

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Ejercicio 2 Sea E un espacio vectorial, $g, f_1, f_2, \ldots, f_k, (k+1)$ funcionales lineales sobre E tales que

$$\langle f_i, x \rangle = 0 \quad \forall i = 1, \dots, k \Longrightarrow \langle g, x \rangle = 0$$

Muestre que existen constante $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tales que $g = \sum_{i=1}^k \lambda_i f_i$. Es decir, g es combinación lineal de los f_i .

Demostración. Consideremos la función

$$\mathsf{H}:\mathsf{E} \to \mathbb{R}^{k+1}$$
 $\mathsf{x} \mapsto (\mathsf{g}(\mathsf{x}),\mathsf{f}_1(\mathsf{x}),\ldots,\mathsf{f}_k(\mathsf{x})).$

Si R(H) es el rango de la función H, sabemos que es un subespacio de \mathbb{R}^{k+1} , ademas como este es de dimensión finita y normado, R(H) es cerrado, es decir $\overline{R(H)} = R(H)$. Luego observe que $x_0 = (1,0,\ldots,0) \in \mathbb{R}^{k+1} \setminus R(H)$, ya que en caso contrario $(1,0,\ldots,0) = (g(x),f_1(x),\ldots,f_k(x))$ para algún $x \in E$, pero esto implica que $f_i(x) = 0$ para cada $i = 1,\ldots,k$ y g(x) = 1, pero por la hipótesis g(x) = 0, una contradicción. Así si consideramos los conjuntos R(H) y $\{x_0\}$, como ambos son no vacíos, convexos, disjuntos, el primero es cerrado y el segundo compacto, por la segunda forma geométrica de Hahn-Banach existe $f \in (\mathbb{R}^{k+1})^*$ tal que $f(x_0) \neq 0$ y f(y) = 0 para todo $y \in R(H)$.

Como los funcionales de \mathbb{R}^{k+1} se identifican con el producto interno usual por un vector, sabemos que existe $\beta=(\beta_0,\beta_1,\ldots,\beta_k)\in\mathbb{R}^{k+1}$ tal que $f(y)=\langle\beta,y\rangle$. donde $y\in\mathbb{R}^{k+1}$. Note que si $y=x_0$ tenemos que $\langle\beta,x_0\rangle\neq 0$, por ser el producto interno usual esto implica que $\beta_0\neq 0$. Ahora si $y\in R(H)$, es de la forma $y=(g(x),f_1(x),\ldots,f_k(x))$, para algún $x\in E$. Luego $\langle\beta,y\rangle=0$, pero por definición de producto interno esto es

$$\beta_0 g(x) + \sum_{i=1}^k \beta_i f_i(x) = 0,$$

como $\beta_0 \neq 0$ podemos despejar g(x), tal que

$$g(x) = \sum_{i=1}^{\kappa} \left(-\frac{\beta_i}{\beta_0} \right) f_i(x).$$

Así como para cada $x \in E$, hay un y como el anterior, si tomamos $\lambda_i = -\frac{\beta_i}{\beta_0} \in \mathbb{R}$., obtenemos

que

$$g = \sum_{i=1}^k \lambda_i f_i.$$

 $Q^{n}Q$

Ejercicio 9 Sea E un espacio de Banach de dimensión infinita. Muestre que cada vecindad débil * del origen de E* no es acotada.

Demostración. Sea V una vecindad débil \star de 0 en E * . Por definición de la topología $\sigma(E^{\star}, E)$, podemos expresar V como

$$V = \{f \in E^* : |\langle f, x_i \rangle| < \varepsilon_i \text{ para } j = 1, \dots, n\},\$$

donde $x_1, \ldots, x_n \in E$ y $\varepsilon_1, \ldots, \varepsilon_n > 0$. Tomemos a $F = span\{x_1, \ldots, x_n\}$ el cual es un subespacio de E. Como F es de dimensión finita, es cerrado en E, es decir, $F = \overline{F}$. Dado que E es de dimensión infinita y F es de dimensión finita, existe $x_0 \in E \setminus F$. Aplicando el Teorema de Hahn-Banach en su forma geométrica, existe un funcional lineal no nulo $f \in E^*$ tal que

$$f(x_i) = 0$$
 para todo $j = 1, ..., n$,

pero $f(x_0) \neq 0$. Para cualquier $\lambda \in \mathbb{R}$, el funcional λf satisface que,

$$(\lambda f)(x_i) = \lambda f(x_i) = 0$$
 para todo $j = 1, ..., n$.

Como $|\langle \lambda f, x_j \rangle| = 0 < \epsilon_j$ para todo j, se cumple que $\lambda f \in V$ para todo $\lambda \in \mathbb{R}$, por lo que $\{\lambda f : \lambda \in \mathbb{R}\} \subset V$. La norma de λf cumple que,

$$\|\lambda f\| = |\lambda| \cdot \|f\|$$
.

