Exercices de Révisions (chapitres 1 à 5)

Espaces vectoriels

1. Notons E l'espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} . On considère les ensembles de fonctions F_i définis ci-dessous. Déterminer pour chaque i si F_i est un espace vectoriel ou pas (pour montrer que F_i est un espace vectoriel, il suffit de vérifier que c'est un sous-espace vectoriel de E).

```
a) F_1 = \mathbb{R}[x] (l'ensemble des fonctions polynômes)
```

- b) $F_2 = \{ P \in \mathbb{R}[x] ; P \text{ est unitaire } \}$
- c) $F_3 = \{ P \in \mathbb{R}[x] ; \deg(P) \le 3 \}$
- d) $F_4 = \{ P \in \mathbb{R}[x] ; \deg(P) = 4 \}$
- e) $F_5 = \{ P \in \mathbb{R}[x] ; P(0) = 0 \}$
- f) $F_6 = \{ f \in E ; f(0) = 0 \}$
- g) $F_7 = \{ P \in \mathbb{R}[x] ; P(0) = 1 \}$
- h) $F_8 = \{ P \in \mathbb{R}[x] ; P(1) = 0 \}$
- i) $F_9 = \{ f \in E ; f \text{ est continue } \}$
- j) $F_{10} = \{ f \in E ; f \text{ est croissante } \}$
- k) $F_{11} = \{ f \in E ; f \text{ est monotone } \}$
- 1) $F_{12} = \{ f \in E : \text{ pour tout } x \in \mathbb{R}, \ f(x + 2\pi) = f(x) \}$
- m) $F_{13} = \{ f \in E : \text{ pour tout } x \in \mathbb{R}, \ \alpha f''(x) + \beta f'(x) + \gamma f(x) = 0 \}.$

2. Soit E un espace vectoriel sur \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Soit F et G deux sous-espaces vectoriels de E. Les ensembles suivants sont-ils des sous-espaces vectoriels de E?

- a) Le complémentaire de F dans E, noté \overline{F}
- b) La réunion $\overline{F} \cup \{0\}$
- c) L'intersection $F \cap G$;
- d) La réunion $F \cup G$
- e) La somme $F + G = \{z \in E : \text{il existe } x \in F \text{ et } y \in G \text{ tels que } z = x + y\}.$

 $\boxed{3.}$ On se place dans l'espace vectoriel \mathbb{R}^2 .

On définit les vecteurs $e_1 = (1,0), e_2 = (0,1), v_1 = (1,1), v_2 = (2,2)$ et $v_3 = (1,2)$.

- a) Les familles suivantes sont-elles libres? sont-elles génératrices?
- $(e_1, e_2), (v_1, v_2), (e_1, v_1), (v_3), (v_1, v_2, v_3), (e_2, v_1, v_3), (e_1, v_1, v_3).$
- b) Donner une condition nécessaire portant sur le nombre de vecteurs pour qu'une famille de vecteurs de \mathbb{R}^2 soit libre.
- c) Donner une condition nécessaire portant sur le nombre de vecteurs pour qu'une famille de vecteurs de \mathbb{R}^2 soit génératrice.
- d) Donner une condition suffisante portant sur le nombre de vecteurs pour qu'une famille de vecteurs de \mathbb{R}^2 soit liée.
- $\boxed{\textbf{4.}}$ On se place dans l'espace vectoriel ${\rm I\!R}^3.$ Les deux familles ci-dessous sont-elles libres ou liées ?

$$\mathcal{F}_1 = ((1, 2, -1), (3, 1, 2), (7, 4, 3))$$
 $\mathcal{F}_2 = ((2, 2, -1), (0, 1, 3), (0, 0, 7))$

 $\boxed{\bf 5.}$ Dans le \mathbbm{R} -espace vectoriel \mathbbm{R}^4 , on considère les sous-ensembles :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \; ; \; x + 3y + 3z + 3t = 0\} \qquad G = \{(x, y, z, t) \in \mathbb{R}^4 \; ; \; x - y + z - t = 0\}$$

- a) Démontrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^4 et trouver une base et la dimension de F et de G.
 - b) Trouver une base et la dimension de $F \cap G$.
 - c) Montrer que $\mathbb{R}^4 = F + G$.
 - d) Déterminer deux supplémentaires de G puis un supplémentaire de $F\cap G$.

