

PUBLICO

Repaso de Estadística

Oficina de Planificación Estratégica y Efectividad en el Desarrollo Semana de Diseño de Evaluación de Impacto

De conformidad con la Política de Acceso a Información, esta presentación está sujeta a divulgación pública.

El contenido de esta presentación esta basada en parte en Gertler et al (2016). Las opiniones expresadas representan la opinión del autor y no necesariamente del Banco Inter-Americano de Desarrollo, sus Directores Ejecutivos o los países que representan.

Copyright © 2018 Banco Interamericano de Desarrollo. Esta obra está bajo una licencia Creative Commons IGO 3.0 Reconocimiento-No Comercial-Sin Obra Derivada (CC-IGO BY-NC-ND 3.0 IGO) (http://creativecommons.org/licenses/by-nc-nd/3.0/igo/legalcode) y puede ser reproducida para cualquier uso nocomercial otorgando crédito al BID. No se permiten obras derivadas.

Cualquier disputa relacionada con el uso de las obras del BID que no pueda resolverse amistosamente se someterá a arbitraje de conformidad con las reglas de la CNUDMI. El uso del nombre del BID para cualquier fin que no sea para la atribución y el uso del logotipo del BID, estará sujeta a un acuerdo de licencia por separado y no está autorizado como parte de esta licencia CC-IGO.

Notar que el enlace URL incluye términos y condicionales adicionales de esta licencia.

Las opiniones expresadas en esta publicación son de los autores y no necesariamente reflejan el punto de vista del Banco Interamericano de Desarrollo, de su Directorio Ejecutivo ni de los países que representa.

El contenido de esta presentación está basado parcialmente en Gertler et al (2011).

Objetivo

Revisión de conceptos.

- **I. Repaso de estadística**: min, max, mediana, media, desviación estándar, histograma, muestreo aleatorio simple, teorema del límite central y ley de los grandes números.
- II. Pruebas de diferencias en la media: Comparación de medias, Potencia, significancia y regresión para comparar medias.
- III. Identificación: resultado, atributo, mecanismo de asignación, endógeno, identificación, observables, heterogeneidad.

Objetivo

variable	N	mean	sd	min	p50	max	
puntaje	25	654	118	445	683	849	
Grupo Obs	Media	Std. Err.	Std. Dev.	[95% Conf	. Interval]		
Escuela A 250 Escuela B 250	600 630	6.3 6.3	100 100	587.5 617.5	612.4 642.4		
Diferencia	-30	8.9		-47.6	-12.4		
Tratamiento						24 (0.09)***	
Obs.						500	

^{*} significativo al 90%,

$$Y_i = \alpha + \beta T_i + \epsilon_i$$

^{**} significativo at 95%,

^{***} significativo at 99%

I. REPASO DE ESTADÍSTICA

Motivación

Tabla 1. Desempeño de estudiantes en matemáticas

variable			•	
puntaje				

Desempeño de estudiantes en matemáticas

Estadística

Descripción básica de datos

Descripción básica de datos

Suma de todos los puntajes: 16353

Total de estudiantes:

División de puntaje igual: 654

Histograma

Descripción básica de datos

variable	N	μ mean	σ sd	min	p50	max
puntaje	500	615	101	362	615.5	879

Muestra

variable					'		
puntaje							
Muestra 1	5	482	40	 445	467	534	

Muestra

variable					•		
Población							
Muestra 1	5	482	40	445	467	534	
Muestra 2	5	803	32	716	756	765	

Media muestral: 765 Media poblacional: 654

Media muestral: 765 Media poblacional: 654

Ley de los GRANDES números

Histograma

	$ar{X}$	$egin{array}{c} ar{X} \ ar{X} \end{array}$		
	$egin{array}{c} X \ ar{X} \ ar{X} \end{array}$	$ar{X} \ ar{X}$	$ar{X} \ ar{X}$	
$ar{ar{X}}_{ar{ar{X}}}$	$ar{X}_{ar{-}}$	$ar{X}$	$ar{X}$	=
$ar{X}$	$ar{X}$	$ar{X}$	$ar{X}$	$ar{X}$
400-499	500-599	600-699	700-799	800-899

