Ist dies ein guter Schemaentwurf?

Stadt			
SNr	SName	LCode	LFläche
7	Freiburg	D	357
9	Berlin	D	357
40	Moscow	RU	17075
43	St.Petersburg	RU	17075

- Anomalie beim Einfügen: Es können nur Länder aufgenommen werden, zu denen auch Städte existieren
- ► Anomalie beim Löschen: Werden Städte gelöscht, können u.U. alle Informationen über gewisse Länder verloren gehen.
- ► Anomalie beim Ändern: Änderungen der Fläche eines Landes müssen bei mehreren Zeilen vorgenommen werden.

Zwei alternative Datenbankschemata.

Stadt SNr SName LCode LFläche 7 Freiburg Berlin

RU

Moscow

43 St.Petersburg

	Stadt'	
SNr	SName	LCode
7	Freiburg	D
9	Berlin	D
40	Moscow	RU

43 St.Petersburg

9

40

Land'		
LCode	LFläche	
D	357	
RU	17075	

357

357

17075

17075

RU

RU

Gibt es hier Anomalien?

Sei $R = (V, \mathcal{F})$ ein Schema. Wir wollen eine Zerlegung $\rho = (X_1, \dots, X_k)$ von R finden, die die folgenden Eigenschaften erfüllt:

- ▶ jedes $R_i = (X_i, \pi[X_i]\mathcal{F}), 1 \le i \le k$ ist in einer gewünschten Normalform,
- $\triangleright \rho$ ist verlustfrei und (möglichst) auch abhängigkeitsbewahrend,
- k minimal.

Begriffe

- Sei X Schlüssel zu R und $X \subseteq Y \subseteq V$, dann nennen wir Y einen Superschlüssel von R.
- ▶ Gilt $A \in X$ für irgendeinen Schlüssel X von R, so bezeichnen wir A als Schlüsselattribut (SA) in R.
- Gilt A ∉ X für alle Schlüssel X, so bezeichnen wir A als Nicht-Schlüsselattribut (NSA).

Hinweis: In der Literatur werden unterschiedliche Varianten von Normalformen betrachtet; wir beschränken uns auf die am häufigsten betrachteten.

3. Normalform

Ein Relationsschema $R = (V, \mathcal{F})$ ist in 3. Normalform (3NF) genau dann, wenn jedes NSA $A \in V$ die folgende Bedingung erfüllt:

Wenn $X \to A \in \mathcal{F}$, $A \notin X$, dann ist X ein Superschlüssel.

Die Bedingung der 3NF verbietet nichttriviale funktionale Abhängigkeiten $X \to A$, in denen ein NSA A in der Weise von einem Schlüssel K transitiv funktional abhängt, dass $K \to X$ und $X \to A$, wobei $K \not\subseteq X$.

Welche Art von Redundanz wird so vermieden?

Redundanz der Art, dass mehrere Tupel mit denselben X-Werten existieren, so dass der Zusammenhang zu dem immer gleichen A-Wert redundant ist.

Welche funktionale Abhängigkeiten verletzen die 3NF?

Stadt			
SNr	SName	LCode	LFläche
7	Freiburg	D	357
9	Berlin	D	357
40	Moscow	RU	17075
43	St.Petersburg	RU	17075

Kontinent			
<u>KName</u>	<u>LCode</u>	KFläche	Prozent
Europe	D	3234	100
Europe	RU	3234	20
Asia	RU	44400	80

Was ist hier zu sagen?

Stadt'		
SNr	SName	LCode
7	Freiburg	D
9	Berlin	D
40	Moscow	RU
43	${\tt St.Petersburg}$	RU

Land'		
<u>LCode</u> LFläche		
D	357	
RU	17075	

Lage'		
LCode	<u>KName</u>	Prozent
D	Europe	100
RU	Europe	20
RU	Asia	80

Kontinent'		
<u>KName</u> KFläche		
Europe	3234	
Asia	44400	

Seite 28

Boyce-Codd-Normalform

Ein Relationsschema $R = (V, \mathcal{F})$ ist in Boyce-Codd-Normalform (BCNF) genau dann, wenn die folgende Bedingung erfüllt ist.

Wenn $X \to A \in \mathcal{F}$, $A \notin X$, dann ist X ein Superschlüssel.

Die BCNF verschärft die 3NF.

- ▶ Sei $R = (V, \mathcal{F})$ mit $V = \{$ Stadt, Adresse, PLZ $\}$ und $\mathcal{F} = \{$ Stadt Adresse \rightarrow PLZ, PLZ \rightarrow Stadt $\}$
- R ist in 3NF aber nicht in BCNF.
- Sei ρ = {Adresse PLZ, PLZ Stadt} eine Zerlegung.
 Dann erfüllt ρ die BCNF und ist verlustfrei, jedoch nicht abhängigkeitsbewahrend.

Bemerkung

Zu einem Relationsschema $R = (V, \mathcal{F})$ existiere genau einen Schlüssel. R ist in BCNF genau dann, wenn R in 3NF.

6.3.1 Minimale Überdeckung: Basis für Normalisierungsalgorithmen

- ightharpoonup Sei $\mathcal F$ eine Menge von funktionalen Abhängigkeiten.
- Wir suchen eine "minimale" Überdeckung von \mathcal{F} . \mathcal{G} überdeckt \mathcal{F} , wenn $\mathcal{F} \equiv \mathcal{G}$, d.h. $\mathcal{F}^+ = \mathcal{G}^+$.
- Strategie:
 Bilde G durch Streichen von Attributen in den FAs von F oder
 Entfernen von FAs in F in einer Weise, die die Äquivalenz nicht zerstört.

$$\blacktriangleright \mathcal{F}_1 = \{B \to A, B \to C, A \to C\}.$$

Kann die FA $B \to C$ zu $B \to \emptyset$ reduziert werden, d.h. gestrichen werden?

