Claims 20-22 are drawn to a method for preparing a fiber comprising an elastomeric polymer and an effective amount of a chemotherapeutic agent.

B. Rejection under 35 U.S.C. § 102(b)

Claim 1 was rejected under 35 U.S.C. § 102(b) as anticipated by Hill, U.S. Patent 5,098,711 ("Hill"). This rejection is respectfully traversed.

The Office asserts that the "polymers of [Hill] are the same as those of the instant claims." Paper 5, page 2, lines 20-21. The Office position is stated as follows:

[W]hile applicants assert that none of the polymers of Hill are elastomeric polymers, the instant specification discloses that nylon (which is disclosed by Hill) is an elastomeric polymer. Indeed, in cancelled claim 24 applicants claimed nylon as the intended polymer. Furthermore, Merriam-Webster's Collegiate dictionary (10th edition) defines "elastomer" as "any of various elastic substances resembling rubber <polyvinyl ~s>." Nylon is a polyvinyl polymer. Thus, the nylon polymer of Hill is the same as the instant invention (claim 1).

Paper 7, page 2, lines 1-5 (emphasis added).

The Office asserts that nylon is a an "elastomer" because it is a "polyvinyl polymer." This assertion is respectfully traversed. Nylon is a well-known polyamide condensation polymer, not a "polyvinyl polymer."

Attention is directed to the entry for "Nylon" from The
Merck Index, 10th Ed., Merck & Co., Rahway, N.J., 1983, p. 967, a copy of which is enclosed. This entry indicates that "nylon" is a "polyamide." and that nylon is a generic term used to describe "a manufactured fiber in which fiber-forming substances are any long-chain synthetic polyamide having recurring polyamide groups (-CONH-) as an integral part of the polymer chain." Nylons are further described as crystalline solids characterized by low specific gravity, high strength, durability, high flexibility,

and high tensile strength.

Attention is directed to Table 29-1, "Representative Synthetic Thermoplastic and Elastic Polymers and Their Uses," from <u>Basic Principles of Organic Chemistry</u>, J.D. Roberts and M.C. Caserio, Benjamin, New York, 1965, pp. 1095-1097, a copy of which is enclosed. The last entry in the table indicates that nylon is a crystalline polymer prepared by anionic condensation of a hexamethylenediamine adipic acid salt.

Attention is directed to Table 25.1, "Commercial Polymers," from Organic Chemistry, D.J. Cram and G.S. Hammond, McGraw-Hill, New York, 1959, pp. 594-595, a copy of which is enclosed. Nylon (adipic acid-hexamethylenediamine) appears as entry #12 under the heading "Condensation Polymers." Note that "Vinyl Polymers" and "Synthetic Elastomers" are separate listings in the Table.

The Office also asserts that "the instant specification discloses that nylon is an elastomeric polymer." This assertion is respectfully traversed. If this rejection is maintained, the Examiner is respectfully requested to identify the specific passage of the specification on which the Office relies to support this assertion.

Contrary to the Office position, nylon is not a polyvinyl polymer. Therefore, the polymers of Hill are not the same as those recited in applicants' claims. Rejection of claim 1 as anticipated by Hill is improper and should be withdrawn.

If the Office position that nylon is an "polyvinyl polymer" is maintained, the Examiner is respectfully requested to support this position by placing on the record a copy of a reference generally accepted in the field of organic chemistry or in the field of polymer chemistry, such as a handbook, textbook, or treatise, or to place on the record an affidavit under 37 C.F.R. § 1.104(d)(2).

C. Rejection under 35 U.S.C. § 103(a)

Claim 1-22 and 25-29 were rejected under 35 U.S.C. § 103(a) as unpatentable over Burch, U.S. Patent 5,433,226 ("Burch"), in view of Hill. This rejection is respectfully traversed.

1. The references cannot be combined in the manner indicated by the Office

Burch discloses a dental floss comprising a fiber having a core of a segmented polymer. Abstract.

As discussed above, the polymers of Hill are not the same as those disclosed by Burch.

