SY09 – Analyse de données et *Data Mining*Cours n° 2 – Description élémentaire

Sylvain Rousseau

Printemps 2019

Transformation de variables

Centrage/Réduction

- Centrage
 - On définit $v_i = x_i \overline{x}$
 - On a donc $\overline{v} = 0$
- Standardisation
 - On définit $y_i = \frac{x_i \overline{x}}{s^*}$
 - On a donc $\overline{y} = 0$ et $s_v^* = 1$
- Renormalisation MinMax
 - On définit : $y_i = \frac{x_i \min_i x_i}{\max_i x_i \min_i x_i}$ On a $-1 \le y_i \le 1$
- Renormalisation Max
 - On définit $y_i = \frac{x_i}{\max_i |x_i|}$
 - On a $-1 < v_i < 1$, $x_i = 0 \Rightarrow v_i = 0$

Découpage

- Soit X une variable quantitative $V_X =]a; b]$
- On choisit $a = c_0 < \cdots < c_n = b$
- On définit Y telle que $V_Y = \{M_1, \dots, M_n\}$
- $Y = M_i$ ssi $X \in]c_{i-1}; c_i]$

Plongement

Soit X une variable qualitative telle que

$$V_X = \{\mathsf{chat}, \mathsf{chien}, \mathsf{chose}\}$$

On associe une vecteur à chaque modalité. Par exemple :

$$Y = \begin{cases} (1.2, -1.6, 0.4) & \text{si } X = \text{chat} \\ (0.1, -1.1, 1.4) & \text{si } X = \text{chien} \\ (0.4, 1.5, -0.6) & \text{si } X = \text{chose} \end{cases}$$

Recodage

Soit X une variable qualitative $V_X = \{R, G, B\}$

Nominal : codage disjonctif complet (ou one hot encoding)

	V		R?	G?	В?
1	В	1	0	0	1
2	R	2	1	0	0
3	В	3	0	0	1
4	G	4	0	1	0
5	B R B G R	5	1	0	0

• Ordinale : codage additif $R \le G \le B$

	V			$\geq R$	$\geq G$	$\geq B$
1	B R B	-	1	1	1	1
2	R		2	1	0	0
3	В		3	1	1	1
4	G		4	1	1	0
5	R		5	1	0	0

Tableau de proximités

• Une **proximité** P sur une population Ω est une fonction qui à chaque couple d'individus associe une nombre positif :

$$P: \Omega \times \Omega \longrightarrow \mathbb{R}^+$$

- Si la population Ω est finie, P est une matrice de nombre positifs
- Deux grandes familles de proximités :
 - Dissimilarité (distance) : Plus c'est grand, plus c'est loin
 - Similarité : Plus c'est grand, plus c'est près

Dissimilarité

Exemple

• Distances mesurées sur une carte (eurodist)

	Athens	Barcelona	Brussels	Calais	Cherbourg	Cologne	Copenhagen
Athens	0	3313	2963	3175	3339	2762	3276
Barcelona	3313	0	1318	1326	1294	1498	2218
Brussels	2963	1318	0	204	583	206	966
Calais	3175	1326	204	0	460	409	1136
Cherbourg	3339	1294	583	460	0	785	1545
Cologne	2762	1498	206	409	785	0	760
Copenhagen	3276	2218	966	1136	1545	760	0

- Remarques :
 - ① La diagonale est nulle
 - 2 La matrice est symétrique

• La fonction d :

$$d: \Omega \times \Omega \longrightarrow \mathbb{R}^+$$

est une dissimilarité sur Ω si elle vérifie :

•
$$\forall x, y \in \Omega$$
 $d(x, y) = 0 \iff x = y$

•
$$\forall x, y \in \Omega$$
 $d(x, y) = d(y, x)$

(symétrie)

- ullet Si Ω est finie, équivalent à
 - Diagonale nulle
 - Matrice symétrique

(séparation)

La distance

• La fonction d :

$$d: \Omega \times \Omega \longrightarrow \mathbb{R}^+$$

est une **distance** sur Ω si elle vérifie :

