Santander Customer Transaction Prediction

Hitesh Kumar

Content

1 Introduction
1.1 Background
1.2 Problem Statement
2 Data
2.1 Data
2.2 Missing Value Analysis
3 Exploratory Data Analysis
3.1 Descriptive analysis
3.2 Univariate analysis
3.3 Correlation analysis
3.4 Finding Top features
4 Modeling
4.1 Feature Engineering
4.2 Logistic Regression
4.3 Decision Tree
4.4 Random Forest
4.5 XG Boost
5 Conclusion
5.1 Model Evaluation
5.2 Model Selection
Appendix A - Extra Figures
Extra Figures
Appendix B - Codes
Python Code File
R Code File
References

Introduction

Background

At Santander, the mission is to help people and businesses prosper. We are always looking for ways to help our customers understand their financial health and identify which products and services might help them achieve their monetary goals. Our data science team is continually challenging our machine learning algorithms, working with the global data science community to make sure we can more accurately identify new ways to solve our most common challenge, binary classification problems such as: is a customer satisfied? Will a customer buy this product? Can a customer pay this loan?

Problem statement

We need to identify which customers will make a specific transaction in the future, irrespective of the amount of money transacted.

2 Data

2.1 Data

We have a train and test Data set.

Peeking inside the train data:

ID_code	target	var_0	var_1	var_2	var_3	var_4	var_5	var_6	var_7	
train_0	0	8.9255	-6.7863	11.9081	5.093	11.4607	-9.2834	5.1187	18.6266	
train_1	0	11.5006	-4.1473	13.8588	5.389	12.3622	7.0433	5.6208	16.5338	
train_2	0	8.6093	-2.7457	12.0805	7.8928	10.5825	-9.0837	6.9427	14.6155	
train_3	0	11.0604	-2.1518	8.9522	7.1957	12.5846	-1.8361	5.8428	14.925	
train_4	0	9.8369	-1.4834	12.8746	6.6375	12.2772	2.4486	5.9405	19.2514	

 var_190	var_191	var_192	var_193	var_194	var_195	var_196	var_197	var_198	var_199
 4.4354	3.9642	3.1364	1.691	18.5227	-2.3978	7.8784	8.5635	12.7803	-1.0914
 7.6421	7.7214	2.5837	10.9516	15.4305	2.0339	8.1267	8.7889	18.356	1.9518
 2.9057	9.7905	1.6704	1.6858	21.6042	3.1417	-6.5213	8.2675	14.7222	0.3965
 4.4666	4.7433	0.7178	1.4214	23.0347	-1.2706	-2.9275	10.2922	17.9697	-8.9996
 -1.4905	9.5214	-0.1508	9.1942	13.2876	-1.5121	3.9267	9.5031	17.9974	-8.8104

Predictor Variable

	va	r_0 var_	1 var_2	var_3	var_4	var_5	var_6	var_
--	----	----------	---------	-------	-------	-------	-------	------

	var_190	var_191	var_192	var_193	var_194	var_195	var_196	var_197	var_198	var_199
--	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------

Shape of Data

The shape of the train data: 200000 x 202 The shape of the test data: 200000 x 201

The details of the data attribute in the dataset are as follow

The data set consists of 200000 observations and 201 variables which are anonymized means which we have no information about the variables and 1 target variable.

Variables and their Data types

Train data:

float64 200 object 1 int64 1

Test data:

float64 200 object 1

2.2 Missing value Analysis

Here we are trying to find any missing values in our data. As we can see there are no Missing values in either train or test.

```
train.isna().sum().sum()
```

a

```
test.isna().sum().sum()
```

0

3 Exploratory Data Analysis

3.1 Univariate Analysis

Distribution of Target variable:

The data is unbalanced with respect with target value.

There are 10.049% target values with 1.

Density plots of features

Let's see the density plot of variables in **train** dataset. We will represent the distribution for values with **target** value **0** and **1** with different colors.

First Hundred Variables

Next Hundred Variables from Train

We can observe that there is a considerable number of features with significant different distribution for the two target values.

For example, var_0, var_1, var_5, var_9, var_13, var_106, var_109, var_139 and many others.

Also some features, like var_2, var_13, var_26, var_55, var_175, var_184, var_196 shows a distribution that resembles a bivariate distribution.

Let's see the density plot of variables in the test dataset.

First Hundred variables

Next Hundred Variables

The train and test seems to be well balanced with respect with distribution of the numeric variables.

Observation in dataset:

We can see that some variables have bumps on both the left and right side. For example in the image below we can see bumps on the right side.

