Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test - III - Question Paper

Degree & Branch	BE (CSE)			Semester	VI	
Subject Code & Name	UCS1602 - Compiler Design				Regulation:	2018
Academic Year	2021-2022	Batch	2019-2023	Date	02-06-2022	FN
Time: 90 Minutes 8,30 – 10,00 am	Answer All Questions			Maximum: 50 Mark		

 $Part - A (6 \times 2 = 12 Marks)$

	$Part - A (6 \times 2 = 12 Marks)$	
<kli></kli>	1. List the differences between syntax directed definition and translation scheme.	<co3></co3>
<kl3></kl3>	2. Apply the following SDT to predict the output for the input xxxxxxyzzz. S →xxW { print (6) } S → y { print(2) } W → Sz {print (3) }	<co3></co3>
<kl3></kl3>	3. Calculate the total instruction cost for the given target code, MOV 6(R0),R1 ADD b,R1 SUB #3,R1 MOV R1, a ADD R0,R1 MOV R1, d	<c04></c04>
<kl2></kl2>	4. Compare register and address descriptors.	<co4></co4>
<kl2></kl2>	5. Define peephole optimization.	<co5></co5>
KL3>	6 Identify the leaders in the following set of three address codes to build the basic blocks. if a < b goto L1 goto L2 L1: t1 = x + y t2= z * t1 t3 = t1 + t2 g=t3 if c > d goto L2 g=0 L2: t1=x-y h=t1	<c05></c05>

 $Part - B (3 \times 6 = 18 Marks)$

ple. <co3< th=""></co3<>
<c04< td=""></c04<>
ig code. <co4< td=""></co4<>
The second second

 $Part - C (2 \times 10 = 20 Marks)$

	10. Apply SDT for flow of control statements to generate three address code for the following code. main()	
<k1.3></k1.3>	int i, x=1,y=2,z=3,m,n; while(i<=10)	<co3></co3>
	i=i+1; switch(i)	

```
18
                                         case 0:
                                                m =x*z+y;
                                                break;
                                         case 2:
                                                m=x/z+y;
                                                break;
                                         default:
                                               n=x+z-y;
                                                  break;
                                                  (OR)
            11. Explain SDT for declaration statements and apply the same to construct the
            required symbol tables for the following nested procedures.
            Procedure sort
              var a:array[1..n] of integer
              Procedure readarray
                                                                                                 <CO3>
                  var i:integer
   <KL3>
             Procedure exchange(i,j:integer)
             Procedure quicksort(m,n:integer)
                  var k,v: integer;
                  function partition(x,y: integer):integer;
                       var i.f: integer;
          12. Explain the algorithm for Directed Acyclic Graph (DAG) generation from
             basic block and apply DAG to optimize the following code
                      1. t1:=4*i
                      2. t2 := a[t1]
                      3. 13:4*i
                     4. t4 := b[t3]
                     5. 15:=4*i
                     6. t6:=c[t5]
                                                                                                  <CO5>
 <KL3>
                     7. t7 := t2 * t4
                     8. 18:=t7 +t6
                     9. t9 := p + t7
                     10. t10:=t8 +t9
                     11. p: = t10
                     12. t11 := i + 1
                     13.i := t11
                     14. if i <= 20 goto (1)
                                                   (OR)
          13. Construct a flow graph for the following code after converting into three address
         code and do the necessary optimization.
                 a = 20:
                 c = a*35/3;
                 while (a<100)
                                                                                                     «COS»
<KL3>
                         b = x * 1;
                        if (a > b)
                            a=a+30:
                            a=b+30;
```