

Énoncés des exercices

Exercice 1 [Indication] [Correction]

Rayon de convergence, et somme, de la série entière $\sum a_n z^n$, avec $\forall n \in \mathbb{N}, a_n = (2 + (-1)^n)^n$.

EXERCICE 2 [Indication] [Correction]

Rayon de convergence R et somme S de la série entière $\sum_{n>0} \frac{x^n}{2n+1}$.

EXERCICE 3 [Indication] [Correction]

Rayon de convergence, et somme sur l'intervalle ouvert de convergence, de $\sum_{n>1} \frac{\cos n\theta}{n} x^n$.

EXERCICE 4 [Indication] [Correction]

Rayon de convergence R et somme S de la série entière $\sum_{n\geq 1} a_n x^n$ où $a_n = \frac{1}{n} \cos\left(\frac{\pi}{4} + n\frac{\pi}{2}\right)$.

NB: on donnera deux méthodes différentes.

Exercice 5 [Indication] [Correction]

On considère une série entière $\sum a_n x^n$, de rayon de convergence 1, de somme S(x).

On suppose que la série $\sum a_n$ est convergente, et on veut montrer que la série $\sum a_n x^n$ est uniformément convergente sur le segment [0, 1].

- 1. Traiter le cas particulier où les a_n sont tous positifs ou nuls.
- 2. Traiter le cas où $a_n = (-1)^n \lambda_n$, la suite (λ_n) étant décroissante et convergente vers 0.
- 3. Traiter le cas général. On pourra poser $r_n = \sum_{k=n+1}^{+\infty} a_k$ pour tout entier n.

 4. Que peut on en déduire pour $S(x) = \sum_{n=0}^{+\infty} a_n x^n$ sur [0,1], et notamment pour $\sum_{n=1}^{+\infty} a_n$?

EXERCICE 6 [Indication] [Correction]

On pose $a_0 > 0$, et $\forall n \in \mathbb{N}$, $a_{n+1} = \ln(1 + a_n)$.

- 1. Déterminer le rayon de convergence R de la série entière $\sum a_n x^n$.
- 2. Montrer que la série entière converge en x = -1.
- 3. Montrer que $\lim_{n\to\infty} \left(\frac{1}{a_{n+1}} \frac{1}{a_n}\right)$. En déduire que $\lim_{n\to\infty} na_n = 2$. Conclusion?

SÉRIES ENTIÈRES. RAYONS DE CONVERGENCE ET SOMMES (II)

Indications, résultats

Indications ou résultats

INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Le rayon de convergence est égal à $\frac{1}{3}$. On trouve $\sum_{n=0}^{+\infty} a_n x^n = \frac{x}{1-x^2} + \frac{1}{1-9x^2}$.

INDICATION POUR L'EXERCICE 2 [Retour à l'énoncé]

On a R = 1. Poser $T(x) = xS(x^2)$ et calculer T'(x).

En déduire $S(x) = \frac{1}{2\sqrt{x}} \ln \frac{1+\sqrt{x}}{1-\sqrt{x}}$ sur]0,1[. Sur]-1,0[, considérer $U(x)=xS(-x^2)$.

Indication pour l'exercice 3 [Retour à l'énoncé]

Poser
$$u_n(x) = \operatorname{Im} \frac{(xe^{i\theta})^n}{n}$$
. Montrer que $U'(x) = \sum_{n=1}^{+\infty} u_n(x) = \frac{\cos \theta - x}{1 - 2x \cos \theta + x^2}$.

Obtenir finalement $\forall x \in]-1,1[,\ U(x)=-\frac{1}{2}\ln(1-2x\cos\theta+x^2).$

Indication pour l'exercice 4 [Retour à l'énoncé]

- On a
$$a_n = \operatorname{Re} b_n$$
, avec $b_n = \frac{1+i}{n\sqrt{2}}i^n$. Montrer que $T(x) = \sum_{n=1}^{\infty} b_n x^n = \frac{1+i}{\sqrt{2}}\sum_{n=1}^{\infty} \frac{1}{n}(ix)^n$.

