Применение методов машинного обучения для калибровки газового датчика

Козьмин Артём Дмитриевич

Новосибирский национальный исследовательский государственный университет, Новосибирск

24 октября 2022 г.

Содержание

- 📵 Введение
- 2 Линейная регрессия
- 3 Нейронные сети
- 4 Заключение

Введение

Мотивация

Область применения электрохимических датчиков:

- Мониторинг окружающего воздуха.
- Химическая промышленность.
- Бытовые системы вентиляции.

Эл.-хим. датчик NH3.

Мотивация

Область применения электрохимических датчиков:

- Мониторинг окружающего воздуха.
- Химическая промышленность.
- Бытовые системы вентиляции.

Преимущества:

- Низкая стоимость
- Компактность
- Доступность

Недостатки:

Эл.-хим. датчик NH3.

- Неявная зависимость
- Перекрёстная чувствительность
- Подвержены влиянию окружающей среды

Принцип работы

Электрохимический датчик CO.

- Газ попадает внутрь датчика через мембрану.
- ullet На электроде WE реакция окисления.

- ullet На CE реакция восстановления.
- Ток пропорционален концентрации газа.

Математическая постановка задачи

Применение методов машинного обучения для восстановления концентрации угарного газа CO по выходным данным электрохимического датчика.

Задача регрессии:

Y=f(X)+arepsilon, где f- функция регрессии, arepsilon- случайный шум.

Математическая постановка задачи

Применение методов машинного обучения для восстановления концентрации угарного газа CO по выходным данным электрохимического датчика.

Задача регрессии:

Y=f(X)+arepsilon, где f- функция регрессии, arepsilon- случайный шум.

Методы машинного обучения:

• Линейная регрессия:

$$f_{\omega} = \omega_0 + \sum_{i=1}^p \omega_i x_i \equiv x^T \omega$$

 Полиномиальная регрессия 2 степени:

$$\begin{array}{l} f_{\omega} = \\ \omega_0 + \sum_{i=1}^p \omega_i x_i + \sum_{i,j=1}^{p,p} \omega_{ij} x_i x_j \end{array}$$

 Нейронные сети с прямой связью.

Нейронная сеть с прямой связью.

Исследуемые данные

Набор исследуемых данных:

- Мультисенсорное устройство, разработано Pirelli Labs
- 5 Датчиков CO, NMHC, NO_2 , O_3 , NO_x
- ullet Температура воздуха T и влажность RH

Исследуемые данные

Набор исследуемых данных:

- Мультисенсорное устройство, разработано Pirelli Labs
- ullet 5 Датчиков CO, NMHC, NO_2 , O_3 , NO_x
- ullet Температура воздуха T и влажность RH
- Центр итальянского города
- С марта 2004 года по апрель 2005 года
- Одно усреднённое измерение в час
- 7344 ненулевых измерений
- Целевые концентрации с эталонного анализатора

Предобработка данных

Коэффициент корреляции r- Пирсона между двумя величинами X_1, X_2 :

$$r_{X_1 X_2} = \frac{\mathbf{cov}_{X_1 X_2}}{\sigma_{X_1} \sigma_{X_2}}$$

Интерпретация:

- ullet rpprox -1 отрицательная зависимость
- ullet rpprox 0 отсутсвие линейной зависимости
- ullet rpprox 1 положительная зависимость

Корреляционная матрица Пирсона.

Зависимость концентрации CO от часа измерения

Ящичная диаграмма концентрации газа СО от часа измерения.

- Нижняя и верхняя граница ящика
 первый и третий квартили
- Линия в середине ящика медиана

- Концы усов края статистически значимой выборки
- Точки данные выходящие за границы усов (выбросы)

Вейвлет преобразование

• Вейвлет преобразование - свёртка вейвлет функции $\psi(t)$ с сигналом f(t):

$$[W_{\psi}f](a,b) = |a|^{-1/2} \int_{-\infty}^{\infty} f(t)\psi^*\left(\frac{t-b}{a}\right) dt,$$

где a - масштабный коэффициент, b - параметр сдвига.

- Переход из временного представления в частотно временное.
- Вейвлет Морле (Morlet):

$$\psi(t) = e^{-t^2/2}cos(5t)$$

Периодическая структура в данных

Картина вейвлет коэффициентов временного ряда концентрации целевого газа CO(GT).

- Зелёная линия период
 24 часа
- Голубая линия период 7 дней

Линейная регрессия

Линейная регрессия

Метрики

Используемые метрики:

• MSE - среднеквадратичная ошибка: $MCE = \frac{1}{N} \sum_{i=1}^{N} (V_{i} - \hat{V}_{i})^{2}$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

 МАРЕ - средняя абсолютная процентная ошибка:

$$MAPE = \frac{100\%}{N} \sum_{i=1}^{N} \frac{|Y_i - \hat{Y}_i|}{|Y_i|}$$

 GRE - процент прогнозов лежащих за 25% порогом от истинного значения концентрации

Метрики

Используемые метрики:

• MSE - среднеквадратичная ошибка: $\frac{1}{N} \sum_{i=1}^{N} (2\pi i \frac{1}{N})^{2}$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

 MAPE - средняя абсолютная процентная ошибка:

$$MAPE = \frac{100\%}{N} \sum_{i=1}^{N} \frac{|Y_i - \hat{Y}_i|}{|Y_i|}$$

 GRE - процент прогнозов лежащих за 25% порогом от истинного значения концентрации

Метрика GRE = 40%.

