Unidad III: Aproximación de funciones.

José Luis Ramírez B.

February 19, 2025

Introducción

- 2 Interpolación
 - ullet Taylor
 - Lagrange
 - Newton
 - Interpolación de Chebyshev
 - Interpolación a trozos

• En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.

- En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.
- Se Investiga un fenómeno que se está desarrollando, se desea estudiarlo, y junto con los modelos previos con que se cuente, se pueden tomar muestras experimentales.

- En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.
- Se Investiga un fenómeno que se está desarrollando, se desea estudiarlo, y
 junto con los modelos previos con que se cuente, se pueden tomar
 muestras experimentales.
- Se tiene una serie de datos a partir de mediciones sobre el mismo.

- En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.
- Se Investiga un fenómeno que se está desarrollando, se desea estudiarlo, y
 junto con los modelos previos con que se cuente, se pueden tomar
 muestras experimentales.
- Se tiene una serie de datos a partir de mediciones sobre el mismo.
- Se desea extraer información de esos datos.

Esencialmente podemos tratarlo con:

Esencialmente podemos tratarlo con:

• Técnicas estadísticas (que continuarán observando el fenómeno de un modo discreto, es decir, sobre ese conjunto finito de mediciones).

Esencialmente podemos tratarlo con:

- Técnicas estadísticas (que continuarán observando el fenómeno de un modo discreto, es decir, sobre ese conjunto finito de mediciones).
- o bien "intentando recrear/reconstruir el fenómeno en su totalidad" (en un dominio continuo de espacio, tiempo o cualquier otra magnitud), con la función que represente "lo mejor posible" esos datos.

Las técnicas que utilizan funciones continuas y se consideran en este curso son de dos tipos:

Las técnicas que utilizan funciones continuas y se consideran en este curso son de dos tipos:

• Interpolación: cálculo de funciones que pasan ("interpolan" es el término matemático) exactamente por los puntos dados.

Las técnicas que utilizan funciones continuas y se consideran en este curso son de dos tipos:

- Interpolación: cálculo de funciones que pasan ("interpolan" es el término matemático) exactamente por los puntos dados.
- Curvas de ajuste: cálculo de funciones aproximadas a los datos que tenemos (en algún sentido, para cierta distancia)

Polinomio de grado n:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 (a_n \neq 0)$$

Polinomio de grado n:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 (a_n \neq 0)$$

Teorema:

Si p_n es un polinomio de grado $n \ge 1$, entonces $p_n(x) = 0$ tiene al menos una raíz (posiblemente compleja).

Teorema:

Sea p_n un polinomio de grado $n \ge 1$, entonces existen constantes x_1, x_2, \ldots, x_k , posiblemente complejas, y enteros positivos m_1, m_2, \ldots, m_k , tales que $m_1 + m_2 + \ldots + m_k = n$ verificando:

$$p_n(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}$$

Teorema:

Sea p_n un polinomio de grado $n \ge 1$, entonces existen constantes x_1, x_2, \ldots, x_k , posiblemente complejas, y enteros positivos m_1, m_2, \ldots, m_k tales que $m_1 + m_2 + \ldots + m_k = n$ verificando:

$$p_n(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}$$

Teorema:

Sean p_n y q_n dos polinomios de grado menor o igual que n. Si existen x_1, x_2, \ldots, x_k , con k > n, números distintos tales que $p_n(x_i) = q_n(x_i)$, $i=1,\ldots,k$, entonces $p_n(x)=q_n(x)$ para todo x.

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Se necesitan menos operaciones para evaluarlo en un punto x_0 si se escribe:

$$p_n(x) = a_0 + x(a_1 + x(\cdots(a_{n-2} + x(a_{n-1} + xa_n))\cdots))$$

Algoritmo de Horner para evaluar $p_n(x_0)$

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Se necesitan menos operaciones para evaluarlo en un punto x_0 si se escribe:

$$p_n(x) = a_0 + x(a_1 + x(\cdots(a_{n-2} + x(a_{n-1} + xa_n))\cdots))$$

Algoritmo de Horner para evaluar $p_n(x_0)$

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 b_{k+1}$ $k = n - 2, \dots, 1, 0, -1$

entonces: $p_n(x_0) = b_{-1}$

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Se necesitan menos operaciones para evaluarlo en un punto x_0 si se escribe:

$$p_n(x) = a_0 + x(a_1 + x(\cdots(a_{n-2} + x(a_{n-1} + xa_n))\cdots))$$

Algoritmo de Horner para evaluar $p_n(x_0)$

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 b_{k+1}$ $k = n-2, \dots, 1, 0, -1$

entonces: $p_n(x_0) = b_{-1}$

Además, si se llama

$$q_{n-1}(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_1x + b_0$$

se tiene que:

$$p_n(x) = (x - x_0)q_{n-1}(x) + b_{-1}$$

y por lo tanto

$$p'_n(x_0) = q_{n-1}(x_0)$$

¿Por qué es Importante el Algoritmo de Horner?

• Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).

- Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).
- Estabilidad: Reduce errores de redondeo en cálculos numéricos.

- Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).
- Estabilidad: Reduce errores de redondeo en cálculos numéricos.
- Derivadas: Permite obtener información sobre la derivada del polinomio en el mismo punto.

- Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).
- Estabilidad: Reduce errores de redondeo en cálculos numéricos.
- Derivadas: Permite obtener información sobre la derivada del polinomio en el mismo punto.
- División Sintética: Está relacionado con el método de división sintética para polinomios, lo que lo hace muy útil en el campo del álgebra y el análisis numérico.

En Resumen:

- El algoritmo de Horner es una herramienta poderosa para evaluar polinomios y también para obtener información sobre su derivada.
- Es un método eficiente, estable y muy utilizado en diversos campos de las matemáticas y la informática.

Tenemos el polinomio:

$$p_3(x) = 2x^3 - 3x^2 + 4x - 1$$

Y queremos evaluarlo en $x_0 = 2$ y también calcular $p_3'(2)$.

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

► Inicialización: $b_2 = a_3 = 2$ (coeficiente de x^3)

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$\begin{array}{l} b_{n-1} = a_n \\ b_k = a_{k+1} + x_0 \cdot b_{k+1} \text{ para } k = n-2,...,1,0,-1 \\ p_n(x_0) = b_{-1} \end{array}$$

Inicialización:

$$b_2 = a_3 = 2$$
 (coeficiente de x^3)

► Iteración:

$$b_1 = a_2 + x_0 \cdot b_2 = -3 + 2 \cdot 2 = 1$$
 (coeficiente de x^2)
 $b_0 = a_1 + x_0 \cdot b_1 = 4 + 2 \cdot 1 = 6$ (coeficiente de x^1)
 $b_{-1} = a_0 + x_0 \cdot b_0 = -1 + 2 \cdot 6 = 11$ (término independiente)

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$\begin{array}{l} b_{n-1} = a_n \\ b_k = a_{k+1} + x_0 \cdot b_{k+1} \text{ para } k = n-2,...,1,0,-1 \\ p_n(x_0) = b_{-1} \end{array}$$

Inicialización:

$$b_2 = a_3 = 2$$
 (coeficiente de x^3)

► Iteración:

$$b_1 = a_2 + x_0 \cdot b_2 = -3 + 2 \cdot 2 = 1$$
 (coeficiente de x^2)
 $b_0 = a_1 + x_0 \cdot b_1 = 4 + 2 \cdot 1 = 6$ (coeficiente de x^1)
 $b_{-1} = a_0 + x_0 \cdot b_0 = -1 + 2 \cdot 6 = 11$ (término independiente)

► Resultado:

$$p_3(2) = b_{-1} = 11$$

2. Obtención del Polinomio Cociente $q_2(x)$ Con los valores de b que obtuvimos (excepto b_{-1}), podemos formar el polinomio cociente de grado 2:

$$q_2(x) = b_2 x^2 + b_1 x + b_0 = 2x^2 + 1x + 6$$

2. Obtención del Polinomio Cociente $q_2(x)$ Con los valores de b que obtuvimos (excepto b_{-1}), podemos formar el polinomio cociente de grado 2:

$$q_2(x) = b_2 x^2 + b_1 x + b_0 = 2x^2 + 1x + 6$$

3. Relación entre $p_3(x)$, $q_2(x)$ y b_{-1} El polinomio $p_3(x)$ se puede expresar como:

$$p_3(x) = (x - x_0) \cdot q_2(x) + b_{-1}$$

$$p_3(x) = (x - 2) \cdot (2x^2 + x + 6) + 11$$

4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p'_3(2)$ Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$ Llamemos a los nuevos coeficientes c_i :

- 4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p_3'(2)$ Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$ Llamemos a los nuevos coeficientes c_i :
 - Inicialización:

$$c_1 = b_2 = 2$$

- 4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p_3'(2)$ Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$ Llamemos a los nuevos coeficientes c_i :
 - Inicialización:

$$c_1 = b_2 = 2$$

► Iteración:

$$c_0 = b_1 + x_0 \cdot c_1 = 1 + 2 \cdot 2 = 5$$

 $c_{-1} = b_0 + x_0 \cdot c_0 = 6 + 2 \cdot 5 = 16$

- 4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p_3'(2)$ Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$ Llamemos a los nuevos coeficientes c_i :
 - ► Inicialización:

$$c_1 = b_2 = 2$$

► Iteración:

$$c_0 = b_1 + x_0 \cdot c_1 = 1 + 2 \cdot 2 = 5$$

 $c_{-1} = b_0 + x_0 \cdot c_0 = 6 + 2 \cdot 5 = 16$

Resultado:

$$q_2(2) = c_{-1} = 16$$

5. Derivada $p'_{3}(2)$ Se tiene que $p'_{3}(2) = q_{2}(2) = 16$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

En resumen:

• $p_3(2) = 11$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

- $p_3(2) = 11$
- $q_2(x) = 2x^2 + x + 6$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

•
$$q_2(x) = 2x^2 + x + 6$$

•
$$p_3(x) = (x-2)*(2x^2+x+6)+11$$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

•
$$q_2(x) = 2x^2 + x + 6$$

•
$$p_3(x) = (x-2)*(2x^2+x+6)+11$$

•
$$p_3'(2) = q_2(2) = 16$$

Comprobación de la Derivada

Derivando el polinomio $p_3(x)$ y evaluándolo en x=2.

$$p_3(x) = 2x^3 - 3x^2 + 4x - 1$$

$$p_3'(x) = 6x^2 - 6x + 4$$

Comprobación de la Derivada

Derivando el polinomio $p_3(x)$ y evaluándolo en x=2.

$$p_3(x) = 2x^3 - 3x^2 + 4x - 1$$

$$p_3'(x) = 6x^2 - 6x + 4$$

Evaluando en x = 2:

$$p_3'(2) = 6(2^2) - 6(2) + 4 = 6(4) - 12 + 4 = 24 - 12 + 4 = 16$$

Problema de interpolación de Taylor

Dados un entero n no negativo, un punto $x_0 \in \mathbb{R}$ y los valores $f(x_0), f'(x_0), \ldots, f^{(n)}(x_0)$ de una función y sus n primeras derivadas en x_0 , encontrar un polinomio P(x) de grado $\leq n$ tal que

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

Problema de interpolación de Taylor

Dados un entero n no negativo, un punto $x_0 \in \mathbb{R}$ y los valores $f(x_0), f'(x_0), \ldots, f^{(n)}(x_0)$ de una función y sus n primeras derivadas en x_0 , encontrar un polinomio P(x) de grado $\leq n$ tal que

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

Teorema:

El problema de interpolación de Taylor tiene solución única, que se denomina polinomio de Taylor de grado $\leq n$ de la función f en el punto x_0 :

$$P(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + \dots + f^{(n)}(x_0)\frac{(x - x_0)^n}{n!}$$

Teorema:

Para n > 1 sea f(x) una función n veces derivable en x_0 . El polinomio de Taylor P(x) verifica que:

$$\lim_{x \to x_0} \frac{f(x) - P(x)}{(x - x_0)^n} = 0$$

con la notación o pequeña de Landau $f(x) - P(x) = o((x - x_0)^n)$ para $x \to x_0$. Además, P(x) es el único polinomio de grado $\leq n$ con esta propiedad.

• Error del polinomio interpolador de Taylor

• Error del polinomio interpolador de Taylor

Teorema:

Sean x y x_0 dos números reales distintos y f(x) una función con n derivadas continuas en un intervalo conteniendo a x y x_0 , en el que también existe $f^{(n+1)}$. Entonces existe un punto ξ entre x y x_0 tal que:

$$f(x) - P(x) = f^{(n+1)}(\xi) \frac{(x-x_0)^{n+1}}{(n+1)!}$$

Colorario:

Además de las hipótesis del teorema supongase que para cada t entre x y x_0 se verifica que $|f^{(n+1)}(t)| \leq K_{n+1}$ constante, entonces:

$$|f(x) - P(x)| \le \frac{|x - x_0|^{(n+1)} K_{n+1}}{(n+1)!}$$

A continuación se muestran las gráficas de la función $f(x) = \sin(x)$ y de su polinomio de Taylor de orden 1 al 9 en el cero. Se puede comprobar que la aproximación es más exacta a medida que se aumenta el orden.