Como f es no nula, entonces ||f|| > 0 y cuando $|\lambda| \to \infty$, se tiene $||\lambda f|| \to \infty$. Por lo tanto, V contiene elementos de norma arbitrariamente grandes y, por lo cual, no es acotada.

Ejercicio 11 Sea K un espacio métrico compacto que no es finito. Demuestre que C(K) (con la norma del supremo $\|\cdot\|_{L^{\infty}}$) no es reflexivo.

Demostración. Supongamos que C(K) es reflexivo. Dado que K es compacto e infinito, necesariamente contiene un punto de acumulación. Sea $\alpha \in K$ uno de ellos, y sea (α_n) una sucesión de puntos distintos en K tal que

$$a_n \to a,$$

$$a_n \neq a \quad \text{para todo n.}$$

Tal sucesión puede construirse eligiendo, para cada n, un punto $\alpha_n \in K$ distinto de α tal que

$$d(a_n,a)<\frac{1}{n},$$

lo cual es posible ya que todo entorno de a contiene infinitos puntos de K distintos de a.

A partir de esta sucesión, para cada $n \in \mathbb{N}$, construiremos una función $g_n \in C(K)$ tal que $g_n(\alpha_m) = 1$ si $1 \le m \le n$, $g_n(\alpha_m) = 0$ si m > n, y $g_n(\alpha) = 0$. Esto se puede lograr utilizando el el teorema de Tietze-Urysohn-Brouwer, ya que K es métrico (y por tanto normal), y los conjuntos finitos $\{\alpha_1, \ldots, \alpha_n\}$ y $\{\alpha_{n+1}, \alpha_{n+2}, \ldots\} \cup \{\alpha\}$ son disyuntos y cerrados. Así, existe una función continua $g_n : K \to [0, 1]$ tal que,

$$\begin{split} g_n(\alpha_m) &= 1 \quad \text{si } 1 \leq m \leq n, \\ g_n(\alpha_m) &= 0 \quad \text{si } m > n, \\ g_n(\alpha) &= 0. \end{split}$$

Además, $\|g_n\|_{\infty} = 1$ para todo n.

Como C(K) es un espacio de Banach y la sucesión (g_n) esta acotada, tiene una subsucesión débilmente convergente (g_{n_k}) , es decir, existe $g \in C(K)$ tal que $g_{n_k} \rightharpoonup g$ débilmente. Entonces, para todo funcional lineal continuo $\varphi \in C(K)^*$ se cumple que

$$\phi(q_{n_k}) \to \phi(q)$$
.

En particular, esto se aplica a los funcionales de evaluación $\pi_x(f) := f(x)$ para cada $x \in K$, los cuales pertenecen a $C(K)^*$. Por tanto, para cada $x \in K$,

$$q_{n_k}(x) \to q(x)$$
.

Para cada $m \in \mathbb{N}$ fijo, existe k_0 tal que $n_k \ge m$ para todo $k \ge k_0$. Entonces, por la definición de g_{n_k} ,

$$g_{n_k}(a_m) = 1$$
 para todo $k \ge k_0$,

lo que implica que

$$g(\alpha_{\mathfrak{m}})=\lim_{k\to\infty}g_{\mathfrak{n}_k}(\alpha_{\mathfrak{m}})=1.$$

Como $a_n \to a$ y g es continua, se sigue que

$$g(\alpha) = \lim_{m \to \infty} g(\alpha_m) = 1.$$

Sin embargo, por construcción $g_{n_k}(\alpha)=0$ para todo k, y por tanto,

$$g(\alpha) = \lim_{k \to \infty} g_{n_k}(\alpha) = 0,$$

lo cual es una contradicción. Esto prueba que la sucesión (g_n) no tiene ninguna subsucesión débilmente convergente.

En consecuencia, como encontramos una sucesión acotada en C(K) que no posee ninguna subsucesión débilmente convergente, C(K) no es reflexivo.

Ejercicio 15 Sea E un espacio de Banach reflexivo. Sea $\alpha: E \times E \to \mathbb{R}$ una forma bilineal que es continua, es decir, existe M > 0 tal que $|\alpha(x,y)| \le M||x|| ||y||$, para todo $x,y \in E$. Asuma que a es coerciva, esto es, existe $\alpha > 0$ tal que para todo $x \in E$

$$a(x, x) \ge \alpha ||x||^2$$

- (a) Dado $x \in E$, defina $A_x(y) = a(x, y)$, para todo $y \in E$. Muestre que $A_x \in E^*$, para cada $x \in E$. Además, concluya que la función $x \mapsto A(x) = A_x$ satisface $A \in \mathcal{L}(E, E^*)$.
- (b) Muestre que A como en (a) es una función sobreyectiva.
- (c) Deduzca que para cada $f \in E^*$, existe un único $x \in E$ tal que $a(x,y) = \langle f,y \rangle$, $\forall y \in E$. Esto es, la forma bilineal coerciva a representa todo funcional lineal continuo.

