Tractability

- Not all problems that can be solved *in principle* can be solved *in practice*
- A problem is said to be *intractable* if we cannot solve it in a "reasonable amount" of time; otherwise the problem is *tractable*

2

Two "Similar" Problems

- Given a set S of n points in the plane
 - 1. Find a circuit of minimal length that visits each point exactly once (the robot tour problem)
 - 2. Find a spanning tree of minimum weight, i.e., a set of segments incident on *S* such that the resulting graph is connected and the sum of the lengths of the segments is minimized
- Both problems require that we select an optimal set of segments from an exponential set of choices and both can be modeled using the language of graph theory
- Problem 1 is not known to be tractable while problem 2 can be easily solved in $O(n \log n)$ time

2

Motivational Problem 1

 $9 \times 14 = 126$

2) $91 = 7 \times 13$

435958568325940791799 951965387214406385470 144524085345275999740 244625255428455944579

562545761726884103756 277007304447481743876 910265220196318705482 🗱 944007510545104946851 〓 858726952208399332 094548396577479473472 146228550799322939273

1796949159794106673291612844957324615 636756180801260007088891883553172646 0341490933493372247868650755230855864 199929221814436684722874052065257937 4956943483892631711525225256544109808 191706117425097024407180103648316382 88518852689

Motivational Problem 2

• You are planning housing for 400 university applicants. Space is limited and only 100 students will receive places in the dormitory. To complicate matters, the Dean has provided you with a list of pairs of incompatible students, and asked that no pair from this list appear in your final choice.

- How would you find 100 compatible students?
 - How do you model and solve the problem?

Motivational Problem 3

• You are organizing a party and want to invite five friends from your group of *n* friends. You would like all invitees to be friends among themselves. If you know who is a friend of who, how do you find your target list?

6

Motivational Problem 4

- In constraint satisfaction systems you need to determine if a set of specifications is *consistent* (can be made simultaneously true, i.e., their conjunction is *satisfiable*)
 - 1. "The diagnostic message is stored in the buffer or it is retransmitted."
 - 2. "The diagnostic message is not stored in the buffer."
 - 3. "If the diagnostic message is stored in the buffer, then it is retransmitted."
 - 4. "The diagnostic message is not retransmitted"

If p:="The diagnostic message is stored in the buffer" and q:="The diagnostic message is retransmitted", the above can be written as: $p \lor q$, $\neg p$, $p \to q$, $\neg q$.

Specifications $\{1,2,3\}$ are consistent but $\{1,2,3,4\}$ are not.

• Is a set of constraints *satisfiable*? $(p \lor q) \land (\neg p) \land (\neg p \lor q) \land (\neg q)$

Motivational Problem 5

• Given a set of sensors (e.g., rays or disks), can an intruder get from point s to point t, undetected, after removing at most k sensors?

• Draw and edge between every pair of blocking sensors

Decision Problems

- What do the previous problems have in common?
 - They are all *decision problems* (the output is **yes** or **no**)
 - Easy to write a program to find a solution but finding it seems to require some type of exhaustive search that may take a long time
 - Most efficient solution is not radically more efficient than the naïve one based on exhaustive search
 - A candidate solution can be efficiently verified, so once you have a solution it is easy to convince others that you do
- The **P** = **NP** question asks "Can we solve problems of this type without exhaustive searching?"

Question: is the related *optimization problem* harder to solve?

9

Tractability...

- A problem is *intractable* if no reasonable (poly-time) algorithm exists for solving it
- A problem is *tractable* if it can be solved in polynomial time
 - OK, but is $\Omega(n^{1000})$ practical?
- In order to simplify our study of tractability we concentrate on *decision problems* (problems with yes/no answer)

Is there a robot tour of length less than 5,000?

1

Ubiquitous Intractability

• Which problems will we be able to solve in practice?

Yes	Probably no				
Shortest path	Longest path				
2D-Matching	3D-matching				
Min cut	Max cut				
2-SAT	3-SAT				
Planar 4-color	Planar 3-color				
Eulerian Tour	Hamiltonian Tour				
Primality testing	Factoring				

• Will consider the notion of intractability through the notions of NP-hardness and NP-completeness

11

The Class NP

• A decision problem is in NP if a candidate solution can be verified in polynomial time

- Which of the following is in NP?
 - -Hamiltonian path: is there a path that visits each vertex once?
 - -Traveling salesman path: is there a Hamiltonian path of cost $\leq C$?
 - -Eulerian path: is there a path that visits each edge once?

