

JAB SAARA INDIA VEDANTU PE ONLINE PADHEGA

Vedantu Scholarship Admission Test

- ⊘ Take the Online Test from the comfort of your home

Register **NOW**

Limited Seats!

BEST RESULTS FROM ONLINE CLASSES

Vedantu Scholarship Admission Test

- ⊗ WIN an assured Scholarship upto 100%
- Take the Online Test from the comfort of your home
- ⊗ It's Absolutely FREE

Register **NOW**

Limited Seats!

Exercise 3.1

Question 1:

Find the radian measures corresponding to the following degree measures:

- (ii) -47°30'
- (iii) 240°
- (iv) 520°

Solution 1:

(i) 25°

We know that $180^{\circ} = \pi \text{ radian}$

$$\therefore 25^{\circ} = \frac{\pi}{180} \times 25 \text{ radian} = \frac{5\pi}{36} \text{ radian}$$

$$-47^{\circ}30' - 47\frac{1}{2}$$

$$=\frac{-95}{2}$$
 degree

Since $180^{\circ} = \pi$ radian

$$\frac{-95}{2} \text{ degree} = \frac{\pi}{180} \times \left(\frac{-95}{2}\right) \text{ radian} = \left(\frac{-19}{36 \times 2}\right) \pi \text{ radian} = \frac{-19}{72} \pi \text{ radian}$$

$$\therefore -47^{\circ}30' = \frac{-19}{72}\pi \text{ radian}$$

We know that $180^{\circ} = \pi$ radian

$$\therefore 240^\circ = \frac{\pi}{180} \times 240 \text{ radian} = \frac{4}{3} \pi \text{ radian}$$

(iv) 520°

We know that $180^{\circ} = \pi \text{ radian}$

$$\therefore 520^{\circ} = \frac{\pi}{180} \times 520 \text{ radian} = \frac{26\pi}{9} \text{ radian}$$

Ouestion 2:

Find the degree measures corresponding to the following radian measures

$$\left(\operatorname{Use} \pi = \frac{22}{7}\right)$$

- (i) $\frac{11}{16}$ (ii) -4 (iii) $\frac{5\pi}{3}$
- (iv) $\frac{7\pi}{6}$

Solution 2:

(i)
$$\frac{11}{16}$$

We know that π radian = 180°

$$\therefore \frac{11}{16} \text{ radian} = \frac{180}{\pi} \times \frac{11}{16} \text{ degree} = \frac{45 \times 11}{\pi \times 4} \text{ degree}$$

$$= \frac{45 \times 11 \times 7}{22 \times 4} \text{ degree} = \frac{315}{8} \text{ degree}$$

$$= 36 \frac{3}{8} \text{ degree}$$

$$= 39^{\circ} + \frac{3 \times 60}{8} \text{ minutes}$$

$$= 39^{\circ} + 22' + \frac{1}{2} \text{ minutes}$$

$$= 39^{\circ} 22' 30'' \qquad [1' = 60'']$$
(ii) -4

We know that π radian = 180°

$$-4 \operatorname{radian} = \frac{180}{\pi} \times (-4) \operatorname{degree} = \frac{180 \times 7(-4)}{22} \operatorname{degree}$$

$$= \frac{-2520}{11} \operatorname{degree} = -229 \frac{1}{11} \operatorname{degree}$$

$$= -229^{\circ} + \frac{1 \times 60}{11} \operatorname{minutes} \qquad [1^{\circ} = 60^{\circ}]$$

$$= -229^{\circ} + 5^{\circ} + \frac{5}{11} \operatorname{minutes}$$

$$= -229^{\circ} 5^{\circ} 27'' \qquad [1^{\circ} = 60'']$$

(iii)
$$\frac{5\pi}{3}$$

We know that π radian = 180°

$$\therefore \frac{5\pi}{3} \text{ radian} = \frac{180}{\pi} \times \frac{5\pi}{3} \text{ degree} = 300^{\circ}$$

(iv)
$$\frac{7\pi}{6}$$

We know that π radian = 180°

$$\therefore \frac{7\pi}{6} \text{ radian} = \frac{180}{\pi} \times \frac{7\pi}{6} = 210^{\circ}$$

Question 3:

A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Solution 3:

Number of revolutions made by the wheel in 1 minute = 360

$$\therefore$$
 Number of revolutions made by the wheel in 1 second = $\frac{360}{60}$ = 6

In one complete revolution, the wheel turns an angle of 2π radian. Hence, in 6 complete revolutions, it will turn an angle of $6\times 2\pi$ radian, i.e., 12π radian

Thus, in one second, the wheel turns an angle of 12π radian.

Question 4:

Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm.

$$\left(\operatorname{Use} \pi = \frac{22}{7}\right)$$

Solution 4:

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then

$$\theta = \frac{1}{r}$$

Therefore, for $r = 100 \, cm$, $l = 22 \, cm$, we have

$$\theta = \frac{22}{100} \text{ radian} = \frac{180}{\pi} \times \frac{22}{100} \text{ degree} = \frac{180 \times 7 \times 22}{22 \times 100} \text{ degree}$$

$$= \frac{126}{10} \text{ degree} = 12\frac{3}{5} \text{ degree} = 12^{\circ}36'$$
 [1° = 60']

Thus, the required angle is 12°36'.

Question 5:

In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.

Solution 5:

Diameter of the circle = 40 cm

$$\therefore$$
 Radius (r) of the circle $=\frac{40}{2}cm = 20cm$

Let AB be a chord (length = 20cm) of the circle.

In $\triangle OAB$, OA = OB = Radius of circle = 20 cm

Also, AB = 20 cm

Thus, $\triangle OAB$ is an equilateral triangle.

$$\therefore \theta = 60^{\circ} = \frac{\pi}{3}$$
 radian

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre then

$$\theta = \frac{l}{r}$$

$$\frac{\pi}{3} = \frac{\widehat{AB}}{20} \Rightarrow \widehat{AB} = \frac{20\pi}{3} \text{ cm}$$

Thus, the length of the minor arc of the chord is $\frac{20\pi}{3}cm$.

Question 6:

If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Solution 6:

Let the radii of the two circles be r_1 and r_2 . Let an arc of length l subtend an angle of 60° at the centre of the circle of radius r_1 , while let an arc of length/subtend an angle of 75° at the centre of the circle of radius r_2 .

Now,
$$60^{\circ} = \frac{\pi}{3}$$
 radian and $75^{\circ} = \frac{5\pi}{12}$ radian

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ . radian at the centre then

$$\theta = \frac{l}{r}$$
 or $l = r\theta$

$$\therefore l = \frac{r_1 \pi}{3} \text{ and } l = \frac{r_2 5 \pi}{12}$$

$$\Rightarrow \frac{r_1\pi}{3} = \frac{r_25\pi}{12}$$

$$\Rightarrow r_1 = \frac{r_2 5}{4}$$

$$\Rightarrow \frac{r_1}{r_2} = \frac{5}{4}$$

Thus, the ratio of the radii is 5:4.

Question 7:

Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length.

Solution 7:

We know that in a circle of radius r unit, if an arc of length l unit subtends

An angle θ radian at the centre, then $\theta = \frac{l}{r}$

It is given that $r = 75 \, cm$

(i) Here,
$$l = 10cm$$

$$\theta = \frac{10}{75}$$
 radian $= \frac{2}{15}$ radian

(ii) Here, l = 15 cm

$$\theta = \frac{15}{75}$$
 radian $= \frac{1}{5}$ radian

(iii) Here, l = 21cm

$$\theta = \frac{21}{75}$$
 radian $= \frac{7}{25}$ radian

Exercise 3.2

Question 1:

Find the values of other five trigonometric functions if $\cos x = -\frac{1}{2}$, x lies in third quadrant.

