Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3205</u>	К работе допущен	
Студент <u> Аврора Степанюк, Виктория</u> Тросько	Работа выполнена	
Преподаватель <u>Хвастунов Николай</u> Николаевич	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №3.06

Изучение электрических свойств сегнетоэлектриков

- 1. Цель работы.
 - Определение значений электрического смещения насыщения D_s , остаточной поляризации P_r , коэрцитивной силы E_c для предельной петли гистерезиса сегнетоэлектрика.
 - Расчет диэлектрических потерь за цикл переполяризации сегнетоэлектрика.
 - Получение зависимостей смещения D и диэлектрической проницаемости ε от напряженности электрического поля E.
 - Определение значений начальной и максимальной диэлектрической проницаемости.
- 2. Объект исследования.

Электрические свойства сегнетоэлектриков

3. Метод экспериментального исследования.

Многократные прямые измерения

4. Рабочие формулы и исходные данные.

 ${
m tg}\delta=rac{1}{\pi}rac{\oint D\,dE}{D_SE_S}$ — тангенс угла потерь. D — электрическая индукция, E — напряженность электрического поля, E_S и D_S — амплитуды напряженности и индукции электрического поля, соответственно.

 $D=\sigma=rac{q}{S}=rac{C_2 U_{C_2}}{S}=rac{C_1 U_{C_1}}{S}-$ модуль вектора электрической индукции \overrightarrow{D} равен поверхностной плотности заряда на обкладках. C_1 и C_2 – электроёмкость конденсаторов, U_{C_1} и U_{C_2} – напряжение на конденсаторах, S – площадь конденсаторов.

 U_{C_1} и U_{C_2} — напряжение на конденсаторах, S — площадь конденсаторов. $E = \frac{U_{C_2}}{d} = \frac{U_{C_2}}{d} = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d}$ — напряженность электрического поля в сегнетоэлектрике. U_{R_1} — напряжение на первом резисторе, d — толщина сегнетоэлектрика, R_1 и R_2 — сопротивление резисторов.

 $arepsilon_1 = rac{D}{arepsilon_0 E}$ — диэлектрическая проницаемость. E — напряженность электрического поля, D — электрическая индукция, $arepsilon_0 = 8,6 \cdot 10^{-12} rac{\Phi}{M}$ — электрическая постоянная.

5. Измерительные приборы.

№ п/г	Наименование	Предел измерений	Цена деления	Погрешность измерения
1	Измеритель Статистических	<i>I</i> : 0,002 A	<i>I</i> : 0,0000001 A	<i>I</i> : ± 0,0002 A
	Характеристик, «ИСХ1»	<i>U</i> : 3 B	<i>U</i> : 0,002 B	<i>U</i> : ± 0,2 B

6. Схема установки.

Принципиальная электрическая схема установки

7. Начальные данные

Таблица 1: Параметры установки

таолица 1. Параметры установки							
Величина	Значение	СИ	Погрешность, %				
Установка							
\mathcal{C}_1 , мк Φ	1	0,000001	10				
R_1 , к O м	47	47000	10				
R_2 , к O м	470	470000	10				
Сегнетоэлектрический конденсатор							
\mathcal{C}_2 , мк Φ	0,01	0,00000001	10				
<i>S</i> , мм ²	500	0,0005	10				
<i>d</i> , мм	0,5	0,0005	10				

8. Результаты прямых измерений и их обработки

Задание 1.

Таблица 2: значения параметров для задания 1

$D_{\scriptscriptstyle S}$, дел. экрана	D_r , дел. экрана	E_c , дел. экрана	$E_{\scriptscriptstyle S}$, дел. экрана
3,1	0,5	0,5	3

Задание 2.

