

Institut Supérieur d'Informatique de Modélisation et de leurs Applications

1 rue de la Chebarde TSA 60125 CS 60026 63 178 Aubière cedex

Laboratoire de physique subatomique et des technologies associées

> 4 rue Alfred Kastler La Chantrerie BP 20722 44 307 Nantes cedex 3

Rapport d'ingénieur Stage de 3^e année

Filière Calcul et Modélisation Scientifique

Développement du code de simulation dynamique du parc électronucléaire CLASS

 $\acute{E}tudiant$:

Josselin Massot

Tuteur : Nicolas Thiollière Tuteur ISIMA : Gilles Leborgne

Stage de 6 mois 19 mars 2016

Remerciements

Merci les gens

Liste	des figures, tableaux, algorithmes et extraits de code	
Liste	des figures	
2.1	Exemple de figure	3
Liste	des tableaux	
2.1	Représentation d'un tableau et du fichier csv associé	4
Liste	des algorithmes	
2.1	Association à voisinage constant	4
Liste	des extraits de code	
2.1	Lecture d'un fichier fits en <i>Python</i>	3

Résumé – Abstract

Résumé

Résumé en français

Mots clés : Liste des mots clés

Abstract

English abstract

Keywords: List of keywords

Table des matières

Remerciements	1
Liste des figures, tableaux, algorithmes et extraits de code	ii
Résumé – Abstract	iii
Table des matières	iv
Glossaire	v
1 Introduction	1
I Introduction de l'étude	2
2 Étude	3
2.1 Sous-titre de l'étude	3
II Méthodes et résolution	5
3 Méthodes	6
3.1 Et résolutions	6
III Résultats et discussion	7
4 Résultats	8
4.1 Délivrables	8
5 Conclusion	9
Bibliographie & Webographie	a
IV Annexe	Ι
A Documentation des scripts et programmes réalisés	TT

Glossaire

Plop : Et il se trouve que c'est c'que j'pense, qu'en dites-vous?

1 Introduction

Introduction

Première partie

Introduction de l'étude

2 Étude

2.1 Sous-titre de l'étude

Figure 2.1 – Exemple de figure. Ici un fan-art de Day of the tentacle.

Code 2.1 - Lecture d'un fichier fits en Python

```
#!/usr/bin/env python
1
2
  # -*- coding: utf-8 -*-
3
4
  import pyfits
5
 def readFits( fits )
6
7
    # récupération des données du fichier fits
8
    hduList = pyfits.open(fits)
9
    data = hduList[1].data
```

	id	Nom	Type	col3
	25	Pikachu	elec	2,71
	42	Marvin	robot	3,14
(666	Diablo	terreur	1,41
1	337	rms	copyleft	3.15.6

(a) Représentation des données (b) Fichier csv associé

id; Nom; Type; col3
25; Pikachu; elec; 2, 71
42; Marvin; robot; 3, 14
666; Diablo; terreur; 1, 41
1337; rms; copyleft; 3.15.6

Tableau 2.1 - Exemple de la représentation d'un tableau de données et du fichier csv associé.

Algorithme 2.1 Association à voisinage constant

- 1: Pour tout Source SDSS Faire
- 2: Initialisation de listSDSS; \triangleright Liste des sources associées à la source SDSS courante
- 3: Pour tout Source Stack Faire
- 4: Si $Distance(SDSS; Stack) \le \epsilon$ Alors
- 6: Sinon
- 7: Passer à l'élement suivant ;
- 8: Sélection du premier élément de *listSDSS* pour la source SDSS courante ;
- 9: Vérification de l'unicité des choix de sources, gestion des erreurs;

Deuxième partie

Méthodes et résolution

3 Méthodes

3.1 Et résolutions

Blabla

Troisième partie

Résultats et discussion

4 Résultats

4.1 Délivrables

C'est documenté tout beau tout propre.

5 Conclusion

Well, this is the end.

Bibliographie & Webographie

Quatrième partie

Annexe

A Documentation des scripts et programmes réalisés