Decision Trees

Introduction

- We now discuss tree-based methods.
- Our main goal is to predict a target variable based on several input variables.
- Decision trees can be applied to both regression and classification problems.

Introduction

- Thus there are of two main types:
 - 1. Classification tress used when the predicted outcome is a categorical variable.
 - 2. Regression tress used when the predicted outcome is a quantitative variable.
- The term Classification And Regression Tree (CART) analysis is a popular umbrella term used to refer to both of the above methods.

Regression Tree

Dataset: Baseball Players' Salaries

- Major League Baseball Data for the two seasons.
- A data frame with 322 observations of major league players on 20 variables.
- Goal: To predict Salary based on a number of predictors, such as various performance indicators, number of years, etc.

Dataset: Baseball Players' Salaries

- For the time being, we will consider following three variables
 - 1. Salary (Thousands of dollars)
 - 2. Years (Number of years he has played in the major leagues)
 - 3. Hits (Number of hits he made in the previous year)
- Goal: To predict Salary based on Years and Hits.
- In order to reduce the skewness, we first log-transform Salary so that it has more of a typical bell-shape.

Baseball Players' Salaries

Baseball Players' Salaries

 The predictor space is segmented into three regions:

$$R_1 = \{X | Years < 4.5\},\$$

 $R_2 = \{X | Years \ge 4.5, Hits < 117.55\},\$
 $R_3 = \{X | Years \ge 4.5, Hits \ge 117.55\}.$

The predicted Salary for these three groups are

$$$1,000 \times e^{5.107} = $165,174$$

 $$1,000 \times e^{5.998} = $402,834$
 $$1,000 \times e^{6.740} = $845,346,$

respectively.

Baseball Players' Salaries: Another Representation

- Consider two predictors X_1 and X_2 .
- The predictor space is segmented into five distinct regions.
- Depending upon which region our observation comes from, we would make one of five possible predictions for Y.
- We typically use the mean of the training observations belonging to a particular region as the predicted value for the region.

Typically we create the partitions by iteratively splitting one of the Xvariables into two regions. 🔀

 $oldsymbol{X}_1$

1. First split on $X_1 = t_1$.

- 1. First split on $X_1 = t_1$
- 2. If $X_1 \le t_1$, split on $X_2 = t_2$.

- 1. First split on $X_1 = t_1$
- 2. If $X_1 \le t_1$, split on $X_2 = t_2$.
- 3. If $X_1 > t_1$, split on $X_1 = t_3$.

- 1. First split on $X_1 = t_1$
- 2. If $X_1 \le t_1$, split on $X_2 = t_2$.
- 3. If $X_1 > t_1$, split on $X_1 = t_3$.
- 4. If $X_1 > t_3$, split on $X_2 = t_4$.

- When we create partitions like this, we can always represent them using a treelike structure.
- This tree-like representation provides a very simple way to explain the model to a nonexpert!!!

Can this partition arise in a similar fashion?

Regression Tree: Two steps

- 1. Divide the predictor space, i.e., the set of possible values of the predictors, into J distinct and non-overlapping regions, namely R_1, R_2, \ldots, R_J .
- 2. For every observation that falls into the region R_j , we make the same predictions, which is simply the mean of the response values for the training observations in R_j .

Some Natural Questions about Step 1

- How do we construct the regions $R_1, R_2, ..., R_I$?
 - ✓ Though these regions could have any shape in theory, we choose to segment the predictor space into high-dimensional rectangles, or boxes.
 - √ This is mainly done for simplicity and for ease of interpretation.
- How should we decide where to split?
 - ✓ We take a *top-down, greedy* approach, that is known as recursive binary splitting.
 - ✓ The approach is top-down, because it begins at the top of the tree.
 - √ The approach is greedy because at each step of the tree-building process, the
 best split is made at that particular step, rather than looking ahead.

Where to split?

- We consider splitting into two regions, $X_j \le s$ and $X_j > s$ for all possible values of s and j = 1,2.
- We then choose the s and j that $\overset{\checkmark}{\bowtie}$ results in the lowest MSE on the training data.

Where to split?

- Here the optimal split was on X_1 at point t_1 .
- We now repeat the process looking for the next best split except that we must also consider whether to split the first region or the second region up.
- Again the criteria is smallest MSE.

Where to split?

- The optimal split was the left region on X_2 at point t_2 .
- This process continues until our regions have too few observations to continue e.g. all regions have 5 or fewer points.

Baseball Players' Salaries

- We first remove all the rows that have missing values in any variable.
- This reduces the number of observations to 263.
- We then randomly split the observations into two parts- the training set containing 132 observations and the test set containing 131 observations.
- We will first build a tree based on the training data set.

Baseball Players' Salaries

Tree Pruning

- A large tree (i.e., one with many terminal nodes) may tend to over-fit the training data.
- It may lead to poor test set performance.
- A smaller tree with fewer splits may be easy to interpret.
- Generally, we can improve accuracy by "pruning" the tree i.e. cutting off some of the terminal nodes.
- How do we know how far back to prune the tree?
- We use six-fold cross validation to see which tree has the lowest error rate.

Cross-Validation

Pruned Tree

Test Error

