

Notes

Elements of Statistics

Chapter 4:

Measures of association and regression analysis

Ralf Münnich, Jan Pablo Burgard and Florian Ertz

University of Trier Faculty IV Economic and Social Statistics Department

Winter term 2021/22

© WiSoStat

The sides are provided as supplementary material by the Economic and Social Statistics Department (WiSoStat) of Faculty IV of the University of Tirei for the lecture "Elements of Statistics" in Wise 2021, I/2 and the participants are allowed to use them for preparation and reworking. The lecture materials are protected by intelectual property rights. They runts not be multiplied, distributed, provided or made publicly accessible – neither fully, nor partially.

Ertz | Elements of Statistics

| WiSe 2021/22 1 / 53 © WiSoStat

4. Measures of association and regression analysis $\;\;|\;\;$ 4.1 Some concepts

Measures of association for multidimensional distributions

Here: 2 variables with pairs of variates $(x_i; y_i)$

1. Univariate analysis for each variable

$$\overline{x}, \overline{y}, s_x^{*^2}, s_y^{*^2}, v_x, v_y$$

2. Analysis of the variables' relationship

Problems:

- ► Are we able to infer the value of one variable from the value of the other variable?
 - → Measurement of (strength of) variables' relationship
- ► Is there an *algorithm* (function), governing the variables' relationship?

 → Regression analysis

Ertz | Elements of Statistics

| WiSe 2021/22 2 / 53 © WiSoStat

4. Measures of association and regression analysis $\;\;\;|\;\;\;$ 4.1 Some concepts

Two-dimensional distributions (1)

cat. of 2nd variable cat. of						
1st variable	1		k		r	sum
1	n ₁₁		n_{1k}		n_{1r}	n ₁ .
:	:	٠.	:		:	:
j	n _{j1}		n_{jk}		njr	nj.
:	:		:	1.	:	
m	n _{m1}		n_{mk}		n_{mr}	n _m .
sum	n.1		n. ı		n.r	n

 n_{jk} Joint absolute frequency of j-th value of the first variable and k-th value of the second variable

 n_j . Absolute frequency of j-th value of the first variable

 $n_{\cdot k}$ Absolute frequency of k-th value of the second variable

4. Measures of association and regression analysis $\;\mid\;$ 4.1 Some concepts

Two-dimensional distributions (2)

| WiSe 2021/22 3 / 53 @ WiSoStat

The relative frequencies are given by

$$p_{jk} = \frac{n_{jk}}{n}$$
,

while

Ertz | Elements of Statistics

$$p_{k|j} = \frac{n_{jk}}{n_{j.}}$$

are conditional relative frequencies. Condition: The first variable's realisation is j.

-		
-		
Notes		
Notes		
Notes		
-		
-	 	
Notes		

Example 4.1: Unemployment (see Example 2.1):

Unemployed	[0; 15)	[15; 25)	[25; 45)	[45; 65)	at least 65	Σ
Men	0	124	288	253	1	666
Women	0	66	235	222	1	524
\sum	0	190	523	475	2	1190

The distribution of unemplayed females agrees age groups is given by

i ne distributio	n or unei	трюуеа те	maies acro	oss age gro	oups is given	by:
Unemployed	[0; 15)	[15; 25)	[25; 45)	[45; 65)	at least 65	\sum_{i}

Unemployed	[0; 15)	[15; 25)	[25; 45)	[45; 65)	at least 65	\sum
Women	0	66	235	222	1	524

The relative conditional distribution shows the respective share of unemployed women in the different age groups and is reached by dividing the absolute frequencies by the marginal sum (here: 524).

load("Example2-8.RData")
round(FQtable["Female",]/FQtable["Female","Sum"],4)
[0;15) [15:25) [25:45) [45:65) at least 65 Sum

Female 0 0.126 0.4485 0.4237 0.0019 1

Ertz | Elements of Statistics

| WiSe 2021/22 5 / 53 © WiSoStat

4. Measures of association and regression analysis $\;\;|\;\;$ 4.1 Some concepts

Empirical distribution function (bivariate case)

For bivariate data, the empirical distribution function is given by

$$F_n(x,y) = \frac{1}{n} \sum_{i=1}^n \mathcal{I}(x_i \le x \land y_i \le y).$$

- ▶ for simplicity reasons, the ECDF is displayed in a tabular format
- ordinal scale is required at least
- ▶ graphical representation is analogous to the univariate case