The Office has not made the prima facie case. Hill and Burch can not be combined in the manner indicated by the Office. Hill discloses dental floss made of nylon, a polyamide. Burch discloses a dental hygiene product comprising a fiber having a core of a segmented polymer and soft segments and hard segments that are occasionally linked by covalent bonds. These polymers have different chemical structures. Consequently, they have different properties. Therefore, the references can not be combined in the manner indicated by the Office to produce applicants' invention. Rejection of claims 1-22 and 25-29 as unpatentable over Burch in view of Hill is improper and should be withdrawn.

2. The combination of Hill and Burch does not produce applicants' invention

If, for the sake of argument the references are combined in the manner indicated by the Office, they do not produce applicants' invention.

The Office relies on Hill:

for teaching nylon dental floss with chemotherapeutic agents such as penicillin, sodium fluoride, stannous fluoride, or chlorhexidine are

impregnated within the nylon dental floss by dipping
the floss into an agitated bath containing the
therapeutic agent.

Paper 5, page 3, lines 14-17 (emphasis added).

To support this assertion, the Office asserts:

[T] hat polymers of [Hill] are the same as those of the instant claims and that the same process is used to incorporate the active ingredients into the fibers (i.e. placing the floss into a bath containing active agent). Accordingly the active agent would be imbibed within the fiber.

Paper 5, page 2, lines 20-22.

The Office asserts that because Hill and applicants each use the same process and the same polymers, the active agent in Hill would be imbibed within the fiber. This assertion is respectfully traversed.

As discussed above, the polymers of Hill are not the same as those of Burch. Further, Hill does <u>not</u> teach that chemotherapeutic agents "are <u>impregnated within</u> the nylon dental floss by dipping the floss into an agitated bath containing the therapeutic agent." Hill teaches loading the active agent into the interstitial spaces between the strands of a multistrand nylon fiber. Hill, column 13, lines 58-62. <u>Applicants</u>, not Hill, teach that active agents are imbibed in a fiber having a core of a segmented polymer.

The Office has not made the *prima facie* case. The polymers of Hill are not the same as those of Burch. The Office admits that Burch does not disclose impregnating fibers with chemotherapeutic agents. Paper 5, page 3, lines 13-14. Hill does not disclose impregnating fibers with chemotherapeutic agents. Therefore, combination of the references in the manner indicated by the Office does not produce applicants' invention. Rejection of claims 1-22 and 25-29 as unpatentable over Burch in view of Hill should be withdrawn.

3. Applicants results are unexpected

Further, if for the sake of argument Hill and Burch are combined in the manner indicated by the Office, applicants' results are unexpected. Example 1 shows that a spandex fiber takes up 2300 ppm of fluoride. Comparative Example 1 shows that a conventional dental floss takes up 385 ppm of fluoride. As noted in Comparative Example 1, J. Jøgensen, et al., Pediatric Dentistry, 11(1), 17-20 (1989), in which a conventional dental floss was immersed in fluoride-containing dental products, report uptakes of 201±19 ppm and 248±17 ppm of fluoride for the conventional dental floss. Rejection of claims 1-22 and 25-29 as unpatentable over Burch in view of Hill should be withdrawn.

D. Extension of Time

A check for a one-month extension of time accompanies this response. Pursuant to 37 C.F.R. § 1.136(a)(3), the Commissioner is requested to treat this check as a constructive petition for an extension of time. A separate petition for an extension of time has not been enclosed. The Commissioner is hereby authorized to charge any additional fee required in connection with this response and to credit any overpayment to Deposit Account No. 18-0350 (Ratner & Prestia).

E. Conclusion

It is respectfully submitted that the claims are in condition for immediate allowance and a notice to this effect is earnestly solicited. The Examiner is invited to phone applicants' attorney if it is believed that a telephonic or personal interview would expedite prosecution of the application.

