PRODUIT SCALAIRE de l'espace

PROF: ATMANI NAJIB

Leçon: PRODUIT SCALAIRE dans l'espace

Présentation globale

- 1) Le produit scalaire de deux vecteurs dans l'espace
- 2) Vecteurs orthogonaux
- 3) Produit scalaire et norme
- 4) repère orthonormé de l'espace base orthonormé de l'espace
- 5) analytique du produit scalaire dans l'espace
- 6) L'ensemble des points dans l'espace tq: u.AM = k
- 7) Equation cartésienne d'un plan définie par un point et un vecteur normal
- 8) positions relatifs de deux plans dans l'espace
- 9) distance d'un point à un plan
- 10) Etude analytique de LA SPHERE

La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand *Hermann Grassmann* (1809 ; 1877), ci-contre.

Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853.

1) Le produit scalaire de deux vecteurs l'espace

<u>Définition 1</u>:Soit \vec{u} et \vec{v} deux vecteurs de l'espace. Et soient \vec{A} ; \vec{B} et \vec{C} trois points l'espace tel que : $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ le produit scalaire de \vec{u} et \vec{v} dans l'espace est le produit scalaire de \overrightarrow{AB} par \overrightarrow{AC} dans le plan

produit scalaire de \overrightarrow{AB} par \overrightarrow{AC} dans le plan \overrightarrow{ABC} , noté $\overrightarrow{u.v}$

<u>remarques:</u> 1) $\vec{u}.\vec{v}$ est un **nombre réel** définit par Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$ alors $\vec{u}.\vec{v} = \vec{0}$

Si $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$ alors soit *H* le projeté orthogonal

de C sur la droite (AB) et alors $\overrightarrow{u.v} = \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AH} \times \overrightarrow{AB}$ c a d

 $\overrightarrow{u.v} = \overrightarrow{AB}.\overrightarrow{AC} = AH \times AB$ si \overrightarrow{AB} et \overrightarrow{AH} ont le même sens

 $\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = -AH \times AB$ si \overrightarrow{AB} et \overrightarrow{AH} ont un sens contraire

2)toutes les propriétés du produit scalaire dans le plan sont aussi vraies dans l'espace

<u>Définition2</u>: Soit \vec{u} et \vec{v} deux vecteurs de l'espace.

On appelle <u>produit scalaire</u> de \vec{u} par \vec{v} , noté $\vec{u}.\vec{v}$, le nombre réel définit par :

 $\vec{u} \cdot \vec{v} = 0$, si l'un des deux vecteurs \vec{u} et \vec{v} est nul

 $-\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v}),$ dans le cas contraire.

 $\vec{u}.\vec{v}$ se lit " \vec{u} scalaire \vec{v} ".

2°Vecteurs orthogonaux

<u>Définition</u>:On dit que les vecteurs \vec{u} et \vec{v} sont orthogonaux dans l'espace si $\vec{u} \cdot \vec{v} = 0$

Et on écrit : $\vec{u} \perp \vec{v}$

<u>Exemples</u>: Soit ABCDEFGH un cube de côté a Calculer les produits scalaires suivants :

 $\overrightarrow{AF}.\overrightarrow{GC}$; $\overrightarrow{AF}.\overrightarrow{CD}$ et $\overrightarrow{DH}.\overrightarrow{DC}$ et $\overrightarrow{EH}.\overrightarrow{GC}$ et $\overrightarrow{AE}.\overrightarrow{DB}$

Réponse :1)calcul de $\overrightarrow{AF}.\overrightarrow{GC}$:on a : $\overrightarrow{GC} = \overrightarrow{EA}$ car ABCDEFG cube

$$\overrightarrow{AF}.\overrightarrow{GC} = \overrightarrow{AF}.\overrightarrow{EA} = -\overrightarrow{AF}.\overrightarrow{AE} = -AE \times AE = -a^2$$

(car E est le projeté

orthogonales de F sur (AE)

Puisque ABCD est un carré

on a :
$$\overrightarrow{CD} = \overrightarrow{BA}$$

donc:
$$\overrightarrow{AF}.\overrightarrow{CD} = \overrightarrow{AF}.\overrightarrow{BA} = -AB \times AB = -a^2$$

(car B est le projeté orthogonales de F sur (AB)

3)calcul de $\overrightarrow{DH}.\overrightarrow{DC}$: Puisque DCGH est un carré

on a :
$$\overrightarrow{DH}.\overrightarrow{DC} = 0 (\overrightarrow{DH} \perp \overrightarrow{DC})$$

4) calcul de $\overrightarrow{EH}.\overrightarrow{GC}$:

$$\overrightarrow{EH}.\overrightarrow{GC} = \overrightarrow{EH}.\overrightarrow{HD} = 0 \ (\overrightarrow{DH} \perp \overrightarrow{EH})$$

donc : $\overrightarrow{EH} \perp \overrightarrow{GC}$

5) calcul de $\overrightarrow{AE}.\overrightarrow{DB}$:

On a : $(AE) \perp (ABC)$ donc $(AE) \perp (DB)$ car

$$(DB) \subset (ABC)$$
 donc: $\overrightarrow{AE}.\overrightarrow{DB} = 0$

3) Produit scalaire et norme

3-1 <u>Définition:</u> Soit un vecteur \vec{u} de l'espace.et deux points A et B tels que $\vec{u} = \overrightarrow{AB}$.La <u>norme</u> du vecteur \vec{u} , notée $||\vec{u}||$ est la distance AB.

$$\left\| \overrightarrow{u} \right\| = \sqrt{\overrightarrow{u}^2} = \sqrt{\overrightarrow{u}.\overrightarrow{u}}$$

$$\vec{u}^2 = \left\| \vec{u} \right\|^2 = \overrightarrow{AB}^2 = \overrightarrow{AB}^2$$

3-2) propriétés

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} de l'espace., on a

1)
$$\vec{u}.\vec{v} = \vec{v}.\vec{u}$$

2) $\vec{u} \cdot (k\vec{v}) = k\vec{u} \cdot \vec{v}$, avec k un nombre réel.

3)
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

4)
$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2$$

5)
$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u}.\vec{v} + \vec{v}^2$$

6)
$$(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$$

$$|7) \| \vec{u} \| = 0 \Leftrightarrow \vec{u} = \vec{0}$$

8)
$$\|\vec{ku}\| = |\vec{k}| \|\vec{u}\|$$

9)
$$\vec{u}.\vec{v} = \frac{1}{2} (||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2)$$
 et

$$\vec{u}.\vec{v} = \frac{1}{2} \left(\left\| \vec{u} + \vec{v} \right\|^2 - \left\| \vec{u} \right\|^2 - \left\| \vec{v} \right\|^2 \right)$$

10)
$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$$

$$11) \begin{vmatrix} \vec{u} \cdot \vec{v} \end{vmatrix} \le ||\vec{u}|| \times ||\vec{v}||$$

12)Soit A, B et C trois points de l'espace.

On a:
$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$

<u>Application</u>: 1) Soit A , B et C des points de l'espace tel que $AB = \sqrt{5}$ et $\overrightarrow{AB.AC} = 3$

Calculer $(-2\overrightarrow{AB}).\overrightarrow{BC}$:

$$(-2\overrightarrow{AB}).\overrightarrow{BC} = -2\overrightarrow{AB}.(\overrightarrow{BA} + \overrightarrow{AC}) = -2\overrightarrow{AB}.\overrightarrow{BA} - 2\overrightarrow{AB}.\overrightarrow{AC}$$

$$=2\overrightarrow{AB}.\overrightarrow{AB}-2\overrightarrow{AB}.\overrightarrow{AC}=2\overrightarrow{AB^2}-2\times 3$$

$$=2AB^2-2\times3=2\times5-6=4$$

2) sachant que
$$\|\vec{u}\| = 2$$
 et $\|\vec{v}\| = 3$ et $\|\vec{u} + \vec{v}\| = 5$

Calculer : $\vec{u}.\vec{v}$:

On a:
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2) = \frac{1}{2} (5^2 - 4 - 9^2) = 6$$

4) repère orthonormé de l'espace base orthonormé de l'espace

Soit O un point de l'espace

On pose :
$$\vec{i} = \overrightarrow{0I}$$
 et $\vec{j} = \overrightarrow{0J}$ et $\vec{k} = \overrightarrow{0K}$

<u>Définition1</u>: on dit qu'un triplet $(\vec{i}; \vec{j}; \vec{k})$ de vecteur

dans l'espace est base orthonormé si et seulement si les vecteurs \vec{i} et \vec{j} et \vec{k} sont non coplanaires et normés et orthogonaux deux a

deux c a d: $\|\vec{i}\| = 1$ et $\|\vec{j}\| = 1$ et $\|\vec{k}\| = 1$ et $\vec{i} \cdot \vec{j} = 0$ et

$$\vec{j}.\vec{k} = 0$$
 et $\vec{i}.\vec{k} = 0$

<u>Définition2</u>: on dit que $\left(0;\vec{i};\vec{j};\vec{k}\right)$ est un repère orthonormé dans l'espace et seulement si $\left(\vec{i};\vec{j};\vec{k}\right)$ est une base orthonormé

Exemples:

(La figure représente un cube dans les trois cas)

Coordonnées d'un vecteur relativement à une base :

si $(\vec{i}; \vec{j}; \vec{k})$ est une base orthonormé et \vec{u} un vecteur de l'espace

Il existe un triplet unique (x ; y ; z) de réels tels que : $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$

Ce triplet (x ; y ; z) est appelé coordonnées du vecteur \vec{u} relativement à la base $(\vec{i}; \vec{j}; \vec{k})$

Voyons maintenant comment exprimer le produit scalaire dans l'espace à l'aide des coordonnées des vecteurs.