Dériver T(x), puis intégrer les parties réelle et imaginaire de T'(x).

En déduire
$$\sum_{n=1}^{+\infty} a_n x^n = -\frac{1}{\sqrt{2}} (\arctan x + \ln \sqrt{1+x^2}).$$

- Calculer a_{2p} et a_{2p+1} . Séparer en deux séries et reconnaître deux séries classiques.

INDICATION POUR L'EXERCICE 5 [Retour à l'énoncé]

3. Vérifier que
$$S_{n,p}(x) = \sum_{k=n+1}^{p} a_k x^k = r_n x^{n+1} + \sum_{k=n+1}^{p-1} r_k (x^{k+1} - x^k) - r_p x^p$$
.

Montrer que la série $\sum a_n x^n$ converge uniformément sur [0,1].

4. On en déduit
$$\sum_{n=0}^{+\infty} a_n = \lim_{x\to 1-} \sum_{n=0}^{+\infty} a_n x^n$$
.

INDICATION POUR L'EXERCICE 6 [Retour à l'énoncé]

- 1. Montrer que la suite (a_n) est convergente vers $\ell = 0$. En déduire R = 1.
- 2. Pour x=-1, utiliser le critère spécial des séries alternées.
- 3. Montrer que $a_n \ln(1 + a_n) \underset{n \to \infty}{\sim} \frac{a_n^2}{2}$.

Utiliser la convergence au sens de Césaro pour $u_n = \frac{1}{a_n} - \frac{1}{a_{n-1}}$.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

Si n = 2p, alors $a_n = a_{2p} = 3^{2p}$. Si n = 2p + 1, alors $a_n = a_{2p+1} = 1$.

$$\sum a_n x^n \text{ est donc la somme de } \sum_{p \geq 0} a_{2p} x^{2p} = \sum_{p \geq 0} (3x)^{2p} \text{ et de } \sum_{p \geq 0} a_{2p+1} x^{2p+1} = \sum_{p \geq 0} x^{2p+1}.$$

La première converge si |3x| < 1, diverge sinon, et sa somme est $\frac{1}{1-9x^2}$.

Quant à la seconde, elle converge si |x| < 1, diverge sinon et sa somme est $\frac{x}{1-x^2}$.

Le rayon de convergence R de la série $\sum a_n$ est donc égal à $\frac{1}{3}$, minimum des deux rayons.

Conclusion : pour
$$|x| < \frac{1}{3}$$
 on a $\sum_{n=0}^{+\infty} a_n x^n = \frac{x}{1-x^2} + \frac{1}{1-9x^2}$.

Corrigé de l'exercice 2 [Retour à l'énoncé]

Avec
$$a_n = \frac{1}{2n+1}$$
, on a $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ donc $R = 1$.

Sur] - 1, 1[, posons
$$T(x) = xS(x^2) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$$
.

Par dérivation on trouve,
$$\forall x \in]-1, 1[, T'(x) = \sum_{n=0}^{+\infty} x^{2n} = \frac{1}{1-x^2} = \frac{1}{2} \left(\frac{1}{1+x} + \frac{1}{1-x} \right).$$

Puis, par intégration terme à terme :

$$\forall x \in]-1, 1[, xS(x^2) = T(x) = \frac{1}{2}(\ln(1+x) - \ln(1-x)) = \frac{1}{2}\ln\frac{1+x}{1-x}.$$

On en déduit :
$$\forall x \in]0,1[,S(x)=\frac{1}{2\sqrt{x}}\ln\frac{1+\sqrt{x}}{1-\sqrt{x}}.$$

Pour obtenir l'expression de S(x) sur]-1,0[, il faut poser $U(x)=xS(-x^2)$.

