FUNÇÕES TRIGONOMÉTRICAS/ INVERSAS

FUNÇÕES TRIGONOMÉTRICAS

Maria Emília Bigotte Maria do Céu Barbosa

Introdução

<u>Trigonometria</u> é uma palavra de origem grega que deriva de trígonos (triângulos) metreo (medida), pelo que significa medida de triângulos.

A origem da trigonometria é incerta, mas indicações sugerem que foi na matemática grega, por volta do século IV ou V aC, no entanto, como os outros ramos da Matemática, não foi obra de um homem ou só nação.

Ela surgiu devido às necessidades da Astronomia, afim de prever as efemérides celestes, para calcular a localização e o tempo, e para ser utilizada na Navegação, na Agrimensura e na Geografia. O seu início deu-se em triângulos esféricos. Para tal foi necessário o desenvolvimento de parte da Trigonometria Plana.

Relações trigonométricas

Relações trigonométricas

α	00	30°	45°	60°	90°
Seno	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Cosseno	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
Tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞

É importante recordar que a medida dos ângulos pode expressar-se em graus ou em *radianos*. Assim, vemos que 0° é equivalente a 0 rad e 360° equivalente a 2π rad

Vamos estudar as funções trigonométricas seguintes:

y = sen x

 $y = \cos x$

y = tq x

e também os inversos destas funções, ou seja:

y = 1/sen x = cosec x

 $y = 1/\cos x = \sec x$

y = 1/tg x = cotg x

Funções trigonométricas

1. Função y = sen x

- a) A função seno é periódica, já que $sen(x + 2\pi) = sen x$ em que o período da função é $t = 2\pi$;
- b) O domínio da função é o conjunto ℝ e o contradomínio da função é [-1,1];
- c) O valor máximo da função é 1 em $x=\frac{\pi}{2}$ e o valor mínimo da função é -1 em , $x=\frac{3\pi}{2}$;
- d) A função é contínua em todo o seu domínio;
- e) É uma função crescente no intervalo $\left[0,\frac{\pi}{2}\right]$ e $\left[\frac{3\pi}{2},2\pi\right]$ e decrescente no intervalo

$$\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
.

f) A função é ímpar, já que sen(-x) = -sen x e o gráfico é simétrico em relação à origem (0,0).

Construção do gráfico

Gráfico da função

Funções trigonométricas

2. Função $y = \cos x$

- a) A função co-seno é periódica, pois $\cos{(x+2\pi)}=\cos{(x)}$ e o período da função é t = 2π ;
- b) O domínio é o conjunto \mathbb{R} e o contradomínio da função é [-1,1];
- c) O valor máximo da função é 1 em x=0 e o valor mínimo da função é -1 em $x=\pi$;
- d) A função é contínua em todo o seu domínio;
- e) É uma função crescente no intervalo $[\pi, 2\pi]$ e decrescente no intervalo $[0, \pi]$.

f) A função é par já que cos(x) = cos(-x) e o gráfico é simétrico em relação ao eixo das ordenadas.

Construção do gráfico

Gráfico da função

Funções trigonométricas

3. Função y = tg x

- a) A função tangente é periódica já que $tg(x + \pi) = tg(x)$ em que o período da função $t = \pi$;
- b) O domínio da função é $\mathbb{R}\setminus\{\pi/2+k\pi,k\in\mathbb{Z}\}$ e o contradomínio é o conjunto \mathbb{R} ;
- c) Esta função não tem extremos locais;
- d) A função é contínua em todo o seu domínio;
- e) É uma função crescente em todo o seu domínio;

f) A função é ímpar, pois tg(-x) = -tg(x) e o gráfico é simétrico em relação à origem (0,0).

Construção do gráfico

Gráfico da função

Funções trigonométricas

4. Função y = cosec x

- a) A função cosec é periódica já que cosec $(x+2\pi)=cosec$ (x) em que o período da função é $t=2\pi$;
- b) O domínio da função $\mathbb{R}\setminus\{0+k\pi,k\in\mathbb{Z}\}$ e o contradomínio da função é o conjunto $]-\infty,-1]\cup[1,+\infty[;$
- c) Esta função tem um mínimo em $x = \frac{\pi}{2}$ e tem um máximo em $x = -\frac{\pi}{2}$;
- d) A função é contínua em todo o seu domínio;
- e) É uma função decrescente no intervalo $\left[0,\frac{\pi}{2}\right]$ e $\left[\frac{3\pi}{2},2\pi\right]$ e crescente no intervalo $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$;

f) A função é impar, pois cosec(-x) = -cosec(x) e o gráfico é simétrico em relação à origem (0,0).