El hecho de que la función seno y su polinomio de Taylor se parezcan tanto como se quiera, con sólo aumentar el grado del polinomio lo suficiente, no es algo que le ocurra a todas las funciones. Para la función arctan la situación no es tan buena:

- Se desea aproximar la función $f(x) = e^x$ mediante el polinomio de Taylor centrado en $x_0 = 0$ de orden 5 y hallar el error obtenido en la estimación para x = 1.5
- El polinomio de Taylor de grado 5 viene dada por la siguiente expresión

$$P_5(x) = 1 + 1(x - 0) + \frac{1}{2!}(x - 0)^2 + \frac{1}{3!}(x - 0)^3 + \frac{1}{4!}(x - 0)^4 + \frac{1}{5!}(x - 0)^5$$
$$P_5(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}(x - 0)^4 + \frac{1}{5!}x^5$$

Con la expresión del residuo se calcula el error de Truncamiento:

$$R_5(x) = \frac{f^{(6)}(\xi)}{6!} (x - x_0)^6 = \frac{f^{(6)}(\xi)}{6!} x^6 = \frac{e^{\xi}}{6!} x^6$$
$$R_5(x) = \frac{e^{\xi}}{6!} x^6$$

• Ahora, vamos a aproximar $f(1.5) = e^{1.5}$ usando $P_5(1.5)$:

$$P_5(1.5) = 1 + 1.5 + \frac{(1.5)^2}{2} + \frac{(1.5)^3}{6} + \frac{(1.5)^4}{24} + \frac{(1.5)^5}{120}$$

• Ahora, vamos a aproximar $f(1.5) = e^{1.5}$ usando $P_5(1.5)$:

$$P_5(1.5) = 1 + 1.5 + \frac{(1.5)^2}{2} + \frac{(1.5)^3}{6} + \frac{(1.5)^4}{24} + \frac{(1.5)^5}{120}$$

• Obtenemos:

$$P_5(1.5) \approx 4.462$$

• Ahora, vamos a aproximar $f(1.5) = e^{1.5}$ usando $P_5(1.5)$:

$$P_5(1.5) = 1 + 1.5 + \frac{(1.5)^2}{2} + \frac{(1.5)^3}{6} + \frac{(1.5)^4}{24} + \frac{(1.5)^5}{120}$$

- Obtenemos:
 - $P_5(1.5) \approx 4.462$
- Cálculo del error en x=1.5El error en la aproximación de Taylor está dado por el término del resto. La forma del resto para el polinomio de Taylor de orden n es:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

• En nuestro caso, n = 5, x = 1.5, $x_0 = 0$, y la derivada de orden 6 (o cualquiera) de e^x es e^x . Por lo tanto:

$$R_5(1.5) = \frac{e^{\xi} \cdot (1.5 - 0)^6}{6!}$$
$$R_5(1.5) = \frac{e^{\xi} \cdot 1.5^6}{720}$$

Donde ξ es un número entre 0 y 1.5.

• En nuestro caso, $n=5, x=1.5, x_0=0, y$ la derivada de orden 6 (o cualquiera) de e^x es e^x . Por lo tanto:

$$R_5(1.5) = \frac{e^{\xi} \cdot (1.5 - 0)^6}{6!}$$

$$R_5(1.5) = \frac{e^{\xi} \cdot 1.5^6}{720}$$

Donde ξ es un número entre 0 y 1.5.

• Para maximizar el error, tomamos el mayor valor posible de e^{ξ} en el intervalo [0, 1.5]. Este valor es cuando c = 1.5. Por lo tanto

$$R_5(1.5) = e^{1.5} \cdot \frac{(1.5)^6}{720} \approx 0.0708$$

• Cálculo del Valor Real y el Error Exacto

- Cálculo del Valor Real y el Error Exacto
- \bullet El valor real de $e^{1.5}$ es aproximadamente 4.481689.

- Cálculo del Valor Real y el Error Exacto
- \bullet El valor real de $e^{1.5}$ es aproximadamente 4.481689.
- El error exacto es:

Error =
$$|e^{1.5} - P_5(1.5)|$$

Error = $|4.481689 - 4.462|$
Error = 0.019689

Interpolación

• Nos centraremos ahora en el problema de obtener, a partir de una tabla de parejas (x, f(x)) definida en un cierto intervalo [a, b], el valor de la función para cualquier x perteneciente a dicho intervalo.

Interpolación

- Nos centraremos ahora en el problema de obtener, a partir de una tabla de parejas (x, f(x)) definida en un cierto intervalo [a, b], el valor de la función para cualquier x perteneciente a dicho intervalo.
- Supongamos que se dispone de las siguientes parejas de datos:

x	x_0	x_1	x_2		x_n
\mathbf{y}	y_0	y_1	y_2	• • •	y_n

• El objetivo es hallar una función continua lo más sencilla posible tal que:

$$\widetilde{f}(x_k) = y_k = f(x_k) \quad \forall k = 0, \dots, n$$

en donde x_k y $f(x_k)$ son datos conocidos.

• El objetivo es hallar una función continua lo más sencilla posible tal que:

$$\widetilde{f}(x_k) = y_k = f(x_k) \quad \forall k = 0, \dots, n$$

en donde x_k y $f(x_k)$ son datos conocidos.

• Se dice entonces que la función $\widetilde{f}(x)$, es una función interpolante de los datos representados en la tabla.

• El objetivo es hallar una función continua lo más sencilla posible tal que:

$$\widetilde{f}(x_k) = y_k = f(x_k) \quad \forall k = 0, \dots, n$$

en donde x_k y $f(x_k)$ son datos conocidos.

 \bullet Se dice entonces que la función $\tilde{f}(x)$, es una función interpolante de los datos representados en la tabla.

Observación:

En general, trabajaremos con f = polinomios de grado $\leq n$

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

polinomio algebraico

Figure: Datos de iterpolación y curva interpolante.

Teorema de Weierstrass:

Sea f continua sobre [a,b], dado $\varepsilon > 0 \quad \exists P(x)$ polinomio tal que $\mid f(x) - P(x) \mid < \varepsilon \quad \forall x \in [a,b].$

• Si se escribe $P(x) = a_0 + a_1 x + \cdots + a_n x^n$. Así, P(x) será solución del problema si, y sólo si, el S.E.L:

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

admite solución.

• Si se escribe $P(x) = a_0 + a_1 x + \cdots + a_n x^n$. Así, P(x) será solución del problema si, y sólo si, el S.E.L:

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

admite solución.

• que se denomina sistema cuadrado de Vandermonde. La matriz A del sistema se denomina matriz de Vandermonde y es no-singular si los puntos x_0, x_1, \ldots, x_n son diferentes. Esta matriz es mal condicionada a medida que n aumenta.

• Llamando A a la matriz de coeficientes del sistema; se tiene que el problema de interpolación admite una única solución si, y sólo si, los nodos de interpolación son distintos. Para ello basta con probar que $\det(A) = \prod_{i>j} (x_i - x_j)$ y, por lo tanto, $\det(A) \neq 0 \Leftrightarrow x_i \neq x_j$.

- Llamando A a la matriz de coeficientes del sistema; se tiene que el problema de interpolación admite una única solución si, y sólo si, los nodos de interpolación son distintos. Para ello basta con probar que $\det(A) = \prod_{i>j} (x_i x_j)$ y, por lo tanto, $\det(A) \neq 0 \Leftrightarrow x_i \neq x_j$.
- El método de Lagrange para interpolación polinomial resulta de resolver este sistema para obtener los coeficientes pero lo hace de una forma más sencilla y sistemática.

Para calcular el polinomio interpolador P(x) asociado a una tabla de datos (x_i, y_i) con i = 0, ..., n se puede plantear una simplificación previa: se construyen polinomios $l_i(x)$ de grado n que valgan 1 en el nodo x_i y 0 en el resto.

$$l_i(x_k) = \delta_{ik} = \begin{cases} 1 & \text{si } i = k \\ 0 & \text{si } i \neq k \end{cases}$$

Para calcular el polinomio interpolador P(x) asociado a una tabla de datos (x_i, y_i) con i = 0, ..., n se puede plantear una simplificación previa: se construyen polinomios $l_i(x)$ de grado n que valgan 1 en el nodo x_i y 0 en el resto.

$$l_i(x_k) = \delta_{ik} = \begin{cases} 1 & \text{si} \quad i = k \\ 0 & \text{si} \quad i \neq k \end{cases}$$

Si se escribe el polinomio factorizado para que tenga en cada nodo x_j (con $j \neq i$) una raíz, el candidato es:

$$(x-x_0)(x-x_1)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n) = \prod_{j=0, j\neq i}^n (x-x_j)$$

Lo único que no se consigue es que en x_i valga 1, para ello hay que "normalizar" la función anterior.

Lo único que no se consigue es que en x_i valga 1, para ello hay que "normalizar" la función anterior.

Así, finalmente la fórmula de interpolación de Lagrange es:

$$P(x) = \sum_{k=0}^{n} y_k l_k(x), \quad l_k(x) = \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j}, k = 0, \dots, n$$

Los polinomios $l_k(x)$ reciben el nombre de polinomios de Lagrange.

Teorema:

Sean $x_0, x_1, \ldots, x_n, n+1$ números diferentes, y sea f una función tal que sus valores se obtengan a partir de los números dados $(f(x_0), f(x_1), \ldots, f(x_n))$, entonces existe un único polinomio $p_n(x)$ de grado n, que cumple con la propiedad

$$f(x_k) = p_n(x_k)$$
 para cada $k = 0, 1, \dots, n$

y este polinomio está dado por la siguiente expresión

$$p_n(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + \dots + f(x_n)L_n(x) = \sum_{k=0}^n f(x_k)L_k(x)$$

Demostración:

• Se tiene que $p_n(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + \cdots + L_n(x)f(x_n)$ ya que $L_k(x)$ son polinomios de grado menor o igual a n esto implica que p(x) es un polinomio de grado menor o igual a n.

Demostración:

- Se tiene que $p_n(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + \cdots + L_n(x)f(x_n)$ ya que $L_k(x)$ son polinomios de grado menor o igual a n esto implica que p(x) es un polinomio de grado menor o igual a n.
- Además

$$L_k(x_k) = 1, \quad L_k(x_j) = 0 \text{ si } j \neq k$$

 $\Rightarrow p_n(x_k) = 0 + 0 + \dots + f(x_k) + \dots + 0 = f(x_k) \quad \forall k = 0, 1, \dots, n$

 \bullet La unicidad puede demostrarse como sigue:

- La unicidad puede demostrarse como sigue:
- Supongase que $p_n(x)$ y $q_n(x)$ son dos polinomios de grado $\leq n$ que interpolan a f(x) en los n+1 puntos distintos x_k , $k=0,\ldots,n$, es decir

$$p_n(x_k) = q_n(x_k) = f(x_k), \qquad k = 0, 1 \dots, n$$

- La unicidad puede demostrarse como sigue:
- Supongase que $p_n(x)$ y $q_n(x)$ son dos polinomios de grado $\leq n$ que interpolan a f(x) en los n+1 puntos distintos x_k , $k=0,\ldots,n$, es decir

$$p_n(x_k) = q_n(x_k) = f(x_k), \qquad k = 0, 1 \dots, n$$

Entonces, $r_n(x) = p_n(x) - q_n(x)$ es un polinomio de grado $\leq n$ con n+1 raices x_0, x_1, \ldots, x_n . Pero cualquier polinomio de grado n con un número de raices mayor a n debe ser constante e igual a cero. Por lo tanto $r_n(x) \equiv 0, \forall x, y$ en consecuencia $p_n(x) = q_n(x), \forall x \in [a, b]$.

Si x_0, \ldots, x_n son n+1 números reales distintos y f es una función real definida sobre ellos, entonces existe un único polinomio $P_n(x)$ de grado menor o igual a n tal que $f(x_k) = P(x_k) \quad \forall k = 0, \ldots, n$.

Si x_0, \ldots, x_n son n+1 números reales distintos y f es una función real definida sobre ellos, entonces existe un único polinomio $P_n(x)$ de grado menor o igual a n tal que $f(x_k) = P(x_k) \quad \forall k = 0, \ldots, n$.