Ertz | Elements of Statistics

| WiSe 2021/22 6 / 53 © WiSoStat

4. Measures of association and regression analysis \mid 4.1 Some concepts

Example 4.2: Kindergarten (1)

The relationship between age group and the interest in doing handicrafts is investigated in a kindergarten accommodating n=50 children. The results are as follows:

Load data in R:

load("Example4-2.RData")

Ertz | Elements of Statistics

| WiSe 2021/22 7 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.1 Some concepts

Example 4.2: Kindergarten (2)

Aggregation of values in both directions up to the relevant cell yields the tabulated empirical distribution function $F_{50}(x,y)$:

$F_{50}(x,y)$ low	young 5/50	medium 13/50	old 17/50	(0, s)
average high	7/50 9/50	21/50 31/50	31/50 50/50	
5	-,	- /	,	Interest in doing harrobuse

Example 4.2: Kindergarten (3)

Wirtschafts- und Sozialstatistik

Calculation in R:

 $F_{-j_k} \leftarrow t(apply(apply(p_{-j_k}, 2, cumsum), 1, cumsum))$ F_{-j_k}

young	medium	old
0.10	0.26	0.34
0.14	0.42	0.62
0.18	0.62	1.00
	0.10 0.14	0.10 0.26 0.14 0.42

Ertz | Elements of Statistics

| WiSe 2021/22 9 / 53 © WiSoStat

4. Measures of association and regression analysis $\;\;|\;\;$ 4.2 Measures of contingency and correlation

Coefficient of contingency (1)

- ► Nominal scale
- ► Contingency table (two-dimensional frequencies)

We need a measure which accounts for the relationship between the two variables.

Value \rightarrow 1: We can infer the value of one variable from the value of the other variable.

Value \to 0: We cannot even infer a $\it tendency$ for the value of one variable from the value of the other variable.

Ertz | Elements of Statistics

| WiSe 2021/22 10 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.3: Rompers

Relationship between rompers' colours and babies' gender:

	blue	pink
m	10	0
f	0	10

	blue	pink
m	5	5
f	5	5

	blue	pink
m	8	2
f	2	8

Ertz | Elements of Statistics

| WiSe 2021/22 11 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Independence of variables

Aim

Comparison of actual distribution of variables and reference distribution which does not allow any *inference*.

Definition

Two variables are called independent if and only if

$$n_{jk} = \frac{n_{j.} \cdot n_{.k}}{n}$$

holds for all $j=1,\ldots,m$ and $k=1,\ldots,r$.

Problem: The resulting values $\frac{n_j \cdot n_{\cdot k}}{n}$ may not be integers.

ľ	۷c	tes

Notes	
Notes	
Notes	

Coefficient of contingency (2)

Notes

Notes

1. Calculation of $n_{jk}^*=\frac{n_{j\cdot}\cdot n_{\cdot k}}{n}$ $j=1,\ldots,m$ $k=1,\ldots,r.$ 2. Determination of deviation between actual and theoretical values

(independence):

$$\chi^2 = \sum_{j=1}^m \sum_{k=1}^r \frac{(n_{jk} - n_{jk}^*)^2}{n_{jk}^*}$$

; $0 \le K < 1$

4. Standardisation:

$$K_* = \frac{K}{K_{max}}; \quad K_{max} = \sqrt{\frac{M-1}{M}}; \quad M = \min(m, r)$$

Ertz | Elements of Statistics

| WiSe 2021/22 13 / 53 © WiSoStat

4. Measures of association and regression analysis $\;\;|\;\;$ 4.2 Measures of contingency and correlation

Coefficient of contingency (3)

 \textit{K}_* is called standardised coefficient of contingency. We have: $0 \leq \textit{K}_* \leq 1$.

Independence $\Rightarrow K_* = 0$

Perfect relation $\Rightarrow K_* = 1$

Ertz | Elements of Statistics

| WiSe 2021/22 14 / 53 © WiSoStat

4. Measures of association and regression analysis $\;\;|\;\;$ 4.2 Measures of contingency and correlation

Example 4.4: Field of study and gender (1)

We are interested in the relation between field of study and gender.

