A continuous function on a compact set is unif. cont.

Theorem (21.4(ii))

Suppose $(S,d),(S^*,d^*)$ are metric spaces, $f:S\to S^*$ is continuous, $E\subset S$ is compact. Then $f|_E$ is uniformly continuous.

Proof. For
$$\varepsilon > 0$$
, find $\delta > 0$ s.t. $d^* \big(f(s), f(t) \big) < \varepsilon$ when $d(s,t) < \delta$. For $s \in S$ find $\delta_s > 0$ s.t. $d^* \big(f(s), f(t) \big) < \frac{\varepsilon}{2}$ when $d(s,t) < \delta_s$. $E \subset \cup_{s \in E} \mathbf{B}^o_{\delta_s/2}(s)$, hence $\exists s_1, \ldots, s_n$ s.t. $E \subset \cup_{k=1}^n \mathbf{B}^o_{\delta_{s_k}/2}(s_k)$. We claim that $\delta = \frac{1}{2} \min_{1 \leqslant k \leqslant n} \delta_{s_k}$ works. Suppose $d(t,s) < \delta$. Find k s.t. $s \in \mathbf{B}^o_{\delta_{s_k}/2}(s_k) \Leftrightarrow d(s,s_k) < \frac{\delta_{s_k}}{2}$. $d(t,s_k) \leqslant d(t,s) + d(s,s_k) < \delta + \frac{\delta_{s_k}}{2} \leqslant \delta_{s_k}$. $d^* \big(f(s), f(s_k) \big), d^* \big(f(t), f(s_k) \big) < \frac{\varepsilon}{2}$. Thus, $d^* \big(f(s), f(t) \big) \leqslant d^* \big(f(s), f(s_k) \big) + d^* \big(f(t), f(s_k) \big) < \varepsilon$

Extensions of uniformly continuous functions

Theorem (similar to 19.5)

Suppose $E \subset S$, E^- compact, $f: E \to S^*$, S^* complete. Then f is uniformly continuous iff it extends to a continuous $\tilde{f}: E^- \to S^*$.

Proof: a unif. cont. f has a continuous extension \tilde{f} .

Suppose $x \in E^- \setminus E$. $\exists (x_n) \subset E$ s.t. $x_n \to x$. $\tilde{f}(x) := \lim_n f(x_n)$. Want: $\tilde{f}(x)$ doesn't depend on the choice of (x_n) . Suppose $(y_n) \subset E$, $y_n \to x$. Want: $\lim f(x_n) = \lim f(y_n)$. The sequence $(z_k) = (x_1, y_1, x_2, y_2, \ldots)$ is Cauchy, hence $(f(x_1), f(y_1), \ldots)$ must be Cauchy, hence $\lim f(x_n) = \lim f(z_k) = \lim f(y_n)$. Continuity of \tilde{f} : know that $\forall \varepsilon > 0 \ \exists \delta > 0$ s.t. $d^*(f(x), f(y)) < \varepsilon$ if $x, y \in E$, $d(x, y) < \delta$. Show: if $x, y \in E^-$, $d(x, y) < \delta$, then $d^*(\tilde{f}(x), \tilde{f}(y)) \leqslant \varepsilon$. Find $(x_n), (y_n) \subset E$, $x_n \to x$, $y_n \to y$. For large n, $d(x_n, y_n) < \delta$. $\tilde{f}(x) = \lim_n f(x_n)$, $\tilde{f}(x) = \lim_n f(x_n)$, hence $d^*(\tilde{f}(x), \tilde{f}(y)) = \lim_n d^*(f(x_n), f(y_n)) \leqslant \varepsilon$.

Connectedness (Section 22)

Definition (22.1)

Suppose (S,d) is a metric space. $E \subset S$ is called disconnected if \exists open $U_1, U_2 \subset S$ s.t.: (i) $E \subset U_1 \cup U_2$; (ii) $(E \cap U_1) \cap (E \cap U_2) = \emptyset$; (iii) $E \cap U_1 \neq \emptyset$, $E \cap U_2 \neq \emptyset$.

E is connected if it is not disconnected.

Observation. $E \subset \mathbb{R}$ is connected iff it is empty, a singleton, or an interval.

Intervals are connected: will be proved later.

Suppose E has ≥ 2 points, is not an interval.

Show that E is disconnected.

Find a < b < c, $a, c \in E$, $b \notin E$. Take $U_1 = (-\infty, b)$, $U_2 = (b, \infty)$. In Definition, (i), (ii), (iii) are satisfied!

Connectedness (Section 22)

Definition (22.1)

Suppose (S,d) is a metric space. $E \subset S$ is called disconnected if \exists open $U_1, U_2 \subset S$ s.t.: (i) $E \subset U_1 \cup U_2$; (ii) $(E \cap U_1) \cap (E \cap U_2) = \emptyset$; (iii) $E \cap U_1 \neq \emptyset$, $E \cap U_2 \neq \emptyset$.

Proposition (Definition 22.1 + remark following it)

E is disconnected iff $\exists A, B \subset E$ s.t. $E = A \cup B$, $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B^- = \emptyset = A^- \cap B$.

Conclusion: Connectedness is an intrinsic property of E

 $x \in A^- \cap B$ iff $x \in B$, and $\exists (a_n) \subset A$, $a_n \to x$.

This does not depend on the ambient space S.

Connectedness (Section 22)

Proof: E disconnected \Rightarrow exist A and B...

Claim: $A = E \cap U_1$, $B = E \cap U_2$ work. Suppose, for contradiction, that $b \in A^- \cap B$. $b \in U_2 \Rightarrow \exists r > 0$ s.t. $\mathbf{B}_r^o(b) \subset U_2$.

 $\mathbf{B}_r^o(b) \cap A \subset U_2 \cap (E \cap U_1) = (E \cap U_2) \cap (E \cap U_1) = \emptyset$, hence $b \notin A^-$; contradiction!

Proof: E disconnected \Leftarrow exist A and B...

Claim: $U_1 = S \backslash B^-$, $U_2 = S \backslash A^-$ work.

Note: $E \cap U_1 = A$. Indeed, if $x \in E \cap U_1$, then $x \notin B$, hence $x \in A$. If $x \in A$, then $x \notin B^-$, hence $x \in E \cap U_1$. Similarly, $E \cap U_2 = B$.

Intervals are connected

Proposition (Example 1, p. 179)

Any interval $I \subset \mathbb{R}$ is connected.

Proof. Suppose, for contradiction, an interval I is disconnected – that is, $I = A \cup B$, with A, B non-empty, $A^- \cap B = \emptyset = A \cap B^-$.

Find $a \in A$, $b \in B$, say a < b. Let $c = \sup\{x \in A : x < b\}$. Note that $b \notin A^-$, hence $\exists \delta > 0$ s.t. $(b - \delta, b + \delta) \cap I \subset B$. So, c < b. Similarly, c > a.

- If $c \in A$, then $c \notin B^-$, hence $\exists \sigma > 0$ s.t. $(c \sigma, c + \sigma) \subset A$. c is not an upper bound for $\{x \in A : x < b\}$: contradiction!
- If $c \in B$, then $\exists \sigma > 0$ s.t. $(c \sigma, c + \sigma) \subset B$. c is not the least upper bound for $\{x \in A : x < b\}$: contradiction!