OPEN ACCESS

Protocol for in vitro transcription of DNA oligos by T7 polymerase Version 4

Audrey Lapinaite, Sam Sternberg

Abstract

This is a protocol for in vitro transcription of DNA oligos by T7 polymerase from the Doudna Lab.

Citation: Audrey Lapinaite, Sam Sternberg Protocol for in vitro transcription of DNA oligos by T7 polymerase.

protocols.io

dx.doi.org/10.17504/protocols.io.ssqeedw

Published: 21 Aug 2018

Guidelines

Template design:

T7 polymerase requires a double-stranded promoter region for efficient template binding, but can then transcribe a single-stranded DNA template. Therefore, the following protocol uses an approach, whereby two oligos are annealed in order to generate a dsDNA promoter, followed by a single-stranded overhang that contains the reverse complement of the desired RNA sequence.

- The reverse complement of the desired RNA sequence is ordered as a DNA oligo (assuming the length does not exceed ~80 nt), to which the reverse complement of the T7 promoter is appended at the 3' end
 - Example template:

5'-TTTCTTAGCTGCCTATACGGCAGTGAACCTATAGTGAGTCGTATTA-3'

- XXX = reverse complement of T7 promoter
 - XXX = reverse complement of the desired RNA sequence
 - **Note:** the consensus T7 promoter sequence contains GGGAGA as the first 6 nucleotides that are transcribed. However, only the GG dinucleotide is required for high efficiency transcription (Ambion).
- A separate, synthetic DNA oligo is ordered that contains the T7 promoter in the forward direction, which can be annealed with the above construct:
 - ∘ T7oligo: 5'-TAATACGACTCACTATA-3'
 - Note: according to Ambion, for transcription of synthetic oligonucleotides, only the -17 to -1 positions of the promoter need to be double-stranded. This oligo takes this into account.

Before start

Stock solutions:

 $\begin{array}{lll} \textbf{5x transcription buffer:} & 10 \text{ ml} \\ 150 \text{ mM Tris-Cl, pH } 8.1 & 1.5 \text{ ml} \\ 125 \text{ mM MgCl}_2 & 1.25 \text{ ml} \\ 0.05\% \text{ Triton X-100} & 50 \text{ µl} \\ 10 \text{ mM spermidine} & 100 \text{ µl} \\ \text{H}_2\text{O} & \text{to } 10 \text{mL} \\ \end{array}$

store at -20 °C

10x TBE1 LTris base108 gBoric acid55 g $0.5 \text{ M Na}_2\text{EDTA pH 8.0}$ 40 ml $H_2\text{O}$ to 1 L

 $\begin{array}{ll} \textbf{0.5 M Na}_2\textbf{EDTA} & 0.5 \text{ L} \\ \text{Disodium ethylenediaminetetra acetate } 2\text{H}_2\text{O} & 93 \text{ g} \\ \text{NaOH to get pH 8.0} & 10 \text{ g} \\ \text{H}_2\text{O} & \text{to 500 ml} \end{array}$

autoclave

 $\begin{array}{lll} \textbf{10 \% (w/v) APS} & 50 \text{ ml} \\ \text{Ammonium persulfate} & 5 \text{ g} \\ \text{H}_2\text{O} & \text{to 50 ml} \end{array}$

store at -20 °C

1 M spermidine

Spermidine 0.7 g H_2O to 5 ml

store at -20 °C

5N NaOH 25 ml NaOH 5 g

 H_2O to 25 ml

1N NaOH 20 ml 5N NaOH 5 ml

 H_2O to 20 ml

 10 % Triton X-100
 10 ml

 Triton X-100
 1 ml

 H_2O 9 ml

store at -20 °C

 $\begin{array}{lll} \mbox{1\% (w/v) bromophenol blue} & \mbox{10 ml} \\ \mbox{bromophenol blue} & \mbox{100 mg} \\ \mbox{H}_2\mbox{O} & \mbox{to 10 ml} \end{array}$

 2x RNA Loading Dye30 ml95% formamide28.5 ml

 $\begin{array}{lll} 1 \text{ mM EDTA} & 60 \text{ }\mu\text{l of 0.5 M} \\ 0.025\% \text{ SDS} & 75 \text{ }\mu\text{l of 10\%} \\ 0.025\% \text{ bromophenol blue} & 750 \text{ }\mu\text{l of 1\%} \\ 0.01\% \text{ xylene cyanol} & 300 \text{ }\mu\text{l of 1\%} \end{array}$

store at -20 °C

Protocol

Preparing 10 uM hybridized template

Step 1.

Mix the following in a final volume of 100 μl:

- 20 µl 5x transcription buffer
- 1.5 nmol T7oligo (15 uM final)
- 1.0 nmol template (10 uM final)
- DEPC H₂O to 100 µl

- ✓ 1.5 nmol T7oligo by Contributed by users
- ✓ 1.0 nmol template by Contributed by users
- ✓ DEPC H2O by Contributed by users

Preparing 10 uM hybridized template

Step 2.

Heat at 70-80 °C for 2 minutes.

