Differences between more than two samples

Introduction to Quantitative Ecology Fall 2018 Chris Sutherland csutherland@umass.edu

ANOVA group exercise

Fill in the ANOVA table for the following data

- ▶ group A: 39, 43, 61, 46, 46, 62, 50, 32, 38, 41
- ▶ group B: 97, 89, 89, 86, 79, 103, 90, 65, 92, 80
- ▶ group C: 54, 63, 55, 58, 59, 48, 73, 67, 54, 78

Variation	SS	df	MS	F	significant?
Between-group	?	?	?	?	?
Within-group	?	?	?		

ANOVA group exercise

Fill in the ANOVA table for the following data

▶ group A: 39, 43, 61, 46, 46, 62, 50, 32, 38, 41

▶ group B: 97, 89, 89, 86, 79, 103, 90, 65, 92, 80

▶ group C: 54, 63, 55, 58, 59, 48, 73, 67, 54, 78

Variation	SS	df	MS	F	significant?
0 1	8688.87 2624.50		4344.43 97.20	44.69	YES!
group	2024.00	41	31.20		

```
#calculate the means
mean.A <- mean(group.A)</pre>
mean.A
[1] 45.8
mean.B <- mean(group.B)</pre>
mean.B
[1] 87
mean.C <- mean(group.C)</pre>
mean.C
[1] 60.9
mean.All <- mean(c(group.A,group.B,group.C))</pre>
mean.All
[1] 64.56667
```

```
#between-groups sums of squares (SS)
bSS.A <- 10 * (mean.A - mean.All)^2
bSS.B \leftarrow 10 * (mean.B - mean.All)^2
bSS.C <- 10 * (mean.C - mean.All)^2
bSS <- sum(bSS.A, bSS.B, bSS.C)
#between-groups degrees of freedom (df)
bDF <- 3-1 #number of groups - 1
#between-groups mean squares (MS)
bMS <- bSS / bDF
c(bSS, bDF, bMS)
[1] 8688.867 2.000 4344.433
```

```
#within-groups sums of squares (SS)
wSS.A <- sum((group.A - mean.A)^2)
wSS.B <- sum((group.B - mean.B)^2)
wSS.C <- sum((group.C - mean.C)^2)
WSS <- WSS.A + WSS.B + WSS.C
#within-groups degrees of freedom (df)
wDF <- 30-3 #number of observations - number of groups
#bwithin-groups mean squares (MS)
wMS <- wSS / wDF
c(wSS, wDF, wMS)
[1] 2624.5000 27.0000 97.2037
```

```
#Calcualte the F statistic
Fstat <- bMS / wMS
Fstat
[1] 44.69411
```

```
#check working against R's anova functions
c(bSS, bDF, bMS)
[1] 8688.867 2.000 4344.433
c(wSS, wDF, wMS)
[1] 2624.5000 27.0000 97.2037
Fstat.
[1] 44.69411
anova(aov(vals~groups))
Analysis of Variance Table
Response: vals
         Df Sum Sq Mean Sq F value Pr(>F)
groups 2 8688.9 4344.4 44.694 2.714e-09 ***
Residuals 27 2624.5 97.2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Having just analyzed some fish counts data in 16 lakes in Massachusetts, Thorsten found a significant 'lake' effect using an ANOVA, i.e., the mean number of fish was not the same in all lakes.

- 1. What would Thorsten do to find out which lakes were different from eachother?
 - A) A series of t-tests
 - B) A Tukey Honest Significant Difference test
 - C) A Kruskal-Wallis test

I am interested in testing whether there is a significant difference between the population sizes of fish in 30 low salinity lakes and 30 high salinity lakes:

- 1. Which statistical test should I use?
 - A) A t-test
 - B) A One-Way ANOVA
 - C) A Chi-square test
 - D) A Two-Way ANOVA

I am interested in testing whether there is a significant difference between the population sizes of fish in 30 low salinity lakes and 30 high salinity lakes:

- 2. Which is the test statistic for the test?
 - A) t
 - B) F
 - C) r
 - D) χ^2

I am interested in testing whether there is a significant difference between the population sizes of fish in 30 low salinity lakes and 30 high salinity lakes. In fact, I actually sampled 10 large, 10 medium, and 10 small lakes in each of the high and low salinity lakes. I want to explore whether there are differences in population size based on lake salinity and lake size.

- 3. Now which statistical test should I use?
 - A) A t-test
 - B) A One-Way ANOVA
 - C) A Chi-square test
 - D) A Two-Way ANOVA

I am interested in testing whether there is a significant difference between the population sizes of fish in 30 low salinity lakes and 30 high salinity lakes. In fact, I actually sampled 10 large, 10 medium, and 10 small lakes in each of the high and low salinity lakes. I want to explore whether there are differences in population size based on lake salinity and lake size.

- 4. Now Which is the test statistic for the test?
 - A) t
 - B) F
 - C) r
 - D) χ^2

Comparing differences - two samples

Two samples:

▶ what test?

Comparing differences - two samples

Two samples:

- ▶ the t-test?
- ▶ test whether group means differ significantly
- ▶ H_0 : there is no significant difference between the means
