

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA KATEDRA ZA PRIMENJENE RAČUNARSKE NAUKE

Paralelni i distribuirani algoritmi i strukture podataka

ms Nebojša Horvat Zimski semestar 2019/2020.

Studijski program: Računarstvo i automatika

Modul: Računarstvo visokih performansi

Blockchain

Šta je blockchain?

- Distribuirani i deljeni dnevnik transakcija
- Upis podataka moguć postizanjem konsenzusa
- Ne može se izbristati transakcija
- Pametni ugovori
 - Bitcoin
 - Ethereum
 - Hyperledger Fabric
 - Ripple

— ...

Šta je blockchain?

Šta je blockchain – Merkleovo stablo ?

Javne i privatne Blockchain mreže

- Javne
 - Učesnici najčešće anonimni
 - Veliki broj učesnika
 - Slobodan upis/čitanje
 - Konsnzus se postiže najčešće pomoću računarske moći
 - Potrebno davati neku vrednost kako bi se dešavale transakcije
- Privatne
 - Brze
 - Manji broj učesnika
 - Učesnici poznati
 - Konsenzus se može postići na razne načine

- · Javna mreža Bitcoin
- Privatna mreža Hyperledger Fabric

Hyperledger Fabric

Hyperledger

 Hyperledger je kolaborativni projekat otvorenog koda stvoren sa ciljem da se blockchain tehnologija unapredi i primeni u različitim sektorima industrije.

Hyperledger Fabric - Uvod

- Platforma za razvoj distribuiranih rešenja koja se oslanja na blockchain tehnologiju.
- Modularna arhitekturu
 - dizajnirana tako da podrži različite implementacije komponenata
 - kako bi se prilagodila raznim potrebama poslovanja.
- Visok nivo skalabilnosti,
- Obezbeđuje sigurnost odnosno privatnost transakcija koja je neophodna u poslovnom okruženju.

Hyperledger Fabric – osnovni pojmovi

- Članovi
 - Peer (commiter, endorser)
 - Orderer Ordering service
- Svojina (Asset) materijalna ili nematerijalna
- Identiteti (MSP)
- Kanali Privatne podmreže sa sopstvenim dnevnikom transakcija (Ledger)
- Konsenzus jednostavno izmenljiv

Hyperledger Fabric – osnovni pojmovi

- Pametni ugovori= Chaincode
- Smeštanja podataka- > Ledger i World State
 - World state > CouchDB, LevelDB
- Tok transakcije
- Smeštanja blokova
 - Vremenski
 - Na osnovu broja transakcija

Podešavanje okruženja Fabric mreže

- Pre podešavanja okruženja neophodnog za fabric mrežu potrebno je da imate instalirano:
 - Git
 - cURL
 - Docker (docker deamon bi trebalo da radi)
 - docker-compose

•

Podešavanje okruženja Fabric mreže

- Elementi Fabric mreže (Orderer, Peer, CA...) se podižu kao posebni kontejneri
- Svi primeri sa docker slikama se mogu instalirati kroz pokretanje skripte koja se može pronaći na boldovanoj adresi: curl -sSL http://bit.ly/2ysbOFE | bash -s
- Skipta će:
 - Klonirati hyperledger/fabric-samples repozitorijum
 - Instalirati izvršne i configuracione fajlove potrebne za pokretanje mreže na vašoj platformi
 - Instalirati sve potrebne docker slike

Podizanje Fabric mreže

- Nakon podešavanja okruženja fabric mreže potrebno je ući u fabric-samples/test-network folder
- Mreža se podiže kroz ./network.sh up komandu
 - Komanda podiže mrežu koja se sastoji od dva peer-a i jednog orderer-a.
 - Kada ukucamo docker ps videćemo da su se pokrenula tri docker kontejnera

Podizanje Fabric mreže

- Komandom ./network.sh createChannel pokrećemo:
 - Kreiranje kanal
 - Pridruživanje peer-ova kanalu
 - Podešavanje anchor peer-ova za svaku organizaciju

Na kraju, komanda ./network.sh deployCC - ccn basic -ccp

../asset-transfer-basic/chaincode-go -ccl go instalira i instancira chainCode (kod pametnih ugovora) na pokrenutoj mreži

Rad sa Fabric mreže

- Pre rada sa mrežom potebno je postaviti prvo sistemske variable:
 - export PATH=\${PWD}/../bin:\$PATH
 - export FABRIC_CFG_PATH=\$PWD/../config/
 - export CORE PEER TLS ENABLED=true
 - export CORE_PEER_LOCALMSPID="Org1MSP"
 - export CORE_PEER_TLS_ROOTCERT_FILE=\${PWD}/organizations/peerOrga nizations/org1.example.com/peers/peer0.org1.example.com/tls/ ca.crt
 - export CORE_PEER_MSPCONFIGPATH=\${PWD}/organizations/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
 - export CORE_PEER_ADDRESS=localhost:7051

Rad sa Fabric mreže

- Nakon toga moguće je incjalizovati podatke na ledgeru:
 - peer chaincode invoke -o localhost:7050 ordererTLSHostnameOverride orderer.example.com --tls --cafile "\$
 {PWD}/organizations/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem" -Cmychannel -n basic --peerAddresses localhost:7051 tlsRootCertFiles
 "\${PWD}/organizations/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt" --peerAddresses localhost:9051 --tlsRootCertFiles
 "\${PWD}/organizations/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt" -c
 '{"function":"InitLedger","Args":[]}'
- Upit stanje koje se nalazi na ledgeru možemo da proverimo kroz komandu:
 - peer chaincode query -C mychannel -n basic -c '{"Args": ["GetAllAssets"]}'