5) analytique du produit scalaire dans <u>l'espace :</u>

 $(\vec{i}; \vec{j}; \vec{k})$ Est une base orthonormé (dans tout ce qui va suivre)

Soient : $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et $\vec{v} = x'\vec{i} + y'\vec{j} + z'\vec{k}$ deux vecteurs de l'espace

$$\vec{u}.\vec{v} = \left(x\vec{i} + y\vec{j} + z\vec{k}\right)\left(x'\vec{i} + y'\vec{j} + z'\vec{k}\right)$$

$$\vec{u}.\vec{v} = xx'\vec{i}\vec{i} + yy'\vec{j}\vec{j} + zz'\vec{k}\vec{k} \operatorname{car} \vec{i}.\vec{j} = 0 \operatorname{et} \vec{j}.\vec{k} = 0 \operatorname{et} \vec{i}.\vec{k} = 0$$

$$\vec{u}.\vec{v} = xx \, tt + yy \, jj + zz \, kk \, car \, t.j = 0 \, et \, j.k = 0 \, et \, l.k = 0$$

 $\vec{u}.\vec{v} = xx' + yy' + zz' \, puisque: $||\vec{i}|| = 1 \, et \, ||\vec{j}|| = 1 \, et \, ||\vec{k}|| = 1$$

On a donc la propriété suivante :

Propriété :

Dans une base orthonormé on considère deux vecteurs $\vec{u}(x; y; z)$ et $\vec{v}(x'; y'; z')$ alors :

$$\vec{u}.\vec{v} = xx' + yy' + zz'$$
.
 $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$

Exemple: si, dans un repère orthonormé, on considère les vecteurs $\vec{u}(1;2;3)$ et $\vec{v}(5;-1;4)$ alors $\vec{u}.\vec{v}=1\times 5+2\times (-1)+3\times 4=15$ et $\|\vec{u}\|=\sqrt{1^2+2^2+3^2}=\sqrt{14}$.

Dans l'espace rapporté à un repère orthonormé, soient A et B de coordonnées respectives $(x_A; y_A; z_A)$ et $(x_B; y_B; z_B)$ alors

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

L'ensemble & des points

6) L'ensemble des points dans l'espace

 $\underline{\mathsf{tq}}: \vec{u}.\overrightarrow{AM} = k$

Propriété :

soit $\vec{u}(a;b;c)$ un vecteur et $A(x_A;y_A;z_A)$ un point de l'espace et $k \in \mathbb{R}$

L'ensemble des points M(x; y; z) dans l'espace tq : $\overrightarrow{u}.\overrightarrow{AM} = k$ c'est un plan d'équation qui s'écrit sous la forme : ax + by + cz + d = 0

Cette équation est appelée équation cartésienne du plan \mathscr{P} .

RPEUVE:
$$\overrightarrow{AM}(x-x_A; y-y_A; z-z_A)$$

 $\overrightarrow{u}.\overrightarrow{AM} = k \Leftrightarrow a(x-x_A) + b(y-y_A) + c(z-z_A) = k$
 $\Leftrightarrow ax+by+cz-(ax_A+by_A+cz_A+k) = 0$

L'ensemble des points dans l'espace tq : $\overrightarrow{u.AM} = k$ c'est un plan d'équation qui s'écrit sous

$$d = -(ax_A + by_A + cz_A + k)$$

la forme : ax + by + cz + d = 0 avec :

7) Equation cartésienne d'un plan definit par un point et un vecteur normal Définition :

Un vecteur non nul \vec{n} est dit **normal** au plan \mathscr{P} si, pour tous points A et Mde \mathscr{P} , on a $\vec{n}.\overrightarrow{AM} = 0$

Remarque : Il existe évidemment une infinité de vecteurs normaux à un plan : ce sont tous les vecteurs colinéaires au vecteur \vec{n} .

Propriété:

Un vecteur est dit normal à un plan si, et seulement si, il est orthogonal à deux vecteurs non colinéaires de ce plan.

Cette propriété va nous permettre d'une part de vérifier facilement qu'un vecteur est normal à un plan et, d'autre part, de déterminer les coordonnées d'un vecteur normal à un plan.

Démonstration:

La propriété directe découle de la définition. Nous n'allons donc prouver que la réciproque. Soient \vec{u} et \vec{v} deux vecteurs non colinéaires d'un plan \mathscr{P} , \vec{w} un vecteur de \mathscr{P} et \vec{n} un vecteur orthogonal à \vec{u} et \vec{v} . Il existe donc deux réels aet b tels que $\vec{w} = a\vec{u} + b\vec{v}$.

Ainsi $\vec{w} \cdot \vec{n} = a\vec{u} \cdot \vec{n} + b\vec{v} \cdot \vec{n} = 0$

Le vecteur \vec{n} est donc orthogonal à tous les vecteurs du plan \mathscr{P} . Il lui est par conséquent orthogonal.

Exemple1: On souhaite déterminer les coordonnées d'un vecteur \vec{n} normal à un plan dirigé par $\vec{u}(2,-1,3)_{\text{et}}$ $\vec{v}(4,0,2)_{\text{.}}$

Ces deux vecteurs ne sont clairement pas colinéaires : une coordonnée est nulle pour l'un mais pas pour l'autre.

On note $\vec{n}(x, y, z)$.

Puisque \vec{n} est normal au plan dirigé par \vec{u} et \vec{v} alors $\vec{u}.\vec{n}=0$ et $\vec{u}.\vec{n}=0$.

On obtient ainsi les deux équations 2x - y + 3z = 0 et 4x + 2z = 0

A l'aide de la deuxième équation, on obtient z=-2x. On remplace dans la première : $2x-y-6x=0 \Leftrightarrow -4x-y=0 \Leftrightarrow y=-4x$.

On choisit, par exemple x = 1et on trouve ainsi . $\vec{v}(1;-4;-2)$

On vérifie : $\vec{u}.\vec{n} = 2 + 4 - 6 = 0 \checkmark$ et $\vec{v}.\vec{n} = 4 + 0 - 4 = 0 \checkmark$.

Un vecteur normal au plan dirigé par les vecteurs \vec{u} et \vec{v} est $\vec{n}(1;-4;-2)$

Exemple2: Deux cubes d'arête 1, sont disposés comme indiqué sur la figure.

M est le milieu du segment [GK].

La droite (DL) est-elle perpendiculaire au plan (FMI)?