- \blacktriangleright H_1 : there is a significant difference between the means

Comparing differences - two smaples

Two samples:

- ▶ the t-test?
- ▶ test whether group means differ significantly
- \blacktriangleright H_0 : there is no significant difference between the means
- \blacktriangleright H_1 : there is a significant difference between the means

Significance based on:

- $\bullet \text{ t-statistic: } t = \frac{|\bar{x}_a \bar{x}_b|}{\sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}}$
- degrees of freedom
- ▶ p-value

Comparing differences - more than two samples

What about if there are more than 2 samples?

► can you think of any examples?

Regional differences in salamander abundance:

- ► comparing multiple populations
- ▶ quantify the differences between populations

Plant growth related to available resources (pot size):

- ► comparing multiple treatments
- ▶ quantify the effects of resource availability

Plants productivity (dry mass in grams) related to fertilizer treatment

- ▶ do our treatments influence biomass production?
- ▶ is there a positive effect relative to a control?

When there are more than 2 groups

- ▶ t-test doesn't help
- ▶ need to do all possible pairs
- ▶ time consuming
- ▶ get spurious differences just by chance

Analysis of Variance (ANOVA):

- ▶ statistical test for testing for differences among >2 groups
- ▶ ANOVA and t-test are identical when there are 2 groups
- ▶ one factor/group/category (*One-way ANOVA*)

Analysis of Variance (ANOVA):

- ▶ statistical test for testing for differences among >2 groups
- ► ANOVA and t-test are identical when there are 2 groups
- ▶ one factor/group/category (*One-way ANOVA*)

Assumption:

▶ data are normally distributed

Analysis of Variance (ANOVA):

- ▶ statistical test for testing for differences among >2 groups
- ► ANOVA and t-test are identical when there are 2 groups
- ▶ one factor/group/category (*One-way ANOVA*)

Assumption:

▶ data are normally distributed

Hypotheses:

Analysis of Variance (ANOVA):

- ▶ statistical test for testing for differences among >2 groups
- ▶ ANOVA and t-test are identical when there are 2 groups
- ▶ one factor/group/category (*One-way ANOVA*)

Assumption:

▶ data are normally distributed

Hypotheses:

- \blacktriangleright H_0 : there are no significant differences between the means
 - lack all means are equal
- \triangleright H_1 : there are significant differences between the means
 - all means are not equal

ANOVA explained

The ANOVA partitions the *total* variation into *within* sample variation with *between* sample variation to determine whether samples come from a single distribution or not.

ightharpoonup Total sums of squares (SS_T)

$$SS_T = \sum (x - \bar{x})^2$$

- ightharpoonup Within-sample sums of squares (SS_T)
- ▶ add up the within sample SS

$$SS_W = \sum (x_1 - \bar{x}_1)^2 + \sum (x_2 - \bar{x}_2)^2 + \sum (x_3 - \bar{x}_3)^2$$

- ightharpoonup Within-sample sums of squares (SS_T)
- ightharpoonup more generally (g is the number of groups)

$$SS_W = \sum_g \sum_i (x_{ig} - \bar{x}_g)^2$$

- ightharpoonup Between-sample sums of squares (SS_T)
- ▶ add up the differences in the means

$$SS_B = n_1(\bar{x}_1 - \bar{x})^2 + n_2(\bar{x}_2 - \bar{x})^2 + n_3(\bar{x}_3 - \bar{x})^2$$

- ▶ Between-sample sum of squares (SS_T)
- ightharpoonup more generally (g is the number of groups)

$$SS_B = \sum_g n_g (\bar{x}_g - \bar{x})^2$$

Total:

Within group:

Between group:

$$SS_T = \sum (x - \bar{x})^2$$

$$SS_W = \sum_g \sum_i (x_{ig} - \bar{x}_g)^2$$

$$SS_B = \sum_q n_g (\bar{x}_g - \bar{x})^2$$

ANOVA degrees of freedom

If we define the following:

- ightharpoonup n is the total sample size (number of observations)
- ightharpoonup g is the number of groups/samples

ANOVA degrees of freedom

If we define the following:

- \triangleright n is the total sample size (number of observations)
- ightharpoonup g is the number of groups/samples

Then the degrees of freedom (df) are:

- ightharpoonup Total: $df_T = n 1$
- ▶ Within: $df_W = g 1$
- ▶ Between: $df_B = n g$

ANOVA the mean square

The mean square (MS) is the sum of squares divided by the degrees of freedom:

$$MS = SS/df$$

So:

- ▶ Total: $MS_T = SS_T/df_T$
- ▶ Within: $MS_W = SS_W/df_W$
- ▶ Between: $MS_B = SS_B/df_B$

ANOVA all the ingredients

