TLC Trip Record Data Yellow Taxi

Outlines

1 Introduction

2 Purpose of the project

3 Chosen year and month

4 EDA

5 Data model

6 Result

Introduction

The New York City Taxi and Limousine Commission (TLC), Over 200,000 TLC licensees complete approximately 1,000,000 trips each day. According to TLC the data it is recorded since 2009 - 2021 preprocess

Purpose of the project

Predict the fare amount of the ride.

Who effects on the fare amount

3 Visiualize the features

Chosen year and month

In this project the prediction and visualization will be on the dataset of October 2019

Who effects on the target?

1 Distance

2 Taxi car size

3 Peak hours

4 Peak days

5 Rate code id

6 Duration

Correlation between distance and fare amount

scatter plot between fare amount and trip distance

Passengers count

What are the peak hours?

Rate code Id

Rate code in effect at the trip.

1= Standard rate

2=JFK

3=Newark

4=Nassau or Westchester

5=Negotiated fare

6=Group ride

Data model

All the features in the dataset

-0.50

-0.25

Chosen features

Model used

- 1 Ordinary least square regression
- 2 Linear regression

3 Polynomial Regression

4 Evaluation regression (RMSE - MAE)

Linear Regression

Ordinary least square regression

OLS Regression Results

0.970	ared (uncentered):	R-squ	fare_amount	Dep. Variable:
0.970	ared (uncentered):	Adj. R-squ	OLS	Model:
8.957e+07	F-statistic:		Least Squares	Method:
0.00	Prob (F-statistic):		Sun, 05 Dec 2021	Date:
-1.2194e+07	Log-Likelihood:		09:28:01	Time:
2.439e+07	AIC:		5548803	No. Observations:
2.439e+07	BIC:		5548801	Df Residuals:
			2	Df Model:
			nonrobust	Covariance Type:
	[0.025 0.975]	t P> t	oef std err	C

	coef	std err	t	P> t	[0.025	0.975]
trip_distance	2.0053	0.001	3596.147	0.000	2.004	2.006
trip_duration	0.4802	0.000	3977.076	0.000	0.480	0.480

Omnibus:	10228504.495	Durbin-Watson:	1.913
Prob(Omnibus):	0.000	Jarque-Bera (JB):	19766216669.659
Skew:	13.829	Prob(JB):	0.00
Kurtosis:	294.082	Cond. No.	8.79

Polynomial regression

- Categorical feature to dummy variables
- Polynomial transformation
 - 3 Interaction term

Standard scaling features

Evaluation regression (RMSE - MAE)

RMSE

- 1.4086979799510435

MAE

- 0.41391811577253645

Conclusion

The Followed benchmarks in choosing the best model

Baseline feature set: ~.90789 R^2
Add Category features (RatecodeID,VendorID): ~.95340 R^2
Add polynomial features: ~.95349 R^2
Add Several interaction terms: ~.95352 R^2