3.2 Descriptive Data Analysis:

Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample and the measures. Together with simple graphics analysis, they form the basis of virtually every quantitative analysis of data.

Summary statistics of Train:

target	var_0	var_1	var_2	var_3	var_4	var_5	var_6	
count	200000	200000	200000	200000	200000	200000	200000	
mean	0.10049	10.679914	-1.627622	10.715192	6.796529	11.078333	-5.065317	
std	0.300653	3.040051	4.050044	2.640894	2.043319	1.62315	7.863267	
min	0	0.4084	-15.0434	2.1171	-0.0402	5.0748	-32.5626	
25%	0	8.45385	-4.740025	8.722475	5.254075	9.883175	-11.20035	
50%	0	10.52475	-1.60805	10.58	6.825	11.10825	-4.83315	
75%	0	12.7582	1.358625	12.5167	8.3241	12.261125	0.9248	

Summary statistics of Test:

target	var_0	var_1	var_2	var_3	var_4	var_5	var_6	
count	20098	20098	20098	20098	20098	20098	20098	
mean	1	11.156418	-1.017613	11.156633	6.864113	11.131337	-4.336522	
std	0	3.270293	4.220638	2.841075	2.070898	1.649266	8.140281	
min	1	0.4528	-14.037	2.9462	0.374	5.8762	-28.2461	
25%	1	8.695875	-4.203475	8.961125	5.3143	9.91125	-10.6158	
50%	1	11.00135	-0.99265	11.0967	6.9002	11.1563	-4.10195	
75%	1	13.3437	2.001375	13.047025	8.384725	12.32845	1.61995	
max	1	19.4583	9.0298	18.2941	12.7069	15.6925	16.4236	

We can make few observations here:

- standard deviation is relatively large for both train and test variable data;
- min, max, mean, sdt values for train and test data looks quite close;
- mean values are distributed over a large range.

The number of values in the train and test set is the same.

Distribution of Mean Across all variables in Train and test:

Following observation is made on the mean graphs:

- Distribution of mean in train data across target 0 and 1
 - The column wise mean distribution is not Gaussian.
 - The majority of columns have the mean value between -10 and 20.
- Distribution of mean in train and test data
 - The distribution of mean looks identical in both train and test.

Distribution of Standard Deviation Across all variables in Train and test:

Distribution of Min values Across all variables in Train and test:

Distribution of Max values Across all variables in Train and test:

3.3 Correlation Analysis

Correlation analysis is used to find linear relationships between variables. Its values lie between -1 to 1 where 0 means no correlation and -1 means high negative linear relationship and 1 means high positive linear relationship.

Most variables that have correlation values are centered around zero as we can see in the distribution of correlation values of all variables below.

Most correlated variables

level_0	level_1	Cor_value
var_1	var_80	0.008855
var_80	var_1	0.008855
var_172	var_81	0.008936
var_81	var_172	0.008936
var_122	var_132	0.008956
var_132	var_122	0.008956
var_80	var_6	0.008958
var_6	var_80	0.008958
var_146	var_169	0.009071
var_169	var_146	0.009071
var_183	var_189	0.009359

var_183	0.009359
var_81	0.00949
var_174	0.00949
var_165	0.009714
var_81	0.009714
var_148	0.009788
var_53	0.009788
var_139	0.009844
var_26	0.009844
	var_81 var_174 var_165 var_81 var_148 var_53 var_139

Least correlated variables

level_0	level_1	Cor_values
var_75	var_191	2.70E-08
var_191	var_75	2.70E-08
var_173	var_6	5.94E-08
var_6	var_173	5.94E-08
var_126	var_109	1.31E-07
var_109	var_126	1.31E-07
var_144	var_27	1.77E-07
var_27	var_144	1.77E-07
var_177	var_100	3.12E-07
var_100	var_177	3.12E-07

3.4 Finding Top Features

Using Random Forest

Exploring these top Features

Most top features have a bump either on the left and right side.

Weight of Evidence (WOE)

The weight of evidence tells the predictive power of an independent variable in relation to the dependent variable. Since it evolved from the credit scoring world, it is generally described as a measure of the separation of good and bad customers. "Bad Customers" refers to the customers who defaulted on a loan. and "Good Customers" refers to the customers who paid a bank loan.

