Universidade de Aveiro

Departamento de Electrónica, Telecomunicações e Informática

Época de Recurso

Exame de Introdução aos Sistemas Digitais

31-01-2014

Duração: 2h30m

É proibida a utilização de calculadoras, telemóveis ou outros dispositivos electrónicos. Responda nas próprias folhas do enunciado e identifique todas com nome e nº mec.

	Nº mec:Non	ne						
1.	[5 valores] Para cada alternativas de responsable a lado. No desenhando um círcu cada alínea é 0.5 valo 0. Cada alínea errada 1/4 da cotação, até cômputo geral desta o 1.1. O resultado da ope	sta, das quais aper ando 'x' na célula caso de se enga alo a cheio sobre cores. Alíneas não na a (ou com resposta ao limite mínimo questão.	nas uma é correcta. correspondente da unar, pode corrigir o 'x'. A cotação de respondidas contam ambígua) desconta o de 0 valores no	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	a	b	C	d
	a) 450 ₁₆ c) 404 ₂	11440 0101 ₁₁ +0101 ₁₆	b) 185 ₁₀ d) nenhum dos anteriores	-	I	I		
	1.2. Considere os números A, B, C, D e E, todos definidos pela mesma sequência binária (10001 mas sob sistemas de codificação diferentes (indicados): A=10001 (complemento para 2 cor 5 bits); B=10001 (complemento para 1 com 5 bits); C=10001 (sinal e módulo com 5 bits) D=10001 (código de <i>Gray</i> com 5 bits); E=10001 (numeração natural com 5 bits). A relação entre os números é:							
	a) D>E>A>B>C c) C=E>D>B>A		b) D>E>C>B>A d) nenhuma das anteriores	S				
	1.3. A representação em código binário natural do valor 29.5 ₁₀ , se quisermos aproximar tanto quanto possível (sem exceder) a precisão da representação original, deve ser:							
	a) 11101.001 ₂ c) 10111.1 ₂		b) 11101.100 ₂ d) 11101.1 ₂					
	1.4. Admita que um sistema de transmissão de dados utiliza CRC de 2 <i>bits</i> (gerador polinomia x²+1, ou seja, G=101). Nestas condições, o código CRC aposto à mensagem 11011011 é:							
	a) 11 c) 110		b) 10 d) nenhum dos anteriores					
	 1.5. Recorde os postulados de Huntington: P1 – Fecho; P2 – Comutatividade; P3 – Elementos neutros; P4 – Distributividade; P5 – Complementaridade; P6 – Cardinalidade. A igualdade x + x̄. y = x + y é: 							
	a) falsa b) uma identidade demonstrável invocando sucessivamente P4, P5 e P3 c) verificada apenas se $\bar{x}. y = y$ d) uma identidade demonstrável invocando sucessivamente P4, P3 e P5							
	1.6. Um bloco combinacional com 3 entradas e 2 saídas pode realizar:							
	 a) 2⁶ funções lógicas c) 2⁸.2⁴ funções lógicas 		b) 2 ⁸ +2 ⁴ funções lógicas d) 2 ³ .2 ² funções lógicas					
	1.7. Um bloco lógico combinacional com 2 entradas (x e y) e duas saídas, sendo uma saída dependente apenas de x e a outra dependente de x e y, pode realizar:							
	a) 64 funções booleanasc) 8 funções booleanas		b) 16 funções booleanas d) 6 funções booleanas					

- 1.8. Relativamente à função booleana definida pelo mapa de Karnaugh, podemos afirmar:
- a) a forma canónica POS tem mais termos b) a forma mínima SOP tem mais que a forma canónica SOP
- c) as formas mínimas SOP e POS têm igual número de termos
- termos que a forma mínima POS d) as formas canónicas SOP e

POS têm igual número de termos

1	0	0	1
1	1	1	0
0	1	1	0
0	1	1	1

- 1.9. Ainda no mapa de Karnaugh anterior, o número de distinguished 1-cells é:
- a) 1
- c) 3

- b) 2
- d) diferente de 1, 2 e 3
- 1.10. Considere dois somadores, um usando ripple-carry e o outro com o sistema carry lookahead, ambos de 12 bits. Considere ainda que foram construídos com portas lógicas elementares (nomeadamente AND, OR e XOR), todas elas com o mesmo atraso de propagação, independente do número de entradas. Nestas condições, o somador carry lookahead conseguirá ser:
- a) 50% mais rápido
- c) 6 vezes mais rápido

- b) 3 vezes mais rápido
- d) 12 vezes mais rápido
- 2. Considere o circuito combinacional representado, com quatro entradas (a, b, c e d) e baseado num somador binário de 4 bits.
 - 2.1. [2 valores] Construa a tabela de verdade das funções f, g, h, i e q.