Solution 1:

$$\cos x = -\frac{1}{2}$$

$$\therefore \sec x = \frac{1}{\cos x} = \frac{1}{\left(-\frac{1}{2}\right)} = -2$$

$$\sin^2 x + \cos^2 x = 1$$

$$\Rightarrow \sin^2 x = 1 - \cos^2 x$$

$$\Rightarrow \sin^2 x = 1 - \left(-\frac{1}{2}\right)^2$$

$$\Rightarrow \sin^2 x = 1 - \frac{1}{4} = \frac{3}{4}$$

$$\Rightarrow \sin x = \pm \frac{\sqrt{3}}{2}$$

Since x lies in the 3^{rd} quadrant, the value of $\sin x$ will be negative.

$$\therefore \sin x = -\frac{\sqrt{3}}{2}$$

$$\csc x = \frac{1}{\sin x} = \frac{1}{\left(-\frac{\sqrt{3}}{2}\right)} = -\frac{2}{\sqrt{3}}$$

$$\tan x = \frac{\sin x}{\cos x} = \frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(-\frac{1}{2}\right)} = \sqrt{3}$$

$$\cot x = \frac{1}{\tan x} = \frac{1}{\sqrt{3}}.$$

Question 2:

Find the values of other five trigonometric functions if $\sin x = \frac{3}{5}$, x lies in second quadrant.

Solution 2:

$$\sin x = \frac{3}{5}$$

$$\csc x = \frac{1}{\sin x} = \frac{1}{\left(\frac{3}{5}\right)} = \frac{5}{3}$$

$$\sin^2 x + \cos^2 x = 1$$

$$\Rightarrow \cos^2 x = 1 - \sin^2 x$$

$$\Rightarrow \cos^2 x = 1 - \left(\frac{3}{5}\right)^2$$

$$\Rightarrow \cos^2 x = 1 - \frac{9}{25}$$

$$\Rightarrow \cos^2 x = \frac{16}{25}$$

$$\Rightarrow \cos x = \pm \frac{4}{5}$$

Since x lies in the 2^{nd} quadrant, the value of $\cos x$ will be negative

$$\therefore \cos x = -\frac{4}{5}$$

$$\sec x = \frac{1}{\cos x} = \frac{1}{\left(-\frac{4}{5}\right)} = -\frac{5}{4}$$

$$\tan x = \frac{\sin x}{\cos x} = \frac{\left(\frac{3}{5}\right)}{\left(-\frac{4}{5}\right)} = -\frac{3}{4}$$

$$\cot x = \frac{1}{\tan x} = -\frac{4}{3}.$$

Question 3:

Find the values of other five trigonometric functions if $\cot x = \frac{3}{4}$, x lies in third quadrant.

Solution 3:

$$\cot x = \frac{3}{4}$$

$$\tan x = \frac{1}{\cot x} = \frac{1}{\left(\frac{3}{4}\right)} = \frac{4}{3}$$

$$1 + \tan^2 x = \sec^2 x$$

$$\Rightarrow 1 + \left(\frac{4}{3}\right)^2 = \sec^2 x$$

$$\Rightarrow 1 + \frac{16}{9} = \sec^2 x$$

$$\Rightarrow \frac{25}{9} = \sec^2 x$$

$$\Rightarrow \sec x = \pm \frac{5}{3}$$

Since x lies in the 3^{rd} quadrant, the value of $\sec x$ will be negative.

$$\therefore \sec x = -\frac{5}{3}$$

$$\cos x = \frac{1}{\sec x} = \frac{1}{\left(-\frac{5}{3}\right)} = -\frac{3}{5}$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\Rightarrow \frac{4}{3} = \frac{\sin x}{\left(\frac{-3}{5}\right)}$$

$$\Rightarrow \sin x = \left(\frac{4}{3}\right) \times \left(\frac{-3}{5}\right) = -\frac{4}{5}$$

$$\csc x = \frac{1}{\sin x} = -\frac{5}{4}$$

Question 4:

Find the values of other five trigonometric functions if $\sec x = \frac{13}{5}$, x lies in fourth quadrant.

Solution 4:

$$\sec x = \frac{13}{5}$$

$$\cos x = \frac{1}{\sec x} = \frac{1}{\left(\frac{13}{5}\right)} = \frac{5}{13}$$

$$\sin^2 x + \cos^2 = 1$$

$$\Rightarrow \sin^2 x = 1 - \cos^2 x$$

$$\Rightarrow \sin^2 x = 1 - \left(\frac{5}{13}\right)^2$$
$$\Rightarrow \sin^2 x = 1 - \frac{25}{169} = \frac{144}{169}$$
$$\Rightarrow \sin x = \pm \frac{12}{13}$$

Since x lies in the 4th quadrant, the value of sin x will be negative.

$$\therefore \sin x = -\frac{12}{13}$$

$$\csc x = \frac{1}{\sin x} = \frac{1}{\left(-\frac{12}{13}\right)} = -\frac{13}{12}$$

$$(-12)$$

$$\tan x = \frac{\sin x}{\cos x} = \frac{\left(\frac{-12}{13}\right)}{\left(\frac{5}{13}\right)} = -\frac{12}{5}$$

$$\cot x = \frac{1}{\tan x} = \frac{1}{\left(-\frac{12}{5}\right)} = -\frac{5}{12}.$$

Question 5:

Find the values of other five trigonometric functions if $\tan x = -\frac{5}{12}$, x lies in second quadrant.

Solution 5:

$$\tan x = -\frac{5}{12}$$

$$\cot x = \frac{1}{\tan x} = \frac{1}{\left(-\frac{5}{12}\right)} = -\frac{12}{5}$$

$$1 + \tan^2 x = \sec^2 x$$

$$\Rightarrow 1 + \left(-\frac{5}{12}\right)^2 = \sec^2 x$$

$$\Rightarrow 1 + \frac{25}{144} = \sec^2 x$$

$$\Rightarrow \frac{169}{144} = \sec^2 x$$

$$\Rightarrow$$
 sec $x = \pm \frac{13}{12}$

Since x lies in the 2^{nd} quadrant, the value of sec x will be negative.

$$\tan x = \frac{\sin x}{\cos x}$$

$$\Rightarrow -\frac{5}{12} = \frac{\sin x}{\left(-\frac{12}{13}\right)}$$

$$\Rightarrow \sin x = \left(-\frac{5}{12}\right) \times \left(-\frac{12}{13}\right) = \frac{5}{13}$$

$$\csc x = \frac{1}{\sin x} = \frac{1}{\left(\frac{5}{13}\right)} = \frac{13}{5}.$$

Question 6:

Find the value of the trigonometric function sin 765°.

Solution 6:

It is known that the values of $\sin x$ repeat after an interval of 2n or 360° .

$$\therefore \sin 765^{\circ} = \sin (2 \times 360^{\circ} + 45^{\circ}) = \sin 45^{\circ} = \frac{1}{\sqrt{2}}.$$

Ouestion 7:

Find the value of the trigonometric function $\csc(-1410^{\circ})$

Solution 7:

It is known that the values of $\csc x$ repeat after an interval of 2n or 360° .

$$\therefore \csc(-1410^{\circ}) = \csc(-1410^{\circ} + 4 \times 360^{\circ})$$
$$= \csc(-1410^{\circ} + 1440^{\circ})$$

$$=$$
 cosec 30 $^{\circ}$ =2.

Question 8:

Find the value of the trigonometric function $\tan \frac{19\pi}{3}$.

Solution 8:

It is known that the values of $\tan x$ repeat after an interval of n or 180° .

$$\therefore \tan \frac{19\pi}{3} = \tan 6\frac{1}{3}\pi = \tan \left(6\pi + \frac{\pi}{3}\right) = \tan \frac{\pi}{3} = \tan 60^{\circ} = \sqrt{3} .$$

Question 9:

Find the value of the trigonometric function $\sin\left(-\frac{11\pi}{3}\right)$

Solution 9:

It is known that the values of $\sin x$ repeat after an interval of 2n or 360° .

$$\therefore \sin\left(-\frac{11\pi}{3}\right) = \sin\left(-\frac{11\pi}{3} + 2 \times 2\pi\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}.$$

Question 10:

Find the value of the trigonometric function $\cot\left(-\frac{15\pi}{4}\right)$

Solution 10:

It is known that the values of cot x repeat after an interval of n or 180° .

$$\therefore \cot\left(-\frac{15\pi}{4}\right) = \cot\left(-\frac{15\pi}{4} + 4\pi\right) = \cot\frac{\pi}{4} = 1.$$

Exercise 3.3

Question 1:

$$\sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{3} - \tan^2 \frac{\pi}{4} = -\frac{1}{2}$$

Solution 1:

L.H.S =
$$\sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{3} - \tan^2 \frac{\pi}{4}$$

= $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 - (1)^2$
= $\frac{1}{4} + \frac{1}{4} - 1 = -\frac{1}{2}$
= R.H.S.

