COMPOUNDS CAPABLE OF INHIBITING IN-VIVO PHOSPHATE TRANSPORT AND MEDICAMENT CONTAINING THE SAME

BACKGROUND OF THE INVENTION

5 Field of the Invention

The present invention relates to compounds capable of suppressing the phosphate concentration of serum, and more particularly to compounds useful for the prevention and treatment of hyperphosphatemia.

10 Related Art

15

20

25

30

35

The phosphate concentration of serum is specified by balance between absorption of phosphate from the intestine, intracellular and bone accumulation, filtration into primitive urine in the kidney, and subsequent reabsorption in uriniferous tubules. When the phosphate concentration of serum is not less than 5.0 mg/dl, this condition is called hyperphosphatemia and is a clinical condition that significantly appears mainly in end-stage renal failure and dialysis patients. This is mainly induced by deteriorated excretion of phosphate involved in elimination of It is also suggested that an increase in phosphate renal function. absorption from the intestine derived from the administration of vitamin D participates in this clinical condition. The hyperphosphatemia secondarily leads to hypocalcemia and thus induces secondary hyperparathyroidism which is in turn a principal factor for renal osteodystrophy.

In the prior art technique, to alleviate these clinical conditions, ingestion of a diet having a low phosphate content and the use of a phosphate adsorbent having the function of adsorbing phosphate in the diet have been carried out from the viewpoint of reducing the absorption of phosphate from the intestine. However, it has been pointed out that the diet having a low phosphate content is disadvantageous in that a nutritional disorder is likely to occur, for example, due to lack of ingestion of other nutriments, or observance of this dietary is difficult because the taste is not good. Representative examples of oral phosphate adsorbents include calcium preparations, magnesium preparations, and aluminum preparations. However, it has been pointed out, for example, that the calcium preparations and the magnesium preparations induce

hypercalcemia and hypermagnesemia, respectively, and the aluminum preparations induce aluminum osteopathy, aluminum cerebropathy, and dialysis dementia. In recent years, various anion exchange resins have been developed as the oral phosphate adsorbent. Since, however, these anion exchange resins have lower phosphate adsorption capacity than the above group of compounds, a high level of dosage is necessary for phosphate absorption reduction purposes. Therefore, it cannot be said that the compliance for patients is good.

5

10

15

20

25

30

35

Despite the fact that all the conventional therapeutic agents for hyperphosphatemia suffer from the above problems, up to now, therapeutic agents for hyperphosphatemia which can solve the above problems have not been reported.

Therapeutic agents for hyperphosphatemia are disclosed, for example, in WO 98/03185 and Kidney and Metabolic Bone Diseases, Vol. 15, No.1pp75-80 (2002).

SUMMARY OF THE INVENTION

The present inventors have now found compounds that can inhibit sodium-dependent phosphate transport into rabbit jejunal brush border membrane vesicle (hereinafter referred to as "rabbit BBMV") and can inhibit sodium-dependent phosphate uptake in Xenopus oocytes, which express sodium-dependent phosphate absorption carrier (NaPi-2a and NaPi-2b), present in the kidney and the small intestine, on cell membranes. The present inventors have also found that compounds having a hydrazine skeleton can lower blood radioactivity of normal rats to which diets containing ³²P, a radioisotope, have been administered orally.

An object of the present invention is to provide compounds and pharmaceutical compositions that can effectively prevent or treat diseases induced by an increase in the phosphate concentration of serum by effectively suppressing the phosphate concentration of serum through a mechanism different from the conventional mechanism.

According to the present invention, there are provided compounds represented by formula (I) and pharmaceutically acceptable salts and solvates thereof:

wherein

5

A represents a five- to nine-membered unsaturated carbocyclic moiety or a five- to nine-membered unsaturated heterocyclic moiety, and ---- represents a single bond or a double bond,

the carbocyclic moiety and heterocyclic moiety represented by A are optionally substituted by

- (a) a halogen atom;
- (b) hydroxyl;
- 10 (c) C₁₋₆ alkyl;
 - (d) C₁₋₆ alkoxy;
 - (e) aryl;
 - (f) aryloxy;
 - (g) arylthio;
- 15 (h) alkylthio;
 - (i) nitro;
 - (j) amino;
 - (k) mono- or di-arylamino;
 - (I) mono- or di-C₁₋₆ alkylamino;
- 20 (m) C₂₋₆ alkenyl;
 - (n) C₂₋₆ alkenyloxy;
 - (o)C₂₋₆ alkenylthio;
 - (p) mono- or di-C₂₋₆ alkenylamino;
 - (q) carboxyl; or
- 25 (r) C₁₋₆ alkyl- or aryl-oxycarbonyl;
 - (c) the C_{1-6} alkyl group, (d) the C_{1-6} alkoxy group, (e) the aryl group, (f) the aryloxy group, (g) the arylthio group, (h) the alkylthio group,

(m) the C_{2-6} alkenyl group, (n) the C_{2-6} alkenyloxy group, and (o) the C_{2-6} alkenylthio group are optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) monoor di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by halogen, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6} alkylamino, (15) C_{1-6} alkoxy- $(CH_2CH_2O)m$ wherein m is an integer of 1 to 6, (16) carboxyl, (17) an oxygen atom (=0), or (18) C_{3-7} cycloalkyl,

the aryl moiety in (k) the mono- or di-arylamino group is optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by halogen, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6} alkylamino, (15) C_{1-6} alkoxy-(CH_2CH_2O)m wherein m is an integer of 1 to 6, (16) carboxyl, (17) an oxygen atom (=O), or (18) C_{3-7} cycloalkyl, and, in the case of the mono-arylamino group, the amino group is optionally substituted by C_{1-6} alkyl optionally substituted by hydroxyl or a halogen atom,

in (I) the mono- or di- C_{1-6} alkylamino, the di- C_{1-6} alkyl group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by a halogen atom; C_{1-6} alkyl optionally substituted by hydroxyl, a halogen atom, or aryl optionally substituted by a halogen atom, C_{1-6} alkyl, or C_{1-6} alkyloxy, a heterocyclic group optionally substituted by a halogen atom, C_{1-6} alkyloxy, and, when one or two alkyl groups on the amino group and the cyclic amino moiety are substituted by two C_{1-6} alkyl groups, they together may form C_{3-7} cycloalkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two C_{1-6} alkyl groups on the

amino group and the cyclic amino moiety are optionally substituted by hydroxyl or a halogen atom; arylamino in which the amino group is or di-C₁₋₆ by C₁₋₆ alkyl; monosubstituted optionally alkylcarbamoylmethyl in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; aryloxy; arylthio; an oxygen atom; hydroxyl; carboxyl; C₁₋₆ alkoxy- or aryloxy-carbonyl; C₁₋₆ alkylcarbonyl; aryl optionally substituted by a halogen atom or hydroxyl; an oxygen atom (=O); or a heterocyclic group,

in (p) the mono- or $di-C_{2-6}$ alkenylamino group, the amino group of the monoalkenylamino group is optionally substituted by C_{1-6} alkyl optionally substituted by hydroxyl or a halogen atom, and the di-C2-6 alkenyl together may form unsaturated cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkenyl groups on the amino group or the unsaturated cyclic amino moiety are optionally substituted by a halogen atom; C₁₋₆ alkyl optionally substituted by hydroxyl, a halogen atom, aryl optionally substituted by a halogen atom, C₁₋₆ alkyl, or C₁₋₆ alkyloxy, a heterocyclic group optionally substituted by a halogen atom, C_{1-6} alkyl, or C_{1-6} alkyloxy, and, when one or two alkyl groups on the amino group and the cyclic amino moiety are substituted by two $C_{1\text{-}6}$ alkyl groups, they together may form C_{3-7} cycloalkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two C_{1-6} alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl or a halogen atom; arylamino in which the amino group is optionally substituted by C_{1-6} alkyl; mono- or di-C₁₋₆ alkylcarbamoylmethyl in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; aryloxy; arylthio; an oxygen atom; hydroxyl; carboxyl; C_{1-6} alkoxy- or aryloxy-carbonyl; C_{1-6} alkylcarbonyl; aryl optionally substituted by a halogen atom or hydroxyl; an oxygen atom (=O); or a heterocyclic group,

when the carbocyclic moiety and hetrocyclic moiety represented by A are substituted by two (c) C_{1-6} alkyl groups or (m) C_{2-6} alkenyl

35

30

5

10

15

20

25

groups, the alkyl or alkenyl groups together with the carbon atoms to which they are respectively attached may form an unsaturated five- to seven-membered carbocyclic ring,

 R^5 represents C_{1-6} alkyl, aryl, C_{1-6} alkoxy, aryloxy, C_{1-6} alkylamino, arylamino, C_{1-6} alkylthio, arylthio, C_{3-7} cycloalkyl, or a heterocyclic group, and the C_{1-6} alkyl, aryl, C_{1-6} alkoxy, aryloxy, C_{1-6} alkylamino, arylamino, C_{1-6} alkylthio, arylthio, C_{3-7} cycloalkyl, or heterocyclic group represented by R^5 may be the same or different, and is optionally substituted by

(I) a halogen atom;

5

10

15

20

25

30

35

(II) C₁₋₆ alkyl optionally containing a substituent selected from the group consisting of (1) hydroxyl, (2) thiol, (3) amino, (4) C₁₋₆ alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfinyl, (7) C_{1-6} alkylsulfonyl, (8) mono- or di-C₁₋₆ alkylamino, (8') amino substituted by a heterocyclic group optionally substituted by C_{1-6} alkyl, (9) C_{1-6} alkylcarbonyloxy, (10) C_{1-6} alkylcarbonylthio, (11) C_{1-6} alkylcarbonylamino, (12) aryloxy, (13) arylthio, (14) arylsulfinyl, (15) arylsulfonyl, (16) arylamino, (17) C_{1-6} alkyl- or arylsulfonylamino, (18) C_{1-6} alkyl- or aryl-ureido, (19) C_{1-6} alkoxy- or aryloxy-carbonylamino, (20) C₁₋₆ alkylamino- or arylamino-carbonyloxy, (21) carboxyl, (22) nitro, (23) a heterocyclic group, (23') Het-S(=O)jwherein Het represents a heterocyclic group, j is 0, 1, or 2, and Het is optionally substituted by alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl, (24) cyano, and (25) a halogen atom,

wherein the alkyl moiety in (4) the C_{1-6} alkoxy group, (5) the C_{1-6} alkylthio group, (6) the C_{1-6} alkylsulfinyl group, and (7) the C_{1-6} alkylsulfonyl group is optionally substituted by a halogen atom; C_{1-6} alkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms; aryloxy; arylthio; hydroxyl; carboxyl; $-S(=O)_2(-OH)$; C_{1-6} alkoxy- or aryloxy-carbonyl; C_{1-6} alkylcarbonyl; aryl; or a heterocyclic group optionally substituted by alkyl optionally substituted by mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and cyclic amino moiety are optionally substituted by

hydroxy, and

5

10

15

20

25

30

35

in (8) the mono- or di-C $_{\text{1-6}}$ alkylamino group, the di-C $_{\text{1-6}}$ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by a halogen atom; C_{1-6} alkyl optionally substituted by hydroxyl, a halogen atom, aryl optionally substituted by a halogen atom, C₁₋₆ alkyl, or C₁₋₆ alkyloxy, or a heterocyclic group optionally substituted by a halogen atom, C₁₋₆ alkyl, or C₁₋₆ alkyloxy, and, when one or two alkyl groups on the amino group and the cyclic amino moiety are substituted by two C_{1-6} alkyl groups, they together may form C_{3-7} cycloalkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; mono- or di- C_{1-6} alkylamino in which the di-C₁₋₆ alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; arylamino in which the amino group is optionally substituted by C₁₋₆ alkyl; mono- or di-C₁₋₆ alkylcarbamoylmethyl in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; aryloxy; arylthio; an oxygen atom (=O); hydroxyl; carboxyl; C_{1-6} alkoxy- or aryloxy-carbonyl; C_{1-6} alkylcarbonyl; aryl optionally substituted by a halogen atom or hydroxyl; or a heterocyclic group, preferably a five- to seven-membered saturated or unsaturated heterocyclic ring, more preferably pyridyl, pyrimidyl, or pyridazyl, and, when one carbon atom in the cyclic amino moiety is substituted by two C₁₋₆ alkoxy groups which may be the same or different, the two alkoxy groups together may form group -O-(CH2)p-O- wherein p is an integer of 2 to 4, and the cyclic amino group may condense with a monocyclic or bicyclic aromatic carbocyclic ring, preferably phenyl or naphthyl, or a monocyclic or bicyclic aromatic heterocyclic ring, preferably pyridyl or naphthyridyl to represent a bicyclic or tricyclic heterocyclic group;

- (III) C₁₋₆ alkoxy optionally substituted by a halogen atom;
- (IV) C₁₋₆ alkylthio optionally substituted by a halogen atom;
- (V) C₃₋₇ cycloalkyl;
- (VI) aryl;
 - (VII) aryloxy;

(VIII) C₁₋₆ alkylcarbonylamino;

(VIX) C₁₋₆ alkylcarbonyloxy;

(X) hydroxyl;

(XI) nitro;

5 (XII) cyano;

(XIII) amino;

(XIV) mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms;

(XV) arylamino;

10 (XVI) C₁₋₆ alkyl- or aryl-sulfonylamino;

(XVII) C₁₋₆ alkyl- or aryl-ureido;

(XVIII) C₁₋₆ alkoxy- or aryloxy-carbonylamino;

(XIX) C₁₋₆ alkylamino- or arylamino-carbonyloxy;

(XX) C₁₋₆ alkoxy- or aryloxy-carbonyl;

15 (XXI) acyl;

(XXII) carboxyl;

(XXIII) carbamoyl;

(XXIV) mono- or di-alkylcarbamoyl;

(XXV) a heterocyclic group;

20 (XXVI) alkyl- or aryl-sulfonyl;

(XXVII) C₂₋₆ alkenyloxy group; or

(XXVIII) C₂₋₆ alkynyloxy,

Z represents group (A), group (B), or group (C):

$$R^6$$
 R^7 (A)

$$R^6$$
 R^7
 R^{17}
 R^{17}
 R^{17}

$$R^6$$
 R^7 R^{17} C

wherein

10

15

20

25

30

 R^6 and R^7 , which may be the same or different, represent a hydrogen atom, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, aryl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, or a heterocyclic group, and the C_{1-6} alkyl, aryl C_{2-6} alkenyl, and heterocyclic groups, which may be the same or different, are optionally substituted by:

(I) a halogen atom;

- (II) C₁₋₆ alkyl optionally having a substituent selected from a group consisting of (1) hydroxyl, (2) thiol, (3) amino, (4) C₁₋₆ alkoxy, (5) C₁₋₆ alkylthio optionally substituted by hydroxyl, (6) C₁₋₆ alkylsulfinyl, (7) C₁₋₆ alkylsulfonyl, (8) mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, (9) C₁₋₆ alkylcarbonyloxy, (10) C₁₋₆ alkylcarbonylthio, (11) C₁₋₆ alkylcarbonylamino, (12) aryloxy, (13) arylthio, (14) arylsulfinyl, (15) arylsulfonyl, (16) arylamino, (17) C₁₋₆ alkyl- or aryl-sulfonylamino, (18) C₁₋₆ alkyl- or aryl-ureido, (19) C₁₋₆ alkoxy- or aryloxy-carbonylamino, (20) C₁₋₆ alkylamino- or arylamino-carbonyloxy, (21) carboxyl, (22) nitro, (23) a heterocyclic group, (23') Het-S- wherein Het represents a heterocyclic group, (24) cyano, (25) a halogen atom, and (26) C₁₋₆ alkyl- or aryloxycarbonyl;
 - (III) C_{1-6} alkoxy optionally having a substituent selected from the group consisting of (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio optionally substituted by hydroxyl, (6) C_{1-6} alkylsulfinyl, (7) C_{1-6} alkylsulfonyl, (8) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, (9) C_{1-6} alkylcarbonyloxy, (10) C_{1-6} alkylcarbonylthio, (11) C_{1-6} alkylcarbonylamino, (12) aryloxy, (13) arylthio, (14) arylsulfinyl, (15) arylsulfonyl, (16) arylamino, (17) C_{1-6} alkyl- or aryl-sulfonylamino, (18) C_{1-6} alkyl- or aryl-ureido, (19) C_{1-6} alkoxy- or aryloxy-carbonylamino, (20) C_{1-6} alkylamino- or arylamino-carbonyloxy, (21) carboxyl, (22) nitro, (23) a heterocyclic group, (23') Het-S- wherein Het represents a

heterocyclic group, (24) cyano, (25) a halogen atom, and (26) C₁₋₆ alkylor aryl-oxycarbonyl;

(IV) C₁₋₆ alkylthio optionally substituted by a halogen atom;

(V) C₃₋₇ cycloalkyl;

(VI) aryl; 5

(VII) aryloxy;

(VIII) C₁₋₆ alkylcarbonylamino;

(VIX) C₁₋₆ alkylcarbonyloxy;

(X) hydroxyl;

(XI) nitro; 10

(XII) cyano;

(XIII) amino;

(XIV) mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms;

(XV) arylamino; 15

30

35

(XVI) C₁₋₆ alkyl- or aryl-sulfonylamino;

(XVII) C₁₋₆ alkyl- or aryl-ureido;

(XVIII) C₁₋₆ alkoxy- or aryloxy-carbonylamino;

(XIX) C₁₋₆ alkylamino- or arylamino-carbonyloxy;

(XX) C₁₋₆ alkoxy- or aryloxy-carbonyl; 20

(XXI) acyl;

(XXII) carboxyl;

(XXIII) carbamoyl;

(XXIV) mono- or di-alkylcarbamoyl;

(XXV) a heterocyclic group; 25

(XXVI) alkyl- or aryl-sulfonyl;

(XXVII) C2-6 alkenyloxy; or

(XXVIII) C₂₋₆ alkynyloxy,

R¹⁷ represents a hydrogen atom,

R¹⁰¹ and R¹⁰² together represent =O, and R¹⁰³ and R¹⁰⁴ represent a hydrogen atom, or R^{101} and R^{104} together represent a bond, and R^{102} and R¹⁰³ together represent a bond.

Compounds according to the present invention include compounds represented by formula (I-3) and pharmaceutically acceptable salts and solvates thereof:

$$R^{202}$$
 R^{203}
 R^{204}
 R^{204}
 R^{205}
 R^{205}
 R^{205}
 R^{206}
 R^{201}
 R^{202}
 R^{202}
 R^{203}
 R^{204}
 R^{203}
 R^{204}
 R^{204}

wherein R^{201} , R^{202} , R^{203} , R^{204} , R^{201} , R^{202} , R^{203} , and R^{204} , which may be the same or different, represent a hydrogen atom, a halogen atom, hydroxyl, C_{1-6} alkyl, or C_{1-6} alkoxy,

 R^{205} and $R^{205'}$, which may be the same or different, represent a hydrogen atom or C_{1-6} alkyl,

 R^{206} and $R^{206'}$, which may be the same or different, represent group A or group B

$$R^6$$
 R^7 (A)

10

15

5

$$R^6$$
 R^{17}
 R^{17}
 R^{18}
 R^{19}

wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents aryl or a saturated or unsaturated five- or six-membered heterocyclic group in which the aryl group and heterocyclic group are optionally substituted by a halogen atom or C_{1-6} alkyl optionally substituted by a halogen atom, and

T represents C₂₋₈ alkylene chain.

The pharmaceutical composition according to the present invention comprises the compound according to the present invention.

The pharmaceutical composition according to the present invention may be used for the prevention or treatment of diseases for which serum phosphorus lowering action or phosphate transport inhibition is therapeutically effective. Further, the compounds according to the present invention may be used as a serum phosphorus concentration lowering agent and a phosphate transport inhibitor.

According to the present invention, there is provided use of the compound according to the present invention, for the manufacture of a medicament in the prevention or treatment of diseases for which serum phosphorus lowering action or phosphate transport inhibition is therapeutically effective.

Further, according to the present invention, there is provided use of the compound according to the present invention, for the manufacture of a serum phosphorus concentration lowering agent.

Furthermore, according to the present invention, there is provided use of the compound according to the present invention, for the manufacture of a phosphate transport inhibitor.

Furthermore, according to the present invention, there is provided a method for preventing or treating a disease for which serum phosphorus lowering action or phosphate transport inhibition is therapeutically effective, said method comprising the step of administering a therapeutically or prophylactically effective amount of the compound according to the present invention to a mammal.

Furthermore, according to the present invention, there is provided a method for lowering the concentration of serum phosphorus in a blood stream, said method comprising the step of administering a therapeutically or prophylactically effective amount of the compound according to the present invention to a mammal.

Furthermore, according to the present invention, there is provided a method for inhibiting phosphate transport in vivo, said method comprising the step of administering a therapeutically or prophylactically effective amount of the compound according to the present invention to a mammal.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the inhibition of sodium-dependent phosphate

35

30

5

10

15

20

25

uptake of rabbit jejunal brush border membrane vesicle by compounds according to the present invention;

Fig. 2 shows the inhibition of sodium-dependent glucose uptake of rabbit jejunal brush border membrane vesicle by compounds according to the present invention;

Fig. 3 shows the inhibition of sodium-dependent phosphate uptake of Xenopus oocytes, which have expressed NaPi-2a by compounds according to the present invention; and

Fig. 4 shows the inhibition of sodium-dependent phosphate uptake of Xenopus oocytes, which have expressed NaPi-2a and NaPi-2b by compounds according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Compounds

5

10

15

20

25

30

35

The terms " C_{1-6} alkyl" and " C_{1-6} alkoxy" as used herein as a group or a part of a group respectively mean straight chain or branched chain alkyl and alkoxy having 1 to 6 carbon atoms. Preferably, the " C_{1-6} alkyl" and " C_{1-6} alkoxy" may be C_{1-4} alkyl and C_{1-4} alkoxy, respectively.

The term " C_{3-7} cycloalkyl" as used herein as a group or a part of a group means cyclic alkyl having 3 to 7 carbon atoms. Preferably, the " C_{3-7} cycloalkyl" is C_{5-7} cycloalkyl.

The terms " C_{2-6} alkenyl" and " C_{2-6} alkynyl" as used herein as a group or a part of a group respectively mean straight chain or branched chain alkenyl having 2 to 6 carbon atoms and alkynyl having 2 to 6 carbon atoms. Preferably, the " C_{2-6} alkenyl" is C_{2-4} alkenyl" is C_{2-4} alkynyl" is C_{2-4} alkynyl.

Examples of C₁₋₆ alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, and n-hexyl.

Examples of C_{1-6} alkoxy include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, and t-butoxy.

Examples of C_{3-7} cycloalkyl include cyclopropyl, cyclopentyl, and cyclohexyl.

Examples of C_{2-6} alkenyl include allyl, butenyl, pentenyl, and hexenyl.

Examples of C_{2-6} alkynyl include 2-propynyl, butynyl, pentynyl, and hexynyl.

The term "halogen atom" as used herein means a fluorine, chlorine, bromine, or iodine atom.

The terms "unsaturated carbocyclic ring" and "unsaturated heterocyclic ring" as used herein respectively mean carbocyclic ring and heterocyclic ring having one or more unsaturated bonds such as a double bond.

The term "aryl" as used herein means a monocyclic, bicyclic, or tricyclic aromatic hydrocarbon group. Examples of aryl include phenyl, naphthyl, and anthryl.

The term "aryl C_{1-6} alkyl" as used herein means C_{1-6} alkyl substituted by a monocyclic, bicyclic, or tricyclic aromatic hydrocarbon group. Examples of aryl C_{1-6} alkyl include benzyl ($C_6H_5CH_2$ -) and phenethyl ($C_6H_5CH_2CH_2$ -).

10

15

20

25

30

35

Th term "arylamino" as used herein means amino substituted by a monocyclic, bicyclic, or tricyclic aromatic hydrocarbon group.

The term "aryl C_{2-6} alkenyl" as used herein means C_{2-6} alkenyl substituted by a monocyclic, bicyclic, or tricyclic aromatic hydrocarbon group. Examples of aryl C_{2-6} alkenyl include phenylethenyl (C_6H_5 - CH=CH-).

The term "heterocyclic group" as used herein means a saturated or unsaturated five- to nine-membered (preferably five- to seven-membered, more preferably five- or six-membered) monocyclic heterocyclic group and a saturated or unsaturated nine- to eleven-membered bicyclic heterocyclic group. The heterocyclic group contains one or more heteroatoms selected from oxygen, nitrogen, and sulfur atoms. Examples of the heterocyclic ring include pyridyl, furyl, thienyl, pyrrolyl, pyridazyl, pyrimidyl, pyrazyl, isoxazolyl, quinolyl, quinoxalinyl, and quinazolidyl.

In the di- C_{1-6} alkylamino group as used herein, two C_{1-6} alkyl groups attached to the nitrogen atom together may form "cyclic amino." The term "cyclic amino" as used herein means a saturated five- to eight-membered heterocyclic group formed by combining two C_{1-6} alkyl groups attached to the nitrogen atom with each other. The cyclic amino group may contain, in addition to the nitrogen atom in the amino group, 1 to 3 heteroatoms, preferably one oxygen atom, one nitrogen atom, or one sulfur atom. Examples of the saturated cyclic amino group include

pyrrolidyl, piperidyl, piperazyl, morpholyl, thiomorpholyl, homopiperidyl, and [1,4]diazepine.

In the di- C_{2-6} alkenylamino group as used herein, two C_{2-6} alkenyl groups attached to the nitrogen atom together may form "unsaturated cyclic amino." The term "cyclic amino" as used herein means an unsaturated five- to eight-membered heterocyclic group formed by combining two C_{2-6} alkenyl groups attached to the nitrogen atom with each other. The cyclic amino group may contain, in addition to the nitrogen atom in the amino group, 1 to 3 heteroatoms, preferably one oxygen atom or one nitrogen atom. Examples of the unsaturated cyclic amino group include pyrrole, pyrazole, imidazolyl, and tetrahydropyridyl.

5

10

15

20

25

30

Compounds represented by formula (I) include hydrazine derivatives and quinazolone derivatives. When R^{101} and R^{102} together represent =0 and R^{103} and R^{104} represent a hydrogen atom, formula (I) represents hydrazine derivatives. When R^{101} and R^{104} together represent a bond and when R^{102} and R^{103} together represent a bond, formula (I) represent quinazolone derivatives.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, the five- to nine-membered unsaturated carbocyclic moiety or five- to nine-membered unsaturated heterocyclic moiety represented by A may represent, for example, benzene ring moiety, cyclohexene ring moiety, or pyridine ring moiety.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when the carbocyclic moiety and hetrocyclic moiety represented by A are substituted by two substituents, (c) C_{1-6} alkyl groups or (m) C_{2-6} alkenyl groups, these alkyl groups or these alkenyl groups together may form a C_{3-5} alkylene chain or a C_{3-5} alkylene chain. In this case, A may represent, for example, naphthyl, quinolyl, benzo[b]thiophene, 4,5,6,7,-tetrahydrobenzo[b]thiophene, cyclopenta[b]thiophene, or quinazolyl.

In formula (I) and formulae (I-1) and (I-2) which will be described later, preferably, the five- to nine-membered unsaturated carbocyclic moiety or the five- to nine-membered unsaturated heterocyclic moiety represented by A may represent formula (IIa) or formula (IIa'):

$$R^{2}$$
 R^{3}
 R^{4}
 R^{1}
 R^{1}

$$R^2$$
 R^3
 N
(IIa')

wherein R^1 , R^2 , R^3 , and R^4 , which may be the same or different, represent

- (a) a halogen atom;
- (b) hydroxyl;
- (c) C₁₋₆ alkyl;
- (d) C₁₋₆ alkoxy;
- 10 **(e) aryl**;

5

- (f) aryloxy;
- (g) arylthio;
- (h) alkylthio;
- (i) nitro;
- 15 **(j) amino**;
 - (i) nitro;
 - (j) amino;
 - (k) mono- or di-arylamino;
 - (I) mono- or di-C₁₋₆ alkylamino;
- 20 (m) C₂₋₆ alkenyl;
 - (n) C₂₋₆ alkenyloxy;
 - (o)C₂₋₆ alkenylthio;
 - (p) mono- or di-C₂₋₆ alkenylamino;
 - (q) carboxyl;
- 25 (r) C₁₋₆ alkyl- or aryl-oxycarbonyl; or
 - (s) a hydrogen atom,
 - (c) the C_{1-6} alkyl group, (d) the C_{1-6} alkoxy group, (e) the aryl

group, (f) the aryloxy group, (g) the arylthio group, (h) the alkylthio group, (m) the C_{2-6} alkenyl group, (n) the C_{2-6} alkenyloxy group, and (o) the C_{2-6} alkenylthio group are optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) monoor di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, or (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by halogen, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6} alkylamino, (15) C_{1-6} alkoxy- $(CH_2CH_2O)m$ wherein m is an integer of 1 to 6, (16) carboxyl, (17) an oxygen atom (=0), or (18) C_{3-7} cycloalkyl,

the aryl moiety in (k) the mono- or di-arylamino group is optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by a halogen atom, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6} alkylamino, (15) C_{1-6} alkoxy-(CH_2CH_2O)m wherein m is an integer of 1 to 6, (16) carboxyl, (17) an oxygen atom (=O), or (18) C_{3-7} cycloalkyl, and, in the case of the mono-arylamino group, the amino group is optionally substituted by C_{1-6} alkyl optionally substituted by hydroxyl or a halogen atom,

in (I) the mono- or di- C_{1-6} alkylamino, the di- C_{1-6} alkyl group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by a halogen atom; C_{1-6} alkyl optionally substituted by hydroxyl, a halogen atom, or aryl optionally substituted by a halogen atom, C_{1-6} alkyl, or C_{1-6} alkyloxy, a heterocyclic group optionally substituted by a halogen atom, C_{1-6} alkyl, or C_{1-6} alkyloxy, and, when one or two alkyl groups on the amino group and the cyclic amino moiety are substituted by two C_{1-6} alkyl groups, they together may form C_{3-7} cycloalkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally

containing 1 to 3 heteroatoms, and one or two C₁₋₆ alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl or a halogen atom; arylamino in which the amino group is alkyl; monoor di-C₁₋₆ C_{1-6} optionally substituted by alkylcarbamoylmethyl in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; aryloxy; arylthio; an oxygen atom (=O); hydroxyl; carboxyl; C_{1-6} alkoxy- or aryloxy-carbonyl; C_{1-6} alkylcarbonyl; aryl optionally substituted by a halogen atom or hydroxyl; or a heterocyclic group,

5

10

15

20

25

30

35

in (p) the mono- or di-C₂₋₆ alkenylamino group, the amino group of the monoalkenylamino group is optionally substituted by $C_{1\text{-}6}$ alkyl optionally substituted by hydroxyl or a halogen atom, and the di-C2-6 alkenyl together may form unsaturated cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkenyl groups on the amino group or the unsaturated cyclic amino moiety is optionally substituted by a halogen atom; C₁₋₆ alkyl optionally substituted by hydroxyl, a halogen atom, aryl optionally substituted by a halogen atom, $C_{1\text{-}6}$ alkyl, or $C_{1\text{-}6}$ alkyloxy, a heterocyclic group optionally substituted by a halogen atom, C_{1-6} alkyl, or C_{1-6} alkyloxy, and, when one or two alkyl groups on the amino group and the cyclic amino moiety are substituted by two $C_{1\text{-}6}$ alkyl groups, they together may form C_{3-7} cycloalkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two C₁₋₆ alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl or a halogen atom; arylamino in which the amino group is optionally substituted by C₁₋₆ alkyl; mono- or di-C₁₋₆ alkylcarbamoylmethyl in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; aryloxy; arylthio; an oxygen atom (=O); hydroxyl; carboxyl; C₁₋₆ alkoxy- or aryloxy-carbonyl; C₁₋₆ alkylcarbonyl; aryl optionally substituted by a halogen atom or hydroxyl; or a heterocyclic group,

when the carbocyclic moiety and hetrocyclic moiety represented

by A are substituted by two (c) C_{1-6} alkyl groups or (m) C_{2-6} alkenyl groups, preferably when positions of R^2 and R^3 are substituted, the alkyl or alkenyl groups together with the carbon atoms to which they are respectively attached may form an unsaturated five- to seven-membered carbocyclic ring, and

* represents a bond to $-C(=O)-N(-Z)(-R^{104})$.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, A may represent formula (IIa), and, in this case, preferably R^1 , R^2 , R^3 , and R^4 represent

- (a) a halogen atom;
 - (b) hydroxyl;
 - (c) C_{1-6} alkyl;
 - (d) C₁₋₆ alkoxy;
 - (e) aryl;
- 15 (f) aryloxy;

5

10

25

30

- (g) arylthio;
- (h) alkylthio;
- (i) nitro;
- (j) amino; or
- (k) a hydrogen atom, and
 - (c) the C_{1-6} alkyl group, (d) the C_{1-6} alkoxy group, (e) the aryl group, (f) the aryloxy group, (g) the arylthio group, and (h) the alkylthio group are optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, or (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by halogen, C_{1-6} alkyl, C_{1-6} alkylamino.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), preferably, R¹, R³, and R⁴, which may be the same or different, represent

a hydrogen atom;

35 a halogen atom;

 $C_{1\text{--}6}$ alkyl in which the alkyl group is optionally substituted by $C_{1\text{--}6}$

alkoxy or a halogen atom;

aryl optionally substituted by C₁₋₆ alkoxy or a halogen atom;

 C_{1-6} alkoxy in which the alkoxy group is optionally substituted by C_{1-6} alkoxy or a halogen atom; or

aryloxy optionally substituted by C₁₋₆ alkoxy or a halogen atom,

R² may represent

a hydrogen atom;

a halogen atom;

hydroxyl;

5

10

15

20

25

30

35

 C_{1-6} alkyl in which the alkyl group is optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, or (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by a halogen atom, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6} alkylamino; or

 C_{1-6} alkoxy in which the alkoxy group is optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which di- C_{1-6} alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, or (13) a halogen atom,

more preferably,

R¹, R³, and R⁴ represent a hydrogen atom,

R² represents

a halogen atom;

hydroxyl;

 C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino; or C_{1-6} alkoxy optionally substituted by mono- or di- C_{1-6} alkylamino.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), preferably, R^1 , R^2 , R^3 , and R^4 , which may be the same or different, represent a hydrogen atom; a halogen atom; hydroxyl; optionally substituted C_{1-6} alkyl; optionally substituted C_{2-6} alkenyl; optionally

substituted C_{1-6} alkoxy; optionally substituted mono- or di-arylamino; optionally substituted mono- or di- C_{1-6} alkylamino in which the dialkylamino together may form optionally substituted cyclic amino optionally containing 1 to 3 heteroatoms; optionally substituted mono- or di- C_{2-6} alkenylamino in which the di- C_{2-6} alkenylamino group together may form optionally substituted unsaturated cyclic amino optionally containing 1 to 3 heteroatoms, and, when R^2 and R^3 are optionally substituted C_{1-6} alkyl or optionally substituted C_{2-6} alkenyl, the alkyl or alkenyl groups together with the carbon atoms to which R^2 and R^3 are respectively attached may form an unsaturated five- to seven-membered carbocyclic ring, and, more preferably, R^1 and R^4 represent a hydrogen atom.

5

10

15

20

25

30

35

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), preferably, R^1 , R^2 , R^3 , and R^4 , which may be the same or different, represent a hydrogen atom; a halogen atom; hydroxyl; optionally substituted C_{1-6} alkyl; or optionally substituted C_{1-6} alkoxy, and more preferably, R^1 and R^4 represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), R^1 , R^2 , R^3 , and R^4 more preferably represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), more preferably,

R¹ and R⁴ represent a hydrogen atom,

any one of R^2 and R^3 , preferably R^2 , represents a halogen atom; hydroxyl; C_{1-6} alkyl optionally having a substituent, preferably a halogen atom, mono- or di- alkylamino which may form cyclic amino, or hydroxyl; C_{1-6} alkoxy optionally having a substituent, preferably a halogen atom, mono- or di-alkylamino which may form cyclic amino, hydroxyl, C_{1-6} alkoxy- $(CH_2CH_2O)m$, wherein m is an integer of 1 to 6, or C_{3-7} cycloalkyl; optionally substituted mono- or di-arylamino; mono- or di- C_{1-6} alkylamino optionally having a substituent, preferably hydroxyl, C_{1-6} alkylamino which may form cyclic amino, or carboxyl, and the dialkylamino together may form cyclic amino optionally having a

substituent, preferably hydroxyl, C_{1-6} alkyl optionally substituted by hydroxyl, an oxygen atom (=O), mono- or di- C_{1-6} alkylamino which may form cyclic amino, or carboxyl, and the cyclic amino group may contain 1 to 3 heteroatoms; optionally substituted mono- or di- C_{2-6} alkenylamino, in which the di- C_{2-6} alkenylamino group together may form optionally substituted unsaturated cyclic amino optionally containing 1 to 3 heteroatoms, and the other (preferably, R^3) represents a hydrogen atom.

In the above preferred embodiment, more preferably, the cyclic amino group may be a five- to seven-membered heterocyclic group that optionally contains one oxygen atom, one nitrogen atom, or one sulfur atom in addition to the nitrogen atom in the amino group. Particularly preferred saturated cyclic amino groups include pyrrolidyl, piperidyl, piperazyl, morpholyl, thiomorpholyl, homopiperidyl, and [1,4]diazepine.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), more preferably, R^1 and R^4 represent a hydrogen atom, and any one of R^2 and R^3 represents a halogen atom; hydroxyl; optionally substituted C_{1-6} alkyl; optionally substituted C_{1-6} alkoxy with the other representing a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), more preferably, R^1 and R^4 represent a hydrogen atom, and R^2 and R^3 , which may be the same or different, represent a halogen atom; hydroxyl; C_{1-6} alkyl optionally having a substituent, preferably a halogen atom, monoor di-alkylamino group which may form cyclic amino, or hydroxyl; C_{1-6} alkoxy optionally having a substituent, preferably a halogen atom, monoor di-alkylamino which may form cyclic amino, hydroxyl, C_{1-6} alkoxy- $(CH_2CH_2O)m$ wherein m is an integer of 1 to 6, or C_{3-7} cycloalkyl.

In the above preferred embodiment, more preferably, the cyclic amino group may be a five- to seven-membered heterocyclic group that optionally contains one oxygen atom, one nitrogen atom, or one sulfur atom in addition to the nitrogen atom in the amino group. Particularly preferred saturated cyclic amino groups include pyrrolidyl, piperidyl, piperazyl, morpholyl, thiomorpholyl, homopiperidyl, and [1,4]diazepine.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), more

35

5

10

15

20

25

30

preferably, R¹ and R⁴ represent a hydrogen atom, and R² and R³ together with the carbon atoms to which they are respectively attached form an unsaturated five- to seven-membered carbocyclic ring. Particularly preferably, group A together with R² and R³ forms naphthyl or quinolyl.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), more preferably, R^1 and R^4 represent a hydrogen atom, and R^2 and R^3 , which may be the same or different, represent C_{1-6} alkoxy optionally having a substituent (C_{1-6} alkoxy-(CH_2CH_2O) m wherein m is an integer of 1 to 6).

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), more preferably, R^1 and R^4 represent a hydrogen atom; any one of R^2 and R^3 (preferably, R^2) represents mono- or di- C_{1-6} alkylamino optionally having a substituent, preferably hydroxyl, C_{1-6} alkyl optionally substituted by hydroxyl, an oxygen atom (=0), mono- or di- C_{1-6} alkylamino which may form cyclic amino, or carboxyl, and the dialkylamino group together may form cyclic amino optionally having a substituent, preferably hydroxyl, C_{1-6} alkylamino which may form cyclic amino, or carboxyl, and the cyclic amino group may contain 1 to 3 heteroatoms; and the other (preferably, R^3) represents a hydrogen atom.

In the above preferred embodiment, more preferably, the cyclic amino group may be a five- to seven-membered heterocyclic group that optionally contains one oxygen atom, one nitrogen atom, or one sulfur atom in addition to the nitrogen atom in the amino group. Particularly preferred saturated cyclic amino groups include pyrrolidyl, piperidyl, piperazyl, morpholyl, thiomorpholyl, homopiperidyl, and [1,4]diazepine.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIa) or formula (IIa'), more preferably, R^1 and R^4 represent a hydrogen atom; any one of R^2 and R^3 (preferably, R^2) represents C_{1-6} alkoxy optionally having a substituent, preferably a halogen atom, mono- or di-alkylamino which may form cyclic amino, hydroxyl, C_{1-6} alkoxy-(CH_2CH_2O)m wherein m is an integer of 1 to 6, or C_{3-7} cycloalkyl; and the other (preferably, R^3) represents a hydrogen atom.

In the above preferred embodiment, more preferably, the cyclic amino group may be a five- to seven-membered heterocyclic group that optionally contains one oxygen atom, one nitrogen atom, or one sulfur atom in addition to the nitrogen atom in the amino group. Particularly preferred saturated cyclic amino groups include pyrrolidyl, piperidyl, piperazyl, morpholyl, thiomorpholyl, homopiperidyl, and [1,4]diazepine.

5

10

15

20

25

30

In formula (I) and formula (I-1) and formula (I-2) which will be described later, preferably, the five- to nine-membered unsaturated carbocyclic moiety or the five- to nine-membered unsaturated heterocyclic moiety represented by A represents formula (IIb):

$$R^{31}$$
 $*$ (IIb)

wherein R^{31} and R^{32} , which may be the same or different, represent a hydrogen atom; a halogen atom; or C_{1-6} alkyl in which the alkyl group is optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, or (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by a halogen, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6} alkylamino; or C_{2-6} alkenyl,

when R^{31} and R^{32} represent alkyl or alkenyl, the alkyl or alkenyl groups together with the carbon atoms to which they are respectively attached may form an unsaturated five- to seven-membered carbocyclic ring, and

* represents a bond to $-C(=O)-N(-Z)(-R^{104})$.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIb), preferably,

 R^{31} and R^{32} , which may be the same or different, represent a hydrogen atom; a halogen atom; or C_{1-6} alkyl in which the alkyl group is optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy,

(5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, or (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by a halogen, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6} alkylamino,

when R^{31} and R^{32} represent alkyl, the alkyl groups together with the carbon atoms to which they are respectively attached may form an unsaturated five- to seven-membered carbocyclic ring, and, in this case, R^{31} and R^{32} together form a C_{3-5} alkylene chain, and --- represents a double bond.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIb), more preferably,

(i) R³¹ and R³² represent a hydrogen atom, or

5

10

15

20

25

30

35

- (ii) any one of R^{31} and R^{32} represents a hydrogen atom, and the other represents C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, preferably piperidyl, morpholyl, and thiomorpholyl, or by a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
- (iii) R^{31} and R^{32} , which may be the same or different, represent C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, preferably piperidyl, morpholyl, and thiomorpholyl, or by a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
- (iv) R³¹ and R³² together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring, preferably a cyclohexane ring, a benzene ring, and a cyclopentane ring.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIb), more preferably, R^{31} and R^{32} represent a hydrogen atom, or any one of R^{31} and R^{32} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom, or R^{31} and R^{32} together with the carbon atoms to which they are respectively attached form an unsaturated five- to seven-membered carbocyclic ring. In this case, R^{31}

and R^{32} together may form a C_{3-5} alkylene chain, and $\frac{}{}$ ---- may represent a double bond.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, preferably, the five- to nine-membered unsaturated carbocyclic moiety or the five- to nine-membered unsaturated heterocyclic moiety represented by A represents formula (IIc):

5

10

15

20

25

30

$$\mathbb{R}^{34}$$
 (IIc)

wherein R^{33} and R^{34} , which may be the same or different, represent a hydrogen atom; a halogen atom; or C_{1-6} alkyl in which the alkyl group is optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, or (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by a halogen, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6} alkylamino,

when R³³ and R³⁴ represent alkyl, the alkyl groups together with the carbon atoms to which they are respectively attached may form an unsaturated five- to seven-membered carbocyclic ring, and

* represents a bond to $-C(=O)-N(-Z)(-R^{104})$.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIc), preferably,

 R^{33} and R^{34} , which may be the same or different, represent a hydrogen atom; a halogen atom; or C_{1-6} alkyl in which the alkyl group is optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, or (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by a halogen, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6}

6 alkylamino,

5

25

30

35

when R^{33} and R^{34} represent alkyl, the alkyl groups together with the carbon atoms to which they are respectively attached may form an unsaturated five- to seven-membered carbocyclic ring, and, in this case, R^{33} and R^{34} together form a C_{3-5} alkylene chain, and $\frac{1}{2}$ represents a double bond.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIc), more preferably,

- (i) R³³ and R³⁴ represent a hydrogen atom, or
- (ii) any one of R³³ and R³⁴ represents a hydrogen atom, and the other represents C₁₋₆ alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino, which may form cyclic amino, preferably piperidyl, morpholyl, and thiomorpholyl, or by a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
- (iii) R^{33} and R^{34} , which may be the same or different, represent C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, preferably piperidyl, morpholyl, and thiomorpholyl, or by a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
- (iv) R³³ and R³⁴ together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to sevenmembered carbocyclic ring, preferably a cyclohexane ring, a benzene ring, and a cyclopentane ring.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IIc), more preferably, R^{33} and R^{34} represent a hydrogen atom, or any one of R^{33} and R^{34} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom, or R^{33} and R^{34} together with the carbon atoms to which they are respectively attached form an unsaturated five- to seven-membered carbocyclic ring. In this case, R^{33} and R^{34} together may form a C_{3-5} alkylene chain, and $\frac{1}{2-2-2}$ may represent a double bond.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, preferably, the five- to nine-membered saturated or unsaturated carbocyclic moiety or the five- to nine-membered saturated or unsaturated heterocyclic moiety represented by A represents formula

(IId):

5

10

15

20

25

30

wherein R^{35} and R^{36} , which may be the same or different, represent a hydrogen atom; a halogen atom; or C_{1-6} alkyl in which the alkyl group is optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, or (14) arylamino in which the amino group is optionally substituted by C_{1-6} alkyl, and the aryl group is optionally substituted by a halogen, C_{1-6} alkyl, C_{1-6} alkoxy, or C_{1-6} alkylamino; or C_{2-6} alkenyl, and

* represents a bond to $-C(=O)-N(-Z)(-R^{104})$.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when A represents formula (IId), more preferably, R^{35} and R^{36} represent a hydrogen atom, or any one of R^{35} and R^{36} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, preferably, R^5 may represent optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, more preferably phenyl or naphthyl, an optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, more preferably pyridyl, furyl, thienyl, isoxazole, and pyrimidyl, or an optionally substituted saturated or unsaturated nine- to eleven-membered bicyclic heterocyclic group, more preferably quinoxalinyl.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, particularly preferably, R^5 represents a cyclic group selected from C_{5-7} cycloalkyl, phenyl, pyridyl, furyl, thienyl, isoxazole, pyrimidyl, and quinoxalinyl, in which the cyclic group is optionally

substituted by a halogen atom; C_{1-6} alkyl optionally substituted by a halogen atom; C_{1-6} alkoxy optionally substituted by a halogen atom; or hydroxyl.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, paricularly preferably, R^5 represents a cyclic group selected from C_{5-7} cycloalkyl, phenyl, pyridyl, furyl, thienyl, isoxazole, pyrimidyl, and quinoxalinyl, in which the cyclic group is optionally substituted by C_{1-6} alkyl in which the alkyl group is optionally substituted by optionally substituted C_{1-6} alkylsulfinyl, optionally substituted C_{1-6} alkylsulfinyl, optionally substituted C_{1-6} alkylsulfinyl, optionally substituted C_{1-6} alkylamino in which the di- C_{1-6} alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, preferably, R⁵ represents a group of formula (IIIa), (IIIb), or (IIIc):

$$\begin{array}{c}
R^{12} \\
\downarrow \\
M \\
\downarrow \\
R^{11}
\end{array}$$
(IIIa)
$$R^{8} \stackrel{D}{=} \begin{array}{c}
F \\
\downarrow \\
R^{9}
\end{array}$$

$$R^{10}$$
 $E-R^9$ (IIIc)

wherein

5

25

30

35

D, E, J, L, and M, which may be the same or different, represent a carbon or nitrogen atom,

G represents an oxygen or sulfur atom,

 R^8 , R^9 , R^{10} , R^{11} , and R^{12} , which may be the same or different, represent

- (I) a halogen atom;
- (II) C₁₋₆ alkyl optionally containing a substituent selected from the group consisting of (1) hydroxyl, (2) thiol, (3) amino, (4) C₁₋₆ alkoxy, (5) 10 C_{1-6} alkylthio, (6) C_{1-6} alkylsulfinyl, (7) C_{1-6} alkylsulfonyl, (8) mono- or di-C₁₋₆ alkylamino, (8') amino substituted by a heterocyclic group optionally substituted by C_{1-6} alkyl, (9) C_{1-6} alkylcarbonyloxy, (10) C_{1-6} alkylcarbonylthio, (11) C_{1-6} alkylcarbonylamino, (12) aryloxy, (13) arylthio, (14) arylsulfinyl, (15) arylsulfonyl, (16) arylamino, (17) C₁₋₆ alkyl- or aryl-15 sulfonylamino, (18) C_{1-6} alkyl- or aryl-ureido, (19) C_{1-6} alkoxy- or aryloxy-carbonylamino, (20) C₁₋₆ alkylamino- or arylamino-carbonyloxy, (21) carboxyl, (22) nitro, (23) a heterocyclic group, (23') Het-S(=0)jwherein Het represents a heterocyclic group, j is 0, 1, or 2, and Het is optionally substituted by alkyl optionally substituted by mono- or di-C₁₋₆ 20 alkylamino in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl, (24) cyano, and (25) a halogen atom,
 - wherein the alkyl moiety in (4) the C_{1-6} alkoxy group, (5) the C_{1-6} alkylthio group, (6) the C_{1-6} alkylsulfinyl group, and (7) the C_{1-6} alkylsulfonyl group is optionally substituted by a hydrogen atom, a halogen atom; C_{1-6} alkyl; C_{1-6} alkylthio; mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms; aryloxy; arylthio; hydroxyl; carboxyl; $-S(=O)_2(-OH)$; C_{1-6} alkoxy- or aryloxy-carbonyl; C_{1-6} alkylcarbonyl; aryl; or a heterocyclic group optionally substituted by alkyl optionally substituted by mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxy, and

in (8) the mono- or di-C₁₋₆ alkylamino group, the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by a halogen atom; C₁₋₆ alkyl optionally substituted by hydroxyl, a halogen atom, aryl optionally substituted by a halogen atom, C₁₋₆ alkyl, or C₁₋₆ alkyloxy, or a heterocyclic group optionally substituted by a halogen atom, C₁₋₆ alkyl, or C₁₋₆ alkyloxy, and, when one or two alkyl groups on the amino group and the cyclic amino moiety are substituted by two C₁₋₆ alkyl groups, they together may form C₃₋₇ cycloalkyl; C₁₋₆ alkoxy; C₁₋₆ alkylthio; mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; arylamino in which the amino group is optionally substituted by C₁₋₆ alkyl; mono- or di-C₁₋₆ alkylcarbamoylmethyl in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; aryloxy; arylthio; an oxygen atom (=0); hydroxyl; carboxyl; C_{1-6} alkoxy- or aryloxy-carbonyl; C_{1-6} alkylcarbonyl; aryl optionally substituted by a halogen atom or hydroxyl; or a heterocyclic group, preferably a five- to seven-membered saturated or unsaturated heterocyclic group, more preferably pyridyl, pyrimidyl, and pyridazyl, and, when one carbon atom in the cyclic amino moiety is substituted by two C₁₋₆ alkoxy groups which may be the same or different, the two alkoxy groups together may form group -O-(CH2)p-O- wherein p is an integer of 2 to 4, and the cyclic amino group may condense with a monocyclic or bicyclic aromatic carbocyclic ring, preferably phenyl or naphthyl, or a monocyclic or bicyclic aromatic heterocyclic ring, preferably pyridyl or naphthyridyl, to represent a bicyclic or tricyclic heterocyclic group;

- (III) C₁₋₆ alkoxy optionally substituted by a halogen atom;
- (IV) C_{1-6} alkylthio optionally substituted by a halogen atom;
- (V) C₃₋₇ cycloalkyi;
- (VI) aryl;
- 35 (VII) aryloxy;

5

10

15

20

25

30

(VIII) C₁₋₆ alkylcarbonylamino;

```
(VIX) C<sub>1-6</sub> alkylcarbonyloxy;
              (X) hydroxyl;
              (XI) nitro;
              (XII) cyano;
 5
              (XIII) amino;
              (XIV) mono- or di-C<sub>1-6</sub> alkylamino in which the di-C<sub>1-6</sub> alkylamino
        group may form cyclic amino optionally containing 1 to 3 heteroatoms;
               (XV) arylamino;
               (XVI) C<sub>1-6</sub> alkyl- or aryl-sulfonylamino;
               (XVII) C<sub>1-6</sub> alkyl- or aryl-ureido;
10
               (XVIII) C<sub>1-6</sub> alkoxy- or aryloxy-carbonylamino;
               (XIX) C<sub>1-6</sub> alkylamino- or arylamino-carbonyloxy;
               (XX) C<sub>1-6</sub> alkoxy- or aryloxy-carbonyl;
               (XXI) acyl;
               (XXII) carboxyl;
15
               (XXIII) carbamoyl;
               (XXIV) mono- or di-alkylcarbamoyl;
               (XXV) a heterocyclic group;
               (XXVI) alkyl- or aryl-sulfonyl;
               (XXVII) C<sub>2-6</sub> alkenyloxy;
20
               (XXVIII) C2-6 alkynyloxy; or
               (XXIX) a hydrogen atom, and
              when D, E, J, L, or M represents a nitrogen atom, R<sup>8</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup>,
      and R12 each are absent, or otherwise together with a nitrogen atom may
      form N-oxide (N \rightarrow O).
25
               In formula (I) and formula (I-1) and formula (I-2) which will be
      described later, when R<sup>5</sup> represents formula (IIIa), formula (IIIb) and
      formula (IIIc), preferably, R8, R9, R10, R11, and R12, which may be the
      same or different, represent
               a hydrogen atom;
30
               a halogen atom;
               hydroxymethyl; or
               C<sub>1-6</sub> alkyl optionally substituted by a halogen atom.
               In formula (I) and formula (I-1) and formula (I-2) which will be
```

described later, when R⁵ represents formula (IIIa), formula (IIIb) and

formula (IIIc), preferably, the substituted C₁₋₆ alkyl which may be

35

represented by R^8 , R^9 , R^{10} , R^{11} , and R^{12} represents a group of formula (IV):

$$-CH_2-Q-X1-R^{13}$$
 (IV)

wherein

5

10

15

25

30

Q represents an oxygen atom, a sulfur atom, sulfinyl, or sulfonyl, X1 represents a bond or straight chain or branched chain

alkylene having 1 to 5 carbon atoms,

 R^{13} represents a hydrogen atom, a halogen atom, C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkylthio, mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, aryloxy, arylthio, hydroxyl, carboxyl, $-S(=O)_2(-OH)$, C_{1-6} alkoxy- or aryloxy-carbonyl, C_{1-6} alkylcarbonyl, aryl, or a heterocyclic group optionally substituted by C_{1-6} alkyl optionally substituted by mono-or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl, and this heterocyclic group preferably represents a five- or six-membered saturated or unsaturated heterocyclic group;

20 or a group of formula (V)

$$-CH_{2}-N$$
 $X2-R^{14}$
 $X3-R^{15}$
 (V)

wherein

X2 represents a bond or straight chain or branched chain alkylene having 1 to 5 carbon atoms,

X3 represents a bond or straight chain or branched chain alkylene having 1 to 5 carbon atoms,

 R^{14} and R^{15} , which may be the same or different, represent a hydrogen atom; a halogen atom; C_{1-6} alkyl optionally substituted by hydroxyl, a halogen atom, aryl optionally substituted by a halogen atom, C_{1-6} alkyl, or C_{1-6} alkyloxy, a heterocyclic group optionally substituted by a halogen atom, C_{1-6} alkyl, or C_{1-6} alkyloxy, and, when one or two alkyl groups on the amino group and the cyclic amino moiety are substituted

by two C_{1-6} alkyl groups, they together may form C_{3-7} cycloalkyl; C_{1-6} alkoxy; C₁₋₆ alkylthio; mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; arylamino in which the amino group is optionally substituted by C₁₋₆ alkyl; mono- or di- C_{1-6} alkylcarbamoylmethyl in which the di- C_{1-6} alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; aryloxy; arylthio; an oxygen atom (=O); hydroxyl; carboxyl; C_{1-6} alkoxy- or aryloxy-carbonyl; C_{1-6} alkylcarbonyl; aryl optionally substituted by a halogen atom or hydroxyl; or a heterocyclic group, preferably a five- or six-membered saturated or unsaturated heterocyclic group, provided that, when X2 represents a bond, R14 represents a hydrogen atom, or when X3 represents a bond, R15 represents a hydrogen atom, or

5

10

15

20

25

30

35

R¹⁴ and R¹⁵ together with a nitrogen atom to which they are respectively attached may form a heterocyclic group that may contain 1 to 3 heteroatoms, preferably one oxygen atom, one nitrogen atom, or one sulfur atom, in addition to the nitrogen atom, to which R¹⁴ and R¹⁵ are attached, and is optionally substituted by hydroxyl; C₁₋₆ alkyl optionally substituted by hydroxyl, a halogen atom, aryl optionally substituted by a halogen atom, C_{1-6} alkyl, or C_{1-6} alkyloxy, or a heterocyclic group optionally substituted by a halogen atom, $C_{1\text{--}6}$ alkyl, or C₁₋₆ alkyloxy, and, when one or two alkyl groups on the amino group and the cyclic amino moiety are substituted by two $C_{1\text{-}6}$ alkyl groups, they together may form C₃₋₇ cycloalkyl; mono- or di-C₁₋₆ alkylamino in which the di- C_{1-6} alkylamino may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; a saturated or unsaturated five- or six-membered heterocyclic group; mono- or di-C₁₋₆ alkylcarbamoylmethyl in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; phenyl; or an oxygen atom (=O), and, when one carbon atom in the cyclic amino moiety is substituted by two C₁₋₆ alkoxy groups which may be the same or different, the two alkoxy groups together may form group -O-(CH₂)p-O- wherein p is an integer of 2 to 4, and the cyclic amino group may condense with a monocyclic or bicyclic aromatic carbocyclic ring, preferably phenyl or naphthyl, or a monocyclic or bicyclic aromatic heterocyclic ring, preferably pyridyl or naphthyridyl, to represent a bicyclic or tricyclic heterocyclic group.

5

10

15

20

25

30

35

Preferably, the cyclic amino group present in formula (IV) and formula (V) may be a five- to seven-membered heterocyclic group that optionally contains one oxygen atom, one nitrogen atom, or one sulfur atom in addition to the nitrogen atom in the amino group, more preferably piperidyl, piperazyl, morpholyl, and thiomorpholyl.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIa), formula (IIIb) or formula (IIIc), preferably, D, E, J, L, and M represent a carbon atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIa), formula (IIIb) or formula (IIIc), preferably, any one or two of D, E, J, L, and M represent a nitrogen atom and the others represent a carbon atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIa), preferably, D, E, J, L, and M represent a carbon atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIa), preferably, any one or two of D, E, J, L, and M represent a nitrogen atom with the others representing a carbon atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIb), preferably, D, E, and J represent a carbon atom, and G represents an oxygen or sulfur atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIc), preferably, D, E, and J represent a carbon atom, and G represents an oxygen or sulfur atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIa), preferably, D, E, J, L, and M represent a carbon atom, any one of R⁸, R⁹, R¹⁰, R¹¹, and R¹² represents a group other than a hydrogen atom, and the others represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIa), preferably, D, E, J, L, and M represent a carbon atom, any one of R^8 , R^9 , R^{10} , R^{11} , and R^{12} represents a halogen atom; optionally substituted C_{1-6} alkyl; or optionally substituted C_{1-6} alkoxy, and the other groups represent a hydrogen atom.

5

10

15

20

25

30

35

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIa), preferably, D, E, J, L, and M represent a carbon atom, R^{10} represents a group other othan a hydrogen atom, preferably substituted C_{1-6} alkyl, more preferably a group of formula (IV) or formula (V), and R^8 , R^9 , R^{11} , and R^{12} represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIa), preferably, D, E, J, L, and M represent a carbon atom, R^{11} represents a group other than a hydrogen atom, preferably substituted C_{1-6} alkyl, more preferably a group of formula (IV) or formula (V), and R^8 , R^9 , R^{10} , and R^{12} represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIa), preferably, D, E, J, L, and M represent a carbon atom, and any two of R⁸, R⁹, R¹⁰, R¹¹, and R¹² represent a group other than a hydrogen atom with the others representing a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIa), preferably, D, E, J, L, and M represent a carbon atom, R^{10} and R^{11} represent a group other than a hydrogen atom, preferably optionally substituted C_{1-6} alkoxy, more preferably optionally substituted methoxy, and R^8 , R^9 , and R^{12} represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIa), preferably, D, E, J, L, and M represent a carbon atom, R^9 and R^{11} represent a group other than a hydrogen atom, preferably, optionally substituted C_{1-6} alkoxy, more preferably optionally substituted methoxy, and R^8 , R^{10} , and R^{12} represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIb) and formula (IIIc),

preferably, D, E, and J represent a carbon atom.

5

10

15

20

25

30

35

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R^5 represents formula (IIIb) and formula (IIIc), preferably, any one or two of D, E, and J represent a nitrogen atom with the other(s) representing a carbon atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIa), preferably,

D, E, J, L, and M represent a carbon atom,

any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIa), preferably,

any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom,

any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom, or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others reperesent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIb), preferably,

D, E, and J represent a carbon atom, and G represents an oxygen or sulfur atom,

one or two of R^8 , R^9 , and R^{10} , which may be the same or different, represent a halogen atom; hydroxymethy; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIc), preferably,

D, E, and J represent a carbon atom, and G represents an oxygen or sulfur atom,

one or two of R^8 , R^9 , and R^{10} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally

substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIa), preferably,

D, E, J, L, and M represent a carbon atom,

R⁸, R⁹, and R¹² represent a hydrogen atom,

one of R^{10} and R^{11} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above with the other groups representing a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIa), preferably,

any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom,

R⁸, R⁹, and R¹² represent a hydrogen atom,

one of R^{10} and R^{11} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above with the other groups representing a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIb), preferably,

D, E, and J represent a carbon atom, and G represents an oxygen or sulfur atom,

one of R^8 , R^9 , and R^{10} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above with the others representing a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, when R⁵ represents formula (IIIc), preferably,

D, E, and J represent a carbon atom, and G represents an oxygen or sulfur atom,

one of R^8 , R^9 , and R^{10} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above with the others representing a hydrogen atom.

In formula (I) and formula (I-1) and formula (I-2) which will be

25

30

35

5

10

15

20

described later, preferably, R^6 represents a hydrogen atom; optionally substituted C_{1-6} alkyl; or optionally substituted aryl.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, more preferably, R^6 represents a hydrogen atom; C_{1-6} alkyl optionally substituted by a halogen atom or C_{1-6} alkoxy; or aryl optionally substituted by a halogen atom, C_{1-6} alkyl, or C_{1-6} alkoxy, most preferably, a hydrogen atom, or C_{1-6} alkyl.

5

10

15

20

25

30

35

In formula (I) and formula (I-1) and formula (I-2) which will be described later, preferably, R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or sixmembered heterocyclic group.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, more preferably, R7 represents a cyclic group selected from phenyl, naphthyl, furyl, pyrrolyl, and thienyl, and the cyclic group is optionally substituted by a halogen atom; C_{1-6} alkyl optionally substituted by a halogen atom; C_{1-6} alkoxy in which the alkoxy group is optioinally substituted by a halogen atom, aryloxy optionally substituted by a halogen atom and C_{1-6} alkyl, C_{1-6} alkoxy in which the alkoxy group is optionally substituted by mono- or di-C₁₋₆ alkylamine in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, or a halogen atom, arylthio optionally substituted by a halogen atom and C_{1-6} alkyl, C_{1-6} alkylthio in which the alkylthio group is optionally substituted by mono- or di-C₁₋₆ alkylamine in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, or a halogen atom, arylamino optionally substituted by $C_{1\text{-}6}$ alkyl, mono- or di-C₁₋₆ alkylamine in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms; hydroxyl; mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms; nitro; C₂₋₆ alkenyloxy; or C₂₋₆ alkynyloxy.

In formula (I) and formula (I-1) and formula (I-2) which will be described later, preferably, R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, preferably phenyl or naphthyl, optionally substituted aryl, preferably phenyl or naphthyl, C_{1-6} alkyl, optionally substituted aryl, preferably phenyl or naphthyl, C_{2-6} alkenyl, or

optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably furyl, thienyl, pyrrolyl, or pyridyl.

Among the compounds of formula (I), hydrazine derivatives may be represented by formula (I-1).

5

$$\begin{array}{c|c}
O \\
\hline
N \\
H
\\
NH
\\
O \\
\hline
R^5
\end{array}$$
(I-1)

wherein A, R⁵, Z, and ---- are as defined in formula (I).

In formula (I-1), preferably,

A represents formula (IIa) or formula (IIa') wherein R^1 , R^2 , R^3 , and R^4 are as defined in formula (IIa) and formula (IIa') and are preferably the same or different and represent a hydrogen atom; a halogen atom; hydroxyl; optionally substituted C_{1-6} alkyl; or optionally substituted C_{1-6} alkoxy,

15

10

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, preferably phenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably pyridyl, thienyl, isoxazole, or pyrimidyl and more preferably represents a group of formula (IIIa), formula (IIIb) or formula (IIIc), and

20

25

30

Z represents group (A), group (B), or group (C) wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, preferably phenyl or naphthyl, optionally substituted aryl, preferably phenyl or naphthyl, C_{1-6} alkyl, optionally substituted aryl, preferably phenyl or naphthyl, C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably furyl, thienyl, pyrrolyl, or pyridyl, and R^{17} represents a hydrogen atom.

In formula (I-1), preferably,

A represents formula (IIa) wherein R^1 , R^2 , R^3 , and R^4 are as defined in formula (IIa),

---- represents a double bond,

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, or optionally substituted saturated or unsaturated five-or six-membered heterocyclic group, preferably pyridyl, thienyl, isoxazole, or pyrimidyl and more preferably represents a group of formula (IIIa), formula (IIIb), or formula (IIIc), and

Z represents group (A) or group (B) wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, preferably phenyl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and R^{17} represents a hydrogen atom.

In formula (I-1), preferably,

5

10

15

20

25

30

35

A represents formula (IIb) wherein R^{31} and R^{32} are as defined in formula (IIb), preferably, R^{31} and R^{32} represent a hydrogen atom, or any one of R^{31} and R^{32} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom, or R^{31} and R^{32} together form a C_{3-5} alkylene chain,

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, preferably phenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably pyridyl, thienyl, isoxazole, or pyrimidyl, more preferably represents a group of formula (IIIa), formula (IIIb), or formula (IIIc), and

Z represents group (A) or group (B) wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or sixmembered heterocyclic group, and R^{17} represents a hydrogen atom.

In formula (I-1), preferably,

A represents formula (IIc) wherein R^{33} and R^{34} are as defined in formula (IIc), and, preferably, R^{33} and R^{34} represent a hydrogen atom, or any one of R^{33} and R^{34} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom, or R^{33} and R^{34} together form a C_{3-5} alkylene chain,

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, preferably phenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably pyridyl,

thienyl, isoxazole, or pyrimidyl, and more preferably, represents a group of formula (IIIa), formula (IIIb), or formula (IIIc), and

Z represents group (A) and group (B) wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or sixmembered heterocyclic group, and R^{17} represents a hydrogen atom.

In formula (I-1), preferably,

5

10

15

20

25

30

35

A represents formula (IId) wherein R^{35} and R^{36} are as defined in formula (IId), and, preferably, R^{35} and R^{36} represent a hydrogen atom, or any one of R^{35} and R^{36} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom,

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, preferably phenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably pyridyl, thienyl, isoxazole, or pyrimidyl, and more preferably represents a group of formula (IIIa), formula (IIIb), or formula (IIIc),

Z represents group (A) or group (B) wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or sixmembered heterocyclic group, and R^{17} represents a hydrogen atom.

In formula (I-1), more preferably,
A represents formula (IIa) or formula (IIa'),

wherein

(1) R¹, R², R³, and R⁴ represent a hydrogen atom,

(2) R^1 and R^4 represent a hydrogen atom, any one of R^2 and R^3 represents a halogen atom; hydroxyl; optionally substituted C_{1-6} alkyl; optionally substituted C_{1-6} alkoxy; optionally substituted mono- or diarylamino; optionally substituted mono- or di- C_{1-6} alkylamino in which the dialkylamino together may form optionally substituted cyclic amino optionally containing 1 to 3 heteroatoms; or optionally substituted mono- or di- C_{2-6} alkenylamino in which the di- C_{2-6} alkenylamino group together may form optionally substituted unsaturated cyclic amino optionally containing 1 to 3 heteroatoms, and the other represents a hydrogen atom, (3) R^1 and R^4 represent a hydrogen atom, and R^2 and R^3 , which may be

the same or different, represent a halogen atom; hydroxyl; optionally substituted C₁₋₆ alkyl; or optionally substituted C₁₋₆ alkoxy,

- (4) R¹ and R⁴ represent a hydrogen atom, and R² and R³ together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,
- (5) R¹ and R⁴ represent a hydrogen atom, any one of R² and R³ represents optionally substituted mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino together may form optionally substituted cyclic amino optionally containing 1 to 3 heteroatoms, and the other represents a hydrogen atom, or
- (6) R¹ and R⁴ represent a hydrogen atom, any one of R² and R³ represents optionally substituted C₁₋₆ alkoxy, and the other represents a hydrogen atom,

R⁵ represents formula (IIIa)

5

10

15

20

25

30

35

- (i) D, E, J, L, and M represent a carbon atom, any one or two of R⁸, R⁹, R¹⁰, R¹¹, and R¹², which may be the same or different, represent a halogen atom; hydroxymethyl; C₁₋₆ alkyl optionally substituted by a halogen atom; or C₁₋₆ alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (ii) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, any one or two of R⁸, R⁹, R¹⁰, R¹¹, and R12 may be the same or different and represent a halogen atom; hydroxymethyl; C₁₋₆ alkyl optionally substituted by a halogen atom, or C₁₋ 6 alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (iii) D, E, J, L, and M represent a carbon atom, R⁸, R⁹, and R¹² represent a hydrogen atom, any one of R¹⁰ and R¹¹ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other
- represents a hydrogen atom, or
- (iv) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, R8, R9, and R12 represent a hydrogen atom, and one of R¹⁰ and R¹¹ represents a group of formula
- (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other

represents a hydrogen atom,

Z represents group (A), group (B), or group (C):

wherein

5

10

30

 R^6 represents a hydrogen atom or $C_{\text{1-6}}$ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

In formula (I-1), more preferably,

A represents formula (IIa) or formula (IIa')

wherein

- (1) R¹, R², R³, and R⁴ represent a hydrogen atom,
- (2) R¹ and R⁴ represent a hydrogen atom, any one of R² and R³ represents a halogen atom; hydroxyl; optionally substituted C₁₋₆ alkyl; optionally substituted C₁₋₆ alkoxy; optionally substituted mono- or diarylamino; optionally substituted mono- or di-C₁₋₆ alkylamino in which the dialkylamino together may form optionally substituted cyclic amino optionally containing 1 to 3 heteroatoms; or optionally substituted mono- or di-C₂₋₆ alkenylamino in which the di-C₂₋₆ alkenylamino group together may form optionally substituted unsaturated cyclic amino optionally containing 1 to 3 heteroatoms, and the other represents a hydrogen atom, (3) R¹ and R⁴ represent a hydrogen atom, and R² and R³, which may be the same or different, represent a halogen atom; hydroxyl; optionally substituted C₁₋₆ alkyl; or optionally substituted C₁₋₆ alkoxy,
 - (4) R¹ and R⁴ represent a hydrogen atom, and R² and R³ together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,
 - (5) R¹ and R⁴ represent a hydrogen atom, any one of R² and R³ represents optionally substituted mono- or di-C₁₋₆ alkylamino in which the di-C₁₋₆ alkylamino together may form optionally substituted cyclic amino optionally containing 1 to 3 heteroatoms, and the other represents a hydrogen atom, or
- (6) R¹ and R⁴ represent a hydrogen atom, any one of R² and R³ represents optionally substituted C₁₋₆ alkoxy, and the other represents a hydrogen atom,

R⁵ represents formula (IIIb) or formula (IIIc) wherein

- (i) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, any one or two of R^8 , R^9 , and R^{10} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom, or
- (ii) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, one of R⁸, R⁹, and R¹⁰ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the others represent a hydrogen atom,

Z represents group (A), group (B), or group (C):

15 whereir

5

10

20

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

In formula (I-1), more preferably,

A represents formula (IIb)

wherein

- 25 (i) R³¹ and R³² represent a hydrogen atom,
 - (ii) any one of R^{31} and R^{32} represents a hydrogen atom, and the other represents C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms,
- 30 (iii) R³¹ and R³², which may be the same or different, represent C₁₋₆ alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
- (iv) R³¹ and R³² together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,

R⁵ represents formula (IIIa) wherein

5

10

15

20

25

30

35

- (i) D, E, J, L, and M represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (ii) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} may be the same or different and represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom, or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (iii) D, E, J, L, and M represent a carbon atom, R⁸, R⁹, and R¹² represent a hydrogen atom, any one of R¹⁰ and R¹¹ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other represents a hydrogen atom, or
- (iv) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, R^8 , R^9 , and R^{12} represent a hydrogen atom, and one of R^{10} and R^{11} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above, and the other represents a hydrogen atom,

Z represents group (A), group (B), or group (C): wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom. In formula (I-1), more preferably, A represents formula (IIb) wherein

(i) R³¹ and R³² represent a hydrogen atom,

- (ii) any one of R^{31} and R^{32} represents a hydrogen atom, and the other represents C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms,
- 5 (iii) R³¹ and R³², which may be the same or different, represent C₁₋₆ alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
- (iv) R³¹ and R³² together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,

R⁵ represents formula (IIIb) or formula (IIIc) wherein

15

25

30

35

- (i) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, any one or two of R^8 , R^9 , and R^{10} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom, or
- 20 (ii) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, one of R⁸, R⁹, and R¹⁰ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the others represent a hydrogen atom,

Z represents group (A), group (B), or group (C): wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom. In formula (I-1), more preferably, A represents formula (IIc) wherein

(i) R³³ and R³⁴ represent a hydrogen atom,

- (ii) any one of R^{33} and R^{34} represents a hydrogen atom, and the other represents C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms,
- (iii) R³³ and R³⁴, which may be the same or different, represent C₁₋₆ alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
- (iv) R³³ and R³⁴ together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,

R⁵ represents formula (IIIa)

wherein

10

15

- (i) D, E, J, L, and M represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (ii) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, any one or two of R⁸, R⁹, R¹⁰, R¹¹, and R¹² may be the same or different and represent a halogen atom; hydroxymethyl; C₁₋₆ alkyl optionally substituted by a halogen atom, or C₁₋₆ alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- 25 (iii) D, E, J, L, and M represent a carbon atom, R⁸, R⁹, and R¹² represent a hydrogen atom, any one of R¹⁰ and R¹¹ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other represents a hydrogen atom, or
- (iv) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, R⁸, R⁹, and R¹² represent a hydrogen atom, and one of R¹⁰ and R¹¹ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other represents a hydrogen atom,

Z represents group (A), group (B), or group (C):

wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

In formula (I-1), more preferably,

A represents formula (IIc)

10 wherein

5

15

35

- (i) R³³ and R³⁴ represent a hydrogen atom,
- (ii) any one of R^{33} and R^{34} represents a hydrogen atom, and the other represents C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms,
- (iii) R^{33} and R^{34} , which may be the same or different, represent C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
- 20 (iv) R³³ and R³⁴ together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,

R⁵ represents formula (IIIb) or formula (IIIc) wherein

- 25 (i) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, any one or two of R⁸, R⁹, and R¹⁰, which may be the same or different, represent a halogen atom; hydroxymethyl; C₁₋₆ alkyl optionally substituted by a halogen atom; or C₁₋₆ alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom, or
 - (ii) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, one of R⁸, R⁹, and R¹⁰ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the others represent a hydrogen atom,

Z represents group (A), group (B), or group (C):

wherein

5

10

30

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

In formula (I-1), more preferably,

A represents formula (IId)

wherein R^{35} and R^{36} represent a hydrogen atom, or any one of R^{35} and R^{36} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom,

R⁵ represents formula (IIIa) wherein

- (i) D, E, J, L, and M represent a carbon atom, any one or two of R⁸, R⁹, R¹⁰, R¹¹, and R¹², which may be the same or different, represent a halogen atom; hydroxymethyl; C₁₋₆ alkyl optionally substituted by a halogen atom; or C₁₋₆ alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- 20 (ii) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, any one or two of R⁸, R⁹, R¹⁰, R¹¹, and R¹² may be the same or different and represent a halogen atom; hydroxymethyl; C₁₋₆ alkyl optionally substituted by a halogen atom, or C₁₋₆ alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
 - (iii) D, E, J, L, and M represent a carbon atom, R^8 , R^9 , and R^{12} represent a hydrogen atom, any one of R^{10} and R^{11} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above, and the other represents a hydrogen atom, or
 - (iv) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, R^8 , R^9 , and R^{12} represent a hydrogen atom, and one of R^{10} and R^{11} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula
- 35 (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other represents a hydrogen atom,

Z represents group (A), group (B), or group (C):

wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

in formula (I-1), more preferably,

10 A represents formula (IId)

wherein R^{35} and R^{36} represent a hydrogen atom, or any one of R^{35} and R^{36} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom,

R⁵ represents formula (IIIb) or formula (IIIc)

15 wherein

5

20

25

30

35

- (i) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, any one or two of R^8 , R^9 , and R^{10} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom, or
- (ii) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, one of R^8 , R^9 , and R^{10} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above, and the others represent a hydrogen atom,

Z represents group (A), group (B), or group (C):

wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

Among the compounds of formula (I), quinazolone derivatives may be represented by formula (I-2).

$$\begin{array}{c|c}
O \\
\hline
A & \\
\hline
N & \\
\hline
R^5
\end{array}$$
(I-2)

wherein A, R^5 , Z, and $\underline{---}$ are as defined in formula (I).

In formula (I-2), preferably,

5

10

15

20

25

30

A represents formula (IIa) or formula (IIa') wherein R^1 , R^2 , R^3 , and R^4 are as defined in formula (IIa) and formula (IIa') and are preferably the same or different and represent a hydrogen atom; a halogen atom; hydroxyl; optionally substituted C_{1-6} alkyl; or optionally substituted C_{1-6} alkoxy,

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, preferably phenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably pyridyl, thienyl, isoxazole, or pyrimidyl and more preferably represents a group of formula (IIIa), formula (IIIb) or formula (IIIc).

Z represents group (A), group (B), or group (C) wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, preferably, phenyl, or naphthyl, optionally substituted aryl, preferably phenyl, or naphthyl, C_{1-6} alkyl, optionally substituted aryl, preferably phenyl, or naphthyl, C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably furyl, thienyl, pyrrolyl, or pyridyl, and R^{17} represents a hydrogen atom.

In formula (I-2), preferably,

A represents formula (IIa) wherein R^1 , R^2 , R^3 , and R^4 are as defined in formula (IIa),

---- represents a double bond,

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, or optionally substituted saturated or unsaturated five-or six-membered heterocyclic group, preferably pyridyl, thienyl, isoxazole, or pyrimidyl and more preferably represents a group of formula (IIIa), formula (IIIb), or formula (IIIc).

Z represents group (A) or group (B) wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl,

preferably phenyl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and R^{17} represents a hydrogen atom.

In formula (I-2), preferably,

5

10

15

20

25

30

35

A represents formula (IIb) wherein R^{31} and R^{32} are as defined in formula (IIb), preferably, R^{31} and R^{32} represent a hydrogen atom, or any one of R^{31} and R^{32} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom, or R^{31} and R^{32} together may form a C_{3-5} alkylene chain,

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, preferably phenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably pyridyl, thienyl, isoxazole, or pyrimidyl, more preferably a group of formula (IIIa), formula (IIIb), or formula (IIIc), and

Z represents group (A) or group (B) wherein R^6 repersents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or sixmembered heterocyclic group, and R^{17} represents a hydrogen atom.

In formula (I-2), preferably,

A represents formula (IIc) wherein R^{33} and R^{34} are as defined in formula (IIc), and, preferably, R^{33} and R^{34} represent a hydrogen atom, or any one of R^{33} and R^{34} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom, or R^{33} and R^{34} together form a C_{3-5} alkylene chain,

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, preferably phenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably pyridyl, thienyl, isoxazole, or pyrimidyl, more preferably a group of formula (IIIa), formula (IIIb), or formula (IIIc), and

Z represents group (A) and group (B) wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or sixmembered heterocyclic group, and R^{17} represents a hydrogen atom.

In formula (I-2), preferably,

5

10

15

A represents formula (IId) wherein R^{35} and R^{36} are as defined in formula (IId), and R^{35} and R^{36} represent a hydrogen atom, or any one of R^{35} and R^{36} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom,

 R^5 represents optionally substituted C_{5-7} cycloalkyl, optionally substituted aryl, preferably phenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, preferably pyridyl, thienyl, isoxazole, or pyrimidyl, more preferably a group of formula (IIIa), formula (IIIb), or formula (IIIc),

Z represents group (A) or group (B) wherein R^6 represents a hydrogen atom or C_{1-6} alkyl, R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or sixmembered heterocyclic group, and R^{17} represents a hydrogen atom.

In formula (I-2), more preferably, A represents formula (IIa) or formula (IIa'), wherein

- (1) R¹, R², R³, and R⁴ represent a hydrogen atom,
- (2) R¹ and R⁴ represent a hydrogen atom, any one of R² and R³ represents a halogen atom; hydroxyl; optionally substituted C₁-6 alkyl; optionally substituted C₁-6 alkoxy; optionally substituted mono- or diarylamino; optionally substituted mono- or di-C₁-6 alkylamino in which the dialkylamino together may form optionally substituted cyclic amino optionally containing 1 to 3 heteroatoms; or optionally substituted mono- or di-C₂-6 alkenylamino in which the di-C₂-6 alkenylamino group together may form optionally substituted unsaturated cyclic amino optionally cantaining 1 to 3 heteroatoms, and the other represents a hydrogen atom, (3) R¹ and R⁴ represent a hydrogen atom, and R² and R³, which may be the same or different, represent a halogen atom; hydroxyl; optionally substituted C₁-6 alkyl; or optionally substituted C₁-6 alkoxy,
 - (4) R¹ and R⁴ represent a hydrogen atom, and R² and R³ together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,
- 35 (5) R¹ and R⁴ represent a hydrogen atom, any one of R² and R³ represents optionally substituted mono- or di-C₁₋₆ alkylamino in which the

 $di-C_{1-6}$ alkylamino together may form optionally substituted cyclic amino optionally containing 1 to 3 heteroatoms, and the other represents a hydrogen atom, or

(6) R^1 and R^4 represent a hydrogen atom, any one of R^2 and R^3 represents optionally substituted C_{1-6} alkoxy, and the other represents a hydrogen atom,

R⁵ represents formula (IIIa)

5

10

- (i) D, E, J, L, and M represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (ii) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, any one or two of R⁸, R⁹, R¹⁰, R¹¹, and R¹² may be the same or different and represent a halogen atom; hydroxymethyl; C₁₋₆ alkyl optionally substituted by a halogen atom, or C₁₋₆ alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (iii) D, E, J, L, and M represent a carbon atom, R⁸, R⁹, and R¹² represent a hydrogen atom, any one of R¹⁰ and R¹¹ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other represents a hydrogen atom,
- 25 (iv) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, R⁸, R⁹, and R¹² represent a hydrogen atom, and one of R¹⁰ and R¹¹ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other represents a hydrogen atom,

Z represents group (A), group (B), or group (C): wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic

group, and

5

10

15

20

25

30

35

R¹⁷ represents a hydrogen atom. In formula (I-2), more preferably, A represents formula (IIa) or formula (IIa') wherein

- (1) R¹, R², R³, and R⁴ represent a hydrogen atom,
- (2) R^1 and R^4 represent a hydrogen atom, any one of R^2 and R^3 represents a halogen atom; hydroxyl; optionally substituted C_{1-6} alkyl; optionally substituted C_{1-6} alkoxy; optionally substituted mono- or diarylamino; optionally substituted mono- or di- C_{1-6} alkylamino in which the dialkylamino together may form optionally substituted cyclic amino optionally containing 1 to 3 heteroatoms; or optionally substituted mono- or di- C_{2-6} alkenylamino in which the di- C_{2-6} alkenylamino group together may form optionally substituted unsaturated cyclic amino optionally containing 1 to 3 heteroatoms, and the other represents a hydrogen atom, (3) R^1 and R^4 represent a hydrogen atom, and R^2 and R^3 , which may be the same or different, represent a halogen atom; hydroxyl; optionally substituted C_{1-6} alkyl; or optionally substituted C_{1-6} alkoxy,
- (4) R¹ and R⁴ represent a hydrogen atom, and R² and R³ together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,
- (5) R^1 and R^4 represent a hydrogen atom, any one of R^2 and R^3 represents optionally substituted mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino together may form optionally substituted cyclic amino optionally containing 1 to 3 heteroatoms, and the other represents a hydrogen atom, or
- (6) R^1 and R^4 represent a hydrogen atom, any one of R^2 and R^3 represents optionally substituted C_{1-6} alkoxy, and the other represents a hydrogen atom,

R⁵ represents formula (IIIb) or formula (IIIc) wherein

(i) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, any one or two of R^8 , R^9 , and R^{10} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen

atom, or

5

10

15

20

25

30

35

(ii) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, one of R^8 , R^9 , and R^{10} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above, and the others represent a hydrogen atom,

Z represents group (A), group (B), or group (C): wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 $\mbox{\ensuremath{\mathsf{R}}}^7$ represents optionally substituted aryl, optionally substituted aryl $\mbox{\ensuremath{\mathsf{C}}}_{1\text{-}6}$ alkyl, optionally substituted aryl $\mbox{\ensuremath{\mathsf{C}}}_{2\text{-}6}$ alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

In formula (I-2), more preferably,

A represents formula (IIb)

wherein

- (i) R³¹ and R³² represent a hydrogen atom,
- (ii) any one of R³¹ and R³² represents a hydrogen atom, and the other represents C₁₋₆ alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms,
 - (iii) R^{31} and R^{32} , which may be the same or different, represent C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
 - (iv) R³¹ and R³² together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,

R⁵ represents formula (IIIa)

wherein

(i) D, E, J, L, and M represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,

(ii) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} may be the same or different and represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom, or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,

(iii) D, E, J, L, and M represent a carbon atom, R⁸, R⁹, and R¹² represent a hydrogen atom, any one of R¹⁰ and R¹¹ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other represents a hydrogen atom, or

(iv) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, R^8 , R^9 , and R^{12} represent a hydrogen atom, and one of R^{10} and R^{11} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined in above, and the other represents a hydrogen atom,

Z represents group (A), group (B), or group (C): wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom. In formula (I-2), more preferably, A represents formula (IIb) wherein

(i) R³¹ and R³² represent a hydrogen atom,

5

10

15

20

25

35

- (ii) any one of R³¹ and R³² represents a hydrogen atom, and the other represents C₁₋₆ alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms,
 - (iii) R^{31} and R^{32} , which may be the same or different, represent C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain

1 to 3 heteroatoms, or

5

10

15

20

25

35

(iv) R³¹ and R³² together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,

R⁵ represents formula (IIIb) or formula (IIIc) wherein

- (i) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, any one or two of R^8 , R^9 , and R^{10} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom, or
- (ii) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, one of R⁸, R⁹, and R¹⁰ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the others represent a hydrogen atom,

Z represents group (A), group (B), or group (C):

wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

In formula (I-2), more preferably,

A represents formula (IIc)

wherein

- (i) R³³ and R³⁴ represent a hydrogen atom,
- (ii) any one of R³³ and R³⁴ represents a hydrogen atom, and the other represents C₁₋₆ alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms,
 - (iii) R³³ and R³⁴, which may be the same or different, represent C₁₋₆ alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain

1 to 3 heteroatoms, or

5

10

15

20

25

30

35

(iv) R³³ and R³⁴ together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,

R⁵ represents formula (IIIa) wherein

- (i) D, E, J, L, and M represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (ii) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} may be the same or different and represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom, or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (iii) D, E, J, L, and M represent a carbon atom, R⁸, R⁹, and R¹² represent a hydrogen atom, any one of R¹⁰ and R¹¹ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the other represents a hydrogen atom, or
- (iv) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, R^8 , R^9 , and R^{12} represent a hydrogen atom, and one of R^{10} and R^{11} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above, and the other represents a hydrogen atom,

Z represents group (A), group (B), or group (C): wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

In formula (I-2), more preferably, A represents formula (IIc) wherein

- (i) R³³ and R³⁴ represent a hydrogen atom,
- 5 (ii) any one of R³³ and R³⁴ represents a hydrogen atom, and the other represents C₁₋₆ alkyl optionally substituted by mono- or di-C₁₋₆ alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms,
 - (iii) R^{33} and R^{34} , which may be the same or different, represent C_{1-6} alkyl optionally substituted by mono- or di- C_{1-6} alkylamino, which may form cyclic amino, or a halogen atom, and the cyclic amino group may contain 1 to 3 heteroatoms, or
 - (iv) R³³ and R³⁴ together with the carbon atoms to which they are respectively attached form a saturated or unsaturated five- to seven-membered carbocyclic ring,

R⁵ represents formula (IIIb) or formula (IIIc) wherein

- (i) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, any one or two of R^8 , R^9 , and R^{10} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom, or
- (ii) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, one of R⁸, R⁹, and R¹⁰ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the others represent a hydrogen atom,

Z represents group (A), group (B), or group (C):

wherein

10

15

20

25

30

35

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

In formula (I-2), more preferably,

A represents formula (IId)

wherein R^{35} and R^{36} represent a hydrogen atom, or any one of R^{35} and R^{36} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom,

R⁵ represents formula (IIIa) wherein

5

10

15

20

25

30

35

- (i) D, E, J, L, and M represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} , which may be the same or different, represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom; or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (ii) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, any one or two of R^8 , R^9 , R^{10} , R^{11} , and R^{12} may be the same or different and represent a halogen atom; hydroxymethyl; C_{1-6} alkyl optionally substituted by a halogen atom, or C_{1-6} alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom,
- (iii) D, E, J, L, and M represent a carbon atom, R^8 , R^9 , and R^{12} represent a hydrogen atom, any one of R^{10} and R^{11} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above, and the other represents a hydrogen atom, or
- (iv) any one or two of D, E, J, L, and M represent a nitrogen atom, and the others represent a carbon atom, R^8 , R^9 , and R^{12} represent a hydrogen atom, and one of R^{10} and R^{11} represents a group of formula (IV) wherein Q, X1, and R^{13} are as defined above, or a group of formula (V) wherein X2, X3, R^{14} , and R^{15} are as defined above, and the other represents a hydrogen atom,

Z represents group (A), group (B), or group (C): wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

In formula (I-2), more preferably,

A represents formula (IId)

5

20

25

30

35

wherein R^{35} and R^{36} represent a hydrogen atom, or any one of R^{35} and R^{36} represents a hydrogen atom with the other representing C_{1-6} alkyl optionally substituted by a halogen atom,

R⁵ represents formula (IIIb) or formula (IIIc) wherein

- (i) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, any one or two of R⁸, R⁹, and R¹⁰, which may be the same or different, represent a halogen atom; hydroxymethyl; C₁₋₆ alkyl optionally substituted by a halogen atom; or C₁₋₆ alkoxy optionally substituted by a halogen atom, and the others represent a hydrogen atom, or
- (ii) D, E, and J represent a carbon atom, G represents an oxygen or sulfur atom, one of R⁸, R⁹, and R¹⁰ represents a group of formula (IV) wherein Q, X1, and R¹³ are as defined above, or a group of formula (V) wherein X2, X3, R¹⁴, and R¹⁵ are as defined above, and the others represent a hydrogen atom,

Z represents group (A), group (B), or group (C):

wherein

R⁶ represents a hydrogen atom or C₁₋₆ alkyl,

 R^7 represents optionally substituted aryl, optionally substituted aryl C_{1-6} alkyl, optionally substituted aryl C_{2-6} alkenyl, or optionally substituted saturated or unsaturated five- or six-membered heterocyclic group, and

R¹⁷ represents a hydrogen atom.

Examples of preferred compounds according to the present invention include compounds 1 to 1077 described in the Examples.

Compounds of formula (I) according to the present invention include compounds wherein

A represents a five- to nine-membered unsaturated carbocyclic moiety or a five- to nine-membered unsaturated heterocyclic moiety, and ____ represents a double bond,

the carbocyclic moiety and heterocyclic moiety represented by A are optionally substituted by

- (a) a halogen atom;
- (b) hydroxyl;
- (c) C_{1-6} alkyl;
- (d) C_{1-6} alkoxy;
- 5 (e) aryl;
 - (f) aryloxy;
 - (g) arylthio;
 - (h) alkylthio;
 - (i) nitro; or
- 10 (i) amino,

15

20

25

30

35

- - (c) the C_{1-6} alkyl group, (d) the C_{1-6} alkoxy group, (e) the aryl group, (f) the aryloxy group, (g) the arylthio group, and (h) the alkylthio group are optionally substituted by (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) C_{1-6} alkylthio, (6) C_{1-6} alkylsulfonyl, (7) mono- or di- C_{1-6} alkylamino in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, (8) aryloxy, (9) arylthio, (10) arylsulfonyl, (11) aryl, (12) a heterocyclic group, (13) a halogen atom, or (14) arylamino in which the amino group is optionally substituted by C₁₋₆ alkyl, and the aryl group is optionally substituted by a halogen atom, $C_{\text{1-6}}$ alkyl, C₁₋₆ alkoxy, or C₁₋₆ alkylamino,

when the carbocyclic moiety and the heterocyclic moiety are substituted by two (c) C_{1-6} alkyl groups, they together may form a C_{3-5} alkylene chain,

R⁵ represents C₁₋₆ alkyl, aryl, C₁₋₆ alkoxy, aryloxy, C₁₋₆ alkylamino, arylamino, C₁₋₆ alkylthio, arylthio, C₃₋₇ cycloalkyl, or a heterocyclic group, and the C_{1-6} alkyl, aryl, C_{1-6} alkoxy, aryloxy, C_{1-6} alkylamino, arylamino, C₁₋₆ alkylthio, arylthio, C₃₋₇ cycloalkyl, or heterocyclic group represented by R⁵ may be the same or different, and is optionally substituted by

- (I) a halogen atom;
- (II) C₁₋₆ alkyl optionally containing a substituent selected from the group consisting of (1) hydroxyl, (2) thiol, (3) amino, (4) C_{1-6} alkoxy, (5) $C_{1\text{-}6}$ alkylthio, (6) $C_{1\text{-}6}$ alkylsulfinyl, (7) $C_{1\text{-}6}$ alkylsulfonyl, (8) mono- or di-C₁₋₆ alkylamino, (8') amino substituted by a heterocyclic group optionally substituted by C_{1-6} alkyl, (9) C_{1-6} alkylcarbonyloxy, (10) C_{1-6} alkylcarbonylthio, (11) C₁₋₆ alkylcarbonylamino, (12) aryloxy, (13) arylthio, (14) arylsulfinyl, (15) arylsulfonyl, (16) arylamino, (17) C₁₋₆ alkyl- or aryl-

sulfonylamino, (18) C_{1-6} alkyl- or aryl-ureido, (19) C_{1-6} alkoxy- or aryloxy-carbonylamino, (20) C_{1-6} alkylamino- or arylamino-carbonyloxy, (21) carboxyl, (22) nitro, (23) a heterocyclic group, (23') Het-S(=O)j-wherein Het represents a heterocyclic group, j is 0, 1, or 2, and Het is optionally substituted by alkyl optionally substituted by mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl, (24) cyano, and (25) a halogen atom,

5

10

15

20

25

30

35

wherein the alkyl moiety in (4) the C_{1-6} alkoxy group, (5) the C_{1-6} alkylthio group, (6) the C_{1-6} alkylsulfinyl group, and (7) the C_{1-6} alkylsulfonyl group is optionally substituted by a halogen atom; C_{1-6} alkyl; C_{1-6} alkoxy; C_{1-6} alkylthio; mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms; aryloxy; arylthio; hydroxyl; carboxyl; $-S(=O)_2(-OH)$; C_{1-6} alkoxy- or aryloxy-carbonyl; C_{1-6} alkylcarbonyl; aryl; or a heterocyclic group optionally substituted by alkyl optionally substituted by mono- or di- C_{1-6} alkylamino in which the di- C_{1-6} alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxy, and

in (8) the mono- or di-C₁₋₆ alkylamino group, the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by a halogen atom; C₁₋₆ alkyl optionally substituted by hydroxyl; C₁₋₆ alkoxy; C₁₋₆ alkylthio; mono- or di-C₁₋₆ alkylamino in which one or two alkyl groups on the amino group are optionally substituted by hydroxyl; arylamino in which the amino group is alkyl; monoor substituted by C₁₋₆ optionally alkylcarbamoylmethyl in which the di-C₁₋₆ alkylamino group may form cyclic amino optionally containing 1 to 3 heteroatoms, and one or two alkyl groups on the amino group and the cyclic amino moiety are optionally substituted by hydroxyl; aryloxy; arylthio; an oxygen atom; hydroxyl; carboxyl; C₁₋₆ alkoxy- or aryloxy-carbonyl; C₁₋₆ alkylcarbonyl; aryl optionally substituted by a halogen atom or hydroxyl; or a heterocyclic group;

```
(III) C<sub>1-6</sub> alkoxy optionally substituted by a halogen atom;
               (IV) C<sub>1-6</sub> alkylthio optionally substituted by a halogen atom;
                (V) C<sub>3-7</sub> cycloalkyl;
                (VI) aryl;
                (VII) aryloxy;
 5
                (VIII) C<sub>1-6</sub> alkylcarbonylamino;
                (VIX) C<sub>1-6</sub> alkylcarbonyloxy;
                (X) hydroxyl;
                (XI) nitro;
                (XII) cyano;
10
                (XIII) amino;
                (XIV) mono- or di-C<sub>1-6</sub> alkylamino in which the di-C<sub>1-6</sub> alkylamino
         group may form cyclic amino optionally containing 1 to 3 heteroatoms;
                (XV) arylamino;
                (XVI) C<sub>1-6</sub> alkyl- or aryl-sulfonylamino;
15
                (XVII) C<sub>1-6</sub> alkyl- or aryl-ureido;
                (XVIII) C<sub>1-6</sub> alkoxy- or aryloxy-carbonylamino;
                (XIX) C<sub>1-6</sub> alkylamino- or arylamino-carbonyloxy;
                (XX) C<sub>1-6</sub> alkoxy- or aryloxy-carbonyl;
                (XXI) acyl;
20
                (XXII) carboxyl;
                (XXIII) carbamoyl;
                (XXIV) mono- or di-alkylcarbamoyl;
                (XXV) a heterocyclic group;
                (XXVI) alkyl- or aryl-sulfonyl;
25
                (XXVII) C2-6 alkenyloxy; or
                (XXVIII) C<sub>2-6</sub> alkynyloxy,
                Z represents group A or group B wherein R<sup>6</sup>, R<sup>7</sup>, and R<sup>17</sup> are as
       defined in formula (I),
```

 R^{101} and R^{102} together represent =0, and R^{103} and R^{104} represent a hydrogen atom, or R^{101} and R^{104} together represent a bond, and R^{102} and R^{103} together represent a bond.

30

35

Compounds according to the present invention may form pharmaceutically acceptable salts thereof. Preferred examples of such salts include: alkali metal or alkaline earth metal salts such as sodium salts, potassium salts or calcium salts; hydrohalogenic acid salts such as

hydrofluoride salts, hydrochloride salts, hydrobromide salts, or hydroiodide salts; inorganic acid salts such as nitric acid salts, perchloric acid salts, sulfuric acid salts, or phosphoric acid salts; lower alkylsulfonic acid salts such as methanesulfonic acid salts, trifluoromethanesulfonic acid salts, or ethanesulfonic acid salts; arylsulfonic acid salts such as benzenesulfonic acid salts or p-toluenesulfonic acid salts; organic acid salts such as fumaric acid salts, succinic acid salts, citric acid salts, tartaric acid salts, oxalic acid salts, maleic acid salts, acetic acid salts, maleic acid salts, lactic acid salts, or ascorbic acid salts; and amino acid salts such as glycinate salts, phenylalanine salts, glutamic acid salts, or aspartic acid salts.

Production of compounds

Compounds of formula (I) may be produced by reacting a hydrazine compound of formula (VI-1) or (VI-2) with a suitable carbonyl compound (compound C) in a suitable sovlent, for example, toluene, in the persence of a suitable acid catalyst, for example, acetic acid.

Scheme 1

5

10

15

(VI-2)

20

wherein A, R^5 , R^6 , and R^7 are as defined in formula (I).

The compound of formula (VI-1) and the compound of formula (VI-2) may be commercially available products, or alternatively may be produced by a production process which will be described later.

The compound of formula (VI-1) and the compound of formula (VI-2) may also be produced by reacting an amino compound of formula (VII) (compound A) with a suitable acid chloride (compound B), or by reacting an amino compound of formula (VII) (compound A) with a suitable carboxylic acid (compound B) in the presence of a suitable 1-ethyl-3-(3example. agent, for condensing dimethylaminopropyl)carbodiimide hydrochloride, to give an amide compound of formula (VIII), then adding hydrazine to the amide compound of formula (VIII) in a suitable solvent, for example, ethanol, and heating the mixture. A reduced form of formula (VI-2) can be produced by carrying out the hydrazination at a higher temperature and prolonging the reaction time. For example, the compound of formula (VI-1) can be produced under reaction conditions of 30 to 40°C and 12 to 24 hr, while the compound of formula (VI-2) can be produced under reaction conditions of 110 to 120°C and 72 to 96 hr.

Scheme 2

5

10

15

20

wherein A and R⁵ are as defined in formula (I); and R²¹ represents a hydrogen atom or a protective group of carboxyl.

The compound wherein R⁵ represents phenyl substituted by formula (IV) or formula (V) can be produced by reacting a compound of formula (VIIIa) with a compound of formula (IV') or formula (V') (compound B') to give a compound of formula (VIIIb) and then subjecting the compound of formula (VIIIb) to reactions shown in scheme 1 and scheme 2.

Scheme 3

5

10

15

20

wherein A and R⁵ are as defined in formula (I); Q, X1, and R¹³ are as defined in formula (IV); X2, X3, R¹⁴ and R¹⁵ are as defined in formula (V); R²¹ represents a hydrogen atom or a protective group of carboxyl; Alk represents an alkylene chain having 1 to 6 carbon atoms; and Hal represents a halogen atom.

Tandem-type compounds of formula (I-3) can also be produced according to scheme 3. Specifically, a compound to which a compound of formula (VIIIa) has been bonded in a tandem manner can be produced by reacting the compound of formula (VIIIa) with H-NR²⁰⁵-T-NR^{205'}-H wherein R²⁰⁵, R^{205'}, and T are as defined in formula (I-3), instead of the compound of formula (IV') and the compound of formula (V'). The compound of formula (I-3) can be produced by subjecting this compound to reactions shown in scheme 1 and scheme 2.

An imine reduced form of formula (I) in which Z represents -NH-CR⁶R⁷R¹⁷ can be produced by dissolving the compound produced according to scheme 1 in a suitable solvent, for example, methanol, and

reducing the compound with a suitable reducing agent, for example, sodium borohydride).

Scheme 4

5 wherein A, R⁵, R⁶, R⁷, and R¹⁷ are as defined in formula (I).

Among amino compounds used as the starting compound in scheme 2, compounds in which ring A is a benzene ring can be synthesized by methods shown in schemes A to H.

Scheme A

Scheme B

compound D

Scheme C

Scheme D

Scheme E

Scheme F

compound D

Scheme G

Scheme H

5

wherein R^{21} represents a hydrogen atom or a protective group of carboxyl; Alk represents an alkylene chain having 2 to 7 carbon atoms; n is an integer of 1 to 6; Hal represents a halogen atom, preferably a bromine or chlorine atom; R^{301} , R^{302} , R^{303} , R^{304} , and R^{305} represent optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted aryl, or the like; R^1 , R^2 , R^3 , and R^4 are as defined in formula (I).

In the above schemes, the esterification can be carried out by esterifying a commercially available carboxylic acid with a suitable esterifying agent, for example, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride.

The introduction of the amino group can be carried out by allowing an alkylamino compound or an arylamino compound to act under basic condition, for example, potassium carbonate.

The reduction of the nitro group can be carried out using a suitable reducing agent, for example, palladium-carbon.

Use of compounds

5

10

15

20

25

30

35

A group of sodium dependent phosphate transporters (NaPi) present in cells are known to be responsible for homeostasis of phosphorus in vivo. In particular, the phosphorus concentration of serum is generally regulated by phosphate absorption in intestinal epithelial cells and phosphate reabsorption in renal tubular cells, and the above phosphate transporters also participate in these mechanisms.

The compounds according to the present invention can inhibit these phosphate transporters that mainly specify phosphate absorption from the intestinal tract and phosphate reabsorption from the kidney (see Pharmacological Test Examples 1 to 3).

Further, the compounds according to the present invention can exhibit phosphate absorption inhibitory activity in the intestinal tract of rats (see Pharmacological Test Example 4).

Accordingly, the compounds according to the present invention can be used for the prevention or treatment of diseases for which serum phosphate lowering action is therapeutically effective.

The term "serum phosphate lowering action" as used herein means action that lowers phosphate concentration of serum. The phosphate concentration of serum is specified by (i) absorption from the intestinal tract and excretion into urine and feces and (ii) introduction and discharge with respect to cells in vivo and calcified tissue typified by osseous tissues. The "serum phosphate lowering action" as used herein embraces the action of lowering of the serum phosphate concentration in the case of action on a healthy living body and is not always limited to the action of lowering of serum phosphate concentration in hyperphosphatemia.

Further, the compounds according to the present invention can be used for the prevention or treatment of diseases for which phosphate transport inhibition is therapeutically effective.

The term "phosphate transport inhibition" as used herein means the inhibition of transport activity of phosphate transporters present on cell membranes of object cells. Object cells include epithelial cells of small intestine, renal epithelial cells, pulmonary epithelial cells, vascular endothelial cells, vascular smooth muscle cells, or osteoblasts.

Diseases for which the serum phosphate lowering action is effective therapeutically and diseases for which phosphate transport inhibition is therapeutically effective include (1) hyperphosphatemia, (2) renal failure and chronic renal failure, (3) secondary hyperparathyroidism and diseases related thereto, (4) metabolic osteopathy, (5) diseases for which the suppression of calcium and/or phosphorus product is effective therapeutically, and (6) other hyperphosphatemia-related diseases.

(1) Hyperphosphatemia

5

10

15

20

25

30

35

The compounds according to the present invention can lower the phosphate concentration of serum and can inhibit phosphate transport and thus can be used for the prevention or treatment of hyperphosphatemia. The term "hyperphosphatemia" as used herein means such a state that the phosphate concentration of serum is beyond a clinically defined normal region.

(2) Renal failure and chronic renal failure

Regarding renal failure and chronic renal failure, it has recently been suggested that an increase in serum phosphate concentration per se is an exacerbation factor of renal failure. In fact, there are a series of reports on that the progress of the renal failure can be delayed by restriction of phosphate ingestion in chronic renal failure patients (Maschio et al., Kidney Int., 22:371-376,1982, Maschio et al., Kidney Int., 24:S273-277, 1983, Barsotti et al., Kidney Int. 24:S278-284,1983).

Accordingly, the compounds according to the present invention which can inhibit phosphate transport and can lower phosphate concentration of serum can be used for the prevention or treatment of the renal failure and the chronic renal failure.

(3) Secondary hyperparathyroidism and primary hyperparathyroidism and diseases related thereto

It is known that hyperphosphatemia secondarily leads to hypocalcemia and thus induces secondary hyperparathyroidism. Accordingly, the compounds according to the present invention can be used for the prevention and treatment of secondary hyperparathyroidism.

5

10

15

20

25

30

35

Further, in recent years, there are a report that a rise of phosphate concentration promotes the secretion of PTH (parathyroid hormone) from parathyroid cells (Almanden Y et al., J Bone Miner Res 11:970-976, 1996), a report that phosphorus restriction suppresses the secretion (Rachel K et al., J Clin Invest 96.327-333, 1995), a report that hyperplasia of parathyroids is suppressed (Slatopolsky E et al., J Clin When these reports Invest 97:2534-2540, 1996) and the like. suggesting that the serum phosphate concentration per se participates in hyperplasia of parathyroids and PTH secretion are taken into consideration, it can be said that the compounds according to the present invention can be used for the prevention and treatment of secondary hyperparathyroidism as well as primary hyperparathyroidism through a lowering in serum phosphate concentration. Further, the compounds according to the present invention can be used for the prevention and treatment of renal osteodystrophy induced by secondary hyperparathyroidism, that is, osteitis fibrosa, ostealgia and arthralgia, bone deformity, fracture and the like.

The compounds according to the present invention can prevent and treat secondary hyperparathyroidism and thus can also be used for the prevention and treatment of diseases said to be induced by PTH increase in the secondary hyperparathyroidism, for example, central or peripheral nervous system damage, anemia, myocardiopathy, hyperlipidemia, anomaly of saccharometabolism, pruritus cutaneus, tendon rupture, sexual dysfunction, muscle damage, skin ischemic ulcer, growth retardation, heart conduction disturbance, pulmonary diffusing impairment, immune deficiency, ostealgia and arthralgia, bone deformity, or fracture.

(4) Calcium and phosphorus metabolic disorder

The compounds according to the present invention can remedy clinical conditions of phosphorus metabolic disorder and, at the same time, are considered to have the effect of remedying clinical conditions of metabolic disorder of minerals including calcium. Accordingly, the

compounds according to the present invention can be used for the prevention and treatment of calcium and phosphorus metabolic disorders such as metabolic osteopathy.

(5) Diseases for which suppression of calcium and/or phosphorus product is therapeutically effective

5

10

15

20

25

30

35

In dialysis patients, when poor control of serum phosphate concentration due to administration of a large amount of calcium preparations and administration of a large amount of vitamin D, and overconsumption of proteins is likely to cause ectopic calcification as a result of a rise of calcium and phosphorus product in blood and is in its turn causative of circulatory disorders derived from calcification of blood circulatory systems including coronary artery (Braun J et al., Am J Kidney Dis. 27:394-401, 1996, Goodman WG et al., N Engl J Med 342:1478-1483,2000, Kimura K et al., Kidney Int. 71: S238-241, 1999). In this case, downward revision of calcium and phosphorus product is effective in remedying clinical condition (Geoffrey AB et al., Am J Kidney Dis. 31:607-617, 1998). The compounds according to the present invention are hyperphosphatemia improving drugs different from calcium preparations and thus can lower the phosphate concentration of serum without a rise of calcium concentration of serum. Thus, the compounds according to the present invention can be used for the treatment of diseases for which the suppression of calcium and/or phosphorus product in blood vessels is therapeutically effective. Such diseases include calcification of cardiovascular system in dialysis patients, agerelated arterial sclerosis, diabetic vasculopathy, calcification of soft tissue, metastatic calcification, and ectopic calcification. Since a rise of calcium and phosphorus product is recognized as a risk factor of clinical conditions of red eye, arthralgia, myalgia, pruritus cutaneus, heart conduction disturbance, pulmonary diffusing impairment, angina pectoris, cardiac infarction, or heart failure induced by cardiac murmur or valvular disease (Tetsuo Tagami, Jin To Toseki (Kidney and Dialysis), Vol. 49:189-191, 2000), the compounds according to the present invention can also be used for the prevention and treatment of these diseases.

(6) Other diseases related to hyperphosphatemia

In addition to the above diseases (1) to (5), hypoparathyroidism, pseudohypoparathyroidism, hypocalcemia, hypercalciuria, vitamin D

toxicosis, acromegaly, overdose of phosphate, acidosis, state of hypercatabolism, rhabdomyolysis, hemolytic anemia, climacteric disturbance, malignant tumor, tumor lysis syndrome, and tumoral calcinosis involve hyperphosphatemia. Therefore, the compounds according to the present invention can also be used for the prevention and treatment of these diseases.

According to the present invention, there is provided a serum phosphate concentration lowering agent comprising the compound according to the present invention.

According to the present invention, there is provided a phosphate transport inhibitor comprising the compound according to the present invention.

According to the present invention, there is provided a method for lowering serum phosphate concentration, comprising administering the compound according to the present invention to a human or a mammal other than a human.

According to the present invention, there is provided a method for inhibiting phosphate transport, comprising administering the compound according to the present invention to a human or mammal other than a human.

Pharmaceutical preparation

5

10

15

20

25

30

35

The compounds according to the present invention can be administered to human and non-human animals orally or parenterally by administration routes, for example, intraoral, nasal administration, transpulmonary administration, intrarectal administration, percutaneous intravenous administration. or administration. subcutaneous Therefore, the compounds according to the present administration. invention can be formulated into suitable dosage forms according to the Dosage forms suitable for the above administration routes. administration routes include tablets, capsules, granules, powders, ointments, poultices, aerosols, suppositories, and injections.

The compound according to the present invention per se can be administered to patients, or alternatively may be administered together with general-purpose preparation additives to patients.

The pharmaceutical composition according to the present invention can be produced according to a well-known formulation

technique by using the compound according to the present invention together with the following additives.

For example, oral preparations, that is, tablets, capsules, granules, and powders, can be produced by conventional methods with the compounds according to the present invention and suitable preparation additives. Additives usable for oral preparations include excipients, binders, disintegrants, and lubricants. They may be used either solely or in a combination of two or more. Excipients include, for example, lactose, mannitol, corn starch, and calcium carbonate. Binders include, for example, gum arabic, tragacanth, gelatin, and methylcellulose. Disintegrants include, for example, corn starch, crystalline cellulose, and carboxymethylcellulose sodium. Lubricants include, for example, talc, and magnesium stearate.

5

10

15

20

25

30

35

Oral preparations containing the compound according to the present invention may be coated with a coating agent according to a well known method. Coating agents usable herein include, for example, hydroxypropylcellulose, hydroxypropylmethylcellulose, aminoalkylmethacrylate copolymer, hydroxypropylmethylcellulose phthalate, and carboxymethylethylcellulose.

Oral preparations can be modified for effectively drawing phosphate absorption inhibition from intestinal tracts of the compound according to the present invention.

When the compounds according to the present invention are orally administered, there is a possibility that, after the inhibition of phosphate transport carriers in small intestine epithelial cells, they are absorbed in the body and inhibit phosphate transport carriers in vascular endothelial cells, pulmonary epithelial cells, renal epithelial cells, osteoblasts and the like. Accordingly, the compounds according to the present invention have the possibility of inhibiting phosphate absorption from the intestine and further inhibiting phosphate absorption in the effectively lower the phosphate to synergistically and kidney concentration of serum. However, the possibility of exhibiting unknown toxicity upon absorption of the compounds according to the present invention in the body cannot be denied. To avoid this phenomenon, a technique may be adopted in which the compounds according to the present invention can specifically inhibit only small intestine epithelium, which is the first barrier for phosphate absorption from outside of the body, without the absorption from the intestinal tract. For example, the absorption of the compound per se from the intestinal tract can be prevented by bonding an inert water-soluble polymer to the compounds according to the present invention to increase the water solubility and molecular weight. Water soluble polymers usable herein include, for example, polyethylene glycol, dextran, and gelatin.

An enteric coating may be applied to the oral preparation according to the present invention for specific dissolution in the intestinal tract after oral administration. The enteric coating may be carried out by a well-known method using an enteric coating agent. Enteric coating agents include, for example, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate, carboxymethylcellulose, and methacrylic acid copolymers.

10

15

20

25

30

35

Further, any foamable substance, which, after oral administration, can promote dissolution speed of the preparation in the intestinal tract to enhance the concentration of the effective ingredient, can be added to the oral preparation according to the present invention. Substances which are foamable upon dissolution include, for example, a combination of sodium hydrogencarbonate and citric acid.

Further, any substance, which, after oral administration, can improve the residence of the preparation in the intestinal tract, can be added to the oral preparation according to the present invention. Substances which can improve the residence include substances which become viscous upon dissolution, and examples thereof include sodium alginate, carboxymethylcellulose sodium, hydroxyethylcellulose, hydroxypropylmethylcellulose, polyvinyl alcohol, polyvintyl pyrrolidone, carboxylvinyl polymer, and chitosan.

In the oral preparation according to the present invention, the above modification methods may be properly used in combination.

The compounds according to the present invention and suitable preparation additives may be used for the manufacture of injections by a general-purpose method. Additives usable in injections include diluents, pH adjustors, tonicity adjusting agents, dissolution aids, and preservatives. They may be used either solely or in a combination of two or more. Diluents include, for example, distilled water for injections.

pH adjustors include, for example, hydrochloric acid, sodium hydroxide. a combination of acetic acid with sodium acetate, and a combination of with sodium dihydrogenphosphate. hydrogenphosphate disodium Tonicity adjusting agents include, for example, sodium chloride, glucose, mannitol, and glycine. Dissolution aids include, for example, ethanol, Polysorbate 20, Polysorbate 80, sucrose fatty acid ester, and propylene include. for example, chlorobutanol, Preservatives benzalconium chloride, and benzethonium chloride.

For the compounds according to the present invention, the dose may be appropriately determined in consideration of particular conditions, for example, the age, weight, sex, type of disease, and severity of condition of patients, and the preparation may be administered, for example, in an amount of 0.1 to 1000 mg/kg, preferably 0.5 to 100 mg/kg, more preferably 1 to 20 mg/kg. This dose may be administered at a time daily or divided doses of several times daily.

10

15

EXAMPLES

The present invention is further illustrated by the following Examples that are not intended as a limitation of the scope of the invention.

5 Example 1

10

15

20

25

30

35

Compound 1 3,4-Dimethoxy-N-[2-(3-phenyl-allylidene-hydrazinocarbonyl)-phenyl]-benzamide

Methyl 2-aminobenzoate (compound A) (2.0 g) was dissolved in anhydrous methylene chloride (40.0 ml). Subsequently, pyridine (2.0 ml) and 3,4-dimethoxybenzoyl chloride (compound B) (3.14 g) were added to the solution at room temperature, and the mixture was stirred at that temperature for 30 min. After the completion of the reaction, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with a saturated aqueous sodium chloride solution, was dried over sodium sulfate, and was then concentrated to give methyl 2-[(3,4-dimethoxybenzoyl)amino]benzoate as a useful intermediate (4.17 g, yield 100%).

Methyl 2-[(3,4-dimethoxybenzoyl)amino]benzoate (4.17 g) produced by the above reaction was dissolved in ethanol (40.0 ml). Hydrazine monohydrate (20.0 ml) was added at room temperature, and the mixture was stirred with heating under reflux for 12 hr. After the completion of the reaction, the reaction solution was allowed to cool at room temperature and was cooled under ice cooling to precipitate crystals. The precipitated crystals were collected by filtration through Kiriyama Rohto (40 mmφ) and were washed with ether to give N-(2-hydrazinocarbonyl-phenyl)-3,4-dimethoxybenzamide as a hydrazine compound (3.55 g, yield 91.3%).

N-(2-Hydrazinocarbonyl-phenyl)-3,4-dimethoxybenzamide (50.0 mg) was dissolved in anhydrous toluene (1.0 ml). Subsequently, a catalytic amount of acetic acid and trans-cinnamaldehyde (compound C) (40.0 μ l) were added at room temperature, and the mixture was stirred with heating under reflux for 30 min. After the completion of the reaction, the reaction solution was allowed to cool at room temperature and was cooled under ice cooling to precipitate crystals. The precipitated crystals were filtered through Kiriyama Rohto (21 mm ϕ) and

were washed with toluene and hexane. The crystals were dried through a vacuum pump to give the title compound 1 (39.0 mg, yield 57.0%). Mass spectrometric value (ESI-MS) 428 (M-1) Compound 2 N-[2-(2-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4dimethoxy-benzamide 5 The title compound 2 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 420 (M-1) 3,4-Dimethoxy-N-[2-(2-methyl-benzylidene-3 hydrazinocarbonyl)-phenyl]-benzamide 10 The title compound 3 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 416 (M-1) 3,4-Dimethoxy-N-[2-(2-methoxy-benzylidene-4 Compound hydrazinocarbonyl)-phenyl]-benzamide 15 The title compound 4 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 432 (M-1) 3,4-Dimethoxy-N-[2-(3-methoxy-benzylidene-5 Compound hydrazinocarbonyl)-phenyl]-benzamide 20 The title compound 5 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 432 (M-1) N-[2-(3,5-Di-tert-butyl-4-hydroxy-benzylidene-6 Compound hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide 25 The title compound 6 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 530 (M-1) 3.4-Dimethoxy-N-[2-(2-methyl-3-phenyl-allylidene-Compound ____7 hydrazinocarbonyl)-phenyl]-benzamide 30 The title compound 7 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 442 (M-1) N-[2-(3,5-Bis-trifluoromethyl-benzylidene-Compound 8 hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide 35 The title compound 8 was produced in the same manner as in Example 1.

5

20

25

30

Mass spectrometric value (ESI-MS) 538 (M-1)

<u>Compound 9</u> N-[2-(3-Cyano-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 9 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 427 (M-1)

<u>Compound 10</u> N-[2-(2-Bromo-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 10 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 480 (M-1)

Compound 11 N-[2-(4-Hydroxy-3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 11 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 448 (M-1)

<u>Compound 12</u> 3,4-Dimethoxy-N-[2-(3,4,5-trimethoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 12 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 492 (M-1)

<u>Compound 13</u> N-[4-Bromo-2-(3-phenyl-allylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 13 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 508 (M-1)

<u>Compound 14</u> N-[4-Bromo-2-(2-bromo-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 14 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 560 (M-1)

Compound 15 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 15 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 420 (M-1)

<u>Compound 16</u> N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 16 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 420 (M-1)

<u>Compound</u> 17 N-[2-(Benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 17 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 402 (M-1)

Compound 18 N-[2-(3-Hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 18 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 418 (M-1)

Compound 19 N-[2-(4-Hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 19 was produced in the same manner as in 20 Example 1.

Mass spectrometric value (ESI-MS) 418 (M-1)

<u>Compound</u> 20 3,4-Dimethoxy-N-[2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 20 was produced in the same manner as in 25 Example 1.

Mass spectrometric value (ESI-MS) 416 (M-1)

<u>Compound 21</u> N-[2-(Furan-2-ylmethylene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 21 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 392 (M-1)

<u>Compound 22</u> 3,4-Dimethoxy-N-[2-(5-methyl-furan-2-ylmethylene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 22 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 406 (M-1)

<u>Compound</u> 23 3,4-Dimethoxy-N-[2-(thiophen-2-ylmethylene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 23 was produced in the same manner as in Example 1.

5 Mass spectrometric value (ESI-MS) 408 (M-1)

<u>Compound</u> 24 3,4-Dimethoxy-N-[2-(thiophen-3-ylmetylene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 24 was produced in the same manner as in Example 1.

10 Mass spectrometric value (ESI-MS) 408 (M-1)

<u>Compound 25</u> N-[2-(2,4-Dihydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 25 was produced in the same manner as in Example 1.

15 Mass spectrometric value (ESI-MS) 434 (M-1)

Compound 26 N-[2-(3,4-Dihydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 26 was produced in the same manner as in Example 1.

20 Mass spectrometric value (ESI-MS) 434 (M-1)

<u>Compound 27</u> N-[2-(Benzylidene-hydrazinocarbonyl)-phenyl]-2-fluoro-benzamide

The title compound 27 was produced in the same manner as in Example 1.

25 Mass spectrometric value (ESI-MS) 360 (M-1)

<u>Compound 28</u> N-[4-Bromo-2-(2-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 28 was produced in the same manner as in Example 1.

30 Mass spectrometric value (ESI-MS) 500 (M-1)

<u>Compound 29</u> N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 29 was produced in the same manner as in Example 1.