Respectfully submitted,

Sun M. Moure

Bruce M. Monroe

Attorney for Applicants Registration No. 33,602

Date March 30,2001

RATNER & PRESTIA P.O. Box 7228 Wilmington, DE 19803 (302) - 479 - 9470

FAX: (302)-479-9480

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

ond

ner	
'sti-	
ınd	_
ı its	JC:
ely	/W
(م َ
ant	-
een	(0
	_

Table 29-1 Representative Synthetic Thermoplastic and Elastic Polymers and Their Uses^a

Monomer(s)	Formula	Type of polymerization	Physical type	$T_{g}, T_{m}, $	T_m , $^{\circ}$ C	Trade	Uses
ethylene	CH ₂ =CH ₂	radical (high pressure)	semi- crystalline	0>>	110	poly- ethylene, Alathon	film, containers, piping, etc.
		Ziegler	crystalline	-120	130		
vinyl chloride	CH ₂ =CHCl	radical	atactic, semi- crystalline	80 (081	polyvinyl chloride, Geon	film, insulation, piping, etc.
vinyl fluoride	CH₂=CHF	radical	atactic, semi- crystalline	45		Tedlar	coatings ^b
vinyl chloride vinylidene chloride	CH ₂ =CHCl CH ₂ =CCl ₂	radical	crystalline	variable		Saran	tubing, fibers, film
chlorotrifluoroethylene	CF₂≒Cl·Cl	radical	atactic, semi- crystalline	0>>	210	Kcl-F	gaskets, insulation ^c
tetrafluoroethylene	Cl' ₂ =Cl' ₂	radical	crystalline	> - 100	330	Teflon	gaskets, valves, insulation, filter felts,
propylene	CH₂=CHCH₃	Ziegler	isotactic, crystalline	-20	175		fibers, molded articles
ethylene propylene 1,4-hexadiene	CH ₂ =CH ₂ CH ₂ =CHCH ₃ CH ₂ =CHCH ₂ CH=CHCH ₃	Ziegler	amorphous	-55		Nordel	rubber articles
hexafluoropropylene vinylidene fluoride	CF ₂ =CFCF ₃ CH ₂ =CF ₂	radical	amorphous	-23	ŕ	Viton	rubber articles ^e .

Continued on p. 1096

anionic

 $CH_2=O$

formaldchyde

molded articles

Table 29-1 Representative Synthetic Thermoplastic and Elastic Polymers and Their Uses^a (Continued)

_		_		•			
Monomer(s)	Formula	Type of polymerization	Physical type	$\int_{\mathcal{C}}^{R_{p}}$	T_{m}	Trade	Uscs
isobutylenc	$CH_2 = C(CH_3)_2$	cationic	amorphous	70		Vistanex, Oppanol	pressure-sensitive adhesives
isobutylene isoprene	CH ₂ =C(CH ₃) ₂ CH ₂ =C(CH ₃)CH=CH ₂	cationic	amorphous			butyl rubber	inner tubes
chloroprene	$CH_2 = C(CI)CH = CH_2$	radical	amorphous	40		Neoprene	rubber articlese
isoprene	CH ₂ =C(CH ₃)CH=CH ₂	Zicgler, Li	amorphous (cis-1,4)	70	. 58	natural rubber, Ameripol, Coral rubber	rubber articles
styrene	CH ₂ =CHC ₆ H ₅	radical	atactic, semi- crystalline	85	< 200	Styron, Lustron	molded articles, foam
styrene	CH2=CHC6H5	Ziegler	isotactic,	100	230		
vinyl acctate	CH ₂ =CHO ₂ CCH ₃	radical	amorphous	40		polyvinyl acetate	adhesives
vinyl alcohol	(CH ₂ =CHOH)'	hydrolysis of polyvinyl acetate	crystalline		dec.	polyvinyl alcohol	water-soluble adhesives, paper sizing
vinyl butyral	$\begin{pmatrix} CH_2 & CH_2 \\ CH & CH \\ CH & CH \\ CH & CH \\ CH & CH \end{pmatrix}$	polyvinyl alco- hol and butyr- aldehyde	amorphous			polyvinyl butyral	safety-glass laminate

