

CSC405 MICROPROCESSORS

8086 IN MAXIMUM MODE

PROF.POONAM M. PANGARKAR, ASSISTANT PROFESSOR, CSE DATASCIENCE ,APST TI:ANE

OBJECTIVE

To understand the functioning of 80%6 in maximum mode.

2

To understand the timiny diagrams for Read and Wite operations in maximum mode.

3

To understand the unctional pin diar, ram of 8086.

Difference in Control signal generation in maximum mode

Functioning in Ma c.n.um Mode

Timing diagrams for Read and Write operations in maxim

Min/ Max Pins

The 8086 microprocessor can work in two modes of operations: Minimum mode and Maximum incde.

In the minimum mode of operation the microprocessor do not associate with any do-processors and can not be used for multiprocessor systems.

In the <u>naxi-num mode</u> the 8086 <u>can work</u> multi-processor or co-processor configuration.

Minimum or maximum mode operations are decided by the pin MN/ MX(Active low).

When this pin is <u>high</u> 8086 operates in <u>minimum mode</u> otherwise it operates in Maximum mode.

Request arant pins

RQ, LI, -bderchnel

9 restruction cycle machine Cyll LOCK up can be interrupted Districting cyc MI MZ Interempt Request y sales Outcount request Bus Request MOV CX, [2000] Request SCRUICE LOCK MOV CX, [2000 H] Sexulce St ST So Status onputs

18089

Marimum

Mode

Rokt

bus moster

Status Inputs			CPU Cycles	8288
\overline{S}_2	\overline{S}_1	\overline{S}_0	- Cro cydds	Command
0	0	0	Interrupt Acknowledge	INTA
0	0	1	Read I/O Port	IORC /
0	1	0	Write I/O Port	IOWC, AIOWC
0	1	1	Halt	None
1	0	0	Instruction Fetch	MRDC
1	0	1 6	Read Memory	MRDC
1_	1	0	Write Memory	MWTC, AMWC
1	1	1	Passive	None

Minimum 0

QS ₁	QS ₀	Queue Status	
0 (low)	0	No Operation. During the last clock cycle, nothing was taken from the queue.	
0	1	First Byte. The byte taken from the queue was the first byte of the instruction.	
1 (high)	0	Queue Empty. The queue has been reinitialized as a resu of the execution of a transfer instruction.	
į	1	Subsequent Byte. The byte taken from the queue was subsequent byte of the instruction.	

3 hoft

Marinum Mode Minimum Mode (malay = 0) 1) (IN IM X =) ALE given by evel 2) ALE given by cross MP DITA and DEN guen by 8288 DT/F and DEN gum by 5086 Control signers aregoristed 4) Control signals are garrely by 8086 and decoded by (8288 dep Jupm status by 74138 5) INTA gruen by 8082 INTA given by 8288 (24-3) (HOD HLOK Raturo & RatuTy - bus 8286) needs cir seperate

INTEL 8086 - Pin Diagram

INTEL 8086 - Pin Details

S5: Indicates condition of IF flag bits.

S4-S3: Indicate which segment is accessed during current bus cycle:

S4	S3	Function
0	0	Extra segment
0	1	Stack segment
1	0	Code or no segment
1	1	Data segment

INTR

CLK

GND 4 20

18

19

23

22

21 🔲

READY

RESET

Bus High Enable/S7

Enables most significant data bits $D_{15} - J_3$ during read or write operation.

S7: Always 1.

Maximum Mode - Pin Details

S2 S1 S0

000: INTA

001: read I/O port

0.0: write I/C port

011 hal

00: code access

101: read memory

110: write memory

111: none passive

Lock Output

Used to lock peripherals of the system

Activated by using the LOCK: previx on any instruction

Maximum Mode - Pin Details

00: Queue is idle

01: First byte of opcode

10: Queue is empty

11: Subsequent byte of

opcode

Queue Status

Used by numeric coprocessor (8087)

2.8