Business administration, Economics, Geography x · Field

y: Gender m, f

n_{jk}	m	f	
В	2	1	3
Ε	2	2	4
G	1	2	3
	5	5	10

	n_{jk}^*	m	f	
	В	1.5	1.5	3
\rightarrow	Ε	2	2	4
	G	1.5	1.5	3
		F.		10

Ertz | Elements of Statistics

| WiSe 2021/22 15 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.4: Field of Study and gender (2)

Calculations in R: load("Example4-4.RData") addmargins(n_j_k)

m f Sum 2 2 4 1 2 3 Sum 5 5 10

n_j_k_star <- margin.table(n_j_k,1) %*% $\verb|t(margin.table(n_j_k,2))/margin.table(n_j_k)|$ m f B 1.5 1.5 E 2.0 2.0

Ertz | Elements of Statistics

G 1.5 1.5

| WiSe 2021/22 16 / 53 © WiSoStat

Notes

Example 4.4: Field of Study and gender (3)

Notes

$$\chi^{2} = \frac{(2-1.5)^{2}}{1.5} + \frac{(1-1.5)^{2}}{1.5} + \frac{(2-2)^{2}}{2} + \frac{(2-2)^{2}}{2} + \frac{(2-2)^{2}}{2} + \frac{(2-1.5)^{2}}{1.5} + \frac{(2-1.5)^{2}}{1.5} = \frac{1/2^{2}}{3/2} \cdot 4 = \frac{2}{3}$$

Calculation of χ^2 in R:

chisq <- summary(n_j_k)\$statistic</pre> chisq

Γ11 0.6666667

Note that in R, the object n_j_k above has to have the structure table (Checking possible with str()).

Ertz | Elements of Statistics

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.4: Field of Study and gender (4)

$$\Rightarrow$$
 $K = \sqrt{\frac{(2/3)}{10 + (2/3)}} = \sqrt{\frac{1}{16}} = \frac{1}{4}$

With M=2 and $K_{max}=\sqrt{\frac{1}{2}}$ we have $K_*=\frac{1}{4}\cdot\sqrt{2}=0.3536.$

Calculations in R:

KK <- sqrt(chisq/(sum(n_j_k) + chisq))
M <- min(dim(n i k))</pre>

n · min(dim(n_j_k))
$K_{max} \leftarrow sqrt((M-1)/M)$
K_star <- KK/K_max

[1] 0.25

[1] 0.7071068

[1] 0.3535534

Ertz | Elements of Statistics

| WiSe 2021/22 18 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Pearson's Φ and Cramer's coefficient of contingency

Pearson's Φ-coefficient is defined as:

We have $0 \le \Phi \le \sqrt{M-1}$, where in case of $\min(m,r) = 2$ we have M - 1 = 1.

Cramér's coefficient of contingency (Cramér's V) is defined as:

$$V = \sqrt{\frac{\chi^2}{n \cdot (M-1)}}.$$

We have: $0 \le V \le 1$. In case of min(m, r) = 2, we have $\Phi = V$. Both coefficients may only be used for nominal variables.

Ertz | Elements of Statistics

| WiSe 2021/22 19 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Rank correlation coefficient of Spearman (1)

Ordina	ا درءا	ı

► Each rank is unique

Additional information compared to coefficient of contingency:

Positive correlation The higher the value of one variable, the higher is the value of the other variable

Negative correlation The higher the value of one variable, the lower is the value of the other variable

Notes
Notes
Notes

Rank correlation coefficient of Spearman (2)

Let x and y have at least ordinal scaling and no duplicated values in x_i and y_i , respectively. The rank correlation coefficient of Spearman is then given by

$$r_{sp} = 1 - \frac{6\sum_{i=1}^{n} (Rg(x_i) - Rg(y_i))^2}{n(n^2 - 1)}$$

 $\mathit{r_{sp}} = +1$: All ranks are identical

 $\mathit{r_{sp}} = -1$: All ranks are contrary to each other

In order to determine the rank of an attribute in R we can use the function rank().

Ertz | Elements of Statistics

| WiSe 2021/22 21 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.5: Alpine skiing

Let the results for a combined alpine skiing event be given, where the time measured for downhill and y is the time measured for slalom.

$$r_{\rm sp} = 1 - \frac{6 \cdot 16}{5(25 - 1)} = 1 - \frac{4}{5} = 0.2$$

Calculation of r_{sp} in R:

load("Example4-5.RData")
cor_SP <- cor(Rg_x5_5, Rg_y5_5, method = "spearman")
cor SP</pre>

[1] 0.2

Does it matter that the rankings in both disciplines are opposed to the time ranks used here?