12

A Formal Definition of NP

- Consider a decision problem X. $X \in \mathbf{NP}$ if it satisfies:
 - 1. If the answer to an instance *x* of *X* is **yes**, a *certificate* can be provided to verify this in polynomial time
 - 2. If the answer is \mathbf{no} , then no such certificate for x exists
- Algorithm C(s, t) is a *certifier* for X if for every instance string s, X(s) = yes iff there exists a string t such that C(s, t) = yes
- The class **NP** consists of all decision problems that admit a polynomial time certifier
- Open problem: is $P \neq NP$?

13

Tractability Classes

- **P** is the set of decision problems that can be solved in polynomial time.
- **NP** is the set of decision problems that can be verified in polynomial time, i.e., have the property: if the answer to an instance is **Yes**, then there is a certificate of this fact that can be verified in polynomial time.
- **coNP** is the set of decision problems with the property: if the answer to an instance is **No**, then there is a certificate of this fact that can be verified in polynomial time.

14

Reductions

- Would like to classify problems according to *relative* difficulty
- If *X* is tractable, what other problems are tractable?
- If *X* is intractable, what other problems are intractable?
- If you don't know, how do you gather evidence to support a conjecture that Π is intractable?
 - Even if we don't know the answer to P≠NP question, we would still like some guidance about which problems are difficult and which ones are not
 - One approach is to show that problems are hard *in a relative* sense, by showing that a problem is at least as hard as other hard problems
 - The tool to accomplish this is a *polynomial-time reduction*

15

Reduction

• A reduces to B, denoted $A \le B$, if an algorithm for B can be used as a subroutine for solving A.

Examples:

sorting a list \leq computing the convex hull of a set of points computing the convex hull \leq triangulation of a set of points determining if m and n are relatively prime \leq GDC of m and n # of walks from n to n in a graph n0 in a graph n1 multiplication

• We are interested in the case where f runs in polynomial time. We then write $A \leq_{P} B$

16

Polynomial Time Reductions

Definition. A problem X polynomially reduces to problem Y, denoted $X \leq_P Y$, if given a polynomial-time algorithm for Y, you can use it to solve X in polynomial time.

- Reduction is often enacted as follows:
 - Convert binary input x of X to a binary string f(x) in polynomial time p(n). What is |f(x)|?
 - Solve Y on input y = f(x) and use the answer y' to compute the answer x' for X on input x

Notation: $T_X(n) \le O(p(n)) + T_Y(O(p(n)))$

•Introduction

17

Examples of \leq_{P}

- 1. All-pairs shortest path \leq_{P} Single-source shortest path
- 2. Find-median \leq_{P} Sorting
- 3. Sorting \leq_{P} Convex-Hull
- 4. Sorting \leq_P Single-source-shortest-path (in a graph)
- 5. Determining if a graph is a tree \leq_P Depth-first Search
- 6. Maximum-independent-set \equiv_{P} minimum-vertex-cover
- *Reusability*. Seasoned algorithm designers are always looking for opportunities to employ reductions
- What does $Y \leq_P X$ tell us about the relative difficulty of the two problems?

The Class NPC

- A problem is NP-complete (in NPC) if
 - 1. It is a member of NP
 - 2. Every other problem of NP reduces to it in polynomial time
- Thousands of *practical* problems are NP-complete

NetworksScheduling

VLSI circuit design
 Games and puzzles

GeometryLogic

Data storage and retrieval
 Operations research

• A problem is *NP-hard* if every problem of NP *reduces* to it in polynomial time

19

Using Reductions

- To prove that problem *X* is NP-hard, reduce (in polynomial time) a known NP-hard problem to *X*
- In other words, to prove that your problem is hard, you need to describe an algorithm to solve a *different* problem, one already known to be hard, using a hypothetical algorithm for *your* problem as a subroutine.

