

Universidade Federal do Ceará **Sistemas Operacionais** Prof. Ms. Rafael Ivo

Lista de Exercícios 4 – Escalonamento de Processos

- 1) Diferencie processos ditos orientados a CPU de processos orientados a Entrada/Saída.
- algoritmo de escalonamento se faz necessário em computador implementa um aue multiprogramação.
- 3) Diferencie algoritmos de escalonamento demais. preemptivos dos não-preemptivos.
- 4) Explique os seguintes objetivos desejados em um bom algoritmo de escalonamento:
- a) justica
- b) aplicação de política
- c) equilíbrio
- 5) Algoritmos de escalonamento desenvolvidos para sistemas em lote podem usar alguns parâmetros como forma de determinar sua eficiência. Alguns deles são a vazão, o tempo de retorno e a utilização da CPU. Explique cada um destes parâmetros.
- 6) Como se calcula o tempo médio de resposta de um algoritmo de escalonamento?
- 7) Cada processo alterna entre períodos de uso de 10) Ainda usando a tabela de processos da CPU e períodos de espera por E/S. Estes tempos podem se alterar no decorrer da execução, mas suponha que os processos mostrados na tabela abaixo, necessitam sempre da mesma quantidade de tempo de processador e sempre esperam a mesma quantidade de tempo no disco rígido (E/S), medidos em milissegundos.

Processo	<u>Uso de CPU</u>	<u>Uso de E/S</u>		
P1	200	300		
P2	500	300		
P3	100	300		
P4	150	300		
P5	50	300		

Suponha que o computador rodando estes processos tenha apenas um único processador de núcleo único. Em cada uma das situações abaixo, desenhe um gráfico ilustrando o primeiro segundo de uso dessa CPU (Empates são decididos pelo id do processo: o que tiver menor id vence)

- a) O algoritmo de escalonamento é FCFS (First Come First Served) e todos os processos são iniciados no mesmo instante.
- b) O algoritmo de escalonamento é SJF (Short-2) Cite as principais situações em que um Job-First) e todos os processos são iniciados no mesmo instante.
 - c) O algoritmo de escalonamento é FSFS e o processo P2 inicia 10 ms antes que todos os
 - d) O algoritmo de escalonamento é o SJF e o processo P2 inicia 10 ms antes que todos os demais.
 - e) O algoritmo de escalonamento é o SRTN (Shortest-Remaining-Time-Next) e todos os processos são iniciados no mesmo instante.
 - 9) Supondo que cada surto de uso de CPU por parte de um processo seja chamado de job, calcule o que se pede abaixo usando os dados da questão anterior:
 - a) Calcule a vazão em jobs/segundo em cada uma das situações
 - b) Calcule o tempo de retorno médio em milissegundos em cada uma das situações.
 - questão 7, suponha que um computador com único processador de único núcleo esteja com um SO usando algoritmo de escalonamento Round-Robin. (Se dois processos chegam no mesmo instante, o de menor identificador toma a frente.) Desenhe um gráfico ilustrando o primeiro segundo de uso dessa CPU seguindo cada uma das seguintes situações:
 - a) O quantum é de 120 ms e todos os processos chegam no mesmo instante.
 - b) O quantum é de 250 ms e todos os processos chegam no mesmo instante.
 - c) O quantum é de 80 ms e todos os processos chegam no mesmo instante.

- uma das situações da questão anterior.
- 12) Explique o funcionamento do algoritmo de escalonamento por prioridades. Qual seu principal problema? Há alguma forma de contornar este problema? Se sim, explique a estratégia utilizada.
- 13) As prioridades do algoritmo de escalonamento por prioridades podem ser definidas por razões internas ou externas. Explique diferença razões a entre estas exemplificando.
- 14) O algoritmo SJF (Shortest-Job-First) precisa estimar o tempo que um processo irá usar a CPU decidir que processo fará uso processador. Normalmente esse algoritmo utiliza uma abordagem chamada média exponencial. Suponha que um determinado processo utilizou o processador 4 vezes: na primeira vez precisou de 180 ms antes de pedir uma E/S; na segunda vez precisou de 200 ms; na terceira de 190 ms; e na quarta vez precisou de 240 ms. Qual a estimativa de tempo usada pelo algoritmo SJF para a próxima vez que esse processo entrar para fila dos prontos supondo que:

a) $\alpha = 0.5$

b) $\alpha = 0.7$

c) $\alpha = 0.3$

Obs: α é o valor que multiplica a última a medição de tempo e (1-α) é o valor que multiplica a última estimativa feita.

