УСТАНОВКА БИОЛОГИЧЕСКОЙ ОЧИСТКИ БЫТОВЫХ СТОЧНЫХ ВОД МОДЕЛЬНОГО РЯДА ВОЛГАРЬ®

ТЕХНИЧЕСКИЙ ПАСПОРТ

Содержание

1. Назначение	4
2. Устройство и принцип работы	5
2.1. Схема работы установки (расположение блока управления и камер)	7
2.2. Описание технологического процесса	8
3. Основные параметры и характеристики	10
3.1. Подбор модели установки «ВОЛГАРЬ»	
3.2 Технические характеристики	13
3.3. Комплектация установок	14
4. Упаковка, транспортировка, хранение установок	14
5. Инструкция по монтажу установки	15
5.1. Последовательность работ для установки производительностью	
0,6–2 м³/сутки	16
5.2. Особенности монтажа установок при высоком уровне грунтовых вод	18
5.3. Подключение установки к канализационной сети	18
6. Требования кподачи электроэнергии	20
6.1 Электрические схемы подключения установок	21
7. Ввод установки в эксплуатацию	22
7.1. Общие положения	22
7.2. Оценка работы установки по качеству воды	23
8. Особенности зимней эксплуатации установок «ВОЛГАРЬ»	23
8.1. Штатный зимний режим	23
8.2. «Консервация» на зимний период	24
9. Рекомендации по эксплуатации установок «ВОЛГАРЬ»	25
10. Регламент и периодичность технического (сервисного) обслуживания установок «ВОЛГАРЬ»	
10.1. Удаление ила из установки	
10.2. Перечень работ, выполняемых при сервисном обслуживании	
11. Гарантийные обязательства и условия гарантии	
12. Гарантийный талон. Сервисные работы	
12.1. Гарантийные работы, отметки о выполнении	
12.1. гарантийные работы, отметки о выполнении	

1. Назначение

Настоящий технический паспорт распространяется на установки очистки бытовых сточных вод модельного ряда **ВОЛГАРЬ®** (далее в тексте – Установки, очистные сооружения). Установки применяют для полной очистки хозяйственно - бытовых сточных вод от индивидуальных жилых домов (коттеджей, садовых и дачных домов), других зданий и сооружений различного назначения.

В установках реализуется экологически чистая технология биологической очистки сточных вод биоценозами свободно плавающих автотрофных и гетеротрофных микроорганизмов, действующих в аэробных и анаэробных условиях, с автоматическим поддержанием концентрации активного ила в аэротенке и длительной стабилизацией избытков ила.

Установки изготовлены в соответствии с ТУ-42.21.13.-016-98124076-2017 В процессе очистки достигаются показатели, соответствующие требованиям СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод».

Перечень допустимых параметров входящих стоков в установку

Таблица1

№ п/п	Наименование показателя	Единица измерения	Допустимые значения на входе в установку
1	рН	-	6,5-9,0
2	БПК полн	мг/л	150-240
3	ХПК	мг/л	214-342
4	Взвешенные вещества	мг/л	≤100
5	Фосфор-фосфатов	мг/л	≤10
6	Азот аммонийный	мг/л	≤31
7	Жиры	мг/л	≤5
8	Железо двухвалентное	мг/л	≤0,5
9	СПАВ	мг/л	≤6
10	Хлориды	мг/л	≤35
11	Нефтепродукты	мг/л	≤0,5
12	Температура	°C	12-25

Объем сточных вод, поступающих в установку, должен соответствовать ее производительности.

Конструкция установки рассчитана на неравномерное поступление сточных вод в течение суток.

В случае поступления сточных вод в объеме, не соответствующем производительности установки, и имеющих концентрацию загрязняющих веществ, не соответствующих Таблице 1, организация-изготовитель снимает с себя ответственность за качественные показатели очистки сточных вод.

2. Устройство и принцип работы

Все конструктивные элементы и детали установки, контактирующие со сточными водами, выполнены из коррозийно-стойкого материала – гомогенного полипропилена.

Установки представляют собой однокорпусные конструкции, разделенные внутри перегородками на следующие секции-емкости:

- приемная камера;
- аэротенк;
- вторичный отстойник;
- стабилизатор активного ила.

Приемная камера (отсек **A**) — в этот отсек поступают стоки от объектов канализования (дом, баня и т.п.), здесь происходит удаление из стоков мусора и предварительная биологическая очистка посредством активного ила, поступающего из илового стабилизатора в обратной фазе работы установки и кислорода воздуха, поступающего через аэратор. Затем стоки порционно поступают на биологическую очистку с помощью главного насоса **5** в аэротенк. Главный насос входит в состав фильтра крупных фракций **13**.

Приемная камера состоит из следующих элементов:

- а) аэрационный элемент (на схеме не обозначен);
- б) фильтр крупных фракций с внешней обдувкой 13;
- в) главный насос (эрлифт) с внутренней обдувкой фильтра крупных фракций 5;
- г) поплавковый датчик уровня **9** представляет собой пластиковый корпус, внутри которого находятся концевик и шарик, нажимающий или отпускающий концевик в зависимости от положения датчика. Переключение фаз происходит в зависимости от уровня сточных вод.

Аварийная сигнализация представляет собой дополнительный поплавковый датчик уровня в приемной камере. В качестве светового сигнала заполнения приемной камеры до критичного/аварийного уровня используются «строб лампы» – импульсные ксеноновые лампы, производящие 50–60 ярких вспышек в минуту и способные пробивать светом снежный покров толщиной до 30 см (если подаются световые, импульсные сигналы, значит произошло переполнение приемной камеры, либо аварийная ситуация).

Аэротенк (отсек **Б**) — технологический отсек в виде проточного резервуара для биологической очистки сточных вод от органических загрязнений путем окисления их микроорганизмами, находящимися в аэрируемом слое. Здесь происходит основная очистка воды.

Состоит из емкости с системой аэрации, в которой происходит насыщение кислородом водно-иловой смеси, насоса–циркулятора **4**, насоса–рециркулятора **6**.

Вторичный отстойник (отсек В) — технологический отсек отстаивания смеси воды и ила.

Насос-циркулятор **4** подает смесь воды и ила из аэротенка во вторичный отстойник через успокоитель **3**, который предотвращает перемешивание с илом верхнего слоя воды в отстойнике. Здесь происходит разделение очищенной воды и ила: более тяжёлый по своей массе ил оседает на дно и через отверстие в нижней части поступает обратно в аэротенк; очищенная вода остается на поверхности и через выходную магистраль через фильтр чистой воды **14** отводится из установки. Плавающий на поверхности отстойника сор и биопленка отводятся обратно в аэротенк с помощью жироуловителя **2**.

Иловый стабилизатор (отсек **Г**) — служит для накопления и стабилизации путем аэрации отработанного ила (он самый тяжёлый, постепенно оседает на дно емкости). В иловый стабилизатор ил поступает из аэротенка с помощью насоса-рециркулятора **6**. Более лёгкие части ила поступают через переливное отверстие в приемную камеру для дальнейшего участия в процессе очистки.

Откачку ила необходимо производить, если концентрация ила в аэротенке превысит 25% от объема жидкости или если концентрация ила в стабилизаторе превысит 50% от объема жидкости. Данные измерения производятся в момент аэрирования и после тридцатиминутного отстаивания жидкости в прозрачной емкости объемом не менее 1 л.