Результаты

Разделение данных:

- 2000 часов тренировка
- 5344 часов тест
- K-Fold кросс-валидация для моделей с регуляризацией

Результаты

Разделение данных:

- 2000 часов тренировка
- 5344 часов тест
- K-Fold кросс-валидация для моделей с регуляризацией

Линейная регрессия без регуляризации.

Модель	MAPE,%	$MSE, (mg/m^3)^2$	GRE,%
R_{CO}	36.7	0.57	41.2
R_{CO}, R_{NM}, T	31.2	0.30	28.3
R_{CO}, R_{NM}, T, CO_h	31.1	0.30	26.4

Полиномиальная регрессия с L_1 регуляризацией.

Модель	MAPE,%	$MSE, (mg/m^3)^2$	GRE,%
$Pol_2(R_{CO}, R_{NM}, T)$	25.7	0.26	23.1
$Pol_2() + CO_h$	25.5	$\boldsymbol{0.24}$	20.5

Кривые обучения

Разделение данных:

- Тест с июня 2004 года по апрель 2005 года, 5344 измерений.
- Тренировка от 1 и до 80 дней.

Необходимое время калибровки от 10 до 40 дней.

Кривые обучения $Pol_2(R_{CO},R_{NM},T)+CO_h$

YM-2022

Анализ ошибок

Анализ некорректных прогнозов CO в модели полиномиальной регрессии с признаками $Pol_2(R_{CO},R_{NM},T)+CO_h$ в случае L_1 регуляризации.

Ящичная диаграмма MSE от целевой концентрации CO Основной вклад при концентрациях целевого газа ниже $0.4\ mg/m^3$

Нейронные сети

Описание нейронной сети

Полносвязная нейронная сеть с прямой связью:

- ullet 4 входных нейрона: R_{CO}, R_{NM}, T, CO_h
- 1 скрытый слой с 10 нейронами
- ullet Функция активации tanh
- ullet 1 выходной нейрон, функция активации linear
- ullet Алгоритм оптимизации ADAM
- ullet Функция потерь MAE

Описание нейронной сети

Полносвязная нейронная сеть с прямой связью:

- 4 входных нейрона: R_{CO}, R_{NM}, T, CO_h
- 1 скрытый слой с 10 нейронами
- ullet Функция активации tanh
- ullet 1 выходной нейрон, функция активации linear
- ullet Алгоритм оптимизации ADAM
- ullet Функция потерь MAE

Результаты FFNN для различных функций потерь.

тезультаты ттүүгү для различных функции потерь.					
Функция	Формула	MAPE,	MSE,	GRE,	
потерь		%	$(mg/m^3)^2$	%	
\overline{MSE}	$\frac{1}{N}\sum (Y_i - \hat{Y}_i)^2$	24.7±0.2	0.27 ± 0.003	20.6 ±1.1	
MAE	$\frac{1}{N}\sum Y_i - \hat{Y}_i $	23.9 ± 0.2	$\boldsymbol{0.28 \pm 0.007}$	18.2 ± 0.6	
MAPE	$\frac{100\%}{N} \sum \frac{ Y_i - \hat{Y}_i }{ Y_i }$	25.1±0.4	$0.37 {\pm} 0.007$	$21.9\ \pm1.0$	

Результаты

Настройка гиперпараметров - метод GridSearchCV поиска по сетке.

Результаты нейронных сетей

Модель	Рег.	MAPE,%	$MSE, (mg/m^3)^2$	GRE,%
R_{CO}, R_{NM}, T	нет	25.8±0.3	0.30 ± 0.009	24.6±1.0
R_{CO}, R_{NM}, T, CO_h	нет	24.0±0.2	0.28 ± 0.006	18.3 ± 0.4
R_{CO}, R_{NM}, T	L ₁	25.1±0.2	$0.29 {\pm} 0.001$	20.9 ± 0.3
R_{CO}, R_{NM}, T, CO_h	L_1	24.0 ± 0.2	$\boldsymbol{0.27 \pm 0.002}$	16.8 ± 0.5

Кривые обучения

Разделение данных:

- Тест с июня 2004 года по апрель 2005 года, 5344 измерений.
- Тренировка от 1 и до 80 дней.

Необходимое время калибровки от 3 дней.

Кривые обучения FFNN R_{CO}, R_{NM}, T, CO_h

24 октября 2022 г.

Заключение

Заключение

- Выполнено сравнение результатов моделей FFNN и MLR
- Выявлена переодичность целевой концентрации СО
- Новый признак позволил улучшить качество моделей
- Простые архитектуры FFNN показывают превосходство над MLR
- Время калибровки для FFNN от 3 дней
- Время калибровки для MLR от 10 дней

Спасибо за внимание!