15) Suponha os seguintes processos ilustrados na tabela a seguir:

Processo	<u>Tempo de uso de CPU</u>	<u>Prioridade</u>
P1	10	3
P2	1	1
P3	2	4
P4	1	5
P5	5	2

Obs₁: O tempo de uso da CPU está em milissegundos

Obs2: Nenhum destes processos fazem E/S, eles simplesmente finalizam após seu uso de CPU.

Obs₃: O algoritmo de escalonamento usado é o 11) Calcule o tempo de resposta médio em cada escalonamento por prioridades, onde cada fila usa quantum igual a 5ms.

Obs4: Todos chegam no mesmo instante.

Obs₅: Empates são decididos pelo número do ID do processo (menor id, executa primeiro)

- a) Desenhe o Diagrama de Gantt (Diagrama de uso da CPU)
- b) Qual o tempo de espera médio desta situação?
- 16) Repita a questão anterior com as seguintes alterações:
- I) P1 e P5 são processos de background, logo possuem prioridade mais baixa igual a zero.
- II) P2, P3 e P4 são processos de foreground, logo possuem prioridade mais alta igual a um.
- do 17) Suponha o algoritmo de escalonamento de filas múltiplas com as seguintes regras:
 - todos os processos iniciam na primeira
 - todas as filas implementam algoritmo de Round-Robin
 - o quantum da primeira fila é igual a 3 ms e cada uma das demais possui quantum igual ao dobro da fila imediatamente acima
 - sempre que um processo esgota seu quantum, ele é interrompido e adicionado na fila de baixo
 - sempre que um processo libera a CPU antes do término do quantum, ele é adicionado na fila superior da próxima vez que voltar a fica no estado "Pronto"

Usando a mesma tabela da questão 15 e as observações 1 e 2 da questão, faça:

- a) desenhe o diagrama de Gantt da execução destes processos usando o algoritmo de filas múltiplas mencionado.
- b) calcule o tempo de resposta médio.
- 18) O algoritmo de escalonamento por loteria é bem peculiar, porém possui propriedades interessantes como poder dividir o tempo de uso do processador entre os processos segundo uma propoção bem definida. Como isso é obtido por este algoritmo?
- 19) Em um sistema de tempo real, um processo trata um evento de um dispositivo exatamente a

cada 200 ms. Cada evento precisa este processo?

os seguintes eventos mostrados na tabela:

		Tempo de CPU	
Processo	Período do evento	por evento	
P1	A cada 60 ms	20 ms	
P2	A cada 200 ms	40 ms	
Р3	A cada 100 ms	30 ms	
P4	A cada 10 ms	2 ms	

- a) Esse sistema de tempo real é escalonável?
- b1) Se sim, se quisermos adicionar um novo processo com eventos ocorrendo a cada 1 segundo, qual deve ser seu tempo limite para tratar o evento?
- b2) Se não, qual seria o processo que receberia mais atenção para ser otimizado ou removido nestas configurações.
- 21) A tabela abaixo ilustra o tempo de chegada dos processos ao estado de pronto em relação ao proceso P1, em segundos. A tabela mostra também o tempo que necessitam de uso do processador, também em segundos. Os processos finalizam após o uso da CPU.

Processo	Tempo de chegada	Tempo de uso de CPU
P1	0	40
P2	10	80
Р3	20	10
P4	20	20

Resolva os itens a seguir usando os algoritmos FCFS, SJF e SRTN.

- a) Desenhe o Diagrama de Gantt, que ilustra a ordem e tempo dos processos em uso na CPU nesta rodada.
- b) Qual o tempo de retorno médio do algoritmo nesta situação?

de 22) Alguns algoritmos de escalonamento de aproximadamente 80 ms para ser processado. processos estimam o tempo que um processo irá Qual a taxa de uso do processador para apenas utilizar a CPU utilizando medições de tempo nos usos anteriores. Uma forma de fazer este cálculo é através da média exponencial. A tabela abaixo 20) Um determinado sistema de tempo real trata mostra as medições de tempo de uso do processador por parte de um processo entre uma E/S e outra. Preencha a tabela calculando as estimativas de tempo usadas pelos algoritmos de escalonamentos (As estimativas iniciais são iguais a primeira medição). O parâmetro α controla a influência da nova medição na estimativa: quanto maior, maior a influência da nova medição.

Marcação do tempo (em ms)	92	100	107	89
Estimativa ($\alpha = 0.5$)	92			
Estimativa (α = 0,3)	92			
Estimativa (α = 0,7)	92			