第2章 形式语言基础

王鑫 wangx AT tju.edu.cn

天津大学 智能与计算学部

Colorless green ideas sleep furiously.

— Noam Chomsky

内容提要

- 1 问题的提出
- ② 形式文法与形式语言
- ③ 乔姆斯基分类

内容提要

- ① 问题的提出
- ② 形式文法与形式语言
- 3 乔姆斯基分类

例 (类 Pascal 语言的语句)

```
<语句>::= <条件语句> | <当语句> | <复合语句> | <赋值语句>
<条件语句>::= if <布尔表达式> then <语句> else <语句>
<当语句> ::= while <布尔表达式> do <语句>
<复合语句> ::= begin <语句表> end
<语句表>::= <语句> | <语句>; <语句表>
<赋值语句>::= <变量>:= <算术表达式>
<布尔表达式>::= <算术表达式> <关系运算符> <算术表达式>
<关系运算符>::= < | > | <= | >= | = | !=
<算术表达式>::= <常量> | <变量> |
             (〈算术表达式〉〈算术运算符〉〈算术表达式〉)
<算数运算符>::=+|-|*|/
<常量>::=0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<变量>::= a | b | c | d | e | f | g | h | i | g | k | l | m |
        n | o | p | q | r | s | t | u | v | w | x | y | z
```

BNF: 巴科斯-瑙尔范式

巴科斯-瑙尔范式 (Backus-Naur Form)

- <语句> 一种语法成分,需要定义
- ::= "就是"
- | "或者"

Peter Naur

递归定义

- <语句>是<语句表>
- 在<语句表>之前加上<语句>;, 仍是<语句表>
- 除此之外, <语句表>不再包含其他形式

while $x \le 5$ do x := (x + 2)

while $x \le 5$ do x := (x + 2)

举例:简单英语句子的语法规则

例

- <Sentence $> \rightarrow <$ Noun phrase> <Verb phrase>
- <Noun phrase $> \rightarrow <$ Article> <Noun>
- <Article> \rightarrow the | a
- <Noun $> \rightarrow$ apple | cat | man
- <Verb>+<Noun phrase>|<Verb>
- <Verb $> \rightarrow$ eats | sings | runs

举例:简单英语句子的语法规则

例

- <Sentence> → <Noun phrase><Verb phrase>
- <Noun phrase $> \rightarrow <$ Article> <Noun>
- $\langle Article \rangle \rightarrow the \mid a$
- <Noun $> \rightarrow$ apple | cat | man
- <Verb>+<Noun phrase>|<Verb>
- <Verb $> \rightarrow$ eats | sings | runs

内容提要

- 问题的提出
- ② 形式文法与形式语言
- 3 乔姆斯基分类

文法

定义

-个**文法**G 是一个四元组

$$G = (V, T, P, S)$$

其中

- V 是 变元的有限集。
- ② T 是終结符的有限集。
- ② P 是产生式的有限集,其中每个产生式都是 $\alpha \to \beta$ 的形式, $\alpha \in (V \cup T)^+$,且至少有一个 V 中的符号, $\beta \in (V \cup T)^*$ 。 α 称为产生式的<mark>左部</mark>, β 称为产生式的<mark>右部</mark>。
- **◎** $S \in V$,称为文法 G 的<mark>开始符号</mark>。

约定

- 变元: 大写拉丁字母 *A*, *B*, *C*, *D*, *E* 和 *S*, *S* 开始符号(除非另作说明)。
- ❷ 终结符: 小写拉丁字母 a, b, c, d, e, 数字。
- **③ 终结符串**:小写拉丁字母 u, v, w, x, y, z等。
- **①** 变元和终结符共同组成的串: 小写希腊字母 α , β , γ 等。

约定

- 变元: 大写拉丁字母 *A*, *B*, *C*, *D*, *E* 和 *S*, *S* 开始符号(除非另作说明)。
- ❷ 终结符: 小写拉丁字母 a, b, c, d, e, 数字。
- **③ 终结符串**:小写拉丁字母 u, v, w, x, y, z等。
- **①** 变元和终结符共同组成的串: 小写希腊字母 α , β , γ 等。

约定

$$\alpha \to \beta_1, \quad \alpha \to \beta_2, \quad \cdots, \quad \alpha \to \beta_n$$

缩写为: $\alpha \to \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$

写一个文法, 只写出产生式集合便可

例

$$S \rightarrow 0A1 \mid 10$$

$$0A \rightarrow 00A1$$

$$A \rightarrow \varepsilon$$

推导

定义(直接推导)

给定文法 G = (V, T, P, S),定义两个字符串之间的关系 \Rightarrow : 若 $\alpha = \alpha_1 \alpha_2 \alpha_3$, $\gamma = \alpha_1 \beta \alpha_3$,并且 $\alpha_2 \to \beta$ 是 P 中的一条产生式,则有 $\alpha \Rightarrow \gamma$,此时称由 α **直接推导**出 γ

推导

定义(直接推导)

给定文法 G = (V, T, P, S),定义两个字符串之间的关系 \Rightarrow : 若 $\alpha = \alpha_1 \alpha_2 \alpha_3$, $\gamma = \alpha_1 \beta \alpha_3$,并且 $\alpha_2 \to \beta$ 是 P 中的一条产生式,则有 $\alpha \Rightarrow \gamma$,此时称由 α <mark>直接推导</mark>出 γ

定义(推导)

⇒ 是 $(V \cup T)^*$ 上的二元关系。根据关系闭包的定义,可将 ⇒ 扩充为 $\stackrel{*}{\Rightarrow}$, $\alpha \stackrel{*}{\Rightarrow} \gamma$ 称为由 α **推导**出 γ 。

推导

定义 (直接推导)

给定文法 G = (V, T, P, S),定义两个字符串之间的关系 \Rightarrow : 若 $\alpha = \alpha_1 \alpha_2 \alpha_3$, $\gamma = \alpha_1 \beta \alpha_3$,并且 $\alpha_2 \to \beta$ 是 P 中的一条产生式,则有 $\alpha \Rightarrow \gamma$,此时称由 α **直接推导**出 γ

定义(推导)

⇒ 是 $(V \cup T)^*$ 上的二元关系。根据关系闭包的定义,可将 ⇒ 扩充为 $\stackrel{\rightarrow}{\Rightarrow}$, $\alpha \stackrel{\rightarrow}{\Rightarrow} \gamma$ 称为由 α **推导**出 γ 。

定义(句型、句子)

若有 $S \stackrel{*}{\Rightarrow} \gamma$,则称 γ 为<mark>句型</mark>,当 $\gamma \in T^*$ 时,称 γ 为<mark>句子</mark>。

例

文法

例

$$S \to 0A1 \mid 10$$

$$0A \to 00A1$$

$$A \to \varepsilon$$

有推导

例

$$S \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000111$$

 $S \stackrel{*}{\Rightarrow} 000111$

其中哪些是句型?哪些是句子?