Состоит из следующих элементов:

- а) малый успокоитель **15** (для предотвращения смешивания молодого активного ила с уже отработанным);
- б) иловый насос **7** (с заглушкой продувает стабилизатор, без заглушки откачивает ил из установки).

Приборный отсек (компрессорный короб) для удобства проведения сервисных работ конструктивно выполнен съемным и находится выше уровня всех перегородок, что исключает подтопление в случае неконтролируемой аварийной ситуации.

Комплектация:

- а) блок управления 12;
- б) компрессор **10**;
- в) электромагнитный клапан 11 (переключает фазы);
- r) распределители воздуха (распределяют воздух с разным давлением от компрессора по шлангам во все камеры);
- д) розетки.

Турбо-распределитель — работает на внутреннюю обдувку фильтра крупных фракций, на главный насос и на насос-циркулятор.

Распределитель прямой фазы — работает на иловый насос и внешнюю обдувку фильтра крупных фракций. Боковой выход распределителя работает на аэратор аэротенка.

Распределитель обратной фазы — работает на продувку вторичного отстойника, жироуловитель и насос-рециркулятор. Нижний выход распределителя работает на аэратор приемной камеры.

2.1. Схема работы установки (расположение блока управления и камер)

Основной блок (установка стандартной комплектации самотек)

- **А** приемная камера
- **Б** аэротенк
- В вторичный отстойник
- **Г** иловый стабилизатор
- Д компрессорный короб
- 1 волосоулавитель
- ${f 2}$ жироуловитель (для сбора биопленки с поверхности камеры ${f B}$ и подачи на переработку в камеру ${f 5}$
- 3 успокоитель
- 4 насос-циркулятор
- 5 главный насос
- 6 насос-рециркулятор
- 7 иловый насос (используется для откачки избытка ила при сервисном обслуживании)
- 8 продувка вторичного отстойника
- 9 датчик уровня
- 10 компрессор
- 11 электромагнитный клапан
- 12 блок управления установкой
- 13 фильтр крупных фракций
- 14 фильтр чистой воды
- 15 малый успокоитель

2.2. Описание технологического процесса

Технологическая схема установки «ВОЛГАРЬ»

Устройство установки для биологической очистки воды поясняется чертежом. Позициями на чертеже обозначены следующие узлы и детали установки:

- 1 корпус установки;
- 2 приемная камера;
- 3 аэротенк;
- 4 вторичный отстойник;
- 5 стабилизатор ила;
- 6 блок управления;
- 7 компрессор;
- 8 электромагнитный клапан;
- 9 турбораспределитель;
- 10 главный насос;
- 11 фильтр крупных фракций;
- 12 воздухопровод главного насоса;
- 13 воздухопровод продувки насоса;
- 14 насос-циркулятор;
- 15 воздухопровод циркулятора;

- 16 распределитель прямой фазы;
- 17 воздухопровод фильтра крупных фракций;
- 18 аэратор аэротенка;
- 19 воздухопровод аэратора аэротенка;
- 20 распределитель обратной фазы;
- 21 аэратора приемной камеры;
- 22 воздухопровод аэратора приемной камеры;
- 23 насос-рециркулятор;
- 24 воздухопровод рециркулятора;
- 25 иловый насос;
- 26 воздухопровод илового насоса;
- 27 жироудалитель;
- 28 воздухопровод жироудалителя;
- 29 воздухопроводом продувки вторичного отстойника;
- 30 успокоитель;
- 31 продувка вторичного отстойника;
- 32 поплавковый датчик уровня рабочий;
- 33 поплавковый датчик уровня аварийный;
- 34 емкость чистой воды;
- 35 дренажный насос.

Установка для биологической очистки хозяйственно-бытовых сточных вод работает следующим образом. Сточные воды, преимущественно хозяйственно-бытовые, поступают в приемную камеру 2, где с помощью фильтра 11 отделяются крупные фракции загрязнений (мусор). Приемная камера 2 позволят принять залповый сброс сточных вод и усреднить их по составу, не нарушая режим работы остальных отсеков установки. В приемной камере 2 начинается биологическая очистка стоков с помощью активного ила, поступающего во время обратной фазы из стабилизатора ила 5, и воздуха, поступающего через аэратор приемной камеры 21 и воздуховода 22. Уровень сточных вод в приемной камере 2 отслеживается с помощью поплавковых датчиков уровня: рабочего 32 и аварийного 33. Периодически для очистки от загрязнений, забивающих главный насос 10 и фильтр 11, используют продувку через воздухопроводы 12 и 13 соответственно. Воздух подается во все отсеки установки при помощи компрессора 7.

Из приемной камеры 2 сточные воды с помощью главного насоса 10 поступают в аэротенк 3, в котором происходит интенсивная биологическая очистка с помощью активного ила. Аэротенк 3 работает в двух режимах, которые задаются блоком управления 6, переключая электромагнитный клапан 8. В первом режиме (нитрификации) сточные воды интенсивно перемешиваются и насыщаются кислородом с помощью воздухопровода 22 и аэратора 21 приемной камеры. При этом работает распределитель прямой фазы 16 воздуха. Во втором режиме (денитрификации) подача воздуха и перемешивание прекращаются, осевший ил перекачивается в стабилизатор ила 5 с помощью насоса-рециркулятора 23 и воздухопровода к нему 24.

Из аэротенка **3** смесь очищенной воды и активного ила с помощью насоса-циркулятора **12** и воздуховода **15** через успокоитель **30** потока подают во вторичный отстойник **4**, где происходит разделение воды и активного ила. Жировую пленку, плавающую

на поверхности во вторичном отстойнике **4**, удаляют жироудалителем **27** во время обратной фазы при помощи подачи в него воздуха по воздухопроводу жироудалителя **28**. Очищенная и осветленная вода из вторичного отстойника отводится самотеком за пределы установки или в емкость чистой воды **34**, откуда дальше откачивается дренажным насосом **35** в точку сброса.

Излишки активного ила из аэротенка **3** откачивают насосом циркулятором **14** в стабилизатор ила **5**. К насосу-циркулятору **14** подается воздух по воздухопроводу циркулятора **15**.

Во время работы обратной фазы воздух подается через воздухопровод **19** к продувке вторичного отстойника **31**, что обеспечивает направление потока жидкости в сторону жироудалителя **27**. Также в обратной фазе воздух подается по воздухопроводу **26** в насос илового стабилизатора **25** (возможен вариант с аэратором вместо насоса).

Турбораспределитель **9** работает независимо от включения электромагнитного клапана **8**. Он предназначен для распределения воздуха на насос-рециркулятор **23** аэротенка и воздухопровода **24** к нему, главный насос **10** и воздухопровод **12** к нему, а также продувку **13** главного насоса.

Если сточные воды в установку не поступают, она работает автономно с постоянной рециркуляцией воды. Когда главный насос **10** откачивает воду из приемной камеры **2** до минимально допустимого уровня, блок управления **6** автоматически переключает электромагнитный клапан **8** по сигналу с рабочего датчика уровня **32** в режим обратной фазы очистки, и вступает в работу распределитель воздуха **20**. Обратная фаза предназначена для сохранения популяции биоценоза в условиях дефицита сточных вод и сохранения работоспособности установки, для обеспечения протекания процессов денитрификации путем создания аноксидных зон. Включение прямой фазы очистки, также осуществляется автоматически при поступлении новой порции сточных вод.

В тех случаях, когда необходимо принудительное отведение очищенной воды в точку сброса, в установку биологической очистки над приемником, устанавливается емкость очищенной воды **34** с дренажным насосом **35**.

3. Основные параметры и характеристики

При выборе модели установки необходимо обратить внимание на следующие критерии:

- число пользователей, объем сточных вод в сутки;
- количество водоразборных точек;
- суточный и часовой объем сточных вод, а также вероятность единовременного использования сантехнических узлов и приборов (залповый сброс);
- глубина выхода системы канализации из дома;
- расстояния от объекта канализования до установки и от установки до места сброса очищенных сточных вод;
- тип грунта (песок, суглинок, глина, наличие и уровень грунтовых вод);
- планируемый способ водоотведения.

3.1. Подбор модели установки «ВОЛГАРЬ»

Выбор производительности.

Производительность установки определяется объемом перерабатываемых сточных вод в сутки (м³). Расчет принято производить относительно количества постоянных пользователей.

Для жилых домов с холодным и горячим водопроводом и канализацией с ваннами норма расхода воды в среднем в сутки на одного пользователя равна 200 л. Чтобы определить производительность установки, необходимо цифру максимального количества пользователей (цифра после названия серии установки) умножить на водопотребление одного человека в сутки.

Существует и более сложный способ расчета производительности установки по расходу воды приборами. Нормы для таких расчетов также определены в СНиП 2.04.01-85.

Выбор высоты установки.

«ВОЛГАРЬ – 2360» Высота установки 2,36 м.

Врезка (вход трубы) до 0,85 м. от

уровня земли до нижнего края (лотка) трубы Выход самотечный – 0,45 м. Выход принудительный – 0,15 м. Максимальное расстояние для принудительного выброса – 2 м.

«ВОЛГАРЬ – 2500» Высота установки 2,50 м.

Врезка (вход трубы) до 1 м. от уровня земли до нижнего края (лотка) трубы.

Выход самотечный – 0,6 м. Выход принудительный –0,3 м. Максимальное расстояние для принудительного выброса – 5 м.

«ВОЛГАРЬ – 3000»

Высота установки 3,00 м.

Врезка (вход трубы) до 1,5 м. от уровня земли до нижнего края (лотка) трубы.

Выход самотечный – 0,9 м. Выход принудительный – 0,8 м. Максимальное расстояние для принудительного выброса – 10 м.

Варианты отведения очищенной воды.

Варианты отведения очищенной воды в основном обусловлены типами грунта на месте монтажа очистных установок, а так же расположением относительно жилых строений, водозаборных скважин и колодцев, расположением относительно санитарно-защитных зон и особо охраняемых объектов:

Отведение очищенной воды самотеком (С).

Рекомендуется в грунтах с хорошей проницаемостью — песок, супесь. *Отведение очищенной воды самотеком в фильтрующий колодец*

Диаметр отводящего трубопровода принимается от 110 мм и более.

Не допускается сброс очищенной воды самотеком на открытые поверхности грунта, т.к. это обязательно приведет к намерзанию льда на выходе и в конечном итоге заблокирует выход чистой воды, и, как результат – переполнение установки.

Не производится отведение очищенной воды для дренажа в глинистые грунты, т.к. глина является отличным гидрозатвором.

Отведение очищенной воды принудительно (П).

Рекомендуется в грунтах с низким коэффициентом фильтрации — суглинок, глина. Либо в грунтах с высоким уровнем грунтовых вод.

Отведение очищенной воды принудительно на рельеф местности (водоотводная канава, ливневая канализация)

При таком способе отведения вода попадает на поверхность с максимальной температурой (в зимний период +10...+15°С), что позволяет отводить воду в любое время года. Диаметр отводящего трубопровода 50 мм (в трубе шланг диаметр - 20–32 мм).

Принудительный выброс из встроенной емкости ограничен по расстоянию водоотведения для каждого вида установок и обусловлен глубиной расположения выходного трубопровода, чтобы соблюсти контруклон и исключить промерзание:

- --- «ВОЛГАРЬ -2360» до 2 м;
- --- «ВОЛГАРЬ -2500» до 5 м;
- --- «ВОЛГАРЬ -3000» до 10 м.

3.2. Технические характеристики

Модель установки	Количество обслуживае- мых лиц, чел.	Произво- дительность, м³/сут.	Производительность компрессора, л/мин.	Залповый сброс, л.
«ВОЛГАРЬ -3-2030-С» (П)	3	0,6	60	190
«ВОЛГАРЬ -5-2360-С» (П)	5	1,0	60	280
«ВОЛГАРЬ -5-2500-С» (П)	5	1,0	60	280
«ВОЛГАРЬ -5-3000-С» (П)	5	1,0	60	280
«ВОЛГАРЬ -8-2360-С» (П)	8	1,6	80	520
«ВОЛГАРЬ -8-2500-С» (П)	8	1,6	80	520
«ВОЛГАРЬ -8-3000-С» (П)	8	1,6	80	520
«ВОЛГАРЬ -10-2360-С» (П)	10	2,0	100	690
«ВОЛГАРЬ -10-2500-С» (П)	10	2,0	100	690
«ВОЛГАРЬ -10-3000-С» (П)	10	2,0	100	690

Габаритные размеры

Установки стандартной комплектации

Габ		баритные размеры блока, мм					
Модель установки	Основание и накрывная плоскость		Высота				Общий вес, кг
	длина	ширина	корпус	с горловиной	с крышкой	с грибком	
«ВОЛГАРЬ -3-2030-С» (П)	1100	1100	1720	2000	2030	2115	118
«ВОЛГАРЬ -5-2360-С» (П)	1100	1100	2016	2330	2360	2445	131
«ВОЛГАРЬ -5-2500-С» (П)	1100	1100	2016	2470	2500	2585	135
«ВОЛГАРЬ -5-3000-С» (П)	1100	1100	2016	2970	3000	3085	155
«ВОЛГАРЬ -8-2360-С» (П)	1400	1400	2016	2330	2360	2445	181
«ВОЛГАРЬ -8-2500-С» (П)	1400	1400	2016	2470	2500	2585	195
«ВОЛГАРЬ -8-3000-С» (П)	1400	1400	2020	2970	3000	3085	217
«ВОЛГАРЬ -10-2360-С» (П)	1560	1560	2020	2330	2360	2445	220
«ВОЛГАРЬ -10-2500-С» (П)	1560	1560	2020	2470	2500	2585	235
«ВОЛГАРЬ -10-3000-С» (П)	1560	1560	2020	2970	3000	3085	260

3.3. Комплектация установок.

Установка с самотечным водоотведением

- Установка (стандартная комплектация)
- Аварийная сигнализация

Установка с принудительным водоотведением

- Установка стандартная комплектация
- Аварийная сигнализация
- Встроенная емкость (для чистой воды)
- Дренажный насос (Для отведения очищенной воды в точку сброса. Марка насоса по выбору Заказчика)

4. Упаковка, транспортировка, хранение установок.

Установки поставляются в собранном виде и не требуют специальной упаковки.

