සියලුම හිමිකම් ඇවිරිණි / All Rights Reserved

් අධාාපන දෙපාර්තමේන්තුනු Prayincial Department of Education වියම පළාත් පුරුප්රත දෙපාර්තමේන්තුනු Provincial Department of Education y අධාාපන දෙපාර්තමේන්තුව Provincial Department on Education වියම පළාත් අධ්වාජන දේපාර්තමේන්තුව Provincial Department of Education

් අධාාපන දේපාර්තුමේන්තුව Provincial Department of Education වයඹ පළාත් අධාාපන දේපාර්තමේන්තුව Provincial Departmentය Of Education නතුව Nowell Departments

32 S I

වයඹ පළාත් අධාාපන දෙපාර්තමේන්තුව Provincial Department of Education වයඹ පළාත් අධාාපන දෙපාර්තමේන්තුව Provincial Department of Education

දෙවන වාර පරීක්ෂණය - 11 ශුේණීය - 2019

Second Term Test - Grade 11 - 2019

නම/විභාග අංකය :

ගණිතය - I

කාලය: පැය 02යි.

- සෑම පුශ්නයකට ම මෙම පතුයේ ම පිළිතුරු සපයන්න.
- A කොටසේ සියලු ම නිවැරදි පිළිතුරු සඳහා ලකුණු 2 ක් බැගින් ද, B කොටසේ එක් පුශ්නයක නිවැරදි පිළිතුරු සඳහා ලකුණු 10 බැගින් ද හිමි වේ.

A කොටස

- (1) රු. 85 000 ක මුදලක් 12% ක වාර්ෂික සුළු පොලී අනුපාතිකය යටතේ ණයට ගත් අයෙක් වර්ෂ 2 ක් අවසානයේ ණයෙන් නිදහස් වීමේදී ගෙවිය යුතු පොලිය කොපමණද?
- (2) $\sqrt{19}$ හි අගය පළමු සන්නිකර්ෂණයට සොයන්න.
- (3) විසඳුන්න. x(x-3) = 0
- (4) රූපයේ දී ඇති තොරතුරු ඇසුරෙන් x හා y හි අගය සොයන්න.

- (5) දිනකට පැය 8 බැගින් වැඩ කරන මිනිසුන් තිදෙනෙකු දින පහකදී වැඩක් නිම කරයි. එම වැඩය එම මිනිසුන් කණ්ඩායම ම යොදා ගෙන දින හතරක දී නිම කිරීමට අවශාව ඇත. ඒ සඳහා මිනිසෙකු දිනකට වැඩ කළ යුතු අතිරේක පැය ගණන සොයන්න.
- (6) $\ell g \ x = 3$ නම් x හි අගය සොයන්න.

- (7) 3ab, ab^2 හා 2a යන වීජීය පද වල කු. පො. ගු. සොයන්න.
- (8) රූපයේ දී ඇති තොරතුරු අනුව, සමද්වීපාද තිුකෝණ දෙකක් නම් කරන්න.

(9) දිග 16cm ක් වූ තිකෝණ පිස්මයක දළ රූපයක් මෙහි දක්වේ. මෙම පිස්මයේ වෙනස් හැඩ ගන්නා මුහුණත් දෙකක දළ රූප ඇඳ මිනුම් ලකුණු කරන්න.

- (10) ABCD හා ABEF සමාන්තරාසු දෙකෙහි ලකුණු කර ඇති තොරතුරු අනුව,
 - (i) CD පාදයේ දිග කීය ද?
 - (ii) DAF හි අගය කීය ද?

(11) $\mathbf{P}' \cap Q$ කුලකය ලියන්න.

- (12) ℓ උක්ත කරන්න. $K + \sqrt{\frac{\ell}{T}} = P$
- (13) රූපයේ දක්වෙන O කේන්දුය වන වෘත්තයේ අරය 13cm කි. PT = 12cm නම් TY දිග සොයන්න.

- (14) 1 සිට 10 තෙක් අංකනය කර ඇති සමාන කාඩ්පත් 10කින් අහඹු ලෙස තෝරා ගන්නා කාඩ් පතක්, දෙකේ ගුණාකාරයක් හෝ පහේ ගුණාකාරයක් දුක්වෙන කාඩ් පතක් වීමේ සම්භාවිතාව සොයන්න.
- (15) කේන්දුය O වූ වෘත්තය මත A, B හා C ලක්ෂා පිහිටා ඇත්තේ AC විෂ්කම්භයක් වන පරිදි ය. පහත දී ඇති එක් එක් පුකාශ නිවැරදි නම් " $m{\lambda}$ "ලකුණ ද යොදන්න.

$\hat{ACB} = 2\hat{AOB}$	
$\stackrel{\circ}{ABC} = 90^{0}$	
$\hat{ABO} = \hat{OBC}$	

- (16) සුළු කරන්න. $\frac{x}{2} + \frac{1}{3x}$
- (17) $60 \, \mathrm{kmh^{\text{--1}}}$ ක වේගයෙන් ගමන් කරන මෝටර් රථයකට $40 \, \mathrm{km}$ දුරක් යාමට ගතවන කාලය මිනිත්තු කීය ද?

(18) රූපයේ දී ඇති තොරතුරු අනුව x හි අගය සොයන්න.

(19) 3, 4, 4, 6, 7, 8, 10, 11, 12,

ආරෝහණ පරිපාටියට සැකසූ දත්ත වැලක කොටසක් ඉහත දක්වේ. එම දත්තවල මධාස්ථය 11 හා අන්තශ් චතුර්ථක පරාසය 8 කි.

- (i) දත්ත වැලේ ඇති දත්ත සංඛාාව කීය ද?
- (ii) තුන්වන චතුර්ථකය කීය ද?

