Decision Error

Grinnell College

April 3, 2024

Review

Review

For now, let's not worry about *p*-values (*we will revist), instead, let's go back to binary thinking since, in actuality, we must ultimately decide between one of two decisions:

- 1. There is sufficient evidence to reject H_0
- 2. There is *not* sufficient evidence to reject H_0

Just as our confidence intervals were correct or incorrect, so to may be our decision regarding H_0 . In this case, however, there are two distinct ways in which our decision can be incorrect:

- 1. H_0 is TRUE (i.e., there is no effect), yet we reject anyway
- 2. H₀ is FALSE (i.e., there is an effect), yet we fail to reject it

These two types of errors are known as Type I and Type II errors, respectively:

- 1. H_0 is TRUE (i.e., there is no effect), yet we reject anyway
 - ▶ Type I error
 - False positive
 - ► Evidence leads to wrong conclusion
- 2. H_0 is FALSE (i.e., there is an effect), yet we fail to reject it
 - ► Type II error
 - False negative
 - ▶ Not enough evidence to conclude

	True State of Nature	
Test Result	H₀ True	H₀ False
Fail to reject <i>H</i> ₀	Correct	Type II Error
Reject H ₀	Type I Error	Correct

Type I Errors

A Type I error describes a situation in which we incorrectly identify a null effect:

- Conclude that an intervention works when it does not
- ► Conclude that there is a relationship between two variables when there are not

A Type I error will occur, for example, when our constructed confidence does not contain μ_0 when in actuality it should

Type I Errors

Type I Error Rate

We can control the rate at which we commit Type I errors with adjusting the *level of significance*, denoted α .

This is also called the Type I error rate

The Type I error rate has a <code>one-to-one</code> correspondence with our confidence intervals: a 95% confidence interval will permit a Type I error 5% of the time, corresponding to $\alpha=0.05$

Type I Error Rate

Before we begin a study, we specify a threshold of evidence required to reject H_0

For example, we may specify at onset that we want confidence of $1-\alpha=0.95$, or, equivalently, a Type I error of $\alpha=0.05$

So long as our *p*-value is such that $p < \alpha$, we can be certain in the long run that our Type I error rate is bounded by α

Type II Errors

A Type II error describes a situation in which the null hypothesis is false, yet based on the evidence gathered we fail to reject it:

- An intervention has a clinical effect, but it is not detected
- An email is considered spam, but the filter does not detect it

Typically, a Type II error is the result of one or more factors:

- ► Too few observations in our sample
- The population has large variability
- The effect size is small

 Grinnell College
 STA 209
 April 3, 2024
 11 / 21

Line - Null - Observed

Type II Error Rate

The Type II error rate is typically denoted β

More frequently, we consider the rate at which Type II errors do not occur $(1-\beta)$, a term we refer to as *power*

A study that is unable to detect a true effect is said to be underpowered

Power

Consider the following analogy¹: you send a child into the basement to find an object

- What is the probability that she actually finds it?
- This will depend on three things:
 - How long does she spend looking?
 - How big is the object she is looking for?
 - How messy is the basement?

 Grinnell College
 STA 209
 April 3, 2024
 14 / 21

¹Stolen from Patrick Breheny who credits the text *Intuitive Biostatistics*, which in turn credits John Hartung for this example

Power

If the child spends a long time looking for a large object in a clean, organized basement, she will most likely find what she's looking for

If a child spend a short amount of time looking for a small object in a messy, chaotic basement, it's probably that she won't find it

Each of these has a statistical analog:

- How long she spends looking? = How big is the sample size?
- How big is the object? = How large is the effect size?
- ▶ How messy is the basement? = How noisy/variable is the data?

 Grinnell College
 STA 209
 April 3, 2024
 15 / 21

Drawing Conclusions

As we never truly know whether H_0 is correct or not, we must simultaneously be prepared to combat both types of error

	True State of Nature	
Test Result	H ₀ True	H₀ False
Fail to reject H_0	Correct	Type II Error
	$(1-\alpha)$	(β)
Reject H ₀	Type I Error	Correct
	(α)	$(1-\beta)$

- ▶ Type I error = $P(\text{Reject } H_0 | H_0 \text{ true}) = \text{false alarm}$
- ▶ Type II error = $P(\text{Fail to reject } H_0|H_A \text{ true}) = \text{missed opportunity}$

 Grinnell College
 STA 209
 April 3, 2024
 16 / 21

Example

Suppose that an investigator sets out to test 200 null hypotheses where exactly half of them are true and half of them are not. Additionally, suppose the tests have a Type I error rate of 5% and a Type II error rate of 20%

- 1. Out of the 200 hypothesis tests carried out, how many should be expect to be Type I errors?
- 2. How many would be Type II errors?
- 3. Of the 200 tests, how many times would the investigator correctly fail to reject the null hypothesis?
- 4. Out of all of the tests in which the null hypothesis was rejected, for what percentage was the null hypothesis actually true?

STA 209 April 3, 2024 17/21

Base Rate Fallacy – Medical Testing

The previous example hints at the existence of a common error in interpretation known as the *base rate fallacy*.

Imagine that we have a dianostic test for an infectious disease which has a Type I error rate of 5% and a Type II error rate of 1% (99% power). Then consider two scenarios:

- Scenario 1: We use it to test for the disease on population A of 1,000 people where 40% are infected
- ➤ Scenario 2: We use it to test for the disease on population B of 1,000 people where 2% are infected

p-values

Although the $\alpha=0.05$ is customary for Type I error rate and a cut-off for "statistical significance", this is no substitute for correctly evaluating context

For example, a highly publicized study in 2009 involving a vaccine protecting against HIV found that, analyzed one way, the data suggested a *p*-value of 0.08. Computed a different way, it resulted in a *p*-value of 0.04

Debate and controversy ensued, primarily because the consequence of using a particular method was the difference between a result being on other side of the $p<\alpha$ threshold

But is there really that much a difference between p = 0.04 and p = 0.08?

Grinnell College STA 209 April 3, 2024 19 / 21

Review

Based on the evidence observed, we will ultimately make one of two decisions:

- 1. Reject H_0
- 2. Fail to reject H_0

Depending on the true state of H_0 , we can be incorrect in two ways:

- 1. Type I Error (α) : H_0 is true, yet we reject anyway
- 2. Type II Error (β): H_0 is false, yet we fail to reject it

STA 209 April 3, 2024 20 / 21

References

▶ Patrick Breheny 2022 BIOS 4120 course notes (thank you)

Grinnell College STA 209 April 3, 2024 21 / 21