Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Design Note - DN06073/D

24V Input, 5A DC-DC PWM Buck Controller + FET

Device	Application	Input Voltage	Output Voltage	Output Current	Topology
NCP3020	16W Industrial Application	21.6-26.4V	3.3V	0.01-5A	Buck

Table 1: Buck Power Supply

Characteristic	Min	Тур	Max	Unit
Input Voltage	9	12	18	V
Output Voltage	3.20	3.326	3.34	V
Output Current	.01	1	5	A
Oscillator Frequency	270	300	330	kHz
Output Voltage Ripple		86		mVpk-pk
Load Regulation Iout = 0.02-10A / Vin= 24V NCP3020		1.53		mV/A

Circuit Description

This circuit is proposed for a +24V input industrial application where there is a need to step-down the voltage to +3.3V @ 5A. The requirement specified a large electrolytic input capacitance and also to utilize electrolytic capacitors on the output. Target efficiency is >85%.

The PCB for the NCP3020 is a 2-layer board for use in applications up to 50W. The synchronous buck converter uses voltage mode control, which can be compensated externally with a transconductance amplifier. The soft start time is fixed. The NCP3020 demonstration board is a flexible design allowing the use of electrolytic capacitors or ceramic capacitors.

Key Features

- High Efficiency
- Adjustable Current Limit
- Output Overvoltage and Output Undervoltage protection
- Short Circuit Protection
- Fixed Switching Frequency

Electrolytic Capacitor Version

Performance

The following figures show typical performance of the NCP3020 demonstration boards.

Figure 1: NCP3020 Efficiency at 21.6-26.4 V with a 3.3V Output Voltage

Figure 2: NCP3020 Load Regulation

Figure 3: NCP3020 Line Regulation

Schematics

Figure 4: NCP3020 Schematic

Figure 5: NCP3020 Top Layout

Figure 6: NCP3020 Bottom Layout

16	01	Deference	Manufacturer	Man fact on	Description	E. ADA	Mal a	T.1
Item	Qty	Reference	Part Name	Manufacturer	Description	FootPrint	Value	Tolerance
2	1	D1	ON Semiconductor	BAT54T1G	Schottky Barrier Diodes	SOD123	0.35 Vf	NA 1007
3	1	C3	AVX	06036C104JAT2A	Ceramic Chip Capacitor	603	100nF	10%
4	1	C4	AVX	06035C153KAT2A	Ceramic Chip Capacitor	603	15nF	10%
5	1	C1	Taiyo Yuden	UMK107C5105KA	Ceramic Chip Capacitor	603	1uF 50V	10%
6	1	C2	AVX	0603ZC271KAT2A	Ceramic Chip Capacitor	603	270pF	10%
7	1	C13	Vishay/Dale	VJ0603Y103KXACW1BC	Ceramic Chip Capacitor	603	NI	10%
8	1	C7	Vishay	08053G104ZAT2A	Ceramic Chip Capacitor	805	0.1 uF	10%
9	1	C5	Vishay	08055A471JAT2A	Ceramic Chip Capacitor	805	470pF	20%
10	2	C8-9	AVX Corporation	1210ZC106KAT2A	Ceramic Chip Capacitor	1210	10uF 10V	20%
11	2	C10 C14	TDK	GRM32DF51H106ZA01L	Ceramic Chip Capacitor	2210	10uF 50V	20%
12	1	L1	TDK Corporation	SLF12575T-6R8N5R9-PF	SMT Inductor	(12.50x12.50x7.50)mm	6.8uH	10%
13	1	C6	SANYO	10SP270M	OS-CON Capacitor	(11.5x 8)mm	270 uF 10V	20%
14	2	C11-12	United Chemi-Con	EMVH350GDA681MMH0S	Electrolytic Capacitor	(13.0x 13.0 x16.0)mm	680 uF 35V	20%
15	1	U1	ON Semiconductor	NCP3020	300 kHz PWM Controller	SOIC8	300 kHz	NA
16	1	Q2	Infineon	BSZ105N04NSG	40V N-MOSFET	8-TSDSON	10.5m 40 V	NA
17	1	Q1	Infineon	BSZ165N04NSG	40V N-MOSFET	8-TSDSON	16.5m 40 V	NA
19	2	R12 R15	Vishay/Dale	CRCW06030000Z0EA	SMT Resistor	603	0R0	1%
20	1	R7	Vishay/Dale	CRCW06030000Z0EA	SMT Resistor	603	0R0	NA
21	1	R3	Vishay/Dale	CRCW06031K47FKEA	SMT Resistor	603	1.47k	1%
22	1	R1	Vishay/Dale	CRCW06031K82FKEA	SMT Resistor	603	1.82k	1%
23	1	R5	Vishay/Dale	CRCW060310K0FKEA	SMT Resistor	603	10k	1%
24	1	R14	Vishay/Dale	CRCW060320R0FKEA	SMT Resistor	603	20R0	1%
25	1	R6	Vishay/Dale	CRCW060322K1FKEA	SMT Resistor	603	22.1k	1%
26	2	R2 R4	Vishay/Dale	CRCW0603402RFKEA	SMT Resistor	603	402	1%
27	1	R13	Vishay/Dale	CRCW060310K0FKEA	SMT Resistor	603	NI	1%
28	1	R9	Vishay / Dale	CRCW12060000Z0EA	Resistor	1206	0OHM	NA
29	1	R11	Vishay / Dale	CRCW12060000Z0EA	Resistor	1206	0R0	±5.0%
30	1	R10	Vishay / Dale	CRCW1206100RFKEA	Resistor	1206	100	±1.0%
31	1	R8	Vishay / Dale	CRCW120639R2FKEA	Resistor	1206	39R2	NA

Table 2: NCP3020 BOM

Figure 7: Input = 24V, Output = 3.3V, Load = 5A, Red = VOUT, Yellow = VSW Blue = VIN

Figure 8: Input = 18V, Output = 3.3, Load = 10A, Transient Response Red = VOUT, Green = IOUT

Figure 9: Input = 24V, Output = 3.3V, Load = 5A Crossover Frequency = 22.09kHz at 48 deg

© 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Tim Kaske and Jim Hill, e-mail: Tim.Kaske@onsemi.com; Jim.Hill@onsemi.com