

UNIVERSITY OF GHANA

All Rights Reserved

FACULTY OF ENGINEERING SCIENCES

BSc. (ENG) SECOND SEMESTER EXAMINATIONS: 2012/2013

MTEN 202 Kinetics and Surface Phenomena (2 Credits)

Answer All Questions

Time Allowed: 2hours

Section A: 40MARKS

- 1. Why is the study of diffusion so important to the Material Scientist?
- 2. The values of the diffusion coefficients for the interdiffusion of carbon in both α-iron (BCC) and γ-iron (FCC) at 900°C are in Table 1. Explain the difference in values as observed.
- 3. (a)Sketch the schematic curves for volume free energy and surface free energy contributions to the total free energy change attending the formation of a spherical embryo/nucleus during solidification.
 - (b) Sketch the schematic plot of free energy versus embryo/nucleus radius, on which is shown the critical free energy change (ΔG^*) and the critical nucleus radius (r^*).
- 4. (a)Rewrite the expression for the total free energy change for nucleation for the case of a cubic nucleus of edge length a (instead of a sphere of radius r). Now differentiate this expression with respect to a and solve for both the critical cube edge length, a^* , and also ΔG^*
 - (b) Is ΔG^* greater for a cube or a sphere? Why?
- 5. Sketch the schematic free energy- versus-embryo/nucleus radius plot on which curves for both homogeneous and heterogeneous nucleation are presented. Show also the critical free energies and the critical radius.
- 6. As a Materials Scientist, why is it important to study surfaces and interfaces of materials? State five discontinuities between material phases
- 7. Discontinuity in a surface creates an interface. What are the consequences of discontinuities?
- 8. Name the two ways in which crystals grow and explain the modes of heat dissipation
- 9. Differentiate between homogenous and heterogeneous nucleation
- 10. Name five sources of nucleation sites

Lecturer: Dr. Johnson Efavi

Section B: 30MARKS

- 1. The outer surface of a steel gear is to be hardened by increasing its carbon content; the carbon is to be supplied from an external carbon-rich atmosphere that is maintained at an elevated temperature. A diffusion heat treatment at 873K for 100 min increases the carbon concentration to 0.75 wt% at a position 0.5 mm below the surface. Estimate the diffusion time required at 900°C (1173 K) to achieve this same concentration also at a 0.5-mm position. Assume that the surface carbon content is the same for both heat treatments, which is maintained constant. Use the diffusion data in figure 1 for C diffusion in α-Fe.
- 2. Carbon is allowed to diffuse through a steel plate 10 mm thick. The concentrations of carbon at the two faces are 0.85 and 0.40 kg C/cm³ Fe, which are maintained constant. If the pre-exponential and activation energy are 6.2x10⁻⁷m²/s and 80,000 J/mol, respectively, compute the temperature at which the diffusion flux is 6.3x10⁻¹⁰kg/m²-s.

Diffusing Species	Hosi Meial		Activation Energy Qd		Calculated Values	
		$D_0(m^2/s)$	kJ/mol	eV/atom	T(°C)	$D(m^2/s)$
Fe	α-Fe (BCC)	2.8×10^{-4}	251	2.60	500 900	3.0×10^{-2} 1.8×10^{-1}
Fe	γ-Fe (FCC)	5.0×10^{-5}	284	2.94	900 1100	1.1×10^{-15} 7.8×10^{-16}
С	a-Fe	6.2×10^{-7}	80	0.83	500 900	2.4×10^{-12} 1.7×10^{-10}
С	γ-Fe	2.3×10^{-3}	148	1.53	900 1100	5.9×10^{-12} 5.3×10^{-11}
Cu	Cu	7.8×10^{-5}	211	2.19	500	4.2×10^{-19}
Zn	Cu	2.4×10^{-5}	189	1.96	500	4.0×10^{-18}
Al	Al	2.3×10^{-4}	144	1.49	500	4.2×10^{-14}
Cu	Αl	6.5×10^{-5}	136	1.41	500	4.1×10^{-14}
Mg	Al	1.2×10^{-4}	131	1.35	500	1.9×10^{-13}
Cu	Ni	2.7×10^{-5}	256	2.65	500	1.3×10^{-22}

Table 1: Some Diffusing Tabulation Data for some Species