Ejercicio 18 Sea E un espacio de Banach

(a) Demuestre que existe un espacio topológico compacto K y una isometría de E en $(C(K), \|\cdot\|_{\infty})$.

Demostración. Considere el conjunto $K = \mathcal{B}_{E^*} = \{f \in E^* : ||f||_{E^*} \le 1\}$. Luego K es un espacio topológico compacto en la topología débil*. Definamos la función

$$T: (E, \|\cdot\|_E) \to (C(K), \|\cdot\|_{\infty})$$

donde $x \mapsto Tx \colon \mathcal{B}_{E^*} \to \mathbb{R}$ y $f \mapsto (Tx)(f) = f(x) = J_x$, por definición de las funciones J_x sabemos que Tx es continua en la topología débil \star , ahora veamos que T es lineal, sean $x, y \in E$ y $\alpha, \beta \in \mathbb{R}$, entonces,

$$\mathsf{T}(\alpha x + \beta y)(\mathsf{f}) = \langle \mathsf{f}, \alpha x + \beta y \rangle = \alpha \langle \mathsf{f}, x \rangle + \beta \langle \mathsf{f}, y \rangle = \alpha(\mathsf{T}(x)(\mathsf{f})) + \beta(\mathsf{T}(y)(\mathsf{f})).$$

Por último, veamos que T es una isometría.

$$||T(x)||_{\infty} = \sup_{f \in K} |T(x)(f)| = \sup_{\substack{f \in E^* \\ ||f||_{F^*} \le 1}} |\langle f, x \rangle| \le ||x||,$$

como T es lineal, acotada tenemos que T es continua. Además, por un corolario de la forma analítica de Hahn-Banach, tenemos que para cada $x \in E$ existe $f \in E^*$ tal que

$$\langle f, x \rangle = ||x||, \quad \text{con } ||f|| = 1,$$

por lo que tenemos $\|T(x)\|_{\infty} = \|x\|$, así T es isometría.

(b) Asuma que E es separable. Entonces muestre que existe una isometría de E en l^{∞} (vea el Ejercicio 14 para la definición del espacio).

Demostración.

(b) Como K es metrizable y compacto en la topología débil*, existe un subconjunto denso contable $\{f_n\} \subseteq K$.

¿Por qué K tiene denso contable? Es contable.

Definamos

$$T: E \to \ell^{\infty}, \quad x \mapsto T(x) := \{f_n(x)\}_{n=1}^{\infty}.$$

Veamos que T está bien definido. Como $\|f_n\| \le 1$ para todo $n \in \mathbb{N}$, tomando un x fijo, tenemos que

$$\sup_{n\in\mathbb{N}}|f_n(x)|\leq \|x\|\sup_{n\in\mathbb{N}}\|f_n\|\leq M\|x\|\quad \text{donde }M\in\mathbb{R}, M\geq 1.$$

Ahora veamos que T es lineal. Sean $x, y \in E$, $y \alpha, \beta \in \mathbb{R}$:

$$T(\alpha x + \beta y) = \{f_n(\alpha x + \beta y)\} = \alpha \{f_n(x)\} + \beta \{f_n(y)\},\$$

luego T es lineal.

T es continua porque es lineal y acotada.

Nos falta ver que T es una isometría.

Por el corolario de Hahn-Banach en forma analítica, existe $f \in K \subseteq E^*$ tal que |f(x)| = ||x||. Como f_n es denso en $K = B_{E^*}^0$, existe una subsucesión $\{f_{n_k}\}$ tal que $f_{n_k} \to f$ en $\sigma(E^*, E)$, y en particular $f_{n_k}(x) \to f(x)$, y por tanto:

$$|f(x)|=\limsup_{k\to\infty}|f_{\mathfrak{n}_k}(x)|\leq \sup_{\mathfrak{n}\in\mathbb{N}}|f_{\mathfrak{n}}(x)|=\|\mathsf{T}(x)\|_{\infty}\leq \|x\|.$$

Por lo cual:

$$\|\mathsf{T}(\mathsf{x})\|_{\infty} = \|\mathsf{x}\|,$$

y T(x) es una isometría.

$$\begin{split} \exists f \in E^{\star} \quad \text{tal que } \langle f, x \rangle = \|x\|, \quad \|f\| = 1 \\ \{f_n\} \text{ son densos en } K = B_{E^{\star}}^{0}, \quad f_{n_k} \to f \end{split}$$