

Eur päisches Patentamt

European Patent Office

Offi européen des brevets

(11) EP 0 571 959 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 09.04.1997 Bulletin 1997/15

(51) Int Cl.6: G03C 7/38, C07D 487/04

(21) Application number: 93108447.9

(22) Date of filing: 25.05.1993

(54) Photographic coupler and silver halide color photographic material Photographischer Kuppler und farbphotographisches Silberhalogenidmaterial Coupleur photographique et produit photographique couleur à l'halogénure d'argent

- (84) Designated Contracting States: **DE FR GB NL**
- (30) Priority: 26.05.1992 JP 157405/92 11.08.1992 JP 234120/92
- (43) Date of publication of application: 01.12.1993 Bulletin 1993/48
- (60) Divisional application: 95112304.1
- (73) Proprietor: FUJI PHOTO FILM CO., LTD. Kanagawa (JP)
- (72) Inventors:
 - Mizukawa, Yuki
 Minami Ashigara-shi, Kanagawa (JP)

- Motoki, Masuji
 Minami Ashigara-shi, Kanagawa (JP)
- Sato, Tadahisa
 Minami Ashigara-shi, Kanagawa (JP)
- Takahashi, Osamu
 Minami Ashigara-shi, Kanagawa (JP)
- (74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaitssozietät Maximilianstrasse 58 80538 München (DE)
- (56) References cited: EP-A- 0 544 322

US-A- 4 639 415

 DATABASE WPIL Section Ch, Week 9318, Derwent Publications Ltd., London, GB; AN 93-146435

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may giv notice to the European Patent Office of opposition to the European patent. Notice of prosition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition few has been paid. (Art.

Des ription

5

10

20

30

40

45

50

55

This invention relates to a photographic coupler and a silver halide color photographic material (here inafter referred to simply as light-sensitive material). More particularly, it relates to a 1H-pyrazol [1,5-b]-[1,2,4]-triazole magenta coupler and a light-sensitive material containing the same.

1H-Pyrazolo[1,5-b][1,2,4]triazole magenta couplers are disclosed in JP-A-59-171956 (corresponding t US Patent 4,621,046) (the terms "JP-A" as used herein means an "unexamined published Japanese patent application") and U. S. Patent 4,540,654. It is known that these couplers are excellent in color reproducibility and are preferred from the viewpoint of synthesis. It is also known that the couplers give a dye image having excellent fastness when used together with certain kinds of anti-fading agents. JP-A-1-302249 discloses couplers which give a dye image having further improved fastness. Namely, the couplers are 1H-pyrazolo[1,5-b][1,2,4]triazole magenta couplers having a tertiary alkyl group at the position-6 and a phenylene group at the position-2. Dye images formed from these couplers have high fastness to light and heat. The concretely exemplified compounds of the couplers described in US Patent 4,882,266 are couplers wherein the phenylene group at the position-2 has a sulfonamido group at the meta-position. It has been found that dyes obtained from couplers wherein the phenylene group at the position-2 has a substituent group at the meta-position have spectral absorption characteristics. Namely, absorption on the foot of the long wavelength side is large and broadened. Accordingly, a further improvement has been demanded from the viewpoint of color reproducibility.

Further, it has been found that light-sensitive materials containing these couplers have a problem in that the photographic performance thereof is changed during the course of storage, until development, after exposure.

Furthermore, there has been a demand to provide light-sensitive materials which are scarcely changed in photographic characteristics by a change in the composition of a processing solution in development. Changes in the composition of processing solutions are mainly caused by (1) an increase in the mixing and accumulation of the ingredients of other processing solutions in running processing or (2) intermittently continuous processing conducted using automatic processors. This phenomenon is remarkable when the replenishment rates of the processing solutions are reduced and the ratios of tank solutions refreshed by replenishers are lowered or when the use of the processing solutions is prolonged. The above description "the mixing of the ingredients of other processing solutions" is caused by the splash of an adjoining processing solution during processing, or back contamination which is a phenomenon wherein ingredients in the processing solutions immediately after development are brought into a color developing solution by a conveying leader or belt or hangers which hang films. When the light-sensitive materials containing couplers described in US Patent 4,882,266 are processed with a color developing solution containing fixing agents in a contaminant amount by the ingredients becomming mixed and accumulated, photographic characteristics are greatly changed. Hence, a further improvement has been demanded.

Further, light-sensitive materials containing couplers wherein a phenylene group at the position-2 has a methyl group at the ortho-position as described in JP-A-3-48845 have a problem in that color developability is low in addition to the above-described problem. Accordingly, a further improvement has been demanded.

EP-A-0 544 322, which belongs to the state of the art according to Article 54(3) EPC, discloses a silver halide color photographic light-sensitive material containing a pyrazoloazole magenta coupler represented by the following formula

$$\begin{pmatrix} x_1 \\ y \\ z \end{pmatrix}$$

wherein R₁₀ represents a hydrogen atom or a substituent; Z represents a group of non-metallic atoms necessary to form a 5-membered azole ring containing 2 to 3 nitrogen atoms, where the azole ring may have a substituent (including a condensed ring); and X1 represents a hydrogen atom or a group capable of splitting off upon a coupling reaction with an oxidation product of an aromatic primary amine color developing agent.

Accordingly, an object of the present invention is to provide a 1H-pyrazolo[1,5-b][1,2,4]triazole magenta coupler capable of forming a magenta dye having excellent spectral absorption characteristics and a light-sensitive material having excellent color reproducibility.

Another object of the present invention is to provide a light-sensitive material which scarcely changes in photographic characteristics, with a change in the compositions of the processing solutions utilized.

Still another object of the present invention is to provid a 1 H-pyrazolo[1,5-b][1,2,4]triazole magenta coupler which

gives a dye image having excellent fastness to light and heat and a light-sensitive material containing the same.

The above-described objects—f the present invention have been achieved by providing a photographic magenta coupler selected from a coupler repres—nted by the f—llowing general formula [I]

$$\begin{array}{c} R_1 \\ N \\ N \\ N \\ N \\ R_2 \\ N \\ R_3 \\ N \\ N \\ R_4 \end{array}$$

wherein R₁ represents a tertiary alkyl group; R₂ and R₃ each represents hydrogen atom or a substituent group; Y represents hydrogen atom, a halogen atom or an aryloxy group; A and B each represents -CO- or -SO₂-; n represents 0 or 1; R₄ represents hydrogen atom, an alkyl group or an aryl group; and R₅ represents an alkyl group, an aryl group, an alkoxy group, an alkylamino group or an arylamino group; or R₄ and R₅ may be combined together to form a five-membered, six-membered or seven-membered ring;

a coupler represented by the following formula M-47:

and a coupler represented by the following formula M-58:

with the proviso that the coupler is not selected from compounds M-1 to M-3 and M-7 to M-12 having the formula:

wherein R_{11} , R_{12} and X_1 are defined as follows:

	~			
		Rii	R ₁₂	X,
20	M-1	CH3-C-	O — CH 2CHC4H. NHSO 2 — C 2Hs	C)
25		CH ₃	CaH17(t)	C1
30	M-2	"	$C_{sH_{11}}(t)$ $-NHCOCHO - C_{sH_{11}}(t)$ $C_{sH_{13}}$	"
35	M-3	ע	OC ₈ H ₁ 7 NHSO ₂ C ₈ H ₁ 7 C ₈ H ₁ 7 (t)	<i>"</i> .

	M-7		CH2 OC.H. CH2 Call. 7(2)	"
•	M-3	а	NHSO2 CSH3 CaH17(t)	-0-CH3
	M-3	, "		-0-Call, a
	M-10	4	"	-0-Call 17 (E)
	M-11	u	"	-0
	M-12	м	"	-0-(COOCH:

and a silver halide color photographic material containing the same.

10

15

20

25

30

35

Figure 1 is a visible absorption spectrum of an ethyl acetate solution of a dye to determine maximum absorption wavelength (λ max), an extinction coefficient (ϵ), a half width (λ /2), a value ($\Delta\lambda_1$) which represents a degree of the cut of the foot on the short wavelength side and a value ($\Delta\lambda_2$) which represents a degree of the cut of the foot on the long wavelength side.

The couplers of general formula [I] will be illustrated in more detail below.

R₁ is a tertiary alkyl group which may optionally have one or more substituent groups or may form a ring together with a branched alkyl group. Examples of the substituent groups include a halogen atom (e.g., fluorine, chlorine), an aryl group (e.g., phenyl, naphthyl), an alkoxy group (e.g., methoxy, ethoxy, dodecyloxy, 2-methoxyethoxy, 2-phenoxyethoxy), an aryloxy group (e.g., phenoxy, 2-methoxyphenoxy, 4-t-octylphenoxy, naphthoxy, 2,6-dimethoxyphenoxy), an alkylthio group (e.g., methylthio, ethylthio, butylthio, hexylthio, octylthio, hexadecylthio, 2-ethoxycarbonylpropylthio), an arytthio group (e.g., phenylthio, 2-pivaloylamidophenylthio, 2-butoxy-t-octylphenylthio, naphthylthio, 2-butoxycarbonylphenylthio), an alkylcarbonyloxy group (e.g., acetyloxy, propionyloxy, heptanoyloxy, 2-ethylhexanoyloxy, cyclohexanoyloxy, pivaloyloxy), an arylearbonyloxy group (e.g., benzoyloxy, 2-butoxybenzoyloxy, 2,5-dichlorobenzoyloxy, 3-octyloxycarbonylbenzoyloxy), an alkoxycarbonyl group (e.g., methoxycarbonyl, ethoxycarbonyl, propyloxycarbonyl, butoxycabonyl, octylcarbonyl, dodecyloxycarbonyl, 2-ethylhexyloxycarbonyl), a carbonamido group (e.g., acetamido, propaneamido, hexadecaneamido, pivaloylamido, benzamido, 2-ethoxybenzamido, 3-dodecyloxycarbonylpropaneamido, 4-tetradecyloxycarbonylbutaneamido), a sulfonamido group (e.g., methanesulfonamido, butanesulfonamido, octanesulfonamido, hexadecanesulfonamido, benzenesulfonamido, p-toluenesulfonamido, 2-octyloxy-5-t-octylbenzensesulfonamideo), carboxyl group and cyano group. Examples of R₁ in the form of a ring together with a branched

alkyl group includ 1-methylcyclopropyl group, 1-ethylcycl propyl group and an adamantyl group. Most preferably, R₁ is a t-butyl group.

R₂ and R₃ may be the same or different and each is hydrogen atom or a substituent group. Preferred examples of the substituent group include a cyano group, hydroxyl group, carboxyl group, a halogen atom (e.g., fluorine, bromine), an alkyl gr up (e.g., methyl, ethyl, propyl, butyl, t-butyl), an aryl group (e.g., phenyl), an alkoxy group (e.g., m thoxy, ethoxy, propyloxy, butoxy, dodecyloxy, 2-ethoxyethoxy, 2-phenoxyethoxy), an aryloxy group (e.g., phenoxy, 4-methoxyphenoxy, 2-methoxyphenoxy, 4-methylphenoxy, 4-chlorophenoxy, 4-t-butylphenoxy, 2,4-dimethylphenoxy, 2-ethoxycarbonylphenoxy), an alkoxycarbonyl group (e.g., methoxycarbonyl, ethoxycarbonyl, octyloxycarbonyl, hexadecyloxycarbonyl), a carbamoyl group (e.g., N-ethylcarbamoyl, N-dodecylcarbamoyl, N-cyclohexylcarbamoyl, N,N-dibutylcarbamoyl, N-phenylcarbamoyl), and a sulfamoyl group (e.g., N-ethylsulfamoyl, N-butylsulfamoyl, N-octylsulfamoyl, N-hexadecylsulfamoyl, N-cyclohexylsulfamoyl, N,N-dibutylsulfamoyl, N-methyl-N-octadecylsulfamoyl).

In the present invention, there are preferred the cases where R_2 is a hydrogen atom and R_3 is a hydrogen atom, an alkyl group or an alkoxy group. Most preferred are the cases where R_2 and R_3 are hydrogen atom.

R4 is a hydrogen atom, an alkyl group or an aryl group. The alkyl group includes a substituted or unsubstituted straight-chain or branched alkyl group. Examples of substituent groups for the substituted alkyl group include a halogen atom (e.g., fluorine, chlorine, bromine), hydroxyl group, cyano group, carboxyl group, an aryl group (e.g., phenyl, naphthyl), an alkoxy group (e.g., methoxy, ethoxy, propyloxy, butoxy, dodecyloxy, 2-methoxyethoxy, 2-phenoxyethoxy), an aryloxy group (e.g., phenoxy, 2-methoxyphenoxy, 4-methoxyphenoxy, 2-methylphenoxy, 4-methylphenoxy, 2,4-dimethylphenoxy, 2,4-di-t-amylphenoxy, 4-t-octylphenoxy, 4-cyanophenoxy, 2-chloro-4-t-octylphenxoy, 4-methanesulfonamidophenoxy, 3-t-butyl-4-hydroxyphenoxy), an alkylthio group (e.g., methylthio, ethylthio, butylthio, octylthio, dodecylthio, hexadecylthio, 2-ethylhexylthio, 2-phenoxyethylthio, 1-ethoxycarbonyltridecylthio), an arylthio group (e.g., phenylthio, 2-pivaloylamidophenylthio, 4-t-octylphenylthio, 4-dodecyloxyphenylthio, 2-butoxy-4-t-octylphenylthio), an oxycarbonyl group (e.g., methoxycarbonyl, ethoxycarbonyl, propyloxycarbonyl, butoxycarbonyl, octyloxycarbonyl, dodecyloxycarbonyl, hexadecyloxycarbonyl, 2-methoxyethoxycarbonyl), a carbonyloxy group (e.g., acetyloxy, propionyloxy, dodecanoyloxy, tetradecanoyloxy, hexadecanoyloxy, benzoyloxy, 2-hexadecyloxybenzoyloxy), a carbonamido group (e. g., acetamido, propaneamido, butaneamido, hexaneamido, 2-ethylhexaneamido, dodecaneamido, hexadecaneamido, benzamido, 2-dodecyloxybenzamido, 3-tetradecyloxycarbonylbenzamido, 3-hexadecylsulfamoylbenzamido), a sulfonamido group (e.g., methanesulfonamido, ethanesulfonamido, octanesulfonamido, hexadecanesulfonamido, benzenesulfonamido, p-toluenesulfonamido, 2-octyloxy-5-t-octylbenzenesulfonamido, 3-hexadecyloxycarbonylbenzenesulfonamido, 3-dodecyloxycarbonylbenzenesulfonamido), a carbamoyl group (e.g., N-methylcarbamoyl, N-butylcarbamoyl, N-cyclohexylcarbamoyl, N-dodecylcarbamoyl, N-phenylcarbamoyl, N,N-diethylcarbamoyl, N,N-dibutylcarbamoyl), a sulfamoyl group (e.g., N-ethylsulfamoyl, N-butylsulfamoyl, N-hexadecylsulfamoyl, N-cyclohexylsulfamoyl, N,N-dibutylsulfamoyl, N-phenylsulfamoyl, N-methyl-N-octadecylsulfamoyl), an imido group (e.g., succinimido, phthalimido, hexadecylsuccinimido, octadecylsuccinimido), a urethane group (e.g., methylurethane, ethylurethane, dodecylurethane, phenylurethane), a ureido group (e.g., N-methylureido, N-ethylureido, N-dodecylureido, N,N-dibutylureido, N-phenylureido, N-cyclohexylureido) and a sulfonyl group (e.g., methylsulfonyl, ethylsulfonyl, propylsulfonyl, butylsulfonyl, hexylsulfonyl, octylsulfonyl, dodecylsulfonyl, hexadecylsulfonyl, phenylsulfonyl). The aryl group includes a substituted or unsubstituted aryl group such as phenyl group, naphthyl group, etc. Examples of substituent groups for the substituted anyl group include those already described above in the definition of the substituent groups for the substituted alkyl group represented by R4. The oxycarbonyl group defined above is preferably alkyl or aryl oxycarbonyl group, and the carbonyloxy group, carbonamido group, sulfonamide group and sulfonyl group, which are defined above, are also preferable those connected to alkyl or aryl moiety, respectively.

R₅ is an alkyl group, an aryl group, an alkoxy group, an alkylamino group or an arylamino group. The alkyl group includes a substituted or unsubstituted straight-chain or branched alkyl group. Examples of substituent groups for the substituted alkyl group include those already described above in the definition of the substituent groups for the substituted alkyl group represented by R₄. A substituted alkyl group or a straight-chain or branched unsubstituted alkyl group having not less than 14 carbon atoms is preferred as the alkyl group from the viewpoint of solubility in organic solvents. A substituted alkyl group is more preferred, and a substituted alkyl group having not less than 14 carbon atoms in total is still more preferred. Preferred substituent groups for the substituted alkyl group include an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbonamido group, a urethane group, a ureido group, an imido group, a sulfonamido group and a sulfonyl group. An alkoxycarbonyl group is particularly preferred. The aryl group represented by $R_{\rm S}$ includes a substituted or unsubstituted aryl group such as, for example a phenyl group and a naphthyl group. Examples of substituent groups for the substituted aryl group include those already described above in the definition of the substituent groups for the substituted alkyl group represented by R_4 . The alkoxy group represented by R_5 is a substituted or unsubstituted straight-chain or branched alkyloxy group. Examples of substituent groups for the substituted alkyloxy group include those already described above in the definition of the substituent groups for the substituted alkyl group represented by R4. The alkylamino group represented by R₅ include a substitut d or unsubstituted straight-chain or branched alkylamino group. Examples of substituent

groups for the substituted alkylamin group include those already described abov in the definition f the substituent groups for the substituted alkylamin group represented by R_4 . The arylamin group represented by R_5 includes a substituted or unsubstituted arylamino group. Examples of the substituted arylamino group include those already described above in the definition of the substituent groups f in the substituted alkylamino group represented by R_4 . Preferably, R_5 is an alkylamino group, an arylamino group, an alkoxy group or an alkylamino group from the viewpoint of solubility. More preferably, R_5 is an alkylamino group, an arylamino group or an alkoxy group from the viewpoint of easy synthesis. Particularly preferably, R_5 is an alkylamino group.

A and B are each -CO- or -SO₂-; and n is 0 or 1. Preferably, A is -CO- because the maximum absorption wave form of dyes obtained by the coupling with the oxidants of developing agents is short wave.

R₄ and R₅ may be combined together to form a five-membered, a six-membered or seven-membered ring. Typical examples of the five-membered ring, the six-membered ring and the seven-membered ring include the following rings.

5	-N 0	-N
10	-N	-N
20	-N	
25	ON H	-N
<i>30</i>	-N 0	O NH
35	-N O	-N_0
45	-N NH	-N S

50

The five-membered ring, the six-membered ring and the seven-membered ring may have one or more substituent groups which can be attached to these rings. Examples of the substituent groups include those already described above in the definition of the substituent groups for R_2 and R_3 .

The ring formed by R_4 and R_5 is preferably an imido ring or a lactam ring. However, the case where R_4 and R_5 are not combined together is more preferred. Preferably, n is 0. Most preferred is the case where n is 0 and R_4 is hydrogen atom.

Y is a hydrogen atom, a halogen atom or an aryloxy group. In the couplers of the present invention, the halogen atom or the aryloxy group represented by Y is released by the coupling reaction with the oxidation product of the d veloping agents. Examples of the halogen atom include a fluorin atom, chlorine atom and a bromine atom. The

aryloxy gr up includes a substitut d r unsubstituted aryloxy group. Examples of substituent gr ups for the substituted aryloxy group include those already described abov in the definition f the substituent groups f r the substituted alkyl group repr sented by R₄. Exampl s of the aryloxy group include phenoxy, 4-methylphenoxy, 4-t rt-butylphenoxy, 4-methoxycarbonylph noxy, 4-ethoxycarbonylphenoxy, 4-carboxyph noxy, 4-cyanophen xy and 2,4-dimethylphenxoy. Preferably, Y is a halogen atom or an aryloxy group. More preferably, Y is a halogen atom with chlorine atom being most preferred.

Examples of the typical magenta couplers of the present invention include the following compounds.

$$M - 7 \ 2 \qquad t - C_4 H_0 \qquad 0 - C_6 H_{17}$$

$$M - 7 \ 3 \qquad t - C_4 H_0 \qquad 0 - C_5 C_6 H_{17} - t$$

$$M - 7 \ 3 \qquad t - C_4 H_0 \qquad 0 - C_5 C_5 C_6 H_{17} - t$$

$$M - 7 \ 4 \qquad t - C_4 H_0 \qquad C_1 \qquad C_5 H_{11} - t$$

$$M - 7 \ 5 \qquad t - C_4 H_0 \qquad C_1 \qquad K_1 = 1$$

$$M - 7 \ 5 \qquad t - C_4 H_0 \qquad C_1 \qquad K_2 = 1$$

$$M - 7 \ 5 \qquad t - C_4 H_0 \qquad C_1 \qquad K_3 = 1$$

$$M - 7 \ 5 \qquad t - C_4 H_0 \qquad C_1 \qquad K_4 = 1$$

M - 8 4OC.H. CH3 SO2NHCH2C 5 10 OCH3 15 CH3 M - 8520 COOC: 6H33 25 M - 8630 35 M - 87t-C.H. 40 45 NHCOCH2OCH2CH2OCH2CH2OC16H33

50

55

General synthesis methods of the couplers of the present invention will be illustrated below.

45

50

55

The 1H-pyrazolo[1,5-b][1,2,4]triazole couplers of the present invention can be synthesized according to the methods described in JP-A-60-197688 and JP-A-3-184980.

Namely, the couplers of the present invention can be synthesized according to the following synthesis scheme A and synthesis scheme B.

Synthesis scheme A

50

Synthesis scheme B

35

40

45

50

Compound [H]

Compound [H]

Compound [J]

Compound [J]

R₅+A+Cl

Compound [J]

or

R₃ NH₂ R₄+B
$$\rightarrow$$

Compound [K]

R₁

Y

R₅+A+Cl

Compound [J]

Or

R₃ NH₂ R₄+B \rightarrow

R₄

R₅+A+Cl

Compound [J]

Or

R₃ NH₂ R₄+B \rightarrow

Compound [K]

R₁

Y

R₂

R₃ N+A+R₅

Coupler of formula [I] R₄

wherein Y represents a hydrogen atom, a halogen atom or an aryloxy group; R_6 represents a straight-chain or branched alkyl group having 1 to 10 carbon atoms or phenyl group; and R_7 represents a straight-chain or branched alkyl group having 1 to 4 carbon atoms or a substituted or unsubstituted aryl group.