Компрессор и иное электрооборудование поставляется в таре предприятия-изготовителя. По желанию, возможен монтаж оборудования в установку в заводских условиях.

Для региональных складов хранения допускается поставка некоторых моделей установок на поддонах: со снятой с горловины крышкой (крепеж и инструкция по монтажу крышки вложены в компрессорный короб), с предустановленным или вложенным внутрь корпуса дополнительным оборудованием, упакованными в пленку и стянутыми упаковочной лентой с наклеенной информационной табличкой.

Установки транспортируют в вертикальном или горизонтальном положении всеми видами транспортных средств в соответствии с правилами перевозок грузов, действующих на данном виде транспорта.

Установка (в таре или без тары) должна быть закреплена в транспортном средстве так, чтобы исключить ее перемещение при движении транспорта.

При транспортировании и хранении установок не допускается подвергать их воздействию ударных нагрузок.

Установки допускается хранить в естественных условиях на открытом воздухе только с закрытыми крышками горловин (без предустановленного компрессорного и иного электрооборудования), также хранить на отапливаемом складе или в других условиях, исключающих возможность механического повреждения, на расстоянии не менее 3 м от отопительных и нагревательных приборов.

Хранение компрессорного и иного электрооборудования осуществляется согласно рекомендациям предприятия-изготовителя.

Обязательные документы, прилагаемые к установке:

- технический паспорт;
- монтажная схема;
- сертификат соответствия;
- декларация о соответствии техническому регламенту Таможенного союза.

5. Инструкция по монтажу установки.

Монтаж и запуск в эксплуатацию установки «ВОЛГАРЬ» должен осуществляться согласно проектной документации или рекомендациям организации-изготовителя, указанным в настоящем техническом паспорте и Приложениях к нему, с учётом требований строительных норм и правил.

Лица, выполняющие монтаж и запуск в эксплуатацию установки «ВОЛГАРЬ» должны знать правила прокладки наружных канализационных трубопроводов в соответствии с нормами СНиП 2.04.03-85, соблюдать правила пожарной и электробезопасности, иметь соответствующие допуски к проведению работ (сертификат о прохождении специалистами обучения, дающим право на выполнение соответствующих работ). При несоблюдении этих условий организация изготовитель снимает с себя гарантию на данную продукцию.

Перед началом работ обратите внимание на следующее:

- на наличие на объекте канализования фильтров очистки питьевой воды (обезжелезивания и умягчения), т.к. слив продуктов их регенерации в установку ЗАПРЕЩЕН!
- в соответствии со СНиП 2.04.03-85, при монтаже установки необходимо предусмотреть вытяжную вентиляцию через стояк внутренней канализации здания (фановый стояк) или по рекомендации организации-изготовителя.
- фановый стояк канализации должен быть выведен непосредственно на крышу здания. Над стояком необходимо предусматривать вытяжную часть, которая должна быть выведена на кровлю с превышением не менее 0,3 м.
- не допускается совмещение шахт канализационного и вентиляционного стояков.
- не рекомендуется производить монтаж установки в периоды отрицательных температур ниже -20° C.
- порядок расчета и устройства вентиляционного стояка канализации осуществляется в соответствии с СП 40-107-2003.

5.1 Последовательность работ для установки производительностью 0,6–2 м³/сутки.

В процессе эксплуатации очистные сооружения не выделяют неприятных запахов, т.к. в технологическом процессе преобладают аэробные процессы. Установки работают практически бесшумно. Все это позволяет монтировать установки вблизи строений. Для очистных сооружений небольшой производительности (до 2 м³/сутки) нет необходимости монтажа установки вблизи от подъездных путей, для ее обслуживания ассенизационная машина не нужна. Для установок большей производительности, в случае отсутствия места для компостирования отработанного ила, подъездные пути необходимы.

Перед началом земляных работ необходимо определить место входа подводящей канализационной трубы в установку для соответствующей ориентировки приемной камеры очистного сооружения (для наименьших изгибов подводящей канализационной магистрали) в соответствии с монтажной схемой.

1. На выбранном участке местности производится разметка котлована согласно монтажной схеме.

Размер котлована рассчитывается по формуле:

длина котлована = длина основания + 500 мм; ширина котлована = ширина основания установки + 500 мм;

глубина котлована = высота установки с крышкой –200 мм (крышка установки, включая петли, должна быть над уровнем земли на 20 см) + 150 мм (толщина песчаной подготовки).

Котлован рекомендуется раскапывать вручную. Если котлован выкопали по глубине больше нормы, то выравнивать дно необходимо песком с утрамбовкой и проливом водой. Лишний грунт (в объеме установки) вывозится или перемещается в отвал, место которого определяет Заказчик.

На дне котлована выполняется засыпка и уплотнение песчаной подготовки толщиной 150 мм.

2. Установка доставляется на максимально близкое расстояние к месту монтажа.

Разгрузка установки производительностью 0,6–2 м³/сутки производится вручную. Разгрузка установки производительностью более 2 м³/сутки производится спец. техникой (кран). Перемещение установки к котловану производится вручную или с применением подручных средств. Спуск установки в котлован производится вручную или с применением спец. техники. Установки можно крепить (подцеплять) к грузоподъёмным средствам только в специально предназначенных точках (монтажные отверстия).

3. Корпус установки устанавливается вертикально по центру котлована вручную или с применением спец. техники так, чтобы оставался зазор 250 мм между стенками установки и стенками котлована для обратной засыпки. Производится выравнивание корпуса с помощью уровня. Крен не допустим!

- 4. Обратная засыпка котлована осуществляется песком, который не должен содержать щебня, гравия и камней. Обсыпка производится с послойным уплотнением через каждые 200 мм и проливом водой каждого слоя до уровня, подведенной к установки канализационной трубы.
- 5. Обсыпка сопровождается одновременным заполнением водой камер установки до отметок, обозначенных при производстве: в приемной камере (A) 1,2 м от дна; в аэротенке (Б) и вторичном отстойнике (В) 1,85 м от дна; в иловом стабилизаторе (Г) 1,9 м от дна.

Подавать воду для заливки можно с помощью шланга через горловину. Обратная засыпка установки без воды **ЗАПРЕЩЕНА!** Во избежание «всплытия» полная откачка и нахождение после монтажа установки без заполнения водой **ЗАПРЕЩЕНЫ!**

- 6. В траншее подводящего трубопровода производится подведение к установке электрического кабеля марки ПВС или ВВГ:
- при расстоянии до 30 м 4 × 1,5 кв;
- при расстоянии от 31 до 80 м 4 × 2,5 кв;
- при расстоянии более 80 м 4×4 кв.