	SS	df	MS
Total	$\sum (x - \bar{x})^2$	n-1	SS_T/df_T
Within	$\sum_{g} \sum_{i} (x_{ig} - \bar{x}_{j})^{2}$	n-g	SS_W/df_W
Between	$\sum_g n_g (\bar{x}_g - \bar{x})^2$	g-1	SS_B/df_B

ANOVA the statistical test

ANOVA results are usually presented in an ANOVA table

Source of variation	SS	df	MS	F	p
Between	SS_B	df_B	MS_B		
Within	SS_W	df_W	MS_W		
Total	SS_T	df_T	_		

ANOVA the statistical test

ANOVA results are usually presented in an ANOVA table

Source of variation	SS	df	MS	F	p
Between	SS_B	df_B	MS_B		
Within	SS_W	df_W	MS_W		
Total	SS_T	df_T	_		

ightharpoonup F is the test statistic for the ANOVA

$$F = \frac{MS_B}{MS_W}$$

ANOVA the statistical test

ANOVA results are usually presented in an ANOVA table

Source of variation	SS	df	MS	F	p
Between	SS_B	df_B	MS_B		
Within	SS_W	df_W	MS_W		
Total	SS_T	df_T	_		

- \triangleright p is the probability of observing the F statistic with a given degrees of freedom if the null hypothesis is true:
 - ▶ null hypothesis is 'no difference between the means'
 - \triangleright based on the *F*-distribution

ANOVA the F distribution

ANOVA the F distribution

ANOVA and the Sums of Squares

ANOVA and the Sums of Squares

ANOVA the p value

Hypotheses:

- \blacktriangleright H_0 : there are no significant differences between the means
 - all means are equal
- \blacktriangleright H_1 : there are significant differences between the means
 - lack all means are not equal

When do we reject or fail to reject the null hypothesis?

ANOVA the p value

Hypotheses:

- \blacktriangleright H_0 : there are no significant differences between the means
 - all means are equal
- \blacktriangleright H_1 : there are significant differences between the means
 - lack all means are not equal

When do we reject or fail to reject the null hypothesis?

- ightharpoonup if F is large, then p is small
- ▶ if p < 0.05 we reject the null hypothesis
- if p > 0.05 we fail to reject the null hypothesis

- ► Cannot use t-tests to make pairwise comparisons
 - ▶ multiple t-tests will lead to significant results by chance

- ▶ Instead we conduct *Post-hoc* testing
 - Tukey Honest Significant Difference test (Tukey HSD)
 - accounts for multiple tests being conducted
 - calculation of a t-statistic
 - a pair, so degrees of freedom is 1
 - ▶ 5% critical value for df = 1 is 4.303
 - if t > 4.303 then p < 0.05

- ▶ Instead we conduct *Post-hoc* testing
 - Tukey Honest Significant Difference test (Tukey HSD)
 - accounts for multiple tests being conducted
 - calculation of a t-statistic
 - a pair, so degrees of freedom is 1
 - ▶ 5% critical value for df = 1 is 4.303
 - if t > 4.303 then p < 0.05

$$t_{a,b} = \frac{|\bar{x}_a - \bar{x}_b|}{\sqrt{\frac{MS_W\left(\frac{1}{n_a} + \frac{1}{n_b}\right)}{2}}}$$

- ► Instead we conduct *Post-hoc* testing
 - Tukey Honest Significant Difference test (Tukey HSD)
 - accounts for multiple tests being conducted
 - calculation of a t-statistic
 - a pair, so degrees of freedom is 1
 - ▶ 5% critical value for df = 1 is 4.303
 - if t > 4.303 then p < 0.05

	A	В	\mathbf{C}
A	-	$t_{A,B}$	$t_{A,C}$
В	-	-	$t_{B,C}$
С	-	-	-

ANOVA Recap

Comparing differences between >2 samples (groups) using ANOVA

- ▶ null hypothesis:
 - ▶ no difference between the samples
 - data are from the same population
- ▶ alternative hypothesis:
 - sample means are different

ANOVA Recap

Comparing differences between >2 groups using ANOVA

Source of variation	SS	df	MS	F	p
Between	SS_B	df_B	MS_B	$\frac{MS_B}{MS_W}$	
Within	SS_W	df_W	MS_W		
Total	SS_T	df_T	_		

ANOVA Recap

Comparing differences between >2 groups using ANOVA

- ► Essentially comes down to:
 - a model with one mean or a model with a mean per group
 - which model best explains the data
 - which model significantly reduces the sums of squares

More than on factor with ANOVA

So far we have looked at multiple levels within a single factor

- ► factor: a single categorical predictor variable
- ▶ level: the categories within a factor

In some cases, we may be interested in >1 factor

- ▶ 2 factors: two-way ANOVA
- ▶ 3 factors: three-way ANOVA
- ► · · · multi-way ANOVA

Let's use a grazing example:

	Site		
Grazing Treatment	Top	Lower	
Lo	9	7	
Lo	11	6	
Lo	6	5	
Mid	14	14	
Mid	17	17	
Mid	19	15	
Hi	28	44	
Hi	31	38	
Hi	32	37	

Lets use the example from the book (in R looks like this):