Teorema del límite central

La regla tres-sigma o la regla empírica

Esta es una distribución normal con media 0 desviación estándar 1

$$z \sim N(0,1)$$

Intervalo de confianza

Teorema (del límite central): Sea $X_1, X_2, ..., X_n$ un conjunto de variables aleatorias, independientes e idénticamente distribuidas de una distribución con media μ y varianza $\sigma^2 \neq \mathbf{o}$. Entonces, si \mathbf{n} es suficientemente grande, la variable aleatoria

$$ar{X} = rac{1}{n} \sum_{i=1}^n X_i$$

tiene aproximadamente una distribución normal con

$$\mu_{ar{X}} = \mu \, \mathrm{y} \, \sigma_{ar{X}}^2 = rac{\sigma^2}{n}.$$

Teorema del límite central

La desviación estándar del promedio se llama **error estándar**. $SE = SD/\sqrt{N}$

Lección clave:

↑ tamaño de la muestra →↓**SE**

			[95% Conf. Interva	 al]
Escuela A	600		587.5 612.4	

Intervalo de confianza

$$(ar x-z_{lpha/2}rac{\sigma}{\sqrt n},ar x+z_{lpha/2}rac{\sigma}{\sqrt n})$$

Grupo	Obs	Media	Std. Err.	Std. Dev.	[95% Conf	. Interval]
Escuela A	250 n	600 \bar{x}	6.3 σ/\sqrt{n}	100	587.5	612.4

Re-escalar la distribución normal estándar

$$(ar{x}-z_{lpha/2}rac{\sigma}{\sqrt{n}},ar{x}+z_{lpha/2}rac{\sigma}{\sqrt{n}})$$

II. DIFERENCIA DE MEDIAS

Ahora tenemos 2 poblaciones

Escuela A

Escuela B

¿Son diferentes las escuelas A y B?

	Ν	m	ean	sd	ı	min	p50	max	
Escuela A Escuela B								879 849	

Son diferentes? Supongamos que no

Grupo						-	nterval]
Escuela A Escuela B	250 250	630 600	100 100	392 362	628 598	879 849	
Diferencia		30	9		12	48	

Son diferentes? Supongamos que no

Grupo	Obs					[95% Conf. Ir	nterval]
Escuela A Escuela B	250 250	630 600	100 100	392 362	628 598	879 849	
Diferencia		30	9		12	48	

Ahora supongamos que si

Grupo						[95% Conf.	-
Escuela A Escuela B	250 250	630 600	100 100	392 362	628 598	879 849	
Diferencia		30	9		12		

Errores tipo I y tipo II

Grupo						[95% Conf.	Interval]
Escuela A Escuela B	250 250	630 600	100	392 362	628		
Diferencia		30	9		12	48	

Errores tipo I y tipo II

Grupo						[95% Conf	-
Escuela A Escuela B	250 250	630 600	100 100	392 362	628 598	879 849	
Diferencia		30	9		12		

Hipótesis nula H₀ Son iguales

Type I error (false positive)

Type II error (false negative)

¿Hubo impacto? La noción de potencia

Tratamiento	24 (0.09)***
Obs.	500

Figure: 500 observaciones

^{*} significativo al 90%, ** significativo at 95%, *** significativo at 99%

Tratamiento	24
	(0.1)**
Obs.	400

^{*} significativo al 90%, ** significativo at 95%, *** significativo at 99%

Figure: 400 observaciones

Tratamiento	25 (0.12)**
Obs.	300

Figure: 300 observaciones

^{*} significativo al 90%, ** significativo at 95%, *** significativo at 99%

Tratamiento	26
	(0.14)*
Obs.	200

Figure: 200 observaciones

^{*} significativo al 90%, ** significativo at 95%, *** significativo at 99%

Tratamiento	19 (0.22)
Obs.	100

Figure: 100 observaciones

^{*} significativo al 90%, ** significativo at 95%, *** significativo at 99%

Ejercicio

Considera los siguientes datos:

Grupo					-	-
Escuela A	250	600	6	100	588	612

Ejercicio 1: Dibuja la distribución de las calificaciónes de la escuela A. Indica la media, la desviación estándar e indica valores para la regla 3 sigma.

