#### **Contents**

Turing machines



#### **Section outline**

- Turing machines
  - The language  $a^n b^n c^n$

- Turing machine
- The language w\$w
- TM practice problems
- TM recognised languages





- Only recognising a<sup>n</sup>b<sup>n</sup> is easy with a PDA
- a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> is not a CFL
- For  $a^nb^nc^n$ , each matched pair of a and b, a special symbol  $\tilde{c}$  is needed to match a c
- However, the remaining b's need to be skipped over to permit matching of the a's and b's





- Only recognising a<sup>n</sup>b<sup>n</sup> is easy with a PDA
- a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> is not a CFL
- For  $a^nb^nc^n$ , each matched pair of a and b, a special symbol  $\tilde{c}$  is needed to match a c
- However, the remaining b's need to be skipped over to permit matching of the a's and b's
- Context sensitive grammar:

$$S 
ightarrow aSBC \mid \epsilon \quad CB 
ightarrow BC \quad B 
ightarrow b \quad C 
ightarrow c$$





- Only recognising a<sup>n</sup>b<sup>n</sup> is easy with a PDA
- a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> is not a CFL
- For  $a^nb^nc^n$ , each matched pair of a and b, a special symbol  $\tilde{c}$  is needed to match a c
- However, the remaining b's need to be skipped over to permit matching of the a's and b's
- Context sensitive grammar:

$$S \rightarrow aSBC \mid \epsilon \quad CB \rightarrow BC \quad B \rightarrow b \quad C \rightarrow c$$

Workout for a<sup>3</sup>b<sup>3</sup>c<sup>3</sup> ...



- Only recognising a<sup>n</sup>b<sup>n</sup> is easy with a PDA
- a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> is not a CFL
- For  $a^nb^nc^n$ , each matched pair of a and b, a special symbol  $\tilde{c}$  is needed to match a c
- However, the remaining b's need to be skipped over to permit matching of the a's and b's
- Context sensitive grammar:

$$S 
ightarrow aSBC \mid \epsilon \quad CB 
ightarrow BC \quad B 
ightarrow b \quad C 
ightarrow c$$

- Workout for  $a^3b^3c^3$  ...
- A m/c for recognising a palindrome without a mid-marker ... ?





- Only recognising a<sup>n</sup>b<sup>n</sup> is easy with a PDA
- a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> is not a CFL
- For  $a^nb^nc^n$ , each matched pair of a and b, a special symbol  $\tilde{c}$  is needed to match a c
- However, the remaining b's need to be skipped over to permit matching of the a's and b's
- Context sensitive grammar:

$$S 
ightarrow aSBC \mid \epsilon \quad CB 
ightarrow BC \quad B 
ightarrow b \quad C 
ightarrow c$$

- Workout for a<sup>3</sup>b<sup>3</sup>c<sup>3</sup> ...
- A m/c for recognising a palindrome without a mid-marker ... ?
- PDA cannot accommodate above requirements ... what extra features are needed?





- Only recognising a<sup>n</sup>b<sup>n</sup> is easy with a PDA
- a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> is not a CFL
- For  $a^nb^nc^n$ , each matched pair of a and b, a special symbol  $\tilde{c}$  is needed to match a c
- However, the remaining b's need to be skipped over to permit matching of the a's and b's
- Context sensitive grammar:

$$S 
ightarrow aSBC \mid \epsilon \quad CB 
ightarrow BC \quad B 
ightarrow b \quad C 
ightarrow c$$

- Workout for  $a^3b^3c^3$  ...
- A m/c for recognising a palindrome without a mid-marker ... ?
- PDA cannot accommodate above requirements ... what extra features are needed?
  - Ability to move back and forth over inputs
  - Having inputs available in advance
  - Ability to access stored data in any order



3/12



- Only recognising a<sup>n</sup>b<sup>n</sup> is easy with a PDA
- a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> is not a CFL
- For  $a^nb^nc^n$ , each matched pair of a and b, a special symbol  $\tilde{c}$  is needed to match a c
- However, the remaining b's need to be skipped over to permit matching of the a's and b's
- Context sensitive grammar:

$$S 
ightarrow aSBC \mid \epsilon \quad CB 
ightarrow BC \quad B 
ightarrow b \quad C 
ightarrow c$$

- Workout for a<sup>3</sup>b<sup>3</sup>c<sup>3</sup> ...
- A m/c for recognising a palindrome without a mid-marker ... ?
- PDA cannot accommodate above requirements ... what extra features are needed?
  - Ability to move back and forth over inputs
  - Having inputs available in advance
  - · Ability to access stored data in any order
- Another kind of m/c needed with above capabilities



3/12

# **Turing machine**

A Turing machine is a 7-tuple  $\langle Q, \Sigma, \Gamma, \delta, q_i, q_a, q_r \rangle$ , where