Steps of Calculating WOE For a continuous variable, split data into 10 parts (or lesser depending on the distribution). Calculate the number of events and non-events in each group (bin) Calculate the % of events and % of non-events in each group. Calculate WOE by taking natural log of division of % of non-events and % of events

Information Value (IV)

Information value is one of the most useful techniques to select important variables in a predictive model. It helps to rank variables on the basis of their importance. The IV is calculated using the following formula:

 $IV = \sum$ (% of non-events - % of events) * WOE

Information Value Variable Predictiveness

- Less than 0.02 Not useful for prediction
- 0.02 to 0.1 Weak predictive Power
- 0.1 to 0.3 Medium predictive Power
- 0.3 to 0.5 Strong predictive Power
- 0.5 Suspicious Predictive Power

In next graph we can see the top features:

Top features:

feature_name	iv_value	
0	var_81	0.09358
1	var_139	0.074582
2	var_12	0.062416
3	var_110	0.057046
4	var_6	0.054804
5	var_26	0.053017
6	var_53	0.051905
7	var_146	0.051071
8	var_76	0.046606
9	var_174	0.044973
10	var_22	0.044573
11	var_80	0.043412
12	var_21	0.0431
13	var_166	0.042635
14	var_148	0.042483
15	var_99	0.042041

Combined Top features from both methods:

Dimensionality reduction using PCA?

We won't be using PCA because the correlation between variables is very weak and PCa required some highly correlated variables.

Feature Engineering:

We will be generating new features from Top features.

For generating new features we'll be using.

- Rounding variable values at different positions.
- quantile based binning
- Mean across the rows
- Median across the rows
- Min and max across the row
- Skewness and kurtosis
- Standard deviation

Dealing with class Imbalance:

We also have class imbalance problems in our target variable which can lead to overfitting. So we will be using

Synthetic Minority Oversampling Technique(SMOTE) to deal with this problem.

So we will be using the Downsampling method to deal with class imbalance.

4 Modeling

Standardization

We will be standardising our data before modeling to making mean 0 and sd 1.

4.1 Logistic regression

It measures the relationship between the categorical dependent variable and one or more independent variables by estimating probabilities using a logistic function, which is the cumulative logistic distribution.

Logistic regression on normal data:

	Roc_Auc	F1-Score	Recall	Precision	Accuracy
Train data	0.867581876 4520795	0.419068942 998414	0.297996550 3515988	0.705845380 2639849	0.916973333 3333333
Validation	0.867420307 2849044	0.411112670 1276835	0.291600318 4713376	0.696623870 6609605	0.91606

Logistic Regression on Downsampled Data

	Roc_Auc	F1-Score	Recall	Precision	Accuracy
Train data	0.866725556 6646745	0.425086231 67576887	0.784861350 6700278	0.291475732 9391476	0.786653333 3333333
Validation	0.865778339 9200027	0.420685959 27116825	0.78125	0.287841009 09357585	0.7838

4.2 Decision tree

	Roc_Auc	F1-Score	Recall	Precision	Accuracy
Train data	0.702283429 5553622	0.259684684 68468464	0.152978638 71566936	0.858525688 7565152	0.912346666 6666666
Validation	0.648055482 2975649	0.098249192 58881523	0.057523885 35031847	0.336437718 27706637	0.8939

On downsampled data

	Roc_Auc	F1-Score	Recall	Precision	Accuracy
Train data	0.752163727 3824272	0.342585699 5994186	0.641103887 4883906	0.233746130 03095976	0.752733333 3333334
Validation	0.620130665 5835694	0.251347637 67043655	0.473328025 477707	0.171103755 9361059	0.71668

4.3 Random Forest

	Roc_Auc	F1-Score	Recall	Precision	Accuracy
Train data	0.859806413 01351	0.145651371 6324271	0.078545840 52010083	1.0	0.9074
Validation	0.752400692 0817783	0.011457921 770051362	0.005772292 993630573	0.763157894 7368421	0.89992

On Downsampled data

	Roc_Auc	F1-Score	Recall	Precision	Accuracy
Train data	0.856198757 5689796	0.389428918 59052253	0.641103887 4883906	0.256540422 1257952	0.7454
Validation	0.731168749 5716045	0.296278916 9912252	0.473328025 477707	0.193835574 38447843	0.70006

4.4 XG Boost

	Roc_Auc	F1-Score	Recall	Precision	Accuracy
Train data	0.957751486 6398906	0.628220531 3042317	0.468289770 4657025	0.954047844 3032843	0.944
Validation	0.863621802 2931409	0.357568533 9690107	0.238853503 18471338	0.710900473 9336493	0.91376

On downsampled data

	Roc_Auc	F1-Score	Recall	Precision	Accuracy
Train data	0.942208438 5673736	0.508415236 7754052	0.924837468 4887887	0.350567053 08421554	0.820273333 3333333
Validation	0.860435812 1394398	0.418316965 9812273	0.767316878 9808917	0.287536361 6021481	0.78558