Construção do gráfico

Gráfico da função

Funções trigonométricas

5. Função y = sec(x):

- a) A função sec é periódica, já que: $sec(x + 2\pi) = sec(x)$ em que o período da função é $t = 2\pi$;
- b) O domínio da função é $\mathbb{R}\setminus\{\pi/2+k\pi,k\in\mathbb{Z}\}$ e o contradomínio da função é o conjunto $]-\infty,-1]\cup[1,+\infty[;$
- c) Esta função tem um mínimo em x=0 e tem um máximo em $x=\pi$;
- d) A função é contínua em todo o seu domínio;
- e) É uma função decrescente no intervalo $[\pi, 2\pi]$ e crescente no intervalo $[0, \pi]$.

f) A função é par, pois sec(-x) = sec(x) e o gráfico é simétrico em relação ao eixo das ordenadas.

Construção do gráfico

Gráfico da função

Funções trigonométricas

6. Função $y = \cot g x$

- a) A função tangente é periódica já que $cotg(x+\pi)=cotg(x)$ em que o período da função é $t=\pi$;
- b) O domínio da função é $\mathbb{R}\setminus\{0+k\pi,k\in\mathbb{Z}\}$ e o contradomínio é o conjunto \mathbb{R} ;
- c) Esta função não tem extremos locais;
- d) A função é contínua em todo o seu domínio;
- e) É uma função decrescente em todo o seu domínio;

f) A função é impar, pois cotg(-x) = -cotg(x) e o gráfico é simétrico em relação à origem (0,0).

Construção do gráfico

Gráfico da função

Funções trigonométricas

Para mais informação consultar

http://pessoal.sercomtel.com.br/matematica/trigonom/trigo07.htm

Plano de Aquisição de Conhecimentos Essenciais

Funções Trigonométricas

A.Conhecimento

1-Calcule o valor das seguintes expressões numéricas:

a)
$$sen(\frac{3\pi}{4}) - cos(\frac{7\pi}{6}) + sen(-\frac{11\pi}{3})$$

b)
$$sen(-\frac{\pi}{2}) + cos(-\frac{7\pi}{2}) - tg(-\frac{7\pi}{4}) - cotg(-\frac{\pi}{6}) + cos(0)$$

c)
$$cos(-\frac{\pi}{4}) + sen(-\frac{9\pi}{2}) - cotg(\frac{\pi}{6}) + tg(-\frac{7\pi}{6}) + sen(\frac{\pi}{3})$$
.

2-Simplifique as seguintes expressões, considerando $a \in \left[0, \frac{\pi}{2}\right]$:

a)
$$sen(a-\frac{\pi}{2}) + cos(3\pi - a) + tg(\pi - a) - cotg(a - \frac{7\pi}{2})$$

b)
$$sen(a + \frac{\pi}{2}) + cos(a - \frac{7\pi}{2}) - tg(a + \frac{5\pi}{2}) - cot g(a - \frac{3\pi}{2})$$

c)
$$cos(a + \frac{\pi}{2}) + sen(a - 5\pi) + tg(\frac{7\pi}{2} + a) - cotg(\frac{5\pi}{2} - a)$$
.

B.Compreensão

1- Comente, justificando, as seguintes afirmações:

a)
$$cos(-\frac{\pi}{3}) + cos(\frac{4\pi}{3}) = cos(\pi)$$

a)
$$cos(-\frac{\pi}{3}) + cos(\frac{4\pi}{3}) = cos(\pi)$$
 b) $sen(-\frac{\pi}{6}) + sen(\frac{5\pi}{6}) = cos(\frac{4\pi}{6})$

c)
$$tg(-\frac{\pi}{3}) + tg(\pi) = tg(\frac{2\pi}{3})$$

d)
$$\cot g(-\frac{\pi}{6}) + \cot g(\pi) = tg(\frac{5\pi}{6})$$

2-Determine os valores de x que verificam as seguintes condições:

a)
$$cox(x) = -\frac{1}{2} \wedge \frac{\pi}{2} \le x \le \pi$$

b)
$$2sen(x) = -\sqrt{3} \land -\pi \le x \le 0$$

c)
$$tg(2x) = -1 \land -\frac{\pi}{2} \le x \le 0$$

d)
$$3\cot g(2x - \pi) = \sqrt{3} \land 0 \le x \le \pi$$

3-Resolva as seguintes equações trigonométricas:

a)
$$sen(x + \frac{\pi}{6}) = sen(x)$$

b)
$$cotg(x) = cotg(2x + \pi)$$

c)
$$cos(2x + \frac{\pi}{4}) = cos(x)$$
 d) $cos(4x) = \frac{1}{2}$

d)
$$cos(4x) = \frac{1}{2}$$

e)
$$\sqrt{2}sen(x) = 1$$

f)
$$1 - 2\cos(2x) = 2.0 \le x \le \pi$$

$$g) 1 - \sqrt{3}tg(x) = 2$$

h)
$$sen(x) = cos(x)$$

4- Calcule tg(x) sabendo que $sen(x) = \frac{3}{5}$ e $\frac{\pi}{2} \le x \le \pi$.

C.Aplicação

- 1- Considere a função f(x) = 2sen(3x).
 - a) Determine o domínio e o contradomínio de f.
 - b) Determine o valor de $f(\frac{\pi}{6})$.
 - c) Resolva a equação f(x) = -1.
- 2-Considere a função f(x) = 1 + cos(2x).
 - a) Determine o domínio e o contradomínio de f.
 - b) Resolva a equação $f(x) = \frac{1}{2}$.
- 3-Considere a função $f(x) = cos(\frac{\pi}{3}) + tg(2x \frac{\pi}{6})$.
 - a) Determine o domínio e o contradomínio de f.
 - b) Resolva a equação $f(x) = -\frac{1}{2}$.
 - c) Defina uma restrição de injetividade de f.
- 5-Considere a função $f(x) = 1 + 3\cot g(\frac{x}{2} + \frac{\pi}{4})$.
 - a) Determine o domínio e o contradomínio de f.
 - b) Resolva a equação f(x) = 1.
- 6-Considere as funções $f(x) = 1 + 2sen(3x \frac{\pi}{3})$
 - a) Determine o domínio e o contradomínio de f.
 - b) Defina uma restrição de injetividade de f.
 - c) Resolva a equação f(x) = 2.

D.Análise

1-Simplifique as seguintes expressões:

a)
$$sec(-\frac{\pi}{3}) + cos(-\frac{7\pi}{4}) - cosec(-\frac{7\pi}{2}) - cot g(-\frac{\pi}{6}) + sen(0)$$

b)
$$cos(-\frac{\pi}{4}) + cos \, ec(-\frac{9\pi}{2}) - cot \, g(\frac{\pi}{6}) + sec(-\frac{7\pi}{6}) + sen(\frac{\pi}{3})$$

- 2-Considere a função $f(x) = 2 + \cos ec(x \frac{\pi}{3})$.
 - a) Determine o domínio e o contradomínio de *f*
 - b) Resolva a equação f(x) = 4.
- 3-Considere a função $f(x) = 1 + 2 sec (3x + \frac{\pi}{2})$.
 - a) Determine o domínio e o contradomínio de f.
 - b) Resolva a equação f(x) = 5

E.Síntese

1-Resolva as seguintes inequações:

e)
$$sen(x+\frac{\pi}{6}) \le \frac{1}{2}$$

f)
$$\sqrt{2}sen(x) \ge 1$$

g)
$$1 - 2\cos(2x) \le 2, 0 \le x \le \pi$$

h)
$$1 - \sqrt{3}tg(x) \le 2$$

- 2-Considere a função $f(x) = -2 + 3\cos(2x + \frac{\pi}{3})$.
 - a) Determine o domínio e o contradomínio de f.
 - b) Resolva a equação f(x) = 1.
 - c) Determine os valores de x para os quais a função é inferior a $\frac{1}{2}$.
- 3-Considere a função $f(x) = \sqrt{3} + 3tg(x \frac{\pi}{2})$.
 - a) Determine o domínio e o contradomínio de f.
 - b) Determine os zeros da função.
 - c) Determine os valores de x para os quais a função toma valores no intervalo $[0,\sqrt{3}]$.
 - d) Defina uma restrição de injetividade da função f.

