Limbaje Formale, Automate și Compilatoare

Curs 3

2013-14

Curs 3

1 Automate finite cu ϵ -tranziţii

2 Gramatici de tip 3 şi automate finite

3 Automatul determinist minimal

Automatul determinist echivalent

Teorema 1

Pentru orice automat A cu ϵ - tranziții există un automat A' determinist echivalent cu A

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (Q', \Sigma, \delta', q'_0, F')$ unde:

- Q' = 2^Q
- $q_0' = CI(q_0)$
- $\delta'(S, a) = CI(\delta(S, a))$ $S \in Q', a \in \Sigma$
- $S \in F' \Leftrightarrow S \cap F \neq \emptyset$

Automatul determinist echivalent

Teorema 1

Pentru orice automat A cu ϵ - tranziții există un automat A' determinist echivalent cu A

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (Q', \Sigma, \delta', q'_0, F')$ unde:

- Q' = 2Q
- $q'_0 = CI(q_0)$
- $\delta'(S, a) = CI(\delta(S, a))$ $S \in Q', a \in \Sigma$
- $S \in F' \Leftrightarrow S \cap F \neq \emptyset$

Au loc:

- $\delta'(q_0', w) = \hat{\delta}(q_0, w), \forall w \in \Sigma^*$
- L(A') = L(A)

Automatul determinist echivalent - algoritm

- Intrare: Automatul A (cu ε tranziţii); CI(S)
- leşire: Automatul determinist A' = (Q', Σ, δ', q'₀, F'), echivalent cu A.

```
q_0' = CI(\{q_0\}); Q' = \{q_0'\};
marcat(q'_0) = false; F' = \emptyset;
if (q'_0 \cap F \neq \emptyset) then F' = F' \cup \{q'_0\};
while (\exists S \in Q'\&\&!marcat(S)) { // S este nemarcat
       for (a \in \Sigma){
           S' = CI(\delta(S, a));
           \delta'(S, a) = S':
           if (S' \notin Q'){
             Q' = Q' \cup \{S'\};
             marcat(S') = false;
             if (S' \cap F \neq \emptyset) then F' = F' \cup \{S'\};
       marcat(S) = true;
```


Curs 3

1 Automate finite cu ε-tranziţii

2 Gramatici de tip 3 și automate finite

Automatul determinist minimal

De la gramatici de tip 3 la automate finite

 Pentru orice gramatică G de tip 3 (în formă normală) există un automat A (nedeterminist) astfel ca L(A) = L(G):

În gramatica G	În automatul A
T	$\Sigma = T$
N	$Q = N \cup \{f\}, F = \{f\}$
S	$q_0 = S$
$ extbf{\textit{q}} ightarrow extbf{\textit{ap}}$	$oldsymbol{ ho} \in \delta(oldsymbol{q},oldsymbol{a})$
q o a	$f \in \delta(oldsymbol{q},oldsymbol{a})$
dacă S $ ightarrow\epsilon$	se adaugă S la F

De la automate finite la gramatici de tip 3

• Pentru orice automat finit (determinist) există o gramatică G de tip 3 astfel ca L(A) = L(G):

În automatul A	În gramatica G
Σ	$T = \Sigma$
Q	N = Q
q_0	$S=q_0$
$\delta(q,a)=p$	q o ap
$\delta(oldsymbol{q},oldsymbol{a})\in oldsymbol{\mathcal{F}}$	$oldsymbol{q} ightarrow oldsymbol{a}$
dacă $q_0 \in F$	se adaugă $q_0 ightarrow \epsilon$

Curs 3

1 Automate finite cu ϵ -tranziţii

2 Gramatici de tip 3 şi automate finite

Automatul determinist minimal

Stări accesibile

• Fie $A = (Q, \Sigma, \delta, q_0, F)$ automat finit determinist

Starea q este accesibilă în A dacă există un cuvânt $w \in \Sigma^*$ astfel încât $q = \delta(q_0, w)$.