Ainsi pour tout
$$x$$
 de $]-1,1[,U(x)=xS(-x^2)=\sum_{n=0}^{+\infty}\frac{(-1)^nx^{2n+1}}{2n+1}=\arctan x.$

On en déduit :
$$\forall x \in]-1,0[,S(x)=\frac{1}{\sqrt{-x}}\arctan\sqrt{-x}.$$
 Notons d'autre part que $S(0)=1.$

On a ainsi obtenu S sur tout]-1,1[. Deux expressions sont nécessaires suivant qu'on se place sur]0,1[ou sur]-1,0[mais on ne doit pas oublier que S (en tant que somme d'une série entière réelle de rayon de convergence 1) est de classe \mathcal{C}^{∞} sur tout l'intervalle]-1,1[.

Les sommes partielles de la série définissant S donnent le développement limité de S à tout ordre en 0. On trouve ainsi à l'ordre $4:S(x)=1+\frac{x}{3}+\frac{x^2}{5}+\frac{x^3}{7}+\frac{x^4}{9}+\mathrm{O}(x^5)$.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Séries entières. Rayons de convergence et sommes (II)

Corrigés

Corrigé de l'exercice 3 [Retour à l'énoncé]

Pour x réel, posons $u_n(x) = \frac{\cos n\theta}{n} x^n = \text{Im}(z_n(x))$, avec $z_n(x) = \frac{e^{in\theta}}{n} x^n = \frac{(xe^{i\theta})^n}{n}$.

Les deux séries entières $\sum u_n(x)$ et $\sum z_n(x)$ ont le même rayon de convergence R.

C'est celui de
$$\sum \frac{t^n}{n}$$
, c'est-à-dire 1. $x \mapsto Z(x) = \sum_{n=1}^{+\infty} z_n(x)$ est donc C^{∞} sur $]-1,1[$.

On peut dériver terme à terme et on obtient :

$$\forall x \in]-1, 1[, Z'(x) = e^{i\theta} \sum_{n=1}^{+\infty} (xe^{i\theta})^{n-1} = \frac{e^{i\theta}}{1 - xe^{i\theta}} = \frac{(1 - xe^{-i\theta})e^{i\theta}}{|1 - xe^{i\theta}|^2} = \frac{e^{i\theta} - x}{1 - 2x\cos\theta + x^2}.$$

On prend la partie réelle et on trouve, pour tout x de]-1,1[:

$$U'(x) = \sum_{n=1}^{+\infty} u_n(x) = \frac{\cos \theta - x}{1 - 2x \cos \theta + x^2} = -\frac{1}{2} \frac{(1 - 2x \cos \theta + x^2)'}{1 - 2x \cos \theta + x^2}.$$

Avec
$$U(x) = 0$$
, on obtient : $\forall x \in]-1, 1[$, $U(x) = \sum_{n=1}^{+\infty} \frac{\cos n\theta}{n} x^n = -\frac{1}{2} \ln(1 - 2x \cos \theta + x^2)$.

Corrigé de l'exercice 4 [Retour à l'énoncé]

- Première méthode: on va passer par les nombres complexes.

On pose
$$b_n = \frac{1}{n} \exp\left(\frac{i\pi}{4} + n\frac{i\pi}{2}\right) = \frac{1+i}{n\sqrt{2}}i^n$$
. Pour tout entier n , on $a: a_n = \text{Re } b_n$.

Le rayon de $\sum \frac{z^n}{n}$ est 1. Il en est donc de même de $\sum b_n x^n$ et de $\sum a_n x^n$.

