This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

HOV 0 8 2002 30 Applies

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

624#16 11/19/02 82V

Are Application of

KLINTZ et al.

Serial No. 09/733,554

Filed: December 4, 2002

For: SUBSTITUTED 3-PHENYLURACILS

RECEIVED

Art Unit: Liu

NOV 1 3 2002

Examiner: 1624

TECH CENTER 1600/2900

I hereby certify that this correspondence is being HAND-DELIVERED

to the examiner on:

Date of Deposit

Person Making Deposit

Signature

Date of Signature

Honorable Comm'r. of Patents Washington, D.C. 20231

SUBMISSION

Sir:

In response to the examiner's request, enclosed please find a verified English translation of the German priority document P 41 31 038.1.

Please charge any shortage in fees due in connection with the filing of this paper, including Extension of Time fees to Deposit Account No. 11-0345. Please credit any excess fees to such deposit account.

Respectfully submitted,

KEIL & WEINKAUF

Herbert B. Keil Reg. No. 18,967

1350 Connecticut Ave., N.W. Washington, D.C. 20036 (202)659-0100 HBK/kas

VERIFICATION OF TRANSLATION

RECEIVED

NOV 1 3 2002

TECH CENTER 1600/2900

GERMAN PATENT APPLICATION NO. P 41 31 038.1

I, DARRELL CHARLES, a British citizen, residing at 11 Frankenfelsstrasse, 6700 Ludwigs—hafen, Federal Republic of Germany, do hereby declare that I am familiar with the German and English languages, and that I am the translator of the accompanying documents in the German language. I furthermore state that my translation, which is attached hereto, is true and correct to the best of my knowledge and belief.

Signature of translator

, į

Date: November 13, 1992

TRANSLATION FROM GERMAN

FEDERAL REPUBLIC OF GERMANY

(Heraldic emblem)

CERTIFICATE

BASF Aktiengesellschaft of 6700 Ludwigshafen lodged with the German Patent Office an application for a patent of invention entitled:

"Substituted 3-phenyluracils"

on September 20, 1991.

The attached document is a true and accurate copy of the original specification of this application for patent.

The attached summary, which is to be appended to, but is not part of, the application corresponds to the original, filed on November 15, 1991.

The German Patent Office has provisionally accorded the application the symbols C 07 D 239/54, C 07 D 239/96, C 07 D 405/10, C 07 D 409/10, C 07 D 411/10, C 07 D 317/28 and A 01 N 43/54 of the International Patent Classification.

L.S.

, · · · .

Munich, September 9, 1992 The President of the German Patent Office by proxy (sgd) Grüner

File No.: <u>P 41 31 038.1</u>

15

20

25

30

Claims

A substituted 3-phenyluracil of the formula I

where

 X^1 and X^2 are each oxygen or sulfur;

W is $-C(R^8)=X^5$, $-C(R^8)(X^3R^6)(X^4R^7)$,

 $-C(R^8)=C(R^9)-CO-R^{10}$, $-CH(R^8)-CH(R^9)-CO-R^{10}$,

 $-C\left(R^{8}\right)=C\left(R^{9}\right)-CH_{2}-CO-R^{10},\ -C\left(R^{8}\right)=C\left(R^{9}\right)-C\left(R^{11}\right)=C\left(R^{12}\right)-CO-R^{10}\ \text{or}$

 $-C(R^8)=C(R^9)-CH_2-CH(R^{13})-CO-R^{10}$ where

X3 and X4 are each oxygen or sulfur;

X⁵ is oxygen, sulfur or a radical-NR¹⁴;

 R^{14} is hydrogen, hydroxyl, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, C_3-C_7 -cycloalkyl, partially or comple-

tely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl,

 c_1-c_6 -alkoxy, c_3-c_6 -alkenyloxy, c_3-c_6 -alkynyloxy, c_5-c_7 -

cycloalkoxy, C₅-C₇-cycloalkenyloxy, partially or comple-

tely halogenated C_1 - C_6 -alkoxy, partially or completely halogenated C_3 - C_6 -alkenyloxy, hydroxy- C_1 - C_6 -alkoxy, cyano-

 C_1 - C_6 -alkoxy, C_3 - C_7 -cycloalkyl- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy-

 $C_1 - C_6 - alkoxy$, $C_1 - C_6 - alkoxy - C_3 - C_6 - alkenyloxy$, $C_1 - C_6 - alkoxy$

alkylcarbonyloxy, C₁-C₆-alkoxycarbonyl-C₂-C₆-

alkoxy, C₁-C₆-alkylthio-C₁-C₆-alkoxy, di-C₁-C₆-

alkylamino-C₁-C₆-alkoxy, phenyl which may carry from

one to three of the following substituents: cyano,

nitro, halogen, C₁-C₆-alkyl, partially or completely halo-

genated $C_1 - C_6$ -alkyl, $C_1 - \delta$ -alkoxy and $C_1 - C_6$ -alkoxycarbonyl,

phenyl-C₁-C₆-alkoxy, phenyl-C₃-C₆-alkenyloxy or

phenyl-C3-C6-alkynyloxy, where one or two methylene

groups of each of the carbon chains may be replaced

with -O-, -S- or $-N(C_1-C_6-alkyl)$ - and each phenyl

ring may carry from one to three of the following

464/91 Von/HB 17.09.1991

10

15

substituents: cyano, nitro, halogen, C₁-C₆-alkyl, ${
m C_3-C_6-alkenyl}$, partially or completely halogenated c_1-c_6 -alkyl, c_1-c_6 -alkoxy and c_1-c_6 -alkoxycarbonyl, or $-N(R^{15})R^{16}$, where R^{15} and R^{16} are each hydrogen, $C_1 - C_6 - alkyl$, $C_3 - C_6 - alkyl$ alkenyl, c_3 - c_6 -alkynyl, c_3 - c_6 -cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, C_1-C_6 -alkylcarbonyl, C_1-C_6 -alkoxycarbonyl, or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C1- C_6 -alkyl, partially or completely halogenated C_1 - C_6 alkyl, c_3^{-c} -alkenyl, c_1^{-c} -alkoxy and c_1^{-c} -alkoxycarbonyl, or R^{15} and R^{16} together with the common nitrogen atom form a saturated or unsaturated 4-membered to 7membered heterocyclic structure, where one ring member may be replaced with -O-, -S-, -N=, -NH- or

and R^7 are each C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 alkynyl or C_1-C_6 -alkoxy- C_1-C_6 -alkyl, or R⁶ and R⁷ together form a saturated or unsaturated, 20 two-membered to four-membered carbon chain which may carry an oxo substituent, where one member of this chain may be replaced with an oxygen, sulfur or nitrogen atom which is not adjacent to X3 and X4, and where the chain may carry from one to three of the 25 following radicals: cyano, nitro, amino, halogen, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_1-C_6 -alkoxy, alkenyloxy, C₃-C₆-alkynyloxy, partially or completely halogenated C_1 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 alkyl, c_1-c_6 -alkoxy- c_1-c_6 -alkyl, c_3-c_6 -alkenyloxy-30 C₁-C₆-alkyl, C₃-C₆-alkynyloxy-C₁-C₆-alkyl, carboxyl, C_1-C_6 -alkoxycarbonyl and C_1-C_6 -alkylcarbonyloxy- $C_{1}-C_{6}-alkyl;$

 $-N(C_1-C_6-alkyl)-;$

is hydrogen, cyano, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl or C_1 - C_6 -alkoxycarbonyl;

 R^9 and R^{12} are each hydrogen, cyano, halogen, $C_1 - C_6 - alkyl$, C_1-C_6 -alkoxy, halo- C_1-C_6 -alkyl, C_1-C_6 -alkylcarbonyl or C_1 -C₆-alkoxycarbonyl; R^{10} is hydrogen, $O-R^{17}$, $S-R^{17}$ or C_1-C_8 -alkyl which may furthermore carry one or two C_1 - C_6 -alkoxy substituents or R^{10} is C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkylthio- C_1 - C_6 alkyl, $-N(R^{15})R^{16}$ or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, 10 C_1-C_8 -alkyl, C_3-C_6 -alkenyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy or C_1-C_6 -alkoxycarbonyl, R^{17} is hydrogen, $C_1 - C_6$ -alkyl, $C_3 - C_6$ -alkenyl, $C_3 - C_6$ -alkynyl, ${\rm C_3-C_7-cycloalkyl}$, partially or completely halogenated ${\rm C_2-}$ $^{\mathrm{C}}_{6}$ -alkyl, partially or completely halogenated $^{\mathrm{C}}_{3}$ - $^{\mathrm{C}}_{6}$ -alkenyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -15 alkyloximino- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1-C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C₁-C₆-alkoxycarbonyl; 20 R¹¹ is hydrogen, cyano, halogen, C₁-C₆-alkyl, C₃-C₆-alkenyl, $C_1-C_6-alkoxy-C_1-C_6-alkyl$, C₃-C₆-alkynyl, alkylcarbonyl, C_1-C_6 -alkoxycarbonyl, $-NR^{18}R^{19}$, where R^{18} and R¹⁹ have the same meanings as R¹⁵ and R¹⁶, or phenyl which 25 may furthermore carry from one to three of the following substituents: cyano, nitro, halogen, C1-C6-alkyl, partially or completely halogenated ${\rm C_1-C_6-alkyl}$, ${\rm C_3-C_6-alkenyl}$, ${\rm C_1-c_6-alkenyl}$ $^{\mathrm{C}}_{\mathrm{6}}$ -alkoxy and $^{\mathrm{C}}_{\mathrm{1}}$ - $^{\mathrm{C}}_{\mathrm{6}}$ -alkoxycarbonyl, R^{13} is hydrogen, cyano, $C_1 - C_6 - alkyl$ or $C_1 - C_6 - alkoxycarbonyl;$ R1 is halogen, cyano, nitro or trifluoromethyl; 30 R2 is hydrogen or halogen; R^3 is hydrogen, nitro, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 alkynyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -cycloalkylcarbonyl, cyano- C_1-C_6 -alkyl, partially or completely halogenated C_1-C_6 alkyl, $C_1-C_6-alkoxy-C_1-C_6-alkyl$, formyl, $C_1-C_6-alkanoyl$, 35 C_1 - C_6 -alkoxycarbonyl, partially or completely halogenated C₁-C₆-alkylcarbonyl;

a group $-N(R^{20})R^{21}$, where R^{20} and R^{21} have one of the meanings of R15 and R16; phenyl or phenyl-C1-C6-alkyl, where each phenyl ring may carry from one to three of the following radicals: cyano, nitro, halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, partially or completely halogenated $^{\circ}C_1$ - $^{\circ}C_6$ -alkyl, $^{\circ}C_1$ - $^{\circ}C_6$ alkoxy and C₁-C₆-alkoxycarbonyl; R^4 is hydrogen, cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 alkenyl, ${\tt C_2-C_6}$ -alkynyl, ${\tt C_3-C_7}$ -cycloalkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -hydroxyalkyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 alkyl, C_1-C_6 -alkylthio- C_1-C_6 -alkyl or phenyl which may carry from one to three of the following radicals: nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and C_1 -15 C_c-alkoxycarbonyl; R^{5} is hydrogen, cyano, nitro, halogen, C_{1} - C_{6} -alkyl, C_{2} - C_{6} alkenyl, c_2^{-c} -alkynyl, c_3^{-c} -cycloalkyl, partially or completely halogenated C_1 - C_6 -alkyl, C₁-C₆-hydroxyalkyl, cyano-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₆-20 alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl, formyl, C₁-C₆-alkylcarbonyl, partially or completely halogenated C_1 - C_6 -alkylcarbonyl, C_1 - C_8 -alkoxycarbonyl, $-N(R^{22})R^{23}$, where R^{22} and R^{23} have one of the meanings of R^{15} and R^{16} , or phenyl which may carry from one to three of the following radicals: 25 cyano, nitro, halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or R4 and R5 together form a saturated or unsaturated 3membered or 4-membered carbon chain which may contain 30 from one to three of the following hetero atoms: 1 or 2 oxygen atoms, 1 or 2 sulfur atoms and from 1 to 3 nitrogen atoms, and the chain may furthermore carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_1-C_6 -alkoxy, C_1-C_6 -35 alkylthio and C1-C6-alkoxycarbonyl; with the proviso that R4 may not be trifluoromethyl at the

same time as R^5 is hydrogen when W is -CH=CH-CO- R^{10} where R^{10} is C_1 - C_6 -alkoxy or C_3 - C_7 -cycloalkoxy, and the salts and enol ethers of those compounds I in which R^3 is hydrogen.

2. A compound of the formula Ia or Ib

5

10

15

20

25

where R^1 , R^2 , R^4 , R^5 , X^1 , X^2 and W have the meanings stated in claim 1 and R^3 is C_1-C_6 -alkyl, C_3-C_6 -alkenyl or C_3-C_8 -alkynyl, with the proviso that R^4 may not be trifluoromethyl at the same time as R^5 is hydrogen when W is $-CH=CH-CO-R^{10}$ where R^{10} is C_1-C_8 -alkoxy or C_3-C_6 -cycloalkoxy.

- 3. A compound as claimed in claim 1 or 2, wherein W is cyano, $-C(R^8)=X^5$, $-C(R^8)(X^3R^6)(X^4R^7)$, $-C(R^8)=C(R^9)-CO-R^{10}$ or $-CH(R^8)-CH(R^9)-CO-R^{10}$.
- 4. A compound as claimed in claim 1 or 2, wherein \mathbb{R}^1 is hydrogen or \mathbb{C}_1 - \mathbb{C}_6 -alkyl.
- 5. A compound as claimed in claim 1 or 2, wherein R¹ is hydrogen or fluorine.
- 6. A compound as claimed in claim 1 or 2, wherein R² is chlorine or bromine.
 - 7. A compound as claimed in claim 1 or 2, wherein \mathbb{R}^3 is C_1-C_6 -alkyl.
- 8. A compound as claimed in claim 1 or 2, wherein \mathbb{R}^4 is partially or completely halogenated \mathbb{C}_1 - \mathbb{C}_6 -alkyl.
 - 9. An enamine ester of the formula II

```
where L^1 is C_1-C_6-alkyl or phenyl, X^1 is oxygen or sul-
               fur;
               where
               X^1 and X^2 are each oxygen or sulfur;
               W is -C(R^8)=X^5, -C(R^8)(X^3R^6)(X^4R^7),
  5
               -C(R^8) = C(R^9) - CO - R^{10}, -CH(R^8) - CH(R^9) - CO - R^{10},
               -C(R^8) = C(R^9) - CH_2 - CO - R^{10}, -C(R^8) = C(R^9) - C(R^{11}) = C(R^{12}) - CO - R^{10} or
               -C(R^8)=C(R^9)-CH_2-CH(R^{13})-CO-R^{10} where
               X3 and X4 are each oxygen or sulfur;
               X<sup>5</sup> is oxygen, sulfur or a radical-NR<sup>14</sup>;
10
                         R14 is hydrogen, hydroxyl, C1-C6-alkyl, C3-C6-alkenyl,
                         C3-C6-alkynyl, C3-C,-cycloalkyl, partially or comple-
               tely halogenated C_1-C_6-alkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl,
               C_1-C_6-alkoxy, C_3-C_6-alkenyloxy, C_3-C_6-alkynyloxy, C_5-C_7-
15
               cycloalkoxy, C_5-C_7-cycloalkenyloxy, partially or comple-
               tely halogenated C_1-C_6-alkoxy, partially or completely
               halogenated C_3-C_6-alkenyloxy, hydroxy-C_1-C_6-alkoxy, cyano-
               C_1-C_6-alkoxy, C_3-C_7-cycloalkyl-C_1-C_6-alkoxy, C_1-C_6-alkoxy-
               C_1-C_6-alkoxy, C_1-C_6-alkoxy-C_3-C_6-alkenyloxy, C_1-C_6-alkoxy
               alkylcarbonyloxy, C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl-C<sub>2</sub>-C<sub>6</sub>-
20
                                 C_1-C_6-alkylthio-C_1-C_6-alkoxy,
               alkoxy,
               alkylamino-C1-C6-alkoxy, phenyl which may carry from
               one to three of the following substituents: cyano,
               nitro, halogen, C_1-C_6-alkyl, partially or completely halo-
               genated C_1-C_6-alkyl, C_1-C_6-alkoxy and C_1-C_6-alkoxycarbonyl,
25
                                                              phenyl-C<sub>3</sub>-C<sub>6</sub>-alkenyloxy
               phenyl-C_1-C_6-alkoxy,
               phenyl-C3-C6-alkynyloxy, where one or two methylene
                groups of each of the carbon chains may be replaced
               with -O-, -S- or -N(C_1-C_6-alkyl) - and each phenyl
                ring may carry from one to three of the following
30
                                              cyano, nitro, halogen, C<sub>1</sub>-C<sub>6</sub>-alkyl,
                substituents:
               C_3-C_6-alkenyl, partially or completely halogenated
               c_1^- c_6^-alkyl, c_1^- c_6^-alkoxy and c_1^- c_6^-alkoxycarbonyl,
                or -N(R^{15})R^{16}, where
                ^{15} and ^{16} are each hydrogen, ^{1}-^{1}-^{1}-^{1}-alkyl, ^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1
35
                alkenyl, C_3-C_6-alkynyl, C_3-C_6-cycloalkyl, partially
                or completely halogenated C_1-C_6-alkyl, C_1-C_6-alkoxy-
```

 C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or R^{15} and R^{18} together with the common nitrogen atom form a saturated or unsaturated 4-membered to 7-membered heterocyclic structure, where one ring member may be replaced with -O-, -S-, -N=, -NH- or -N(C_1 - C_6 -alkyl)-;

10

15

20

5

and R^7 are each C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 alkynyl or C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, or R⁶ and R⁷ together form a saturated or unsaturated, two-membered to four-membered carbon chain which may carry an oxo substituent, where one member of this chain may be replaced with an oxygen, sulfur or nitrogen atom which is not adjacent to X3 and X4, and where the chain may carry from one to three of the following radicals: cyano, nitro, amino, halogen, C₂-C₅-alkenyl, $C_1-C_6-alkyl$, $C_1-C_6-alkoxy$, alkenyloxy, C₃-C₆-alkynyloxy, partially or completely halogenated C_1 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 alkyl, $C_1 - C_6 - alkoxy - C_1 - C_6 - alkyl, C_3 - C_6 - alkenyloxy - C_1 - C_6 - alkyl, C_3 - C_6 - alkenyloxy - C_1 - C_6 - alkyl, C_3 - C_6 - alkenyloxy - C_1 - C_6 - alkyl, C_3 - C_6 - alkenyloxy - C_1 - C_6 - alkyl, C_3 - C_6 - alkenyloxy - C_1 - C_6 - alkyl, C_3 - C_6 - alkenyloxy - C_1 - C_6 - alkyl, C_3 - C_6 - alkyl, C_5 - C_6 - alkyl, C_6 - c_6$ $c_1-c_6-alkyl$, $c_3-c_6-alkynyloxy-c_1-c_6-alkyl$, carboxyl, $C_1 - C_6$ -alkoxycarbonyl and $C_1 - C_6$ -alkylcarbonyloxy-C₁-C₆-alkyl;

25

is hydrogen, cyano, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxycarbonyl;

30

35

 R^9 and R^{12} are each hydrogen, cyano, halogen, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, halo- C_1-C_6 -alkyl, C_1-C_6 -alkylcarbonyl or C_1-C_6 -alkoxycarbonyl;

 R^{10} is hydrogen, $O-R^{17}$, $S-R^{17}$ or C_1-C_8 -alkyl which may furthermore carry one or two C_1-C_8 -alkoxy substituents or