Teorema

Si $f \in \mathcal{C}^{n+1}[a,b]$ y $p_n(x)$ es el polinomio de interpolación en n+1 puntos distintos $x_0 = a, x_1, \dots, x_n = b$, entonces para cada $x \in [a,b]$ existe $\xi(x) \in I[x_0, x_1, \dots, x_n, x]$ (el intervalo cerrado más pequeño que contiene x_0, x_1, \dots, x_n, x) tal que

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} w(x) \qquad \text{con } w(x) = \prod_{j=0}^{n} (x - x_j)$$

Demostración:

Demostración:

• Si $x = x_k$ para algún $0 \le k \le n$, la igualdad se satisface trivialmente pues ambos lados son iguales a cero.

Demostración:

- Si $x = x_k$ para algún $0 \le k \le n$, la igualdad se satisface trivialmente pues ambos lados son iguales a cero.
- Así que supongase que $x \neq x_k, k = 0, 1, \dots, n$, y sea

$$F(t) = f(t) - p_n(t) - \frac{f(x) - p_n(x)}{w(x)}w(t), \qquad t \in [a, b]$$

Demostración:

- Si $x = x_k$ para algún $0 \le k \le n$, la igualdad se satisface trivialmente pues ambos lados son iguales a cero.
- Así que supongase que $x \neq x_k, k = 0, 1, \dots, n$, y sea

$$F(t) = f(t) - p_n(t) - \frac{f(x) - p_n(x)}{w(x)}w(t), \qquad t \in [a, b]$$

• Claramente F(t) está bien definida pues $w(x) \neq 0$ ya que $x \neq x_k, \forall k$. Además F(t) es de clase $\mathcal{C}^{n+1}[a,b]$ y tiene al menos n+2 ceros, a saber x_0, x_1, \ldots, x_n, x . Luego F'(t) tiene al menos n+1 ceros, F''(t) tiene al menos n ceros, así sucesivamente, y $F^{(n+1)}(t)$ tiene al menos un cero en [a,b] que será denotado por $\xi(x)$.

• Por lo tanto

$$0 = F^{(n+1)}(\xi(x)) = f^{(n+1)}(\xi(x)) - 0 - \frac{f(x) - p_n(x)}{w(x)}(n+1)!$$

Por lo tanto

$$0 = F^{(n+1)}(\xi(x)) = f^{(n+1)}(\xi(x)) - 0 - \frac{f(x) - p_n(x)}{w(x)}(n+1)!$$

Se concluye que

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}w(x)$$

Sea la función $f:x\to 2xe^{-(4x+2)}$ definida en [0.2,1]

Sea la función $f: x \to 2xe^{-(4x+2)}$ definida en [0.2, 1]

 \bullet Calcular y representar gráficamente los polinomios de base de Lagrange asociados al soporte $\{0.2,1.0\}.$

Sea la función $f: x \to 2xe^{-(4x+2)}$ definida en [0.2, 1]

- \bullet Calcular y representar gráficamente los polinomios de base de Lagrange asociados al soporte $\{0.2,1.0\}.$
- **9** Hallar el polinomio P(x) que interpola f(x) en el sentido de Lagrange sobre el soporte $\{0.2, 1\}$.

Sea la función $f: x \to 2xe^{-(4x+2)}$ definida en [0.2, 1]

- \bullet Calcular y representar gráficamente los polinomios de base de Lagrange asociados al soporte $\{0.2,1.0\}.$
- 4 Hallar el polinomio P(x) que interpola f(x) en el sentido de Lagrange sobre el soporte $\{0.2, 1\}$.
- Obtener la expresión del error de interpolación.

Sea la función $f: x \to 2xe^{-(4x+2)}$ definida en [0.2, 1]

- \bullet Calcular y representar gráficamente los polinomios de base de Lagrange asociados al soporte $\{0.2,1.0\}.$
- **2** Hallar el polinomio P(x) que interpola f(x) en el sentido de Lagrange sobre el soporte $\{0.2, 1\}$.
- Obtener la expresión del error de interpolación.
- \bullet Hallar una cota de error válida en todo (0.2, 1).

$$l_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{x - 0.2}{0.8}$$

$$0.8$$

$$0.6$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.5$$

$$0.6$$

$$0.7$$

$$0.8$$

$$0.9$$

$$1.0$$

$$P_1(x) = f(x_0)l_0(x) + f(x_1)l_1(x) =$$

$$(0.4)e^{-2.8} \left(\frac{1-x}{0.8}\right) + 2e^{-6} \left(\frac{x-0.2}{0.8}\right)$$

$$\Rightarrow P_1(x) \approx -0.02420815088x + 0.02916565523$$

Expresión del error

Aplicamos la expresión:

$$E(x) = f(x) - P_1(x) = \frac{f''(\xi_x)}{2!} \prod_{j=0}^{1} (x - x_j)$$

$$E(x) = f(x) - P_1(x) = \frac{(-16 + 32\xi_x)e^{-(4\xi_x + 2)}}{2!} (x - 0.2)(x - 1)$$

$$E(x) = f(x) - P_1(x) = \frac{(-16 + 32\xi_x)e^{-(4\xi_x + 2)}}{2} (x^2 - 1.2x + 0.2)$$

$$|E(x)| = |f(x) - P_1(x)| = \frac{\max_{x \in [0.2,1]} |f''(x)|}{2!} \max_{x \in [0.2,1]} \left| \prod_{j=0}^{1} (x - x_j) \right|$$

$$\mid E(x) \mid = \mid f(x) - P_1(x) \mid = \frac{\max_{x \in [0.2,1]} \mid f''(x) \mid}{2!} \max_{x \in [0.2,1]} \left| \prod_{j=0}^{1} (x - x_j) \right|$$

Obteniendo $g(x) = f''(x) = (-16 + 32x)e^{-(4x+2)}$, nos interesa max |f''(x)|

$$\mid E(x) \mid = \mid f(x) - P_1(x) \mid = \frac{\max_{x \in [0.2,1]} \mid f''(x) \mid}{2!} \max_{x \in [0.2,1]} \left| \prod_{j=0}^{1} (x - x_j) \right|$$

Obteniendo $g(x) = f''(x) = (-16 + 32x)e^{-(4x+2)}$, nos interesa max |f''(x)| Dado que la función g(x) es continua en [0.2, 1], su mayor valor absoluto en [0.2, 1] será el mayor de los siguientes:

$$\mid E(x) \mid = \mid f(x) - P_1(x) \mid = \frac{\max_{x \in [0.2,1]} \mid f''(x) \mid}{2!} \max_{x \in [0.2,1]} \left| \prod_{j=0}^{1} (x - x_j) \right|$$

Obteniendo $g(x) = f''(x) = (-16 + 32x)e^{-(4x+2)}$, nos interesa max |f''(x)| Dado que la función g(x) es continua en [0.2, 1], su mayor valor absoluto en [0.2, 1] será el mayor de los siguientes:

• Valor de |g(x)| en las abscisas de [0.2, 1] para las que g'(x) = 0.

$$\mid E(x) \mid = \mid f(x) - P_1(x) \mid = \frac{\max_{x \in [0.2,1]} \mid f''(x) \mid}{2!} \max_{x \in [0.2,1]} \left| \prod_{j=0}^{1} (x - x_j) \right|$$

Obteniendo $g(x) = f''(x) = (-16 + 32x)e^{-(4x+2)}$, nos interesa max |f''(x)| Dado que la función g(x) es continua en [0.2, 1], su mayor valor absoluto en [0.2, 1] será el mayor de los siguientes:

- Valor de |g(x)| en las abscisas de [0.2, 1] para las que g'(x) = 0.
- Valor de |g(0.2)|.

$$|E(x)| = |f(x) - P_1(x)| = \frac{\max_{x \in [0.2,1]} |f''(x)|}{2!} \max_{x \in [0.2,1]} \left| \prod_{j=0}^{1} (x - x_j) \right|$$

Obteniendo $g(x) = f''(x) = (-16 + 32x)e^{-(4x+2)}$, nos interesa max |f''(x)| Dado que la función g(x) es continua en [0.2, 1], su mayor valor absoluto en [0.2, 1] será el mayor de los siguientes:

- Valor de |g(x)| en las abscisas de [0.2, 1] para las que g'(x) = 0.
- Valor de |g(0.2)|.
- Valor de |g(1)|.

Valor de |g(x)| en las abscisas para las que g'(x) = 0.

Valor de |g(x)| en las abscisas para las que g'(x) = 0.

$$g(x) = (-16 + 32x)e^{-(4x+2)} \Rightarrow g'(x) = (96 - 128x)e^{-(4x+2)}$$

Valor de |g(x)| en las abscisas para las que g'(x) = 0.

$$g(x) = (-16 + 32x)e^{-(4x+2)} \Rightarrow g'(x) = (96 - 128x)e^{-(4x+2)}$$

$$g'(x) = 0 \Rightarrow (96 - 128x)e^{-(4x+2)} = 0 \Rightarrow x^* = \frac{96}{128} = 0.75$$

Valor de |g(x)| en las abscisas para las que g'(x) = 0.

$$g(x) = (-16 + 32x)e^{-(4x+2)} \Rightarrow g'(x) = (96 - 128x)e^{-(4x+2)}$$

$$g'(x) = 0 \Rightarrow (96 - 128x)e^{-(4x+2)} = 0 \Rightarrow x^* = \frac{96}{128} = 0.75$$

de donde $|g(0.75)| \approx 0.0539$

Valor de g(x) en los extremos del intervalo [0.2, 1].

Valor de g(x) en los extremos del intervalo [0.2, 1].

$$g(0.2) \approx -0.5838 = 0.5838$$

$$g(1) \approx 0.0397 = 0.0397$$

Valor de g(x) en los extremos del intervalo [0.2, 1].

$$g(0.2) \approx -0.5838 = 0.5838$$

$$g(1) \approx 0.0397 = 0.0397$$

Se busca ahora $\max_{x \in [0.2,1]} |(x-0.2)(x-1)|$ Llamamos $q(x) = (x-0.2)(x-1) = x^2 - 1.2x + 0.2$

Se busca ahora $\max_{x \in [0.2,1]} |(x-0.2)(x-1)|$ Llamamos $q(x) = (x-0.2)(x-1) = x^2 - 1.2x + 0.2$ q(x) es un polinomio de segundo grado que se anula en los puntos 0.2 y 1, luego, necesariamente, tendrá algún extremo en el intervalo [0.2,1].

Se busca ahora $\max_{x \in [0.2,1]} |(x-0.2)(x-1)|$ Llamamos $q(x) = (x-0.2)(x-1) = x^2 - 1.2x + 0.2$ q(x) es un polinomio de segundo grado que se anula en los puntos 0.2 y 1, luego, necesariamente, tendrá algún extremo en el intervalo [0.2,1].

El máximo de |q(x)| se alcanzará en los puntos que se obtienen resolviendo la ecuación q'(x)=0:

El máximo de |q(x)| se alcanzará en los puntos que se obtienen resolviendo la ecuación q'(x)=0:

$$q'(x) = 0 = 2x - 1.2$$

El máximo de |q(x)| se alcanzará en los puntos que se obtienen resolviendo la ecuación q'(x) = 0:

$$q'(x) = 0 = 2x - 1.2$$

de donde se obtiene x=0.6como abscisa en la que se encuentra el máximo de q(x)

El máximo de |q(x)| se alcanzará en los puntos que se obtienen resolviendo la ecuación q'(x) = 0:

$$q'(x) = 0 = 2x - 1.2$$

de donde se obtiene x=0.6 como abscisa en la que se encuentra el máximo de q(x)

$$q(0.6) = -0.16 \Rightarrow |q(0.6)| = 0.16$$

Teniendo en cuenta los resultados obtenidos, una cota de error vendrá dada por:

$$|E(x)| = |f(x) - P_1(x)| \le \frac{0.5838}{2}(0.16) = 0.046704$$

La cota del error obtenida es una cota "teórica". Si se representa el valor absoluto del error exacto: |E(x)| = |f(x) - P(x)| se obtiene la siguiente figura:

La cota del error obtenida es una cota "teórica". Si se representa el valor absoluto del error exacto: |E(x)| = |f(x) - P(x)| se obtiene la siguiente figura:

La cota del error obtenida es una cota "teórica". Si se representa el valor absoluto del error exacto: |E(x)| = |f(x) - P(x)| se obtiene la siguiente figura:

El error máximo real que se comete es del orden de 0.0026, mucho menor que la cota teórica 0.046702.

• El polinomio no viene expandido.

- El polinomio no viene expandido.
- 2 La interpolación para otro valor de x necesita la misma cantidad de cálculos adicionales, ya que no se pueden utilizar partes de la aplicación previa.

