

DYNA FAMILY

SM3267

SuperSpeed USB 3.0 Flash Drive Controller Datasheet

Revision 1.0 Apr 2014

Revision History

Revision	Date	Description
0.1	May 10, 2013	Preliminary release
1.0	Apr 11, 2014	 Added the built-in voltage regulators in Key Features (1.2) Added the E-LQFP-48 pin assignments and package outline (2.1, 2.2 and 4.2) Updated Block Diagram (1.3) Added the ordering numbers (5)

IMPORTANT NOTICE

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF SILICON MOTION, INC. ("SMI"). NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN SMI'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, SMI ASSUMES NO LIABILITY WHATSOEVER, AND SMI DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF SMI PRODUCTS INCLUDING LIABILITY OR WARRANTIES FOR FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

SMI products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. SMI may make changes to specifications and product descriptions at any time, without notice. SMI may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not constitute any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by SMI. SMI assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of SMI. Contact your local SMI sales office or your distributor to obtain the latest specifications and before placing your product order.

Silicon Motion and Silicon Motion logo are registered trademarks of SMI and/or its affiliates. Other brand names mentioned herein are for identification purposes only and may be trademarks and/or registered trademarks of their respective owners.

Copyright © 2014, SMI. All Rights Reserved.

www.siliconmotion.com

Table of Contents

1.	Ove	rview	5
	1.1 1.2 1.3	Product Description Key Features Block Diagram	5
2		Assignments and Signal Descriptions	
۷.	2.1 2.2	Pin AssignmentsSignal Descriptions	8
3.	Elec	etrical Characteristics	12
	3.1	DC Characteristics	12
	3.2	Flash Interface AC Characteristics	
		3.2.1 Legacy NAND	13
		3.2.2 Toggle NAND	
4.	Pack	kage Information	20
	4.1	48-Pin QFN Package Outline	
	4.2	48-Pin E-LQFP Package Outline	21
	4.3	Top Marking	
5.	Proc	duct Ordering Information	23

List of Tables

Table 1:	SM3267 Signal Descriptions	10
Table 2:	Absolute Maximum Ratings	12
Table 3:	DC Characteristics	12
Table 4:	AC Timing Parameters for Legacy NAND	13
Table 5:	AC Timing Parameters for Toggle DDR NAND	16
Table 6:	Ordering Information	23
	List of Figures	
Figure 1:	SM3267 Block Diagram	7
Figure 2:	48-Pin QFN Pin Assignments (Top View)	8
Figure 3:	48-Pin E-LQFP Pin Assignments (Top View)	9
Figure 4:	Command Latch Cycle Timing	14
Figure 5:	Address Latch Cycle Timing	14
Figure 6:	Input Data Latch Cycle Timing	15
Figure 7:	Serial Access Cycle after Read	15
Figure 8:	Toggle NAND Command Latch Cycle Timing	17
Figure 9:	Toggle NAND Address Latch Cycle Timing (1)	17
Figure 10:	Toggle NAND Address Latch Cycle Timing (2)	18
Figure 11:	Toggle NAND Output Data (Write) Cycle Timing	18
Figure 12:	Toggle NAND Input Data (Read) Cycle Timing	19
Figure 13:	Top Marking of 48-Pin QFN	22
Figure 14:	Top Marking of 48-Pin E-LQFP	22

1. Overview

1.1 Product Description

The SM3267 is a USB 3.0 single-channel flash drive controller offering high performance and high compatibility for SLC, MLC, TLC, and high-speed Toggle and ONFI DDR NAND. For USB 3.0 Flash Disk applications, this controller supports high capacity of up to 4 NAND flash devices.

The SM3267 delivers high data transfer rate, and ensures data accuracy and reliability with the powerful ECC engine which can overcome the read/write disturbances on new generation NAND. By integrating an embedded crystal and other components, the controller can reduce customer overall cost at a system level. The SM3267 is available in QFN-48 and E-LQFP-48 green packages with manufacturing-ready turnkey solution.

