Session 4: Phenotype & Diffusion

Furkan Kurtoglu <a> @ FKurtogluSysBio
Aneequa Sundus <a> @ AneequaSundus

PhysiCell Project

July 26, 2021

Agenda:

- Cell Phenotype Continued
 - Cell Cycle
 - Cell Death
 - Cell Secretion and Uptake

Key parts of a PhysiCell model (2)

- Cell agents (individual players):
 - Which cell type? (the cell agent is initialized based on a cell definition)
 - State variables:
 - ◆ position
 - ♦ mechanical pressure
 - ♦ interaction list (optional)
 - Phenotype (the script)
 - ◆ Cell cycle
 - ♦ Volume
 - ◆ Death
 - ♦ Motility
 - ♦ Mechanics
 - ♦ Substrate uptake & release
 - Custom variables
 - Custom functions that act upon the phenotype, variables, and state (script)

A note about time steps

 PhysiCell is designed to account for the multiple time scales inherent to these problems, and has 3 time scales:

• $\Delta t_{ m diffusion}$	diffusion, secretion, and uptake	(default: 0.01 min)
• $\Delta t_{ m mechanics}$	cell movement	(default: 0.1 min)
■ Δt_{cell}	phenotype and volume changes	(default: 6 min)

- This allows some efficiency improvements: not all functions need to be evaluated at each time step.
- See the PhysiCell method paper. (Oddly, not in the User Guide (yet).)

Cell phenotype

- One of the most critical data elements in a PhysiCell Cell is phenotype
- Hierarchically organize key behavioral elements:
 - Phenotype
 - ◆ cycle: advancement through a cell cycle model
 - ◆ death: one or more types of cell death
 - ◆ volume: cell's volume regulation
 - ◆ geometry: cell's radius and surface area
 - ♦ mechanics: adhesion and resistance to deformation ("repulsion")
 - ◆ motility: active motion (other than "passive" mechanics)
 - ◆ secretion: both release and uptake of chemical substrates. Interfaces with BioFVM
 - ◆ intracellular: used for interacting with intracellular models. See Sessions 10-11.
 - ◆ molecular: a place to store internalized substrates

Documentation: User Guide, Sec. 10

Phenotype: Cycle

- Each agent's phenotype had a cycle with:
 - Cycle model
 - A directional graph: nodes are cycle phases {P_i} and edges are transition rates {r_{ij}}
 - r_{ij} is the transition rate from phase P_i to phase P_j
 - ◆ One of the transitions must be marked as a division transition
 - Users can attach arrest condition functions to these transitions (e.g., size checks)
 - Cycle data
 - ♦ stores the cell's current transition rates
- Documentation: User Guide, Sec. 11.1

Phenotype: Cycle

As a default, cells are phase changes stochastically. (you can change)

Prob(transition from X_i to X_i |not arrested) $\approx r_{ii}\Delta t$.

- Example
 - Phase Transition rate = 0.016666 1/min
 - Phase Duration rate = 60 min

Phenotype: Cycle

Cell Cycles available in PhysiCell

- Live
- Ki-67 Basic
- Ki-67 Advanced
- Flow Cytometry
- Flow Cytometry Separated
- Cycling-Quiescent

Cell definition: cycle

- For some problems, it's easier to work in terms of transition rates. Use the "phase_transition_rates" code for these.
 - In this example, the "live" cell cycle (with a single phase) transitions at a rate of 0.002 1/min.
- Sometimes, it's easier to work in terms of how long a cell spends in a phase. Use "phase_durations" for these.
 - In this example, the "live" cell cycle (with a single phase) lasts (on average) 500 minutes.

cycle app demo

• https://nanohub.org/resources/trcycle

Phenotype: Death

- Death has one or more death models:
 - A specialized cycle model with a removal transition rate
 - Extra parameters to help govern cell volume
 - Each death model has an associate death rate
 - Also stores an easy Boolean dead to easily check if the cell is alive.
- PhysiCell has built-in apoptosis and necrosis death models

