Propositional Logic: Gentzen System, \mathcal{G} CS402, Spring 2016

Shin Yoo

Sequent Calculus in ${\cal G}$

In Natural Deduction, each line in the proof consists of exactly one proposition. That is, $A_1, A_2, \dots, A_n \vdash B$.

In Sequent calculus, each line in the proof consists of zero or more propositions. That is, $A_1, A_2, \ldots, A_n \vdash B_1, B_2, \ldots, B_k$. The standard semantic is, "whenever every A_i is true, at least one B_j will also be true".

Axioms in \mathcal{G}

Definition 1 (3.2, Ben-Ari)

An axiom of ${\cal G}$ is a set of literals ${\it U}$ containing a complementary pair.

Note that sets in \mathcal{G} are implicitly disjunctive. For example, $\{\neg p, q, p\}$ is an axiom, i.e. $\vdash \neg p, q, p$ in \mathcal{G} .

Inference Rules in \mathcal{G}

Definition 2 (3.2, Ben-Ari)

There are two types of inference rules, defined with reference to tables below:

- Let $\{\alpha_1, \alpha_2\} \subseteq U_1$ and let $U_1' = U_1 \{\alpha_1, \alpha_2\}$. Then $U = U_1' \cup \{\alpha\}$ can be inferred.
- Let $\{\beta_1\} \subseteq U_1, \{\beta_2\} \subseteq U_2$ and let $U_1' = U_1 \{\beta_1\}, U_2' = U_2 \{\beta_2\}.$ Then $U = U_1' \cup U_2' \cup \{\beta\}$ can be inferred.

Inference Rules in \mathcal{G}

$$\frac{\vdash U_1' \cup \{\alpha_1, \alpha_2\}}{\vdash U_1' \cup \{\alpha\}} \alpha$$

α	$ \alpha_1$	α_2
$\neg \neg \alpha$	α	
$\neg(\alpha_1 \wedge \alpha_2)$	$\neg \alpha_1$	$\neg \alpha_2$
$\alpha_1 \vee \alpha_2$	$ \alpha_1 $	α_2
$\alpha_1 \rightarrow \alpha_2$	$-\alpha_1$	α_2
$\alpha_1 \uparrow \alpha_2$	$-\alpha_1$	$\neg \alpha_2$
$\neg(\alpha_1\downarrow\alpha_2)$	α ₁	α_2
$\neg(\alpha_1\leftrightarrow\alpha_2)$	$ \neg(\alpha_1 \to \alpha_2) $	$\neg(\alpha_2 \to \alpha_1)$
$\alpha_1 \oplus \alpha_2$	$ \neg (\alpha_1 \rightarrow \alpha_2)$	$\neg(\alpha_2 \to \alpha_1)$

That is, α -rules build up disjunctions.

$$\frac{\vdash \textit{U}_{1}' \cup \{\beta_{1}\} \quad \vdash \textit{U}_{2}' \cup \{\beta_{2}\}}{\vdash \textit{U}_{1}' \cup \textit{U}_{2}' \cup \{\beta\}} \ \beta$$

β	β_1	β_2
$\beta_1 \wedge \beta_2$	β_1	β_2
$\neg(\beta_1 \lor \beta_2)$	$ \neg \beta_1$	$\neg \beta_2$
$\neg(\beta_1 \to \beta_2)$	β_1	$\neg \beta_2$
$\neg(\beta_1\uparrow\beta_2)$	β_1	β_2
$\beta_1 \downarrow \beta_2$	$ \neg \beta_1$	$\neg \beta_2$
$\beta_1 \leftrightarrow \beta_2$	$\beta_1 \rightarrow \beta_2$	$\beta_2 \rightarrow \beta_1$
$\neg(\beta_1\oplus\beta_2)$	$\beta_1 \rightarrow \beta_2$	$\beta_2 \rightarrow \beta_1$

That is, β -rules build up conjuntions (consider $(a \lor b) \land (c \lor d) \models a \lor c \lor (b \land d)$).

Example Proof

Prove that $\vdash p \lor (q \land r) \rightarrow (p \lor q) \land (p \lor r)$ in \mathcal{G} .

1.
$$\vdash \neg p, p, q$$
 Axiom
2. $\vdash \neg p, (p \lor q)$ $\alpha \lor$, 1
3. $\vdash \neg p, p, r$ Axiom
4. $\vdash \neg p, (p \lor r)$ $\alpha \lor$, 3
5. $\vdash \neg p, (p \lor q) \land (p \lor r)$ $\beta \land$, 2, 4
6. $\vdash \neg q, \neg r, p, q$ Axiom
7. $\vdash \neg q, \neg r, (p \lor q)$ $\alpha \lor$, 6
8. $\vdash \neg q, \neg r, p, r$ Axiom
9. $\vdash \neg q, \neg r, (p \lor r)$ $\alpha \lor$, 8
10. $\vdash \neg q, \neg r, (p \lor r)$ $\alpha \lor$, 8
10. $\vdash \neg q, \neg r, (p \lor q) \land (p \lor r)$ $\beta \land$, 7, 9
11. $\vdash \neg (q \land r), (p \lor q) \land (p \lor r)$ $\alpha \land$, 10
12. $\vdash \neg (p \lor (q \land r)), (p \lor q) \land (p \lor r)$ $\beta \lor$, 5, 11
13. $\vdash p \lor (q \land r) \rightarrow (p \lor q) \land (p \lor r)$ $\alpha \rightarrow$, 12

Wait...

