Materiais Elétricos e Magnéticos para Engenharia

Professor: Marcus V. Batistuta

Aula-5

Dopantes e Transporte de Cargas em Semicondutores

1º Semestre de 2018

FGA - Universidade de Brasília

Semicondutores Extrínsecos

Figura 5.10: Modelo esquemático de um cristal de Ge ou Si dopado com impurezas substitucionais Ga (aceitador) e As (doador). As bolas brancas representam os átomos de Ge ou Si.

Dopantes em Semicondutores

Figura 5.11: Representação esquemática dos níveis de impurezas no gap de semicondutores dopados. E_c e E_v representam as energias mínima e máxima das bandas de condução e valência respectivamente. Note que esta figura representa a energia ao longo de uma dimensão física do semicondutor.

Figura 5.12: Energias de ionização de várias impurezas em Ge e Si em $T=300~\rm K.$ Os números indicam as distâncias em eV do mínimo da banda de condução para os níveis acima do meio do gap e do máximo da banda de valência para os níveis abaixo do meio do gap. Note que Cu e Au têm vários níveis de impurezas, tanto doadoras como aceitadoras [Sze].

Resistividade

Fig. 21 Resistivity versus impurity concentration for silicon at 300 K. (After Beadle, Plummer, and Tsai, Ref. 38.)

Triclorossilano

Produção:

Si + 3 HCl
$$\rightarrow$$
 HCl₃Si + H₂

Cloreto de Hidrogênio

Si + 3 SiCl₄ + 2 H₂
$$\rightarrow$$
 4 HSiCl₃

Tetracloreto de Silício

- Líquido Volátil sem Cor
- Ponto de Fusão: -126.6 °C (-195.9 °F; 146.6 °K)
- Ponto de Ebulição: 31.8 °C (89.2 °F; 304.9 K)

Processo de Fabricação do Si Grau Eletrônico

Processo Czochralski (CZ)

Figure 2-13 Time lapse sequence of boule being pulled from the melt in a Czochralski growth (reprinted with permission of Lattice Press).

Lingote (Ingot ou Boule) Monocristalino de Silício

Fornos de Dopagem

Implantador de Íons

Ion Implanter (Varian Associates)

Concentração de Portadores em Semicondutores Intrínsecos

$$n_0 = N_c e^{-(E_c - E_F)/k_B T}$$

$$p_0 = N_v e^{-(E_F - E_v)/k_B T}$$

$$n_0 p_0 = N_c N_v e^{-E_g/k_B T}$$

$$n_0 p_0 = n_i^2$$

$$n_0 = n_i e^{(E_F - E_i)/k_B T}$$

$$p_0 = n_i e^{(E_i - E_F)/k_B T}$$

Concentração de Portadores em Semicondutores Extrínsecos

Figura 5.13: Ilustração gráfica do cálculo das concentrações de portadores num semicondutor tipo n.

Concentração de Portadores em Semicondutores Extrínsecos

Tipo-n:
$$(E_F-E_i)/k_BT\gg 1$$
 $n_0\gg n_i$ $p_0\ll n_i$

Тіро-р:
$$(E_F - E_i)/k_B T \ll -1$$
 $p_0 \gg n_i$ $n_0 \ll n_i$

Neutralidade de cargas:
$$n_0 + N_a^- = p_0 + N_d^+$$

Exemplo: Semicondutor Tipo-n

$$N_d^+ \simeq N_d$$

$$n_0 = \frac{N_d}{2} + \left[\left(\frac{N_d}{2} \right)^2 + n_i^2 \right]^{1/2}$$

$$\frac{N_d}{2} + \left[\left(\frac{N_d}{2} \right)^2 + n_i^2 \right]^{1/2}$$

$$p_0 = -\frac{N_d}{2} + \left[\left(\frac{N_d}{2} \right)^2 + n_i^2 \right]^{1/2}$$

$$N_d \gg n_i$$

$$n_0 \simeq N_d$$

$$p_0 \simeq \frac{n_i^2}{N_d}$$

$$E_F = E_c - k_B T \ln \frac{N_c}{N_d}$$

$$E_F = E_i + k_B T \ln \frac{N_d}{n_i}$$

Exemplo 5.4: Calcule as concentrações de elétrons e de buracos e a posição do nível de Fermi num cristal de silício dopado com $10^{16}~\rm cm^{-3}$ átomos de As, à temperatura ambiente $T\simeq 290~\rm K$.