1.2 Key Features

- USB 3.0 SuperSpeed (5 Gbps) and USB High-Speed Interface
 - Compliant with USB 3.0 Specification Rev. 1.0
 - Compliant with USB 2.0 Specification Rev. 2.0
 - USB Mass Storage Class Specification Rev. 1.0
 - USB Mass Storage Class Bulk-Only Transport Protocol
 - Supports USB 3.0 multi-level link power management
- NAND Flash Support
 - Single-channel flash interface
 - Supports 2-way and 4-way interleave operation
 - Configurable ECC engine with correction capability up to 72-bit/1KB
 - Supports SLC/MLC/TLC with 4KB/8KB/16KB page
 - Supports Toggle/ONFI DDR NAND flash
 - Supports 3.3V/1.8V NAND Flash
 - Supports Bad Column Management
- The crystal-less design offers lower BOM cost
- Built-in 3.3V/1.2V voltage regulators
- Supports "Write Protect" security function to protect the data in USB Flash Disk
- Supports LED indicator to indicate the access status
- Supports VID, PID, serial number, and vender information update
- Supports firmware in-system programming (ISP) function for firmware upgrade
- Low power 1.2V core operation

Revision 1.0 5 Overview

- Supports the operating systems:
 - Windows 8, Windows 7, Windows Vista, Windows XP, Windows 2000, Windows ME, Windows 98/98SE¹
 - Mac OS 10.x
 - Linux kernel 2.4
- Supports Windows 8, Windows 7, and Windows Vista ReadyBoost function
- Package Option (Lead-free and RoHS compliant)
 - 48-pin QFN
 - 48-pin E-LQFP

Revision 1.0 6 Overview

¹: Driver for Windows 98/98SE/ME/2000 is not available in SuperSpeed mode.

1.3 Block Diagram

Figure 1: SM3267 Block Diagram

2. Pin Assignments and Signal Descriptions

2.1 Pin Assignments

Figure 2: 48-Pin QFN Pin Assignments (Top View)

Figure 3: 48-Pin E-LQFP Pin Assignments (Top View)

2.2 Signal Descriptions

Table 1: SM3267 Signal Descriptions

Pin No.	Signal	Туре	Description	
1	RB0	I	Flash Ready/Busy Signal	
2	F0_D0	I/O	Flash Data Bus Bit 0	
3	F0_D1	I/O	Flash Data Bus Bit 1	
4	F0_D2	I/O	Flash Data Bus Bit 2	
5	F0_D3	I/O	Flash Data Bus Bit 3	
6	VDD	PWR	Core Power	
7	VCCIOF	PWR	Flash I/O Power (3.3V/1.8V)	
8	F0_DQS	I/O	Flash Data Strobe	
9	F0_D4	I/O	Flash Data Bus Bit 4	
10	F0_D5	I/O	Flash Data Bus Bit 5	
11	F0_D6	I/O	Flash Data Bus Bit 6	
12	F0_D7	I/O	Flash Data Bus Bit 7	
13	RB1	I	Flash Ready/Busy Signal	
14	F0_NWE	0	Flash Write Enable (active low)	
15	F0_NRE	0	Flash Read Enable (active low)	
16	VCCIOF	PWR	Flash I/O Power (3.3V/1.8V)	
17	F0_CLE	0	Flash Command Latch Enable	
18	F0_ALE	0	Flash Address Latch Enable	
19	BCE	I	Bad Column Function Enable	
20	VDD	PWR	Core Power	
21	WPRO	I	Chip Write Protect	
22	LED	0	USB LED Indicator	
23	V33_PAD	PWR	Regulator 3.3V Power Output	
24	VCCAH5	PWR	Regulator 5V Power Input	
25	VGNDA	GND	Ground for PLL	
26	V12A_PAD	PWR	PLL Power	
27	LX	I/O	Connect to external inductor (DC-to-DC converter)	
28	DCDC_GND	GND	Ground for DC-to-DC converter	
29	F0_CE0	0	Flash Chip Enable 0	
30	F0_CE1	0	Flash Chip Enable 1	
31	F0_CE2	0	Flash Chip Enable 2	
32	F0_CE3	0	Flash Chip Enable 3	
33	VCCIOF	PWR	Flash I/O Power (3.3V/1.8V)	
34	FNWP	0	Flash Write Protect (active low)	