¹H-NMR (CDCl₃, 400 MHz): δ 8.55 (1H, d, J = 9.0 Hz), 8.32 (1H, bs), 7.49 - 7.67 (6H, m), 7.40 (1H, q, J = 4.56 Hz), 7.13 (1H, q, J = 5.53 Hz),

6.93 (1H, d, J = 8.8 Hz), 3.98 (3H, s), 3.94 (3H, s)

Mass spectrometric value (ESI-MS) 500 (M-1) Compound 30 N-[4-Bromo-2-(2-methyl-benzylidene-hydrazinocarbonyl)phenyl]-3,4-dimethoxy-benzamide The title compound 30 was produced in the same manner as in 5 Example 1. Mass spectrometric value (ESI-MS) 494 (M-1) Compound 31 N-[4-Bromo-2- (3-methyl-benzylidene-hydrazinocarbonyl)phenyl]-3,4-dimethoxy-benzamide The title compound 31 was produced in the same manner as in 10 Example 1. Mass spectrometric value (ESI-MS) 494 (M-1) Compound 32 N-[2-(3-Chloro-4-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-3,4-dimethoxy-benzamide The title compound 32 was produced in the same manner as in 15 Example 1. Mass spectrometric value (ESI-MS) 454 (M-1) 3,4-Dimethoxy-N-[2-(4-trifluoromethoxy-benzylidene-Compound 33 hydrazinocarbonyl)-phenyl]-benzamide The title compound 33 was produced in the same manner as in 20 Example 1. Mass spectrometric value (ESI-MS) 486 (M-1) N-[2-(3-Bromo-4-methoxy-benzylidene-34 Compound hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 34 was produced in the same manner as in 25 Example 1. Mass spectrometric value (ESI-MS) 512 (M-1) Compound 35 N-[2-(3-Chloro-benzylidene-hydrazinocarbonyl)-phenyl]-3.4-dimethoxy-benzamide The title compound 35 was produced in the same manner as in 30 Example 1. Mass spectrometric value (ESI-MS) 436 (M-1) N-[2-(4-Hydroxy-3,5-dimethyl-benzylidene-36 Compound hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 36 was produced in the same manner as in 35 Example 1.

N-[2-(3-Ethoxy-4-hydroxy-benzylidene-

Mass spectrometric value (ESI-MS) 446 (M-1)

37

Compound hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 37 was produced in the same manner as in Example 1. 5 Mass spectrometric value (ESI-MS) 462 (M-1) Compound 38 2-Fluoro-N-[2-(4-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-benzamide The title compound 38 was produced in the same manner as in Example 1. 10 Mass spectrometric value (ESI-MS) 378 (M-1) Compound 39 2-Fluoro-N-[2-(3-hydroxy-benzylidene-hydrazinocarbonyl)phenyl]-benzamide The title compound 39 was produced in the same manner as in Example 1. 15 Mass spectrometric value (ESI-MS) 376 (M-1) Compound 40 2-Fluoro-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)phenyl]-benzamide The title compound 40 was produced in the same manner as in Example 1. 20 Mass spectrometric value (ESI-MS) 374 (M-1) N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-41 Compound hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 41 was produced in the same manner as in 25 Example 1. Mass spectrometric value (ESI-MS) 504 (M-1) N-[2-(4-Hydroxy-3-methyl-benzylidene-42 Compound_ hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 42 was produced in the same manner as in 30 Example 1. Mass spectrometric value (ESI-MS) 432 (M-1) N-[2-(2,5-Dimethyl-benzylidene-hydrazinocarbonyl)-Compound 43 phenyl]-3,4-dimethoxy-benzamide The title compound 43 was produced in the same manner as in Example 1. 35 Mass spectrometric value (ESI-MS) 430 (M-1)

Compound _____

44

N-[2-(2-Fluoro-5-trifluoromethyl-benzylidene-

hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 44 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 488 (M-1) 5 2-Fluoro-N-[2-(4-hydroxy-3-methyl-benzylidene-45 Compound hydrazinocarbonyl)-phenyl]-benzamide The title compound 45 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 390 (M-1) 10 N-[2-(2,5-Dimethyl-benzylidene-hydrazinocarbonyl)-Compound 46 phenyl]-2-fluoro-benzamide The title compound 46 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 388 (M-1) 15 Compound 47 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4methoxy-benzamide The title compound 47 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 390 (M-1) 20 Compound 48 N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4methoxy-benzamide The title compound 48 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 390 (M-1) 25 4-Methoxy-N-[2-(3-methyl-benzylidene-49 Compound hydrazinocarbonyl)-phenyl]-benzamide The title compound 49 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 386 (M-1) 30 Compound 50 N-[2-(3-Hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-methoxy-benzamide The title compound 50 was produced in the same manner as in Example 1. Mass spectrometric value (ESI-MS) 388 (M-1) 35 4-Methoxy-N-[2-(4-methyl-benzylidene-51 Compound _____

hydrazinocarbonyl)-phenyl]-benzamide

The title compound 51 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 386 (M-1)

5 <u>Compound 52</u> N-[2-(4-Allyloxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 52 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 458 (M-1)

10 <u>Compound 53</u> N-[2-(3,5-Dimethoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 53 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 462 (M-1)

15 <u>Compound 54</u> 3,4-Dimethoxy-N-{2-[3-(3-trifluoromethyl-phenoxy)-benzylidene-hydrazinocarbonyl]-phenyl}-benzamide

The title compound 54 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 562 (M-1)

20 <u>Compound 55</u> N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]- 3,5-dimethoxy-benzamide

The title compound 55 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 420 (M-1)

25 <u>Compound 56</u> N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 56 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 420 (M-1)

30 <u>Compound</u> 57 3,5-Dimethoxy-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 57 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 416 (M-1)

35 <u>Compound 58</u> N-[2-(3-Hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 58 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 418 (M-1)

5

10

20

25

30

35

<u>Compound 59</u> N-[4-Bromo-2-(3-chloro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 59 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 516 (M-1)

<u>Compound 60</u> N-[4-Bromo-2-(4-chloro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 60 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 516 (M-1)

Compound 61 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-3,4-dimethoxy-benzamide

The title compound 61 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 500 (M-1)

Compound 62 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 62 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 494 (M-1)

Compound 63 N-[4-Bromo-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 63 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 496 (M-1)

Compound 64 N-[4-Bromo-2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 64 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 496 (M-1)

Compound 65 N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 65 was produced in the same manner as in

Example 1.

5

10

Mass spectrometric value (ESI-MS) 454 (M-1)

<u>Compound 66</u> N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 66 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 454 (M-1)

Compound 67 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 67 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 450 (M-1)

<u>Compound 68</u> N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 68 was produced in the same manner as in Example 1.

 1 H-NMR (CDCl₃, 400 MHz): δ 9.33 (1H, s), 8.72 (1H, d, J = 8.76 Hz), 8.21 (1H, s), 7.48 - 7.68 (6H, m), 7.20 - 7.25 (1H, m), 6.92 (1H, d, J = 8.56 Hz), 3.97 (3H, s), 3.93 (3H, s), 2.38 (3H, s)

20 Mass spectrometric value (ESI-MS) 450 (M-1)

<u>Compound 69</u> N-[4-Chloro-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 69 was produced in the same manner as in Example 1.

25 Mass spectrometric value (ESI-MS) 452 (M-1)

Compound 70 N-[4-Chloro-2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 70 was produced in the same manner as in Example 1.

30 Mass spectrometric value (ESI-MS) 452 (M-1)

Compound 71 N-[5-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyi)-phenyl]-3,4-dimethoxy-benzamide

The title compound 71 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 454 (M-1)

Compound 72 N-[5-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-

phenyl]-3,4-dimethoxy-benzamide

The title compound 72 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 454 (M-1)

5 <u>Compound 73</u> N-[5-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 73 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 450 (M-1)

Compound 74 N-[5-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 74 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 452 (M-1)

Compound 75 N-[5-Chloro-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 75 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 452 (M-1)

20 <u>Compound 76</u> 4-Fluoro-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 76 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 379 (M-1), 757 (2M-1)

25 <u>Compound 77</u> 4-Fluoro-N-[2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 77 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 378 (M-1)

Compound 78 4-Fluoro-N-[2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 78 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 374 (M-1)

25 <u>Compound 79</u> 4-Fluoro-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 79 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 374 (M-1)

5

10

20

25

30

35

<u>Compound 80</u> 4-Fluoro-N-[2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 80 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 376 (M-1)

<u>Compound 81</u> 3-Fluoro-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 81 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 378 (M-1)

Compound 82 3-Fluoro-N-[2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 82 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 757 (2M-1)

<u>Compound 83</u> 3-Fluoro-N-[2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 83 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 374 (M-1)

<u>Compound 84</u> 3-Fluoro-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 84 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 374 (M-1)

<u>Compound 85</u> 3-Fluoro-N-[2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 85 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 376 (M-1)

<u>Compound 86</u> 3-Fluoro-N-[2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 86 was produced in the same manner as in

```
Example 1.
     Mass spectrometric value (ESI-MS) 376 (M-1)
                       N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-
     Compound 87
     hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide
            The title compound 87 was produced in the same manner as in
 5
     Example 1.
     Mass spectrometric value (ESI-MS) 582, 584 (M-1)
                       N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-
     Compound 88
     hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide
            The title compound 88 was produced in the same manner as in
10
     Example 1.
     ^{1}\text{H-NMR} (CDCI<sub>3</sub>, 400 MHz): \delta 8.49 (1H, d, J = 8.08 Hz), 8.39 (1H, s),
     8.06 (1H, s), 7.96 (1H, s), 7.49 - 7.60 (4H, m), 7.41 (1H, d, J = 9.04 Hz),
     6.94 (1H, d, J = 8.56 Hz), 3.98 (3H, s, ), 3.94 (3H, s)
     Mass spectrometric value (ESI-MS) 538, 540 (M-1)
15
                                N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-
     Compound
                      89
     hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide
            The title compound 89 was produced in the same manner as in
     Example 1.
     Mass spectrometric value (ESI-MS) 504, 506 (M-1)
20
                                 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-
                       90
     Compound
     hydrazinocarbonyl)-phenyl]-4-methoxy-benzamide
             The title compound 90 was produced in the same manner as in
     Example 1.
     Mass spectrometric value (ESI-MS) 474 (M-1)
25
                                    N-[4-Bromo-2-(3,4-dimethyl-benzylidene-
                         91
     Compound
     hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide
             The title compound 91 was produced in the same manner as in
     Example 1.
     <sup>1</sup>H-NMR (CDCI<sub>3</sub>, 400 MHz): \delta 9.53 (1H, s), 8.61 (1H, d, J = 9.04 Hz),
30
     8.21 (1H, s), 7.69 (1H, s), 7.59 - 7.62 (4H, m), 7.46 - 7.50 (1H, m), 7.17
     (1H, d, J = 7.56 Hz), 6.91 (1H, d, J = 8.28 Hz), 3.97 (3H, s), 3.93 (3H, s),
      2.28 (3H, s), 2.28 (3H, s)
     Mass spectrometric value (ESI-MS) 508 (M-1)
                                     N-[4-Chloro-2-(3,4-dimethyl-benzylidene-
     Compound 92
35
      hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide
```

The title compound 92 was produced in the same manner as in Example 1.

 1 H-NMR (CDCI₃, 400 MHz): δ 9.60 (1H, s), 8.65 (1H, d, J = 9.04 Hz), 8.21 (1H, s), 7.44 - 7.62 (6H, m), 7.17 (1H, d, J = 7.80 Hz), 6.91 (1H, d, J = 8.32 Hz), 3.97 (3H, s), 3.92 (3H, s), 2.28 (6H, s)

Mass spectrometric value (ESI-MS) 464 (M-1)

<u>Compound</u> 93 N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 93 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 430 (M-1)

<u>Compound 94</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-methoxy-benzamide

The title compound 94 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 400 (M-1)

<u>Compound 95</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-fluoro-benzamide

The title compound 95 was produced in the same manner as in 20 Example 1.

Mass spectrometric value (ESI-MS) 388 (M-1)

<u>Compound 96</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-fluoro-benzamide

The title compound 96 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 388 (M-1)

<u>Compound</u> 97 N-[4-Bromo-2-(3-bromo-4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 97 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 590 (M-1)

<u>Compound</u> 98 N-[2-(3-Bromo-4-methoxy-benzylidene-hydrazinocarbonyl)-4-chloro-phenyl]-3,4-dimethoxy-benzamide

The title compound 98 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 544 (M-1)

	Compound	99	N-[2-(3-Bromo-4-methoxy-benzylidene-
	hydrazinocarbo	nyl)-phenyl]-3	,5-dimethoxy-benzamide
	The title	e compound 9	9 was produced in the same manner as in
	Example 1.		
5	Mass spectrometric value (ESI-MS) 510 (M-1)		
	Compound	100	N-[2-(3-Bromo-4-methoxy-benzylidene-
	hydrazinocarbonyl)-phenyl]-4-methoxy-benzamide		
	The title	e compound 1	00 was produced in the same manner as in
	Example 1.		
10	Mass spectrom	ietric value (E	SI-MS) 482 (M-1)
	Compound	101	N-[2-(3-Bromo-4-methoxy-benzylidene-
	-		-fluoro-benzamide
	The titl	e compound 1	01 was produced in the same manner as in
	Example 1.		
15	Mass spectrom	netric value (E	SI-MS) 468, 470 (M-1)
	Compound	102	N-[2-(3-Bromo-4-methoxy-benzylidene-
	hydrazinocarbonyl)-phenyl]-4-fluoro-benzamide		
	The titl	e compound 1	02 was produced in the same manner as in
	Example 1.		
20	Mass spectrometric value (ESI-MS) 468, 470 (M-1)		
	Compound	103	3,4-Dimethoxy-N-[2-(3-nitro-benzylidene-
	hydrazinocarbonyl)-phenyl]-benzamide		
	The tit	le compound 1	103 was produced in the same manner as in
	Example 1.		
25	Mass spectrometric value (ESI-MS) 447 (M-1)		
	Compound 104 N-[2-(4-Dimethylamino-benzylidene-hydrazinocarbonyl)-		
	phenyl]-3,4-dimethoxy-benzamide		
	The title compound 104 was produced in the same manner as in		
	Example 1.		
30	Mass spectrometric value (ESI-MS) 445 (M-1)		
	Compound 105 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)		
	phenyl]-4-fluoro-benzamide		
		le compound	105 was produced in the same manner as in
	Example 1.		
35	•		(SI-MS) 458 (M-1)
	Compound 10	IS N-[/-Brome	n-2-(4-fluoro-benzylidene-hydrazinocarbonyl)

phenyl]-4-fluoro-benzamide

The title compound 106 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 456 (M-1)

5 <u>Compound 107</u> N-[4-Bromo-2-(3-chloro-benzylidene-hydrazinocarbonyl)-phenyl]-4-fluoro-benzamide

The title compound 107 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 472, 474 (M-1)

Compound 108 N-[4-Bromo-2-(4-chloro-benzylidene-hydrazinocarbonyl)-phenyl]-4-fluoro-benzamide

The title compound 108 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 472, 474 (M-1)

15 <u>Compound 109</u> N-[4-Bromo-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-fluoro-benzamide

The title compound 109 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 456, 458 (M-1)

20 <u>Compound 110</u> N-[4-Bromo-2-(pyridin-3-ylmethylene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 110 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 483 (M-1)

25 <u>Compound 111</u> N-[4-Chloro-2-(pyridin-3-ylmethylene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 111 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 437 (M-1)

30 <u>Compound 112</u> 4-Methoxy-N-[2-(pyridin-3-ylmethylene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 112 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 373 (M-1)

35 Compound 113 4-Fluoro-N-[2-(pyridin-3-ylmethylene-hydrazinocarbonyl)phenyl]-benzamide The title compound 113 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 361 (M-1)

5

10

15

20

25

30

35

Compound 114 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 114 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 498 (M-1)

Compound 115 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 115 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 498, 500 (M-1)

Compound 116 N-[4-Bromo-2-(3-chloro-benzylidene-hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 116 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 516, 518 (M-1)

Compound 117 N-[4-Bromo-2-(4-chloro-benzylidene-hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 117 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 514, 516 (M-1)

Compound 118 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 118 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 496 (M-1)

Compound 119 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 119 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 494 (M-1)

Compound 120 N-[2-(3-Fluoro-benzylidene-)-hydrazinocarbonyl)-phenyl)-3-trifluoromethoxy-benzamide

The title compound 120 was produced in the same manner as in

Example 1. Mass spectrometric value (ESI-MS) 444 (M-1) N-[2-(4-Fluoro-benzylidene-)-hydrazinocarbonyl)-Compound 121 phenyl)-3-trifluoromethoxy-benzamide The title compound 121 was produced in the same manner as in 5 Example 1. Mass spectrometric value (ESI-MS) 444 (M-1) N-[2-(3-Chloro-benzylidene-)-hydrazinocarbonyl)-Compound 122 phenyl)-3-trifluoromethoxy-benzamide The title compound 122 was produced in the same manner as in 10 Example 1. Mass spectrometric value (ESI-MS) 459, 461 (M-1) N-[2-(4-Chloro-benzylidene-)-hydrazinocarbonyl)-123 Compound phenyl)-3-trifluoromethoxy-benzamide The title compound 123 was produced in the same manner as in 15 Example 1. Mass spectrometric value (ESI-MS) 459, 461 (M-1) N-[2-(4-Methyl-benzylidene-)-hydrazinocarbonyl)-124 Compound phenyl)-3-trifluoromethoxy-benzamide The title compound 124 was produced in the same manner as in 20 Example 1. Mass spectrometric value (ESI-MS) 440 (M-1) Compound 125 N-[4-(3-Dimethylamino-propoxy)-2-(4-fluoro-benzylidenehydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 125 was produced in the same manner as in 25 N-(2-chloroethyl)-N,N-dimethylamine that 2. except Example chloride 3-dimethylaminopropyl hydrochloride was changed to hydrochloride. Mass spectrometric value (ESI-MS) 521, 523 (M-1) N-[4-Chloro-2-(3,4-dimethoxy-benzylidene-Compound 126 30 hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 126 was produced in the same manner as in

Example 1.

Compound

35

Mass spectrometric value (ESI-MS) 496 (M-1)

hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

127

N-[4-Bromo-2-(3,4-dimethoxy-benzylidene-

The title compound 127 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 540 (M-1)

Compound 128 N-[4-Bromo-2-(3,4-dimethoxy-benzylidene-

5 hydrazinocarbonyl)-phenyl]-3,5-dimethoxy-benzamide

The title compound 128 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 542 (M-1)

<u>Compound 129</u> N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 129 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 361 (M-1)

<u>Compound 130</u> N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 130 was produced in the same manner as in Example 1.

¹H-NMR (CDCI₃, 400 MHz): δ 9.69 (1H, s), 9.28 (1H, s), 8.77 (1H, dd, J = 1.44 Hz, J = 4.88 Hz), 8.66 (1H, d, J = 7.80 Hz), 8.25 - 8.33 (2H, m), 7.81 (2H, s), 7.50 - 7.60 (2H, m), 7.43 (1H, dd, J = 4.88 Hz, J = 8.04 Hz),

7.05 - 7.15 (3H, m)

10

15

20

25

Mass spectrometric value (ESI-MS) 361 (M-1)

<u>Compound 131</u> N-[2-(3-Methyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 131 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 357 (M-1)

<u>Compound 132</u> N-[2-(4-Methyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 132 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 357 (M-1)

<u>Compound 133</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 133 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 371 (M-1)

<u>Compound 134</u> N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 134 was produced in the same manner as in 5 Example 1.

Mass spectrometric value (ESI-MS) 361 (M-1)

<u>Compound 135</u> N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 135 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 361 (M-1)

<u>Compound 136</u> N-[2-(3-Methyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 136 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 357 (M-1)

<u>Compound 137</u> N-[2-(4-Methyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 137 was produced in the same manner as in 20 Example 1.

Mass spectrometric value (ESI-MS) 357 (M-1)

<u>Compound 138</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 138 was produced in the same manner as in 25 Example 1.

Mass spectrometric value (ESI-MS) 371 (M-1)

Example 2

30

35

Compound 139 N-[4-(2-Dimethylamino-ethoxy-)-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-hydroxy-phenyl]-3,4-dimethoxy-benzamide (50 mg) synthesized in the same manner as in Example 1 was dissolved in anhydrous DMF (1.5 ml). NaH (60% in oil, 20 mg) was added to the solution at room temperature, and the mixture was stirred at that temperature for 5 min. Subsequently, N-(2-chloroethyl)-N,N-dimethylamine hydrochloride (47 mg) was added to the reaction solution at room temperature, and the mixture was stirred at

that temperature for 12 hr. After the completion of the reaction, distilled water was added dropwise thereto under ice cooling and the mixture was subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine and was dried over sodium sulfate, and the organic layer was concentrated under the reduced pressure. The residue was purified by preparative TLC to give the title compound 139 (32 mg, yield 57.1%).

Mass spectrometric value (ESI-MS) 507 (M-1)

5

Compound 140 N-[4-(2-Diethylamino-ethoxy)-2-(4-fluoro-benzylidenehydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 140 was produced in the same manner as in Example 2, except that N-(2-chloroethyl)-N,N-dimethylamine hydrochloride was changed to 2-diethylaminoethyl chloride hydrochloride. Mass spectrometric value (ESI-MS) 535 (M-1)

15 <u>Compound 141</u> N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methoxy-phenyl]-3,4-dimethoxy-benzamide

The title compound 141 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 450 (M-1)

20 <u>Compound 142</u> N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methoxy-phenyl]-3,4-dimethoxy-benzamide

The title compound 142 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 450 (M-1)

25 <u>Compound 143</u> 3,4-Dimethoxy-N-[4-methoxy-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 143 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 446 (M-1)

30 <u>Compound 144</u> 3,4-Dimethoxy-N-[4-methoxy-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 144 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 446 (M-1)

35 <u>Compound 145</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methoxy-phenyl]-3,4-dimethoxy-benzamide

The title compound 145 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 460 (M-1)

5

10

20

25

30

35

Compound 146 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-phenyl]-3,4-dimethoxy-benzamide

The title compound 146 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 434 (M-1)

Compound 147 N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-phenyl]-3,4-dimethoxy-benzamide

The title compound 147 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 434 (M-1)

<u>Compound 148</u> 3,4-Dimethoxy-N-[4-methyl-2-(3-methyl-benzylidenehydrazinocarbonyl)-phenyl]-benzamide

The title compound 148 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 430 (M-1)

<u>Compound</u> 149 3,4-Dimethoxy-N-[4-methyl-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 149 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 430 (M-1)

Compound 150 N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-phenyl]-3,4-dimethoxy-benzamide

The title compound 150 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 444 (M-1)

<u>Compound 151</u> Furan-2-carboxylic acid [4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 151 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 428 (M-1)

<u>Compound 152</u> Furan-2-carboxylic acid [4-bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 152 was produced in the same manner as in

Example 1.

5

10

15

20

25

30

35

Mass spectrometric value (ESI-MS) 428 (M-1)

Compound 153 Furan-2-carboxylic acid [4-bromo-2-(3-methylbenzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 153 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 426 (M-1)

<u>Compound 154</u> Furan-2-carboxylic acid [4-bromo-2-(4-methylbenzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 154 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 424 (M-1)

<u>Compound 155</u> Furan-2-carboxylic acid [4-bromo-2-(3,4-dimethylbenzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 155 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 438 (M-1)

<u>Compound 156</u> Furan-2-carboxylic acid [4-bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 156 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 513, 514 (M-1)

<u>Compound 157</u> Thiophene-2-carboxylic acid [4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 157 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 446 (M-1)

<u>Compound 158</u> Thiophene-2-carboxylic acid [4-bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 158 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 446 (M-1)

<u>Compound 159</u> Thiophene-2-carboxylic acid [4-bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 159 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 440 (M-1)

<u>Compound 160</u> Thiophene-2-carboxylic acid [4-bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 160 was produced in the same manner as in 5 Example 1.

Mass spectrometric value (ESI-MS) 440 (M-1)

Compound 161 Thiophene-2-carboxylic acid [4-bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 161 was produced in the same manner as in 10 Example 1.

Mass spectrometric value (ESI-MS) 454, 456 (M-1)

<u>Compound 162</u> Thiophene-2-carboxylic acid [4-bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 162 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 530 (M-1)

Example 3

20

25

30

<u>Compound 163</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide hydrochloride

A 10% hydrochloric acid-methanol solution (1.0 ml) was added to compound 138 (50 mg) synthesized in the same manner as in Example 1 at room temperature. Further, diethyl ether (5.0 ml) was added thereto, and the mixture was stirred for 30 sec. The reaction solution as such was filtered through Kiriyama Rohto (21 mm ϕ), and the crystals were washed with diethyl ether to give the title compound 163 (47 mg, yield 85.6%).

 1 H-NMR (MeOH-d₄, 400 MHz): δ 8.97 (2H, d, J = 6.84 Hz), 8.49 (1H, d, J = 8.08 Hz), 8.41 (2H, d, J = 6.56 Hz), 8.23 (1H, s), 7.84 (1H, d, J = 6.56 Hz), 7.56 - 7.61 (2H, m), 7.44 (1H, d, J = 7.80 Hz), 7.28 (1H, dd, J = 7.32 Hz, J = 7.32 Hz), 7.12 (1H, d, J = 7.80 Hz), 2.23 (3H, s), 2.22 (3H, s)

Hz, J = 7.32 Hz), 7.12 (1H, d, J = 7.80 Hz), 2.23 (3H, s), 2.22 (3H, s) Mass spectrometric value (ESI-MS) 371 (M-1)

Compound 164 N-[2-(4-Methyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide hydrochloride

The title compound 164 was produced in the same manner as in Example 3.

 $^{1}\text{H-NMR}$ (MeOH-d₄, 400 MHz): δ 9.22 (1H, s), 8.87 (1H, d, J = 5.4 Hz),

8.83 (1H, d, J = 8.04 Hz), 8.43 (1H, d, J = 8.32 Hz), 8.25 (1H, s), 7.97 -8.04 (1H, m), 7.81 (1H, dd, J = 1.24 Hz, J = 7.84 Hz), 7.64 (2H, d, J = 1.24 Hz, J = 1.28.04 Hz), 7.54 - 7.60 (1H, m), 7.23 - 7.29 (1H, m), 7.18 (2H, d, J = 7.80Hz), 2.29 (3H, s)

Mass spectrometric value (ESI-MS) 357 (M-1) 5

N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-Compound 165 phenyl]-nicotinamide hydrochloride

The title compound 165 was produced in the same manner as in Example 3.

 $^{1}\text{H-NMR}$ (CDCl₃, 400 MHz): δ 9.92 (1H, s), 9.29 (1H, s), 8.75 - 8.78 (2H, 10 m), 8.30 - 8.40 (1H, m), 8.15 (1H, s), 7.55 - 7.65 (5H, m), 7.42 - 7.49 (2H, m), 7.15 - 7.25 (1H, m), 2.32 (3H, s), 2.29 (3H, s)

Mass spectrometric value (ESI-MS) 371 (M-1)

15

20

25

30

Compound 166 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-isonicotinamide

The title compound 166 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 439 (M-1)

Compound 167 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-isonicotinamide

The title compound 167 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 439 (M-1)

Compound 168 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)phenyl]-isonicotinamide

The title compound 168 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 437 (M-1)

Compound 169 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)phenyl]-isonicotinamide

The title compound 169 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 435, 437 (M-1)

N-[4-Bromo-2-(3,4-dimethyl-benzylidene-170 Compound

hydrazinocarbonyl)-phenyl]-isonicotinamide 35

The title compound 170 was produced in the same manner as in

Example 1.

5

10

20

25

30

Mass spectrometric value (ESI-MS) 451, 452 (M-1)

<u>Compound 171</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 171 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 525, 527 (M-1)

Compound 172 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 172 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 441, 442 (M-1)

Compound 173 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 173 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 439 (M-1)

Compound 174 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 174 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 435 (M-1)

Compound 175 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 175 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 437, 438 (M-1)

<u>Compound</u> 176 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 176 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 451, 452 (M-1)

<u>Compound 177</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 177 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 524, 525 (M-1)

<u>Compound 178</u> N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-ethyl-benzamide

The title compound 178 was produced in the same manner as in 5 Example 1.

Mass spectrometric value (ESI-MS) 466, 468 (M-1)

Compound 179 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-ethyl-benzamide

The title compound 179 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 466 (M-1)

Compound 180 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-ethyl-benzamide

The title compound 180 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 462 (M-1)

Compound 181 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-ethyl-benzamide

The title compound 181 was produced in the same manner as in 20 Example 1.

Mass spectrometric value (ESI-MS) 462, 464 (M-1)

Compound 182 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-ethyl-benzamide

The title compound 182 was produced in the same manner as in 25 Example 1.

Mass spectrometric value (ESI-MS) 476, 478 (M-1)

<u>Compound 183</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-ethyl-benzamide

The title compound 183 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 550 (M-1)

<u>Compound 184</u> N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 184 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 395, 397 (M-1)

<u>Compound 185</u> N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 185 was produced in the same manner as in Example 1.

5 Mass spectrometric value (ESI-MS) 395 (M-1)

<u>Compound 186</u> N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 186 was produced in the same manner as in Example 1.

10 Mass spectrometric value (ESI-MS) 391 (M-1)

<u>Compound 187</u> N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 187 was produced in the same manner as in Example 1.

15 Mass spectrometric value (ESI-MS) 391 (M-1)

Compound 188 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 188 was produced in the same manner as in Example 1.

20 Mass spectrometric value (ESI-MS) 405, 407 (M-1)

<u>Compound 189</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 189 was produced in the same manner as in Example 1.

25 Mass spectrometric value (ESI-MS) 479, 480 (M-1)

<u>Compound 190</u> N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 190 was produced in the same manner as in Example 1.

30 Mass spectrometric value (ESI-MS) 395, 397 (M-1)

Compound 191 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 191 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 391 (M-1)
Compound 192 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-

phenyl]-isonicotinamide

The title compound 192 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 391 (M-1)

5 <u>Compound</u> 193 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 193 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 405 (M-1)

10 <u>Compound 194</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 194 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 479 (M-1)

15 Example 4

20

25

30

35

Compound 195 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(pyridin-4-ylsulfanylmethyl)-benzamide

Methyl 2-amino-5-bromobenzoate (compound A) (2.0 g) was dissolved in anhydrous methylene chloride (40.0 ml). Subsequently, pyridine (1.0 ml) and 3-(chloromethyl)benzoyl chloride (compound B) (2.0 g) were added to the solution at room temperature, and the mixture was stirred at that temperature for 3 hr. After the completion of the reaction, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with a saturated aqueous sodium chloride solution, was dried over sodium sulfate and was then concentrated to give methyl 5-bromo-2-[3-(chloromethyl)benzoyl]aminobenzoate as a useful intermediate (3.32 g, yield 100%).

Subsequently, methyl 5-bromo-2-[3-(chloromethyl)benzoyl]aminobenzoate (1.5 g) was dissolved in anhydrous methylene chloride. Triethylamine (2.0 ml) and 4-mercaptopyridine (compound B') (880 mg) were added to the solution at room temperature, and the mixture was stirred at that temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed

with a saturated aqueous sodium chloride solution, was dried over sodium sulfate, and was then concentrated. Diethyl ether was added to the residue for crystallization. The crystals were filtered through Kiriyama Rohto (21 mm¢) and were washed with diethyl ether to give methyl 5-bromo-2-(3-[(4-pyridylsulfanyl)methyl]benzoylamino)benzoate (1.20 g, yield 67%) as a useful intermediate.

5

10

15

20

25

Methyl 5-bromo-2-(3-[(4-pyridylsulfanyl)methyl]benzoylamino)-benzoate (1.20 g) obtained by the above reaction was dissolved in ethanol (25.0 ml). Hydrazine monohydrate (2.0 ml) was added to the solution at room temperature, and the mixture was heated under reflux with stirring for one hr. After the completion of the reaction, the reaction solution was allowed to cool at room temperature, was cooled under ice cooling to precipitate crystals. The precipitated crystals were filtered through Kiriyama Rohto (21 mmφ) and were washed with diethyl ether to give N-(4-bromo-2-hydrazinocarbonyl-phenyl)-3-(pyridin-4-ylsulfanylmethyl)-benzamide (753 mg, yield 65.4%) as a hydrazine compound.

N-(4-Bromo-2-hydrazinocarbonyl-phenyl)-3-(pyridin-4-ylsulfanylmethyl)-benzamide (50.0 mg) was dissolved in anhydrous toluene (1.0 ml). Subsequently, a catalytic amount of acetic acid and 3-fluorobenzaldehyde (compound C) (50.0 μ l) were added to the solution at room temperature, and the mixture was heated under reflux with stirring for one hr. After the completion of the reaction, the reaction solution was allowed to cool at room temperature and was ice-cooled to precipitate crystals. The precipitated crystals were filtered through Kiriyama Rohto (21 mm ϕ), were washed with toluene and hexane, and were dried through a vacuum pump to give the title compound 195 (27.0 mg, yield 43.6%).

Mass spectrometric value (ESI-MS) 561, 563 (M-1)

30 <u>Compound 196</u> N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 196 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 563 (M-1)

35 <u>Compound 197</u> N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 197 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 559 (M-1)

5

10

15

20

25

30

35

Compound 198 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 198 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 559 (M-1)

Compound 199 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-

hydrazinocarbonyl)-phenyl]-3-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 199 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 571 (M-1)

Compound 200 N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 200 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 647 (M-1)

<u>Compound 201</u> N-[4-Bromo-2-(1-methyl-1H-pyrrol-2-ylmethylene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 201 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 484 (M-1)

Compound 202 N-[4-Bromo-2-(4,5-dimethyl-furan-2-ylmethylene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 202 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 499 (M-1)

<u>Compound 203</u> N-[2-(4-Methyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide hydrochloride

The title compound 203 was produced in the same manner as in Example 3.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.92 - 8.98 (2H, m), 8.49 (1H, d, J = 8.6 Hz), 8.34 - 8.40 (2H, m), 8.26 (1H, s), 8.81 - 8.87 (1H, m), 7.64 (2H, d, J = 8.0 Hz), 7.55 - 7.61 (1H, m), 7.25 - 7.31 (1H, m), 7.15 - 7.20 (2H, m), 2.30 (3H, s)

Mass spectrometric value (ESI-MS) 357 (M-1)

<u>Compound 204</u> N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-3,4-dimethoxy-benzamide

The title compound 204 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 546 (M-1)

<u>Compound 205</u> N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-3,4-dimethoxy-benzamide

The title compound 205 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 546 (M-1)

Compound 206 N-[4-lodo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 206 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 542 (M-1)

Compound 207 N-[4-Iodo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 207 was produced in the same manner as in 20 Example 1.

Mass spectrometric value (ESI-MS) 542 (M-1)

<u>Compound 208</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-3,4-dimethoxy-benzamide

The title compound 208 was produced in the same manner as in 25 Example 1.

Mass spectrometric value (ESI-MS) 556 (M-1)

<u>Compound</u> 209 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-3,4-dimethoxy-benzamide

The title compound 209 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 630 (M-1)

<u>Compound</u> 210 N-[2-(1-Methyl-1H-pyrrol-2-ylmethylene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 210 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 346 (M-1)

Compound 211 N-[4-Bromo-2-(1-methyl-1H-pyrrol-2-ylmethylene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 211 was produced in the same manner as in Example 1.

5 Mass spectrometric value (ESI-MS) 424 (M-1)

<u>Compound 212</u> N-[4-Chloro-2-(1-methyl-1H-pyrrol-2-ylmethylene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 212 was produced in the same manner as in Example 1.

10 Mass spectrometric value (ESI-MS) 380 (M-1)

Compound 213 N-{2-[1-(3-Fluoro-phenyl)-ethylidene-hydrazinocarbonyl]-phenyl}-3,4-dimethoxy-benzamide

The title compound 213 was produced in the same manner as in Example 1.

15 Mass spectrometric value (ESI-MS) 434 (M-1)

<u>Compound 214</u> N-{4-Bromo-2-[1-(3-fluoro-phenyl)-ethylidene-hydrazinocarbonyl]-phenyl}-3,4-dimethoxy-benzamide

The title compound 214 was produced in the same manner as in Example 1.

20 Mass spectrometric value (ESI-MS) 512, 514 (M-1)

<u>Compound 215</u> N-[4-Bromo-2-(1-m-toluyl-ethylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 215 was produced in the same manner as in Example 1.

25 Mass spectrometric value (ESI-MS) 449, 451 (M-1)

Compound 216 N-[4-Bromo-2-(1-p-toluyl-ethylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 216 was produced in the same manner as in Example 1.

30 Mass spectrometric value (ESI-MS) 449 (M-1)

Compound 217 N-[4-Chloro-2-(1-p-toluyl-ethylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 217 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 405 (M-1)

Compound

218

N-[2-(4,5-Dimethyl-furan-2-ylmethylene-

hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 218 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 361 (M-1)

5 <u>Compound 219</u> N-[2-(4,5-Dimethyl-furan-2-ylmethylene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 219 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 361 (M-1)

10 <u>Compound 220</u> N-[4-Bromo-2-(4,5-dimethyl-furan-2-ylmethylene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 220 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 439 (M-1)

15 <u>Compound 221</u> N-[4-Bromo-2-(4,5-dimethyl-furan-2-ylmethylene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 221 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 439, 441 (M-1)

20 <u>Compound 222</u> N-[4-Chloro-2-(4,5-dimethyl-furan-2-ylmethylene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 222 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 395 (M-1)

25 <u>Compound 223</u> N-[4-Chloro-2-(4,5-dimethyl-furan-2-ylmethylene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 223 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 395 (M-1)

30 <u>Compound 224</u> N-[2-(Benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 224 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 342 (M-1)

35 <u>Compound 225</u> N-[2-(2-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 225 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 360 (M-1)

5

10

15

20

25

30

35

<u>Compound 226</u> N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 226 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 360 (M-1)

Compound 227 N-[2-(Benzylidene-hydrazinocarbonyl)-4,5-dimethoxy-phenyl]-3,4-dimethoxy-benzamide

The title compound 227 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 462 (M-1)

<u>Compound 228</u> N-[2-(2-Bromo-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 228 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 421 (M-1)

<u>Compound 229</u> N-[2-(2-Methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 229 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 356 (M-1)

<u>Compound</u> 230 N-[4,5-Dimethoxy-2-(2-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 230 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 476 (M-1)

<u>Compound 231</u> N-[2-(2-Chloro-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 231 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 436 (M-1)

<u>Compound</u> 232 3,4-Dimethoxy-N-[2-(6-methoxy-naphthalen-2-ylmethylene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 232 was produced in the same manner as in

Example 1.

5

10

20

30

35

Mass spectrometric value (ESI-MS) 482 (M-1)

Compound 233 N-[2-(Biphenyl-4-ylmethylene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide

The title compound 233 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 478 (M-1)

<u>Compound 234</u> N-[2-(4-Bromo-benzylidene-hydrazinocarbonyl)-phenyl]-3.4-dimethoxy-benzamide

The title compound 234 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 480 (M-1)

<u>Compound 235</u> N-[2-(3-Phenyl-allylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 235 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 368 (M-1)

<u>Compound 236</u> 2-Fluoro-N-[2-(2-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 236 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 378 (M-1)

<u>Compound 237</u> 2-Fluoro-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 237 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 378 (M-1)

<u>Compound 238</u> 2-Fluoro-N-[2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 238 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 374 (M-1)

<u>Compound 239</u> N-[2-(3-Tert-butyl-2-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-2-fluoro-benzamide

The title compound 239 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 432 (M-1)

3,4-Dimethoxy-N-[2-(4-nitro-benzylidene-240 Compound hydrazinocarbonyl)-phenyl]-benzamide The title compound 240 was produced in the same manner as in 5 Example 1. Mass spectrometric value (ESI-MS) 447 (M-1) Compound 241 N-[2-(4-Diethylamino-benzylidene-hydrazinocarbonyl)phenyl]-3,4-dimethoxy-benzamide The title compound 241 was produced in the same manner as in Example 1. 10 Mass spectrometric value (ESI-MS) 473 (M-1) N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-Compound 242 hydroxy-phenyl]-3,5-dimethoxy-benzamide The title compound 242 was produced in the same manner as in 15 Example 1. Mass spectrometric value (ESI-MS) 436, 437 (M-1) Compound 243 N-[4-Bromo-2-(pyridin-2-ylmethylene-hydrazinocarbonyl)phenyl]-3,4-dimethoxy-benzamide The title compound 243 was produced in the same manner as in 20 Example 1. Mass spectrometric value (ESI-MS) 483 (M-1) N-[4-Chloro-2-(pyridin-2-ylmethylene-Compound 244 hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 244 was produced in the same manner as in Example 1. 25 Mass spectrometric value (ESI-MS) 437 (M-1) 3,4-Dimethoxy-N-[2-pyridin-2-ylmethylene-Compound 245 hydrazinocarbonyl)-phenyl]-benzamide The title compound 245 was produced in the same manner as in Example 1. 30 Mass spectrometric value (ESI-MS) 403 (M-1) N-[4-Chloro-2-(6-methyl-pyridin-2-ylmethylene-Compound 246 hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide The title compound 246 was produced in the same manner as in Example 1. 35 Mass spectrometric value (ESI-MS) 451 (M-1)

<u>Compound 247</u> 3,4-Dimethoxy-**N**-[2-(6-methyl-pyridin-2-ylmethylene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 247 was produced in the same manner as in Example 1.

5 Mass spectrometric value (ESI-MS) 417 (M-1)

Compound 248 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)phenyl]-4-tert-butyl-benzamide

The title compound 248 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 490, 492 (M-1)

<u>Compound 249</u> N-[2-(1-m-Toluyl-ethylidene-hydrazinocarbonyl)-phenyl]isonicotinamide

The title compound 249 was produced in the same manner as in Example 1.

Mass spectrometric value (ESI-MS) 371 (M-1)

<u>Compound 250</u> N-[4-Chloro-2-(1-m-toluyl-ethylidene-hydrazinocarbonyl)phenyll-nicotinamide

The title compound 250 was produced in the same manner as in Example 1.

20 Mass spectrometric value (ESI-MS) 405 (M-1)

Compound 251 N-[2-(1-p-Toluyl-ethylidene-hydrazinocarbonyl)-phenyl]nicotinamide

The title compound 251 was produced in the same manner as in Example 1.

25 Mass spectrometric value (ESI-MS) 371 (M-1)

Compound 252 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)phenyl]-nicotinamide hydrochloride

The title compound 252 was produced in the same manner as in Example 3.

¹H-NMR (MeOH-d₄, 400 MHz): δ 9.21 - 9.25 (1H, m), 8.79 - 8.93 (2H, m), 8.34 - 8.39 (1H, m), 8.25 (1H, s), 8.01 (1H, d, J = 2.2 Hz), 8.00 - 8.15 (1H, m), 7.71 (1H, dd, J = 8.08 Hz, J = 2.20 Hz), 7.63 (2H, d, J = 8.32 Hz), 7.18 (2H, d, J = 8.08 Hz), 2.29 (3H, s)

Mass spectrometric value (ESI-MS) 437, 438 (M-1)

35 <u>Compound 253</u> N-[2-(3-Methyl-benzylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide hydrochloride

The title compound 253 was produced in the same manner as in Example 3.

¹H-NMR (CDCl₃, 400 MHz): δ 8.96 - 8.99 (2H, m), 8.49 (1H, d, J = 8.08 Hz), 8.42 (2H, dd, J = 1.20 Hz, J = 5.60 Hz), 8.27 (1H, s), 7.85 (1H, dd, J = 1.20 Hz, J = 7.80 Hz), 7.51 - 7.61 (3H, m), 7.18 - 7.31 (3H, m), 2.30 (3H, s)

Mass spectrometric value (ESI-MS) 357 (M-1)

Compound 255 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 255 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 563 (M-1)

10

20

25

30

35

<u>Compound 256</u> N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 256 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 563 (M-1)

Compound 257 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 257 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 559 (M-1)

Compound 258 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 258 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 559 (M-1)

Compound 259 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 259 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 571 (M-1)

<u>Compound 260</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 260 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 645, 647 (M-1)

<u>Compound 261</u> N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 261 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 530 (M-1)

<u>Compound 262</u> N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-hydroxy- ethylsulfanylmethyl)-benzamide

The title compound 262 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 530 (M-1)

Compound 263 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-hydroxy- ethylsulfanylmethyl)-benzamide

The title compound 263 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 524 (M-1)

Compound 264 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 264 was produced in the same manner as in 20 Example 4.

Mass spectrometric value (ESI-MS) 526 (M-1)

Compound 265 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 265 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 540 (M-1)

25

30

35

<u>Compound 266</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 266 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 612, 614 (M-1)

Compound 267 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 267 was produced in the same manner as in Example 4.

¹H-NMR (CD₃OD, 400 MHz): δ 8.60 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 8.28 (1H, bs), 8.05 (1H, d, J = 2.2 Hz), 8.01 (1H, m), 7.86 (1H, m), 7.73 (1H, dd, J = 9.0 Hz, J = 2.2 Hz), 7.60 (2H, m), 7.52 (1H, m), 7.46 (1H, t, J = 7.7 Hz), 7.19 (1H, d, J = 7.8 Hz), 4.44 (2H, s), 2.30 (6H, s)

5 Mass spectrometric value (ESI-MS) 561 (M-1)

Compound 268 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 268 was produced in the same manner as in Example 4.

¹H-NMR (CD₃OD, 400 MHz): δ 2.38 (3H, s), 4.44 (2H, s), 7.26 (1H, d, J = 7.4 Hz), 7.46 (2H, m), 7.59 (1H, m), 7.66 (1H, dd, J = 9.0 Hz, J = 2.4 Hz), 7.72 (1H, m), 7.86 (2H, m), 7.97 - 8.05 (2H, m), 8.29 - 8.34 (2H, m), 8.57 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 547 (M-1)

20

Compound 269 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 269 was produced in the same manner as in Example 4.

 1 H-NMR (DMSO-d₆, 400 MHz): δ 2.48 - 2.53 (3H, m), 4.43 (2H, s), 7.27 - 7.82 (9H, m), 7.96 (3H, m), 8.57 (1H, d, J = 9.0 Hz) Mass spectrometric value (ESI-MS) 549 (M-1)

<u>Compound 270</u> N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 270 was produced in the same manner as in 25 Example 4.

¹H-NMR (CD₃OD, 400 MHz): δ 4.44 (2H, s), 7.20 (1H, m), 7.45 (1H, m), 7.59 (1H, m), 7.66 (1H, dd, J = 9.0 Hz, J = 2.3 Hz), 7.75 (1H, dd, J = 9.0 Hz, J = 2.3 Hz), 7.87 (2H, m), 7.99 - 8.06 (3H, m), 8.30 (1H, s), 8.36 (1H, s), 8.57 (1H, m)

30 Mass spectrometric value (ESI-MS) 553 (M-1)

Compound 271 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 271 was produced in the same manner as in Example 4.

¹H-NMR (CD₃OD, 400 MHz): δ 4.44 (2H, s), 7.19 (1H, m), 7.45 (2H, m), 7.59 - 7.77 (3H, m), 7.86 (2H, m), 7.97 - 8.01 (2H, m), 8.29 - 8.36 (2H,

m), 8.58 (1H, m)

Mass spectrometric value (ESI-MS) 553 (M-1)

<u>Compound 272</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-

5 benzamide

The title compound 272 was produced in the same manner as in Example 4.

 1 H-NMR (CD₃OD, 400 MHz): δ 4.44 (2H, s), 7.45 (1H, m), 7.59 (1H, m), 7.67 (1H, m), 7.76 (1H, dd, J = 9.0 Hz, J = 2.2 Hz), 7.85 (2H, m), 7.97 - 8.06 (3H, m), 8.29 (1H, s), 8.39 (1H, s), 8.57 (1H, dd, J = 9.0 Hz, J = 1.7)

Mass spectrometric value (ESI-MS) 635 (M-1)

Compound 273 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(3-hydroxy-propylsulfanylmethyl)-

15 benzamide

Hz)

10

20

25

30

35

The title compound 273 was produced in the same manner as in Example 4.

¹H-NMR (CD₃OD, 400 MHz): δ 1.76 (2H, m), 2.31 (3H, s), 2.32 (3H, s), 2.50 (2H, t, J = 7.0 Hz), 3.60 (2H, t, J = 6.3 Hz), 3.80 (2H, s), 7.20 (1H, d, J = 7.3 Hz), 7.52 (3H, m), 7.66 (1H, s), 7.74 (1H, dd, J = 9.0 Hz, J = 2.2 Hz), 7.96 (2H, d, J = 8.3 Hz), 8.05 (1H, d, J = 2.2 Hz), 8.30 (1H, s), 8.63 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 552 (M-1)

Compound 274 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 274 was produced in the same manner as in Example 4.

¹H-NMR (CD₃OD, 400 MHz): δ 1.76 (2H, m), 2.39 (3H, s), 2.50 (2H, t, J = 7.3 Hz), 3.60 (2H, t, J = 6.1 Hz), 3.80 (2H, s), 7.27 (2H, d, J = 8.1 Hz), 7.52 (2H, d, J = 8.0 Hz), 7.74 (3H, m), 7.96 (2H, d, J = 8.1 Hz), 8.01 (1H, m), 8.33 (1H, s), 8.63 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 538 (M-1)

Compound 275 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 275 was produced in the same manner as in Example 4.

¹H-NMR (CD₃OD, 400 MHz): δ 1.76 (2H, m), 2.40 (3H, s), 2.51 (2H, t, J = 7.1 Hz), 3.60 (2H, t, J = 6.3 Hz), 3.81 (2H, s), 7.25 - 7.35 (2H, m), 7.52 (2H, m), 7.63 (1H, m), 7.71 - 7.77 (2H, m), 7.96 (2H, d, J = 8.0 Hz), 8.06 (1H, s), 8.34 (1H, s), 8.62 (1H, m)

5 Mass spectrometric value (ESI-MS) 538 (M-1)

Compound 276 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 276 was produced in the same manner as in Example 4.

¹H-NMR (CD₃OD, 400 MHz): δ 1.76 (2H, m), 2.51 (2H, m), 3.60 (2H, m), 3.81 (2H, m), 7.19 (2H, m), 7.51 (2H, m), 7.75 - 8.06 (6H, m), 8.35 (1H, m), 8.60 (1H, m)

Mass spectrometric value (ESI-MS) 542 (M-1)

Compound 277 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 277 was produced in the same manner as in Example 4.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.76 (2H, m), 2.51 (2H, t, J = 7.3 Hz), 3.60 (2H, t, J = 6.4 Hz), 3.81 (2H, s), 7.19 (1H, m), 7.46 - 7.54 (3H, m),

7.60 (1H, m), 7.70 (1H, m), 7.77 (1H, dd, J = 9.1 Hz, J = 2.3 Hz), 7.96 (2H, m), 8.07 (1H, s), 8.35 (1H, s), 8.62 (1H, d, J = 9.1 Hz)

Mass spectrometric value (ESI-MS) 542 (M-1)

<u>Compound 278</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(3-hydroxy-propylsulfanylmethyl)-

25 benzamide

15

20

30

The title compound 278 was produced in the same manner as in Example 4.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.76 (2H, m), 2.50 (2H, t, J = 7.3 Hz), 3.60 (2H, t, J = 6.3 Hz), 3.80 (2H, s), 7.52 (2H, d, J = 8.0 Hz), 7.69 (1H, d, J = 8.3 Hz), 7.76 (1H, dd, J = 8.8 Hz, J = 2.0 Hz), 7.95 (2H, d, J = 8.3 Hz), 8.05 - 8.07 (2H, m), 8.33 (1H, s), 8.39 (1H, s), 8.62 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 626 (M-1)

Example 5

35 <u>Compound 279</u> N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-[(2-morpholin-4-yl-ethylamino)-methyl]-

benzamide

Methyl 2-amino-5-bromobenzoate (compound A) (3.0 g) was dissolved in anhydrous methylene chloride (40.0 ml). Subsequently, pyridine (2.1 ml) and 4-(chloromethyl)benzoyl chloride (compound B) (2.2 ml) were added to the solution at room temperature, and the mixture was stirred at that temperature for one hr. After the completion of the reaction, distilled water was added, followed by separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated to give methyl 5-bromo-2-[3-(chloromethyl)benzoyl]aminobenzoate as a useful intermediate (4.90 g, yield 100%).

Methyl 5-bromo-2-[3-(chloromethyl)benzoyl]aminobenzoate (500 mg) obtained by the above reaction was dissolved in anhydrous methylene chloride (3.0 ml), triethylamine (545 μl) and 4-(2-aminoethyl)morpholine (compound B') (341 μl) were added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform methanol system to give methyl 5-bromo-2-[(3{[(2-morpholinoethyl)amino]methyl}benzoyl)amino]benzoate as a useful intermediate (306 mg, yield 50%).

Methyl 5-bromo-2-[(3{[(2-morpholinoethyl)amino]methyl}benzoyl)-amino]benzoate obtained by the above reaction was dissolved in ethanol (5.0 ml), hydrazine monohydrate (650 μl) was added to the solution, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated to give N-(4-bromo-2-hydrazinocarbonyl-phenyl)-3-[(2-morpholin-4-yl-ethylamino)-methyl]-benzamide as a hydrazine compound (220 mg, crude yield 75%).

N-(4-Bromo-2-hydrazinocarbonyl-phenyl)-3-[(2-morpholin-4-yl-ethylamino)-methyl]-benzamide (25 mg) was dissolved in anhydrous

toluene (1.0 ml), a catalytic amount of acetic acid and 3,4-dimethylbenzaldehyde (compound C) (10.0 μ l) were added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, the product was purified by column chromatography eluted with a chloroform methanol system to give the title compound 279 (21.1 mg, yield 67%). ¹H-NMR (CD₃OD, 400 MHz): δ 2.31 (3H, s), 2.32 (3H, s), 2.44 (4H, m), 2.60 (2H, t, J = 6.1 Hz), 2.97 (2H, t, J = 6.1 Hz), 3.65 (4H, t, J = 4.6 Hz), 4.15 (2H, s), 7.20 (1H, d, J = 7.8 Hz), 7.54 (1H, m), 7.59 - 7.70 (3H, m), 7.76 (1H, dd, J = 9.0 Hz, J = 2.2 Hz), 8.30 (2H, m), 8.07 (1H, d, J = 2.2 Hz), 8.32 (1H, s), 8.64 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 594 (M+1)

<u>Compound</u> 280 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-diethylamino-ethyl)-methyl-amino]-

15 methyl}-benzamide

5

10

20

25

30

35

The title compound 280 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 1.12 (6H, t, J = 7.1 Hz), 2.27 (6H, s), 2.28 (3H, s), 2.60 (2H, t, J = 7.3 Hz), 2.77 (4H, q, J = 7.3 Hz), 2.88 (2H, t, J = 7.3 Hz), 3.63 (2H, s), 7.16 (1H, d, J = 7.8 Hz), 7.50 (3H, m), 7.61 (1H, s), 7.70 (1H, dd, J = 9.0 Hz, J = 2.2 Hz), 7.97 (2H, d, J = 8.3 Hz), 8.02 (1H, d, J = 2.2 Hz), 8.30 (1H, s), 8.61 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 594 (M+1)

Compound 281 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-morpholin-4-yl-ethylamino)-methyl]-benzamide

The title compound 281 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 2.29 (3H, s), 2.30 (3H, s), 2.43 (4H, m), 2.54 (2H, t, J = 6.0 Hz), 2.72 (2H, t, J = 6.0 Hz), 3.70 (4H, t, J = 4.6 Hz), 3.89 (2H, s), 7.18 (1H, d, J = 7.8 Hz), 7.44 - 7.70 (6H, m), 7.99 (2H, d, J = 7.8 Hz), 8.31 (1H, s), 8.55 (1H, d, J = 8.3 Hz)

Mass spectrometric value (ESI-MS) 592 (M+1)

Compound 282 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-morpholin-4-yl-ethylamino)-methyl]-benzamide

The title compound 282 was produced in the same manner as in

Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 2.39 (3H, s), 2.43 (4H, m), 2.53 (2H, t, J = 5.9 Hz), 2.72 (2H, t, J = 5.9 Hz), 3.70 (4H, t, J = 4.6 Hz), 3.89 (2H, s), 7.23 (2H, d, J = 8.0 Hz), 7.45 (2H, d, J = 8.0 Hz), 7.56 (1H, m), 7.70 (3H,

m), 7.99 (2H, m), 8.34 (1H, s), 8.56 (1H, d, J = 9.0 Hz)
 Mass spectrometric value (ESI-MS) 576 (M-1)

Compound 283 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-morpholin-4-yl-ethylamino)-methyl]-benzamide

The title compound 283 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 2.38 (3H, s), 2.43 (4H, m), 2.52 (2H, t, J = 6.0 Hz), 2.70 (2H, t, J = 6.0 Hz), 3.70 (4H, t, J = 4.4 Hz), 3.88 (2H, s), 7.22 - 7.32 (2H, m), 7.44 (2H, d, J = 8.3 Hz), 7.52 (2H, m), 7.69 (2H, s), 8.00 (2H, d, J = 7.8 Hz), 8.42 (2H, m)

15 Mass spectrometric value (ESI-MS) 578 (M-1)

Compound 284 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-4-[(2-morpholin-4-yl-ethylamino)-methyl]-benzamide

The title compound 284 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 2.43 (4H, m), 2.52 (2H, t, J = 6.0 Hz), 2.70 (2H, t, J = 6.0 Hz), 3.70 (4H, t, J = 4.5 Hz), 3.89 (2H, s), 7.12 (2H, m), 7.45 (2H, d, J = 8.3 Hz), 7.54 (1H, m), 7.67 (1H, m), 7.82 (2H, m), 8.00 (2H, d, J = 7.8 Hz), 8.39 (1H, s), 8.48 (1H, m) Mass spectrometric value (ESI-MS) 582 (M-1)

25 Compound 285 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 285 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.2 Hz), 2.21 (3H, s), 2.33 (3H, s), 2.51 - 2.66 (8H, m), 3.55 (2H, s), 7.18 (2H, d, J = 8.0 Hz), 7.43 (3H, m), 7.66 (2H, d, J = 8.0 Hz), 7.74 (1H, m), 7.98 (2H, d, J = 8.0 Hz), 8.36 (1H, d, J = 9.0 Hz), 8.49 (1H, s)

Mass spectrometric value (ESI-MS) 576 (M-1)

35

Compound 286 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 286 was produced in the same manner as in

Example 5.

5

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.23 (3H, s), 2.40 (3H, s), 2.52 - 2.66 (8H, m), 3.59 (2H, s), 7.24 - 7.33 (2H, m), 7.45 (2H, d, J = 8.3 Hz), 7.56 (2H, m), 7.70 (2H, m), 8.00 (2H, d, J = 7.6 Hz), 8.38 (1H, s), 8.50 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 578 (M-1)

Compound 287 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 287 was produced in the same manner as in 10 Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.23 (3H, s), 2.54 - 2.66 (8H, m), 3.59 (2H, s), 7.12 (2H, m), 7.45 (2H, d, J = 8.3 Hz), 7.54 (1H, m), 7.68 (1H, s), 7.83 (2H, m), 7.99 (2H, d, J = 7.8 Hz), 8.42 (1H, s), 8.47 (1H, d, J = 9.0 Hz)

15 Mass spectrometric value (ESI-MS) 580 (M-1)

Compound 288 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 288 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.22 (3H, s), 2.52 - 2.66 (8H, m), 3.58 (2H, s), 7.10 (1H, m), 7.34 - 7.46 (4H, m), 7.55 (2H, m), 7.68 (1H, s), 7.99 (2H, d, J = 7.8 Hz), 8.29 (1H, d, J = 8.8 Hz), 8.52 (1H, s)

Mass spectrometric value (ESI-MS) 582 (M-1)

25 <u>Compound 289</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 289 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.23 (3H, s), 2.53 - 2.66 (8H, m), 3.60 (2H, s), 7.48 (3H, m), 7.58 (1H, d, J = 8.3 Hz), 7.67 (1H, s), 7.98 - 8.07 (4H, m), 8.56 (1H, m), 8.52 (1H, m)

Mass spectrometric value (ESI-MS) 664 (M-1)

Compound 290 N-[4-Bromo-2-(4-methoxy-benzylidene-

35 hydrazinocarbonyl)-phenyl]-4-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 290 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.21 (3H, s), 2.51 - 2.66 (8H, m), 3.56 (2H, s), 3.80 (3H, s), 6.89 (2H, d, J = 8.8 Hz), 7.43 (3H, m), 7.71 (3H, m), 7.98 (2H, d, J = 8.0 Hz), 8.38 (1H, d, J = 9.0 Hz), 8.45 (1H, s)

Mass spectrometric value (ESI-MS) 594 (M-1)

Compound 291 N-[4-Bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 291 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.1 Hz), 2.21 (3H, s), 2.51 - 2.65 (8H, m), 3.56 (2H, s), 3.84 (3H, s), 6.94 (1H, m), 7.27 - 7.48 (6H, m), 7.75 (1H, s), 7.97 (2H, d, J = 7.8 Hz), 8.41 (1H, d, J = 9.0 Hz), 8.47 (1H, s)

Mass spectrometric value (ESI-MS) 592 (M-1)

<u>Compound</u> 292 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-diethylamino-ethylamino)-methyl]-

20 **benzamide**

5

10

15

25

30

The title compound 292 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.05 (6H, t, J = 7.2 Hz), 2.29 (3H, s), 2.30 (3H, s), 2.57 - 2.73 (8H, m), 3.87 (3H, s), 7.18 (1H, d, J = 7.8 Hz), 7.43 - 7.73 (6H, m), 7.99 (2H, d, J = 7.8 Hz), 8.31 (1H, s), 8.56 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 576 (M-1)

Compound 293 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-diethylamino-ethylamino)-methyl]-benzamide

The title compound 293 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.05 (6H, t, J = 7.1 Hz), 2.39 (3H, s), 2.56 - 2.73 (8H, m), 3.87 (2H, s), 7.22 - 7.27 (2H, m), 7.44 (2H, d, J = 8.3 Hz), 7.57 - 7.71 (4H, m), 7.99 (2H, m), 8.34 (1H, s), 8.59 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 562 (M-1)

Compound 294 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-

phenyl]-4-[(2-diethylamino-ethylamino)-methyl]-benzamide

The title compound 294 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.1 Hz), 2.39 (3H, s), 2.52 - 2.70 (8H, m), 3.87 (2H, s), 7.23 - 7.33 (2H, m), 7.45 (2H, d, J = 8.3 Hz), 7.55 (2H, m), 7.70 (2H, m), 8.00 (2H, d, J = 7.8 Hz), 8.38 (1H, s), 8.51 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 562 (M-1)

10

20

Compound 295 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-diethylamino-ethylamino)-methyl]-benzamide

The title compound 295 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.05 (6H, t, J = 7.1 Hz), 2.55 - 2.72 (8H, m), 3.87 (2H, s), 7.12 (2H, m), 7.45 (2H, d, J = 8.1 Hz), 7.56 - 7.82 (4H, m),

7.99 (2H, d, J = 7.6 Hz), 8.39 (1H, s), 8.55 (1H, d, J = 8.6 Hz)

Mass spectrometric value (ESI-MS) 568 (M-1)

<u>Compound 296</u> N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-diethylamino-ethylamino)-methyl]-benzamide

The title compound 296 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.53 - 2.71 (8H, m), 3.88 (2H, s), 7.13 (1H, m), 7.37 - 7.71 (7H, m), 7.99 (2H, d, J = 7.6 Hz), 8.42 (1H, s), 8.49 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 568 (M-1)

25 <u>Compound 297</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-diethylamino-ethylamino)-methyl]-benzamide

The title compound 297 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.05 (3H, t, J = 7.1 Hz), 1.24 (3H, m), 2.53 - 2.75 (6H, m), 3.72 (2H, m), 3.87 (2H, s), 7.46 (2H, d, J = 7.8 Hz), 7.56 (3H, m), 7.73 (1H, m), 7.98 (3H, m), 8.06 (1H, s), 8.48 (1H, d, J = 8.3 Hz) Mass spectrometric value (ESI-MS) 650 (M-1)

Compound 298 N-[4-Bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-diethylamino-ethylamino)-methyl]-benzamide

The title compound 298 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.05 (6H, t, J = 7.2 Hz), 2.55 - 2.72 (8H, m), 3.85 (3H, s), 3.87 (2H, s), 6.93 (2H, d, J = 8.8 Hz), 7.44 (2H, d, J = 8.0 Hz), 7.58 (1H, m), 7.75 (3H, m), 7.99 (2H, d, J = 7.6 Hz), 8.31 (1H, s), 8.60 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 578 (M-1)

<u>Compound</u> 299 N-[4-Bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-diethylamino-ethylamino)-methyl]-

10 benzamide

15

20

25

30

35

The title compound 299 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.1 Hz), 2.52 - 2.70 (8H, m), 3.86 (3H, s), 3.87 (2H, s), 6.97 (1H, m), 7.29 - 7.45 (5H, m), 7.56 (1H, s), 7.73 (1H, m), 7.99 (2H, d, J = 8.0 Hz), 8.39 (1H, s), 8.53 (1H, m)

Mass spectrometric value (ESI-MS) 578 (M-1)

<u>Compound</u> 300 4-({3-[Bis-(2-hydroxy-ethyl)-amino]-propylamino}-methyl)-N-[4-bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 300 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 1.73 (2H, m), 2.29 (3H, s), 2.30 (3H, s), 2.61 (6H, m), 2.73 (2H, t, J = 6.8 Hz), 3.60 (4H, m), 3.89 (2H, s), 7.18 (1H, d, J = 7.6 Hz), 7.53 (3H, m), 7.64 (1H, s), 7.71 (1H, dd, J = 8.8 Hz, J = 2.4 Hz), 7.98 - 8.05 (3H, m), 8.29 (1H, s), 8.60 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 626 (M+1)

<u>Compound</u> 301 4-({3-[Bis-(2-hydroxy-ethyl)-amino]-propylamino}-methyl)-N-[4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 301 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.74 (2H, m), 2.63 (6H, m), 2.75 (2H, m), 3.61 (4H, m), 3.90 (2H, s), 7.17 (1H, m), 7.45 (1H, m), 7.33 - 7.72 (5H, m), 7.89 (2H, m), 8.09 (1H, d, J = 2.4 Hz), 8.35 (1H, s), 8.60 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 612 (M-1)

<u>Compound 302</u> 4- ({3-[Bis-(2-hydroxy-ethyl)-amino]-propylamino}-methyl)-N-[4-bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 302 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 1.75 (2H, m), 2.63 (6H, m), 2.78 (2H, m), 3.61 (4H, m), 3.91 (2H, s), 7.54 (2H, d, J = 8.0 Hz), 7.66 (2H, m), 8.00 (3H, m), 8.11 (1H, d, J = 2.4 Hz), 8.32 (1H, s), 8.38 (1H, s), 8.58 (1H, d, J = 8.8 Hz)

10 Mass spectrometric value (ESI-MS) 696 (M-1)

5

30

35

Compound 303 4-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 303 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.11 (3H, s), 1.13 (3H, s), 2.29 (6H, m), 2.45 - 2.65 (4H, m), 3.60 - 3.99 (4H, m), 7.18 (1H, d, J = 7.8 Hz), 7.47 (3H, m), 7.55 (1H, m), 7.64 (1H, s), 7.70 (1H, s), 8.01 (2H, d, J = 7.6 Hz), 8.31 (1H, s), 8.52 (1H, d, J = 8.6 Hz)

Mass spectrometric value (ESI-MS) 595 (M-1)

20 <u>Compound 304</u> 4-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 304 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.11 (6H, m), 2.34 (3H, s), 2.42 - 2.62 (4H, m), 3.59 - 3.93 (4H, m), 7.19 (2H, d, J = 8.0 Hz), 7.44 (3H, m), 7.68 (3H, m), 7.98 (2H, d, J = 7.8 Hz), 8.41 (2H, m)

Mass spectrometric value (ESI-MS) 579 (M-1)

Compound 305 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-morpholin-4-yl-2-oxo-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 305 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 2.26 (3H, s), 2.28 (3H, s), 2.49 (8H, m), 3.16 (2H, s), 3.49 - 3.70 (10H, m), 7.15 (1H, d, J = 7.8 Hz), 7.40 - 7.52 (4H, m), 7.62 (1H, s), 7.73 (1H, s), 7.96 (2H, d, J = 7.8 Hz), 8.38 (1H, s), 8.49 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 673 (M-1)

<u>Compound 306</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-morpholin-4-yl-2-oxo-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 306 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 2.50 (8H, m), 3.15 (2H, s), 3.49 - 3.75 (10H, m), 7.42 (2H, m), 7.54 (2H, m), 7.71 (1H, s), 7.99 (4H, m), 8.44 (1H, d, J = 8.5 Hz), 8.51 (1H, s)

10 Mass spectrometric value (ESI-MS) 747 (M-1)

5

15

<u>Compound</u> 307 N-[4-Bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-morpholin-4-yl-2-oxo-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 307 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 2.48 (8H, m), 3.16 (2H, s), 3.48 - 3.75 (10H, m), 3.81 (3H, s), 6.89 (2H, d, J = 8.8 Hz), 7.39 (2H, d, J = 8.1 Hz), 7.50 (1H, m), 7.69 - 7.53 (3H, m), 7.96 (2H, d, J = 8.0 Hz), 8.40 (1H, s), 8.49 (1H, d, J = 9.0 Hz)

20 Mass spectrometric value (ESI-MS) 675 (M-1)

<u>Compound 308</u> 4-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 308 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.47 (2H, m), 1.65 (6H, m), 1.82 (2H, m), 1.94 (2H, t, J = 11.2 Hz), 2.24 (3H, s), 2.26 (3H, s), 2.55 - 2.68 (5H, m), 2.87 (2H, d, J = 11.5 Hz), 3.47 (2H, s), 7.13 (1H, d, J = 7.8 Hz), 7.36 (2H, d, J = 8.0 Hz), 7.43 (1H, d, J = 7.8 Hz), 7.50 (1H, d, J = 8.8 Hz), 7.59 (1H, s), 7.88 (1H, s), 7.96 (2H, d, J = 8.0 Hz), 8.43 (1H, s), 8.53 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 630 (M-1)

Compound 309 4-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 309 was produced in the same manner as in Example 5.

 $^{1}\text{H-NMR}$ (CDCI₃, 400 MHz): δ 1.47 (2H, m), 1.59 - 1.73 (6H, m), 1.82 (2H,

m), 1.93 (2H, m), 2.34 (3H, s), 2.57 - 2.69 (5H, m), 2.87 (2H, d, J = 11.5 Hz), 3.47 (2H, s), 7.19 (2H, d, J = 8.0 Hz), 7.36 (2H, d, J = 8.0 Hz), 7.51 (1H, m), 7.66 (2H, d, J = 8.0 Hz), 7.87 (1H, s), 7.96 (2H, d, J = 8.0 Hz), 8.45 (1H, s), 8.53 (1H, d, J = 9.0 Hz)

5 Mass spectrometric value (ESI-MS) 614 (M-1)

Compound 310 4-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 310 was produced in the same manner as in Example 5.

- ¹H-NMR (CDCl₃, 400 MHz): δ 1.47 (2H, m), 1.59 1.74 (6H, m), 1.83 (2H, m), 1.94 (2H, m), 2.35 (3H, s), 2.59 2.75 (5H, m), 2.87 (2H, d, J = 11.5 Hz), 3.47 (2H, s), 7.19 (1H, d, J = 7.6 Hz), 7.26 (1H, m), 7.36 (2H, d, J = 8.1 Hz), 7.51 (2H, m), 7.64 (1H, s), 7.90 (1H, s), 7.95 (2H, d, J = 8.1 Hz), 8.46 (1H, s), 8.54 (1H, d, J = 8.8 Hz)
- 15 Mass spectrometric value (ESI-MS) 614 (M-1)

 <u>Compound 311</u> 4-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 311 was produced in the same manner as in Example 5.

- ¹H-NMR (CDCl₃, 400 MHz): δ 1.47 (2H, m), 1.60 1.75 (6H, m), 1.83 (2H, m), 1.93 (2H, m), 2.56 2.74 (5H, m), 2.87 (2H, d, J = 11.2 Hz), 3.47 (2H, s), 7.06 (2H, t, J = 8.5 Hz), 7.36 (2H, d, J = 8.1 Hz), 7.50 (1H, d, J = 8.3 Hz), 7.74 (2H, m), 7.87 8.00 (3H, m), 8.50 (2H, m) Mass spectrometric value (ESI-MS) 620 (M-1)
- 25 <u>Compound 312</u> 4-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 312 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.47 (2H, m), 1.59 - 1.75 (6H, m), 1.83 (2H, m), 1.94 (2H, m), 2.50 - 2.70 (5H, m), 2.87 (2H, d, J = 11.2 Hz), 3.48 (2H, s), 7.08 (1H, m), 7.30 - 7.40 (3H, m), 7.50 (3H, m), 7.87 (1H, s), 7.95 (2H, d, J = 8.1 Hz), 8.49 (2H, m)

Mass spectrometric value (ESI-MS) 620 (M-1)

<u>Compound 313</u> 4-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

35 3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenylj-benzamide

The title compound 313 was produced in the same manner as in

Example 5.

15

20

30

 1 H-NMR (CDCl₃, 400 MHz): δ 1.50 (2H, m), 1.60 - 1.80 (6H, m), 1.82 - 1.96 (4H, m), 2.62 - 2.78 (5H, m), 2.86 (2H, d, J = 11.0 Hz), 3.46 (2H, s), 7.35 (2H, d, J = 8.0 Hz), 7.51 (2H, d, J = 8.6 Hz), 7.94 (5H, m), 8.50 (1H, d, J = 9.0 Hz), 8.57 (1H, s)

Mass spectrometric value (ESI-MS) 702 (M-1)

<u>Compound 314</u> 4-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 314 was produced in the same manner as in Example 5.

 1 H-NMR (CDCI₃, 400 MHz): δ 1.47 (2H, m), 1.59 - 1.75 (6H, m), 1.83 (2H, m), 1.94 (2H, m), 2.60 - 2.76 (5H, m), 2.87 (2H, d, J = 11.5 Hz), 3.46 (2H, s), 3.79 (3H, s), 6.88 (2H, d, J = 8.6 Hz), 7.35 (2H, d, J = 8.0 Hz), 7.52 (1H, d, J = 9.0 Hz), 7.68 (2H, d, J = 8.6 Hz), 7.90 (1H, s), 7.95 (2H, d, J = 8.0 Hz), 8.41 (1H, s), 8.55 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 632 (M-1)

<u>Compound 315</u> 4-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 315 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.47 (2H, m), 1.58 - 1.80 (6H, m), 1.83 (2H, m), 1.92 (2H, m), 2.59 - 2.75 (5H, m), 2.85 (2H, m), 3.45 (2H, s), 3.82 (3H, s), 6.91 (1H, d, J = 6.8 Hz), 7.20 - 7.40 (5H, m), 7.52 (1H, d, J = 9.0 Hz), 7.94 (3H, m), 8.49 (1H, s), 8.56 (1H, d, J = 9.0 Hz)

25 Mass spectrometric value (ESI-MS) 632 (M-1)

Compound 316 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 316 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 2.29 (3H, s), 2.30 (3H, s), 2.48 - 2.65 (10H, m), 3.58 (2H, s), 3.64 (2H, t, J = 5.2 Hz), 7.18 (1H, d, J = 7.8 Hz), 7.46 (3H, m), 7.57 (1H, d, J = 9.0 Hz), 7.64 (1H, s), 7.70 (1H, s), 7.98 (2H, d, J = 7.8 Hz), 8.29 (1H, s), 8.56 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 592 (M-1)
Compound 317 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-

phenyl]-4-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 317 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 2.40 (3H, s), 2.54 - 2.75 (10H, m), 3.60 (2H, s), 3.68 (2H, m), 7.25 (2H, m), 7.45 (2H, d, J = 8.0 Hz), 7.62 (1H, m), 7.70 (3H, m), 7.98 (2H, d, J = 8.0 Hz), 8.28 (1H, s), 8.64 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 576 (M-1)

10

20

25

30

Compound 318 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 318 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 2.40 (3H, s), 2.50 - 2.67 (10H, m), 3.58 (2H, s), 3.64 (2H, t, J = 5.3 Hz), 7.24 (1H, m), 7.32 (1H, m), 7.45 (2H, d,

J = 8.0 Hz, 7.56 (2H, m), 7.70 (2H, m), 7.99 (2H, d, J = 8.0 Hz), 8.34 (1H, s), 8.53 (1H, d, J = 9.2 Hz)

Mass spectrometric value (ESI-MS) 578 (M-1)

Compound 319 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 319 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 2.48 - 2.70 (10H, m), 3.58 (2H, s), 3.65 (2H, t, J = 5.2 Hz), 7.12 (2H, m), 7.45 (2H, d, J = 8.0 Hz), 7.53 (1H, m), 7.68 (1H, s), 7.82 (2H, m), 7.98 (2H, d, J = 8.0 Hz), 8.40 (1H, s), 8.46 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 580 (M-1)

Compound 320 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 320 was produced in the same manner as in Example 5.

 $^1\text{H-NMR}$ (CDCl₃, 400 MHz): δ 2.50 - 2.75 (10H, m), 3.60 (2H, s), 3.69 (2H, t, J = 5.2 Hz), 7.14 (1H, m), 7.36 - 7.72 (7H, m), 7.98 (2H, d, J = 8.0 Hz), 8.39 (1H, s), 8.50 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 582 (M-1)

35 <u>Compound 321</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-

benzamide

The title compound 321 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 2.50 - 2.72 (10H, m), 3.60 (2H, s), 3.66 (2H, t, J = 5.2 Hz), 7.15 (1H, m), 7.43 - 7.72 (6H, m), 7.99 (2H, d, J = 8.0 Hz), 8.07 (1H, s), 8.46 (1H, m)

Mass spectrometric value (ESI-MS) 664 (M-1)

Compound 322 N-[4-Bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-

10 benzamide

15

25

35

The title compound 322 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 2.50 - 2.70 (10H, m), 3.58 (2H, s), 3.65 (2H, t, J = 5.2 Hz), 3.85 (3H, s), 6.94 (2H, d, J = 8.8 Hz), 7.44 (2H, d, J = 8.3 Hz), 7.59 (1H, m), 7.69 - 7.80 (3H, m), 7.98 (2H, d, J = 7, 8 Hz), 8.28 (1H, s), 8.60 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 594 (M-1)

<u>Compound</u> 323 N-[4-Bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-

20 benzamide

The title compound 323 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 2.45 - 2.65 (10H, m), 3.57 (2H, s), 3.63 (2H, t, J = 5.4 Hz), 3.86 (3H, s), 6.98 (1H, m), 7.17 (1H, m), 7.22 - 7.58 (5H, m), 7.71 (1H, s), 7.97 (2H, d, J = 7.8 Hz), 8.38 (1H, s), 8.50 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 592 (M-1)

Compound 324 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxy-piperidin-1-ylmethyl)-

30 benzamide

The title compound 324 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.61 (2H, m), 1.86 - 2.24 (4H, m), 2.89 (3H, s), 2.30 (3H, s), 2.75 (2H, m), 3.57 (2H, s), 3.71 (1H, m), 7.18 (1H, d, J = 7.8 Hz), 7.45 (3H, m), 7.55 (1H, m), 7.64 (1H, s), 7.69 (1H, s), 7.98 (2H, d, J = 7.6 Hz), 8.30 (1H, s), 8.54 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 563 (M-1)

Compound 325 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 325 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.60 (2H, m), 1.89 (2H, m), 2.17 (2H, m), 2.39 (3H, s), 2.74 (2H, m), 3.56 (2H, m), 3.71 (1H, s), 7.15 - 7.27 (2H, m), 7.44 (2H, d, J = 8.0 Hz), 7.56 (1H, m), 7.69 (3H, m), 7.98 (2H, d, J = 8.0 Hz), 8.32 (1H, s), 8.55 (1H, d, J = 9.0 Hz)

10 Mass spectrometric value (ESI-MS) 549 (M-1)

Compound 326 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 326 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.60 (2H, m), 1.90 (2H, m), 2.17 (2H, m), 2.40 (3H, s), 2.74 (2H, m), 3.56 (2H, m), 3.71 (1H, m), 7.24 - 7.34 (2H, m), 7.45 (2H, m), 7.58 (2H, m), 7.70 (2H, m), 7.98 (2H, d, J = 7.8 Hz), 8.31 (1H, s), 8.57 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 547 (M-1)

20 <u>Compound 327</u> N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 327 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.59 (2H, m), 1.89 (2H, m), 2.17 (2H, m), 2.74 (2H, m), 3.56 (2H, s), 3.72 (1H, m), 7.13 (2H, m), 7.45 (2H, d, J = 8.0 Hz), 7.56 (1H, m), 7.66 (1H, s), 7.82 (2H, m), 7.98 (2H, d, J = 8.0 Hz), 8.36 (1H, s), 8.51 (1H, d, J = 8.0 Hz)

Mass spectrometric value (ESI-MS) 551 (M-1)

30

35

Compound 328 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 328 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.65 (2H, m), 1.93 (2H, m), 2.30 (2H, m), 2.80 (2H, m), 3.65 (2H, s), 3.75 (1H, m), 7.15 (1H, m), 7.26 - 7.69 (7H, m), 7.99 (2H, d, J = 7.8 Hz), 8.35 (1H, s), 8.54 (1H, d, J = 9.0 Hz) Mass spectrometric value (ESI-MS) 551 (M-1)

<u>Compound 329</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 329 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.58 (2H, m), 1.91 (2H, m), 2.38 (2H, m), 2.75 (2H, m), 3.58 (2H, s), 3.71 (1H, m), 7.16 (1H, m), 7.47 (2H, d, J = 8.1 Hz), 7.52 - 7.75 (4H, m), 7.98 (2H, d, J = 8.1 Hz), 8.24 (1H, s), 8.58 (1H, m)

Mass spectrometric value (ESI-MS) 635 (M-1)

Compound 330 N-[4-Bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

15

The title compound 330 was produced in the same manner as in Example 5.

 1 H-NMR (CDCI₃, 400 MHz): δ 1.62 (2H, m), 1.90 (2H, m), 2.20 (2H, m), 2.75 (2H, m), 3.59 (2H, s), 3.72 (1H, m), 3.86 (3H, s), 6.95 (2H, d, J = 8.8 Hz), 7.45 (2H, d, J = 8.0 Hz), 7.62 - 7.80 (4H, m), 7.98 (2H, m), 8.21 (1H, s), 8.70 (1H, m)

20 Mass spectrometric value (ESI-MS) 565 (M-1)

Compound 331 N-[4-Bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 331 was produced in the same manner as in 25 Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.60 (2H, m), 1.90 (2H, m), 2.17 (2H, m), 2.75 (2H, m), 2.57 (2H, s), 2.72 (1H, m), 3.87 (3H, s), 6.99 (1H, m), 7.25 - 7.77 (7H, m), 7.97 (2H, d, J = 7.5 Hz), 8.30 (1H, s), 8.63 (1H, d, J = 8.6 Hz)

Mass spectrometric value (ESI-MS) 563 (M-1)

Compound 332 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 332 was produced in the same manner as in Example 5.

1H-NMR (CDCl₃, 400 MHz): δ 1.25 - 1.76 (5H, m), 2.03 (2H, m), 2.28 (3H,

s), 2.29 (3H, s), 2.91 (2H, m), 3.50 (2H, d, J = 6.3 Hz), 3.58 (2H, s), 7.17 (1H, m), 7.41 - 7.72 (6H, m), 7.98 (2H, d, J = 8.0 Hz), 8.32 (1H, s), 8.53 (1H, d, J = 8.5 Hz)

Mass spectrometric value (ESI-MS) 575 (M-1)

5 <u>Compound 333</u> N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 333 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.20 - 1.76 (5H, m), 2.04 (2H, m), 2.39 (3H, s), 2.93 (2H, m), 3.50 (2H, d, J = 6.4 Hz), 3.60 (2H, s), 7.24 (2H, m), 7.42 - 7.76 (6H, m), 7.98 (2H, d, J = 7.8 Hz), 8.33 (1H, s), 8.58 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 561 (M-1)

15

20

Compound 334 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 334 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.20 - 2.15 (7H, m), 2.38 (3H, s), 2.93 (2H, m), 3.40 - 3.65 (4H, m), 7.20 - 7.32 (1H, m), 7.40 - 7.70 (6H, m), 8.27 (1H, s), 8.65 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 563 (M-1)

Compound 335 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 335 was produced in the same manner as in 25 Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.20 - 1.40 (5H, m), 1.72 (2H, m), 2.93 (2H, m), 3.47 - 3.65 (4H, m), 7.12 (2H, m), 7.40 - 7.88 (6H, m), 7.98 (2H, d, J = 8.5 Hz), 8.47 (1H, s), 8.54 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 567 (M-1)

30 Compound 336 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 336 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.20 - 1.80 (5H, m), 2.05 (2H, m), 2.93 (2H, m), 3.42 - 3.65 (4H, m), 7.12 (1H, m), 7.24 - 7.66 (6H, m), 7.82 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 8.30 (1H, s), 8.64 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 565 (M-1)

<u>Compound 337</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 337 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.20 - 2.22 (7H, m), 2.92 (2H, m), 3.39 - 3.65 (4H, m), 7.14 - 8.10 (9H, m), 8.32 (1H, s), 8.64 (1H, d, J = 8.8 Hz) Mass spectrometric value (ESI-MS) 649 (M-1)

10 <u>Compound</u> 338 N-[4-Bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 338 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.20 - 1.76 (5H, m), 2.03 (2H, m), 2.91 (2H, m), 3.46 - 3.64 (4H, m), 3.84 (3H, s), 6.93 (2H, m), 7.41 - 7.80 (6H, m), 7.97 (2H, d, J = 7.8 Hz), 8.32 (1H, s), 8.55 (1H, d, J = 9.0 Hz)
 Mass spectrometric value (ESI-MS) 579 (M-1)
 Compound
 N-[4-Bromo-2-(3-methoxy-benzylidene-

Compound 339 N-[4-Bromo-2-(3-methoxy-benzyliden hydrazinocarbonyl)-phenyl]-4-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 339 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.20 - 2.25 (7H, m), 2.95 (2H, m), 3.45 - 3.67 (4H, m), 3.87 (3H, s), 6.80 - 7.80 (8H, m), 7.95 (2H, m), 8.25 (1H, s), 8.65 (1H, m)

Mass spectrometric value (ESI-MS) 577 (M-1)

<u>Compound</u> 340 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperidin-1-ylmethyl]-

30 benzamide

5

20

35

The title compound 340 was produced in the same manner as in Example 5.

 1 H-NMR (DMSO-d₆, 400 MHz): δ 1.15 (2H, m), 1.35 (3H, m), 1.61 (2H, m), 1.92 (2H, m), 2.27 (3H, s), 2.29 (3H, s), 2.77 (2H, m), 3.42 (2H, m), 3.52 (2H, s), 7.24 (1H, d, J = 7.8 Hz), 7.48 (3H, m), 7.55 (1H, s), 7.80 (1H, dd, J = 9.0 Hz, J = 2.4 Hz), 7.88 (2H, d, J = 8.0 Hz), 8.09 (1H, d, J = 9.0 Hz, J = 2.4 Hz), 7.88 (2H, d, J = 8.0 Hz), 8.09 (1H, d, J = 9.0 Hz, J = 9.

2.4 Hz), 8.38 (1H, s), 8.52 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 589 (M-1)

Example 6

5

10

15

25

30

Compound 341 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazole-3-sulfinylmethyl)-benzamide

Compound 271: N-[4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-

benzamide (100 mg) produced in the same manner as in Example 5 was dissolved in methylene chloride (5 ml), 3-chloro-peroxybenzoic acid (32 mg) was added to the solution, and the mixture was stirred at room temperature for 2 hr. The resultant crystals were filtered and were washed with methylene chloride and hexane to give the title compound 341 (76 mg, yield 70%).

¹H-NMR (DMSO-d₆, 400 MHz): δ 4.65 (2H, m), 7.29 (1H, m), 7.53 (4H, m), 7.83 (3H, m), 8.08 (1H, d, J = 2.0 Hz), 8.43 (2H, m), 8.83 (1H, s), 11.72 (1H, s)

Mass spectrometric value (ESI-MS) 569 (M-1)

Compound 342 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-

20 benzamide

The title compound 342 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.07 (6H, m), 2.30 (12H, m), 2.56 (8H, m), 3.61 (2H, s), 7.18 (1H, d, J = 7.6 Hz), 7.30 - 7.60 (6H, m), 7.93 (1H, d, J = 7.6 Hz), 8.01 (1H, s)

Mass spectrometric value (ESI-MS) 532 (M-1)

<u>Compound 343</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-methyl-2-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 343 was produced in the same manner as in Example 5.

¹H-NMR (CDCI₃, 400 MHz): δ 1.05 (6H, t, J = 7.1 Hz), 2.26 (3H, s), 2.31 (3H, s), 2.39 (3H, s), 2.51 - 2.80 (8H, m), 3.60 (2H, s), 7.21 (2H, d, J = 7.6 Hz), 7.30 - 7.80 (6H, m), 7.93 (1H, d, J = 7.6 Hz), 8.00 (1H, s)

35 Mass spectrometric value (ESI-MS) 518 (M-1)

Compound 344 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-

hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 344 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.2 Hz), 2.25 (3H, s), 2.27 (3H, s), 2.52 - 2.70 (8H, m), 3.60 (2H, s), 7.35 - 7.60 (5H, m), 7.80 (1H, m), 7.92 (1H, d, J = 7.6 Hz), 8.00 (2H, d, J = 3.9 Hz)

Mass spectrometric value (ESI-MS) 606 (M-1)

<u>Compound 345</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 345 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.44 (2H, m), 1.50 - 2.10 (12H, m), 2.30 (10H, m), 2.57 (2H, m), 2.96 (2H, d, J = 11.7 Hz), 3.56 (2H, s), 7.17 (1H, d, J = 7.6 Hz), 7.30 - 7.55 (6H, m), 7.92 (1H, d, J = 7.6 Hz), 7.99 (1H, s)

Mass spectrometric value (ESI-MS) 570 (M-1)

10

15

20

<u>Compound 346</u> N-[4-Bromo-2-(3-phenyl-allylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 346 was produced in the same manner as in Example 1.

 1 H-NMR (CD₃OD, 400 MHz): δ 9.15 (1H, s), 8.73 - 8.78 (1H, m), 8.54 (1H, d, J = 8.8 Hz), 8.26 - 8.42 (1H, m), 8.17 (1H, d, J = 6.6 Hz), 8.06 (1H, d, J = 2.2 Hz), 7.77 (1H, dd, J = 8.8 Hz, J = 2.2 Hz), 7.55 - 7.64 (3H, m), 7.30 - 7.42 (3H, m), 7.05 - 7.10 (2H, m)

25 Mass spectrometric value (ESI-MS) 447 (M-1)

<u>Compound 347</u> N-[4-Bromo-2-(3-phenyl-allylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 347 was produced in the same manner as in Example 1.

¹H-NMR (CD₃OD, 400 MHz): δ 8.75 - 8.00 (2H, m), 8.57 (1H, d, J = 9.0 Hz), 8.28 (1H, d, J = 7.3 Hz), 8.05 - 8.08 (1H, m), 7.92 - 7.95 (2H, m), 7.78 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.57 (2H, d, J = 7.8 Hz), 7.30 - 7.42 (3, m), 7.05 - 7.10 (2H, m)

Mass spectrometric value (ESI-MS) 447 (M-1)

35 <u>Compound 348</u> N-[4-Chloro-2-(3-phenyl-allylidene-hydrazinocarbonyl)-phenyl]-nicotinamide

The title compound 348 was produced in the same manner as in Example 1.

 1 H-NMR (CD₃OD, 400 MHz): δ 9.14 - 9.18 (1H, m), 8.75 (1H, dd, J = 4.9 Hz, J = 1.5 Hz), 8.59 (1H, d, J = 8.8 Hz), 8.39 (1H, ddd, J = 1.4 Hz, J = 1.4 Hz, J = 8.0 Hz), 8.17 (1H. d. J = 6.8 Hz), 7.92 (1H, d, J = 2.4 Hz), 7.55 - 7.65 (4H, m), 7.30 - 7.42 (3H, m), 7.05 - 7.10 (2H, m) Mass spectrometric value (ESI-MS) 403 (M-1)

<u>Compound 349</u> N-[4-Chloro-2-(3-phenyl-allylidene-hydrazinocarbonyl)-phenyl]-isonicotinamide

The title compound 349 was produced in the same manner as in Example 1.

¹H-NMR (CD₃OD, 400 MHz): δ 8.78 (2H, dd, J = 1.7 Hz, J = 4.4 Hz), 8.62 (1H, d, J = 9.0 Hz), 8.18 (1H, dd, J = 1.4 Hz, J = 7.6 Hz), 7.93 - 7.97 (3H, m), 7.64 (1H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.55 - 7.60 (2H, m), 7.31 - 7.43 (3H, m), 7.06 - 7.12 (2H, m)

Mass spectrometric value (ESI-MS) 403 (M-1)

15

25

30

<u>Compound 350</u> N-{4-Bromo-2-[3-(2-hydroxy-ethoxy)-benzylidene-hydrazinocarbonyl]-phenyl}-isonicotinamide

The title compound 350 was produced in the same manner as in 20 Example 1.

¹H-NMR (CD₃OD, 400 MHz): δ 8.78 (2H, dd, J = 1.7 Hz, J = 4.4 Hz), 8.57 (1H, d, J = 8.8 Hz), 8.31 (1H, s), 8.08 (1H, d, J = 2.2 Hz), 7.95 (2H, dd, J = 1.7 Hz, J = 4.6 Hz), 7.81 (1H, s), 7.77 - 7.79 (1H, m), 7.76 (1H, d, J = 2.2 Hz), 7.03 (2H, d, J = 8.8 Hz), 4.11 (2H, t, J = 9.5 Hz), 3.89 (2H, t, J = 9.3 Hz)

Mass spectrometric value (ESI-MS) 481 (M-1)

<u>Compound 351</u> N-{4-Chloro-2-[3-(2-hydroxy-ethoxy)-benzylidene-hydrazinocarbonyl]-phenyl}-isonicotinamide

The title compound 351 was produced in the same manner as in Example 1.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.78 (2H, dd, J = 1.7 Hz, J = 4.6 Hz), 8.63 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 7.93 - 7.97 (3H, m), 7.79 (2H, d, J = 8.8 Hz), 7.64 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.03 (2H, d, J = 8.8 Hz), 4.11 (2H, t, J = 4.8 Hz), 3.89 (2H, t, J = 4.8 Hz)

Mass spectrometric value (ESI-MS) 437 (M-1)

Compound 352 N-{4-Bromo-2-[3-(2-methoxy-phenyl)-allylidene-

hydrazinocarbonyl]-phenyl}-nicotinamide

The title compound 352 was produced in the same manner as in Example 1.

¹H-NMR (CD₃OD, 400 MHz): δ 9.15 (1H, d, J = 2.2 Hz), 8.75 (1H, dd, J = 1.4 Hz, J = 4.9 Hz), 8.39 (1H, ddd, J = 1.8 Hz, J = 1.8 Hz, J = 7.8 Hz), 8.16 (1H, d, J = 9.2 Hz), 8.06 (1H, d, J = 2.4 Hz), 7.77 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.56 - 7.65 (2H, m), 7.30 - 7.40 (2H, m), 7.11 (1H, dd, J = 9.5 Hz, J = 6.1 Hz), 7.02 (1H, d, J = 8.3 Hz), 6.97 (1H, dd, J = 7.7 Hz), 3.90 (3H, s)

10 Mass spectrometric value (ESI-MS) 479, 480 (M-1)

<u>Compound 353</u> N-{4-Bromo-2-[3-(2-methoxy-phenyl)-allylidene-hydrazinocarbonyl]-phenyl}-isonicotinamide

The title compound 353 was produced in the same manner as in Example 1.

¹H-NMR (CD₃OD, 400 MHz): δ 8.76 - 8.80 (2H, m), 8.57 (1H, d, J = 8.8 Hz), 8.17 (1H, d, J = 9.5 Hz), 8.07 (1H, d, J = 2.4 Hz), 7.94 (2H, dd, J = 1.7 Hz, J = 4.4 Hz), 7.78 (1H, dd, J = 2.4 Hz, J = 8.9 Hz), 7.59 (1H, d, J = 6.4 Hz), 7.30 - 7.41 (2H, m), 6.95 - 7.24 (3H, m), 3.90 (3H, s) Mass spectrometric value (ESI-MS) 479, 480 (M-1)

20 <u>Compound 354</u> N-{4-Chloro-2-[3-(2-methoxy-phenyl)-allylidene-hydrazinocarbonyl]-phenyl}-nicotinamide

The title compound 354 was produced in the same manner as in Example 1.

¹H-NMR (CD₃OD, 400 MHz): δ 9.16 (1H, d, J = 2.4 Hz), 8.76 (1H, dd, J = 2.1 Hz, J = 5.3 Hz), 8.60 (1H, d, J = 9.0 Hz), 8.35 - 8.42 (1H, m), 8.16 (1H, d, J = 9.5 Hz), 7.92 (1H, d, J = 2.4 Hz), 7.58 - 7.65 (3H, m), 7.30 - 7.41 (2H, m), 7.11 (1H, dd, J = 9.5 Hz, J = 16.1 Hz), 7.02 (1H, d, J = 7.8 Hz), 6.97 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 3.90 (3H, s) Mass spectrometric value (ESI-MS) 433 (M-1)

30 <u>Compound 355</u> N-{4-Chloro-2-[3-(2-methoxy-phenyl)-allylidene-hydrazinocarbonyl]-phenyl}-isonicotinamide

The title compound 355 was produced in the same manner as in Example 1.

¹H-NMR (CD₃OD, 400 MHz): δ 8.78 (2H, d, J = 4.4 Hz), 8.63 (1H, d, J = 8.8 Hz), 8.17 (1H, d, J = 9.3 Hz), 7.92 - 7.98 (3H, m), 7.55 - 7.70 (2H, m), 7.30 - 7.38 (2H, m), 7.07 - 7.17 (1H, m), 6.95 - 7.05 (2H, m)

Mass spectrometric value (ESI-MS) 435 (M-1)

<u>Compound 356</u> Pridin-2-carboxylic acid [4-bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide hydrochloride

The title compound 356 was produced in the same manner as in Example 3.

Mass spectrometric value (ESI-MS) 473 (M-1)

Compound 357 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(3-fluoro-phenylsulfanylmethyl)-benzamide

The title compound 357 was produced in the same manner as in 10 Example 4.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.59 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 8.05 - 8.08 (1H, m), 7.93 (2H, d, J = 8.6 Hz), 7.60 - 7.80 (4H, m), 7.51 (2H, d, J = 8.6 Hz), 6.80 - 7.40 (5H, m), 4.27 (2H, s), 2.40 (3H, s) Mass spectrometric value (ESI-MS) 574 (M-1)

15 <u>Compound 358</u> N-{2-[3-(4-Dimethylamino-phenyl)-allylidene-hydrazinocarbonyl]-phenyl}-nicotinamide

The title compound 358 was produced in the same manner as in Example 1.

¹H-NMR (CD₃OD, 400 MHz): δ 9.17 (1H, s, J = 1.5 Hz), 8.75 (1H, dd, J = 1.5 Hz, H = 4.9 Hz), 8.60 (1H, d, J = 8.3 Hz), 8.38 - 8.44 (1H, m), 8.11 (1H, d, J = 9.0 Hz), 7.85 (1H, d, J = 7.8 Hz), 7.60 - 7.65 (2H, m), 7.42 (2H, d, J = 8.8 Hz), 7.29 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.94 - 7.00 (1H, m), 6.80 - 6.88 (1H, m), 6.74 (2H, d, J = 9.0 Hz), 3.00 (6H, s) Mass spectrometric value (ESI-MS) 412 (M-1)

25 <u>Compound 359</u> Pyridin-2-carboxylic acid [4-chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 359 was produced in the same manner as in Example 1.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.79 (1H, d, J = 9.0 Hz), 8.73 (1H, d, J = 3.0 Hz), 8.33 (1H, s), 8.22 (1H, d, J = 7.8 Hz), 7.98 - 8.04 (1H, m), 7.89 (1H, d, J = 2.4 Hz), 7.73 (1H, d, J = 10.0 Hz), 7.58 - 7.66 (3H, m), 7.42 - 7.50 (1H, m), 7.15 - 7.22 (1H, m)

Mass spectrometric value (ESI-MS) 395 (M-1)

35

Compound 360 Pyridin-2-carboxylic acid [4-chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 360 was produced in the same manner as in

Example 1.

10

35

 $^1\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.78 (1H, d, J = 8.8 Hz), 8.72 (1H, d, J = 4.9 Hz), 8.33 (1H, s), 8.22 (1H, d, J = 7.8 Hz), 8.01 (1H, ddd, J = 7.8 Hz, J = 7.8 Hz, J = 1.4 Hz), 7.89 - 7.95 (2H, m), 7.88 (1H, d, J = 2.4 Hz),

5 7.58 - 7.65 (2H, m), 7.19 (2H, dd, J = 8.8 Hz, J = 8.8 Hz) Mass spectrometric value (ESI-MS) 395 (M-1)

<u>Compound 361</u> Pyridin-2-carboxylic acid [4-chloro-2-(3-methylbenzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 361 was produced in the same manner as in Example 1.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.78 (1H, d, J = 9.0 Hz), 8.73 (1H, d, J = 4.6 Hz), 8.31 (1H, s), 8.22 (1H, d, J = 7.8 Hz), 7.98 - 8.04 (1H, m), 7.88 (1H, d, J = 2.4 Hz), 7.72 (1H, s), 7.56 - 7.66 (3H, m), 7.24 - 7.35 (2H, m), 2.40 (3H, s)

15 Mass spectrometric value (ESI-MS) 391 (M-1)

Compound 362 Pyridin-2-carboxylic acid [4-chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 362 was produced in the same manner as in Example 1.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.78 (1H, d, J = 8.8 Hz), 8.73 (1H, d, J = 4.9 Hz), 8.30 (1H, s), 8.22 (1H, d, J = 7.8 Hz), 8.01 (1H, ddd, J = 8.5 Hz, J = 8.5 Hz, J = 1.7 Hz), 7.87 (1H, d, J = 2.4 Hz), 7.75 (2H, d, J = 8.0 Hz), 7.57 - 7.64 (2H, m), 7.27 (2H, d, J = 8.0 Hz), 2.38 (3H, s) Mass spectrometric value (ESI-MS) 391 (M-1)

25 <u>Compound 363</u> Pyridin-2-carboxylic acid [4-chloro-2-(3,4-dimethylbenzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 363 was produced in the same manner as in Example 1.

¹H-NMR (CD₃OD, 400 MHz): δ 8.77 (1H, d, J = 9.0 Hz), 8.73 (1H, d, J = 4.4 Hz), 8.27 (1H, s), 8.22 (1H, d, J = 7.8 Hz), 8.00 (1H, ddd, J = 1.7 Hz, J = 7.7 Hz, J = 7.7 Hz), 7.87 (1H, d, J = 2.4 Hz), 7.67 (1H, s), 7.53 - 7.64 (3H, m), 7.20 (1H, d, J = 7.8 Hz), 2.32 (3H, s), 2.30 (3H, s)

Mass spectrometric value (ESI-MS) 405 (M-1)

Compound 364 Pyridin-2-carboxylic acid [4-chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 364 was produced in the same manner as in

Example 1.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.79 (1H, d, J = 9.0 Hz), 8.71 - 8.75 (1H, m), 8.35 - 8.40 (2H, m), 8.22 (1H, d, J = 7.8 Hz), 8.07 (1H, d, J = 8.3 Hz), 7.98 - 8.04 (1H, m), 7.90 (1H, d, J = 2.2 Hz), 7.70 (1H, d, J = 8.6 Hz), 7.58 - 7.67 (2H, m)

Mass spectrometric value (ESI-MS) 479 (M-1)

Compound 366 N-{4-Chloro-2-[N'-(3,4-dimethyl-benzyl)-hydrazinocarbonyl]-phenyl}-3-(pyridin-4-ylsulfanylmethyl)-benzamide

The title compound 366 was produced in the same manner as in Example 7.

Mass spectrometric value (ESI-MS) 529, 531, 532 (M-1)

Example 7

10

15

20

25

30

Compound 367 N-{4-Bromo-2-[N'-(4-methyl-benzyl)-hydrazinocarbonyl]-phenyl}-3,4-dimethoxy-benzamide

Compound 62: N-[4-bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3,4-dimethoxy-benzamide (100 mg) produced in the same manner as in Example 1 was dissolved in a mixed solution (2.0 ml) of tetrahydrofuran/methanol = 4/1, and sodium borohydride (14.0 mg) was added to the mixed solution at room temperature. The mixture was stirred at that temparature for 30 min, and, after the completion of the reaction was comfirmed by TLC, distilled water (2.0 ml) was poured thereinto. The mixture was subjected to separatory extraction with chloroform, and the organic layer was dried over sodium sulfate and was then concentrated under the reduced pressure. The residue was purified by preparative TLC to give the title compound 367 (42.2 mg).

 1 H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.35 (1H, s), 8.06 (1H, s), 7.87 - 7.95 (4H, m), 7.63 (1H, d, J = 8.8 Hz), 7.62 (1H, d, J = 8.8 Hz), 7.50 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.19 (2H, dd, J = 8.8 Hz),

3.83 (2H, s), 3.65 (4H, t, J = 5.9 Hz), 2.71 (4H, t, J = 5.9 Hz) Mass spectrometric value (ESI-MS) 496, 497, 498, 499 (M-1)

Compound 368 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 368 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 8.8 Hz), 8.35 (1H, s),

7.89 - 7.98 (3H, m), 7.70 (1H, d, J = 9.8 Hz), 7.57 - 7.64 (3H, m), 7.42 - 7.50 (2H, m), 7.10 - 7.23 (1H, m), 3.62 (2H, s), 2.99 (2H, d, J = 12.0 Hz), 2.59 (4H, bs), 2.29 - 2.39 (1H, m), 2.06 (2H, t, J = 11.5 Hz), 1.86 (2H, d, J = 11.7 Hz), 1.55 - 1.68 (6H, m), 1.40 - 1.50 (2H, m)

5 Mass spectrometric value (ESI-MS) 574, 576 (M-1)

<u>Compound 369</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 369 was produced in the same manner as in Example 5.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.35 (1H, s), 7.88 7.97 (5H, m), 7.56 7.64 (2H, m), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.15 7.22 (2H, m), 3.62 (2H, s), 3.98 (2H, d, J = 12.2 Hz), 2.57 (4H, bs), 2.25 2.35 (1H, m), 2.05 (2H, t, J = 11.1 Hz), 1.80 1.90 (2H, m), 1.53 1.66 (7H, m), 1.40 1.50 (2H, m)
- Mass spectrometric value (ESI-MS) 574, 576 (M-1)

 <u>Compound 370</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 370 was produced in the same manner as in Example 5.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.53 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.88 7.98 (4H, m), 7.71 (1H, s), 7.57 7.65 (3H, m), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.25 7.37 (2H, m), 3.63 (2H, s), 3.99 (2H, d, J = 12.0 Hz), 2.56 (4H, bs), 2.39 (3H, s), 2.25 2.37 (1H, m), 2.06 (2H, t, J = 11.3 Hz), 1.80 1.90 (2H, m), 1.55 1.64 (6H, m), 1.40 1.49 (2H, m)
- 25 Mass spectrometric value (ESI-MS) 570, 571 (M-1)

 Compound 371 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 371 was produced in the same manner as in Example 5.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.89 7.98 (3H, m), 7.74 (2H, d, J = 8.3 Hz), 7.57 7.64 (2H, m), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.27 (2H, d, J = 7.8 Hz), 3.63 (2H, s), 2.95 3.05 (2H, m), 2.56 (4H, bs), 2.39 (3H, s), 2.25 2.35 (1H, m), 2.00 2.10 (2H, m), 1.80 1.90 (2H, m), 1.59 (6H, bs), 1.40 1.50 (2H, m)
- Mass spectrometric value (ESI-MS) 570, 571 (M-1)

 Compound 372 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(3,4-

dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 372 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.30 (1H, s), 7.96 (1H, s), 7.89 - 7.95 (2H, m), 7.65 (1H, s), 7.49 - 7.68 (4H, m), 7.20 (1H, d, J = 8.0 Hz), 3.62 (2H, s), 2.99 (2H, d, J = 11.5 Hz), 2.55 (4H, bs), 2.32 (3H, s), 2.30 (3H, s), 2.25 - 2.30 (1H, m), 2.01 - 2.10 (2H, m), 1.80 - 1.88 (2H, m), 1.54 - 1.65 (6H, m), 1.40 - 1.50 (2H, m) Mass spectrometric value (ESI-MS) 584, 585 (M-1)

Compound 373 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 373 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.35 (1H, s), 8.05 (1H, d, J = 8.3 Hz), 7.89 - 7.98 (4H, m), 7.71 (1H, d, J = 8.6 Hz), 7.64 (1H, dd, J = 9.0 Hz, J = 2.2 Hz), 7.56 - 7.62 (1H, m), 7.53 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 3.66 (2H, s), 3.00 - 3.10 (6H, m), 2.09 - 2.18 (3H, m), 1.96 - 2.03 (2H, m), 1.70 - 1.80 (6H, m), 1.55 - 1.65 (2H, m) Mass spectrometric value (ESI-MS) 658, 660 (M-1)

20 <u>Compound 374</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 374 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.62 (1H, d, J = 9.0 Hz), 8.32 (1H, s), 7.87 - 7.98 (4H, m), 7.47 - 7.65 (4H, m), 7.28 - 7.38 (2H, m), 6.97 - 7.03 (1H, m), 3.86 (3H, s), 3.61 (3H, s), 2.97 (2H, d, J = 10.5 Hz), 2.55 (4H, bs), 2.25 - 2.35 (1H, m), 1.97 - 2.10 (2H, m), 1.80 - 1.88 (2H, m), 1.54 - 1.65 (6H, m), 1.44 (2H, bs)

Mass spectrometric value (ESI-MS) 586, 588 (M-1)

30 <u>Compound 375</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 375 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.30 (1H, s), 7.96 (1H, s), 7.89 - 7.94 (2H, m), 7.79 (2H, d, J = 8.8 Hz), 7.57 - 7.64 (2H, m), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 6.99 (2H, d, J = 8.8 Hz),

3.85 (3H, s), 3.62 (2H, s), 3.99 (2H, d, J = 12.0 Hz), 2.56 (4H, bs), 2.25 - 2.35 (1H, m), 2.05 (2H, t, J = 11.0 Hz), 1.80 - 1.90 (2H, m), 1.55 - 1.65 (6H, m), 1.40 - 1.50 (2H, m)

Mass spectrometric value (ESI-MS) 586, 587 (M-1)

5 <u>Compound 376</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 376 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 7.89 - 7.98 (4H, m), 7.62 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.59 (1H, d, J = 7.8 Hz), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.32 (1H, s), 7.20 - 7.30 (2H, m), 6.85 - 6.90 (1H, m), 3.64 (2H, s), 3.02 (2H, d, J = 11.7 Hz), 2.66 (4H, bs), 2.32 (1H, bs), 2.08 (2H, t, J = 11.4 Hz), 1.85 - 1.93 (2H, m), 1.52 - 1.68 (6H, m), 1.40 - 1.51 (2H, m)

Mass spectrometric value (ESI-MS) 572, 574 (M-1)

Compound 377 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-chloro-2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 377 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.26 (1H, s), 7.96 (1H, s), 7.88 - 7.94 (2H, m), 7.70 (1H, d, J = 8.8 Hz), 7.62 (2H, d, J = 2.4 Hz), 7.57 - 7.63 (2H, m), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 6.84 (2H, d, J = 8.5 Hz), 3.63 (2H, s), 2.99 (2H, d, J = 12.0 Hz), 2.57 (4H, bs), 2.27 - 2.36 (1H, m), 2.06 (2H, t, J = 11.2 Hz), 1.85 (2H, d, J = 12.7 Hz),

25 1.52 - 1.67 (6H, m), 1.40 - 1.50 (2H, m)

Mass spectrometric value (ESI-MS) 572, 574, 575 (M-1)

Compound 378 4-[1,4']Bipiperidinyl-1'-ylmethyl-N-{4-bromo-2-[N'-(3-methoxy-benzyl)-hydrazinocarbonyl]-phenyl}-benzamide

The title compound 378 was produced in the same manner as in Example 7.

Mass spectrometric value (ESI-MS) 632, 634 (M-1)

Compound 379 N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 379 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.35 (1H, s),

7.90 - 8.00 (2H, m), 7.89 (1H, s), 7.70 (1H, d, J = 9.8 Hz), 7.56 - 7.63 (3H, m), 7.53 (1H, dd, J = 7.7 Hz), 7.43 - 7.49 (1H, m), 3.67 (2H, s), 2.69 - 2.75 (2H, m), 2.54 - 2.64 (6H, m), 2.28 (3H, s), 1.03 (6H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 536, 538 (M-1)

Compound 380 N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 380 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.35 (1H, s), 7.98 (1H, s), 7.94 (1H, d, J = 2.2 Hz), 7.87 - 7.93 (3H, m), 7.58 - 7.64 (2H, m), 7.53 (1H, dd, J = 7.4 Hz, J = 7.4 Hz), 7.19 (2H, dd, J = 8.8 Hz, J = 8.8 Hz), 3.67 (2H, s), 2.68 - 2.74 (2H, m), 2.53 - 2.63 (6H, m), 2.28 (3H, s), 1.02 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 536, 538 (M-1)

Compound 381 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 381 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.99 (1H, s), 7.89 - 7.96 (2H, m), 7.71 (2H, s), 7.58 - 7.65 (2H, m), 7.53 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.25 - 7.35 (2H, m), 3.67 (2H, s), 2.67 - 2.75 (2H, m), 2.51 - 2.62 (6H, m), 2.39 (3H, s), 2.28 (3H, s), 1.01 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 532, 534 (M-1)

25 <u>Compound 382</u> N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 382 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.98 (1H, s), 7.88 - 7.94 (2H, m), 7.73 (2H, d, J = 8.3 Hz), 7.58 - 7.63 (2H, m), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.26 (2H, d, J = 8.0 Hz), 3.67 (2H, s), 2.68 - 2.74 (2H, m), 2.53 - 2.63 (6H, m), 2.38 (3H, s), 2.28 (3H, s), 1.02 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 532, 534 (M-1)

N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-

methyl}-benzamide

The title compound 383 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.30 (1H, s), 7.99 (1H, s), 7.89 - 7.95 (2H, m), 7.66 (1H, s), 7.58 - 7.64 (2H, m), 7.50 - 7.57 (2H, m), 7.20 (1H, d, J = 8.1 Hz), 3.67 (2H, s), 2.68 - 2.75 (2H, m), 2.54 - 2.63 (6H, m), 2.32 (3H, s), 2.31 (3H, s), 2.29 (3H, s), 1.02 (6H, t, J = 7.3 Hz)

Mass spectrometric value (ESI-MS) 546, 548 (M-1)

10 <u>Compound 384</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 384 was produced in the same manner as in Example 5.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 8.8 Hz), 8.38 (1H, s), 8.33 (1H, s), 8.03 (1H, d, J = 8.3 Hz), 7.95 8.00 (2H, m), 7.92 (1H, d, J = 7.8 Hz), 7.68 (1H, d, J = 8.3 Hz), 7.57 7.64 (2H, m), 7.53 (1H, s), 3.66 (2H, s), 2.71 2.79 (2H, m), 2.54 2.66 (6H, m), 2.28 (3H, s), 1.03 (6H, t, J = 7.2 Hz)
- 20 Mass spectrometric value (ESI-MS) 620, 622 (M-1)

 Compound 385 N-[4-Chloro-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 385 was produced in the same manner as in 25 Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.98 (1H, s), 7.89 - 7.96 (2H, m), 7.49 - 7.63 (4H, m), 7.27 - 7.37 (2H, m), 6.95 - 7.05 (1H, m), 3.86 (3H, s), 3.66 (2H, s), 2.67 - 2.73 (2H, m), 2.53 - 2.62 (6H, m), 2.27 (3H, s), 1.02 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 548, 550 (M-1)

Compound 386 N-[4-Chloro-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 386 was produced in the same manner as in Example 5.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.30 (1H, s),

7.98 (1H, s), 7.88 - 7.95 (2H, m), 7.79 (2H, d, J = 9.0 Hz), 7.58 - 7.64 (2H, m), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.99 (2H, d, J = 8.8 Hz), 3.84 (3H, s), 3.66 (2H, s), 2.67 - 2.73 (2H, m), 2.52 - 2.62 (6H, m), 2.28 (3H, s), 1.02 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 548, 550 (M-1)

Compound 387 N-[4-Chloro-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 387 was produced in the same manner as in 10 Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 7.91 (1H, s), 7.88 - 7.95 (2H, m), 7.61 (2H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.53 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.21 - 7.34 (3H, m), 6.85 - 6.90 (1H, ddd, J = 2.2 Hz, J = 2.2 Hz, J = 6.8 Hz), 3.67 (2H, s), 2.70 - 2.75 (2H, m),

2.54 - 2.64 (6H, m), 2.28 (3H, s), 1.02 (6H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 534, 536 (M-1)

20

25

30

35

<u>Compound</u> 388 N-[4-Chloro-2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 388 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.27 (1H, s), 7.98 (1H, s), 7.88 - 7.95 (2H, m), 7.70 (2H, d, J = 8.8 Hz), 7.61 (2H, dd, J = 1.8 Hz, J = 8.8 Hz), 7.53 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.84 (2H, d, J = 8.8 Hz), 3.68 (2H, s), 2.76 (2H, t, J = 7.3 Hz), 2.55 - 2.68 (6H, m), 2.29 (3H, s), 1.04 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 534, 536 (M-1)

Compound 389 N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 389 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 506 (M-1)

Compound 390 N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 390 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 506 (M-1)

Compound 391 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 391 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 503, 504 (M-1)

Compound 392 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 392 was produced in the same manner as in 10 Example 4.

Mass spectrometric value (ESI-MS) 503, 504 (M-1)

<u>Compound 393</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 393 was produced in the same manner as in Example 4.

