Deep Learning

Angshuman Paul

Assistant Professor

Department of Computer Science & Engineering

Diffusion Probabilistic Models

The Motivation

The Motivation

By carving the same stone differently, I will get different objects

The Motivation

Among all possible carvings, most of the carvings will produce meaningless objects

All possible carvings

All possible carvings

Stone (Every side is similar)

Stone (Every side is similar)

Artist (Carving)

Artist (Carving)

Artwork

Noise (Homogeneous)

Noise (Homogeneous) Artist

(Homogeneous)

Artwork

Space of all possible images

Space of all possible images Consider two-pixel images

Each axis represents the value of a pixel in a two-pixel image

Space of all possible images Consider two-pixel images

Each axis represents the value of a pixel in a two-pixel image

Space of all possible images Consider two-pixel images

Each axis represents the value of a pixel in a two-pixel image

If we talk about 10×10 images, we have to consider 100-dimensional plots

All possible two-pixel images live in this space

Each point in this space will represent one image

Each point in this space will represent one image The image may be a meaningful image or noise

Each point in this space will represent one image The image may be a meaningful image or noise

Take a dataset of good images

See where those good images live in image space

We find that a vast majority of the image space is empty, i.e., good images live only in very few places in the image space

In the rest of the places, the images are noise

Most of the regions in the image space are empty (only noise)

Similar images reside closely in the image space

Start with a noise sample

Start with a noise sample

How to find out the direction of the movement from the initial position?

How to find out the direction of the movement from the initial position?

Diffusion model does exactly this

How to find out the direction of the movement from the initial position?

Diffusion model does exactly this

How?

From the input noise, the model will predict an amount that needs to be subtracted to make a movement towards image cluster

From the input noise, the model will predict an amount that needs to be subtracted to make a movement towards image cluster

From the input noise, the model will predict an amount that needs to be subtracted to make a movement towards image cluster

So, diffusion model tells us on which direction we should move to get to the cluster

Every subtraction is basically the movement towards the image cluster from the noise sample

At every subtraction (every movement), we get a slightly denoised sample compared to the previous one

Diffusion Models in Action

How do Diffusion
Models Decide
which Image to
Generate from the
Noise?

How do Diffusion
Models Decide
which Image to
Generate from the
Noise?

Diffusion Model

Forward Process

Reverse Process

Gradually add noise

$$\epsilon_1 \sim \mathcal{N}(\epsilon_1|0,\mathbf{I})$$
 and $\beta_1 < 1$

Gradually add noise

$$\mathbf{z}_1 = \sqrt{1 - \beta_1} \mathbf{x} + \sqrt{\beta_1} \epsilon_1$$

 $\epsilon_1 \sim \mathcal{N}(\epsilon_1|\mathbf{0},\mathbf{I})$ and $\beta_1 < 1$

Variance of noise distribution

Equivalently

$$q(\mathbf{z}_1|\mathbf{x}) = \mathcal{N}(\mathbf{z}_1|\sqrt{1-\beta_1}\mathbf{x},\beta_1\mathbf{I}).$$

We then repeat this process for *T* time steps

$$\mathbf{z}_t = \sqrt{1 - \beta_t} \mathbf{z}_{t-1} + \sqrt{\beta_t} \epsilon_t$$
 $\epsilon_t \sim \mathcal{N}(\epsilon_t | \mathbf{0}, \mathbf{I}).$

We then repeat this process for *T* time steps

$$\mathbf{z}_t = \sqrt{1 - \beta_t} \mathbf{z}_{t-1} + \sqrt{\beta_t} \epsilon_t$$
 $\epsilon_t \sim \mathcal{N}(\epsilon_t | \mathbf{0}, \mathbf{I}).$

Equivalently

$$q(\mathbf{z}_t|\mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t|\sqrt{1-\beta_t}\mathbf{z}_{t-1},\beta_t\mathbf{I}).$$

We then repeat this process for *T* time steps

$$\mathbf{z}_t = \sqrt{1 - \beta_t} \mathbf{z}_{t-1} + \sqrt{\beta_t} \boldsymbol{\epsilon}_t$$

 $\epsilon_t \sim \mathcal{N}(\epsilon_t | \mathbf{0}, \mathbf{I}).$

Equivalently

$$q(\mathbf{z}_t|\mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t|\sqrt{1-\beta_t}\mathbf{z}_{t-1},\beta_t\mathbf{I}).$$

Markov Chain

$$q(\mathbf{z}_t|\mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t|\sqrt{1-\beta_t}\mathbf{z}_{t-1},\beta_t\mathbf{I}).$$

Markov Chain

$$\beta_t \in (0,1)$$
 $\beta_1 < \beta_2 < \ldots < \beta_T.$ Schedule

Ensures that the mean of the distribution of z_t is closer to zero than the mean of z_{t-1} and that the variance of z_t is closer to the unit matrix than the variance of z_{t-1}

