Multiple Objectives for Residential PV

Set up.

One only needs to execute the following line once, in order to make sure recent enough packages are installed.

```
In [1]: #!pip install 'numpy>=1.17.2' 'pandas>=0.25.1'
```

Import packages.

```
In [2]: import os
        import sys
        sys.path.insert(0, os.path.abspath("../src"))
In [3]: import numpy
                                  as np
        import matplotlib.pyplot as pl
        import pandas
                                  as pd
        import seaborn
                                 as sb
        # The `tyche` package is located at <https://github.com/NREL/portfolio/tree/master/production-func
        tion/src/tyche/>.
        import tyche
                                 as ty
        from copy
                             import deepcopy
        from IPython.display import Image
```

Load data.

The data are stored in a set of tab-separated value files in a folder.

```
In [4]: designs = ty.Designs("../data/residential_pv_multiobjective")
In [5]: investments = ty.Investments("../data/residential_pv_multiobjective")
```

Compile the production and metric functions for each technology in the dataset.

```
In [6]: designs.compile()
```

Examine the data.

The functions table specifies where the Python code for each technology resides.

```
In [7]: designs.functions

Out[7]:

Style Module Capital Fixed Production Metrics Notes

Technology

Residential PV numpy residential_pv_multiobjective capital_cost fixed_cost production metrics
```

Right now, only the style numpy is supported.

The indices table defines the subscripts for variables.

In [8]: designs.indices
Out[8]:

			Offset	Description	Notes
Technology	Type	Index			
		BoS	2	balance of system	
	Capital	Inverter	1	system inverters	
		Module	0	system module	
	Fixed	System	0	whole system	
Residential PV	Input	NaN	0	no inputs	
		GHG	2	reduction in GHGs	
	Metric	LCOE	0	reduction in levelized cost of energy	
		Labor	1	increase in spending on wages	
	Output	Electricity	0	electricity generated	

The designs table contains the cost, input, efficiency, and price data for a scenario.

In [9]: designs.designs

Out[9]:

				Value	Units	Notes
Technology	Scenario	Variable	Index			
		Input	NaN	0	1	no inputs
		Input efficiency	NaN	1	1	no inputs
	2015 Actual	Input price	NaN	0	1	no inputs
		Lifetime	BoS	1	system-lifetime	per-lifetime computations
		Liletime	Inverter	1	system-lifetime	per-lifetime computations
Residential PV						
		Lifetime	Inverter	1	system-lifetime	per-lifetime computations
		Liletiille	Module	1	system-lifetime	per-lifetime computations
	Module Slow Progress	Output efficiency	Electricity	1	W/W	see parameter table for individual efficiencies
		Output price	Electricity	0	\$/kWh	not tracking electricity price
		Scale	NaN	1	system/system	no scaling

90 rows × 3 columns

The parameters table contains additional techno-economic parameters for each technology.

In [10]: designs.parameters

Out[10]:

			Offset	Value	Units	Notes
Technology	Scenario	Parameter				
		Customer Acquisition	19	st.triang(0.5, loc=2000, scale=0.2)	\$/system	ВСА
		DC-to-AC Ratio	15	st.triang(0.5, loc=1.4, scale=0.00014)	1	IDC
	2015 Actual	Direct Labor	17	st.triang(0.5, loc=2000, scale=0.2)	\$/system	BLR
		Discount Rate	0	0.07	1/year	DR
		Hardware Capital	16	st.triang(0.5, loc=80, scale=0.008)	\$/m^2	BCC
Residential PV						
		Module Lifetime	4	st.triang(0.5, loc=26, scale=1)	yr	MLT
		Module O&M Fixed	7	st.triang(0.5, loc=19, scale=0.5)	\$/kWyr	MOM
	Module Slow Progress	Module Soiling Loss	10	st.triang(0.5, loc=0.05, scale=10E-06)	1	MSL
		Permitting	18	st.triang(0.5, loc=600, scale=0.06)	\$/system	BPR
		System Size	2	36	m^2	SSZ

210 rows × 4 columns

The results table specifies the units of measure for results of computations.

Technology	Variable	Index		
	Cost	Cost	\$/system	
		GHG	ΔgCO2e/system	
Residential PV	Metric	LCOE	Δ\$/kWh	
		Labor	Δ\$/system	
	Output	Electricity	kWh	

The tranches table specifies multually exclusive possibilities for investments: only one Tranch may be selected for each $\,$ Category $\,$.