- How do you magically come up with the axioms $\{\neg p, p, q\}$, $\{\neg p, p, r\}$, $\{\neg q, \neg r, p, q\}$, and $\{\neg q, \neg r, p, r\}$?
- Haven't we seen something like this before?

$$\vdash (p \lor q) \to (q \lor p)$$

$$\neg ((p \lor q) \to (q \lor p))$$

$$\vdash (p \lor q), \neg (q \lor p)$$

$$\vdash (p \lor q), \neg (q \lor p)$$

$$\vdash (p \lor q), \neg (q \lor p)$$

$$\neg (p \lor q), q, p$$

$$\neg (p \lor q), (q \lor p)$$

$$\vdash (p \lor q) \to (q \lor q)$$

$$\vdash (p \lor q) \to (q \lor q)$$

Semantic Tableau (Sets are conjunctive)

Theorem 1 (3.6, Ben-Ari)

Let A be a formula in propositional logic. Then \vdash A in \mathcal{G} if and only if there is a closed semantic tableaux for \neg A.

Theorem 2 (3.7, Ben-Ari)

Let U be a set of formulas and let \bar{U} be the set of complements of formulas in U. Then, $\vdash U$ in \mathcal{G} if and only if there is a closed semantic tableau for \bar{U} .

We prove that, if there exists a closed semantic tableau for U, then $\vdash U$ in \mathcal{G} . The opposite direction is left for you.

Proof.

Let \mathcal{T} be a closed semantic tableau for \bar{U} . We prove $\vdash U$ by induction on h, the height of \mathcal{T} .

• If h=0, then $\mathcal T$ consists of a single node labeled by $\bar U$. By assumption, $\mathcal T$ is closed, so it contains a complementary pair of literals $\{p,\neg p\}$, that is, $\bar U=\bar U'\cup\{p,\neg p\}$. Obviously, $U=U'\cup\{\neg p,p\}$ is an axiom in $\mathcal G$, hence $\vdash U$.

Proof. Cont.

- If h>0, then some tableau rule was used on an α or β -formula at the root of $\mathcal T$ on a formula $\bar\phi\in\bar U$, that is, $\bar U=\bar U'\cup\bar\phi$. The proof proceeds by cases, where you must be careful to distinguish between applications of the tableau rules and applications of the Gentzen rules of the same name.
 - Case 1: ϕ is an α -formula (such as) $\neg (A_1 \lor A_2)$. The tableau rule created a child node labeled by the set of formulas $\bar{U}' \cup \{\neg A_1, \neg A_2\}$. By assumption, the subtree rooted at this node is a closed tableau, so by the inductive hypothesis, $\vdash U' \cup \{A_1, A_2\}$. Using the appropriate rule of inference from \mathcal{G} , we obtain $\vdash U' \cup \{A_1 \lor A_2\}$, that is, $\vdash U' \cup \{\phi\}$, which is $\vdash U$.

Proof.

- If h>0, then some tableau rule was used on an α or β -formula at the root of $\mathcal T$ on a formula $\bar\phi\in\bar U$, that is, $\bar U=\bar U'\cup\bar\phi$. The proof proceeds by cases, where you must be careful to distinguish between applications of the tableau rules and applications of the Gentzen rules of the same name.
 - Case 2: ϕ is a β -formula (such as) $\neg(B_1 \land B_2)$. The tableau rule created two child nodes labeled by the sets of formulas $\bar{U}' \cup \{\neg B_1\}$ and $\bar{U}' \cup \{\neg B_2\}$. By assumption, the subtrees rooted at this node are closed, so by the inductive hypothesis $\vdash U' \cup \{B_1\}$ and $\vdash U' \cup \{B_2\}$. Using the appropriate rule of inference from \mathcal{G} , we obtain $\vdash U' \cup \{B_1 \land B_2\}$, that is, $\vdash U' \cup \{\phi\}$, which is $\vdash U$.

Why \mathcal{G} and not natural deduction?

Taste. Or, more appropriately, aesthetics.

Natural deduction feels more, umm, natural. It is also more simplistic; having multiple disjunct on the right hand side, in \mathcal{G} , is clearly cumbersome and adds complexity.

 ${\cal G}$ shows the symmetric nature of negation more vividly.

$$A_{1}, \dots, A_{n} \vdash B_{1}, \dots, B_{k}$$

$$\vdash (A_{1} \land \dots \land A_{n}) \rightarrow (B_{1} \lor \dots \lor B_{k})$$

$$\vdash \neg A_{1} \lor \neg A_{2} \lor \dots \lor \neg A_{n} \lor B_{1} \lor B_{2} \lor \dots \lor B_{k}$$

$$\vdash \neg (A_{1} \land A_{2} \land \dots \land A_{n} \land \neg B_{1} \land \neg B_{2} \land \dots \land \neg B_{k})$$

Soundness and Completeness of ${\cal G}$

Theorem 3 (3.8 in Ben-Ari)

 \models A if and only if \vdash A in \mathcal{G} .

Proof.

A is valid iff $\neg A$ is unsatisfiable iff there is a closed semanti tableau for $\neg A$ iff there is a proof of A in \mathcal{G} .

Exercises

Prove the following in G:

$$\bullet \vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

$$\bullet \vdash (A \to B) \to ((\neg A \to B) \to B)$$

$$\bullet \vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$$