A β-keto-nitrile compound (compound [A]) is reacted with hydrazine to obtain an aminopyrazole (compound [B]). Separately, a benzonitrile (compound [C]) is reacted with an alcohol in the presence of hydrogen chloride to obtain an imidic acid ester (compound [D]). The imidic acid ester (compound [D]) is reacted with the above aminopyrazole (compound [B]) to obtain an amidine (compound [E]). The amidine is then reacted with hydroxylamine to obtain an amidoxime (compound [F]). The amidoxime (compound [F]) is then reacted with an alkyl- or arylsulfonyl chloride in the presence of a base to obtain a sulfonate (compound [G]). The sulfonate (compound [G]) is intramolecularly cyclized in the presence of a base to obtain a 1H-pyrazolo[1,5-b]-[1,2,4]triazole (compound [H]). The nitro group of the 1H-pyrazolo[1,5] b][1,2,4]triazole (compound [H]) is reduced to obtain an amine (compound [I]). The reduction of the nitro group can be carried out by various reduction methods such as catalytic reduction with hydrogen gas in the presence of a palladium-carbon catalyst, reduction with ammonium formate in the presence of a palladium-carbon catalyst, or neutral reduction with reduced iron and ammonium chloride. The amine (compound [I]) is reacted with an acid chloride (compound [J]) or acid anhydride (compound [K]) or a lactone (compound [K]), whereby the coupler of the present invention can be easily obtained. When the compound [J] is used, (B) R4 in the coupler (I) represents a hydrogen atom (n=0, R4=a hydrogen atom).

When a compound where Y is a halogen atom is to be produced, the releasable group Y can be easily introduced into the compound by reacting a compound, where the position-7 of 1H-pyrazolo[1,5-b][1,2,4]triazole skeleton is hydrogen, with an appropriate halogenating compound. Examples of the halogenating agent include chlorine gas, sulfuryl chloride, N-chlorosuccinimide, bromine gas and N-bromosuccinimide. If desired, an intermediate, 3-amino-5-t-butylpyrazole is reacted with the halogenating agent to synthesize a 3-amino-5-t-butyl-4-halogenopyrazole, and the pyrazolotriazole skeleton can b then synthesized according to th abov synthesis sch me.

When a coupl r where Y is an aryloxy group is to b synthesized, an acyl-2-aryloxyacetonitrile is pr pared according to the method described in JP-A-2-300195, and the desired compound can be synthesized according to the above synthesis m thod. Alternatively, a 1H-pyrazolo[1,5-b][1,2,4]triazole compound where the position-7 is halogenat d is reacted with a phenol in the presence of a bas, whereby the desired compound can be synthesized.

Synthesis m thod is illustrated by reference to the following synthesis examples.

Synthesis scheme [C]

5

10

15

20

35

40

45

50

55

t-C₄H₉
NNNNHC-NO₂
NO₂

Compound [IV]

CH₃SO₂C1 t-C₄H₉
NH
NO
Compound [V]

NCS or
$$SO_2Cl_2$$

NHSO₂
 C_8H_{17}

Coupler M-1

SYNTHESIS EXAMPLE 1

35

45

50

55

Synthesis of coupler M-1

To 600 g of pivaloyl acetonitrile (compound I), there was added 800 ml of isopropanol. The mixture was heated with stirring, and 288 g of hydrazine hydrate was added dropwise thereto. The mixture was heated with stirring for 3 hours. After completion of the reaction, 400 ml of isopropanol was distilled off under reduced pressure. To the residue, there were added 2000 ml of ethyl acetate and saturated brine. The mixture was stirred and then left to stand for a while. The aqueous layer was removed, and the ethyl acetate layer was washed with saturated brine twice. The ethyl acetate solution was then dried over anhydrous magnesium sulfate, and then concentrated under reduced pressure. Subsequently, 2000 ml of n-hexane was added to the residue to precipitate a crystal. The crystal was recovered by filtration and dried. There was obtained 643 g (96.2%) of 3-amino-5-t-butylpyrazole (compound II). Melting point: 74.0 to 75.0°C.

To 250 g of 3-amino-5-t-butylpyrazole prepared above, there was added 2800 ml of acetonitrile. The mixture was stirred at room temperature. To the resulting solution, there was added 390 g of methyl 4-nitrophenylimidate hydrochloride (compound III). The mixture was stirred at room temperature for 7 hours. Subsequently, a methanol solution of hydroxylamine (prepared from 150 g of hydroxylamine hydrochloride and 430 ml of a 28 wt% methanol solution of sodium methylate) was added thereto, and the mixture was stirred for 8 hours. After completion of the reaction, 8000 ml of water was added to the resulting solution. The precipitated crystal was recovered by filtration and dried. There was obtained 421.7 g (77.2%) of an amidoxime (compound IV). Melting point: 175 to 177°C.

To 364 g of the amidoxime (compound IV), there was added 900 ml of dimethylacetamide. The mixture was cooled to 10°C and then stirred. To the mixture, there was added 144.3 g of methanesulfonic acid chloride. Further, 233 ml of pyridine was added thereto. The mixture was stirred at room temperature for 2 hours, and 2600 ml of methanol was added thereto. The resulting mixture was stirred with heating at 55°C for 5 hours. After completion of the reaction, the

reaction mixture was cooled to room temperature, and 1800 ml of water was added thereto to precipitate a crystal. The crystal was recovered by filtration and dried. There was obtained 249 g (72.8%) of a cyclized product (compound V). Melting point: 259 to 260°C.

To 209 g of reduced iron and 20 g of ammonium chloride, there were added 120 ml of water and 1200 ml of isopropanol. The mixture was heated with stirring. To the resulting solution, there was added portionwise 202 g of the compound V prepared above. After completion of the addition, the mixture was stirred with heating for one hour. The reaction mixture (solution) was filtered while it was still hot to remove insoluble matters. The filtrate was concentrated under reduced pressure. To the residue, there was added 3000 ml of water to thereby precipitate a crystal. The crystal was recovered by filtration and dried. There was obtained 167.9 g (92.9%) of an amine (compound VI). Melting point: 263 to 265°C.

To 58.0 g of the amine (compound VI) prepared above, there was added 180 ml of dimethylacetamide. The mixture was stirred at room temperature. To the resulting solution, there was added dropwise 100 g of 2-octyloxy-5-t-octylbenzenesulfonic acid chloride (compound VII), and further 22 ml of pyridine was added dropwise thereto. After completion of the addition, the mixture was continuously stirred at room temperature for 5 hours. Subsequently, ethyl acetate and water were added thereto to conduct extraction. The ethyl acetate solution was washed with saturated brine, dried over anhydrous magnesium sulfate and stirred at room temperature. To the ethyl acetate solution, there was then added portionwise 30.7 g of N-chlorosuccinimide. After completion of the addition, the mixture was stirred at room temperature for one hour and washed with 800 ml of water. The ethyl acetate solution was concentrated to dryness under reduced pressure. The residue was recrystallized from a mixed solvent of ethyl acetate and n-hexane. There was obtained 112.3 g (72.3%) of the coupler M-1. Melting point: 127 to 129°C.

(CDCl₃) 10.73 (br, 1H), 7.78 (d, 1H), 7.65 (d, 2H), 7.44 (dd, 1H), 7.07 (d, 2H), 6.89 (d, 1H), 4.14 (t, 2H), 2.05-1.78 (m, 2H), 1.65-1.15 (m, 18H), 1.43 (s, 9H), 0.88 (t, 3H), 0.49 (s, 9H)

Synthesis scheme [D]

10

20

25

5

$$C_4H_9$$
 C_1
 C_4H_9
 C_1
 C_4H_9
 C_1
 C_4H_9
 C_1
 C_2
 C_3H_{17}
 $C_8H_{17}-t$
 $C_8H_{17}-t$
 $C_8H_{17}-t$

SYNTHESIS EXAMPLE 2

Synthesis of coupler M-1

20

25

30

35

45

50

55

To 70 g of the aminopyrazole (compound II) prepared in Synthesis Example 1, there was added 250 ml of concentrated hydrochloric acid and it was heated to 55°C. To the resulting solution, there was added dropwise 48.6 ml of sulfuryl chloride over a period of 2 hours. After completion of the addition, the mixture was stirred for one hour and then concentrated under reduced pressure. To the residue, there was added 300 ml of toluene, and the mixture was further concentrated under reduced pressure. Subsequently, 250 ml of ethyl acetate was added to the residue to precipitate a crystal. The crystal was recovered by filtration and dried. There was obtained 100.2 g (94.8%) of a chlorinated product (compound IX). Melting point: 160 to 167°C.

To 112 g of the chlorinated product (compound IX), there was added 700 ml of acetonitrile. The mixture was stirred at room temperature and then neutralized with 75 ml of triethylamine. To the resulting solution, there was added 116 g of methyl 4-nitrophenylimidate hydrochloride (compound III). The mixture was stirred at room temperature for 8 hours. Subsequently, a methanol solution of hydroxylamine (prepared from 46.3 g of hydroxylamine hydrochloride and 134 ml of a 28 wt% of methanol solution of sodium methylate) was added thereto. The mixture was stirred for 8 hours. After completion of the reaction, 2600 ml of water was added thereto to precipitate a crystal. The crystal was recovered by filtration and dried. There was obtained 123 g (68.3%) of an amidoxime (compound X). Melting point: 158 to 162°C.

To 20.0 g of the amidoxime (compound X) prepared above, there was added 60 ml of dimethylacetamide. The mixture was stirred at room temperature, and 11.9 g of p-toluenesulfonic acid chloride was added thereto. Further, 5.3 ml of pyridine was added dropwise thereto, and the mixture was stirred at room temperature for 3 hours. To the resulting solution, there were added 150 ml of methanol and 4.8 ml of pyridine. The mixture was heated with stirring for 3 hours. After completion of the reaction, the reaction mixture was poured into water to precipitate a gummy product, the gummy product was separated from the mixture. Acetonitrile was added to the gummy product. The mixture was stirred to crystallize the product. The crystal was recovered by filtration and dried. There was obtained 11.8 g (62.3%) of a cyclized product (compound XI). Melting point: 249 to 252°C.

To 18 g of reduced iron and 1.7 g of ammonium chloride, there were added 15 ml of water and 150 ml of isopropanol. The mixture was heated with stirring. To the resulting solution, there was added portionwise 20.0 g of the cyclized product (compound XI) prepared above. After completion of the addition, the mixture was stirred with heating for 30 minutes. After completion of the reaction, the reaction mixture was filtered while it was still hot to remove insoluble matters. Subsequently, 1000 ml of water was added to the filtrate to precipitate a crystal. The crystal was recovered by filtration and dried. There was obtained 15.0 g (82.8%) of an amine (compound XII). Melting point: 261 to 263°C.

To 8.69 g of the amine (compound XII) prepared above, there was added 25 ml of dimethylacetamide. The mixture was stirred at room temperature, and 15.0 g of 2-octyloxy-5-tert-octylbenzenesulfonic acid chloride (compound VII) was added dropwise thereto. Further, 2.9 ml of pyridine was added dropwise thereto. After completion of the dropwise addition, the mixture was stirred for 5 hours and extracted with ethyl acetate. The ethyl acetate solution was washed with saturated brine and concentrated under reduced pressure. The residue was recrystallized from a mixed solvent of ethyl acetate and n-hexane. There was obtained 17.5 g (87.1%) of coupler M-1. Melting point: 127-129°C. The melting point was the same as that of the product obtained in Synthesis Example 1. Further, NMR spectrum data were identical with those of the product obtained in Synthesis Example 1.

SYNTHESIS EXAMPLE 3

Synthesis of coupler M-43

10

15

25

35

Succinic anhydride (145.2 g) and 2-octyloctal (291 g) were stirred with heating at 120 to 130°C for 3 hours and then cooled to 80°C. Subsequently, 300 ml of water was added thereto. The mixture was stirred for additional one hour and then cooled to room temperature. The reaction mixture was extracted with 500 ml of ethyl acetate. The ethyl acetate solution was washed with water twice and then concentrated under reduced pressure. There was obtained 409.8 g (99.7%) of 3-(2-octyloctyloxycarbonyl)propionic acid as an oily product.

To 409.8 g of 3-(2-octyloctyloxycarbonyl)propionic acid obtained above, there was added 500 ml of toluene. The mixture was stirred with heating at 70 to 80°C To the resulting solution, there was added dropwise 132 ml of thionyl chloride. The mixture was heated with stirring for 3 hours. After completion of the reaction, toluene and an excess amount of thionyl chloride were distilled off under reduced pressure to obtain 429.5 g (99.5%) of 3-(2-octyloctyloxy-carbonyl)propionic acid chloride as an oily product.

To 25.5 g of the amine (compound VI) prepared in Synthesis Example 1, there were added 50 ml of dimethylacetamide and 50 ml of ethyl acetate. The mixture was stirred at room temperature. To the resulting solution, there was added dropwise 40 g of 3-(2-octyloctyloxycarbonyl)propionic acid chloride prepared above. Further, 10 ml of pyridine was added dropwise thereto. After completion of dropwise addition, the reaction was carried out at room temperature for 2 hours, and 100 ml of ethyl acetate was added thereto. Further, 14.0 g of N-chlorosuccinimide was added portionwise thereto. After completion of the addition, the mixture was stirred at room temperature for 2 hours. After completion of the reaction, the ethyl acetate solution was washed with warm water (40 to 60°C) three times and then concentrated under reduced pressure to precipitate a crystal. The crystal was recrystallized from a mixed solvent of ethyl acetate and acetonitrile (1:1) to obtain 55.7 g (90.7%) of coupler M-43. Melting point and NMR data are shown in Table 9.

SYNTHESIS EXAMPLE 4

Synthesis of coupler M-45

Succinic anhydride (24.2 g) and tetradecanol (42.9 g) were molten by heating them at 120 to 130°C and stirred for 3 hours. After completion of the reaction, the reaction mixture was cooled to 80°C, and 50 ml of water was added thereto. The mixture was stirred for one additional hour. The reaction mixture was cooled to room temperature and extracted with 200 ml of ethyl acetate. The ethyl acetate solution was washed with 200 ml of water three times and concentrated to dryness under reduced pressure. There was obtained 60.9 g (96.8%) of 3-tetradecyloxycarbonylpropionic acid. Melting point: 48 to 49°C.

To 25.5 g of the amine (compound VI) obtained in Synthesis Example 1, 33.0 g of 3-tetradecyloxycarbonylpropionic acid prepared above and 19.5 ml of pyridine, there was added 250 ml of ethyl acetate. The mixture was stirred at room temperature. Subsequently, 5.5 g of phosphorus trichloride was added dropwise thereto, and the mixture was stirred at room temperature for 2 hours and then at 60 to 77°C for one hour. There was synthesized a compound where the position-7 of coupler M-45 was a hydrogen atom. The reaction mixture was cooled to room temperature, and 16.2 ml of sulfuryl chloride was added dropwise thereto. The mixture was stirred for 2 hours. There was synthesized a chlorinated compound where the position-7 of coupler M-45 was chlorinated. After completion of the reaction, the mixture was extracted with 200 ml of hot water (60 to 70°C). The ethyl acetate solution was washed with an aqueous solution of sodium bicarbonate. Subsequently, 25.0 g of sodium bicarbonate, 20 g of sodium sulfite, 200 ml of water and 50 ml of methanol were added thereto. The mixture was stirred at 40 to 50°C for 2 hours. After completion of the reaction, the aqueous layer was removed, and the ethyl acetate solution was washed with hot water (60 to 70°C) twice. The ethyl acetate solution was concentrated under reduced pressure to precipitate a crystal. The crystal was recrystallized from a mixed solvent of ethyl acetate and acetonitrile (5:1) to obtain 49.5 (84.4%) of coupler M-45. Melting point and NMR data are shown in Table 9.

50 SYNTHESIS EXAMPLE 5 TO 66

Couplers M-2 to M-41 and M-43 to M-51 were synthesized in the same manner as described in Synthesis Example 1. Further, couplers M-52 to M-68 were synthesized in the same manner as described in Synthesis Example 2, 3 or 4. The melting points and NMR spectrums of these couplers are shown in Tables 1 to 14.

TABLES 1 TO 14

5	Coupler No.	Melting point	(mu	Proton NMR δ (ppm) ltiplicity, integral value)
	M-2	126-131	(DMSO)	13.33 (s, lH), 10.32 (s, lH),
10				7.90-7.73 (m, 3H), 7.55 (dd,
				lH), 7.23 (d, 2H), 7.09 (d,
				lH), 3.95 (d, 2H), 1.90-1.12
15				(m, 17H), 1.49 (s, 9H), 0.98-
				0.75 (m, 6H), 0.59 (s, 9H)
20	M-3	170-173	(DMSO)	13.43 (s, 1H), 10.50 (s, 1H),
			•	7.96 (d, 2H), 7.81 (d, 2H),
25				7.19-6.98 (m, 2H), 6.71 (d,
25				1H), 4.87 (t, 1H), 2.09-1.05
				(m, 26H), 1.40 (s, 9H), 0.87
30				元(t, 3H), 0.6l (t, 6H)
	M-4 1	84-186	(DMSO)	-13.40 (s, 1H), 10.22 (s, 1H),
<i>35</i>				7.90 (d, 2H), 7.78 (d, 2H),

				4.00 (t, 2H), 2.55-2.25 (m,
				4H), 1.96-1.75 (m, 2H), 1.65-
5				1.00 (m, 28H), 1.40 (s, 9H),
				0.85 (t, 3H)
10	M-5	155-156	(CDCl ₂)	13.33 (s, lH), 10.25 (s, lH),
	M-3	155 150	(,	7.90-7.70 (m, 3H), 7.21 (d,
				2H), 6.67-6.53 (m, 2H), 4.08
15				(t, 2H), 3.49 (t, 2H), 1.68
				(br, 4H), 1.50-1.08 (m, 20H),
20				1.38 (s, 9H), 0.98-0.75 (m,
				6Н)
25	M-6	152-153	(DMSO)	13.35 (brs, 1H), 10.80 (brs,
23	141—0	132 133	(21320)	1H), 8.05-7.04 (m, 4H), 7.84
				(d, 2H), 7.25 (d, 2H), 4.20
30				(d, 2H), 1.85-1.60 (m, 1H),
				1.39 (s, 9H), 1.45-1.00 (m,
35				24H), 0.81 (t, 6H)
	M-7	157-160	(CDCl ₌)	11.65 (br, lH), 7.76 (d, 2H),
	M- /	137 100	(000-37	7.38 (d, 2H), 7.12 (s, 1H),
40				4.12 (d, 2H), 1.65 (dr, 1H),
				1.49 (s, 9H), 1.28 (brs,
45				-24H), 0.86 (t, 6H)
		174-175	/CDC1 -)	11.39 (br, lH), 7.88 (d, 2H),
	M-8	114-713	(000137	7.31 (d, 2H), 5.75-5.52 (m,
50				1H), 4.98-5.23 (m, 1H), 3.27-

```
2.92 (m, 2H), 2.80-2.58 (m,
 5
                                    2H), 2.57-2.37 (m, 1H), 2.16-
                                    1.88 (m, 2H), 1.48 (s, 9H),
                                    1.40-1.05 (br, 22H), 0.88 (t,
 10
                                    3H)
          M-9
                 187-188
                          (CDCl<sub>3</sub>)
                                    11.35 (br, 1H), 9.04 (s, 1H),
 15
                                    7.65 (d, 2H), 7.47 (d, 2H),
                                    4.05-3.92 (m, 1H), 3.35-3.00
                                    (m, 2H), 2.32-1.75 (m, 4H),
20
                                    1.57-1.04 (m, 30H), 1.45 (s,
                                   9H), 0.87 (t, 6H)
25
                          (CDCl<sub>3</sub>)
         M-10
                 190-192
                                   12.66 (s, 1H), 10.12 (s, 1H),
                                   9.73 (s, lH), 8.20 (d, lH),
                                   8.11 (d.d, 1H), 7.84 (d, 2H),
30
                                   7.37 (d.d, 1H), 7.25 (d, 2H),
                                   2.36 (t, 2H), 1.79-1.55 (m,
35
                                   2H), 1.46 (s, 9H), 1.50-1.05
                                   (m, 24H), 0.87 (t, 3H)
         M-11
                169-170
                          (DMSO)
                                   13.40 (s, 1H), 10.40 (s, 1H),
40
                                   7.95 (d, 2H), 7.79 (d, 2H),
                                   4.20-4.02 (m, 4H), 3.25-2.95
45
                                 -(m, lH), 2.10-1.05 (m, 28H),
                                 1.40 (s, 9H), 0.82 (t, 3H)
50
                                 11.54 (br, 1H), 8.51 (s, 1H),
         M - 12
                103-105
                         (CDCl<sub>3</sub>)
                                  8.25-7.95 (m, 3H), 7.69-7.44
```

		•		(m, 3H), 7.09 (d, 2H), 4.25
5				(d, 2H), 1.85-1.65 (br, 1H),
				1.47 (s, 9H), 1.55-1.05 (m,
	,			24H), 0.84 (t, 6H)
10	M-13	110-111	(CDCl ₃)	11.62 (br, 1H), 7.63 (d, 2H),
				7.50 (s, lH), 7.25 (d, 2H),
15				4.37-4.23 (m, 1H), 4.20-3.90
				(m, 4H), 3.34-3.00 (m, 2H),
20				1.58 (br, 2H), 1.53 (s, 9H),
20				1.45-1.10 (m, 16H), 0.88 (t,
				12H)
25	M-14	199-200	(DMSO)	13.32 (s, lH), 10.30 (s, lH),
				9.65 (s, lH), 7.76 (d, 2H),
30 .				7.65-7.53 (m, 2H), 7.47 (dd,
				1H), 7.25 (dd, 1H), 7.10 (d,
				3H), 6.97 (d, lH), 4.08 (t,
35				2H), 3.94 (t, 2H), 1.86-1.00
				(m, 32H), 1.40 (s, 9H), 0.95-
40				0.72 (m, 6H), 0.39 (s, 9H)
	M-15	144-147	(DMSO)	13.44 (S, 1H), 9.53 (S, 1H),
				7.91-7.75 (m, 2H), 7.70 (d,
45				1H), 7.20-7.00 (m, 2H), 6.81
				(d, 1H), 4.95 (t, 1H), 2.25
			•	(s, 3H), 2.11-1.10 (m, 26H),

				1.40 (s, 9H), 0.99 (t, 3H),
5				0.61 (t, 6H)
	M-16	159-160	(DMSO)	13.30 (s, lH), 9.80 (s, lH),
10				7.86-7.70 (m, 3H), 7.55 (d.d,
				lH), 7.28 (d, 2H), 7.12 (d,
				2H), 4.36-4.15 (m, 2H), 3.95-
15				3.75 (m, 2H), 3.70-3.51 (m,
				4H), 3.37-3.20 (t, 2H), 1.80-
20				1.05 (m, 16H), 1.39 (s, 9H),
				0.80 (t, 3H), 0.52 (s, 9H)
	M-17	109-110	(DMSO)	13.31 (s, lH), 10.54 (s, lH),
25				8.44 (d, lH), 8.12 (d.d, lH),
				7.83 (d, 2H), 7.31 (d, 1H),
30				7.25 (d, 2H), 4.31 (q, 2H),
				4.18 (t, 2H), 1.72-1.50 (br,
45				2H), 1.50-1.00 (m, 35H), 1.38
35				(s, 9H), 0.86 (t, 3H)
	M-18	135-140	(DMSO)	13.31 (s, 1H), 10.52 (s, 1H),
40				8,45 (d, lH), 8.11 (dd, lH),
				7.84 (d, 2H), 7.38-7.18 (m,
45				3H), 3.38 (br, 1H), 4.17 (t,
				_2H), 1.75-1.52 (br, 2H),
				T.45-1.00 (m, 30H), 1.39 (s,
50				9H), 0.85 (t, 3H)

