3630.
$$z = \frac{ax + by + c}{\sqrt{x^2 + y^2 + 1}}$$
 $(a^2 + b^2 + c^2 \neq 0)$.

3631. $z = 1 - \sqrt{x^2 + y^2}$.

3632. $z = e^{2x+3y} (8x^2 - 6xy + 3y^3)$.

3633. $z = e^{2x-3y} (5 - 2x + y)$.

3634. $z = (5x + 7y - 25) e^{-(x^2 + xy + y^2)}$.

3635. $z = x^2 + xy + y^2 - 4 \ln x - 10 \ln y$.

3636. $z = \sin x + \cos y + \cos (x-y)$ $(0 \le x \le \pi/2)$;

3637. $z = \sin x \sin y \sin (x+y)$ $(0 \le x \le \pi; 0 \le y \le \pi)$.

3638. $z = x - 2y + \ln \sqrt{x^2 + y^2} + 3 \arctan \frac{y}{x}$.

3639. $z = xy \ln (x^2 + y^2)$.

3640. $z = x + y + 4 \sin x \sin y$.

3641. $z = (x^2 + y^2) e^{-(x^2 + y^2)}$.

3642. $u = x^2 + y^2 + z^2 + 2x + 4y - 6z$.

3644.
$$u = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{2}{z}$$
 (x>0, y>0, z>0).

3645.
$$u = xy^2z^3 (a-x-2y-3z) (a > 0)$$
.

3646.
$$u = \frac{a^2}{x} + \frac{x^2}{y} + \frac{y^2}{z} + \frac{z^4}{b}$$
 (x>0, y>0, z>0, 3647

 $0 \le x \le \pi; \ 0 \le y \le \pi; \ 0 \le z \le \pi.$

3648. $u = x_1 x_2^2 = x_n^n (1 - x_1 - 2x_2 - \dots - nx_n) \quad (x_1 > 0, x_2 > 0, \dots, x_n > 0).$

3649.
$$u = x_1 + \frac{x_2}{x_1} + \frac{x_3}{x_2} + \dots + \frac{x_n}{x_{n-1}} + \frac{2}{x_n}$$
 $(x_i > 0, i = 1, 2, \dots, n).$

3650. Задача Гюйгенса. Между двумя положительными числами a и b вставить n чисел x_1 , x_2, \ldots, x_n так, чтобы величина дроби

$$u = \frac{x_1x_2 \dots x_n}{(a+x_1)(x_1+x_2) \dots (x_n+b)}$$

была наибольшей.

Найти экстремальные значения заданной неявно функции z от переменных x и y:

3651.
$$x^2 + y^2 + z^2 - 2x + 2y - 4z - 10 = 0$$
.