Data and Computer Communications

Chapter 9 – Spread Spectrum

Eighth Edition by William Stallings

Lecture slides by Lawrie Brown

Spread Spectrum

All creative people want to do the unexpected.

—Ecstasy and Me: My Life as a Woman,

Hedy Lamarr

Spread Spectrum

- important encoding method for wireless communications
- analog & digital data with analog signal
- spreads data over wide bandwidth
- makes jamming and interception harder
- two approaches, both in use:
 - Frequency Hopping
 - Direct Sequence

General Model of Spread Spectrum System

Spread Spectrum Advantages

- immunity from noise and multipath distortion
- can hide / encrypt signals
- several users can share same higher bandwidth with little interference
 - CDM/CDMA Mobile telephones

Pseudorandom Numbers

- generated by a deterministic algorithm
 - not actually random
 - but if algorithm good, results pass reasonable tests of randomness
- starting from an initial seed
- need to know algorithm and seed to predict sequence
- hence only receiver can decode signal

Frequency Hopping Spread Spectrum (FHSS)

- signal is broadcast over seemingly random series of frequencies
- receiver hops between frequencies in sync with transmitter
- eavesdroppers hear unintelligible blips
- jamming on one frequency affects only a few bits

Frequency Hopping Example

(a) Channel assignment

(b) Channel use

FHSS (Transmitter)

Frequency Hopping Spread Spectrum System (Receiver)

Slow and Fast FHSS

- commonly use multiple FSK (MFSK)
- have frequency shifted every T_c seconds
- duration of signal element is T_s seconds
- Slow FHSS has T_c ≥ T_s
- Fast FHSS has T_c < T_s
- > FHSS quite resistant to noise or jamming
 - with fast FHSS giving better performance

Slow MFSK FHSS

Fast MFSK FHSS

Direct Sequence Spread Spectrum (DSSS)

- each bit is represented by multiple bits using a spreading code
- this spreads signal across a wider frequency band
- has performance similar to FHSS

Direct Sequence Spread Spectrum Example

Direct Sequence Spread Spectrum System

DSSS Example Using BPSK

(c) c(t) spreading code

(d) $s_t(t)$

Approximate Spectrum of DSSS Signal

(a) Spectrum of data signal

(b) Spectrum of pseudonoise signal

(c) Spectrum of combined signal

Code Division Multiple Access (CDMA)

- a multiplexing technique used with spread spectrum
- given a data signal rate D
- break each bit into k chips according to a fixed chipping code specific to each user
- resulting new channel has chip data rate kD chips per second
- > can have multiple channels superimposed

CDMA Example

CDMA for DSSS

Summary

- looked at use of spread spectrum techniques:
- > FHSS
- > DSSS
- > CDMA