- El polinomio no viene expandido.
- 2 La interpolación para otro valor de x necesita la misma cantidad de cálculos adicionales, ya que no se pueden utilizar partes de la aplicación previa.
- La incorporación de un nuevo nodo obliga a rehacer todos los cálculos.

- El polinomio no viene expandido.
- ullet La interpolación para otro valor de x necesita la misma cantidad de cálculos adicionales, ya que no se pueden utilizar partes de la aplicación previa.
- La incorporación de un nuevo nodo obliga a rehacer todos los cálculos.
- La evaluación del error no es fácil.

• A veces no es necesario obtener la forma explícita del polinomio interpolador y basta con obtener su valor numérico en un punto dado.

- A veces no es necesario obtener la forma explícita del polinomio interpolador y basta con obtener su valor numérico en un punto dado.
- Además en este caso se desea poder aumentar el orden del polinomio interpolador a voluntad y parar cuando el error sea suficientemente pequeño.

- A veces no es necesario obtener la forma explícita del polinomio interpolador y basta con obtener su valor numérico en un punto dado.
- Además en este caso se desea poder aumentar el orden del polinomio interpolador a voluntad y parar cuando el error sea suficientemente pequeño.
- 3 Para estos propósitos la interpolación iterada está especialmente indicado.

- A veces no es necesario obtener la forma explícita del polinomio interpolador y basta con obtener su valor numérico en un punto dado.
- Además en este caso se desea poder aumentar el orden del polinomio interpolador a voluntad y parar cuando el error sea suficientemente pequeño.
- ${\color{red} \bullet}$ Para estos propósitos la interpolación iterada está especialmente indicado.

Definición

Sea f una función definida en x_0,\ldots,x_n y supongamos m_0,\ldots,m_k sean k+1 enteros distintos con $0 \le m_i \le n$ para cada $i=0,\ldots,k$. El polinomio de Lagrange de grado menor o igual a k que coincide con f en x_{m_0},\ldots,x_{m_k} se denota P_{m_0,\ldots,m_k} .

Ejemplo:

Sea
$$f(x) = x^3$$
, $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 6$, calcule $P_{0,3,4}(x)$ y $P_{1,2,4}(x)$.

Ejemplo:

Sea
$$f(x) = x^3$$
, $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 6$, calcule $P_{0,3,4}(x)$ y $P_{1,2,4}(x)$.

$$P_{0,3,4}(x) = \frac{(x-4)(x-6)}{(1-4)(1-6)}1^3 + \frac{(x-1)(x-6)}{(4-1)(4-6)}4^3 + \frac{(x-1)(x-4)}{(6-1)(6-4)}6^3 =$$

$$= 11x^2 - 34x + 24.$$

Ejemplo:

Sea
$$f(x) = x^3$$
, $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 6$, calcule $P_{0,3,4}(x)$ y $P_{1,2,4}(x)$.

$$P_{0,3,4}(x) = \frac{(x-4)(x-6)}{(1-4)(1-6)}1^3 + \frac{(x-1)(x-6)}{(4-1)(4-6)}4^3 + \frac{(x-1)(x-4)}{(6-1)(6-4)}6^3 =$$

$$= 11x^2 - 34x + 24.$$

$$P_{1,2,4}(x) = \frac{(x-3)(x-6)}{(2-3)(2-6)}2^3 + \frac{(x-2)(x-6)}{(3-2)(3-6)}3^3 + \frac{(x-2)(x-3)}{(6-2)(6-3)}6^3 =$$

$$= 10x^2 - 27x + 18.$$

Teorema

Sea f definida en x_0, \ldots, x_k y sea x_i, x_j dos números distinto en este conjunto. Entonces el Polinomio de Interpolación de Lagrange de grado menor o igual a k que interpola a f en x_0, \ldots, x_k viene dado por la siguiente relación:

$$P(x) = \frac{(x - x_j)P_{0,\dots,j-1,j+1,\dots,k}(x) - (x - x_i)P_{0,\dots,i-1,i+1,\dots,k}(x)}{x_i - x_j}$$

Teorema

Sea f definida en x_0, \ldots, x_k y sea x_i, x_j dos números distinto en este conjunto. Entonces el Polinomio de Interpolación de Lagrange de grado menor o igual a k que interpola a f en x_0, \ldots, x_k viene dado por la siguiente relación:

$$P(x) = \frac{(x - x_j)P_{0,\dots,j-1,j+1,\dots,k}(x) - (x - x_i)P_{0,\dots,i-1,i+1,\dots,k}(x)}{x_i - x_j}$$

Prueba: Hay que probar que $P(x_s) = f(x_s), \forall s = 0, 1, 2, \dots, k$.

Caso I

Sea $x_r \neq x_i$ y $x_r \neq x_j$ un nodo:

$$P(x_r) = \frac{(x_r - x_j)P_{0,...,j-1,j+1,...,k}(x_r) - (x_r - x_i)P_{0,...,i-1,i+1,...,k}(x_r)}{x_i - x_j}$$

$$= \frac{(x_r - x_j)f(x_r) - (x_r - x_i)f(x_r)}{x_i - x_j}$$

$$= \frac{-x_j + x_i}{x_i - x_j}f(x_r)$$

$$= f(x_r)$$

Caso II

Sea $x_r = x_i$

$$P(x_i) = \frac{(x_i - x_j)P_{0,\dots,j-1,j+1,\dots,k}(x_i) - 0}{x_i - x_j}$$
$$= \frac{x_i - x_j}{x_i - x_j}f(x_i)$$
$$= f(x_i)$$

Es análogo si $x_r = x_j$, por lo tanto P(x) es el polinomio de Lagrange que coincide con f en x_0, x_1, \ldots, x_k pues este es único.

Se desea aproximar $f(x^*)$ dada la siguiente tabla de valores para f:

x	x_0	x_1	 x_n
f(x)	$f(x_0)$	$f(x_1)$	 $f(x_n)$

Se genera la tabla de $f(x^*)$

Ejemplo: Aproxime f(2.5) dada la siguiente tabla

	x	f(x)
x_0	2.0	0.5103757
x_1	2.2	0.5207843
x_2	2.4	0.5104147
x_3	2.6	0.4813306
x_4	2.8	0.4359160

La tabla de Neville es

```
2.0
     0.5103757
2.2
     0.5207843
                   0.5363972
                                 \leftarrow P_{0.1}
     0.5104147
                  0.5052299
                                 0.4974380750
2.4
2.6
     0.4813306
                  0.4958726
                                 0.4982119625
                                                 0.49808298125
2.8
     0.4359160
                  0.5040379
                                 0.4979139625
                                                 0.49806296250
```

De donde $f(2.5) \approx 0.498070469531250$.

0.498070469531250

Un ejemplo del cálculo la matriz anterior es:

$$P_{0,1} = \frac{(x - x_0)P_1 - (x - x_1)P_0}{x_1 - x_0}$$

$$= \frac{(2.5 - 2.0)0.5207843 - (2.5 - 2.2)0.5103757}{2.2 - 2.0}$$

$$= 0.5363972$$

Notación

Se denota por Q_{ij} el polinomio interpolante de Lagrange de grado j que pasa por los j+1 nodos siguientes:

$$x_{i-j}, x_{i-j+1}, \ldots, x_{i-1}, x_i$$

es decir

$$Q_{ij} = P_{i-j, i-j+1, \dots, i-1, i}(x)$$

Notación

Se denota por Q_{ij} el polinomio interpolante de Lagrange de grado j que pasa por los j+1 nodos siguientes:

$$x_{i-j}, x_{i-j+1}, \ldots, x_{i-1}, x_i$$

es decir

$$Q_{ij} = P_{i-j,i-j+1,...,i-1,i}(x)$$

Ahora usando el método de Neville

$$Q_{ij} = \frac{(x-x_i)P_{i-j,i-j+1,\dots,i-1}(x) - (x-x_{i-j})P_{i-j+1,\dots,i-1,i}(x)}{x_{i-j}-x_i}$$

$$= \frac{(x-x_{i-j})P_{i-j+1,\dots,i-1,i}(x) - (x-x_i)P_{i-j,i-j+1,\dots,i-1}(x)}{x_i-x_{i-j}}$$

$$= \frac{(x-x_{i-j})Q_{i,j-1} - (x-x_i)Q_{i-1,j-1}}{x_i-x_{i-j}}$$

Con esta nueva notación, la tabla de Neville se puede escribir como:

 \mathbf{end}

Salida Q_{nn}

Algorithm 1: Algoritmo para calcular la tabla de Neville y aproximar $f(x^*) \approx P_n(x^*)$.

Método de Aitken

Existe el método de Aitken, que es similar al método de Neville, y que se genera de manera similar.

• Sea $f \in C^1[a, b]$, $f'(x) \neq 0$ en [a, b] y que f posee un cero p en [a, b].

- Sea $f \in C^1[a, b]$, $f'(x) \neq 0$ en [a, b] y que f posee un cero p en [a, b].
- Sea x_0, \ldots, x_n n+1 números distintos en [a,b] con $f(x_k) = y_k$ para cada $k=0,\ldots,n$.

- Sea $f \in C^1[a,b]$, $f'(x) \neq 0$ en [a,b] y que f posee un cero p en [a,b].
- Sea x_0, \ldots, x_n n+1 números distintos en [a,b] con $f(x_k) = y_k$ para cada $k = 0, \ldots, n$.
- Si se quiere aproximar p, se construye el polinomio interpolante de grado n en los nodos y_0, \ldots, y_n para f^{-1} .

- Sea $f \in C^1[a, b]$, $f'(x) \neq 0$ en [a, b] y que f posee un cero p en [a, b].
- Sea x_0, \ldots, x_n n+1 números distintos en [a,b] con $f(x_k)=y_k$ para cada $k=0,\ldots,n$.
- Si se quiere aproximar p, se construye el polinomio interpolante de grado n en los nodos y_0, \ldots, y_n para f^{-1} .
- Puesto que $y_k = f(x_k)$ y 0 = f(p), se deduce que $f^{-1}(y_k) = x_k$ y $p = f^{-1}(0)$.

- Sea $f \in C^1[a, b]$, $f'(x) \neq 0$ en [a, b] y que f posee un cero p en [a, b].
- Sea x_0, \ldots, x_n n+1 números distintos en [a,b] con $f(x_k)=y_k$ para cada $k=0,\ldots,n$.
- Si se quiere aproximar p, se construye el polinomio interpolante de grado n en los nodos y_0, \ldots, y_n para f^{-1} .
- Puesto que $y_k = f(x_k)$ y 0 = f(p), se deduce que $f^{-1}(y_k) = x_k$ y $p = f^{-1}(0)$.
- Se da el nombre de interpolación iterada inversa al uso de la interpolación para aproximar $f^{-1}(0)$.

Ejercicios:

- Aproximar $\sqrt{3}$ usando el método de Neville y Aitken en la función $f(x) = 3^x$ para los valores $x_0 = -2$, $x_1 = -1$, $x_2 = 0$, $x_3 = 1$, $x_4 = 2$.
- 2 Realizar el algoritmo del método de Aitken.
- **3** Use la interpolación iterada inversa para obtener una aproximación a la solución de $x e^{-x} = 0$, por medio de los datos:

x	0.3	0.4	0.5	0.6
e^{-x}	0.740818	0.670320	0.606531	0.548812

Oconstruya un algoritmo que sirva para obtener la interpolación iterada inversa.

• En ocasiones es útil considerar varios polinomios aproximantes $P_1(x), P_2(x), \ldots, P_n(x)$ y, después, elegir el más adecuado a las necesidades.

- En ocasiones es útil considerar varios polinomios aproximantes $P_1(x), P_2(x), \ldots, P_n(x)$ y, después, elegir el más adecuado a las necesidades.
- Uno de los inconvenientes de los polinomios interpoladores de Lagrange es que no hay relación entre la construcción de $P_{n-1}(x)$ y la de $P_n(x)$; cada polinomio debe construirse individualmente y se requieren muchas operaciones para calcular polinomios de grado elevado.

• Dados n+1 puntos $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$ con x_0, x_1, \ldots, x_n números distintos y $y_k = f(x_k), k = 0, 1, \ldots, n$ para alguna función f definida en un intervalo [a, b] que contiene a los nodos.

- Dados n+1 puntos $(x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n)$ con x_0, x_1, \ldots, x_n números distintos y $y_k = f(x_k), k = 0, 1, \ldots, n$ para alguna función f definida en un intervalo [a, b] que contiene a los nodos.
- El polinomio P(x) de grado menor o igual a n que interpola a f en los datos dados, puede expresarse en la forma:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$
es decir:

$$p_n(x) = a_0 + \sum_{j=1}^n a_j \prod_{k=0}^{j-1} (x - x_k)$$

para ciertas constantes a_0, a_1, \ldots, a_n

• Algunas propiedades de esta forma de representar el polinomio de interpolación permite la construcción de un polinomio de interpolación de grado k a partir del de grado menor k-1.