Question 2:

Prove that
$$2\sin^2\frac{\pi}{6} + \csc^2\frac{7\pi}{6}\cos^2\frac{\pi}{3} = \frac{3}{2}$$

Solution 2:

L.H.S. =
$$2\sin^2\frac{\pi}{6} + \csc^2\frac{7\pi}{6}\cos^2\frac{\pi}{3}$$

$$= 2\left(\frac{1}{2}\right)^{2} + \csc^{2}\left(\pi + \frac{\pi}{6}\right)\left(\frac{1}{2}\right)^{2}$$

$$= 2 \times \frac{1}{4} + \left(-\csc\frac{\pi}{6}\right)^{2}\left(\frac{1}{4}\right)$$

$$= \frac{1}{2} + \left(-2\right)^{2}\left(\frac{1}{4}\right)$$

$$= \frac{1}{2} + \frac{4}{4} = \frac{1}{2} + 1 = \frac{3}{2}$$

$$= \text{R.H.S.}$$

Question 3:

Prove that
$$\cot^2 \frac{\pi}{6} + \csc \frac{5\pi}{6} + 3\tan^2 \frac{\pi}{6} = 6$$

Solution 3:

L.H.S. =
$$\cot^2 \frac{\pi}{6} + \csc \frac{5\pi}{6} + 3\tan^2 \frac{\pi}{6}$$

= $(\sqrt{3})^2 + \csc(\pi - \frac{\pi}{6}) + 3(\frac{1}{\sqrt{3}})^2$
= $3 + \csc \frac{\pi}{6} + 3 \times \frac{1}{3}$
= $3 + 2 + 1 = 6$
= R.H.S

Question 4:

Prove that
$$2\sin^2\frac{3\pi}{4} + 2\cos^2\frac{\pi}{4} + 2\sec^2\frac{\pi}{3} = 10$$

Solution 4:

L.H.S. =
$$2\sin^2 \frac{3\pi}{4} + 2\cos^2 \frac{\pi}{4} + 2\sec^2 \frac{\pi}{3}$$

= $2\left\{\sin\left(\pi - \frac{\pi}{4}\right)\right\}^2 + 2\left(\frac{1}{\sqrt{2}}\right)^2 + 2(2)^2$
= $2\left\{\sin\frac{\pi}{4}\right\}^2 + 2\times\frac{1}{2} + 8$
= $1 + 1 + 8$
= 10
= R.H.S

Question 5:

Find the value of:

- (i) sin 75°
- (ii) tan 15°

Solution 5:

(i)
$$\sin 75^\circ = \sin (45^\circ + 30^\circ)$$

$$= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$\int \sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right)$$
$$= \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3}+1}{2\sqrt{2}}$$

(ii)
$$\tan 15^\circ = \tan (45^\circ - 30^\circ)$$

$$= \frac{\tan 45^{\circ} - \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}} \qquad \left[\tan \left(x - y \right) = \frac{\tan x - \tan y}{1 + \tan x \tan y} \right]$$

$$=\frac{1-\frac{1}{\sqrt{3}}}{1+1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}$$

$$= \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{\left(\sqrt{3} - 1\right)^2}{\left(\sqrt{3} + 1\right)\left(\sqrt{3} - 1\right)} = \frac{3 + 1 - 2\sqrt{3}}{\left(\sqrt{3}\right)^2 - \left(1\right)^2}$$

$$=\frac{4-2\sqrt{3}}{3-1}=2-\sqrt{3}$$

Question 6:

Prove that
$$\cos\left(\frac{\pi}{4} - x\right) \cos\left(\frac{\pi}{4} - y\right) - \sin\left(\frac{\pi}{4} - x\right) \sin\left(\frac{\pi}{4} - y\right) = \sin(x + y)$$

Solution 6:

$$\cos\left(\frac{\pi}{4} - x\right)\cos\left(\frac{\pi}{4} - y\right) - \sin\left(\frac{\pi}{4} - x\right)\sin\left(\frac{\pi}{4} - y\right)$$

$$= \frac{1}{2} \left[2\cos\left(\frac{\pi}{4} - x\right)\cos\left(\frac{\pi}{4} - y\right)\right] + \frac{1}{2} \left[-2\sin\left(\frac{\pi}{4} - x\right)\sin\left(\frac{\pi}{4} - y\right)\right]$$

$$= \frac{1}{2} \left[\cos\left(\frac{\pi}{4} - x\right) + \left(\frac{\pi}{4} - y\right)\right] + \cos\left(\frac{\pi}{4} - x\right) - \left(\frac{\pi}{4} - y\right)$$

$$+ \frac{1}{2} \left[\cos\left(\frac{\pi}{4} - x\right) + \left(\frac{\pi}{4} - y\right)\right] - \cos\left(\frac{\pi}{4} - x\right) - \left(\frac{\pi}{4} - y\right)$$

$$\begin{bmatrix} \because 2\cos A\cos B = \cos(A+B) + \cos(A-B) \\ -2\sin A\sin B = \cos(A+B) - \cos(A-B) \end{bmatrix}$$

$$= 2 \times \frac{1}{2} \left[\cos \left\{ \left(\frac{\pi}{4} - x \right) + \left(\frac{\pi}{4} - y \right) \right\} \right]$$

$$= \cos \left[\frac{\pi}{4} - (x+y) \right]$$

$$= \sin(x+y)$$

Question 7:

= R.H.S.

Prove that
$$\frac{\tan\left(\frac{\pi}{4} + x\right)}{\tan\left(\frac{\pi}{4} - x\right)} = \left(\frac{1 + \tan x}{1 - \tan x}\right)^2$$

Solution 7:

It is known that
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
 and $(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

L.H.S. =
$$\frac{\tan\left(\frac{\pi}{4} + x\right)}{\tan\left(\frac{\pi}{4} - x\right)} = \frac{\left(\frac{\tan\frac{\pi}{4} + \tan x}{1 - \tan\frac{\pi}{4} \tan x}\right)}{\frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\frac{\pi}{4} \tan x}} = \frac{\left(\frac{1 + \tan x}{1 - \tan x}\right)}{\left(\frac{1 - \tan x}{1 + \tan x}\right)} = \left(\frac{1 + \tan x}{1 - \tan x}\right)^{2} = \text{R.H.S.}$$

Question 8:

Prove that
$$\frac{\cos(\pi+x)\cos(-x)}{\sin(\pi-x)\cos(\frac{\pi}{2}+x)} = \cot^2 x$$

Solution 8:

L.H.S.
$$= \frac{\cos(\pi + x)\cos(-x)}{\sin(\pi - x)\cos(\frac{\pi}{2} + x)}$$
$$= \frac{[-\cos x][\cos x]}{(\sin x)(-\sin x)}$$
$$= \frac{-\cos^2 x}{-\sin^2 x}$$

$$= \cot^2 x$$
$$= R.H.S.$$

Question 9:

$$\cos\left(\frac{3\pi}{2} + x\right)\cos\left(2\pi + x\right)\left[\cot\left(\frac{3\pi}{2} - x\right) + \cot\left(2\pi + x\right)\right] = 1$$

Solution 9:

L.H.S. =
$$\cos\left(\frac{3\pi}{2} + x\right) \cos(2\pi + x) \left[\cot\left(\frac{3\pi}{2} - x\right) + \cot(2\pi + x)\right]$$

= $\sin x \cos x \left[\tan x + \cot x\right]$
= $\sin x \cos x \left(\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}\right)$
= $\left(\sin x \cos x\right) \left[\frac{\sin^2 x + \cos^2 x}{\sin x \cos x}\right]$

$$= 1 = R.H.S.$$

Ouestion 10:

Prove that $\sin(n+1)x\sin(n+2)x + \cos(n+1)x\cos(n+2)x = \cos x$

Solution 10:

L.H.S.
$$= \sin(n+1)x\sin(n+2)x + \cos(n+1)x\cos(n+2)x$$

 $= \frac{1}{2} \Big[2\sin(n+1)x\sin(n+2)x + 2\cos(n+1)x\cos(n+2)x \Big]$
 $= \frac{1}{2} \Big[\cos\{(n+1)x - (n+2)x\} - \cos\{(n+1)x + (n+2)x\} \Big]$
 $+ \cos\{(n+1)x + (n+2)x\} + \cos\{(n+1)x - (n+2)x\} \Big]$
 $\Big[\because -2\sin A \sin B = \cos(A+B) - \cos(A-B) \Big]$
 $\Big[2\cos A \cos B = \cos(A+B) + \cos(A-B) \Big]$
 $= \frac{1}{2} \times 2\cos\{(n+1)x - (n+2)x\}$
 $= \cos(-x) = \cos x = \text{R.H.S.}$

Question 11:

Prove that
$$\cos\left(\frac{3\pi}{4} + x\right) - \cos\left(\frac{3\pi}{4} - x\right) = -\sqrt{2}\sin x$$

Solution 11:

It is known that $\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right) \cdot \sin\left(\frac{A-B}{2}\right)$

$$\therefore \text{ L.H.S.} = \cos\left(\frac{3\pi}{4} + x\right) - \cos\left(\frac{3\pi}{4} - x\right)$$

$$=-2\sin\left\{\frac{\left(\frac{3\pi}{4}+x\right)+\left(\left(\frac{3\pi}{4}-x\right)\right)}{2}\right\}.\sin\left\{\frac{\left(\frac{3\pi}{4}+x\right)-\left(\frac{3\pi}{4}-x\right)}{2}\right\}$$

$$=-2\sin\left(\frac{3\pi}{4}\right)\sin x$$

$$=-2\sin\left(\pi-\frac{\pi}{4}\right)\sin x$$

$$= -2\sin\frac{\pi}{4}\sin x$$

$$= -2 \times \frac{1}{\sqrt{2}} \times \sin x$$

$$=-\sqrt{2}\sin x$$

$$= R.H.S.$$

Ouestion 12:

Prove that $\sin^2 6x - \sin^2 4x = \sin 2x \sin 10x$

Solution 12:

It is known that

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right), \ \sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

$$\therefore L.H.S. = \sin^2 6x - \sin^2 4x$$

$$= (\sin 6x + \sin 4x)(\sin 6x - \sin 4x)$$

$$= \left[2\sin\left(\frac{6x+4x}{2}\right)\cos\left(\frac{6x-4x}{2}\right)\right]\left[2\cos\left(\frac{6x+4x}{2}\right).\sin\left(\frac{6x-4x}{2}\right)\right]$$

$$= (2\sin 5x\cos x)(2\cos 5x\sin x) = (2\sin 5x\cos 5x)(2\sin x\cos x)$$

- $=\sin 10x\sin 2x$
- = R.H.S.

Question 13:

Prove that $\cos^2 2x - \cos^2 6x = \sin 4x \sin 8x$

Solution 13:

It is known that

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right), \cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

$$\therefore L.H.S. = \cos^2 2x - \cos^2 6x$$

$$=(\cos 2x + \cos 6x)(\cos 2x - 6x)$$

$$= \left[2\cos\left(\frac{2x+6x}{2}\right)\cos\left(\frac{2x-6x}{2}\right) \right] \left[-2\sin\left(\frac{2x+6x}{2}\right)\sin\left(\frac{2x-6x}{2}\right) \right]$$

$$= \left\lceil 2\cos 4x \cos \left(-2x\right) \right\rceil \left\lceil -2\sin 4x \sin \left(-2x\right) \right\rceil$$

$$= \left[2\cos 4x\cos 2x\right] \left[-2\sin 4x(-\sin 2x)\right]$$

$$= (2\sin 4x\cos 4x)(2\sin 2x\cos 2x)$$

$$= \sin 8x \sin 4x = \text{R.H.S}$$

Question 14:

Prove that $\sin 2x + 2\sin 4x + \sin 6x = 4\cos^2 x \sin 4x$

Solution 14:

$$L.H.S. = \sin 2x + 2\sin 4x + \sin 6x$$

$$= \left[\sin 2x + \sin 6x\right] + 2\sin 4x$$

$$= \left[2\sin\left(\frac{2x+6x}{2}\right)\cos\left(\frac{2x-6x}{2}\right) \right] + 2\sin 4x$$

$$\left[\because \sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\right]$$

$$= 2\sin 4x \cos(-2x) + 2\sin 4x$$

$$= 2\sin 4x \cos 2x + 2\sin 4x$$

$$= 2\sin 4x(\cos 2x + 1)$$

$$= 2\sin 4x (2\cos^2 x - 1 + 1)$$

$$= 2\sin 4x \left(2\cos^2 x\right)$$

$$=4\cos^2 x \sin 4x$$

$$= R.H.S.$$

Question 15:

Prove that $\cot 4x(\sin 5x + \sin 3x) = \cot x(\sin 5x - \sin 3x)$

Solution 15:

$$L.H.S = \cot 4x (\sin 5x + \sin 3x)$$

$$= \frac{\cot 4x}{\sin 4x} \left[2\sin\left(\frac{5x+3x}{2}\right) \cos\left(\frac{5x-3x}{2}\right) \right]$$

$$\left[\because \sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\right]$$
$$= \left(\frac{\cos 4x}{\sin 4x}\right)[2\sin 4x\cos x]$$

$$=2\cos 4x\cos x$$

R.H.S. =
$$\cot x (\sin 5x - \sin 3x)$$

$$= \frac{\cos x}{\sin x} \left[2\cos\left(\frac{5x+3x}{2}\right) \sin\left(\frac{5x-3x}{2}\right) \right]$$

$$\left[\because \sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \right]$$

$$= \frac{\cos x}{\sin x} [2\cos 4x \sin x]$$

 $=2\cos 4x.\cos x$

L.H.S. = R.H.S.

Question 16:

Prove that
$$\frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x} = -\frac{\sin 2x}{\cos 10x}$$

Solution 16:

It is known that

$$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right), \sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

$$\therefore \text{L.H.S.} = \frac{\cos 9x - \cos 5x}{\sin 17x - \sin 3x}$$

$$= \frac{-2\sin\left(\frac{9x+5x}{2}\right).\sin\left(\frac{9x-5x}{2}\right)}{2\cos\left(\frac{17x+3x}{2}\right).\sin\left(\frac{17x-3x}{2}\right)}$$

$$\frac{-2\sin 7x \cdot \sin 2x}{}$$

$$2\cos 10x.\sin 7x$$

$$= -\frac{\sin 2x}{\cos 10x}$$

$$=$$
 R.H.S.

Question 17:

Prove that:
$$\frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x} = \tan 4x$$

Solution 17:

It is known that

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right),\,$$

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\therefore \text{ L.H.S.} = \frac{\sin 5x + \sin 3x}{\cos 5x + \cos 3x}$$

$$= \frac{2\sin\left(\frac{5x+3x}{2}\right).\cos\left(\frac{5x-3x}{2}\right)}{2\cos\left(\frac{5x+3x}{2}\right).\cos\left(\frac{5x-3x}{2}\right)}$$

$$= \frac{2\sin 4x \cdot \cos x}{2\cos 4x \cdot \cos x}$$

$$= \tan 4x = \text{R.H.S.}$$

Question 18:

Prove that
$$\frac{\sin x - \sin y}{\cos x + \cos y} = \tan \frac{x - y}{2}$$

Solution 18:

It is known that

$$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right),\,$$

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\therefore \text{ L.H.S.} = \frac{\sin x - \sin y}{\cos x + \cos y}$$

$$= \frac{2\cos\left(\frac{x+y}{2}\right).\sin\left(\frac{x-y}{2}\right)}{2\cos\left(\frac{x+y}{2}\right).\cos\left(\frac{x-y}{2}\right)}$$

$$= \frac{\sin\left(\frac{x-y}{2}\right)}{\cos\left(\frac{x-y}{2}\right)}$$

$$=\tan\left(\frac{x-y}{2}\right)=$$
 R.H.S.