(20) රූපයේ දී ඇති තොරතුරු අනුව ABCD සමාන්තරාසුයේ පරිමිතිය සොයන්න.

(21)

- (i) සංඛන රේඛාව මගින් නිරූපනය කර ඇති අසමානතාවය ලියා දක්වන්න.
- (ii) ඉහත අසමානතාවය තෘප්ත කරන නිඛිලමය විසඳුම් කීයක් තිබේද?

(22) පැත්තක දික 14cm වූ සමචතුරසුාකාර ආස්තරයක කේන්දික ඛණ්ඩ 2 කින් පොදු වූ කොටස රූපයේ අඳුරු කර දක්වා ඇත. එම කොටසේ පරිමිතිය සොයන්න.

(23) දී ඇති රූපයේ Q ලක්ෂායට $3 \, \mathrm{cm}$ ක් දුරින් ද PQ හා QR රේඛාවලට සම දුරින් ද තිුකෝණය තුළ පිහිටි S ලක්ෂායේ පිහිටුම ලබා ගැනීමට කළ යුතු නිර්මාණ රේඛාවල දළ සටහන් ඇඳ S ලක්ෂාය නම් කරන්න.

(24) දී ඇති ඛණ්ඩාංක තලයේ දක්වෙන ℓ සරල රේඛාවේ සමීකරණය y=mx+c ආකාරයට ලියන්න.

 $(25) \quad \frac{1}{2} \ , \ 1, \ 2, \ \dots$

ඉහත ගුණෝත්තර ශේුඪියේ 8 වන පදය සොයන්න.

B කොටස

- (1) නිමල් තම නිවස ඉදිකිරීමට අවශා මුදලින් $\frac{1}{3}$ ක් බැංකුවකින් ද $\frac{1}{4}$ ක් තම දෙමව්පියන් ද ඉතිරියෙන් $\frac{2}{5}$ ක් තම මිතුරකුගෙන් ද ලබා ගන්නා ලදී.
 - (i) බැංකුවෙන් සහ දෙමව්පියන්ගෙන් ලැබුණු මුදල නිවස ඉදිකිරීමට අවශා මුළු මුදලින් කිනම් භාගයක් ද?

(ii) මිතුරාගෙන් ලැබුණු මුදල මුළු මුදලින් කිනම් භාගයක්දයි සොයන්න.

(iii) නිමල් තමා අත තිබූ රු. 750 000 ක මුදල හා ඉහත පරිදි ලබා ගත් මුදල් යොදවා නිවසේ වැඩ නිම කරන ලද්දේ නම් නිවස සෑදීමට වැය වූ මුළු මුදල සොයන්න.

- (2) සාප්පු සංකීර්ණයක් පිහිටි බිමක දළ රූපයක් මෙහි දක්වා ඇත. එහි අඳුරු කර දක්වා ඇත්තේ වාහන නැවැත්වීම සඳහා වෙන් කර ඇති කොටස වන අතර ඉතිරි කොටසේ ගොඩනැගිල්ල පිහිටා ඇත.
 - (i) මෙහි දැක්වෙන අර්ධ වෘත්තාකාර කොටසේ අරය කීයද?

(ii) ගොඩනැගිල්ල සඳහා වෙන් කර ඇති කොටසේ පරිමිතිය සොයන්න. (iii) අඳුරු කර ඇති කොටසේ වර්ගඵලය සොයන්න.

(iv) වාහන නැවැත්වීම සඳහා වෙන් කර ඇති කොටසට සිමෙන්ති ගඩොල් ඇල්ලීම සඳහා $1\ m^2$ ට රු. $1500\$ බැගින් වැය වන මුදල සොයන්න.

(3) සිසුන් 30 දෙනෙකුගෙන් යුත් නියැදියක එක් එක් සිසුවාට කෙටි කථා පොතක් කියවීම සඳහා ගත වූ කාලය ඇසුරින් පහත වගුව ගොඩනගා ඇත.

කාලය (මිනිත්තු)	0 - 5	5 - 10	10 - 15	15 - 20	20 - 35	35 - 45
සිසුන් ගණන	2	4		6	9	4

- (i) වගුවේ හිස්තැන් සම්පූර්ණ කරන්න.
- (ii) මෙම තොරතුරු ජාල රේඛයකින් දක්වන්න.

- (iii) ජාල රේඛය ඇසුරින් සංඛ්යාත බහු අසුය අඳින්න
- (iv) මිනිත්තු 15 කට වඩා අඩු කාලයකින් කෙටි කථාව කියවන සිසුන් ගණන මුළු සිසුන් ගණනෙහි පුතිශතයක් ලෙස දක්වන්න.

(4) (a) එක්තරා බැංකුවක් ස්ථීර තැන්පතු සඳහා වැල්පොළී කුමයට පොළිය ගණනය කරයි. පියල් රු. 175 000 ක මුදලක් වාර්ෂකව 11% ක පොළී අනුපාතිකය යටතේ ඉහත බැංකුවේ ස්ථීර තැන්පතුවක යෙදවීය. වර්ෂ 2 ක් අවසානයේ පියල්ට හිමි වන මුළු මුදල සොයන්න.

- (b) කොටස් වෙළඳ පොළ ආයෝජකයෙක් වන ගනේෂන් මහතා කොටසක වෙළඳපොළ මිල රු. 60 ක් වන සමාගමක කොටස් මිලදී ගැනීමට රු. 360 000 ක් යොදවයි. සමාගම කොටසකට වාර්ෂිකව රු. 8 ක ලාභාංශයක් ගෙවයි.
 - (i) ගතේෂන් මහතා මිලදී ගත් කොටස් ගණන සොයන්න.

(ii) ගතේෂන් මහතාට ලැබෙන වාර්ෂික ලාභාංශ ආදායම සොයන්න.