```
graze
          Site Abundance
   graze
      Lo
           Top
           Top
                       11
      Lo
3
      Lo
          Top
                        6
4
     Mid
                       14
          Top
5
     Mid
         Top
                       17
6
     Mid
         Top
                      19
7
      Ηi
          Top
                       28
8
      Ηi
          Top
                       31
9
                       32
      Ηi
           Top
10
      Lo Lower
11
      Lo Lower
                        6
12
     Lo Lower
                        5
13
     Mid Lower
                       14
14
     Mid Lower
                       17
15
     Mid Lower
                       15
16
      Hi Lower
                       44
17
                       38
      Hi Lower
18
      Hi Lower
                       37
```

Lets use the example from the book (in R looks like this):

gra	aze		
	graze	Site	Abundance
1	Lo	Top	9
2	Lo	Top	11
3	Lo	Top	6
4	Mid	Top	14
5	Mid	Top	17
6	Mid	Top	19
7	Hi	Top	28
8	Hi	Top	31
9	Hi	Top	32
10	Lo	Lower	7
11	Lo	Lower	6
12	Lo	Lower	5
13	Mid	Lower	14
14	Mid	Lower	17
15	Mid	Lower	15
16	Hi	Lower	44
17	Hi	Lower	38
18	Hi	Lower	37

Lets use the example from the book (in R looks like this):

gra	aze		
	graze	Site	Abundance
1	Lo	Top	9
2	Lo	Top	11
3	Lo	Top	6
4	Mid	Top	14
5	Mid	Top	17
6	Mid	Top	19
7	Hi	Top	28
8	Hi	Top	31
9	Hi	Top	32
10	Lo	Lower	7
11	Lo	Lower	6
12	Lo	Lower	5
13	Mid	Lower	14
14	Mid	Lower	17
15	Mid	Lower	15
16	Hi	Lower	44
17	Hi	Lower	38
18	Hi	Lower	37

Step one:

- ► SS for each factor
 - graze
 - site
- $ightharpoonup SS_{graze} = \sum (x_{i,graze} \bar{x}_{graze})^2$
- ► Ignore site grouping

Step one:

- ► SS for each factor
 - graze
 - site
- $ightharpoonup SS_{site} = \sum (x_{i,site} \bar{x}_{site})^2$
- ► Ignore graze grouping

Step two:

- ▶ SS for each combinations of factors
- ► Treat all groupings as unique
- \triangleright $SS_{within} = (x_{i,g} \bar{x}_g)^2$

Step three:

- ► Sums of squares of both factors
- $SS_{both} = SS_{total} SS_{graze} SS_{ite} SS_{within}$

Step four:

- ► Total sums of squares
- $ightharpoonup SS_{total} = \sum (x_i \bar{x})^2$
- ightharpoonup the null model
- ► Ignore all group structure

Conducting the ANOVA - sums of squares

	SS	df	MS	F	p
Graze	SS_{graze}				
Site	SS_{site}				
Both factors(interaction)	SS_{both}				
Within group	SS_{within}				
Total	SS_{total}				

Degrees of freedom

In general:

- ► Factor 1 (F1): number of levels 1
- ► Factor 2 (F2): number of levels 1
- ▶ Within: n (levels in F1 × levels in F2)
- ► Total: *n* 1

Degrees of freedom

In general:

- ► Factor 1 (F1): number of levels 1
- ► Factor 2 (F2): number of levels 1
- ▶ Within: n (levels in F1 × levels in F2)
- ► Total: *n* 1

Grazing example:

- ▶ Graze: 3 1 = 2
- ▶ Site: 2 1 = 1
- ▶ Within: $18 (3 \times 2) = 12$
- ▶ Total: 18 1 = 17

Degrees of freedom

In general:

- ► Factor 1 (F1): number of levels 1
- ► Factor 2 (F2): number of levels 1
- ▶ Within: n (levels in F1 × levels in F2)
- ► Total: *n* 1

	SS	df	MS	F	p
Graze	SS_{graze}	df_{graze}			
Site	SS_{site}	df_{site}			
Both factors(interaction)	SS_{both}	df_{both}			
Within group	SS_{within}	df_{within}			
Total	SS_{total}	df_{total}			

Mean squares

▶ the mean squares are calculated by dividing the sums of squares by the degrees of freedom for each element

	SS	df	MS	F	p
Graze	SS_{graze}	df_{graze}	$MS_{graze} = \frac{SS_{graze}}{df_{graze}}$		
Site	SS_{site}	df_{site}	$MS_{site} = \frac{SS_{site}}{df_{site}}$		
Both factors	SS_{both}	df_{both}	$MS_{both} = \frac{SS_{both}}{df_{both}}$		
Within group	SS_{within}	df_{within}	$MS_{within} = \frac{SS_{within}}{df_{within}}$		
