

♦ Valeurs remarquables :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
tan x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		0

♦ Les élémentaires:

$\forall x \in \mathbb{R}$	$-1 \le \cos x \le 1$ $-1 \le \sin x \le 1$	$\cos^2 x + \sin^2 x = 1$
$\forall x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$	$\tan x = \frac{\sin x}{\cos x}$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

♦ Angles associés à x :

	Tour	
	$\cos(x + 2\pi) = \cos x$	
	$\sin(x + 2\pi) = \sin x$	
	$\tan(x + 2\pi) = \tan x$	
Angle opposé	Demi-tour	Quart de tour direct
$\cos(-x) = \cos x$	$\cos(x+\pi) = -\cos x$	$\cos\left(x + \frac{\pi}{2}\right) = -\sin x$
$\sin(-x) = -\sin x$	$\sin(x+\pi) = -\sin x$	` 4 _
$\tan(-x) = -\tan x$	$\tan(x+\pi) = -\tan x$	$\sin\left(x + \frac{\pi}{2}\right) = \cos x$
		$\tan\left(x + \frac{\pi}{2}\right) = -\frac{1}{\tan x}$
Quart de tour indirect	Angle supplémentaire	Angle complémentaire
$\cos\left(x - \frac{\pi}{2}\right) = \sin x$	$\cos(\pi - x) = -\cos x$	$\cos\left(\frac{\pi}{2} - x\right) = \sin x$
$\sin\left(x - \frac{\pi}{2}\right) = -\cos x$	$\sin(\pi - x) = \sin x$	$\sin\left(\frac{\pi}{2} - x\right) = \cos x$
$\tan\left(x - \frac{\pi}{2}\right) = -\frac{1}{\tan x}$	$\tan(\pi - x) = -\tan x$	$\tan\left(\frac{\pi}{2} - x\right) = \frac{1}{\tan x}$

♦ Formules d'addition :

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$
$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(a - b) = \sin a \cos b - \cos a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

♦ Formules de duplication :

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

$$\sin 2x = 2\sin x \cos x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
$$1 - \cos 2x$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

♦ Transformation de Produits en Sommes :

$$\cos a \cos b = \frac{1}{2} [\cos(a-b) + \cos(a+b)] \qquad \sin a \cos b = \frac{1}{2} [\sin(a-b) + \sin(a+b)]$$

$$\sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)] \qquad \cos a \sin b = -\frac{1}{2} [\sin(a-b) - \sin(a+b)]$$

♦ Transformation de Sommes en Produits :

$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \\ \sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \\ \cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right) \\ \sin p - \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right) \\ \cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right) \\ \cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \\ \cos p - \cos q = -2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p-q}{2}\right) \\ \cos p - \cos\left(\frac{p-q}{2}\right) \\ \cos$$

♦ Equations trigonométriques :

$$\forall u \in \mathbb{R}, \forall v \in \mathbb{R}$$

$$\forall u \in \mathbb{R}, \forall v \in \mathbb{R}$$

$$\sin u = \sin v \iff \begin{cases} u = v + 2k\pi \\ u = -v + 2k\pi \end{cases} \quad (k \in \mathbb{Z})$$

$$\forall u \neq \frac{\pi}{2} + k\pi, \forall v \neq \frac{\pi}{2} + k\pi \qquad \tan u = \tan v \iff u = v + k\pi \quad (k \in \mathbb{Z})$$

♦ Equations particulières :

$$\cos t = 0 \Leftrightarrow t = \frac{\pi}{2} + k\pi$$

$$\sin t = 0 \Leftrightarrow t = k\pi$$

$$\cos t = -1 \Leftrightarrow t = \pi + 2k\pi$$

$$\sin t = -1 \Leftrightarrow t = -\frac{\pi}{2} + 2k\pi$$

$$\sin t = 1 \Leftrightarrow t = \frac{\pi}{2} + 2k\pi$$

• Factorisation de a $\cos \omega x + b \sin \omega x$:

Mettre $\sqrt{a^2 + b^2}$ en facteur

$$a\cos\omega x + b\sin\omega x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos\omega x + \frac{b}{\sqrt{a^2 + b^2}} \sin\omega x \right)$$

Factorisation en cosinus

Chercher
$$\alpha \in]-\pi$$
; $\pi] / \begin{cases} \cos \alpha = \frac{a}{\sqrt{a^2 + b^2}} \\ \sin \alpha = \frac{b}{\sqrt{a^2 + b^2}} \end{cases}$

On a alors : $a \cos \omega x + b \sin \omega x = \sqrt{a^2 + b^2} (\cos \alpha \cos \omega x + \sin \alpha \sin \omega x)$

$$a\cos\omega x + b\sin\omega x = \sqrt{a^2 + b^2}\cos(\omega x - \alpha)$$

Factorisation en sinus

Chercher
$$\beta \in]-\pi$$
; $\pi] / \begin{cases} \sin \beta = \frac{a}{\sqrt{a^2 + b^2}} \\ \cos \beta = \frac{b}{\sqrt{a^2 + b^2}} \end{cases}$

On a alors: $a \cos \omega x + b \sin \omega x = \sqrt{a^2 + b^2} (\sin \beta \cos \omega x + \cos \beta \sin \omega x)$

$$a\cos\omega x + b\sin\omega x = \sqrt{a^2 + b^2}\sin(\omega x + \beta)$$

• Quelques résultats utiles :

$$\forall k \in \mathbb{Z},$$

$$\begin{cases}
\cos(k\pi) = (-1)^k \\
\sin(k\pi) = 0
\end{cases}$$

$$\begin{cases}
\sin\left(\frac{\pi}{2} + k\pi\right) = (-1)^k \\
\cos\left(\frac{\pi}{2} + k\pi\right) = 0
\end{cases}$$

$$\forall x \in \mathbb{R}, \forall k \in \mathbb{Z},$$

$$\begin{cases}
\cos(x + k\pi) = (-1)^k \cos x \\
\sin(x + k\pi) = (-1)^k \sin x
\end{cases}$$

$$\begin{cases}
\cos(k\pi - x) = (-1)^k \cos x \\
\sin(k\pi - x) = -(-1)^k \sin x
\end{cases}$$

Les différentes formes d'un nombre complexe :

Soient $(a, b, \theta) \in \mathbb{R}^3$ et $r \in \mathbb{R}_+^*$			
Forme algébrique	Forme trigonométrique	Forme exponentielle	
z = a + ib	$z = r(\cos\theta + i\sin\theta)$	$z = re^{i\theta}$	
$a = \Re e(z)$ et $b = \Im m(z)$	$r = z = \sqrt{a^2 + b^2} \text{ et } \theta =$	$arg(z) \Leftrightarrow \begin{cases} \cos \theta = \frac{a}{r} \\ \sin \theta = \frac{b}{r} \end{cases}$	

♦ Egalité de deux nombres complexes :

Avec les formes algébriques $z = a + ib$ et $z' = a' + ib'$	Avec les formes exponentielles $z=re^{i\theta}$ et $z'=r'e^{i\theta'}$
$z = z' \Leftrightarrow \begin{cases} a = a' \\ b = b' \end{cases}$ En particulier : $z = 0 \Leftrightarrow \begin{cases} a = 0 \\ b = 0 \end{cases}$	$z = z' \Leftrightarrow \begin{cases} r = r' \\ \theta = \theta' + 2k\pi, k \in \mathbb{Z} \end{cases}$
b = 0	

♦ Conjugué d'un nombre complexe :

	Propriétés	
	Soit $z \in \mathbb{C}$	Soient Soit z et $z' \in \mathbb{C}$
• $z = a + ib \iff \bar{z} = a - ib$	$\bullet \ z + \bar{z} = 2\Re e(z)$	
• $z = re^{i\theta} \iff \bar{z} = re^{-i\theta}$	• $z - \bar{z} = 2\Im m(z)$ • $z\bar{z} = z ^2$	$ \bullet \ \overline{z+z'} = \overline{z} + \overline{z'} \bullet \ \overline{zz'} = \overline{z}\overline{z'} $
	$ \bullet \frac{\overline{1}}{z} = \frac{1}{\overline{z}} \text{si } z \neq 0 $ $ \bullet \overline{z^n} = \overline{z}^n \ \forall \ n \in \mathbb{Z} $	$\bullet \ \frac{\overline{z}}{z'} = \frac{\overline{z}}{\overline{z'}} \operatorname{si} z' \neq 0$

♦ Module d'un nombre complexe :

Propriétés		
$\bullet z = 0 \Leftrightarrow z = 0$	• $ -z = z $ et $ \bar{z} = z $	$\bullet \left \frac{z}{z'} \right = \frac{ z }{ z' } \ avec \ z' \neq 0$
$\bullet z+z' \le z + z' $	$\bullet zz' = z z' $	$\bullet z^n = z ^n \forall n \in \mathbb{Z}$

♦ Arguments:

Si z etz'sont deux nombres complexes non nuls, alors :

•
$$arg(zz') = arg(z) + arg(z')$$

•
$$arg\left(\frac{1}{z}\right) = -arg(z)$$

•
$$arg\left(\frac{z}{z'}\right) = arg(z) - arg(z')$$

•
$$arg(z^n) = narg(z)$$

♦ Formules d'Euler et Formule de Moivre :

Formules d'Euler	$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \text{et} \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$	
Formule de Moivre	$\forall \theta \in \mathbb{R}, \forall n \in \mathbb{Z}:$ $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \text{ ou } (e^{i\theta})^n = e^{in\theta}$	

• Equation du second degré $az^2 + bz + c = 0$:

Discriminant $\Delta = b^2 - 4ac$				
A	Si $\Delta \ge 0$ alors $z_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$			
Δ est un réel	Si $\Delta < 0$ alors $z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$ et $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$			
Δ n'est pas un réel	Pour $\delta = x + iy$, $\delta^2 = \Delta \Leftrightarrow \begin{cases} x^2 - y^2 = a \\ x^2 + y^2 = \sqrt{a^2 + b^2} \\ 2xy = b \end{cases}$			
	Et alors $z_1 = \frac{-b - \delta}{2a}$ et $z_2 = \frac{-b + \delta}{2a}$			

♦ Interprétation géométrique :

Soient M et M' deux points du plan complexe d'affixes respectives z et z'

- L'affixe du vecteur \overrightarrow{OM} est z; la distance OM = |z| et $(\overrightarrow{u}, \overrightarrow{OM}) = arg(z)$
- M appartient au cercle de centre O et de rayon $1 \Leftrightarrow |z| = 1$
- M appartient à l'axe des réels $(0, \vec{u}) \Leftrightarrow arg(z) = k\pi, k \in \mathbb{Z}$ ou z = 0
- M appartient à l'axe des imaginaires $(0, \vec{v}) \Leftrightarrow arg(z) = \pm \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$
- L'affixe du vecteur $\overrightarrow{MM'}$ est z' z et la distance MM' = |z' z|
- L'affixe du milieu de [MM'] est $\frac{z+z'}{2}$

Soient A, B, C et D des points du plan complexe

- L'affixe du centre de gravité du triangle ABC est $\frac{z_A + z_B + z_C}{3}$
- L'affixe du vecteur \overrightarrow{AB} est $z_B z_A$
- $|z_B z_A| = AB$ et $arg(z_B z_A) = (\vec{u}, \overrightarrow{AB})$
- $\left| \frac{z_D z_C}{z_B z_A} \right| = \frac{CD}{AB}$ et $arg\left(\frac{z_D z_C}{z_B z_A} \right) = \left(\overrightarrow{AB}, \overrightarrow{CD} \right)$

♦ Caractérisation de configurations et de figures :

- $\frac{z_D z_C}{z_B z_A}$ est un réel \Leftrightarrow $(\overrightarrow{AB}, \overrightarrow{CD}) = 0$ ou $\pi \Leftrightarrow (AB) \parallel (CD)$
- $\frac{z_D z_C}{z_B z_A}$ est un imaginaire pur \iff $(\overrightarrow{AB}, \overrightarrow{CD}) = \pm \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \iff (AB) \perp (CD)$
- $\frac{z_C z_A}{z_B z_A}$ est un imaginaire pur \iff $(\overrightarrow{AB}, \overrightarrow{AC}) = \pm \frac{\pi}{2} \iff ABC$ est rectangle en A
- $\left| \frac{z_C z_A}{z_B z_A} \right| = 1 \Leftrightarrow AB = AC \Leftrightarrow ABC$ est isocèle de sommet A
- $\frac{z_C z_A}{z_B z_A} = \pm i \iff AB = AC$ et $(\overrightarrow{AB}, \overrightarrow{AC}) = \pm \frac{\pi}{2} \iff ABC$ est rectangle isocèle en A
- $\frac{z_C z_A}{z_B z_A} = e^{\pm i\frac{\pi}{3}} \iff AB = AC \text{ et } (\overrightarrow{AB}, \overrightarrow{AC}) = \pm \frac{\pi}{3} \iff ABC \text{ est équilatéral}$

♦ Caractérisation d'ensemble de points :

L'ensemble des points M d'affixe z tel que

- $|z z_A| = |z z_B|$ est la médiatrice du segment [AB]
- $|z z_A| = r$ est le cercle de centre A et de rayon r
- $arg(z z_A) = \theta + 2k\pi, k \in \mathbb{Z}$ est la demi-droite d'origine A dirigée par le vecteur $\vec{\omega}$ tel que $(\vec{u}, \vec{\omega}) = \theta + 2k\pi, k \in \mathbb{Z}$
- $\frac{z-z_B}{z-z_A}$ soit réel est la droite(AB) privée de A
- $\frac{z-z_B}{z-z_A}$ soitun réel strictement négatif est le segment [AB] privée de A et B
- $\frac{z-z_B}{z-z_A}$ soitun réel strictement positif est la droite (AB) privée du segment [AB]
- $\frac{z-z_B}{z-z_A}$ soit imaginaire pur est le cercle de diamètre [AB] privé de A et B

