Dr. Keith Anguige

Lineare Algebra 1

Blatt 8

Abgabe: 14. Dezember 2017

Vektorräume, Moduln

Aufgabe 32 (Präsenzaufgabe). C-Vektorräume

Gibt es eine \mathbb{C} -Vektorraumstruktur auf $(\mathbb{R}, +)$, so dass die skalare Multiplikation $\mathbb{C} \times \mathbb{R} \to \mathbb{R}$ eingeschränkt auf $\mathbb{R} \times \mathbb{R}$ die übliche Multiplikation reeller Zahlen ist?

Aufgabe 33 (5 Punkte). Kartesische Produkte

Sei $(v_i)_{i\in I}$ eine Basis des Vektorraumes V und $(w_j)_{j\in J}$ eine Basis des Vektorraumes W. Zeigen Sie, dass $((v_i,0))_{i\in I}\cup ((0,w_j))_{j\in J}$ eine Basis von $V\times W$ ist und somit

$$\dim(V \times W) = \dim V + \dim W,$$

falls $\dim V$, $\dim W < \infty$.

Aufgabe 34 (5 Punkte). Lineare Abhängigkeit

Sei V ein reeller Vektorraum und $a,b,c,d,e\in V$. Zeigen Sie, dass die folgenden Vektoren linear abhängig sind:

$$v_1 = a + b + c,$$
 $v_2 = 2a + 2b + 2c - d,$ $v_3 = a - b - e,$ $v_4 = 5a + 6b - c + d + e,$ $v_5 = a - c + 3e,$ $v_6 = a + b + d + e.$

Aufgabe 35 (5 Punkte). Moduln

Sei $(R, +, \cdot)$ ein Ring. Ein (Links)-R-Modul $(M, +, \cdot)$ besteht aus einer abelschen Gruppe (M, +) und einer skalaren Multiplikation $\cdot : R \times M \to M$, so dass für alle $m, n \in M$ und alle $r, s \in R$ die folgenden Modulaxiome gelten

- (M1) $m \cdot (r \cdot s) = (m \cdot r) \cdot s$ (Assoziativgesetz),
- (M2) $(r+s) \cdot m = r \cdot m + s \cdot m$ (Erstes Distributivgesetz),
- (M3) $r \cdot (m+n) = r \cdot m + r \cdot n$ (Zweites Distributivgesetz).

Sei $(R, +, \cdot)$ ein Ring mit Eins. Ein unitärer (Links-)R-Modul $(M, +, \cdot)$ ist ein Linksmodul $(M, +, \cdot)$, so dass zusätzlich gilt:

(M4) $1 \cdot m = m$ (Wirkung der Eins).

Für einen K-Vektorraum V gilt der folgende

Satz:

- (1) $\forall x \in V, 0 \cdot x = 0, \forall \lambda \in K, \lambda \cdot 0 = 0 \in V$
- $(2) \ \forall x \in V, \ (-1) \cdot x = -x$
- (3) Falls $\lambda \in K$, $x \in V$ und $\lambda \cdot x = 0$, dann folgt

$$\lambda = 0 \text{ oder } x = 0.$$

Zeigen Sie, dass *mutatis mutandis* (1) gilt für Links-Moduln, (2) gilt für unitäre Links-Moduln, aber (3) gilt für Links-Moduln i.A. nicht.

[Tipp: Für ein Gegenbeispiel zu (3) nehmen Sie einen nicht Nullteilerfreien Ring R und betrachten Sie $R^1 := R$ als Modul über R.]

Abgabe der Übungsblätter in den (mit den Nummern der Übungsgruppen gekennzeichneten) Fächern im UG der Eckerstraße 1. Die Übungsblätter müssen bis **15:00** Uhr am jeweils angegebenen Abgabedatum eingeworfen werden.