D.Avaliação

Considere as funções $f(x) = sen(2x + \frac{\pi}{6})$ e $g(x) = cos(x + \frac{\pi}{3})$.

- a) Determine o domínio e o contradomínio de f(x) e g(x), respetivamente.
- b) Determine os valores de x para os quais a função f(x) toma valores no intervalo $\left[-\frac{1}{2},\frac{1}{2}\right]$.
- c) Determine o domínio da expressão $\sqrt{1-2g(x-\frac{\pi}{2})}$.
- d) Determine um domínio de injetividade da função (f+g)(x) e os zeros da função nesse domínio.

FUNÇÕES TRIGONOMÉTRICAS INVERSAS

Maria Emília Bigotte Maria do Céu Barbosa

Funções trigonométricas inversas

Uma função f, de domínio D possui inversa somente se f for bijectiva, por este motivo nem todas as funções trigonométricas possuem inversas em seus domínios de definição, mas podemos tomar subconjuntos desses domínios para gerar novas função que possuam inversas.

Funções trigonométricas inversas

Exemplo: A função f(x)=cos(x) não é bijetiva no seu domínio de definição que é o conjunto dos números reais, pois para um valor de y correspondem infinitos valores de x. Por exemplo, se cos(x)=1, podemos tomar x=0, x=2 $\pi, x=3$ π, \dots o que significa que não podemos definir a função inversa de f(x)=cos(x) no seu domínio. Devemos então restringir o domínio para um subconjunto dos números reais onde a função é bijetiva.

Como as funções trigonométricas são periódicas, existem muitos intervalos onde elas são bijetivas. É usual escolher como domínio, intervalos onde o zero é o ponto médio ou o extremo e no qual a função tome todo o seu conjunto imagem.

Função arco-cosseno

Consideremos a função f(x)=cos(x), com domínio no intervalo $[0, \pi]$ e imagem no intervalo [-1,1]. A função inversa f, denominada $arco\ seno$, definida por f^1 : $[-1,1] \longrightarrow [0, \pi]$ é denotada por $f^1(x)=arccos(x)$

Função arco-seno

Consideremos a função f(x)=sen(x), com domínio no intervalo $[-\pi/2, \pi/2]$ e imagem no intervalo [-1,1]. A função inversa f, denominada $arco\ seno$, definida por f^1 : $[-1,1] \longrightarrow [-\pi/2, \pi/2]$ é denotada por $f^1(x)=arcsen(x)$

Função arco-tangente

Consideremos a função f(x)=tg(x), com domínio no intervalo $(-\pi/2, \pi/2)$ e imagem no intervalo R. A função inversa f, denominada $arco\ tangente$, definida por f^1 : R— $(-\pi/2, \pi/2)$ é denotada por $f^1(x)=arctg(x)$

Função arco-cotangente

Consideremos a função f(x)=cotg(x), com domínio no intervalo $(0, \pi)$ e

imagem no intervalo R. A função inversa f, denominada arco tangente,

definida por f^1 : $R \longrightarrow (0, \pi)$ é denotada por $f^1(x) = arccotg(x)$

Resultados da aprendizagem

Funções Trigonométricas Inversas

A.Conhecimento

1- Determine o valor lógico das seguintes proposições:

a)
$$arcsen(-\frac{1}{2}) = \frac{5\pi}{6}$$

b)
$$arccos(-\frac{1}{2}) = \frac{2\pi}{3}$$

c)
$$arctg(-1) = -\frac{\pi}{4}$$

d)
$$arc \cot g(0) = -\frac{\pi}{2}$$

2- Calcule o valor das seguintes expressões:

a)
$$cos(arcsen(-1))$$

b)
$$arcsen(cos(-\frac{\pi}{3}))$$

c)
$$sec(arccos(-\frac{1}{2}))$$

d)
$$tg(arccot g(-\sqrt{3}))$$

B.Compreensão

1- Comente, justificando, as seguintes afirmações:

a)
$$arccos(-\frac{1}{2}) + arccos(\frac{1}{2}) = arccos(0)$$

a)
$$arccos(-\frac{1}{2}) + arccos(\frac{1}{2}) = arccos(0)$$
 b) $arcsen(-\frac{1}{2}) + arcsen(\frac{1}{2}) = arcsen(0)$

c)
$$arccos(-\frac{1}{2}) + arcsen(-\frac{1}{2}) = arccos(-1)$$
 d) $arccos\left(sen(-\frac{\pi}{6}) + cos(-\frac{\pi}{3})\right) = 0$

