MATHEMATICS I IIT GUWAHATI

MERELY WRITING THE FINAL ANSWER WITHOUT SHOWING YOUR WORK WILL NOT FETCH YOU ANY MARK.

Given $\mathbf{a} = <4, -5, 3>$ and $\mathbf{b} = <2, 1, -2>$, express \mathbf{a} as the sum of a vector \mathbf{a}_{\parallel} parallel to \mathbf{b} and a vector \mathbf{a}_{\perp} perpendicular to \mathbf{b} . Verify that $\mathbf{a}_{\perp} \perp \mathbf{b}$. (**HINT:** See the adjacent figure.)

[2^{pnts.}] 1.

Soln.:

From the figure, we see that

$$\mathbf{a}_{\parallel} = \mathrm{comp}_{\mathbf{b}} \mathbf{a} \frac{\mathbf{b}}{|\mathbf{b}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b} = \frac{8 - 5 - 6}{9} \mathbf{b} = \left\langle -\frac{2}{3}, -\frac{1}{3}, \frac{2}{3} \right\rangle$$

and

$$\mathbf{a}_{\perp} = \mathbf{a} - \mathbf{a}_{\parallel} = \left\langle \frac{14}{3}, -\frac{14}{3}, \frac{7}{3} \right\rangle$$

Clearly $\mathbf{a}_{\perp} \cdot \mathbf{b} = \frac{28}{3} - \frac{14}{3} - \frac{14}{3} = 0$. Hence the verification.

Aliter: We have $\mathbf{a}_{\parallel} = \lambda \mathbf{b}$ for some $\lambda \neq 0$ and $\mathbf{a}_{\perp} = \mathbf{a} - \mathbf{a}_{\parallel} = \mathbf{a} - \lambda \mathbf{b}$.

Now $\mathbf{a}_{\perp} \cdot \mathbf{b} = 0$ or $(\mathbf{a} - \lambda \mathbf{b}) \cdot \mathbf{b} = 0$ yields $\lambda = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} = \frac{8 - 5 - 6}{9} = -\frac{1}{3}$. The remaining part is similar to the above answer.

[2^{pnts.}] 2. Find the point on the curve $\mathbf{r}(t) = 5\sin t\hat{\mathbf{i}} + 5\cos t\hat{\mathbf{j}} + 12t\hat{\mathbf{k}}$ at a distance 26π units along the curve from its origin (t=0) in the direction of increasing arc-length.

Soln.:

The arc length along the curve from its origin to the point corresponding to t=T is given by $\int_0^T |\mathbf{r}'(t)| dt = \int_0^T \left(\sqrt{25\cos^2 t + 25\sin^2 t + 144}\right) dt = 13T$

Thus $13T = 26\pi$ or $T = 2\pi$.

Hence the required point is $(5\sin(2\pi), 5\cos(2\pi), 24\pi)$, i.e., $(0, 5, 24\pi)$.

[1^{pnts.}] 3. Find the unit tangent vector of the curve $\mathbf{r}(t)$ at (0, 1, 0), where $\mathbf{r}(t) = \langle \cos(t), \sin(t), t \cos(t) \rangle$, $0 \le t \le 2\pi$.

Soln.:

MA 101 : JCK/SPB

(0,1,0) of the curve $\mathbf{r}(t)$ corresponds to $t=\frac{\pi}{2}$. Since $\mathbf{r}'\left(\frac{\pi}{2}\right) = \left\langle -1, 0, -\frac{\pi}{2} \right\rangle$, the unit tangent vector of $\mathbf{r}(t)$ at (0, 1, 0) is $=\left\langle \frac{-1}{\sqrt{1+(\frac{\pi}{2})^2}}, 0, \frac{-\frac{\pi}{2}}{\sqrt{1+(\frac{\pi}{2})^2}} \right\rangle.$

[3pnts.] 4. Let

$$f(x,y) = \begin{cases} \frac{x^2y^3}{(x^2+y^2)^2} & \text{if } x^2+y^2 \neq 0\\ 0 & \text{if } x^2+y^2 = 0. \end{cases}$$

Check whether f is differentiable at (0,0).

