Lecture 15 — Performance Models and Tuning

Prof. Brendan Kochunas

NERS/ENGR 570 - Methods and Practice of Scientific Computing (F22)

Outline

- Upcoming assignments
- Recap of Lecture 14
- Latency Based Execution Time Model
- Serial Architecture Performance Tuning
 - Survey and hands-on examples with compiler explorer
- Bonus Material: Advanced Optimizations & Case Studies
 - Blocked matrix-matrix multiply and cache oblivious algorithms
 - Case Study from NERS 570 F18 Project: STAAC
 - Case Study Segev Interpolation

Learning Objectives: By the end of Today's Lecture you should be able to

- (*Knowledge*) describe what properties influence an algorithm's performance
- (Knowledge) Decide what steps to take to make your code faster
- (Skill) develop and analyze a simple performance model to predict the performance of a low-level algorithm/computational kernel
- (*Knowledge*) be able to describe general techniques to "tune" the performance of code

Review of Lecture 14

Results for Lab 4

$$\mathbf{AB} = \mathbf{C} \to c_{i,j} = \sum_{k} a_{i,k} b_{k,j}$$

306x

				Using -Ofast			A /	- 5
	Naïve I know fortran I'm lazy ≯ Blocked System Blas OpenBlas MKL ✓						Munpy	
20		0	0	DIOCKEU 0	Oystelli bias	Ореныаз	0.002	0,0079
100		0	0.001	0	0	0.001		
500	0.155	0.061	0.01	0.053	0.077	0.007	0.007	0.034
1000	2.003	1.645	0.068	0.436	1.409	0.045	0.035	0014
2000	31.465	10.425	0.5	3.562	8.158	0.263	0.242	0.067
> 4000	<u> 364.135</u>	87.972	3,997	29.305	46.706	1.869	1.843	0.106
	i,j,k	k,j,i (stride-1)	MATMULT	blkSize=256	Reference	Optimized	Optimized	~_
		7.						

Results obtained on Great Lakes circa 2020(?)

Clearly something is going on here...

Memory Hierarchy

	Register	L1	L2	L3	DRAM	Disk	Таре
Size	< 1 KB	~1KB	1 MB	10's MB	1-100's GB	ТВ	РВ
Speed	< 1ns	<1 ns	~1 ns	~1-10 ns	10-100 ns	10 ms	~10s

Tape Archival Storage

Fundamental Performance Model

Execution time = time to perform arithmetic + time to move data

T =execution time

F = Total FLOPs

L = Total Loads & Stores

 t_f = average time per flop

 t_m = average time per load/store

"machine balance"
Property of machine
No control on this

"computational intensity"

Property of algorithm *and implementation*Some control over this

Matrix-Vector Multiply tast & Slow Memory holds 3n]

 $\underline{y}(i) = y(i) + A(i,j) \times (j)$

Plug-n-Chug

- Some real data
 - From Flux t_M =8 ns (assuming L3 access time) and assume t_F = 0.3 ns (1 cycle)

$T = 2n^2 t_F$	<i>(</i> 1⊥	t_{M}	$\frac{1}{2}$
$I - 2\pi \iota_F$		$\overline{t_F}$	$\left[\frac{1}{2}\right]$

	Clock	Peak	Mem Lat (Min,Max)	Linesize	t_m/t_f
	MHz	Mflop/s	сус	les	Bytes	
Ultra 2i	333	667	38	66	16	24.8
Ultra 3	900	1800	28	200	32	14.0
Pentium 3	500	500	25	60	32	6.3
Pentium3N	800	800	40	60	32	10.0
Power3	375	1500	35	139	128	8.8
Power4	1300	5200	60	10000	128	15.0
Itanium1	800	3200	36	85	32	36.0
Itanium2	900	3600	11	60	64	5.5

machine balance (q must be at least this for ½ peak speed)

Table B.1 and B.2 from R. Vuduc Dissertation: http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf

Understanding Performance

Algorithm Performance

- Not all algorithms are created equally
 - e.g. Big-O notation $O(n^2)$ vs $O(n \log n)$
- Not all implementations (algorithms really) are created equally
 - Can have "same" implementations with vastly different performance
- Very few algorithms allow you to achieve sustained performance at a significant fraction of the theoretical peak