Solution : on se place dans le repère $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$ orthonormé

Voyons si \overrightarrow{DL} est un vecteur normal au plan (FMI) Il suffit de calculer: $\overrightarrow{DL} \cdot \overrightarrow{FM}$ et $\overrightarrow{DL} \cdot \overrightarrow{FI}$

On a: $\overrightarrow{DL} = -\overrightarrow{AD} + 2\overrightarrow{AB} + \overrightarrow{AE}$ donc: $\overrightarrow{DL}(2;-1;1)$

On a: $\overrightarrow{FM} = \overrightarrow{FG} + \overrightarrow{GM} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB}$ donc: $\overrightarrow{FM} \left(\frac{1}{2}; 1; 0 \right)$

On a: $\overrightarrow{FI} = \overrightarrow{FB} + \overrightarrow{BI} = -\overrightarrow{AE} + \overrightarrow{AB}$ donc: $\overrightarrow{FI}(1;0;-1)$

 $\overrightarrow{DL} \cdot \overrightarrow{FM} = 0$ et $\overrightarrow{DL} \cdot \overrightarrow{FI} = 1 \neq 0$

Donc : (DL) n'est pas perpendiculaire au plan (FMI)

Exercice1: ABCDEFGH un cube tel que : AB = 1 avec I le milieu du segment [EH] et J le milieu de [EF]

- 1)Montrer que $\overrightarrow{AG} \cdot \overrightarrow{EB} = 0$ et que $\overrightarrow{AG} \cdot \overrightarrow{ED} = 0$
- 2) En déduire que le vecteur \overrightarrow{EG} est normal au plan (BDE)
- 3) Montrer que les vecteurs \overrightarrow{FI} et \overrightarrow{CJ} sont orthogonaux
- 4)l'espace étant rapporté au repère $\left(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE}\right)$
- a) déterminer les coordonnées des points F : C : I et J
- B)Montrer que $\overline{FI} \cdot \overline{CJ} = 0$

et en déduire que \overrightarrow{FI} et \overrightarrow{CJ} sont orthogonaux

Propriété:

Soient a et b et c des réels tous nuls quelconque . L'ensemble (P) des points M(x;y;z) tels que ax+by+cz+d=0 est un plan dont un vecteur normal est $\vec{n}(a;b;c)$.

Exemple1 : On considère le plan d'équation 4x-2y+3z-1=0 . Un vecteur normal à ce plan

est $\vec{n}(4;-2;3)$. Le point A(2;-1;-3) appartient au plan car : $4 \times 2 - 2 \times (-1) + 3 \times (-3) - 1 = 0$.

Exemple2: On cherche une équation du plan \mathscr{P} passant par A(4;2;-3) dont un vecteur normal est $\vec{n}(1;-2;-1)$:

Une équation du plan \mathscr{P} est de la forme . x-2y-z+d=0

Le point A appartient au plan. Ses coordonnées vérifient donc l'équation :

$$4-2 \times 2 - (-3) + d = 0 \Leftrightarrow 3+d = 0 \Leftrightarrow d = -3$$

Une équation de \mathscr{P} est donc $x-2y-z-3=0$

Exemple3: ABCDEFGH un cube tel que : AB = 1 avec I le milieu du segment AE

On se place dans le repère $\left(A;\overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AE}\right)$

- 1) déterminer un vecteur normal au plan (CHI)
- 2) En déduire une équation cartésienne du plan $(\mathit{CHI}\,)$

Solution :1)soit un $\vec{n}(x; y; z)$ un vecteur normal au

$$plan (CHI) donc \begin{cases} \overrightarrow{n}.\overrightarrow{CH} = 0 \\ \overrightarrow{n}.\overrightarrow{CI} = 0 \end{cases}$$

On a :
$$\overrightarrow{CH}\left(-1;0;1\right)$$
 et $\overrightarrow{CI}\left(-1;-1;\frac{1}{2}\right)$

Donc:
$$\begin{cases} -x + z = 0 \\ -x - y + \frac{1}{2}z = 0 \end{cases} \Leftrightarrow \begin{cases} z = x \\ -x - y + \frac{1}{2}x = 0 \end{cases}$$

$$\begin{cases} z = x \\ y = -\frac{1}{2}x \end{cases}$$
 Puisque on veut un seul vecteur normal

Alors on donne par exemple : x = 2 on trouve

$$\begin{cases} z=2\\ y=1 \end{cases}$$
 donc un vecteur normal est $\vec{n}(2;-1;2)$

2)l'équation du plan s'écrit sous forme :

$$ax + by + cz + d = 0$$

Donc:
$$2x - y + 2z + d = 0$$

Et puisque : $C(1;1;0) \in (CIH)$ donc :

$$2-1+0+d=0 \Leftrightarrow d=-1$$

Donc:
$$(CIH)$$
: $2x - y + 2z - 1 = 0$

8) positions relatifs de deux plans dans l'espace

Proposition:

Soient: (P): ax + by + cz + d = 0 et (P)': a'x + b'y + c'z + d' = 0 deux plans dans l'espace Et $\vec{n}(a;b;c)$ et $\vec{n'}(a';b';c')$ deux vecteurs normaux respectivement a (P) et (P)'

- 1)Les plans (P) et $(P)^{'}$ sont parallèles ssi \vec{n} et $\vec{n}^{'}$ sont colinéaires
- 2)Les plans (P) et $(P)^{'}$ sont sécants ssi \vec{n} et $\vec{n}^{'}$ sont non colinéaires
- 3)Les plans (P) et (P)' sont perpendiculaires ssi \vec{n} et \vec{n}' sont orthogonaux

Exemple1 : On considère les plans d'équations :

$$(P)$$
 2x-4y+z+1=0 et (P') x+y+2z-3=0

- 1)Monter que : $(P) \perp (P')$
- 2)Déterminer l'équation cartésienne du plan (Q) parallèle au plan (P) passant par le point A(1;-1;1)

Solutions :1) $\vec{n}(2;-4;1)$ et $\vec{n'}(1;1;2)$ les deux

vecteurs normaux respectivement de (P) et (P)'

On a:
$$\vec{n} \cdot \vec{n'} = 2 - 4 + 2 = 0$$

Donc
$$\vec{n} \perp \vec{n'}$$
 par suite : $(P) \perp (P')$

2) $(P) \parallel (Q)$ et \vec{n} est normal a(P) donc est un vecteur normal a(Q)

Donc une équation cartésienne du plan (\mathcal{Q}) est :

$$2x - 4y + z + d = 0$$

Et puisque : $A(1;-1;1) \in (Q)$ donc :

$$2+4+1+d=0 \Leftrightarrow d=-7$$

Donc:
$$(Q)$$
: $2x-4y+z-7=0$

9) distance d'un point à un plan

Proposition:

Soient : $A(x_A; y_A; z_A)$ un point et(P) : ax+by+cz+d=0 un plan dans l'espace avec $(a;b;c)\neq (0;0;0)$ et H est le projeté orthogonal de A sur le plan

la distance du point A au plan (P) est la

distance AH et on a :
$$d(A;(P)) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Remarque : pour tout point M du plan (P) on a AH \leq AM

RPEUVE : $\vec{n}(a;b;c)$ est normal a(P) pour tout point M du plan on a $\vec{n}.\overrightarrow{AM} = \vec{n}.\overrightarrow{AH} \Leftrightarrow$

$$\Leftrightarrow a(x-x_A) + b(y-y_A) + c(z-z_A) = \|\vec{n}\| \times \|\overline{AH}\| \times \cos(\vec{n}; \overline{AH})$$

$$\Leftrightarrow ax + by + cz - ax_A - by_A - cz_A = \sqrt{a^2 + b^2 + c^2} \times \|\overline{AH}\| \times \cos(\vec{n}; \overline{AH})$$

Or
$$M \in (P)$$
 donc $ax + by + cz + d = 0$

Donc: ax + by + cz = -d

$$\Leftrightarrow -ax_A - by_A - cz_A = \sqrt{a^2 + b^2 + c^2} \times \left\| \overrightarrow{AH} \right\| \times \cos\left(\overrightarrow{n}; \overrightarrow{AH}\right)$$

$$\Leftrightarrow -ax_A - by_A - cz_A - d = \sqrt{a^2 + b^2 + c^2} \times \left\| \overrightarrow{AH} \right\| \times \left(\mp 1 \right)$$

$$\Rightarrow |-ax_A - by_A - cz_A - d| = \sqrt{a^2 + b^2 + c^2} \times AH \times |(\mp 1)|$$

$$\Rightarrow AH = \frac{\left| ax_A by_A cz_A + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$

Exercice: L'espace est muni d'un repère orthonormé $(\vec{i}; \vec{j}; \vec{k})$.

On considère le plan (P) d'équation

$$x + 2y - z - 1 = 0$$

1)Les points A(1;1;2) et B(2;1;1) appartiennent-ils au plan (P)?

2)Calculer la distance AB puis les distances de ces deux points A et B au plan (P).

3)Le point A est-il le projeté orthogonal de B sur le plan (P)?

Solution: $1+2\times 1-2-1=0$ donc les coordonnées du point A vérifient l'équation de. On en déduit que A appartient au plan (P) et donc que $:2+2\times 1-1-1=2\neq 0$

donc les coordonnées du point B ne vérifient pas l'équation de (P) On en déduit que B n'est pas un point de (P).

2)
$$AB = \sqrt{(2-1)^2 + 1(2-1)^2 + (1-2)^2} = \sqrt{2}$$

Calculons d(A;(P)) et d(B;(P)).

