### **Numerical Differentiation**

#### **Content**

- > Numerical Differentiation
  - Derivative using forward difference formula
  - Differentiation using difference oprator



#### Numerical differentiation

It is the process of calculating the values of the derivative of a function at some assigned value of x from the given set of values  $(x_i, y_i)$ .

To compute this first replace the exact relation y=f(x) by the best interpolating polynomial, then differentiate it as many times as required.

#### Gregory Newton Formula or Newton's formula for interpolation

1. Newton's Forward Difference Formula: For equal interval, we consider the more simpler formula. Let for equal spaced (h) data, We have  $x_0$ ,  $x_0 + h$ ,  $x_0 + 2h$ , .........  $x_0 + nh$ , Or  $x_n = x_0 + nh$ , n=0,1,2.....

$$f(x) = f \left[ x_0 + \left( \frac{x - x_0}{h} \right) h \right]$$

$$Let...: u = \left( \frac{x - x_0}{h} \right)$$

$$f(x) = f(x_0 + uh)$$

$$f(x) = E^u f(x_0)$$

$$f(x) = (1 + \Delta)^u f(x_0)$$

$$f(x) = f(x_0) + u \frac{\Delta f(x_0)}{1!} + u(u - 1) \frac{\Delta^2 f(x_0)}{2!} + ... u(u - 1) ... (u - (n - 1)) \frac{\Delta^n f(x_0)}{n!}$$

2. Newton's Backward Difference Formula: For equal interval, we consider the more simpler formula. Let for equal spaced (h) data, We have  $x_0$ ,  $x_0 + h$ ,  $x_0 + 2h$ , .......  $x_0 + nh$ , Or  $x_n = x_0 + nh$ ,  $n = 0, 1, 2, \ldots$ 

$$f(x) = f\left[x_n + \left(\frac{x - x_n}{h}\right)h\right]$$

$$let....u = \left(\frac{x - x_n}{h}\right)$$

$$f(x) = f(x_n + uh)$$

$$f(x) = E^u f(x_n)$$

$$f(x) = (1 - \nabla)^{-u} f(x_n)$$

$$f(x) = \left[1 + u \frac{\nabla}{1!} - u(-u - 1) \frac{\nabla^2}{2!} + ... u(u + 1)...(u + n - 1) \frac{\nabla^n}{n!}\right] f(x_n)$$

$$f(x) = f(x_n) + u \frac{\nabla f(x_n)}{1!} + u(u+1) \frac{\nabla^2 f(x_n)}{2!} + \dots + u(u+1) \dots + (u+n-1) \frac{\nabla^n f(x_n)}{n!}$$

$$f(x) = f(x_0) + u \frac{\Delta f(x_0)}{1!} + u(u-1) \frac{\Delta^2 f(x_0)}{2!} + u(u-1)(u-2) \frac{\Delta^3 f(x_0)}{3!} + \dots$$

$$\dots u(u-1) \dots (u-(n-1)) \frac{\Delta^n f(x_0)}{n!}$$

$$y = y_0 + u \frac{\Delta y_0}{1!} + u(u-1) \frac{\Delta^2 y_0}{2!} + u(u-1)(u-2) \frac{\Delta^3 y_0}{3!} + \dots$$

$$\dots u(u-1) \dots (u-(n-1)) \frac{\Delta^n y_0}{n!} \dots (1)$$

$$f(x) = f(x_0) + u \frac{\Delta f(x_0)}{1!} + u(u - 1) \frac{\Delta^2 f(x_0)}{2!} + u(u - 1)(u - 2) \frac{\Delta^3 f(x_0)}{3!} + \dots$$

$$\dots u(u - 1) \dots (u - (n - 1)) \frac{\Delta^n f(x_0)}{n!}$$

$$y = y_0 + u \frac{\Delta y_0}{1!} + u(u - 1) \frac{\Delta^2 y_0}{2!} + u(u - 1)(u - 2) \frac{\Delta^3 y_0}{3!} + \dots$$

$$\dots u(u - 1) \dots (u - (n - 1)) \frac{\Delta^n y_0}{n!} \dots (1)$$

$$x = x_0 + uh, u = \frac{x - x_0}{h} \dots (2)$$

Differentiate eq (1) w.r.t u

$$\frac{dy}{du} = \frac{\Delta y_0}{1!} + (2u - 1)\frac{\Delta^2 y_0}{2!} + (3u^2 - 6u + 2)\frac{\Delta^3 y_0}{3!} + \dots$$

$$u = \frac{x - x_0}{h}$$

$$\frac{du}{dx} = \frac{1}{h}$$

$$now, \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{1}{h}(\frac{\Delta y_0}{1!} + (2u - 1)\frac{\Delta^2 y_0}{2!} + (3u^2 - 6u + 2)\frac{\Delta^3 y_0}{3!} + \dots)$$
(3)