归约

定义(归约)

如果 $\alpha \Rightarrow \gamma$ 是由 α 到 γ 的推导,则反过来称 γ <mark>归约</mark>到 α ,记作 $\gamma \leftarrow \alpha$

语言

定义(语言)

文法 G = (V, T, P, S) 所产生的<mark>语言</mark>记作 L(G),定义为:

$$L(G) = \{ w \mid S \stackrel{*}{\Rightarrow} w \land w \in T^* \}$$

文法 G 产生的语言 L(G),就是由 G 中开始符号 S 推导出来的全体终结符串的集合,即<mark>句子的集合</mark>。

例

给定文法 G,它有两个产生式:

$$S \rightarrow aSb$$

$$S \rightarrow ab$$

求该文法产生的语言 L(G)

例

给定文法 G,它有两个产生式:

$$S \rightarrow aSb$$

$$S \rightarrow ab$$

求该文法产生的语言 L(G)

$$L(G) = \{a^n b^n \mid n \geqslant 1\}$$

例

给定文法 G, 它的产生式为:

$$S \rightarrow aB \mid bA$$
$$A \rightarrow a \mid bAA \mid aS$$

$$B \rightarrow b \mid aBB \mid bS$$

求该文法产生的语言 L(G)

例

给定文法 G, 它的产生式为:

$$S
ightarrow aB \mid bA$$
 $A
ightarrow a \mid bAA \mid aS$ $B
ightarrow b \mid aBB \mid bS$ 求该文法产生的语言 $L(G)$

L(G) 是由个数相等的 a 和 b (次序不限) 组成的所有串的集合。

证明: 板书

例

给定文法 G, 它的产生式为:

$$S
ightarrow aB \mid bA$$
 $A
ightarrow a \mid bAA \mid aS$ $B
ightarrow b \mid aBB \mid bS$ 求该文法产生的语言 $L(G)$

L(G) 是由个数相等的 a 和 b (次序不限) 组成的所有串的集合。

证明: 板书

为了证明最终的结论,我们要证明以下三个互相关联的命题:

- $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

为了证明最终的结论,我们要证明以下三个互相关联的命题:

- ① $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

Proof.

用归纳法证明,对 |w| 进行归纳。 归纳基础:

为了证明最终的结论,我们要证明以下三个互相关联的命题:

- ① $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

Proof.

用归纳法证明,对 |w| 进行归纳。

归纳基础:

当 |w|=1 时,

对于命题 (1),一方面,根据产生式,不可能有 $S \stackrel{*}{\Rightarrow} w$ 另一方面,w 中不可能包含相等个数的 a 和 b

即"当且仅当"的两个方面条件都是假的,故命题(1)成立。

为了证明最终的结论,我们要证明以下三个互相关联的命题:

- ① $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

Proof.

用归纳法证明,对 |w| 进行归纳。

归纳基础:

当 |w|=1 时,

对于命题 (1), 一方面,根据产生式,不可能有 $S \stackrel{*}{\Rightarrow} w$

另一方面,w中不可能包含相等个数的 a 和 b

即"当且仅当"的两个方面条件都是假的,故命题(1)成立。为什么?

为了证明最终的结论,我们要证明以下三个互相关联的命题:

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w \to 1$ 且仅当 w + a 的个数比 b 的个数多 1
- **3** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

Proof.

用归纳法证明,对 |w| 进行归纳。 归纳基础: 当 |w| = 1 时,

对于命题 (1), 一方面, 根据产生式, 不可能有 $S \stackrel{*}{\Rightarrow} w$ 另一方面,w中不可能包含相等个数的a和b

即"当且仅当"的两个方面条件都是假的,故命题(1)成立。为什么?

对于命题 (2)(3), 只能有 $A \Rightarrow a$ 和 $B \Rightarrow b$, 用其他产生式都将推导出长 度大于 1 的串, 故命题 (2)(3) 成立。

September 20, 2024

- $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。 归纳步骤:

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

- **⑤** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题 (1)

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题(1)

"仅当":" $S \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w 中包含相等个数的 a 和 b"

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题(1)

"仅当":" $S \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w 中包含相等个数的 a 和 b"

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题 (1)

"仅当": " $S \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w 中包含相等个数的 a 和 b"

由 $S \stackrel{*}{\Rightarrow} w$, 第 1 步推导必然是 $S \Rightarrow aB$ 或 $S \Rightarrow bA$

• 若第 1 步推导是 $S \Rightarrow aB$; 必然有 $w = aw_1$

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题(1)

"仅当": " $S \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w 中包含相等个数的 a 和 b"

由 $S \stackrel{*}{\Rightarrow} w$, 第 1 步推导必然是 $S \Rightarrow aB$ 或 $S \Rightarrow bA$

• 若第 1 步推导是 $S \Rightarrow aB$; 必然有 $w = aw_1$ 且 $B \stackrel{*}{\Rightarrow} w_1$;

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题 (1)

"仅当": " $S \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w 中包含相等个数的 a 和 b"

由 $S \stackrel{*}{\Rightarrow} w$, 第 1 步推导必然是 $S \Rightarrow aB$ 或 $S \Rightarrow bA$

• 若第 1 步推导是 $S \Rightarrow aB$; 必然有 $w = aw_1$ 且 $B \stackrel{*}{\Rightarrow} w_1$; 因为 $|w_1| = k - 1$, 根据归纳假设(命题 (3)), w_1 中 b 的个数比 a 的个数多 1,

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题 (1)

"仅当": " $S \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w 中包含相等个数的 a 和 b"