Theoretical Peak Performance

- Example: Intel Haswell
 - What is the maximum FLOPs per cycle?
 - Need to look at SIMD information on processor
 - If we have AVX it supports a 256-bit vector so it can operate on 4 doubles
 - Does it support a fused multiply add (FMA instruction)?
 - Yes, so the chip can execute 4 FMA instructions (8 FLOPs) at once
 - How many vector units does it have?
 - Apparently it has 2 vector units... so now we're at 16 FLOPs at once
 - How many cycles to execute an FMA instruction (which is two operations)?
 - Not always easy to find... common to assume 1 cycle.
 - However there may be other limiting factors such as latency (5 cycles in this case)
 - What is the clock speed (cycles per second)? 2.50 GHz
 - Well with AVX it appears to be 2.1 GHz
 - How many cores does it have? 12
- 16 FLOPs/cycle × 2.5e9 cycles/second × 12 cores = 480 GFLOPS
 - 16 FLOPs ÷ 5 cycle × 2.1e9 cycles/second × 12 cores = **80 GFLOPS**
- Another derived metric is fraction of theoretical peak

Two Lessons from this:

- 1. This should be an easy calculation
- 2. Finding the right information can get quite complicated
- 3. Best to provide references e.g. document or presentation from the manufacturer

SpMV Analysis

COO

Cost: 5 memory reads, 1 write and 2 flops per iteration.

CRS

Cost: 3 memory read and 1 write per outer iteration, 3 memory read and 2 flops per inner iteration.

ELLPACK

Cost: 1 memory read and 1 write per outer iteration, 3 memory read and 2 flops per inner iteration (also, regular access pattern).

enddo

Extending the Simple Performance Model

	Register	L1	L2	L3	DRAM	Disk	Таре
Size	< 1 KB	~1KB	1 MB	10's MB	1-100's GB	ТВ	РВ
Speed	< 1ns	<1 ns	~1 ns	~1-10 ns	10-100 ns	10 ms	~10s

Generalization of Performance Models

Latency based execution time model for "Single Processor"

$$T = Ft_F + \alpha_1 L + \sum_{j=1}^{\kappa-1} (\alpha_{j+1} - \alpha_j) M_j + (\alpha_{mem} - \alpha_{\kappa}) M_{\kappa}$$

F= # of FLOPs
 L=# of loads
 α = cache access latency
 M = cache misses
 T = execution time

	Register	L1	L2	L3	DRAM	Disk	Таре
Size	< 1 KB	~1KB	1 MB	10's MB	1-100's GB	ТВ	РВ
Speed	< 1ns	<1 ns	~1 ns	~1-10 ns	10-100 ns	10 ms	~10s

Most generally when dealing with complex kernels

$$T = \sum_{i} N_{i} t_{i}$$
 $N_{i} = \text{Number of operations of type } i$ $t_{i} = \text{time to execute operation of type } i$

Roofline Models

 Visual representation of performance relating arithmetic intensity (q) and hardware performance limits

$$q = \frac{F}{L}$$

Survey of Optimization & Tuning

Compilers can do a lot of this well, but are not guaranteed to do it

Things people say about Optimization

- "We should forget about small efficiencies, say about 97% of the time: *premature optimization is the root of all evil*. Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will *be wise to look carefully at the critical code; but only after that code has been identified*"
 - Donald Knuth
- "You're bound to be unhappy if you optimize everything"
 - Donald Knuth
- "The best optimization you will ever have is to have your program go from not working to working"
 - paraphrasing

Common Optimization Techniques

- Before you program
 - Choose the best algorithm
 - e.g. choose known fastest converging algorithms or algorithms with asymptotically small operation counts
 - Choose the best way to express this algorithm in a programming language
 - Perform algebra to minimize operations or minimize memory traffic and communication
 - Design data structures around computational kernels & maximize cache locality
- As you are programming
 - compiler optimization flags
 - choose best operators (remove unnecessary FLOPs)
 - loop unrolling (pipelining & vectorization)
 - remove conditionals (lets compiler optimize loops better)
 - function tabulation (remove unnecessary FLOPs)
 - Mixed Precision

Compiler flags

GCC compiler option	Meaning
-00	Reduce compilation time and make debugging produce the expected results. This is the default.
-01	compiler tries to reduce code size and execution time, without performing any optimizations that take a great deal of compilation time. (favors size of executable)
-02	Performs nearly all supported optimizations that do not involve a space-speed tradeoff. Includes all -01 optimizations
-03	Highest level of optimization. Includes all -02 optimizations
-Ofast	Disregard strict standards complianceOfast enables all -O3 optimizations. It also enables optimizations that are not valid for all standard-compliant programs.
-0g	Optimizations safe for debugging
-fipa-pta	Perform interprocedural pointer analysis and interprocedural modification and reference analysis. This option can cause excessive memory and compile-time usage on large compilation units. It is not enabled by default at any optimization level.
-funsafe- math- optimizations	Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid and (b) may violate IEEE or ANSI standards.
-march=native	Produce assembly instructions for the native CPU type (hopefully enables some SSE or AVX instructions)

Choosing Data Structures and Loop Ordering

- Always make loops "stride-1" access to achieve best cache performance
 - Note this is not always possible for every algorithm.
- Looping structure should determine order of indexes in your variables.

