

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет»

«МИРЭА – Российский технологический университет» **РТУ МИР**Э **A**

1 1 y Will 9A	
Институт информационных технологий	
Кафедра вычислительной техники	

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №9

по дисциплине «Алгоритмические основы обработки данных»

Выполнил студент группы <u>ИВЬО-1.</u> (учебн	<u>1-25</u> ая группа)	Туктаров Т.А.
Принял старший преподаватель		Асадова Ю.С.
Практическая работа выполнена	«6» ноября 2024г.	(подпись студента)
«Зачтено»	«13» ноября 2024г.	(подпись руководителя)

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники	
Выполнено	/Т.А. Туктаров/
Зачтено	/Ю.С. Асадова/

Задание на практическую работу №9

Дисциплина: «Алгоритмические основы обработки данных»

Студент Туктаров Тимур Азатович Шифр 23И0087 Группа ИВБО-11-23

- 1. **Тема**: «использование библиотечных функций для обработки текста».
- 2. Срок сдачи студентом законченной работы: 14.10.2024.
- 3. Исходные данные: матрица п на т.
- 4. Задание:

Создать шаблоны функций, выполняющих ввод, вывод и упорядочивание матрицы. Протестировать шаблоны для матриц с элементами различных типов: int, float и char.

Разработать программу, которая вводит матрицу из n строк и m столбцов (n<=100, m<=50) и упорядочивает элементы матрицы. таким образом, чтобы при чтении матрицы по строкам ее элементы образовывали отсортированный по возрастанию массив.

5. Содержание отчета:

- титульный лист;
- задание;
- оглавление;
- введение;
- основные разделы отчета;
- заключение;
- список использованных источников;

Руководитель работы	Ю.С. Асадова	подпись	«4» ноября 2024г.
Задание принял к исполнению	Т.А Туктаров	полимен	«28» октября 2024г

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 ОСНОВНОЙ РАЗДЕЛ	5
2 БЛОК-СХЕМА АЛГОРИТМА	
3 ИСХОДНЫЙ КОД	9
4 ПРИМЕР РАБОТЫ ПРОГРАММЫ	
ЗАКЛЮЧЕНИЕ	12
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	13

ВВЕДЕНИЕ

В данной практической работе требуется применить циклы, работу с динамическим массивами, функциями и условными операторами.

Постановка задачи:

Разработать программу, которая вводит матрицу из n строк и m столбцов (n<=100, m<=50) и упорядочивает элементы матрицы таким образом, чтобы при чтении матрицы по строкам ее элементы образовывали отсортированный по возрастанию массив. Программа должна предоставлять пользователю выбор типа элементов матрицы: целого или строкового. Операции ввода, вывода и упорядочивания элементов матрицы должны быть реализованы в виде функций с шаблонами.

1 ОСНОВНОЙ РАЗДЕЛ

Программа состоит из 7-и функций. Главная — main(), в ней выполняется весь управляющий код. enter_mat() — функция для ввода матрицы, принимает ссылку на матрицу. print_mat() — функция для вывода матрицы, которая передается аргументу по ссылке. sort_mat() — функция сортировки матрицы, которая передается аргументу по ссылке. Функции реализованы с помощью щаблонов, поэтому нам не надо создавать перегрузку для каждого возможного типа данных в матрице.

enter_mat(), и print_mat() работают по одинаковому принципу – с помощью вложенного цикла считывают/выводят данные.

sort_mat() – Сортирует матрицу пузырьком, сравнивая каждый элемент с каждым.

2 БЛОК-СХЕМА АЛГОРИТМА..

Представим описание алгоритма в графическом виде на рисунках 2.1-2.5

Рисунок 2.1 – Блок – схема алгоритма функции main()

Рисунок 2.2 – Блок-схема функции enter_mat()

Рисунок 2.3 – Блок-схема функции print_mat()

Рисунок 2.4 – Блок-схема функции sort_mat()

3 ИСХОДНЫЙ КОД

Программная реализация алгоритма для решения задачи представлена ниже.