- Algunas propiedades de esta forma de representar el polinomio de interpolación permite la construcción de un polinomio de interpolación de grado k a partir del de grado menor k-1.
- Sea $q_k(x)$ la suma de los primeros k+1 términos de $p_n(x)$, es decir $q_k(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + \cdots + a_k(x-x_0)(x-x_1) + \cdots + a_k(x-x_0)(x-x_0) + \cdots + a_k(x-x_0)(x-x_0)(x-x_0) + \cdots + a_k(x-x_0)(x-x_0)(x-x_0)(x-x_0) + \cdots + a_k(x-x_0)(x-x_0)(x-x_0)(x-x_0)(x-x_0) + \cdots + a_k(x-x_0)(x-$

- Algunas propiedades de esta forma de representar el polinomio de interpolación permite la construcción de un polinomio de interpolación de grado k a partir del de grado menor k-1.
- Sea $q_k(x)$ la suma de los primeros k+1 términos de $p_n(x)$, es decir $q_k(x)=a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)+\cdots+a_k(x-x_0)(x-x_1)\cdots(x-x_{k-1})$
- Entonces los términos restantes de $p_n(x)$ tienen como factor común el producto

$$(x-x_0)(x-x_1)\cdots(x-x_k)$$

• Así que

$$p_n(x) = q_k(x) + (x - x_0)(x - x_1) \cdots (x - x_k)r(x)$$

donde r(x) es un polinomio de grado $\leq n - (k+1)$.

• Así que

$$p_n(x) = q_k(x) + (x - x_0)(x - x_1) \cdots (x - x_k)r(x)$$
 donde $r(x)$ es un polinomio de grado $\leq n - (k+1)$.

• Además $q_k(x)$ interpola f(x) en los puntos x_0, x_1, \dots, x_k , pues

$$q_k(x_j) = p_n(x_j) - (x_j - x_0)(x_j - x_1) \cdots (x_j - x_k)r(x_j)$$
$$= p_n(x_j) \quad \text{si } 0 \le j \le k$$
$$= f(x_j)$$

• Entonces $q_k(x)$ es el único polinomio de interpolación $p_k(x)$ para f(x) en x_0, x_1, \ldots, x_k , y se puede escribir

$$p_{k+1}(x) = q_k(x) + (x - x_0)(x - x_1) \cdots (x - x_k)r(x)$$

• Entonces $q_k(x)$ es el único polinomio de interpolación $p_k(x)$ para f(x) en x_0, x_1, \ldots, x_k , y se puede escribir

$$p_{k+1}(x) = q_k(x) + (x - x_0)(x - x_1) \cdots (x - x_k)r(x)$$

• y con k = n - 1, se obtiene

$$p_n(x) = p_{n-1}(x) + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

• Entonces $q_k(x)$ es el único polinomio de interpolación $p_k(x)$ para f(x) en x_0, x_1, \ldots, x_k , y se puede escribir

$$p_{k+1}(x) = q_k(x) + (x - x_0)(x - x_1) \cdots (x - x_k)r(x)$$

• y con k = n - 1, se obtiene

$$p_n(x) = p_{n-1}(x) + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

• Entonces, el polinomio de interpolación $p_n(x)$ puede construirse paso a paso construyendo la sucesión de polinomios de interpolación $p_0(x), p_1(x), \ldots, p_n(x)$, donde $p_k(x)$ se construye de $p_{k-1}(x)$ agregando el siguiente término en la forma de Newton , el cual es

$$a_k(x-x_0)(x-x_1)\cdots(x-x_{k-1})$$

Los polinomios interpoladores de Newton se calculan mediante un esquema recursivo

```
P_{0}(x) = a_{0}
P_{1}(x) = a_{0} + a_{1}(x - x_{0})
P_{2}(x) = a_{0} + a_{1}(x - x_{0}) + a_{2}(x - x_{0})(x - x_{1})
P_{3}(x) = a_{0} + a_{1}(x - x_{0}) + a_{2}(x - x_{0})(x - x_{1}) + a_{3}(x - x_{0})(x - x_{1})(x - x_{2})
\vdots \qquad \vdots \qquad \vdots
P_{n}(x) = a_{0} + a_{1}(x - x_{0}) + a_{2}(x - x_{0})(x - x_{1}) + a_{3}(x - x_{0})(x - x_{1})(x - x_{2}) + a_{4}(x - x_{0})(x - x_{1})(x - x_{2})(x - x_{3}) + \cdots + a_{n}(x - x_{0})(x - x_{1})(x - x_{2}) \cdots (x - x_{n-2})(x - x_{n-1})
```

• Las n+1 ecuaciones que surgen al evaluar x_i se pueden expresar matricialmente como

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & (x_1 - x_0) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (x_n - x_0) & (x_n - x_0)(x_n - x_1) & \cdots (x_n - x_0) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

• Las n+1 ecuaciones que surgen al evaluar x_i se pueden expresar matricialmente como

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & (x_1 - x_0) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (x_n - x_0) & (x_n - x_0)(x_n - x_1) & \cdots (x_n - x_0) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

• La matriz del sistema es triangular inferior.

• Las n+1 ecuaciones que surgen al evaluar x_i se pueden expresar matricialmente como

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & (x_1 - x_0) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & (x_n - x_0) & (x_n - x_0)(x_n - x_1) & \cdots (x_n - x_0) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

- La matriz del sistema es triangular inferior.
- $O(n^2)$ operaciones necesarias para resolver el sistema.

Cálculo de los coeficientes $a_0, a_1, \ldots a_n$.

• Se puede observar que cada coeficiente a_k es el coeficiente principal del polinomio $p_k(x)$ que interpola a f en los puntos x_0, x_1, \ldots, x_k .

Cálculo de los coeficientes $a_0, a_1, \ldots a_n$.

- Se puede observar que cada coeficiente a_k es el coeficiente principal del polinomio $p_k(x)$ que interpola a f en los puntos x_0, x_1, \ldots, x_k .
- Además este coeficiente depende de los puntos y valores de f(x) en estos puntos

$$f(x_0) = p_0(x_0) = a_0$$

Cálculo de los coeficientes $a_0, a_1, \ldots a_n$.

- Se puede observar que cada coeficiente a_k es el coeficiente principal del polinomio $p_k(x)$ que interpola a f en los puntos x_0, x_1, \ldots, x_k .
- \bullet Además este coeficiente depende de los puntos y valores de f(x) en estos puntos

$$f(x_0) = p_0(x_0) = a_0$$

$$f(x_1) = p_1(x_1) = f(x_0) + a_1(x_1 - x_0)$$

Cálculo de los coeficientes $a_0, a_1, \ldots a_n$.

- Se puede observar que cada coeficiente a_k es el coeficiente principal del polinomio $p_k(x)$ que interpola a f en los puntos x_0, x_1, \ldots, x_k .
- \bullet Además este coeficiente depende de los puntos y valores de f(x) en estos puntos

$$f(x_0) = p_0(x_0) = a_0$$

$$f(x_1) = p_1(x_1) = f(x_0) + a_1(x_1 - x_0)$$

$$f(x_2) = p_2(x_2) = f(x_0) + a_1(x_2 - x_0) + a_2(x_2 - x_1)$$

$$\Rightarrow a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f(x_2) = p_2(x_2) = p_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$f(x_2) = p_2(x_2) = p_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$\Rightarrow a_2 = \frac{f(x_2) - p_1(x_2)}{(x_2 - x_0)(x_2 - x_1)} = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$f(x_2) = p_2(x_2) = p_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$\Rightarrow a_2 = \frac{f(x_2) - p_1(x_2)}{(x_2 - x_0)(x_2 - x_1)} = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$f(x_2) = p_2(x_2) = p_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$\Rightarrow a_2 = \frac{f(x_2) - p_1(x_2)}{(x_2 - x_0)(x_2 - x_1)} = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{f(x_1) - f(x_0)}{(x_1 - x_0)(x_2 - x_1)}$$

$$f(x_2) = p_2(x_2) = p_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$\Rightarrow a_2 = \frac{f(x_2) - p_1(x_2)}{(x_2 - x_0)(x_2 - x_1)} = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{f(x_1) - f(x_0)}{(x_1 - x_0)(x_2 - x_1)}$$

$$\Rightarrow \frac{x_1 f(x_2) - x_1 f(x_0) - x_0 f(x_2) + x_0 f(x_0) - x_2 f(x_1) + x_0 f(x_1) + x_2 f(x_0) - x_0 f(x_0)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)}$$

$$\begin{split} f(x_2) &= p_2(x_2) = p_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1) \\ &\Rightarrow a_2 = \frac{f(x_2) - p_1(x_2)}{(x_2 - x_0)(x_2 - x_1)} = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} \\ &\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} \\ &\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{f(x_1) - f(x_0)}{(x_1 - x_0)(x_2 - x_1)} \\ &\Rightarrow \frac{x_1 f(x_2) - x_1 f(x_0) - x_0 f(x_2) + x_0 f(x_0) - x_2 f(x_1) + x_0 f(x_1) + x_2 f(x_0) - x_0 f(x_0)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} \\ &\Rightarrow a_2 = \frac{f(x_2)(x_1 - x_0) - f(x_1)(x_1 - x_0) - f(x_1)(x_2 - x_1) + f(x_0)(x_2 - x_1)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} \end{split}$$

$$f(x_2) = p_2(x_2) = p_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$\Rightarrow a_2 = \frac{f(x_2) - p_1(x_2)}{(x_2 - x_0)(x_2 - x_1)} = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{f(x_1) - f(x_0)}{(x_1 - x_0)(x_2 - x_1)}$$

$$\Rightarrow \frac{x_1 f(x_2) - x_1 f(x_0) - x_0 f(x_2) + x_0 f(x_0) - x_2 f(x_1) + x_0 f(x_1) + x_2 f(x_0) - x_0 f(x_0)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2)(x_1 - x_0) - f(x_1)(x_1 - x_0) - f(x_1)(x_2 - x_1) + f(x_0)(x_2 - x_1)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \left(\frac{(x_1 - x_0)(f(x_2) - f(x_1))}{(x_1 - x_0)(x_2 - x_1)} - \frac{(x_2 - x_1)(f(x_1) - f(x_0))}{(x_1 - x_0)(x_2 - x_1)}\right) - \frac{1}{x_0 - x_0}$$

$$\begin{split} f(x_2) &= p_2(x_2) = p_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1) \\ &\Rightarrow a_2 = \frac{f(x_2) - p_1(x_2)}{(x_2 - x_0)(x_2 - x_1)} = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} \\ &\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} \\ &\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{f(x_1) - f(x_0)}{(x_1 - x_0)(x_2 - x_1)} \\ &\Rightarrow \frac{x_1 f(x_2) - x_1 f(x_0) - x_0 f(x_2) + x_0 f(x_0) - x_2 f(x_1) + x_0 f(x_1) + x_2 f(x_0) - x_0 f(x_0)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} \\ &\Rightarrow a_2 = \frac{f(x_2)(x_1 - x_0) - f(x_1)(x_1 - x_0) - f(x_1)(x_2 - x_1) + f(x_0)(x_2 - x_1)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)} \\ &\Rightarrow a_2 = \left(\frac{(x_1 - x_0)(f(x_2) - f(x_1))}{(x_1 - x_0)(x_2 - x_1)} - \frac{(x_2 - x_1)(f(x_1) - f(x_0))}{(x_1 - x_0)(x_2 - x_1)}\right) \frac{1}{x_2 - x_0} \\ &\Rightarrow a_2 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0} \\ &\Rightarrow a_2 = \frac{x_2 - x_1}{x_2 - x_1} - \frac{x_2 - x_1}{x_1 - x_0} \end{split}$$

$$f(x_2) = p_2(x_2) = p_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$\Rightarrow a_2 = \frac{f(x_2) - p_1(x_2)}{(x_2 - x_0)(x_2 - x_1)} = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{\frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_0)}{(x_2 - x_0)(x_2 - x_1)} - \frac{f(x_1) - f(x_0)}{(x_1 - x_0)(x_2 - x_1)}$$

$$\Rightarrow \frac{x_1 f(x_2) - x_1 f(x_0) - x_0 f(x_2) + x_0 f(x_0) - x_2 f(x_1) + x_0 f(x_1) + x_2 f(x_0) - x_0 f(x_0)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2)(x_1 - x_0) - f(x_1)(x_1 - x_0) - f(x_1)(x_2 - x_1) + f(x_0)(x_2 - x_1)}{(x_1 - x_0)(x_2 - x_0)(x_2 - x_1)}$$

$$\Rightarrow a_2 = \frac{f(x_2)(x_1 - x_0) - f(x_1)(x_1 - x_0) - f(x_1)(x_1 - x_0)(x_2 - x_1)}{(x_1 - x_0)(x_2 - x_1)} - \frac{(x_2 - x_1)(f(x_1) - f(x_0))}{(x_1 - x_0)(x_2 - x_1)} - \frac{1}{x_2 - x_0}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$\Rightarrow a_2 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

