Analiza danych ankietowych Sprawozdanie 3

Weronika Jaszkiewicz Weronika Pyrtak

Spis treści

Część I oraz	L	L																				1
Zadanie 1																						
Zadanie 2																						
Zadanie 3																						3
Zadanie 4																						4
Zadanie 5																						5
Część III																						6
Zadanie 6																						
Zadanie 7																						
Zadanie 8																						9
Część II																						11
Zadanie 9																						11

Część I oraz II

Zadanie 1

Funkcja $p_wartosc_warunkowy_test_symetrii()$ realizuje warunkowy test symetrii dla tabeli 2×2 . Test opiera się na liczbie niesymetrycznych par, których suma traktowana jest jako próba w rozkładzie dwumianowym z prawdopodobieństwem sukcesu 0.5 (hipoteza symetrii). P-wartość obliczana jest jako dwustronne prawdopodobieństwo uzyskania wyniku co najmniej tak ekstremalnego jak zaobserwowany.

```
p_wartosc_warunkowy_test_symetrii<- function(tabela){
  n1 <- tabela[1,2]
  n2 <- tabela[2,1]
  n <- n1 + n2
  p <- 0</pre>
```

```
if(n1 < n/2){
   for (i in 1:n1) {
   p <- p + choose(n, i) * (0.5)^i * (0.5)^(n - i)
   }
}else if(n1 > n/2){
   for (i in n1:n) {
    p <- p + choose(n, i) * (0.5)^i * (0.5)^(n - i)
   }
}else{
      p <- 1
}
return(list(p_value = p))
}</pre>
```

Zadanie 2

Dane dotyączce reakcji na lek po godzinie od jego przyjęcia dla dwóch różnych leków przeciwbólowych stosowanych w migrenie zostały przedstawione w poniższej tabelce. Dla tych danych przeprowadzono test McNemara (z poprawką na ciągłość) oraz test warunkowy, miały one na celu zweryfikowanie hipotezy, że leki są jednakowo skuczene. Przyjmowany poziom istotności: $\alpha=0.05$.

Tabela 1: Reakcja na lek A vs lek B

	Negatywna	Pozytywna
Negatywna	1	5
Pozytywna	2	4

Test McNemara z poprawka na ciagłość

```
##
## McNemar's Chi-squared test with continuity correction
##
## data: tabela_zad_2
## McNemar's chi-squared = 0.57143, df = 1, p-value = 0.4497
```

Wynik test wskazuje na brak podstaw do odrzucenia hipotezy zerowej. Oznacza to, że brak istotnych statystycznie różnic pomiędzy skutecznością leku A i leku B, zatem można uznać, że leki A i B są jednakowo skuteczne w tej próbie.

Test warunkowy

```
## $p_value
## [1] 0.2265625
```

P-wartość uzyskana w warunkowym teście symetrii jest znacznie większa od poziomu istotności. Oznacza to, że nie ma podstaw do odrzucenia hipotezy zerowej, czyli nie ma statystycznie istotnych różnic w skuteczności między lekiem A i lekiem B.

Zadanie 3

W celu porównania mocy testu Z oraz testu Z_0 przeprowadzono symulacje rozważając różne długości próby: n=(50,100,200,500).

Moc testu Z dla róznych n

Na wykresie przedstawiono estymowaną moc testu Z przy hipotezie zerowej $H_0: p_1=0.5$. Krzywe mocy są symetryczne względem wartości $p_1=0.5$, co potwierdza, że test działa zgodnie z założeniem testowania dwustronnego.

Moc testuZ wzrasta wraz z oddalaniem się wartości $p_1=0.5$. Oznacza to, że im większe jest rzeczywiste odchylenie od hipotezy zerowej, tym większa jest szansa na jej odrzucenie.

Z wykresu wynika również, że test Z staje się bardziej czuły wraz ze wzrostem liczności próby. Dla większych wartości moc testu szybciej rośnie i osiąga wartości bliskie 1. To wskazuje, że test jest bardziej skuteczny przy większych próbach.

Moc testu Z₀ dla róznych n

Na wykresie przedstawiono estymowaną moc testu Z_0 przy hipotezie zerowej $H_0: p_1=0.5$. Widać wyraźną symetrię względem $p_1=0.5$, co jets zgodne z założeniem testowania dwustronnego.

Można zauważyć, że moc testu rośnie wraz z oddalaniem się od od $p_1 = 0.5$. – im większa różnica między wartością rzeczywistą a wartością podaną w hipotezie zerowej, tym większa szansa na jej odrzucenie.

