Università degli studi di Catania Corso di laurea Triennale in Fisica Prova scritta di Meccanica Analitica Appello del 22.07.2022

Sia dato un sistema mobile in un piano verticale liscio Π , costituito da un semidisco omogeneo Γ di centro C, raggio R, base AB, massa M e baricentro G. L'estremo A della base é vincolato a muoversi su una guida rettilinea verticale s di Π (asse \vec{y} in figura). Sia r una retta orizontale di Π (asse \vec{x} in figura) e sia O il punto di intersezione fra le rette r ed s. Utilizzando $\{O, \vec{x}, \vec{y}\}$ come sistema di riferimento riportato in figura, e $\{S, \vartheta\}$ come variabili lagrangiane, essendo S l'ordinata di A e ϑ l'angolo che il segmento GA = d forma con l'asse verticale discendente passante per A. Sul disco Γ , oltre alla forza peso agiscono le due forze elastiche

$$\{F_1 = -h(A - O), A\}, \{F_2 = -k(G - O), A\}$$
 con $h > 0$, $e k > 0$

Supponendo che tutti i vincoli siano realizzati senza attrito, si chiede di determinare:

- 1. Tutte le possibili configurazioni di equilibrio e, discuterne la stabilitá e/o instabilitá con la condizione $k^2d-mgh\neq 0$
- 2. Scrivere le equazioni del moto, e gli eventuali integrali primi.
- 3. discutere il moto linearizzato attorno alla evidente configurazione di equilibrio per la quale il baricentro G si trova superiormente ad A sulla retta s (asse \vec{y}).
- 4. Supposto di aver fissato A coincidente con O studiare il moto del semidisco quando esso abbia inizio, con atto di moto nullo, dalla configurazione per la quale il baricentro G si trovi sull'orizontale positiva (semiasse \vec{x} positivo) per O.

