4-form components for bosonic 11D regranty in asymptotically AdS₄ × S⁷ spacetimes, preserving an S2 in AdS, and an S6 in S7, encoded in a scalar field. ANSATZ! F(4) = F_B dxd \ dxb \ d\ (A) = $= f_{(2)} \wedge vol(S^2),$ where $f(z) = f_{AB} d_{X} d_{X}^{B} / t_{AB} = -f_{BA}$ and depends on x={t,r,x},and II(x) = sind do rdf.
To the only non-vanishing components of F(4) one F(4) 2BBY = F2B sind, and those related to this en anti-symmetry. F(4) must satisfy the Branchi identity JF=0 and the ED.M. J*F=0.

From 2F=0, me have $0 = df_{(2)} \wedge d\Omega_{(R)} = df_{(2)} = 0.$ 6=(4) vap gove)= 5 Let's define fraly f_2 = - x_f_1 (f _p = - \in \in \text{zpx f_2})
Whee x_in Ate Hodge duel ansociated Muth the volume form of the 3-metric 25(3) = (3) x B 2 x 2 2 x b me have - x3f2 = x3 x3f1. Junce $x_3 x_3 f_{1=-} (-1)^2 f_1 = -f_1$ we get $f_1 = x_3 f_2$ (i.e. $f_{1d} = \frac{1}{2} \mathcal{E}_{ABX} f^{BX}$). Ven df2 = 0 gran d(*3 f2) = 0

=>
$$\frac{1}{3}c(\frac{1}{3}f_{1})=0$$
 => $\frac{1}{3}c(\frac{1}{3}f_{1})=0$, i.e.

fix is divergenceless with the Leni-Cinitar remedian associated with $\frac{1}{3}c(\frac{1}{3}g_{1})=0$

=> $\frac{1}{3}c(\frac{1}{3}f_{1})=0$ => $\frac{1}{3}c(\frac{1}{3}f$

Let's comider the (N,P,Q) = (A,O,Q)components: 3 F (4) =0 => > => > [[-5] 5 mn gdp goog49 Fn804 = 0 => > M (J-9) 3 MN 9(3) AB 1 6(100 1 6(1) 44 FNBOY =0 $\Rightarrow \partial_{\mathcal{S}} \left(\sqrt{3} g^{(3)8b} g^{(3)} \Delta \beta_{1} \right) \frac{1}{9A^{2}} \frac{1}{2^{2} M^{2} \theta} \left(\sqrt{3} \beta_{0} \theta_{1} \right) = 0.$ Now [-9] = [-9] glat 6(A) 93 [det 8(8)] and F(4) 6 80 4 = f 6 p sino Since $\sqrt{\det_b^{(A)}}$ and $\sqrt{\det_b^{(B)}}$ do not depend on the loopeds $x^3 = \{t, r, \lambda\}$, we get

$$\int_{A} \left(\sqrt{-g(3)} \right) g_{A} g_{B}^{3} = g_{A}^{3} g_{A}$$

$$= \left(\sqrt{-93} \right) \left$$

i.e.
$$*_{3}d*_{3}(9^{-1}_{A}9^{3}_{B}f_{2})=0$$

$$x_3f_2=f_1$$

$$43d(9^{-1}9^{3}+1)=0 \Rightarrow d(9^{-1}9^{3}+1)=0$$

$$=)9_{4}^{-1}9_{5}^{3} + 1 = dd$$
 locally,

The Expression ,i.e. 7 62-0, *36(*3 F2)=0 gives $\#_{3} = 2 \#_{3} = 2 \#_{4} = 0, i.e. \nabla^{(3)} \times (9 \#_{4} = 2 \#_{5} = 0) = 0$ or $\nabla^{(3)}_{\alpha} \nabla^{\alpha} + \frac{1}{9_{A}} \nabla^{(3)}_{\alpha} + \frac{3}{9_{B}} \nabla^{(3)}_{\alpha} + \frac{3}{9_{B}} \nabla^{(3)}_{\alpha} = 0$ Let's remnite this in terms of partial derivatives: $=\frac{1}{\sqrt{-9(3)}} \, \partial_{x} \left(\sqrt{-9(3)} \, g^{(3)} \partial_{\beta} \beta \right) \, \partial_{\beta} \beta + g^{(3)} \partial_{\beta} \, \partial_{\alpha} \, \partial_{\beta} \beta \, .$ $= \frac{1}{\sqrt{-9(3)}} \, \partial_{x} \left(\sqrt{-9(3)} \, g^{(3)} \partial_{\beta} \beta \right) + g^{(3)} \partial_{\beta} \beta + g^{(3)} \partial_{\alpha} \beta + g^{(3$ we get 9(3) xB d 2 B b + H(3)B d B b. > (3) ~ (3) ~ (b) ~ (c) =

Verefore, the condition on freads 2(3) dB 22p4+H(3)B2p+ + 1 g(3)dB 22p 2p 4 $-\frac{3}{9b}g^{(3)d\beta}\partial_{\alpha}\partial_{\beta}\partial_{\beta}\psi=0$ Unng

H_Z = H_37 + NA

79A

29B

29B me frolly get $3^{(3)}d\beta \left(\partial_{A}\partial_{\beta}\varphi + H_{A}\partial_{\beta}\varphi - (N_{A}-2) \partial_{A}\partial_{A}\partial_{\beta}\varphi\right)$ $-\underbrace{\left(n_{B}+6\right)}_{29B}\partial_{\lambda}g_{B}\partial_{\beta}\varphi\right)=0.$