	M-19	165-170	(DMSO)	13.34 (s, 1H), 10.06 (s, 1H),
5				7.88-7.67 (m, 3H), 7.58 (dd,
				lH), 7.26 (d, 2H), 7.12 (d,
				lH), 5.20 (brs, lH), 4.14 (t,
10				2H), 3.85 (t, 2H), 1.72-1.10
				(m, 8H), 1.38 (s, 9H), 0.52
15				(s, 9H)
	M-20	163-164	(CDCl ₃)	11.25 (br, lH), 8.16 (s, lH),
				7.80 (d, lH), 7.68 (d, 2H),
20				7.44 (d.d, lH), 7.21 (d, 2H),
				6.78 (d, lH), 4.94 (t, lH),
25				4.41-4.15 (m, 2H), 2.16-1.97
				(br, 2H), 1.70-1.10 (m, 23H),
				1.45 (s, 9H), 0.86 (t, 3H),
<i>30</i>				0.49 (s, 9H)
	M-21	146-147	(DMSO)	13.32 (s, lH), 10.39 (s, lH),
35				7.90-7.70 (m, 3H), 7.50 (d.d,
				lH), 7.25 (d, 2H), 6.96 (d,
40				lH), 4.95 (s, 2H), 4.52-4.07
				(m, 4H), 2.25 (t, 2H), 1.75-
				1.00 (m, 30H), 1.39 (s, 9H),
45				_0.84 (t, 3H), 0.54 (s, 9H)
	M-22	105-107	(DMSO)	=13.40 (brs, 1H), 10.85 (brs,
50				1H), 8.38-8.03 (m, 3H), 7.85
				(d, 2H), 7.75 (t, 1H), 7.29

5				(d, 2H), 4.07 (t, 2H), 1.78- 1.55 (br, 2H), 1.58-1.05 (m,
10		·		26H), 1.39 (s, 9H), 0.82 (t, 3H)
	M-23	176-177	(DMSO)	13.40 (brs, 1H), 10.90 (brs,
15				1H), 8.38-8.03 (m, 3H), 7.88
				(d, 2H), 7.78 (t, 1H), 7.30
				(d, 2H), 4.21 (d, 2H), 1.76-
-20				1.13 (m, 9H), 1.39 (s, 9H),
				0.97-0.75 (m, 6H)
25	M-24	156-157	(DMSO)	13.40 (brs, 1H), 10.89 (brs,
				lH), 8.40-8.07 (m, 3H), 7.89
				(d, 2H), 7.75 (t, 1H), 7.30
30				(d, 2H), 4.28 (t, 2H), 1.80-
				1.56 (br, 2H), 1.45-1.05 (m,
35				18H), 1.39 (s, 9H), 0.82 (t,
				3H)
	M-25	100-104	(DMSO)	13.40 (brs, lH), 10.89 (brs,
40				lH), 8.39-8.05 (m, 3H), 7.89
				(d, 2H), 7.75 (t, 1H), 7.31
45				(d, 2H), 4.28 (t, 2H), 1.78-
				_1.57 (m, 2H), 1.45-1.05 (m,
				22H), 1.39 (s, 9H), 0.83 (t,
50				3H)

	M-26	181-182	(CDCl ₃)	12.60 (s, lH), 10.20 (s, lH),
5				8.55 (s, lH), 8.17 (d.d, lH),
				8.00 (d.d, lH), 7.86 (d, 2H),
				7.53 (d.d, lH), 7.28 (d, 2H),
10				4.31 (t, 2H), 1.85-1.63 (m,
				2H), 1.50-1.10 (m, 14H), 1.46
15				(s, 9H), 0.89 (t, 3H)
	M-27	137-138	(DMSO)	13.35 (brs, lH), 10.31 (s,
				lH), 7.91 (d, 2H), 7.66 (d,
20				2H), 4.72 (s, 2H), 4.11 (t,
				2H), 1.68-1.02 (m, 28H), 1.50
25				(s, 9H), 0.85 (t, 3H)
	M-28	137-138	(DMSO)	13.39 (s, lH), 10.95 (s, lH),
30				8.12 (d, 2H), 8.00 (d, 2H),
				7.89 (d, 2H), 7.31 (d, 2H),
				4.18 (d, 2H), 1.80-1.00 (m,
35				25H), 1.49 (s, 9H), 0.86 (t,
				6H)
40	M-29	125-127	(DMSO)	13.43 (brs, 1H), 11.02 (brs,
				lH), 8.67-8.46 (m, 3H), 7.91
				(d, 2H), 7.33 (d, 2H), 4.24
45				_(d, 4H), 1.78-1.55 (br, 2H),
				=1.50-1.10 (m, 16H), 1.40 (s,
50				9H), 1.00-0.72 (m, 12H)

```
M - 30
                 212-215
                         (DMSO) 13.42 (s, 1H), 10.55 (s, 1H),
                                   10.05 (s, lH), 8.00 (s, 4H),
 5
                                   7.83-7.67 (m, 2H), 7.59-7.40
                                   (m, 2H), 3.21-3.02 (m, 2H),
 10
                                   1.82-1.57 (br, 2H), 1.50-1.02
                                   (m, 26H), 1.51 (s, 9H), 0.82
 15
                                   (t, 3H)
                                  13.48 (brs, 1H), 10.80 (s,
         M - 31
                225-228
                          (DMSO)
                                   1H), 8.50-8.20 (m, 2H), 8.15-
. 20
                                  7.98 (m, 5H), 7.81 (t, 1H),
                                  7.70 (t, lH), 2.70 (t, 2H),
 25
                                  1.55-1.05 (m, 9H), 1.42 (s,
                                  9H), 0.93-0.69 (m, 6H)
                         (CDCl<sub>3</sub>)
         M - 32
                157-158
                                  12.62 (s, 1H), 10.25 (s, 1H),
30
                                  8.55 (s, 1H), 8.17 (d.d, 1H),
                                  8.02 (d.d, 1H), 7.87 (d, 2H),
35
                                  7.54 (d.d, lH), 7.28 (d, 2H),
                                  4.35 (t, 2H), 1.90-1.05 (m,
                                  10H), 1.46 (s, 9H), 0.95 (d,
40
                                  3H), 0.85 (d, 6H)
               192-194
        M - 33
                       (CDCl_3) 12.04 (s, lH), 9.11 (s, lH),
45
                                _8.18 (d, 2H), 7.74 (d, 2H),
                                13.81 (t, lH), 2.60 (t, 2H),
                                 2.05-1.05 (m, 34H), 1.48 (s,
50
                                 9H), 0.95-0.70 (m, 6H)
```

48

	M - 34	77-80	(CDCl ₃)	11.50 (br, 1H), 7.76 (d, 2H),
5				7.49 (s, lH), 7.27 (d, 2H),
				4.28-4.05 (m, 3H), 2.16-1.89
4.				(m, 2H), 1.48 (s, 9H), 1.38-
10				1.00 (m, 31H), 0.87 (t, 3H)
	M-35	196-197	(CDCl ₃)	12.67 (s, 1H), 10.35 (s, 1H),
15				8.54 (s, lH), 8.18 (d.d, lH),
				8.00 (d.d, lH), 7.85 (d, 2H),
20				7.54 (d.d, lH), 7.28 (d, 2H),
				4.32 (t, 2H), 1.86-1.63 (m,
				2H), 1.52-1.15 (m, 10H), 1.45
25				(s, 9H), 0.89 (t, 3H)
	M-36	172-175	(DMSO)	13.42 (s, lH), 10.58 (s, lH),
30				10.50 (s, lH), 7.97 (d, 2H),
				7.91-7.79 (m, 4H), 7.75 (d,
				2H), 7.12 (d, 2H), 6.92 (d,
35				2H), 4.90 (t, 1H), 2.05-1.85
				(br, 2H), 1.61-1.06 (m, 16H),
40				1.40 (s, 9H), 0.83 (t, 3H)
	M-37	167-170	(CDCl ₃)	11.50 (br, 1H), 8.45 (br,
45				. lH), 7.79 (s, lH), 7.50-7.23
₩				_(m, 3H), 6.96 (d, 2H), 6.83
				(d, lH), 5.00 (t, lH), 2.23-
50				1.96 (m, 2H), 1.75-1.00 (m,

```
28H), 1.40 (s, 9H), 0.88 (t,
 5
                                    3H), 0.50 (s, 9H)
                                    13.35 (s, 1H), 10.31 (s, 1H),
                  95-98
                          (DMSO)
         M - 38
                                    7.92 (d, 2H), 7.67 (d, 2H),
10
                                    5.48-5.32 (m, 1H), 4.25-3.92
                                    (m, 4H), 3.10-2.85 (m, 2H),
15
                                   1.70-1.02 (m, 32H), 1.40 (s,
                                   9H), 0.90-0.70 (m, 6H)
                120-121 (CDCl<sub>3</sub>)
                                   12.62 (s, 1H), 10.29 (s, 1H),
         M-39
20
                                   8.63 (s, lH), 8.18 (s, lH),
                                   8.14 (s, 1H), 7.87 (d, 2H),
25
                                   7.28 (d, 2H), 2.95 (t, 2H),
                                   1.80-1.60 (m, 2H), 1.50-1.10
                                   (m, 24H), 1.45 (s, 9H), 0.86
30
                                   (t, 3H)
                         (CDCl<sub>3</sub>)
                 94-98
                                   11.85 (br, 1H), 8.30 (s, 1H),
         M - 40
35
                                   8.19 (d, 1H), 7.82 (d.d, 1H),
                                   7.48 (d, 2H), 7.05 (d, 2H),
                                   6.90 (d, lH), 4.28 (t, 2H),
40
                                   3.98 (t, 2H), 1.83-1.56 (m,
                                   4H), 1.50-1.00 (m, 20H), 1.46
45
                                 _(s, 9H), 0.85 (t, 6H)
               162-164 (CDCl<sub>3</sub>) =\overline{12.68} (s, 1H), 10.33 (s, 1H),
        M - 41
50
                                   8.54 (s, 1H), 8.18 (d.d, 1H),
                                   8.03 (d.d, 1H), 7.85 (d, 2H),
```

50

```
7.55 (d.d, 1H), 7.29 (d, 2H),
                                   4.30-4.00 (m, 2H), 2.00-1.77
5
                                   (m, 1H), 1.50-1.10 (m, 7H),
                                   1.44 (s, 9H), 1.05-0.75 (m,
10
                                   6H)
                                   12.03 (brs, 1H), 8.90 (s,
         M - 43
                160-161 (CDCl<sub>3</sub>)
                                   1H), 7.80 (d, 2H), 7.49 (d,
15
                                   2H), 4.02 (d, 2H), 2.95-2.68
                                   (br, 4H), 2.50-2.17 (br, 1H),
20
                                   1.72-1.05 (m, 24H), 1.48 (s,
                                   9H), 1.00-0.70 (m, 6H)
                181-182 (DMSO-d<sub>6</sub>) 13.47 (s, 1H), 10.20 (s, 1H),
25
         M - 44
                                   7.92 (d, 2H), 7.78 (d, 2H),
                                   3.92 (d, 2H), 2.50-2.25 (br,
30
                                   4H), 2.00-1.75 (m, 2H), 1.68-
                                   1.03 (m, 25H), 1.40 (s, 9H),
35
                                   0.93-0.70 (m, 6H)
                182-183 (DMSO-d<sub>6</sub>) 13.38 (s, 1H), 10.30 (s, 1H),
                                   7.92 (d, 2H), 7.77 (d, 2H),
                                   4.00 (t, 2H), 2.75-2.50 (br,
                                   4H), 1.65-1.02 (m, 24H), 1.40
45
                                  T(s, 9H), 0.84 (t, 3H)
                195-197 (CDCl<sub>3</sub>) \overline{+9}.19 (s, 1H), 8.26 (s, 1H),
                                    8.13 (d, 1H), 7.88 (d, 1H),
50
                                    7.72 (d, 2H), 7.67-7.42 (m,
```

51

```
3H), 3.08-2.75 (m, 4H), 1.67-
                                  1.45 (br, 2H), 1.45-1.00 (m,
 5
                                  25H), 0.95-0.62 (m, 12H)
        M - 47
               169-170
                        (CDCl<sub>3</sub>)
                                  12.88-12.55 (br, 1H), 10.31
10
                                  (s, lH), 7.98 (d, 2H), 7.84
                                  (d, 2H), 7.30 (d, 1H), 6.93
                                  (d, lH), 4.13 (d, 2H), 1.80-
15
                                  1.55 (br, lH), 1.49 (s, 9H),
                                 1.45-1.05 (br, 24H), 0.86 (t,
20
                                 6H)
        M - 48
               239-240
                        (DMSO-d_6) 13.43 (brs, 1H), 10.69 (s,
                                 1H), 8.23-7.90 (m, 8H), 4.21
25
                                 (d, 2H), 1.87-1.05 (m, 25H),
                                 1.41 (s, 9H), 1.00-0.70 (m,
30
                                 6H)
       M - 49
              168-169
                        (DMSO-d_6) 13.39 (s, 1H), 10.30 (s, 1H),
                                 7.92 (d, 2H), 7.78 (d, 2H),
35
                                 4.97-4.75 (br, 1H), 2.75-2.50
                                 (br, 4H), 1.67-0.65 (m, 28H),
40
                                 1.41 (s, 9H)
       M-50
              153-154
                       (CDCl<sub>3</sub>)
                                 12.08 (brs, 1H), 8.88
45
                                -1H), 7.89 (d, 2H), 7.53 (d,
                                T2H), 4.15-3.90 (br,
                                -2.95-2.70 (br, 4H), 1.80-0.65
50
                                (m, 35H), 1.47 (s, 9H)
```

	M-51	172-174	(CDCl ₃)	12.35-12.15 (br, 1H), 10.04-
5				9.80 (br, lH), 7.94 (d, 2H),
				7.54 (d, 2H), 3.40-2.98 (br,
				4H), 2.97-2.68 (br, 4H),
10				1.85-0.95 (m, 24H), 1.49 (s,
				9H), 0.88 (t, 3H), 0.81 (t,
15				3H)
	M-52	210-211	(CDCl ₃)	12.66 (s, lH), 9.20 (s, lH),
20				7.96 (d, 2H), 7.76 (d, 2H),
20				2.43-2.23 (m, lH), 1.82-1.05
				(m, 37H), 0.86 (t, 6H)
25	M-53	decomp. at 300°C	(CDCl ₃)	13.41 (s, lH), 10.15 (s, lH),
				7.92 (d, 2H), 7.80 (d, 2H),
30				2.29-2.04 (dr, 1H), 1.92-0.72
				(m, 43H)
	M-54	152-153	(CDCl ₃)	12.80-12.57 (br, 1H), 8.93
35				(s, lH), 8.01 (d, 2H), 7.72
				(d, 2H), 7.41 (d, 1H), 7.22
40				(d.d, 1H), 6.91 (d, 1H), 4.79
				(t, 1H), 2.20-2.02 (m, 2H),
				1.69 (s, 2H), 1.62-1.17 (m,
45				_4H), 1.47 (s, 9H), 1.34 (s,
				E-6H), 0.92 (t, 3H), 0.72 (s,
50				⁻ 9H)

235-236

55

(DMSO)

```
M-55
                               13.49 (s, 1H), 10.73 (s, 1H),
                                 8.30-7.95 (m, 8H), 4.25 (d,
5
                                 2H), 1.90-1.68 (br, 1H),
                                 1.67-1.10 (m, 33H), 0.87 (t,
10
                                 6H)
                                 12.31 (brs, 1H), 8.71 (s,
              151-152 (CDCl<sub>3</sub>)
       M-56
                                 1H), 8.11 (d, 2H), 7.71 (d,
15
                                 2H), 4.15-4.02 (m, 1H), 3.68
                                 (q, 2H), 2.00-1.06 (m, 25H),
20
                                 1.49 (s, 9H), 0.86 (t, 3H)
                        (CDCl<sub>3</sub>) 9.31 (s, lH), 7.92 (d, 2H),
       M-57
              161-162
                                7.61 (d, 2H), 4.18 (s, 2H),
25
                                 3.19 (s, 3H), 2.42 (t, 2H),
                                1.78-1.55 (br, 2H), 1.48 (s,
30
                                9H), 1.50-1.05 (br,
                                                         24H),
                                0.89 (t, 3H)
35
       M-58
              123-128
              238-240
                        (DMSO-d_6)13.47 (s, lH), 10.84 (s, lH),
       M-59
                                10.22-10.02 (br, 1H), 8.10-
40
                                7.70 (m, 6H), 7.50 (d, 1H),
                                2.27-2.00 (br, 1H), 1.85-0.65
45
                               -(m, 34H), 1.40 (s, 9H)
                      (CDCl_3) = 12.03 (s, 1H), 10.30 (s, 1H),
       M-60
              127-128
                                8.31 (dd, lH), 7.96 (d, 2H),
50
                                7.61 (d, 2H), 7.54-7.40 (m,
```

```
1H), 7.10 (t, 1H), 6.99 (d,
                                  1H), 4.10 (t, 2H), 2.08-1.85
5
                                  (br, 2H), 1.65-1.07 (m, 30H),
                                  1.48 (s, 9H), 0.88 (t, 3H)
10
                                  8.18 (s, 1H), 7.75 (d, 2H),
               164-165 (CDCl<sub>3</sub>)
        M - 61
                                  7.50 (d, 2H), 4.38 (s, 4H),
                                  2.36 (t, 4H), 1.75-1.50 (br,
15
                                  4H), 1.48 (s, 9H), 1.40-1.05
                                  (m, 16H), 1.38 (s, 3H), 0.85
20
                                  (t, 6H)
                                  7.94 (s, lH), 7.73 (d, 2H),
               163-164 (CDCl<sub>3</sub>)
        M - 62
                                  7.45 (d, 2H), 4.23 (s, 2H),
25
                                  2.46 (t, 2H), 1.70-1.50 (br,
                                  2H), 1.48 (s, 9H), 1.37 (s,
30
                                  6H), 1.40-1.05 (m, 26H), 0.87
                                  (t, 3H)
                                  12.17 (brs, 1H), 9.03 (brs,
35
               181-182 (CDCl<sub>3</sub>)
        M - 63
                                  1H), 7.83 (d, 2H), 7.50 (d,
                                  2H), 4.09 (t, 2H), 2.94-2.65
                                  (br, 4H), 1.70-1.05 (m, 20H),
                                 1.47 (s, 9H), 0.87 (t, 3H)
               182-183 (DMSO-d_{6}13.35 (s, 1H), 10.29 (s, 1H),
45
        M - 64
                                 17.91 (d, 2H), 7.77 (d, 2H),
                                  4.00 (t, 2H), 2.75-2.47 (br,
```

50

55

```
4H), 1.64-0.98 (m, 28H), 1.40
                                  (s, 9H), 0.84 (t, 3H)
5
               157-159 (CDCl<sub>3</sub>)
                                 11.90 (brs, 1H), 8.70 (s,
        M-65
                                 0.3H), 8.59 (s, 0.7H), 7.81-
10
                                 7.62 (m, 2H), 7.51-7.34 (m,
                                 2H), 3.66 (s, 0.9H), 3.62 (s,
                                 2.1H), 3.10-2.40 (m, 3H),
15
                                 1.90-1.00 (m, 30H), 1.47 (s,
                                 9H), 0.88 (t, 3H)
20
                       (DMSO-d_6)13.44 (s, 1H), 10.79 (s, 1H),
        M-66
               227-229
                                 8.65-8.52 (br, 1H), 8.36-8.15
                                 (m, 2H), 8.10-7.90 (m, 4H),
25
                                 7.75 (t, lH), 5.70 (t, lH),
                                 4.20 (q, 2H), 2.05-1.80 (br,
30
                                 2H), 1.65-1.02 (m, 23H), 1.40
                                 (s, 9H), 0.81 (t, 3H)
                                 12.45-12.22 (br, 1H), 9.79
35
        M-67
              135-136
                       (CDCl<sub>3</sub>)
                                 (s, lH), 8.02 (d, 2H), 7.61
                                 (d, 2H), 3.45-3.06 (m, 4H),
40
                                 2.90 (s, 4H), 1.74-1.55 (br,
                                 2H), 1.50 (s, 9H), 1.40-0.97
45
                               - (br, 16H), 0.94-0.65 (m, 12H)
                        (DMSO-d_{s})13.39 (s, lH), 10.30 (s, lH),
              181-182
       M - 68
                                7.92 (d, 2H), 7.79 (d, 2H),
50
                                 4.12-3.80 (br, 2H), 2.78-2.45
```

The light-sensitive materials of the present invention may have at least one layer containing the coupler of the present invention provided on a support. The layer in which the couplers of the present invention are to be contained may be any of the hydrophilic colloid layers provided on the support. Generally, the hydrophilic colloid layers provided on the support of the light-sensitive material include light-sensitive silver halide emulsion layers, interlayers (e.g., a color mixing inhibiting layer interposed between silver halide emulsion layers), ultraviolet light absorbing layers, anti-halation layers, protective layers and back layers. However, the layers in which the couplers of the present invention are contained are preferably silver halide emulsion layers or interlayers adjacent thereto.

5

15

It is preferred that the couplers of the present invention are used as magenta couplers in green-sensitive silver halide emulsion layers when they are applied to light-sensitive materials.

The couplers of the present invention are used in an amount of usually 1×10⁻³ to 1 mol, preferably 2×10⁻³ to 3×10⁻¹ mol per mol of silver halide in the same emulsion layer.

The light-sensitive material of the present invention may comprise a support having thereon at least one bluesensitive silver halide emulsion layer, at least one green-sensitive silver halide emulsion layer and at least one redsensitive silver halide emulsion layer in this order. However, these layers may be arranged in a different order from that described above. Further, an infrared-sensitive silver halide emulsion layer may be used in place of at least one of the above light-sensitive emulsion layers. There is no particular limitation with regard to the number of the silver halide emulsion layers. Color reproduction by subtractive color photography can be made by containing color couplers in these light-sensitive emulsion layers, said color couplers forming dyes having a relation of complementary colors to light which is sensitive to silver halide emulsions having sensitivity to respective wavelength regions. The light-sensitive layers may not correspond to the hue of developed color as described above.

