DISTRIBUTED COMPUTING IN SENSOR NETWORKS

James Long ¹ Anupa Murali² Zihao Wang ³

¹PhD Candidate Civil Engineering MIT ²Affiliation Harvard University ²Affiliation Harvard University

BACKGROUND

- Mode shapes describe the dynamic response of mechanical systems to their environment
- Material properties (mass, stiffness, damping), can be inferred from these responses
- Changes in modal responses may indicate defects

COMPUTATION

Given time series x(t) from n sensor locations:

Compute $X_n(\omega)$ for each of the n locations

For a specific ω_i form $G_{n \times n}(\omega_i)$ where:

$$G_{jk}(\omega_i) = X_j(\omega_i) imes X_k(\omega_i)^*$$

Then decompose $G_{n imes n} = U_{n imes n} \Sigma_{n imes n} V_{n imes n}^*$

The first singular vector (column) of U is the mode shape estimate

MOTIVATION: TECHNOLOGY CAN OVERWHELM TRADITIONAL ALGORITHMS

Example 1: high-res cameras can produce huge data sets (e.g one time series per pixel)

MOTIVATION: TECHNOLOGY CAN OVERWHELM TRADITIONAL ALGORITHMS

Example 2: Networks of wirelessly connected sensor devices

- Devices have built in accelerometers and microcontrollers
- Very low cost enables large scale, dense deployment
- Communication out of the network drains battery, and we are forced to perform computation on slow (100MHz), memory constrained (128kB RAM) devices

APPROACH & SECRET WEAPON

- Recall that we use only the first singular vector as an estimate of the mode shape
- Because our matrix is normal, we can use a power method to estimate the largest eigenvector (PageRank!)

Algorithm:

$$i=0$$
; init v_0

while
$$(i < N)$$
:

$$v_{i+1}=Gv_i$$

$$v_{i+1} = rac{v_{i+1}}{\|v_{i+1}\|}$$

$$i = i + 1$$

APPROACH & SECRET WEAPON

Rate of convergence: $\frac{\lambda_1}{\lambda_2}$

 λ_1 is the largest eigenvalue, λ_2 the next largest

RESULTS: SERIAL COMPARISON

1217 individual time series of length 1000

$$\lambda_1=3.9 imes10^5; \ \lambda_2=1.2 imes10^{-9}$$

RESULTS: SERIAL COMPARISON

54 individual time series of length 180000

RESULTS: PARALLELISATION IN MPI

EVALUATION

MAIN LESSON