♦ Transformations du plan :

M est le point d'affixe z et M' est le point d'affixe z'

- Translation : M' est l'image de M par la translation de vecteur $\vec{\omega}$ si et seulement si $z' = z + z_{\vec{\omega}}$
- Rotation de centre A:M' est l'image de M par la rotation de centre A et d'angle θ si et seulement $z'-z_A=e^{i\theta}(z-z_A)$
- Rotation de centre O:M' est l'image de M par la rotation de centre O et d'angle θ si et seulement $z'=e^{i\theta}z$
- Homothétie: M' est l'image de M par l'homothétie de centre A et de rapport $k \in \mathbb{R}^*$ si et seulement $z' z_A = k(z z_A)$
- Similitude :M' est l'image de M par la similitude de centre A et de rapport $k \in \mathbb{R}^*$ si et seulement $z' z_A = ke^{i\theta}(z z_A)$

CALCUL DE LIMITES ET **CONTINUITE**

CALCUL DE LIMITES

♦ Formes indéterminées :

$\infty - \infty$	0 × ∞
$\begin{cases} f(x) = u(x) + v(x) \\ \lim_{x \to x_0} u(x) = +\infty \\ \lim_{x \to x_0} v(x) = -\infty \end{cases} \lim_{x \to x_0} f(x) \text{ est une FI}$	$\begin{cases} f(x) = u(x)v(x) \\ \lim_{x \to x_0} u(x) = \pm \infty \\ \lim_{x \to x_0} v(x) = 0 \end{cases} \lim_{x \to x_0} f(x) \text{ est une FI}$
$\frac{\infty}{\infty}$	$\frac{0}{0}$
$f(x) = \frac{u(x)}{v(x)}$ $\lim_{x \to x_0} u(x) = \pm \infty$ $\lim_{x \to x_0} v(x) = \pm \infty$ $\lim_{x \to x_0} v(x) = \pm \infty$	$f(x) = \frac{u(x)}{v(x)}$ $\lim_{x \to x_0} u(x) = 0$ $\lim_{x \to x_0} v(x) = 0$ $\lim_{x \to x_0} v(x) = 0$ $\lim_{x \to x_0} v(x) = 0$

◆ Limite d'une fonction polynôme ou d'une fonction rationnelle :

- **Règle 1 :** en ±∞, la limite d'une fonction polynôme est égale à la limite de son monôme de plus haut degré
- **Règle 2 :** en ±∞, la limite d'une fonction rationnelle est égale à la limite du quotient du monôme de plus haut degré du numérateur par le monôme de plus haut degré du dénominateur
- ♦ Limite de la composée de deux fonctions :

$$\circ f(x) = v \circ u(x)
 \circ \lim_{x \to x_0} u(x) = b
 \circ \lim_{x \to b} v(x) = \ell$$

$$\Rightarrow \lim_{x \to x_0} f(x) = \ell$$

♦ Limite des fonctions trigonométriques :

NB: En $\pm \infty$, les fonctions cosinus et sinus n'admettent pas de limite

$\lim_{t \to 0} \frac{\sin t}{t} = 1$	$\lim_{t \to 0} \frac{1 - \cos t}{t} = 0$
$\lim_{t \to 0} \frac{\tan t}{t} = 1$	$\lim_{t \to 0} \frac{1 - \cos t}{t^2} = \frac{1}{2}$

♦ Théorèmes de comparaison :

• Théorème 1 : au voisinage de +∞

Si
$$f(x) \ge u(x)$$
 et $\lim_{x \to +\infty} u(x) = +\infty$, alors, $\lim_{x \to +\infty} f(x) = +\infty$

Si
$$f(x) \le v(x)$$
 et $\lim_{x \to +\infty} v(x) = -\infty$, alors, $\lim_{x \to +\infty} f(x) = -\infty$

• Théorème 2 : au voisinage de +∞,

Si
$$|f(x) - \ell| \le u(x)$$
 et $\lim_{x \to +\infty} u(x) = 0$, alors, $\lim_{x \to +\infty} f(x) = \ell$

• Théorème 3 : Théorème des gendarmes : au voisinage de $+\infty$,

Si
$$u(x) \le f(x) \le v(x)$$
 et $\lim_{x \to +\infty} u(x) = \lim_{x \to +\infty} v(x) = \ell$, alors, $\lim_{x \to x_0} f(x) = \ell$

♦ Asymptotes et Branches infinies :

- Si $\lim_{x \to a} f(x) = \pm \infty$, alors, (\mathcal{C}_f) admet une asymptote verticale d'équation x = a
- Si $\lim_{x \to \pm \infty} f(x) = b$, alors, (\mathcal{C}_f) admet une asymptote horizontale d'équation y = b
- Si $\lim_{x \to \pm \infty} [f(x) (ax + b)] = 0$, alors, (C_f) admet une asymptote oblique d'équation y = ax + b
- Si $\lim_{x \to \pm \infty} f(x) = \pm \infty$ et $\lim_{x \to \pm \infty} \frac{f(x)}{x} = \pm \infty$, alors, (C_f) admet une branche parabolique de direction l'axe des ordonnées
- Si $\lim_{x \to \pm \infty} f(x) = \pm \infty$ et $\lim_{x \to \pm \infty} \frac{f(x)}{x} = 0$, alors, (C_f) admet une branche parabolique de direction l'axe des abscisses
- Si $\lim_{x \to \pm \infty} f(x) = \pm \infty$; $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \in \mathbb{R}^*$ et $\lim_{x \to \pm \infty} [f(x) ax] = \pm \infty$, alors, (\mathcal{C}_f) admet une branche parabolique de direction la droite (Δ) : y = ax
- Si $\lim_{x \to \pm \infty} f(x) = \pm \infty$; $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \in \mathbb{R}^*$ et $\lim_{x \to \pm \infty} [f(x) ax] = b \in \mathbb{R}$, alors, (\mathcal{C}_f) admet une asymptote oblique d'équation y = ax + b

♦ Les éléments de symétrie d'une fonction :

- f est paire si et seulement si $\forall x \in D_f$, $-x \in D_f$ et f(-x) = f(x)
- f est impaire si et seulement si $\forall x \in D_f$, $-x \in D_f$ et f(-x) = -f(x)
- (Δ): x = a est un axe de symétrie $de(C_f)$ si et seulement si $\forall x \in D_f$, $2a x \in D_f$ et f(2a x) = f(x)
- I(a, b) est un centre de symétrie de (C_f) si et seulement si $\forall x \in D_f$, $2a x \in D_f$ et f(2a x) + f(x) = 2b

CONTINUITE

♦ Etude de la continuité en un point :

$$f$$
 est continue en x_0 ,
Si $\lim_{x \to x_0} f(x) = f(x_0)$ ou si $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$

♦ Théorème de continuité :

- Toute fonction dérivable en x_0 est continue en x_0
- Toute fonction dérivable sur *I* est continue sur *I*

NB: La réciproque est fausse, une fonction continue n'est pas toujours dérivable

♦ Exemples de fonctions continues :

- Les fonctions polynômes sont continues sur $\mathbb R$
- Les fonctions rationnelles sont continues sur leur ensemble de définition
- Les fonctions cosinus et sinus sont continues sur \mathbb{R}
- La fonction racine carrées est continue sur [0; +∞[
- La somme ou le produit de fonctions continues est continue

◆ Bijection continue:

- ∘ f continue sur I∘ f strictement monotone sur I} \Rightarrow f réalise une bijection de I sur J
- ♦ Solution de l'équation f(x) = k
- ∘ f continue $sur\ I$ ∘ f strictement monotone $sur\ I$ ∘ $k \in J = f(I)$ $\Rightarrow f(x) = k$ admet une unique solution $\alpha \in I$
 - ♦ Théorème des valeurs intermédiaires : Résolution de l'équation f(x) = 0 :

∘
$$f$$
 est continue $sur[a,b]$
∘ f strictement monotone $sur[a,b]$ $\Rightarrow f(x) = 0$ admet une unique solution $\alpha \in]a,b[$
∘ $f(a) \times f(b) < 0$

DERIVATION ET NOTION DE PRIMITIVES

DERIVATION

♦ Etude de la dérivabilité en un point :

f est dérivable en un point x_0 , s'il existe un réel ℓ tel que :

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$

ou

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$

$$\lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$

ou encore
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = \ell$$

$\ell = f'(x_0)$ est alors appelé nombre dérivé de f en x_0

$$\circ \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \ell_1$$

$$\circ \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \ell_2$$

$$\circ \quad \ell_1 \neq \ell_2$$
ou
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty \implies f \ n'est pas \ d\'erivable \ en \ x_0$$

♦ Fonctions dérivées usuelles :

f' désigne la fonction dérivée de f sur I			
Fonction	Dérivée	I	
$f(x) = k \ (k \ r\'{e}el)$	f'(x) = 0	\mathbb{R}	
f(x) = x	f'(x) = 1	\mathbb{R}	
$f(x) = x^n (n \in \mathbb{N}^*)$	$f'(x) = nx^{n-1}$	\mathbb{R}	
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	$]-\infty$; $0[ou]0$; $+\infty[$	
$f(x) = \frac{1}{x}$ $f(x) = \frac{1}{x^n} (n \ge 2)$	$f'(x) = -\frac{n}{x^{n+1}}$	$]-\infty$; $0[ou]0$; $+\infty[$	
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$]0; +∞[
$f(x) = \cos x$	$f'(x) = -\sin x$	\mathbb{R}	
$f(x) = \sin x$	$f'(x) = \cos x$	\mathbb{R}	
$f(x) = \tan x$	$f'(x) = 1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\left] -\frac{\pi}{2} + k\pi ; \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$	
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$]0; +∞[
$f(x) = e^x$	$f'(x) = e^x$	R 28	

♦ Opérations et dérivées :

Opérations et dérivées

•	(u +	v)'	=	u'	+	v'	

•
$$(ku)' = ku'(k \ r\acute{e}el)$$

$$\bullet \ (uv)' = u'v + v'u$$

$$\bullet \left(\frac{1}{u}\right)' = -\frac{u'}{u^2}(u \neq 0)$$

$$\bullet \left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2} (v \neq 0)$$

•
$$(v \circ u)' = u' \times v' \circ u$$

•
$$(u^n)' = nu'u^{n-1} (n \ge 2)$$

$$\bullet \left(\frac{1}{u^n}\right)' = \frac{-nu'}{u^{n+1}} (n \ge 1)$$

$$\bullet \left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}(u > 0)$$

$$\bullet \ (\ln u)' = \frac{u'}{u}(u > 0)$$

$$\bullet \ (\ln|u|)' = \frac{u'}{u}(u \neq 0)$$

$$\bullet (e^u)' = u'e^u$$

$$\begin{cases} \circ f^{(0)} = f \\ \\ \circ f^{(1)} = f' \\ \\ \circ f^{(2)} = f'' \\ \\ \circ f^{(n)} = [f^{(n-1)}]' \forall n \ge 1 \end{cases}$$

Dérivée d'une bijection réciproque

∘
$$f$$
 est bijective de I sur J
∘ f est dérivable sur I
∘ $\forall x \in I, f'(x) \neq 0$

$$\Rightarrow \begin{cases} \circ f^{-1} \text{ est dérivable sur } J \\ \circ \forall y \in J, (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} \end{cases}$$

♦ Dérivée et sens de variation :

Soit f' la fonction dérivée de f sur I:

- Si $\forall x \in I, f'(x) > 0$, alors, f est strictement croissante sur I
- Si $\forall x \in I, f'(x) < 0$, alors, f est strictement décroissante sur I
- Si $\forall x \in I, f'(x) = 0$, alors, f est constante sur I

♦ Dérivée et extrémum relatif :

Si f' s'annule x_0 et change de signe alors f admet un extrémum relatif en x_0

$$\circ \forall x \in]a; x_0[, f'(x) < 0$$

$$\circ \forall x \in]x_0; b[, f'(x) > 0$$

$$\Rightarrow f(x) \ge f(x_0) \text{ (minimum)}$$

Plus précisément

$$\begin{vmatrix}
\circ \forall x \in]a; x_0[, f'(x) > 0 \\
\circ \forall x \in]x_0; b[, f'(x) < 0
\end{vmatrix} \Longrightarrow f(x) \le f(x_0) \quad (maximum)$$

PRIMITIVES

♦ Primitives des fonctions usuelles :

F est une primitive de f sur I si $F'(x) = f(x)$				
Fonction	Primitives	I		
f(x) = 0	$F(x) = k \ (k \ r\acute{e}el)$	\mathbb{R}		
f(x) = x	$F(x) = \frac{1}{2}x^2 + k$	\mathbb{R}		
$f(x) = x^n$	$F(x) = \frac{1}{n+1}x^{n+1} + k \ (n \in \mathbb{N}^*)$	\mathbb{R}		
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + k$	$]-\infty$; $0[$ ou $]0$; $+\infty[$		
$f(x) = \frac{1}{x^n} (n \ge 2)$		$]-\infty$; $0[ou]0$; $+\infty[$		
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x} + k$]0; +∞[
$f(x) = \sin x$	$F(x) = -\cos x + k$	\mathbb{R}		
$f(x) = \cos x$	$F(x) = \sin x + k$	R 32		

Fonction	Primitives	I
$f(x) = \frac{1}{\cos^2 x}$	$F(x) = \tan x + k$	$\left] -\frac{\pi}{2} + k\pi ; \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$
$f(x) = \frac{1}{x}$	$F(x) = \ln x + k$]-∞; 0[ou]0; +∞[
$f(x) = e^x$	$F(x) = e^x + k$	\mathbb{R}

