

ExArch: Climate analytics on distributed exascale data archives

<u>Martin Juckes</u>, V. Balaji, B.N. Lawrence,

M. Lautenschlager, S. Denvil, G. Aloisio, P. Kushner, D. Waliser,

S. Pascoe, A. Stephens, P. Kershaw, F. Laliberte, J. Kim, S. Fiore

Centro Euro-Mediterraneo per i Cambiamenti Climatici

RAL Space

ExArch

The project will develop a strategy, prototype infrastructure and demonstration usage examples for scientific analysis of exa-scale archives.

Harwell International Space Innovation Centre

The climate assessment process

Harwell International Space Innovation Centre

The climate assessment process

What is special about exa-scale?

How should the climate modelling community use a thousandfold increase in computer power?

<u>Short answer</u>: 3-fold increase in horizontal, vertical and temporal resolution, plus a 3 fold increase in ensemble size and number of model variables ==> 700-fold increase in computational requirements.

<u>But:</u> we are not going to have a thousand-fold increase in manpower to look at the results: how do we structure the analysis to allow research and prompt distribution of results.

Who will ExArch help?

Users --- needs 85% Pre-computed products: e.g. global means; climatologies; multi-model ensemble 9% Simple calculations: e.g. Ad-hoc ensembles; comparisons; 0.9% Simple work-flows: composite years with high cyclone activity 0.1% Complex work-flows.

Who will ExArch help?

Users --- needs

Pre-computed products: e.g. global means;

climatologies; multi-model ensemble

9% Simple calculations: e.g. Ad-hoc ensembles;

comparisons;

0.9% Simple work-flows: composite years with

high cyclone activity

0.1% Complex work-flows.

5% Indirect access through client software

Thematic areas

Computation close to the archive – reducing data movement

Exploiting complex documentation

Support for detailed quality control

Benchmarking of analysis work-flows

Governance

Strategic outlook: some trends

Analysis by Kryder and Soo Kim (2009) suggests hard drives will not be replaced by solid state or other new media before 2020.

	Change per year	Change per decade
Data centre storage	+60%	~100-fold increase
Energy use/unit capacity	-22%	~10-fold decrease
Data centre energy use	+25%	~10-fold increase

	2010	2020
Purchase cost/Tb	200 USD	3 USD
Operating power	10 W/Tb	1W/Tb
Electricity cost (UK)	90 GBP/MWh	120 GBP/MWh
Cost of 1Tb* 3 years	200 + 37	3 + 5
Size at constant funding	1Pb	30Pb

Strategic outlook: some trends

Analysis by Kryder and Soo Kim (2009) suggests hard drives will not be replaced by solid state or other new media before 2020.

	Change per year	Change per decade
Data centre storage	+60%	~100-fold increase
Energy use/unit capacity	-22%	~10-fold decrease
Data centre energy use	+25%	~10-fold increase

	2010	2012/3	2020
Purchase cost/Tb	200 USD	60 USD	3 USD
Operating power	10 W/Tb	2W/Tb	1W/Tb
Electricity cost (UK)	90 GBP/MWh	95 GBP/MWh	120 GBP/MWh
Cost of 1Tb* 3 years	200 + 37	60 + 8	3 + 5
Size at constant funding	1Pb	3.5Pb	30Pb

<u>Take the compute to the data – but how?</u>

1: a library of operations which can be executed at the archive

2: a portal with domain specific derived products

3: use OGC* standards to ensure maximum interoperability

4: use intuitive syntax to promote ease of use

5: link to existing archives, or create a local collection to support specific operations?

*Aviation, Built Environment & 3D, Business Intelligence, Defense & Intelligence, Emergency Response & Disaster Management, Geosciences & Environment, Government & Spatial Data Infrastructure, Mobile Internet & Location Services, Sensor Webs, University & Research

Taking the processing to the archive – BADC

CEDA OGC Web Services

- •Employ the Climate Data Operators (code.zmaw.de/projects/cdo) to ensure that users can repeat calculations on other machines
- User dashboard to show progress of asynchronous requests
- Process resource estimation to avoid system overload

<u>Taking the processing to the archive – BADC</u>

CEDA OGC Web Services

Based on a XACML-based policy that checks the URL against a set of rules that permit/refuse access (per process, including arguments and their value). E.g.:

http://ceda-wps2.badc.rl.ac.uk/wps?
Request=Execute&Format=text/xml&
Inform=true&
Identifier=HadISSTSubsetter&
Store=false&Status=false&Costonly=true&
DataInputs=Variable=sea_ice_area_fraction;
EndDateTime=2012-09-11T15%3A44%3A15;
StartDateTime=1870-01-01T00%3A00%3A00