(iii) වසරකට පසු ගනේෂන් මහතා ඉහත කොටස් සියල්ල විකුණා රු. 9000 ක පුාග්ධන ලාභයක් ලබයි. කොටසක විකුණුම් මිල සොයන්න.

- (5) බෑගයක එකම තරමේ රතුපාට ඇපල් ගෙඩි 4ක් හා කොළ පාට ඇපල් ගෙඩි 2 ක් ඇත. නිසල් ඉන් ගෙඩියක් ඉවතට ගෙන වර්ණය පරීක්ෂා කර බලා ආපසු දමීමෙන් පසු සපුමල් ද ඉන් ගෙඩියක් ගෙන වර්ණය පරීක්ෂා කර බලන ලදී.
 - (i) ඉහත කිුයාවලියට අදාල නියැදි අවකාශය කොටු දැලක දක්වන්න.

(ii) දෙදෙනාටම රතු පාට ඇපල් ගෙඩි ලැබීමේ සම්භාවිතාව සොයන්න.

(iii) සපුමල්ට රතුපාට ඇපල් ගෙඩියක් ද නිසල්ට කොළ පාට ඇපල් ගෙඩියක් ද ලැබීමේ සම්භාවිතාව සොයන්න.

(iv) නිසල්ට රතු ඇපල් ගෙඩියක් නොලැබීමේ සම්භාවිතාව සොයන්න.

(v) ඉහත (ii), (iii), (iv) සිද්ධි පිළිවෙලින් A,B හා C නම් ඒවා අතරින් අනොන්නා වශයෙන් බහිෂ්කාර සිද්ධි දෙකක් නම් කර ලියන්න.

සියලුම හිමිකම් ඇව්රිණි / All Rights Reserved

ී අධාාපන දෙපාර්තමේන්තුනි ray කුial Bezergrant රැනි විරූපුරුව දිනුම පළමු අවුටුර්නු ලැබීම නිද්ධා වි yovincial Department of Education අධාාපන දෙපාර්තමේන්තුව Provincial Department on Education වසන පළාත් අධාාපන දෙපාර්තමෙන්තුව Provincial Depa 🎢 අධ්යාපන දෙපාර්තුමේන්තුව Provincial Department of Education වයඹ පුරාත් අධ්යාපන දෙපාර්තුමේන්තුව Provincial Department of Education නතුව Nower Department

වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education වයඹ පළාත් අධ්යාපන දෙපාර්තමේන්තුව Provincial Department of Education

දෙවන වාර පරීක්ෂණය - 11 ලේණිය - 2019

Second Term Test - Grade 11 - 2019

ගණිතය - II නම/විභාග අංකය :

කාලය : පැය 03යි.

- ullet $oldsymbol{A}$ කොටසින් පුශ්න පහක් තෝරාගෙන පුශ්න 10කට පිළිතුරු සපයයන්න.
- පුශ්නවලට පිළිතුරු සැපයීමේදී අදාල පියවර සහ නිවැරදි ඒකක ලියා දක්වන්න.
- සෑම පුශ්නයකට ම ලකුණු 10 බැගින් හිමි වේ.
- ullet පතුලේ අරය ${f r}$ ද සෘජු උස ${f h}$ ද වන සෘජු කේතුවක පරිමාව ${1\over 2}\pi r^2 h$ ද, අරය r වන ගෝලයක පරිමාව $\frac{4}{3}\pi r^3$ ද වේ.

\mathbf{A} කොටස

- (1) එක්තරා විදුලි උපකරණයක් ආනයනය කිරීමේදී එහි වටිනාකමින් 55% තීරු බදු ගෙවිය යුතුය. උපකරණයේ මුල් වටිනාකම රු. 28 000 ක් නම්,
 - (i) තීරු බදු ගෙවූ පසු උපකරණයේ වටිනාකම සොයන්න.
 - (ii) එම උපකරණයේ විකුණුම් මිල රු. 56 420 ලෙස මිල ලකුණු කළේ නම් අපේස්ෂිත ලාභ පුතිශතය සොයන්න.
 - (iii) ඉහත මිල ලකුණු කළ උපකරණය වට්ටමක් දී විකිණීමෙන් 28% ක ලාභයක් ලැබිණි. දෙන ලද වට්ටම් මුදල සොයන්න.
 - එක්තරා නිවසක් සඳහා වරිපනම් ලෙස කාර්තුවකට රු. 1800 ක් ගෙවිය යුතු ය. එම බල පුදේශය තුළ නිවසකට (b) වාර්ෂික තක්සේරු වටිනාකමින් 15 % ක් වරිපනම් අය කරයි නම් ඉහත නිවසේ වාර්ෂික වටිනාකම සොයන්න.
- (a) $y = (x+2)^2 5$ ශිතයේ පුස්තාරය ඇඳීම සඳහා සකස් කළ අසම්පූර්ණ අගය වගුවක් පහත දක්වා ඇත. (2)

х	-5	-4	-3	-2	-1	0	+1
у	+4	-1	-4		-4	-1	+4

- (i) x = -2 දී y හි අගය සොයන්න.
- $\mathrm{(ii)}\,x$ අක්ෂය හා y අක්ෂය ඔස්සේ කුඩා කොටු 10 කින් ඒකක එකක් නිරූපණය වන ලෙස ඉහත ශිුතයේ පුස්තාරය අඳින්න.
- (b) ඔබ ඇඳි පුස්තාරය ඇසුරින්,
 - (i) වර්තන ලක්ෂායේ ඛණ්ඩාංකය ලියන්න.
 - (ii) $y \le -2$ වන x හි අගය පුාන්තරය ලියන්න.
 - $(iii) (x+2)^2 5 = 0$ වර්ගජ සමීකරණයේ මූල සොයා එමගින් $\sqrt{5}$ හි අගය ලබා ගන්න.

