Accelerated primal-dual methods for linearly constrained convex problems

Yangyang Xu

SIAM Conference on Optimization

May 24, 2017

Accelerated proximal gradient

For convex composite problem: $\min_{x} \operatorname{minimize} F(x) := f(x) + g(x)$

- *f*: convex and Lipschitz differentiable
- g: closed convex (possibly nondifferentiable) and simple

Proximal gradient:

$$x^{k+1} = \underset{x}{\arg\min} \langle \nabla f(x^k), x \rangle + \frac{L_f}{2} ||x - x^k||^2 + g(x)$$

- convergence rate: $F(x^k) - F(x^*) = O(1/k)$

Accelerated Proximal gradient [Beck-Teboulle'09, Nesterov'14]:

$$x^{k+1} = \underset{x}{\arg\min} \langle \nabla f(\hat{x}^k), x \rangle + \frac{L_f}{2} ||x - \hat{x}^k||^2 + g(x)$$

- \hat{x}^k : extrapolated point
- convergence rate (with smart extrapolation): $F(x^k) F(x^*) = O(1/k^2)$

This talk: ways to accelerate primal-dual methods

Part I: accelerated linearized augmented Lagrangian

Affinely constrained composite convex problems

$$\underset{x}{\text{minimize}} F(x) = f(x) + g(x), \quad \text{subject to } Ax = b \tag{LCP} \label{eq:LCP}$$

- *f*: convex and Lipschitz differentiable
- g: closed convex and simple

Examples

- nonnegative quadratic programming: $f = \frac{1}{2}x^{\top}Qx + c^{\top}x$, $g = \iota_{\mathbb{R}^n_+}$
- TV image denoising: $\min\{\frac{1}{2}\|X-B\|_F^2 + \lambda \|Y\|_1$, s.t. $\mathcal{D}(X) = Y\}$

Augmented Lagrangian method (ALM)

At iteration k,

$$\begin{split} x^{k+1} \leftarrow \mathop{\arg\min}_{x} f(x) + g(x) - \langle \lambda^k, Ax \rangle + \frac{\beta}{2} \|Ax - b\|^2, \\ \lambda^{k+1} \leftarrow \lambda^k - \gamma (Ax^{k+1} - b) \end{split}$$

- augmented dual gradient ascent with stepsize γ
- β : penalty parameter; dual gradient Lipschitz constant $1/\beta$
- $0 < \gamma < 2\beta$: convergence guaranteed
- also popular for (nonlinear, nonconvex) constrained problems

x-subproblem as difficult as original problem

Linearized augmented Lagrangian method

• Linearize the smooth term f:

$$x^{k+1} \leftarrow \arg\min_{x} \langle \nabla f(x^k), x \rangle + \frac{\eta}{2} \|x - x^k\|^2 + g(x) - \langle \lambda^k, Ax \rangle + \frac{\beta}{2} \|Ax - b\|^2.$$

• Linearize both f and $||Ax - b||^2$:

$$x^{k+1} \leftarrow \operatorname*{arg\,min}_{x} \langle \nabla f(x^k), x \rangle + g(x) - \langle \lambda^k, Ax \rangle + \langle \beta A^\top r^k, x \rangle + \frac{\eta}{2} \|x - x^k\|^2,$$

where $r^k = Ax^k - b$ is the residual.

Easier updates and nice convergence speed O(1/k)

Accelerated linearized augmented Lagrangian method

$$\begin{split} & \text{At iteration } k, \\ & \hat{x}^k \leftarrow (1-\alpha_k)\bar{x}^k + \alpha_k x^k, \\ & x^{k+1} \leftarrow \underset{x}{\arg\min} \langle \nabla f(\hat{x}^k) - A^\top \lambda^k, x \rangle + g(x) + \frac{\beta_k}{2} \|Ax - b\|^2 + \frac{\eta_k}{2} \|x - x^k\|^2, \\ & \bar{x}^{k+1} \leftarrow (1-\alpha_k)\bar{x}^k + \alpha_k x^{k+1}, \\ & \lambda^{k+1} \leftarrow \lambda^k - \gamma_k (Ax^{k+1} - b). \end{split}$$

- Inspired by [Lan '12] on accelerated stochastic approximation
- reduces to linearized ALM if $\alpha_k=1, \beta_k=\beta, \eta_k=\eta, \gamma_k=\gamma, \forall k$
 - convergence rate: O(1/k) if $\eta \geq L_f$ and $0 < \gamma < 2\beta$
- adaptive parameters to have $O(1/k^2)$ (next slides)