On a: $A \in (P)$ donc: d(A;(P)) = 0

$$d(B;(P)) = \frac{|2+2\times 1-1-1|}{\sqrt{1^2+2^2+(-1)^2}} = \frac{|2|}{\sqrt{6}} = \frac{\sqrt{6}}{3}$$

on a : $\overrightarrow{AB}(1;0;-1)$

3)Un vecteur normal au plan (P) est $\vec{n}(1;2;-1)$

Ces deux vecteurs ne sont pas colinéaires, donc \overrightarrow{AB} n'est pas orthogonal au plan (P).

Le point A n'est donc pas le projeté orthogonal de $\operatorname{B}\operatorname{sur}(P)$.

10) Etude analytique de LA SPHERE

Dans tout ce qui va suivre, l'espace euclidien (\mathcal{E}) est muni d'un repère $(O; \vec{i}; \vec{j}; \vec{k})$ orthonormé.

10-1) Définition d'une sphère.

Définition: Soit Ω un point dans l'espace (\mathcal{E}) , R et un réel positif. La sphère de centre Ω et de rayon R est l'ensemble des points M dans (\mathcal{E}) , tels que $\Omega M = R$

On la note par : $S(\Omega, R)$.

$$S(\Omega, R) = \{M \in \mathcal{E} / \Omega M = R\}$$

10-2) Equation cartésienne d'une sphère.

Soit $\Omega(a, b, c)$ un point dans l'espace et $r \ge 0$ $M(x, y, z) \in S(\Omega, R) \Leftrightarrow \Omega M = R$

$$\Leftrightarrow \Omega M^2 = R^2$$

$$\Leftrightarrow (x - x_{\Omega})^2 + (y - y_{\Omega})^2 + (z - z_{\Omega})^2 = R^2$$

Propriété:

Soit $\Omega(a, b, c)$ un point dans l'espace et $R \ge 0$, la sphère $S(\Omega, R)$ à une équation cartésienne de la forme : $(x - a)^2 + (y - b)^2 + (z - c)^2 = R^2$ (1)

Exemple:

1)Déterminer l'équation cartésienne de la sphère de centre $\Omega(1, -1,2)$ et de rayon R=3

2)Déterminer l'équation cartésienne de la sphère de centre $\Omega(0, -3.0)$ et qui passe par A(2.1, -1).

Solution: 1) l'équation cartésienne de la sphère

est:
$$(x-1)^2 + (y-(-1))^2 + (z-2)^2 = 3^2 \Leftrightarrow$$

 $(x-1)^2 + (y+1)^2 + (z-2)^2 = 9 \Leftrightarrow$

$$\Leftrightarrow x^2 + y^2 + z^2 - 2x + 2y - 4z - 3 = 0$$

2) $S(\Omega, R)$ la sphère de centre $\Omega(1, -2,0)$ et qui passe par A(2,1,-1).

Donc:
$$\Omega A = R$$

$$= \sqrt{(x_A - x_{\Omega})^2 + (y_A - y_{\Omega})^2 + (z_A - z_{\Omega})^2}$$

$$\Omega A = R = \sqrt{2^2 + 4^2 + (-1)^2} = \sqrt{21}$$

Donc l'équation cartésienne de la sphère est :

$$(x-0)^2 + (y-(-3))^2 + (z-0)^2 = \sqrt{21}^2 \Leftrightarrow$$

$$x^2 + (y+3)^2 + z^2 = 21 \Leftrightarrow x^2 + y^2 + z^2 + 6y - 12 = 0$$

10-3) REPRESENTATION PARAMETRIQUE D'UNE SPHERE

Proposition:

Soient : $S(\Omega;R)$ la sphère de centre $\Omega(a;b;c)$ et de rayon R

Le système
$$\begin{cases} x = a + R \sin \varphi \cos \theta \\ y = b + R \sin \varphi \sin \theta & (\varphi; \theta) \in \mathbb{R}^2 \\ z = c + R \cos \varphi \end{cases}$$

s'appelle une représentation paramétrique du sphère(S)

Exemple1: Déterminer une représentation paramétrique de la sphère de centre $\Omega(-1, 0,2)$ et de rayon R=3

Solution: Le système
$$\begin{cases} x = -1 + 3\sin\varphi\cos\theta \\ y = 3\sin\varphi\sin\theta \\ z = 2 + 3\cos\varphi \end{cases}$$

 $(\varphi;\theta) \in \mathbb{R}^2$ une représentation paramétrique de la sphère

Exemple2: Déterminer(S) L'ensemble des points M(x; y; z) tels que

$$\begin{cases} x = \frac{1}{2} + 2\sin\varphi\cos\theta \\ y = -1 + 2\sin\varphi\sin\theta \quad (\varphi; \theta) \in \mathbb{R}^2 \\ z = 1 + 2\cos\varphi \end{cases}$$

Solution :soit $M(x; y; z) \in (S)$

Donc:
$$\left(x - \frac{1}{2}\right)^2 + \left(y - (-1)\right)^2 + (z - 1)^2 =$$

= $(2\sin\varphi\cos\theta)^2 + (2\sin\varphi\sin\theta)^2 + (2\cos\varphi)^2$

$$= 4\sin\varphi^2(\cos\theta^2 + \sin\theta^2) + 4\cos\varphi^2$$

Donc:
$$\left(x - \frac{1}{2}\right)^2 + \left(y - (-1)\right)^2 + \left(z - 1\right)^2 = 2^2$$

(S) L'ensemble des points M(x; y; z) est donc la sphère de centre

 $\Omega(1/2, -1, 1)$ et de rayon R = 2

10-4 L'ensemble (S) des points M(x; y; z) tels

que:
$$x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$$

Proposition:

Soit : (S) L'ensemble des points M(x; y; z) de l'espace tel que :

$$x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$$
 avec $a:b:c$ et d des réelles

• Si : $a^2+b^2+c^2-d \succ 0$ alors (S) est une sphère de centre

 $\Omega(a;b;c)$ et de rayon $R = \sqrt{a^2 + b^2 + c^2 - d}$

• Si :
$$a^2+b^2+c^2-d=0$$
 alors $S = \{\Omega(a;b;c)\}$

• Si :
$$a^2+b^2+c^2-d \prec 0$$
 alors $S=\emptyset$

PREUVE : $M(x; y; z) \in (S) \Leftrightarrow$

$$\Leftrightarrow x^2 + y^2 + z^2 - 2ax - 2by - 2cz + d = 0$$

$$\Leftrightarrow x^2 - 2ax + a^2 + y^2 - 2by + b^2 + z^2 - 2cz + c^2 + d - a^2 - b^2 - c^2 = 0$$

$$\Leftrightarrow (x-a)^2 + (y-b)^2 + (z-c)^2 = a^2 + b^2 + c^2 - d = 0$$

• Si : $a^2+b^2+c^2-d > 0$ alors (S) est une sphère de centre

 $\Omega(a;b;c)$ et de rayon $R = \sqrt{a^2 + b^2 + c^2 - d}$

• Si :
$$a^2+b^2+c^2-d=0$$
 alors $S = \{\Omega(a;b;c)\}$

• Si :
$$a^2+b^2+c^2-d < 0$$
 alors $S = \emptyset$

Exemple : Déterminer(S) L'ensemble des points

M(x; y; z) dans les cas suivants :

1)
$$(S_1)$$
: $x^2 + y^2 + z^2 - 2x - 6y - 4z = 0$

2)
$$(S_2)$$
: $x^2 + y^2 + z^2 - 6x + 4y + 6z + 22 = 0$

3)
$$(S_3)$$
: $x^2 + y^2 + z^2 - 2x + 3y + z + 7 = 0$

Solution : 1)soit a=1 et b=3 et c=2 et d=0 $a^2+b^2+c^2-d=1+9+4=14$

Puisque
$$a^2 + b^2 + c^2 - d = 14 > 0$$

Donc : L'ensemble des points M(x; y; z) est donc

la sphère (S_1) de centre

 $\Omega(1, 3,2)$ et de rayon $R = \sqrt{14}$

2)
$$(S_2)$$
: $x^2 + y^2 + z^2 - 6x + 4y + 6z + 22 = 0$

$$M(x; y; z) \in (S_2)$$

$$\Leftrightarrow (x^2 - 6x) + (y^2 + 4y) + (z^2 + 6z) + 22 = 0 \Leftrightarrow$$

$$(x-3)^2+(y+2)^2+(z+3)^2=0$$

$$\Leftrightarrow x-3=0$$
 et $y+2=0$ et $z+3=0$

$$\Leftrightarrow x = 3$$
 et $y = -2$ et $z = -3$

alors
$$S_2 = \{\Omega(3, -2, -3)\}$$

3)
$$(S_3)$$
: $x^2 + y^2 + z^2 - 2x + 3y + z + 7 = 0$

$$M(x; y; z) \in (S_3)$$

$$\Leftrightarrow$$
 $(x^2-2x)+(y^2+3y)+(z^2+z)+7=0 \Leftrightarrow$

$$(x-1)^2 + \left(y + \frac{3}{2}\right)^2 + \left(z + \frac{1}{2}\right)^2 = -\frac{7}{2} \text{ alors } S_3 = \emptyset$$