El numerador es una diferencia de cocientes de diferencias, a cada uno de estos cocientes, se les llama diferencias divididas

Definición

Dados n+1 puntos $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$ con x_0, x_1, \ldots, x_n números distintos y f alguna función definida sobre ella, se define:

Definición

Dados n+1 puntos $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$ con x_0, x_1, \ldots, x_n números distintos y f alguna función definida sobre ella, se define:

• La diferencia dividida cero de f con respecto a x_k es:

$$\mathcal{F}[x_k] = f(x_k), \quad \forall k = 0, 1, \dots, n$$

por lo tanto en el polinomio interpolante se tiene que $a_0 = \mathcal{F}[x_0]$

Definición

Dados n+1 puntos $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$ con x_0, x_1, \ldots, x_n números distintos y f alguna función definida sobre ella, se define:

1 La diferencia dividida cero de f con respecto a x_k es:

$$\mathcal{F}[x_k] = f(x_k), \quad \forall k = 0, 1, \dots, n$$

por lo tanto en el polinomio interpolante se tiene que $a_0 = \mathcal{F}[x_0]$

2 La diferencia dividida uno de f respecto a x_k y x_{k+1} es:

$$\mathcal{F}[x_k.x_{k+1}] = \frac{\mathcal{F}[x_{k+1}] - \mathcal{F}[x_k]}{x_{k+1} - x_k}, \quad \forall k = 0, 1, \dots, n-1$$

las diferencias divididas uno dependen de las diferencias divididas cero, dado que existen n+1 diferencias divididas cero, solo hay n diferencias divididas uno. Se tiene que $a_1 = \mathcal{F}[x_0, x_1] = \frac{\mathcal{F}[x_1] - \mathcal{F}[x_0]}{x_1 - x_0}$

Definición

3 La diferencia dividida dos de f con respecto a x_k , x_{k+1} y x_{k+2} es:

$$\mathcal{F}[x_k.x_{k+1},x_{k+2}] = \frac{\mathcal{F}[x_{k+1},x_{k+2}] - \mathcal{F}[x_k,x_{k+1}]}{x_{k+2} - x_k}, \quad \forall k = 0, 1, \dots, n-2$$

las diferencias divididas dos dependen de las diferencias divididas uno, dado que existen n diferencias divididas uno, solo hay n-1 diferencias divididas dos. Obsérvese que en el polinomio

$$a_2 = \mathcal{F}[x_0, x_1, x_2] = \frac{\mathcal{F}[x_1, x_2] - \mathcal{F}[x_0, x_1]}{x_2 - x_0}$$

Definición

● En general conocidas las n-(i-1)+1=n-i+2 diferencias divididas i-1 de f con respecto a $x_k, x_{k+1}, \ldots, x_{k+i-1}, \mathcal{F}[x_k, x_{k+1}, \ldots, x_{k+i-1}],$ $k=0,1,\ldots,n-(i-1),$ se definen las n-i+1 diferencias divididas i de f con respecto a $x_k, x_{k+1}, \ldots, x_{k+i},$ así

$$\mathcal{F}[x_k.x_{k+1},\ldots,x_{k+i}] = \frac{\mathcal{F}[x_{k+1},x_{k+2},\ldots,x_{k+i}] - \mathcal{F}[x_k,x_{k+1},\ldots,x_{k+i-1}]}{x_{k+i} - x_k}$$

$$\forall k = 0, 1, \dots, n - i$$

Con esta notación de diferencia dividida se tiene que $a_i = \mathcal{F}[x_0, x_1, \dots, x_i]$, $i = 0, 1, \dots, n$ y así el polinomio interpolante toma la siguiente forma:

$$P_n(x) = \mathcal{F}[x_0] + \mathcal{F}[x_0, x_1](x - x_0) + \dots + \mathcal{F}[x_0, x_1, \dots, x_n](x - x_0) \cdots (x - x_{n-1})$$

¿Cómo organizar el cálculo de la tabla de diferencias divididas?

¿Cómo organizar el cálculo de la tabla de diferencias divididas?

El cálculo de las diferencias divididas para cuatro puntos se ordenaría como sigue:

$$\begin{array}{lll} x_0 \to y_0 = \mathcal{F}[x_0] \\ x_1 \to y_1 = \mathcal{F}[x_1] & \mathcal{F}[x_0, x_1] \\ x_2 \to y_2 = \mathcal{F}[x_2] & \mathcal{F}[x_1, x_2] & \mathcal{F}[x_0, x_1, x_2] \\ x_3 \to y_3 = \mathcal{F}[x_3] & \mathcal{F}[x_2, x_3] & \mathcal{F}[x_1, x_2, x_3] & \mathcal{F}[x_0, x_1, x_2, x_3] \end{array}$$

• Esta forma del polinomio interpolante de Newton se conoce como Fórmula de Diferencias Divididas Progresivas Interpolante de Newton, y se usa en los cálculos numéricos cuando se interpola en un punto x que está más cerca de x_0 que de x_n .

- Esta forma del polinomio interpolante de Newton se conoce como Fórmula de Diferencias Divididas Progresivas Interpolante de Newton, y se usa en los cálculos numéricos cuando se interpola en un punto x que está más cerca de x_0 que de x_n .
- Si el punto x en el cual vamos a interpolar está mas cerca de x_n que de x_0 se usa la Fórmula de Diferencias Divididas Regresivas Interpolante de Newton:

$$p_n(x) = f[x_n] + f[x_{n-1}, x_n](x - x_n) + \dots + f[x_n, x_{n-1}, \dots, x_0](x - x_n)(x - x_{n-1}) + \dots + f[x_n, x_{n-1}, \dots, x_0](x - x_n)(x - x_n) + \dots + f[x_n, x_{n-1}, \dots, x_0](x - x_n)(x - x$$

Obtener el polinomio interpolador para la función $f(x) = \sin(x)$ sobre el soporte formado por los puntos:

$$x = \left\{0, \frac{\pi}{4}, \frac{\pi}{2}\right\}$$

Obtener el polinomio interpolador para la función $f(x) = \sin(x)$ sobre el soporte formado por los puntos:

$$x = \left\{0, \frac{\pi}{4}, \frac{\pi}{2}\right\}$$

Tabla de Diferencias Divididas

Formando el polinomio interpolante de Newton

$$P_2(x) = \mathcal{F}[x_0] + \mathcal{F}[x_0, x_1](x - x_0) + \mathcal{F}[x_0, x_1, x_2](x - x_0)(x - x_1)$$
$$= 0 + \frac{2\sqrt{2}}{\pi}(x - 0) + \frac{8(1 - \sqrt{2})}{\pi^2}(x - 0)(x - \frac{\pi}{4})$$

$$|E(x)| = |f(x) - P_2(x)|$$

Obtener el polinomio interpolador para la función $f(x) = \sin(x)$ sobre el soporte formado por los puntos:

$$x = \left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$$

Obtener el polinomio interpolador para la función $f(x) = \sin(x)$ sobre el soporte formado por los puntos:

$$x = \left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$$

Tabla del ejercicio anterior

$$\begin{array}{cccccc} 0 & \to & 0 \\ \frac{\pi}{4} & \to & 0.707 & 0.90 \\ \frac{\pi}{2} & \to & 1 & 0.373 & -0.336 \end{array}$$

Obtener el polinomio interpolador para la función $f(x) = \sin(x)$ sobre el soporte formado por los puntos:

$$x = \left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$$

Tabla del ejercicio anterior

$$\begin{array}{ccccccc} 0 & \to & 0 \\ \frac{\pi}{4} & \to & 0.707 & 0.90 \\ \frac{\pi}{2} & \to & 1 & 0.373 & -0.336 \end{array}$$

Se agregan los nuevos nodos al final de la tabla y queda:

Unidad III: Aproximación de funciones.

Formando el polinomio interpolante de Newton

$$P_4(x) = P_2(x) - 0.121(x - 0)(x - \pi/4)(x - \pi/2) + 0.0228(x - 0)(x - \pi/4)(x - \pi/2)(x - \pi/6)$$

Formando el polinomio interpolante de Newton

$$P_4(x) = P_2(x) - 0.121(x - 0)(x - \pi/4)(x - \pi/2) + 0.0228(x - 0)(x - \pi/4)(x - \pi/2)(x - \pi/6)$$

Teorema:

Sea $f \in \mathcal{C}^{n+1}[a,b]$ y p el polinomio de grado $\leq n$ que interpola a f en los n+1 puntos x_0, x_1, \ldots, x_n del intervalo [a,b]. Entonces

$$f(x) - p(x) = \mathcal{F}[x_0, x_1, \dots, x_n, x] \prod_{i=0}^{n} (x - x_i)$$

Teorema:

Sea $f \in \mathcal{C}^{n+1}[a,b]$ y p el polinomio de grado $\leq n$ que interpola a f en los n+1 puntos x_0, x_1, \ldots, x_n del intervalo [a,b]. Entonces

$$f(x) - p(x) = \mathcal{F}[x_0, x_1, \dots, x_n, x] \prod_{i=0}^{n} (x - x_i)$$

Demostración: Por el Teorema del Residuo, existe $\xi = \xi(x)$ tal que

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

Teorema:

Sea $f \in \mathcal{C}^{n+1}[a,b]$ y p el polinomio de grado $\leq n$ que interpola a f en los n+1 puntos x_0, x_1, \ldots, x_n del intervalo [a,b]. Entonces

$$f(x) - p(x) = \mathcal{F}[x_0, x_1, \dots, x_n, x] \prod_{i=0}^{n} (x - x_i)$$

Demostración: Por el Teorema del Residuo, existe $\xi = \xi(x)$ tal que

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

Por otra parte, el polinomio de interpolación de Newton está dado por

$$p(x) = \mathcal{F}[x_0] + \mathcal{F}[x_0, x_1](x - x_0) + \dots + \mathcal{F}[x_0, x_1, \dots, x_n](x - x_0) \cdot \dots \cdot (x - x_{n-1})$$

El polinomio de Newton que interpola a f en x_0, x_1, \ldots, x_n, x :

$$p(x) = \mathcal{F}[x_0] + \mathcal{F}[x_0, x_1](x - x_0) + \dots + \mathcal{F}[x_0, x_1, \dots, x_n, x](x$$

El polinomio de Newton que interpola a f en x_0, x_1, \ldots, x_n, x :

$$p(x) = \mathcal{F}[x_0] + \mathcal{F}[x_0, x_1](x - x_0) + \dots + \mathcal{F}[x_0, x_1, \dots, x_n, x](x$$

y por tanto

$$f(x) - p(x) = \mathcal{F}[x_0, x_1, \dots, x_n, x] \prod_{i=0}^{n} (x - x_i)$$

El polinomio de Newton que interpola a f en x_0, x_1, \ldots, x_n, x :

$$p(x) = \mathcal{F}[x_0] + \mathcal{F}[x_0, x_1](x - x_0) + \dots + \mathcal{F}[x_0, x_1, \dots, x_n, x](x$$

y por tanto

$$f(x) - p(x) = \mathcal{F}[x_0, x_1, \dots, x_n, x] \prod_{i=0}^{n} (x - x_i)$$

De esta manera se puede concluir que:

$$\mathcal{F}[x_0, x_1, \dots, x_n, x] = \frac{1}{(n+1)!} f^{(n+1)}(\xi(x))$$

• Si p_n interpola a f en los n+1 puntos x_0, x_1, \ldots, x_n ,

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

 $con \xi \in [x_0, x_n].$

• Si p_n interpola a f en los n+1 puntos x_0, x_1, \ldots, x_n ,

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

 $con \xi \in [x_0, x_n].$

 \bullet ξ es desconocido y la fórmula del error sólo es útil si la derivada está acotada.

• Si p_n interpola a f en los n+1 puntos x_0, x_1, \ldots, x_n ,

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

 $con \xi \in [x_0, x_n].$

- \bullet ξ es desconocido y la fórmula del error sólo es útil si la derivada está acotada.
- Si $|f^{(n+1)}(x)| < M$ y $h = \max\{x_{i+1} x_i : i = 0, \dots, n\}$

$$\max_{x \in [x_0, x_n]} |f(x) - p(x)| \le \frac{Mh^{n+1}}{(n+1)!}$$

• Si p_n interpola a f en los n+1 puntos x_0, x_1, \ldots, x_n ,

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

 $con \xi \in [x_0, x_n].$

- \bullet ξ es desconocido y la fórmula del error sólo es útil si la derivada está acotada.
- Si $|f^{(n+1)}(x)| < M$ y $h = \max\{x_{i+1} x_i : i = 0, \dots, n\}$

$$\max_{x \in [x_0, x_n]} |f(x) - p(x)| \le \frac{Mh^{n+1}}{(n+1)!}$$

• El error disminuye a medida que n crece y h disminuye, sólo si $|f^{(n+1)}(x)|$ está acotada.