Ertz | Elements of Statistics

| WiSe 2021/22 22 / 53 © WiSoStat

Measures of association and regression analysis | 4.2 Measures of contingency and correlation Tied ranks Wirtschafts- und 5oz

If there are ties, we may replace ranks for identical values by a mean rank of the observations affected. Then we can use:

$$r_{\rm Sp} = \frac{\sum\limits_{i=1}^{n} {\rm Rk}(x_i) \cdot {\rm Rk}(y_i) - \frac{1}{n} \sum\limits_{i=1}^{n} {\rm Rk}(x_i) \sum\limits_{i=1}^{n} {\rm Rk}(y_i)}{\sqrt{\sum\limits_{i=1}^{n} {\rm Rk}(x_i)^2 - \left(\frac{1}{n} \sum\limits_{i=1}^{n} {\rm Rk}(x_i)\right)^2} \cdot \sqrt{\sum\limits_{i=1}^{n} {\rm Rk}(y_i)^2 - \left(\frac{1}{n} \sum\limits_{i=1}^{n} {\rm Rk}(y_i)\right)^2}}$$

This matches the correlation coefficient of Bravais-Pearson for the ranks of the observations (instead of their values). For contingency tables we use:

 $r_{\rm sp} = \frac{\sum\limits_{j=1}^{m}\sum\limits_{k=1}^{r}{\rm Rk}(x_j){\rm Rk}(y_k)n_{jk} - \frac{1}{n}\sum\limits_{j=1}^{m}{\rm Rk}(x_j)n_{j\cdot}\sum\limits_{k=1}^{r}{\rm Rk}(y_k)n_{\cdot k}}{\sqrt{\left(\sum\limits_{j=1}^{m}{\rm Rk}(x_j)^2n_{j\cdot} - \left(\frac{1}{n}\sum\limits_{j=1}^{m}{\rm Rk}(x_j)n_{j\cdot}\right)^2\right) \cdot \left(\sum\limits_{k=1}^{r}{\rm Rk}(y_k)^2n_{\cdot k} - \left(\frac{1}{n}\sum\limits_{k=1}^{r}{\rm Rk}(y_k)n_{\cdot k}\right)^2\right)}}$

Ertz | Elements of Statistics

| WiSe 2021/22 23 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.6: Scholarships (1)

Two reviewers had to give their assessment of n=50 students applying for a scholarship. In the final round, the following ratings could be awarded: excellent (A), very good (B) and good (C). The following table contains the results:

		Revi	ewer	ll
_		Α	В	C
Wer	Α	3	2	0
eviewer	В	1	12	2
Re	C	0	4	26

Due to the large number of ties, a specification of the mean ranks is required at first.

For reviewer I, we have:

Rating A: Rank 1 - 5, 5 times a mean rank of 3

Rating B: Rank 6 - 20, 15 times a mean rank of 13

Rating C: Rank 21 – 50, 30 times a mean rank of 35.5

Notes			
Notes			
Nata			
Notes			
Notos			
Notes			

| WiSe 2021/22 24 / 53 @ WiSoStat

Example 5.6: Scholarships (2)

Wirtschafts- und Sozialstatisti

Analogously, we get the mean ranks 2.5, 13.5 and 36.5 for Reviewer II.

Calculation in R:

```
load("Example4-6.RData")
Rg_x5_6_mean <- c(3.0, 13.0, 35.5)
Rg_y5_6_mean <- c(2.5, 13.5, 36.5)
```

Finally, using the formula for contingency tables, we get:

$$\textit{r}_{\textrm{sp}} = \frac{38797.5 - \frac{1}{50} \cdot 1275 \cdot 1275}{\sqrt{7875 \cdot 8096}} = \frac{6285}{7984.735} = 0.7871 \, .$$

Ertz | Elements of Statistics

| WiSe 2021/22 25 / 53 @ WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.6: Scholarships (3)