- දිග, පළල, උස පිළිවෙලින් සෙන්ටිමීටර් $(x+3),\ 4,\ (x-1)$ (3) බැගින් වූ ඝනකාභයක පරිමාව $28 \mathrm{cm}^3$ වේ නම්,
 - x මගින් $x^2 + 2x + 10 = 0$ සමීකරණය සපුරාලන බව පෙන්වා x හි අගය පළමු දශමස්ථානයට සොයන්න.

- (ii) සනකාභයේ දිග හා උස වෙන වෙනම සොයන්න.
- ඇපල් ගෙඩි දෙකක් හා පේර ගෙඩි පහක් ගැනීමට රු. 175 ක් වැයවේ. ඇපල් ගෙඩි 3 ක් ගන්නා මුදලට පේර (4) (a) ගෙඩි 10 ක් මිලදී ගත හැක.
 - ඇපල් ගෙඩියක මිල රු. x හා පේර ගෙඩියක මිල රු. y ලෙස ගෙන සමගාමී සමීකරණ යුගලයක් (i) ගොඩනගන්න.
 - ඉහත සමගාමී සමීකරණ විසඳීමෙන් ඇපල් ගෙඩියක මිල සහ පේර ගෙඩියක මිල වෙන වෙන ම (ii) සොයන්න.
 - $\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3$ වේ. මෙම පුතිඵලය භාවිතයෙන් (x 2 $)^3$ පුසාරණය කරන්න.
- නිමල් නගරයට ගොස් ${f A}$ නම් බස් නැවතුම්පලේ සිට $045^{
 m o}$ ක දිගංශයකින් $200~{f m}$ ක් දුරින් පිහිටි ${f B}$ නම් බැංකුවට ගොස් එතැන සිට 100° ක දිගංශයකින් $300~\mathrm{m}$ ක් දුරින් පිහිටි C නම් වෙළඳපොළට ද ගියේ ය.
 - (i) තිමල්ගේ ගමන් මාර්ගය දළ රූප සටහනක ඇඳ දක්වන්න.
 - (ii) සුදුසු පරිමාණයක් යොදාගෙන ඉහත දත්ත පරිමාණ රූපයක නිරූපණය කරන්න.
 - පරිමාණ රූපය ඇසුරින් බස් නැවතුම්පලේ සිට වෙළඳපොළට ඇති දුර සොයන්න. (iii)
 - (iv) C සිට A හි දිගංශය සොයන්න.
- එක්තරා රෝහලක ආපන ශාලාවේ දින 30 ක් තුළ අලෙවි වූ යෝගට් ගණන පිළිබඳ තොරතුරු පහත වගුවෙහි දැක්වේ. (6) එම ආපන ශාලාවේ යෝගට් එකක විකුණු ම් මිල රු. 35 කි.

යෝගට් ගණන	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79	80 - 89
දින ගණන	1	2	6	8	7	4	2

- (i) දිනකදී අලෙවි වූ මධානාය යෝගට් ගණන ආසන්න පූර්ණ සංඛ්යාවට සොයන්න.
- (ii) ආපන ශාලා හිමිකරු සති 2 ක් සඳහා අවශාවන යෝගට් එක වරම තොග වෙළඳ සැලකින් එකක් රු. 25 බැගින් මිලදී ගනී. සති දෙකක් අවසානයේ යෝගට් විකිණීමෙන් ඔහුට ලැබෙන ලාභය රු. 8000 නොඉක්වන බව ආපනශාලා හිමිකරු පවසයි. මෙම පුකාශය සතා දයි හේතු සහිතව පහදන්න.

B කොටස

- (7) සමාන්තර ශේඪියක පහළොස් වැනි පදය 31 කි. එහි දහතුන් වන පදය, හතර වන පදය මෙන් තුන් ගුණයකි. මෙම ශේඪියේ,
 - (i) මුල් පදය හා පොදු අන්තරය සොයන්න.
 - (ii) ඓකාය 48 ක් වීමට මුල් පදයේ සිට පද කීයක් එකතු කළ යුතු දුයි සොයන්න.
- (8) පහත දැක්වෙන නිර්මාණ සඳහා cm / mm පරිමාණයක් සහිත සරළ දාරයකක් හා කවකටුවක් පමණක් භාවිතා කරන්න. නිර්මාණ රේඛා පැහැදිලිව දක්වන්න.
 - (i) AB = 8cm, AD = 5cm, $B\stackrel{\wedge}{A}D = 60^{\circ}$ වන පරිදි ABD තිකෝණය නිර්මාණය කරන්න.
 - (ii) AC විකර්ණයේ දිග 9cm වන පරිදි හා B හා D ලක්ෂා වලට සමදුරින් C පිහිටන පරිදි ABCD චතුරසුය නිර්මාණය කරන්න.
 - (iii) BD ට සමාන්තරව C හරහා සරල රේඛාව නිර්මාණය කර එය දික් කළ AB ට හමුවන ලක්ෂාය E ලෙස නම් කරන්න.
 - (iv) ABCD චතුරසුයේ වර්ගඵලය = ADE Δ වර්ගඵලය බව පෙන්වන්න.
- (9) පතුලේ අරය ඒකක a ද, උස ඒකක 2a ද වන ඝන ලෝහ කේතුවක් උණු කර ලැබෙන ලෝහ පරිමාවෙන් හරි අඩක් යොදා සමාන ඝන ලෝහ ගෝල 2 ක් සාදන ලදී. ඉතිරි අඩ භාවිතයෙන් ඝනකාකාර ලෝහ කුට්ටියක් සකසන ලදී.
 - (i) ලෝහ කුට්ටියේ පරිමාව a ඇසුරින් සොයන්න.
 - (ii) ලෝහ ගෝලයක අරය a ඇසුරින් සොයන්න.
 - (iii) ඝනකාකාර ලෝහ කුට්ටියේ පැත්තක දිග a ඇසුරුන් සොයන්න.
 - (iv) $\pi = 3.142$ හා a = 12.5 cm නම් ලෝහ කුට්ටියේ පැත්තක දිග ලසුගණක වගු භාවිතයෙන් ආසන්න පළමු දශමස්ථානයට ගණනය කරන්න.
- (10) රූපයේ දක්වෙන PQRS සමාන්තරාසුයේ S හා Q ලක්ෂාවල සිට PR විකර්ණයට අඳින ලද ලම්භ පිළිවෙලින් T හා U හිදී PR හමුවේ.
 - (i) STQU සමාන්තරාසුයක් බව සාධනය කරන්න.
 - (ii) $rac{PQRS}{STQU}$ සමන්තරාසුයේ වර්ගඵලය $=rac{PR}{TU}$ බව පෙන්වන්න.

