Quiz 08

Due Jan 30, 2019 at 23:59

Points 10

Questions 10

Available Jan 29, 2019 at 11:00 - Jan 30, 2019 at 23:59 1 day

Time Limit 30 Minutes

Instructions

Quiz 08 covers the material in lectures 20 - 22 (pages 137 to 166 of the Course Notes)

This quiz is no longer available as the course has been concluded.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	17 minutes	9 out of 10

Score for this quiz: **9** out of 10 Submitted Jan 30, 2019 at 22:02 This attempt took 17 minutes.

	Question 1	1 / 1 pts
	An ARMA(1,1) series	
	can be tried when an MA model is indicated where q is large	
	can only be used in place of an AR(1)	
Correct!	can be tried when an AR model is indicated where p is large	
	can only be used in place of a MA(1)	

Question 2	1 / 1 pts
An ARMA(1,1) model will be stationary and invertible if	
the value of the parameter for the AR term is less than 1 in absolute	terms

rect!	• the value of the parameters are both less than 1 in absolute terms
	the value of the parameter for the MA term is less than 1 in absolute terms
	the value of the parameters are both either positive or negative

Question 3	1 / 1 pts
The plot of the acf of an ARMA model shows	
persistence	
O cut-off	
decay or cut-off depending on the size of the parameters	
decay	

	Question 4	0 / 1 pts
	The plot of the pacf of an ARMA model shows	
	 decay if the autoregressive parameter is positive 	
u Answered	All other options are correct	
	persistence if the autoregressive parameter is negative	
rrect Answei	o decay or persistence	

Correct!

Question 5	1 / 1 pts

When we plot the acf and the pacf of an ARMA model ...

•	All other options are correct
	we get no indication of the order for the MA component
Ques	tion 6 1/1 p
f we w	ish to determine whether an ARMA(p,q) model is stationary, we
	if the roots of the characteristic equation for the AR component lie outside
the	unit circle in the complex domain
• see	unit circle in the complex domain if the roots of each characteristic equation lie outside the unit circle in the opplex domain
© See	if the roots of each characteristic equation lie outside the unit circle in the
See	if the roots of each characteristic equation lie outside the unit circle in the applex domain

we get no indication of the order for the AR component

Correct!

Correct!

-	When we assess the goodness of fit of a stationary time ser	iaa madal yaisa
	Question 8	1 / 1 pts
	always work well	
	usually only work well when the value of the AR parameter(s	s) is large
Correct!	usually only work well when the sample size is large	

When we assess the goodness of fit of a stationary time series model using AIC ...

we select the model with the highest AIC

we select the model with the highest number of estimates

we select the model with the lowest number of estimates

Correct!

Correct!

we select the model with the smallest AIC

When modelling Stationary Time Series ... we only need to model any autocorrelation pattern in the data we often have to use trial and error especially if the indicated model is an ARMA series All other options are correct the best model to try is often difficult to assess unless the sample size is 1000 or more observations

	Question 10	1 pts
	We can use stationary Time Series modelling techniques on the residua series from a non-stationary model when	I
orrect!	All other options are correct	
	the partial autocorrelation plot of the residuals shows decay or persistence	,
	the autocorrelation pattern in the residuals cannot be eliminated by fitting a single lagged response variable	
	the autocorrelation pattern in the residual series appears to indicate an ARMA residual series	A

Quiz Score: 9 out of 10