Each unit light-sensitive layer comprising a plurality of silver halide emulsion layers may be a two-layer structure composed of a high-sensitivity emulsion layer and a low-sensitivity emulsion layer as described in West German Patent 1,121,470 and U.K. Patent 923,045. Such a two-layer structure as mentioned above can be preferably used. Usually, it is preferred that these layers are arranged so that light sensitivity becomes lower toward the support. Further, a non-sensitive layer may be provided between silver halide emulsion layers. If desired, the low-sensitivity emulsion layer may be provided on the side which is farther away from the support, and the high-sensitivity emulsion layer may be provided on the side which is nearer the support as described in JP-A-57-112751, JP-A-62-200350, JP-A-62-206541 and JP-A-62-206543.

Concretely, the arrangement of the layer may be made in order of low-sensitivity blue-sensitive layer (BL)/high-sensitivity blue-sensitive layer (BH)/high-sensitivity green-sensitive layer (GH)/low-sensitivity green-sensitive layer (GL)/high-sensitivity red-sensitive layer (RH)/low-sensitivity red-sensitive layer (RL), in order of BH/BL/GL/GH/RH/RL or in order of BH/BL/GH/RL/RH from the side which is farthest away from the support.

Further, there maybe used a three-layer structure composed of three layers having different light sensitivity so arranged that light sensitivity is lowered toward the support in such a manner that the uppermost layer is a silver halide emulsion layer having the highest light sensitivity, an intermediate layer is a silver halide emulsion layer having light sensitivity lower than that of the uppermost layer, and the lowermost layer is a silver halide emulsion layer having light sensitivity lower than that of the intermediate layer as described in JP-B-49-15495 (the term "JP-B" as used herein means an "examined Japanese patent publication"). Even when the unit light-sensitive layer comprises such a three-layer structure composed of three layers having different light sensitivity, the arrangement of the layers having the same color sensitivity may be made in order of intermediate-sensitivity emulsion layer/high-sensitivity emulsion layer from the side which is farther away from the support as described in JP-A-59-202464.

It is preferred that a donor layer (CL) having an interlayer effect and having different spectral sensitivity distribution from that of the main light-sensitive layer such as BL, GL, RL as described in U.S. Patents 4,663,271, 4,705,744 and 4,707,436, JP-A-62-160448 and JP-A-63-89850 is provided adjacent to or in the vicinity of the main light-sensitive layer.

As mentioned above, various layer structures and arrangements can be used according to the purposes of the light-sensitive materials.

The couplers of the present invention can be introduced into the light-sensitive materials by various conventional dispersion methods. Among them, there is preferred an oil-in-water dispersion method wherein the couplers are dissolved in a high-boiling organic solvent (optionally together with a low-boiling organic solvent), the resulting solution is emulsified and dispersed in an aqueous gelatin solution, and the resulting emulsified dispersion is added to a silver halide emulsion.

Examples of the high-boiling solvent which can be used in the oil-in-water dispersion method are described in U.

S. Patent 2,322,027. The stages and effects of latex dispersion methods as a polymer dispersion method and examples of impregnating latex is are described in U.S. Patent 4,199,363, West German Patent Application (OLS) Nos. 2,541,274 and 2,541,230, JP-B-53-41091 and Europe in Patent Laid-Open No. 029104. A dispersion method using organic silvent-soluble polymers is described in PCT WO 88/00723.

Specific exampl s of the high-b iling organic solvent which can be used in the oil-in-water dispersion method include phthalic acid esters (e.g., dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, di-2-ethylhexyl phthalate, decyl phthalate, bis(2,4-di-tert-amylphenyl) isophthalate, bis(1,1-diethylpropyl) phthalate), phosphoric or phosphonic acid esters (e.g., diphenyl phosphate, triphenyl phosphate, tricresyl phosphate, 2-ethylhexyl diphenyl phosphate, dioctyl butyl phosphate, tricyclohexyl phosphate, tri-2-ethylhexyl phosphate, tridecyl phosphate, di-2-ethylhexyl phonyl phosphate), benzoic acid esters (e.g., 2-ethylhexyl benzoate, 2,4-dichlorobenzoate, dodecyl benzoate, 2-ethylhexyl p-hydroxybenzoate), amides (e.g., N,N-diethyldodecaneamide, N,N-diethyllaurylamide), alcohols and phenols (e.g., isostearyl alcohol, 2,4-di-tert-amylphenol), aliphatic acid esters (e.g., dibutoxyethyl succinate, di-2-ethylhexyl succinate, 2-hexyldecyl tetradecanoate, tributyl citrate, diethyl azelate, isostearyl lactate, trioctyl citrate), aniline derivatives (e.g., N,N-dibutyl-2-butoxy-5-tert-octylaniline), chlorinated paraffins (e.g., chlorinated paraffins having a chlorine content of 10 to 80%), trimesic acid esters (e.g., tributyl ester of trimesic acid), dodecylbenzene, diisopropylnaphthalene, phenols (e.g., 2,4-di-tert-amylphenol, 4-dodecyloxyphenol, 4-dodecyloxycarbonylphenol, 4-(4-dodecyloxyphenylsulfonyl)phenol), carboxylic acids (e.g., 2-(2,4-di-tert-amylphenoxybutyric acid, 2-ethoxyoctanedecanoic acid) and alkylphosphoric acids (e.g., di-(2-ethylhexyl)phosphoric acid, diphenylphosphoric acid), organic solvents having a boiling point of not lower than 30°C, but not higher than about 160°C may be used as auxillary solvents together with the highboiling organic solvents. Examples of the organic solvents which can be used as auxillary solvents include ethyl acetate. butyl acetate, ethyl propionate, methyl ethyl ketone, cyclohexanone, 2-ethylethyl acetate and dimethylformamide.

10

25

30

35

40

45

50

55

The high-boiling organic solvents are used in an amount of 0 to 10.0 times, preferably 0.2 to 6.0 times, more preferably 0.5 to 5.0 times by weight the amount of the coupler. It is preferred from the viewpoints of hue, fastness to light and color developability that the high-boiling organic solvents are used in an amount of 2.5 to 5.0 times by weight the amount of the coupler.

Silver halide emulsions, other materials (e.g., additives), photographic constituent layers (e.g., layer arrangement), processing methods and processing additives described in the following patent specifications, particularly EP 0,355,660A2 can be preferably applied to the light-sensitive materials of the present invention.

5	EP0,355,660A2	The 53th line of page 45 to the 3rd line of page 47; and the 20th line to the 22nd line of page 47	}	The 4th line to the 9th line of page 47	The 10th line to the 15th line of page 47
15		upper he er d d		ottom	13th .umn
20	JP-A-2-33144	ine of right upage 28 to the of right lower page 29; and ne to the 5th ige 30		line to the bottom lower column 29	ne to the upper col
25	J-4C	The 16th line of right upper column of page 28 to the llth line of right lower column of page 29; and the 2nd line to the 5th line of page 30	•	The l2th lin of right low of page 29	The first line to the l3th line of left upper column of page 30
30 .		E OHOPH	<u></u>	m 40	E 0
35	5272	fright fpage 10 e of left fpage 12; ne from right f page 12 to of left	to the 14th lower column ind the third bottom of lef of page 13 to left lower	ne from the left lower page 12 to the rom the bottom of r column of page e first line of r column of page tr column of page 9th line from the right upper	from the of upper of 2 to page 38
40	JP-A-62-21527	The 6th line of right upper column of page 10 to the 5th line of left lower column of page 12 and the 4th line from the bottom of right upper column of page 12 the 17th line of left upper column of page 13	The 6th line to the 14th line of left lower column of page 12; and the third line from the bottom of left upper column of page 13 to column of page 18	ttom of lumn of h line f ght lowe ; and th ght lowe to the ttom of	e 8th line f ttom of righ lumn of page e bottom of
45		the	######################################		t c c t
50	Photographic constituent element, etc.	Silver halide emulsion	Solvents for silver halide	cal tizing	Spectral sensitizing agent (spectral sensitization method)
55	Pho con eler	Silver h emulsion	Solv	Chemic sensi agent	Spectra sensiti agent (sensiti method)

5	EPO, 355, 660A2	The 16th line to the 19th line of page 47		The 15th line to the 27th line of page 4; the 30th line of page 5 to the bottom of page 28; the 29th line to the 31st line of page 45; and the 23rd line of page 63	-	The 22nd line to the 31st line of page 65
15		• •				
20	JP-A-2-33144	The 14th line of left upper column of page 30 to the first line of right upper column of page 30		The 14th line of right upper column of page 3 to the bottom of left upper column of page 18; and the 6th line of right upper column of page 30 to the 11th line of right lower column of page 35		The 14th line of right lower column of page 37 to the llth line of left upper column of page 38
30	, j	The 14th column o first li column o		The 14th upper co to the b upper co and the upper co to the 1		The 14th lower co
35	72	left upper 9 to the upper 2	left lower 2 to the t upper 1	right page 91 of n of	left upper 121 to of right page 125	right page 125 left page 127
40	JP-A-62-215272	e ist line of left u lumn of page 39 to t ttom of right upper lumn of page 72	The 1st line of left lower column of page 72 to the 3rd line of right upper column of page 91	The 4th line of right upper column of page to the 6th line of left upper column of page 121	The 7th line of left upper column of page 121 to the first line of right upper column of page 125	The 2nd line of right upper column of page 125 to the bottom of left lower column of page 127
45	d C	The 1st li column of bottom of column of	The ls column 3rd li	The 4t upper to the left u	The 7t column the fi	The 2nd upper to the lower
50	Photographic constituent element, etc.	Emulsion Stabilizer	Development accelerator	Color coupler (cyan, magenta and yellow couplers)	Supersensitizing agent	Ultraviolet light absorber
<i>55</i>	Ph co el	Emu Sta	Dev	(cy and cou	Supers	Ultra light absork

10	EP0,355,660A2	The 30th line of page 4 to the 23rd line of page 5; the 1st line of page 29 to the 25th line of page 45; the 33rd line to the 40th line of page 45; and the 2nd line to the 2lst line of page 65	The 1st line to the 51st line of pag 64	The 51st line of page 63 to the 56th line of page 64		1
15		, to	right lower 5 to the 8 bottom 1umn of	the column 12th column 12th column in line of page 36		
20	JP-A-2-33144	The 12th line of right upper column of page 36 the 19th line of left upper column of page 37	e 35 the	of righ 27 to 10per 10wer 10wer the 7th	1	
25	JP-A-	The 12th line o upper column of the 19th line o upper column of	The 14th line of r column of page 35 4th line from the of left upper colu page 36	loth common page of page page page page page	i .	
30		The uppe uppe	The colu 4th of l	The coll of lin rig		
35	15272	fright Fpage 127 e of left fpage 137	ne of left lower page 137 to the right upper page 144	of left lower ye 144 to of right of page 146	of right of page 146 ine of left of page 155	Sth line of left lower mn of page 155 to the line of right lower mn of page 155
40	JP-A-62-215272	The lst line of lower column of to the 8th line lower column of	ni Of Of	line of pac line olumn	The 8th line of topper column of to the 4th line lower column of	The 5th line of left lo column of page 155 to t 2nd line of right lower column of page 155
45		The 1s lower to the lower	The 9th column nic bottom column column	The colu	The uppe to t	The colu
50	Photographic constituent element, etc.	Anti-fading agent (image stabilizer)	High-boiling and/or low- boiling organic solvent	Dispersion method of photographic additive	Hardening agent	Developing agent precursor
55	Pho con ele	Anti agen stab	High and/ boil solv	Dist mett phot addi	Harde agent	Develc agent precur

5	EPO, 355, 660A2	t	The 29th line of page 66 to the 13th line of page 67	The 41st line to the 52nd line of page 45	The 18th line to the 22nd line of page 66 ·	line of page 1st line of		The 32th line of page 65 to the 17th line of page 66
10	EP0, 3		The 29th line of 66 to the 13th li of page 67	The 41st 52nd line	The 18th 22nd line	The 57th line 64 to the 1st page 65	-	The 32th line of 65 to the 17th li page 66
15	į							
20	JP-A-2-33144	į.	of right of page 38 to of left upper e 39	line to the 15th right upper column 28	of left of page 38 ne of right of page 38	line to the llth right upper column 36		left upper e 37 to the right lower e 37
25	JP-A-2	!	The 18th line of right upper column of page 3 the 3rd line of left u column of page 39	The 1st line line of right of page 28	The 12th line of left upper column of page 38 to the 7th line of right upper column of page 38	The 8th line to the line of right upper of page 36	!	The bottom of left upper column of page 37 to the 13th line of right lower column of page 37
	•		очен	640	СТСН	HHO		6040
35	5272	the 9th ower column	f right page 155 e of left page 156	f left page 156 e of right f page 156	f right page 156 f right page 184	left page 185 of right page 188	the 8th ower 188	right page 188 e of right page 193
40	JP-A-62-215272	ard line to the of right lower page 155	The 19th line of right lower column of page 155 to the 14th line of left upper column of page 156	The 15th line of left upper column of page 156 to the 14th line of right lower column of page 156	The 15th line of right '['löwer column of page 156 to the bottom of right lower column of page 184	The 1st line of I upper column of I to the 3rd line of lower column of I	The 4th line to the line of right lower column of page 188	The 9th line of right lower column of page 188 to the 10th line of right lower column of page 193
45		The 3 line of pa	The l lower to th	The 15t upper c to the lower	The libert to the lower	The 1 upper to th lower	The 4 line colum	The 9 lower to th lower
50	Photographic constituent element, etc.	ainer sing ind	پې	structure	1	Color mixing inhibitor	ion oller	ltor
55	Photo const eleme	Restrainer releasing compound	Support	Layer	Д уе	Color mix inhibitor	Gradation controller	Stain inhibitor

5	EPO,355,660A2			The 23rd line to the 28th line of page 66	i !	! •
15		right upper 8 to the lower column the loth line of left lower 7 to the 9th wer column of	upper the 9th column	er er		
20	JP-A-2-33144	ine of right upper page 18 to the right lower column 4; and the 10th line bottom of left lowe; page 27 to the 9th ight lower column on	of left upge 25 to tot tot tot to tot to tot to tot to to	to the 18th right upper ge 38		
25	JP-A-	in 1st 1 inm of tom of page 2 om the inm of ine of r	The 1st line of left upper column of page 25 to the 9th line of right lower column of page 27	The 8th line to the line line of right column of page 38		!
30	1	The Col	2020	FAO		
35	15272	lst line of left lower mmn of page 201 to bottom of right upper mmn of page 210	E left E page 210 S of left E page 222	f left f page 222 of left f page 225	f right f page 225 e of right f page 227	f right f page 227 e of left f page 230
40	JP-A-62-215272	The 1st line of left column of page 201 t the bottom of right column of page 210	The 1st line of lower column of to the 5th line lower column of	The 6th line of left lower column of page to the bottom of left upper column of page	The 1st line of upper column of to the 2nd line upper column of	The 3rd line of upper column of to the 1st line upper column of
45		The Colur	The line to the lower lower	The 6t lower to the	The uppe to t uppe	The uppe to t uppe
50	Photographic constituent element, etc.	Surfactant	Fluorine- containing compound (antistatic agent, coating aid, lubricant, anti-sticking	Binder (hydrophilic colloid)	Thickener	Antistatic agent
<i>55</i>	Pho con	Surf	Fluorin compoun (antist agent, aid, lu anti-st	Binder (hydro colloi	Thic	Antis agent

10	EPO,355.660A2	1		The 14th line of page 67 to the 28th line of page 69
15				c
20	JP-A-2-33144			The 4th line of left upper column of page 39 to the bottom of left upper column of page 42
25	IP-A-2	1	ļ	line of pag of lef
30	ט			The 4th column o bottom o of page
35	15272	The 2nd line of left upper column of page 230 to the bottom of page 239	The 1st line of left upper column of page 240 to the bottom of right upper column of page 240	right page 3 of right page 10
40	JP-A-62-215272	d line of of page ttom of p	t line of column of bottom c	The 7th line of right upper column of page to the 5th line of riupper column of page
45		The 2n column the bo	The 1s upper to the upper	The 7t upper to the upper upper
50	Photographic constituent element, etc.	Polymer latex	Matting agent	Photographic The 7th processing upper of method (procestory to the sing stage, upper of additive, etc.)
55	Pho con: eler	Polyi	Matt	Photo proco metho sing addi

The cited places of JP-A-62-215272 include amendment dated March 16, 1987 and attached to the end of the publication. Among the above color couplers, short wave type yellow couplers described in JP-A-63-231451, JP-A-63-123047, JP-A-63-241547, JP-A-1-173499, JP-A-1-213648, and JP-A-1-250944 are preferred as the yellow couplers.

Note

Any of silv r chloride, silver bromid , silver chlorobromide, silver iodochloride, silver iodochloride and silver iodobromide can b used as silver halide in the present invention. Among them, silver iodobromide, silver iodochloride r silver iodochlorobre mide having a silver iodide content of 0.1 t 30 mol% are preferred and silver iodide or silver iodobromide having a silver iodide content of 1 to 25 mol% are particularly preferred when n silver halide is applied to color light-sensitive materials for photographing or reversal color r light-sensitive materials (e.g., color negative films, reversal color paper). When silver halide is applied to direct positive color light-sensitive materials (e.g., color proofs containing previously fogged internal latent image type emulsions), silver chloride, silver bromide or silver chlorobromide is preferred, and silver bromide is particularly preferred. When silver halide is applied to light-sensitive materials for paper, silver chloride or silver chlorobromide containing substantially no silver iodide is preferred, and silver chlorobromide having a silver chloride content of preferably not lower than 80 mol%, more preferably not lower than 95 mol%, most preferably not lower than 98 mol% or pure silver chloride emulsion is particularly preferred.

The light-sensitive materials of the present invention may contain various color couplers in the same layer or in different layers, so long as the effect of the present invention can be obtained. Concrete examples of the color couplers are described in patent specifications cited in <u>Research Disclosure</u> (RD) No. 17643, item VII-C to G and <u>ibid.</u> No. 307105, item VII-C to G, JP-A-62-215272, JP-A-3-33847, JP-A-2-33144 and European Patent Laid-Open Nos. 447,969A and 482,552A.

Examples of yellow couplers include those described in U.S. Patents 3,933,501, 4,022,620, 4,326,024, 4,401,752 and 4,248,961, JP-B-58-10739, U.K. Patents 1,425,020 and 1,476,760, U.S. Patents 3,973,968, 4,314,023, 4,511,649 and 5,118,599, European Patents 249,473A and 0,447,969, JP-A-63-23145, JP-A-63-123047, JP-A-1-250944 and JP-A-1-213648.

20

30

35

55

Particularly preferred examples of yellow couplers include yellow couplers of general formula (Y) described in JP-A-2-139544 (left upper column of page 18 to left lower column of page 22), acylacetamide yellow couplers (characterized by acyl group) described in Japanese Patent Application No. 3-179042 and European Patent Laid-Open No. 0,447,969, and yellow couplers of general formula (Cp-2) described in Japanese Patent Application No. 3-203545 and European Patent Laid-Open No. 0,446,863A2.

Preferred magenta couplers include 5-pyrazolone compounds and pyrazoloazole compounds. Magenta couplers described in U.S. Patents 4,310,619 and 4,351,897, European Patent 73,636, U.S. Patents 3,061,432 and 3,725,067, Research Disclosure No. 24220 (June 1984), JP-A-60-33552, Research Disclosure No. 24230 (June 1984), JP-A-60-43659, JP-A-61-72238, JP-A-60-35730, JP-A-55-118024, JP-A-60-185951, U.S. Patents 4,500,630, 4,540,654 and 4,556,630 and PCT WO88/04795 are more preferred.

Particularly preferred magenta couplers are pyrazoloazole magenta couplers of general formula (I) described in JP-A-2-139544 (right lower column of page 3 to right lower column of page 10) and 5-pyrazolone magenta couplers of general formula (M-1) described in JP-A-2-139544 (left lower column of page 17 to left upper column of page 21). Most preferred are the above-described pyrazoloazole magenta couplers.

Cyan couplers include phenol couplers and naphthol couplers. Cyan couplers described in U.S. Patents 4,052,212, 4,146,396, 4,228,233, 4,296,200, 2,369,929, 2,801,171, 2,772,162, 2,895,826, 3,772,002, 3,758,308, 4,334,011 and 4,327,173, West German Patent Laid-Open No. 3,329,729, European Patents 0,121,365A and 0,249,453A, U.S. Patents 3,446,622, 4,333,999, 4,775,616, 4,451,559, 4,427,767, 4,690,889, 4,254,212 and 4,296,199 and JP-A-61-42658 are preferred. Further, there can be used pyrazoloazole couplers described in JP-A-64-553, JP-A-64-554, JP-A-64-555 and JP-A-64-556; pyrrolotriazole couplers described in European Patent Laid-Open Nos. 0,488,248 and 0,491,197; pyrroloimidazole couplers described in European Patent Laid-Open No. 0,456,226A; pyrazolopyrimidine couplers described in JP-A-64-46753; imidazole couplers described in U.S. Patent 4,818,672 and JP-A-2-33144; cyclic active methylene type cyan couplers described in JP-A-64-32260; and couplers described in JP-A-1-183658, JP-A-2-262655, JP-A-2-85851 and JP-A-3-48243.

Typical examples of dye forming polymer couplers are described in U.S. Patents 3,451,820, 4,080,211, 4,367,282, 4,409,320 and 4,576,910, U.K. Patent 2,102,137 and EP 341,188A.

Preferred examples of couplers which give developed dyes having proper diffusibility include those described in U.S. Patent 4,366,237, U.K. Patent 2,125,570, EP 96,570 and West German Patent Laid-Open No. 3,234,533.

Couplers which release a photographically useful residual group by coupling can be used in the present invention. Preferred examples of DIR couplers which release a restrainer include those described in patent specifications cited in the aforesaid RD No. 17643, item VII-F, JP-A-57-151944, JP-A-57-154234, JP-A-60-184248, JP-A-63-37346 and U.S. Patents 4,248,962 and 4,782,012.

Preferred examples of couplers which release imagewise a nucleating agent or a development accelerator during development include those described in U.K. Patents 2,097,140 and 2,131,188, JP-A-59-157638 and JP-A-59-170840.

Examples of other couplers which can be used in the color photographic elements of the present invention include competitive couplers described in U.S. Patent 4,130,427; polyequivalent type couplers described in U.S. Patents 4,283,472, 4,338,393 and 4,310,618; DIR redox compound-releasing couplers, DIR coupler releasing couplers. DIR coupler-r leasing redox compounds and DIR redox-releasing redox compounds described in JP-A-60-185950 and JP-

A-62-24252; couplers which release a dye whos color is restored to the original color aft in elimination as described in European Pat int 173,302A; bleaching accelerator-releasing couplers discribed in <u>FID No. 11449, ibid. No. 24241 and JP-A-61-201247</u>; ligand-releasing couplers discribed in U.S. Patent 4,553,477; leuco dye-releasing couplers discribed in JP-A-63-75747; and fluorescent dye releasing couplers described in U.S. Patent 4,774,181.