Ejercicio 2: Dibuja la distribución de **la media** de las calificaciónes de la escuela A. Indica la media, el error estándar y el intervalo de confianza.

Ejercicio 3: El Subsecretario de educación dice que <u>no</u> se alcanzó la meta de lograr un puntaje promedio de 607 puntos. ¿Tiene razón?

Ejercicio 4: ¿Qué ventaja tendría tener una muestra de estudiantes más grande?

RETO EXTRA: ¿De qué tamaño tendría que ser la muestra para poder rechazar que la media es 607 al 5% de significancia?

III. IDENTIFICACIÓN

Intuición

- 1. Supongamos que hay una prueba de conocimiento con puntajes 0 a 10 denotado por Y (indicador de <u>resultado</u>).
- 2. Supongamos que hay 100 personas. Atributos:
 - 1. 50 con gorro rojo "R's"
 - 2. 50 con gorro blanco "B's"
- 3. Supongamos que todos conocen la respuesta de 2 preguntas.
- 4. Supongamos los R conocen la respuesta de 3 preguntas mas, pero los B's no (es decir, el color del gorro X se asocial a Y. En otras palabras, el atributo esta asociados a resultados)
- 5. Supongamos que hay un programa de tutoría T en donde se les proporciona la respuesta a 4 preguntas. Éstas <u>no</u> coinciden con las que ya tienen los R's.
- 6. Supongamos que la participación al programa es voluntaria (mecanismo de asignación) y resulta en 40 R's y 25 B's (Tratamiento asociado a atributo)

	T=1 (tutoria)	T=0 (duermen)	Promedio
X=1 (Rs)	40 personas puntos	10 personas puntos	puntos
X=0 (Bs)	25 personas puntos	25 personas puntos	puntos
Promedio	puntos	puntos	

	T=1 (tutoria)	T=0 (duermen)	Promedio
X=1 (Rs)	40 personas Y=2+3+4 Y= 9 puntos	10 personas Y=2+3+0 Y= 5 puntos	E(Y X=1)=(40/50)(9)+(10/50)(5)= 8.2 puntos
X=0 (Bs)	25 personas Y=2+0+4 Y=6 puntos	25 personas Y=2+0+0 Y= 2 puntos	E(Y X=0)=(25/50)(6)+(25/50)(2)= 4 puntos
Promedio	E(Y T=1)=(40/65)(9)+(25/65)(6)= 7.8 puntos	E(Y T=0)=(10/35)(5)+(25/35)(2)= 2.9 puntos	

No te puede ignorar el color de la gorra para evaluar

¿Por qué no?

Porque el color de la roja se relaciona con la tutoría.

Decimos que el tratamiento es endógeno (que se origina en virtud de causas internas.)

2 ejemplos de variables endógenas a calificaciones para niños

- La riqueza del hogar facilita el acceso a los programas y a la compra de libros, tutorías y actividades culturales. (Relativamente fácil de observar)
- La motivación facilita el acceso a los programas, y el número de horas invertidas en estudiar. (Difícil de observar)
- Algo de "jargón" de evaluadores:
 - Los evaluadores decimos "observar" pero pensamos "medir".
 - Los evaluadores decimos "difícil" pero pensamos "costoso"

Una dosis de realidad...

$$y_i = 2 + 4T_i + 3X_i$$

No podemos observar todos los atributos

Modelo

$$y_i = 2 + 4T_i + 3X_i$$

$$y_i = 2 + 4T_i + \varepsilon_i$$

Regresión

$$y_i = \propto + \varepsilon_i$$

Carlos: y = 600

+ (20)

