Linear Dimensionality Reduction: Principal Component Analysis

Piyush Rai

Machine Learning (CS771A)

Sept 2, 2016

• Usually considered an unsupervised learning method

- Usually considered an unsupervised learning method
- Used for learning the low-dimensional structures in the data

- Usually considered an unsupervised learning method
- Used for learning the low-dimensional structures in the data

• Also useful for "feature learning" or "representation learning" (learning a better, often smaller-dimensional, representation of the data), e.g.,

- Usually considered an unsupervised learning method
- Used for learning the low-dimensional structures in the data

- Also useful for "feature learning" or "representation learning" (learning a better, often smaller-dimensional, representation of the data), e.g.,
 - Documents using using topic vectors instead of bag-of-words vectors

- Usually considered an unsupervised learning method
- Used for learning the low-dimensional structures in the data

- Also useful for "feature learning" or "representation learning" (learning a better, often smaller-dimensional, representation of the data), e.g.,
 - Documents using using topic vectors instead of bag-of-words vectors
 - Images using their constituent parts (faces eigenfaces)

- Usually considered an unsupervised learning method
- Used for learning the low-dimensional structures in the data

- Also useful for "feature learning" or "representation learning" (learning a better, often smaller-dimensional, representation of the data), e.g.,
 - Documents using using topic vectors instead of bag-of-words vectors
 - Images using their constituent parts (faces eigenfaces)
- Can be used for speeding up learning algorithms

- Usually considered an unsupervised learning method
- Used for learning the low-dimensional structures in the data

- Also useful for "feature learning" or "representation learning" (learning a better, often smaller-dimensional, representation of the data), e.g.,
 - Documents using using topic vectors instead of bag-of-words vectors
 - Images using their constituent parts (faces eigenfaces)
- Can be used for speeding up learning algorithms
- Can be used for data compression

Curse of Dimensionality

• Exponentially large # of examples required to "fill up" high-dim spaces

Curse of Dimensionality

• Exponentially large # of examples required to "fill up" high-dim spaces

ullet Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization

Curse of Dimensionality

Exponentially large # of examples required to "fill up" high-dim spaces

- ullet Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization
- Dimensionality reduction is a way to beat the curse of dimensionality

• A projection matrix $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_K]$ of size $D \times K$ defines K linear projection directions, each $\mathbf{u}_k \in \mathbb{R}^D$, for the D dim. data (assume K < D)

- A projection matrix $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_K]$ of size $D \times K$ defines K linear projection directions, each $\mathbf{u}_k \in \mathbb{R}^D$, for the D dim. data (assume K < D)
- Can use **U** to transform $\mathbf{x}_n \in \mathbb{R}^D$ into $\mathbf{z}_n \in \mathbb{R}^K$ as shown below

- A projection matrix $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_K]$ of size $D \times K$ defines K linear projection directions, each $\mathbf{u}_k \in \mathbb{R}^D$, for the D dim. data (assume K < D)
- ullet Can use $oldsymbol{U}$ to transform $oldsymbol{x}_n \in \mathbb{R}^D$ into $oldsymbol{z}_n \in \mathbb{R}^K$ as shown below

• Note that $\mathbf{z}_n = \mathbf{U}^{\top} \mathbf{x}_n = [\mathbf{u}_1^{\top} \mathbf{x}_n \ \mathbf{u}_2^{\top} \mathbf{x}_n \ \dots \ \mathbf{u}_K^{\top} \mathbf{x}_n]$ is a K-dim projection of \mathbf{x}_n

- A projection matrix $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_K]$ of size $D \times K$ defines K linear projection directions, each $\mathbf{u}_k \in \mathbb{R}^D$, for the D dim. data (assume K < D)
- ullet Can use $oldsymbol{\mathsf{U}}$ to transform $oldsymbol{x}_n \in \mathbb{R}^D$ into $oldsymbol{z}_n \in \mathbb{R}^K$ as shown below

- Note that $\mathbf{z}_n = \mathbf{U}^{\top} \mathbf{x}_n = [\mathbf{u}_1^{\top} \mathbf{x}_n \ \mathbf{u}_2^{\top} \mathbf{x}_n \ \dots \ \mathbf{u}_K^{\top} \mathbf{x}_n]$ is a K-dim projection of \mathbf{x}_n
 - $\mathbf{z}_n \in \mathbb{R}^K$ is also called low-dimensional "embedding" of $\mathbf{x}_n \in \mathbb{R}^D$

• $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N]$ is $D \times N$ matrix denoting all the N data points

- $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N]$ is $D \times N$ matrix denoting all the N data points
- $\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \dots \ \mathbf{z}_N]$ is $K \times N$ matrix denoting **embeddings** of data points

- $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N]$ is $D \times N$ matrix denoting all the N data points
- $\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \dots \ \mathbf{z}_N]$ is $K \times N$ matrix denoting **embeddings** of data points
- With this notation, the figure on previous slide can be re-drawn as below

- $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N]$ is $D \times N$ matrix denoting all the N data points
- $\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \dots \ \mathbf{z}_N]$ is $K \times N$ matrix denoting **embeddings** of data points
- With this notation, the figure on previous slide can be re-drawn as below

• How do we learn the "best" projection matrix **U**?

- $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N]$ is $D \times N$ matrix denoting all the N data points
- $\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \dots \ \mathbf{z}_N]$ is $K \times N$ matrix denoting **embeddings** of data points
- With this notation, the figure on previous slide can be re-drawn as below

- How do we learn the "best" projection matrix **U**?
- What criteria should we optimize for when learning **U**?

- $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N]$ is $D \times N$ matrix denoting all the N data points
- $\mathbf{Z} = [\mathbf{z}_1 \ \mathbf{z}_2 \ \dots \ \mathbf{z}_N]$ is $K \times N$ matrix denoting **embeddings** of data points
- With this notation, the figure on previous slide can be re-drawn as below

- How do we learn the "best" projection matrix **U**?
- What criteria should we optimize for when learning **U**?
- Principal Component Analysis (PCA) is an algorithm for doing this

• A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)

- A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
- Can be seen as

- A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
- Can be seen as
 - Learning projection directions that capture maximum variance in data

- A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
- Can be seen as
 - Learning projection directions that capture maximum variance in data
 - Learning projection directions that result in smallest reconstruction error

- A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
- Can be seen as
 - Learning projection directions that capture maximum variance in data
 - Learning projection directions that result in smallest reconstruction error
- Can also be seen as changing the basis in which the data is represented (and transforming the features such that new features become decorrelated)

- A classic linear dim. reduction method (Pearson, 1901; Hotelling, 1930)
- Can be seen as
 - Learning projection directions that capture maximum variance in data
 - Learning projection directions that result in smallest reconstruction error
- Can also be seen as changing the basis in which the data is represented (and transforming the features such that new features become decorrelated)

• Also related to other classic methods, e.g., Factor Analysis (Spearman, 1904)

PCA as Maximizing Variance

- ullet Consider projecting $oldsymbol{x}_n \in \mathbb{R}^D$ on a one-dim subspace defined by $oldsymbol{u}_1 \in \mathbb{R}^D$
- Projection/embedding of \mathbf{x}_n along a one-dim subspace $\mathbf{u}_1 = \mathbf{u}_1^\top \mathbf{x}_n$ (location of the green point along the purple line representing \mathbf{u}_1)

- ullet Consider projecting $oldsymbol{x}_n \in \mathbb{R}^D$ on a one-dim subspace defined by $oldsymbol{u}_1 \in \mathbb{R}^D$
- Projection/embedding of \mathbf{x}_n along a one-dim subspace $\mathbf{u}_1 = \mathbf{u}_1^\top \mathbf{x}_n$ (location of the green point along the purple line representing \mathbf{u}_1)

• Mean of projections of all the data: $\frac{1}{N} \sum_{n=1}^N \boldsymbol{u}_1^\top \boldsymbol{x}_n = \boldsymbol{u}_1^\top (\frac{1}{N} \sum_{n=1}^N \boldsymbol{x}_n) = \boldsymbol{u}_1^\top \boldsymbol{\mu}$

- ullet Consider projecting $oldsymbol{x}_n \in \mathbb{R}^D$ on a one-dim subspace defined by $oldsymbol{u}_1 \in \mathbb{R}^D$
- Projection/embedding of \mathbf{x}_n along a one-dim subspace $\mathbf{u}_1 = \mathbf{u}_1^\top \mathbf{x}_n$ (location of the green point along the purple line representing \mathbf{u}_1)

- Mean of projections of all the data: $\frac{1}{N} \sum_{n=1}^{N} \mathbf{u}_{1}^{\top} \mathbf{x}_{n} = \mathbf{u}_{1}^{\top} (\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}) = \mathbf{u}_{1}^{\top} \boldsymbol{\mu}$
- Variance of the projected data ("spread" of the green points)

$$\frac{1}{N}\sum_{n=1}^{N}\left(\boldsymbol{u}_{1}^{\top}\boldsymbol{x}_{n}-\boldsymbol{u}_{1}^{\top}\boldsymbol{\mu}\right)^{2}=\frac{1}{N}\sum_{n=1}^{N}\left\{\boldsymbol{u}_{1}^{\top}(\boldsymbol{x}_{n}-\boldsymbol{\mu})\right\}^{2}=\boldsymbol{u}_{1}^{\top}\boldsymbol{S}\boldsymbol{u}_{1}$$

- ullet Consider projecting $oldsymbol{x}_n \in \mathbb{R}^D$ on a one-dim subspace defined by $oldsymbol{u}_1 \in \mathbb{R}^D$
- Projection/embedding of x_n along a one-dim subspace $u_1 = u_1^\top x_n$ (location of the green point along the purple line representing u_1)

- Mean of projections of all the data: $\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{u}_{1}^{\top} \boldsymbol{x}_{n} = \boldsymbol{u}_{1}^{\top} (\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n}) = \boldsymbol{u}_{1}^{\top} \boldsymbol{\mu}$
- Variance of the projected data ("spread" of the green points)

$$\frac{1}{N}\sum_{n=1}^{N}\left(\boldsymbol{u}_{1}^{\top}\boldsymbol{x}_{n}-\boldsymbol{u}_{1}^{\top}\boldsymbol{\mu}\right)^{2}=\frac{1}{N}\sum_{n=1}^{N}\left\{\boldsymbol{u}_{1}^{\top}(\boldsymbol{x}_{n}-\boldsymbol{\mu})\right\}^{2}=\boldsymbol{u}_{1}^{\top}\boldsymbol{S}\boldsymbol{u}_{1}$$

• **S** is the $D \times D$ data covariance matrix: $\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\top}$. If data already centered $(\boldsymbol{\mu} = 0)$ then $\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\top} = \frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$

