SVEUČILIŠTE U ZAGREBU Fakultet elektrotehnike i računarstva

Zavod za automatiku i računalno inženjerstvo

Seminarski zadatak iz robusnog upravljanja Kolegij *Adaptivno i robusno upravljanje*

Autori:

Nikola Mišković, dipl. ing. prof. dr. sc. Zoran Vukić, dipl. ing.

1. TEOREM MALOG POJAČANJA

U prikladnom stupcu dodatka A nalazi se popis procesa s promjenjivim parametrom *a*. Svakom studentu je pridjeljen jedan broj koji odgovara rednom broju procesa za kojeg mora izvršiti analizu.

Nominalni model procesa je zadan uz vrijednost promjenjivog parametra $a=a_n$. Promjenjivi parametar a se mijenja u granicama a^{-} , a^{+} .

- 1.1. Za zadani sustav odredite multiplikativnu pogrešku modeliranja. Prikažite frekvencijsku karakteristiku multiplikativne perturbacije za različite vrijednosti promjenjivog parametra. Na osnovu tih prikaza, u frekvencijskoj domeni je potrebno modelirati multiplikativnu (|W₂(jω)|) težinu neizvjesnosti.
- 1.2. Korištenjem teorema malog pojačanja, uz multiplikativnu težinu neizvjesnosti modeliranu u prvom dijelu zadatka, provjerite *robusnu stabilnost sustava*. Rješenje prikažite grafički u frekvencijskoj domeni, tako da prikažete amplitudnu karakteristiku neizvjesnosti i 1/T. Je li sustav robusno stabilan uz parametar koji se mijenja u zadanim granicama?
- 1.3. Odredite *multiplikativno osiguranje stabilnosti* analitičkim putem. Provjerite rezultat korištenjem grafičkog prikaza.
- 1.4. Provedite simulaciju zatvorenog regulacijskog kruga uz različite vrijednosti promjenjivog parametra. Što primjećujete? Odgovaraju li rezultati simulacije onima dobivenim korištenjem teorema malog pojačanja?

2. TEOREM KARITONOVA

Svakom studentu je pridjeljena jedna karakteristična jednadžba zatvorenog kruga upravljanja oblika

$$\alpha_{cl}(s) = s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0.$$
 (1.1)

Isto tako su svakom studentu zadana dva postotka. Ti postoci predstavljaju odstupanje parametara a₀, a₁, a₂ i a₃ od svojih nominalnih vrijednosti, s gornjom i donjom granicom odstupanja kako slijedi:

$$\begin{vmatrix} a_i^- &= (1 - \frac{p}{100})a_i \\ a_i^+ &= (1 + \frac{p}{100})a_i \end{vmatrix} \rightarrow a_i \in \left[a_i^-, a_i^+\right]$$

gdje je p postotak promjene vrijednosti parametra (drugim riječima, parametri se mijenjaju u intervalu $\pm p\%$).

- 2.1. Za zadanu karakterističnu jednadžbu odredite polinome Karitonova ako je postotak promjene parametara p₁.
- 2.2. Odredite je li sustav robusno stabilan korištenjem Routhovog kriterija (radi jednostavnosti koristite m-funkciju *routh.m*) na polinome Karitonova dobivene u dijelu 2.1. U izvještaj je dovoljno uključiti prvi stupac Routhove tablice.
- 2.3. Nacrtajte skupove iznosa u kompleksnoj ravnini. Neka se na slici vidi kroz koliko kvadranata prolaze skupovi iznosa. Naznačite do kojeg iznosa frekvencije ste morali crtati. Koja je točka u kompleksnoj ravnini kritična za određivanje robusne stabilnosti? Odredite iz grafičkog prikaza je li sustav robusno stabilan i komentirajte.
- 2.4. Ponovite točke 2.1 do 2.3 uz postotak promjene parametara p₂. Usporedite rezultate za dva slučaja i komentirajte.