So, eventually z_T becomes pure Gaussian noise

It can be shown that

$$\mathbf{z}_t = \sqrt{\alpha_t} \mathbf{x} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_t$$
 $\alpha_t = \prod_{\tau=1}^t (1 - \beta_\tau).$

 ϵ_t is the total noise added to the original image to generate z_t (not incremental noise)

Reverse Process

Reverse Process

Use a model to predict the noise from z_t

Subtract theta noise from z_t to get z_{t-1}

Reverse Process

Use a model to predict the noise from z_t Subtract theta noise from z_t to get z_{t-1}

Typically, we use U-Net

Reverse Process

Use a model to predict the noise from z_t Subtract theta noise from z_t to get z_{t-1}

Typically, we use U-Net

Loss function

$$\mathcal{L}(\mathbf{w}) = -\sum_{t=1}^{T} \left\| \mathbf{g}(\sqrt{\alpha_t} \mathbf{x} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_t, \mathbf{w}, t) - \boldsymbol{\epsilon}_t \right\|^2.$$

Loss function

$$\mathcal{L}(\mathbf{w}) = -\sum_{t=1}^{T} \left\| \mathbf{g}(\sqrt{\alpha_t} \mathbf{x} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_t, \mathbf{w}, t) - \boldsymbol{\epsilon}_t \right\|^2.$$
Predicted
total noise

Actual total noise

Training

Algorithm 20.1: Training a denoising diffusion probabilistic model

```
Input: Training data \mathcal{D} = \{\mathbf{x}_n\}
Noise schedule \{\beta_1, \dots, \beta_T\}
```

Output: Network parameters w

for
$$t \in \{1,\ldots,T\}$$
 do
$$\mid \alpha_t \leftarrow \prod_{\tau=1}^t (1-\beta_\tau) \text{ // Calculate alphas from betas}$$
 end for
$$\begin{aligned} &\mathbf{repeat} \\ &\mathbf{x} \sim \mathcal{D} \text{ // Sample a data point} \\ &t \sim \{1,\ldots,T\} \text{ // Sample a point along the Markov chain} \\ &\epsilon \sim \mathcal{N}(\epsilon|\mathbf{0},\mathbf{I}) \text{ // Sample a noise vector} \\ &\mathbf{z}_t \leftarrow \sqrt{\alpha_t}\mathbf{x} + \sqrt{1-\alpha_t}\epsilon \text{ // Evaluate noisy latent variable} \\ &\mathcal{L}(\mathbf{w}) \leftarrow \|\mathbf{g}(\mathbf{z}_t,\mathbf{w},t) - \epsilon\|^2 \text{ // Compute loss term} \\ &\text{Take optimizer step} \end{aligned}$$

$$\begin{aligned} &\mathbf{until converged} \end{aligned}$$

Generating a New Synthetic Data

Algorithm 20.2: Sampling from a denoising diffusion probabilistic model

Input: Trained denoising network $g(\mathbf{z}, \mathbf{w}, t)$

Noise schedule $\{\beta_1, \ldots, \beta_T\}$

Output: Sample vector **x** in data space

$$\begin{split} \mathbf{z}_T &\sim \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}) \text{ // Sample from final latent space} \\ & \textbf{for } t \in T, \dots, 2 \textbf{ do} \\ & \qquad \qquad \alpha_t \leftarrow \prod_{\tau=1}^t (1-\beta_\tau) \text{ // Calculate alpha} \\ & \qquad \qquad \text{ // Evaluate network output} \\ & \qquad \qquad \mu(\mathbf{z}_t, \mathbf{w}, t) \leftarrow \frac{1}{\sqrt{1-\beta_t}} \left\{ \mathbf{z}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}} \mathbf{g}(\mathbf{z}_t, \mathbf{w}, t) \right\} \\ & \qquad \qquad \epsilon \sim \mathcal{N}(\epsilon|\mathbf{0}, \mathbf{I}) \text{ // Sample a noise vector} \\ & \qquad \qquad \mathbf{z}_{t-1} \leftarrow \mu(\mathbf{z}_t, \mathbf{w}, t) + \sqrt{\beta_t} \epsilon \text{ // Add scaled noise} \\ & \qquad \qquad \mathbf{end for} \\ & \qquad \qquad \mathbf{x} = \frac{1}{\sqrt{1-\beta_1}} \left\{ \mathbf{z}_1 - \frac{\beta_1}{\sqrt{1-\alpha_1}} \mathbf{g}(\mathbf{z}_1, \mathbf{w}, t) \right\} \text{ // Final denoising step} \\ & \qquad \qquad \mathbf{return x} \end{split}$$

All the best!