Таблица 3: Зависимость диэлектрической проницаемости сегнетоэлектрика от напряженности электрического поля

	Физические величины							
Nº	<i>U</i> , B	K_x , $\frac{\mathrm{B}}{\mathrm{дел}}$	K_y , $\frac{B}{дел}$	Х, дел	<i>Y</i> , дел	Е, <mark>КВ</mark>	$D, \frac{MKKЛ}{M^2}$	ε
						M		
1	17	5	5	3	3,1	330	31000	10614,62
2	15	5	5	2,7	2,8	297	28000	10652,67
3	13	5	5	2,3	2,4	253	24000	10718,83
4	11	5	5	1,9	1,9	209	19000	10272,21
5	9	2	2	4	3	176	12000	7704,16
6	7	2	2	3,1	1,7	136,4	6800	5633,15
7	5	2	2	2,2	0,7	96,8	2800	3268,43
8	4,4	1	1	3,9	1,1	85,8	2200	2897,29
9	3,8	1	1	3,4	0,8	74,8	1600	2416,99
10	3,2	1	1	2,4	0,6	52,8	1200	2568,05
11	2,6	1	1	2,3	0,4	50,6	800	1786,47
12	2	0,5	0,5	3,6	0,6	39,6	600	1712,03
13	1,4	0,5	0,5	2,4	0,3	26,4	300	1284,03
14	0,8	0,2	0,2	3,5	0,4	15,4	160	1173,97
15	0,6	0,05	0,05	3,2	0,3	3,52	30	963,02

^{9.} Расчет результатов косвенных измерений Для предельной петли гистерезиса найдем значение коэрцитивного поля $E_c\approx 2.5~B, P_r\approx D_r\approx 0.5~B.$

Площадь петли $S_{\text{петли}} \approx \ 3.2 \ \text{дел.} = \ 160 \ \text{B}^2.$

Тогда найдем тангенс угла диэлектрических потерь:

$$tg\delta = \frac{1}{\pi} \frac{\oint Dd E}{D_s E_s} = 0.1095$$

Пример вычисления смещения и напряженности для первого замера (последующие представлены в таблице 3):

$$D_1 = \frac{C_1 U_{C_1}}{S} = 31000 \frac{\text{мкКл}}{\text{м}^2}$$

$$E = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d} = 330 \, \frac{\text{KB}}{\text{M}}$$

$$\varepsilon_1 = \frac{D_1}{\varepsilon_0 E_1} = 10614,62$$

10. Расчет погрешностей измерений.

$$\varDelta_{D_{1}} = \sqrt{\left(\frac{\partial D}{\partial C_{1}}\varDelta_{C_{1}}\right)^{2} + \left(\frac{\partial D}{\partial S}\varDelta_{S}\right)^{2} + \left(\frac{\partial D}{\partial U_{C_{1}}}\varDelta_{U_{C_{1}}}\right)^{2}} = \sqrt{2900^{2} + 2900^{2} + 500^{2}} = 4131,59\frac{\text{MKKJ}}{\text{M}^{2}}$$

Таблица 3: Погрешности вычислений

No	Δ_E , $\frac{\kappa B}{M}$	мкКл	$arDelta_arepsilon$	
	Δ_E, \overline{M}	$\Delta_D {M^2}$		
1	47,12	4820	1715	
2	39,05	4510	1900	
3	34,5	3990	1923	
4	29,8	3500	1935	
5	24	2780	1958	
6	18,5	1910	1675	
7	13,1	1050	1385	
8	11,9	490	670	
9	9,8	360	580	
10	8,7	225	428	
11	6,6	155	330	
12	5,4	105	320	
13	4,1	60	250	
14	2,8	30 135		
15	1,2	15	210	

11. Графики.

Е, кВ/м

$$\varepsilon_{\mbox{\tiny HaY}} = 789,17 \pm 247,11 \ \varepsilon_{\mbox{\tiny MAKC}} = 10718,83$$

0.01

0.005

13. Выводы и анализ результатов работы.

В ходе данной работы мы исследовали параметры предельной петли гистерезиса сегнетоэлектрика. Получили значения коэрцитивного поля, электрического смещения насыщения, остаточной поляризации, криволинейные зависимости смещения и диэлектрической проницаемости напряженности электрического поля.

Мы получили тангенс угла электрических потерь, из значения которого можно найти и сам угол. $\delta = arctg(0.1095) = 0.109$ радиан — значение угла небольшое, что говорит о низком уровне потерь.

Результаты эксперимента наглядно подтверждают нелинейность диэлектрических свойств сегнетоэлектриков, что подтверждает их уникальность как отдельного класса материалов.

14. Замечания, полученные в процессе работы

1. Экспериментальные точки не соединяются на графике. (график зависимости $\varepsilon = \varepsilon(E)$.