Mass spectrometric value (ESI-MS) 591, 593 (M-1)

Compound 394 N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 394 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.35 (1H, s), 8.00 (1H, s), 7.88 - 7.95 (2H, m), 7.71 (1H, d, J = 9.3 Hz), 7.58 - 7.67 (3H, m), 7.53 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.42 - 7.50 (1H, m), 7.15 - 7.22 (1H, m), 3.69 - 3.74 (4H, m), 2.62 (2H, t, J = 6.0 Hz), 2.30 (3H, s)

Mass spectrometric value (ESI-MS) 481, 483 (M-1)

Compound 395 N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 395 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.35 (1H, s), 7.95 - 8.02 (2H, m), 7.87 - 7.95 (3H, m), 7.63 (1H, d, J = 9.0 Hz), 7.62 (1H, d, J = 9.0 Hz), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.19 (2H, dd, J = 8.8 Hz, J = 8.8 Hz), 3.69 - 3.75 (4H, m), 2.62 (2H, t, J = 6.0 Hz), 2.30

35 **(3H, s)**

15

20

25

30

Mass spectrometric value (ESI-MS) 481, 483 (M-1)

Compound 396 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 396 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 7.99 (1H, s), 7.88 - 7.95 (3H, m), 7.71 (1H, s), 7.60 - 7.65 (3H, m), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.25 - 7.36 (2H, m), 3.68 - 3.74 (4H, m), 2.61 (2H, t, J = 6.0 Hz), 2.39 (3H, s), 2.29 (3H, s) Mass spectrometric value (ESI-MS) 477 (M-1)

Compound 397 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 397 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 8.00 (1H, bs), 7.90 - 7.95 (2H, m), 7.74 (2H, d, J = 7.8 Hz), 7.60 - 7.65 (2H, m), 7.53 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.27 (2H, d, J = 7.8 Hz), 3.70 - 3.78 (4H, m), 2.65 (2H, t, J = 6.0 Hz), 2.38 (3H, s), 2.32 (3H, s) Mass spectrometric value (ESI-MS) 477 (M-1)

Compound 398 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 398 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.30 (1H, s), 8.00 (1H, bs), 7.90 - 7.95 (2H, m), 7.66 (1H, s), 7.59 - 7.65 (2H, m), 7.50 - 7.57 (2H, m), 7.20 (1H, d, J = 7.8 Hz), 3.76 (2H, s), 3.73 (2H, t, J = 6.0 Hz), 2.66 (2H, t, J = 6.0 Hz), 2.33 (3H, s), 2.31 (3H, s), 2.30 (3H, s) Mass spectrometric value (ESI-MS) 491 (M-1)

<u>Compound 399</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

30

The title compound 399 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.39 (1H, s), 8.34 (1H, s), 8.03 - 8.08 (1H, m), 8.00 (1H, s), 7.94 (1H, d, J = 2.4 Hz), 7.90 (1H, d, J = 8.3 Hz), 7.70 (1H, d, J = 8.5 Hz), 7.58 - 7.67 (2H, m),

7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 3.68 - 3.74 (4H, m), 2.60 (2H, t, J = 6.0 Hz), 2.28 (3H, s)

Mass spectrometric value (ESI-MS) 565 (M-1)

Compound 400 N-[4-Chloro-2-(3-methoxy-benzylidene-

5 hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 400 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.99 (1H, s), 7.88 - 7.94 (2H, m), 7.58 - 7.64 (2H, m), 7.57 (1H, s), 7.48 - 7.54 (1H, m), 7.26 - 7.36 (2H, m), 6.97 - 7.02 (1H, m), 3.86 (3H, s), 3.68 - 3.74 (4H, m), 2.61 (2H, t, J = 6.1 Hz), 2.29 (3H, s)

Mass spectrometric value (ESI-MS) 493, 495 (M-1)

Compound 401 N-[4-Chloro-2-(4-methoxy-benzylidene-

hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 401 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 7.99 (1H, s), 7.75 - 7.93 (5H, m), 7.58 - 7.65 (2H, m), 7.53 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.00 (1H, d, J = 8.8 Hz), 3.85 (3H, s), 3.67 - 3.74 (4H, m), 2.63 (2H, t, J = 6.1 Hz), 2.31 (3H, s)

Mass spectrometric value (ESI-MS) 493, 494 (M-1)

Compound 402 N-[4-Chloro-2-(3-hydroxy-benzylidene-

25 hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 402 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 7.99 (1H, s), 7.88 - 7.94 (3H, m), 7.62 (2H, d, J = 7.8 Hz), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.31 (1H, bs), 7.23 - 7.28 (2H, m), 3.68 - 3.74 (4H, m), 2.61 (2H, t, J = 6.1 Hz), 2.29 (3H, s)

Mass spectrometric value (ESI-MS) 479 (M-1)

30

Compound 403 N-[4-Chloro-2-(4-hydroxy-benzylidene-

hydrazinocarbonyl)-phenyl]-3-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 403 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.27 (1H, s), 7.99 (1H, s), 7.89 - 7.94 (3H, m), 7.71 (2H, d, J = 8.7 Hz), 7.58 - 7.65 (2H, m), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.84 (2H, d, J = 8.7 Hz), 3.71 (2H, t, J = 6.1 Hz), 3.70 (2H, s), 2.61 (2H, t, J = 6.1 Hz), 2.29 (3H, s)

Mass spectrometric value (ESI-MS) 479, 481 (M-1)

5

20

25

30

Compound 404 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-

10 (3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 404 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.67 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 8.07 (1H, s), 7.94 (1H, d, J = 2.4 Hz), 7.90 (1H, d, J = 7.8 Hz), 7.74 (1H, d, J = 7.8 Hz), 7.74 (1H, d, J = 7.8 Hz), 7.75 (1

s), 7.61 - 7.66 (3H, m), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.25 - 7.37 (2H, m), 3.83 (2H, s), 3.66 (4H, t, J = 5.9 Hz), 2.71 (4H, t, J = 5.9 Hz), 2.40 (3H, s)

Mass spectrometric value (ESI-MS) 507, 509 (M-1)

Compound 405 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 405 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 507, 508 (M-1)

<u>Compound 406</u> 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 406 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.67 (1H, d, J = 9.0 Hz), 8.30 (1H, s), 8.06 (1H, s), 7.92 (1H, d, J = 2.4 Hz), 7.87 - 7.91 (1H, m), 7.68 (1H, s),

7.60 - 7.65 (2H, m), 7.47 - 7.58 (2H, m), 7.20 (1H, d, J = 7.8 Hz), 3.83 (2H, s), 3.65 (4H, t, J = 5.8 Hz), 2.71 (4H, t, J = 5.8 Hz), 2.32 (3H, s), 2.30 (3H, s)

Mass spectrometric value (ESI-MS) 521, 522 (M-1)

Compound 407 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 407 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.39 (1H, s), 8.37 (1H, s), 8.05 - 8.10 (2H, m), 7.95 (1H, d, J = 2.2 Hz), 7.84 - 7.92 (1H, m), 7.70 (1H, d, J = 8.3 Hz), 7.60 - 7.68 (2H, m), 7.48 - 7.53 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 3.83 (2H, s), 3.65 (4H, t, J = 5.8 Hz), 2.71 (4H, t, J = 5.8 Hz)

Mass spectrometric value (ESI-MS) 595, 597 (M-1)

10

15

20

30

Compound 408 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 408 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 8.06 (1H, s), 7.89 - 7.96 (2H, m), 7.58 - 7.66 (3H, m), 7.48 - 7.54 (1H, m), 7.28 - 7.38 (2H, m), 6.97 - 7.04 (1H, m), 3.87 (3H, s), 3.85 (2H, s), 3.66 (4H, t, J = 5.9 Hz), 2.72 (4H, t, J = 5.9 Hz)

Mass spectrometric value (ESI-MS) 523, 525 (M-1)

<u>Compound 409</u> 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 409 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 8.06 (1H, s), 7.80 - 7.94 (4H, m), 7.60 - 7.66 (2H, m), 7.50 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.00 (1H, d, J = 9.0 Hz), 3.90 (3H, s), 3.85 (2H, s),

25 3.66 (4H, t, J = 5.9 Hz), 2.71 (4H, t, J = 5.9 Hz)

Mass spectrometric value (ESI-MS) 523, 525 (M-1)

Compound 410 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 410 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 8.05 (1H, s), 7.93 (1H, d, J = 2.4 Hz), 7.87 - 7.92 (1H, m), 7.60 - 7.66 (2H, m), 7.50 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.33 (1H, s), 7.26 (2H, d, J = 4.9 Hz), 6.85 - 6.92 (1H, m), 3.83 (2H, s), 3.66 (4H, t, J = 5.9 Hz), 2.71

35 (4H, t, J = 5.9 Hz)

Mass spectrometric value (ESI-MS) 509 (M-1)

Compound 411 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 411 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.67 (1H, d, J = 9.0 Hz), 8.27 (1H, s), 8.06 (1H, s), 7.85 - 7.93 (2H, m), 7.72 (2H, d, J = 8.8 Hz), 7.60 - 7.65 (2H, m), 7.47 - 7.54 (1H, m), 6.85 (2H, d, J = 8.6 Hz), 3.83 (2H, s), 3.65 (4H, t, J = 5.9 Hz), 2.71 (4H, t, J = 5.9 Hz)

Mass spectrometric value (ESI-MS) 509, 511 (M-1)

Compound 412 N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 412 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 7.98 (2H, d, J = 8.3 Hz), 7.94 (1H, d, J = 2.4 Hz), 7.68 - 7.74 (1H, m), 7.58 - 7.65 (2H, m), 7.55 (2H, d, J = 8.3 Hz), 7.43 - 7.50 (1H, m), 7.10 - 7.23 (1H, m), 3.69 (2H, t, J = 6.1 Hz), 3.67 (2H, s), 2.58 (2H, t, J = 6.1 Hz), 2.28 (3H, s)

Mass spectrometric value (ESI-MS) 482 (M-1)

20 <u>Compound 413</u> N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 413 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 7.98 (2H, d, J = 8.3 Hz), 7.87 - 7.95 (3H, m), 7.63 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.55 (2H, d, J = 7.8 Hz), 7.19 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 3.69 (2H, t, J = 6.0 Hz), 3.67 (2H, s), 2.58 (2H, t, J = 6.0 Hz), 2.28 (3H, s)

Mass spectrometric value (ESI-MS) 481, 483 (M-1)

Compound 414 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 414 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 7.98 (2H, d, J = 8.0 Hz), 7.93 (1H, d, J = 2.4 Hz), 7.72 (1H, s), 7.60 - 7.65 (2H, m), 7.55 (2H, d, J = 8.0 Hz), 7.26 - 7.36 (2H, m), 3.69 (2H, t, J

5

10

15

20

25

30

```
= 6.1 \text{ Hz}), 3.67 (2H, s), 2.58 (2H, t, J = 6.1 Hz), 2.40 (3H, s), 2.28 (3H, s)
Mass spectrometric value (ESI-MS) 477, 479 (M-1)
Compound 415 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-
phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide
        The title compound 415 was produced in the same manner as in
Example 5.
<sup>1</sup>H-NMR (CD<sub>3</sub>OD, 400 MHz): \delta 8.66 (1H, d, J = 9.0 Hz), 8.33 (1H, s),
7.98 (2H, d, J = 8.0 Hz), 7.93 (1H, d, J = 2.5 Hz), 7.74 (2H, d, J = 8.0 Hz),
7.62 (1H, dd, J = 2.5 Hz, J = 9.0 Hz), 7.55 (2H, d, J = 8.0 Hz), 7.27 (2H,
d, J = 7.8 \text{ Hz}), 3.69 (2H, t, J = 6.1 \text{ Hz}), 3.67 (3H, s), 2.58 (2H, t, J = 6.1 \text{ Hz})
Hz), 2.39 (3H, s), 2.27 (3H, s)
Mass spectrometric value (ESI-MS) 477 (M-1)
                                 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-
                    416
Compound
hydrazinocarbonyl)-phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-
benzamide
        The title compound 416 was produced in the same manner as in
Example 5.
^{1}H-NMR (CD<sub>3</sub>OD, 400 MHz): \delta 8.66 (1H, d, J = 9.0 Hz), 8.30 (1H, s),
7.98 (2H, d, J = 8.3 Hz), 7.92 (1H, d, J = 2.4 Hz), 7.66 (1H, s), 7.61 (1H,
dd, J = 2.4 Hz, J = 9.0 Hz), 7.52 - 7.57 (3H, m), 7.20 (1H, d, J = 8.0 Hz),
3.69 (2H, d, J = 8.0 Hz), 3.67 (2H, s), 2.58 (2H, t, J = 6.1 Hz), 2.32 (3H, t, J = 6.1 Hz)
s), 2.30 (3H, s), 2.27 (3H, s)
Mass spectrometric value (ESI-MS) 491, 493 (M-1)
Compound 417 N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-
hydrazinocarbonyl)-phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-
benzamide
        The title compound 417 was produced in the same manner as in
Example 5.
<sup>1</sup>H-NMR (CD<sub>3</sub>OD, 400 MHz): \delta 8.55 (1H, d, J = 9.0 Hz), 8.30 (1H, s),
8.25 (1H, s), 7.93 - 7.98 (1H, m), 7.83 - 7.90 (3H, m), 7.60 (1H, d, J = 8.3)
Hz), 7.54 (1H, dd, J = 2.3 Hz, J = 8.8 Hz), 7.46 (2H, d, J = 8.3 Hz), 3.59
(2H, t, J = 6.0 Hz), 3.58 (2H, s), 2.49 (2H, t, J = 6.0 Hz), 2.18 (3H, s)
Mass spectrometric value (ESI-MS) 565, 567 (M-1)
                                    N-[4-Chloro-2-(3-methoxy-benzylidene-
Compound_
                      418
```

35 hydrazinocarbonyl)-phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 418 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.56 (1H, d, J = 9.0 Hz), 8.24 (1H, s), 7.82 - 7.90 (3H, m), 7.42 - 7.55 (4H, m), 7.18 - 7.27 (2H, m), 6.88 - 6.94 (1H, m), 3.77 (3H, s), 3.56 - 3.61 (4H, m), 2.50 (2H, t, J = 6.0 Hz), 2.18 (3H, s)

Mass spectrometric value (ESI-MS) 493, 495 (M-1)

Compound 419 N-[4-Chloro-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-

10 benzamide

5

The title compound 419 was produced in the same manner as in Example 5.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.56 (1H, d, J = 9.0 Hz), 8.21 (1H, s), 7.88 (2H, d, J = 8.3 Hz), 7.81 (1H, d, J = 2.2 Hz), 7.69 (2H, d, J = 8.8 Hz),

7.50 (1H, dd, J = 2.4 Hz, J = 8.8 Hz), 7.45 (2H, d, J = 8.3 Hz), 6.89 (2H, d, J = 8.8 Hz), 3.75 (3H, s), 3.59 (2H, t, J = 6.1 Hz), 3.59 (2H, s), 2.50 (2H, t, J = 6.1 Hz), 2.19 (3H, s)

Mass spectrometric value (ESI-MS) 493, 495 (M-1)

Compound 420 N-[4-Chloro-2-(3-hydroxy-benzylidene-

20 hydrazinocarbonyl)-phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 420 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.55 (1H, d, J = 8.8 Hz), 8.19 (1H, s), 7.88 (2H, d, J = 7.8 Hz), 7.82 - 7.85 (1H, m), 7.50 - 7.55 (1H, m), 7.46 (2H, d, J = 7.6 Hz), 7.22 (1H, s), 7.13 - 7.18 (2H, m), 6.75 - 6.82 (1H, m), 3.56 - 3.62 (4H, m), 2.49 (2H, t, J = 6.1 Hz), 2.19 (3H, s)

Mass spectrometric value (ESI-MS) 479, 481 (M-1)

Compound 421 N-[4-Chloro-2-(4-hydroxy-benzylidene-

30 hydrazinocarbonyl)-phenyl]-4-{[(2-hydroxy-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 421 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 479, 481 (M-1)

35 <u>Compound 422</u> N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 422 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.55 (1H, d, J = 9.0 Hz), 8.26 (1H, s), 7.93 (1H, s), 7.84 (1H, d, J = 2.4 Hz), 7.78 - 7.83 (1H, m), 7.33 - 7.70 (6H, m), 7.05 - 7.20 (1H, m), 3.72 (2H, s), 3.57 (2H, t, J = 6.1 Hz), 2.59 (2H, t, J = 6.0 Hz), 2.54 (3H, q, J = 7.3 Hz), 1.02 (3H, t, J = 7.1 Hz) Mass spectrometric value (ESI-MS) 495 (M-1)

5

10

15

20

25

30

35

Compound 423 N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 423 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.54 (1H, d, J = 9.0 Hz), 8.26 (1H, s), 7.92 (1H, s), 7.77 - 7.85 (4H, m), 7.53 (2H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.41 (1H, dd, J = 7.7. Hz, J = 7.7. Hz), 7.09 (2H, dd, J = 8.8 Hz, J = 8.8 Hz), 3.68 (2H, s), 3.57 (2H, t, J = 6.2 Hz), 2.57 (2H, t, J = 6.3 Hz), 2.53 (2H, q, J = 7.1 Hz), 1.01 (3H, t, J = 7.2 Hz)

Compound 424 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

Mass spectrometric value (ESI-MS) 495 (M-1)

The title compound 424 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.56 (1H, d, J = 9.0 Hz), 8.24 (1H, s), 7.92 (1H, s), 7.83 (1H, d, J = 2.4 Hz), 7.78 - 7.82 (1H, m), 7.62 (1H, s), 7.53 (2H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.42 (2H, dd, J = 7.4 Hz, J = 7.4 Hz), 7.15 - 7.26 (2H, m), 3.69 (2H, s), 3.57 (2H, t, J = 6.3 Hz), 2.57 (2H, t, J = 6.3 Hz), 2.53 (2H, q, J = 7.2 Hz), 2.30 (3H, s), 1.01 (3H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 491 (M-1), 515 (M+23)

Compound 425 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 425 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 8.01 (1H, s), 7.88 - 7.94 (2H, m), 7.74 (2H, d, J = 8.1 Hz), 7.60 - 7.65 (2H, m), 7.51 (2H, m), 7.26 (2H, d, J = 8.1 Hz), 3.80 (2H, s), 3.67 (2H, t, J = 6.2 Hz), 2.69 (2H, t, J = 6.2 Hz), 2.64 (2H, q, J = 7.1 Hz), 2.38 (3H, s), 1.11 (3H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 491 (M-1), 515 (M+23)

<u>Compound</u> 426

N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 426 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.30 (1H, s), 8.02 (1H, s), 7.89 - 7.94 (2H, m), 7.60 - 7.69 (3H, m), 7.49 - 7.57 (2H, m), 7.21 (1H, d, J = 7.8 Hz), 3.82 (2H, s), 3.68 (2H, t, J = 6.2 Hz), 2.70 (2H, t, J = 6.2 Hz), 2.66 (2H, q, J = 7.1 Hz), 2.32 (3H, s), 2.30 (3H, s), 1.12 (3H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 505 (M-1)

<u>Compound 427</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-

15 benzamide

5

10

The title compound 427 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 579 (M-1)

Compound 428 N-[4-Chloro-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 428 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 8.01 (1H, s), 7.93 (1H, d, J = 2.2. Hz), 7.89 (1H, d, J = 2.2. Hz), 7.56 - 7.66 (3H, m), 7.50 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.29 - 7.37 (2H, m), 6.97 - 7.04 (1H, m), 3.86 (3H, s), 3.77 (2H, s), 3.66 (2H, t, J = 6.2 Hz), 2.66 (2H, t, J = 6.4 Hz), 2.61 (2H, q, J = 7.4 Hz), 1.10 (3H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 507 (M-1)

30 <u>Compound 429</u> N-[4-Chloro-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 429 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.30 (1H, s), 8.01 (1H, s), 7.91 (1H, d, J = 2.4 Hz), 7.87 - 7.91 (1H, m), 7.80 (2H, d, J

= 8.8 Hz), 7.59 - 7.65 (2H, m), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.99 (2H, d, J = 8.8 Hz), 3.85 (3H, s), 3.78 (2H, s), 3.66 (2H, t, J = 6.2 Hz), 2.67 (2H, t, J = 6.3 Hz), 2.62 (2H, q, J = 7.2 Hz), 1.10 (3H, t, J = 7.1 Hz) Mass spectrometric value (ESI-MS) 507 (M-1)

5 <u>Compound 430</u> N-[4-Chloro-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 430 was produced in the same manner as in Example 5.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 8.8 Hz), 8.29 (1H, s), 8.01 (1H, s), 7.93 (1H, d, J = 2.2 Hz), 7.89 (1H, d, J = 7.6 Hz), 7.60 7.66 (2H, m), 7.51 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.22 7.40 (3H, m), 3.78 (2H, s), 3.66 (2H, t, J = 6.4 Hz), 2.67 (2H, t, J = 6.4 Hz), 2.62 (2H, q, J = 7.3 Hz), 1.10 (3H, t, J = 7.2 Hz)
- 15 Mass spectrometric value (ESI-MS) 493 (M-1)

 Compound 431 N-[4-Chloro-2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 431 was produced in the same manner as in 20 Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 8.8 Hz), 8.27 (1H, s), 8.00 (1H, s), 7.86 - 7.94 (2H, m), 7.70 (2H, d, J = 8.8 Hz), 7.58 - 7.65 (2H, m), 7.50 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.84 (2H, d, J = 8.6 Hz), 3.77 (2H, s), 3.66 (2H, t, J = 6.3 Hz), 2.66 (2H, t, J = 6.3 Hz), 2.62 (2H, q, L = 7.2 Hz), 4.10 (2H + L = 7.1 Hz)

25 J = 7.2 Hz, 1.10 (3H, t, J = 7.1 Hz)

30

Mass spectrometric value (ESI-MS) 493 (M-1)

<u>Compound 432</u> N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 432 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 7.92 - 8.00 (3H, m), 7.71 (1H, d, J = 9.5 Hz), 7.54 - 7.65 (4H, m), 7.43 - 7.51 (1H, m), 7.15 - 7.23 (1H, m), 3.75 (2H, s), 3.63 (2H, t, J = 6.2 Hz), 2.64 (2H, t, J = 6.2 Hz), 2.60 (2H, q, J = 7.3 Hz), 1.09 (3H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 495 (M-1)

Compound 433 N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-

phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 433 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 8.8 Hz), 8.35 (1H, s), 7.96 (2H, d, J = 8.3 Hz), 7.87 - 7.94 (3H, m), 7.61 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.55 (2H, d, J = 8.0 Hz), 7.19 (2H, dd, J = 8.8 Hz, J = 8.8 Hz), 3.74 (2H, s), 3.63 (2H, t, J = 6.2 Hz), 2.64 (2H, t, J = 6.3 Hz), 2.60 (2H, q, J = 7.2 Hz), 1.09 (3H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 495 (M-1)

Compound 434 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 434 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 7.93 (1H, d, J = 2.4 Hz), 7.12 (1H, s), 7.60 - 7.65 (2H, m), 7.56 (2H, d, J = 8.3 Hz), 7.25 - 7.36 (2H, m), 3.74 (2H, s), 3.63 (2H, t, J = 6.2 Hz), 2.64 (2H, t, J = 6.3 Hz), 2.60 (2H, q, J = 7.1 Hz), 2.40 (3H, s), 1.09 (3H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 491 (M-1)

20 Compound 435 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 435 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 7.92 (1H, d, J = 2.2 Hz), 7.89 (1H, s), 7.74 (2H, d, J = 8.0 Hz), 7.61 (1H, dd, J = 2.4 Hz, J = 8.8 Hz), 7.27 (1H, d, J = 8.0 Hz), 3.77 (2H, s), 3.64 (2H, t, J = 6.2 Hz), 2.67 (2H, t, J = 6.3 Hz), 2.63 (2H, q, J = 7.1 Hz), 2.38 (3H, s), 1.10 (3H, t, 7.2 Hz)

Mass spectrometric value (ESI-MS) 491 (M-1)

30 <u>Compound 436</u> N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 436 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.30 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 7.92 (1H, d, J = 2.4 Hz), 7.52 - 7.68 (5H, m),

7.20 (1H, d, J = 7.8 Hz), 3.77 (2H, s), 3.64 (2H, t, J = 6.2 Hz), 2.67 (2H, t, J = 6.2 Hz), 2.63 (2H, q, J = 7.2 Hz), 2.32 (3H, s), 2.31 (3H, s), 1.10 (3H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 505 (M-1)

5 <u>Compound 437</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 437 was produced in the same manner as in Example 5.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.39 (1H, s), 8.34 (1H, s), 8.05 (1H, d, J = 8.1 Hz), 7.93 7.98 (2H, m), 7.89 (1H, s), 7.70 (1H, d, J = 8.3 Hz), 7.63 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.56 (2H, d, J = 8.3 Hz), 3.75 (2H, s), 3.63 (2H, t, J = 6.4 Hz), 2.64 (2H, t, J = 6.4 Hz), 2.60 (2H, q, J = 7.1 Hz), 1.09 (3H, t, J = 7.2 Hz)
- 15 Mass spectrometric value (ESI-MS) 579 (M-1)

 Compound 438 N-[4-Chloro-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 438 was produced in the same manner as in 20 Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 7.92 - 7.99 (3H, m), 7.62 (1H, dd, J = 2.2 Hz, J = 8.8 Hz), 7.54 - 7.60 (3H, m), 7.28 - 7.37 (2H, m), 6.98 - 7.04 (1H, m), 3.87 (3H, s), 3.74 (2H, s), 3.63 (2H, t, J = 6.2 Hz), 2.64 (2H, t, J = 6.3 Hz), 2.60 (2H, q, J = 7.2 Hz), 1.09 (3H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 507 (M-1)

25

35

Compound 439 N-[4-Chloro-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}-benzamide

The title compound 439 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 7.96 (2H, d, J = 8.3 Hz), 7.92 (1H, d, J = 2.4 Hz), 7.80 (2H, d, J = 8.8 Hz), 7.61 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.56 (2H, d, J = 8.3 Hz), 6.99 (2H, d, J = 8.8 Hz), 3.85 (3H, s), 3.74 (2H, s), 3.63 (2H, t, J = 6.4 Hz), 2.65 (2H, t, J = 6.4 Hz), 2.60 (2H, q, J = 7.2 Hz), 1.09 (3H, t, J = 7.1 Hz)

5

10

15

20

25

30

35

Mass spectrometric value (ESI-MS) 507 (M-1) N-[4-Chloro-2-(3-hydroxy-benzylidene-Compound 440 hydrazinocarbonyl)-phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}benzamide The title compound 440 was produced in the same manner as in Example 5. 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 8.8 Hz), 8.29 (1H, s), 7.88 - 7.99 (3H, m), 7.62 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.56 (2H, d, J= 8.3 Hz), 7.30 - 7.33 (1H, m), 7.23 - 7.27 (2H, m), 6.85 - 6.91 (1H, m), 3.75 (2H, s), 3.63 (2H, t, J = 6.3 Hz), 2.65 (2H, t, J = 6.2 Hz), 2.61 (2H, q, J = 7.1 Hz), 1.09 (3H, t, J = 7.1 Hz) Mass spectrometric value (ESI-MS) 493 (M-1) N-[4-Chloro-2-(4-hydroxy-benzylidene-441 Compound_ hydrazinocarbonyl)-phenyl]-4-{[ethyl-(2-hydroxy-ethyl)-amino]-methyl}benzamide The title compound 441 was produced in the same manner as in Example 5. $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.27 (1H, s), 7.97 (2H, d, J = 8.1 Hz), 7.91 (1H, d, J = 2.4 Hz), 7.70 (2H, d, J = 8.8 Hz), 7.61 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.56 (2H, d, J = 8.3 Hz), 6.85 (2H, d, J = 8.8 Hz), 3.78 (2H, s), 3.64 (2H, t, J = 6.2 Hz), 2.68 (2H, t, J = 6.2 Hz) Hz), 2.64 (2H, q, J = 7.2 Hz), 1.10 (3H, t, J = 7.1 Hz) Mass spectrometric value (ESI-MS) 493 (M-1) Compound 442 N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-benzamide The title compound 442 was produced in the same manner as in Example 5. $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 7.94 (1H, d, J = 2.4 Hz), 7.71 (1H, d, J = 8.1 Hz), 7.58 - 7.65 (2H, m), 7.55 (2H, d, J = 8.3 Hz), 7.43 - 7.50 (1H, m), 7.15 -7.25 (1H, m), 3.85 (2H, s), 2.60 - 2.67 (2H, m), 2.50 - 2.59 (6H, m), 1.00 (6H, t, J = 7.2 Hz)Mass spectrometric value (ESI-MS) 539 (M-1) Compound 443 N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 443 was produced in the same manner as in

Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.35 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 7.88 - 7.95 (3H, m), 7.62 (1H, dd, J = 2.2 Hz, J = 8.8 Hz), 7.55 (1H, d, J = 8.3 Hz), 7.19 (2H, dd, J = 8.7 Hz, J = 8.7 Hz),

3.85 (1H, s), 2.49 - 2.67 (8H, m), 1.00 (6H, t, J = 7.2 Hz)
 Mass spectrometric value (ESI-MS) 539 (M-1)

Compound 444 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 444 was produced in the same manner as in 10 Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 7.93 (1H, d, J = 2.4 Hz), 7.72 (1H, s), 7.60 - 7.65 (2H, m), 7.55 (2H, d, J = 8.3 Hz), 7.25 - 7.36 (2H, m), 3.84 (2H, s), 2.48 - 2.66 (8H, m), 2.39 (3H, s), 1.00 (6H, t, J = 7.2 Hz)

15 Mass spectrometric value (ESI-MS) 535 (M-1)

Compound 445 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 445 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 7.93 (1H, d, J = 2.4 Hz), 7.74 (2H, d, J = 7.8 Hz), 7.61 (1H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.55 (2H, d, J = 8.3 Hz), 7.27 (2H, d, J = 7.8 Hz), 3.84 (2H, s), 2.47 - 2.66 (8H, m), 2.39 (3H, s), 1.00 (6H, t, J = 7.2 Hz)

25 Mass spectrometric value (ESI-MS) 535 (M-1)

Compound 446 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 446 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.96 (2H, d, J = 8.3 Hz), 7.91 (1H, d, J = 2.4 Hz), 7.65 (1H, s), 7.60 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.51 - 7.56 (3H, m), 7.19 (1H, d, J = 7.8 Hz), 3.83 (2H, s), 2.58 - 2.65 (2H, m), 2.48 - 2.58 (6H, m), 2.31 (3H, s), 2.29

35 (3H, s), 0.99 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 549 (M-1)

<u>Compound 447</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 447 was produced in the same manner as in 5 Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.39 (1H, s), 8.35 (1H, s), 8.05 (1H, d, J = 8.3 Hz), 7.93 - 7.99 (3H, m), 7.70 (1H, d, J = 8.3 Hz), 7.63 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.55 (2H, d, J = 8.0 Hz), 3.85 (2H, s), 2.50 - 2.68 (8H, m), 1.00 (6H, t, J = 7.2 Hz)

10 Mass spectrometric value (ESI-MS) 623 (M-1)

<u>Compound</u> 448 N-[4-Chloro-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 448 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.92 - 8.00 (3H, m), 7.63 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.59 (1H, s), 7.55 (2H, d, J = 8.0 Hz), 7.28 - 7.38 (2H, m), 6.98 - 7.03 (1H, m), 3.88 (3H, s), 3.84 (2H, s), 2.58 - 2.66 (2H, m), 2.47 - 2.58 (6H, m), 0.99 (6H, t,

J = 7.2 Hz

15

30

Mass spectrometric value (ESI-MS) 551 (M-1)

Compound 449 N-[4-Chloro-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-benzamide

25 The title compound 449 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 7.92 (1H, d, J = 2.4 Hz), 7.80 (2H, d, J = 8.8 Hz), 7.61 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.55 (2H, d, J = 8.6 Hz), 7.00 (2H, d, J = 8.8 Hz), 3.85 (3H, s), 3.84 (2H, s), 2.49 - 2.67 (8H, m), 1.00 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 551 (M-1)

<u>Compound 450</u> N-[4-Chloro-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-

35 benzamide

The title compound 450 was produced in the same manner as in

Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 7.97 (2H, d, J = 8.3 Hz), 7.93 (1H, d, J = 2.4 Hz), 7.62 (1H, dd, J = 2.4 Hz, J = 8.8 Hz), 7.55 (2H, d, J = 8.3 Hz), 7.31 (1H, s), 7.22 - 7.28 (2H, m), 6.83 - 6.91 (1H, m), 3.85 (2H, s), 2.57 - 2.66 (2H, m), 2.48 - 2.57 (6H, m), 1.00 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 537 (M-1)

Compound 451 N-[4-Chloro-2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-(2-diethylamino-ethylsulfanylmethyl)-

10 benzamide

15

20

30

The title compound 451 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.27 (1H, s), 7.96 (2H, d, J = 8.3 Hz), 7.91 (1H, d, J = 2.4 Hz), 7.71 (2H, d, J = 8.6 Hz), 7.61 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.55 (2H, d, J = 8.3 Hz), 6.84 (2H, d, J = 8.8 Hz), 3.84 (2H, s), 2.49 - 2.66 (8H, m), 1.00 (6H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 537 (M-1)

Compound 452 N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 452 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 7.93 - 7.99 (2H, m), 7.89 (1H, d, J = 8.3 Hz), 7.70 (1H, d, J = 8.5 Hz), 7.52 - 7.65 (3H, m), 7.41 - 7.56 (2H, m), 7.15 - 7.23 (1H, m), 3.88 (2H, s),

25 2.42 - 2.66 (8H, m), 0.96 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 539 (M-1)

Compound 453 N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 453 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 8.8 Hz), 8.36 (1H, s), 7.85 - 7.99 (5H, m), 7.57 - 7.65 (2H, m), 7.47 - 7.55 (1H, m), 7.12 - 7.23 (2H, m), 3.88 (2H, s), 2.46 - 2.65 (8H, m), 0.96 (6H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 539 (M-1)

Compound 454 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 454 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 7.98 (1H, s), 7.89 (1H, d, J = 7.1 Hz), 7.71 (1H, s), 7.59 - 7.66 (3H, m), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.24 - 7.35 (2H, m), 3.88 (2H, s),

2.46 - 2.65 (8H, m), 2.39 (3H, s), 0.96 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 535 (M-1)

10

20

25

35

Compound 455 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 455 was produced in the same manner as in Example 5.

 $^1\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.33 (1H, s), 7.97 (1H, s), 7.84 - 7.95 (2H, m), 7.73 (2H, d, J = 8.1 Hz), 7.58 - 7.65 (2H, m), 7.51 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.26 (2H, d, J = 7.8 Hz),

3.88 (2H, s), 2.46 - 2.66 (8H, m), 2.38 (3H, s), 0.96 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 535 (M-1)

<u>Compound</u> 456 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 456 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.30 (1H, s), 7.97 (1H, s), 7.87 - 7.94 (2H, m), 7.58 - 7.67 (3H, m), 7.48 - 7.56 (2H, m), 7.19 (1H, d, J = 7.6 Hz), 3.88 (2H, s), 2.46 - 2.67 (8H, m), 2.31 (3H, s), 2.29 (3H, s), 0.96 (6H, q, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 549 (M-1)

<u>Compound 457</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 457 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.40 (1H, s), 8.33 (1H, s), 8.04 (1H, d, J = 7.8 Hz), 7.93 - 8.00 (2H, m), 7.89 (1H, d, J = 7.1 Hz), 7.69 (1H, d, J = 8.0 Hz), 7.60 - 7.65 (2H, m), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 3.88 (2H, s), 2.58 - 2.67 (2H, m), 2.47 - 2.58 (6H, m), 0.97 (6H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 623 (M-1)

N-[4-Chloro-2-(3-methoxy-benzylidene-458 Compound__ hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)benzamide The title compound 458 was produced in the same manner as in 5 Example 5. ¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 7.97 (1H, s), 7.93 (1H, d, J = 2.4 Hz), 7.87 - 7.91 (1H, m), 7.59 - 7.65(2H, m), 7.57 (1H, s), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.28 - 7.37 (2H, m), 6.97 - 7.03 (1H, m), 3.87 (2H, s), 3.86 (3H, s), 2.46 - 2.65 (8H, 10 m), 0.96 (6H, t, J = 7.2 Hz)Mass spectrometric value (ESI-MS) 551 (M-1) N-[4-Chloro-2-(4-methoxy-benzylidene-459 Compound hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)benzamide 15 The title compound 459 was produced in the same manner as in Example 5. ¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 7.97 (1H, s), 7.92 (1H, d, J = 2.4 Hz), 7.89 (1H, d, J = 9.0 Hz), 7.79 (2H, d, J = 9.0 Hz)d, J = 8.8 Hz), 7.59 - 7.65 (2H, m), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 20 6.99 (2H, d, J = 8.8 Hz), 3.88 (2H, s), 3.84 (3H, s), 2.46 - 2.66 (8H, m),0.96 (6H, t, J = 7.2 Hz)Mass spectrometric value (ESI-MS) 551 (M-1) N-[4-Chloro-2-(3-hydroxy-benzylidene-Compound 460 hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)-25 benzamide The title compound 460 was produced in the same manner as in Example 5. Mass spectrometric value (ESI-MS) 537 (M-1) N-[4-Chloro-2-(4-hydroxy-benzylidene-_____461 Compound _ 30 hydrazinocarbonyl)-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)benzamide The title compound 461 was produced in the same manner as in Example 5. ¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.27 (1H, s), 35 7.97 (1H, s), 7.91 (1H, d, J = 2.4 Hz), 7.89 (1H, d, J = 7.6 Hz), 7.70 (2H, d, J = 7.6 Hz)

d, J = 8.5 Hz), 7.58 - 7.65 (2H, m), 7.52 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 6.84 (2H, d, J = 8.6 Hz), 3.88 (2H, s), 2.46 - 2.65 (8H, m), 0.96 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 537 (M-1)

5 <u>Compound 462</u> N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]-benzamide

The title compound 462 was produced in the same manner as in Example 5.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.62 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 8.03 (1H, s), 7.93 (1H, d, J = 2.2 Hz), 7.88 7.93 (2H, m), 7.69 (1H, d, J = 10.0 Hz), 7.58 7.65 (3H, m), 7.42 7.52 (2H, m), 7.19 (1H, ddd, J = 2.0 Hz, J = 8.4 Hz, J = 8.4 Hz), 4.63 (2H, s), 4.33 (2H, t, J = 6.3 Hz), 2.67 (2H, t, J = 6.3 Hz), 2.18 (6H, s)
- Mass spectrometric value (ESI-MS) 579, 581 (M-1)

 Compound 463 N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]benzamide

The title compound 463 was produced in the same manner as in 20 Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.62 (1H, d, J = 8.8 Hz), 8.36 (1H, s), 8.04 (1H, s), 7.87 - 7.94 (4H, m), 7.59 - 7.65 (2H, m), 7.48 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.19 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 4.63 (2H, s), 4.32 (2H, t, J = 6.3 Hz), 2.67 (2H, t, J = 6.3 Hz), 2.18 (6H, s)

25 Mass spectrometric value (ESI-MS) 579 (M-1)

Compound 464 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]benzamide

30

The title compound 464 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 8.04 (1H, s), 7.88 - 7.94 (2H, m), 7.70 (1H, s), 7.59 - 7.64 (3H, m), 7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.25 - 7.36 (2H, m), 4.63 (2H, s), 4.32 (2H, s), 2.66 (2H, t, J = 6.4 Hz), 2.39 (3H, s), 2.17 (6H, s)

Mass spectrometric value (ESI-MS) 575 (M-1)

Compound 465 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-

phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]-benzamide

The title compound 465 was produced in the same manner as in Example 5.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 8.04 (1H, s), 7.88 7.94 (2H, m), 7.73 (2H, d, J = 8.1 Hz), 7.61 (2H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.48 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.27 (2H, d, J = 8.1 Hz), 4.63 (2H, s), 4.32 (2H, t, J = 6.3 Hz), 2.67 (2H, t, J = 6.3 Hz), 2.38 (3H, s), 2.17 (6H, s)
- Mass spectrometric value (ESI-MS) 575 (M-1)

 Compound 466 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]-benzamide

The title compound 466 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 8.8 Hz), 8.30 (1H, s), 8.04 (1H, s), 7.89 - 7.95 (2H, m), 7.59 - 7.68 (3H, m), 7.54 (1H, d, J = 8.0 Hz), 7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.21 (1H, d), 4.63 (2H, s), 4.32 (2H, t, J = 6.3 Hz), 2.66 (2H, t, J = 6.3 Hz), 2.32 (3H, s), 2.31 (3H, s),

20 2.17 (6H, s)

Mass spectrometric value (ESI-MS) 589, 591 (M-1)

<u>Compound 467</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]-benzamide

The title compound 467 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.60 (1H, d, J = 9.0 Hz), 8.39 (1H, s), 8.31 (1H, s), 8.02 - 8.07 (2H, m), 7.93 (1H, d, J = 2.2 Hz), 7.89 (1H, d, J = 7.8 Hz), 7.69 (1H, d, J = 8.3 Hz), 7.62 (2H, dd, J = 2.2 Hz, J = 8.8 Hz), 7.60 (4H, dd, J = 7.7 Hz), 4.63 (2H, s), 4.32 (2H, t, J = 6.4)

7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 4.63 (2H, s), 4.32 (2H, t, J = 6.4 Hz), 3.44 (1H, s), 2.67 (2H, t, J = 6.3 Hz), 2.18 (6H, s)

Mass spectrometric value (ESI-MS) 663 (M-1)

30

35

Compound 468 N-[4-Chloro-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]-benzamide

The title compound 468 was produced in the same manner as in

Example 5.

15

20

¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 8.04 (1H, s), 7.94 (1H, d, J = 2.4 Hz), 7.91 (1H, d, J = 8.3 Hz), 7.60 - 7.66 (2H, m), 7.57 (1H, s), 7.49 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.28 - 7.38 (2H, m), 6.98 - 7.04 (1H, m), 4.63 (2H, s), 4.32 (2H, t, J = 6.4 Hz), 3.86 (3H, s), 3.44 (1H, s), 2.67 (2H, t, J = 6.3 Hz), 2.17 (6H, s)
Mass spectrometric value (ESI-MS) 591 (M-1)
Compound 469 N-[4-Chloro-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]-benzamide

The title compound 469 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 8.04 (1H, s), 7.88 - 7.94 (2H, m), 7.79 (2H, d, J = 8.8 Hz), 7.58 - 7.64 (2H, m), 7.48 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.99 (2H, d, J = 8.8 Hz), 4.63 (2H, s), 4.32 (2H, t, J = 6.3 Hz), 3.84 (3H, s), 3.45 (1H, s), 2.67 (2H, t, J = 6.3 Hz), 2.18 (6H, s)

Mass spectrometric value (ESI-MS) 591 (M-1)

Compound 470 N-[4-Chloro-2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]-benzamide

The title compound 470 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.62 (1H, d, J = 8.8 Hz), 8.29 (1H, s), 8.04 (1H, s), 7.89 - 7.95 (2H, m), 7.55 - 7.65 (2H, m), 7.48 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.31 (1H, s), 7.22 - 7.29 (2H, m), 6.86 - 6.90 (1H, m), 4.63 (2H, s), 4.32 (2H, s), 2.67 (2H, t, J = 6.3 Hz), 2.17 (6H, s) Mass spectrometric value (ESI-MS) 577 (M-1)

Compound 471 N-[4-Chloro-2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-[1-(2-dimethylamino-ethyl)-1H-tetrazol-5-ylsulfanylmethyl]-benzamide

The title compound 471 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.27 (1H, s), 8.04 (1H, s), 7.87 - 7.93 (2H, m), 7.69 (2H, d, J = 8.5 Hz), 7.57 - 7.63 (2H, m), 7.48 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.84 (2H, d, J = 8.5 Hz),

4.63 (2H, s), 4.32 (2H, t, J = 6.4 Hz), 2.67 (2H, t, J = 6.4 Hz), 2.17 (6H, s)

Mass spectrometric value (ESI-MS) 577 (M-1)

5

15

20

25

30

Compound 472 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 472 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.36 (1H, s), 8.23 (1H, s), 7.97 (1H, s), 7.88 - 7.95 (2H, m), 7.68 (1H, d, J = 9.5 Hz), 7.40 (4H, d, J = 8.4 Hz), 2.67 (2H, s)

7.42 - 7.63 (5H, m), 7.18 (1H, dd, J = 8.4 Hz, J = 8.4 Hz), 3.67 (2H, s), 2.78 (2H, t, J = 7.1 Hz), 2.65 (4H, q, J = 7.2 Hz), 2.58 (2H, t, J = 7.2 Hz), 2.28 (3H, s), 1.04 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 628 (M-1)

Compound 473 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-fluoro-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 473 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.36 (1H, s), 8.21 (1H, d, J = 1.9 Hz), 7.86 - 7.99 (5H, m), 7.60 (1H, d, J = 7.6 Hz), 7.52 (1H, dd, J = 8.8 Hz, J = 8.8 Hz), 7.18 (2H, dd, J = 8.8 Hz, J = 8.8 Hz), 7.18 (2H, dd, J = 8.8 Hz, J = 8.8 Hz), 3.67 (2H, s), 2.77 (2H, t, J = 7.1 Hz), 2.64 (4H, q, J = 7.2 Hz), 2.58 (2H, t, J = 7.2 Hz), 2.28 (3H, s), 1.04 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 628 (M-1)

Compound 474 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-iodo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 474 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.45 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 8.22 (1H, d, J = 1.1 Hz), 7.97 (1H, s), 7.88 - 7.93 (2H, m), 7.69 (1H, s), 7.58 - 7.63 (2H, m), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.32 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.25 (1H, d, J = 7.3 Hz), 3.66 (2H, s), 2.67 - 2.73 (2H, m), 2.52 - 2.61 (6H, m), 2.38 (3H, s), 2.27 (3H, s), 1.01 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 624 (M-1)

35 <u>Compound 475</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-iodo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 475 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 8.21 (1H, d, J = 2.0 Hz), 7.97 (1H, s), 7.89 - 7.94 (2H, m), 7.72 (2H, d, J = 8.0 Hz), 7.60 (1H, d, J = 7.6 Hz), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.26 (2H, d, J = 7.8 Hz), 3.67 (2H, s), 2.75 (2H, t, J = 7.2 Hz), 2.62 (4H, q, J = 7.2 Hz), 2.57 (2H, t, J = 7.2 Hz), 2.37 (3H, s), 2.28 (3H, s), 1.03 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 624 (M-1)

Compound 476 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 476 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.30 (1H, s), 8.20 (1H, d, J = 2.0 Hz), 7.97 (1H, s), 7.90 (2H, dd, J = 2.0 Hz, J = 8.8 Hz), 7.58 - 7.66 (2H, m), 7.48 - 7.56 (2H, m), 7.19 (1H, d, J = 7.8 Hz), 3.66 (2H, s), 2.68 - 2.75 (2H, m), 2.53 - 2.64 (6H, m), 2.30 (3H, s), 2.29 (3H, s), 2.27 (3H, s), 1.02 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 638 (M-1)

20 <u>Compound 477</u> N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 477 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.43 (1H, d, J = 8.8 Hz), 8.38 (1H, s), 8.32 (1H, s), 8.25 (1H, s), 8.02 (1H, d, J = .6 Hz), 7.97 (1H, s), 7.88 - 7.94 (2H, m), 7.67 (1H, d, J = 8.5 Hz), 7.60 (1H, d, J = 7.3 Hz), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 3.66 (2H, s), 2.75 (2H, t, J = 7.2 Hz), 2.62 (4H, q, J = 7.2 Hz), 2.56 (2H, t, J = 7.2 Hz), 2.27 (3H, s), 1.03 (6H, t, J = 30 7.2 Hz)

Mass spectrometric value (ESI-MS) 712 (M-1)

Compound 478 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-iodo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 478 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.33 (1H, s),

8.22 (1H, d, J = 2.0 Hz), 7.97 (1H, s), 7.88 - 7.94 (2H, m), 7.60 (1H, d, J = 7.6 Hz), 7.56 (1H, bs), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.22 - 7.36 (2H, m), 6.97 - 7.03 (1H, m), 3.86 (3H, s), 3.66 (2H, s), 2.71 (2H, t, J = 7.2 Hz), 2.53 - 2.62 (6H, m), 2.27 (3H, s), 1.02 (6H, t, J = 7.2 Hz)

5 Mass spectrometric value (ESI-MS) 640 (M-1)

Compound 479 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-iodo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 479 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.45 (1H, d, J = 8.8 Hz), 8.31 (1H, s), 8.20 (1H, d, J = 2.2 Hz), 7.97 (1H, s), 7.88 - 7.94 (2H, m), 7.78 (2H, d, J = 8.8 Hz), 7.60 (1H, d, J = 7.6 Hz), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.99 (2H, d, J = 8.8 Hz), 3.84 (3H, s), 3.67 (2H, s), 2.73 (2H, t, J = 7.2 Hz), 2.60 (4H, q, J = 7.2 Hz), 2.54 - 2.60 (2H, m), 2.28 (3H, s), 1.03 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 640 (M-1)

Compound 480 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 480 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.29 (1H, s), 8.21 (1H, d, J = 2.0 Hz), 7.97 (1H, s), 7.88 - 7.94 (2H, m), 7.60 (1H, d, J = 7.6 Hz), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.30 (1H, s), 7.20 - 7.28 (2H, m), 6.87 (1H, ddd, J = 2.2 Hz, J = 2.2 Hz, J = 7.1 Hz), 3.66 (2H, s), 2.72 (2H, t, J = 7.2 Hz), 2.59 (4H, q, J = 7.2 Hz), 2.56 (2H, t, J = 6.8 Hz),

2.27 (3H, s), 1.02 (6H, t, J = 7.2 Hz)

20

25

30

35

Mass spectrometric value (ESI-MS) 626 (M-1)

Compound 481 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 481 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.45 (1H, d, J = 8.8 Hz), 8.27 (1H, s), 8.19 (1H, d, J = 2.0 Hz), 7.97 (1H, s), 7.88 - 7.95 (2H, m), 7.69 (1H, d, J = 8.5 Hz), 7.52 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 6.83 (2H, d, J = 8.5 Hz), 3.67 (2H, s), 2.75 (2H, t, J = 7.2 Hz), 2.62 (4H, q, J = 7.2 Hz), 2.75 - 2.64 (2H, m), 2.28 (3H, s), 1.03 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 626 (M-1)

Compound 482 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[2-(3-fluorobenzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 482 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.36 (1H, s), 8.22 (1H, d, J = 2.0 Hz), 7.87 - 7.97 (4H, m), 7.42 - 7.72 (4H, m), 7.14 - 7.23 (1H, m), 3.61 (2H, s), 2.98 (2H, d, J = 11.5 Hz), 2.60 (4H, bs), 2.30 - 2.40 (1H, m), 2.05 (2H, t, J = 11.2 Hz), 1.82 - 1.91 (2H, m), 1.55 - 1.66 (6H, m), 1.40 - 1.50 (2H, m)

Mass spectrometric value (ESI-MS) 666 (M-1)

5

10

15

20

25

30

35

Compound 483 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[2-(4-fluorobenzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 483 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.43 (1H, d, J = 8.8 Hz), 8.35 (1H, s), 8.21 (1H, d, J = 2.0 Hz), 7.85 - 7.97 (5H, m), 7.58 (1H, d, J = 7.8 Hz), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.18 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 3.61 (2H, s), 2.98 (2H, d, J = 12.0 Hz), 2.59 (4H, bs), 2.25 - 2.38 (1H, m), 2.05 (2H, t, J = 11.5 Hz), 1.85 (2H, d, J = 12.7 Hz), 1.54 - 1.66 (6H, m), 1.40 - 1.50 (2H, m)

Mass spectrometric value (ESI-MS) 666 (M-1)

Compound 484 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-iodo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 484 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.34 (1H, s), 8.21 (1H, d, J = 1.9 Hz), 7.88 - 7.97 (3H, m), 7.68 (1H, s), 7.55 - 7.64 (2H, m), 7.50 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.21 - 7.34 (2H, m), 3.60 (2H, s), 2.97 (2H, d, J = 10.8 Hz), 2.54 (4H, bs), 2.38 (3H, s), 2.25 - 2.35 (1H, m), 2.25 - 2.35 (1H, m), 2.03 (2H, t, J = 11.7 Hz), 1.83 (2H, d, J = 12.4 Hz), 1.50 - 1.65 (6H, m), 1.38 - 1.48 (2H, m)

Mass spectrometric value (ESI-MS) 662 (M-1)

Compound 485 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-iodo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 485 was produced in the same manner as in

Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 8.21 (1H, d, J = 2.0 Hz), 7.87 - 7.97 (3H, m), 7.72 (2H, d, J = 8.1 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.51 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.26 (2H, d, J = 8.1 Hz), 3.61 (2H, s), 2.98 (2H, d, J = 11.0 Hz), 2.55 (4H, bs), 2.37 (3H, s), 2.23 - 2.35 (1H, m), 2.05 (2H, t, J = 11.7 Hz), 1.84 (2H, d, J = 12.0 Hz), 1.53 - 1.66 (6H, m), 1.40 - 1.50 (2H, m)

Mass spectrometric value (ESI-MS) 662 (M-1)

Compound 486 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[2-(3,4-dimethyl-

benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 486 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.30 (1H, s), 8.19 (1H, d, J = 2.2 Hz), 7.87 - 7.96 (3H, m), 7.62 (1H, s), 7.57 (1H, d, J = 7.6 Hz), 7.51 (2H, d, J = 7.6 Hz), 7.15 - 7.22 (1H, m), 3.60 (2H, s), 2.92 - 3.02 (2H, m), 2.52 (4H, bs), 2.29 (3H, s), 2.27 (3H, s), 2.20 - 2.33 (1H, m), 1.98 - 2.09 (2H, m), 1.78 - 2.87 (2H, m), 1.50 - 1.65 (6H, m), 1.38 - 1.48 (2H, m)

Mass spectrometric value (ESI-MS) 676 (M-1)

20 <u>Compound 487</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 487 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.38 - 8.45 (2H, m), 8.24 (1H, s), 8.24 (1H, s), 8.03 (1H, d, J = 8.0 Hz), 7.87 - 7.97 (3H, m), 7.68 (1H, d, J = 8.3 Hz), 7.58 (1H, d, J = 6.8 Hz), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 3.61 (2H, s), 2.98 (2H, d, J = 10.5 Hz), 2.59 (4H, s), 2.28 - 2.38 (1H, m), 2.04 (2H, t, J = 11.7 Hz), 1.80 - 1.90 (2H, m98, 1.55 - 1.65 (6H, m), 1.41 - 30 1.50 (2H, m)

Mass spectrometric value (ESI-MS) 750 (M-1)

<u>Compound 488</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-iodo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 488 was produced in the same manner as in Example 5.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.34 (1H, s),

8.21 (1H, d, J = 2.0 Hz), 7.87 - 7.97 (3H, m), 7.48 - 7.60 (3H, m), 7.27 - 7.36 (2H, m), 6.96 - 7.03 (1H, m), 3.85 (3H, s), 3.60 (2H, s), 2.97 (2H, d, J = 11.2 Hz), 2.55 (4H, bs), 2.23 - 2.33 (1H, m), 2.03 (2H, t, J = 11.6 Hz), 1.83 (2H, d, J = 11.2 Hz), 1.53 - 1.65 (6H, m), 1.40 - 1.50 (2H, m)

5 Mass spectrometric value (ESI-MS) 678 (M-1)

<u>Compound_489</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-iodo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 489 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.32 (1H, s), 8.18 - 8.22 (1H, m), 7.87 - 7.97 (3H, m), 7.75 - 7.82 (2H, m), 7.55 - 7.62 (1H, m), 7.45 - 7.55 (1H, m), 6.95 - 7.03 (2H, m), 3.84 (3H, s), 3.61 (2H, s), 2.93 - 3.02 (2H, m), 2.56 (4H, bs), 2.20 - 2.35 (1H, m), 2.00 - 2.10 (2H, m), 1.80 - 1.88 (2H, m), 1.55 - 1.65 (6H, m), 1.40 - 1.50 (2H, m)

15 Mass spectrometric value (ESI-MS) 678 (M-1)

Compound 490 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[2-(3-hydroxy-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 490 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.43 (1H, d, J = 8.8 Hz), 8.29 (1H, s), 8.19 - 8.22 (1H, m), 7.87 - 7.97 (3H, m), 7.57 (1H, d, J = 7.3 Hz), 7.47 - 7.53 (1H, m), 7.30 (1H, s), 7.18 - 7.27 (2H, m), 6.83 - 6.89 (1H, m), 3.61 (2H, s), 2.98 (2H, d, J = 10.5 Hz), 2.56 (4H, bs), 2.25 - 2.35 (1H, m), 2.04 (2H, t, J = 12.0 Hz), 1.84 (2H, d, J = 12.0 Hz), 1.53 - 1.66 (6H, m),

25 1.40 - 1.50 (2H, m)

30

Mass spectrometric value (ESI-MS) 664 (M-1)

Compound 491 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[2-(4-hydroxy-benzylidene-hydrazinocarbonyl)-4-iodo-phenyl]-benzamide

The title compound 491 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, dd, J = 3.7 Hz, J = 8.8 Hz), 8.27 (1H, s), 8.18 (1H, bs), 7.86 - 7.96 (3H, m), 7.65 - 7.72 (2H, m), 7.54 - 7.61 (1H, m), 7.47 - 7.54 (1H, m), 6.79 - 6.86 (2H, m), 3.59 - 3.64 (2H, m), 2.93 - 3.03 (4H, m), 2.57 (4H, bs), 2.25 - 2.37 (1H, m), 1.95 - 2.10

35 (2H, m), 1.80 - 1.90 (2H, m), 1.58 (6H, bs), 1.45 (2H, bs) Mass spectrometric value (ESI-MS) 664 (M-1) Compound 492 N-{4-Chloro-2-[N'-(3,4-dimethyl-benzyl)-hydrazinocarbonyl]-phenyl}-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide
The title compound 492 was produced in the same manner as in Example 5.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.60 (1H, d, J = 8.8 Hz), 7.90 (1H, s), 7.78 (1H, d, J = 7.6 Hz), 7.59 7.70 (2H, m), 7.45 7.55 (2H, m), 7.09 7.13 (2H, m), 7.01 (1H, d, J = 7.8 Hz), 3.96 (2H, s), 3.86 (2H, s), 3.67 (2H, t, J = 6.8 Hz), 2.58 (2H, t, J = 6.8 Hz), 2.16 (3H, s), 2.09 (3H, s) Mass spectrometric value (ESI-MS) 496, 498, 499 (M-1)
- 10 <u>Compound 493</u> N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-hydroxy-ethanesulfonylmethyl)-benzamide

The title compound 493 was produced in the same manner as in Example 6.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.67 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 8.11 (1H, s), 8.04 (1H, d, J = 8.0 Hz), 7.94 (1H, d, J = 2.4 Hz), 7.73 (1H, d, J = 8.0 Hz), 7.67 (1H, s), 7.58 7.64 (2H, m), 7.54 (1H, d, J = 7.3 Hz), 7.21 (1H, d, J = 7.6 Hz), 4.63 (2H, s), 4.06 (2H, t, J = 5.6 Hz), 3.20 (2H, t, J = 5.7 Hz), 2.32 (3H, s), 2.32 (3H, s)
- 20 Mass spectrometric value (ESI-MS) 526, 528, 529 (M-1)

 Compound 494 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)phenyl]-4-methyl-benzamide

The title compound 494 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.52 (1H, d, J = 8.8 Hz), 8.33 (1H, s), 7.93 (2H, d, J = 7.8 Hz), 7.65 - 7.74 (3H, m), 7.54 (1H, d, J = 8.5 Hz), 7.21 - 7.30 (4H, m), 2.24 (3H, s), 2.38 (3H, s)

Mass spectrometric value (ESI-MS) 448, 450 (M-1)

30

35

Compound 495 Pyridin-2-carboxylic acid[4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 495 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.72 (1H, s), 8.67 (1H, d, J = 9.0 Hz), 8.28 (1H, s), 8.22 (1H, d, J = 7.8 Hz), 7.86 - 7.92 (2H, m), 7.66 (1H, dd, J = 2.2 Hz, J = 8.8 Hz), 7.51 - 7.60 (2H, m), 7.46 - 7.51 (1H, m), 7.33 - 7.39 (1H, m), 7.03 - 7.10 (1H, m)

Mass spectrometric value (ESI-MS) 439, 441 (M-1)

<u>Compound 496</u> Pyridin-2-carboxylic acid [4-bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 496 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.70 (1H, d, J = 4.1 Hz), 8.65 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 8.21 (1H, d, J = 7.8 Hz), 7.84 - 7.91 (2H, m), 7.74 - 7.81 (2H, m), 7.61 - 7.66 (1H, m), 7.44 - 7.50 (1H, m), 7.06 (2H, dd, J = 8.5 Hz, J = 8.5 Hz)

10 Mass spectrometric value (ESI-MS) 439, 441 (M-1)

5

25

<u>Compound 497</u> Pyridin-2-carboxylic acid [4-bromo-2-(3-methylbenzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 497 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.69 (1H, s), 8.65 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 8.22 (1H, d, J = 7.8 Hz), 7.79 - 7.89 (2H, m), 7.57 - 7.66 (2H, m), 7.48 - 7.54 (1H, m), 7.41 - 7.46 (1H, m), 7.21 - 7.27 (1H, m), 7.11 - 7.17 (1H, m), 2.35 (3H, s)

Mass spectrometric value (ESI-MS) 435, 437 (M-1)

20 <u>Compound 498</u> Pyridin-2-carboxylic acid [4-bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 498 was produced in the same manner as in Example 5.

¹H-NMR (CDCi₃, 400 MHz): δ 8.63 (1H, d, J = 3.9 Hz), 8.58 (1H, d, J = 9.0 Hz), 8.24 (1H, s), 8.16 (1H, d, J = 8.1 Hz), 7.77 - 7.84 (2H, m), 7.52 - 7.62 (3H, m), 7.37 - 7.42 (1H, m), 7.11 (2H, d, J = 8.1 Hz), 2.25 (3H, s) Mass spectrometric value (ESI-MS) 435, 437 (M-1)

Compound 499 Pyridin-2-carboxylic acid [4-bromo-2-(3,4-dimethylbenzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 499 was produced in the same manner as in Example 5.

 $^{1}\text{H-NMR (CDCl}_{3},\ 400\ \text{MHz}):\ \delta\ 8.69\ (1\text{H, s}),\ 8.65\ (1\text{H, d},\ J=9.0\ \text{Hz}),\ 8.24\ (1\text{H, s}),\ 8.21\ (1\text{H, d},\ J=7.8\ \text{Hz}),\ 7.80\ -7.89\ (2\text{H, m}),\ 7.57\ -7.63\ (2\text{H, m}),\ 7.42\ -7.47\ (2\text{H, m}),\ 7.12\ (1\text{H, d},\ J=7.6\ \text{Hz}),\ 2.26\ (3\text{H, s}),\ 2.21\ (3\text{H, s})$

Mass spectrometric value (ESI-MS) 449, 451 (M-1)

Compound 500 Pyridin-2-carboxylic acid [4-bromo-2-(4-chloro-3-

trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 500 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.63 (1H, s), 8.59 (1H, d, J = 8.8 Hz), 8.24 (1H, s), 8.14 (1H, d, J = 7.8 Hz), 7.97 (1H, s), 7.92 (1H, d, J = 7.8 Hz), 7.78 - 7.84 (2H, m), 7.58 (1H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.45 (1H, d, J = 8.3 Hz), 7.38 - 7.43 (1H, m)

Mass spectrometric value (ESI-MS) 523, 525 (M-1)

10

15

20

25

30

Compound 501 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-ethoxy-benzamide

The title compound 501 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.52 (1H, d, J = 8.8 Hz), 8.35 (1H, s), 7.99 (2H, d, J = 8.5 Hz), 7.71 (1H, s), 7.51 - 7.60 (3H, m), 7.35 - 7.42 (1H, m), 7.93 - 7.15 (1H, m), 6.95 - 6.99 (2H, m), 4.10 (2H, g, J = 7.0 Hz), 1.45

7.09 - 7.15 (1H, m), 6.95 - 6.99 (2H, m), 4.10 (2H, q, J = 7.0 Hz), 1.45 (3H, t, J = 7.0 Hz)

Mass spectrometric value (ESI-MS) 482, 484 (M-1)

<u>Compound 502</u> N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-ethoxy-benzamide

The title compound 502 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.53 (1H, d, J = 9.0 Hz), 8.25 (1H, s), 7.92 (2H, d, J = 8.8 Hz), 7.70 - 7.79 (3H, m), 7.55 (1H, dd, J = 9.0 Hz, J = 2.2 Hz), 7.00 - 7.09 (2H, m), 6.87 - 6.94 (2H, m), 4.04 (2H, q, J = 7.0 Hz), 1.39 (3H, t, J = 7.0 Hz)

Mass spectrometric value (ESI-MS) 482, 484 (M-1)

Compound 503 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-ethoxy-benzamide

The title compound 503 was produced in the same manner as in Example 5.

 $^1\text{H-NMR}$ (CDCl₃, 400 MHz): δ 8.56 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 7.99 (2H, d, J = 8.5 Hz), 7.71 (2H, s), 7.69 (1H, s), 7.53 - 7.59 (1H, m), 7.22 (2H, d, J = 8.1 Hz), 6.96 (2H, d, J = 8.8 Hz), 4.09 (2H, q, J = 7.0 Hz), 2.38 (3H, s), 1.44 (3H, t, J = 7.0 Hz)

Mass spectrometric value (ESI-MS) 478, 480 (M-1)

Compound 504 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-

hydrazinocarbonyl)-phenyl]-4-ethoxy-benzamide

5

20

The title compound 504 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.48 (1H, d, J = 8.5 Hz), 8.33 (1H, s), 7.99 (2H, d, J = 8.1 Hz), 7.69 (1H, s), 7.63 (1H, s), 7.45 - 7.56 (2H, m), 7.16 (1H, d, J = 7.8 Hz), 6.92 - 6.98 (2H, m), 4.08 (2H, q, J = 6.9 Hz), 2.29 (3H, s), 2.27 (3H, s), 1.44 (3H, t, J = 6.8 Hz)

Mass spectrometric value (ESI-MS) 492, 494 (M-1)

<u>Compound 505</u> Pyridin-2-carboxylic acid [2-(3-fluoro-benzylidene-10 hydrazinocarbonyl)-phenyl]-amide

The title compound 505 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.65 - 8.76 (2H, m), 8.20 - 8.28 (2H, m), 7.86 - 7.92 (1H, m), 7.65 - 7.72 (1H, m), 7.50 - 7.61 (3H, m), 7.43 - 7.50

(1H, m), 7.31 - 7.38 (1H, m), 7.10 - 7.20 (1H, m), 7.02 - 7.10 (1H, m) Mass spectrometric value (ESI-MS) 361 (M-1)

<u>Compound 506</u> Pyridin-2-carboxylic acid [2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 506 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.65 - 8.75 (2H, m), 8.20 - 8.28 (2H, m), 7.88 (1H, dd, J = 1.7 Hz, J = 7.7 Hz), 7.74 - 7.83 (2H, m), 7.63 - 7.70 (1H, m), 7.51 - 7.59 (1H, m), 7.43 - 7.49 (1H, m), 7.09 - 7.19 (1H, m), 7.06 (2H, dd, J = 8.5 Hz, J = 8.5 Hz)

25 Mass spectrometric value (ESI-MS) 361 (M-1)

Compound 507 Pyridin-2-carboxylic acid [2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 507 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.65 - 8.74 (2H, m), 8.23 (1H, d, J = 7.6 Hz), 8.20 (1H, s), 7.87 (1H, ddd, J = 1.7 Hz, J = 7.7 Hz, J = 7.7 Hz), 7.63 - 7.69 (1H, m), 7.57 - 7.63 (1H, m), 7.49 - 7.57 (1H, m), 7.42 - 7.49 (2H, m), 7.07 - 7.15 (2H, m), 2.26 (3H, s), 2.24 (3H, s)

Mass spectrometric value (ESI-MS) 371 (M-1)

25 Compound 508 Pyridin-2-carboxylic acid [2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 508 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.67 - 8.73 (2H, m), 8.29 (1H, s), 8.23 (1H, d, J = 7.8 Hz), 7.96 - 8.05 (2H, m), 7.89 (1H, ddd, J = 1.7 Hz, J = 7.7 Hz, J = 7.7 Hz), 7.70 (1H, d, J = 7.1 Hz), 7.46 - 7.59 (3H, m), 7.11 - 7.18 (1H, m)

Mass spectrometric value (ESI-MS) 445 (M-1)

<u>Compound 509</u> Cyclohexanecarboxylic acid [4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 509 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.49 (1H, d, J = 9.0 Hz), 8.22 - 8.29 (1H, m), 7.48 - 7.68 (3H, m), 7.35 - 7.44 (2H, m), 7.12 - 7.18 (1H, m), 2.27 - 2.36 (1H, m), 1.97 - 2.04 (2H, m), 1.79 - 1.87 (2H, m), 1.66 - 1.73 (1H, m), 1.45 - 1.52 (1H, m), 1.21 - 1.38 (4H, m)

Mass spectrometric value (ESI-MS) 444, 446 (M-1)

15

Compound 510 Isoxazole-5-carboxylic acid [4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 510 was produced in the same manner as in 20 Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.59 (1H, d, J = 8.8 Hz), 8.39 (1H, d, J = 2.0 Hz), 8.31 (1H, s), 7.92 (1H, s), 7.63 (1H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.51 - 7.59 (2H, m), 7.34 - 7.41 (1H, m), 7.07 - 7.13 (1H, m), 7.03 (1H, d, J = 1.7 Hz)

25 Mass spectrometric value (ESI-MS) 429, 431 (M-1)

<u>Compound 511</u> Isoxazole-5-carboxylic acid [4-bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 511 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.58 (1H, d, J = 9.0 Hz), 8.39 (1H, d, J = 2.0 Hz), 8.29 (1H, s), 7.93 (1H, d, J = 1.7 Hz), 7.63 - 7.70 (2H, m), 7.55 (1H, d, J = 7.8 Hz), 7.17 - 7.31 (2H, m), 7.03 (1H, d, J = 1.7 Hz), 2.38 (3H, s)

Mass spectrometric value (ESI-MS) 425, 427 (M-1)

Compound 512 Isoxazole-5-carboxylic acid [4-bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 512 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.59 (1H, d, J = 8.8 Hz), 8.40 (1H, d, J = 1.7 Hz), 8.26 (1H, s), 7.96 (1H, d, J = 2.2 Hz), 7.68 (1H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.63 (1H, s), 7.51 (1H, d, J = 7.3 Hz), 7.18 (1H, d, J = 7.8 Hz), 7.05 (1H, d, J = 1.7 Hz), 2.30 (3H, s), 2.29 (3H, s)

Mass spectrometric value (ESI-MS) 439, 441 (M-1)

10

15

30

35

<u>Compound 513</u> Isoxazole-5-carboxylic acid [4-bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 513 was produced in the same manner as in Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.60 (1H, d, J = 9.0 Hz), 8.42 (1H, d, J = 1.7 Hz), 8.35 (1H, s), 8.10 (1H, s), 8.04 (1H, d, J = 8.3 Hz), 7.97 - 8.01 (1H, m), 7.70 (1H, dd, J = 2.3 Hz, J = 8.9 Hz), 7.58 (1H, d, J = 8.3 Hz), 7.06 (1H, d, J = 1.7 Hz)

Mass spectrometric value (ESI-MS) 513, 515 (M-1)

Compound 514 2,5-Dimethyl-furan-3-carboxylic acid [2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 514 was produced in the same manner as in 20 Example 5.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.56 (1H, d, J = 8.5 Hz), 8.27 (1H, s), 7.46 - 7.68 (4H, m), 7.35 - 7.42 (1H, m), 7.04 - 7.14 (2H, m), 6.39 (1H, s), 2.62 (3H, s), 2.29 (3H, s)

Mass spectrometric value (ESI-MS) 378 (M-1)

25 <u>Compound 515</u> 2,5-Dimethyl-furan-3-carboxylic acid [2-(4-fluorobenzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 515 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.54 (1H, d, J = 8.3 Hz), 8.27 (1H, s), 7.76 - 7.85 (2H, m), 7.61 (1H, d, J = 7.6 Hz), 7.48 (1H, t, J = 7.8 Hz), 7.01 - 7.16 (3H, m), 6.38 (1H, s), 2.62 (3H, s), 2.28 (3H, s)

Mass spectrometric value (ESI-MS) 378 (M-1)

Compound 516 2,5-Dimethyl-furan-3-carboxylic acid [2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 516 was produced in the same manner as in Example 5.

 $^{1}\text{H-NMR (CDCl}_{3},\ 400\ \text{MHz}):\ \delta\ 8.56\ (1\text{H, d, J}=8.1\ \text{Hz}),\ 8.27\ (1\text{H, s}),\ 7.67$ - 7.74 (1H, m), 7.40 - 7.60 (4H, m), 7.28 - 7.35 (1H, m), 6.96 - 7.04 (1H, m), 6.38 (1H, s), 2.64 (3H, s), 2.40 (3H, s), 2.29 (3H, s)

Mass spectrometric value (ESI-MS) 374 (M-1)

5 <u>Compound 517</u> N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3,4-dimethoxy-benzamide

The title compound 517 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.15 (1H, s), 7.62 - 7.69 (2H, m), 7.58 (1H, d, J = 9.3 Hz), 7.52 (1H, d, J = 7.6 Hz), 7.37 - 7.44 (1H, m), 7.10 - 7.17 (1H, m), 6.93 (1H, d, J = 8.3 Hz), 6.53 (1H, s), 3.98 (3H, s), 3.96 (3H, s), 2.60 (3H, s)

Mass spectrometric value (ESI-MS) 440 (M-1)

Compound 518 3,4-Dimethoxy-N-[4-methyl-3-(3-methyl-benzylidenehydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 518 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.10 (1H, s), 7.63 - 7.72 (3H, m), 7.54 (1H, d, J = 7.6 Hz), 7.24 - 7.35 (2H, m), 6.92 (1H, d, J = 8.3 Hz), 6.53 (1H, s), 3.98 (3H, s), 3.96 (3H, s), 2.61 (3H, s), 2.40 (3H, s)

Mass spectrometric value (ESI-MS) 436 (M-1)

20

<u>Compound 519</u> 3,4-Dimethoxy-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 519 was produced in the same manner as in 25 Example 5.

 1 H-NMR (CDCI₃, 400 MHz): δ 8.10 (1H, s), 7.63 - 7.73 (4H, m), 7.22 - 7.28 (2H, m), 6.92 (1H, d, J = 8.1 Hz), 6.54 (1H, s), 3.98 (3H, s), 3.96 (3H, s), 2.61 (3H, s), 2.40 (3H, s)

Mass spectrometric value (ESI-MS) 436 (M-1)

30 Compound 521 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3,4-dimethoxy-benzamide

The title compound 521 was produced in the same manner as in Example 5.

¹H-NMR (CDCl₃, 400 MHz): δ 8.07 (1H, s), 7.63 - 7.70 (3H, m), 7.47 (1H, d, J = 8.5 Hz), 7.19 (1H, d, J = 7.8 Hz), 6.92 (1H, d, J = 8.5 Hz), 6.54 (1H, s), 3.98 (3H, s), 3.96 (3H, s), 2.61 (3H, s), 2.31 (6H, s)

Mass spectrometric value (ESI-MS) 450 (M-1)

Compound 522 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3,4-dimethoxy-benzamide

The title compound 522 was produced in the same manner as in Example 5.

 1 H-NMR (CDCI₃, 400 MHz): δ 8.23 (1H, s), 8.05 - 8.08 (1H, m), 7.93 - 7.98 (1H, m), 7.62 - 7.68 (2H, m), 7.58 (1H, d, J = 8.5 Hz), 6.92 - 7.68 (2H, m), 7.58 (1H, d, J = 8.5 Hz), 6.92 - 6.97 (1H, m), 6.55 (1H, s), 3.98 (3H, s), 3.96 (3H, s), 2.61 (3H, s)

10 Mass spectrometric value (ESI-MS) 524 (M-1)

Compound 523 N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 523 was produced in the same manner as in Example 5.

15 Mass spectrometric value (ESI-MS) 503 (M-1)

Compound 524 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 524 was produced in the same manner as in Example 5.

20 Mass spectrometric value (ESI-MS) 493 (M-1)

Compound 525 N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 525 was produced in the same manner as in Example 5.

25 Mass spectrometric value (ESI-MS) 494 (M-1)

Compound 526 3-(3-Hydroxy-propylsulfanylmethyl)-N-[4-methyl-2-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 526 was produced in the same manner as in Example 5.

30 Mass spectrometric value (ESI-MS) 480 (M-1)

Compound 527 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 527 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 484 (M-1)
Compound 528 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-

fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 528 was produced in the same manner as in Example 5.

5 Mass spectrometric value (ESI-MS) 522 (M-1)

Compound 529 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 529 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 522 (M-1)

Compound 530 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 530 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 534 (M-1)

Compound 531 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 531 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 572 (M-1)

<u>Compound 532</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-

25 benzamide

20

30

35

The title compound 532 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 532 (M-1)

Compound 533 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[4-methyl-2-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 533 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 518 (M-1)

Compound 534 N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 534 was produced in the same manner as in

Example 5.

Mass spectrometric value (ESI-MS) 522 (M-1)

Compound 535 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 535 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 522 (M-1)

Compound 536 3-[(2-Diethylamino-ethylamino)-methyl]-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-

10 benzamide

5

15

20

25

The title compound 536 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 518 (M-1)

Compound 537 3-[(2-Diethylamino-ethylamino)-methyl]-N-[4-methyl-2-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 537 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 504 (M-1)

Compound 538 3-[(2-Diethylamino-ethylamino)-methyl]-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 538 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 508 (M-1)

Compound 539 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-[(2-diethylamino-ethylamino)-methyl]-benzamide

The title compound 539 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 592 (M-1)

Compound 540 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-methyl-2-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 540 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 521 (M-1)

35 <u>Compound 541</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 541 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 503 (M-1)

5

20

25

30

Example 7.

Compound 542 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 542 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 493 (M-1)

Compound 543 3-(4-Hydroxy-piperidin-1-ylmethyl)-N-[2-(4-methoxy-

benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 543 was produced in the same manner as in Example 5.

Mass spectrometric value (ESI-MS) 505 (M-1)

Compound 544 Pyridin-2-carboxylic acid {4-bromo-2-[N'-(4-methyl-benzyl)-hydrazinocarbonyl]-phenyl}-amide

The title compound 544 was produced in the same manner as in Example 7.

Mass spectrometric value (ESI-MS) 439 (M-1)

<u>Compound 545</u> N-{2-[N'-(4-Methyl-benzyl)-hydrazinocarbonyl]-phenyl}-isonicotinamide

The title compound 545 was produced in the same manner as in Example 7.

Mass spectrometric value (ESI-MS) 359 (M-1)

Compound 546 N-{4-Bromo-2-[N'-(4-chloro-3-trifluoromethyl-benzyl)-

hydrazinocarbonyl]-phenyl}-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide
The title compound 546 was produced in the same manner as in

Mass spectrometric value (ESI-MS) 614, 616, 617 (M-1)

Compound 547 N-{4-Chloro-2-[N'-(4-methyl-benzyl)-hydrazinocarbonyl]-phenyl}-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 547 was produced in the same manner as in Example 7.

Mass spectrometric value (ESI-MS) 483 (M-1)

Compound 548 N-{4-Bromo-2-[N'-(3,4-dimethyl-benzyl)-

35 hydrazinocarbonyl]-phenyl}-3,4-dimethoxy-benzamide

The title compound 548 was produced in the same manner as in

Example 7.

5

10

15

25

30

35

Mass spectrometric value (ESI-MS) 508, 510 (M-1)

Compound 549 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 549 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.35 (1H, s), 8.07 (1H, s), 7.93 - 7.96 (1H, m), 7.85 - 7.96 (1H, m), 7.85 - 7.92 (1H, m), 7.71 - 7.76 (1H, m), 7.58 - 7.65 (3H, m), 7.40 - 7.54 (2H, m), 7.15 - 7.23 (1H, m), 3.83 (2H, s), 3.61 - 3.67 (4H, m), 2.67 - 2.74 (4H, m)

Mass spectrometric value (ESI-MS) 511, 513 (M-1)

<u>Compound 550</u> 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 550 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.35 (1H, s), 8.06 (1H, s), 7.87 - 7.95 (4H, m), 7.63 (1H, d, J = 8.8 Hz), 7.62 (1H, d, J = 8.8 Hz), 7.50 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.19 (2H, dd, J = 8.8 Hz), 3.83 (2H, s), 3.65 (4H, t, J = 5.9 Hz), 2.71 (4H, t, J = 5.9 Hz)

20 Mass spectrometric value (ESI-MS) 511, 513 (M-1)

Example 8

Compound 551 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

Ethyl 2-amino-4-methylthiophene-3-carboxylate (compound A) (3.0 g) was dissolved in anhydrous methylene chloride (40.0 ml). Subsequently, pyridine (1.5 ml) and 3-(chloromethyl) benzoyl chloride (compound B) (2.8 ml) were added to the solution, and the mixuture was stirred at 0°C for one hr. After the completion of the reaction, distilled water was added, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated to give 2-(3-chloromethyl-benzoylamino-4-methyl-thiophene-3-carboxylic acid ethyl ester as a useful intermediate (3.80 g, yield 70%).

2-(3-Chloromethyl-benzoylamino-4-methyl-thiophene-3-carboxylic acid ethyl ester (700 mg) obtained by the above reaction was dissolved

in anhydrous methylene chloride (5.0 ml), triethylamine (580 µl) and 3-mercapto-1,2,4-triazole (compound B') (404 mg) were added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added at room temperature, and the reaction mixture was extracted by liquid separation using chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 4-methyl-2-[3(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzoylamino]-thiophene-3-carboxylic acid ethyl ester as a useful intermediate (606 mg, yield 72%).

5

10

15

20

25

30

4-Methyl-2-[3(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzoylamino]-thiophene-3-carboxylic acid ethyl ester produced by the above reaction was dissolved in ethanol (5.0 ml), hydrazine monohydrate (650 μl) was added to the solution, and the mixture was heated under reflux with stirring for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated to give a hydrazine compound N-(3-hydrazinocarbonyl-4-methyl-thiophen-2-yl)-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide (103 mg, crude yield 20%).

N-(3-Hydrazinocarbonyl-4-methyl-thiophen-2-yl)-3-(1H- [1,2,4]triazol-3-ylsulfanylmethyl)-benzamide (20 mg) was dissolved in anhydrous toluene (1.0 ml), 3,4-dimethylbenzaldehyde (compound C) (13.0 μ l) was added to the solution at room temperature, and the mixture was heated under reflux with stirring for 15 hr. After the completion of the reaction, the reaction product was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 551 (17.4 mg, yield 69%).

 1 H-NMR (DMSO-d₆, 400 MHz): δ 2.25 (6H, s), 2.37 (3H, s), 4.40 (2H, s), 6.79 (1H, s), 7.15 - 8.00 (7H, m), 8.28 (1H, s), 8.56 (1H, s), 11.20 - 11.70 (2H, m), 14.05 (1H, s)

Mass spectrometric value (ESI-MS) 503 (M-1)

Compound 552 N-[4-Methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 552 was produced in substantially the same manner as in Example 8.

 1 H-NMR (DMSO-d₆, 400 MHz): δ 2.34 (3H, s), 2.37 (3H, s), 4.40 (2H, s), 6.80 (1H, s), 7.20 - 8.00 (8H, m), 8.30 (1H, m), 8.57 (1H, s), 11.30 - 11.70 (2H, m), 14.10 (1H, s)

Mass spectrometric value (ESI-MS) 489 (M-1)

Compound 553 N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 553 was produced in substantially the same manner as in Example 8.

 1 H-NMR (DMSO-d₆, 400 MHz): δ 2.36 (3H, s), 4.40 (2H, s), 6.81 (1H, s), 7.25 - 8.00 (8H, m), 8.40 (1H, m), 8.57 (1H, s), 11.30 - 11.70 (2H, m), 14.05 (1H, s)

Mass spectrometric value (ESI-MS) 493 (M-1)

Compound 554 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 554 was produced in substantially the same manner as in Example 8.

¹H-NMR (DMSO-d₆, 400 MHz): δ 2.35 (3H, s), 4.40 (2H, s), 6.81 (1H, s), 7.20 - 7.96 (8H, m), 8.36 (1H, s), 8.56 (1H, s), 11.40 - 11.75 (2H, m), 14.05 (1H, s)

Mass spectrometric value (ESI-MS) 493 (M-1)

Compound 555 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(1H-[1,2,4]triazol-3-

25 ylsulfanylmethyl)-benzamide

The title compound 555 was produced in substantially the same manner as in Example 8.

 $^{1}\text{H-NMR}$ (DMSO-d₆, 400 MHz): δ 2.34 (3H, s), 4.38 (2H, s), 6.82 (1H, s), 7.40 - 8.58 (9H, m), 11.40 - 11.75 (2H, m), 14.05 (1H, s)

30 Mass spectrometric value (ESI-MS) 577 (M-1)

Compound 556 N-[3-(4-Methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-benzamide

The title compound 556 was produced in substantially the same manner as in Example 8.

¹H-NMR (DMSO-d₆, 400 MHz): δ 2.37 (3H, s), 3.80 (3H, s), 4.40 (2H, s), 6.80 (1H, s), 7.01 (2H, m), 7.40 - 7.74 (6H, m), 8.35 (1H, s), 8.57 (1H, s),

11.20 - 11.75 (2H, m), 14.05 (1H, s)

5

25

Mass spectrometric value (ESI-MS) 505 (M-1)

Compound 557 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 557 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 2.31 (6H, m), 2.50 (5H, m), 3.63 (2H, m), 3.82 (2H, s), 6.70 (1H, s), 7.19 (1H, d, J = 7.8 Hz), 7.45 - 7.67 (4H, m), 7.80 - 7.95 (2H, m), 8.22 (1H, s)

10 Mass spectrometric value (ESI-MS) 494 (M-1)

Compound 558 3-(3-Hydroxy-propylsulfanylmethyl)-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 558 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 2.38 (3H, s), 2.50 (5H, m), 3.60 (2H, t, J = 6.4 Hz), 3.82 (2H, s), 6.71 (1H, d, J = 0.96 Hz), 7.26 (2H, d, J = 7.6 Hz), 7.50 (1H, m), 7.60 (1H, m), 7.73 (2H, m), 7.84 (1H, m), 7.92 (1H, s), 8.26 (1H, s)

Mass spectrometric value (ESI-MS) 480 (M-1)

20 <u>Compound 559</u> N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 559 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 2.50 (5H, m), 3.62 (2H, m), 3.82 (2H, s), 6.71 (1H, s), 7.12 (2H, m), 7.50 (1H, m), 7.60 (1H, m), 7.87 (4H, m), 8.28 (1H, s)

Mass spectrometric value (ESI-MS) 484 (M-1)

Compound 560 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 560 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 2.51 (5H, m), 3.60 (2H, t, J = 6.2 Hz), 3.82 (2H, s), 6.72 (1H, s), 7.18 (1H, m), 7.42 - 7.65 (5H, m), 7.84 (1H, s), 7.93 (1H, s), 8.29 (1H, s)

35 Mass spectrometric value (ESI-MS) 484 (M-1)

Compound 561 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-

hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 561 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 2.50 (5H, m), 3.60 (2H, t, J = 6.1 Hz), 3.82 (2H, s), 6.72 (1H, s), 7.50 (1H, m), 7.61 (1H, d, J = 7.3 Hz), 7.68 (1H, d, J = 8.3 Hz), 7.84 (1H, m), 7.93 (1H, s), 8.05 (1H, m), 8.33 (2H, s)

Mass spectrometric value (ESI-MS) 568 (M-1)

10 <u>Compound 562</u> 3-(3-Hydroxy-propylsulfanylmethyl)-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 562 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 2.50 (5H, m), 3.60 (2H, t, J = 6.2 Hz), 3.81 (2H, s), 3.84 (3H, s), 6.70 (1H, d, J = 1.0 Hz), 6.99 (2H, d, J = 8.3 Hz), 7.50 (1H, m), 7.60 (1H, m), 7.80 (3H, m), 7.92 (1H, s), 8.23 (1H, m)

Mass spectrometric value (ESI-MS) 496 (M-1)

20

30

Compound 563 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 563 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.05 (6H, t, J = 7.2 Hz), 2.26 (3H, s), 2.30 (3H, s), 2.31 (3H, s), 2.50 (2H, m), 2.57 (2H, m), 2.67 (5H, m), 2.79 (2H, m), 3.65 (2H, s), 6.64 (1H, s), 7.19 (1H, d, J = 7.8 Hz), 7.46 - 7.65 (4H, m), 7.86 - 7.97 (2H, m), 8.21 (1H, s)

Mass spectrometric value (ESI-MS) 532 (M-1)

Compound 564 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 564 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.05 (6H, t, J = 7.3 Hz), 2.26 (3H, s), 2.38 (3H, s), 2.50 (2H, s), 2.57 (2H, m), 2.67 (5H, m), 2.78 (2H, m), 3.65 (2H, s), 6.63 (1H, s), 7.25 (2H, d, J = 7.8 Hz), 7.51 (1H, dd, J = 7.6 Hz, J =

7.6~Hz), 7.58~(1H, d, J = 7.6~Hz), 7.72~(2H, m), 7.91~(2H, m), 8.25~(1H, s) Mass spectrometric value (ESI-MS) 518~(M-1)

Compound 565 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(4-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-

5 benzamide

10

20

25

30

35

The title compound 565 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.05 (6H, m), 2.56 (3H, s), 2.49 (2H, m), 2.57 (2H, m), 2.66 (5H, m), 2.77 (2H, m), 3.64 (2H, s), 6.62 (1H, s), 7.16 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 7.50 (2H, m), 7.91 (4H, m), 8.27 (1H, s) Mass spectrometric value (ESI-MS) 522 (M-1)

<u>Compound 566</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 566 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.07 (6H, t, J = 7.2 Hz), 2.26 (3H, m), 2.50 (2H, s), 2.58 (2H, m), 2.72 (5H, m), 2.83 (2H, m), 3.65 (2H, s), 6.62 (1H, s), 7.15 (1H, ddd, J = 8.3 Hz, J = 8.3 Hz, J = 1.7 Hz), 7.40 - 7.80 (5H, m), 7.87 - 7.90 (2H, m), 8.27 (1H, s)

Mass spectrometric value (ESI-MS) 522 (M-1)

<u>Compound</u> 567 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 567 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.06 (6H, t, J = 7.3 Hz), 2.26 (3H, m), 2.49 (2H, s), 2.57 (2H, m), 2.68 (5H, m), 2.80 (2H, m), 3.64 (2H, s), 6.60 (1H, s), 7.50 (1H, m), 7.57 (1H, d, J = 7.6 Hz), 7.65 (1H, d, J = 8.3 Hz), 7.94 (3H, m), 8.28 (2H, m)

Mass spectrometric value (ESI-MS) 606 (M-1)

Compound 568 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 568 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.05 (6H, t, J = 7.2 Hz), 2.25 (3H, s), 2.49 (2H, s), 2.57 (2H, m), 2.66 (5H, m), 2.77 (2H, m), 3.64 (2H, m), 3.83 (3H, s), 6.63 (1H, s), 6.97 (2H, d, J = 8.5 Hz), 7.42 - 7.59 (2H, m), 7.76 (2H, m), 7.90 (2H, m), 8.22 (1H, s)

5 Mass spectrometric value (ESI-MS) 534 (M-1)

Compound 569 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 569 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.49 (2H, m), 1.64 (6H, m), 1.87 (2H, m), 2.03 (2H, m), 2.27 (1H, m), 2.29 (6H, m), 2.49 (3H, s), 2.71 (4H, m), 2.96 (2H, d, J = 11.0 Hz), 3.59 (2H, s), 6.66 (1H, s), 7.18 (1H, d, J = 7.6 Hz), 7.45 - 7.73 (4H, m), 7.88 (2H, s), 8.22 (1H, s) Mass spectrometric value (ESI-MS) 570 (M-1)

Compound 570 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 570 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.49 (2H, m), 1.65 (6H, m), 1.88 (2H, d, J = 11.0 Hz), 2.04 (2H, t, J = 11.5 Hz), 2.34 (1H, s), 2.37 (3H, s), 2.49 (3H, s), 2.74 (4H, bs), 2.97 (2H, d, J = 11.2 Hz), 3.58 (2H, s), 6.67 (1H, s), 7.24 (2H, d, J = 7.8 Hz), 7.45 - 7.60 (2H, m), 7.70 (2H, m), 7.85 - 7.95 (2H, m), 8.26 (1H, s)

Mass spectrometric value (ESI-MS) 556 (M-1)

25 <u>Compound 571</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(4-fluorobenzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 571 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.48 (2H, m), 1.63 (6H, m), 1.86 (2H, d, J = 11.4 Hz), 2.03 (2H, t, J = 11.2 Hz), 2.36 - 2.54 (4H, m), 2.66 (4H, m), 2.96 (2H, d, J = 11.2 Hz), 3.58 (2H, s), 6.66 (1H, s), 7.17 (2H, dd, J = 8.5 Hz, J = 8.5 Hz), 7.45 - 7.60 (2H, m), 7.85 - 7.94 (4H, m), 8.28 (1H, s) Mass spectrometric value (ESI-MS) 560 (M-1)

Compound 572 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(3-fluorobenzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

35 benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-ylj-benzamide

The title compound 572 was produced in substantially the same

manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.49 (2H, m), 1.64 (6H, m), 1.87 (2H, d, J = 11.7 Hz), 2.03 (2H, t, J = 11.2 Hz), 2.49 (4H, s), 2.72 (4H, m), 2.96 (2H, d, J = 11.5 Hz), 3.58 (2H, s), 6.65 (1H, s), 7.15 (1H, m), 7.40 - 7.75 (5H, m), 7.85 - 7.95 (2H, m), 8.28 (1H, s)

Mass spectrometric value (ESI-MS) 560 (M-1)

<u>Compound</u> 573 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 573 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.49 (2H, m), 1.63 (6H, m), 1.87 (2H, d, J = 11.2 Hz), 2.04 (2H, t, J = 11.1 Hz), 2.40 - 2.54 (4H, m), 2.68 (4H, m), 2.97 (2H, d, J = 11.5 Hz), 3.59 (2H, s), 6.65 (1H, s), 7.45 - 7.60 (2H, m), 7.97 (4H, d, J = 2.2 Hz), 7.85 (2H, m), 8.31 (2H, m)

7.67 (1H, d, J = 8.3 Hz), 7.85 - 8.05 (3H, m), 8.31 (2H, m)

Mass spectrometric value (ESI-MS) 644 (M-1)

Compound 574 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 574 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.49 (2H, m), 1.61 (6H, m), 1.85 (2H, d, J = 11.7 Hz), 2.02 (2H, t, J = 11.6 Hz), 2.30 - 2.52 (4H, m), 2.65 (4H, bs), 2.95 (2H, d, J = 11.0 Hz), 3.58 (2H, s), 3.83 (3H, s), 6.66 (1H, s), 6.98 (2H, d, J = 8.3 Hz), 7.44 - 7.61 (2H, m), 7.76 (2H, m), 7.90 (2H, m), 8.23 (4H, s)

25 **(1H, s)**

20

5

Mass spectrometric value (ESI-MS) 572 (M-1)

<u>Compound 575</u> N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 575 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 2.29 (6H, s), 2.48 (3H, s), 2.52 - 2.70 (10H, m), 3.62 (2H, s), 3.66 (2H, t, J = 6.0 Hz), 6.68 (1H, d, J = 1.0 Hz), 7.17 (1H, d, J = 7.6 Hz), 7.50 (2H, m), 7.59 (2H, m), 7.80 - 7.95 (2H, m),

35 **8.22 (1H, s)**

Mass spectrometric value (ESI-MS) 532 (M-1)

Compound 576 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 576 was produced in substantially the same manner as in Example 8.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 2.38 (3H, s), 2.49 (3H, s), 2.54 - 2.74 (10H, m), 3.60 - 3.70 (4H, m), 6.71 (1H, d, J = 1.2 Hz), 7.25 (2H, d, J = 1.2 Hz)7.6 Hz), 7.51 (1H, dd, J = 7.4 Hz, J = 7.4 Hz), 7.59 (1H, d, J = 7.4 Hz), 7.71 (2H, bs), 7.85 - 7.95 (2H, m), 8.26 (1H, s) Mass spectrometric value (ESI-MS) 518 (M-1)

Compound 577 N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-10 thiophen-2-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 577 was produced in substantially the same manner as in Example 8.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 2.49 (3H, m), 2.52 - 2.76 (10H, m), 3.63 (2H, s), 3.68 (2H, t, J = 5.8 Hz), 6.69 (1H, d, J = 1.0 Hz), 7.17 (2H, dd, J = 1.0 Hz)J = 7.6 Hz), 7.82 - 7.94 (4H, m), 8.28 (1H, s)

Mass spectrometric value (ESI-MS) 522 (M-1)

15

20

25

35

Compound 578 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methylthiophen-2-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 578 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 2.49 (3H, s), 2.57 (4H, m), 2.64 (2H, t, J = 5.9 Hz), 2.71 (4H, m), 3.63 (2H, s), 3.68 (2H, t, J = 5.9 Hz), 6.68 (1H, d, m)J = 1.0 Hz), 7.16 (1H, dd, J = 8.1 Hz, J = 8.1 Hz), 7.40 - 7.70 (5H, m), 7.82 - 7.95 (2H, m), 8.28 (1H, s)

Mass spectrometric value (ESI-MS) 522 (M-1)

N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-Compound 579 hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-[4-(2-hydroxy-ethyl)piperazin-1-ylmethyl]-benzamide

30

The title compound 579 was produced in substantially the same manner as in Example 8.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 2.49 (3H, s), 2.52 - 2.68 (10H, m), 3.63 (2H, s), 3.66 (2H, t, J = 6.0 Hz), 6.70 (1H, d, J = 1.0 Hz), 7.51 (1H, dd, J = 1.0 Hz)= 7.3 Hz, J = 7.3 Hz), 7.60 (1H, d, J = 7.3 Hz), 7.67 (1H, d, J = 8.3 Hz),7.87 (1H, m), 7.93 (1H, s), 8.00 (1H, bs), 8.32 (2H, m)

Mass spectrometric value (ESI-MS) 606 (M-1)

5

15

20

<u>Compound 580</u> 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 580 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 2.49 (3H, s), 2.50 - 2.75 (10H, m), 3.63 (2H, s), 3.67 (2H, t, J = 6.0 Hz), 3.83 (3H, s), 6.69 (1H, d, J = 1.0 Hz), 6.98 (2H, d, J = 8.3 Hz), 7.50 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.59 (1H,

d, J = 7.6 Hz), 7.76 (2H, m), 7.82 - 7.94 (2H, m), 8.23 (1H, s) Mass spectrometric value (ESI-MS) 534 (M-1)

Compound 581 3-[(2-Diethylamino-ethylamino)-methyl]-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 581 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.20 (6H, t, J = 7.2 Hz), 2.31 (3H, s), 2.32 (3H, s), 2.51 (3H, s), 2.91 (2H, t, J = 6.2 Hz), 3.02 (6H, m), 3.97 (2H, s), 6.71 (1H, d, J = 1.0 Hz), 7.20 (1H, d, J = 7.8 Hz), 7.50 - 7.70 (4H, m), 7.91 (1H, m), 7.99 (1H, m), 8.25 (1H, s)

Mass spectrometric value (ESI-MS) 518 (M-1)

Compound 582 3-[(2-Diethylamino-ethylamino)-methyl]-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 582 was produced in substantially the same 25 manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.22 (6H, t, J = 7.2 Hz), 2.39 (3H, s), 2.51 (3H, s), 2.93 (2H, t, J = 6.2 Hz), 3.06 (6H, m), 3.39 (2H, s), 6.72 (1H, d, J = 1.0 Hz), 7.27 (2H, d, J = 7.8 Hz), 7.52 - 7.77 (4H, m), 7.91 (1H, m), 8.01 (1H, m), 8.28 (1H, s)

30 Mass spectrometric value (ESI-MS) 504 (M-1)

Compound 583 3-[(2-Diethylamino-ethylamino)-methyl]-N-[3-(4-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 583 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.19 (6H, t, J = 7.2 Hz), 2.52 (3H, s), 2.89 (2H, t, J = 6.1 Hz), 2.98 (6H, m), 3.96 (2H, s), 6.72 (1H, d, J = 1.0 Hz),

7.19 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 7.56 (1H, m), 7.64 (1H, d, J = 7.2 Hz), 7.90 (3H, m), 7.99 (1H, s), 8.30 (1H, s)

Mass spectrometric value (ESI-MS) 509 (M-1)

<u>Compound 584</u> 3-[(2-Diethylamino-ethylamino)-methyl]-N-[3-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 584 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.20 (6H, t, J = 7.2 Hz), 2.52 (3H, s), 2.90 (2H, m), 3.00 (6H, m), 3.96 (2H, s), 6.71 (1H, d, J = 1.2 Hz), 7.18 (1H, dd, J = 8.3 Hz, J = 8.3 Hz), 7.46 (1H, m), 7.52 - 7.75 (4H, m), 7.91 (1H, m), 7.99 (1H, s), 8.31 (1H, s)

Mass spectrometric value (ESI-MS) 508 (M-1)

<u>Compound</u> 585 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-[(2-diethylamino-

15 ethylamino)-methyl]-benzamide

5

10

20

25

30

35

The title compound 585 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.16 (6H, t, J = 7.2 Hz), 2.51 (3H, s), 2.91 (8H, m), 3.95 (2H, s), 6.70 (1H, d, J = 1.2 Hz), 7.55 (1H, m), 7.64 (1H, d, J = 8.0 Hz), 7.69 (1H, d, J = 8.3 Hz), 7.91 (1H, m), 7.98 (2H, m), 8.34 (2H, s)

Mass spectrometric value (ESI-MS) 592 (M-1)

Compound 586 3-[(2-Diethylamino-ethylamino)-methyl]-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 586 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.16 (6H, t, J = 7.2 Hz), 2.51 (3H, s), 2.90 (8H, m), 3.85 (3H, s), 3.94 (2H, s), 6.70 (1H, d, J = 1.0 Hz), 6.99 (2H, d, J = 8.8 Hz), 7.56 (1H, m), 7.64 (1H, m), 7.79 (2H, d, J = 7.3 Hz), 7.91 (1H, m), 7.98 (1H, s), 8.25 (1H, s)

Mass spectrometric value (ESI-MS) 520 (M-1)

<u>Compound</u> 587 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 587 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.09 (6H, m), 2.31 (6H, m), 2.51 (7H, m), 3.60 - 3.95 (4H, m), 6.70 (1H, d, J = 1.0 Hz), 7.19 (1H, d, J = 8.0 Hz), 7.52 (2H, m), 7.65 (2H, d, J = 6.6 Hz), 7.87 (1H, m), 7.99 (1H, s), 8.22 (1H, s)

5 Mass spectrometric value (ESI-MS) 535 (M-1)

Compound 588 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 588 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.09 (6H, m), 2.38 (3H, s), 2.51 (7H, m), 3.68 - 3.94 (4H, m), 6.70 (1H, d, J = 1.2 Hz), 7.25 (2H, m), 7, 51 (1H, m), 7.65 (1H, d, J = 7.3 Hz), 7.73 (2H, m), 7.87 (1H, m), 7.99 (1H, s), 8.26 (1H, s)

Mass spectrometric value (ESI-MS) 521 (M-1)

Compound 589 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-fluorobenzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 589 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.09 (6H, m), 2.49 (7H, m), 3.65 - 3.95 (4H, m), 6.71 (1H, m), 7.18 (2H, dd, J = 8.8 Hz, J = 8.8 Hz), 7.51 (1H, dd, J = 7.4 Hz, J = 7.4 Hz), 7.65 (1H, d, J = 7.4 Hz), 7.88 (3H, m), 7.99 (1H, s), 8.29 (1H, s)

Mass spectrometric value (ESI-MS) 526 (M-1)

25

30

35

Compound 590 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3-fluorobenzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 590 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.09 (6H, m), 2.49 (7H, m), 3.87 (4H, m), 6.71 (1H, d, J = 1.0 Hz), 7.17 (2H, m), 7.40 - 7.75 (4H, m), 7.87 (1H, d, J = 7.8 Hz), 8.00 (1H, s), 8.29 (1H, s)

Mass spectrometric value (ESI-MS) 525 (M-1)

Compound 591 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 591 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.08 (6H, m), 2.50 (7H, m), 3.65 - 3.95 (4H, m), 6.71 (1H, d, J = 1.0 Hz), 7.51 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.66 (2H, m), 7.86 (1H, m), 8.02 (2H, m), 8.33 (2H, m)

Mass spectrometric value (ESI-MS) 609 (M-1)

5 <u>Compound</u> 592 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 592 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.09 (6H, d, J = 6.1 Hz), 2.49 (7H, m), 3.85 (7H, m), 6.70 (1H, d, J = 1.0 Hz), 6.99 (2H, d, J = 8.3 Hz), 7.51 (1H, m), 7.65 (1H, d, J = 7.6 Hz), 7.84 (3H, m), 7.99 (1H, s), 8.23 (1H, s) Mass spectrometric value (ESI-MS) 537 (M-1)

Compound 593 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 593 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.59 (2H, m), 1.85 (2H, m), 2.29 (8H, bs), 2.48 (3H, s), 2.84 (2H, m), 3.66 (3H, m), 6.68 (1H, d, J = 1.0 Hz), 7.17 (1H, d, J = 7.6 Hz), 7.52 (1H, m), 7.61 (2H, d, J = 5.6 Hz), 7.89 (2H, m), 8.22 (1H, s)

Mass spectrometric value (ESI-MS) 503 (M-1)

15

20

25

30

Compound 594 3-(4-Hydroxy-piperidin-1-ylmethyl)-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 594 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.59 (2H, m), 1.86 (2H, m), 2.35 (5H, m), 2.49 (3H, s), 2.87 (2H, m), 3.67 (3H, m), 6.70 (1H, d, J = 1.2 Hz), 7.25 (2H, d, J = 7.8 Hz), 7.53 (1H, dd, J = 7.3 Hz, J = 7.3 Hz), 7.63 (1H, d, J = 7.3 Hz), 7.71 (2H, m), 7.91 (2H, m), 8.26 (1H, s)

Mass spectrometric value (ESI-MS) 489 (M-1)

Compound 595 N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 595 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.62 (2H, m), 1.87 (2H, m), 2.36 (2H, m),

2.49 (3H, s), 2.89 (2H, m), 3.66 (1H, m), 3.74 (2H, s), 6.72 (1H, d, J = 1.0 Hz), 7.18 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.54 (1H, m), 7.64 (1H, d, J = 7.3 Hz), 7.91 (4H, m), 8.29 (1H, s)

Mass spectrometric value (ESI-MS) 493 (M-1)

5 <u>Compound 596</u> N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 596 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.60 (2H, m), 1.87 (2H, m), 2.35 (2H, m), 2.49 (3H, s), 2.88 (2H, m), 3.66 (1H, m), 3.72 (2H, s), 6.69 (1H, d, J = 1.1 Hz), 7.16 (1H, dd, J = 8.3 Hz, J = 8.3 Hz), 7.44 (1H, m), 7.53 (2H, m), 7.63 (2H, m), 7.91 (2H, m), 8.28 (1H, s)

Mass spectrometric value (ESI-MS) 493 (M-1)

Compound 597 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-

hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 597 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.61 (2H, m), 1.86 (2H, m), 2.37 (2H, m), 2.0 (3H, s), 2.90 (2H, m), 3.67 (1H, m), 3.74 (2H, s), 6.72 (1H, d, J = 1.0 Hz), 7.55 (1H, dd, J = 7.5 Hz, J = 7.5 Hz), 7.66 (2H, m), 7.92 (3H, m), 8.33 (2H, m)

Mass spectrometric value (ESI-MS) 577 (M-1)

<u>Compound 598</u> 3-(4-Hydroxy-piperidin-1-ylmethyl)-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 598 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.61 (2H, m), 1.87 (2H, m), 2.37 (2H, m), 2.49 (3H, s), 2.89 (2H, m), 3.66 (1H, m), 3.73 (2H, s), 3.84 (3H, s), 6.69 (1H, d, J = 1.0 Hz), 6.97 (2H, d, J = 8.3 Hz), 7.53 (1H, m), 7.62 (1H, m), 7.76 (2H, m), 7.90 (2H, m), 8.23 (1H, s)

Mass spectrometric value (ESI-MS) 505 (M-1)

<u>Compound 599</u> N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-

35 benzamide

25

30

The title compound 599 was produced in substantially the same

manner as in Example 8.

5

20

25

30

 1 H-NMR (CD₃OD, 400 MHz): δ 1.29 (2H, m), 1.50 (1H, m), 1.75 (2H, d, J = 11.5 Hz), 2.19 (2H, m), 2.30 (6H, s), 2.49 (3H, s), 2.99 (2H, d, J = 10.8 Hz), 3.38 (2H, d, J = 6.6 Hz), 3.73 (2H, s), 6.70 (1H, d, J = 1.0 Hz), 7.19 (1H, d, J = 7.6 Hz), 7.54 (2H, m), 7.62 (2H, m), 7.91 (2H, m), 8.22 (1H, s) Mass spectrometric value (ESI-MS) 517 (M-1)

<u>Compound 600</u> 3-(4-Hydroxymethyl-piperidin-1-ylmethyl)-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 600 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.30 (2H, m), 1.50 (1H, m), 1.75 (2H, d, J = 13.2 Hz), 2.22 (2H, t, J = 11.5 Hz), 2.37 (3H, s), 2.48 (3H, s), 3.00 (2H, d, J = 11.0 Hz), 3.38 (2H, d, J = 6.3 Hz), 3.74 (2H, s), 6.68 (1H, d, J = 1.0 Hz), 7.24 (2H, d, J = 7.8 Hz), 7.52 (1H, dd, J = 7.4 Hz, J = 7.4 Hz),

7.62 (1H, d, J = 7.4 Hz), 7.69 (2H, m), 7.90 (2H, m), 8.25 (1H, s) Mass spectrometric value (ESI-MS) 503 (M-1)

Compound 601 N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 601 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.30 (2H, m), 1.50 (1H, m), 1.75 (2H, d, J = 12.2 Hz), 2.22 (2H, t, J = 11.4 Hz), 2.48 (3H, s), 3.01 (2H, d, J = 11.2 Hz), 3.38 (2H, d, J = 6.4 Hz), 3.73 (2H, s), 6.68 (1H, d, J = 1.0 Hz), 7.16 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.62 (1H, d, J = 7.6 Hz), 7.88 (4H, m), 8.28 (1H, s)

Mass spectrometric value (ESI-MS) 507 (M-1)

Compound 602 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 602 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.31 (2H, m), 1.51 (1H, m), 1.76 (2H, d, J = 11.5 Hz), 2.23 (2H, d, J = 10.8 Hz), 2.45 (3H, s), 3.02 (2H, d, J = 11.2 Hz), 3.39 (2H, d, J = 6.3 Hz), 3.75 (2H, s), 6.69 (1H, d, J = 1.0 Hz), 7.17 (1H, m), 7.44 (1H, m), 7.53 (2H, m), 7.63 (2H, m), 7.90 (2H, m), 8.28 (1H,

35 s)
Mass spectrometric value (ESI-MS) 507 (M-1)

<u>Compound</u> 603 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 603 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.31 (2H, m), 1.51 (1H, m), 1.76 (2H, d, J = 11.7 Hz), 2.21 (2H, t, J = 11.5 Hz), 2.49 (3H, s), 3.01 (2H, d, J = 11.5 Hz), 3.38 (2H, d, J = 6.3 Hz), 3.74 (2H, s), 6.70 (1H, s), 7.54 (1H, dd, J = 7.4 Hz), 7.65 (2H, m), 7.94 (3H, m), 8.31 (2H, m)

10 Mass spectrometric value (ESI-MS) 591 (M-1)

5

15

25

30

35

<u>Compound</u> 3-(4-Hydroxymethyl-piperidin-1-ylmethyl)-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 604 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.29 (2H, m), 1.50 (1H, m), 1.75 (2H, d, J = 12.2 Hz), 2.20 (2H, t, J = 11.1 Hz), 2.47 (3H, s), 3.00 (2H, d, J = 10.8 Hz), 3.38 (2H, d, J = 6.4 Hz), 3.72 (2H, s), 3.83 (3H, s), 6.67 (1H, s), 6.96 (2H, d, J = 8.3 Hz), 7.51 (1H, dd, J = 7.4 Hz), 7.61 (1H, d, J = 7.4 Hz), 7.75 (2H, d, J = 6.4 Hz), 7.89 (2H, m), 8.23 (1H, m)

20 Hz), 7.75 (2H, d, J = 6.4 Hz), 7.89 (2H, m), 8.23 (1H, m)
Mass spectrometric value (ESI-MS) 519 (M-1)

Compound 605 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(3-hydroxy-propylsulfanyl-methyl)-benzamide

The title compound 605 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 1.89 (4H, m), 2.30 (6H, s), 2.51 (2H, t, J = 7.2 Hz), 2.74 (2H, m), 2.85 (2H, m), 3.60 (2H, t, J = 6.2 Hz), 3.82 (2H, s), 7.19 (1H, d, J = 7.6 Hz), 7.51 (2H, m), 7.61 (2H, m), 7.87 (2H, m), 8.21 (1H, s)

Mass spectrometric value (ESI-MS) 534 (M-1)

<u>Compound 606</u> N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 606 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 1.89 (4H, m), 2.51 (2H, t, J = 7.3 Hz), 2.75 (2H, m), 2.86 (2H, m), 3.60 (2H, t, J = 6.2 Hz), 3.82 (2H, s), 7.18 (2H, dd, J = 8.8 Hz, J = 8.8 Hz), 7.50 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.60 (1H, d, J = 7.6 Hz), 7.87 (2H, m), 8, 06 (2H, m), 8.27 (1H, s)

Mass spectrometric value (ESI-MS) 524 (M-1)

<u>Compound 607</u> N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7tetrahydro-benzo[b]thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)benzamide

5

The title compound 607 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 1.90 (4H, m), 2.51 (2H, t, J = 7.3 Hz), 2.77 (2H, m), 2.86 (2H, bs), 3.63 (2H, m), 3.82 (2H, s), 7.17 (1H, dd, J = 8.0 Hz, J = 8.0 Hz), 7.55 (5H, m), 7.84 (1H, d, J = 7.1 Hz), 7.92 (1H, s), 8.27 (1H, s)

15 Mass spectrometric value (ESI-MS) 524 (M-1)

Compound 608 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 608 was produced in substantially the same 20 manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.77 (2H, m), 1.90 (4H, m), 2.51 (2H, m), 2.76 (2H, m), 2.86 (2H, m), 3.60 (2H, m), 3.83 (2H, s), 7.52 (1H, m), 7.62 (1H, m), 7.68 (1H, m), 7.75 - 8.08 (4H, m), 8.32 (1H, s) Mass spectrometric value (ESI-MS) 608 (M-1)

25 <u>Compound 609</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 609 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.08 (6H, t, J = 7.2 Hz), 1.85 (4H, m), 2.24 (3H, s), 2.29 (6H, s), 2.75 (12H, m), 3.62 (2H, s), 7.17 (1H, d, J = 7.6 Hz), 7.44 (2H, dd, J = 15.0 Hz, J = 7.6 Hz), 7.55 (2H, d, J = 7.6 Hz), 7.63 (2H, s), 7.95 (2H, m), 8.06 (1H, s)

Mass spectrometric value (ESI-MS) 572 (M-1)

35 Compound 610 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-

[b]thiophen-2-yl]-benzamide

5

20

25

30

The title compound 610 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.08 (6H, t, J = 7.1 Hz), 1.85 (4H, m), 2.24 (3H, s), 2.37 (3H, s), 2.74 (12H, m), 3.61 (2H, s), 7.20 (2H, d, J = 8.0 Hz), 7.44 (1H, dd, J = 15.9 Hz, J = 8.1 Hz), 7.54 (1H, d, J = 7.8 Hz), 7.66 (2H, d, J = 8.0 Hz), 7.95 (2H, m), 8.12 (1H, s)

Mass spectrometric value (ESI-MS) 558 (M-1)

Compound 611 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(4-10 fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-[b]thiophen-2-yl]-benzamide

The title compound 611 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.10 (6H, t, J = 7.3 Hz), 1.83 (4H, m), 2.24 (3H, s), 2.75 (12H, m), 3.61 (2H, s), 7.09 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.44 (1H, dd, J = 15.1 Hz, J = 7.6 Hz), 7.54 (1H, d, J = 7.6 Hz), 7.76 (2H, m), 7.93 (2H, m), 8.16 (1H, s)

Mass spectrometric value (ESI-MS) 562 (M-1)

Compound 612 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(3-fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-[b]thiophen-2-yl]-benzamide

The title compound 612 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.11 (6H, t, J = 7.2 Hz), 1.81 (4H, m), 2.23 (3H, s), 2.77 (12H, m), 3.61 (2H, s),

7.08 (1H, m), 7.31 - 7.59 (4H, m), 7.91 (2H, m), 8.21 (1H, s)

Mass spectrometric value (ESI-MS) 562 (M-1)

<u>Compound</u> 613 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-

hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-{[(2-

diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 613 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCI₃, 400 MHz): δ 1.10 (6H, m), 1.91 (4H, m), 2.25 (3H, s), 2.55 - 2.80 (12H, m), 3.63 (2H, s), 7.46 (1H, m), 7.57 (2H, d, 8.3 Hz),

7.94 (3H, m), 8.04 (1H, m), 8.23 (1H, s)Mass spectrometric value (ESI-MS) 646 (M-1)

Compound 614 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-[b]thiophen-2-yl]-benzamide

The title compound 614 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 1.83 (4H, m), 2.23 (3H, s), 2.68 (12H, m), 3.60 (2H, s), 3.82 (3H, s), 6.89 (2H, d, J = 8.8 Hz), 7.45 (1H, dd, J = 15.4 Hz, J = 7.6 Hz), 7.56 (1H, d, J = 7.6 Hz), 7.70 (2H, d, J = 8.8 Hz), 7.82 - 8.02 (2H, m), 8.09 (1H, s)

Mass spectrometric value (ESI-MS) 574 (M-1)

<u>Compound</u> 615 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 615 was produced in substantially the same manner as in Example 8.

 $^1\text{H-NMR}$ (CDCl₃, 400 MHz): δ 1.46 (2H, bs), 1.68 - 2.06 (15H, m), 2.27 (6H, s), 2.60 - 3.02 (10H, m), 3.54 (2H, s), 7.14 (1H, m), 7.46 (3H, m), 7.60 (1H, s), 7.94 (2H, m), 8.11 (1H, s)

Mass spectrometric value (ESI-MS) 610 (M-1)

20 <u>Compound 616</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 616 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.47 (2H, bs), 1.68 - 2.08 (14H, m), 2.37 (3H, s), 2.65 - 3.00 (11H, m), 3.54 (2H, s), 7.20 (2H, d, J = 7.8 Hz), 7.45 (2H, m), 7.66 (2H, d, J = 7.8 Hz), 7.90 (2H, m), 8.16 (1H, s) Mass spectrometric value (ESI-MS) 596 (M-1)

Compound 617 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(4-fluorobenzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 617 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.48 (2H, bs), 1.65 - 2.10 (14H, m), 2.74 (7H, m), 2.87 (2H, m), 2.94 (2H, m), 3.55 (2H, s), 7.10 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.46 (2H, m), 7.77 (2H, m), 7.92 (1H, d, J = 7.6 Hz),

7.97 (1H, s), 8.18 (1H, s)

5

15

Mass spectrometric value (ESI-MS) 600 (M-1)

Compound 618 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(3-fluorobenzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 618 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.48 (2H, bs), 1.70 - 2.08 (14H, m), 2.86 (11H, m), 3.55 (2H, s), 7.10 (1H, ddd, J = 8.3 Hz, J = 8.3 Hz, J = 2.4 Hz),

7.50 (5H, m), 7.91 (1H, d, J = 7.6 Hz), 7.97 (1H, s), 8.20 (1H, s) Mass spectrometric value (ESI-MS) 600 (M-1)

<u>Compound</u> 619 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl]-benzamide

The title compound 619 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.47 (2H, bs), 1.86 (14H, m), 2.84 (11H, m), 3.53 (2H, s), 7.48 (3H, m), 7.91 (3H, m), 8.01 (1H, s), 8.31 (1H, s) Mass spectrometric value (ESI-MS) 684 (M-1)

20 <u>Compound 620</u> 3-[1,4']Bipiperidinyl-1'-ylmethyl-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 620 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.47 (2H, bs), 1.85 (14H, m), 2.82 (11H, m), 3.53 (2H, bs), 3.82 (3H, m), 6.90 (2H, m), 7.43 (2H, m), 7.69 (2H, d, J = 7.1 Hz), 7.91 (2H, m), 8.15 (1H, s)

Mass spectrometric value (ESI-MS) 612 (M-1)

Compound 621 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-[4-(2-hydroxy-ethyl)piperazin-1-ylmethyl]-benzamide

The title compound 621 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCI₃, 400 MHz): δ 1.87 (4H, m), 2.29 (6H, s), 2.55 (10H, m), 2.72 (2H, m), 2.86 (2H, m), 3.60 (4H, m), 7.16 (1H, d, J = 7.6 Hz), 7.43 (2H, m), 7.54 (1H, d, J = 7.8 Hz), 7.62 (1H, s), 7.93 (1H, d, J = 7.8 Hz),

8.00 (1H, s), 8.05 (1H, s)

Mass spectrometric value (ESI-MS) 572 (M-1)

<u>Compound 622</u> 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-

5 [b]thiophen-2-yl]-benzamide

The title compound 622 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCI₃, 400 MHz): δ 1.85 (4H, m), 2.37 (3H, s), 2.54 (10H, m), 2.71 (2H, m), 2.85 (2H, m), 3.60 (4H, m), 7.20 (2H, d, J = 7.8 Hz), 7.43 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.54 (1H, d, J = 7.8 Hz), 7.66 (2H, d, J = 7.8 Hz), 7.92 (1H, d, J = 7.8 Hz), 8.00 (1H, s), 8.10 (1H, s)

Mass spectrometric value (ESI-MS) 558 (M-1)

Mass spectrometric value (ESI-MS) 562 (M-1)

<u>Compound 623</u> N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-

15 ylmethyl]-benzamide

10

20

30

35

The title compound 623 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.87 (4H, m), 2.54 (10H, m), 2.73 (2H, m), 2.86 (2H, m), 3.60 (4H, m), 7.11 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 7.44 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.54 (1H, d, J = 7.6 Hz), 7.79 (2H, m), 7.92 (1H, m), 8.00 (1H, s), 8.12 (1H, s)

<u>Compound 624</u> N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-

25 ylmethyl]-benzamide

The title compound 624 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.87 (4H, m), 2.54 (10H, m), 2.72 (2H, m), 2.84 (2H, m), 3.60 (4H, m), 7.11 (1H, ddd, J = 8.3 Hz, J = 8.3 Hz, J = 2.4 Hz), 7.45 (5H, m), 7.92 (1H, d, J = 7.6 Hz), 8.00 (1H, s), 8.14 (1H, s) Mass spectrometric value (ESI-MS) 562 (M-1)

Compound 625 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-

hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 625 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.83 (4H, m), 2.53 (10H, m), 2.69 (2H, m), 2.82 (2H, m), 3.60 (4H, m), 7.44 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.54 (2H, d, J = 8.3 Hz), 7.92 (2H, m), 7.98 (1H, s), 8.01 (1H, s), 8.22 (1H, s) Mass spectrometric value (ESI-MS) 646 (M-1)

5 <u>Compound 626</u> 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-[b]thiophen-2-yl]-benzamide

The title compound 626 was produced in substantially the same manner as in Example 8.

- ¹H-NMR (CDCl₃, 400 MHz): δ 1.85 (4H, m), 2.53 (10H, m), 2.70 (2H, m), 2.84 (2H, m), 3.59 (4H, m), 3.83 (3H, s), 6.90 (2H, d, J = 8.8 Hz), 7.42 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.53 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 8.8 Hz), 7.92 (1H, d, J = 7.8 Hz), 7.99 (1H, s), 8.07 (1H, s) Mass spectrometric value (ESI-MS) 574 (M-1)
- Compound 627 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-[b]thiophen-2-yl]-benzamide

The title compound 627 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.14 (6H, m), 1.84 (4H, m), 2.25 (6H, m), 2.50 (2H, d, J = 5.6 Hz), 2.62 (2H, m), 2.70 (2H, m), 2.83 (2H, m), 3.81 - 4.06 (4H, m), 7.08 (1H, m), 7.46 (3H, m), 7.60 (1H, s), 8.02 (2H, m), 8.20 (1H, bs)

Mass spectrometric value (ESI-MS) 575 (M-1)

25 <u>Compound 628</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-[b]thiophen-2-yl]-benzamide

The title compound 628 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.13 (6H, m), 1.87 (4H, m), 2.37 (3H, m), 2.50 (2H, d, J = 5.6 Hz), 2.62 (2H, m), 2.71 (2H, m), 2.84 (2H, m), 3.93 (4H, m), 7.16 (2H, m), 7.44 (2H, m), 7.70 (2H, m), 8.00 (2H, m), 8.22 (1H, bs)

Mass spectrometric value (ESI-MS) 561 (M-1)

35 <u>Compound 629</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-

yl]-benzamide

5

20

35

The title compound 629 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.12 (6H, t, J = 6.1 Hz), 1.88 (4H, m), 2.50 (2H, m), 2.63 (2H, m), 2.73 (2H, m), 2.84 (2H, m), 3.94 (4H, m), 7.06 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.44 (2H, m), 7.85 (2H, m), 8.05 (2H, m), 8.25 (1H, d, J = 6.8 Hz)

Mass spectrometric value (ESI-MS) 565 (M-1)

Compound 630 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3-fluorobenzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 630 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.14 (6H, t, J = 6.1 Hz), 1.84 (4H, m), 2.51 (2H, m), 2.66 (4H, m), 2.83 (2H, m), 3.95 (4H, m), 7.00 (1H, m), 7.23 (1H, m), 7.42 (3H, m), 7.72 (1H, m), 8.03 (1H, m), 8.18 (1H, s), 8.27 (1H, d, J = 10.3 Hz)

Mass spectrometric value (ESI-MS) 565 (M-1)

Compound 631 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl]-benzamide

The title compound 631 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.12 (6H, m), 1.72 (4H, m), 2.52 (2H, d, J = 6.1 Hz), 2.68 (6H, m), 3.97 (4H, m), 7.32 (1H, d, J = 8.3 Hz), 7.43 (2H, m), 7.87 (1H, m), 8.01 (2H, m), 8.30 (1H, s), 8.33 (1H, s) Mass spectrometric value (ESI-MS) 649 (M-1)

<u>Compound 632</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-

30 [b]thiophen-2-yl]-benzamide

The title compound 632 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.13 (6H, m), 1.86 (4H, m), 2.49 (2H, m), 2.62 (2H, m), 2.70 (2H, m), 2.81 (2H, m), 3.75 - 4.05 (7H, m), 6.82 (2H, m), 7.42 (2H, m), 7.74 (2H, m), 8.01 (1H, m), 8.06 (1H, s), 8.23 (1H, m) Mass spectrometric value (ESI-MS) 577 (M-1)

<u>Compound 633</u> N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 633 was produced in substantially the same manner as in Example 8.

