Clase 14 Introducción Modelos Lineales Mixtos Curso Introducción al Análisis de datos con R para la acuicultura.

Dr. José A. Gallardo y Dra. María Angélica Rueda. jose.gallardo@pucv.cl | Pontificia Universidad Católica de Valparaíso

31 July 2021

PLAN DE LA CLASE

1.- Introducción

- -Repaso de modelos lineales generales.
- -Modelos lineales mixtos (MLM) ¿Por qué y para qué?
- -Efectos fijos y efectos aleatorios.
- -Ecuación del modelo lineal mixto (MLM).
- -Interpretación de MLM con R.

2.- Práctica con R y Rstudio cloud

- -Ajustar modelos lineales mixtos.
- -Realizar gráficas avanzadas con ggplot2.
- -Elaborar un reporte dinámico en formato pdf.

MODELOS LINEALES GENERALES

Los modelos lineales generales son los modelos de regresión lineal simple, modelos de regresión lineal múltiple.

$$Y = X\beta + \epsilon$$

Efectos fijos $(X\beta)$

Efectos aleatorios (ϵ)

Los modelos lineales generales deben cumplir los supuestos:

- -Que no haya multicolinealidad (Regresión lineal múltiple).
- -Que los residuos se distribuyan normal.
- -Que haya homogeneidad de varianzas.

MODELOS LINEALES MIXTOS

Los modelos lineales mixtos (MLM) son una generalización del modelo lineal de regresión clásico, contemplando la posible existencia de observaciones correlacionadas (ej. Medidas repetidas en el mismo individuo) o con variabilidad heterogénea, vinculadas a la presencia de factores aleatorios.

$$Y = X\beta + Zu + \epsilon$$

Efectos fijos $(X\beta)$

Efectos aleatorios $(Zu + \epsilon)$

Los modelos lineales mixtos surgen cuando no se cumplen los siguientes supuestos:

- -Que hayan observaciones correlacionadas.
- -Que NO haya homogeneidad de varianzas.

¿QUÉ SON EFECTOS FIJOS?

- Los efectos fijos se asumen que son determinados a propósito por el analista de los datos, eso dependerá de las variables a las que se les desea estimar efectos promedios.
- Los efectos fijos solo estiman medias de las variables predictoras.
- En un modelo lineal mixto las variables cuantitativas continuas o covariables pueden ser usadas como efectos fijos.

¿QUÉ SON EFECTOS ALEATORIOS?

- Los efectos aleatorios están asociados a grupos de observaciones. Los efectos aleatorios estiman varianzas.
- Para considerar una variable predictora cualitativa como un efecto aleatorio del modelo lineal mixto, dicha variable debe tener al menos 5 niveles.
- Una variable predictora categórica con dos niveles (binaria) NO puede ser un efecto aleatorio.
- Una variable aleatoria continua NO puede ser un efecto aleatorio.

ALGUNOS EJEMPLOS DE EFECTOS ALEATORIOS

- i) Medidas repetidas sobre un mismo individuo (hay repeticiones).
- ii) Respuestas observadas en grupos de unidades experimentales homogéneas (bloques), pueden ser piscinas o estanques.
- iii) Mediciones de los animales (individuos) de una misma familia.

¿CÓMO SE PODRÍA DECIDIR SI ES EFECTO FIJO O ALEATORIO?

- ¿Cuál es el número de niveles?
 - Pequeño (Fijo)
 - Grande o infinito (Posiblemente aleatorio)
- 2). ¿Son los niveles repetibles?
 - Sí (Fijo)
 - No (Aleatorio)
- **3).** ¿Se necesitan realizar inferencias para niveles no incluidos en el muestreo?
 - ► No (Posiblemente fijo)
 - ► Sí (Posiblemente aleatorio)

LIBRERÍA PARA AJUSTAR MODELOS LINEALES MIXTOS

library(lme4)

Función Imer()

Dimensión de la base de datos: 578 observaciones y 5 columnas. Se evaluaron 4 dietas.