 R^{10} is C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, partially or completely $\texttt{halogenated} \ \texttt{C}_{1} - \texttt{C}_{6} - \texttt{alkyl}, \ \texttt{C}_{3} - \texttt{C}_{7} - \texttt{cycloalkyl}, \ \texttt{C}_{1} - \texttt{C}_{6} - \texttt{alkylthio} - \texttt{C}_{1} - \texttt{C}_{6} - \texttt{alkyl}, \\ \texttt{C}_{1} - \texttt{C}_{6} - \texttt{alkyl}, \ \texttt{C}_{2} - \texttt{C}_{6} - \texttt{alkyl}, \\ \texttt{C}_{3} - \texttt{C}_{7} - \texttt{cycloalkyl}, \ \texttt{C}_{1} - \texttt{C}_{6} - \texttt{alkylthio} - \texttt{C}_{1} - \texttt{C}_{6} - \texttt{alkyl}, \\ \texttt{C}_{1} - \texttt{C}_{1} - \texttt{C}_{1} - \texttt{C}_{1} - \texttt{C}_{1} - \texttt{C}_{1} - \texttt{C}_{2} - \texttt{cycloalkyl}, \\ \texttt{C}_{1} - \texttt{C}_{2} - \texttt{cycloalkyl}, \ \texttt{C}_{2} - \texttt{C}_{3} - \texttt{cycloalkyl}, \\ \texttt{C}_{3} - \texttt{C}_{4} - \texttt{cycloalkyl}, \\ \texttt{C}_{4} - \texttt{C}_{5} - \texttt{cycloalkyl}, \\ \texttt{C}_{5} - \texttt{cycloalkyl},$ or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1-C_8 -alkyl, C_3-C_6 -alkenyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy or C_1-C_6 -alkoxycarbonyl, R^{17} is hydrogen, $C_1 - C_6$ -alkyl, $C_3 - C_6$ -alkenyl, $C_3 - C_6$ -alkynyl, C_3 - C_7 -cycloalkyl, partially or completely halogenated C_2 - C_6 -alkyl, partially or completely halogenated C_3 - C_6 -alkenyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -10 alkyloximino- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1-C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and 15 C₁-C₆-alkoxycarbonyl; R11 is hydrogen, cyano, halogen, C1-C6-alkyl, C3-C6-alkenyl, $C_3-C_6-alkynyl$, $C_1-C_6-alkoxy-C_1-C_6-alkyl$, $C_1-C_6-alkyl$ alkylcarbonyl, C₁-C₆-alkoxycarbonyl, -NR¹⁸R¹⁹, where R¹⁸ and R^{19} have the same meanings as R^{15} and R^{16} , or phenyl which 20 may furthermore carry from one to three of the following substituents: cyano, nitro, halogen, C1-C5-alkyl, partially or completely halogenated ${\rm C_1-C_6-alkyl}$, ${\rm C_3-C_6-alkenyl}$, ${\rm C_1-c_6-alkenyl}$ C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, R^{13} is hydrogen, cyano, $C_1 - C_6$ -alkyl or $C_1 - C_6$ -alkoxycarbonyl; R1 is halogen, cyano, nitro or trifluoromethyl; 25 R² is hydrogen or halogen; R^3 is hydrogen, nitro, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_8 alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkylcarbonyl, cyano- C_1-C_6 -alkyl, partially or completely halogenated C_1-C_6 -30 alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, formyl, C₁-C₆-alkanoyl, C_1 - C_6 -alkoxycarbonyl, partially or completely halogenated $C_1-C_{\mathcal{B}}$ -alkylcarbonyl; a group $-N(R^{20})R^{21}$, where R^{20} and R^{21} have one of the meanings of R15 and R16; 35 phenyl or phenyl-C₁-C₆-alkyl, where each phenyl ring may carry from one to three of the following radicals:

cyano, nitro, halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 alkoxy and C₁-C₆-alkoxycarbonyl;

 R^4 is hydrogen, cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 alkenyl, C_2-C_6 -alkynyl, C_3-C_7 -cycloalkyl, partially or completely halogenated $C_1 - C_6 - alkyl$, $C_1 - C_6 - hydroxyalkyl$,

cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -

alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl or phenyl which may carry from one to three of the following radicals: cyano,

nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and C_1 -C₆-alkoxycarbonyl;

 R^5 is hydrogen, cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 alkenyl, c_2 - c_6 -alkynyl, c_3 - c_7 -cycloalkyl, partially or

completely halogenated $C_1 - C_6$ -alkyl, 15

 $C_1-C_6-hydroxyalkyl$, cyano- $C_1-C_6-alkyl$, $C_1-C_6-alkoxy-C_1-C_6-alkoxy-C_1-C_6-alkoxy-C_1-C_6-alkoxy-C_1-C_6-alkyl$ alkyl, C₁-C₆-alkylthio-C₁-C₅-alkyl, formyl, C₁-C₆-alkylcarbonyl, partially or completely halogenated C1-C6-alkylcarbonyl, $C_1 - C_6$ -alkoxycarbonyl, $-N(R^{22})R^{23}$, where R^{22} and R²³ have one of the meanings of R¹⁵ and R¹⁶, or phenyl which may carry from one to three of the following radicals: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, partially or completely halogenated ${
m C^{-C}_6}$ -alkyl, ${
m C^{-C}_6}$ -alkoxy and C_1 - C_6 -alkoxycarbonyl, or

R4 and R5 together form a saturated or unsaturated 3membered or 4-membered carbon chain which may contain from one to three of the following hetero atoms: 1 or 2 oxygen atoms, 1 or 2 sulfur atoms and from 1 to 3 nitrogen atoms, and the chain may furthermore carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_1-C_6 -alkyl, C_2-C_5 -alkenyl, C_1-C_6 -alkoxy, C_1-C_6 alkylthio and C1-C8-alkoxycarbonyl,

An enamine-carboxylate of the formula III

35

5

10

20

25

30

```
where L^1 is C_1 - C_6-alkyl or phenyl, X^1 is oxygen or sulfur; W is -C(R^8) = X^5, -C(R^8)(X^3R^6)(X^4R^7), -C(R^8) = C(R^9) - CO - R^{10}, -CH(R^8) - CH(R^9) - CO - R^{10}, -C(R^8) = C(R^9) - CH_2 - CO - R^{10}, -C(R^8) = C(R^9) - C(R^{12}) - CO - R^{10} or -C(R^8) = C(R^9) - CH_2 - CH(R^{13}) - CO - R^{10} where X^3 and X^4 are each oxygen or sulfur; X^5 is oxygen, sulfur or a radical-NR<sup>14</sup>;
```

R14 is hydrogen, hydroxyl, C1-C6-alkyl, C3-C6-alkenyl, C_3-C_6 -alkynyl, C_3-C_7 -cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, 10 c_1-c_6 -alkoxy, c_3-c_6 -alkenyloxy, c_3-c_6 -alkynyloxy, c_5-c_7 cycloalkoxy, C_5 - C_7 -cycloalkenyloxy, partially or completely halogenated C_1 - C_6 -alkoxy, partially or completely halogenated C_3 - C_6 -alkenyloxy, hydroxy- C_1 - C_6 -alkoxy, cyano- $C_1-C_6-alkoxy$, $C_3-C_7-cycloalkyl-C_1-C_6-alkoxy$, $C_1-C_6-alkoxy-$ 15 c_1-c_6 -alkoxy, c_1-c_6 -alkoxy- c_3-c_6 -alkenyloxy, $c_{-1}-c_{6}$ alkylcarbonyloxy, C₁-C₆-alkoxycarbonyl-C₂-C₆- C_1-C_6 -alkylthio- C_1-C_6 -alkoxy, $di-C_1-C_6$ alkylamino-C₁-C₆-alkoxy, phenyl which may carry from one to three of the following substituents: cyano, 20 nitro, halogen, C₁-C₆-alkyl, partially or completely halogenated ${
m C^{}_{1}}$ – ${
m C^{}_{6}}$ – alkyl, ${
m C^{}_{1}}$ – ${
m C^{}_{6}}$ – alkoxycarbonyl, phenyl-C₃-C₆-alkenyloxy phenyl-C₁-C₅-alkoxy, phenyl-C3-C6-alkynyloxy, where one or two methylene groups of each of the carbon chains may be replaced 25 with -O-, -S- or $-N(C_1-C_6-alkyl)$ - and each phenyl ring may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, partially or completely halogenated c_1-c_6 -alkyl, c_1-c_6 -alkoxy and c_1-c_6 -alkoxycarbonyl, 30 or $-N(R^{15})R^{16}$, where R15 and R16 are each hydrogen, $^{C}_{1}$ - $^{C}_{6}$ -alkyl, $^{C}_{3}$ - $^{C}_{6}$ alkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy c_1-c_6 -alkyl, c_1-c_6 -alkylcarbonyl, c_1-c_6 -alkoxycarbonyl, 35 or phenyl which may carry from one to three of the

following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or R^{15} and R^{16} together with the common nitrogen atom form a saturated or unsaturated 4-membered to 7-membered heterocyclic structure, where one ring member may be replaced with -O-, -S-, -N=, -NH- or -N(C_1 - C_6 -alkyl)-;

and R^7 are each C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 alkynyl or C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, or 10 R⁶ and R⁷ together form a saturated or unsaturated, two-membered to four-membered carbon chain which may carry an oxo substituent, where one member of this chain may be replaced with an oxygen, sulfur or nitrogen atom which is not adjacent to X^3 and X^4 , and 15 where the chain may carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_1-C_6 -alkoxy, C2-C6-alkenyl, C₁-C₆-alkyl, alkenyloxy, C_3 - C_6 -alkynyloxy, partially or completely halogenated C_1 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 -20 alkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₃-C₆-alkenyloxy $c_1-c_6-alkyl$, $c_3-c_6-alkynyloxy-c_1-c_6-alkyl$, carboxyl, $^{\mathrm{C_{1}^{-C}_{6}^{-alkoxycarbonyl}}}$ and $^{\mathrm{C_{1}^{-C}_{6}^{-alkylcarbonyloxy-}}}$ C₁-C₆-alkyl;

25 R8 is hydrogen, cyano, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl or C_1 - C_6 -alkoxycarbonyl;

R° and R¹² are each hydrogen, cyano, halogen, C₁-C₆-alkyl,

C₁-C₆-alkoxy, halo-C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl or C₁
C₆-alkoxycarbonyl;

R¹⁰ is hydrogen, O-R¹⁷, S-R¹⁷ or C₁-C₆-alkyl which may furthermore carry one or two C₁-C₆-alkoxy substituents or R¹⁰ is C₃-C₆-alkenyl, C₃-C₆-alkynyl, partially or completely halogenated C₁-C₆-alkyl, C₃-C₇-cycloalkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl,

-N(R15)R16 or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy or C_1-C_6 -alkoxycarbonyl, R^{17} is hydrogen, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, c_3 - c_7 -cycloalkyl, partially or completely halogenated c_2 - $^{\mathrm{C}}_{\mathrm{6}}$ -alkyl, partially or completely halogenated $^{\mathrm{C}}_{\mathrm{3}}$ - $^{\mathrm{C}}_{\mathrm{6}}$ -alkenyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 alkyloximino- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated ${
m C_1-C_6-alkyl,\ C_3-C_6-alkenyl,\ C_1-C_6-alkoxy}$ and C₁-C₆-alkoxycarbonyl; R^{11} is hydrogen, cyano, halogen, C_1-C_5 -alkyl, C_3-C_6 -alkenyl, C₃-C₆-alkynyl, $C_1-C_6-alkoxy-C_1-C_6-alkyl$, alkylcarbonyl, C₁-C₈-alkoxycarbonyl, -NR¹⁸R¹⁹, where R¹⁸ and

Real Shydrogen, cyano, halogen, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, C_1-C_8 -alkylcarbonyl, C_1-C_8 -alkoxycarbonyl, $-NR^{18}R^{19}$, where R^{18} and R^{19} have the same meanings as R^{15} and R^{16} , or phenyl which may furthermore carry from one to three of the following substituents: cyano, nitro, halogen, C_1-C_6 -alkyl, partially or completely halogenated C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_1-C_6 -alkoxy and C_1-C_6 -alkoxycarbonyl,

 R^{13} is hydrogen, cyano, C_1-C_6 -alkyl or C_1-C_6 -alkoxycarbonyl; R^1 is halogen, cyano, nitro or trifluoromethyl;

R2 is hydrogen or halogen;

10

15

20

25 R^3 is hydrogen, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylcarbonyl, cyano- C_1 - C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkanoyl, C_1 - C_6 -alkoxycarbonyl, partially or completely halogenated C_1 - C_6 -alkylcarbonyl;

a group $-N(R^{20})R^{21}$, where R^{20} and R^{21} have one of the meanings of R^{15} and R^{16} ;

phenyl or phenyl- C_1 - C_6 -alkyl, where each phenyl ring may carry from one to three of the following radicals:

cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -

alkoxy and C₁-C₆-alkoxycarbonyl; R⁴ is hydrogen, cyano, nitro, halogen, C₁-C₆-alkyl, C₂-C₆alkenyl, C_2 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -hydroxyalkyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -5 alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl or phenyl which may carry from one to three of the following radicals: cyano, nitro, halogen, ${ t C_1-C_6}$ -alkyl, ${ t C_2-C_6}$ -alkenyl, partially or completely halogenated $^{\mathrm{C}_{1}-\mathrm{C}_{6}}$ -alkyl, $^{\mathrm{C}_{1}-\mathrm{C}_{6}}$ -alkoxy and $^{\mathrm{C}_{1}-}$ 10 C_c-alkoxycarbonyl; R⁵ is hydrogen, cyano, nitro, halogen, C₁-C₆-alkyl, C₂-C₆alkenyl, C_2 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -hydroxyalkyl, cyano- C_1-C_6 -alkyl, C_1-C_6 -alkoxy- C_1-C_6 alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl, formyl, C₁-C₆-alkylcarbonyl, partially or completely halogenated c_1 - c_6 -alkylcarbonyl, C_1-C_6 -alkoxycarbonyl, $-N(R^{22})R^{23}$, where R^{22} and \mathbb{R}^{23} have one of the meanings of \mathbb{R}^{15} and \mathbb{R}^{16} , or phenyl which may carry from one to three of the following radicals: cyano, nitro, halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, par-20 tially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and C₁-C₆-alkoxycarbonyl, or R^4 and R^5 together form a saturated or unsaturated 3membered or 4-membered carbon chain which may contain from one to three of the following hetero atoms: 1 or 2 25 oxygen atoms, 1 or 2 sulfur atoms and from 1 to 3 nitrogen atoms, and the chain may furthermore carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_1-C_6 -alkyl, C_2-C_5 -alkenyl, C_1-C_6 -alkoxy, C_1-C_5 -30 alkylthio and C1-C8-alkoxycarbonyl.

ll. A pyrimidone derivative of theformula IVa or IVb

35
$$\begin{array}{c} R^4 \longrightarrow Ha1 \\ R^5 \longrightarrow N \longrightarrow R^2 \\ X^2 \longrightarrow R^1 \end{array}$$
 Iva
$$\begin{array}{c} R^4 \longrightarrow N \longrightarrow X^1 \\ R^5 \longrightarrow N \longrightarrow R^2 \\ Ha1 \longrightarrow R^1 \end{array}$$
 Ivb

```
where Hal is halogen; \chi^{1} and \chi^{2} are each oxygen or sul-
         W is -C(R^8) = X^5, -C(R^8)(X^3R^6)(X^4R^7),
         -C(R^{8}) = C(R^{9}) - CO - R^{10}, -CH(R^{8}) - CH(R^{9}) - CO - R^{10},
         -C(R^8) = C(R^9) - CH_2 - CO - R^{10}, -C(R^8) = C(R^9) - C(R^{11}) = C(R^{12}) - CO - R^{10} or
  5 .
         -C(R^8) = C(R^9) - CH_2 - CH(R^{13}) - CO - R^{10} where
         X<sup>3</sup> and X<sup>4</sup> are each oxygen or sulfur;
         X<sup>5</sup> is oxygen, sulfur or a radical-NR<sup>14</sup>;
                R^{14} is hydrogen, hydroxyl, C_1-C_6-alkyl, C_3-C_6-alkenyl,
10
                C3-C6-alkynyl, C3-C7-cycloalkyl, partially or comple-
         tely halogenated C_1-C_6-alkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl,
         C_1-C_6-alkoxy, C_3-C_6-alkenyloxy, C_3-C_6-alkynyloxy, C_5-C_7-alkynyloxy
         cycloalkoxy, C_5-C_7-cycloalkenyloxy, partially or comple-
         tely halogenated C_1-C_6-alkoxy, partially or completely
15
         halogenated C_3-C_6-alkenyloxy, hydroxy-C_1-C_6-alkoxy, cyano-
         C_1-C_6-alkoxy, C_3-C_7-cycloalkyl-C_1-C_6-alkoxy, C_1-C_6-alkoxy-
         C_1-C_6-alkoxy, C_1-C_6-alkoxy-C_3-C_6-alkenyloxy, C_1-C_6-alkoxy
         alkylcarbonyloxy, C_1-C_6-alkoxycarbonyl-C_2-C_6-
                       C<sub>1</sub>-C<sub>6</sub>-alkylthio-C<sub>1</sub>-C<sub>6</sub>-alkoxy,
20
         alkylamino-C<sub>1</sub>-C<sub>6</sub>-alkoxy, phenyl which may carry from
         one to three of the following substituents: cyano,
         nitro, halogen, C_1-C_6-alkyl, partially or completely halo-
         genated C_1-C_6-alkyl, C_1-C_6-alkoxy and C_1-C_6-alkoxycarbonyl,
                                       phenyl-C<sub>3</sub>-C<sub>6</sub>-alkenyloxy
         phenyl-C_1-C_6-alkoxy,
         phenyl-C3-C6-alkynyloxy, where one or two methylene
25
         groups of each of the carbon chains may be replaced
         with -O-, -S- or -N(C_1-C_6-alkyl)- and each phenyl
          ring may carry from one to three of the following
         substituents: cyano, nitro, halogen, C_1-C_6-alkyl,
         C<sub>3</sub>-C<sub>6</sub>-alkenyl, partially or completely halogenated
30
         C_1-C_6-alkyl, C_1-C_6-alkoxy and C_1-C_6-alkoxycarbonyl,
         or -N(R^{15})R^{16}, where
         \mathrm{R}^{15} and \mathrm{R}^{16} are each hydrogen, \mathrm{C}_{1}-\mathrm{C}_{6}-alkyl, \mathrm{C}_{3}-\mathrm{C}_{6}-
          alkenyl, C_3-C_6-alkynyl, C_3-C_6-cycloalkyl, partially
35
          or completely halogenated C_1-C_6-alkyl, C_1-C_6-alkoxy-
         C_1-C_6-alkyl, C_1-C_6-alkylcarbonyl, C_1-C_6-alkoxycarbonyl,
```

30

or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or R^{15} and R^{16} together with the common nitrogen atom form a saturated or unsaturated 4-membered to 7-membered heterocyclic structure, where one ring member may be replaced with -O-, -S-, -N=, -NH- or -N(C_1 - C_6 -alkyl)-;

 R^6 and R^7 are each C_1-C_6 -alkyl, C_3-C_6 -alkenyl, 10 alkynyl or C₁-C₆-alkoxy-C₁-C₆-alkyl, or R⁶ and R⁷ together form a saturated or unsaturated, two-membered to four-membered carbon chain which may carry an oxo substituent, where one member of this chain may be replaced with an oxygen, sulfur or 15 nitrogen atom which is not adjacent to X3 and X4, and where the chain may carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_1-C_6 -alkoxy, C_2-C_6 -alkenyl, $C_1-C_6-alkyl$, alkenyloxy, C₃-C₆-alkynyloxy, partially or completely 20 halogenated C_1 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 alkyl, c_1-c_6 -alkoxy- c_1-c_6 -alkyl, c_3-c_6 -alkenyloxy $c_1-c_6-alkyl$, $c_3-c_6-alkynyloxy-c_1-c_6-alkyl$, carboxyl, C_1 - C_6 -alkoxycarbonyl and C_1 - C_6 -alkylcarbonyloxy-C₁-C₆-alkyl; 25

is hydrogen, cyano, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl or C_1 - C_6 -alkoxycarbonyl;

 R^{9} and R^{12} are each hydrogen, cyano, halogen, C_{1} - C_{6} -alkyl, C_{1} - C_{6} -alkoxy, halo- C_{1} - C_{6} -alkyl, C_{1} - C_{6} -alkylcarbonyl or C_{1} - C_{6} -alkoxycarbonyl;

