.2.23ConclusionesOutline1.5.2.23ConclusionesOutline1.5

Dinámica Molecular regida por el paso temporal Trabajo Práctico Nro. 4

Badi Leonel, Buchhalter Nicolás Demián y Meola Franco Román

4 de mayo de 2016

Grupo 3

Fundamentos Introducción

- Vamos a comparar los errores cometidos por distintos sistemas de integración
- Oscilador amortiguado: Sistema con sólo una partícula puntual cuya solución analítica es conocida
- Se implementaron:
 - Beeman
 - Velocity Verlet
 - Gear Predictor Corrector de orden 5

Fundamentos Variables relevantes

- Parámetros del oscilador
 - m = 70
 - k = 10000
 - $\gamma = 100$
 - $t_f = 5$
- Condiciones iniciales del oscilador
 - $r_0 = 1$
 - $v_0 = -\frac{2\gamma}{m}$

Implementación Cálculo Numérico

```
void simulateGear(double time, double deltaT) {
    double simTime = 0:
    Oscilator oscilator = new Oscilator();
    oscilator.writePositionAndError();
    oscilator.makeEulerStep(deltaT);
    simTime += deltaT:
    oscilator.writePositionAndError();
    while (simTime < time) {</pre>
        oscilator.makeGearStep(deltaT);
        simTime += deltaT:
        oscilator.writePositionAndError();
```

Código 1: Método de Gear Predictor Corrector

Implementación Detalles de precisión

- Todas las operaciones se realizan en double
- Se utilizan cinco cifras decimales como output en los archivos de salida de resultados y errores

Tablas

Resultados

Error total normalizado por el número total de pasos para distintos valores de Δt

Δt	Método	E
0.01	Beeman	0,00471
0.01	Verlet	0,00663
0.01	Gear	0,33624
0.001	Beeman	0,00235
0.001	Verlet	0,00225
0.001	Gear	-0,00199
0.0001	Beeman	0,00225
0.0001	Verlet	0,00224
0.0001	Gear	0,00228

Tabla: Suma de las diferencias al cuadrado para todos los pasos temporales normalizado por el número total de pasos

Gráfico de x(t) para el oscilador puntual amortiguado con $\Delta t = 0.01$

Gráfico de x(t) para el oscilador puntual amortiguado con $\Delta t = 0{,}001$

Gráfico de E para el oscilador puntual amortiguado con $\Delta t = 0{,}01$

Gráfico de E para el oscilador puntual amortiguado con $\Delta t = 0.001$

Conclusiones

Conclusiones

- Para una cantidad de pasos baja (500 pasos, $\Delta t = 0.01$), el error de Gear Predictor-Corrector aumenta, simulando un oscilador no amortiguado
- Con un $\Delta t = 0.001$ obtuvimos resultados con errores muy bajos para los tres métodos
- Con 50000 pasos ($\Delta t = 0.0001$), los tres métodos tienen un error que varía recíen en la quinta cifra decimal
- El esquema de integración que mejor resulta para este sistema es Gear Predictor-Corrector para $\Delta t = 0.001$, es decir, 5000 pasos

Parte I

Formación del Sistema Solar

Fundamentos Introducción

- Usando el esquema de integración de Beeman vamos a simular el nacimiento del sistema solar
- ullet Se simularán N partículas que orbitan alrededor del Sol
- Las partículas se irán agrupando en planetas a medida que el sistema evolucione

Implementación Generación de los agentes

- Posiciones (x,y) aleatorias para todas las partículas
- ullet v_{t_0} tal que todas las partículas tengan el mismo L
- $v_{n_0} = 0$
- Distancia al sol entre 1×10^9 y 1×10^{10}
- Ángulo respecto al Sol $\epsilon~[0,2\pi]$

Simulación Variables relevantes

- Δt : cantidad de pasos
- k: relación entre cantidad de pasos simulados y visualizados.
- time: Tiempo en segundos a visualizar

Simulación Detalles de implementación

- Utilizamos el Cell Index Method para calcular las colisiones de las partículas
- \bullet Para las partículas que se alejen más de 2×10^4 del centro, no las consideramos dentro del sistema
- En colisión de particulas, se mantiene el momento angular pero la velocidad normal resultante se resuelve como un choque perfectamente inelastico.
 - Por lo tanto la energia en el sistema no se conserva ya que se disipa como energia interna dentro de las particulas.
 - Se conserva solamente la energia orbital.

Problemas encontrados

- Tratamiento de números de grandes dimensiones
 - Necesitamos poder mantener en memoria números grandes utilizando la precisión double
 - Se normalizó r a 1×10^6
 - Se normalizó m a 2×10^{25}
 - Se modifico la constante G.
- El radio de las partículas es muy chico en comparación con las dimensiones del sistema solar
 - Esto dificulta la visualización, sobre todo para una gran cantidad de partículas
 - El r_c es distinto al r_v (radio de visualización)

Implementación Simulación

```
void simulate(int k, double dt, int time){
    write();
    moveEuler(dt);
    int framesWrited = 1;
    double totalTimeSimulated = dt:
    while(totalTimeSimulated < time) {</pre>
        for(int i=0; i < k; i++) {
             moveBeeman (dt);
             findNeighbours();
             collidePlanets();
             totalTimeSimulated += dt:
             write();
        write();
        framesWrited++:
```

Implementación

- La simulación y la visualización son independientes
- El algoritmo de simulación escribe un archivo .tsv con los siguientes datos:
 - \bullet (x,y)
 - r
 - Color RGB para indicar la masa de la particula, cuanto mayor masa mas blanca la particula
- Se generan particulas temporales para visualizar los choques.
- Por último, se carga en Ovito el archivo de salida.tsv para realizar la visualización

Animación de la simulación para $N=100\,$

Animación de la simulación para $N=1000\,$

Link al video

Animación de la simulación para N=10000

Link al video

Conclusiones

- El paso temporal (Δt) se podria ir variando si calculamos la cota de la velocidad.
- Metodo ineficiente en el caso de tener tiempos de vuelos altos.
- Para calcular el paso temporal (Δt) hay que considerar el error de aproximacion deseado, así como el (Δt) para que no se omitan eventos.

Gracias