Pin No.	Signal	Туре	Description	
35	TESTN	I	Test Mode (active low)	
36	VDD	PWR	Core Power	
37	ХО	0	24 MHz PHY Crystal Output	
38	XI	I	24 MHz PHY Crystal Input	
39	VCCA	PWR	USB 2.0 PHY Power (3.3V)	
40	DP	I/O	USB 2.0 Data Positive Pin	
41	DM	I/O	USB 2.0 Data Negative Pin	
42	VSSA	GND	Ground for USB 2.0 PHY	
43	TXN	0	USB 3.0 TX Data Negative Pin	
44	TXP	0	USB 3.0 TX Data Positive Pin	
45	VPP	PWR	USB 3.0 PHY Power (1.2V)	
46	RXN	Ī	USB 3.0 RX Data Negative Pin	
47	RXP	I	USB 3.0 RX Data Positive Pin	
48	VGG	GND	Ground for USB 3.0 PHY	

3. Electrical Characteristics

3.1 DC Characteristics

Table 2: Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	0	70	°C
Storage Temperature	T _{STG}	-55	+150	°C
Voltage with Respect to Ground		-0.3	+5.5	V
Core Power Supply Voltage	VDD	1.08	1.32	V
Regulator Power Supply Voltage	VCCAH5	4.0	5.5	V
1.8V Flash I/O Supply Voltage	VCCIOF	1.62	1.98	V
3.3V Flash I/O Supply Voltage	VCCIOF	3.0	3.6	V
USB 2.0 PHY 3.3V Input Voltage	VCCA	3.0	3.6	V
USB 3.0 PHY 1.2V Input Voltage	VPP	1.02	1.32	V
PLL 1.2V Input Voltage	V12A_PAD	1.02	1.32	V

Table 3: DC Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Regulator Power Voltage	VCCAH5	4.0	5.0	5.5	V
Regulator Power Output	V33_PAD		3.3		
Output High Voltage	V _{OH}	2.4			V
Output Low Voltage	V _{OL}			0.4	V
Input High Voltage	V _{IH}	2.0			V
Input Low Voltage	V _{IL}			0.8	V
Peak Voltage on All Lines		-0.5		3.6	V
All Input Leakage Current		-10		10	μA
All Output Leakage Current		-10		10	μA
Bus Line Capacitance	C _L			20	pF

Revision 1.0 12 Electrical Characteristics

3.2 Flash Interface AC Characteristics

3.2.1 Legacy NAND

Table 4: AC Timing Parameters for Legacy NAND

Parameter	Symbol	Min	Max	Unit
CLE Setup Time	tCLS	1		tCK
CLE Hold Time	tCLH	1		tCK
CE Setup Time	tCS	>20		ns
CE Hold Time	tCH	1		tCK
ALE Setup Time	tALS	1		tCK
ALE Hold Time	tALH	1		tCK
WE Pulse Width	tWP	1		tCK
Data Setup Time	tDS	1		tCK
Data Hold Time	tDH	1		tCK
Write Cycle Time	tWC	2		tCK
WE High Hold Time	tWH	1		tCK
Read Cycle Time	tRC	2		tCK
RE High Hold Time	tREH	1		tCK
R/B ready to RE low	tRR	5		tCK

Note: tCK = system clock operation period.