20

Facts about P, NP, NPC

- There are thousands of NP-complete problems, drawn from a wide variety of fields: mathematics, computer science, geography, engineering, finance
- No polynomial-time algorithm has been found for any NPC problem
- No proof that a polynomial algorithm does not exist for any of NPC problems has been found
- Most theoretical computer scientists believe that NPC is intractable (i.e., P ≠ NP)

 $P \subset NP$, $NPC \subset NP$, $P \cap NPC = \emptyset$

Introduction

21

•10

A Sample of Problems in NPC

- Hamiltonian circuit
 - Does the undirected graph G have a circuit of length n?
- Traveling salesman (the robot tour problem!)
 - Does the complete graph G have a Hamiltonian circuit of length at most L?
- Partition
 - Can you partition a set of n integers (e.g., $\{2,3,6,7,9,11\}$) into two subsets of equal sum?
- · Independent set
 - Does a graph G have a subset of at least k vertices no two of which are neighbors?

2

A Sample of Problems in NPC...

- 3-SAT
 - CNF-Satisfiability where each clause has 3 literals
- Sequencing to minimize tardy tasks
 - Tasks are partially ordered. Each has a durations and a deadline. Can you finish at least *k* tasks on time?
- Bin packing
 - Given k disks of capacity x and m files of sizes $x_1, ..., x_m$, can you copy all the files into the disks?
- $N \times N$ checkers
 - Can white win given the current game configuration?
- Minesweeper
 - Is a configuration consistent?

23

Formula Satisfiability (SAT)

- An instance of SAT is a Boolean formula φ composed of:
 - n Boolean variables: $x_1, x_2, ..., x_n$.
 - *m* connectives: any Boolean function with one or two inputs and one output, such as $\land,\lor,\neg,\rightarrow,\leftrightarrow$
 - Parentheses for overriding default precedence

Example.
$$\phi = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

- Instance ϕ is *satisfiable* if there exists a truth assignment that forces ϕ to evaluate to 1
- **SAT**={ $\langle \phi \rangle$: ϕ is a satisfiable Boolean formula} *Example*. ϕ above \in **SAT**, use $x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1$

25

Cook-Levin Theorem: SAT is NPC

Proof (Cook 1971, Levin 1973):

- 1. **SAT** \in NP.
 - Certificate is truth assignment *t*
 - -Given truth assignment t, the certifier replaces each variable with its value and evaluates the formula in polynomial time.
- 2. **SAT** is NP-hard
 - We will prove this next quarter by showing that every problem in NP reduces to SAT
- **SAT** provides us with a *first* NPC problem
- From now on, can use reductions to show that other problems are NPC

20

SAT is NPC...

- Cook's & Levin's brilliant insight was that any algorithm that takes a fixed # of bits as input and outputs a *yes/no* answer can be encoded as a Boolean formula
- Formula evaluates to 1 on precisely the inputs for which the algorithm outputs *yes*
- If the algorithm takes a polynomial number of steps, the formula has polynomial size
- We are interested in the case where the algorithm (and resulting formula) is the certifier for a problem $X \in \mathbf{NP}$
- Again, details omitted until next quarter

27

NP-Completeness User Guide

- Remember!
 - If *Z* is a problem such that $X \le_p Z$ for some $X \in NPC$, then *Z* is NP-hard. If, additionally, *Z* ∈ NP, then *Z* ∈ NPC
- Steps to prove that Z is NP-complete
 - Prove Z ∈ NP.
 - A certificate can be verified in poly time.
 - Prove Z is NP-hard.
 - Select a known NP-complete problem X
 - Describe a transformation function f that maps an arbitrary instance x of X into an instance f(x) of Z
 - Prove f satisfies: for all input instances x of X, the answer to $x \in X$ is YES iff the answer to $f(x) \in Z$ is YES
 - Prove that the algorithm for f runs in polynomial time

28

3-CNF

- A special case of SAT useful for proving NPC results
- Definitions
 - A *literal* in a Boolean formula is an occurrence of a variable or its negation.
 - CNF (Conjunctive Normal Form) is a boolean formula expressed as *conjunction* of *clauses*, each of which is the *disjunction* of one or more literals.
 - 3-CNF is a CNF in which each clause has exactly 3 distinct literals (*Note*: a literal and its negation are distinct)

 $(a \lor b \lor c \lor d) \land (b \lor c \lor d) \land (a \lor b)$

• Goal: determine if a 3-CNF formula is satisfiable **3-CNF**= $\{\langle \phi \rangle: \phi \text{ is a satisfiable 3-CNF formula}\}$

29

3-CNF is NP-complete

Proof: 3-CNF ∈NP: Easy.

