Calcolatori Elettronici - Ingegneria Informatica Appello del 14 marzo 2022 C2

Per svolgere i quesiti può essere usata una qualsiasi applicazione. I file relativi agli esercizi devono essere inviati tramite studium.

Tempo a disposizione 1h 45 min per quesiti da 1 a 5, altri 20 minuti per l'eventuale quesito 6

1. Data la funzione booleana $f(a,b,c,d,e) = \Sigma(1,4,5,7,20,21,22,31)$ scrivere l'espressione logica minima utilizzando il metodo di Quine-McCluskey.

abcde	
00001	1
00100	4
00101	5
00111	7
10100	20
10101	21
10110	22
11111	31

2. Data la seguente tabella degli stati relativa ad una rete sequenziale con un solo ingresso x:

Stato	x=0	x=1	
A	E/0	C/0	
В	B/0	A/0	
С	E/1	A/0	
D	B/0	C/0	
Е	E/0	D/0	

- Eseguire la minimizzazione degli stati e realizzare la tabella degli stati della macchina minima equivalente.
- Costruire la tabella delle transizioni e delle eccitazioni usando come elemento di memoria i FF T.
- Scrivere l'espressione logica minima delle funzioni booleane che rappresentano lo stato prossimo e l'uscita.

. Data l'entity

Entity CU is

Port(stato: in std_logic_vector(2 downto 0);

Sel, WEn, Exe, Ready: out std logic);

End CU;

Architecture beh of CU is

begin

UCE

end beh;

descrivere in VHDL il comportamento descritto dalla seguente tabella

stato	Sel	WEn	Exe	Ready
000	0	0	0	1
001	0	0	0	0
010	0	1	0	0
011	0	0	0	0
100	1	0	1	0
101	1	0	0	0
110	0	1	1	0
111	0	0	0	0

4. Scrivere un programma in linguaggio Assembly MIPS che traduce il seguente programma C (cognome.nome.s):

```
int elabora(char *vet, int d)
{ int i, conta;
    conta=0;
    for(i=0;i<d;i++)
       if(vet[i]<58)</pre>
           conta++;
   return (conta % 4);
}
main() {
  char VAL[32];
  int i, ris, numero;
  for(i=0;i<3;i++) {
   printf("Inserisci un numero\n");
   scanf("%d", &numero);
   if(numero<4)
          ris = numero;
   else {
          printf("Inserisci una stringa con almeno %d caratteri\n", numero);
          scanf("%s", VAL);
          ris=elabora(VAL, strlen(VAL));
  printf(" Ris[%d] = %d \n",i,ris);
  }
 }
```

5) Valutare il CPI di un processore pipeline con una gerarchia di memoria con cache separata istruzioni e dati sapendo che

```
-numero di istruzioni è 1000
```

- -MissPenalty_{Istruzioni}= 40 cicli,
- -MissRate_{Istruzioni}= 3%
- -frequenza Load= 20%,
- -frequenza Store= 20%
- -MissRate_{Dati}= 5%
- -MissPenalty_{Dati}= 45 cicli,
- -CPI_{execution}=1,6

Quesito 6 (Solo in alternativa all'orale)

Discutere dei data hazard, indicando le possibili soluzioni.