↓ TEMPERATURE

70 °C : Heating

© DURATION

00:02:00 : Heating

Preparing 10 uM hybridized template

Step 3.

Slow cool on bench-top.

Preparing 10 uM hybridized template

Step 4.

Use immediately or store at -20 °C.

▮ TEMPERATURE

-20 °C: Storage

NOTES

For some applications, prior gel purification of the DNA template may be desirable. However, for my transcriptions, the oligos are not very long and I immediately gel purify the RNAs after transcription, so purity of the DNA oligo is not a major concern.

Preparation of NTPs

Step 5.

Add 500 μ l of RNase-free H₂O to the 70-80 mg of each NTP.

500 μl: RNase-free H2O

Preparation of NTPs

Step 6.

Bring pH of each NTP to 6.8-7.2 by adding 5 μ l of 5N NaOH followed by 10-90 μ l of 1N NaOH. Monitor pH in the stripes with 6.5-10 range. Most adjustment will be needed for ATP, least - for UTP.

- ✓ 5N NaOH by Contributed by users
- 1N NaOH by Contributed by users

Preparation of NTPs

Step 7.

Measure absorbance of 500 fold dilution: 3 μ l to 1.5 ml of H₂O.

ATP
$$\lambda_{\text{max}}$$
 259 nm, ϵ_{max} 1.59 × 10^4 cm⁻¹ M⁻¹

CTP
$$\lambda_{\text{max}}$$
 271 nm, $\epsilon_{\text{max}} 0.9 \times 10^4 \ \text{cm}^{\text{--}1} \ M^{\text{--}1}$

GTP
$$\lambda_{max}$$
 253 nm, ϵ_{max} 1.37 × 10⁴ cm⁻¹ M⁻¹

UTP
$$\lambda_{\text{max}}$$
 259 nm, ϵ_{max} 1.59 \times $10^4~cm^{\text{--}1}~M^{\text{--}1}$

Preparation of NTPs

Step 8.

Calculate concentrations and required dilutions to reach 100 mM concentration each.

Transcription reaction

Step 9.

Mix the following in a 100 μl reaction:

Final concentrations:
(1X)
(5 mM)
(5 mM)
(5 mM)
(5 mM)
(10 mM)
(1 ug/ml)
(100 ug/ml)
(1 uM)

■ AMOUNT

 $5 \mu l : 100 \text{ mM ATP}$

■ AMOUNT

5 μl : 100 mM CTP

■ AMOUNT

5 μl: 100 mM GTP

■ AMOUNT

 $5 \mu l : 100 \text{ mM UTP}$

☐ AMOUNT 1 μl : 1M DTT ☐ AMOUNT

0.1 μl : 1 mg/mL pyrophosphatase (Roche)

■ AMOUNT

10 μl : 1 mg/mL T7 polymerase

NOTES

My typical final yields on transcription reactions of this size are roughly 30 μ l of 10-20 uM (300-600 pmol). For my biochemical purposes, this is more than enough material. However, the above reaction can easily be scaled up.

Transcription reaction

Step 10.

Incubate at 37 °C, overnight.

↓ TEMPERATURE37 °C : Incubation
© DURATION

16:00:00 : overnight incubation

Transcription reaction

Step 11.

DNase treat:

- 1. Add 5 units (5 μl) RNase-free DNase directly to reaction.
- 2. Incubate at 37 °C, 30 minutes.

■ AMOUNT

5 μl: RNase-free DNase

■ TEMPERATURE 37 °C : Incubation

REAGENTS

RNase-free DNase by Promega

O DURATION

00:30:00 : Incubation

₽ NOTES

This step is optional and may be omitted.

Transcription reaction

Step 12.

Add equal volume (100 µl) gel loading buffer directly to transcription reaction.

■ AMOUNT

100 μl : Gel loading buffer

NOTES

My RNAs run very close to the xylene cyanol dye. Therefore, I use a gel loading buffer that contains

only bromophenol blue.

Transcription reaction

Step 13.

Gel-purify transcribed RNAs on a medium thickness, denaturing urea-polyacrylamide gel.

NOTES

For my RNAs (~30 nt) I use a 15% gel. At this polyacrylamide concentration, with RNA from a 100 µl transcription reaction, I get excellent separation of the desired RNA length from n+1 and n-1 contaminants (these arise from template-independent addition of nts by T7 polymerase; and synthetic template oligos that are not the full length). Optimization of the gel running time and acrylamide concentration will be necessary for gel-purifying RNAs of different length.

Gel-purification

Step 14.

PAGE Fragment Resolution: Denaturing Conditions (6M Urea)

%	Fragment	Bromophenol	Xylene
Acrylamide	Size	Blue	Cyanol
30	2-8	6	20
20	8-25	8	28
10	25-35	12	55
8	35-45	19	75
6	45-70	26	105
5	70-300	35	130
4	100-500	~50	~230

Clean glass plates with EtOH and coat with 200 µl Silanization Solution I.

200 μl: Silanization Solution I

✓ EtOH by Contributed by users

Silanization Solution I by Contributed by users

Gel-purification

Step 15.

Assemble glass plates.

Gel-purification

Step 16.

