Changing plot style

```
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(seattle_weather["MONTH"], seattle_weather["MLY-TAVG-NORMAL"
ax.plot(austin_weather["MONTH"], austin_weather["MLY-TAVG-NORMAL"])
ax.set_xlabel("Time (months)")
ax.set_ylabel("Average temperature (Fahrenheit degrees)")
plt.show()
```


Choosing a style

```
plt.style.use("ggplot")
fig, ax = plt.subplots()
ax.plot(seattle_weather["MONTH"], seattle_weather["MLY-TAVG-NORMAL"
ax.plot(austin_weather["MONTH"], austin_weather["MLY-TAVG-NORMAL"])
ax.set_xlabel("Time (months)")
ax.set_ylabel("Average temperature (Fahrenheit degrees)")
plt.show()
```


Back to the default

```
plt.style.use("default")
```


The available styles

https://matplotlib.org/gallery/style_sheets/style_sheets_refere

The "bmh" style

```
plt.style.use("bmh")
fig, ax = plt.subplots()
ax.plot(seattle_weather["MONTH"], seattle_weather["MLY-TAVG-NORMAL"
ax.plot(austin_weather["MONTH"], austin_weather["MLY-TAVG-NORMAL"])
ax.set_xlabel("Time (months)")
ax.set_ylabel("Average temperature (Fahrenheit degrees)")
plt.show()
```


Seaborn styles

```
plt.style.use("seaborn-colorblind")
fig, ax = plt.subplots()
ax.plot(seattle_weather["MONTH"], seattle_weather["MLY-TAVG-NORMAL"
ax.plot(austin_weather["MONTH"], austin_weather["MLY-TAVG-NORMAL"])
ax.set_xlabel("Time (months)")
ax.set_ylabel("Average temperature (Fahrenheit degrees)")
plt.show()
```


Guidelines for choosing plotting style

- Dark backgrounds are usually less visible
- If color is important, consider choosing colorblind-friendly options
 - "seaborn-colorblind" or "tableau-colorblind10"
- If you think that someone will want to print your figure, use less ink
- If it will be printed in black-and-white, use the "grayscale" style

Practice choosing the right style for you!

INTRODUCTION TO DATA VISUALIZATION WITH MATPLOTLIB

A figure to share

```
fig, ax = plt.subplots()

ax.bar(medals.index, medals["Gold"])
ax.set_xticklabels(medals.index, rotation=90)
ax.set_ylabel("Number of medals")

plt.show()
```


Saving the figure to file

```
fig, ax = plt.subplots()

ax.bar(medals.index, medals["Gold"])
ax.set_xticklabels(medals.index, rotation=90)
ax.set_ylabel("Number of medals")

fig.savefig("gold_medals.png")
```

ls

gold_medals.png

Different file formats

```
fig.savefig("gold_medals.jpg")

fig.savefig("gold_medals.jpg", quality=50)

fig.savefig("gold_medals.svg")
```


Resolution

```
fig.savefig("gold_medals.png", dpi=300)
```


Size

```
fig.set_size_inches([5, 3])
```


Another aspect ratio

```
fig.set_size_inches([3, 5])
```


Practice saving your visualizations!

INTRODUCTION TO DATA VISUALIZATION WITH MATPLOTLIB

Why automate?

- Ease and speed
- Flexibility
- Robustness
- Reproducibility

How many different kinds of data?

```
summer_2016_medals["Sport"]
```

```
ID
62
               Rowing
            Taekwondo
65
73
             Handball
              . . .
134759
             Handball
135132
          Volleyball
135205
               Boxing
Name: Sport, Length: 976, dtype: object
```


Getting unique values of a column

```
sports = summer_2016_medals["Sport"].unique()
print(sports)
['Rowing' 'Taekwondo' 'Handball' 'Wrestling'
'Gymnastics' 'Swimming' 'Basketball' 'Boxing'
'Volleyball' 'Athletics']
```

Bar-chart of heights for all sports

Figure derived automatically from the data

Practice automating visualizations!

INTRODUCTION TO DATA VISUALIZATION WITH MATPLOTLIB

The Matplotlib gallery

https://matplotlib.org/gallery.html

Gallery of examples

Example page with code

shapes_and_collections example code: scatter_demo.py

(Source code, png, pdf)


```
import numpy as np
import matplotlib.pyplot as plt

N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = np.pi * (15 * np.random.rand(N))**2 # 0 to 15 point radii

plt.scatter(x, y, s=area, c=colors, alpha=0.5)
plt.show()
```


Plotting data in 3D

https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

Visualizing images with pseudo-color

https://matplotlib.org/users/image_tutorial.html

Animations

Image credit: Gytis Dudas and Andrew Rambaut

https://matplotlib.org/api/animation_api.html

Using Matplotlib for geospatial data

https://scitools.org.uk/cartopy/docs/latest/

Pandas + Matplotlib = Seaborn

Seaborn example gallery

https://seaborn.pydata.org/examples/index.html

Good luck visualizing your data!

INTRODUCTION TO DATA VISUALIZATION WITH MATPLOTLIB

