Regular Expressions CSCI 338

Accept

Reject

 0^* : Zero or more 0's

Accept

Reject

 0^* : Zero or more 0's

 $0,0000, \varepsilon$

Accept

Reject

 0^* : Zero or more 0's

 $0,0000, \varepsilon$

1,0001,1000

Accept

Reject

 0^* : Zero or more 0's

 $0,0000, \varepsilon$

1,0001,1000

 $(01)^*$: Zero or more 01's

Accept

Reject

 0^* : Zero or more 0's

 $0,0000,\varepsilon$

1,0001,1000

 $(01)^*$: Zero or more 01's

01, 010101, ε

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

Accept

 $0,0000, \varepsilon$

01, 010101, ε

Reject

1,0001,1000

10,001,01010

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

01, 010101, ε

Reject

1,0001,1000

10,001,01010

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept $0,0000, \varepsilon$

 $01,010101,\varepsilon$

Reject
1,0001,1000
10,001,01010

E?

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

 \mathcal{E}

Accept

 $0,0000,\varepsilon$

01, 010101, ε

Reject

1,0001,1000

10,001,01010

E?

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

 \mathcal{E}

Accept

 $0,0000,\varepsilon$

01, 010101, ε

Reject

1,0001,1000

10,001,01010

Accept Reject 0^* : Zero or more 0's $0,0000, \varepsilon$ 1,0001,1000 $(01)^*$: Zero or more 01's $01,010101, \varepsilon$ 10,001,01010 $(0^*1)^*$: ?

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

01, 010101, ε

 ε , 1

Reject

1,0001,1000

10,001,01010

Accept Reject 0^* : Zero or more 0's $0,0000, \varepsilon$ 1,0001,1000 $(01)^*$: Zero or more 01's $01,010101, \varepsilon$ 10,001,01010 $(0^*1)^*$: ? $\varepsilon,1$

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

01, 010101, ε

 ε , 1

Reject

1,0001,1000

10,001,01010

10

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

01, 010101, ε

ε, 1, 111

Reject

1,0001,1000

10,001,01010

10

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

01, 010101, ε

ε, 1, 111

Reject

1,0001,1000

10,001,01010

10

9003

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$: ?

Accept

 $0,0000, \varepsilon$

01, 010101, ε

 ε , 1, 111

Reject

1,0001,1000

10,001,01010

10,000

9003

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

01, 010101, ε

 ε , 1, 111

Reject

1,0001,1000

10,001,01010

10,000

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

 $01,010101, \varepsilon$

 ε , 1, 111, 01001

Reject

1,0001,1000

10,001,01010

10,000

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

 $01,010101, \varepsilon$

 ε , 1, 111, 01001

Reject

1,0001,1000

10,001,01010

10,000

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

01, 010101, ε

 ε , 1, 111, 01001, 101

Reject

1,0001,1000

10,001,01010

10,000

0*: Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

 $01,010101, \varepsilon$

 ε , 1, 111, 01001, 101

Reject

1,0001,1000

10,001,01010

10,000

0001110110001

0*: Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

 $0,0000, \varepsilon$

 $01,010101, \varepsilon$

 ε , 1, 111, 01001, 101

Reject

1,0001,1000

10,001,01010

10,000

0001110110001

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

0,0000,arepsilon 01,010101,arepsilon

1 111 01001 1

 ε , 1, 111, 01001, 101

Reject

1,0001,1000

10,001,01010

10,000

0001110110001

0001110111000

 0^* : Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$:?

Accept

0,0000, arepsilon

01, 010101, ε

 ε , 1, 111, 01001, 101

Reject

1,0001,1000

10,001,01010

10,000

0001110110001

0001110111000

0*: Zero or more 0's

 $(01)^*$: Zero or more 01's

 $(0^*1)^*$: Doesn't end with 0

Accept

 $0,0000, \varepsilon$

 $01,010101, \varepsilon$

 ε , 1, 111, 01001, 101

Reject

1,0001,1000

10,001,01010

10,000

0001110110001

0001110111000

	Accept	Reject
0^* : Zero or more 0 's	0,0000, arepsilon	1,0001,1000
$(01)^*$: Zero or more 01 's	01,010101, arepsilon	10,001,01010
$(0^*1)^*$: Doesn't end with 0	ε , 1, 111, 01001, 101	10,000
0^+ : One or more 0's	0,000	ε , 1