•
$$\forall x, y \in \Omega$$
 $d(x, y) = 0 \iff x = y$

- $\forall x, y \in \Omega$ d(x, y) = d(y, x)
- $\forall x, y, z \in \Omega$ $d(x, z) \leq d(x, y) + d(y, z)$

(séparation)

(symétrie)

(inégalité triangulaire)

La distance ultramétrique

• La fonction d :

$$d: \Omega \times \Omega \longrightarrow \mathbb{R}^+$$

est une distance ultramétrique sur Ω si elle vérifie :

•
$$\forall x, y \in \Omega$$
 $d(x, y) = 0 \iff x = y$

•
$$\forall x, y \in \Omega$$
 $d(x, y) = d(y, x)$

•
$$\forall x, y, z \in \Omega$$
 $d(x, z) \leq \max(d(x, y), d(y, z))$

(séparation)

(symétrie)

(inégalité ultramétrique)

Plus contraignante car

$$\max(d(\boldsymbol{x},\boldsymbol{y}),d(\boldsymbol{y},\boldsymbol{z})) \leq d(\boldsymbol{x},\boldsymbol{y}) + d(\boldsymbol{y},\boldsymbol{z})$$

La distance euclidienne

Il existe un espace euclidien (\mathbb{R}^p) qui réalise les distances observées

La fonction d :

$$d: \Omega \times \Omega \longrightarrow \mathbb{R}^+$$

est une distance euclidienne sur Ω telle qu'il existe un entier k et un plongement p de Ω dans \mathbb{R}^k tels que

$$\forall \omega, \omega' \in \Omega, \quad d(\omega, \omega') = \|p(\omega) - p(\omega')\|_2.$$

Récapitulatif

Liens entre les différentes distances

Contre-exemple

Une dissimilarité n'est pas forcément une distance

- La dissimilarité en A, B et C est bien définie
- L'inégalité triangulaire n'est pas vérifiée

$$BC \nleq AC + AB$$

Contre-exemple

Une distance n'est pas forcément ultramétrique

Inégalité triangulaire

$$BC \leq AC + AB$$

• Pas une ultramétrique

$$BC \not\leq \max(AC, AB)$$

Contre-exemple

Une distance n'est pas forcément euclidienne

- Géométriquement on doit avoir : $P_1P_4 = \sqrt{4/3} \approx 1.15$
- Et si on impose $P_4P_i = 1.1$?

Similarité Exemple

• Similarité : Plus c'est grand, plus c'est près

• Exemple de notes allant de 0 (pas de ressemblance) à 10 (forte ressemblance)

parfums	1	2	3	4	5
parfums					
1	_				
2	3	_			
3	5	8	_		
4	2	7	1	_	
5	9	3	5	7	_

• Symétrie, diagonale constante maximale

La fonction s:

$$s:\Omega \times \Omega \longrightarrow \mathbb{R}^+$$

est une **similarité** sur Ω si elle vérifie

- $\forall x, y \in \Omega$ s(x, y) = s(y, x)
- $\forall x, y \in \Omega, x \neq y$ $s(x, x) = s_{\max}$ avec $s_{\max} \ge s(x, y)$

(symétrie)

Transformations

• Équivalence similarité/dissimilarité

$$d(\mathbf{x},\mathbf{y}) = s_{\max} - s(\mathbf{x},\mathbf{y})$$

Symétrisation

$$d(\mathbf{x}, \mathbf{y}) = \mathsf{Moyenne}(\delta(\mathbf{x}, \mathbf{y}), \delta(\mathbf{y}, \mathbf{x}))$$

• Dissimilarité en distance (il manque l'inégalité triangulaire)

$$d(\mathbf{x}, \mathbf{y}) = \delta(\mathbf{x}, \mathbf{y}) + c \cdot \mathbb{1}_{\mathbf{x} \neq \mathbf{y}}$$

