DNV-GL

OIL & GAS

Environmentally Assisted Fatigue and Fracture of Offshore Pipelines – Current Status and Future Needs

DNV GL Technology Week November 2nd, 2016

Colum Holtam, Ramgo Thodla

Agenda

- Introduction to pipeline engineering critical assessment (ECA)
- Corrosion fatigue and fracture testing
 - Influence of key variables
- Technical challenges
 - Representative material properties

Introduction to Pipeline ECA

Ungraded

4 DNV GL © 2016

DNV-OS-F101 (Appendix A)

- Requirements for ECA
 - Maximum longitudinal strain, $\epsilon_{l,nom}$, larger than 0.4%
 - Aggressive (e.g. sour) environments ...
 - Standard ECA
 - Overmatching welds

DNV·GL

DNVGL-RP-F108 - New RP for ECA (Coming Soon)

RECOMMENDED PRACTICE DNV-RP-F108

FRACTURE CONTROL FOR PIPELINE INSTALLATION METHODS INTRODUCING CYCLIC PLASTIC STRAIN

JANUARY 2006

DET NORSKE VERITAS

- DNV-OS-F101 >> DNVGI-ST-F101
 - New fatigue and fracture limit state in Section 5
- DNV-RP-F108 >> DNVGL-RP-F108
 - RP for ECA
 - Appendix A from OS-F101
 - SENT testing guidance removed
 - BS 8571
 - Easier to update

Principals of Fracture Mechanics

- Equilibrium evaluation between:
 - The Crack Driving Force (CDF) (load)
 - The fracture toughness (capacity)

 $CDF < CTOD_{mat}$: Crack is stable

CDF ≥ CTOD_{mat}: Crack is unstable (fracture or crack growth)

Fracture Mechanics "Engineering Critical Assessment" (ECA)

Distinguishing between what is safe and unsafe

Ungraded Failure Assessment Diagram used to model failure by fracture / plastic collapse

Pipeline ECA

Crack growth modelled to calculate critical initial flaw sizes

Static and Cyclic Stresses

- Installation
- Extreme loads

- Fatigue
 - Thermal cycles
 - VIV (free spans)
 - VIM

Fracture Toughness

Fracture toughness parameter

- CTOD
- K
- J

Specimen type

- Compact Tension (CT)
- Single Edge Notched Bend (SENB)
- Single Edge Notched Tension (SENT)

Fatigue Crack Growth Analysis

- Fracture mechanics used to model fatigue crack growth through life
- Fatigue crack growth rate law (C, m)

$$\frac{da}{dN} = C(\Delta K)^m$$

$$\Delta K = Y(\Delta\sigma)\sqrt{(\pi\alpha)}$$

$$\frac{1}{C} \int_{a_i}^{a_f} \frac{da}{(Y\sqrt{\pi a})^m} = (\Delta \sigma)^m N$$

Fracture Mechanics Software

- FlawSizer (DNV GL internal software)
 - BS 7910
 - DNV-OS-F101 App. A
 - DNV-RP-F108
- **CRACKWISE** (TWI commercial software)
 - BS 7910
- **Signal** (Quest Integrity commercial software)
 - API/ASME 579
 - BS 7910
- FEA
 - ABAQUS
- Spreadsheets/MathCAD

Corrosion Fatigue and Fracture Testing

Corrosion Fatigue and Fracture

- Presence of H₂S (sour service) and/or CO₂ (sweet service) in production fluids can reduce fracture toughness and increase fatigue crack growth rate
- No standard/published guidance for assessment of environmentally assisted fatigue and fracture of offshore pipelines
- Several JIPs to develop test methods and data
- Published data typically not available
- Project specific testing often required

Corrosion Fatigue and Fracture Testing

Ungraded

16 DNV GL © 2016 DNV·GL

Environmental Severity - ISO 15156-2 Domain Diagram

Fatigue and Fracture Toughness in Aggressive Environments – Critical Factors

- Environmental Variables
 - pH
 - $-p_{H2S}/p_{CO2}$
 - Temperature
 - Inhibitors
- Sample Geometry
 - CT vs. SENB vs. SENT
 - Fully exposed vs Coated
 - Pre-soak duration
 - Shallow notch vs Deep notch
- Material issues
 - Microstructure (PP/HAZ/WCL)
 - Strength
 - Strain level (e.g. reeling installation)

