

2. ML process

3. Decision Tree

2. ML process

3. Decision Tree

There are two types of problems that we use ML to solve:

Supervised

Supervised

Supervised

The data has label

Al predicts the label and tries to classify based on its learning

In other words, it tries to Classify

Supervised learning -> Classification

I think these are similar!

And these are similar to each other!

Unsupervised

The data has NO label

Al tries to understand the similarities and find the patterns in data. It tries to predict if the input is similar to which group (cluster)

In other words, it tries to find a cluster of similar data

Unsupervised learning -> Clustering

2. ML process

3. Decision Tree

2. ML process

3. Decision Tree

2. ML process

3. Decision Tree

Data

Data

Analyzing

Data

Analyzing

Preprocessing

Data

Analyzing

Preprocessing

Data Science

Data

Analyzing

Preprocessing

Select ML algorithm

2. ML process

3. Decision Tree

2. ML process

3. Decision Tree

2. ML process

3. Decision Tree

3. Decision Tree

3. Decision Tree

Is it an animal?

Cat Dog Elephant

•••

Humans

Tree

Flower

Plants

•••

3. Decision Tree

Hypertension?

The label is not stroke!

The label is stroke

2. ML process

3. Decision Tree

2. ML process

3. Decision Tree

2. ML process

3. Decision Tree

Homework

- 1. Use the data set:
 - Report all the important points that you can see in the data.
 - Analyze each feature and write your thoughts
 - Perform the preprocessing steps on the data