Álgebra lineal I, Grado en Matemáticas

Febrero 2020, Primera Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Utilice sólo una cara para estas definiciones

- (a) Matriz idempotente y matriz nilpotente.
- (b) Subespacio vectorial.
- (c) Matriz de una aplicación lineal.
- (d) Espacio dual.

Ejercicio 1: (2 puntos)

Demuestre que si A y B son dos matrices de orden n, entonces det(AB) = det(A) det(B).

Ejercicio 2: (2,5 puntos)

Dada la matriz

$$A = \begin{pmatrix} a+1 & 0 & 1 & 1 \\ 1 & b & 2 & 1 \\ a & a & ab & a \end{pmatrix} \quad \text{con } a, b \in \mathbb{K}$$

Demuestre que su rango no depende del valor de b.

Ejercicio 3: (1,5 puntos)

En $\mathbb{K}_4[x]$, el espacio vectorial de los polinomios de grado menor o igual que 4 con coeficientes en \mathbb{K} , determine:

- (a) Una base que no contenga polinomios de grado 1 y grado 3.
- (b) Un subespacio suplementario del siguiente subespacio

$$\{-2\lambda + \mu + \lambda x^2 + \mu x + \mu x^3 : \lambda, \mu \in \mathbb{K}\}$$

Ejercicio 4: (2 puntos)

Determine la matriz en la base canónica del endomorfismo f de \mathbb{K}^3 que cumple:

(a)
$$f \circ f = 4f$$

(b)
$$f(1,0,0) = (1,1,0), f(0,1,1) = (6,2,4)$$

Ejercicio 2: Dada la matriz

$$A = \begin{pmatrix} a+1 & 0 & 1 & 1\\ 1 & b & 2 & 1\\ a & a & ab & a \end{pmatrix} \quad \text{con } a, b \in \mathbb{K}$$

Demuestre que su rango no depende del valor de b.

Solución: A la vista de la estructura de la matriz, comenzamos haciendo operaciones elementales de columnas

$$A \xrightarrow[c_{2} \to c_{2} \to c_{4}]{} \begin{pmatrix} a & -1 & 1 & 1 \\ 0 & b - 1 & 2 & 1 \\ 0 & 0 & ab & a \end{pmatrix} = A_{1}$$

Si a = 0, entonces la matriz A_1 es

$$A_1 = \left(\begin{array}{cccc} 0 & -1 & 1 & 1 \\ 0 & b - 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

La dos primeras filas de A_1 no son proporcionales para ningún valor de b, es decir son linealmente independientes para todo b. Por tanto, si a = 0, entonces rg(A) = 2 para todo $b \in \mathbb{K}$.

Si $a \neq 0$, se tienen los siguiente casos:

- Si $a \neq 0$ y $b \neq 1$ la matriz A_1 es escalonada y con tres pivotes, luego $\operatorname{rg}(A) = 3$.
- $\bullet\,$ Si $a\neq 0$ y b=1escalonamos la matriz

$$A_{1} = \begin{pmatrix} a & -1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & a & a \end{pmatrix} \xrightarrow{f_{3} \to f_{3} - \frac{a}{2}f_{2}} \begin{pmatrix} a & -1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & \frac{a}{2} \end{pmatrix} = A_{2}$$

La matriz A_2 tiene rango 3 para todo $a \neq 0$.

En conclusión: rg(A) = 2 si a = 0 y rg(A) = 3 si $a \neq 0$; por lo que el rango no depende de b.

Ejercicio 3: En $\mathbb{K}_4[x]$, el espacio vectorial de los polinomios de grado menor o igual que 4 con coeficientes en \mathbb{K} , determine:

- (a) Una base que no contenga polinomios de grado 1 y grado 3.
- (b) Un subespacio suplementario del siguiente subespacio

$$\{-2\lambda + \mu + \lambda x^2 + \mu x + \mu x^3 : \lambda, \mu \in \mathbb{K}\}\$$

Solución: En primer lugar, recordamos que la dimensión de $\mathbb{K}_4[x]$ es 5, y que la base canónica de este espacio vectorial es $\mathcal{B} = \{1, x, x^2, x^3, x^4\}$.

(a) Para determinar una base de $\mathbb{K}_4[x]$ formada por 5 polinomios linealmente independientes, lo más sencillo es trabajar con matrices de coordenadas. Si la matriz de coordenadas de un conjunto de 5 polinomios tiene rango 5, o equivalentemente determinante distinto de 0, entonces los polinomios formarán una base (Proposición 3.31, pág. 120 o Proposición 3.35, pág. 123) .

