

TOPIC OUTLINE

Series Resonance

Parallel Resonance

SERIES RESONANCE

SERIES RESONANCE

Circuit Diagram

<u>Formula</u>

$$f_R = \frac{1}{2\pi\sqrt{LC}}$$

Let
$$X_L = X_C$$

EXERCISE

A series circuit consists of a **30** Ω resistor, a **0.104** H inductor, and a **40** μF capacitor. If a variable-frequency **120** V source is connected across its terminals, for the condition of resonant determine the following:

- a. The resonant frequency (f_R)
- b. The circuit current (i_R) and power (P_R)
- c. The voltage drop across the resistor (v_R) , the inductor (v_L) , and the capacitor (v_C)

Solution

PARALLEL RESONANCE

PARALLEL RESONANCE

Circuit Diagram

<u>Formula</u>

$$f_R = \frac{1}{2\pi\sqrt{LC}}$$

Let
$$\beta_L = \beta_C$$

EXERCISE

A parallel circuit consists of a 10Ω resistor, a 2 H inductor, and a $50 \mu F$ capacitor. If a variable-frequency 1 V source is connected across its terminals, for the condition of resonant determine the following:

- a. The resonant frequency (f_R)
- b. The circuit current (i_R) and power (P_R)
- c. The voltage drop across the resistor (v_R) , the inductor (v_L) , and the capacitor (v_C)

Solution

RESONANCE FREQUENCY

$$f_R = \frac{1}{2\pi\sqrt{LC}}$$

Resultant reactance is zero $[X_L = X_C]$

Circuit behaves like a pure resistance

Total current is **in phase** with the impressed voltage

Power factor is **unity**

LABORATORY