Turing machines

- is a finite set of states
  - $q_{\mathcal{I}}$  is the initial state,  $q_{\mathcal{I}} \in Q$
  - $q_a$  is the accepting or final state, also written  $q_{acc}$
  - $q_r$  is the *rejecting* state, also written  $q_{rei}$
- Σ is a finite input alphabet
- is a finite tape alphabet;  $\Sigma \subseteq \Gamma$ 
  - $\Gamma$  has some extra symbols for convenience, such as  $\Box$  a special blank character, useful for marking the end of the input
- $\delta$   $(Q \setminus \{q_a, q_r\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$  is the transition function For example, if  $\delta \langle q, c \rangle = \langle q', c', L \rangle$  means that, if the TM is at state g and the head on the tape reads the character c, then it should move to state q', replace c on the tape by c' and move the head on the tape to the left



# Schematic diagram of TM







**Finite Control** 

# The language w\$w

- For  $\Sigma = \{a, b, \$\}$ , consider the non-CFL  $L = \{w\$w \mid w \in \Sigma^*\}$
- A TM algorithm (but possibly not strictly conforming) for reognizing L works as follows, starting at the first character:
  - Read the character (a or b), call it be u, and replace it with with x (some special character) and remember what character was crossed off by transitioning to a different state
  - Move right until a \$ is seen
  - Read aross the sequence of 0 or more x's following the \$
  - Read the character (not x) on the tape
  - Depending on the current state, if it does not match with u, immediately reject
  - Otherwise, replace it with *x*
  - $\bigcirc$  Move left and keep going until x is seen on the tape
  - Move one position right, if the character is \$ skip over next step
  - Otherwise, continue from the first step
  - $\bigcirc$  Skip over the run of x's
    - If \_ found, accept



#### TM for w\$w





#### TM for w\$w (contd.)

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_a, q_r\}$
- $\Sigma = \{a, b, \$\}$
- $\Gamma = \Sigma \cup \{ \bot, x \}$
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$

|                       | а                           | b                           | \$                           | ш                                                       | X                           |
|-----------------------|-----------------------------|-----------------------------|------------------------------|---------------------------------------------------------|-----------------------------|
| $q_0$                 | $\langle q_1, x, R \rangle$ | $\langle q_6, x, R \rangle$ | $\langle q_5, x, R \rangle$  | reject                                                  | reject                      |
| $q_1$                 | $\langle q_1, a, R \rangle$ | $\langle q_1, b, R \rangle$ | $\langle q_2, \$, R \rangle$ | reject                                                  | reject                      |
| $q_2$                 | $\langle q_4, x, L \rangle$ | reject                      | reject                       | reject                                                  | $\langle q_2, x, R \rangle$ |
| <b>q</b> <sub>3</sub> | $\langle q_3, a, L \rangle$ | $\langle q_3, b, L \rangle$ | reject                       | reject                                                  | $\langle q_0, x, R \rangle$ |
| $q_4$                 | reject                      | reject                      | $\langle q_3, \$, L \rangle$ | reject                                                  | $\langle q_4, x, L \rangle$ |
| <b>q</b> <sub>5</sub> | reject                      | reject                      | reject                       | $\langle q_{a}, {\scriptscriptstyle \sqcup} , R  angle$ | $\langle q_5, x, R \rangle$ |
| <b>q</b> 6            | $\langle q_6, a, R \rangle$ | $\langle q_6, b, R \rangle$ | $\langle q_7,\$,R\rangle$    | reject                                                  | reject                      |
| <b>q</b> <sub>7</sub> | reject                      | $\langle q_4, x, L \rangle$ | reject                       | reject                                                  | $\langle q_7, x, R \rangle$ |
| qa                    | No need to define           |                             |                              |                                                         |                             |
| $q_r$                 | No need to define           |                             |                              |                                                         |                             |



8/12

#### **TM practice problems**

- Construct a TM to recognise 01\*0
- Construct a TM to recognise a<sup>n</sup>b<sup>n</sup>
- Construct a TM to recognise a<sup>n</sup>b<sup>n</sup>c<sup>n</sup>
- Construct a TM to duplicate the string w to w#w
- Construct a TM to recognise w#w
- Construct a TM to recognise www
- Construct a TM that takes its input on the tape, shifts it to the right by one position, and put a  $\$  on the leftmost position on the tape when  $\Sigma = \{a,b\}$
- Construct a TM that takes its input on the tape, shifts it to the right by one position, and put a \$ on the leftmost position on the tape when  $\Sigma = \{a, b, \dots, z\}$