Direction of Maximum Variance

ullet We want $m{u}_1$ s.t. the variance of the projected data is maximized $rg\max_{m{u}_1} \mbox{m{u}}_1^{ op} \mathbf{S} m{u}_1$

Direction of Maximum Variance

- ullet We want $m{u}_1$ s.t. the variance of the projected data is maximized arg $\max_{m{u}_1} \ m{u}_1^{ op} \mathbf{S} m{u}_1$
- ullet To prevent trivial solution (max var. = infinite), assume $||oldsymbol{u}_1||=1=oldsymbol{u}_1^ opoldsymbol{u}_1$

- $m{o}$ We want $m{u}_1$ s.t. the variance of the projected data is maximized arg $\max_{m{u}_1} \mbox{ } m{u}_1^{ op} \mathbf{S} m{u}_1$
- ullet To prevent trivial solution (max var. = infinite), assume $||oldsymbol{u}_1||=1=oldsymbol{u}_1^ opoldsymbol{u}_1$
- ullet We will find $oldsymbol{u}_1$ by solving the following constrained opt. problem

$$\boxed{\mathsf{arg}\max_{\boldsymbol{u}_1}\;\boldsymbol{u}_1^{\top}\mathsf{S}\boldsymbol{u}_1 + \lambda_1(1-\boldsymbol{u}_1^{\top}\boldsymbol{u}_1)}$$

where λ_1 is a Lagrange multiplier

- ullet The objective function: $rg \max_{oldsymbol{u}_1} oldsymbol{u}_1^{ op} \mathbf{S} oldsymbol{u}_1 + \lambda_1 (1 oldsymbol{u}_1^{ op} oldsymbol{u}_1)$
- Taking the derivative w.r.t. u_1 and setting to zero gives

$$\mathbf{S}oldsymbol{u}_1=\lambda_1oldsymbol{u}_1$$

- ullet The objective function: $rg \max_{oldsymbol{u}_1} oldsymbol{u}_1^{ op} \mathbf{S} oldsymbol{u}_1 + \lambda_1 (1 oldsymbol{u}_1^{ op} oldsymbol{u}_1)$
- Taking the derivative w.r.t. u_1 and setting to zero gives

$$\mathbf{S}oldsymbol{u}_1=\lambda_1oldsymbol{u}_1$$

ullet Thus $oldsymbol{u}_1$ is an eigenvector of $oldsymbol{S}$ (with corresponding eigenvalue λ_1)

- ullet The objective function: $rg \max_{oldsymbol{u}_1} oldsymbol{u}_1^{ op} \mathbf{S} oldsymbol{u}_1 + \lambda_1 (1 oldsymbol{u}_1^{ op} oldsymbol{u}_1)$
- ullet Taking the derivative w.r.t. $oldsymbol{u}_1$ and setting to zero gives

$$\mathbf{S}oldsymbol{u}_1=\lambda_1oldsymbol{u}_1$$

- Thus ${m u}_1$ is an eigenvector of ${m S}$ (with corresponding eigenvalue λ_1)
- But which of **S**'s (*D* possible) eigenvectors it is?

- ullet The objective function: $rg \max_{oldsymbol{u}_1} oldsymbol{u}_1^{ op} \mathbf{S} oldsymbol{u}_1 + \lambda_1 (1 oldsymbol{u}_1^{ op} oldsymbol{u}_1)$
- ullet Taking the derivative w.r.t. $oldsymbol{u}_1$ and setting to zero gives

$$\mathbf{S}oldsymbol{u}_1=\lambda_1oldsymbol{u}_1$$

- ullet Thus $oldsymbol{u}_1$ is an eigenvector of $oldsymbol{S}$ (with corresponding eigenvalue λ_1)
- But which of S's (D possible) eigenvectors it is?
- Note that since $\boldsymbol{u}_1^{\top}\boldsymbol{u}_1=1$, the variance of projected data is

$$\mathbf{u}_1^{\top} \mathbf{S} \mathbf{u}_1 = \lambda_1$$

- ullet The objective function: $rg \max_{oldsymbol{u}_1} oldsymbol{u}_1^{ op} \mathbf{S} oldsymbol{u}_1 + \lambda_1 (1 oldsymbol{u}_1^{ op} oldsymbol{u}_1)$
- ullet Taking the derivative w.r.t. $oldsymbol{u}_1$ and setting to zero gives

$$\mathbf{S}oldsymbol{u}_1=\lambda_1oldsymbol{u}_1$$

- Thus u_1 is an eigenvector of **S** (with corresponding eigenvalue λ_1)
- But which of **S**'s (*D* possible) eigenvectors it is?
- Note that since $u_1^\top u_1 = 1$, the variance of projected data is

$$oldsymbol{u}_1^ op \mathbf{S} oldsymbol{u}_1 = \lambda_1$$

ullet Var. is maximized when $oldsymbol{u}_1$ is the (top) eigenvector with largest eigenvalue

