A Dispersion-Theoretic account of neutralized diphthongization inventory in Chongqing Mandarin

Summary. This study models the process of diphthongization of 5 high vowels in Chongqing Mandarin (CM) using dispersion theory under a scalar vowel system. The main takeaways are that diphthongization takes place only when phonotactics requires a marked structure *[+hi][+hi] to be repaired, and the diphthongs neutralize because lowered high vowels have a more narrow scale for F2 which does not accommodate contrastive qualities of front/back vowels, respectively.

Data. All descriptive data are collected and transcribed by me who is a native speaker of CM. In CM, in utterance-final positions, 5 high vowels diphthongize with 3 qualities, i.e., $[i, y, u, w, i] \rightarrow [ii, yi, uo, wo, ie] / _#. ([i] is an 'apical vowel' and is an allophone of /i/, as a syllable nucleus.) The examples in (1) illustrate the alternations of the five vowels (in red).$

```
Utterance-medial high vowel
                                                              Utterance-final high vowel diphthongized
[pi^{33}.xo:^{31}]
                         'pen case'
                                                              [\text{mau}^{33}.\text{pir}^{31}]
                                                                                       'writing brush'
[1y^{34}.zen^{31}]
                                                              [mei<sup>34</sup>.lyɪ<sup>42</sup>]
                         'female'
                                                                                       'beauty'
[ts<sub>1</sub><sup>35</sup>. tein<sup>33</sup>]
                                                              [t^h \Rightarrow u^{33}.\widehat{ts}_{\mathbf{J}} \varepsilon^{35}]
                         'funds'
                                                                                       'to invest'
[fui<sup>22</sup>.muo<sup>42</sup>] 'parents'
                                                              [ian<sup>34</sup>.futo<sup>21</sup>] 'foster father'
[su^{35}.tsu^{33}]
                         'Suzhou' (a city)
                                                              [teian<sup>35</sup>.suv<sup>33</sup>] 'Jiangsu' (a province)
```

Non-high monophthongs ([pe:³¹] 'white', [kho:²¹³] 'class', [pa:³¹] 'eight'), a vowel in a closed syllable ([sin³⁵] 'heart') and the second part of an underlying diphthong ([pai²¹³] 'failure'), do not diphthongize utterance-finally.

Motivation of diphthongization. I analyzes diphthongization as fission. Note that non-high vowels are lengthened utterance-finally (e.g., $/pe^{31}/[pe^{.31}]$ 'white'), I argue that high vowels are lengthened as well, making all utterance-final syllables bimoraic. I do not distinguish between a long vowel [i:] and vowel geminate [ii] here because such a structure does not occur elsewhere in CM. However, utterance-final plain long high vowels like [ii]# are not tolerated here due to a general OCP constraint banning *[+high][+high] sequences in the domain of a syllable (see also $\underline{Gong \& Zhang 2021}$), making 'long' or geminate vowels like *[ii] illicit. The evidence is that CM disallows rhymes like *ju, *ųi, *wi, etc., e.g., 'New York' is borrowed as [ljəu.jo], not *[lju.jo]. Thus, the 'offglides' of the diphthongized vowels are lowered to a minimal degree. That means, in terms of height, the surface forms of the offglides resemble their inputs as much as possible (e.g., [iɪ]# *[ie]). Surprisingly, the offglides end up with 3 qualities only [ɪ, ʊ, ɛ], with some neutralized ([iɪ] and [yɪ], [uʊ] and [uʊ]).

Failure of a featural vowel system. The difficulties to model this under the featural vowel system are: (1) No more room for an additional distinguished height level. The three monophthongs [i, e, a] already occupy all possible levels under a system with two binary features of height, $[\pm high]$ and $[\pm low]$; adding [I] cannot make use of current features and has to be accompanied by additional features like [tense], but this is irrelevant to the crucial constraint banning $[\pm high]$ / $[\pm high]$ __ at effect here. (2) No phonetic motivation for neutralization. To account for it, we can only specify [I] by deleting a feature of [round] from [i, y] after being lowered, but it is not clear why we do not keep two unique offglides [I] and [Y] for [i] and [y], respectively.

Table 1 shows a tentative featural vowel system for all front vowels, where there are 3 levels of height with an additional feature [tense], with [tense] and [round] alternating between an unspecified value [0] and a specified value [+]/[-], without any articulatory or perceptual grounding. A phonetically grounded account is preferable.

i [-rd][0tense], y [+rd][0tense]	[+hi][-lo]	6		5	4	3	2		1	F2/F1
ı [0rd][–tense]	[];][] ₀]	i		y		•••	ш		u	1
e [+tense]	[-hi][-lo]	ī	I	Y Y			U Ų	σ	Ω	2
a	[-hi][+lo]	/	/	e	э	ş	0	/	/	3

Table 1. A featural vowel system.

Table 2. A scalar vowel system. ([u] = [v])

Scalar modeling with Dispersion Theory. A scalar system is demonstrated in Table 2. The apical vowel [1] is discussed in the next section. There are at least 6 units in the dimension of F2 from 1 to 6. For the dimension of F1, the smallest 3 units suffice for current purposes. The essential phonetic property of this scalar system is that, for F1 = 2, the two peripheral units (2, 1) and (2, 6)are disallowed due to the shape of the formant space, i.e., the formant space is shaped like a triangle (e.g., Ladefoged 2006, Odijk & Gillis 2022, among many others), indicated by shaded areas in Table 2. It can be formalized into an *Effort constraint following Flemming (2004). The consequence of the narrowing of the F2 scale from F1 = 1 to F1 = 2 is that the minimal vertical lowering of [i] has to be accompanied by a horizonal shift inward, to satisfy *Effort, resulting in [i] (2, 5.5). However, the minimal vertical lowering of [y] does not require an inward shift, resulting in [y] (2,5); otherwise, a shifted [y] (2, 4.5) violates a faithfulness constraint on horizontal position. The consequence of [i] and [y]'s lowering is that [I] and [y] are too close in the dimension of F2 and are not perceptually contrastive, violating Flemming's (2004) constraint MINDIST(F2) = 1. Therefore, only one of [1] and [y] can be retained. Similarly, the back vowels [u] and [v] have to merge. Following Flemming (2004), given the number of contrast pairs (1 here), contrast has to be as salient as possible, so [1] and [v] at both endpoints of the F2 scale (given F1 = 2) are retained. Thus, the neutralization process is explained using a phonetically motivated explanation. A tableau is given to demonstrate the rankings of relevant constraints.

A tableau for predicting vowel inventory at F1 = 2, as a result of high vowels' partial lowering

11 the term joi pro		011110			,	estill of h	1811 1011011	Permer	
6-5-2-1	i-y-ш-u	*EF	M=1	M=2	M=3	M=4	M=5	MC	HF
5.5-1.5	ı I-Ω						*	$\sqrt{}$	****
5.5-5-2-1.5	I-ἦ-Ū-Ω		*!*	**	**	****	*****	<i>\\\\\</i>	**
5.5-4.5-2.5-1.5	I- <mark>Y-U-</mark> ℧			*!*	***	****	*****	VVVV	****
6-5-2-1	i-1-Ω-Ω	*!*		**	**	***	****	VVVV	
5-2	Y- U					*!	*	$\sqrt{}$	**

*EF = *EFFORT, M = MINDIST(F2), MC = MAXIMIZECONTRAST (note this is a positive constraint; the more $\sqrt{\ }$, the more harmonic the candidate is), HF = HORIZONTALFAITHFULNESS.