MA-823 2025

CLTs and Laws of Iterated Logarithm

Lecturer: Niranjan Balachandran Scribe: Nandnee Priya and Om Swostik

1 Kolmogorov's Zero-One Law

Let $\mathbb{R}^{\infty} \equiv \{(x_1, x_2, \dots) : x_i \in \mathbb{R}\}$. Define $\mathcal{B}^{(n)}$ as the σ -algebra generated by $\{x_j : j \geq n\}$, and define $\mathcal{B}_{(n)}$ as the σ -algebra generated by $\{x_j : 1 \leq j \leq n\}$. As usual, let \mathcal{B} denote the σ -algebra on \mathbb{R}^{∞} generated by finite-dimensional cylinders.

Definition 1 (Tail σ -algebra). Define

$$\mathcal{T}\coloneqq\bigcap_{n\geq 1}\mathcal{B}^{(n)},$$

where \mathcal{T} is a σ -algebra since it is the intersection of σ -algebra. We will refer to \mathcal{T} as the Tail σ -algebra.

Definition 2 (Tail Event). Any set $A \in \mathcal{T}$ is called a 'Tail Event'.

A general proposition about 'tail events' is the following beautiful theorem of Kolmogorov:

Theorem 3. If $A \in \mathcal{T}$, then $\mathbb{P}(A) \in \{0,1\}$ under any product probability on \mathbb{R}^{∞} .

Proof. We will show that A is independent of itself, so that

$$\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)^2,$$

which will prove the theorem. Note that since $A \in \mathcal{T}$, we must have $A \in \mathcal{B}^{(n+1)}$ for all n. Since we are working with a product measure, we can conclude that A must be independent of $\mathcal{B}_{(n)}$ for all n. Therefore, A is independent of all $B \in \mathcal{F} := \bigcup_{n \geq 1} \mathcal{B}_{(n)}$. Let $\mathcal{A} := \{B \in \mathcal{B} : B \text{ is independent of } A\}$.

We have the following claim,

Claim 4. \mathcal{A} is a monotone class, and $\mathcal{F} \subseteq \mathcal{A}$.

Note that \mathcal{F} is a field. By the monotone class theorem, the σ -algebra generated by \mathcal{F} must be the same as the monotone class generated by \mathcal{F} . But $\sigma(\mathcal{F}) = \mathcal{B}$, which implies that $A \in \mathcal{A}$. Proving the claim will complete the proof of theorem.

Proof of Claim. Let $A_n \uparrow$ and $\{A_n\}_{n\geq 1} \subseteq \mathcal{A}$, then we need to show that $\bigcup_{n\geq 1} A_n \in \mathcal{A}$. Observe,

$$\mathbb{P}\Big(A\cap\big(\bigcup_{i=1}^NA_i\big)\Big)=\mathbb{P}\Big(\bigcup_{i=1}^N(A\cap A_N)\Big)=\mathbb{P}(A\cap A_N)=\mathbb{P}(A)\mathbb{P}(A_N).$$

Taking limit $N \to \infty$ concludes proof of Claim.

The theorem follows from the claim. \Box

2 Central Limit Theorems

Let $\{X_i\}_{i\geq 1}$ be iid random variables with $\mathbb{E}[X_i]=0$ and $\mathbb{E}[X_i^2]=1, \forall i$. Then,

$$\frac{S_n}{\sqrt{n}} \implies N(0,1),$$

where
$$S_n = \sum_{i=1}^n X_i$$
.

Proof. In light of Levy's continuity theorem, it suffices to show that

$$\phi_{S_n/\sqrt{n}}(t) \underset{n\to\infty}{\longrightarrow} e^{-t^2/2}, \ \forall t$$

where $\phi_{S_n/\sqrt{n}}$ is characteristic function of S_n/\sqrt{n} . Let characteristic function of X be ϕ . Then the characteristic function of $(X_1/\sqrt{n} + \cdots + X_n/\sqrt{n})$ is $(\phi(t/\sqrt{n}))^n$. Since $\mathbb{E}[X] = 0$ and $\mathbb{E}[X^2] = 1$, we have

$$\phi(t/\sqrt{n}) = 1 - \frac{t^2}{2n} + o(1/n),$$

for each fixed t by Taylor's theorem. We can conclude,

$$\left(\phi(t/\sqrt{n})\right)^n = \left(1 - \frac{t^2}{2n} + o(1/n)\right)^n.$$

Recall that $(1+a_n)^n \to e^z$ if $na_n \to z$ as $n \to \infty$. This tells us that,

$$\left(\phi(t/\sqrt{n})\right)^n \underset{n\to\infty}{\longrightarrow} e^{-t^2/2}.$$

We have the following sufficient condition for CLT,

Theorem 5 (Lindeberg's condition). Suppose μ_i is the distribution of X_i , where the random variables $\{X_i\}$ are independent. Let $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_i^2] = \sigma_i^2$ and $s_n^2 = \sum_{i=1}^n \sigma_i^2$. Then,

$$\frac{S_n}{s_n} \implies N(0,1),$$

if for any $\epsilon > 0$

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{i=1}^n \left(\int_{|X| \ge \epsilon s_n} X^2 d\mu_i \right) = 0.$$

Note that each μ_i is a probability distribution on the space $(\Omega_i, \mathcal{B}_i)$.

Verifying Lindeberg's condition is tough in general. The following gives a sufficient condition for the Lindeberg's condition to hold, Corollary 6 (Lyapunov's condition). Suppose for some $\delta > 0$,

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{j=1}^n \left(\int |X|^{2+\delta} d\mu_j \right) = 0,$$

then Lindeberg's condition holds. So a CLT follows.

Proof of Lindeberg's theorem. Write

$$\frac{S_n}{S_n} = X_{n,1} + \dots + X_{n,n}$$

with $X_{n,j} = X_j/s_n$. Let $\phi_{n,j}$ denote the characteristic function of $X_{n,j}$. We have,

$$\phi_{n,j}(t) = \phi_j\left(\frac{t}{s_n}\right),$$

where ϕ_j is the characteristic function of X_j . Let $\widehat{\mu}_n$ denote the characteristic function of S_n/s_n ,

$$\widehat{\mu}_n(t) = \prod_{i=1}^n \phi_i \left(\frac{t}{s_n}\right).$$

Write $\psi_{n,j}(t) := \phi_{n,j}(t) - 1$, and let

$$\psi_n(t) \coloneqq \prod_{j=1}^n \psi_{n,j}(t).$$

Note that to prove the theorem, it suffices to show

$$\widehat{\mu}_n(t) = \prod_{j=1}^n \phi_j\left(\frac{t}{s_n}\right) \underset{n\to\infty}{\longrightarrow} e^{-t^2/2}, \ \forall t.$$