620

Tomás: y = 600

+ (

= 601

Efecto del programa

$$Y_i = \alpha + \varepsilon_i$$

$$Y_{Tom\acute{a}s}$$
 = 600 +

$$Y_{Carlos}$$
 = 600

$$E[Y] = \alpha$$

Efecto del programa

$$T_i$$
=0 Sin programa Y_i = α + ε_i
 T_i =1 Con programa Y_i = α + β + ε_i

Efecto del programa

T=0 Sin programa E[Y|T=1] =
$$\alpha$$

T=1 Con programa E[Y|T=0] = α + β
$$\beta = E[Y|T=1]-E[Y|T=0]$$

	T=1 (tutoria)	T=0 (duermen)	Promedio
X=1 (Rs)	40 personas Y=2+3+4 Y=9 puntos	10 personas Y=2+3+0 Y= 5 puntos	E(Y X=1)=(40/50)(9)+(10/50)(5)= 8.2 puntos
X=0 (Bs)	25 personas Y=2+0+4 Y=6 puntos	25 personas Y=2+0+0 Y= 2 puntos	E(Y X=1)=(25/50)(6)+(25/50)(2)= 4 puntos
Promedio	E(Y T=1)=(40/65)(9)+(25/65)(6)= 7.8 puntos	E(Y T=1)=(10/35)(5)+(25/35)(2)= 2.9 puntos	

Estimación sesgada en 0.9 porque el el porque en dóg es en dóg

oria)

T=0 (duermen) Promedio

Condición para estimador insesgado. Exogeneidad: $\varepsilon \perp T$

Promedio

7.8 puntos

E(Y|T=1)=(40/65) E(Y|T=1)=(10/35)(9)+(25/65)(6)= (5)+(25/35)(2)=

2.9 puntos

$$y_i = \alpha + \beta T_i + \gamma X_i + \varepsilon_i$$
25 Tuloría
25 Nada
25 Nada

T=1 (tutoria) T=0 (duermen) X=1 (Rs) 40 personas 10 personas Y=5-3=2 puntos Y=9-3=6 puntos X=0 (Bs) 25 personas 25 personas Y=6 puntos Y=2 puntos Promedio E(Y|T=1)=(40/65)(9-E(Y|T=1)=(10/35)(5-3)+(25/65)(6)=3)+(25/35)(2)=6 puntos 2 puntos

$$y_i = \alpha + \beta T_i + \gamma X_i + \varepsilon_i$$

Los controles

Los controles

pueden ayudar =1 (tutoria) a disminui

T=0 (duermen)

Condición para estimador insesgado. Exogeneidad: $\varepsilon \perp T, X$

6 puntos

2 puntos

Resumen

variable	Ν	mean	sd	min	p50	max	
puntaje	25	654	118	445	683	849	
Grupo Obs	Media	Std. Err.	Std. Dev.	[95% Conf	. Interval]		
Escuela A 250 Escuela B 250	600 630	6.3 6.3	100 100	587.5 617.5	612.4 642.4		
Diferencia	-30	8.9		-47.6	-12.4		
Tratamiento						24 (0.09)***	=
Obs.						500	

^{*} significativo al 90%,

$$Y_i = \alpha + \beta T_i + \epsilon_i$$

^{**} significativo at 95%,

^{***} significativo at 99%

Resumen

Estadística básica descriptiva: min, max, mediana, media y desviación estándar, histogramas

Muestreo: Muestreo aleatorio simple, teorema del límite central y ley de los grandes números.

Comparación de poblaciones: Comparación de medias, potencia, significancia, atributo, mecanismo de asignación, identificación, exogeneidad, sesgo, identificación.

Referencias

Gertler, Paul J., Sebastian Martinez, Patrick Premand, Laura B. Rawlings, and Christel M. J. Vermeersch. 2016 **Impact Evaluation in Practice.** 2nd edition. Washington, D.C.: World Bank