Hopf Bifurcation Proof

- <u>Article:</u> Study on Fear-Induced Group Defense and Cooperative Hunting: Bifurcation, Uncertainty, Seasonality, and Spatio-temporal Analysis in Predator-Prey System
- Authors: Parvez Akhtar, Nirapada Santra, Guruprasad Samanta

Our proposed system is:

$$\frac{dH}{dt} = \frac{bH}{1+\beta P} - d_1 H - \frac{rH^2}{K+K_1 H} - \frac{(h+\alpha P)HP}{1+b_2 H + b_3 \beta H^2} \equiv F_1(H,P) = Hf_1(H,P), \text{ (say)}$$

$$\frac{dP}{dt} = \frac{e(h+\alpha P)HP}{1+b_2 H + b_3 \beta H^2} - d_2 P \equiv F_2(H,P) = Pf_2(H,P), \text{ (say)}$$
(1)

By treating β as a variable parameter, let us write the characteristic equation of system (1) for the Jacobian matrix $J(E_I)$ as follows:

$$\lambda^2 - T(\beta)\lambda + D(\beta) = 0 \tag{2}$$

In this context, $T(\beta)$ and $D(\beta)$ represent the trace and determinant of the Jacobian matrix associated with the interior equilibrium point E_I , respectively. Noticing a transition in the sign of the real component of λ from negative to positive indicates a shift in stability for the interior equilibrium point E_I , thereby altering its status from stable to unstable. This transition results in a Hopf bifurcation [Kuznetsov et al., 1998], which takes place when the characteristic equation (2) provides a pair of roots that are purely imaginary. Assuming that the purely imaginary roots are located at $\beta = \beta^{(H)}$, it follows that $T(\beta^{[H]}) = 0$ and $D(\beta^{[H]}) > 0$. This theorem establishes the presence of a Hopf bifurcation within system (1) at the point where $\beta = \beta^{[H]}$.

Theorem 1. (Hopf-bifurcation Theorem [Murray, 2007]). If $T(\beta)$ and $D(\beta)$ are the smooth functions of β in an open interval about $\beta^{[H]} \in \mathbb{R}$ such that the characteristic equation (2) has

- I. A pair of imaginary eigen-values $\lambda = g_1(\beta) \pm ig_2(\beta)$ with $g_1(\beta)$ and $g_2(\beta) \in \mathbb{R}$ so that they become purely imaginary at $\beta = \beta^{[H]}$ and $\left[\frac{dT}{d\beta}\right]_{\beta = \beta^{[H]}} \neq 0$.
- II. The other eigen-value is negative at $\beta = \beta^{[H]}$. Then a Hopf-bifurcation occurs around $E_I(H^*, P^*)$ at $\beta = \beta^{[H]}$ (i.e, a stability changes of $E_I(H^*, P^*)$ accompanied by the creation of a limit cycle at $\beta = \beta^{[H]}$).

Theorem 2. System (1) exhibits Hopf-bifurcation around $E_I(H^*, P^*)$ at $\beta = \beta^{[H]}$, when $T(\beta^{[H]}) = 0$, $D(\beta^{[H]}) > 0$ and $\left[\frac{dT}{d\beta}\right]_{\beta = \beta^{[H]}} \neq 0$.

Proof. At $\beta = \beta^{[H]}$, $T(\beta^{[H]}) = 0$, $D(\beta^{[H]}) > 0$, the characteristic equation has purely imaginary roots, i.e. $\lambda_1 = i\sqrt{D(\beta^{[H]})}$ and $\lambda_2 = -i\sqrt{D(\beta^{[H]})}$. Therefore, $\lambda_1 = g_1(\beta) + ig_2(\beta)$ and $\lambda_2 = g_1(\beta) - ig_2(\beta)$ are the roots of the characteristic equation (2) in any open neighbourhood of $\beta^{(H)}$, where $g_1(\beta)$ and $g_2(\beta)$ are real valued functions of β . Using Hopf-Bifurcation Theorem [Murray & Murray, 2003], we may say that the stability of system (1) switches through a Hopf bifurcation, provided the following transversality condition

$$\left[\frac{d}{d\beta}(Re(\lambda_i(\beta)))\right]_{\beta=\beta[H]} = \left[\frac{dg_1(\beta)}{d\beta}\right]_{\beta=\beta[H]} \neq 0, \text{ for } i=1,2.$$

is satisfied. Let us put $\lambda(\beta) = g_1(\beta) + ig_2(\beta)$ in equation (2), then we get,

$$(g_1(\beta) + ig_2(\beta))^2 - T(\beta)(g_1(\beta) + ig_2(\beta)) + D(\beta) = 0$$