In fact, we will show

$$\lim_{n \to \infty} \left(\log \left(\widehat{\mu}_n(t) \right) + \frac{t^2}{2} \right) = 0.$$

This makes sense since we can always define a branch of logarithm unambiguously on

$$\mathbb{C} \setminus \{ iy : y \in \mathbb{R}, y < 0 \}.$$

Fix T > 0, observe

$$\lim_{n \to \infty} \sup_{|t| \le T} \left| \log \left(\widehat{\mu}_n(t) \right) - \log \left(\psi_n(t) \right) \right| \le \lim_{n \to \infty} \sup_{|t| \le T} \sum_{j=1}^n \left| \log \left(\phi_{n,j}(t) \right) - \left(\phi_{n,j}(t) - 1 \right) \right|$$

$$\le \lim_{n \to \infty} \sup_{|t| \le T} C \left| \sum_{j=1}^n \left| \phi_{n,j}(t) - 1 \right|^2 \right|,$$

for some absolute constant C > 0, since $\log(1+x) = x + O(x^2)$. Now,

$$\sup_{|t| \le T} \sum_{j=1}^{n} |\phi_{n,j}(t) - 1|^{2} \le \sup_{|t| \le T} \left(\sup_{1 \le j \le n} |\phi_{n,j}(t) - 1| \right) \cdot \sup_{|t| \le T} \left(\sum_{j=1}^{n} |\phi_{n,j}(t) - 1| \right)$$

since the inequality $\sum_{i=1}^{n} a_i^2 \leq \max_i |a_i| \sum_{i=1}^{n} |a_i|$ always holds. We now claim the following,

$$\lim_{n \to \infty} \sup_{|t| \le T} \left(\sup_{1 \le j \le n} \left| \phi_{n,j}(t) - 1 \right| \right) \tag{1}$$

$$\sup_{n} \sup_{|t| \le T} \left(\sum_{i=1}^{n} \left| \phi_{n,j}(t) - 1 \right| \right) < \infty$$
 (2)

This will allows us to conclude,

$$\lim_{n\to\infty} \left[\sup_{|t|\le T} \left(\sup_{1\le j\le n} \left| \phi_{n,j}(t) - 1 \right| \right) \cdot \sup_{|t|\le T} \left(\sum_{j=1}^n \left| \phi_{n,j}(t) - 1 \right| \right) \right] = 0.$$

So if we had proven Statement 1 and Statement 2, then we have

$$\lim_{n \to \infty} \sup_{|t| < T} \left| \log \left(\widehat{\mu}_n(t) \right) - \log \left(\psi_n(t) \right) \right| = 0,$$

for T > 0. To complete the proof, it will then suffice to show the following

$$\lim_{n \to \infty} \sup_{|t| \le T} \left| \log \left(\psi_n(t) \right) + \frac{t^2}{2} \right| = 0$$
 (3)

Thus, in view of Statement 1, Statement 2 and Statement 3, the proof is complete except for the proofs of these three statements.

Remark. Note the inequality $\sum_{i=1}^{n} a_i^2 \leq \sup_i |a_i| \sum_{i=1}^{n} |a_i|$, which holds for all reals a_1, \ldots, a_n .

Proof of Statement 1. Observe,

$$\sup_{|t| \le T} \left| \phi_{n,j}(t) - 1 \right| = \sup_{|t| \le T} \left| \int \left(e^{itx/s_n} - 1 \right) d\mu_j \right|$$
$$= \sup_{|t| \le T} \left| \int \left(e^{itx/s_n} - 1 - \frac{itx}{s_n} \right) d\mu_j \right|$$

as $\phi_{n,j}$ is the characteristic function of $X_{n,j} = X_j/s_n$ and all $X_{n,j}$ have mean 0. Since $|e^{iy} - 1 - iy| = O(y^2)$, we have

$$\sup_{|t| \le T} \left| \phi_{n,j}(t) - 1 \right| \le C_T \int \left(X^2 / s_n^2 \right) d\mu_j$$

for some absolute constant $C_T > 0$ depending only on T. Note that,

$$C_T \int (X^2/s_n^2) d\mu_j = C_T \int_{|X| < \epsilon s_n} (X^2/s_n^2) d\mu_j + C_T \int_{|X| \ge \epsilon s_n} (X^2/s_n^2) d\mu_j$$

$$\leq C_T \epsilon^2 + C_T \int_{|X| \ge \epsilon s_n} (X^2/s_n^2) d\mu_j$$

Hence,

$$\sup_{1 \le j \le n} \sup_{|t| \le T} \left| \phi_{n,j}(t) - 1 \right| \le C_T \epsilon^2 + C_T \sum_{j=1}^n \left(\int_{|X| \ge \epsilon s_n} (X^2/s_n^2) d\mu_j \right)$$

By Lindeberg's condition,

$$C_T \sum_{j=1}^n \left(\int_{|X| \ge \epsilon s_n} (X^2/s_n^2) d\mu_j \right) \xrightarrow[n \to \infty]{} 0$$

which gives,

$$\limsup_{n \to \infty} \sup_{1 \le j \le n} \sup_{|t| \le T} \left| \phi_{n,j}(t) - 1 \right| \le C_T \epsilon^2, \ \forall \epsilon > 0.$$

Statement 1 follows by taking $\epsilon \to 0$.

Proof of Statement 2. Recall that we need to show,

$$\sup_{n} \sup_{|t| \le T} \left(\sum_{j=1}^{n} \left| \phi_{n,j}(t) - 1 \right| \right) < \infty.$$

As in the proof of Statement 1, we have

$$\sup_{|t| \le T} \left(\sum_{j=1}^{n} \left| \phi_{n,j}(t) - 1 \right| \right) \le C_T \sum_{j=1}^{n} \int \left(X^2 / s_n^2 \right) d\mu_j$$

$$\le \frac{C_T}{s_n^2} \sum_{j=1}^{n} \int X^2 d\mu_j$$

$$= \frac{C_T}{s_n^2} \sum_{j=1}^{n} \sigma_j^2 = C_T,$$

uniformly over n for some absolute constant $C_T > 0$. Thus,

$$\sup_{n} \sup_{|t| \le T} \left(\sum_{j=1}^{n} \left| \phi_{n,j}(t) - 1 \right| \right) \le C_T < \infty.$$