5

 1 H-NMR (CDCl₃, 400 MHz): δ 1.64 (2H, m), 1.85 (6H, m), 2.25 (8H, m), 2.75 (6H, m), 3.63 (2H, s), 3.70 (1H, m), 7.15 (1H, d, J = 7.8 Hz), 7.43 (2H, m), 7.56 (1H, m), 7.61 (1H, s), 7.93 (1H, d, J = 7.8 Hz), 7.98 (1H, s), 8.06 (1H, s)

Mass spectrometric value (ESI-MS) 543 (M-1)

<u>Compound</u> 634
3-(4-Hydroxy-piperidin-1-ylmethyl)-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 634 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.64 (2H, m), 1.86 (6H, m), 2.26 (2H, t, J = 9.5 Hz), 2.37 (3H, s), 2.71 (2H, m), 2.81 (4H, m), 3.64 (2H, s), 3.72 (1H, m), 7.19 (2H, d, J = 7.9 Hz), 7.43 (1H, dd, J = 7.8 Hz), 7.57 (1H, d, J = 7.8 Hz), 7.66 (2H, d, J = 7.9 Hz), 7.94 (2H, m), 8.09 (1H, s)

20 Mass spectrometric value (ESI-MS) 529 (M-1)

<u>Compound 635</u> N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7tetrahydro-benzo[b]thiophen-2-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)benzamide

The title compound 635 was produced in substantially the same 25 manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.64 (2H, m), 1.90 (6H, m), 2.23 (2H, m), 2.80 (6H, m), 3.62 (2H, s), 3.73 (1H, m), 7.11 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.45 (1H, m), 7.58 (1H, m), 7.79 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.94 (1H, d, J = 7.8 Hz), 7.99 (1H, s), 8.12 (1H, s)

Mass spectrometric value (ESI-MS) 533 (M-1)

Compound 636 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 636 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.69 (2H, m), 1.90 (6H, m), 2.42 (2H, bs),

2.78 (6H, m), 3.75 (3H, m), 7.11 (1H, m), 7.30 - 7.80 (5H, m), 7.98 (2H, m), 8.14 (1H, s)

Mass spectrometric value (ESI-MS) 533 (M-1)

Compound 637 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 637 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.63 (2H, m), 1.85 (6H, m), 2.19 (2H, m), 2.74 (6H, m), 3.58 (2H, s), 3.71 (1H, m), 7.44 (1H, dd, J = 7.6 Hz), 7.54 (2H, m), 7.94 (4H, m), 8.23 (1H, s)

Mass spectrometric value (ESI-MS) 617 (M-1)

<u>Compound 638</u> 3-(4-Hydroxy-piperidin-1-ylmethyl)-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-

15 yl]-benzamide

20

30

The title compound 638 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.62 (2H, m), 1.87 (6H, m), 2.19 (2H, m), 2.77 (6H, m), 3.59 (2H, s), 3.70 (1H, m), 3.83 (3H, s), 6.90 (2H, d, J = 8.5 Hz), 7.43 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.55 (1H, d, J = 7.6 Hz), 7.72 (2H, d, J = 8.5 Hz), 7.92 (1H, d, J = 7.6 Hz), 7.98 (1H, s), 8.06 (1H, s)

Mass spectrometric value (ESI-MS) 545 (M-1)

Compound 639 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 639 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.37 (2H, m), 1.49 (1H, m), 1.71 (2H, m), 1.86 (4H, m), 2.04 (2H, m), 2.29 (6H, s), 2.73 (2H, m), 2.86 (2H, m), 2.93 (2H, m), 3.49 (2H, d, J = 6.3 Hz), 3.62 (2H, s), 7.16 (1H, d, J = 7.8 Hz), 7.45 (2H, m), 7.58 (1H, m), 7.63 (1H, s), 7.94 (1H, d, J = 7.8 Hz), 7.99 (1H, s), 8.05 (1H, s)

Mass spectrometric value (ESI-MS) 557 (M-1)

35 <u>Compound 640</u> 3-(4-Hydroxymethyl-piperidin-1-ylmethyl)-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-

yl]-benzamide

5

The title compound 640 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.40 (2H, m), 1.50 (1H, m), 1.71 (2H, m), 1.89 (4H, m), 2.06 (2H, m), 2.38 (3H, m), 2.73 (2H, m), 2.86 (2H, m), 2.95 (2H, m), 3.49 (2H, d, J = 6.1 Hz), 3.63 (2H, s), 7.21 (2H, d, J = 8.0 Hz), 7.45 (1H, dd, J = 7.7 Hz, J = 14.9 Hz), 7.59 (1H, d, J = 7.6 Hz), 7.68 (2H, d, J = 8.0 Hz), 7.97 (2H, m), 8.09 (1H, s) Mass spectrometric value (ESI-MS) 543 (M-1)

Compound 641 N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 641 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCI₃, 400 MHz): δ 1.34 (2H, m), 1.50 (1H, m), 1.69 (2H, m), 1.84 (4H, m), 2.01 (2H, m), 2.71 (2H, m), 2.87 (4H, m), 3.49 (2H, d, J = 6.4 Hz), 3.58 (2H, s), 7.10 (2H, dd, J = 8.5 Hz), 7.43 (1H, m), 7.55 (1H, m), 7.78 (2H, m), 7.91 (1H, m), 7.98 (1H, bs), 8.13 (1H, s) Mass spectrometric value (ESI-MS) 547 (M-1)

20 <u>Compound 642</u> N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 642 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.35 (2H, m), 1.51 (1H, m), 1.70 (2H, m), 1.84 (4H, m), 2.01 (2H, m), 2.70 (2H, m), 2.83 (2H, m), 2.90 (2H, m), 3, 49 (2H, d, J = 6.3 Hz), 3.58 (2H, s), 7.10 (1H, ddd, J = 8.3 Hz, J = 8.3 Hz, J = 2.7 Hz), 7.45 (5H, m), 7.90 (1H, d, J = 7.4 Hz), 7.98 (1H, s), 8.14 (1H, s)

Mass spectrometric value (ESI-MS) 547 (M-1)

<u>Compound</u> 643 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 643 was produced in substantially the same manner as in Example 8. 1 H-NMR (CDCl₃, 400 MHz): δ 1.39 (2H, m), 1.52 (1H, m), 1.72 (2H, m),

1.88 (4H, m), 2.05 (2H, m), 2.66 - 2.98 (6H, m), 3.50 (2H, d, J = 6.1 Hz), 3.61 (2H, s), 7.46 (1H, m), 7.57 (1H, m), 7.86 (1H, m), 7.96 (3H, m), 8.04 (1H, s), 8.21 (1H, s)

Mass spectrometric value (ESI-MS) 631 (M-1)

5 <u>Compound</u> 644 3-(4-Hydroxymethyl-piperidin-1-ylmethyl)-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo-[b]thiophen-2-yl]-benzamide

The title compound 644 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.34 (2H, m), 1.49 (1H, m), 1.69 (2H, m), 1.84 (4H, m), 2.00 (2H, m), 2.69 (2H, m), 2.81 (2H, m), 2.88 (2H, m), 3.48 (2H, d, J = 6.4 Hz), 3.57 (2H, s), 3.83 (3H, s), 6.90 (2H, d, J = 8.8 Hz), 7.43 (1H, m), 7.55 (1H, m), 7.70 (2H, d, J = 8.8 Hz), 7.91 (1H, d, J = 7.8 Hz), 7.97 (1H, m), 8.07 (1H, s)

15 Mass spectrometric value (ESI-MS) 559 (M-1)

Compound 645 N-{3-[N'-(3,4-Dimethyl-benzyl)-hydrazinocarbonyl]-4-methyl-thiophen-2-yl}-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 645 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.87 (2H, m), 2.26 (9H, m), 2.56 (2H, m), 3.73 (2H, m), 3.82 (2H, s), 4.06 (2H, s), 6.46 (1H, s), 7.13 (1H, bs), 7.18 (1H, bs), 7.50 (1H, m), 7.57 (1H, d, J = 7.8 Hz), 7.93 (2H, m), 13.00 (1H, s)

Mass spectrometric value (ESI-MS) 496 (M-1)

25 <u>Compound 646</u> 3-[(3,4-Dimethyl-benzylidene-)-amino]-2-[3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-phenyl]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one

The title compound 646 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.88 (4H, m), 2.31 (3H, s), 2.33 (3H, s), 2.80 (2H, m), 3.05 (2H, m), 4.33 (2H, s), 7.10 - 7.88 (7H, m), 8.03 (1H, s), 8.76 (1H, s)

Mass spectrometric value (ESI-MS) 525 (M-1)

Compound 647 3-[(4-Methyl-benzylidene-)-amino]-2-[3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-phenyl]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one

The title compound 647 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.88 (4H, m), 2.35 (3H, s), 2.80 (2H, m), 3.05 (2H, m), 4.34 (2H, s), 7.17 (2H, d, J = 7.8 Hz), 7.26 (1H, m), 7.56 (2H, m), 7.76 (1H, s), 8.00 (2H, m), 8.81 (1H, s)

Mass spectrometric value (ESI-MS) 511 (M-1)

Compound 648 3-[(4-Fluoro-benzylidene-)-amino]-2-[3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-phenyl]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one

The title compound 648 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.89 (4H, m), 2.81 (2H, m), 3.05 (2H, m), 4.36 (2H, s), 7.08 (2H, dd, J = 8.7 Hz), 7.31 (1H, m), 7.40 (1H, d, J = 7.8 Hz), 7.56 (1H, d, J = 7.8 Hz), 7.69 (2H, m), 7.76 (1H, m), 8.04 (1H, s),

15 **8.92 (1H, s)**

5

10

20

30

Mass spectrometric value (ESI-MS) 515 (M-1)

<u>Compound 649</u> 3-[(3-Fluoro-benzylidene)-amino]-2-[3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-phenyl]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one

The title compound 649 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.89 (4H, m), 2.81 (2H, m), 3.05 (2H, m), 4.36 (2H, s), 7.15 (1H, m), 7.36 (5H, m), 7.55 (1H, m), 7.75 (1H, m), 8.03 (1H, s), 9.01 (1H, s)

25 Mass spectrometric value (ESI-MS) 515 (M-1)

Compound 650 3-[(4-Chloro-3-trifluoromethyl-benzylidene)-amino]-2-[3-(1H-[1,2,4]triazol-3-ylsulfanylmethyl)-phenyl]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one

The title compound 650 was produced in substantially the same manner as in Example 8.

 $^1\text{H-NMR}$ (CDCl₃, 400 MHz): δ 1.89 (4H, m), 2.68 (2H, m), 2.81 (2H, m), 4.37 (2H, s), 7.30 - 8.02 (7H, m), 8.06 (1H, m), 9.17 (1H, s)

Mass spectrometric value (ESI-MS) 599 (M-1)

Compound 651 3-[(4-Methoxy-benzylidene)-amino]-2-[3-(1H-

[1,2,4]triazol-3-ylsulfanylmethyl)-phenyl]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one

The title compound 651 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.88 (4H, m), 2.80 (2H, m), 3.05 (2H, m), 3.81 (3H, s), 4.33 (2H, s), 6.87 (2H, d, J = 8.8 Hz), 7.28 (1H, m), 7.55 (1H, m), 7.61 (2H, d, J = 8.8 Hz), 7.76 (1H, m), 8.00 (1H, s), 8.73 (1H, s), 9.15 (1H, s)

Mass spectrometric value (ESI-MS) 527 (M-1)

Example 9

5

10

15

20

25

30

35

<u>Compound 652</u> 3-{[Acetyl-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl]-benzamide

2-Amino-4,5,6,7-tetrahydrobenzothiophene-3-carboxylic acid ethyl ester (Compound A) (4.0 g) was dissolved in anhydrous methylene chloride (40.0 ml). Subsequently, pyridine (2.8 ml) and 3-(chloromethyl) benzoyl chloride (compound B) (3.0 ml) were added at 0°C, and the mixture was stirred at 0°C for one hr. After the completion of the reaction, distilled water was added, and the mixture was subjected to separatory extraction with chloroform, and the organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated to give 2-(3-chloromethyl-benzoylamino)-4,5,6,7-tetrahydro-benzo[b]thiophene-3-carboxylic acid ethyl ester as a useful intermediate (7.42 g, yield 100%).

2-(3-Chloromethyl-benzoylamino)-4,5,6,7-tetrahydro-benzo[b]-thiophene-3-carboxylic acid ethyl ester (800 mg) produced by the above reaction was dissolved in anhydrous methylene chloride (5.0 ml). Triethylamine (580 μl) and N,N-diethylethylenediamine (compound B') (464 mg) were added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated to give 2-{3-[(2-diethylamino-ethylamino)-methyl]-benzoylamino}-4,5,6,7-tetrahydro-benzo[b]thiophene-3-carboxylic acid ethyl ester as a crude useful intermediate (902 mg, yield 100%).

2-{3-[(2-Diethylamino-ethylamino)-methyl]-benzoylamino}-4,5,6,7-

tetrahydro-benzo[b]thiophene-3-carboxylic acid ethyl ester produced by the above reaction was dissolved in ethanol (5.0 ml). Hydrazine monohydrate (2 ml) was added to the solution, and the mixture was heated under reflux with stirring for 15 hr. After the completion of the reaction, water was added at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated to give 3-[(2-diethylamino-ethylamino)-methyl]-N-(3-hydrazinocarbonyl-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl)-

benzamide as a hydrazine compound (464 mg, yield 52%).

5

15

30

3-[(2-Diethylamino-ethylamino)-methyl]-N-(3-hydrazinocarbonyl-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl)-benzamide (77 mg) was dissolved in anhydrous toluene (1.0 ml). Acetic acid (50.0 μ l) and 3,4-dimethylbenzaldehyde (compound C) (55.0 μ l) were added to the solution at room temperature, and the mixture was heated under reflux with stirring for 15 hr. After the completion of the reaction, the reaction product was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 652 (58.4 mg, yield 58%).

¹H-NMR (CDCI₃, 400 MHz): δ 0.98 (6H, m), 1.85 (7H, m), 2.28 (6H, m), 2.45 - 2.90 (12H, m), 3.76 (2H, m), 7.14 (1H, m), 7.32 - 8.12 (7H, m)
 Mass spectrometric value (ESI-MS) 600 (M-1)
 Compound 653 3-{[Acetyl-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b] thiophen-2-yl]-benzamide

The title compound 653 was produced in substantially the same manner as in Example 9.

 1 H-NMR (CDCI₃, 400 MHz): δ 0.98 (6H, m), 1.83 (7H, m), 2.38 (3H, s), 2.42 - 2.90 (12H, m), 3.75 (2H, m), 7.24 (2H, m), 7.40 - 8.15 (7H, m)

Mass spectrometric value (ESI-MS) 586 (M-1)

<u>Compound 654</u> 3-{[Acetyl-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]-thiophen-2-yl]-benzamide

The title compound 654 was produced in substantially the same manner as in Example 9.

 $^{1}\text{H-NMR}$ (CDCl₃, 400 MHz): δ 0.93 (6H, m), 1.83 (7H, m), 2.48 (4H, m),

2.69 (6H, m), 2.80 (2H, m), 3.75 (2H, m), 7.06 (2H, m), 7.40 - 7.95 (6H, m), 8.09 (1H, s)

Mass spectrometric value (ESI-MS) 590 (M-1)

<u>Compound 655</u> 3-{[Acetyl-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(3-fluoro-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]-thiophen-2-yl]-benzamide

The title compound 655 was produced in substantially the same manner as in Example 9.

 1 H-NMR (CDCl₃, 400 MHz): δ 0.94 (6H, m), 1.83 (7H, m), 2.62 (12H, m),

3.76 (2H, m), 7.08 (1H, m), 7.29 - 8.20 (8H, m)

10

Mass spectrometric value (ESI-MS) 590 (M-1)

<u>Compound 656</u> 3-{[Acetyl-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-

tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 656 was produced in substantially the same manner as in Example 9.

 $^{1}\text{H-NMR}$ (CDCl₃, 400 MHz): δ 0.93 (6H, m), 1.83 (7H, m), 2.62 (12H, m), 3.77 (2H, m), 7.40 - 8.30 (8H, m)

Mass spectrometric value (ESI-MS) 674 (M-1)

20 <u>Compound 657</u> 3-{[Acetyl-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 657 was produced in substantially the same manner as in Example 9.

¹H-NMR (CDCl₃, 400 MHz): δ 0.98 (6H, m), 1.87 (7H, m), 2.63 (12H, m), 3.77 (2H, m), 3.84 (3H, s), 6.89 (2H, m), 7.40 - 8.10 (7H, m) Mass spectrometric value (ESI-MS) 602 (M-1)

Compound 658 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 658 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.80 (2H, m), 2.30 (3H, s), 2.31 (3H, s), 2.53 (2H, t, J = 7.4 Hz), 3.62 (2H, m), 3.85 (2H, s), 7.00 (1H, d, J = 6.1 Hz), 7.18 (1H, d, J = 7.8 Hz), 7.52 (3H, m), 7.64 (2H, m), 7.90 (1H, s),

35 7.97 (1H, s), 8.28 (1H, s)

Mass spectrometric value (ESI-MS) 480 (M-1)

Compound 659 3-(3-Hydroxy-propylsulfanylmethyl)-N-[3-(4-methylbenzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 659 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.79 (2H, m), 2.35 (3H, s), 2.53 (2H, t, J = 7.3 Hz), 3.62 (2H, t, J = 6.2 Hz), 3.82 (2H, s), 6.97 (1H, d, J = 5.8 Hz), 7.21 (2H, d, J = 7.8 Hz), 7.49 (2H, m), 7.60 (1H, d, J = 7.80), 7.69 (2H, d, J = 7.8 Hz), 7.87 (1H, m), 7.94 (1H, s), 8.27 (1H, s)

Mass spectrometric value (ESI-MS) 466 (M-1)

Compound 660 N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 660 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.80 (2H, m), 2.53 (2H, t, J = 7.4 Hz), 3.62 (2H, t, J = 6.4 Hz), 3.82 (2H, s), 6.96 (1H, d, J = 5.9 Hz), 7.14 (2H, dd, J = 8.7 Hz), 7.48 (2H, m), 7.60 (1H, d, J = 7.6 Hz), 7.85 (3H, m), 7.93 (1H, s), 8.29 (1H, s)

Mass spectrometric value (ESI-MS) 470 (M-1)

Compound 661 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 661 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.80 (2H, m), 2.54 (2H, t, J = 7.3 Hz), 3.62 (2H, t, J = 9.4 Hz), 3.86 (2H, s), 7.03 (1H, d, J = 5.8 Hz), 7.17 (1H, m), 7.42 - 7.80 (6H, m), 7.87 (1H, m), 7.98 (1H, bs), 8.35 (1H, s)

Mass spectrometric value (ESI-MS) 470 (M-1)

<u>Compound</u> 662 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-3-(3-hydroxy-propylsulfanylmethyl)-benzamide

The title compound 662 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.80 (1H, m), 2.54 (2H, t, J = 7.3 Hz), 3.62 (2H, t, J = 6.2 Hz), 3.86 (2H, s), 7.03 (1H, d, J = 5.8 Hz), 7.53 (2H, m), 7.66 (2H, m), 7.90 (1H, d, J = 7.8 Hz), 7.98 (1H, bs), 8.04 (1H, d, J = 8.8 Hz), 8.23 (4H, s), 8.28 (4H, s)

35 8.8 Hz), 8.33 (1H, s), 8.38 (1H, s)

20

25

30

Mass spectrometric value (ESI-MS) 554 (M-1)

<u>Compound 663</u> 3-(3-Hydroxy-propylsulfanylmethyl)-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 663 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.80 (2H, m), 2.54 (2H, t, J = 7.3 Hz), 3.62 (2H, t, J = 6.2 Hz), 3.85 (6H, m), 6.99 (2H, d, J = 8.8 Hz), 7.02 (1H, s, J = 5.9 Hz), 7.53 (2H, m), 7.65 (1H, d, J = 7.8 Hz), 7.79 (2H, d, J = 8.5 Hz), 7.90 (1H, d, J = 7.8 Hz), 8.30 (1H, s)

Mass spectrometric value (ESI-MS) 482 (M-1)

Compound 664 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 664 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.22 (9H, m), 2.62 (8H, m), 3.59 (2H, s), 6.77 (1H, d, J = 5.4 Hz), 7.09 (1H, m), 7.44 (5H, m), 7.94 (2H, d, J = 7.6 Hz), 8.26 (1H, s)

Mass spectrometric value (ESI-MS) 518 (M-1)

15

20

25

30

Compound 665 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 665 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.1 Hz), 2.21 (3H, s), 2.34 (3H, s), 2.59 (8H, m), 3.58 (2H, s), 6.80 (1H, d, J = 4.6 Hz), 7.16 (2H, m), 7.42 (2H, m), 7.58 (3H, m), 7.93 (1H, d, J = 7.8 Hz), 7.98 (1H, s), 8.28 (1H, s)

Mass spectrometric value (ESI-MS) 504 (M-1)

Compound 666 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(4-fluoro-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 666 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.21 (3H, s), 2.62 (8H, m), 3.58 (2H, s), 6.78 (1H, d, J = 4.6 Hz), 7.02 (2H, m), 7.42 (2H, m), 7.55 (1H, d, J = 7.6 Hz), 7.67 (2H, m), 7.91 (1H, d, J = 7.8 Hz), 7.96 (1H, s), 8.36 (1H, s)

Mass spectrometric value (ESI-MS) 508 (M-1)

Compound 667 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-

(3-fluoro-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 667 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.20 (3H, s), 2.60 (8H, m), 3.57 (2H, s), 6.76 (1H, bs), 7.02 (1H, m), 7.41 (6H, m), 7.91 (1H, d, J = 7.8 Hz), 7.97 (1H, s), 8.38 (1H, bs)

Mass spectrometric value (ESI-MS) 508 (M-1)

<u>Compound</u> 668 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-3-{[(2-diethylamino-ethyl)-methyl-

10 amino]-methyl}-benzamide

5

15

20

The title compound 668 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.02 (6H, t, J = 7.1 Hz), 2.20 (3H, s), 2.58 (8H, m), 3.56 (2H, s), 6.74 (1H, bs), 7.41 (2H, m), 7.54 (2H, d, J = 7.6 Hz), 7.76 (1H, dd, J = 8.3 Hz, J = 1.4 Hz), 7.88 (2H, m), 7.96 (1H, s), 8.45 (1H, bs)

Mass spectrometric value (ESI-MS) 592 (M-1)

Compound 669 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 669 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.01 (6H, t, J = 7.1 Hz), 2.19 (3H, s), 2.56 (8H, m), 3.56 (2H, s), 3.75 (3H, s), 6.75 (1H, m), 6.81 (2H, m), 7.42 (2H, m), 7.87 (3H, m), 7.90 (1H, d, J = 7.84), 7.97 (1H, s), 8.32 (1H, s)

25 Mass spectrometric value (ESI-MS) 520 (M-1)

<u>Compound 670</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 670 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.11 (6H, m), 2.30 (3H, s), 2.32 (3H, s), 2.52 (4H, m), 3.83 (4H, m), 7.01 (1H, d, J = 5.8 Hz), 7.19 (1H, d, J = 7.8 Hz), 7.53 (3H, m), 7.67 (2H, m), 7.93 (1H, d, J = 7.6 Hz), 8.06 (1H, m), 8.29 (1H, s)

Mass spectrometric value (ESI-MS) 521 (M-1)

35 <u>Compound 671</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 671 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.11 (6H, d, J = 6.1 Hz), 2.39 (3H, s), 2.52 (4H, m), 3.82 (4H, m), 7.01 (1H, m), 7.26 (2H, d, J = 7.6 Hz), 7.53 (2H, m), 7.68 (1H, d, J = 7.1 Hz), 7.74 (2H, d, J = 7.8 Hz), 7.92 (1H, d, J = 7.6 Hz), 8.06 (1H, m), 8.33 (1H, s)

Mass spectrometric value (ESI-MS) 507 (M-1)

5

10

15

20

Compound 672 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-fluorobenzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 672 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.10 (6H, d, J = 6.3 Hz), 2.51 (4H, m), 3.86 (4H, m), 7.02 (1H, d, J = 5.9 Hz), 7.18 (2H, dd, J = 8.4 Hz, J = 8.4 Hz), 7.53 (2H, m), 7.68 (1H, dd, J = 7.6 Hz), 7.91 (3H, m), 8.06 (1H, m), 8.35 (1H, s)

Mass spectrometric value (ESI-MS) 511 (M-1)

Compound 673 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3-fluorobenzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 673 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.11 (6H, m), 2.52 (4H, m), 3.87 (4H, m), 7.03 (1H, d, J = 6.1 Hz), 7.15 (1H, m), 7.40 - 7.75 (6H, m), 7.90 (1H, m), 8.07 (1H, m), 8.36 (1H, m)

Mass spectrometric value (ESI-MS) 511 (M-1)

25 <u>Compound 674</u> 3-[(4-Chloro-3-trifluoromethyl-benzylidene)-amino]-2-(3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-phenyl)-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one

The title compound 674 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 0.99 (6H, t, J = 7.1 Hz), 1.90 (4H, m), 2.12 (3H, s), 2.50 (8H, m), 2.82 (2H, m), 3.05 (2H, m), 3.52 (2H, s), 7.38 (2H, m), 7.54 (2H, m), 7.62 (1H, bs), 7.78 (1H, m), 7.98 (1H, m), 9.18 (1H, s) Mass spectrometric value (ESI-MS) 630 (M+1)

Compound 675 2-(3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}phenyl)-3-[(4-methoxy-benzylidene-)-amino]-5,6,7,8-tetrahydro-3Hbenzo[4,5]thieno[2,3-d]pyrimidin-4-one

The title compound 675 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.00 (6H, t, J = 7.1 Hz), 1.89 (4H, m), 2.11 (3H, s), 2.52 (8H, m), 2.81 (2H, m), 3.06 (2H, m), 3.50 (2H, s), 3.84 (3H, s), 6.89 (2H, d, J = 8.8 Hz), 7.35 (2H, m), 7.58 (1H, m), 7.66 (3H, m), 8.77 (1H, s)

Mass spectrometric value (ESI-MS) 558 (M+1)

5

10

15

20

25

30

35

Compound 676 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-hydroxy-ethanesulfonylmethyl)-benzamide

The title compound 676 was produced in the same manner as in Example 6.

¹H-NMR (CD₃OD, 400 MHz): δ 8.58 (1H, d, J = 8.8 Hz), 8.34 (1H, s), 8.07 (1H, d, J = 2.2 Hz), 8.00 (2H, s), 7.23 - 7.78 (3H, m), 7.57 - 7.63 (2H, m), 7.27 (2H, d, J = 2.0 Hz), 4.39 (1H, d, J = 13.2 Hz), 4.20 (1H, d, J = 13.2 Hz), 3.96 - 4.05 (2H, m), 3.00 - 3.15 (1H, m), 2.80 - 2.95 (1H, m), 2.39 (3H, s)

Mass spectrometric value (ESI-MS) 556, 558 (M-1)

Compound 677 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-hydroxy-ethanesulfinylmethyl)-benzamide

The title compound 677 was produced in the same manner as in Example 6.

¹H-NMR (CD₃OD, 400 MHz): δ 8.61 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 8.06 - 8.13 (2H, m), 8.04 (1H, d, J = 8.3 Hz), 7.72 - 7.79 (4H, m), 7.60 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.28 (2H, d, J = 8.1 Hz), 4.83 (2H, s), 4.05 (2H, t, J = 5.6 Hz), 3.20 (2H, t, J = 5.6 Hz), 2.39 (3H, s)

Mass spectrometric value (ESI-MS) 542, 543 (M-1)

<u>Compound 678</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-hydroxy-ethanesulfonylmethyl)-benzamide

The title compound 678 was produced in the same manner as in Example 6.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.55 (1H, d, J = 9.0 Hz), 8.40 (1H, s), 8.32 (1H, s), 8.07 (1H, d, J = 2.0 Hz), 8.05 (1H, s, J = 8.5 Hz), 7.96 - 8.05 (2H, m), 7.77 (1H, dd, J = 2.0 Hz, J = 8.8 Hz), 7.69 (1H, d, J = 8.3 Hz), 7.56 - 7.66 (2H, m), 4.39 (1H, d, J = 12.9 Hz), 4.20 (1H, d, J = 13.2 Hz), 3.96 - 4.03 (2H, m), 3.03 - 3.13 (1H, m), 2.87 (1H, dt, J = 4.2 Hz, J =

13.4 Hz)

Mass spectrometric value (ESI-MS) 664, 646 (M-1)

<u>Compound 679</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-hydroxy-ethanesulfinylmethyl)-

5 benzamide

15

20

25

The title compound 679 was produced in the same manner as in Example 6.

 $^{1}\text{H-NMR}$ (CDCI₃, 400 MHz): δ 8.70 - 8.80 (1H, m), 8.20 - 8.27 (1H, m), 8.05 - 8.15 (2H, m), 7.97 (2H, s), 7.60 - 7.70 (3H, m), 7.49 - 7.60 (2H, m),

4.52 (2H, m), 4.22 - 4.26 (2H, m), 3.10 - 3.15 (2H, m) Mass spectrometric value (ESI-MS) 628, 630 (M-1)

Compound 680 N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethylsulfanylmethyl)-benzamide

The title compound 680 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 7.93 - 7.97 (2H, m), 7.85 - 7.90 (1H, m), 7.69 (1H, d, J = 10.0 Hz), 7.63 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.58 (2H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.50 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.40 - 7.48 (2H, m), 7.18 (2H, m),

6.29 - 6.33 (1H, m), 6.21 (1H, d, J = 3.2 Hz), 3.81 (2H, s), 3.64 (2H, s) Mass spectrometric value (ESI-MS) 520, 522 (M-1)

Compound 681 N-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethylsulfanylmethyl)-benzamide

The title compound 681 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.35 (1H, s), 7.85 - 7.96 (5H, m), 7.62 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.57 (1H, d, J = 7.8 Hz), 7.50 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.40 - 7.42 (1H, m), 7.18 (2H, dd, J = 8.8 Hz), 7.31 (1H, dd, J = 2.0 Hz, J = 3.2 Hz), $\frac{1}{2}$

30 6.21 (1H, d, J = 3.2 Hz), 3.81 (2H, s), 3.64 (2H, s)

Mass spectrometric value (ESI-MS) 520, 522 (M-1)

Compound 682 N-[4-Chloro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethylsulfanylmethyl)-benzamide

The title compound 682 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.33 (1H, s),

7.91 - 7.96 (2H, m), 7.85 - 7.90 (1H, m), 7.73 (2H, d, J = 8.0 Hz), 7.62 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.50 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.40 - 7.42 (1H, m), 7.26 (2H, d, J = 8.1 Hz), 6.29 - 6.33 (1H, m), 6.20 - 6.23 (1H, m), 3.82 (2H, s), 3.64 (2H, s), 2.38 (3H, s)

5 Mass spectrometric value (ESI-MS) 516, 518 (M-1)

<u>Compound</u> 683 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethylsulfanylmethyl)-benzamide

The title compound 683 was produced in the same manner as in Example 5.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 8.8 Hz), 8.30 (1H, s), 7.86 - 7.98 (3H, m), 7.48 - 7.78 (5H, m), 7.41 (1H, s), 7.15 - 7.27 (1H, m), 6.29 - 6.35 (1H, m), 6.20 - 6.25 (1H, m), 3.82 (2H, s), 3.64 (2H, s), 2.31 (6H, s)

Mass spectrometric value (ESI-MS) 530, 532 (M-1)

Compound 684 N1-[4-Chloro-2-({2-[(E)-1-(3,4-dimethylphenyl)methylidene]hydrazino}carbonyl}phenyl}-3-{[{3-[(3-{[4-chloro-2-({2-[(E)-1-(3,4-dimethylphenyl)methylidene]hydrazino}carbonyl}anilino}carbonyl}benzyl}

(methyl)amino)propyl](methyl)amino)methyl)benzamide

The title compound 684 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 11.57 (2H, s), 10.57 (2H, s), 8.67 (2H, d, J = 9.0 Hz), 8.44 (2H, s), 7.80 (2H, s), 7.71 - 7.73 (2H, m), 7.64 (2H, s),

7.56 (2H, s), 7.38 (4H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.20 - 7.35 (4H, m), 7.10 (2H, d, J = 7.8 Hz), 3.53 (4H, s), 2.46 (4H, s), 2.23 (6H, s), 2.18 (6H, s), 2.14 (6H, s), 1.80 (2H, s), 1.61 (4H, s)

Mass spectrometric value (ESI-MS) 935 (M-1)

20

Compound 685 N1-[4-Chloro-2-({2-[(E)-1-(3-

fluorophenyl)methylidene]hydrazino}carbonyl}phenyl}-3-{[{3-[(3-{[4-chloro-2-({2-[(E)-1-(3-fluorophenyl)methylidene]hydrazino}carbonyl}-anilino}carbonyl}benzyl}(methyl)amino)propyl)(methyl)amino]methyl]benzamide

The title compound 685 was produced in the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.59 (2H, d, J = 9.0 Hz), 8.40 (2H, s),

7.88 - 7.90 (4H, m), 7.85 (2H, s), 7.79 (2H, d, J = 7.1 Hz), 7.63 (2H, d, J = 10.5 Hz), 7.52 - 7.58 (4H, m), 7.35 - 7.45 (6H, m), 7.12 - 7.20 (2H, m), 3.62 (4H, s), 2.53 (4H, m), 2.23 (6H, s), 1.78 - 1.85 (2H, m) Mass spectrometric value (ESI-MS) 915 (M-1)

5 <u>Compound</u> 686 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethanesulfonylmethyl)-benzamide

The title compound 686 was produced in the same manner as in Example 6.

- ¹H-NMR (CDCl₃, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.30 (1H, s), 8.01 (2H, s), 7.88 7.94 (2H, m), 7.52 7.68 (5H, m), 7.20 (1H, d, J = 7.8 Hz), 6.50 (1H, d, J = 3.2 Hz), 6.42 6.45 (1H, m), 4.25 4.37 (2H, m), 4.11 (1H, d, J = 4.7 Hz), 4.08 (1H, d, J = 4.7 Hz), 2.32 (3H, s), 2.31 (3H, s) Mass spectrometric value (ESI-MS) 562, 564 (M-1)
- 15 <u>Compound</u> 687 N-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethanesulfinylmethyl)-benzamide

The title compound 687 was produced in the same manner as in Example 6.

¹H-NMR (CDCl₃, 400 MHz): δ 6.37 (1H, s), 8.72 (1H, d, J = 8.0 Hz), 8.00 - 8.22 (3H, m), 7.40 - 7.80 (7H, m), 6.54 (1H, d, J = 3.4 Hz), 6.40 - 6.45 (1H, m), 4.29 (2H, s), 4.20 (2H, s), 2.29 (6H, s)

Mass spectrometric value (ESI-MS) 546, 548 (M-1)

Compound 688 N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidenehydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethanesulfonylmethyl)benzamide

The title compound 688 was produced in the same manner as in Example 6.

¹H-NMR (CDCl₃, 400 MHz): δ 8.60 (1H, d, J = 9.0 Hz), 8.39 (1H, s), 8.32 (1H, s), 7.89 - 8.07 (4H, m), 7.55 - 7.73 (5H, m), 6.49 (1H, m), 6.41 - 6.46 (1H, m), 4.31 (2H, dd, J = 13.4 Hz, J = 15.8 Hz), 4.09 (2H, dd, J = 10.0 Hz, J = 14.2 Hz)

Mass spectrometric value (ESI-MS) 636, 638 (M-1)

Compound 689 N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidenehydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethanesulfinylmethyl)benzamide The title compound 689 was produced in the same manner as in Example 6.

 $^1\text{H-NMR}$ (CDCl₃, 400 MHz): δ 8.60 (1H, d, J = 9.3 Hz), 8.39 (1H, s), 8.32 (1H, s), 7.98 - 8.09 (3H, m), 7.94 (1H, d, J = 2.2 Hz), 7.69 (2H, d, J = 8.0

5 Hz), 7.56 - 7.67 (3H, m), 6.55 (1H, d, J = 3.2 Hz), 6.40 - 6.47 (1H, m), 4.54 (2H, s), 4.51 (2H, s)

Mass spectrometric value (ESI-MS) 620 (M-1)

Compound 690 N1-[4-Chloro-2-({2-[(E)-1-(4-chloro-3-trifluoromethyl-phenyl)methylidene]hydrazino}carbonyl)phenyl)-3-{[{6-[(3-{[4-chloro-2-

({2-[(E)-1-(4-chloro-3-trifluoromethyl-phenyl)methylidene]hydrazino}carbonyl}anilino}carbonyl}benzyl}(methyl)amino)hexyl)(methyl)amino]methyl]benzamide

The title compound 690 was produced in the same manner as in Example 8.

15 Mass spectrometric value (ESI-MS) 1125, 1127 (M-1)

<u>Compound</u> 691 2-{3-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 691 was produced in the same manner as in Example 11.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.53 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 7.40 - 8.00 (10H, m), 4.84 (2H, s), 2.90 - 3.10 (2H, m), 2.70 - 2.86 (2H, m)

Mass spectrometric value (ESI-MS) 548 (M-1)

20

25 <u>Compound 692</u> 2-{3-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 692 was produced in the same manner as in Example 11.

¹H-NMR (CD₃OD, 400 MHz): δ 8.56 (1H, d, J = 8.8 Hz), 7.20 - 8.35 (11H, m), 3.84 - 3.90 (2H, m), 2.92 - 3.04 (2H, m), 2.70 - 2.88 (2H, m), 2.30 - 2.40 (3H, m)

Mass spectrometric value (ESI-MS) 544 (M-1)

Compound 693 2-{3-[4-Chloro-2-(4-methyl-benzylidene-

hydrazinocarbonyl)-phenylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 693 was produced in the same manner as in Example 11.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.55 (1H, d, J = 8.8 Hz), 8.32 (1H, s), 7.10 - 8.00 (10H, m), 3.88 (2H, s), 2.90 - 3.10 (2H, m), 2.68 - 2.86 (2H, m), 2.38 (3H, s)

Mass spectrometric value (ESI-MS) 544 (M-1)

5

30

<u>Compound</u> 694 2-{3-[4-Chloro-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 694 was produced in the same manner as in Example 11.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.56 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 7.46 - 8.00 (8H, m), 7.18 - 7.25 (1H, m), 3.87 (2H, s), 2.94 - 3.10 (2H, m), 2.75 - 2.86 (2H, m), 2.25 - 2.35 (6H, m)

15 Mass spectrometric value (ESI-MS) 582 (M+23)

<u>Compound 695</u> 6-Bromo-3-[(4-fluoro-benzylidene-)-amino]-2-[3-(2-hydroxy-ethylsulfanylmethyl)-phenyl]-3H-quinazolin-4-one

The title compound 695 was produced in the same manner as in Example 10.

¹H-NMR (CDCl₃, 400 MHz): δ 8.98 - 9.00 (1H, m), 8.46 (1H, s), 7.85 (1H, dd, J = 2.2 Hz, J = 8.5 Hz), 7.65 - 7.72 (3H, m), 7.58 (1H, dd, J = 1.7 Hz, J = 7.3 Hz), 7.35 - 7.43 (2H, m), 7.07 - 7.13 (3H, m), 3.73 (2H, s), 3.56 - 3.64 (2H, m), 2.52 - 2.58 (2H, m)

Mass spectrometric value (ESI-MS) 534, 536, 537 (M+23)

25 <u>Compound 696</u> 6-Bromo-2-[3-(2-hydroxy-ethylsulfanylmethyl)-phenyl]-3-[(4-methyl-benzylidene-)-amino]-3H-quinazolin-4-one

The title compound 696 was produced in the same manner as in Example 10.

¹H-NMR (CDCl₃, 400 MHz): δ 8.85 (1H, s), 8.41 (1H, d, J = 2.2 Hz), 7.91 (1H, d, J = 8.0 Hz), 7.79 (1H, dd, J = 2.4 Hz, J = 8.8 Hz), 7.59 - 7.64 (2H, m), 7.52 - 7.56 (3H, m), 7.28 - 7.36 (2H, m), 7.14 - 7.20 (1H, m), 3.67 (2H, s), 3.49 (2H, t, J = 6.0 Hz), 2.46 (2H, t, J = 6.0 Hz), 2.36 (1H, s), 2.33 (3H, s)

Mass spectrometric value (ESI-MS) 530, 532, 533 (M+23)

35 <u>Compound 697</u> 6-Bromo-3-[(3,4-dimethyl-benzylidene-)-amino]-2-[3-(2-hydroxy-ethylsulfanylmethyl)-phenyl]-3H-quinazolin-4-one

The title compound 697 was produced in the same manner as in Example 10.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.78 (1H, s), 8.41 (2H, d, J = 2.2 Hz), 7.79 (1H, dd, J = 2.4 Hz, J = 8.8 Hz), 7.64 (1H, s), 7.60 (1H, d, J = 8.8 Hz), 7.53 - 7.57 (1H, m), 7.42 (1H, s), 7.28 - 7.38 (3H, m), 7.11 (1H, d, J = 7.8 Hz), 3.67 (2H, s), 3.49 (2H, t, J = 6.0 Hz), 2.46 (2H, t, J = 6.0 Hz), 2.24 (3H, s), 2.22 - 2.27 (1H, m), 2.20 (3H, s)

Mass spectrometric value (ESI-MS) 546, 547 (M+23)

5

10

15

20

25

<u>Compound 698</u> 6-Bromo-3-[(4-chloro-3-trifluoromethyl-benzylidene-)-amino]-2-[3-(2-hydroxy-ethylsulfanylmethyl)-phenyl]-3H-quinazolin-4-one

The title compound 698 was produced in the same manner as in Example 10.

¹H-NMR (CDCl₃, 400 MHz): δ 9.27 (1H, s), 8.46 (1H, d, J = 2.2 Hz), 7.94 (1H, s), 7.86 (1H, dd, J = 2.2 Hz, J = 8.5 Hz), 7.75 (1H, d, J = 8.3 Hz), 7.65 - 7.68 (2H, m), 7.54 (2H, d, J = 7.8 Hz), 7.32 - 7.45 (2H, m), 3.75 (2H, s), 3.61 (2H, dt, J = 5.9 Hz, J = 5.9 Hz), 2.57 (2H, t, J = 6.0 Hz), 2.03 (1H, t, J = 6.1 Hz)

Mass spectrometric value (ESI-MS) 620 (M+23)

Compound 699 N-[4-Chloro-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethylsulfanylmethyl)-benzamide

The title compound 699 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 7.91 - 7.96 (2H, m), 7.85 - 7.90 (1H, m), 7.69 (1H, s), 7.61 (2H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.57 (1H, d, J = 7.8 Hz), 7.49 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.41 (1H, dd, J = 0.8 Hz, J = 2.0 Hz), 7.24 - 7.34 (2H, m), 6.30 (1H, dd, J = 2.0 Hz, J = 3.2 Hz), 6.21 (1H, d, J = 3.2 Hz), 3.81 (2H, s), 3.63 (2H, s), 2.38 (3H, s)

Mass spectrometric value (ESI-MS) 516, 518 (M-1)

30 <u>Compound 700</u> N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(furan-2-ylmethylsulfanylmethyl)-benzamide

The title compound 700 was produced in the same manner as in Example 5.

¹H-NMR (CD₃OD, 400 MHz): δ 8.62 (1H, d, J = 9.0 Hz), 8.39 (1H, s), 8.31 (1H, s), 8.04 (1H, d, J = 6.8 Hz), 7.92 - 7.96 (2H, m), 7.87 (1H, d, J

= 7.8 Hz), 7.69 (1H, d, J = 8.6 Hz), 7.64 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.57 (1H, d, 7.6 Hz), 7.50 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.40 (1H, dd, J = 0.8 Hz, J = 2.0 Hz), 6.28 - 6.33 (1H, m), 6.21 (1H, d, J = 7.3 Hz), 3.81 (2H, s), 3.64 (2H, s)

Mass spectrometric value (ESI-MS) 604, 606 (M-1)

Compound 701 N1-[4-Chloro-2-({2-[(E)-1-(4-fluorophenyl)methylidene]-hydrazino}carbonyl}phenyl}-3-{[{3-[(3-{[4-chloro-2-({2-[(E)-1-(4-fluorophenyl)methylidene]hydrazino}carbonyl}anilino}carbonyl}benzyl}
(methyl)amino)propyl)(methyl)amino]methyl]benzamide

10

15

20

25

30

35

Example 10

The title compound 701 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.59 (2H, d, J = 8.8 Hz), 8.41 (2H, s), 7.82 - 7.90 (8H, m), 7.79 (2H, d, J = 7.1 Hz), 7.53 (2H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.35 - 7.45 (4H, m), 7.14 (4H, dd, J = 8.8 Hz, J = 8.8 Hz), 3.59 (4H, s), 2.49 (4H, t, J = 6.8 Hz), 2.20 (6H, s), 1.75 - 1.85 (2H, m) Mass spectrometric value (ESI-MS) 915, 917 (M-1) Compound 702 N1-[4-Chloro-2-({2-[(E)-1-(4-methylphenyl)methylidene]-hydrazino}carbonyl}phenyl}-3-{[{3-[(3-{[4-chloro-2-({2-[(E)-1-(4-methylphenyl)methylidene]hydrazino}carbonyl}anilino}carbonyl}benzyl} (methyl)amino)propyl)(methyl)amino]methyl]benzamide

The title compound 702 was produced in the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.66 (2H, d, J = 9.0 Hz), 8.46 (2H, s), 7.72 - 7.82 (4H, m), 7.58 - 7.68 (6H, m), 7.25 - 7.40 (4H, m), 7.12 - 7.16 (6H, m), 3.53 (4H, bs), 2.46 (4H, bs), 2.15 (6H, bs), 1.81 (2H, bs) Mass spectrometric value (ESI-MS) 907, 909 (M-1)

<u>Compound</u> 703 2-(3-{6-Chloro-3-[(4-chloro-3-trifluoromethylbenzylidene)-amino]-4-oxo-3,4-dihydro-quinazolin-2-yl}-benzylsulfanyl)-ethanesulfonic acid

Methyl 2-amino-5-chlorobenzoate (compound A) (4.0 g) was dissolved in anhydrous methylene chloride (80.0 ml). Subsequently, pyridine (2.8 ml) and 3-(chloromethyl)benzoyl chloride (compound B) (5.0 g) were added to the solution at room temperature, and the mixture was stirred at that temperature for 2 hr. After the completion of the reaction, distilled water was added thereto, and the mixture was

subjected to separatory extraction with chloroform. The organic layer was washed with a saturated aqueous sodium chloride solution and saturated brine, was dried over sodium sulfate, and was then concentrated to give methyl 5-chloro-2-[3-(chloromethyl)benzoyl]aminobenzoate as a useful intermediate (3.32 g, yield 100%).

Subsequently, methyl 5-chloro-2-[3-(chloromethyl)benzoyl]-aminobenzoate (1.8 g) was dissolved in anhydrous methylene chloride. Triethylamine (1.5 ml) and 2-mercaptoethanesulfonic acid sodium salt (compound B') (1.3 g) were added to the solution at room temperature, and the mixture was stirred at 40°C for 4 days. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with a saturated aqueous sodium chloride solution, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography on silica gel to give 5-chloro-2-[3-(2-sulfo-ethylsulfanylmethyl)-benzoylamino]-benzoic acid methyl ester as a useful intermediate (1.08 g, yield 46.1%).

5-Chloro-2-[3-(2-sulfo-ethylsulfanylmethyl)-benzoylamino]-benzoic acid methyl ester (1.08 g) produced by the above reaction was dissolved in ethanol (11.0 ml). Hydrazine monohydrate (1.0 ml) was added to the solution at room temperature, and the mixture was heated under reflux with stirring for 3 days. After the completion of the reaction, the reaction solution was allowed to cool at room temperature. The reaction solution as such was then concentrated, and the residue was purified by column chromatography on silica gel to give 2-[3-(3-amino-6-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-benzylsulfanyl]-ethanesulfonic acid as a quinazolone compound (542 mg, yield 52.1%).

 $2\text{-}[3\text{-}(3\text{-}Amino\text{-}6\text{-}chloro\text{-}4\text{-}oxo\text{-}3,4\text{-}dihydroquinazolin\text{-}}2\text{-}yl)\text{-}$ benzylsulfanyl]-ethanesulfonic acid (50.0 mg) was dissolved in anhydrous toluene (1.0 ml). Subsequently, 4-chloro-3-trifluoromethylbenzaldehyde (compound C) (50.0 μl) was added to the solution at room temperature, and the mixture was heated under reflux with stirring for 12 hr. After the completion of the reaction, the reaction solution was allowed to cool at room temperature, distilled water was added thereto, and the mixture was subjected to separatory extraction

The organic layer was washed with a saturated with chloroform. aqueous sodium chloride solution and saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography on silica gel, followed by drying through a vacuum pump to give the title compound 703 (32.0 mg, yield 44.0%). $^{1}\text{H-NMR}$ (CDCI₃, 400 MHz): δ 9.16 (1H, s), 8.15 - 8.25 (1H, m), 7.38 -7.90 (9H, m), 3.84 (2H, s), 2.97 - 3.05 (2H, m), 2.80 - 2.87 (2H, m) Mass spectrometric value (ESI-MS) 614, 616 (M-1) N1-[4-Chloro-2-({2-[(E)-1-(3-704 Compound fluorophenyl)methylidene]hydrazino}carbonyl}phenyl}-3-{[{6-[(3-{[4-10 chloro-2-({2-[(E)-1-(3-fluorophenyl)methylidene]hydrazino}carbonyl}anilino}carbonyl}benzyl}(methyl)amino)hexyl)(methyl)amino]methyl]benzamide The title compound 704 was produced in the same manner as in Example 8. 15 ¹H-NMR (CDCl₃, 400 MHz): δ 8.60 (2H, d, J = 9.0 Hz), 8.35 (2H, s), 7.88 - 7.95 (4H, m), 7.30 - 7.80 (14H, m), 7.10 - 7.20 (2H, m), 3.69 (4H, s), 2.47 (4H, t, J = 7.3 Hz), 2.27 (6H, s), 1.50 - 1.60 (4H, m), 1.25 - 1.37 (4H, t)m) Mass spectrometric value (ESI-MS) 957 (M-1) 20 N1-[4-Chloro-2-({2-[(E)-1-(3-705 Compound methylphenyl)methylidene]hydrazino}carbonyl}phenyl}-3-{[[6-[(3-{[4chloro-2-({2-[(E)-1-(3-methylphenyl)methylidene]hydrazino}carbonyl}anilino}carbonyl}benzyl}(methyl)amino)hexyl)(methyl)amino]methyl]benzamide

25

30

The title compound 705 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.61 (2H, d, J = 8.8 Hz), 8.35 (2H, s), 7.85 - 7.93 (4H, s), 7.63 (2H, s), 7.45 - 7.57 (10H, m), 7.14 - 7.30 (4H, m),

3.58 (4H, s), 2.35 - 2.45 (4H, m), 2.34 (6H, s), 2.18 (6H, s), 1.53 (4H, bs), 1.32 (4H, bs)

Mass spectrometric value (ESI-MS) 949 (M-1)

N1-[4-Chloro-2-({2-[(E)-1-(4-706 Compound methylphenyl)methylidene]hydrazino}carbonyl}phenyl}-3-{[[6-[(3-{[4-

chloro-2-({2-[(E)-1-(4-methylphenyl)methylidene]hydrazino}carbonyl}-35 anilino}carbonyl}benzyl}(methyl)amino)hexyl)(methyl)amino]methyl]-

benzamide

10

30

35

The title compound 706 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.60 (2H, d, J = 8.8 Hz), 8.34 (2H, s), 7.83 - 7.98 (8H, m), 7.66 (2H, d, J = 7.8 Hz), 7.48 - 7.60 (4H, m), 7.21 (6H, d, J = 7.8 Hz), 3.78 (4H, s), 2.55 - 2.60 (4H, m), 2.30 - 2.35 (12H, m), 1.59 (4H, bs), 1.35 (4H, bs)

Mass spectrometric value (ESI-MS) 949 (M-1)

Compound 707 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 707 was produced in the same manner as in Example 8.

Mass spectrometric value (ESI-MS) 609, 611, 612 (M-1)

15 <u>Compound</u> 708 2-{3-[4-Chloro-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 708 was produced in the same manner as in Example 11.

¹H-NMR (CD₃OD, 400 MHz): δ 8.54 (1H, d, J = 8.8 Hz), 8.34 (1H, s), 7.98 (1H, s), 7.35 - 7.92 (7H, m), 7.14 - 7.22 (2H, m), 3.88 (2H, s), 2.95 - 3.06 (2H, m), 2.70 - 2.86 (2H, m)

Mass spectrometric value (ESI-MS) 548 (M-1)

Example 11

25 <u>Compound 709</u> 2-{3-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

Methyl 2-amino-5-chlorobenzoate (compound A) (4.0 g) was dissolved in anhydrous methylene chloride (80.0 ml). Subsequently, pyridine (2.8 ml) and 3-(chloromethyl)benzoyl chloride (compound B) (5.0 g) were added to the solution at room temperature, and the mixture was stirred at that temperature for 2 hr. After the completion of the reaction, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with a saturated aqueous sodium chloride solution and saturated brine, was dried over sodium sulfate, and was then

concentrated to give methyl 5-chloro-2-[3-(chloromethyl)benzoyl]aminobenzoate (3.32 g, yield 100%) as a useful intermediate.

5

10

15

20

25

30

35

5-chloro-2-[3methyl Subsequently, dissolved (chloromethyl)benzoyl]aminobenzoate g) (1.8)was chloride. Triethylamine (1.5 ml) anhydrous methylene mercaptoethanesulfonic acid sodium salt (compound B') (1.3 g) were added to the solution at room temperature, and the mixture was stirred at 40°C for 4 days. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with a saturated aqueous sodium chloride solution, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography on silica gel to give 5-chloro-2-[3-(2-sulfoethylsulfanylmethyl)-benzoylamino]-benzoic acid methyl ester (1.08 g. yield 46.1%) as a useful intermediate.

5-Chloro-2-[3-(2-sulfo-ethylsulfanylmethyl)-benzoylamino]-benzoic acid methyl ester (1.27 g) produced by the above reaction was dissolved in ethanol (15.0 ml). Hydrazine monohydrate (2.0 ml) was added to the solution at room temperature, and the mixture was stirred at 40°C for 12 hr. After the completion of the reaction, the reaction solution was allowed to cool at room temperature. The reaction solution as such was then concentrated, and the residue was purified by column chromatography on silica gel to give 2-[3-(4-chloro-2-hydrazinocarbonyl-phenylcarbamoyl)-benzylsulfanyl]-ethanesulfonic acid as a hydrazine compound (820 mg, yield 67.2%).

2-[3-(4-Chloro-2-hydrazinocarbonyl-phenylcarbamoyl)acid (50.0 mg) was dissolved benzylsulfanyl]-ethanesulfonic ml). Subsequently, 4-chloro-3toluene (1.0)anhydrous trifluoromethylbenzaldehyde (compound C) (50.0 μ l) was added to the solution at room temperature, and the mixture was heated under reflux with stirring for 12 hr. After the completion of the reaction, the reaction solution was allowed to cool at room temperature, distilled water was added thereto, and the mixture was subjected to separatory extraction The organic layer was washed with a saturated with chloroform. aqueous sodium chloride solution and saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography on silica gel and was dried through a vacuum pump to give the title compound 709 (47.2 mg, yield 56.0%).

¹H-NMR (CD₃OD, 400 MHz): δ 8.52 (1H, d, J = 9.0 Hz), 7.38 - 8.40 (10H, m), 3.89 (2H, s), 2.94 - 3.06 (2H, m), 2.70 - 2.88 (2H, m) Mass spectrometric value (ESI-MS) 632 (M-1)

<u>Compound 710</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-methyl-2-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 710 was produced in the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.18 (1H, bs), 7.88 - 8.03 (3H, m), 7.64 - 7.70 (2H, m), 7.59 (1H, d, J = 7.8 Hz), 7.46 - 7.55 (1H, m), 7.25 (2H, bs), 3.64 (2H, s), 2.72 (2H, bs), 2.53 - 2.65 (6H, m), 2.37 (3H, s), 2.28 (3H, s),

15 2.24 (3H, s), 1.04 (6H, t, J = 7.3 Hz)

5

10

20

30

Mass spectrometric value (ESI-MS) 520 (M+1)

Compound 711 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3, 4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 711 was produced in the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 7.88 - 8.18 (3H, m), 7.37 - 7.64 (5H, m), 7.19 (1H, s), 3.63 (2H, s), 2.67 - 2.75 (2H, m), 2.53 - 2.65 (6H, m), 2.20 - 2.35 (12H, m), 0.98 - 1.10 (6H, m)

25 Mass spectrometric value (ESI-MS) 532 (M-1), 534 (M+1)

Compound 712 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-3-yl]-benzamide

The title compound 712 was produced in the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 7.90 - 8.03 (3H, m), 7.72 (2H, d, J = 8.1 Hz), 7.59 (1H, d, J = 7.3 Hz), 7.38 - 7.56 (2H, m), 6.97 (2H, bs), 3.84 (2H, s), 3.64 (2H, s), 2.67 - 2.75 (2H, m), 2.53 - 2.65 (6H, m), 2.27 (3H, s), 2.24 (3H, s), 1.00 - 1.10 (6H, m)

Mass spectrometric value (ESI-MS) 534 (M-1), 536 (M+1)

Compound 713 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-

phenyl]-4-[(2-morpholin-4-yl-ethylamino)-methyl]-benzamide

The title compound 713 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.43 (2H, bs), 7.99 (2H, d, J = 7.8 Hz), 7.68 (1H, s), 7.36 - 7.60 (6H, m), 7.13 (1H, ddd, J = 8.3 Hz, J = 8.3 Hz, J = 2.0 Hz), 3.89 (2H, s), 3.68 - 3.73 (4H, m), 2.72 (2H, t, J = 5.9 Hz), 2.53 (2H, t, J = 6.0 Hz), 2.43 (4H, t, J = 4.4 Hz)

Mass spectrometric value (ESI-MS) 582 (M-1)

<u>Compound 714</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-morpholin-4-yl-ethylamino)-methyl]-benzamide

The title compound 714 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.51 (1H, s), 8.31 (1H, d, J = 8.3 Hz), 8.06 (1H, s), 7.99 (3H, d, J = 7.6 Hz), 7.65 (1H, s), 7.58 (1H, d, J = 8.3 Hz), 7.47 (3H, d, J = 7.7 Hz), 3.89 (2H, s), 3.71 (4H, t, J = 4.5 Hz), 2.71 (2H, t, J = 6.0 Hz), 2.53 (2H, t, J = 6.0 Hz), 2.43 (4H, bs)

Mass spectrometric value (ESI-MS) 664, 666 (M-1)

Compound 715 N-[4-Bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-morpholin-4-yl-ethylamino)-methyl]-

benzamide

10

20

The title compound 715 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.43 (1H, d, J = 8.8 Hz), 8.38 (1H, s), 7.98 (2H, d, J = 8.1 Hz), 7.68 - 7.77 (3H, m), 7.48 (1H, d, J = 8.8 Hz), 7.41 (2H, d, J = 8.8 Hz), 6.90 (2H, d, J = 8.8 Hz), 3.86 (2H, s), 3.81 (3H, s), 3.68 - 3.72 (4H, m), 2.69 (2H, t, J = 6.0 Hz), 2.51 (2H, t, J = 6.0 Hz), 2.38 - 2.45 (4H, m)

Mass spectrometric value (ESI-MS) 592 (M-1)

30 <u>Compound</u> 716 N-[4-Bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-morpholin-4-yl-ethylamino)-methyl]-benzamide

The title compound 716 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.40 - 8.46 (2H, m), 7.98 (2H, d, J = 7.8 Hz), 7.71 (1H, s), 7.49 (1H, d, J = 8.5 Hz), 7.42 (2H, d, J = 8.0 Hz), 7.35

(1H, s), 7.30 (2H, d, J = 5.6 Hz), 3.86 (2H, s), 3.84 (3H, s), 3.70 (4H, t, J = 4.6 Hz), 2.69 (2H, t, J = 4.6 Hz), 2.51 (2H, t, J = 5.8 Hz), 2.40 - 2.47 (4H, m)

Mass spectrometric value (ESI-MS) 596 (M+1)

5 <u>Compound</u> 717 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(4-fluoro-phenyl)-piperazin-1-ylmethyl]-benzamide

The title compound 717 was produced in the same manner as in Example 8.

- ¹H-NMR (CDCl₃, 400 MHz): δ 8.57 (1H, d, J = 9.0 Hz), 8.28 (1H, s), 8.00 (2H, d, J = 7.6 Hz), 7.55 7.73 (3H, m), 7.48 (3H, d, J = 8.1 Hz), 7.18 (1H, d, J = 7.8 Hz), 6.93 6.98 (2H, m), 6.85 6.90 (2H, m), 3.63 (2H, s), 3.13 (4H, t, J = 4.6 Hz), 2.62 (4H, bs), 2.30 (3H, s), 2.29 (3H, s) Mass spectrometric value (ESI-MS) 642 (M-1)
- Compound 718 4-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 718 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.53 (1H, d, J = 8.6 Hz), 8.35 (1H, s), 8.02 (2H, d, J = 7.3 Hz), 7.70 (2H, s), 7.53 - 7.60 (2H, m), 7.45 (2H, d, J = 8.1 Hz), 7.32 (1H, dd, J = 7.4 Hz, J = 7.4 Hz), 3.60 - 3.99 (4H, m), 2.42 - 2.66 (4H, m), 2.39 (3H, s), 1.12 (6H, d, J = 6.1 Hz) Mass spectrometric value (ESI-MS) 581 (M+1)

Compound 719 4-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 719 was produced in the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.53 (1H, bs), 8.37 (1H, bs), 8.00 (2H, bs), 7.81 (2H, bs), 7.70 (1H, bs), 7.40 - 7.60 (3H, m), 7.05 - 7.15 (2H, m), 3.83 - 3.98 (2H, m), 3.65 - 3.78 (2H, m), 2.45 - 2.60 (4H, m), 1.20 - 1.30

(3H, m), 1.06 - 1.16 (3H, m)

Mass spectrometric value (ESI-MS) 587 (M+1)

25

30

35

Compound 720 4-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 720 was produced in the same manner as in Example 8.

 $^{1}\text{H-NMR}$ (CDCl₃, 400 MHz): δ 8.45 - 8.54 (1H, m), 8.39 (1H, s), 8.00 (2H, d, J = 8.3 Hz), 7.36 - 7.74 (7H, m), 7.10 - 7.20 (1H, m), 3.80 - 4.02 (4H, m), 2.47 - 2.60 (4H, m), 1.12 (6H, d, J = 6.4 Hz)

Mass spectrometric value (ESI-MS) 585 (M+1)

5 <u>Compound 721</u> 4-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 721 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.46 (2H, bs), 7.95 - 8.08 (3H, m), 7.45 - 7.75 (4H, m), 7.13 - 7.20 (2H, m), 3.60 - 4.03 (4H, m), 2.47 - 2.68 (4H, m), 1.12 (6H, d, J = 6.1 Hz)

Mass spectrometric value (ESI-MS) 667, 669 (M-1)

15

20

25

Compound 722 4-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 722 was produced in the same manner as in Example 8.

¹H-NMR (CDCI₃, 400 MHz): δ 8.37 - 8.47 (2H, m), 7.98 (2H, d, J = 7.8 Hz), 7.70 - 7.74 (3H, m), 7.38 - 7.53 (3H, m), 6.90 (2H, d, J = 8.8 Hz),

3.77 - 3.95 (4H, m), 3.81 (3H, s), 2.42 - 2.64 (4H, m), 1.08 - 1.14 (6H, m) Mass spectrometric value (ESI-MS) 597 (M+1)

Compound 723 4-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 723 was produced in the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.57 (1H, d, J = 8.5 Hz), 8.34 (1H, s), 8.00 (2H, d, J = 7.1 Hz), 7.72 (1H, s), 7.55 - 7.62 (1H, m), 7.46 (2H, d, J = 8.0 Hz), 7.30 - 7.40 (3H, m), 6.95 - 7.02 (1H, m), 3.80 - 4.00 (4H, m), 3.86 (3H, s), 2.40 - 2.65 (4H, m), 1.09 - 1.15 (6H, m)

Mass spectrometric value (ESI-MS) 597 (M-1)

Compound 724 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-({[2-hydroxy-2-(4-hydroxy-phenyl)-ethyl]-methyl-amino}-methyl)-benzamide

The title compound 724 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.56 - 8.66 (1H, m), 7.96 (2H, dd, J = 2.2)

Hz, J = 8.3 Hz), 7.87 (1H, d, J = 2.4 Hz), 7.65 - 7.78 (3H, m), 7.46 - 7.56(3H, m), 7.13 - 7.22 (3H, m), 6.72 - 6.78 (2H, m), 4.80 - 4.90 (1H, m), 3.75 - 3.90 (2H, m), 2.73 - 2.82 (1H, m), 2.58 - 2.66 (1H, m), 2.40 - 2.45 (3H, m), 2.28 - 2.32 (6H, m)

Mass spectrometric value (ESI-MS) 629 (M-1) 5 Compound 725 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-4-({[2-hydroxy-2-(4-hydroxy-phenyl)-ethyl]-methyl-amino}methyl)-benzamide

The title compound 725 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.61 (1H, d, J = 8.0 Hz), 8.36 (1H, s), 8.07 (1H, d, J = 2.2 Hz), 7.92 (2H, d, J = 2.2 Hz), 7.56 (1H, dd, J = 2.2Hz. J = 9.0 Hz), 7.70 (1H, d, J = 9.3 Hz), 7.60 (1H, d, J = 7.8 Hz), 7.42 -7.49 (3H. m), 7.10 - 7.24 (3H. m), 6.75 (2H. d), 4.70 - 4.75 (2H. d)(1H, m), 3.68 (2H, d, J = 4.4 Hz), 2.67 (1H, dd, J = 12.7 Hz, J = 8.5 Hz),

2.50 (1H, dd, J = 4.9 Hz, J = 12.7 Hz), 2.33 (3H, s)

10

15

20

25

Mass spectrometric value (ESI-MS) 619 (M-1)

Compound 726 N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidenehydrazinocarbonyl)-phenyl]-4-({[2-hydroxy-2-(4-hydroxy-phenyl)-ethyl]methyl-amino}-methyl)-benzamide

The title compound 726 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.61 (1H, d, J = 9.0 Hz), 8.40 (1H, s), 8.34 (1H, s), 8.04 - 8.10 (2H, m), 7.90 - 7.95 (2H, m), 7.77 (1H, dd, J = 9.34 (1H, s))9.0 Hz, J = 2.4 Hz), 7.69 (1H, d, J = 8.3 Hz), 7.45 (2H, d, J = 8.3 Hz), 7.13 (2H. d. J = 8.6 Hz), 6.75 (2H, d. J = 8.6 Hz), 4.70 - 4.80 (1H, m),3.70 (2H, d, J = 4.4 Hz), 2.68 (1H, dd, J = 8.3 Hz, J = 12.8 Hz), 2.52 (1H, dd, J = 8.3 Hz), 2.52 (1H, dd, J = 8.3dd, J = 4.6 Hz, J = 12.7 Hz), 2.36 (3H, s)

Mass spectrometric value (ESI-MS) 701, 703 (M-1)

N-[4-Bromo-2-(3-methoxy-benzylidene-727 Compound 30 hydrazinocarbonyl)-phenyl]-4-({[2-hydroxy-2-(4-hydroxy-phenyl)-ethyl]methyl-amino}-methyl)-benzamide

The title compound 727 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 35 8.07 (1H, d, J = 2.4 Hz), 7.94 (2H, d, J = 8.3 Hz), 7.75 (1H, dd, J = 8.8 Hz) Hz, J = 2.2 Hz), 7.61 (1H, bs), 7.44 (2H, d, J = 8.3 Hz), 7.26 - 7.36 (2H, m), 7.13 (2H, d, J = 8.3 Hz), 6.97 - 7.03 (1H, m), 6.76 (2H, d, J = 8.6 Hz), 4.72 - 4.82 (1H, m), 3.84 (3H, s), 3.76 (2H, d, J = 5.8 Hz), 2.72 (1H, dd, J = 8.6 Hz, J = 13.0 Hz), 2.41 (3H, s), 2.57 (1H, dd, J = 4.9 Hz, J = 13.0 Hz)

Mass spectrometric value (ESI-MS) 629 (M-1)

5

10

15

20

30

35

<u>Compound 728</u> N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-morpholin-4-yl-2-oxo-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 728 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.49 (1H, d, J = 9.0 Hz), 8.41 (1H, s), 7.97 (2H, d, J = 7.8 Hz), 7.73 (1H, s), 7.68 (1H, d, J = 7.6 Hz), 7.51 (1H, d, J = 7.8 Hz), 7.41 (2H, d, J = 7.8 Hz), 7.19 - 7.23 (3H, m), 3.47 - 3.75 (10H, m), 3.16 (2H, s), 2.40 - 2.56 (8H, m), 2.36 (3H, s)

Mass spectrometric value (ESI-MS) 659 (M-1)

Compound 729 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-morpholin-4-yl-2-oxo-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 729 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.48 (1H, d, J = 8.8 Hz), 8.42 (1H, s), 7.97 (2H, d, J = 7.8 Hz), 7.66 - 7.75 (2H, m), 7.49 - 7.56 (2H, m), 7.41 (2H, d, J = 7.8 Hz), 7.20 - 7.32 (2H, m), 3.48 - 3.76 (10H, m), 3.16 (2H, m), 3.48 - 3.76 (10H, m), 3.48 - 3.76 (10H, m), 3.16 (2H, m), 3.48 - 3.76 (10H, m), 3.48 - 3.76

25 s), 2.40 - 2.56 (8H, m), 2.38 (3H, s)

Mass spectrometric value (ESI-MS) 661 (M-1)

<u>Compound 730</u> N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-morpholin-4-yl-2-oxo-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 730 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.48 (1H, d, J = 9.0 Hz), 8.43 (1H, s), 7.97 (2H, d, J = 7.8 Hz), 7.76 - 7.87 (2H, m), 7.68 - 7.73 (1H, m), 7.49 - 7.57 (1H, m), 7.42 (2H, d, J = 7.8 Hz), 7.11 (2H, dd, J = 8.5 Hz, J = 8.5 Hz), 3.49 - 3.76 (10H, m), 3.16 (2H, s), 2.40 - 2.65 (8H, m)

Mass spectrometric value (ESI-MS) 665 (M-1)

<u>Compound 731</u> N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-morpholin-4-yl-2-oxo-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 731 was produced in the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.42 - 8.52 (2H, m), 7.96 (2H, d, J = 7.8 Hz), 7.73 (1H, s), 7.46 - 7.60 (3H, m), 7.33 - 7.44 (3H, m), 7.11 (1H, ddd, J = 2.4 Hz, J = 8.3 Hz, J = 8.3 Hz), 3.48 - 3.76 (10H, m), 3.15 (2H, s), 2.40 - 2.60 (8H, m)

Mass spectrometric value (ESI-MS) 665 (M-1)

Compound 732 N-[4-Bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-morpholin-4-yl-2-oxo-ethyl)-piperazin-1-ylmethyl]-benzamide

15

The title compound 732 was produced in the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.50 (2H, s, J = 9.0 Hz), 8.45 (1H, s), 7.95 (2H, d, J = 7.8 Hz), 7.78 (1H, s), 7.51 (1H, d, J = 8.8 Hz), 7.25 - 7.43 (3H, m), 6.90 - 7.00 (2H, m), 3.83 (3H, s), 3.48 - 3.75 (10H, m), 3.16 (2H, s), 2.40 - 2.60 (8H, m)

20 Mass spectrometric value (ESI-MS) 675, 677 (M-1)

Compound 733 4-{[Bis-(2-ethoxy-ethyl)-amino]-methyl}-N-[4-bromo-2-(3, 4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 733 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.36 - 8.46 (2H, m), 7.98 (2H, d, J = 8.0 Hz), 7.66 (2H, d, J = 10.0 Hz), 7.45 - 7.51 (4H, m), 7.17 (1H, d, J = 8.1 Hz), 3.79 (2H, s), 3.52 (4H, t, J = 6.1 Hz), 3.46 (4H, q, J = 7.0 Hz), 2.76 (4H, t, J = 6.0 Hz), 2.29 (3H, s), 2.27 (3H, s), 1.19 (6H, t, J = 7.0 Hz) Mass spectrometric value (ESI-MS) 622, 624 (M-1)

30 <u>Compound 734</u> 4-{[Bis-(2-ethoxy-ethyl)-amino]-methyl}-N-[4-bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 734 was produced in the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.45 (1H, s), 8.36 (1H, d, J = 8.8 Hz), 7.98 (2H, d, J = 7.3 Hz), 7.65 - 7.71 (3H, m), 7.45 - 7.48 (3H, m), 7.20 (2H, d, J = 7.8 Hz), 3.79 (2H, s), 3.53 (4H, t, J = 6.2 Hz), 3.46 (4H, q, J =

7.9 Hz), 2.76 (4H, t, J = 6.1 Hz), 2.35 (3H, s), 1.19 (6H, t, J = 7.1 Hz) Mass spectrometric value (ESI-MS) 607, 609 (M-1)

Compound 735 4-{[Bis-(2-ethoxy-ethyl)-amino]-methyl}-N-[4-bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 735 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.47 (1H, s), 8.34 (1H, d, J = 8.8 Hz), 7.98 (2H, d, J = 8.0 Hz), 7.68 (2H, d, J = 8.3 Hz), 7.54 (1H, d, J = 7.3 Hz), 7.42 - 7.50 (3H, m), 7.20 - 7.34 (2H, m), 3.78 (2H, s), 3.52 (4H, t, J = 6.1 Hz), 3.46 (4H, q, J = 7.0 Hz), 2.76 (4H, t, J = 6.2 Hz), 2.38 (3H, s), 1.19 (6H, t, J = 7.0 Hz)

Mass spectrometric value (ESI-MS) 609 (M-1)

Compound 736 4-{[Bis-(2-ethoxy-ethyl)-amino]-methyl}-N-[4-bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 736 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.48 (1H, s), 8.31 (1H, d, J = 8.8 Hz), 7.98 (2H, d, J = 8.0 Hz), 7.81 (2H, dd, J = 6.5 Hz, J = 6.5 Hz), 7.64 (1H, s), 7.42 - 7.51 (3H, m), 7.10 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 3.79 (2H, s), 3.53 (4H, t, J = 6.2 Hz), 3.67 (4H, q, J = 7.0 Hz), 2.76 (4H, t, J = 6.1 Hz), 1.19 (6H, t, J = 6.9 Hz)

Mass spectrometric value (ESI-MS) 635 (M+23)

<u>Compound 737</u> 4-{[Bis-(2-ethoxy-ethyl)-amino]-methyl}-N-[4-bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 737 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.50 (1H, s), 8.29 (1H, d, J = 8.8 Hz), 7.98 (2H, d, J = 8.0 Hz), 7.30 - 7.76 (7H, m), 7.11 (1H, ddd, J = 2.0 Hz, J = 8.3 Hz, J = 8.3 Hz), 3.80 (2H, s), 3.53 (4H, t, J = 6.2 Hz), 3.47 (4H, q, J = 6.2 Hz), 2.76 (4H, t, J = 6.2 Hz), 1.19 (6H, t, J = 6.9 Hz)

Mass spectrometric value (ESI-MS) 635 (M+23)

Compound 738 4-{[Bis-(2-ethoxy-ethyl)-amino]-methyl}-N-[4-bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-

benzamide

5

10

20

25

30

35

The title compound 738 was produced in the same manner as in Example 8.

 1 H-NMR (CDCI₃, 400 MHz): δ 8.55 (1H, s), 8.24 (1H, d, J = 8.0 Hz), 8.07 (1H, s), 7.95 - 8.04 (3H, m), 7.62 (1H, s), 7.57 (1H, d, J = 8.3 Hz), 7.50 (2H, d, J = 8.3 Hz), 7.43 (1H, d, J = 8.6 Hz), 3.81 (2H, s), 3.53 (4H, t, J = 6.1 Hz), 3.47 (4H, q, J = 7.0 Hz), 2.76 (4H, t, J = 6.0 Hz), 1.19 (6H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 721 (M+23)

5

10

15

20

25

30

35

'n

Compound 739 4-{[Bis-(2-ethoxy-ethyl)-amino]-methyl}-N-[4-bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 739 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.53 (1H, d, J = 9.0 Hz), 8.35 - 8.45 (1H, m), 7.96 (2H, dd, J = 7.6 Hz, 7.6 Hz), 7.75 (1H, d, J = 8.5 Hz), 7.67 (1H, s), 7.53 (1H, ddd, J = 1.9 Hz, J = 8.8 Hz, J = 8.8 Hz), 7.42 - 7.50 (3H, m), 5.92 (2H, d, J = 8.8 Hz), 3.83 (3H, s), 3.78 (2H, s), 3.52 (4H, t, J = 6.1 Hz), 3.46 (4H, q, J = 7.1 Hz), 2.75 (4H, t, J = 5.5 Hz), 1.19 (6H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 625 (M-1)

Compound 740 4-{[Bis-(2-ethoxy-ethyl)-amino]-methyl}-N-[4-bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 740 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.47 (1H, s), 8.36 (1H, d, J = 8.8 Hz), 7.97 (2H, d, J = 8.8 Hz), 7.68 (1H, s), 7.47 (3H, d, J = 8.1 Hz), 7.37 (1H, s), 7.27 - 7.34 (2H, m), 6.92 - 6.98 (1H, m), 3.85 (3H, s), 3.78 (2H, s), 3.52 (4H, t, J = 6.1 Hz), 3.46 (4H, q, J = 7.0 Hz), 2.75 (4H, t, J = 6.0 Hz), 1.18 (6H, t, J = 7.0 Hz)

Mass spectrometric value (ESI-MS) 649 (M+23)

Compound 741 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperidin-1-ylmethyl]-benzamide

The title compound 741 was produced in the same manner as in Example 8.

 1 H-NMR (DMSO-d₆, 400 MHz): δ 8.51 (1H, d, J = 9.0 Hz), 8.41 (1H, s), 8.09 (1H, d, J = 2.2 Hz), 7.89 (2H, d, J = 8.0 Hz), 7.81 (1H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.65 (2H, d, J = 8.3 Hz), 7.49 (2H, d, J = 8.0 Hz), 7.29 (2H, d, J = 7.8 Hz), 4.29 (1H, t, J = 5.1 Hz), 3.52 (2H, bs), 3.38 - 3.46 (2H, m), 2.78 (2H, d, J = 11.0 Hz), 2.36 (3H, s), 1.92 (2H, t, J = 11.1 Hz),

1.61 (2H, d, J = 6.1 Hz), 1.30 - 1.40 (3H, m), 1.10 - 1.20 (2H, m) Mass spectrometric value (ESI-MS) 577 (M-1)

Compound 742 N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperidin-1-ylmethyl]-benzamide

The title compound 742 was produced in the same manner as in Example 8.

¹H-NMR (DMSO-d₆, 400 MHz): δ 8.51 (1H, d, J = 8.8 Hz), 8.41 (1H, s), 8.10 (1H, d, J = 8.3 Hz), 7.88 (2H, d, J = 2.2 Hz), 7.81 (1H, dd, J = 2.2 Hz, J = 9.0 Hz), 7.59 (1H, s), 7.53 (1H, d, J = 7.6 Hz), 7.49 (3H, d, J = 7.6 Hz), 7.36 (1H, dd, J = 7.6 Hz), 7.28 (1H, d, J = 7.6 Hz), 4.29 (1H, t, J = 5.1 Hz), 3.52 (2H, bs), 3.38 - 3.45 (2H, m), 2.77 (2H, d, J = 11.2 Hz), 2.37 (3H, s), 1.92 (2H, t, J = 10.6 Hz), 1.60 (2H, d, J = 6.1 Hz), 1.30 - 1.40 (3H, m), 1.10 - 1.21 (2H, m) Mass spectrometric value (ESI-MS) 575 (M-1)

Compound 743 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperidin-1-ylmethyl]-benzamide

The title compound 743 was produced in the same manner as in Example 8.

¹H-NMR (DMSO-d₆, 400 MHz): δ 8.50 (1H, d, J = 9.0 Hz), 8.45 (1H, s), 8.09 (1H, d, J = 2.4 Hz), 7.88 (2H, d, J = 8.0 Hz), 7.78 - 7.85 (3H, m), 7.49 (2H, d, J = 8.3 Hz), 7.32 (2H, dd, J = 8.8 Hz, J = 8.8 Hz), 4.29 (1H, t, J = 5.1 Hz), 3.52 (2H, bs), 3.38 - 3.45 (2H, m), 2.77 (2H, d, J = 11.2 Hz), 1.92 (2H, t, J = 10.7 Hz), 1.60 (2H, d, J = 6.1 Hz), 1.30 - 1.40 (3H, m), 1.10 - 1.20 (2H, m)

25 Mass spectrometric value (ESI-MS) 581 (M-1)

Compound 744 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperidin-1-ylmethyl]-benzamide

The title compound 744 was produced in the same manner as in Example 8.

¹H-NMR (DMSO-d₆, 400 MHz): δ 8.49 (1H, d, J = 8.8 Hz), 8.44 (1H, s), 8.09 (1H, d, J = 2.2 Hz), 7.88 (2H, d, J = 8.0 Hz), 7.78 - 7.84 (1H, m), 7.47 - 7.63 (5H, m), 7.25 - 7.35 (1H, m), 4.27 (1H, t, J = 5.1 Hz), 3.52 (2H, s), 3.35 - 3.46 (2H, m), 2.77 (2H, d, J = 11.2 Hz), 1.92 (2H, dd, J = 11.0 Hz, J = 11.0 Hz), 1.61 (2H, d, J = 11.7 Hz), 1.30 - 1.40 (3H, m), 1.08

35 **- 1.22 (2H, m)**

5

10

'-

Mass spectrometric value (ESI-MS) 580 (M-1), 583 (M+1)

<u>Compound 745</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperidin-1-ylmethyl]-benzamide

The title compound 745 was produced in the same manner as in Example 8.

 $^{1}\text{H-NMR}$ (DMSO-d₆, 400 MHz): δ 8.49 (1H, s), 8.44 (1H, d, J = 8.8 Hz), 8.18 (1H, s), 8.05 - 8.10 (2H, m), 7.88 (2H, d, J = 8.1 Hz), 7.79 - 7.85 (2H, m), 7.49 (2H, d, J = 8.1 Hz), 4.29 (1H, bs), 3.52 (2H, bs), 3.38 - 3.45 (2H, m), 2.78 (2H, d, J = 11.2 Hz), 1.86 - 2.00 (2H, m), 1.60 (2H, d,

J = 12.2 Hz), 1.30 - 1.40 (3H, m), 1.08 - 1.22 (2H, m) Mass spectrometric value (ESI-MS) 667 (M+1)

6

20

m)

<u>Compound</u> 746 N-[4-Bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[4-(2-hydroxy-ethyl)-piperidin-1-ylmethyl]-benzamide

The title compound 746 was produced in the same manner as in Example 8.

¹H-NMR (DMSO-d₆, 400 MHz): δ 8.48 (1H, d, J = 8.8 Hz), 8.42 (1H, s), 8.09 (1H, d, J = 2.0 Hz), 7.88 (2H, d, J = 8.0 Hz), 7.78 - 7.83 (1H, m), 7.49 (2H, d, J = 9.0 Hz), 7.39 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.28 - 7.33 (2H, m), 7.00 - 7.07 (1H, m), 4.29 (1H, t, J = 5.0 Hz), 3.82 (3H, s), 3.52 (2H, bs), 3.37 - 3.46 (2H, m), 2.77 (2H, d, J = 10.8 Hz), 1.86 - 1.98 (2H, m), 1.60 (2H, d, J = 12.2 Hz), 1.30 - 1.40 (3H, m), 1.08 - 1.22 (2H,

Mass spectrometric value (ESI-MS) 593 (M-1)

25 <u>Compound 747</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-morpholin-4-yl-1-phenyl-ethylamino)-methyl]-benzamide

The title compound 747 was produced in the same manner as in Example 8.

- ¹H-NMR (CDCl₃, 400 MHz): δ 8.51 (1H, s), 8.33 (1H, d, J = 8.0 Hz), 8.06 (1H, s), 7.99 (3H, d, J = 7.8 Hz), 7.65 (1H, bs), 7.58 (1H, d, J = 8.3 Hz), 7.49 (1H, d, J = 7.6 Hz), 7.26 7.43 (7H, m), 3.84 (1H, d, J = 14.2 Hz), 3.64 3.78 (6H, m), 3.57 (1H, d, J = 14.2 Hz), 2.43 2.60 (3H, m), 2.29 2.40 (3H, m)
- Mass spectrometric value (ESI-MS) 742 (M-1)

 Compound 748 N-[4-Bromo-2-(4-methoxy-benzylidene-

hydrazinocarbonyl)-phenyl]-4-[(2-morpholin-4-yl-1-phenyl-ethylamino)-methyl]-benzamide

The title compound 748 was produced in the same manner as in Example 8.

- ¹H-NMR (CDCI₃, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.37 (1H, s), 7.99 (2H, d, J = 7.8 Hz), 7.74 (2H, d, J = 8.3 Hz), 7.69 (1H, s), 7.50 (1H, d, J = 7.8 Hz), 7.34 7.42 (6H, m), 7.26 7.32 (1H, m), 6.91 (2H, d, J = 8.8 Hz), 3.80 3.85 (1H, m), 3.82 (3H, s), 3.60 3.76 (5H, m), 3.50 3.57 (1H, m), 2.40 2.60 (3H, m), 2.28 2.34 (3H, m)
- Mass spectrometric value (ESI-MS) 668 (M-1)

 <u>Compound 749</u> 6-Bromo-2-{4-[(1,2-diethyl-pyrazolidin-4-ylamino)-methyl]-phenyl}-3-[(3,4-dimethyl-benzylidene)-amino]-3H-quinazolin-4-one

The title compound 749 was produced in the same manner as in Example 8.

 1 H-NMR (CDCI₃, 400 MHz): δ 8.89 (1H, d, J = 8.8 Hz), 8.73 (1H, s), 8.57 (1H, s), 8.03 (2H, d, J = 8.0 Hz), 7.40 - 7.82 (5H, m), 7.10 - 7.25 (1H, m), 3.91 (2H, s), 3.56 - 3.70 (1H, m), 3.15 - 3.27 (2H, m), 2.70 - 2.85 (6H, m), 2.34 (6H, s), 1.11 (6H, t, J = 7.1 Hz)

20 Mass spectrometric value (ESI-MS) 589 (M+1)

Compound 750 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(1,2-diethyl-pyrazolidin-4-ylamino)-methyl]-benzamide

The title compound 750 was produced in the same manner as in 25 Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.42 (1H, d, J = 9.0 Hz), 8.38 (1H, s), 7.99 (2H, d, J = 8.1 Hz), 7.70 (1H, s), 7.62 (1H, s), 7.40 - 7.52 (4H, m), 7.15 (1H, d, J = 7.8 Hz), 3.83 (2H, s), 3.56 (1H, tt, J = 6.5 Hz, J = 6.5 Hz), 3.12 - 3.20 (2H, m), 2.65 - 2.74 (6H, m), 2.28 (3H, s), 2.26 (3H, s), 1.09 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 605 (M-1)

30

Compound 751 6-Bromo-2-{4-[(1,2-diethyl-pyrazolidin-4-ylamino)-methyl]-phenyl}-3-[(3-fluoro-benzylidene)-amino]-3H-quinazolin-4-one

The title compound 751 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.90 (1H, d, J = 8.8 Hz), 8.74 (1H, s), 8.59

(1H, s), 8.02 (2H, d, J = 8.3 Hz), 7.42 - 7.65 (6H, m), 7.21 (1H, ddd, J = 1.7 Hz, J = 8.3 Hz, J = 8.3 Hz), 3.89 (2H, s), 3.62 (1H, tt, J = 6.4 Hz, J = 6.4 Hz), 3.15 - 3.23 (2H, m), 2.65 - 2.80 (6H, m), 1.10 (6H, t, J = 7.2 Hz) Compound 752 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(1,2-diethyl-pyrazolidin-4-ylamino)-methyl]-benzamide

5

10

15

20

25

30

The title compound 752 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.46 (1H, s), 8.34 (1H, d, J = 8.8 Hz), 7.99 (2H, d, J = 7.8 Hz), 7.66 (1H, s), 7.34 - 7.62 (6H, m), 7.11 (1H, ddd, J = 2.0 Hz, J = 8.3 Hz, J = 8.3 Hz), 3.85 (2H, s), 3.57 (1H, tt, J = 6.5 Hz, J = 6.5 Hz), 3.12 - 3.20 (2H, m), 2.64 - 2.74 (6H, m), 1.10 (6H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 595 (M-1)

<u>Compound 753</u> 6-Bromo-3-[(4-chloro-3-trifluoromethyl-benzylidene)-amino]-2-{4-[(1,2-diethyl-pyrazolidin-4-ylamino)-methyl]-phenyl}-3H-quinazolin-4-one

The title compound 753 was produced in the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.88 (1H, d, J = 8.8 Hz), 8.75 (1H, s), 8.58 (1H, s), 7.92 - 8.05 (2H, m), 7.45 - 7.70 (6H, m), 3.89 (2H, s), 3.54 - 3.65 (1H, m), 3.12 - 3.22 (2H, m), 2.65 - 2.76 (6H, m), 1.10 (6H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 663 (M-1)

<u>Compound 754</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(1,2-diethyl-pyrazolidin-4-ylamino)-methyl]-benzamide

The title compound 754 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.51 (1H, s), 8.31 (1H, d, J = 8.1 Hz), 8.06 (1H, s), 7.99 (3H, d, J = 7.8 Hz), 7.65 (1H, s), 7.58 (1H, d, J = 8.3 Hz), 7.47 (3H, d, J = 8.3 Hz), 3.86 (2H, s), 3.58 (1H, tt, J = 6.3 Hz, J = 6.3 Hz), 3.42 (2.20 (2H, m)) 3.65 (2.75 (6H, m)) 4.10 (6H, t, J = 7.1 Hz)

3.12 - 3.20 (2H, m), 2.65 - 2.75 (6H, m), 1.10 (6H, t, J = 7.1 Hz) Mass spectrometric value (ESI-MS) 681 (M+1)

<u>Compound 755</u> 6-Bromo-2-{4-[(1,2-diethyl-pyrazolidin-4-ylamino)-methyl]-phenyl}-3-[(4-methoxy-benzylidene)-amino]-3H-quinazolin-4-one

The title compound 755 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.89 (1H, d, J = 8.5 Hz), 8.71 (1H, s), 8.58

(1H, s), 8.03 (2H, d, J = 8.3 Hz), 7.79 (2H, d, J = 8.8 Hz), 7.60 (1H, d, J = 2.2 Hz), 7.57 (1H, s), 7.49 (2H, d, J = 8.3 Hz), 7.00 (2H, d, J = 8.8 Hz), 3.89 (5H, s), 3.62 (1H, tt, J = 6.2 Hz, J = 6.2 Hz), 3.15 - 3.25 (2H, m), 2.65 - 2.80 (6H, m), 1.11 (6H, t, J = 7.2 Hz)

5 <u>Compound</u> 756 N-[4-Bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(1,2-diethyl-pyrazolidin-4-ylamino)-methyl]-benzamide

The title compound 756 was produced in the same manner as in Example 8.

- ¹H-NMR (CDCl₃, 400 MHz): δ 8.46 (1H, d, J = 8.8 Hz), 8.37 (1H, s), 7.98 (2H, d, J = 7.8 Hz), 7.67 7.76 (3H, m), 7.49 (1H, d, J = 7.6 Hz), 7.42 (2H, d, J = 8.3 Hz), 6.91 (2H, d, J = 8.8 Hz), 3.83 (2H, s), 3.82 (3H, s), 3.57 (1H, tt, J = 6.3 Hz, J = 6.3 Hz), 3.12 3.20 (2H, m), 2.65 2.75 (6H, m), 1.10 (6H, t, J = 7.2 Hz)
- 15 Mass spectrometric value (ESI-MS) 607 (M-1)

 Compound 757 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[3-(methyl-phenyl-amino)-propylamino]-methyl}-benzamide

The title compound 757 was produced in the same manner as in 20 Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.35 - 8.45 (2H, m), 7.96 (2H, d, J = 7.8 Hz), 7.71 (1H, s), 7.60 (1H, s), 7.43 - 7.48 (2H, m), 7.40 (2H, d, J = 8.3 Hz), 7.17 - 7.23 (2H, m), 7.14 (1H, d, J = 7.8 Hz), 6.65 - 6.73 (3H, m), 3.83 (2H, s), 3.38 (2H, t, J = 7.2 Hz), 2.89 (3H, s), 2.68 (2H, t, J = 7.0

Hz), 2.26 (3H, s), 2.25 (3H, s), 1.81 (2H, tt, J = 7.1 Hz, J = 7.1 Hz) Mass spectrometric value (ESI-MS) 626 (M-1), 628 (M+1)

25

Compound 758 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[3-(methyl-phenyl-amino)-propylamino]-methyl}-benzamide

The title compound 758 was produced in the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.37 - 8.44 (2H, m), 7.92 - 7.79 (2H, m), 7.64 - 7.72 (3H, m), 7.45 (1H, d, J = 8.0 Hz), 7.39 (2H, d, J = 8.0 Hz), 7.16 - 7.23 (4H, m), 6.65 - 6.74 (3H, m), 3.82 (2H, s), 3.39 (2H, t, J = 7.2 Hz), 2.89 (3H, s), 2.67 (2H, t, J = 6.8 Hz), 2.34 (3H, s), 1.80 (2H, tt, J =

35 7.0 Hz, J = 7.0 Hz)
Mass spectrometric value (ESI-MS) 612 (M-1), 614 (M+1)

Compound 759 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[3-(methyl-phenyl-amino)-propylamino]-methyl}-benzamide

The title compound 759 was produced in the same manner as in Example 8.

- ¹H-NMR (CDCl₃, 400 MHz): δ 8.37 8.46 (2H, m), 7.98 (2H, d, J = 7.8 Hz), 7.81 (2H, bs), 7.66 (1H, s), 7.50 (1H, d, J = 8.6 Hz), 7.43 (2H, d, J = 8.1 Hz), 7.19 7.24 (2H, m), 7.11 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 6.66 6.75 (3H, m), 3.84 (2H, s), 3.41 (2H, t, J = 7.2 Hz), 2.92 (3H, s), 2.69 (2H, t, J = 7.0 Hz), 1.81 (2H, tt, J = 7.0 Hz)
- 10 Mass spectrometric value (ESI-MS) 616 (M-1), 618 (M+1)

 Compound 760 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)phenyl]-4-{[3-(methyl-phenyl-amino)-propylamino]-methyl}-benzamide

The title compound 760 was produced in the same manner as in Example 8.

- ¹H-NMR (CDCI₃, 400 MHz): δ 8.45 (1H, bs), 8.34 (1H, d, J = 8.5 Hz), 7.98 (2H, d, J = 7.8 Hz), 7.34 7.67 (7H, m), 7.18 7.25 (2H, m), 7.11 (1H, ddd, J = 1.7 Hz, J = 7.6 Hz, J = 7.6 Hz), 6.72 (2H, d, J = 7.8 Hz), 6.68 (1H, dd, J = 7.2 Hz, J = 7.2 Hz), 3.84 (2H, s), 3.41 (2H, t, J = 7.2 Hz), 2.91 (3H, s), 2.68 (2H, t, J = 7.0 Hz), 1.80 (2H, tt, J = 7.0 Hz, J = 7.0 Hz)
 - Mass spectrometric value (ESI-MS) 614 (M-1), 618 (M+1)

 <u>Compound 761</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[3-(methyl-phenyl-amino)-propylamino]-methyl}-benzamide
- The title compound 761 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.50 (1H, s), 8.27 (1H, d, J = 8.0 Hz), 8.06 (1H, s), 7.99 (2H, d, J = 7.6 Hz), 7.63 (1H, bs), 7.56 (1H, d, J = 8.3 Hz), 7.45 (2H, d, J = 8.1 Hz), 7.19 - 7.25 (2H, m), 6.65 - 6.75 (5H, m), 3.85 (2H, s), 2.44 (2H, s), 2.62 (2H, s), 2.69 (2H, s), 2.69

(2H, s), 3.41 (2H, t, J = 7.1 Hz), 2.92 (3H, s), 2.69 (2H, t, J = 7.0 Hz), 1.81 (2H, tt, J = 7.0 Hz, J = 7.0 Hz)

Mass spectrometric value (ESI-MS) 698, 700 (M-1), 702 (M+1)

Compound 762 N-[4-Bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-{[3-(methyl-phenyl-amino)-propylamino]-

35 methyl}-benzamide

30

The title compound 762 was produced in the same manner as in

Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.44 (1H, d, J = 8.8 Hz), 8.37 (1H, s), 7.97 (2H, d, J = 8.0 Hz), 7.65 - 7.77 (3H, m), 7.48 (1H, d, J = 8.8 Hz), 7.40 (2H, d, J = 8.0 Hz), 7.19 - 7.25 (3H, m), 6.90 (2H, d, J = 8.8 Hz), 6.71 (2H, d, J = 8.0 Hz), 6.68 (1H, dd, J = 7.2 Hz, J = 7.2 Hz), 3.81 (2H, s), 3.81 (3H, s), 3.40 (2H, t, J = 7.1 Hz), 2.91 (3H, s), 2.67 (2H, t, J = 7.0

Mass spectrometric value (ESI-MS) 626 (M-1), 630 (M+1)

Compound 763

Hz). 1.79 (2H, tt. J = 7.0 Hz, J = 7.0 Hz)

N-[4-Bromo-2-(3-methoxy-benzylidene-

hydrazinocarbonyl)-phenyl]-4-{[3-(methyl-phenyl-amino)-propylamino]-methyl}-benzamide

The title compound 763 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.44 (1H, d, J = 9.0 Hz), 8.40 (1H, s), 7.97 (2H, d, J = 7.8 Hz), 7.71 (1H, s), 7.18 - 7.54 (8H, m), 6.94 - 7.00 (1H, m), 6.71 (2H, d, J = 8.0 Hz), 6.68 (1H, dd, J = 7.2 Hz, J = 7.2 Hz), 3.84 (3H, s), 3.82 (2H, s), 3.40 (2H, t, J = 7.1 Hz), 2.91 (3H, s), 2.67 (2H, t, J = 6.8 Hz), 1.80 (2H, tt, J = 7.0 Hz, J = 7.0 Hz),

Mass spectrometric value (ESI-MS) 626 (M-1), 630 (M+1)

20 <u>Compound</u> 764 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-ethylsulfanyl-ethylamino)-methyl]-benzamide

The title compound 764 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.37 - 8.45 (2H, m), 7.98 (2H, d, J = 7.8 Hz), 7.72 (1H, s), 7.60 (1H, s), 7.42 - 7.50 (4H, m), 7.07 - 7.20 (2H, m), 3.88 (2H, s), 2.83 (2H, t, J = 6.2 Hz), 2.73 (2H, t, J = 6.6 Hz), 2.51 (2H, q, J = 7.3 Hz), 2.26 (3H, s), 2.25 (3H, s), 1.24 (3H, t, J = 7.4 Hz) Mass spectrometric value (ESI-MS) 565 (M-1)

30 Compound 765 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-ethylsulfanyl-ethylamino)-methyl]-benzamide

The title compound 765 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.39 - 8.45 (2H, m), 7.84 - 8.02 (2H, m), 7.68 (2H, d, J = 8.5 Hz), 7.42 - 7.50 (3H, m), 7.15 - 7.25 (3H, m), 3.88 (2H, s), 2.83 (2H, t, J = 6.3 Hz), 2.73 (2H, t, J = 6.3 Hz), 2.52 (2H, q, J =

7.4 Hz), 2.36 (3H, s), 1.25 (3H, t, J = 7.4 Hz)

Mass spectrometric value (ESI-MS) 551 (M-1)

5

10

15

20

25

30

35

<u>Compound 766</u> N-[4-Bromo-2-(3-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-ethylsulfanyl-ethylamino)-methyl]-benzamide

The title compound 766 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.44 (1H, s), 8.37 (1H, d, J = 8.8 Hz), 7.99 (2H, d, J = 8.1 Hz), 7.68 (2H, s), 7.54 (1H, d, J = 7.3 Hz), 7.42 - 7.50 (3H, m), 7.29 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.22 (1H, d, J = 7.6 Hz), 3.87 (2H, s), 2.81 (2H, t, J = 6.5 Hz), 2.72 (2H, t, J = 6.2 Hz), 2.53 (2H, q, J = 7.4 Hz), 2.37 (3H, s), 1.26 (3H, t, J = 7.3 Hz)

Mass spectrometric value (ESI-MS) 551 (M-1)

Compound 767 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-ethylsulfanyl-ethylamino)-methyl]-benzamide

The title compound 767 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.46 (1H, s), 8.33 (1H, d, J = 8.3 Hz), 7.98 (2H, d, J = 7.8 Hz), 7.80 (2H, bs), 7.65 (1H, s), 7.45 (3H, d, J = 8.0 Hz), 7.10 (2H, dd, J = 8.5 Hz, J = 8.5 Hz), 3.87 (2H, s), 2.82 (2H, t, J = 6.3 Hz), 2.72 (2H, t, J = 6.5 Hz), 2.53 (2H, q, J = 7.4 Hz), 1.26 (3H, t, J = 7.3 Hz)

Mass spectrometric value (ESI-MS) 557 (M-1)

<u>Compound 768</u> N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-ethylsulfanyl-ethylamino)-methyl]-benzamide

The title compound 768 was produced in the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 8.46 (1H, bs), 8.34 (1H, d, J = 7.8 Hz), 7.99 (2H, d, J = 7.6 Hz), 7.66 (1H, bs), 7.34 - 7.60 (6H, m), 7.11 (1H, ddd, J = 2.4 Hz, J = 8.3 Hz, J = 8.3 Hz), 3.89 (2H, s), 2.83 (2H, t, J = 6.4 Hz), $\frac{1}{2}$

2.73 (2H, t, J = 6.3 Hz), 2.54 (2H, q, J = 7.4 Hz), 1.26 (3H, t, J = 7.2 Hz)Mass spectrometric value (ESI-MS) 555 (M-1)

<u>Compound 769</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-ethylsulfanyl-ethylamino)-methyl]-benzamide

The title compound 769 was produced in the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.53 (1H, s), 8.27 (1H, d, J = 6.8 Hz), 8.06 (1H, s), 7.99 (3H, d, J = 7.8 Hz), 7.63 (1H, bs), 7.57 (1H, d, J = 8.3 Hz), 7.40 - 7.50 (3H, m), 3.90 (2H, s), 2.84 (2H, t, J = 6.2 Hz), 2.73 (2H, t, J = 6.5 Hz), 2.54 (2H, q, J = 7.4 Hz), 1.27 (3H, t, J = 7.5 Hz)

5 Mass spectrometric value (ESI-MS) 643 (M-1)

<u>Compound</u> 770 N-[4-Bromo-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-ethylsulfanyl-ethylamino)-methyl]-benzamide

The title compound 770 was produced in the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 8.37 - 8.45 (2H, m), 7.98 (2H, d, J = 7.8 Hz), 7.68 - 7.74 (3H, m), 7.47 (1H, d, J = 8.3 Hz), 7.42 (2H, d, J = 8.0 Hz), 6.90 (2H, d, J = 8.8 Hz), 3.86 (2H, s), 3.81 (3H, s), 2.81 (2H, t, J = 6.5 Hz), 2.72 (2H, t, J = 6.2 Hz), 2.52 (2H, q, J = 7.4 Hz), 1.25 (3H, t, J = 7.5 Hz)

Mass spectrometric value (ESI-MS) 569 (M-1)

<u>Compound</u> 771 N-[4-Bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-[(2-ethylsulfanyl-ethylamino)-methyl]-benzamide

The title compound 771 was produced in the same manner as in Example 8.

¹H-NMR (CDCI₃, 400 MHz): δ 8.45 (1H, s), 8.39 (1H, d, J = 9.0 Hz), 7.97 (2H, d, J = 7.8 Hz), 7.73 (1H, bs), 7.40 - 7.50 (3H, m), 7.34 (1H, s), 7.26 - 7.30 (2H, m), 6.90 - 7.00 (1H, m), 3.85 (2H, s), 3.83 (3H, s), 2.81 (2H, t, J = 6.4 Hz), 2.71 (2H, t, J = 6.2 Hz), 2.53 (2H, q, J = 7.4 Hz), 1.25 (3H, t, J = 7.4 Hz)

Mass spectrometric value (ESI-MS) 567 (M-1)

Compound 772 N-[4-Bromo-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-pyridin-2-yl-piperazin-1-ylmethyl)-

30 benzamide

15

20

25

35

The title compound 772 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 2.29 (3H, s), 2.30 (3H, s), 2.59 (4H, bs), 3.58 (4H, bs), 3.64 (2H, bs), 6.62 (2H, m), 7.18 (1H, d, J = 7.8 Hz), 7.59 (7H, m), 8.00 (2H, d, J = 8.1 Hz), 8.18 (1H, m), 8.31 (1H, s), 8.56 (1H, m), 10.08 (1H, bs), 11.68 (1H, s)

Mass spectrometric value (ESI-MS) 623 (M-1)

Compound 773 N-[4-Bromo-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-pyridin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 773 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 2.39 (3H, s), 2.59 (4H, bs), 3.58 (4H, bs), 3.64 (2H, bs), 6.63 (2H, m), 7.23 (2H, d, J = 7.8 Hz), 7.59 (7H, m), 8.00 (2H, d, J = 7.6 Hz), 8.18 (1H, m), 8.32 (1H, s), 8.60 (1H, d, J = 8.8 Hz), 9.90 (1H, bs), 11.70 (1H, bs)

10 Mass spectrometric value (ESI-MS) 611 (M-1)

5

20

25

30

Compound 774 N-[4-Bromo-2-(4-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-pyridin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 774 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 2.59 (4H, bs), 3.59 (4H, bs), 3.65 (2H, bs), 6.63 (2H, m), 7.12 (2H, m), 7.64 (7H, m), 8.00 (2H, d, J = 7.8 Hz), 8.18 (1H, m), 8.37 (1H, bs), 8.60 (1H, m), 10.20 (1H, bs), 11.70 (1H, bs) Mass spectrometric value (ESI-MS) 613 (M-1)

Compound 775 N-[4-Bromo-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-pyridin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 775 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 2.59 (4H, bs), 3.58 (4H, bs), 3.65 (2H, bs), 6.63 (2H, m), 7.14 (1H, m), 7.50 (8H, m), 8.00 (2H, d, J = 7.8 Hz), 8.18 (1H, m), 8.40 (1H, s), 8.55 (1H, bs), 10.30 (1H, bs), 11.60 (1H, bs) Mass spectrometric value (ESI-MS) 613 (M-1)

<u>Compound 776</u> N-[4-Bromo-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-pyridin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 776 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 2.60 (4H, bs), 3.58 (4H, bs), 3.65 (2H, bs), 6.63 (2H, m), 7.54 (6H, m), 8.02 (4H, m), 8.18 (1H, m), 8.47 (2H, bs), 10.45 (1H, bs), 11.50 (1H, bs)

Mass spectrometric value (ESI-MS) 697 (M-1)

Compound 777 N-[4-Bromo-2-(4-methoxy-benzylidene-

hydrazinocarbonyl)-phenyl]-4-(4-pyridin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 777 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 2.59 (4H, bs), 3.61 (6H, m), 3.84 (3H, s), 6.62 (2H, m), 6.93 (2H, d, J = 8.8 Hz), 7.49 (4H, m), 7.72 (3H, m), 7.80 (2H, d, J = 7.6 Hz), 8.18 (1H, m), 8.31 (1H, bs), 8.58 (1H, m), 9.99 (1H, bs), 11.69 (1H, bs)

Mass spectrometric value (ESI-MS) 625 (M-1)

10 <u>Compound</u> 778 N-[4-Bromo-2-(3-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-4-(4-pyridin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 778 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 2.59 (4H, bs), 3.59 (6H, m), 3.86 (3H, s), 6.63 (2H, m), 6.98 (1H, m), 7.32 (3H, m), 7.54 (4H, m), 7.72 (1H, m), 8.00 (2H, d, J = 7.3 Hz), 8.18 (1H, m), 8.34 (1H, bs), 8.60 (1H, d, J = 8.8 Hz)

Mass spectrometric value (ESI-MS) 625 (M-1)

20 <u>Compound 779</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 779 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 1.10 (6H, m), 2.51 (4H, m), 3.88 (4H, m), 7.03 (1H, d, J = 6.1 Hz), 7.53 (2H, m), 7.68 (2H, d, J = 8.0 Hz), 7.92 (1H, d, J = 7.8 Hz), 8.06 (2H, m), 8.32 (1H, bs), 8.39 (1H, s)

Mass spectrometric value (ESI-MS) 595 (M-1)

30

35

<u>Compound</u> 780 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 780 was produced in substantially the same manner as in Example 8.

 $^1\text{H-NMR}$ (CD₃OD, 400 MHz): δ 1.10 (6H, m), 2.51 (4H, m), 3.88 (7H, m), 7.00 (3H, m), 7.53 (2H, m), 7.68 (1H, m), 7.80 (2H, d, J = 8.3 Hz), 7.93 (1H, d, J = 7.1 Hz), 8.06 (1H, m), 8.31 (1H, s)

Mass spectrometric value (ESI-MS) 523 (M-1)

Compound 781 2-{3-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-ylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 781 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 2.30 (6H, m), 2.47 (3H, s), 2.79 (2H, m), 2.98 (2H, m), 3.85 (2H, bs), 6.71 (1H, m), 7.18 (1H, d, J = 7.6 Hz), 7.20 - 8.00 (6H, m), 8.23 (1H, bs)

Mass spectrometric value (ESI-MS) 544 (M-1)

Compound 782 2-{3-[4-Methyl-3-(4-methyl-benzylidene-

hydrazinocarbonyl)-thiophen-2-ylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 782 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 2.39 (3H, s), 2.47 (3H, s), 2.79 (2H, m), 2.99 (2H, m), 3.84 (2H, s), 6.72 (1H, m), 7.20 - 7.94 (8H, m), 8.26 (1H, bs)

Mass spectrometric value (ESI-MS) 530 (M-1)

15

20

30

35

<u>Compound 783</u> 2-{3-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-ylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 783 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 2.47 (3H, bs), 2.80 (2H, m), 2.99 (2H, m), 3.84 (2H, bs), 6.72 (1H, m), 7.14 (2H, m), 7.49 (1H, m), 7.61 (1H, m), 7.92 (4H, m), 8.29 (1H, bs)

25 Mass spectrometric value (ESI-MS) 534 (M-1)

<u>Compound</u> 784 2-{3-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-ylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 784 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 2.47 (3H, bs), 2.79 (2H, m), 2.98 (2H, m), 3.84 (2H, bs), 6.70 (1H, m), 7.40 - 8.02 (6H, m), 8.31 (2H, m) Mass spectrometric value (ESI-MS) 618 (M-1)

Compound 785 2-{3-[3-(4-Methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-ylcarbamoyl]-benzylsulfanyl}-ethanesulfonic acid

The title compound 785 was produced in substantially the same

manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 2.47 (3H, bs), 2.81 (2H, m), 2.98 (2H, m), 3.84 (5H, m), 6.71 (1H, m), 6.97 (2H, m), 7.44 - 7.98 (6H, m), 8.24 (1H, bs)

5 Mass spectrometric value (ESI-MS) 546 (M-1)

<u>Compound</u> 786 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-

benzamide

10

25

30

35

The title compound 786 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 2.30 (6H, m), 2.50 (3H, s), 2.69 (4H, t, J = 5.9 Hz), 3.63 (4H, t, J = 5.5 Hz), 3.81 (2H, s), 6.69 (1H, m), 7.19 (1H, m), 7.51 (2H, m), 7.65 (2H, m), 7.87 (1H, m), 7.98 (1H, s), 8.22 (1H, s) Mass spectrometric value (ESI-MS) 507 (M-1)

Compound 787 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 787 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 2.38 (3H, s), 2.57 (3H, s), 2.78 (4H, t, J = 5.1 Hz), 3.74 (4H, t, J = 5.1 Hz), 3.84 (2H, s), 6.50 (1H, s), 7.19 (2H, d, J = 8.0 Hz), 7.45 (2H, m), 7.70 (2H, d, J = 7.8 Hz), 8.00 (1H, m), 8.08 (1H, s), 8.25 (1H, s), 9.16 (1H, s)

Mass spectrometric value (ESI-MS) 493 (M-1)

Compound 788 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[3-(4-fluorobenzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 788 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCI₃, 400 MHz): δ 2.54 (3H, s), 2.79 (4H, t, J = 5.2 Hz), 3.74 (4H, t, J = 5.1 Hz), 3.83 (2H, s), 6.48 (1H, s), 7.04 (2H, m), 7.45 (2H, m), 7.80 (2H, m), 8.00 (1H, m), 8.13 (1H, s), 8.26 (1H, s), 9.28 (1H, s), 13.16 (1H, bs)

Mass spectrometric value (ESI-MS) 497 (M-1)

Compound 789 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[3-(3-fluorobenzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 789 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 2.56 (3H, s), 2.79 (4H, t, J = 5.0 Hz), 3.75 (4H, m), 3.84 (2H, s), 6.47 (1H, s), 7.04 (1H, m), 7.17 - 7.70 (5H, m), 8.01 (1H, m), 8.16 (1H, s), 8.29 (1H, s), 9.35 (1H, s), 13.20 (1H, bs) Mass spectrometric value (ESI-MS) 497 (M-1)

5 <u>Compound 790</u> 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yll-benzamide

The title compound 790 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 2.50 (3H, s), 2.72 (4H, t, J = 5.8 Hz), 3.65 (4H, t, J = 5.8 Hz), 3.84 (2H, s), 6.71 (1H, d, J = 1.0 Hz), 7.51 (1H, m), 7.67 (2H, m), 7.85 (1H, m), 8.00 (2H, m), 8.33 (2H, m)

Mass spectrometric value (ESI-MS) 581 (M-1)

Compound 791 3-{[Bis-(2-hydroxy-ethyl)-amino]-methyl}-N-[3-(4-15 methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]benzamide

The title compound 791 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 2.55 (3H, s), 2.79 (4H, t, J = 5.2 Hz), 3.74 (4H, m), 3.85 (5H, m), 6.51 (1H, s), 6.92 (2H, m), 7.45 (2H, m), 7.67 (1H, m), 7.77 (1H, m), 8.01 (1H, m), 8.05 (1H, s), 8.26 (1H, s), 9.09 (1H, s), 13.27 (1H, bs)

Mass spectrometric value (ESI-MS) 509 (M-1)

20

Compound 792 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-benzamide

The title compound 792 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.13 (3H, d, J = 2.2 Hz), 1.15 (3H, d, J = 2.2 Hz), 2.26 (6H, m), 2.51 (2H, d, J = 6.1 Hz), 2.63 (2H, m), 3.65 - 4.05 (4H, m), 7.12 (1H, m), 7.30 (1H, m), 7.40 - 7.51 (4H, m), 7.67 (1H, m), 7.86 (2H, m), 8.03 (1H, m), 8.18 (1H, s), 8.25 (1H, d, J = 5.6 Hz), 9.44 (1H, s), 13.13 (1H, m)

Mass spectrometric value (ESI-MS) 571 (M-1)

35 <u>Compound</u> 793 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-

benzamide

10

15

20

25

30

35

The title compound 793 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.13 (6H, m), 2.39 (3H, s), 2.51 (2H, d, J = 6.1 Hz), 2.64 (2H, m), 3.65 - 4.05 (4H, m), 7.19 (2H, d, J = 8.0 Hz), 7.32 (1H, m), 7.42 - 7.50 (3H, m), 7.75 (2H, m), 7.86 (2H, m), 8.04 (1H, m), 8.19 (1H, m), 8.28 (1H, d, J = 6.1 Hz), 9.40 (1H, s), 13.14 (1H, bs) Mass spectrometric value (ESI-MS) 557 (M-1)

Compound 794 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-fluorobenzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-benzamide

The title compound 794 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.13 (6H, m), 2.51 (2H, d, J = 6.1 Hz), 2.65 (2H, m), 3.63 - 4.08 (4H, m), 7.07 (2H, m), 7.29 (1H, m), 7.36 - 7.50 (3H, m), 7.85 (4H, m), 8.03 (1H, m), 8.26 (2H, m), 9.50 (1H, d, J = 4.4 Hz), 13.13 (1H, bs)

Mass spectrometric value (ESI-MS) 561 (M-1)

Compound 795 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3-fluoro-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-benzamide

The title compound 795 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCI₃, 400 MHz): δ 1.15 (6H, m), 2.53 (2H, m), 2.67 (2H, m), 3.61 - 4.14 (4H, m), 7.01 (1H, m), 7.11 - 7.30 (3H, m), 7.45 (3H, m), 7.62 - 7.90 (3H, m), 7.99 (1H, m), 8.23 (1H, d, J = 12.7 Hz), 8.35 (1H, d, J = 6.1 Hz), 9.82 (1H, d, J = 13.9 Hz), 13.10 (1H, s)

Mass spectrometric value (ESI-MS) 561 (M-1)

<u>Compound 796</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-benzamide

The title compound 796 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCI₃, 400 MHz): δ 1.14 (3H, d, J = 6.1 Hz), 1.17 (3H, d, J = 6.1 Hz), 2.50 - 2.80 (4H, m), 3.63 - 4.16 (4H, m), 7.06 (2H, m), 7.30 (1H, m), 7.44 (2H, m), 7.70 (1H, m), 7.80 - 8.07 (4H, m), 8.16 (1H, s), 8.53 (1H, s), 10.08 (1H, d, J = 6.1 Hz), 13.10 (1H, d, J = 1.0 Hz)

Mass spectrometric value (ESI-MS) 645 (M-1)

<u>Compound</u> 797 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-benzamide

The title compound 797 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.13 (6H, m), 2.51 (2H, d, J = 6.1 Hz), 2.63 (2H, m), 3.64 - 4.06 (7H, m), 6.90 (2H, d, J = 8.8 Hz), 7.31 (1H, m), 7.48 (3H, m), 7.83 (4H, m), 8.03 (1H, m), 8.18 (1H, m), 8.28 (1H, d, J = 6.4 Hz), 9.38 (1H, s), 13.16 (1H, bs)

Mass spectrometric value (ESI-MS) 573 (M-1)

<u>Compound 798</u> N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-

benzamide

5

15

20

25

30

35

The title compound 798 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.35 (2H, m), 1.51 (1H, m), 1.72 (2H, m), 2.05 (2H, m), 2.29 (3H, s), 2.30 (3H, s), 2.93 (2H, m), 3.50 (2H, d, J = 6.1 Hz), 3.62 (2H, s), 7.18 (1H, d, J = 7.8 Hz), 7.32 (1H, m), 7.47 (3H, m), 7.61 (1H, d, J = 7.6 Hz), 7.66 (1H, s), 7.87 (2H, m), 7.97 (1H, m), 8.04 (1H, m), 8.17 (1H, m), 9.34 (1H, bs), 12.85 (1H, bs)

Mass spectrometric value (ESI-MS) 553 (M-1)

Compound 799 3-(4-Hydroxymethyl-piperidin-1-ylmethyl)-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-benzamide

The title compound 799 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.42 (2H, m), 1.52 (1H, m), 1.73 (2H, m), 2.12 (2H, m), 2.38 (3H, s), 3.00 (2H, m), 3.50 (2H, d, J = 6.1 Hz), 3.70 (2H, s), 7.23 (2H, m), 7.32 (1H, m), 7.45 (2H, m), 7.64 (1H, d, J = 7.8 Hz), 7.71 (2H, m), 8.86 (2H, m), 7.97 (1H, d, J = 8.0 Hz), 8.03 (1H, m), 8.21 (1H, s), 9.40 (1H, bs), 12.84 (1H, bs)

Mass spectrometric value (ESI-MS) 539 (M-1)

<u>Compound</u> 800 N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 800 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.40 - 1.60 (3H, m), 1.73 (2H, m), 2.17 (2H, m), 3.05 (2H, m), 3.50 (2H, d, J = 5.9 Hz), 3.75 (2H, s), 7.04 (1H, m), 7.11 (2H, m), 7.28 (1H, m), 7.37 - 7.50 (2H, m), 7.64 (1H, d, J = 7.6 Hz), 7.83 (2H, m), 7.94 (1H, m), 8.01 (1H, s), 8.07 (1H, m), 8.26 (1H, s), 9.50 (1H, bs), 12.73 (1H, bs)

Mass spectrometric value (ESI-MS) 543 (M-1)

5

10

15

20

25

<u>Compound</u> 801 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 801 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.40 (2H, m), 1.53 (1H, m), 1.72 (2H, m), 2.09 (2H, m), 2.96 (2H, m), 3.50 (2H, d, J = 6.1 Hz), 3.66 (2H, s), 7.13 (1H, m), 7.31 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.35 - 7.66 (6H, m), 7.85 (2H, m), 7.94 (1H, d, J = 7.8 Hz), 8.02 (1H, s), 8.23 (1H, s), 9.52 (1H, bs), 12.73 (1H, bs)

Mass spectrometric value (ESI-MS) 543 (M-1)

<u>Compound</u> 802 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 802 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.40 (2H, m), 1.15 (1H, m), 1.72 (2H, m), 2.09 (2H, m), 2.95 (2H, m), 3.50 (2H, d, J = 6.1 Hz), 3.65 (2H, s), 7.27 (1H, m), 7.40 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.47 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.55 (1H, d, J = 8.0 Hz), 7.60 (1H, d, J = 7.6 Hz), 7.82 (2H, m), 7.90 (1H, m), 7.95 (1H, d, J = 8.0 Hz), 8.00 (1H, s), 8.06 (1H, s), 8.35 (1H, s), 9.69 (1H, bs), 12.63 (1H, bs)

Mass spectrometric value (ESI-MS) 627 (M-1)

30 <u>Compound</u> 803 3-(4-Hydroxymethyl-piperidin-1-ylmethyl)-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-benzo[b]thiophen-2-yl]-benzamide

The title compound 803 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCl₃, 400 MHz): δ 1.39 (2H, m), 1.52 (1H, m), 1.71 (2H, m), 2.07 (2H, m), 2.95 (2H, m), 3.49 (2H, d, J = 6.1 Hz), 3.64 (2H, s), 3.83

(3H, s), 6.93 (2H, d, J = 8.8 Hz), 7.29 (1H, m), 7.38 - 7.48 (2H, m), 7.60 (1H, d, J = 7.6 Hz), 7.75 (1H, m), 7.84 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 7.95 (2H, m), 8.01 (1H, s), 8.20 (1H, s), 9.42 (1H, bs), 12.81 (1H, bs) Mass spectrometric value (ESI-MS) 555 (M-1)

5 Example A

10

15

20

25

30

35

<u>Compound</u> 804 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

Ethyl-2-aminocyclopenta(B)thiophene-3-carboxylate (compound A) (1.0 g) was dissolved in anhydrous methylene chloride (20.0 ml). Subsequently, pyridine (760 μl) and 3-(chloromethyl)benzoyl chloride (compound B) (880 μl) were added to the solution at 0°C, and the mixture was stirred at 0°C for one hr. After the completion of the reaction, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated to give 2-(3-chloromethyl-benzoylamino)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid ethyl ester as a useful intermediate (800 mg, crude yield 100%).

2-(3-Chloromethyl-benzoylamino)-5,6-dihydro-4H-cyclopenta[b]-thiophene-3-carboxylic acid ethyl ester (800 mg) produced by the above reaction was dissolved in anhydrous methylene chloride (10.0 ml). Triethylamine (420 μl) and diisopropanolamine (compound B') (585 mg) were added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid ethyl ester as a useful intermediate (616 mg, yield 61%).

2-(3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid ethyl ester (616 mg) produced by the above reaction was dissolved in ethanol (10.0 ml).

Hydrazine monohydrate (700 µl) was added to the solution, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-N-(3-hydrazinocarbonyl-5, 6-dihydro-4H-cyclopenta[b]thiophen-2-yl)-benzamide as a hydrazine compound (372 mg, yield 60%).

3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-(3-hydrazino-carbonyl-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl)benzamide (60.0 mg) produced by the above reaction was dissolved in anhydrous toluene (1.0 ml). 3,4-Dimethylbenzaldehyde (compound C) (70.0 μl) was added to the solution at room temperature, and the mixture was heated under reflux with stirring for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 804 (70.0 mg, yield 100%).

¹H-NMR (CDCl₃, 400 MHz): δ 1.13 (6H, m), 2.28 (6H, m), 2.46 - 2.66 (6H, m), 2.92 (2H, m), 3.05 (2H, m), 3.58 - 4.05 (4H, m), 7.12 (1H, m), 7.46 (3H, m), 7.64 (1H, d, J = 5.1 Hz), 8.00 (2H, m), 8.22 (1H, m), 8.95 (1H, s), 13.16 (1H, m)

Mass spectrometric value (ESI-MS) 561 (M-1)

<u>Compound</u> 805 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]-

30 thiophen-2-yl]-benzamide

10

15

20

25

35

The title compound 805 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCI₃, 400 MHz): δ 1.13 (6H, m), 2.36 (3H, m), 2.49 (4H, m), 2.62 (2H, m), 2.89 (2H, m), 3.02 (2H, m), 3.60 - 4.06 (4H, m), 7.13 (2H, m), 7.44 (2H, m), 7.67 (2H, dd, J = 8.2 Hz, J = 2.6 Hz), 8.01 (2H, m), 8.23 (1H, m), 8.97 (1H, s), 13.16 (1H, m)

Mass spectrometric value (ESI-MS) 547 (M-1)

5

20

25

35

<u>Compound 806</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3-fluorobenzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 806 was produced in substantially the same manner as in Example A.

 1 H-NMR (CDCI₃, 400 MHz): δ 1.14 (6H, m), 2.50 (4H, m), 2.65 (2H, m), 2.89 (2H, m), 3.03 (2H, m), 3.68 - 4.10 (4H, m), 7.02 (1H, m), 7.27 (1H, m), 7.45 (3H, m), 7.67 (1H, m), 8.03 (1H, m), 8.15 (1H, d, J = 2.7 Hz), 8.29 (1H, d, J = 10.0 Hz), 9.11 (1H, s), 13.17 (1H, m)

10 8.29 (1H, d, J = 10.0 Hz), 9.11 (1H, s), 13.17 (1H, Mass spectrometric value (ESI-MS) 551 (M-1)

<u>Compound 807</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-fluorobenzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 807 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.12 (6H, m), 2.49 (4H, m), 2.64 (2H, m), 2.88 (2H, m), 3.02 (2H, m), 3.02 - 4.06 (4H, m), 7.01 (2H, m), 7.45 (2H, m), 7.79 (2H, m), 8.02 (1H, m), 8.10 (1H, s), 8.27 (1H, d, J = 5.9 Hz), 9.04 (1H, s), 13.18 (1H, m)

Mass spectrometric value (ESI-MS) 551 (M-1)

Compound 808 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 808 was produced in substantially the same manner as in Example A.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.12 (6H, m), 2.25 - 3.07 (10H, m), 3.58 - 4.10 (4H, m), 7.31 (1H, m), 7.46 (2H, m), 7.86 (1H, m), 7.98 (1H, s), 8.05 (1H, m), 8.33 (2H, m), 9.28 (1H, m), 13.18 (1H, m)

30 Mass spectrometric value (ESI-MS) 635 (M-1)

<u>Compound</u> 809 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 809 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.13 (6H, m), 2.35 - 2.65 (6H, m), 2.91 (2H,

m), 3.04 (2H, m), 3.59 - 4.04 (7H, m), 6.88 (2H, d, J = 8.8 Hz), 7.46 (2H, m), 7.76 (2H, dd, J = 9.1 Hz, J = 2.1 Hz), 8.02 (2H, m), 8.24 (1H, m), 8.92 (1H, s), 13.20 (1H, m)

Mass spectrometric value (ESI-MS) 563 (M-1)

5 Example B

10

15

20

25

30

35

<u>Compound</u> 810 3-[(2-Diethylamino-ethylamino)-methyl]-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]-thiophen-2-yl]-benzamide

Ethyl-2-aminocyclopenta (B)thiophene-3-carboxylate (compound A) (1.0 g) was dissolved in anhydrous methylene chloride (20.0 ml). Subsequently, pyridine (760 μ l) and 3-(chloromethyl)benzoyl chloride (compound B) (880 μ l) were added to the solution at 0°C, and the mixture was stirred at 0°C for one hr. After the completion of the reaction, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated to give 2-(3-chloromethyl-benzoylamino)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid ethyl ester as a useful intermediate (800 mg, crude yield 100%).

2-(3-Chloromethyl-benzoylamino)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid ethyl ester (800 mg) produced by the above reaction was dissolved in anhydrous methylene chloride (10.0 ml). Triethylamine (420 µl) and N,N-diethylethylenediamine (compound B') (510 mg) were added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to 2-{3-[(2-diethylamino-ethylamino)-methyl]-benzoylamino}-5,6give dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid ethyl ester as a useful intermediate (671 mg, yield 68%).

2-{3-[(2-Diethylamino-ethylamino)-methyl]-benzoylamino}-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid ethyl ester (671 mg) produced by the above reaction was dissolved in ethanol (10.0 ml),

hydrazine monohydrate (700 µl) was added to the solution, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-[(2-diethylamino-ethylamino)-methyl-N-(3-hydrazinocarbonyl-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl)-benzamide (438 mg, yield 65%) as a hydrazine compound.

