- 1. About the Gradient Descent method, choose all that are true:
 - ☐ It always converges to a local minimum.
 - lacksquare The result may vary depending on the initial point.
 - ☐ If it converges, then it converges to a global minimum.
 - It only works for differentiable functions.
- $\textbf{2.} \quad \text{Given the Initial Point on the following graph, to which point will the Gradient Descent method converge?}$

- P1.
- O P2.
- O P3.
- O It won't converge.
- 3. Given that $f(x,y)=x^3y^2+3y^3$, find its derivative with respect to y , i.e., find $rac{\partial f}{\partial y}$.

Note: Please use * to indicate the product in the answer. So, if we wrote the entire function \$f\$ as an answer, it

$$2x^3y + 9y^2$$

2*x^3*y+9*y^2

- 4. Let $f(x,y)=2x^2+3y^2-2xy-10x$, the minimum value of f(x,y) is
- 1 point

1 point

1 point

1 point

- -15
- O 3
- O 1
- 5. What are the parameters that the Gradient Descent algorithm has? (check all that apply)
- 1 point

1 point

- Initial point
- ☐ Final point

 ✓ Learning rate
- Number of iterations
- **6.** Let $f(x,y)=x^2+y^2-6x$ and $\nabla f(x,y)=\left[\begin{array}{c}2x-6\\2y\end{array}\right]$ and let the initial point $x_0=(0,1)$. Performing the gradient descent algorithm with learning rate = 0.1, the first iteration will lead us the point x_1 which is:

 - $\bigcirc \ x_1=(-6,2)$
 - $\bigcirc \ x_1=(6,-1)$
 - $\bigcirc \ x_1=(0,1)$