- 若第 1 步推导是 S ⇒ aB; 必然有 w = aw₁ 且 B * w₁;
 因为 |w₁| = k − 1, 根据归纳假设(命题(3)), w₁ 中 b 的个数比 a 的个数多 1, 因此, w 中包含相等个数的 a 和 b
- 若第 1 步推导是 $S \Rightarrow bA$; 必然有 $w = bw_1$

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题 (1)

"仅当":" $S \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w 中包含相等个数的 a 和 b"

- 若第 1 步推导是 S ⇒ aB; 必然有 w = aw₁ 且 B * w₁;
 因为 |w₁| = k 1, 根据归纳假设(命题(3)), w₁ 中 b 的个数比 a 的个数多 1, 因此, w 中包含相等个数的 a 和 b
- 若第 1 步推导是 $S \Rightarrow bA$; 必然有 $w = bw_1$ 且 $A \stackrel{*}{\Rightarrow} w_1$;

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题 (1)

"仅当":" $S \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w 中包含相等个数的 a 和 b"

- 若第 1 步推导是 S ⇒ aB; 必然有 w = aw₁ 且 B * w₁;
 因为 |w₁| = k 1, 根据归纳假设(命题(3)), w₁ 中 b 的个数比 a 的个数多 1, 因此, w 中包含相等个数的 a 和 b
- 若第 1 步推导是 $S \Rightarrow bA$; 必然有 $w = bw_1$ 且 $A \stackrel{*}{\Rightarrow} w_1$; 因为 $|w_1| = k 1$, 根据归纳假设(命题 (2)), w_1 中 a 的个数比 b 的个数多 1,

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题(1)

"仅当":" $S \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w 中包含相等个数的 a 和 b"

- 若第 1 步推导是 S ⇒ aB; 必然有 w = aw₁ 且 B * w₁;
 因为 |w₁| = k − 1, 根据归纳假设 (命题 (3)), w₁ 中 b 的个数比 a 的个数多 1, 因此, w 中包含相等个数的 a 和 b
- 若第 1 步推导是 $S \Rightarrow bA$; 必然有 $w = bw_1$ 且 $A \stackrel{*}{\Rightarrow} w_1$; 因为 $|w_1| = k 1$,根据归纳假设(命题 (2)), w_1 中 a 的个数比 b 的个数多 1,因此,w 中包含相等个数的 a 和 b

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

- $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题 (1)

"当": "w 中包含相等个数的 a 和 b" \Longrightarrow " $S \stackrel{*}{\Rightarrow} w$ "

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

先证命题 (1)

"当":"w 中包含相等个数的 a 和 b" \Longrightarrow " $S \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况(|w| = k)

- $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

- "当":"w 中包含相等个数的 a 和 b" \Longrightarrow " $S \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况(|w| = k)
 - 若 w 的第 1 个符号是 a; 则 $w = aw_1$

- $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

- "当":"w 中包含相等个数的 a 和 b" \Longrightarrow " $S \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

- **◎** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

- "当":"w 中包含相等个数的 a 和 b" \Longrightarrow " $S \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况(|w| = k)
 - 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含 b 的个数比 a 的个数多 1,根据归纳假设(命题 (3)),有 $B \stackrel{*}{\Rightarrow} w_1$,

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时, 命题 (1)(2)(3) 也成立。

先证命题 (1)

"当": "w 中包含相等个数的 a 和 b" \Longrightarrow " $S \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

- 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含 b 的个数比 a 的个数多 1,根据归纳假设(命题 (3)),有 $B \stackrel{*}{\Rightarrow} w_1$,因此,有 $S \Rightarrow aB \stackrel{*}{\Rightarrow} aw_1 = w$,即 $S \stackrel{*}{\Rightarrow} w$
- 若 w 的第 1 个符号是 b; 则 $w = bw_1$

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

- "当":"w 中包含相等个数的 a 和 b" \Longrightarrow " $S \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况(|w| = k)
 - 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含 b 的个数比 a 的个数多 1,根据归纳假设(命题 (3)),有 $B \stackrel{*}{\Rightarrow} w_1$,因此,有 $S \Rightarrow aB \stackrel{*}{\Rightarrow} aw_1 = w$,即 $S \stackrel{*}{\Rightarrow} w$
 - $\stackrel{\cdot}{}$ $\stackrel{\cdot}{}$

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

- "当":"w 中包含相等个数的 a 和 b" \Longrightarrow " $S \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况(|w| = k)
 - 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含 b 的个数比 a 的个数多 1,根据归纳假设(命题(3)),有 $B \stackrel{*}{\Rightarrow} w_1$,因此,有 $S \Rightarrow aB \stackrel{*}{\Rightarrow} aw_1 = w$,即 $S \stackrel{*}{\Rightarrow} w$
 - 若 w 的第 1 个符号是 b; 则 $w = bw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含 a 的个数比 b 的个数多 1,根据归纳假设(命题 (2)),有 $A \stackrel{*}{\Rightarrow} w_1$,

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

- "当":"w 中包含相等个数的 a 和 b" \Longrightarrow " $S \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况(|w| = k)
 - \ddot{a} w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含 b 的个数比 a 的个数多 1,根据归纳假设(命题(3)),有 $B \stackrel{*}{\Rightarrow} w_1$,因此,有 $S \Rightarrow aB \stackrel{*}{\Rightarrow} aw_1 = w$,即 $S \stackrel{*}{\Rightarrow} w$
 - 若 w 的第 1 个符号是 b; 则 $w = bw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含 a 的个数比 b 的个数多 1,根据归纳假设(命题(2)),有 $A \stackrel{\Rightarrow}{\Rightarrow} w_1$,因此,有 $S \stackrel{\Rightarrow}{\Rightarrow} bA \stackrel{\Rightarrow}{\Rightarrow} bw_1 = w$,即 $S \stackrel{\Rightarrow}{\Rightarrow} w$

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时, 命题 (1)(2)(3) 也成立。

再证命题 (2)

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"仅当": " $A \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w + a 的个数比 b 的个数多 1"

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"仅当": " $A \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w + a 的个数比 b 的个数多 1" $\to A \stackrel{*}{\Rightarrow} w$,第 1 步推导必然是 $A \Rightarrow aS$ 或 $A \Rightarrow bAA$