Question 19:

Prove that
$$\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \tan 2x$$

Solution 19:

It is known that

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right),\,$$

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\therefore \text{L.H.S.} = \frac{\sin x + \sin 3x}{\cos x + \cos 3x}$$

$$= \frac{2\sin\left(\frac{x+3x}{2}\right)\cos\left(\frac{x-3x}{2}\right)}{2\cos\left(\frac{x+3x}{2}\right)\cos\left(\frac{x-3x}{2}\right)}$$

$$= \frac{\sin 2x}{\cos 2x}$$

$$= \tan 2x$$

$$= R.H.S.$$

Question 20:

Prove that
$$\frac{\sin x - \sin 3x}{\sin^2 x - \cos^2 x} = 2\sin x$$

Solution 20:

It is known that

$$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right),\cos^2 A - \sin^2 A = \cos 2A$$

$$\therefore \text{ L.H.S.} = \frac{\sin x - \sin 3x}{\sin^2 x - \cos^2 x}$$

$$= \frac{2\cos\left(\frac{x+3x}{2}\right)\sin\left(\frac{x-3x}{2}\right)}{-\cos 2x}$$

$$=\frac{2\cos 2x\sin\left(-x\right)}{-\cos 2x}$$

$$=-2\times(-\sin x)$$

$$= 2\sin x = R.H.S.$$

Question 21:

Prove that
$$\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$$

Solution 21:

L.H.S.
$$= \frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x}$$

$$= \frac{(\cos 4x + \cos 2x) + \cos 3x}{(\sin 4x + \sin 2x) + \sin 3x}$$

$$= \frac{2\cos\left(\frac{4x + 2x}{2}\right)\cos\left(\frac{4x - 2x}{2}\right) + \cos 3x}{2\sin\left(\frac{4x + 2x}{2}\right)\cos\left(\frac{4x - 2x}{2}\right) + \sin 3x}$$

$$\left[\because \cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right), \sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\right]$$

$$= \frac{2\cos 3x \cos + \cos 3x}{2\sin 3x \cos x + \sin 3x}$$

$$\cos 3x(2\cos x+1)$$

$$= \frac{1}{\sin 3x (2\cos x + 1)}$$

$$\cot 3x = \text{R.H.S.}$$

Question 22:

Prove that $\cot x \cot 2x - \cot 2x \cot 3x - \cot 3x \cot x = 1$

Solution 22:

L.H.S. =
$$\cot x \cot 2x - \cot 2x \cot 3x - \cot 3x \cot x$$

$$= \cot x \cot 2x - \cot 3x (\cot 2x + \cot x)$$

$$= \cot x \cot 2x - \cot (2x + x)(\cot 2x + \cot x)$$

$$= \cot x \cot 2x - \left[\frac{\cot 2x \cot x - 1}{\cot x + \cot 2x}\right] (\cot 2x + \cot x)$$

$$\left[\because \cot (A+B) = \frac{\cot A \cot B - 1}{\cot A + \cot B} \right]$$

$$= \cot x \cot 2x - (\cot 2x \cot x - 1) = 1 = \text{R.H.S.}$$

Question 23:

Prove that
$$\tan 4x = \frac{4\tan x(1-\tan^2 x)}{1-6\tan^2 x + \tan^4 x}$$

Solution 23:

It is known that
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

$$\therefore \text{ L.H.S.} = \tan 4x = \tan 2(2x)$$

$$=\frac{2\tan 2x}{1-\tan^2(2x)}$$

$$= \frac{2\left(\frac{2\tan x}{1-\tan^2 x}\right)}{1-\left(\frac{2\tan x}{1-\tan^2 x}\right)^2}$$

$$= \frac{\left(\frac{4\tan x}{1-\tan^2 x}\right)}{\left[1-\frac{4\tan^2 x}{(1-\tan^2 x)^2}\right]}$$

$$= \frac{\left(\frac{4\tan x}{1-\tan^2 x}\right)}{\left[\frac{(1-\tan^2 x)^2-4\tan^2 x}{(1-\tan^2 x)^2}\right]}$$

$$= \frac{4\tan x(1-\tan^2 x)}{(1-\tan^2 x)^2-4\tan^2 x}$$

$$= \frac{4\tan x(1-\tan^2 x)}{1+\tan^4 x-2\tan^2 x-4\tan^2 x}$$

$$= \frac{4\tan x(1-\tan^2 x)}{1-6\tan^2 x+\tan^4 x} = \text{R.H.S.}$$

Question 24:

Prove that: $\cos 4x = 1 - 8\sin^2 x \cos^2 x$

Solution 24:

L.H.S. $=\cos 4x$

$$=\cos 2(2x)$$

$$=1-2\sin^2 2x \left[\cos 2A = 1-2\sin^2 A\right]$$

$$=1-2(2\sin x\cos x)^{2}[\sin 2A=2\sin A\cos A]$$

$$=1-8\sin^2 x \cos^2 x$$

= R.H.S.

Question 25:

Prove that: $\cos 6x = 32x \cos^6 x - 48 \cos^4 x + 18 \cos^2 x - 1$

Solution 25:

L.H.S.
$$=\cos 6x$$

$$=\cos 3(2x)$$

$$= 4\cos^{3} 2x - 3\cos 2x \Big[\cos 3A = 4\cos^{3} A - 3\cos A\Big]$$

$$= 4\Big[(2\cos^{2} x - 1)^{3} - 3(2\cos^{2} x - 1) \Big] \Big[\cos 2x = 2\cos^{2} x - 1\Big]$$

$$= 4\Big[(2\cos^{2} x)^{3} - (1)^{3} - 3(2\cos^{2} x)^{2} + 3(2\cos^{2} x) \Big] - 6\cos^{2} x + 3$$

$$= 4\Big[8\cos^{6} x - 1 - 12\cos^{4} x + 6\cos^{2} x \Big] - 6\cos^{2} x + 3$$

$$= 32\cos^{6} x - 4 - 48\cos^{4} x + 24\cos^{2} x - 6\cos^{2} x + 3$$

$$= 32\cos^{6} x - 48\cos^{4} x + 18\cos^{2} x - 1$$

$$= R.H.S.$$

Exercise 3.4

Question 1:

Find the principal and general solutions of the question $\tan x = \sqrt{3}$.

Solution 1:

$$\tan x = \sqrt{3}$$

It is known that
$$\tan \frac{\pi}{3} = \sqrt{3}$$
 and $\tan \left(\frac{4\pi}{3}\right) = \tan \left(\pi + \frac{\pi}{3}\right) = \tan \frac{\pi}{3} = \sqrt{3}$

Therefore, the principal solutions are $x = \frac{\pi}{3}$ and $\frac{4\pi}{3}$.

Now,
$$\tan x = \tan \frac{\pi}{3}$$

$$\Rightarrow x = n\pi + \frac{\pi}{3}$$
, where $n \in \mathbb{Z}$

Therefore, the general solution is $x = n\pi + \frac{\pi}{3}$, where $n \in \mathbb{Z}$.

Ouestion 2:

Find the principal and general solutions of the equation $\sec x = 2$

Solution 2:

$$\sec x = 2$$

It is known that
$$\sec \frac{\pi}{3} = 2$$
 and $\sec \frac{5\pi}{3} = \sec \left(2\pi - \frac{\pi}{3}\right) = \sec \frac{\pi}{3} = 2$

Therefore, the principal solutions are $x = \frac{\pi}{3}$ and $\frac{5\pi}{3}$.

Now,
$$\sec x = \sec \frac{\pi}{3}$$

$$\Rightarrow \cos x = \cos \frac{\pi}{3}$$
 $\left[\sec x = \frac{1}{\cos x}\right]$

$$\Rightarrow 2n\pi \pm \frac{\pi}{3}$$
, where $n \in \mathbb{Z}$.

Therefore, the general solution is $x = 2n\pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$.

Question 3:

Find the principal and general solutions of the equation $\cot x = -\sqrt{3}$

Solution 3:

$$\cot x = -\sqrt{3}$$

It is known that $\cot \frac{\pi}{6} = \sqrt{3}$

$$\therefore \cot\left(\pi - \frac{\pi}{6}\right) = -\cot\frac{\pi}{6} = -\sqrt{3} \text{ and } \cot\left(2\pi - \frac{\pi}{6}\right) = -\cot\frac{\pi}{6} = -\sqrt{3}$$

i.e.,
$$\cot \frac{5\pi}{6} = -\sqrt{3}$$
 and $\cot \frac{11\pi}{6} = -\sqrt{3}$

Therefore, the principal solutions are $x = \frac{5\pi}{6}$ and $\frac{11\pi}{6}$.