• Si p_n interpola a f en los n+1 puntos x_0, x_1, \ldots, x_n ,

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

 $con \xi \in [x_0, x_n].$

- \bullet ξ es desconocido y la fórmula del error sólo es útil si la derivada está acotada.
- Si $|f^{(n+1)}(x)| < M$ y $h = \max\{x_{i+1} x_i : i = 0, \dots, n\}$

$$\max_{x \in [x_0, x_n]} |f(x) - p(x)| \le \frac{Mh^{n+1}}{(n+1)!}$$

- El error disminuye a medida que n crece y h disminuye, sólo si $|f^{(n+1)}(x)|$ está acotada.
- Aumentar el grado del polinomio no garantiza una mejor aproximación (pueden aparecer oscilaciones entre los puntos de interpolación)

• Por fuera del intervalo que contiene a los puntos de interpolación,

$$\prod_{i=0}^{n} (x - x_i)$$

• Por fuera del intervalo que contiene a los puntos de interpolación,

$$\prod_{i=0}^{n} (x - x_i)$$

puede crecer "rápido" (extrapolación)

• En el interior del intervalo aumentar los puntos de interpolación no implica mejorar la aproximación.

• Por fuera del intervalo que contiene a los puntos de interpolación,

$$\prod_{i=0}^{n} (x - x_i)$$

- En el interior del intervalo aumentar los puntos de interpolación no implica mejorar la aproximación.
- Al aumentar el grado del polinomio, aumentan las oscilaciones.

• Por fuera del intervalo que contiene a los puntos de interpolación,

$$\prod_{i=0}^{n} (x - x_i)$$

- En el interior del intervalo aumentar los puntos de interpolación no implica mejorar la aproximación.
- Al aumentar el grado del polinomio, aumentan las oscilaciones.
- Hasta ahora las aproximaciones de los polinomios de interpolación no dependen de la distribución de los puntos x_0, \ldots, x_n de interpolación.

• Por fuera del intervalo que contiene a los puntos de interpolación,

$$\prod_{i=0}^{n} (x - x_i)$$

- En el interior del intervalo aumentar los puntos de interpolación no implica mejorar la aproximación.
- Al aumentar el grado del polinomio, aumentan las oscilaciones.
- Hasta ahora las aproximaciones de los polinomios de interpolación no dependen de la distribución de los puntos x_0, \ldots, x_n de interpolación.
- Puntos de interpolación igualmente espaciados a menudo conducen a resultados erróneos en los extremos.

Interpolación de Newton con puntos igualmente espaciados

• Sea f una función definida en algunos puntos x_0, \ldots, x_n . Denotando por y_0, \ldots, y_n sus valores correspondientes. Recordamos la fórmula de Newton para el polinomio interpolante que tiene valores $y_i = f(xi)$ en los puntos x_i :

$$P(x) = \sum_{k=0}^{n} \mathcal{F}[x_0, \dots, x_k] \prod_{j=0}^{k-1} (x - x_k)$$

• Sea f una función definida en algunos puntos x_0, \ldots, x_n . Denotando por y_0, \ldots, y_n sus valores correspondientes. Recordamos la fórmula de Newton para el polinomio interpolante que tiene valores $y_i = f(xi)$ en los puntos x_i :

$$P(x) = \sum_{k=0}^{n} \mathcal{F}[x_0, \dots, x_k] \prod_{j=0}^{k-1} (x - x_k)$$

• Las diferencias divididas $\mathcal{F}[x_0,\ldots,x_k]$ se definen de manera recursiva:

$$\mathcal{F}[x_i] = f(x_i) = y_i, \qquad \mathcal{F}[x_i, \dots, x_j] = \frac{\mathcal{F}[x_{i+1}, \dots, x_j] - \mathcal{F}[x_i, \dots, x_{j-1}]}{x_j - x_i}$$

• Considerando el caso particular cuando los puntos x_0, \ldots, x_n son equidistantes:

$$x_k = x_0 + kh, \qquad k = 0, 1, \dots, n$$

• Considerando el caso particular cuando los puntos x_0, \ldots, x_n son equidistantes:

$$x_k = x_0 + kh, \qquad k = 0, 1, \dots, n$$

• Planteando el cambio de variables

$$x = x_0 + th \quad \text{con } t \in (0, n)$$

• Considerando el caso particular cuando los puntos x_0, \ldots, x_n son equidistantes:

$$x_k = x_0 + kh, \qquad k = 0, 1, \dots, n$$

• Planteando el cambio de variables

$$x = x_0 + th \quad \text{con } t \in (0, n)$$

Obtenemos entonces que

$$x - x_1 = (t - 1)h;$$
 $x - x_2 = (t - 2)h;$... $; x - x_{n-1} = (t - n + 1)h$

Definición: Diferencia Finita Progresiva

Se define como diferencia finita progresiva de una función f(x) en un punto x_0 , y se representa $\Delta f(x_0)$ a la diferencia:

$$\Delta f(x_0) = f(x_1) - f(x_0)$$

Definición: Diferencia Finita Progresiva

Se define como diferencia finita progresiva de una función f(x) en un punto x_0 , y se representa $\Delta f(x_0)$ a la diferencia:

$$\Delta f(x_0) = f(x_1) - f(x_0)$$

Del mismo modo se puede definir la de segundo orden:

$$\Delta^2 f(x_0) = \Delta f(x_1) - \Delta f(x_0) = f(x_2) - 2f(x_1) + f(x_0)$$

En general:

$$\Delta^{k} f(x_0) = \Delta^{k-1} f(x_1) - \Delta^{k-1} f(x_0)$$

 La relación entre las diferencias finitas progresivas y las diferencias divididas viene dada por:

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{\Delta f(x_0)}{h} \Rightarrow \Delta f(x_0) = hf[x_0, x_1]$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\Delta f(x_1) - \Delta f(x_0)}{2h^2}$$

$$\Rightarrow \Delta^2 f(x_0) = 2h^2 f[x_0, x_1, x_2]$$

En general

$$\Delta^n f(x_0) = n! h^n f[x_0, x_1, \dots, x_n]$$

• A partir de la fórmula de Newton con diferencias divididas y de la relación entre estas últimas y las diferencias finitas progresivas se tiene:

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0)$$

+ $f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$

• A partir de la fórmula de Newton con diferencias divididas y de la relación entre estas últimas y las diferencias finitas progresivas se tiene:

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0)$$

+ $f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$

• A partir del cambio de variable $x = x_0 + th$ se tiene que

$$P_n(x_0 + th) = Q_n(t)$$

$$= f(x_0) + \frac{\Delta f(x_0)}{h}th + \frac{\Delta^2 f(x_0)}{2!h^2}t(t-1)h^2 + \dots + \frac{\Delta^n f(x_0)}{n!h^n}t(t-1)\dots(t-n+1)h^n$$

$$= f(x_0) + \Delta f(x_0)t + \frac{\Delta^2 f(x_0)}{2!}t(t-1) + \dots + \frac{\Delta^n f(x_0)}{n!}t(t-1)\dots(t-n+1)$$

$$= \sum_{k=0}^n \frac{\Delta^k f(x_0)}{k!}t(t-1)\dots(t-k+1) = \sum_{k=0}^n \Delta^k f(x_0)\binom{t}{k}$$

• Construir el polinomio P de grado ≤ 3 que en los puntos -1/2; 0; 1/2; 1 tome los valores -4; 3; 13/2; 8.

- Construir el polinomio P de grado ≤ 3 que en los puntos -1/2;0;1/2;1 tome los valores -4;3;13/2;8.
- Construyendo la tabla de diferencias divididas se obtiene:

x	$\Delta^0 f(x) = f(x)$	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
-1/2	-4			
0	3	7		
1/2	13/2	7/2	-7/2	
1	8	3/2	-2	3/2

- Construir el polinomio P de grado ≤ 3 que en los puntos -1/2; 0; 1/2; 1 tome los valores -4; 3; 13/2; 8.
- Construyendo la tabla de diferencias divididas se obtiene:

x	$\Delta^0 f(x) = f(x)$	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
-1/2	-4			
0	3	7		
1/2	13/2	7/2	-7/2	
1	8	3/2	-2	3/2

• El polinomio $Q_n(t)$ viene dado por:

$$Q_n(t) = P\left(\frac{-1}{2} + \frac{t}{2}\right) = \sum_{k=0}^n \Delta^k f(x_0) {t \choose k}$$

$$= -4 + 7t - \frac{7}{2} \frac{t(t-1)}{2} + \frac{3}{2} \frac{t(t-1)(t-2)}{6}$$

$$= -4 + \frac{37t}{4} - \frac{5t^2}{2} + \frac{t^3}{4}$$

• El polinomio P(x) viene dado por:

$$P(x) = Q(2x+1) = 3 + 10x - 7x^2 + 2x^3$$

Fenómeno de Runge

Polinomios interpolantes para la función de Runge

$$f(x) = \frac{1}{1 + 25x^2}, \qquad x \in [-1, 1]$$

sobre puntos igualmente espaciados no converge

Fenómeno de Runge

Los puntos de interpolación se pueden distribuir no uniformemente con el fin de minimizar el fenómeno de Runge

$$x_i = \cos\left(\frac{2i+1}{2n+2}\pi\right), \quad i = 0, \dots, n-1$$

Dada una función f(x) definida en un intervalo [a,b], la mejor aproximación polinómica de grado n será aquella que minimice

$$E[q(x)] \equiv \max_{x \in [a,b]} |f(x) - q(x)|$$

Si un determinado polinomio $Q_n(x)$ hace que E[Qn(x)] sea el de valor mínimo entre todos los polinomios de grado n entonces se dice $Q_n(x)$ es la aproximación minimax de grado n de la función f(x) en [a,b].

Polinomios de Chebyshev: definición

El polinomio de Chebyshev de orden n-ésimo se define como

$$T_n(x) = \cos(n\arccos(x)), x \in [-1, 1], n = 0, 1, 2...$$

Polinomios de Chebyshev: definición

El polinomio de Chebyshev de orden n-ésimo se define como

$$T_n(x) = \cos(n\arccos(x)), x \in [-1, 1], n = 0, 1, 2...$$

La definición anterior establece una relación de recurrencia:

$$T_0(x) = \cos(0) = 1 \text{ y } T_1(x) = \cos(\arccos(x)) = x$$

 $T_n(x) = \cos(n \arccos(x)) = \cos(n\theta), \quad \theta \in [0, \pi]$

de lo cual

Polinomios de Chebyshev: definición

El polinomio de Chebyshev de orden n-ésimo se define como

$$T_n(x) = \cos(n\arccos(x)), x \in [-1, 1], n = 0, 1, 2...$$

La definición anterior establece una relación de recurrencia:

$$T_0(x) = \cos(0) = 1 \text{ y } T_1(x) = \cos(\arccos(x)) = x$$

 $T_n(x) = \cos(n \underbrace{\arccos(x)}_{\theta}) = \cos(n\theta), \quad \theta \in [0, \pi]$

de lo cual

$$T_{n+1}(x) = \cos((n+1)\theta) = \cos(n\theta)\cos(\theta) - \sin(n\theta)\sin(\theta)$$

$$T_{n-1}(x) = \cos((n-1)\theta) = \cos(n\theta)\cos(\theta) + \sin(n\theta)\sin(\theta)$$

y al sumar las dos últimas con $x = \cos(\theta)$,

Polinomios de Chebyshev: definición

El polinomio de Chebyshev de orden n-ésimo se define como

$$T_n(x) = \cos(n\arccos(x)), x \in [-1, 1], n = 0, 1, 2...$$

La definición anterior establece una relación de recurrencia:

$$T_0(x) = \cos(0) = 1 \text{ y } T_1(x) = \cos(\arccos(x)) = x$$

 $T_n(x) = \cos(n \underbrace{\arccos(x)}_{\theta}) = \cos(n\theta), \quad \theta \in [0, \pi]$

de lo cual

$$T_{n+1}(x) = \cos((n+1)\theta) = \cos(n\theta)\cos(\theta) - \sin(n\theta)\sin(\theta)$$

$$T_{n-1}(x) = \cos((n-1)\theta) = \cos(n\theta)\cos(\theta) + \sin(n\theta)\sin(\theta)$$

y al sumar las dos últimas con $x = \cos(\theta)$,

$$T_{n+1}(x) + T_{n-1}(x) = 2\cos(n\theta)\cos(\theta)$$

 $T_{n+1}(x) = 2\cos(\theta)\cos(n\theta) - T_{n-1}(x)$
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

