

FMC: Formalization of Natural Language Mathematical Competition Problems

Jiaxuan Xie, Chengwu Liu, Ye Yuan, Siqi Li, Zhiping Xiao[©], Ming Zhang[©]
Correspondence to: Zhiping Xiao<patxiao@uw.edu >, Ming Zhang<mzhang_cs@pku.edu.cn>,
First Author: Jiaxuan Xie<xiejiaxuan@stu.pku.edu.cn>

Our Main Pipeline

Formal Translation: Translate mathematical problems stated in natural language into formal expressions in Lean, using few-shot prompting initially and incorporating error feedback in the second round.

Formal Verification: Submit each translated formal theorem to Lean4 via DeepSeek-Prover's REPL interface to verify its syntax, and also use error feedback to refine prompts iteratively.

Back Translation: Back-translate formalized theorems into natural language to make semantic alignment checks more effective than directly comparing them with the original statements. **Consistency Check:** Verify whether the backtranslated natural language theorem is mathematically consistent with the original theorem semantically.

Dataset Construction

Data Collection: collect **Olympiad level** math problems from IMOmath website, web crawling + OCR (Mathpix) + extracting statements

Data Preprocessing: excluding geometry problems + splitting problems with multiple goals

Data Construction: pass all data through our formalization pipeline

Table 1. The result of formalization.			
CLASS	Number	RATIO	
TOTAL	4798	100%	
FORMAL VERIFICATION	4481	93.39%	
PASS AT ONE GO	4287	89.35%	
PASS WITH ERROR FEEDBACK	194	4.04%	
CONSISTENCY CHECK	3922	81.74%	
PASS AT ONE GO	3631	75.68%	
PASS WITH ERROR FEEDBACK	291	6.07%	

Experiments

Autoformalization Capability of Different LLMs

DeepSeek-R1 at the forefront

Table 2. Model cross-validation results. The cell format is: Formal verification pass rate/consistency check pass rate.

FORMALIZATION MODEL	CONSISTENCY CHECK MODEL		
TOKUMELEMITON MOBEL	DEEPSEEK-R1	GPT-40-MINI	CLAUDE 3.7 SONNET
DEEPSEEK-R1	58% / 43%	58% / 31%	58% / 54%
GPT-40-MINI	34% / 10%	34% / 11%	34% / 22%
CLAUDE 3.7 SONNET	31% / 22%	31% / 14%	31% / 27%

Table 4. Evaluation matrix for consistency checks of different models. Experiments were based on formalization model Deepseek-R1.

MODEL NAME	ACCURACY	PRECISION	RECALL	F1 SCORE
DEEPSEEK-R1	74.1%	69.8%	93.8%	80.0%
GPT-40-MINI	74.1%	77.4%	75.0%	76.2%
CLAUDE-3-7	58.6%	57.4%	96.9%	72.1%

Testing as a Benchmark for Automated Theorem Provers

Table 8. Test results of different automated theorem provers. Each verification task was evaluated over 32 runs on 1,000 randomly sampled formal problems.

DATASET	KIMINA-PROVER	GOEDEL-PROVER	DEEPSEEK-PROVER-V1.5-RL
MINIF2F	63.1%	57.6%	50.0%
PROOFNET	-	15.2%	16.0%
FORMALMATH	16.5%	13.5%	10.2%
FMC	16.4%	15.7%	13.0%

Conclusions:

- Autoformalization Pipeline: A fully automated, training-free formalization framework enhanced with error feedback.
- FMC Dataset: A dataset of 3,922 Olympiad level natural language problems aligned with 9,787 Lean statements.
- Autoformalization Capbilities: Evaluate formalization and reasoning capabilities of multiple LLMs.
- SoTA Provers Evaluation: Three automated theorem provers are tested on the FMC dataset.

Feel free to use our work!

Dataset

Code

Paper