formaldehyde	CH ₂ =0	anionic	crystalline		179	Delrin	molded articles
acrylonitrile	CH2=CHCN	radical	crystalline	1008 >200	> 200	Orlon	fiber
methyl methacrylate	CH ₂ =C(CH ₃)CO ₂ CH ₃	radical	atactic amorphous	105		Lucite, Plexiglas	coatings, molded articles
		anionic	isotactic crystalline	115	200		
		anionic	syndiotactic, crystalline	45	160		
ethylene terephthalate	но₂С ⟨ Со₂С₂н₁ОН	ester interchange crystalline between di- methyl tere- phthalate and ethylene glycol	crystallinc	56	260	Dacron, Mylar, Cronar, Terylene	fiber, film
e-caprolactam	(CH ₂) ₅ CONH	anionic	crystalline	20	225	Perlon,	fibers, molded articles
hexamethylenediamine adipic acid salt	NH(CH ₂) ₆ NH ₂ CO(CH ₂) ₄ CO ₂ H	anionic condensation	crystalline	50	270	nylon, Zytel	fibers, molded articles

* Much useful information on these and related polymers is given by F. W. Billmeyer, Jr., "A Textbook of Polymer Chemistry," Interscience, New York, 1957; J. K. Stille, "Introduction to Polymer Chemistry," Wiley, New York, 1962; F. Bueche, "Physical Properties of Polymers," Interscience, New York, 1962, and W. R. Sorenson and T. W. Campbell, "Preparative Methods of Polymer Chemistry," Interscience, New York,

b Exceptional outdoor durability.

e Used where chemical resistance is important.

d Excellent self-lubricating and electrical properties.

e Used particularly where ozone resistance is important.

1 These monomers are not the starting materials used to make the polymers, which are actually synthesized from polyvinyl alcohol.

Tg is 60° when water is present.

Basic Principles

.

NEW YORK AMSTERDAM

1965

W. A. BENJAMIN, INC.

of Organic Chemistry

by JOHN D. ROBERTS

Professor of Organic Chemistry

and MARJORIE C. CASERIO

Senior Research Fellow of Chemistry

CALIFORNIA INSTITUTE OF TECHNOLOGY

Basic Principles of Organic Chemistry

Copyright © 1964 by W. A. Benjamin, Inc. All rights reserved

Library of Congress Catalog Card Number 64-16071 Manufactured in the United States of America

The manuscript was put into production March 13, 1963, and this volume was published June 15, 1964; second printing, with corrections, March 5, 1965; third printing, with corrections, September 10, 1965.

The publisher is pleased to acknowledge the assistance of Sophie Adler, who designed the book, and Russell F. Peterson, who drew many of the illustrations

W. A. Benjamin, Inc. NEW YORK

4

-O

Ġ

Commercial Commercial

TABLE 25.1

Natural and Synthetic Polymers

Trade non

Monomer units	Trade names	
Condensation Polymers	IN POLYMERS	
. Phenol-formaldehyde	Bakelite Phenolic, Durez, Insurok, Durite, Makalot, Heresite, Neillite, Resinox, Tex-	4. 2.5. 5. <i>B</i> .P
. p -Substituted phenol-formaldehyde	tolite Bakelite Phenolic, Durez, Amberol, Super Beckacite	6. Inde 7. Isob 8. Mar
Furfural-phenol	Durite Durite	9. Met
Resorcinoi-tormaidenyde Urea-formaldehyde	renacolite Beetle, Plascon, Uformite	10. Vin 11. Poly
Urea-butanol-formaldehyde Melamine-formaldehyde	Beetle, Uformite, Beckamine Melmac (Malim Melamine Placean Melamine	
	Melantine, Resimine	13. Vin 14. Vin
Melamine-butanol-formaldehyde Aniline-formaldehyde	Melmac, Uformite Cibanite, Dilectene	
Phenolsulfonic acid-formaldehyde	Amberlite, Dowex (ion exchange)	1. Viny
Orea-cinyicheniamine-tormandenyue Adipic acid-hexamethylenediamine	Amberlite (anion exchange) Nylon	2. Viny
. Phthalic anhydride-glycerol-linoleic acid Schaeic acid-ricinoleic acid-glycerol	Glyptal, Rezyl, Duraplex Paraplex	ay Niny
Ethylene oxide	Carbowax, Epon Resins	
Dimethyldihydroxysilane Methylchlorosilane-dimethylchlorosilane	Silastic, Silicone Rubber Silicon Resin	5. Viny
Furfuryl alcohol	Resin X, Duralon, Furetone	
VINYL POLYMERS	DLYMERS	1. Styre
. Ethylene . Tetrafluoroethylene	Polythene Teflon .	2. Acry
Slyrene	Bakelite Polystyrene, Chemaco Polystyrene, Loalin, Lustron, Styron, Styramic	4. Chlo