6. Soit $V = (v_1, v_2, v_3)$ une famille libre d'un espace vectoriel E. Posons $x = \alpha v_1 + \beta v_2 + \gamma v_3$ et $W = (v_1 + x, v_2 + x, v_3 + x)$.

Démontrer que W est libre si et seulement si $\alpha + \beta + \gamma \neq -1$.

7. On considère l'espace vectoriel \mathbb{R}^3 muni de la base canonique (e_1, e_2, e_3) .

Soit $F = \{\alpha e_1 + \beta e_2 + \gamma e_3 ; \alpha = \beta\}$ et $G = \{\alpha e_1 + \beta e_2 + \gamma e_3 ; \alpha + \beta = 0\}$.

- a) Démontrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 et donner une base de F et de G.
 - b) Trouver deux supplémentaires de F dans \mathbb{R}^3 .
 - c) Donner une base de $H = F \cap G$.
 - d) Trouver des sous-espaces vectoriels de L, M et N tels que :
 - i) $H \oplus L = F$
- ii) $H \oplus M = G$
- iii) $H \oplus N = \mathbb{R}^3$.
- 8. On se place dans le IR-espace vectoriel de \mathbb{R}^{2n} où n est un entier naturel non nul. On considère les deux sous-ensembles définis ci-dessous :

$$E = \{(x_1, \dots, x_n, x_{n+1}, \dots, x_{2n}) \mid x_i = 0 \text{ pour tout } i \le n\}$$

$$F = \{(x_1, \dots, x_n, x_{n+1}, \dots, x_{2n}) \mid x_i = x_{n+i} \text{ pour tout } i \le n\}$$

- a) Démontrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^{2n} .
- b) Démontrer que $\mathbb{R}^{2n} = E \oplus F$.
- 9. Soit $E = C^2([0,1], \mathbb{R})$, $E_1 = \{y \in E/y'' + xy = 0\}$, $E_2 = \{y \in E/y'' xy = 0\}$ et $E_3 = \{y \in E/y \text{ est polynomiale}\}$. Montrer que E_1 , E_2 et E_3 sont en somme directe.
- 10. Soit $E = \mathbb{K}_3[X]$, $E_1 = \{P \in E/P(0) = P(1) = P(2) = 0\}$, $E_2 = \{P \in E/P(1) = P(2) = P(3) = 0\}$ et $E_3 = \{P \in E/P(X) = P(-X)\}$. Montrer que les E_i sont des sous-espaces vectoriels de E et que $E = E_1 \oplus E_2 \oplus E_3$.
 - **11.** On se place dans $\mathbb{R}_3[X]$, l'espace vectoriel des polyômes de degré inférieur ou égal à 3. Soit $U = \{P \in \mathbb{R}_3[X] ; P(0) = 0\}$.
 - a) Démontrer que U est un sous-espace vectoriel de $\mathbb{R}_3[X]$.
 - b) Déterminer un supplémentaire de U.
 - **12.** On considère le \mathbb{C} -espace vectoriel \mathbb{C}^4 .
- Soit $F = \{(a, 2a + b, -b, -a) \in \mathbb{C}^4 : a, b \in \mathbb{C}\} \text{ et } G = \{(a, 3a = b, -b, -2a + b) \in \mathbb{C}^4 : a, b \in \mathbb{C}\}.$
- a) Montrer que F est G sont des sous-espaces vectoriels de \mathbb{C}^4 en mettant en évidence pour chacun d'eux une base.