 R^{10} is hydrogen, $O-R^{17}$, $S-R^{17}$ or C_1-C_6 -alkyl which may furthermore carry one or two C_1-C_6 -alkoxy substituents or R^{10} is C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, partially or completely halogenated C_1-C_6 -alkyl, C_3-C_7 -cycloalkyl, C_1-C_6 -alkylthio- C_1-C_6 -alkyl,

-N(R15)R16 or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy or C_1-C_6 -alkoxycarbonyl, R^{17} is hydrogen, $C_1 - C_6$ -alkyl, $C_3 - C_6$ -alkenyl, $C_3 - C_6$ -alkynyl, $^{\rm C}_{3}$ - $^{\rm C}_{7}$ -cycloalkyl, partially or completely halogenated $^{\rm C}_{2}$ - $^{\mathrm{C}}_{6}$ -alkyl, partially or completely halogenated $^{\mathrm{C}}_{3}$ - $^{\mathrm{C}}_{6}$ -alkenyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 alkyloximino- c_1 - c_6 -alkyl, c_1 - c_6 -alkylcarbonyl, c_1 - c_6 -alkoxycarbonyl or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C₁-C₆-alkoxycarbonyl; R¹¹ is hydrogen, cyano, halogen, C₁-C₅-alkyl, C₃-C₅-alkenyl, $C_3-C_6-alkynyl$, $C_1-C_8-alkoxy-C_1-C_8-alkyl$, $C_1-C_8-alkyl$ 15 alkylcarbonyl, C_1-C_6 -alkoxycarbonyl, $-NR^{18}R^{19}$, where R^{18} and R¹⁹ have the same meanings as R¹⁵ and R¹⁶, or phenyl which may furthermore carry from one to three of the following substituents: cyano, nitro, halogen, C1-C6-alkyl, partially or completely halogenated c_1 - c_6 -alkyl, c_3 - c_6 -alkenyl, c_1 -20 C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, R^{13} is hydrogen, cyano, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxycarbonyl; R1 is halogen, cyano, nitro or trifluoromethyl; R2 is hydrogen or halogen; R^3 is hydrogen, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -25 alkynyl, C_3-C_8 -cycloalkyl, C_3-C_8 -cycloalkylcarbonyl, cyano- C_1-C_6 -alkyl, partially or completely halogenated C_1-C_6 alkyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, formyl, C_1-C_6 -alkanoyl, C_1 - C_6 -alkoxycarbonyl, partially or completely halogenated 30 C₁-C₆-alkylcarbonyl; a group $-N(R^{20})R^{21}$, where R^{20} and R^{21} have one of the meanings of R15 and R16; phenyl or phenyl-C₁-C₆-alkyl, where each phenyl ring may carry from one to three of the following radicals: 35 cyano, nitro, halogen, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, partially or completely halogenated $C_1 - C_6$ -alkyl, $C_1 - C_6$ alkoxy and C_1 - C_6 -alkoxycarbonyl;

10

15

20

25

30

35

 $\rm R^4$ is hydrogen, cyano, nitro, halogen, $\rm C_1-\rm C_6-alkyl,$ $\rm C_2-\rm C_6-alkynyl,$ $\rm C_3-\rm C_7-cycloalkyl,$ partially or completely halogenated $\rm C_1-\rm C_6-alkyl,$ $\rm C_1-\rm C_6-hydroxyalkyl,$ cyano-C1-C6-alkyl, $\rm C_1-\rm C_6-alkoxy-C_1-\rm C_6-$

alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl or phenyl which may carry from one to three of the following radicals: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl;

 R^{5} is hydrogen, cyano, nitro, halogen, C_{1} - C_{6} -alkyl, C_{2} - C_{6} -alkenyl, C_{2} - C_{6} -alkynyl, C_{3} - C_{7} -cycloalkyl, partially or completely halogenated C_{1} - C_{6} -alkyl,

 $\rm C_1-C_6-hydroxyalkyl,$ cyano- $\rm C_1-C_6-alkyl,$ $\rm C_1-C_6-alkoxy-C_1-C_6-alkyl,$ $\rm C_1-C_6-alkylthio-C_1-C_6-alkyl,$ formyl, $\rm C_1-C_6-alkyl-carbonyl,$ partially or completely halogenated $\rm C_1-C_6-alkyl-carbonyl,$ $\rm C_1-C_6-alkoxycarbonyl,$ $\rm -N(R^{22})R^{23},$ where $\rm R^{22}$ and $\rm R^{23}$ have one of the meanings of $\rm R^{15}$ and $\rm R^{16}$, or phenyl which may carry from one to three of the following radicals: cyano, nitro, halogen, $\rm C_1-C_6-alkyl,$ $\rm C_2-C_6-alkenyl,$ partially or completely halogenated $\rm C_1-C_6-alkyl,$ $\rm C_1-C_6-alkoxy$ and $\rm C_1-C_6-alkoxycarbonyl,$ or

 R^4 and R^5 together form a saturated or unsaturated 3-membered or 4-membered carbon chain which may contain from one to three of the following hetero atoms: 1 or 2 oxygen atoms, 1 or 2 sulfur atoms and from 1 to 3 nitrogen atoms, and the chain may furthermore carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_1 - C_6 -alkyl, C_2 - C_5 -alkenyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylhio and C_1 - C_6 -alkoxycarbonyl.

12. A phenylurea of the formula IX

where R^1 is halogen, cyano, nitro or trifluoromethyl; R^2 is hydrogen or halogen;

```
W is -C(R^8) = X^5, -C(R^8)(X^3R^8)(X^4R^7),
             -C(R^8) = C(R^9) - CO - R^{10}, -CH(R^8) - CH(R^9) - CO - R^{10},
           -C(R^8) = C(R^9) - CH_2 - CO - R^{10}, -C(R^8) = C(R^9) - C(R^{11}) = C(R^{12}) - CO - R^{10} or
             -C(R^8)=C(R^9)-CH_2-CH(R^{13})-CO-R^{10} where
            X3 and X4 are each oxygen or sulfur;
 5
            X<sup>5</sup> is oxygen, sulfur or a radical-NR<sup>14</sup>;
                      R14 is hydrogen, hydroxyl, C1-C5-alkyl, C3-C5-alkenyl,
                       C3-C6-alkynyl, C3-C,-cycloalkyl, partially or comple-
             tely halogenated C_1-C_6-alkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl,
             c_1-c_6-alkoxy, c_3-c_6-alkenyloxy, c_3-c_6-alkynyloxy, c_5-c_7-
10
             cycloalkoxy, C_5-C_7-cycloalkenyloxy, partially or comple-
             tely halogenated C_1-C_6-alkoxy, partially or completely
             halogenated C_3-C_6-alkenyloxy, hydroxy-C_1-C_6-alkoxy, cyano-
             c_1-c_6-alkoxy, c_3-c_7-cycloalkyl-c_1-c_6-alkoxy, c_1-c_6-alkoxy-c_1-c_6-alkoxy
             C_1-C_6-alkoxy, C_1-C_6-alkoxy-C_3-C_6-alkenyloxy, C_1-C_6-
15
             alkylcarbonyloxy, C_1-C_6-alkoxycarbonyl-C_2-C_6-
                                C_1-C_8-alkylthio-C_1-C_8-alkoxy,
             alkylamino-C<sub>1</sub>-C<sub>6</sub>-alkoxy, phenyl which may carry from
             one to three of the following substituents: cyano,
             nitro, halogen, C_1-C_6-alkyl, partially or completely halo-
20
             genated C_1-C_6-alkyl, C_1-C_6-alkoxy and C_1-C_6-alkoxycarbonyl,
                                                         phenyl-C<sub>3</sub>-C<sub>6</sub>-alkenyloxy
             phenyl-C<sub>1</sub>-C<sub>6</sub>-alkoxy,
             phenyl-C3-C6-alkynyloxy, where one or two methylene
             groups of each of the carbon chains may be replaced
             with -O-, -S- or -N(C_1-C_6-alkyl)- and each phenyl
25
             ring may carry from one to three of the following
             substituents: cyano, nitro, halogen, C_1-C_6-alkyl,
             C_3-C_6-alkenyl, partially or completely halogenated
             C_1-C_6-alkyl, C_1-C_6-alkoxy and C_1-C_6-alkoxycarbonyl,
             or -N(R^{15})R^{16}, where
30
             ^{15} and ^{16} are each hydrogen, ^{1}-^{1}-^{1}-^{1}-alkyl, ^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1}-^{1
             alkenyl, c_3-c_6-alkynyl, c_3-c_6-cycloalkyl, partially
             or completely halogenated C_1-C_6-alkyl, C_1-C_6-alkoxy-
             c_1-c_6-alkyl, c_1-c_6-alkylcarbonyl, c_1-c_6-alkoxycarbonyl,
             or phenyl which may carry from one to three of the
35
             following substituents: cyano, nitro, halogen, C1-
             C_6-alkyl, partially or completely halogenated C_1-C_6-
```

25

30

35

alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or R^{15} and R^{16} together with the common nitrogen atom form a saturated or unsaturated 4-membered to 7-membered heterocyclic structure, where one ring member may be replaced with -O-, -S-, -N=, -NH- or -N(C_1 - C_6 -alkyl)-;

and R^7 are each C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 alkynyl or C_1-C_6 -alkoxy- C_1-C_6 -alkyl, or R⁶ and R⁷ together form a saturated or unsaturated, two-membered to four-membered carbon chain which may 10 carry an oxo substituent, where one member of this chain may be replaced with an oxygen, sulfur or nitrogen atom which is not adjacent to X^3 and X^4 , and where the chain may carry from one to three of the following radicals: cyano, nitro, amino, halogen, . 15 C_2-C_6 -alkenyl, C_1-C_6 -alkoxy, $C_1-C_6-alkyl$, alkenyloxy, C_3 - C_6 -alkynyloxy, partially or completely halogenated C_1 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 alkyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, C_3-C_6 -alkenyloxy $c_1-c_6-alkyl$, $c_3-c_6-alkynyloxy-c_1-c_6-alkyl$, carboxyl, 20 C_1-C_6 -alkoxycarbonyl and C_1-C_6 -alkylcarbonyloxy- $C_{1}-C_{6}-alkyl;$

is hydrogen, cyano, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxycarbonyl;

 R^9 and R^{12} are each hydrogen, cyano, halogen, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, halo- C_1-C_6 -alkyl, C_1-C_6 -alkylcarbonyl or C_1-C_6 -alkoxycarbonyl;

 R^{10} is hydrogen, $O-R^{17}$, $S-R^{17}$ or C_1-C_6 -alkyl which may furthermore carry one or two C_1-C_6 -alkoxy substituents or R^{10} is C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, partially or completely halogenated C_1-C_6 -alkyl, C_3-C_7 -cycloalkyl, C_1-C_6 -alkylthio- C_1-C_6 -alkyl, $-N(R^{15})R^{16}$ or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy or C_1-C_6 -alkoxycarbonyl,

 R17 is hydrogen, $^{C}_{1}$ - $^{C}_{6}$ -alkyl, $^{C}_{3}$ - $^{C}_{6}$ -alkenyl, $^{C}_{3}$ - $^{C}_{6}$ -alkynyl, C_3 - C_7 -cycloalkyl, partially or completely halogenated C_2 - C_6 -alkyl, partially or completely halogenated C_3 - C_6 -alkenyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 - ${\tt alkyloximino-C_1-C_6-alkyl,\ C_1-C_6-alkylcarbonyl,\ C_1-C_6-alkoxycarbonyl\ or\ C_1-C_6-alkoxycarbonyl\ or\ C_1-C_6-alkylcarbonyl\ or\ C_1-C_6-alkylca$ phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_1-C_6 -alkoxy and $C_1-C_6-alk\phi xy carbonyl;$

R11 is hydrogen, cyano, halogen, C1-C6-alkyl, C3-C6-alkenyl, 10 $C_3-C_6-alkynyl$, $C_1-C_6-alkoxy-C_1-C_6-alkyl$, alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, -NR¹⁸R¹⁹, where R¹⁸ and R^{19} have the same meanings as R^{15} and R^{16} , or phenyl which may furthermore carry from one to three of the following substituents: cyano, nitro, halogen, C1-C6-alkyl, partially 15 or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl,

 R^{13} is hydrogen, cyano, $C_1 - C_6$ -alkyl or $C_1 - C_6$ -alkoxycarbonyl. A phenyl isocyanate of the formula XIIa

20

5

25

30

where R¹ is halogen, cyano, nitro or trifluoromethyl; R² is hydrogen or halogen; W is $-C(R^8) = X^5$, $-C(R^8)(X^3R^6)(X^4R^7)$, $-C(R^8) = C(R^9) - CO - R^{10}$, $-CH(R^8) - CH(R^9) - CO - R^{10}$, $-C(R^8) = C(R^9) - CH_2 - CO - R^{10}, -C(R^8) = C(R^9) - C(R^{11}) = C(R^{12}) - CO - R^{10} \text{ or }$ $-C(R^8)=C(R^9)-CH_2-CH(R^{13})-CO-R^{10}$ where X3 and X4 are each oxygen or sulfur; X⁵ is oxygen, sulfur or a radical-NR¹⁴;

R14 is hydrogen, hydroxyl, C1-C6-alkyl, C3-C6-alkenyl, C_3-C_6 -alkynyl, C_3-C_7 -cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, c_1-c_6 -alkoxy, c_3-c_6 -alkenyloxy, c_3-c_6 -alkynyloxy, c_5-c_7 -

cycloalkoxy, C₅-C₇-cycloalkenyloxy, partially or completely halogenated C_1 - C_6 -alkoxy, partially or completely halogenated C_3 - C_6 -alkenyloxy, hydroxy- C_1 - C_6 -alkoxy, cyano c_1-c_6 -alkoxy, c_3-c_7 -cycloalkyl- c_1-c_6 -alkoxy, c_1-c_6 -alkoxy- C_1-C_6 -alkoxy, C_1-C_6 -alkoxy- C_3-C_6 -alkenyloxy, C_1-C_6 -5 alkylcarbonyloxy, C₁-C₆-alkoxycarbonyl-C₂-C₆- C_1-C_6 -alkylthio- C_1-C_6 -alkoxy, alkoxy, alkylamino-C₁-C₆-alkoxy, phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halo-10 genated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, phenyl-C₃-C₆-alkenyloxy phenyl- C_1 - C_6 -alkoxy, phenyl-C3-C6-alkynyloxy, where one or two methylene groups of each of the carbon chains may be replaced with -O-, -S- or -N(C_1 - C_6 -alkyl)- and each phenyl 15 ring may carry from one to three of the following cyano, nitro, halogen, C₁-C₆-alkyl, substituents: C_3 - C_6 -alkenyl, partially or completely halogenated $c_1 - c_6 - alkyl$, $c_1 - c_6 - alkoxy$ and $c_1 - c_6 - alkoxycarbonyl$, or $-N(R^{15})R^{16}$, where 20 R^{15} and R^{16} are each hydrogen, $C_1 - C_6 - alkyl$, $C_3 - C_6 - alkyl$ alkenyl, c_3 - c_6 -alkynyl, c_3 - c_6 -cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy c_1-c_6 -alkyl, c_1-c_6 -alkylcarbonyl, c_1-c_6 -alkoxycarbonyl, or phenyl which may carry from one to three of the 25 following substituents: cyano, nitro, halogen, C1- C_6 -alkyl, partially or completely halogenated C_1 - C_5 alkyl, c_3 - c_6 -alkenyl, c_1 - c_6 -alkoxy and c_1 - c_6 -alkoxycarbonyl, or R^{15} and R^{16} together with the common nitrogen atom form a saturated or unsaturated 4-membered to 7-30 membered heterocyclic structure, where one ring member may be replaced with -O-, -S-, -N=, -NH- or $-N(C_1-C_5-alkyl)-;$ and R^7 are each C_1-C_5 -alkyl, C_3-C_6 -alkenyl, C_3-C_6

alkynyl or C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, or 35 R^{6} and R^{7} together form a saturated or unsaturated,

10

15

20

25

30

35

two-membered to four-membered carbon chain which may carry an oxo substituent, where one member of this chain may be replaced with an oxygen, sulfur or nitrogen atom which is not adjacent to X^3 and X^4 , and where the chain may carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkynyloxy, partially or completely halogenated C_1 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 -alkyl, C_3 - C_6 -alkenyloxy- C_1 - C_6 -alkyl, C_3 - C_6 -alkyl, carboxyl, C_1 - C_6 -alkyl, C_3 - C_6 -alkyl, carboxyl, C_1 - C_6 -alkoxycarbonyl and C_1 - C_6 -alkylcarbonyloxy- C_1 - C_6 -alkyl;

is hydrogen, cyano, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl or C_1 - C_6 -alkoxycarbonyl;

 R^9 and R^{12} are each hydrogen, cyano, halogen, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, halo- C_1-C_6 -alkyl, C_1-C_6 -alkylcarbonyl or C_1-C_6 -alkoxycarbonyl;

 R^{10} is hydrogen, $O-R^{17}$, $S-R^{17}$ or C_1-C_8 -alkyl which may furthermore carry one or two C1-C5-alkoxy substituents or R^{10} is C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl, or phenyl which may carry from one to three -N(R15)R16 cyano, nitro, halogen, of the following substituents: C_1 - C_8 -alkyl, C_3 - C_6 -alkenyl, partially or completely halogenated $C_1 - C_6$ -alkyl, $C_1 - C_6$ -alkoxy or $C_1 - C_6$ -alkoxycarbonyl, R^{17} is hydrogen, $C_1 - C_6 - alkyl$, $C_3 - C_6 - alkenyl$, $C_3 - C_6 - alkynyl$, C_3 - C_7 -cycloalkyl, partially or completely halogenated C_2 - C_6 -alkyl, partially or completely halogenated C_3 - C_6 -alkenyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 alkyloximino- c_1 - c_6 -alkyl, c_1 - c_6 -alkylcarbonyl, c_1 - c_6 -alkoxycarbonyl or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, $C_1^{-C}_6$ -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C₁-C₆-alkoxycarbonyl;

 R^{11} is hydrogen, cyano, halogen, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, $C_1-C_6-alkoxy-C_1-C_6-alkyl$, $C_3-C_6-alkynyl$, alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, -NR¹⁸R¹⁹, where R¹⁸ and R^{19} have the same meanings as R^{15} and R^{16} , or phenyl which may furthermore carry from one to three of the following substituents: cyano, nitro, halogen, C1-C6-alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, R^{13} is hydrogen, cyano, $C_1 - C_6$ -alkyl or $C_1 - C_6$ -alkoxycarbonyl.

An N-phenylurethane of the formula 14.