Table 1: Tabla de datos

ID	weight	time	animal	diet
1	42	0	1	1
2	51	2	1	1
3	59	4	1	1
4	64	6	1	1
5	76	8	1	1
6	93	10	1	1

MODELO DE EFECTOS FIJOS

```
mod.1 <- lm(weight ~ diet + time, data = tilapia diet)
Call:
lm(formula = weight ~ diet + time, data = tilapia_diet)
Residuals:
    Min
            10 Median 30
                                   Max
-135.172 -17.154 -2.192 15.561 152.049
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5428 4.0430 0.382 0.703
diet
        11.7786 1.3054 9.023 <2e-16 ***
time
        8.7653 0.2246 39.030 <2e-16 ***
Signif, codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
Residual standard error: 36.45 on 575 degrees of freedom
Multiple R-squared: 0.7379, Adjusted R-squared: 0.7369
F-statistic: 809.2 on 2 and 575 DF, p-value: < 2.2e-16
```

MODELO DE EFECTOS FIJOS

```
mod.2 <- lm(weight ~ diet:time, data = tilapia_diet)</pre>
Call:
lm(formula = weight ~ diet:time, data = tilapia diet)
Residuals:
  Min 10 Median 30 Max
-99.16 -25.62 -14.72 13.69 191.18
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.74447 2.86909 20.82 <2e-16 ***
diet:time 2.57527 0.08941 28.80 <2e-16 ***
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (), 1
Residual standard error: 45.54 on 576 degrees of freedom
Multiple R-squared: 0.5902. Adjusted R-squared: 0.5895
F-statistic: 829.6 on 1 and 576 DF. p-value: < 2.2e-16
```

MODELOS LINEALES MIXTOS

```
mod.1r <- lmer(weight~ diet + time + (1|animal),
                    data = tilapia diet)
Linear mixed model fit by REML ['lmerMod']
Formula: weight ~ diet + time + (1 | animal)
  Data: tilapia diet
REML criterion at convergence: 5601.8
Scaled residuals:
   Min 10 Median
                         30
                               Max
-3.0471 -0.5635 -0.1173 0.4864 3.4869
Random effects:
 Groups Name Variance Std.Dev.
 animal (Intercept) 539.8 23.23
 Residual
               799.4 28.27
Number of obs: 578, groups: animal, 50
Fixed effects:
          Estimate Std. Error t value
(Intercept) 1.9520 7.7119 0.253
diet 11.7482 3.0039 3.911
time 8.7198 0.1754 49.701
Correlation of Fixed Effects:
    (Intr) diet
diet -0.858
time -0.229 -0.013
```

MODELOS LINEALES MIXTOS

```
mod.2r <- lmer(weight~diet + time + (time|animal),</pre>
                  data = tilapia_diet)
Formula: Weight ~ diet + time + (time | animal)
  Data: tilapia diet
REML criterion at convergence: 4815.8
Scaled residuals:
   Min 10 Median 30
                              Max
-2.7463 -0.5697 -0.0478 0.5125 3.4703
Random effects:
 Groups Name Variance Std.Dev. Corr
 animal (Intercept) 168.31 12.973
        time 14.13 3.758 -0.98
 Residual
                  163.46 12.785
Number of obs: 578, groups: animal, 50
Fixed effects:
          Estimate Std. Error t value
(Intercept) 23.018 2.668 8.626
diet 2.797 0.749 3.735
time 8.443 0.540 15.635
Correlation of Fixed Effects:
    (Intr) diet
diet -0.620
time -0.710 -0.005
```

SELECCIÓN DE MODELOS DE EFECTOS FIJOS

```
Criterios de selección de modelos AIC y BIC usando anova()

anova(mod.1, mod.2)

Analysis of Variance Table

Model 1: weight ~ diet + time
Model 2: weight ~ diet:time
Res.Df RSS Df Sum of Sq F Pr(>F)

1 575 764036
2 576 1194315 -1 -430280 323.82 < 2.2e-16 ***

Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1
```

SELECCIÓN DE MODELOS MIXTOS

Criterios de selección de modelos AIC y BIC usando anova()

```
anova(mod.1r, mod.2r)
```

RESUMEN DE LA CLASE

- 1). Revisión de conceptos: modelos lineales generales, modelos lineales mixtos.
- 2). Construir y ajustar modelos lineales mixtos.