- 1. 斐波那契数列的递归次数:
- a. 求递推公式

可以通过一个二叉树来表示斐波那契数列的组成

$$T\left(n\right) = \begin{cases} 1 & \left(n=0\right) \\ 1 & \left(n=1\right) \\ T\left(n-1\right) + T\left(n-2\right) & \left(n>2\right) \end{cases}$$

因此可以很快求得总的节点数,就是 2^n-1 次;

所以 1-46 次递归分别是

1	1
2	3
3	7
4	15
5	31
6	63
7	127
8	255
9	511
10	1023
11	2047
12	4095
13	8191

14	16383
15	32767
16	65535
17	131071
18	262143
19	524287
20	1048575
21	2097151
22	4194303
23	8388607
24	16777215
25	33554431
26	67108863
27	1.34E+08
28	2.68E+08
29	5.37E+08
30	1.07E+09
31	2.15E+09
32	4.29E+09
33	8.59E+09
34	1.72E+10
35	3.44E+10
36	6.87E+10
37	1.37E+11
38	2.75E+11
39	5.5E+11
40	1.1E+12
41	2.2E+12
42	4.4E+12
43	8.8E+12
44	1.76E+13
45	3.52E+13
46	7.04E+13

$$T(n) = egin{cases} 1 & (n=0) \\ 1 & (n=1) \\ T(n-1) + T(n-2) & (n>2) \end{cases}$$

递推公式为

$$T(n)=T(n-1)+T(n-2)+1; n=(1.2.3....);$$

两边同时加 xT(n-1)

$$T(n)+xT(n-1)=T(n-1)+xT(n-1)+T(n-2)$$

=(1+x)T(n-1)+T(n-2)

$$\frac{T\left(n\right)+xT\left(n-1\right)}{T\left(n-1\right)+xT\left(n-2\right)} \quad \text{=X+1};$$

$$\begin{split} &= (-x)^n \frac{2x+1-x-1}{2x+1} + \frac{x+1}{2x+1} (x+1)^n \\ &= \frac{(x+1)^{n+1} - x^{n+1}}{2x+1} \\ &= \frac{1}{\sqrt{5}} [(\frac{1+\sqrt{5}}{2})^{n+1} - (\frac{1-\sqrt{5}}{2})^{n+1}] \end{split}$$

利用累乘法可以消去项