# 

Hanrui Wang<sup>1</sup>, Yongshan Ding<sup>2</sup>, Jiaqi Gu<sup>3</sup>, Zirui Li<sup>5</sup>, Yujun Lin<sup>1</sup>, David Z. Pan<sup>3</sup>, Frederic T. Chong<sup>4</sup>, Song Han<sup>1</sup> <sup>1</sup>MIT, <sup>2</sup>Yale University, <sup>3</sup>University of Texas at Austin, <sup>4</sup>University of Chicago, <sup>5</sup>SJTU









#### **Abstract**

- Quantum Computer can potentially provide exponential speedup on problems such as quantum machine learning and molecular dynamics
- However, the current bottleneck is the large quantum noise which severely degrades the reliability of computed results
- Our core contribution is a framework to search for the most noise-robust circuit and corresponding qubit mapping for parameterized quantum circuits
- Demonstrate over 95% 2-class, and 32% 10-class image classification accuracy on real quantum computers; more accurate eigenvalue for VQE tasks on H2, H2O, LiH, CH4, BeH2 compared with UCCSD baselines

#### **Background and Motivation**

- Example Quantum Neural Networks architecture for image classification
- Contains encoder, trainable quantum layers, measurement



- Number of Parameters • A large gap between noise-free simulation and real deployment due to quantum noises (errors)
- More parameters increase the noise-free accuracy but degrade measured accuracy
- Quantum noises exacerbate the performance variance

### Search for Robust Quantum Circuit & Qubit Mapping

- Step 1: Given a circuit design space, a 'SuperCircuit' is constructed as the largest possible circuit. The parameters of it are trained by iteratively sampling and updating a subset of parameters ('SubCircuit')
- Step 2: Perform an evolutionary search with real hardware feedback to find the most robust model architecture and its qubit mapping
- Step 3: Train the search architecture from-scratch
- Step 4: Perform magnitude-based fine-grained pruning of quantum gates. Gates with small rotation angles will be removed



## TorchQuantum – A library for fast Quantum+ML



- Easy construction of parameterized quantum circuits such as Quantum Neural Networks in **PyTorch**
- Support batch mode inference and training on GPU/CPU, supports highly-parallelized parameter shift and back-propagation training
- Support both static and dynamic computation graph for easy debugging (statevector simulation & tensor network simulation)
- Support easy deployment on real quantum devices such as IBMQ
- Provide tutorials, videos and example projects of QML and using ML to optimize quantum computer system problems.



#### Reference

Wang, H., Ding, Y., Gu, J., Lin, Y., Pan, D. Z., Chong, F. T., & Han, S. (2021) Quantumnas: Noise-adaptive search for robust quantum circuits. HPCA

Wang, H., Gu, J., Ding, Y., Li, Z., Chong, F. T., Pan, D. Z., & Han, S. (2022). QuantumNAT: Quantum Noise-Aware Training with Noise Injection, Quantization and Normalization. DAC 2022

Wang, H., Li, Z., Gu, J., Ding, Y., Pan, D. Z., & Han, S. (2022). QOC: Quantum On-Chip Training with Parameter Shift and Gradient Pruning. *DAC 2022* 