8 9 9. 10. 11. 11. 12. 13. 13. 15. 15. 15. 15. 18. 18.

. 4 . 6 . 6 . 7

Problems

નં લાં સ્

- 1. Write equations which illustrate each of the following:
 - a. Condensation polymerization
 - b. Addition polymerization
 - c. Chain transfer
- $d_{\rm c}$ Initiation of polymerization by an organometallic compound $e_{\rm c}$. Photochemical initiation of polymerization
 - Formation of a cross-linked polymer
- Use of carbohenzoxylation in peptide synthesis Enzymolysis of a polysaccharide
- Copolymerization End-group marking with DNP

TABLE 25.1 Commercial Polymers (Continued)

595

Problems

Tra	- 1
7	1
	1
	١
	1
	ı
	ı
	1
	ı
	Н
	1
	1
	ı
	1
	1
	t
	1
- 23	1

	VINYL POLY	VINYL POLYMERS (Continued)
4. r		Mathison Plastic
'n		Piccolyte
9	Indene-coumarone	Coumar, Piccoumaron, Nevindene
۲.	Isobutylene	Vistanex
œ	Methyl acrylate	Acryloid
6		Plexiglas, Lucite
10.	Vinyl acetate	Gelva, Vinylite
Ξ	Polyvinyl alcohol-formaldehyde	Formvar
12.	Polyvinyl alcohol-butyraldehyde	Butvar, Butacite, Vinylite, Saflex
13.	Vinyl chloride	Flamenol, PVC, Geon Koroseal Vinylite
14.		Saran
	Col	Capolymers
-	Vinyl chloride-vinyl acetate	Vinylite, Tygon
62	Vinyl chloride-vinyl acetate-maleic an- hydride	Vinylite VMCH
સ	Vinylidene chloride-vinyl chloride	Saran, Velon, Geon
4	Vinylidene chloride-acrylonitrile	Saran
Ŋ.	Vinyl carbazole	Polectron
	SYNTHE	Synthetic Elastomers
	1. Styrene-butadiene	Buna S, Chemigum, Hycar OS, Butaprene S,
,		GR-S
લં	2. Acrylonitrile-butadiene	Perbunan, Hycar OR, Chemigum, Butaprene N
د .	Isoprene-isobutylene	Butyl Rubber, GR-1
4	Chloroprene	Neoprene, GR-1
v.	Chloronrene_isonrene	2

2. Each of the following compounds has one or more specialized uses in some branch of polymer chemistry. Speculate as to the use of each,

S=E

- а. m-C,H₁₃SH b. (C,H₂)₃CCH(C,H₂)₂
- c. (HOCH₂),C[Pentaerythrited] d. Di-n-butyl phthalate
 - e. A mercury-vapor lamp

E=E

- a. Acrylic anhydride [(CH; =CHCO),0] polymerizes to give a soluble (not cross-3. Explain the following facts:
 - linked) polymer which contains no residual unsaturation.
 - b. Vinylbenzoquinone does not polymerize,
- Oitroglycerine [0_NOCH_CH(ONO_)CH_ONO_] is an excellent plasticizer for nitro-rellulose (formed by the action of nitric acid on rellulose).

Organic Chemistry

DONALD 1. CRAM, Professor of Chemistry,

University of California at Los Angeles

GEORGE S. HAMMOND, Professor of Chemistry,

California Institute of Technology

McGraw-Hill book company, inc.