It is pr ferred that the hydrophilic colloid layers of the light-sensitive mat rials of the pr sent invention contain dyes decolorizable by processing (particularly oxonol dyes) (as described in EP 0,337,490A2, pages 27 to 76) in such an amount as to give an optical reflection density of at least 0.70 at 680 nm to improve the sharpness of image, or that at least 12 wt% (more preferably at least 14 wt%) of titanium oxide having a surface treated with a divalent to tetravalent alcohol (e.g., trimethylol ethane) is contained in the water-resistant resin layer of the support to improve the sharpness of image.

When various anti-fading agents in combination are contained in the light-sensitive materials of the present invention, properties with regard to fading in high density developed color area as well as in low density developed color area can be improved, and well-balanced color with regard to fading of three colors of yellow, magenta and cyan can be obtained.

10

15

50

55

Examples of organic anti-fading agents for cyan, magenta and/or yellow dye images include hydroquinones, 6-hydroxy chromans, 5-hydroxycoumarans, spiro-chromans, p-alkoxyphenols, hindered phenols such as typically bisphenols, gallic acid derivatives, methylenedioxybenzenes, aminophenols and ether or ester derivatives obtained by silylating or alkylating the phenolic hydroxy group of these compounds. Further, metal complexes such as typically (bissalicylaldoximato)nickel complex and (bis-N,N-dialkyldithiocarbamato)nickel complex can be used.

Specific examples of the organic anti-fading agents include hydroquinones described in U.S. Patents 2,360,290, 2,418,613, 2,700,453, 2,701,197, 2,728,659, 2,732,300, 2,735,765, 3,982,944 and 4,430,425, U.K. Patent 1,363,921 and U.S. Patents 2,710,801 and 2,816,028; 6-hydroxychromans, 5-hydroxycoumarans and spiro-chromans described in U.S. Patents 3,432,300, 3,573,050, 3,574,627, 3,698,909 and 3,764,337 and JP-A-52-152225; spiro-indanes described in U.S. Patent 4,360,589; p-alkoxyphenols described in U.S. Patent 2,735,765, U.K. Patent 2,066,975, JP-A-59-10539 and JP-B-57-19765; hindered phenols described in U.S. Patents 3,700,455 and 4,228,235, JP-A-52-72224 and JP-B-52-6623; gallic acid derivatives described in U.S. Patent 3,457,079; methylenedioxybenzenes described in U.S. Patent 4,332,886; aminophenols described in JP-B-56-21144; hindered amines described in U.S. Patents 3,336,135 and 4,268,593, U.K. Patents 1,326,889, 1,354,313 and 1,410,846, JP-B-51-1420, JP-A-58-114036, JP-A-59-53846, JP-A-59-78344, JP-A-1-250955 (compounds of formula III), JP-A-2-208635 (compounds of formula II) and JP-A-2-217845 (compounds of formula III); metal complexes described in U.S. Patents 4,050,938 and 4,241,155 and U.K. Patent 2,027,731(A); and phosphorus compounds described in JP-A-1-287564 (compounds of formula A-1) and JP-A-3-25438 (compounds of formula II). These compounds (in an amount of usually 5 to 100% by weight based on the amount of the corresponding coupler) are co-emulsified together with couplers and added to the light-sensitive layers, whereby the object thereof can be achieved. These compounds may be used in combinations of two or more of them to improve their effect. For example, these compounds may be used together with pyrazoloazole couplers described in JP-A-2-139544 and can be preferably used together with the couplers of the present invention.

It is preferred that the light-sensitive materials of the present invention contain dye image preservability-improving compounds of general formulas (IV), (V) and (VI) described in EP 0,277,589A2 and JP-A-3-48845 together with the couplers. Namely, it is preferred that the light-sensitive materials of the present invention contain a compound (F) and/or a compound (G), said compound (F) being chemically bonded to an aromatic amine developing agent left behind after color development to form a compound which is chemically inert and substantially colorless, and said compound (G) being chemically bonded to the oxidation product of an aromatic amine developing agent left behind after color development to form a compound which is chemically inert and substantially colorless. The use of these compounds is preferred from the viewpoint of preventing stain from being formed by a developed dye produced by the reaction of the coupler with a color developing agent or the oxidant thereof left behind in the layer during storage after processing or to prevent other side effects from being caused. It is preferred that the aforesaid anti-fading agents and these dye image preservability-improving compounds are used together with the couplers of the present invention. For example, a method described in JP-A-3-48845 may be mentioned and can be preferably applied to the couplers of the present invention.

The light-sensitive materials of the present invention may contain, as color fogging inhibitors, hydroquinone derivatives, aminophenol derivatives, gallic acid derivatives and ascorbic acid derivatives.

It is more effective in preventing cyan dye image from being deteriorated by heat and particularly light that ultraviolet light absorbers are contained in the cyan color forming layer and both layers adjacent thereto. Examples of the ultraviolet light absorbers include aryl group-substituted benztriazole compounds (e.g., those described in U.S. Patent 3,533,794), 4-thiazolidone compounds (e.g., those described in U.S. Patents 3,314,794 and 3,352,681), benzophenone compounds (e.g., those described in JP-A-46-2784), cinnamic esters (e.g., those described in U.S. Patents 3,705,805 and 3,707,395), butadiene compounds (e.g., those described in U.S. Patents 3,406,070 and benzoxazole compounds (.g., those described in U.S. Patents 3,406,070 and

4,271,307). Ultraviolet light absorbing coupl rs (e.g., α-naphthol cyan dye forming couplers) and ultravi let light absorbing polym rs may be used. The se ultraviolet light absorbers may be mordanted into a specific layer. Among these compounds, the aryl group-substituted benztriazol compounds are preferred.

It is pref rred that the hydr philic coll id layers of the light-sensitive materials of the pres in invention contain antifungal agents as described in JP-A-63-271247 to prevent an image from bing deteriorated by the growth of mold and bacteria in the layers.

Examples of suitable supports which can be used in the present invention include those described in the aforesaid Research Disclosure (RD) No. 17643, page 28 and <u>ibid.</u> No. 18716 (right column of page 647 to left column of page 648).

As supports used for the light-sensitive materials of the present invention, there may be used white polyester supports for display and supports wherein a white pigment-containing layer is provided on the silver halide emulsion layer side thereof. It is preferred that an antihalation layer is provided on the silver halide emulsion layer-coated side of the support or on the back sides thereof. It is also preferred that the transmission density of the support is set to a value in the range of 0.35 to 0.8 so as to allow display to be enjoyed by reflected light as well as transmitted light.

The light-sensitive materials of the present invention may be exposed to visible light or infrared light. Exposure method may be low illumination exposure or high illumination short-time exposure. In the latter case in particular, a laser beam scanning exposure system wherein exposure time per one pixel is shorter than 10⁻⁴ seconds is preferred.

It is preferred that a band stop filter described in U.S. Patent 4,880,726 is used when exposure is conducted. When this filter is used, light color mixing can be eliminated and color reproducibility can be improved.

After imagewise exposure, the light-sensitive materials of the present invention are subjected to color development, desilverization and rinsing and/or stabilization.

The details of the processing methods of the light-sensitive materials are described in Research Disclosure No. 17643, pp. 28 to 29, Research Disclosure No. 17643 (left column to right column of page 651), Research Disclosure No. 307105, pp. 880 to 881, JP-A-2-207250 (the first line of right lower column of page 26 to the 9th line of right upper column of page 34), JP-A-4-97355 (the 17th line of left lower column of page 5 to the 20th line of right lower column of page 18), JP-A-3-33847, JP-A-3-213853, JP-A-3-237456, JP-A-3-293662 and JP-A-4-130432 in addition to the patent specifications listed hereinbefore.

Color developing agents described in the aforesaid <u>Research Disclosure</u> and patent specifications, European Patent Laid-Open No. 410450 and JP-A-4-11255 can be preferably used in the color development stage.

Generally, the desilverization stage comprises a bleaching stage, a bleaching-fixing stage and a fixing stage. More specifically, examples of the desilverization stage include the following combinations.

Bleaching-fixing
Bleaching-rinsing-fixing
Bleaching-blixing
Bleaching-rinsing-blixing
Bleaching-blixing-fixing
Blixing
Fixing-bleaching-fixing

10

15

20

35

40

Conventional bleaching agents can be used as bleaching agents in the bleaching solutions or in the blixing solutions. Preferred bleaching agents are iron(III) complex salts of organic acids. Examples of the organic acids which can be used in the preparation of the iron(III) complex salts of the organic acids include ethylenediaminetetraacetic acid, 1,3-diaminopropanetetraacetic acid, 1,4-butylenediaminetetraacetic acid, diethylene thioether diaminetetraacetic acid, glycol ether diaminetetraacetic acid, diethylenetriaminepentaacetic acid, cyclohexanediaminetetraacetic acid, iminodzacetic acid, methyliminodiacetic acid and N-(2-acetamido)iminodiacetic acid. In addition to the iron(III) complex salts of the organic acids, there can be preferably used the metal complex salts of organic acids described in JP-A-63-80256, JP-A-63-97952, JP-A-63-97953, JP-A-63-97954, JP-A-1-93740, JP-A-3-216650, JP-A-3-180842, JP-A-4-174432, JP-A-5-113631, JP-A-5-66527, European Patent Laid-Open Nos. 458,131A1, 461,413A1, 461,676A1, 468,325 and 430,000A1, West German Patent Laid Open No. 3,912,551, and Japanese Patent Application Nos. 2-196972 and 4-129769. These bleaching agents may be used either alone or in combination of two or more of them in the processing solutions having an ability of bleaching.

Generally, ammonium thiosulfate is used as the fixing agent in the blixing solutions or in the fixing solutions. However, there can be used other conventional fixing agents such as meso-ionic compounds, thioether compounds, thioureas, iodides and hypo. The details thereof are described in JP-A-60-61749, JP-A-60-147735, JP-A-64-21444, JP-A-1-201659, JP-A-1-210951, JP-A-2-44355 and U.S. Patent 4,378,424.

Stabilizing solutions described in U.S. Patent 4,786,583 can be used in the rinsing stage and stabilization stage of the present invention. Formaldehyde can be used as the stabilizing agent in the stabilizing solutions. However, N-methylol azoles, hexamethyl netetramine, formaldehyde bisulfit adducts, dim thylol urea and azolylmethylamine de-

rivatives are pr f rred from the viewpoint of the saf ty f working atmosphere. These compounds are d scribed in JP-A-2-153348, JP-A-5-34889, JP-A-4-214556 and JP-A-4-313753. Particularly, the us fac mbination of azol s such as 1,2,4-triazole and azolylmethylamines such as 1,4-bis(1,2,4-triazol-1-ylm thyl)piperazine r derivatives thereof (described in JP-A-4-359249) is pref rred because image stability is high and formaldehyde vap r pressure is low.

The present invention is now illustrated in greater detail by reference to the following examples.

EXAMPLE 1

5

10

15

20

25

30

35

40

45

50

55

The coupling reaction product, i.e., a dye, of the coupler M-1 of the present invention with the oxidation product of the developing agent (D-1) was synthesized according to the following reaction scheme (E).

Reaction scheme (E)

Coupler M-1

$$t-C_4H_9 \longrightarrow N \longrightarrow N \longrightarrow C_2H_5$$

$$CH_2CH_2NHSO_2CH_3$$

$$N \longrightarrow OC_8H_{17}$$

$$NHSO_2 \longrightarrow C_8H_{17}-t$$

Dye MD-1

To 1.0 g of coupler M-1, 1.0 g of developing agent D-1 and 10 g of potassium carbonate, there were added 100 ml of water, 100 ml of ethyl acetate and 30 ml of ethanol. The mixture was stirred at room temperature. To the resulting solution, there was added 1.0 g of ammonium persulfate, and the mixture was stirred for one hour. After completion of the reaction, the aqueous layer was removed, and the ethyl acetate solution was washed with water and then concentrated under reduced pressure. The residue was separated from silica gel column chromatography and recrystal-lized from a mixed solvent of n-hexane and ethyl acetate. There was obtained 0.87 g of dye MD-1. Melting point: 158 to 162°C.

In the same manner as described above, dyes MD-2 to MD-18 were synthesized from couplers M-2 to M-13, M-15, M-28, M-29, M-43 and M-45, respectively.

In the same manner as described above, dyes MD-19, MD-20 and MD-21 were synthesiz id from comparative couplers a, b and c, r spectively.

MD-110 15 20 MD-2CH2CH2NHSO2CH3 25 30 MD - 335 CH2CH2NHSO2CH3 40 CeHis 45 50

5

MD-4

t-C₄H₉ $N - N - C_2H_5$ $CH_2CH_2NHSO_2CH_3$ $N + COCC_1eH_3$

MD-5

CH₃

CH₂

CH₂

CH₂

CH₂

CH₂

CH₂

CH₃

CH₂

CH₂

CH₂

CH₃

CH₂

CH₂

CH₃

CH₂

CH₃

CH₂

CH₃

CH₂

CH₃

CH₂

CH₃

CH₃

CH₂

CH₃

CH

MD-6

CH₃

CH₂

CH₂

CH₂

CH₂

CH₂

CH₂

CH₂

CH₂

CH₃

CH₂

CH₂

CH₂

CH₃

CH₂

CH₃

CH₂

CH₃

CH

50

20

25

30

*3*5

40

45

MD-7

MD-8

M D - 9

MD - 10CH2CH2NHSO2CH3 MD - 11.C2H5 MD - 12

Comparative coupler (a)

C1
NH
NH
OC8H17

C8H17-t

Comparative coupler (b)

C1 $N = C_{4}H_{9}$ $N = C_{5}H_{11}-t$ $OCH_{3} C_{6}H_{13}$

Comparative coupler (c)

C1 NH $N = C_6H_{13}$ $-NHCOCHO - C_5H_{11}-t$ $C_5H_{11}-t$

55

50

5

10

15

20

25

30

Each of dyes M-1 to M-21 synthesized above was dissolved in ethyl acetate, and visible absorption spectrum was measured. Maximum absorption wavelength (λ max), an extinction coefficient (ϵ), a half width (λ /2), a value ($\Delta\lambda_1$) which represents a degree of the cut of the foot on the short wavelength side and a value ($\Delta\lambda_2$) which represents a degree of the cut of the long wavelength side, are shown in Table 15.

50

Each of the values $\mathcal{N}2$, $\Delta\lambda_1$ and $\Delta\lambda_2$ was measured by controlling the concentration of the dye to a value which gave absorbance of 1.0. The values of $\mathcal{N}2$, $\Delta\lambda_1$ and $\Delta\lambda_2$ were determined from the visible absorption spectrum curve as shown in Fig. 1. Namely, $\mathcal{N}2$ is a value of the width of absorption at an absorbance of 0.5; the value $\Delta\lambda_1$ is a difference ($\Delta\lambda_1$ = λ max-a) between λ max and the value of long wave at an absorbance of 0.1 on the short wavelength side; and the value $\Delta\lambda_2$ is a difference ($\Delta\lambda_2$ =b- λ max) between λ max and the value of long wave at an absorbance of 0.1 on the long wavelength side.

5 .			Invention	=	=	=	=		=	=	=	=	±	=	=	=
10		672	54.9	55.4	55.7	55.8	55.5	55.3	54.6	55.1	55.9	55.4	55.9	54.7	55.3	55.8
15		Δλ ₁ (nm)	82.7	83.0	83.7	83.7	83.4	83.0	81.7	82.7	83.4	83.4	83.7	83.1	83.1	83.2
20		Half width (\lambda \frac{1}{2}) (nm)	6.89	0.69	0.69	69.4	0.69	68.3	69.7	9.79	0.69	68.5	69.4	68.1	68.3	69.2
<i>25</i>	TABLE 15	Maximum absorption wavelength (\lambdamax) (\lambdamax)	540.2	540.3	540.7	539.7	540.5	541.9	539.0	542.2	540.5	541.6	540.0	541.7	541.6	540.4
35		Extinction coefficient (E)	5.35×104	5.33×104	5.23×104	5.31×104	5.41×104	5.40×104	5.30×104	5.42×104	5.30×104	5.32×104	5.32×104	5.46×104	5.40×104	5.25×104
40		Melting point (°C)	158-162	157-158	140-141	92-97	170-171	M-6 [' " 123-124	150-151	155-157	151-152	153-155	140-143	118-120	63-72	130-132
45 50		Coupler No.	M-1	M-2	M-3	A-A	M-5	M-8 [' F ii	M-7	M-8	6-W	M-10	M-11	M-12	M-13	M-15
55		Dye No.	MD-1	MD-2	MD-3	MD-4	MD-5	MD-6	MD-7	MD-8	MD-9	MD-10	MD-11	MD-12	MD-13	MD-14

τ	
7	i
	L
-	1
Š	
••	
_	
•	
200	۰
•	١
•	ì
L	
ď	
ď	
<u>,</u>	
[z	1
[z	1
[z	
[z	1

		Invention	Ξ	=	=	Comp. Ex.	=	=
	Δλ2	55.2	54.5	55.8	55.3	59.8	61.9	84.1 , 62.5
	(mm)	82.9	82.7	83.8	83.5	82.8	84.2	84.1
אר פון איניין	(λ½) (nm)	68.3	8.79	9.69	68.3	68.5	71.3	71.6
Maximum absorption	(nm)	541.8	542.3	539.3	539.5	541.6	538.4	538.4
Extinction	(5)	5.32×104	5.30×104	5.20×104	5.59×104	4.85×10 ⁴	4.81×104	136-138 4.83×104
_	point (°C)	120-124	186-188	109-111	135-137	147-156	133-134	136-138
ָ ֖֖֖֖֖֖֖֖֓֞֞֝֞	No.	M-28	M-29	M-43	M-45	Comparative 1.	. a .:	=
	Dye No.	MD-15	MD-16	MD-17	MD-18	MD-19	MD-20	MD-21

It has been found in Table 15 that the dyes blained from the couplers of the present invinition have a high extinction coefficient and a small $\Delta\lambda_2$ value in particular and are excellent in the cut of the foot on the long wave length side in comparison with the dyes obtained from comparative couplers. It can be considered that the couplers of the present invention scarcely cause color turbidity, are excellent in color reproducibility and can give a high density.

EXAMPLE 2

5

30

35

40

45

50

55

An undercoated triacetyl cellulose support was used, and single layer light-sensitive materials 101 to 129 having the following structure for evaluation were prepared by using couplers M-1 to M 15, M-15, M-22 to M-26, M-34, M-43 and M-45 and Comparative couplers a, b, c and d as indicated in Table 16. The same comparative couplers a, b and c as those used in Example 1 were used. Comparative coupler (d) was the following compound.

Comparative coupler (d) (coupler described in JP-A-3-48845)

Preparation of coating solution for emulsion layer

There was dissolved 1.85 mmol of coupler in 10 cc of ethyl acetate and 2 g of tris(2-ethylhexyl) phosphate (solvent). The resulting solution was emulsified and dispersed in 33 g of a 14% aqueous gelatin solution containing 3 cc of a 10% sodium dodecylbenzenesulfonate solution. Separately, a silver chlorobromide (silver bromide content: 70 mol%) emulsion was prepared and sulfur-sensitized. The emulsion and the emulsified dispersion prepared above were mixed and dissolved, and a coating solution was prepared so as to give the following composition. Sodium salt of 1-oxy-3,5-dichloro-s-triazine was used as a hardening agent.

Layer structure

Samples used in-this experiment had the following layer structure (numerals being coating weight per m²).

Support

Triacetyl cellulose support

Emulsion layer

The above silver chlorobromide emulsion	4.0 mmol
Coupler	1.0 mmol
Tris(2-ethylhexyl) phosphate	1.08 g
Gelatin	5.2 g

protective layer

G latin	1.3 g
Acrylic-modified c polymer of polyvinyl alcohol	0.17 g
(a degree of modification: 17%)	
Liquid paraffin	0.03 g

Samples were imagewise exposed to light through an optical wedge and processed in the following processing stage.

Processing stage	Temperature (°C)	Time (min)
Color Development	33	2
Bleaching-fixing	33	1.5
Rinse	33	3

Composition of processing solution

	Color developing solution	
20	Distilled water	800 ml
	Triethanolamine	8.1 g
	Diethylhydroxylamine	4.2 g
	Potassium bromide	0.6 g
25	Sodium hydrogencarbonate	3.9 g
	Sodium sulfite	0.13 g
	N-Ethyl-N-(β-methanesulfonamidoethyl)-3-methyl-4-aminoaniline sulfate	5.0 g
	Potassium carbonate	18.7 g
	Water to make	1000 ml
30	pH	10.25

Bleaching-fixing solution	
Distilled water	400 ml
Ammonium thiosulfate (700 g/ℓ)	150 mi
Sodium sulfate	18.0 g
Ammonium ethylenediaminetetraacetato ferrate	55.0 g
Disodium ethylenediaminetetraacetate	5.0 g
Water to make	1000 ml
pH	6.70

The visible spectral absorption spectrum of each of the thus-obtained samples 101 to 129 was measured at a dye concentration which gave an absorbance of 1.0. In the same manner as in Example 1, λ max, λ /2, $\Delta\lambda_1$ and $\Delta\lambda_2$ were determined. The results are shown in Table 16.

TABLE 16

5	Sample No.	Coupler No.	Maximum absorption wavelength (\lambda max) (nm)	<u>λ</u> (nm)	Δλ ₁ (nm)	<u>Δλ</u> ₂ (nm)
10	101	M-1	548.0	73.1	95.3	54.5
	102	M-2	548.0	73.2	95.3	54.7
15	103	M-3	547.0	74.0	96.1	54.1
	104	M-4	547.0	75.0	95.9	54.2
	105	M-5	549.2	75.0	97.3	56.1
20	106	M-6	551.0	75.0	96.2	56.4
	107	M-7	547.0	74.5	96.7	53.2
25	108	M-8	552.0	74.9	97.7	54.7
	109	M-9	549.0	74.9	96.3	53.7
	110	M-10	549.1	75.0	97.4	56.1
30	111	M-11	550.0	75.0	97.3	54.3
	112	M-12	549.1	75.0	96.1	56.0
<i>35</i>	113	M-13	549.3	74.9	96.3	53.7
	114	M-14	549.4	74.5	95.1	54.2
40	115	M-15	546.8	74.4	95.0	53.8
40	116	M-22	549.9	75.0	97.3	53.5
	117	M-23	550.0	75.0	97.2	56.5
45	118	M-24	549.8	75.0	97.1	55.1
	119	M-25	550.0	75.0	98.0	55.1

50

55

TABLE 16 (continued)

5	Sample No.	Coupler No.	Maximum absorption wavelength (\lambda max) (nm)	$\frac{\lambda^{\frac{1}{2}}}{(nm)}$	Δλ ₁ (nm)	<u>Δλ</u> ₂ (nm)
10	120	M-26	549.8	75.0	97.0	54.6
	121	M-29	550.0	75.0	97.3	54.1
15	123	M-34	549.1	74.8	96.1	54.2
	124	M-43	547.0	74.4	95.8	54.1
20	125	M-45	547.0	74.5	95.8	54.2
	126	Comparative coupler a	552.3	75.0	98.3	60.6
25	127	" b	549.0	75.1	98.6	61.1
	128	" C	549.1	75.1	98.8	61.5
	129	" d	544.2	75.0	98.2	58.3

It could be confirmed that the couplers of the present invention are excellent couplers which can form dyes which have small $\Delta\lambda_2$ value, are excellent in the cut of the foot on the long wavelength side and scarcely cause color turbidity as in Example 1.

