First Order Partial Differential Equations Method of Characteristics

Kannur University Department of Mathematics

1. Find a smooth function $a: \mathbb{R}^2 \to \mathbb{R}$ such that, for the equation of the form

$$a(x,y) u_x + u_y = 0,$$

there does not exist any solution in the entire \mathbb{R}^2 for any nonconstant initial value prescribed on $\{y=0\}$.

- 2. Consider the PDE $xu_x + yu_y + zu_z = 3u$ in \mathbb{R}^3 .
 - (a) Solve the PDE with initial condition $u(x, y, 1) = x^2 + y^2$.
 - (b) Is it possible to find unique solution if the initial condition is prescribed on the surface $z=1+x^2+y^2$?
- 3. Consider the following IVPs:

A.
$$u = u_x^2 - 3u_y^2$$
, $u(x, 0) = x^2$, $x > 0$.

B.
$$u = u_x u_y$$
, $u(x, 0) = x^2$, $x > 0$.

- (a) Discuss the existence and uniqueness of both IVPs.
- (b) Solve any one the above.
- 4. Consider the PDE $xu_x + yu_y = 2u$ on \mathbb{R}^2 . Discuss the existence and uniqueness of the solution (both global and local) to the following initial conditions. If unique solution does not exist, find an alternative solution on \mathbb{R}^2 .
 - (a) u = 1 on the hyperbola xy = 1, x > 0.
 - (b) u = 1 on the line y = 1.
 - (c) u = 1 on the circle $x^2 + y^2 = 1$.
 - (d) $u(x, e^x) = xe^x$, for all $x \in \mathbb{R}$.