• Primitives et opérations :

On suppose que u est une fonction dérivable sur I					
$f = u'u^n$	$F = \frac{1}{n+1} u^{n+1} (n \in \mathbb{N}^*)$		$f = u' \cos u$	$F = \sin u$	
$f = \frac{u'}{u^2}$	$F = -\frac{1}{u}(u \neq 0 \ sur \ I)$		$f = u' \sin u$	$F = -\cos u$	
$f = \frac{u'}{u^n}$	$F = -\frac{1}{(n-1)u^{n-1}}$ $(u \neq 0 \text{ sur } I \text{ et } n \geq 2)$		$f = \frac{u'}{u}$	$F = \ln u (u \neq 0 \ sur \ I)$	
$f = \frac{u'}{\sqrt{u}}$	$F = 2\sqrt{u}(u > 0 \ sur \ I)$		$f = u'e^u$	$F = e^{u}$	

FONCTIONS LOGARITHME NEPERIEN ET EXPONENTIELLE

♦ Définition et première propriétés :

Logarithme népérien

- In est la primitive de la fonction $x \mapsto \frac{1}{x}$ sur]0; $+\infty[$ qui s'annule en1
- $D_{\ln} =]0; +\infty[$
- $\ln 1 = 0$ et $\ln e = 1$
- $\forall x \in]0$; 1[, $\ln x < 0$ et $\forall x \in]1$; $+\infty[$, $\ln x > 0$
- $\forall x \in \mathbb{R}, \ln e^x = x$

Exponentielle

- exp ou $x \mapsto e^x$ est la bijection réciproque de ln
- $D_{exp} = \mathbb{R}$
- $e^0 = 1$ et $e^1 = e$
- $\forall x \in \mathbb{R}, e^x > 0$
- $\forall x \in]0$; $+\infty[, e^{\ln x} = x]$

♦ Propriétés algébriques :

Logarithme népérien

 $\forall a \in]0$; $+\infty[et \forall b \in]0$; $+\infty[on a :$

- $\ln ab = \ln a + \ln b$
- $\bullet \ \ln \frac{1}{a} = -\ln a$
- $\bullet \ \ln \frac{a}{b} = \ln a \ln b$
- $\forall r \in \mathbb{R}, \ln a^r = r \ln a$
- $\ln a = \ln b \iff a = b$
- $\ln a < \ln b \iff a < b$

Exponentielle

 $\forall a \in \mathbb{R} \ et \ \forall b \in \mathbb{R} \ \text{on a}$:

- $\bullet \ e^{a+b} = e^a e^b$
- $\bullet \ e^{-a} = \frac{1}{e^a}$
- $\bullet e^{a-b} = \frac{e^a}{e^b}$
- $\forall r \in \mathbb{R}, (e^a)^r = e^{ar}$
- $\bullet e^a = e^b \Leftrightarrow a = b$
- $e^a < e^b \Leftrightarrow a < b$

♦ Limites utiles :

Logarithme népérien

- $\bullet \quad \lim_{x \to 0^+} \ln x = -\infty$
- $\lim_{x \to +\infty} \ln x = +\infty$
- $\bullet \quad \lim_{x \to +\infty} \frac{\ln x}{x} = 0$
- $\forall r \in \mathbb{R}^*_+, \lim_{x \to +\infty} \frac{\ln x}{x^r} = 0$
- $\bullet \quad \lim_{x \to 0^+} x \ln x = 0$
- $\bullet \ \forall \ r \in \mathbb{R}_+^*, \ \lim_{x \to 0^+} x^r \ln x = 0$
- $\bullet \quad \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$

Exponentielle

- $\bullet \quad \lim_{x \to -\infty} e^x = 0$
- $\lim_{x \to +\infty} e^x = +\infty$
- $\bullet \quad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$
- $\forall r \in \mathbb{R}_+^*$, $\lim_{x \to +\infty} \frac{e^x}{x^r} = +\infty$
- $\bullet \quad \lim_{x \to -\infty} x e^x = 0$
- $\forall r \in \mathbb{R}_+^*$, $\lim_{x \to -\infty} |x|^r e^x = 0$
- $\bullet \quad \lim_{x \to 0} \frac{e^x 1}{x} = 1$

• Dérivées et représentations graphiques :

• $\forall x \in]0$; $+\infty[, \ln' x = \frac{1}{x}]$

•
$$[\ln u(x)]' = [\ln |u(x)|]' = \frac{u'(x)}{u(x)}$$

Exponentielle

•
$$\forall x \in \mathbb{R}, (e^x)' = e^x$$

$$\bullet \left[e^{u(x)} \right]' = u'(x)e^{u(x)}$$

Problème de Synthèse (2h)

On considère la fonction numérique f de la variable x, définie par : $f(x) = x + \frac{\ln|x|}{|x|}$ On désigne (\mathcal{C}) sa courbe représentative dans un repère orthonormal (0; \vec{i} , \vec{j}) d'unité graphique 2 cm.

PARTIE A

On considère la fonction g définie sur \mathbb{R}^* par :

$$\begin{cases} g(x) = x^2 - 1 + \ln(-x) & \text{si } x < 0 \\ g(x) = x^2 + 1 - \ln x & \text{si } x > 0 \end{cases}$$

- 1. Etudier les variations de g et dresser son tableau de variations
- 2. Calculer $g\left(\frac{\sqrt{2}}{2}\right)$ et g(-1)
- 3. Etudier le signe de g(x) pour tout x élément de \mathbb{R}^*

PARTIE B

1. Déterminer l'ensemble de définition D_f de f et calculer les limites de f aux bornes de D_f .

En déduire une asymptote à la courbe (C) de f.

- 2. Montrer que la droite (Δ) : y = x est une asymptote à la courbe (C) de f et étudier les positions relatives de (C) et (Δ)
- 3. Etudier le sens de variations de f puis dresser son tableau de variation sur D_f
- 4. Montrer que l'équation f(x) = 0 admet une unique solution α . Justifier l'encadrement $0,6 < \alpha < 0,7$.
- 5. Tracer (Δ)et (\mathcal{C})
- 6. Discuter graphiquement, suivant les valeurs de m, du nombre de solutions sur \mathbb{R} de l'équation f(x) = m où m est un paramètre réel.

PARTIE C

- 1. On désigne par φ la restriction de f à l'intervalle]0; $+\infty[$
 - a. Montrer que φ définie une bijection de]0; $+\infty$ [sur un intervalle I à préciser
 - b. Dresser le tableau de variation de la réciproque φ^{-1} de φ puis tracer sa courbe représentative (\mathcal{C}') dans le même repère que (\mathcal{C})
- 2. Calculer l'aire \mathcal{A} en cm^2 du domaine plan limité par la courbe (\mathcal{C}) , la droite (Δ) et les droites d'équations respectives $x=\alpha$ et x=e.

Prouver que $\mathcal{A} = 2(1 - \alpha^4)$

On donne : ln(0,6) = -0.51 et ln(0,7) = -0.35

CALCUL INTEGRAL ET EQUATIONS DIFFERENTIELLES

CALCUL INTEGRAL

♦ Intégrale et Primitives :

• Si F est une primitive de f sur I alors $\forall a, b \in I$:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

• Si $g(x) = \int_a^x f(t)dt$, alors, g'(x) = f(x) et donc g est la primitive de f qui s'annule en a

♦ Propriétés de l'intégrale :

- Relation de Chasles : $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$
- Antisymétrie : $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$
- Linéarité: $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$
- Positivité : $f \ge 0$ sur [a;b], $a \le b \Longrightarrow \int_a^b f(x) dx \ge 0$
- Conservation de l'ordre : $f \ge g$ sur [a;b], $a \le b \Longrightarrow \int_a^b f(x) dx \ge \int_a^b g(x) dx$
- Inégalité de la moyenne : $\begin{cases} m \le f \le M \Rightarrow m(b-a) \le \int_a^b f(x) dx \le M(b-a) \\ |f| \le M \Rightarrow \left| \int_a^b f(x) dx \right| \le M|b-a| \end{cases}$
- Valeur moyenne : la valeur moyenne de f sur [a; b]: $\mu = \frac{1}{b-a} \int_a^b f(x) dx$
- Intégration par parties : $\int_a^b u(x)v'(x)dx = [u(x)v(x)]_a^b \int_a^b u'(x)v(x)dx$

♦ Calcul d'aires :

f est positive

$$\mathcal{A} = \int_{a}^{b} f(x) dx \times ua$$

f est négative

$$\mathcal{A} = -\int_{a}^{b} f(x)dx \times ua$$

f est de signe quelconque

$$\mathcal{A} = \mathcal{A}_1 + \mathcal{A}_2 + \mathcal{A}_3$$

Aire entre deux courbes

$$\mathcal{A} = \int_{a}^{b} [f(x) - g(x)] dx \times ua$$

Aires entre une courbe et une droite

$$\mathcal{A} = \int_{a}^{b} [f(x) - y] dx \times ua$$

$$\mathcal{A} = \int_{a}^{b} [y - f(x)] dx \times ua$$

♦ Calcul de Volumes :

Volume du solide de révolution engendré par rotation autour de l'axe des abscisses

L'espace étant rapporté à un repère orthogonal $(O; \vec{\iota}, \vec{j}, \vec{k})$, la rotation de la partie du plan $(O; \vec{\iota}, \vec{j})$ délimité par la courbe (C_f) , l'axe des abscisses et les droites d'équations x = a et x = b autour de l'axe des abscisses engendre un solide de révolution.

$$\mathcal{V} = \pi \int_{a}^{b} f^{2}(x) \, dx \times uv$$

EQUATIONS DIFFERENTIELLES

Au programme							
Equations différentielles	Solution générale	Solution particulière					
$y' = ay (a r\acute{e}el)$	$y = ke^{ax} \ avec \ k \in \mathbb{R}$	Il existe une unique solution satisfaisant à la condition initiale $y(x_0) = y_0$					
$y'' + \omega^2 y = 0$	$y = A \cos \omega x + B \sin \omega x$ $\operatorname{avec} A \in \mathbb{R} \text{ et } B \in \mathbb{R}$	Il existe une unique solution satisfaisant aux conditions initiales $y(x_0) = y_0 \text{ et } y'(x_0) = y'_0$					

Hors programme						
Equation différentielle	Solution					
	Elle s'exprime à l'aide des racines r_1 et r_2 de son équation caractéristique $ar^2 + br + c = 0$.					
	• Si $\Delta = b^2 - 4ac > 0$ alors r_1 et r_2 sont réels et $y = Ae^{r_1x} + Be^{r_2x}$					
ay'' + by' + c = 0	• Si $\Delta = b^2 - 4ac = 0$ alors $r_1 = r_2 = r_0$ est réel et $y = (Ax + B)e^{r_0x}$					
	• Si $\Delta = b^2 - 4ac < 0$ alors $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont complexes conjugués et $y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$					
	Dans tous les cas, Il existe une unique solution satisfaisant aux conditions initiales $y(x_0) = y_0$ et $y'(x_0) = y'_0$					

• Généralités sur les suites numériques :

- La suite (u_n) est croissante si pour tout $n, u_{n+1} \ge u_n$
- La suite (u_n) est décroissante si pour tout $n, u_{n+1} \le u_n$
- La suite (u_n) est p- périodique, p entier positif, si pour tout n, $u_{n+p} = u_n$
- Méthode pour étudier le sens de variation d'une suite :
 - ✓ Comparaison de $u_{n+1} u_n$ à 0 Soit (u_n) est une suite: $\begin{cases} Si \ u_{n+1} - u_n \ \geq 0 \ alors \ (u_n) \ est \ croissante \\ Si \ u_{n+1} - u_n \ \leq 0 \ alors \ (u_n) \ est \ décroissante \end{cases}$
 - ✓ Comparaison de $\frac{u_{n+1}}{u_n}$ à 1

Soit (u_n) est une suite à termes strictement positifs:

$$\begin{cases} Si \; \frac{u_{n+1}}{u_n} \geq 1 \; alors \; (u_n) \; est \; croissante \\ Si \; \frac{u_{n+1}}{u_n} \leq 1 \; alors \; (u_n) \; est \; décroissante \end{cases}$$

• La suite (u_n) est monotone si elle est croissante ou décroissante

Suites majorées – suites minorées – suites bornées

- La suite (u_n) est majorée s'il existe un réel M tel que pour tout $n, u_n \leq M$
- La suite (u_n) est minorée s'il existe un réel m tel que pour tout $n, u_n \ge m$
- La suite (u_n) est bornée si elle est à la fois minorée et majorée
- La suite (u_n) est bornée $\begin{cases} \circ Si \text{ pour tout } n, m \leq u_n \leq M \\ \circ Si \text{ pour tout } n, |u_n| \leq M \end{cases}$

♦ Suites arithmétiques :

La suite (u_n) est arithmétique s'il existe un réel r tel que pour tout n, $u_{n+1} = u_n + r$

• Définition :

 $u_{n+1} = u_n + r$; r étant la raison de la suite arithmétique

• Calcul de u_n en fonction de n:

$$\begin{cases} u_n = u_0 + nr \\ u_n = u_1 + (n-1)r \\ u_n = u_p + (n-p)r & en \ g\'{e}n\'{e}ral \end{cases}$$

• Somme des termes consécutifs :

$$\begin{cases} \circ u_P + u_{p+1} + \dots + u_n = \sum_{k=p}^n u_k = (n-p+1) \left(\frac{u_p + u_n}{2}\right) \text{ en g\'en\'eral} \\ \circ 1 + 2 + \dots + n = \sum_{k=1}^n k = \frac{n(n+1)}{2} \text{ en particulier} \end{cases}$$