10-5 L'ensemble (S) des points M(x; y; z)

tels que : MA.MB = 0

Proposition:

Soit: $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ deux points de

l'espace

L'ensemble (S) des points M(x; y; z) de l'espace

tel que : $\overrightarrow{MA}.\overrightarrow{MB} = 0$ est la sphère (S) d'équation

cartésienne :

$$(x-x_A)(x-x_B)+(y-y_A)(y-y_B)+(z-z_A)(z-z_B)=0$$

Avec [AB] un diamètre du sphère (S)

PREUVE: $M(x; y; z) \in (S) \Leftrightarrow \overline{MA.MB} = 0$

$$\Leftrightarrow$$
 $(\overrightarrow{MA} + \overrightarrow{AI}).(\overrightarrow{MI} + \overrightarrow{IB}) = 0 \Leftrightarrow (\overrightarrow{MA} - \overrightarrow{IA}).(\overrightarrow{MI} + \overrightarrow{IA}) = 0$

 $(\overrightarrow{IB} = -\overrightarrow{IA} \text{ Car I le milieu du segment } [AB]$

$$M \in (S) \Leftrightarrow MA^2 - IA^2 = 0 \Leftrightarrow MA = IA$$

Donc (S) est la sphère de centre le milieu du

segment [AB] et de rayon : IA

Soient les points : $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$ et

M(x; y; z)

$$\overrightarrow{MA}(x_A - x; y_A - y; z_A - z)$$
 et

$$\overrightarrow{MB}(x_B - x; y_B - y; z_B - z)$$

$$M \in (S) \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0 \Leftrightarrow$$

$$(x-x_A)(x-x_B)+(y-y_A)(y-y_B)+(z-z_A)(z-z_B)=0$$

C'est l'équation cartésienne de la sphère de diamètre [AB]

Exemple :Soit : A(-1;2;1) et B(1;-1;0) deux

points de l'espace

Déterminer l'ensemble (S) des points M(x; y; z)

de l'espace tel que : MA.MB = 0

Solution: (x+1)(x-1)+(y-2)(y+1)+(z-1)z=0

$$\Leftrightarrow x^2 - 1 + y^2 - y - 2 + z^2 - z = 0$$

$$\Leftrightarrow x^2 + y^2 + z^2 - y - z - 3 = 0$$

$$\Leftrightarrow x^2 + \left(y - \frac{1}{2}\right)^2 + \left(z - \frac{1}{2}\right)^2 = \frac{7}{2}$$

Donc (S) est la sphère de centre $\Omega\left(0; \frac{1}{2}; \frac{1}{2}\right)$ et de

rayon
$$R = \sqrt{\frac{7}{2}}$$

10-6) L'intersection d'une sphère (S) et une

droite(D)

Exemple1 : Soient(S) une sphère :

$$(S):(x-1)^2+(y-1)^2+(z-2)^2=9$$

et
$$(D)$$
 une droite :
$$\begin{cases} x = 1 - t \\ y = 1 + t \\ z = 1 + t \end{cases}$$

Étudier la position relative de la sphère et la droite

Solution:

$$M(x; y; z) \in (S) \cap (D) \Leftrightarrow \exists t \in \mathbb{R} / \begin{cases} x = 1 - t \\ y = 1 + t \\ z = 1 + t \\ (x - 1)^2 + (y - 1)^2 + (z - 2)^2 = 9 \end{cases}$$

Donc:
$$t^2+t^2+(t-1)^2=9 \Leftrightarrow 2t^2-2t-8=0$$

$$\Leftrightarrow t = 2$$
 ou $t = \frac{-4}{3}$

$$x = \frac{7}{3}$$
; $y = \frac{-1}{3}$; $z = \frac{-1}{3}$ ou $z = -1$; $y = 3$; $z = 3$

la droite(D) coupe la sphère(S) en deux points

$$A\left(\frac{7}{3}; \frac{-1}{3}; \frac{-1}{3}\right)$$
 et $B(-1; 3; 3)$

Exemple2 : Soient (S) une sphère :

$$x^2 + y^2 + z^2 - 2x - 4y + 2z = 0$$

et
$$(D)$$
 une droite :
$$\begin{cases} x = 2 + 3t \\ y = 4 + t \\ z = -2 + 5t \end{cases} (t \in \mathbb{R})$$

Étudier la position relative de la sphère et la droite

Solution:

$$M(x; y; z) \in (S) \cap (D) \Leftrightarrow \exists t \in \mathbb{R} / \begin{cases} x = 2 + 3t \\ y = 4 + t \\ z = -2 + 5t \\ x^2 + y^2 + z^2 - 2x - 4y + 2z = 0 \end{cases}$$

Donc:

$$(2+3t)^2 + (4+t)^2 + (-2+5t)^2 - 2(2+3t) - 4(4+t) + 2(-2+5t)t - 8 = 0$$

$$\Leftrightarrow 25t^2 = 0 \Leftrightarrow t = 0 \text{ Donc} : x = -2; y = 4; z = -2$$

la droite (D) coupe la sphère (S) en un seul point A(2;4;-2) on dit que la droite (D) est tangente à (S) en A(2;4;-2)

Exemple3: Soient(S) une sphère :

$$x^2 + y^2 + z^2 + 2x - 2y - 1 = 0$$

et
$$(D)$$
 une droite :
$$\begin{cases} x = -1 + t \\ y = 1 + 2t & (t \in \mathbb{R}) \\ z = 2 \end{cases}$$

Étudier la position relative de la sphère et la droite

Solution:

$$M(x; y; z) \in (S) \cap (D) \Leftrightarrow \exists t \in \mathbb{R} / \begin{cases} x = -1 + t \\ y = 1 + 2t \\ z = 2 \\ x^2 + y^2 + z^2 + 2x - 2y - 1 = 0 \end{cases}$$

Donc:
$$(-1+t)^2 + (1+2t)^2 + 2^2 + 2(-1+t) - 2(1+2t) - 1 = 0$$

 \Leftrightarrow 5 $t^2+1=0$ Pas de solutions

Donc la droite(D) et la sphère (S) n'ont pas de points en commun, l'intersection est vide.

Proposition:

Soient (D) une droite de l'espace et (S) une sphère de centre O et de rayon R, H le projeté orthogonal du point O sur la droite (D).

Notons d = OH:

Si d > R alors la droite(D) et la sphère (S) n'ont pas de points en commun, l'intersection est vide. Si d = R alors la droite (D) et la sphère (S) ont un unique point en commun et dans ce cas on dit que la droite (D) est tangente en H à (S)

Si d < R alors la droite (D) et la sphère (S) en deux points en commun A et B symétriques par rapport au point H, dans ce cas on dit que la droite (D) est sécante à (S). (OA = OB = R)

10-7) L'intersection d'une sphère(S) et un plan(P)

Proposition:

Soient (S) une sphère de centre O et de rayon R, (P) un plan de l'espace, nommons H le projeté orthogonal de O sur le plan (P) et d = OH, la distance du point O au plan (P).

Si d > R alors le plan (P) et la sphère (S)
 n'ont pas de points en commun, l'intersection est vide.

- Si d = R alors le plan (P) et la sphère (S) ont un unique point en commun et dans ce cas on dit que le plan (P) est tangent en H à (S)
- Si d < R alors l'ensemble des points commun au plan (P) et la sphère (S) est le cercle du plan (P) de centre H et de rayon $\sqrt{R^2-d^2}$ (Théorème de Pythagore), dans ce cas on dit le plan (P) est sécant à (S).