• Relación de recurrencia de tres térrminos para los polinomios de Chebyshev:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), n = 0, 1, 2...$$

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_1(x) = x$$

 Relación de recurrencia de tres térrminos para los polinomios de Chebyshev:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), n = 0, 1, 2...$$

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_2(x) = 2xT_1(x) - T_0(x) = 2x^2 - 1$

 Relación de recurrencia de tres térrminos para los polinomios de Chebyshev:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), n = 0, 1, 2...$$

$$\begin{array}{rcl} T_0(x) & = & 1 \\ T_1(x) & = & x \\ T_2(x) & = & 2xT_1(x) - T_0(x) = 2x^2 - 1 \\ T_3(x) & = & 2xT_2(x) - T_1(x) = 4x^3 - 3x \end{array}$$

 Relación de recurrencia de tres térrminos para los polinomios de Chebyshev:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), n = 0, 1, 2...$$

$$\begin{array}{rcl} T_0(x) & = & 1 \\ T_1(x) & = & x \\ T_2(x) & = & 2xT_1(x) - T_0(x) = 2x^2 - 1 \\ T_3(x) & = & 2xT_2(x) - T_1(x) = 4x^3 - 3x \\ T_4(x) & = & 2xT_3(x) - T_2(x) = 8x^4 - 8x^2 + 1 \end{array}$$

• Relación de recurrencia de tres térrminos para los polinomios de Chebyshev:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), n = 0, 1, 2...$$

siendo los valores iniciales de la recurrencia

$$\begin{array}{rcl} T_0(x) & = & 1 \\ T_1(x) & = & x \\ T_2(x) & = & 2xT_1(x) - T_0(x) = 2x^2 - 1 \\ T_3(x) & = & 2xT_2(x) - T_1(x) = 4x^3 - 3x \\ T_4(x) & = & 2xT_3(x) - T_2(x) = 8x^4 - 8x^2 + 1 \end{array}$$

② El coeficiente del término x^n en $T_n(x)$ es 2^{n-1} y se cumple que $T_n(-x) = (-1)^n T_n(x)$.

• Relación de recurrencia de tres térrminos para los polinomios de Chebyshev:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), n = 0, 1, 2...$$

siendo los valores iniciales de la recurrencia

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_2(x) = 2xT_1(x) - T_0(x) = 2x^2 - 1$$

$$T_3(x) = 2xT_2(x) - T_1(x) = 4x^3 - 3x$$

$$T_4(x) = 2xT_3(x) - T_2(x) = 8x^4 - 8x^2 + 1$$

- ② El coeficiente del término x^n en $T_n(x)$ es 2^{n-1} y se cumple que $T_n(-x) = (-1)^n T_n(x)$.
- \bullet Los n ceros de $T_n(x)$ están en el intervalo [-1,1] y están dados por

$$x_k = \cos\left(\frac{2k+1}{2n+2}\pi\right), k = 0, 1, \dots, n-1$$

 $T_n(x)$ tiene n+1 extremos en el intervalo [-1,1] que vienen dados por $x_k' = \cos(\frac{k\pi}{n}), k = 0, \ldots, n$, donde los polinomios valen: $T(x_k') = (-1)^k$

• S(x) En un polinomio interpolador de grado n es posible tener n-1 extremos relativos, lo cual trae como consecuencia que tenga muchas oscilaciones o fluctuaciones al pasar por los puntos dados.

- S(x) En un polinomio interpolador de grado n es posible tener n-1 extremos relativos, lo cual trae como consecuencia que tenga muchas oscilaciones o fluctuaciones al pasar por los puntos dados.
- Una alternativa para evitar dichas fluctuaciones es generar polinomios $S_k(x)$ que solo interpolen dos nodos consecutivos y luego unirlos en sus extremos.

- S(x) En un polinomio interpolador de grado n es posible tener n-1 extremos relativos, lo cual trae como consecuencia que tenga muchas oscilaciones o fluctuaciones al pasar por los puntos dados.
- Una alternativa para evitar dichas fluctuaciones es generar polinomios $S_k(x)$ que solo interpolen dos nodos consecutivos y luego unirlos en sus extremos.
- El conjunto $\{S_k(x)\}$ forman una curva polinomial a trozos o spline que se denota S(x).

- S(x) En un polinomio interpolador de grado n es posible tener n-1 extremos relativos, lo cual trae como consecuencia que tenga muchas oscilaciones o fluctuaciones al pasar por los puntos dados.
- Una alternativa para evitar dichas fluctuaciones es generar polinomios $S_k(x)$ que solo interpolen dos nodos consecutivos y luego unirlos en sus extremos.
- El conjunto $\{S_k(x)\}$ forman una curva polinomial a trozos o spline que se denota S(x).

• Sean $(x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_k, y_k), (x_{k+1}, y_{k+1}), \dots, (x_n, y_n)$, los puntos por los cuales debe pasar el polinomio interpolador

- Sean $(x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_k, y_k), (x_{k+1}, y_{k+1}), \dots, (x_n, y_n)$, los puntos por los cuales debe pasar el polinomio interpolador
- El polinomio más simple que se puede construir es el polinomio de grado uno, el cual produce una línea poligonal.

Figure: Interpolación Lineal a Trozos.

• Por los polinomios interpoladores de Lagrange se puede determinar cada uno de los segmentos que forman está línea poligonal.

- Por los polinomios interpoladores de Lagrange se puede determinar cada uno de los segmentos que forman está línea poligonal.
- Si $S_k(x)$ es el k-ésimo segmento que une los puntos $(x_k,y_k),(x_{k+1},y_{k+1})$ se tiene entonces que

$$S_k(x) = y_k \frac{x - x_{k+1}}{x_k - x_{k+1}} + y_{k+1} \frac{x - x_k}{x_{k+1} - x_k}$$

o también

$$S_k(x) = y_k + d_k(x - x_k), \qquad d_k = \frac{y_{k+1} - y_k}{x_{k+1} - x_k}$$

• Que es la ecuación de la recta que pasa por los puntos dados, luego entonces,

$$S(x) = \begin{cases} S_0(x) = y_0 + d_0(x - x_0), & x \in [x_0, x_1] \\ S_1(x) = y_1 + d_1(x - x_1), & x \in [x_1, x_2] \\ \vdots & \vdots & \vdots \\ S_k(x) = y_k + d_k(x - x_k), & x \in [x_k, x_{k+1}] \\ \vdots & \vdots & \vdots \\ S_{n-1}(x) = y_{n-1} + d_{n-1}(x - x_{n-1}), & x \in [x_{n-1}, x_n] \end{cases}$$

Evaluación

• Localizar el intervalo tal que $x \in [x_i, x_{i+1}]$. (Algoritmo de localización).

Evaluación

- \bullet Localizar el intervalo tal que $x \in [x_i, x_{i+1}].$ (Algoritmo de localización).
- $S_i(x) = y_i + (x x_i) \frac{y_{i+1} y_i}{x_{i+1} x_i}, x_i \le x \le x_{i+1}, i = 0, \dots, n-1$

Evaluación

- Localizar el intervalo tal que $x \in [x_i, x_{i+1}]$. (Algoritmo de localización).
- $S_i(x) = y_i + (x x_i) \frac{y_{i+1} y_i}{x_{i+1} x_i}, \ x_i \le x \le x_{i+1}, \ i = 0, \dots, n-1$

Error

Si $y_i = f(x_i)$ con $f \in \mathcal{C}^2[a, b]$:

$$|S(x) - f(x)| \le \frac{1}{8} h^2 \max_{x \in [x_0, x_n]} |f''(x)| = O(h^2)$$

donde h es la distancia máxima entre dos nodos adyacentes.

Evaluación

- \bullet Localizar el intervalo tal que $x \in [x_i, x_{i+1}].$ (Algoritmo de localización).
- $S_i(x) = y_i + (x x_i) \frac{y_{i+1} y_i}{x_{i+1} x_i}, \ x_i \le x \le x_{i+1}, \ i = 0, \dots, n-1$

Error

Si $y_i = f(x_i)$ con $f \in \mathcal{C}^2[a, b]$:

$$|S(x) - f(x)| \le \frac{1}{8} h^2 \max_{x \in [x_0, x_n]} |f''(x)| = O(h^2)$$

donde h es la distancia máxima entre dos nodos adyacentes.

Derivada

$$S'(x) = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} \qquad x_i < x < x_{i+1}, i = 0, 1, \dots, n-1$$
$$|S'(x) - f'(x)| = O(h) \qquad x \neq x_i, x_0 < x < x_n$$

Función de Runge $f(x) = \frac{1}{1+x^2}$

$S(\boldsymbol{x})$ interpolante lineal segmentaria determinado en n+1nodos equidistantes

$$x_j = -5 + j\frac{10}{n}, j = 0, 1, \dots, n$$

,,,	
n	$ f-S _{\infty}$
50	9.33e-03
100	2.46e-03
200	6.22e-04
400	1.50e-04
800	3.75e-05
1600	9.37e-06
3200	2.34e-06
6400	5.86e-07

Función de Runge $f(x) = \frac{1}{1+x^2}$

Error del interpolante lineal segmentaria 5 nodos.

Función de Runge $f(x) = \frac{1}{1+x^2}$

Error del interpolante lineal segmentaria 11 nodos.

Coste de evaluación en un punto

• Lagrange: se incrementa con el número de datos.

Coste de evaluación en un punto

- Lagrange: se incrementa con el número de datos.
- Segmentaria: no crece con el número de nodos.

Coste de evaluación en un punto

- Lagrange: se incrementa con el número de datos.
- Segmentaria: no crece con el número de nodos.

Convergencia uniforme

• Lagrange: no está garantizado.

Coste de evaluación en un punto

- Lagrange: se incrementa con el número de datos.
- Segmentaria: no crece con el número de nodos.

Convergencia uniforme

- Lagrange: no está garantizado.
- Segmentaria: si

Coste de evaluación en un punto

- Lagrange: se incrementa con el número de datos.
- Segmentaria: no crece con el número de nodos.

Convergencia uniforme

- Lagrange: no está garantizado.
- Segmentaria: si

Derivabilidad

• Lagrange: Indefinidamente derivable.

Coste de evaluación en un punto

- Lagrange: se incrementa con el número de datos.
- Segmentaria: no crece con el número de nodos.

Convergencia uniforme

- Lagrange: no está garantizado.
- Segmentaria: si

Derivabilidad

- Lagrange: Indefinidamente derivable.
- Segmentaria: Sólo continua.

• La interpolación segmentaria cúbica utiliza polinomios de tercer grado para cada subintervalo entre los puntos de datos.

- La interpolación segmentaria cúbica utiliza polinomios de tercer grado para cada subintervalo entre los puntos de datos.
- Cada polinomio cúbico se ajusta de manera que no solo pase por los puntos de datos, sino que también asegure que las primeras y segundas derivadas sean continuas en los puntos de unión.

- La interpolación segmentaria cúbica utiliza polinomios de tercer grado para cada subintervalo entre los puntos de datos.
- Cada polinomio cúbico se ajusta de manera que no solo pase por los puntos de datos, sino que también asegure que las primeras y segundas derivadas sean continuas en los puntos de unión.
- Esto resulta en una curva suave y continua que no presenta las oscilaciones que pueden ocurrir con polinomios de grado más alto.

- La interpolación segmentaria cúbica utiliza polinomios de tercer grado para cada subintervalo entre los puntos de datos.
- Cada polinomio cúbico se ajusta de manera que no solo pase por los puntos de datos, sino que también asegure que las primeras y segundas derivadas sean continuas en los puntos de unión.
- Esto resulta en una curva suave y continua que no presenta las oscilaciones que pueden ocurrir con polinomios de grado más alto.
- La forma general de un polinomio cúbico en el intervalo $[x_i, x_{i+1}]$ es:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

- La interpolación segmentaria cúbica utiliza polinomios de tercer grado para cada subintervalo entre los puntos de datos.
- Cada polinomio cúbico se ajusta de manera que no solo pase por los puntos de datos, sino que también asegure que las primeras y segundas derivadas sean continuas en los puntos de unión.
- Esto resulta en una curva suave y continua que no presenta las oscilaciones que pueden ocurrir con polinomios de grado más alto.
- La forma general de un polinomio cúbico en el intervalo $[x_i, x_{i+1}]$ es:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

• Los coeficientes a_i, b_i, c_i, d_i se determinan imponiendo condiciones de continuidad y suavidad en los puntos de unión.