• Convergence :

Une suite arithmétique (u_n) converge si et seulement si sa raison r=0

♦ Suites géométriques :

La suite (u_n) est géométrique s'il existe un réel q tel que pour tout n, $u_{n+1} = qu_n$

• Définition :

 $u_{n+1} = qu_n$; q étant la raison de la suite géométrique

• Calcul de u_n en fonction de n:

$$\begin{cases} u_n = u_0 \times q^n \\ u_n = u_1 \times q^{n-1} \\ u_n = u_p \times q^{n-p} \quad en \ g\'{e}n\'{e}ral \end{cases}$$

• Somme des termes consécutifs : $(q \neq 1)$

$$\begin{cases} \circ u_{P} + u_{p+1} + \dots + u_{n} = \sum_{k=p}^{n} u_{k} = u_{p} \times \frac{1 - q^{n-p+1}}{1 - q} \text{ en g\'en\'eral} \\ \circ 1 + q + q^{2} + \dots + q^{n} = \sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q} \text{ en particulier} \end{cases}$$

• Convergence : Une suite géométrique (u_n) converge vers 0 si et seulement si |q| < 1

♦ Démonstration par récurrence :

Pour démontrer que pour tout entier $n \ge n_0$, une propriété P_n est vraie, il faut :

- Initialisation : vérifier que P_{n_0} est vraie
- **Hérédité**: supposer que P_n est vraie pour un certain $n \ge n_0$ et démontrer que P_{n+1} est vraie
- Conclusion: pour tout $n \ge n_0$, P_n est vraie

♦ Limite de suites : suites convergentes — suites divergentes :

- Une suite convergente vers un réel ℓ est une suite qui admet une limite ℓ quand n tend vers $+\infty$: $\lim_{n\to+\infty}u_n=\ell$
- Une suite divergente vers $\pm \infty$ est une suite qui admet une limite $\pm \infty$ quand n tend vers $+\infty$: $\lim_{n \to +\infty} = \pm \infty$
- Une suite divergente tout court est une suite qui n'admet pas de limite quand n tend vers $+\infty$

♦ Convergence des suites monotones :

- Toute suite croissante et majorée converge
- Toute suite décroissante et minorée converge

♦ Théorèmes de comparaison :

Théorème 1:

$$\begin{vmatrix}
\circ v_n \le u_n \le w_n \\
\circ \lim_{n \to +\infty} v_n = \ell \\
\circ \lim_{n \to +\infty} w_n = \ell
\end{vmatrix} \implies \lim_{n \to +\infty} u_n = \ell$$

Théorème 1 (bis):

$$\begin{vmatrix}
\circ |u_n - \ell| \le v_n \\
\circ \lim_{n \to +\infty} v_n = 0
\end{vmatrix} \implies \lim_{n \to +\infty} u_n = \ell$$

Théorème 2:

$$\begin{vmatrix}
\circ u_n \ge v_n \\
\circ \lim_{n \to +\infty} v_n = +\infty
\end{vmatrix} \implies \lim_{n \to +\infty} u_n = +\infty$$

$$\begin{vmatrix}
\circ u_n \le w_n \\
\circ \lim_{n \to +\infty} w_n = -\infty
\end{vmatrix} \implies \lim_{n \to +\infty} u_n = -\infty$$

COURBES PARAMETREES DU **PLAN**

Le plan est muni d'un repère $(0; \vec{\iota}, \vec{j})$. Soit I un intervalle de \mathbb{R} . On veut étudier la courbe (Γ) de représentation paramétrique :

$$\begin{cases} x(t) = f(t) \\ y(t) = g(t) \end{cases} ; t \in I$$

♦ Equation cartésienne :

En posant x = x(t) et y = y(t); l'équation obtenue en éliminant (si possible) la variable t entre x et y est appelée équation cartésienne de la courbe (Γ)

• Comparaison de M(t) et M(u(t)):

On note M(t) (x(t); y(t)) et donc M(u(t)) (x(u(t)); y(u(t)))

 $t\mapsto u(t)$ étant une fonction de t ; comparons M(t) et Mig(u(t)ig)

Résultat	Conclusion					
$\int x(u(t)) = x(t)$	M(t) = M(u(t))					
(y(u(t)) = y(t)						
$\int x(u(t)) = x(t)$	M(t) et $M(u(t))$ sont symétriques par rapport à l'axe des abscisses					
y(u(t)) = -y(t)						
$\int x(u(t)) = -x(t)$	M(t) et $M(u(t))$ sont symétriques par rapport à l'axe des ordonnées					
$\int y(u(t)) = y(t)$						
$\int x(u(t)) = -x(t)$	M(t) et $M(u(t))$ sont symétriques par rapport à l'origine du repère					
$\begin{cases} y(u(t)) = -y(t) \end{cases}$						
$\int x \big(u(t) \big) = y(t)$	M(t) et $M(u(t))$ sont symétriques par rapport à la droite d'équation $y = 1$	=				
y(u(t)) = x(t)	\boldsymbol{x}					
$\int x \big(u(t) \big) = -y(t)$	M(t) et $M(u(t))$ sont symétriques par rapport à la droite d'équation $y =$	_				
y(u(t)) = -x(t)	-x	56				

♦ Réduction de l'intervalle d'étude :

• Comparaison de M(t) et M(t+p):

$$\begin{cases} x(t+p) = x(t) \\ y(t+p) = y(t) \end{cases} \Leftrightarrow M(t) = M(t+p) \iff x \text{ et } y \text{ sont de période commune } p$$
Une étude sur un intervalle de longueur p permet de tracer complètement (Γ)

• Comparaison de M(t) et M(-t):

✓ L'intervalle
$$\left[-\frac{p}{2}; \frac{p}{2}\right]$$
 est de longueur p
✓ $\left[-\frac{p}{2}; \frac{p}{2}\right] = \left[-\frac{p}{2}; 0\right] \cup \left[0; \frac{p}{2}\right]$ et $\forall t \in \left[0; \frac{p}{2}\right], -t \in \left[-\frac{p}{2}; 0\right]$
✓ $M(-t) = S_{(?)}(M(t))$

Conclusion : On a $(\Gamma) = (\Gamma_0) \cup S_{(?)}(\Gamma_0)$ où (Γ_0) est l'arc de (Γ) correspondant à $\left[0; \frac{p}{2}\right]$ donc on peut restreindre le domaine d'étude à $\left[0; \frac{p}{2}\right]$

• Comparaison de M(t) et $M\left(\frac{p}{2}+t\right)$:

✓ L'intervalle [0; p] est de longueur p

$$\checkmark [0; p] = \left[0; \frac{p}{2}\right] \cup \left[\frac{p}{2}; p\right] \text{ et } \forall t \in \left[0; \frac{p}{2}\right], \left(\frac{p}{2} + t\right) \in \left[\frac{p}{2}; p\right]$$

$$\checkmark M\left(\frac{p}{2}+t\right) = S_{(?)}(M(t))$$

Conclusion : On a $(\Gamma) = (\Gamma_0) \cup S_{(?)}(\Gamma_0)$ où (Γ_0) est l'arc de (Γ) correspondant à $\left[0; \frac{p}{2}\right]$ donc on peut restreindre le domaine d'étude à $\left[0; \frac{p}{2}\right]$

• Comparaison de M(t) et $M\left(\frac{p}{2}-t\right)$:

✓ L'intervalle $\left[-\frac{p}{4}; \frac{3p}{4}\right]$ est de longueur p

$$\checkmark \left[-\frac{p}{4} ; \frac{3p}{4} \right] = \left[-\frac{p}{4} ; \frac{p}{4} \right] \cup \left[\frac{p}{4} ; \frac{3p}{4} \right] \text{ et } \forall \ t \in \left[-\frac{p}{4} ; \frac{p}{4} \right], \quad \left(\frac{p}{2} - t \right) \in \left[\frac{p}{4} ; \frac{3p}{4} \right]$$

$$\checkmark M\left(\frac{p}{2}-t\right) = S_{(?)}(M(t))$$

Conclusion : On a $(\Gamma) = (\Gamma_0) \cup S_{(?)}(\Gamma_0)$ où (Γ_0) est l'arc de (Γ) correspondant à

$$\left[-\frac{p}{4}; \frac{p}{4}\right]$$
 donc on peut restreindre le domaine d'étude à $\left[-\frac{p}{4}; \frac{p}{4}\right]$

♦ Tableau conjoint des variations :

Supposons que l'intervalle d'étude réduit trouvé est [a; b]

- Calculer x'(t) et y'(t)
- Etudier le signe de x'(t) et y'(t) sur l'intervalle [a;b]
- Pour chaque valeur particulière t_0 de t trouvée, calculer les quatre quantités $x'(t_0)$; $y'(t_0)$; $x(t_0)$ et $y(t_0)$
- Compléter le tableau ci-dessous par les signes x'(t) et y'(t) ainsi que les flèches indiquant les variations de x et y

t	a	t_0	t_1	b
x'(t)	x'(a)	$x'(t_0)$	$x'(t_1)$	x'(b)
y'(t)	y'(a)	$y'(t_0)$	$y'(t_1)$	y'(b)
x(t)	x(a)	$x(t_0)$	$x(t_1)$	x(b)
y(t)	y(a)	$y(t_0)$	$y(t_1)$	y(b)

lacktriangle Notion de tangentes au point $M(t_0)$:

- Si $x'(t_0) = 0$ et $y'(t_0) \neq 0$ alors $(T): x = x(t_0)$ (verticale)
- Si $x'(t_0) \neq 0$ et $y'(t_0) = 0$ alors $(T): y = y(t_0)$ (horizontale)
- Si $x'(t_0) \neq 0$ et $y'(t_0) \neq 0$ alors $(T): y = \frac{y'(t_0)}{x'(t_0)} (x x(t_0)) + y(t_0)$ (oblique)
- Le cas $x'(t_0) = 0$ et $y'(t_0) = 0$ est hors programme

♦ Points d'intersection avec les axes du repère :

- Avec l'axe des abscisses : Chercher M(t)(x(t); y(t)) tel que y(t) = 0
- Avec l'axe des ordonnées : Chercher M(t)(x(t); y(t)) tel que x(t) = 0

• Les étapes du tracé de la courbe (Γ) :

- Tracer un repère $(0; \vec{i}, \vec{j})$ (respecter l'unité graphique si elle est donnée)
- Placer les points M(a); $M(t_0)$; $M(t_1)$; \cdots ; M(b) et tracer en chacun de ces points la tangente à la courbe
- Respecter l'évolution du tracer selon le tableau conjoint De M(a) vers $M(t_0)$; de $M(t_0)$ vers $M(t_1)$; de $M(t_1)$ vers wers M(b)

t	
x(t)	
y(t)	

On se déplace vers la droite et vers le haut

2^{ème} cas

On se déplace vers la droite et vers le bas

3^{ième} cas

On se déplace vers la gauche et vers le haut

4^{ième} cas

On se déplace vers la gauche et vers le bas

♦ Dénombrement :

• Ordre et répétition

Ordre important	Répétitions possibles	Résultat possible	Nombre de résultats possibles
oui	oui	p-liste	n^p
oui	non	p — arrangement	$A_n^p = \frac{n!}{(n-p)!}$
non	non	p — combinaison	$C_n^p = \frac{A_n^p}{p!} = \frac{n!}{(n-p)! p!}$

• Problèmes de tirages

Types de tirages	ordre	Répétition	Résultat possible	Nombre de résultats possibles
Successifs avec remise	On tient compte de l'ordre	Un élément peut être tiré plusieurs fois	p — liste	n^p
Successifs sans remise	On tient compte de l'ordre	Un élément n'est tiré qu'une seule fois	p – arrangement	A_n^p
simultané	On ne tient pas compte de l'ordre	Un élément n'est tiré qu'une seule fois	p — combinaison	C_n^p

• Problèmes de lancés ou de jets

Objets lancés ou jetés	Nombre de faces	Nombre de lancés effectués	Calcul
Jeton ou pièce de monnaie	2 faces	n	2^n
Dé cubique	6 faces	n	6 ⁿ
Dé tétraédrique	4 faces	n	4^n

• Troblèmes de cartes

Dans un jeu de cartes, les mains sont composées de p cartes pris parmi 32 cartes ou 52 cartes et donc l'outil de calcul est la combinaison C_n^p .