Now,
$$\cot x = \cot \frac{5\pi}{6}$$

$$\Rightarrow \tan x = \tan \frac{5\pi}{6}$$

$$\int \cot x = \frac{1}{\tan x}$$

$$\Rightarrow x = n\pi + \frac{5\pi}{6}$$
, where $n \in \mathbb{Z}$

Therefore, the general solution is $x = n\pi + \frac{5\pi}{6}$, where $n \in \mathbb{Z}$.

Question 4:

Find the general solution of $\csc x = -2$

Solution 4:

$$\csc x = -2$$

It is known that

$$\csc\frac{\pi}{6} = 2$$

$$\therefore \csc\left(\pi + \frac{\pi}{6}\right) = -\csc\frac{\pi}{6} = -2 \text{ and } \csc\left(2\pi - \frac{\pi}{6}\right) = -\csc\frac{\pi}{6} = -2$$

i.e.,
$$\csc \frac{7\pi}{6} = -2$$
 and $\csc \frac{11\pi}{6} = -2$

Therefore, the principal solutions are $x = \frac{7\pi}{6}$ and $\frac{11\pi}{6}$.

Now,
$$\csc x = \csc \frac{7\pi}{6}$$

$$\Rightarrow \sin x = \sin \frac{7\pi}{6} \qquad \left[\csc x = \frac{1}{\sin x} \right]$$

$$\left[\csc x = \frac{1}{\sin x}\right]$$

$$\Rightarrow x = n\pi + (-1)^n \frac{7\pi}{6}$$
, where $n \in \mathbb{Z}$

Therefore, the general solution is $x = n\pi + (-1)^n \frac{7\pi}{6}$, where $n \in \mathbb{Z}$.

Question 5:

Find the general solution of the equation $\cos 4x = \cos 2x$

Solution 5:

$$\cos 4x = \cos 2x$$

$$\Rightarrow$$
 cos $4x$ - cos $2x$ = 0

$$\Rightarrow -2\sin\left(\frac{4x+2x}{2}\right)\sin\left(\frac{4x-2x}{2}\right) = 0$$

$$\left[\because \cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \right]$$

$$\Rightarrow \sin 3x \sin x = 0$$

$$\Rightarrow \sin 3x = 0 \text{ or } \sin x = 0$$

$$\therefore 3x = n\pi$$
 or $\sin x =$

$$\therefore 3x = n\pi \qquad \text{or} \qquad \sin x = 0$$

$$\therefore 3x = n\pi \qquad \text{or} \qquad x = n\pi, \text{ where } n \in \mathbb{Z}$$

$$\Rightarrow x = \frac{n\pi}{3}$$
 or $x = n\pi$, where $n \in \mathbb{Z}$

Question 6:

Find the general solution of the equation $\cos 3x + \cos x - \cos 2x = 0$.

Solution 6:

$$\cos 3x + \cos x - \cos 2x = 0$$

$$\Rightarrow 2\cos\left(\frac{3x+2}{2}\right)\cos\left(\frac{3x-x}{2}\right) - \cos 2x = 0 \quad \left[\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)\right]$$

$$\Rightarrow 2\cos 2x\cos x - \cos 2x = 0$$

$$\Rightarrow \cos 2x(2\cos x - 1) = 0$$

$$\Rightarrow \cos 2x = 0$$
 or $2\cos x - 1 = 0$

$$\Rightarrow \cos 2x = 0$$
 or $\cos x = \frac{1}{2}$

$$\therefore 2x = (2n+1)\frac{\pi}{2} \qquad or \qquad \cos x = \cos \frac{\pi}{3}, \text{ where } n \in \mathbb{Z}$$

$$\Rightarrow x = (2n+1)\frac{\pi}{4} \qquad or \qquad x = 2n\pi \pm \frac{\pi}{3}, \text{ where } n \in \mathbb{Z}$$

Ouestion 7:

Find the general solution of the equation $\sin 2x + \cos x = 0$.

Solution 7:

$$\sin 2x + \cos x = 0$$

$$\Rightarrow 2\sin x \cos x + \cos x = 0$$

$$\Rightarrow \cos x(2\sin x+1)=0$$

$$\Rightarrow \cos x = 0$$
 or $2\sin x + 1 = 0$

Now,
$$\cos x = 0 \Rightarrow \cos x = (2n+1)\frac{\pi}{2}$$
, where $n \in \mathbb{Z}$

$$2\sin x + 1 = 0$$

$$\Rightarrow \sin x = \frac{-1}{2} = -\sin\frac{\pi}{6} = \sin\left(\pi + \frac{\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right) = \sin\frac{7\pi}{6}$$

$$\Rightarrow x = n\pi + (-1)^n \frac{7\pi}{6}$$
, where $n \in \mathbb{Z}$

Therefore, the general solution is
$$(2n+1)\frac{\pi}{2}$$
 or $n\pi + (-1)^n \frac{7\pi}{6}$, $n \in \mathbb{Z}$.

Question 8:

Find the general solution of the equation $\sec^2 2x = 1 - \tan 2x$

Solution 8:

$$\sec^2 2x = 1 - \tan 2x$$

$$\Rightarrow$$
1+tan² 2x=1-tan 2x

$$\Rightarrow \tan^2 2x + \tan 2x = 0$$

$$\Rightarrow \tan 2x (\tan 2x + 1) = 0$$

$$\Rightarrow \tan 2x = 0$$
 or $\tan 2x + 1 = 0$

Now,
$$\tan 2x = 0$$

$$\Rightarrow \tan 2x = \tan 0$$

$$\Rightarrow 2x = n\pi + 0$$
, where $n \in \mathbb{Z}$

$$\Rightarrow x = \frac{n\pi}{2}$$
, where $n \in \mathbb{Z}$

$$\tan 2x + 1 = 0$$

$$\Rightarrow \tan 2x = -1 = -\tan \frac{\pi}{4} = \tan \left(\pi - \frac{\pi}{4}\right) = \tan \frac{3\pi}{4}$$

$$\Rightarrow 2x = n\pi + \frac{3\pi}{4}$$
, where $n \in \mathbb{Z}$

$$\Rightarrow x = \frac{n\pi}{2} + \frac{3\pi}{8}$$
, where $n \in \mathbb{Z}$

Therefore, the general solution is
$$\frac{n\pi}{2}$$
 or $\frac{n\pi}{2} + \frac{3\pi}{8}$, $n \in \mathbb{Z}$

Question 9:

Find the general solution of the equation $\sin x + \sin 3x + \sin 5x = 0$

Solution 9:

 $\sin x + \sin 3x + \sin 5x = 0$

$$(\sin x + \sin 5x) + \sin 3x = 0$$

$$\Rightarrow \left[2\sin\left(\frac{x+5x}{2}\right)\cos\left(\frac{x-5x}{2}\right) \right] + \sin 3x = 0 \qquad \left[\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \right]$$

$$\Rightarrow 2\sin 3x \cos(-2x) + \sin 3x = 0$$

$$\Rightarrow 2\sin 3x \cos 2x + \sin 3x = 0$$

$$\Rightarrow \sin 3x(2\cos 2x+1)=0$$

$$\Rightarrow \sin 3x = 0$$
 or $2\cos 2x + 1 = 0$

Now,
$$\sin 3x = 0 \Rightarrow 3x = n\pi$$
, where $n \in \mathbb{Z}$

i.e.,
$$x = \frac{n\pi}{3}$$
, where $n \in \mathbb{Z}$

$$2\cos 2x + 1 = 0$$

$$\Rightarrow \cos 2x = \frac{-1}{2} = -\cos\frac{\pi}{3} = \cos\left(\pi - \frac{\pi}{3}\right)$$

$$\Rightarrow \cos 2x = \cos \frac{2\pi}{3}$$

$$\Rightarrow 2x = 2n\pi \pm \frac{2\pi}{3}$$
, where $n \in \mathbb{Z}$

$$\Rightarrow x = n\pi \pm \frac{\pi}{3}$$
, where $n \in \mathbb{Z}$

Therefore, the general solution is $\frac{n\pi}{3}$ or $n\pi \pm \frac{\pi}{3}$, $n \in \mathbb{Z}$.

