Projectiles Launched Horizontally

PROBLEM

The Royal Gorge Bridge in Colorado rises 321 m above the Arkansas River. Suppose you kick a rock horizontally off the bridge. The magnitude of the rock's horizontal displacement is 45.0 m. Find the speed at which the rock was kicked.

SOLUTION

1. DEFINE Given:

iven:
$$\Delta y = -321 \text{ m}$$
 $\Delta x = 45.0 \text{ m}$

$$\Delta x = 45.0 \text{ m}$$

$$a_v = -g = -9.81 \text{ m/s}^2$$

Unknown:

$$v_i = v_x = ?$$

The initial velocity vector of the Diagram:

rock has only a horizontal component. Choose the coordinate system oriented so that the positive y direction points upward and the positive x direction points to the right.

2. PLAN Choose an equation or situation:

Because air resistance can be neglected, the rock's horizontal velocity remains constant.

$$\Delta x = \nu_x \Delta t$$

Because there is no initial vertical velocity, the following equation applies.

$$\Delta y = \frac{1}{2} a_y (\Delta t)^2$$

Rearrange the equations to isolate the unknowns:

Note that the time interval is the same for the vertical and horizontal displacements, so the second equation can be rearranged to solve for Δt .

$$\Delta t = \sqrt{\frac{2\Delta y}{a_y}}$$

Next rearrange the first equation for v_x , and substitute the above value of Δt into the new equation.

$$\nu_x = \frac{\Delta x}{\Delta t} = \left(\sqrt{\frac{a_y}{2\Delta y}}\right) \Delta x$$

3. CALCULATE Substitute the values into the equation and solve:

$$v_x = \sqrt{\frac{-9.81 \text{ m/s}^2}{(2)(-321 \text{ m})}} (45.0 \text{ m}) = \boxed{5.56 \text{ m/s}}$$

The value for v_x *can be either* positive or negative because of the square root. Because the direction was not asked for, use the positive root.

4. EVALUATE To check your work, estimate the value of the time interval for Δx and solve for Δy . If ν_x is about 5.5 m/s and $\Delta x = 45$ m, $\Delta t \approx 8$ s. If you use an approximate value of 10 m/s² for g, $\Delta y \approx -320$ m, almost identical to the given value.