DAY-02		
GoodLuck	Page No.	
Date		

	Date		
X	GRAPH REPRESENTATION		
i Ii	Adjacency Matria Adjacency List		
0	To represent a graph using Adjacency matrix or adjacency list, we are given with the		
	- vertices - edges consider the below graph and the vertices and edges of the graph are given as:		
	(1) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		
1/4	2 4		
	- vertices = $\{0,1,2,3,4\}$ - edges = $\{\{0,1\},\{1,2\},\{0,2\},\{1,3\},\{2,4\},\{3,4\}\}$		
1	-representing the vertices and edges in a matrix		
a]	Undirected - Unweighted Graph:- vertices -> 0 1 2 3 4		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	in undirected graph: no edge		
	mark $u-v=1$ 7 for an edge between u and v		

GoodLuck	Page No.
Date	

		Date
*	ADJACENCY MATRIX V/S LIST:-	
	ADJACENCY MATRIX	ADJACENCY LIST
	Adding edge takes: O(1) (vector [u](v] = 1)	Adding edge takes: O(1) (vector puch-back: O(1) -> avg O(n) -> corst.
ij	Removing edge -: O(1) (rector [u][v]=0)	Removing edge: O(v) (v is the vertices to be shifted to remove viertex)
iji	Edge exists: O(1) (vector [u][v] ==1?)	Edge exists: O(v) (check all adj nodes of u to find v)
iv]	Space complexity: O(v2)	Space complexity: O(V+E) worst case: O(V2) -> comp. graph
V	Preferred for densed graph: (no. of edges is high, almost equal to complete graph)	Preferred for Sparse graph: (no.of edges is low)

The same