Statistical Machine Learning 2022

(COMP4670 / 8600)

Take-Home Practice / Hurdle ExamSolutions

Writing period: 90 minutes.

Study period: 0.

Permitted materials: A computer for the coding question only.

Total marks: 17.

This does not contribute to your grade. However if you find it at all difficult to score fifty percent without any preparation then you should seriously consider dropping the course.

1. (1 mark)

In a box there are two black balls, one red ball and three yellow balls. What is the probability that a ball selected at random is yellow given that it is not black?

Solution:

(2 half marks) 3/4.

2. (1 mark)

Which of the following statements is correct?

- i) p(a,b)/p(b) = p(b|a)
- ii) p(a|b)/p(a) = p(b|a)
- iii) p(a,b)/p(b) = p(a|b)
- iv) None of the above.

Solution:

```
(2 half marks) p(a,b)/p(b) = p(a|b)
```

3. (1 mark)

A fair six-sied die has 1, 1, 2, 3, 5 and 8 dots on each face. What is the expected number of dots?

Solution:

```
(2 half marks) (1+1+2+3+5+8)/6 = 3\frac{1}{3}.
```

4. (2 marks)

Let D be a random variable with smooth (infinitely differentiable) probability density function on the real line Let x and y be independent and identically distributed according to D. What is the probability that x > y?

- i) 0
- ii) 1/2
- iii) 1
- iv) It depends on the choice of D.
- v) None of the above.

Solution:

```
(4 \text{ half marks}) 1/2.
```

5. (1 mark)

What is the derivative of x^x with respect to x?

Solution:

```
(2 half marks) x^x(1 + \log(x))
```

6. (2 marks)

Let $f(x) = \frac{1}{2}ax^2 + bx + c$, where a < 0. What is the maximum value obtained by this function, for real valued x?

Solution:

(4 half marks)
$$-\frac{1}{2}b^2/a+c$$
.

7. (1 mark)

What is the order of computational time complexity (roughly speaking, the number of computational operations required) of matrix-vector multiplication, assuming the matrix is of size N by N?

- i) O(1)
- ii) O(N)
- iii) $O(N^2)$
- iv) $O(N^3)$
- v) $O(N \log N)$
- vi) None of the above.

Solution:

(2 half marks) $O(N^2)$.

8. (2 marks)

Consider a linear regression model y = ax + b with (x, y) data pairs (1, 2), (1, 3), (2, 3). What is the derivative with respect to a of the mean squared error, at a = 1, b = 2? Solution:

(4 half marks) 1/2.

9. (1 mark)

If A is a square matrix, then we write tr(A) for its trace, which is the sum of the diagonal elements of A. Let $||A||_F = \sqrt{tr(A^T A)}$ be the Frobenius norm of a matrix.

Let C be a fixed symmetric $n \times n$ matrix (so $C = C^{\top}$). Let μ be a scalar that is larger than the p^{th} smallest eigenvalue of C. Let N be a diagonal $p \times p$ matrix with distinct positive entries on the diagonal.

Let our cost function f(X) be defined for $n \times p$ matrices X as

$$f(X) = \frac{1}{2} \operatorname{tr}(X^{\top} C X N) + \mu \frac{1}{4} \left\| N - X^{\top} X \right\|_F^2,$$

where $X \in \mathbb{R}^{n \times p}$, $n \ge p$.

Derive the gradient $\nabla_X f(X)$.

Solution:

(2 half marks) See the labs.

10. (1 mark)

What is the name of the numpy function that samples from the "standard normal" distribution?

Solution:

(2 half marks) numpy.random.randn

11. (4 marks)

Complete the implementation of

linear.py released with this problem set,

in order to successfully run the program

```
test_linear.py.
Which you may execute using e.g. the command
anaconda3-python test_linear.py
Solution:
(8 half marks) w = np.linalg.pinv(np.dot(x, x.T)) @ np.dot(x, y)
```