- (11) මිශු පාසලක 6 ශේණියට ඇතුළත් කරගන්නා ලද නවක සිසුන් 70 දෙනෙකු අතරින් ඉංගීසි මාධානය පන්තියට සිසුන් තෝරා ගැනීම සඳහා පවත්වන ලද ලිඛිත පරීක්ෂණයක පුතිඵල අනුව,
 - විභාගය සමත් ශිෂා සංඛාාව 38 ක් ද, විභාගය සමත් පිරිමි සිසුන් ගණන 20 ක් ද බව අනාවරණය විය දී ඇති වෙන් රූපය පිටපත් කර,
 - (i) A ලෙස නම් කර ඇති කුලකය හඳුන්වා ඉහත තොරතුරු වෙන් රූපය තුළ දක්වන්න.
 - (ii) විභාගය සමත් ගැහැණු සිසුන් දක්වෙන පෙදෙස ඉහත වෙන් රූපය තුළ අඳුරු කර දක්වන්න.

- (iii) පරීකෘණයෙන් අසමත් වූ ගැහැණු ළමයි ගණන 15 නම් 6 ශේණීයට ඇතුලත් කරගන්නා ලද පිරිමි ළමයි ගණන කීය ද?
- (iv) ඉහත නවක සිසුන් අතරින් අහඹු ලෙස තෝරා ගන්නා සිසුවෙක් තේරීම් පරීකෘණයෙන් අසමත් පිරිමි ළමයෙක් වීමේ සම්භාවිතාව කීයද?
- (12) රූපයේ දැක්වෙන කේන්දුය O වූ වෘත්තයකි. එහි PQ විෂ්කම්භය හා SR ජාාය T හිදී ලම්බව ඡේදනය වේ.

- (i) PRT සහ SQT තිකෝණ සමකෝණී බව පෙන්වන්න.
- (ii) ST = 9cm ද PT = 3cm නම්, TQ හා දිග සොයන්න.
- (iii) $\stackrel{\circ}{POR} = \stackrel{\circ}{SQR}$ බව පෙන්වන්න.

සියලුම හිමිකම් ඇවිරිණි / All Rights Reserved

අධාාපන දෙපාර්තමේන්තුවනි roy mial Becart polit රා කිරීම පිට පළමුද වෙන රාජ්ථ කරන විට නිර්ධාරය Department of Education අධාාපන දෙපාර්තමේන්තුව Provincial Department of Education වසන පළාත් අධාාපන දෙපාර්තමේන්තුව Provincial Department of Education

දියාපන දෙපාර්තමේන්තුව Provincial Department of Education වයඹ පළාත් අධ්‍යාපන දෙපාර්තමේන්තුව Provincial Department of Education

දෙවන වාර පරීක්ෂණය - 11 ශුේණිය - 2019

Second Term Test - Grade 11 - 2019

ගණිතය - පිළිතුරු පතුය

			~		<u>ي</u>			
			I	පතුර	5			
(1)	<u>A කොටස</u> රු. 20400		02	(11)	$P'\cap Q=\{4,6,8\}$ $4,6,8$ පමණක් ඇති විට	01	02
	$85000 \times \frac{12}{100} \times 2 \dots$	01		(12)	$\ell = T (P - K)^2 - \dots$		
2)	4.4		02			$\frac{\ell}{T} = (P - K)^2 - \dots$	- 01	
3)	නෝ $4.4^2 = 19.3$ x = 0, x = 3	1+1	02	(13)	TY = 8 cm OT = 5 cm	1	02
4)	$x = 30^{\circ}, \ y = 65^{\circ}$	1+1	02	(14)	6	ļ	02
5)	පැය 2 8×3×5		02			2, 4. 5, 6. 8, 10	1	
	3×4	1		(15)	× ✓		
6)	$x = 1000$ $x = 10^3$		02				01	02
7)	6 a b ²		02					
3)	ABE_{Δ} , ACD_{Δ}		02	(16)	$\mathbf{o}x$		02
9)	- 6cm		02			$\frac{3x^2}{6x}$ ඉහා ් $\frac{2}{6x}$ ලබා ගැනීම	01	
	6cm 16cm			(17)	මිනිත්තු 40	<u> </u>	02
10)	(i) $CD = 10cm$ (ii) $D\hat{A}F = 50^{\circ}$	01	02			$\frac{40}{t} = 60 \dots$	01	
					18)	$x=65^{\circ}$	01	02

(19)	(i) දක්ත ගණන = 15 (ii) Q ₃ = 14	- 01 - 01	02
(20)	60 cmBC මහා AD = 12cm	- 01	02
(21)	(i) -3 < x ≤ 1(ii) 4	- 01 - 01	02
(22)	44 cm		02
	$2 \times \frac{22}{7} \times 14 \times \frac{1}{4} \times 2 \dots$	- 01	
(23)	8cm 3cm S		
	කෝණ සමච්ඡේදකය	01	
	3 cm දුරින් s ලකුණු කිරීම	01	02