d)
$$arccos\left(sen\left(-\frac{\pi}{6}\right) + cos\left(-\frac{\pi}{3}\right)\right) = 0$$

e)
$$arctg(-1) + arctg(1) = arctg(0)$$

f)
$$arc \cot g(-1) + arc \cot g(1) = arc \cot g(0)$$

2- Determine os valores de x que verificam as seguintes condições:

a)
$$arccos(2x) = -\frac{\pi}{3}$$

b)
$$2arcsen(x) = -\frac{\pi}{3}$$

c)
$$2arctg(2x-1) = -\frac{\pi}{2}$$

d)
$$2arc \cot g(3x) - \pi = -\frac{\pi}{3}$$

C.Aplicação

- 1- Considere a função $f(x) = \frac{\pi}{3} + arccos(2x+1)$.
 - Determine o domínio e o contradomínio de f.
 - b) Resolva a equação $f(x) = \frac{\pi}{6}$.
 - c) Calcule $f(-\frac{1}{4})$.
 - d) Caracterize a função inversa de f indicando domínio, contradomínio e expressão analítica.

- 2- Considere a função $f(x) = arccos(-\frac{\sqrt{2}}{2}) + arcsen(2x-1)$
 - a) Calcule o valor de $f(\frac{1}{4})$.
 - b) Resolva a equação $f(x) = \frac{\pi}{4}$.
 - c) Comente a afirmação: "f(x) é injetiva".
 - d) Caracterize a função inversa de *f* indicando domínio, contradomínio e expressão analítica.
- 3- Considere a função $f(x) = arcotg(\sqrt{3} 2x)$
 - a) Determine o domínio e o contradomínio de f.
 - b) Caracterize f^{-1} .
 - c) Resolva a equação $f(x) = \frac{\pi}{3}$.

D.Análise

1- Calcule o valor das seguintes expressões:

a)
$$sen(arccos(-\frac{5}{13}))$$

b)
$$sen(arccos(-\frac{1}{2}) + arccos(\frac{3}{7}))$$

- 2- Considere a função $f(x) = \pi + 2arcsen(2x+1)$.
 - a) Determine o domínio e o contradomínio de f.
 - b) Calcule $f(-\frac{1}{4})$.
 - c) Resolva a equação $f(x) = \frac{\pi}{3}$.
 - d) Caracterize f^{-1} indicando o domínio, o contradomínio e expressão analítica.
- 3- Considere a função real de variável real $f(x) = -1 2\cos(\frac{2x + \pi}{3})$.
 - a) Determine o domínio e o contradomínio da função f.
 - b) Determine os zeros da função f.
 - c) Determine os valores de x para os quais a função é não negativa.
 - d) Caracterize a função inversa de f indicando o domínio, o contradomínio e expressão analítica.
- 4- Considere a função $f(x) = tg(-x + \frac{\pi}{3}) + 1$
 - a) Determine os zeros da função f(x).
 - b) Calcule o valor de $arccos(f(\frac{\pi}{3}) \frac{3}{2})$.
 - c) Caracterize a função inversa de f(x), identificando domínio, contradomínio e expressão analítica.

E.Síntese

1- Considere a função real de variável real $f(x) = cos(\frac{4\pi}{3}) - 2sen(\frac{3x - \pi}{4})$.

a) Determine o domínio e o contradomínio da função f.

- b) Calcule o valor de $f(\frac{4\pi}{3})$.
- c) Resolva a equação $f(x) = \frac{1}{2}$.
- d) Determine os valores de x para os quais a $f(x) \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.

e) Caracterize a função inversa de *f* indicando o domínio, o contradomínio e expressão analítica.

2- Considere a função $f(x) = 2arctg(-x-2) + \frac{\pi}{4}$

a) Calcule o valor de $cos(f(-1) - \frac{\pi}{2})$.

b) Determine os valores de x para os quais $f(x) \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$.

c) Caracterize a função inversa de f(x), identificando domínio, contradomínio e expressão analítica.

F.Avaliação

Caracterize as funções inversas das seguintes funções trigonométricas:

a)
$$f(x) = 2 - 3sec(2x + \frac{\pi}{2})$$

b)
$$f(x) = \sqrt{\frac{1}{2} + \cos(2x - \frac{\pi}{6})}$$