5

10

25

30

where L^4 is C_1-C_6 -alkyl or phenyl; R¹ is halogen, cyano, nitro or trifluoromethyl; R² is hydrogen or halogen; W is $-C(R^8) = X^5$, $-C(R^8)(X^3R^6)(X^4R^7)$, 15 $-C(R^8)=C(R^9)-CO-R^{10}$, $-CH(R^8)-CH(R^9)-CO-R^{10}$, $-C(R^8) = C(R^9) - CH_2 - CO - R^{10}$, $-C(R^8) = C(R^9) - C(R^{11}) = C(R^{12}) - CO - R^{10}$ or $-C(R^8)=C(R^9)-CH_2-CH(R^{13})-CO-R^{10}$ where X3 and X4 are each oxygen or sulfur; X⁵ is oxygen, sulfur or a radical-NR¹⁴; 20

R14 is hydrogen, hydroxyl, C1-C6-alkyl, C3-C6-alkenyl, C3-C6-alkynyl, C3-C7-cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, c_1-c_6 -alkoxy, c_3-c_6 -alkenyloxy, c_3-c_6 -alkynyloxy, c_5-c_7 cycloalkoxy, C_5 - C_7 -cycloalkenyloxy, partially or completely halogenated C_1 - C_6 -alkoxy, partially or completely halogenated C_3 - C_6 -alkenyloxy, hydroxy- C_1 - C_6 -alkoxy, cyano $c_1-c_6-alkoxy$, $c_3-c_7-cycloalkyl-c_1-c_6-alkoxy$, $c_1-c_6-alkoxy-c_1-c_6$ C_1-C_6 -alkoxy, C_1-C_6 -alkoxy- C_3-C_6 -alkenyloxy, C_1-C_6 alkylcarbonyloxy, C₁-C₆-alkoxycarbonyl-C₂-C₆-C₁-C₆-alkylthio-C₁-C₆-alkoxy, alkoxy, alkylamino- C_1 - C_6 -alkoxy, phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, $C_1^{-C_6}$ -alkyl, partially or completely halo-

10

15

20

genated C_1-C_6 -alkyl, C_1-C_6 -alkoxy and C_1-C_6 -alkoxycarbonyl, phenyl- C_1 - C_6 -alkoxy, phenyl- C_3 - C_6 -alkenyloxy phenyl-C3-C6-alkynyloxy, where one or two methylene groups of each of the carbon chains may be replaced with -O-, -S- or -N(C_1 - C_5 -alkyl)- and each phenyl ring may carry from one to three of the following substituents: cyano, nitro, halogen, C₁-C₆-alkyl, $\mathbf{C_3}\mathbf{-C_6}\mathbf{-alkenyl}$, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy and C_1-C_6 -alkoxycarbonyl, or $-N(R^{15})R^{16}$, where $\rm R^{15}$ and $\rm R^{16}$ are each hydrogen, $\rm C_1-C_6-alkyl,\ C_3-C_6$ alkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy- $C_1-C_6-alkyl$, $C_1-C_6-alkylcarbonyl$, $C_1-C_6-alkoxycarbonyl$, or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C1- C_6 -alkyl, partially or completely halogenated C_1 - C_6 alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or R15 and R16 together with the common nitrogen atom form a saturated or unsaturated 4-membered to 7membered heterocyclic structure, where one ring member may be replaced with -O-, -S-, -N=, -NH- or $-N(C_1-C_6-alkyl)-;$

and R^7 are each C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 alkynyl or C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, or 25 R⁶ and R⁷ together form a saturated or unsaturated, two-membered to four-membered carbon chain which may carry an oxo substituent, where one member of this chain may be replaced with an oxygen, sulfur or nitrogen atom which is not adjacent to X3 and X4, and 30 where the chain may carry from one to three of the following radicals: cyano, nitro, amino, halogen, C₂-C₆-alkenyl, $C_1-C_6-alkoxy$, $C_1-C_8-alkyl$, alkenyloxy, C_3 - C_6 -alkynyloxy, partially or completely halogenated C_1 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, hydroxy-35 $c_1-c_6-alkyl$, $c_1-c_6-alkoxy-c_1-c_6-alkyl$, $c_3-c_6-alkenyloxy-c_1-c_6-alkyl$

is hydrogen, cyano, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl or C_1 - C_6 -alkoxycarbonyl;

5

10

15

25

30

 R^9 and R^{12} are each hydrogen, cyano, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkyl, C_1 - C_6 -alkyl, C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl or C_1 -

 C_8 -alkoxycarbonyl; R^{10} is hydrogen, $O-R^{17}$, $S-R^{17}$ or C_1-C_8 -alkyl which may furthermore carry one or two C_1-C_8 -alkoxy substituents or R^{10} is C_3-C_8 -alkenyl, C_3-C_8 -alkynyl, partially or completely halogenated C_1-C_6 -alkyl, C_3-C_7 -cycloalkyl, C_1-C_6 -alkylthio- C_1-C_6 -alkyl, $-N(R^{15})R^{16}$ or phenyl which may carry from one to three

of the following substituents: cyano, nitro, halogen, C_1-C_8 -alkyl, C_3-C_6 -alkenyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy or C_1-C_6 -alkoxycarbonyl,

R¹⁷ is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, partially or completely halogenated C_2 - C_6 -alkyl, partially or completely halogenated C_3 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkyloximino- C_1 - C_6 -alkyl, C_1 - C_6 -alkyloximino- C_1 - C_6 -alkyl, C_1 - C_6 -alkyloximino- C_1 - C_6 -C

cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxycarbonyl;

 R^{11} is hydrogen, cyano, halogen, C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, C_1-C_8 -alkylcarbonyl, C_1-C_6 -alkoxycarbonyl, $-NR^{18}R^{19}$, where R^{18} and R^{19} have the same meanings as R^{15} and R^{16} , or phenyl which may furthermore carry from one to three of the following substituents: cyano, nitro, halogen, C_1-C_6 -alkyl, partially or completely halogenated C_1-C_6 -alkyl, C_3-C_6 -alkenyl, C_1-C_6 -alkoxy and C_6-C_6 -alkoxycarbonyl,

 C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, R¹³ is hydrogen, cyano, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxycarbonyl.

15. A carbamyl chloride of the formula XIV

where R¹ is halogen, cyano, nitro or trifluoromethyl; R² is hydrogen or halogen; W is $-C(R^8)=X^5$, $-C(R^8)(X^3R^6)(X^4R^7)$, 5 $-C(R^8) = C(R^9) - CO - R^{10}$, $-CH(R^8) - CH(R^9) - CO - R^{10}$, $-C(R^8) = C(R^9) - CH_2 - CO - R^{10}$, $-C(R^8) = C(R^9) - C(R^{11}) = C(R^{12}) - CO - R^{10}$ or $-C(R^8)=C(R^9)-CH_2-CH(R^{13})-CO-R^{10}$ where X3 and X4 are each oxygen or sulfur; X⁵ is oxygen, sulfur or a radical-NR¹⁴; 10 R14 is hydrogen, hydroxyl, C1-C6-alkyl, C3-C6-alkenyl, C_3-C_6 -alkynyl, C_3-C_7 -cycloalkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, c_1-c_6 -alkoxy, c_3-c_6 -alkenyloxy, c_3-c_6 -alkynyloxy, c_5-c_7 cycloalkoxy, C₅-C₇-cycloalkenyloxy, partially or comple-15 tely halogenated C_1 - C_6 -alkoxy, partially or completely halogenated C_3 - C_6 -alkenyloxy, hydroxy- C_1 - C_6 -alkoxy, cyano c_1-c_6 -alkoxy, c_3-c_7 -cycloalkyl- c_1-c_6 -alkoxy, c_1-c_6 -alkoxy $c_{1}-c_{6}$ -alkoxy, $c_{1}-c_{6}$ -alkoxy- $c_{3}-c_{6}$ -alkenyloxy, $c_{-1}-c_{6}$ alkylcarbonyloxy, C_1-C_6 -alkoxycarbonyl- C_2-C_6 -20 C₁-C₆-alkylthio-C₁-C₆-alkoxy, alkylamino-C1-C6-alkoxy, phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C₁-C₆-alkyl, partially or completely halogenated $C_1^{-C}6^{-alkyl}$, $C_1^{-C}6^{-alkoxy}$ and $C_1^{-C}6^{-alkoxycarbonyl}$, 25 phenyl-C₃-C₆-alkenyloxy phenyl-C₁-C₆-alkoxy, phenyl- C_3 - C_6 -alkynyloxy, where one or two methylene groups of each of the carbon chains may be replaced with -O-, -S- or -N(C_1 - C_6 -alkyl)- and each phenyl ring may carry from one to three of the following 30 substituents: cyano, nitro, halogen, C₁-C₆-alkyl, C₃-C₆-alkenyl, partially or completely halogenated $C_1 - C_6$ -alkyl, $C_1 - C_6$ -alkoxy and $C_1 - C_6$ -alkoxycarbonyl,

		or $-N(R^{15})R^{16}$, where
5		R^{15} and R^{16} are each hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -
5		- ·
		alkenyl, C ₃ -C ₆ -alkynyl, C ₃ -C ₆ -cycloalkyl, partially
_		or completely halogenated C ₁ -C ₆ -alkyl, C ₁ -C ₆ -alkoxy-
5		C ₁ -C ₆ -alkyl, C ₁ -C ₆ -alkylcarbonyl, C ₁ -C ₆ -alkoxycarbonyl
		or phenyl which may carry from one to three of the
10	•	following substituents: cyano, nitro, halogen, C1-
	•	C_6 -alkyl, partially or completely halogenated C_1 - C_5 -
	-	alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or
10		R15 and R16 together with the common nitrogen atom
		form a saturated or unsaturated 4-membered to 7-
15		membered heterocyclic structure, where one ring
		member may be replaced with -O-, -S-, -N=, -NH- or
•		-N(C ₁ -C ₆ -alkyl)-;
15	R ⁶ a	and R^7 are each C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -
		alkynyl or C ₁ -C ₆ -alkoxy-C ₁ -C ₆ -alkyl, or
20		R ⁶ and R ⁷ together form a saturated or unsaturated,
		two-membered to four-membered carbon chain which may
		carry an oxo substituent, where one member of this
20		chain may be replaced with an oxygen, sulfur or
		nitrogen atom which is not adjacent to X3 and X4, and
25		where the chain may carry from one to three of the
	•	following radicals: cyano, nitro, amino, halogen,
		$C_1-C_6-alkyl$, $C_2-C_6-alkenyl$, $C_1-C_6-alkoxy$, $C_2-C_6-alkoxy$
25		alkenyloxy, C ₂ -C _c -alkynyloxy, partially or completely
		halogenated C_1 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, hydroxy- C_1 - C_6 -
30		alkyl, $C_4 - C_6 - alkoxy - C_1 - C_6 - alkyl, C_3 - C_6 - alkenyloxy -$
		$C_1-C_2-alkyl$, $C_2-C_6-alkynyloxy-C_1-C_6-alkyl$, carboxyl,
		C ₁ -C ₆ -alkoxycarbonyl and C ₁ -C ₆ -alkylcarbonyloxy-
30		C ₁ -C ₆ -alkyl;
	_ 0	± •
25	R8	is hydrogen, cyano, C ₁ -C ₆ -alkyl, C ₃ -C ₆ -alkenyl, C ₃ -
35		C ₆ -alkynyl, partially or completely halogenated C ₁ -
		C ₆ -alkyl, C ₃ -C ₇ -cycloalkyl, C ₁ -C ₆ -alkoxy-C ₁ -C ₆ -
		alkyl or C ₁ -C ₆ -alkoxycarbonyl;

 R^9 and R^{12} are each hydrogen, cyano, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl or C_1 - C_6 -alkoxycarbonyl;

is hydrogen, O-R17, S-R17 or C1-C8-alkyl which may furthermore carry one or two C₁-C₆-alkoxy substituents or R^{10} is C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl, -N(R15)R16 or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy or C_1-C_6 -alkoxycarbonyl, R^{17} is hydrogen, $C_1 - C_6$ alkyl, $C_3 - C_6$ alkenyl, $C_3 - C_6$ alkynyl, C_3-C_7 -cycloalkyl, partially or completely halogenated C_2 - $^{\mathrm{C}}_{6}$ -alkyl, partially or completely halogenated $^{\mathrm{C}}_{3}$ - $^{\mathrm{C}}_{6}$ -alkenyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 alkyloximino- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C₁-C₆-alkoxycarbonyl;

10

15

20

25

 R^{11} is hydrogen, cyano, halogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, -NR¹⁸R¹⁹, where R¹⁸ and R¹⁹ have the same meanings as R¹⁵ and R¹⁶, or phenyl which may furthermore carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl,partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, R¹³ is hydrogen, cyano, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxycarbonyl.

30 16. A herbicidal agent containing an inert liquid or solid carrier and a herbicidally effective amount of at least one substituted 3-phenyluracil of the formula I, Ia or Ib, or a salt or an enol ether of those compounds I in which R³ is hydrogen.

35 17. A method for controlling undesirable plant growth, wherein a herbicidally effective amount of a substituted 3-phenyluracil of the formula I, Ia or Ib, or a salt or an

enol ether of those compounds I in which R^3 is hydrogen according to claim 1 is allowed to act on plants, on their habitat or on seed.

- 18. An agent for the desiccation and defoliation of plants, containing, in addition to conventional additives, an amount, having a defoliant and/or desiccant effect, of at least one substituted 3-phenyluracil of the formula I, Ia or Ib, or a salt or an enol ether of those compounds I in which \mathbb{R}^3 is hydrogen.
- 19. A method for the desiccation and defoliation of plants, wherein an amount, having a defoliant or desiccant effect, of a substituted 3-phenyluracil I, Ia or Ib as claimed in claims 1 to 8 is allowed to act on the plants.

 20. A method as claimed in claim 19, wherein cotton is defoliated.

20

25

30

35

- 21. A pesticide containing inert carriers and a pesticidally effective amount of at least one substituted 3-phenyluracil of the formula I, Ia or Ib, or of a salt or of an enol ether of those compounds I in which \mathbb{R}^3 is hydrogen.
- 22. A method for controlling pests, wherein a pesticidally effective amount of a substituted 3-phenyluracil of the formula I, Ia or Ib, or of a salt of an enol ether of those compounds I in which R³ is hydrogen according to claim 1, is allowed to act on pests or their habitat.

 23. A process for the preparation of a substituted 3-
- 23. A process for the preparation of a substituted 3-phenyluracil I, Ia or Ib as claimed in claims 1 to 8, wherein
- a) an enamine ester of the formula II or an enaminecarboxylate of the formula III

where L^1 is C_1 - C_6 -alkyl or phenyl, is cyclized and, if desired, the substituted 3-phenyluracil I in which R^3 is hydrogen is liberated from the resulting metal salt by means of an acid, or

- b) a substituted 3-phenyluracil I in which ${\sf R}^3$ is hydrogen is alkylated or acylated or
- c) a substituted 3-phenyluracil I in which ${\sf R}^1$ is halogen is reacted with a metal cyanide or
- d) a pyrimidone derivative of the formula IVa or IVb

where Hal is halogen is reacted with a compound HO-R³', HS-R³' Me[®] OR³' or Me[®] SR³', where Me[®] is one equivalent of a metal ion, or

- e) a substituted 3-phenyluracil I in which W is $-CO-R^8$ is acetalated with a compound $H-X^3R^6$, $H-X^4R^7$ or $H-X^3(R^6R^7)X^4-H$ or
- f) a substituted 3-phenyluracil I in which W is $-C(R^8)(x^3R^6)(x^4R^7)$ is subjected to acetal cleavage or
- g) a substituted 3-phenyluracil I in which W is -C(R⁸)=0 is reacted with a phosphorylide of the formulae Va to Vd

$$\begin{split} R_{3}P = & CR^{9} - CO - R^{10} & Va, \\ R_{3}P = & C\left(R^{9}\right) - CH_{2} - CO - R^{10} & Vb, \\ R_{3}P = & C\left(R^{9}\right) - C\left(R^{11}\right) = & C\left(R^{12}\right) - CO - R^{10} & Vc, \\ R_{3}P = & C\left(R^{9}\right) - CH_{2} - CHR^{13} - CO - R^{10} & Vd, \end{split}$$

where R is a C-organic substituent, or with a phosphonium salt of the formulae VIa to VId $R_3P^{\bullet}-CH(R^{\circ})-CO-R^{10}$ Hal^{\bullet} VIa,

$$R_3P^{\bullet}-CH(R^9)-CH_2-CO-R^{10}$$
 Hale VIb, $R_3P^{\bullet}-CH(R^9)-CR^{11}=CR^{12}-CO-R^{10}$ Hale Vic, $R_3P^{\bullet}-CH(R^9)-CH_2-CHR^{13}-CO-R^{10}$ Hale Vid,

where Hal is halogen, or with a phosphonate of the

25

5

10

15

20

30

formulae VIIa to VIId $(RO)_2 PO-CH(R^9)-CO-R^{10} \qquad \qquad VIIa, \\ (RO)_2 PO-CH(R^9)-CH_2-CO-R^{10} \qquad \qquad VIIb, \\ (RO)_2 PO-CH(R^9)-CR^{11}=CR^{12}-CO-R^{10} \qquad \qquad VIIc, \\ (RO)_2 PO-CH(R^9)-CH_2-CHR^{13}-CO-R^{10} \qquad \qquad VIId, \\ or$

- h) a substituted 3-phenyluracil I in which W is $-C(R^8)=0$ is reacted with an amine, hydroxylamine or hydrazine H_2N-R^{14} or
- 10 i) a substituted 3-phenyluracil I in which W is $-C(R^8)=N-R^{14}$ is cleaved to give a compound I in which W is $-C(R^8)=0$ or
 - k) a substituted 3-phenyluracil I in which χ^2 is oxygen is reacted with a sulfurization reagent or
- 15 1) a substituted 3-phenyluracil I in which \mathbb{R}^5 is hydrogen is halogenated or
 - m) a substituted 3-phenyluracil I in which W is cyano is reduced to a compound I in which W is formyl.

Substituted 3-phenyluracils

Description

The present invention relates to novel substituted 3-phenyluracils of the general formula I

where

5

 X^1 and X^2 are each oxygen or sulfur; W is $-C(R^8) = X^5$, $-C(R^8)(X^3R^8)(X^4R^7)$, $-C(R^8) = C(R^9) - CO - R^{10}$, $-CH(R^8) - CH(R^9) - CO - R^{10}$, $-C(R^8) = C(R^9) - CH_2 - CO - R^{10}$, $-C(R^8) = C(R^9) - C(R^{11}) = C(R^{12}) - CO - R^{10}$ or 10 $-C(R^8) = C(R^9) - CH_2 - CH(R^{13}) - CO - R^{10}$ where X3 and X4 are each oxygen or sulfur; X⁵ is oxygen, sulfur or a radical-NR¹⁴; R14 is hydrogen, hydroxyl, C1-C6-alkyl, C3-C6-alkenyl, C_3-C_6 -alkynyl, C_3-C_7 -cycloalkyl, partially or comple-15 tely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, c_1-c_6 -alkoxy, c_3-c_6 -alkenyloxy, c_3-c_6 -alkynyloxy, c_5-c_7 cycloalkoxy, C_5 - C_7 -cycloalkenyloxy, partially or completely halogenated C_1 - C_6 -alkoxy, partially or completely halogenated C_3 - C_6 -alkenyloxy, hydroxy- C_1 - C_6 -alkoxy, cyano-20 c_1-c_6 -alkoxy, c_3-c_7 -cycloalkyl- c_1-c_6 -alkoxy, c_1-c_6 -alkoxy $c_1-c_6-alkoxy$, $c_1-c_6-alkoxy-c_3-c_6-alkenyloxy$, $c_1-c_6-alkoxy$ alkylcarbonyloxy, C₁-C₆-alkoxycarbonyl-C₂-C₆-C₁-C₆-alkylthio-C₁-C₆-alkoxy, alkoxy, alkylamino- C_1 - C_6 -alkoxy, phenyl which may carry from 25 one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -alkoxy and C_1-C_6 -alkoxycarbonyl, phenyl-C₃-C₆-alkenyloxy phenyl-C₁-C₆-alkoxy, phenyl-C3-C6-alkynyloxy, where one or two methylene 30 groups of each of the carbon chains may be replaced

with -O-, -S- or -N(C_1 - C_6 -alkyl)- and each phenyl ring may carry from one to three of the following

substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or -N(R¹⁵)R¹⁶, where

5 R¹⁵ and R¹⁶ are each hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or R¹⁵ and R¹⁶ together with the common nitrogen atom form a saturated or unsaturated 4-membered to 7-

membered heterocyclic structure, where one ring

member may be replaced with -O-, -S-, -N=, -NH- or $-N(C_1-C_6-alkyl)-;$

15

35

and R^7 are each C_1-C_6 -alkyl, C_3-C_6 -alkenyl, alkynyl or C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, or R⁸ and R⁷ together form a saturated or unsaturated, 20 two-membered to four-membered carbon chain which may carry an oxo substituent, where one member of this chain may be replaced with an oxygen, sulfur or nitrogen atom which is not adjacent to X^3 and X^4 , and where the chain may carry from one to three of the 25 following radicals: cyano, nitro, amino, halogen, C_2-C_6 -alkenyl, C_1-C_6 -alkoxy, $C_1-C_6-alkyl$, alkenyloxy, C₃-C₆-alkynyloxy, partially or completely halogenated C_1 - C_6 -alkyl, cyano- C_1 - C_6 -alkyl, hxdroxy- C_1 - C_6 alkyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, C_3-C_6 -alkenyloxy-30 $c_1-c_6-alkyl$, $c_3-c_6-alkynyloxy-c_1-c_6-alkyl$, carboxyl, C_1 - C_6 -alkoxycarbonyl and C_1 - C_6 -alkylcarbonyloxy-C₁-C₆-alkyl;