Voici la	composition	de	chaque	jeu	•
----------	-------------	----	--------	-----	---

Jeu de 32 <i>Cartes</i>	As	K	Q	J	10	9	8	7	Total					
Carreau	1	1	1	1	1	1	1	1	8					
Coeur	1	1	1	1	1	1	1	1	8					
Tr ê fle	1	1	1	1	1	1	1	1	8					
Pique	1	1	1	1	1	1	1	1	8					
Total	4	4	4	4	4	4	4	4	32					
Jeu de 52 <i>Cartes</i>	As	K	Q	J	10	9	8	7	6	5	4	3	2	Total
Carreau	1	1	1	1	1	1	1	1	1	1	1	1	1	13
Coeur	1	1	1	1	1	1	1	1	1	1	1	1	1	13
Trêfle	1	1	1	1	1	1	1	1	1	1	1	1	1	13
Pique	1	1	1	1	1	1	1	1	1	1	1	1	1	13
Total	4	4	4	4	4	4	4	4	4	4	4	4	4	52

• Règles de calcul sur les combinaisons

- ✓ On multiplie les combinaisons si les différentes étapes sont reliées par un « et »
- ✓ On additionne les combinaisons si les différents cas sont reliés par un «ou»

♦ Calcul des probabilités :

• Définition

Soit $\Omega = \{\omega_1; \omega_2; \cdots; \omega_n\}$ l'ensemble des éventualités d'une expérience aléatoire Une probabilité P sur Ω est parfaitement déterminée par la donnée des probabilités $p_i = P(\omega_i)$ des évènements élémentaires ω_i telles que :

- ✓ Pour tout i, $0 \le p_i \le 1$
- $\checkmark P(\Omega) = p_1 + p_2 + \dots + p_n = 1$
- ✓ Pour tout évènement $A \subset \Omega$, P(A) = somme des probbabilités des évènements élémentaires qui réalisent A

• Propriétés des probabilités

Ensembles	Vocabulaire	Propriété
Ω	Evènement certain	$P(\Omega) = 1$
Ø	Evènement impossible	$P(\emptyset) = 0$
$\{\omega_i\}$	Evènement élémentaire	$P(\omega_i) = p_i$
$A \subseteq \Omega$	Evènement quelconque	$0 \le P(A) \le 1$
Ā	Evènement contraire de A	$P(\overline{\mathbf{A}}) = 1 - P(\mathbf{A})$
$A \cap B = \emptyset$	A et <i>B</i> sont incompatibles	$P(A \cup B) = P(A) + P(B)$
A∪B	Evènement A ou B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
A∩B	Evènement A et B	

• Calcul dans le cas d'équiprobabilité

$$P(A) = \frac{Card(A)}{Card(\Omega)} = \frac{nombre\ de\ cas\ favorables}{nombre\ de\ cas\ possibles}$$

♦ Probabilité conditionnelle :

• La formule pour calculer la probabilité de B sachant A

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

• Indépendance

A et B sont indépendants si et seulement si $P(A \cap B) = P(A)P(B)$

- Calcul de $P(A \cap B)$
 - ✓ Quand A et B sont indépendants : $P(A \cap B) = P(A)P(B)$
 - ✓ Quand A et B ne sont pas indépendants : $P(A \cap B) = P(A)P_A(B)$
- Calcul de P(B) quand B est lié à un évènement A $P(B) = P(B \cap A) + P(B \cap \bar{A})$

♦ Variables aléatoires :

• Loi de probabilité

x_i	x_1	x_2	•••	x_n
$p_i = P(X = x_i)$	p_1	p_2	•••	p_n

• Espérance mathématique ; Variance et Ecart – type

$$\checkmark E(X) = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$

$$\checkmark V(X) = E(X^2) - [E(X)]^2$$
 avec

$$E(X^2) = x_1^2 p_1 + x_2^2 p_2 + \dots + x_n^2 p_n$$

$$\checkmark \sigma(X) = \sqrt{V(X)}$$

♦ Schéma de Bernoulli de paramètres n et p - Loi binomiale

• Calcul des probabilités dans un schéma de Bernoulli de paramètres n et p

- ✓ Pour tout k, $0 \le k \le n$, la probabilité d'obtenir exactement k succès est $p_k = C_n^k p^k (1-p)^{n-k}$
- ✓ La probabilité d'obtenir uniquement que des succès est p^n
- ✓ La probabilité de n'obtenir aucun succès est $(1-p)^n$
- ✓ La probabilité d'obtenir au moins un succès est $1 (1 p)^n$

Loi binomiale de paramètres n et p

Soit X la variable aléatoire égale au nombre de succès dans un schéma de Bernoulli de paramètres n et p

- \checkmark Pour tout $k, 0 \le k \le n$, $P(X = k) = C_n^k p^k (1 p)^{n-k}$
- $\checkmark P(X \ge 1) = 1 P(X = 0) = 1 (1 p)^n$
- $\checkmark E(X) = np$
- $\checkmark V(X) = np(1-p)$

STATISTIQUES A DEUX **VARIABLES**

♦ Série statistique double :

• Définition

Une série statistique double (x; y) est constituée de n couples de nombres $(x_1; y_1), (x_2; y_2), ..., (x_n; y_n)$

Valeurs du caractère X	x_1	x_2	•••	x_n
Valeurs du caractère Y	y_1	y_2	•••	y_n

• Exemple

On mesure en fonction de la masse suspendue l'allongement d'un ressort Les résultats sont regroupés dans le tableau suivant :

Masse suspendue x_i en Kg	2	2,5	4	4,5	6,5	7	8	10
Allongement y_i en cm	19	20	21	22	26	32	36	40

Nuage de points et point moyen :

• Définitions

✓ Le nuage de points associé est l'ensemble des n points de coordonnées $(x_i; y_i)$

✓ Le point moyen G associé est le point de coordonnées

$$x_G = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 et $y_G = \frac{y_1 + y_2 + \dots + y_n}{n}$

$$x_G = \frac{44}{8} = 5.5 \text{ et } y_G = \frac{216}{8} = 27 \iff G(5.5; 27)$$

♦ Ajustement affine par la méthode graphique :

• Définition

On trace une droite (D) passant par G et « assez proche des points du nuage » puis on détermine son équation sous la forme y = mx + p.

En effet : (D) passe par
$$A(x_A; y_A)$$
 et $B(x_B; y_B) \Leftrightarrow \begin{cases} y_A = mx_A + p \\ y_B = mx_B + p \end{cases}$

• Exemple

Masse suspendue x_i en Kg	2	2,5	4	4,5	6,5	7	8	10
Allongement y _i en cm		20	21	22	26	32	36	40

Déterminons l'équation de la droite (D) passant par G(5,5;27) et le septième point du nuage de points

$$\begin{cases} 27 = 5.5m + p \\ 36 = 8m + p \end{cases} \iff m = 3.6 \ et \ p = 7.2 \iff (D): y = 3.6x + 7.2$$

◆ Ajustement affine par la méthode de MAYER :

• Définition

On fractionne le nuage de points en deux sous-nuages de même effectif de points moyens respectifs G_1 et G_2 (ou différent à une unité près si l'effectif est impair) alors puis on détermine l'équation de la droite (G_1G_2) appelée droite de MAYER.

• Exemple

Déterminons la droite de Mayer du nuage de points

✓ Soit G_1 le point moyen des quatre premiers points

$$G_1\left(\frac{13}{4}; \frac{82}{4}\right) \Leftrightarrow G_1(3,25;20,5)$$

✓ Soit G_2 le point moyen des quatre derniers points

$$G_2\left(\frac{31,5}{4}; \frac{134}{4}\right) \iff G_2(7,875;33,5)$$

✓ Equation de la droite (G_1G_2)

$$(G_1G_2)$$
: $y = mx + p \Leftrightarrow \begin{cases} 20.5 = 3.25m + p \\ 33.5 = 7.875m + p \end{cases} \Leftrightarrow m = 2.8 \text{ et } p = 11.4$

Donc
$$(G_1G_2): y = 2.8x + 11.4$$

♦ Extrapolation et interpolation :

• Définition

C'est faire des prévisions ou retrouver des résultats manquants sur la série statistique double à partir de l'équation y = mx + p

• Exemple

En utilisant la droite (D): y = 3.6x + 7.2

✓ Déterminons l'allongement prévisible pour une masse suspendue de $18\ kg$

$$x = 18 \iff y = 3.6 \times 18 + 7.2 = 72$$

Pour une masse suspendue de 18 Kg, l'allongement à prévoir est de 72 cm

✓ Estimons la masse suspendue ayant produit un allongement du ressort de 27 cm.

$$y = 27 \Leftrightarrow 27 = 3.6x + 7.2 \Leftrightarrow x = 5.5$$

La masse de l'objet suspendu au ressort ayant produit un allongement du ressort de 27 cm est 5,5 Kg

♦ Egalité de deux vecteurs et Relation de Chasles :

- Egalité : $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \Leftrightarrow ABCD$ est un parallélogramme
- Relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

♦ Colinéarité :

• Définition

 \vec{u} et \vec{v} sont colinéaires si et seulement si, il existe un réel k tel que $\vec{v}=k\vec{u}$

• Parallélisme

 $(AB) // (CD) \Leftrightarrow \overrightarrow{AB} \text{ et } \overrightarrow{CD} \text{ sont colinéaires} \Leftrightarrow \exists \ k \in \mathbb{R} \ / \ \overrightarrow{AB} = k \overrightarrow{CD}$

• Appartenance à une droite et alignement

 $\checkmark M \in (AB) \iff \overrightarrow{AB} \text{ et } \overrightarrow{AM} \text{ sont colinéaires} \iff \exists \ k \in \mathbb{R} \ / \ \overrightarrow{AM} = k\overrightarrow{AB}$

 $\checkmark A$, B et C sont alignés $\iff \overrightarrow{AB}$ et \overrightarrow{AC} sont colinéaires $\iff \exists \ k \in \mathbb{R} \ / \ \overrightarrow{AC} = k\overrightarrow{AB}$

♦ Plans de l'espace et coplanarité :

• Définition

Trois points non alignés A, B, C définissent un plan noté (ABC)

• Coplanarité

- ✓ Les vecteurs \vec{u} , \vec{v} , \vec{w} sont coplanaires si et seulement si, il existe deux réels a et b tels que $\vec{w} = a\vec{u} + b\vec{v}$ ou si et seulement si, $(\vec{u} \land \vec{v}) \cdot \vec{w} = 0$
- ✓ Les points *A*, *B*, *C*, *D* sont coplanaires si et seulement si, il existe deux réels α et β tels que $\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$ ou si et seulement si, $(\overrightarrow{AB} \land \overrightarrow{AC}) \cdot \overrightarrow{AD} = 0$

♦ Produit scalaire et orthogonalité :

• Définition

$$\vec{u}.\vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\vec{u}, \vec{v})$$

• Orthogonalité

$$\sqrt{\vec{u}} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = 0$$

$$\checkmark (AB) \perp (CD) \Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{CD} = 0$$

✓ ABC est un triangle rectangle en
$$A \Leftrightarrow \overrightarrow{AB}.\overrightarrow{AC} = 0$$

♦ Géométrie analytique :

Soit $(\mathbf{0}; \vec{\imath}, \vec{j}, \vec{k})$ un repère de l'espace

Soit $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$ deux points

Soit $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ deux vecteurs.

- Le vecteur \overrightarrow{AB} est tel que $\overrightarrow{AB} \begin{pmatrix} x_B x_A \\ y_B y_A \\ z_B z_A \end{pmatrix}$
- Le milieu I de [AB] est tel que $I\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}, \frac{z_A + z_B}{2}\right)$
- Le vecteur $\vec{u} + \vec{v}$ et $k\vec{u}$ sont tels que $\vec{u} + \vec{v} \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$ et $k\vec{u} \begin{pmatrix} kx \\ ky \\ kz \end{pmatrix}$
- \vec{u} et \vec{v} sont colinéaires si et seulement si $\frac{x'}{x} = \frac{y'}{y} = \frac{z'}{z} = k$
- Si le repère $(0; \vec{i}, \vec{j}, \vec{k})$ est orthonormé alors :

$$\sqrt{\vec{u}} \cdot \vec{v} = xx' + yy' + zz'$$
 et $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$

$$\checkmark AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

♦ Froduit Vectoriel:

• Définition

$$\vec{u}$$
 et \vec{v} sont colinéaires $\iff \vec{u} \land \vec{v} = \vec{0}$

 $\sqrt{\vec{u}}$ et \vec{v} sont non colinéaires

$$\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix} et \ \vec{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \iff \vec{u} \land \vec{v} \begin{pmatrix} \begin{vmatrix} y & y' \\ z & z' \\ \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} \end{pmatrix}$$

• Propriétés

$$\checkmark \vec{v} \wedge \vec{u} = -\vec{u} \wedge \vec{v}$$

$$\checkmark \vec{u} \wedge (\vec{v} + \vec{w}) = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$$

$$\checkmark (\vec{u} + \vec{v}) \land \vec{w} = \vec{u} \land \vec{w} + \vec{v} \land \vec{w}$$

♦ Applications du produit vectoriel : Aires — Distances - Volumes :

Aire d'un Parallélogram me	,	$\mathcal{A}_{ABCD} = \left\ \overrightarrow{AB} \wedge \overrightarrow{AD} \right\ \times ua$
Aire d'un Triangle	A B	$\mathcal{A}_{ABC} = \frac{\ \overrightarrow{AB} \wedge \overrightarrow{AC}\ }{2} \times ua$
Distance d'un point à une droite	$\begin{array}{c} M \\ \downarrow \\ H \end{array} \qquad \begin{array}{c} (d) \\ \end{array}$	$d(M; (AB)) = MH = \frac{\ \overrightarrow{AM} \wedge \overrightarrow{AB}\ }{\ \overrightarrow{AB}\ }$
Distance d'un point à un plan	A H	$d(M; (ABC)) = MH = \frac{ \overrightarrow{AM}.(\overrightarrow{AB} \wedge \overrightarrow{AC}) }{\ \overrightarrow{AB} \wedge \overrightarrow{AC}\ }$
		83

Volume d'un parallélépipède

$$\mathcal{V}_{ABCDEFGH} = \mathcal{A}_{ABCD} \times d(E; (ABCD)) \times uv$$
$$= \|\overrightarrow{AE}. (\overrightarrow{AB} \wedge \overrightarrow{AD})\| \times uv$$

Volume d'un tétraèdre

$$\mathcal{V}_{ABCD} = \frac{1}{3} \times \mathcal{A}_{ABC} \times d(D; (ABC)) \times uv$$
$$= \frac{1}{6} \|\overrightarrow{AD}. (\overrightarrow{AB} \wedge \overrightarrow{AC})\| \times uv$$

Volume d'une pyramide

$$\mathcal{V}_{ABCDE} = \frac{1}{3} \times \mathcal{A}_{ABCD} \times d(E; (ABCD)) \times uv = \frac{1}{3} \|\overrightarrow{AE} \cdot (\overrightarrow{AB} \wedge \overrightarrow{AD})\| \times uv$$