Proof of Statement 3. Recall that we need to show,

$$\lim_{n \to \infty} \sup_{|t| \le T} \left| \log \left(\psi_n(t) \right) + \frac{t^2}{2} \right| = 0,$$

where $\psi_n(t) = \prod_{j=1}^n (\phi_{n,j}(t) - 1)$, and $\phi_{n,j}$ is the characteristic function corresponding to $X_{n,j} = X_j/s_n$. Observe,

$$\lim_{n \to \infty} \sup_{|t| \le T} \left| \log \left(\psi_n(t) \right) + \frac{t^2}{2} \right| = \lim_{n \to \infty} \sup_{|t| \le T} \left| \sum_{j=1}^n \left(\phi_{n,j}(t) - 1 \right) + \frac{t^2}{2} \right|$$

$$= \lim_{n \to \infty} \sup_{|t| \le T} \left| \sum_{j=1}^n \left(\phi_{n,j}(t) - 1 + \frac{\sigma_j^2 t^2}{2s_n^2} \right) \right|$$

$$= \lim_{n \to \infty} \sup_{|t| \le T} \left| \sum_{j=1}^n \int \left(e^{itx/s_n} - 1 - \frac{itx}{s_n} + \frac{t^2 x^2}{2s_n^2} \right) d\mu_j \right|$$

since $s_n^2 = \sum_{j=1}^n \sigma_j^2$, and each $X_{n,j}$ has mean 0. Recall Lindeberg's condition,

$$\lim_{n \to \infty} \sum_{j=1}^{n} \left(\int_{|X| \ge \epsilon s_n} \frac{X^2}{s_n^2} d\mu_j \right) = 0.$$

Also by Taylor's theorem,

$$\left| e^{itx} - 1 - itx + \frac{t^2 x^2}{2} \right| \le C_T |x|^3$$

in a small interval around 0 if $|t| \leq T$. Note that $C_T > 0$ is an absolute constant depending only on T. So,

$$\sum_{j=1}^{n} \int_{|X| < \epsilon s_n} \left| e^{itx/s_n} - 1 - \frac{itx}{s_n} + \frac{t^2 x^2}{2s_n^2} \right| d\mu_j \le \sum_{j=1}^{n} C_T \int_{|X| < \epsilon s_n} \frac{|x|^3}{s_n^3} d\mu_j$$

$$\le \sum_{j=1}^{n} C_T \epsilon \int_{|X| < \epsilon s_n} \frac{|x|^2}{s_n^2} d\mu_j$$

$$\le \epsilon C_T.$$

We can pick a large enough constant $C_T > 0$ (depending only on T) such that,

$$\left| e^{itx} - 1 - itx + \frac{t^2 x^2}{2} \right| \le C_T |x|^2$$

holds for all $x \in \mathbb{R}$ if $|t| \leq T$. We use this to bound,

$$\sum_{j=1}^{n} \int_{|X| \ge \epsilon s_n} \left| e^{itx/s_n} - 1 - \frac{itx}{s_n} + \frac{t^2 x^2}{2s_n^2} \right| d\mu_j \le \sum_{j=1}^{n} C_T \int_{|X| \ge \epsilon s_n} \frac{|x|^2}{s_n^2} d\mu_j$$

Observe that the RHS in the above equation goes to 0 as n goes to ∞ by Lindeberg's condition. We can conclude,

$$\sup_{|t| \le T} \left| \sum_{i=1}^{n} \int \left(e^{itx/s_n} - 1 - \frac{itx}{s_n} + \frac{t^2 x^2}{2s_n^2} \right) d\mu_j \right| \underset{n \to \infty}{\longrightarrow} 0.$$

Since all three statements are proved, proof of Theorem 5 follows.

Recall the following stated before,

Corollary 7 (Lyapunov). Suppose for some $\delta > 0$,

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{j=1}^n \left(\int |X|^{2+\delta} d\mu_j \right) = 0,$$

then Lindeberg's condition holds.

Proof. Observe,

$$\frac{1}{s_n^{2+\delta}} \sum_{j=1}^n \left(\int_{|X| \ge \epsilon s_n} |X|^{2+\delta} d\mu_j \right) \ge \frac{\epsilon^{\delta}}{s_n^2} \sum_{j=1}^n \left(\int_{|X| \ge \epsilon s_n} |X|^2 d\mu_j \right)$$

for any fixed $\epsilon > 0$. By the given hypothesis,

$$\frac{1}{s_n^{2+\delta}} \sum_{j=1}^n \left(\int_{|X| \ge \epsilon s_n} |X|^{2+\delta} d\mu_j \right) \le \frac{1}{s_n^{2+\delta}} \sum_{j=1}^n \left(\int |X|^{2+\delta} d\mu_j \right) \xrightarrow[n \to \infty]{} 0.$$

Therefore, for any fixed $\epsilon > 0$,

$$\frac{1}{s_n^2} \sum_{j=1}^n \left(\int_{|X| \ge \epsilon s_n} |X|^2 d\mu_j \right) \xrightarrow[n \to \infty]{} 0.$$

Is Lyapunov's condition easy to verify? Consider the following example,

Example 8. Let $\{X_i\}_{i\geq 1}$ be iid random variables, with $|X_i|\leq C$ for some constant C>0. Then the Lyapunov condition works if we take $\delta=1$. In more details,

$$\frac{1}{s_n^3} \sum_{j=1}^n \left(\int |X|^3 d\mu_j \right) \le O\left(\frac{n}{n^{3/2}}\right) \underset{n \to \infty}{\longrightarrow} 0.$$

3 Kolmogorov's Three Series Theorem

We will show the necessary part of the following theorem,

Theorem 9 (Kolmogorov's Three Series Theorem). Let $\{X_i\}_{i\geq 1}$ be an independent sequence of random variables. Then $\sum_i X_i < \infty$ if and only if,

1. For some C > 0,

$$\sum_{i} \mathbb{P}(|X_i| \ge C) < \infty.$$

2. Let
$$Y_i^{(C)} = X_i \mathbb{1}_{|X_i| \le C}$$
, then

$$\sum_{i} \mathbb{E}\left[Y_i^{(C)}\right] < \infty.$$

3. With
$$Y_i^{(C)}$$
 same as in 2,

$$\sum_{i} Var\left(Y_{i}^{(C)}\right) < \infty.$$

Proof of Necessity. Assume $\sum_{i} X_{i} < \infty$, we will show that each of the three conditions must hold.

