The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li

Outline

Motivation and Goal

- mRASP2 Methodology
- Experiments and Analysis
 - Supervised / Unsupervised / Zero-shot
 - Better alignment
- Summary and Take-away

The Ultimate Quest of Machine Translation

- # of human languages: >6900.
- How to build a universal MT system that is capable of translating any source language into a target one?

Why Training Multilingual MT Jointly?

<u>Data scarcity</u> for low/zero resource languages.

Data distribution over language pairs

Many-to-many Multilingual NMT

Existing Multilingual NMT(1)

Supervised

Unsupervised

Zero-shot

En-Pt (Assume only have monolingual data of Pt)

Severe degradation on zero-shot translation

- M Johnson, 2017
- N Arivazhagan, 2019

Existing Multilingual NMT(2)

Degradation on highresource directions

Existing Multilingual NMT(3)

We want

Enabling unsupervised / zero-shot translation

Parallel
Monolingual

Leveraging both parallel & monolingual data

Comparable / better performance on high-, resource directions

Goal of mRASP2

- Build a universal NMT model that is both
 - A unified multilingual NMT model that support complete many-to-many translation.
 - A ready-to-use model from which we can derive any NMT model for specific translation direction

Intuition of mRASP2: Bring Representation Closer

 Sentences with the same semantics across different languages should have similar representations.

Outline

- Motivation and Goal
- mRASP2 Methodology

- Experiments and Analysis
 - Supervised / Unsupervised / Zero-shot
 - Better alignment
- Summary and Take-away

mRASP

Random Aligned Substitution(RAS)

Fr Es
Fr Es
Cen> I love you.
Fr> Je t'aime.
De> Ich liebe dich.
Es> Te quiero.
It> ti amo.

Seq2seq Training with Aligned Augmentation

mRASP2 Training

Contrastive Learning

$$\mathcal{L}_{\text{ctr}} = -\sum_{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{D}} \log \frac{e^{\text{sim}^+(\mathcal{R}(\mathbf{x}^i), \mathcal{R}(\mathbf{x}^j))/\tau}}{\sum_{\mathbf{y}^j} e^{\text{sim}^-(\mathcal{R}(\mathbf{x}^i), \mathcal{R}(\mathbf{y}^j))/\tau}}$$

$$\mathcal{L} = \mathcal{L}_{\mathrm{ce}} + \lambda |s| \mathcal{L}_{\mathrm{ctr}}$$

Outline

- Motivation and Goal
- mRASP Methodology
- Experiments and Analysis

- Supervised / Unsupervised / Zero-shot
- Better alignment
- Summary and Take-away

Two Main Questions

- Does mRASP2 work on supervised / unsupervised / zero-shot scenarios?
- Why mRASP2 works?

Datasets

- Parallel Dataset: PC32 (32 language pairs)
 - 32 English-centric language pairs, resulting in 64 directed translation pairs in total
 - Contains a total size of 110.4M public parallel sentence pairs

Datasets

- Monolingual Dataset: MC24 (24 languages)
 - 21 languages that also appear in PC32
 - 3 additional languages: NI, PI, Pt
 - Temperature sampling: T=5

Overall Results

Overall Results in all scenarios: 56 directions

Comparable or Better Performance on Supervised Directions

Tokenized BLEU on supervised directions

Effectiveness on Zero-shot Directions

Avg(Ar,Zh,Nl,Fr,De,Ru)

Effectiveness on Unsupervised Directions

mRASP2

m-Transformer mRASP (w/o ft)

	NI->Pt	Pt->Nl
mRASP2	9.3	8.3

mRASP2 also works on fully unsupervised directions

Contrastive Learning effectively improves zero-shot translation without hurting supervised translation performance

Contrastive Learning effectively improves zero-shot translation without hurting supervised translation performance

Monolingual Corpus mainly contributes to unsupervised translation

Better Semantic Alignment Across Languages: Improved Sentence Retrieval

15-way parallel test set(Ted-M): 2284 samples

Contrastive Learning and Aligned Augmentation both contribute to the improvement on sentence retrieval

Better Semantic Alignment: Visualization of Sentence Repr

Better Alignment of En, Ja, De Representations !!29

Outline

- Motivation and Goal
- mRASP2 Methodology
- Experiments and Analysis
 - Supervised / Unsupervised / Zero-shot
 - Better alignment
- Summary and Take-away

Summary

- We propose mRASP2
 - A universal Multilingual MT model
 - Leverages monolingual data along with parallel data in a unified framework
 - Bridges the representation gap of utterances in different languages with the same semantics.

Take Home Messages

- Closer representation —> Improved multilingual MT performance
- Leverage both parallel and monolingual corpora!!
- Contrastive Learning and Aligned Augmentation are effective in bridging representation

Thanks!

- https://github.com/PANXiao1994/mRASP2
- Also MT in ACL21:
 - Green vocabulary learning: VOLT [Xu et al. 2021]
 - Language-specific subnets for MNMT: LaSS [Lin et al. 2021]
 - Language Tag Matters [Wu et al. 2021]
 - Glancing Transformer [Qian et al. 2021]
- Other tools:
 - Transformer fast training and inference: https://github.com/bytedance/lightseq
 - Speech & MT toolkit: https://github.com/bytedance/neurst

33