696I

nobnod osnosof stor usi

compounds. C bonds, symmet in terms of bon and molecularmination. Cha groups and to s tions are introand uses of the

The first f. ont experimen organic chemis use of such a l thoroughly unc were best tau; the results of pattern could 1 of fact and the nomical and re have tried to 1

In cours. elementary or problem, the assumed an ϵ tant classes c isnoo-iles seiw difficult. In concepts into elementary co has created se The remarkal

Felix Cooper is the illustrator. directly on film by the Intertype Fotosetter. Demibold Condensed. The type has been set the chemical symbols and sormulas, Futura The text typeface of this book is Bodoni Book;

Library of Confless Catalog Card Number 58-14346

sion of the publishers.

book, or parts thereof, may not be reproduced in any form without permis-Inc. Printed in the United States of America. All rights reserved. This овслиіс снемізтву Соругівлі © 1959 by the McCтам-Hill Book Company,

6580

/e of a et al., Partial (1957). 1, 1535 (1971).

ydrate 59 nm ; et al.,

tley in f. Wil-

1 4.0. in the

imeth-34. Come of a L.), 17, 13 2e and d syn-1962). 38); La mn of x-ray ct. 3, 3

hloro-

-galls; juercus jaceae. acid,

ifstalk about

b, Zn;

zution:

THERAP CAT (VET): Has been used as a topical astringent.

6575, Nux Vomica, Quaker buttons; bachelor's buttons; poison nut; dog buttons; vomit nut. Dried, ripe seeds of Strychnos nux-vomica L., Loganiaceae. Habit. Southern Asia, Northern Australia. Constit. 1-1.4% strychnine, about an equal amount of brucine; strychnicine, loganin, caffeotannic (igasuric) acid, proteins. Nux vomica from Saigon contains 1.6-2% strychnine. Caution: Extremely poisonous.

THERAP CAT: Formerly as bitter tonic.
THERAP CAT (VET): Has been used as a bitter tonic.

6576. Nybomycin. 8-(Hydroxymethyl)-6,11-dimethyl-2H,4H-oxazolo[5,4,3-ij]pyrido[3,2-g]quinoline-4,10(11H)-dione; 6,11-dimethyl-8-(hydroxymethyl)pyrido[3,2-g]oxazolo[5,4,3-ij]quinoline-4,10(2H,11H)-dione. C₁₆H₁₄N₂O₄; mol wt 298.29. C 64.42%, H 4.73%, N 9.39%, O 21.46%. Antibiotic substance produced by Streptomycete A 717 isolated from Missouri soil: Strelitz et al., Proc. Nat. Acad. Sci. USA 41, 620 (1955); Eble et al., Antibiot. & Chemother. 8, 627 (1958); Brock, Sokolski, ibid. 631. Structure: Rinehart, Renfroe, J. Am. Chem. Soc. 83, 3729 (1961). Revised structure: Rinehart et al., ibid. 92, 6994 (1970). Total synthesis of deoxynybomycin: Forbis, Rinehart, ibid. 6995. Total synthesis of nybomycin: eidem, J. Antibiot. 24, 326 (1971); eidem, J. Am. Chem. Soc. 95, 5003 (1973).

Needles from acetic acid, mp 325-330°. Sublimes at 250° (15 mm). Optically inactive. uv max (ethanol): 266, 285 nm. Soluble in concd acids. Very slightly sol in water, alkalies, and common organic solvents. Shows antiphage and antibacterial properties. LD₅₀ i.p. in mice: 650 mg/kg, Brock, Sokolski, *loc. cit.* ¹³C NMR spectrum: A. M. Nadzan, K. L. Rinehart, J. Am. Chem. Soc. 99, 4647 (1977). Acetate, C₁₈H₁₈N₂O₅, crystals from chloroform + ethanol, mp 236-237°.

Succinate, C₂₀H₁₉N₂O₇, crystals from dimethylformamide. Practically insol in water.