- ullet The objective function: $rg \max_{oldsymbol{u}_1} oldsymbol{u}_1^{ op} \mathbf{S} oldsymbol{u}_1 + \lambda_1 (1 oldsymbol{u}_1^{ op} oldsymbol{u}_1)$
- ullet Taking the derivative w.r.t. $oldsymbol{u}_1$ and setting to zero gives

$$\mathbf{S}oldsymbol{u}_1=\lambda_1oldsymbol{u}_1$$

- Thus u_1 is an eigenvector of **S** (with corresponding eigenvalue λ_1)
- But which of **S**'s (*D* possible) eigenvectors it is?
- Note that since $\boldsymbol{u}_1^{\top}\boldsymbol{u}_1=1$, the variance of projected data is

$${m u}_1^{ op}{\sf S}{m u}_1=\lambda_1$$

- ullet Var. is maximized when $oldsymbol{u}_1$ is the (top) eigenvector with largest eigenvalue
- ullet The top eigenvector $oldsymbol{u}_1$ is also known as the first Principal Component (PC)

- The objective function: $\arg\max_{\boldsymbol{u}_1} \ \boldsymbol{u}_1^{\top} \mathbf{S} \boldsymbol{u}_1 + \lambda_1 (1 \boldsymbol{u}_1^{\top} \boldsymbol{u}_1)$
- ullet Taking the derivative w.r.t. $oldsymbol{u}_1$ and setting to zero gives

$$\mathbf{S}u_1 = \frac{\lambda_1}{\lambda_1}u_1$$

- Thus ${m u}_1$ is an eigenvector of ${m S}$ (with corresponding eigenvalue λ_1)
- But which of **S**'s (*D* possible) eigenvectors it is?
- Note that since $\boldsymbol{u}_1^{\top}\boldsymbol{u}_1=1$, the variance of projected data is

$$oldsymbol{u}_1^ op \mathbf{S} oldsymbol{u}_1 = \lambda_1$$

- ullet Var. is maximized when $oldsymbol{u}_1$ is the (top) eigenvector with largest eigenvalue
- ullet The top eigenvector $oldsymbol{u}_1$ is also known as the first Principal Component (PC)
- Other directions can also be found likewise (with each being orthogonal to all previous ones) using the eigendecomposition of **S** (this is PCA)

• Steps in Principal Component Analysis

- Steps in Principal Component Analysis
 - ullet Center the data (subtract the mean $\mu=rac{1}{N}\sum_{n=1}^N x_n$ from each data point)

- Steps in Principal Component Analysis
 - ullet Center the data (subtract the mean $\mu=rac{1}{N}\sum_{n=1}^{N}x_n$ from each data point)
 - \bullet Compute the covariance matrix \boldsymbol{S} using the centered data as

$$S = \frac{1}{N}XX^{\top}$$
 (note: X assumed $D \times N$ here)

Steps in Principal Component Analysis

- ullet Center the data (subtract the mean $\mu=rac{1}{N}\sum_{n=1}^{N}x_n$ from each data point)
- \bullet Compute the covariance matrix \boldsymbol{S} using the centered data as

$$S = \frac{1}{N}XX^{\top}$$
 (note: X assumed $D \times N$ here)

• Do an eigendecomposition of the covariance matrix S

Steps in Principal Component Analysis

- ullet Center the data (subtract the mean $\mu=rac{1}{N}\sum_{n=1}^N x_n$ from each data point)
- Compute the covariance matrix **S** using the centered data as

$$S = \frac{1}{N}XX^{\top}$$
 (note: X assumed $D \times N$ here)

- Do an eigendecomposition of the covariance matrix S
- Take first K leading eigenvectors $\{u_k\}_{k=1}^K$ with eigenvalues $\{\lambda_k\}_{k=1}^K$

Steps in Principal Component Analysis

- Center the data (subtract the mean $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$ from each data point)
- Compute the covariance matrix **S** using the centered data as

$$S = \frac{1}{N}XX^{\top}$$
 (note: X assumed $D \times N$ here)

- Do an eigendecomposition of the covariance matrix S
- Take first K leading eigenvectors $\{u_k\}_{k=1}^K$ with eigenvalues $\{\lambda_k\}_{k=1}^K$
- The final K dim. projection/embedding of data is given by

$$\boldsymbol{Z} = \boldsymbol{U}^{\top}\boldsymbol{X}$$

where $\mathbf{U} = [\mathbf{u}_1 \ \dots \ \mathbf{u}_K]$ is $D \times K$ and embedding matrix \mathbf{Z} is $K \times N$

- Steps in Principal Component Analysis
 - Center the data (subtract the mean $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$ from each data point)
 - Compute the covariance matrix S using the centered data as

$$S = \frac{1}{N}XX^{\top}$$
 (note: X assumed $D \times N$ here)

- Do an eigendecomposition of the covariance matrix S
- Take first K leading eigenvectors $\{u_k\}_{k=1}^K$ with eigenvalues $\{\lambda_k\}_{k=1}^K$
- The final K dim. projection/embedding of data is given by

$$\mathbf{Z} = \mathbf{U}^{\mathsf{T}}\mathbf{X}$$

where $\mathbf{U} = [\mathbf{u}_1 \ \dots \ \mathbf{u}_K]$ is $D \times K$ and embedding matrix \mathbf{Z} is $K \times N$

• A word about notation: If **X** is $N \times D$, then $S = \frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$ (needs to be $D \times D$) and the embedding will be computed as $\mathbf{Z} = \mathbf{X}\mathbf{U}$ where **Z** is $N \times K$

PCA as Minimizing the Reconstruction Error

• Assume *complete* orthonormal basis vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$, each $\mathbf{u}_d \in \mathbb{R}^D$

