

Váhový senzor 3 Kg YZC-131

POPIS

Senzor YZC-131 může být použit pro sestrojení kuchyňské váhy nebo siloměru.

V kombinaci s vhodným AD převodníkem (např. HX711)

Základní charakteristika snímače:

- Max. povolené zatížení 30 N
- Konfigurace: čtveřice tenzometrů zapojených do Wheatstoneova můstku
- Impedance 1 000 Ω
- Snadná montáž díky otvorům se závity

SPECIFIKACE

Měřicí rozsah (N)	0-30	Chyba linearity (% FS)	± 0,03
Povolené přetížení (%)	150	Opakovatelnost (% FS)	0,03
Excitační napětí (V DC)	5-10	Hystereze (% FS)	0,03
Vstupní impedance (Ω)	1 066 ± 10 %	Tečení (% FS, 5 min)	0,05
Výstupní impedance (Ω)	1 000 ± 10 %	Stupeň krytí	IP65
Izolační odpor (MΩ)	≥ 2 000	Rozsah provoz. teploty (°C)	-20 až 40
Výstupní napětí (mV/V FS)	1 ± 0,1	Materiál	hliník
Vyvážení nuly (mV/V)	± 0,1	Rozměry (mm)	75 x 12,7 x 12,7

Rozměry a montáž

00101 01001 00001

UKÁZKA PROGRAMU

```
// Arduino AD 24-bit převodník s 2 kanály

// piny pro připojení SCK a DT z modulu
int pSCK = 2;
int pDT = 3;

// definování různých nastavení kanálů a jejich zesílení
#define kanal_A_zesil_128 1
#define kanal_B_zesil_32 2
#define kanal_A_zesil_64 3
```



```
void setup()
  // nastavení pinů modulu jako výstup a vstup
 pinMode (pSCK, OUTPUT);
 pinMode (pDT, INPUT);
  // komunikace přes sériovou linku rychlostí 9600 baud
 Serial.begin(9600);
  // probuzení modulu z power-down módu
 digitalWrite (pSCK, LOW);
 // spuštění prvního měření pro nastavení měřícího kanálu
 spusteniMereni(kanal A zesil 64);
void loop()
 // výpis měření a jeho výsledku
 Serial.print("Vysledek mereni: ");
 Serial.print(spusteniMereni(kanal A zesil 64));
 Serial.println(" uV");
 // pauza 0.5 s pro přehledné čtení
 delay(500);
// vytvoření funkce pro měření z nastaveného kanálu
long spusteniMereni(byte mericiMod)
 byte index;
 long vysledekMereni = 0L;
 // načtení 24-bit dat z modulu
 while (digitalRead (pDT));
 for (index = 0; index < 24; index++)</pre>
 {
   digitalWrite (pSCK, HIGH);
   vysledekMereni = (vysledekMereni << 1) | digitalRead (pDT);</pre>
   digitalWrite (pSCK, LOW);
  // nastavení měřícího módu
  for (index = 0; index < mericiMod; index++)</pre>
   digitalWrite (pSCK, HIGH);
   digitalWrite (pSCK, LOW);
  // konverze z 24-bit dvojdoplňkového čísla
  // na 32-bit znaménkové číslo
 if (vysledekMereni >= 0x800000)
   vysledekMereni = vysledekMereni | 0xFF000000L;
 // přepočet výsledku na mikrovolty podle zvoleného
  // kanálu a zesílení
 switch (mericiMod) {
   case 1: vysledekMereni = vysledekMereni/ 128/2; break;
   case 2: vysledekMereni = vysledekMereni/ 32/2; break;
   case 3: vysledekMereni = vysledekMereni/ 64/2; break;
 }
  return vysledekMereni ;
```