Is hydrogen, cyano, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, partially or completely halogenated C_1 - C_6 -alkyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl or C_1 - C_6 -alkoxycarbonyl;

```
R^9 and R^{12} are each hydrogen, cyano, halogen, C_1-C_6-alkyl,
         C_1-C_6-alkoxy, halo-C_1-C_6-alkyl, C_1-C_6-alkylcarbonyl or C_1-
         C<sub>6</sub>-alkoxycarbonyl;
              is hydrogen, O-R^{17}, S-R^{17} or C_1-C_6-alkyl which may
         furthermore carry one or two C_1-C_6-alkoxy substituents or
 5
         R^{10} is C_3-C_6-alkenyl, C_3-C_6-alkynyl, partially or completely
         halogenated alkyl, C_3-C_7-cycloalkyl, C_1-C_6-alkylthio-C_1-C_6-alkyl,
         -N(R15)R16
                            or phenyl which may carry from one to three
         of the following substituents: cyano, nitro, halogen,
10
         C_1-C_6-alkyl, C_3-C_6-alkenyl, partially or completely halogen-
         ated C_1-C_6-alkyl, C_1-C_6-alkoxy or C_1-C_6-alkoxycarbonyl,
         R^{17} is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl,
         ^{
m C_3-C_7-cycloalkyl,} partially or completely halogenated ^{
m C_2-}
         ^{\mathrm{C}}_{6}-alkyl, partially or completely halogenated ^{\mathrm{C}}_{3}-^{\mathrm{C}}_{6}-al-
         kenyl, cyano-C_1-C_6-alkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl, C_1-C_6-
15
         alkyloximino-C_1-C_6-alkyl, C_1-C_6-alkylcarbonyl, C_1-C_6-alkoxycarbonyl or
         phenyl which may carry from one to three of the following substituents:
         cyano, nitro, halogen, C_1-C_6-alkyl, partially or completely
         halogenated C_1-C_6-alkyl, C_3-C_6-alkenyl, C_1-C_6-alkoxy and
20
         C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl;
         R^{11} is hydrogen, cyano, halogen, C_1-C_6-alkyl, C_3-C_6-alkenyl,
         C3-C6-alkynyl,
                                 C_1-C_6-alkoxy-C_1-C_6-alkyl,
         alkylcarbonyl, C_1-C_6-alkoxycarbonyl, -NR<sup>18</sup>R<sup>19</sup>, where R<sup>18</sup> and
         R^{19} have the same meanings as R^{15} and R^{16}, or phenyl which
25
         may furthermore carry from one to three of the following
         substituents: cyano, nitro, halogen, C1-C8-alkyl, partially
         or completely halogenated {\rm C_{1}}{\rm -C_{6}}{\rm -alkyl}, {\rm C_{3}}{\rm -C_{6}}{\rm -alkenyl}, {\rm C_{1}}{\rm -c_{6}}{\rm -alkenyl}
         {\bf C_6}-alkoxy and {\bf C_1}-{\bf C_6}-alkoxycarbonyl,
         R^{13} is hydrogen, cyano, C_1 - C_6 - alkyl or C_1 - C_6 - alkoxycarbonyl;
         R1 is halogen, cyano, nitro or trifluoromethyl;
30
         R2 is hydrogen or halogen;
         R^3 is hydrogen, nitro, C_1-C_6-alkyl, C_3-C_6-alkenyl, C_3-C_6-
         alkynyl, C3-C8-cycloalkyl, C3-C8-cycloalkylcarbonyl, cyano-
         ^{\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{alkyl}}, partially or completely halogenated ^{\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{complete}}
35
         alkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl, formyl, C_1-C_6-alkanoyl,
         C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl, partially or completely halogenated
         C<sub>1</sub>-C<sub>6</sub>-alkylcarbonyl;
```

a group $-N(R^{20})R^{21}$, where R^{20} and R^{21} have one of the meanings of R15 and R16; phenyl or phenyl-C1-C6-alkyl, where each phenyl ring may carry from one to three of the following radicals: cyano, nitro, halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, par-5 tially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 alkoxy and C₁-C₆-alkoxycarbonyl; R⁴ is hydrogen, cyano, nitro, halogen, C₁-C₆-alkyl, C₂-C₆alkenyl, C_2 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, partially or completely halogenated C_1-C_6 -alkyl, C_1-C_6 -hydroxyalkyl, cyano-10 c_1-c_6 -alkyl, c_1-c_6 -alkoxy, c_1-c_6 -alkylthio, c_1-c_6 -alkoxy- c_1-c_6 alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl or phenyl which may carry from one to three of the following radicals: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and C_1 -15 C_c-alkoxycarbonyl; ${
m R}^{5}$ is hydrogen, cyano, nitro, halogen, ${
m C}_{1}$ - ${
m C}_{6}$ -alkyl, ${
m C}_{2}$ - ${
m C}_{6}$ alkenyl, c_2 - c_6 -alkynyl, c_3 - c_7 -cycloalkyl, partially or completely halogenated C_1 - C_6 -alkyl, C₁-C₆-hydroxyalkyl, cyano-C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₅-20 alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl, formyl, C₁-C₆-alkylcarbonyl, partially or completely halogenated C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, $-N(R^{22})R^{23}$, where R^{22} and \mathbb{R}^{23} have one of the meanings of \mathbb{R}^{15} and \mathbb{R}^{16} , or phenyl which may carry from one to three of the following radicals: 25 cyano, nitro, halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, partially or completely halogenated C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and C₁-C₆-alkoxycarbonyl, or R4 and R5 together form a saturated or unsaturated 3membered or 4-membered carbon chain which may contain 30 from one to three of the following hetero atoms: 1 or 2 oxygen atoms, 1 or 2 sulfur atoms and from 1 to 3 nitrogen atoms, and the chain may furthermore carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_1-C_6 -alkyl, C_2-C_8 -alkenyl, C_1-C_6 -alkoxy, C_1-C_6 -35 alkylthio and C₁-C₆-alkoxycarbonyl; with the proviso that R' may not be trifluoromethyl at the

5

10

15

20

same time as $\rm R^5$ is hydrogen when W is -CH=CH-CO-R^{10} where $\rm R^{10}$ is $\rm C_1$ -C_6-alkoxy or $\rm C_3$ -C_7-cycloalkoxy, and the salts and enol ethers of those compounds I in which $\rm R^3$ is hydrogen.

The present invention furthermore relates to herbicidally effective 3-phenyluracils of the general formulae Ia and Ib

in which R^{3} is C_1-C_6 -alkyl, C_3-C_6 -alkenyl or C_3-C_6 -alkynyl.

The present invention furthermore relates to herbicides, pesticides and plant growth-regulating agents which contain these compounds as active ingredients.

U.S. Patent 4,979,982 discloses herbicidal 3-phenyluracils of the formula I'

where R^a is hydrogen or halogen, R^b is C_1-C_{12} -alkyl or cycloalkyl and R^c is C_1-C_{12} -alkyl or C_3-C_{12} -alkenyl.

Furthermore, EP-A 408 382 describes, inter alia, structures of the formula I''

where R^d is hydrogen, alkyl, hydroxymethyl or haloalkyl, R^e is haloalkyl, R^f is hydrogen, alkyl, haloalkyl, hydroxymethyl, halogen or nitro, X¹ is oxygen or sulfur, R^e is hydrogen, alkyl, alkoxy or alkoxyalkyl and R^h is hydrogen, alkyl, cycloalkyl, haloalkyl, phenyl or benzyl and Rⁱ is halogen, nitro or cyano.

5

15

20

25

Moreover, Swiss Patent 482,402 relates to weed killers which contain as active ingredients, inter alia, substituted uracils and thiouracils of the formula I'''

where Aryl is aryl which is unsubstituted or substituted by fluorine, chlorine, bromine, hydroxyl, alkoxy, cyano, alkylthio, alkyl or nitro, Rk is dialkylphosphoryl, alkyl, alkenyl, cyano, hydrogen, unsubstituted or substituted carbamoyl, substituted unsubstituted or alkyl, unsubstituted or substituted thiocarbamoyl, unsubstituted or substituted mercapto or acyl, R1 is alkyl, alkoxy, hydrogen, chlorine or bromine and R^m is alkylthio, alkoxy, cyano, thiocyano, alkenyl, alkvlthioalkyl, halogen, hydrogen or unsubstituted or substituted alkyl or R1 and Rm together form a tri-, tetra- or pentamethylene chain.

Other 3-aryluracils of the same type as compounds I are disclosed, for example, in the following publications: EP-A 195 346, EP-A 260 621, EP-A 438 209, WO 88/10254, WO 89/02891 and WO 89/03825.

The selectivity of these known herbicides with respect to the weeds is, however, satisfactory only to a limited extent, so that it is an object of the present invention to provide novel herbicidal compounds with which the weeds can be selectively controlled more effectively than in the past (and which are well tolerated by the crops).

This object is achieved by the substituted 3-phenyluracils I, Ia and Ib defined at the outset.

10

15

20

25

30

Herbicides have also been found which contain these substances and have a good herbicidal action. They are tolerated and hence selective in broad-leaved crops and in monocotyledon plants which are not members of the Gramineae.

The novel compounds I, Ia and Ib are also suitable as defoliants or desiccants in, for example, cotton, potatoes, rape, sunflowers, soybeans or field beans. Some compounds I can also be used for controlling pests, in particular insects.

The meanings stated above for R¹ to R¹⁷ are general terms for an individual list of the specific group members. All alkyl, alkenyl, alkynyl, haloalkyl and haloalkoxy moieties may be straight-chain or branched. The haloalkyl and haloalkoxy radicals may carry identical or different halogen atoms.

Examples of specific meanings are as follows: halogen: fluorine, chlorine, bromine and iodine, preferably fluorine and chlorine; C_1-C_6 -alkyl: methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl,

