Contents

1.	Complex Systems and Agent Models					
	1.1	_	luction to Agent-Based Modeling	1		
		1.1.1	The Micro-Macro Link	1		
		1.1.2	The Role of Computer Simulations	3		
		1.1.3	Agents and Multiagent Systems	6		
		1.1.4	Complex Versus Minimalistic Agents	10		
		1.1.5	Agent Ecology	13		
		1.1.6	Simulation Approaches	17		
	1.2	Brownian Agents				
		1.2.1	Outline of the Concept	$\frac{22}{22}$		
		1.2.2	Interaction as Communication	28		
		1.2.3	A Short Survey of the Book	32		
	1.3		nian Motion	39		
		1.3.1	Observations	39		
		1.3.2	Langevin Equation of Brownian Motion	42		
		1.3.3	Probability Density and the Fokker–Planck Equation .	46		
2.	Active Particles					
	2.1	Active Motion and Energy Consumption				
		2.1.1	Storage of Energy in an Internal Depot	51		
		2.1.2	Velocity-Dependent Friction	54		
		2.1.3	Active Motion of Cells	56		
		2.1.4	Pumping by Space-Dependent Friction	60		
	2.2	Active	e Motion in One-Dimensional Systems	65		
		2.2.1	Adiabatic Approximations and Stationary Solutions	65		
		2.2.2	Stationary Velocities and Critical Parameters			
			for $U = \text{const}$	67		
		2.2.3	Stationary Solutions for a Linear Potential $U = ax$	70		
		2.2.4	Deterministic Motion in a Ratchet Potential	75		
		2.2.5	Investigation of the Net Current	82		
		2.2.6	Stochastic Influences on the Net Current	86		
		2.2.7	Directed Motion in a Ratchet Potential	92		
	2.3	Active	e Motion in Two-Dimensional Systems	95		
		2.3.1	Distribution Function for $U = \text{const} \dots$	95		

2.3.2 Deterministic Motion in a Parabolic F2.3.3 Analytical Solutions	Potential 101
for Deterministic Limit Cycle Motion	102
2.3.4 Deterministic Chaotic Motion	103
in the Presence of Obstacles	100
2.3.5 Stochastic Motion in a Parabolic Pote	
2.3.6 Stochastic Motion with Localized Ene	
2.4 Swarming of Active Particles	
2.4.1 Canonical-Dissipative Dynamics of Sw	
2.4.1 Canonical-Dissipative Dynamics of Sw 2.4.2 Harmonic Swarms	
2.4.3 Coupling via Mean Momentum	
and Mean Angular Momentum	126
and Wean Angular Womentum	
3. Aggregation and Physicochemical Structure	Formation 133
3.1 Indirect Agent Interaction	
3.1.1 Response to External Stimulation	
3.1.2 Generation of an Effective Potential F	
3.1.3 Master Equations and Density Equation	
3.1.4 Stochastic Simulation Technique	
3.2 Aggregation of Brownian Agents	
3.2.1 Chemotactic Response	
3.2.2 Stability Analysis for Homogeneous D	
3.2.3 Estimation of an Effective Diffusion C	
3.2.4 Competition of Spikes	
3.2.5 Derivation of a Selection Equation	
3.2.6 Comparison to Biological Aggregation	
3.3 Pattern Formation in Reaction–Diffusion Sys	
3.3.1 Coexistence of Spikes	
3.3.2 Spiral Waves and Traveling Spots	
3.3.3 Traveling Waves	171
4. Self-Organization of Networks	175
4.1 Agent-Based Model of Network Formation	
4.1.1 Basic Assumptions and Equations of I	
4.1.2 Results of Computer Simulations	
4.2 Estimation of Network Connectivity	
4.2.1 Critical Temperature	
4.2.2 Network Connectivity and Threshold	
4.2.3 Numerical Results	
4.3 Construction of a Dynamic Switch	
4.3.1 Setup for the Switch	
4.0.1 Delub 101 line Dwillen	
4.3.2 Simulations of the Dynamic Switch	

