

DFML Projektarbeit - Bildverarbeitung

Vorstellung der Ergebnisse

Bildverarbeitung - Klassifikation für Satellitenbilder

- SpaceEye Dataset
 - 1750 Satellitenaufnahmen Miami Küste
 - ca. 1400 x 1400 Auflösung
 - RGB + NIR Kanal
 - Metadata_csv
 - 50:50 ships/non_ships
 - Vorverarbeitung:
 - Reflectance corrected
 - Color corrected

- Aufgabe:
 - Training und Test eines binary image classifier
 - Vorgaben zu Evaluierung:
 - Accuracy
 - ROC curve
 - AUC
 - F1 score

Data Preprocessing

- Anforderungen:
 - Dateiformat anpassen
 - Dataset Struktur erstellen
 - Split in Train und Test Daten
 - Cropping
 - Resizing
 - Normalization

- Lösungsschritte
 - tif → .png/.jpeg (einlesbar für TF)
 - Aus <n>Ordner → <n>.png Dateien
 - 80 20 Train Test SplitCropping übernommen
 - Resizing 224 x 224 (VGG-16)
 - Normalization mit open-cv

Implementierter Algorithmus

- 5-Fold-Cross-Validation
 - Splitten des Train Dataset in 5 Gruppen
 - Model Training mit 4
 - Model Validation mit 1
 - Wechsel der Gruppen in nächste Iteration
 - Stratified:
 - Label gleichverteilt in jeder Gruppe

Quelle: https://scikit-learn.org/stable/modules/cross_validation.html

Implementierter Algorithmus (RGB only)

- VGG-16 als pretrained model
 - weights von Imagenet, non trainable
- Binary classifier als fully connected Teil
 - Flatten layer
 - 2 Dense layer
 - Dropout

Quelle: https://neurohive.io/en/popular-networks/vgg16/

Implementierter Algorithmus (RGB only)

- Hyperparameter
 - Epochs = 10
 - Batchsize = 64
 - Optimizer = adam
 - Sehr einflussreich
 - Vgl. mit RMSProp

- Evaluation
 - Accuracy ~ 81%
 - F1 Score ~ 79%
 - AUC ~ 0.943

F1 Score: 0.7896961569786072

Validation accuracy: 0.8148148059844971

Implementierter Algorithmus (RGBN) - Probleme

- Data loading mit 4 Kanälen
- →zuerst Versuch über .npy files
- →kein Tensorflow Data Augmentation Unterstützung
- →eigener Datasetgenerator notwendig
- →.png format unterstützt rbga
- →Nutzung des 4. Kanal für NIR

- Pretrained Models unterstützen meist nur RGB Bilder
- →Input 4 Kanäle
- →split in RGB und NIR Teil
- →jeweils eigenes VGG-16
- →addiere output
- →fully connected layer

Implementierter Algorithmus (RGBN)

Layer (type)	Output Shape	Param #	Connected to
input_10 (InputLayer)	[(None, 224, 224, 4)]		[]
lambda_6 (Lambda)	(None, 224, 224, 3)	0	['input_10[0][0]']
lambda_7 (Lambda)	(None, 224, 224)	0	['input_10[0][0]']
sequential_6 (Sequential)	(None, 7, 7, 512)	14714688	['lambda_6[0][0]']
sequential_7 (Sequential)	(None, 7, 7, 512)	14714688	['lambda_7[0][0]']
add_3 (Add)	(None, 7, 7, 512)	0	['sequential_6[0][0]' 'sequential_7[0][0]'
flatten_3 (Flatten)	(None, 25088)	0	['add_3[0][0]']
dense_8 (Dense)	(None, 512)	12845568	['flatten_3[0][0]']
dropout_5 (Dropout)	(None, 512)	0	['dense_8[0][0]']
dense_9 (Dense)	(None, 512)	262656	['dropout_5[0][0]']
dropout_6 (Dropout)	(None, 512)	0	['dense_9[0][0]']
dense_10 (Dense)	(None, 1)	513	['dropout_6[0][0]']

Total params: 42,538,113 Trainable params: 13,108,737

Non-trainable params: 29,429,376

Implementierter Algorithmus (RGBN)

- Evaluation
 - Accuracy ~ 86%
 - F1Score ~ 0.84
 - AUC ~ 0.96
- Interpretation
 - NIR Kanal verbessert Ergebnis sehr
 - K-Fold-Cross-Validation verhindert Overfitting zuverlässig
 - AUC sehr hoch →SpaceEye
 - Teil der Ungenauigkeit auch in Daten → dennoch mehr Training sinnvoll

F1 Score: 0.8392488360404968

Validation accuracy: 0.8644067645072937

Fazit und Ausblick

- Anfangsschwierigkeiten
- Sehr viel Trainingszeit
- Dennoch viel Spaß
- Projektziel sehr spannend
- Solider Ansatz für Training
- Definitiv noch Potential
 - Datenvorverarbeitung
 - Eigenes Model
 - Bessere Hyperparameteranpassung
 - Verwendung der metadaten