- ullet Assume *complete* orthonormal basis vectors $oldsymbol{u}_1,oldsymbol{u}_2,\ldots,oldsymbol{u}_D$, each $oldsymbol{u}_d\in\mathbb{R}^D$
- We can represent each data point $x_n \in \mathbb{R}^D$ exactly using this new basis

$$\boldsymbol{x}_n = \sum_{k=1}^D z_{nk} \boldsymbol{u}_k$$

- Assume *complete* orthonormal basis vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$, each $\mathbf{u}_d \in \mathbb{R}^D$
- We can represent each data point $x_n \in \mathbb{R}^D$ exactly using this new basis

- ullet Assume *complete* orthonormal basis vectors $oldsymbol{u}_1,oldsymbol{u}_2,\ldots,oldsymbol{u}_D$, each $oldsymbol{u}_d\in\mathbb{R}^D$
- We can represent each data point $x_n \in \mathbb{R}^D$ exactly using this new basis

$$\mathbf{x}_{n} = \sum_{k=1}^{D} z_{nk} \mathbf{u}_{k}$$

$$\begin{bmatrix} \mathbf{x}_{n1} \\ \mathbf{x}_{n2} \\ \vdots \\ \vdots \\ \mathbf{x}_{nD} \end{bmatrix} = \begin{bmatrix} \mathbf{u} \\ \mathbf{u} \\ \mathbf{u}^{1} \\ \mathbf{u}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{z}_{nk} \mathbf{u}_{k} \\ \vdots \\ \mathbf{z}_{nk} \end{bmatrix}$$

• Denoting $\boldsymbol{z}_n = [z_{n1} \ z_{n2} \dots z_{nD}]^{\top}$, $\boldsymbol{\mathsf{U}} = [\boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \dots \boldsymbol{u}_D]$, and using $\boldsymbol{\mathsf{U}}^{\top}\boldsymbol{\mathsf{U}} = \boldsymbol{\mathsf{I}}_D$

$$x_n = \mathbf{U} z_n$$
 and $z_n = \mathbf{U}^{\top} x_n$

- ullet Assume *complete* orthonormal basis vectors $oldsymbol{u}_1,oldsymbol{u}_2,\ldots,oldsymbol{u}_D$, each $oldsymbol{u}_d\in\mathbb{R}^D$
- We can represent each data point $x_n \in \mathbb{R}^D$ exactly using this new basis

$$\mathbf{x}_{n} = \sum_{k=1}^{D} z_{nk} \mathbf{u}_{k}$$

$$\begin{bmatrix} \mathbf{x}_{n1} \\ \mathbf{x}_{n2} \\ \vdots \\ \mathbf{x}_{nD} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{n1} \\ \mathbf{u}_{n} \\ \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{z}_{n1} \\ \mathbf{z}_{n2} \\ \vdots \\ \mathbf{z}_{nD} \end{bmatrix}$$

• Denoting $\boldsymbol{z}_n = [z_{n1} \ z_{n2} \dots z_{nD}]^{\top}$, $\boldsymbol{\mathsf{U}} = [\boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \dots \boldsymbol{u}_D]$, and using $\boldsymbol{\mathsf{U}}^{\top}\boldsymbol{\mathsf{U}} = \boldsymbol{\mathsf{I}}_D$

$$\mathbf{z}_n = \mathbf{U}\mathbf{z}_n$$
 and $\mathbf{z}_n = \mathbf{U}^{\top}\mathbf{x}_n$

• Also note that each component of vector \mathbf{z}_n is $\mathbf{z}_{nk} = \mathbf{u}_k^{\top} \mathbf{x}_n$

• Reconstruction of x_n from z_n will be exact if we use all the D basis vectors

- Reconstruction of x_n from z_n will be exact if we use all the D basis vectors
- Will be approximate if we only use K < D basis vectors: $\mathbf{x}_n \approx \sum_{k=1}^K z_{nk} \mathbf{u}_k$

- Reconstruction of x_n from z_n will be exact if we use all the D basis vectors
- Will be approximate if we only use K < D basis vectors: $\mathbf{x}_n \approx \sum_{k=1}^K z_{nk} \mathbf{u}_k$
- ullet Let's use K=1 basis vector. Then the one-dim embedding of $oldsymbol{x}_n$ is

$$\mathbf{z}_n = \mathbf{u}_1^{\top} \mathbf{x}_n$$
 (note: this will just be a scalar)

- Reconstruction of x_n from z_n will be exact if we use all the D basis vectors
- Will be approximate if we only use K < D basis vectors: $\mathbf{x}_n \approx \sum_{k=1}^K z_{nk} \mathbf{u}_k$
- Let's use K=1 basis vector. Then the one-dim embedding of x_n is

$$\mathbf{z}_n = \mathbf{u}_1^{\top} \mathbf{x}_n$$
 (note: this will just be a scalar)

• We can now try "reconstructing" x_n from its embedding z_n as follows

$$\tilde{\boldsymbol{x}}_n = \boldsymbol{u}_1 \boldsymbol{z}_n = \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n$$

- Reconstruction of x_n from z_n will be exact if we use all the D basis vectors
- Will be approximate if we only use K < D basis vectors: $\mathbf{x}_n \approx \sum_{k=1}^K z_{nk} \mathbf{u}_k$
- Let's use K = 1 basis vector. Then the one-dim embedding of x_n is

$$\mathbf{z}_n = \mathbf{u}_1^{\top} \mathbf{x}_n$$
 (note: this will just be a scalar)

• We can now try "reconstructing" x_n from its embedding z_n as follows

$$\tilde{\boldsymbol{x}}_n = \boldsymbol{u}_1 \boldsymbol{z}_n = \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n$$

