Приближение множеств линейными пространствами

17 ноября 2018 г.

Пусть H — гильбертово пространство, $L \subset H$ — линейное подпространство. Для каждого $x \in H$ ближайшая в L точка есть $P_L x$, но что если нужно приблизить множество точек $M \subset H$?

Рассмотрим две задачи:

1. Среднеквадратичное приближение. Пусть $M = \{x_1, \dots, x_N\},\$

$$\inf_{\dim L \leqslant n} \frac{1}{N} \sum_{k=1}^{N} |x_k - P_L x_k|^2.$$

Инфимум берётся по всевозможным подпространствам размерности не выше n. Задача имеет смысл и для бесконечного M, если на нём задана вероятностная мера, или, другими, словами, задан случайный элемент ξ , принимающий значения $\xi(\omega) \in M$:

$$\inf_{\dim L \leqslant n} \mathsf{E}|\xi - P_L \xi|^2.$$

2. "Поперечник" – одновременное приближение всех точек:

$$d_n(M,H) := \inf_{\dim L \leq n} \sup_{x \in M} |x - P_L x|.$$

Эта величина называется колмогоровским поперечником множества M в H размерности n.

Среднеквадратичное приближение

Аффинное приближение

Линейные подпространства содержат ноль. $A \phi \phi$ инные — произвольные сдвиги линейных: $L + y_0 = \{l + y_0 : l \in L\}$.

Оператор ортопроекции на $L + y_0$ уже не линейный, а аффинный: $P_{L+y_0}x = y_0 + P_L(x - y_0)$. Рассмотрим задачу минимизации среднеквадратичного отношения по всем аффинным подпространствам:

$$\inf_{y_0, \dim L \leqslant n} \frac{1}{N} \sum_{k=1}^{N} |x_k - P_{y_0 + L} x_k|^2.$$

Оказывается, оптимальный сдвиг y_0 это центр масс точек:

$$\widehat{y_0} = \frac{1}{N} \sum_{k=1}^{N} x_k.$$
 (1)

После чего задача сводится к предыдущей сдвигом на $\widehat{y_0}$. Проверим это. Пусть $x_1,\ldots,x_N\in\mathbb{R}$, тогда $\sum_{k=1}^N(x_k-y)^2$ это квадратичная функция, она имеет минимум при $y=(x_1+\ldots+x_N)/N$. Если x_k и y вектора, то выражение $\sum_{k=1}^N|x_k-y|^2$ распадается на одномерные компоненты, и снова $y=(x_1+\ldots+x_N)/N$. Далее, зафиксируем $L:\sum |x_k-P_{L+y_0}x_k|^2=\sum |x_k-P_Lx_k-(y_0-P_Ly_0)|^2$, поэтому оптимальный сдвиг пространства L— на вектор y_0 , такой что $y_0-P_Ly_0=\frac{1}{N}\sum (x_k-P_Lx_k)$. Ясно, что $\widehat{y_0}$ годится.

Далее рассматриваем линейные подпространства.

Переформулировка на языке матриц

Пусть $M = \{x_1, \dots, x_N \in \mathbb{R}^d\}$. Запишем x_j по столбцам в матрицу X. Ясно, что если x_j приближены элементами y_j из n-мерного пространства, то матрица Y из столбцов y_j имеет ранг n. Следовательно,

$$\inf_{\dim L \leq n} \sum_{k=1}^{N} |x_k - P_L x_k|^2 = \inf_{\dim L \leq n, \ y_1, \dots, y_N \in L} \sum_{k=1}^{N} |x_k - y_k|^2 =$$

$$= \inf_{\mathrm{rk} Y \leq n} \sum_{i=1}^{d} \sum_{k=1}^{N} |X_{i,k} - Y_{i,k}|^2 = \inf_{\mathrm{rk} Y \leq n} |X - Y|_F^2.$$

Величина $||A||_F = (\sum A_{i,k}^2)^{1/2}$ называется нормой Фробениуса.

SVD — сингулярное разложение

Теорема 1. Пусть A — матрица размера $N_1 \times N_2$. Существует разложение матрицы A вида:

$$A = U\Sigma V^t$$

где U и V — ортогональные матрицы, а Σ — матрица c элементами, равными нулю вне диагонали, и неотрицательными числами

$$\sigma_1 \geqslant \sigma_2 \geqslant \ldots, \sigma_{\min(N_1, N_2)} \geqslant 0$$

на диагонали. Последовательность $(\sigma_1, \sigma_2, \ldots)$ не зависит от выбора разложения.