Amount Notes

In [12]: | investments.tranches

Out[12]:

Category	Tranche	Scenario	
	BoS High R&D	BoS Fast Progress	900000.0
BoS R&D	BoS Low R&D	BoS Slow Progress	300000.0
	BoS Medium R&D	BoS Moderate Progress	600000.0
	Inverter High R&D	Inverter Fast Progress	3000000.0
Inverter R&D	Inverter Low R&D	Inverter Slow Progress	1000000.0
	Inverter Medium R&D	Inverter Moderate Progress	2000000.0
	Module High R&D	Module Fast Progress	4500000.0
Module R&D	Module Low R&D	Module Slow Progress	1500000.0
	Module Medium R&D	Module Moderate Progress	3000000.0

The investments table bundles a consistent set of tranches (one per category) into an overall investment.

Notes

In [13]: investments.investments
Out[13]:

Investment	Category	Tranche
	BoS R&D	BoS High R&D
High R&D	Inverter R&D	Inverter High R&D
	Module R&D	Module High R&D
	BoS R&D	BoS Low R&D
Low R&D	Inverter R&D	Inverter Low R&D
	Module R&D	Module Low R&D
	BoS R&D	BoS Medium R&D
Medium R&D	Inverter R&D	Inverter Medium R&D
	Module R&D	Module Medium R&D

Evaluate the scenarios in the dataset.

```
In [14]: scenario_results = designs.evaluate_scenarios(sample_count=50)
```

In [15]: scenario_results.xs(1, level="Sample", drop_level=False)

Out[15]:

					Value	Units
Technology	Scenario	Sample	Variable	Index		
Residential PV			Cost	Cost	19541.835826	\$/system
				GHG	-0.001761	ΔgCO2e/system
	2015 Actual	1	Metric	LCOE	-0.000019	Δ\$/kWh
				Labor	-0.001281	Δ\$/system
			Output	Electricity	184107.032791	kWh
			Cost	Cost	17524.525245	\$/system
				GHG	-0.004254	ΔgCO2e/system
	BoS Fast Progress	1	Metric	LCOE	0.010936	Δ\$/kWh
				Labor	-545.200985	Δ\$/system
			Output	Electricity	184101.481909	kWh
			Cost	Cost	17960.467902	\$/system
				GHG	-0.001253	ΔgCO2e/system
	BoS Moderate Progress	1	Metric	LCOE	0.008571	Δ\$/kWh
				Labor	-331.852654	Δ\$/system
			Output	Electricity	184108.162865	kWh
			Cost	Cost	19022.884313	\$/system
				GHG	0.000327	ΔgCO2e/system
	BoS Slow Progress	1	Metric	LCOE	0.002802	Δ\$/kWh
				Labor	-148.230849	Δ\$/system
			Output	Electricity	184111.682213	kWh
			Cost	Cost	18059.997438	\$/system
				GHG	2.601021	ΔgCO2e/system
	Inverter Fast Progress	1	Metric	LCOE	0.011024	Δ\$/kWh
				Labor	-0.031111	Δ\$/system
			Output	Electricity	189903.145647	kWh

					Value	Units
Technology	Scenario	Sample	Variable	Index		
			Cost	Cost	18713.047656	\$/system
				GHG	2.537671	ΔgCO2e/system
	Inverter Moderate Progress	1	Metric	LCOE	0.007512	Δ\$/kWh
				Labor	-0.034240	Δ\$/system
			Output	Electricity	189762.072909	kWh
			Cost	Cost	19224.862899	\$/system
				GHG	2.435100	ΔgCO2e/system
	Inverter Slow Progress	1	Metric	LCOE	0.004693	Δ\$/kWh
				Labor	0.056486	Δ\$/system
			Output	Electricity	189533.659025	kWh
			Cost	Cost	18935.973204	\$/system
				GHG	51.490235	ΔgCO2e/system
	Module Fast Progress	1	Metric	LCOE	0.042746	Δ\$/kWh
				Labor	0.013583	Δ\$/system
			Output	Electricity	298774.134685	kWh
			Cost	Cost	18952.058689	\$/system
				GHG	41.216046	ΔgCO2e/system
	Module Moderate Progress	1	Metric	LCOE	0.037432	Δ\$/kWh
				Labor	0.029792	Δ\$/system
			Output	Electricity	275894.626758	kWh
			Cost	Cost	19656.198525	\$/system
				GHG	14.794693	ΔgCO2e/system
	Module Slow Progress	1	Metric	LCOE	0.015567	Δ\$/kWh
				Labor	-0.007250	Δ\$/system
			Output	Electricity	217057.134731	kWh