5 Conclusion

5.1 Model Evaluation

Error matrix

Error Metrics → Model ↓	Roc_auc	F1	Recall	Precision	Accuracy
Logistic Regression	0.8674203 072849044	0.411112670 1276835	0.291600318 4713376	0.696623870 6609605	0.91606
Decision tree	0.6480554 822975649	0.098249192 58881523	0.057523885 35031847	0.336437718 27706637	0.8939
Random Forest	0.7524006 920817783	0.011457921 770051362	0.005772292 993630573	0.763157894 7368421	0.89992
XG Boost	0.8636218 022931409	0.357568533 9690107	0.238853503 18471338	0.710900473 9336493	0.91376

5.2 Model Selection

On basis of Roc, precision and Accuracy we will be choosing XG Boost

Error Metrics → Model ↓	Roc_auc	F1	Recall	Precision	Accuracy
XG Boost	0.8636218 022931409	0.357568533 9690107	0.238853503 18471338	0.710900473 9336493	0.91376

APPENDIX A EXTRA FIGURES

Histogram of train\$target

APPENDIX - CODE

Python

```
1. #!/usr/bin/env python
2. # coding: utf-8
3. # # Santander Customer Transaction Prediction
4. import numpy as np # linear algebra
5. import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
6. import matplotlib.pyplot as plt
7. import seaborn as sns
8. # sklearn models & tools
9. from sklearn.ensemble import RandomForestClassifier
10. from sklearn.model selection import GridSearchCV
11. from sklearn.model selection import StratifiedKFold
12. from sklearn.preprocessing import LabelEncoder, OneHotEncoder
13. from sklearn.metrics import roc auc score
14. from sklearn.metrics import make scorer
15. from sklearn.mixture import GaussianMixture
16. from sklearn.preprocessing import RobustScaler
17. from sklearn.decomposition import PCA
18. train = pd.read csv("/kaggle/input/customer-transaction-prediction/train.csv")
19. test = pd.read csv("/kaggle/input/customer-transaction-prediction/test.csv")
21. train.head()
22. train.info()
23. test.info()
24. train.dtypes.value counts()
25.test.dtypes.value counts()
26. train.select dtypes(include=['object'])
27. train.nunique(axis=0).sort values()
28. test.nunique(axis=0).sort values()
29. train.isna().sum().sum()
30. test.isna().sum().sum()#
31. # # EDA
32. # ## Descriptive analysis
33. train summary = train.describe()
34. train summary
```

```
35. train summary 1 = train[train['target'] == 1].describe()
36. Train summary 1
37. train summary 0 = train[train['target'] == 0].describe()
38. Train summary 0
39.test summary = test.describe()
40.test summary
41. fig = plt.figure(figsize=(25,5))
42. fig.subplots adjust(hspace=0.3, wspace=0.3,)
43.ax = fig.add subplot(1, 2, 1)
44. sns.distplot(train summary 1.iloc[1], label="train 1")
45. sns.distplot(train summary 0.iloc[1], label="train 0")
46. plt.title("Distribution of mean across train")
47.plt.legend()
48.ax = fig.add subplot(1, 2, 2)
49. sns.distplot(train summary.iloc[1], label="train")
50. sns.distplot(test summary.iloc[1], label="test" )
51. plt.title("Distribution of mean train vs test")
52.plt.legend();
54. fig = plt.figure(figsize=(25,5))
55. fig.subplots adjust(hspace=0.3, wspace=0.3,)
56.ax = fig.add subplot(1, 2, 1)
57. sns.distplot(train summary 1.iloc[2], label="train 1")
58. sns.distplot(train summary 0.iloc[2], label="train 0")
59.plt.title("Distribution of Standard deviation across train")
60.plt.legend()
61.ax = fig.add subplot(1, 2, 2)
62. sns.distplot(train summary.iloc[2], label="train")
63. sns.distplot(test summary.iloc[2], label="test")
64.plt.title("Distribution of Standard deviation train vs test")
65.plt.legend();
68. fig = plt.figure(figsize=(25,5))
69. fig.subplots adjust(hspace=0.3, wspace=0.3,)
70. ax = fig.add subplot(1, 2, 1)
71. sns.distplot(train summary 1.iloc[3], label="train 1")
72. sns.distplot(train summary 0.iloc[3], label="train 0")
73. plt.title("Distribution of Min values across train")
```

```
74.plt.legend()
75. ax = fig.add subplot(1, 2, 2)
76. sns.distplot(train summary.iloc[3], label="train")
77. sns.distplot(test summary.iloc[3], label="test" )
