Homework 6

- 1. แสดงการจัดโครงสร้างหน่วยความจำ Memory Module ที่มีความจุ 8M bytes (8MBs) โดยใช้ RAM Chip ขนาด 1M x 4 bits ที่เชื่อมต่อกับ Data Bus ขนาด 32 bits
 - 1.1 คำนวณจำนวน Boards ใน Memory Module

```
จากโจทย์จะได้ จำนวน chips ต่อ board = 32 / 4 = 8

ความจุ board = จำนวน chip ต่อ board x ความจุ chip

= 8 x 1M x 4 bits

= 8 x 1M x 4 / 8 Bs ( หารด้วย 8 เพื่อปรับเป็น byte )

= 4MBs

ดังนั้น จำนวน boards = ความจุ module / ความจุ board

= 8MBs / 4MBs

= 2 หรือ 2<sup>1</sup>
```

1.2 แสดงการจัดเรียง Chips ทั้งหมดใน Memory Module พร้อมด้วยเส้นสัญญาณการเชื่อมต่อใน ส่วนของ Data Bus และ Address Buss

เชื่อมต่อ Address Bus

- 1. จัด Byte Section = 4
- 2. ต่อ Address = 20 (จาก 1M = 2^{20}) + 3 (จาก 8 = 2^{3}) = 23

1.3 แสดงการกำหนดตำแหน่ง (Address) ของข้อมูลใน Chips (เฉพาะ byte แรก และ byte สุดท้าย) ในแต่ละแถว (Row or Board) ของ Memory Module

 $A_{22} \ A_{21} \ \dots \ A_2 \ A_1 \ A_0$

2. แสดงการจัดโครงสร้างหน่วยความจำ Memory Module ที่มีความจุ 16M bytes (16MBs) โดยใช้ RAM Chip ขนาด 1M x 32 bits ที่เชื่อมต่อกับ Data Bus ขนาด 32 bits

2.1 คำนวณจำนวน Chips ต่อ Board และจำนวน Boards ใน Memory Module

จากโจทย์จะได้ จำนวน chips ต่อ board = 32 / 32 = 1ความจุ board = จำนวน chip ต่อ board x ความจุ chip
= $1 \times 1M \times 32$ bits
= $1 \times 1M \times 32 / 8$ Bs (หารด้วย 8 เพื่อปรับเป็น byte)
= 4MBsดังนั้น จำนวน boards = ความจุ module / ความจุ board
= 16MBs / 4MBs= $4 \text{ หรือ } 2^2$

2.2 แสดงการจัดเรียง Chips ทั้งหมดใน Memory Module พร้อมด้วยเส้นสัญญาณการเชื่อมต่อใน ส่วนของ Data Bus และ Address Bus

เชื่อมต่อ Address Bus

- 1. จัด Byte Section = 4
- 2. ต่อ Address = 20 (จาก 1M = 2^{20}) + 4 (จาก 16 = 2^4) = 24

2.3 แสดงการกำหนดตำแหน่ง (Address) ของข้อมูลใน Chips (เฉพาะ byte แรก และ byte สุดท้าย) ในแต่ละแถว (Row or Board) ของ Memory Module

Row 11 (Chip #3)

ตำแหน่ง (byte) แรก ตำแหน่ง (byte) สุดท้าย

11	00 <mark>000000000000000000000000000000000000</mark>	00
11	11 <mark>1111111111111111</mark> 11	11

ฐาน 16 = C00000

ฐาน 16 = FFFFFF