Dodatkowo, dla większych prób test Z_0 jest bardziej czuły – moc rośnie szybciej i szybciej zbliża się do wartości 1. Oznacza to, że test łatwiej wykrywa niewielkie różnice przy większej liczbie obserwacji.

Na podstawie symulacji stwierdzono, że testy Z i Z_0 wykazują bardzo podobne właściwości – moc obu testów rośnie wraz z licznością próby oraz oddalaniem się $p_1=0.5$. Oba testy są symetryczne względem $p_1=0.5$, co jest zgodne z założeniem testowania dwustronnego. Nie zaobserwowano istotnych różnic w mocy między testami, co sugeruje, że w analizowanych warunkach są równoważne pod względem skuteczności.

Zadanie 4

Celem badania było zweryfikowanie hipotezy, że zadowolenie ze szkoleń w pierwszym badanym okresie i w drugim badanym okresie pierwszego badania odpowiada modelowi symetrii.

Tabela 2: Tabela zadowolenia: pomiar 1 vs pomiar 2

	NIE	TAK
NIE	74	20
TAK	8	98

```
##
## McNemar's Chi-squared test with continuity correction
##
## data: tabela_czy_zadow
## McNemar's chi-squared = 4.3214, df = 1, p-value = 0.03764
```

Na podstawie wyniku testu McNemara (z poprawka na ciagłość) odrzucamy hipotezę zerową $(p-value=0.03764<\alpha=0.05)$. Zatem możemy stwierdzić, że poziom zadowolenia ze szkoleń uległ istotnej statystycznie zmianie między pierwszym a drugim okresem badania.

Zadanie 5

Na podstawie danych przedstawionych w poniższej tableli sprawdzono, czy odpowiedzi w pierwszym badanym okresie i w drugim okresie odpowiadają modelowi symetrii. W tym celu przeprowadzono dwa testy:

Tabela 3: Tabela reakcji

	-2	-1	0	1	2
-2	10	2	1	1	0
-1	0	15	1	1	0
0	1	1	32	6	0
1	0	0	1	96	3
2	1	1	0	1	26

Test Bowkera

```
##
## McNemar's Chi-squared test
##
## data: tabela
## McNemar's chi-squared = NaN, df = 10, p-value = NA
```

Wynik testu Bowkera daje spodziewany wynik p-value = NA. Jest on spowodowany tym, że w liczniku statystyki testowej obliczamy $n_{ij} + n_{ji}$, co powoduje dzielenie przez 0.

Tesr IW

```
## $statistic
## [1] 13.32669
##
## $p_value
## [1] 0.2059752
```

W teście IW p-wartość przekracza standardowy poziom istotności ($\alpha=0.05$), co zonacza, że nie ma podstaw do odrzucenia hipotezy zerowej. Zatem test IW również nie wykazuje istotnych różnic między ocenami podejścia firmy w dwóch okresach.

W związku z tym, także na podstawie tego testu można stwierdzić, że ocena podejścia firmy do umożliwiania wdrażania wiedzy nie uległa istotnej zmianie.

Część III

Zadanie 6

W pewnym badaniu porównywano skuteczność dwóch metod leczenia: Leczenie A to nowa procedura, a Leczenie B to stara procedura. Przeanalizowano dane przedstawione w Tabeli 3 (wyniki dla całej grupy pacjentów) oraz w Tabelach 4 i 5 (wyniki w podgrupach ze względu na dodatkową zmienną) i odpowiedz na pytanie, czy dla danych występuje paradoks Simpsona.

```
# Dane
all <- matrix(c(117, 104, 177, 44), nrow = 2, byrow = TRUE,
              dimnames = list(c("Leczenie A", "Leczenie B"), c("Poprawa", "Brak")))
with_comorb <- matrix(c(17, 101, 2, 36), nrow = 2, byrow = TRUE,
                       dimnames = list(c("Leczenie A", "Leczenie B"), c("Poprawa", "Brak'
without_comorb <- matrix(c(100, 3, 175, 8), nrow = 2, byrow = TRUE,
                          dimnames = list(c("Leczenie A", "Leczenie B"), c("Poprawa", "Bn
# Funkcja do obliczania skuteczności
effectiveness <- function(data) {</pre>
  round(data[, "Poprawa"] / rowSums(data), 3)
}
# Wyniki
eff_all <- effectiveness(all)</pre>
eff_with <- effectiveness(with_comorb)</pre>
eff without <- effectiveness(without comorb)</pre>
eff all
## Leczenie A Leczenie B
##
        0.529
                    0.801
eff with
## Leczenie A Leczenie B
##
        0.144
                    0.053
eff_without
## Leczenie A Leczenie B
##
        0.971
                   0.956
```

```
# Testy chi-kwadrat niezależności
test all <- chisq.test(all)</pre>
test_with <- chisq.test(with_comorb)</pre>
test without <- chisq.test(without comorb)</pre>
# Zbiór wyników
test_results <- data.frame(</pre>
  Tabela = c("Cała grupa", "Z chorobami", "Bez chorób"),
  Chi2 = round(c(test_all$statistic, test_with$statistic, test_without$statistic), 2),
  DF = c(test_all$parameter, test_with$parameter, test_without$parameter),
 p_value = round(c(test_all$p.value, test_with$p.value, test_without$p.value), 4)
test_results
##
          Tabela Chi2 DF p_value
      Cała grupa 35.36 1 0.0000
## 2 Z chorobami 1.47 1 0.2248
## 3 Bez chorób 0.09 1 0.7675
```