Total	SS_{total}	df_{total}			

F statistic

ightharpoonup the F-statistic is calculated by taking the element of interest divided by the within group MS (the error term)

	SS	df	MS	F	p
Graze	SS_{graze}	df_{graze}	$MS_{graze} = \frac{SS_{graze}}{df_{graze}}$	$\frac{MS_{graze}}{MS_{within}}$	
Site	SS_{site}	df_{site}	$MS_{site} = \frac{SS_{site}}{df_{site}}$	$\frac{MS_{site}}{MS_{within}}$	
Both factors	SS_{both}	df_{both}	$MS_{both} = \frac{SS_{both}}{df_{both}}$	$\frac{MS_{both}}{MS_{within}}$	
Within group	SS_{within}	df_{within}	$MS_{within} = \frac{SS_{within}}{df_{within}}$		
Total	SS_{total}	df_{total}			

ANOVA the F distribution

ANOVA in practice - Excel

gra	ze		
_	graze	,	Site
	Lo		Top
	Lo		Top
3	Lo		Top
4	Mid		-
5	Mid		-
6	Mid		-
7	Hi		-
8	Hi		Top
9	Hi		Top
10			Lower
11			Lower
12			Lower
13			Lower
14			Lower
15			Lower
16			Lower
17			Lower
18	Hi		Lower

► Format data for specific test

4	Α	В	С	D	Е	F	G	н	1	J	K	L
1												
2												
3		Graze	Тор	Lower								
4		Lo	9	7								
5		Lo	11	6								
6		Lo	6	5								
7		Mid	14	14								
8		Mid	17	17								
9		Mid	19	15								
10		Hi	28	44								
11		Hi	31	38								
12		Hi	32	37								
13												
14												
15												

► Choose test from the *Analysis Toolpack*

► Select appropriate settings

► Interpret the output

4	Α	В	С	D	Е	F	G	н	1	J	K	L
1	Anova: Single Factor											
2												
3	SUMMARY											
4	Groups	Count	Sum	Average	Variance							
5	Тор	9	167	18.56	94.28							
6	Lower	9	183	20.33	231.00							
7												
8												
9	ANOVA											
10	Source of Variation	SS	df	MS	F	P-value	F crit					
11	Between Groups	14.22	1	14.22	0.09	0.77	4.49					
12	Within Groups	2602.22	16	162.64								
13												
14	Total	2616.44	17									
15												

► Format data for specific test

4	Α	В	С	D	E	F	G	н	1	J	K	L
1												
2		Graze	Lo	Mid	Hi							
3		Lower	7	14	44							
4		Lower	6	17	38							
5		Lower	5	15	37							
6		Тор	9	14	28							
7		Тор	11	17	31							
8		Тор	6	19	32							
9												
10												
11												
12												
13												
14												
15												

► Choose test from the *Analysis Toolpack*

4	Α	В	С	D	E	F	G	Н	1	J	К	L
1												
2		Graze	Lo	Mid	Hi							
3		Lower	7	14	44	Data Ana	-basis				? X	
4		Lower	6	17	38		-				. ^	
5		Lower	5	15	37	Analysis					OK	
6		Тор	9	14	28		Single Factor V	Cancel				
7		Тор	11	17	31	Anova:	Two-Factor V	Cancel				
8		Тор	6	19	32	Correla	<u>H</u> elp					
9						Descrip	tive Statistics					
10							ntial Smooth wo-Sample f					
11						Fourier	Analysis					
12						Histogr	ram			~		
13												
14												
15												

► Select appropriate settings

► Interpret the output

4	A	В	С	D	E	F	G	н	1	J	K	L
1	Anova: Single Factor											
2												
3	SUMMARY											
4	Groups	Count	Sum	Average	Variance							
5	Lo	6	44	7.33	5.07							
6	Mid	6	96	16	4							
7	Hi	6	210	35	33.6							
8												
9	ANOVA											
10	Source of Variation	SS	df	MS	F	P-value	F crit					
11	Between Groups	2403.11	2	1201.56	84.48	0.000000007	3.68					
12	Within Groups	213.33	15	14.22								
13												
14	Total	2616.44	17									
15												

► Format data for specific test

4	Α	В	С	D	Е	F	G	Н	1	J	K	L
1												
2												
3		Graze	Тор	Lower								
4		Lo	9	7								
5		Lo	11	6								
6		Lo	6	5								
7		Mid	14	14								
8		Mid	17	17								
9		Mid	19	15								
10		Hi	28	44								
11		Hi	31	38								
12		Hi	32	37								
13												
14												
15												

Two-wayANOVA in practice - Excel

► Choose test from the *Analysis Toolpack*

► Select appropriate settings

► Interpret the output

▶ Read in the data as a data frame

