Lecture 21: Asymptotic Evaluations of Point Estimators

Mathematical Statistics II, MATH 60062/70062

Tuesday April 19, 2022

Reference: Casella & Berger, 10.1

Large sample inference

Our discussions so far have been focused on **finite sample inference**. We will now investigate **large sample inference** and discuss three important topics in statistical inference:

Point estimation

- Consistency, efficiency
- Asymptotic evaluations of maximum likelihood estimators

Hypothesis testing

- Wald test, score test, likelihood ratio test (LRT)
- Asymptotic distributions of the test statistics

Confidence intervals

Wald test, score test, LRT

Point estimation

We observe $\boldsymbol{X}=(X_1,\ldots,X_n)\sim f_{\boldsymbol{X}}(\boldsymbol{x}\mid\theta)$, where $\theta\in\Theta\subseteq\mathbb{R}$. Suppose X_1,\ldots,X_n is a random sample from a population $f_X(\boldsymbol{x}\mid\theta)$, where the parameter θ is fixed and unknown.

Let

$$W_n = W_n(\boldsymbol{X}) = W_n(X_1, \dots, X_n)$$

be a sequence of estimators (which depends on the sample size n).

For example,

$$W_1 = X_1$$

$$W_2 = \frac{X_1 + X_2}{2}$$

$$\vdots$$

$$W_n = \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Consistency

A sequence of estimators W_n is **consistent** for a parameter θ if

$$W_n \xrightarrow{p} \theta$$
 for all $\theta \in \Theta$.

That is, for all $\epsilon > 0$ and for all $\theta \in \Theta$,

$$\lim_{n\to\infty} P_{\theta}(|W_n - \theta| \ge \epsilon) = 0,$$

or equivalently,

$$\lim_{n \to \infty} P_{\theta}(|W_n - \theta| < \epsilon) = 1.$$

Consistency

A sequence of estimators W_n is **consistent** for a parameter θ if

$$W_n \xrightarrow{p} \theta$$
 for all $\theta \in \Theta$.

That is, for all $\epsilon > 0$ and for all $\theta \in \Theta$,

$$\lim_{n\to\infty} P_{\theta}(|W_n - \theta| \ge \epsilon) = 0,$$

or equivalently,

$$\lim_{n \to \infty} P_{\theta}(|W_n - \theta| < \epsilon) = 1.$$

Suppose W_n is a consistent estimator of θ . Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then

$$g(W_n) \xrightarrow{p} g(\theta)$$
 for all $\theta \in \Theta$,

by the **continuity** property. That is, $g(W_n)$ is consistent for $g(\theta)$.

A sufficient condition for consistency

By Markov's Inequality,

$$P_{\theta}(|W_n - \theta| \ge \epsilon) \le \frac{E_{\theta}[(W_n - \theta)^2]}{\epsilon^2},$$

for all $\epsilon>0$. Therefore, a sufficient condition for W_n to be consistent is that for all $\theta\in\Theta$,

$$\frac{E_{\theta}[(W_n - \theta)^2]}{\epsilon^2} \to 0,$$

as $n \to \infty$. Note that

$$E_{\theta}[(W_n - \theta)^2] = \operatorname{Var}_{\theta}(W_n) + [E_{\theta}(W_n) - \theta]^2 = \operatorname{Var}_{\theta}(W_n) + [\operatorname{Bias}_{\theta}(W_n)]^2.$$

Therefore, if W_n is a sequence of estimators satisfying

- ① $\operatorname{Var}_{\theta}(W_n) \to 0$ as $n \to \infty$, for all $\theta \in \Theta$
- ② $\operatorname{Bias}_{\theta}(W_n) \to 0$ as $n \to \infty$, for all $\theta \in \Theta$,

then W_n is a consistent estimator of θ .

Sample mean as consistent estimator

Suppose that X_1, \ldots, X_n are iid with mean $E_{\theta}(X_1) = \mu$ and variance $\operatorname{Var}_{\theta}(X_1) = \sigma^2 < \infty$. Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

be the sample mean, where $E_{\theta}(\bar{X}_n) = \mu$ and $\mathrm{Var}_{\theta}(\bar{X}_n) = \sigma^2/n$.

As an estimator of μ , we see that

- Bias $_{\theta}(\bar{X}_n) \to 0$ as $n \to \infty$, for all $\theta \in \Theta$.

Therefore, \bar{X}_n is a consistent estimator of μ .

Consistency of MLEs

Suppose X_1, \ldots, X_n are iid from $f_X(x \mid \theta)$, where $\theta \in \Theta$. Let

$$\hat{\theta} = \operatorname*{arg\,max}_{\theta \in \Theta} L(\theta \mid \boldsymbol{x})$$

be the maximum likelihood estimator (MLE) of θ . Under "certain regularity conditions," it follows that

$$\hat{\theta} \xrightarrow{p} \theta$$
 for all $\theta \in \Theta$,

as $n \to \infty$. That is, MLEs are consistent estimators.