We claim that condition 1 must hold for any C > 0. Assume for contradiction there exist C > 0 such that,

$$\sum_{i} \mathbb{P}(|X_i| \ge C) = \infty.$$

Define the event $A_i := \{|X_i| > C\}$. Since the random variables X_i are independent, Borel-Cantelli lemma gives

$$\mathbb{P}\Big(\limsup_{i\to\infty} A_i\Big) = 1.$$

We can conclude $|X_i| > C$ holds infinitely often w.p. 1. On the other hand, since $\sum_i X_i < \infty$,

$$\lim_{i \to \infty} X_i = 0$$

holds w.p. 1. This contradicts our intial assumption, hence condition 1 follows. We will first show condition 2 assuming condition 3. Since $\sum_{i} X_{i} < \infty$ holds w.p. 1, we must have

$$\lim_{i \to \infty} X_i = 0,$$

holds w.p. 1 and hence,

$$Y_i^{(C)} = X_i \ \forall i \ge i_0$$

with i_0 large enough. Therefore, we can conclude

$$\sum_{i} Y_i^{(C)} < \infty.$$

Observe that since $\{X_i\}_{i\geq 1}$ is a sequence of independent random variables, $\{Y_i^{(C)}\}_{i\geq 1}$ is also a sequence of independent random variables. We have the following claim,

Claim 10.

$$\sum_{i} \left(Y_{i}^{(C)} - \mathbb{E}\left[Y_{i}^{(C)} \right] \right) < \infty.$$

Proof of Claim. Define $Z_i := \left(Y_i^{(C)} - \mathbb{E}\left[Y_i^{(C)}\right]\right)$ and note that $\mathbb{E}[Z_i] = 0$, $\operatorname{Var}[Z_i] = \operatorname{Var}\left[Y_i^{C}\right]$ $\forall i$. Since $\left\{Y_i^{(C)}\right\}_{i \geq 1}$ is a sequence of independent random variables, $\{Z_i\}_{i \geq 1}$ is also a sequence of independent random variables. Since we know,

$$\sum_{i} \operatorname{Var}(Z_{i}) = \sum_{i} \operatorname{Var}\left(Y_{i}^{(C)}\right) < \infty$$

it must follow that $\sum_{i} Z_{i} < \infty$ from the sufficiency part of the three series theorem.

Since $\sum_{i} Y_{i}^{(C)} < \infty$ and $\sum_{i} \left(Y_{i}^{(C)} - \mathbb{E} \left[Y_{i}^{(C)} \right] \right) < \infty$, we can conclude

$$\sum_{i} \mathbb{E}\left[Y_{i}^{(C)}\right] < \infty.$$

It remains to prove condition 3. To this end, define

$$\left(s_n^{(C)}\right)^2 := \sum_{i=1}^n \operatorname{Var}\left(Y_i^{(C)}\right).$$

Suppose if possible that $s_n^{(C)} \to \infty$ as $n \to \infty$. Observe that the random variables $Y_i^{(C)}$ are uniformly bounded by constant C and independent. So by sufficiency of the Lyapunov condition, we have

$$\frac{\sum_{i=1}^{n} \left(Y_i^{(C)} - \mathbb{E} \left[Y_i^{(C)} \right] \right)}{s_n} \Longrightarrow_W N(0, 1).$$

Let $\sum_{i=1}^n Y_i^{(C)} = S_n^{(C)}$, and let $\sum_{i=1}^n \mathbb{E}\left[Y_i^{(C)}\right] = M_n^{(C)}$. In other words, for any x < y,

$$\mathbb{P}\left(x < \frac{S_n^{(C)} - M_n^{(C)}}{s_n^{(C)}} < y\right) \xrightarrow[n \to \infty]{} \frac{1}{\sqrt{2\pi}} \int_x^y e^{-t^2/2} dt. \tag{4}$$

We also have the following claim,

Claim 11. The following,

$$\frac{S_n^{(C)}}{S_n^{(C)}} \xrightarrow[n \to \infty]{} 0$$

holds w.p. 1.

Proof of Claim. We know $\sum_{i} X_{i}$ converges w.p. 1. This implies,

$$\lim_{i \to \infty} X_i = 0,$$

holds w.p. 1 and hence,

$$Y_i^{(C)} = X_i \ \forall i \ge i_0$$

with i_0 large enough. Therefore, we can conclude

$$\sum_{i} Y_i^{(C)} < \infty.$$

The claim follows since the sequence $S_n^{(C)}$ is convergent (and hence bounded) w.p. 1, and $s_n^{(C)} \to \infty$ as $n \to \infty$.

Since almost-sure convergence implies convergence in probability, we have $\forall \epsilon > 0$,

$$\mathbb{P}\left(\frac{\left|S_n^{(C)}\right|}{s_n^{(C)}} \ge \epsilon\right) \underset{n \to \infty}{\longrightarrow} 0. \tag{5}$$

Equations 4 and 5 imply that,

$$\mathbb{P}\left(x + \epsilon < \frac{-M_n^{(C)}}{s_n^{(C)}} < y - \epsilon\right) > 0$$

must hold for all n large enough. In particular, if $(x_1 + \epsilon, y_1 - \epsilon)$ and $(x_2 + \epsilon, y_2 - \epsilon)$ are disjoint intervals, then this is a contradiction. Therefore,

$$\sum_{i>1} \operatorname{Var}(Y_i^{(C)}) < \infty$$

and this establishes the necessity of all conditions of the theorem.

4 Law of Iterated Logarithm

Recall the following (vanilla) version of CLT,

Theorem 12. Let $\{X_i\}_{i\geq 1}$ be iid random variables such that $\mathbb{E}[X_i] = 0$ and $\mathbb{E}[X_i^2] = 1 \ \forall i$. Then we have,

$$\frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}} \Longrightarrow_W N(0,1).$$

We have the following fact,

Fact. For any sequence $(n_k)_{k>1}$ such that $n_k \to \infty$,

$$\mathbb{P}\bigg(\limsup_{k\to\infty}\frac{X_1+X_2+\cdots+X_{n_k}}{\sqrt{n_k}}=\infty\bigg)=1.$$

Proof of Fact. Define the random variable

$$Z := \limsup_{k \to \infty} \frac{X_1 + X_2 + \dots + X_{n_k}}{\sqrt{n_k}},$$

which can possibly be $+\infty$. Fix $a \in \mathbb{R}$. Because the normal distribution has an infinitely long tail, i.e., the probability of exceeding any given value is positive, we must have

$$\mathbb{P}(Z \geq a) > 0.$$

Since $\{Z \geq a\}$ is an event in the tail σ -algebra, by Kolmogorov's 0-1 law

$$\mathbb{P}(Z > a) \in \{0, 1\}.$$

Proof of fact follows as the probability cannot be zero by the previous observation.