	Accept	Reject
0^* : Zero or more 0 's	$0,0000, \varepsilon$	1,0001,1000
$(01)^*$: Zero or more 01 's	01,010101, arepsilon	10,001,01010
$(0^*1)^*$: Doesn't end with 0	ε , 1, 111, 01001, 101	10,000
0^+ : One or more 0's	0,000	ε , 1
$(001^+)^*$	$001,0011,0010011,\epsilon$	1,00

	Accept	Reject
0^* : Zero or more 0 's	$0,0000, \varepsilon$	1,0001,1000
$(01)^*$: Zero or more 01 's	01,010101, arepsilon	10,001,01010
$(0^*1)^*$: Doesn't end with 0	ε , 1, 111, 01001, 101	10,000
0 ⁺ : One or more 0's	0,000	ε , 1
$(001^+)^*$	$001,0011,0010011,\epsilon$	1,00
1*(001+)*	e, 1, 1001, 10010011, 001	00, 101

	Accept	Reject
0^* : Zero or more 0 's	0,0000, arepsilon	1,0001,1000
$(01)^*$: Zero or more 01 's	01,010101, arepsilon	10,001,01010
$(0^*1)^*$: Doesn't end with 0	ε , 1, 111, 01001, 101	10,000
0^+ : One or more 0's	0,000	ε , 1
$(001^+)^*$	$001,0011,0010011,\epsilon$	1,00
$1^*(001^+)^*$	e, 1, 1001, 10010011, 001	00,101
$(0 \cup 1)$: A single 0 or 1	1, 0	ε, 00, 101

	Accept	Reject
0^* : Zero or more 0 's	0,0000, arepsilon	1,0001,1000
$(01)^*$: Zero or more 01 's	01,010101, arepsilon	10,001,01010
$(0^*1)^*$: Doesn't end with 0	ε , 1, 111, 01001, 101	10,000
0^+ : One or more 0's	0,000	ε , 1
$(001^+)^*$	$001,0011,0010011,\epsilon$	1,00
$1^*(001^+)^*$	ε, 1, 1001, 10010011, 001	00, 101
$(0 \cup 1)$: A single 0 or 1	1,0	ε, 00, 101
$(0 \cup 1)0^*$: A 0 or 1 followed by zero or more 0s.		

Accept	Reject	
$0,0000, \varepsilon$	1,0001,1000	
01,010101, arepsilon	10,001,01010	
ε , 1, 111, 01001, 101	10,000	
0,000	ε , 1	
$001,0011,0010011,\epsilon$	1,00	
ε, 1, 1001, 10010011, 001	00, 101	
1,0	$\epsilon, 00, 101$	
$(0 \cup 1)0^*$: A 0 or 1 followed by zero or more 0 s.		
$(0 \cup 1)^*$: A string with any number of 0s and 1s.		
	$0,0000, \varepsilon$ $01,010101, \varepsilon$ $0,0000, \varepsilon$ $0,0000, \varepsilon$ $0,0000, 001,0011,0010011, \varepsilon$ $0,0000, 001,001,0010011, 001$ $1,0$ ed by zero or more 0s.	

	Accept	Reject
0^* : Zero or more 0 's	0,0000, arepsilon	1,0001,1000
(01)*: Zero or more 01's	01,010101,arepsilon	10,001,01010
(0*1)*: Regular Express	sions:), 000
0': One		ε , 1
	mula that specifies	μ, υυ
1*(001 pattern of str	rings (i.e. a languag	e). 0, 101
$(0 \cup 1)$: • Used for text	matching/searching	oo, 101
$(0 \cup 1)$ 0 . A 0 of 1 followed	by zero or more os.	
$(0 \cup 1)^*$: A string with any no	umber of 0s and 1s.	

Regular Expressions

Rules for building regular expressions (regex):

1. Each $e \in \Sigma$ is a regex

Regular Expressions

Rules for building regular expressions (regex):

- 1. Each $e \in \Sigma$ is a regex
- 2. $\{\varepsilon\}$ is a regex \longrightarrow Language with one string: The empty string.

