## **ELECTROMAGNETISMO**

## Série 6 – Circuitos de corrente contínua

- 1. A bateria de um automóvel tem uma fem de  $12.6\,V$  e uma resistência interna de  $0.080\,\Omega$ . Os faróis têm uma resistência total de  $5.00\,\Omega$ . Qual é a diferença de potencial aos terminais da bateria quando:
  - a) os faróis são a única resistência ligada aos terminais da bateria;
  - b) o motor de arranque é também accionado, aumentando a corrente na bateria em 35.0 A.
- 2. Uma bateria de 6.00 V está ligada ao circuito ilustrado na Fig. 1. Quando o interruptor S está aberto, como na figura, a corrente na bateria é de 1.00 mA. Quando o interruptor está fechado e em contacto com o ponto 1, a corrente na bateria é de 1.20 mA. Quando o interruptor está fechado e em contacto com o ponto 2, a corrente na bateria é de 2.00 mA. Calcule as resistências de R<sub>1</sub>, R<sub>2</sub> e R<sub>3</sub>.



- 3. Quando duas resistências desconhecidas estão ligadas em série com uma bateria, a corrente na bateria é de 5.00 A e a bateria transfere 225 W para as resistências. Para a mesma corrente, a potência transferida para as resistências ligadas em paralelo é de 50.0 W. Qual é o valor de cada resistência?
- 4. Determine a corrente em cada ramo do circuito ilustrado na Fig. 2.



5. Para o circuito representado na Fig. 3, mostre que a resistência entre os pontos a e b é dada por  $R_{ab} = (27/17) \Omega$ .



Figura 3

6. Calcule a diferença de potencial entre os pontos a e b na Fig. 4 e diga qual dos dois pontos está a um potencial mais elevado.



- 7. Pretende-se carregar um condensador de  $10.0 \, \mu F$  em série com uma resistência R utilizando uma bateria de  $10.0 \, V$ . A diferença de potencial aos terminais do condensador atinge os  $4.00 \, V$ ,  $3.00 \, s$  após o início do processo de carga do condensador. Qual é o valor de R?
- 8. Na Fig. 5, suponha que o interruptor está fechado a um tempo suficientemente longo para o condensador estar completamente carregado. Determine:
  - a) Determine a corrente em cada resistência no estado estacionário e a carga Q no condensador.
  - b) O interruptor é agora aberto a t = 0. Escreva uma equação para a corrente  $I_{R2}$  através de  $R_2$  em função do tempo e determine o intervalo de tempo necessário para a carga no condensador diminuir para 1/5 do seu valor inicial.



Figura 5

## Soluções:

1. a) 
$$\Delta V = 12.4 \ V$$
; b)  $\Delta V = 9.65 \ V$ .

2. 
$$R_1 = 3.00 \ k\Omega$$
,  $R_2 = 2.00 \ k\Omega$ ,  $R_3 = 1.00 \ k\Omega$ .

3. 
$$R_1 = 6.00 \Omega$$
,  $R_2 = 3.00 \Omega$ .

4. 
$$I_1 = 846 \text{ mA}$$
,  $I_2 = 462 \text{ mA}$ ,  $I_3 = 1.31 \text{ A}$ .

6. 
$$R = 587 \ k\Omega$$
.

7.  $V_a - V_b = 4.00 V$ , o ponto a está a um potencial mais elevado.

8. a) 
$$I_{R1} = I_{R2} = 333 \ \mu A$$
,  $I_{R3} = 0$ ; b)  $Q = 50.0 \ \mu C$ ; c)  $I_{R2} = (278 \ \mu A)e^{-t/(0.180 \ s)}$ ; d)  $t = 290 \ ms$ .