• Total error or "loss" in reconstructing all the data points

$$L(u_1) = \sum_{n=1}^{N} ||x_n - \tilde{\mathbf{x}}_n||^2 = \sum_{n=1}^{N} ||x_n - u_1 u_1^{\top} x_n||^2$$

ullet We want to find $oldsymbol{u}_1$ that minimizes the reconstruction error

$$L(\boldsymbol{u}_1) = \sum_{n=1}^{N} ||\boldsymbol{x}_n - \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n||^2$$

ullet We want to find $oldsymbol{u}_1$ that minimizes the reconstruction error

$$L(u_1) = \sum_{n=1}^{N} ||x_n - u_1 u_1^{\top} x_n||^2$$

$$= \sum_{n=1}^{N} \{x_n^{\top} x_n + (u_1 u_1^{\top} x_n)^{\top} (u_1 u_1^{\top} x_n) - 2x_n^{\top} u_1 u_1^{\top} x_n\}$$

ullet We want to find $oldsymbol{u}_1$ that minimizes the reconstruction error

$$L(\boldsymbol{u}_1) = \sum_{n=1}^{N} ||\boldsymbol{x}_n - \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n||^2$$

$$= \sum_{n=1}^{N} \{\boldsymbol{x}_n^{\top} \boldsymbol{x}_n + (\boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n)^{\top} (\boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n) - 2\boldsymbol{x}_n^{\top} \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n\}$$

$$= \sum_{n=1}^{N} -\boldsymbol{u}_1^{\top} \boldsymbol{x}_n \boldsymbol{x}_n^{\top} \boldsymbol{u}_1 \qquad \text{(using } \boldsymbol{u}_1^{\top} \boldsymbol{u}_1 = 1 \text{ and ignoring constants w.r.t. } \boldsymbol{u}_1\text{)}$$

• We want to find u_1 that minimizes the reconstruction error

$$L(\boldsymbol{u}_1) = \sum_{n=1}^{N} ||\boldsymbol{x}_n - \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n||^2$$

$$= \sum_{n=1}^{N} \{\boldsymbol{x}_n^{\top} \boldsymbol{x}_n + (\boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n)^{\top} (\boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n) - 2\boldsymbol{x}_n^{\top} \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n\}$$

$$= \sum_{n=1}^{N} -\boldsymbol{u}_1^{\top} \boldsymbol{x}_n \boldsymbol{x}_n^{\top} \boldsymbol{u}_1 \qquad \text{(using } \boldsymbol{u}_1^{\top} \boldsymbol{u}_1 = 1 \text{ and ignoring constants w.r.t. } \boldsymbol{u}_1\text{)}$$

• Thus the problem is equivalent to the following maximization

• We want to find u_1 that minimizes the reconstruction error

$$L(\boldsymbol{u}_1) = \sum_{n=1}^{N} ||\boldsymbol{x}_n - \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n||^2$$

$$= \sum_{n=1}^{N} \{\boldsymbol{x}_n^{\top} \boldsymbol{x}_n + (\boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n)^{\top} (\boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n) - 2\boldsymbol{x}_n^{\top} \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n\}$$

$$= \sum_{n=1}^{N} -\boldsymbol{u}_1^{\top} \boldsymbol{x}_n \boldsymbol{x}_n^{\top} \boldsymbol{u}_1 \qquad \text{(using } \boldsymbol{u}_1^{\top} \boldsymbol{u}_1 = 1 \text{ and ignoring constants w.r.t. } \boldsymbol{u}_1\text{)}$$

• Thus the problem is equivalent to the following maximization

$$\underset{u_1:||u_1||^2=1}{\arg\max} u_1^{\top} \left(\frac{1}{N} \sum_{n=1}^{N} x_n x_n^{\top} \right) u_1 = \underset{u_1:||u_1||^2=1}{\arg\max} u_1^{\top} \mathbf{S} u_1$$

where **S** is the covariance matrix of the data (data assumed centered)

• We want to find u_1 that minimizes the reconstruction error

$$L(\boldsymbol{u}_1) = \sum_{n=1}^{N} ||\boldsymbol{x}_n - \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n||^2$$

$$= \sum_{n=1}^{N} \{\boldsymbol{x}_n^{\top} \boldsymbol{x}_n + (\boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n)^{\top} (\boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n) - 2\boldsymbol{x}_n^{\top} \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{x}_n\}$$

$$= \sum_{n=1}^{N} -\boldsymbol{u}_1^{\top} \boldsymbol{x}_n \boldsymbol{x}_n^{\top} \boldsymbol{u}_1 \qquad \text{(using } \boldsymbol{u}_1^{\top} \boldsymbol{u}_1 = 1 \text{ and ignoring constants w.r.t. } \boldsymbol{u}_1\text{)}$$

• Thus the problem is equivalent to the following maximization

$$\underset{u_1:||u_1||^2=1}{\arg\max} \ u_1^\top \left(\frac{1}{N} \sum_{n=1}^N x_n x_n^\top\right) u_1 = \underset{u_1:||u_1||^2=1}{\arg\max} \ u_1^\top \mathbf{S} u_1$$

where **S** is the covariance matrix of the data (data assumed centered)

• It's the same objective that we had when we maximized the variance

ullet Eigenvalue λ_k measures the variance captured by the corresponding PC $oldsymbol{u}_k$

