CONVOCATORIA DE **JULIO** (01/07/2014). GRADO EN INGENIERÍA INFORMÁTICA.EPS-UA. CURSO 2013-14

Alumno					
1 (1p)	2 (1,5p)	3 (1,5p)	4 (3p)	5 (3p)	TOTAL

- 1 [1p] Formalizar con el lenguaje de proposiciones las expresiones propuestas, donde A, B, C y D son enunciados de proposiciones atómicas. Usar los mismos nombres (A, B...) para las variables proposicionales.
 - a) Sólo si es cierto A o B, lo es C y D.

Fbf: $C \wedge D \rightarrow A \vee B$

b) Es cierto A y B a menos que sea falso C

Fbf: $\neg (A \land B) \rightarrow \neg C$

c) Es suficiente que sea cierto A y B para que no lo sea C ni D.

Fbf: $A \wedge B \rightarrow \neg C \wedge \neg D$

d) Para que sea falso A y B es necesario y suficiente que sea cierto A y C pero falso B.

Fbf: $\neg (A \land B) \leftrightarrow A \land C \land \neg B$

2 [1,5p] La proposición P1: "Es necesario que Ana baile o cante para que sea feliz y esté contenta", se formaliza con el marco conceptual MC = { ba: Ana baila; ca: Ana canta; fe: Ana es feliz; co: Ana está contenta} como Fbf-P1: fe ∧ co → ba ∨ ca

y se interpreta como:

a)	Falsa, si Ana baila pero no canta ni está contenta
b)	Verdadera, si Ana baila pero no canta ni está contenta
c)	Tautología, cuando Ana baile, cante, sea feliz y esté contenta
d)	Contradicción, cuando Ana no baile, ni cante, ni sea feliz y no esté contenta

3 [1,5p] Escribe una interpretación modelo (I1) y otra contramodelo (I2) para la proposición P1 del ejercicio anterior.

Modelo	I1 = {ba = V, ca = V, fe = V, co = V }
Contramodelo	I2 = {fe = V, co = V, ba = F, ca=F}

4 [3p] En la siguiente **tabla de verdad** se muestra la interpretación de un razonamiento R de la forma:
R: P1, P2 ⇒ Q. Explica, según los resultados mostrados en dicha tabla, si R es válido o no. Debes justificar tu respuesta de lo contrario la pregunta no puntuará.

	P1	P2	Q			
1	٧	F	F			
2	F	F	F			
3	F	٧	F			
4	F	٧	F			
5	٧	F	v			
6	٧	F	V			
7	V	V	V			
8	٧	٧	V			

Explicación: R es válido porque siempre que las premisas se interpretan como verdaderas (filas 7 y 8) la conclusión también es verdadera.

5 [3p] Demostrar la validez del razonamiento R: P1, P2, P3 ⇒ Q haciendo una deducción natural.

P1:
$$A \wedge B \wedge C \rightarrow D$$
, P2: $\neg(A \wedge B \wedge C) \rightarrow E$, P3: $A \wedge B \wedge \neg C$, Q: $E \vee D$

En la deducción especifica cada fórmula **premisa** y justifica las fórmulas que son **deducidas** de otras. Si añades alguna subdeducción márcala con corchete y/o indenta las filas en las que aparezca.

Deducción:

$$1 \ A \land B \land C \rightarrow D$$

$$2 \neg (A \land B \land C) \rightarrow E$$

$$3 \ A \land B \land \neg C$$

$$4 \neg (E \lor D)$$

$$5 \neg E \land \neg D$$

$$6 \neg E$$

$$7 \ A \land B \land C$$

$$8 \ C$$

$$9 \neg C$$

$$10 \ C \land \neg C$$

$$11 \ E \lor D$$

$$Morgan, 4$$

$$EC, 5$$

$$MT, 2, 6$$

$$EC, 7$$

$$9 \neg C$$

$$EC, 3$$

$$10 \ C \land \neg C$$

$$IN, 4-10$$