Question1:

Déterminer l'ensemble de définition D_f de f

O deux fonctions polynômes et soit u une

Ce qu'il faut savoir

- Ecrire les conditions d'existence de f(x)
- Résoudre chacune des conditions
- Conclure

Soient P et Q deux fonctions polynômes et soit u une fonction de $\mathbb{R} \to \mathbb{R}$

$$\bullet \ f(x) = P(x) \Leftrightarrow D_f = \mathbb{R}$$

•
$$f(x) = \frac{P(x)}{Q(x)}$$
 n'existe que si $Q(x) \neq 0$

•
$$f(x) = \sqrt{P(x)}$$
 n'existe que si $P(x) \ge 0$

•
$$f(x) = \frac{\sqrt{P(x)}}{Q(x)}$$
 n'existe que si $P(x) \ge 0$ $etQ(x) \ne 0$

•
$$f(x) = \frac{P(x)}{\sqrt{Q(x)}}$$
n'existe que si $Q(x) > 0$

•
$$f(x) = \sqrt{\frac{P(x)}{Q(x)}}$$
 n'existe que $siQ(x) \neq 0$ et $\frac{P(x)}{Q(x)} \geq 0$

•
$$f(x) = \ln u(x)$$
n'existe que si $x \in D_u$ et $u(x) > 0$

•
$$f(x) = \ln|u(x)|$$
 n'existe que si $x \in D_u$ et $u(x) \neq 0$

•
$$f(x) = e^{u(x)}$$
n'existe que $six \in D_u \iff D_f = D_u$

Question 2:

Etudier la continuité et la dérivabilité de f en x_0 et interpréter graphiquement les résultats obtenus

Continuité de f en x_0

- Calculer $\lim_{x \to x_0^-} f(x)$ (et/ou) $\lim_{x \to x_0^+} f(x)$
- Calculer $f(x_0)$ si ce n'est pas donné
- Conclure

Ce qu'il faut savoir

Si
$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$$
 alors f est continue en x_0

Dérivabilité de f en x_0

- Calculer $\lim_{x \to x_0^-} \frac{f(x) f(x_0)}{x x_0}$ (et/ou) $\lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0}$
- Conclure

Ce qu'il faut savoir

✓ Si
$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$
 alors f est dérivable en x_0 et $f'(x_0) = \ell$

✓ Si
$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \neq \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$
 alors f n'est pas dérivable en x_0

✓ Si
$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$$
 (et/ou) $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$ alors f n'est pas dérivable en x_0

Interprétation graphique des résultats obtenus

Ce qu'il faut savoir

 \rightarrow Si f est dérivable en x_0 alors (\mathcal{C}_f) admet au point d'abscisse x_0 une tangente de coefficient directeur $f'(x_0)$ et d'équation (T): $y = f'(x_0)(x - x_0) + f(x_0)$

$$\rightarrow \operatorname{Si} \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \ell_1 \text{ et } \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \ell_2 \text{ avec } \ell_1 \neq \ell_2 \text{ alors } (\mathcal{C}_f) \text{ admet au}$$

point de coordonnées $(x_0; f(x_0))$ deux demi-tangentes de coefficients directeurs respectifs ℓ_1 et ℓ_2 et d'équations

$$(T_1): y = \ell_1(x - x_0) + f(x_0)$$
 et $(T_2): y = \ell_2(x - x_0) + f(x_0)$

$$\rightarrow$$
 Si $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$ et/ou $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$ alors (\mathcal{C}_f) admet au point de coordonnées $(x_0; f(x_0))$ une demi-tangente verticale dirigée vers le haut

$$\rightarrow$$
 Si $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$ et/ou $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$ alors (\mathcal{C}_f) admet au point de coordonnées $(x_0; f(x_0))$ une demi-tangente verticale dirigée vers bas

Question 3:

Calculer les limites de f aux bornes de son ensemble de définition et en déduire les asymptotes éventuelles

- Calculer $\lim_{x \to x_0^-} f(x)$ (et/ou) $\lim_{x \to x_0^+} f(x)$ (si x_0 est une borne de D_f)
- Calculer $\lim_{x \to -\infty} f(x) (et/ou) \lim_{x \to +\infty} f(x)$ (si $-\infty et/ou + \infty$ est une borne de D_f)
- Conclure

Ce qu'il faut savoir

 \rightarrow Asymptote verticale

Si on a

 $\lim_{x \to x_0^{\pm}} f(x) = \pm \infty$ alors la droite d'équation $x = x_0$ est une asymptote verticale à (\mathcal{C}_f)

→ Asymptote horizontale

Si on a

 $\lim_{x \to +\infty} f(x) = \ell$ alors la droite d'équation $y = \ell$ est une asymptote horizontale à (\mathcal{C}_f)

Question 4:

Montrer que la droite d'équation y = ax + b est asymptote à (\mathcal{C}_f) en $\pm \infty$

- Calculer $\lim_{x \to +\infty} [f(x) (ax + b)]$
- Conclure

Ce qu'il faut savoir

 \rightarrow Si on a $\lim_{x \to \pm \infty} [f(x) - (ax + b)] = 0$ alors la droite d'équation y = ax + b est une asymptote oblique à (C_f)

Question 5:

Etudier les positions relatives de la courbe (C_f) et d'une droite (Δ) d'équation y=ax+b

- Etudier le signe de f(x) y
- Conclure

Ce qu'il faut savoir

- \rightarrow Si $\forall x \in I, f(x) y > 0$ alors (\mathcal{C}_f) est au-dessus de (Δ) sur I
- \rightarrow Si $\forall x \in I, f(x) y < 0$ alors (\mathcal{C}_f) est en-dessous de (Δ) sur I

Question 6:

Montrer que deux courbes (\mathcal{C}_f) et (\mathcal{C}_g) sont asymptotes en $\pm \infty$

- Calculer $\lim_{x \to +\infty} [f(x) g(x)]$
- Conclure

Ce qu'il faut savoir

 \rightarrow Si on a $\lim_{x \to \pm \infty} [f(x) - g(x)] = 0$ alors (\mathcal{C}_f) et (\mathcal{C}_g) sont asymptotes en $\pm \infty$

Question 7:

Etudier les positions relatives de deux courbes $\left(\mathcal{C}_f\right)$ et $\left(\mathcal{C}_g\right)$

- Etudier le signe de f(x) g(x)
- Conclure

Ce qu'il faut savoir

- \rightarrow Si $\forall x \in I, f(x) g(x) > 0$ alors (\mathcal{C}_f) est au-dessus de (\mathcal{C}_g) sur I
- \rightarrow Si $\forall x \in I, f(x) g(x) < 0$ alors (\mathcal{C}_f) est en-dessous de (\mathcal{C}_g) sur I

Question 8 : étudier les branches infinies de f

- Calculer $\lim_{x \to \pm \infty} \frac{f(x)}{x}$ et au cas où $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \ (a \in \mathbb{R}^*)$;
- Calculer $\lim_{x \to +\infty} [f(x) ax]$
- Conclure

Ce qu'il faut savoir

- \rightarrow Si $\lim_{x \to \pm \infty} \frac{f(x)}{x} = \pm \infty$ alors (C_f) admet une branche parabolique de direction asymptotique l'axe des ordonnées
- \rightarrow Si $\lim_{x \to \pm \infty} \frac{f(x)}{x} = 0$ alors (C_f) admet une branche parabolique de direction asymptotique l'axe des abscisses
- \rightarrow Si $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \ (a \in \mathbb{R}^*) \text{ et } \lim_{x \to \pm \infty} [f(x) ax] = \pm \infty \text{ alors } (\mathcal{C}_f) \text{ admet une}$

branche parabolique de direction asymptotique la droite d'équation y = ax

$$\rightarrow$$
 Si $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \ (a \in \mathbb{R}^*)$ et $\lim_{x \to \pm \infty} [f(x) - ax] = b \ (b \in \mathbb{R})$ alors (\mathcal{C}_f) admet une asymptote oblique d'équation $y = ax + b$

Question 9 : Montrer que le point $\Omega(a \; ; b)$ est un centre de symétrie de $\left(\mathcal{C}_f\right)$

- Calculer f(2a x) + f(x) (sous réserve que $\forall x \in D_f$, $2a x \in D_f$)
- Conclure

Ce qu'il faut savoir

 \rightarrow Si f(2a-x)+f(x)=2b alors $\Omega(a;b)$ est un centre de symétrie de (\mathcal{C}_f)

Question 10: Montrer que la droite d'équation x=a est un axe de symétrie de (\mathcal{C}_f)

- Calculer f(2a x) (sous réserve que $\forall x \in D_f$, $2a x \in D_f$)
- Conclure

Ce qu'il faut savoir

 \rightarrow Si f(2a-x)=f(x) alors la droite d'équation x=aest un axe de symétrie de (\mathcal{C}_f)

Question 11: Etudier le sens de variation de f

- Calculer f'(x)
- Etudier le signe de f'(x)
- Conclure

Ce qu'il faut savoir

- \rightarrow Si $\forall x \in I, f'(x) > 0$ alors f est strictement croissante sur I
- \rightarrow Si $\forall x \in I, f'(x) < 0$ alors f est strictement décroissante sur I
- \rightarrow Si $\forall x \in I, f'(x) = 0$ alors f est constante sur I

Question 12 : Etudier les variations de f

- Calculer f'(x); étudier le signe de f'(x) et en déduire le sens de variation de f
- Calculer les limites de f aux bornes de D_f
- Dresser le tableau de variations de *f*

Ce qu'il faut savoir

→ Il faut vérifier l'harmonie entre les différents résultats portés dans le tableau de variations

Question 13:

Montrer que f définie une bijection d'un intervalle I sur un intervalle J à préciser

(sous réserve que les variations de f sont déjà connues)

- Ecrire que f est continue sur I car elle est dérivable sur I
- Ecrire que f est strictement croissantesur I (ou strictement décroissante sur I)
- Conclure alors que, f réalise une bijection de I sur J = f(I)

Ce qu'il faut savoir

 \rightarrow l'intervalle J = f(I) doit être calculé ou doit être lu dans le tableau de variation et que J est de la même nature que I

Question 14:

Montrer que f admet une bijection réciproque dont on donnera l'ensemble de définition

- Montrer d'abord que, f réalise une bijection de I sur J = f(I)
- Conclure alors que, f admet une bijection réciproque f^{-1} de J = f(I) sur I

Question 15: Donner les variations de la réciproque f^{-1} de f

- Dire que f^{-1} a sur J le même sens de variation que f sur I
- Dresser le tableau de variation de f^{-1} à partir de celui de f

Question 16:

Expliciter $f^{-1}(x)$ pour tout x élément de J (ou donner l'expression de $f^{-1}(x)$ pour tout x élément de J)

- Résoudre l'équation f(x) = y
- On trouve $x = f^{-1}(y)$
- Conclure en remplaçant le y dans $f^{-1}(y)$ par x

Exemple :
$$f: \mathbb{R} \to \mathbb{R}$$
 ; $x \mapsto f(x) = 2x - 1$

$$f(x) = y \Leftrightarrow 2x - 1 = y \Leftrightarrow x = \frac{y+1}{2} = f^{-1}(y)$$

Conclusion:
$$f^{-1}(x) = \frac{x+1}{2}$$

Question 17:

Montrer que l'équation f(x) = 0 admet une unique solution α sur un intervalle I (ou Montrer qu'il existe un unique réel $\alpha \in I$ tel que $f(\alpha) = 0$) et que $\alpha \in]a$; b[

(sous réserve que les variations de f sont déjà connues)

- Ecrire que f est continue sur I car elle est dérivable sur I
- Ecrire que f est strictement croissantesur I (ou strictement décroissantesur I)
- En déduire que, f réalise une bijection de I sur J = f(I)
- Vérifier que $0 \in J = f(I)$
- Conclure que l'équation f(x) = 0 admet une unique solution $\alpha \in I$

Four montrer que $\alpha \in]a$; b[

- Calculer f(a) et f(b) puis $f(a) \times f(b)$
- Conclure:

Ce qu'il faut savoir

 \rightarrow Si $f(a) \times f(b) < 0$ alors $\alpha \in]a; b[$

Question 18:

Montrer que l'équation f(x) = k admet une unique solution α sur un intervalle I (ou Montrer qu'il existe un unique réel $\alpha \in I$ tel que $f(\alpha) = k$) et que $\alpha \in]a$; b[

(sous réserve que les variations de f sont déjà connues)

- Ecrire que f est continue sur I car elle est dérivable sur I
- Ecrire que f est strictement croissantesur I (ou strictement décroissantesur I)
- En déduire que, f réalise une bijection de I sur J = f(I)
- Vérifier que $k \in J = f(I)$
- Conclure que l'équation f(x) = k admet une unique solution $\alpha \in I$

Four montrer que $\alpha \in]a$; b[

- Calculer f(a; b) (intervalle ouvert de bornes f(a) et f(b))
- Conclure:

Ce qu'il faut savoir

 \rightarrow Si $k \in f(]a; b[)$ alors $\alpha \in]a; b[$

Question 19 : Déterminer l'équation de la tangente (T) à (\mathcal{C}_f) au point d'abscisse x_0

- Ecrire l'équation sous la forme (T): $y = f'(x_0)(x x_0) + f(x_0)$
- Calculer $f'(x_0)$ et $f(x_0)$
- Conclure

Question 20:

Déterminer le point A d'abscisse a de (C_f) où la tangente (T) à (C_f) est parallèle à une droite d'équation y = mx + p

- Résoudre f'(a) = m (puisque les deux coefficients directeurs sont égaux)
- Calculer f(a)
- Conclure que A(a; f(a))

Question 21:

Déterminer le point A d'abscisse a de (C_f) où la tangente (T) à (C_f) est perpendiculaire à une droite d'équation y=mx+p

- Résoudre $f'(a) = -\frac{1}{m}$ (puisque le produit des coefficients directeurs est -1)
- Calculer f(a)
- Conclure A(a; f(a))

Question 22:

Démontrer qu'au point d'abscisse a la tangente (T) à (C_f) et la tangente (T') à (C_g) sont perpendiculaires

- Calculer $f'(a) \times g'(a)$
- Conclure

Ce qu'il faut savoir

Si $f'(a) \times g'(a) = -1$, alors (T) et (T') sont perpendiculaires

Question 23:

Déterminer le ou les points d'intersection de (C_f) et (C_g) Déterminer le ou les points où (C_f) et (C_g) se coupent (ou se rencontrent)

- Résoudre f(x) = g(x)
- Calculer $f(x_1)$; $f(x_2)$; ... (si x_1 ; x_2 ; ... sont les solutions trouvées)
- Conclure $M_1(x_1; f(x_1)); M_2(x_2; f(x_2)); \cdots$

Question 24:

Déterminer le ou les points d'intersection de (C_f) et de la droite (D): y = mx + pDéterminer le ou les points où (C_f) et (D) se coupent (ou se rencontrent)

- Résoudre f(x) = y
- Calculer $f(x_1)$; $f(x_2)$; ... (si x_1 ; x_2 ; ... sont les solutions trouvées)
- Conclure $M_1(x_1; f(x_1)); M_2(x_2; f(x_2)); \cdots$

Question 25:

Déterminer les points d'intersections de (\mathcal{C}_f) avec les axes du repère

Avec l'axe des abscisses

- Résoudre f(x) = 0 (puisque l'axe des abscisses a pour équation y = 0)
- Conclure

$$M_1(x_1; 0)$$
; $M_2(x_2; 0)$; ... (si x_1 ; x_2 ; ... sont les solutions trouvées)

Avec l'axe des ordonnées

- Calculer f(0) (puisque l'axe des ordonnées a pour équation x = 0)
- Conclure

$$M_0(0; f(0))$$

Question 26: Tracer la courbe (\mathcal{C}_f)

- Construire le repère en respectant l'unité graphique
- Tracer les droites particulières (asymptotes ; tangentes ;…)
- Placer les points particuliers (extrémums relatifs ; intersection avec les axes ; ···)
- Tracer la courbe en conformité avec le tableau de variations

Question 27 : Tracer la courbe $(\mathcal{C}_{f^{-1}})$ à partir de la courbe (\mathcal{C}_f)

- Ecrire que $(\mathcal{C}_{f^{-1}})$ et (\mathcal{C}_{f}) sont symétriques par rapport à la droite d'équation y=x
- Tracer $(\mathcal{C}_{f^{-1}})$ à partir de (\mathcal{C}_{f})

Question 28: Soit g(x)=-f(x); sans étudier la fonction g, tracer $\left(\mathcal{C}_g\right)$ dans le même repère que $\left(\mathcal{C}_f\right)$

- Ecrire : (\mathcal{C}_g) et (\mathcal{C}_f) sont symétriques par rapport à l'axe des abscisses
- Tracer (\mathcal{C}_g) à partir de (\mathcal{C}_f)

Question 29 : Soit g(x) = |f(x)|; sans étudier la fonction g, tracer (C_g) dans le même repère que (C_f)

• Ecrire:

Si $f(x) \ge 0$ alors $(\mathcal{C}_g) = (\mathcal{C}_f)$

Si $f(x) \le 0$ alors (\mathcal{C}_g) et (\mathcal{C}_f) sont symétriques par rapport à 1' axe des abscisses

• Tracer (\mathcal{C}_g) à partir de (\mathcal{C}_f)

Question 30 : Soit g(x) = f(-x); sans étudier la fonction g, tracer (C_g) dans le même repère que (C_f)

- Ecrire : (\mathcal{C}_g) et (\mathcal{C}_f) sont symétriques par rapport à l'axe des ordonnées
- Tracer (\mathcal{C}_g) à partir de (\mathcal{C}_f)

Question 31 : Soit g(x) = f(|x|); sans étudier la fonction g, tracer (C_g) dans le même repère que (C_f)

• Ecrire:

Si $x \ge 0$ alors $(\mathcal{C}_g) = (\mathcal{C}_f)$

Si $x \le 0$ alors (\mathcal{C}_g) et (\mathcal{C}_f) sont symétriques par rapport à l'axe des odonnées

• Tracer (\mathcal{C}_g) à partir de (\mathcal{C}_f)

Question 32 : Soit g(x) = f(x-a) + b ; sans étudier la fonction g, tracer (C_g) dans le même repère que (C_f)

- Ecrire : (\mathcal{C}_g) est l'image de (\mathcal{C}_f) par la translation de vecteur $a\vec{\imath} + b\vec{\jmath}$
- Tracer (\mathcal{C}_g) à partir de (\mathcal{C}_f)

Question 33:

Calculer l'aire du domaine limité par (C_f) , l'axe des abscisses et les droites d'équations x=a et x=b

• Cas où (C_f) est au dessus de l'axe des abscisses sur [a;b] (c.-à-d $f \ge 0$ sur [a;b]) $\begin{cases} a \le x \le b \\ 0 \le v \le f(x) \end{cases}$

$$\mathcal{A} = \int_{a}^{b} f(x) \, dx \times ua$$

• Cas où (\mathcal{C}_f) est en dessous de l'axe des abscisses sur [a;b] (c.-à-d $f \leq 0$ sur [a;b])

$$\begin{cases} a \le x \le b \\ f(x) \le y \le 0 \end{cases}$$

$$\mathcal{A} = -\int_{a}^{b} f(x) \, dx \times ua$$

• Pour exprimer l'aire en cm^2 , $ua = ||\vec{i}|| \times ||\vec{j}||$ dans un repère orthogonal $(O; \vec{i}, \vec{j})$

Question 34:

Calculer l'aire du domaine limité par (C_f) , la droite (Δ) : y = mx + p et les droites d'équations x = a et x = b

• Cas où (C_f) est au-dessus de (Δ) sur [a;b]

$$\begin{cases} a \le x \le b \\ mx + p \le y \le f(x) \end{cases}$$

$$\mathcal{A} = \int_{a}^{b} [f(x) - y] \, dx \times ua$$

• Cas où (\mathcal{C}_f) est en-dessous de (Δ) sur [a;b]

$$\begin{cases}
 a \le x \le b \\
 f(x) \le y \le mx + p
\end{cases}$$

$$\mathcal{A} = \int_{a}^{b} [y - f(x)] dx \times ua$$

Question 35:

Calculer le volume du solide de révolution engendré par la rotation autour de l'axe des abscisses du domaine limité par (C_f) , l'axe des abscisses et les droites d'équations x = a et x = b

• Ecrire:

$$\mathcal{V} = \pi \int_{a}^{b} f^{2}(x) \, dx \times uv$$

- Chercher $f^2(x)$ avant de passer au calcul de l'intégrale
- Pour exprimer le volume en cm^3 , $uv = ||\vec{\imath}|| \times ||\vec{\jmath}|| \times ||\vec{k}||$ dans un repère orthogonal $(O; \vec{\imath}, \vec{\jmath}, \vec{k})$

Question 36:

Montrer que F est une primitive de f sur un intervalle I

- Calculer F'(x)
- Conclure

Ce qu'il faut savoir

 \rightarrow Si F'(x) = f(x) alors F est une primitive de f

Question 37:

Déterminer les réels a et b (ou les réel a , b et c) pour que F soit une primitive de f sur un intervalle I

- Calculer F'(x) en fonction de a et b (ou en fonction de a, b et c)
- Ecrire l'égalité F'(x) = f(x) et faire une identification des coefficients

Question 38:

Soit F la fonction définie par $F(x) = \int_a^x f(t) dt$; que représente F pour f?

Il suffit d'écrire que F est la primitive de f qui s'annule-en a

Question 39:

Soit F la fonction définie par $F(x) = \int_a^x f(t) \, dt$; montrer que F est dérivable et calculer sa dérivée

Il suffit d'écrire que F étant la primitive de f qui s'annules-en a, alors F est dérivable et F'(x) = f(x)

Question 40:

Donner une interprétation géométrique de l'intégrale $\int_a^b f(x) dx$

(sous réserve que a < b et que $\forall x \in [a; b], f(x) \ge 0$)

Ecrire simplement que $\int_a^b f(x) dx$ est l'aire en unité d'aire du domaine limité par la courbe (\mathcal{C}_f) , l'axe des abscisses et les droites d'équations x = a et x = b

LES PROBLEMES CLASSIQUES RESOLUS

Classique 1 :

Equation différentielle avec second membre y' + ay = g(x)

On considère l'équation différentielle (E): $\frac{1}{2}y' + y = e^{-2x}$

- 1) On pose $u(x) = axe^{-2x}$ où a est un réel.
- 2) Déterminer le nombre réela pour que la fonction $u: x \mapsto u(x)$ définie sur $\mathbb R$ soit solution de (E)
- 3) Résoudre l'équation différentielle (E_0) : $\frac{1}{2}y' + y = 0$
- 4) Démontrer qu'une fonction y définie et dérivable sur \mathbb{R} , est solution de (E) si et seulement si la fonction y-u est solution de (E_0) .
- 5) En déduire toutes les solutions de (E) puis la solution particulière f de(E), dont la courbe représentative (C) dans un repère orthonormé $(O; \vec{\iota}, \vec{j})$ passe par le point A(0; -1)

Résolution

(1) Déterminons le nombrea

u est solution de (E) si $\frac{1}{2}u'(x) + u(x) = e^{-2x}$

$$\frac{1}{2}u'(x) + u(x) = e^{-2x} \Longrightarrow \frac{1}{2}ae^{-2x} = e^{-2x}$$

Par identification $a = 2 \implies u(x) = 2xe^{-2x}$

(2) Résolution de (E_0) : $\frac{1}{2}y' + y = 0$

$$\frac{1}{2}y' + y = 0 \Longrightarrow y' = -2y \Longrightarrow y = ke^{-2x}; k \in \mathbb{R}$$

(3) Démonstration

Supposons que y est solution de (E) et montrons que y-u est solution de (E_0)

Si y est solution de (E), alors on a $\frac{1}{2}y'(x) + y(x) = e^{-2x}$;

or
$$\frac{1}{2}u'(x) + u(x) = e^{-2x}$$
 d'où $\frac{1}{2}y'(x) + y(x) = \frac{1}{2}u'(x) + u(x)$

$$\Rightarrow \frac{1}{2}(y-u)'(x) + (y-u)(x) = 0$$
 et donc $y-u$ est solution de (E_0)

Réciproquement, supposons que y-u est solution de (E_0) et montrons que y est solution de (E)

Si y - u est solution de (E_0) , alors on a $\frac{1}{2}(y - u)'(x) + (y - u)(x) = 0$ d'où

$$\frac{1}{2}y'(x) - \frac{1}{2}u'(x) + y(x) - u(x) = 0 \Longrightarrow \frac{1}{2}y'(x) + y(x) = \frac{1}{2}u'(x) + u(x)$$

Or
$$\frac{1}{2}u'(x) + u(x) = e^{-2x}$$
 d'où $\frac{1}{2}y'(x) + y(x) = e^{-2x}$ et donc y est solution de (E)

En conclusion y est solution de (E) si et seulement si y-u est solution de (E_0)

(4) Déduction de toutes les solutions de (E)

Soit y une solution de (E), on a d'après (3) et (2), $y(x) - u(x) = ke^{-2x}$; d'où $y(x) = ke^{-2x} + u(x) \Leftrightarrow y(x) = ke^{-2x} + 2xe^{-2x}$; $k \in \mathbb{R}$

Solution particulière f de (E)

$$f(x) = ke^{-2x} + 2xe^{-2x}$$
 et $f(0) = -1 \iff k = -1 \iff f(x) = (2x - 1)e^{-2x}$

Commentaires

- Ces quatre questions sont toutes liées
- Tout candidat sérieux doit être en mesure de reproduire à l'identique le raisonnement du *classique 1*
- Attention !!! La réciproque dans la question (3) n'est pas facultative

Classique 2 : Etude d'une suite récurrente $u_{n+1} = f(u_n)$

Soit f la fonction définie sur [0; 1] par $f(x) = \frac{e^x}{e^x + x}$

- (1) Etudier les variations de la fonction f
- (2) Soit g la définie sur [0; 1] par g(x) = f(x) xMontrer que l'équation g(x) = 0 admet une unique solution α et que $\alpha \in \left[\frac{1}{2}; 1\right[$
- (3) On pose $I = \left[\frac{1}{2}; 1\right]$
 - (a) Montrer que pour tout élément x de I, $f(x) \in I$ et que $|f'(x)| \le \frac{1}{2}$
 - (b) Montrer que pour tout élément x de I, $|f(x) \alpha| \le \frac{1}{2}|x \alpha|$
- (4) Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = f(u_n) \end{cases}$
- (a) Montrer que pour tout entier naturel $n, u_n \in I$
- (b) Montrer que pour tout entier naturel n, $|u_{n+1} \alpha| \le \frac{1}{2} |u_n \alpha|$ et que $|u_n \alpha| \le \frac{1}{2^{n+1}}$
- (c) Montrer que la suite (u_n) converge vers α
- (d) Déterminer le plus petit entier n_0 pour lequel l'on a pour tout $n \ge n_0$, $|u_n \alpha| \le 10^{-3}$

On donne :
$$\sqrt{e} \simeq 1,65 \; ; e \simeq 2,72 \; ; \ln 2 = 0,69 \; \text{ et} \; \ln 10 = 2,30 \;$$

Résolution

(1) Variations de f

$$f'(x) = \frac{(x-1)e^{x}}{(e^x + x)^2}$$
; $\forall x \in [0; 1], x - 1 \le 0$ et $\frac{e^x}{(e^x + x)^2} > 0$ d'où $\frac{(x-1)e^x}{(e^x + x)^2} \le 0$

 $\forall x \in [0; 1], f'(x) \le 0$ alors f est décroissante

(2) Montrons que l'équation g(x) = 0 admet une unique solution α

$$g'(x) = f'(x) - 1$$
; $\forall x \in [0; 1], f'(x) \le 0 \Longrightarrow f'(x) - 1 < 0 \Longrightarrow g'(x) < 0$

La fonction g est continue car dérivable et est strictement décroissante sur [0; 1].