Analiza skuteczności metod leczenia

Dla całej grupy pacjentów skuteczność leczenia wynosi:

Leczenie A:
$$\frac{117}{117 + 104} \approx 0,529$$

Leczenie B: $\frac{177}{177 + 44} \approx 0,801$

Dla pacjentów z chorobami współistniejącymi:

Leczenie A:
$$\frac{17}{17+101} \approx 0.144$$

Leczenie B: $\frac{2}{2+36} \approx 0.053$

Dla pacjentów bez chorób współistniejących:

Leczenie A:
$$\frac{100}{100+3} \approx 0,971$$

Leczenie B: $\frac{175}{175+8} \approx 0,956$

Wniosek

Tabela	Statystyka χ^2	DF	<i>p</i> -value
Cała grupa	47.06	1	< 0.0001
Z chorobami	1.19	1	0.2755
Bez chorób	0.18	1	0.6699

Tabela 4: Wyniki testów χ^2 niezależności dla skuteczności leczenia

W każdej podgrupie (zarówno pacjentów z chorobami współistniejącymi, jak i bez nich) leczenie A okazuje się skuteczniejsze niż leczenie B. Jednakże w całej populacji obserwujemy odwrotny wniosek — leczenie B ma wyższą skuteczność. Jest to klasyczny przykład paradoksu Simpsona, w którym agregacja danych zaciemnia rzeczywiste zależności występujące w podgrupach.

Dla całej grupy różnica skuteczności między Leczeniem A i B jest statystycznie istotna (p < 0.0001).

W podgrupach (z i bez chorób współistniejących) nie ma podstaw do odrzucenia hipotezy niezależności – brak istotnych różnic w skuteczności między metodami. To potwierdza występowanie paradoksu Simpsona – agregacja danych prowadzi do innych wniosków niż analiza w podgrupach.

Zadanie 7

Dla danych z listy 1, przyjmując za zmienną 1 zmienną CZY_KIER, za zmienn 2– zmienną PYT_2 i za zmienną 3– zmienną STAŻ, przedstawiono interpretacje nastepujacych modeli log-liniowych: [13], [13], [123], [123], [1213] oraz [123].

```
~ CZY_KIER + STAZ + CZY_KIER:STAZ,
~ CZY_KIER * PYT_2 * STAZ,
~ CZY_KIER * PYT_2 + STAZ,
~ CZY_KIER * PYT_2 + CZY_KIER * STAZ,
~ CZY_KIER + PYT_2 * STAZ + CZY_KIER:STAZ
)

# Dopasowanie modeli i zapis wyników
results <- data.frame(Model = model_names, Deviance = NA, DF = NA, p_value = NA)

for (i in seq_along(formulas)) {
  fit <- loglm(formulas[[i]], data = tablica)
  results$Deviance[i] <- round(fit$deviance, 2)
  results$DF[i] <- fit$df
  results$p_value[i] <- round(pchisq(fit$deviance, df = fit$df, lower.tail = FALSE), 4)
}
results</pre>
```

Model	Deviance	DF	<i>p</i> -value
[1 3]	203.07	20	0.0000
[13]	183.98	18	0.0000
$[1\ 2\ 3]$	0.00	0	1.0000
$[12\ 3]$	33.91	14	0.0021
$[12 \ 13]$	14.82	12	0.2512
$[1 \ 23]$	4.88	9	0.8446

Tabela 5: Dopasowanie modeli log-liniowych: wartość statystyki deviance, liczba stopni swobody i wartość p.

