valores e vetores próprios

Nota 13.1. Ao longo desta aula, $\mathbb K$ representa $\mathbb R$ ou $\mathbb C$. Como já fizemos anteriormente,

identificamos uma matriz coluna $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ com o vetor $(x_1, x_2, ... x_n)$ de \mathbb{K}^n .

Exemplo 13.2. Sejam
$$A = \begin{bmatrix} 1 & -2 \\ \frac{1}{2} & 3 \end{bmatrix}$$
, $x = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ e $\lambda = 2$.

Então,

$$Ax = \begin{bmatrix} 1 & -2 \\ \frac{1}{2} & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \lambda x.$$

Definição 13.3. Sejam $n \in \mathbb{N}$ e A uma matriz quadrada de ordem n. Se um vetor **não** nulo $x \in \mathbb{K}^n$ e um número real ou complexo λ são tais que

$$Ax = \lambda x$$
,

então diz-se que x é vetor próprio de A associado ao valor próprio λ .

Observação 13.4.

① Um vetor próprio de A está associado a um único valor próprio de A. De facto, se $x \neq 0$ e

$$Ax = \lambda x$$
 e $Ax = \mu x$ então $\lambda x = \mu x \Leftrightarrow (\lambda - \mu) x = 0 \Rightarrow \lambda - \mu = 0 \Leftrightarrow \lambda = \mu$.

② A cada valor próprio de A está associada uma infinidade de vetores próprios de A. De facto, se $x \neq 0$ e α é um número real ou complexo não nulo, então,

$$Ax = \lambda x$$
 e $y = \alpha x \Rightarrow Ay = A(\alpha x) = \alpha(Ax) = \alpha(\lambda x) = \lambda(\alpha x) = \lambda y$,

pelo que $y \neq 0$ é um vetor próprio de A associado ao valor próprio λ .

valores próprios

Teorema 13.5. Sejam $n \in \mathbb{N}$ e A uma matriz quadrada de ordem n. Então, $\lambda \in \mathbb{K}$ é valor próprio de A se e só se det $(A - \lambda I_n) = 0$.

Demonstração. Seja $\lambda \in \mathbb{K}$. Então,

$$\lambda$$
 é valor próprio de $A \Leftrightarrow (\exists x \in \mathbb{K}^n) \quad x \neq 0 \quad \text{e} \quad Ax = \lambda x$

$$\Leftrightarrow$$
 $(\exists x \in \mathbb{K}^n)$ $x \neq 0$ e $(A - \lambda I_n)x = 0$

$$\Leftrightarrow$$
 o sistema $(A - \lambda I_n)x = 0$ tem pelo menos duas soluções

$$\Leftrightarrow$$
 $(A - \lambda I_n) x = 0$ é um sistema possível indeterminado

$$\Leftrightarrow$$
 $A - \lambda I_n$ é não invertível

$$\Leftrightarrow$$
 det $(A - \lambda I_n) = 0$.

Exemplo 13.6.

$$\det(A - \lambda I_3) = 0 \iff \begin{vmatrix} -3 - \lambda & 1 & -1 \\ -7 & 5 - \lambda & -1 \\ -6 & 6 & -2 - \lambda \end{vmatrix} = 0$$

$$\iff -(\lambda + 2)^2 (\lambda - 4) = 0$$

$$\iff \lambda = -2 \text{ ou } \lambda = 4,$$

temos que $\lambda=-2$ e $\lambda=4$ são os valores próprios de A.

2 Seja
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. Então,

$$\det (A - \lambda I_2) = \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = \lambda^2 + 1,$$

pelo que A não admite valores próprios reais.

Definição 13.7. Sejam $n \in \mathbb{N}$ e A uma matriz quadrada de ordem n. Chama-se equação característica de A à equação

$$\det\left(A-\lambda I_{n}\right)=0.$$

Chama-se polinómio característico de A ao polinómio em λ

$$p_A(\lambda) = \det(A - \lambda I_n)$$
.

Observação 13.8. Se A é uma matriz de ordem n ($n \in \mathbb{N}$), o polinómio característico é de ordem n. Os valores próprios são os zeros do polinómio característico, pelo que se A é uma matriz real, p_A tem **no máximo** n raízes e, se A é uma matriz complexa, p_A tem exactamente n raízes.

Definição 13.9. Sejam $n \in \mathbb{N}$, A uma matriz de ordem $n \in \lambda$ um valor próprio de A. Se λ ocorre k vezes como raíz do polinómio característico, diz-se que λ é um valor próprio de multiplicidade algébrica k. No caso particular de k=1, diz-se que λ é um valor próprio simples.

Exemplo 13.10. Seja $A = \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}$. Então, $\lambda = -2$ é um valor próprio de multiplicidade algébrica 2 e $\overset{\mathsf{L}}{\lambda} = 4$ é um valor próprio simples.

vetores próprios

Dado um valor próprio λ de uma matriz quadrada A de ordem n, determinar os vetores próprios de A associados a λ corresponde a resolver o sistema possível indeterminado

$$(A - \lambda I_n) x = 0$$
 e $x \neq 0$.

Exemplo 13.11. Seja $A = \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}$. Para determinar os vetores próprios associados a $\lambda = -2$ resolvemos o sistema

$$\begin{bmatrix} -3 - (-2) & 1 & -1 \\ -7 & 5 - (-2) & -1 \\ -6 & 6 & -2 - (-2) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad e \quad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Como

$$\begin{bmatrix} -1 & 1 & -1 \\ -7 & 7 & -1 \\ -6 & 6 & 0 \end{bmatrix} \xrightarrow[L_3 \to L_3 - 6L_1]{} \begin{bmatrix} -1 & 1 & -1 \\ 0 & 0 & 6 \\ 0 & 0 & 6 \end{bmatrix}$$
$$\xrightarrow[L_3 \to L_3 - L_2]{} \begin{bmatrix} -1 & 1 & -1 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix},$$

concluímos que $x_3 = 0$ e $x_1 = x_2$, com $x_2 \neq 0$.

Logo, $x = (x_2, x_2, 0)$, com $x_2 \neq 0$, é vetor próprio de A associado a $\lambda = -2$.