Электрический кабель прокладывается в трубе ПНД Ø16—20 мм. На фазовый провод устанавливается электрический автомат из расчета:

- 6 A в случае самотечного водоотведения;
- 10 A в случае принудительного водоотведения.
- 7. Врезка и герметизация швов патрубков подводящего и отводящего трубопроводов (если данная услуга ранее не была заказана на производстве). Присоединение подводящего и отводящего трубопроводов, дренажного насоса для отвода чистой воды (если предусмотрено комплектацией).
- 8. Утепление корпуса при необходимости производится жесткими гидрофобными видами утеплителя на глубину промерзания грунта. Толщина утепления зависят от климатических условий района строительства.
- 9. Завершающая засыпка трубопроводов и котлована осуществляется вручную песком. Оставшаяся часть высотой 100 мм засыпается естественным грунтом. Размещение и передвижение тяжёлых предметов и спец. техники над очистной установкой в периметре котлована ЗАПРЕЩЕНО!
- 10. Присоединение компрессора, подсоединение электрического кабеля к источнику питания через отдельный автомат или стабилизатор напряжения согласно электрической схеме с точным соблюдением места «ноль», «фаза». Включение очистной установки и проверка ее работоспособности.
- 11. Окончательная планировка рельефа производится с учетом следующих факторов:
- необходимо тщательно следить за герметизацией установки при закрытии крышки, петли должны быть свободными от грунта;
- любые виды заглубления крышки ниже уровня земли ЗАПРЕЩЕНЫ;
- к воздухозаборнику (грибку) должен быть обеспечен приток свежего воздуха.

5.2. Особенности монтажа установок при высоком уровне грунтовых вод

В грунтах с высоким уровнем воды (1 м от поверхности земли и выше) рекомендовано монтировать установки производительностью не менее 1 м 3 /сутки и высотой «2360» и «2500».

Длина и ширина котлована по периметру должны на 700 мм превышать габаритные размеры монтируемой установки.

Одновременно с устройством котлована в него вертикально по периметру рекомендуется устанавливать опалубку. Для устройства опалубки используются доски толщиной

50 мм, шириной 150 мм, длина равна высоте котлована. Каркас рекомендуется выполнять из бруса 100х100 мм.

В случае поступления в котлован большого количества воды, для ее откачки на дно котлована устанавливается дренажный насос.

Между опалубкой и установкой засыпается песок. Обратная засыпка установки без воды **ЗАПРЕЩЕНА!** Опалубка не демонтируется.

5.3. Подключение установки к канализационной сети

Выполнение подводящих коммуникаций и отведение очищенной воды следует осуществлять в соответствии с рекомендациями организации-изготовителя или продавца и проектом привязки установки к местности.

Подводящий самотечный трубопровод сточных вод укладывается в утеплителе на песчаную подушку с уклоном 1,5–2 см на метр в сторону установки.

На малых глубинах (до 1 м) канализация, выходящая из дома, даже без утепления, на расстояниях до 8 м не замерзает, т.к. в трубе сточные воды появляются в моменты пользования сан.приборами, и их температура гораздо выше 0°С. В остальное время по канализационной трубе происходит отвод отработанного воздуха из установки, температура которого также выше 0°С.Утепление подводящей канализации необходимо делать для защиты от нарастания изнутри канализационной трубы конденсатного снега, который за длительные промежутки отсутствия жителей в зимние месяцы может заблокировать внутреннее пространство трубы. Толщина утеплителя зависит от климатических условий района строительства.

Диаметр подводящего самотечного трубопровода зависит от удаления очистной установки от объекта канализования:

- до 15 м используется труба ПВХ диаметром 110 мм;
- до 20 м используется труба ПВХ диаметром 160 мм;
- свыше 20 м используется труба ПВХ диаметром 200 мм.

Допускается превышение указанных расстояний с обязательной установкой ревизионных колодцев:

- для трубы ПВХ диаметром 110 мм через каждые 15 м.
- для трубы ПВХ диаметром 160 мм через каждые 20 м.

Повороты самотечных подводящих магистралей более чем на 45° не допускаются!

Заглубление подводящего трубопровода в точке соединения с установкой не должно превышать допустимых параметров для соответствующей модели установки:

- «ВОЛГАРЬ -2360» до 0,85 м от уровня земли до нижнего края (лотка) трубы.
- «ВОЛГАРЬ -2500» до 1,00 м от уровня земли до нижнего края (лотка) трубы.
- «ВОЛГАРЬ -3000» до 1,50 м от уровня земли до нижнего края (лотка) трубы.

Отводящий самотечный или напорный трубопроводы прокладываются согласно правилам для соответствующей модели установки.

Для отведения очищенной воды самотеком:

- для установок «ВОЛГАРЬ -2360» выходной патрубок выводится на глубине 0,45 м от уровня земли до нижнего края (лотка) трубы;
- для установок «ВОЛГАРЬ -2500» выходной патрубок выводится на глубине 0,6 м от уровня земли до нижнего края (лотка) трубы;
- для установок «ВОЛГАРЬ -3000» выходной патрубок выводится на глубине 0,9 м от уровня земли до нижнего края (лотка) трубы.

Далее трубопровод необходимо заглубить ниже глубины промерзания грунта в зависимости от климатических условий района строительства.

Для принудительного отведения очищенной воды:

- для установок «ВОЛГАРЬ -2360» выходной патрубок выводится на глубине 0,15 м от уровня земли до нижнего края (лотка) трубы, отводящий трубопровод выводится на поверхность грунта на расстояние не более 2 м;
- для установок «ВОЛГАРЬ -2500» выходной патрубок выводится на глубине 0,3 м от уровня земли до нижнего края (лотка) трубы, отводящий трубопровод выводится на поверхность грунта на расстояние не более 5 м;
- для установок «ВОЛГАРЬ -3000» выходной патрубок выводится на глубине 0,8 м от уровня земли до нижнего края (лотка) трубы, отводящий трубопровод выводится на поверхность грунта на расстояние не более 10 м.

Напорный трубопровод прокладывается с контр-уклоном не менее 5–7 см/м. Контруклон обеспечивает отсутствие остатка воды в трубе и соответственно промерзания отводящего трубопровода в зимний период эксплуатации.

6. Требования к подаче электроэнергии.

Установка является энергозависимым объектом. Питание установки осуществляется от сети – 220V переменного тока.

Установка стабильно работает при отклонении напряжения электросети от номинала в пределах \pm 10%. При больших отклонениях напряжения в сети рекомендуется использование устройств стабилизации напряжения.

Мощность стабилизатора определяется согласно Таблице раздела 6.2.

В случае установки общего стабилизатора на весь дом – предусмотреть отдельный автомат защиты, соответствующий номинальной мощности комплектной установки. Подключение к электрической сети должно строго соответствовать электрической схеме.

Отключение подачи электрической энергии на срок не более 8 часов не влияет на на жизнь и работоспособность биоценоза. При более длительном отключении электроэнергии качество очистки снижается, вследствие отмирания части активного ила. Кроме этого, при поступлении стоков в обесточенную установку, возникает опасность переполнения камер и попадании неочищенного стока в окружающую среду.

При возобновлении подачи электроэнергии установка запускается автоматически, если не был отключен автомат подачи электропитания на установку, либо кнопки включения установки на блоке управления. Работоспособность установки после перерыва в подаче электроэнергии следует проверить.

При отсутствии электропитания слив сточных вод в установку может быть осуществлен в объеме не превышающем залпового сброса (на данную модель) при визуальном контроле наполнения. Дальнейшая эксплуатация установки при отсутствии электропитания ЗАПРЕЩЕНА!

