Fiche d'exercices nº 6

Séries entières

Exercice 1.

Déterminer le rayon de convergence de la série entière $\sum a_n z^n$, avec a_n dans les différents cas suivants

$$\mathbf{a)} \ a_n = \frac{n^n}{n!}$$

b)
$$a_n = (\ln n)^{-\ln n}$$

$$\mathbf{c)} \ a_n = e^{\sqrt{n}}$$

d)
$$a_n = \frac{1}{\sqrt{n}\sqrt{r}}$$

e)
$$a_n = e^{(n+1)^2} - e^{(n-1)^2}$$

d)
$$a_n = \frac{1}{\sqrt{n}\sqrt{n}}$$

f) $a_n = \sqrt[n]{n} - \sqrt[n+1]{n+1}$

Exercice 2.

Déterminer le rayon de convergence R de la série entière $\sum a_n x^n$ avec

$$a_n = \frac{1}{n!} \sum_{k=1}^{n} k \cdot k!$$

Calculer sa somme S et donner un équivalent de S en R et -R.

Exercice 3.

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. Déterminer les rayons de convergence des séries :

$$\sum a_n^2 z^n \qquad \sum \frac{a_n}{n!} z^n \qquad \sum \frac{n! \, a_n}{n^n} z^n$$

Exercice 4.

On considère les suites (a_n) et (b_n) définies par :

$$a_n = \frac{\cos(n\pi/3)}{n^{1/3}}, \qquad b_n = \sin(a_n).$$

- a) Déterminer les rayons de convergence des séries $\sum a_n x^n$ et $\sum b_n x^n$.
- b) Déterminer la nature de $\sum a_n x^n$ et $\sum b_n x^n$ en fonction de x.

Exercice 5.

On suppose que les séries $\sum a_{2n}z^n$ et $\sum a_{2n+1}z^n$ ont pour rayons de convergence R et R'. Déterminer le rayon de convergence de $\sum a_n z^n$.

Exercice 6.

Soit $\sum a_n z^n$ une série entière de rayon de convergence infini et de somme a(z). Soit également $\rho > 0$. On définit la série entière $\sum b_n z^n$, de sorte qu'en cas de convergence, la somme b(z) vérifie (z - ρ)b(z) = a(z).

- a) Prouver l'existence et l'unicité des coefficients b_n .
- b) Quel est le rayon de convergence de la série $\sum b_n z^n$?

Exercice 7.

Soit $P_n = \sum_{k=0}^n \frac{1}{n!} X^n$ et R > 0. Montrer que pour n assez grand, P_n n'a pas de racine dans le disque fermé de centre 0 et de rayon R.

Exercice 8.

Calculer, en précisant le rayon de convergence, les sommes de séries entières suivantes :

a)
$$\sum_{n=0}^{+\infty} n^2 z^n$$
, avec $z \in \mathbb{C}$. b) $\sum_{n=0}^{+\infty} \frac{4^n (n!)^2}{(2n+1)!} x^{2n+1}$, avec $x \in \mathbb{R}$.

Exercice 9.

Déterminer rayon et somme de la série entière $\sum \frac{1}{u_n} x^n$, où $u_n = n \binom{2n}{n}$.

Exercice 10.

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ on pose $u_n(x) = \left(\frac{x(1-x)}{2}\right)^{4^n}$.

- a) Déterminer le domaine de convergence de la série $\sum u_n(x)$.
- **b)** On développe $u_n(x)$ par la formule du binôme : $u_n(x) = \sum_{4^n \le k \le 2.4^n} a_k x^k$. Montrer que le rayon de convergence de la série entière $(\sum a_n x^n)_{n \ge 1}$ est égal à 1 $(a_n \text{ non défini vaut 0 par convention})$.

Exercice 11.

Montrer que
$$\int_0^1 x^{-x} dx = \sum_{n \geqslant 1} n^{-n}.$$

En déduire une méthode de détermination d'une valeur approchée de l'intégrale à 10^{-6} près.

Exercice 12.

Montrer l'égalité suivante :

$$\int_0^1 \frac{dt}{\sqrt{1-t^4}} = \sum_{n \ge 0} \frac{(2n)!}{4^n (4n+1)(n!)^2}.$$

Exercice 13.

Soit $p \in \mathbb{N}^*$ et $A \in \mathcal{M}_p(\mathbb{R})$. Déterminer le rayon de convergence et la somme de la série entière $\sum \operatorname{tr}(A^n)z^n$. On pourra trouver une expression faisant intervenir χ_A .

Exercice 14.

Soit f une fonction réelle définie par $f(x) = \sum_{n=0}^{+\infty} x^{n^2}$.

Donner l'ensemble de définition de f et un équivalent en 1.

Exercice 15.

Montrer que la fonction f définie par $f(x) = \sum_{n=0}^{+\infty} e^{-n} \cos(n^2 x)$ est de classe C^{∞} sur \mathbb{R} et que sa série de Taylor a un rayon de convergence nul.

Exercice 16.

Étudier la suite réelle définie par $u_0 = 1$ et $u_{n+1} = \sum_{p+q=n} u_p u_q$.

