Geometria Analítica e Vetores

Produto vetorial

de Vetores no Espaço

Docente: Prof^a. Dr^a. Thuy Nguyen IBILCE/ UNESP São Paulo - Brasil **Referência**: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

Recordação

Produto escalar

O produto escalar de dois vetores \vec{u} e \vec{v} (no plano ou no espaço), denotado por $\vec{u}.\vec{v}$, é definido por

$$\vec{u}.\vec{v} = \|\vec{u}\| \|\vec{v}\| \cos\theta,$$

onde $\theta = \operatorname{ang}(\vec{u}, \vec{v})$.

Recordação

1 No plano, considere a base ortonormal $E = \{\vec{e_1}, \vec{e_2}\}$. Se \vec{u} e \vec{v} têm coordenadas, respectivamente, em relação à esta base:

$$\vec{u} = (x_1, y_1), \quad \vec{v} = (x_2, y_2),$$

então

$$\vec{u}.\vec{v} = x_1x_2 + y_1y_2.$$

② No espaço, considere a base ortonormal $E = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$. Se \vec{u} e \vec{v} têm coordenadas, respectivamente, em relação à esta base:

$$\vec{u} = (x_1, y_1, z_1), \quad \vec{v} = (x_2, y_2, z_2)$$

então

$$\vec{u}.\vec{v} = x_1x_2 + y_1y_2 + z_1z_2.$$

Recordação

• Se $\vec{u} \neq \vec{0}$ e $\vec{v} \neq \vec{0}$ e θ é o ângulo entre \vec{u} e \vec{v} , então:

$$\cos\theta = \frac{\vec{u}.\vec{v}}{\|\vec{u}\|\|\vec{v}\|}.$$

② A norma ou o módulo (a medida/o comprimento) do vetor \vec{u} é:

$$\|\vec{u}\| = \sqrt{\|\vec{u}\|^2} = \sqrt{\vec{u}.\vec{u}} = \sqrt{\vec{u}^2}.$$

3 Considere E a base ortonormal e $\vec{u} = (x, y, z)_E$, então:

$$\|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}.$$

Produto vetorial

Definição

No espaço \mathbb{R}^3 , dados dois vetores \vec{u} e \vec{v} , definimos $\vec{u} \wedge \vec{v}$, o *produto vetorial* de dois vetores \vec{u} e \vec{v} , da seguinte maneira:

• se \vec{u} e \vec{v} forem linearmente dependentes,

$$\vec{u} \wedge \vec{v} = \vec{0},$$

- 2 se \vec{u} e \vec{v} forem linearmente independentes, $\vec{u} \wedge \vec{v}$ será o vetor com as seguintes características:
 - a) $\vec{u} \wedge \vec{v}$ é ortogonal a ambos vetores \vec{u} e \vec{v} ;
 - b) $\{\vec{u}, \vec{v}, \vec{u} \wedge \vec{v}\}$ é uma base positiva;
 - c) A norma do vetor $\vec{u} \wedge \vec{v}$ é: $\|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \mathrm{sen} \theta$, onde $\theta = \mathrm{ang}(\vec{u}, \vec{v})$.

Exemplo: A medida angular entre \vec{u} e \vec{v} é 30⁰, e suas normas, 2 e 3. Calcule $\|\vec{u} \wedge \vec{v}\|$.

Lembrando que se \vec{u} e \vec{v} estão LI, então:

$$\|\vec{u}\wedge\vec{v}\|=\|\vec{u}\|\|\vec{v}\|\mathrm{sen}\theta,$$

onde $\theta = \hat{a} ng(\vec{u}, \vec{v})$.

Observação

Se \vec{u} e \vec{v} estão LI, então o módulo do $\vec{u} \wedge \vec{v}$ é a área do paralelogramo formado pelos dois vetores \vec{u} e \vec{v} .

Exemplo: Determine a área de um paralelogramo determinado por \vec{u} e \vec{v} nos seguintes casos:

- $\mathbf{0}$ \vec{u} e \vec{v} são versores ortogonais;
- ② \vec{u} é versor, $\|\vec{v}\| = 2\|\vec{u}\|$ e a medida do ângulo entre \vec{u} e \vec{v} é 60°.