- b) Montrer que $\mathbb{C}^4 = F \oplus G$.
- **13.** Soit $E = \{(x, y, z) \in \mathbb{R}^3 ; x + y + 2z = 0\}$ et $F = \{(a, -a, 3a) ; a \in \mathbb{R}\}$
- a) Montrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^3 dont on déterminera la dimension
 - b) Montrer que $\mathbb{R}^3 = E \oplus F$.
 - $\boxed{\mathbf{14.}}$ Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par :

$$u_1 = (1, 4, -1, 0)$$
 $u_2 = (6, 10, 1, 0)$ $u_3 = (2, 2, 1, 1)$ $u_4 = (1, 0, 1, -4)$

Trouver une base de F, puis un supplémentaire de F dans \mathbb{R}^4 .

Applications linéaires

- 15. Les applications suivantes sont-elles linéaires?
- a) $f: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (x + y, 8y)$
- b) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x + y, xy)$
- c) $f: \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto (2x + 1, y + z, x)$
- d) $f: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (2x + y, -z)$
- a) $f: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto \sin(x)$
- a) $f : \mathbb{R} \to \mathbb{R}, x \mapsto xe^x$.
- **16.** Soit l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (x + y + z, 2y + z, x y)$. Calculer $\operatorname{im}(f)$ et $\ker(f)$.
 - **17.** Soit $f : \mathbb{R}[X] \to \mathbb{R}$, $P \mapsto P(1)$.

Montrer que f est linéaire et déterminer son noyau et son image.

- **18.** Soit E l'espace vectoriel de l'ensemble des fonctions de classe \mathcal{C}^{∞} sur \mathbb{R} et $\varphi: E \to E$ définie par $\varphi(f) = f' + f$.
 - a) Montrer que φ est linéaire et calculer son noyau.
 - b) φ est-elle injective?
- **19.** Soit E un espace vectoriel de dimension $n \ge 1$. Soit $u, v \in \mathcal{L}(E)$ avec $u \circ v = v \circ u$ ainsi que $E = \ker u \oplus \operatorname{im} u = \ker v \oplus \operatorname{im} v$. Montrer que $E = \ker(u \circ v) \oplus \operatorname{im}(u \circ v)$.
 - **20.** Soit E un espace vectoriel, et $u \in \mathcal{L}(E)$. Montrer que :
 - a) E = Imu + ker u si et seulement si $\text{Im}u = \text{Im}u^2$.
 - b) $\ker u \cap \operatorname{Im} u = \{0\}$ si et seulement si $\ker u = \ker u^2$.

Que conclut-on si E est de dimension finie ?

- **21.** Soit E un espace vectoriel de dimension $n \ge 1$ et soient $u, v \in \mathcal{L}(E)$ vérifiant $E = \operatorname{im} u + \operatorname{im} v = \ker u + \ker v$. Montrer l'équivalence entre :
 - a) Les deux sommes sont directes

- b) $E = \operatorname{im}(u + v)$ et $\operatorname{rg}(u + v) = \operatorname{rg}u + \operatorname{rg}v = n$.
- **22.** Soit E un espace vectoriel de dimension $n \ge 1$ et soient $u, v \in \mathcal{L}(E)$ vérifiant $\operatorname{rg} u = \operatorname{rg} v = 1$. Montrer l'équivalence entre :
 - a) $\operatorname{rg}(u+v) \leq 1$.
- b) im $u = \operatorname{im} v$ ou $\ker u = \ker v$ [on pourra montrer, et utiliser, que, si $u \in \mathcal{L}(E)$ est de rang 1, il existe un vecteur non nul e et une forme linéaire $\lambda \in E^*$ avec $u = \lambda e$].
- **23.** Soit E un espace vectoriel de dimension finie, et $u \in \mathcal{L}(E)$. Montrer l'équivalence entre :
 - a) $u^2 = 0$.
 - b) Il existe un projecteur p de E tel que pu = u et up = 0.
 - c) Il existe un projecteur p de E tel que pu up = u.
- **24.** Soit $p \in \mathcal{L}(E)$. Montrer que p est un projecteur de E si, et seulement si, $p^2 = p^3$ et $E = \ker p \oplus \operatorname{im} p$.

Matrices

25. La transposée d'une matrice A s'obtient en échangeant les lignes et colonnes, on la note ${}^{t}A$. Autrement dit, si $A = (a_{ij})$, alors ${}^{t}A = (a'_{ij})$ avec $a'_{ij} = a_{ji}$.

Soit $A = \begin{pmatrix} 7 & 2 & 3 \\ 2 & 0 & 1 \end{pmatrix}$. Écrire la transposée de A. Calculer A^tA , puis tAA .

26. Soit A et B dans $\mathcal{M}_n(\mathbb{K})$. Résoudre, dans $\mathcal{M}_n(\mathbb{K})$, $M = (\operatorname{tr} M)A + B$.

[27.] Soit
$$A = \begin{pmatrix} 3 & 1 & 5 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- a) Écrire A sous la forme $\alpha I_3 + J$.
- b) Calculer $(\alpha I_3)^{100}$, calculer J^3 puis J^n pour $n \geq 3$.
- c) Calculer A^{100} .
- **28.** On se place dans $E = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n.

Soit $S = \{A \in E ; {}^tA = A\}$ l'ensemble des matrices symétriques

Soit $A = \{A \in E ; {}^tA = -A\}$ l'ensemble des matrices antisymétriques.

- a) Donner, pour n=3 des exemples de matrices symétriques et des exemples de matrices antisymétriques.
 - b) Démontrer que S et A sont des sous-espaces vectoriels de E.
 - c) Vérifier que pour toute matrice $A \in E$, $A + {}^{t}A$ est symétrique et $A {}^{t}A$ est antisymétrique.
 - d) Démontrer que $E = \mathcal{S} \oplus \mathcal{A}$.
 - **29.** Dans \mathbb{R}^3 , notons $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique.

Soit $\mathcal{B}' = (e'_1, e'_2, e'_3) = ((1, 1, 0), (1, 1, 1), (0, 3, 1))$ une famille de \mathbb{R}^3 .

- a) Montrer que \mathcal{B}' est une base de \mathbb{R}^3 .
- b) Écrire la matrice de passage de \mathcal{B} à \mathcal{B}' .

- c) Déterminer la matrice de passage de \mathcal{B}' à \mathcal{B} .
- d) Quelles sont les coordonnées d'un triplet (x, y, z) dans la nouvelle base \mathcal{B}' ?
- **30.** Soit $A, B \in \mathcal{M}_{2n+1}(\mathbb{K})$ telles que AB = 0. Montrer que l'une au moins des deux matrices $A + {}^tA$ et $B + {}^tB$ n'est pas inversible.
 - 31. Calculer l'inverse de chacune des matrices ci-dessous :

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\boxed{\textbf{32.}} \text{ Inverser } A = \begin{pmatrix} 1 & 2 & \dots & n \\ & \ddots & \ddots & \vdots \\ (0) & & \ddots & 2 \\ & & & 1 \end{pmatrix}.$$

Applications linéaires et matrices

33. On se place dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 .

Soit f l'application linéaire définie par $f: \mathbb{R}^3 \to \mathbb{R}^3$, $w = (x, y, z) \mapsto (2x + 3y - z, x - y, 4z)$. Soit \mathcal{E} la base canonique de \mathbb{R}^3 .

a) Donner la matrice de f dans la base canonique. Soit g l'application linéaire définie par la

matrice
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 2 & -1 & 0 \end{pmatrix}$$
.