78.plt.title("Distribution of Min values train vs test")
79.plt.legend();
80. fig = plt.figure(figsize=(25,5))
81. fig.subplots adjust(hspace=0.3, wspace=0.3,)
82. ax = fig.add subplot(1, 2, 1)
83.sns.distplot(train summary 1.iloc[7], label="train_1")
84. sns.distplot(train summary 0.iloc[7], label="train 0")
85.plt.title("Distribution of Max values across train")
86.plt.legend()
87.ax = fig.add subplot(1, 2, 2)
88. sns.distplot(train summary.iloc[7], label="train")
89. sns.distplot(test summary.iloc[7], label="test")
90.plt.title("Distribution of Max values in train vs test")
91.plt.legend();
93. features = train.columns.values[2:202]
94. # # Univariate analysis
95. # ### Target class
96. sns.countplot(train.target)
97. def density plot(df1, df2, feat):
      plt.figure()
       fig, ax=plt.subplots (10, 10, figsize=(20, 20))
          for i,f in enumerate(feat):
               plt.subplot(10,10,i+1)
               sns.set style('whitegrid')
              sns.kdeplot(df1[f])
104.
              sns.kdeplot(df2[f])
              plt.legend(["class 0","class 1"])
               plt.xlabel(f,fontsize=9)
          plt.show()
      train.columns
      density plot(train.loc[train.target==0], train.loc[train.target==1], train.colu
   mns[2:102])
```

```
density plot(train.loc[train.target==0],train.loc[train.target==1],train.colu
   mns[102:])
114.
      def density plt(df,feat):
          plt.figure()
           fig, ax=plt.subplots(10, 10, figsize=(25, 25))
          for i,f in enumerate(feat):
               plt.subplot(10,10,i+1)
               sns.kdeplot(df[f])
               plt.xlabel(f,fontsize=9)
          plt.show()
      density plt(test, test.columns[1:101])
      density plt(test, test.columns[101:])
124.
      fig = plt.figure(figsize=(25,10))
      fig.subplots adjust(hspace=0.3, wspace=0.3, )
      ax = fig.add subplot(2,3,1)
      sns.kdeplot(train.loc[train.target==0]['var 0'])
      sns.kdeplot(train.loc[train.target==1]['var 0'])
      plt.legend(["class 0", "class 1"])
      ax = fig.add subplot(2,3,2)
      sns.kdeplot(train.loc[train.target==0]['var 2'])
      sns.kdeplot(train.loc[train.target==1]['var 2'])
134.
      plt.legend(["class 0","class 1"])
      ax = fig.add subplot(2,3,3)
      sns.kdeplot(train.loc[train.target==0]['var 6'])
      sns.kdeplot(train.loc[train.target==1]['var 6'])
      plt.legend(["class 0", "class 1"])
140.
      ax = fig.add subplot(2,3,4)
      sns.kdeplot(train.loc[train.target==0]['var 9'])
143.
      sns.kdeplot(train.loc[train.target==1]['var 9'])
      plt.legend(["class 0", "class 1"])
144.
      ax = fig.add subplot(2,3,5)
147.
      sns.kdeplot(train.loc[train.target==0]['var 53'])
      sns.kdeplot(train.loc[train.target==1]['var 53'])
149.
      plt.legend(["class 0", "class 1"])
```

```
ax = fig.add subplot(2,3,6)
     sns.kdeplot(train.loc[train.target==0]['var 99'])
     sns.kdeplot(train.loc[train.target==1]['var 99'])
154. plt.legend(["class 0", "class 1"])
155. # ## Finding Important Features
156. # ### Correlation analysis
157. correlations =
   train[features].corr().abs().unstack().sort values(kind="quicksort").reset index
     correlations = correlations[correlations['level 0'] !=
   correlations['level 1']]
159. # #### Most correlated features
160. correlations.tail(20)
161. # #### least correlated
162. correlations.head(10)
163. train correlations = train.drop(["target"], axis=1).corr()
164. train correlations = train correlations.values.flatten()
      train correlations = train correlations[train correlations != 1]
     test correlations = test.corr()
     test correlations = test correlations.values.flatten()
      test correlations = test correlations[test correlations != 1]
170.
      plt.figure(figsize=(20,5))
      sns.distplot(train correlations, label="train")
171.
      sns.distplot(test correlations, label="test")
