Course review

Course review I

- Complex notation for waves; in optics the electric field is given by
 E = Re[ψ].
 - Beats.
 - Coherent and incoherent wave addition.
 - Nodes and fundamental frequencies.
- Oscillator theory
 - Harmonic oscillators and resonance.
 - damped-driven harmonic oscillator, magnitude and phase response, Q factor.
 - Coupled oscillators.
- Light as an EM wave.
 - Dominant effect is dielectric response to electric field.
 - Rayleigh scattering: frequency trend, angular distribution.
 - Damped, driven harmonic oscillator model of the refractive index.
 - Plasma frequency as dividing line between low (visible) and high (X-ray) frequencies.
 - Group and phase velocities.
- Ray optics and refraction.
 - Why (and when) waves can be treated as rays.
 - Snell's law.
 - Critical angle.

Course review II

- Lenses and imaging.
 - Thin lens equation.
 - Imaging basics.
 - Optics of the eye.
 - · Matrix methods.
 - Spherical aberrations.
 - Chromatic aberrations and achromats.
- Polarization
 - Linear and circular.
 - Polarizers and quarter wave plates.
 - · Jones equations.
- Refractive interfaces
 - Fresnel equations, reflectivity, transmittance.
 - Critical angle, Brewster's angle.
 - Stokes equations.
 - Glass slab reflectivity, finesse.
 - Metals, semiconductors, and absorption.

Course review III

- · Diffraction and interference.
 - Diffraction from an aperture, and interference from slits.
 - Fresnel-Kirchoff diffraction integral and the Huygens construction.
 - Fresnel and Fraunhofer approximations.
 - Wavefield propagation and holography.
 - Rayleigh resolution.
 - Gratings and monochromators.
- Fiber optics
 - Numerical aperture and skip length.
 - Single modes, and coherence phase space.
 - Optical communications.
- Lasers.
 - Einstein A and B coefficients...
 - Population inversion, pumping, resonant cavities.
- · Nonlinear optics.
 - Nonlinear response in media, and frequency doubling.
 - Pockels cells.
 - Acousto-optic modulators.

Exam

- I'll be posting solutions to today's homework by tomorrow, as well as the equation sheet for the exam.
- On the first two exams, the problems were largely drawn from the assigned homework.
- The final will be roughly 1/3 on material since exam 2 (*i.e.*, HW 8 and 9), and 2/3 on material covered on the first two exams. But this is only approximate!
- I may well have one or two essay questions, where I ask you to discuss some optical phenomena. These questions will reward those who have been attending the lectures and participating in the discussions!
- I will be around my office most of the time from 11 am til 5 pm on Monday, with a possibility of a meeting thrown in there. If I'm gone I'll put a note on my door with my return time.
- Exam is in this room, from 2-4:30 pm, on Wednesday, Dec. 17. Francis Paraan will be proctoring the exam as I'll be in California on Tuesday and Wednesday. I'll be reading my email...

Beyond this course

Wave phenomena are widespread in physics and beyond! Quantum mechanics, accelerator physics, music, oceanography, Bose-Einstein condensates. . . Keep thinking about waves and optics, and also keep in touch!