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"仅当": " $A \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w + a 的个数比 b 的个数多 1"

由 $A \stackrel{*}{\Rightarrow} w$,第 1 步推导必然是 $A \Rightarrow aS$ 或 $A \Rightarrow bAA$

• 若第 1 步推导是 $A \Rightarrow aS$; 必然有 $w = aw_1$

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"仅当": " $A \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w + a 的个数比 b 的个数多 1"

由 $A \stackrel{*}{\Rightarrow} w$, 第 1 步推导必然是 $A \Rightarrow aS$ 或 $A \Rightarrow bAA$

• 若第 1 步推导是 $A \Rightarrow aS$; 必然有 $w = aw_1$ 且 $S \stackrel{*}{\Rightarrow} w_1$;

- ① $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"仅当": " $A \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w + a 的个数比 b 的个数多 1"

由 $A \stackrel{*}{\Rightarrow} w$, 第 1 步推导必然是 $A \Rightarrow aS$ 或 $A \Rightarrow bAA$

• 若第 1 步推导是 $A \Rightarrow aS$; 必然有 $w = aw_1$ 且 $S \stackrel{*}{\Rightarrow} w_1$; 因为 $|w_1| = k - 1$,根据归纳假设(命题(1)), w_1 中包含相等个数的 a 和 b,

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"仅当": " $A \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w + a 的个数比 b 的个数多 1"

- 若第 1 步推导是 $A \Rightarrow aS$; 必然有 $w = aw_1$ 且 $S \stackrel{*}{\Rightarrow} w_1$; 因为 $|w_1| = k 1$,根据归纳假设(命题 (1)), w_1 中包含相等个数的 a 和 b,因此,w 中 a 的个数比 b 的个数多 1
- 若第 1 步推导是 $A \Rightarrow bAA$; 必然有 $w = bw_1w_2$

- ① $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"仅当": " $A \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w + a 的个数比 b 的个数多 1"

- 若第 1 步推导是 $A \Rightarrow aS$; 必然有 $w = aw_1$ 且 $S \stackrel{*}{\Rightarrow} w_1$; 因为 $|w_1| = k 1$, 根据归纳假设(命题(1)), w_1 中包含相等个数的 a 和 b, 因此, w 中 a 的个数比 b 的个数多 1
- 若第 1 步推导是 $A \Rightarrow bAA$; 必然有 $w = bw_1w_2$ 且 $A \stackrel{*}{\Rightarrow} w_1$ 和 $A \stackrel{*}{\Rightarrow} w_2$;

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"仅当": " $A \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w + a 的个数比 b 的个数多 1"

- 若第 1 步推导是 $A \Rightarrow aS$; 必然有 $w = aw_1$ 且 $S \stackrel{*}{\Rightarrow} w_1$; 因为 $|w_1| = k 1$,根据归纳假设(命题 (1)), w_1 中包含相等个数的 a 和 b,因此,w 中 a 的个数比 b 的个数多 1
- 若第 1 步推导是 $A \Rightarrow bAA$; 必然有 $w = bw_1w_2$ 且 $A \stackrel{*}{\Rightarrow} w_1$ 和 $A \stackrel{*}{\Rightarrow} w_2$; 因为 $|w_1| < k-1$ 且 $|w_2| < k-1$,根据归纳假设(命题 (2)), w_1 和 w_2 中 a 的个数比 b 的个数多 1,

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"仅当": " $A \stackrel{*}{\Rightarrow} w$ " \Longrightarrow "w + a 的个数比 b 的个数多 1"

- 若第 1 步推导是 $A \Rightarrow aS$; 必然有 $w = aw_1$ 且 $S \stackrel{*}{\Rightarrow} w_1$; 因为 $|w_1| = k 1$,根据归纳假设(命题 (1)), w_1 中包含相等个数的 a 和 b,因此,w 中 a 的个数比 b 的个数多 1
- 若第 1 步推导是 $A \Rightarrow bAA$; 必然有 $w = bw_1w_2$ 且 $A \stackrel{*}{\Rightarrow} w_1$ 和 $A \stackrel{*}{\Rightarrow} w_2$; 因为 $|w_1| < k 1$ 且 $|w_2| < k 1$,根据归纳假设(命题 (2)), w_1 和 w_2 中 a 的个数比 b 的个数多 1,因此,w 中 a 的个数比 b 的个数多 1

- **⑤** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② *A* * *w* 当且仅当 *w* 中 *a* 的个数比 *b* 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w + a 的个数比 b 的个数多 1" \Longrightarrow " $A \stackrel{*}{\Rightarrow} w$ "

- **⑤** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w 中 a 的个数比 b 的个数多 1" \Longrightarrow " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

- **⑤** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w + a 的个数比 b 的个数多 1" \Longrightarrow " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

• 若 w 的第 1 个符号是 a; 则 $w = aw_1$

- **⑤** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w + a 的个数比 b 的个数多 1" \implies " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

- **⑤** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w + a 的个数比 b 的个数多 1" \Longrightarrow " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

• 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k - 1$; 因为 w_1 中包含相等个数的 a 和 b,根据归纳假设(命题 (1)),有 $S \stackrel{*}{\Rightarrow} w_1$,

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w + a 的个数比 b 的个数多 1" \Longrightarrow " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

- 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含相等个数的 a 和 b,根据归纳假设(命题(1)),有 $S \stackrel{*}{\Rightarrow} w_1$,因此,有 $A \Rightarrow aS \stackrel{*}{\Rightarrow} aw_1 = w$,即 $A \stackrel{*}{\Rightarrow} w$
- 若 w 的第 1 个符号是 b; 则 $w = bw_1$

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w + a 的个数比 b 的个数多 1" \implies " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

- 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含相等个数的 a 和 b,根据归纳假设(命题 (1)),有 $S \stackrel{*}{\Rightarrow} w_1$,因此,有 $A \Rightarrow aS \stackrel{*}{\Rightarrow} aw_1 = w$,即 $A \stackrel{*}{\Rightarrow} w$
- $\exists w$ 的第 1 个符号是 b; 则 $w = bw_1$ 且 $|w_1| = k 1$;

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w + a 的个数比 b 的个数多 1" \Longrightarrow " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