- ullet Eigenvalue λ_k measures the variance captured by the corresponding PC $oldsymbol{u}_k$
- The "left-over" variance will therefore be

$$\sum_{k=K+1}^{D} \lambda_k$$

- ullet Eigenvalue λ_k measures the variance captured by the corresponding PC $oldsymbol{u}_k$
- The "left-over" variance will therefore be

$$\sum_{k=K+1}^{D} \lambda_k$$

Can choose K by looking at what fraction of variance is captured by the first K PCs

- ullet Eigenvalue λ_k measures the variance captured by the corresponding PC $oldsymbol{u}_k$
- The "left-over" variance will therefore be

$$\sum_{k=K+1}^{D} \lambda_k$$

- Can choose K by looking at what fraction of variance is captured by the first K PCs
- Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction error vs number of PC

How many Principal Components to Use?

- ullet Eigenvalue λ_k measures the variance captured by the corresponding PC $oldsymbol{u}_k$
- The "left-over" variance will therefore be

$$\sum_{k=K+1}^{D} \lambda_k$$

- Can choose K by looking at what fraction of variance is captured by the first K PCs
- Another direct way is to look at the spectrum of the eigenvalues plot, or the plot of reconstruction error vs number of PC

• Can also use other criteria such as AIC/BIC (or more advanced probabilistic approaches to PCA using nonparametric Bayesian methods)

• Note that PCA represents each x_n as $x_n = Uz_n$

- Note that PCA represents each x_n as $x_n = Uz_n$
- When using only K < D components, $x_n \approx U z_n$

- Note that PCA represents each x_n as $x_n = Uz_n$
- When using only K < D components, $x_n \approx Uz_n$
- ullet For all the N data points, we can write the same as

$$\mathbf{X} pprox \mathbf{UZ}$$

where **X** is $D \times N$, **U** is $D \times K$ and **Z** is $K \times N$

- Note that PCA represents each x_n as $x_n = Uz_n$
- When using only K < D components, $x_n \approx Uz_n$
- ullet For all the N data points, we can write the same as

$$\mathbf{X} \approx \mathbf{UZ}$$

where **X** is $D \times N$, **U** is $D \times K$ and **Z** is $K \times N$

• The above approx. is equivalent to a low-rank matrix factorization of X

- Note that PCA represents each x_n as $x_n = Uz_n$
- When using only K < D components, $x_n \approx Uz_n$
- ullet For all the N data points, we can write the same as

$$\mathbf{X} \approx \mathbf{UZ}$$

where **X** is $D \times N$, **U** is $D \times K$ and **Z** is $K \times N$

- The above approx. is equivalent to a low-rank matrix factorization of X
 - Also closely related to Singular Value Decomposition (SVD); see next slide

• A rank-K SVD approximates a data matrix \mathbf{X} as follows: $\mathbf{X} \approx \mathbf{U} \Lambda \mathbf{V}^{\top}$

• A rank-K SVD approximates a data matrix **X** as follows: $\mathbf{X} \approx \mathbf{U} \Lambda \mathbf{V}^{\top}$

• **U** is $D \times K$ matrix with top K left singular vectors of **X**

• A rank-K SVD approximates a data matrix **X** as follows: $\mathbf{X} \approx \mathbf{U} \Lambda \mathbf{V}^{\top}$

- **U** is $D \times K$ matrix with top K left singular vectors of **X**
- Λ is a $K \times K$ diagonal matrix (with top K singular values)

• A rank-K SVD approximates a data matrix \mathbf{X} as follows: $\mathbf{X} \approx \mathbf{U} \Lambda \mathbf{V}^{\top}$

- **U** is $D \times K$ matrix with top K left singular vectors of **X**
- Λ is a $K \times K$ diagonal matrix (with top K singular values)
- **V** is $N \times K$ matrix with top K right singular vectors of **X**

• A rank-K SVD approximates a data matrix \mathbf{X} as follows: $\mathbf{X} \approx \mathbf{U} \Lambda \mathbf{V}^{\top}$

- **U** is $D \times K$ matrix with top K left singular vectors of **X**
- Λ is a $K \times K$ diagonal matrix (with top K singular values)
- ullet V is $N \times K$ matrix with top K right singular vectors of ${f X}$
- Rank-K SVD is based on minimizing the reconstruction error

• A rank-K SVD approximates a data matrix **X** as follows: $\mathbf{X} \approx \mathbf{U} \Lambda \mathbf{V}^{\top}$

- **U** is $D \times K$ matrix with top K left singular vectors of **X**
- Λ is a $K \times K$ diagonal matrix (with top K singular values)
- **V** is $N \times K$ matrix with top K right singular vectors of **X**
- Rank-K SVD is based on minimizing the reconstruction error

$$||\mathbf{X} - \mathbf{U} \wedge \mathbf{V}^{\top}||$$

• A rank-K SVD approximates a data matrix \mathbf{X} as follows: $\mathbf{X} \approx \mathbf{U} \Lambda \mathbf{V}^{\top}$

- **U** is $D \times K$ matrix with top K left singular vectors of **X**
- Λ is a $K \times K$ diagonal matrix (with top K singular values)
- **V** is $N \times K$ matrix with top K right singular vectors of **X**
- Rank-K SVD is based on minimizing the reconstruction error

$$||\mathbf{X} - \mathbf{U} \wedge \mathbf{V}^{\top}||$$

• PCA is equivalent to the best rank-K SVD after centering the data

• The idea of approximating each data point as a combination of basis vectors

$$x_n pprox \sum_{k=1}^K z_{nk} u_k$$
 or $X pprox UZ$

is also popularly known as "Dictionary Learning" in signal/image processing; the learned basis vectors represent the "Dictionary"