Asymptotic normality of MLEs

Suppose X_1, \ldots, X_n are iid from $f_X(x \mid \theta)$, where $\theta \in \Theta$. Let $\hat{\theta}$ be the MLE of θ . Under "certain regularity conditions," it follows that

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}(0, v(\theta)),$$

as $n \to \infty$, where the asymptotic variance

$$v(\theta) = \frac{1}{I_1(\theta)}$$

depends on $I_1(\theta)$, the **Fisher Information** based on one observation, which is given by

$$I_1(\theta) = E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \log f_X(X \mid \theta) \right]^2 \right\} = -E_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \log f_X(X \mid \theta) \right]$$

Regularity conditions

- The regularity conditions presented in the next slide relate to the differentiability of the density function and the ability to interchange integration and differentiation.
- The first four are sufficient for the consistency of MLEs.
- In addition to the four conditions for consistency, the last two are required to prove asymptotic normality of MLEs.
- These conditions are often used in proofs of theorem. They generally hold for Exponential families that are of full rank.
- If the support \mathcal{X} depends on the parameter, then some of the conditions will not hold.

Regularity conditions

- **1** X_1, \ldots, X_n are iid from $f_X(x \mid \theta)$.
- **2** The parameter θ is **identifiable**. That is, for $\theta_1, \theta_2 \in \Theta$,

$$f_X(x \mid \theta_1) = f_X(x \mid \theta_2) \implies \theta_1 = \theta_2.$$

- **3** The family of PDF $\{f_X(x \mid \theta) : \theta \in \Theta\}$ has common support \mathcal{X} . In addition, the PDF $f_X(x \mid \theta)$ is differentiable with respect to θ .
- **4** The parameter space Θ contains an open set where the true value of θ , say θ_0 , resides as an interior point.
- **⑤** The PDF/PMF is three times differentiable with respect to θ , the third derivative is continuous in θ , and $\int_{\mathbb{R}} f_X(x \mid \theta) dx$ can be differentiated three times under the integral sign.
- **6** For any $\theta_0 \in \Theta$, there exists a positive number c a function M(x), both of which may depend on θ_0 such that

$$\left| \frac{\partial^3}{\partial \theta^3} \log f_X(x \mid \theta) \right| \le M(x)$$

for all $x \in \mathcal{X}$ and for all $\theta_0 - c < \theta < \theta_0 + c$ with $E_{\theta_0}[M(X)] < \infty$.

Asymptotic normality of functions of MLEs

Under certain regularity conditions, an MLE $\hat{\theta}$ satisfies

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}(0, v(\theta)),$$

where the asymptotic variance

$$v(\theta) = \frac{1}{I_1(\theta)}.$$

By the **Delta Method**, if $g: \mathbb{R} \to \mathbb{R}$ is differentiable at θ and $g'(\theta) \neq 0$, then

$$\sqrt{n}(g(\hat{\theta}) - g(\theta)) \xrightarrow{d} \mathcal{N}(0, [g'(\theta)]^2 v(\theta)).$$

Functions of MLEs are asymptotically Normal.

A common large sample technique

Suppose a sequence of estimators $\hat{\theta}$ (not necessarily an MLE) satisfies

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}(0, v(\theta)).$$

It follows that

$$Z_n = \frac{\hat{\theta} - \theta}{\sqrt{\frac{v(\theta)}{n}}} \xrightarrow{d} \mathcal{N}(0, 1).$$

Suppose that $v(\hat{\theta})$ is a consistent estimator of $v(\theta)$, that is,

$$v(\hat{\theta}) \xrightarrow{p} v(\theta),$$

for all $\theta \in \Theta$ as $n \to \infty$. Because of the continuity property,

$$\sqrt{\frac{v(\theta)}{v(\hat{\theta})}} \xrightarrow{p} 1.$$

By Slutsky's Theorem,

$$Z_n^* = \frac{\hat{\theta} - \theta}{\sqrt{\frac{v(\hat{\theta})}{n}}} = \frac{\hat{\theta} - \theta}{\sqrt{\frac{v(\theta)}{n}}} \sqrt{\frac{v(\theta)}{v(\hat{\theta})}} \xrightarrow{d} \mathcal{N}(0, 1).$$

MLE of Normal variance

Suppose X_1, \ldots, X_n are iid $\mathcal{N}(0, \theta)$, where $\theta > 0$. The MLE of θ is

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i^2.$$

We know that the MLE is consistent, $\hat{\theta} \xrightarrow{p} \theta$, as $n \to \infty$. We also know that the centered and scaled asymptotic distribution of $\hat{\theta}$ is

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}(0, v(\theta)),$$

where

$$v(\theta) = \frac{1}{I_1(\theta)}.$$

MLE of Normal variance

Suppose X_1, \ldots, X_n are iid $\mathcal{N}(0, \theta)$, where $\theta > 0$. The MLE of θ is

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i^2.$$

We know that the MLE is consistent, $\hat{\theta} \xrightarrow{p} \theta$, as $n \to \infty$. We also know that the centered and scaled asymptotic distribution of $\hat{\theta}$ is