- 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含相等个数的 a 和 b,根据归纳假设(命题(1)),有 $S \stackrel{*}{\Rightarrow} w_1$,因此,有 $A \Rightarrow aS \stackrel{*}{\Rightarrow} aw_1 = w$,即 $A \stackrel{*}{\Rightarrow} w$
- 若 w 的第 1 个符号是 b; 则 $w = bw_1$ 且 $|w_1| = k 1$; 这时 w_1 中 a 的个数比 b 的个数多 2,

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设) 要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w + a 的个数比 b 的个数多 1" \Longrightarrow " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

- 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含相等个数的 a 和 b,根据归纳假设(命题 (1)),有 $S \stackrel{*}{\Rightarrow} w_1$,因此,有 $A \Rightarrow aS \stackrel{*}{\Rightarrow} aw_1 = w$,即 $A \stackrel{*}{\Rightarrow} w$

- $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

"当": "w + a 的个数比 b 的个数多 1" \Longrightarrow " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)

- 若 w 的第 1 个符号是 a; 则 $w = aw_1$ 且 $|w_1| = k 1$; 因为 w_1 中包含相等个数的 a 和 b,根据归纳假设(命题 (1)),有 $S \stackrel{*}{\Rightarrow} w_1$,因此,有 $A \Rightarrow aS \stackrel{*}{\Rightarrow} aw_1 = w$,即 $A \stackrel{*}{\Rightarrow} w$
- 若 w 的第 1 个符号是 b; 则 $w = bw_1$ 且 $|w_1| = k 1$; 这时 w_1 中 a 的个数比 b 的个数多 2,可将 w_1 分为两部分,即 $w_1 = w_{11}w_{12}$,使 w_{11} 和 w_{12} 中 a 的个数都比 b 的个数多 1 因为 $|w_{11}| < k 1$ 且 $|w_{12}| < k 1$,根据归纳假设(命题(2)),有 $A \stackrel{*}{\Rightarrow} w_{11}$ 和 $A \stackrel{*}{\Rightarrow} w_{12}$.

- **●** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- ③ $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (2)

- "当": "w + a 的个数比 b 的个数多 1" \Longrightarrow " $A \stackrel{*}{\Rightarrow} w$ " w 的第 1 个符号只有 a 或 b 两种情况 (|w| = k)
 - 若 w 的第 1 个符号是 a; 则 w = aw₁ 且 |w₁| = k − 1;
 - 因为 w_1 中包含相等个数的 a 和 b,根据归纳假设(命题 (1)),有 $S \stackrel{*}{\Rightarrow} w_1$,因此,有 $A \Rightarrow aS \stackrel{*}{\Rightarrow} aw_1 = w$,即 $A \stackrel{*}{\Rightarrow} w$
 - 若 w 的第 1 个符号是 b; 则 $w = bw_1$ 且 $|w_1| = k 1$; 这时 w_1 中 a 的个数比 b 的个数多 2,可将 w_1 分为两部分,即 $w_1 = w_{11}w_{12}$,使 w_{11} 和 w_{12} 中 a 的个数都比 b 的个数多 1 因为 $|w_{11}| < k 1$ 且 $|w_{12}| < k 1$,根据归纳假设(命题(2)),有 $A \stackrel{*}{\Rightarrow} w_{11}$ 和 $A \stackrel{*}{\Rightarrow} w_{12}$,因此,有 $A \Rightarrow bAA \stackrel{*}{\Rightarrow} bw_{11}w_{12} = bw_1 = w$,即 $S \stackrel{*}{\Rightarrow} w$

- $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k - 1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (3)

- **◎** $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对 |w| 进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (3)

与命题(2)的证明类似,留做作业

- $S \stackrel{*}{\Rightarrow} w$ 当且仅当 w 中包含相等个数的 a 和 b
- ② $A \stackrel{*}{\Rightarrow} w$ 当且仅当 w + a 的个数比 b 的个数多 1
- **③** $B \stackrel{*}{\Rightarrow} w$ 当且仅当 w + b 的个数比 a 的个数多 1

用归纳法证明,对|w|进行归纳。

归纳步骤:

假设当 $|w| \le k-1$ 时,命题 (1)(2)(3) 成立。(归纳假设)

要证当 |w| = k 时,命题 (1)(2)(3) 也成立。

再证命题 (3)

与命题 (2) **的证明类似**, **留做作业** 命题 (1)(2)(3) 成立。

例

给定语言 $L = \{a^n \mid n \ge 1\}$,构造产生它的文法。

例

给定语言 $L = \{a^n \mid n \ge 1\}$,构造产生它的文法。

$$S \rightarrow a$$

例

给定语言 $L = \{a^n \mid n \ge 1\}$,构造产生它的文法。

$$S \to a \\ S \to aS$$

例

给定语言 $L = \{a^n \mid n \ge 1\}$,构造产生它的文法。

$$\begin{array}{c} S \rightarrow \, a \\ S \rightarrow \, aS \end{array}$$

$$S \to a \\ S \to Sa$$

该例较为简单

例

给定语言 $L = \{ww^R \mid w \in \{a, b\}^+\}$,构造产生它的文法。

例

给定语言 $L = \{ww^R \mid w \in \{a, b\}^+\}$,构造产生它的文法。

- (1) $S \rightarrow aa$
- (2) $S \rightarrow bb$
- $(3) \ S \rightarrow aSa$
- $(4) \quad S \to bSb$

例

给定语言 $L = \{ww^R \mid w \in \{a, b\}^+\}$,构造产生它的文法。

- (1) $S \rightarrow aa$
- (2) $S \rightarrow bb$
- (3) $S \rightarrow aSa$
- (4) $S \rightarrow bSb$

$$S \Rightarrow aSa \Rightarrow aaaa$$

$$S \Rightarrow aSa \Rightarrow abba$$

$$S \Rightarrow bSb \Rightarrow baab$$

$$S \Rightarrow bSb \Rightarrow bbbb$$

更复杂

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

更复杂

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$, 构造产生它的文法。

这样可以吗?

$$S \to \, abc$$

$$S \rightarrow aSbc$$

推导

$$S \rightarrow abc$$

$$S \stackrel{*}{\Rightarrow} a^n (bc)^n$$

需要找出让 b 和 c 交换次序的方法?