Calculation of r_{sp} in R:

```
n <- sum(n_j_k)

Rx_Ry_sum <- sum(n_j_k[1, ]*Rg_x5_6_mean[1]*Rg_y5_6_mean) +
    sum(n_j_k[2, ]*Rg_x5_6_mean[2]*Rg_y5_6_mean) +
    sum(n_j_k[3, ]*Rg_x5_6_mean[3]*Rg_y5_6_mean)

Rx_sum <- sum(n_j_k * Rg_x5_6_mean)

Ry_sum <- sum(t(n_j_k) * Rg_y5_6_mean)

Rx_2 <- sum(Rg_x5_6_mean^2 * margin.table(n_j_k,1))
Ry_2 <- sum(Rg_y5_6_mean^2 * margin.table(n_j_k,2))

cor_SP <- (Rx_Ry_sum - 1/n * Rx_sum * Ry_sum) /
    (sqrt(Rx_2 - 1/n * Rx_sum^2) *
        sqrt(Ry_2 - 1/n * Ry_sum^2))

round(cor_SP, 4)
[1] 0.7871</pre>
```

[1] 011011

Ertz | Elements of Statistics

| WiSe 2021/22 26 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.6: Scholarships (4)

Alternatively, we could use individual data on ranks and the first formula to reach the same result $(Rk(x_i); Rk(y_i))$:

(3; 2.5)	(3; 13.5)	(3; 36.5)
3×	\mathcal{L}_{2}	
(13; 2.5)	(13; 13.5)	(13; 36.5)
	<u></u>	
(35.5; 2.5)	(35.5; 13.5)	(35.5; 36.5)
(55.5, 2.5)	(55.5, 15.5)	(33.3, 30.3)
0×	4×	26×

Ertz | Elements of Statistics

| WiSe 2021/22 27 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Preliminary remarks on τ and γ measures

We define the following two relationship patterns for two pairs of values $(x_i; y_i)$ and $(x_j; y_j)$:

Concordant pair: We have $x_i < x_j$ and $y_i < y_j$ or $x_i > x_j$ and $y_i > y_j$, so that the comparison of the components of the pairs is unidirectional.

Discordant pair: We have $x_i < x_j$ and $y_i > y_j$ or $x_i > x_j$ and $y_i < y_j$, so that the comparison of the components of the pairs is counterdirectional.

The number of concordant and discordant pairs is labelled n_c and n_d , respectively.

Additionally, we may have to take ties into account. T_x is the number of ties of the first variable and T_y is the number of ties of the second variable.

-		
NI .		
Notes		
Notos		
Notes		
Notes		

Kendall's au and Goodman and Kruskal's γ

We have:

$$\begin{split} \tau_{a} &= \frac{n_{c} - n_{d}}{\frac{1}{2} \cdot n \cdot (n - 1)} \\ \tau_{b} &= \frac{n_{c} - n_{d}}{\sqrt{(n_{c} + n_{d} + T_{x}) \cdot (n_{c} + n_{d} + T_{y})}} \\ \tau_{c} &= \frac{n_{c} - n_{d}}{\frac{1}{2} \cdot n^{2} \cdot \frac{M - 1}{M}} = \frac{2M \cdot (n_{c} - n_{d})}{n^{2} \cdot (M - 1)} \\ \gamma &= \frac{n_{c} - n_{d}}{n_{c} + n_{d}} \end{split}$$

 au_a requires contingency tables without ties. au_b is commonly used, but only takes on the value 1 for quadratic contingency tables. au_c accounts for differing numbers of rows and columns.

Ertz | Elements of Statistics

| WiSe 2021/22 29 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.7: see Ex. 4.6 (1)

In order to calculate the $\boldsymbol{\tau}$ and gamma measures, we have to find the concordant and discordant pairs as well as the ties in X and Y. We get:

$$n_c = 3(12 + 2 + 4 + 26) + 2(2 + 26) + 1(4 + 26) + 12 \cdot 26 = 530$$

 $n_d = 2(1 + 0) + 0 + 12 \cdot 0 + 2(0 + 4) = 10$

Calculation of n_c and n_d in R: load("Example4-6.RData")

 $\label{eq:nc} \text{nc} <- \ \sup(n_j_k[1,1]*n_j_k[2:3,2:3], n_j_k[1,2]*n_j_k[2:3,3],$ $n_j_k\,[2\,,1]\,*n_j_k\,[3\,,2\,:3]\,\,,n_j_k\,[2\,,2]\,*n_j_k\,[3\,,3]\,)$ nd <- sum(n_j_k[3,1]*n_j_k[1:2,2:3],n_j_k[2,1]*n_j_k[1,2:3],