Da Tabela 5.2 temos $n_i = 1,5 \times 10^{10} \text{ cm}^{-3}$. Usando (5.37) e (5.38),

$$n_0 \simeq N_d^+ \simeq N_d = 10^{16} \text{ cm}^{-3}$$

$$p_0 \simeq \frac{n_i^2}{N_d} = 2,25 \times 10^4 \text{ cm}^{-3}$$

Usando $k_BT \simeq 0,025 \text{ eV e } N_c = 2,8 \times 10^{19} \text{ cm}^{-3} \text{ em } (5.39) \text{ vem}$

$$E_c - E_F = 0,025 \, \ln(2,8 \times 10^3) = 0,20 \, \text{eV}$$

Comparando este resultado com a energia dada na Fig.(5.12), vê-se que neste caso o nível de Fermi está próximo e um pouco abaixo do nível da impureza de As no silício. Por outro lado com (5.40) obtemos

$$E_F = E_i + 0,34 \text{ eV}$$

Figura 5.14: Diagrama de energia do silício: (a) Tipo n, com $N_d = 10^{16}$ cm⁻³ impurezas doadoras; (b) Tipo p, com $N_a = 10^{17}$ cm⁻³ impurezas aceitadoras.

Exemplo 5.5: Calcule as concentrações de elétrons e buracos e a posição do nível de Fermi num cristal de silício com $N_a = 10^{17}$ cm⁻³ impurezas de Ga, a T = 290 K.

Usando (5.41) e (5.42) vêm,

$$p_0 \simeq 10^{17} \text{ cm}^{-3}$$
 ,
 $n_0 \simeq 2,25 \times 10^3 \text{ cm}^{-3}$

Usando
$$k_BT=0.025$$
 eV e $N_v=1.02\times 10^{19}$ cm $^{-3}$ em (5.43) temos
$$E_F=E_v+0.025\times \ln (1.02\times 10^2)$$

$$E_F=E_v+0.11 \text{ eV} \quad .$$

Faixas Extrínseca e Intrínseca

Analogia Hidráulica

Water Circuit

Electrical Circuit

Transporte de Portadores em Semicondutores Extrínsecos

Corrente de Condução ou Deriva

Elétrons:

$$J_n = \sigma_n \mathcal{E}$$

$$J_n = \sigma_n \mathcal{E} \qquad \qquad \sigma_n = \frac{e^2 n_0 \, \tau_e}{m_e^*}$$

$$\mu = \frac{v}{\mathcal{E}}$$

$$\sigma_n = e n_0 \mu_n$$

$$\mu_n = \frac{e\tau_e}{m_e^*}$$

Figura 5.16: Mobilidade de elétrons em função da temperatura, em silício tipo n, para várias concentrações de impurezas N_d [Yang].

Lacunas:
$$J_p=\sigma_p~\mathcal{E}$$
 $\sigma_p=e~p_0~\mu_p=rac{e^2~p_0~ au_b}{m_b^*}$

Densidade Total de Corrente: $J=(\sigma_n+\sigma_p)\mathcal{E}=\sigma\mathcal{E}$

$$\sigma = e(n_0 \ \mu_n + p_0 \ \mu_p)$$

Figura 5.17: Mobilidade de elétrons e buracos em Si e GaAs em função da concentração de impurezas em $T=300~{\rm K}$ [Sze].

Exemplo 5.6: Calcule a resistividade do silício em $T=300~{\rm K}$ em duas situações: a) Intrínseco; b) Dopado com impurezas de As com concentração $N_d=2\times 10^{16}~{\rm cm}^{-3}$.

a) No Si intrínseco a condutividade total é calculada com a Eq.(5.52), utilizando os parâmetros da Tabela 5.2

$$\sigma = e(n_0\mu_n + p_0\mu_p) = e n_i(\mu_n + \mu_p)$$

$$= 1,6 \times 10^{-19} \times 1,5 \times 10^{10}(1350 + 480) \text{ C cm}^{-3} \text{ cm}^2/\text{V s}$$

$$= 4,39 \times 10^{-6}(\Omega \text{ cm})^{-1}$$

A resistividade é o inverso da condutividade, logo,

$$\rho = \frac{1}{\sigma} = \frac{1}{4,39 \times 10^{-6}} = 2,28 \times 10^5 \ \Omega \ \text{cm} \ .$$

b) No Si com impurezas doadoras com $N_d \gg n_i$, a concentração de elétrons é dada por (5.37),

$$n_0 \simeq N_d = 2 \times 10^{16} \text{ cm}^{-3}$$
.

Como $p_0 \ll n_0$, a condutividade é $\sigma \simeq e n_0 \mu_n$, sendo μ_n dado pelo gráfico da Fig.5.17.

$$\sigma \simeq 1,6 \times 10^{-19} \times 2 \times 10^{16} \times 10^{3} = 3,2 (\Omega \text{ cm})^{-1}$$

Logo,

$$\rho = \frac{1}{3, 2} = 0,31 \ \Omega \ \mathrm{cm}$$
 Fig-5.17

Veja que uma dopagem relativamente fraca (1 parte em 10^6) aumenta a resistividade do silício em quatro ordens de grandeza.