Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

By: Gehler, Rother, Kiefel, Zhang and Scholkopf

Niels Backer Iris Verweij

Paper Presentation Computer Vision 2, 2017

Recovering Intrinsic Images

Figure 1: Separation of the input image into its material-dependent (reflectance, left hand side) and light-dependent properties (shading, on the right hand side).

Simplified Formula

$$I=s\cdot R$$
 $I\in\mathcal{R}^3$, $R\in\mathcal{R}^3$, $s\in\mathcal{R}$

Each image pixel is the product of two components, scalar s represents shading and vector \mathcal{R} for reflectance.

Probabilistic model for Estimation

3 Factors

- 1. Retinex-based method for reflectance
- 2. Smoothness prior on shading
- 3. Global sparsity prior on reflectance

Global Sparsity prior on Reflectance

Figure 2: Global sparsity prior on Reflectance based on the properties shown in this figure. An image often contains only a few different basis colorlines (d). Assume basis colors as a mixture of Gaussians.

Outline

Introduction

Related Work

Probabilistic model

Experiments and results

Follow up Research

Lightness and Retinex theory 1971

Authors

Edwin H. Land, John J. McCann

- Seminal work on intrinsic image decomposition
- Theory based on biological cone receptors to separate reflectance from illumination (flux)
- Basic assumption: small image gradients more likely to be caused by shading, strong gradients by change in reflectance
- Later extended to 2D. color Retinex

Ground truth dataset and baseline evaluations for intrinsic image algorithms 2009

Authors

Roger Grosse, Micah K. Johnson, Edward H. Adelson, William T. Freeman

- Comparison paper on intrinsic image decomposition
- Provides a ground-truth data set (16 images) and evaluation standard
- Main difference between algorithms lies in estimation of log reflectance derivatives

oduction Related Work Probabilistic model Experiments and results Follow up Research Summary

Intrinsic Image Decomposition with Non-Local Texture Cues

2008

Authors

Li Shen, Ping Tan, Stephen Lin

- Examine texture information to obtain non-local restraints on reflectance
- Extends Retinex algorithm with texture constraints to local derivative analysis
- Same intuition (sparse set of reflectances in scene), but different image representation (wavelet transform vs. RGB)

oduction Related Work Probabilistic model Experiments and results Follow up Research Summary

Intrinsic Images Decomposition Using a Local and Global Sparse Representation of Reflectance 2011

Authors

Li Shen, Chuohao Yeo

- Extends Retinex by clustering into super-pixels
- Neighbouring pixels usually have same reflectance if chromacity is similar
- Results in sparse representation of reflectance components
- Uses wavelets instead of RGB, and no joint probability model

Conditional Probability Distribution

Conditional Random Fields

$$p(\mathbf{s}, R|I) \propto exp(-E(\mathbf{s}, R|I))$$

Complexity Reduction

Assume delta-prior:

$$I_i^c = s_i R_i^c$$
 thus: $R_i = r_i \cdot \overrightarrow{R}_i$
with: $\overrightarrow{R}_i = I_i / ||I_i||$ and $s_i = ||I_i|| / r_i$

Model: MAP Energy Function

$$\min_{r_i,\alpha_i;i=1,\dots n} w_s E_s(\mathbf{r}) + w_s E_{ret}(\mathbf{r}) + w_{cl} E_{cl}(\mathbf{r},\alpha)$$

Model: Shading Prior

$$E_s(r) = \sum_{i \sim j} (r_i^{-1}||I_i|| - r_j^{-1}||I_j||)^2$$

- Assume: Shading varies smoothly over image
- 4-connected pixel graph \rightarrow neighbourhood relation
- Potential problem of multiple local minima: use restarts

Model: Gradient Consistency

Retinex based

"Disambiguate between edges that are due to shading variations from those that are caused by material reflectance changes"

$$E_{ret}(\mathbf{r}) = \sum_{i \sim j} (\log(r_i) - \log(r_j) - g_{ij}(I)(\log(||I_i||) - \log(||I_j||)))^2$$