5

10

15

The hydrazine compound 3-[(2-diethylamino-ethylamino)-methyl-N-(3-hydrazinocarbonyl-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl)-benzamide (50 mg) produced by the above reaction was dissolved in anhydrous toluene (1.0 ml). 3,4-Dimethylbenzaldehyde (compound C) (70.0 µl) was added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, the reaction product was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 810 (43.0 mg, yield 66%).

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.28 (6H, s), 2.47 - 2.67 (8H, m), 2.74 (2H, m), 2.90 (2H, m), 3.05 (2H, m), 3.90 (2H, s), 7.14 (1H, d, J = 7.8 Hz), 7.43 (2H, m), 7.57 (1H, d, J = 7.8 Hz), 7.61 (1H, s), 7.94 (1H, d, J = 7.8 Hz), 7.99 (2H, s), 8.96 (1H, bs), 12.95 (1H, bs) Mass spectrometric value (ESI-MS) 544 (M-1)

25 <u>Compound 811</u> 3-[(2-Diethylamino-ethylamino)-methyl]-N-[3-(4-methylbenzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 811 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 1.06 (6H, t, J = 7.1 Hz), 2.38 (3H, s), 2.51 - 2.80 (10H, m), 2.93 (2H, m), 3.06 (2H, m), 3.91 (2H, s), 7.21 (2H, d, J = 8.0 Hz), 7.45 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.67 (2H, d, J = 7.8 Hz), 7.95 (1H, d, J = 7.8 Hz), 8.00 (1H, s), 8.04 (1H, s), 8.98 (1H, bs), 12.95 (1H, bs)

Mass spectrometric value (ESI-MS) 530 (M-1)

Compound 812 3-[(2-Diethylamino-ethylamino)-methyl]-N-[3-(3-fluoro-

benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 812 was produced in substantially the same manner as in Example B.

- ¹H-NMR (CDCl₃, 400 MHz): δ 1.07 (6H, t, J = 7.2 Hz), 2.51 (2H, m), 2.66 (4H, m), 2.73 (2H, m), 2.78 (2H, m), 2.89 (2H, m), 3.04 (2H, m), 3.90 (2H, s), 7.09 (1H, m), 7.35 (1H, m), 7.40 7.60 (4H, m), 7.92 (1H, d, J = 7.8 Hz), 7.98 (1H, s), 8.09 (1H, s), 9.09 (1H, bs), 12.83 (1H, bs) Mass spectrometric value (ESI-MS) 534 (M-1)
- Compound 813 3-[(2-Diethylamino-ethylamino)-methyl]-N-[3-(4-fluoro-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 813 was produced in substantially the same manner as in Example B.

- ¹H-NMR (CDCl₃, 400 MHz): δ 1.05 (6H, t, J = 7.1 Hz), 2.49 2.70 (8H, m), 2.75 (2H, m), 2.91 (2H, t, J = 7.3 Hz), 3.05 (2H, t, J = 7.0 Hz), 3.90 (2H, s), 7.09 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.44 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (1H, d, J = 7.6 Hz), 7.76 (2H, m), 7.93 (1H, d, J = 7.8 Hz), 7.99 (1H, s), 8.08 (1H, s), 9.02 (1H, bs), 12.88 (1H, bs)
- 20 Mass spectrometric value (ESI-MS) 534 (M-1)

 Compound 814 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-3-[(2-diethylamino-ethylamino)-methyl]-benzamide

The title compound 814 was produced in substantially the same 25 manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.2 Hz), 2.46 - 2.65 (8H, m), 2.71 (2H, m), 2.88 (2H, t, J = 7.1 Hz), 3.03 (2H, t, J = 6.8 Hz), 3.88 (2H, s), 7.45 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.54 (2H, m), 7.90 (2H, m), 7.98 (2H, m), 8.17 (1H, s), 9.13 (1H, bs), 12.78 (1H, bs)

Mass spectrometric value (ESI-MS) 618 (M-1)

Compound 815 3-[(2-Diethylamino-ethylamino)-methyl]-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 815 was produced in substantially the same manner as in Example B. 1 H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.1 Hz), 2.45 - 2.65 (8H, m),

2.71 (2H, m), 2.89 (2H, t, J = 7.2 Hz), 3.03 (2H, t, J = 7.1 Hz), 3.83 (3H, s), 3.89 (2H, s), 6.89 (2H, d, J = 8.8 Hz), 7.44 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.56 (1H, d, J = 7.6 Hz), 7.69 (2H, d, J = 8.8 Hz), 7.93 (1H, d, J = 8.1 Hz), 7.99 (2H, m), 8.93 (1H, bs), 12.94 (1H, bs)

5 Mass spectrometric value (ESI-MS) 546 (M-1)

Compound 816 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-5,6-

dihydro-4H-cyclopenta[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 816 was produced in substantially the same manner as in Example A.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.38 (2H, m), 1.50 (1H, m), 1.73 (2H, d, J = 12.0 Hz), 2.07 (2H, m), 2.30 (6H, s), 2.56 (2H, m), 2.94 (4H, m), 3.07 (2H, m), 3.50 (2H, d, J = 6.1 Hz), 3.65 (2H, s), 7.17 (1H, d, J = 7.8 Hz), 7.46 (2H, m), 7.60 (1H, d, J = 7.8 Hz), 7.64 (1H, s), 7.97 (1H, d, J = 7.6 Hz),

15 8.01 (2H, m), 8.96 (1H, s), 12.97 (1H, s)

10

20

25

30

Mass spectrometric value (ESI-MS) 543 (M-1)

<u>Compound 817</u> 3-(4-Hydroxymethyl-piperidin-1-ylmethyl)-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 817 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.39 (2H, m), 1.52 (1H, m), 1.72 (2H, d, J = 11.5 Hz), 2.11 (2H, m), 2.39 (3H, s), 2.55 (2H, m), 2.90 - 3.02 (4H, m), 3.07 (2H, t, J = 7.1 Hz), 3.49 (2H, d, J = 6.1 Hz), 3.69 (2H, s), 7.21 (2H, d, J = 8.1 Hz), 7.45 (1H, dd, J = 7.5 Hz, J = 7.5 Hz), 7.61 (1H, d, J = 7.6 Hz), 7.67 (2H, d, J = 8.0 Hz), 7.94 - 8.02 (2H, m), 8.05 (1H, s), 8.97 (1H, s), 12.95 (1H, s)

Mass spectrometric value (ESI-MS) 529 (M-1)

<u>Compound</u> 818 N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 818 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.35 (2H, m), 1.45 - 1.75 (3H, m), 2.03 (2H, m), 2.57 (2H, m), 2.94 (4H, m), 3.08 (2H, d, J = 7.1 Hz), 3.50 (2H, d, J = 6.1 Hz), 3.60 (2H, s), 7.12 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.45 (1H, dd,

J = 7.7 Hz, J = 7.7 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.80 (2H, m), 7.95 (1H, d, J = 7.8 Hz), 8.01 (1H, s), 8.09 (1H, s), 8.99 (1H, s), 12.90 (1H, s) Mass spectrometric value (ESI-MS) 533 (M-1)

Compound 819 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 819 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.36 - 1.62 (3H, m), 1.74 (2H, m), 2.14 (2H, m), 2.56 (2H, m), 2.90 - 3.14 (6H, m), 3.50 (2H, d, J = 6.1 Hz), 3.72 (2H, s), 7.11 (1H, m), 7.38 (1H, m), 7.44 - 7.59 (3H, m), 7.62 (1H, m), 7.90 - 8.03 (2H, m), 8.10 (1H, s), 9.06 (1H, s), 12.88 (1H, s)

Mass spectrometric value (ESI-MS) 533 (M-1)

Compound 820 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-3-(4-hydroxymethyl-piperidin-1-ylmethyl)-benzamide

The title compound 820 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.30 - 1.77 (5H, m), 2.03 (2H, m), 2.58 (2H, m), 2.93 (4H, m), 3.08 (2H, d, J = 7.1 Hz), 3.50 (2H, d, J = 6.3 Hz), 3.60 (2H, s), 7.46 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.58 (2H, m), 7.90 - 8.06 (4H, m), 8.19 (1H, s), 9.09 (1H, s), 12.81 (1H, s)

Mass spectrometric value (ESI-MS) 617 (M-1)

<u>Compound</u> 821 3-(4-Hydroxymethyl-piperidin-1-ylmethyl)-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl]-benzamide

The title compound 821 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.34 (2H, m), 1.50 (1H, m), 1.70 (2H, m), 2.02 (2H, m), 2.54 (2H, m), 2.91 (4H, m), 3.59 (2H, m), 3.49 (2H, d, J = 6.3 Hz), 3.58 (2H, s), 3.85 (3H, s), 6.92 (2H, m), 7.44 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (1H, d, J = 7.6 Hz), 7.72 (2H, m), 7.94 (1H, d, J = 7.8 Hz), 8.01 (2H, m), 8.92 (1H, s), 12.96 (1H, s)

Mass spectrometric value (ESI-MS) 545 (M-1)

25

35 <u>Compound 822</u> 3-Dimethylaminomethyl-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl}-benzamide

The title compound 822 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 2.26 (6H, s), 2.29 (6H, s), 2.58 (3H, s), 3.53 (2H, s), 6.51 (1H, d, J = 1.0 Hz), 7.17 (1H, d, J = 7.8 Hz), 7.46 (2H, m), 7.57 (1H, d, J = 7.6 Hz), 7.64 (1H, s), 7.95 (2H, m), 8.08 (1H, s), 9.11 (1H, s), 12.93 (1H, bs)

Mass spectrometric value (ESI-MS) 447 (M-1)

10

15

20

<u>Compound</u> 823 3-Dimethylaminomethyl-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 823 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 2.26 (6H, s), 2.39 (3H, s), 2.58 (3H, s), 3.53 (2H, s), 6.52 (1H, d, J = 1.0 Hz), 7.23 (2H, d, J = 7.8 Hz), 7.46 (1H, dd, J = 8.3 Hz, J = 8.3 Hz), 7.57 (1H, d, J = 7.8 Hz), 7.69 (2H, d, J = 7.6 Hz), 7.95 (2H, m), 8.12 (1H, s), 9.12 (1H, s), 12.91 (1H, bs)

Mass spectrometric value (ESI-MS) 433 (M-1)

<u>Compound</u> 824 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-dimethylaminomethyl-benzamide

The title compound 824 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 2.26 (6H, s), 2.52 (3H, s), 3.53 (2H, s), 6.49 (1H, s), 7.47 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (2H, m), 7.94 (3H, m), 8.04 (1H, m), 8.27 (1H, s), 9.36 (1H, bs), 12.66 (1H, bs)

25 Mass spectrometric value (ESI-MS) 521 (M-1)

<u>Compound 825</u> 3-Dimethylaminomethyl-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 825 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 2.26 (6H, s), 2.57 (3H, s), 3.53 (2H, s), 3.85 (3H, s), 6.51 (1H, d, J = 1.0 Hz), 6.93 (2H, m), 7.46 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.57 (1H, d, J = 7.8 Hz), 7.74 (2H, d, J = 8.8 Hz), 7.95 (2H, m), 8.09 (1H, s), 9.09 (1H, s), 12.93 (1H, bs)

Mass spectrometric value (ESI-MS) 449 (M-1)

35 <u>Compound 826</u> N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-pyrimidin-2-yl-piperazin-1-ylmethyl)-

benzamide

5

20

The title compound 826 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 2.29 (6H, s), 2.53 (4H, t, J = 5.0 Hz), 2.59 (3H, s), 3.63 (2H, s), 3.84 (4H, t, J = 5.0 Hz), 6.45 (1H, dd, J = 4.6 Hz, J = 4.6 Hz), 6.54 (1H, s), 7.17 (1H, d, J = 7.6 Hz), 7.47 (2H, m), 7.60 (1H, d, J = 7.6 Hz), 7.64 (1H, s), 7.96 (1H, d, J = 7.8 Hz), 8.05 (1H, s), 8.28 (2H, d, J = 4.6 Hz), 9.07 (1H, s), 12.99 (1H, bs) Mass spectrometric value (ESI-MS) 566 (M-1)

Compound 827 N-[4-Methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-3-(4-pyrimidin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 827 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 2.39 (3H, s), 2.53 (4H, t, J = 5.0 Hz), 2.59 (3H, s), 3.64 (2H, s), 3.85 (4H, t, J = 4.7 Hz), 6.46 (1H, dd, J = 4.7 Hz, J = 4.7 Hz), 6.53 (1H, s), 7.21 (2H, d, J = 8.0 Hz), 7.47 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.60 (1H, d, J = 7.6 Hz), 7.68 (2H, d, J = 8.1 Hz), 7.96 (1H, d, J = 7.8 Hz), 8.05 (1H, s), 8.11 (1H, s), 8.29 (2H, d, J = 4.6 Hz), 9.09 (1H, s), 12.97 (1H, bs)

Mass spectrometric value (ESI-MS) 552 (M-1)

<u>Compound 828</u> N-[3-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-pyrimidin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 828 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 2.54 (4H, t, J = 5.0 Hz), 2.59 (3H, s), 3.64 (2H, s), 3.85 (4H, t, J = 5.1 Hz), 6.46 (1H, dd, J = 4.9 Hz, J = 4.9 Hz), 6.54 (1H, s), 7.10 (2H, m), 7.46 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.60 (1H, d, J = 7.6 Hz), 7.79 (2H, m), 7.95 (1H, d, J = 7.8 Hz), 8.05 (1H, s), 8.15 (1H, s), 8.29 (2H, d, J = 4.9 Hz), 9.12 (1H, s), 12.92 (1H, bs)

30 Mass spectrometric value (ESI-MS) 556 (M-1)

Compound 829 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-pyrimidin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 829 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 2.53 (4H, t, J = 5.0 Hz), 2.59 (3H, s), 3.64 (2H, s), 3.85 (4H, t, J = 5.0 Hz), 6.46 (1H, dd, J = 4.7 Hz, J = 4.7 Hz),

6.55 (1H, s), 7.12 (1H, m), 7.38 (1H, m), 7.46 - 7.64 (4H, m), 7.95 (1H, m), 8.05 (1H, m), 8.17 (1H, s), 8.28 (2H, d, J = 4.6 Hz), 9.17 (1H, s), 12.87 (1H, bs)

Mass spectrometric value (ESI-MS) 556 (M-1)

5 <u>Compound</u> 830 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(4-pyrimidin-2-yl-piperazin-1-ylmethyl)-benzamide

The title compound 830 was produced in substantially the same manner as in Example A.

- ¹H-NMR (CDCl₃, 400 MHz): δ 2.53 (4H, t, J = 5.0 Hz), 2.59 (3H, s), 3.65 (2H, s), 3.85 (4H, t, J = 5.0 Hz), 6.46 (1H, dd, J = 4.8 Hz, J = 4.8 Hz), 6.55 (1H, s), 7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.55 (1H, d, J = 8.3 Hz), 7.61 (1H, d, J = 7.6 Hz), 7.96 (2H, m), 8.05 (2H, m), 8.26 (1H, s), 8.28 (2H, d, J = 4.6 Hz), 9.21 (1H, s), 12.84 (1H, bs)
- 15 Mass spectrometric value (ESI-MS) 640 (M-1)

 Compound 831 N-[3-(4-Methoxy-benzylidene-hydrazinocarbonyl)-4methyl-thiophen-2-yl]-3-(4-pyrimidin-2-yl-piperazin-1-ylmethyl)benzamide

The title compound 831 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 2.53 (4H, t, J = 4.8 Hz), 2.60 (3H, s), 3.64 (2H, s), 3.84 (7H, m), 6.45 (1H, d, J = 4.8 Hz), 6.55 (1H, s), 6.93 (2H, d, J = 8.8 Hz), 7.47 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.61 (1H, d, J = 7.6 Hz), 7.74 (2H, d, J = 8.8 Hz), 7.97 (1H, d, J = 7.8 Hz), 8.05 (1H, s), 8.08 (1H, s), 8.29 (2H, d, J = 4.4 Hz), 9.02 (1H, s), 13.04 (1H, bs)

Mass spectrometric value (ESI-MS) 568 (M-1)

20

25

30

35

<u>Compound 832</u> N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(1,4-dioxa-8-aza-spiro[4,5]dec-8-ylmethyl)-benzamide

The title compound 832 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.76 (4H, m), 2.31 (6H, s), 2.55 (4H, m), 2.62 (3H, s), 3.62 (2H, s), 3.94 (4H, s), 6.55 (1H, s), 7.26 (1H, m), 7.47 (2H, m), 7.53 (1H, m), 7.66 (1H, s), 7.95 (1H, d, J = 7.8 Hz), 8.01 (1H, s), 8.07 (1H, s), 9.03 (1H, s), 13.03 (1H, bs)

Mass spectrometric value (ESI-MS) 545 (M-1)

<u>Compound</u> 833 3-(1,4-Dioxa-8-aza-spiro[4,5]dec-8-ylmethyl]-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-benzamide

The title compound 833 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCI₃, 400 MHz): δ 1.76 (4H, t, J = 5.5 Hz), 2.40 (3H, s), 2.55 (4H, m), 2.60 (3H, s), 3.62 (2H, s), 3.94 (4H, s), 6.54 (1H, s), 7.23 (2H, d, J = 8.0 Hz), 7.45 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.58 (1H, d, J = 7.8 Hz), 7.70 (2H, d, J = 8.0 Hz), 7.93 (1H, d, J = 7.8 Hz), 8.01 (1H, s), 8.11 (1H, s), 9.06 (1H, s), 12.97 (1H, bs)

(111, 3), 3.00 (111, 0), 12.07 (111, 00)

Mass spectrometric value (ESI-MS) 531 (M-1)

<u>Compound 834</u> 3-(1,4-Dioxa-8-aza-spiro[4,5]dec-8-ylmethyl]-N-[3-(4-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 834 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.76 (4H, t, J = 5.4 Hz), 2.56 (4H, m), 2.59 (3H, s), 3.62 (2H, s), 3.94 (4H, s), 6.55 (1H, s), 7.12 (2H, dd, J = 8.6 Hz, J = 8.6 Hz), 7.45 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.58 (1H, d, J = 7.8 Hz), 7.81 (2H, m), 7.93 (1H, d, J = 7.6 Hz), 8.01 (1H, s), 8.15 (1H, s),

9.10 (1H, s), 12.91 (1H, bs)

Mass spectrometric value (ESI-MS) 535 (M-1)

<u>Compound</u> 835 3-(1,4-Dioxa-8-aza-spiro[4,5]dec-8-ylmethyl]-N-[3-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-

25 benzamide

5

10

20

30

The title compound 835 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.76 (4H, t, J = 5.4 Hz), 2.55 (7H, m), 3.62 (2H, s), 3.94 (4H, s), 6.51 (1H, s), 7.11 (1H, m), 7.34 - 7.60 (5H, m), 7.91 (1H, d, J = 7.6 Hz), 8.01 (1H, s), 8.18 (1H, s), 9.22 (1H, s), 12.78 (1H, bs)

Mass spectrometric value (ESI-MS) 535 (M-1)

<u>Compound</u> 836 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-3-(1,4-dioxa-8-aza-

35 spiro[4,5]dec-8-ylmethyl]-benzamide

The title compound 836 was produced in substantially the same

manner as in Example A.

¹H-NMR (CDCI₃, 400 MHz): δ 1.76 (4H, t, J = 5.5 Hz), 2.57 (7H, m), 3.62 (2H, s), 3.94 (4H, s), 6.53 (1H, d, J = 1.0 Hz), 7.46 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (2H, m), 7.91 (1H, m), 7.96 - 8.02 (2H, m), 8.05 (1H, d, J = 1.7 Hz), 8.27 (1H, s), 9.25 (1H, s), 12.76 (1H, bs)

Mass spectrometric value (ESI-MS) 619 (M-1)

Compound 837 3-(1,4-Dioxa-8-aza-spiro[4,5]dec-8-ylmethyl]-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-

benzamide

10

25

35

The title compound 837 was produced in substantially the same manner as in Example A.

¹H-NMR (CDCl₃, 400 MHz): δ 1.76 (4H, m), 2.56 (4H, m), 2.61 (3H, s), 3.63 (2H, s), 3.86 (3H, s), 3.94 (4H, s), 6.55 (1H, s), 6.95 (2H, m), 7.46 (1H, dd, J = 7.6 Hz), 8.01 (1H, s), 8.08 (1H, s), 9.00 (1H, s), 13.03

7.95 (1H, d, J = 7.6 Hz), 8.01 (1H, s), 8.08 (1H, s), 9.00 (1H, s), 13.03 (1H, bs)

Mass spectrometric value (ESI-MS) 547 (M-1)

<u>Compound 838</u> 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-

20 benzamide

The title compound 838 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 0.98 (12H, t, J = 7.1 Hz), 2.29 (6H, m), 2.43 - 2.66 (19H, m), 3.73 (2H, s), 6.52 (1H, d, J = 1.0 Hz), 7.17 (1H, d, J = 7.8 Hz), 7.44 (2H, m), 7.62 (2H, m), 7.92 (1H, d, J = 7.8 Hz), 8.01 (1H, s), 8.09 (1H, s)

Mass spectrometric value (ESI-MS) 617 (M-1)

Compound 839 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[4-methyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-

30 benzamide

The title compound 839 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCI₃, 400 MHz): δ 0.98 (12H, t, J = 7.1 Hz), 2.38 (3H, s), 2.45 - 2.65 (19H, m), 3.72 (2H, s), 6.51 (1H, d, J = 1.2 Hz), 7.22 (2H, d, J = 7.8 Hz), 7.43 (1H, m), 7.60 (1H, m), 7.68 (2H, d, J = 7.8 Hz), 7.91 (1H, d, J = 7.8 Hz), 8.00 (1H, s), 8.13 (1H, s)

Mass spectrometric value (ESI-MS) 603 (M-1)

5

10

25

<u>Compound 840</u> 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 840 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 0.98 (12H, t, J = 7.1 Hz), 2.43 - 2.66 (19H, m), 3.72 (2H, s), 6.50 (1H, d, J = 1.0 Hz), 7.10 (2H, dd, J = 8.5 Hz, J = 8.5 Hz), 7.44 (1H, m), 7.62 (1H, d, J = 7.6 Hz), 7.79 (2H, m), 7.89 (1H, d, J = 7.8 Hz), 8.00 (1H, s), 8.18 (1H, s)

Mass spectrometric value (ESI-MS) 607 (M-1)

<u>Compound 841</u> 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 841 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 0.98 (12H, t, J = 7.1 Hz), 2.44 - 2.64 (19H, m), 3.73 (2H, s), 6.51 (1H, s), 7.11 (1H, s), 7.34 - 7.64 (5H, m), 7.90 (1H, d, J = 7.8 Hz), 8.01 (1H, s), 8.19 (1H, s)

20 Mass spectrometric value (ESI-MS) 607 (M-1)

<u>Compound 842</u> 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 842 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 0.97 (12H, m), 2.42 - 2.64 (19H, m), 3.72 (2H, m), 6.47 (1H, d, J = 1.0 Hz), 7.30 - 7.68 (4H, m), 7.77 - 8.05 (3H, m), 8.27 (1H, s)

Mass spectrometric value (ESI-MS) 691 (M-1)

30 <u>Compound 843</u> 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide

The title compound 843 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 0.98 (12H, t, J = 7.2 Hz), 2.45 - 2.66 (19H, m), 3.72 (2H, s), 3.85 (3H, s), 6.52 (1H, d, J = 1.0 Hz), 6.93 (2H, d, J =

8.8 Hz), 7.44 (1H, m), 7.62 (1H, d, J = 7.8 Hz), 7.74 (2H, d, J = 8.6 Hz), 7.92 (1H, d, J = 7.8 Hz), 8.01 (1H, s), 8.10 (1H, s)

Mass spectrometric value (ESI-MS) 619 (M-1)

<u>Compound</u> 844 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4,5-dimethyl-thiophen-2-yl]-benzamide

The title compound 844 was produced in substantially the same manner as in Example B.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.12 (6H, m), 2.26 - 2.64 (16H, m), 3.62 - 4.05 (4H, m), 7.13 (1H, m), 7.40 - 7.56 (3H, m), 7.65 (1H, m), 7.99 (1H, m), 8.04 (1H, s), 8.19 (1H, s), 9.10 (1H, s), 13.02 (1H, bs) Mass spectrometric value (ESI-MS) 549 (M-1)

<u>Compound 845</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4,5-dimethyl-3-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-

15 benzamide

10

20

The title compound 845 was produced in substantially the same manner as in Example B.

 1 H-NMR (CDCI₃, 400 MHz): δ 1.11 (6H, m), 2.28 - 2.64 (13H, m), 3.60 - 4.04 (4H, m), 7.21 (2H, m), 7.43 (2H, m), 7.73 (2H, m), 7.99 (1H, m), 8.07 (1H, s), 8.21 (1H, s), 9.09 (1H, bs), 13.01 (1H, bs)

Mass spectrometric value (ESI-MS) 535 (M-1)

Compound 846 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-fluorobenzylidene-hydrazinocarbonyl)-4,5-dimethyl-thiophen-2-yl]-benzamide

The title compound 846 was produced in substantially the same 25 manner as in Example B.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.11 (6H, m), 2.24 - 2.52 (8H, m), 2.63 (2H, m), 3.60 - 4.06 (4H, m), 7.04 (2H, m), 7.43 (2H, m), 7.83 (2H, m), 7.99 (1H, m), 8.13 (1H, s), 8.24 (1H, m), 9.24 (1H, s), 12.98 (1H, bs) Mass spectrometric value (ESI-MS) 539 (M-1)

30 <u>Compound 847</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5-dimethyl-thiophen-2-yl]-benzamide

The title compound 847 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 1.11 (6H, m), 2.19 (3H, m), 2.28 (3H, m), 2.52 (2H, m), 2.67 (2H, m), 3.60 - 4.10 (4H, m), 7.33 (1H, d, J = 8.3 Hz),

7.38 - 7.50 (2H, m), 7.86 (1H, m), 7.98 - 8.10 (2H, m), 8.28 (1H, s), 8.36 (1H, s), 9.57 (1H, s), 13.03 (1H, s)

Mass spectrometric value (ESI-MS) 623 (M-1)

5

20

25

30

Compound 848 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5-dimethyl-thiophen-2-yl]-benzamide

The title compound 848 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 1.11 (6H, m), 2.24 - 2.64 (10H, m), 3.60 - 4.04 (7H, m), 6.91 (2H, m), 7.43 (2H, m), 7.79 (2H, m), 8.02 (2H, m), 8.23 (1H, s), 9.04 (1H, s), 13.02 (1H, bs)

Mass spectrometric value (ESI-MS) 551 (M-1)

<u>Compound 849</u> 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-

tetrahydro-benzo[b]thiophen-2-yl]-benzamide

The title compound 849 was produced in substantially the same manner as in Example B.

 1 H-NMR (CDCl₃, 400 MHz): δ 0.98 (12H, t, J = 7.1 Hz), 1.91 (4H, m), 2.48 (8H, m), 2.58 (8H, m), 2.76 (2H, m), 2.87 (2H, m), 3.73 (2H, s), 7.44 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (1H, d, J = 8.3 Hz), 7.62 (1H, d, J = 7.6 Hz), 7.90 (1H, d, J = 8.1 Hz), 7.97 (1H, dd, J = 8.3 Hz, J = 2.0 Hz), 8.00 (1H, s), 8.04 (1H, d, J = 1.7 Hz), 8.22 (1H, s)

Mass spectrometric value (ESI-MS) 731 (M-1)

<u>Compound 850</u> 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]-thiophen-2-yl]-benzamide

The title compound 850 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 0.98 (12H, t, J = 7.2 Hz), 1.92 (4H, m), 2.49 (8H, m), 2.58 (8H, m), 2.76 (2H, m), 2.89 (2H, m), 3.72 (2H, s), 3.88 (3H, s), 6.97 (2H, m), 7.27 - 7.46 (3H, m), 7.61 (1H, d, J = 7.8 Hz), 7.92 (1H, d, J = 7.3 Hz), 8.00 (1H, s), 8.10 (1H, s)

Mass spectrometric value (ESI-MS) 659 (M-1)

Example C

35 <u>Compound 851</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-

yl]-benzamide; hydrochloride

Diethyl ether (200 μ l) was added to compound 591: 3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide (30 mg) produced by the process described in Example 8 at room temperature. Further, a few drops of 10% hydrochloric acid-methanol were added thereto, and the mixture was stirred for a few minunites. The reaction solution was then filtered through Kiriyama Rohto, and the crystals were washed with diethyl ether to give the title compound 851 (25 mg, yield 80%).

 1 H-NMR (CDCl₃, 400 MHz): δ 1.14 - 1.27 (6H, m), 2.56 (3H, s), 2.90 (4H, m), 4.22 (4H, m), 6.53 (1H, m), 7.53 (2H, m), 7.70 (1H, m), 7.95 (1H, m), 8.03 (1H, d, J = 8.0 Hz), 8.07 (1H, s), 8.20 (1H, d, J = 7.3 Hz), 8.36 (1H, m)

15 Mass spectrometric value (ESI-MS) 609 (M-1)

Compound 852 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-thiophen-2-yl]-benzamide; hydrochloride

The title compound 852 was produced in substantially the same manner as in Example C.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.22 (6H, d, J = 6.1 Hz), 2.53 (3H, s), 3.30 (4H, m), 3.85 (3H, s), 4.20 (4H, m), 6.73 (1H, d, J = 1.0 Hz), 6.99 (2H, d, J = 8.5 Hz), 7.60 - 7.85 (4H, m), 8.00 - 8.29 (3H, m) Mass spectrometric value (ESI-MS) 538 (M-1)

25 Example D

5

10

20

30

35

<u>Compound 853</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-fluoro-phenyl]-benzamide; hydrochloride

Diethyl ether (200 μ l) was added to compound 857: 3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-fluoro-phenyl]-benzamide (30 mg) produced by the process described in Example A at room temperature, a few drops of 10% hydrochloric acid-methanol were further added thereto, and the mixture was stirred for a few minutes. The reaction solution was then filtered through Kiriyama Rohto, and the crystals were washed with diethyl ether to give the title compound 853 (25 mg, yield 80%).

 1 H-NMR (CD₃OD, 400 MHz): δ 1.15 - 1.32 (6H, m), 3.00 - 3.40 (4H, m), 4.10 - 4.86 (4H, m), 7.44 (1H, m), 7.68 - 7.85 (4H, m), 8.03 (1H, d, J = 4.10 - 4.86 (4H, m), 7.44 (1H, m), 7.68 - 7.85 (4H, m), 8.03 (1H, d, J = 4.10 - 4.86 (4H, m), 7.44 (1H, m), 7.68 - 7.85 (4H, m), 8.03 (1H, d, J = 4.10 - 4.86 (4H, m), 8.03 (1H, d, J = 4.10 - 4.86 (4H, m), 8.03 (1H, d, J = 4.10 - 4.86 (4H, m), 8.03 (1H, d, J = 4.10 - 4.86 (4H, m), 8.03 (4H, m), 8.03 (4H, d, J = 4.10 - 4.86 (4H, m), 8.03 (4H, d, J = 4.10 - 4.86 (4H, m), 8.03 (4H, d, J = 4.10 - 4.86 (4H, d, J = 4.10 - 4.10 (4H, d, J = 4.10 - 4.10 (4H, d, J = 4.10 - 4.10 (4H, d, J = 4.10 (47.8 Hz), 8.14 (2H, m), 8.36 (1H, m), 8.41 (1H, s), 8.62 (1H, m) Mass spectrometric value (ESI-MS) 608 (M-1)

Compound 854 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-fluoro-2-5 (4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide; hydrochloride

The title compound 854 was produced in substantially the same manner as in Example D.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 1.18 (6H, m), 3.30 (4H, m), 3.85 (3H, s), 10 4.00 - 4.30 (4H, m), 6.98 (2H, d, J = 8.5 Hz), 7.35 (1H, m), 7.65 - 7.83(5H, m), 8.00 - 8.17 (2H, m), 8.31 (1H, s), 8.70 (1H, m) Mass spectrometric value (ESI-MS) 536 (M-1)

Example E

30

35

3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-15 Compound 855 chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5,6,7tetrahydro-benzo[b]thiophen-2-yl]-benzamide; hydrochloride

Diethyl ether (200 µl) was added to compound 849: 3-{[bis-(2diethylamino-ethyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-

benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-benzo[b]thiophen-2-20 yl]-benzamide (30 mg) produced by the process described in Example B at room temperature, a few drops of 10% hydrochloric acid-methanol were further added thereto, and the mixture was stirred for a few minutes. The reaction solution was then filtered through Kiriyama Rohto, and the crystals were washed with diethyl ether to give the title compound 855 25 (25 mg, yield 80%).

¹H-NMR (CD₃OD, 400 MHz): δ 1.28 (12H, m), 1.91 (4H, m), 2.77 (2H, m), 2.87 (2H, m), 3.04 (4H, m), 3.18 (8H, m), 3.40 (4H, m), 3.92 (2H, s), 7.62 (1H, m), 7.70 (1H, m), 7.77 (1H, m), 7.95 (1H, m), 8.01 (2H, m), 8.32 (2H, m)

Mass spectrometric value (ESI-MS) 732 (M-1)

Compound 856 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4methoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-

benzo[b]thiophen-2-yl]-benzamide; hydrochloride

The title compound 856 was produced in substantially the same manner as in Example E.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.29 (12H, m), 1.89 (4H, m), 2.70 - 2.92 (4H, m), 3.00 - 3.28 (12H, m), 3.43 (4H, m), 3.87 (3H, s), 3.97 (2H, s), 7.20 (1H, m), 7.30 - 7.40 (2H, m), 7.52 (1H, m), 7.63 (1H, m), 7.77 (1H, m), 7.98 (1H, m), 8.04 (1H, s), 8.27 (1H, s)

Mass spectrometric value (ESI-MS) 660 (M-1)

Compound 857 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-fluoro-phenyl]-benzamide

The title compound 857 was produced in substantially the same manner as in Example A.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.08 (6H, m), 2.43 - 2.60 (4H, m), 3.60 - 3.95 (4H, m), 7.40 (1H, m), 7.50 (1H, m), 7.60 (1H, m), 7.69 (2H, d, J = 7.6 Hz), 7.85 (1H, m), 8.07 (2H, m), 8.34 (1H, m), 8.38 (1H, s), 8.65 (1H, m),

15 Mass spectrometric value (ESI-MS) 608 (M-1)

Example F

10

20

25

30

35

Compound 858 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3, 4-dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-ylphenyl]-benzamide

5-Chloro-2-nitro-benzoic acid (compound A') (5.0 g) was dissolved in methanol (150 ml). Thionyl chloride (9.5 ml) was added to the solution at 0°C, and the mixture was heated under reflux with stirring for 15 hr. After the completion of the reaction, distilled water was added thereto at 0°C, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with distilled water and saturated brine, was dried over sodium sulfate, and was then concentrated to give 5-chloro-2-nitro-benzoic acid methyl ester as a useful intermediate (12.9 g, yield 92%).

5-Chloro-2-nitro-benzoic acid methyl ester (2.2 g) produced by the above reaction was dissolved in N,N-dimethylformamide (20 ml). Piperidine (compound D) (1.5 g) and potassium carbonate (1.5 g) were added to the solution at room temperature, and the mixture was stirred at 75°C for 15 hr, After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with distilled water and saturated brine, was dried over sodium sulfate,

and was then concentrated to give 2-nitro-5-piperidin-1-yl-benzoic acid methyl ester as a useful intermediate (1.86 g, crude yield 69%).

2-Nitro-5-piperidin-1-yl-benzoic acid methyl ester (4.8 g) produced by the above reaction was dissolved in ethanol (5.0 ml), and 10% palladium-carbon (500 mg) was added to the solution. The air in the reaction system was then replaced by hydrogen, and the reaction solution was stirred at room temperature for 15 hr. After the completion of the reaction, the atmosphere in the reaction system was replaced by nitrogen, followed by filtration through Celite. The filterate was concentrated, and the residue was purified by column chromatography using a hexane-acetone system to give 2-amino-5-piperidin-1-yl-benzoic acid methyl ester (compound A) as a useful intermediate (3.7 g, yield 87%).

2-Amino-5-piperidin-1-yl-benzoic acid methyl ester (compound A) (2.1 g) produced by the above reaction was dissolved in anhydrous methylene chloride (20.0 ml). Subsequently, pyridine (900 μl) and 3-(chloromethyl)benzoyl chloride (compound B) (740 μl) were added to the solution at 0°C, and the mixture was stirred at 0°C for one hr. After the completion of the reaction, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate and was then concentrated. The residue was purified by column chromatography using a chloroform-acetone system to give 2-(3-chloromethyl-benzoylamino)-5-piperidin-1-yl-benzoic acid methyl ester as a useful intermediate (1.8 g, yield 50%).

2-(3-Chloromethyl-benzoylamino)-5-piperidin-1-yl-benzoic acid methyl ester (500 mg) produced by the above reaction was dissolved in anhydrous methylene chloride (5.0 ml). Triethylamine (400 µl) and N,N-diethyl-N'-methylethylenediamine (compound B') (325 mg) were added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-{[(2-diethylamino-

ethyl)-methyl-amino]-methyl}-benzoylamino)-5-piperidin-1-yl-benzoic acid methyl ester as a useful intermediate (612 mg, yield 98%).

5

10

15

20

35

2-(3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-benzoylamino)-5-piperidin-1-yl-benzoic acid methyl ester (612 mg) produced by the above reaction was dissolved in ethanol (10.0 ml). Hydrazine monohydrate (700 µl) was added to the solution, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-N-(2-hydrazinocarbonyl-4-piperidin-1-yl-phenyl)-benzamide as a hydrazine compound (612 mg, yield 100%).

3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-(2-hydrazinocarbonyl-4-piperidin-1-yl-phenyl)-benzamide as a hydrazine compound (70 mg) produced by the above reaction was dissolved in anhydrous toluene (1.0 ml). 3,4-Dimethylbenzaldehyde (compound C) (40 μ l) was added to the solution at room temperature, and the mixture was stirred at 70°C for 15 hr. After the completion of the reaction, the reaction product was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 858 (62 mg, yield 70%).

¹H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.2 Hz), 1.26 (2H, m), 1.37 (4H, m), 2.26 (9H, m), 2.60 (6H, m), 2.69 (2H, m), 2.84 (4H, m), 3.62 (2H, s), 6.86 (1H, d, J = 8.8 Hz), 7.00 (1H, s), 7.15 (1H, d, J = 7.6 Hz), 7.44 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.53 (2H, m), 7.65 (1H, s), 7.89 (1H, d, J = 7.6 Hz), 7.98 (1H, s), 8.10 (1H, d, J = 8.8 Hz), 8.51 (1H, s), 11.23 (2H, 30 m)

Mass spectrometric value (ESI-MS) 595 (M-1)

<u>Compound 859</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 859 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.05 (6H, t, J = 7.2 Hz), 1.29 (2H, m), 1.40 (4H, m), 2.25 (3H, s), 2.37 (3H, s), 2.62 (6H, m), 2.72 (2H, m), 2.87 (4H, m), 3.62 (2H, s), 6.89 (1H, d, J = 8.8 Hz), 7.02 (1H, s), 7.20 (2H, d, J = 7.8 Hz), 7.43 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.53 (1H, d, J = 7.3 Hz), 7.72 (2H, d, J = 7.6 Hz), 7.88 (1H, d, J = 7.6 Hz), 7.97 (1H, s), 8.13 (1H, d, J = 9.0 Hz), 8.51 (1H, s), 11.23 (2H, m) Mass spectrometric value (ESI-MS) 581 (M-1) Compound 860 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-

10 benzamide

15

The title compound 860 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.05 (6H, t, J = 7.1 Hz), 1.28 (2H, m), 1.37 (4H, m), 2.25 (3H, s), 2.62 (6H, m), 2.72 (2H, m), 2.84 (4H, m), 3.63 (2H, s), 6.87 (1H, d, J = 8.5 Hz), 6.99 (1H, m), 7.09 (2H, dd, J = 8.5 Hz, J = 8.5 Hz), 7.44 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.54 (1H, d, J = 7.3 Hz), 7.83 (2H, m), 7.88 (1H, d, J = 7.4 Hz), 7.98 (1H, s), 8.07 (1H, d, J = 9.0

Mass spectrometric value (ESI-MS) 585 (M-1)

Hz), 8.56 (1H, s), 11.19 (1H, s)

20 <u>Compound 861</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 861 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.10 (6H, t, J = 7.0 Hz), 1.30 (2H, m), 1.39 (4H, m), 2.25 (3H, s), 2.64 - 2.90 (12H, m), 3.62 (2H, s), 6.89 (1H, d, J = 8.5 Hz), 7.07 (2H, m), 7.27 - 7.65 (4H, m), 7.68 - 8.00 (3H, m), 8.11 (1H, d, J = 9.0 Hz), 8.53 (1H, s), 11.23 (1H, s)

Mass spectrometric value (ESI-MS) 585 (M-1)

30 <u>Compound 862</u> N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 862 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.2 Hz), 1.23 (2H, m), 1.32 (4H, m), 2.27 (3H, s), 2.58 (6H, m), 2.67 (2H, m), 2.79 (4H, m), 3.64 (2H,

s), 6.81 (1H, d, J = 8.5 Hz), 6.92 (1H, s), 7.47 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (2H, m), 7.88 (1H, d, J = 7.8 Hz), 7.95 (1H, d, J = 9.0 Hz), 8.01 (1H, s), 8.06 (1H, d, J = 8.1 Hz), 8.10 (1H, s), 8.64 (1H, s), 11.08 (1H, s)

Mass spectrometric value (ESI-MS) 669 (M-1)
Compound 863 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 863 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.06 (6H, t, J = 7.1 Hz), 1.32 (2H, m), 1.43 (4H, m), 2.24 (3H, s), 2.62 (6H, m), 2.72 (2H, m), 2.90 (4H, m), 3.62 (2H, s), 3.82 (3H, s), 6.83 - 6.95 (3H, m), 7.05 (1H, s), 7.42 (1H, m), 7.52 (1H, m), 7.74 (2H, d, J = 8.6 Hz), 7.88 (1H, d, J = 7.6 Hz), 7.96 (1H, s), 8.18 (1H, d, J = 9.0 Hz), 8.48 (1H, s)

Mass spectrometric value (ESI-MS) 597 (M-1)

<u>Compound 864</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 864 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.42 (4H, m), 1.32 (2H, m), 2.28 (3H, s), 2.29 (3H, s), 2.48 - 2.72 (10H, m), 2.88 (4H, m), 3.61 (4H, m), 6.92 (1H, m), 6.99 (1H, m), 7.16 (1H, d, J = 7.8 Hz), 7.44 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.51 (2H, m), 7.65 (1H, s), 7.90 (1H, d, J = 7.8 Hz), 7.99 (1H, s), 8.17 (1H, d, J = 9.2 Hz), 8.43 (1H, s), 10.71 (1H, s), 11.21 (1H, s) Mass spectrometric value (ESI-MS) 595 (M-1)

Compound 865 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-

30 benzamide

10

15

20

25

35

The title compound 865 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.28 (2H, m), 1.39 (4H, m), 2.36 (3H, s), 2.48 - 2.90 (14H, m), 3.60 (4H, m), 6.88 (1H, d, J = 9.0 Hz), 6.99 (1H, s), 7.20 (2H, d, J = 8.0 Hz), 7.44 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.51 (1H, d, J = 7.3 Hz), 7.72 (2H, d, J = 7.8 Hz), 7.90 (1H, d, J = 7.6 Hz), 7.99 (1H,

s), 8.13 (1H, d, J = 9.0 Hz), 8.49 (1H, s), 10.95 (1H, s), 11.23 (1H, s) Mass spectrometric value (ESI-MS) 581 (M-1)

<u>Compound</u> 866 N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-

5 benzamide

The title compound 866 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.27 (2H, m), 1.37 (4H, m), 2.55 - 2.90 (14H, m), 3.62 (2H, s), 3.68 (2H, t, J = 5.2 Hz), 6.88 (1H, d, J = 8.8 Hz), 7.00 - 7.16 (2H, m), 7.31 - 7.60 (4H, m), 7.70 - 8.03 (3H, m), 8.11 (1H, d, J = 9.0 Hz), 8.52 (1H, s), 11.21 (1H, s), 11.35 (1H, s)

Mass spectrometric value (ESI-MS) 585 (M-1)

Compound 867 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-

15 benzamide

10

20

25

30

The title compound 867 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.26 (2H, m), 1.36 (4H, m), 2.58 (10H, m), 2.83 (4H, m), 3.62 (4H, m), 6.87 (1H, d, J = 8.8 Hz), 6.98 (1H, s), 7.08 (2H, dd, J = 8.4 Hz, J = 8.4 Hz), 7.44 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.52 (1H, d, J = 7.8 Hz), 7.81 (2H, m), 7.89 (1H, d, J = 7.6 Hz), 7.98 (1H, s), 8.09 (1H, d, J = 9.0 Hz), 8.53 (1H, s), 11.20 (1H, s) Mass spectrometric value (ESI-MS) 585 (M-1)

Compound 868 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 868 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.61 (2H, m), 1.72 (4H, m), 2.46 - 2.65 (10H, m), 3.22 (4H, m), 3.63 (4H, m), 7.20 (1H, dd, J = 9.3 Hz, J = 2.7 Hz), 7.36 (1H, d, J = 2.7 Hz), 7.48 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.55 (1H, d, J = 7.8 Hz), 7.65 (1H, d, J = 8.3 Hz), 7.86 (1H, m), 7.93 (1H, m), 8.00 (1H, d, J = 8.3 Hz), 8.26 (1H, s), 8.32 (1H, d, J = 9.3 Hz), 8.36 (1H, s)

Mass spectrometric value (ESI-MS) 669 (M-1)
Compound 869 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[2-(4-

methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 869 was produced in substantially the same manner as in Example F.

- ¹H-NMR (CDCl₃, 400 MHz): δ 1.37 (2H, m), 1.48 (4H, m), 2.56 (10H, m), 2.93 (4H, m), 3.61 (4H, m), 3.84 (3H, s), 6.90 7.04 (4H, m), 7.44 (1H, dd, J = 7.4 Hz, J = 7.4 Hz), 7.51 (1H, d, J = 7.4 Hz), 7.76 (2H, d, J = 8.3 Hz), 7.89 (1H, d, J = 7.6 Hz), 7.98 (1H, s), 8.23 (1H, m), 8.38 (1H, m), 11.21 (1H, s)
- 10 Mass spectrometric value (ESI-MS) 597 (M-1)

 Compound 870 N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4piperidin-1-yl-phenyl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 870 was produced in substantially the same manner as in Example F.

- ¹H-NMR (CDCl₃, 400 MHz): δ 1.32 (2H, m), 1.43 (4H, m), 1.63 (2H, m), 1.90 (2H, m), 2.29 (8H, m), 2.80 (2H, m), 2.88 (4H, m), 3.63 (2H, s), 3.72 (1H, m), 6.91 (1H, d, J = 8.8 Hz), 7.02 (1H, s), 7.15 (1H, d, J = 7.8 Hz), 7.35 7.55 (3H, m), 7.65 (1H, m), 7.90 (1H, d, J = 7.3 Hz), 7.97 (1H, s), 8.18 (1H, d, J = 9.3 Hz), 8.44 (1H, s), 10.79 (1H, s), 11.24 (1H, s)
- 20 Mass spectrometric value (ESI-MS) 566 (M-1)

 <u>Compound</u> 871 3-(4-Hydroxy-piperidin-1-ylmethyl)-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 871 was produced in substantially the same manner as in Example F.

- ¹H-NMR (CDCl₃, 400 MHz): δ 1.26 (2H, m), 1.40 (4H, m), 1.64 (2H, m), 1.89 (2H, m), 2.26 (2H, m), 2.35 (3H, s), 2.82 (6H, m), 3.63 (2H, s), 3.71 (1H, m), 6.89 (1H, d, J = 8.6 Hz), 7.04 (1H, s), 7.18 (2H, d, J = 7.8 Hz), 7.43 (1H, m), 7.53 (1H, m), 7.69 (2H, d, J = 7.6 Hz), 7.90 (1H, d, J = 7.3 Hz), 7.97 (1H, s), 8.17 (1H, d, J = 8.6 Hz), 8.47 (1H, s), 10.98 (1H, s), 11.26 (1H, s)
 - Mass spectrometric value (ESI-MS) 552 (M-1)

Compound 872 N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 872 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.32 (2H, m), 1.42 (4H, m), 1.66 (2H, m),

1.92 (2H, m), 2.40 (2H, m), 2.88 (6H, m), 3.71 (2H, s), 3.76 (1H, m), 6.90 (1H, d, J = 8.8 Hz), 6.98 - 7.11 (2H, m), 7.43 (1H, m), 7.54 (1H, m), 7.77 (2H, m), 7.89 (1H, d, J = 7.6 Hz), 7.96 (1H, s), 8.05 (1H, m), 8.15 (1H, d, J = 9.0 Hz), 8.47 (1H, s), 11.10 - 11.30 (2H, m)

5 Mass spectrometric value (ESI-MS) 556 (M-1)

<u>Compound</u> 873 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 873 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.34 (2H, m), 1.44 (4H, m), 1.67 (2H, m), 1.94 (2H, m), 2.34 (2H, m), 2.88 (6H, m), 3.70 (2H, s), 3.77 (1H, m), 6.92 (1H, d, J = 8.3 Hz), 7.09 (3H, m), 7.29 - 7.67 (4H, m), 7.90 (1H, d, J = 7.8 Hz), 7.97 (1H, s), 8.14 (1H, d, J = 9.0 Hz), 8.49 (1H, s), 11.02 (1H, s), 11.17 (1H, s)

15 Mass spectrometric value (ESI-MS) 556 (M-1)

20

25

30

35

<u>Compound</u> 874 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(4-hydroxy-piperidin-1-ylmethyl)-benzamide

The title compound 874 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.50 - 1.68 (4H, m), 1.75 (4H, m), 1.84 (2H, m), 2.22 (2H, m), 2.81 (2H, m), 3.24 (4H, t, J = 5.2 Hz), 3.61 (3H, m), 7.22 (1H, dd, J = 9.0 Hz, J = 2.7 Hz), 7.37 (1H, d, J = 2.7 Hz), 7.50 (1H, m), 7.57 (1H, m), 7.67 (1H, d, J = 8.3 Hz), 7.87 (1H, d, J = 7.8 Hz), 7.60 (4H, d, J = 7.8 Hz), 7.60 (4H,

7.92 (1H, s), 8.03 (1H, d, J = 8.3 Hz), 8.29 (1H, s), 8.33 (1H, d, J = 9.0 Hz), 8.37 (1H, s)

Mass spectrometric value (ESI-MS) 640 (M-1)

Compound 875 3-(4-Hydroxy-piperidin-1-ylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 875 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.34 (2H, m), 1.45 (4H, m), 1.64 (2H, m), 1.90 (2H, m), 2.25 (2H, m), 2.79 (2H, m), 2.91 (4H, m), 3.63 (2H, s), 3.72 (1H, m), 3.83 (3H, m), 6.92 (3H, m), 7.64 (1H, s), 7.33 - 7.50 (1H, m), 7.53 (1H, d, J = 7.6 Hz), 7.75 (2H, d, J = 8.3 Hz), 7.89 (1H, d, J = 7.6 Hz),

7.96 (1H, s), 8.22 (1H, d, J = 8.8 Hz), 8.42 (1H, s), 10.68 (1H, bs), 11.25

(1H, s)

Mass spectrometric value (ESI-MS) 568 (M-1)

<u>Compound</u> 876 3-(2-Diethylamino-ethylsulfanylmethyl)-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-

5 benzamide

10

The title compound 876 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.1 Hz), 1.33 (2H, m), 1.44 (4H, m), 2.29 (6H, m), 2.59 (6H, m), 2.71 (2H, m), 2.90 (4H, m), 3.84 (2H, s), 6.92 (1H, d, J = 8.8 Hz), 7.10 (1H, s), 7.16 (1H, d, J = 7.6 Hz), 7.44 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.53 (2H, m), 7.66 (1H, m), 7.89 (1H, d, J = 7.6 Hz), 8.00 (1H, s), 8.18 (1H, d, J = 8.8 Hz), 8.44 (1H, s), 10.73 (1H, bs), 11.26 (1H, s)

Mass spectrometric value (ESI-MS) 598 (M-1)

15 <u>Compound 877</u> 3-(2-Diethylamino-ethylsulfanylmethyl)-N-[2-(4-fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 877 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.08 (6H, t, J = 7.0 Hz), 1.36 (2H, m), 1.46 (4H, m), 2.74 (6H, m), 2.84 (2H, m), 2.92 (4H, m), 3.83 (2H, s), 6.94 (1H, d, J = 8.3 Hz), 7.05 (2H, m), 7.42 (1H, d, J = 7.7 Hz, J = 7.7 Hz), 7.52 (1H, m), 7.79 (2H, m), 7.88 (1H, d, J = 7.6 Hz), 7.98 (1H, s), 8.03 (1H, m), 8.17 (1H, d, J = 8.8 Hz), 8.47 (1H, s), 11.02 (1H, bs), 11.27 (1H, s) Mass spectrometric value (ESI-MS) 588 (M-1)

25 <u>Compound</u> 878 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(2-diethylamino-ethylsulfanylmethyl)-benzamide

The title compound 878 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCI₃, 400 MHz): δ 1.03 (6H, m), 1.29 (2H, m), 1.38 (4H, m), 2.48 - 2.75 (8H, m), 2.84 (4H, m), 3.85 (2H, s), 6.90 (2H, m), 7.47 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.56 (2H, m), 7.88 (1H, d, J = 7.8 Hz), 8.00 - 8.12 (4H, m), 8.60 (1H, s), 11.07 (2H, m)

Mass spectrometric value (ESI-MS) 672 (M-1)

35 <u>Compound 879</u> 3-(2-Diethylamino-ethylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 879 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.02 (6H, t, J = 7.1 Hz), 1.26 (2H, m), 1.67 (4H, m), 2.59 (6H, m), 2.70 (2H, m), 2.92 (4H, m), 3.83 (5H, m), 6.92 (3H, m), 7.02 (1H, s), 7.44 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.53 (1H, d, J = 7.6 Hz), 7.77 (2H, d, J = 8.3 Hz), 7.88 (1H, d, J = 7.6 Hz), 7.99 (1H, m), 8.22 (1H, d, J = 8.8 Hz), 8.42 (1H, s), 10.59 (1H, bs), 11.27 (1H, s) Mass spectrometric value (ESI-MS) 600 (M-1)

5

10

15

20

25

30

35

Compound 880 N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 880 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.41 (2H, m), 1.51 (4H, m), 2.24 (3H, s), 2.67 (3H, s), 2.65 (2H, t, J = 6.9 Hz), 2.94 (4H, m), 3.82 (2H, s), 3.93 (1H, t, J = 6.8 Hz), 6.93 (1H, d, J = 9.0 Hz), 7.04 (1H, s), 7.14 (1H, d, J = 7.8 Hz), 7.52 (3H, m), 7.63 (1H, s), 7.80 (1H, s), 8.01 (1H, d, J = 6.8 Hz), 8.25 (1H, s), 8.28 (2H, d, J = 9.0 Hz), 10.56 (1H, s), 11.50 (1H, s) Mass spectrometric value (ESI-MS) 543 (M-1)

<u>Compound</u> 881 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methylbenzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 881 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.43 (2H, m), 1.54 (4H, m), 2.33 (3H, s), 2.64 (2H, t, J = 7.1 Hz), 2.97 (4H, m), 3.82 (2H, s), 3.92 (2H, m), 6.95 (1H, m), 7.08 (1H, s), 7.19 (2H, d, J = 7.8 Hz), 7.54 (2H, m), 7.69 (2H, d, J = 7.8 Hz), 7.79 (1H, s), 8.00 (1H, d, J = 7.1 Hz), 8.26 (1H, s), 8.30 (1H, d, J = 9.3 Hz), 10.52 (1H, s), 11.49 (1H, s)

Mass spectrometric value (ESI-MS) 529 (M-1)

Compound 882 N-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 882 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.44 (2H, m), 1.57 (4H, m), 2.64 (2H, t, J = 7.0 Hz), 2.99 (4H, m), 3.81 (2H, s), 3.91 (2H, m), 7.00 (1H, d, J = 8.8 Hz), 7.10 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 7.15 (1H, s), 7.54 (2H, m), 7.78 (1H, s), 7.86 (2H, m), 8.06 (1H, d, J = 7.1 Hz), 8.33 (2H, m), 10.59 (1H,

s), 11.48 (1H, s)

5

10

15

20

25

30

35

Mass spectrometric value (ESI-MS) 533 (M-1)

<u>Compound</u> 883 N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 883 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.44 (2H, m), 1.57 (4H, m), 2.65 (2H, t, J = 6.9 Hz), 2.99 (4H, m), 3.82 (2H, s), 3.92 (2H, m), 6.80 - 7.22 (3H, m), 7.36 (1H, m), 7.53 (3H, m), 7.66 (1H, m), 7.80 (1H, s), 8.00 (1H, d, J = 6.6 Hz), 8.30 (2H, m), 10.65 (1H, s), 11.46 (1H, s)

Mass spectrometric value (ESI-MS) 533 (M-1)

<u>Compound</u> 884 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 884 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.36 (2H, m), 1.44 (4H, m), 2.65 (2H, t, J = 7.2 Hz), 2.86 (4H, m), 3.82 (2H, s), 3.92 (2H, t, J = 7.1 Hz), 6.90 (1H, d, J = 8.0 Hz), 6.97 (1H, s), 7.57 (3H, m), 7.76 (1H, s), 8.04 (2H, d, J = 6.8 Hz), 8.14 (1H, d, J = 9.8 Hz), 8.23 (1H, s), 8.43 (1H, s), 11.09 (1H, s), 11.38 (1H, s)

Mass spectrometric value (ESI-MS) 617 (M-1)

<u>Compound</u> 885 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 885 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.47 (2H, m), 1.62 (4H, m), 2.64 (2H, t, J = 7.1 Hz), 3.04 (4H, m), 3.80 (3H, s), 3.81 (2H, s), 3.92 (2H, m), 6.89 (2H, d, J = 8.8 Hz), 7.02 (1H, m), 7.24 (1H, m), 7.52 (2H, m), 7.76 (3H, m), 7.99 (1H, d, J = 7.3 Hz), 8.25 (1H, s), 8.40 (1H, d, J = 9.0 Hz), 10.50 (1H, s), 11.59 (1H, s)

Mass spectrometric value (ESI-MS) 545 (M-1)

Compound 886 3-{3-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenylcarbamoyl]-benzylsulfanyl}-propionic acid

The title compound 886 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.37 (2H, m), 1.52 (4H, m), 2.20 (6H, s), 2.75 (2H, m), 2.84 (2H, m), 2.94 (4H, m), 3.94 (2H, s), 6.93 (1H, d, J = 7.8 Hz), 7.06 (1H, d, J = 7.6 Hz), 7.11 (1H, s), 7.38 - 7.52 (3H, m), 7.55 (1H, s), 7.94 (1H, s), 8.02 (1H, d, J = 6.8 Hz), 8.25 (1H, d, J = 9.0 Hz), 8.28 (1H, s), 10.85 (1H, s), 11.36 (1H, s)

Mass spectrometric value (ESI-MS) 571 (M-1)

5

10

20

30

<u>Compound</u> 887 3-{3-[2-(4-Methyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenylcarbamoyl]-benzylsulfanyl}-propionic acid

The title compound 887 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.33 (2H, m), 1.47 (4H, m), 2.29 (3H, s), 2.70 (2H, t, J = 6.4 Hz), 2.80 (2H, t, J = 6.3 Hz), 2.90 (4H, m), 3.89 (2H, s), 6.91 (1H, d, J = 8.8 Hz), 7.12 (3H, m), 7.40 - 7.50 (2H, m), 7.61 (2H, d, J = 7.8 Hz), 7.93 (1H, s), 7.97 (1H, d, J = 7.3 Hz), 8.20 (1H, d, J = 9.0 Hz), 7.95 (4H, s), 44.22 (4H, s)

15 Hz), 8.35 (1H, s), 11.03 (1H, s), 11.32 (1H, s)

Mass spectrometric value (ESI-MS) 557 (M-1)

<u>Compound 888</u> 3-{3-[2-(4-Fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenylcarbamoyl]-benzylsulfanyl}-propionic acid

The title compound 888 was produced in substantially the same manner as in Example F.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.62 (2H, m), 1.74 (4H, m), 2.55 (2H, t, J = 6.8 Hz), 2.68 (2H, t, J = 7.0 Hz), 3.23 (4H, m), 3.86 (2H, s), 7.10 - 7.25 (3H, m), 7.36 (1H, d, J = 2.9 Hz), 7.47 (1H, dd, J = 7.1 Hz, J = 7.1 Hz), 7.57 (1H, d, J = 7.3 Hz), 7.85 (3H, m), 7.93 (1H, m), 8.32 (2H, m)

25 Mass spectrometric value (ESI-MS) 561 (M-1)

<u>Compound</u> 889 3-{3-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenylcarbamoyl]-benzylsulfanyl}-propionic acid

The title compound 889 was produced in substantially the same manner as in Example F.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.62 (2H, m), 1.74 (4H, m), 2.54 (2H, t, J = 7.0 Hz), 2.68 (2H, t, J = 7.0 Hz), 3.22 (4H, m), 3.86 (2H, s), 7.22 (1H, m), 7.36 (1H, m), 7.48 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.57 (1H, m), 7.67 (1H, m), 7.83 (1H, d, J = 7.3 Hz), 7.93 (1H, s), 8.03 (1H, d, J = 9.0

35 Hz), 8.29 (2H, m), 8.36 (1H, m)

Mass spectrometric value (ESI-MS) 646 (M-1)

<u>Compound</u> 890 3-{3-[2-(4-Methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenylcarbamoyl]-benzylsulfanyl}-propionic acid

The title compound 890 was produced in substantially the same manner as in Example F.

- ¹H-NMR (CDCl₃, 400 MHz): δ 1.35 (2H, m), 1.49 (4H, m), 2.71 (2H, m), 2.80 (2H, m), 2.92 (4H, m), 3.76 (3H, s), 3.89 (2H, s), 6.80 (2H, d, J = 8.8 Hz), 6.92 (1H, d, J = 7.3 Hz), 7.15 (1H, s), 7.45 (2H, m), 7.64 (2H, d, J = 8.6 Hz), 7.95 (2H, m), 8.24 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 10.97 (1H, bs), 11.37 (1H, s)
- Mass spectrometric value (ESI-MS) 573 (M-1)

 <u>Compound</u> 891 {3-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenylcarbamoyl]-benzylsulfanyl}
 acetic acid

The title compound 891 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.63 (2H, m), 1.75 (4H, m), 3.11 (2H, s), 3.24 (4H, m), 3.94 (2H, s), 7.22 (1H, dd, J = 9.2 Hz, J = 2.8 Hz), 7.37 (1H, d, J = 2.7 Hz), 7.48 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.58 (1H, d, J = 8.0 Hz), 7.67 (1H, d, J = 8.3 Hz), 7.84 (1H, d, J = 8.0 Hz), 7.95 (1H, s),

20 8.03 (1H, d, J = 8.6 Hz), 8.28 (2H, m), 8.37 (1H, s) Mass spectrometric value (ESI-MS) 631 (M-1)

<u>Compound 892</u> {3-[2-(4-Methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenylcarbamoyl]-benzylsulfanyl}-acetic acid

The title compound 892 was produced in substantially the same 25 manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.39 (2H, m), 1.53 (4H, m), 2.93 (4H, m), 3.21 (2H, s), 3.77 (3H, s), 3.98 (2H, s), 6.82 (2H, d, J = 8.6 Hz), 6.93 (1H, d, J = 9.3 Hz), 7.22 (1H, s), 7.48 (2H, m), 7.63 (2H, d, J = 8.3 Hz), 7.82 (1H, s), 7.98 (1H, d, J = 7.1 Hz), 8.25 (1H, d, J = 8.8 Hz), 8.32 (1H, s), 10.93 (1H, s), 11.43 (1H, s)

Mass spectrometric value (ESI-MS) 559 (M-1)

30

35

<u>Compound 893</u> 3-(7,8-Dihydro-5H-1,6,9-triaza-anthracen-6-ylmethyl)-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 893 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.32 (2H, m), 1.40 (4H, m), 2.22 (6H, s), 2.83 (4H, m), 2.97 (2H, t, J = 5.7 Hz), 3.31 (2H, t, J = 6.0 Hz), 3.84 (4H, s), 6.92 (1H, d, J = 9.0 Hz), 7.09 (2H, m), 7.35 (1H, m), 7.45 (2H, m), 7.61 (2H, m), 7.77 (1H, s), 7.95 (1H, d, J = 7.3 Hz), 8.02 (2H, m), 8.26 (1H, d, J = 9.0 Hz), 8.49 (1H, s), 8.97 (1H, dd, J = 4.3 Hz, J = 1.8 Hz), 11.05 (1H, s), 11.41 (1H, s)

Mass spectrometric value (ESI-MS) 650 (M-1)

Compound 894 3-(7,8-Dihydro-5H-1,6,9-triaza-anthracen-6-ylmethyl)-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-

10 benzamide

15

25

30

The title compound 894 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.31 (2H, m), 1.39 (4H, m), 2.33 (3H, s), 2.82 (4H, m), 2.97 (2H, m), 3.31 (2H, t, J = 6.0 Hz), 3.84 (4H, m), 6.92 (1H, d, J = 8.1 Hz), 7.07 (1H, s), 7.15 (2H, d, J = 8.1 Hz), 7.35 (1H, m), 7.47 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.60 (1H, d, J = 7.3 Hz), 7.65 (2H, d, J = 7.1 Hz), 7.77 (1H, s), 7.94 (1H, d, J = 7.3 Hz), 8.02 (2H, m), 8.26 (1H, d, J = 9.0 Hz), 8.52 (1H, s), 8.97 (1H, dd, J = 4.3 Hz, J = 1.8 Hz), 11.08 (1H, s), 11.39 (1H, s)

20 Mass spectrometric value (ESI-MS) 636 (M-1)

Compound 895 3-(7,8-Dihydro-5H-1,6,9-triaza-anthracen-6-ylmethyl)-N[2-(4-fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]benzamide

The title compound 895 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCI₃, 400 MHz): δ 1.20 - 1.40 (6H, m), 2.75 (4H, m), 2.94 (2H, m), 3.25 (2H, m), 3.82 (2H, s), 3.83 (2H, s), 6.89 (1H, d, J = 8.8 Hz), 7.00 (2H, m), 7.10 (1H, s), 7.37 (1H, m), 7.46 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.59 (1H, d, J = 7.3 Hz), 7.70 (2H, m), 7.77 (1H, s), 7.94 (1H, d, J = 7.8 Hz), 8.04 (2H, m), 8.26 (1H, d, J = 9.0 Hz), 8.61 (1H, s), 8.94 (1H, m), 11.45 - 11.75 (2H, m)

Mass spectrometric value (ESI-MS) 640 (M-1)

Compound 896 3-(7,8-Dihydro-5H-1,6,9-triaza-anthracen-6-ylmethyl)-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-

35 benzamide

The title compound 896 was produced in substantially the same

manner as in Example F.

5

10

¹H-NMR (CDCl₃, 400 MHz): δ 1.29 (2H, m), 1.36 (4H, m), 2.79 (4H, m), 2.97 (2H, m), 3.28 (2H, t, J = 6.0 Hz), 3.84 (2H, s), 3.85 (2H, s), 6.90 (1H, d, J = 8.3 Hz), 7.03 (1H, m), 7.09 (1H, s), 7.28 - 8.00 (5H, m), 7.61 (1H, d, J = 7.3 Hz), 7.77 (1H, s), 7.94 (1H, d, J = 7.6 Hz), 8.05 (2H, m), 8.22 (1H, d, J = 9.0 Hz), 8.60 (1H, s), 8.97 (1H, dd, J = 4.1 Hz, J = 2.0 Hz), 11.38 (1H, s), 11.55 (1H, s)

Mass spectrometric value (ESI-MS) 640 (M-1)

Compound 897 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(7,8-dihydro-5H-1,6,9-triaza-anthracen-6-ylmethyl)-benzamide

The title compound 897 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.30 (2H, m), 1.37 (4H, m), 2.80 (4H, m), 2.97 (2H, t, J = 5.9 Hz), 3.30 (2H, t, J = 5.9 Hz), 3.86 (4H, m), 6.90 (1H, d, J = 8.3 Hz), 7.02 (1H, s), 7.38 (1H, m), 7.51 (2H, d, J = 8.3 Hz), 7.62 (1H, d, J = 8.3 Hz), 7.78 (1H, s), 7.94 (2H, d, J = 7.3 Hz), 8.00 (1H, s), 8.06 (2H, m), 8.17 (1H, d, J = 8.3 Hz), 8.61 (1H, s), 8.98 (1H, m), 11.25 (1H, s), 11.46 (1H, s)

20 Mass spectrometric value (ESI-MS) 724 (M-1)

<u>Compound 898</u> 3-(7,8-Dihydro-5H-1,6,9-triaza-anthracen-6-ylmethyl)-N[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]benzamide

The title compound 898 was produced in substantially the same 25 manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.31 (2H, m), 1.39 (4H, m), 2.83 (4H, m), 2.97 (2H, m), 3.30 (2H, t, J = 5.6 Hz), 3.78 (5H, m), 3.83 (2H, s), 6.85 (2H, d, J = 8.0 Hz), 6.92 (1H, d, J = 7.1 Hz), 7.09 (1H, s), 7.35 (1H, m), 7.46 (1H, t, J = 7.7 Hz), 7.59 (1H, d, J = 7.6 Hz), 7.67 (2H, d, J = 7.8 Hz),

7.76 (1H, s), 7.94 (1H, d, J = 7.6 Hz), 8.02 (2H, m), 8.28 (1H, d, J = 9.0 Hz), 8.49 (1H, s), 8.96 (1H, m), 11.08 (1H, bs), 11.44 (1H, s)

Mass spectrometric value (ESI-MS) 652 (M-1)

<u>Compound 899</u> 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-

35 benzamide

The title compound 899 was produced in substantially the same

manner as in Example F.

5

10

15

¹H-NMR (CD₃OD, 400 MHz): δ 1.62 (2H, m), 1.75 (4H, m), 2.29 (3H, s), 2.31 (3H, s), 2.50 (1H, m), 2.63 (1H, m), 3.23 (4H, m), 3.56 (2H, m), 3.74 (1H, m), 3.88 (2H, s), 7.21 (2H, m), 7.37 (1H, d, J = 2.9 Hz), 7.48 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.53 (1H, d, J = 7.8 Hz), 7.59 (1H, d, J = 7.6 Hz), 7.65 (1H, s), 7.85 (1H, m), 7.93 (1H, m), 8.29 (1H, s), 8.37 (1H, d, J = 9.2 Hz)

Mass spectrometric value (ESI-MS) 573 (M-1)

<u>Compound 900</u> 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[2-(4-methylbenzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 900 was produced in substantially the same manner as in Example F.

¹H-NMR (DMSO-d₆, 400 MHz): δ 1.57 (2H, m), 1.67 (4H, m), 2.35 (3H, s), 2.40 (1H, m), 2.58 (1H, m), 3.15 - 3.36 (6H, m), 3.60 (1H, m), 3.86 (2H, s), 4.55 (1H, m), 4.81 (1H, m), 7.19 (1H, m), 7.28 (2H, d, J = 8.1 Hz), 7.32 (1H, d, J = 2.4 Hz), 7.53 (2H, m), 7.65 (2H, d, J = 8.1 Hz), 7.77 (1H, m), 7.87 (1H, s), 8.29 (1H, d, J = 8.3 Hz), 8.41 (1H, s), 11.42 (1H, bs), 11.95 (1H, bs)

Mass spectrometric value (ESI-MS) 559 (M-1)

20 <u>Compound 901</u> 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[2-(4-fluorobenzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 901 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.62 (2H, m), 1.74 (4H, m), 2.50 (1H, m), 2.50 (1H, m), 3.23 (4H, m), 3.55 (2H, m), 3.75 (1H, m), 3.88 (2H, s), 7.17 (2H, dd, J = 8.7 Hz, J = 8.7 Hz), 7.22 (1H, dd, J = 9.0 Hz, J = 2.7 Hz), 7.37 (1H, d, J = 2.7 Hz), 7.48 (1H, dd, J = 7.5 Hz, J = 7.5 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.80 - 7.95 (4H, m), 8.34 (1H, s), 8.37 (1H, d, J = 9.3 Hz) Mass spectrometric value (ESI-MS) 563 (M-1)

30 <u>Compound 902</u> 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[2-(3-fluorobenzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 902 was produced in substantially the same manner as in Example F.

¹H-NMR (DMSO-d₆, 400 MHz): δ 1.57 (2H, m), 1.67 (4H, m), 2.04 (1H, m), 2.58 (1H, m), 3.19 - 3.40 (6H, m), 3.60 (1H, m), 3.86 (2H, s), 4.54 (1H, t, J = 5.7 Hz), 4.80 (1H, d, J = 3.5 Hz), 7.20 (1H, m), 7.29 (2H, m),

7.44 - 7.64 (5H, m), 7.76 (1H, d, J = 7.6 Hz), 7.87 (1H, s), 8.25 (1H, d, J = 9.0 Hz), 8.44 (1H, s), 11.30 (1H, s), 12.10 (1H, s)

Mass spectrometric value (ESI-MS) 563 (M-1)

Compound 903 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3-(2,3-dihydroxy-propyl-sulfanylmethyl)-benzamide

The title compound 903 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.63 (2H, m), 1.75 (4H, m), 2.50 (1H, m), 2.62 (1H, m), 3.24 (4H, m), 3.54 (2H, m), 3.74 (1H, m), 3.88 (2H, s), 7.23 (1H, dd, J = 9.1 Hz, J = 2.8 Hz), 7.38 (1H, d, J = 2.7 Hz), 7.48 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.58 (1H, d, J = 7.8 Hz), 7.68 (1H, d, J = 8.3 Hz), 7.84 (1H, d, J = 7.8 Hz), 7.93 (1H, s), 8.06 (1H, d, J = 8.3 Hz), 8.29 (1H, s), 8.34 (1H, d, J = 9.0 Hz), 8.37 (1H, s)

15 Mass spectrometric value (ESI-MS) 647 (M-1)

<u>Compound 904</u> 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 904 was produced in substantially the same manner as in Example F.

¹H-NMR (DMSO-d₆, 400 MHz): δ 1.57 (2H, m), 1.68 (4H, m), 2.40 (1H, m), 2.58 (1H, m), 3.15 - 3.40 (6H, m), 3.61 (1H, m), 3.82 (3H, s), 3.86 (2H, s), 7.02 (2H, d, J = 8.8 Hz), 7.21 (1H, m), 7.33 (1H, m), 7.53 (2H, m), 7.70 (2H, d, J = 8.8 Hz), 7.77 (1H, d, J = 7.6 Hz), 7.87 (1H, s), 8.31 (1H, d, J = 9.0 Hz), 8.39 (1H, s), 11.44 (1H, s), 11.87 (1H, s)

25 Mass spectrometric value (ESI-MS) 575 (M-1)

Compound 905 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 905 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCI₃, 400 MHz): δ 0.99 (12H, t, J = 7.1 Hz), 1.44 (2H, m), 1.57 (4H, m), 2.30 (6H, s), 2.50 (8H, m), 2.61 (8H, m), 3.00 (4H, m), 3.73 (2H, s), 7.02 (2H, m), 7.18 (1H, d, J = 7.3 Hz), 7.42 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.51 (1H, m), 7.57 (1H, m), 7.67 (1H, s), 7.87 (1H, d, J = 7.8 Hz), 7.97 (1H, s), 8.32 (2H, m), 11.14 (1H, s)

Mass spectrometric value (ESI-MS) 681 (M-1)

35

<u>Compound 906</u> 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 906 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.00 (12H, t, J = 7.2 Hz), 1.25 (2H, m), 1.34 (4H, m), 2.37 (3H, s), 2.51 (8H, m), 2.62 (8H, m), 2.80 (4H, m), 3.75 (2H, s), 6.85 (1H, m), 6.97 (1H, m), 7.20 (2H, d, J = 8.0 Hz), 7.43 (1H, d, J = 7.6 Hz), 7.59 (1H, d, J = 7.3 Hz), 7.75 (2H, d, J = 7.8 Hz), 7.86 (1H, d, J = 7.8 Hz), 8.00 (1H, s), 8.08 (1H, d, J = 9.0 Hz), 8.59 (1H, s), 11.20 (1H, s)

Mass spectrometric value (ESI-MS) 667 (M-1)

<u>Compound 907</u> 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[2-(4-fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-

15 benzamide

5

10

20

30

The title compound 907 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.00 (12H, t, J = 7.1 Hz), 1.26 (2H, m), 1.35 (4H, m), 2.51 (8H, m), 2.62 (8H, m), 2.81 (4H, m), 3.75 (2H, s), 6.85 (1H, d, J = 9.0 Hz), 6.94 (1H, s), 7.10 (2H, dd, J = 8.5 Hz, J = 8.5 Hz), 7.44 (1H, d, J = 7.6 Hz, J = 7.6 Hz), 7.60 (1H, d, J = 7.3 Hz), 7.85 (3H, m), 8.00 (1H, s), 8.03 (1H, d, J = 9.0 Hz), 8.61 (1H, s), 11.14 (2H, m) Mass spectrometric value (ESI-MS) 671 (M-1)

Compound 908 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 908 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.00 (12H, t, J = 7.1 Hz), 1.24 (2H, m), 1.33 (4H, m), 2.51 (8H, m), 2.62 (8H, m), 2.78 (4H, m), 3.76 (2H, s), 6.84 (1H, d, J = 9.3 Hz), 6.91 (1H, s), 7.11 (1H, m), 7.34 - 7.48 (2H, m), 7.58 - 7.68 (3H, m), 7.87 (1H, d, J = 7.8 Hz), 8.00 (2H, m), 8.61 (1H, s) Mass spectrometric value (ESI-MS) 671 (M-1)

Compound 909 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 909 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.00 (12H, t, J = 7.1 Hz), 1.21 (2H, m), 1.30 (4H, m), 2.51 (8H, m), 2.62 (8H, m), 2.75 (4H, m), 3.77 (2H, s), 6.80 (1H, d, J = 8.8 Hz), 6.88 (1H, s), 7.47 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (1H, d, J = 8.5 Hz), 7.64 (1H, d, J = 7.6 Hz), 7.86 (1H, d, J = 7.6 Hz), 7.91 (1H, d, J = 9.0 Hz), 8.02 (1H, s), 8.08 (1H, d, J = 8.0 Hz), 8.12 (1H, s), 8.67 (1H, s)

Mass spectrometric value (ESI-MS) 754 (M-1)

Compound 910 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 910 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.00 (12H, t, J = 7.1 Hz), 1.28 (2H, m), 1.38 (4H, m), 2.51 (8H, m), 2.61 (8H, m), 2.83 (4H, m), 3.75 (2H, s), 3.84 (3H, s), 6.85 - 7.00 (4H, m), 7.43 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.59 (1H, d, J = 7.6 Hz), 7.79 (2H, d, J = 8.5 Hz), 7.86 (1H, d, J = 7.6 Hz), 7.99 (1H, s), 8.12 (1H, d, J = 9.3 Hz), 8.51 (1H, s), 11.19 (1H, s)

20 Mass spectrometric value (ESI-MS) 682 (M-1)

Example G

25

30

35

5

Compound 911 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-dipropylamino-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

5-Amino-2-nitro-benzoic acid methyl ester (compound A') (800 mg) was dissolved in dry THF (15 ml). Propionaldehyde (compound D) (870 μl) dissolved in a mixed liquid composed of 3 M sulfuric acid (4 ml) and THF (1 ml) was added to the solution at room temperature. Subsequently, sodium borohydride (231 mg) was added thereto at 0°C, and the mixture was stirred at room temperature for 3 hr. Thereafter, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate and was then concentrated. The residue was purified by column chromatography using a hexane-acetone system to give 2-nitro-5-propylamino-benzoic acid methyl ester as a useful intermediate (608 mg, yield 63%).

2-Nitro-5-propylamino-benzoic acid methyl ester (608 mg) produced by the above reaction was dissolved in dry THF (15 ml). Propionaldehyde (compound D) (461 μl) dissolved in a mixed liquid composed of 3 M sulfuric acid (2.1 ml) and THF (1 ml) was added to the solution at room temperature. Subsequently, sodium borohydride (145 mg) was added thereto at 0°C, and the mixture was stirred at room temperature for 3 hr. Thereafter, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography using a hexane-acetone system to give 5-dipropylamino-2-nitro-benzoic acid methyl ester as a useful intermediate (149 mg, yield 21%).

5-Dipropylamino-2-nitro-benzoic acid methyl ester (467 mg) produced by the above reaction was dissolved in ethanol (5 ml), and 10% palladium-carbon (45 mg) was added to the solution. The air in the reaction system was then replaced by hydrogen, and the reaction solution was stirred at room temperature for 15 hr. After the completion of the reaction, the reaction solution was filtered through Celite. The filtrate was concentrated, and the residue was purified by column chromatography using a hexane-acetone system to give 2-amino-5-dipropylamino-benzoic acid methyl ester (compound A) (243 mg, yield 58%) as a useful intermediate.

2-Amino-5-dipropylamino-benzoic acid methyl ester (compound A) (243 mg) produced by the above reaction was dissolved in anhydrous methylene chloride (3.0 ml). Subsequently, pyridine (170 μl) and 3-(chloromethyl)benzoyl chloride (compound B) (166 μl) were added to the solution at 0°C, and the mixture was stirred at 0°C for one hr. After the completion of the reaction, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography using a hexane-acetone system to give 2-(3-chloromethyl-benzoylamino)-5-dipropylamino-benzoic acid methyl ester as a useful intermediate (280 mg, yield 64%).

2-(3-Chloromethyl-benzoylamino)-5-dipropylamino-benzoic acid

methyl ester (280 mg) produced by the above reaction was dissolved in anhydrous methylene chloride (2.0 ml). Triethylamine (45 μ l) and N,N-diethyl-N'-methylethylenediamine (compound B') (50 μ l) were added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated, and the residue was purified by column chromatography using a hexane-acetone system to give 2-(3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzoylamino)-5-dipropylamino-benzoic acid methyl ester as a useful intermediate (164 mg, yield 50%).

2-(3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-benzoylamino)-5-dipropylamino-benzoic acid methyl ester (164 mg) produced by the above reaction was dissolved in ethanol (5.0 ml). Hydrazine monohydrate (200 µl) was added to the solution, and the mixture was heated under reflux with stirring for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-N-(4-dipropylamino-2-hydrazinocarbonyl-phenyl)-benzamide as a hydrazine compound (96 mg, yield 58%).

-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-(4-dipropylamino-2-hydrazinocarbonyl-phenyl)-benzamide (47 mg) as the hydrazine compound produced by the above reaction was dissolved in anhydrous toluene (1.0 ml). 3-Trifluoromethyl-4-chlorobenzaldehyde (compound C) (40 μ l) was added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, the reaction product was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 911 (57 mg, yield 88%).

¹H-NMR (CDCl₃, 400 MHz): δ 0.78 (6H, t, J = 7.1 Hz), 1.04 (6H, t, J = 7.1 Hz), 1.37 (4H, m), 2.26 (3H, s), 2.50 - 2.75 (8H, m), 2.85 (4H, m), 3.62

(2H, s), 6.49 (1H, d, J = 7.8 Hz), 6.65 (1H, s), 7.44 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.55 (2H, m), 7.80 - 8.15 (5H, m), 8.63 (1H, s), 10.83 (1H, s) Mass spectrometric value (ESI-MS) 685 (M-1)

Compound 912 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-dipropylamino-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 912 was produced in substantially the same manner as in Example G.

¹H-NMR (CDCl₃, 400 MHz): δ 0.81 (6H, t, J = 7.1 Hz), 1.05 (6H, t, J = 7.1 Hz), 1.42 (4H, m), 2.24 (3H, s), 2.50 - 2.70 (8H, m), 2.95 (4H, m), 3.61 (2H, s), 3.83 (3H, s), 6.57 (1H, d, J = 9.0 Hz), 6.72 (1H, s), 6.91 (2H, d, J = 8.6 Hz), 7.41 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.52 (1H, d, J = 7.3 Hz), 7.76 (2H, d, J = 8.3 Hz), 7.85 (1H, d, J = 7.6 Hz), 7.95 (1H, s), 8.05 (1H, d, J = 9.0 Hz), 8.45 (1H, s), 10.93 (1H, s)

Mass spectrometric value (ESI-MS) 614 (M-1)

Compound 913 3-({2-[Bis-(2-hydroxy-ethyl)-amino]-ethylamino}-methyl)N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-ylphenyl]-benzamide

The title compound 913 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.41 (2H, m), 1.52 (4H, m), 2.25 (6H, s), 2.61 (4H, m), 2.71 (2H, m), 2.77 (2H, m), 2.97 (4H, m), 3.58 (4H, t, J = 4.8 Hz), 3.92 (2H, s), 6.94 (1H, m), 7.07 (1H, s), 7.13 (1H, d, J = 7.8 Hz), 7.40 - 7.55 (3H, m), 7.60 (1H, s), 7.93 (2H, m), 8.22 (1H, d, J = 8.3 Hz), 8.38 (1H, s), 11.20 (1H, s)

Mass spectrometric value (ESI-MS) 613 (M-1)

20

25

30

35

Compound 914 3-({2-[Bis-(2-hydroxy-ethyl)-amino]-ethylamino}-methyl)-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 914 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.44 (2H, m), 1.54 (4H, m), 2.60 (4H, m), 2.73 (2H, m), 2.86 (2H, m), 3.00 (4H, m), 3.56 (4H, m), 3.97 (2H, m), 6.90 (1H, m), 7.10 (1H, m), 7.73 - 7.55 (4H, m), 7.92 (2H, m), 8.02 (1H, m), 8.15 (1H, m), 8.60 (1H, s)

Mass spectrometric value (ESI-MS) 687 (M-1)

Compound 915 3-({2-[Bis-(2-hydroxy-ethyl)-amino]-ethylamino}-methyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

The title compound 915 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.40 (2H, m), 1.51 (4H, m), 2.61 (4H, m), 2.70 (2H, m), 2.76 (2H, m), 2.96 (4H, m), 3.58 (4H, m), 3.81 (3H, s), 3.90 (2H, s), 6.88 (2H, d, J = 8.1 Hz), 6.93 (1H, m), 7.07 (1H, s), 7.43 (1H, m), 7.50 (1H, m), 7.72 (2H, d, J = 8.3 Hz), 7.92 (2H, m), 8.22 (1H, m), 8.36 (1H, s), 11.22 (1H, bs)

Mass spectrometric value (ESI-MS) 615 (M-1)

5

10

15

20

25

30

8.28 (1H, s)

Compound 916 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3, 4-dimethyl-benzylidene-hydrazinocarbonyl)-4-pyrrolidin-1-yl-phenyl]-benzamide

The title compound 916 was produced in substantially the same manner as in Example F.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.06 (6H, t, J = 7.1 Hz), 1.99 (4H, m), 2.26 (9H, m), 2.58 (2H, m), 2.70 (4H, m), 2.82 (2H, m), 3.30 (4H, m), 3.63 (2H, s), 6.75 (1H, dd, J = 9.2 Hz, J = 2.8 Hz), 6.90 (1H, d, J = 2.7 Hz), 7.14 (1H, d, J = 7.8 Hz), 7.47 (2H, m), 7.54 (1H, d, J = 7.8 Hz), 7.57 (1H, s), 7.85 (1H, d, J = 7.8 Hz), 7.92 (1H, s), 8.24 (1H, d, J = 9.0 Hz),

Mass spectrometric value (ESI-MS) 581 (M-1)

<u>Compound</u> 917 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-pyrrolidin-1-yl-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 917 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.02 (6H, t, J = 7.2 Hz), 1.99 (4H, m), 2.25 (3H, s), 2.57 (6H, m), 2.70 (2H, m), 3.30 (4H, m), 3.62 (2H, s), 6.74 (1H, dd, J = 9.0 Hz, J = 2.7 Hz), 6.89 (1H, d, J = 2.7 Hz), 7.47 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.54 (1H, d, J = 7.6 Hz), 7.60 (1H, d, J = 8.3 Hz), 7.84 (1H, d, J = 7.6 Hz), 7.93 (2H, m), 8.18 (1H, d, J = 9.0 Hz), 8.23 (1H, m), 8.35 (1H, s)

Mass spectrometric value (ESI-MS) 655 (M-1)
Compound 918 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-

methoxy-benzylidene-hydrazinocarbonyl)-4-pyrrolidin-1-yl-phenyl]-benzamide

The title compound 918 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.04 (6H, t, J = 7.2 Hz), 2.00 (4H, m), 2.26 (3H, s), 2.52 - 2.68 (6H, m), 2.75 (2H, m), 3.31 (4H, m), 3.64 (2H, s), 3.81 (3H, s), 6.75 (1H, dd, J = 9.0 Hz, J = 2.7 Hz), 6.89 (1H, d, J = 2.7 Hz), 6.93 (2H, d, J = 8.8 Hz), 7.47 (1H, t, J = 7.7 Hz), 7.54 (1H, d, J = 7.3 Hz), 7.73 (2H, d, J = 9.0 Hz), 7.85 (1H, m), 7.91 (1H, s), 8.25 (1H, d, J = 9.0 Hz), 8.28 (1H, s)

Mass spectrometric value (ESI-MS) 583 (M-1)

<u>Compound 919</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-pyrrolidin-1-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 919 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 2.06 (4H, m), 2.29 (3H, s), 2.31 (3H, s), 2.57 (2H, t, J = 7.0 Hz), 3.37 (4H, m), 3.68 (2H, t, J = 6.8 Hz), 3.85 (2H, s), 6.81 (1H, d, J = 8.1 Hz), 6.93 (1H, s), 7.02 - 7.23 (2H, m), 7.45 - 7.59 (2H, m), 7.64 (1H, s), 7.84 (1H, d, J = 7.3 Hz), 7.90 (1H, s), 8.26 (2H, m)

20 Mass spectrometric value (ESI-MS) 529 (M-1)

15

25

30

35

<u>Compound</u> 920 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-pyrrolidin-1-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 920 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 2.07 (4H, m), 2.57 (2H, t, J = 7.0 Hz), 3.38 (4H, m), 3.68 (2H, t, J = 6.8 Hz), 3.85 (2H, s), 6.83 (1H, m), 6.94 (1H, m), 7.48 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (1H, d, J = 7.3 Hz), 7.67 (1H, d, J = 8.3 Hz), 7.83 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 7.90 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 9.04 (1H, d, J = 7.6 H

d, J = 8.0 Hz), 8.22 (1H, d, J = 9.0 Hz), 8.32 (1H, s), 8.36 (1H, s) Mass spectrometric value (ESI-MS) 603 (M-1)

<u>Compound 921</u> 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-pyrrolidin-1-yl-phenyl]-benzamide

The title compound 921 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 2.05 (4H, m), 2.57 (2H, t, J = 7.0 Hz),

3.36 (4H, m), 3.68 (2H, t, J = 6.8 Hz), 3.84 (5H, m), 6.81 (1H, d, J = 8.8 Hz), 6.93 (1H, s), 6.97 (2H, d, J = 9.0 Hz), 7.47 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (1H, d, J = 7.3 Hz), 7.77 (2H, d, J = 8.8 Hz), 7.83 (1H, d, J = 7.2 Hz), 7.90 (1H, s), 8.24 (1H, d, J = 9.0 Hz), 8.27 (1H, s)

5 Mass spectrometric value (ESI-MS) 531 (M-1)

10

15

20

25

30

Compound 922 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(4-methyl-[1,4]diazepan-1-yl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 922 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.1 Hz), 1.67 (2H, m), 2.20 - 2.80 (18H, m), 3.04 (2H, m), 3.11 (2H, m), 3.63 (2H, s), 6.57 (1H, d, J = 8.6 Hz), 6.64 (1H, s), 7.46 (1H, m), 7.57 (2H, m), 7.78 (1H, d, J = 7.8 Hz), 7.94 (1H, d, J = 8.8 Hz), 8.00 (1H, s), 8.08 (1H, d, J = 7.8 Hz), 8.13 (1H, s), 8.64 (1H, s), 10.87 (1H, s)

Mass spectrometric value (ESI-MS) 698, 699 (M-1)

Compound 923 N-{2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-[4-(2-hydroxy-ethyl)-piperazin-1-yl]-phenyl}-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 923 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 2.57 (2H, t, J = 7.0 Hz), 2.60 (2H, t, J = 6.0 Hz), 2.72 (4H, m), 3.31 (4H, m), 3.68 (2H, t, J = 7.0 Hz), 3.73 (2H, t, J = 6.0 Hz), 3.85 (2H, s), 7.23 (1H, dd, J = 9.0 Hz, J = 2.7 Hz), 7.38 (1H, d, J = 2.7 Hz), 7.48 (1H, dd, J = 7.6 Hz), 7.58 (1H, d, J = 7.8 Hz), 7.67 (1H, d, J = 8.6 Hz), 7.84 (1H, d, J = 7.6 Hz), 7.91 (1H, s), 8.02 (1H, d, J = 8.6 Hz), 8.31 (1H, m), 8.37 (2H, m) Mass spectrometric value (ESI-MS) 662 (M-1)

Compound 924 N-{2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-[4-(2-hydroxy-ethyl)-piperazin-1-yl]-phenyl}-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 924 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.01 (6H, t, J = 7.2 Hz), 2.26 (3H, s), 2.58 (8H, m), 2.70 (6H, m), 3.32 (4H, m), 3.64 (2H, s), 3.73 (2H, t, J = 5.9 Hz), 7.22 (1H, dd, J = 9.0 Hz, J = 2.7 Hz), 7.39 (1H, d, J = 2.7 Hz), 7.49 (1H,

dd, J = 7.7 Hz, J = 7.7 Hz), 7.57 (1H, d, J = 7.6 Hz), 7.65 (1H, d, J = 8.5 Hz), 7.87 (1H, m), 7.93 (1H, s), 7.99 (1H, d, J = 8.3 Hz), 8.28 (1H, m), 8.36 (2H, m)

Mass spectrometric value (ESI-MS) 714 (M-1)

5 <u>Compound</u> 925 1-{3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-[3-(2-hydroxy-ethylsulfanylmethyl)-benzoylamino]-phenyl}-piperidine-3-carboxylic acid

The title compound 925 was produced in substantially the same manner as in Example F.

¹H-NMR (DMSO-d₆, 400 MHz): δ 1.54 - 3.90 (15H, m), 7.24 (1H, m), 7.37 (1H, s), 7.54 (2H, m), 7.77 (1H, d, J = 7.3 Hz), 7.82 (1H, d, J = 8.3 Hz), 7.87 (1H, s), 8.05 (1H, d, J = 8.1 Hz), 8.22 (2H, m), 8.54 (1H, s), 11.23 (1H, s), 12.34 (1H, s)

Mass spectrometric value (ESI-MS) 684 (M+23)

15 <u>Compound 926</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-thiomorpholin-4-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 926 was produced in substantially the same manner as in Example F.

¹H-NMR (DMSO-d₆, 400 MHz): δ 2.27 (3H, s), 2.28 (3H, s), 2.73 (4H, m), 3.32 - 3.60 (8H, m), 3.85 (2H, s), 7.22 (2H, m), 7.31 (1H, d, J = 2.9 Hz), 7.43 - 7.59 (4H, m), 7.77 (1H, d, J = 7.1 Hz), 7.87 (1H, s), 8.30 (1H, m), 8.36 (1H, s), 11.38 (1H, s), 11.91 (1H, s)

Mass spectrometric value (ESI-MS) 561 (M-1)

20

25

30

Compound 927 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-thiomorpholin-4-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 927 was produced in substantially the same manner as in Example F.

¹H-NMR (DMSO-d₆, 400 MHz): δ 2.72 (4H, m), 3.31 (2H, m), 3.56 (6H, m), 3.84 (2H, s), 4.79 (1H, m), 7.20 (1H, m), 7.29 (1H, m), 7.53 (2H, m), 7.77 (1H, d, J = 7.6 Hz), 7.80 (1H, d, J = 8.5 Hz), 7.86 (1H, s), 8.05 (1H, m), 8.21 (1H, s), 8.25 (1H, m), 8.48 (1H, s), 11.20 (1H, s), 12.21 (1H, s) Mass spectrometric value (ESI-MS) 635 (M-1)

Compound 928 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-thiomorpholin-4-yl-phenyl]-benzamide

The title compound 928 was produced in substantially the same

manner as in Example F.

 1 H-NMR (DMSO-d₆, 400 MHz): δ 2.73 (4H, m), 3.35 (2H, m), 3.50 - 3.60 (6H, m), 3.82 (3H, s), 3.85 (2H, s), 7.03 (2H, d, J = 8.8 Hz), 7.20 (1H, dd, J = 9.1 Hz, J = 2.8 Hz), 7.31 (1H, d, J = 2.7 Hz), 7.54 (2H, m), 7.71 (2H, d, J = 8.6 Hz), 7.77 (1H, d, J = 7.3 Hz), 7.87 (1H, s), 8.31 (1H, d, J = 9.3 Hz), 8.38 (1H, s), 11.42 (1H, s), 11.87 (1H, s)

Mass spectrometric value (ESI-MS) 563 (M-1)

<u>Compound</u> 929 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-thiomorpholin-4-yl-phenyl]-3-{[(2-diethylamino-

10 ethyl)-methyl-amino]-methyl}-benzamide

The title compound 929 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.25 (6H, s), 2.28 (3H, s), 2.44 (4H, m), 2.56 - 2.76 (8H, m), 3.25 (4H, m), 3.65 (2H, s), 6.84 (1H, m), 7.00 (1H, s), 7.43 - 7.60 (3H, m), 7.88 (1H, m), 7.95 - 8.11 (4H, m), 8.60 (1H, s), 11.10 (1H, s)

Mass spectrometric value (ESI-MS) 687 (M-1)

Example H

5

15

20

25

30

35

Compound 930 N-[5-Bromo-3-(4-methoxy-benzylidene-hydrazinocarbonyl)-thiophen-2-yl]-3-dimethylaminomethyl-benzamide

2-Amino-thiophene-3-carboxylic acid methyl ester (compound A) (3.0 g) was dissolved in anhydrous methylene chloride (100 ml). Subsequently, pyridine (2.4 ml) and 3-(chloromethyl)benzoyl chloride (compound B) (2.8 ml) were added to the solution at 0°C, and the mixture was stirred at 0°C for one hr. After the completion of the reaction, distilled water was added thereto, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate and was was purified by The residue concentrated. then chromatography using a hexane-acetone system to give 2-(3chloromethyl-benzoylamino)-thiophene-3-carboxylic acid methyl ester as a useful intermediate (4.7 g, yield 100%).

2-(3-Chloromethyl-benzoylamino)-thiophene-3-carboxylic acid methyl ester (2.0 g) produced by the above reaction was dissolved in anhydrous methylene chloride (60 ml). Triethylamine (3 ml) and dimethylamine hydrochloride (compound B') (1.1 g) were added to

the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography using a hexane-acetone system to give 2-(3-dimethylaminomethylbenzoylamino)-thiophene-3-carboxylic acid methyl ester as a useful intermediate (1.14 g, yield 52%).

2-(3-dimethylaminomethyl-benzoylamino)-thiophene-3-carboxylic acid methyl ester (1.14 g) produced by the above reaction was dissolved in monochlorobenzene. N-bromosuccinimide (877 mg) and 2,2'-azobisisobutyronitrile (81 mg) were added to the solution, and the mixture was stirred at 90°C for 2 hr. After the completion of the reaction, the reaction solution was concentrated, and the residue was purified by column chromatography using a hexane-acetone system to give 5-bromo-2-(3-dimethylaminomethyl-benzoylamino)-thiophene-3-carboxylic acid methyl ester as a useful intermediate (706 mg, yield 54%).

5-Bromo-2-(3-dimethylaminomethyl-benzoylamino)-thiophene-3-carboxylic acid methyl ester (706 mg) produced by the above reaction was dissolved in ethanol (10 ml). Hydrazine monohydrate (1 ml) was added to the solution, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give N-(5-bromo-3-hydrazinocarbonyl-thiophen-2-yl)-3-dimethylaminomethyl-benzamide as a hydrazine compound (448 mg, yield 64%).

N-(5-bromo-3-hydrazinocarbonyl-thiophen-2-yl)-3-dimethylaminomethyl-benzamide (50 mg) as the hydrazine compound produced by the above reaction was dissolved in anhydrous toluene (1.0 ml). p-Methoxybenzaldehyde (compound C) (60 μ l) was added to the solution at room temperature, and the mixture was stirred at room temperature for 15 hr. After the completion of the reaction, the reaction product was

purified by column chromatography eluted with a chloroform-methanol system to give the title compound 930 (29 mg, yield 45%).

¹H-NMR (CDCl₃, 400 MHz): δ 2.22 (6H, s), 3.67 (2H, s), 3.78 (3H, s), 6.84 (2H, m), 7.42 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.54 - 7.61 (3H, m), 7.89 (1H, d, J = 7.6 Hz), 7.93 (1H, s), 8.22 (1H, s), 9.87 (1H, bs), 12.93 (1H, bs)

Mass spectrometric value (ESI-MS) 515 (M-1)

Compound 931 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-(4-methyl-[1,4]diazepan-1-

10 yl)-phenyl]-benzamide

5

The title compound 931 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.2 Hz), 1.73 (2H, m), 2.24 (5H, m), 2.37 (2H, m), 2.44 - 2.60 (9H, m), 2.65 (2H, m), 3.12 (2H, m),

3.20 (2H, m), 3.61 (2H, s), 3.84 (3H, s), 6.62 (1H, m), 6.69 - 6.78 (2H, m), 6.92 (2H, d, J = 8.5 Hz), 7.41 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.52 (1H, d, J = 7.6 Hz), 7.80 (2H, d, J = 8.1 Hz), 7.96 (1H, s), 8.08 (1H, d, J = 9.0 Hz), 8.49 (1H, s), 11.01 (1H, s)

Mass spectrometric value (ESI-MS) 626 (M-1)

20 <u>Compound 932</u> 3-[(4-Chloro-3-trifluoromethyl-benzylidene)-amino]-2-[3-(2-hydroxy-ethylsulfanylmethyl)-phenyl]-6-(4-methyl-[1,4]diazepan-1-yl)-3H-quinazolin-4-one

The title compound 932 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 2.10 (2H, m), 2.42 (3H, s), 2.55 - 2.68 (4H, m), 2.80 (2H, m), 3.58 - 3.84 (8H, m), 7.23 (1H, m), 7.34 - 7.44 (3H, m), 7.54 (2H, m), 7.68 (2H, m), 7.76 (1H, m), 7.95 (1H, d, J = 1.7 Hz), 9.36 (1H, s)

Mass spectrometric value (ESI-MS) 652 (M+23)

30 <u>Compound 933</u> 2-(3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-phenyl)-3-[(4-methoxy-benzylidene)-amino]-6-(4-methyl-[1,4]diazepan-1-yl)-3H-quinazolin-4-one

The title compound 933 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 0.99 (6H, t, J = 7.2 Hz), 2.06 (2H, m), 2.11 (3H, s), 2.39 (3H, s), 2.45 - 2.60 (10H, m), 2.76 (2H, m), 3.51 (2H, s),

3.62 (2H, t, J = 6.3 Hz), 3.70 (2H, m), 3.84 (3H, s), 6.90 (2H, d, J = 8.8 Hz), 7.22 (1H, dd, J = 9.0 Hz, J = 3.2 Hz), 7.35 (1H, m), 7.44 (1H, d, J = 3.2 Hz), 7.57 (1H, m), 7.60 - 7.70 (4H, m), 8.88 (1H, s)

Mass spectrometric value (ESI-MS) 632 (M+23)

5 <u>Compound 934</u> 1-{3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-[3-(2-hydroxy-ethylsulfanylmethyl)-benzoylamino]-phenyl}-piperidine-3-carboxylic acid

The title compound 934 was produced in substantially the same manner as in Example F.

¹H-NMR (DMSO-d₆, 400 MHz): δ 1.50 - 3.88 (21H, m), 7.14 - 7.60 (7H, m), 7.77 (1H, d, J = 7.3 Hz), 7.87 (1H, s), 8.32 (1H, d, J = 9.0 Hz), 8.40 (1H, s), 11.44 (1H, s), 12.01 (1H, s)

Mass spectrometric value (ESI-MS) 609 (M+23)

Example I

20

25

30

35

15 <u>Compound 935</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3,4-dimethoxy-benzamide

5-Chloro-2-nitro-benzoic acid (compound A') (10.0 g) was dissolved in ethanol (100 ml). Thionyl chloride (20 ml) was added dropwise to the solution at 0°C, and the mixture was then heated under reflux with stirring for 48 hr. After the completion of the reaction, the reaction solution was concentrated under the reduced pressure. Distilled water was added to the residue, and the mixture was neutralized with a saturated aqueous sodium hydrogencarbonate solution under ice cooling. The cooled solution was subjected to separatory extraction with ethyl acetate. The organic layer was dried over sodium sulfate and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 5-chloro-2-nitro-benzoic acid ethyl ester as a useful intermediate (11.0 g, yield 97%).

5-Chloro-2-nitro-benzoic acid ethyl ester (3.1 g) produced by the above production process was dissolved in N,N-dimethylformamide (30 ml). Potassium carbonate (3.8 g) and piperidine (compound D) (2.8 ml) were added to the solution at room temperature, and the mixture was then heated under reflux with stirring for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with ethyl acetate.

The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure to give crude 2-nitro-5-piperidin-1-yl-benzoic acid ethyl ester (3.81 g, crude yield 100%).

Subsequently, the crude 2-nitro-5-piperidin-1-yl-benzoic acid ethyl ester (3.8 g) was dissolved in methanol (35 ml). Platinum oxide (300 mg) was added to the solution at room temperature, the air in the reaction system was replaced by hydrogen, and the mixture was then stirred for 12 hr. After the completion of the reaction, the atmosphere in the reaction system was replaced by nitrogen, and the reaction solution was then filtered through Celite to remove platinum oxide and was then concentrated under the reduced pressure to give crude 2-amino-5-piperidin-1-yl-benzoic acid ethyl ester (compound A) as a useful intermediate (3.4 g, crude yield 100%).

Subsequently, crude 2-amino-5-piperidin-1-yl-benzoic acid ethyl ester (compound A) (1.3 g) was dissolved in anhydrous methylene chloride (100 ml). Triethylamine (5.6 ml) and 3,4-dimethoxy-benzoyl chloride (compound B) (1.8 g) were added at 0°C, and the mixture was stirred at room temperature for 24 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a hexane-chloroform system to give 2-(3,4-dimethoxy-benzoylamino)-5-piperidin-1-vl-benzoic acid ethyl ester (960 mg, yield 52%).

2-(3,4-Dimethoxy-benzoylamino)-5-piperidin-1-yl-benzoic acid ethyl ester (380 mg) produced by the above process was dissolved in ethanol (10 ml). Hydrazine monohydrate (3 ml) was added dropwise to the solution at room temperature, and the mixture was stirred at 90°C for 1.5 hr. After the completion of the reaction, the reaction solution was allowed to stand for cooling, and the precipitated crystals were filtered through Kiriyama Rohto to give N-(2-hydrazinocarbonyl-4-piperidin-1-yl-phenyl)-3,4-dimethoxy-benzamide as a useful intermediate (270 mg, yield 71%).

Subsequently, N-(2-hydrazinocarbonyl-4-piperidin-1-yl-phenyl)-

3,4-dimethoxy-benzamide (56 mg) produced by the above process was dissolved in anhydrous toluene (5 ml). 3,4-Dimethylbenzaldehyde (compound C) (40 mg) and a catalytic amount of acetic acid were added dropwise to the solution at room temperature, and the mixture was stirred at 90°C for 16 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 935 (74 mg, yield 96%).

¹H-NMR (CD₃OD, 400 MHz): δ 8.32 (1H, d, J = 9.2 Hz), 8.28 (1H, s), 7.63 (1H, s), 7.59 (1H, dd, J = 2.2 Hz, J = 8.3 Hz), 7.54 (1H, d, J = 1.9 Hz), 7.52 (1H, d, J = 7.8 Hz), 7.36 (1H, d, J = 2.7 Hz), 7.17 - 7.24 (2H, m), 7.06 (1H, d, J = 8.6 Hz), 3.92 (3H, s), 3.90 (3H, s), 3.20 - 3.25 (4H, m), 2.30 (3H, s), 2.29 (3H, s), 1.70 - 1.80 (4H, m), 1.57 - 1.66 (2H, m) Mass spectrometric value (ESI-MS) 513, 514 (M-1) 537, 538 (M+23) Compound 936 3,4-Dimethoxy-N-[4-piperidin-1-yl-2-(pyridin-3-ylmethylene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 936 was produced in substantially the same manner as in Example I.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.89 (1H, s), 8.55 - 8.60 (1H, m), 8.39 (1H, s), 8.34 - 8.39 (1H, m), 8.28 (1H, d, J = 9.0 Hz), 7.48 - 7.61 (3H, m), 7.37 (1H, d, J = 2.9 Hz), 7.22 (1H, dd, J = 2.9 Hz, J = 9.3 Hz), 7.06 (1H, d, J = 8.3 Hz), 3.91 (3H, s), 3.90 (3H, s), 3.20 - 3.25 (4H, m), 1.70 - 1.80 (4H, m), 1.57 - 1.66 (2H, m)

Mass spectrometric value (ESI-MS) 486 (M-1)

5

10

15

20

25

30

Compound 937 N-[2-(1H-Imidazol-2-ylmethylene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3,4-dimethoxy-benzamide

The title compound 937 was produced in substantially the same manner as in Example I.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.34 (1H, d, J = 9.0 Hz), 7.03 - 7.62 (8H, m), 3.93 (3H, s), 3.90 (3H, s), 3.15 - 3.19 (4H, m), 1.55 - 1.84 (6H, m) Mass spectrometric value (ESI-MS) 475 (M-1)

35 <u>Compound 938</u> N-[2-(4-Hydroxy-3-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-3,4-dimethoxy-benzamide

The title compound 938 was produced in substantially the same manner as in Example I.

¹H-NMR (CD₃OD, 400 MHz): δ 8.32 (1H, d, J = 9.3 Hz), 8.24 (1H, s), 7.71 (1H, d, J = 1.7 Hz), 7.59 (1H, dd, J = 1.9 Hz, J = 8.3 Hz), 7.56 (1H, d, J = 2.0 Hz), 7.36 (1H, d, J = 2.9 Hz), 7.22 (1H, dd, J = 2.9 Hz, J = 9.3 Hz), 7.05 - 7.11 (2H, m), 6.82 (1H, d, J = 8.0 Hz), 3.94 (3H, s), 3.92 (3H, s), 3.90 (3H, s), 3.21 - 3.25 (4H, m), 1.71 - 1.80 (4H, m), 1.58 - 1.67 (2H, m)

5

30

35

Mass spectrometric value (ESI-MS) 529, 531, 532 (M-1) 555 (M+23)

10 <u>Compound 939</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-morpholin-4-yl-phenyl]-3,4-dimethoxy-benzamide

The title compound 939 was produced in substantially the same manner as in Example I.

¹H-NMR (CD₃OD, 400 MHz): δ 8.37 (1H, d, J = 9.3 Hz), 8.28 (1H, s), 7.65 (1H, s), 7.60 (1H, dd, J = 2.2 Hz, J = 8.3 Hz), 7.56 (1H, d, J = 2.2 Hz), 7.50 - 7.55 (1H, m), 7.37 (1H, d, J = 2.7 Hz), 7.21 - 7.26 (1H, m), 7.20 (1H, d, J = 7.8 Hz), 7.08 (1H, d, J = 8.3 Hz), 3.92 (3H, s), 3.91 (3H, s), 3.85 - 3.89 (4H, m), 3.20 - 3.29 (4H, m), 2.32 (3H, s), 2.30 (3H, s) Mass spectrometric value (ESI-MS) 515 (M-1)

20 <u>Compound 940</u> N-[2-(4-Hydroxy-3-methoxy-benzylidene-hydrazinocarbonyl)-4-morpholin-4-yl-phenyl]-3,4-dimethoxy-benzamide

The title compound 940 was produced in substantially the same manner as in Example I.

¹H-NMR (CDCL₃, 400 MHz): δ 11.6 (1H, bs), 8.27 - 8.40 (2H, m), 7.55 - 7.62 (2H, m), 7.47 - 7.53 (1H, m), 7.40 - 7.44 (1H, m), 6.88 - 7.16 (4H, m), 3.98 (3H, s), 3.97 (3H, s), 3.94 (3H, s), 3.60 - 3.72 (4H, m), 2.97 - 3.05 (4H, m)

Mass spectrometric value (ESI-MS) 533, 534, 535 (M-1) 1067 (2M-1) <u>Compound 941</u> 3,4-Dimethoxy-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-morpholin-4-yl-phenyl]-benzamide

The title compound 941 was produced in substantially the same manner as in Example I.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.28 - 8.32 (1H, m), 7.83 - 7.89 (1H, m), 7.73 - 7.82 (2H, m), 7.53 - 7.66 (3H, m), 7.20 - 7.30 (1H, m), 7.05 - 7.12 (1H, m), 6.96 - 7.04 (2H, m), 3.83 - 3.95 (13H, m), 3.29 - 3.35 (4H, m) Mass spectrometric value (ESI-MS) 519, 520 (M+1)

Example J

<u>Compound 942</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-benzamide

5-Chloro-2-nitro-benzoic acid (compound A') (10.0 g) was dissolved in ethanol (100 ml). Thionyl chloride (20 ml) was added dropwise to the solution at 0°C, and the mixture was then heated under reflux with stirring for 48 hr. After the completion of the reaction, the reaction solution was concentrated under the reduced pressure. Distilled water was added to the residue, and the mixture was neutralized with a saturated aqueous sodium hydrogencarbonate solution under ice cooling, and was then subjected to separatory extraction with ethyl acetate. The organic layer was dried over sodium sulfate and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 5-chloro-2-nitro-benzoic acid ethyl ester as a useful intermediate (11.0 g, yield 97%).

5-Chloro-2-nitro-benzoic acid ethyl ester (3.1 g) produced by the above process was dissolved in N,N-dimethylformamide (30 ml), potassium carbonate (3.8 g) and piperidine (compound D) (2.8 ml) were added to the solution at room temperature, and was then heated under reflux with stirring for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure to give crude 2-nitro-5-piperidin-1-yl-benzoic acid ethyl ester (3.8 g, crude yield 100%).

Subsequently, crude 2-nitro-5-piperidin-1-yl-benzoic acid ethyl ester (3.8 g) was dissolved in methanol (35 ml), and platinum oxide (300 mg) was added to the solution at room temperature. The air in the reaction system was replaced by hydrogen, and the mixture was then stirred for 12 hr. After the completion of the reaction, the atmosphere in the reaction system was replaced by nitrogen, and the reaction solution was then filtered through Celite to remove platinum oxide, and was then concentrated under the reduced pressure to give crude 2-amino-5-piperidin-1-yl-benzoic acid ethyl ester (compound A) as a useful

intermediate (3.4 g, crude yield 100%).

5

10

15

20

25

30

35

2-Amino-5-piperidin-1-yl-benzoic acid ethyl ester (compound A) (1.6 g) synthesized by the above process was dissolved in anhydrous (1.0)ml) and 3ml). **Pyridine** chloride (20)methylene (chloromethyl)benzoyl chloride (compound B) (1.2 ml) were added dropwise to the solution at 0°C, and the mixture was then stirred at room After the completion of the reaction, the temperature for one hr. reaction solution was concentrated under the reduced pressure. Distilled water was added to the residue, and the mixture was subjected to separatory extraction with ethyl acetate. The organic layer was dried over sodium sulfate and was then concentrated under the reduced The residue was purified by column chromatography eluted 2-(3-chloromethylchloroform-methanol system to give with benzoylamino)-5-piperidin-1-yl-benzoic acid ethyl ester as a useful intermediate (1.7 g, yield 63%).

acid 2-(3-Chloromethyl-benzoylamino)-5-piperidin-1-yl-benzoic ethyl ester (200 mg) produced by the above reaction was dissolved in anhydrous methylene chloride (2 ml). Triethylamine (150 µl) and diisopropanolamine (compound B') (150 mg) were added to the solution at room temperature, and the mixture was then stirred at that temperature for 36 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol give 2-(3-{[bis-(2-hydroxy-propyl)-amino]-methyl}system to benzoylamino)-5-piperidin-1-yl-benzoic acid ethyl ester as a useful intermediate (200 mg, yield 82%).

Subsequently, 2-(3-{[bis-(2-hydroxy-propyl)amino]-methyl}-benzoylamino)-5-piperidin-1-yl-benzoic acid ethyl ester (200 mg) was dissolved in ethanol (2 ml). Hydrazine monohydrate (200 μ l) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, the reaction solution was concentrated under the reduced pressure. The residue was purified by column chromatography eluted

with a chloroform-methanol system to give 3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-N-(2-hydrazinocarbonyl-4-piperidin-1-yl-phenyl)benzamide as a useful intermediate (200 mg, yield 100%).

3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-(2-hydrazinocarbonyl-4-piperidin-1-ylphenyl)benzamide (53 mg) produced by the above process was dissolved in anhydrous toluene (5 ml). 4-Chloro-3-(trifluoromethyl)benzaldehyde (compound C) (69 mg) and a catalytic amount of acetic acid were added dropwise to the solution at room temperature, and the mixture was then stirred at 90°C for 3 hr. After the completion of the reaction, the reaction solution was allowed to stand for cooling, and the resultant crystals were collected by Kiriyama Rohto to give the title compound 942 (15 mg, yield 20%). The filtrate obtained by the filtration through Kiriyama Rohto was concentrated under the the residue was purified by column reduced pressure, and chromatography eluted with a chloroform-methanol system to again give the title compound 942 (37 mg, yield 50%) (final step: total yield 70%). ¹H-NMR (CD₃OD, 400 MHz): δ 8.31 - 8.38 (3H, m), 8.00 - 8.07 (2H, m), 7.86 (1H, d, J = 8.0 Hz), 7.67 (1H, d, J = 8.6 Hz), 7.58 (1H, d, J = 7.8 Hz),7.48 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.38 (1H, d, J = 2.7 Hz), 7.23 (1H, dd, J = 2.7 Hz, J = 9.0 Hz), 3.83 - 3.95 (4H, m), 3.20 - 3.25 (4H, m), 2.38- 2.55 (4H, m), 1.70 - 1.78 (4H, m), 1.58 - 1.66 (2H, m), 1.07 (3H, s), 1.06 (3H, s)

Mass spectrometric value (ESI-MS) 672, 674 (M-1) Example K

5

10

15

20

30

35

25 <u>Compound 943</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-(2-diethylamino-ethoxy)-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-hydroxyphenyl]-benzamide (45 mg) produced in substantially the same manner as in Example 8 was dissolved in N,N-dimethylformamide (10 ml). 60% Sodium hydride (4.0 mg) was added to the solution at room temperature, and the mixture was stirred at that temperature for 10 min. Subsequently, (2-bromoethyl)diethylamine hydrobromide (44 mg) was added thereto, and the mixture was stirred for 12 hr. After the completion of the reaction, distilled water was added thereto, and the mixture was subjected to

separatory extraction with ethyl acetate. The organic layer was washed with saturated brine and was dried over sodium sulfate. The organic layer was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform system to give the title compound 943 (7 mg, yield 13%).

 1 H-NMR (CDCL₃, 400 MHz): δ 10.02 (1H, bs), 8.20 - 8.25 (1H, m), 7.75 - 8.00 (3H, m), 7.35 - 7.50 (2H, m), 7.30 (1H, s), 7.23 (1H, s), 6.96 - 7.10 (3H, m), 4.25 - 4.45 (2H, m), 3.70 - 4.00 (4H, m), 2.30 - 2.80 (10H, m), 2.20 - 2.30 (6H, m), 1.00 - 1.20 (12H, m)

10 Mass spectrometric value (ESI-MS) 630 (M-1) 654 (M+23) Example L

5

15

20

25

30

35

<u>Compound 944</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-(2-oxo-pyrrolidin-1-yl)-phenyl]-benzamide

5-Amino-2-nitro-benzoic acid (compound A') (910 mg) was dissolved in methanol (50 ml). Thionyl chloride (0.74 ml) was added dropwise to the solution on an ice bath, and a reaction was allowed to proceed under reflux with heating for 12 hr. After the completion of the reaction, the reaction solution was allowed to stand for cooling to room temperature and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 5-amino-2-nitro-benzoic acid methyl ester (410 mg, yield 42%).

Subsequently, 5-amino-2-nitro-benzoic acid methyl ester (750 mg) was dissolved in anhydrous methylene chloride (30 ml). Pyridine (360 mg: dissolved in 2 ml of anhydrous methylene chloride) and 4-chloro-butyryl chloride (compound D) (630 mg: dissolved in 2 ml of anhydrous methylene chloride) were added dropwise at room temperature, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 5-(4-chloro-butyrylamino)-2-nitro-benzoic acid methyl ester as a

useful intermediate (1.2 g, yield 100%).

5

10

15

20

25

30

35

Subsequently, 5-(4-chloro-butyrylamino)-2-nitro-benzoic acid methyl ester (50 mg) was dissolved in N,N-dimethylformamide (5 ml). Morpholine (70 mg) and potassium carbonate (44 mg) were added to the solution at room temperature, and the mixture was stirred at room temperature for 3 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-nitro-5-(2-oxo-pyrrolidin-1-yl)-benzoic acid methyl ester (45 mg, yield 100%).

2-Nitro-5-(2-oxo-pyrrolidin-1-yl)-benzoic acid methyl ester (24 mg) was dissolved in ethanol (5 ml), and 10% palladium-carbon (3 mg) was added to the solution at room temperature. The air in the reaction system was replaced by hydrogen, and the reaction solution was then stirred at that temperature for 4 hr. After the completion of the reaction, the reaction solution was filtered through Celite to remove 10% palladium-carbon and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-amino-5-(2-oxo-pyrrolidin-1-yl)benzoic acid methyl ester (compound A) (10 mg, yield 83%).

acid methyl ester 2-Amino-5-(2-oxo-pyrrolidin-1-yl)benzoic (compound A) (10 mg) produced by the above process was dissolved in anhydrous methylene chloride. Pyridine (5 mg: dissolved in 1 ml of anhydrous methylene chloride) and 3-(chloromethyl)benzoyl chloride (compound B) (11 mg: dissolved in 1 ml of anhydrous methylene chloride) were added dropwise to the solution at 0°C, and the mixture was stirred at room temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-chloromethyl-benzoylamino)-5(2-oxo-pyrrolidin-1-yl)benzoic acid methyl ester (14 mg, yield 93%).

5

10

15

20

25

30

35

2-(3-chloromethyl-benzoylamino)-5-(2-oxo-Subsequently, pyrrolidin-1-yl)benzoic acid methyl ester (14 mg) was dissolved in anhydrous methylene chloride (5 ml). Triethylamine (7 mg: dissolved in 2 ml of anhydrous methylene chloride) and diisopropanolamine (compound B') (10 mg: dissolved in 2 ml of anhydrous methylene chloride) were added dropwise to the solution at 0°C, and the mixture was stirred at room temperature for 24 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroformmethanol system to give 2-(3-{[bis-(2-hydroxy-propyl)-amino]-methyl}benzoylamino)-5-(2-oxo-pyrrolidin-1-yl)-benzoic acid methyl ester (8.0 mg, yield 47%).

2-(3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-5-(2-oxo-pyrrolidin-1-yl)-benzoic acid methyl ester (8.0 mg) produced by the above reaction was dissolved in ethanol (5 ml). Hydrazine monohydrate (1 ml) was added dropwise to the solution at room temperature, and the mixture was stirred at that temperature for one hr. After the completion of the reaction, the reaction solution was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-hydrazinocarbonyl-4-(2-oxo-pyrrolidin-1-yl)-phenyl]-benzamide (8.0 mg, yield 100%).

Subsequently, 3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-hydrazinocarbonyl-4-(2-oxo-pyrrolidin-1-yl)-phenyl]-benzamide (8.0 mg) produced by the above reaction was dissolved in anhydrous toluene (5 ml). 3,4-Dimethylbenzaldehyde (compound C) (4.6 mg: dissolved in 2 ml of anhydrous toluene) and a catalytic amount of acetic acid were added dropwise to the solution at room temperature, and the mixture was stirred at that temperature for 4 hr. After the completion of the reaction, the reaction solution was neutralized with a saturated aqueous sodium hydrogencarbonate solution, and was then subjected to separatory extraction with ethyl acetate. The organic layer was washed

with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 944 (6.5 mg, yield 65%).

