Dawid Pawliczek Lista 2, Zadanie 5

Treść

Dany jest graf G=(V,E) oraz liczba całkowita k. Znaleźć możliwie największy podzbiór $V'\subseteq V$ taki, że dla każdego $v\in V'$

$$|\{u \in V' : \{u, v\} \in E\}| \ge k \text{ i } |\{u \in V' : \{u, v\} \notin E\}| \ge k.$$

Zapisując $d_{V'}(v)$ — stopień v wewnątrz V', warunek można skrócić do

$$k \le d_{V'}(v) \le (|V'| - 1) - k.$$

Algorytm "przycinania"

Algorithm 1 LARGESTSUBSET(G, k)

- 1: $V' \leftarrow V$; kolejka $Q \leftarrow$ wszystkie $v \in V'$
- 2: while $Q \neq \emptyset$ do
- 3: zdejmij v z Q
- 4: **if** $d_{V'}(v) < k$ **or** $d_{V'}(v) > |V'| 1 k$ **then** usuń $v \neq V'$ i dołóż wszystkich sąsia-dów/niesąsiadów v do Q (bo ich stopnie mogły się zmienić)
- 5: end while
- 6: return V'

Idea: usuwamy każdą sprzeczną z warunkiem (k,k) końcówkę — aż do ustalenia się zbioru.

Dowód poprawności

- **1. Zatrzymanie.** Gdy algorytm kończy, każdy węzeł $v \in V'$ spełnia $k \le d_{V'}(v) \le |V'| 1 k$, więc V' jest poprawne.
- **2. Nietracenie kandydatów.** Rozważ węzeł v usuwany w pewnym kroku, gdy aktualny zbiór ma rozmiar s = |V'| i stopień $d = d_{V'}(v)$.
 - Gdy d < k, dalsze kroki kasują tylko wierzchołki, więc stopień v mógłby już \underline{tylko} spadać. Warunku $d \ge k$ nie da się odtworzyć.
 - Gdy d > s 1 k, liczba niesąsiadów v wynosi s 1 d < k. Usuwając jakiekolwiek wierzchołki:

$$(s-1)-d \longrightarrow (s-2)-(d-1) = (s-1-d) < k$$

więc wciąż mniej niż k. Warunku także nie da się przywrócić.

W obu przypadkach v nie może należeć do $\dot{z}adnego$ poprawnego nadzbioru obecnego V'. Usuwanie jest zatem bezpieczne.

3. Maksymalność. Dowolny poprawny zbiór S jest podzbiorem zbioru operacyjnego na każdym etapie pętli, bo usuwamy wyłącznie węzły, które w S znajdować się nie mogą (punkt 2). Po zakończeniu algorytmu zachodzi $S\subseteq V'$, więc rozmiar V' jest co najmniej tak duży, jak największy S.

Zatem zwrócony V' jest największym możliwym podzbiorem spełniającym wymaganie. \square

Złożoność

Każdy wierzchołek trafia do kolejki co najwyżej tyle razy, ilu ma sąsiadów, więc łączny koszt to

$$O(|V| + |E|)$$

przy wykorzystaniu prostych liczników stopni.