			Contents	s XV				
,	Tra	cks an	d Trail Formation in Biological Systems	203				
	5.1		e Walker Models					
		5.1.1	Master Equation Approach to Active Walkers	203				
		5.1.2	Active Walker Models of Fractal Growth Patterns .	206				
		5.1.3	Active Walker Models of Bacterial Growth	208				
,	5.2	Discre	ete Model of Track Formation	212				
		5.2.1	Biased Random Walks	212				
		5.2.2	Reinforced Biased Random Walks	217				
		5.2.3	Formation of Tracks	221				
,	5.3	Track	Formation and Aggregation in Myxobacteria	225				
		5.3.1	Modification of the Active Walker Model	225				
		5.3.2	Simulation of Myxobacterial Aggregation	228				
,	5.4	Trunk	Trail Formation of Ants					
		5.4.1	Biological Observations	232				
		5.4.2	Active Walker Model of Trail Formation in Ants	235				
		5.4.3	Simulation of Trunk Trail Formation in Ants	240				
	N/Los							
	1 v10 6.1		t and Trail Formation by Pedestrians ment of Pedestrians					
	0.1	6.1.1	The Social Force Model					
		6.1.2	Simulation of Pedestrian Motion					
	6.2		Formation by Pedestrians					
	0.2	6.2.1	Model of Trail Formation					
		6.2.1	Human Trail Formation					
		6.2.2	Simulation of Pedestrian Trail Systems					
		6.2.3	Macroscopic Equations of Trail Formation					
		0.2.4	Macroscopic Equations of Trail Pormation	201				
	Evo		ary Optimization Using Brownian Searchers .					
	7.1		tionary Optimization Strategies					
		7.1.1	Ensemble Search with Brownian Agents					
		7.1.2	Boltzmann Strategy and Darwinian Strategy					
		7.1.3	Mixed Boltzmann–Darwinian Strategy					
1	7.2		ation and Optimization of Road Networks					
		7.2.1	Road Networks					
		7.2.2						
		7.2.3	Results of Computer Simulations					
	7.3	Asym	ptotic Results on the Optimization Landscape	289				
		7.3.1	Optimization Values in the Asymptotic Limit	289				
		7.3.2	Density of States in the Asymptotic Limit	291				
	Ana	alvsis a	and Simulation of Urban Aggregation	295				
	8.1	•	al Structure of Urban Aggregates					
,		8.1.1	Urban Growth and Population Distribution					
		8.1.2	Mass Distribution of Urban Aggregates: Berlin					
		8.1.3	Fractal Properties of Urban Aggregates					
		_						

	8.2	8.2.1 8.2.2 8.2.3	Size Distribution of Urban Aggregates	307 309 312		
	8.3		c Models of Urban Growth			
			Fractal Growth and Correlated Growth Models			
		8.3.2	Shift of Growth Zones			
		8.3.3	Simulating Urban Growth with Brownian Agents	326		
		8.3.4	Results of Computer Simulations: Berlin	329		
9.	Economic Agglomeration					
	9.1	Migrat	ion and Agglomeration of Workers	335		
		9.1.1	Spatial Economic Patterns			
			Model Equations for Migration and Employment			
			Derivation of Competition Dynamics			
	9.2		nic Model of Economic Concentration			
			Production Function and Transition Rates			
		9.2.2	Simulation of Spatial Economic Agglomeration	350		
10.	Spatial Opinion Structures in Social Systems 35					
	10.1	-	itative Sociodynamics			
			Socioconfiguration			
	10.0		Stochastic Changes and Transition Rates			
	10.2		tive Opinion Formation of Brownian Agents			
			Subpopulation Sizes in a System	<u> </u>		
		10.2.2	with Fast Communication	366		
		10.2.3	Influence of External Support			
			Critical Conditions for Spatial Opinion Separation			
	10.3		Opinion Patterns in a Model of Direct Interactions			
		_	Transition Rates and Mean Value Equations			
		10.3.2	Stationary Solutions for a Single Box	379		
		10.3.3	Results of Computer Simulations	382		
Bib	liogr	aphy.	;	387		
T., d	0.11			/15		