Таблица рекомендуемых мощностей стабилизаторов, Вт

Модель установки	Самотек	Принудительный выброс
«ВОЛГАРЬ – 3»	400	1500
«ВОЛГАРЬ – 5»	400	1500
«ВОЛГАРЬ – 8»	400	1500
«ВОЛГАРЬ – 10»	400	1500

Таблица мощностей установок (без резервного оборудования), Вт

	С	амотек	Принудительный выброс		
Модель установки	Установленная мощность, Вт	Потребление электроэнергии, кВт/сут	Установленная мощность, Вт	Потребление электроэнергии, кВт/сут	
«ВОЛГАРЬ – 3»	57	1,37	250	1,43	
«ВОЛГАРЬ – 5»	57	1,37	250	1,49	
«ВОЛГАРЬ – 8»	78	1,87	250	2,05	
«ВОЛГАРЬ – 10»	99	2,38	250	2,62	

6.1. Электрические схемы подключения установок.

ВОЛГАРЬ (датчик уровня - поплавковый), самотек. Схема электрическая монтажная.

ВОЛГАРЬ (датчик уровня - поплавковый), с принудительным выбросом. Схема электрическая монтажная.

7. Ввод установки в эксплуатацию.

7.1. Общие положения.

В процессе монтажа аэротенк, вторичный отстойник и стабилизатор ила заполняют водой до уровней, указанных в п. 5.1 настоящего Паспорта, После этого можно вводить установку в эксплуатацию.

Выход установки на штатный режим работы длится приблизительно 3–4 недели при поступлении стоков в количестве, соответствующем производительности, и имеющих концентрацию загрязняющих веществ, не превышающих показателей, указанных в Таблице 1 настоящего Паспорта.

Первый молодой ил, в большинстве случаев коричневого цвета, появляется после 10 дней работы. После этого визуально можно определить улучшение качества воды на выходе. В течение последующего периода ил в аэротенке сгущается и в большинстве случаев его цвет приобретает темно-бурый оттенок. При этом имеет место еще большее улучшение эффективности очистки и качества воды.

Во время образования густого ила (первые 14–30 дней) имеет место значительное пенообразование. Основной причиной этого является применение поверхностно-активных веществ в составе бытовых средств в домашнем хозяйстве. Пена постепенно исчезает с повышением концентрации ила в аэротенке. Во время накопления активного ила (1 месяц) желательно сократить использование химических средств в домашнем хозяйстве (для посудомоечных и стиральных машин).

Окончание времени ввода установки в эксплуатацию, и ее правильная работа определяется отбором пробы воды в режиме аэрации в аэротенке в стеклянную емкость вместимостью около 1 литра. Активационной смеси дают отстояться в течение примерно 20–30 минут, после этого времени на дне емкости осаждается активный ил, а над ним появляется слой очищенной воды. Линия раздела очищенной воды и ила должна быть отчетливо видна. Ил должен иметь объем примерно 20% вместимости емкости и примерно 80% будет составлять чистая вода. Установка, таким образом, введена в работу и теперь достаточно устойчива к химическим средствам, которые применяются в домашнем хозяйстве. Если ила меньше, процесс ввода установки не окончен, или очистное сооружение недостаточно загружено хозяйственно-бытовыми стоками. Если ила больше, не происходит надлежащее его удаление – это значит, что установка перегружена, не происходит переключение или пора выполнять сервисные работы, касательно удаления избыточного ила за пределы установки. Переключение режимов работы установки должно происходить как минимум 1 раз в день.

После ввода установки в эксплуатацию ЗАПРЕЩАЕТСЯ включать, отключать и переставлять разъемы внутри установки, а также производить иные действия лицам, не имеющим соответствующих навыков ремонта и обслуживания.

7.2. Оценка работы установки по качеству воды.

При правильной работе установки вода на выходе прозрачная, чистая и без неприятного запаха.

Мутная вода на выходе из установки.

В данном случае речь идет о наличии коллоидных частиц (взвешенных веществ) в очищенной воде. Обычно это происходит в ходе ввода установки в эксплуатацию, пока не образуется достаточное количество активного ила или не стабилизируются процессы биологической очистки.

Следующей причиной может быть изменение качественных характеристик поступающих на очистку сточных вод, например, пониженное pH, резкое падение температуры, химическое загрязнение (случай интенсивной стирки белья или при применении агрессивных моющих средств и т.п.), несоответствие количества стоков номинальной производительности установки, недостаточное содержание в сточных водах фекальных включений, гидравлическая перегрузка установки, нехватка кислорода (которая может быть вызвана повреждением воздушной распределительной сети).

Отбор проб.

При необходимости выполнения анализа входящих хозяйственно-фекальных стоков и выходящей очищенной воды обращаться следует в аккредитованную, специализированную лабораторию.

Во время эксплуатации установки необходимо производить плановые работы согласно регламенту, рекомендованному производителем.

8. Особенности зимней эксплуатации установок «ВОЛГАРЬ»

8.1. Штатный зимний режим

Корпус установки изготовлен из гомогенного (монолитного) полипропилена, обладающего достаточно высокими теплоизоляционными характеристиками. Технологическая крышка дополнительно теплоизолирована.

Внутри установки происходят процессы окисления с выделением тепла. При температуре наружного воздуха не ниже –25°С и наличии не менее 20% паспортного притока хозяйственно-фекальных стоков, установка не требует никаких специальных зимних профилактических мероприятий.

Для регионов с частым понижением температуры более –25°С рекомендуется принять меры для предотвращения замерзания в зимних условиях. Это можно сделать при монтаже несколькими способами:

- установить компрессор в отапливаемом помещении для подачи теплого воздуха в установку;
- принять меры по дополнительной теплоизоляции корпуса и горловин (для этого применяются утепленные крышки, которые устанавливаются поверх установки).

8.2. «Консервация» на зимний период

Данное мероприятие проводится при условии отсутствия поступления в установку стоков в период более 3-х месяцев, и в этом случае установка работает сезонно.

При «консервации» установок высотой «2360» и «2500» необходимо:

- произвести сервисное обслуживание установки;
- отключить компрессор от электропитания, демонтировать его из установки (хранить в теплом, сухом месте);
- отключить установку от источника электропитания;
- откачать камеру стабилизатора ила полностью;
- залить стабилизатор ила чистой водой до уровня 1,8 м от дна, но не выше уровня подводящего трубопровода;
- откачать избыточный активный ил из аэротенка до уровня 1,7 м от дна;
- долить чистую воду в приемную камеру до уровня 1,5 м от дна, но не выше уровня подводящего трубопровода;
- в каждую камеру установки поместить 1–2 пластиковые бутылки (объемом 2 л или 5 л), заполненные песком на 50%;
- утеплить крышку установки утеплителем, не впитывающим влагу (толщиной не менее 50 мм);
- накрыть установку по периметру пленкой. Пленку необходимо закрепить.

При консервации установки «ВОЛГАРЬ-3», а также установок высотой «3000» после откачки камер согласно вышеуказанной инструкции, залить их чистой водой до рабочего объема (аэротенк, вторичный отстойник и стабилизатор ила заполнить полностью водой до уровня перелива чистой воды, а приемную камеру наполнить на высоту примерно 1 м).

Остальные действия по «консервации» аналогичны действиям, указанным для других моделей установок «ВОЛГАРЬ».

ВО ИЗБЕЖАНИЕ «ВСПЛЫТИЯ» ПОЛНАЯ ОТКАЧКА СОДЕРЖИМОГО УСТАНОВКИ ЗАПРЕЩЕНА!

В ПЕРИОД «КОНСЕРВАЦИИ» В УСТАНОВКУ НЕ ДОЛЖНЫ ПОСТУПАТЬ СТОКИ!