Better numerical performance

- Tested on quadratic programming (subproblems solved exactly)
- Parameters set according to theorem (see next slide)
- Accelerated ALM significantly better

Guaranteed fast convergence

Assumptions:

- There is a pair of primal-dual solution (x^*, λ^*) .
- ∇f is Lipschitz continuous: $\|\nabla f(x) \nabla f(y)\| \le L_f \|x y\|$

Convergence rate of order $O(1/k^2)$:

Set parameters to

$$\forall k: \, \alpha_k = \frac{2}{k+1}, \, \gamma_k = k\gamma, \, \beta_k \ge \frac{\gamma_k}{2}, \, \eta_k = \frac{\eta}{k},$$

where $\gamma>0$ and $\eta\geq 2L_f$. Then

$$|F(\bar{x}^{k+1}) - F(x^*)| \le \frac{1}{k(k+1)} \left(\eta \|x^1 - x^*\|^2 + \frac{4\|\lambda^*\|^2}{\gamma} \right),$$

$$\|A\bar{x}^{t+1} - b\| \le \frac{1}{k(k+1) \max(1, \|\lambda^*\|)} \left(\eta \|x^1 - x^*\|^2 + \frac{4\|\lambda^*\|^2}{\gamma} \right),$$

Sketch of proof

Let
$$\Phi(\bar{x}, x, \lambda) = F(\bar{x}) - F(x) - \langle \lambda, A\bar{x} - b \rangle$$
.

1. Fundamental inequality (for any λ):

$$\begin{split} &\Phi(\bar{x}^{k+1}, x^*, \lambda) - (1 - \alpha_k) \Phi(\bar{x}^k, x^*, \lambda) \\ &\leq -\frac{\alpha_k \eta_k}{2} \left[\|x^{k+1} - x^*\|^2 - \|x^k - x^*\|^2 + \|x^{k+1} - x^k\|^2 \right] + \frac{\alpha_k^2 L_f}{2} \|x^{k+1} - x^k\|^2 \\ &+ \frac{\alpha_k}{2\gamma_k} \left[\|\lambda^k - \lambda\|^2 - \|\lambda^{k+1} - \lambda\|^2 + \|\lambda^{k+1} - \lambda^k\|^2 \right] - \frac{\alpha_k \beta_k}{\gamma_k^2} \|\lambda^{k+1} - \lambda^k\|^2, \end{split}$$

 $\begin{aligned} 2. \ \ &\alpha_k = \frac{2}{k+1}, \, \gamma_k = k\gamma, \, \beta_k \geq \frac{\gamma_k}{2}, \, \eta_k = \frac{\eta}{k} \text{ and multiply } k(k+1) \text{ to the above ineq.:} \\ & k(k+1)\Phi(\bar{x}^{k+1}, x^*, \lambda) - k(k-1)\Phi(\bar{x}^k, x^*, \lambda) \\ & \leq &-\eta \Big[\|x^{k+1} - x^*\|^2 - \|x^k - x^*\|^2 \Big] + \frac{1}{\gamma} \Big[\|\lambda^k - \lambda\|^2 - \|\lambda^{k+1} - \lambda\|^2 \Big]. \end{aligned}$

3. Set $\lambda^1 = 0$ and sum the above inequality over k:

$$\Phi(\bar{x}^{k+1}, x^*, \lambda) \le \frac{1}{k(k+1)} \left(\eta \|x^1 - x^*\|^2 + \frac{1}{\gamma} \|\lambda\|^2 \right)$$

4. Take $\lambda = \max\left(1 + \|\lambda^*\|, 2\|\lambda^*\|\right) \frac{A\bar{x}^{k+1} - b}{\|A\bar{x}^{k+1} - b\|}$ and use the optimality condition $\Phi(\bar{x}, x^*, \lambda^*) \geq 0 \Rightarrow F(\bar{x}^{k+1}) - F(x^*) \geq -\|\lambda^*\| \cdot \|A\bar{x}^{k+1} - b\|$

Literature

- [He-Yuan '10]: accelerated ALM to $O(1/k^2)$ for smooth problems
- [Kang et. al '13]: accelerated ALM to $O(1/k^2)$ for nonsmooth problems
- \blacksquare [Huang-Ma-Goldfarb '13]: accelerated linearized ALM (with linearization of augmented term) to $O(1/k^2)$ for strongly convex problems