Exemplo: No sistema cartesiano 0xyz, a base canônica $C = \{\vec{i}, \vec{j}, \vec{k}\}$ (com esta ordem) é uma base positiva, e:

$$\vec{i} \wedge \vec{i} = \vec{0}, \qquad \vec{j} \wedge \vec{j} = \vec{0}, \qquad \vec{k} \wedge \vec{k} = \vec{0},$$

$$\vec{i} \wedge \vec{j} = \vec{k}, \qquad \vec{j} \wedge \vec{k} = \vec{i}, \qquad \vec{k} \wedge \vec{i} = \vec{j}.$$

Propriedades

Propriedades de produto vetorial

Quaisquer que sejam vetores $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$, temos:

- $\vec{u} \wedge \vec{u} = \vec{0};$
- $\vec{u} \wedge \vec{0} = \vec{0};$
- $(\vec{u} + \vec{v}) \wedge \vec{w} = \vec{u} \wedge \vec{w} + \vec{v} \wedge \vec{w};$

Observação

No espaço, considere a base ortonormal positiva $E = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$. Se \vec{u} e \vec{v} têm coordenadas, respectivamente, em relação à esta base:

$$\vec{u} = (x_1, x_2, x_3), \quad \vec{v} = (y_1, y_2, y_3)$$

então

$$\vec{u} \wedge \vec{v} = \begin{pmatrix} \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix}, \begin{vmatrix} x_3 & x_1 \\ y_3 & y_1 \end{vmatrix}, \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \end{pmatrix}.$$

Exemplo: Seja *E* uma base ortonormal positiva e

$$\vec{u} = (-2, 1, 0)_E, \quad \vec{v} = (1, 3, -2)_E, \quad \vec{w} = (1, 2, 1)_E.$$

Calcule

- 2 $\vec{u} \wedge 4\vec{v}$;

- $(\vec{u} \wedge \vec{v}).\vec{w}.$

Observação

Em geral, $\vec{u} \wedge (\vec{v} \wedge \vec{w}) \neq (\vec{u} \wedge \vec{v}) \wedge \vec{w}$.

Exemplo: Calcule a área do triângulo ABC, sabendo que, relativamente a uma base ortonormal positiva $\{\vec{i}, \vec{j}, \vec{k}\}$, as coordenadas dos vetores \overrightarrow{AC} e \overrightarrow{CB} são:

$$\overrightarrow{AC}=(1,1,3), \qquad \overrightarrow{CB}=(-1,1,0).$$

Exercício 1

Se $\vec{u} = 3\vec{i} - \vec{j} - 2\vec{k}$, $\vec{v} = 2\vec{i} + 4\vec{j} - \vec{k}$ e $\vec{w} = -\vec{i} + \vec{k}$, determinar:

- **2** $(2\vec{v}) \wedge (3\vec{v});$
- $(\vec{u} \vec{v}) \wedge \vec{w} ;$
- $(\vec{u} \wedge \vec{v}) \wedge \vec{w};$
- $\vec{u}.(\vec{v}\wedge\vec{w}).$

Exercício 2

A medida angular entre \vec{u} e \vec{v} é 30^{0} , e suas normas, 2 e 3. Calcule $\|4\vec{u}\wedge9\vec{v}\|$.

Exercício 3

A medida angular entre os vetores \vec{a} e \vec{b} é 60^{0} , e suas normas são, respectivamente, 1 e 2. Sendo $\vec{u} = \vec{a} + \vec{b}$ e $\vec{v} = \vec{a} - \vec{b}$, calcule a norma de $\vec{u} \wedge \vec{v}$.

Exercício 4

Obtenha o vetor \vec{x} sabendo que:

- **1** $\vec{x} \cdot (\vec{i} \vec{j}) = 0 \text{ e } \vec{x} \wedge (\vec{i} + 2\vec{k}) = \vec{i} \frac{1}{2}\vec{k}.$
- ② $\vec{x} \perp \vec{u}$, $\vec{x} \perp \vec{v}$, $\|\vec{x}\| = 10$ e $\vec{u} \wedge \vec{v} = (1, 4, 2\sqrt{2})_C$ (onde C é uma base ortonormal positiva).

Exercício 5

Seja $E=\{\vec{e_1},\vec{e_2},\vec{e_3}\}$ uma base ortonormal positiva. Calcular o valor de m para que a área do paralelogramo determinado por $\vec{u}=(m,-3,1)_E$ e $\vec{v}=(1,-2,2)_E$ seja igual a $\sqrt{26}$.

Exercício 6

Sabendo que $\|\vec{u}\| = 6$, $\|\vec{v}\| = 4$ e a medida do ângulo entre \vec{u} e \vec{v} é igual a 30°, calcular:

- **1** a área do paralelogramo determinado por \vec{u} e $-\vec{v}$;
- ② a área do paralelogramo determinado por $\vec{u} + \vec{v}$ e $\vec{u} \vec{v}$.

Bom estudo!!