```
graze
         Site Abundance
   graze
      Lo
          Top
2
     Lo
         Top
                      11
3
                       6
     Lo
         Top
    Mid
         Top
                     14
5
    Mid
         Top
                   17
6
    Mid
         Top
                   19
7
     Ηi
         Top
                   28
8
      Ηi
         Top
                     31
      Ηi
           Top
                      32
10
     Lo Lower
11
    Lo Lower
                       6
12
   Lo Lower
13
    Mid Lower
                      14
14
    Mid Lower
                      17
15
    Mid Lower
                      15
16
     Hi Lower
                     44
17
                      38
     Hi Lower
18
     Hi Lower
                      37
```

```
oneway.site <- aov(Abundance ~ Site, data = graze)
summary(oneway.site)

Df Sum Sq Mean Sq F value Pr(>F)
Site 1 14.2 14.22 0.087 0.771
Residuals 16 2602.2 162.64
```

4	A	В	C	D	E	F	G	H	1	J	K	L
1	Anova: Single Factor											
2												
3	SUMMARY											
4	Groups	Count	Sum	Average	Variance							
5	Тор	9	167	18.56	94.28							
6	Lower	9	183	20.33	231.00							
7												
8												
9	ANOVA											
10	Source of Variation	SS	df	MS	F	P-value	F crit					
11	Between Groups	14.22	1	14.22	0.09	0.77	4.49					
12	Within Groups	2602.22	16	162.64								
13												
14	Total	2616.44	17									
15												

4	A	В	C	D	E	F	G	H	1.0	J	K	L
1	Anova: Single Factor											
2												
3	SUMMARY											
4	Groups	Count	Sum	Average	Variance							
5	Lo	6	44	7.33	5.07							
6	Mid	6	96	16	4							
7	Hi	6	210	35	33.6							
8												
9	ANOVA											
10	Source of Variation	SS	df	MS	F	P-value	F crit					
11	Between Groups	2403.11	2	1201.56	84.48	0.000000007	3.68					
12	Within Groups	213.33	15	14.22								
13												
14	Total	2616.44	17									
15												

► Conduct *any* test using formula syntax

► Excel only *fits* the interaction model

4	A	В	С	D	E	F	G	н	1	J
1	Total									
2	Count	9	9							
3	Sum	183	167							
4	Average	20.33	18.56							
5	Variance	231.00	94.28							
6										
7	ANOVA									
8	Source of Variation	SS	df	MS	F	P-value	F crit			
9	Sample	2403.11	2	1201.56	207.96	0.0000000005	3.89			
10	Columns	14.22	1	14.22	2.46	0.1426439913	4.75			
11	Interaction	129.78	2	64.89	11.23	0.0017827051	3.89			
12	Within	69.33	12	5.78						
13										
14	Total	2616.44	17							
15										

We will conduct three analyses using the *salamANOVA*. We are interested in whether salamander snout-to-vent length (SVL) varies by sex and/or site. The data look like this:

```
str(sals)
'data.frame': 48 obs. of 3 variables:
$ Site: Factor w/ 4 levels "P1A","P1B","P2A",..: 1 1 1 1 1 1 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
$ SVL : int 36 42 42 41 44 40 35 39 38 44 ...
```

- ► Site: there are four sites (P1A, P1B, P2A, P2B)
- ► Sex: M (male) and F (female)
- ► SVL: the snout-to-vent length in mm

Analysis 1: Does SVL vary by sex?

- ▶ What is the null hypothesis?
- ► Make a plot to visualize the hypothesis.
- \blacktriangleright What statistical test will you use to test H_0 ?
- ▶ What is the:
 - \triangleright test statistic for this particular test (e.g., t, F, etc)
 - degrees of freedom (calculate this)
 - significance level
- ► Conduct the analysis:
 - what is the value of the test statistic
 - \triangleright what the *p*-value
- ▶ Write a short paragraph reporting the conclusion, use values from the statistical test to suppo, supported by the results from the test.

Analysis 2: Does SVL vary by site?

- ▶ What is the null hypothesis?
- ► Make a plot to visualize the hypothesis.
- ▶ What statistical test will you use to test H_0 ?
- ▶ What is the:
 - \triangleright test statistic for this particular test (e.g., t, F, etc)
 - degrees of freedom (calculate this)
 - significance level
- ► Conduct the analysis:
 - what is the value of the test statistic
 - \triangleright what the *p*-value
- ▶ Write a short paragraph reporting the conclusion, use values from the statistical test to suppo, supported by the results from the test.

Analysis 3: Does SVL vary by sex and/or site?

- ▶ What is the null hypothesis?
- ► Make a plot to visualize the hypothesis.
- ▶ What statistical test will you use to test H_0 ?
- ▶ What is the:
 - \triangleright test statistic for this particular test (e.g., t, F, etc)
 - degrees of freedom (calculate this)
 - significance level
- ► Conduct the analysis:
 - what is the value of the test statistic
 - \triangleright what the *p*-value
- ▶ Write a short paragraph reporting the conclusion, use values from the statistical test to suppo, supported by the results from the test.

Assignment: Statistical analysis of variation in salamnder SVL.

- ▶ Write a report with four sections:
 - 1. Analysis 1
 - 2. Analysis 2
 - 3. Analysis 3
 - 4. Reflection: how does analysis 3 compare to analyses 1 and 2?
- ► Sections 1 to 3 sould report on each of the prompts in the previous slides.
- ► Section 4 is an opportunity to demonstrate your undertanding of the material covered over the previous weeks.
- \blacktriangleright Assignment due: 11.55pm Tuesday November $20^t h$