- ¹H-NMR (CDCL₃, 400 MHz): δ 12.11 (1H, d, J = 8.3 Hz), 10.88 (1H, d, J = 9.8 Hz), 8.74 (1H, dd, J = 17.1 Hz, J = 9.0 Hz), 8.20 8.30 (3H, m), 7.95 8.05 (1H, m), 7.28 7.60 (5H, m), 7.08 (1H, dd, J = 3.4 Hz, J = 8.0 Hz), 3.75 4.10 (5H, m), 2.40 2.61 (5H, m), 2.25 (3H, s), 2.23 (3H, s), 1.95 2.15 (2H, m), 1.25 (2H, s), 1.11 (6H, d, J = 6.4 Hz)
- Mass spectrometric value (ESI-MS) 598 (M-1) 622 (M+23)

 Compound 945 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(2-oxo-pyrrolidin-1-yl)-phenyl]-benzamide

The title compound 945 was produced in substantially the same manner as in Example L.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.33 (1H, d, J = 9.0 Hz,), 11.94 (1H, bs), 8.71 (1H, dd, J = 9.0 Hz, J = 9.0 Hz), 8.07 - 8.40 (3H, m), 8.11 (1H, d, J = 21.0 Hz), 7.99 (1H, d, J = 7.3 Hz), 7.78 (1H, dd, J = 8.3 Hz, J = 29.0 Hz), 7.20 - 7.50 (4H, m), 3.55 - 4.20 (6H, m), 2.45 - 2.74 (4H, m), 2.25 - 2.42 (2H, m), 1.78 - 1.87 (2H, m), 1.50 - 1.72 (6H, m)

Mass spectrometric value (ESI-MS) 672 (M-1)

<u>Compound</u> 946 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-(2-oxo-pyrrolidin-1-yl)-phenyl]-benzamide

The title compound 946 was produced in substantially the same manner as in Example L.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.17 (1H, d, J = 8.8 Hz), 12.23 (1H, d, J = 12.4 Hz), 8.70 (1H, dd, J = 9.3 Hz, J = 20.7 Hz), 8.14 - 8.27 (3H, m), 7.95 - 8.01 (1H, m), 7.68 - 7.74 (2H, m), 7.26 - 7.46 (3H, m), 6.78 - 6.82 (2H, m), 3.50 - 4.20 (9H, m), 2.35 - 2.63 (6H, m), 1.92 - 2.05 (2H, m), 1.00 - 1.30 (6H, m)

Mass spectrometric value (ESI-MS) 600 (M-1)

Compound 947 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-fluorobenzylidene-hydrazinocarbonyl)-4-(2-oxo-pyrrolidin-1-yl)-phenyl]-

35 benzamide

15

20

25

30

The title compound 947 was produced in substantially the same

manner as in Example L.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.21 (1H, d, J = 5.4 Hz), 11.44 (1H, d, J = 12.4 Hz), 8.70 (1H, dd, J = 9.0 Hz, J = 26.1 Hz), 8.20 - 8.35 (3H, m), 7.96 - 7.99 (1H, m), 7.72 - 7.82 (2H, m), 7.38 - 7.46 (2H, m), 7.25 - 7.32 (1H, m), 6.93 - 6.99 (2H, m), 3.50 - 4.10 (6H, m), 2.35 - 2.64 (6H, m), 1.87 - 1.97 (2H, m), 1.07 - 1.14 (6H, m)

Mass spectrometric value (ESI-MS) 588 (M-1)

<u>Compound 948</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-methyl-benzylidene-hydrazinocarbonyl)-4-(2-oxo-pyrrolidin-1-yl)-phenyl]-

10 benzamide

5

15

25

30

35

The title compound 948 was produced in substantially the same manner as in Example L.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.13 (1H, d, J = 3.0 Hz), 11.28 (1H, d, J = 11.4 Hz), 8.68 (1H, dd, J = 9.2 Hz, J = 20.5 Hz), 8.16 - 8.29 (3H, m), 7.94 - 8.00 (1H, m), 7.60 - 7.70 (2H, m), 7.25 - 7.45 (3H, m), 7.06 - 7.11 (2H, m), 3.52 - 4.07 (6H, m), 2.20 - 2.61 (9H, m), 1.90 - 2.00 (2H, m), 1.09 - 1.30 (6H, m)

Mass spectrometric value (ESI-MS) 584 (M-1)

Example M

20 <u>Compound 949</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-(2-hydroxy-3-piperidin-1-yl-propoxy)-phenyl]-benzamide

2-Amino-5-hydroxy-benzoic acid methyl ester (compound A) (350 mg) was dissolved in anhydrous methylene chloride (20 ml). Pyridine (230 mg) and 3-(chloromethyl)benzoic acid (compound B) (540 mg) were added dropwise to the solution at 0°C, and the mixture was stirred at room temperature for 10 min. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-chloromethyl-benzoylamino)-5-hydroxy-benzoic acid methyl ester as a useful intermediate (280 mg, yield 42%).

Subsequently, 2-(3-chloromethyl-benzoylamino)-5-hydroxybenzoic acid methyl ester (280 mg) produced by the above reaction was dissolved in anhydrous methylene chloride (20 ml). Triethylamine (180 mg) and diisopropanolamine (compound B') (230 mg) were added dropwise to the solution at room temperature, and the mixture was stirred at that temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-5-hydroxy-benzoic acid methyl ester (58 mg, yield 16%).

2-(3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-5-hydroxy-benzoic acid methyl ester (60 mg) produced by the above process was dissolved in N,N-dimethylformamide (5 ml). Potassium carbonate (58 mg) and epibromohydrin (58 mg: dissolved in 2 ml of N,N-dimethylformamide) were added to the solution at room temperature, and the mixture was stirred at that temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-5-oxilanylmethoxy-benzoic acid methyl ester as a useful intermediate (68 mg, yield 66%).

2-(3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-5-oxilanylmethoxy-benzoic acid methyl ester (12 mg) produced by the above process was dissolved in anhydrous methylene chloride (5 ml). Piperidine (6.5 mg: dissolved in 1 ml of anhydrous methylene chloride) and a catalytic amount of ytterbium (III) trifluoromethanesulfonate were added to the solution at room temperature, and the mixture was stirred at that temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and

٨

5

10

15

20

25

30

was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-{[bis-(2-hydroxy-propyl)amino]methyl}benzoylamino)-5-(2-hydroxy-3-piperidin-1-yl-propoxy)-benzoic acid methyl ester (10 mg, yield 71%).

Subsequently, 2-(3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-5-(2-hydroxy-3-piperidin-1-yl-propoxy)-benzoic acid methyl ester (13 mg) produced by the above process was dissolved in ethanol (5 ml). Hydrazine monohydrate (1 ml) was added dropwise to the solution at room temperature, and the mixture was stirred at that temperature for 12 hr. After the completion of the reaction, the reaction solution was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-hydrazinocarbonyl-4-(2-hydroxy-3-piperidin-1-yl-propoxy)-phenyl]-benzamide (5.8 mg, yield 45%).

3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-hydrazinocarbonyl-4-(2-hydroxy-3-piperidin-1-yl-propoxy)-phenyl]-benzamide (5.8 mg) produced by the above process was dissolved in anhydrous toluene (5 ml). 3,4-Dimethylbenzaldehyde (compound C) (3 mg: dissolved in 1 ml of anhydrous toluene) and a catalytic amount of acetic acid were added dropwise to the solution at room temperature, and the mixture was stirred at that temperature for 6 hr. After the completion of the reaction, the reaction solution was neutralized with a saturated aqueous sodium hydrogencarbonate solution, and was then subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 949 (4.0 mg, yield 60%).

 1 H-NMR (CDCL₃, 400 MHz): δ 11.97 (1H, bs), 7.94 - 8.65 (4H, m), 6.98 - 7.65 (7H, m), 3.52 - 4.45 (7H, m), 1.50 - 2.90 (16H, m), 1.20 - 1.30 (6H, m), 1.00 - 1.18 (6H, m)

Mass spectrometric value (ESI-MS) 672 (M-1)

35 <u>Compound 950</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(2-hydroxy-3-

piperidin-1-yl-propoxy)-phenyl]-benzamide

The title compound 950 was produced in substantially the same manner as in Example M.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.10 - 12.20 (1H, m), 7.20 - 8.70 (10H, m), 6.95 - 7.05 (1H, m), 1.50 - 4.25 (17H, m), 1.20 - 1.30 (6H, m), 0.85 - 1.18 (6H, m)

Mass spectrometric value (ESI-MS) 746 (M-1)

Compound 951 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-(3-diethylamino-2-hydroxy-propoxy)-2-(3,4-dimethyl-benzylidene-

10 hydrazinocarbonyl)-phenyl]-benzamide

The title compound 951 was produced in substantially the same manner as in Example M.

 $^1\text{H-NMR}$ (CDCL3, 400 MHz): δ 12.02 (1H, bs), 8.58 - 8.65 (1H, m), 8.47 (1H, s), 8.17 - 8.24 (1H, m), 7.80 - 8.00 (1H, m), 7.27 - 7.60 (5H, m), 6.98 - 7.10 (2H, m), 1.50 - 4.12 (23H, m), 1.20 - 1.28 (6H, m), 1.08 - 1.16

(6H, m)

5

15

20

25

30

35

Mass spectrometric value (ESI-MS) 660 (M-1)

Compound 952 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(3-diethylamino-2-

hydroxy-propoxy)-phenyl]-benzamide

The title compound 952 was produced in substantially the same manner as in Example M.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.21 (1H, d, J = 16.1 Hz), 8.64 - 8.67 (1H, m), 8.50 - 8.58 (1H, m), 8.30 - 8.38 (1H, m), 7.80 - 8.12 (3H, m), 7.35 - 7.50 (4H, m), 6.97 - 7.00 (1H, m), 1.50 - 4.50 (17H, m), 1.20 - 1.35 (6H, m), 1.08 - 1.17 (6H, m)

Mass spectrometric value (ESI-MS) 734 (M-1)

<u>Compound</u> 953 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-(2-hydroxy-3-morpholin-4-yl-propoxy)-phenyl]-benzamide

The title compound 953 was produced in substantially the same manner as in Example M.

Mass spectrometric value (ESI-MS) 674 (M-1)

Compound 954 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(2-hydroxy-3-morpholin-4-yl-propoxy)-phenyl]-benzamide

The title compound 954 was produced in substantially the same manner as in Example M.

Mass spectrometric value (ESI-MS) 748 (M-1)

Example N

5

10

15

20

25

30

35

<u>Compound 955</u> N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-5-methyl-thiophen-2-yl]-3,4-dimethoxy-benzamide

Methyl 2-aminothiophene-3-carboxylate (compound A) (160 mg) was dissolved in anhydrous methylene chloride (5 ml). Pyridine (120 mg: dissolved in 2 ml of anhydrous methylene chloride) and 3,4-dimethoxybenzoyl chloride (compound B) (300 mg) were added to the solution at 0°C, and the mixture was stirred at room temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography using a hexane-acetone system to give 2-(3,4-dimethoxy-benzoylamino)-thiophene-3-carboxylic acid methyl ester (320 mg, yield 100%).

Separately, phosphorus oxychloride (100 µl) was added dropwise to N,N-dimethylformamide (29 mg) at 0°C, and the mixture was stirred at that temperature for 5 min. Subsequently, the reaction system was heated to 80°C, 2-(3,4-dimethoxy-benzoylamino)-thiophene-3-carboxylic acid methyl ester (64 mg: dissolved in 1 ml of N,N-dimethylformamide) produced by the above reaction was then added dropwise thereto, and the mixture was stirred at that temperature for 2 hr. After the completion of the reaction, the reaction solution was neutralized with a saturated sodium hydrogencarbonate solution, and was then subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure to give crude 2-(3,4dimethoxy-benzoylamino)-5-formylthiophene-3-carboxylic acid methyl ester (70 mg, crude yield 100%).

Crude 2-(3,4-dimethoxy-benzoylamino)-5-formylthiophene-3-carboxylic acid methyl ester (35 mg) synthesized by the above process was dissolved in tetrahydrofuran/N,N-dimethylformamide = 1/1 (10 ml).

Sodium borohydride (22 mg) was added to the solution at room temperature, and the mixture was stirred at that temperature for 20 min. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure to give crude 2-(3,4-dimethoxy-benzoylamino)-5-hydroxymethyl-thiophene-3-carboxylic acid methyl ester (35 mg, crude yield 100%).

5

10

15

20

25

30

35

2-(3,4-dimethoxy-benzoylamino)-5-hydroxy-Subsequently, crude methyl-thiophene-3-carboxylic acid methyl ester (crude 35 mg) synthesized by the above process was dissolved in anhydrous methylene chloride (5 ml). Pyridine (24 mg: dissolved in 1 ml of anhydrous methylene chloride) and acetic anhydride (31 mg: dissolved in 1 ml of anhydrous methylene chloride) were added dropwise to the solution at room temperature, and the mixture was stirred at that temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol 5-acetoxymethyl-2-(3,4-dimethoxy-benzoylamino)give system thiophene-3-carboxylic acid methyl ester as a useful intermediate (26 mg, 3 steps, yield 67%).

5-Acetoxymethyl-2-(3,4-dimethoxy-benzoylamino)-thiophene-3-carboxylic acid methyl ester (26 mg) produced by the above process was dissolved in ethanol/tetrahydrofuran = 5/2 (7 ml), and 10% palladium-carbon (10 mg) was added to the solution at room temperature. The air in the reaction system was replaced by hydrogen, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, the atmosphere in the reaction system was replaced by nitrogen, and the reaction solution was then filtered through Celite to remove 10% palladium-carbon and was then concentrated under the reduced pressure. The residue was purified by column chromatography using a hexane-acetone system to give 2-(3,4-dimethoxy-benzoylamino)-

5-methyl-thiophene-3-carboxylic acid methyl ester (13 mg, yield 59%).

Subsequently, 2-(3,4-dimethoxy-benzoylamino)-5-methyl-thiophene-3-carboxylic acid methyl ester (16 mg) synthesized by the above process was dissolved in ethanol (5 ml). Hydrazine (1 ml) was then added to the solution at room temperature, and the mixture was stirred at that temperature for 12 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give N-(3-hydrazinocarbonyl)-5-methylthiophen-2-yl)-3,4-dimethoxy-benzamide (8.0 mg, yield 50%).

Subsequently, N-(3-hydrazinocarbonyl)-5-methylthiophen-2-yl)-3, 4-dimethoxy-benzamide (8.0 mg) was dissolved in anhydrous toluene (5 ml), 4-chloro-3-(trifluoromethyl)benzaldehyde (compound C) (15 mg: dissolved in 1 ml of anhydrous toluene) and a catalytic amount of acetic acid were added dropwise to the solution at room temperature, and the mixture was stirred at that temperature for 3 hr. After the completion of the reaction, the reaction solution was neutralized with a saturated sodium hydrogencarbonate solution and was then subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 955 (5.0 mg, yield 38%).

¹H-NMR (CDCL₃, 400 MHz): δ 12.66 (1H, bs), 9.19 (1H, bs), 8.19 (1H, bs), 8.02 (1H, s), 7.80 - 7.92 (1H, m), 7.62 - 7.65 (2H, m), 7.56 (1H, d, J = 8.3 Hz), 6.92 (1H, d, J = 8.8 Hz), 3.97 (3H, s), 3.95 (3H, s), 2.44 (3H, s)

Mass spectrometric value (ESI-MS) 524 (M-1)

Example O

5

10

15

20

25

30

35

Compound 956 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methyl-5-piperidin-1-ylmethyl-thiophen-2-yl]-3-diethylaminomethyl-benzamide

Ethyl-2-amino-4-methylthiophene-3-carboxylate (compound A) (370 mg) was dissolved in anhydrous methylene chloride (10 ml). Pyridine (240 mg: dissolved in 2 ml of anhydrous methylene chloride) and 3-(chloromethyl)benzoyl chloride (compound B) (570 mg: dissolved

in 2 ml of anhydrous methylene chloride) were added dropwise to the solution at 0°C, and the mixture was stirred at room temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was then subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-chloromethylbenzoylamino)-4-methyl-thiophene-3-carboxylic acid ethyl ester (670 mg, yield 99%).

5

10

15

20

25

30

35

Subsequently, 2-(3-diethylaminomethyl-benzoylamino)-4-methylthiophene-3-carboxylic acid ethyl ester (700 mg) synthesized by the above process was dissolved in anhydrous methylene chloride (10 ml). Triethylamine (425 mg: dissolved in 2 ml of anhydrous methylene chloride) and diethylamine (compound B') (310 mg: dissolved in 2 ml of anhydrous methylene chloride) were added dropwise to the solution at 0°C, and the mixture was stirred at room temperature for 2 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was then subjected to separatory extraction with chloroform, and the organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to 2-(3-diethylaminomethyl-benzoylamino)-4-methylthiophene-3give carboxylic acid ethyl ester (690 mg, yield 88%).

Separately, phosphorus oxychloride (200 μ l) was added dropwise to N,N-dimethylformamide (73 mg) at 0°C, and the mixture was stirred at that temperature for 5 min. The reaction system was heated to 80°C, 2-(3-diethylaminomethyl-benzoylamino)-4-methyl-thiophene-3-carboxylic acid ethyl ester (187 mg) synthesized by the above process was then added thereto, and the mixture was stirred at that temperature for 3 hr. After the completion of the reaction, the reaction solution was neutralized with a saturated sodium hydrogencarbonate solution, and was then subjected to separatory extraction with chloroform, and the organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was

purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-diethylaminomethyl-benzoylamino)-5-formyl-4-methylthiophene-3-carboxylic acid ethyl ester as a useful intermediate (110 mg, yield 53%).

5

10

15

20

25

30

35

2-(3-diethylaminomethyl-benzoylamino)-5-formyl-4-methylthiophene-3-carboxylic acid ethyl ester (110 mg) synthesized by the above process was dissolved in N,N-dimethylformamide (10 ml), acetic acid (100 µl) and sodium triacetoxyborohydride (66 mg) were added to the solution at room temperature, and the mixture was stirred at that After the completion of the reaction, the temperature for one hr. sodium with saturated neutralized reaction solution was hydrogencarbonate solution, and was then subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to 2-(3-diethylaminomethyl-benzoylamino)-4-methyl-5-piperidin-1aive ylmethylthiophene-3-carboxylic acid ethyl ester (79 mg, yield 64%).

Subsequently, 2-(3-diethylaminomethyl-benzoylamino)-4-methyl-5-piperidin-1-ylmethylthiophene-3-carboxylic acid ethyl ester (79 mg) was dissolved in ethanol (10 ml), hydrazine monohydrate (2 ml) was added dropwise to the solution at room temperature, and a reaction was then allowed to proceed at that temperature for 12 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-diethylaminomethyl-N-(3-hydrazinocarbonyl-4-methyl-5-piperidin-1-ylmethylthiophen-2-yl)-benzamide as a useful intermediate (30 mg, yield 38%).

Subsequently, 3-diethylaminomethyl-N-(3-hydrazinocarbonyl-4-methyl-5-piperidin-1-ylmethylthiophen-2-yl)-benzamide (15 mg) produced by the above process was dissolved in anhydrous toluene. 4-Chloro-3-(trifluoromethyl)benzaldehyde (compound C) (21 mg: dissolved in 1 ml of anhydrous toluene) and a catalytic amount of acetic acid were added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 3 hr. After the completion of the reaction,

the reaction solution was neutralized with a saturated sodium hydrogencarbonate solution, and was then subjected to separatory extraction with ethyl acetate, and the organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 956 (6.0 mg, yield 29%).

¹H-NMR (CDCL₃, 400 MHz): δ 8.26 (1H, bs), 8.05 (1H, s), 8.00 (1H, s), 7.95 (1H, d, J = 8.0 Hz), 7.88 (1H, d, J = 7.6 Hz), 7.55 - 7.62 (2H, m), 7.42 - 7.48 (1H, m), 3.67 (2H, s), 2.48 - 2.60 (10H, m), 1.24 - 2.00 (9H, m), 1.07 (6H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 646 (M-1)

<u>Compound 957</u> 3-Diethylaminomethyl-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-methyl-5-piperidin-1-ylmethyl-thiophen-2-yl]-

15 benzamide

5

10

20

30

The title compound 957 was produced in substantially the same manner as in Example O.

¹H-NMR (CDCL₃, 400 MHz): δ 8.08 (1H, bs), 7.99 (1H, bs), 7.90 (1H, d, J = 7.8 Hz), 7.74 (2H, d, J = 8.3 Hz), 7.60 (1H, d, J = 7.6 Hz), 7.40 - 7.45 (1H, m), 6.94 (2H, d, J = 8.8 Hz), 3.86 (3H, s), 3.67 (2H, s), 2.40 - 2.60 (10H, m), 1.25 - 1.62 (9H, m), 1.06 (6H, t, J = 7.1 Hz) Mass spectrometric value (ESI-MS) 574 (M-1) 598 (M+23) Compound 958 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-piperidin-1-yl-phenyl]-

25 benzamide

The title compound 958 was produced in substantially the same manner as in Example J.

¹H-NMR (CD₃OD, 400 MHz): δ 8.38 (1H, dd, J = 6.1 Hz, J = 9.0 Hz), 8.29 (1H, s), 8.01 (1H, bs), 7.86 (1H, d, J = 7.4 Hz), 7.75 - 7.85 (2H, m), 7.59 (1H, d, J = 7.3 Hz), 7.48 (1H, dd, J = 7.6 Hz, J = 7.8 Hz), 7.37 (1H, d, J = 2.7 Hz), 7.22 (1H, dd, J = 3.0 Hz, J = 9.0 Hz), 6.90 - 7.03 (2H, m), 3.80 - 3.90 (7H, m), 3.22 - 3.30 (4H, m), 2.40 - 2.60 (4H, m), 1.70 - 1.89 (4H, m), 1.62 - 1.64 (2H, m), 1.08 (3H, d, J = 6.3 Hz), 1.07 (3H, d, J = 6.1 Hz) Mass spectrometric value (ESI-MS) 600, 601 (M-1) 622 (M-1+23)

35 Example P

Compound 959 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3-fluoro-

benzylidene-hydrazinocarbonyl)-naphthalen-2-yl]-benzamide

5

10

15

20

25

30

35

3-Amino-naphthalene-2-carboxylic acid (compound A') (1.2 g) was dissolved in anhydrous methylene chloride (12 ml). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (2.5 g), 1-hydroxybenzotriazole monohydrate (1.5 g), and triethylamine (1 ml) were added to the solution at room temperature, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography using a hexane-acetone system to give 3-amino-naphthalene-2-carboxylic acid methyl ester as a useful intermediate (compound A) (530 mg, yield 41%).

3-Amino-naphthalene-2-carboxylic acid methyl ester (compound A) (530 mg) produced by the above process was dissolved in anhydrous 3ml) and methylene chloride (10 ml). **Pyridine** (0.5)(chloromethyl)benzoyl chloride (compound B) (0.6 ml) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 30 min. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. organic layer was washed with saturated brine, was dried over sodium sulfate, and was concentrated under the reduced pressure to precipitate The crystals were collected by Kiriyama Rohto and were crystals. to give 3-(3hexane-ether solvent washed with а chloromethylbenzoylamino)-naphthalene-2-carboxylic acid methyl ester (870 mg, yield 93%).

Subsequently, 3-(3-chloromethyl-benzoylamino)-naphthalene-2-carboxylic acid methyl ester (870 mg) was dissolved in anhydrous methylene chloride (15 ml). Pyridine (400 μ l) and diisopropanolamine (compound B') (1.0 g) were added to the solution at room temperature, and the mixture was then stirred at that temperature for 48 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was

dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a hexane-acetone system to give 3-(3-{[bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-naphthalene-2-carboxylic acid methyl ester as a useful intermediate (640 mg).

5

10

15

20

25

30

35

3-(3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-naphthalene-2-carboxylic acid methyl ester (640 mg) produced by the above reaction was dissolved in ethanol (7 ml). Hydrazine monohydrate (1 ml) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 2 hr. After the completion of the reaction, the reaction solution was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-{[bis-(2-hydroxy-propyl)amino]-methyl}-N-(3-

hydrazinocarbonylnaphthalen-2-yl)-benzamide (350 mg, yield 54%).

Subsequently, 3-{[bis-(2-hydroxy-propyl)amino]-methyl}-N-(3-hydrazinocarbonylnaphthalen-2-yl)-benzamide (50 mg) was dissolved in anhydrous toluene (1 ml). 3-Fluorobenzaldehyde (compound C) (50 μ l) was added dropwise to the solution at room temperature, and the mixture was then stirred at 120°C for 12 hr. After the completion of the reaction, the reaction solution was allowed to stand for cooling at room temperature and the reaction system was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a hexane-acetone system to give the title compound 959 (32 mg, yield 51%).

 1 H-NMR (CDCL₃, 400 MHz): δ 12.05 (1H, bs), 11.40 - 11.55 (1H, m), 8.86 (1H, d, J = 18.6 Hz), 8.10 - 8.40 (3H, m), 7.88 (1H, dd, J = 7.3 Hz, J = 17.8 Hz), 7.66 (2H, d, J = 8.3 Hz), 7.25 - 7.50 (5H, m), 7.05 - 7.15 (2H, m), 6.80 - 6.95 (1H, m), 4.15 - 4.25 (2H, m), 3.95 - 4.05 (2H, m), 3.89 (1H, s), 3.60 (1H, d, J = 1.4 Hz), 2.48 - 2.83 (4H, m), 1.20 (3H, d, J = 6.1 Hz), 1.14 (3H, d, J = 6.3 Hz)

Mass spectrometric value (ESI-MS) 555 (M-1)

Compound 960 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-naphthalen-2-yl]-benzamide

The title compound 960 was produced in substantially the same manner as in Example P.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.90 (1H, bs), 10.90 - 11.00 (1H, m), 8.85 (1H, bs), 8.30 (1H, d, J = 3.9 Hz), 7.86 - 8.20 (3H, m), 7.52 - 7.64 (3H, m), 7.28 - 7.46 (4H, m), 7.06 - 7.18 (1H, m), 6.88 (2H, d, J = 7.8 Hz), 3.80 - 3.96 (4H, m), 3.55 - 3.60 (1H, m), 2.40 - 2.70 (4H, m), 2.18 - 2.23 (3H, m), 1.10 (3H, d, J = 6.1 Hz), 1.06 (3H, d, J = 6.1 Hz) Mass spectrometric value (ESI-MS) 551 (M-1)

Compound 961 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-naphthalen-2-yl]-benzamide

The title compound 961 was produced in substantially the same manner as in Example P.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.95 - 12.05 (1H, m), 10.80 - 10.95 (1H, m), 8.95 - 9.02 (1H, m), 8.15 - 8.32 (3H, m), 7.95 - 8.05 (1H, m), 7.20 - 7.80 (8H, m), 6.87 (1H, d, J = 7.3 Hz), 3.60 - 4.20 (4H, m), 2.28 - 2.75 (4H, m), 2.00 - 2.15 (6H, m), 1.10 - 1.17 (6H, m)

15 Mass spectrometric value (ESI-MS) 565 (M-1)

Compound 962 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-naphthalen-2-yl]benzamide

The title compound 962 was produced in substantially the same manner as in Example P.

 $^1\text{H-NMR}$ (CDCL3, 400 MHz): δ 11.96 - 12.05 (1H, m), 11.71 (1H, d, J = 15.1 Hz), 8.80 (1H, s), 8.32 (2H, bs), 8.13 (1H, d, J = 7.8 Hz), 7.57 - 7.94 (4H, m), 7.25 - 7.46 (5H, m), 7.08 (2H, d, J = 8.0 Hz), 3.50 - 4.20 (5H, m), 2.30 - 2.86 (4H, m), 1.13 (3H, d, J = 6.1 Hz), 1.09 (3H, d, J = 6.3 Hz)

25 Mass spectrometric value (ESI-MS) 639, 641, 642 (M-1)

10

20

Compound 963 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-naphthalen-2-yl]-benzamide

The title compound 963 was produced in substantially the same manner as in Example P.

¹H-NMR (CDCL₃, 400 MHz): δ 11.95 (1H, bs), 10.86 - 11.00 (1H, m), 8.80 - 8.90 (1H, m), 8.05 - 8.30 (3H, m), 7.85 - 7.95 (1H, m), 7.60 - 7.65 (3H, m), 7.22 - 7.48 (4H, m), 7.06 - 7.18 (1H, m), 6.59 (1H, d, J = 8.5 Hz), 3.50 - 3.96 (8H, m), 2.40 - 2.70 (4H, m), 1.10 (3H, d, J = 6.1 Hz), 1.06 (3H, d, J = 6.1 Hz)

Mass spectrometric value (ESI-MS) 567 (M-1) 591 (M+23)

Compound 964 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3-fluoro-

benzylidene-hydrazinocarbonyl)-pyridin-2-yl]-benzamide

5

30

The title compound 964 was produced in substantially the same manner as in Example P.

¹H-NMR (CD₃OD, 400 MHz): δ 8.55 - 8.60 (1H, m), 8.29 (1H, s), 8.25 (1H, d, J = 7.8 Hz), 8.07 (1H, s), 7.89 - 7.96 (1H, m), 7.70 (1H, d, J = 10.0 Hz), 7.62 (1H, d, J = 7.6 Hz), 7.57 (1H, d, J = 7.3 Hz), 7.40 - 7.52 (2H, m), 7.32 - 7.40 (1H, m), 7.13 - 7.20 (1H, m), 3.60 - 3.95 (4H, m), 2.35 - 2.60 (4H, m), 1.08 (3H, d, J = 6.1 Hz), 1.07 (3H, d, J = 6.3 Hz) Mass spectrometric value (ESI-MS) 506, 507, 508 (M-1)

10 <u>Compound 965</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-pyridin-2-yl]-benzamide

The title compound 965 was produced in substantially the same manner as in Example P.

¹H-NMR (CD₃OD, 400 MHz): δ 8.54 - 8.59 (1H, m), 8.21 - 8.28 (2H, m), 8.05 - 8.09 (1H, m), 7.86 - 7.95 (1H, m), 7.72 (2H, d, J = 7.8 Hz), 7.62 (1H, d, J = 7.8 Hz), 7.49 (1H, ddd, J = 1.7 Hz, J = 7.6 Hz, J = 7.6 Hz), 7.32 - 7.37 (1H, m), 7.25 (2H, d, J = 7.8 Hz), 3.81 - 3.93 (4H, m), 2.39 - 2.60 (4H, m), 2.37 (3H, s), 1.08 (3H, d, J = 6.1 Hz), 1.07 (3H, d, J = 6.4 Hz)

20 Mass spectrometric value (ESI-MS) 502, 503, 504 (M-1) 526, 527 (M+23)

Compound 966 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-pyridin-2-yl]-benzamide

The title compound 966 was produced in substantially the same 25 manner as in Example P.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.50 - 8.60 (1H, m), 8.23 - 8.28 (2H, m), 8.05 - 8.08 (1H, m), 7.88 - 7.98 (1H, m), 7.60 - 7.66 (2H, m), 7.46 - 7.56 (2H, m), 7.25 - 7.40 (1H, m), 7.18 - 7.22 (1H, m), 3.75 - 3.94 (4H, m), 2.38 - 2.60 (4H, m), 2.31 (3H, s), 2.30 (3H, s), 1.08 (3H, d, J = 6.1 Hz), 1.07 (3H, d, J = 6.1 Hz)

Mass spectrometric value (ESI-MS) 516, 517 (M-1) 540, 541 (M+23) Compound 967 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-pyridin-2-yl]-benzamide

The title compound 967 was produced in substantially the same manner as in Example P.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.70 - 11.85 (1H, m), 11.61 (1H, s), 8.58

```
(1H, s), 8.36 (1H, s), 8.24 (1H, s), 8.00 - 8.10 (2H, m), 7.80 - 7.90 (1H, m), 7.40 - 7.55 (4H, m), 6.75 - 6.85 (1H, m), 3.86 - 4.10 (4H, m), 2.45 - 2.75 (4H, m), 1.10 (6H, d, J = 6.1 Hz)
```

Mass spectrometric value (ESI-MS) 592 (M-1) 614 (M+23)

5 <u>Compound 968</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-pyridin-2-yl]-benzamide

The title compound 968 was produced in substantially the same manner as in Example P.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.74 (1H, s), 11.00 - 11.20 (1H, m), 8.40 - 8.45 (1H, m), 8.22 (1H, d, J = 12.4 Hz), 8.06 (1H, s), 7.80 - 7.90 (3H, m), 7.35 - 7.50 (3H, m), 6.80 - 7.00 (3H, m), 3.80 - 3.90 (7H, m), 2.40 - 2.75 (4H, m), 1.05 - 1.14 (6H, m)

Mass spectrometric value (ESI-MS) 518 (M-1) 542 (M+23)

10

15

30

Compound 969 N-[3-(3-Fluoro-benzylidene-hydrazinocarbonyl)-naphthalen-2-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 969 was produced in substantially the same manner as in Example P.

¹H-NMR (CDCL₃, 400 MHz): δ 11.15 (1H, s), 10.91 (1H, bs), 7.10 - 8.90 (15H, m), 3.60 - 3.75 (4H, m), 2.00 - 2.85 (11H, m)

20 Mass spectrometric value (ESI-MS) 552, 553 (M-1)

Compound 970 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[3-(4-

methyl-benzylidene-hydrazinocarbonyl)-naphthalen-2-yl]-benzamide

The title compound 970 was produced in substantially the same manner as in Example P.

¹H-NMR (CDCL₃, 400 MHz): δ 11.19 (1H, s), 7.00 - 8.95 (15H, m), 3.63 (2H, s), 3.59 (2H, t, J = 5.4 Hz), 2.50 - 2.65 (10H, m), 2.40 (3H, s)

Mass spectrometric value (ESI-MS) 548, 549, 550 (M-1)

Compound 971 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-

Compound 971 N-[3-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-naphthalen-2-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 971 was produced in substantially the same manner as in Example P.

¹H-NMR (CDCL₃, 400 MHz): δ 11.19 (1H, s), 7.00 - 9.00 (14H, m), 3.63 (2H, s), 3.59 (2H, t, J = 5.4 Hz), 2.50 - 2.75 (10H, m), 2.32 (3H, s), 2.30 (3H, s)

Mass spectrometric value (ESI-MS) 562, 563 (M-1)

Compound 972 N-[3-(4-Chloro-3-trifluoromethyl-benzylidene-

hydrazinocarbonyl)-naphthalen-2-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 972 was produced in substantially the same manner as in Example P.

¹H-NMR (CDCL₃, 400 MHz): δ 11.19 (1H, s), 8.97 (1H, s), 7.20 - 8.60 (13H, m), 3.64 (2H, s), 3.57 - 3.63 (2H, m), 2.50 - 2.60 (10H, m) Mass spectrometric value (ESI-MS) 636, 637 (M-1)

Compound 973 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[3-(4-methoxy-benzylidene-hydrazinocarbonyl)-naphthalen-2-yl]-benzamide

The title compound 973 was produced in substantially the same manner as in Example P.

10

15

20

 1 H-NMR (CDCL₃, 400 MHz): δ 11.25 (1H, s), 10.47 (1H, s), 8.88 (1H, s), 8.48 (1H, s), 7.97 (2H, bs), 7.82 (2H, d, J = 8.3 Hz), 7.74 (1H, d, J = 7.3 Hz), 7.63 (1H, d, J = 8.5 Hz), 7.53 (1H, d, J = 7.6 Hz), 7.38 - 7.43 (3H, m), 7.10 - 7.20 (1H, m), 6.96 (2H, d, J = 8.3 Hz), 3.86 (3H, s), 3.62 (2H, s), 3.59 (2H, t, J = 5.4 Hz), 2.50 - 2.60 (10H, m)

Compound 974 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-(3-fluorobenzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

Mass spectrometric value (ESI-MS) 564, 565 (M-1)

The title compound 974 was produced in substantially the same manner as in Example 8.

 $^1\text{H-NMR}$ (CDCL3, 400 MHz): δ 8.91 (1H, s), 7.95 - 8.27 (5H, m), 7.00 - 7.70 (6H, m), 3.82 - 4.08 (4H, m), 2.40 - 2.75 (4H, m), 1.10 - 1.17 (6H, m)

25 Mass spectrometric value (ESI-MS) 511, 512 (M-1) 534 (M+23)

Compound 975 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-(3-methyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 975 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCL₃, 400 MHz): δ 11.99 (1H, s), 11.28 - 11.38 (1H, m), 8.36 (1H, s), 7.95 - 8.20 (4H, m), 7.68 - 7.73 (1H, m), 7.35 - 7.45 (1H, m), 7.15 - 7.34 (2H, m), 6.87 - 6.97 (2H, m), 4.10 - 4.20 (1H, m), 3.85 - 4.00 (3H, m), 3.65 - 3.75 (1H, m), 2.62 - 2.85 (1H, m), 2.30 - 2.58 (4H, m), 2.15 (3H, s), 1.14 (3H, d, J = 6.1 Hz), 1.08 (3H, d, J = 6.3 Hz)

Mass spectrometric value (ESI-MS) 507, 508 (M-1) 531 (M+23)

Compound 976 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-(4-

methyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 976 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCL₃, 400 MHz): δ 8.99 (1H, s), 7.95 - 8.30 (4H, m), 7.30 - 7.70 (4H, m), 7.26 (1H, d, J = 6.1 Hz), 7.13 (2H, d, J = 7.1 Hz), 3.38 - 4.05 (4H, m), 2.34 - 2.70 (7H, m), 1.08 - 1.15 (6H, m)

Mass spectrometric value (ESI-MS) 507, 508 (M-1) 531 (M+23)

Compound 977 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 977 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.98 (1H, s), 11.12 - 11.25 (1H, m), 8.30 - 8.40 (1H, m), 7.96 - 8.18 (4H, m), 7.70 - 7.80 (1H, m), 7.20 - 7.50 (3H, m), 6.75 - 6.85 (1H, m), 3.65 - 4.20 (4H, m), 2.45 - 2.55 (2H, m), 2.20 - 2.30 (3H, m), 2.10 - 2.14 (3H, m), 2.02 - 2.08 (3H, m), 1.14 (3H, d, J = 6.1 Hz), 1.08 (3H, d, J = 6.3 Hz)

Mass spectrometric value (ESI-MS) 521, 522 (M-1) 545 (M+23) <u>Compound 978</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-

20 benzamide

10

15

25

30

35

The title compound 978 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.85 (1H, d, J = 5.1 Hz), 11.65 - 11.80 (1H, m), 8.28 - 8.35 (1H, m), 7.98 - 8.20 (3H, m), 7.65 - 7.85 (2H, m), 7.02 - 7.52 (4H, m), 3.60 - 4.20 (4H, m), 2.46 - 2.90 (4H, m), 1.14 (3H, d, J = 6.1 Hz), 1.09 (3H, d, J = 6.1 Hz)

Mass spectrometric value (ESI-MS) 595, 597 (M-1) 619, 621 (M+23) Compound 979 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-(4-methoxy-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 979 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.03 (1H, d, J = 10.5 Hz), 11.16 - 11.30 (1H, m), 8.30 - 8.40 (1H, m), 7.95 - 8.15 (3H, m), 7.75 (1H, dd, J = 3.2 Hz, J = 7.6 Hz), 7.36 - 7.44 (3H, m), 7.28 - 7.32 (1H, m), 6.45 - 6.57 (2H, m), 3.65 - 4.20 (7H, m), 2.44 - 2.84 (4H, m), 1.13 (3H, d, J = 6.1 Hz), 1.07 (3H, d, J = 6.4 Hz)

Mass spectrometric value (ESI-MS) 523, 524 (M-1) 547 (M+23) <u>Compound 980 N-[4-(3-Fluoro-benzylidene-hydrazinocarbonyl)-thiophen-</u> 3-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 980 was produced in substantially the same manner as in Example 8.

5

10

15

20

35

 1 H-NMR (CDCL₃, 400 MHz): δ 8.26 (1H, s), 7.97 (1H, s), 7.87 (1H, d, J = 7.8 Hz), 7.00 - 7.54 (8H, m), 3.59 - 3.66 (4H, m), 2.50 - 2.75 (10H, m) Mass spectrometric value (ESI-MS) 508, 509 (M-1) 532 (M+23) Compound 981 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[4-(4-methyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 981 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCL₃, 400 MHz): δ 11.81 (1H, bs), 11.50 (1H, bs), 8.24 (1H, s), 7.95 (1H, s), 7.87 (2H, d, J = 7.6 Hz), 7.37 - 7.70 (5H, m), 7.18 - 7.25 (2H, m), 3.58 (4H, s), 2.37 (3H, s), 2.40 - 2.55 (10H, m)

Mass spectrometric value (ESI-MS) 504, 505 (M-1) 528 (M+23)

Compound 982 N-[4-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 982 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCL₃, 400 MHz): δ 8.22 - 8.28 (1H, m), 7.95 (1H, s), 7.87 (1H, d, J = 7.6 Hz), 7.30 - 7.56 (6H, m), 7.10 - 7.20 (1H, m), 3.57 (4H, s), 2.40 - 2.60 (10H, m), 2.28 (6H, s)

Mass spectrometric value (ESI-MS) 518, 519 (M-1) 542 (M+23)

25 <u>Compound 983</u> N-[4-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 983 was produced in substantially the same manner as in Example 8.

¹H-NMR (CDCL₃, 400 MHz): δ 11.39 (1H, bs), 8.22 (1H, s), 7.82 - 8.00 (5H, m), 7.40 - 7.60 (4H, m), 3.55 - 3.62 (4H, m), 2.45 - 2.60 (10H, m)
 Mass spectrometric value (ESI-MS) 592, 594 (M-1) 616 (M+23)
 Compound 984 3-[4-(2-Hydroxy-ethyl)-piperazin-1-ylmethyl]-N-[4-(4-methoxy-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 984 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.86 (1H, bs), 11.51 (1H, bs), 8.25 (1H, d, J = 3.4 Hz), 7.95 (1H, s), 7.87 (2H, d, J = 7.3 Hz), 7.55 - 7.75 (2H, m), 7.49 (1H, d, J = 7.3 Hz), 7.41 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.20 - 7.28 (1H, m), 6.85 - 7.30 (2H, m), 3.83 (3H, s), 3.58 (4H, s), 2.45 - 2.60 (10H, m)

Mass spectrometric value (ESI-MS) 520, 521 (M-1)

Compound 985 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-fluoro-phenyl]-benzamide

The title compound 985 was produced in substantially the same 10 manner as in Example P.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.30 - 12.40 (1H, m), 8.55 - 8.65 (1H, m), 8.24 - 8.32 (1H, m), 8.14 (1H, s), 7.92 - 8.00 (1H, m), 7.56 (1H, s), 7.39 (1H, dd, J = 7.3 Hz, J = 7.3 Hz), 7.31 (1H, s), 7.16 - 7.28 (2H, m), 6.92 - 7.02 (1H, m), 6.76 - 6.86 (1H, m), 3.80 - 4.15 (4H, m), 3.55 - 3.65 (1H,

m), 2.40 - 2.75 (4H, m), 2.14 (3H, s), 2.06 (3H, s), 1.10 (3H, d, J = 6.4 Hz), 1.06 (3H, d, J = 6.1 Hz)

Mass spectrometric value (ESI-MS) 533, 534 (M-1)

Compound 986 2-(3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-

20 fluoro-phenyl]-5-fluoro-benzamide

5

25

35

The title compound 986 was produced in substantially the same manner as in Example P.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.95 - 12.05 (1H, m), 11.16 (1H, bs), 10.93 (1H, bs), 8.75 - 8.85 (1H, m), 8.20 - 8.40 (1H, m), 7.20 - 8.10 (11H, m), 6.92 - 7.05 (1H, m), 3.70 - 3.95 (4H, m), 2.35 - 2.60 (4H, m), 2.12 - 2.21 (6H, m), 0.96 - 1.02 (6H, m)

Mass spectrometric value (ESI-MS) 670 (M-1)

Compound 987 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-fluoro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 987 was produced in substantially the same manner as in Example P.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.60 - 8.66 (1H, m), 8.35 (1H, s), 8.09 (1H, d, J = 5.9 Hz), 7.95 (1H, d, J = 8.0 Hz), 7.38 - 7.83 (7H, m), 7.15 - 7.28 (1H, m), 3.80 - 4.10 (4H, m), 2.58 - 2.75 (4H, m), 1.12 (3H, d, J = 6.1 Hz), 1.11 (3H, d, J = 6.4 Hz)

Mass spectrometric value (ESI-MS) 523, 524 (M-1) 547 (M+23)

<u>Compound</u> 988 2-(3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-benzoylamino)-5-fluoro-N-[4-fluoro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 988 was produced in substantially the same manner as in Example P.

 $^1\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.52 - 8.67 (1H, m), 8.32 - 8.40 (1H, m), 8.27 (1H, s), 7.36 - 8.08 (11H, m), 7.13 - 7.20 (1H, m), 3.60 - 3.95 (4H, m), 2.38 - 2.57 (4H, m), 1.02 - 1.10 (6H, m)

Mass spectrometric value (ESI-MS) 660, 661 (M-1) 684 (M+23)

5

Compound 989 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-fluoro-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 989 was produced in substantially the same manner as in Example P.

¹H-NMR (CD₃OD, 400 MHz): δ 8.60 - 8.67 (1H, m), 8.31 (1H, s), 8.02 - 8.07 (1H, m), 7.87 - 7.92 (1H, m), 7.75 (2H, d, J = 7.8 Hz), 7.67 (1H, dd, J = 2.7 Hz, J = 9.0 Hz), 7.61 (1H, d, J = 7.3 Hz), 7.50 (1H, dd, J = 7.6 Hz), J = 7.6 Hz), 7.36 - 7.43 (1H, m), 7.26 (2H, d, J = 7.8 Hz), 3.65 - 3.95 (4H, m), 2.40 - 2.60 (4H, m), 2.38 (3H, s), 1.09 (3H, d, J = 6.1 Hz), 1.08 (3H, d, J = 6.1 Hz)

20 Mass spectrometric value (ESI-MS) 519, 520 (M-1) 543 (M+23)

Compound 990 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[4-fluoro-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 990 was produced in substantially the same manner as in Example P.

¹H-NMR (CD₃OD, 400 MHz): δ 8.61 - 8.67 (1H, m), 8.29 (1H, s), 8.03 - 8.07 (1H, m), 7.87 - 7.92 (1H, m), 7.81 (2H, d, J = 8.5 Hz), 7.66 (1H, dd, J = 2.7 Hz, J = 9.3 Hz), 7.61 (1H, d, J = 7.1 Hz), 7.50 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.38 - 7.42 (1H, m), 6.99 (2H, d, J = 8.8 Hz), 3.82 - 3.93 (4H, m), 3.84 (3H, s), 2.40 - 2.60 (4H, m), 1.09 (3H, d, J = 6.4 Hz), 1.08 (3H, 30 d, J = 6.1 Hz)

Mass spectrometric value (ESI-MS) 535, 536, 537 (M-1) 559 (M+23)

<u>Compound 991</u> N-[5-Tert-butyl-2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-3-[4-(2-hydroxy-ethyl)-piperazin-1-ylmethyl]-benzamide

The title compound 991 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.15 (1H, s), 7.99 (1H, s), 7.88 - 7.97 (2H, m), 7.70 (1H, s), 7.60 (1H, d, J = 7.3 Hz), 7.44 - 7.55 (2H, m), 7.20 (1H, d, J = 7.8 Hz), 3.64 - 3.70 (4H, m), 2.53 - 2.70 (10H, m), 2.32 (3H, s), 2.31 (3H, s), 1.50 (9H, s)

5 Mass spectrometric value (ESI-MS) 574, 575, 576 (M-1)

<u>Compound 992</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 992 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.26 - 8.34 (1H, m), 7.15 - 8.13 (10H, m), 3.80 - 4.08 (4H, m), 2.55 - 2.70 (4H, m), 1.13 (3H, d, J = 6.1 Hz), 1.12 (3H, d, J = 6.1 Hz)

Mass spectrometric value (ESI-MS) 511, 512, 513 (M-1)

<u>Compound 993</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-[2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-

benzamide

15

20

25

30

35

The title compound 993 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.19 - 8.35 (2H, m), 8.00 - 8.09 (3H, m), 7.83 - 7.94 (2H, m), 7.68 (1H, d, J = 8.5 Hz), 7.58 - 7.65 (1H, m), 7.47 - 7.55 (1H, m), 3.65 - 3.98 (4H, m), 2.45 - 2.65 (4H, m), 1.03 - 1.14 (6H, m)

Mass spectrometric value (ESI-MS) 595, 597, 598 (M-1)

Compound 995 3-Diethylaminomethyl-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-thiophen-3-yl]-benzamide

The title compound 995 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.38 (1H, bs), 9.08 (1H, s), 8.39 (1H, d, J = 5.6 Hz), 7.95 (1H, s), 7.84 (1H, d, J = 8.1 Hz), 7.74 (1H, bs), 7.65 (1H, bs), 7.51 (1H, d, J = 7.6 Hz), 7.30 - 7.46 (4H, m), 7.02 - 7.10 (1H, m), 3.59 (2H, s), 2.48 (4H, q, J = 7.1 Hz), 0.99 (6H, t, J = 7.1 Hz)

Mass spectrometric value (ESI-MS) 451, 452, 453 (M-1)

Compound 996 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-{4-bromo-2-[1-(3-fluoro-phenyl)-ethylidene-hydrazinocarbonyl]-phenyl}-benzamide

The title compound 996 was produced in substantially the same manner as in Example 8.

Mass spectrometric value (ESI-MS) 599 (M-1)

5

10

15

20

25

30

Compound 997 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-{4-bromo-2-[1-(4-methoxy-phenyl)-ethylidene-hydrazinocarbonyl]-phenyl}-benzamide

The title compound 997 was produced in substantially the same manner as in Example 8.

Mass spectrometric value (ESI-MS) 609, 611 (M-1)

<u>Compound 998</u> 3-{[Bis-(2-hydroxy-propyl)-amino]-methyl}-N-{4-chloro-2-[4-(3-dimethylamino-propoxy)-benzylidene-hydrazinocarbonyl]-phenyl}-benzamide

The title compound 998 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.67 - 8.70 (1H, m), 8.30 (1H, s), 8.06 (1H, s), 7.88 - 7.94 (2H, m), 7.79 - 7.84 (2H, m), 7.59 - 7.64 (2H, m), 7.47 - 7.54 (1H, m), 6.96 - 7.02 (2H, m), 4.08 (2H, t, J = 6.1 Hz), 3.82 - 3.95 (4H, m), 2.40 - 2.60 (6H, m), 2.30 - 2.34 (6H, s), 1.95 - 2.05 (2H, m), 1.09 (3H, d, J = 6.4 Hz), 1.08 (3H, d, J = 6.1 Hz)

Mass spectrometric value (ESI-MS) 622 (M-1)

<u>Compound 999</u> N-{4-Chloro-2-[4-(3-dimethylamino-propoxy)-benzylidene-hydrazinocarbonyl]-phenyl}-3-{[(2-diethylamino-ethyl)-

methyl-amino]-methyl}-benzamide

The title compound 999 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.58 (1H, bs), 8.54 (1H, d, J = 9.3 Hz), 8.26 (1H, s), 7.95 (1H, s), 7.86 (1H, d, J = 7.8 Hz), 7.72 (2H, d, J = 7.6 Hz), 7.50 - 7.56 (2H, m), 7.38 - 7.45 (2H, m), 6.91 (2H, d, J = 8.8 Hz), 4.03 (2H, t, J = 6.5 Hz), 3.60 (2H, s), 2.47 - 2.65 (8H, m), 2.43 (2H, t, J = 7.2 Hz), 2.23 (6H, s), 2.22 (3H, s), 1.94 (2H, tt, J = 6.8 Hz, J = 6.8 Hz), 0.99 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 619, 620 (M-1)

<u>Compound 1000</u> (4-{[5-Chloro-2-(3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzoylamino)-benzoyl]-hydrazinomethyl}-phenoxy)-acetic acid

The title compound 1000 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.62 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 7.89 - 8.00 (3H, m), 7.74 (2H, d, J = 8.8 Hz), 7.51 - 7.65 (3H, m), 6.98

(2H, d, J = 8.8 Hz), 4.44 (2H, s), 3.72 (2H, s), 3.21 (2H, t, J = 6.1 Hz), 3.07 (4H, q, J = 7.3 Hz), 2.74 (2H, t, J = 6.1 Hz), 2.32 (3H, s), 1.20 (6H, t, J = 7.3 Hz)

Mass spectrometric value (ESI-MS) 592, 594 (M-1) 618, 619 (M+23) Compound 1001 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[3-(4-trifluoromethoxy-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl]-benzamide

The title compound 1001 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.30 (1H, s), 7.90 - 8.03 (4H, m), 7.58 - 7.64 (1H, m), 7.50 - 7.57 (1H, m), 7.32 - 7.38 (2H, m), 3.67 (2H, s), 2.88 (4H, bs), 2.72 - 2.82 (6H, m), 2.58 - 2.66 (2H, m), 2.29 (3H, s), 1.83 - 1.95 (4H, m), 1.09 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 628, 629, 630 (M-1)

5

Compound 1002 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-{3-[4-(2-hydroxy-ethoxy)-benzylidene-hydrazinocarbonyl]-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl}-benzamide

The title compound 1002 was produced in substantially the same manner as in Example 8.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.22 (1H, s), 7.70 8.00 (4H, m), 7.58 7.69 (1H, m), 7.50 7.57 (1H, m), 7.02 (2H, d, J = 8.8 Hz), 4.10 (2H, t, J = 4.6 Hz), 3.89 (2H, t, J = 4.8 Hz), 3.67 (2H, s), 2.80 2.90 (4H, m), 2.66 2.78 (6H, m), 2.60 (2H, t, J = 7.0 Hz), 2.28 (3H, s), 1.80 1.95 (4H, m), 1.08 (6H, t, J = 7.2 Hz)
- 25 Mass spectrometric value (ESI-MS) 604, 605, 606 (M-1)

 Compound 1003 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-{3[1-(3-fluoro-phenyl)-ethylidene-hydrazinocarbonyl]-4,5,6,7-tetrahydro-benzo[b]thiophen-2-yl}-benzamide

The title compound 1003 was produced in substantially the same manner as in Example 8.

 1 H-NMR (CD₃OD, 400 MHz): δ 7.85 - 7.98 (2H, m), 7.68 - 7.80 (2H, m), 7.47 - 7.62 (2H, m), 7.40 - 7.47 (1H, m), 7.10 - 7.20 (1H, m), 3.66 (2H, s), 2.95 (2H, bs), 2.55 - 2.85 (10H, m), 2.35 (3H, s), 2.28 (3H, s), 1.87 - 1.93 (4H, m), 1.05 (6H, t, J = 7.2 Hz)

35 Mass spectrometric value (ESI-MS) 576, 577, 578 (M-1) 600, 601 (M+23)

<u>Compound 1004</u> Quinoxaline-2-carboxylic acid [4-chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 1004 was produced in substantially the same manner as in Example 1).

¹H-NMR (DMSO-d₆, 400 MHz): δ 12.65 (1H, s), 12.30 (1H, s), 9.61 (1H, s), 8.75 (1H, d, J = 8.8 Hz), 8.47 (1H, s), 8.20 - 8.33 (2H, m), 8.00 - 8.10 (3H, m), 7.79 (1H, d, J = 8.6 Hz), 7.50 - 7.67 (3H, m), 7.28 - 7.38 (1H, m) Mass spectrometric value (ESI-MS) 446, 448 (M-1)

Compound 1005 Quinoxaline-2-carboxylic acid [4-chloro-2-(3,4-dimethylbenzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 1005 was produced in substantially the same manner as in Example 1).

 1 H-NMR (CDCL₃, 400 MHz): δ 12.52 (1H, bs), 9.68 (1H, s), 9.46 (1H, bs), 8.70 - 8.80 (1H, bs), 8.12 - 8.20 (2H, m), 7.82 - 7.88 (3H, m), 7.40 - 7.70 (3H, m), 7.12 (1H, d, J = 7.8 Hz), 2.26 (3H, s), 2.20 (3H, s)

Mass spectrometric value (ESI-MS) 456, 458 (M-1)

10

15

20

<u>Compound 1006</u> Quinoxaline-2-carboxylic acid[4-chloro-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-amide

The title compound 1006 was produced in substantially the same manner as in Example 1).

 1 H-NMR (DMSO-d₆, 400 MHz): δ 12.57 (1H, s), 12.44 (1H, s), 9.61 (1H, s), 8.73 (1H, d, J = 8.8 Hz), 8.51 (1H, s), 8.20 - 8.32 (3H, m), 7.98 - 8.14 (4H, m), 7.85 (1H, d, J = 8.5 Hz), 7.79 (1H, d, J = 9.0 Hz) Mass spectrometric value (ESI-MS) 530, 532 (M-1)

25 <u>Compound 1007</u> N-[4-Chloro-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2,3-dihydroxy-propylsulfanylmethyl)-benzamide

The title compound 1007 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 8.8 Hz), 8.36 (1H, s), 7.97 (1H, s), 7.94 (1H, d, J = 2.4 Hz), 7.87 (1H, d, J = 7.8 Hz), 7.71 (1H, d, J = 9.5 Hz), 7.60 - 7.66 (3H, m), 7.40 - 7.54 (2H, m), 7.15 - 7.25 (1H, m), 3.90 (2H, s), 3.70 - 3.80 (1H, m), 3.48 - 3.60 (2H, m), 2.64 (1H, dd, J = 5.6 Hz, J = 13.7 Hz), 2.51 (1H, dd, J = 6.8 Hz, J = 13.4 Hz)

Mass spectrometric value (ESI-MS) 514, 516 (M-1)

Compound 1008 N-[4-Chloro-2-(4-methyl-benzylidene-

hydrazinocarbonyl)-phenyl]-3-(2,3-dihydroxy-propylsulfanylmethyl)benzamide

The title compound 1008 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.65 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 7.97 (1H, s), 7.93 (1H, d, J = 2.5 Hz), 7.87 (1H, d, J = 7.6 Hz), 7.74 (2H, J = 7.6 Hz), 7.74 (2H, J = 7.6 Hz), 7.93 (1H, d, J = 7.6 Hz), 7.87 (1H, d, J = 7.6 Hz), 7.87 (1H, d, J = 7.6 Hz), 7.88 (1Hd, J = 8.3 Hz), 7.62 (2H, dd, J = 2.4 Hz, J = 9.0 Hz), 7.51 (1H, dd, J = 7.6 Hz) Hz, J = 7.6 Hz), 7.27 (2H, d, J = 8.1 Hz), 3.90 (2H, s), 3.70 - 3.80 (1H, m), 3.50 - 3.61 (2H, m), 2.63 (1H, dd, J = 5.6 Hz, J = 13.6 Hz), 2.50 (1H,

dd, J = 6.8 Hz, 13.6 Hz), 2.38 (3H, s) 10

Mass spectrometric value (ESI-MS) 510, 512, 513 (M-1)

N-[4-Chloro-2-(3,4-dimethyl-benzylidene-1009 Compound hydrazinocarbonyl)-phenyl]-3-(2,3-dihydroxy-propylsulfanylmethyl)benzamide

The title compound 1009 was produced in substantially the same 15 manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 7.97 (1H. bs), 7.93 (1H, d, J = 2.4 Hz), 7.87 (1H, bs), 7.60 - 7.69 (3H, m),7.48 - 7.58 (2H, m), 7.15 - 7.25 (1H, m), 3.90 (2H, s), 3.70 - 3.80 (1H, m), 3.50 - 3.61 (2H, m), 2.63 (1H, dd, J = 5.4 Hz, J = 13.7 Hz), 2.50 (1H, dd,

J = 6.8 Hz, J = 13.6 Hz), 2.32 (3H, s), 2.31 (3H, s) Mass spectrometric value (ESI-MS) 524, 526, 529 (M-1)

Compound 1010 N-[4-Chloro-2-(4-chloro-3-trifluoromethyl-benzylidenehydrazinocarbonyl)-phenyl]-3-(2,3-dihydroxy-propylsulfanylmethyl)-

benzamide 25

5

20

30

The title compound 1010 was produced in substantially the same manner as in Example 8.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.63 (1H, d, J = 8.8 Hz), 8.39 (1H, s), 8.30 - 8.34 (1H, m), 8.08 (1H, d, J = 8.3 Hz), 7.96 (1H, bs), 7.94 (1H, d, J= 2.4 Hz), 7.85 - 7.90 (1H, m), 7.70 (1H, d, J = 8.3 Hz), 7.60 - 7.67 (2H, m)m), 7.68 - 7.55 (1H, m), 3.89 (2H, s), 3.70 - 3.80 (1H, m), 3.48 - 3.60 (2H, m), 2.64 (1H, dd, J = 5.6 Hz, J = 13.7 Hz), 2.50 (1H, dd, J = 7.1 Hz, J =13.7 Hz)

Mass spectrometric value (ESI-MS) 598, 600, 601, 603 (M-1)

N-[4-Chloro-2-(4-methoxy-benzylidene-1011 35 Compound hydrazinocarbonyl)-phenyl]-3-(2,3-dihydroxy-propylsulfanylmethyl)-

benzamide

5

15

20

30

35

The title compound 1011 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.66 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 7.95 - 7.98 (1H, m), 7.92 (1H, d, J = 2.4 Hz), 7.86 - 7.90 (1H, m), 7.81 (2H, d, J = 8.8 Hz), 7.60 - 7.65 (2H, m), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.00 (2H, d, J = 8.8 Hz), 3.90 (2H, s), 3.85 (3H, s), 3.70 - 3.80 (1H, m), 3.50 - 3.61 (2H, m), 2.63 (1H, dd, J = 5.6 Hz, J = 13.6 Hz), 2.51 (1H, dd, J = 6.8 Hz, J = 13.6 Hz)

Mass spectrometric value (ESI-MS) 529, 530, 531 (M-1)

Compound 1012 N-[4-Chloro-2-(4-trifluoromethoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2,3-dihydroxy-propylsulfanylmethyl)-benzamide

The title compound 1012 was produced in substantially the same manner as in Example 8.

¹H-NMR (CD₃OD, 400 MHz): δ 8.64 (1H, d, J = 9.0 Hz), 8.39 (1H, s), 7.93 - 8.01 (4H, m), 7.85 - 7.90 (1H, m), 7.60 - 7.67 (2H, m), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.36 (2H, d, J = 8.1 Hz), 3.90 (2H, s), 3.70 - 3.80 (1H, m), 3.50 - 3.60 (2H, m), 2.63 (1H, dd, J = 5.8 Hz, J = 13.6 Hz),

2.51 (1H, dd, J = 6.8 Hz, J = 13.6 Hz)

Mass spectrometric value (ESI-MS) 580, 582, 583 (M-1)

Example Q_

<u>Compound 1013</u> 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[2-(3-fluorobenzylidene-hydrazinocarbonyl)-4,5-bis-(2-methoxy-ethoxy)-phenyl]-

25 benzamide

3,4-Dihydroxy-benzoic acid ethyl ester (compound A') (2.0 g) was dissolved in acetone (20 ml). Potassium carbonate (4.3 g) and 1-bromo-2-methoxy-ethane (compound D) (5 ml) were added to the solution at room temperature, and the mixture was then stirred at 70°C for 24 hr. After the completion of the reaction, the reaction solution was allowed to stand for cooling at room temperature, and the reaction system was concentrated under the reduced pressure. Distilled water was added to the residue, and the mixture was then subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by

column chromatography using a hexane-acetone system to give 3,4-bis-(2-methoxy-ethoxy)-benzoic acid ethyl ester (3.06 g, yield 93%).

3,4-Bis-(2-methoxy-ethoxy)-benzoic acid ethyl ester (200 mg) produced by the above process was dissolved in acetic acid (200 μ l). Fuming nitric acid (200 μ l) was added dropwise to the solution at 0°C, and the mixture was then stirred at room temperature for one hr. After the completion of the reaction, the reaction system was added dropwise to distilled water (500 μ l) cooled to 0°C, and the mixture was then neutralized with a saturated aqueous sodium hydrogencarbonate solution, and was further subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a hexane-acetone system to give 4,5-bis-(2-methoxy-ethoxy)-2-nitro-benzoic acid ethyl ester as a useful intermediate (220 mg, yield 96%).

Subsequently, 4,5-bis-(2-methoxy-ethoxy)-2-nitro-benzoic acid ethyl ester (3.0 mg) produced by the above process was dissolved in methanol, and platinum oxide (250 mg) was added to the solution at room temperature. The air in the reaction system was replaced by hydrogen, and the mixture was then stirred for one hr. After the completion of the reaction, the atmosphere in the reaction system was replaced by nitrogen. The reaction solution was filtered through Celite to remove platinum oxide. The filtrate was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a hexane-acetone system to give 2-amino-4,5-bis-(2-methoxy-ethoxy)-benzoic acid ethyl ester (compound A) (2.5 g, yield 92%).

2-Amino-4,5-bis-(2-methoxy-ethoxy)-benzoic acid ethyl ester (compound A) (2.5 g) produced by the above process was dissolved in anhydrous methylene chloride (40 ml). Pyridine (1.4 ml) and 3-(chloromethyl)-benzoyl chloride (compound B) (1.3 ml) were added dropwise to the solution at 0°C, and the mixture was stirred at room temperature for 30 min. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was then subjected to separatory extraction with chloroform. The organic layer

was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography using a hexane-acetone system to give 2-(3-chloromethylbenzoylamino)-4,5-bis-(2-methoxy-ethoxy)-benzoic acid ethyl ester (2.3 g, yield 62%).

Subsequently, 2-(3-chloromethyl-benzoylamino)-4,5-bis-(2-methoxy-ethoxy)-benzoic acid ethyl ester (1.1 g) was dissolved in anhydrous methylene chloride (20 ml). Triethylamine (800 µl) and 3-mercapto-1,2-propanediol (compound B') (600 µl) were added dropwise to the solution at room temperature, and the mixture was stirred at that temperature for 36 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was then subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-[3-(2,3-dihydroxy-propylsulfanylmethyl)-benzoylamino]-4,5-bis-(2-methoxy-ethoxy)-benzoic acid ethyl ester (970 mg, yield 77%).

2-[3-(2,3-Dihydroxy-propylsulfanylmethyl)-benzoylamino]-4,5-bis-(2-methoxy-ethoxy)-benzoic acid ethyl ester (970 mg) produced by the above process was dissolved in ethanol (10 ml). Hydrazine monohydrate (1 ml) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 36 hr. After the completion of the reaction, the reaction system was then concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-(2,3-dihydroxy-propylsulfanylmethyl)-N-[2-hydrazinocarbonyl-4,5-bis-(2-methoxy-ethoxy)-phenyl]-benzamide (780 mg, yield 83%).

Subsequently, 3-(2,3-dihydroxy-propylsulfanylmethyl)-N-[2-hydrazinocarbonyl-4,5-bis-(2-methoxy-ethoxy)-phenyl]-benzamide (55 mg) produced by the above process was dissolved in anhydrous toluene (1 ml), 3-fluorobenzaldehyde (compound C) (50 μ l) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for one hr. After the completion of the reaction, the reaction system was concentrated under the reduced

pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 1013 (66 mg, yield 100%).

¹H-NMR (CDCL₃, 400 MHz): δ 12.00 (1H, bs), 10.14 (1H, bs), 8.50 (1H, s), 8.16 (1H, s), 7.93 (1H, d, J = 7.6 Hz), 7.60 - 7.78 (2H, m), 7.24 - 7.57 (5H, m), 7.00 - 7.10 (1H, m), 4.20 - 4.28 (2H, m), 4.00 - 4.10 (3H, m), 3.80 - 3.88 (3H, m), 3.75 - 3.80 (2H, m), 3.60 - 3.72 (3H, m), 3.41 (3H, s), 3.38 (3H, s), 2.60 (2H, d, J = 6.6 Hz)

Mass spectrometric value (ESI-MS) 628, 629 (M-1)

5

30

35

Compound 1014 N-[4,5-Bis-(2-methoxy-ethoxy)-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2,3-dihydroxy-propylsulfanylmethyl)-benzamide

The title compound 1014 was produced in substantially the same manner as in Example Q.

- ¹H-NMR (CDCL₃, 400 MHz): δ 12.06 (1H, bs), 9.84 (1H, bs), 8.54 (1H, s), 8.13 (1H, bs), 7.90 7.96 (2H, m), 7.77 (1H, s), 7.65 7.74 (2H, m), 7.45 7.55 (3H, m), 7.18 (1H, d, J = 7.8 Hz), 4.22 4.28 (2H, m), 4.00 4.14 (3H, m), 3.80 3.85 (3H, m), 3.75 3.80 (2H, m), 3.62 3.70 (3H, m), 3.41 (3H, s), 3.40 (3H, s), 2.58 (2H, d, J = 6.4 Hz), 2.34 (3H, s)
- 20 Mass spectrometric value (ESI-MS) 624, 625 (M-1)

 Compound 1015 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4,5-bis-(2-methoxy-ethoxy)-phenyl]-benzamide

The title compound 1015 was produced in substantially the same 25 manner as in Example Q.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.08 (1H, bs), 9.95 (1H, bs), 8.53 (1H, s), 8.11 (1H, bs), 7.93 (1H, d, J = 7.6 Hz), 7.76 - 7.83 (2H, m), 7.60 (1H, bs), 7.45 - 7.57 (3H, m), 7.11 (1H, d, J = 7.8 Hz), 4.23 - 4.28 (2H, m), 4.07 - 4.12 (1H, m), 3.82 - 3.90 (3H, m), 3.75 - 3.80 (2H, m), 3.60 - 3.70 (3H, m), 3.41 (3H, s), 3.39 (3H, s), 2.59 (2H, d, J = 6.6 Hz), 2.29 (2H, d, J = 7.4 Hz), 2.24 (3H, s), 2.23 (3H, s)

Mass spectrometric value (ESI-MS) 638 (M-1)

<u>Compound</u> 1016 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5-bis-(2-methoxy-ethoxy)-phenyl]-3-(2,3-dihydroxy-propylsulfanylmethyl)-benzamide

The title compound 1016 was produced in substantially the same

manner as in Example Q.

 1 H-NMR (CDCL₃, 400 MHz): δ 12.07 (1H, s), 10.69 (1H, s), 8.40 (1H, s), 8.15 (1H, s), 8.07 (1H, s), 7.93 (1H, d, J = 7.1 Hz), 7.73 - 7.77 (1H, m), 7.71 (1H, s), 7.46 - 7.56 (2H, m), 7.38 (1H, d, J = 8.3 Hz), 7.33 (1H, s), 4.60 (1H, bs), 4.18 - 4.23 (2H, m), 3.97 - 4.08 (3H, m), 3.74 - 3.95 (5H, m), 3.62 - 3.72 (1H, m), 3.58 (2H, t, J = 9.0 Hz), 3.40 (3H, s), 3.37 (3H, s), 2.58 - 2.72 (2H, m)

Mass spectrometric value (ESI-MS) 712, 715 (M-1)

Example R

5

15

20

25

30

35

10 <u>Compound 1017</u> 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[2-(3-fluorobenzylidene-hydrazinocarbonyl)-4-methoxy-phenyl]-benzamide

5-Methoxy-2-nitro-benzoic acid (2.5 g) was dissolved in N,N-dimethylformamide (compound A') (40 ml). Potassium carbonate (4.5 g) and methyl iodide (2.5 ml) were added to the solution at room temperature, and the mixture was then stirred at that temperature for 30 min. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was then subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a hexane-acetone system to give 5-methoxy-2-nitrobenzoic acid methyl ester (2.7 g, yield 100%).

Subsequently, 5-methoxy-2-nitro-benzoic acid methyl ester (2.7 g) produced by the above process was dissolved in methanol (20 ml), and platinum oxide (180 mg) was added to the solution at room temperature. The air in the reaction system was replaced by hydrogen, the mixture was then stirred at that temperature for 5 hr. After the completion of the reaction, the atmosphere in the reaction system was replaced by nitrogen, and the reaction solution was then filtered through Celite to remove platinum oxide. The filtrate was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a hexane-acetone system to give 2-amino-5-methoxy-benzoic acid methyl ester (compound A) (2.2 g, yield 96%).

2-Amino-5-methoxy-benzoic acid methyl ester (compound A) (2.2 g) produced by the above process was dissolved in anhydrous methylene chloride (40 ml), pyridine (1.5 ml) and 3-

(chloromethyl)benzoyl chloride (compound B) (2.1 ml) was added dropwise to the solution at 0°C, and the mixture was then stirred at room temperature for 15 min. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was then subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure to precipitate crystals. The crude crystals were collected by Kiriyama Rohto and was washed with ether to give 2-(3-chloromethyl-benzoylamino)-5-methoxybenzoic acid methyl ester (3.0 g, yield 75%).

2-(3-chloromethyl-benzoylamino)-5-methoxy-Subsequently, benzoic acid methyl ester (1.0 g) produced by the above process was dissolved in anhydrous methylene chloride (10 ml). Triethylamine (1 ml) and 3-mercapto-1,2-propanediol (compound B') (1 ml) were added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 36 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was then subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a 2-[3-(2,3-dihydroxysystem to give chloroform-methanol propanesulfanylmethyl)-benzoylamino]-5-methoxy-benzoic acid methyl ester as a useful intermediate (1.2 g, yield 100%).

2-[3-(2,3-Dihydroxy-propanesulfanylmethyl)-benzoylamino]-5-methoxybenzoic acid methyl ester (1.2 g) produced by the above process was dissolved in ethanol (20 ml). Hydrazine monohydrate (1.3 ml) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, the reaction system was then concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-(2,3-dihydroxy-propylsulfanylmethyl)-N-(2-hydrazinocarbonyl-4-methoxyphenyl)benzamide (840 mg, yield 65%).

Subsequently, 3-(2,3-dihydroxy-propylsulfanylmethyl)-N-(2-hydrazinocarbonyl-4-methoxy-phenyl)benzamide (61 mg) produced by

25

30

10

15

20

35

the above process was dissolved in anhydrous toluene (1.5 ml). 3-Fluorobenzaldehyde (compound C) (50 μ l) was added dropwise to the solution at room temperature, and the mixture was then stirred at 40°C for 12 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 1017 (59 mg, 77%).

5

10

15

20

30

¹H-NMR (CD₃OD, 400 MHz): δ 8.42 (1H, d, J = 9.3 Hz), 8.34 (1H, s), 7.95 (1H, s), 7.85 (1H, d, J = 7.8 Hz), 7.70 (1H, d, J = 10.2 Hz), 7.58 - 7.62 (2H, m), 7.40 - 7.52 (3H, m), 7.12 - 7.25 (2H, m), 3.90 (3H, s), 3.89 (2H, s), 3.70 - 3.78 (1H, m), 3.48 - 3.60 (2H, m), 2.63 (1H, dd, J = 5.6 Hz, J = 13.7 Hz), 2.50 (1H, dd, J = 6.8 Hz, J = 13.4 Hz)

Mass spectrometric value (ESI-MS) 510, 511 (M-1) 534 (M+23)

Compound 1018 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[4-methoxy-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 1018 was produced in substantially the same manner as in Example R.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 9.0 Hz), 8.32 (1H, s), 7.95 (1H, s), 7.83 - 7.89 (1H, m), 7.74 (2H, d, J = 8.1 Hz), 7.60 (1H, d, J = 7.8 Hz), 7.49 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.41 (1H, d, J = 2.9 Hz), 7.19 - 7.29 (3H, m), 3.90 (3H, s), 3.89 (2H, s), 3.70 - 3.78 (1H, m), 3.48 - 3.61 (2H, m), 2.63 (1H, dd, J = 5.9 Hz, J = 13.7 Hz), 2.50 (1H, dd, J = 6.8 Hz, J = 13.7 Hz), 2.38 (3H, s)

Mass spectrometric value (ESI-MS) 506, 507 (M-1)

25 <u>Compound 1019</u> 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-methoxy-phenyl]-benzamide

The title compound 1019 was produced in substantially the same manner as in Example R.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 7.95 (1H, s), 7.86 (1H, d, J = 7.6 Hz), 7.66 (1H, s), 7.60 (1H, d, J = 7.8 Hz), 7.54 (1H, d, J = 7.3 Hz), 7.49 (1H, dd, J = 7.9 Hz, J = 7.9 Hz), 7.41 (1H, d, J = 2.9 Hz), 7.15 - 7.25 (2H, m), 3.90 (3H, s), 3.89 (2H, s), 3.70 - 3.80 (1H, m), 3.49 - 3.60 (2H, m), 2.63 (1H, dd, J = 5.6 Hz, J = 13.7 Hz), 2.50 (1H, dd, J = 7.1 Hz, J = 13.7 Hz), 2.31 (3H, s), 2.30 (3H, s)

35 Mass spectrometric value (ESI-MS) 520 (M-1)

Compound 1020 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-

hydrazinocarbonyl)-4-methoxy-phenyl]-3-(2,3-dihydroxy-propylsulfanyl-methyl)-benzamide

The title compound 1020 was produced in substantially the same manner as in Example R.

¹H-NMR (CD₃OD, 400 MHz): δ 8.41 (1H, d, J = 9.3 Hz), 8.38 (1H, s), 8.32 (1H, bs), 8.05 - 8.15 (1H, m), 7.94 (1H, bs), 7.83 - 7.88 (1H, m), 7.69 (1H, d, J = 8.3 Hz), 7.58 - 7.63 (1H, m), 7.47 - 7.52 (1H, m), 7.42 (1H, d, J = 2.9 Hz), 7.20 - 7.25 (1H, m), 3.90 (3H, s), 3.89 (2H, s), 3.75 - 3.82 (1H, m), 3.45 - 3.60 (2H, m), 2.60 - 2.67 (1H, m), 2.45 - 2.54 (1H, m)

Mass spectrometric value (ESI-MS) 594, 596, 597 (M-1)

15

20

25

30

35

Compound 1021 3-(2,3-Dihydroxy-propylsulfanylmethyl)-N-[4-methoxy-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 1021 was produced in substantially the same manner as in Example R.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 9.3 Hz), 8.29 (1H, s), 7.95 (1H, bs), 7.86 (1H, d, J = 7.6 Hz), 7.80 (2H, d, J = 8.8 Hz), 7.60 (1H, d, J = 7.8 Hz), 7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.40 (1H, d, J = 2.9 Hz), 7.21 (1H, dd, J = 2.9 Hz, J = 9.3 Hz), 6.99 (2H, d, J = 8.8 Hz), 3.90 (3H, s), 3.89 (2H, s), 3.85 (3H, s), 3.70 - 3.80 (1H, m), 3.49 - 3.60 (2H, m), 2.63 (1H, dd, J = 5.6 Hz, J = 13.7 Hz), 2.50 (1H, dd, J = 7.1 Hz, J = 13.4 Hz)

Mass spectrometric value (ESI-MS) 522, 523 (M-1)

Compound 1022 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-methoxy-phenyl]-benzamide

The title compound 1022 was produced in substantially the same manner as in Example R.

¹H-NMR (CD₃OD, 400 MHz): δ 8.42 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 7.14 - 8.00 (10H, m), 3.90 (3H, s), 3.73 (2H, s), 3.25 (2H, t, J = 6.0 Hz), 3.11 (4H, q, J = 7.2 Hz), 2.75 (2H, t, J = 5.9 Hz), 2.35 (3H, s), 1.23 (6H, t, J = 7.3 Hz)

Mass spectrometric value (ESI-MS) 532, 533, 534 (M-1)

Compound 1023 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-methoxy-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 1023 was produced in substantially the same

manner as in Example R.

10

25

30

35

¹H-NMR (CD₃OD, 400 MHz): δ 8.36 - 8.42 (2H, m), 8.33 (1H, s), 8.03 (1H, d, J = 8.5 Hz), 7.96 (1H, s), 7.89 (1H, d, J = 7.8 Hz), 7.69 (1H, d, J = 8.3 Hz), 7.59 (1H, d, J = 7.8 Hz), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.42 (1H, d, J = 2.9 Hz), 7.22 (1H, dd, J = 2.9 Hz, J = 9.0 Hz), 3.90 (3H, s), 3.66 (2H, s), 2.70 - 2.77 (2H, m), 2.53 - 2.65 (6H, m), 2.28 (3H, s), 1.03 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 616, 618, 619 (M-1)

<u>Compound 1024</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-methoxy-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 1024 was produced in substantially the same manner as in Example R.

¹H-NMR (CD₃OD, 400 MHz): δ 8.43 (1H, d, J = 9.3 Hz), 8.30 (1H, s), 7.97 (1H, bs), 7.90 (1H, d, J = 8.6 Hz), 7.78 (2H, d, J = 8.8 Hz), 7.58 (1H, d, J = 7.8 Hz), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.40 (1H, d, J = 2.9 Hz), 7.20 (1H, dd, J = 2.9 Hz, J = 9.2 Hz), 6.99 (2H, d, J = 8.8 Hz), 3.89 (3H, s), 3.84 (3H, s), 3.68 (2H, s), 2.85 - 2.92 (2H, m), 2.75 (4H, q, J = 7.1 Hz), 2.62 (2H, t, J = 7.0 Hz), 2.30 (3H, s), 1.08 (6H, t, J = 7.2 Hz)

20 Mass spectrometric value (ESI-MS) 544, 545, 546 (M-1) Example S

<u>Compound 1025</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-(2-methoxy-ethoxy)-phenyl]-benzamide

5-Hydroxy-2-nitro-benzoic acid (compound A') (1.5 g) was dissolved in methanol (15 ml). Thionyl chloride (1.5 ml) was added dropwise to the solution on an ice bath, and the mixture was then stirred at 80°C for 12 hr. After the completion of the reaction, the reaction solution was neutralized with a saturated aqueous sodium hydrogencarbonate solution, and was then subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure to give crude 5-hydroxy-2-nitro-benzoic acid methyl ester (1.1 g, crude yield 70%).

Crude 5-hydroxy-2-nitro-benzoic acid methyl ester (1.1 g) produced by the above process was dissolved in acetone (12 ml).

Potassium carbonate (1.5 g) and 1-bromo-2-methoxyethane (compound D) (1.5 ml) were added to the solution at room temperature, and the mixture was then stirred at 70°C for 20 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure. Distilled water was then added to the residue, and the mixture was then subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a hexane-acetone system to give 5-methoxy-ethoxy-2-nitro-benzoic acid methyl ester (1.0 g, yield 73%).

10

15

20

25

30

35

Subsequently, 5-methoxy-ethoxy-2-nitro-benzoic acid methyl ester (1.0 g) produced by the above process was dissolved in methanol (10 ml), and platinum oxide (90 mg) was added to the solution at room temperature. The air in the reaction system was replaced by hydrogen, and the mixture was then stirred at that temperature for 5 hr. After the completion of the reaction, the atmosphere in the reaction system was replaced by nitrogen, and the reaction solution was filtered through Celite to remove platinum oxide. The filtrate was then concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a hexane-ethyl acetate system to give 2-amino-5-methoxy-ethoxybenzoic acid methyl ester (compound A) as a useful intermediate (770 mg, yield 83%)

2-Amino-5-methoxy-ethoxybenzoic acid methyl ester (compound A) (770 mg) produced by the above process was dissolved in anhydrous (500 μl) (10 ml). Pyridine chloride methylene (chloromethyl)benzoyl chloride (compound B) (600 µl) were added dropwise to the solution at 0°C, and the mixture was then stirred at room temperature for 3 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was then subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure to precipitate crystals. The crude crystals were collected by Kiriyama Rohto and was washed 2-(3-chloromethylbenzoylamino)-5-methoxygive to ethoxybenzoic acid methyl ester (1.1 g, yield 89%).

Subsequently, 2-(3-chloromethylbenzoylamino)-5-methoxy-ethoxybenzoic acid methyl ester (1.1 g) produced by the above process was dissolved in anhydrous methylene chloride (15 ml). Triethylamine (1 ml) and N,N-diethyl-N'-methyl-ethylenediamine (compound B') (900 µl) were added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-{[(2-diethylaminoethyl)-methylamino]-methyl}-benzoylamino)-5-(2-methoxy-ethoxy)-benzoic acid methyl ester as a useful intermediate (1.4 g, yield 100%).

2-(3-{[(2-Diethylamino-ethyl)-methylamino]-methyl}-benzoylamino)-5-(2-methoxy-ethoxy)-benzoic acid methyl ester (1.4 g) produced by the above process was dissolved in ethanol (15 ml). Hydrazine monohydrate (1.5 ml) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-{[(2-dimethoxyamino-ethyl)-methyl-amino]-methyl}-N-[2-hydrazinocarbonyl-4-(2-methoxy-ethoxy)-phenyl]-benzamide (1.3 g, yield 89%).

Subsequently, 3-{[(2-dimethoxyamino-ethyl)-methyl-amino]-methyl}-N-[2-hydrazinocarbonyl-4-(2-methoxy-ethoxy)-phenyl]-benzamide (52 mg) produced by the above process was dissolved in anhydrous toluene (1 ml). 3-Fluorobenzaldehyde (compound C) (50 μ l) was added dropwise to the solution at room temperature, and the mixture was then stirred at 40°C for 3 hr. After the completion of the reaction, the reaction solution was allowed to cool at room temperature and was then purified by column chromatography eluted with a chloroform-methanol system to give the title compound 1025 (50 mg, yield 78%).

¹H-NMR (CD₃OD, 400 MHz): δ 8.43 (1H, d, J = 9.0 Hz), 8.36 (1H, s), 7.99 (1H, s), 7.90 - 7.95 (1H, m), 7.68 - 7.76 (2H, m), 7.08 - 7.64 (6H, m), 4.20 - 4.25 (2H, m), 3.77 - 3.82 (2H, m), 3.73 (2H, s), 3.45 (3H, s), 3.18

(2H, t, J = 6.1 Hz), 3.04 (4H, q, J = 7.2 Hz), 2.73 (2H, t, J = 6.1 Hz), 2.34 (3H, s), 1.20 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 576, 577, 578 (M-1)

5

10

20

25

30

<u>Compound 1026</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-(2-methoxy-ethoxy)-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 1026 was produced in substantially the same manner as in Example S.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.43 (1H, d, J = 9.0 Hz), 8.32 (1H, s), 7.97 (1H, s), 7.89 - 7.94 (1H, m), 7.73 (2H, d, J = 8.0 Hz), 7.59 (1H, d, J = 7.3 Hz), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.43 (1H, d, J = 2.9 Hz), 7.21 - 7.30 (3H, m), 4.20 - 4.25 (2H, m), 3.76 - 3.81 (2H, m), 3.68 (2H, s), 3.45 (3H, s), 2.58 - 2.90 (8H, m), 2.38 (3H, s), 2.30 (3H, s), 1.07 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 572, 573, 574 (M-1)

Compound 1027 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(2-methoxy-ethoxy)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 1027 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.41 (1H, d, J = 9.3 Hz), 8.38 (1H, s), 8.33 (1H, s), 8.03 (1H, d, J = 8.3 Hz), 7.96 (1H, s), 7.88 - 7.92 (1H, m), 7.68 (1H, d, J = 8.3 Hz), 7.59 (1H, d, J = 7.8 Hz), 7.52 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.44 (1H, d, J = 2.9 Hz), 7.24 (1H, dd, J = 2.9 Hz, J = 9.0 Hz), 4.20 - 4.25 (2H, m), 3.76 - 3.80 (2H, m), 3.67 (2H, s), 3.44 (3H, s), 2.81 (2H, t, J = 6.8 Hz), 2.68 (4H, q, J = 7.2 Hz), 2.59 (2H, t, J = 7.1 Hz), 2.29 (3H, s), 1.06 (6H, t, J = 7.3 Hz)

Mass spectrometric value (ESI-MS) 660, 662, 663 (M-1) 684 (M+23) Compound 1028 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4,5-bis-(2-methoxy-ethoxy)-phenyl]-benzamide

The title compound 1028 was produced in substantially the same manner as in Example Q.

¹H-NMR (CD₃OD, 400 MHz): δ 8.49 (1H, bs), 8.37 (1H, bs), 8.00 (1H, bs), 7.95 (1H, d, J = 7.3 Hz), 7.85 - 7.90 (1H, m), 7.40 - 7.76 (5H, m), 7.12 - 7.24 (1H, m), 4.22 - 4.32 (4H, m), 3.76 - 3.86 (4H, m), 3.72 (2H, s), 3.46

(3H, s), 3.46 (3H, s), 3.00 - 3.08 (2H, m), 2.82 - 2.96 (4H, m), 2.65 - 2.73 (2H, m), 2.33 (3H, s), 1.12 - 1.20 (6H, m)

Mass spectrometric value (ESI-MS) 650, 651, 652 (M-1) 672, 675 (M+23)

5 <u>Compound 1029</u> N-[4,5-Bis-(2-methoxy-ethoxy)-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 1029 was produced in substantially the same manner as in Example Q.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.49 (1H, s), 8.34 (1H, s), 8.00 (1H, s), 7.92 7.98 (1H, m), 7.74 (2H, d, J = 8.0 Hz), 7.51 7.65 (3H, m), 7.27 (2H, d, J = 8.3 Hz), 4.23 4.33 (4H, m), 3.77 3.87 (4H, m), 3.71 (2H, s), 3.46 (3H, s), 3.46 (3H, s), 2.60 3.00 (8H, m), 2.39 (3H, s), 2.32 (3H, s), 1.10 (6H, t, J = 7.2 Hz)
- Mass spectrometric value (ESI-MS) 646, 647, 648 (M-1)

 Compound 1030 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4,5-bis-(2-methoxy-ethoxy)-phenyl]-benzamide

The title compound 1030 was produced in substantially the same 20 manner as in Example Q.

¹H-NMR (CD₃OD, 400 MHz): δ 8.48 (1H, s), 8.31 (1H, s), 8.01 (1H, s), 7.95 (1H, d, J = 7.3 Hz), 7.40 - 7.70 (5H, m), 7.18 - 7.23 (1H, m), 4.23 - 4.32 (4H, m), 3.76 - 3.86 (4H, m), 3.72 (2H, s), 3.45 - 3.80 (6H, m), 2.95 - 3.05 (2H, m), 2.80 - 2.90 (4H, m), 2.67 (2H, t, J = 6.7 Hz), 2.26 - 2.34 (9H, m), 1.12 (6H, t, J = 7.3 Hz)

Mass spectrometric value (ESI-MS) 660, 661, 662 (M-1)

25

30

Compound 1031 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4,5-bis-(2-methoxy-ethoxy)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 1031 was produced in substantially the same manner as in Example Q.

 1 H-NMR (CD₃OD, 400 MHz): δ 7.40 - 8.50 (10H, m), 4.23 - 4.33 (4H, m), 3.77 - 3.88 (4H, m), 3.74 (2H, s), 3.45 - 3.48 (6H, m), 2.65 - 3.30 (8H, m), 2.35 (3H, s), 1.21 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 734, 736, 737 (M-1)

Compound 1032 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-

(4-methoxy-benzylidene-hydrazinocarbonyl)-4,5-bis-(2-methoxy-ethoxy)-phenyl]-benzamide

The title compound 1032 was produced in substantially the same manner as in Example Q.

- ¹H-NMR (CD₃OD, 400 MHz): δ 8.48 (1H, s), 8.32 (1H, s), 8.01 (1H, s), 7.95 (1H, d, J = 7.3 Hz), 7.79 (2H, d, J = 8.8 Hz), 7.50 7.70 (3H, m), 7.00 (2H, d, J = 8.8 Hz), 4.23 4.33 (4H, m), 3.76 3.88 (7H, m), 3.72 (2H, s), 3.45 3.48 (6H, m), 3.05 3.10 (2H, m), 2.90 3.00 (4H, m), 2.65 2.73 (2H, m), 2.33 (3H, s), 1.16 (6H, t, J = 7.2 Hz)
- Mass spectrometric value (ESI-MS) 662, 663, 664 (M-1)

 <u>Compound 1033</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-{2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-[2-(2-methoxy-ethoxy)-ethoxy]-phenyl}-benzamide

The title compound 1033 was produced in substantially the same manner as in Example S.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.36 (1H, bs), 8.48 (1H, bs), 8.21 (1H, s), 7.65 - 7.93 (6H, m), 7.10 - 7.38 (5H, m), 4.12 (2H, bs), 3.78 (2H, bs), 3.63 - 3.67 (4H, m), 3.56 - 3.62 (2H, m), 3.50 - 3.55 (2H, m), 3.28 (3H, s), 3.05 (4H, bs), 2.75 - 2.80 (2H, m), 2.20 - 2.40 (3H, m), 1.15 - 1.25 (6H, m)

Mass spectrometric value (ESI-MS) 620, 621, 622 (M-1)

<u>Compound 1034</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-[2-(2-methoxy-ethoxy)-ethoxy]-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 1034 was produced in substantially the same manner as in Example S.

 1 H-NMR (CDCL₃, 400 MHz): δ 11.37 (1H, bs), 8.49 (1H, d, J = 9.0 Hz), 8.20 (1H, s), 7.84 - 7.90 (2H, m), 7.80 (1H, d, J = 7.6 Hz), 7.60 (2H, d, J = 7.8 Hz), 7.20 - 7.46 (3H, m), 6.98 - 7.20 (3H, m), 4.05 - 4.10 (2H, m),

3.68 - 3.74 (2H, m), 3.61 - 3.65 (2H, m), 3.50 - 3.55 (4H, m), 3.28 (3H, s), 2.50 - 2.70 (8H, m), 2.30 (3H, s), 2.17 (3H, s), 0.95 - 1.04 (6H, m) Mass spectrometric value (ESI-MS) 616, 617, 618 (M-1)

Compound 1035 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-{2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-[2-(2-methoxy-ethoxy)-

35 ethoxy]-phenyl}-benzamide

20

25

30

The title compound 1035 was produced in substantially the same

manner as in Example S.

¹H-NMR (CDCL₃, 400 MHz): δ 11.37 (1H, bs), 8.48 (1H, d, J = 9.0 Hz), 8.19 (1H, s), 7.86 (1H, s), 7.80 (1H, d, J = 7.6 Hz), 7.54 (1H, s), 7.20 - 7.46 (4H, m), 6.96 - 7.12 (3H, m), 4.03 - 4.10 (2H, m), 3.69 (2H, bs), $\frac{1}{2}$

3.60 - 3.65 (2H, m), 3.50 - 3.55 (4H, m), 3.27 (3H, s), 2.47 - 2.70 (8H, m), 2.21 (6H, s), 2.16 (3H, s), 0.98 (6H, t, J = 7.0 Hz)

Mass spectrometric value (ESI-MS) 630, 631, 632 (M-1)

<u>Compound 1036</u> N-{2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-[2-(2-methoxy-ethoxy)-ethoxy]-phenyl}-3-{[(2-methoxy-ethoxy)-ethoxy]-2-{[(2-methoxy-ethoxy)-ethoxy]-2-{[(2-methoxy-ethoxy)-ethoxy]-2-{[(2-methoxy-ethoxy)-ethoxy]-2-{[(2-methoxy-ethoxy)-ethoxy]-2-{[(2-methoxy-ethoxy)-ethoxy]-2-{[(2-methoxy-ethoxy)-ethoxy]-2-{[(2-methoxy-ethoxy)-ethoxy]-2-{[(2-methoxy)-ethoxy]-2-{[(2-methoxy-ethoxy)-ethoxy]-2-{[(2-methoxy-ethoxy)-e

diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 1036 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.41 (1H, d, J = 9.0 Hz), 8.38 (1H, s), 8.32 (1H, s), 8.03 (1H, d, J = 8.3 Hz), 7.96 (1H, s), 7.87 - 7.92 (1H, m), 7.68 (1H, d, J = 8.3 Hz), 7.59 (1H, d, J = 7.8 Hz), 7.44 - 7.54 (2H, m), 7.24 (1H, dd, J = 2.9 Hz, J = 9.0 Hz), 4.20 - 4.26 (2H, m), 3.84 - 3.90 (2H, m), 3.68 - 3.74 (2H, m), 3.66 (2H, s), 3.55 - 3.60 (2H, m), 3.37 (3H, s), 2.53 - 2.75 (8H, m), 2.28 (3H, s), 1.03 (6H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 704, 706, 707 (M-1)

20 <u>Compound 1037</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-{2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-[2-(2-methoxy-ethoxy)-ethoxy]-phenyl}-benzamide

The title compound 1037 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 9.3 Hz), 8.29 (1H, s), 7.96 (1H, bs), 7.87 - 7.92 (1H, m), 7.78 (2H, d, J = 8.8 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.51 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.43 (1H, d, J = 2.9 Hz), 7.22 (1H, dd, J = 2.9 Hz, J = 9.0 Hz), 6.99 (2H, d, J = 9.0 Hz), 4.21 - 4.25 (2H, m), 3.85 - 3.88 (2H, m), 3.84 (3H, s), 3.69 - 3.72 (2H, m), 3.67 (2H, s), 3.56 - 3.59 (2H, m), 3.37 (3H, s), 2.55 - 2.80 (8H, m), 2.28 (3H, s), 1.04 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 632, 633, 634 (M-1)

Example T

15

Compound 1038 N-[2-(4-Chloro-3-trifluoromethyl-benzylidenehydrazinocarbonyl)-4-(3-piperidin-1-yl-propoxy)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

5-Hydroxy-2-nitro-benzoic acid (compound A') (2.0 g) was dissolved in methanol (30 ml). Thionyl chloride (3.0 ml) was added dropwise to the solution on an ice bath, and the mixture was then stirred at 75°C for 96 hr. After the completion of the reaction, the reaction sodium aqueous was neutralized with а saturated solution hydrogencarbonate solution and was then subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure to give crude 5-hydroxy-2nitro-benzoic acid methyl ester (2.2 g, crude yield 100%).

5

10

15

20

25

30

35

Subsequently, crude 5-hydroxy-2-nitro-benzoic acid methyl ester (2.2 g) produced by the above process was dissolved in acetone (15 ml). Potassium carbonate (3.0 g) and 1-bromo-3-chloro-propane (compound D) (3.1 ml) were added to the solution at room temperature, and the mixture was then stirred at that temperature for 2 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure. Distilled water was then added to the residue, the mixture was subjected to separatory extraction with chloroform, and the organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a hexane-acetone system to give 5-(3-chloro-propoxy)-2-nitro-benzoic acid methyl ester (2.9 g, yield 96%).

5-(3-Chloro-propoxy)-2-nitro-benzoic acid methyl ester (2.9 g) produced by the above process was dissolved in acetone (30 ml). Potassium carbonate (3.0 g) and piperidine (compound E) (2.0 ml) were added to the solution at room temperature, and the mixture was then stirred at 70°C for 24 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure. Distilled water was then added to the residue, the mixture was subjected to separatory extraction with chloroform, and the organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-nitro-5-(3-piperidin-1-yl-propoxy)-benzoic acid methyl ester (2.4 g, yield 69%).

Subsequently, 2-nitro-5-(3-piperidin-1-yl-propoxy)-benzoic acid methyl ester (2.4 g) produced by the above process was dissolved in methanol (24 ml), and platinum oxide (220 mg) was added to the solution at room temperature. The air in the reaction system was replaced by hydrogen, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, the atmosphere in the reaction system was replaced by nitrogen, and the reaction solution was filtered through Celite to remove platinum oxide. The filtrate was then concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-amino-5-(3-piperidin-1-yl-propoxy)-benzoic acid methyl ester (compound A) as a useful intermediate (1.1 g, yield 50%).

5

10

15

20

25

30

35

2-Amino-5-(3-piperidin-1-yl-propoxy)-benzoic acid methyl ester (compound A) (1.1 g) produced by the above process was dissolved in anhydrous methylene chloride (12 ml). Pyridine (600 µl) and 3-(chloromethyl)benzoyl chloride (compound B) (600 µl) were added dropwise to the solution at 0°C, and the mixture was stirred at room temperature for one hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was then subjected to separatory extraction with chloroform. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol 2-(3-chloromethyl-benzoylamino)-5-(3-piperidin-1-ylgive system propoxy)-benzoic acid methyl ester (1.5 g, yield 93%).

Subsequently, 2-(3-chloromethyl-benzoylamino)-5-(3-piperidin-1-yl-propoxy)-benzoic acid methyl ester (1.5 g) produced by the above process was dissolved in anhydrous methylene chloride (11 ml). Triethylamine (450 µl) and N,N-diethyl-N'-methyl-ethylenediamine (compound B') (480 µl) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 2-(3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}benzoylamino)-5-(3-piperidin-1-yl-propoxy)-benzoic acid methyl ester as a useful

intermediate (290 mg, yield 34%).

5

10

15

20

35

2-(3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}benzoyl-amino)-5-(3-piperidin-1-yl-propoxy)-benzoic acid methyl ester (290 mg) produced by the above process was dissolved in ethanol (4 ml). Hydrazine monohydrate (300 μl) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 6 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-hydrazinocarbonyl-4-(3-piperidin-1-yl-propoxy)-phenyl]-benzamide (140 mg, yield 49%).

Subsequently, 3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-hydrazinocarbonyl-4-(3-piperidin-1-yl-propoxy)-phenyl]-benzamide (50 mg) produced by the above process was dissolved in anhydrous toluene (1.2 ml). 4-Chloro-3-(trifluoromethyl)benzaldehyde (compound C) (50 μ l) was added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 12 hr. After the completion of the reaction, the reaction system was concentrated. The residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 1038 (67 mg, yield 100%).

¹H-NMR (CD₃OD, 400 MHz): δ 8.40 (1H, d, J = 9.0 Hz), 8.37 (1H, s), 8.32 (1H, s), 8.03 (1H, d, J = 8.5 Hz), 7.95 (1H, s), 7.85 - 7.94 (1H, m), 7.68 (1H, d, J = 8.3 Hz), 7.56 - 7.63 (1H, m), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.44 (1H, d, J = 2.7 Hz), 7.20 (1H, dd, J = 2.7 Hz, J = 9.0 Hz), 4.08 - 4.15 (2H, m), 3.62 - 3.70 (2H, m), 2.45 - 2.72 (14H, m), 2.27 (3H, s), 1.98 - 2.07 (2H, m), 1.60 - 1.70 (4H, m), 1.45 - 1.54 (2H, m), 1.01 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 727, 728, 730 (M-1)

Compound 1039 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(3-piperidin-1-yl-propoxy)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1039 was produced in substantially the same manner as in Example T.

¹H-NMR (CD₃OD, 400 MHz): δ 8.41 (1H, d, J = 9.0 Hz), 8.37 (1H, s),

8.30 - 8.34 (1H, m), 8.04 (1H, d, J = 7.1 Hz), 7.83 - 7.94 (2H, m), 7.68 (1H, d, J = 8.3 Hz), 7.59 (1H, d, J = 7.6 Hz), 7.50 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.42 (1H, d, J = 2.7 Hz), 7.22 (1H, dd, J = 2.7 Hz, J = 9.2 Hz), 4.14 (2H, t, J = 6.1 Hz), 3.86 (2H, s), 3.68 (2H, t, J = 6.8 Hz), 2.65 - 2.80 (6H, m), 2.57 (2H, t, J = 6.8 Hz), 2.05 - 2.15 (2H, m), 1.67 - 1.75 (4H, m), 1.50 - 1.60 (2H, m)

Mass spectrometric value (ESI-MS) 675, 677, 678 (M-1) <u>Compound 1040</u> 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-(3-piperidin-1-yl-propoxy)-phenyl]-

10 benzamide

5

15

35

The title compound 1040 was produced in substantially the same manner as in Example T.

¹H-NMR (CD₃OD, 400 MHz): δ 8.45 (1H, d, J = 9.0 Hz), 8.28 (1H, s), 7.92 (1H, bs), 7.85 (1H, d, J = 8.0 Hz), 7.78 (2H, d, J = 8.3 Hz), 7.58 (1H, d, J = 7.8 Hz), 7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.39 (1H, d, J = 2.4 Hz), 7.18 (1H, d, J = 9.3 Hz), 6.98 (2H, d, J = 8.3 Hz), 4.11 (2H, t, J = 5.7 Hz), 3.86 (2H, s), 3.83 (3H, s), 3.68 (2H, t, J = 6.8 Hz), 2.54 - 2.68 (8H, m), 2.00 - 2.09 (2H, m), 1.62 - 1.70 (4H, m), 1.47 - 1.57 (2H, m) Mass spectrometric value (ESI-MS) 603, 604, 605 (M-1)

20 <u>Compound 1041</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-(3-piperidin-1-yl-propoxy)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1041 was produced in substantially the same manner as in Example T.

¹H-NMR (CD₃OD, 400 MHz): δ 8.45 (1H, d, J = 9.3 Hz), 8.28 (1H, s), 7.93 (1H, bs), 7.86 (1H, d, J = 7.8 Hz), 7.65 (1H, s), 7.59 (1H, d, J = 7.8 Hz), 7.53 (1H, d, J = 8.1 Hz), 7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.41 (1H, d, J = 2.7 Hz), 7.16 - 7.23 (2H, m), 4.13 (2H, t, J = 6.1 Hz), 3.87 (2H, s), 3.68 (2H, t, J = 6.8 Hz), 2.55 - 2.73 (8H, m), 2.31 (3H, s), 2.30 (3H, s),

2.00 - 2.10 (2H, m), 1.65 - 1.75 (4H, m), 1.50 - 1.58 (2H, m)

Mass spectrometric value (ESI-MS) 601, 602, 603 (M-1)

Compound 1042 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methylbenzylidene-hydrazinocarbonyl)-4-(2-piperidin-1-yl-ethoxy)-phenyl]benzamide

The title compound 1042 was produced in substantially the same manner as in Example T.

¹H-NMR (CD₃OD, 400 MHz): δ 8.46 (1H, d, J = 9.0 Hz), 8.32 (1H, s), 7.93 (1H, bs), 7.86 (1H, d, J = 7.8 Hz), 7.73 (2H, d, J = 8.3 Hz), 7.59 (1H, d, J = 7.8 Hz), 7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.42 (1H, d, J = 2.9 Hz), 7.25 (2H, d, J = 7.8 Hz), 7.22 (1H, dd, J = 2.9 Hz, J = 9.3 Hz), 4.23 (2H, t, J = 5.6 Hz), 3.87 (2H, s), 3.68 (2H, t, J = 6.8 Hz), 2.83 (2H, t, J = 5.7 Hz), 2.55 - 2.65 (6H, m), 2.38 (3H, s), 1.62 - 1.70 (4H, m), 1.46 - 1.55 (2H, m)

Mass spectrometric value (ESI-MS) 573, 574, 575 (M-1)

5

10

20

25

30

<u>Compound 1043</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1043 was produced in substantially the same manner as in Example T.

¹H-NMR (CD₃OD, 400 MHz): δ 8.46 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 7.93 (1H, s), 7.86 (1H, d, J = 7.6 Hz), 7.66 (1H, s), 7.60 (1H, d, J = 7.6 Hz), 7.54 (1H, d, J = 8.0 Hz), 7.50 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.43 (1H, d, J = 3.0 Hz), 7.17 - 7.25 (2H, m), 4.23 (2H, t, J = 5.6 Hz), 3.87 (2H, s), 3.68 (2H, t, J = 6.7 Hz), 2.83 (2H, t, J = 5.5 Hz), 2.55 - 2.65 (6H, m), 2.32 (3H, s), 2.30 (3H, s), 1.61 - 1.70 (4H, m), 1.45 - 1.55 (2H, m)

Mass spectrometric value (ESI-MS) 587, 588 (M-1)

<u>Compound 1044</u> N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1044 was produced in substantially the same manner as in Example T.

¹H-NMR (CD₃OD, 400 MHz): δ 8.44 (1H, d, J = 9.0 Hz), 8.38 (1H, s), 8.34 (1H, bs), 8.03 - 8.08 (1H, m), 7.93 (1H, bs), 7.86 (1H, d, J = 7.8 Hz), 7.69 (1H, d, J = 8.3 Hz), 7.60 (1H, d, J = 8.6 Hz), 7.50 (1H, dd, J = 7.8 Hz, J = 7.8 Hz), 7.44 (1H, d, J = 2.7 Hz), 7.24 (1H, dd, J = 2.9 Hz, J = 9.3 Hz), 4.23 (2H, t, J = 5.6 Hz), 3.86 (2H, s), 3.68 (2H, t, J = 7.0 Hz), 2.83 (2H, t, J = 5.6 Hz), 2.55 - 2.63 (6H, m), 1.62 - 1.70 (4H, m), 1.45 - 1.55 (2H, m)

Mass spectrometric value (ESI-MS) 661, 663, 664 (M-1)

Compound 1045 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-(2-piperidin-1-yl-ethoxy)-phenyl]-benzamide

The title compound 1045 was produced in substantially the same manner as in Example T.

¹H-NMR (CD₃OD, 400 MHz): δ 8.47 (1H, d, J = 9.3 Hz), 8.30 (1H, s), 7.93 (1H, bs), 7.86 (1H, d, J = 8.1 Hz), 7.80 (2H, d, J = 8.8 Hz), 7.60 (1H, d, J = 7.8 Hz), 7.50 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.42 (1H, d, J = 2.9 Hz), 7.22 (1H, dd, J = 2.9 Hz, J = 9.0 Hz), 6.99 (2H, d, J = 8.8 Hz), 4.23 (2H, t, J = 5.6 Hz), 3.87 (2H, s), 3.84 (3H, s), 3.68 (2H, t, J = 6.8 Hz), 2.82 (2H, t, J = 5.6 Hz), 2.55 - 2.63 (6H, m), 1.62 - 1.70 (4H, m), 1.45 - 1.55 (2H, m)

5

25

30

Mass spectrometric value (ESI-MS) 589, 590 (M-1)

<u>Compound 1046</u> N-[4-Cyclohexylmethoxy-2-(3-fluoro-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 1046 was produced in substantially the same manner as in Example S. $^{1}\text{H-NMR (CD}_{3}\text{OD, 400 MHz}): \delta~8.41 (1\text{H, d, J}=9.0~\text{Hz}),~8.34 (1\text{H, s}), 7.97 (1\text{H, s}),~7.88 - 7.93 (1\text{H, m}),~7.68 - 7.78 (1\text{H, m}),~7.30 - 7.64 (5\text{H, m}), 7.08 - 7.22 (2\text{H, m}),~3.88 (2\text{H, d, J}=6.1~\text{Hz}),~3.69 (2\text{H, s}),~2.80 - 2.93 (2\text{H, m}),~2.68 - 2.80 (4\text{H, m}),~2.55 - 2.65 (2\text{H, m}),~2.30 (3\text{H, s}),~1.68 - 1.95 (5\text{H, m}),~1.10 - 1.42 (6\text{H, m}),~1.08 (6\text{H, t, J}=7.2~\text{Hz})$ Mass spectrometric value (ESI-MS) 614, 615, 616 (M-1) 638 (M+23) Compound 1047 N-[4-Cyclohexylmethoxy-2-(4-methyl-benzylidene-

methyl}-benzamide

The title compound 1047 was produced in substantially the same manner as in Example S.

hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-

 1 H-NMR (CD₃OD, 400 MHz): δ 8.41 (1H, d, J = 9.0 Hz), 8.32 (1H, s), 7.96 (1H, bs), 7.88 - 7.92 (1H, m), 7.73 (2H, d, J = 8.0 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.52 (1H, dd, J = 7.6 Hz), 7.39 (1H, d, J = 2.8 Hz), 7.26 (2H, d, J = 8.1 Hz), 7.19 (1H, dd, J = 2.9 Hz, J = 9.0 Hz), 3.88 (2H, d, J = 6.4 Hz), 3.68 (2H, s), 2.55 - 2.85 (8H, m), 2.38 (3H, s), 2.29 (3H, s), 1.70 - 1.95 (5H, m), 1.10 - 1.42 (6H, m), 1.05 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 610, 611, 612 (M-1)

<u>Compound 1048</u> N-[4-Cyclohexylmethoxy-2-(3,4-dimethyl-benzylidenehydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]methyl}-benzamide

The title compound 1048 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.42 (1H, d, J = 9.3 Hz), 8.28 (1H, s), 7.96 (1H, bs), 7.88 - 7.93 (1H, m), 7.64 (1H, s), 7.58 (1H, d, J = 7.6 Hz), 7.49 - 7.55 (2H, m), 7.39 (1H, d, J = 2.9 Hz), 7.16 - 7.23 (2H, m), 3.87 (2H, d, J = 6.4 Hz), 3.67 (2H, s), 2.55 - 2.80 (8H, m), 2.31 (3H, s), 2.30 (3H, s), 2.29 (3H, s), 1.70 - 1.95 (5H, m), 1.10 - 1.42 (6H, m), 1.04 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 624, 625, 626 (M-1) 670, 671 (M+23x2)

<u>Compound</u> 1049 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-cyclohexylmethoxy-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 1049 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.30 - 8.42 (2H, m), 8.03 (1H, d, J = 8.3 Hz), 7.96 (1H, s), 7.87 - 7.92 (1H, m), 7.69 (1H, d, J = 8.6 Hz), 7.59 (1H, d, J = 7.6 Hz), 7.48 - 7.54 (2H, m), 7.41 (1H, d, J = 2.7 Hz), 7.20 (1H, dd, J = 2.7 Hz, J = 9.0 Hz), 3.88 (2H, d, J = 6.3 Hz), 3.67 (2H, s), 2.54 - 2.78 (8H, m), 2.28 (3H, s), 1.70 - 1.95 (5H, m), 1.08 - 1.42 (6H, m), 1.04 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 698, 700, 701 (M-1)

<u>Compound 1050</u> N-[4-Cyclohexylmethoxy-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-

25 methyl}-benzamide

10

15

20

The title compound 1050 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.42 (1H, d, J = 9.0 Hz), 8.29 (1H, s), 7.96 (1H, bs), 7.87 - 7.93 (1H, m), 7.78 (2H, d, J = 8.8 Hz), 7.59 (1H, d, J = 7.3 Hz), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.38 (1H, d, J = 3.0 Hz), 7.18 (1H, dd, J = 3.0 Hz, J = 9.3 Hz), 6.99 (2H, d, J = 8.8 Hz), 3.87 (2H, d, J = 6.4 Hz), 3.84 (3H, s), 3.67 (2H, s), 2.54 - 2.80 (8H, m), 2.28 (3H, s), 1.70 - 1.95 (5H, m), 1.10 - 1.42 (6H, m), 1.03 (6H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 626, 627, 628 (M-1) 650 (M+23)

35 <u>Compound 1051</u> N-[2-(3-Fluoro-benzylidene-hydrazinocarbonyl)-4-(4-fluoro-butoxy)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1051 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.43 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 7.93 (1H, s), 7.86 (1H, d, J = 7.8 Hz), 7.70 (1H, d, J = 9.0 Hz), 7.59 (2H, d, J = 7.6 Hz), 7.40 - 7.52 (3H, m), 7.13 - 7.25 (2H, m), 4.55 - 4.60 (1H, m), 4.46 (1H, t, J = 5.7 Hz), 4.13 (2H, t, J = 5.9 Hz), 3.87 (2H, s), 3.68 (2H, t, J = 6.8 Hz), 2.58 (2H, t, J = 6.8 Hz), 1.80 - 1.95 (4H, m) Mass spectrometric value (ESI-MS) 540, 541 (M-1) 564 (M+23) Compound 1052 N-[4-(4-Fluoro-butoxy)-2-(4-methyl-benzylidene-

5

10

20

35

hydrazinocarbonyl)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide
The title compound 1052 was produced in substantially the same
manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.45 (1H, d, J = 9.0 Hz), 8.31 (1H, s), 7.93 (1H, bs), 7.86 (1H, d, J = 8.0 Hz), 7.73 (2H, d, J = 8.0 Hz), 7.59 (1H, d, J = 8.1 Hz), 7.49 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.42 (1H, d, J = 2.9 Hz), 7.26 (2H, d, J = 7.8 Hz), 7.21 (1H, dd, J = 2.9 Hz, J = 9.3 Hz), 4.55 - 4.60 (1H, m), 4.46 (1H, t, J = 5.7 Hz), 4.13 (2H, t, J = 6.0 Hz), 3.87 (2H, s), 3.68 (2H, t, J = 6.8 Hz), 2.57 (2H, t, J = 6.8 Hz), 2.38 (3H, s), 1.80 - 1.96 (4H, m)

Mass spectrometric value (ESI-MS) 536, 537 (M-1)

<u>Compound 1053</u> N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4(4-fluoro-butoxy)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1053 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.45 (1H, d, J = 9.3 Hz), 8.28 (1H, s), 7.93 (1H, s), 7.86 (1H, d, J = 8.0 Hz), 7.65 (1H, s), 7.59 (1H, d, J = 7.6 Hz), 7.53 (1H, d, J = 8.8 Hz), 7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.41 (1H, d, J = 2.7 Hz), 7.17 - 7.24 (2H, m), 4.55 - 4.60 (1H, m), 4.46 (1H, t, J = 5.7 Hz), 4.12 (2H, t, J = 6.0 Hz), 3.87 (2H, s), 3.68 (2H, t, J = 6.8 Hz), 2.57 (2H, t, J = 6.8 Hz), 2.31 (3H, s), 2.30 (3H, s), 1.83 - 1.95 (4H, m)

2.57 (2H, t, J = 6.8 Hz), 2.31 (3H, s), 2.30 (3H, s), 1.83 - 1.95 (4H, m) Mass spectrometric value (ESI-MS) 550, 551 (M-1)

<u>Compound</u> 1054 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(4-fluoro-butoxy)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1054 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.42 (1H, d, J = 9.2 Hz), 8.37 (1H, s), 8.32 (1H, s), 8.01 - 8.05 (1H, m), 7.92 (1H, s), 7.85 (1H, d, J = 7.8 Hz), 7.67 (1H, d, J = 8.3 Hz), 7.59 (1H, d, J = 7.6 Hz), 7.49 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.42 (1H, d, J = 2.7 Hz), 7.22 (1H, dd, J = 2.7 Hz, J = 9.2 Hz), 4.55 - 4.60 (1H, m), 4.46 (1H, t, J = 5.7 Hz), 4.12 (2H, t, J = 5.8 Hz), 3.86 (2H, s), 3.68 (2H, t, J = 6.8 Hz), 2.57 (2H, t, J = 7.0 Hz), 1.80 - 1.95 (4H, m)

Mass spectrometric value (ESI-MS) 624, 626, 627 (M-1)

Compound 1055 N-[4-(4-Fluoro-butoxy)-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1055 was produced in substantially the same manner as in Example S.

 1 H-NMR (CD₃OD, 400 MHz): δ 6.95 - 8.60 (12H, m), 4.55 - 4.62 (1H, m), 4.46 (1H, t, J = 5.7 Hz), 4.12 (2H, t, J = 6.0 Hz), 3.83 - 3.88 (3H, m), 3.79 (2H, s), 3.68 (2H, t, J = 6.8 Hz), 2.57 (2H, t, J = 6.8 Hz), 1.80 - 1.95 (4H, m)

Mass spectrometric value (ESI-MS) 552, 553 (M-1)

Compound 1056 3-{[Bis-(2-diethylamino-ethyl)-amino]-methyl}-N-[3-(4-methyl-benzylidene-hydrazinocarbonyl)-4,5,6,7-tetrahydro-

20 benzo[b]thiophen-2-yl]-benzamide

The title compound 1056 was produced in substantially the same manner as in Example B.

¹H-NMR (CDCl₃, 400 MHz): δ 0.98 (12H, t, J = 7.1 Hz), 1.92 (4H, m), 2.40 (3H, s), 2.45 - 2.65 (16H, m), 2.76 (2H, m), 2.89 (2H, m), 3.72 (2H, s), 7.24 (2H, m), 7.43 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.60 (1H, d, J = 7.3 Hz), 7.69 (2H, d, J = 8.0 Hz), 7.92 (1H, m), 8.00 (1H, s), 8.08 (1H, s) Mass spectrometric value (ESI-MS) 644 (M-1)

Compound 1057 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3-fluoro-benzylidene-hydrazinocarbonyl)-4-(4-fluoro-butoxy)-phenyl]-

30 benzamide

10

15

25

35

The title compound 1057 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.41 (1H, d, J = 9.0 Hz), 8.34 (1H, s), 7.88 - 7.98 (2H, m), 7.40 - 7.78 (6H, m), 7.14 - 7.26 (2H, m), 4.55 - 4.60 (1H, m), 4.46 (1H, t, J = 5.7 Hz), 4.13 (2H, t, J = 5.9 Hz), 3.68 (2H, s), 2.81 (2H, t, J = 6.8 Hz), 2.68 (4H, q, J = 7.1 Hz), 2.60 (2H, t, J = 7.0 Hz),

2.29 (3H, s), 1.83 - 1.97 (4H, m), 1.06 (6H, t, J = 7.2 Hz)Mass spectrometric value (ESI-MS) 592, 593, 594 (M-1) 638 (M+2x23)

<u>Compound 1058</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-(4-fluoro-butoxy)-2-(4-methyl-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 1058 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.42 (1H, d, J = 9.0 Hz), 8.32 (1H, s), 7.95 (1H, s), 7.86 - 7.92 (1H, m), 7.71 (2H, d, J = 8.1 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.51 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.41 (1H, d, J = 2.7 Hz), 7.25 (2H, d, J = 7.8 Hz), 7.19 (1H, dd, J = 2.9 Hz, J = 9.0 Hz), 4.55 - 4.60 (1H, m), 4.45 (1H, t, J = 5.6 Hz), 4.11 (2H, t, J = 5.7 Hz), 3.66 (2H, s), 2.72 - 2.79 (2H, m), 2.54 - 2.68 (6H, m), 2.37 (3H, s), 2.28 (3H, s), 1.80 - 1.95 (4H, m), 1.04 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 588, 589, 590 (M-1) 634, 635 (M+2x23)

Compound 1059 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-(4-fluoro-butoxy)-

20 phenyl]-benzamide

5

10

15

25

30

35

The title compound 1059 was produced in substantially the same manner as in Example S.

¹H-NMR (CD₃OD, 400 MHz): δ 8.43 (1H, d, J = 9.0 Hz), 8.28 (1H, s), 7.96 (1H, bs), 7.88 - 7.92 (1H, m), 7.63 (1H, s), 7.48 - 7.62 (3H, m), 7.40 (1H, d, J = 2.7 Hz), 7.17 - 7.23 (2H, m), 4.55 - 4.60 (1H, m), 4.45 (1H, t, J = 5.7 Hz), 4.12 (2H, t, J = 5.9 Hz), 3.67 (2H, s), 2.72 - 2.80 (2H, m), 2.55 - 2.68 (6H, m), 2.30 (3H, s), 2.29 (3H, s), 2.28 (3H, s), 1.80 - 1.95 (4H, m), 1.03 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 602, 603 (M-1) 642, 648 (M+2x23)

<u>Compound</u> 1060 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(4-fluoro-butoxy)-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 1060 was produced in substantially the same manner as in Example S.

 $^{1}\text{H-NMR}$ (CD₃OD, 400 MHz): δ 8.36 - 8.42 (2H, m), 8.31 (1H, s), 7.98 -

8.03 (1H, m), 7.95 (1H, s), 7.86 - 7.91 (1H, m), 7.67 (1H, d, J = 8.3 Hz), 7.58 (1H, d, J = 7.6 Hz), 7.51 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.42 (1H, d, J = 2.9 Hz), 7.20 (1H, dd, J = 2.9 Hz, J = 9.0 Hz), 4.55 - 4.60 (1H, m), 4.45 (1H, t, J = 5.7 Hz), 4.12 (2H, t, J = 5.9 Hz), 3.66 (2H, s), 2.54 - 2.78 (8H, m), 2.27 (3H, s), 1.80 - 1.95 (4H, m), 1.03 (6H, t, J = 7.2 Hz) Mass spectrometric value (ESI-MS) 676, 677, 679 (M-1)

Compound 1061 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[4-(4-fluoro-butoxy)-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-benzamide

The title compound 1061 was produced in substantially the same manner as in Example S.

 1 H-NMR (CD₃OD, 400 MHz): δ 8.43 (1H, d, J = 9.3 Hz), 8.29 (1H, s), 7.95 (1H, bs), 7.87 - 7.92 (1H, m), 7.77 (2H, d, J = 8.8 Hz), 7.56 - 7.61 (1H, m), 7.50 (1H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.40 (1H, d, J = 2.9 Hz), 7.19 (1H, dd, J = 2.7 Hz, J = 9.0 Hz), 6.97 (2H, d, J = 8.8 Hz), 4.55 - 4.59 (1H, m), 4.45 (1H, t, J = 5.7 Hz), 4.11 (2H, t, J = 6.0 Hz), 3.83 (3H,

4.59 (1H, m), 4.45 (1H, t, J = 5.7 Hz), 4.11 (2H, t, J = 6.0 Hz), 3.63 (3H, s), 3.66 (2H, s), 2.54 - 2.77 (8H, m), 2.28 (3H, s), 1.80 - 1.97 (4H, m), 1.03 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 604, 605, 606 (M-1) 606 (M+1) 628, 629 (M+23)

<u>Compound</u> 1062 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(4-hydroxy-piperidin-1-yl)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1062 was produced in substantially the same manner as in Example F.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.67 (2H, m), 2.00 (2H, m), 2.57 (2H, m), 2.99 (2H, m), 3.68 (4H, m), 3.80 (1H, m), 3.86 (2H, s), 7.25 (1H, m), 7.41 (1H, d, J = 3.0 Hz), 7.49 (1H, m), 7.59 (1H, m), 7.69 (1H, d, J = 8.6 Hz), 7.85 (1H, m), 7.92 (1H, m), 8.05 (1H, m), 8.34 (2H, m), 8.38 (1H, s)

Mass spectrometric value (ESI-MS) 633 (M-1)

Compound 1063 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(4-hydroxymethyl-piperidin-1-yl)-phenyl]-3-(2-

hydroxy-ethylsulfanylmethyl)-benzamide

10

15

20

35

The title compound 1063 was produced in substantially the same manner as in Example F.

