

Unlocking Pre-Provision Net Revenue

Diving into the Power of Interest Income

Mentor: Dr. Kristina Martin

Team: Harshita Agrawal, Meaghan Allen, Obed Domson, Yixuan Huang, Sebastian Jaramillo

Federal Reserve Bank

Stress Test

evaluates resilience of large financial institutions to withstand economic shocks

Pre-provision Net Revenue (PPNR)

Interest Income - Interest Expense + Noninterest Income - Noninterest Expense

https://abcnews.go.com/Business/financial-assistance-coronavirus-crisis/story?id=69689211

Project Outline

Bank Information

Financial Dataset
Variables

Model Interest Income

Yield Curve

Gross Domestic Product (GDP)

Macroeconomic Variables

explainability vs performance

Unemployment Rate

Data

- Financial Data
- Macroeconomic Data

Financial Data

Bank Info (Name, ID)

Year and Quarter

Normalized Interest Income

(normalized interest income from previous quarter)

Yield Curves

Yield Curves

- Periods where short term yields were higher than long term
- Bad sign for economy

Unemployment Rate

Gross Domestic Product (GDP)

Unemployment Rate

• Unemployment Rate spiking

Gross Domestic Product (GDP)

GDP decreasing

Models

- Linear Regression
- Regression Trees
- Random Forest

• Normalized Interest Income vs

Macroeconomic indicators

$$R^{4} = 0.44$$

• Normalized Interest Income vs

 $R^2 = 0.44$

Macroeconomic + Lagged Income

 $R^2 = 0.81$

• Normalized Interest Income vs

 $R^2 = 0.44$

Macroeconomic + Lagged Income

 $R^2 = 0.81$

Lagged Income ONLY

 $R^2 = 0.79$

Normalized Interest Income vs

 $R^2 = 0.44$

Macroeconomic + Lagged Income

 $R^2 = 0.81$

Lagged Income ONLY

 $R^2 = 0.79$

Lagged Income is the feature with most importance!

Regression Trees

- Variables:
 - Macroeconomic indicators
 - Lagged Income + Total Assets

• $R^2 \text{ score} = 0.81$

• Red line: perfect prediction

Regression Trees

Top Important Features:

- Lagged Income
- Total Assets
- Unemployment Rate

Random Forest

HOW?

- Multiple Subsets of Data
- Train Decision Trees for Each Subset
- Aggregate Predictions

PROS:

- High accuracy
- Robustness

CONS:

- High complexity
- Hard to interpret

Random Forest

• Macroeconomic indicators

$$R^2 = 0.45$$

• Macroeconomic + Lagged Income

$$R^2 = 0.81$$

Results

- 2023 Predictions
- 2008 Crisis
- 2020 Pandemic
- Conclusion
- Future Work

2023 Prediction Accuracy for JP Morgan Chase

Linear Regression:

- Oversimplify complex relationships.
- Do not capture non-linear effects.

Decision Tree:

- Sensitive to fluctuations.
- Might overfit the data

Random Forest:

- Robust
- Strong prediction for 1st Quarter
- Follows the trend.

2023 Prediction Accuracy for Morgan Stanley

Similar patterns

- Robustness shown by Random Forest
- Follows the trend
- Good 1st and 4th Quarter Prediction

2008 Crisis Predictions for JP Morgan Chase

- Good predictions for first 3 quarters.
- Deviates in the fourth quarter.
- Models do not undergo overfitting.

2020 Pandemic Predictions for Morgan Stanley

- Robustness shown by Random Forest
- Follows the trend
- Good 3rd and 4th Quarter Prediction

Conclusions

• Exploration of multiple modeling approaches

• Importance of features in the prediction for interest income

• Accurate prediction, not overfitting

Future Work

• Feature Engineering and Selection

• Real-Time Data Integration

Hybrid Models

Thank you! Questions?