Stări inseparabile

Fie $A = (Q, \Sigma, \delta, q_0, F)$ un automat finit determinist.

Definiție 1

Stările q_1 și q_2 sunt inseparabile în raport cu F, (notat $q_1 \rho q_2$) ddacă

$$\forall w \in \Sigma^* : \delta(q_1, w) \in F \Leftrightarrow \delta(q_2, w) \in F$$

Stări inseparabile

Fie $A = (Q, \Sigma, \delta, q_0, F)$ un automat finit determinist.

Definiție 1

Stările q_1 și q_2 sunt inseparabile în raport cu F, (notat $q_1 \rho q_2$) ddacă

$$\forall w \in \Sigma^* : \delta(q_1, w) \in F \Leftrightarrow \delta(q_2, w) \in F$$

- Dacă există w ∈ Σ* cu δ(q₁, w) ∈ F şi δ(q₂, w) ∉ F (sau invers), stările q₁ şi q₂ sunt separabile (de către w), şi notăm q₁ sep q₂
- q_1 sep $q_2 \Leftrightarrow \neg q_1 \rho q_2$.

Stări inseparabile

Fie $A = (Q, \Sigma, \delta, q_0, F)$ un automat finit determinist.

Definiție 1

Stările q_1 și q_2 sunt inseparabile în raport cu F, (notat $q_1 \rho q_2$) ddacă

$$\forall w \in \Sigma^* : \delta(q_1, w) \in F \Leftrightarrow \delta(q_2, w) \in F$$

- Dacă există $w \in \Sigma^*$ cu $\delta(q_1, w) \in F$ şi $\delta(q_2, w) \notin F$ (sau invers), stările q_1 şi q_2 sunt separabile (de către w), şi notăm q_1 sep q_2
- $q_1 \text{ sep } q_2 \Leftrightarrow \neg q_1 \rho q_2$.
- Observaţie: dacă q₁ ∈ F şi q₂ ∉ F, atunci q₁ sep q₂

Automat minimal

Observaţii:

- Relatia ρ este relație de echivalență.
- $\exists a \in \Sigma : \delta(p, a) \underline{sep} \delta(q, a) \Longrightarrow p \underline{sep} q$.

Automat minimal

Observaţii:

- Relatia ρ este relaţie de echivalenţă.
- $\exists a \in \Sigma : \delta(p, a) \text{ sep } \delta(q, a) \Longrightarrow p \text{ sep } q.$

Teorema 2

Fie A un automat determinist cu toate stările accesibile. Daca toate stările din A sunt separabile în raport cu F, atunci nu există un alt automat A' cu număr mai mic de stări şi L(A) = L(A').

Automatul minimal

Fie $A = (Q, \Sigma, \delta, q_0, F)$ un automat finit determinist si relaţia ρ .

- Dacă $\forall q_1, q_2 \in Q : q_1 \text{ sep } q_2$, atunci A este minimal.
- Altfel, automatul minimal:

$$A_{\rho} = (Q/\rho, \Sigma, \delta_{\rho}, [q_0], F/\rho)$$

• Q/ρ - clasele de echivalență ale relației ρ :

$$Q/\rho = \{[q]|q \in Q\}$$

- $\delta_{\rho}([q], a) = [\delta(q, a)]$
- $[q_0]$ clasa de echivalență în care se află starea q_0
- $F/\rho = \{[q] | q \in F\}$

Automatul minimal

Fie automatul minimal: $A_{\rho} = (Q/\rho, \Sigma, \delta_{\rho}, [q_0], F/\rho)$

- Q/ρ clasele de echivalență ale relației ρ :
- $\delta_{\rho}([q], a) = [\delta(q, a)]$
- $[q_0]$ clasa de echivalență în care se află starea q_0
- $F/\rho = \{[q] | q \in F\}$

Teorema 3

Fie automatul determinist A, cu toate stările accesibile. Automatul A_{ρ} construit ca mai sus este automatul cu număr minim de stări care acceptă limbajul L(A).