n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl,

5

10

15

```
2,2-dimethylpropyl, 1-ethylpropyl, 1,1-dimethylpropyl,
      1,2-dimethylpropyl, n-hexyl, 1-methylpentyl, 2-methyl-
                                      4-methylpentyl,
                  3-methylpentyl,
      dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-
      dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-
      ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-
      trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-
      methylpropyl, preferably methyl, ethyl, isopropyl, n-
      butyl and tert-butyl;
                      vinyl and C3-C6-alkenyl, such as prop-1-
      C<sub>2</sub>-C<sub>6</sub>-alkenyl:
      en-1-yl, prop-2-en-1-yl, 1-methylethenyl, n-buten-1-yl,
      n-buten-2-yl, n-buten-3-yl, 1-methylprop-1-en-1-yl,
                                 1-methylprop-2-en-1-yl,
                                                             2-
      methylprop-1-en-1-yl,
      methylprop-2-en-1-yl, n-penten-1-yl, n-penten-2-yl,
                                                             n-
      penten-3-yl, n-penten-4-yl, 1-methylbut-1-en-1-yl,
                                                             2-
      methylbut-1-en-1-yl, 3-methylbut-1-en-1-yl, 1-methylbut-
      2-en-1-yl, 2-methylbut-2-en-1-yl, 3-methylbut-2-en-1-yl,
      1-methylbut-3-en-1-yl, 2-methylbut-3-en-1-yl, 3-methyl-
                          1,1-dimethylprop-2-en-1-yl,
      but-3-en-1-y1,
      dimethylprop-1-en-1-yl, 1,2-dimethylprop-2-en-1-yl,
20
      ethylprop-1-en-2-yl, 1-ethylprop-2-en-1-yl, n-hex-1-en-
       1-y1, n-hex-2-en-1-y1, n-hex-3-en-1-y1, n-hex-4-en-1-y1,
      n-hex-5-en-1-yl, 1-methylpent-1-en-1-yl, 2-methylpent-1-
      en-1-yl, 3-methylpent-1-en-1-yl, 4-methylpent-1-en-1-yl,
                                  2-methylpent-2-en-1-yl,
25
       1-methylpent-2-en-1-yl,
                                 4-methylpent-2-en-1-yl,
                                                             1-
      methylpent-2-en-1-yl,
      methylpent-3-en-1-yl, 2-methylpent-3-en-1-yl, 3-methyl-
      pent-3-en-1-yl, 4-methylpent-3-en-1-yl, 1-methylpent-4-
       en-1-yl, 2-methylpent-4-en-1-yl, 3-methylpent-4-en-1-yl,
       4-methylpent-4-en-1-yl, 1,1-dimethylbut-2-en-1-yl,
                                                           1,1-
30
       dimethylbut-3-en-1-yl, 1,2-dimethylbut-1-en-1-yl,
                                                           1,2-
                               1,2-dimethylbut-3-en-1-yl,
                                                           1,3-
       dimethylbut-2-en-1-yl,
                                                           1,3-
                               1,3-dimethylbut-2-en-1-yl,
       dimethylbut-1-en-1-yl,
                               2,2-dimethylbut-3-en-1-yl,
                                                           2,3-
       dimethylbut-3-en-1-yl,
                                                           2,3-
                               2,3-dimethylbut-2-en-1-yl,
35
       dimethylbut-1-en-1-yl,
                               3,3-dimethylbut-1-en-1-yl,
                                                           3,3-
       dimethylbut-3-en-1-yl,
       dimethylbut-2-en-1-yl, 1-ethylbut-1-en-1-yl, 1-ethylbut-
```

```
2-en-1-yl, 1-ethylbut-3-en-1-yl, 2-ethylbut-1-en-1-yl, 2-
       ethylbut-2-en-1-yl,
                                2-ethylbut-3-en-1-yl,
       trimethylprop-2-en-1-yl, 1-ethyl-1-methylprop-2-en-1-yl,
       1-ethyl-2-methylprop-1-en-1-yl and 1-ethyl-2-methylprop-
       2-en-1-yl, preferably vinyl, prop-2-en-1-yl and but-2-en-
5
       2-y1;
       C_2-C_6-alkynyl: ethynyl and C_3-C_6-alkynyl, such as prop-1-
       yn-1-yl, prop-2-yn-3-yl, n-but-1-yn-1-yl, n-but-1-yn-4-
       yl, n-but-2-yn-1-yl, n-pent-1-yn-1-yl, n-pent-1-yn-3-yl,
       n-pent-1-yn-4-yl, n-pentyn-5-yl, pent-2-yn-1-yl, pent-2-
10
       yn-4-yl, pent-2-yn-5-yl, 3-methylbut-1-yn-1-yl, 3-methyl-
       but-1-yn-3-yl, 3-methylbut-1-yn-4-yl, n-hex-1-yn-1-yl, n-
       hex-1-yn-3-yl, n-hex-1-yn-4-yl, n-hex-1-yn-5-yl, n-hex-
       1-yn-6-yl, n-hex-2-yn-1-yl, n-hex-2-yn-4-yl, n-hex-2-yn-
       5-yl, n-hex-2-yn-6-yl, n-hex-3-yn-1-yl, n-hex-3-yn-2-yl,
15
                                   3-methylpent-1-yn-3-yl,
       3-methylpent-1-yn-1-yl,
                                  3-methylpent-1-yn-5-yl,
       methylpent-1-yn-4-yl,
       methylpent-1-yn-1-yl, 4-methylpent-2-yn-4-yl
       methylpent-2-yn-5-yl, preferably prop-2-ynyl;
       C3-C8-cycloalkyl: cyclopropyl, cyclobutyl, cyclopentyl,
20
       cyclohexyl, cycloheptyl and cyclooctyl, preferably cyclo-
       propyl, cyclopentyl and cyclohexyl;
       partially or completely halogenated C_1-C_6-alkyl: chloromethyl, di-
       chloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoro-
       methyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoro-
25
       methyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl,
       2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-
                            2,2-dichloro-2-fluoroethyl,
       2,2-difluoroethyl,
       trichloroethyl, pentafluoroethyl
                                            and 3-chloropropyl,
30
       preferably trifluoromethyl;
       hydroxy-C<sub>1</sub>-C<sub>6</sub>-alkyl: hydroxymethyl, 1-hydroxyeth-1-yl, 2-
       hydroxyeth-1-yl, 1-hydroxyprop-1-yl, 2-hydroxyprop-1-yl,
       3-hydroxyprop-1-yl, 1-hydroxyprop-2-yl, 2-hydroxyprop-2-
       yl, 1-hydroxybut-1-yl, 2-hydroxybut-1-yl, 3-hydroxybut-
       1-y1, 4-hydroxybut-1-y1, 1-hydroxybut-2-y1, 2-hydroxybut-
35
       2-yl, 1-hydroxybut-3-yl, 2-hydroxybut-3-yl, 1-hydroxy-2-
       methylprop-3-yl, 2-hydroxy-2-methylprop-3-yl, 3-hydroxy-
```

```
2-methylprop-3-yl and 2-hydroxymethylprop-2-yl, prefer-
       ably hydroxymethyl;
                                                                2-
                           cyanomethyl,
                                            1-cyanoeth-1-yl,
       cyano-C<sub>1</sub>-C<sub>5</sub>-alkyl:
       cyanoeth-1-yl, 1-cyanoprop-1-yl,
                                            2-cyanoprop-1-yl,
                                                                3-
 5
       cyanoprop-1-yl, 1-cyanoprop-2-yl, 2-cyanoprop-2-yl,
       cyanobut-1-yl, 2-cyanobut-1-yl,
                                            3-cyanobut-1-yl,
                                            2-cyanobut-2-yl,
       cyanobut-1-yl, 1-cyano-but-2-yl,
       cyanobut-3-yl, 2-cyanobut-3-yl, 1-cyano-2-methylprop-3-
       y1, 2-cyano-2-methylprop-3-y1, 3-cyano-2-methylprop-3-y1
       and 2-cyanomethylprop-2-yl, preferably cyanomethyl;
10
       amino-C<sub>1</sub>-C<sub>6</sub>-alkyl: aminomethyl, 1-aminoethyl,
                                                         2-amino-
       ethyl, 1-aminoprop-1-yl, 2-aminoprop-1-yl, 3-aminoprop-
       1-y1, 1-aminobut-1-y1, 2-aminobut-1-y1, 3-aminobut-1-y1,
       4-aminobut-1-yl, 1-aminobut-2-yl, 2-aminobut-2-yl,
       aminobut-2-yl, 4-aminobut-2-yl, 1-(aminomethyl)-eth-1-yl,
15
       1-(aminomethyl)-1-(methyl)-eth-1-yl and 1-(aminomethyl)-
       prop-1-yl, preferably aminomethyl;
       phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl: benzyl, 1-phenylethyl, 2-phenylethyl,
       1-phenylprop-1-yl, 2-phenylprop-1-yl, 3-phenylprop-1-yl,
       1-phenylbut-1-yl, 2-phenylbut-1-yl, 3-phenylbut-1-yl, 4-
20
       phenylbut-1-yl, 1-phenylbut-2-yl, 2-phenylbut-2-yl,
       phenylbut-2-yl, 4-phenylbut-2-yl, 1-(phenylmethyl)-eth-
                1-(phenylmethyl)-1-(methyl)-eth-1-yl
       (phenylmethyl)-prop-1-yl, preferably benzyl;
       C<sub>1</sub>-C<sub>5</sub>-alkoxy: methoxy, ethoxy, n-propoxy, 1-methylethoxy,
25
       n-butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1-dimethyl-
       ethoxy, n-pentoxy, 1-methylbutoxy, 2-methylbutoxy,
       methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy,
                               1-ethylpropoxy,
                                                 n-hexyloxy,
       2,2-dimethylpropoxy,
       methylpentyloxy, 2-methylpentyloxy, 3-methylpentyloxy, 4-
30
       methylpentyloxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy,
                              2,2-dimethylbutoxy, 2,3-dimethyl-
       1,3-dimethylbutoxy,
       butoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy,
       1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-
       1-methylpropoxy and 1-ethyl-2-methylpropoxy, preferably
35
       C1-C4-alkoxy, such as methoxy and ethoxy;
       partially or completely halogenated C_1-C_6-alkoxy:
       2-fluoroethoxy, 2,2-difluoroethoxy,
```

```
2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-
       2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-
       trichloroethoxy and 3-bromoprop-1-yloxy;
       C1-C6-alkylthio: methylthio, ethylthio, n-propylthio, 1-
5
       methylethylthio,
                          n-butylthio,
                                         1-methylpropylthio,
       methylpropylthio, 1,1-dimethylethylthio, n-pentylthio, 1-
       methylbutylthio, 2-methylbutylthio, 3-methylbutylthio,
                                  1,2-dimethylpropylthio,
       1,1-dimethylpropylthio,
       dimethylpropylthio, 1-ethylpropylthio, n-hexylthio,
       methylpentylthio, 2-methylpentylthio, 3-methylpentylthio
10
       4-methylpentylthio, 1,1-dimethylbutylthio, 1,2-dimethyl-
       butylthio, 1,3-dimethylbutylthio, 2,2-dimethylbutylthio,
       2,3-dimethylbutylthio, 3,3-dimethylbutylthio,
       butylthio, 2-ethylbutylthio, 1,1,2-trimethylpropylthio,
       1,2,2-trimethylpropylthio, 1-ethyl-1-methylpropylthio and
15
       1-ethyl-2-methylpropylthio, preferably C_1-C_4-alkylthio,
       such as methylthio and ethylthio;
       C<sub>1</sub>-C<sub>6</sub>-alkoxy-C<sub>1</sub>-C<sub>6</sub>-alkyl: methoxymethyl, ethoxymethyl, n-
       propoxymethyl, (1-methylethoxy)-methyl, n-butoxymethyl,
       (1-methylpropoxy)-methyl, (2-methylpropoxy)-methyl, (1,1-
20
       dimethylethoxy)-methyl, methoxyethyl, ethoxyethyl,
       propoxyethyl, (1-methylethoxy)-ethyl, n-butoxyethyl, (1-
                                (2-methylpropoxy)-ethyl,
       methylpropoxy)-ethyl,
       dimethylethoxy)-ethyl, 3-methoxypropyl, 2-methoxypropyl
       and 2-ethoxypropyl, preferably C<sub>1</sub>-C<sub>4</sub>-alkoxy-C<sub>1</sub>- or -C<sub>2</sub>-
25
       alkyl, such as methoxymethyl, ethoxymethyl, 2-methoxy-
       ethyl and 2-ethoxyethyl;
       C<sub>1</sub>-C<sub>5</sub>-alkylamino: methylamino, ethylamino, n-propylamino,
       1-methylethylamino, n-butylamino, 1-methylpropylamino, 2-
       methylpropylamino, 1,1-dimethylethylamino, n-pentylamino,
30
       1-methylbutylamino, 2-methylbutylamino, 3-methylbutyl-
       amino, 2,2-dimethylpropylamino, 1-ethylpropylamino, n-
                          1,1-dimethylpropylamino,
                                                             1,2-
       hexylamino,
                                1-methylpentylamino,
       dimethylpropylamino,
       pentylamino, 3-methylpentylamino, 4-methylpentylamino,
35
                                  1,2-dimethylbutylamino,
                                                              1,3-
       1,1-dimethylbutylamino,
       dimethylbutylamino, 2,2-dimethylbutylamino,
                                                              2,3-
```

```
3,3-dimethylbutylamino,
       dimethylbutylamino,
       ethylbutylamino,
                              2-ethylbutylamino,
       trimethylpropylamino,
                               1,2,2-trimethylpropylamino,
       ethyl-1-methylpropylamino
                                          and
                                                  1-ethv1-2-
      methylpropylamino, preferably C1-C1-alkylamino, such as
 5
      methylamino and ethylamino;
       di-C1-C6-alkylamino: N, N-dimethylamino, N, N-diethylamino,
      N, N-dipropylamino,
                           N, N-di-(1-methylethyl)-amino,
      dibutylamino, N, N-di-(1-methylpropyl)-amino, N, N-di-(2-
      methylpropyl) -amino, N, N-di-(1, 1-dimethylethyl) -amino, N-
10
       ethyl-N-methylamino, N-methyl-N-propylamino, N-methyl-N-
       (1-methylethyl)-amino, N-butyl-N-methylamino, N-methyl-
       N-(1-methylpropyl)-amino, N-methyl-N-(2-methylpropyl)-
       amino, N-(1,1-dimethylethyl)-N-methylamino,
                                                    N-ethyl-N-
       propylamino, N-ethyl-N-(1-methylethyl)-amino, N-butyl-N-
15
       ethylamino, N-ethyl-N-(1-methylpropyl)-amino, N-ethyl-N-
       (2-methylpropyl)-amino, N-ethyl-N-(1,1-dimethylethyl)-
                N-(1-methylethyl)-N-propylamino,
                                                    N-butyl-N-
       amino,
                     N-(1-methylpropyl)-N-propylamino,
                                                         N-(2-
       propylamino,
                                      N-(1,1-dimethylethyl)-N-
20
      methylpropyl)-N-propylamino,
                                                         N-(1-
                      N-butyl-N-(1-methylethyl)-amino,
      propylamino,
      methylethyl)-N-(1-methylpropyl)-amino, N-(1-methylethyl)-
                                   N-(1,1-dimethylethyl)-N-(1-
       N-(2-methylpropyl)-amino,
       methylethyl)-amino, N-butyl-N-(1-methylpropyl)-amino, N-
      butyl-N-(2-methylpropyl)-amino, N-butyl-N-(1,1-dimethyl-
25
                        N-(1-methylpropyl)-N-(2-methylpropyl)-
       ethyl)-amino,
       amino, N-(1,1-dimethylethyl)-N-(1-methylpropyl)-amino and
       N-(1,1-dimethylethyl)-N-(2-methylpropyl)-amino,
       preferably dimethylamino and diethylamino;
                                                ethylcarbonyl,
       C,-Cs-alkylcarbonyl:
                              methylcarbonyl,
30
      propylcarbonyl, 1-methylethylcarbonyl, butylcarbonyl, 1-
                                2-methylpropylcarbonyl,
       methylpropylcarbonyl,
                               pentylcarbonyl,
                                                1-methylbutyl-
       dimethylethylcarbonyl,
      carbonyl, 2-methylbutylcarbonyl, 3-methylbutylcarbonyl,
       1,1-dimethylpropylcarbonyl, 1,2-dimethylpropylcarbonyl,
35
                                       1-ethylpropylcarbonyl,
       2,2-dimethylpropylcarbonyl,
       hexylcarbonyl, 1-methylpentylcarbonyl, 2-methylpentyl-
```

```
carbonyl, 3-methylpentylcarbonyl, 4-methylpentylcarbonyl,
                                    1,2-dimethylbutylcarbonyl,
       1,1-dimethylbutylcarbonyl,
       1,3-dimethylbutylcarbonyl,
                                    2,2-dimethylbutylcarbonyl,
       2,3-dimethylbutylcarbonyl, 3,3-dimethylbutylcarbonyl, 1-
. 5
       ethylbutylcarbonyl, 2-ethylbutylcarbonyl,
                                                    1,1,2-tri-
       methylpropylcarbonyl, 1,2,2-trimethylpropylcarbonyl, 1-
       ethyl-1-methylpropylcarbonyl
                                           and
                                                   1-ethy1-2-
       methylpropylcarbonyl, preferably C1-C1-alkylcarbonyl, such
       as methylcarbonyl and ethylcarbonyl;
       C,-C6-alkylcarbonyloxy: methylcarbonyloxy, ethylcarbonyl-
10
      oxy, n-propylcarbonyloxy, 1-methylethylcarbonyloxy, n-
       butylcarbonyloxy, 1-methylpropylcarbonyloxy,
                                                     2-methyl-
                            1,1-dimethylethylcarbonyloxy,
       propylcarbonyloxy,
                          1-methylbutylcarbonyloxy, 2-methyl-
       pentylcarbonyloxy,
                            3-methylbutylcarbonyloxy,
       butylcarbonyloxy,
15
       dimethylpropylcarbonyloxy, 1,2-dimethylpropylcarbonyloxy,
       2,2-dimethylpropylcarbonyloxy, 1-ethylpropylcarbonyloxy,
       n-hexylcarbonyloxy, 1-methylpentylcarbonyloxy, 2-methyl-
                             3-methylpentylcarbonyloxy,
       pentylcarbonyloxy,
                                 1,1-dimethylbutylcarbonyloxy,
       methylpentylcarbonyloxy,
20
       1,2-dimethylbutylcarbonyloxy,
       dimethylbutylcarbonyloxy, 2,2-dimethylbutylcarbonyloxy,
       2,3-dimethylbutylcarbonyloxy,
                                  1-ethylbutylcarbonyloxy,
       dimethylbutylcarbonyloxy,
       ethylbutylcarbonyloxy, 1,1,2-trimethylpropylcarbonyloxy,
25
       1,2,2-trimethylpropylcarbonyloxy,
                                                  1-ethyl-1-
                                                 1-ethy1-2-
                                         and
       methylpropylcarbonyloxy
                                        preferably
                                                        C, -C, -
       methylpropylcarbonyloxy,
       alkylcarbonyloxy, such as methylcarbonyloxy and ethyl-
30
       carbonyloxy;
       C<sub>1</sub>- · or · C<sub>2</sub>-haloalkylcarbonyloxy: chloroacetyl, dichloro-
       acetyl, trichloroacetyl, fluoroacetyl, difluoroacetyl,
                          chlorofluoroacetyl, dichlorofluoro-
       trifluoroacetyl,
       acetyl, chlorodifluoroacetyl,
                                        a-fluoropropionyl,
       fluoropropionyl, \beta, \beta, \beta-difluoropropionyl,
                                                   β,β,β-tri-
35
       fluoropropionyl, \beta-chloro-\beta-fluoropropionyl, \beta-chloro-
```

```
\beta, \beta-diffuoropropionyl, \beta, \beta-dichloro-\beta-fluoropropionyl,
                                     and
                                            pentafluoropropionyl,
       \beta, \beta, \beta-trichloropropionyl
       preferably trichloroacetyl and trifluoroacetyl;
       C_1-C_6-alkoxycarbonyl-C_1-C_6-alkyl:
                                           methoxycarbonylmethyl,
 5
                                  n-propoxycarbonylmethyl,
       ethoxycarbonylmethyl,
       methylethoxycarbonyl)-methyl, n-butoxycarbonylmethyl, (1-
       methylpropoxycarbonyl)-methyl, (2-methylpropoxycarbonyl)-
                 (1,1-dimethylethoxycarbonyl)-methyl,
       methyl,
       carbonylethyl, ethoxycarbonylethyl, n-propoxycarbonyl-
       ethyl, (1-methylethoxycarbonyl)-ethyl, n-butoxycarbonyl-
10
       ethyl, (1-methylpropoxycarbonyl)-ethyl, (2-methylpropoxy-
       carbonyl)-ethyl, (1,1-dimethylethoxycarbonyl)-ethyl, 3-
       (methoxycarbonyl)-propyl, 2-(methoxycarbonyl)-propyl and
                                       preferably
                                                      C<sub>1</sub>-C<sub>4</sub>-alkoxy-
       2-(ethoxycarbonyl)-propyl,
       carbonyl-C<sub>1</sub>- or -C<sub>2</sub>-alkyl, such as methoxycarbonylmethyl,
15
                                2-methoxycarbonylethyl
       ethoxycarbonylmethyl,
       ethoxycarbonylethyl;
       di-C<sub>1</sub>-C<sub>6</sub>-alkylamino-C<sub>1</sub>-C<sub>6</sub>-alkoxy: N, N-dimethylaminoethoxy,
       N, N-diethylaminoethoxy,
                                    N, N-di(n-propyl) -aminoethoxy,
20
                                                N, N-dibutylamino-
       N, N-di-(1-methylethyl)-aminoethoxy,
       ethoxy, N,N-di-(1-methylpropyl)-aminoethoxy, N,N-di-(2-
                                     N, N-di-(1, 1-dimethylethyl)-
       methylpropyl)-aminoethoxy,
                      N-ethyl-N-methylaminoethoxy,
                                                       N-methyl-N-
       aminoethoxy,
                                N-methyl-N-(1-methylethyl)-
       propylaminoethoxy,
       aminoethoxy, N-butyl-N-methylaminoethoxy, N-methyl-N-(1-
25
       methylpropyl)-aminoethoxy, N-methyl-N-(2-methylpropyl)-
       aminoethoxy, N-(1,1-dimethylethyl)-N-methylaminoethoxy,
       N-ethyl-N-propylaminoethoxy, N-ethyl-N-(1-methylethyl)-
       aminoethoxy, N-butyl-N-ethylaminoethoxy, N-ethyl-N-(1-
                                      N-ethyl-N-(2-methylpropyl)-
30
       methylpropyl)-aminoethoxy,
       aminoethoxy, N-ethyl-N-(1,1-dimethylethyl)-aminoethoxy,
       N-(1-methylethyl)-N-propylaminoethoxy, N-butyl-N-propyl-
       aminoethoxy, N-(1-methylpropyl)-N-propylaminoethoxy, N-
        (2-methylpropyl)-N-propylaminoethoxy,
                                                          N-(1,1-
       dimethylethyl)-N-propylaminoethoxy, N-butyl-N-(1-methyl-
35
       ethyl)-aminoethoxy, N-(1-methylethyl)-N-(1-methylpropyl)-
                         N-(1-methylethyl)-N-(2-methylpropyl)-
       aminoethoxy,
```

5

10

15

20

25

30

aminoethoxy, N-(1,1-dimethylethyl)-N-(1-methylethyl)aminoethoxy, N-butyl-N-(1-methylpropyl)-aminoethoxy, Nbutyl-N-(2-methylpropyl)-aminoethoxy, N-butyl-N-(1,1dimethylethyl)-aminoethoxy, N-(1-methylpropyl)-N-(2methylpropyl)-aminoethoxy, N-(1,1-dimethylethyl)-N-(1methylpropyl)-aminoethoxy and N-(1,1-dimethylethyl)-N-(2methylpropyl)-aminoethoxy.

The substituted phenyluracils I may be in the form of their agriculturally useful salts or enol ethers, as long as R³ is hydrogen.

Suitable agriculturally useful salts are in general the salts of bases which do not adversely affect the herbicidal action of I.

Particularly suitable basic salts are those of the alkali metals, preferably the sodium and potassium salts, those of the alkaline earth metals, preferably calcium, magnesium and barium salts, and those of the transition metals, preferably manganese, copper, zinc and iron salts, as well as the ammonium salts, which may carry from one to three C₁-C₄-alkyl or hydroxy-C₁-C₄-alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium and trimethyl-2-hydroxyethylammonium salts, the phosphonium salts, the sulfonium salts, preferably tri-C₁-C₄-alkyl-sulfonium salts, and the sulfoxonium salts, preferably tri-C₁-C₄-alkylsulfoxonium salts.

With regard to the use of the novel 3-phenyl-uracils I, Ia and Ib as herbicidal, plant growth-regulating and insecticidal compounds, the variables preferably have the following meanings:

where X^1 and X^2 independently of one another are each sulfur or oxygen and X, W, R^1 , R^2 , R^3 , R^4 , R^{23} , R^5 and R^{56}

may be freely combined with one another, with the proviso that R^4 cannot be 4.27 if at the same time R^5 is 5.01 and W is $-C(R^8)=C(R^9)-CO-R^{10}$, where R^8 is 8.01, R^9 is 9.01 and R^{10} is 10.03-10.12 or 10.20-10.23.

R¹ is particularly preferably a radical selected from the group consisting of 1.01-1.07,

 R^2 is particularly preferably a radical selected from the group consisting of 2.01-2.06,

R³ is particularly preferably a radical selected from the group consisting of 3.01-3.97,

R^{3'} is particularly preferably a radical selected from the group consisting of 3'.01-3'.17,

R⁴ is particularly preferably a radical selected from the group consisting of 4.01-4.72,

15 R⁵ is particularly preferably a radical selected from the group consisting of 5.001-5.103 or

R⁴ and R⁵ together particularly preferably form a radical selected from the group consisting of 45.01-45.53 and W is particularly preferably one of the following radicals W1-W7:

 $W1 - C(R8)(X^3R6)(R4R7)$

W2 -C(R8) = X5,

5

10 -

20

25

30

35

W3 - C(R8) = C(R9) - CO - R10

W4 -CR8=CR9-CH2-CO-R10,

w5 -CR8=CR9-CR11=CR12-CO-R10,

W6 -CR8=CR9-CH2-CHR13-CO-R10;

where X^3 and X^4 independently of one another are each 0 or S, X^3 is O, S or NR^{14} ,

 R^6 and R^7 independently of one another are each a radical selected from the group consisting of 6.01-6.17,

or R^6 and R^7 together form a radical selected from the group consisting of 67.01-67.60,

 R^8 is a radical selected from the group consisting of 8.01-8.22,

 R^9 and R^{12} are each a radical selected from the group

consisting of 9.01-9.23,

5

 R^{10} is a radical selected from the group consisting of 10.01-10.138,

R¹¹ is a radical selected from the group consisting of 11.01-11.25,

 R^{13} is a radical selected from the group consisting of 13.01-13.08 and

- 5 R^{14} is a radical selected from the group consisting of 14.001-14.162,
- 10 and all these radicals may be combined freely with one another.