#### **TM** configurations

- A configuration of a TM is  $\langle x, q, k \rangle \in \Sigma^* \times K \times N$ , where x denotes the string on the tape, q denotes the current state of the TM, and k denotes the position of the machine on the tape
- The string x should be well demarcated so that it may start with a > and end with □.
- The position k is required to satisfy  $0 \le k < |x|$
- Simpler variations of this definition may be used



- Configuration (simpler):  $\langle \alpha, q_i, b\beta \rangle$
- Initial configuration:  $\langle \epsilon, q_{\mathcal{I}}, w \rangle$
- Accepting configuration:  $\langle \alpha, q_a, \beta \rangle$
- Rejecting configuration:  $\langle \alpha, q_r, \beta \rangle$





#### **TM** configurations

- A configuration of a TM is  $\langle x, q, k \rangle \in \Sigma^* \times K \times N$ , where x denotes the string on the tape, q denotes the current state of the TM, and k denotes the position of the machine on the tape
- The string x should be well demarcated so that it may start with a ▷ and end with □.
- The position k is required to satisfy  $0 \le k < |x|$
- Simpler variations of this definition may be used



- Configuration (simpler):  $\langle \alpha, q_i, b\beta \rangle$
- Initial configuration:  $\langle \epsilon, q_{\mathcal{I}}, w \rangle$
- Accepting configuration:  $\langle \alpha, q_a, \beta \rangle$
- Rejecting configuration:  $\langle \alpha, q_r, \beta \rangle$
- Let TM config be:  $c_1 = \langle \alpha, q_i, a\beta \rangle$
- Let  $\delta(\langle q_i, a \rangle) = \langle q_j, c, R \rangle$ 
  - Resulting transition:  $\langle \alpha, q_i, a\beta \rangle \Rightarrow \langle \alpha c, q_i, \beta \rangle = c_2$
- We say  $c_1$  yields  $c_2$ ;  $c_1 \mapsto c_2$



#### **TM** configurations

- A configuration of a TM is  $\langle x, q, k \rangle \in \Sigma^* \times K \times N$ , where x denotes the string on the tape, q denotes the current state of the TM, and k denotes the position of the machine on the tape
- The string x should be well demarcated so that it may start with a ▷ and end with □.
- The position k is required to satisfy  $0 \le k < |x|$
- Simpler variations of this definition may be used



- Configuration (simpler):  $\langle \alpha, q_i, b\beta \rangle$
- Initial configuration:  $\langle \epsilon, q_{\mathcal{I}}, w \rangle$
- Accepting configuration:  $\langle \alpha, q_a, \beta \rangle$
- Rejecting configuration:  $\langle \alpha, q_r, \beta \rangle$
- Let TM config be:  $c_1 = \langle \alpha, q_i, a\beta \rangle$
- Let  $\delta(\langle q_i, a \rangle) = \langle q_j, c, R \rangle$
- Resulting transition:  $\langle \alpha, q_i, a\beta \rangle \Rightarrow \langle \alpha c, q_i, \beta \rangle = c_2$
- We say  $c_1$  yields  $c_2$ ;  $c_1 \mapsto c_2$
- For what transition?  $\langle \gamma d, q_k, e\tau \rangle \Rightarrow \langle \gamma, q_m, df_{\tau} \rangle$



#### TM recognised languages

#### **Definition (TM acceptance)**

For a TM M and a string w, the Turing machine M accepts w if there is a sequence of configurations,  $c_1, c_2, \ldots, c_k$  such that:

- $c_1 = \langle \epsilon, q_{\mathcal{I}}, w \rangle$ ,  $q_{\mathcal{I}}$  being the start state of M
- for al i,  $1 \le i < k$ ,  $c_i \mapsto c_{i+1}$

#### **Definition (TM language)**

The language of a TM M is  $L(M) = \{w \mid M \text{ accepts } w\}$ ; such a language L is called Turing recognisable





#### TM recognised languages

#### **Definition (TM acceptance)**

For a TM M and a string w, the Turing machine M accepts w if there is a sequence of configurations,  $c_1, c_2, \ldots, c_k$  such that:

- $c_1 = \langle \epsilon, q_{\mathcal{I}}, w \rangle$ ,  $q_{\mathcal{I}}$  being the start state of M
- for al i,  $1 \le i < k$ ,  $c_i \mapsto c_{i+1}$

#### **Definition (TM language)**

The language of a TM M is  $L(M) = \{w \mid M \text{ accepts } w\}$ ; such a language L is called Turing recognisable

# Outcomes of running a TM on *w*

- accepts w (halts)
- rejects w (halts)
- loops indefinitely

- A TM halting on all inputs is a decider
- A language is TM decidable if there is a decider TM M such that L(M) = L



15th September 2018

#### Some aliases

#### Aliases of Turing recognisable languages:

- recursively enumerable
- partially decidable
- semidecidable
- Turing-acceptable

Aliases of Turing decidable languages:

recursive