Fortran loops should index "in-out"

```
DO k=1,n
DO j=1,n
DO i=1,n
A(i,j,k)

in — out
ENDDO
ENDDO
ENDDO
```

C/C++ loops should index "out-in"

```
for( i=0; i<n; i++ ) {
  for( j=0; j<n; j++) {
    for( k=0; k<n; k++ ) {
        A[i][j][k]
        out ← in
    }
}</pre>
```

Operator Choice

- Avoid exponentiation
 - Polynomial evaluation
 - e.g. Correlations for material properties, Semi-empirical models for coefficients

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

$$P(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + a_4 x)))$$

```
t2=t**2.0 !slowest
t2=t**2 !slow
t2=t*t !fastest
```

When its unavoidable

```
c=a**b
c=EXP(b*LOG(x)) !may be faster
```

Division is allegedly more expensive than multiplication (I've never observed this)

Expose Independent Operations

- Hide instruction latency
 - Use local variables to expose independent operations that can execute in parallel or in a pipelined fashion
 - Balance the instruction mix (e.g. what functional units are available?)

```
f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;
```

Exploit Multiple Registers

 Reduce demands on memory bandwidth by pre-loading into local variables

Loop Unrolling

- Compilers are not necessarily very good (or not as good as we'd like sometimes) at interpreting how to optimize loops
 - So compilers will do this if right flags are provided and loops are "clear" enough to compiler

```
subroutine lngth1(n,a,s)
  integer :: n
  real(8) :: s,a(n)
  integer :: i
  s=0.d0
  do i=1,n
      s=s+a(i)*a(i)
  enddo
endsubroutine
```

```
!works correctly only if the array size is a multiple of 4
subroutine lngth4(n,a,s)
 integer :: n
 real(8) :: s,a(n)
 integer :: i
 real(8) :: t1, t2, t3, t4
 t1=0.d0; t2=0.d0; t3=0.d0; t4=0.d0
 do i=1, n-3, 4
    t1=t1+a(i)*a(i)
    t2=t2+a(i+1)*a(i+1)
    t3=t3+a(i+2)*a(i+2)
    t4=t4+a(i+3)*a(i+3)
  enddo
  s=t.1+t.2+t.3+t.4
                           Unrolled to a depth of 4
endsubroutine
```

Loop Unrolling (2)

- Exploits vector instructions and pipelining
- Cannot be done to arbitrary size
 - Registers will get overloaded
 - Size should be "register-blocked" or "cache-blocked".
- Can use *padding* to avoid remainder loops.

```
subroutine lngth4(n,a,s)
  integer :: n
  real(8) :: s,a(n)
  integer :: i
  real(8) :: t1, t2, t3, t4, tr
  t1=0.d0; t2=0.d0; t3=0.d0; t4=0.d0; tr=0.d0
  do i=1, n-3, 4
    t1=t1+a(i)*a(i)
    t2=t2+a(i+1)*a(i+1)
    t3=t3+a(i+2)*a(i+2)
    t4=t4+a(i+3)*a(i+3)
  enddo
  do j=n-MOD(n,4)+1,n
    tr=tr+a(j)*a(j) !in practice need "remainder"
  enddo
  s=t1+t2+t3+t4+tr
endsubroutine
```

Remove conditionals from loops

- Loops that have branching constructs are usually not optimized by compiler
 - Set all even indices to 0 and all odd indices to 1

```
DO i=1,SIZE(a)
  IF(MOD(i,2) == 1) THEN
  a(i)=1
  ELSE
  a(i)=0
  ENDIF
ENDDO
```

```
DO i=1,SIZE(a),2
   a(i)=1
ENDDO

DO i=2,SIZE(a),2
   a(i)=0
ENDDO
```

```
DO i=1,SIZE(a)-1,2
   a(i)=1
   a(i+1)=0

ENDDO

IF(MOD(SIZE(a),2) == 1) &
   a(SIZE(a))=1
```

Removing False Dependencies

• Using local variables, reorder operations to remove false

dependencies

```
a[i] = b[i] + c;
a[i+1] = b[i+1] * d;

float f1 = b[i];
float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;
```

false read-after-write hazard between a[i] and b[i+1]

- With some compilers, you can declare a and b unaliased.
 - Done via "restrict pointers", compiler flag, or pragma.

Function tabulation

- Some special functions (exponential, logarithm, gamma function, error function, etc.)
 - Require many FLOPs to evaluate to double precision.
- Tabulate function and linearly interpolate result
 - Introduces interpolation error.
 - Error is generally proportional to of table size
 - If evaluating the table A LOT, want table to be small enough to fit into cache
- In some cases, we can accept interpolation error because we do not know physical value to double precision (e.g. 15 digits) accuracy.