Construction de tableaux de proximité

À partir d'un tableaux individus-variables :

	variable 1	\cdots variable j \cdots	variable <i>p</i>		
individu 1	×11	x_{1j}	x_{1p}		
:	:	:	:		
individu <i>i</i>	x_{i1}	$ imes_{ij}$	\times_{ip}		
:	:	:	:		
individu <i>n</i>	\times_{n1}	$ imes_{nj}$	\times_{np}		
	variable 1	\cdots variable j \cdots	variable <i>p</i>		
individu 1	variable 1	\cdots variable j \cdots x_{1j}	variable <i>p</i>		
:					
individu 1 : individu <i>i</i>					
:	×11	× _{1j} :	X _{1p} :		

Distances entre variables quantitatives

- Euclidienne
 Distance classique « ligne droite »
- Euclidienne pondérée

 Pondéré par une matrice diagonale D
- Mahalanobis
 Généralisation avec S définie positive
- Manhattan ou L₁
- Chebychev ou L_{∞}
- Minkowski ou L_p

$$\sqrt{\sum_{j} (x^{j} - y^{j})^{2}} = \sqrt{(\mathbf{x} - \mathbf{y})^{T} (\mathbf{x} - \mathbf{y})}$$

$$\sqrt{(\mathbf{x} - \mathbf{y})^{T} D(\mathbf{x} - \mathbf{y})}$$

$$\sqrt{(\mathbf{x} - \mathbf{y})^{T} S^{-1} (\mathbf{x} - \mathbf{y})}$$

$$\sum_{j} |x_{j} - y_{j}|$$

$$\max_{j} |x^{j} - y^{j}|$$

$$\left(\sum_{j} |x^{j} - y^{j}|^{p}\right)^{1/p}$$

Distances pour variables qualitatives

Si X et Y sont deux variables qualitative avec I et J modalités chacune

• Distance du χ^2

$$D^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(N_{ij} - \frac{N_{i} \cdot N_{.j}}{n}\right)^{2}}{\frac{N_{i} \cdot N_{.j}}{n}}$$

• Conversion en binaire, tableaux disjonctif complet

Similarités pour données binaires

• Tableau de contingence

•
$$x = y \iff b = c = 0$$

Indice	s(x, y)
Csekanowski, Sorensen, Dice	$\frac{2a}{2a+b+c}$
Hamman	$\frac{(a+d)-(b+c)}{a+b+c+d}$
Jaccard	$\frac{\frac{a}{a}}{a+b+c}$
Kulezynsk	$\frac{a}{a+b}$
Ochiai	$\frac{a}{[(a+b)(a+c)]^{1/2}}$

Statistiques élémentaires

- Position
 - Moyenne empirique
 - Maximum
 - Minimum
 - Médiane
 - Quantile
- Dispersion
 - variance empirique
 - étendue interquartile

Statistiques élémentaires des données Iris

Command R : summary(iris)

```
Sepal.Length
               Sepal.Width
                               Petal.Length Petal.Width
                                                                  Species
Min.
      :4.300
               Min.
                      :2.000
                               Min.
                                     :1.000
                                              Min.
                                                     :0.100
                                                                      :50
                                                            setosa
1st Qu.:5.100
               1st Qu.:2.800
                               1st Qu.:1.600
                                              1st Qu.:0.300
                                                            versicolor:50
Median :5.800
               Median :3.000
                               Median :4.350
                                              Median :1.300
                                                            virginica:50
Mean
      :5.843
               Mean
                      :3.057
                                     :3.758
                                              Mean
                                                     .1.199
                               Mean
3rd Qu.:6.400
               3rd Qu.:3.300
                               3rd Qu.:5.100
                                              3rd Qu.:1.800
Max.
      .7.900
                      .4.400
                                     :6.900
                                                     :2.500
               Max.
                               Max.
                                              Max.
```


Diagrammes en boites

Histogramme

- Partition de l'étendue en K classes
- Table de fréquence
- Regroupement éventuel

