CS621/CSL611 Quantum Computing For Computer Scientists

Quantum Circuits and Protocols

Dhiman Saha Winter 2024

IIT Bhilai

Deutsch's Algorithm

Deutsch's Problem: Balanced or Constant

Deutsch's Problem

• Set of functions from $f: \{0,1\} \rightarrow \{0,1\}$

- f is balanced if $f(0) \neq f(1)$
- f is constant if f(0) = f(1)

Problem Definition

Given a function $f:\{0,1\} \to \{0,1\}$ as a **black-box**, where one can evaluate an input, but **cannot** look inside and see how the function is defined, determine if the function is **balanced** or **constant**.

2

- Evaluate *f* on both inputs. Compare the outputs.
- With a classical computer, f must be evaluated twice.

 Can we do better (one evaluation only) with a quantum computer?

Superposition and Quantum Interference

- A quantum computer can be in a superposition of two basic states at the same time.
- Deutsch's algorithm will let us put together a state that has all of the output values of the function associated with each input value in a superposition state.
- Then we will use quantum interference (QI) to find out if the given function is constant or balanced.
- Note: whether a function on a single bit is constant or balanced is a global property.
- Recall: QI allows to deduce certain global properties of the function

- Need to adapt the problem to fit the quantum computing model
- Function black-box must conform to a valid quantum operation.
- Action of the device simulating the function must correspond to a unitary transformation
- A one-qubit gate is not sufficient. Why?

- Need to adapt the problem to fit the quantum computing model
- Function black-box must conform to a valid quantum operation.
- Action of the device simulating the function must correspond to a unitary transformation
- A one-qubit gate is not sufficient. Why?
- Is the correspond matrix unitary? Check for f(x) = 0

Quantum Modeling

ullet For any function $f:\{0,1\} o \{0,1\}$ a 2-qubit quantum gate U_f is defined as:

- Note: The matrix corresponding to U_f is unitary for any function f.
- Cross-check for the bit-flip function: f(0) = 1 and f(1) = 0

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

- For any function f, the matrix corresponding to U_f will always be a permutation matrix
- Note: Permutation matrices are always unitary.

A More General Formulation

- Let $f: \{0,1\}^n \to \{0,1\}^m$ be any function for +ve integers n and m
- The associated quantum transformation U_f is given as:

$$U_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$$

 The associated matrix will always be a permutation matrix, and is therefore unitary.

• Initial State:

$$|\phi_0\rangle = |0\rangle |0\rangle$$

• After applying Hadamard on first qubit

$$|\phi_1\rangle = H \otimes I |00\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) |0\rangle = \frac{|00\rangle + |10\rangle}{\sqrt{2}}$$

• After applying U_f

$$|\phi_2
angle = U_f\left(rac{|0
angle + |1
angle}{\sqrt{2}}
ight)|0
angle = rac{|0,f(0)
angle + |1,f(1)
angle}{\sqrt{2}}$$

Point-to-Ponder

$$|\phi_2
angle = \underbrace{ egin{array}{c} |0,f(0)
angle + |1,f(1)
angle \ \hline \sqrt{2} \ \end{array} }_{ {
m Superposition \ state \ with \ all \ pairs \ of \ } x,f(x) \ {
m represented} }$$

Can this be exploited?

- NO. Recall how quantum measurements work
- For a simple function on bits we can learn the value of f(0) or f(1), but not both simultaneously
- Even though they are simultaneously present in the premeasurement state
- This is worse than what could be done with a classical computer. How?

• Initial State:

$$|\phi_0\rangle = |x\rangle |1\rangle$$

• After applying Hadamard on second qubit

$$|\phi_1\rangle = I \otimes H |x1\rangle = |x\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) = \frac{|x0\rangle - |x1\rangle}{\sqrt{2}}$$

Solving Deutsch's Problem Superposition On The Bottom Input

$$|x\rangle$$

$$|1\rangle$$

$$|T|$$

• After applying U_f

$$|\phi_2
angle = |x
angle \left(rac{|0\oplus f(x)
angle - |1\oplus f(x)
angle}{\sqrt{2}}
ight) = |x
angle rac{|f(x)
angle - |
eg f(x)
angle}{\sqrt{2}}$$

So the final state is:

$$|\phi_2\rangle = \begin{cases} |x\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right), & \text{if } f(x) = 0 \\ |x\rangle \left(\frac{|1\rangle - |0\rangle}{\sqrt{2}}\right), & \text{if } f(x) = 1 \end{cases}$$

Alternatively,

$$|\phi_2\rangle = \frac{(-1)^{f(\mathsf{x})}|\mathsf{x}\rangle}{(-1)^{f(\mathsf{x})}|\mathsf{x}\rangle} \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$

Again, can this be exploited?

Answer: No

- The top qubit will be in state $|x\rangle$
- The bottom qubit will be either in state $|0\rangle$ or in state $|1\rangle$.