Part II: accelerated linearized ADMM

Two-block structured problems

Variable is partitioned into two blocks, smooth part involves one block, and nonsmooth part is *separable*

$$\underset{y,z}{\operatorname{minimize}}\,h(y)+f(z)+g(z),\quad \text{subject to }By+Cz=b \qquad \text{(LCP-2)}$$

- f convex and Lipschitz differentiable
- g and h closed convex and simple

Examples:

■ Total-variation regularized regression: $\left\{\min_{y,z} \lambda \|y\|_1 + f(z), \text{ s.t. } \mathcal{D}z = y\right\}$

Alternating direction method of multipliers (ADMM)

At iteration k,

$$\begin{split} \boldsymbol{y}^{k+1} \leftarrow & \operatorname*{arg\,min}_{\boldsymbol{y}} h(\boldsymbol{y}) - \langle \boldsymbol{\lambda}^k, \boldsymbol{B} \boldsymbol{y} \rangle + \frac{\beta}{2} \|\boldsymbol{B} \boldsymbol{y} + \boldsymbol{C} \boldsymbol{z}^k - \boldsymbol{b}\|^2, \\ \boldsymbol{z}^{k+1} \leftarrow & \operatorname*{arg\,min}_{\boldsymbol{z}} f(\boldsymbol{z}) + g(\boldsymbol{z}) - \langle \boldsymbol{\lambda}^k, \boldsymbol{C} \boldsymbol{z} \rangle + \frac{\beta}{2} \|\boldsymbol{B} \boldsymbol{y}^{k+1} + \boldsymbol{C} \boldsymbol{z} - \boldsymbol{b}\|^2, \\ \boldsymbol{\lambda}^{k+1} \leftarrow & \boldsymbol{\lambda}^k - \gamma (\boldsymbol{B} \boldsymbol{y}^{k+1} + \boldsymbol{C} \boldsymbol{z}^{k+1} - \boldsymbol{b}) \end{split}$$

- $0<\gamma<\frac{1+\sqrt{5}}{2}\beta$: convergence guaranteed [Glowinski-Marrocco'75]
- updating y, z alternatingly: easier than jointly update
 - but z-subproblem can still be difficult

Accelerated linearized ADMM

At iteration k,

$$\begin{aligned} y^{k+1} &\leftarrow \arg\min_{y} h(y) - \langle \lambda^k, By \rangle + \frac{\beta_k}{2} \|By + Cz^k + -b\|^2, \\ z^{k+1} &\leftarrow \arg\min_{z} \langle \nabla f(z^k) - C^\top \lambda^k + \beta_k C^\top r^{k+\frac{1}{2}}, z \rangle + g(z) + \frac{\eta_k}{2} \|z - z^k\|^2, \\ \lambda^{k+1} &\leftarrow \lambda^k - \gamma_k (By^{k+1} + Cz^{k+1} - b) \end{aligned}$$
 where $r^{k+\frac{1}{2}} = By^{k+1} + Cz^k - b$.

- reduces to linearized ADMM if $\beta_k=\beta, \eta_k=\eta, \gamma_k=\gamma, \, \forall k$
 - convergence rate: O(1/k) if $0<\gamma\leq \beta$ and $\eta\geq L_f+\beta\|C\|^2$
- $O(1/k^2)$ if adaptive parameters and strong convexity on z (next two slides)

Accelerated convergence speed

Assumptions:

- Existence of a pair of primal-dual solution (y^*, z^*, λ^*)
- ∇f Lipschitz continuous: $\|\nabla f(\hat{z}) \nabla f(\tilde{z})\| \leq L_f \|\hat{z} \tilde{z}\|$
- f strongly convex with modulus μ_f (not required for y)

Convergence rate of order $O(1/k^2)$

• Set parameters as follows (with $\gamma>0$ and $\gamma<\eta\leq\mu_f/2$)

$$\forall k: \ \beta_k = \gamma_k = (k+1)\gamma, \ \eta_k = (k+1)\eta + L_f,$$

Then

$$\max\left(\|z^k-z^*\|^2,\,|F(\bar{y}^k,\bar{z}^k)-F^*|,\|B\bar{y}^k+C\bar{z}^k-b\|\right)\leq O(1/k^2),$$

where
$$F(y, z) = h(y) + f(z) + g(z)$$
 and $F^* = F(y^*, z^*)$.