Miscellaneous Exercise

Question 1:

Prove that:
$$2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13} = 0$$

Solution 1:

L.H.S. =
$$2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13}$$

$$= 2\cos\frac{\pi}{3}\cos\frac{9\pi}{13} + 2\cos\left(\frac{3\pi}{13} + \frac{5\pi}{13}\right)\cos\left(\frac{3\pi}{13} - \frac{5\pi}{13}\right)$$

$$= \cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$= 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + 2\cos\frac{4\pi}{13}\cos\left(\frac{-\pi}{13}\right)$$

$$= 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + 2\cos\frac{4\pi}{13}\cos\frac{\pi}{13}$$

$$= 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + 2\cos\frac{4\pi}{13}\cos\frac{\pi}{13}$$

$$= 2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + 2\cos\frac{4\pi}{13}\cos\frac{\pi}{13}$$

$$= 2\cos\frac{\pi}{13}\left[\cos\frac{9\pi}{13} + \cos\frac{4\pi}{13}\right]$$

$$= 2\cos\frac{\pi}{13}\left[\cos\frac{9\pi}{13} + \frac{4\pi}{13}\right]$$

$$= 2\cos\frac{\pi}{13}\left[2\cos\frac{9\pi}{13} + \frac{4\pi}{13}\right]$$

$$= 2\cos\frac{\pi}{13}\left[2\cos\frac{5\pi}{2}\cos\frac{5\pi}{26}\right]$$

$$= 2\cos\frac{\pi}{13}\times2\times0\times\cos\frac{5\pi}{26}$$

$$= 0 = \text{R.H.S.}$$

Question 2:

Prove that: $(\sin 3x + \sin x)\sin x + (\cos 3x - \cos x)\cos x = 0$

Solution 2:

L.H.S. = $(\sin 3x + \sin x)\sin x + (\cos 3x - \cos x)\cos x$

$$= \sin 3x \sin x + \sin^2 x + \cos 3x \cos x - \cos^2 x$$

$$= \cos 3x \cos x + \sin 3x \sin x - (\cos^2 - \sin^2 x)$$

$$= \cos(3x - x) - \cos 2x \qquad \left[\cos(A - B) = \cos A \cos B + \sin A \sin B\right]$$

$$=\cos 2x - \cos 2x$$

=0

= R.H.S.

Question 3:

Prove that:
$$(\cos x + \cos y)^2 + (\sin x - \sin y)^2 = 4\cos^2 \frac{x+y}{2}$$

Solution 3:

Question 4:

Prove that:
$$(\cos x - \cos y)^2 + (\sin x - \sin y)^2 = 4\sin^2 \frac{x - y}{2}$$

Solution 4:

L.H.S.
$$(\cos x - \cos y)^2 + (\sin x - \sin y)^2$$

 $= \cos^2 x + \cos^2 y - 2\cos x \cos y + \sin^2 x + \sin^2 y - 2\sin x \sin y$
 $= (\cos^2 x + \sin^2 x) + (\cos^2 y + \sin^2 y) - 2[\cos x \cos y + \sin x \sin y]$
 $= 1 + 1 - 2[\cos(x - y)]$ $[\cos(A - B) = \cos A \cos B + \sin A \sin B]$
 $= 2[1 - \cos(x - y)]$
 $= 2[1 - \{1 - 2\sin^2(\frac{x - y}{2})\}]$ $[\cos 2A = 1 - 2\sin^2 A]$
 $= 4\sin^2(\frac{x - y}{2}) = \text{R.H.S}$

Question 5:

Prove that: $\sin x + \sin 3x + \sin 5x + \sin 7x = 4\cos x \cos 2x \sin 4x$

Solution 5:

It is known that
$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right) \cdot \cos\left(\frac{A-B}{2}\right)$$

L.H.S. $= \sin x + \sin 3x + \sin 5x + \sin 7x$
 $= (\sin x + \sin 5x) + (\sin 3x + \sin 7x)$
 $= 2\sin\left(\frac{x+5x}{2}\right) \cdot \cos\left(\frac{x-5x}{2}\right) + 2\sin\left(\frac{3x+7x}{2}\right)\cos\left(\frac{3x-7x}{2}\right)$

- $= 2\sin 3x \cos(-2x) + 2\sin 5x \cos(-2x)$
- $= 2\sin 3x\cos 2x + 2\sin 5x\cos 2x$
- $=2\cos 2x[\sin 3x + \sin 5x]$

$$= 2\cos 2x \left[2\sin\left(\frac{3x+5x}{2}\right) \cdot \cos\left(\frac{3x-5x}{2}\right) \right]$$

- $=2\cos 2x \left[2\sin 4x.\cos(-x)\right]$
- $=4\cos 2x\sin 4x\cos x = R.H.S.$

Question 6:

Prove that:
$$\frac{\left(\sin 7x + \sin 5x\right) + \left(\sin 9x + \sin 3x\right)}{\left(\cos 7x + \cos 5x\right) + \left(\cos 9x + \cos 3x\right)} = \tan 6x$$

Solution 6:

It is known that

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right).\cos\left(\frac{A-B}{2}\right),\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right).\cos\left(\frac{A-B}{2}\right)$$

L.H.S. =
$$\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)}$$

$$= \frac{\left[2\sin\left(\frac{7x+5x}{2}\right).\cos\left(\frac{7x-5x}{2}\right)\right] + \left[2\sin\left(\frac{9x+3x}{2}\right).\cos\left(\frac{9x-3x}{2}\right)\right]}{\left[2\cos\left(\frac{7x+5x}{2}\right).\cos\left(\frac{7x-5x}{2}\right)\right] + \left[2\cos\left(\frac{9x+3x}{2}\right).\cos\left(\frac{9x-3x}{2}\right)\right]}$$

$$= \frac{[2\sin 6x.\cos x] + [2\sin 6x.\cos 3x]}{[2\cos 6x.\cos x] + [2\cos 6x.\cos 6x]}$$

$$= \frac{2\sin 6x \left[\cos x + \cos 3x\right]}{2\cos 6x \left[\cos x + \cos 3x\right]}$$

- $= \tan 6x$
- = R.H.S

Question 7:

Prove that:
$$\sin 3x + \sin 2x - \sin x = 4\sin x \cos \frac{x}{2} \cos \frac{3x}{2}$$

Solution 7:

L.H.S. $= \sin 3x + \sin 2x - \sin x$

$$= \sin 3x + \left[2\cos\left(\frac{2x+x}{2}\right)\sin\left(\frac{2x-x}{2}\right) \right] \qquad \left[\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right) \right]$$
$$= \sin 3x + \left[2\cos\left(\frac{3x}{2}\right)\sin\left(\frac{x}{2}\right) \right]$$

$$= \sin 3x + 2\cos \frac{3x}{2} \sin \frac{x}{2}$$

$$= 2\sin \frac{3x}{2} \cdot \cos \frac{3x}{2} + 2\cos \frac{3x}{2} \sin \frac{x}{2} \qquad [\sin 2A = 2\sin A \cdot \cos B]$$

$$= 2\cos \left(\frac{3x}{2}\right) \left[\sin \left(\frac{3x}{2}\right) + \sin \left(\frac{x}{2}\right)\right]$$

$$= 2\cos \left(\frac{3x}{2}\right) \left[2\sin \left\{\frac{\left(\frac{3x}{2}\right) + \left(\frac{x}{2}\right)}{2}\right\} \cos \left\{\frac{\left(\frac{3x}{2}\right) - \left(\frac{x}{2}\right)}{2}\right\}\right]$$

$$= \sin 3x + 2\cos \frac{3x}{2} \cdot \cos \frac{3x}{2} + 2\cos \frac{3x}{2} \cdot \sin \frac{x}{2} \qquad [\sin 2A = 2\sin A \cdot \cos B]$$

$$= 2\cos \left(\frac{3x}{2}\right) \left[2\sin \left(\frac{3x}{2}\right) + \left(\frac{x}{2}\right)\right]$$

$$= \sin A + \sin B = 2\sin \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right)$$

$$= 4\sin x \cos \left(\frac{x}{2}\right) \cos \left(\frac{3x}{2}\right) = \text{R.H.S.}$$

Question 8:

Find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$, if $\tan x = \frac{-4}{3}$, x in quadrant II

Solution 8:

Here, x is in quadrant II.

i.e.,
$$\frac{\pi}{2} < x < \pi$$

$$\Rightarrow \frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}$$

There, $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$

are lies in first quadrant.