Листинг 3.1 – Исходный код программы

```
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;
template<typename Type>
void enter mat(vector<vector<Type>>& vec);
template<typename Type>
void sort mat(vector<vector<Type>>& vec);
template<typename Type>
void print mat(vector<vector<Type>>& vec);
int main()
{
      setlocale(LC ALL, "Ru");
      cout << "1 - матрица из целочисленных чисел, 2 - матрица из строк, 3 - из
чисел с точкой: \n";
      int c = -1, n, m;
      while (c != 1 \&\& c != 2 \&\& c != 3)cin >> c;
      cout << "Введите размеры матрицы: \n";
      cin >> n >> m;
      cout << "Введите матрицу: \n";
      if (c == 1) {
            vector<vector<int>>vec(n, vector<int>(m));
            enter mat(vec);
            sort mat(vec);
            print mat(vec);
      }
      else if(c == 2){
            vector<vector<string>>vec(n, vector<string>(m));
            enter mat(vec);
            sort mat(vec);
            print mat(vec);
      }
      else {
            vector<vector<float>>vec(n, vector<float>(m));
            enter mat(vec);
            sort mat(vec);
            print mat(vec);
      }
template<typename Type>
void enter mat(vector<vector<Type>>& vec) {
      int n = \text{vec.size}(), m = \text{vec}[0].\text{size}();
      for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++) {
                   cin >> vec[i][j];
```

```
}
template<typename Type>
void sort mat(vector<vector<Type>>& vec) {
      int m = vec.size();
      if (m == 0) return;
      int n = vec[0].size();
      for (int i = 0; i < m * n - 1; i++) {
             for (int j = i + 1; j < m * n; j++) {
                   int row1 = i / n, col1 = i % n;
                   int row2 = j / n, col2 = j % n;
                   if (vec[row1][col1] > vec[row2][col2]) {
                         swap(vec[row1][col1], vec[row2][col2]);
                   }
             }
template<typename Type>
void print mat(vector<vector<Type>>& vec) {
      int \bar{n} = \text{vec.size()}, \bar{m} = \text{vec[0].size()};
      for (int i = 0; i < n; i++)
      {
             for (int j = 0; j < m; j++) {
                   cout << vec[i][j] << " ";</pre>
            cout << "\n";
```

4 ПРИМЕР РАБОТЫ ПРОГРАММЫ

Пример программы в которой выполняются все команды из условия.

```
1 — матрица из чисел, 2 — матрица из строк:

1

Введите размеры матрицы:

3 4

Введите матрицу:

1 8 2 3

20 1 3 4

1 5 2 6

1 1 1 2

2 3 3 4

5 6 8 20
```

Рисунок 4.1 – Пример работы программы – сортировка числовой матрицы

```
    1 — матрица из чисел, 2 — матрица из строк:
    2
    Введите размеры матрицы:
    2 2
    Введите матрицу:
    ab f
    dfas z
    ab dfas
    f
```

Рисунок 4.2 – Пример работы программы – сортировка строковой матрицы

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной практической работы была реализована программа для работы с матрицами. Также были приобретены навыки работы со массивами данных, перегрузкой функций и циклами. Были использованы шаблоны.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Лозовский В.В. Алгоритмические основы обработки данных: учебное пособие / Лозовский В.В., Платонова О.В., Штрекер Е.Н. М.: МИРЭА Российский технологический университет, 2022. 337 с.
- 2. Платонова О.В. Алгоритмические основы обработки данных: методические указания / Платонова О.В., Асадова Ю.С., Расулов М.М. М.: МИРЭА Российский технологический университет, 2022. 73 с.
- 3. Белик А.Г. Алгоритмы и структуры данных: учебное пособие / А.Г. Белик, В.Н. Цыганенко. Омск: ОмГТУ, 2022. 104 с. ISBN 978-5-8149-3498-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/343688 (дата обращения: 23.09.2024)
- 4. Павлов Л.А. Структуры и алгоритмы обработки данных / Л.А. Павлов, Н.В. Первова. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 256 с. ISBN 978-5-507-44105-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/207563 (дата обращения: 23.09.2024)
- 5. Пантелеев Е.Р. Алгоритмы и структуры данных: учебное пособие / Е.Р. Пантелеев, А.Л. Алыкова. Иваново: ИГЭУ, 2018. 142 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/154576 (дата обращения: 23.09.2024)