Pour tout
$$x$$
 de l'intervalle $]-1,1[$, posons $T(x)=\sum_{n=1}^{\infty}b_nx^n=\frac{1+i}{\sqrt{2}}\sum_{n=1}^{\infty}\frac{1}{n}(ix)^n.$

On dérive :
$$\forall x \in]-1, 1[, T'(x) = \frac{i-1}{\sqrt{2}} \sum_{n=1}^{\infty} (ix)^{n-1} = \frac{i-1}{\sqrt{2}} \frac{1}{1-ix} = \frac{i-1}{\sqrt{2}} \frac{1+ix}{1+x^2}$$

On intègre :
$$\forall x \in]-1,1[,T(x)=\frac{i-1}{\sqrt{2}}(\arctan x+i\ln\sqrt{1+x^2})$$

On prend la partie réelle :
$$\forall x \in]-1,1[,\sum_{n=1}^{+\infty}a_nx^n=-\frac{1}{\sqrt{2}}(\arctan x+\ln\sqrt{1+x^2})$$

- Deuxième méthode

On évalue a_n suivant les différentes valeurs de n et on sépare en deux séries distinctes.

On a:
$$a_{2p} = \frac{1}{2p}\cos\left(\frac{\pi}{4} + p\pi\right) = \frac{1}{\sqrt{2}}\frac{(-1)^p}{2p}$$
 et $a_{2p+1} = \frac{1}{2p+1}\cos\left(\frac{3\pi}{4} + p\pi\right) = \frac{1}{\sqrt{2}}\frac{(-1)^{p+1}}{2p+1}$

On reconnait deux séries classiques. Pour tout x de] -1,1[:

$$\sum_{n=1}^{+\infty} a_n x^n = -\frac{1}{2\sqrt{2}} \sum_{p=1}^{+\infty} \frac{(-1)^{p+1}}{p} (x^2)^p - \frac{1}{\sqrt{2}} \sum_{p=0}^{+\infty} \frac{(-1)^p}{2p+1} x^{2p+1} = -\frac{\ln(1+x^2)}{2\sqrt{2}} - \frac{\arctan x}{\sqrt{2}}$$

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

SÉRIES ENTIÈRES. RAYONS DE CONVERGENCE ET SOMMES (II)

Corrigés

Corrigé de l'exercice 5 [Retour à l'énoncé]

- 1. Si les a_n sont tous positifs, alors : $\forall x \in [0,1], |a_n x^n| = a_n |x|^n \le a_n$. La série $\sum a_n x^n$ est donc normalement (donc uniformément convergente) sur [0,1].
- 2. Ici $a_n = (-1)^n \lambda_n x^n$ et on applique le critère des séries alternées pour tout x de [0,1]. Ainsi $\forall n \in \mathbb{N}, |R_n(x)| = \left|\sum_{k=n+1}^{\infty} a_k x^k\right| \leq |a_{n+1} x^{n+1}| \leq \lambda_{n+1} \to 0$ quand $n \to \infty$.

La suite des restes $R_n(x)$ converge donc uniformément vers 0 sur [0,1], ce qui traduit la convergence uniforme sur [0,1] de la série $\sum a_n x^n$.

3. Dans le cas général, soit n un entier positif ou nul quelconque.

On cherche à majorer $S_{n,p}(x) = \sum_{k=n+1}^{p} a_k x^k$ uniformément sur [0,1].

$$S_{n,p}(x) = \sum_{k=n+1}^{p} a_k x^k = \sum_{k=n+1}^{p} (r_{k-1} - r_k) x^k = \sum_{k=n+1}^{p} r_{k-1} x^k - \sum_{k=n+1}^{p} r_k x^k$$
$$= \sum_{k=n}^{p-1} r_k x^{k+1} - \sum_{k=n+1}^{p} r_k x^k = r_n x^{n+1} + \sum_{k=n+1}^{p-1} r_k (x^{k+1} - x^k) - r_p x^p$$

On se donne un réel $\varepsilon > 0$. On sait que la suite de terme général (r_n) converge vers 0. Il existe donc un entier n_0 tel que $n \ge n_0 \Rightarrow |r_n| \le \varepsilon$.

