Analyse 1: convexité et fonction convexe

Joseph Salmon

Septembre 2014

Ensembles convexes

Définition : ensemble convexe

Un ensemble $C \subset \mathbb{R}^d$ est dit **convexe** s'il vérifie la propriété :

$$\forall x_0, x_1 \in C, \forall \alpha \in [0, 1], \quad x_\alpha = \alpha x_1 + (1 - \alpha) x_0 \in C$$

Interprétation : le segment joignant deux points de C est lui même inclus dans C. Pour plus détails : Boyd and Vandenberghe (2004)

Exemples d'ensembles convexes

- ▶ une droite
- un plan
- ▶ un hyperplan
- un carré, une boule, un cube, un tétraèdre, etc.

Exemples d'ensembles convexes

- une droite
- un plan
- ▶ un hyperplan
- un carré, une boule, un cube, un tétraèdre, etc.

Fonction convexe

Définition: fonction convexe

$$f: \mathbb{R}^d \to \mathbb{R}$$
 est **convexe** si elle vérifie $\forall x_0, x_1 \in \mathbb{R}^d, \forall \alpha \in [0, 1], f(\underbrace{\alpha x_1 + (1 - \alpha)(x_0)}_{x}) \leq \alpha f(x_1) + (1 - \alpha)f(x_0)$

<u>Interprétation</u> : le segment joignant deux points de le courbe est au dessus de la courbe

Fonction strictement convexe

Définition: strictement fonction convexe

$$f: \mathbb{R}^d \to \mathbb{R}$$
 est **strictement convexe** si elle vérifie pour tous $x_0 \neq x_1 \in \mathbb{R}^d, \forall \alpha \in]0,1[,f(\underbrace{\alpha x_1 + (1-\alpha)(x_0)}_{x_\alpha}) < \alpha f(x_1) + (1-\alpha)f(x_0)$

<u>Interprétation</u> : le segment joignant deux points de le courbe est strictement au dessus de la courbe

Exemples de fonctions convexes

- une fonction constante : $x \mapsto c \quad (c \in \mathbb{R})$
- une fonction affine : $x \mapsto \langle a, x \rangle + c \quad (a \in \mathbb{R}^n, c \in \mathbb{R})$
- $\alpha f + (1 \alpha)g$ pour f, g convexes et $\alpha \in [0, 1]$
- \blacktriangleright λf pour f convexe et $\lambda \in \mathbb{R}^+$ (ATTENTION au signe +)

Exemples de fonctions convexes

- une fonction constante : $x \mapsto c \quad (c \in \mathbb{R})$
- une fonction affine : $x \mapsto \langle a, x \rangle + c \quad (a \in \mathbb{R}^n, c \in \mathbb{R})$
- $\alpha f + (1 \alpha)g$ pour f, g convexes et $\alpha \in [0, 1]$
- \blacktriangleright λf pour f convexe et $\lambda \in \mathbb{R}^+$ (ATTENTION au signe +)

Convexité de l'épigraphe

Une fonction est convexe si "la partie au dessus" de la fonction est convexe *i.e.*, son **épigraphe** $C = \{(x,y) \in \mathbb{R}^2 : f(x) \leq y\}$

Rem: une fonction est **concave** quand "la partie en dessous" de la fonction est convexe (cela revient à dire que -f est convexe)

Inégalité de convexité

Définition : combinaison convexe / moyenne pondérée

On appelle combinaison convexe (ou moyenne pondérée) des points $x_1,\ldots,x_n\in\mathbb{R}^d$ tout point qui s'écrit $\sum_{i=1}^n\alpha_ix_i$ pour des α_i satisfaisant $\forall i=1,\ldots,n,\quad \alpha_i\geq 0$ et $\sum_{i=1}^n\alpha_i=1$

Théorème : inégalité de Jensen

Si $f: \mathbb{R}^d \to \mathbb{R}$ est convexe alors pour tous points $x_1, \ldots, x_n \in \mathbb{R}^d$ et tous $\alpha_1, \ldots, \alpha_n$ tel que $\forall i = 1, \ldots, n$, $\alpha_i \geq 0$ et $\sum_{i=1}^n \alpha_i = 1$

$$f(\sum_{i=1}^{n} \alpha_i x_i) \le \sum_{i=1}^{n} \alpha_i f(x_i)$$

<u>Interprétation</u> : l'image par une fonction convexe d'une moyenne pondérée est plus petite que la moyenne pondérée des images

Inégalité de convexité II

Théorème : comparaison entre fonction et tangente

Si $f:\mathbb{R}^d\to\mathbb{R}$ est convexe alors pour tous points $x,x^*\in\mathbb{R}^d$ on a

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle$$

<u>Interprétation</u>: Une fonction convexe et différentiable se situe au dessus de n'importe laquelle de ses tangentes

Fonctions convexes réelles

Théorème : croissance de la dérivée

Si $f:\mathbb{R} \to \mathbb{R}$ est dérivable alors on a l'équivalence :

f convexe $\Leftrightarrow f'$ croissante

Théorème : croissance de la dérivée (bis)

Si $f:\mathbb{R} \to \mathbb{R}$ est dérivable deux fois, alors on a l'équivalence :

$$f$$
 convexe $\Leftrightarrow f'' \geq 0$

Exemples d'application :

- $ightharpoonup x\mapsto x^2$ ou plus généralement $x\mapsto x^{2n}$ (pour $n\in\mathbb{N}$)
- $x \mapsto \exp(x)$
- $x \mapsto -\log(x)$ est convexe sur \mathbb{R}^+

Fonctions convexes multi-dimensionnelles

Corollaire : croissance de la dérivée revisitée

Si $f: \mathbb{R}^d \to \mathbb{R}$ est différentiable deux fois, alors on a l'équivalence :

f convexe $\Leftrightarrow \nabla^2 f$ est semi-défini positive

Exemple d'application : $f: x \mapsto x^{\top}Ax$ (avec A symétrique) est convexe si et seulement si A est semi-défini positive Rem: Pour d=2 une fonction convexe ressemble localement à

Hessienne semi-définie positive Hessienne définie positive

Impossible: non convexe

Références I

► S. Boyd and L. Vandenberghe.

Convex optimization.

Cambridge University Press, Cambridge, 2004.

http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf.