Creación de complejos simpliciales

Rafael Villarroel

2021-01-28 15:00 -0500

El complejo de completas de una gráfica

Sea G una gráfica (simple, finita). Una completa de G es $C \subseteq V(G)$ tal que si $x_1, x_2 \in C$, entonces $x_1 \sim x_2$.

Observemos que si C_1 es completa de G y $C_2 \subseteq C_1$, entonces C_2 es completa.

El complejo $\Delta(G)$ se define como el complejo simplicial sobre V(G) cuyos simplejos son las completas de G. Si tenemos un complejo simplicial Δ y existe una gráfica G tal que $\Delta = \Delta(G)$, decimos que Δ es un complejo simplicial de completas. (En inglés, Δ se llama flag complex o clique complex).

Ejemplos. Sea G la gráfica donde el conjunto de vértices es $V(G) = \{a, b, c, d, e, f\}$, y el conjunto de aristas es: $E(G) = \{ab, ac, ad, ae, af, bf, cf, de, ef\}$. Entonces se tiene

 $E(G) = \{ab, ac, ad, ae, af, bf, cf, de, ef\}$. Entonces se tiene que $\mathcal{F}(\Delta(G)) = \{abf, acf, ade, aef\}$.

Tarea. Muestra que existe un complejo simplicial Δ tal que no existe gráfica G con $\Delta(G) = \Delta$.

El complejo orientado de una digráfica

Sea D una gráfica dirigida (cada arista tiene exactamente una dirección). Vamos a formar un complejo simplicial $\Delta^{\rightarrow}(D)$ sobre V(D), donde $\sigma \subseteq V(D)$ es un simplejo si la subgráfica dirigida de D inducida por σ es completa y tiene un sumidero y una fuente.

Tarea. Muestra que de verdad la construcción anterior define un complejo simplicial.