35 EXAMPLE 3

30

40

45

Both sides of a paper support were laminated with polyethylene. The surface of the polyethylenelaminated paper support was subjected to a corona discharge treatment. A gelation undercoat layer containing sodium dodecylbenzenesulfonate was provided thereon, and various photographic constituent layers were coated thereon to prepare a multi-layer color photographic paper having the following layer structure (sample 201). Coating solutions were prepared in the following manner.

Preparation of coating solution for third layer

5.10 g of magenta coupler M-2 of the present invention, 21.0 g of the dye image stabilizer (Cpd-5), 12.0 g of dye image stabilizer (Cpd-2), 6.0 g of dye image stabilizer (Cpd-6), 24.0 g of dye image stabilizer (Cpd-8), 21.0 g of dye image stabilizer (Cpd-1), 9.0 g of dye image stabilizer (Cpd-7) and 10 g of sodium dodecylbenzenesulfonate were dissolved in 180 g of solvent (Solv-3) and 150 cc of ethyl acetate. The resulting solution was emulsified and dispersed in 600 g of a 18% aqueous solution of gelatin, and water was then added thereto to make the whole amount 2,000 g, thus preparing an emulsified dispersion A.

Separately, a silver chlorobromide emulsion B (cubic; a 1:3 (by mol of Ag) mixture of a larger-size emulsion B having a mean grain size of 0.55 μm and a smaller-size emulsion B having a mean grain size of 0.39 μm; a coefficient of variation in a grain size distribution: 0.10 and 0.08, respectively; 0.8 mol% of silver bromide being localized on a part of the surface of the grain in each size emulsion) was prepared. The following sensitizing dye C (4.0×10⁻⁴ mol was added to the larger-size emulsion, and 5.6×10⁻⁴ mol was added to the smaller-size emulsion, each amount being per mol of silver halide) and the following sensitizing dye D (7.0×10⁻⁵ mol was added to the larger-size emulsion, and 1.0×10⁻⁵ mol was added to the smaller-size emulsion, each amount being per mol of silver halide) were added to the emulsion. The chemical ripening of the mulsion was carried ut by adding a sulfur sensitizing agent and a gold sen-

sitizing ag nt. The abov emulsified dispersion A and th silv r chlorobromide emulsion B wer mixed and diss lved, and a coating solution for the third layer was prepared so as to give the following composition.

Coating solutions for the first layer, the second layer and the fifth layer thre ugh the second layer were prepared in the same manner as described above.

Sodium salt of 1-oxy-3,5-dichloro-s-triazin was used as a hardening agent for gelatin in each layer. Cpd-14 and Cpd-15 were added to each layer in such an amount as to give 25.0 mg/m² and 50 mg/m² in t tal, respectiv ly.

The following spectral sensitizing dyes were used in the silver chlorobromide emulsion of each light-sensitive emulsion layer.

Blue-sensitive emulsion layer

5

15

20

25

30

35

40

45

50

55

Sensitizing dye A

$$C1 \xrightarrow{S} CH \xrightarrow{S} CH \xrightarrow{S} (CH_2)_3$$

$$COH_2)_3 \qquad (CH_2)_3$$

$$SO_3 \oplus SO_3 H \cdot N(C_2 H_5)_3$$

Sensitizing Dye B

(2.0×10⁻⁴ mol of each of the dyes being added to the larger-size emulsion, and 2.5×10⁻⁴ mol of each of the dyes being added to the smaller-size emulsion, each amount being per mol of silver halide)

Green-sensitive emulsion layer

Sensitizing dye C

(4.0×10-4 mol being added to the larger-size emulsion, and 5.6×10-4 mol b ing added to the smaller-size emulsion,

ach amount being per mol of silver halide)

Sensitizing dye D

 $(7.0\times10^{-5}$ mol being added to the larger-size emulsion, and 1.0×10^{-5} mol being added to the smaller-size emulsion, each amount being per mol of silver halide)

20 Red-Sensitive emulsion layer

5

10

15

25

30

35

55

Sensitizing dye E

 $(9.0 \times 10^{-4} \text{ mol being added to the larger-size emulsion, and } 1.1 \times 10^{-4} \text{ mol being added to the smaller-size emulsion, each amount being per mol of silver halide)}$

Further, 2.6×10⁻³ mol of the following compound per mol of silver halide was added

Further, 8.5×10⁻⁶ mol, 7.7×10⁻⁴ mol and 2.5×10⁻⁴ mol of 1-(5-methylureidophenyl)5-mercaptotetrazole were added to the blue-sensitive emulsion layer, the green-sensitive emulsion layer and the red-sensitive emulsion layer, respectively, each amount being per mol of silver halide.

Furthermore, 1×10-4 mol and 2×10-4 mol of 4-hydroxy-6-methyl-1,3,3a,7-tetrazaindene were added to the blue-sensitive emulsion layer and the green-sensitive emulsion layer, respectively, each amount being per mol of silver halide.

The foll wing dyes (parenthesized numeral being coating weight) were added to the emulsion layers to provent irradiation.

Na OOC
$$N=N$$
 SO_3Na

10

SO_3Na

(10 mg/m²)

HOOC CH-CH=CH COOH

N N O HO N N SO₃K

$$KO_3S$$
 KO_3S KO_3S (10 mg/m²)

$$H_5C_2OOC$$
 $CH-CH=CH-CH=CH$
 $COOC_2H_5$
 N
 O
 HO
 N
 SO_3K
 SO_3K
 KO_3S
 KO_3S
 (40 mg/m^2)

Lay r structur

Each layer had the following composition. Numerals represent coating weight (g/m²). The amount of silver halide emulsion is represented by coating weight in terms of silver.

Support

25

30

35

50

55

Polyethylene-laminated paper (Polyethylene on the first layer side contained white pigment (TiO₂) and bluish dye (ultra-marine))

	First layer (blue-sensitive emulsion layer)	
15	Silver chlorobromide emulsion (cubic; a 3:7 (by mol of Ag) mixture of a larger-size emulsion A having a mean grain size of 0.88 µm and a smaller-size emulsion A having a mean grain size of 0.70 µm; a coefficient of variation in a grain size distribution: 0.08 and 0.10, respectively; 0.3 mol% of silver bromide being localized on a part of the surface of the grain in each size emulsion)	0.27
	Gelatin	1.36
	Yellow coupler (ExY)	0.67
	Dye image stabilizer (Cpd-1)	0.08
20	Dye image stabilizer (Cpd-2)	0.04
	Dye image stabilizer (Cpd-3)	0.08
	Solvent (Solv-1)	0.12
	Solvent (Solv-2)	0.12

Second layer (color mixing inhibiting layer)

Gelatin 1.10
Color mixing inhibitor (Cpd-4) 0.08
Solvent (Solv-2) 0.53
Dye image stabilizer (Cpd-7) 0.03

Third layer (green-sensitive emulsion layer)

	The above-described silver chloro- bromide emulsion B	0.13
40	Gelatin	1.45
	Magenta Coupler (M-2)	0.17
	Dye image stabilizer (Cpd-5)	0.07
45		

Dye image stabilizer	(Cpd-2)	0.04
Dye image stabilizer	(Cpd-6)	0.02
Dye image stabilizer	(Cpd-8)	0.08
Dye image stabilizer	(Cpd-1)	0.07
Dye image stabilizer	(Cpd-7)	0.03
Solvent (Solv-3)		0.60

Fourth layer (color mixing inhibiting layer)		
Gelatin	0.70	
Color mixing inhibitor (Cpd-4)	0.05	
Solvent (Solv-2)	0.37	
Dye image stabilizer (Cpd-7)	0.02	

Fifth layer (red-sensitive emulsion layer)

Silver chlorobromide emulsion (cubic; a 1:4 (by mol of Ag) mixture of a larger-size emulsion C having a mean grain size of 0.50 µm and a smaller-size emulsion C having a mean grain size of 0.4 µm; a coefficient of variation in a grain size distribution 0.09 and 0.11, respectively; 0.8 mol% of silver bromide being localized on a part of the surface of the grain in each size emulsion)	
Gelatin	0.90
Cyan coupler (ExC)	0.33
Ultraviolet light absorber (Uv-2)	0.18
Dye image stabilizer (Cpd-8)	0.01
Dye image stabilizer (epd-10)	0.01
Dye image stabilizer (Cpd-11)	0.01

Solvent (Solv-4)

0.22

Dye image stabilizer ((Cpd-8)	0.01
Dye image stabilizer ((Cpd-6)	0.01
Solvent (Solv-1)		0.01
Dve image stabilizer ((Cpd-1)	0.33

Sixth layer (ultraviolet light absorbing layer)

Gelatin 0.55

Ultraviolet light absorber (Uv-1) 0.38

Dye image stabilizer (Cpd-12) 0.15

Dye image stabilizer (Cpd-5) 0.02

Seventh layer (protective layer)		
Gelatin	1.33	
Acrylic-modified copolymer of polyvinyl alcohol (a degree of modification: 17%)	0.05	
Liquid paraffin	0.02	
Dye image stabilizer (Cpd-13)	0.01	

Compounds used in the above layers are the following compounds.

(ExY) Yellow Coupler

$$R = \begin{array}{c} & & & \\$$

+

10

15

20

25

30

$$R = O \xrightarrow{N} O CH_3$$

$$CH_3$$

$$X = OCH_3$$

1:1 mixture (by mol)

(ExM) Magenta Coupler

(ExC) Cyan Coupler

OH
$$C_{2}H_{5}$$

$$C_{4}H_{9}$$

$$C_{5}H_{11}(t)$$

$$C_{5}H_{11}(t)$$

C1 NHCOC₁₅H₃₁

3:7 mixture (by mol)

(Cpd-1) Dye image stabilizer

5

10

15

20

25

30

40

45

55

$$(CH_2-CH)_n$$
 $(CONHC_4H_9(t)$

Average mol. wt. 60,000

(Cpd-2) Dye image stabilizer

CH₃ CH₃ CH₃

CH₃ CH₃

(Cpd-3) Dye image stabilizer

OCH₂CH-CH₂ OCH₂CH-CH₂ OCH₂CH-CH₂

CH₃ CH₃ CH₃

n=7 to 8 (mean value)

(Cpd-4) Color mixing inhibitor

OH (t)H₁₇C₈ OH OH

(Cpd-5) Dye image stabilizer

(Cpd-6) Dye image stabilizer

(Cpd-7) Dye image stabilizer

(Cpd-8) Dye image stabilizer

(Cpd-9) Dye image stabilizer

C1 OH C₁₄H₂₉(sec)

(Cpd-10) Dye image stabilizer

C1 OH C₁₆H₃₃(sec)

(Cpd-11) Dye image stabilizer

30 (n)H₃₃C₁₆ OH SO₃K

(Cpd-12) Dye image stabilizer

50

5

10

15

20

25

35

(Cpd-13) Dye image stabilizer

$$C_{13}H_{27}CONH(CH_2)_3NCH_2COO^{\Theta}$$

$$CH_3$$

(Cpd-14) Antiseptic

10

15

20 .

25

50

55

(Cpd-15) Antiseptic

(UV-1) Ultraviolet light absorber

(1)
$$C1 \longrightarrow N \longrightarrow C_4H_9(t)$$

$$C_4H_9(t)$$

35

50

55

1:5:10:5 (by weight) mixture of (1), (2), (3) and (4)

(UV-2) Ultraviolet light absorber

(1) $C1 \longrightarrow N \longrightarrow C_4H_9(t)$ $C_4H_9(t)$

5 OH OH
$$C_{4}H_{9}(t)$$

(3)

$$C_4H_9(sec)$$

1:2:2 (by weight) mixture of (1), (2) and (3)

(Solv-1) Solvent

(Solv-2) Solvent

(Solv-3) Solvent

5

10

15

20

25

30

35

40

45

55

(1)
$$O=P-\{-OC_6H_{13}-n\}_3$$

(2)
$$O=P - \{-OC_8H_{17}(EH)\}_3$$

(3)
$$(CH_2)_8 < COOC_4H_9-n$$
 $COOC_4H_9-n$

(4)
$$(CH_2)_8 < COOC_8H_{17}(EH)$$

 $COOC_8H_{17}(EH)$

3:1:3:1 (by weight) mixture of (1), (2), (3) and (4)

(Solv-4) Solvent.

Samples 202 to 236 were prepared in the same manner as in the preparation of the sample 201 except that an equimolar amount of each of couplers indicated in Table 17 was used in place of the coupler M-2 of the present invention.

First, the sample 201 was subjected to gradation exposure through a three - color separation filter for sensitometry by using a sensitometer (FWH type, color temperature of light source: 3200°K, manufactured by Fuji Photo Film Co., Ltd.). The exposure time was 0.1 second, and exposure was conducted so as to give an exposure amount of 250 CMS.

The standard sample was subjected to continuous processing by using a paper processor, the following processing stage and the following processing solutions having the following compositions to prepare a development processing solution which was brought into a running equilibrium state.

Processing stage	Temperature (°C)	Time (sec.)	Replenisher* (ml)	Tank capacity (ℓ)
Color development	35	45	161	17
Blixing	30-35	45	215	17
Rinse	30	90	350	10
Drying	70-80	60		

^{*} Replenishment rate being per m2 of the light-sensitive material.

Each processing solution had the following composition.

Color dev | ping solution

5		=	Tank Solution	Replenisher
	Water	= = = - -	800 ml	800 ml
10	Ethylenediamine-N,N,N tetramethylenephosphon	7N'-	1.5 g	2.0 g
	Potassium bromide ·		0.015 g	-
15				
	Triethanolamine		8.0 g	12.0 g
20	Sodium chloride		1.4 g	-
20	Potassium carbonate		25 g	25 g
25	N-Ethyl-N-(β-methanesu amidoethyl)-3-methyl-4 aniline sulfate		5.0 g	7.0 g
	N,N-Bis(carboxymethyl) hydrazine)-	4.0 g	5.0 g
30	Fluorescent brightener (WHITEX 4B manufacture Sumitomo Chemical Co.,	ed by	1.0 g	2.0 g
35	Water to make		1000 ml	1000 ml
	pH (25°C)		10.05	10.45

Blixing solution

40

45

50

55

Tank solution and replenisher being the same.

Water	400 ml
Ammonium thiosulfate (700 g/ℓ)	100 ml
Sodium sulfite	17 g
Ammonium ethylenediaminetetraacetato ferrate	55 g
Disodium Ethylenediaminetetraacetate	5 g
Ammonium bromide	40 g
Water to make	1000 ml
рН (25°C)	6.0

Rinsing solution

Tank solution and replenisher being the same.

lon-exchanged solution

(The concentration of each of calcium ion and magnesium ion was reduced to not higher than 3 ppm)

Evaluation of a lowering in color developability caused by the back contamination of the ingredients in the bleach-

ing-fixing solution was made in the following manner.

A color devel ping solution (B) was prepared by adding 1.0 ml of the bleaching-fixing solution to one lit $\,$ r of th color dev loping solution (A) brought into the quilibrium state described above. The photographic characteristic curv of a magenta dy image obtained by conducting processing with the color developing solution (A) fr $\,$ e from th bleaching-fixing solution was compared with that of a magenta dye image obtained by conducting processing with the $\,$ c lor developing solution (B). Comparison was made in the following manner. There was determined a density D of each sample obtained by conducting processing with the color developing solution (B) in an exposure amount giving a density of 1.0 when processed with the color developing solution (A). A degree of photographic fluctuation was represented by a difference in density (ΔD =1.0-D). Accordingly, a smaller ΔD value means that photographic fluctuation caused by back contamination is smaller.

TABLE 17

5	Sample No.	Coupler	$\Delta D(D^0=1.0)$	Remarks
5	201	M-2	0.03	Invention
	202	M-6	0.04	tt
10	203	M-9	0.02	11
	204	M-22	0.02	II
15	205	M-24	0.03	11
	206	M-25	0.02	II .
	207	M-43	0.01	11
20	208	M-44	0.01	H
	209	M-45	0.01	11
25	210	M-46	0.00	н
	211	M-47	0.02	n
	212	M-48	0.01	11
30	213	M-49	0.01	"
	214	M-50	0.01	tt.
35	215	M-51	0.00	11
	216	M-52	0.01	" -
	217	M-53	0.01	11
40	218	M-54 🚊	0.01	11
	219	M-54 ≟ M-55 ≟	0.01	11
45	220	м-56	0.01	11
	221	M-57	0.01	11

50

55

TABLE 17 (continued)

5	Sample No.	Coupler	$\Delta D(D^0=1.0)$	Remarks
	222	M-58	0.01	Invention
	223	M-59	0.02	11
10	224	M-60	0.00	ti
	225	M-61	0.02	•• '
15	226	M-62	0.01	11
	227	M-63	.0.00	
20	228	M-64	0.00	11
20	229	M-65	0.01	11
	230	M-66	0.02	u
25	231	M-67	0.01	. •
	232	Comparative coupler (a)	0.23	Comparison
30	233	Comparative coupler (b)	0.20	11
35	234	Comparative coupler (c)	0.18	11
	235	Comparative coupler (d)	-0.09	u
40	236	Comparative coupler (e)	-0.11	

The same comparative couplers (a), (b) and (c) as those used in Example 1 were used.

The same comparative coupler (d) as that used in Example 2 was used.

45 Comparative coupler (e) (coupler described in U.S. Patent 4,639,415)

55

C1

N

N

N

N

$$C_4H_9$$

N

NH

 C_4H_9

NH

 $C_{12}H_{25}$

15

20

25

10

5

The above results show that when comparative samples are processed with a developing solution back-contaminated with the ingredients of a blixing-fixing solution, a remarkable lowering in color developability is caused, while the samples of the present invention do substantially experience a lowering in color developability.

Namely, comparative samples 232, 233 and 234 possess low contrast on the photographic characteristic curve and a lowering in sensitivity by back contamination, and comparative sample 235 containing comparative coupler (d) and comparative sample 236 containing comparative coupler (e) possess high contrast and a rise in sensitivity, while the samples of the present invention do substantially not cause any fluctuation. Accordingly, it can be seen that according to the present invention, properties with regard to back contamination can be greatly improved.

Further, when the samples 201 to 231 were processed with the color developing solution (A), maximum color density was at least 2.0, while the samples 235 and 236 were processed with the color developing solution (A), maximum color density was 1.83 and 1.60, and color developability was low.

Furthermore, it was confirmed that the samples of the present invention were excellent in hue as in Example 2.

EXAMPLE 4

30

35

40

The following layers having the following compositions were coated on an undercoated cellulose triacetate support to prepare a multi-layer light-sensitive material as sample 301.

Following abbreviations for principal ingredients used in the following layers are used for brevity's sake.

ExC: cyan coupler

ExM: magenta coupler ExY: yellow coupler

ExS: sensitizing dye

UV: ultraviolet light absorber
HBS: high-boiling organic solvent

H: hardening agent for gelatin

Numerals represent coating weight (g/m²). The amount of silver halide emulsion is represented by coating weight in terms of silver. The amount of sensitizing dye is represented by moles per one mole of silver halide in the same layer.

45

, , , , , , , , , , , , , , , , , , ,	
Black colloidal silver (in terms of silve	r) 0.18
Gelatin	1.40
ExM-1	0.18
ExF-1	2.0×10 ⁻³
HBS-1	0.20

First layer (antihalation layer)

55

Second layer (interlayer)		
Emulsion G (in terms of silver)	0.065	

(continued)

Second layer (interlayer)	
2,5-Di-t-pentadecylhydroquinone	0.18
ExC-2	0.020
UV-1	0.060
UV-2	0.080
UV-3	0.10
HBS-1	0.10
HBS-2	0.020
Gelatin	1.04

15	Third layer (low-sensitivity red-sen layer)	sitive emulsion
	Emulsion A (in terms of silver)	0.25
20		
	Emulsion B (in terms of silver)	0.25
25	ExS-1	6.9×10 ⁻⁵
23	ExS-2	1.8×10 ⁻⁵
	ExS-3	3.1×10 ⁻⁴
30	ExC-1	0.17
	ExC-3	0.030
35	ExC-4	0.10
	ExC-5	0.020
	ExC-7	0.0050
40	ExC-8	0.010
	Cpd-2	0.025
45	HBS-1	0.10
	Gelatin	0.87

Fourth layer (intermediate-sensitivity red-sensitive emulsion layer)

6	Emulsion D (in terms of silver)	0.70
	ExS-1	3.5×10 ⁻⁴
	ExS-2	1.6×10 ⁻⁵
10	ExS-3	5.1×10 ⁻⁴
	ExC-1	0.13
15	ExC-2	0.060
	ExC-3	0.0070
	ExC-4	0.090
20	ExC-5	0.025
	ExC-7	0.0010
25		
	ExC-8	0.0070
30	Cpd-2	0.023
	HBS-1	0.10
	Gelatin	0.75

Fifth layer (high-sensitivity red-sensitive	emulsion layer)
Emulsion E (in terms of silver)	1.40
ExS-1	2.4×10 ⁻⁴
ExS-2	1.0×10 ⁻⁴
ExS-3	3.4×10 ⁻⁴
ExC-1	0.12
ExC-3	0.045
ExC-6	0.020
ExC-8	0.025
Cpd-2	0.05
HBS-1	0.22
HBS-2	0.10
Gelatin	1.20

Sixth layer (interlayer)			
Cpd-1	0.10		
HBS-1	0.50		
Gelatin	1.10		

	Seventh	layer	(low	-sensi	tivity	green	-sensitive	emulsion
	<u>layer)</u>				1			
5	Emul:	sion C	(in	terms	of si	lver)	0.	.35
	ExS-	4					3.	0×10 ⁻⁵
10								
	ExS-5	•					2.	1×10 ⁻⁴
	ExS-6						8.	0×10 ⁻⁴
15	ExM-1						0.	005
	ExM-2						0.	40
20	ExM-3						0.	03
	ExY-1						0.	015
25	HBS-1						0.	30
	HBS-3					٠	0.	010
`	Gelat	in					0.	73
30								
		Eighth lay	er (inter	rmediate-s	ensitivity (green-sensitiv	/e emulsion layer)	1
			Emulsion	n D (in ten	ns of silve	r)	0.80	

Eighth layer (intermediate-sensitivity green-sensitive emulsion layer)		
Emulsion D (in terms of silver)	0.80	
ExS-4	3.2×10 ⁻⁵	
ExS-5	2.2×10 ⁻⁴	
ExS-6	8.4×10 ⁻⁴	
ExM-2	0.13	
ExM-3	0.030	
ExY-1	0.018	
HBS-1	0.16	
HBS-3	8.0×10 ⁻³	
Gelatin	0.90	

45		-
	Ninth layer (high-sensitivity green-se	ensitive emulsion
	layer)	
50	Emulsion E (in terms of silver)	1.25
	ExS-4	3.7×10 ⁻⁵
	ExS-5	8.1×10 ⁻⁵

	ExS-6			3.2×10 ⁻⁴
5	ExC-1			0.010
	ExM-1			0.030
	ExM-4			0.040
10	ExM-5			0.019
	Cpd-3	-		0.040
15	HBS-1			0.25
	HBS-2			0.10
20	Gelatin			1.44
20				
		Tenth layer (yellow filter layer)		•
25		Yellow colloidal silver (in terms of silver)	0.030	

Tenth layer (yellow filter layer)	
Yellow colloidal silver (in terms of silver)	0.030
Cpd-1	0.16
HBS-1	0.60
Gelatin	0.60

Eleventh layer (low-sensitivity blue-sensitive emulsion layer)

Emulsion C (in terms of silver)	0.18
ExS-7	8.6×10 ⁻⁴
ExY-1	0.020
ExY-2	0.22
ExY-3	0.50
ExY-4	0.020
HBS-1	0.28
Gelatin	1.10

Twelfth layer (intermediate-sensitivity blue-sensitive emulsion layer)			
Emulsion D (in terms of silver)	0.40		
ExS-7	7.4×10 ⁻⁴		
ExC-7	7.0×10 ⁻³		
ExY-2	0.050		
ExY-3	0.10		
HBS-1	0.050		
Gelatin	0.78		

Thirteenth layer (high-sensitivity blue-sensitive emulsion layer)					
Emulsion F (in terms of silver)	1.00				
ExS-7	4.0×10 ⁻⁴				

(continued)

Thirte nth layer (high-s nsitivity	hirte nth layer (high-s nsitivity blue-sensitive emulsion lay r)						
ExY-2	0.10						
ExY-3	0.10						
HBS-1	0.070						
Gelatin	0.86						

Fourteenth layer (first protective layer) Emulsion G (in terms of silver) 0.11 UV-4 0.17 UV-5 5.0×10⁻² HBS-1 Gelatin 1.00

Fifteenth layer (second protective layer)

5

10

15

20

35

40

45

50

55

S-1

	H-1	0.40
	B-l (diameter: 1.7 μm)	5.0×10 ⁻²
25		
	B-2 (diameter: 1.7 μm).	0.10
30	в-3	0.10
	S-1	0.20

1.20 Gelatin

Further, each layer contained W-1 to W-3, B-4 to B-6, F-1 to F-17, iron salt, lead salt, gold salt, platinum salt, iridium salt and modium salt to improve preservability, processability, pressure resistance, antifungal and antibacterial properties, antistatic properties and coatability.