Exemple1 : Soient(S) une sphère :

$$x^2 + y^2 + z^2 - 2x - 2y - 14 = 0$$

Et le plan d'équation (P): 2x-y-z+5=0

Étudier la position relative de la sphère (S) et le plan(P)

Solution: Déterminons le centre et le rayon de la sphère :On a : $x^2 + y^2 + z^2 - 2x - 2y - 14 = 0$ donc $(S): (x-1)^2 + (y-1)^2 + z^2 = \sqrt{6^2}$

(S) est donc une sphère de centre $\Omega(1;1;0)$ et de rayon $R = \sqrt{6}$

Et puisque : $d(\Omega;(P)) = R = \sqrt{6}$

Alors le plan (P) et la sphère (S) ont un unique point en commun donc le plan (P) est tangent en H à (S)

Déterminons le point de tangence H qui est la projection de Ω sur le plan (P)

Soit $\vec{n}(2;-1;-1)$ Un vecteur normal à ce plan(P)

$$\exists k \in \mathbb{R} / \begin{cases} \overrightarrow{\Omega H} = k \overrightarrow{n} \\ H \in (P) \end{cases} \Leftrightarrow \begin{cases} x = 1 + 2k \\ y = 1 - k \\ z = -k \\ 2x - y - z + 5 = 0 \end{cases}$$

Donc: $2(1+2k)-(1-k)-(-k)+5=0 \iff k=-1$ Donc: x=-1; y=2; z=1 Donc H(-1;2;1)

Exemple2: Soient(S) une sphère :

$$x^2 + y^2 + z^2 - 2x + 2z + 1 = 0$$

Et le plan d'équation (P): x-y+z-3=0

Étudier la position relative de la sphère (S) et le plan(P)

Solution: Déterminons le centre et le rayon de la sphère :On a : $x^2 + y^2 + z^2 - 2x + 2z + 1 = 0$ donc $(S): (x-1)^2 + y^2 + (z+1)^2 = 1^2$

(S) est donc une sphère de centre $\Omega(1;0;-1)$ et de rayon R=1

Et puisque :
$$d(\Omega; (P)) = \frac{|1 - 0 - 1 - 3|}{\sqrt{1 + 1 + 1}} = \sqrt{3} > R$$

Alors le plan (P) et la sphère (S) n'ont pas de points en commun, l'intersection est vide.

Exemple3 : Soient (S) une sphère :

$$(S):(x-2)^2+(y-1)^2+(z+3)^2=9$$

Et le plan d'équation (P): 2x - y + 3z - 2 = 0

Étudier la position relative de la sphère (S) et le plan(P) **Solution** :(S) est donc une sphère de centre $\Omega(2;1;-3)$ et de rayon R=3

Et puisque : $d(\Omega;(P)) = \frac{|4-1-9-2|}{\sqrt{4+1+9}} = \frac{8}{\sqrt{14}} < R$

Alors la sphère (S) coupe le plan(P) suivant un cercle de centre H qui est la projection orthogonal du point Ω sur le plan (P) et de rayon

$$r = \sqrt{R^2 - d^2} = \sqrt{\frac{62}{14}}$$

Déterminons le centre H(x; y; z) du cercle

Soit n(2;-1;3) Un vecteur normal à ce plan (P)

$$\exists k \in \mathbb{R} / \begin{cases} \overrightarrow{\Omega H} = k \overrightarrow{n} \\ H \in (P) \end{cases} \Leftrightarrow \begin{cases} x = 2 + 2k \\ y = 1 - k \\ z = -3 + 3k \\ 2x - y + 3z - 2 = 0 \end{cases}$$

Donc:
$$2(2+2k)-(1-k)+3(-3+3k)-2=0$$

$$\Leftrightarrow k = \frac{4}{7} \text{ Donc} : x = \frac{22}{7}; y = \frac{3}{7}; z = -\frac{9}{7}$$

Donc
$$H(22/7; 3/7; -9/7)$$

10-8) le plan(P) tangent a une sphère(S) en un point:

Proposition:

Soient (S) une sphère de centre Ω et $A \in (S)$

Il existe un plan (P) unique de l'espace tangent a la sphère en A et définie par :

$$M \in (P) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{A\Omega} = 0$$

Exemple: Soie (S) une sphère:

$$(S): x^2 + y^2 + (z+2)^2 = 3$$

Et soit le point A(1;-1;-1)

Vérifier que $A \in (S)$ et Déterminer l'équations cartésienne du plan (P) tangent a la sphère (S) en A

Solution:
$$1^2 + (-1)^2 + (-1+2)^2 = 1+1+1=3$$

donc $A \in (S)$

 $\Omega(0;0;-2)$ est le centre de la sphère (S) et de

rayon R = 3Et on a : $\overrightarrow{A\Omega}(-1;1;-1)$

Donc: $M(x; y; z) \in (P) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{A\Omega} = 0$

$$\Leftrightarrow$$
 $-(x-1)+(y+1)-(z+1)=0$

Donc l'équation de : (P): x-y+z-1=0

Exercice1: on considère les plans d'équations respectives (P) x - y + z = 0 et (Q)

$$2x + 3y + z - 6 = 0$$

et la sphère (S) de centre $\Omega(1;2;4)$ et tangente au plan (P) et soit la droite (Δ) qui passant par Ω et perpendiculaire au plan (Q)

- 1) monter que les plans (P) et (Q) sont orthogonaux
- 2)a) déterminer l'équation cartésienne de la sphère (S)
- b) déterminer le point de tangence de (P) et (S)
- 3)a) déterminer le point d'intersection de (Δ) et (Q)
- b) Montrer que le plan (Q) coupe la sphère (S)suivant une cercle dont on déterminera le centre et le rayon

Solutions :1)On a : $\vec{n}(1;-1;1)$ Un vecteur normal

à (P) et $\vec{n}'(2;3;1)$ Un vecteur normal à (P)

Et on a :
$$\vec{n} \cdot \vec{n}' = 1 \times 2 + (-1) \times 3 + 1 \times 1 = 0$$

Donc $\vec{n} \perp \vec{n'}$ donc (P) et (Q) sont orthogonaux

2)a)puisque la sphère (S) est tangente

au plan (P) Alors : $d(\Omega;(P)) = R$

Et on a :
$$d(\Omega; (P)) = \frac{|1-2+4|}{\sqrt{1^2+(-1)^2+1^2}} = \sqrt{3}$$

Donc: $R = \sqrt{3}$

Donc l'équation cartésienne de la sphère (S)

est:
$$(S):(x-1)^2+(y-2)^2+(z-4)^2=3$$

2)b) le point de tangence H de (P) et (S) est la projection orthogonal Ω sur le plan (P)

donc H est le point d'intersection entre la droite (D) perpendiculaires a (P) passant par Ω et on a : $\vec{n}(1;-1;1)$ Un vecteur normal à (P) donc c'est un vecteur directeur de la droite (D) la représentation paramétrique de (D)est

$$(D): \begin{cases} x = 1 + t \\ y = 2 - t & (t \in \mathbb{R}) \\ z = 4 + t \end{cases}$$

$$H \in (D) \cap (P)$$
 Donc: $(1+t)-(2-t)+4+t=0$
 $\Leftrightarrow t=-1$ donc: $H(0;3;3)$

3)a) puisque $(\Delta) \perp (Q)$ alors :

 $\vec{n}(1;-1;1)$ Un vecteur directeur de (Δ)

Et on a : $\Omega \in (\Delta)$ donc la représentation

paramétrique de
$$(\Delta)$$
 est (Δ) :
$$\begin{cases} x = 1 + 2t \\ y = 2 + 3t & (t \in \mathbb{R}) \\ z = 4 + t \end{cases}$$

$$W(x; y; z) \in (\Delta) \cap (Q)$$

donc:
$$2(1+2t)+3(2+3t)+4+t-6=0$$

$$\Leftrightarrow t = -\frac{3}{7} \text{ donc}: W\left(\frac{1}{7}; \frac{5}{7}; \frac{18}{7}\right)$$

3°b) Montrons que le plan (Q) coupe la sphère (S) suivant une cercle dont on déterminera le centre et le rayon

on a:
$$d(\Omega;(Q)) = \frac{|2+6+4-6|}{\sqrt{2^2+3^2+1^2}} = \frac{6}{\sqrt{13}} < \sqrt{3}$$

le plan (Q) coupe la sphère (S) suivant une cercle de centre H qui est la projection orthogonal du point Ω sur le plan (Q)

et puisque (Δ) passe par Ω est perpendiculaires

a (Q) en W alors $W\left(\frac{1}{7}; \frac{5}{7}; \frac{18}{7}\right)$ est le centre du

cercle (C) et le rayon du cercle (C) est $r = \sqrt{R^2 - d^2}$

avec
$$d = d(\Omega;(Q))$$
 Donc: $r = \sqrt{\frac{3}{13}}$

Exercice2: on considère l'ensemble (S_m) des points M(x; y; z) de l'espace qui vérifient l'équations :

$$(S_m)$$
: $mx^2 + my^2 + mz^2 - 2(m-1)x + 2y + 2z = 0$

Avec m un paramètre non nul

- 1) monter que (S_m) est une sphère pour tout $m \in \mathbb{R}^*$
- 2) monter que tous les sphères se coupent suivant un seul cercle dont on déterminera le centre et le rayon