Save results

```
In [16]: scenario_results.to_csv("output/residential_pv_multiobjective/example-scenario.csv")
```

Plot GHG metric.

```
In [17]: | g = sb.boxplot(
             x="Scenario",
             v="Value",
             data=scenario results.xs(
                 ["Metric", "GHG"],
                 level=["Variable", "Index"]
             ).reset index()[["Scenario", "Value"]],
             order=[
                  "2015 Actual"
                  "Module Slow Progress"
                  "Module Moderate Progress"
                  "Module Fast Progress"
                  "Inverter Slow Progress"
                  "Inverter Moderate Progress"
                  "Inverter Fast Progress"
                  "BoS Slow Progress"
                  "BoS Moderate Progress"
                  "BoS Fast Progress"
         g.set(ylabel="GHG Reduction [gCO2e / system]")
         g.set xticklabels(g.get xticklabels(), rotation=30);
```


Plot LCOE metric.

```
In [18]: | g = sb.boxplot(
             x="Scenario",
             v="Value",
             data=scenario results.xs(
                 ["Metric", "LCOE"],
                 level=["Variable", "Index"]
             ).reset index()[["Scenario", "Value"]],
             order=[
                  "2015 Actual"
                  "Module Slow Progress"
                  "Module Moderate Progress"
                  "Module Fast Progress"
                  "Inverter Slow Progress"
                  "Inverter Moderate Progress"
                  "Inverter Fast Progress"
                  "BoS Slow Progress"
                  "BoS Moderate Progress"
                  "BoS Fast Progress"
         g.set(ylabel="LCOE Reduction [USD / kWh]")
         g.set xticklabels(g.get xticklabels(), rotation=30);
```


Plot labor metric.

```
In [19]: | g = sb.boxplot(
             x="Scenario",
             v="Value",
             data=scenario results.xs(
                 ["Metric", "Labor"],
                 level=["Variable", "Index"]
             ).reset index()[["Scenario", "Value"]],
             order=[
                  "2015 Actual"
                  "Module Slow Progress"
                  "Module Moderate Progress"
                  "Module Fast Progress"
                  "Inverter Slow Progress"
                  "Inverter Moderate Progress"
                  "Inverter Fast Progress"
                  "BoS Slow Progress"
                  "BoS Moderate Progress"
                  "BoS Fast Progress"
         g.set(ylabel="Labor Increase [USD / system]")
         g.set xticklabels(g.get xticklabels(), rotation=15);
```


Evaluate the investments in the dataset.

```
In [20]: investment_results = investments.evaluate_investments(designs, sample_count=50)
```

Costs of investments.

Benefits of investments.

In [22]: investment_results.metrics.xs(1, level="Sample", drop_level=False)

Out[22]:

							Value	Units
Investment	Category	Tranche	Scenario	Sample	Technology	Index		
						GHG	0.001646	ΔgCO2e/system
High R&D	BoS R&D	BoS High R&D	BoS Fast Progress	1	Residential PV	LCOE	0.009871	Δ\$/kWh
						Labor	-484.675917	Δ\$/system
						GHG	-0.005431	ΔgCO2e/system
Medium R&D	BoS R&D	BoS Medium R&D	BoS Moderate Progress	1	Residential PV	LCOE	0.009181	Δ\$/kWh
						Labor	-350.111301	Δ\$/system
						GHG	-0.000623	ΔgCO2e/system
Low R&D	BoS R&D	BoS Low R&D	BoS Slow Progress	1	Residential PV	LCOE	0.002863	Δ\$/kWh
						Labor	-165.967402	Δ\$/system
						GHG	2.366737	ΔgCO2e/system
High R&D	Inverter R&D	Inverter High R&D	Inverter Fast Progress	1	Residential PV	LCOE	0.011084	Δ\$/kWh
						Labor	0.034014	Δ\$/system
						GHG	2.385654	ΔgCO2e/system
Medium R&D	Inverter R&D	Inverter Medium R&D	Inverter Moderate Progress	1	Residential PV	LCOE	0.007551	Δ\$/kWh
						Labor	0.016533	Δ\$/system
						GHG	2.562178	ΔgCO2e/system
Low R&D	Inverter R&D	Inverter Low R&D	Inverter Slow Progress	1	Residential PV	LCOE	0.004598	Δ\$/kWh
						Labor	0.081408	Δ\$/system
						GHG	50.680545	ΔgCO2e/system
High R&D	Module R&D	Module High R&D	Module Fast Progress	1	Residential PV	LCOE	0.043544	Δ\$/kWh
						Labor	-0.014162	Δ\$/system
						GHG	41.065128	ΔgCO2e/system
Medium R&D	Module R&D	Module Medium R&D	Module Moderate Progress	1	Residential PV	LCOE	0.037053	Δ\$/kWh
						Labor	-0.010921	Δ\$/system
Low R&D	Module R&D	Module Low R&D	Module Slow Progress	1	Residential PV	GHG	12.916316	ΔgCO2e/system

								Value	Units
	Investment	Category	Tranche	Scenario	Sample	Technology	Index		
_							LCOE	0.013848	Δ\$/kWh
							Labor	0.057653	Δ\$/system

In [23]: investment_results.summary.xs(1, level="Sample", drop_level=False)

Out[23]:

			Value	Units
Investment	Sample	Index		
		GHG	53.048928	ΔgCO2e/system
High R&D	1	LCOE	0.064500	Δ\$/kWh
		Labor	-484.656066	Δ\$/system
		GHG	43.445350	ΔgCO2e/system
Medium R&D	1	LCOE	0.053785	Δ\$/kWh
		Labor	-350.105690	Δ\$/system
		GHG	15.477872	ΔgCO2e/system
Low R&D	1	LCOE	0.021309	Δ\$/kWh
		Labor	-165.828341	Δ\$/system

Save results.

```
In [24]: investment_results.amounts.to_csv("output/residential_pv_multiobjective/example-investment-amount
s.csv")
```

```
In [25]: investment_results.metrics.to_csv("output/residential_pv_multiobjective/example-investment-metric
s.csv")
```

Plot GHG metric.

```
In [26]: 
g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "GHG",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=[
        "Low R&D",
        "Medium R&D",
        "High R&D",
        "High R&D",
        ]
)
g.set(ylabel="GHG Reduction [gCO2e / system]")
g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Plot LCOE metric.

```
In [27]: g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "LCOE",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=[
        "Low R&D",
        "Medium R&D",
        "High R&D",
        "High R&D",
    ]
)
g.set(ylabel="LCOE Reduction [USD / kWh]")
g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Plot labor metric.

```
In [28]: 
g = sb.boxplot(
    x="Investment",
    y="Value",
    data=investment_results.metrics.xs(
        "Labor",
        level="Index"
    ).reset_index()[["Investment", "Value"]],
    order=[
        "Low R&D"
        "Medium R&D"
        "High R&D"
        ]
    )
    g.set(ylabel="Labor Increase [USD / system]")
    g.set_xticklabels(g.get_xticklabels(), rotation=15);
```


Multi-objective decision analysis.

Compute costs and metrics for tranches.

Tranches are atomic units for building investment portfolios. Evaluate all of the tranches, so we can assemble them into investments (portfolios).

```
In [29]: tranche_results = investments.evaluate_tranches(designs, sample_count=50)
```

Display the cost of each tranche.

In [30]: tranche_results.amounts

Out[30]:

		Amount
Category	Tranche	
	BoS High R&D	900000.0
BoS R&D	BoS Low R&D	300000.0
	BoS Medium R&D	600000.0
	Inverter High R&D	3000000.0
Inverter R&D	Inverter Low R&D	1000000.0
	Inverter Medium R&D	2000000.0
	Module High R&D	4500000.0
Module R&D	Module Low R&D	1500000.0
	Module Medium R&D	3000000.0

Display the metrics for each tranche.

```
In [31]: tranche_results.summary
Out[31]:
```