Ясно, что размеры матриц из разложения $U\Sigma V^t$ есть $N_1 \times N_1$, $N_1 \times N_2$ и $N_2 \times N_2$, соответственно. Числа σ_j называются сингулярными числами матрицы A и обозначаются $\sigma_j(A)$.

Задача. Доказать, что $\max |Ax|/|x| = \sigma_1(A)$.

Теорема 2. Наилучшее приближение матрицы A матрицами ранга не выше n по норме Фробениуса равно

$$\inf_{\text{rk } B \leqslant n} ||A - B||_F = \{ \sum_{k > n} \sigma_k(A)^2 \}^{1/2}$$

и достигается на матрице $B:=U\Sigma^{(n)}V^t$, где $\Sigma^{(n)}$ получено заменой в Σ чисел $\sigma_k,\ k>n,\ на нули.$

Пусть u_1, \ldots, u_{N_1} — столбцы матрицы U, а v_1, \ldots, v_{N_2} — столбцы матрицы V. Ясно, что они образуют ортонормированные базисы в \mathbb{R}^{N_1} и \mathbb{R}^{N_2} , соответственно. Равенство $A = U\Sigma V^t$ равносильно $AV = U\Sigma$, то есть

$$Av_j = \sigma_j u_j, \quad j = 1, \dots, N_2. \tag{2}$$

Виден геометрический смысл SVD при $N_1 = N_2$: оператор, соответствующий матрице A, сначала поворачивает некоторый ортонормированный базис $\{v_j\}$, переводя его в $\{u_j\}$, а потом растягивает (каждый вектор в своё количество раз).

Доказательство теоремы 1. Будем использовать известный факт из линейной алгебры о том, что симметричная матрица диагонализуема в ортонормированном базисе, т.е. $A = A^t$ допускает разложение $A = U\Sigma U^t$. (Будет ли это сингулярным разложением? Если нет, то как его получить?)

Начнём с единственности сингулярных чисел. Имеем

$$AA^{t} = U\Sigma V^{t}V\Sigma^{t}U^{t} = U(\Sigma\Sigma^{t})U^{t}.$$

Матрица $\Sigma\Sigma^t$ диагональна с числами σ_k^2 на диагонали. Ясно, что эти числа составляют множество собственных чисел матрица AA^t , а те определены однозначно.

Построим $\{u_j\}$ и $\{v_j\}$ со свойством (2). Воспользуемся тем, что AA^t симметрична и диагонализуема в ортонормированном базисе $\{u_j\}$ (это и будут искомые вектора): $AA^tu_j=\lambda_ju_j$. Заметим, что собственные числа неотрицательны $\lambda_j=\langle AA^tu_j,u_j\rangle=|A^tu_j|^2$. Положим $\sigma_j:=\lambda_j^{1/2}$ (это и будут сингулярные числа) и $v_j:=\sigma_j^{-1}A^tu_j$ (для тех j, для которых $\lambda_j\neq 0$), тогда

$$Av_j = AA^t u_j = \sigma_j^{-1} \lambda_j u_j = \sigma_j u_j.$$

Вектора $\{v_i\}$ нормированы по построению и ортогональны:

$$\langle v_j, v_k \rangle = \langle A^t u_j, A^t u_k \rangle = \langle A A^t u_j, u_k \rangle = \lambda_j \langle u_j, u_k \rangle = 0, \quad j \neq k.$$

Осталось заметить, что если векторов $\{v_j\}$ получилось меньше, чем нужно, можно дополнить их до ортонормированного базиса произвольным образом (проверьте (2)!).

Перейдём ко второй теореме.

Доказательство. Нужно доказать неравенство $\|A - B\|_F^2 \geqslant \sum_{k>n} \sigma_k^2(A)$ для любой матрицы B ранга $\leqslant n$. Поскольку $\|A\|_F = \|UA\|_F = \|AV\|_F$ для ортогональных матриц U, V (почему?), то дело сводится к случаю диагональной матрицы $A = \Sigma$. Кроме того, можно считать Σ квадратной ("отрежем" лишние столбцы/строки, они ни на что не влияют).