 1 H-NMR (CD₃OD, 400 MHz): δ 1.39 (2H, m), 1.63 (1H, m), 1.88 (2H, m),

 $2.57 \ (2H,\ t,\ J=6.8\ Hz),\ 2.76 \ (2H,\ m),\ 3.47 \ (2H,\ d,\ J=6.3\ Hz),\ 3.68 \ (2H,\ t,\ J=6.8\ Hz),\ 3.81 \ (2H,\ m),\ 3.86 \ (2H,\ s),\ 7.24 \ (1H,\ dd,\ J=9.2\ Hz,\ J=2.8\ Hz),\ 7.39 \ (1H,\ d,\ J=2.7\ Hz),\ 7.49 \ (1H,\ dd,\ J=7.7\ Hz),\ 7.58 \ (1H,\ d,\ J=7.6\ Hz),\ 7.67 \ (1H,\ d,\ J=8.3\ Hz),\ 7.84 \ (1H,\ d,\ J=7.6\ Hz),$

5 7.91 (1H, s), 8.03 (1H, m), 8.33 (2H, m), 8.37 (1H, s)

Mass spectrometric value (ESI-MS) 647 (M-1)

Compound 1064 N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4-morpholin-4-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1064 was produced in substantially the same manner as in Example F.

 1 H-NMR (CD₃OD, 400 MHz): δ 2.30 (3H, s), 2.31 (3H, s), 2.57 (2H, m), 3.24 (4H, m), 3.68 (2H, m), 3.87 (6H, m), 7.21 (2H, m), 7.38 (1H, s), 7.45 - 7.62 (3H, m), 7.66 (1H, m), 7.83 - 7.96 (2H, m), 8.28 (1H, s), 8.40 (1H, m)

15 Mass spectrometric value (ESI-MS) 545 (M-1)

10

20

25

<u>Compound</u> 1065 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-morpholin-4-yl-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1065 was produced in substantially the same manner as in Example F.

¹H-NMR (DMSO-d₆, 400 MHz): δ 2.50 (2H, m), 3.20 (4H, m), 3.54 (2H, m), 3.78 (4H, m), 3.84 (2H, s), 7.24 (1H, d, J = 8.1 Hz), 7.32 (1H, s), 7.53 (2H, m), 7.75 - 7.84 (2H, m), 7.87 (1H, s), 8.05 (1H, d, J = 7.8 Hz), 8.20 (1H, s), 8.25 (1H, d, J = 9.0 Hz), 8.48 (1H, s), 11.25 (1H, bs), 12.24 (1H, s)

Mass spectrometric value (ESI-MS) 619 (M-1)

<u>Compound 1066</u> 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-morpholin-4-yl-phenyl]-benzamide

The title compound 1066 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 2.57 (2H, m), 3.30 (4H, m), 3.68 (2H, m), 3.86 (9H, m), 7.00 (2H, m), 7.24 (1H, m), 7.38 (1H, m), 7.49 (1H, m), 7.60 (1H, m), 7.75 - 7.95 (4H, m), 8.29 (1H, s), 8.42 (1H, m) Mass spectrometric value (ESI-MS) 547 (M-1)

35 <u>Compound 1067</u> N-[4-[1,4']Bipiperazinyl-1'-yl-2-(4-chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-hydroxy-

ethylsulfanylmethyl)-benzamide

5

30

The title compound 1067 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.60 (2H, m), 1.77 (6H, m), 2.11 (2H, m), 2.57 (2H, t, J = 6.8 Hz), 2.75 - 3.02 (7H, m), 3.68 (2H, t, J = 6.7 Hz), 3.86 (2H, s), 3.93 (2H, m), 7.26 (1H, m), 7.40 (1H, m), 7.49 (1H, m), 7.59 (1H, m), 7.68 (1H, d, J = 8.1 Hz), 7.84 (1H, d, J = 8.0 Hz), 7.92 (1H, s), 8.04 (1H, d, J = 9.3 Hz), 8.30 - 8.40 (3H, m),

Mass spectrometric value (ESI-MS) 700 (M-1)

10 <u>Compound 1068</u> N-[4-[1,4']Bipiperazinyl-1'-yl-2-(4-methoxy-benzylidene-hydrazinocarbonyl)-phenyl]-3-(2-hydroxy-ethylsulfanyl-methyl)-benzamide

The title compound 1068 was produced in substantially the same manner as in Example F.

- ¹H-NMR (DMSO-d₆, 400 MHz): δ 1.39 (2H, m), 1.45 1.65 (6H, m), 1.84 (2H, m), 2.50 (7H, m), 2.70 (2H, m), 3.54 (2H, m), 3.83 (7H, m), 4.78 (1H, t, J = 5.6 Hz), 7.02 (2H, d, J = 8.8 Hz), 7.19 (1H, m), 7.31 (1H, m), 7.53 (2H, m), 7.70 (2H, d, J = 7.8 Hz), 7.76 (1H, d, J = 7.3 Hz), 7.86 (1H, s), 8.31 (1H, d, J = 9.0 Hz), 8.39 (1H, s), 11.67 (1H, s), 11.88 (1H, s)
- 20 Mass spectrometric value (ESI-MS) 628 (M-1)

 Compound 1069 N-[2-(3,4-Dimethyl-benzylidene-hydrazinocarbonyl)-4(4-methyl-piperidin-1-yl)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)benzamide

The title compound 1069 was produced in substantially the same 25 manner as in Example F.

¹H-NMR (DMSO-d₆, 400 MHz): δ 0.97 (3H, d, J = 6.6 Hz), 1.27 (2H, m), 1.53 (1H, m), 1.74 (2H, m), 2.27 (3H, s), 2.28 (3H, s), 2.50 (2H, m), 2.70 (2H, m), 3.54 (2H, m), 3.75 (2H, m), 3.85 (2H, s), 4.77 (1H, t, J = 5.7 Hz), 7.21 (2H, m), 7.31 (1H, m), 7.45 (1H, d, J = 7.6 Hz), 7.52 (3H, m), 7.76 (1H, d, J = 7.3 Hz), 7.87 (1H, s), 8.29 (1H, m), 8.37 (1H, s), 11.41 (1H, s), 11.90 (1H, s)

Mass spectrometric value (ESI-MS) 557 (M-1)

Compound 1070 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(4-methyl-piperidin-1-yl)-phenyl]-3-(2-hydroxy-

35 ethylsulfanylmethyl)-benzamide

The title compound 1070 was produced in substantially the same

manner as in Example F.

 1 H-NMR (DMSO-d₆, 400 MHz): δ 0.96 (3H, d, J = 6.3 Hz), 1.27 (2H, m), 1.53 (1H, m), 1.74 (2H, m), 2.50 (2H, m), 2.70 (2H, m), 3.54 (2H, m), 3.74 (2H, m), 3.84 (2H, s), 4.83 (1H, m), 7.19 (1H, d, J = 8.6 Hz), 7.33 (1H, s), 7.52 (2H, m), 7.79 (2H, m), 7.86 (1H, s), 8.04 (1H, d, J = 7.6 Hz), 8.23 (2H, m), 8.49 (1H, s), 12.24 (1H, s)

Mass spectrometric value (ESI-MS) 631 (M-1)

<u>Compound 1071</u> 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-(4-methyl-piperidin-1-yl)-phenyl]-

10 benzamide

5

15

The title compound 1071 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 1.01 (3H, d, J = 6.1 Hz), 1.37 (2H, m), 1.55 (1H, m), 1.80 (2H, m), 2.57 (2H, t, J = 6.7 Hz), 2.76 (2H, m), 3.68 (2H, m), 3.76 (2H, m), 3.84 (3H, s), 3.86 (2H, s), 6.99 (2H, d, J = 8.8 Hz), 7.22 (1H, m), 7.38 (1H, m), 7.49 (1H, m), 7.58 (1H, m), 7.79 (2H, d, J = 8.5 Hz), 7.85 (1H, d, J = 7.6 Hz), 7.92 (1H, s), 8.30 (1H, s), 8.36 (1H, d, J = 9.3 Hz)

Mass spectrometric value (ESI-MS) 559 (M-1)

20 <u>Compound 1072</u> N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-(4-methyl-piperazin-1-yl)-phenyl]-3-(2-hydroxy-ethylsulfanylmethyl)-benzamide

The title compound 1072 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 2.44 (3H, m), 2.56 (2H, m), 2.74 (4H, m), 3.30 (4H, m), 3.66 (2H, m), 3.85 (2H, m), 7.26 (1H, m), 7.40 (1H, s), 7.49 (1H, m), 7.58 (1H, m), 7.68 (1H, m), 7.83 (1H, m), 7.91 (1H, s), 8.02 (1H, m), 8.35 (3H, m)

Mass spectrometric value (ESI-MS) 632 (M-1)

30 <u>Compound 1073</u> 3-(2-Hydroxy-ethylsulfanylmethyl)-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-(4-methyl-piperazin-1-yl)-phenyl]-benzamide

The title compound 1073 was produced in substantially the same manner as in Example F.

¹H-NMR (CD₃OD, 400 MHz): δ 2.34 (3H, s), 2.57 (2H, t, J = 6.8 Hz), 2.66 (4H, m), 3.31 (4H, m), 3.68 (2H, t, J = 6.8 Hz), 3.84 (3H, s), 3.86 (2H, s),

6.99 (2H, d, J = 8.8 Hz), 7.24 (1H, dd, J = 9.1 Hz, J = 2.7 Hz), 7.38 (1H, d, J = 2.9 Hz), 7.49 (1H, d, J = 7.7 Hz), 7.59 (1H, d, J = 7.6 Hz), 7.79 (2H, d, J = 8.8 Hz), 7.85 (1H, d, J = 7.8 Hz), 7.92 (1H, s), 8.29 (1H, s), 8.40 (1H, d, J = 9.0 Hz)

Mass spectrometric value (ESI-MS) 560 (M-1)

<u>Compound 1074</u> 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(3,4-dimethyl-benzylidene-hydrazinocarbonyl)-4-morpholin-4-yl-phenyl]-benzamide

The title compound 1074 was produced in substantially the same manner as in Example F.

 1 H-NMR (CDCl₃, 400 MHz): δ 1.04 (6H, t, J = 7.1 Hz), 2.28 (9H, m), 2.59 (6H, m), 2.68 (2H, m), 2.85 (4H, m), 3.41 (4H, m), 3.64 (2H, s), 6.83 (1H, d, J = 9.0 Hz), 6.97 (1H, s), 7.18 (1H, d, J = 7.6 Hz), 7.47 (1H, dd, J = 7.6 Hz), 7.56 (2H, m), 7.69 (1H, s), 7.89 (1H, d, J = 7.6 Hz),

8.00 (1H, s), 8.09 (1H, d, J = 9.0 Hz), 8.55 (1H, s), 11.22 (1H, s) Mass spectrometric value (ESI-MS) 597 (M-1)

<u>Compound</u> 1075 N-[2-(4-Chloro-3-trifluoromethyl-benzylidene-hydrazinocarbonyl)-4-morpholin-4-yl-phenyl]-3-{[(2-diethylamino-ethyl)-methyl-amino]-methyl}-benzamide

The title compound 1075 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.03 (6H, t, J = 7.1 Hz), 2.28 (3H, s), 2.57 (6H, m), 2.66 (2H, m), 2.80 (4H, m), 3.34 (4H, m), 3.65 (2H, s), 6.80 (1H, d, J = 8.6 Hz), 6.89 (1H, s), 7.50 (1H, m), 7.60 (2H, m), 7.89 (1H, d, J = 7.6 Hz), 7.97 (1H, m), 8.03 (1H, s), 8.08 (1H, d, J = 8.3 Hz), 8.13 (1H, s), 8.66 (1H, s), 11.08 (1H, s)

Mass spectrometric value (ESI-MS) 671 (M-1)

Compound 1076 3-{[(2-Diethylamino-ethyl)-methyl-amino]-methyl}-N-[2-(4-methoxy-benzylidene-hydrazinocarbonyl)-4-morpholin-4-yl-phenyl]-

30 benzamide

10

20

25

35

The title compound 1076 was produced in substantially the same manner as in Example F.

¹H-NMR (CDCl₃, 400 MHz): δ 1.06 (6H, t, J = 7.1 Hz), 2.25 (3H, s), 2.62 (6H, m), 2.72 (2H, m), 2.91 (4H, m), 3.46 (4H, m), 3.62 (2H, s), 3.82 (3H, s), 6.84 - 6.92 (3H, m), 7.07 (1H, s), 7.44 (1H, dd, J = 7.7 Hz, J = 7.7 Hz), 7.53 (1H, m), 7.75 (2H, d, J = 8.5 Hz), 7.88 (1H, d, J = 7.8 Hz), 7.97 (1H,

s), 8.17 (1H, d, J = 9.0 Hz), 8.57 (1H, s), 11.34 (1H, s)

Mass spectrometric value (ESI-MS) 599 (M-1)

Example U

5

10

15

20

25

30

35

<u>Compound 1077</u> N-Benzoyloxy-5-chloro-2-(3-diethylaminomethylbenzoylamino)-benzamide

2-Amino-5-chloro-benzoic acid methyl ester (1.5 g) was dissolved in anhydrous methylene chloride (25 ml). Pyridine (1.4 ml) and 3-(chloromethyl)benzoyl chloride (1.4 ml) were added dropwise to the solution at 0°C, and the mixture was then stirred at room temperature for 30 min. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with chloroform. The organic layer was then washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure to precipitate crystals. The precipitated crystals were collected by filtration through Kiriyama Rohto and were washed with ether to give 5-chloro-2-(3-chloromethyl-benzoylamino)-benzoic acid methyl ester as a useful intermediate (2.4 g, yield 90%).

5-Chloro-2-(3-chloromethyl-benzoylamino)-benzoic acid methyl ester (2.4 g) produced by the above process was dissolved in anhydrous methylene chloride (30 ml). Triethylamine (1.5 ml) and diethylamine (2.0 ml) were added dropwise to the solution at room temperature, and the mixture was then stirred at that temperature for 48 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to give 5-chloro-2-(3-diethylaminomethyl-benzoylamino)-benzoic acid methyl ester as a useful intermediate (1.9 g, yield 71%).

Subsequently, 5-chloro-2-(3-diethylaminomethyl-benzoylamino)-benzoic acid methyl ester (1.9 g) produced by the above process was dissolved in tetrahydrofuran/distilled water = 4/1 (20 ml). Lithium hydroxide monohydrate (420 mg) was added to the solution at room temperature, and the mixture was then stirred at that temperature for 2.5 hr. After the completion of the reaction, the reaction system was concentrated under the reduced pressure, and the residue was purified by column chromatography eluted with a chloroform-methanol system to

give 5-chloro-2-(3-diethylaminomethyl-benzoylamino)-benzoic acid (1.0 g, yield 56%).

acid 5-Chloro-2-(3-diethylaminomethyl-benzoylamino)-benzoic (50 mg) produced by the above process was dissolved in N,N-1-(3-Dimethylaminopropyl)-3dimethylformamide (1.0)ml). 1-hydroxy-benzotriazole ethylcarbodiimide hydrochloride (38 mg), monohydrate (28 mg), triethylamine (50 µl) and o-benzyl-hydroxylamine hydrochloride (40 mg) were added to the solution at room temperature, and the mixture was then stirred at that temperature for 24 hr. After the completion of the reaction, distilled water was added thereto at room temperature, and the mixture was subjected to separatory extraction with ethyl acetate. The organic layer was washed with saturated brine, was dried over sodium sulfate, and was then concentrated under the reduced pressure. The residue was purified by column chromatography eluted with a chloroform-methanol system to give the title compound 1077 (29 mg, yield 45%).

10

15

20

¹H-NMR (CD₃OD, 400 MHz): δ 8.55 (1H, d, J = 9.0 Hz), 7.98 (1H, s), 7.87 - 7.91 (1H, m), 7.61 - 7.65 (2H, m), 7.40 - 7.56 (4H, m), 7.23 - 7.38 (3H, m), 4.99 (2H, s), 3.89 (2H, s), 2.73 (4H, q, J = 7.2 Hz), 1.15 (6H, t, J = 7.2 Hz)

Mass spectrometric value (ESI-MS) 463, 465, 466 (M-1) 465, 467 (M+1) 489 (M+23)

Starting compounds for compounds 1 to 1076 are shown in Table
1. In the table, compounds A, B, C, and B' correspond to compounds
described in Examples 1 to 11 and Examples A to T and schemes 1 and
2.

Table 1

Table 1				
	A	В	С	B'
Compound 1	Methyl 2-amino-	3,4-Dimethoxy-	Trans-	
Compound	benzoate	benzoyl chloride	cinnamaldehyde	
Compound 2	Methyl 2-amino-	3,4-Dimethoxy-	2-Fluoro-	
Compound 2	benzoate	benzoyl chloride	benzaldehyde	
Compound 3	Methyl 2-amino-	3,4-Dimethoxy-	o-Tolualdehyde	
Compound 3	benzoate	benzoyl chloride		
Compound 4	Methyl 2-amino-	3,4-Dimethoxy-	o-Methoxybenz-	
Compound 4	benzoate	benzoyl chloride	aldehyde	
Compound 5	Methyl 2-amino-	3,4-Dimethoxy-	m-Methoxy-	
Compound	benzoate	benzoyl chloride	benzaldehyde	
	Methyl 2-amino-	3,4-Dimethoxy-	3,5-Ditert-butyl-	
Compound 6	benzoate	benzoyl chloride	4-hydroxybenz-	
			aldehyde	
Compound 7	Methyl 2-amino-	3,4-Dimethoxy-	α-Methyl-	
Compound 7	benzoate	benzoyl chloride	cinnamaldehyde	
	Methyl 2-amino-	3,4-Dimethoxy-	3,5-Ditrifluoro	
Compound 8	benzoate	benzoyl chloride	methylbenz-	
	perizoate		aldehyde	
Company of O	Methyl 2-amino-	3,4-Dimethoxy-	3-Cyano-	\
Compound 9	benzoate	benzoyl chloride	benzaldehyde	
0	Methyl 2-amino-	3,4-Dimethoxy-	2-Bromo-	
Compound 10	benzoate	benzoyl chloride	benzaldehyde	
Common d 44	Methyl 2-amino-	3,4-Dimethoxy-	Vanillin	
Compound 11	benzoate	benzoyl chloride		
	Madhad O	2.4 Dimethova	3,4,5-	
Compound 12	Methyl 2-	3,4-Dimethoxy- benzoyl chloride	Trimethoxy-	
,	aminobenzoate	benzoyi cilionde	benzaldehyde	
Commound 42	Methyl 2-amino-5-	3,4-Dimethoxy-	Trans-	
Compound 13	bromobenzoate	benzoyl chloride	cinnamaldehyde	
Compound 14	Methyl 2-amino-5-	3,4-Dimethoxy-	2-Bromo-	
Compound 14	bromobenzoate	benzoyl chloride	benzaldehyde	
Compound 15	Methyl 2-amino-	3,4-Dimethoxy-	3-Fluoro-	
Compound 15	benzoate	benzoyl chloride	benzaldehyde	
Compound 16	Methyl 2-amino-	3,4-Dimethoxy-	4-Fluoro-	
Compound to	benzoate	benzoyl chloride	benzaldehyde	
Compound 17	Methyl 2-amino-	3,4-Dimethoxy-	Benzaldehyde	
Oompound 17	benzoate	benzoyl chloride		
Compound 18	Methyl 2-amino-	3,4-Dimethoxy-	3-Hydroxy-	
Compound to	benzoate	benzoyl chloride	benzaldehyde	
Compound 19	Methyl 2-amino-	3,4-Dimethoxy-	4-Hydroxy-	
	benzoate	benzoyl chloride	benzaldehyde	
Compound 20	Methyl 2-amino-	3,4-Dimethoxy-	m-Tolualdehyde	
	benzoate	benzoyl chloride	•	
Compound 21	Methyl 2-amino-	3,4-Dimethoxy-	Furfural	
	benzoate	benzoyl chloride	 	
Compound 22	Methyl 2-amino-	3,4-Dimethoxy-	5-Methylfurfural	
	benzoate	benzoyl chloride		ļ
Compound 23	Methyl 2-amino-	3,4-Dimethoxy-	2-Thiophene-	
,	benzoate	benzoyl chloride	carboxyaldehyde	
Compound 24	Methyl 2-amino-	3,4-Dimethoxy-	3-Thiophene-	
	benzoate	benzoyl chloride	carboxyaldehyde 2,4-Dihydroxy-	
Compound 25	Methyl 2-amino-	3,4-Dimethoxy-	benzaldehyde	
•	benzoate	benzoyl chloride	3,4-Dihydroxy-	
Compound 26	Methyl 2-amino-	3,4-Dimethoxy-	benzaldehyde	
	benzoate	benzoyl chloride	Delizaluellyue	
Compound 27	Methyl 2-amino-	2-Fluorobenzoyl	Benzaidehyde	
	benzoate	chloride 3,4-Dimethoxy-	2-Fluoro-	
Compound 28	Methyl 2-amino-5-			
	bromobenzoate	benzoyi chloride	benzaldehyde	1

	Α	В	С	B'
Compound 29	Methyl 2-amino-5- bromobenzoate	3,4-Dimethoxy- benzoyl chloride	3-Fluoro- benzaldehyde	
Compound 30	Methyl 2-amino-5- bromobenzoate	3,4-Dimethoxy- benzoyl chloride	o-Tolualdehyde	
Compound 31	Methyl 2-amino-5- bromobenzoate	3,4-Dimethoxy- benzoyl chloride	m-Tolualdehyde	
Compound 32	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	3-Chloro-4- fluoro- benzaldehyde	
Compound 33	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	4-Trifluoro- methoxybenz- aldehyde	
Compound 34	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	3-Bromo-4- methoxybenz- aldehyde	
Compound 35	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	3-Chlorobenz- aldehyde	
Compound 36	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	3,5-Dimethyl-4- hydroxybenz- aldehyde	
Compound 37	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	3-Ethoxy-4- hydroxybenz- aldehyde	
Compound 38	Methyl 2-amino- benzoate	2-Fluorobenzoyl chloride	4-Fluorobenz- aldehyde	
Compound 39	Methyl 2-amino- benzoate	2-Fluorobenzoyl chloride	3-Hydroxy- benzaldehyde	
Compound 40	Methyl 2-amino- benzoate	2-Fluorobenzoyl chloride	p-Tolualdehyde	
Compound 41	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	
Compound 42	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	4-Hydroxy-3- methylbenz- aldehyde	
Compound 43	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	2,5-Dimethyl- benzaldehyde	
Compound 44	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	2-Fluoro-5-tri- fluoromethyl- benzaldehyde	
Compound 45	Methyl 2-amino- benzoate	2-Fluorobenzoyl chloride	4-Hydroxy-3- methylbenz- aldehyde	
Compound 46	Methyl 2-amino- benzoate	2-Fluorobenzoyl chloride	2,5-Dimethyl- benzaldehyde	
Compound 47	Methyl 2-amino- benzoate	4-Methoxybenzoyl chloride	3-Fluorobenz- aldehyde	
Compound 48	Methyl 2-amino- benzoate	4-Methoxybenzoyl chloride	4-Fluorobenz- aldehyde	
Compound 49	Methyl 2-amino- benzoate	4-Methoxybenzoyl chloride	m-Tolualdehyde	
Compound 50	Methyl 2-amino- benzoate	4-Methoxybenzoyl chloride	3-Hydroxybenz- aldehyde	
Compound 51	Methyl 2-amino- benzoate	4-Methoxybenzoyl chloride	p-Tolualdehyde	
Compound 52	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	4-Allyloxybenz- aldehyde	
Compound 53	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	3,5-Dimethoxy- benzaldehyde	

	Α	ТВ	С	B'
			3-[3-(Trifluoro-	
Compound E4	Methyl 2-amino-	3,4-Dimethoxy-	methyl)phenoxy]-	
Compound 54	benzoate	benzoyl chloride	benzaldehyde	
	144 41-10	2 5 Dim oth star	3-Fluorobenz-	
Compound 55	Methyl 2-amino-	3,5-Dimethoxy-		
	benzoate	benzoyl chloride	aldehyde	
Compound 56	Methyl 2-amino-	3,5-Dimethoxy-	4-Fluorobenz-	
Compound 50	benzoate	benzoyl chloride	aldehyde	
Commound 57	Methyl 2-amino-	3,5-Dimethoxy-	p-Tolualdehyde	
Compound 57	benzoate	benzoyl chloride	p-1 oldaldeliyde	
	Methyl 2-amino-	3,5-Dimethoxy-	3-Hydroxybenz-	
Compound 58	benzoate	benzoyl chloride	aldehyde	
	Methyl 2-amino-5-	3,4-Dimethoxy-	3-Chlorobenz-	
Compound 59	bromobenzoate	benzoyl chloride	aldehyde	
	Methyl 2-amino-5-	3,4-Dimethoxy-	4-Chlorobenz-	
Compound 60	bromobenzoate	benzoyl chloride	aldehyde	
		3,4-Dimethoxy-	4-Fluorobenz-	
Compound 61	Methyl 2-amino-5-		aldehyde	1
	bromobenzoate	benzoyl chloride	aldenyde	
Compound 62	Methyl 2-amino-5-	3,4-Dimethoxy-	p-Tolualdehyde	ļ
	bromobenzoate	benzoyl chloride		
Compound 63	Methyl 2-amino-5-	3,4-Dimethoxy-	3-Hydroxybenz-	
Compound 00	bromobenzoate	benzoyl chloride	aldehyde	
Commound 64	Methyl 2-amino-5-	3,4-Dimethoxy-	4-Hydroxy-	
Compound 64	bromobenzoate	benzoyl chloride	benzaldehyde	
	Methyl 2-amino-5-	3,4-Dimethoxy-	3-Fluorobenz-	
Compound 65	chlorobenzoate	benzoyl chloride	aldehyde	
	Methyl 2-amino-5-	3,4-Dimethoxy-	4-Fluorobenz-	
Compound 66	chlorobenzoate	benzoyl chloride	aldehyde	
	Methyl 2-amino-5-	3,4-Dimethoxy-		
Compound 67	chlorobenzoate	benzoyl chloride	m-Tolualdehyde	
				
Compound 68	Methyl 2-amino-5-	3,4-Dimethoxy-	p-Tolualdehyde	
	chlorobenzoate	benzoyl chloride	 	
Compound 69	Methyl 2-amino-5-	3,4-Dimethoxy-	3-Hydroxybenz-	
-	chlorobenzoate	benzoyl chloride	aldehyde	
Compound 70	Methyl 2-amino-5-	3,4-Dimethoxy-	4-Hydroxybenz-	
Compound 70	chlorobenzoate	benzoyl chloride	aldehyde	
Compound 71	Methyl 2-amino-4-	3,4-Dimethoxy-	3-Fluorobenz-	[
Compound / i	chlorobenzoate	benzoyl chloride	aldehyde	
0	Methyl 2-amino-4-	3,4-Dimethoxy-	4-Fluorobenz-	
Compound 72	chlorobenzoate	benzoyl chloride	aldehyde	
	Methyl 2-amino-4-	3,4-Dimethoxy-	Taleral delication	
Compound 73	chlorobenzoate	benzoyl chloride	m-Tolualdehyde	
	Methyl 2-amino-4-	3,4-Dimethoxy-	_ , , , , ,	1
Compound 74	chlorobenzoate	benzoyl chloride	p-Tolualdehyde	
		0.4.5	3-Hydroxybenz-	
Compound 75	Methyl 2-amino-4- chlorobenzoate	3,4-Dimethoxy-	aldehyde	
<u> </u>		benzoyl chloride	3-Fluorobenz-	
Compound 76	Methyl 2-amino-	4-Fluorobenzoyl	•	1
	benzoate	chloride	aldehyde	
Compound 77	Methyl 2-amino-	4-Fluorobenzoyl	4-Fluorobenz-	
- Composite //	benzoate	chloride	aldehyde	
Compound 78	Methyl 2-amino-	4-Fluorobenzoyl	m-Tolualdehyde	
Compound 76	benzoate	chloride		
Compound 70	Methyl 2-	4-Fluorobenzoyl	p-Tolualdehyde	
Compound 79	aminobenzoate	chloride	p-1 olualuellyue	
	Methyl 2-amino-	4-Fluorobenzoyi	3-Hydroxybenz-	
Compound 80	benzoate	chloride	aldehyde	
	Methyl 2-amino-	3-Fluorobenzoyl	3-Fluorobenz-	
Compound 81	benzoate	chloride	aldehyde	
	Methyl 2-amino-	3-Fluorobenzoyl	4-Fluorobenz-	†
Compound 82	benzoate	chloride	aldehyde	
	Delizoate	Lanonde	Laidenyde	1

	A	В	С	B'
Compound 83	Methyl 2-amino- benzoate	3-Fluorobenzoyl chloride	m-Tolualdehyde	
Compound 84	Methyl 2-amino- benzoate	3-Fluorobenzoyl chloride	p-Tolualdehyde	
Compound 85	Methyl 2-amino- benzoate	3-Fluorobenzoyl chloride	3-Hydroxy- benzaldehyde	
Compound 86	Methyl 2-amino- benzoate	3-Fluorobenzoyl chloride	4-Hydroxy- benzaldehyde	
Compound 87	Methyl 2-amino-5- bromobenzoate	3,4-Dimethoxy- benzoyl chloride	4-Chloro-3-tri- fluoromethylbenz -aldehyde	
Compound 88	Methyl 2-amino-5- chlorobenzoate	3,4-Dimethoxy- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	
Compound 89	Methyl 2-amino- benzoate	3,5-Dimethoxy- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	
Compound 90	Methyl 2-amino- benzoate	4-Methoxybenzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	
Compound 91	Methyl 2-amino-5- bromobenzoate	3,4-Dimethoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 92	Methyl 2-amino-5- chlorobenzoate	3,4-Dimethoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 93	Methyl 2- aminobenzoate	3,5-Dimethoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 94	Methyl 2- aminobenzoate	4-Methoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 95	Methyl 2- aminobenzoate	3-Fluorobenzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 96	Methyl 2- aminobenzoate	4-Fluorobenzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 97	Methyl 2-amino-5- bromobenzoate	3,4-Dimethoxy- benzoyl chloride	3-Bromo-4- methoxy- benzaldehyde	
Compound 98	Methyl 2-amino-5- chlorobenzoate	3,4-Dimethoxy- benzoyl chloride	3-Bromo-4- methoxy- benzaldehyde	
Compound 99	Methyl 2-amino- benzoate	3,5-Dimethoxy- benzoyl chloride	3-Bromo-4- methoxy- benzaldehyde	
Compound 100	Methyl 2-amino- benzoate	4-Methoxybenzoyl chloride	3-Bromo-4- methoxybenz- aldehyde	
Compound 101	Methyl 2-amino- benzoate	3-Fluorobenzoyl chloride	3-Bromo-4- methoxy- benzaldehyde	
Compound 102	Methyl 2-amino- benzoate	4-Fluorobenzoyl chloride	3-Bromo-4- methoxy- benzaldehyde	
Compound 103	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	3-Nitro- benzaldehyde	
Compound 104	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	4-Dimethyl- aminobenz- aldehyde	
Compound 105	Methyl 2-amino-5- bromobenzoate	4-Fluorobenzoyl chloride	3-Fluorobenz- aldehyde	
Compound 106	Methyl 2-amino-5- bromobenzoate	4-Fluorobenzoyl chloride	4-Fluorobenz- aldehyde	

	T A	В	С	B'
	Methyl 2-amino-5-	4-Fluorobenzoyl	3-Chlorobenz-	
Compound 107	bromobenzoate	chloride	aldehyde	
	Methyl 2-amino-5-	4-Fluorobenzoyl	4-Chlorobenz-	
Compound 108	bromobenzoate	chloride	aldehyde	
	Methyl 2-amino-5-	4-Fluorobenzoyl	3-Hydroxy-	
Compound 109	bromobenzoate	chloride	benzaldehyde	
- 1110	Methyl 2-amino-5-	3,4-Dimethoxy-	3-Pyridine-	
Compound 110	bromobenzoate	benzoyl chloride	carboxyaldehyde	
	Methyl 2-amino-5-	3,4-Dimethoxy-	3-Pyridine-	
Compound 111	chlorobenzoate	benzoyl chloride	carboxyaldehyde	
0 1440	Methyl 2-amino-	4-Methoxybenzoyl	3-Pyridine-	
Compound 112	benzoate	chloride	carboxyaldehyde	
0	Methyl 2-amino-	4-Fluorobenzoyl	3-Pyridine-	
Compound 113	benzoate	chloride	carboxyaldehyde	_
Commound 444	Methyl 2-amino-5-	3,5-Dimethoxy-	3-Fluorobenz-	
Compound 114	bromobenzoate	benzoyl chloride	aldehyde	
Commound 445	Methyl 2-amino-5-	3,5-Dimethoxy-	4-Fluorobenz-	
Compound 115	bromobenzoate	benzoyl chloride	aldehyde	
Compound 116	Methyl 2-amino-5-	3,5-Dimethoxy-	3-Chlorobenz-	
Compound 116	bromobenzoate	benzoyl chloride	aldehyde	
Compound 117	Methyl 2-amino-5-	3,5-Dimethoxy-	4-Chlorobenz-	
Compound 117	bromobenzoate	benzoyl chloride	aldehyde	
Compound 118	Methyl 2-amino-5-	3,5-Dimethoxy-	m-Tolualdehyde	
Compound 116	bromobenzoate	benzoyl chloride	The Toldalderiyae	
Compound 119	Methyl 2-amino-5-	3,5-Dimethoxy-	p-Tolualdehyde	
Compound 119	bromobenzoate	benzoyl chloride	p roladiacityac	
	Methyl 2-amino-	3-Trifluoro-	3-Fluorobenz-	
Compound 120	benzoate	methoxybenzoyl	aldehyde	
	DOTEGUE	chloride		
	Methyl 2-amino-	3-Trifluoro-	4-Fluorobenz-	
Compound 121	benzoate	methoxybenzoyl	aldehyde	
		chloride		
	Methyl 2-amino-	3-Trifluoro-	3-Chlorobenz-	
Compound 122	benzoate	methoxybenzoyl	aldehyde	
····		chloride		
0 1400	Methyl 2-amino-	3-Trifluoro-	4-Chloro-	
Compound 123	benzoate	methoxybenzoyl	benzaldehyde	
		chloride	<u> </u>	ļ
Compound 404	Methyl 2-amino-	3-Trifluoro- methoxybenzoyl	p-Tolualdehyde	
Compound 124	benzoate	chloride	p-10lualdeliyde	}
	Methyl 2-amino-5-	3,4-Dimethoxy-	4-Fluoro-	
Compound 125	hydroxy-benzoate	benzoyl chloride	benzaldehyde	1
		0.45: (1	3,4-Dimethoxy-	
Compound 126	Methyl 2-amino-5- chlorobenzoate	3,4-Dimethoxy- benzoyl chloride	benzaldehyde	
	Methyl 2-amino-5-	3,4-Dimethoxy-	3,4-Dimethoxy-	
Compound 127	bromobenzoate	benzoyl chloride	benzaldehyde	
	Methyl 2-amino-5-	3,5-Dimethoxy-	3,4-Dimethoxy-	
Compound 128	bromobenzoate	benzoyl chloride	benzaldehyde	
	Methyl 2-amino-	Nicotinoyl chloride	3-Fluoro-	
Compound 129	benzoate	hydrochloride	benzaldehyde	
	Methyl 2-amino-	Nicotinoyl chloride	4-Fluoro-	
Compound 130	benzoate	hydrochloride	benzaldehyde	
	Methyl 2-amino-	Nicotinoyl chloride		
Compound 131	benzoate	hydrochloride	m-Tolualdehyde	•
	Methyl 2-amino-	Nicotinoyl chloride		
Compound 132	benzoate	hydrochloride	p-Tolualdehyde	
	Methyl 2-amino-	Nicotinoyl chloride	3,4-Dimethyl-	
Compound 133	benzoate	hydrochloride	benzaldehyde	
	Delizoate	1 y di Ocinionae	Donzaldenyde	<u> </u>

	A	В	C	B'
Compound 134	Methyl 2-amino- benzoate	Isonicotinoyl chloride hydrochloride	3-Fluoro- benzaldehyde	
Compound 135	Methyl 2-amino- benzoate	Isonicotinoyl chloride hydrochloride	4-Fluoro- benzaldehyde	
Compound 136	Methyl 2-amino- benzoate	Isonicotinoyl chloride hydrochloride	m-Tolualdehyde	
Compound 137	Methyl 2-amino- benzoate	Isonicotinoyl chloride hydrochloride	p-Tolualdehyde	
Compound 138	Methyl 2-amino- benzoate	Isonicotinoyl chloride hydrochloride	3,4-Dimethyl- benzaldehyde	
Compound 139	Methyl 2-amino-5- hydroxybenzoate	3,4-Dimethoxy- benzoyl chloride	4-Fluoro- benzaldehyde	
Compound 140	Methyl 2-amino-5- hydroxybenzoate	3,4-Dimethoxy- benzoyl chloride	4-Fluoro- benzaldehyde	
Compound 141	Methyl 2-amino-5- methoxybenzoate	3,4-Dimethoxy- benzoyl chloride	3-Fluoro- benzaldehyde	
Compound 142	Methyl 2-amino-5- methoxybenzoate	3,4-Dimethoxy- benzoyl chloride	4-Fluoro- benzaldehyde	
Compound 143	Methyl 2-amino-5- methoxybenzoate	3,4-Dimethoxy- benzoyl chloride	m-Tolualdehyde	
Compound 144	Methyl 2-amino-5- methoxybenzoate	3,4-Dimethoxy- benzoyl chloride	p-Tolualdehyde	
Compound 145	Methyl 2-amino-5- methoxybenzoate	3,4-Dimethoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 146	Methyl 2-amino-5- methylbenzoate	3,4-Dimethoxy- benzoyl chloride	3-Fluoro- benzaldehyde	
Compound 147	Methyl 2-amino-5- methylbenzoate	3,4-Dimethoxy- benzoyl chloride	4-Fluoro- benzaldehyde	
Compound 148	Methyl 2-amino-5- methylbenzoate	3,4-Dimethoxy- benzoyl chloride	m-Tolualdehyde	
Compound 149	Methyl 2-amino-5- methylbenzoate	3,4-Dimethoxy- benzoyl chloride	p-Tolualdehyde	
Compound 150	Methyl 2-amino-5- methylbenzoate	3,4-Dimethoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 151	Methyl 2-amino-5- bromobenzoate	2-Furoyl chloride	3-Fluoro- benzaldehyde	
Compound 152	Methyl 2-amino-5- bromobenzoate	2-Furoyl chloride	4-Fluoro- benzaldehyde	
Compound 153	Methyl 2-amino-5- bromobenzoate	2-Furoyl chloride	m-Tolualdehyde	
Compound 154	Methyl 2-amino-5- bromobenzoate	2-Furoyl chloride	p-Tolualdehyde	
Compound 155	Methyl 2-amino-5- bromobenzoate	2-Furoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 156	Methyl 2-amino-5- bromobenzoate	2-Furoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	
Compound 157	Methyl 2-amino-5- bromobenzoate	Thiophene-2- carbonyl chloride	3-Fluorobenz- aldehyde	
Compound 158	Methyl 2-amino-5- bromobenzoate	Thiophene-2- carbonyl chloride	4-Fluorobenz- aldehyde	
Compound 159	Methyl 2-amino-5- bromobenzoate	Thiophene-2- carbonyl chloride	m-Tolualdehyde	

	A	В	С	B'
	Methyl 2-amino-5-	Thiophene-2-	- Talualdahyda	
Compound 160	bromobenzoate	carbonyl chloride	p-Tolualdehyde	
0 1404	Methyl 2-amino-5-	Thiophene-2-	3,4-Dimethyl-	
Compound 161	bromobenzoate	carbonyl chloride	benzaldehyde	
	Methyl 2-amino-5-	Thiophene-2-	4-Chloro-3-tri-	
Compound 162	bromobenzoate	carbonyl chloride	fluoromethylbenz	
	Diomoberizoate	-	-aldehyde	
	Methyl 2-amino-	Isonicotinoyl	3,4-Dimethyl-	
Compound 163	benzoate	chloride	benzaldehyde	
		hydrochloride		
Compound 164	Methyl 2-	Nicotinoyl chloride hydrochloride	p-Tolualdehyde	
· · · · · · · · · · · · · · · · · · ·	aminobenzoate Methyl 2-	Nicotinoyl chloride	3,4-Dimethyl-	
Compound 165	aminobenzoate	hydrochloride	benzaldehyde	
		Isonicotinoyl		
Compound 166	Methyl 2-amino-5-	chloride	3-Fluorobenz-	
oompound to	bromobenzoate	hydrochloride	aldehyde	
	AA-Ab-ul O 5	Isonicotinoyl	4 Elvergham	
Compound 167	Methyl 2-amino-5- bromobenzoate	chloride	4-Fluorobenz- aldehyde	
•	promobenzoate	hydrochloride	aluellyde	
	Mothyl 2 amina 5	Isonicotinoyl		
Compound 168	Methyl 2-amino-5- bromobenzoate	chloride	m-Tolualdehyde	
	Diomoberizoate	hydrochloride		
	Methyl 2-amino-5-	Isonicotinoyl	1	İ
Compound 169	bromobenzoate	chloride	p-Tolualdehyde	
	Diomobolizatio	hydrochloride		
	Methyl 2-amino-5-	Isonicotinoyl	3,4-Dimethyl-	
Compound 170	bromobenzoate	chloride	benzaldehyde	
		hydrochloride	4-Chloro-3-tri-	
Campaign d 474	Methyl 2-amino-5-	Isonicotinoyl	fluoromethylbenz	
Compound 171	bromobenzoate	chloride hydrochloride	-aldehyde	
	Methyl 2-amino-5-	Nicotinoyl chloride	3-Fluorobenz-	
Compound 172	bromobenzoate	hydrochloride	aldehyde	
	Methyl 2-amino-5-	Nicotinoyl chloride	4-Fluorobenz-	
Compound 173	bromobenzoate	hydrochloride	aldehyde	
Compound 174	Methyl 2-amino-5-	Nicotinoyl chloride	m-Tolualdehyde	
Compound 174	bromobenzoate	hydrochloride	III-Toldaldeliyde	
Compound 175	Methyl 2-amino-5-	Nicotinoyl chloride	p-Tolualdehyde	
	bromobenzoate	hydrochloride		
Compound 176	Methyl 2-amino-5- bromobenzoate	Nicotinoyl chloride hydrochloride	3,4-Dimethyl- benzaldehyde	
· · · · · · · · · · · · · · · · · · ·	bromobenzoate	1	4-Chloro-3-tri-	
Compound 177	Methyl 2-amino-5-	Nicotinoyl chloride	fluoromethylbenz	
Compound 177	bromobenzoate	hydrochloride	-aldehyde	
0 1170	Methyl 2-amino-5-	4-Ethyl benzoyl	3-Fluorobenz-	
Compound 178	bromobenzoate	chloride	aldehyde	
Compound 470	Methyl 2-amino-5-	4-Ethyl benzoyl	4-Fluorobenz-	
Compound 179	bromobenzoate	chloride	aldehyde	
Compound 180	Methyl 2-amino-5-	4-Ethyl benzoyl	m-Tolualdehyde	
	bromobenzoate	chloride		
Compound 181	Methyl 2-amino-5-	4-Ethyl benzoyl chloride	p-Tolualdehyde	
•	bromobenzoate Methyl 2-amino-5-	4-Ethyl benzoyl	3,4-Dimethyl-	
Compound 182	bromobenzoate	chloride	benzaldehyde	
			4-Chloro-3-tri-	
Compound 183	Methyl 2-amino-5-	4-Ethyl benzoyl	fluoromethylbenz]
- 5	bromobenzoate	chloride	-aldehyde	1

	ΤΑ	ТВ	С	B'
	Methyl 2-amino-5-	Nicotinoyl chloride	3-Fluorobenz-	
Compound 184	chlorobenzoate	hydrochloride	aldehyde	
	Methyl 2-amino-5-	Nicotinoyl chloride	4-Fluorobenz-	
Compound 185	chlorobenzoate	hydrochloride	aldehyde	
	Methyl 2-amino-5-	Nicotinoyl chloride		
Compound 186	chlorobenzoate	hydrochloride	m-Tolualdehyde	•
		Nicotinoyl chloride		
Compound 187	Methyl 2-amino-5-		p-Tolualdehyde	
	chlorobenzoate	hydrochloride	·	
Compound 188	Methyl 2-amino-5-	Nicotinoyl chloride	3,4-Dimethyl-	
	chlorobenzoate	hydrochloride	benzaldehyde	
	Methyl 2-amino-5-	Nicotinoyl chloride	4-Chloro-3-tri-	
Compound 189	chlorobenzoate	hydrochloride	fluoromethylbenz	
	Ciliolopelizoate	nydroemonde	-aldehyde	
	Mathyd 2 amina 5	Isonicotinoyl	4-Fluorobenz-	
Compound 190	Methyl 2-amino-5- chlorobenzoate	chloride	aldehyde	
•	chlorobenzoate	hydrochloride	alderlyde	
		Isonicotinoyl		
Compound 191	Methyl 2-amino-5-	chloride	m-Tolualdehyde	
Compound 191	chlorobenzoate	hydrochloride	111 1014414511,445	
	Methyl 2-amino-5-	Isonicotinoyl	- Tale-13-13-	
Compound 192	chlorobenzoate	chloride	p-Tolualdehyde	
		hydrochloride		
	Methyl 2-amino-5-	Isonicotinoyl	3,4-Dimethyl-	
Compound 193		chloride	benzaldehvde	
•	chlorobenzoate	hydrochloride	Delizaldeliyde	
		Isonicotinoyl	4-Chloro-3-tri-	
Compound 194	Methyl 2-amino-5-	chloride	fluoromethylbenz	
	chlorobenzoate	hydrochloride	-aldehyde	
	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Fluorobenz-	4-Mercapto-
Compound 195	bromobenzoate	benzoyl chloride	aldehyde	pyridine
	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Fluorobenz-	4-Mercapto-
Compound 196		benzoyl chloride	aldehyde	pyridine
·	bromobenzoate	3-(Chloromethyl)-	aluellyde	4-Mercapto-
Compound 197	Methyl 2-amino-5-		m-Tolualdehyde	pyridine
	bromobenzoate	benzoyl chloride		
Compound 198	Methyl 2-amino-5-	3-(Chloromethyl)-	p-Tolualdehyde	4-Mercapto-
	bromobenzoate	benzoyl chloride	, , , , , , , , , , , , , , , , , , , ,	pyridine
Compound 199	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	4-Mercapto-
Compound 100	bromobenzoate	benzoyl chloride	benzaldehyde	pyridine
	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Chloro-3-	4-Mercapto-
Compound 200	bromobenzoate	benzoyl chloride	trifluoromethyl-	pyridine
	biomobenzoate	Delizoyi chichae	benzaldehyde	pynano
	Mathyl 2 amina 5	3,4-Dimethoxy-	1-Methylpyrrole-	
Compound 201	Methyl 2-amino-5-	benzoyl chloride	2-carbox-	1
•	bromobenzoate	Delizoyi cilionde	aldehyde	l
	14-41-40	2.4 Dimethaus	4,5-Dimethyl-2-	
Compound 202	Methyl 2-amino-5-	3,4-Dimethoxy-	furancarbox-	
	bromobenzoate	benzoyl chloride	aldehyde]
		Isonicotinoyl		
Compound 203	Methyl 2-amino-	chloride	p-Tolualdehyde	1
Compound 200	benzoate	hydrochloride		
	Mothyl 2 aming 5	3,4-Dimethoxy-	3-Fluoro-	
Compound 204	Methyl 2-amino-5-		benzaldehyde	[
<u> </u>	iodobenzoate	benzoyl chloride		
Compound 205	Methyl 2-amino-5-	3,4-Dimethoxy-	4-Fluoro-	
	iodobenzoate	benzoyl chloride	benzaldehyde	
Compound 206	Methyl 2-amino-5-	3,4-Dimethoxy-	m-Tolualdehyde	
Compound 200	iodobenzoate	benzoyl chloride		
Compound 207	Methyl 2-amino-5-	3,4-Dimethoxy-	p-Tolualdehyde	
Compound 207	iodobenzoate	benzoyl chloride		
Compound 208	Methyl 2-amino-5-	3,4-Dimethoxy-	3,4-Dimethyl-	

	A	В	С	B'
Compound 209	Methyl 2-amino-5- iodobenzoate	3,4-Dimethoxy- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	
Compound 210	Methyl 2-amino- benzoate	Isonicotinoyl chloride hydrochloride	1-Methylpyrrole- 2-carbox- aldehyde	
Compound 211	Methyl 2-amino-5- bromobenzoate	Nicotinoyl chloride hydrochloride	1-Methylpyrrole- 2-carbox- aldehyde	
Compound 212	Methyl 2-amino-5- chlorobenzoate	Nicotinoyl chloride hydrochloride	1-Methylpyrrole- 2-carbox- aldehyde	
Compound 213	Methyl 2- aminobenzoate	3,4-Dimethoxy- benzoyl chloride	3-Fluoro- acetophenone	
Compound 214	Methyl 2-amino-5- bromobenzoate	3,4-Dimethoxy- benzoyl chloride	3-Fluoro- acetophenone	
Compound 215	Methyl 2-amino-5- bromobenzoate	Nicotinoyl chloride hydrochloride	3-Methyl- acetophenone	
Compound 216	Methyl 2-amino-5- bromobenzoate	Nicotinoyl chloride hydrochloride	4-Methyl- acetophenone	
Compound 217	Methyl 2-amino-5- chlorobenzoate	Nicotinoyl chloride hydrochloride	4-Methyl- acetophenone	
Compound 218	Methyl 2- aminobenzoate	Nicotinoyl chloride hydrochloride	4,5-Dimethyl-2- furancarbox- aldehyde	
Compound 219	Methyl 2- aminobenzoate	Isonicotinoyl chloride hydrochloride	4,5-Dimethyl-2- furancarbox- aldehyde	
Compound 220	Methyl 2-amino-5- bromobenzoate	Nicotinoyl chloride hydrochloride	4,5-Dimethyl-2- furancarbox- aldehyde	
Compound 221	Methyl 2-amino-5- bromobenzoate	Isonicotinoyl chloride hydrochloride	4,5-Dimethyl-2- furancarbox- aldehyde	
Compound 222	Methyl 2-amino-5- chlorobenzoate	Nicotinoyl chloride hydrochloride	4,5-Dimethyl-2- furancarbox- aldehyde	
Compound 223	Methyl 2-amino-5- chlorobenzoate	Isonicotinoyl chloride hydrochloride	4,5-Dimethyl-2- furancarbox- aldehyde	
Compound 224	Methyl 2- aminobenzoate	Benzoyl chloride	Benzaldehyde	
Compound 225	Methyl 2-amino- benzoate	Benzoyl chloride	2-Fluoro- benzaldehyde	
Compound 226	Methyl 2-amino- benzoate	Benzoyl chloride	3-Fluoro- benzaldehyde	
Compound 227	Methyl 2-amino-3,4- dimethoxy- benzoate	3,4-Dimethoxy- benzoyl chloride	Benzaldehyde	
Compound 228	Methyl 2- aminobenzoate	Benzoyl chloride	2-Bromo- benzaldehyde	
Compound 229	Methyl 2- aminobenzoate	Benzoyl chloride	o-Tolualdehyde	
Compound 230	Methyl 2-amino-3,4- dimethoxy- benzoate	3,4-Dimethoxy- benzoyl chloride	o-Tolualdehyde	
Compound 231	Methyl 2-amino- benzoate	3,4-Dimethoxy- benzoyl chloride	2-Chloro- benzaldehyde	
Compound 232	Methyl 2- aminobenzoate	3,4-Dimethoxy- benzoyl chloride	6-Methoxy-2- naphthaldehyde	

	I A	В	С	B'
	Methyl 2-amino-	3,4-Dimethoxy-	4-Biphenyl-	
Compound 233	benzoate	benzoyl chloride	carboxaldehyde	
	Methyl 2-	3,4-Dimethoxy-	4-Bromo-	
Compound 234	aminobenzoate	benzoyl chloride	benzaldehyde	
	Methyl 2-amino-		Trans-	
Compound 235	benzoate	Benzoyl chloride	cinnamaldehyde	
	Methyl 2-	2-Fluorobenzoyl	2-Fluoro-	
Compound 236	aminobenzoate	chloride	benzaldehyde	
0 1007	Methyl 2-	2-Fluorobenzoyl	3-Fluoro-	
Compound 237	aminobenzoate	chloride	benzaldehyde	
	Methyl 2-	2-Fluorobenzoyl		
Compound 238	aminobenzoate	chloride	m-Tolualdehyde	1
	14 (1 1 0	0.51	2-Hydroxy-3-tert-	
Compound 239	Methyl 2-amino-	2-Fluorobenzoyl	butylbenz-	
•	benzoate	chloride	aldehyde	
0	Methyl 2-	3,4-Dimethoxy-	4-Nitrobenz-	
Compound 240	aminobenzoate	benzoyl chloride	aldehyde	
0 1044	Methyl 2-amino-	3,4-Dimethoxy-	4-Diethylamino-	
Compound 241	benzoate	benzoyl chloride	benzaldehyde	
0 1040	Methyl 2-amino-5-	3,5-Dimethoxy-	3-Fluoro-	
Compound 242	hydroxybenzoate	benzoyl chloride	benzaldehyde	
0	Methyl 2-amino-5-	3,4-Dimethoxy-	2-Pyridyl-	
Compound 243	bromobenzoate	benzoyl chloride	carboxaldehyde	
0	Methyl 2-amino-5-	3,4-Dimethoxy-	2-Pyridyl-	
Compound 244	chlorobenzoate	benzoyl chloride	carboxaldehyde	
0	Methyl 2-amino-	3,4-Dimethoxy-	2-Pyridyl-	
Compound 245	benzoate	benzoyl chloride	carboxaldehyde	
	Mathyd 2 amin - E	2.4 Dim others	6-Methyl-2-	
Compound 246	Methyl 2-amino-5- chlorobenzoate	3,4-Dimethoxy-	pyridine-	
•	chlorobenzoate	benzoyl chloride	carboxaldehyde	
	Mothed 2	2.4 Dimethava	6-Methyl-2-	
Compound 247	Methyl 2- aminobenzoate	3,4-Dimethoxy- benzoyl chloride	pyridine-	
•	aminobenzoate	benzoyi chionde	carboxaldehyde	
Compound 248	Methyl 2-amino-5-	4-tert-butylbenzoyl	m-Tolualdehyde	
Compound 246	bromobenzoate	chloride	ni-rolualdenyde	
	Mothyd 2	Isonicotinoyl	3-Methylaceto-	
Compound 249	Methyl 2- aminobenzoate	chloride	phenone	
•	arrimoberizoate	hydrochloride	phenone	
Compound 250	Methyl 2-amino-5-	Nicotinoyl chloride	3-Methylaceto-	
Compound 250	chlorobenzoate	hydrochloride	phenone	
Compound 251	Methyl 2-	Nicotinoyl chloride	4-Methylaceto-	
Compound 231	aminobenzoate	hydrochloride	phenone	
Compound 252	Methyl 2-amino-5-	Nicotinoyl chloride	p-Tolualdehyde	
Compound 202	bromobenzoate	hydrochloride	p i olddiddilydd	
	Methyl 2-	Isonicotinoyl	1	
Compound 253	aminobenzoate	chloride	m-Tolualdehyde	
	arriirioberizoate	hydrochloride		
Vacant number				
Compound 255	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Fluorobenz-	4-Mercapto-
Compound 200	bromobenzoate	benzoyl chloride	aldehyde	pyridine
Compound 256	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Fluorobenz-	4-Mercapto-
Compound 200	bromobenzoate	benzoyl chloride	aldehyde	pyridine
Compound 257	Methyl 2-amino-5-	4-(Chloromethyl)-	m-Tolualdehyde	4-Mercapto-
Compound 207	bromobenzoate	benzoyl chloride	11- Tolualuellyue	pyridine
Compound 258	Methyl 2-amino-5-	4-(Chloromethyl)-	p-Tolualdehyde	4-Mercapto-
Compound 200	bromobenzoate_	benzoyl chloride		pyridine
Compound 259	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	4-Mercapto-
Compound 200	bromobenzoate	benzoyl chloride	benzaldehyde	pyridine

	Α	В	С	B'
	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Chloro-3-tri-	4-Mercapto-
Compound 260	bromobenzoate	benzoyl chloride	fluoromethyl- benzaldehyde	pyridine
Compound 261	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Fluorobenz-	2-Mercapto-
Compound 261	bromobenzoate	benzoyl chloride	aldehyde	ethanol
Compound 262	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Fluorobenz-	2-Mercapto-
Compound 202	bromobenzoate	benzoyl chloride	aldehyde	ethanol
Compound 263	Methyl 2-amino-5-	4-(Chloromethyl)-	m-Tolualdehyde	2-Mercapto-
	bromobenzoate	benzoyl chloride		ethanol
Compound 264	Methyl 2-amino-5-	4-(Chloromethyl)-	p-Tolualdehyde	2-Mercapto-
	bromobenzoate	benzoyl chloride	O A Dissepted	ethanol
Compound 265	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	2-Mercapto- ethanol
	bromobenzoate	benzoyl chloride	benzaldehyde 4-Chloro-3-tri-	emanor
0	Methyl 2-amino-5-	4-(Chloromethyl)-	fluoromethyl-	2-Mercapto-
Compound 266	bromobenzoate	benzoyl chloride	benzaldehyde	ethanol
	Mathyl 2 amina 5	2 (Chloromothyl)	3,4-Dimethyl-	3-Mercapto-
Compound 267	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	benzaldehyde	1,2,4-triazole
	Methyl 2-amino-5-	3-(Chloromethyl)-		3-Mercapto-
Compound 268	bromobenzoate	benzoyl chloride	p-Tolualdehyde	1,2,4-triazole
	Methyl 2-amino-5-	3-(Chloromethyl)-		3-Mercapto-
Compound 269	bromobenzoate	benzoyl chloride	m-Tolualdehyde	1,2,4-triazole
	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Fluorobenz-	3-Mercapto-
Compound 270	bromobenzoate	benzoyl chloride	aldehyde	1,2,4-triazole
	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Fluorobenz-	3-Mercapto-
Compound 271	bromobenzoate	benzoyl chloride	aldehyde	1,2,4-triazole
			4-Chloro-3-tri-	1
Compound 272	Methyl 2-amino-5-	3-(Chloromethyl)-	fluoromethyl-	3-Mercapto-
Compound 2/2	bromobenzoate	benzoyl chloride	benzaldehyde	1,2,4-triazole
	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	3-Mercapto-1-
Compound 273	bromobenzoate	benzoyl chloride	benzaldehyde	propanol
	Methyl 2-amino-5-	4-(Chloromethyl)-		3-Mercapto-1-
Compound 274	bromobenzoate	benzoyl chloride	p-Tolualdehyde	propanol
	Methyl 2-amino-5-	4-(Chloromethyl)-	-	3-Mercapto-1-
Compound 275	bromobenzoate	benzoyl chloride	m-Tolualdehyde	propanol
	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Fluorobenz-	3-Mercapto-1-
Compound 276	bromobenzoate	benzoyl chloride	aldehyde	propanol
0	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Fluorobenz-	3-Mercapto-1-
Compound 277	bromobenzoate	benzoyl chloride	aldehyde	propanol
	Mathul 2 amina 5		4-Chloro-3-tri-	3-Mercapto-1-
Compound 278	Methyl 2-amino-5-	4-(Chloromethyl)- benzoyl chloride	fluoromethyl-	propanol
•	bromobenzoate	belizoyi chionue	benzaldehyde	
	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	4-(2-Amino-
Compound 279	bromobenzoate	benzoyl chloride	benzaldehyde	ethyl)-
	DIOMODENZOALE	Delizoyi elliolide	Donadacinyac	morpholine
				N,N-Diethyl-
Compound 280	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	N'-methyl-
Compound 200	bromobenzoate	benzoyl chloride	benzaldehyde	ethylene-
				diamine
	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	4-(2-Amino-
Compound 281	bromobenzoate	benzoyl chloride	benzaldehyde	ethyl)-
				morpholine
	Methyl 2-amino-5-	4-(Chloromethyl)-	T. L. at 1 A . 1	4-(2-Amino-
Compound 282	bromobenzoate	benzoyl chloride	p-Tolualdehyde	ethyl)-
				morpholine
	Methyl 2-amino-5-	4-(Chloromethyl)-		4-(2-Amino-
Compound 283	bromobenzoate	benzoyl chloride	m-Tolualdehyde	ethyl)-
		,	 	morpholine
	Madhad O amain a F	4-(Chloromethyl)-	4-Fluorobenz-	4-(2-Amino-
_	Methyl Z-amino-b-	1 4-(011101 01116111411-		
Compound 284	Methyl 2-amino-5- bromobenzoate	benzoyl chloride	aldehyde	ethyl)- morpholine

	Α	В	С	B'
Compound 285	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 286	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 287	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 288	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 289	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 290	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 291	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 292	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 293	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- ethylene- diamine
Compound 294	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	N,N-Diethyl- ethylene- diamine
Compound 295	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- ethylene- diamine
Compound 296	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- ethylene- diamine
Compound 297	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 298	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 299	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Methoxy- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 300	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N-(3-Amino- propyl)di- ethanolamine
Compound 301	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N-(3-Amino- propyl)di- ethanolamine
Compound 302	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N-(3-Amino- propyl)di- ethanolamine

Compound 303 Methyl 2-amino-5- bromobenzoate benzoyl chloride benzaldehyde benzaldehyd					B'
Compound 304 Methyl 2-amino-5-bromobenzoate benzoyl chloride benzeldehyde benzeldeh		A	В	С	
Compound 304 Methyl 2-amino-5- bromobenzoate	Compound 202				
Compound 304 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5	Compound 303	bromobenzoate	benzoyl chloride	benzaldehyde	amine
Compound 304 bromobenzoate benzoyl chloride benzoyl chlor					Diisopropanol-
Compound 305 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5	Compound 304			p-Tolualdehyde	
Compound 305 Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzoyl chloride A		Diditionerizoate	Derizoyi cilionae		
Compound 306 bromobenzoate benzoyl chloride benzaldehyde morpholine morpholine hercoyl chloride benzaldehyde morpholine hercoyl chloride benzaldehyde morpholine hercoyl chloride benzoyl chloride hercoyl chloride					
Compound 306 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 307 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 310 Methyl 2-amino-5-bromobenzoate Compound 311 Methyl 2-amino-5-bromobenzoate Compound 312 Methyl 2-amino-5-bromobenzoate Compound 313 Methyl 2-amino-5-bromobenzoate Compound 314 Methyl 2-amino-5-bromobenzoate Compound 315 Methyl 2-amino-5-bromobenzoate Methyl 2-amino	Compound 305				
Compound 306 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 307 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 308 Methyl 2-amino-5-bromobenzoate Compound 309 Methyl 2-amino-5-bromobenzoate Compound 310 Methyl 2-amino-5-bromobenzoate Compound 310 Methyl 2-amino-5-bromobenzoate Compound 311 Methyl 2-amino-5-bromobenzoate Denzoyl chloride De	Compound 303	bromobenzoate	benzoyl chloride	benzaldehyde	acetyl)-
Compound 306 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 307 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 308 Methyl 2-amino-5-bromobenzoate Compound 309 Methyl 2-amino-5-bromobenzoate Compound 310 Methyl 2-amino-5-bromobenzoate Compound 310 Methyl 2-amino-5-bromobenzoate Compound 311 Methyl 2-amino-5-bromobenzoate Denzoyl chloride De					morpholine
Compound 306 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 307 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 308 Methyl 2-amino-5-bromobenzoate Compound 309 Methyl 2-amino-5-bromobenzoate Compound 310 Methyl 2-amino-5-bromobenzoate Compound 311 Methyl 2-amino-5-bromobenzoate Compound 312 Methyl 2-amino-5-bromobenzoate Demopound 313 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Demopound 313 Methyl 2-amino-5-bromobenzoate Demopound 314 Methyl 2-amino-5-bromobenzoate Demopound 315 Compound 316 Methyl 2-amino-5-bromobenzoate Demopound 317 Methyl 2-amino-5-bromobenzoate Demopound 318 Methyl 2-amino-5-bromobenzoate Demopound 316 Methyl 2-amino-5-bromobenzoate Demopound 317 Methyl 2-amino-5-bromobenzoate Demopound 318 Methyl 2-amino-5-bromobenzoate Demopound 316 Methyl 2-amino-5-bromobenzoate Demopound 317 Methyl 2-amino-5-bromobenzoate Demopound 318 Methyl 2-amino-5-bromobenzoate Demopound 319 Methyl 2-amino-5-bromobenzoate Demopound 310 Methyl 2-amino-5-bromobenzoate Demopound 317 Methyl 2-amino-5-bromobenzoate Demopound 318 Methyl 2-amino-5-bromobenzoate Demopound 319 Methyl 2-amino-5-bromobenzoate Demopound 310 Methyl 2-amino-5-bromobenzoate Demopound 320 Methyl 2-amino-5-bromobenzoate Demopound 320 Methyl 2-amino-5-bromobenzoate Demopound 320 Methyl 2-amino-5-bromobenzoate Demopound 321 Methyl 2-amino-5-bromobenzoate Demopound 321 Methyl 2-amino-5-bromobenzoate Demopound 322 Methyl 2-amino-5-bromobenzoate Demopound 323 Methyl 2-amino-5-bromobenzoate Demopound 324 Methyl 2-amino-5-bromobenzoate Demopound 325 M					
Dempound 306 Demobenzoate Demzoyl chloride Demzaldehyde		Markhad Coming 5	4 (Chloromethyl)	4-Chloro-3-tri-	
Compound 307 Methyl 2-amino-5-bromobenzoate Compound 308 Methyl 2-amino-5-bromobenzoate Compound 309 Methyl 2-amino-5-bromobenzoate Compound 300 Methyl 2-amino-5-bromobenzoate Compound 310 Methyl 2-amino-5-bromobenzoate Compound 311 Methyl 2-amino-5-bromobenzoate Compound 312 Methyl 2-amino-5-bromobenzoate Compound 313 Methyl 2-amino-5-bromobenzoate Compound 314 Methyl 2-amino-5-bromobenzoate Compound 315 Methyl 2-amino-5-bromobenzoate Denzoyl chloride Methyl 2-amino-5-b	Compound 306			fluoromethyl-	
Compound 307 Methyl 2-amino-5-bromobenzoate bromobenzoate	201111111111111111111111111111111111111	bromobenzoate	benzoyi chloride		
Compound 307 Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride A-Piperidino S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chlo				Benzaldenyde	morpholine
Compound 307 Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chloride A-Piperidino S.4-Dimethyl-benzoyl chloride S.4-Dimethyl-benzoyl chlo					N-(2-(1-
Denzound 308 Denzound 206 Denzound 207 Denzound 308 Methyl 2-amino-5-bromobenzoate Denzound 309 Methyl 2-amino-5-bromobenzoate Denzound 309 Denzound 309 Methyl 2-amino-5-bromobenzoate Denzound 310 Denzound 310 Denzound 310 Denzound 310 Denzound 310 Denzound 310 Denzound 311 Denzound 312 Denzound 312 Denzound 312 Denzound 313 Denzound 313 Denzound 314 Denzound 314 Denzound 315 Denzound 315 Denzound 316 Denzound 316 Denzound 316 Denzound 316 Denzound 316 Denzound 317 Denzound 317 Denzound 318 Denzound 318 Denzound 319 Denzound 310 Denzound 311 Denzound 311 Denzound 312 Denzound 312 Denzound 313 Denzound 314 Denzound 315 Denzound 315 Denzound 316 Denzound 316 Denzound 316 Denzound 317 Denzound 317 Denzound 318 Denzound 318 Denzound 319 Denzound 310 Denzound 3		Methyl 2-amino-5-	4-(Chloromethyl)-	n-Methox/-	
Compound 308 Methyl 2-amino-5-bromobenzoate benzoyl chloride aldehyde apperidine piperidine piperidine piperidine piperidine piperidine piperidine piperidine piperidine delehyde aldehyde aldehyde aldehyde piperidine piperidine benzoyl chloride	Compound 307				
Compound 308 Methyl 2-amino-5-bromobenzoate		promobenzoate	penzoyi chloride	benzaldenyde	
Compound 309 bromobenzoate benzoyl chloride benzaldehyde piperidine denzoyl chloride benzoyl chloride benzaldehyde piperidine pi					
Compound 309 bromobenzoate benzoyl chloride benzaldehyde piperidine denzoyl chloride benzoyl chloride benzaldehyde piperidine pi	0 1 000	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	4-Piperidino-
Compound 309 Methyl 2-amino-5-bromobenzoate benzoyl chloride benzoyl chlo	Compound 308				
Compound 310 Methyl 2-amino-5- bromobenzoate benzoyl chloride bromobenzoate benzoyl chloride bromobenzoate benzoyl chloride benzoyl chloride benzoyl chloride benzoyl chloride benzoyl chloride aldehyde piperidine denzoyl chloride benzoyl chloride benzaldehyde piperidine piperi				Bonzaidenyde	
Compound 310 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5-	Compound 309			p-Toluaidehvde	
Compound 311 bromobenzoate benzoyl chloride decided with promobenzoate benzoyl chloride decided per promobenzoate benzoyl chloride decided per promobenzoate benzoyl chloride decided per promobenzoate					
Compound 311 bromobenzoate benzoyl chloride depretation—benzoyl chloride benzoyl chloride benzoyl chloride aldehyde piperidine penzoyl chloride benzoyl chloride aldehyde piperidine penzoyl chloride benzoyl chloride aldehyde piperidine penzoyl chloride benzoyl chloride benzoyl chloride aldehyde piperidine penzoyl chloride benzoyl chloride benzoyl chloride benzoyl chloride benzoyl chloride benzaldehyde piperidine piperidine delhyde piperidine piperidine piperidine delhyde piperidine delhyde piperidine piperidine delhyde piperidine piperidine piperidine piperidine piperidine delhyde piperidine piperid	0	Methyl 2-amino-5-	4-(Chloromethyl)-	- Talvaldahvda	4-Piperidino-
Compound 311 Methyl 2-amino-5-bromobenzoate benzoyl chloride benzoyl chlor	Compound 310			m-Toluaidenyde	
Compound 312 bromobenzoate benzoyl chloride aldehyde piperidine 4-Piperidino benzoyl chloride benzoyl chloride benzoyl chloride benzoyl chloride aldehyde piperidine 4-Piperidino piperidine dechyde dechyde dechyde piperidine dechyde piperidine dechyde dechyde dechyde piperidine dechyde dechyde dechyde dechyde dechyde piperazine dechyde	· · · · · · · · · · · · · · · · · · ·			4-Eluorobenz-	
Compound 312 Methyl 2-amino-5-bromobenzoate Compound 313 Methyl 2-amino-5-bromobenzoate Compound 314 Methyl 2-amino-5-bromobenzoate Compound 315 Compound 316 Compound 316 Compound 317 Methyl 2-amino-5-bromobenzoate Compound 318 Methyl 2-amino-5-bromobenzoate Compound 317 Methyl 2-amino-5-bromobenzoate Compound 318 Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Methyl 2-ami	Compound 311				
Compound 312 bromobenzoate benzoyl chloride aldehyde piperidine denzoyl chloride benzoyl chloride benzoyl chloride benzoyl chloride benzaldehyde benzaldehyde benzaldehyde benzaldehyde piperidine piperidine denzoyl chloride benzaldehyde piperidine piperidine piperidine denzoyl chloride benzaldehyde piperidine piperidine benzaldehyde piperidine piperidine denzoyl chloride benzaldehyde piperidine piperidine denzoyl chloride benzaldehyde piperidine piperidine piperidine denzoyl chloride benzaldehyde piperidine piperidine denzoyl chloride benzaldehyde piperidine piperidine denzoyl chloride benzaldehyde piperidine denzoyl chloride benzaldehyde piperidine denzoyl chloride denzoyl chlo					
Compound 313 Methyl 2-amino-5-bromobenzoate Compound 314 Methyl 2-amino-5-bromobenzoate Compound 315 Compound 316 Compound 316 Methyl 2-amino-5-bromobenzoate Compound 316 Compound 317 Methyl 2-amino-5-bromobenzoate Compound 318 Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Compound 320 Methyl 2-amino-5-bromobenzoate Compound 321 Methyl 2-amino-5-bromobenzoate Compound 321 Methyl 2-amino-5-bromobenzoate Compound 321 Methyl 2-amino-5-bromobenzoate Compound 321 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 321 Methyl 2-amino-5-bromobenzoate Compound 312	Methyl 2-amino-5-		T C		
Compound 313 Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Me	Compound 512	bromobenzoate	benzoyl chloride	aldehyde	piperidine
Compound 313 Methyl 2-amino-5-bromobenzoate benzoyl chloride benzaldehyde p-Methoxy-benzaldehyde penzaldehyde p-Methoxy-benzaldehyde penzaldehyde penzalde				4-Chloro-3-tri-	4.50
Compound 314 Methyl 2-amino-5-bromobenzoate benzoyl chloride benzaldehyde bromobenzoate benzoyl chloride benzaldehyde bromobenzoate bromobenzo	Compound 313	Methyl 2-amino-5-			
Compound 314 Methyl 2-amino-5-bromobenzoate Compound 315 Methyl 2-amino-5-bromobenzoate Compound 316 Methyl 2-amino-5-bromobenzoate Compound 317 Methyl 2-amino-5-bromobenzoate Compound 318 Methyl 2-amino-5-bromobenzoate Compound 318 Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 320 Methyl 2-amino-5-bromobenzoate	Compound 313	bromobenzoate	benzoyl chloride		piperidine
Compound 315 Compound 315 Compound 315 Compound 316 Compound 316 Compound 316 Compound 316 Compound 316 Compound 317 Compound 317 Compound 317 Compound 318 Compound 318 Compound 318 Compound 319 Compound 319 Compound 319 Compound 320 Compound 320 Compound 321 Compound 321 Compound 321 Compound 321 Compound 322 Compound 323 Methyl 2-amino-5-bromobenzoate Compound 323 Methyl 2-amino-5-bromobenzoate Compound 323 Methyl 2-amino-5-bromobenzoate Compound 324 Methyl 2-amino-5-bromobenzoate Compound 325 Compound 326 Methyl 2-amino-5-bromobenzoate Compound 327 Methyl 2-amino-5-bromobenzoate Compound 327 Methyl 2-amino-5-bromobenzoate Compound 328 Methyl 2-amino-5-bromobenzoate Compound 329 Methyl 2-amino-5-bromobenzoate Compound 320 Methyl 2-amino-5-bromobenzoate Compound 321 Methyl 2-amino-5-bromobenzoate Methyl			l		· · ·
Compound 315 Compound 315 Methyl 2-amino-5-bromobenzoate Compound 316 Compound 317 Compound 317 Compound 318 Methyl 2-amino-5-bromobenzoate Compound 318 Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Compound 320 Compound 320 Compound 321 Compound 321 Compound 322 Methyl 2-amino-5-bromobenzoate Methyl 2	Compound 314	Methyl 2-amino-5-			
Compound 315 Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzoyl chloride Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzoyl chloride A-(Chloromethyl)-ben	Compound 514	bromobenzoate	benzoyl chloride	benzaldehyde	piperidine
Compound 316 Compound 316 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 317 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 318 Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Compound 320 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 321 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoa		Methyl 2-amino-5-			4-Piperidino-
Compound 316 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 318 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 319 Methyl 2-amino-5-bromobenzoate Compound 320 Methyl 2-amino-5-bromobenzoate Methyl	Compound 315				
Compound 316 Methyl 2-arnino-5-bromobenzoate A-(Chloromethyl)-benzoyl chloride Denzoyl chloride Den		Diomoberizoate	Denzeyi emonde	benzalaenyae	
Compound 316 bromobenzoate benzoyl chloride benzaldehyde benzaldehyde piperazine 1-(2-Hydroxyethyl)- piperazine		Methyl 2-amino-5-	4-(Chloromethyl)-	3.4-Dimethyl-	
Compound 317 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5	Compound 316	1			
Compound 317 Methyl 2-amino-5-bromobenzoate Denzoyl chloride De		Bromobenzoate	benzoyi cinonde	Delizaideli) de	piperazine
Compound 317 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzoyl chloride p-Tolualdehyde piperazine 1-(2-Hydroxyethyl)-piperazine 1-(2-Hydrox			4 (01)	·	1-(2-Hydroxy-
Compound 318 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-drimothyl-benzaldehyde	Compound 317	Methyl 2-amino-5-		p-Tolualdehyde	
Compound 318 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5	Compound 517	bromobenzoate			
Compound 318 Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzoyl chloride Methyl 2-amino-5-bromobenzoate A-(Chloromethyl)-benzoyl chloride A-Fluorobenzaldehyde A-Fluorobenzaldehyde A-Fluorobenzaldehyde A-Fluorobenzaldehyde A-Fluorobenzaldehyde A-Fluorobenzaldehyde A-Fluorobenzaldehyde A-Fluorobenzaldehyde A-Fluorobenzaldehyde A-(Chloromethyl)-benzoyl chloride A-(Chloromethyl)-benzoyl chloride A-Chloro-3-tri-fluoromethyl-benzaldehyde A-Chloro-3-tri-fluoromethyl-benzaldehyde A-(Chloromethyl)-benzaldehyde A-(Chloromethyl)-benzal					
Compound 319 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate 3-A-Dimethyl-delrydroxyethyl-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde			benzoyl chloride 4-(Chloromethyl)-	4-Fluorobenz-	
Compound 319 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzoldehyde Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzoldehyde 1-(2-Hydroxy-athyl)-benzoldehyde	Compound 318				ethyl)-
Compound 319 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde		Diomoberizoate			piperazine
Compound 319 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde 1-(2-Hydroxy-ethyl)-benzaldehyde					
Compound 320 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-d-(Chloromethyl)-benzaldehyde	Compound 310	1			
Compound 320 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde 1-(2-Hydroxy-athyl)-benzaldehyde 1-(2-Hydroxy-athyl)-benzaldehyde 1-(2-Hydroxy-athyl)-benzaldehyde 1-(2-Hydroxy-athyl)-benzaldehyde 1-(2-Hydroxy-athyl)-benzaldehyde 1-(2-Hydroxy-athyl)-benzaldehyde 1-(2-Hydroxy-athyl)-benzaldehyde	Compound 319				
Compound 320 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-d-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-d-(Chloromethyl)-denzaldehyde Methyl 2-amino-5-d-(Chloromethyl)-denzaldehyde Methyl 2-amino-5-denzaldehyde					
Compound 321 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate			4-(Chloromethyl)	aldehyde	
Compound 321 Methyl 2-amino-5-bromobenzoate	Compound 320				ethyl)-
Compound 321 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-d-(Chloromethyl)-benzaldehyde	•	promobenzoate	penzoyi chioride		piperazine
Compound 321 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate					
Compound 321 bromobenzoate benzoyl chloride benzaldehyde piperazine Compound 322 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde benzaldehyde benzaldehyde benzaldehyde Compound 323 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde benzaldehyde benzaldehyde benzaldehyde Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde benzaldehyde benzaldehyde 4-Hydroxy-benzaldehyde 4-Hydroxy-benzaldehyde 4-Hydroxy-	O				
Compound 322 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde 3,4-Dimethyl-4-Hydroxy-	Compound 321				
Compound 322 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde 1-(2-Hydroxyethyl)-piperazine 4-(Chloromethyl)-benzaldehyde				penzaidehyde	
Compound 322 bromobenzoate benzoyl chloride benzaldehyde piperazine Compound 323 Methyl 2-amino-5-bromobenzoate 4-(Chloromethyl)-benzaldehyde benzaldehyde benzaldehyde Methyl 2-amino-5- 4-(Chloromethyl)- 3,4-Dimethyl- 4-Hydroxy-		Mothyl 2 aming 5	4 (Chloromethyl)	n Mothers	1-(2-Hydroxy-
Compound 323 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-d-(Chloromethyl)-benzaldehyde Methyl 2-amino-5-d-(Chloromethyl)-d	Compound 322	, ,	benzoyl chloride		
Compound 323 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-benzoyl chloride 4-(Chloromethyl)-benzaldehyde m-Methoxy-benzaldehyde ethyl)-piperazine 4-(Chloromethyl)-3,4-Dimethyl-4-Hydroxy-		promobenzoate			
Compound 323 Methyl 2-amino-5- bromobenzoate benzoyl chloride benzaldehyde benzaldehyde ethyl)- piperazine Methyl 2-amino-5- 4-(Chloromethyl)- 3,4-Dimethyl- 4-Hydroxy-					
bromobenzoate benzoyl chloride benzaldehyde piperazine Methyl 2-amino-5- 4-(Chloromethyl)- 3,4-Dimethyl- 4-Hydroxy-		Methyl 2-amino-5-	4-(Chloromethyl)-	m-Methoxy-	
Methyl 2-amino-5- 4-(Chloromethyl)- 3,4-Dimethyl- 4-Hydroxy-	Compound 323				
Methyl 2-amino-5- 4-(Chloromethyl)- 3,4-Dimethyl- 4-Hydroxy-		DI OTTO DE LE CALE		20.12414011940	piperazine
		Methyl 2-amino-5-	4-(Chloromethyl)-	3.4-Dimethyl-	
Compound 324 bromobenzoate benzoyl chloride benzaldehyde piperidine_	Compound 324				
				- Donizaracity de	
Compound 325 Methyl 2-amino-5- 4-(Chloromethyl)- p-Tolualdehyde piperidine	Compound 325			p-Tolualdehvde	
compound 325 bromobenzoate benzoyl chloride p-1 didaterryde piperidine		promobenzoate	penzoyi chloride	1	piperidine

Compound 326 Methyl 2-amino-5- bromobenzoate benzoyl chloride bromobenzoate benzoyl chloride bromobenzoate benzoyl chloride compound 327 Methyl 2-amino-5- bromobenzoate benzoyl chloride benzoyl chlo		Α	В	С	B'
Compound 327 Methyl 2-amino-5- benzoyl chloride benzaldehyde benzoyl chloride benzaldehyde benzoyl chloride benzaldehyde ben	0				
Compound 328	Compound 326		benzoyl chloride	m-Tolualdenyde	
District Compound 328 Methyl 2-amino-5- bromobenzoate Methyl 3-amino-4- methytthiophene-2-carboxylate Methyl 3-amino-5- bromobenzoate Me	Compound 327	Methyl 2-amino-5-		4-Fluorobenz-	
Compound 329 bromobenzoate benzoyl chloride bromobenzoate					
Methyl 2-amino-5- bromobenzoate A-(Chloromethyl)- benzoyl chloride A-(Chloromet	Compound 339	, ,		3-Fluorobenz-	
Compound 329 Methyl 2-amino-5- bromobenzoate A-(Chloromethyl)- benzoyl chloride P-Methoxybenz- aldehyde P-Methoxy	Compound 526	bromobenzoate	benzoyl chloride		piperidine
Dempound 329 Demonobenzoate Demzoyl chloride		Methyl 2-amino-5-	4-(Chloromethyl)-		4-Hydroxy-
Compound 330 Methyl 2-amino-5-bromobenzoate Methyl 3-amino-4-methythiophene-2-carboxylate Compound 343 Methyl 3-amino-4-methythiophene-2-carboxylate Compound 344 Methyl 3-amino-4-methylthiophene-2-carboxylate Compound 345 Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 3-amino-4-methyli-benzoly chloride Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 3-amino-5-bromobenzoate Methyl 3-	Compound 329				
Dempound 331 Dempound 331 Dempound 332 Dempound 333 Dempound 333 Dempound 334 Dempound 334 Dempound 335 Dempound 336 Dempound 336 Dempound 337 Dempound 337 Dempound 338 Dempound 339 Dempound 339 Dempound 339 Dempound 339 Dempound 339 Dempound 339 Dempound 330 Dempound 340 Demp					
Compound 331 Methyl 2-amino-5-bromobenzoate benzoyl chloride benzoyl chlor	Compound 330				
Compound 332 bromobenzoate benzoyl chloride benzaldehyde wethanol short benzoyl chloride benzoyl chloride benzoyl chloride benzoyl chloride benzaldehyde wethanol short benzoyl chloride benzaldehyde benzaldehyde wethanol short benzoyl chloride benzaldehyde benzaldehyde wethanol short benzoyl chloride benzaldehy					
Compound 332 Methyl 2-amino-5-bromobenzoate benzoyl chloride benzoyl chlor	Compound 331				
Denzolate Denzolate Denzolate Denzaldehyde Denzaldehyde A-(Piperidine-methanol Denzolate					
Methyl 2-amino-5-bromobenzoate Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 3-amino-5-bromobenzoate Methy	Compound 332				
Compound 334 Denombenzoate Denzoyl chloride A-(Chloromethyl)- benzoyl chlorid	- Compound CO2			benzaldehyde	
Methyl 2-amino-5- bromobenzoate benzoyl chloride benzoyl chloride aldehyde methanol delehyde methanol aldehyde methanol delehyde aldehyde aldehyde methanol aldehyde methanol aldehyde aldehyde aldehyde aldehyde methanol aldehyde aldehyde aldehyde aldehyde aldehyde methanol aldehyde	Compound 333			p-Tolualdehyde	
Dempound 334 Demponenzoate Denzoyl chloride				r	
Compound 335 Methyl 2-amino-5- bromobenzoate benzoyl chloride benzaldehyde demethanol dehyde methanol dehyde demethanol dehyde methanol dehyde methanol dehyde demethanol dehyde dehyde demethanol dehyde demethanol dehyde demethanol dehyde demethanol dehyde deh	Compound 334			m-Tolualdehyde	
Compound 336					
Compound 336 Methyl 2-amino-5- bromobenzoate Compound 337 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- bromobenzoate Compound 338 Methyl 2-amino-5- bromobenzoate Compound 339 Methyl 2-amino-5- bromobenzoate Compound 339 Methyl 2-amino-5- bromobenzoate Compound 340 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- bromobenzoate Compound 341 Methyl 2-amino-5- bromobenzoate Methyl 3-amino-4- methylthiophene-2- carboxylate Compound 344 Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-5- bromobenzoate Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-4- methylthio	Compound 335			1	
Compound 337 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 338 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Compound 339 Methyl 2-amino-5-bromobenzoate Compound 340 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 3-amino-4-methylthiophene-2-carboxylate Compound 344 Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 3-amino-5-bromobenzoate Nicotinoyl chloride N					
Compound 337 Methyl 2-amino-5-bromobenzoate	Compound 336				
Compound 337 Methyl 2-amino-5-bromobenzoate benzoyl chloride benzaldehyde dethanol methanol delay benzoyl chloride benzaldehyde dethanol delay benzoyl chloride benzaldehyde dethanol delay benzoyl chloride benzaldehyde dethanol delay del		bromobenzoate	benzoyl chloride		methanol
Compound 337 bromobenzoate benzoyl chloride benzoyl chloride benzaldehyde benzaldeh		Methyl 2-amino-5-	4-(Chloromethyl)-		4-Piperidine-
Compound 338	Compound 337			1	
Compound 339 bromobenzoate benzoyl chloride benzaldehyde methanol methanol bromobenzoate bromobenzoate benzoyl chloride benzoyl chloride benzaldehyde methanol delication bromobenzoate benzoyl chloride benzaldehyde methanol delication benzole benzoyl chloride benzaldehyde methanol delication benzaldehyde delication benzaldehyde delication benzaldehyde delication benzaldehyde delication benzaldehyde delication benzaldehyde delication delication benzaldehyde delication delication delication benzaldehyde delication		111111111111			
Methyl 2-amino-5-bromobenzoate benzoyl chloride benzaldehyde methanol denzaldehyde methanol denzaldehyde denza	Compound 338				
Compound 340 Compound 340 Compound 340 Compound 340 Compound 340 Compound 341 Compound 341 Compound 341 Compound 342 Methyl 2-amino-5- bromobenzoate Methyl 3-amino-4- methylthiophene-2- carboxylate Compound 343 Compound 344 Compound 344 Compound 345 Compound 346 Compound 346 Compound 347 Compound 347 Compound 348 Compound 349 Com					
Compound 340 Compound 341 Compound 341 Compound 341 Compound 342 Compound 342 Methyl 2-amino-5- bromobenzoate benzoyl chloride benzaldehyde ethanol Methyl 2-amino-5- bromobenzoate benzoyl chloride benzaldehyde ethanol 3,4-Dimethyl- benzaldehyde ethanol 3-Fluorobenz- aldehyde 1,2,4-triazole N,N-Diethyl- N-methyl- benzoyl chloride benzaldehyde Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-5- bromobenzoate Methyl 2-amino-5- chloride hydrochloride Nicotinoyl chloride lsonicotinoyl chloride hydrochloride Nicotinoyl chloride lsonicotinoyl chloride cinnamaldehyde Trans- cinnamaldehyde Compound 348 Methyl 2-amino-5- chloride hydrochloride Nethyl 2-amino-5- chloride hydrochloride Nethyl 2-amino-5- chloride hydrochloride Nicotinoyl chloride lenzaldehyde lasonicotinoyl chloride cinnamaldehyde Nicotinoyl chloride lenzaldehyde lasonicotinoyl chloride cinnamaldehyde Trans- chloride lenzaldehyde lenzaldehyde lasonicotinoyl chloride lenzaldehyde lasonicotinoyl chloride lenzaldehyde lasonicotinoyl chloride lenzaldehyde lasonicotinoyl chloride lasonicotinoyl chloride lenzaldehyde lasonicotinoyl lasonicotinoyl chloride lenzaldehyde lasonicotinoyl lasonicotinoyl chloride lasonicotinoyl lasonicotinoyl chloride lasonicotinoyl lasonicotinoyl chloride lasonicotinoyl lasonicotinoyl lasonicotinoyl las	Compound 339				
Compound 341 Description of the property of	•				
Compound 341 Methyl 2-amino-5-bromobenzoate bromobenzoate Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 3-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-chloride Methyl 3-amino-5-chloride N, N-Diethyl-N'-methyl-penzaldehyde N, N-Diethyl-N'-met	Compound 340				
Compound 341 December 1	•				
Compound 342 Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-4- methylthiophene-2- carboxylate 3-(Chloromethyl)- benzoyl chloride 3-(Chloromethyl)- benzoyl chloride p-Tolualdehyde N,N-Diethyl- N'-methyl- ethylene- diamine A-Chloro-3-tri- fluoromethyl- benzaldehyde N,N-Diethyl- N'-methyl- ethylene- diamine N-N-Diethyl- N'-methyl- ethylene- diamine Trans- cinnamaldehyde Nicotinoyl chloride hydrochloride hydrochloride nicotinoyl chloride hydrochloride nicotinoyl	Compound 341				
Compound 342 Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 3-amino-4-methylthiophene-2-carboxylate S-(Chloromethyl)-benzoyl chloride p-Tolualdehyde N,N-Diethyl-N'-methyl-ethylene-diamine N,N-Diethyl-N'-methyl-ethy		bromobenzoate	benzoyi chloride	alderlyde	
Compound 343 Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- chlorobenzoate Methyl 2-amino-5- ch		methylthiophene-2-			
Compound 343 Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 3-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-chloride Methyl 2-amino-5-chlorobenzoate Methyl 3-amino-4-chlorobenzoate Methyl 3-amino-5-chlorobenzoate Methyl 3-amino-4-chlorobenzoate Methyl 3-amino-4-chlorobenzoate Methyl 3-amino-4-chlorobenzoate Methyl 3-amino-4-chlorobenzoate Methyl 3-amino-4-chlorobenzoate Methyl 3-	Compound 342				
Compound 343 Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-chlorobenzoate	•				
Compound 343 Methyl 3-amino-4-methylthiophene-2-carboxylate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-chloride Methyl 2-amino-5-chloride Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chloride Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chloride Methyl 2-amino-5-chlorobenzoate Methyl 2-amino-5-chloride					
Compound 343 Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 2-amino-5- bromobenzoate Compound 347 Methyl 2-amino-5- chlorobenzoate		methylthiophene-2-	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	
Compound 344 Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-4- methylthiophene-2- carboxylate 3-(Chloromethyl)- benzoyl chloride 3,4-Dimethyl- benzaldehyde 4-Piperidino- piperidine 4-Piperidino- piperidine Trans- cinnamaldehyde Compound 347 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- chlorobenzoate Methyl 2-amino	Compound 343				
Compound 344 Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-4- methylthiophene-2- carboxylate 3-(Chloromethyl)- benzoyl chloride 3,4-Dimethyl- benzaldehyde 4-Piperidino- piperidine 4-Piperidino- piperidine Trans- cinnamaldehyde Compound 347 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- chlorobenzoate Nicotinoyl chloride Trans- cinnamaldehyde Trans- cinnamaldehyde Trans- cinnamaldehyde	-				
Compound 344 Compound 345 Compound 346 Compound 346 Compound 346 Compound 347 Compound 347 Compound 348 Methyl 2-amino-5-bromobenzoate Compound 348 Methyl 2-amino-5-chlorobenzoate Nicotinoyl chloride Trans-cinnamaldehyde Trans-cinnamaldehyde Trans-cinnamaldehyde Compound 349					
Compound 344 Methyl 3-amino-4- methylthiophene-2- carboxylate Methyl 3-amino-4- methylthiophene-2- carboxylate S-(Chloromethyl)- benzoyl chloride S-(Chloromethyl)- benzaldehyde 4-Piperidino- piperidine Compound 346 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- chlorobenzoate	Compound 344	Methyl 3-amino-4-	3-(Chloromethyl)-		
Compound 345 Methyl 3-amino-4- methylthiophene-2- carboxylate Compound 346 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- bromobenzoate Compound 347 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- chlorobenzoate Methyl 2-amino-5- c					
Compound 345 Methyl 3-amino-4- methylthiophene-2- carboxylate Compound 346 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- bromobenzoate Compound 347 Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- chlorobenzoate				benzaldehyde	
Compound 345 methylthiophene-2-carboxylate Methyl 2-amino-5-bromobenzoate Compound 347 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-chloride Nicotinoyl chloride Trans-cinnamaldehyde Trans-cinnamaldehyde Nicotinoyl chloride		Methyl 3-amino-4-	0 (0)	O A Dime of the st	
Compound 346 Compound 346 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-chloride Nicotinoyl chloride Trans-cinnamaldehyde Trans-cinnamaldehyde Nicotinoyl chloride Nicotinoyl chloride Nicotinoyl chloride Trans-cinnamaldehyde Trans-cinnamaldehyde	Compound 345				
Compound 346 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-chloride Isonicotinoyl chloride Sonicotinoyl chloride Trans-cinnamaldehyde Trans-cinnamaldehyde Trans-cinnamaldehyde Compound 349	,		penzoyi chioride	penzaidenyde	piperiaine
Compound 346 bromobenzoate Methyl 2-amino-5- bromobenzoate Methyl 2-amino-5- chloride hydrochloride Nicotinoyl chloride hydrochloride Trans- cinnamaldehyde Trans- cinnamaldehyde Trans- cinnamaldehyde Trans- cinnamaldehyde Trans- cinnamaldehyde Trans- chloride hydrochloride Trans- chloride hydrochloride Trans- cinnamaldehyde Trans- cinnamaldehyde Trans- cinnamaldehyde	Comp. 24.240		Nicotinoyl chloride	Trans-	
Compound 347 Methyl 2-amino-5-bromobenzoate Methyl 2-amino-5-chloride Nicotinoyl chloride hydrochloride Trans-cinnamaldehyde	Compound 346			cinnamaldehyde	
Compound 347 Metnyl 2-amino-5-bromobenzoate Compound 348 Methyl 2-amino-5-chloride Nicotinoyl chloride hydrochloride Nicotinoyl chloride hydrochloride Sonicotinoyl chloride Compound 349 Methyl 2-amino-5-chloride Sonicotinoyl chloride cinnamaldehyde Trans-cinnamaldehyde Compound 349		Mathyd 2 amin a F			
Compound 348 Methyl 2-amino-5- chlorobenzoate Methyl 2-amino-5- chlorobenzoate Methyl 2-amino-5- chlorobenzoate Methyl 2-amino-5- chloride Isonicotinoyl chloride Compound 349	Compound 347			1	
Compound 348 Methyl 2-amino-5- chlorobenzoate Methyl 2-amino-5- hydrochloride Isonicotinoyl chloride Trans- cinnamaldehyde Trans- chloride Trans- cinnamaldehyde Trans- chloride chloride	•	promopenzoate		cinnamaidenyde	
Compound 348 chlorobenzoate hydrochloride cinnamaldehyde Methyl 2-amino-5- chloride lsonicotinoyl chloride chloride	Compound 240	Methyl 2-amino-5-	Nicotinoyl chloride	Trans-	
Compound 349 Methyl 2-amino-5- chloride Chloride Chloride Chloride Chloride Chloride Chloride	Compound 348			cinnamaldehyde	
Compound 349 Metryl 2-armino-5 chloride chloride		Mothyl 2 amina F			
hydrochloride cinnamaidenyde	Compound 349		chloride		
		Chioroperizoate	hydrochloride	cilliamaidenyde	

	Α	В	С	B'
		Isonicotinoyl	3-(2-Hydroxy-	
Compound 350	Methyl 2-amino-5-	chloride	ethoxy)-	
	bromobenzoate	hydrochloride	benzaldehyde	
		IsonicotinovI	3-(2-Hydroxy-	
Compound 351	Methyl 2-amino-5-	chloride	ethoxy)-	
	chlorobenzoate	hydrochloride	benzaldehyde	
	Methyl 2-amino-5-	Nicotinoyl chloride	2-Methoxy-	
Compound 352	bromobenzoate	hydrochloride	cinnamaldehyde	
		Isonicotinoyl		
Compound 353	Methyl 2-amino-5-	chloride	2-Methoxy- cinnamaldehyde	
	bromobenzoate	hydrochloride	cinnamaidenyde	
0 1054	Methyl 2-amino-5-	Nicotinoyl chloride	2-Methoxy-	
Compound 354	chlorobenzoate	hydrochloride	cinnamaldehyde	
	Mathyl 2 amina 5	Isonicotinoyl	2-Methoxy-	
Compound 355	Methyl 2-amino-5-	chloride	cinnamaldehyde	
•	chlorobenzoate	hydrochloride	cimilarrialderiyde	
O 256	Methyl 2-amino-5-	Picolinoyl chloride	p-Tolualdehyde	
Compound 356	bromobenzoate	hydrochloride	p-rollanderlyde	
Compound 257	Methyl 2-amino-5-	4-(Chloromethyl)-	m-Tolualdehyde	3-Fluoro-
Compound 357	bromobenzoate	benzoyl chloride		benzenethiol
	Methyl 2-	Nicotinoyl chloride	4-Dimethyl-	
Compound 358	aminobenzoate	hydrochloride	amino-	
		1.	cinnamaldehyde	
Compound 359	Methyl 2-amino-5-	Picolinoyl chloride	3-Fluorobenz-	
Compound 559	chlorobenzoate	hydrochloride	aldehyde	
Compound 360	Methyl 2-amino-5-	Picolinoyl chloride	4-Fluorobenz-	
- Compound ooc	chlorobenzoate	hydrochloride	aldehyde	
Compound 361	Methyl 2-amino-5-	Picolinoyl chloride	m-Tolualdehyde	
	chlorobenzoate	hydrochloride	•	
Compound 362	Methyl 2-amino-5-	Picolinoyl chloride	p-Tolualdehyde	
	chlorobenzoate	hydrochloride		
Compound 363	Methyl 2-amino-5-	Picolinoyl chloride	3,4-Dimethyl- benzaldehyde	
_	chlorobenzoate	hydrochloride	4-Chloro-3-tri-	
Compound 364	Methyl 2-amino-5-	Picolinoyl chloride	fluoromethyl-	
Compound 304	chlorobenzoate	hydrochloride	benzaldehyde	
Vacant number		 	Derizalderiyae	-
	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	4-Mercapto-
Compound 366	chlorobenzoate	benzoyl chloride	benzaldehyde	pyridine
	Methyl 2-amino-5-	3,4-Dimethoxy-	-	
Compound 367	bromobenzoate	benzoyl chloride	p-Tolualdehyde	
	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Fluorobenz-	4-Piperidino-
Compound 368	chlorobenzoate	benzoyl chloride	aldehyde	piperidine
0	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Fluorobenz-	4-Piperidino-
Compound 369	chlorobenzoate	benzoyl chloride	aldehyde	piperidine
Compound 370 Compound 371	Methyl 2-amino-5-	3-(Chloromethyl)-	m-Tolualdehyde	4-Piperidino-
	chlorobenzoate	benzoyl chloride	111-1 Olualdellyde	piperidine
	Methyl 2-amino-5-	3-(Chloromethyl)-	p-Tolualdehyde	4-Piperidino-
	chlorobenzoate	benzoyl chloride	L'	piperidine
Compound 372	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	4-Piperidino-
Compound 3/2	chlorobenzoate	benzoyl chloride	benzaldehyde	piperidine
	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Chloro-3-tri-	4-Piperidino-
Compound 373	chlorobenzoate	benzoyl chloride	fluoromethyl-	piperidine
			benzaldehyde	
Compound 374	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Methoxy-	4-Piperidino-
- Jimpoullu 01 4	chlorobenzoate	benzoyl chloride	benzaldehyde	piperidine
Compound 375	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Methoxy-	4-Piperidino-
	chlorobenzoate	benzoyl chloride	benzaldehyde	piperidine
Compound 376	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Hydroxy-	4-Piperidino-
	chlorobenzoate	benzoyl chloride	benzaldehyde	piperidine

 	Α	В	С	B'
Compound 377	Methyl 2-amino-5- chlorobenzoate	3-(Chioromethyl)- benzoyl chloride	4-Hydroxy- benzaldehyde	4-Piperidino- piperidine
Compound 378	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Methoxy- benzaldehyde	4-Piperidino- piperidine
Compound 379	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 380	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 381	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 382	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 383	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 384	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 385	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 386	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 387	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Hydroxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 388	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Hydroxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 389	Methyl 2-amino-5-	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto- 1,2,4-triazole
Compound 390	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	3-Mercapto- 1,2,4-triazole
Compound 391	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	3-Mercapto- 1,2,4-triazole
Compound 392	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto- 1,2,4-triazole
Compound 393	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	3-Mercapto- 1,2,4-triazole
Compound 394	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	2-(Methyl- amino)ethanol
Compound 395	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	2-(Methyl- amino)ethanol
Compound 396	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	2-(Methyl- amino)ethanol

				D'
	Α	В	С	B'
Compound 397	Methyl 2-amino-5-	3-(Chloromethyl)-	p-Tolualdehyde	2-(Methyl-
Compound 397	chlorobenzoate	benzoyl chloride	p-10lualderlyde	amino)ethanol
	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	2-(Methyl-
Compound 398	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
	Chlorobenzoate	Delizoyi cilionde		ammojemanoi
	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Chloro-3-tri-	2-(Methyl-
Compound 399	chlorobenzoate	benzoyl chloride	fluoromethyl-	amino)ethanol
	Chlorobenzoate	benzoyi chloride	benzaldehyde	ammojemanoi
	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Methoxy-	2-(Methyl-
Compound 400	chlorobenzoate			amino)ethanol
		benzoyl chloride	benzaldehyde	
Compound 401	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Methoxy-	2-(Methyl-
compound for	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
- 1 100	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Hydroxy-	2-(Methyl-
Compound 402	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Hydroxy-	2-(Methyl-
Compound 403				
•	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
Compound 404	Methyl 2-amino-5-	3-(Chloromethyl)-	m-Tolualdehyde	Diethanol-
Compound 404	chlorobenzoate	benzoyl chloride	III- I Gladideliyae	amine
	Methyl 2-amino-5-	3-(Chloromethyl)-		Diethanol-
Compound 405	chlorobenzoate	benzoyl chloride	p-Tolualdehyde	amine
-			2.4 Dim othyd	
Compound 406	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	Diethanol-
	chlorobenzoate	benzoyl chloride	benzaldehyde	amine
	Mathid 2 amina E	2 (Chloromothyd)	4-Chloro-3-tri-	Diethonel
Compound 407	Methyl 2-amino-5-	3-(Chloromethyl)-	fluoromethyl-	Diethanol-
	chlorobenzoate	benzoyl chloride	benzaldehyde	amine
	Math.d O amina E	3-(Chloromethyl)-		Diethanol-
Compound 408	Methyl 2-amino-5-		3-Methoxy-	
	chlorobenzoate	benzoyl chloride	benzaldehyde	amine
Compound 409	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Methoxy-	Diethanol-
Compound 409	chlorobenzoate	benzoyl chloride	benzaldehyde	amine
	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Hydroxy-	Diethanol-
Compound 410	chlorobenzoate	benzoyl chloride	benzaldehyde	amine
Compound 411	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Hydroxy-	Diethanol-
	chlorobenzoate	benzoyl chloride	benzaldehyde	amine
Campa 442	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Fluorobenz-	2-(Methyl-
Compound 412	chlorobenzoate	benzoyl chloride	aldehyde	amino)ethanol
	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Fluorobenz-	2-(Methyl-
Compound 413	chlorobenzoate	benzoyl chloride	aldehyde	amino)ethanol
		4 (Oblamana Abad)	alderlyde	
Compound 414	Methyl 2-amino-5-	4-(Chloromethyl)-	m-Tolualdehyde	2-(Methyl-
Compound 111	chlorobenzoate	benzoyl chloride	· · · · · · · · · · · · · · · · · · ·	amino)ethanol
0	Methyl 2-amino-5-	4-(Chloromethyl)-	- Taluslabuda	2-(Methyl-
Compound 415	chlorobenzoate	benzoyl chloride	p-Tolualdehyde	amino)ethanol
	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	2-(Methyl-
Compound 416				
	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Chloro-3-tri-	2-(Methyl-
Compound 417			fluoromethyl-	
•	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Methoxy-	2-(Methyl-
Compound 418	chlorobenzoate	benzoyl chloride	benzaldehyde	
•			 	amino)ethanol
Compound 419	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Methoxy-	2-(Methyl-
Compound 410	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Hydroxy-	2-(Methyl-
Compound 420	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
		4-(Chloromethyl)-	 	
Compound 421	Methyl 2-amino-5-	1 '	4-Hydroxy-	2-(Methyl-
	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
Company 400	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Fluorobenz-	2-(Ethyl-
Compound 422	chlorobenzoate	benzoyl chloride	aldehyde	amino)ethanol
	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Fluorobenz-	2-(Ethyl-
Compound 423			•	
·	chlorobenzoate	benzoyl chloride	aldehyde	amino)ethanol
Compound 424	Methyl 2-amino-5-	3-(Chloromethyl)-	m-Tolualdehyde	2-(Ethyl-
Compound 727	chlorobenzoate	benzoyi chloride	roladidoliyae	amino)ethanol

	Α	В	С	В'
	Methyl 2-amino-5-	3-(Chloromethyl)-		2-(Ethyl-
Compound 425	chlorobenzoate	benzoyl chloride	p-Tolualdehyde	amino)ethanol
	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	2-(Ethyl-
Compound 426	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
	Mathad Coming F	1	4-Chloro-3-tri-	2-(Ethyl-
Compound 427	Methyl 2-amino-5-	3-(Chloromethyl)-	fluoromethyl-	amino)ethanol
	chlorobenzoate	benzoyl chloride	benzaldehyde	animojemanoi
0	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Methoxy-	2-(Ethyl-
Compound 428	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
0	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Methoxy-	2-(Ethyl-
Compound 429	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
0	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Hydroxy-	2-(Ethyl-
Compound 430	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
Commound 424	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Hydroxy-	2-(Ethyl-
Compound 431	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
Commound 422	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Fluorobenz-	2-(Ethyl-
Compound 432	chlorobenzoate	benzoyl chloride	aldehyde	amino)ethanol
Compound 422	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Fluorobenz-	2-(Ethyl-
Compound 433	chlorobenzoate	benzoyl chloride	aldehyde	amino)ethanol
Commound 424	Methyl 2-amino-5-	4-(Chloromethyl)-	m-Tolualdehyde	2-(Ethyl-
Compound 434	chlorobenzoate	benzoyl chloride	Tirtoldalacityac	amino)ethanol
Compound 425	Methyl 2-amino-5-	4-(Chloromethyl)-	p-Tolualdehyde	2-(Ethyl-
Compound 435	chlorobenzoate	benzoyl chloride	<u> </u>	amino)ethanol
Compound 436	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	2-(Ethyl-
Compound 430	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Chloro-3-	2-(Ethyl-
Compound 437	chlorobenzoate	benzoyl chloride	trifluoromethyl-	amino)ethanol
	Cilioroperizoate		benzaldehyde	J
Compound 438	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Methoxy-	2-(Ethyl-
Compound 450	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
Compound 439	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Methoxy-	2-(Ethyl-
Oompound 400	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
Compound 440	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Hydroxy-	2-(Ethyl-
	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
Compound 441	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Hydroxy-	2-(Ethyl-
	chlorobenzoate	benzoyl chloride	benzaldehyde	amino)ethanol
	Markey O amain a F	4 (Chloromothyl)	3-Fluorobenz-	2-Diethyl- amino-
Compound 442	Methyl 2-amino-5-	4-(Chloromethyl)- benzoyl chloride	aldehyde	ethanethiol
•	chlorobenzoate	benzoyi chloride	alderlyde	hydrochloride
				2-Diethyl-
	Methyl 2-amino-5-	4-(Chloromethyl)-	4-Fluorobenz-	amino-
Compound 443	chlorobenzoate	benzoyl chloride	aldehyde	ethanethiol
	Chlorobenzoate	Bonzoyi omondo	"""	hydrochloride
			 	2-Diethyl-
	Methyl 2-amino-5-	4-(Chloromethyl)-		amino-
Compound 444	chlorobenzoate	benzoyl chloride	m-Tolualdehyde	ethanethiol
	0,110.13231.2323	, , , , , , , , , , , , , , , , , , , ,		hydrochloride
				2-Diethyl-
	Methyl 2-amino-5-	4-(Chloromethyl)-	Table 1 de brooks	amino-
Compound 445	chlorobenzoate	benzoyl chloride	p-Tolualdehyde	ethanethiol
				hydrochloride
Compound 446				2-Diethyl-
	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	amino-
	chlorobenzoate	benzoyl chloride	benzaldehyde	ethanethiol
,				hydrochloride
			4-Chloro-3-tri-	2-Diethyl-
Company 447	Methyl 2-amino-5-	4-(Chloromethyl)-	fluoromethyl-	amino-
Compound 447	chlorobenzoate	benzoyl chloride	benzaldehyde	ethanethiol
		<u> </u>	Scrizarderryde	hydrochloride

	A	В	С	B,
Compound 448	Methyl 2-amino-5- chlorobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Methoxy- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 449	Methyl 2-amino-5- chlorobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Methoxy- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 450	Methyl 2-amino-5- chlorobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Hydroxy- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 451	Methyl 2-amino-5- chlorobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Hydroxy- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 452	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 453	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 454	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 455	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 456	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 457	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 458	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Methoxy- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 459	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Methoxy- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 460	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Hydroxy- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 461	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Hydroxy- benzaldehyde	2-Diethyl- amino- ethanethiol hydrochloride
Compound 462	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluoro- benzaldehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole

	Α	В	С	B'
Compound 463	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole
Compound 464	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole
Compound 465	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole
Compound 466	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole
Compound 467	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole
Compound 468	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Methoxy- benzaldehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole
Compound 469	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Methoxy- benzaldehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole
Compound 470	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Hydroxy- benzaldehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole
Compound 471	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Hydroxy- benzaldehyde	1-(2-Dimethyl- aminoethyl)- 5-mercapto- tetrazole
Compound 472	Methyl 2-amino-5- iodobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 473	Methyl 2-amino-5- iodobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 474	Methyl 2-amino-5- iodobenzoate	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 475	Methyl 2-amino-5- iodobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 476	Methyl 2-amino-5- iodobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 477	Methyl 2-amino-5- iodobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine

	Α	В	С	B'
				N,N-Diethyl-
	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Methoxy-	N'-methyl-
Compound 478	iodobenzoate	benzoyl chloride	benzaldehyde	ethylene-
	1000001120010	Donizoy: Cilionia		diamine
				N,N-Diethyl-
	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Methoxy-	N'-methyl-
Compound 479	iodobenzoate	benzoyl chloride	benzaldehyde	ethylene-
	lodobelizoate	Delizoyi cilionde	Delizaidenyde	diamine
				N,N-Diethyl-
	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Hydroxy-	N'-methyl-
Compound 480	iodobenzoate	benzoyl chloride	benzaldehyde	ethylene-
•	lodobelizoate	Delizoyi cilionde	Denzaldenyde	diamine
				N,N-Diethyl-
	Mothyd 2 amino 5	2 (Chloromethyl)	4-Hydroxy-	N'-methyl-
Compound 481	Methyl 2-amino-5-	3-(Chloromethyl)- benzoyl chloride	benzaldehyde	ethylene-
•	lodobenzoate	benzoyi cilionde	Delizaldeliyde	diamine
	MAN I O omino E	3-(Chloromethyl)-	3-Fluorobenz-	4-Piperidino-
Compound 482	Methyl 2-amino-5-			piperidine
	iodobenzoate	benzoyl chloride	aldehyde	
Compound 483	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Fluorobenz-	4-Piperidino-
	iodobenzoate	benzoyl chloride	aldehyde	piperidine
Compound 484	Methyl 2-amino-5-	3-(Chloromethyl)-	m-Tolualdehyde	4-Piperidino-
	iodobenzoate	benzoyl chloride		piperidine
Compound 485	Methyl 2-amino-5-	3-(Chloromethyl)-	p-Tolualdehyde	4-Piperidino-
Compound 100	iodobenzoate	benzoyl chloride		piperidine
Compound 486	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	4-Piperidino-
Compound 400	iodobenzoate	benzoyl chloride	benzaldehyde	piperidine
	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Chloro-3-tri-	4-Piperidino-
Compound 487	iodobenzoate	benzoyl chloride	fluoromethyl-	piperidine
			benzaldehyde	
Compound 488	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Methoxy-	4-Piperidino-
Compound 400	iodobenzoate	benzoyl chloride	benzaldehyde	piperidine
Compound 490	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Methoxy-	4-Piperidino-
Compound 489	iodobenzoate	benzoyl chloride	benzaldehyde	piperidine
Commercial 400	Methyl 2-amino-5-	3-(Chloromethyl)-	3-Hydroxy-	4-Piperidino-
Compound 490	iodobenzoate	benzoyl chloride	benzaldehyde	piperidine
Commound 401	Methyl 2-amino-5-	3-(Chloromethyl)-	4-Hydroxy-	4-Piperidino-
Compound 491	iodobenzoate	benzoyl chloride	benzaldehyde	piperidine
0	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	2-Mercapto-
Compound 492	chlorobenzoate	benzoyl chloride	benzaldehyde	ethanol
0	Methyl 2-amino-5-	3-(Chloromethyl)-	3,4-Dimethyl-	2-Mercapto-
Compound 493	chlorobenzoate	benzoyl chloride	benzaldehyde	ethanol
0 1404	Methyl 2-amino-5-	4-Methylbenzoyl	n Toluoldobudo	
Compound 494	bromobenzoate	chloride	p-Tolualdehyde	
0	Methyl 2-amino-5-	Picolinoyl chloride	3-Fluorobenz-	
Compound 495	bromobenzoate	hydrochloride	aldehyde	
	Methyl 2-amino-5-	Picolinoyl chloride	4-Fluorobenz-	
Compound 496	bromobenzoate	hydrochloride	aldehyde	
	Methyl 2-amino-5-	Picolinoyl chloride		
Compound 497	bromobenzoate	hydrochloride	m-Tolualdehyde	
	Methyl 2-amino-5-	Picolinoyl chloride	- T-1 11 : :	
Compound 498	bromobenzoate	hydrochloride	p-Tolualdehyde	
	Methyl 2-amino-5-	Picolinoyl chloride	3,4-Dimethyl-	
Compound 499	bromobenzoate	hydrochloride	benzaldehyde	
			4-Chloro-3-tri-	1
Campau - 1 500	Methyl 2-amino-5-	Picolinoyl chloride	fluoromethyl-	
Compound 500	bromobenzoate	hydrochloride	benzaldehyde	
	Mothyl 2 amino 5	4-Ethoxybenzoyl	3-Fluorobenz-	
Compound 501	Methyl 2-amino-5-	chloride	aldehyde	
	bromobenzoate		4-Fluorobenz-	
Compound 502	Methyl 2-amino-5-	4-Ethoxybenzoyl chloride	aldehyde	
	bromobenzoate	Lemonde	aluellyue	<u> </u>

	Α	В	С	B'
Compound 503	Methyl 2-amino-5- bromobenzoate	4-Ethoxybenzoyl chloride	p-Tolualdehyde	
Compound 504	Methyl 2-amino-5- bromobenzoate	4-Ethoxybenzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 505	Methyl 2- aminobenzoate	Picolinoyl chloride hydrochloride	3-Fluorobenz- aldehyde	
Compound 506	Methyl 2- aminobenzoate	Picolinoyl chloride hydrochloride	4-Fluorobenz- aldehyde	
Compound 507	Methyl 2- aminobenzoate	Picolinoyl chloride hydrochloride	3,4-Dimethyl- benzaldehyde	
Compound 508	Methyl 2- aminobenzoate	Picolinoyl chloride hydrochloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	
Compound 509	Methyl 2-amino-5- bromobenzoate	Cyclohexane- carbonyl chloride	3-Fluorobenz- aldehyde	
Compound 510	Methyl 2-amino-5- bromobenzoate	Isoxazole-5- carbonyl chloride	3-Fluorobenz- aldehyde	
Compound 511	Methyl 2-amino-5- bromobenzoate	Isoxazole-5- carbonyl chloride	m-Tolualdehyde	
Compound 512	Methyl 2-amino-5- bromobenzoate	Isoxazole-5- carbonyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 513	Methyl 2-amino-5- bromobenzoate	Isoxazole-5- carbonyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	
Compound 514	Methyl 2- aminobenzoate	2,5-Dimethylfuran- 3-carbonyl chloride	3-Fluorobenz- aldehyde	
Compound 515	Methyl 2- aminobenzoate	2,5-Dimethylfuran- 3-carbonyl chloride	4-Fluorobenz- aldehyde	
Compound 516	Methyl 2- aminobenzoate	2,5-Dimethylfuran- 3-carbonyl chloride	m-Tolualdehyde	
Compound 517	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3,4-Dimethoxy- benzoyl chloride	3-Fluoro- benzaldehyde	
Compound 518	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3,4-Dimethoxy- benzoyl chloride	m-Tolualdehyde	
Compound 519	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3,4-Dimethoxy- benzoyl chloride	p-Tolualdehyde	
Vacant number				
Compound 521	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3,4-Dimethoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 522	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3,4-Dimethoxy- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	
Compound 523	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto- 1,2,4-triazole
Compound 524	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto- 1,2,4-triazole
Compound 525	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto-1- propanol
Compound 526	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto-1- propanol

	Α	В	С	B'
Compound 527	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto-1- propanol
Compound 528	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 529	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 530	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylenediami ne
Compound 531	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Piperidino- piperidine
Compound 532	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 533	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 534	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluoro- benzaldehyde	1-(2- Hydroxyethyl) piperazine
Compound 535	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluoro- benzaldehyde	1-(2- Hydroxyethyl) piperazine
Compound 536	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 537	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- ethylene- diamine
Compound 538	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- ethylene- diamine
Compound 539	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 540	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 541	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Hydroxy- piperidine
Compound 542	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Hydroxy- piperidine
Compound 543	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Hydroxy- piperidine
Compound 544	Methyl 2-amino-5- bromobenzoate	Picolinoyl chloride hydrochloride	p-Tolualdehyde	
Compound 545	Methyl 2- aminobenzoate	Isonicotinoyl chloride hydrochloride	p-Tolualdehyde	

			С	B'
Compound 546	A Methyl 2-amino-5- bromobenzoate	B 3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 547	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Mercapto- ethanol
Compound 548	Methyl 2-amino-5- bromobenzoate	3,4-Dimethoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 549	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diethanol- amine
Compound 550	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluoroben- aldehyde	Diethanol- amine
Compound 551	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto- 1,2,4-triazole
Compound 552	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto- 1,2,4-triazole
Compound 553	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	3-Mercapto- 1,2,4-triazole
Compound 554	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto- 1,2,4-triazole
Compound 555	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	3-Mercapto- 1,2,4-triazole
Compound 556	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	3-Mercapto- 1,2,4-triazole
Compound 557	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto-1- propanol
Compound 558	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto-1- propanol
Compound 559	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	3-Mercapto-1- propanol
Compound 560	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto-1- propanol
Compound 561	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	3-Mercapto-1- propanol
Compound 562	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	3-Mercapto-1- propanol
Compound 563	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 564	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 565	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine

	Α	В	С	B'
Compound 566	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 567	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 568	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 569	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Piperidino- piperidine
Compound 570	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Piperidino- piperidine
Compound 571	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Piperidino- piperidine
Compound 572	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Piperidino- piperidine
Compound 573	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	4-Piperidino- piperidine
Compound 574	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Piperidino- piperidine
Compound 575	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 576	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 577	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 578	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 579	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 580	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 581	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 582	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- ethylene- diamine
Compound 583	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- ethylene- diamine
Compound 584	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- ethylene- diamine

	Α	В	С	В'
Compound 585	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 586	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 587	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 588	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 589	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 590	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 591	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 592	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 593	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Hydroxy- piperidine
Compound 594	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Hydroxy- piperidine
Compound 595	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Hydroxy- piperidine
Compound 596	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Hydroxy- piperidine
Compound 597	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	4-Hydroxy- piperidine
Compound 598	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Hydroxy- piperidine
Compound 599	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Piperidine- methanol
Compound 600	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Piperidine- methanol
Compound 601	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Piperidine- methanol
Compound 602	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Piperidine- methanol
Compound 603	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	4-Piperidine- methanol
Compound 604	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Piperidine- methanol

	Α	В	С	B'
Compound 605	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto-1- propanol
Compound 606	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	3-Mercapto-1- propanol
Compound 607	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto-1- propanol
Compound 608	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	3-Mercapto-1- propanol
Compound 609	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 610	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 611	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 612	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 613	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 614	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 615	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Piperidino- piperidine
Compound 616	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Piperidino- piperidine
Compound 617	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Piperidino- piperidine
Compound 618	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Piperidino- piperidine
Compound 619	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	4-Piperidino- piperidine

	A	В	С	B'
Compound 620	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Piperidino- piperidine
Compound 621	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Piperazine- ethanol
Compound 622	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Piperazine- ethanol
Compound 623	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Piperazine- ethanol
Compound 624	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Piperazine- ethanol
Compound 625	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	4-Piperazine- ethanol
Compound 626	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Piperazine- ethanol
Compound 627	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 628	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 629	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 630	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 631	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 632	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 633	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Hydroxy- piperidine
Compound 634	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Hydroxy- piperidine

	Ι Α	В	С	B'
Compound 635	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Hydroxy- piperidine
Compound 636	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Hydroxy- piperidine
Compound 637	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	4-Hydroxy- piperidine
Compound 638	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaidehyde	4-Hydroxy- piperidine
Compound 639	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Piperidine- methanol
Compound 640	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Piperidine- methanol
Compound 641	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Piperidine- methanol
Compound 642	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Piperidine- methanol
Compound 643	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	4-Piperidine- methanol
Compound 644	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Piperidine- methanol
Compound 645	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto-1- propanol
Compound 646	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto- 1,2,4-triazole
Compound 647	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto- 1,2,4-triazole
Compound 648	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	3-Mercapto- 1,2,4-triazole
Compound 649	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto- 1,2,4-triazole

	A	В	С	B'
Compound 650	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	3-Mercapto- 1,2,4-triazole
Compound 651	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	3-Mercapto- 1,2,4-triazole
Compound 652	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 653	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- ethylene- diamine
Compound 654	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- ethylene- diamine
Compound 655	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- ethylene- diamine
Compound 656	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 657	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 658	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto-1- propanol
Compound 659	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto-1- propanol
Compound 660	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	3-Mercapto-1- propanol
Compound 661	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto-1- propanol
Compound 662	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	3-Mercapto-1- propanol
Compound 663	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	3-Mercapto-1- propanol
Compound 664	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 665	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine

	1 A 1	В	С	B'
Compound 666	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 667	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 668	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylen- ediamine
Compound 669	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 670	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 671	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 672	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 673	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 674	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 675	2-Amino-4,5,6,7-tetra- hydrobenzothiophene- 3-carboxylic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 676	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Mercapto- ethanol
Compound 677	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Mercapto- ethanol
Compound 678	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 679	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 680	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Furfuryl mercaptan
Compound 681	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Furfuryl mercaptan
Compound 682	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Furfuryl mercaptan
Compound 683	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Furfuryl mercaptan
Compound 684	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N'- Dimethyl-1,3- propane- diamine

