swap(A[to],A[random(from,to)]);
   pivot:=A[to];
   i:=from-1;
   for j:=from to to
   | if A[j]<=pivot
   | | i:=i+1
   | | swap(A[j],A[i])
   return i;</pre>
```

Randomized Analysis

- ▶ If the values are all equal, the algorithm runs in time $O(n^2)$.
- ▶ Suppose that input numbers $z_1 < z_2 < \cdots < z_n$ (given in some other order) are distinct.

Theorem

Randomized QuickSort performs on average $O(n \log n)$ comparisons when the values are all distinct.

Proof: Expected number of comparisons (cont')

Consider $X_{i,j}$, suppose i < j:

- ▶ While the pivot $z_k \notin [z_i, z_j]$, $X_{i,j}$ stays unchanged.
- ▶ If a pivot $z_k \in]z_i, z_j[$ is chosen, z_i and z_j are separated and will never be compared (Hence $X_{i,j} = 0$)
- ▶ If z_i or z_j is chosen as pivot, then and only then, $X_{i,j} = 1$

$$E(X_{i,j}) = \Pr[X_{i,j} = 1]$$
$$= \frac{2}{j-i+1}$$

Proof: Expected number of comparisons

Let's note

- $\triangleright X = \text{total number of comparisons}$
- $ightharpoonup X_{i,j} = \text{number of comparisons between } z_i \text{ and } z_j.$

Then:

$$X_{i,j} \in \{0,1\}$$
 $E(X_{i,j}) = 0 \times \Pr[X_{i,j} = 0] + 1 \times \Pr[X_{i,j} = 1]$
 $= \Pr[X_{i,j} = 1]$
 $X = \sum_{i < j} X_{i,j}$
 $E(X) = \sum_{i < i} E(X_{i,j})$

Proof: Expected number of comparisons (cont")

$$E[X] = \sum_{i < j} E[X_{i,j}] = \sum_{i < j} \frac{2}{(j-i+1)}$$

$$= 2\sum_{i=1}^{n} \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{i}$$

$$\leq 2\sum_{i=1}^{n} \int_{x=1}^{i} \frac{1}{x} dx = 2\sum_{i=1}^{n} [\ln x]_{x=1}^{i}$$

$$= 2\sum_{i=1}^{n} \ln i \in O(n \log n)$$

 \square .

The expected number of comparisons of QuickSort is $O(n \log n)$

Summary

- ▶ Det. QuickSort performs $O(n^2)$ ops in worst case.
- ▶ Det. QuickSort performs $O(n \log n)$ ops on average on the uniform distribution on permutations.
- ▶ Rand. QuickSort performs $O(n \log n)$ ops on average on its randomness.