On en déduit, en choisissant $p \ge n \ge n_0$, et pour tout x de [0,1]:

$$|S_{n,p}(x)| = \left| r_n x^{n+1} + \sum_{k=n+1}^{p-1} r_k (x^{k+1} - x^k) - r_p x^p \right|$$

$$\leq |r_n| x^{n+1} + \sum_{k=n+1}^{p-1} |r_k| (x^k - x^{k+1}) + |r_p| x^p$$

$$\leq \varepsilon \left(x^{n+1} + \sum_{k=n+1}^{p-1} (x^k - x^{k+1}) + x^p \right) = 2\varepsilon x^{n+1} \leq 2\varepsilon$$

Avec $n \ge n_0$ et $x \in [0, 1]$ fixés, on fait tendre p vers $+\infty$.

On trouve: $\forall n \geq n_0, \forall x \in [0,1], \left| \sum_{k=n+1}^{+\infty} a_k x^k \right| \leq 2\varepsilon.$

Cela signifie que la série de fonctions $\sum a_n x^n$ converge uniformément sur [0,1].

4. La CVU $\Rightarrow S(x) = \sum_{n=1}^{\infty} a_n x^n$ est continue sur [0,1] donc en $1:\sum_{n=0}^{+\infty} a_n = \lim_{x\to 1-}\sum_{n=0}^{+\infty} a_n x^n$.

Exemples:

$$-\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \lim_{x \to 1-} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{n} = \lim_{x \to 1-} \ln(1+x) = \ln 2.$$

$$-\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \lim_{x \to 1-} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = \lim_{x \to 1-} \arctan x = \frac{\pi}{4}.$$

Page 5 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

SÉRIES ENTIÈRES. RAYONS DE CONVERGENCE ET SOMMES (II)

Corrigés

CORRIGÉ DE L'EXERCICE 6 [Retour à l'énoncé]

1. On sait que pour tout x > 0, on a : $0 < \ln(1+x) < x$.

On en déduit, $0 < a_1 < a_0$, puis par une récurrence évidente : $\forall n \in \mathbb{N}, 0 < a_{n+1} < a_n$. Ainsi la suite $(a_n)_{n \geq 0}$ est décroissante et à termes positifs.

On en déduit qu'elle est convergente dans \mathbb{R}^+ . Posons $\ell = \lim_{n \to \infty} a_n$.

Si on passe à la limite dans $a_{n+1} = \ln(1 + a_n)$ on trouve $\ell = \ln(1 + \ell)$ et donc $\ell = 0$.

Ce résultat permet d'écrire $a_{n+1} = \ln(1 + a_n) \underset{n \to \infty}{\sim} a_n$.

Ainsi $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$: le rayon de convergence de la série $\sum a_n x^n$ est égal à 1.

2. Pour x = -1, la série s'écrit $\sum (-1)^n x^n$.

C'est une série convergente en vertu du critère spécial des séries alternées.

3. On a $\frac{1}{a_{n+1}} - \frac{1}{a_n} = \frac{a_n - \ln(1 + a_n)}{a_n a_{n+1}}$. Or $a_n \to 0 \Rightarrow a_n - \ln(1 + a_n) \underset{n \to \infty}{\sim} \frac{a_n^2}{2}$.

De même $a_{n+1} \underset{n\to\infty}{\sim} a_n$. On en déduit $\frac{1}{a_{n+1}} - \frac{1}{a_n} \underset{n\to\infty}{\sim} \frac{1}{2}$.

Posons $u_n = \frac{1}{a_n} - \frac{1}{a_{n-1}}$. Puisque $\lim_{n \to \infty} u_n = \frac{1}{2}$ on a $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n u_k = \frac{1}{2}$ (Césaro).

Or $\frac{1}{n}\sum_{k=1}^n u_k = \frac{1}{n}\left(\frac{1}{a_n} - \frac{1}{a_0}\right) \underset{n \to \infty}{\sim} \frac{1}{na_n}$. On en déduit $\lim_{n \to \infty} na_n = 2$, c'est-à-dire $a_n \underset{n \to \infty}{\sim} \frac{2}{n}$.

Conclusion : la série entière $\sum a_n x^n$ est divergente en x=1.

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.