DODATAK A ili Tko ima kakav sustav za 1. zadatak

		PROCES	an	a¯	a⁺
	1	$\frac{e^{-as}}{s^2 + 0.6s + 1}$	0	1	2
	2	$\frac{e^{-as}}{s^2 + 0.6s + 1}$	0	0.5	1
1	3	$\frac{e^{-as}}{s^2 + 0.6s + 1}$	0	0.1	0.2
	4	$\frac{e^{-as}}{s^2 + 0.6s + 1}$	0	0.2	0.3
	5	$\frac{e^{-as}}{s^2 + 0.6s + 1}$	0	0.3	0.5
	1	$\frac{s-a}{s^2+0.6s+1}$	0.1	0.1	0.2
	2	$\frac{s-a}{s^2+0.6s+1}$	0.2	0.1	0.2
2	3	$\frac{s-a}{s^2+0.6s+1}$	0.5	0.5	1.5
	4	$\frac{s-a}{s^2+0.6s+1}$	1.5	0.5	1.5
	1	$\frac{1}{s^2 + as + 1}$	0.5	0.5	1.5
	2	$\frac{1}{s^2 + as + 1}$	1.5	0.5	1.5
3	3	$\frac{1}{s^2 + as + 1}$	0.7	0.5	1.5
	4	$\frac{1}{s^2 + as + 1}$	0.1	0.1	0.2
	5	$\frac{1}{s^2 + as + 1}$	0.2	0.1	0.2
	1	$\frac{2}{s^2 + s - a}$	0.5	0.5	1
4	2	$\frac{2}{s^2 + s - a}$	1	0.5	1
7	3	$\frac{2}{s^2 + s - a}$	0.7	0.5	1
	4	$\frac{2}{s^2 + s - a}$	1.5	1.5	2.5

		PROCES	a _n	a¯	a⁺
		PROCES	an	а	a
5	1	$\frac{-a}{s^2 + s + 0.5}$	0.1	0.1	0.3
	2	$\frac{-a}{s^2 + s + 0.5}$	0.3	0.1	0.3
	ო	$\frac{-a}{s^2 + s + 0.5}$	0.2	0.1	0.3
	4	$\frac{-a}{s^2 + s + 0.5}$	0.2	0.2	0.7
	5	$\frac{-a}{s^2 + s + 0.5}$	0.7	0.2	0.7
	6	$\frac{-a}{s^2 + s + 0.5}$	0.4	0.2	0.7
6	1	$\frac{e^{-0.5s}}{s^2 + as + 1}$	0.1	0.1	0.5
	2	$\frac{e^{-0.5s}}{s^2 + as + 1}$	0.5	0.1	0.5
	3	$\frac{e^{-0.5s}}{s^2 + as + 1}$	0.2	0.1	0.5
	4	$\frac{e^{-0.5s}}{s^2 + as + 1}$	0.5	0.5	0.7
	5	$\frac{e^{-0.5s}}{s^2 + as + 1}$	0.7	0.5	0.7
	6	$\frac{e^{-0.5s}}{s^2 + as + 1}$	0.6	0.5	0.7
4	5	$\frac{2}{s^2 + s - a}$	2.5	1.5	2.5
	6	$\frac{2}{s^2 + s - a}$	1.7	1.5	2.5

Dodatak B – Parametri za drugi zadatak i proces za prvi zadatak

	1.	2. zadatak					
JMBAG	zadatak	a ₃	a ₂	a_1	a_0	p_1	p ₂
0036477049	1.4	1	12	5	13	18	25
0036480163	2.3	14	11	9	3	18	25
0036483807	3.2	11	10	3	1	20	30
0036477881	4.2	3	14	12	6	30	35
0036483987	2.4	14	12	9	2	15	35
0036480046	6.4	5	6	3	2	5	15
0036483672	6.2	14	15	10	2	20	45
0036481316	1.6	4	9	15	3	20	30
0036478511	5.3	2	11	14	9	9	13
0036484622	4.3	7	9	15	4	23	33
	5.4	6	12	8	14	0.1	0.5
	5.1	12	6	10	4	0.5	3
	1.1	12	4	11	1	25	30
	5.2	2	12	15	11	3	13

LITERATURA

[1] Vukić, Z., Kuljača, Lj. Automatsko upravljanje – analiza linearnih sustava