2.2. [0.5 valor] Considere a situação em que abcd=1001. Assumindo representação em complemento para 2 com 4 bits, que números decimais estão presentes nas entradas (A3A2A1A0; B3B21B0) e na saída (S3S2S1S0) do somador? Como interpreta a operação aritmética efectuada?

3.70	3.7	
Nº mec:	Nome	
IN IIICC.	1101110	

- 3. Considere a função booleana f(a,b,c,d) representada na tabela de verdade, onde o símbolo 'X' representa 'irrelevante'.
 - 3.1. [1 valor] Construa o mapa de Karnaugh da função f(a,b,c,d); obtenha a sua forma mínima em 'soma de produtos', aproveitando o melhor possível as situações de irrelevância.

а	b	С	d	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	Χ
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	Χ
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

3.2. [1 valor] Obtenha agora a sua forma mínima em 'produto de somas', de novo aproveitando o melhor possível as situações de irrelevância.

3.3. [0.5 valor] Desenhe o diagrama da implementação mínima de f(a,b,c,d) apenas com portas NOR.

4. [2,5 valores] O bloco representado integra dois somadores binários de 4 bits, um comparador de 4 bits e um multiplexer quad 2:1. Os componentes estão desenhados de forma que a ordem de significância a considerar para entradas e saídas é sempre decrescente de cima para baixo. Complete as ligações internas de forma a obter um somador BCD (entradas A=A₃A₂A₁A₀, B=B₃B₂B₁B₀ e CARRY IN; saídas Y=Y₃Y₂Y₁Y₀ e CARRY OUT). Apresente notas justificativas sucintas.

5. [1,5 valores] Em álgebra de Boole binária, existe distributividade da operação XOR em relação à operação OR? Demonstre a sua resposta por verificação exaustiva de todas as combinações possíveis.

Nº mec: _____Nome_

- 6. Considere este circuito sequencial síncrono, cuja lógica de transição de estados se baseia
 - num *multiplexer*. O circuito está desenhado de forma que a <u>ordem de significância</u> a considerar para entradas e saídas dos componentes é sempre <u>decrescente</u> de <u>cima para baixo</u>. Considere que o valor lógico das entradas *RST1* e *RST2* é '0' e a máquina inicia o seu funcionamento no estado Q1Q0=00.

6.1. [1 valor] Admitindo que os dígitos hexadecimais activos nos teclados A e B são, respectivamente, '6' e '5', construa a tabela de transição de estados. Justifique sucintamente. Desenhe o correspondente diagrama de estados. Qual a função da máquina?

6.2. [1.5 valores] Repita a alínea anterior admitindo agora que os dígitos hexadecimais activos nos teclados A e B são, respectivamente, 'A' e '3'. Compare os diagramas de estados. Detecta alteração na função da máquina? Qual?

6.3. [0.5 valor] RST1 e RST2 funcionam ambas como entradas de *reset*, mas com características marcadamente diferentes. Classifique uma e outra em termos dessas características.

6.4. [*1 valor*] Admita que os parâmetros temporais dos flip-flops que compõem o registo não excedem t_{setup}=t_{hold}=5 ns e t_{pHL}=t_{pLH}=11 ns. A tabela seguinte é um excerto da *data-sheet* do *multiplexer*.

Parameter	From (Input)	To (Output)	Тур	Max	Unit
tpLH	Data	Υ	12	18	ns
tpHL	Data	Υ	15	24	ns
tpLH	Select	Υ	22	34	ns
tpHL	Select	Υ	22	34	ns

Nestas condições, qual a frequência máxima de funcionamento? Justifique.

- 7. O circuito seguinte (incompleto) baseia-se no da questão anterior. A ideia é permitir, sob o comando da entrada *X*, escolher entre duas sequências de funcionamento: com *X*=0, a máquina deve executar a sequência original (analisada em 6.1); com *X*=1, deve executar a alternativa analisada em 6.2. Os mecanismos de *reset* devem funcionar da mesma forma.
 - 7.1. [1.5 valores] Complete o circuito com as ligações necessárias. Pode utilizar inversores adicionais, se precisar. Justifique sucintamente as suas opções.

7.2. [0.5 valor] Desenhe o diagrama de estados da máquina completa.