При запуске установки в эксплуатацию необходимо:

- извлечь пластиковые бутылки из всех отсеков установки;
- камеры аэротенка и стабилизатора ила заполнить водой до верхнего уровня;
- смонтировать и подключить компрессор в установку;
- подключить установку к источнику электропитания.

«Консервация» установки очистки сточных вод производится специалистами организации-изготовителя или монтажной фирмы, чьи сотрудники прошли обучение, и имеющей соответствующий сертификат. Данные работы так же можно выполнить самостоятельно, при условии прохождения инструктажа у специалистов имеющих соответствующую квалификацию и прошедших обучение в организации-производителе!

9. Рекомендации по эксплуатации установок «ВОЛГАРЬ»

Организация эксплуатации любой установки, на которой осуществляется биологическая очистка, основана на жизнедеятельности живых микроорганизмов. Основной участник процесса биологической очистки – активный ил. Если возникают условия, неблагоприятные для развития, роста и особенно питания живого организма, то качество очистки ухудшается.

Для предотвращения возникновения и развития вышеуказанной ситуации необходимо соблюдать культуру пользования сантехническими приборами и канализационной сетью.

Запрещается сброс в канализацию:

- —строительного мусора, песка, цемента, извести, строительных смесей и прочих отходов строительства;
- —полимерных материалов и других биологически не разлагаемых соединений (в эту категорию входят не растворяемые в воде туалетная бумага и салфетки, средства контрацепции, гигиенические пакеты, фильтры от сигарет, пленки от упаковок и тому подобное);
- нефтепродуктов, горюче-смазочных материалов, красок, растворителей, антифризов, кислот, щелочей, спирта и тому подобного;
- —бытового, садового мусора, удобрений и прочих отходов садоводства;
- —мусора от лесных грибов, пищевых отходов (остатков еды, мусора от очистки овощей и фруктов);
- —большого количества масла/жира (например, из фритюра);
- —промывных вод фильтров бассейна; регенерационных вод от установок подготовки питьевой и технической воды;
- —большого количества стоков после отбеливания белья хлорсодержащими препаратами;
- —стока от стиральных машин, превышающего 1/10 часть от хозяйственно-бытовых стоков, поступающих в установку;
- —чистящих средств, содержащих хлор и другие антисептики в больших количествах;
- лекарств и лекарственных препаратов;
- —шерсти, фекалий домашних животных, а также корма.

На неисправности, вызванные нарушением вышеуказанных пунктов, а также возникшие вследствие пожара или иных природных явлений, гарантии не распространяются.

Разрешается сброс в канализацию:

- мягкой, легко разлагающейся туалетной бумаги;
- стоков стиральных машин, при условии применения стиральных порошков без хлора;
- кухонных стоков с использованием моющих средств без хлора;
- душевых и банных стоков;
- небольшого количества средств для чистки унитазов, сан.фаянса и кухонного оборудования 1 раз в неделю.

Для эффективной работы установки необходимо не только избегать отравления ее химическими препаратами, но и стараться активизировать течение биологических процессов, а именно:

- использовать моющие, чистящие, дезинфицирующие средства, в состав которых входят биологически разлагаемые компоненты;
- производить уборку, стирку, чистку и другие работы не одновременно, чтобы не допускать массового сброса химических веществ в установку;
- допускается использование биопрепаратов согласно инструкции производителя.

10. Регламент и периодичность технического (сервисного) обслуживания установок «ВОЛГАРЬ»

Оборудование должно своевременно и регулярно обслуживаться сервисной службой организации-изготовителя, либо официального представителя организации-изготовителя. Полномочия специалистов на право проведения технического консультирования по вопросам эксплуатации, монтажа, шефмонтажа, сервисного обслуживания оборудования должны быть подтверждены сертификатом о прохождении обучения соответствующим видам работ.

Раз в 3 месяца:

- удаление ила из отстойника с помощью штатного насоса с заглушкой, либо дренажного насоса;
- очистка главного насоса неочищенной воды и фильтра крупных фракций;
- очистка стенок вторичного отстойника;
- очистка фильтров компрессоров.

Раз в 6 месяцев:

- удаление ила из отстойника с помощью дренажного насоса (если не имело место удаление ила с помощью штатного насоса после 3 месяцев);
- очистка уловителя для волос в аэротенке.

Раз в 5 лет — очистка приемной камеры и аэротенка от стабилизированного осадка.

Раз в 10 лет — замена аэрационных элементов.

Эксплуатация дополнительного и электрооборудования осуществляется в соответствии с прилагаемой инструкцией производителя данного оборудования.

10.1. Удаление ила из установки

1-й способ

2-й способ

Установить на блоке управления выключатель «КОМПР.» в положение «О». Опустить в емкость стабилизатора ила дренажный насос и произвести 100% откачку иловой смеси, после чего заполнить объем водой до уровня перелива. При полном опорожнении стабилизатора ила достаточно удалять ил 1 раз в 6 месяцев. После проведения откачки перевести выключатель «КОМПР.» в положение «I».

Объем стабилизатора ила

Модель установки	Объем, л.
«ВОЛГАРЬ – 3»	≈227
«ВОЛГАРЬ – 5»	≈267
«ВОЛГАРЬ – 8»	≈460
«ВОЛГАРЬ – 10»	≈616

10.2. Перечень работ, выполняемых при сервисном обслуживании

— удаление избыточного ила из отстойника при предельно допустимой концентрации* для последующей утилизации

(утилизация избыточного ила производится на условиях, указанных в Договоре на сервисное обслуживание);

- заполнение отстойника чистой водой;
- очистка главного насоса неочищенной воды и фильтра крупных фракций**;
- очистка стенок вторичного отстойника;
- очистка фильтров компрессоров;
- очистка волосоуловителя в аэротенке;
- проверка работы электрооборудования (компрессор, клапан, блок управления, насосное оборудование).
- удаление поверхностного мусора

* Определение концентрации ила в отстойнике

Для того чтобы определить концентрацию ила в отстойнике, необходимо произвести отбор пробы активационной смеси в режиме аэрации в аэротенке в стеклянную емкость, вместимостью примерно 1 л. Активационной смеси дают отстояться в течение примерно 20-30 минут, после этого времени на дне емкости осаждается активный ил, а над ним появляет¬ся слой очищенной воды. Линия раздела очищенной воды и ила должна быть отчетливо видна. Ил должен иметь объем не более 50% вместимости емкости, а 50% будет составлять чистая вода.

** Очистка фильтра крупных фракций

Отсоединить подводные трубочки подачи воздуха для главного насоса и обдува фильтра. Снять фильтр с крепления и извлечь из установки. Фильтр необходимо перевернуть и высыпать нечистоты (волосы, известковые комочки, которые собираются у дна). В случае наличия очень жесткой воды эту процедуру необходимо выполнять чаще. Все составные части установки можно демонтировать и очистить.

Возможные неисправности приводят к повышению уровня воды в приемной камере до аварийного поплавка, который включает аварийную сигнализацию, оповещая тем самым о возникшей проблеме: опасности стока вод без их очистки или переполнении установки.