 $n_j_k[3,2]*n_j_k[1:2,3], n_j_k[3,1]*n_j_k[2,2])$

[1] 530

nd [1] 10

Ertz | Elements of Statistics

| WiSe 2021/22 30 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.7: see Ex. 4.6 (2)

For the ties, we get:

$$T_x = 3(2+0) + 1(12+2) + 0 + 0 + 12 \cdot 2 + 4 \cdot 26 = 148$$

 $T_y = 3(1+0) + 2(12+4) + 0 + 0 + 12 \cdot 4 + 2 \cdot 26 = 135$

Calculation of T_x and T_y in R:

 $Tx \leftarrow sum(n_j_k[,1]*n_j_k[,2:3], n_j_k[,2]*n_j_k[,3])$ // <- sum(t(n_j_k)[,1] * t(n_j_k)[,2:3],
t(n_j_k)[,2] * t(n_j_k)[,3])</pre> [1] 148

Ту

[1] 135

Ertz | Elements of Statistics

| WiSe 2021/22 31 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.7: see Ex. 4.6 (3)

We finally reach:

$$\tau_a = \frac{530-10}{\frac{1}{2} \cdot 50 \cdot (50-1)} = 0.4245$$

$$\tau_b = \frac{530-10}{\sqrt{(530+10+148) \cdot (530+10+135)}} = 0.7631$$

$$\tau_c = \frac{530-10}{\frac{1}{2} \cdot 50^2 \cdot \frac{3-1}{3}} = 0.624$$

$$\gamma = \frac{530-10}{30+10} = 0.9630$$

In Example 4.6, the result was $r_{sp} = 0.7871$.

N	0+00
IΝ	OLES

Notes	
Notes	
Notes	
Notes	

Example 4.7: see Ex. 4.6 (4)

Calculation of $au_{\mathrm{a}}, \ au_{\mathrm{b}}, \ au_{\mathrm{c}}$ and γ in R:

n <- sum(n_j_k) M <- min(dim(n_j_k))</pre> tau_a <- (nc - nd) / (1/2 * n * (n - 1))
tau_b <- (nc - nd) / sqrt((nc + nd + Tx) * (nc + nd + Ty))
tau_c <- 2 * M * (nc - nd) / (n^2 * (M - 1)) gamma <- (nc - nd) / (nc + nd)

round(tau_a, 4) round(tau_b, 4)

[1] 0.4245

[1] 0.7631

round(tau_c, 4)

round(gamma, 4)

[1] 0.624

[1] 0.963

Ertz | Elements of Statistics

| WiSe 2021/22 33 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Correlation and covariance

The covariance of two metric variables x and y is given by

$$s_{xy}^* = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}).$$

Some kind of standardisation is needed!

Ertz | Elements of Statistics

| WiSe 2021/22 34 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Correlation coefficient of Bravais-Pearson (1)

For metrically scaled variables x and y with positive variances of x and y, the correlation coefficient of Bravais-Pearson is defined as

$$r_{xy} = \frac{s_{xy}^*}{s_x^* \cdot s_y^*} = \frac{\frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 \cdot \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2}}.$$

Ertz | Elements of Statistics

| WiSe 2021/22 35 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Correlation coefficient of Bravais-Pearson (2)

Properties:

$$1. \ -1 \le r_{xy} \le 1$$

- 2. Special cases: $r_{xy} = -1$; 0; +1
- 3. Transformation

$$u_i = a_0 + a_1 \cdot x_i; v_i = b_0 + b_1 \cdot y_i$$

 $r_{uv} = \text{sgn}(a_1 \cdot b_1) \cdot r_{xy}$

Frequently, only the algebraic sign $(r_{xy} \gtrless 0)$ is of interest in economics.

Notes Notes Notes

Problems of the correlation coefficient (1)

Non-linear relationships

Let $x_i = -2$; -1; 1; 2 and $y_i = x_i^2$. The resulting correlation coefficient is

$$r_{xy}=0$$
 .

There is a quadratic relationship in the data, which is not comprehended by the correlation coefficient!

Ertz | Elements of Statistics

| WiSe 2021/22 37 / 53 © WiSoStat

4. Measures of association and regression analysis $\;\;|\;\;$ 4.2 Measures of contingency and correlation

Problems of the correlation coefficient (2)

Correlation and causality

Interpretation of $r_{xy} = 0.98$:

A statistical interrelation does not necessarily indicate a theoretical interrelation.