<i>5</i>		Grain structure/form	double structural octahedral grains	double structural octahedral grains	uniform structural tabular grains	triple structural tabular grains .	triple structural tabular grains	double structural platy grains	uniform structural fine grains
15		of silver :e/shell] t)	1)	(2)		/11/8)	11/8)	/4)	
20		Ratio of amount of silver [core/intermediate/shell] [AqI content]	(1/3) (13/1)	[3/1] (25/2)	!	[12/59/29] (0/11/8)	[8/23/33] (0/11/8)	[37/63] (34/4)	!
30	TABLE 18	Ratio of Ra diameter/ [c thickness	r	ч	7	9	ហ	т	г
<i>35</i>		Coefficient of variation in grain size distribution (%)	27	14	25	52	23	25	15
45		Mean grain size (µm)	0.45	0.70	0.55	0 · 65	0.85	1.25	0.07
50		Average AgI content (%)	4.0	8.9	2.0	9.0 0.6	9.0	14.5	1.0
55		Emulsion	4	æ	ပ	۵	ស	Ĉ4	ၓ

In Table 18,

- (1) Emulsions A to F wer reduction-sensitized during the preparation of grains by using thiourea dioxide and thiosulfonic acid according to Examples of JP-A-2-191938.
- (2) Emulsions A to F were subjected to gold sensitization, sulfur sensitization and selenium s nsitization in the presence of sodium thiocyanate and spectral sensitizing dyes described in each light-sensitive layer according to Examples of JP-A-3-237450.
- (3) Tabular grains were prepared by using low-molecular gelatin according to Examples of JP-A-1-158426.
- (4) Tabular grains and normal crystal grains having a grain structure showed that dislocation lines as described in JP-A-3-237450 were observed through high-pressure electron microscope.

10 JP-A-3-237450 were observed through high-pressure electron microscop

E x C - 1

5

10

15

20

25

30

35

45

50

55

OH CONH(CH₂),OC₁2H₂5(n)
(i)C₄H₀OCNH

E x C - 2

OH CONHC₁₂H₂₅ (n)
OH NHCOCH₃
OCH₂CH₂O N=N
NaOSO₂
SO₃Na

 $E \times C - 3$

OH CONH (CH₂) OC₁ 2H₂ (n)

(i) C₄H₀OCONH OCH₂ CH₂ SCH₂ CO₂H

 $E \times C - 4$

 $\begin{array}{c|c}
\text{OH} & \text{CONH}(CH_2)_3O \longrightarrow C_3H_{11}(t) \\
\hline
(i)C_4H_3OCNH & 0
\end{array}$

E x C - 5

ExC-6

CONH (CH₂)
$$_{3}O$$
 — C₅H₁ $_{1}$ (t)

SCH₂COOH

 $E \times C - 7$

E x C - 8

OCONCH₂ CO₂ CH₃

CH₂

N—N

S=
N—N

 $E \times M - 1$

$$(t)H_{11}C_{5} \longrightarrow OCHCONH$$

$$C_{5}H_{11}(t) \longrightarrow CONH$$

$$N = N \longrightarrow OCH_{3}$$

$$C_{1} \longrightarrow C_{1}$$

$$C_{1} \longrightarrow C_{1}$$

 $E \times M - 2$.

CH₂ - CH₃ - CH₂ - CH - CH₂ - CH₂ - CH₂ - CH₂ - CH - CH₂ -

o E x M−3

25

30

50

55

$$C_{2}H_{5}$$

$$C_{1}SH_{2}I$$

$$C_{2}H_{5}I$$

$$C_{1}SH_{2}I$$

$$C_{1}SH_{2}I$$

$$C_{2}H_{5}I$$

$$C_{1}SH_{2}I$$

$$C_{1}SH_{2}I$$

$$C_{2}H_{5}I$$

$$C_{1}SH_{2}I$$

$$C_{2}H_{5}I$$

$$C_{1}SH_{2}I$$

$$C_{2}H_{5}I$$

$$C_{3}H_{5}I$$

$$C_{4}H_{5}I$$

$$C_{5}H_{5}I$$

$$C_{6}H_{5}I$$

$$C_{7}H_{5}I$$

$$C_{7}H_{7}I$$

$$C_{7}H_$$

 $E \times M - 4$

CH₃

$$C1$$

$$O(CH2)2OC2H5$$

$$C5H11(t)$$

$$C6H13$$

$$C6H13$$

ExM-5

E x Y - 1

 $E \times Y - 2$

 $CH_3O \longrightarrow COCHCONH \longrightarrow CI$ O = C $C_2H_3O \longrightarrow CH_2 \longrightarrow COCC_{12}H_{23}(n)$ $COCC_{12}H_{23}(n)$ $CH_3O \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_2$

E x Y - 3

$$C_{2}H_{5}$$

$$COOC_{1}_{2}H_{2}_{5}(n)$$

$$C_{1}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}$$

$$C_{2}H_{2}$$

$$C_{2}H_{2}$$

 $E \times Y - 4$

 $E \times F - 1$

CH₃ CH₃

C2H2OSO30

Cpd-1

OH NHCO CHC.H.7 (n)
NHCOCHC.H.7 (n)
OH C.H.2 (n)

Cpd-2

(t)C₄H₀ OH CH₂ CH₃ CC₄H₀ (t)

Cpd-3

(t)C₀H₁₇ OH

55

50

5

10

15

20

25

UV-1

UV - 2

20 OH

25 UV - 3

5

10

15

35

50

UV-4

UV-5

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ &$

HBS-1 Tricresyl phosphate

15 HBS-2 Di-n-butyl phthalate

HBS-3

10

30

35

40

45

50

55

 $(t)C_5H_{11} \longrightarrow \begin{array}{c} C_2H_5 \\ \\ OCHCONH \longrightarrow \\ (t)C_5H_{11} & CO_2H \end{array}$

 $E \times S - 1$

5

10

15

20

25

30

35

40

45

50

55

C₂H₃

C₃H₃

C₃H₃

C₄H₃

C₄H₃

C₅H₃

C₇H₃

C₇H₃

C₈H₃

C₈H₃

C₈H₃

C₉H₃

C₉H

E x S - 2

 $C_{2}H_{5}$ $C_{3}H_{5}$ $C_{2}H_{5}$ $C_{2}H_{5}$ $C_{3}H_{5}$ $C_{4}H_{5}$ $C_{5}H_{5}$ $C_{5}H_{5}$ $C_{7}H_{5}$ $C_{7}H_{5}$ $C_{7}H_{5}$ $C_{7}H_{5}$ $C_{7}H_{5}$ $C_{8}H_{5}$ $C_{$

 $E \times S - 3$

 $C_{2}H_{5}$ $C_{$

 $E \times S - 4$

 $\begin{array}{c|c}
C_{2}H_{5} & CH_{3} \\
\hline
C_{1}CH_{2}CH_{3}CH_{$

 $E \times S - 5$

$$\begin{array}{c|c}
C_2H_5 \\
\hline
O \\
CH = C - CH \\
\hline
O \\
CH_2)_4SO_3 \\
\hline
C_2H_5
\\
C_2H_5
\\
\end{array}$$

 $E \times S - 6$

$$\begin{array}{c|c}
C_2H_5 \\
\hline
O \\
CH = C - CH \\
\hline
O \\
CH = C - CH \\
\hline
O \\
C1 \\
CH_2)_2 CHCH_3 \\
CH_2)_2 CHCH_3 \\
CH_2)_2 CHCH_3 \\
SO_3 \Theta \\
SO_3 H \cdot N(C_2H_5)_3
\end{array}$$

E x S - 7 $C1 \longrightarrow CH \longrightarrow CH$ $C1 \longrightarrow CH$ (CH₂)₂CHCH₃
<math display="block">(CH₂)₂CHCH₃ $SO₃ \bigoplus SO₃ H \cdot N(C₂H₅)₃$

S-1 $0 \xrightarrow{H} \qquad \qquad N$ $N \xrightarrow{N} \qquad N$

$$H-1$$

 $CH_2 = CH - SO_2 - CH_2 - CONH - CH_2$ $CH_2 = CH - SO_2 - CH_2 - CONH - CH_2$

B-1

10

20

25

30

35

50

55

 $\frac{\text{CH}_{2}}{\text{COOH}} = \frac{\text{CH}_{3}}{\text{CH}_{2}} = \frac{\text{CH}_{3}}{\text{CH}_{2}} = \frac{\text{CH}_{3}}{\text{COOCH}_{3}}$

B-2

CH₂ CH₂ CH₂ CH₂ x/y=40/60

B-3

(CH₃)₃SiO - (-Si - O - -)₂ - (-Si - O - -)₄ - Si (CH₃)₃ CH₃ - CH - (CH₃)₄ - CH₃

B-4

B-6

(mol. wt. about 10,000)

$$w-1$$

₃₅ W-2

40

55

$$C_0H_{17} \longrightarrow \begin{array}{c} & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

W-3

F-1

$$F-2$$

COONa

$$F-6$$

$$F-7$$

$$F-9$$

F-10

10

5

15

25

35

40

45

50

55

F-11

$$F-12$$

20

F - 13

$$F - 14$$

30

F-15

$$F - 16$$

F - 17

Samples 302 to 315 were prepared in the same manner as in the preparation of the sample 301 except that an equimolar amount of each of couplers indicated in Table 19 was used in place of main coupler ExM-2 used in each of the seventh layer and the eighth layer of the sample 301, and the amount of high-boiling organic solvent HBS-1 was changed as indicated in Table 19.

The thus-obtained samples 301 to 315 were exposed (1/100 second) to white light (color temperature: 5500°K) through a wedge, and then subjected to color development processing.

Each of the samples was 35 mm in width and processed by using an automatic processor.

Processing stage

The following proc ssing stage and the foll wing processing solutions were us d.

5	Processing Stag	Processing Time	Processing Temp. (°C)	Replenishment rate* (ml)	Tank Capacity (ℓ)
	Color Development	3 min 5 sec	38.0	600	17
	Bleaching	50 sec	38.0	140	5
10	Blixing	50 sec	38.0	-	5
	Fixing	50 sec	38.0	420	5
	Rinse	30 sec	38.0	980	3.5
	Stabilization (1)	20 sec	38.0	•	3
	Stabilization (2)	20 sec	38.0	560	3
15	Drying	1 min 30 sec	60		

^{*} Replenishment rate being per m² of the light-sensitive material.

The flow of the stabilizing solution was a countercurrent system of from (2) to (1). The bleaching-fixing bath was replenished with the processing solution in the following manner. The upper part of the bleaching bath of the automatic processor and the upper part of the fixing bath thereof were provided with a notch so that all of overflow solutions produced by feeding the replenishers to the bleaching bath and the fixing bath were allowed to flow into the blixing bath. The amount of the developing solution brought into the bleaching stage, that of the bleaching solution brought into the blixing stage, that of the blixing solution brought into the fixing stage and that of the fixing solution brought into the rinsing stage were 65 ml, 50 ml, 50 ml and 50 ml, respectively, each amount being per m² of the light-sensitive material. Cross-over time of each stage was 6 seconds and included in the processing time of the pre-stage.

Each processing solution had the following composition.

Color developing solution

30

35

40

20

25

	Tank Solution (g)	Replenisher (g)
Diethylenetriaminepentaacetic acid	2.0	2.0
1-Hydroxyethylidene-1,1-diphosphonic acid	3.3	3.3
Sodium sulfite	3.9	5.1
Potassium carbonate	37.5	39.0
Potassium bromide	1.4	0.4
Potassium iodide	1.3 mg	-
Hydroxylamine sulfate	2.4	3.3
2-Methyl-4-[N-ethyl-N-(β-hydroxyethyl)amino]anilinesulfate	4.5	6.0
Water to make	1.0 liter	1.0 liter
рН	10.05	10.15

Bleaching solution

50

	Tank Solution (g)	Replenisher (g)
Ammonium 1,3-diaminopropanetetraacetate ferrate monohydrate	130	195
Ammonium bromide	70	105
Ammonium nitrate	14	21
Hydroxyacetic acid	50	75
Acetic acid	40	60
Water to make	1.0 liter	1.0 liter
pH (adjusted with ammonia water)	4.4	4.4

Blixing solution (tank solution)

A 15:85 (by v lume) mixed solution pH=7.0 of the above bleaching solution (tank solution) and the fixing solution (tank solution) described below.

Fixing solution

5

10		Tank <u>Solution</u> (g)	Replenisher (g)
	Ammonium sulfite	19	57
15	Aqueous solution of ammonium thiosulfate (700 g/ ℓ)	a 280 ml	840 ml
	Imidazole	15	45
20	Ethylenediaminetetraacetic acid	15	45
	Water to make	1.0 lite	er 1.0 liter
25			
30	pH (adjusted with ammonia was and acetic acid)	7.4 ter _.	7.45

Rinsing water

35

55

Tap water was passed through a mixed bed column packed with an H type strongly acidic cation exchange resin (Amberlite IR-120B manufactured by Rohm & Haas Co.) and an OH type strongly basic anion exchange resin (Amberlite IR-400) to reduce the concentration of each of calcium ion and magnesium ion to not higher than 3 mg/ ℓ . Subsequently, sodium dichlorinated isocyanurate (20 mg/ ℓ) and sodium sulfate (150 mg/ ℓ) were added thereto. The pH of the solution was in the range of 6.5 to 7.5.

Stabilizing solution

Tank solution and replenisher being the same.

4.5		Amount (g)
45	Sodium p-toluenesulfinate	0.03
	Polyoxyethylene p-monononylphenyl ether (an average degree of polymerization: 10)	0.2
	Disodium ethylenediaminetetraacetate	0.05
	1,2,4-Triazole	1.3
50	1,4-Bis(1,2,4-triazole-1-ylmethyl)piperazine	0.75
	Water to make	1.0 liter
	pΗ	8.5

The density of each of the processed samples was measured through a green filter, and the sensitivity and color developing performance of each sample were evaluated. The logarithm value of the reciprocal of an exposure amount giving a density of (Fog + 0.5) was referred to as the sensitivity. The sensitivity in terms of relative sensitivity was determined when the sensitivity of the sample 301 was referred to as standard. The color developing performance was

valuated by the density of each sample exposed by an exposure amount which gave a density of 2.0 to the sample 301. Separately, each of the samples 301 to 315 was prepared and divided into two groups. These samples were exposed to white light through a wedge. One group was stored in a refrigerator for 7 days, and another group was stored at 30°C and 80% RH for 10 days. The density of each sample was measured through a group in filter.

There wa read an xposure amount giving a density (DrS_{1.0}) of (minimum density + 1.0) on the charact ristic curve obtained from the sample stored in the refrigerator, and the logarithm value (SrG) of the reciprocal thereof was calculated. There was read an exposure amount giving a density (DrS_{1.0}) of (minimum density + 1.0) on the characteristic curve obtained from the sample stored at 30°C and 80% RH, and the logarithm value (SsG) of the reciprocal thereof was calculated. A difference (Δ S=SsG-SrG) therebetween was evaluated as a measure of latent image stability.

The results are shown in Table 19.

			;	o ,	5	0	5	o	5	
				TABLE 19						
	S	Seventh layer	M	Eighth layer	40			Tates.		
mple No.	Kain Coupler	Amount of high- boiling organic solvent (ratio of amount of HBS-1)	Nain <u>coupler</u>	Amount of high- boiling organic solvent (ratio of amount of HBS-1)	ال ا	Sensitivity A SGn 5	Color density DG	image stability A SG1.0	Remarks	
301	ExM-2		ExH-2			ı	2.00	-0.12	Comp. Ex.	
302	H-2		•			-0.02	1.92	+0.01	Invention	
303	æ :		•	*		0	2.06	-0.02	=	
304	М-11	•		•		0#	2.02	0#		
305	M-12	•	•	•		0#	2.00	-0.01		
306	H-13	ı	•	•		0#	2.02	-0.02		
307	H-37	. #		•		+0.02	2.10	-0.01	•	
308	H-43			•		-0.01	1.98	+0.01		
309	8 -X		æ-X	•		+0.02	2.18	-0.02	•	
310	H-12	8.0	N-12	0.5		¥0.	1.98	-0.01		
311	Comparative coupler a		comparative coupler a			-0.04	1.89	-0.10	Comp. Ex.	
312			ExM-2	•		-0.05	1.81	-0.07	=	
313	:		z	•		-0.05	1.81	-0.08	•	
314	• •	t				-0.05	1.73	+0.04	5	
315				•		-0.07	1.68	+0.06	•	
	(The ratio referred t	(The ratio of the amount of HBS-1 referred to as 1) (The same comparative couplers a, b	1BS-1 is rej s a, b, c, d	spresented by d and e as th	ratio whe	is represented by ratio when the amount thereof used in the sample 301, c, d and e as those used in Example 3 are used)	thereof are used)	used in the	sample 301 is	20

It is clear from Table 19 that the samples of the present invention are very excellent in latent image stability, scarcely cause a lowering in sensitivity and are excellent in color developability. Further, the samples of the present invention show a similar tendency to that of Example 2 with r gard t hue. It is believed that the above performances are due

to the specific structure of the coupler of the present invention and can be batined by their duction of an interaction be tween the coupler of the present invention and the silver halide emulsion.

It will be und retood from the above disclosure that according to the present invintion there can be obtained a photographic coupler and a light-sensitive material containing the same which is excellent in color reproducibility, dy image fastness to light and high at, sensitivity and color developability and scare by causes a fluctuation in photographic characteristics even when the compositions of the processing solutions are changed and moreover which are excellent in latent image stability.

10 Claims

15

20

25

30

35

40

- 1. A photographic magenta coupler selected from
 - a coupler represented by the following general formula (I)

$$\begin{array}{c}
R_1 \\
N \\
N \\
N \\
R_2
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3 \\
N \\
N \\
-A \\
-R_5 \\
(B)_n \\
R_4
\end{array}$$
(I)

wherein $\rm R_1$ represents a tertiary alkyl group; $\rm R_2$ and $\rm R_3$ each represents hydrogen atom or a substituent group; Y represents hydrogen atom, a halogen atom or an aryloxy group; A and B each represents -CO- or -SO₂-; n represents 0 or 1; $\rm R_4$ represents hydrogen atom, an alkyl group or an aryl group; and $\rm R_5$ represents an alkyl group, an aryl group, an alkoxy group, an alkylamino group or an arylamino group; or $\rm R_4$ and $\rm R_5$ may be combined together to form a five-membered, six-membered or seven-membered ring;

a coupler represented by the following formula M-47:

- and a coupler represented by the following formula M-58:

M - 5 8 t-C₄H₈ C1

NH

NH

CH2

CHCH₂C(CH₃)₃

CHCH₂C(CH₃)₃

CH₂CH₂CHCH₂C(CH₃)₃

CH₃

CH₂CH₂CHCH₂C(CH₃)₃

with the proviso that the coupler is not selected from compounds M-1 to M-3 and M-7 to M-12 having the formula:

wherein $\boldsymbol{R}_{11},\,\boldsymbol{R}_{12}$ and \boldsymbol{X}_1 are defined as follows:

		Rei	R ₁₂	Χı
5	M-1	CH3-C-	Q — CH ₂ CHC ₄ H ₄ C ₂ H ₅ C ₄ H _{1,7} (t)	C1
16	M-2		C ₅ H ₁ (t) NHCOCHO C ₅ H ₁ (t) C ₆ H ₁ 2	i)
. 20	M-3	u	OC eH; 7 CH3 CeH; 7(t)	
25	M-7		CH ₂ OC ₄ H ₄ NHSO ₂ C ₆ H ₁₊ (t)	19
35	M-8	"	OCH CHCAH.	-0-CH ₃
40	M-9	."	,,	-0-C+H++
	M-10		"	-0-CeH (**
- 45	M-11	"	<i>"</i>	-0-C-CH ²
50				OC, #H27
<i>55</i>	M-12	,u	"	-0-C00CH ₃

- 2. A silv r halide col r photographic material comprising a support having thereon at least one layer containing a photographic coupl r of formula (I), M-47 r M-58 as recited in claim 1.
- 3. A photographic coupler of formula (I) as in claim 1, wherein:

5

10

15

20

25

30

*3*5

40

45

50

55

R₁ is a tertiary alkyl group optionally substituted by one or mor substituent gr ups or optionally f rming a ring together with a branched alkyl group.