- Fie $A = (Q, \Sigma, \delta, q_0, F), Q = \{q_0, q_1, \dots, q_n\}$
- Tablou separabil[q_i, q_i]:
 - separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j (separabil $[q_i, q_j] = 0$ ddacă $q_i \rho q_j$)
 - iniţial separabil $[q_i, q_i] = 1$ ddacă $q_i \in F, q_i \notin F$ (sau invers)
 - dacă există $a \in \Sigma$ cu $\delta(q_i, a)$ \underline{sep} $\delta(q_j, a)$, atunci q_i \underline{sep} q_j , adică : dacă $\underline{separabil}[q_i, q_j] = 0$ și există $a \in \Sigma$ cu $\underline{separabil}[\delta(q_i, a), \delta(q_j, a)] = 1$, atunci $\underline{separabil}[q_i, q_j] = 1$

- $lista[p, r] : (p \neq r)$
 - o pereche de stări inseparabile (q_i, q_j) (separabil $[q_i, q_j] = 0$) se adaugă la *lista*[p, r] dacă:
 - există $a \in \Sigma$ astfel încât $p = \delta(q_i, a), r = \delta(q_i, a)$
 - separabil[p, r] = 0

 \iff

• $(qi, qj) \rightarrow lista[\delta(q_i, a), \delta(qj, a)]$ dacă separabil $[q_i, q_j] = 0$ și separabil $[\delta(q_i, a), \delta(qj, a)] = 0$

- lista[p, r] : (p ≠ r)
 - o pereche de stări inseparabile (q_i, q_j) (separabil $[q_i, q_j] = 0$) se adaugă la *lista*[p, r] dacă:
 - există $a \in \Sigma$ astfel încât $p = \delta(q_i, a), r = \delta(q_i, a)$
 - separabil[p, r] = 0

 \iff

- $(qi, qj) \rightarrow lista[\delta(q_i, a), \delta(qj, a)]$ dacă separabil $[q_i, q_j] = 0$ şi separabil $[\delta(q_i, a), \delta(qj, a)] = 0$
- dacă p şi r devin la un moment dat separabile, atunci perechile de stări (q_i, q_j) din lista[p, r] devin separabile:

Fie
$$(q_i, q_j) \in \textit{lista}[p, r] \Rightarrow \exists a : p = \delta(q_i, a), r = \delta(q_j, a)$$

$$p \operatorname{sep} r \Leftrightarrow \delta(q_i, a) \operatorname{sep} \delta(q_j, a) \Longrightarrow q_i \operatorname{sep} q_j$$

- Se iniţializează tabloul separabil (separabil[q_i, q_j] = 1, dacă q_i ∈ F, q_i ∉ F sau invers)
- Pentru orice q_i , q_i ($0 \le i < j \le n$) cu separabil[q_i , q_i] = 0:

- Se iniţializează tabloul separabil (separabil[q_i, q_j] = 1, dacă q_i ∈ F, q_i ∉ F sau invers)
- Pentru orice q_i , q_i ($0 \le i < j \le n$) cu separabil[q_i , q_i] = 0:
 - Dacă există $a \in \Sigma$ cu separabil $[\delta(q_i, a), \delta(q_i, a)] = 1$, atunci:
 - $separabil[q_i, q_j] = 1$
 - trebuie modificat tabloul separabil pentru toate perechile de stări a căror separabilitate depinde de q_i , q_j (perechile de stări din $lista[q_i, q_i]$)