Recall the SLLN,

Theorem 13. Let $\{X_i\}_{i\geq 1}$ be iid random variables such that $\mathbb{E}[X_i] = 0$ and $\mathbb{E}[X_i^2] = 1 \ \forall i$. Then we have,

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{X_1+X_2+\cdots+X_n}{n}=0\right)=1.$$

This motivates the following theorem,

Theorem 14 (Law of Iterated Logarithm). Let $\{X_i\}_{i\geq 1}$ be iid random variables with $\mathbb{E}[X_i]=0$ and $\mathbb{E}[X_i^2]=1 \ \forall i.$ Then,

$$\mathbb{P}\left(\limsup_{n\to\infty} \frac{X_1 + X_2 + \dots + X_n}{\phi(n)} = \sqrt{2}\right) = 1 \tag{6}$$

for $\phi(n) = \sqrt{n \log \log n}$.

Proof. We will see the proof of (6) with an additional condition $\mathbb{E}|X_i|^{2+\alpha} < \infty$ for some $\alpha > 0$. First we will prove the theorem for the case when $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$. As usual, let $S_n := \sum_{i=1}^n X_i$. It suffices to prove the following two claims,

Claim 15. For all $\lambda > \sqrt{2}$,

$$\mathbb{P}\bigg(\limsup_{n\to\infty}\frac{S_n}{\phi(n)}\geq\lambda\bigg)=0.$$

Claim 16. For all $\lambda < \sqrt{2}$,

$$\mathbb{P}\bigg(\limsup_{n\to\infty}\frac{S_n}{\phi(n)}\geq\lambda\bigg)=1.$$

Proof of Claim 15. Given $\lambda > \sqrt{2}$. We are interested in showing,

$$\mathbb{P}(S_n \ge \lambda \phi(n) \text{ i.o.}) = 0$$

It would be sufficient because of the Borel-Cantelli lemma to show that,

$$\sum_{n} \mathbb{P}\left(\frac{S_n}{\phi(n)} \ge \lambda\right) < \infty.$$

However, this is too strong! Notice that if we have sequence $k_n \uparrow \infty$ such that

$$\sup_{k_{n-1} \le j \le k_n} S_j \ge \lambda \phi(k_{n-1})$$

happens infinitely often, this also gives us what we want. We shall pick a sequence $k_n := \rho^n$ (for some $\rho > 1$) and we will compute

$$\sum_{n} \mathbb{P} \left(\sup_{k_{n-1} \le j \le k_n} S_j \ge \lambda \phi(k_{n-1}) \right) \tag{7}$$

and if the above sum is $< \infty$, then it implies

$$\limsup_{n \to \infty} \frac{\sup_{k_{n-1} \le j \le k_n} S_n}{\phi(k_{n-1})} \le \lambda$$

holds with probability 1. Since ϕ is a monotonically increasing function then in particular, this implies that

$$\limsup_{n \to \infty} \frac{S_n}{\phi(n)} \le \lambda$$

holds with probability 1. It will then follow that

$$\mathbb{P}\bigg(\limsup_{n\to\infty}\frac{S_n}{\phi(n)} > \lambda\bigg) = 0$$

and we are done! To show that the sum in (7) is $< \infty$ for the chosen sequence $\{k_n\}$, we shall use Levy's inequality in the following (slightly) general form,

Theorem 17 (Levy). Let $\{X_i\}_{i=1}^n$ be independent random variables. If

$$\sup_{1 < j < n} \mathbb{P} \bigg(|S_n - S_j| \ge r \bigg) \le \delta,$$

then we must have,

$$\mathbb{P}\left(\sup_{1 \le j \le n} |S_j| \ge l\right) \le \frac{\mathbb{P}\left(|S_n| \ge l - r\right)}{1 - \delta}.$$

Proof. Same proof as the original version of the inequality with slight tweaks.

Let $0 < \sigma < 1$ be sufficiently small so that $\lambda' = \lambda - \sigma > \sqrt{2}$. To apply the above inequality, set $l = \lambda \phi(k_{n-1})$ and $r = \sigma \phi(k_{n-1})$. So we want to first get a good δ in order to apply Levy's inequality in the form we stated earlier. Observe that for any $1 \le i \le k_n$,

$$\mathbb{P}\left(|S_i| \ge \sigma \phi(k_{n-1})\right) \le \frac{\mathbb{E}\left[|S_i|^2\right]}{\sigma^2 \phi(k_{n-1})^2} \le \frac{k_n}{\sigma^2 k_{n-1} \log \log k_{n-1}}.$$

Recall that we chose $k_n = \rho^n$ for some $\rho > 1$. We have,

$$\sup_{1 \le i \le k_n} \mathbb{P}\left(|S_i| \ge \sigma \phi(k_{n-1})\right) \le \frac{k_n}{\sigma^2 k_{n-1} \log \log k_{n-1}}$$

$$\le \frac{C\rho}{\sigma^2 \log(n)}$$

where C > 0 is a constant. Note that $C\rho/\sigma^2 \log(n) \to 0$ as $n \to \infty$. Choose $\delta = 1/2$ in the hypothesis of Levy's inequality so that we have,

$$\mathbb{P}\left(\sup_{k_{n-1} \le j \le k_n} S_j \ge \lambda \phi(k_{n-1})\right) \le 2\mathbb{P}\left(|S_{k_n}| \ge \lambda' \phi(k_{n-1})\right).$$

We want to show,

$$\sum_{n} \mathbb{P} \left(\sup_{k_{n-1} \le j \le k_n} S_j \ge \lambda \phi(k_{n-1}) \right) < \infty.$$

To this end, it suffices to prove

$$\sum_{n} \mathbb{P}\bigg(|S_{k_n}| \ge \lambda' \phi(k_{n-1})\bigg) < \infty.$$

Observe that if $X \sim \mathcal{N}(0,1)$, we have for any $a \geq 1$,

$$\mathbb{P}(X \ge a) = \frac{1}{\sqrt{2\pi}} \int_a^\infty e^{-t^2/2} dt$$

$$\le \frac{1}{\sqrt{2\pi}} \int_a^\infty t e^{-t^2/2} dt$$

$$= \frac{e^{-a^2/2}}{\sqrt{2\pi}}.$$

So, this gives us $\mathbb{P}(X \ge a) \le \frac{1}{\sqrt{2\pi}} e^{-a^2/2}$. Further,

$$\sum_{n} \mathbb{P}\left(|S_{k_{n}}| \ge \lambda' \phi(k_{n-1})\right) < \infty \iff \sum_{n} \mathbb{P}\left(\frac{|S_{k_{n}}|}{\sqrt{k_{n}}} \ge \frac{\lambda' \phi(k_{n-1})}{\sqrt{k_{n}}}\right) < \infty.$$

So.

$$\mathbb{P}\left(|S_{k_n}| \ge \lambda' \phi(k_{n-1})\right) \lesssim \exp\left[\frac{-1}{2}(\lambda')^2 \frac{\rho^{n-1}}{\rho^n} \left[\log n + \log\log\rho\right]\right]$$
$$= \exp\left[\frac{-1}{2} \frac{(\lambda')^2}{\rho} \left[\log n + \log\log\rho\right]\right].$$

Note that $\log \log \rho^n = \log n + \log \log \rho$, and the term $\log \log \rho$ is an absolute constant. If

$$\frac{(\lambda')^2}{2a} = 1 + c_0$$

for a small constant $c_0 > 0$, then the expression simplifies to

$$\lesssim \frac{1}{n^{1+c_0}}.$$

This can be achieved by picking ρ sufficiently close to 1 such that $\lambda'\sqrt{\rho} > \sqrt{2}$. Since the sum $\sum_{n\geq 1} 1/n^{1+c_0} < \infty$, we are done with the proof of Claim 15.