Solution : 1) $mx^2 + my^2 + mz^2 - 2(m-1)x + 2y + 2z = 0 \Leftrightarrow$

$$\Leftrightarrow x^2 + y^2 + z^2 - 2\left(\frac{m-1}{m}\right)x + \frac{2}{m}y + \frac{2}{m}z = 0$$

$$\Leftrightarrow x^2 + y^2 + z^2 - 2\left(1 - \frac{1}{m}\right)x + \frac{2}{m}y + \frac{2}{m}z = 0$$

$$\Leftrightarrow \left(x-1+\frac{1}{m}\right)^2 + \left(y+\frac{1}{m}\right)^2 + \left(z+\frac{1}{m}\right)^2 - \left(1-\frac{1}{m}\right)^2 - \frac{2}{m^2} = 0$$

$$\Leftrightarrow \left(x-1+\frac{1}{m}\right)^2 + \left(y+\frac{1}{m}\right)^2 + \left(z+\frac{1}{m}\right)^2 = \left(1-\frac{1}{m}\right)^2 + \frac{2}{m^2}$$

Et puisque :
$$\left(1 - \frac{1}{m}\right)^2 + \frac{2}{m^2} > 0$$

Alors : (S_m) est une sphère pour tout $m \in \mathbb{R}^*$

de centre
$$\Omega_m \left(1 - \frac{1}{m}; -\frac{1}{m}; -\frac{1}{m}\right)$$
 et de rayon

$$R_m = \sqrt{\left(1 - \frac{1}{m}\right)^2 + \frac{2}{m^2}}$$

2) soit
$$M(x; y; z) \in (S_m) \quad \forall m \in \mathbb{R}^*$$

Donc:
$$mx^2 + my^2 + mz^2 - 2(m-1)x + 2y + 2z = 0 \Leftrightarrow$$

$$m(x^2 + y^2 + z^2 - 2x) + (2x + 2y + 2z) = 0 : \forall m \in \mathbb{R}^* \Leftrightarrow$$

$$\begin{cases} x^2 + y^2 + z^2 - 2x = 0 \\ 2x + 2y + 2z = 0 \end{cases} \Leftrightarrow \begin{cases} (x - 1)^2 + y^2 + z^2 = 1 \\ 2x + 2y + 2z = 0 \end{cases}$$

Donc le cercle chercher et l'intersection entre :

la sphère(S): $(x-1)^2 + y^2 + z^2 = 1$ et le plan(P):

$$2x + 2y + 2z = 0$$

en effet le cercle existe car :

$$d\left(\Omega;\left(Q\right)\right) = \frac{\left|1+0+0\right|}{\sqrt{1^2+1^2+1^2}} = \frac{1}{\sqrt{3}} < 1$$

le centre H du cercle est l'intersection entre (P) et la droite (Δ) qui passe par Ω est perpendiculaires a (P) et puisque $(\Delta) \perp (P)$ alors : $\vec{n}(1;1;1)$ Un vecteur directeur de (Δ) Et on a : $\Omega \in (\Delta)$ donc la représentation paramétrique de (Δ) est

$$\begin{cases} x = 1 + t \\ y = t \\ z = t \end{cases} \quad (t \in \mathbb{R})$$

$$H(x; y; z) \in (\Delta) \cap (P)$$

donc: (1+t)+t+t=0

$$\Leftrightarrow t = -\frac{1}{3} \text{ donc}: H\left(\frac{2}{3}; -\frac{1}{3}; -\frac{1}{3}\right)$$

et le rayon du cercle (C) est :

$$r = \sqrt{R^2 - d^2} = \sqrt{\frac{2}{3}}$$

Donc : tous les sphères se coupent suivant le cercle(C)

Exo2: dans l'espace (\mathcal{E}) est muni d'un repère $(0; \vec{i}; \vec{j}; \vec{k})$ orthonormé On considère les plan (P_m) d'équations x+y-z-m=0 avec m paramètre réel Et la sphère (S) de centre $\Omega(1;2;1)$ et le rayon $C_m\left(\frac{m+1}{3};\frac{m+4}{3};\frac{-m+5}{3}\right)$ et le rayon est : $R = \sqrt{3}$

1)Etudier et discuter suivant le paramètre m la position relative de la sphère (S) et les plan (P_m) 2)soit (E) l'ensemble des réels m tels que : (P_m) coupe la sphère (S) suivant un cercle (C_m) Déterminer l'ensemble des centres des cercles (C_m) lorsque m varie dans (E)

Solution: 1)
$$(P_m)$$
: $x + y - z - m = 0$

$$d_m = d(\Omega; (P_m)) = \frac{|1 + 2 - 1 - m|}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{|2 - m|}{\sqrt{3}}$$

$$\Leftrightarrow |2 - m| < 3 \Leftrightarrow -3 < 2 - m < 3 \Leftrightarrow -5 < -m < 1$$

$$\Leftrightarrow -1 < m < 5$$

le plan (P_m) coupe la sphère (S) suivant des cercles de centre C_m qui est la projection orthogonal du point Ω sur le plan (P_m)

soit (Δ) la doite qui passe par Ω est perpendiculaires a (P_m) et puisque $(\Delta) \perp (P_m)$ alors : n(1;1;-1) Un vecteur directeur de (Δ) Et on a : $\Omega \in (\Delta)$ donc la représentation

paramétrique de
$$(\Delta)$$
 est
$$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 1 - t \end{cases}$$

le centre C_m est le point d'intersection de (Δ) et (P_m)

x = 1 + ton va donc résoudre le system $\begin{cases} y = 2 + t \end{cases}$ |x+y-z-m=0|

 $1+t+2+t-(-t+1)-m=0 \Leftrightarrow 3t+2-m=0$ $\Leftrightarrow t = \frac{m-2}{2}$ donc les coordonnées du centre du cercle

d'intersection est
$$\begin{cases} x = 1 + \frac{m-2}{3} = \frac{m+1}{3} \\ y = 2 + \frac{m-2}{3} = \frac{m+4}{3} \\ z = 1 - \frac{m-2}{3} = \frac{-m+5}{3} \end{cases}$$

$$C_m\left(\frac{m+1}{3}; \frac{m+4}{3}; \frac{-m+5}{3}\right)$$
 et le rayon est

et le rayon du cercle (C) est :

$$r = \sqrt{R^2 - d_m^2} \text{ avec } d_m = \frac{|2 - m|}{\sqrt{3}} \text{ et } R = \sqrt{3}$$

$$r_m = \sqrt{3 - \left(\frac{|2 - m|}{\sqrt{3}}\right)^2} \Leftrightarrow r_m = \sqrt{3 - \left(\frac{|2 - m|}{\sqrt{3}}\right)^2}$$

$$\Leftrightarrow r_m = \sqrt{\frac{9 - (2 - m)^2}{3}} = \sqrt{\frac{9 - (m^2 - 4m + 4)}{3}} = \sqrt{\frac{-m^2 + 4m + 5}{3}}$$

2cas: Si
$$d(\Omega; (P_m)) = \sqrt{3} \Leftrightarrow \frac{|2-m|}{\sqrt{3}} = \sqrt{3}$$

 $\Leftrightarrow |2-m| = 3 \Leftrightarrow 2-m = 3 \text{ ou } 2-m = -3$

$$\Leftrightarrow m = -1$$
 ou $m = 5$

la sphère (S) de centre $\Omega(1;2;4)$ et tangente au plan (P_m)

si m=-1: le point de tangence T_1 est est le point d'intersection de (Δ) et (P_{-1})

on va donc résoudre le system
$$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 1 - t \\ x + y - z + 1 = 0 \end{cases}$$

$$1+t+2+t-(-t+1)+1=0 \Leftrightarrow 3t+2+1=0$$

 $\Leftrightarrow t = -1$ donc les coordonnées du point de

tangence est
$$\begin{cases} x = 0 \\ y = 1 \text{ donc } T_1(0;1;2) \\ z = 2 \end{cases}$$

si m=5: le point de tangence T_2 est est le point d'intersection de (Δ) et (P_5)

on va donc résoudre le system
$$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 1 - t \\ x + y - z - 5 = 0 \end{cases}$$

$$1+t+2+t-(-t+1)-5=0 \Leftrightarrow 3t+2-5=0$$

 $\Leftrightarrow t=1$ donc les coordonnées du point de

tangence est
$$\begin{cases} x = 2 \\ y = 3 \text{ donc } T_2(2;3;0) \\ z = 0 \end{cases}$$