Now, differentiating both sides w.r.t. β we get,

$$2(g_1(\beta) + ig_2(\beta))(\dot{g}_1(\beta) + i\dot{g}_2(\beta)) - T(\beta)(\dot{g}_1(\beta) + i\dot{g}_2(\beta)) - \dot{T}(\beta)(g_1(\beta) + ig_2(\beta)) + \dot{D}(\beta) = 0$$

Now comparing the real and imaginary components on both sides, we get;

$$(2g_1 - T)\dot{g}_1 - 2g_2\dot{g}_2 - \dot{T}g_1 + \dot{D} = 0 \Rightarrow X_1\dot{g}_1 - X_2\dot{g}_2 + X_3 = 0 \tag{3}$$

$$(2q_2)\dot{q}_1 + (2q_1 - T)\dot{q}_2 - \dot{T}q_2 = 0 \Rightarrow X_2\dot{q}_1 + X_1\dot{q}_2 + X_4 = 0 \tag{4}$$

where, $X_1 = (2g_1 - T)$, $X_2 = 2g_2$, $X_3 = (\dot{D} - \dot{T}g_1)$, $X_4 = -\dot{T}g_2$. Now solving equations (3) and (4) we get,

$$\dot{g}_1 = -\frac{(X_1 X_3 + X_2 X_4)}{X_1^2 + X_2^2} \tag{5}$$

At $\beta = \beta^{[H]}$. Now two cases arise :

Case I: When $g_1 = 0$, $g_2 = \sqrt{D}$ then, $X_1 = 0$, $X_2 = 2\sqrt{D}$, $X_3 = \dot{D}$ and $X_4 = -\dot{T}\sqrt{D}$. Hence from (5) we get,

$$[\dot{g_1}]_{\beta=\beta^{[H]}} = \left[\frac{dg_1(\beta)}{d\beta}\right]_{\beta=\beta^{[H]}} = \frac{1}{2} \left[\frac{dT(\beta)}{d\beta}\right]_{\beta=\beta^{[H]}} \neq 0$$

Case II: When $g_1 = 0$, $g_2 = -\sqrt{D}$ then, $X_1 = 0$, $X_2 = -2\sqrt{D}$, $X_3 = \dot{D}$ and $X_4 = \dot{T}\sqrt{D}$. Hence from (5) we get,

$$[\dot{g_1}]_{\beta=\beta^{[H]}} = \left[\frac{dg_1(\beta)}{d\beta}\right]_{\beta=\beta^{[H]}} = -\frac{1}{2}\left[\frac{dT(\beta)}{d\beta}\right]_{\beta=\beta^{[H]}} \neq 0$$

Therefore, $\frac{d}{d\beta}(Re(\lambda_i(\beta)))\Big|_{\beta=\beta^{[H]}} = -\frac{(X_1X_3 + X_2X_4)}{X_1^2 + X_2^2}\Big|_{\beta=\beta^{[H]}} \neq 0 \text{ for } i=1,2 \text{ and } T(\beta^{[H]}) = 0, D(\beta^{[H]}) > 0$

Hence, theorem 2 is proved using theorem 1.

References

Kuznetsov, Y. A., Kuznetsov, I. A. & Kuznetsov, Y. [1998] Elements of applied bifurcation theory, Vol. 112 (Springer), doi:10.1007/978-3-031-22007-4.

Murray, J. D. [2007] Mathematical biology: I. An introduction, Vol. 17 (Springer Science & Business Media), URL https://bit.ly/42VPK17.

Murray, J. D. & Murray, J. D. [2003] Mathematical Biology: II: Spatial Models and Biomedical Applications, Vol. 3 (Springer), doi:10.1007/b98869.