Luvso

Miniprueba III (Repaso) Mecánica Intermedia (FIS 311) Licenciatura en Física mención Astronomía IPGG

Contenido: Conservación del momentum lineal

Problema 1 : Un bloque de masa M es lanzado con velocidad inicial \overrightarrow{V}_0 en una dirección que forma un ángulo de α con la horizontal. En el punto más alto de la trayectoria se divide en dos partes iguales. Una de ellas cae verticalmente, comenzando con una velocidad de \overrightarrow{v}_a hacia abajo.

Calcule las distancias entre el punto de lanzamiento y cada uno de los puntos de impacto de los fragmentos con la superficie.

Problema 2 : Demuestre el siguiente teorema

"En colisiones elásticas unidimensionales, la velocidad relativa de dos partículas después de la colisión es el negativo de la velocidad relativa antes del choque".

Hint: Para demostrar el teorema suponga dos masas, m y M, con velocidades iniciales \overrightarrow{v}_i y \overrightarrow{V}_i respectivamente y con velocidades finales \overrightarrow{v}_f y \overrightarrow{V}_f .

Problema 3 : Un masa m_1 , con velocidad inicial V_0 , golpea un sistema masa resorte de masa m_2 , inicialmente en reposo. El resorte es ideal y tiene constante k. Considere que la fricción es despreciable.

- a).- ¿Cuál es la máxima compresión del resorte?
- b).- Si después de un tiempo muy largo, ambos objetos se mueven en la misma dirección ¿cuál es la velocidad final V_1 y V_2 de m_1 y m_2 respectivamente?

(PROBLEMA 1)

ANTES

M

V

H

ANTES

In H & la alture max. => VH = Vo cos x (horizontal)

1.70 cons. de la energia ostenamos H (Antes de la explosión)

1 MVo² = 1 MV+2 + MgH

 $H = \frac{1}{2g} \left(V_0^2 - V_H^2 \right) = \frac{1}{2g} \left(V_0^2 - V_0^2 \cos^2 \lambda \right)$ $= \frac{V_0^2}{2g} \left(1 - \cos^2 \lambda \right) = \frac{V_0^2 \sin^2 \lambda}{2g}$

DURANTE EL CHOONE

PSIST = PSIST
ANTES DESPUES

FJEX: MTH = M To COSO

Eget: The send = Mra

> 2 VH = V6 COSO (*)

haciender
$$\frac{(**)}{(*)}$$
: $\frac{V_b}{2V_h} = t_g \theta$
 $\theta = t_g - 1 \left(\frac{V_b}{2V_0 \cos 2} \right)$

Elevando al audrador $(*)$ f $(**)$ f luego sum and anti-an expressions tenemos:

 $4V_h^2 + V_a^2 = V_b^2$
 $V_b = \sqrt{4V_0^2 \cos^2 d} + V_a^2$

Alconos

La mose de rapider Ta coe a la mitod del abonne de la particule inicial:

da = Xolconce /2 of liceuus los sigts. formulos para determinar Xalcance Xalconce = Vo cos2 7 0 = Vosen & + - = gt2 T=2To send Xalcona = ZVo cood send = T da= Vo sen 2d

Hallonds db

Resolvamos un nuevo probleme de lanzamiento. de projectiles:

Here
$$V_b = \sqrt{4V_0 \cos^2 x + v_0^2}$$
 $V_b = \sqrt{4V_0 \cos^2 x + v_0^2}$
 $V_b = \sqrt{4V_0 \cos^2 x + v_0$

La ecs. de la relocidad son:

$$Nx = V_5 \cos\theta = 2V_H //$$
 $Ny = V_5 \sin\theta - gt = V_a - gt //$

pare le posición:

$$X = 15 \cos \theta t = 2V_H t$$
 $J = H + V_5 \sin \theta t - \frac{1}{2}gt^2 = H + V_0 t - \frac{1}{2}gt^2$ (**)