Alors réalise une bijection de [0; 1] sur $g([0; 1]) = [g(1); g(0)] = [-\frac{1}{e+1}; 1]$.

Or $0 \in \left[-\frac{1}{e+1} ; 1 \right]$ d'où l'équation g(x) = 0 admet une unique solution $\alpha \in [0; 1]$

Montrons que $\alpha \in \left[\frac{1}{2}\right]$; 1

$$\begin{cases} g\left(\frac{1}{2}\right) = \frac{\sqrt{e}}{\sqrt{e} + \frac{1}{2}} - \frac{1}{2} = \frac{2\sqrt{e} - 1}{2(\sqrt{e} + 1)} \\ g(1) = \frac{e}{e + 1} - 1 = -\frac{1}{e + 1} \end{cases} \implies g\left(\frac{1}{2}\right) \times g(1) < 0 \text{ alors } \alpha \in \left[\frac{1}{2}\right]; 1\right[$$

(3) On pose
$$I = \left[\frac{1}{2} ; 1 \right]$$

(a) Montrons que pour tout élément x de I, $f(x) \in I$ $x \in I \Leftrightarrow \frac{1}{2} \le x \le 1 \Leftrightarrow f(1) \le f(x) \le f\left(\frac{1}{2}\right)$ car f est décroissante sur I

Or
$$f\left(\frac{1}{2}\right) = \frac{\sqrt{e}}{\sqrt{e} + \frac{1}{2}} = 0.76$$
 et $f(1) = \frac{e}{e+1} = 0.73$ d'où

$$\frac{1}{2} \le 0.73 \le f(x) \le 0.76 \le 1$$
 et donc $f(x) \in I$

(b) Montrer que pour tout élément x de I, $|f'(x)| \le \frac{1}{2}$ $x \in I \Leftrightarrow \frac{1}{2} \le x \le 1 \Leftrightarrow \sqrt{e} \le e^x \le e \text{ et } 0 \le -(x-1) \le \frac{1}{2} \Leftrightarrow 0 \le -(x-1)e^x \le \frac{e}{2}$ $\frac{1}{2} \le x \le 1 \text{ et } \sqrt{e} \le e^x \le e \Leftrightarrow \sqrt{e} + \frac{1}{2} \le e^x + x \le e + 1$ $\Leftrightarrow \left(\sqrt{e} + \frac{1}{2}\right)^2 \le (e^x + x)^2 \le (e + 1)^2$ $\frac{1}{(e+1)^2} \le \frac{1}{(e^x + x)^2} \le \frac{1}{\left(\sqrt{e} + \frac{1}{2}\right)^2} \text{ et } 0 \le -(x-1)e^x \le \frac{e}{2}$ $\Leftrightarrow 0 \le -\frac{(x-1)e^x}{(e^x + x)^2} \le \frac{e}{2(\sqrt{e} + \frac{1}{2})^2} \le \frac{e}{2(\sqrt{e})^2}$ On a close $0 \le -f'(x) \le \frac{1}{2} \Leftrightarrow -\frac{1}{2} \le f'(x) \le 0 \Leftrightarrow |0| \le |f'(x)| \le |-\frac{1}{2}|$

On a alors $0 \le -f'(x) \le \frac{1}{2} \Leftrightarrow -\frac{1}{2} \le f'(x) \le 0 \Leftrightarrow |0| \le |f'(x)| \le \left|-\frac{1}{2}\right|$ et donc $|f'(x)| \le \frac{1}{2}$

(c) Montrer que pour tout élément x de I, $|f(x) - \alpha| \le \frac{1}{2}|x - \alpha|$

 $\alpha \in I$ et $\forall x \in I$, $|f'(x)| \le \frac{1}{2}$ alors d'après l'inégalité de la moyenne, on a :

$$\left| \int_{\alpha}^{x} f'(t)dt \right| \le \frac{1}{2} |x - \alpha| \text{ d'où } \left| \left[f'(t) \right]_{\alpha}^{x} \right| \le \frac{1}{2} |x - \alpha| \iff |f(x) - f(\alpha)| \le \frac{1}{2} |x - \alpha|$$

Or d'après (2), $f(\alpha) = \alpha$ d'où $\forall x \in I$, $|f(x) - \alpha| \le \frac{1}{2}|x - \alpha|$

- (4) Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = f(u_n) \end{cases}$
- (a) Montrons que pour tout entier naturel $n, u_n \in I$ Pour n = 0, on a $u_0 = \frac{1}{2} \in I = \left[\frac{1}{2}; 1\right]$

Supposons que pour tout entier naturel $n, u_n \in I$ et montrons que $u_{n+1} \in I$

Si $u_n \in I$, alors $f(u_n) = u_{n+1} \in I$ car d'après (3a) : $\forall x \in I$, $f(x) \in I$

Conclusion : Par récurrence, pour tout entier naturel $n, u_n \in I$

- (b) Démonstrations
 - ✓ Montrons que pour tout entier naturel n, $|u_{n+1} \alpha| \le \frac{1}{2} |u_n \alpha|$

Comme $\forall n \in \mathbb{N}, u_n \in I$; posons $x = u_n$ dans (3c): On a

$$|f(u_n) - \alpha| \le \frac{1}{2} |u_n - \alpha|$$
. Or $f(u_n) = u_{n+1}$ d'où $\forall n \in \mathbb{N}$, $|u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha|$

Autre façon de faire

Comme $\forall n \in \mathbb{N}, u_n \in I ; \alpha \in I \text{ et } \forall x \in I, |f'(x)| \leq \frac{1}{2} \text{ alors d'après l'inégalité de la}$ moyenne, on a : $\left| \int_{\alpha}^{u_n} f'(t) dt \right| \leq \frac{1}{2} |u_n - \alpha| \text{ d'où } \left| [f'(t)]_{\alpha}^{u_n} \right| \leq \frac{1}{2} |u_n - \alpha|$ $\Leftrightarrow |f(u_n) - f(\alpha)| \leq \frac{1}{2} |u_n - \alpha|. \text{ Or d'après (2), } f(\alpha) = \alpha \text{ et par définition}$ $f(u_n) = u_{n+1} \text{ d'où } \forall n \in \mathbb{N}, |u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|$

✓ Montrons que pour tout entier naturel n, $|u_n - \alpha| \le \frac{1}{2^{n+1}}$

Raisonnement par récurrence

Pour
$$n = 0$$
, $|u_0 - \alpha| = \left|\frac{1}{2} - \alpha\right|$; $\frac{1}{2} \le \alpha \le 1 \Longrightarrow -1 \le -\alpha \le -\frac{1}{2} \Longrightarrow -\frac{1}{2} \le \frac{1}{2} - \alpha \le 0$ $\Longrightarrow |0| \le \left|\frac{1}{2} - \alpha\right| \le \left|-\frac{1}{2}\right| \Longrightarrow |u_0 - \alpha| \le \frac{1}{2}$

Supposons que pour tout entier naturel n, $|u_n - \alpha| \le \frac{1}{2^{n+1}}$ et montrons que

$$|u_n - \alpha| \le \frac{1}{2^{n+2}}$$

Si
$$|u_n - \alpha| \le \frac{1}{2^{n+1}}$$
 alors $|u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha| \le \frac{1}{2} \times \frac{1}{2^{n+1}}$ et donc $|u_n - \alpha| \le \frac{1}{2^{n+2}}$

Conclusion : par récurrence, $\forall n \in \mathbb{N}, |u_n - \alpha| \leq \frac{1}{2^{n+1}}$

Autre façon de faire

On sait que
$$\forall n \in \mathbb{N}$$
, $|u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha|$; d'où :
$$|u_1 - \alpha| \le \frac{1}{2} |u_0 - \alpha|$$
$$|u_2 - \alpha| \le \frac{1}{2} |u_1 - \alpha|$$
$$|u_3 - \alpha| \le \frac{1}{2} |u_2 - \alpha|$$

$$|u_n - \alpha| \le \frac{1}{2} |u_{n-1} - \alpha|$$

Le produit membre à membre donne après simplification :

$$|u_n - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha|$$

$$\frac{1}{2} \le \alpha \le 1 \Longrightarrow -1 \le -\alpha \le -\frac{1}{2} \Longrightarrow -\frac{1}{2} \le \frac{1}{2} - \alpha \le 0$$

$$\Longrightarrow |0| \le \left|\frac{1}{2} - \alpha\right| \le \left|-\frac{1}{2}\right| \Longrightarrow |u_0 - \alpha| \le \frac{1}{2}$$
On a $|u_n - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha| \le \left(\frac{1}{2}\right)^n \times \frac{1}{2}$ et donc $\forall n \in \mathbb{N}, |u_n - \alpha| \le \left(\frac{1}{2}\right)^{n+1}$

(c) Montrons que la suite (u_n) converge vers α

$$\lim_{n \to +\infty} |u_n - \alpha| \le \lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n+1} = 0 \text{ car } \left|\frac{1}{2}\right| < 1 \text{ d'où } \lim_{n \to +\infty} |u_n - \alpha| = 0$$
La suite $(u_n - \alpha)$ converge vers 0 et donc la suite (u_n) converge vers α

 $\lim_{n \to +\infty} u_n = \alpha$

(d) Déterminons le plus petit entier n_0 pour lequel l'on a pour tout $n \ge n_0$, $|u_n - \alpha| \le 10^{-3}$

On a
$$|u_n - \alpha| \le \left(\frac{1}{2}\right)^{n+1}$$
 donc aura $|u_n - \alpha| \le 10^{-3}$ si $\left(\frac{1}{2}\right)^{n+1} \le 10^{-3}$

$$\left(\frac{1}{2}\right)^{n+1} \le 10^{-3} \Longrightarrow -(n+1)\ln 2 \le -3\ln 10 \Longrightarrow n \ge \frac{3\ln 10}{\ln 2} - 1$$

 $\implies n \ge 9$ et donc $n_0 = 9$.

Commentaires : Faire le même raisonnement pour les questions :

- ✓ Déterminer le plus petit entier n_0 pour lequel u_{n_0} est une valeur approchée de α à 10^{-3} près
- ✓ Déterminer le plus petit entier n_0 pour lequel l'on a pour tout $n \ge n_0$, $|u_n \alpha| \le 10^{-3}$

Problème de Synthèse 2

On considère la fonction f définie sur]0; $+\infty[par f(x) = x + ln(\frac{x}{2x+1})]$

On désigne par (C) la courbe représentative de f dans un repère orthonormal $(O; \vec{i}, \vec{j})$ du plan d'unité graphique 4 cm.

PARTIE A

- 1. Calculer les limites de f aux bornes de son ensemble de définition.
- 2. Etudier le sens de variation de f puis dresser son tableau de variation
- 3. a. Montrer la droite (Δ) la droite d'équation $y = x \ln 2$ est une asymptote à la courbe (\mathcal{C}) de f
 - b. Etudier la position relative de (C) et (Δ)
- 4. Montrer que l'équation f(x) = 0 admet une solution unique α et justifier que $\alpha \in \left[1; \frac{5}{4}\right]$
- 5. Tracer(\mathcal{C}) et (Δ)
- 6. Soit t un réel compris entre 0 et 1
 - a. Calculer $\mathcal{A}(t)$ en unité d'aire du domaine limité par la courbe (\mathcal{C}) , la droite (Δ) et les droites d'équations x = t et $x = \frac{e^2 1}{2}$. (On pourra s'aider d'une intégration par parties)

- b. Déterminer $\lim_{t\to 0^+} \mathcal{A}(t)$
- 7. Montrer que α est solution de l'équation $(2x+1)e^{-x}=x$

PARTIE B

On nomme g la fonction définie sur $I = \left[1; \frac{5}{4}\right]$ par $g(x) = (2x + 1)e^{-x}$

- 1. Etudier les variations de gEn déduire que pour tout x élément de $I, g(x) \in I$
- 2. Monter pour tout x élément de I, $|g'(x)| \le \frac{3}{5}$ et que $|g(x) \alpha| \le \frac{3}{5}|x \alpha|$
- 3. Soit (u_n) la suite définie pour tout entier naturel n par : $\begin{cases} u_0 = 1 \\ u_{n+1} = g(u_n) \end{cases}$
 - a. Montrer que pour tout entier naturel $n, u_n \in I$
 - b. Montrer que pour tout entier naturel n, $|u_{n+1} \alpha| \le \frac{3}{5}|u_n \alpha|$
 - c. Montrer que pour tout entier naturel n, $|u_n \alpha| \le \frac{1}{4} \left(\frac{3}{5}\right)^n$ En déduire que (u_n) est convergente et donner sa limite
 - d. Déterminer le plus petit entier naturel n_0 pour que u_{n_0} soit une valeur approchée de α à 10^{-2} près.

On donne : $\ln 2 = 0.70 \; ; \ln 3 = 1.09 \; ; \ln 5 = 1.60 \; ; \ln 7 = 1.94 \; ; e^{-1} = 0.37 \; ; e^{-1.25} = 0.2$

