1 Propriedades físicas da água I

• Massa específica

$$\rho = f(\text{temperatura}) \tag{1}$$

$$[\rho] = \left[\frac{m}{v}\right] = \frac{\text{kg}}{\text{m}^3} \tag{2}$$

$$4 \,^{\circ}\text{C} \rightarrow \rho = 1000 \, \frac{\text{kg}}{\text{m}^3}$$

A massa específica da água é uma função de sua temperatura. Para outros fluidos as tabelas devem ser consultadas.

Equação de Tanaka (2001): Equação utilizada para determinar a densidade da água para variações de temperatura entre 0 °C e 40 °C.

$$\rho = 999.974950 \cdot \left(1 - \frac{(T - 3.983035)^2 \cdot (T + 301.797)}{522528.9 \cdot (T + 69.34881)} \right)$$
(3)

· Peso específico

$$\gamma = \frac{W}{v} = \frac{m \cdot g}{v}$$
, sendo $g = 9.81 \,\mathrm{m/s^2}$ (4)

$$[\gamma] = \frac{N}{m^3} \tag{5}$$

A água a 4 °C possui $\gamma = 9810\,\mathrm{N/m^3} = 1000\,\mathrm{kgf/m^3}$

 γ pode ser reescrito como

$$\gamma = \rho \cdot g \tag{6}$$

• Densidade (adimensional)

$$d = \frac{\rho_{\text{substância}}}{\rho_{\text{padrão}}} \tag{7}$$

A água a 4 °C tem d=1, sendo utilizado como o padrão. Nessa temperatura $\rho_{\rm padrão}=1000\,{\rm kg/m^3}.$

Viscosidade:

(a) Coeficiente de viscosidade dinâmica

Propriedade que confere resistência ao cisalhamento

$$\mu = f(\text{fluido, temperatura})$$
 (8)

$$[\mu] = Pa \cdot s \tag{9}$$

Água a 4°C possui $\mu = 1.566 \times 10^{-3} \,\mathrm{Pa} \cdot \mathrm{s}$

Equação de Lichachev (2003): Calcula μ em função de T

$$\mu = 32.025666 \cdot 10^{-6} \cdot e^{\frac{482.134866}{T+119.886026}} \tag{10}$$

(b) Coeficiente de viscosidade cinemática

$$\nu = f(\text{fluido, temperatura})$$
 (11)

$$\left[\nu\right] = \left[\frac{\mu}{\rho}\right] = \frac{\mathrm{m}^2}{\mathrm{s}} \tag{12}$$

Fluido	Temperatura (°C)	Viscosidade cinemática $(10^{-6} \mathrm{m}^2/\mathrm{s})$
Água	4	1.567
	20	1.007

Unidades no Sistema C.G.S.

$$[\mu] = \frac{\mathrm{dyn} \cdot \mathrm{s}}{\mathrm{cm}^2} = P \text{ (poise)}$$
 (13)

$$[\nu] = \frac{\text{cm}^2}{\text{s}} = \text{St (stoke)} \tag{14}$$

• Compressibilidade

Proporciona redução do volume ocupado pelo fluido quando este é submetido a um incremento de pressão.

$$\Delta v = -\alpha \cdot v_1 \cdot \Delta p \tag{15}$$

Água a 20 °C tem $\alpha = 4.75 \times 10^{-10} \, \frac{\mathrm{m}^2}{\mathrm{N}}$

• Módulo de elasticidade

$$E = \frac{1}{\alpha} \tag{16}$$

Água a 20 °C tem $E = 21.07 \times 10^8 \,\mathrm{Pa}$

"Nas aplicações de hidráulica deve-se assumir que a água é um fluido incompressível."

2 Propriedades físicas da água II

• Tensão superficial

Fenômeno em interface líquido-ar

Coesão: Atração entre moléculas do próprio líquido.

Adesão: Atração entre moléculas do líquido e do sólido com o qual há contato.

• Ângulo de contato

1. Água + superfície hidrofóbica

2. Água + superfície hidrofílica

• Tensão superficial

$$\sigma = f({\rm fluido, \ temperatura}) \eqno(17)$$
 Água a 20 °C possu
i $\sigma = 7.23 \times 10^{-2} \, \frac{\rm N}{\rm m}$

• Capilaridade

Fenômenos de ascensão e depressão capilar

1. Tubo capilar de vidro + água

2. Tubo capilar de vidro + mercúrio

Equação para cálculo da altura da ascensão/depressão capilar

$$h_c = \frac{4 \cdot \sigma \cdot \sin \beta}{\gamma \cdot d} \tag{18}$$

d é o diâmetro dos tubos capilares

Solos arenosos: $\uparrow d \rightarrow \downarrow h_c$ Solos argilos: $\downarrow d \rightarrow \uparrow h_c$

Comentários:

- 1. Retenção e movimento de água no solo
- 2. Fundamentos de hidrostática não se aplicam

- 3. Diâmetro de piezõmetros para medição de pressão
- Pressão de vapor: É a pressão absoluta no qual ocorreria ebulição do líquido.

$$p_v = f(\text{fluido, temperatura, pressão absoluta})$$
 (19)

Temperatura	Pressão de vapor da água							
$^{\circ}\mathrm{C}$	N/m^2	${\rm kgf/m^2}$	m.c.a.					
0			0.062					
4	813	83	0.083					
10	1225	125	0.125					
20	2330	239	0.239					
30	4490	458	0.458					
50	12300	1259	1.259					
80	47300	4830	4.830					
100	101200	10330	10.330					
$g = 9.81 \mathrm{m/s^2}$ (ao nível do mar)								

Altitude (m)	0	500	800	1000	1500	2000	3000	4000
Temperatura (°C)	100	98	97	96	95	93	91	89

Table 1: Ponto de ebulição da água conforme a altitude

2.1 Resumo

- 1. Massa específica
- 2. Peso específico
- 3. Densidade
- 4. Viscosidade
- 5. Compressibilidade
- 6. Tensão superficial e capilaridade
- 7. Pressão de vapor (p_{absoluta})