Лабораторная работа 8 — Построение карты

В заданиях 1 и 3 нет необходимости использовать Python, все вычисления производятся на листке.

1. Модель подсчета

Чтобы построить карту 1D-окружения, робот использует простейший "метод подсчета". Карта представляет собой последовательность ячеек c_0, \ldots, c_3 . Находясь в ячейке c_0 , робот проводит четыре измерения z_{t_0}, \ldots, z_{t_3} , на основании которых судит о состоянии (занятости) ячеек следующим образом: $b_0 = 0, b_1 = 1/4, b_2 = 2/3, b_3 = 1$. Известны значения первых трех измерений: $z_{t_0} = 1, z_{t_1} = 2, z_{t_2} = 3$. Найдите значение последнего измерения z_{t_3} .

2. Построение карты

Робот должен построить сеточную карту 1D-окружения, руководствуясь последовательностью измерений, полученных с датчика расстояния. Карта представляет собой последовательность ячеек c_0, \ldots, c_n .

Модель датчика устроена очень просто:

- любая ячейка, расстояние до которой меньше, чем измеренное датчиком, занята с вероятностью p=0.3,
- любая ячейка, расстояние до которой превышает измеренное датчиком не более чем на 20 см, занята с вероятностью p=0.6,
- вероятность занятости всех прочих ячеек остается прежней.

Используя Python, вычислите итоговую сеточную карту, используя обратную модель измерений.

Координаты ячеек охватывают диапазон от 0 до 200 (включая обе конечные точки) с шагом 10 — массив с. Искомые вероятности занятости ячеек — массив m. Чтобы визуализировать результат, используйте matplotlib.pyplot.plot(c,m).

Данные об измерениях и априорном предположении представлены ниже:

Grid resolution	10 cm
Map length (1D only)	2 m
Robot position	c_0
Orientation (of the sensor)	heading to c_n (see figure)
Measurements (in cm)	101, 82, 91, 112, 99, 151, 96, 85, 99, 105
Prior	0.5

3. Докажите, что $P(m_j \mid x_{1:t}, z_{1:t})$ не зависит от порядка, в котором проводятся измерения.