Histogramme : longueur du pétale des données Iris

Estimation de densité

Si X est de densité f:

$$f(x) = F'(x) \approx \frac{F(x + h/2) - F(x - h/2)}{h}$$

$$= \frac{1}{h} \Pr(x - h/2 \le X \le x + h/2)$$

$$= \frac{1}{h} \cdot \frac{\#\{i \mid x - h/2 \le x_i \le x + h/2\}}{n}$$

$$= \frac{1}{h} \cdot \frac{\#\{i \mid (x - x_i)/h \in [-1/2, 1/2]\}}{n}$$

$$= \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

Exemple de noyaux

- Rectangulaire : $K(x) = \mathbb{1}_{[-0.5, +0.5]}(x)$
- Triangulaire : $K(x) = (1 |x|) \cdot \mathbb{1}_{[-1,+1]}(x)$
- Gaussien : $K(x) = \frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}x^2)$
- Epanechnikov : $K(x) = \frac{3}{4\sqrt{5}}(1 x^2/5) \cdot \mathbb{1}_{[-\sqrt{5}, +\sqrt{5}]}(x)$
- Lejeune : $K(x) = \frac{105}{64}(1-x^2)^2(1-3x^2) \cdot \mathbb{1}_{[-1,+1]}(x)$

Exemple d'estimation de la densité

21.86	21.92	21.91	21.97	22.01	21.84	21.90	21.91	21.98	21.96
21.88	21.91	21.92	21.95	21.95	21.90	21.89	21.91	21.89	21.95
21.92	21.91	21.93	21.98	21.97	21.87	21.87	21.96	21.96	21.96
21.90	21.89	21.91	21.98	21.95	21.87	21.90	21.97	21.95	21.94
21.90	21.89	21.97	21.97	21.97	21.93	21.92	21.97	21.94	21.95

Graphique de dispersion

```
jean
         6.0
                6.0
alin
         8.0
                8.0
anni
         6.0
                7.0
        14.5
               14.5
moni
didi
        14.0
               14.0
        11.0
               10.0
andr
                7.0
pier
        5.50
brig
               12.5
        13.0
                9.5
evel
         9.0
```

Graphique de dispersion

Graphique de dispersion (suite)

```
1 15 16
2 2 3
3 4 16
4 16 15
5 3 4
6 3 14
7 4 1
8 17 14
9 5 17
10 2 2
11 14 15
12 2 16
```

Graphique de dispersion (suite)

Exemple de corrélation

Exemple de corrélation (suite)

Histogramme bidimensionnel

Estimation de densité bidimensionnelle

Covariance et corrélation des données Iris

Matrice de covariance

Matrice de corrélation

LoSe	0.69	-0.04	1.3	0.52	LoSe	1.00	-0.12	0.9	0.82
laSe	-0.04	0.19	-0.3	-0.12	laSe	-0.12	1.00	-0.4	-0.37
LoPe	1.27	-0.33	3.1	1.30	$_{\text{LoPe}}$	0.87	-0.43	1.0	0.96
laPe	0.52	-0.12	1.3	0.58	laPe	0.82	-0.37	1.0	1.00

Graphique matriciel

Graphique matriciel avec variable qualitative

Fléau de la dimension

ullet Le nombre de directions d'angle $\geq \frac{\pi}{3}$

nombre de directions
$$\gtrsim \left(\frac{2}{\sqrt{3}}\right)^n$$
 $\frac{n \mid 2 \mid 100 \quad 1000}{\mid 6 \quad 1765781 \quad > 10^{62}}$

ullet Pourcentage de points de $[-1,1]^n$ situées dans $[-r,+r]^n$

		п								
		1	2	5	10	100				
	0.50	0.50	0.25	0.031	0.00098	7.910^{-31}				
r	0.75	0.75	0.56	0.24	0.056	3.210^{-13}				
	0.95	0.95	0.90	0.77	0.60	0.0059				

Fléau de la dimension : Oil flow data (1)

Fléau de la dimension : Oil flow data (2)

Description de la variable Espèce pour les Iris

Pie-chart : les défauts de ce type de représentation

Pie-chart : la lecture d'un angle est difficile

Pie-chart : Trop de modalités