		AllSW	/GI
(ii	$\frac{12}{12} - \frac{7}{12} = \frac{5}{12} - \dots$	01	
	$\frac{5}{12} \times \frac{2}{5}$	01	
	<u>1</u>	01	03
(ii	$\frac{7}{12} + \frac{1}{6} = \frac{9}{12}$ ලබා ගැනීම	01	
	ඉතිරි භාගය $=\frac{3}{12}$	01	
	මුළු මුදල $=\frac{750000}{3} \times 12$	01	
	= \emptyset_7 . 3 000 000	01	04
			10
(2) (i)	7 cm		01
(ii) චාප දිග $= 2 \times \frac{22}{7} \times 7 \times \frac{1}{2}$	01	
	= 22 m පරිමිතිය = 20 + 20 + 14 + 22	01	
(ii	= 76 mi) අර්ධ වෘත්තාකාර කොටසේ ව. එ.	01	03
	$=\frac{22}{7}\times7\times7\times\frac{1}{2}$	01	
	= 77 m ² ඉගාඩනැගිල්ල ඇති බිමේ ව. ඵ.		
	$= (20 \times 14) + 77$ = 3 5 7 m ²	01	
	අඳුරු කර ඇති ව. එ.		
	$= (20 \times 30) - 357$	01	
	= 2 4 3 m ²		04
(iv	v) 243×1500		
	ძ ෭. 364 500	01	$\frac{02}{10}$
			10
(3) (i)) 5	01	01
(ii		- 01	
	20 - 35 තීරය	01	
	35 - 45 තීරය – – – – – – – –		
	ලසසු තී්ර සඳහා– – – – – – – –	01	04

2)	(a)	(i) -5	- 01	
		(ii) අක්ෂ කුමාංකනය	01	
		නිවැරදි ලකෳන 5 කට	01	
		සුමට වකුයට	01	04
	(b)	(i) (-2, -5)		-01
		(ii) $-4.6 \le x \le 0.6$		02
		(iii) $x = 0.2$ ඉහර $x = -4.2$	1+1	
		$x+2 = \sqrt{5}$		
		$\therefore \sqrt{5} = 0.2 + 2$		
		= 2.2	- 01	03
				-10
3)	(i)	පරිමාව = $4(x+3)(x-1)$	- 01	
		4(x+3)(x-1) = 28	- 01	
		$4x^2 + 8x - 12 = 28$	- 01	
		$4x^2 + 8x - 40 = 0$		
		$x^2 + 2x - 10 = 0$	- 01	04
		$x^2 + 2x + 1 = 10 + 1$	01	
		$(x+1)^2 = 11$	- 01	
		$x+1 = \pm \sqrt{11}$		
		$x = \pm \sqrt{11} - 1 - \cdots$	01	
		$x = \sqrt{11} - 1$ ඉහර් $x = -\sqrt{11} - 1$		
		x = 3.317 - 1 ඉහර් $x = -3.317 - 1$	- 01	
		විය නොහැක.		
		<i>x</i> = 2.3	- 01	04
		හෝ සූතුයට ආදේශයෙන්		
		$-2+\sqrt{2^2-4\times1\times(-1)}$		
		$x = \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times (-1)}}{2 \times 1}$	- 01	
		$x = \frac{-2 \pm 2\sqrt{11}}{2}$	- 01	
		$x = 1 \pm 3.317$	01	
		<i>x</i> = 2.3	- 01	04
	(ii)	දග = 2.3 + 3		
	()	= 5.3 cm	- 01	
		උස = 2.3 - 1		
		= 1.3 cm	01	02
			'	-10