Proof of Claim 16. For the next case, we will again use Borel-Cantelli lemma but in the converse direction. We will restate the lemma here for convenience,

Lemma 18. Let $\{A_n\} \subseteq \Omega$. If $\sum_{n\geq 1} \mathbb{P}(A_n) = \infty$, and $\{A_n\}$ is independent, then

$$\mathbb{P}\Big(\limsup_{n\to\infty} A_n\Big) = 1.$$

Again, we will find a sequence $k_n = \rho^n$ (for a suitable $\rho > 1$) such that if we define

$$Y_n := S_{k_n} - S_{k_{n-1}},$$

then the random variables Y_n are independent. Note that $Y_n \sim \mathcal{N}(0, k_n - k_{n-1})$. Fix $\lambda < \sqrt{2}$. We will try to show,

$$\mathbb{P}\Big(Y_n \geq \lambda \phi(k_n) \text{ i.o.}\Big) = \mathbb{P}\bigg(\frac{Y_n}{\sqrt{k_n - k_{n-1}}} \geq \frac{\lambda \phi(k_n)}{\sqrt{k_n - k_{n-1}}} \text{ i.o.}\bigg) = 1,$$

and to do this, we will get a lower bound for the expression $\mathbb{P}(X \geq a)$ when $X \sim \mathcal{N}(0,1)$. Observe,

$$\mathbb{P}(X \ge a) = \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-t^{2}/2} dt$$

$$\ge \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} (1+t)e^{-(t+\frac{t^{2}}{2})} dt$$

$$\ge \frac{1}{\sqrt{2\pi}} e^{\frac{-(a+1)^{2}}{2}}.$$

So, we have

$$\mathbb{P}\left(Y_n \ge \lambda \phi(k_n)\right) \ge \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-1}{2} \left(1 + \frac{\lambda \phi(k_n)}{\sqrt{k_n - k_{n-1}}}\right)^2\right]$$

$$\gtrsim \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-\rho \lambda^2 \log n}{2(\rho - 1)}\right]$$

$$\gtrsim \exp\left[-\log\left(n^{\frac{\lambda^2 \rho}{2(\rho - 1)}}\right)\right]$$

$$\gtrsim \frac{1}{n^{\frac{\lambda^2 \rho}{2(\rho - 1)}}}.$$

So this series diverges if

$$\frac{\lambda^2 \rho}{2(\rho - 1)} < 1,$$

which happens for $\lambda < \sqrt{2}$ (fixed) and when the constant ρ is large. So, the upshot is the following: If $\lambda^2 \rho / 2(\rho - 1) < 1$, then

$$\sum_{n\geq 1} \mathbb{P}\Big(Y_n \geq \lambda \phi(k_n)\Big) = \infty.$$

By Borel-Cantelli lemma, we have

$$\mathbb{P}(Y_n \ge \lambda \phi(k_n) \text{ i.o.}) = 1.$$

Or equivalently, we have $S_{k_n} - S_{k_{n-1}} \ge \lambda \phi(k_n)$ occurs infinitely often w.p. 1. If $X \sim \mathcal{N}(0,1)$, then the random variable $-X \sim \mathcal{N}(0,1)$ as well. Consider the following 'trick': Replace X_i by $-X_i$ in the upper bound obtained in previous claim to get,

$$\mathbb{P}\left(\limsup_{n\to\infty} \frac{-S_{k_{n-1}}}{\phi(k_n)} \le \frac{\sqrt{2}}{\sqrt{\rho}}\right) = 1.$$
(8)

This follows as we have $\frac{\phi(k_{n-1})}{\phi(k_n)} = \frac{1}{\sqrt{\rho}}$. Setting $\lambda = \sqrt{\frac{2(\rho-1)}{\rho}}$ and combining this with the above observation gives,

$$\mathbb{P}\left(\limsup_{n\to\infty} \frac{S_{k_n}}{\phi(k_n)} \ge \sqrt{\frac{2(\rho-1)}{\rho}} - \frac{\sqrt{2}}{\sqrt{\rho}}\right) = 1,$$

and therefore,

$$\mathbb{P}\left(\limsup_{n\to\infty} \frac{S_n}{\phi(n)} \ge \sqrt{\frac{2(\rho-1)}{\rho}} - \frac{\sqrt{2}}{\sqrt{\rho}}\right) = 1.$$

Taking ρ arbitrarily large concludes the proof of Claim 16.

This establishes the proof when $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$. To get to the general case, we note that the proof needed two important inequalities,

• For any a > 0, an upper bound of the form:

$$\mathbb{P}\left(\frac{S_n}{\phi(n)} \ge a\right) \le \frac{C}{(\log n)^{1+\epsilon}}.$$

• For any a > 0, a lower bound of the form:

$$\mathbb{P}\left(\frac{S_n}{\phi(n)} \ge a\right) \ge \frac{C'}{(\log n)^{1-\epsilon}}.$$

In particular, if the tail probability bounds for S_n are 'very close' to the bounds we obtained for the normal distribution, then the same proof will work! Now we will use the hypothesis that $\mathbb{E}|X|^{2+\alpha} < \infty$ for some $\alpha > 0$.

Theorem 19 (Berry-Esseen). Let $X_i \stackrel{iid}{\sim}$ with mean 0 and variance 1. Let $S_n = \sum_{i=1}^n X_i$. Suppose $\alpha > 0$, and $\mathbb{E}|X|^{2+\alpha} < \infty$. Then we have the estimate,

$$\sup_{a \in \mathbb{R}} \left| \mathbb{P} \left(\frac{S_n}{\sqrt{n}} \ge a \right) - \frac{1}{\sqrt{2\pi}} \int_a^{\infty} e^{-t^2/2} dt \right| \le \frac{C}{n^{\delta}},$$

for some $\delta = \delta(\alpha) > 0$.