Na podstawie analizy modeli log-liniowych można stwierdzić, że najlepszym dopasowaniem do danych charakteryzuje się model [1 23], który uwzględnia zależność pomiędzy zmiennymi PYT_2 i STAZ oraz ich wspólny wpływ na CZY_KIER. Model ten ma wysoką wartość p-value (0,8446), co oznacza brak podstaw do jego odrzucenia, a jednocześnie jest prostszy niż model pełny [1 2 3]. Modele [1 3] i [13] należy odrzucić ze względu na istotnie słabe dopasowanie (p < 0,001).

Zadanie 8

Przyjmując model log-liniowy [123] dla zmiennych opisanych w zadaniu 7 oszacowano prawdopobiebieństwa:

• ze osoba pracuj , aca na stanowisku kierowniczym jest zdecydowanie zadowolona ze szkoleń,

- ze osoba o staż pracy krótszym niż rok pracuje na stanowisku kierowniczym;
- ze osoba o stażu pracy powyżej trzech lat nie pracuje na stanowisku kierowniczym.

Jakie byłyby oszacowania powyższych prawdopodobieństw przy założeniu modelu [1223]?

Sytuacja	Prawdopodobieństwo
1. Osoba na stanowisku kierowniczym, zdecydowanie za-	0.1667
dowolona ze szkoleń (PYT_2 = "2")	
2. Osoba o stażu krótszym niż 1 rok (STAŻ = "1"), nie	0.2083
pracuje na stanowisku kierowniczym	0.000
3. Osoba o stażu powyżej 3 lat (STAŻ = "3"), nie pracuje	0.0833
na stanowisku kierowniczym	

Tabela 6: Prawdopodobieństwa przy założeniu modelu log-liniowego [1 2 3]

Sytuacja	Prawdopodobieństwo
1. Osoba na stanowisku kierowniczym, zdecydowanie za-	0.1513
dowolona ze szkoleń (PYT_2 = "2") 2. Osoba o stażu krótszym niż 1 rok (STAŻ = "1"), nie	0.2174
pracuje na stanowisku kierowniczym 3. Osoba o stażu powyżej 3 lat (STAŻ = "3"), nie pracuje	0.0865
na stanowisku kierowniczym	

Tabela 7: Prawdopodobieństwa przy założeniu modelu log-liniowego [12 23]

Prawdopodobieństwa oszacowane przez oba modele są do siebie bardzo zbliżone. Model pełny [123] odwzorowuje dokładnie strukturę danych - jest nadmiernie dopasowany, natomiast model [1223] daje podobne wyniki przy mniejszej liczbie interakcji, dlatego może być uznany za bardziej parsymonialny i praktyczny w interpretacji.

Część II

Zadanie 9

Dla danych wskazanych w zadaniu 7 zweryfikowano następujące hipotezy:

- zmienne losowe CZY KIER, PYT 2 i STAŻ sa wzajemnie niezależne;
- zmienna losowa PYT_2 jest niezależna od pary zmiennych CZY_KIER i STAŻ;
- zmienna losowa PYT_2 jest niezależna od zmiennej CZY_KIER, przy ustalonej wartości zmiennej STAŻ

```
## Hipoteza Deviance DF p_value
## 1 H1: całkowita niezależność 42.242215 17 0.0006
## 2 H2: PYT_2 niezależna od (CZY_KIER, STAZ) 23.152114 15 0.0810
## 3 H3: PYT_2 CZY_KIER | STAZ 4.879959 9 0.8446
```

Hipoteza	Deviance	DF	<i>p</i> -value
H1: całkowita niezależność (CZY_KIER, PYT_2,	42.24	17	0.0006
STAZ)			
H2: PYT_2 niezależna od pary (CZY_KIER, STAZ)	23.15	15	0.0810
H3: PYT_2 \perp CZY_KIER STAZ (warunkowa nieza-	4.88	9	0.8446
leżność)			

Tabela 8: Weryfikacja hipotez o niezależności między zmiennymi za pomocą modeli log-liniowych

Hipoteza H1 (całkowita niezależność wszystkich trzech zmiennych) została odrzucona na poziomie istotności 0,05 — bardzo niskie p-value (0.0006) świadczy o silnych zależnościach między zmiennymi.

Hipoteza H2 (PYT_2 niezależna od pary CZY_KIER i STAZ) nie została odrzucona, ale wartość p = 0.0810 jest bliska granicy — wskazuje na możliwy umiarkowany związek.

Hipoteza H3 (warunkowa niezależność PYT_2 CZY_KIER przy ustalonym STAZ) nie została odrzucona — wysokie p-value (0.8446) sugeruje, że warunkowa niezależność jest uzasadniona i dobrze opisuje dane.