	(1)	2x + 5	y = 175	_(1)		01	
		3	8x = 10y				
		3x - 10	0y = 0	(2)		01	02
	(ii)	4x + 1	0y = 350	(3)		01	
		(2) + ((3)				
						01	
			x = 50			01	
		x = 50) ආදේශයෙ	ภ์			
						01	
						01	
		•	ගෙඩියක මි			01	
				$g_{i} = \sigma_{i}$. 10 -		٥1	06
		900		; — O(. 10 -		01	U
	(b)	(r 2)3	$-\mathbf{v}^3 \perp 2\mathbf{v}^2$	$(-2)+3\times x\times$	(2)2±(2)	\3	
	(0)			12x - 8	` ' '	,	-02
			-x - 0x	12.1 - 0			- 0 2 - 1 (
							- 1 (
(5)	(i)		٨				
(5)	(i)						
			100	0			
			200m B				
			200117	\			
		459	/	300m			
		A		/ c			
		දළ සර	ටහන 45º හ	200m		01	
				200m		01 01	- 0 2
	(ii)	100° හ					- 02
	(ii)	100° හ නිවැරෑ	o 300m	 රූපයට	(- 02
	(ii)	100° හ නිවැරෑ	ා 300m දි පරිමාණ ර	 රූපයට		01	- 02
	(ii)	100° හ නිවැරැ ප	ා 300m දි පරිමාණ ර හරිමාණය ලි ර ගණනය	 රූපයට වීම		01 01	- 02
	(ii)	100° හ තිවැරැ ප දු	ත 300m දි පරිමාණ ශ පරිමාණය ලි	රූපයට වීම ඇඳීම	(01 01 01	
		100° හ නිවැරැ ප දු 4	ත 300m දී පරිමාණ ර රේමාණය ලි ර ගණනය 5° හා 100° AB හා BC	රූපයට වීම ඇඳීම	·(01 01 01 01	
		100° හ නිවැරෑ නිවැරෑ 4 AC දි	තා 300m දී පරිමාණ ර රේමාණය ලි ර ගණනය 5 ⁰ හා 100 ⁰ AB හා BC	රූපයට වීම ඇඳීම		01 01 01 01 01	- 0 4
	(iii)	100° හ නිවැරැ දු 4 AC දිර AC දුර	තා 300m දී පරිමාණ ශ රේමාණය ලි ර ගණනය -5° හා 100° AB හා BC	රූපයට වීම ඇඳීම		01 01 01 01 01	- 0 4
	(iii)	100° හ නිවැරැ දු 4 AC දිර AC දුර	තා 300m දී පරිමාණ ර රේමාණය ලි ර ගණනය 5 ⁰ හා 100 ⁰ AB හා BC	රූපයට වීම ඇඳීම		01 01 01 01 01	- 0 4 - 0 2 <u>0 2</u>
	(iii)	100° හ නිවැරැ දු 4 AC දිර AC දුර	තා 300m දී පරිමාණ ශ රේමාණය ලි ර ගණනය -5° හා 100° AB හා BC	රූපයට වීම ඇඳීම		01 01 01 01 01	- 04 - 02 02
(6) [(iii) (iv)	100° හ නිවැරැ දි 4 AC දි AC දුර C සිට	ත 300m දී පරිමාණ ශ රේමාණය ලි ර ගණනය 5º හා 100º AB හා BC - හ ර	රූපයට වීම ඇඳීම		01 01 01 01 01	- 0 4 - 0 2 <u>0 2</u>
(6)	(iii) (iv)	100° හ නිවැරැ දු 4 AC දි AC දුර C සිට	ත 300m දී පරිමාණ ශ රේමාණය ලි ර ගණනය 5º හා 100º AB හා BC - හ ර A හි දිගංශය	රූපයට වීම ඇඳීම s	(01 01 01 01 01	- 0 4 - 0 2 <u>0 2</u>
(6)	(iii) (iv)	100° හ නිවැරැ දි 4 AC දි AC දුර C සිට -	තා 300m	රූපයට වීම ඇඳීම 	()	01 01 01 01 01	- 0 4 - 0 2 <u>0 2</u>
(6)	(iii) (iv) ©ධාන	100° හ නිවැරැ දු 4 AC දි AC දුර C සිට	ත 300m දී පරිමාණ ශ රේමාණය ලි ර ගණනය 5º හා 100º AB හා BC - හ ර A හි දිගංශය 	රූපයට වීම ඇඳීම 1 2	fd - 30 -40	01 01 01 01 01	- 0 4 - 0 2 <u>0 2</u>
(6)	(iii) (iv) ②ධාය	100° හ නිවැරැ දි 4 AC දිර AC දුර C සිට -	තා 300m	රූපයට වීම ඇඳීම 	()	01 01 01 01 01	- 0 4 - 0 2 <u>0 2</u>
(6)	(iii) (iv) 2 3 4 5 6	100° හ නිවැරැ දි 4 AC දි AC දු C සිට - - - - - - - - - - - - - - - - - - -	ත 300m	රූපයට වීම ඇඳීම 		01 01 01 01 01	- 0 4 - 0 2 <u>0 2</u>
(6)	(iii) (iv) 2 3 4 5 6 7	100° හ නිවැරැ සි 4 AC දිශ AC දුශ C සිට 	ත 300m	රූපයට වීම ඇදීම 		01 01 01 01 01	- 0 4 - 0 2 <u>0 2</u>
(6)	(iii) (iv) 2 3 4 5 6 7	100° හ නිවැරැ දි 4 AC දි AC දු C සිට - - - - - - - - - - - - - - - - - - -	ත 300m	රූපයට වීම ඇඳීම 		01 01 01 01 01 01	-02 -04 -02 -10

	මධා අගය––––––––	01	
1	fd තීරය	01	
	Σfd	01	
	ආදේශය– – – – – – – – – – – –	01 -	04
	මධානා¤ය = 54.5 + $\frac{80}{30}$		
	= 57.16		
		01	
	යෝගට් 1 ක ලාභය = රු. 10		
	මුළු ලාභය = රු. $57 \times 14 \times 10$		
	= σ_{l} . 7980		
		01	
	එම පුකාශය සතහ වේ	01 -	
			10
	B කොටස		
(7)	(i) $T_{15} = 31$		
	a + 14d = 31(1)	01	
	$_{T_{13}} = 3 T_{4}$		
	\ /	01	
	$-2a + 3d = 0 \tag{2}$		
	$(1) \times 2 2a + 28d = 62 $ (3)	01	
	(3)+(2) 31d = 62	0.1	
		01	اء م
	a = 3	01 -	05
	(ii) $S_n = \frac{n}{2} \{2a + (n-1)d\} $ \bigcirc \bigcirc		
	$48 = \frac{n}{2} \{2 \times 3 + (n-1)2\}$	01	
	96 = n(2n + 4)		
		01	
	$2n^2 + 4n - 96 = 0$		
	(-) (-)	01	
	n = -8 මහා ී n = 6	01	
	පද ගණන සෘණ විය නොහැක පද 6ක්		
	එකතු කළ යුතු ය.	01 -	05
			10
	(i) AB	01	
(8)	`		
(8)	6 0 0	01	
(8)	6 0 0		03