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

如果有 $cb \rightarrow bc$,则问题就解决了。 可惜, $cb \rightarrow bc$ 不符合产生式的定义。<mark>为什么?</mark>

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

如果有 $cb \rightarrow bc$,则问题就解决了。 可惜, $cb \rightarrow bc$ 不符合产生式的定义。<mark>为什么?</mark>

考虑 $cB \rightarrow Bc$ 然后再设法将 B 换成 b

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$

看看 S 能推导出什么?

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$

看看 S 能推导出什么?

用产生式 (1)(2): $S \stackrel{*}{\Rightarrow} a^n (Bc)^n$

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$

看看 S 能推导出什么?

用产生式 (1)(2): $S \stackrel{*}{\Rightarrow} a^n (Bc)^n$

用产生式 (3) 若干次,将所有的 B 移到 c 之前: $S \stackrel{*}{\Rightarrow} a^n B^n c^n$

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$

看看 S 能推导出什么?

用产生式 (1)(2): $S \stackrel{*}{\Rightarrow} a^n (Bc)^n$

用产生式 (3) 若干次, 将所有的 B 移到 c 之前: $S \stackrel{*}{\Rightarrow} a^n B^n c^n$

最后考虑如何将 B 换成 b?

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$

看看 S 能推导出什么?

用产生式 (1)(2): $S \stackrel{*}{\Rightarrow} a^n (Bc)^n$

用产生式 (3) 若干次,将所有的 B 移到 c 之前: $S \stackrel{*}{\Rightarrow} a^n B^n c^n$

最后考虑如何将 B 换成 b?

加一个产生式 $B \rightarrow b$ 可以吗?

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$

否

- 因为在推导过程中,不能限制何时才能使用 $B \rightarrow b$
- 如果在 B 还没有换到 c 之前就用了 $B \rightarrow b$,则结果仍然有 c 在 b 前的情况,且以后无法再换过去了。

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$

否

- 因为在推导过程中,不能限制何时才能使用 $B \to b$
- 如果在 B 还没有换到 c 之前就用了 $B \rightarrow b$,则结果仍然有 c 在 b 前的情况,且以后无法再换过去了。

例如, $S \Rightarrow aSBc \Rightarrow aaBcBc \stackrel{*}{\Rightarrow} aabcbc$

该文法产生了比要求更多的东西。 思考如何避免这一问题?

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$
- 要限制 B 在 c 后面就被换成 b
- 必须保证当 B 前面是 a 时才开始进行 B 到 b 的替换

因此,需要产生式:

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$
- 要限制 B 在 c 后面就被换成 b
- 必须保证当 B 前面是 a 时才开始进行 B 到 b 的替换

因此,需要产生式:

(4) $aB \rightarrow ab$

为了将所有 B 都换成 b, 还要有产生式:

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$
- 要限制 B 在 c 后面就被换成 b
- 必须保证当 B 前面是 a 时才开始进行 B 到 b 的替换

因此,需要产生式:

(4) $aB \rightarrow ab$

为了将所有 B 都换成 b, 还要有产生式:

(5) $bB \rightarrow bb$

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$, 构造产生它的文法。

产生该语言的完整的文法 G 是:

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$
- (4) $aB \rightarrow ab$
- (5) $bB \rightarrow bb$

证明: 板书

例

给定语言 $L = \{a^n b^n c^n \mid n \ge 1\}$,构造产生它的文法。

产生该语言的完整的文法 G 是:

- (1) $S \rightarrow aBc$
- (2) $S \rightarrow aSBc$
- (3) $cB \rightarrow Bc$
- (4) $aB \rightarrow ab$
- (5) $bB \rightarrow bb$

Proof.

$$L(G) = \{a^n b^n c^n \mid n \ge 1\}$$

文法等价

定义(文法等价)

对于两个不同的文法 $G_1 = (V_1, T_1, P_1, S_1), G_2 = (V_2, T_2, P_2, S_2),$ 如果 $L(G_1) = L(G_2),$ 则称文法 G_1 与 G_2 等价。

举例: 文法等价

例

构造产生全部十进制整数(每个整数之前可有若干个0)的文法。

举例: 文法等价

例

构造产生全部十进制整数(每个整数之前可有若干个 0)的文法。

文法 G₁

$$\begin{array}{l} N \to D \mid DN \\ D \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \end{array}$$

举例: 文法等价

例

构造产生全部十进制整数(每个整数之前可有若干个0)的文法。

文法 G_1

$$\begin{array}{c|c} N \to D \mid DN \\ D \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \end{array}$$

文法 G_2

$$\begin{array}{l} N \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \\ N \to 0N \mid 1N \mid 2N \mid 3N \mid 4N \mid 5N \mid 6N \mid 7N \mid 8N \mid 9N \end{array}$$

内容提要

- 问题的提出
- ② 形式文法与形式语言
- ③ 乔姆斯基分类

乔姆斯基

(Speaking at a conference about humanity's prospects for survival in Amherst, MA, April 17, 2017) Noam Chomsky

Dec 7, 1928 (age 90)

语言学家、哲学家、认知科学家、政治评论家、社会活动家 MIT 语言学与哲学系教授 "现代语言学之父"

定义 (Chomsky hierarchy)

对于文法 G = (V, T, P, S), 按以下标准分为 4 类:

● 若 P 中的产生式按照文法定义中给出的形式而不加另外的限制,即每个产生式都是 $\alpha \to \beta$ 的形式,其中, $\alpha \in (V \cup T)^+$,且至少有一个 V 中的符号, $\beta \in (V \cup T)^*$,则称 G 为0 型文法(Type-0 Grammar)或无限制文法(Unrestricted Grammar),简记为 UG

定义 (Chomsky hierarchy)

对于文法 G = (V, T, P, S), 按以下标准分为 4 类:

② 若 P 中的每个产生式都具有如下形式: $\alpha A \beta \to \alpha \gamma \beta$ 其中, $A \in V$, $\alpha, \beta \in (V \cup T)^*, \gamma \in (V \cup T)^+$ 且产生式 $S \to \varepsilon$ 允许出现,只要 S 不出现在任何产生式的右部,则称 G 为1 型文法(Type-1 Grammar)或上下文有关文法(Context-Sensitive Grammar),简记为 CSG

定义 (Chomsky hierarchy)