El alcance X se de pare J=H. Recuploz. en (XX)

$$H=H+Vat-\frac{1}{2}gt^2 \implies t=2\frac{Va}{g}$$
en (*)

$$\widetilde{X} = 2V_H t = 2V_H \cdot 2V_a$$
 grecordondo que $V_H = V_0 \cos \alpha$

entonces:

X= 4 Vo Va cosd

En un choque midimentainel se auple que:

a) MT: + MT: = m VF + M VF

PANTES

POESPUES (Cons. del momentim)

 $\frac{1}{2}mv_{i}^{2} + \frac{1}{2}mV_{i}^{2} = \frac{1}{2}mv_{f}^{2} + \frac{1}{2}MV_{f}^{2}$ emengia civilia)

a)-m(Nt-N:) = M (Nt-N:)

b) $-\frac{1}{2}$ m($\nabla_{\xi^2} - \nabla_{i}^2$) = $\frac{1}{2}$ M($\nabla_{\xi}^2 - \nabla_{i}^2$)

 $\frac{1}{2}m\left(T_{\xi}-V_{i}\right)\left(V_{\xi}+V_{i}\right)=\frac{1}{2}M\left(V_{\xi}-V_{i}\right)\left(V_{\xi}+V_{i}\right)$

dividiendo (C) por (a) «Henemos»:

Vf+V: = Vf+V;

 $(\Delta : -\Delta :) = -(\Delta^{t} - \Delta^{t})$ $(\Delta : -\Delta :) = -(\Delta^{t} - \Delta^{t})$ $(\Delta : -\Delta :) = -(\Delta^{t} - \Delta^{t})$

(PROBLEMA3)

En este coso le energie mecèmice se conserve.

Ei = Erengre dispossible por el sistema (Imicial)

$$\Xi_1 = \frac{1}{2} m_A V_0^2$$

Durante el impactor +6. se conserve el momentum Lineal (a cado instante).

= Evalvación de Xmax => m, 7 m2 en se instante von a la misma vélocidad.

e.
$$E_1 = \frac{1}{2} (m_1 + m_2) V_f^2$$
 (Cons. de la energia)
 $m_A V_0 = (m_1 + m_2) V_f$ (Cons. del momentum)

$$\int_{13}^{13} = \left(\frac{uu^{4} + uu^{5}}{uu^{4} + uu^{5}}\right) \int_{0}^{13} \left(\frac{uu^{4} + uu^{5}}{uu^{5}}\right) \int_{0}^{13} \left(\frac{u$$

$$\int_{1}^{1} \int_{1}^{2} \frac{1}{(m_1 + m_2)^2} \int_{1}^{2} \frac{1}{(m_1 + m_$$

$$\frac{1}{2} (m_1 + m_2) \nabla_{f^2} = \frac{m_1}{m_1 + m_2} \left(\frac{1}{2} m_1 \nabla_{o}^2 \right) = \frac{m_1}{m_1 + m_2} E_1^2$$

8

$$E_i = \frac{M_1}{M_1 + M_2} E_i + \frac{1}{2} k \chi_{max}^2$$

$$\frac{2 \operatorname{Ei} \left(1 - \frac{m_1}{m_1 + m_2}\right) = \chi^2_{\text{max}}$$

$$\frac{1}{k} \frac{\sum E_i}{m_1 + m_2} = \frac{m_1 m_2 \nabla_0^2}{k (m_1 + m_2)}$$

Pare determiner les relocidads finals (desput que ja no interectuen les masas)

La conservación de la energie most da:

(*)
$$\pm i = \frac{1}{2} m_1 V_1^2 + \frac{1}{2} m_2 V_2^2 = K_1 + K_2$$

Le con servación del monnentum
(**) $W_1 V_0 = M_1 V_1 + M_2 V_2$

Los ecs. (*) y (**) son suficients pare haller V1 7 V2. Algo de à lessa mos permite haller que $\sqrt{I_1} = \frac{M_1 - M_2}{M_1 + M_2} \sqrt{I_0}$

 $\sqrt{z} = \frac{Z M_2}{M_1 + M_2} \sqrt{o}$