

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Jorge Gonzalez Ayudante: Daniel Acuña León

${\bf Ayudantía~6} \\ {\bf EYP2305/230I - Análisis~de~Regresi\'on} \\ {\bf 25~de~Abril} \\$

- 1. Sea $Y_i = \beta x_i + \epsilon_i$, (i = 1, 2), donde $\epsilon_1 \sim N(0, \sigma^2)$, $\epsilon_2 \sim N(0, 2\sigma^2)$ y ϵ_1 y ϵ_2 son independientes. Si $x_1 = +1$ y $x_2 = -1$, obtenga los estimadores de mínimos cuadrados con pesos para β y obtenga la varianza de su estimador.
- 2. Sean Y_1, \ldots, Y_n variables aleatorias independientes, e $Y_i \sim N(i\theta, i^2\sigma^2)$. Encuentre el estimador de mínimos cuadrados con pesos para θ y muestre que su varianza es σ^2/n .
- 3. Suponga que $E(Y) = \theta$, $A\theta = 0$ y $Var(Y) = \sigma^2 V$, donde A es una matriz de $q \times n$ de rango q y V es una matriz conocida de $n \times n$, definida positiva. Sea θ^* el estimador de mínimos cuadrados generales de θ ; esto significa que θ^* minimiza $(Y \theta)^t V^{-1}(Y \theta)$ sujeto a $A\theta = 0$. Muestre que

$$Y - \theta^* = VA^t\gamma^*$$

donde γ^* es el estimador de mínimos cuadrados generales de γ para el modelo $E[Y] = VA^t\gamma$, $Var[Y] = \sigma^2 V$.

- 4. Demuestre que $RSS_H RSS \ge 0$.
- 5. Si $\boldsymbol{H}: \boldsymbol{A\beta} = \boldsymbol{c}$ es cierto, muestre que F puede ser expresado de la forma

$$\frac{n-p}{q} \cdot \frac{\epsilon^t (P - P_H) \epsilon}{\epsilon^t (I_n - P) \epsilon}$$