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}(0, v(\theta)),$$

where

$$v(\theta) = \frac{1}{I_1(\theta)}.$$

The PDF of X is

$$f_X(x \mid \theta) = \frac{1}{\sqrt{2\pi\theta}} e^{-x^2/2\theta},$$

and

$$\log f_X(x \mid \theta) = -\frac{1}{2}\log(2\pi\theta) - \frac{x^2}{2\theta}.$$

The derivatives of $\log f_X(x \mid \theta)$ are

$$\frac{\partial}{\partial \theta} \log f_X(x \mid \theta) = -\frac{1}{2\theta} + \frac{x^2}{2\theta^2}$$
$$\frac{\partial^2}{\partial \theta^2} \log f_X(x \mid \theta) = \frac{1}{2\theta^2} - \frac{x^2}{\theta^3}.$$

Therefore,

$$I_1(\theta) = -E_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \log f_X(X \mid \theta) \right] = E_{\theta} \left(\frac{X^2}{\theta^3} - \frac{1}{2\theta^2} \right) = \frac{\theta}{\theta^3} - \frac{1}{2\theta^2} = \frac{1}{2\theta^2}$$

 $v(\theta) = \frac{1}{I_1(\theta)} = 2\theta^2.$

and

We have
$$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{d} \mathcal{N}(0,2\theta^2) \iff Z_n = \frac{\hat{\theta}-\theta}{\sqrt{\frac{2\theta^2}{n}}} \xrightarrow{d} \mathcal{N}(0,1).$$

By continuity, a consistent estimator of $v(\theta)=2\theta^2$ is $v(\hat{\theta})=2\hat{\theta}^2$.

Therefore, by Slutsky's Theorem,

$$Z_n^* = \frac{\hat{\theta} - \theta}{\sqrt{\frac{2\hat{\theta}^2}{n}}} = \frac{\hat{\theta} - \theta}{\sqrt{\frac{2\theta^2}{n}}} \sqrt{\frac{2\theta^2}{2\hat{\theta}^2}} \xrightarrow{d} \mathcal{N}(0, 1).$$

Asymptotic relative efficiency

Suppose we have two competing sequences of estimators (neither of which is necessarily an MLE sequence) denoted by W_n and V_n that satisfy

$$\sqrt{n}(W_n - \theta) \xrightarrow{d} \mathcal{N}(0, \sigma_W^2)$$

 $\sqrt{n}(V_n - \theta) \xrightarrow{d} \mathcal{N}(0, \sigma_V^2).$

Both estimators are consistent estimators of θ . The **asymptotic** relative efficiency (ARE) is defined as

$$ARE(W_n \text{ to } V_n) = \frac{\sigma_W^2}{\sigma_V^2}.$$

- If ARE < 1, then W_n is more efficient than V_n .
- If ARE = 1, then W_n is as efficient as V_n .
- If ARE > 1, then W_n is less efficient than V_n .

Asymptotic evaluation of Beta estimators

Suppose X_1, \ldots, X_n are iid $Beta(\theta, 1)$, where $\theta > 0$.

ullet The Method Of Moments (MOM) estimator of heta is

$$\label{eq:local_local} $$ \left(\frac{\bar{X}}{1-\bar{X}} \right) = \frac{\bar{X}}{1-\bar{X}} $$$$

and (by CLT and Delta Method) $\hat{ heta}_{
m MOM}$ satisfies

$$\sqrt{n}(\hat{\theta}_{\text{MOM}} - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{\theta(\theta+1)^2}{\theta+2}\right).$$

• The MLE of θ is

$$\hat{\theta}_{\text{MLE}} = -\frac{n}{\sum_{i=1}^{n} \log X_i}$$

and $\hat{ heta}_{\mathrm{MLE}}$ satisfies

$$\sqrt{n}(\hat{\theta}_{\mathrm{MLE}} - \theta) \xrightarrow{d} \mathcal{N}(0, \theta^2).$$

Asymptotic evaluation of Beta estimators

Suppose X_1, \ldots, X_n are iid $Beta(\theta, 1)$, where $\theta > 0$.

• The Method Of Moments (MOM) estimator of θ is

$$\hat{\theta}_{\text{MOM}} = \frac{\bar{X}}{1 - \bar{X}}$$

and (by CLT and Delta Method) $\hat{ heta}_{ ext{MOM}}$ satisfies

$$\sqrt{n}(\hat{\theta}_{\text{MOM}} - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{\theta(\theta+1)^2}{\theta+2}\right).$$

• The MLE of θ is

$$\hat{\theta}_{\text{MLE}} = -\frac{n}{\sum_{i=1}^{n} \log X_i}$$

and $\hat{ heta}_{\mathrm{MLE}}$ satisfies

$$\sqrt{n}(\hat{\theta}_{\mathrm{MLE}} - \theta) \xrightarrow{d} \mathcal{N}(0, \theta^2).$$

What is the $ARE(\hat{\theta}_{MOM} \text{ to } \hat{\theta}_{MLE})$?