- 3-CNF is NP-hard. (we show SAT ≤_n 3-CNF)
- The proof is broken into 4 steps, each of which transforms the input instance ϕ of SAT into a formula closer to 3-CNF SAT $C \to T_1 \to \phi_2 \to \phi_3 \to \phi_4$ 3-CNF
- 1) Rewrite C using an expression tree with every node degree ≤ 2 . If any node has k > 2 inputs, replace it with a binary tree of k 1 nodes
- 2) Rewrite T_1 as conjunction with one clause per node, introducing new variables for internal nodes
- 3) Change every clause into CNF form.

There are only three types of clauses, one per internal node type:

$$a \Leftrightarrow b \land c \mapsto (a \lor \neg b \lor \neg c) \land (\neg a \lor b) \land (\neg a \lor c)$$

$$a \Leftrightarrow b \lor c \mapsto (\neg a \lor b \lor c) \land (a \lor \neg b) \land (a \lor \neg c)$$

$$a \Leftrightarrow \neg b \mapsto (a \lor b) \land (\neg a \lor \neg b)$$

4) Change 1- and 2-literal clauses into 3-literal clauses

$$(a \lor b) \mapsto (a \lor b \lor p) \land (a \lor b \lor \neg p)$$

$$a \mapsto (a \lor p \lor q) \land (a \lor p \lor \neg q) \land (a \lor \neg p \lor q) \land (a \lor \neg p \lor \neg q)$$

30

Exercise

• Show the 3CNF reduction for the following SAT formula. We show the first two steps.

$$\overline{x_1} \wedge (x_2 \vee (x_3 \wedge x_4))$$

$$(y_1 \leftrightarrow x_3 \land x_4) \land (y_2 \leftrightarrow x_2 \lor y_1) \land (z \leftrightarrow \bar{x}_1 \land y_2) \land z$$

• Complete the reduction!

31

3-CNF is NP-complete

- Recall: $C \rightarrow C_1 \rightarrow \phi_2 \rightarrow \phi_3 \rightarrow \phi_4$
- C and reduced 3-CNF formula ϕ_4 are equivalent:
 - C to ϕ_2 preserves equivalence
 - ϕ_2 to ϕ_3 preserves equivalence
 - ϕ_3 to final 3-CNF ϕ_4 preserves equivalence
- Reduction takes polynomial time
 - From $C \rightarrow C_1$ you less than double the number of gates
 - From $C_1 \rightarrow \phi_2$, you produce as many clauses as gates
 - From ϕ_2 to ϕ_3 , each iff-clause becomes 2 or 3 clauses
 - From ϕ_3 to ϕ_4 , each iff-clause becomes 2 or 3 clauses

32

CNF-Satisfiability

- A literal is a Boolean variable or its negation
- A *clause* is the disjunction of one or more literals
- A Boolean expression is in *conjunctive normal form* (CNF) if it is the conjunction of clauses

<u>Example</u>: $(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_4) \land (x_1) \land (\overline{x}_2 \lor \overline{x}_3 \lor x_4)$

- *CNF*: given a Boolean expression in CNF is there a truth assignment that makes the formula true?
- $CNF \in NP$

Theorem If $X \in NP$ then $X \leq_p CNF$

33

The Clique Problem

- A *clique* of a graph G(V, E) is a subset W of V such that every pair of vertices of W is connected by an edge in E.
- CLIQUE problem: Given a graph G(V, E) and positive integer k, does G contain a clique with at least k vertices?

3/

Does this graph contain a clique of size 4?

- How long does this take?
- How long would it take to find the largest clique?