				Value	Units	
Category	Tranche	Sample	Index			
			GHG	-0.004062	ΔgCO2e/system	
		1	LCOE	0.009967	Δ\$/kWh	
BoS R&D	BoS High R&D		Labor	-490.859314	Δ\$/system	
		2	GHG	0.001960	ΔgCO2e/system	
		2	LCOE	0.010154	Δ\$/kWh	
		49	40	LCOE	0.016198	Δ\$/kWh
			Labor	0.039788	Δ\$/system	
Module R&D	Module Low R&D		GHG	13.654483	ΔgCO2e/system	
		50	LCOE	0.014910	Δ\$/kWh	
			Labor	-0.015539	Δ\$/system	

1350 rows × 2 columns

Save the results.

```
In [32]: tranche_results.amounts.to_csv("output/residential_pv_multiobjective/example-tranche-amounts.csv")
tranche_results.summary.to_csv("output/residential_pv_multiobjective/example-tranche-summary.csv")
```

Fit a response surface to the results.

The response surface interpolates between the discrete set of cases provided in the expert elicitation. This allows us to study funding levels intermediate between those scenarios.

```
In [33]: evaluator = ty.Evaluator(investments.tranches, tranche_results.summary)
```

Here are the categories of investment and the maximum amount that could be invested in each:

```
In [34]: evaluator.max_amount

Out[34]:

Amount

Category

BoS R&D 900000.0

Inverter R&D 3000000.0

Module R&D 4500000.0
```

Here are the metrics and their units of measure:

```
In [35]: evaluator.units

Out[35]:

Units

Index

GHG ΔgCO2e/system

LCOE Δ$/kWh

Labor Δ$/system
```

Example interpolation.

Let's evaluate the case where each category is invested in at half of its maximum amount.

```
example_investments = evaluator.max_amount / 2
In [36]:
          example_investments
Out[36]:
                      Amount
             Category
             BoS R&D
                      450000.0
          Inverter R&D 1500000.0
          Module R&D 2250000.0
In [37]: evaluator.evaluate(example_investments)
Out[37]: Category
                      Index Sample
         BoS R&D
                                        -0.0010586097518157094
                      GHG
                              1
                                         7.493162517135921e-05
                              3
                                          0.001253893601450784
                              4
                                           -0.00398626797827717
                              5
                                         -0.005572343870333896
         Module R&D
                             46
                                          0.014371009324918305
                     Labor
                              47
                                          0.011128728287076228
                              48
                                         0.0039832773605894545
                                          0.006026680267950724
                              49
```

Let's evaluate the mean instead of outputing the whole distribution.

50

Name: Value, Length: 450, dtype: object

```
In [38]: evaluator.evaluate_statistic(example_investments, np.mean)
Out[38]: Index
```

0.028844695933457842

GHG 30.156830 LCOE 0.038160 Labor -246.843027

Name: Value, dtype: float64

Here is the standard deviation:

A risk-averse decision maker might be interested in the 10% percentile:

ε-Constraint multiobjective optimization

```
In [41]: optimizer = ty.EpsilonConstraintOptimizer(evaluator)
```

In order to meaningfully map the decision space, we need to know the maximum values for each of the metrics.

Example optimization.

Limit spending to \$3M.

```
In [43]: investment_max = 3e6
```

Require that the GHG reduction be at least 40 gCO2e/system and that the Labor wages not decrease.

Compute the ε -constrained maximum for the LCOE.

Here are the optimal spending levels:

Here are the three metrics at that optimum:

Thus, by putting all of the investment into Module R&D, we can expected to achieve a mean 3.75 ¢/kWh reduction in LCOE under the GHG and Labor constraints.

It turns out that there is no solution for these constraints if we evaluate the 10th percentile of the metrics, for a risk-averse decision maker.

```
In [48]: optimum = optimizer.maximize(
    "LCOE"
    total_amount = investment_max,
    min_metric = metric_min ,
    statistic = lambda x: np.quantile(x, 0.1),
)
    optimum.exit_message
Out[48]: 'Iteration limit exceeded'
```

Let's try again, but with a less stringent set of constraints, only constraining GHG somewhat but not Labor at all.

```
In [49]: optimum = optimizer.maximize(
             "LCOE"
             total amount = investment max
             min metric = pd.Series([30], name = "Value", index = ["GHG"]),
             statistic
                         = lambda x: np.quantile(x, 0.1)
         optimum.exit_message
Out[49]: 'Optimization terminated successfully.'
In [50]: np.round(optimum.amounts)
Out[50]: Category
         BoS R&D
                               0.0
         Inverter R&D
                               0.0
         Module R&D
                         3000000.0
         Name: Amount, dtype: float64
In [51]: optimum.metrics
Out[51]: Index
         GHG
                  39.046988
         LC0E
                0.036463
         Labor
                  -0.019725
         Name: Value, dtype: float64
```

Pareto surfaces.

