The gonality conjecture is true for linear ear decompositions

LA Xuan Hoang PHAN Thi Ha Duong

Ecole Normale Superieure de Lyon Institute of Mathematics of Hanoi

> xuan.la@ens-lyon.fr phanhaduong@math.ac.vn

August 14, 2018

Outline

The chip firing game

The gonality conjecture

- The linear ear decompostion
- 4 The nested ear decomposition, a work in progress...

A simple, unoriented graph:

The starting configuration:

A debt:

A toppling:

Given a configuration, if any one person loses a dollar, can we still reach a winning configuration through topplings ?

Given a configuration, if any one person loses a dollar, can we still reach a winning configuration through topplings ?

Toppling a set:

A winnable starting configuration:

The gonality conjecture

The game

A graph: G = (V, E)A configuration: D

The question: If any one person loses a dollar, can we still win?

The gonality conjecture

Given $\lfloor \frac{g+3}{2} \rfloor$ chips, there always exists a winnable starting configuration.

g is G's genus:

$$g = |E| - |V| + 1$$

The linear ear decomposition

An ear:

A linear ear decomposition:

Induction on g: g = 1: 2 chips

g=2: 2 chips

g = 3: $a \ge b$, 3 chips

g = 4: 3 chips

$$g = 4$$
: $a > b, d > e, a - b \le min(c, d - e)$

g = i + 2: +1 chip for every 2 ears

place chips similar to when g = i pla

place one chip similar to when g=4

The nested ear decomposition, a work in progress...

An example of a nested ear decomposition:

The same graph with the length of the paths added:

The corresponding tree:

Breakers:

Components:

How to solve it on nested ear decompositions that look like full binary trees?