对于文法 G = (V, T, P, S), 按以下标准分为 4 类:

● 若 P 中的每个产生式都具有如下形式: $A \to \beta$ 其中, $\beta \in (V \cup T)^*$, $A \in V$ 则称 G 为2 型文法 (Type-2 Grammar) 或上下文无关文法 (Context-Free Grammar),简记为 CFG

定义 (Chomsky hierarchy)

对于文法 G = (V, T, P, S), 按以下标准分为 4 类:

● 若 P 中的每个产生式都具有如下形式:

 $A \rightarrow a$

 $A \rightarrow aB$

其中, $a \in T \cup \{\varepsilon\}$, $A, B \in V$

则称 G 为3 型文法 (Type-3 Grammar) 或正则文法 (Regular

Grammar),

简记为 RG

乔姆斯基分类:语言

定义(语言分类)

- 由无限制文法产生的语言称为<mark>递归可枚举语言</mark>,简记为 REL (Recursively Enumerable Language)
- ❷ 由上下文有关文法产生的语言称为上下文有关语言,简记为 CSL (Context-Sensitive Language)
- 由上下文无关文法产生的语言称为上下文无关语言,简记为 CFL (Context-Free Language)
- 由**正则文法**产生的语言称为<mark>正则语言</mark>,简记为 RL(Regular Language)

显示 0 型文法的"威力", 迄今为止最复杂的例子

显示 0 型文法的"威力", 迄今为止最复杂的例子

例

- (1) $S \rightarrow A CaB$
- (2) $Ca \rightarrow aaC$
- (3) $CB \rightarrow DB$
- (4) $CB \rightarrow E$
- (5) $aD \rightarrow Da$
- (6) $AD \rightarrow AC$
- (7) $aE \rightarrow Ea$
- (8) $AE \rightarrow \varepsilon$

显示 0 型文法的"威力", 迄今为止最复杂的例子

例

- (1) $S \rightarrow A CaB$
- (2) $Ca \rightarrow aaC$
- (3) $CB \rightarrow DB$
- (4) $CB \rightarrow E$
- (5) $aD \rightarrow Da$
- (6) $AD \rightarrow AC$
- (7) $aE \rightarrow Ea$
- (8) $AE \rightarrow \varepsilon$

这是一个"真正的"0型文法。为什么?

例

- (1) $S \rightarrow A CaB$
- (2) $Ca \rightarrow aaC$
- (3) $CB \rightarrow DB$
- (4) $CB \rightarrow E$
- (5) $aD \rightarrow Da$
- (6) $AD \rightarrow AC$
- (7) $aE \rightarrow Ea$
- (8) $AE \rightarrow \varepsilon$

例

- (1) $S \to A CaB$
- (2) $Ca \rightarrow aaC$
- (3) $CB \rightarrow DB$
- (4) $CB \rightarrow E$
- (5) $aD \rightarrow Da$
- (6) $AD \rightarrow AC$
- (7) $aE \rightarrow Ea$
- (8) $AE \rightarrow \varepsilon$

要证明: $L(G) = \{a^{2^k} \mid k \geqslant 1\}$

要证明:
$$L(G) = \{a^{2^k} \mid k \ge 1\}$$

$$\{a^{2^k} \mid k \geqslant 1\} = \{aa, aaaa, aaaaaaaa, \cdots\}$$

- 该语言中包含的串都由 $2^k (k = 1, 2, 3, \cdots)$ 个 a 组成
- 产生它的文法必须有"计数"的功能
- 怎样才能做到这一点呢?

例

- (1) $S \rightarrow ACaB$ A 为左边界,B 为右边界,C 相当于"光标"
- (2) $Ca \rightarrow aaC$

当光标从左到右越过一个a时,就变成两个a

- :. C从左边界到右边界走一趟, a 个数增加一倍
- (3) $CB \rightarrow DB$
- (4) $CB \rightarrow E$
- $(5) \quad aD \to Da$
- (6) $AD \rightarrow AC$
- $(7) \quad aE \to Ea$
- (8) $AE \rightarrow \varepsilon$

例

- (1) $S \rightarrow ACaB$
- (2) $Ca \rightarrow aaC$

光标 C 走到右边界 B 时,两边界间 a 个数一定是 2^k

- 此时有两种选择
- $(3) CB \to DB$
- (4) $CB \rightarrow E$
- $(5) \quad aD \to Da$
- (6) $AD \rightarrow AC$
- (7) $aE \rightarrow Ea$
- (8) $AE \rightarrow \varepsilon$

例

- (1) $S \rightarrow ACaB$
- (2) $Ca \rightarrow aaC$

选择一: 就此结束。将边界之间所有 a 作为文法产生的句子

选择二:继续推导。使之产生更多的 a

- $(3) CB \to DB$
- (4) $CB \rightarrow E$
- $(5) \quad aD \to Da$
- (6) $AD \rightarrow AC$
- $(7) \quad aE \to Ea$
- (8) $AE \rightarrow \varepsilon$

例

- (1) $S \rightarrow ACaB$
- (2) $Ca \rightarrow aaC$

选择一: 就此结束。将边界之间所有 a 作为文法产生的句子

- (3) $CB \rightarrow DB$
- (4) $CB \rightarrow E$

将 CB 改为 E, 表示推导即将结束

- (5) $aD \rightarrow Da$
- (6) $AD \rightarrow AC$
- (7) $aE \rightarrow Ea$
- (8) $AE \rightarrow \varepsilon$
- (7)(8) 处理善后事宜 $S \stackrel{*}{\Rightarrow} Aaaaaa \cdots aaaE$, 其中 a 为 2^k 个

例

- (1) $S \rightarrow ACaB$
- (2) $Ca \rightarrow aaC$

选择二:继续推导。使之产生更多的 a

(3) $CB \rightarrow DB$

将 C 改为 D, D 由右向左走

- (4) $CB \rightarrow E$
- (5) $aD \rightarrow Da$

D 由右向左走,遇到 a 交换位置

(6) $AD \rightarrow AC$

直到遇到左边界 A,将 D 再改为 C,这就构成了一次循环

例

- (1) $S \rightarrow A CaB$
- (2) $Ca \rightarrow aaC$
- (3) $CB \rightarrow DB$
- (4) $CB \rightarrow E$
- (5) $aD \rightarrow Da$
- (6) $AD \rightarrow AC$
- (7) $aE \rightarrow Ea$
- (8) $AE \rightarrow \varepsilon$