- b) Calculer g(w) avec w = (x, y, z).
- c) Calculer $g \circ f$ en utilisant deux méthodes différentes.
- **34.** On se place dans le \mathbb{R} -espace vectoriel $\mathbb{R}_3[X]$. Soit f l'application de $\mathbb{R}_3[X]$ dans $\mathbb{R}_3[X]$ qui à un polynôme associe le reste de sa division euclidienne par $P(X) = X^2 1$.
 - a) Montrer que f est une application linéaire.
- b) Donner la matrice M de f dans la base canonique. En déduire une base du noyau et de l'image de f.
- c) Montrer que la famille $(1, X 1, X^2 1, (X^2 1)(X 1))$ est une base de $\mathbb{R}_3[X]$. On notera cette base \mathcal{B} .
 - d) Donner la matrice N de f dans \mathcal{B} et en déduire une base du noyau et de l'image de f.
 - e) f est-il un projecteur?
- f) Donner la matrice de passage P de la base canonique à la base \mathcal{B} et la matrice de passage entre la base \mathcal{B} et la base canonique.
 - g) Quelle relation doit-on avoir entre les matrices M, N et P? Vérifier cette relation.

35. Soit
$$f$$
 l'endomorphisme de \mathbb{R}^3 défini par la matrice $M = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- a) f est-ell inversible?
- b) Soit A et B deux matrices qui commutent. Calculer $(A+B)^n$.
- c) Calculer f^n (pour cela, on pourra décomposer la matrice M en M = I + N).
- **36.** Soit f l'application linéaire de \mathbb{R}^3 définie par f(x,y,z)=(2x+y,x+z,y-2z).
- a) Calculer im(f) et ker(f). Quel est le rang de f?
- b) Écrire la matrice M de f dans la base canonique.
- c) Quel est le rang de la matrice M?

37. Soit la matrice
$$P = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 0 \\ 4 & -2 & -1 \end{pmatrix}$$
 et soit \mathcal{E} la base canonique de \mathbb{R}^3 .

- a) Montrer que P est la matrice de passage de la base \mathcal{E} à une autre base de \mathbb{R}^3 que l'on notera \mathcal{B} et que l'on explicitera.
 - b) Calculer la matrice de passage de la base \mathcal{B} à la base \mathcal{E} .
 - c) En déduire P^{-1} .
 - Soit f l'application linéaire sur \mathbb{R}^3 définie par f(x,y,z) = (z,y+z,x-y)
 - d) Écrire la matrice de f dans la base \mathcal{E} .
 - e) Écrire la matrice de f dans la base \mathcal{B} .
 - **38.** Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$M = \left(\begin{array}{rrr} 2 & -3 & 1 \\ -1 & 3 & -5 \\ -5 & 9 & -7 \end{array}\right)$$

Donner une base et la dimension de $\ker f$ et de $\operatorname{im}(f)$.

- **39.** Soit $A \in \mathcal{M}_n(\mathbb{R})$, $A \neq 0$, telle que $A^3 = -A$.
- a) Montrer que $E = \mathbb{R}^3 = \ker A \oplus \ker(A^2 + \mathrm{id}_E)$. Donner le projecteur associé à cette somme directe.
 - b) Montrer que A est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.
- **40.** a) Montrer que $M_n(\mathbb{K})$ a une base de matrices de projecteurs [si (E_{ij}) est la base canonique de $M_n(\mathbb{K})$, on pourra calculer $(E_{ii} + E_{ij})^2$ pour $i \neq j$].
 - b) Montrer que $\{M = (m_{ij}) \in M_n(\mathbb{K})/m_{11} = 0\}$ est l'hyperplan $\ker(M \mapsto \operatorname{tr}(ME_{11}))$.
- c) Soit $A \in M_n(\mathbb{K})$ telle que, pour tout $P \in GL_n(\mathbb{K})$, si $M = PAP^{-1} = (m_{ij})$, on ait $m_{11} = 0$. Montrer que $\operatorname{tr}(AX) = 0$ pour toute matrice X semblable à E_{11} . En déduire que $\operatorname{tr}(AX) = 0$ pour toute matrice X de projecteur, puis que A = 0.
- **41.** Soit $f \in \mathcal{L}(E)$, E étant de dimension 3, qui vérifie $f^2 \neq 0$, et $f^3 = 0$. Soit \mathcal{C} l'ensemble des endomorphismes de E qui commutent avec f.
 - a) Montrer qu'il existe un vecteur e tel que $(e, f(e), f^2(e))$ soit une base de E.
 - b) Montrer que $C = \text{Vect}(Id_E, f, f^2)$.