- 4. A photographic coupler of formula (I) as in claim 3, wherein:
 - R₁ forms a ring together with a branched alkyl group, wherein the ring is selected from the group consisting of: a 1-methylcyclopropyl group, a 1-ethylcyclopropyl group and an adamantyl group; or

R₁ is an unsubstituted tertiary alkyl group; or

R₁ is a tertiary alkyl group substituted with a substituent selected from the group consisting of: a halogen atom, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkylcarbonyloxy group, an arylcarbonyloxy group, an alkoxycarbonyl group, a carbonamido group, a sulfonamido group, a carboxyl group and a cyano group.

- A photographic coupler of formula (I) as in claim 3, wherein:
 R₁ is a tertiary butyl.
- 6. A photographic coupler of formula (i) as in claim 1, wherein:

 $\rm R_2$ and $\rm R_3$ may be the same or different and each is a hydrogen atom or a substituent group selected from the group consisting of: a cyano group, a hydroxyl group, a carboxyl group, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxy group, and a sulfamoyl group;

7. A photographic coupler of formula (I) as in claim 6, wherein:

 $\rm H_2$ and $\rm H_3$ may be the same or different and each is a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted alkoxy group, wherein said substituted groups are substituted with a substituent selected from the group consisting of: a cyano group, a hydroxyl group, a carboxyl group, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, a carbamoyl group, and a sulfamoyl group.

- A photographic coupler of formula (I) as in claim 7, wherein:
 R₂ and R₃ are hydrogen atoms.
- 9. A photographic coupler of formula (I) as in claim 1, wherein:

 R_4 is a hydrogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, wherein said substituted groups are substituted with a substituent selected from the group consisting of: a halogen atom, a hydroxyl group, a cyano group, a carboxyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an oxycarbonyl group, a carbonyloxy group, a carbonamido group, a sulfamoyl group, an imido group, a urethane group, a ureido group and a sulfonyl group;

 $R_{\rm 5}$ is a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkylamino group, or a substituted or unsubstituted arylamino group, wherein said substituted groups are substituted with a substituent selected from the group consisting of: a halogen atom, a hydroxyl group, a cyano group, a carboxyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an oxycarbonyl group, a carbonyloxy group, a carbonamido group, a sulfonamido group, a carbamoyl group, a sulfamoyl group, an imido group, a urethane group, a ureido group and a sulfonyl group;

optionally R_4 and R_5 may be combined together to form a substituted or unsubstituted five-membered, six-membered or seven-membered ring, wherein said substituted rings are substituted with a substituent selected from the group consisting of: a cyano group, a hydroxyl group, a carboxyl group, a halogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, a carbamoyl group and a sulfamoyl group.

 A photographic coupler of formula (I) as in claim 1, wherein: n is 0, and R₄ is hydrogen atom.

11. A photographic coupler of formula (I) as in claim 9, wherein:

R₅ is an alkyl group substituted with a substituent selected from the group consisting of: an alk xy gr up, an aryloxy group an alkylthio group, an arylthio group, an alkoxycarb nyl group, an aryloxycarbonyl group, a carbonamid group, an urethane group, an ureido group, an imido group, a sulfonamid gr up, and a sulf nyl group.

12. A photographic coupler of formula (I) as in claim 11, wherein:

R₅ is an alkyl group substituted with alkoxycarbonyl group.

13. A photographic coupler of formula (I) as in claim 1, whrein:

Y is a hydrogen atom, a halogen atom, or an substituted or unsubstituted aryloxy group, wherein said substituted aryloxy group is substituted by a substituent selected from the group consisting of: a halogen atom, a hydroxyl group, a cyano group, a carboxyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylthio group, an oxycarbonyl group, a carbonyloxy group, a carbonamido group, a sulfonamido group, a carbamoyl group, a sulfamoyl group, an imido group, a urethane grou, a ureido group, and a sulfonyl group.

A photographic coupler of formula (I) as in claim 13, wherein:
 Y is a halogen atom.

A photographic coupler of formula (I) as in claim 1, wherein:
 A is -CO-.

16. A silver halide color photograhic material as in claim 2, wherein said coupler in contained in an amount of 1 x 10 -3 to 1 mol per mol of silver halide.

Patentansprüche

5

10

15

20

25

30

35

40

45

50

55

1. Photographischer Magentakuppler, der aus

- einem Kuppler der folgenden allgemeinen Formel (I):

$$\begin{array}{c|c}
R_1 & Y \\
N & NH \\
R_2 & R_3 & N-A-R_5 \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

in der R_1 einen tertiären Alkylrest bedeutet, R_2 und R_3 jeweils ein Wasserstoffatom oder eine Substituentengruppe bedeuten, Y ein Wasserstoffatom, ein Halogenatom oder einen Aryloxyrest bedeutet, A und B jeweils -CO- oder -SO₂- bedeuten, n 0 oder 1 bedeutet, R_4 ein Wasserstoffatom, einen Alkylrest oder einen Arylrest bedeutet und R_5 einen Alkylrest, einen Arylrest, einen Alkoxyrest, einen Alkylaminorest oder einen Arylaminorest bedeutet, oder R_4 und R_5 verbunden sein können, um einen fünf-, sechs- oder siebengliedrigen Ring zu bilden,

- einem Kuppler der folgenden Formel M-47:

M - 4 7 t-C₄H₀ C1

N NH
N NH
N C=C COOCH₂CH
C₀H₁ 3

und einem Kuppler der folgenden allgemeinen Formel M-58 ausgewählt ist:

15

30

35

40

45

50

55

20

NH

NH

C=C

CH3

CHCH2C(CH3)3

CH2CH2CHCH2C(CH3)3

mit der Maßgabe, daß der Kuppler nicht aus den Verbindungen M-1 bis M-3 und M-7 bis M-12 mit der Formel:

ausgewählt ist, wobei R_{11} , R_{12} und X_1 wie folgt definiert sind:

		Rii	R ₁₂	X,
5		CH ₃	0 — CH 2CHC 4H 4	
10	M-1	CH ₂ -C-	Calls Calls	CI
10			C ₅ H ₁₁ (t)	
15	M-2	"	C.K.s	"
			0Cail, 7	R*
20	M-3	. "	CH3 CaH1+(t)	

		•		
5	M-7	,,	CH3 OC.H. CH3 CeH17(t)	"
10	M-8	,,	OCH zCRC.H. OCH zCRC.H. CaH. t(t)	-0-CH ₃
15	M-9	~	.vy	-0-(<u></u>)-0-ii.•
20	M-10	,,	11	-0-CeH17
25 30	M-11	ø	"	-0-C-CH3
				ÒC, eH27
35 ·	M-12	Я	,	-0-(COOCH3

- Farbphotographisches Silberhalogenidmaterial, umfassend einen Träger, der darauf mindestens eine Schicht aufweist, die einen in Anspuch 1 aufgezählten, photographischen Kuppter der Formel (I), M-47 oder M-48 enthält.
 - Photographischer Kuppler der Formel (I) nach Anspruch 1, wobei R₁ ein terti\u00e4rer Alkylrest ist, der gegebenenfalls durch eine oder mehrere Substituentengruppen substituiert ist oder gegebenenfalls zusammen mit einem verzweigten Alkylrest einen Ring bildet.
 - 4. Photographischer Kuppler der Formel (I) nach Anspruch 3, wobei R₁ zusammen mit einem verzweigten Alkylrest einen Ring bildet, wobei der Ring aus der Gruppe, die aus einer 1-Methylcyclopropylgruppe, einer 1-Ethylcyclopropylgruppe und einer Adamantylgruppe besteht, ausgewählt ist, oder
 - R₁ ein unsubstituierter tertiärer Alkylrest ist, oder

45

50

55

R₁ ein tertiärer Alkylrest ist der mit einem Substituenten substituiert ist, der aus der Gruppe, die aus einem Halogenatom, einem Arylrest, einem Alkoxyrest, einem Aryloxyrest, einem Alkylthiorest, einem Arylthiorest, einem Alkylcarbonyloxyrest, einem Arylcarbonyloxyrest, einem Alkoxycarbonylrest, einem Carbonamidorest, einem Sulfonamidorest, einem Carboxylrest und einer Cyanogruppe besteht, ausgewählt ist.

5. Photographischer Kuppler der Formel (I) nach Anspruch 3, wobei R₁ eine tertiäre Butylgruppe ist.

- 6. Photographisch r Kuppler der F mel (I) nach Anspruch 1, wobei R₂ und R₃ gleich oder verschieden s in k\u00f6nnen und ein Wasserstoffatom oder eine Substituentengruppe bedeuten, die aus der Gruppe, di aus einer Cyanogruppe, iner Hydroxylgruppe, einem Carboxylr st, einem Halogenatom, einem Alkylrest, inem Aryloxyr st, einem Alkoxycarbonylrest, einem Carbamoylrest und in m Sulfamoylrest besteht, ausgew\u00e4hlt ist.
- 7. Photographischer Kuppler der Formel (I) nach Anspruch 6, wobei R₂ und R₃ gleich oder verschieden sein k\u00f6nnen und jeweils ein Wasserstoffatom, einen substituierten oder unsubstituierten Alkylrest oder einen substituierten oder unsubstituierten Alkoxyrest bedeuten, wobei die substituierten Gruppen mit einem Substituenten substituiert sind, der aus der Gruppe, die aus einer Cyanogruppe, einer Hydroxylgruppe, einem Carboxylrest, einem Halogenatom, einem Alkylrest, einem Arylrest, einem Alkoxyrest, einem Aryloxyrest, einem Alkoxycarbonylrest, einem Carbamoylrest, und einem Sulfamoylrest besteht, ausgew\u00e4hlt ist.
- 8. Photographischer Kuppler der Formel (I) nach Anspruch 7, wobei R2 und R3 Wasserstoffatome sind.

5

10

15

20

50

55

- 9. Photographischer Kuppler der Formel (I) nach Anspruch 1, wobei R₄ ein Wasserstoffatom, einen substituierten oder unsubstituierten Arylrest bedeutet, wobei die substituierten Gruppen mit einem Substituenten substituiert sind, der aus der Gruppe, die aus einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einem Carboxylrest, einem Arylrest, einem Alkoxyrest, einem Arylthiorest, einem Arylthiorest, einem Carbonamidorest, einem Sulfonamidorest, einem Carbamoylrest, einem Sulfamoylrest, einem Imidorest, einem Urethanrest, einem Ureidorest und einem Sulfonylrest besteht, ausgewählt ist.
- 25 einen substituierten oder unsubstituierten Alkylrest, einen substituierten oder unsubstituierten Arylrest, einen substituierten oder unsubstituierten Alkoxyrest, einen substituierten oder unsubstituierten Alkylaminorest oder einen substituterten oder unsubstituierten Arylaminorest bedeutet, wobei die substituierten Gruppen mit einem Substituenten substituiert sind, der aus der Gruppe, die aus einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einem Carboxylrest, einem Arylrest, einem Alkoxyrest, einem Aryloxyrest, einem Alkylthiorest, einem Arylthiorest, einem Oxycarbonylrest, einem Carbonyloxyrest, einem Carbonamidorest, einem Sulfonamidorest, einem Carbonylrest, einem Imidorest, einem Urethanrest, einem Ureidorest und einem Sulfonylrest besteht, ausgewählt ist,

 R4 und R5 gegebenenfalls verbunden sein können, um einen substituierten oder unsubstituierten fünfgliedrigen, sechsgliedrigen oder siebengliedrigen Ring zu bilden, wobei die substituierten Ringe mit einem Substituenten substituiert sind, der aus der Gruppe, die aus einer Cyanogruppe, einer Hydroxylgruppe, einer Carboxylgruppe, einem Aryloxyrest, einem Aryloxyrest,
 - 10. Photographischer Kuppler der Formel (I) nach Anspruch 1, wobei n 0 ist und R₄ ein Wasserstoffatom bedeutet.

nem Alkoxycarbonylrest, einem Carbamoylrest und einem Sulfamoylrest besteht, ausgewählt ist.

- 40 11. Photographischer Kuppler der Formel (I) nach Anspruch 9, wobei R₅ einen Alkylrest bedeutet, der mit einem Substituenten substituiert ist, der aus der Gruppe, die aus einem Alkoxyrest, einem Aryloxyrest, einem Alkylthiorest, einem Arylthiorest, einem Alkoxycarbonylrest, einem Aryloxycarbonylrest, einem Carbonamidorest, einem Urethannest, einem Ureidorest, einem Imidorest, einem Sulfonamidorest und einem Sulfonylrest besteht, ausgewählt ist.
- 45 12. Photographischer Kuppler der Formel (I) nach Anspruch 11, wobei R₅ einen Alkylrest bedeutet, der mit einem Alkoxycarbonylrest substituiert ist.
 - 13. Photographischer Kuppler der Formel (I) nach Anspruch 1, wobei Y ein Wasserstoffatom, ein Halogenatom oder einen substituierten oder unsubstituierten Aryloxyrest bedeutet, wobei der substituierte Aryloxyrest mit einem Substituenten substituiert ist, der aus der Gruppe, die aus einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einem Carboxylrest, einem Arylrest, einem Alkoxyrest, einem Aryloxyrest, einem Alkylthiorest, einem Arylthiorest, einem Carbonyloxyrest, einem Carbonamidorest, einem Sulfonamidorest, einem Ureidorest und einem Sulfonylrest besteht, ausgewählt ist.
 - 14. Photographischer Kuppler der Formel (I) nach Anspruch 13, wobei Y ein Halogenatom bedeutet.
 - 15. Photographischer Kuppler der Formel (I) nach Anspruch 1, wob i A eine Gruppe -CO- bedeut t.

Farbphotographisches Silb rhalogenidmaterial nach Anspruch 2, wob i der Kuppler in ein r Menge von 1 x 10⁻³ bis 1 Mol pro M I Silberhalogenid enthalten ist.

5 Revendications

10

15

20

25

30

35

40

45

50

55

- 1. Coupleur pour magenta photographique sélectionné parmi
 - un coupleur représenté par la formule générale suivante (I)

où $\rm R_1$ représente un groupe alkyle tertiaire ; $\rm R_2$ et $\rm R_3$ représentent chacun un atome d'hydrogène ou un groupe substituant ; Y représente un atome d'hydrogène, un atome d'halogène ou un groupe aryloxy ; A et B représentent chacun -CO- ou -SO $_2$ - ; n représente 0 ou 1 ; $\rm R_4$ représente un atome d'hydrogène, un groupe alkyle ou un groupe aryle ; et $\rm R_5$ représente un groupe alkyle, un groupe aryle, un groupe alcoxy, un groupe alkylamino ou un groupe arylamino ; ou $\rm R_4$ et $\rm R_5$ peuvent être combinés pour former un cycle à 5 maillons, 6 maillons ou 7 maillons ;

un coupleur représenté par la formule suivante M-47 :

M-47

- et un coupleur représenté par la formule suivant M-58 :

M-58

à la condition que le coupleur ne soit pas choisi parmi les composés M-1 à M-3 et M-7 à M-12 ayant la formule :

$$\begin{array}{c|c}
R_{11} & X_1 \\
N & NH \\
N = & R_{12}
\end{array}$$

où $\mathsf{R}_{11},\,\mathsf{R}_{12}$ et X_1 sont définis de la manière suivante :

1		R ₁₁	R ₁₂	X ₁
10	M-1	CH ₃ CH ₃ -C- CH ₃	O—CH2CHC4H9 NHSO2—C2H5 C8H17(t)	а
15	M-2	17	C_{6}^{6} мнсосно — C_{2}^{6} C_{2}^{11} (г)	**
20	M-3	н	$\begin{array}{c} \text{OC}_8\text{H}_{17} \\ \text{OC}_8\text{H}_{17} \\ \text{CH}_3 \\ \text{C}_8\text{H}_{17} \\ \text{C}_8\text{C}_8\text{H}_{17} \\ \text{C}_8\text{H}_{17} \\ \text{C}_8\text{H}_{17} \\ \text{C}_8\text{H}_{17} \\ \text{C}_8\text{H}_{17} \\ \text{C}_8\text{H}_{17} \\ \text{C}_8\text{H}_{17} \\ \text{C}_$	*
25				
30	M-7	n	CH ₃ OC ₄ H ₉ NHSO ₂ CH ₃ C ₈ H ₁₇ (t)	"
35	M-8	"	NHSO2 C2H5	-o-CH ₃
40	M-9	,,	14	-o—(
45	M-10	88	•	-o-C ₈ H ₁₇ (t)
50	M-11	n	"	-0—CH ₃ -0—C-CH ₃ OC ₁₈ H ₃₇
55	1	1		3018**37

M-12	*	OCH ₂ CHC ₄ H ₉ NHSO ₂ C ₈ H ₁₇ (t)	-oCOОСН ₃
		C ₈ H ₁₇ (1)	

10

5

- Matériau photographique couleur à l'halogénure d'argent comprenant un support ayant sur lui au moins une couche contenant un coupleur photographique de formule (I), M-47 ou M-58 comme c'est indiqué à la revendication 1.
- 15 3. Coupleur photographique de formule (I) selon la revendication 1, où:

 $\rm R_1$ est un groupe alkyle tertiaire éventuellement substitué par un ou plusieurs groupes substituants ou formant éventuellement un cycle avec un groupe alkyle ramifié.

4. Coupleur photographique de formule (I) selon la revendication 3, où :

20

25

30

35

40

45

R₁ forme un cycle avec un groupe alkyle ramifié, où on choisit le cycle parmi le groupe constitué de : un groupe 1-méthylcyclopropyle, un groupe 1-éthylcyclopropyle et un groupe adamantyle ; ou

R, est un groupe alkyle tertiaire non substitué ; ou

R₁ est un groupe alkyle tertiaire substitué par un substituant choisi dans le groupe constitué de : un atome d'halogène, un groupe aryle, un groupe alcoxy, un groupe aryloxy, un groupe alkylthio, un groupe aryloxy, un groupe alkylcarbonyloxy, un groupe alcoxycarbonyle, un groupe carbonamido, un groupe suffonamido, un groupe carboxyle et un groupe cyano.

5. Coupleur photographique de formule (I) selon la revendication 3, où:

R₁ est un butyle tertiaire.

6. Coupleur photographique de formule (I) selon la revendication 1, où:

R₂ et R₃ peuvent être identiques ou différents et chacun est un atome d'hydrogène ou un groupe substituant choisi dans le groupe constitué de : un groupe cyano, un groupe hydroxyle, un groupe carboxyle, un atome d'halogène, un groupe alkyle, un groupe aryle, un groupe alcoxy, un groupe aryloxy, un groupe alcoxycarbonyle, un groupe carbamoyle et un groupe sulfamoyle.

7. Coupleur photographique de formule (I) selon la revendication 6, où :

 $\rm R_2$ et $\rm R_3$ peuvent être identiques ou différents et chacun est un atome d'hydrogène, un groupe alkyle substitué ou non substitué, où lesdits groupes substitués sont substitués par un substituant choisi dans le groupe constitué de : un groupe cyano, un groupe hydroxyle, un groupe carboxyle, un atome d'halogène, un groupe alkyle, un groupe aryle, un groupe alcoxy, un groupe aryloxy, un groupe alcoxy-carbonyle, un groupe carbamoyle et un groupe sulfamoyle.

8. Coupleur photographique de formule (I) selon la revendication 7, où :

R₂ et R₃ sont des atomes d'hydrogène.

9. Coupleur photographique de formule (I) selon la revendication 1, où :

50

55

R₄ est un atome d'hydrogène, un groupe alkyle substitué ou non substitué ou un groupe aryle substitué ou non substitué, où lesdits groupes substitués sont substitués par un substituant choisi dans le groupe constitué de : un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe carboxyle, un groupe aryle, un groupe alcoxy, un groupe aryloxy, un groupe alkylthio, un groupe arylthio, un groupe oxycarbonyle, un groupe carbonyloxy, un groupe carbonamido, un groupe sulfonamido, un groupe carbamoyle, un groupe sulfamoyle, un groupe imido, un groupe uréthane, un groupe urétido et un groupe sulfonyle;

R₅ est un groupe alkyle substitué ou non substitué, un groupe aryle substitué ou non substitué, un groupe alcoxy substitué ou non substitué, un groupe alkylamino substitué ou non substitué, ou un groupe arylamino substitué ou non substitué, où lesdits groupes substitué sont substitués par un substituant ch isi dans le

groupe constitué d : un atome d'halogène, un groupe hydroxyle, un groupe cyan , un group carboxyle, un groupe aryl , un groupe alcoxy, un groupe aryloxy, un groupe alkylthio, un groupe arylthio, un groupe oxycarbonyle, un groupe carbonyloxy, un grupe carbonamido, un groupe sulfonamido, un groupe carbamoyle, un groupe sulfamoyl , un group imido, un group uréthane, un groupe urétido et un group sulf nyle ; éventuellem nt R4 et R5 peuv nt être combinés nsemble pour f mer un cycle substitué un n substitué à 5 maillons, 6 maillons u 7 maillons, où lesdits cycles substitués sont substitués par un substituant ch isi dans le groupe constitué de: un groupe cyano, un groupe hydroxyle, un groupe carboxyle, un atome d'halogène, un groupe alkyle, un groupe aryle, un groupe alcoxy, un groupe alcoxycarbonyle, un groupe carbamoyle et un groupe sulfamoyle.

10

15

5

- Coupleur photographique de formule (I) selon la revendication 1, où: n est 0, et R₄ est un atorne d'hydrogène.
- 11. Coupleur photographique de formule (I) selon la revendication 9, où :

R₅ est un groupe alkyle substitué par un substituant choisi dans le groupe constitué de : un groupe alcoxy, un groupe aryloxy, un groupe alkylthio, un groupe arylthio, un groupe alcoxycarbonyle, un groupe aryloxycarbonyle, un groupe carbonamido, un groupe uréthane, un groupe uréido, un groupe imido, un groupe sulfonamido et un groupe sulfonyle.

20 12 Count

- 12. Coupleur photographique de formule (I) selon la revendication 11, où :
 R₅ est un groupe alkyle substitué par un groupe alcoxycarbonyle.
- 13. Coupleur photographique de formule (I) selon la revendication 1, où:

Y est un atome d'hydrogène, un atome d'halogène, ou un groupe aryloxy substitué ou non substitué, où ledit groupe aryloxy substitué est substitué par un substituant choisi dans le groupe constitué de : un atome d'halogène, un groupe hydroxyle, un groupe carboxyle, un groupe aryle, un groupe alcoxy, un groupe aryloxy, un groupe carbonamido, un groupe carbonamido, un groupe carbonamido, un groupe uréthane, un groupe uréthane, un groupe sulfonyle.

30

25

- 14. Coupleur photographique de formule (I) selon la revendication 13, où : Y est un atome d'halogène.
- Coupleur photographique de formule (I) selon la revendication 1, où:
 A est -CO-.
- 16. Matériau photographique couleur à l'halogénure d'argent selon la revendication 2, où ledit coupleur est présent en une quantité de 1x10⁻³ à 1 mol/mole d'halogénure d'argent.

40

35

45

50

Fig. 1