6577. Nylidrin. 4-Hydroxy-α-[1-[(1-methyl-3-phenyl-propyl)amino]ethyl]benzenemethanol; p-hydroxy-α-[1-[(1-methyl-3-phenylpropyl)amino]ethyl]benzyl alcohol; p-hydroxy-N-(1-methyl-3-phenylpropyl)norephedrine; buphenine; 1-(p-hydroxyphenyl)-2-(1'-methyl-3'-phenylpropylamino)-1-propanol; phenyl-sec-butyl norsuprifen. C₁₉H₂₈NO₂; mol wt 299.40. C 76.22%, H 8.42%, N 4.68%, O 10.69%. Prepn: Fr. pat. 968,273 (1950 to Troponwerke Dinklage); Brit. pats. 669,574-5 (1952); Chem. & Eng. News 33, 2896 (1955); Külz, Schöpf, U.S. pats. 2,661,372-3 (1953). Pharmacology: T. Yen, D. V. Pearson, Res. Commun. Chem. Pathol. Pharmacol. 23, 11 (1979); B. Fichtl, W. Felix, Eur. J. Pharmacol. 65, 333 (1980).

Crystals from methanol, mp 111-112°.

Hydrochloride, C₁₉H₂₆ClNO₂, SKF-1700-A, Arlidin, Bufedon, Buphedrin, Dilatal, Dilatol, Dilatropon, Dilydrin, Opino, Penitardon, Perdilatal, Rudilin, Rydrin, Tocodilydrin, Tocodrin. Crystals. Sparingly sol in water; slightly sol in alcohol. Practically insol in ether, chloroform, benzene.

THERAP CAT: Vasodilator (peripheral).

6578. Nylon. Polyamide. Generic term used to describe "a manufactured fiber in which fiber-forming substances are any long-chain synthetic polyamide having recurring polyamide groups (—CONH—) as an integral part of the poly-

mer chain". Formed from various combinations of diacids, diamines, and amino acids. May be formed also by addition polymerization. The linear polyamides have achieved the greatest commercial success. Shorthand nomenclature of nylons involves the use of numbers: a single numeral indicating the number of carbon atoms in a monomer, e.g. nylon 6; two numbers indicating a polymer formed from diamines and dibasic acids, the first numeral indicating the number of carbon atoms separating the nitrogen atoms of the diamine, the second indicating the number of straight-chain carbon atoms in the dibasic acid, e.g. nylon 6,6. First produced by E. I. du Pont de Nemours & Co. according to patents of W. H. Carothers. The name nylon was dedicated to public domain on Oct. 27, 1938 at the Herald Tribune Forum where the product itself was announced. Reviews: R. W. Moncrieff, Man-made Fibres (John Wiley, New York, 1963) pp 335-355; several authors in Kirk-Othmer Encyclopedia of Chemical Technology vol. 16 (Interscience, New York, 2nd ed., 1968) pp 1-105; Snider, Richardson, "Polyamide Fibers" in Encyclopedia of Polymer Science and Technology vol. 10 (Interscience, New York, 1969) pp 347-460. Book: Nylon Plastics, M. I. Kohan, Ed. (Wiley-Interscience, New York,

Crystalline solids characterized by low specific gravity, high strength, durability, high flexibility, and high tensile strength. Soluble in phenol, cresols (especially m-cresol), xylenol, formic acid. Insoluble in alcohols, esters, ketones, hydrocarbons. Hydrolysis and degradation occur at higher temperatures, esp in the melt. Stable to aqueous alkali. Degrades rapidly in aqueous acids. Undergoes photodegradation.

USE: In production of synthetic fibers for various textile and domestic uses.

THERAP CAT: Surgical aid (nonabsorbable suture).

