Lista 3 de exercícios sobre potência CA.

Impedância	Representação Temporal	Característica
Resistiva Pura	$p(t) = V.I + V.I.\cos 2\omega t$	
ν(t) (t) (φ=0°)	VI V	Toda a potência fornecida pelo gerador é <i>ativa</i> , pois ela é sempre positiva, variando entre 0 e 2V.I. Nesse caso, a potência média é V.I.
Indutiva Pura	$p(t) = V.I.cos\left(2\omega t + \pi / 2\right)$	
v(t) (φ=90°)		Não há potências ativa, mas reativa, pois a potência fornecida ao indutor e ao capacitor (parcelas positivas) é devolvida ao gerador (parcelas negativas).
Capacitiva Pura	$p(t) = V.I.cos (2 \alpha t - \pi/2)$	
$v(t) = \frac{1}{2} i(t)$ $X_{C} (\phi = -90^{\circ})$	VI 122 V -VI	Durante a devolução, é como se o dispositivo fosse um gerador. A potência reativa varia entre -V.I e +V.I, de modo que a potência média é nula.
Indutiva	$p(t) = V.I.cos \ \varphi^* + V.I.cos \ (2\alpha x + \varphi^*)$	Há potência ativa e reativa, sendo,
ν(t) (0°<φ<90°)	72 V	por isso, sempre mais positiva que negativa. Portanto, somente uma parcela da potência é devolvida ao gerador. Nesses casos, a potência média pode estar entre 0 e V.I, dependendo de φ.
Capacitiva	$p(t) = V.I.cos \varphi^- + V.I.cos (2\alpha t + \varphi^-)$	
ν(t) R (-90°<φ<0°)	12 V	Quanto mais próximo de zero for o valor de φ, maior será a potência ativa. A potência total (ativa + reativa) é chamada de potência aparente.

15.1) Considere o circuito ao lado.

- a) Determine a corrente I, a defasagem φ e a potência ativa total P fornecida pelo gerador ao circuito;
- b) Determine as potências ativas P1 e P2 dissipadas, respectivamente, pelos resistores R1 e R2;
- c) Verifique se $P = P_1 + P_2$.

15.2) Considere o circuito ao lado.

- a) Determine a corrente I e a potência ativa total P fornecida pelo gerador ao circuito;
- b) Determine as potências ativas P1, P2 e P3 dissipadas, respectivamente, pelos resistores R1, R2 e R3;
- c) Verifique se $P = 3.P_1$.

15.3) Considere o circuito ao lado.

- a) Determine a corrente I, a defasagem φ e a potência reativa total P_Q fornecida pelo gerador ao circuito;
- b) Determine as potências reativas PQI e PQZ desenvolvidas, respectivamente, pelas reatâncias XLI e XLZ e verifique se PQ = PQI + PQZ;
- Determine a potência ativa total P dissipada pelas reatâncias do circuito.

Rı

600Ω

 R_2

600Ω

Rs

600Ω

15.4) Considere o circuito ao lado.

- a) Determine as correntes IL e Ic;
- b) Determine as potências reativas PQ1 e PQ2
 desenvolvidas, respectivamente, pelas reatâncias XL1 e
 XC2 e a potência reativa total PQ fornecida pelo
 gerador;
- c) Considerando que a potência reativa fornecida pelo gerador é potência perdida, a presença de dispositivos duais no circuito aumenta ou reduz a perda? Justifique!

15.5) Considere o circuito ao lado e determine:

- a) Z, φ e FP;
- b) I e Ps;
- c) P e PQ.

1 – Para cada uma das frequências dadas, calcule as potências ativa, reativa e aparente fornecida pela fonte.

Dados: $\dot{V}_f = 15 \angle 0^{\circ} V$; $R1 = 150 \Omega$; C = 100 nF; L = 1 mH; $f_1 = 80 kHz$; $f_2 = 100 kHz$; $f_3 = 120 kHz$.

2 - Calcule a potência aparente fornecida pela fonte.

3 – Sabendo que a tensão no resistor de 5 Ω é de 45V, determine a corrente I e a potência aparente do circuito abaixo.

4 – Determine a potência aparente fornecida pela fonte e o fator de potência do circuito.

- 15.7) Considere o circuito ao lado e determine:
 - a) Ż_{eq} , İ e as potências Ps, P e PQ fornecidas pelo gerador ao circuito;
 - as potências ativas ou reativas em cada dispositivo;
 - as potências totais Pr e Pqr pela soma algébrica das potências individuais e compare com os resultados obtidos no item a.

- 15.10) Considere o circuito ao lado e determine:
 - a) a impedância Ż do circuito;
 - as potências aparente, reativa e ativa totais fornecidas pelo gerador ao circuito;
 - c) o fator de potência do circuito;
 - d) as potências reativa ou ativa em cada dispositivo do circuito;

- e) a soma de todas as potências ativas dos dispositivos e compare este resultado com o obtido no item b;
- f) a soma de todas as potências reativas dos dispositivos e compare este resultado com o obtido no item b.

- 15.12) Um motor monofásico de 220V / 60Hz consome 2,4kW com FP = 0.6 (indutivo).
 - a) Determine a potência aparente do motor, a corrente I e a defasagem φ na linha de alimentação;
 - b) Determine o capacitor C que corrige o fator de potência da instalação para 0,9;

FP=0.6

15.13) Uma instalação de 127V/60Hz possui dois motores iguais de 5kW e FP = 0.55 (indutivo) e dez lâmpadas incandescentes de 200W, conforme mostra o esquema ao

lado. Determine:

- a) Pr, Pqr, Psr e FPr da instalação;
- b) $P\tau'$, $Pq\tau'$, $Ps\tau'$ e $FP\tau'$ dessa instalação se um motor síncrono de 4kW com FP=0.8 (capacitivo) for ligado em paralelo com as demais cargas;

c) Qual é a nova potência aparente da instalação e a nova corrente na linha após a correção do fator de potência?

- c) o capacitor C que corrige o fator de potência dessa instalação para 0,85.
- 15.14) Considere a instalação elétrica de uma oficina mecânica, conforme o esquema ao lado.

Determine o capacitor que corrige o seu fator de potência para 0,85, conforme exigência da concessionária de energia elétrica.

220V

60Hz

- 15.15) Uma máquina tem a seguinte especificação: 220V / 60Hz 12kVA cosφ = 0,62. Ela foi instalada em paralelo com um capacitor de 270µF. A proteção dessa instalação foi feita por meio de dois disjuntores de 50A (um para cada fase). Determine a corrente total e o fator de potência total dessa instalação.
- 15.16) O que aconteceria na instalação elétrica do exercício 15.15 se o terminal do capacitor rompesse?
- 15.17) Considere a instalação elétrica ao lado e determine:
 - a) as correntes I_1 , I_2 e I_3 ;
 - b) o fator de potência dos circuitos I e II e o fator de potência total da instalação;
 - c) o capacitor que, instalado na entrada da linha, corrige o fator de potência para 0,85;
 - d) a corrente I após a correção do fator de potência.