At x=x<sub>0</sub>, 
$$u=0$$

$$\left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left(\frac{\Delta y_0}{1!} - 1\frac{\Delta^2 y_0}{2!} + 2\frac{\Delta^3 y_0}{3!} - \dots\right)$$

$$D = \left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left(\frac{\Delta y_0}{1} - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \dots\right)$$

Differentiating eq(3) w.r.t x

At  $x=x_0$ ,

$$\frac{d^2y}{dx^2} = \frac{d}{du} \left(\frac{dy}{du}\right) \frac{du}{dx}$$

$$\frac{d^2y}{dx^2} = \frac{1}{h} \left((2)\frac{\Delta^2 y_0}{2!} + (6u - 6)\frac{\Delta^3 y_0}{3!} + \dots\right) \frac{du}{dx}$$

$$\mathbf{u} = \mathbf{0}$$

$$D^{2} = \frac{d^{2}y}{dx^{2}} = \frac{1}{h^{2}} \left( \frac{\Delta^{2}y_{0}}{1} - \frac{\Delta^{3}y_{0}}{1} + \frac{11}{12} \Delta^{4}y_{0} \dots \right)$$

$$f(x) = f(x_n) + u \frac{\nabla f(x_n)}{1!} + u(u+1) \frac{\nabla^2 f(x_n)}{2!} + \dots + u(u+1) \dots + u(u+n-1) \frac{\nabla^n f(x_n)}{n!}$$

$$y_n(x) = y_n + u \frac{\nabla y_n}{1!} + u(u+1) \frac{\nabla^2 y_n}{2!} + \dots + u(u+1) \dots + u(u+n-1) \frac{\nabla^n y_n}{n!}$$

$$x_n = x + uh, u = \frac{x - x_n}{h}$$

$$\left(\frac{dy}{dx}\right)_{x_n} = \frac{1}{h} \left(\frac{\nabla y_n}{1} + \frac{\nabla^2 y_n}{2} + \frac{\nabla^3 y_n}{3} + \dots \right)$$
and
$$\left(\frac{d^2 y}{dx^2}\right)_{x_n} = \frac{1}{h^2} \left(\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \dots \right)$$

# Numerical differentiation using difference operator

As we know

$$E = 1 + \Delta$$

$$E = (1 - \nabla)^{-1}$$
 and  $\delta = (E^{1/2} - E^{-1/2})$ 

now

$$Ef(x) = f(x+h)$$

By taylor series,

$$Ef(x) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \dots$$

$$Ef(x) = f(x) + hDf(x) + \frac{h^2}{2!}D^2f(x) + \dots$$

$$Ef(x) = \left[1 + hD + \frac{h^2}{2!}D^2 + \dots\right]f(x)$$

$$Ef(x) = e^{hD} f(x)$$

$$E = e^{hD}$$

take log

$$\log E = hD \log e$$

$$D = \frac{1}{h} \log E$$

# Numerical differentiation using difference operator

For forward difference operator

$$D = \frac{1}{h} \log(1 + \Delta)$$

$$D = \frac{1}{h} \left( \frac{\Delta}{1} - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \dots \right)$$

$$Df(x) = \frac{1}{h} \left( \frac{\Delta}{1} - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \dots \right) f(x)$$

$$D^2 f(x) = \frac{1}{h^2} \left( \frac{\Delta}{1} - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \dots \right)^2 f(x)$$

Similarly, the higher order derivatives can be calculated.

# Numerical differentiation using difference operator $A_s$

$$E = (1 - \nabla)^{-1}$$

$$Ef(x) = e^{hD} f(x)$$

$$E = e^{hD}$$

$$take \log$$

$$\log E = hD \log e$$

 $D = \frac{1}{h} \log E$ 

$$D = \frac{1}{h} \log (1 - \nabla)^{-1}$$

$$D = -\frac{1}{h}\log(1-\nabla)$$

$$D = -\frac{1}{h} \left[ -\nabla - \frac{\nabla^2}{2} - \frac{\nabla^3}{3} - \dots \right]$$

$$Df(x) = \frac{1}{h} \left[ \nabla + \frac{\nabla^2}{2} + \frac{\nabla^3}{3} + \dots \right] f(x)$$