11. Гарантийные обязательства и условия гарантии

При продаже ПРОДАВЕЦ, либо организация, осуществляющая ввод оборудования в эксплуатацию, обязаны внести в ГАРАНТИЙНОМ ТАЛОНЕ данные о наименовании и комплектации оборудования, серийные номера установок и компрессорного оборудования, заполнить данные об объекте, где установлено оборудование, данные о продаже и вводе оборудования в эксплуатацию, и заверить их своей печатью. Эти документы будут являться подтверждением гарантии.

Гарантийные обязательства распространяются на оборудование, на которое имеется должным образом оформленный ГАРАНТИЙНЫЙ ТАЛОН, заверенный печатью ТОРГОВОЙ ОРГАНИЗАЦИИ, и сведения о продаже и вводе оборудования в эксплуатацию.

Гарантийный срок на КОРПУС УСТАНОВКИ (герметичный блок/модуль, выполненный из гомогенного полипропилена, включающий горловину, внешние стенки и внутренние перегородки технологических камер) составляет 3 года от даты продажи ТОРГОВОЙ ОРГАНИЗАЦИЕЙ.

Гарантийный срок на электромагнитный клапан, компрессорное и насосное оборудование составляет 12 месяцев от даты продажи ТОРГОВОЙ ОРГАНИЗАЦИЕЙ. Сменные фильтровальные детали компрессора (мембраны) и предохранители (стопперы) не попадают под условия гарантии, как элементы, подверженные износу при нормальной эксплуатации.

Гарантийный срок на выполненные работы составляет 12 месяцев. За начало гарантийного срока принимается дата подписания акта выполненных работ (дата ввода в эксплуатацию).

ТОРГОВАЯ ОРГАНИЗАЦИЯ не несет ответственности за неисправности, вызванные неправильной транспортировкой, монтажом и вводом оборудования в эксплуатацию в случае, если данные услуги осуществлялись не ТОРГОВОЙ ОРГАНИЗАЦИЕЙ.

В гарантийном ремонте КОРПУСА УСТАНОВКИ может быть отказано в случае, если работы по монтажу, запуску в эксплуатацию производились организацией, не обладающей необходимыми полномочиями, подтвержденными сертификатом или иным документом, дающим право на выполнение соответствующих работ.

Гарантия не распространяется на повреждения, возникшие в результате механических воздействий, несоблюдения правил эксплуатации или инструкций по техническому обслуживанию, самостоятельного ремонта или изменения внутреннего устройства, неправильного подключения оборудования.

ТОРГОВАЯ ОРГАНИЗАЦИЯ не компенсирует расходы, связанные с демонтажом гарантийного оборудования, в случае выполнения работ связанных с монтажом и вводом в эксплуатацию сторонней организацией (иным лицом).

ТОРГОВАЯ ОРГАНИЗАЦИЯ не компенсирует ущерб, нанесенный другому оборудованию, находящемуся у владельца, в результате неисправностей (или дефектов) оборудования, возникших в гарантийный период.

В случае поступления сточных вод в объеме, превышающем указанную производительность установки, и не соответствующих концентрации загрязняющих веществ, допустимых параметров входящих стоков, указанных в техническом паспорте, ТОРГОВАЯ ОРГАНИЗАЦИЯ снимает с себя ответственность за качественные показатели очищенных сточных вод.

12. Гарантийный талон производителя ООО «Волгарь76» на установки биологической очистки модельного ряда ВОЛГАРЬ®

Россия, 150003, г. Ярославль, Волжская набережная дом 4, помещение 88

,,	, , , , , , , , , , , , , , , , , , , ,
Модель установки - «ВОЛГАРЬ»	
Серийный номер установки	
Модель компрессора	
Серийный номер компрессора	
Модель дренажного насоса	
очистки изготовлена в соответствии с ТУ-	елю, что реализуемая установка биологической 42.21.13016-98124076-2017, прошла техническое одителе и пригодна к эксплуатации.
ООО «Волгарь76»	Покупатель
	с гарантийными условиями и правилами ознакомлен (a)
М.П.	/
ТОРГОВАЯ ОРГАНИЗАЦИЯ, АДРЕС,ТЕЛЕ Наименование организации	
Покупатель	
Модель установки	
Серийный номер установки	
Модель компрессора Серийный номер компрессора	
Модель дренажного насоса	
Дата продажи	
H	Покупатель
	с гарантийными условиями и правилами ознакомлен (a)
М.П.	/
Монтаж/шефмонтаж/ввод в эксплуатаци	ію произведен:
	ефон
Дата ввода в эксплуатацию	
	Покупатель
	с гарантийными условиями и правилами ознакомлен (a)
М.П.	/

12.1. Гарантийные работы, отметки о выполнении. (обязательное заполнение сервисной организацией) Наименование организации Дата выполнения работ Выявленный дефект подпись мастера Гарантийные работы, отметки о выполнении. (обязательное заполнение сервисной организацией) Наименование организации Дата выполнения работ Выявленный дефект Выполненные работы

Гарантийные работы, отметки о выполнении.

(обязательное заполнение сервисной организацией)

подпись мастера _____/____

12.2. Сервисные работы, отметки о выполнении.

(обязательное заполнение сервисной организацией) Наименование организации_____ Дата выполнения работ Перечень выполненных работ_____ подпись мастера _____/_ (обязательное составление акта сервисного/аварийного обслуживания) Сервисные работы, отметки о выполнении. (обязательное заполнение сервисной организацией) Наименование организации Дата выполнения работ_____ Перечень выполненных работ_____ подпись мастера ______/____ (обязательное составление акта сервисного/аварийного обслуживания) Сервисные работы, отметки о выполнении. (обязательное заполнение сервисной организацией) Наименование организации Дата выполнения работ_____ Перечень выполненных работ_____ подпись мастера _____/__

(обязательное составление акта сервисного/аварийного обслуживания)

(обязательное составление акта сервисного/аварийного обслуживания)

Сервисные работы, отметки о выполнении. (обязательное заполнение сервисной организацией) Наименование организации Дата выполнения работ Перечень выполненных работ (обязательное составление акта сервисного/аварийного обслуживания) Сервисные работы, отметки о выполнении. (обязательное заполнение сервисной организацией) Наименование организации Дата выполнения работ Перечень выполненных работ Перечень выполненных работ

(обязательное составление акта сервисного/аварийного обслуживания)

Сервисные работы, отметки о выполнении.

(обязательное заполнение сервисной организацией)

Наименование организации

Дата выполнения работ

Перечень выполненных работ______

подпись мастера _____/____

подпись мастера ______/____

(обязательное составление акта сервисного/аварийного обслуживания)

подпись мастера _____/__

(обязательное составление акта сервисного/аварийного обслуживания)

35

(обязательное составление акта сервисного/аварийного обслуживания)

подпись мастера _____/__

Перечень выполненных работ_____

Производитель постоянно работает над модернизацией и улучшением технических, эксплуатационных и потребительских характеристик производимого оборудования, поэтому оставляет за собой право на внесение любых изменений без предварительного уведомления. Такие изменения не налагают дополнительных обязательств на Производителя.
На момент сдачи в печать информация в данном техническом паспорте полностью соответствует действительности.
Все вносимые изменения оперативно отражаются на сайте www.volgar76.ru.
Любое копирование, полное или частичное воспроизведение или перевод технического паспорта без разрешения Производителя ЗАПРЕЩЕНО!