Classification function g(I)

- $oldsymbol{ heta}_{oldsymbol{g}}$: threshold for gradient of the intensity image
- $oldsymbol{ heta}_c$: threshold for gradient of the chromaticity change
- $g_{ii}(I) = 1 \rightarrow$ "reflectance edge"

Model: Global Sparse Reflectance Prior (GSRP)

"...include a term that acts as a global potential on reflectance and favors decomposition into clusters..."

$$E_{cl}(\mathbf{r},\alpha) = \sum_{i=1}^{n} ||r_i \overrightarrow{R}_i - \widetilde{R}_{\alpha_i}||^2$$

Global potential

- C different reflectance clusters, $ilde{R_c}, c \in \{1,...,C\}$
- r_i has cluster membership: $\alpha_i \in \{1, ..., C\}$
- Cluster means depend on assignment of all pixels in image

Model: Shading and GSRP

Figure 3: True decomposition is shown on the left hand side, the columns show the results for various settings for smoothness prior (E_s) and clusters regarding the Global Sparse Reflectance Prior (E_{cl})

Model: Optimization

Coordinate Descent

- Initialization of rOutput has a fix range $(0 \ge R_i^c, s_i \ge 1 \text{ for all } c, i)$
- Initialization of α Use initialization of r with K-means clustering. Use best from 5 restarts.
- updating r
- updating α

Experiments

Data and Error metric

- 16 images with ground truth information
- Evaluated using Local Mean Squared Error (LMSE) and average rank

Parameter estimation

- 5 free parameters: $w_{cl}, w_s, w_r, \theta_c, \theta_g$
- Leave-One-Out estimate (LOO-CV) using median error
- · Both global optimal and image-optimal settings evaluated

Results

Comparing component influences

comment	E_s	E_{cl}	E_{ret}	LOO-CV	best single	image opt.
Color Retinex	-	-	✓	29.5	29.5	25.5
no edge information	✓	\checkmark	-	30.0	30.6	18.2
Col-Ret+ global term	-	\checkmark	✓	27.2	24.4	18.1
full model	✓	\checkmark	✓	27.4	24.4	16.1

Figure 4: LMSE results of different component combinations

Results

Compared to other methods

	LOO-CV	rank	best single	im. opt.
TAP05 [17]	56*	-	-	-
TAP06 [16]	39*	-	-	-
SHE [14] ⁺	n/a	n/a	56.2	n/a
SHE [15]×	n/a	n/a	(20.4)	-
BAS [7]	72.6	5.1	60.3	36.6
Gray-Ret [7]	40.7	4.9	40.7	28.9
Col-Ret	29.5	3.7	29.5	25.5
full model	27.4	3.0	24.4	16.1
Weiss [19]	21.5	2.7	21.5	21.5
Weiss+Ret [7]	16.4	1.7	16.4	15.0

roduction Related Work Probabilistic model Experiments and results Follow up Research Summary

Result Visualization

Result Visualization Output

Figure 5: Various results for different methods and parameter settings

Result Visualization Input

Figure 6: Another input example

roduction Related Work Probabilistic model Experiments and results Follow up Research Summary

Result Visualization Output

Figure 7: Results of the teabag image

Follow up Research

By Authors

- Intrinsic Video (Kong, Black and Gehler)(2014)
- Reflectance Adaptive Filtering Improves Intrinsic Image Estimation (Nestmeyer & Gehler)(2016)

Cited

- Papers which focus on perfecting the priors
- Papers which enhance the current technique with multiple view points

Summary

Conclusion

- Main Contribution: Global Sparsity Prior on Reflectance
- The combination of the 3 priors yields good and accurate results
- Adjusting parameter settings to dataset

Summary

Discussion

- Small Dataset
- Experiments with real-world images is missing
- Little information on parameter settings

Questions?