Zaustavljanje Fabric mreže

- Komanda ./network.sh down će:
 - Zaustaviti i obrisati docker kontejnere čvorova i chaincode-a
 - Obrisati criptomaterijal organizacije
 - Briše channel artifacts i docker volumes (tako da je opet moguće pokrenuti mrežu kroz ./network.sh up komandu)

- Podešavanje kripto materijala
 - Crypto-config-orderer.yaml
 - Specifikacija Orderer organizacija
 - Ordering service u produkciji, nikako solo
 - solo samo za razvoj
 - za produkciju Kafka ordering, raft ...
 - Crypto-config-org1.yaml
 - Specifikacija organizacije 1
 - Crypto-config-org2.yaml
 - Specifikacija organizacije 2
- Sertifikati definišu organizacije
 - Daju identitete entitetima unutar Fabric mreže
- Organizacije logički grupišu peer-ove

- Sertifikat će se izgraditi kao hostname.domain
 - Odnosno orderer.example.com
 - Dodavenje novog uređivača = dodavanje novog Hostname-a unutar Specs sekcije
 - Dodavanje nove uređivačke organizacije obuhvata dodavanje cele sekcije (name, domain, specs)
- CommonName unutar specs sekcije može da "nadjača" pomenutu konvenciju imenovanja

- Definicija članova peer organizacija
 - Template
 - Count : 2 kreiranje 2 peer-a za datu organizaciju
 - Imenovanje prati konvenciju
 - peer{index}.domain
 - Odnosno
 - » peer0.org1.example.com, peer1.org1.example.com itd.
 - Users
 - Count: 2
 - Dodatni sertifikati pored administratorskog
 - » Ako se broj korisnika zna unapred

- Cryptogen alat generiše kriptografski materijal prema definiciji u crypto-config-<name>.yaml
- ./cryptogen generate
 - Kreira foldere:
 - ordererOrganizations
 - Example.com
 - » ca
 - » msp
 - » orderers
 - » Itd
 - peerOrganizations
 - org1.example.com
 - » ...
 - org2.example.com
 - ...

Sertifikat – PEM fajl

----BEGIN CERTIFICATE-----

MIICKjCCAdCgAwIBAgIQDs8CjtbAVfjzN68VLG53DzAKBggqhkjOPQQDAjBzMQsw
CQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEWMBQGA1UEBxMNU2FuIEZy
YW5jaXNjbzEZMBcGA1UEChMQb3JnMS5leGFtcGxlLmNvbTEcMBoGA1UEAxMTY2Eu
b3JnMS5leGFtcGxlLmNvbTAeFw0xODEyMTMxNTQ0MDBaFw0yODEyMTAxNTQ0MDBa
MGwxCzAJBgNVBAYTAIVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYwFAYDVQQHEw1T
YW4gRnJhbmNpc2NvMQ8wDQYDVQQLEwZjbGllbnQxHzAdBgNVBAMMFkFkbWluQG9y
ZzEuZXhhbXBsZS5jb20wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATa389ggf0T
EaBmE8qAeTYE4p9GcZJo+hGHOt1eOXOfthd2C5AlSdRbLEKP6C7X3b46fjyvpUe6
0SwgaHFamhsro00wSzAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH/BAlwADArBgNV
HSMEJDAigCAko9WdpaeyNdhKMk/a81QcjbHH+CmnNAxxhgh95Qey9jAKBggqhkjO
PQQDAgNIADBFAiEAhl5fp8M2bKzE9g92VnhhrWlel57izdmR/Y5CT16uYfoClCV7
7I+nHEm26ygABIORSLvVxvVV7Z+Ue+V8BHGcEMS5
-----END CERTIFICATE-----

Certificate Information:

- Common Name: Admin@org1.example.com
- Organization Unit: client
 Locality: San Francisco
- State: California
 Country: US
- Valid From: December 13, 2018
 Valid To: December 10, 2028
- ✓ Issuer: ca.org1.example.com, org1.example.com
 ✓ Serial Number: 0ecf028ed6c055f8f337af152c6e770f

- Klijent inicira transakciju
 - SDK kreira predlog transakcije (Transaction proposal)
- Članovi prihvatioci (Endorsers) verifikuju transakciju
 - Izvršavaju transakciju nad podacima u ledger-u
 - Read & Write skupove podataka šalju nazad do SDK-a, zajedno sa potpisima -Proposal response

- SDK zatim proverava da li dobijeni odgovor ispravan
 - Da li sadrži potpise tako da zadovolji pravila prihvatanja transakcije (Endorsement policy)
 - Provere ovog tipa se vrše i na peer-ovima
- SDK se zatim obraća uređivačkom servisu (Ordering service) sa transakcijom koja sadrži sve prethodno pomenute podatke i ID kanala na kom se transakcija izvršava

- Uređivački servis poređa transakcije i sklopi ih u blokove
- Zatim se blokovi šalju do peer-ova koji validiraju blokove/transakcije
 - Transakcije se mogu označiti kao validne ili kao nevalidne
- Promene u validnim write skupovima se zatim izvrše nad trenutnim podacima na Ledger-u svakog peer-a na kanalu
 - Postoji VLedger(Validated ledger) u kom ne postoje nevalidne transakcije, sastavljen je od validnih blokova (vBlocks)
- Peer "ispaljuje" događaj kojim se klijent notificira o uspešnosti izvršenja transakcije