3cas: Si
$$d(\Omega; (P_m)) \succ \sqrt{3} \Leftrightarrow \frac{|2-m|}{\sqrt{3}} \succ \sqrt{3}$$

 $\Leftrightarrow |2-m| \succ 3 \Leftrightarrow 2-m \succ 3 \text{ ou } 2-m \prec -3$
 $\Leftrightarrow m \prec -1 \text{ ou } m \succ 5$
 $(P_m) \cap (S) = \emptyset$

2) les coordonnées des centres des cercles

d'intersections sont
$$\begin{cases} x = \frac{m+1}{3} \\ y = \frac{m+4}{3} & \text{et } -1 < m < 5 \\ z = \frac{-m+5}{3} \end{cases}$$

c'est une portion de droite

Exo3: dans l'espace (\mathcal{E}) est muni d'un repère $(0; \vec{i}; \vec{j}; \vec{k})$ orthonormé on considère l'ensemble

$$(S_m)$$
 des points $M(x; y; z)$ tq: (S_m) :
 $x^2 + y^2 + z^2 + mx + 2(m-1)y + (m+4)z + 1 = 0$

avec m paramètre réel

- 1)Montrer que (S_m) est une sphère $\forall m \in \mathbb{R}$
- 2)Déterminer l'ensemble des centres des (S_m) lorsque m varie dans \mathbb{R}
- 3)Montrer qu'il existe un cercle (C) incluse dans tous les sphères $(S_m) \forall m \in \mathbb{R}$ et Déterminer le plan (P) qui contient ce cercle (C)
- 4)Soit un point $M_0(x_0; y_0; z_0)$ dans l'espace tq $M_0 \notin (P)$

Montrer qu'il existe une sphère unique qui passe par M_0

5)Montrer qu'il existe deux sphères (S_m) tangentes au plan (O; x; y)

Solution: 1)

$$x^{2} + y^{2} + z^{2} + mx + 2(m-1)y + (m+4)z + 1 = 0$$

$$\Leftrightarrow x^2 + y^2 + z^2 + 2\frac{m}{2}x + \left(\frac{m}{2}\right)^2 - \left(\frac{m}{2}\right)^2 + 2(m-1)y + (m-1)^2 - (m-1)^2$$

$$+2\left(\frac{m+4}{2}\right)z+\left(\frac{m+4}{2}\right)^2-\left(\frac{m+4}{2}\right)^2+1=0$$

$$\Leftrightarrow \left(x + \frac{m}{2}\right)^2 + \left(y + m - 1\right)^2 + \left(z + \frac{m + 4}{2}\right)^2 = \left(\frac{m}{2}\right)^2 + \left(\frac{m + 4}{2}\right)^2 + \left(m - 1\right)^2 - 1$$

$$\Leftrightarrow \left(x + \frac{m}{2}\right)^2 + \left(y + m - 1\right)^2 + \left(z + \frac{m + 4}{2}\right)^2 = \frac{4\left(m - 1\right)^2 + \left(m + 4\right)^2 + m^2 - 4}{4}$$

$$\Leftrightarrow \left(x + \frac{m}{2}\right)^2 + \left(y + m - 1\right)^2 + \left(z + \frac{m + 4}{2}\right)^2 = \frac{6m^2 + 16}{4} = R^2$$

Et puisque : $\frac{6m^2+16}{4} > 0$

Alors : (S_m) est une sphère pour tout $m \in \mathbb{R}$

de centre $\Omega_m \left(-\frac{m}{2}; 1-m; -\frac{m+4}{2} \right)$ et de rayon

$$R_m = \sqrt{\frac{6m^2 + 16}{4}} = \frac{1}{2}\sqrt{6m^2 + 16}$$

2)Déterminons l'ensemble des centres des (S_m) lorsque m varie dans $\mathbb R$

les coordonnées des centres des cercles

d'intersections sont
$$\begin{cases} x = -\frac{1}{2}m \\ y = -m+1 \quad (m \in \mathbb{R}) \end{cases}$$
$$z = -\frac{1}{2}m-2$$

c'est une droite de vecteur directeur

$$\vec{u}\left(-\frac{1}{2};-1;-\frac{1}{2}\right)$$
 et qui passe par $A(0;1;-2)$

3)Montrons qu'il existe un cercle (C)incluse dans tous les sphères $(S_m) \forall m \in \mathbb{R}$:

$$x^{2} + y^{2} + z^{2} + mx + 2(m-1)y + (m+4)z + 1 = 0$$

$$\Leftrightarrow x^2 + y^2 + z^2 + mx + 2my - 2y + mz + 4z + 1 = 0$$

$$\Leftrightarrow x^2 + y^2 + z^2 - 2y + 4z + 1 + m(x + 2y + z) = 0 \quad \forall m \in \mathbb{R}$$

$$\Leftrightarrow \begin{cases} (S): x^2 + y^2 + z^2 - 2y + 4z + 1 = 0 \\ (P): x + 2y + z = 0 \end{cases}$$

Donc le cercle chercher et l'intersection entre :

la sphère(S):
$$x^2 + (y-1)^2 + (z+2)^2 = 2^2$$
 et le plan

$$(P): x+2y+z=0$$

en effet le cercle existe car : $\Omega(0;1;-2)$

$$d(\Omega;(P)) = \frac{|0+2-2|}{\sqrt{1^2+1^2+1^2}} = 0 < 2 \text{ donc } \Omega \in (P)$$

donc le centre du cercle (C) est : $\Omega(0;1;-2)$

et le rayon est : R = 2

et tous les sphères se coupent suivant le cercle(C)

et le plan (P) qui contient ce cercle (C) est :

$$(P): x+2y+z=0$$

4) soit $M_0(x_0; y_0; z_0)$ dans l'espace tq $M_0 \notin (P)$:

$$x+2y+z=0$$
 donc $x_0+2y_0+z_0\neq 0$

Montrons qu'il existe une sphère unique qui passe par M_0 : c d a l'existence d'un unique m?

$$M_0 \in (S) \Leftrightarrow x_0^2 + y_0^2 + z_0^2 + mx_0 + 2(m-1)y_0 + (m+4)z_0 + 1 = 0$$

$$M_0 \in (S) \Leftrightarrow x_0^2 + y_0^2 + z_0^2 + mx_0 + 2(m-1)y_0 + (m+4)z_0 + 1 = 0$$

$$\Leftrightarrow x_0^2 + y_0^2 + z_0^2 - 2y_0 + 4z_0 + 1 + m(x_0 + 2y_0 + z_0) = 0$$

$$\Leftrightarrow m(x_0 + 2y_0 + z_0) = -(x_0^2 + y_0^2 + z_0^2 - 2y_0 + 4z_0 + 1)$$

$$\Leftrightarrow m = \frac{-\left(x_0^2 + y_0^2 + z_0^2 - 2y_0 + 4z_0 + 1\right)}{x_0 + 2y_0 + z_0}$$

6)Montrons qu'il existe deux sphères (S_m) tangentes au plan (O; x; y):

L'équation du plan : (O; x; y) est : z = 0 donc

$$d\left(\Omega_m; (O; x; y)\right) = \frac{1}{2}\sqrt{6m^2 + 16} \Leftrightarrow \frac{\left|-\frac{m+4}{2}\right|}{\sqrt{1}} = \frac{1}{2}\sqrt{6m^2 + 16}$$

$$\Leftrightarrow |m+4| = \sqrt{6m^2 + 16} \Leftrightarrow (m+4)^2 = 6m^2 + 16$$

$$\Leftrightarrow m^2 + 8m + 16 = 6m^2 + 16$$

$$\Leftrightarrow 5m^2 - 8m = 0 \iff m(5m - 8) = 0$$

$$\Leftrightarrow m = 0$$
 ou $m = \frac{8}{5}$ donc il existe deux sphères

 (S_m) tangentes au plan(O; x; y):

$$(S_0)$$
: $x^2 + y^2 + z^2 - 2y + 4z + 1 = 0$

$$\left(S_{\frac{8}{5}}\right)$$
: $x^2 + y^2 + z^2 + \frac{8}{5}x + 2\left(\frac{8}{5} - 1\right)y + \left(\frac{8}{5} + 4\right)z + 1 = 0$

Cad:
$$x^2 + y^2 + z^2 + \frac{8}{5}x + \frac{6}{5}y + \frac{28}{5}z + 1 = 0$$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

Prof: Atmani najib