- Loading Variables
 - $-\Delta K$ (FCGR)
 - Frequency (FCGR)
 - K-rate (FT)
- Loading Modes
 - FCGR
 - Constant/Increasing/Decreasing ΔK
 - Constant R/Constant K_{max}
 - FT
 - Rising Displacement
 - Constant Load
 - Step Load
 - Constant Displacement
 - Constant K

Ungraded

18

What is the impact of the different test methods and variables on the sour/sweet service fatigue crack growth and fracture toughness behavior of line pipe steel?

Fatigue Crack Growth Rate – Effect of Frequency (Sour Service)

- FCGR increases with decreasing frequency and reaches a plateau
- Data in triplicate is very reproducible
- FCGR of WCL samples is ~11x above air
- FCGR of PP and HAZ is in the range of about 20 to 30x.

Ungraded

OMAE2015 - 42412

20

Fatigue Crack Growth Rate – Effect of Environment (Sweet Service)

Ungraded *OMAE2013-10216*

Fatigue Crack Growth Rate – Effect of Inhibitor (Sour Acidizing Service)

- Tests performed in-situ in spent acid with and without inhibitor with 0.21psia H₂S
- FCGR increases with decreasing frequency
- With inhibitor
 - Maximum FCGR ~100x air
 - At 0.1Hz FCGR ~15x air
- Without inhibitor
 - Maximum FCGR ~60x air
 - At 0.1Hz FCGR ~25x air
- Difference in behavior may be associated with higher corrosion rate in spent acid without inhibitor causing crack tip blunting and environmentally-induced closure due to the build-up of voluminous corrosion products inside the crack

Ungraded

OMAE2016-54388

Fracture Toughness – Effect of Loading Rate (Sour Service)

Ungraded

Corrosion2012-1577

Fracture Toughness – Effect of Loading Rate (Sour Service)

ISOPE2015-598

Back side of specimen

Diffusion of Hydrogen - Hydrogen Profile in Uncoated and Coated Samples

Back

side

specimen

Ungraded

25 DNV GL © 2016

Fracture Toughness – Effect of Coating (Sour Service)

Ungraded | ISOPE2015-598

Fracture Toughness – Effect of Reeling (Sour Service)

Ungraded OMAE 2015 - 42413

Technical Challenges

Technical Challenges

- Representative material properties in aggressive environments
 - Fracture toughness
 - Fatigue crack growth rate
- Assessment clad/lined pipes
- Installation method
- Undermatching welds

Loading Scenarios – Lateral Buckling

- Primary loading scenarios
 - Fatigue loading from pressure transients
 - Fatigue loading from thermal transients
 - Static loading associated with long steady operations
- Development of a single specimen methodology to capture all of the critical design parameters

FCGR – Based on Average values of CGR

- FCGR increases linearly with decreasing frequency.
- "Plateau FCGR" is about 10x higher than the in-air values.
- Addition of hold times leads to a transition to a constant CGR

Static Crack Growth Analysis

- Fracture mechanics used to model static crack growth through life
- Static crack growth rate law (C1, n(scc))

$$\frac{da}{dt} = C_1(K)^{n(scc)}$$

$$K = Y(\sigma)\sqrt{(\pi a)}$$

$$\frac{1}{C_1} \int_{a_i}^{a_f} \frac{da}{(Y\sqrt{\pi a})^{n(scc)}} = (\sigma)^{n(scc)} t$$

Thank you

Questions?

Dr. Colum Holtam colum.holtam@dnvgl.com +1 281-396-1000 Dr. Ramgo Thodla ramgopal.thodla@dnvgl.com +1 614-761-1214

www.dnvgl.com

SAFER, SMARTER, GREENER