The idea of approximating each data point as a combination of basis vectors

$$oldsymbol{x}_n pprox \sum_{k=1}^K z_{nk} oldsymbol{u}_k \qquad ext{ or } oldsymbol{\mathsf{X}} pprox oldsymbol{\mathsf{UZ}}$$

is also popularly known as "Dictionary Learning" in signal/image processing; the learned basis vectors represent the "Dictionary"

- Some examples:
 - Each face in a collection as a combination of a small no of "eigenfaces"

The idea of approximating each data point as a combination of basis vectors

$$oldsymbol{x}_n pprox \sum_{k=1}^K z_{nk} oldsymbol{u}_k \qquad ext{ or } oldsymbol{\mathsf{X}} pprox oldsymbol{\mathsf{UZ}}$$

is also popularly known as "Dictionary Learning" in signal/image processing; the learned basis vectors represent the "Dictionary"

- Some examples:
 - Each face in a collection as a combination of a small no of "eigenfaces"

$$\begin{array}{c|c} X \text{ (DxN)} & U \text{ (DxK)} \\ \hline \left(\begin{array}{c} Z \text{ (KxN)} \\ \hline \end{array} \right) & \cong \left(\begin{array}{c} Z \text{ (KxN)} \\ \hline \end{array} \right) \end{array}$$

• Each document in a collection as a comb. of a small no of "topics"

The idea of approximating each data point as a combination of basis vectors

$$oldsymbol{x}_n pprox \sum_{k=1}^K z_{nk} oldsymbol{u}_k \qquad ext{ or } oldsymbol{\mathsf{X}} pprox oldsymbol{\mathsf{UZ}}$$

is also popularly known as "Dictionary Learning" in signal/image processing; the learned basis vectors represent the "Dictionary"

- Some examples:
 - Each face in a collection as a combination of a small no of "eigenfaces"

$$\left(\begin{array}{c} \textbf{X (DxN)} & \textbf{U (DxK)} \\ \left(\begin{array}{c} \textbf{Z} & \textbf{(KxN)} \\ \textbf{Z}_1 & \dots & \textbf{Z}_N \end{array} \right) \end{array} \right) \approx \left(\begin{array}{c} \textbf{Z (KxN)} \\ \textbf{Z}_1 & \dots & \textbf{Z}_N \end{array} \right)$$

- Each document in a collection as a comb. of a small no of "topics"
- Each gene-expression sample as a comb. of a small no of "genetic pathways"

The idea of approximating each data point as a combination of basis vectors

$$oldsymbol{x}_n pprox \sum_{k=1}^K z_{nk} oldsymbol{u}_k \qquad ext{ or } oldsymbol{\mathsf{X}} pprox oldsymbol{\mathsf{UZ}}$$

is also popularly known as "Dictionary Learning" in signal/image processing; the learned basis vectors represent the "Dictionary"

- Some examples:
 - Each face in a collection as a combination of a small no of "eigenfaces"

$$\left(\begin{array}{c} \textbf{X (DxN)} & \textbf{U (DxK)} \\ \left(\begin{array}{c} \textbf{Z} & \textbf{(KxN)} \\ \textbf{Z}_1 & \dots & \textbf{Z}_N \end{array} \right) \end{array} \right) \approx \left(\begin{array}{c} \textbf{Z (KxN)} \\ \textbf{Z}_1 & \dots & \textbf{Z}_N \end{array} \right)$$

- Each document in a collection as a comb. of a small no of "topics"
- Each gene-expression sample as a comb. of a small no of "genetic pathways"
- The "eigenfaces", "topics", "genetic pathways", etc. are the "basis vectors", which can be learned from data using PCA/SVD or other similar methods

PCA: Example

Original Collection of Images

K=49 Eigenvectors ("eigenfaces") learned by PCA on this data

Each image's reconstructed version

PCA: Example

 16×16 pixel images of handwritten 3s (as vectors in \mathbb{R}^{256})

Mean μ and eigenvectors v_1, v_2, v_3, v_4

Mean

 $\lambda_1 = 3.4 \cdot 10^5$

$$\lambda_3 = 2.4 \cdot 10^5$$

Reconstructions:

 \boldsymbol{x}

Each input image now represented by just k numbers (combination weights of each of the k eigenvectors)

• A linear projection method

- A linear projection method
 - Won't work well if data can't be approximated by a linear subspace

- A linear projection method
 - Won't work well if data can't be approximated by a linear subspace
 - But PCA can be kernelized easily (Kernel PCA)

- A linear projection method
 - Won't work well if data can't be approximated by a linear subspace
 - But PCA can be kernelized easily (Kernel PCA)
- Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve class separation, e.g., when doing classification)

- A linear projection method
 - Won't work well if data can't be approximated by a linear subspace
 - But PCA can be kernelized easily (Kernel PCA)
- Variance based projection directions can sometimes be suboptimal (e.g., if we want to preserve class separation, e.g., when doing classification)

- PCA relies on eigendecomposition of an $D \times D$ covariance matrix
 - Can be slow if done naïvely. Takes $O(D^3)$ time
 - Many faster methods exists (e.g., Power Method)