

CSMDM21 - Data Analytics and Mining

Classification Model Evaluation

Module convenor

Dr. Carmen Lam

carmen.lam@reading.ac.uk

Department of Computer Science

Lecture notes and videos created by Prof. Giuseppe Di Fatta

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Evaluation of Predictive Tasks

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Classification task
 - Accuracy: the fraction of classifications that are correct
 - Error rate = 1 accuracy
 - Information Retrieval task
 - Recall: proportion of <u>relevant material actually retrieved</u>
 - Precision: proportion of retrieved material actually relevant

Information Retrieval Systems

$$Precision = \frac{|Relevant Retrieved|}{|Retrieved|}$$

$$Recall = \frac{|Relevant Retrieved|}{|Relevant in Collection|}$$

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.

Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

$$Accuracy = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Error rate =
$$\frac{b+c}{a+b+c+d} = \frac{FN+FP}{TP+TN+FP+FN} = 1 - Accuracy$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
	-	1	0

Model M ¹	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
	-	60	250

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Measures Beyond Accuracy

Precision =
$$\frac{|\text{Relevant Retrieved}|}{|\text{Retrieved}|} = \frac{a}{a+c}$$

Recall =
$$\frac{|Relevant Retrieved|}{|Relevant in Collection|} = \frac{a}{a+b}$$

$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Count	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

Count	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)
 - The F-measure is also referred to as F-score or F₁ score. It is the harmonic mean of the precision and recall. The max value is 1 (perfect precision and recall) and the min value is 0 (precision or recall is zero).
- Generalised F-measure: recall is β times more important than precision.

$$F_{\beta} = (1 + \beta^2) \times \frac{Precision \times Recall}{(\beta^2 \times Precision) + Recall}$$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

How to obtain a reliable estimate of "future" performance?

- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training dataset
 - Data distributions (present vs future)

Learning Curve: Accuracy vs Sample Size

- The learning curve shows how accuracy changes with varying sample size
 - Requires a sampling method for creating a learning curve
- □ Effect of small sample size:
 - Bias in the estimate
 - Variance of the estimate

The Holdout Method

- > Split the available data into two disjoint partitions
 - Training set: used to train the classifier
 - Test set: <u>hold out some data</u> to estimate the error rate of the trained classifier

Training the model:

Testing the model on the training data:

Testing the model on the test data:

Re-substitution and Holdout Methods in KNIME

The Holdout Method

Holdout method

- Original data is partitioned into two disjoint sets
- E.g. 2/3 for training and 1/3 for testing, or 50%-50%

Issues

- Less data available for training
- Bias on the training set
- Training set and test set are not independent (e.g. there may be unbalanced classes in both)

Methods of Estimation

Holdout

Original data is partitioned into two disjoint sets

Random subsampling

- Repeated holdout
 - Still similar issues to simple holdout
 - No control over the selected samples (samples may be chosen multiple times or never)

Cross-validation

- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n, where n is the number of data samples

Bootstrap

- Sampling with replacement
- .632 bootstrap

k-fold Cross-validation (xval)

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
 - True Positive rate vs False Positive rate
- Performance of each classifier represented as a point on the ROC curve
 - changing some critical parameter of the algorithm (e.g., sample distribution, cost matrix, or any hyperparameters) determines a set of points (TP,FP).

ROC Curve of a Classifier

(TP,FP)

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (0,1): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

$M_1 vs M_2$

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC Curve (AUC)
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

Next:

> P04: practical on Classification in KNIME

Next week:

➤ No teaching (for you to catch up on lectures and exercises)

Week 7:

> Advanced KNIME