МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине «Основы профессиональной деятельности»

Вариант № 3104

Выполнил:

Студент группы Р3131 Дворкин Борис Александрович

Преподаватель:

Клименков Сергей Викторович

Содержание

Текст задания	3
Описание программы	4
Таблица трассировки	
Вывод	
<u>DBIBU</u> Д	0

Текст задания

Восстановить текст заданного варианта программы, определить предназначение и описание программы, определить область представления и ОДЗ исходных данных и результата, выполнить трассировку программы.

Адрес	Код команды	Мнемоника	Комментарии
2DE	02F5	arr_first_elem	Адрес первого элемента
2DF	A000	arr_last_elem	Адрес текущего элемента (начиная с последнего)
2E0	E000	arr_length	Количество элементов массива
2E1	E000	result	Результат
2E2	AF40	LD #0x40	Прямая загрузка 040 -> АС
2E3	0680	SWAB	Обмен ст. и мл. байтов в АС
2E4	0500	ASL	Арифметический сдвиг АС влево
2E5	EEFB	ST IP-5	Прямое относительное сохранение AC -> M (2E1)
2E6	AF05	LD #0x05	Прямая загрузка 005 -> АС
2E7	EEF8	ST IP-8	Прямое относительное сохранение АС -> М (2Е0)
2E8	AEF5	LD IP-B	Прямая относительная загрузка 02F5 -> AC
2E9	EEF5	ST IP-B	Прямое относительное сохранение AC -> M (2DE)
2EA	AAF4	LD (IP-C)+	Косвенная относительная автоинкрементная загрузка: 3н(2DE) += 1; 3н(2DE) -> AC
2EB	0480	ROR	Циклический сдвиг АС вправо
2EC	F401	BCS IP+1	Если C==1, то IP+1+1 -> IP
2ED	CE04	BR IP+4	IP+4+1 -> IP
2EE	0400	ROL	Циклический сдвиг АС влево
2EF	7EF1	CMP IP-F	Прямое относительное сравнение АС-М(2Е1)
2F0	F801	BLT IP+1	Если N⊕V==1, то IP+1+1 -> IP
2F1	EEEF	ST IP-11	Прямое относительное сохранение AC -> M (2E0)
2F2	82E0	LOOP 0x2E0	M(2E0) - 1 -> M(2E0); Если (2E0) <= 0, то IP + 1 -> IP
2F3	CEF6	BR IP-A	Переход IP-A+1 -> IP
2F4	0100	HLT	Останов
2F5	0B01		
2F6	F200		
2F7	0580		"Элементы массива"
2F8	0000		
2F9	0480		
		•••	

Описание программы

Программа находит максимальный нечётный элемент массива и сохраняет информацию о нём в биты ячейки результата. Формула результата:

$$_{\text{MEM(2E1)}} = \sum_{i=0}^{\text{MEM(2E0)}} \begin{cases} 2^i \text{ если MEM } (2F5+i) \vdots 2 \\ 0 \text{ если MEM } (2F5+i) \vdots 2 \end{cases}$$

Область представления

- 🛮 arr_first_elem, arr_last_elem, arr_length, result 16-ти разрядные целые числа в прямом коде.
- arr[i] 16-ти разрядные целые числа в дополнительном коде

Область допустимых значений

- $\[\]$ arr_length $\[\epsilon \]$ (т. к. при arr_length > 16 битов результата не будет хватать для данных о делимости элементах и он будет ошибочным)
- 2 result ϵ [0; $2^{16} 1$] (τ . κ . max = 1 + 2 + 4 + ... + 2^{15})
- 2 arr_first_elem ε [0; 2DE arr_length] υ [2F5; 7FF arr_length]
- 2 arr_last_elem ε [arr_first_elem; arr_first_elem + arr_length 1]
- \square Элементы массива arr[i] ϵ [-32768; 32767] (т. е. [-2¹⁵; 2¹⁵-1])

Расположение данных в памяти

- 2DE, 2DF, 2E0, 2F5, 2F6, 2F7, 2F8, 2F9 исходные данные;
- ☑ 2DE промежуточный результат;
- 2E1 итоговый результат;
- 2E2 2F4 команды.