- ► Presidential elections / Superbowl in the USA $(\verb|http://www.theguardian.com/sport/blog/2012/feb/01/super-bowl-ology-science-impotence-2012)$
- ▶ Beer consumption / Count of unemployed people per month
- \rightarrow Spurious correlation

Ertz | Elements of Statistics

| WiSe 2021/22 38 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Spurious correlation

Tyler Vigen - spurious correlations (2019).

http://tylervigen.com/view_correlation?id=30074

Ertz | Elements of Statistics

| WiSe 2021/22 39 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.8: Correlation coefficient (1)

The following table contains information on n = 10 units and two variables:

i	Xi	Уi	x_i^2	y_i^2	$x_i \cdot y_i$
1	1	1	1	1	1
2	1.5	3.5	2.25	12.25	5.25
3	2.5	3	6.25	9	7.5
4	3	2	9	4	6
5	4	2	16	4	8
6	4	4	16	16	16
7	5	4.5	25	20.25	22.5
8	5.5	5	30.25	25	27.5
9	6.5	3.5	42.25	12.25	22.75
10	7	4.5	49	20.25	31.5
Σ	40	33	197	124	148

N	0	te	25
---	---	----	----

Notes		
Notes		
Notes		
Notes		

Example 4.8: Correlation coefficient (2)

Wirtschafts- und Sozialstatisti

Data input in R:

x4_8 <- c(1, 1.5, 2.5, 3, 4, 4, 5, 5.5, 6.5, 7) y4_8 <- c(1, 3.5, 3,2, 2, 4, 4.5, 5, 3.5, 4.5)

At first, the univariate measures needed are computed . . .

$$\overline{x} = 40/10 = 4$$
 $\overline{y} = 33/10 = 3,3$
 $s_x^{*2} = \frac{1}{10} \cdot 197 - 4^2 = 3.7$
 $s_y^{*2} = \frac{1}{10} \cdot 124 - 3.3^2 = 1.5$

Ertz | Elements of Statistics

| WiSe 2021/22 41 / 53 © WiSoStat

4. Measures of association and regression analysis $\;\;|\;\;$ 4.2 Measures of contingency and correlation

Example 4.8: Correlation coefficient (3)

... thereupon, these are combined in order to determine a result for the covariance and correlation coefficient, respectively:

$$s_{xy}^* = \frac{1}{10} \cdot 148 - 4 \cdot 3.3 = 1.6$$
 $r_{xy} = \frac{1.6}{\sqrt{3.7 \cdot 1.51}} = 0.6769$

Calculation of s_{xy}^* and r_{xy} in R:

[1] 1.6
Ertz | Elements of Statistics

| WiSe 2021/22 42 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.8: Correlation coefficient (4)

Correlation vs. linear regression

In R:

 $\label{eq:plot_state} $$ plot(x4_8,y4_8,xlim=c(0,10),ylim=c(0,6),xlab="x",ylab="y",type="p",pch=16) $$$

Ertz | Elements of Statistics

| WiSe 2021/22 43 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.2 Measures of contingency and correlation

Example 4.8: Correlation coefficient (5)

Correlation vs. linear regression

In R:
abline(v = mean(x4_8), col = "red")
abline(h = mean(y4_8), col = "red")
points(x = mean(x4_8), y = mean(y4_8), col = "red", pch=19)

Ertz | Elements of Statistics

| WiSe 2021/22 44 / 53 @ WiSoStat

Notes

Notes

Notes

Example 4.8: Correlation coefficient (6)

Wirtschafts- und Sozialstatisti

Correlation vs. linear regression

Ertz | Elements of Statistics

| WiSe 2021/22 45 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.3 Linear regression

Linear regression

x and y are continuous metric variables.

- \boldsymbol{x} is the so-called independent variable.
- y is the so-called dependent variable.

We are looking for a relationship:

$$y = f(x)$$
.

ightarrow Dependency analysis

Linear relationships are of primary interest: $y = a + b \cdot x$.

Problem: The observations typically do not lie on a line. Why is that the case?

Ertz | Elements of Statistics

| WiSe 2021/22 46 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.3 Linear regress

Simple linear regression

We assume a linear model:

$$Y = \alpha + \beta \cdot X$$
.