 Standards based to promote interoperability – especially use by client software

<u>Taking the processing to the archive – GFDL</u>

Exploiting the power of the NOAA – PMEL "Live Access Server"

- User specifiesdataset and variables;
- *Back-end scans catalogues and constructs a LAS request;
- Output (images or data) are returned to user;

<u>Taking the processing to the archive – UCLA</u>

http://rcmes.jpl.nasa.gov/

Taking the processing to the archive – UCLA

http://rcmes.jpl.nasa.gov/

- Users can choose from a set of pre-imported observational datasets;
- •Select regional model data;
- Create standard plots differences;

Harwell International Space Innovation Centre

<u>Taking the processing to the archive – KNMI</u> <u>(funded by IS-ENES)</u>

http://climate4impact.eu/

A portal to support the climate impacts community

<u>Taking the processing to the archive – KNMI</u> (funded by IS-ENES)

http://climate4impact.eu/

Home	Data discovery	Map & Plot	Documentation	Help	About us	Log in	Q		
Logir	with your	OpenID	account						
OpenID	account:				4			┢	OpenID
• 4	https://ceda.ac.uk/	/openid/Martin	luckes		Login				
• 🗸	Keep identifier on t	this computer							a barrin
Don't ha	ve an account ye	t?							
	tailed instructions of	on how to creat	e an account can be	found he	ere: HowTo: (Create an			

An extension to the ESGF security infrastructure provided by ExArch allows the climate4impact portal (and other clients) to access to secured CMIP5 data on behalf of accredited users.

Taking the processing to the archive – KNMI

Model categories, based on CIM metadata

Atmosphere-Ocean Models:	
Atmosphere, Land, Ocean, Sea ice,	
Aerosol;	CCSM4, HadCM3, GFDL-CM2p1
Atmosphere, Land, Ocean, Sea ice;	CMCC-CM, EC-Earth
Atmosphere, Ocean, Sea ice;	CMCC-CMS
Coupled-chemistry models:	
Atmosphere, Land, Ocean, Land ice,	
Sea ice, Aerosol, Atmospheric	
Chemistry;	GISS-E2-H/E2-R
Atmosphere, Land, Ocean, Sea ice,	
Aerosol, Atmospheric Chemistry;	GFDL-CM3
Earth System Models:	
Atmosphere, Land, Ocean, Sea ice,	IPSL-CM5A-LR/MR, MPI-ESM-LR/MR/P, GFDL-
Ocean Bio-geochemistry;	ESM2G/M
Atmosphere, Land, Ocean, Sea ice,	
Aerosol, Atmospheric Chemistry, Ocean	
Bio-geochemistry:	HadGFM2-FS/CC

ESGF	InfreStructure for the European Heatwork is-enes is-enes Modelling
Home Search Tools Lo	ogin Help
Current Selections remove all (x) project:CMIP5 (x) experiment:historical (x) model:GFDL-ESM2M	Examples: temperature, "surface temperature", climate AND project: CMIP5 AND variable:hus. To download data: add datasets to your Data Cart, then click on Expand or wget. Search Controlled Vocabulary Search All Sites Show All Replicas Show All Versions
Search Categories	< 1 <u>2 3</u> ≥ displaying 1 to 10 of 24 search results Display 10 datasets per page
Institute	Add All Displayed to Datacart Remove All Displayed from Datacart
Model	Results Data Cart
Instrument	project=CMIP5, model=GFDL-ESM2M, Geophysical Fluid Dynamics Laboratory, experiment=historical,
Experiment Family	time_frequency=3hr, modeling realm=atmos, ensemble=r1i1p1, version=20120227
Experiment	Data Node: esgdata.gfdl.noaa.gov Version: 20120227
Time Frequency	Description: NOAA GFDL GFDL-ESM2M, historical (run 1) experiment output for CMIP5 AR5 Further options: Add To Cart Visualize and Analyze Model Metadata
Product	
Realm	project=CMIP5, model=GFDL-ESM2M, Geophysical-Fluid Dynamics Laboratory, experiment=historical, time_frequency=6hr, modeling realm=atmos, ensemble=r1i1p1, version=20120328
Variable	Data Node: esgdata.gfdl.noaa.gov Version: 20120328
Variable Long Name	Description: NOAA GFDL GFDL-ESM2M, historical (run 1) experiment output for CMIP5 AR5
CMIP Table	Further options: Add To Cart Visualize and Analyze Model Metadata

Detailed Quality Control

Scientists like to get the data on their own machine so that they can check every step of the analysis.