Адреса первой и последней выполняемой команды

- 🛛 Адрес первой команды: 2E2
- Адрес последней команды: 2F4

Таблица трассировки

Значения:

Arr[0] = 0xFFFF, Arr[1] = 0xEDAA, Arr[2] = 0x0771, Arr[3] = 0xBAAB, Arr[4] = 0x6666, $arr_length = 5$, $arr_first_elem = 0x02F5$

Δ.	h	TD	CD	A D	DD	CD	DD	1.0	D.C.	NIZZZO	Ι.	h
_	Знчн			AR		SP				NZVC	Адр	ЗНЧН
	AF40									0100		
	AF40						0040			0000		
	0680						02E3			0000		
					4000		02E4			1010	0.004	0000
_	EEFB						FFFB			1010	2E1	8000
	AF05						0005		_	0000	200	0005
	EEF8						FFF8				2E0	0005
2E8	AEF5	2E9	AEF5	2D E	02F5	000	FFF5	02F5	000	0000		
2E9	EEF5	2E A	EEF5	2DF	02F5	000	FFF5	02F5	000	0000	2DF	02F5
2E A	AAF 4	2EB	AAF 4	2F5	FFFF	000	FFF4	FFFF	800	1000	2DF	02F6
-	0480	2EC	0480	2EB	0480	000	02EB	7FFF	003	0011		
2EC	F401	2EE	F401	2EC	F401	000	0001	7FFF	003	0011		
2EE	0400	2EF	0400	2EE	0400	000	02EE	FFFF	00A	1010		
2EF	7EF1	2F0	7EF1	2E1	8000	000	FFF1	FFFF	001	0001		
2F0	F801	2F1	F801	2F0	F801	000	02F0	FFFF	001	0001		
2F1	EEEF	2F2	EEEF	2E1	FFFF	000	FFEF	FFFF	001	0001	2E1	FFFF
2F2	82E0	2F3	82E0	2E0	0004	000	0003	FFFF	001	0001	2E0	0004
2F3	CEF6	2E A	CEF6	2F3	02EA	000	FFF6	FFFF	001	0001		
2E A	AAF	-	AAF	2F6	EDAA	000	FFF4	EDAA	009	1001	2DF	02F7
-	0480	2EC	0480	2EB	0480	000	02EB	F6D5	00A	1010		
2EC	F401	2E D	F401	2EC	F401	000	02EC	F6D5	00A	1010		
2E D	CE04	-	CE04	2E D	02F2	000	0004	F6D5	00A	1010		
_	82E0	2F3	82E0		0003	000	0002	F6D5	00A	1010	2E0	0003
2F3	CEF6	2E	CEF6	2F3	02EA	000	FFF6	F6D5	00A	1010		
2E A	AAF 4	2EB	AAF	2F7	0771	000	FFF4	0771	000	0000	2DF	02F8
	_	2EC	0480	2EB	0480	000	02EB	03B8	003	0011		
2EC	F401	2EE	F401	2EC	F401	000	0001	03B8	003	0011		
2EE	0400	2EF	0400	2EE	0400	000	02EE	0771	000	0000		
2EF	7EF1	2F0	7EF1	2E1	FFFF	000	FFF1	0771	000	0000		
2F0	F801	2F1	F801	2F0	F801	000	02F0		-	0000		
2F1	EEEF	2F2	EEEF	2E1	0771	000	FFEF	0771	000	0000	2E1	0778
2F2	82E0	2F3	82E0	2E0	0002	000	0001	0771	000	0000	2E0	0002
2F3	CEF6	2E A	CEF6	2F3	02EA	000	FFF6	0771	000	0000		
2E		2EB		2F8	BAAB	000	FFF4	BAAB	800	1000	2DF	02F9
A 2EB	4 0480		4 0480	2EB	0480	000	02EB	5D55	003	0011		
							0001		_	0011		
								BAAB				
								BAAB				
								BAAB				
								BAAB			2E0	0001
	CEF6	2E	CEF6					BAAB	_			
2E		l	l .	2F9	6666	000	FFF4	6666	001	0001	2DF	02FA
A	4		4									

2EB	0480	2EC	0480	2EB	0480	000	02EB	B333	00A	1010		
2EC	F401	2E D	F401	2EC	F401	000	02EC	B333	00A	1010		
2E D	CE04	2F2	CE04	2E D	02F2	000	0004	B333	00A	1010		
2F2	82E0	2F4	82E0	2E0	0000	000	FFFF	B333	00A	1010	2E0	0000
2F4	0100	2F5	0100	2F4	0100	000	02F4	B333	00A	1010		

Вывод

Во время выполнения лабораторной работы я научился работать в БЭВМ с массивами, ветвлением и циклами. Я изучил прямую и косвенную адресацию и цикл выполнения таких команд, как LOOP и JUMP.