МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет» (ФГБОУ ВО «ВятГУ»)

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

СПОСОБЫ, АЛГОРИТМЫ УМНОЖЕНИЯ ДВОИЧНЫХ ЧИСЕЛ С ФЗ

Отчет по лабораторной работе №3 дисциплины «Информатика»

Выполнил студент группы ИВТ-11	/Рзаев А. Э./
Проверил преподаватель	/Шихов М. М./

1 Умножение первым способом

1.1 Постановка задачи

Перемножить два числа, представленных в двоичной системе счисления с фиксированной запятой в дополнительном коде с автоматической поправкой, используя первый способ умножения. Для выполнения поставленной задачи использовать программную компьютерную модель. Исходными данными являются числа: $A = -52_{10} = 1.1001100_2$; $B = -56_{10} = 1.1001000_2$. В результате должно получиться число $A * B = 2912_{10} = 0.00101101100000_2$.

1.2 Описание алгоритма умножения первым способом

Устройства, которые хранят операнды, регистры, имеют следующую разрядность:

- регистры множителя и множимого n-разрядные;
- регистр частичных произведений 2n-разрядный.

Суммирование множимого следует выполнять в старших п разрядах регистра суммы частичных произведений. Причем, разрядность его можно уменьшить вдвое, до п-разрядов, помещая при сдвиге младшие разряды суммы на место освобождающихся разрядов регистра множителя.

Особенность первым способом умножения состоит в том, что имеется, возможно, временное переполнение разрядной сетки (ПРС) в регистре суммы частичных произведений, которое ликвидируется при очередном сдвиге вправо.

1.3 Умножение первым способом

Экранная форма получения результата умножения первым способом на программной компьютерной модели представлена на рисунке 1.

Рисунок 1 — Результат работы программы при умножении первым способом

Таблица расчётов умножения первым способом представлена на рисунке 2

Множитель>	СЧП>	Комментарий
1,100110 <u>0/0</u>	0,0000000 0000000	Сдвиги
1,110011 <u>0/0</u>	0,0000000 0000000	Сдвиги
1,111001 <u>1/0</u>	0,0000000 0000000	Сложение
	0,0111000 0000000	Сдвиги
	0,0111000 0000000	
1,111100 <u>1/1</u>	0,0011100 0000000	Сдвиги
1,111110 <u>0/1</u>	0,0001110 0000000	Сложение
	<u>1,1001000 0000000</u>	Сдвиги
	1,1010110 0000000	
1,111111 <u>0/0</u>	1,1101011 0000000	Сдвиги
1,111111 <u>1/0</u>	1,1110101 1000000	Сложение
+	0,0111000 0000000	Сдвиги
	0,0101101 1000000	
1,11111111	0,0010110 1000000	Результат

Рисунок 2 – Таблица расчетов первым способом умножения

2 Умножение вторым способом

2.1 Постановка задачи

Задача формулируется так же, как и в пункте 1.1. Особенность состоит в том, что при умножении используется второй способ.

2.2 Описание алгоритма умножения вторым способ

Второй способ реализует умножение с младших разрядов множителя со сдвигом множимого влево. Этот способ требует n-разрядного регистра множителя, а также 2n-разрядных регистров множимого и суммы частичных произведений. Причем, первоначально множимое помещается в младшие разряды регистра, а затем в каждом такте сдвигается на один разряд влево.

2.3 Умножение вторым способом

Экранная форма получения результата умножения вторым способом на программной компьютерной модели представлена на рисунке 3.

Рисунок 3 - Результат работы программы при умножении вторым способом

Таблица расчётов умножения вторым способом представлена на рисунке 4.

