2019 秋微分方程 (I) 期中考试

整理人: 黄天一

ElegantLATEX Program

更新: 2022年11月3日

- 1. 选择题: 缺少题目, 一共5道.
- 2. 求解下列方程:

(a). $x' = \cos^2(x - t)$.

(d). $x' + e^{x'} - \frac{1}{2}x = 0$.

(b). $(\sqrt{t^2 - x^2} + x)dt - tdx = 0$.

(e). $x'' + 3x' - 40x = 2 + (t+1)e^{5t}$.

(c). $(2t^3 + x)dt + (4t^2x - t)dx = 0$.

- (f). x'' 2tx' + 4x = 0.
- 3. 已知带阻尼的振动方程 $x''+2\beta\omega_0x'+\omega_0^2x=q\sin\omega t$, 其中 ω 为驱动力频率, ω_0 为固有频率, β 为阻尼系数, q 为输入能量. 求出上述物理量满足何条件时振幅最大, 并求出这个最大值.
- 4. 求解下列常微分方程组的初值问题:

$$\begin{cases} \frac{dx}{dt} = x + e^t \sin 2t \\ \frac{dy}{dt} = 2x + y - 2z \\ \frac{dz}{dt} = 3x + 2y + z \\ x(0) = y(0) = 0, \ z(0) = -1 \end{cases}$$

- 5. (a). 已知微分方程 $x' = t^2 f(x)$, 其中 $f \in C^1(\mathbb{R})$ 且 $x f(x) < 0 (\forall x \neq 0)$. 求证: 任一满足 $x(t_0) = x_0$ 的解 x(t) 必定在 $[t_0, +\infty)$ 上存在.
 - (b). 设 $I = [a, b], f \in C(I)$ 且 $K \in C(I \times I)$. 求证: 积分方程

$$x(t) = f(t) + \int_{a}^{t} K(t, s)x(s)ds$$

在I上有唯一连续解.

- 6. 考虑初值问题 $x' = f(x), x(0) = x_0,$ 其中 f(x) 在实数轴上连续可微.
 - (a). 求证: 初值问题的解 $\varphi(t;x_0)$ 存在唯一.
 - (b). 在初值问题的存在区间 [-h,h] 内讨论 $\varphi(t,x_0)$ 关于 (t,x_0) 的连续性.
 - (c). 设解 $\varphi(t; x_0)$ 在 $[0, +\infty)$ 上存在. 若给定 x_0 且对任意自然数 k 成立 $|\varphi(k; x_0) x_0| < M$, 其中 M > 0 为常数. 证明: $\varphi(t; x_0)$ 在 $[0, +\infty)$ 上有界.
- 7. 讨论常微分方程组

$$\begin{cases} \frac{dx}{dt} = ax - 2y + xy^2\\ \frac{dy}{dt} = \frac{1}{2}x + ay - 2x^2y \end{cases}$$

零解的稳定性.

8. 已知一阶 PDE 的初值问题

$$\begin{cases} u_t + a(u)u_x = 0, & x \in \mathbb{R}, t > 0 \\ u|_{t=0} = \varphi(x) \end{cases}$$

- (a). 求初值问题的解.
- (b). 题目暂缺.