- 1. Each $e \in \Sigma$ is a regex
- 2. $\{\varepsilon\}$ is a regex \longrightarrow Language with one string: The empty string.
- 3. Ø is a regex —— Language with no strings.

Rules for building regular expressions (regex):

- 1. Each $e \in \Sigma$ is a regex
- 2. $\{\varepsilon\}$ is a regex \longrightarrow Language with one string: The empty string.

0,1

3. \emptyset is a regex \longrightarrow Language with no strings.

- 1. Each $e \in \Sigma$ is a regex
- 2. $\{\varepsilon\}$ is a regex \longrightarrow Language with one string: The empty string.
- 3. Ø is a regex —— Language with no strings.
- 4. $(R_1 \cup R_2)$ is a regex $R_1 \text{ and } R_2$ are regex

- 1. Each $e \in \Sigma$ is a regex
- 2. $\{\varepsilon\}$ is a regex \longrightarrow Language with one string: The empty string.
- 3. Ø is a regex —— Language with no strings.
- 4. $(R_1 \cup R_2)$ is a regex

 5. $(R_1 \circ R_2)$ is a regex $R_1 \text{ and } R_2$ are regexs

- 1. Each $e \in \Sigma$ is a regex
- 2. $\{\varepsilon\}$ is a regex \longrightarrow Language with one string: The empty string.
- 3. Ø is a regex —— Language with no strings.
- 4. $(R_1 \cup R_2)$ is a regex
- 5. $(R_1 \circ R_2)$ is a regex

 6. R_1^* is a regex $R_1 \text{ and } R_2$ are regexs

Regular Expression notation:

- R^* (i.e. zero or more strings from R) e.g. 1^* includes: 1, 11111111, ε
- $RR = R \circ R$ (i.e. two strings from R concatenated) e.g. 1^*0 includes: 10, 111111110, 0
- $R^+ = RR^*$ (i.e. at least one string from R) e.g. 1^+ includes: 1, 11111111, but not ε

Order of operations:

Parentheses, star (and plus), concatenation, union.

Suppose that $\Sigma = \{0,1\}$.

• 1*0*1 = ?

Suppose that $\Sigma = \{0,1\}$.

• $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = ?$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = ?$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = ?$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^* \text{ or } (0 \cup 1)^* 1 (0 \cup 1)^*$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = ?$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = ?$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = ?$

By definition, $A \circ B = \{xy : x \in A, y \in B\}$

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$

By definition, $A \circ B = \{xy : x \in A, y \in B\}$ Since there is no element in \emptyset , there cannot be any xy such that $y \in \emptyset$.

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$

By definition, $A \circ B = \{xy : x \in A, y \in B\}$

• $1^*\varepsilon = ?$

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1*\emptyset = \emptyset$

By definition, $A \circ B = \{xy : x \in A, y \in B\}$

• $1^*\varepsilon = 1^*$

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$

By definition, $A^* = \{x_1 x_2 ... x_k : k \ge 0, x_i \in A\}$

- $1^*\varepsilon = 1^*$
- $\phi^* = ?$

Suppose that $\Sigma = \{0,1\}$.

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$
- $1^*\varepsilon = 1^*$
- $\emptyset^* = \varepsilon$

By definition, $A^* = \{x_1 x_2 ... x_k : k \ge 0, x_i \in A\}$

Thus, it can append 0 elements of Ø and get

the empty string ε .

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$
- $1^*\varepsilon = 1^*$
- $\phi^* = \varepsilon$ $\phi^+ = ?$

- $1^*0^*1 = \{w: w \text{ contains } \ge 0 \text{ 1s, then } \ge 0 \text{ 0s, then a 1} \}$
- $(1 \cup 0)^*1 = \{w : w \text{ ends in } 1\}$
- $\{w: w \text{ contains a single } 1\} = 0^*10^*$
- $\{w: w \text{ contains at least one } 1\} = \Sigma^* 1 \Sigma^*$
- $(\Sigma\Sigma)^* = \{w : w \text{ has even length}\}$
- $\{w: \text{ every } 0 \text{ is followed by at least one } 1\} = 1^*(01^+)^*$
- $1^*\emptyset = \emptyset$
- $1^*\varepsilon = 1^*$
- $\phi^* = \varepsilon$ $\phi^+ = \phi$