Una base que no contenga polinomios de grado 1 y grado 3 podría ser

$$\mathcal{B}' = \{1, x + x^2, x^2, x^3 + x^4, x^4\}$$

pues su matriz de coordenadas por filas respecto de $\mathcal B$ es

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)$$

y tiene rango 5.

(b) Llamamos $U = \{-2\lambda + \mu + \lambda x^2 + \mu x + \mu x^3 : \lambda, \mu \in \mathbb{K}\}$ al subespacio. Lo que nos dan son unas ecuaciones paramétricas de U pues sus polinomios son de la forma

$$U = \{\lambda(-2 + x^2) + \mu(1 + x + x^3) : \lambda, \mu \in \mathbb{K}\}\$$

Es decir

$$U = L(-2 + x^2, 1 + x + x^3)$$

Utilizando coordenadas respecto de la base canónica $\mathcal B$ una base de U es

$$\mathcal{B}_U = \{p_1 = (-2, 0, 1, 0, 0)_{\mathcal{B}}, p_2 = (1, 1, 0, 1, 0)_{\mathcal{B}}\}\$$

Como dimU=2, entonces un suplementario de U tendrá dimensión 3 y estará generado por tres polinomios p_3 , p_4 y p_5 tales que $\{p_1, p_2, p_3, p_4, p_5\}$ formen una base de $\mathbb{K}_4[x]$. Véase la Proposición 3.66, pág. 146. Para determinar estos polinomios basta con tomarlos de modo que la matriz de coordenadas por filas (o columnas) tenga rango 5. Nos sirven

$$p_3(x) = x^2$$
, $p_4(x) = x^3$, $p_5(x) = x^4$

ya que

$$\det \mathfrak{M}_{\mathcal{B}} \left\{ \frac{\frac{p_1}{p_2}}{\frac{p_3}{p_4}} \right\} = \det \begin{pmatrix} -2 & 0 & 1 & 0 & 0\\ 1 & 1 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = -3 \neq 0$$

Nótese que la matriz no es escalonada, pero al ser triangular por bloques su determinante es muy fácil de calcular, y es distinto de 0, luego los vectores fila son linealmente independientes y determinan una base. Por tanto, un suplementario de U es el subespacio $W = L(x^2, x^3, x^4)$.

Ejercicio 4: Determine la matriz en la base canónica del endomorfismo f de \mathbb{K}^3 que cumple:

- (a) $f \circ f = 4f$
- (b) f(1,0,0) = (1,1,0), f(0,1,1) = (6,2,4)

Solución: Nos dan la imagen por f de dos vectores linealmente independientes (1,0,0) y (0,1,1). Buscamos la imagen de un tercer vector linealmente independiente de los dados para determinar f completamente. Para ello tenemos que utilizar la propiedad (a)

$$f(1,0,0) = (1,1,0) \Rightarrow f(f(1,0,0)) = f(1,1,0) \underset{f \circ f = 4f}{\Rightarrow} 4f(1,0,0) = f(1,1,0) \Rightarrow (4,4,0) = f(1,1,0)$$

Ya tenemos las imágenes de los vectores de una base $\mathcal{B}' = \{(1,0,0),(0,1,1),(1,1,0)\}$

$$f(1,0,0) = (1,1,0), f(0,1,1) = (6,2,4), f(1,1,0) = (4,4,0)$$

Ahora, para determinar la matriz de f en la base canónica, podemos proceder por dintintos métodos. Aquí lo vamos a hacer utilizando las coordenads de los vectores de la base canónica respecto de \mathcal{B}' y aplicando la linealidad de f.

Determinamos f(0,1,0):

$$(0,1,0) = -(1,0,0) + 0(0,1,1) + (1,1,0)$$

entonces

$$f(0,1,0) = -f(1,0,0) + f(1,1,0) = -(1,1,0) + (4,4,0) = (3,3,0)$$

Determinamos f(0,0,1):

$$(0,0,1) = (1,0,0) + (0,1,1) - (1,1,0)$$

entonces

$$f(0,0,1) = f(1,0,0) + f(0,1,1) - f(1,1,0) = (1,1,0) + (6,2,4) - (4,4,0) = (3,-1,4)$$

Luego la matriz de f en la base canónica es

$$A = \mathfrak{M}_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 3 & -1 \\ 0 & 0 & 4 \end{pmatrix}$$