- 1. Write a script for the Deutsch-Jozsa algorithm to find a function f.
 - (a) Define a function *deutsch_jozsa_algorithm* to write an oracle circuit for *n* qubits.
 - (b) Write a function $balanced_dj_circuit$ and run the algorithm for a balanced function for n = 5.
 - (c) Write a function $constant_dj_circuit$ and run the algorithm for a constant function for n = 3.
 - (d) Print the counts and plot the histogram of outputs for parts (b) and (c).
 - (e) Define a function $calculate_execution_time$ to calculate the execution time $(t_1 \text{ for part } (b) \text{ and } t_2 \text{ for part } (c))$ of the circuit for n = 20. Print t_1 , t_2 and $(t_1 t_2)$.
- 2. Define an array for the number of shots as S = [100, 500, 1000, 2500, 5000].
 - (a) Repeat parts 1(a) and 1(b) for each value of *S*.
 - (b) Define a function *calculate_execution_time* to calculate the execution time (t) of the circuit.
 - (c) Evaluate *t* for each value of *S* and save it to an array *Time_balanced*. Plot *Time_balanced* vs *S*.
- 3. Define an array for the number of shots as S = [500, 1000, 2000, 4000, 6000].
 - (a) Repeat parts 1(a) and 1(c) for each value of S.
 - (b) Define a function *calculate_execution_time* to calculate the execution time (t) of the circuit.
 - (c) Evaluate t for each value of S and save it to an array Time_constant. Plot Time_constant vs S.
- 4. Write a script to perform the Quantum Fourier Transformation (QFT) for *n* qubits.
 - (a) Define a function *qft_rotations* to apply a single-qubit Hadamard gate and a series of controlled-phase gates.
 - (b) Write a function qft to perform QFT on the above quantum circuit.
 - (c) Create a quantum circuit with n = 2, 3 and 4 qubits and draw the circuit for each n.
 - (d) Simulate the circuit and plot the histogram for each value of n.
- 5. Write a script to perform the QFT for 3 qubits.
 - (a) Create an initial state [010] and draw the circuit.
 - (b) Simulate the circuit, print the state vector, and plot the histogram.
 - (c) Perform the inverse QFT, draw the circuit, and print the initial state.
- 6. Repeat Q. No. 5 for 4 qubits and initial state = [0110].