Documentation: User Guide, Sec. 11.2

Cell definition: death

```
<death>
                       <model code="100" name="apoptosis">
                                               <death rate units="1/min">0</death rate>
                                               <!-- use phase transition rates OR phase durations -->
                                               <phase durations units="min">
                                                                       <duration index="0" fixed duration="true">516</duration>
                                               </phase durations>
                                               <parameters>
                                                                       <univsed fluid change rate units="1/min">0.05</univsed fluid change rate>
                                                                       <lysed fluid change rate units="1/min">0</lysed fluid change rate>
                                                                       <cvtoplasmic biomass change rate units="1/min">1.66667e-02
                                                                       <nuclear biomass change rateunits="1/min">5.83333e-03/nuclear biomass change rate>
                                                                       <calcification_rate units="1/min">0</calcification_rate>
                                                                       <relative rupture volume units="dimensionless">2.0</relative rupture volume>
                                               </parameters>
                       </model>
                       <model code="101" name="necrosis">
                                               <death_rate_units="1/min">0.0</death_rate>
                                               <!-- necrosis uses phase duration[0] = 0 so that it always immediately
                                                                       tries to transition and instead checks volume against the rupture volume -->
                                               <phase durations units="min">
                                                                       <duration index="0" fixed_duration="true">0</duration>
                                                                       <duration index="1" fixed_duration="true">86400</duration>
                                               </phase durations>
                                               <parameters>
                                                                       <unlysed_fluid_change_rate units="1/min">0.05</unlysed_fluid_change_rate>
                                                                       <lysed fluid change rate units="1/min">0</lysed fluid change rate>
                                                                       <cvtoplasmic biomass change rate units="1/min">1.66667e-02
                                                                       <nuclear biomass change rate units="1/min">5.83333e-03
                                                                       <calcification_rate units="1/min">0</calcification_rate>
                                                                       <relative rupture volume units="dimensionless">2.0</relative rupture volume>
                                               </parameters>
                       </model>
```

- Use death_rate to determine the rate of starting each mode of death.
- Use the phase_durations and parameters to control how cells progress through each death model.

Phenotype: Death

- Apoptosis:

$$Prob(S_i(t + \Delta t) = D_i) = 1 - exp(-r_i\Delta t) \approx r_i\Delta t.$$

- Necrosis:

$$r_{Q1} = \frac{1}{\overline{T}_{Q}} \max \left\{ \left(\frac{pO_{2} - pO_{2,hypoxia}}{\overline{pO_{2}} - pO_{2,hypoxia}} \right), 0 \right\},$$

death app demo

https://nanohub.org/resources/trdeath

Phenotype: Secretion

$$\frac{\partial \boldsymbol{\rho}}{\partial t} = \mathbf{D} \circ \nabla^2 \boldsymbol{\rho} - \boldsymbol{\lambda} \circ \boldsymbol{\rho} + \sum_i \delta \left(\mathbf{x} - \mathbf{x}_i \right) \left[V_i \mathbf{S}_i \circ \left(\boldsymbol{\rho}_i^* - \boldsymbol{\rho} \right) - V_i \mathbf{U}_i \circ \boldsymbol{\rho} + \mathbf{E}_i \right],$$

Symbol	Meaning	Dimensions
ρ	vector of substrate densities (or concentrations)	substance/volume
\mathbf{D}	vector of diffusion coefficients	$length^2/time$
λ	vector of decay rates	1/time
V_i	volume of cell i	volume
\mathbf{x}_i	cell i's position (center)	length
\mathbf{S}_i	vector of cell i's secretion rates	1/time
$\boldsymbol{\rho}_i^*$	vector of cell i's secretion saturations	substance/volume
\mathbf{U}_i	vector of cell i's uptake rates	1/time
\mathbf{E}_i	vector of cell i's net export rates	substance/time

PhysiCell automatically tracks the mass of substrates removed from the tissue (added to cells) or added to tissue (removed from cells).

Documentation: User Guide Sec. 11.7

Important Parameters

- Differentiate between net export vs secretion rate
- Secretion rate is dependent upon Volume

Cell definition: Secretion

```
<secretion>
    <substrate name="chemical A">
        <secretion rate units="1/min">0</secretion rate>
        <secretion target units="substrate density">1</secretion target>
        <uptake rate units="1/min">0</uptake rate>
        <net export rate units="total substrate/min">0</net export rate>
    </substrate>
    <substrate name="chemical B">
        <secretion rate units="1/min">0</secretion rate>
        <secretion target units="substrate density">1</secretion target>
        <uptake rate units="1/min">0</uptake rate>
        <net export rate units="total substrate/min">0</net export rate>
    </substrate>
    <substrate name="chemical C">
        <secretion rate units="1/min">0</secretion rate>
        <secretion target units="substrate density">1</secretion target>
        <uptake rate units="1/min">0</uptake rate>
        <net export rate units="total substrate/min">0</net export rate>
    </substrate>
</secretion>
```

secretion app demo

https://nanohub.org/resources/trsecretion

Funding Acknowledgements

PhysiCell Development:

- Breast Cancer Research Foundation
- Jayne Koskinas Ted Giovanis Foundation for Health and Policy
- National Cancer Institute (U01CA232137)
- National Science Foundation (1720625)

Training Materials:

Administrative supplement to NCI U01CA232137 (Year 2)