Soln.:

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0.$$

Similarly $f_y(0,0) = 0$.

f is differentiable at
$$(0,0)$$
 if
$$\lim_{(h_1,h_2)\to(0,0)} \frac{f(h_1,h_2) - f(0,0) - f_x(0,0)h_1 - f_y(0,0)h_2}{\sqrt{h_1^2 + h_2^2}} = 0.$$

$$\frac{f(h_1,h_2) - f(0,0) - f_x(0,0)h_1 - f_y(0,0)h_2}{\sqrt{h_1^2 + h_2^2}} = \frac{h_1^2 h_2^3}{(h_1^2 + h_2^2)^{\frac{5}{2}}}.$$

$$\sqrt{h_1^2 + h_2^2} \qquad \qquad (h_1^2 + h_2^2)^{\frac{5}{2}}$$

Consider $(h_1, h_2) \to (0, 0)$ along a line L with slope $m, m \neq 0$,

then
$$\lim_{(h_1,h_2)\to(0,0)} \frac{h_1^2 h_2^3}{(h_1^2 + h_2^2)^{\frac{5}{2}}}$$
 along L

$$= \lim_{h_1 \to 0} \frac{m^3 h_1}{(1+m^2)^{\frac{5}{2}} |h_1|}, \text{ which does not exist (or } \neq 0),$$
 hence f is not differentiable at $(0,0)$.

Aliter:
$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0.$$

Similarly $f_{\nu}(0,0) = 0$

f is differentiable at (0,0), if (and only if)

$$(\triangle z =) f(\triangle x, \triangle y) - f(0,0) = f_x(0,0) \triangle x + f_y(0,0) \triangle y + \epsilon_1 \triangle x + \epsilon_2 \triangle y$$

where $\epsilon_1, \epsilon_2 \to 0$ whenever $(\Delta x, \Delta y) \to (0, 0)$.

Since
$$f(0,0) = f_x(0,0) = f_y(0,0) = 0$$
, f is differentiable at $(0,0)$ if
$$\triangle z = \frac{(\triangle x)^2 (\triangle y)^3}{((\triangle x)^2 + (\triangle y)^2)^2} = \epsilon_1 \triangle x + \epsilon_2 \triangle y$$

for some ϵ_1, ϵ_2 such that $\epsilon_1, \epsilon_2 \to 0$ whenever $(\triangle x, \triangle y) \to (0, 0)$.

Consider $(\Delta x, \Delta y) \to (0,0)$ along a line L with slope m, $(\Delta y = m\Delta x)$, $m \neq 0$.

If f is differentiable at (0,0) then $\Delta z = \epsilon \Delta x$ for some $\epsilon (= \epsilon_1 + m\epsilon_2)$ such that $\epsilon \to 0$ whenever $\triangle x \to 0.$

Since
$$\triangle z = \frac{(\triangle x)^2 (\triangle y)^3}{((\triangle x)^2 + (\triangle y)^2)^2} = \triangle x \frac{m^3 (\triangle x)^4}{(1 + m^2)^2 (\triangle x)^4}$$
, along L

$$\epsilon = \frac{m^3 (\triangle x)^4}{(1 + m^2)^2 (\triangle x)^4} = \frac{m^3}{(1 + m^2)^2}.$$

Since ϵ does not tend to 0 as $\Delta x \to 0$, f is not differentiable at (0,0).

Version: 1.284 Page 2 of 3

MA 101 : JCK/SPB

[2^{pnts.}] 5. Let $f(x,y) = (x-1)^2 + (y-2)^2$. Given $\epsilon > 0$, find a $\delta > 0$ (explicitly in terms of ϵ) such that, $\sqrt{(x-3)^2 + (y-1)^2} < \delta$ implies $|f(x,y) - f(3,1)| < \epsilon$.

$$\begin{split} |f(x,y)-f(3,1)| &= \left|(x-1)^2+(y-2)^2-2^2-1^2\right| \\ &= \left|(x-3)^2+(y-1)^2+4(x-3)-2(y-1)\right| \\ &\leq \left((x-3)^2+(y-1)^2\right)+4\left|(x-3)\right|+2\left|(y-1)\right| \\ &\leq \left((x-3)^2+(y-1)^2\right)+4\sqrt{(x-3)^2+(y-1)^2}+2\sqrt{(x-3)^2+(y-1)^2} \\ &\leq 7\sqrt{(x-3)^2+(y-1)^2} \text{ if } (x,y) \text{ is such that } \sqrt{(x-3)^2+(y-1)^2} \leq 1. \\ &\text{Hence for any } \delta \text{ such that, } 0<\delta \leq \min\{1,\frac{\epsilon}{7}\}, \\ &\sqrt{(x-3)^2+(y-1)^2}<\delta \text{ implies } |f(x,y)-f(3,1)|<\epsilon. \end{split}$$

Version: 1.284 Page 3 of 3