35

Clique ∈ NPC

- We show $CNF \leq_{P} CLIQUE$
- Let B be a CNF formula with k clauses. We construct G
 - For each literal in each clause of B we add a vertex to G
 - There is an edge of G between two vertices iff they arise from different clauses and they are not complementary
 - G has a clique of size k iff B is satisfiable

Theorem. The Clique problem is NP-complete

36

Example

 $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$ and reduced graph G

•Introduction

37

Reduction Correctness

- If ϕ is satisfiable, then there exists a truth assignment with at least one true literal per clause
 - Choose a true literal in each clause and consider the subgraph W comprised of the corresponding vertices of chosen literals
 - For each pair v_i^r , $v_j^s \in W$ v_i^r , $v_j^s \in V'$, with $r \neq s$, since both l_i^r , l_j^s l_i^r , l_j^s are true, we know that l_i^r is not the negation of l_i^r , $l_j^s \Rightarrow$ there is an edge between v_i^r and v_j^s and W is a clique of size k
- If G has a clique W of size k, then W contains exactly one vertex from each triple. Assign true to all the literals corresponding to the vertices in W, and false to other literals. Then each clause evaluates to true ⇒ φ is satisfiable
- It is easy to see the reduction runs in poly-time

35

The Vertex Cover Problem

- A *vertex cover* of a graph G(V, E) is a subset W of V so that every edge of E has at least one vertex in W
- *Question*: given a graph G(V,E), is there a vertex cover with at most k vertices?
- Many applications, e.g., resilience in sensor networks

• We show $Clique \leq_{P} Vertex Cover$

39

Vertex Cover ∈ NPC

• G(V, E) has a clique W **iff** $\bar{G}(V, \bar{E})$ has vertex cover V - W

Theorem. The Vertex Cover problem is NP-complete

40

The Hamiltonian Cycle Problem

Ham-Cycle $\langle G(V, E) \rangle$. Does graph G contain a simple cycle that visits every node?

- Certificate. A permutation π of the *n* nodes
- Certifier checks that π is a permutation with an edge between each pair of adjacent nodes in π

- a) Certificate shown in bold
- b) No certificate exists ⇒ ∄ Hamiltonian Cycle

Rendering Triangular Meshes

- Triangular meshes are the most common model used for representing 3D objects in computer graphics.
- Hardware optimized for shading and rendering one triangle at a time
- Bottleneck resides in transferring the geometric data to the GPU

42

OpenGL Triangle Strips

• *Goal*: specify most triangles with just one additional vertex

```
Point3d strip[n];

glBegin(GL_TRIANGLE_STRIP);

for(int i=0; i<n; i++)

glVertex2fv(strip[i]);

glEnd();
```


43

Goal

- Render model using one triangle strip.
 - Can this always be done?

 Partition model into the smallest possible number of triangle strips?

44

Ham-Cycle is NP-Complete

- To show **Vertex-Cover** \leq_P **Ham-Cycle** we convert an arbitrary instance of G(V, E) of **Vertex-Cover** to an instance G'(V', E') of **Ham-Cycle** such that G has a vertex cover of size k iff G' has a hamiltonian cycle
- Proof uses special purpose "widgets" for the edges of E
 - Only vertices [*,*,1] and [*,*,6] have outside edges

 $\{u,v\}\in E\to W_{uv}\subset E'$

45

Edge Widgets

- Widgets in G' are used to enforce properties of G
 - Since only vertices [*,*,1] and [*,*,6] connect outside W, any Hamiltonian cycle of G' must traverse W in one of 3 ways

- If a cycle enters through [u, v, 1], it must exit through [u, v, 6] and visit all or half of the vertices of W
- For each $u \in V$, let $u^{(1)}$, ..., $u^{(\deg u)}$ be the neighbors of u in G in arbitrary order. Then, we add edges to form a path ρ_u through all widgets that correspond to edges $\{u, u^{(i)}\}$ of G, in given order

$$\{[u, u^{(i)}, 6], [u, u^{(i+1)}, 1]\}, 1 \le i < \deg(u)$$

46

Edge Widgets...

- If $u \in V$ is in the cover, then ρ_u traces a path from $[u, u^{(1)}, 1]$ to $[u, u^{(\deg u)}, 6]$ that "covers" all widgets of edges incident on u
- For each widget W_{uv} , then ρ_u visits all 12 vertices if u is in the cover but v is not, and 6 if both are in the cover
- There are k selector vertices $s_1, s_2, ..., s_k$
- The final type of edge joins the first vertex $[u, u^{(1)}, 1]$ and the last vertex $[u, u^{(\deg u)}, 6]$ to each of the selector vertices

Theorem. The size of G' is polynomial in the size of G.