Prepare 15% urea polyacrylamide gel.

REAGENTS

15% urea polyacrylamide gel by Contributed by users

Gel-purification

Step 17.

Denaturing Urea Polyacrylamide Gel (300 ml for a gig gel: 35 x 25 cm)

	10 %	12.5%	15%
10x TBE	30 ml	30 ml	30 ml
40% Acrylamide-bisacrylamide (19:1)	75 ml	93.75 ml	112.5 ml
Urea	108 g	108 g	108 g
Water	192 ml	173 ml	155 ml
Before casting add:			
10% APS	1.5 ml	1.5 ml	1.5 ml
TEMED	600 μl	600 μΙ	600 μl

After addition of APS and TEMED to Urea-Polyacrylamide mixture pour the gel immediately.

REAGENTS

- Urea by Contributed by users
- ✓ Water by Contributed by users
- 10% APS by Contributed by users

Gel-purification

Step 18.

Place comb and polymerize for 60 min.

O DURATION

01:00:00 : Polymerize

Gel-purification

Step 19.

Assemble electrophoresis apparatus.

Gel-purification

Step 20.

Remove comb.

Gel-purification

Step 21.

Fill inner and outer buffer chambers with 1x TBE.

✓ 1x TBE by Contributed by users

Gel-purification

Step 22.

Rinse wells with 1x TBE buffer.

✓ 1x TBE buffer by Contributed by users

Gel-purification

Step 23.

Pre-run the gel for 30 min to heat-up and remove remaining urea. Set constant P=40 W,

3000 V, 400 mA.

O DURATION

00:30:00 : Pre-running gel

Gel-purification

Step 24.

Load sample.

Gel-purification

Step 25.

Run P=40 W, 3000 V, 400 mA for around 3 h, until the bromophenol blue band is migrating in the last 1/4 of the gel.

© DURATION

03:00:00 : Running gel

Gel-purification

Step 26.

Remove one of the glass plates and cover the gel with saran wrap. Flip. Remove another glass plate and cover all gel with saran wrap.

Gel-purification

Step 27.

UV shadow band and excise with sterile razor and place in Falcon tube.

Gel-purification

Step 28.

Break gel slices with p-1000 tip.

Gel-purification

Step 29.

Crush and soak gel slices in equal volume of RNase-free water.

REAGENTS

RNase-free water by Contributed by users

Gel-purification

Step 30.

Elute RNA overnight by rocking at 4 °C.

■ TEMPERATURE

4 °C: Eluting RNA

Next day

Step 31.

Filter out gel pieces by spinning sample through Corning Spin-X filter tube. Centrifuge at top speed for 5 minutes, 4 °C.

▮ TEMPERATURE

4 °C: Centrifugation

Corning Spin-X filter tube by Contributed by users

O DURATION

00:05:00 : Centrifugation

NOTES

I cut the top off a P-1000 tip so that I can pipette as much as possible of the water-gel slurry into the Corning filter tube.

Next day

Step 32.

Add 30 μ l 10x NEBuffer 3 to each sample, then 1 μ l CIP (10 U/ μ l). Incubate at 37 °C for one hour.

■ AMOUNT

30 μl : 10x NEBuffer 3

■ AMOUNT 1 µl : CIP

↓ TEMPERATURE
 37 °C : Incubation

REAGENTS

✓ 10x NEBuffer 3 by Contributed by users

🍑 CIP (10 U/μl) by New England Biolabs

O DURATION

01:00:00 : Incubation

NOTES

This step is only required if removal of the 5' triphosphate is required (e.g. if the RNA will subsequently be 5'-radiolabeled with T4 PNK.)

Next day

Step 33.

Phenol/chloroform extract with 300-500 µl phenol-chloroform solution, pH 8.0.

■ AMOUNT

300 µl: Phenol-chloroform solution

Phenol-chloroform solution by Contributed by users

Next day

Step 34.

Ethanol precipitate the RNA, by adding 1/10 volume 3 M NaOAc (pH 5.2), 1/100 volume 100x linearized acrylamide and 3 volumes 100% ethanol. [described in step 35-40 below]

Next day

Step 35.

Incubate at -80 °C, at least 1 hour

↓ TEMPERATURE

-80 °C : Incubation © DURATION

01:00:00 : Incubation

Next day

Step 36.

Spin down at top speed, 20 minutes, 4 °C.

▮ TEMPERATURE

4 °C: Spinning down

© DURATION

00:20:00 : Spinning down

Next day

Step 37.

Remove supernatant.

Next day

Step 38.

Wash pellet with 70% ethanol.

Next day

Step 39.

Spin down again and remove supernatant.

Next day

Step 40.

Dry pellets in speed vacuum, 10 minutes.

O DURATION

00:10:00 : Drying pellets

Next day

Step 41.

Resuspend pellets in 30 μ l DEPC H₂O (or buffer) and store at -20 °C.

■ AMOUNT

300 µl : DEPC H2O (or buffer)

↓ TEMPERATURE
 −20 °C : Storage

Warnings

Please refer to the SDS (Safety Data Sheet) for safety warnings and hazard information.