| Sterowanie złożonymi układami mechanicznymi |                                                                         |                     |                          |
|---------------------------------------------|-------------------------------------------------------------------------|---------------------|--------------------------|
| Prowadzący<br>Wykład                        | Wykonali                                                                | Kierunek<br>studiów | Rok i semestr<br>studiów |
| mgr inż. Adam<br>Łukomski                   | Krystian Cieślak 38626<br>Patryk Nowicki 38660<br>Bartłomiej Koko 38648 | AiR                 | Rok IV sem. VII          |

## 1. Cel zadania

Stworzenie symulacji chwytania obiektu przy pomocy pary manipulatorów robota humanoidalnego

## 2. Zakres

- Model kinematyczny pary manipulatorów o 6 DoF w programie Matlab
- Synteza sterowania
- Weryfikacja działania na wybranej symulacji robota humanoidalnego

## 3. Realizacja zadania

Do realizacji symulacji chwytania obiektu korzystamy z programu Gazebo, w którym wykorzystujemy model robota PR2, który jest dostępnym w tym programie oraz którego ramiona stanowią parę manipulatorów o sześciu stopniach swobody. Do sterowania ruchem robota oraz przedstawienia jego modelu kinematyki wykorzystujemy program matlab, który w swoim pakiecie posiada ROStoolbox. Pakiet ten zapewnia nam możliwość komunikacji między środowiskiem Matlab a robotem PR2 symulowanym w Gazebo.



Rysunek 1. Robot PR2 w symulacji w środowisku Gazebo

W swojej pracy wzorowaliśmy się na przykładzie dostępnym na stronie <a href="https://www.mathworks.com/">https://www.mathworks.com/</a> [1]

Zadaniem postawionym przed robotem było podniesienie za pomocą "ręki" puszki piwa umiejscowionej na stole kawowym. Dla ułatwienia zadania robot został nieruchliwie przytwierdzony do podstawy. W efekcie został wygenerowany ruch oraz stworzony model kinematyczny pokazany na zdjęciu poniżej.



**Rysunek 2.** Model kinematyczny robota PR2 - przerywaną linią została zaprezentowana ścieżka, po której podążała dłoń (chwytak)

## 4. Wnioski

- Połączono środowisko Matlab z Gazebo za pomocą ROStoolbox
- Został utworzony model kinematyczny pary manipulatorów o 6 DOF w programie Matlab
- Została przeprowadzona symulacja ruchu link do filmu w źródle [2]

Podczas przeprowadzania symulacji powstał problem w postaci niepewnego chwytu puszki przez robota. Okazała się, że obiekt jest zbyt duży w porównaniu z chwytakiem więc zmieniliśmy jego rozmiar. Umożliwiło to podniesienie jej, aczkolwiek chwyt można wizualnie przyrównać do "uszczypnięcia". Pomimo dużej liczby prób i zmian parametrów był to najlepszy efekt jaki zdołaliśmy uzyskać. Dodatkowym problemem była powolna, często uniemożliwiająca testowanie emulacja programu Gazebo za pomocą maszyny wirtualnej na systemie Windows.

[1] <a href="https://www.mathworks.com/help/robotics/examples/control-pr2-arm-movements-using-actions-and-ik.html?fbclid=lwAR1R8\_Zb5KrmPkGLOGhnJLGXyRru2TDL6\_z2-lytAURv9bluHqIpV-y\_6Q">https://www.mathworks.com/help/robotics/examples/control-pr2-arm-movements-using-actions-and-ik.html?fbclid=lwAR1R8\_Zb5KrmPkGLOGhnJLGXyRru2TDL6\_z2-lytAURv9bluHqIpV-y\_6Q</a>

[2] https://youtu.be/HvWGqmkr6Us