Theorem. G has a vertex cover of size k iff G' has a Hamiltonian cycle

47

Traveling-salesman problem is NPC

- TSP={ $\langle G, c, k \rangle$: G(V, E) is a complete graph, c is a function from $V \times V \to \mathbb{Z}$, $k \in \mathbb{Z}$, and G has a traveling salesman tour with cost at most k}
- *Theorem*. **TSP** is NP-complete

Ham-Cycle \leq_P TSP

49

The Subset Sum Problem

• Given set S of positive integers and a target t, can you find a subset $P \subseteq S$ such that the numbers in P add up to t?

Example: $S = \{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}$ and t = 3754

Yes! 1+16+64+256+1040+1093+1284 = 3754

Theorem. The Subset Sum problem is NP-complete Reduction from Vertex Cover

50

$VC \leq_P Subset-Sum$

• Need to reduce an instance *I* of vertex cover to an instance *J* of subset sum such that the answer to *I* can be computed from the answer to *J*

$$x_i = 4^m + \sum_{j=0}^{m-1} b_{ij} 4^j, \quad y_j = 4^j$$

 $t = k4^m + \sum_{j=0}^{m-1} 2(4^j)$

			modified base 4					decimal	
			e_4	e_3	e_2	e_1	e_0		
x_0	=	1	0	0	1	0	1	=	1041
x_1	=	1	1	0	0	1	0	=	1284
x_2	=	1	1	1	0	0	0	=	1344
x_3	=	1	0	0	1	0	0	=	1040
x_4	=	1	0	1	0	1	1	=	1093
y_0	=	0	0	0	0	0	1	=	1
y_1	=	0	0	0	0	1	0	=	4
y_2	=	0	0	0	1	0	0	=	16
y_3	=	0	0	1	0	0	0	=	64
y_4	=	0	1	0	0	0	0	=	256
t	=	3	2	2	2	2	2	=	3754

51

What should you do?

52

Approximation Algorithms

- When faced with an optimization problem whose decision version is NP-complete, a reasonable goal is to design an algorithm that finds an answer close to the optimal, i.e., an *approximation algorithm*
- Trades loss of accuracy for better running time
- Usually comes with quality guarantee

 <u>Example</u>: 1.5-approximation means answer is at most 50% worse than the optimal (in practice, may be much better)
- Why settle for less?
 - Exact solution may take too long
 - Approximate answer may be the first step in finding optimal answer

53

Approximation Ratios

• Let π be a minimization problem. We say that algorithm \mathcal{A} for π which, given instance I, returns a solution with value $\mathcal{A}(I)$. The approximation ratio of \mathcal{A} is defined as:

$$\alpha_{\mathcal{A}} = \max_{I} \frac{\mathcal{A}(I)}{OPT(I)}$$

• Similarly, if π is a maximization problem and \mathcal{B} and algorithm for π , the approximation ratio of \mathcal{B} is defined as:

$$\alpha_{\mathcal{B}} = \max_{I} \frac{OPT(I)}{\mathcal{B}(I)}$$

• An algorithm is said to be an γ -approximation algorithm if it has approximation ratio γ

5.

Approximate Shortest Robot Tours

• Nearest neighbor tour yields approximation:

$$\frac{NN}{OPT} \le \frac{1}{2} \left(\lceil \log n + 1 \rceil \right)$$

• Can do much better using MST-based approximation $\frac{MST}{OPT} \le 2$

• Can improve by augmenting MST with *minimum-weight perfect matching* of odd degree vertices

5

Minimum Spanning Tree

- Let *G*(*V*,*E*) be a connected undirected graph
- A subgraph of *G* is *spanning* if it is connected and has the same vertex set as *G*
- A minimum spanning tree of
 G is a spanning subgraph of
 G of smallest total cost
- Can be found efficiently in $O(m + n \log n)$ time

56

57

2-Approximation Based on MST

Definition. Let G(V,E) be a weighted connected graph. A *minimum spanning tree* of G is a connected subgraph H(V,F), where $F \subseteq E$, of minimum weight

- 1. Construct MST of G
- 2. Double each edge, in 2 directions
- 3. Perform an Euler tour
- 4. Short-circuit already visited vertices

• Because of triangle inequality, short-circuiting a vertex cannot increase the cost. Thus, $MST \le OPT \Rightarrow MST-TOUR \le 2 \cdot MST \le 2 \cdot OPT$