Domain adaptation

Задача

Domain 1 (Amazon)

Domain 2 (Webcam)

Виды классификаций

Классический

- Данные из одного распределения
- Датасеты: ImageNet, COCO

Domain adaptation

- Тестовая выборка из другого распределения
- Датасеты: Office-Home, Visda, Office-31

Unsupervised Domain Adaptation

Данные

Office-Home, Visda, Office-31

Несколько доменов с одинаковыми классами

Методы

Минимизации расстояния между векторными представлениями (Discrepancy-based):

- Близость представителей одного класса друг к другу
- Увеличение расстояния между представителями разных классов

Использование состязательной (adversarial) loss-функции для обучения сети, инвариантной относительно домена (Adversarial-based)

Domain-adversarial neural network (DANN)

link: https://arxiv.org/abs/1505.07818

DANN: Office-31

ResNet 50	A -> W	D -> W	W -> D	A -> D	D -> A	W -> A	Avg
Ours	0.81	0.94	0.95	0.75	0.54	0.59	0.76
HoMM [1]	0.73	0.94	0.99	0.74	0.57	0.60	0.76
TADA [2]	0.82	0.96	0.99	0.79	0.68	0.67	0.82

Кол-во классов: 31 Кол-во доменов: 3

Кол-во картинок: 4110

[1] Chen Chao, 2019, Higher-order Moment Matching for Unsupervised Domain Adaptation

[2] Ximei Wang, 2019, Transferable Attention for Domain Adaptation

DANN: Office-Home

Кол-во классов: 65 Кол-во доменов: 4

Кол-во картинок: 30475

	A->C	A->P	A->R	C->A	C->P	C->R	P->A	P->C	P->R	R->A	R->C	R->P	Avg
Source	99,59	99,59	99,63	98,31	98,12	98,6	99,7	99,8	99,65	99,72	99,32	99,54	99,3
Target	40,7	52,6	62,47	43,39	51,96	54,7	43,4	35,4	65,1	58,7	46,3	65,4	51,7
Original	45,6	59,3	70,1	47	58,5	60,9	46,1	43,7	68,5	63,2	51,8	76,8	57,7
ResNet-50	34,9	50	58	37,4	41,9	46,2	38,5	31,2	60,4	53,9	41,2	59,9	46,1

DANN: VisDa

ResNet 50	Train -> Val
Ours	0.61
Original	0.61

Кол-во классов: 12 Кол-во доменов: 2 (3) Кол-во картинок: 280157

Дополнительные комментарии:

- 1) Датасет очень большой, в обучающей выборке ~ 150.000 фотографий. Из-за этого одна эпоха длилась > 1 часа.
- За счет большого размера датасета, подбор гиперпараметров особо не имеет значения.
 Результат очень легко воспроизводим. Заявленное качество достигается за одну-две эпохи.

Выбор state-of-the-art подхода

Мы просмотрели 70 статей по Unsupervised Domain Adaptation с таких конференций, как NIPS, ICML, ICLR, CVPR, ICCV, AAAI за 2019-2020 годы и выбрали state-of-the-art подход для реализации.

Contrastive Adaptation Network (CVPR, 2019)

link: https://arxiv.org/abs/1901.00976

CAN (результаты)

Office-31:

ResNet 50	A -> W	D -> W	W -> D	A -> D	D -> A	W -> A
DANN	82.0%	96.9%	99.1%	79.7%	68.2%	67.4%
(CAN) Ours	91.5%	94.0%	98.6%	88.6%	67.5%	70.0%
(CAN) Original	94.5%	99.1%	99.8%	95.0%	78.0%	77.0%

Дополнительные комментарии:

1) Из-за небольшого размера датасета, возможно, не дотянули до нужного качества. Подбор гиперпараметров сильно влиял на качество.

T-SNE: Office-31 Dataset: Webcam -> DSLR

T-SNE: VisDa-2017 dataset

No Domain Adaptation Target Accuracy = 42 %

DANN
Target Accuracy = 61 %

Фреймворк

GitHub: https://github.com/konev-artem/DomainAdaptation

Выводы

- 1) Воспроизвели две статьи: классический подход (DANN), state-of-the-art подход (CAN)
- 2) Во время реализации столкнулись с нехваткой вычислительных ресурсов (GPU)
- 3) В большинстве статей не указаны гиперпараметры, из-за чего, возможно, наши результаты на маленьких датасетах просели на несколько процентов