Множитель >	Множимое —	СЧП	Комментарий
1,100110 <u>0/0</u>	1,1111111 1001000	0,0000000 0000000	Сдвиги
1,110011 <u>0/0</u>	1,1111111 0010000	0,0000000 0000000	Сдвиги
1,111001 <u>1/0</u>	1,1111110 0100000	0,0000000 0000000	Сложение
	+	0,0000001 1100000	Сдвиги
		0,0000001 1100000	
1,111100 <u>1/1</u>	1,1111100 1000000	0,0000001 1100000	Сдвиги
1,111110 <u>0/1</u>	1,1111001 0000000	0,0000001 1100000	Сложение
	+	<u>1,1111001 0000000</u>	Сдвиги
		1,1111010 1100000	
1,111111 <u>0/0</u>	1,1110010 0000000	1,1111010 1100000	Сдвиги
1,111111 <u>1/0</u>	1,1100100 0000000	1,1111010 1100000	Сдвиги
		0,0011100 0000000	
		0,0010110 1100000	
1,11111111	1,1001000 0000000	0,0010110 1100000	Результат

Рисунок 4 — Таблица расчетов вторым способом умножения

3 Умножение третьим способом

3.1 Постановка задачи

Задача формулируется так же, как и в пункте 1.1. Особенность состоит в том, что при умножении используется третий способ.

3.2 Описание алгоритма умножения третьим способом

III способ — умножение со старших разрядов множителя со сдвигом суммы частичных произведений влево. Этот способ требует два п-разрядных регистра множителя и множимого и одного 2n-разрядных регистра суммы частичных произведений. Суммирование множимого следует выполнять в младшие п разряды регистра суммы частичных произведений.

3.3 Умножение третьим способом

Экранная форма получения результата умножения третьим способом на программной компьютерной модели представлена на рисунке 5.

Рисунок 5 - Результат работы программы при умножении третьим способом

Таблица расчётов умножения третьим способом представлена на рисунке 6.

Множитель —	СЧП ←	Комментарий
<u>1/1</u> 001100	0,0000000 0000000	Сдвиги
<u>1/0</u> 011000	0,0000000 0000000	Сложение
+	0,0000000 0111000	Сдвиги
	0,0000000 0111000	
<u>0/0</u> 110000	0,0000000 1110000	Сложение
0/1100000	0,0000001 1100000	Сложение
T	<u>1,1111111 1001000</u>	Сдвиги
	0,0000001 0101000	
<u>1/1</u> 000000	0,0000010 1010000	Сдвиги
1/0000000	0,0000101 0100000	Сложение
T	0,0000000 0111000	Сдвиги
	0,0000101 1011000	
<u>0/0</u> 000000	0,0001011 0110000	Сдвиги
00000000	0,0010110 1100000	Результат

Рисунок 6 – Таблица расчетов третьим способом умножения

4 Умножение четвертым способом

4.1 Постановка задачи

Задача формулируется так же, как и в пункте 1.1. Особенность состоит в том, что при умножении используется третий способ.

4.2 Описание алгоритма умножения четвертым способом

IV способ — умножение со старших разрядов множителя со сдвигом множимого вправо. Этот способ требует одного п-разрядного регистра множителя и двух 2n-разрядных регистров множимого и суммы частичных произведений. Причем первоначально множимое помещается в старшие разряды регистра, а затем в каждом такте сдвигается на один разряд вправо.

4.3 Умножение четвертым способом

Экранная форма получения результата умножения четвертым способом на программной компьютерной модели представлена на рисунке 7.

Рисунок 7 - Результат работы программы при умножении четвертым способом

Таблица расчётов умножения четвертым способом представлена на рисунке 8.

Множитель ←	Множимое ->		СЧП	Комментарий
<u>1/1</u> 001100	1,1001000 0000000		0,0000000 0000000	Сдвиги
<u>1/0</u> 011000	1,1100100 0000000		0,0000000 0000000	Сложение
		+	0,0011100 0000000	Сдвиги
			0,0011100 0000000	
<u>0/0</u> 110000	1,1110010 0000000		0,0011100 0000000	Сложение
<u>0/1</u> 100000	1,1111001 0000000		0,0011100 0000000	Сложение
		+	<u>1,1111001 0000000</u>	Сдвиги
			0,0010101 0000000	
<u>1/1</u> 000000	1,1111100 1000000		0,0010101 0000000	Сдвиги
<u>1/0</u> 000000	1,1111110 0100000		0,0010101 0000000	Сложение
		+	0,0000001 1100000	Сдвиги
			0,0010110 1100000	
<u>0/0</u> 000000	1,1111111 0010000		0,0010110 1100000	Сдвиги
00000000	1,1111111 1001000		0,0010110 1100000	Результат

Рисунок 8 – Таблица расчетов четвертым способом умножения