Table 1		Table 2		
No.	R1	No.	R 2	
1.01	F	2.01	н	
1.02	C1	2.02	F	
1.03	Br	2.03	Cl	
1.04	i ·	2.04	8r	
1.05	CN	2.05	I	
1.06	NO ₂	2.06	CN	
1.07	CF 3	•		

No.	R 3	No.	R 3
3.01	н	3.19	C (CH ₃) ₂ -CN
3.02	CH ₃	3.20	C(CH ₃) ₂ CH ₂ -CN
3.03	C ₂ H ₅	3.21	CH ₂ C1
3.04	n-C ₃ H ₇	3.22	CH ₂ -CH ₂ C1
3.05	i -C ₃ H ₇	3.23	CH(CH ₃)-CH ₂ C1
3.06	n-C ₄ H ₉	3.24	C(CH ₃) ₂ -C1
3.07	i -C4Hg	3.25	CHC1 ₂
3.08	S-C4Hg	3.26	CF ₂ Cl
3.09	tertC ₄ H ₉	3.27	CF ₃
3.10	cyclopropyl	3.28	C ₂ F ₅
3.11	cyclobutyl	3.29	CF ₂ H
3.12	cyclopentyl	3.30	CH2-CH=CH2
3.13	cyclohexyl	3.31	CH(CH ₃)CH=CH ₂
3.14	c ycloheptyl	3.32	CH ₂ -CH=CH-CH ₃
3.15	cyclooctyl	3.34	CH ₂ -phenyl
3.16	CH ₂ -CN	3.35	CH ₂ -C≡CH
3.17	CH ₂ CH ₂ -CN	3.36	CH(CH3)C≡CH
3.18	CH(CH ₃)CH ₂ -CN	3.37	C(CH ₃) ₂ C≡CH

Table 3 (Continued)

No.	R 3	No.	R 3
3.38	phenyl	3.69	CO-tertC4H9
3.39	2-F-phenyl	3.70	CO-cyclopropyl
3.40	3-F-phenyl	3.71	CO-cyclopentyl
3.41	4-F-phenyl	3.72	Co-cyclohexyl
3.42	2-C1-phenyl	3.73	CO-CF ₃
3.43	3-Cl-phenyl	3.74	CO-CCl ₃
3.44	4-Cl-phenyl	3.75	CO-OCH 3
3.45	2-CH ₃ -phenyl	3.76	CO-OC 2H5
3.46	3-CH ₃ -phenyl	3.77	COO-n-C 3H7
3.47	4-CH ₃ -phenyl	3.78	COO-i-C ₃ H ₇
3.48	2-CF ₃ -phenyl	3.79	COO-n-C4Hg
3.49	3-CF ₃ -phenyl	3.80	COO-i-C4H9
3.50	4-CF ₃ -phenyl	3.81	COO-s-C4H9
3.51	2-OCH ₃ -phenyl	3.82	COO-tertC4H9
3.52	3-OCH ₃ -phenyl	3.83	CH ₂ -OCH ₃
3.53	4-OCH 3-pheny l	3.84	$CH(CH_3)-OCH_3$
3.54	4-COOCH 3-pheny l	3.85	$CH(CH_3)-OC_2H_5$
3.56	4-COOC 2H5-pheny l	3.86	$CH(CH_3)CH_2-OCH_3$
3.57	4-NO ₂ -phenyl	3.87	CH 2OC 2H5
3.58	4-CN-pheny l	3.88	NH ₂
3.59	2,4-Cl ₂ -phenyl	3.89	NHCH 3
3.60	2, 4-(CH ₃) ₂ -phenyl	3.90	NHC 2H5
3.61	CHO.	3.91	N(CH ₃) 2
362	CO-CH ₃	3.92	N(CH3)C2H5
3.63	CO-C 2H5	3.93	NH-CH-CH=CH ₂
3.64	CO-n-C 3H7	3.94	NH-CH 2C≡CH
3.65	CO-i-C ₃ H ₇	3.95	NH-cyclopropyl
3.66	CO-n-C4H9	3.96	NH-cyclopentyl
3.67	CO-i-C4H9	3.97	NH-cyclohexyl
3.68	CO-s-C4Hg		

Table 4

	•	•	
No.	R 4	No.	R4
4.01	Н	4.39	4-F-phenyl
4.02	F	4.40	2-Cl-phenyl
4.03	Cl	4.41	3-Cl-phenyl
4.04	8r	4.42	4-Cl-phenyl
4.05	I	4.43	2-CH ₃ -phenyl
4.06	CH ₃	4.44	3-CH ₃ -phenyl
4.07	C 2H5	4.45	4-CH ₃ -phenyl
4.08	n-C 3H7	4.46	2-CF ₃ -phenyl
4.09	i -C ₃ H ₇	4.47	3-CF ₃ -phenyl
4.10	n-C ₄ H ₉	4.48	4-CF 3-phenyl
4.11	i-C4Hg	4.49	2-OCH ₃ -pheny l
4.12	S-C4Hg	4.50	3-OCH ₃ -pheny l
4.13	tertC ₄ H ₉	4.51	4-OCH 3-pheny l
4.14	cyclopropyl	4.52	4-COOCH 3-pheny l
4.15	cyclobutyl	4.53	4-COOC 2H5-pheny l
4.16	Cyclopentyl	4.54	4-NO ₂ -pheny l
4.17	cyclohexyl	4.55	4-CN-phenyl
4.18	Cycloheptyl	4.56	2,4-Cl ₂ -phenyl
4.19	cyclooctyl	4.57	2,6-Cl ₂ -phenyl
4.20	CN .	4.58	2,4-(CH ₃) ₂ -phenyl
4.21	CH ₂ C1	4.59	CH ₂ -OCH ₃
4.22	CH 2CH 2C1	4.60	CH 2-OC 2H5
4.23	CH(CH ₃)CH ₂ Cl	4.61	CH ₂ CH ₂ -OCH ₃
4.24	CHC1 ₂	4.62	CH 2CH 2-OC 2H5
4.25	CC1 ₃	4.63	CH(CH ₃)-OCH ₃
4.26	CF ₂ Cl	4.64	CH ₂ -OH
4.27	CF ₃	4.65	CH ₂ CH ₂ -OH
4.28	C 2F 5	4.66	CH ₂ CN
4.29	CF ₂ H	4.67	CH ₂ CH ₂ -CN
4.30	CH=CH ₂	4.68	CH ₂ SCH ₃
4.31	CH2-CH=CH2	4.69	CH ₂ CH ₂ -SCH ₃
4.32	CH ₂ -CH=CH-CH ₃	4.70	CH2CH2-SC2H5
4.33	C≡CH	4.71	CH2CH2-S-1-C3H7
4.34	CH ₂ -C≡CH	4.72	CH2-SC2H5
4.35	CH(CH ₃)-C≡CH		•
4.36	phenyl		
4.37	2-F-pheny l		
4.38	3-F-phenyl		

Table 5

No.	<u>R</u> 5	No.	R 5
5.001	Н	5.039	2-F-phenyl
5.002	F	5.040	3-F-phenyl
5.003	Cl	5.041	4-F-phenyl
5.004	8r	5.042	2-Cl-phenyl
5.005	I ,	5.043	3-C1-pheny l
5.006	CH 3	5.044	4-Cl-phenyl
5.007	C 2H5	5.045	2-CH ₃ -phenyl
5.008	n-C ₃ H ₇	5.046	3-CH ₃ -phenyl
5.009	i -C 3H7	5.047	4-CH ₃ -pheny l
5.010	n-C ₄ H ₉	5.048	2-CF ₃ -phenyl
5.011	i-C4Hg	5.049	3-CF ₃ -pheny1
5.012	S-C4H9	5.050	4-CF ₃ -phenyl
5.013	tertC ₄ H ₉	5.051	2-OCH ₃ -phenyl
5.014	n-C ₅ H ₁₁	5.052	3-OCH ₃ -phenyl
5.015	n-C ₆ H _{1 3}	5.053	4-COOCH 3-phenyl
5.016	cyclopropyl	5.054	4-COOC 2H5-pheny l
5.017	cyclobutyl	5.055	4-SCF ₃ -phenyl
5.018	Cyclopentyl	5.056	4-NO ₂ -phenyl
5.019	⊂yclohexyl	5.057	4-CN-phenyl
5.020	Cycloheptyl	5.058	2,4-Cl ₂ -phenyl
5.021	cyclooctyl	5.059	2,6-Cl ₂ -phenyl
5.022	CN	5.060	2,4-(CH ₃) ₂ -phenyl
5.023	CH ₂ C1	5.061	CHO
5.024	CH ₂ CH ₂ -Cl	5.062	CO-CH ₃
5.025	CH(CH3)CH2-C1	5.063	CO-C 2H5
5.026	CHC1 ₂	5.064	CO-n-C ₃ H ₇
5.027	CC1 ₃	5.065	CO-i-C ₃ H ₇
5.028	CF ₂ C1	5.066	CO-n-C ₄ Hg.
5.029	CF ₃	5.067	CO-i-C ₄ H ₉
5.030	C ₂ F ₅	5.068	CO-s-C4H9
5.031	CF ₂ H	5.069	CO-tertC ₄ H ₉
5.032	CH=CH ₂	5.070	CO-C5H11
5.033	CH ₂ -CH=CH ₂	5.071	CO-C ₆ H ₁₃
5.034	CH ₂ -CH=CH-CH ₃	5.073	CO-CF ₃
5.035	C≡CH	5.074	CO-CCl ₃
5.036	CH ₂ -C≡CH	5.075	COO-CH3-
5.037	CH(CH ₃)-C≡CH	5.076	COO-C 2H5
5.038	pheny l		

Table 5 (Continued)

No.	R 5	No.	R5
5.077	COO-n-C 3H7	5.092	CH2-SCH3
5.078	COO-i-C ₃ H ₇	5.093	CH2CH2-SCH3
5.079	COO-n-C4H9	5.094	CH2CH2-SC2H5
5.080	COO-i-C4H9	5.095	CH2CH2-S-i-C3H7
5.081	COO-s-C4Hg	5.096	CH2-SC2H5
5.082	COO-tertC4Hg	5.097	NO ₂
5.083	CH 2-0CH 3	5.098	NH ₂
5.084	CH 2-OC 2H5	5.099	NH(CH ₃)
5.085	CH2CH2-OCH3	5.100	N(CH ₃) ₂
5.086	CH 2CH 2-OC 2H5	5.101	NH(C ₂ H ₅)
5.087	CH(CH ₃)-OCH ₃	5.102	N(C ₂ H ₅)
5.088	CH₂OH	5.103	N(CH ₃)(C ₂ H ₅)
5.089	CH ₂ CH ₂ -OH		
5.090	CH 2CN		
5.091	CH ₂ CH ₂ -CN		

No.	R4 + R5	No.	R4 + R5
45.01	-(CH ₂) ₃ -	45.18	-0-CH=CH-
45.02	-(CH ₂) ₄ -	45.19	-CH=CH-O-
45.03	-CH(CH ₃)-(CH ₂) ₃ -	45.20	-S-CH=CH-
45.04	-CH ₂ -CH(CH ₃)-(CH ₂) ₂	45.21	-CH=CH-S-
45.05	-(CH ₂) ₂ -CH(CH ₃)-CH ₂ -	45.22	-NH-CH=CH-
45.06	-(CH ₂) ₃ -CH(CH ₃)-	45.23	-NCH ₃ -CH=CH-
45.07	-CH ₂ -O-CH ₂ -	45.24	-CH=CH-NH-
45.08	-(CH ₂) ₂ -0-	45.25	-CH=CH-NCH ₃ -
45.09	-CH ₂ -O-(CH ₂) ₂ -	45.26	-N=CH-CH=CH-
45.10	-(CH ₂) ₂ -0-CH ₂ -	45.27	-CH=N-CH=CH-
45.11	-S-(CH ₂) ₂ -	45.28	-CH=CH-N=CH-
45.12	-CH ₂ -S-CH ₂ -	45.29	-CH=CH-CH=N-
45.13	-(CH ₂) ₂ -S-	45.30	-CH=N-O-
45.14	-S-(CH ₂) ₃ -	45.31	-O-N=CH-
45.15	-CH ₂ -S-(CH ₂) ₂ -	45.32	-O-CH=N-
45.16	-(CH ₂) ₂ -S-CH ₂ -	45.33	-N=CH-O-
45.17	-(CH ₂) ₃ -S-	45.34	-CH=N-S-

Table 6 (Continued)

No.	R4 + R5	No	R4 + R5
45.35	-S-N=CH-	45.45	-S-C (CH 3) =N-
45.36	-S-CH=N-	45.46	-C (NO 2) =CH-S-
45.37	-N=CH-S-	45.47	-C(CN)=CH-S-
45.38	-N=CH-NH-	45.48	-C (NO 2) =CH-O-
45.39	-N=CH-NCH ₃ -	45.49	-C (CN) =CH-O-
45.40	-NH-CH=N-	45.50	-N(CH3)-CH=CH-N(CH3)-
45.41	-N (CH 3) -CH=N-	45.51	-CH=CH-N=N-
45.42	-CH=CH-CH=CH-	45.52	-N=N-NH-
45.43	-NH-CH=CH-NH-	45.53	-N=N-N (CH 3)-
45.44	-N=N-CH=CH-	•	•

•	•
No.	Řő or R7
6.01	CH ₃
6.02	C ₂ H ₅
6.03	n-C ₃ H ₇
6.04	i -C ₃ H ₇
6.05	n-C4Hg
6.06	i-C4Hg
6.07	s-C4Hg
6.08	tertC ₄ H ₉
6.09	n-C ₅ H ₁₁
6.10	n-C ₆ H _{1 3}
6.11	CH ₂ CH=CH ₂
6.12	CH(CH ₃)-CH=CH ₂
6.13	CH ₂ C≡CH
6.14	CH(CH ₃)C≡CH
6.15	CH ₂ OCH ₃
6.16	C ₂ H ₄ OCH ₃
6.17	C 2H4OC 2H5

Table 8

No.	R6 + R7
67.01	-(CH ₂) ₂ -
67.02	-CH(CH ₃)-CH ₂ -
67.03	-CH(C ₂ H ₅)-CH ₂ -
67.04	-CH(CH ₃)-CH-(CH ₃)-
67.05	-C (CH ₃) ₂ -CH ₂ -
67.06	-CH(CH=CH ₂)-CH ₂ -
67.07	-CH(CH ₂ Cl)-CH ₂ -
67.08	-CH(CH ₂ Br)-CH ₂ -
	-CH(CH ₂ OH)-CH ₂ -
67.10	-CH(CH ₂ OCH ₃)-CH ₂ -
67.11	-CH(CH ₂ OC ₂ H ₅)-CH ₂ -
67.12	-CH(CH ₂ OCH ₂ CH=CH ₂)-CH ₂ -
67.13	-CH(CH2OCH2C=CH)-CH2-
67.14	-CH(COOH)-CH ₂ -
67.15	-CH(COOCH ₃)-CH ₂ -
67.16	-CH(COOC ₂ H ₅)-CH ₂ -
67.17	-CH(COO-n-C ₃ H ₇)-CH ₂ -
67.18	-CH(COO-i-C ₃ H ₇)-CH ₂ -
67.19	-CH(COO-n-C4Hg)-CH2-
67.20	-CH(COO-n-C5H11)-CH2-
67.21	-CH(COO-n-C6H13)-CH2-
67.22	-(CH ₂) ₃ -
67.23	-CH(CH ₃)-(CH ₂) ₂ -
67.24	-CH2-CH(CH3)-CH2-
67.25	-CH(C ₂ H ₅)-(CH ₂) ₂ -
67.26	-CH2-CH(C2H5)-CH2-
67.27	-CH(CH3)-CH2-CH(CH3)-
67.28	-CH ₂ -C(CH ₃) ₂ -CH ₂ -
67.29	-CH(CH ₂ OH)-(CH ₂) ₂ -
67.30	-CH ₂ -CH(CH ₂ OH)-CH ₂
67.31	-CH(CH ₂ OCH ₃)-(CH ₂) ₂ -
67.32	-CH(CH2OCH2CH=CH2)-(CH2)2-
67.33	-CH(CH ₂ O-CO-CH ₃)-CH ₂ -

Table 8 (Continued)

No	R6 + R7
67.33	-CH(CH2OCH2C≡CH)-(CH2)2-
67.34	$-CH(CH_2OC(O)CH_3)-(CH_2)_2$
67.35	-CH ₂ -CH(CH ₂ OCH ₃)-CH ₂ -
67.36	-CH ₂ -CH(CH ₂ OCH ₂ CH=CH ₂)-CH ₂ -
67.37	-CH 2-CH (CH 2OCH 2C≡CH) -CH 2-
67.38	-CH ₂ -CH(CH ₂ OC(0)CH ₃)-CH ₂ -
67.39	-CH(CH ₂ C1)-(CH ₂) ₂
67.40	-CH ₂ -CH(CH ₂ C1)-CH ₂ -
67.41	-C(CH ₃)-(COOCH ₃)-CH ₂ -
67.42	-C (CH ₃)-(COOC ₂ H ₅)-CH ₂ -
67.43	$-C(CH_3)(COO-n-C_3H_7)-CH_2-$
67.44	-C(CH ₃)(COO-n-C ₄ H ₆)-CH ₂ -
67.45	-CH(CH ₂ CN)-CH ₂ -
67.46	-CH(CH2CN)-(CH2)2-
67.47	-CH 2-CH (CH 2CN)-CH 2-
67.48	-CH 2-O-CH 2-
67.49	-CH 2-NH-CH 2-
67.50	-CH ₂ -N(CH ₃)-CH ₂
67.51	-(CH ₂)4-
67.52	-CH ₂ -CH=CH-CH ₂ -
67.53	-CH ₂ -O-(CH ₂) ₂ -
67.54	-CO-CH ₂ -
67.55	-CO-(CH ₂) ₂ -
67.56	-CH 2-CO-CH 2-
67.57	-CO-C (CH ₃) ₂ -
67.58	-CO-O-CH ₂ -
67.59	-CH 2-S-CH 2-
67.60	-CH(CH ₂ O-CO-CH ₃)-CH ₂ -

Table	9	Table	10
No.	R8	No.	R ⁹ and R ¹²
8.01	Н	9.01	Н
8.02	CH ₃	9.02	F
8.03	C 2H5	9.03	Cl
8.04	n-C ₃ H ₇	9.04	Br
8.05	i-C ₃ H ₇	9.05	I .
8.06	n-C ₄ H ₉	9.06	CN
8.07	i-C4Hg	9.07	CH ₃
8.08	s-C4Hg	9.08	C ₂ H ₅
8.09	tertC ₄ Hg	9.09	n-C ₃ H ₇
8.10	n-C ₅ H ₁₁	9.10	i-C ₃ H ₇
8.11	n-C ₆ H _{1 3}	9.11	n-C ₄ H ₉
8.12	CH2-CH=CH2	9.12	i-C4Hg
8.13	CH2-C≡CH	9.13	s-C4Hg
8.14	CF ₃	9.14	tertC ₄ H ₉
8.15	CCl ₃	9.15	n-C ₅ H ₁₁
8.16	Cyclopropyl	9.16	OCH 3
8.17	cyclobutyl	9.17	OC 2H5
8.18	cyclopentyl	9.18	CF ₃
8.19	cyclohexyl	9.19	CO-CH ₃
8.20	CN	9.20	CO-C 2H5
8.21	CO-OCH 3	9.21	COOCH 3
8.22	CO-OC 2H5	9.22	COOC 2H5
•		9.23	COO-n-C 3H7

Table 11

No.	R10	No.	R10
10.01	н	10.33	O-3-Br-phenyl
10.02	ОН	10.34	0-4-F-phenyl
10.03	OCH 3	10.35	0-4-Cl-phenyl
10.04	OC 2H5	10.36	0-4-Br-phenyl
10.05	0-n-C ₃ H ₇	10.37	0-4-OCH ₃ -phenyl
10.06	0-i-C ₃ H ₇	10.38	0-4-CN-phenyl
10.07	0-n-C4H9	10.39	0-4-COOCH ₃ -phenyl
10.08	0-i-C4Hg	10.40	0-4-CH ₃ -phenyl
10.09	0-s-C4H9	10.41	0-2, 4-Cl ₂ -phenyl
10.10	O-tertC4Hg	10.42	0-2, 4-(CH ₃) ₂ -phenyl
10.11	0-n-C ₅ H ₁₁	10.43	O-CH 2CN
10.12	0-n-C ₆ H ₁₃	10.44	O-CH2CH=CCl2
10.14	O-CH ₂ CH=CH ₂	10.45	O-CH ₂ CH=CHCl
10.15	O-CH(CH3)CH=CH2	10.46	0-CH 20CH 3
10.16	O-CH-CH=CH-CH ₂	10.47	0-CH 20C 2H5
10.17	O-CH2-C≡CH	10.48	0-C ₂ H ₄ OCH ₃
10.18	O-CH(CH ₃)-C≡CH	10.49	0-C2H4OC2H5
10.19	0-CH2-C=C-CH3	10.50	0-CH(CH3)-OCH3
10.20	O-cyclopropyl	10.51	O-CH(CH ₃)-OC ₂ H ₅
10.21	O-cyclobutyl	10.52	O-CH 2CH=NOCH 3
10.22	O-cyclopentyl	10.53	O-C 2H4CH=NOCH 3
10.23	O-cyclohexyl	10.54	O-CH 2CH=NOC 2H5
10.24	0-CH ₂ -CF ₃	10.55	0-C(0)CH3
10.25	0-CH ₂ -CCl ₃	10.56	0-C(0)C ₂ H ₅
10.26	0-(CH ₂) ₃ -Br	10.57	0-C 2H4CH=NOC 2H5
10.27	O-phenyl	10.58	SCH ₃
10.28	0-2F-phenyl	10.59	SC 2H5
10.29	0-2C1-phenyl	10.60	S-n-C ₃ H ₇
10.30	0-2Br-phenyl	10.61	S-i-C ₃ H ₇
10.31	0-3F-phenyl	10.62	S-CH2CH=CH2
10.32	0-3Cl-phenyl	10.63	S-CH 2C≡CH

Table 11 (Continued)