172.
      plt.xlabel("Correlation values found in train (except 1)")
174.
      plt.ylabel("Density")
175.
     plt.title("Is there correlation between features?");
176. plt.legend();
     train["Id"] = train.index.values
178.
     original trainid = train.ID code.values
179.
180. train.drop("ID code", axis=1, inplace=True)
181. train.head()
182. # ### Top features through random Forest
183. parameters = {'min samples leaf': [20, 25]}
     forest = RandomForestClassifier(max depth=15, n estimators=15)
```

```
grid = GridSearchCV(forest, parameters, cv=3, n jobs=-1, verbose=2,
   scoring=make scorer(roc auc score))
      grid.fit(train.drop(["target",], axis=1).values, train.target.values)
      grid.best score
      grid.best params
      n top = 20
      importances = grid.best estimator .feature importances
      idx = np.argsort(importances)[::-1][0:n top]
      feature names = train.drop("target", axis=1).columns.values
194.
      plt.figure(figsize=(20,5))
      sns.barplot(x=feature names[idx], y=importances[idx]);
      plt.title("What are the top important features to start with?");
      fig, ax = plt.subplots(n top, 2, figsize=(20, 5*n top))
199. for n in range(n top):
          sns.distplot(train.loc[train.target==0, feature names[idx][n]],
   ax=ax[n,0], norm hist=True)
          sns.distplot(train.loc[train.target==1, feature names[idx][n]],
   ax=ax[n,0], norm hist=True)
          sns.distplot(test.loc[:, feature names[idx][n]], ax=ax[n,1],
   norm hist=True)
          ax[n,0].set title("Train {}".format(feature names[idx][n]))
204.
          ax[n,1].set title("Test {}".format(feature names[idx][n]))
          ax[n,0].set xlabel("")
          ax[n,1].set xlabel("")
      top = train.loc[:, feature names[idx]]
      top.describe()
      top = top.join(train.target)
      sns.pairplot(top, hue="target")
      def woe(X, y):
          tmp = pd.DataFrame()
          tmp["variable"] = X
214.
          tmp["target"] = y
          var counts = tmp.groupby("variable")["target"].count()
          var events = tmp.groupby("variable")["target"].sum()
          var nonevents = var counts - var events
          tmp["var counts"] = tmp.variable.map(var counts).astype("float64")
          tmp["var events"] = tmp.variable.map(var events).astype("float64")
```

```
tmp["var nonevents"] = tmp.variable.map(var nonevents).astype("float64")
          events = sum(tmp["target"] == 1)
          nonevents = sum(tmp["target"] == 0)
          tmp["woe"] =
   np.log(((tmp["var_nonevents"])/nonevents)/((tmp["var_events"])/events))
          tmp["woe"] = tmp["woe"].replace(np.inf, 0).replace(-np.inf, 0)
          tmp["iv"] = (tmp["var nonevents"]/nonevents - tmp["var events"]/events) *
   tmp["woe"]
          iv = tmp.groupby("variable")["iv"].last().sum()
          return tmp["woe"], tmp["iv"], iv
      iv values = []
      feats = ["var {}".format(i) for i in range(200)]
     y = train["target"]
      for f in feats:
          X = pd.qcut(train[f], 10, duplicates='drop')
          _{-}, _{-}, iv = woe(X, y)
          iv values.append(iv)
234.
      iv inds = np.argsort(iv values)[::-1][:50]
      iv values = np.array(iv values)[iv inds]
      feats = np.array(feats)[iv inds]
      plt.figure(figsize=(10, 20))
      sns.barplot(y=feats, x=iv values, orient='h')
      plt.show()
243. imp = {}
244.
      imp["feature name"] = feats
      imp["iv_value"] = iv_values
      imp features = pd.DataFrame(data=imp)
247.
      imp features.sort values(by = ["iv value"], ascending=False)
      # # Feature Engineering
      top features = imp features["feature name"].iloc[0:20].values
      top features = top features.tolist()
      top features
      # adding feature from top to top features
      for i in top.columns:
254.
          top features.append(i)
256. #removing duplicates
```

```