Sketch of proof

1. Fundamental inequality from optimality conditions of each iterate:

$$\begin{split} & F(y^{k+1}, z^{k+1}) - F(y, z) - \langle \lambda, By^{k+1} + Cz^{k+1} - b \rangle \\ \leq & - \left\langle \frac{1}{\gamma_k} (\lambda^k - \lambda^{k+1}), \lambda - \lambda^k + \frac{\beta_k}{\gamma_k} (\lambda^k - \lambda^{k+1}) - \beta_k C(z^{k+1} - z^k) \right\rangle \\ & + \frac{L_f}{2} \|z^{k+1} - z^k\|^2 - \frac{\mu_f}{2} \|z^k - z\|^2 - \eta_k \langle z^{k+1} - z, z^{k+1} - z^k \rangle, \end{split}$$

2. Plug in parameters and bound cross terms:

$$\begin{split} &F(y^{k+1},z^{k+1}) - F(y^*,z^*) - \langle \lambda, By^{k+1} + Cz^{k+1} - b \rangle \\ &+ \frac{1}{2} \left(\eta(k+1) \|z^{k+1} - z^*\|^2 + L_f \|z^{k+1} - z^*\|^2 \right) + \frac{1}{2\gamma(k+1)} \|\lambda - \lambda^{k+1}\|^2 \\ &\leq \frac{1}{2} \left(\eta(k+1) \|z^k - z^*\|^2 + (L_f - \mu_f) \|z^k - z^*\|^2 \right) + \frac{1}{2\gamma(k+1)} \|\lambda - \lambda^k\|^2. \end{split}$$

3. Multiply $k+k_0$ (here $k_0\sim \frac{2L_f}{\mu_f}$) and sum the inequality over k:

$$F(\bar{y}^{k+1}, \bar{z}^{k+1}) - F(y^*, z^*) - \langle \lambda, B\bar{y}^{k+1} + C\bar{z}^{k+1} - b \rangle \le \frac{\phi(y^*, z^*, \lambda)}{k^2}$$

4. Take a special λ and use KKT conditions

Literature

- [Ouyang et. al'15]: $O(L_f/k^2 + C_0/k)$ with only weak convexity
- ${\color{blue} \bullet}$ [Goldstein et. al'14]: $O(1/k^2)$ with strong convexity on both y and z
- [Chambolle-Pock'11, Chambolle-Pock'16, Dang-Lan'14, Bredies-Sun'16]:
 accelerated first-order methods on bilinear saddle-point problems

Open question: weakest conditions to have $O(1/k^2)$

Numerical experiments

(More results in paper)

Accelerated (linearized) ADMM

Tested problem: total-variation regularized image denoising

minimize
$$\frac{1}{2} ||X - B||_F^2 + \mu ||Y||_1$$
, subject to $\mathcal{D}X = Y$. (TVDN)

- B observed noisy Cameraman image, and ${\mathcal D}$ finite difference operator

Compared methods:

- original ADMM
- accelerated ADMM
- linearized ADMM
- accelerated linearized ADMM
- accelerated Chambolle-Pock

Performance of compared methods

- Accelerated (linearized) ADMM significantly better than nonaccelerated one
- (accelerated) ADMM faster than (accelerated) linearized ADMM regarding iteration number (but the latter takes less time)

Conclusions

- accelerated linearized ALM to $O(1/k^2)$ from O(1/k) with merely convexity
- accelerated (linearized) ADMM to $O(1/k^2)$ from O(1/k) with strong convexity on one block variable
- performed numerical experiments

References

- Y. Xu. Accelerated first-order primal-dual proximal methods for linearly constrained composite convex programming, SIAM J. Optimization, 2017.
- T. Goldstein, B. O'Donoghue, S. Setzer, and R. Baraniuk. Fast alternating direction optimization methods, SIAM J. on Imaging Sciences, 2014.
- B. He and X. Yuan. On the acceleration of augmented Lagrangian method for linearly constrained optimization, Optimization Online, 2010.
- 4. B. Huang, S. Ma, and D. Goldfarb. *Accelerated linearized Bregman method*, Journal of Scientific Computing, 2013.
- 5. M. Kang, S. Yun, H. Woo, and M. Kang. Accelerated bregman method for linearly constrained ℓ_1 - ℓ_2 minimization, Journal of Scientific Computing, 2013.