本讲主题

IP协议(6)-CIDR与路由聚合

CIDR

无类域间路由(CIDR: Classless InterDomain Routing)

- 消除传统的 A 类、B 类和 C 类地址界限
 - NetID+SubID→Network Prefix (Prefix)可以任意长度
- 融合子网地址与子网掩码,方便子网划分
 - 无类地址格式: a.b.c.d/x,其中x为前缀长度
- 例如

■ 子网201.2.3.64*,*255.255.255.192→201.2.3.64/26

CIDR与路由聚合

无类域间路由(CIDR: Classless InterDomain Routing)

- 提高IPv4 地址空间分配效率
- 提高路由效率
 - 将多个子网聚合为一个较大的子网
 - 构造超网 (supernetting)

■ 路由聚合 (route aggregation)

层级编址使得路由信息通告更高效:

选用更具体的路由: 最长前缀匹配优先!

本讲主题

DHCP协议

如何获得IP地址?

- Q: 一个主机如何获得IP地址?
- ❖ "硬编码"
 - 静态配置

如何获得IP地址?

- Q: 一个主机如何获得IP地址?
- ❖ "硬编码"
 - 静态配置
- ❖ 动态主机配置协议-DHCP: Dynamic Host Configuration Protocol
 - 从服务器动态获取:
 - · IP地址
 - 子网掩码
 - 默认网关地址
 - · DNS服务器名称与IP地址
 - "即插即用"
 - 允许地址重用
 - 支持在用地址续租
 - 支持移动用户加入网络

动态主机配置协议(DHCP)

- ❖ 主机广播 "DHCP discover" (发现报文)
- ❖ DHCP服务器利用 "DHCP offer" (提供报文) 进行响应
- ❖ 主机请求IP地址: "DHCP request" (请求报文)
- ❖ DHCP服务器分配IP地址: "DHCP ack" (确认报文)

DHCP工作过程示例

DHCP工作过程示例

- ❖ DHCP协议在应用层实现
 - 请求报文封装到 UDP数据报中
 - IP广播
 - 链路层广播 (e.g. 以太网广播)

DHCP工作过程示例

- ❖ DHCP服务器构造 ACK报文
 - 包括分配给客户的 IP地址、子网掩码、默认网关、DNS 服务器地址

本讲主题

网络地址转换(NAT)

动机:

- 只需/能从ISP申请一个IP地址
 - IPv4地址耗尽
- 本地网络设备IP地址的变更,无需通告外界 网络
- 变更ISP时,无需修改内部网络设备IP地址
- 内部网络设备对外界网络不可见,即不可直接寻址(安全)

实现:

- ■替换
 - •利用(NAT IP地址,新端口号)替换每个外出IP数据报的(源IP地址,源端口号)
- 记录
 - 将每对(NAT IP地址, 新端口号) 与(源IP地址, 源端口号)的替换信息存储到NAT转换表中
- ■替换
 - 根据NAT转换表,利用(源IP地址, 源端口号)替换每个进入内网IP数据报的(目的IP地址,目的端口号),即(NAT IP地址, 新端口号)

- ❖16-bit端口号字段:
 - 可以同时支持60,000多并行连接!
- ❖NAT主要争议:
 - 路由器应该只处理第3层功能
 - 违背端到端通信原则
 - •应用开发者必须考虑到NAT的存在, e.g., P2P应用
 - 地址短缺问题应该由IPv6来解决

NAT穿透问题

- ❖客户期望连接内网地址为 10.0.0.1的服务器
 - 客户不能直接利用地址 10.0.0.1直接访问服务器
 - 对外唯一可见的地址是NAT 地址: 138.76.29.7
- ❖解决方案1: 静态配置NAT ,将特定端口的连接请求 转发给服务器
 - e.g., (138.76.29.7, 2500) 总 是转发给(10.0.0.1, 25000)

NAT穿透问题

- ❖解决方案2: 利用UPnP (Universal Plug and Play) 互联网网关设备协议 (IGD-Internet Gateway Device) 自动配置:
 - * 学习到NAT公共IP地址 (138.76.29.7)
 - ❖ 在NAT转换表中,增删端口 映射

NAT穿透问题

- ❖解决方案3: 中继(如Skype)
 - NAT内部的客户与中继服务器建立连接
 - 外部客户也与中继服务器建立连接
 - 中继服务器桥接两个连接的分组

本讲主题

互联网控制报文协议(ICMP)

互联网控制报文协议(ICMP)

- ❖ 互联网控制报文协议 ICMP (Internet Control Message Protocol)支持主机或路由器:
 - 差错(或异常)报告
 - 网络探询
- ❖ 两类ICMP 报文:
 - 差错报告报文(5种)
 - 目的不可达
 - 源抑制(Source Quench)
 - 超时/超期
 - 参数问题
 - 重定向 (Redirect)
 - 网络探询报文(2组)
 - 回声(Echo)请求与应答报文(Reply)
 - 时间戳请求与应答报文

ICMP报文

类型(Type)	编码(Code)	description
0	0	回声应答 (ping)
3	0	目的网络不可达
3	1	目的主机不可达
3	2	目的协议不可达
3	3	目的端口不可达
3	6	目的网络未知
3	7	目的主机未知
4	0	源抑制(拥塞控制-未用)
8	0	回声请求(ping)
9	0	路由通告
10	0	路由发现
11	0	TTL超期
12	0	IP首部错误

ICMP报文的格式

* ICMP报文封装到IP数据报中传输

ICMP的应用举例: Traceroute

- ❖ 源主机向目的主机发送一系列 UDP数据报
 - 第1组IP数据报TTL =1
 - 第2组IP数据报TTL=2, etc.
 - 目的端口号为不可能使用的 端口号
- ❖ 当第*n*组数据报(TTL=*n*)到达第 *n*个路由器时:
 - 路由器丢弃数据报
 - 向源主机发送ICMP报文 (type=11, code=0)
 - ICMP报文携带路由器名称和 IP地址信息

❖ 当ICMP报文返回到源主机时, 记录RTT

停止准则:

- ❖ UDP数据报最终到达目的主机
- ❖ 目的主机返回"目的端口不可 达"ICMP报文 (type=3, code=3)
- * 源主机停止

本讲主题

IPv6简介

IPv6: 动机

- ❖ 最初动机: 32位IPv4地址空间已分配殆尽
- * 其他动机: 改进首部格式
 - 快速处理/转发数据报
 - 支持QoS

IPv6数据报格式:

- 固定长度的40字节基本首部
- 不允许分片

IPv6数据报格式

优先级(priority): 标识数据报的优先级

流标签(flow Label):标识同一"流"中的数据报

下一个首部(next header): 标识下一个选项首部或上层协议首部(如TCP首部)

其他改变 vs IPv4

- ❖校验和(checksum): 彻底移除,以减少每跳处理时间
- ❖选项(options): 允许,但是从基本首部移出,定义 多个选项首部,通过"下一个首部"字段指示
- ❖ICMPv6: 新版ICMP
 - 附加报文类型, e.g. "Packet Too Big"
 - 多播组管理功能

IPv6基本地址类型

单播(unicast): 一对一通信 多播(multicast): 一对多通信 任意播(anycast): 一对一组之一 (最近一个)通信

IPv4向IPv6过渡

- ❖不可能在某个时刻所有路由器同时被更新为IPv6
 - 不会有"标志性的日期"
 - IPv4和IPv6路由器共存的网络如何运行?
- ❖隧道(tunneling): IPv6数据报作为IPv4数据报的载荷进行封装,穿越IPv4网络

隧道(tunneling)