#### Forward difference Table

| X              | f(x)  | $\Delta^1$               | $\Delta^2$                               | $\Delta^3$                                                              |
|----------------|-------|--------------------------|------------------------------------------|-------------------------------------------------------------------------|
| $\mathbf{x}_0$ | $y_0$ | $\Delta y_0 = y_{1-}y_0$ | $\Delta^2 y_0 = \Delta y_1 - \Delta y_0$ | $\Delta^3 \mathbf{y}_0 = \Delta^2 \mathbf{y}_1 - \Delta^2 \mathbf{y}_0$ |
| $\mathbf{x}_1$ | $y_1$ | $\Delta y_1 = y_2 - y_1$ | $\Delta^2 y_1 = \Delta y_2 - \Delta y_1$ |                                                                         |
| $\mathbf{x}_2$ | $y_2$ | $\Delta y_2 = y_3 - y_2$ |                                          |                                                                         |
| $\mathbf{x}_3$ | $y_3$ |                          |                                          |                                                                         |

#### **Backward difference Table**

| X              | f(x)  | $ abla^1$                | $ abla^2$                                                           | $\nabla^3$                                                              |
|----------------|-------|--------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|
| $\mathbf{x}_0$ | $y_0$ | $\nabla y_1 = y_1 - y_0$ | $\nabla^2 \mathbf{y}_2 = \nabla \mathbf{y}_2 - \nabla \mathbf{y}_1$ | $\nabla^3 \mathbf{y}_3 = \nabla^2 \mathbf{y}_3 - \nabla^2 \mathbf{y}_2$ |
| $\mathbf{x}_1$ | $y_1$ | $\nabla y_2 = y_2 - y_1$ | $\nabla^2 y_3 = \nabla y_3 - \nabla y_2$                            |                                                                         |
| $\mathbf{x}_2$ | $y_2$ | $\nabla y_3 = y_3 - y_2$ |                                                                     |                                                                         |
| $\mathbf{x}_3$ | $y_3$ |                          |                                                                     |                                                                         |

Note:  $\Delta y_0 = \nabla y_1$  and  $\Delta^2 y_0 = \nabla^2 y_2$ 

### Example-1

Given the values

| X    | 1     | 1.1   | 1.2   | 1.3   | 1.4   |
|------|-------|-------|-------|-------|-------|
| f(x) | 7.989 | 8.403 | 8.781 | 9.129 | 9.451 |

Calculate dy/dx at x=1

### Solution

#### We have

| X   | f(x)   | Δ     | Δ2     | $\nabla_3$ | Δ4     | Δ5     | Λ <sub>E</sub> |
|-----|--------|-------|--------|------------|--------|--------|----------------|
| 1   | 7.989  | 0.414 | -0.036 | -0.006     | -0.002 | -0.002 | -0.003         |
| 1.1 | 8.403  | 0.378 | -0.030 | 0.004      | 0.000  | -0.001 |                |
| 1.2 | 8.781  | 0.348 | -0.026 | 0.004      | -0.001 |        |                |
| 1.3 | 9.129  | 0.322 | -0.023 | 0.005      |        |        |                |
| 1.4 | 9.451  | 0.299 | -0.018 |            |        |        |                |
| 1.5 | 9.750  | 0.281 |        |            |        |        |                |
| 1,6 | 10.031 |       |        |            |        |        |                |

#### Solution

| X   | f(x)   | Δ     | Δ <sup>2</sup> | $\nabla_3$ | ∆4     | ∆5     | $\nabla_{\mathbf{e}}$ |
|-----|--------|-------|----------------|------------|--------|--------|-----------------------|
|     |        |       |                |            |        |        |                       |
| 1   | 7.989  | 0.414 | -0.036         | -0.006     | -0.002 | -0.002 | -0.003                |
| 1.1 | 8.403  | 0.378 | -0.030         | 0.004      | 0.000  | -0.001 |                       |
| 1.2 | 8.781  | 0.348 | -0.026         | 0.004      | -0.001 |        |                       |
| 1.3 | 9.129  | 0.322 | -0.023         | 0.005      |        |        |                       |
| 1.4 | 9.451  | 0.299 | -0.018         |            |        |        |                       |
| 1.5 | 9.750  | 0.281 |                |            |        |        |                       |
| 1,6 | 10.031 |       |                |            |        |        |                       |

$$Df(x) = \frac{1}{h} \left( \frac{\Delta}{1} - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \dots \right) f(x)$$

$$\frac{dy}{dx} = \frac{1}{0.1} \left[ 0.414 - \frac{0.0036}{2} + \frac{0.006}{3} - \frac{0.002}{4} + \frac{0.002}{5} - \frac{0.003}{6} \right]$$

#### **Practice Problem**

Find the first derivative of the function f(x) at x=1.5

| X    | 1.5 | 2.0  | 2.5    | 3.0  | 3.5    | 4.0   |
|------|-----|------|--------|------|--------|-------|
| f(x) | 3.3 | 7.00 | 13.625 | 24.0 | 38.875 | 59.00 |

### Suggested books

1. Numerical Methods by S.R.K Lyenger & R.K. Jain.

2. Numerical Analysis by Richard L. Burden.

3. Introductory methods of Numerical analysis by **S.S. Sastry**.

### Thank you