- Se iniţializează tabloul separabil (separabil[q_i, q_j] = 1, dacă q_i ∈ F, q_i ∉ F sau invers)
- Pentru orice q_i , q_i ($0 \le i < j \le n$) cu separabil[q_i , q_i] = 0:
 - Dacă există $a \in \Sigma$ cu separabil $[\delta(q_i, a), \delta(q_j, a)] = 1$, atunci:
 - $separabil[q_i, q_j] = 1$
 - trebuie modificat tabloul *separabil* pentru toate perechile de stări a căror separabilitate depinde de q_i , q_j (perechile de stări din $lista[q_i, q_i]$)
 - Altfel (pentru orice $a \in \Sigma$ are loc separabil[$\delta(q_i, a), \delta(q_i, a)$] = 0):
 - pentru orice $a \in \Sigma$ cu $\delta(q_i, a) \neq \delta(q_j, a)$ adaugă (q_i, q_j) la $lista[\delta(q_i, a), \delta(q_i, a)]$

```
//initializarea tablourilor,
se marchează perechile F \times (Q - F) si (Q - F) \times F
1.for (i=0; i <= n-1; i++)
2.
      for (j=i+1, j<=n; j++) {
3.
            lista[qi,qj]=\emptyset;
            if ((qi \in F \&\& qj \notin F) \mid | (qi \notin F \&\& qj \in F))
4.
5.
                separabil[qi,qj]=1;
6.
            else
7.
               separabil[qi,qj]=0;
8.
```

```
9.for (i=0; i \le n-1; i++)
10.
       for (j=i+1, j <= n; j++) {
       //se selecteaza doar starile inseparabile
11.
             if (separabil[qi,qj]==0) {
                 //daca exista a astfel incat \delta(qi,a) sep \delta(qj,a)
                 //inseamna ca qi si qj sunt separabile
12.
                 if (\exists a \in \Sigma : separabil[\delta(qi, a), \delta(qj, a)] == 1)
                     // qi si qj devin separabile si la fel toate
                     // perechile de stari dependente de qi,qj
                    update_separabil(qi,qj);
13.
14.
15.
                else {
16.
                       for (a \in \Sigma \&\& \delta(qi, a) \neq \delta(qi, a))
                            adauga (qi, qj) la lista[\delta(qi, a), \delta(qj, a)]
17.
18.
19.
20.
```


q1	q2	q3	q4	
0	0	0	1	q0
	0	0	1	q1
		0	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

q1	q2	q3	q4	
0	0	(0) 1	1	q0
	0	0	1	q1
		0 (q0,q1)	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

q1	q2	q3	q4	
0	0	1	1	q0
	0	(0) 1	1	q1
		0 (q1,q2) (q0,q1)	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

q1	q2	q3	q4	
(0) 1	0	1	1	q0
	(0) 1	1	1	q1
		(0)1 (q1,q2) (q0,q1)	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

q1	q2	q3	q4	
1	0	1	1	q0
	1	1	1	q1
		1 (q1,q2) (q0,q1)	1	q2
			1	q3

δ	a	b
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q4	q4

Corectitudinea algoritmului

Teorema 4

Algoritmul se termină întotdeauna şi în final se obţine, pentru orice două stări q_i şi q_j , $0 \le i < j \le n$: separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j

Corectitudinea algoritmului

Teorema 4

Algoritmul se termină întotdeauna şi în final se obține, pentru orice două stări q_i şi q_j , $0 \le i < j \le n$: separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j

(⇐=) Se arată că:

P(k): Pentru orice două stări q_i şi q_j ($0 \le i < j \le n$) separabile de către un cuvânt w cu $|w| \le k$ ($\delta(q_i, w) \in F, \delta(q_i, w) \notin F$), are loc:

$$separabil[q_i, q_j] = 1.$$

Inducție după |w|.

Corectitudinea algoritmului

Teorema 4

Algoritmul se termină întotdeauna şi în final se obține, pentru orice două stări q_i şi q_j , $0 \le i < j \le n$: separabil $[q_i, q_j] = 1$ ddacă q_i sep q_j

(⇒) Se arată că:

pentru oricare două stări q_i , q_j ($0 \le i < j \le n$) pentru care $separabil[q_i, q_j] = 1$, are loc:

 q_i sep q_j .

Inducție asupra momentului în care algoritmul face separabil $[q_i, q_i] = 1$.