		A	Ansv	ver
	(ii)	ඊෘ හි ලම්බ සමච්ඡේදකය	01	
	. /	AC=9 වන සේ C ලබා ගැනීම	01	-02
		-		
	(iii)	// රේඛා නිර්මාණය	02	
	` /	E ලබා ගැනීම	01	-03
	(iv)	නිවැරදි සාධනයට		02
	` ′		ļ	-10
		1		
(9)	(i)	කේතුවේ පරිමාව $=rac{1}{3}\pi imes a^2 imes 2a$	01	
		3		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		ලෝහ කුට්ටියේ පරිමාව $=\frac{2}{3}\pi a^3 \div 2$		
		1		
		$=\frac{1}{3}\pi a^3$	01	-02
		3		
	(11)	ගෝලයක අරය r නම්		
		පරිමාව = $\frac{4}{3}\pi r^3 = \left(\frac{1}{3}\pi a^3\right) \div 2$		
		පරිමාව = $\frac{1}{3}\pi r = \left(\frac{1}{3}\pi a\right) \div 2$	01	
		$r^3 = \frac{a^3}{8}$		
		8		
		a		
		$r=\frac{a}{2}$	01	-02
	(iii)	පැත්තක දිග x නම්, $x^3=\frac{1}{3}\pi a^3$		
	(111)	3		
		1 -		
		$x = \sqrt[3]{\frac{1}{3}\pi a^3}$		-01
		43		
		$=\sqrt[3]{\frac{1}{3}\pi}a$		
		$=\sqrt[3]{\frac{\pi}{3}}$		
	(iv)	$x = \sqrt[3]{\frac{3.142}{3}} \times 12.5$		
	(11)	V 3		
		1		
		$\ell g \ x = \frac{1}{3} [\ell g \ 3.142 - \ell g \ 3] + \ell g \ 12.5$	01	
		5		
		$=\frac{1}{3}[0.4972-0.4771]+1.0969$	02	
		3	02	
		$\ell g \ x = 1.1036$		
		x = පුතිලසු 1.1037	01	
		= 12.69 මහා 12.7	01	-05
			ļ	-10
		11 ලේණිය - ගණිතය -	වයඹ	පළාත

10)	(i)	$\hat{SPT} = \hat{QRU}$		
		(ඒකාන්තර කෝණ PS//QR)	01	
		$\stackrel{\wedge}{PTS}=\stackrel{\wedge}{RUQ}=90^{0}$ (දක්තය)	01	
		PS = QR (සමාන්තරාසුයේ සම්මුඛ පාද	01	
		${ m PST}_\Delta \equiv { m QRU}\Delta$ (කෝ. කෝ. පා)		
		ST = QU	01	
		$\overset{{}_\circ}{STU}=\overset{{}_\circ}{TUQ}=90^{0}$ (දක්තය)		
		∴ ST // QU (ඒකාන්තර 🔏 සමාන වීම)	01	
		∴ STQU සමාන්තරාසුයකි	0.4	
		(සම්මුඛ පාද යුගලක් = හා // වීම)	01	-06
	(ii)	$ ext{PQRS}$ වර්. එ = $ ext{2PRS}\Delta$ වර්ග එලය		
		(විකර්ණය මගින් සමාන්තරාසුයේ		
		වර්ග ඵල සමච්ඡේද වීම)	01	
		$=2\times\frac{1}{2}\times PR\times ST$		
		= PR . ST	01	
		එලෙසම STQU ව. එ. = TU . ST	01	
		$\frac{PQRS}{STQU}$ ව. එ. $=\frac{PR.ST}{TU.ST} = \frac{PR}{TU}$	· 01	-04
				-10
11\	<i>(</i> ')			
[11]	(i)	15 විභාගය සමත් A පිරිමි සිසුන්		
		A නම් කිරීම	01	
	(** <u>\</u>	70, 20, 38 දැක්වීම	03	-04
		අඳුරු කිරීමට 17 ලබා ගැනීම	02	02
	(m <i>)</i>	37 ලබා ගැනීම	01	-03
	(iv)	<u>17</u>		-01
	(11)	70		
				-10

		A	(112)	ver
(12)	(i)	$\stackrel{\wedge}{PRS} = \stackrel{\wedge}{PQS}$ (එකම වෘ. බ \swarrow)		
		$R\stackrel{\wedge}{P}Q=R\stackrel{\wedge}{S}Q$ (එකම වෘ. බ \swarrow)	01	
		$\mathbf{R} \overset{}{T} \mathbf{P} = \mathbf{S} \overset{}{T} \mathbf{Q} ($ පුතිමුබ $\boldsymbol{\measuredangle})$		
		\therefore PRT Δ හා SQT Δ සමකෝණී වේ.	01	0 2
	(ii)	RS _ PQ (දක්තය)		
		RT = TS (ජාහයට කේන්දුයේ සිට ඇඳි ලම්භයෙන් ජාහය සමච්ඡේද වීම		
		$\therefore RT = TS = 9cm$	01	
		සමකෝණී Δ වල අනුරූප පාද සමානුපාතික බැවින්		
		ST = TQ	0.4	
		${\text{PT}} - {\text{RT}}$	01	
		$\frac{9}{3} = \frac{\text{TQ}}{9}$		
		∴ TQ = 27 cm	01	-03
	(ii)	P Q		
		$2S\hat{Q}T = S\hat{O}R$		
		(කේන්දුයේ ආපාතිත \measuredangle = 2 x වෘත්ත		
		ආපාතිත <u>ර</u> ා ා ා (20 (20 (20 (20 (20 (20 (20 (20 (20 (20	01	
		$R \overset{}{T}O = S\overset{}{T}O = 90^0 \ ($ දක්තය) $TO = TO \ ($ ඉපාදු පාදය) $OR = OS \ ($ අරයන්) $\therefore \ RTO \ \Delta \ \equiv \ STO \ \Delta \ ($ කර්ණ පා)	01	
		$\therefore \hat{TOT} = \hat{SOT}$	01	
		$\hat{SOR} = 2R\hat{OT}$	01	
l		$2S\hat{Q}R = 2R\hat{O}T$		
		$\hat{SQR} = \hat{ROT}$	01	-05
				-10
				-10