6579. Nylon 6. Poly[imino(1-oxo-1,6-hexanediyl)]; poly-(iminocarbonylpentamethylene); Caprolan; Enkalon; Grilon; Kapron; Mirlon; Perlon; Phrilon; Amilan. Linear polymer obtained by polymerization of ε-caprolactam, q.ν.: Schlack, U.S. pat. 2,241,321 (1941 to I. G. Farbenind.). The importance of this fiber increased with the discovery that caprolactam can be produced by the nitrosation of cyclohexane-carboxylic acid: Muench et al., U.S. pats. 3,022,291 and 3,108,096 (1962, 1963, both to Snia Viscosa). Review: R. W. Moncrieff, Man-Made Fibres (John Wiley & Sons, New York, 1963) pp 335-355; H. K. Reimschuessel, J. Polym. Sci., Macromol. Rev. 12, 65-139 (1977).

$$H = NH(CH_2)_5 CO \frac{1}{n} OH$$
 $n = approx 200$

Softens at 210° and melts at 223°. Can withstand a temp of 100° for long periods of time. d_4^{20} 1.14. Moisture regain is about 4%. Swelling is low; if steeped in water and then centrifuged its volume increases by about 13-14%. Immune to microbiological attack. Resistant to most org chemicals, but dissolved by phenol, cresol, and strong acids.

USE: Tire cord; fishing lines; tow ropes; hose manuf; woven fabrics.

6580. Nystatin. Fungicidin; Biofanal; Diastatin; Candex; Candio-Hermal; Mycostatin; Moronal; Multilind; Nystan; Nystavescent; O-V Statin. Polyene antifungal antibiotic complex produced by Streptomyces noursei, S. aureus and other Streptomyces spp: Hazen, Brown, Science 112, 423 (1950); Proc. Soc. Exp. Biol. Med. 76, 93 (1951); Raubit-scheck et al., Antibiot. & Chemother. 2, 179 (1952); Cohen, Webb, Arch. Pediatrics 69, 414 (1952); Dutcher et al., Antibiot. Ann. 1953-1954, 191; eidem, Therapy of Fungus Diseases (Little, Brown, Boston, 1955) p 168. Review of early literature: Brown, Hazen, Trans. N.Y. Acad. Sci., Ser. II, 19 (1956-1957) pp 447-456. Purification: Vandeputte, U.S. pat. 2,832,719 (1958 to Olin Mathieson); Renella, U.S. pat. 3,517,100 (1970 to Am. Cyanamid). Chemistry and partial

THE MERCK INDEX

AN ENCYCLOPEDIA OF CHEMICALS, DRUGS, AND BIOLOGICALS

TENTH EDITION

Martha Windholz, Editor Susan Budavari, Co-Editor Rosemary F. Blumetti, Associate Editor Elizabeth S. Otterbein, Assistant Editor

Published by

MERCK & CO., INC.

RAHWAY, N.J., U.S.A.

1983

Copyright © 1983 by Merck & Co., Inc.

Previous Editions Copyright © 1940, 1952, 1960, 1968, 1976 by Merck & Co., Inc.

All rights reserved. Copyright under the Universal Copyright Convention and the International Copyright Convention. Copyright reserved under the Pan-American Copyright Convention.

Merck & Co., Inc.

Rahway, New Jersey, U.S.A.

MERCK SHARP & DOHME West Point, Pa.

MERCK SHARP & DOHME INTERNATIONAL Rahway, N. J.

MERCK SHARP & DOHME RESEARCH LABORATORIES Rahway, N. J. / West Point, Pa.

MSD AGVET DIVISION Rahway, N. J.

HUBBARD FARMS, INC. Walpole, N. H.

MERCK CHEMICAL MANUFACTURING DIVISION Rahway, N. J.

MERCK CHEMICAL DIVISION Rahway, N. J.

KELCO/AIL INTERNATIONAL LIMITED London, England

BALTIMORE AIRCOIL COMPANY, INC. Baltimore, Md.

CALGON CARBON CORPORATION Pittsburgh, Pa.

KELCO DIVISION San Diego, Calif.

1st Edition – 1889
2nd Edition – 1896
3rd Edition – 1907
4th Edition – 1930
5th Edition – 1940
6th Edition – 1952
7th Edition – 1960
8th Edition – 1968
9th Edition – 1976
10th Edition – 1983

Library of Congress Catalog Card Number 83-61075 ISBN Number 911910-27-1

Printed in the U.S.A.

First Printing - October 1983 Second Printing - March 1984