	Α	В	С	B'
Compound 685	Methyl 2-amino-5- chiorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aidehyde	N,N'- Dimethyl-1,3- propane- diamine
Compound 686	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Furfuryl mercaptan
Compound 687	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Furfuryl mercaptan
Compound 688	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	Furfuryl mercaptan
Compound 689	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	Furfuryl mercaptan
Compound 690	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N'- Dimethyl-1,6- hexane- diamine
Compound 691	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	2-Mercapto- ethane- sulfonic acid sodium salt
Compound 692	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	2-Mercapto- ethane- sulfonic acid sodium salt
Compound 693	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Mercapto- ethane- sulfonic acid sodium salt
Compound 694	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethane- sulfonic acid sodium salt
Compound 695	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	2-Mercapto- ethanol
Compound 696	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Mercapto- ethanol
Compound 697	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethanol
Compound 698	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 699	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	Furfuryl mercaptan
Compound 700	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Furfuryl mercaptan
Compound 701	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N'- Dimethyl-1,3- propane- diamine
Compound 702	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N'- Dimethyl-1,3- propane- diamine
Compound 703	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethane- sulfonic acid sodium salt

	Α	В	С	B'
Compound 704	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N'- Dimethyl-1,6- hexane- diamine
Compound 705	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	N,N'- Dimethyl-1,6- hexane- diamine
Compound 706	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N'- Dimethyl-1,6- hexane- diamine
Compound 707	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 708	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	2-Mercapto- ethane- sulfonic acid sodium salt
Compound 709	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethane- sulfonic acid sodium salt
Compound 710	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 711	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 712	Methyl 3-amino-4- methylthiophene-2- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 713	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-(2-Amino- ethyl)- morpholine
Compound 714	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	4-(2-Amino- ethyl)- morpholine
Compound 715	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-(2-Amino- ethyl)- morpholine
Compound 716	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Methoxy- benzaldehyde	4-(2-Amino- ethyl)- morpholine
Compound 717	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1-(4-Fluoro- phenyl)- piperazine
Compound 718	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	Diisopropanol- amine
Compound 719	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 720	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 721	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 722	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine

	Α	В	С	B'
	Methyl 2-amino-5-	4-(Chloromethyl)-	m-Methoxy-	Diisopropanol-
Compound 723	bromobenzoate	benzoyl chloride	benzaldehyde	amine
	Methyl 2-amino-5-	4-(Chloromethyl)-	3,4-Dimethyl-	Cineferin
Compound 724	bromobenzoate	benzoyl chloride	benzaldehyde	Cineterin
	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Fluorobenz-	Cineferin
Compound 725	bromobenzoate	benzoyl chloride	aldehyde	Cirieleiiii
Compound 726	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Cineferin
Compound 727	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Methoxy- benzaldehyde	Cineferin
Compound 728	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N-(2-(1- Piperazino)- acetyl)- morpholine
Compound 729	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	N-(2-(1- Piperazino)- acetyl)- morpholine
Compound 730	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl- benzoyl chloride	4-Fluorobenz- aldehyde	N-(2-(1- Piperazino)- acetyl)- morpholine
Compound 731	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N-(2-(1- Piperazino- acetyl)- morpholine
Compound 732	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Methoxy- benzaldehyde	N-(2-(1- Piperazino)- acetyl)- morpholine
Compound 733	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Bis(2-ethoxy- ethyl)-amine
Compound 734	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Bis(2-ethoxy- ethyl)-amine
Compound 735	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	Bis(2-ethoxy- ethyl)-amine
Compound 736	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Bis(2-ethoxy- ethyl)amine
Compound 737	Methyl 2-amino-5-	4-(Chloromethyl)-	3-Fluorobenz-	Bis(2-ethoxy- ethyl)amine
Compound 738	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	aldehyde 4-Chloro-3- trifluoromethyl- benzaldehyde	Bis(2-ethoxy- ethyl)amine
Compound 739	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxybenz- aldehyde	Bis(2-ethoxy- ethyl)amine
Compound 740	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Methoxy- benzaldehyde	Bis(2-ethoxy- ethyl)amine
Compound 741	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Piperidine- ethanol
Compound 742	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	4-Piperidine- ethanol
Compound 743	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Piperidine- ethanol
Compound 744	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Piperidine- ethanol
Compound 745	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	4-Piperidine- ethanol
Compound 746	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Methoxybenz- aldehyde	4-Piperidine- ethanol

	Α	В	С	B'
Compound 747	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Morpholine- 4-yl-1-phenyl- ethylamine
Compound 748	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Morpholine- 4-yl-1-phenyl- ethylamine
Compound 749	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Amino-1,2- diethyl- pyrazolidine
Compound 750	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Amino-1,2- diethyl- pyrazolidine
Compound 751	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Amino-1,2- diethyl- pyrazolidine
Compound 752	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Amino-1,2- diethyl- pyrazolidine
Compound 753	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	4-Amino-1,2- diethyl- pyrazolidine
Compound 754	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	4-Amino-1,2- diethyl- pyrazolidine
Compound 755	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Amino-1,2- diethyl- pyrazolidine
Compound 756	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Amino-1,2- diethyl- pyrazolidine
Compound 757	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N-(3-Amino- propyl)-N- methylaniline
Compound 758	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N-(3-Amino- propyl)-N- methylaniline
Compound 759	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N-(3-Amino- propyl)-N- methylaniline
Compound 760	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N-(3-Amino- propyl)-N- methylaniline
Compound 761	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N-(3-Amino- propyl)-N- methylaniline
Compound 762	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N-(3-Amino- propyl)-N- methylaniline
Compound 763	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Methoxy- benzaldehyde	N-(3-Amino- propyl)-N- methylaniline
Compound 764	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-(Ethylthio)- ethylamine
Compound 765	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-(Ethylthio)- ethylamine
Compound 766	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	2-(Ethylthio)- ethylamine
Compound 767	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	2-(Ethylthio)- ethylamine
Compound 768	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	2-(Ethylthio)- ethylamine

	Α	В	С	B'
Compound 769	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-(Ethylthio)- ethylamine
Compound 770	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-(Ethylthio)- ethylamine
Compound 771	Methyl 2-amino-5- bromobenzoate	4-(Chioromethyl)- benzoyl chloride	m-Methoxy- benzaldehyde	2-(Ethylthio)- ethylamine
Compound 772	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1-(2-Pyridyl)- piperazine
Compound 773	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1-(2-Pyridyl)- piperazine
Compound 774	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	1-(2-Pyridyl)- piperazine
Compound 775	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	1-(2-Pyridyl)- piperazine
Compound 776	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	1-(2-Pyridyl)- piperazine
Compound 777	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	1-(2-Pyridyl)- piperazine
Compound 778	Methyl 2-amino-5- bromobenzoate	4-(Chloromethyl)- benzoyl chloride	m-Methoxy- benzaldehyde	1-(2-Pyridyl)- piperazine
Compound 779	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 780	Ethyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 781	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethane- sulfonic acid
Compound 782	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Mercapto- ethane- sulfonic acid
Compound 783	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	2-Mercapto- ethane- sulfonic acid
Compound 784	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethane- sulfonic acid
Compound 785	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethane- sulfonic acid
Compound 786	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diethanol- amine
Compound 787	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diethanol- amine
Compound 788	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Diethanol- amine
Compound 789	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diethanol- amine
Compound 790	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	Diethanol- amine
Compound 791	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diethanol- amine

	A	В	С	В'
Compound 792	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 793	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 794	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 795	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 796	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 797	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 798	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Piperidine- methanol
Compound 799	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Piperidine- methanol
Compound 800	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Piperidine- methanol
Compound 801	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Piperidine- methanol
Compound 802	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	4-Piperidine- methanol
Compound 803	Ethyl-2-amino- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Piperidine- methanol
Compound 804	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 805	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 806	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 807	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 808	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 809	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine

	A	В	С	B'
Compound 810	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 811	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- ethylene- diamine
Compound 812	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- ethylene- diamine
Compound 813	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	N,N-Diethyl- ethylene- diamine
Compound 814	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 815	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- ethylene- diamine
Compound 816	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Piperidine- methanol
Compound 817	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Piperidine- methanol
Compound 818	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Piperidine- methanol
Compound 819	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Piperidine- methanol
Compound 820	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	4-Piperidine- methanol
Compound 821	Ethyl-2- aminocyclopenta(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Piperidine- methanol
Compound 822	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Dimethyl- amine hydrochloride
Compound 823	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Dimethyl- amine hydrochloride
Compound 824	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Dimethyl- amine hydrochloride
Compound 825	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Dimethyl- amine hydrochloride

	Α	В	С	B'
Compound 826	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1-(2- Pyrimidyl)- piperazine
Compound 827	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1-(2- Pyrimidyl)- piperazine
Compound 828	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	1-(2- Pyrimidyl)- piperazine
Compound 829	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	1-(2- Pyrimidyl)- piperazine
Compound 830	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	1-(2- Pyrimidyl)- piperazine
Compound 831	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	1-(2- Pyrimidyl)- piperazine
Compound 832	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1,4-Dioxa-8- azaspiro(4,5) decane
Compound 833	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1,4-Dioxa-8- azaspiro(4,5) decane
Compound 834	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	1,4-Dioxa-8- azaspiro(4,5) decane
Compound 835	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	1,4-Dioxa-8- azaspiro[4,5] decane
Compound 836	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	1,4-Dioxa-8- azaspiro(4,5) decane
Compound 837	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	1,4-Dioxa-8- azaspiro[4,5] decane
Compound 838	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 839	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 840	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 841	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	3-Fluoro- benzaldehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 842	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 843	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	1,1,7,7- Tetraethyl- diethylene- triamine

	Α	В	С	В'
Compound 844	Ethyl 2-amino-4,5- dimethylthiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 845	Ethyl 2-amino-4,5- dimethylthiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 846	Ethyl 2-amino-4,5- dimethylthiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Fluoro- benzaldehyde	Diisopropanol- amine
Compound 847	Ethyl 2-amino-4,5- dimethylthiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 848	Ethyl 2-amino-4,5- dimethylthiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 849	Ethyl 2-amino- 4,5,6,7-tetrahydro- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 850	Ethyl 2-amino- 4,5,6,7-tetrahydro- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 851	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 852	Methyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 853	2-Amino-5- fluorobenzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 854	2-Amino-5- fluorobenzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 855	Ethyl 2-amino- 4,5,6,7-tetrahydro- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 856	Ethyl 2-amino- 4,5,6,7-tetrahydro- benzo(B)thiophene- 3-carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 857	2-Amino-5- fluorobenzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 858	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 859	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 860	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluoro- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine

	1 A	В	С	B'
Compound 861	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 862	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 863	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 864	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Piperazine- ethanol
Compound 865	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Piperazine- ethanol
Compound 866	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Piperazine- ethanol
Compound 867	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Piperazine- ethanol
Compound 868	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	4-Piperazine- ethanol
Compound 869	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Piperazine- ethanol
Compound 870	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	4-Hydroxy- piperidine
Compound 871	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	4-Hydroxy- piperidine
Compound 872	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	4-Hydroxy- piperidine
Compound 873	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	4-Hydroxy- piperidine
Compound 874	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	4-Hydroxy- piperidine
Compound 875	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	4-Hydroxy- piperidine

	Α	В	С	B'
Compound 876	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-(Diethyl- amino)- ethanethiol
Compound 877	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	2-(Diethyl- amino)- ethanethiol
Compound 878	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-(Diethyl- amino)- ethanethiol
Compound 879	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxybenz- aldehyde	2-(Diethyl- amino)- ethanethiol
Compound 880	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethanol
Compound 881	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Mercapto- ethanol
Compound 882	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	2-Mercapto- ethanol
Compound 883	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	2-Mercapto- ethanol
Compound 884	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 885	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol
Compound 886	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto- propionic acid
Compound 887	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto- propionic acid
Compound 888	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	3-Mercapto- propionic acid
Compound 889	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	3-Mercapto- propionic acid
Compound 890	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	3-Mercapto- propionic acid

	Α	В	С	B'
Compound 891	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Mercapto- acetic acid
Compound 892	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Mercapto- acetic acid
Compound 893	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1,2,3,4-Tetra- hydropyrido- [4,3-b][1,8]- naphthyridine
Compound 894	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1,2,3,4-Tetra- hydropyrido- [4,3-b][1,8]- naphthyridine
Compound 895	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	1,2,3,4-Tetra- hydropyrido- (4,3-b)[1,8]- naphthyridine
Compound 896	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	1,2,3,4-Tetra- hydropyrido- (4,3-b)(1,8)- naphthyridine
Compound 897	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	1,2,3,4-Tetra- hydropyrido- (4,3-b)(1,8)- naphthyridine
Compound 898	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	1,2,3,4-Tetra- hydropyrido- [4,3-b][1,8]- naphthyridine
Compound 899	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto- 1,2-propane- diol
Compound 900	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto- 1,2-propane- diol
Compound 901	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	3-Mercapto- 1,2-propane- diol
Compound 902	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto- 1,2-propane- diol
Compound 903	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	3-Mercapto- 1,2-propane- diol
Compound 904	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	3-Mercapto- 1,2-propane- diol
Compound 905	2-Amino-5- piperidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1,1,7,7- Tetraethyl- diethylene- triamine

	A	В	С	B'
	2-Amino-5-			1,1,7,7-
	piperidine-1-yl-	3-(Chloromethyl)-		Tetraethyl-
Compound 906		benzoyl chloride	p-Tolualdehyde	diethylene-
•	benzoic acid methyl	Delizoyi ciliolide		triamine
···	ester		· · · · · · · · · · · · · · · · · · ·	
	2-Amino-5-			1,1,7,7-
Compound 907	piperidine-1-yl-	3-(Chloromethyl)-	4-Fluorobenz-	Tetraethyl-
Compound 307	benzoic acid methyl	benzoyl chloride	aldehyde	diethylene-
	ester			triamine
	2-Amino-5-			1,1,7,7-
	piperidine-1-yl-	3-(Chloromethyl)-	3-Fluorobenz-	Tetraethyl-
Compound 908	benzoic acid methyl	benzoyl chloride	aldehyde	diethylene-
	ester			triamine
	2-Amino-5-			1,1,7,7-
	piperidine-1-yl-	3-(Chloromethyl)-	4-Chloro-3-	Tetraethyl-
Compound 909	benzoic acid methyl	benzoyl chloride	trifluoromethyl-	diethylene-
		Delizoyi cilionae	benzaldehyde	triamine
	ester			1,1,7,7-
	2-Amino-5-	2 (05)	- Mothava	Totroothyl
Compound 910	piperidine-1-yl-	3-(Chloromethyl)-	p-Methoxy-	Tetraethyl-
oumpound one	benzoic acid methyl	benzoyl chloride	benzaldehyde	diethylene-
	ester			triamine
	2-Amino-5-		4-Chloro-3-	N,N-Diethyl-
Compound 011	dipropylamino-	3-(Chloromethyl)-	trifluoromethyl-	N'-methyl-
Compound 911	benzoic acid methyl	benzoyl chloride	benzaldehyde	ethylene-
	ester		Delizaldeliyde	diamine
	2-Amino-5-			N,N-Diethyl-
	dipropylamino-	3-(Chloromethyl)-	p-Methoxy-	N'-methyl-
Compound 912	benzoic acid methyl	benzoyl chloride	benzaldehyde	ethylene-
	ester			diamine
	2-Amino-5-			N,N-bis(2-
	piperidine-1-yl-	3-(Chloromethyl)-	3,4-Dimethyl-	hydroxyethyl)-
Compound 913	benzoic acid methyl	benzoyl chloride	benzaldehyde	ethylene-
·		Delizoyi ciliolide	Delizaldeliyde	diamine
	ester			
	2-Amino-5-	0 (01 1 + 1 1)	4-Chloro-3-	N,N-bis(2-
Compound 914	piperidine-1-yl-	3-(Chloromethyl)-	trifluoromethyl-	hydroxyethyl)-
Compound or .	benzoic acid methyl	benzoyl chloride	benzaldehyde	ethylene-
	ester			diamine
	2-Amino-5-			N,N-bis(2-
Compound 915	piperidine-1-yl-	3-(Chloromethyl)-	p-Methoxy-	hydroxyethyl)-
Compound 913	benzoic acid methyl	benzoyl chloride	benzaldehyde	ethylene-
	ester			diamine
	2-Amino-5-			N,N-Diethyl-
	pyrrolidine-1-yl-	3-(Chloromethyl)-	3,4-Dimethyl-	N'-methyl-
Compound 916	benzoic acid methyl	benzoyl chloride	benzaldehyde	ethylene-
	ester			diamine
	2-Amino-5-		4.011	N,N-Diethyl-
	pyrrolidine-1-yl-	3-(Chloromethyl)-	4-Chloro-3-	N'-methyl-
Compound 917	benzoic acid methyl	benzoyl chloride	trifluoromethyl-	ethylene-
	ester	20112031 011101140	benzaldehyde	diamine
			 	N,N-Diethyl-
	2-Amino-5-	2 (Chloromethyl)	p-Methoxy-	N'-methyl-
Compound 918	pyrrolidine-1-yl-	3-(Chioromethyl)-		
	benzoic acid methyl	benzoyl chloride	benzaldehyde	ethylene-
	ester	<u> </u>		diamine
	2-Amino-5-	0 (01)	0.45	0.14
Compound 919	pyrrolidine-1-yl-	3-(Chloromethyl)-	3,4-Dimethyl-	2-Mercapto-
		benzoyl chloride	benzaldehyde	ethanol
l '	benzoic acid methyl			
·	ester		<u> </u>	
			4 Chlore 2	
	ester 2-Amino-5-		4-Chloro-3-	2-Mercapto-
Compound 920	ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol

	A	В	С	B'
Compound 921	2-Amino-5- pyrrolidine-1-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol
Compound 922	2-Amino-5-(4- methyl- [1,4]diazepin-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 923	2-Amino-5-[4-(2- hydroxy-ethyl)- piperazine-1-yl]- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 924	2-Amino-5-[4-(2- hydroxy-ethyl)- piperazine-1-yl]- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 925	1-(4-Amino-3- methoxycarbonyl- phenyl)-piperidine- 3-carboxylic acid	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 926	2-Amino-5- thiomorpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethanol
Compound 927	2-Amino-5- thiomorpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 928	2-Amino-5- thiomorpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol
Compound 929	2-Amino-5- thiomorpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 930	Methyl 2- aminothiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Dimethyl- amine hydrochloride
Compound 931	2-Amino-5-(4- methyl- [1,4]diazepin-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 932	2-Amino-5-(4- methyl- [1,4]diazepin-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 933	2-Amino-5-(4- methyl- [1,4]diazepin-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 934	1-(4-Amino-3- methoxycarbonyl- phenyl)-piperidine- 3-carboxylic acid	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethanol

	Α	В	С	B'
Compound 935	2-Amino-5- piperidine-1-yl- benzoic acid ethyl ester	3,4-Dimethoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 936	2-Amino-5- piperidine-1-yl- benzoic acid ethyl ester	3,4-Dimethoxy- benzoyl chloride	Nicotinaldehyde	
Compound 937	2-Amino-5- piperidine-1-yl- benzoic acid ethyl ester	3,4-Dimethoxy- benzoyl chloride	lmidazole-2- carboxaldehyde	
Compound 938	2-Amino-5- piperidine-1-yl- benzoic acid ethyl ester	3,4-Dimethoxy- benzoyl chloride	Vanillin	
Compound 939	2-Amino-5- morpholine-4-yl- benzoic acid ethyl ester	3,4-Dimethoxy- benzoyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 940	2-Amino-5- morpholine-4-yl- benzoic acid ethyl ester	3,4-Dimethoxy- benzoyl chloride	Vanillin	
Compound 941	2-Amino-5- morpholine-4-yl- benzoic acid ethyl ester	3,4-Dimethoxy- benzoyl chloride	p-Methoxy- benzaldehyde	
Compound 942	2-Amino-5- piperidine-1-yl- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 943	2-Amino-5-hydroxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 944	2-Amino-5-(2-oxo- pyrrolidine-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 945	2-Amino-5-(2-oxo- pyrrolidine-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 946	2-Amino-5-(2-oxo- pyrrolidine-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxybenz- aldehyde	Diisopropanol- amine
Compound 947	2-Amino-5-(2-oxo- pyrrolidine-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 948	2-Amino-5-(2-oxo- pyrrolidine-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 949	2-Amino-5-hydroxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 950	2-Amino-5-hydroxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine

· · · · · · · · · · · · · · · · · · ·	T A	В	С	B'
Compound 951	2-Amino-5-hydroxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 952	2-Amino-5-hydroxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 953	2-Amino-5-hydroxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 954	2-Amino-5-hydroxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 955	Methyl 2- aminothiophene-3- carboxylate	3,4-Dimethoxy- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	
Compound 956	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diethylamine
Compound 957	Ethyl 2-amino-4- methylthiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diethylamine
Compound 958	2-Amino-5- piperidine-1-yl- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 959	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 960	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 961	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 962	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 963	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 964	2-Amino-nicotinoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 965	2-Amino-nicotinoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 966	2-Amino-nicotinoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 967	2-Amino-nicotinoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 968	2-Amino-nicotinoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 969	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	1-(2-Hydroxy- ethyl)- piperazine

	A	В	С	B'
Compound 970	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 971	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 972	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 973	3-Amino- naphthalene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxybenz- aldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 974	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 975	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	m-Tolualdehyde	Diisopropanol- amine
Compound 976	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 977	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 978	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 979	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 980	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 981	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 982	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 983	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 984	4-Amino-thiophene- 3-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 985	2-Amino-5- fluorobenzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 986	2-Amino-5- fluorobenzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	Diisopropanol- amine
Compound 987	2-Amino-5- fluorobenzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 988	2-Amino-5- fluorobenzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine

	Α	В	С	B'
Compound 989	2-Amino-5- fluorobenzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	Diisopropanol- amine
Compound 990	2-Amino-5- fluorobenzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	Diisopropanol- amine
Compound 991	3-Amino-5-tert- butyl-thiophene-2- carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	1-(2-Hydroxy- ethyl)- piperazine
Compound 992	3-Amino-thiophene- 2-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diisopropanol- amine
Compound 993	3-Amino-thiophene- 2-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	Diisopropanol- amine
Compound 995	3-Amino-thiophene- 2-carboxylic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	Diethylamine
Compound 996	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluoro- acetophenone	Diisopropanol- amine
Compound 997	Methyl 2-amino-5- bromobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy acetophenone	Diisopropanol- amine
Compound 998	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-(3-Dimethyl- amino-propoxy)- benzaldehyde	Diisopropanol- amine
Compound 999	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-(3-Dimethyl- amino-propoxy)- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1000	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	(4-Formyl- phenoxy)-acetic acid	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1001	2-Amino-4,5,6,7- tetrahydro- benzothiophene-3- carboxylic acid	3-(Chloromethyl)- benzoyl chloride	4-Trifluoro- methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1002	2-Amino-4,5,6,7- tetrahydro- benzothiophene-3- carboxylic acid	3-(Chloromethyl)- benzoyl chloride	4-(2-Hydroxy- ethoxy)- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1003	2-Amino-4,5,6,7- tetrahydro- benzothiophene-3- carboxylic acid	3-(Chloromethyl)- benzoyl chloride	3-Fluoro- acetophenone	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1004	Methyl 2-amino-5- chlorobenzoate	Quinoxaline-2- carbonyl chloride	3-Fluorobenz- aldehyde	
Compound 1005	Methyl 2-amino-5- chlorobenzoate	Quinoxaline-2- carbonyl chloride	3,4-Dimethyl- benzaldehyde	
Compound 1006	Methyl 2-amino-5- chlorobenzoate	Quinoxaline-2- carbonyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	
Compound 1007	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto- propane-1,2- diol
Compound 1008	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto- propane-1,2- diol

	Α	В	С	B'
Compound 1009	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto- propane-1,2- diol
Compound 1010	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	3-Mercapto- propane-1,2- diol
Compound 1011	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	3-Mercapto- propane-1,2- diol
Compound 1012	Methyl 2-amino-5- chlorobenzoate	3-(Chloromethyl)- benzoyl chloride	4-Trifluoro- methoxy- benzaldehyde	3-Mercapto- propane-1,2- diol
Compound 1013	2-Amino-4,5-bis-(2- methoxy-ethoxy)- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto- propane-1,2- diol
Compound 1014	2-Amino-4,5-bis-(2- methoxy-ethoxy)- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto- propane-1,2- diol
Compound 1015	2-Amino-4,5-bis-(2- methoxy-ethoxy)- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto- propane-1,2- diol
Compound 1016	2-Amino-4,5-bis-(2- methoxy-ethoxy)- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	3-Mercapto- propane-1,2- diol
Compound 1017	2-Amino-5- methoxy-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	3-Mercapto- propane-1,2- diol
Compound 1018	2-Amino-5- methoxy-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	3-Mercapto- propane-1,2- diol
Compound 1019	2-Amino-5- methoxy-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	3-Mercapto- propane-1,2- diol
Compound 1020	2-Amino-5- methoxy-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	3-Mercapto- propane-1,2- diol
Compound 1021	2-Amino-5- methoxy-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	3-Mercapto- propane-1,2- diol
Compound 1022	2-Amino-5- methoxy-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1023	2-Amino-5- methoxy-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1024	2-Amino-5- methoxy-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1025	2-Amino-5- methoxy-ethoxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine

	Α	В	С	B'
Compound 1026	2-Amino-5- methoxy-ethoxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1027	2-Amino-5- methoxy-ethoxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1028	2-Amino-4,5-bis-(2- methoxy-ethoxy)- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1029	2-Amino-4,5-bis-(2- methoxy-ethoxy)- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1030	2-Amino-4,5-bis-(2- methoxy-ethoxy)- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1031	2-Amino-4,5-bis-(2- methoxy-ethoxy)- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1032	2-Amino-4,5-bis-(2- methoxy-ethoxy)- benzoic acid ethyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1033	2-Amino-5-[2-(2- methoxy-ethoxy)- ethoxy]-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1034	2-Amino-5-[2-(2- methoxy-ethoxy)- ethoxy]-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1035	2-Amino-5-[2-(2- methoxy-ethoxy)- ethoxy]-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1036	2-Amino-5-[2-(2- methoxy-ethoxy)- ethoxy]-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3-tri- fluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1037	2-Amino-5-[2-(2- methoxy-ethoxy)- ethoxy]-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1038	2-Amino-5-(3- piperidine-1-yl- propoxy)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1039	2-Amino-5-(3- piperidine-1-yl- propoxy)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 1040	2-Amino-5-(3- piperidine-1-yl- propoxy)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol

	Α	В	С	B'
Compound 1041	2-Amino-5-(3- piperidine-1-yl- propoxy)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethanol
Compound 1042	2-Amino-5-(2- piperidine-1-yl- ethoxy)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Mercapto- ethanol
Compound 1043	2-Amino-5-(2- piperidine-1-yl- ethoxy)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethanol
Compound 1044	2-Amino-5-(2- piperidine-1-yl- ethoxy)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 1045	2-Amino-5-(2- piperidine-1-yl- ethoxy)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol
Compound 1046	2-Amino-5- cyclohexylmethoxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1047	2-Amino-5- cyclohexylmethoxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1048	2-Amino-5- cyclohexylmethoxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1049	2-Amino-5- cyclohexylmethoxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1050	2-Amino-5- cyclohexylmethoxy- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1051	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	2-Mercapto- ethanol
Compound 1052	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	2-Mercapto- ethanol
Compound 1053	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethanol
Compound 1054	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	2-Mercapto- ethanol
Compound 1055	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol

	A	В	С	B'
Compound 1056	Ethyl 2-amino- 4,5,6,7- tetrahydrobenzo(B)- thiophene-3- carboxylate	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	1,1,7,7- Tetraethyl- diethylene- triamine
Compound 1057	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Fluorobenz- aldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1058	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Tolualdehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1059	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1060	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	4-Chloro-3- trifluoromethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1061	2-Amino-5-(4- fluoro-butoxy)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1062	2-Amino-5-(4- Hydroxypiperidine- 1-yl)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Trifluoro- methyl-4-chloro- benzaldehyde	2-Mercapto- ethanol
Compound 1063	2-Amino-5-(4- hydroxymethyl- piperidine-1-yl)- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Trifluoro- methyl-4-chloro- benzaldehyde	2-Mercapto- ethanol
Compound 1064	2-Amino-5- morpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethanol
Compound 1065	2-Amino-5- morpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Trifluoro- methyl-4-chloro- benzaldehyde	2-Mercapto- ethanol
Compound 1066	2-Amino-5- morpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol
Compound 1067	2-Amino-5- [1,4']bipiperidinyl-1'- yl-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Trifluoro- methyl-4-chloro- benzaldehyde	2-Mercapto- ethanol
Compound 1068	2-Amino-5- [1,4']bipiperidinyl-1'- yl-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol
Compound 1069	2-Amino-5-(4- methyl-piperidine-1- yl)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	2-Mercapto- ethanol

	Α	В	С	B'
Compound 1070	2-Amino-5-(4- methyl-piperidine-1- yl)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Trifluoro- methyl-4-chloro- benzaldehyde	2-Mercapto- ethanol
Compound 1071	2-Amino-5-(4- methyl-piperidine-1- yl)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol
Compound 1072	2-Amino-5-(4- methyl-piperazine- 1-yl)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Trifluoro- methyl-4-chloro- benzaldehyde	2-Mercapto- ethanol
Compound 1073	2-Amino-5-(4- methyl-piperazine- 1-yl)-benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	2-Mercapto- ethanol
Compound 1074	2-Amino-5- morpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3,4-Dimethyl- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1075	2-Amino-5- morpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	3-Trifluoro- methyl-4-chloro- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine
Compound 1076	2-Amino-5- morpholine-4-yl- benzoic acid methyl ester	3-(Chloromethyl)- benzoyl chloride	p-Methoxy- benzaldehyde	N,N-Diethyl- N'-methyl- ethylene- diamine

Starting compounds and reaction paths used in the synthesis of compounds corresponding to compounds A in synthesizing compounds 853, 854, 857 to 929, 931 to 942, 944 to 948, 958 to 973, 985 to 990, 1013 to 1055, and 1057 to 1076 are shown in Table 2. In the table, compounds A', D, and E correspond to compounds described in Examples and schemes A to H.

Table 2

	A'	D	E	Reaction path
Compound 853	2-Amino-5- fluorobenzoic acid			Scheme G
Compound 854	2-Amino-5- fluorobenzoic acid			Scheme G
Compound 857	2-Amino-5- fluorobenzoic acid			Scheme G
Compound 858	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 859	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 860	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 861	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 862	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 863	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 864	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 865	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 866	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 867	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 868	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 869	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 870	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 871	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 872	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 873	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 874	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 875	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 876	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 877	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 878	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 879	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 880	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 881	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 882	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 883	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A

-	A'	D	Ε	Reaction path
Compound 884	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 885	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 886	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 887	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 888	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 889	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 890	5-Chloro-2-nitro- benzoic acid	Piperidine	_	Scheme A
Compound 891	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 892	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 893	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 894	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 895	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 896	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 897	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 898	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 899	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 900	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 901	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 902	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 903	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 904	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 905	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 906	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 907	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 908	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 909	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 910	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 911	5-Amino-2-nitro- benzoic acid methyl ester	Propionaldehyde		Scheme H
Compound 912	5-Amino-2-nitro- benzoic acid methyl ester	Propionaldehyde		Scheme H

	A'	D	E	Reaction path
Compound 913	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 914	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 915	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 916	5-Chloro-2-nitro- benzoic acid	Pyrrolidine		Scheme A
Compound 917	5-Chloro-2-nitro- benzoic acid	Pyrrolidine		Scheme A
Compound 918	5-Chloro-2-nitro- benzoic acid	Pyrrolidine		Scheme A
Compound 919	5-Chloro-2-nitro- benzoic acid	Pyrrolidine		Scheme A
Compound 920	5-Chloro-2-nitro- benzoic acid	Pyrrolidine		Scheme A
Compound 921	5-Chloro-2-nitro- benzoic acid	Pyrrolidine		Scheme A
Compound 922	5-Chloro-2-nitro- benzoic acid	1-Methyl- homopiperazine		Scheme A
Compound 923	5-Chloro-2-nitro- benzoic acid	1-Piperazineethanol		Scheme A
Compound 924	5-Chloro-2-nitro- benzoic acid	1-Piperazineethanol		Scheme A
Compound 925	5-Chloro-2-nitro- benzoic acid	3-Piperidine- carboxylic acid		Scheme A
Compound 926	5-Chloro-2-nitro- benzoic acid	Thiomorpholine		Scheme A
Compound 927	5-Chloro-2-nitro- benzoic acid	Thiomorpholine		Scheme A
Compound 928	5-Chloro-2-nitro- benzoic acid	Thiomorpholine		Scheme A
Compound 929	5-Chloro-2-nitro- benzoic acid	Thiomorpholine		Scheme A
Compound 931	5-Chloro-2-nitro- benzoic acid	1-Methyl- homopiperazine		Scheme A
Compound 932	5-Chloro-2-nitro- benzoic acid	1-Methyl- homopiperazine		Scheme A
Compound 933	5-Chloro-2-nitro- benzoic acid	1-Methyl- homopiperazine		Scheme A
Compound 934	5-Chloro-2-nitro- benzoic acid	3- Piperidine- carboxylic acid		Scheme A
Compound 935	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 936	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 937	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 938	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 939	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 940	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 941	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 942	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 944	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D

	A'	D	Е	Reaction path
Compound 945	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D
Compound 946	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D
Compound 947	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D
Compound 948	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D
Compound 958	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 959	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 960	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 961	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 962	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 963	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 964	2-Amino-nicotinoic acid			Scheme G
Compound 965	2-Amino-nicotinoic acid			Scheme G
Compound 966	2-Amino-nicotinoic acid			Scheme G
Compound 967	2-Amino-nicotinoic acid			Scheme G
Compound 968	2-Amino-nicotinoic acid			Scheme G
Compound 969	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 970	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 971	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 972	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 973	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 985	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 986	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 987	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 988	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 989	2-Amino-5-fluoro- benzoic acid			Scheme G

	Α'	D	E	Reaction path
Compound 990	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 1013	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1014	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1015	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1016	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1017	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1018	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1019	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1020	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1021	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1022	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1023	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1024	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1025	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- methoxy-ethane		Scheme B
Compound 1026	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- methoxy-ethane		Scheme B
Compound 1027	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- methoxy-ethane		Scheme B
Compound 1028	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1029	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1030	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1031	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1032	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1033	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B
Compound 1034	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B
Compound 1035	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B

	A'	D	E	Reaction path
Compound 1036	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B
Compound 1037	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B
Compound 1038	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-3- chloropropane	Piperidine	Scheme C
Compound 1039	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-3- chloropropane	Piperidine	Scheme C
Compound 1040	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-3- chloropropane	Piperidine	Scheme C
Compound 1041	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-3- chloropropane	Piperidine	Scheme C
Compound 1042	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- chloroethane	Piperidine	Scheme C
Compound 1043	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- chloroethane	Piperidine	Scheme C
Compound 1044	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- chloroethane	Piperidine	Scheme C
Compound 1045	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- chloroethane	Piperidine	Scheme C
Compound 1046	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1047	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1048	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1049	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1050	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1051	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1052	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1053	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1054	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1055	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1057	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1058	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1059	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1060	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1061	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1062	perizoic aciu	4-Hydroxy- piperidine		Scheme A
Compound 1063	perizoic aciu	4-Piperidine- methanol		Scheme A
Compound 1064	Delizoic acid_	Morpholine		Scheme A
Compound 1065	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A

	A'	D	E	Reaction path
Compound 1066	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 1067	5-Chloro-2-nitro- benzoic acid	4-Piperidino- piperidine		Scheme A
Compound 1068	5-Chloro-2-nitro- benzoic acid	4-Piperidino- piperidine		Scheme A
Compound 1069	5-Chloro-2-nitro- benzoic acid	4-Methylpiperidine		Scheme A
Compound 1070	5-Chloro-2-nitro- benzoic acid	4-Methylpiperidine		Scheme A
Compound 1071	5-Chloro-2-nitro- benzoic acid	4-Methylpiperidine		Scheme A
Compound 1072	5-Chloro-2-nitro- benzoic acid	4-Methylpiperazine		Scheme A
Compound 1073	5-Chloro-2-nitro- benzoic acid	4-Methylpiperazine		Scheme A
Compound 1074	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 1075	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 1076	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A

	Α'	D	E	Reaction path
Compound 935	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 936	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 937	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 938	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 939	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 940	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 941	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 942	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 944	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D
Compound 945	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D
Compound 946	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D
Compound 947	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D
Compound 948	5-Amino-2-nitro- benzoic acid	4-Chloro-butyryl chloride		Scheme D
Compound 958	5-Chloro-2-nitro- benzoic acid	Piperidine		Scheme A
Compound 959	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 960	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 961	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 962	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 963	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 964	2-Amino-nicotinoic acid			Scheme G
Compound 965	2-Amino-nicotinoic acid			Scheme G
Compound 966	2-Amino-nicotinoic acid			Scheme G
Compound 967	2-Amino-nicotinoic acid			Scheme G
Compound 968	2-Amino-nicotinoic acid			Scheme G
Compound 969	3-Amino- naphthalene-2- carboxylic acid			Scheme G

	Α'	D	E	Reaction path
Compound 970	3-Amino- naphthalene-2-			Scheme G
Compound 971	carboxylic acid 3-Amino- naphthalene-2-			Scheme G
	carboxylic acid 3-Amino-			
Compound 972	naphthalene-2- carboxylic acid			Scheme G
Compound 973	3-Amino- naphthalene-2- carboxylic acid			Scheme G
Compound 985	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 986	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 987	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 988	2-Amino-5-fluoro- benzoic acid		ļ <u>-</u>	Scheme G
Compound 989	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 990	2-Amino-5-fluoro- benzoic acid			Scheme G
Compound 1013	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1014	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1015	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1016	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1017	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1018	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1019	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1020	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1021	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1022	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1023	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1024	5-Methoxy-2-nitro- benzoic acid			Scheme E
Compound 1025	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- methoxy-ethane		Scheme B
Compound 1026	penzoic acid	1-Bromo-2- methoxy-ethane		Scheme B
Compound 1027	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- methoxy-ethane		Scheme B
Compound 1028	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F

	Α'	D	E	Reaction path
Compound 1029	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1030	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1031	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1032	3,4-Dihydroxy- benzoic acid ethyl ester	1-Bromo-2- methoxy-ethane		Scheme F
Compound 1033	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B
Compound 1034	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B
Compound 1035	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B
Compound 1036	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B
Compound 1037	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2-(2- methoxy-ethoxy)- ethane		Scheme B
Compound 1038	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-3- chloropropane	Piperidine	Scheme C
Compound 1039	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-3- chloropropane	Piperidine	Scheme C
Compound 1040	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-3- chloropropane	Piperidine	Scheme C
Compound 1041	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-3- chloropropane	Piperidine	Scheme C
Compound 1042	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- chloroethane	Piperidine	Scheme C
Compound 1043	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- chloroethane	Piperidine	Scheme C
Compound 1044	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- chloroethane	Piperidine	Scheme C
Compound 1045	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-2- chloroethane	Piperidine	Scheme C
Compound 1046	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1047	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1048	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1049	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1050	5-Hydroxy-2-nitro- benzoic acid	Bromomethyl- cyclohexane		Scheme B
Compound 1051	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1052	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1053	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1054	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B

	A'	D	E	Reaction path
Compound 1055	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane	<u> </u>	Scheme B
Compound 1057	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1058	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1059	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1060	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1061	5-Hydroxy-2-nitro- benzoic acid	1-Bromo-4-fluoro- butane		Scheme B
Compound 1062	5-Chloro-2-nitro- benzoic acid	4-Hydroxy- piperidine		Scheme A
Compound 1063	5-Chloro-2-nitro- benzoic acid	4-Piperidine- methanol		Scheme A
Compound 1064	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 1065	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 1066	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 1067	5-Chloro-2-nitro- benzoic acid	4-Piperidino- piperidine		Scheme A
Compound 1068	5-Chloro-2-nitro- benzoic acid	4-Piperidino- piperidine		Scheme A
Compound 1069	5-Chloro-2-nitro- benzoic acid	4-Methylpiperidine		Scheme A
Compound 1070	5-Chloro-2-nitro- benzoic acid	4-Methylpiperidine		Scheme A
Compound 1071	5-Chloro-2-nitro- benzoic acid	4-Methylpiperidine		Scheme A
Compound 1072	5-Chloro-2-nitro- benzoic acid	4-Methylpiperazine		Scheme A
Compound 1073	5-Chloro-2-nitro- benzoic acid	4-Methylpiperazine		Scheme A
Compound 1074	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 1075	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A
Compound 1076	5-Chloro-2-nitro- benzoic acid	Morpholine		Scheme A

Structures of compounds 1 to 1077 are shown in Table 3.

Table 3

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 1	O O O O O O O O O O O O O O O O O O O	Compound 7	O N O O O
Compound 2	P C C C C C C C C C C C C C C C C C C C	Compound 8	F F F F F F F F F F F F F F F F F F F
Compound 3	NH OO	Compound 9	NH O O
Compound 4		Compound 10	O O O O
Compound 5	O O O O O O O O O O O O O O O O O O O	Compound 11	O O O O O O O O O O O O O O O O O O O
Compound 6	O O O O	Compound 12	NH O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 13	Br N N N N N N N N N N N N N N N N N N N	Compound 19	OH OH
Compound 14	Br NH OO	Compound 20	
Compound 15	ON NO F	Compound 21	O NH O O
Compound 16	P P P P P P P P P P P P P P P P P P P	Compound 22	NH O
Compound 17	O O O O O O O O O O O O O O O O O O O	Compound 23	
Compound 18	O O O O O O O	Compound 24	S O O O O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 25	HO HO HO	Compound 31	Br NH OO
Compound 26	OH OH OH OH	Compound 32	PH O O
Compound 27		Compound 33	\$\frac{1}{2} \\ \frac{1}{2} \\ \frac
Compound 28	Br. N. N. O.	Compound 34	ON BIT ON
Compound 29	Br N F	Compound 35	O NH O O
Compound 30	Br N N N N N N N N N N N N N N N N N N N	Compound 36	OH NH OH OO

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 37	NH O O O O O O O O O O O O O O O O O O O	Compound 43	NH NH NO O
Compound 38	N N N N N N N N N N N N N N N N N N N	Compound 44	F F F
Compound 39	OH OH	Compound 45	OH NH F
Compound 40	E I I I I I I I I I I I I I I I I I I I	Compound 46	NH E
Compound 41	NH CI F F	Compound 47	NH NH O
Compound 42	OH NH NH O	Compound 48	NH NH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 49	O HE HE O O O O O O O O O O O O O O O O	Compound 55	F P P P P P P P P P P P P P P P P P P P
Compound 50	D H	Compound 56	
Compound 51		Compound 57	O H H H H H H H H H H H H H H H H H H H
Compound 52		Compound 58	O H O H
Compound 53	NH O	Compound 59	
Compound 54	NH O O FF	Compound 60	Br N N CI

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 61	Br NH OOO	Compound 67	CI NH OOO
Compound 62	Br ZH OOO	Compound 68	
Compound 63	Br N N OH	Compound 69	C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Compound 64	Br NH O	Compound 70	CI NH OH
Compound 65	CI N. N. F	Compound 71	CI NH OF
Compound 66	CI NH O	Compound 72	CI NH O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 73	CI NH O	Compound 79	O NH O H
Compound 74	CI NH NH NO O	Compound 80	N N OH
Compound 75	CI NH OH	Compound 81	H N H N H N H N H N H N H N H N H N H N
Compound 76	O NH NH O F	Compound 82	DE LES CONTRACTOR OF THE CONTR
Compound 77	O N F	Compound 83	NH OFF
Compound 78	O N H N F	Compound 84	N N N N N N N N N N N N N N N N N N N

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 85	OH OH	Compound 91	Br N N O
Compound 86	OH NH OH F	Compound 92	CI NH O
Compound 87	Br NH FF	Compound 93	
Compound 88	CI N N F F F F O O	Compound 94	O H N O O O O O O O O O O O O O O O O O
Compound 89	CI FF F	Compound 95	O ZH SH
Compound 90	O NH F F	Compound 96	NH O F

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 97	Br. N. N. Br	Compound 103	NH O
Compound 98	CI NH O O	Compound 104	O N N N N N N N N N N N N N N N N N N N
Compound 99	NH O Br	Compound 105	Br N F
Compound 100	NH O	Compound 106	Br NH NH
Compound 101	O N Br	Compound 107	Br N N CI
Compound 102	O N N Br	Compound 108	Br NH NH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 109	Br N OH	Compound 115	Br NH O
Compound 110	Br N N N N N N N N N N N N N N N N N N N	Compound 116	Br N CI
Compound 111	CI ZE O	Compound 117	BI N N O
Compound 112	O N N N N N N N N N N N N N N N N N N N	Compound 118	O TEZ O O O O O O O O O O O O O O O O O O O
Compound 113	O NH NH	Compound 119	Br N N N N N N N N N N N N N N N N N N N
Compound 114	Br NH O	Compound 120	NH NH OFF

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 121	ONH NH OFF FF	Compound 127	Br NN O
Compound 122	O N CI	Compound 128	Br NH O
Compound 123	O NH O F F	Compound 129	O NH N N N N N N N N N N N N N N N N N N
Compound 124	O NH O F F	Compound 130	F Z Z
Compound 125		Compound 131	O N N N N N N N N N N N N N N N N N N N
Compound 126	CI CI CI CO	Compound 132	O NH N

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 133	O NH	Compound 139	NH O
Compound 134	O N N F	Compound 140	NH O
Compound 135	O ZH	Compound 141	NH O
Compound 136	NH N	Compound 142	
Compound 137	O N N N N N N N N N N N N N N N N N N N	Compound 143	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Compound 138	O H N N N N N N N N N N N N N N N N N N N	Compound 144	O NH O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 145	O NH O O O	Compound 151	Br NH NH
Compound 146	N-N-N-F	Compound 152	Br N N F
Compound 147	NH O	Compound 153	Br N N N N N N N N N N N N N N N N N N N
Compound 148	O H H H H H H H H H H H H H H H H H H H	Compound 154	Br N N N N N N N N N N N N N N N N N N N
Compound 149	NH O	Compound 155	Br NH NH
Compound 150	o C O O O O O O O O O O O O O O O O O O	Compound 156	Br CI F F F

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 157	Br NH NH S	Compound 163	O ZH CH
Compound 158	Br N N N N N N N N N N N N N N N N N N N	Compound 164	O N CIH
Compound 159	Br N N N N N N N N N N N N N N N N N N N	Compound 165	O NH CH
Compound 160		Compound 166	Br NN F
Compound 161	Br N N N N N N N N N N N N N N N N N N N	Compound 167	
Compound 162	Br N F F	Compound 168	Br ZH Z

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 169	Br N N N N N N N N N N N N N N N N N N N	Compound 175	Br NH NH
Compound 170	Br N N N N N N N N N N N N N N N N N N N	Compound 176	Br Z Z Z
Compound 171	Br NH F F	Compound 177	Br NH FF
Compound 172	Br N P P	Compound 178	Br N H
Compound 173	Br N N N N N N N N N N N N N N N N N N N	Compound 179	Br NH
Compound 174	Br NH	Compound 180	Br N N N N N N N N N N N N N N N N N N N

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 181	Br N N N N N N N N N N N N N N N N N N N	Compound 187	CI NA Z
Compound 182	Br N N N N N N N N N N N N N N N N N N N	Compound 188	CI N N
Compound 183	Br NH F F	Compound 189	CI N F F
Compound 184	Ch NH NH NH	Compound 190	CI NH
Compound 185	CI NH	Compound 191	CI ZH ZH
Compound 186	CI NH NH N	Compound 192	CI NH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 193	CI N N N N N N N N N N N N N N N N N N N	Compound 199	Br NH S
Compound 194	CI N N F F F	Compound 200	Br N FF F N S
Compound 195	Br NH S	Compound 201	Br N N O O O
Compound 196	Br N N N N N N N N N N N N N N N N N N N	Compound 202	Br NH O
Compound 197	Br N N N N N N N N N N N N N N N N N N N	Compound 203	O ZH ZH ZH Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Compound 198	Br NH S N	Compound 204	NH O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 205	NH O O O	Compound 211	Br N N N N N N N N N N N N N N N N N N N
Compound 206	O O O O O O O O O O O O O O O O O O O	Compound 212	CI ZH ZH Z
Compound 207	O NH NO O O	Compound 213	F NH O
Compound 208	N N N N N N N N N N N N N N N N N N N	Compound 214	Br H NH
Compound 209	NH O O	Compound 215	Br ZH Z
Compound 210	O H HZ	Compound 216	Br NH NH NH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 217	CI Z Z	Compound 223	CI Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Compound 218	O H HZ H HZ H HZ H HZ HZ HZ HZ HZ HZ HZ H	Compound 224	
Compound 219	N N N N N N N N N N N N N N N N N N N	Compound 225	P Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Compound 220	Br ZH ZH	Compound 226	NH NH
Compound 221		Compound 227	O H H H H H H H H H H H H H H H H H H H
Compound 222	CI NH NH NH NH	Compound 228	O N N N N N N N N N N N N N N N N N N N

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 229	O H HZ H	Compound 235	O H H T T T T T T T T T T T T T T T T T
Compound 230		Compound 236	O NH H
Compound 231		Compound 237	NH F
Compound 232	o o o	Compound 238	NH F
Compound 233	O O O O O O O O O O O O O O O O O O O	Compound 239	O NH F OH
Compound 234	NH O	Compound 240	NO ₂

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 241	NH NH NO	Compound 247	O NH O O
Compound 242	HO LE LA	Compound 248	Br NH NH
Compound 243	Br NH O	Compound 249	
Compound 244	CI NH NH O O	Compound 250	
Compound 245	O N N O O O O O O O O O O O O O O O O O	Compound 251	
Compound 246	CI NH	Compound 252	Br N CH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 253	O N CIH	Compound 260	Br NH FF
Compound 255	Br NH S S N	Compound 261	Br NH S OH
Compound 256	Br N N S N	Compound 262	Br NH S OH
Compound 257	Br NH NH O N N N N N N N N N N N N N N N N	Compound 263	Br S S S OH
Compound 258	Br NH NH NH	Compound 264	Br N N S OH
Compound 259	Br N N N N N N N N N N N N N N N N N N N	Compound 265	Br N S OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 266	Br NH FF	Compound 272	Br CI F F F NH NH
Compound 267	Br N N N N N N N N N N N N N N N N N N N	Compound 273	Br N.N. N. N
Compound 268	Bi N N N N N N N N N N N N N N N N N N N	Compound 274	Br NH NH OH
Compound 269	Br NH S NH	Compound 275	B
Compound 270	B H H H H H H H H H H H H H H H H H H H	Compound 276	Br NH S OH
Compound 271	Br N F N NH	Compound 277	Br N-N F

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 278	BI N N F F F F S OH	Compound 284	Br. N. N. F
Compound 279	Br NH NH NH	Compound 285	Br ZH
Compound 280	Br Charles And	Compound 286	Br NN
Compound 281	Br. N. H.	Compound 287	BI NA
Compound 282	Br NH NH N	Compound 288	Br. N. N. F.
Compound 283	Br N N N N N N N N N N N N N N N N N N N	Compound 289	BI CI F F F NH O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 290	Br N N N N N N N N N N N N N N N N N N N	Compound 296	Br Charles And
Compound 291	Br C N N N N N N N N N N N N N N N N N N	Compound 297	Br N F F
Compound 292	BI ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Compound 298	Br Charles A
Compound 293	Br. Ch. No.	Compound 299	Br NH O
Compound 294	Br NN	Compound 300	Br NH OH
Compound 295	Br N F	Compound 301	Br H N F HO

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 302	Br CI F F F F F F F F F F F F F F F F F F	Compound 308	Br N N N N N N N N N N N N N N N N N N N
Compound 303	Br N H H H H H H H H H H H H H H H H H H	Compound 309	Br NN
Compound 304	Br NH NH HO	Compound 310	Br NN
Compound 305	Br N N N N N N N N N N N N N N N N N N N	Compound 311	Br N H N N N N N N N N N N N N N N N N N
Compound 306	Br CI F F F	Compound 312	Br N N F
Compound 307	Br N N N N N N N N N N N N N N N N N N N	Compound 313	Br CI F F F

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 314	Br Wh	Compound 320	BI NO F
Compound 315	Br Change	Compound 321	Br CI F F F OH
Compound 316	Br NH OH	Compound 322	Br NH OH
Compound 317	Br NH OH	Compound 323	Br N N OH
Compound 318	Br N OH	Compound 324	Br NH O OH
Compound 319	Br. J. N. J. F. N. J. P. OH	Compound 325	Br WH NH OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 326	Br N N OH	Compound 332	Br NN NH O OH
Compound 327	Br N N F N OH	Compound 333	Br NN N OH
Compound 328	Br N N F	Compound 334	Br N N OH
Compound 329	Br NH F F F	Compound 335	Br NH OH
Compound 330	Br N N OH	Compound 336	Br NH OH
Compound 331	Br N N O O O O O O O	Compound 337	Br N F F F

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 338	Br NH OH	Compound 344	S N-N F F CI
Compound 339	Br NH OH	Compound 345	S H-N
Compound 340	Br N N OH	Compound 346	Br N N
Compound 341	Br ZH	Compound 347	Br N N
Compound 342	SH NH N N N N N N N N N N N N N N N N N	Compound 348	CI NH NH
Compound 343	NH N-N	Compound 349	CI ZH ZZ Z

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 350	Br N N OH	Compound 356	Br N N CIH
Compound 351	CI N N OH	Compound 357	Br N N N N N N N N N N N N N N N N N N N
Compound 352	Br NH NH	Compound 358	HE LES
Compound 353	Br NN	Compound 359	CI NH
Compound 354	CI NH N	Compound 360	CI ZH ZH ZH
Compound 355	CI NH	Compound 361	CI NH NH NH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 362	CI NH	Compound 369	CI CI NO
Compound 363	CL NH	Compound 370	C N N N N N N N N N N N N N N N N N N N
Compound 364	CI NH F F F	Compound 371	CI CI THE NAME OF
Compound 366	C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Compound 372	CI CI NH NN
Compound 367	Br ZII O O O	Compound 373	CI NH N N
Compound 368	C	Compound 374	CH J. N. J.

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 375	CI NH NO	Compound 381	
Compound 376	CI N N OH	Compound 382	CC NAT
Compound 377	C C C C C C C C C C C C C C C C C C C	Compound 383	CI NH NN
Compound 378	Br ZH ZH	Compound 384	F F C N N N N N N N N N N N N N N N N N
Compound 379	CL NH NH NH NH	Compound 385	CI NH NN
Compound 380	CI NH NH NH	Compound 386	CI NH NN NN

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 387	C N N N N N N N N N N N N N N N N N N N	Compound 393	
Compound 388	C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Compound 394	CI NH OH
Compound 389	C NH N N N N N N N N N N N N N N N N N N	Compound 395	CI NH NH OH
Compound 390	CI NET THE TENT OF	Compound 396	CI NH NH OH
Compound 391		Compound 397	C Z Z Z O D D
Compound 392	CI NH NH NH NH NH NH	Compound 398	CI NH NO OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 399	CI NH NH OH	Compound 405	CI N N OH OH
Compound 400	CI N N OH	Compound 406	CI NH OH OH
Compound 401	CI NH OH	Compound 407	C NH OH
Compound 402	CI NH OH	Compound 408	CI N OH OH
Compound 403	CI NH NOH	Compound 409	CI NH OH
Compound 404	CI N OH	Compound 410	CI NH OH OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 411	CI NH OH OH	Compound 417	CI NH F F F
Compound 412	CI N N OH	Compound 418	CI NH OH
Compound 413	0 H	Compound 419	CI NH NH OH
Compound 414	CI NH OH	Compound 420	CI ON NO OH
Compound 415	CI NH OH	Compound 421	CI NH OH
Compound 416	CI NH	Compound 422	CI N F F NH OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 423	CI NH OH	Compound 429	CI NH OOH
Compound 424	CI NH NOH	Compound 430	CI N N OH
Compound 425	CI NH OH	Compound 431	CI ZH ZOH
Compound 426	CI N N OH	Compound 432	CI N.N. F
Compound 427	C C C C C C C C C C C C C C C C C C C	Compound 433	CI NH OH
Compound 428	CI NH O OH	Compound 434	CI N N OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 435	CI N N OH	Compound 441	CI N N OH
Compound 436	CI NH O OH	Compound 442	CI N. N. S. N.
Compound 437	CI F F F OH	Compound 443	CI NH S N N
Compound 438	CI N O O O O O O O O O O O O O O O O O O	Compound 444	CI NA
Compound 439	O H HZ O O O O O O O O O O O O O O O O O	Compound 445	CI NH
Compound 440	CI NH OH	Compound 446	CI NA

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 447	CI S NH	Compound 453	CI NH S
Compound 448	CI NH SS	Compound 454	CI NH S
Compound 449	CI STE	Compound 455	CI NH NH NH NH
Compound 450	CI NH OH	Compound 456	CI NH
Compound 451	CI N N OH	Compound 457	CI NH S N
Compound 452	CI NA F	Compound 458	CI N. N. OO NH OO NH OO NH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 459	CI CI NAME SON	Compound 465	C NH N N N N N N N N N N N N N N N N N N
Compound 460	C OH OH	Compound 466	2
Compound 461	CI NH S N	Compound 467	
Compound 462		Compound 468	
Compound 463	Charles and the second	Compound 469	CL NH N-N, N
Compound 464	CI NH N-N, N	Compound 470	OH OH NH N-N, N

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 471	CI NH NN	Compound 477	F F CI
Compound 472	N N N N N N N N N N N N N N N N N N N	Compound 478	
Compound 473		Compound 479	NH N
Compound 474	- F - T - T - T - T - T - T - T - T - T	Compound 480	O O O O O O O O O O O O O O O O O O O
Compound 475	NH NA	Compound 481	NH NH NH
Compound 476		Compound 482	O NH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 483	N N N N N N N N N N N N N N N N N N N	Compound 489	
Compound 484	O N N N N N N N N N N N N N N N N N N N	Compound 490	OH OH
Compound 485		Compound 491	OH NH
Compound 486		Compound 492	C S OH
Compound 487	SH ST	Compound 493	CI N N OH
Compound 488		Compound 494	Br N N N N N N N N N N N N N N N N N N N

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 495	Br N F	Compound 501	Br NH NH
Compound 496	Br N N N F	Compound 502	Br. N.
Compound 497	Br N N N N N N N N N N N N N N N N N N N	Compound 503	Br NH
Compound 498	Br N N N N N N N N N N N N N N N N N N N	Compound 504	Br NH NH
Compound 499	Br NH NH NH	Compound 505	O N F
Compound 500	Br N F F	Compound 506	P P P P P P P P P P P P P P P P P P P

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 507	O N N N N N N N N N N N N N N N N N N N	Compound 513	Br NH FF
Compound 508	ON P F F F	Compound 514	NH OF F
Compound 509	Br NH NH	Compound 515	P N N F
Compound 510	Br ZH O Z	Compound 516	O H H H H H H H H H H H H H H H H H H H
Compound 511	Br ZH ZH O ZH	Compound 517	
Compound 512	Br NH NH	Compound 518	S NH O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 519	S NH O O O	Compound 526	NH S OH
Compound 521	S NH O	Compound 527	NH S OH
Compound 522	S NH O O	Compound 528	S N-N F F N-N N-N N-N N-N N-N N-N N-N N-N
Compound 523	S N N N N N N N N N N N N N N N N N N N	Compound 529	S P P P P P P P P P P P P P P P P P P P
Compound 524	S N N N N N N N N N N N N N N N N N N N	Compound 530	NH N-N
Compound 525	NH OH	Compound 531	S N N N N N N N N N N N N N N N N N N N

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 532	S NH N N N OH	Compound 538	S P P P P P P P P P P P P P P P P P P P
Compound 533	S NH OH	Compound 539	S NH S NH S
Compound 534	NH P N N N N N N N N N N N N N N N N N N	Compound 540	S O N N O O O O O O O O
Compound 535	NH N	Compound 541	NH N-N OH
Compound 536	NH NH N	Compound 542	S N-N OH
Compound 537	S O N N N N N N N N N N N N N N N N N N	Compound 543	S O O O O O O O O O O O O O O O O O O O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 544	Br NH	Compound 550	CI NO H
Compound 545	NH LY	Compound 551	S S S S S S S S S S S S S S S S S S S
Compound 546	Br S OH	Compound 552	S NH NN NH
Compound 547	C H NH S OH	Compound 553	S NH NN NH
Compound 548	Br NH O	Compound 554	NH S NH
Compound 549	CI N F F OH OH	Compound 555	F CI O N-N CI S NH O N NH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 556	O NH O NH	Compound 562	O N N O O O O O O O O O O O O O O O O O
Compound 557	ON NO N	Compound 563	
Compound 558	S NH O S OH	Compound 564	S NH N N N N N N N N N N N N N N N N N N
Compound 559	O N N F F S NH O S OH	Compound 565	S NH
Compound 560	S NH OH	Compound 566	S NH S NH
Compound 561	F F CI	Compound 567	F F CI

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 568	S NH O N N	Compound 574	S NH N N
Compound 569	S NH	Compound 575	S NH OH
Compound 570	S NH	Compound 576	o h
Compound 571	S Z Z Z	Compound 577	OH OH
Compound 572	S PH S S S S S S S S S S S S S S S S S S	Compound 578	OH OH
Compound 573	FFF G	Compound 579	S NH OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 580	S NH OH	Compound 586	S NH NN
Compound 581		Compound 587	S NH OH OH
Compound 582	S H HZ N N N N N N N N N N N N N N N N N	Compound 588	O NO
Compound 583	F ZZI ZZI	Compound 589	S NH OH OH
Compound 584	O ZH NA	Compound 590	S NH OH OH
Compound 585	F C C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Compound 591	F F CI

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 592	NH OH OH	Compound 598	S N N N N N N N N N N N N N N N N N N N
Compound 593	HO HO	Compound 599	S NH O H
Compound 594	S NH OH	Compound 600	OH OH
Compound 595	S NH OH	Compound 601	S NH OH
Compound 596	OH NO OH	Compound 602	N N F OH
Compound 597	S NH OH	Compound 603	F F CI

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 604	S NH OH	Compound 610	S MH
Compound 605	O N N S OH	Compound 611	S NH N N
Compound 606	ON-NOTE SON	Compound 612	
Compound 607	S NH S OH	Compound 613	2
Compound 608	F F CI	Compound 614	S NH NN N
Compound 609	S NH N N	Compound 615	

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 616	S NH N N	Compound 622	S NH OH
Compound 617	F O D D D D D D D D D D D D D D D D D D	Compound 623	OH OH
Compound 618	O N N N N N N N N N N N N N N N N N N N	Compound 624	OH OH
Compound 619	F F CI	Compound 625	F F CI
Compound 620	S NH N N	Compound 626	S NH OH
Compound 621	S NH OH	Compound 627	S NH OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 628	S NH OH	Compound 634	S NH OH
Compound 629	S NH OH OH	Compound 635	P Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Compound 630	S NH OH	Compound 636	P P P P P P P P P P P P P P P P P P P
Compound 631	S NH OH	Compound 637	S NH OH
Compound 632	S NH OH	Compound 638	S NH OH
Compound 633	OH OH	Compound 639	S NH OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 640	S NH OH	Compound 646	
Compound 641	S NH O H	Compound 647	S N N NH
Compound 642	S NH OH	Compound 648	S N NH
Compound 643	F F CI	Compound 649	S N N N N N N N N N N N N N N N N N N N
Compound 644	S NH OH	Compound 650	F F CI S N NH
Compound 645	NH S OH	Compound 651	S N S N NH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 652	S NH O N N	Compound 658	S NH O S OH
Compound 653		Compound 659	S NH O S OH
Compound 654	N N N N N N N N N N N N N N N N N N N	Compound 660	NH O S OH
Compound 655	S NH	Compound 661	S NH S OH
Compound 656	S NH O	Compound 662	F F CI
Compound 657	S NH O N	Compound 663	S NH S OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 664	S NH S NH	Compound 670	S NH OH
Compound 665	O N N N N N N N N N N N N N N N N N N N	Compound 671	S NH OH
Compound 666	O N N N N	Compound 672	S NH OH
Compound 667	S NH S NH	Compound 673	S NH OH
Compound 668	F F CI	Compound 674	F F CI
Compound 669	S NH	Compound 675	

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 676	Br N N N O OH	Compound 682	CI NH S S
Compound 677	O HZ A HZ	Compound 683	CI NH S S
Compound 678	BI SHOOTH	Compound 684	
Compound 679	Br NH S OH	Compound 685	
Compound 680	CI NH S O	Compound 686	CI NH OF OF OF
Compound 681	CI NH S O	Compound 687	CI NH SI O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 688	CI NH ON	Compound 694	CI NH P S OH
Compound 689		Compound 695	Br N S OH
Compound 690		Compound 696	Br N-N-S-OH
Compound 691	CI N S S OH	Compound 697	Br N-N S OH
Compound 692	CI NH S OH	Compound 698	Br CI FF FF OH
Compound 693	CI NH SOOH	Compound 699	CI NH STO

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 700	CI NH S O	Compound 706	
Compound 701		Compound 707	S N-N FF CI
Compound 702		Compound 708	CI NH S OH
Compound 703		Compound 709	CI CI F F P P P P P P P P P P P P P P P P P
Compound 704		Compound 710	NH ON NH
Compound 705		Compound 711	S N-N N

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 712	S N-N O	Compound 718	Br N N CH,
Compound 713	Br N N F	Compound 719	Br N N F HO CH ₃
Compound 714	Br. N. N. F. F.	Compound 720	Br N N F
Compound 715	Br N N N N N N N N N N N N N N N N N N N	Compound 721	Br. CH, OH OH
Compound 716	Br CH ₅	Compound 722	Br. N. N. O-CH ₃
Compound 717	Br CH ₀ OH ₀	Compound 723	Br CH, OH NO CH,

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 724	BI CH,	Compound 730	
Compound 725	BIT NO	Compound 731	
Compound 726	Br. A.	Compound 732	
Compound 727	BI CH, OH, OH	Compound 733	BI COLL COLL COLL COLL COLL COLL COLL COLL
Compound 728	BY CHA	Compound 734	and the second s
Compound 729	Br. Chy. N. Cots	Compound 735	Br Chy Chy Chy Chy Inch Chy Chy Chy Chy Chy Chy Chy Chy Chy Ch

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 736	er CH ₃	Compound 742	Br CH ₃
Compound 737	Br. N. S. F. CH,	Compound 743	Br N N OH
Compound 738	Br CH,	Compound 744	Br N N OH
Compound 739	BI N N O CH ₃	Compound 745	Br N N F F F
Compound 740	Br N Oth,	Compound 746	Br. N. OH
Compound 741	Br. Cot,	Compound 747	

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 748	BE COL	Compound 754	Br N N F F F CH ₃
Compound 749	Br CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	Compound 755	er Charles Car
Compound 750	Br. Cot, N. Cot, N. Cot, Cot,	Compound 756	Br. W. CH ₅
Compound 751	Br. CH ₃	Compound 757	Br. CH ₃ CH ₃ CH ₃ N, N CH ₃
Compound 752	Br N CH,	Compound 758	Br. N. N. O'A, O'A, O'A, O'A, O'A, O'A, O'A, O'A,
Compound 753	Br. N. N. F. F. CH,	Compound 759	Br. N. N. CH ₃

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 760	Br. Ch.	Compound 766	Br N N CH ₃
Compound 761	Br Cl P F F F F F F F F F F F F F F F F F F	Compound 767	Br. N. N. S. CH ₃
Compound 762	Br. No. Ch.	Compound 768	Br N S CH3
Compound 763	Br. Ch.	Compound 769	Br N N F F
Compound 764	Br. CH ₃ O CH ₃ CH ₃ CH ₃	Compound 770	OF NO CH,
Compound 765	BI CH ₃ N N CH ₃ CH ₃	Compound 771	Br. J. N. J. Ou,

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 772	Br. CH ₃	Compound 778	Br Chy Oty
Compound 773	Br CH ₃	Compound 779	S N CH CH,
Compound 774	BI N N N N N N N N N N N N N N N N N N N	Compound 780	N N OH CH ₃
Compound 775	Br N N F	Compound 781	H,C O CH, CH, S N O CH, HO O
Compound 776	Br N N F F N N N N N N N N N N N N N N N	Compound 782	H,C ON N CH, S N O OH
Compound 777	Br N N O CH ₃	Compound 783	H,C ON N S S S ON ON O

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 784	H,C O N N S O O O O O O O O O O O O O O O O	Compound 790	H ₃ C ₂ O _N O _N O _H
Compound 785	H ₃ C O CH ₃	Compound 791	H,C O N N O CH,
Compound 786	H ₃ C CH ₃ CH ₃ S N O N OH	Compound 792	S N OH CH,
Compound 787	H ₃ C CH ₃ S N O OH	Compound 793	S N O OH CH, OH
Compound 788	HO HO	Compound 794	N O OH OH OH
Compound 789	H ₂ C O N N O HO	Compound 795	S N O OH CH, OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 796	F F CI N OH CH, H,C OH	Compound 802	F F CI
Compound 797	S N O CH ₃ S N O CH ₃ CH ₃ OH CH ₃	Compound 803	O CHS
Compound 798	CH, CH,	Compound 804	CH, CH, S N O OH CH, OH OH
Compound 799	CH _s	Compound 805	S N O OH CH ₃
Compound 800	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Compound 806	S N OH CH, H,C OH
Compound 801	S N OH	Compound 807	S N O OH CH ₃

Compound No.	Chemical structural formula	Compound No. Chemical structural formul	a
Compound 808	F F CI S N O OH CH ₃ OH	Compound 814	сн,
Compound 809	N N O CH ₃ N O CH ₃ O CH ₃	Compound 815	1 ,
Compound 810	СН ₃ СН ₃ СН ₃ СН ₃ ССН ₃ ССН ₃	Compound 816	
Compound 811	CH ₃	Compound 817	ОН
Compound 812	N CH ₅	Compound 818] DH
Compound 813	S N CH ₃	Compound 819	ОН

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 820	F F CI	Compound 826	H.f. S. N. N. S. CH3
Compound 821	S N O CH ₃	Compound 827	H,C I N N CH ₃
Compound 822	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ N—CH ₃	Compound 828	HE STANDARD
Compound 823	H ₃ C CH ₃ N CH ₃ N CH ₃	Compound 829	
Compound 824	H ₃ C N CH ₃	Compound 830	
Compound 825	H ₃ C O CH ₃	Compound 831	H.C. N.

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 832	H,C, I, CH, S, N, O, N,	Compound 838	M ₂ C S N CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
Compound 833	H ₃ C CH ₃	Compound 839	H,C O CH, CH, CH, CH, CH,
Compound 834	H ₃ C N N S N N N N N N N N N N N N N N N N	Compound 840	H,C, T, N, O, N, CH ₃
Compound 835	H ₅ C N N N O N O O O	Compound 841	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃
Compound 836	H ₃ C ₂ P _N P _C C ₁	Compound 842	H,C CH ₃ CH ₃ CH ₃ CH ₃
Compound 837	H ₃ C O CH ₃	Compound 843	H.F

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 844	H,C S N N N OH	Compound 850	о-сн ₃
Compound 845	H ₃ C N N OH OH OH	Compound 851	H,C CH CH, CH, CH, CH, CH, CH, CH, CH, C
Compound 846	H,C S N OH OH	Compound 852	H ₃ C N CH CH CH ₃ OH
Compound 847	H ₃ C N O OH CH ₃	Compound 853	F CI CH,
Compound 848	H ₃ C O _N N O _{CH₃}	Compound 854	F CH CH CH, CH, CH, CH, CH, CH, CH, CH, C
Compound 849	F CI CH ₃ CH	Compound 855	CH CH ₃ CH ₃ CH ₄ CH ₅ CH

Compound No.	Chemical structural formula	С	ompound No.	Chemical structural formula
Compound 856	CH CH3 CH CH4 CH, CH4	С	ompound 862	F F CI N CH, CH, CH,
Compound 857	F CI OH OH OH OH	c	ompound 863	N CH ₃
Compound 858	CH ₃ CH ₃ N CH ₃ CH ₃ CH ₃ CH ₃ A ₁ CH ₃ A ₁	C	ompound 864	CH ₃
Compound 859	Charles Core	C	compound 865	CN CH ₈
Compound 860	CN CH ₃ N-C N-C N-C CH ₃ CH ₃	C	Compound 866	
Compound 861	N CH ₃	C	Compound 867	

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 868	CN CN COH	Compound 874	P F CI
Compound 869	N N N N OH	Compound 875	См, он он
Compound 870	CH ₃ CH ₃	Compound 876	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
Compound 871	CN CH ₃	Compound 877	CN CH ₃
Compound 872	Ch Ch Ch	Compound 878	F F CI N CH ₃ CH ₃
Compound 873	CN CN COH	Compound 879	CN CH ₃ CCH ₃ CCH ₄

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 880	CH ₁ CH ₁ N S OH	Compound 886	CN CN STONY OH
Compound 881	CH _S N O S OH	Compound 887	N CH ₁ N CH ₁ S CH ₁ OH
Compound 882	N S OH	Compound 888	CN CN S CH
Compound 883	CN CN S COH	Compound 889	CN CN S S OH
Compound 884	F F CI	Compound 890	CN CH ₃ S CH ₃ OH
Compound 885	N O CH ₃	Compound 891	F F CI

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 892	N N O CH3	Compound 898	CN CH ₃ CN CH ₃ CN CH ₃
Compound 893	CH ₃ CH ₅	Compound 899	CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N
Compound 894	CN CH ₃	Compound 900	N CH _N
Compound 895		Compound 901	CN CN COM
Compound 896		Compound 902	N S OH
Compound 897		Compound 903	F F CI

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 904	N N O CH,	Compound 910	N N N N C N C N C N C N C N C N C N C N
Compound 905	CH ₉ CH ₉ H ₂ C H ₂ C H ₃ C H ₄ C H ₅ C H ₅ C H ₆ C H ₇	Compound 911	H,C CH,
Compound 906	N	Compound 912	H ₂ C N CH ₃
Compound 907	N H ₃ C N CH ₃	Compound 913	CH ₃ CH ₃ CH ₃ OH
Compound 908	H ₂ C N CH ₅	Compound 914	CN C
Compound 909	P C H ₅ C H	Compound 915	CH CH HO OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 916	CH ₃ CH ₃ CH ₃ CH ₅ CH ₅ CH ₅	Compound 922	N,C-N N, N,C-N N,C-N, N
Compound 917	CN CH ₃ CH ₃ CH ₄	Compound 923	HO FF CI
Compound 918	SH. SH. CH.	Compound 924	HO HO HAC CHA
Compound 919	СН ₃ СН ₃ СН ₃	Compound 925	HO S S OH
Compound 920	CN CN CO OH	Compound 926	СН ₃ СН ₃
Compound 921	Сн., N — 0 N — 0 S — 0 Н	Compound 927	F F CI

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 928	S N N N N O CH3	Compound 934	HO CH ₃ CH
Compound 929	F F CI N N N CH ₃ O CH ₃	Compound 935	O CH,
Compound 930	BE O O O O O O O O O O O O O O O O O O O	Compound 936	O CH ₃
Compound 931	HC-HC HC-HC HC-HC-HC-HC-HC-HC-HC-HC-HC-HC-HC-HC-HC-H	Compound 937	O CH ₃
Compound 932	H ₂ C-N N S OH	Compound 938	N N O CH3
Compound 933	H ₂ C-N	Compound 939	0 CH ₃

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 940	N CH,	Compound 946	\$1 CH ₁
Compound 941	о сн,	Compound 947	N H,C OH OH OH
Compound 942	N H,C HOH	Compound 948	CH ₃ H ₃ CC OH OH CH ₃
Compound 943	H,C V OH CH, CH, CH, CH, CH, CH, CH, CH, CH, CH	Compound 949	OH CH ₃ CH ₃ CH ₄ CH ₅ CH ₅ CH ₆ CH ₇ CH
Compound 944	CH, CH, CH, CH, CH,	Compound 950	
Compound 945	N N F F F F F O H ₃ C OH CH ₃	Compound 951	H ₃ C OH OCH ₃ OCH ₃ CH ₃ CH ₃ OCH ₄ OCH ₅ OCH ₅ OCH ₆ OCH ₇

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 952	H't M OH CH'	Compound 958	N CH, at
Compound 953	0 H,C, OH OH CH,	Compound 959	OH OH OH
Compound 954	CI FF FF OH CH ₃	Compound 960	OH OH OH OH
Compound 955	H,C S N O CH, O CH, CH,	Compound 961	OH OH
Compound 956	H ₃ C N CH ₃	Compound 962	CI FF OH
Compound 957	O-CH ₃ N CH ₃	Compound 963	OCH, OCH, OCH, OCH, OCH,

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 964	OH OH OH	Compound 970	O CH ₃
Compound 965	OH OH OH	Compound 971	сн ₃
Compound 966	CH ₃ OH OH OH	Compound 972	ON N F F OH
Compound 967	O O O O O O O O O O O O O O O O O O O	Compound 973	о сн, о сн, о о сн, о о о о о о о о о о о о о о о о о о о
Compound 968	OH OH	Compound 974	S N N OH OH OH OH OH
Compound 969	I N N OH	Compound 975	S ON N CH,

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 976	S CH, OH OH OH OH	Compound 982	SCH ₃ SC
Compound 977	S CH ₃ CH ₃ CH ₃ OH	Compound 983	S N N N N OH
Compound 978	S O O O O O O O O O O O O O O O O O O O	Compound 984	S N N N OH
Compound 979	S O CH ₃ O CH ₃ O CH ₃ O O CH ₃	Compound 985	F CH ₃ CH ₃ CH ₃ OH CH ₃ OH CH ₃ OH
Compound 980	S N N OH	Compound 986	H ₂ C N N N F F CH ₃ C OH
Compound 981	s N N N OH	Compound 987	F OH OH OH OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 988	F C N N N C H _a	Compound 995	S N N CH ₃
Compound 989	F CH, N OH CH, OH	Compound 996	Br CH ₃ OH CH ₃ OH
Compound 990	F CH ₃ OCH ₃ O	Compound 997	Br CH, CH, CH, H,C
Compound 991	H ₃ C CH ₃ S N N CH ₃ CH ₃	Compound 998	CH ₃ ON CH ₃ ON CH ₃ ON CH ₃
Compound 992	S N N CH CH, CH, CH	Compound 999	CH3 CH3 CH3 CH3 CH4 CH4
Compound 993	S P F F F F F F F F F F F F F F F F F F	Compound 1000	С

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 1001	S N CH ₃ CH ₃ CH ₃	Compound 1007	CL N S OH
Compound 1002	S N CH,	Compound 1008	CI CH ₃
Compound 1003	CH ₃	Compound 1009	CH ₃ CH ₃ CH ₃ OH OH
Compound 1004	CI N N F	Compound 1010	CH N N S OH OH
Compound 1005		Compound 1011	CI N N S OH
Compound 1006	CI N N F F	Compound 1012	CI S OH

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 1013	HC.OOOHOH	Compound 1019	H ₂ C ^{-O} CH ₃
Compound 1014	н ₄ с-0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Compound 1020	H,C-0 N-N-N-F
Compound 1015	H.C.O.O.O.H.O.H.O.H.O.H.O.H.O.H.O.H.O.H.	Compound 1021	н,с- ⁰ — М — С — О — С Н,
Compound 1016	M.C. O O O O O O O O O O O O O O O O O O	Compound 1022	H ₃ C-0 N-N-CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
Compound 1017	H ₁ C O OH OH	Compound 1023	H ₃ C-0
Compound 1018	н.с.о — М. М. С. С. Н. Э	Compound 1024	H ₂ C O CH ₃ O CH ₃ CH ₃ CH ₃

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 1025	H.C. O CH,	Compound 1031	HECOO O THE CHS
Compound 1026	H,C., O CH,	Compound 1032	H.C. O O O O O O O O O O O O O O O O O O
Compound 1027	Mc. O CH	Compound 1033	HC-OOO
Compound 1028	M,C-0~0 N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	Compound 1034	HE-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-
Compound 1029	H ₂ C- ₁ O O O O O O O O O O O O O O O O O O O	Compound 1035	HC-0~0
Compound 1030	H ₂ C-0 0 CH ₃ H ₄ C-0 CH ₅ CH ₆ CH ₇ CH ₈	Compound 1036	HE-COND THE MAN THE

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 1037	NE-ONO CHARLES	Compound 1043	O CH3
Compound 1038	Company of the contract of the	Compound 1044	O S O OH
Compound 1039	CN O O N N S O OH	Compound 1045	0 CH4
Compound 1040	CN - 0 - CH ₃	Compound 1046	O CH ₃
Compound 1041	CH ₃	Compound 1047	CH ₃
Compound 1042	0 CH,	Compound 1048	CH ₃ CH ₃ CH ₃ CH ₃

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 1049	CH ₃	Compound 1055	F ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Compound 1050	0 CH ₃	Compound 1056	CH, CH, CH, CH,
Compound 1051	F O O O O O O O O O O O O O O O O O O O	Compound 1057	r~~~°CH _a
Compound 1052	F CH,	Compound 1058	F CH ₄
Compound 1053	F~~~O~~~~CH ₅	Compound 1059	CH,
Compound 1054	P O N O P P P P P P P P P P P P P P P P	Compound 1060	F CH ₃

Compound No.	Chemical structural formula	Compound No.	Chemical structural formula
Compound 1061	F CH ₃	Compound 1067	CN CN COH
Compound 1062	HO N CI	Compound 1068	О СН ₃
Compound 1063	HO N N N N N N N N N N N N N N N N N N N	Compound 1069	H ₃ C CH ₃
Compound 1064	CH ₃ CH ₃ N N O S OH	Compound 1070	H,C N N N N N N N N N N N N N N N N N N N
Compound 1065	F F CI	Compound 1071	H,C N N N O CH,
Compound 1066	°Сн _ч	Compound 1072	H ₃ C _N NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Compound No.	Chemical structural formula
Compound 1073	N,C-N N N N N N N N N N N N N N N N N N N
Compound 1074	СН, О СН, СН,
Compound 1075	P P CH

Compound No.	Chemical structural formula
Compound 1076	0 CH3
Compound 1077	CI NO CH3

Pharmacological Test Example 1: Experiment of sodium-dependent phosphate uptake of Xenopus oocytes which expressed NaPi-2b

5

10

15

20

25

Degenerate primers were prepared from sequences of mouse NaPi-2b disclosed in Hilfiker H. et al., Pro Natl Acad Sci USA, 95 (24): 14564-14569, 1988 and sequences of human and rat NaPi-2a disclosed in Magagnin S. et al., Proc Natl Aca Sci USA, 90 (13): 5979-5983, 1993. RNA was extracted from the rat small intestine using ISOGEN; manufactured by NIPPON GENE CO., LTD (Japan). 400 bp gene fragments were obtained by PCR using, as a template, a cDNA library prepared with a cDNA synthesis kit (manufactured by STRATAGENE Thereafter, the above rat small intestine cDNA library was (US)). screened using the gene fragment as a probe, and the whole gene sequence of rat NaPi-2b was cloned. cRNA was synthesized from the cloned rat NaPi-2b cDNA with a cRNA synthesis kit (manufactured by The synthesized cRNA was injected into Xenopus Ambion (US)). oocytes (obtained from COPACETIC (Japan)) with a liquid microinjector (manufactured by Drummond (US)) and was cultured for 2 days to express rat NaPi-2b. Thereafter, for a group of derivatives, phosphate uptake inhibitory activity were measured using the Xenopus oocytes with ³²P radioactive phosphorus (manufactured by Daiichi Kagaku Inc. (Japan)). As a result, it was found that these compounds had inhibitory activity with IC₅₀ values as shown in Table 4. IC₅₀ values were determined by determining an inhibition curve by an approximation formula using the least square from inhibitory activity values obtained from five concentration levels of the compound and determining the concentration of the compound which exhibits 50% of the maximum inhibitory activity. The inhibitory activity for 300 μM and 100 μM was determined from the same inhibition curve and expressed in percentage inhibition (%) in Table 5.

Table 4

Compound No. IC50 (μM) Compound 1 9.11 Compound 3 7.15 Compound 4 79.93 Compound 5 3.31 Compound 6 5.38 Compound 7 7.15 Compound 8 1.72 Compound 9 4.26 Compound 10 26.12 Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 30 7.86 Compound 31 0.58 <tr< th=""><th></th><th></th></tr<>		
Compound 3 7.15 Compound 4 79.93 Compound 5 3.31 Compound 6 5.38 Compound 7 7.15 Compound 8 1.72 Compound 9 4.26 Compound 10 26.12 Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound No.	IC50 (μM)
Compound 4 79.93 Compound 5 3.31 Compound 6 5.38 Compound 7 7.15 Compound 8 1.72 Compound 9 4.26 Compound 10 26.12 Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 1	9.11
Compound 5 3.31 Compound 6 5.38 Compound 7 7.15 Compound 8 1.72 Compound 9 4.26 Compound 10 26.12 Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 3	7.15
Compound 6 5.38 Compound 7 7.15 Compound 8 1.72 Compound 9 4.26 Compound 10 26.12 Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 4	79.93
Compound 7 7.15 Compound 8 1.72 Compound 9 4.26 Compound 10 26.12 Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 5	3.31
Compound 8 1.72 Compound 9 4.26 Compound 10 26.12 Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 6	5.38
Compound 9 4.26 Compound 10 26.12 Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 7	7.15
Compound 10 26.12 Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 8	1.72
Compound 11 8.21 Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 9	4.26
Compound 12 4.51 Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 10	26.12
Compound 13 9.22 Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 11	8.21
Compound 14 12.10 Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 12	4.51
Compound 15 1.41 Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 13	9.22
Compound 16 2.30 Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 14	12.10
Compound 17 3.59 Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 15	1.41
Compound 18 4.03 Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 34 1.50	Compound 16	2.30
Compound 19 8.16 Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 17	3.59
Compound 20 2.83 Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 18	4.03
Compound 21 21.53 Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 19	8.16
Compound 22 26.67 Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 20	2.83
Compound 23 9.88 Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 21	21.53
Compound 24 20.92 Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 22	26.67
Compound 25 23.91 Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 23	9.88
Compound 26 25.37 Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 24	20.92
Compound 27 3.63 Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 25	23.91
Compound 28 5.12 Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 26	25.37
Compound 29 0.55 Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 27	3.63
Compound 30 7.86 Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 28	5.12
Compound 31 0.58 Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 29	0.55
Compound 32 1.95 Compound 33 15.02 Compound 34 1.50	Compound 30	7.86
Compound 33 15.02 Compound 34 1.50	Compound 31	0.58
Compound 34 1.50	Compound 32	1.95
	Compound 33	15.02
Compound 35 3.23	Compound 34	1.50
	Compound 35	3.23

Compound No.	IC50 (μM)
Compound 36	4.04
Compound 37	13.47
Compound 38	5.64
Compound 39	9.24
Compound 40	2.03
Compound 41	2.43
Compound 42	8.21
Compound 43	20.66
Compound 44	4.71
Compound 45	26.14
Compound 46	7.41
Compound 47	4.38
Compound 48	2.07
Compound 49	3.37
Compound 50	19.48
Compound 51	4.60
Compound 52	10.39
Compound 53	4.05
Compound 54	6.45
Compound 55	0.86
Compound 56	0.89
Compound 57	1.02
Compound 58	7.67
Compound 59	1.22
Compound 60	1.58
Compound 61	0.31
Compound 62	0.90
Compound 63	5.97
Compound 64	3.77
Compound 65	1.29
Compound 66	0.89
Compound 67	0.65
Compound 68	0.36
Compound 69	3.93
<u> </u>	

Compound No.	IC50 (μM)
Compound 70	9.51
Compound 71	12.33
Compound 72	10.41
Compound 73	1.75
Compound 74	2.15
Compound 75	12.77
Compound 76	13.17
Compound 77	3.01
Compound 78	7.17
Compound 79	2.87
Compound 80	10.87
Compound 81	5.65
Compound 82	6.03
Compound 83	2.98
Compound 84	8.42
Compound 85	2.00
Compound 86	11.4
Compound 87	0.29
Compound 88	0.22
Compound 89	1.11
Compound 90	3.42
Compound 91	0.22
Compound 92	0.26
Compound 93	10.98
Compound 94	5.63
Compound 95	1.27
Compound 96	5.94
Compound 97	0.51
Compound 98	0.62
Compound 99	3.03
Compound 100	0.64
Compound 101	0.75
Compound 102	5.58
Compound 103	5.73

Compound No.	IC50 (μM)
Compound 104	11.34
Compound 105	7.29
Compound 106	5.11
Compound 107	1.08
Compound 108	3.83
Compound 109	6.18
Compound 110	7.70
Compound 111	9.12
Compound 112	41.98
Compound 113	17.91
Compound 114	2.55
Compound 115	5.48
Compound 116	7.01
Compound 117	0.58
Compound 118	6.07
Compound 119	0.74
Compound 120	2.55
Compound 121	4.06
Compound 122	<3.00
Compound 123	3.77
Compound 124	3.15
Compound 125	136.43
Compound 126	6.43
Compound 127	11.59
Compound 128	11.61
Compound 129	13.70
Compound 130	11.42
Compound 132	0.75
Compound 133	0.88
Compound 134	7.82
Compound 135	3.74
Compound 136	4.52
Compound 137	3.00
Compound 138	4.47
Compound 139	55.50

Compound No.	IC50 (μM)
Compound 140	74.24
Compound 141	5.78
Compound 142	9.20
Compound 143	5.88
Compound 144	5.02
Compound 145	3.82
Compound 146	1.99
Compound 147	7.68
Compound 148	15.63
Compound 149	5.51
Compound 150	1.09
Compound 151	3.07
Compound 152	1.48
Compound 153	3.50
Compound 154	2.37
Compound 155	0.32
Compound 156	0.46
Compound 157	7.19
Compound 158	3.28
Compound 159	4.35
Compound 160	0.93
Compound 161	0.96
Compound 162	3.11
Compound 163	1.60
Compound 164	4.76
Compound 165	2.43
Compound 166	27.85
Compound 167	30.20
Compound 168	4.84
Compound 169	4.24
Compound 170	5.34
Compound 171	5.12
Compound 172	2.74
Compound 173	7.40
Compound 174	12.54

Compound No.	IC50 (μM)
Compound 175	3.57
Compound 176	4.10
Compound 177	26.01
Compound 178	7.54
Compound 179	18.69
Compound 180	<3.00
Compound 181	3.16
Compound 182	10.24
Compound 183	<3.00
Compound 184	4.01
Compound 185	2.02
Compound 186	10.1
Compound 187	7.87
Compound 188	19.43
Compound 189	1.47
Compound 190	20.32
Compound 191	12.12
Compound 192	23.09
Compound 193	4.21
Compound 194	7.36
Compound 195	0.98
Compound 196	0.61
Compound 197	4.87
Compound 198	2.71
Compound 199	1.82
Compound 200	0.39
Compound 201	11.10
Compound 202	3.14
Compound 203	<3.00
Compound 204	<3.00
Compound 205	<3.00
Compound 206	<3.00
Compound 207	<1.00
Compound 208	<0.30
Compound 209	<1.00

Compound No.	IC50 (μM)
Compound 210	34.96
Compound 211	69.07
Compound 212	71.27
Compound 213	16.64
Compound 214	3.95
Compound 215	<3.00
Compound 216	21.82
Compound 217	11.21
Compound 218	4.05
Compound 219	9.07
Compound 220	9.42
Compound 221	9.51
Compound 222	8.86
Compound 223	11.30
Compound 224	19.99
Compound 225	60.98
Compound 226	1.69
Compound 227	7.40
Compound 228	22.48
Compound 229	6.32
Compound 252	1.49
Compound 253	3.47
Compound 255	3.54
Compound 256	<10.00
Compound 257	<3.00
Compound 258	<3.00
Compound 259	<3.00
Compound 260	<3.00
Compound 261	<3.00
Compound 262	1.10
Compound 263	<1.00
Compound 264	<1.00
Compound 265	<1.00
Compound 266	<1.00
Compound 267	0.43

Compound No.	IC50 (μM)
Compound 268	1.02
Compound 269	2.19
Compound 270	5.04
Compound 271	0.21
Compound 272	0.47
Compound 273	0.15
Compound 274	1.04
Compound 275	1.73
Compound 276	6.20
Compound 277	1.60
Compound 278	0.16
Compound 279	2.31
Compound 280	0.78
Compound 281	4.60
Compound 282	6.71
Compound 283	22.44
Compound 284	26.94
Compound 285	0.90
Compound 286	0.57
Compound 287	0.11
Compound 288	1.31
Compound 289	2.89
Compound 290	3.25
Compound 291	1.16
Compound 292	3.50
Compound 293	5.59
Compound 294	7.80
Compound 295	7.58
Compound 296	1.45
Compound 297	0.96
Compound 298	9.22
Compound 299	3.91
Compound 300	1.92
Compound 301	15.17
Compound 302	1.12
<u></u>	

Compound No.	IC50 (μM)
Compound 303	1.13
Compound 304	1.23
Compound 305	2.47
Compound 306	2.13
Compound 307	41.17
Compound 308	2.76
Compound 309	15.12
Compound 310	7.82
Compound 311	7.78
Compound 312	3.31
Compound 313	1.24
Compound 314	3.39
Compound 315	9.02
Compound 316	4.71
Compound 317	5.02
Compound 318	2.49
Compound 319	9.76
Compound 320	4.09
Compound 321	2.66
Compound 322	5.93
Compound 323	4.69
Compound 324	4.43
Compound 325	2.56
Compound 326	2.10
Compound 327	5.12
Compound 328	1.15
Compound 329	5.63
Compound 330	10.69
Compound 331	15.76
Compound 332	2.87
Compound 333	17.18
Compound 334	7.69
Compound 335	5.86
Compound 336	16.63
Compound 337	1.39

Compound No.	IC50 (μM)
Compound 338	18.97
Compound 339	12.77
Compound 340	8.41
Compound 341	<3.00
Compound 342	32.60
Compound 343	124.10
Compound 344	30.99
Compound 345	129.95
Compound 346	4.46
Compound 347	4.91
Compound 348	16.59
Compound 349	8.78
Compound 350	25.32
Compound 351	8.96
Compound 352	13.00
Compound 353	8.85
Compound 354	1.54
Compound 356	0.17
Compound 358	54.07
Compound 359	7.10
Compound 360	0.63
Compound 361	<1.00
Compound 362	<1.00
Compound 363	<1.00
Compound 364	<1.00
Compound 367	6.88
Compound 368	1.37
Compound 369	1.45
Compound 370	1.86
Compound 371	2.54
Compound 372	0.80
Compound 373	1.68
Compound 374	9.25
Compound 375	24.71
Compound 376	21.00

Compound No.	IC50 (μM)
Compound 377	9.65
Compound 378	4.35
Compound 379	0.97
Compound 380	0.35
Compound 381	1.00
Compound 382	1.04
Compound 383	1.98
Compound 384	0.25
Compound 385	0.31
Compound 386	<3.00
Compound 387	6.45
Compound 388	19.67
Compound 389	1.09
Compound 390	0.45
Compound 391	1.02
Compound 392	1.42
Compound 393	0.52
Compound 394	0.95
Compound 395	8.55
Compound 396	8.19
Compound 397	9.25
Compound 398	<0.30
Compound 399	3.67
Compound 400	<0.30
Compound 401	6.13
Compound 402	14.12
Compound 403	26.73
Compound 404	2.18
Compound 405	1.90
Compound 406	0.88
Compound 407	0.57
Compound 408	0.69
Compound 409	2.52
Compound 410	4.05
Compound 411	10.08

Compound No.	IC50 (μM)
Compound 412	7.96
Compound 413	<3.00
Compound 414	<3.00
Compound 415	<3.00
Compound 416	3.25
Compound 417	<3.00
Compound 418	9.38
Compound 419	9.20
Compound 420	27.14
Compound 421	29.56
Compound 422	1.15
Compound 423	<3.00
Compound 424	1.79
Compound 425	<3.00
Compound 426	1.89
Compound 427	<3.00
Compound 428	1.82
Compound 429	5.88
Compound 430	4.53
Compound 431	5.57
Compound 432	22.22
Compound 433	14.34
Compound 434	7.78
Compound 435	7.65
Compound 436	8.36
Compound 437	<3.00
Compound 438	26.27
Compound 439	28.74
Compound 440	32.35
Compound 441	40.14
Compound 442	3.15
Compound 443	11.05
Compound 444	<3.00
Compound 445	10.33
Compound 446	1.54

Compound No.	IC50 (μM)
Compound 447	2.16
Compound 448	9.41
Compound 449	21.73
Compound 450	16.94
Compound 451	37.84
Compound 452	<3.00
Compound 453	<3.00
Compound 454	<3.00
Compound 455	<3.00
Compound 456	<3.00
Compound 457	<3.00
Compound 458	<3.00
Compound 459	<3.00
Compound 460	<3.00
Compound 461	3.59
Compound 462	<3.00
Compound 463	4.44
Compound 464	5.00
Compound 465	7.43
Compound 466	<3.00
Compound 467	7.94
Compound 468	22.45
Compound 469	33.16
Compound 470	23.54
Compound 472	<3.00
Compound 473	<3.00
Compound 474	<3.00
Compound 475	<3.00
Compound 476	<3.00
Compound 477	<3.00
Compound 478	<3.00
Compound 479	<3.00
Compound 480	<3.00
Compound 481	12.10
Compound 482	<3.00
	1

Compound No.	IC50 (μM)
Compound 483	<3.00
Compound 484	<3.00
Compound 485	<3.00
Compound 486	<3.00
Compound 487	<3.00
Compound 488	<3.00
Compound 489	<3.00
Compound 490	<3.00
Compound 491	<3.00
Compound 492	<3.00
Compound 493	<3.00
Compound 494	2.07
Compound 495	0.35
Compound 496	0.64
Compound 497	0.51
Compound 498	0.60
Compound 499	0.98
Compound 500	0.35
Compound 501	23.13
Compound 502	15.68
Compound 503	10.35
Compound 504	18.93
Compound 505	1.21
Compound 506	19.5
Compound 507	1.86
Compound 508	0.48
Compound 509	13.59
Compound 510	1.48
Compound 511	2.16
Compound 512	28.30
Compound 513	15.96
Compound 514	2.15
Compound 515	1.90
Compound 516	2.13
Compound 517	1.71

Compound No.	IC50 (μM)
Compound 518	1.52
Compound 519	1.72
Compound 521	1.24
Compound 522	1.09
Compound 551	0.47
Compound 552	2.63
Compound 553	2.80
Compound 554	1.46
Compound 555	<3.00
Compound 556	<3.00
Compound 557	<0.30
Compound 558	1.07
Compound 559	1.26
Compound 560	1.09
Compound 561	0.31
Compound 562	<1.00
Compound 563	<1.00
Compound 564	11.57
Compound 565	12.98
Compound 566	14.58
Compound 567	<1.00
Compound 568	4.32
Compound 569	<3.00
Compound 570	6.04
Compound 571	5.27
Compound 572	4.12
Compound 573	1.75
Compound 574	6.93
Compound 575	<3.00
Compound 576	<3.00
Compound 577	<3.00
Compound 578	<3.00
Compound 579	<3.00
Compound 580	<3.00
Compound 581	<3.00

Compound No.	IC50 (μM)
Compound 582	<3.00
Compound 583	<3.00
Compound 584	<3.00
Compound 585	<3.00
Compound 586	<3.00
Compound 587	<3.00
Compound 588	9.33
Compound 589	<3.00
Compound 590	6.18
Compound 591	1.01
Compound 592	11.94
Compound 593	<3.00
Compound 594	3.60
Compound 595	3.87
Compound 596	5.47
Compound 597	1.47
Compound 598	53.04
Compound 599	<3.00
Compound 600	3.84
Compound 601	<3.00
Compound 602	3.98
Compound 603	<3.00
Compound 604	9.23
Compound 605	0.95
Compound 606	1.01
Compound 607	0.43
Compound 608	<0.30
Compound 609	<0.30
Compound 610	1.82
Compound 611	2.16
Compound 612	2.34
Compound 613	1.41
Compound 614	3.29
Compound 615	2.08
Compound 616	13.86

Compound No.	IC50 (μM)
Compound 617	3.68
Compound 618	4.25
Compound 619	<3.00
Compound 620	3.58
Compound 621	<3.00
Compound 622	<3.00
Compound 623	<3.00
Compound 624	<3.00
Compound 625	<3.00
Compound 626	<3.00
Compound 627	<1.00
Compound 628	1.29
Compound 629	3.01
Compound 630	<1.00
Compound 631	<1.00
Compound 632	<1.00
Compound 633	1.19
Compound 634	1.74
Compound 635	1.56
Compound 636	3.89
Compound 637	<1.00
Compound 638	3.15
Compound 639	1.84
Compound 640	1.61
Compound 641	2.92
Compound 642	2.14
Compound 643	3.68
Compound 644	5.91
Compound 645	<3.00
Compound 646	1.77
Compound 647	5.62
Compound 648	2.04
Compound 649	2.69
Compound 650	0.95
Compound 651	262.90
	1

Compound No.	IC50 (μM)
Compound 652	0.72
Compound 653	1.10
Compound 654	2.03
Compound 655	1.58
Compound 656	2.98
Compound 657	2.63
Compound 658	<3.00
Compound 659	12.45
Compound 660	18.70
Compound 661	<10.00
Compound 662	3.20
Compound 663	136.67
Compound 664	15.08
Compound 666	31.23
Compound 667	30.49
Compound 668	9.13
Compound 669	15.29
Compound 671	<3.00
Compound 672	31.18
Compound 673	10.13
Compound 675	<3.00
Compound 676	<3.00
Compound 677	<3.00
Compound 678	<3.00
Compound 679	<3.00
Compound 680	4.04
Compound 681	25.90
Compound 682	12.50
Compound 683	<3.00
Compound 684	54.25
Compound 685	36.43
Compound 686	<3.00
Compound 687	<3.00
Compound 688	<3.00
Compound 689	<3.00

Compound No.	IC50 (μM)
Compound 690	87.97
Compound 691	97.03
Compound 692	99.40
Compound 693	70.18
Compound 694	38.77
Compound 695	6.76
Compound 696	4.47
Compound 697	<3.00
Compound 698	<3.00
Compound 713	15.49
Compound 714	3.52
Compound 718	6.91
Compound 719	9.59
Compound 720	3.51
Compound 721	22.34
Compound 722	12.84
Compound 723	18.03
Compound 724	17.08
Compound 725	69.40
Compound 726	<3.00
Compound 728	20.33
Compound 729	27.33
Compound 730	15.66
Compound 731	19.18
Compound 732	29.35
Compound 733	<10.00
Compound 735	18.34
Compound 737	4.24
Compound 738	7.55
Compound 743	14.40
Compound 745	6.12
Compound 746	16.77
Compound 747	11.93
Compound 749	9.05
Compound 750	<3.00

Compound No.	IC50 (μM)
Compound 751	13.11
Compound 752	<3.00
Compound 753	12.36
Compound 754	<3.00
Compound 756	10.33
Compound 757	18.84
Compound 763	11.18
Compound 764	5.92
Compound 765	6.88
Compound 768	10.62
Compound 769	4.44
Compound 770	16.49
Compound 786	1.33
Compound 787	1.69
Compound 788	2.04
Compound 789	1.16
Compound 790	4.32
Compound 791	5.50
Compound 792	1.26
Compound 793	1.41
Compound 794	0.97
Compound 795	1.92
Compound 796	0.35
Compound 797	3.39
Compound 798	3.62
Compound 799	3.72
Compound 800	9.24
Compound 801	4.70
Compound 802	1.20
Compound 803	4.92
Compound 804	1.23
Compound 805	4.76
Compound 806	3.90
Compound 807	<1.00
Compound 808	1.97

Compound No.	IC50 (μM)
Compound 809	5.22
Compound 810	6.68
Compound 811	9.11
Compound 812	5.58
Compound 813	6.25
Compound 814	<3.00
Compound 815	16.74
Compound 816	14.77
Compound 817	36.14
Compound 818	7.38
Compound 819	5.95
Compound 820	17.86
Compound 821	17.86
Compound 822	5.90
Compound 823	6.93
Compound 824	3.22
Compound 825	4.52
Compound 826	4.44
Compound 827	3.50
Compound 828	9.33
Compound 829	3.91
Compound 830	4.81
Compound 831	3.88
Compound 832	4.97
Compound 833	7.89
Compound 834	19.02
Compound 835	6.46
Compound 836	0.77
Compound 837	12.91
Compound 838	<3.00
Compound 839	5.04
Compound 840	6.95
Compound 841	<3.00
Compound 842	3.22
Compound 843	4.19

Compound No.	IC50 (μM)
Compound 844	<3.00
Compound 845	<3.00
	<3.00
Compound 846	
Compound 847	<3.00
Compound 848	2.20
Compound 849	<3.00
Compound 850	3.10
Compound 851	1.36
Compound 852	<1.00
Compound 853	2.14
Compound 854	1.33
Compound 855	1.75
Compound 856	1.77
Compound 857	1.18
Compound 858	0.46
Compound 859	0.39
Compound 860	0.65
Compound 861	0.52
Compound 862	0.35
Compound 863	1.22
Compound 864	0.74
Compound 865	1.49
Compound 866	1.92
Compound 867	2.24
Compound 868	<0.30
Compound 869	6.68
Compound 870	0.53
Compound 871	1.00
Compound 872	<3.00
Compound 873	0.66
Compound 874	<0.30
Compound 875	5.20
Compound 876	<3.00
Compound 877	<0.30
Compound 878	<0.30
Compound 879	3.72
Compound 880	0.08
	1

Compound No.	IC50 (μM)
Compound 881	0.18
Compound 882	0.33
Compound 883	0.04
Compound 884	0.95
Compound 885	1.24
Compound 886	0.81
Compound 887	1.75
Compound 888	2.55
Compound 889	0.33
Compound 890	3.91
Compound 891	1.47
Compound 892	14.84
Compound 893	<0.30
Compound 894	0.50
Compound 895	<0.30
Compound 896	<0.30
Compound 897	<0.30
Compound 898	<0.30
Compound 899	<1.00
Compound 900	<1.00
Compound 901	<1.00
Compound 902	<1.00
Compound 903	<1.00
Compound 904	1.71
Compound 905	1.18
Compound 906	1.83
Compound 907	6.75
Compound 908	13.16
Compound 909	1.02
Compound 910	7.81
Compound 911	<1.00
Compound 912	1.04
Compound 913	1.65
Compound 914	1.75
Compound 915	8.15
Compound 916	5.22
Compound 917	1.25

Compound No.	IC50 (μM)
Compound 918	1.55
Compound 919	0.31
Compound 920	<1.00
Compound 921	1.22
Compound 922	2.89
Compound 923	18.79
Compound 924	40.16
Compound 925	25.50
Compound 926	<1.00
Compound 927	<1.00
Compound 928	<1.00
Compound 929	<1.00
Compound 935	0.17
Compound 936	5.59
Compound 937	137.00
Compound 938	1.41
Compound 939	<3.00
Compound 940	30.63
Compound 941	8.72
Compound 942	0.20
Compound 943	10.58
Compound 944	12.04
Compound 945	19.38
Compound 947	30.19
Compound 948	11.62
Compound 950	9.08
Compound 952	19.24
Compound 954	60.51
Compound 956	29.85
Compound 958	<1.00
Compound 959	<1.00
Compound 960	1.12
Compound 961	<1.00
Compound 962	<1.00
Compound 963	<1.00
Compound 965	27.22
Compound 966	16.04

Compound No. IC50 (μM) Compound 967 6.57 Compound 969 <3.00 Compound 970 <3.00 Compound 971 <3.00 Compound 972 <3.00 Compound 973 <3.00 Compound 974 12.56 Compound 975 17.36 Compound 977 10.15 Compound 980 13.80 Compound 981 12.17 Compound 982 8.05 Compound 983 8.31 Compound 984 22.12 Compound 985 <3.00 Compound 987 <3.00 Compound 988 3.88 Compound 990 <3.00 Compound 990 <3.00 Compound 997 7.88 Compound 999 58.16 Compound 1001 <3.00 Compound 1002 2.58 Compound 1006 6.31 Compound 1007 0.40 Compound 1007 0.40
Compound 969 <3.00
Compound 970 <3.00
Compound 971 <3.00
Compound 972 <3.00
Compound 973 <3.00
Compound 974 12.56 Compound 975 17.36 Compound 976 10.73 Compound 977 10.15 Compound 980 13.80 Compound 981 12.17 Compound 982 8.05 Compound 983 8.31 Compound 984 22.12 Compound 985 <3.00
Compound 975 17.36 Compound 976 10.73 Compound 977 10.15 Compound 980 13.80 Compound 981 12.17 Compound 982 8.05 Compound 983 8.31 Compound 984 22.12 Compound 985 <3.00
Compound 976 10.73 Compound 977 10.15 Compound 980 13.80 Compound 981 12.17 Compound 982 8.05 Compound 983 8.31 Compound 984 22.12 Compound 985 <3.00 Compound 986 28.95 Compound 987 <3.00 Compound 988 3.88 Compound 989 <3.00 Compound 990 <3.00 Compound 990 16.57 Compound 998 16.57 Compound 999 58.16 Compound 1001 <3.00 Compound 1002 2.58 Compound 1003 9.12 Compound 1006 6.31 Compound 1007 0.40
Compound 977 10.15 Compound 980 13.80 Compound 981 12.17 Compound 982 8.05 Compound 983 8.31 Compound 984 22.12 Compound 985 <3.00
Compound 980 13.80 Compound 981 12.17 Compound 982 8.05 Compound 983 8.31 Compound 984 22.12 Compound 985 <3.00
Compound 981 12.17 Compound 982 8.05 Compound 983 8.31 Compound 984 22.12 Compound 985 <3.00
Compound 982 8.05 Compound 983 8.31 Compound 984 22.12 Compound 985 <3.00
Compound 983 8.31 Compound 984 22.12 Compound 985 <3.00
Compound 984 22.12 Compound 985 <3.00
Compound 985 <3.00
Compound 986 28.95 Compound 987 <3.00
Compound 987 <3.00
Compound 988 3.88 Compound 989 <3.00
Compound 989 <3.00
Compound 990 <3.00
Compound 996 2.66 Compound 997 7.88 Compound 998 16.57 Compound 999 58.16 Compound 1001 <3.00
Compound 997 7.88 Compound 998 16.57 Compound 999 58.16 Compound 1001 <3.00
Compound 998 16.57 Compound 999 58.16 Compound 1001 <3.00
Compound 999 58.16 Compound 1001 <3.00
Compound 1001 <3.00
Compound 1002 2.58 Compound 1003 9.12 Compound 1006 6.31 Compound 1007 0.40
Compound 1003 9.12 Compound 1006 6.31 Compound 1007 0.40
Compound 1006 6.31 Compound 1007 0.40
Compound 1007 0.40
Company 4000 0 00
Compound 1008 0.30
Compound 1009 0.10
Compound 1010 0.24
Compound 1011 1.28
Compound 1012 1.89
Compound 1013 8.89
Compound 1015 11.07
Compound 1016 9.23
Compound 1017 0.87

Compound No.	IC50 (μM)
	0.92
Compound 1018	0.92
Compound 1019	
Compound 1020	0.39
Compound 1021	5.57
Compound 1022	3.23
Compound 1023	0.99
Compound 1024	3.94
Compound 1025	5.71
Compound 1026	3.86
Compound 1027	1.20
Compound 1028	29.07
Compound 1029	34.73
Compound 1030	14.16
Compound 1033	18.66
Compound 1034	17.21
Compound 1035	3.70
Compound 1036	1.50
Compound 1037	38.51
Compound 1038	3.35
Compound 1039	2.76
Compound 1040	52.16
Compound 1041	10.25
Compound 1042	14.74
Compound 1043	8.26
Compound 1044	2.13
Compound 1045	13.11
Compound 1046	<1.00
Compound 1047	<1.00
Compound 1048	<1.00
Compound 1049	<1.00
Compound 1050	1.42
Compound 1051	1.16
Compound 1052	1.33
Compound 1053	<1.00
Compound 1054	<1.00
Compound 1055	1.96
Compound 1056	1.88
Compound 1057	1.26
Compound 1058	1.07
Composite 1000	1

Compound No.	IC50 (μM)
Compound 1059	0.43
Compound 1060	0.44
Compound 1061	1.99
Compound 1062	6.76
Compound 1064	<1.00
Compound 1065	1.21
Compound 1066	2.69
Compound 1067	2.79
Compound 1069	<1.00
Compound 1070	<1.00
Compound 1071	<1.00
Compound 1072	3.88
Compound 1073	20.36
Compound 1074	1.54
Compound 1075	1.34
Compound 1076	2.57

Table 5

Table 5	
Compound No.	Inhibition (%) (300 μM)
Compound 2	77.30
Compound 131	32.40
Compound 230	50.42
Compound 231	32.76
Compound 232	44.92
Compound 233	33.62
Compound 234	37.88
Compound 235	47.92
Compound 236	49.42
Compound 237	33.12
Compound 238	30.58
Compound 239	59.08
Compound 240	37.92
Compound 241	46.94
Compound 242	37.61
Compound 243	50.17
Compound 244	30.72
Compound 245	31.68
Compound 246	32.62
Compound 247	34.81
Compound 248	30.30
Compound 249	41.59
Compound 250	37.86
Compound 251	31.22
Compound 357	65.82
Compound 366	69.87
Compound 471	50.99
Compound 523	50.09
Compound 524	42.75
Compound 525	38.89

Compound No. Inhibition (%) (300 μM) Compound 526 40.24 Compound 527 40.94 Compound 528 58.38 Compound 529 80.96 Compound 530 38.16 Compound 531 35.68 Compound 532 76.00 Compound 533 36.87 Compound 534 43.82 Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 547 66.61 Compound 549 85.19 Compound 549 85.10 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35 Compound 700 40.28		
Compound 527 40.94 Compound 528 58.38 Compound 529 80.96 Compound 530 38.16 Compound 531 35.68 Compound 532 76.00 Compound 533 36.87 Compound 534 43.82 Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35	Compound No.	Inhibition (%) (300 µM)
Compound 528 58.38 Compound 529 80.96 Compound 530 38.16 Compound 531 35.68 Compound 532 76.00 Compound 533 36.87 Compound 534 43.82 Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 526	40.24
Compound 529 80.96 Compound 530 38.16 Compound 531 35.68 Compound 532 76.00 Compound 533 36.87 Compound 534 43.82 Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 650 78.88 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 527	40.94
Compound 530 38.16 Compound 531 35.68 Compound 532 76.00 Compound 533 36.87 Compound 534 43.82 Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 650 78.88 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 528	58.38
Compound 531 35.68 Compound 532 76.00 Compound 533 36.87 Compound 534 43.82 Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35	Compound 529	80.96
Compound 532 76.00 Compound 533 36.87 Compound 534 43.82 Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35	Compound 530	38.16
Compound 533 36.87 Compound 534 43.82 Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35	Compound 531	35.68
Compound 534 43.82 Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 650 78.88 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35	Compound 532	76.00
Compound 535 52.98 Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 533	36.87
Compound 536 88.25 Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 534	43.82
Compound 537 82.05 Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 535	52.98
Compound 538 30.31 Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 549 85.72 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 536	88.25
Compound 539 88.39 Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 537	82.05
Compound 540 38.41 Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 650 78.88 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35	Compound 538	30.31
Compound 541 32.16 Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35	Compound 539	88.39
Compound 542 41.11 Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35	Compound 540	38.41
Compound 543 30.2 Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 699 58.35	Compound 541	32.16
Compound 544 60.05 Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 542	41.11
Compound 545 88.81 Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 543	30.2
Compound 546 85.19 Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 544	60.05
Compound 547 66.61 Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 545	88.81
Compound 548 85.72 Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 546	85.19
Compound 549 85.10 Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 547	66.61
Compound 550 78.88 Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 548	85.72
Compound 665 82.34 Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 549	85.10
Compound 670 70.17 Compound 674 85.12 Compound 699 58.35	Compound 550	78.88
Compound 674 85.12 Compound 699 58.35	Compound 665	82.34
Compound 699 58.35	Compound 670	70.17
	Compound 674	85.12
Compound 700 40.28	Compound 699	58.35
	Compound 700	40.28

Compound No.	Inhibition (%) (300 µM)
Compound 701	53.98
Compound 702	49.17
Compound 703	57.92
Compound 704	46.62
Compound 705	44.68
Compound 706	47.79
Compound 707	41.22
Compound 708	42.04
Compound 709	59.36
Compound 710	83.13
Compound 711	81.04
Compound 712	48.73
Compound 715	84.11
Compound 716	85.77
Compound 717	53.54
Compound 727	67.74
Compound 734	64.91
Compound 736	61.49
Compound 739	58.89
Compound 740	58.55
Compound 741	50.93
Compound 742	77.57
Compound 744	83.71
Compound 748	56.45
Compound 755	67.27
Compound 758	58.21
Compound 759	63.85
Compound 760	73.34
Compound 761	46.24
Compound 762	52.08
Compound 766	81.89
Compound 767	81.83

Compound No.	Inhibition (%) (300 μM)
Compound 771	85.12
Compound 772	67.72
Compound 773	53.91
Compound 774	58.85
Compound 775	44.62
Compound 776	49.19
Compound 777	34.17
Compound 778	39.12
Compound 779	51.64
Compound 780	47.74
Compound 781	51.18
Compound 782	86.76
Compound 783	88.84
Compound 784	88.49
Compound 785	39.53
Compound 930	40.20
Compound 931	31.22
Compound 932	36.09
Compound 933	37.62
Compound 934	39.27
Compound 946	45.00
Compound 949	72.60
Compound 951	68.51
Compound 953	67.80
Compound 955	57.67
Compound 957	54.91
Compound 964	67.50
Compound 968	52.70
Compound 978	74.08
Compound 979	73.73
Compound 991	30.11
Compound 992	31.92

Compound No.	Inhibition (%) (300 μM)
Compound 993	39.71
Compound 995	42.10
Compound 1000	32.14
Compound 1004	34.20
Compound 1005	59.07
Compound 1014	55.20
Compound 1031	58.77
Compound 1032	39.98
Compound 1077	40.18

Compound No.	Inhibition (%) (100 μM)
Compound 1063	63.94
Compound 1068	74.42

Pharmacological Test Example 2: Experiment of sodium-dependent phosphate uptake of rabbit jejunal brush border membrane vesicles

Jejunal epithelium was obtained from New Zealand white male rabbits (7 weeks old, obtained from KITAYAMA LABES Co., Ltd. (Japan)), and brush border membrane vesicles were isolated by the calcium precipitation method described in Kanako Katai et al., J. Biochem. 121, 50-55, 1997,and Peerce, B.E. et al., Biochemistry 26, 4272-4279, 1987. Thereafter, for compound 29 and compound 68, the phosphate uptake inhibitory activity was measured using the same samples with ³²P radioactive phosphorus (manufactured by Daiichi Kagaku Inc. (Japan)) by the rapid filtration method described in Kanako Katai et al., J. Biochem. 121, 50-55, 1997. As a result, these compounds had concentration-dependent inhibitory activity (Fig. 1). Further, in the same experiment, nonspective inhibitory activity against glucose absorption was determined using 14C-glucose (manufactured by Moravek Biochemical Inc. (US)). As a result, these compounds did not

have the inhibitory activity (Fig. 2). In both the experiments, a group with the addition of potassium chloride was used as a negative control for nonspecific uptake. All the test results given below were expressed in terms of average value \pm standard error. Student's t-test was used for a significant test of the control group and the test compound group. Pharmacological Test Example 3: Experiment of sodium-dependent phosphate uptake of Xenopus oocytes which expressed NaPi-2a

cDNA of human NaPi-2a described in Magagnin S. et al., Proc Natl Aca Sci USA, 90 (13): 5979-5983, 1993 was cloned by PCR. In the same manner as in Pharmacological Test Example 1, NaPi-2a was expressed in Xenopus oocytes, and the phosphate uptake inhibitory activity was measured with ³²P radioactive phosphorus. As a result, compound 1 had concentration-dependent inhibitory activity against NaPi-2a (Fig. 3). Compound 29 had inhibitory activity against not only NaPi-2b but also NaPi-2a (Fig. 4). In the test, a group with the addition of choline chloride (Choline CI) was used as a negative control for nonspecific uptake, and PFA (phosphonoformic acid) was used as a positive control for phosphate transport inhibition.

Further, the compounds according to the present invention had inhibitory activity with IC_{50} values shown in Table 6. IC_{50} values were determined by determining an inhibition curve by an approximation formula using the least square from inhibitory activity values obtained from five concentration levels of the compound and determining the concentration of the compound which exhibits 50% of the maximum inhibitory activity.

Table 6

IC50 (μM)
<3.00
4.42
4.36
4.04
9.51
3.53
3.59
12.94
3.50
2.43
28.66
13.46
16.87
1.34
5.30
0.95
4.22
11.15
15.59
7.53
13.30
<3.00
<3.00
6.64
9.28
6.70
8.46

	IC50 (μM)
Compound 794	9.57
Compound 795	8.52
Compound 800	10.05
Compound 801	3.72
Compound 802	5.96
Compound 806	12.14
Compound 807	9.07
Compound 810	23.81
Compound 811	37.22
Compound 813	35.59
Compound 814	18.34
Compound 818	31.43
Compound 822	18.01
Compound 824	8.19
Compound 827	24.37
Compound 828	10.02
Compound 829	<3.00
Compound 830	10.73
Compound 831	28.83
Compound 832	6.40
Compound 833	38.11
Compound 834	52.10
Compound 835	10.98
Compound 836	10.18
Compound 838	10.17
Compound 839	23.15
Compound 840	34.06

	IC50 (μM)
Compound 841	19.85
Compound 845	<3.00
Compound 846	<3.00
Compound 858	<1.00
Compound 859	1.60
Compound 860	<1.00
Compound 861	<1.00
Compound 862	1.65
Compound 863	6.90
Compound 864	1.94
Compound 865	4.34
Compound 878	7.22
Compound 880	1.30
Compound 881	2.67
Compound 882	4.45
Compound 883	1.98
Compound 884	35.90
Compound 886	2.93
Compound 887	15.06
Compound 889	1.41
Compound 890	1.33
Compound 891	13.86
Compound 893	5.11
Compound 894	3.61
Compound 895	5.52
Compound 896	7.40
Compound 899	<1.00

	IC50 (μM)
Compound 900	2.53
Compound 901	<1.00
Compound 902	<1.00
Compound 903	<1.00
Compound 904	1.69
Compound 914	3.13
Compound 935	9.68
Compound 936	30.05
Compound 985	<3.00
Compound 987	16.31
Compound 989	7.84
Compound 990	7.14
Compound 1007	1.00
Compound 1008	2.30
Compound 1009	1.41
Compound 1020	2.25
Compound 1027	1.58

5

10

Pharmacological Test Example 4: Inhibitory activity against ³²P absorption from intestinal tract

SD rats (6 to 7 weeks old, obtained from Charles River Japan, Inc. (Japan)) were raised with low-phosphorus diet (phosphorus content 0.1%, manufactured by Oriental Yeast Co., Ltd. (Japan)) for 3 to 4 days and then fasted for about 24 hr for experiment. ³²P was diluted with purified water or liquid feed (CLEA JAPAN INC. (Japan)) to 0.7 to 3.5 MBq/ml and was forcibly orally administered at a dose of 5 ml/kg (administered into the gaster through an oral probe). The compounds or media were forcibly orally administered at a dose of 5 ml/kg (divided dose of twice), 30 min before the administration of ³²P and

simultaneously with the administration of ³²P. Blood was collected from caudal artery 30 min, 45 min, or 60 min after ³²P administration, and blood ³²P radioactivity was measured with a liquid scintillation counter. Inhibition of an increase in blood radioactivity was used as a measure of inhibition of phosphate absorption from the intestinal tract.

The results are expressed in terms of the percentage inhibition determined by the following equation.

(Blood radioactivity for group with the administration of medium – Blood radioactivity for group with the administration of compound)/(Blood radioactivity for group with the administration of medium) \times 100

t-Test was used for a significant test of the average value difference of blood radioactivity.

The results are shown in Table 7. As is apparent from the table, the compounds significantly inhibited phosphate absorption from the intestinal tract.

Table 7: Inhibitory activity against ³²P absorption from intestinal tract

5

10

15

Compound	Dose, mg/kg	Blood radioactivity inhibition, %
91	320	28.3
92	160	25.5
88	400	29.1
163	360	57.8
130	270	22.8
157	320	20.7
164	400	55.0
165	400	27.6
252	400	29.2
253	400	39.0
254	400	68.4
315	100	42.4
372	100	63.7
285	80	60.3

For all the compounds, a significant difference was observed as compared with the group with the administration of medium at p < 0.05.