On exprimera u_n en fonction de n et on donnera un équivalent de u_n .

Exercice 17.

Développer en série entière les fonctions suivantes :

a)
$$x \mapsto \ln(1 + x + x^2)$$

b)
$$x \mapsto (x-1)\ln(x^2-5x+6)$$

c)
$$x \mapsto \frac{1}{1 + x - 2x^3}$$

a)
$$x \mapsto \ln(1 + x + x^2)$$

b) $x \mapsto (x - 1) \ln(x^2 - 5x + 6)$
c) $x \mapsto \frac{1}{1 + x - 2x^3}$
d) $x \mapsto \frac{x - 2}{x^3 - x^2 - x + 1}$
e) $x \mapsto \arctan(x + 1)$
f) $x \mapsto \arctan(x + \sqrt{3})$

e)
$$x \mapsto \arctan(x+1)$$

f)
$$x \mapsto \arctan(x + \sqrt{3})$$

Exercice 18.

Développer en série entière : $\ln(\sqrt{1-2x \operatorname{ch} a + x^2})$.

Exercice 19.

Développer en série entière $\frac{e^x}{1-x}$ puis $\frac{e^{x^2}}{1-x}$.

Exercice 20.

Développer en série entière $f(x) = \sqrt{x + \sqrt{1 + x^2}}$.

Exercice 21.

Développer $f(x) = \frac{x}{1 - x - x^2}$ en série entière en utilisant la relation : $(1 - x - x^2)f(x) = x$.

Exercice 22.

Pour $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on pose $f(x) = \tan(x)$.

- a) Montrer qu'il existe une suite de polynômes $(P_n)_n$ telle que pour tout $n \in \mathbb{N}, f^{(n)} = P_n \circ f$ et que les P_n sont à coefficients dans \mathbb{N} .
- b) En utilisant la formule de Taylor avec reste intégral, montrer que la série de Taylor de f a un rayon de convergence R supérieur ou égal à $\frac{\pi}{2}$.
- c) On note $(a_n)_n$ la suite des coefficients de cette série de Taylor. Montrer que pour tout $n \in \mathbb{N}^*$, $(n+1)a_{n+1} = \sum_{k=0}^{n} a_k a_{n-k}$. En déduire que pour tout $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, f(x) = g(x)]$ et que $R = \frac{\pi}{2}$.
- d) Calculer a_0, a_1, \ldots, a_7 .

Exercice 23.

Déterminer le rayon de convergence de la série entière $\sum a_n x^n$ dans les cas suivant :

- a) La suite (a_n) est périodique, et non identiquement nulle.
- b) a_n est le nombre de diviseur de n
- c) a_n est la n-ième décimale de π .

Exercice 24.

Soit $\sum a_n z^n$ une série entière de rayon de convergence R. On pose

$$b_n = \frac{a_n}{1 + |a_n|}$$

Déterminer le rayon de la série entière $\sum b_n z^n$

Exercice 25. ** théorème de Tauber 1

Soit $\sum a_n x^n$ une série entière de rayon de convergence 1. On suppose que sa somme S admet une limite ℓ en 1.

- a) La série $\sum a_n$ est-elle nécessairement convergente?
- **b)** On suppose désormais que $a_n \ge 0$ pour tout $n \in \mathbb{N}$. Montrer que $\sum a_n$ converge et que $\sum_{n=0}^{+\infty} a_n = \ell$.

Exercice 26. ** théorème de Tauber 2

Soit $\sum a_n x^n$ une série entière de rayon de convergence 1. On suppose que sa somme S admet une limite ℓ en 1. On suppose également que $a_n = o\left(\frac{1}{n}\right)$. Pour $N \in \mathbb{N}$ et $x \in [0, 1[$, on note :

$$A(x) = S(x) - \ell$$
, $B_N(x) = \sum_{n=0}^{N} (1 - x^n) a_n$, $C_N(x) = \sum_{n=N+1}^{+\infty} a_n x^n$.

- a) Montrer que $\sum_{n=0}^{N} a_n \ell = A(x) + B_N(x) C_N(x)$.
- b) Soit $\varepsilon > 0$. Démontrer qu'il existe $N_0 \in \mathbb{N}$ tel que pour $N \ge N_0$:

$$|C_N(x)| \le \frac{\varepsilon}{N(1-x)}$$

c) Démontrer que la série $\sum_n a_n$ converge et que sa somme vaut ℓ .

Exercice 27.

Développer en série entière la fonction f définie par $f(x) = \frac{x^2 + x - 3}{(x - 2)^2(2x - 1)}$ et préciser le rayon de convergence de la série obtenue.

Exercice 28.

Pour $n \ge 1$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$ et on s'intéresse à la série entière $\sum H_n x^n$. On note R son rayon de convergence.

- a) Démontrer que R=1.
- b) On pose, pour $x \in]-1,1[$, $F(x)=\sum_{n=1}^{+\infty}H_nx^n$. Démontrer que pour tout $x \in]-1,1[$, on a

$$(1-x)F(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n}$$

c) En déduire la valeur de F(x) sur]-1,1[.