Binary Numbers

Not Really in Textbook / Kinda Section 2.1

Introduction

- Binary numbers are an important part of low-level computing
- Having a basic knowledge of binary numbers will be important for us to understand how data types are represented

Number Systems

- In daily usage, the number system we use is the base ten or decimal number system
 - deci~ has to do with ten
- This system has ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and9
- Any whole number can be written using only some combination of these ten digits

- However, decimal is not the only number system
 - Ancient Babylonians used a base 60 number system
- Really possible to have a number system of any base
 - This is a topic from the field of number theory

- In programming / computer science, two commonly used:
 - Binary numbers base two
 - Hexadecimal numbers base sixteen
- Octal numbers (base eight) are also sometimes used

Binary Numbers

- Binary number system consists of only two digits: 0
 and 1
- Any decimal natural number can be represented as a binary number
 - Natural number = non-negative integer

Decimal	Binary	Decimal	Binary
0	0		1000
		9	1001
2	10	10	1010
3			1011
4	100	12	1100
5	101	13	1101
6	110	14	1110
7	111	15	1111

- Some observations
 - Binary numbers grow in length faster than decimal numbers
 - Powers of two (0, 2, 4, 8, etc.) are all a 1 followed by only 0s
 - Numbers before a power of two (1, 3, 7, 15, etc.) are all 1s

- In programming, we're commonly dealing with a fixed number of binary digits at a time, like eight or 32
- Thus, common to put extra 0s at the front of a binary number that has less than that number of digits
 - I.e., instead of 1010, we would write 00001010
- Also might put a space between every four digits to make it easier to read
 - Kinda like how we put commas every three digits in long decimal numbers

Decimal	Binary	Decimal	Binary
0	0000 0000		0000 1000
	0000 0001	9	0000 1001
2	0000 0010	10	0000 1010
3	0000 0011		0000 1011
4	0000 0100	12	0000 1100
5	0000 0101	13	0000 1101
6	0000 0110	14	0000 1110
7	0000 0111	15	0000 1111

Converting Binary to Decimal

- Each 1 in a binary number corresponds to a power of two (2ⁿ, where n is some integer)
- For example, the 1 in 0001 corresponds to 2º
- And, the 1s in 1001 correspond to 2³ and 2⁰, respectively
 - **8** + 1 = 9

- So, to convert a binary number to decimal, we need to look at its 1s
- And then we make a sum of the corresponding powers of two
- We add up that sum and it gives us the corresponding decimal number

- Consider the binary number 1001 0111
- Its 1s correspond to: 2⁷ + 2⁴ + 2² + 2¹ + 2⁰

Practice

- What is 1001 in decimal?
- What is 1100 in decimal?

Answers:

$$\mathbf{2}^3 + \mathbf{2}^0 = 8 + 1 = 9$$

$$2^3 + 2^2 = 8 + 4 = 12$$

Converting Decimal to Binary

- To convert a decimal number to a binary number, we need to figure out which digits will be 1s
- To do so, we think about the biggest decimal number that is power of two that is no bigger than the decimal number
- And then repeat on the leftover part and continue on

- Consider 151
 - We start with all 0s: 0000 0000
 - Biggest number that is a power of two that is no bigger than 151 is 128, which is 27
 - So we set the corresponding digit to 1: 1000 0000
 - **■** 151 128 = 23

What's the biggest power of two that's no bigger than 23?

$$\blacksquare$$
 16 = 2⁴

So set the corresponding digit: 1001 0000

- For $23 16 = 7? 4 = 2^2$
 - Binary so far: 1001 0100
- For 7 4 = 3? $2 = 2^1$
 - Binary so far: 1001 0110
- For 3 2 = 1? $2^0 = 1$
- Final answer: 1001 0111

Practice

- What is 62 in binary?
- What is 102 in binary?

Answers:

$$\bullet$$
 62 = 32 + 16 + 8 + 4 + 2

$$\bullet$$
 62 = 2⁵ + 2⁴ + 2³ + 2² + 2¹

 \star 102 = **0110 0110**

$$\blacksquare$$
 102 = 64 + 32 + 4 + 2

$$\blacksquare$$
 102 = 2⁶ + 2⁵ + 2² + 2¹

Adding Binary Numbers

- Adding binary numbers works much like it would for adding decimal numbers
- Add digit by digit
- May need to add extra 0s to front if both numbers do not have the same number of digits

0011 (3 in decimal)
+
1000 (8 in decimal)
=
1011 (11 in decimal)

0011 0011 (51 in decimal) + 1000 1000 (136 in decimal) =

1011 1011 (187 in decimal)

Carrying

- Sometimes we have to carry when adding decimal numbers
- Happens when adding binary numbers as well
- When it happens, we add a 1 to the next column to the left

(5 in decimal)

o Ros

(1 in decimal)

(6 in decimal)

(7 in decimal)

(5 in decimal)

(12 in decimal)