FR. CONCEICAO RODRIGUES COLLEGE OF ENGG.

Fr. Agnel Ashram, Bandstand, Bandra (W) Mumbai 400 050.

SEMESTER / BRANCH: V/COMPUTER Engineering

SUBJECT: Software Engineering (CSC502)/ First Assignment

Date: 19-08-23 Due Date: 25-08-23

CSC502.1: Recognize software requirements and various process models. (Understanding)

CSC502.2: Develop project Plan, schedule and track the progress of the given project (Applying)

Questions:

1. What is the significance of recognizing software requirements in the software engineering process?

- 2. Describe the main characteristics of different process models used in software development.
- 3. How does the Capability Maturity Model (CMM) contribute to improving software development processes?
- 4. Explain the differences between prescriptive process models and evolutionary process models.
- 5. Provide examples of situations where using a specific process model would be more suitable.
- 6. Compare and contrast the Waterfall model and Agile methodologies in terms of project planning and progress tracking.
- 7. Apply process metrics to evaluate the efficiency and effectiveness of Waterfall, Agile (both Scrum & Kanban) methodologies, considering factors such as development speed, adaptability to change and customer satisfaction.
- 8. Justify the relevance of the following comparison for software development models

Features	Water fall	Incremental	Prototyping	Spiral
	Model	Model	Model	Model
Requirement	Beginning	Beginning	Frequently	Beginning
Specification			Changed	
Understanding	Well	Not Well	Not Well	Well
Requirements	Understood	Understood	Understood	Understood
Cost	Low	Low	High	Expensive
Availability of reusable component	No	Yes	Yes	Yes
Complexity of System	Simple	Simple	Complex	Complex

Risk Analysis	Only at beginning	No risk analysis	No risk analysis	Yes
User involvement in all phases of SDLC	Only at beginning	Intermediate	High	High
Guarantee of Success	Less	High	Good	High
Overlapping Phases	Absent	Absent	Present	Present
Implementation Time	Long	Less	Less	Depends on Project
Flexibility	Rigid	Less flexible	Highly flexible	Flexible
Changes Incorporated	Difficult	Easy	Easy	Easy
Expertise Required	High	High	Medium	High
Cost Control	Yes	No	No	Yes
Resource Control	Yes	Yes	No	Yes

Rubrics:

Indicator	Average	Good	Excellent	Marks
Organization (2)	Readable with some mistakes and structured (1)	Readable with some mistakes and structured (1)	Very well written and structured (2)	
Level of content(4)	Minimal topics are covered with limited information (2)	Limited major topics with minor details are presented(3)	All major topics with minor details are covered (4)	
Depth and breadth of discussion(4) Total Marks(10)	Minimal points with missing information (1)	Relatively more points with information (2)	All points with in depth information(4)	

requirements in the software engineering software lengthering 2 3800pg and envident on which software is working also changes to every organisation is granted based on the softward engineering principle used by the organisation > Implementing and managing large size of software programmer leguises a splecific method and maturize the tasks so that size of softward don't software engineering provides methodology for implementing so Verpier integration complex doftware system with I high quality. rew functionality requires more cost in terms Gof time to develop and efforts taken by the people. software engineering provides a may in

which software system can be able to scale as needed to futule.

(22) Software processes are the activities for designing implementing and testing for a software system.

3) & software process model is an abstract sepresentation of the development process.

@ Perspective Process models.

O The name 'perspective' is given since the modal perscebile set of activities, action, task and charge control mechanism for every project. Overalleur process model is chosen by the organisation but it should encompass the

following framework.

- a communication
 - D Planning
 - 3 modelung
- 1 construction
- 1 Deployment.

(iii) Ex: waterfall model, In cromental process model, Evolutionary process model.

B) Agili Process Models
O at included the concept of development
along with a set of quideliness necessary for the development process.
for the development process.
1 The development of quidelines emphasies
on analysis and I design activities and
continuous communications between developer
and customers.
3 An agile team quickly responds to charge
as a sesuit agrice de velopment process
must be adaptable.
Ttolative model: - Similar to sail but with
more structured and defined process.
Each iteration, may include a subset of
the software functionality.
Allows for literations, redefined
leature and easily readback suitable
De projecte with evolving
Lequisements.

CMM model. - developed by software Engineering Institute - It defines a process or methodology. used to establish develop and refine an organization's software development process, prosents 2 types of meta madely - As 1' confinuous model - As a staged model. CMM provides the different levels lucised on the standards a corribany aquies. new company-Level 1 CMH provides total 5 levels 1) Initial 2) Represtable 3) Polinad 4) mahagned 5) optimiting Level: - characterized as a ad hoc few process are define, success an individual Level 2: - Basic projects managment process are established to traff cost, schedule fun ctionality.

Course &t this level	processes for both development activities and document.
maragnent and	development activities
ase defined	and document.
V	
Level 4:- St this low	al, focus is on olw
at this sta	ge processes and product
metric ar	e allected.
10ull 7:- Continuous p	roces improvement is
enable	
Perspective process	Evolutionary process
to binary ades and	Odo not establish the
2try cture	manimizes speed of the evolution.
	evolution.
Police a distort out of	Sudlutionary process
Poline a distinct set of actions, talks,	models land Klaubility
milestones.	outenaitility and
11 WW TOT WO.	models lacks floribility and high quality.
	4090 909019
	N Y

3 more popular less popular. Time does not allow a full and complete system to be developed. @ provides complete and full developed system Eg:- Prototyping, sprad. & For eq. materfall model, Incremental model Waterfall model - Orignizements are well defined @ projects with a clear and stable scope. 3 Doublopying a microwave our with fixed set of peatures and require ments. 3 Agill model: O requirements likely to evolve and charge during process.

Trequire floribility and rapid iterations

mobile, app based on feedback-3 Spiral model:-Ohigh lovel of eich assesment End managment 2 continuous refinement, early prototypes 3 En complex medical device, contonsive terting and varidate. @ In demental model: Odivided into smaller, manageable parts @ delinered separately

3 Ex €- commerce metsite.

@ cmm- O improving and optimizing the
veith an integration.
with an integration.
Ex:-large financial institution that hardles
densative occustomes data, high level
of elecurity.
· · · · · · · · · · · · · · · · · · ·
© PAD-videogame prototype to demonstrate gamps- lay mechanism.
-lay of mechanisms.
07) 1. materfell
Deudlopment speed.
waterfall is linear and sequential mothodology
whole early philise must be completed "
before mowing on the nort. This can lead
to larger development cycles motices
Adaptability to change:
material is less adaptable to charge
in require then due to it sigid structure.
po motrices. Customer feedback at 1 the end
of this project
2. Dégile: Doursponent specid:
Ideile mothodologie emphasize
pasing log privable transfollars letromorphis
delivery of malking features motrices.

08) Features	cuatoral model	Incremental model	Prototyping mode	speed modd.
Requiement Specification	well understood.	Not well understood	Not well understood	well undestood
Wholestanding our equirements	well understood	Not well undestood	Not well understood	mall undestood.
Anailability of rousable components	No	yes.	yes	yes
Pist analysis	Only at the beginning	No risk analysis	NO risk analysis	yes
User involument	long	typy less	Les	on project
Floribility	. Rigid	les	High	Planible
Empertise reguired	high	high	medium	tigh
COST Control	yes.	No	No	Yes
les our co control	403	Yes	Nο	yes.