Medium Access Control

EE450: Introduction to Computer Networks

Professor A. Zahid

Medium Access Control

- Single shared broadcast channel
- Two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

Multiple Access Protocol

- Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- Communication about channel sharing must use channel itself!

Classifications of MAC Protocols

Three broad classes:

- Channel Partitioning
 - Divide channel into smaller "pieces" (time slots, frequency, code)
 - Allocate piece to node for exclusive use
- Random Access
 - Channel not divided, allow collisions
 - "Recover" from collisions
- "Taking turns"
 - Nodes take turns, but nodes with more to send can take longer turns

IEEE802 Standards for LANs

LLC: Logical link control MAC: Media access control

Upper layers		Upper layers			
		LLC			
Data link layer		Ethernet MAC	Token Ring MAC	Token Bus MAC	•••
Physical layer		Ethernet physical layers (several)	Token Ring physical layer	Token Bus physical layer	•••
ransmission medium	Transmission medium				

OSI or Internet model

IEEE Standard

IEEE802.3 (Based on Ethernet) "Carrier Sense Multiple Access"

Carrier Sense Multiple Access

- CSMA/CD: Carrier sense, multiple access with collision detection
 - collisions detected within short time
 - colliding transmissions aborted, reducing waste
 - Persistent, non-persistent and P-persistent retransmission
- Collision Detection:
 - On baseband bus, collision produces much higher signal voltage than transmitted signal
 - For twisted pair (Hub-topology) activity on more than one port is collision

Behavior of Three Persistent Scenarios

a. 1-persistent

b. Nonpersistent

c. p-persistent

Collisions in CSMA/CD

- Collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- When collision occur, entire frame is wasted
- Collision is detected by comparing transmitted and received signal strengths (Hard to do in WLANs, TBD)

Vulnerable Time in CSMA

Collision Detection

Flow Chart of CSMA/CD

Receive Process in IEEE802.3

IEEE802.3 MAC Frame

Preamble: 56 bits of alternating 1s and 0s.

SFD: Start frame delimiter, flag (10101011)

MAC address is burned in NIC ROM (sometimes software settable)

IEEE802.3 Frame Length Limits

MAC Addresses

Source and destination MAC addresses.
 These are the hardware addresses. They are 48-bits long each

```
Ethernet MAC Address

XX XX XX XX XX bytes

Vendor Part Vendor Assigned
24 bits 24 bits
```

IEEE Organizationally Unique Identifier (OUI)

- allows vendor to build hardware with unique addresses

```
http://standards.ieee.org/regauth/oui/
http://www.cavebear.com/CaveBear/Ethernet/
```

MAC Addresses (Continued)

For Windows NT: MSDOS Prompt: C:\> ipconfig /all

Types of MAC Addresses

- Unicast: one interface to one interface
- Broadcast: all 1's destination address
 means that every attached interface to a
 LAN should read the frame.
 - MAC Address: FF:FF:FF:FF:FF
- Multicast: an interface can be configured to read frames sent to one or more multicast addresses.

Standard Ethernet Implementations

10Base? Implementations

IEEE802.5 (Based on IBM) "Token-Passing Rings"

IEEE802.5 Token-Passing Rings

- Frames flow in one direction
- Special bit pattern (token) rotates around ring. The token is 24-bit long
- Node having a frame to transmit must capture token first
- Node must release token after done transmitting
- Node remove frame when it comes back around
- Stations get round-robin service

Token Ring

- Supports 4Mbps (UTP), 16 Mbps (STP) and 100 Mbps (Fiber)
- Token Holding Timer
 ~ 10 msec which
 limits the frame
 length ~ 4500 Bytes
 for the 4Mbps Rings
 and ~ 18,000 Bytes
 for the faster Rings

Priority

IEEE 802.11 Wireless LANs (Wi-Fi)

Ad-hoc vs. Infrastructure WLANs

BSS: Basic service set

AP: Access point

Ad hoc network (BSS without an AP)

Infrastructure (BSS with an AP)

Extended Service Sets

Unregulated Band (ISM)

ISM: Industrial, Scientific and Medical band

Wireless Link Characteristics

- Differences from wired link
 - Decreased Signal Strength: Radio signal attenuates as it propagates through matter (path loss)
 - Interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
 - Multipath propagation: Radio signal reflects off objects ground, arriving ad destination at slightly different times

Hidden Terminal Problem

- Hidden terminal problem
 - B, A hear each other
 - C, A hear each other
 - B, C can not hear each other
 - Means B, C unaware of their interference at A

B and C are hidden from each other with respect to A.

Signal Fading

- Signal fading:
 - A, B can hear each other
 - A, C can hear each other
 - B, C can not hear each other interfering at A
 - Signal losses its strength as distance increases

Channel Association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into
 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - Interference possible: channel can be same as that chosen by neighboring AP!
- Host: must associate with an AP
 - Scans channels, listening for Beacon frames containing AP's name (SSID) and MAC address
 - Selects AP to associate with
 - May perform authentication
 - Run DHCP to get IP address in AP's subnet

IEEE802.11 MAC Protocol

- Avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - Don't collide with other transmissions
- 802.11: No collision detection!
 - Difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - Can't sense all collisions in any case: hidden terminal, fading
 - Goal: avoid collisions: CSMA/C(ollision)A(voidance)

Flow Chart for CSMA/CA

Avoiding Collisions

- Idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames
- Sender first transmits small request-to-send (RTS) frames to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - Sender transmits data frame
 - Other stations defer transmissions

Collision Avoidance with RTS & CTS

Collision Avoidance using RTS/CTS

Figure 6.12 ◆ Collision avoidance using the RTS and CTS frames EE450, USC, Zahid

RTS/CTS Scheme Flow Chart

IEEE802.11 Frame Structure

Address 2: MAC address of wireless host or AP transmitting this frame

Addressing Mechanisms

a. Case 1

b. Case 2

c. Case 3

d. Case 4

IEEE802.11 Frame Addressing

