Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по лабораторной работе

«Операции с гистограммой изображения»

Разработка графических приложений

Работу выполнил студент				
гр. 3540901/91502	Дьячков В.В.			
Работу принял преподаватель				
	Абрамов Н.А.			

Содержание

1	Про	ограмма работы	3
2	Выі	полнение работы	3
	2.1	Линейное растяжение гистограммы	3
	2.2	Устойчивое линейное растяжение гистограммы	5
	2.3	Эквализация гистограммы	7
	2.4	Приведение гистограммы	9
0	D		10
3	Вы	ВОДЫ	10

1. Программа работы

- 1. Реализовать линейное растяжение гистограммы.
- 2. Реализовать эквализацию гистограммы.
- 3. Реализовать приведение гистограммы к заданной.

2. Выполнение работы

2.1. Линейное растяжение гистограммы

Значение пикселя p_{in} преобразуется в p_{out} по формуле:

$$p_{out} = (p_{in} - I_{low}) \cdot \frac{O_{high} - O_{low}}{I_{high} - I_{low}} + O_{low},$$

где I – исходное изображение, а O – результирующее изображение.

При растяжении гистограммы используем $O_{high}=255$ и $O_{low}=0$, тогда

$$p_{out} = (p_{in} - I_{low}) \cdot \frac{255}{I_{high} - I_{low}}$$

Рис. 2.1: Линейное растяжение гистограммы (1)

Рис. 2.2: Линейное растяжение гистограммы (2)

Рис. 2.3: Линейное растяжение гистограммы (3)

2.2. Устойчивое линейное растяжение гистограммы

Попробуем применить устойчивое линейное растяжение гистограммы: будем отбрасывать M% (например, 5%) самых темных и самых светлых пикселей при подсчете минимума и максимума гистограммы исходного изображения. Это позволяет более устойчиво применить растягивание гистограммы, когда слишком светлых или слишком светлых пикселей небольшое количество.

Рис. 2.4: Устойчивое линейное растяжение гистограммы (1)

Рис. 2.5: Устойчивое линейное растяжение гистограммы (2)

Рис. 2.6: Устойчивое линейное растяжения гистограммы (3)

2.3. Эквализация гистограммы

Применим другой метод повышения контрастности изображения – эквализацию гистограммы. Определим функцию распределения cdf(n) = h(0) + h(1) + ... + cdf(n). Другими словами, функция распределения является кумулятивной гистограммой. Наша задача сводится к тому, чтобы функция распределения имела вид, близкий к линейному, тогда пиксели изображения будут более равномерно использовать весь диапазон значений. Формула для преобразования пикселя входного изображения p_{in} :

$$p_{out} = round \left(\frac{cdf(p_{in}) - cdf_{min}}{N} \cdot 255 \right),$$

где N – общее число пикселей в изображении.

Рис. 2.7: Эквализация гистограммы (1)

Рис. 2.8: Эквализация гистограммы (2)

Рис. 2.9: Эквализация гистограммы (3)

2.4. Приведение гистограммы

В том случае, если у нас есть референсное изображение, мы можем использовать его гистограмму для преобразования входного изображения. Для этого создадим отображение каждого значения входного изображения в выходное (всего 256 возможных входных и выходных значений), после чего отобразим значение каждого пиксель входного изображения в выходное.

Рассчитаем гистограммы и функции распределений входного (cdf_1) и референсного (cdf_2) изображений, после чего найдем такие значения пикселей p_1 и p_2 , что:

$$cdf_1(p_1) = cdf_2(p_2),$$

тогда значение пикселя p_1 отображается в значение p_2 .

Рис. 2.10: Приведение гистограммы (1)

Рис. 2.11: Приведение гистограммы (2)

3. Выводы

В данной работе были реализованы различные операции над гистограммой изображения:

- линейное растяжение и устойчивое линейное растяжение гистограммы;
- эквализация гистограммы;
- приведение гистограммы изображения к заданному виду.