Metrics constrained by total investment.

Out[52]:

	GHG	LCOE	Labor
Investment [M\$]			
8.5	49.429976	0.062818	0.049555
8.0	49.429976	0.061848	0.049555
7.5	49.429976	0.060635	0.049555
7.0	49.429976	0.059423	0.049555
6.5	49.429976	0.057592	0.049560
6.0	49.426992	0.055608	0.049545
5.5	49.424007	0.053976	0.049104
5.0	48.278589	0.052171	0.048930
4.5	47.133172	0.050431	0.047878
4.0	45.298011	0.048243	0.046810
3.5	43.462851	0.045006	0.042130
3.0	41.627691	0.037569	0.037450
2.5	32.453455	0.030129	0.032769
2.0	23.279219	0.023166	0.027886
1.5	14.104983	0.018081	0.023003
1.0	9.403322	0.010170	0.018119

Out[53]: <seaborn.axisgrid.FacetGrid at 0x7f9da11752b0>

We see that the LCOE metric saturates more slowly than the GHG and Labor ones.

GHG vs LCOE, constrained by total investment.

```
In [54]: investment max = 3
         pareto ghg lcoe = None
         for lcoe min in 0.95 * np.arange(0.5, 0.9, 0.05) * pareto amounts.loc[investment max, "LCOE"]:
             optimum = optimizer.maximize(
                 "GHG",
                 max amount = pd.Series([0.9e6, 3.0e6, 1.0e6], name = "Amount", index = ["BoS R&D", "Inve
         rter R&D", "Module R&D"]),
                 total amount = investment max * 1e6
                 min_metric = pd.Series([lcoe_min], name = "Value", index = ["LCOE"]),
             pareto_ghg_lcoe = pd.DataFrame(
                 [[investment max, lcoe min, optimum.metrics["LCOE"], optimum.metrics["GHG"], optimum.exit
         message]],
                 columns = ["Investment [M$]", "LCOE (min)", "LCOE", "GHG", "Result"]
             ).append(pareto ghg lcoe)
         pareto ghg lcoe = pareto ghg lcoe.set index(["Investment [M$]", "LCOE (min)"])
         pareto ghg lcoe
```

Result

Out[54]:

Result	ОПО	LCOE			
			LCOE (min)	Investment [M\$]	
Positive directional derivative for linesearch	11.691901	0.025037	0.030337		
Positive directional derivative for linesearch	11.691901	0.025037	0.028553		
Positive directional derivative for linesearch	11.691901	0.025037	0.026768		
Optimization terminated successfully.	11.692188	0.024983	0.024983	3	
Optimization terminated successfully.	11.693916	0.023199	0.023199	3	
Optimization terminated successfully.	11.694230	0.021414	0.021414		
Optimization terminated successfully.	11.694544	0.019630	0.019630		
Optimization terminated successfully.	11.699478	0.017845	0.017845		

GHG

LCOF

```
In [56]: sb.relplot(
    x = "LCOE",
    y = "GHG",
    kind = "scatter",
    data = pareto_ghg_lcoe#[pareto_ghg_lcoe.Result == "Optimization terminated successfully."]
)
```

Out[56]: <seaborn.axisgrid.FacetGrid at 0x7f9da13ae630>

The three types of investment are too decoupled to make an interesting pareto frontier, and we also need a better solver if we want to push to lower right.

Run the interactive explorer for the decision space.

Make sure the 'tk' package is installed on your machine. Here is the Anaconda link: https://anaconda.org/anaconda/tk (https://anaconda.org/anaconda/tk).

```
In [60]: w = ty.DecisionWindow(evaluator)
w.mainloop()
```

A new window should open that looks like the image below. Moving the sliders will cause a recomputation of the boxplots.

In [61]: Image("residential_pv_multiobjective_gui.png")

