Introduction to GIS

This assignment is meant to be an introduction to some basic Geographic Information Processing using the webapplication gis-app (https://thaikari.github.io/gis-app/). You will receive some data from Trondheim, which contains a secret message. Your mission is to use the various geoprocessing tools available to reveal this secret message.

Good luck!

Follow the bellow steps to find the hidden message in the data.

* A tip is to download your data each time you have created a new layer. This way you do not lose your work if the page reloads. (https://youtu.be/aoe9GijdaJo)

Instructions

- 1. Open the website: https://thaikari.github.io/gis-app/
- 2. **Unzip the folder data.zip** to see the data you will be working with. The folder should contain the following json Files: 'veg', 'vann', NTNU', 'Mystery1', 'Mystery2', 'Mystery3', 'Mystery4'. Data can be downloaded from https://github.com/thaiKari/gis-app/blob/master/data.zip
- 3. **Upload the files:** Select all the files in the data folder and upload them by drag and dropping to the specified location on the site. The result should look something like this:

4. Explore the data:

Having Trouble? Watch this demo video: https://youtu.be/rEGzcf5eY2I

- 5. Click on the **tool icon** in the top right corner to reveal the available geoprocessing tools:
- 6. All the data we are interested in is within 2000m of *NTNU*. Use the **BUFFER** tool to create a 2000m buffer around the point *NTNU*. Name the output layer *NTNU2000*.

7. Use the **CLIP** tool to clip all layers to NTNU2000:

Having Trouble? Watch this demo video: https://youtu.be/c-9hDdN9TBc

8. Delete layers: *NTNU*, *veg*, *vann*, *Mystery1*, *Mystery2*, *Mystery3*, *Mystery4*. Remaining Layers are the ones called 'clip_*' and *NTNU2000*.

Having Trouble? Watch this demo video: https://youtu.be/xrx9tY4O3Bo

9. Do INTERSECT between layers clip_Mystery1 and clip_vann. Call the output layer A.

Having Trouble? Watch this demo video: https://youtu.be/d9loR9dG8_4

10. Use **BUFFER** on *clip_Mystery2* with a distance of 150m. Call the output layer *B*.

11. Right click on *clip_veg* and select **Attribute Table**.

12. Click on the **Filter Icon.** Select those features that have 'objekttypenavn equal relevant' (press the tick to apply the filter):

13. Press the paper icon next to where it says '14 selected'. In order to create a new layer from the selection. This new layer will automatically be named *clip_veg_filtered*.

Having Trouble? Watch this demo video: https://youtu.be/e9q-80ppdjs

14. Use the **VORONOI** tool on *clip_Mystery3*. Click on **Calculate BBOX from Geometry.** The output layer can be called *Voronoi*.

Having Trouble? Watch this demo video: https://youtu.be/TcJwQD4HY9Q

15. Open the attribute table for *Voronoi*. Click on the ruler icon to **Calculate Area** of each polygon in the layer. A new column should appear in the table called 'Area_(m^2)'.

16. Click on the filter icon and select all features that have area greater than 1775m² and less than 6000 m²:

17. Create a new layer from the selection by clicking the paper icon. The output layer will be named *Voronoi filtered*. Edit this layer (right click -> edit Layer). Name it *C.*'

18. Use the **DIFFERENCE** geoprocessing tool. Select *NTNU2000* as the Input Layer and *clip_Mystery4* as the Difference Layer. Name the Output Layer *D*.

Having Trouble? Watch this demo video: https://youtu.be/Eb-hW9b8k2w

19. Use **UNION** to unite layers A and B. Call the output layer *unionAB*:

- 20. Use **UNION** again to unit *unionAB* and *C*. Call the output layer *unionABC*:
- 21. Use **UNION** again to unit *unionABC* and *D*. Call the output layer *unionABCD*:

Having Trouble? Watch this demo video: https://youtu.be/9bw-pj2b-dk

22. Edit layer unionABCD. Set the Fill and outline color to hex value #00509E.

Having Trouble? Watch this demo video: https://youtu.be/ad9CxbS8Zxl

23. Hide all layers except *unionABCD* and *clip_veg_filtered*. Edit the color of *clip_veg_filtered* to whatever you want. Zoom to a nice view of the result by using the scroll wheel on your mouse. Take a screen shot of the solution.

See the next page for the solution. Does your map look the same?

SOLUTION:

Full Demo: https://youtu.be/xOLmTdqVv5g