שאלה 1

של מספרים $a_1\,,a_2,\ldots a_n$ הצע אלגוריתם, יעיל ככל שתוכל, המקבל כקלט סדרה הצע אלגוריתם, יעיל ככל שתוכל, המקבל כקלט סדרה הצע אלגוריתם, יעיל ככל שתוכל, $1 \leq i \neq j \neq k \leq n$, a_i,a_i,a_k טבעיים ובודק האם יש בה שלושה מספרים

כך שמכפלת שניים מספרים, כך שמכפלת שניים (כלומר: האם האם יש בסדרה שלשה מספרים, כך שמכפלת שניים כך ש $a_i \cdot a_j = a_k$ שניים שווה לשלישי).

הסבר את נכונות האלגוריתם ונתח את סיבוכיותו.

מק את הריצה שלו קטנה ככל האפשר. נמק את 10נקי) ב. הצע אלגוריתם כמו ב-(א) שתוחלת זמן הריצה שלו קטנה ככל האפשר. נמק את טיעוניד.

הדרכה: השתמש בגיבוב.

שאלה 2

מספרים שלמים. n נתונה סדרה של n מספרים שלמים.

הצע אלגוריתם המוצא וממיין את i האיברים הגדולים ביותר בסדרה בסיבוכיות . $i \leq \frac{n}{\log n}$ אם נתון כי O(n) אם נתון כי

 $1, \dots, n^2$ בתחום בתחום מספרים טבעיים בתחום (10 נקי) ב. נתונה סדרה של

O(n) הצע אלגוריתם הממיין את סדרת המספרים בסיבוכיות זמן נמק את טיעוניך.

שאלה 3

ענה על הסעיפים הבאים ב - ייתמיד ניתן למימושיי או יילא תמיד ניתן למימושיי.

אם השבת ייתמיד ניתן למימושיי - תן אלגוריתם.

אם השבת יילא תמיד ניתו למימושיי - נמק.

O(n) נקי0 א. ניתן להפוך עץ חיפוש בינארי לעץ אדום-שחור בסיבוכיות זמן (10) נקי

O(n) נקי0ב. ניתן לבנות עץ חיפוש בינארי כלשהו מסדרה כלשהי בסיבוכיות זמן (10 נקי0

שאלה 4

בעולם 3 מעמדות: 1. פרולטריון 2. בורגנות 3. אצולה.

נגדיר יתור מעמדותי:

בתור מעמדות עומדים אנשים מ-3 המעמדות.

בונון בועבוו ווינ עובוו ביי מייני או בייניו וויני

אדם הרוצה להכנס לתור נכנס תמיד למקום האחרון.

ברגע שיוצא האדם הראשון מתקדם התור עפייי המעמדות:

פרולטרים - מקום אחד קדימה, בורגנים - 2 מקומות קדימה, אצילים - 3 מקומות קדימה. אם מגיעים כמה אנשים לאותו מקום בתור הם יסתדרו לפי סדר המעמדות בהתאם.

: דוגמא

מעמד	2	3	2	1	3	2	2	1
איש	h	g	f	e	d	С	b	a
מקום בתור	8	7	6	5	4	3	2	1

וצא מהתור וסידור הביניים המתקבל הוא: a

				g(3)			
	d(3)			f(2)			
b(2)	c(2)			e(1)		h(2)	איש ומעמדו
0	1	2	3	4	5	6	מקום
					ל איש).	מעמד של כי	בסוגריים רשום הנ

לאחר שהאנשים שהגיעו לאותו המקום בתור יסתדרו לפי סדר המעמדות בהתאם הסידור החדש הסופי יהיה:

b d c g f e h

- אם כן, הצע קייתכן ששני אנשים מאותו המעמד מגיעים לאותו המקום! אם כן, הצע 5) מדיניות לטפל במקרה זה.
- (15 נקי) ב. הצע מבנה נתונים למימוש תור מעמדות שניתן לבצע עליו את הפעולות הבאות בסיבוכיות המבוקשת. תאר תחילה את מבנה הנתונים ואח״כ בקצרה את אופן מימוש הפעולות.
 - . O(1) .m שמעמדו insert (q,x,m) .1
 - התור בהתאם) enqueue(q) מ- q את האיבר הראשון בתור (וקדם את התור בהתאם) enqueue(q) מסי האנשים בתור).
- אות קדימה (או קדימה i קימאביע את מעביר את מעביר promote (p,i) .3 מעביר אם י שלילי). O(i)
 - יש מרד: הפרולטריון הופך לאצולה והאצולה q בתור rebellion(q) .4 לפרולטריון. O(1)

שאלה 5

הצע מבנה נתונים שבאמצעותו ניתן לממש כל אחת מהפקודות הבאות בסיבוכיות המבוקשת. מספר האברים ב-S)

משמעות	סיבוכיות	פקודה
אתחל את מבנה הנתונים מרשימה של n מספרים.	O(n)	BUILD (S)
S - הכנס את x ל	$O(\log n)$	INSERT (x,S)
; S - הוצא את x מ	$O(\log n)$	DELETE (x,S)
החזר את הערך של האיבר העשירי בגודלו ;	O(1)	MAX10 (S)
y -ו x החזר את הערכים של שני אברים $ x-y $ עבורם $ x-y $ מקסימלי;	O(1)	MAXGAP (S)

שאלה 6

בהינתן שתי סדרות של מספרים טבעיים - ואני מספרים אויים < $c_1,\dots,c_n > -1 < w_1,\dots,w_n > -1$ בהינתן שתי סדרות של מספרים : מעוניינים לפתור את הבעיה הבאה : יש למצוא שתי סדרות של מספרים : S , T

$$0 \le s_i \le 1 \quad , \quad i = 1, 2, \ldots, n$$

$$0 \le t_i \le 1 \qquad i = 1, 2, \dots, n$$

. גדול ככל האפשר
$$\sum_{i=1}^n c_i(s_i+t_i)$$
 ואילו ואילו $\sum_{i=1}^n t_i w_i \leq T$, $\sum_{i=1}^n s_i w_i \leq S$ כך שמתקיים

- (10 נקי) א. הצע אלגוריתם, יעיל ככל שתוכל, הפותר בעיה זו באופן אופטימלי. הסבר את נכונות האלגוריתם ונתח את סיבוכיותו.
- הצע אלגוריתם דינמי ($s_i \in \{0,1\}$ ב- אם יש הגבלה ש- s_i חייבים להיות שלמים (כלומר $s_i \in \{0,1\}$ הצע אלגוריתם דינמי בסינמים שסיבוכיותו O(nS) . ממק את טיעוניך.

פוף!