top features = list(set(top features))
      top features
      new top = train[top features]
      new top.head()
      new top.shape
      encoder = LabelEncoder()
      for your feature in top features:
          if(your feature == "target"):
264.
               pass
          elif(your feature == "ID"):
              pass
          else:
               train[your feature + " qbinned"] = pd.qcut(
270.
                   train.loc[:, your feature].values,
271.
                   q=10,
                   duplicates='drop',
273.
                   labels=False
274.
275.
               train[your_feature + "_qbinned"] = encoder.fit_transform(
                   train[your_feature + "_qbinned"].values.reshape(-1, 1)
276.
277.
               )
278.
279.
               train[your feature + " rounded"] = np.round(train.loc[:,
   your feature].values)
               train[your feature + "_rounded_10"] = np.round(10*train.loc[:,
   your feature].values)
               train[your feature + " rounded 100"] = np.round(100*train.loc[:,
   your feature].values)
283. encoder = LabelEncoder()
      for your feature in top features:
          if(your feature == "target"):
              pass
          else:
               test[your_feature + "_qbinned"] = pd.qcut(
                   test.loc[:, your feature].values,
                   q=10,
                   duplicates='drop',
                  labels=False
```

```
)
294.
              test[your feature + " qbinned"] = encoder.fit transform(
                   test[your feature + " qbinned"].values.reshape(-1, 1)
              )
              test[your feature + " rounded"] = np.round(test.loc[:,
   your feature].values)
              test[your feature + " rounded 10"] = np.round(10*test.loc[:,
   your feature].values)
              test[your feature + " rounded 100"] = np.round(100*test.loc[:,
   your feature].values)
      train.head()
      # Deriving the New Features for the training dataset
304.
      mean r=train.iloc[:,2:].mean(axis=1).values
      min r=train.iloc[:,2:].min(axis=1).values
      max r=train.iloc[:,2:].max(axis=1).values
      std r=train.iloc[:,2:].std(axis=1).values
      skew r=train.iloc[:,2:].skew(axis=1).values
      kurto r=train.iloc[:,2:].kurtosis(axis=1).values
      median r=train.iloc[:,2:].median(axis=1).values
      ## Adding the new features to the training dataset
      train["mean r"]=mean r
      train["min r"]=min r
314. train["max r"]=max r
      train["std r"]=std r
      train["skew r"]=skew r
      train["kurto r"]=kurto r
      train["median r"]=median r
      # Deriving the New Features for the testing dataset
      mean r=test.iloc[:,2:].mean(axis=1).values
      min r = test.iloc[:, 2:].min(axis=1).values
      \max r = test.iloc[:, 2:].max(axis=1).values
      std r=test.iloc[:,2:].std(axis=1).values
324.
      skew r=test.iloc[:,2:].skew(axis=1).values
      kurto r=test.iloc[:,2:].kurtosis(axis=1).values
      median r=test.iloc[:,2:].median(axis=1).values
      ## Adding the new features to the testing dataset
```

```
test["mean r"]=mean r
      test["min r"]=min r
      test["max r"]=max r
      test["std r"]=std r
      test["skew r"]=skew r
334.
      test["kurto r"]=kurto r
      test["median r"]=median r
      for i in train.columns.values:
          if i not in test.columns.values:
              print( i)
      # # New feature importances
      iv values = []
      feats = train.columns.values
344. y = train["target"]
345. for f in feats:
          X = pd.qcut(train[f], 10, duplicates='drop')
347.
          _{-}, _{-}, _{-} iv = woe(X, y)
          iv values.append(iv)
      iv inds = np.argsort(iv values)[::-1][:50]
      iv_values = np.array(iv_values)[iv_inds]
      feats = np.array(feats)[iv inds]
      plt.figure(figsize=(10, 20))
354.
      sns.barplot(y=feats, x=iv values, orient='h')
      plt.show()
```

