Question 2

Given the LVDT, the output $v_o(t)$ and input $v_p(t)$ voltages are given by:

$$v_o(t) = k.x.\sin(\omega_p t + \phi)$$

$$v_p(t) = \sin(\omega_p t)$$

And $L_p=4mH, L_s=2mH, R_p=100\Omega, R_s=50\Omega$ find the output impedance and the frequency ω_p at which $\phi<0.1\pi$

To find the output impedance, we have to short the voltage sources and open the load resistance

Output impedance is given by:

$$\mathcal{Z} = \sqrt{R_s^2 X_s^2}$$