## 1 • Part 1

## 1.1 Data

| Current in Solenoid (A) | Magnetic Field (T)  |
|-------------------------|---------------------|
| 0.00                    | 0.00                |
| 0.25                    | $3 \cdot 10^{-5}$   |
| 0.50                    | $6 \cdot 10^{-5}$   |
| 0.75                    | $7 \cdot 10^{-5}$   |
| 1.00                    | $9 \cdot 10^{-5}$   |
| 1.25                    | $1.1 \cdot 10^{-4}$ |
| 1.50                    | $1.4 \cdot 10^{-4}$ |
| 1.75                    | $1.8 \cdot 10^{-4}$ |
| 2.00                    | $2 \cdot 10^{-4}$   |

## 1.2 Analysis



Figure 1: Magnetic field vs. current in solenoid, with a solenoid length of 1 m with 82 turns. The shape of the graph and the equation for magnetic field in a solenoid roughly agree with each other. The slope of the graph is the permeability constant  $\mu_0$  times the number of turns divided by the length of the solenoid, which here is  $9.67*10^{-5}\frac{T}{A}$ . Using the slope to calculate  $\mu_0$ , we get  $1.18\cdot 10^{-6}\frac{kg\cdot m}{s^2\cdot A^2}$ , with a 6.16% error from the true value.

## 2 • Part 2

## 2.1 Data

| Length (m) | Magnetic Field (T)  | Turns Per Meter |
|------------|---------------------|-----------------|
| 0.25       | $7.9 \cdot 10^{-4}$ | 328.00          |
| 0.50       | $3.7 \cdot 10^{-4}$ | 164.00          |
| 0.75       | $2.9 \cdot 10^{-4}$ | 109.00          |
| 1.00       | $1.3 \cdot 10^{-4}$ | 82.00           |
| 1.25       | $1.4 \cdot 10^{-4}$ | 66.00           |
| 1.50       | $1.2\cdot 10^{-4}$  | 55.00           |

## 2.2 Analysis



Figure 2: Magnetic field vs. turns per meter of a solenoid, with a solenoid with 82 turns with a current of 2A running through it. The shape of the graph and the equation for magnetic field in a solenoid roughly agree with each other. The slope of the graph is the permeability constant  $\mu_0$  times the current through the solenoid, which here is  $2.49*10^{-6} \frac{T \cdot m}{turns}$ . Using the slope to calculate  $\mu_0$ , we get  $1.25 \cdot 10^{-6} \frac{kg \cdot m}{s^2 \cdot A^2}$ , with a 0.53% error from the true value.

# 3 • Analysis

The average value of  $\mu_0$  is  $1.21\cdot 10^{-6}\frac{kg\cdot m}{s^2\cdot A^2}$ , with a 3.54% error.