 Deutschs algorithm works by putting both the top and the bottom qubits into a superposition.¹

Steps $|\psi_{out}\rangle = (H \otimes I)U_f(H \otimes H)|0\rangle|1\rangle$

- 1. Apply Hadamard gates to the input state $|0\rangle |1\rangle$ to produce a product state of two superpositions.
- 2. Apply U_f to that product state.
- 3. Apply a Hadamard gate to the first qubit only
- 4. Measure the first qubit

¹Exploits the fact that the system is in a superposition state $\sum |x\rangle |f(x)\rangle$ to infer a global property of the function: balanced or constant

Deutsch's Algorithm

• Initial State:

$$|\phi_0\rangle = |01\rangle$$

ullet Applying Hadamard gates: $H\otimes H\ket{01}$

$$|\phi_1\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$

$$= \frac{1}{2}(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$

Step-2: $U_f(H \otimes H) |0\rangle |1\rangle$

Deutsch's Algorithm

• Recall
$$U_f(I \otimes H) |x\rangle |1\rangle = \underbrace{(-1)^{f(x)} |x\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)}_{\text{From Attempt-2}}$$

• After $U_f(H \otimes H) |0\rangle |1\rangle$

$$|\phi_2\rangle = \left(\frac{\left(-1\right)^{f(0)}|0\rangle + \left(-1\right)^{f(1)}|1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$

• What is the nature of $(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle$ for any general function f?

$$(-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle = \begin{cases} +1(|0\rangle + |1\rangle) & f \to \text{ Constant 0} \\ -1(|0\rangle + |1\rangle) & f \to \text{ Constant 1} \\ +1(|0\rangle - |1\rangle) & f \to \text{ Identity} \\ -1(|0\rangle - |1\rangle) & f \to \text{ Bit Flip} \end{cases}$$

• So $|\phi_2\rangle$ is given by:

$$|\phi_2
angle = \left\{ egin{aligned} \left(\pm 1
ight) \left(rac{|0
angle + |1
angle}{\sqrt{2}}
ight) \left(rac{|0
angle - |1
angle}{\sqrt{2}}
ight) & ext{if } f
ightarrow & ext{constant} \\ \left(\pm 1
ight) \left(rac{|0
angle - |1
angle}{\sqrt{2}}
ight) \left(rac{|0
angle - |1
angle}{\sqrt{2}}
ight) & ext{if } f
ightarrow & ext{balanced} \end{aligned}
ight.$$

Note: The first qubit is differentiating factor that can be exploited

Deutsch's Algorithm

- Recall: $H\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)=|0\rangle$ and $H\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)=|1\rangle$.
- Applying *H* on top qubit we get:

$$|\phi_3
angle = \left\{ egin{aligned} (\pm 1) \, |0
angle \left(rac{|0
angle - |1
angle}{\sqrt{2}}
ight) & ext{if } f
ightarrow & ext{constant} \ (\pm 1) \, |1
angle \left(rac{|0
angle - |1
angle}{\sqrt{2}}
ight) & ext{if } f
ightarrow & ext{balanced} \end{aligned}
ight.$$

Step-4: Measure Top Qubit

Deutsch's Algorithm

- Measure the top qubit
 - If it is in state $|0\rangle$, then f is a constant function
 - If it is in state $|1\rangle$, then f is a balanced function
- Achieved with **only** one function evaluation in U_f
- The sign in $|\phi_3\rangle$ gives further info but it is **not** exploitable

Point-to-Ponder

- In this algorithm, single-qubit interference is applied to the first qubit allowing us to distinguish between the two cases of the output of the function
- Did we gain information that was not there? No

 The Hadamard matrices are changing the question that we are asking (change of basis)

Intuition behind the Deutsch algorithm

Performing a change of basis problem

- Start in the canonical basis.
- The first Hadamard matrix is used as a change of basis matrix to go into a balanced superposition of basic states.
- While in this non-canonical basis, we evaluate f with the bottom qubit in a superposition.
- The last Hadamard matrix is used as a change of basis matrix to revert back to the canonical basis.

• For every ket $|\psi\rangle$ there is a corresponding object $\langle\psi|$, called "bra". Intuition comes combining a bra and a ket together to get "braket"

Definition

For any vector $|\psi\rangle$, the bra $\langle\psi|$ is defined as the conjugate transpose of $|\psi\rangle$

$$\langle \psi | = (|\psi\rangle)^{\dagger}$$

• $\langle \psi |$ is the row vector you get by transposing $|\psi \rangle$ and taking the conjugate of each of its entries

Example

$$|\psi\rangle = \begin{pmatrix} \frac{1+i}{2} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \implies \langle \psi | = \begin{pmatrix} \frac{1-i}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Inner Product (or Bracket)

- Juxtaposition of a bra and a ket leads to matrix multiplication²
- A row vector times a column vector results in a scalar, and
- This scalar will be the inner product (or bracket) of the vectors involved

Example

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad \text{and} \qquad |\phi\rangle = \begin{pmatrix} \gamma \\ \delta \end{pmatrix}$$

$$\langle \psi | \phi \rangle \stackrel{\text{def}}{=} \langle \psi | | \phi \rangle = (\overline{\alpha} \ \overline{\beta}) \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = \overline{\alpha} \gamma + \overline{\beta} \delta$$

²Interpreting vectors as matrices with only one row or one column

Juxtaposition of Ket and Bra

• What does this imply?

$$|\psi\rangle\,\langle\phi|$$

Juxtaposition of Ket and Bra

• What does this imply?

$$|\psi\rangle\langle\phi|$$

• A column vector times a row vector gives you a matrix.

Juxtaposition of Ket and Bra

What does this imply?

$$|\psi\rangle\langle\phi|$$

- A column vector times a row vector gives you a matrix.
- One can easily verify the following:

$$|\psi\rangle\langle\phi|\ |\gamma\rangle = |\psi\rangle\langle\phi|\gamma\rangle = \langle\phi|\gamma\rangle|\psi\rangle$$

References

- Quantum Computing for Computer Scientists, by Noson S. Yanofsky, Mirco A. Mannucci
- Quantum Computing Explained, David Mcmahon. John Wiley & Sons
- Lecture Notes on Quantum Computation, John Watrous, University of Calgary
 - https://cs.uwaterloo.ca/~watrous/QC-notes/