Déterminants

42. Calculer le déterminant des matrices ci-dessous :

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 6 & 6 \\ 0 & 0 & 1 \\ 4 & 2 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 4 & 6 \\ 2 & 5 & 9 \\ 3 & 6 & 12 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 3 & 3 & 1 \\ 1 & 1 & 6 & 2 \\ 2 & 2 & 6 & 1 \\ 4 & 5 & 1 & 2 \end{pmatrix}$$

43. Calculer le déterminant des matrices ci-dessous en fonction des paramètres x, y et z. En déduire, dans chaque cas, des conditions nécessaires et suffisantes portant sur les paramètres pour que ces matrices soient inversibles.

$$A = \begin{pmatrix} x & \pi & 1 \\ 0 & y & \sqrt{2} \\ 0 & 0 & z \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ x & y & z \\ y+z & x+z & x+y \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & x & y \\ 1 & -x & 0 & z \\ 1 & -y & z & 0 \end{pmatrix}.$$

44. Calculer le déterminant d'ordre n ci-dessous (en fonction de a, b et n)

$$D_n = \begin{vmatrix} a & b & \cdots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{vmatrix}$$

45. Soit $a \in \mathbb{C}$. Calculer $\det(a^{|i-j|})_{1 \leq i,j \leq n}$.

46. Calculer le déterminant :

$$D_n = \begin{vmatrix} 1 & n & n-1 & \cdots & 2 \\ 2 & 1 & n & \cdots & 3 \\ 3 & 2 & 1 & \cdots & 4 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ n & n-1 & \cdots & 2 & 1 \end{vmatrix}.$$

47. Calculer
$$\Delta_n = \begin{vmatrix} 0 & 1 & 0 & \cdots & 0 \\ 1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 & 1 \\ 0 & \cdots & 0 & 1 & 1 \end{vmatrix}$$

48. Soit $a_1, \ldots, a_n, b_1, \ldots, b_n$ des éléments de \mathbb{K} . Calculer le déterminant :

$$D_n = \begin{vmatrix} a_1 + b_1 & b_1 & b_1 & \cdots & b_1 \\ b_2 & a_2 + b_2 & b_2 & \cdots & b_2 \\ b_3 & b_3 & a_3 + b_3 & \cdots & b_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_n & \cdots & \cdots & b_n & a_n + b_n \end{vmatrix}.$$

$$\boxed{\textbf{49.} \text{ Soit } (\alpha,\beta) \in \mathbb{R}^2, \text{ et } M = \begin{pmatrix} 0 & & \\ & \ddots & (\alpha) & \\ & & (\beta) & \ddots & \\ & & & 0 \end{pmatrix}. \text{ Calculer le déterminant et le rang de } \\ M \text{ [lorsque } \alpha \neq \beta, \text{ on pourra calculer } \begin{vmatrix} x & & (\alpha+x) \\ & & \ddots & \\ & & & x \end{vmatrix} \text{ par multilinéarité pour } x \in \mathbb{R}].$$

- **50.** Soit E un espace vectoriel de dimension n et f un endomorphisme de E.
- a) On dit que f est un projecteur si $f \circ f = f$. Quelles sont les valeurs possibles pour det f lorsque f est un projecteur?
- b) On dit que f est nilpotent si il existe un entier naturel k tel que $f^k = 0$. Quelles sont les valeurs possibles pour det f lorsque f est nilpotent ?
- c) On dit que f est involutif si $f \circ f = id$. Quelles sont les valeurs possibles pour det f lorsque f est involutif?
- d) On dit que f est une homothétie de rapport λ si, pour tout x, $f(x) = \lambda x$. Quel est le déterminant d'une homothétie de rapport λ ?