It is given that $\tan x = -\frac{4}{3}$

$$\sec^2 x = 1 + \tan^2 x = 1 + \left(\frac{-4}{3}\right)^2 = 1 + \frac{16}{9} = \frac{25}{9}$$

$$\therefore \cos^2 x = \frac{9}{25}$$

$$\Rightarrow \cos x = \pm \frac{3}{5}$$

As x is in quadrant II, $\cos x$ is negative.

$$\cos x = \frac{-3}{5}$$

Now,
$$\cos x = 2\cos^2 \frac{x}{2} - 1$$

$$\Rightarrow \frac{-3}{5} = 2\cos^2\frac{x}{2} - 1$$

$$\Rightarrow 2\cos^2\frac{x}{2} = 1 - \frac{3}{5}$$

$$\Rightarrow 2\cos^2\frac{x}{2} = \frac{2}{5}$$

$$\Rightarrow \cos^2 \frac{x}{2} = \frac{1}{5}$$

$$\Rightarrow \cos \frac{x}{2} = \frac{1}{\sqrt{5}}$$

$$\Rightarrow \cos \frac{x}{2} = \frac{1}{\sqrt{5}}$$
 $\left[\because \cos \frac{x}{2} \text{ is positive}\right]$

$$\therefore \cos \frac{x}{2} = \frac{\sqrt{5}}{5}$$

$$\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} = 1$$

$$\Rightarrow \sin^2 \frac{x}{2} + \left(\frac{1}{\sqrt{5}}\right)^2 = 1$$

$$\Rightarrow \sin^2 \frac{x}{2} = 1 - \frac{1}{5} = \frac{4}{5}$$

$$\Rightarrow \sin^2 \frac{x}{2} = \frac{2}{\sqrt{5}}$$

$$\Rightarrow \sin^2 \frac{x}{2} = \frac{2}{\sqrt{5}}$$
 $\because \sin \frac{x}{2}$ is positive

$$\tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\left(\frac{2}{\sqrt{5}}\right)}{\left(\frac{1}{\sqrt{5}}\right)} = 2$$

Thus, the respective values of $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ are $\frac{2\sqrt{5}}{5}$, $\frac{\sqrt{5}}{5}$, and 2.

Question 9:

Find, $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\cos x = -\frac{1}{3}$, x in quadrant III

Solution 9:

Here, x is in quadrant III.

i.e.,
$$\pi < x < \frac{3\pi}{2}$$

$$\Rightarrow \frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4}$$

Therefore, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ are negative, where $\sin \frac{x}{2}$ as is positive.

It is given that $\cos x = -\frac{1}{3}$.

$$\cos x = 1 - 2\sin^2\frac{x}{2}$$

$$\Rightarrow \sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$$

$$\Rightarrow \sin^2 \frac{x}{2} = \frac{1 - \left(-\frac{1}{3}\right)}{2} = \frac{\left(1 + \frac{1}{3}\right)}{2} = \frac{4/3}{2} = \frac{2}{3}$$

$$\Rightarrow \sin \frac{x}{2} = \frac{\sqrt{2}}{\sqrt{3}} \qquad \left[\because \sin \frac{x}{2} \text{ is positive} \right]$$

$$\therefore \sin\frac{x}{2} = \frac{\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{6}}{3}$$

Now
$$\cos x = 2\cos^2\frac{x}{2} - 1$$

$$\Rightarrow \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} = \frac{1 + \left(-\frac{1}{3}\right)}{2} = \frac{\left(\frac{3 - 1}{3}\right)}{2} = \frac{\left(\frac{2}{3}\right)}{2} = \frac{1}{3}$$

$$\Rightarrow \cos \frac{x}{2} = -\frac{1}{\sqrt{3}} \qquad \left[\because \cos \frac{x}{2} \text{ is negative} \right]$$

$$\therefore \cos \frac{x}{2} = -\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{-\sqrt{3}}{3}$$

$$\tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\left(\frac{\sqrt{2}}{\sqrt{3}}\right)}{\left(\frac{-1}{\sqrt{3}}\right)} = -\sqrt{2}$$

Thus, the respective values of $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ are $\frac{\sqrt{6}}{3}$, $\frac{-\sqrt{3}}{3}$, and $-\sqrt{2}$.

Question 10:

Find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ for $\sin x = \frac{1}{4}$, x in quadrant II

Solution 10:

Here, x is in quadrant II.

i.e.,
$$\frac{\pi}{2} < x < \pi$$

$$\Rightarrow \frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}$$

Therefore, $\sin \frac{x}{2}$, $\cos \frac{x}{2}$, $\tan \frac{x}{2}$ are all positive.

It is given that $\sin x = \frac{1}{4}$

$$\cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{1}{4}\right)^2 = 1 - \frac{1}{16} = \frac{15}{16}$$

 $\Rightarrow \cos x = -\frac{\sqrt{15}}{4}$ [cos x is negative in quadrant II]

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2} - \frac{1 - \left(-\frac{\sqrt{15}}{4}\right)}{2} = \frac{4 + \sqrt{15}}{8}$$

$$\Rightarrow \sin \frac{x}{2} = \sqrt{\frac{4 + \sqrt{15}}{8}} \qquad \left[\because \sin \frac{x}{2} \text{ is negative}\right]$$

$$\therefore \sin \frac{x}{2}$$
 is negative

$$=\sqrt{\frac{4+\sqrt{15}}{8}}\times\frac{2}{2}$$

$$=\sqrt{\frac{8+2\sqrt{15}}{16}}$$

$$=\frac{\sqrt{8+2\sqrt{15}}}{4}$$

$$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} = \frac{1 + \left(-\frac{\sqrt{15}}{4}\right)}{2} = \frac{4 - \sqrt{15}}{8}$$

$$\Rightarrow \cos \frac{x}{2} = \sqrt{\frac{4 - \sqrt{15}}{8}} \qquad \left[\because \cos \frac{x}{2} \text{ is positive}\right]$$

$$\therefore \cos \frac{x}{2}$$
 is positive

$$=\sqrt{\frac{4+\sqrt{15}}{8}}\times\frac{2}{2}$$

$$=\sqrt{\frac{8-2\sqrt{15}}{16}}$$

$$=\frac{\sqrt{8-2\sqrt{15}}}{4}$$

$$\tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} = \frac{\left(\frac{\sqrt{8+2\sqrt{15}}}{4}\right)}{\frac{\sqrt{8-2\sqrt{15}}}{4}} = \frac{\sqrt{8+2\sqrt{15}}}{\sqrt{8-2\sqrt{15}}}$$

$$= \sqrt{\frac{8+2\sqrt{15}}{8-2\sqrt{15}}} \times \frac{8+2\sqrt{15}}{8+2\sqrt{15}}$$

$$=\sqrt{\frac{\left(8+2\sqrt{15}\right)^2}{64-60}}=\frac{8+2\sqrt{15}}{2}=4+\sqrt{15}$$

Thus, the respective values are $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$

are
$$\frac{\sqrt{8+2\sqrt{15}}}{4}$$
, $\frac{\sqrt{8-2\sqrt{15}}}{4}$ and $4+\sqrt{15}$

Vedantu PROME

Access of Full Syllabus Course

Crash Course to Revise Entire Syllabus

Test Series and Assignment

Chapter Wise Course to help you master One chapter

Notes & Recordings of every class

Unlimited In-class Doubt Solving

Use VPROP & Get Extra 20% OFF

Subscribe Now

https://vdnt.in/VPROPDF

GRADES 6-12 | CBSE | ICSE | JEE | NEET

Download Vedantu Learning APP

Unlimited Access to Study Materials

Specially Designed Tests

Physics
10courses

Attend LIVE classes FREE

Anand
Prakash
B Tech, IIT Roorkee
Physics expert

Management of Naturan ResourcesBiology
Master Class Series
Powered by WAVE

Featured LIVE courses

VIEW ALL

Featured LIVE courses

VIEW ALL

Courses

VIEW ALL

Google Play

Best of 2019 Winner

USER'S CHOICE APP AWARD 2019

Thank You

for downloading the PDF

Vedantu

FREE MASTER CLASS SERIES

- Learn from India's Best Master Teachers

Register for **FREE**

Limited Seats