Functional and logic programming written exam -

Important:

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Let L be a list of numbers and given the following PROLOG predicate definition **f(list, integer)**, with the flow model (i, o):

```
f([], -1).
f([H|T],S):-H>0, <u>f(T,S1)</u>,S1<H,!,S is H.
f([_|T],S):-<u>f(T,S1)</u>, S is S1.
```

Rewrite the definition in order to avoid the recursive call **f(T,S)** in both clauses. Do NOT redefine the predicate. Justify your answer.

C. Given a nonlinear list, write a Lisp function to return the list with all occurrences of the element **e** replaced by the value **e1**. **A MAP function shall be used.**

Example a) if the list is (1 (2 A (3 A)) (A)), e is A and e1 is B => (1 (2 B (3 B)) (B))

b) if the list is (1 (2 (3))) and **e** is A = (1 (2 (3)))