Proof of Berry-Esseen. We will prove the following three lemmas before proving the theorem.

Lemma 20. Let $-\infty < a < b < \infty$ and $0 < h < \frac{b-a}{2}$ be a small positive number. Define

$$f_{a,h}(x) = \begin{cases} 0, & for -\infty \le x < a - h \\ \frac{x - a + h}{2h}, & for a - h \le x \le a + h \\ 1, & for a + h \le x < \infty \end{cases}$$

$$f_{a,b,h}(x) = \begin{cases} 0, & for \ -\infty \le x < a - h \\ \frac{x - a + h}{2h}, & for \ a - h \le x \le a + h \\ 1, & for \ a + h \le x \le b - h \\ 1 - \frac{x - b + h}{2h}, & for \ b - h \le x \le b + h \\ 0, & for \ b + h \le x < \infty \end{cases}$$

Then, $f_{a,h}(x) = \lim_{b \to \infty} f_{a,b,h}(x)$ holds pointwise.

Proof of Lemma. If $x \in (-\infty, a+h]$, then $f_{a,b,x}(x) = f_{a,h}(x)$ for all b. For any fixed b, $f_{a,b,x}(x) = f_{a,h}(x)$ for $x \in (a+h,b-h]$. If $x \in (a+h,\infty)$, then we pick b > x+h. And thus x < b-h will imply $f_{a,b,x}(x) = f_{a,h}(x)$. Hence, $f_{a,h}(x) = \lim_{b \to \infty} f_{a,b,h}(x)$ pointwise.

Lemma 21. For any probability measure μ

$$\int_{-\infty}^{\infty} f_{a,b,h}(x) d\mu(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\mu}(t) \left(\frac{e^{-iat} - e^{-ibt}}{it} \right) \frac{\sin ht}{ht} dt$$

where $\hat{\mu} \equiv characteristic function of \mu$.

Proof of Lemma. This is essentially the Fourier inversion formula. Note that

$$f_{a,b,h}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ixy} \frac{e^{-iay} - e^{-iby}}{iy} \frac{\sin(hy)}{hy} dy.$$

We can start with the double integral

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{ixy} \frac{e^{-iay} - e^{-iby}}{iy} \frac{\sin(hy)}{hy} \, dy \, d\mu(x)$$

We can then apply Fubini's theorem to obtain

$$\begin{split} &\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{ixy} \frac{e^{-iay} - e^{-iby}}{iy} \frac{\sin(hy)}{hy} \, d\mu(x) \, dy \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-iay} - e^{-iby}}{iy} \frac{\sin(hy)}{hy} \left(\int_{-\infty}^{\infty} e^{ixy} \, d\mu(x) \right) \, dy \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\mu}(y) \frac{e^{-iay} - e^{-iby}}{iy} \frac{\sin(hy)}{hy} \, dy \end{split}$$

Note that Fubini's theorem is applicable as,

$$\left| e^{ixy} \frac{e^{-iay} - e^{-iby}}{iy} \frac{\sin(hy)}{hy} \right| \le O_h \left(\frac{1}{y^2} \right)$$

which is L^1 -integrable with respect to the given product measure.

Lemma 22. If μ is a probability measure and $\widehat{\mu}(\cdot)$ denotes its characteristic function, then

$$\int_{-\infty}^{\infty} f_{a,h}(x) d\mu(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{\mu}(t) \frac{e^{-iat}}{it} \frac{\sin(ht)}{ht} dt.$$

Proof of Lemma. We will use the following result,

Fact (Riemann Lebesgue Lemma). Let $f \in L^1(\mathbb{R}^n)$ be an integrable function, i.e., $f : \mathbb{R}^n \to \mathbb{C}$ is a measurable function such that

$$||f||_{L^1} = \int_{\mathbb{R}^n} |f(x)| \, \mathrm{d}x < \infty,$$

and let \hat{f} be the Fourier transform of f, i.e.,

$$\hat{f} \colon \mathbb{R}^n \to \mathbb{C}, \quad \xi \mapsto \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} \, \mathrm{d}x.$$

Then \hat{f} vanishes at infinity, i.e., $|\hat{f}(\xi)| \to 0$ as $|\xi| \to \infty$.

Now we just let $b \to \infty$ in the previous lemma. This gives us,

$$\begin{split} &\frac{1}{2\pi} \lim_{b \to \infty} \int_{-\infty}^{\infty} \widehat{\mu}(y) \frac{e^{-iay} - e^{-iby}}{iy} \frac{\sin(hy)}{hy} \, dy \\ &= \frac{1}{2\pi} \left(\lim_{b \to \infty} \left(\int_{-\infty}^{\infty} \widehat{\mu}(y) \frac{e^{-iay}}{iy} \frac{\sin(hy)}{hy} \, dy \right) - \lim_{b \to \infty} \left(\int_{-\infty}^{\infty} \widehat{\mu}(y) \frac{e^{-iby}}{iy} \frac{\sin(hy)}{hy} \, dy \right) \right) \\ &= \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} \widehat{\mu}(y) \frac{e^{-iay}}{iy} \frac{\sin(hy)}{hy} \, dy \right). \end{split}$$

The term $\lim_{b\to\infty}\int_{-\infty}^{\infty}\hat{\mu}(y)\frac{e^{-iby}}{iy}\frac{\sin(hy)}{hy}dy$ goes to 0 after applying Riemann Lebesgue lemma where we substitute $f(x)=\left(\hat{\mu}(y)\frac{1}{iy}\frac{\sin(hy)}{hy}\right)$. By applying DCT, we obtain

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_{a,b,h}(x) d\mu(x) = \int_{-\infty}^{\infty} f_{a,h}(x) d\mu(x).$$

We can conclude,

$$\int_{-\infty}^{\infty} f_{a,h}(x) d\mu(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\mu}(y) \frac{e^{-iay}}{iy} \frac{\sin(hy)}{hy} dy$$

and the lemma follows.

Since the proofs of the three lemmas are complete, we will now proceed to prove the theorem. Note that for any a > 0,

$$\mu\left([a,\infty)\right) \le \int_{\mathbb{R}} f_{a-2h,h}(x) d\mu(x) \le \mu\left([a-2h,\infty)\right)$$
$$\lambda\left([a,\infty)\right) \le \int_{\mathbb{R}} f_{a-2h,h}(x) d\lambda(x) \le \lambda\left([a-2h,\infty)\right)$$

where λ, μ are probability measures.