Далее будет удобнее всего вернуться к исходной постановке задачи: мы приближаем вектора-стоблцы матрицы $A, \{\sigma_1 e_1, \ldots, \sigma_N e_N\}$ некоторым n-мерным подпространством L, и хотим оценить снизу сумму

$$\sum |\sigma_k e_k - P_L \sigma_k e_k|^2 = \sum_k |\sigma_k e_k|^2 - \sum_k |P_L \sigma_k e_k|^2 = \sum_k \sigma_k^2 - \sum_k \sigma_k^2 |P_L e_k|^2.$$

Оценим сверху вычитаемую сумму. Возьмём в L ортонормированный базис $\varphi_1, \ldots, \varphi_n$, и запишем:

$$\sum_k \sigma_k^2 |P_L e_k|^2 = \sum_k \sigma_k^2 w_k, \quad w_k := |P_L e_k|^2 = \sum_i \langle e_k, \varphi_i \rangle^2.$$

Рассмотрим числа w_k : они лежат на отрезке [0,1] и их сумма фиксирована:

$$\sum w_k = \sum_{i,k} \langle e_k, \varphi_i \rangle^2 = \sum_i |\varphi_i|^2 = N - n.$$

Следовательно, чтобы максимизировать сумму, нужно поставить $w_k = 1$ при наибольших множителях, то есть $\sigma_1^2, \ldots, \sigma_n^2$. Это доказывает теорему.

Поперечники

Утверждение 1: $d_n(A, H) = d_n(-A, H)$. Очевидно.

Утверждение 2: $d_n(A,H) = d_n(\operatorname{conv} A,H)$. Действительно, если можем приблизить точки $x_i \approx y_i \in L$, то выпуклая комбинация $\sum \lambda_i x_i \approx \sum \lambda_i y_i \in L$.

Следствие: $d_n(A, H) = d_n(\text{conv } A \cup (-A), H)$.

Поэтому обычно рассматривают поперечники для выпуклых центральносимметричных тел.

Рассмотрим октаэдр $B_1^N = \{x \in \mathbb{R}^N \colon \sum_{i=1}^N |x_i| \leqslant 1\}.$

Теорема 3.

$$d_n(B_1^N, \ell_2^N) = \sqrt{\frac{N-n}{N}}.$$

Доказательство. Докажем оценку снизу. $d_n(B_1^N) = d_n(\{e_1, \dots, e_N\})$. Поскольку максимум не меньше среднего, для оптимального подпространства \hat{L} имеем

$$d_n(\{e_1,\ldots,e_N\})^2 \geqslant \frac{1}{N} \sum |e_j - P_L e_j|^2 \geqslant \frac{1}{N} \sum_{k=n+1}^N \sigma_k(Id) = \frac{N-n}{N}.$$

Оценка снизу получена.

Вспоминая доказательство предыдущей теоремы, видим что сумма

$$\sum |e_j - P_L e_j|^2 = N - \sum_j |P_L e_j|^2 = N - \sum_{j=1}^N \sum_{k=1}^n \langle e_j, v_k \rangle^2 = N - n$$

для любого L! Значит, нужно найти подпространство, равноудалённое от базисных векторов, то есть такие ортонормированные вектора v_1, \ldots, v_n , что

$$\sum_{k=1}^{n} \langle e_j, v_k \rangle^2 \equiv \text{const}, \quad j = 1, \dots, N.$$

Другими словами, нужно построить матрицу $N \times n$ с ортонормированными столбцами и строками одинаковой длины. Остаётся в качестве задачи.

Рассмотрим теперь классический пример, с которого начиналась теория поперечников. В \mathbb{R}^N возьмём эллипсоид

$$\mathcal{E}(a_1, \dots, a_N) = \{ x \in \mathbb{R}^N : \sum_{k=1}^N (x_k/a_k)^2 \le 1. \}$$

Это эллипсоид с полуосями a_1, \ldots, a_N , считаем что $a_1 \geqslant a_2 \geqslant \ldots \geqslant a_N$.

Теорема 4.

$$d_n(\mathcal{E}(a_1,\ldots,a_N),\ell_2^N) = a_{n+1}.$$

Доказательство. Остаётся в качестве задачи.