If analytics are done in the archive, we need to be very careful to ensure that small irregularities in the data do not contaminate the final results.

ExArch will tackle the standardisation of quality control tests, so that processing software can exploit QC results.

Test classes (e.g. range test)
Specific tests (e.g. Horizontal wind speed in range -200 to +200 m/s)
Test results (e.g. True {max=95; min=-64})

Climate diagnostics benchmarks

- Benchmarking data processing workflows
- Should we move the calculation to a machine with fast archive access, or move the data to a machine with fast processing?
- What is the data reduction achieved by the processing?
- What is the probability of needing to do the calculation again, or how many times do you expect to do the calculation?
- E.g. calculating daily cyclone distributions → reduce data by a factor
 3; monthly mean cyclone distribution → reduce data by a factor 100.

Governance issues

Climate science relies on global standardisation of file formats and will rely on global standardisation of data services; The range and complexity of the standards grows with the complexity of the data products;

Data standards

CMIP5:

- NetCDF file format;
- CF convention;
- •CMOR compliant:
 - MIP tables;
- Data Reference Syntax;
- THREDDS profile;
- OpenDAP;
- ESGF Security;
- Open Geospatial Consortium:
 - Web Map Services
- METAFOR Common Information Model (CIM): detailed model documentation

ExArch will:

- Enhance implementation of the METAFOR CIM;
- •Explore development of a standard for processing requests

<u>Summary</u>

- ExArch covers a wide range of topics, with a focus on leverage existing work;
- The CMIP5 archive has created a global federation of linked data stores;
- ExArch will provide software to enable the global federation to meet exa-scale demands;

The end

Climate Science drivers

Earth Science Image Analysis Lab.

Greater precision; Increased complexity; Improved quantification of uncertainty:

Delaney and Barga (2010)

All in the context of increasing societal relevance.

Dave Aune, Seagate (presentation at LLNL, August 2008)

Ted Wobber, MSR (presentation at LLNL, 2011)

Dealing with the energy bottleneck

- •We need a better understanding of data usage patterns;
- •A single media archive won't to satisfy user needs and budget constraints;
- More efficient use of storage (don't store data on disk at more locations than needed);
- Multi-media archives will require sophisticated caching;
 - Frequently read data → fast disk or solid state;
 - ≻Rarely read data → slow disk or tape;

Caching infrastructure needs to support checksumming and access controls;

ExArch components

- →Web processing services
- →Query syntax
- →Common information model
- →Processing operators and quality control
- →Scientific diagnostics
- →EO data for model evaluation
- →Grid computing

Web processing services

- *→Build on experience with UK climate projections portal:*
- →OGC services: flexibility through standards;
- →Load balancing, synchronous and asynchronous execution;
- → Exploit CDO operators to ensure reproducibility;

NEEDED:

Standard request syntax; e.g.:

List/specification of data files + specification of spatio-temporal domain + operator (e.g. MathML);

ExArch, Toulouse

Quality control

- CMIP5: core components
- QC tool: software to carry out multiple tests with high computational and IO efficiency;
- QC wrapper: software to manage results for thousands of files;
- QC repository: somewhere to store the results;
- QC terminology: well defined success and failure codes;
- CMIP5 lessons:
- Lack of community standards in test definitions leads to confusion;
 - Need to be able to annotate automated QC results;
- Data providers should be able to run the tests themselves before publishing data;

The CMIP5 archive is:

- Pioneering the use of structured meta-data data, with information entered through an on-line questionnaire, over 800 questions;
- Introducing a three level quality control process.

ExArch will explore:

- Direct generation of meta-data from climate models;
- Transformation from meta-data to model configuration files and back;
- Extensions and interoperability with Earth Observation meta-data;
- Structured description of multi-level quality control;
- •Designing quality control to meet user and software client requirements;

es-doc.org :: interface to the metadata repository

impact science

Networks

•The climate research community currently relies on the open academic network – no direct cost, but limited bandwidth;

Dedicated links can provide much faster connections for a

moderate cost;

Efficient use of dedicated links requires greater coordination between archives.

The end

<u>Take the compute to the data – but how?</u>

ExArch is supporting 3+1 approaches, as no single approach will meet user needs.

- (1) Providing an interface to an extensive (pre-existing) library of operations (the Climate Data Operator [CDO] library);
- (2) Supporting integration of the NOAA LAS into the ESGF peta-scale CMIP5 archive;
- (3) Supporting the development of an evaluation suite for the CORDEX archive of regional climate projections;
- (4) and collaborates with the IS-ENES development of a specialist portal for climate impacts analysis;