Let μ_n denote the distribution of $\frac{S_n}{\sqrt{n}}$ and λ denote the normal distribution of $\mathcal{N}(0,1)$. And, let the integral $\int f d(\mu - \lambda) := \int f d\mu - \int f d\lambda$. So we get the inequalities,

$$\mu\left([a,\infty)\right) - \lambda\left([a,\infty)\right) - \left(\lambda\left([a-2h,\infty)\right) - \lambda\left([a,\infty)\right)\right) \le \int f_{a-h,h}(x) \, d(\mu-\lambda),$$

$$\int f_{a-h,h}(x) \, d(\mu-\lambda) \le \mu\left([a-2h,\infty)\right) - \lambda\left([a-2h,\infty)\right) - \left(\lambda\left([a,\infty)\right) - \lambda\left([a-2h,\infty)\right)\right).$$

Since λ has a density that is bounded, it follows that $|\lambda([a-2h,\infty)) - \lambda([a,\infty))|$ can be bounded by Ch for some absolute constant C > 0. Hence, it follows that,

$$\sup_{a \in \mathbb{R}} |\mu[a, \infty) - \lambda[a, \infty)| \le \left| \int f_{a-h, h}(x) d(\mu - \lambda) \right| + Ch$$

Substituting for the expression in the RHS gives,

$$\sup_{a \in \mathbb{R}} |\mu([a, \infty)) - \lambda([a, \infty))| \le \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \widehat{\mu}(t) - e^{\frac{t^2}{2}} \right| \frac{|\sin ht|}{ht} \frac{1}{t} dt + Ch.$$
 (9)

If $\phi(t)$ is a characteristic function of X_i , then we know that $\widehat{\mu}_n(t) = \left(\phi\left(\frac{t}{\sqrt{n}}\right)\right)^n$. Now the given hypothesis $\mathbb{E}|X|^{2+\alpha} < \infty$ implies that for $|t| \le 1$,

$$\phi(t) = 1 - \frac{t^2}{2} + O(|t|^{2+\alpha})$$

for some $\alpha > 0$. So,

$$\widehat{\mu}_n(t) = \left(1 - \frac{t^2}{2n} + O\left(\frac{|t|^{2+\alpha}}{n^{1+\frac{\alpha}{2}}}\right)\right)^n$$

$$\Longrightarrow \widehat{\mu}_n(t) = \exp\left(n\log\left(1 - \frac{t^2}{2n} + O\left(\frac{|t|^{2+\alpha}}{n^{1+\frac{\alpha}{2}}}\right)\right)\right).$$

Using the Taylor series expansion for log(1+x), we get

$$\widehat{\mu}_n(t) \simeq \exp\left(n\left(-\frac{t^2}{2n} + O\left(\frac{|t|^{2+\alpha}}{n^{1+\frac{\alpha}{2}}}\right)\right)\right)$$
$$\simeq \exp\left(-\frac{t^2}{2}\right) \exp\left(n O\left(\frac{|t|^{2+\alpha}}{n^{1+\frac{\alpha}{2}}}\right)\right).$$

Fix $|t| \leq n^{\frac{\alpha}{2(\alpha+2)}}$. Then we have

$$\exp\left(n\,O\left(\frac{|t|^{2+\alpha}}{n^{1+\frac{\alpha}{2}}}\right)\right) = \exp\left(O\left(\frac{|t|^{2+\alpha}}{n^{\frac{\alpha}{2}}}\right)\right) \leq 1 + C\frac{|t|^{2+\alpha}}{n^{\frac{\alpha}{2}}},$$

where C > 0 is an absolute constant. Combining this with the previous bound gives,

$$\left|\widehat{\mu}_n(t) - \exp\left(-\frac{t^2}{2}\right)\right| \le O\left(\frac{|t|^{2+\alpha}}{n^{\frac{\alpha}{2}}}\right)$$

provided $|t| \leq n^{\frac{\alpha}{2(\alpha+2)}}$. Let $\theta = \frac{\alpha}{2(\alpha+2)}$, we can split the integral

$$\int \left| \widehat{\mu}_n(t) - e^{\frac{-t^2}{2}} \right| \frac{\sin ht}{ht^2} dt = (I_1 + I_2) := \int_{|t| < n^{\theta}} \left| \widehat{\mu}_n(t) - e^{\frac{-t^2}{2}} \right| \frac{\sin ht}{ht^2} dt + \int_{|t| > n^{\theta}} \left| \widehat{\mu}_n(t) - e^{\frac{-t^2}{2}} \right| \frac{\sin ht}{ht^2} dt.$$

We have the following bounds on these integrals,

$$I_{1} \leq \frac{C_{1}}{n^{\frac{\alpha}{2}}} \int_{-n^{\theta}}^{+n^{\theta}} \frac{|t|^{2+\alpha}}{ht^{2}} dt \leq \frac{C_{1}t^{\alpha+1}}{hn^{\frac{\alpha}{2}}} \leq \frac{C_{1}n^{\theta(\alpha+1)-\frac{\alpha}{2}}}{h} \leq \frac{C_{1}}{h} n^{-\frac{\alpha}{2(\alpha+2)}} = \frac{C_{1}}{hn^{\theta}}$$

$$I_{2} \leq \frac{1}{h} \int_{|t|>n^{\theta}} \frac{C_{1}}{t^{2}} dt \leq \frac{C_{1}}{hn^{\theta}},$$

where $C_1 > 0$ is an absolute constant. Hence, it follows from (9),

$$\sup_{a\in\mathbb{R}}\left|\mu\left([a,\infty)\right)-\lambda\left([a,\infty)\right)\right|\leq Ch+I_1+I_2\leq \frac{2C_1}{hn^{\theta}}+Ch.$$

Setting $h = n^{-\frac{\theta}{2}}$ gives,

$$\sup_{a\in\mathbb{R}}\left|\mu\left([a,\infty)\right)-\lambda\left([a,\infty)\right)\right|\leq O\left(\frac{1}{n^{\frac{\theta}{2}}}\right),$$

and we obtain the desired conclusion for $\delta = \frac{\theta}{2} = \frac{\alpha}{4(\alpha+2)}$.

Theorem 14 follows with the additional hypothesis that $\mathbb{E}|X|^{2+\alpha} < \infty$ for some $\alpha > 0$.

Remark (Application of Berry-Esseen's theorem). We can use the Berry-Esseen's theorem to get an approximaton,

$$\mathbb{P}\left(\frac{S_n}{\sqrt{n}} \ge a\right) \simeq (1 - \Phi(a)) + \epsilon$$

where Φ denotes the cumulative distribution function of $\mathcal{N}(0,1)$, and ϵ denotes the error term decaying at the rate $O\left(\frac{1}{n^{\delta}}\right)$.

References

[1] SR Srinivasa Varadhan. Probability theory. Number 7. American Mathematical Soc., 2001.