There might be more than one value of y that is corresponding to a certain value of x (random error). We use capital letters when talking about models

We would like to determine the parameters a and b of

$$\widehat{y}_i = a + b \cdot x_i$$

where $\widehat{y_i}$ is the vertical projection of y_i to the regression line. $e_i = y_i - \widehat{y_i}$ is the residual corresponding to observation x_i . The method of ordinary least squares (OLS) determines estimates for the parameters a and b:

$$Z(a,b) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (a + b \cdot x_i))^2 \to \min$$

Ertz | Elements of Statistic

| WiSe 2021/22 47 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.3 Linear regression

Solution to minimisation problem

Using the normal equations

$$n \cdot a + b \cdot \sum_{\substack{i=1 \\ n}} x_i = \sum_{\substack{i=1 \\ n}} y_i$$
 (1st normal equation)

$$a \cdot \sum_{i=1}^{n} x_i + b \cdot \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i \cdot y_i$$

(2nd normal equation)

we get

$$b = \frac{\sum_{i=1}^{n} x_i \cdot y_i - n \cdot \overline{x} \cdot \overline{y}}{\sum_{i=1}^{n} x_i^2 - n \cdot \overline{x}^2} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{s_{xy}}{s_x^2} = \frac{s_{xy}^*}{s_x^*}$$

and $a=\overline{y}-b\cdot\overline{x}.$ Finally, for the sample regression line we have:

$$\widehat{y} = \overline{y} + \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \cdot (x - \overline{x}) .$$

WiSe 2021/22	48 / 53	WiSoStat ■ WiSoStat	

Notes

Notes

Notes

Coefficient of determination and properties of OLS

Notes

The measure $r_{xy}^2=\frac{s_y^2}{s_y^2}$ is called coefficient of determination. For simple linear regression, it equals the squared correlation coefficient of Bravais-Pearson (for x and y). The special cases of $r_{xy}^2=0$ and $r_{xy}^2=1$ are particularly interesting.

Properties:

- 1. Centre of gravity: $(\overline{x}, \overline{y})$ is a point on the sample regression line.
- 2. The residuals cancel each other out: $\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i \hat{y}_i) = 0$.

3.
$$b = r_{xy} \cdot \frac{s_y^*}{s_x^*}$$
 $\left(= \frac{s_{xy}^*}{s_x^* \cdot s_y^*} \cdot \frac{s_y^*}{s_x^*} = \frac{s_{xy}^*}{s_x^{*2}} \right)$

Ertz | Elements of Statistics

| WiSe 2021/22 49 / 53 © WiSoStat

4. Measures of association and regression analysis $\;\mid\;\;$ 4.3 Linear regression

Example 4.9: see Ex. 4.8 (1)

We get:

$$b = \frac{1.6}{3.7} = 0.6769 \cdot \sqrt{\frac{1.51}{3.7}} = 0.4324$$

$$a = 3.3 - 0.4324 \cdot 4 = 1.5703$$

$$\hat{y}(8) = 1.5703 + 0.4324 \cdot 8 = 5.0297$$

$$r^2 = 0.6769^2 = 0.4582$$

$$\hat{y}(9) = 1.5703 + 0.4324 \cdot 9 = 5.4622$$

Calculations in R:

Ertz | Elements of Statistics

| WiSe 2021/22 50 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.3 Linear regression

Example 4.9: see Ex. 4.8 (2)

In R:

```
\label{eq:plot_condition} \begin{split} & \text{plot}(x4\_8,\ y4\_8,\ x\text{lim=c}(0,10)\,,\ y\text{lim=c}(0,6)\,,\ type="p",pch=16)\\ & \text{abline}(v = \text{mean}(x4\_8)\,,\ \text{col} = "red")\\ & \text{abline}(h = \text{mean}(y4\_8)\,,\ \text{col} = "red")\\ & \text{points}(x = \text{mean}(x4\_8)\,,\ y = \text{mean}(y4\_8)\,,\ \text{col} = "red",\ pch=19)\\ & \text{abline}(\text{reg\_mod}\,,\ \text{col}="blue") \end{split}
```

Ertz | Elements of Statistics

| WiSe 2021/22 51 / 53 © WiSoStat

4. Measures of association and regression analysis | 4.3 Linear regression

Example 4.9: see Ex. 4.8 (3)

Notes		
N		
Notes		

Example 4.9: see Ex. 4.8 (4)

Ertz | Elements of Statistics

| WiSe 2021/22 53 / 53 © WiSoStat

Notes	
N .	
Notes	
Notes	
Notes	