Sei
$$\mathcal{F}'_1 = \{B \rightarrow A, A \rightarrow C\}.$$

Gilt
$$\mathcal{F}_1^+ = \mathcal{F}_1'^+$$
?

Ja, denn

- (a) $\mathcal{F}_1^+\supseteq \mathcal{F}_1'^+$ wegen $\mathcal{F}_1\supseteq \mathcal{F}_1'$.
- (b) $\mathcal{F}_1^+ \subseteq \mathcal{F}_1'^+$ wegen $XPlus(B, C, \mathcal{F}_1')$.

Beispiel: Linksreduktion

 $\blacktriangleright \mathcal{F}_2 = \{AB \to C, B \to A\}.$

Kann die FA $AB \rightarrow C$ zu $B \rightarrow C$ reduziert werden, d.h. $AB \rightarrow C$ durch $B \rightarrow C$ ersetzt werden?

Sei
$$\mathcal{F}_2' = \{B \rightarrow C, B \rightarrow A\}$$

Gilt
$$\mathcal{F}_2^+ = \mathcal{F}_2^{\prime +}$$
?

Ja, denn

- (a) $\mathcal{F}_2^+ \supseteq \mathcal{F}_2'^+$ wegen $XPlus(B, C, \mathcal{F}_2)$.
- (b) $\mathcal{F}_2^+ \subseteq \mathcal{F}_2'^+$ wegen (A2) und (A6) angewendet auf B o C.

Links- und Rechtsreduktion

► Eine Menge F funktionaler Abhängigkeiten heißt *linksreduziert*, wenn sie die folgende Eigenschaft erfüllt:

Wenn
$$X \to Y \in \mathcal{F}, Z \subset X$$
, dann $\mathcal{F}' = (\mathcal{F} \setminus \{X \to Y\}) \cup \{Z \to Y\}$ nicht äquivalent zu \mathcal{F} .

[Linksreduktion: ersetze $X \to Y$ in \mathcal{F} durch $Z \to Y$.]

F heißt rechtsreduziert, wenn sie die folgende Eigenschaft erfüllt:

Wenn
$$X \to Y \in \mathcal{F}, Z \subset Y$$
, dann $\mathcal{F}' = (\mathcal{F} \setminus \{X \to Y\}) \cup \{X \to Z\}$ nicht äquivalent zu \mathcal{F} .

[**Rechtsreduktion:** ersetze $X \to Y$ in \mathcal{F} durch $X \to Z$.]

Entscheidung mittels XPlus-Algorithmus

- ▶ Sei $X \to Y$ eine Abhängigkeit in \mathcal{F} . Betrachte $Z \to Y$, wobei $Z \subseteq X$. Wir führen die entsprechende *Linksreduktion* durch, wenn $XPlus(Z,Y,\mathcal{F}) = \mathtt{true}$
- ▶ Sei $X \to Y$ eine Abhängigkeit in \mathcal{F} . Betrachte $X \to Z$, wobei $Z \subseteq Y$. Wir führen die entsprechende *Rechtsreduktion* durch, wenn $XPlus(X,Y,\mathcal{F}') = \mathtt{true}$

Satz

Sei eine Menge funktionaler Abhängigkeiten \mathcal{F} gegeben und sei \mathcal{F}' aus \mathcal{F} durch eine Links- oder Rechtsreduktion hervorgegangen.

Dann gilt: $\mathcal{F} \equiv \mathcal{F}'$

Eine Menge funktionaler Abhängigkeiten \mathcal{F}^{min} ist eine minimale $\ddot{U}berdeckung$ zu

 \mathcal{F} , wenn wir sie durch Anwendung der folgenden Schritte erzeugen können:

- (1) Führe alle möglichen Linksreduktionen durch.
- (2) Führe alle möglichen Rechtsreduktionen durch.
- (3) Streiche alle trivialen funktionalen Abhängigkeiten der Form $X o\emptyset$.
- (4) Vereinige alle funktionalen Abhängigkeiten mit gleicher linker Seite $X \to Y_1, \ldots, X \to Y_n$ zu einer einzigen FA der Form $X \to Y_1 \ldots Y_n$.

6.3.2 Algorithmus zur Normalisierung

3NF-Synthese: verlustfrei und abhängigkeitsbewahrend

Sei $R = (V, \mathcal{F})$ ein Relationsschema.

- 1. Sei \mathcal{F}^{min} eine minimale Überdeckung zu \mathcal{F} .
- 2. Betrachte jeweils maximale Klassen von funktionalen Abhängigkeiten aus \mathcal{F}^{min} mit derselben linken Seite. Seien $\mathcal{C}_i = \{X_i \to A_{i1}, X_i \to A_{i2}, \ldots\}, \ i \geq 0$, die so gebildeten Klassen.¹
- 3. Bilde zu jeder Klasse C_i ein Schema mit Format $V_{C_i} = X_i \cup \{A_{i1}, A_{i2}, \ldots\}$.
- 4. Sofern keines der gebildeten Formate $V_{\mathcal{C}_i}$ einen Schlüssel für R enthält, berechne einen Schlüssel für R. Sei Y ein solcher Schlüssel. Bilde zu Y ein Schema mit Format $V_{\mathcal{K}} = Y$.
- 5. $\rho = \{V_K, V_{C_1}, V_{C_2}, \ldots\}$ ist eine verlustfreie und abhängigkeitsbewahrende Zerlegung von R in 3NF.

 $^{^1}$ Der von uns betrachtete Algorithmus zur Berechnung von \mathcal{F}^{min} hat diese Klassenbildung bereits vorgenommen, siehe (4) auf vorheriger Folie.