例

- (1) $S \rightarrow A CaB$
- (2) $Ca \rightarrow aaC$
- (3) $CB \rightarrow DB$
- (4) $CB \rightarrow E$
- (5) $aD \rightarrow Da$
- (6) $AD \rightarrow AC$
- (7) $aE \rightarrow Ea$
- (8) $AE \rightarrow \varepsilon$

要证明: $L(G) = \{a^{2^k} \mid k \ge 1\}$

严格证明:对推导步数用归纳法

$$L(G) = \{a^{2^k} \mid k \geqslant 1\}$$

该语言不是 CFL。 也就是说,用上下文无关文法不能产生这个语言。 为什么?

$$L(G) = \{a^{2^k} \mid k \geqslant 1\}$$

该语言不是 CFL。 也就是说,用上下文无关文法不能产生这个语言。 为什么? 以后讲

$$L(G) = \{a^{2^k} \mid k \geqslant 1\}$$

该语言不是 CFL。

也就是说,用上下文无关文法不能产生这个语言。

为什么?

以后讲

既然2型文法不能产生它,1型文法如何呢?

$$L(G) = \{a^{2^k} \mid k \geqslant 1\}$$

该语言不是 CFL。

也就是说,用上下文无关文法不能产生这个语言。

为什么?

以后讲

既然2型文法不能产生它,1型文法如何呢?

答: 1型文法虽可以产生,但比前面的0型文法要复杂得多。

构造一个 1 型文法,使其能产生语言 $\{a^{2^k} \mid k \ge 1\}$

- (1) $S \rightarrow [A CaB]$
- (2) $[ACaB] \rightarrow [Aa][aCB]$ $[Ca]a \rightarrow aa[Ca]$ $[Ca][aB] \rightarrow aa[CaB]$ $[ACa]a \rightarrow [Aa]a[Ca]$ $[ACa][aB] \rightarrow [Aa]a[CaB]$ $[ACa][aB] \rightarrow [Aa]a[CaB]$ $[CaB] \rightarrow a[aCB]$
- $(3) \quad [aCB] \to [aDB]$
- (4) $[aCB] \rightarrow [aE]$

- (5) $a[Da] \rightarrow [Da]a$ $[aDB] \rightarrow [DaB]$ $[Aa][Da] \rightarrow [ADa]a$ $a[DaB] \rightarrow [Da][aB]$ $[Aa][DaB] \rightarrow [ADa][aB]$
- (6) $[ADa] \rightarrow [ACa]$
- $\begin{array}{cc} (7) & [aE] \rightarrow [Ea] \\ a[Ea] \rightarrow [Ea] \, a \end{array}$
- $(8) \quad [Aa][Ea] \to aa$

1型文法与2型文法

下面讨论

- 为什么 1 型文法叫上下文有关文法?
- 为什么 2 型文法叫上下文无关文法?

1型文法与2型文法

下面讨论

- 为什么 1 型文法叫上下文有关文法?
- 为什么 2 型文法叫上下文无关文法?

要回答这个问题, 先看 10 型文法的定义

给出文法 G 如下:

例

$$S \rightarrow 0A1 \mid 1A0$$
$$0A1 \rightarrow 0a1$$
$$1A0 \rightarrow 1b0$$

给出文法 G 如下:

例

$$S \rightarrow 0A1 \mid 1A0$$
$$0A1 \rightarrow 0a1$$
$$1A0 \rightarrow 1b0$$

根据定义, G 为 1 型文法 $L(G) = \{0a1, 1b0\}$

给出文法 G 如下:

例

$$S \rightarrow 0A1 \mid 1A0$$
$$0A1 \rightarrow 0a1$$
$$1A0 \rightarrow 1b0$$

根据定义, G 为 1 型文法 $L(G) = \{0a1, 1b0\}$

乍看: 不就是将变元 A 换成 a 和 b 吗?

给出文法 G 如下:

例

$$S \rightarrow 0A1 \mid 1A0$$
$$0A1 \rightarrow 0a1$$
$$1A0 \rightarrow 1b0$$

根据定义, G 为 1 型文法 $L(G) = \{0a1, 1b0\}$

乍看:不就是将变元 A 换成 a 和 b 吗? 为什么不直接写出产生式 $A \rightarrow a$ 和 $A \rightarrow b$ 呢?

文法 G':

例

$$S \to 0A1 \mid 1A0$$
$$A \to a$$

 $A \rightarrow b$

文法 G':

例

$$S \to 0A1 \mid 1A0$$

$$A \to a$$

$$A \to b$$

$$L(G') = \{0a1, 0b1, 1a0, 1b0\}$$

- G 是 2 型文法,上下文无关文法
- 变元 A 无论出现在什么地方,都可以独立地换成 a 或 b

给出文法 G 如下:

例

$$S \rightarrow 0A1 \mid 1A0$$
$$0A1 \rightarrow 0a1$$
$$1A0 \rightarrow 1b0$$

而 G 则不同

- A 只有在左邻为 0, 右邻为 1 的环境下, 才能换成 a
- A 只有在左邻为 1, 右邻为 0 的环境下, 才能换成 b

一个变元究竟能换成什么,是由它所处的语言环境决定的,这个语言环境就是"上下文"。

在 $\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$ 中 α_1, α_2 就是变元 A 的上下文 A 只有在这样的上下文中才能换成 β

在 $\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$ 中 α_1, α_2 就是变元 A 的上下文 A 只有在这样的上下文中才能换成 β

2 型文法中的变元则没有语言环境的限制 随时可以用它的产生式的右部替换 这就是"上下文无关"的文法了

本章总结

- 巴科斯-瑙尔范式
- 形式文法与形式语言
 - 文法
 - 推导
 - 句型、句子
 - 语言

本章总结

- 巴科斯-瑙尔范式
- 形式文法与形式语言
 - 文法
 - 推导
 - 句型、句子
 - 语言

• 乔姆斯基分类

- 0 型文法 短语结构文法
- 1 型文法 上下文有关文法
- 2 型文法 上下文无关文法
- 3 型文法 正则文法