CODE-R

#Loading the library library(DMwR) library(rpart) library(ggplot2) library(corrgram) library(C50) library(MASS) library(dplyr) library(Metrics) library(ggthemes)

```
library(glmnet)
#loading the train and test data
train = read.csv("../input/customer-transaction-prediction/train.csv", header = T,
stringsAsFactors = F)
test = read.csv("../input/customer-transaction-prediction/test.csv", header = T,
stringsAsFactors = F)
#let's look at names of the 2 datasets
names(train)
names(test)
str(train)
str(test)
summary(train)
summary(test)
train$target= as.factor(train$target)
str(train)
#lets check the count of target classes
require(gridExtra)
table(train$target)
#percentage count of target classes
table(train$target)/length(train$target)*100
#histogram of train data
train$target= as.numeric(train$target)
hist(train$target, col = "blue")
#distribution of mean values per row and column in train and test dataset
#Applying the function to find mean values per row in train and test data.
train mean = apply(train[,-c(1,2)],MARGIN=1,FUN=mean)
test_mean = apply(test[,-c(1)],MARGIN=1,FUN=mean)
ggplot()+
 #Distribution of mean values per row in train data
geom_density(data=train[,-c(1,2)],aes(x=train_mean),kernel='gaussian',show.legend=TRUE,c
olor='blue')+theme classic()+
 #Distribution of mean values per row in test data
```

```
geom_density(data=test[,-c(1)],aes(x=test_mean),kernel='gaussian',show.legend=TRUE,color
='green')+
labs(x='mean values per row',title="Distribution of mean values per row in train and test
dataset")
train_mean = apply(train[,-c(1,2)],MARGIN=2,FUN=mean)
test mean = apply(test[,-c(1)],MARGIN=2,FUN=mean)
ggplot()+
 #Distribution of mean values per column in train data
geom_density(aes(x=train_mean),kernel='gaussian',show.legend=TRUE,color='blue')+theme
classic()+
 #Distribution of mean values per column in test data
 geom_density(aes(x=test_mean),kernel='gaussian',show.legend=TRUE,color='green')+
 labs(x='mean values per column',title="Distribution of mean values per row in train and
test dataset")
train_sd = apply(train[,-c(1,2)],MARGIN=2,FUN=sd)
test_sd = apply(test[,-c(1)],MARGIN=2,FUN=sd)
ggplot()+
 #Distribution of sd values per column in train data
geom density(aes(x=train sd),kernel='gaussian',show.legend=TRUE,color='red')+theme clas
sic()+
 #Distribution of sd values per column in test data
 geom density(aes(x=test sd),kernel='gaussian',show.legend=TRUE,color='blue')+
 labs(x='sd values per column',title="Distribution of std values per column in train and test
dataset")
sum(is.na(train))
sum(is.na(test))
#removing variable "ID Code" from train and test dataset
train = train[, -1, drop = FALSE]
test = test[, -1, drop = FALSE]
train[] = lapply(train[], as.numeric)
#Correlation in train data
#convert factor to int
train$target = as.numeric(train$target)
train correlations = cor(train[,c(1:201)])
train correlations
#Correlation in test data
test correlations = cor(test[,c(1:200)])
test correlations
```

```
########wariable imortance############
#variable importance is used to see top features in the dataset
#lets build a simple model to find important features
#Split the training data using simple random sampling
df_index = sample(1:nrow(train),0.75*nrow(train))
#train data
train_data = train[df_index,]
#validation data
valid data = train[-df_index,]
#dimension of train and validation data
dim(train data)
dim(valid_data)
#Training the Random forest classifier
set.seed(2732)
#convert to int to factor
# train_data$target = as.factor(train_data$target)
#setting the mtry
mtry<-floor(sqrt(200))
#setting the tunegrid
tuneGrid<-expand.grid(.mtry=mtry)
#fitting the random forest
rf = randomForest(target~.,train_data,mtry=mtry,ntree=10,importance=TRUE)
#Variable importance
Imp_feats = importance(rf,type=2)
Imp_feats
set.seed(689)
train.index = sample(1:nrow(train), 0.8*nrow(train))
#train data
train.data = train[train.index,]
#validation data
valid.data = train[-train.index,]
#dimension of train data
dim(train.data)
#dimension of validation data
dim(valid.data)
table(train.data$target)
table(valid.data$target)
#Training dataset
```

```
X t = as.matrix(train.data[,-c(1,2)])
y_t = as.matrix(train.data$target)
#validation dataset
X_v = as.matrix(valid.data[,-c(1,2)])
y_v = as.matrix(valid.data$target)
#test dataset
test = as.matrix(test[,-c(1)])
install.packages("glmnet", dependencies=TRUE)
set.seed(667) # to reproduce results
lr_model = glmnet(X_t,y_t, family = "binomial")
summary(lr_model)
#Cross validation prediction
set.seed(8909)
cv_lr = cv.glmnet(X_t,y_t,family = "binomial", type.measure = "class")
cv Ir
#Minimum lambda
cv lr$lambda.min
#plot the auc score vs log(lambda)
plot(cv_lr)
#Model performance on validation dataset
set.seed(5363)
cv predict.lr = predict(cv lr,X v,s = "lambda.min", type = "class")
cv_predict.lr
#Confusion matrix
set.seed(689)
#actual target variable
target = valid.data$target
#convert to factor
target = as.factor(target)
#predicted target variable
#convert to factor
cv predict.lr = as.factor(cv predict.lr)
confusionMatrix(data=cv_predict.lr,reference=target)
#ROC_AUC score and curve
set.seed(892)
cv_predict.lr = as.numeric(cv_predict.lr)
roc(data=valid.data[,-c(1,2)],response=target,predictor=cv_predict.lr,auc=TRUE,plot=TRUE)
```

Reference

Stackoverflow.com

Edwisor.com

https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html