Revision 1.0 13 Electrical Characteristics

Figure 4: Command Latch Cycle Timing

Figure 5: Address Latch Cycle Timing

Revision 1.0 14 Electrical Characteristics

Figure 6: Input Data Latch Cycle Timing

Figure 7: Serial Access Cycle after Read

Revision 1.0 15 Electrical Characteristics

3.2.2 Toggle NAND

Table 5: AC Timing Parameters for Toggle DDR NAND

Parameter	Symbol	Min	Max	Unit
CLE/ALE Setup Time	tCALS	1		tCK
CLE/ALE Hold Time	tCALH	1		tCK
DQS Setup Time for Data Input Start	tCDQSS	> 100		ns
CE Setup Time	tCS	> 20		ns
CE Hold Time	tCH	> 5		ns
Command/Address Setup Time	tCAS	1		tCK
Command/Address Hold Time	tCAH	1		tCK
Data Setup Time	tDS	0.5		tCK
Data Hold Time	tDH	0.5		tCK
Write Cycle Time	tWC	2		tCK
WE High Pulse Width	tWH	1		tCK
WE Low Pulse Width	tWP	1		tCK
Read Cycle Time	tRC	2		tCK
RE High Pulse Width	tREH	1		tCK
RE Low Pulse Width	tRP	1		tCK
Data Strobe Cycle Time	tDSC	2		tCK
DQS Input Low Pulse Width	tDQSL	1		tCK
DQS Input High Pulse Width	tDQSH	1		tCK
Read Preamble	tRPRE	2		tCK
Read Postamble	tRPST	> 100		ns
Read Postamble Hold Time	tRPSTH	> 100		ns
Write Preamble	tWPRE	> 83		ns
Write Postamble	tWPST	> 83		ns
Write Postamble Hold Time	tWPSTH	> 5		ns

Revision 1.0 16 Electrical Characteristics

Figure 8: Toggle NAND Command Latch Cycle Timing

Figure 9: Toggle NAND Address Latch Cycle Timing (1)

Revision 1.0 Electrical Characteristics

Figure 10: Toggle NAND Address Latch Cycle Timing (2)

Figure 11: Toggle NAND Output Data (Write) Cycle Timing

Revision 1.0 18 Electrical Characteristics

Figure 12: Toggle NAND Input Data (Read) Cycle Timing

Revision 1.0 19 Electrical Characteristics

Package Information 4.

48-Pin QFN Package Outline 4.1

SYMBOL	MIN	NOM	MAX	SYMBOL	MIN	NOM	MAX	١
Α	0.80	0.85	0.90	D2	4.40	4.50	4.60	1 2
A1	0	0.02	0.05	Е	5.90	6.00	6.10	-
A3		0.203 REF		E2	4.40	4.50	4.60	3
b	0.15	0.20	0.25	е		0.40 BSC		4
D	5.90	6.00	6.10	L	0.30	0.40	0.50] "

Notes:

- 1. All dimensions are in Millimeters.
- 2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- 3. Refer to JEDEC Standard MO-220 issue "K" WJJE.
- 4. Leadframe material is OLIN194 and thickness is 0.203 mm (8 Mil).

Revision 1.0 20 Package Information

4.2 48-Pin E-LQFP Package Outline

SYMBOL	MIN	NOM	MAX	SYMBOL	MIN	NOM	MAX	
Α			1.60	E2	3.9	4.0	4.1	
A1	0.05		0.15	е		0.50 BSC		
A2	1.35	1.40	1.45	L	0.45	0.60	0.75	
b	0.17	0.22	0.27	L1		1.00 REF		
b1	0.17	0.20	0.23	R1	0.08			
С	0.09		0.20	R2	0.08		0.20]
c1	0.09		0.16	Υ			0.075	
D	8.9	9.0	9.1	θ	0°	3.5°	7°	
D1	6.9	7.0	7.1	θ1	0°			
D2	3.9	4.0	4.1	θ2	11°	12°] :
Е	8.9	9.0	9.1	θ3	11°	12°	13°] .
F1	6.9	7.0	7.1					1

Notes:

- Dimension D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side D1 and E1 are maximum plastic body size dimension including mold mismatch.
- Dimension b does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm.
- 3. All dimensions are in millimeters.
- 4. Exposed pad 4.0 x 4.0 mm.

4.3 Top Marking

Figure 13: Top Marking of 48-Pin QFN

Figure 14: Top Marking of 48-Pin E-LQFP

Revision 1.0 22 Package Information

5. Product Ordering Information

Table 6: Ordering Information

Ordering Number Operating Temperature		Package Type	Dimension
SM326LX070000-XX	0°C ~ 70°C	48-pin QFN	6 x 6 x 0.9 (mm)
SM326QX070000-XX	0°C ~ 70°C	48-pin E-LQFP	7 x 7 x 1.4 (mm)

Note: The suffix "XX" denotes the IC revision.

23