Mixed Precision

- Not all data should be expressed as double precision
 - Using single precision data means you are "moving" less data.
 - Can reduce storage required coefficients (if you have a lot of data here)
- Target opportunities for introducing single precision:
 - Preconditioners in Krylov methods
 - Coefficients (when based on experimental measurement) are not necessarily known to double precision
 - Geometry data
 - Material compositions
- Avoid the pitfall of losing robustness in iterative methods by making iterates single precision. Iterates and coefficient matrices should always be double precision.

GPU Specs

SPECIFICATIONS

Summary of Serial Optimizations

- Details of machine are important for performance
 - Processor and memory system (not just parallelism)
 - What to expect? Use understanding of hardware limits
- Machines have memory hierarchies
 - 100s of cycles to read from DRAM (main memory)
 - Caches are fast (small) memory that optimize average case
- There is parallelism hidden within processors
 - Pipelining, SIMD, etc

- Data locality is at least as important as computation
 - *Temporal*: re-use of data recently used
 - Spatial: using data nearby that recently used
- Can rearrange code/data to improve locality
 - Goal: minimize communication = data movement
- Performance intensive code should be written clearly for compiler (not for humans)

Bonus Material

Advanced Optimizations

More advanced techniques

- Memory blocking
- Cache oblivious ordering
- Communication Avoiding Algorithms (State of the Art)

Naïve Matrix Multiply

```
 \begin{aligned} &\{\text{implements } C = C + A^*B\} \\ &\text{for } i = 1 \text{ to } n \\ &\{\text{read row } i \text{ of } A \text{ into } \text{fast memory}\} \\ &\text{for } j = 1 \text{ to } n \\ &\{\text{read } C(i,j) \text{ into } \text{fast memory}\} \\ &\{\text{read column } j \text{ of } B \text{ into } \text{fast memory}\} \\ &\text{for } k = 1 \text{ to } n \\ &C(i,j) = C(i,j) + A(i,k) * B(k,j) \\ &\{\text{write } C(i,j) \text{ back to slow memory}\} \end{aligned}
```

Algorithm has $2*n^3 = O(n^3)$ Flops and operates on $3*n^2$ words of memory

q potentially as large as $2*n^3 / 3*n^2 = O(n)$

Memory Blocking (Tiling)

• Idea: improve computational intensity and temporal locality of data.

```
Consider A,B,C to be N-by-N matrices of b-by-b subblocks where

block size

for i = 1 to N

for j = 1 to N

{read block C(i,j) into fast memory}

for k = 1 to N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}

C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}
```


Analysis of Blocked Matrix Multiply

- Recall:
 - m is amount memory traffic between slow and fast memory
 - matrix has nxn elements, and NxN blocks each of size bxb
 - f is number of floating point operations, 2n³ for this problem
 - q = f / m is our measure of algorithm efficiency in the memory system
- So

```
m = N^*n^2 read each block of B N³ times (N^3 * b^2 = N^3 * (n/N)^2 = N^*n^2)
+ N*n² read each block of A N³ times
+ 2n² read and write each block of C once
= (2N + 2) * n^2
So computational intensity q = f / m = 2n^3 / ((2N + 2) * n^2)
```

 \approx n / N = b for large n

So we can improve performance by increasing the blocksize b Can be much faster than matrix-vector multiply (q=2) Larger block size = more efficient Limit: All three blocks from A,B,C must fit into fast memory

Assume fast memory size M_{fast} $3b^2 \leq M_{fast}$, so $q \approx b \leq (M_{fast}/3)^{1/2}$

Cache Oblivious Algorithms

- Typically implemented as recursive algorithms and recursive data structures
- Tiled algorithm requires finding good block size (will depend on hardware)
- Cache Oblivious Algorithms offer an alternative
 - Idea is to order things in memory to minimize latency with multiple levels of memory hierarchy.
 - Make use of Space Filling Curves

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{pmatrix} \mathbf{C}_{11} & \mathbf{C}_{12} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix}$$
 • the recursive law any cache size Disadvantages:

$$= \begin{pmatrix} \mathbf{A}_{11}\mathbf{B}_{11} + \mathbf{A}_{12}\mathbf{B}_{21} & \mathbf{A}_{11}\mathbf{B}_{12} + \mathbf{A}_{12}\mathbf{B}_{22} \\ \mathbf{A}_{21}\mathbf{B}_{11} + \mathbf{A}_{22}\mathbf{B}_{21} & \mathbf{A}_{21}\mathbf{B}_{12} + \mathbf{A}_{22}\mathbf{B}_{22} \end{pmatrix}$$

Advantages:

the recursive layout works well for

Disadvantages:

- The index calculations to find A[i,i] are expensive
- Implementations switch to columnmajor for small sizes

Z-Order Space Filling Curve

Case Study: Segev Interpolation