No.	R1.0	No.	R10
10.64	S-phenyl	10.96	CH ₂ -OCH ₃
10.65	S-CH ₂ CN	10.97	CH(OCH ₃) ₂
10.66	S-CH ₂ OCH ₃	10.98	CH2-SCH3
10.67	CH ₃	10.99	NH ₂
10.68	C 2H5	10.100	NHCH 3
10.69	n-C ₃ H ₇	10.102	NH-n-C ₃ H ₇
10.70	i -C ₃ H ₇	10.103	NH-i-C ₃ H ₇
10.71	n-C ₄ H ₉	10.104	NH-n-C4Hg
10.72	i-C4Hg	10.105	N(CH ₃) ₂
10.73	s-C4Hg	10.106	N(C ₂ H ₅) ₂
10.74	tertC ₄ H ₉	10.107	N(CH3)C2H5
10.75	n-C ₅ H ₁₁	10.108	N(n-C ₃ H ₇) ₂
10.76	n-C ₆ H _{1 3}	10.109	NH-CH 2CH=CH 2
10.77	CH ₂ CH=CH ₂	10.110	NH-CH(CH ₃)-CH=CH ₂
10.78	CH ₂ C≡CH	10.111	NH-CH 2-C≡CH
10.79	CH(CH ₃)CH=CH ₂	10.112	NH-CH(CH3)-C≡CH
10.80	CH(CH ₃)C≡CH	10.113	N(CH ₃)-CH ₂ CH=CH
10.81	CH ₂ C1	10.114	N(CH3)-CH2C≡CH
10.82	CH ₂ Br	10.115	NH-cyclopropyl
10.83	CHC12	10.116	NH-cyclobutyl
10.84	CF ₃	10.117	NH-cyclopentyl
10.85	cyclopropyl	10.118	NH-cyclohexyl
10.86	cyclobutyl	10:119	N(CH ₃)-cyclohexyl
10.87	cyclopentyl	10.120	N(C ₂ H ₅)-cyclohexyl
10.88	cyclohexyl	10.121	NH-COCH 3
10.89	ph eny l'	10.122	NH-COC 2H5
10.90	2-F-pheny l	10.123	NH-COOCH 3
10.91	3-F-pheny l	10.124	NH-CH 20CH 3
10.92	4-F-phenyl	10.125	$NH-(CH_2)_2OCH_3$
10.93	2-Cl-phenyl	10.126	N-piperindinyl
10.94	4-Cl-phenyl	10.127	N-pyrrolidinyl
10.95	2,4-Cl ₂ -phenyl	10.128	N-morpholino

Table 11 (Continued)

R10	No.	R10
N-piperazinyl	10.137	0-C0-0CH ₃
NH-pheny l	10.138	0-C0-0C 2H5
NH-2-CH ₃ -phenyl		
NH-2-F-phenyl		
NH-4-F-phenyl		
NH-2-C1-pheny1	•	·
NH-4-Cl-phenyl		
NH-2,4-Cl ₂ -phenyl		•
	N-piperazinyl NH-phenyl NH-2-CH ₃ -phenyl NH-2-F-phenyl NH-4-F-phenyl NH-4-Cl-phenyl	N-piperazinyl 10.137 NH-phenyl 10.138 NH-2-CH ₃ -phenyl NH-2-F-phenyl NH-4-F-phenyl NH-4-Cl-phenyl

Table 12

No.	R11	No.	RII
11.01	н	.11.14	tertC4Hg
11.02	F	11.15	CH 2-CH=CH2
11.03	· c1	11.16	CH 2-C≡CH
11.04	Br	11.17	phenyl
11.05	I	11.18	4-Cl-phenyl
11.06	CN	11.19	N(CH ₃) ₂
11.07	CH ₃	11.20	COOCH 3
11.08	C ₂ H ₅	11.21	COOC 2H5
11.09	n-C ₃ H ₇	11.22	COCH ₃
11.10 .	i -C 3H7	11.23	COC 2H5
11.11	n-C4H9	11.24	CH 2OCH 3
11.12	i -C4H9	11.25	(CH ₂) ₂ -OCH ₃
11.13	s-C4Hg	•	

No.	R13	No.	R13	
13.01	н	13.05	n-C 3H7	
13.02	CN	13.06	i -C ₃ H ₇	
13.03	CH ₃	13.07	COOCH ₃	
13.04	C ₂ H ₅	13.08	COOC 2H5	•

Table 14

No.	R14
14.01	н
14.02	СН 3
14.03	C ₂ H ₅
14.04	n-Ç ₃ H ₇
14.05	i -C 3H7
14.06	n-C ₄ Hg
14.07	n-C ₅ H ₁₁
14.08	n-C ₆ H _{1 3}
14.10	CH ₂ CH=CH ₂
14.11	CH(CH ₃)-CH=CH ₂
14.12	CH ₂ -CH=CH-CH ₂
14.13	CH ₂ -C≡CH
14.14	CH(CH ₃)-C≡CH
14.15	CH ₂ -C≡C-CH ₃
14.16	cyclopropyl
14.17	cyclobutyl
14.18	Cyclopentyl
14.19	cyclohexyl
14.20	<pre>cycloheptyl</pre>
14.22	(CH ₂) ₂ C1
14.23	CH ₂ C1
14.25	phenyl
14.26	2-F-pheny l
14.27	3-F-pheny l
14.28	4-F-phenyl
14.29	2-C1-phenyl
14.30	3-C1-phenyl
14.31	4-C1-phenyl
14.32	2-Br-phenyl
14.33	3-Br-phenyl
14.34	4-Br-phenyl

Table 14 (Continued)

No.	R14
14.35	2-CH ₃ -phenyl
14.36	3-CH ₃ -phenyl
14.37	4-CH ₃ -phenyl
14.38	2-CF ₃ -phenyl
14.39	3-CF ₃ -phenyl
14.40	4-CF ₃ -phenyl
14.41	2-OCH 3-pheny l
14.42	3-OCH ₃ -phenyl
14.43	4-OCH 3-pheny l
14.44	4-NO ₂ -phenyl
14.45	4-CN-phenyl
14.46	2,4-Cl ₂ -phenyl
14.47	2, 4-(CH ₃) ₂ -phenyl
14.48	CH 2-OCH 3
14.49	(CH ₂) ₂ -OC ₂ H ₅
14.50	ОН
14.51	OCH ₃
14.52	OC 2H5
14.53	0-n-C 3H7
14.54	0-i-C ₃ H ₇
14.55	0-n-C4H9
14.56	0-i-C4H9
14.57	0-s-C4H9
14.58	O-tertC ₄ H ₉
14.59	O-CH ₂ CH=CH ₂
14.60	O-CH(CH ₃)CH=CH ₂
14.61	O-CH 2C≡CH
14.62	O-CH(CH ₃)-C≡CH
14.63	O-CH ₂ -C≡C-CH ₃
14.64	O-CH ₂ -CH=CH-CH ₃
14.65	O-cyclopentyl
14.66	O-cyclohexyl
14.67	O-cyclopent-3-enyl

Table 14 (Continued)

No.	R14
14 60	O avalahay 3 anul
14.68	O-cyclohex-3-enyl
14.69	0-(CH ₂) ₂ -Cl
14.70	0-(CH ₂) ₂ -Cl
14.71	0-(CH ₂)-F
14.72	0-CH ₂ -CF ₃
14.73	0-(CH ₂) ₂ -Br
14.74	O-CH ₂ -CH=CHCl
14.75	0-CH ₂ -C(C1)=CH ₂
14.76	O-CH ₂ -C(Br)=CH ₂
14.77	$O-CH_2-CH=C(Cl)-CH_3$
14.78	O-CH ₂ -C(Cl)=CCl ₂
14.79	O-CH ₂ -cyclopropyl
14.80	O-CH ₂ -cyclobutyl
14.81	O-CH ₂ -cyclopentyl
14.82	O-CH ₂ -cyclohexyl
14.83	O-CH ₂ -cycloheptyl
14.84	0-C0-CH ₃
14.85	0-C0-C ₂ H ₅
14.86	O-CH ₂ -CN
14.87	0-(CH ₂) ₃ -CN
14.88	0-CH ₂ -OCH ₃
14.89	0-CH 2-OC 2H5
14.90	0-(CH ₂) ₂ -OCH ₃
14.91	0-(CH ₂) ₂ -0C ₂ H ₅
14.92	0-(CH ₂) ₃ -0C ₂ H ₅
14.93	0-(CH ₂) ₂ -CO-OCH ₃
14.94	0-(CH ₂) ₂ -C0-0C ₂ H ₅
14.95	0-C(CH3)-CO-OCH3
14.96	O-C (CH 3)-CO-OC 2H5
14.97	0-(CH ₂) ₂ -OH
14.98	O-CH ₂ -SCH ₃
14.99	0-(CH ₂) ₂ -N(CH ₃) ₂

Table 14 (Continued)

No.	R14
14.100	0-(CH ₂) ₂ -N(C ₂ H ₅) ₂
14.101	O-CH ₂ -pheny l
14.102	O-(CH ₂) ₂ -phenyl
14.103	O-(CH ₂) ₃ -phenyl
14.104	O-(CH ₂)4-phenyl
14.105	0-(CH ₂) ₄ -(4-Cl-phenyl)
14.106	0-(CH ₂) ₄ -(4-CH ₃ -phenyl)
14.107	0-(CH ₂) ₄ -(4-CH ₃ -phenyl)
14.108	0-(CH ₂) ₄ -(4-F-phenyl)
14.109	O-CH ₂ CH=CH-pheny l
14.110	O-CH ₂ CH=CH-(4-F-phenyl)
14.111	O-CH ₂ CH=CH-(4-Cl-phenyl)
14.112	$O-CH_2CH=CH-(3-OCH_3-phenyl)$
14.113	0-(CH ₂) ₂ -CH=CH-(4-F-phenyl)
14.114	O-(CH ₂) ₂ -CH=CH-(4-Cl-phenyl)
14.115	O-(CH ₂)-CH=CH-(3, 4-Cl ₂ -phenyl)
14.116	$O-CH_2-CH=C(CH_3)-(4-F-phenyl)$
14.117	O-CH ₂ -C≡C-CH ₂ -phenyl
14.119	0-(CH ₂) ₂ -0-pheny l
14.120	$O-(CH_2)_2-OCH_2-phenyl$
14.121	$O-(CH_2)_2-OCH_2-(4-F-phenyl)$
14.122	O-CH ₂ CH=CH-CH ₂ -O-phenyl
14.123	O-CH ₂ -C≡C-CH ₂ -O-phenyl
14.124	$O-CH_2-C\equiv C-CH_2-O-(4-F-phenyl)$
14.125	O-(CH ₂) ₂ -SCH ₂ -phenyl
14.126	$O-(CH_2)_2-SCH_2-(4-Cl-phenyl)$
14.127	$O-(CH_2)_2-N(CH_3)-CH_2-phenyl$
14.128	NH ₂
14.129	NHCH 3
14.130	NH-C ₂ H ₅
147.131	NH-n-C ₃ H ₇
14.132	NH-i-C ₃ H ₇
14.133	NH-n-C4Hg

Table	14 (Continued)	Table	15
No.	R14	No.	R3'
14.134	NH-i-C4Hg	3′.01	CH ₃
14.135	NH-S-C4Hg	3′.02	C ₂ H ₅
14.136	NH-tertC ₄ H ₉	3'.03	n-C ₃ H ₇
14.137	NH-cyclopropyl	3′.04	i -C 3H7
14.138	NH-cyclobutyl	3'.05	n-C ₄ H ₉
14.139		3′.06	i-C4Hg
•	NH-cyclopentyl	3'.07	S-C4Hg
14.140	NH-cyclohexyl	3'.08	tertC ₄ Hg
14.141	NH-cycloheptyl	3'.09	n-C5H11
14.142	N(CH ₃) ₂	3'.10	-i-C ₅ H ₁₁
14.143	N(C ₂ H ₅) ₂	3'.11	n-C ₆ H ₁₃
14.144	NH-CH ₂ CH=CH ₂	3'.12	i-C ₆ H ₁₃
14.145	NH-CH2C≡CH	3'.13	CH 2CH=CH 2
14.146	NH-CH ₂ -CF ₃	3'.14	-CH(CH ₃)-CH=CH ₂
14.147	NH-CO-CH ₃	3'.15	-CH ₂ -CH=CH-CH ₃
14.148	NH-COC 2H5	3'.16	-CH(CH ₃)-C≡CH
14.149	NH-CO-OCH ₃	3'.17	-CH ₂ -C≡C-CH ₃
14.150	NH-CO-OC 2H5		
14.151	NH-COO-tertC4Hg		
14.152	N-pyrrolidinyl		
14.153	N-piperdinyl		
14.154	. N-merpholino		•
14.155	N-piperazinyl		
14.156	NH-pheny l		
14.157	NH-(4-Cl-phenyl)	·	
14.158	NH-(4-F-phenyl)		
14.159	NH-(4-OCH ₃ -phenyl)		
14.160	$NH-(2, 4-Cl_2-phenyl)$		•
14.161	CH 2-OCH 3		
14.162	(CH ₂) ₂ -OCH ₃		

The following 3-phenyluracils I-1 to I-24 are particularly preferred:

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-n-C<sub>3</sub>H<sub>5</sub>, -CH=N-i-C<sub>3</sub>H<sub>5</sub>, -CH=N-n-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH2CEC-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH2-CH2Cl, -CH=N-CH2Cl, -CH=N-C6H5, -CH=N-4-Br-C6H4,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CN-C<sub>6</sub>H<sub>4</sub>, -CH=N-2, 4-(Cl, Cl)-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC 2H5, -CH=N-O-n-C 3H7, -CH=N-O-i-C 3H7, -CH=N-O-n-C4H9,
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHC1,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(0)CH<sub>3</sub>, -CH=N-OC(0)C<sub>2</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C_4H_9,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH<sub>2</sub>)4-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)4-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-C_1-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CHCH<sub>2</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>-CH=C(CH<sub>3</sub>)-C<sub>6</sub>H<sub>5</sub>
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-3, 4(C1, C1)-C<sub>6</sub>H<sub>3</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>3</sub>C\equivC-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C_4H_g, -CH=N-NH-s-C_4H_g, -CH=N-NH-tert.-C_4H_g,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3) 2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
 -CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
 -CH=N-NH-CO-NHC2H5, -CH=N-NH-CO-N(CH3)2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(CH_3)-COOH, -CH=C(CH_3)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclonexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloneptyl,
 -CH=C(C_2H_5)-COOH, -CH=C(C_2H_5)-CO-OCH_3, -CH=C(C_2H_5)-CO-OC_2H_5,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_{2}H_{5})-CO-O-n-C_{4}H_{9}, -CH=C(C_{2}H_{5})-CO-O-tert.-C_{4}H_{9},
 -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(C1)-CO-O-cyclopropyl, -CH=C(C1)-CO-O-cyclobutyl,
-CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
-CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
-CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
-CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
-CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
-CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
-CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC_2H_5, -CH=C(CN)-CO-O-n-C_3H_7, -CH=C(CN)-CO-O-i-C_3H_7,
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclonexyl,
-CH=C(CN)-CO-O-cycloneptyl, -CH=CH-CO-OCH_2-OCH_3,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH3)-OC2H5, -CH=CH-CO-O-CH2CH2-OCH3,
-CH=CH-CO-O-CH2CH2-OC2H5, -CH=C(CH3)-CO-OCH2-OCH3,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH2-OC2H5, -CH=C(Br)-CO-OCH2-O-n-C3H5,
-CH=C(Br)-CO-OCH2-O-i-C3H5, -CH=C(Br)-CO-OCH(CH3)-OCH3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CN)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH<sub>2</sub>-CN, -CH=CH-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH3)-CO-OCH2-CECH, -CH=C(CH3)-CO-OCH2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(C<sub>2</sub>H<sub>5</sub>)+CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(C_2H_5)-CO-OCH_2-C\equivCH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH_2-CC1_3, -CH=C(C1)-CO-OCH_2-oxirany1,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH_2-C\equiv CH, -CH=C(C1)-CO-OCH_2-CN,
-CH=C(C1)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(Br)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH_2)_3-Br, -CH=C(Br)-CO-OCH_2-CH=CH_2,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH\neqC(CN)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CN)-CO-OCH<sub>2</sub>-CN,
-CH=C(CN)-CO-O(CH2)2-CN, -CH=CH-CO-CH3, -CH=CH-CO-C2H5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>C1,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>,
-CH=C(C_{2}H_{5})-CO-CH_{3}, -CH=C(C_{2}H_{5})-CO-C_{2}H_{5}, -CH=C(C_{2}H_{5})-CO-n-C_{3}H_{7},
-CH=C(C_{2}H_{5})-CO-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-n-C_{4}H_{9},
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2C1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHC12,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(C1)-CO-CH_3, -CH=C(C1)-CO-C_2H_5,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
-CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
 -CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH2C1,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH_3)_2, -CH=C(Br)-CO-CH_2-SCH_3, -CH=C(CN)-CO-CH_3,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-CH<sub>2</sub>Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH<sub>3</sub>)-CO-(4-C1-C<sub>6</sub>H<sub>4</sub>), -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-C<sub>6</sub>H<sub>5</sub>,
-CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_6H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH3)-CH2CECH, -CH=CH-CO-NH-(CH2)2C1,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH_3)-CO-N(CH_3)_2, -CH=C(CH_3)-CO-NH-C_2H_5,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, -CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH<sub>3</sub>)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>6</sub>H<sub>5</sub>,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3);
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
 -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
 -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-l-yl,
 -CH=C(C_2H_5)-CO-piperidin-l-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C=CH,
 -CH=C(C_{2}H_{5})-CO-N(CH_{3})-CH_{2}C\equiv CH, -CH=C(C_{2}H_{5})-CO-NH-(CH_{2})_{2}C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH_3)_2, -CH=C(C1)-CO-NH-C_2H_5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C_3H_7, -CH=C(C1)-CO-NH-tert.-C_4H_9,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(C1)-CO-NH-cyclopentyl, -CH=C(C1)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(C1)-CO-pyrrolidin-1-y1, -CH=C(C1)-CO-piperidin-1-y1,
 -CH=C(C1)-CO-morpholin-4-y1, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
-CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
-CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(Br)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(Br)-CO-NH-(CH2)2C1, -CH=C(Br)-CO-NH-C6H5, -CH=C(CN)-CO-NH2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2CECH, -CH=C(CN)-CO-N(CH3)-CH2CECH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2Hs, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
 -CH=CH-CO-S-n-C<sub>4</sub>H<sub>9</sub>, -CH=CH-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-SCH<sub>3</sub>,
 -CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
 -CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
 -CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
 -CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
 -CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C1)-CO-SCH<sub>3</sub>,
 -CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
 -CH=C(Cl)-CO-S-n-C_4H_9, -CH=C(Cl)-CO-S-tert.-C_4H_9,
-CH=C(Br)-CO-SCH3, -CH=C(Br)-CO-SC2H5, -CH=C(Br)-CO-S-n-C3H7,
 -CH=C(Br)-CO-S-i-C3H7, -CH=C(Br)-CO-S-n-C4H9,
 -CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO+O-i-C_3H_7, -CH=C(CF_3)-CO+O-n-C_4H_9,
 -CH=C(CF<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=C(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC_{2}H_{5}, -CH=C(CH_{3})-CH=C(CN)-CO-OCH_{3},
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_{3}\right) - \mathsf{CH} = \mathsf{C}\left(\mathsf{C1}\right) - \mathsf{CO} - \mathsf{OCH}_{3}, \quad -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_{3}\right) - \mathsf{CH} = \mathsf{C}\left(\mathsf{Br}\right) - \mathsf{CO} - \mathsf{OCH}_{3},
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -CH=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CN)-CO-NH_2,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
  -CH=CH-CH2-CO-OCH3, -CH=CH-CH2-CO-OC2H5,
  -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
          -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
          -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
          -CH(O-i-C_4Hg)_2, -CH(O-s-C_4Hg)_2, -CH(O-tert.-C_4Hg)_2,
          -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
          -CH(S-tert.-C_4H_9)_2, -CH(OC_5H_{11})_2,
          1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
          yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                    4-methyl-1,3-oxathiolan-2-yl,
                                                       5-methyl-1,3-
          oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
          dithiolan-2-yl, 4-ethyl-1,3-oxathiolan-2-yl, 5-ethyl-1,3-
   5
          oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
          dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
          2-y1, 5,5-dimethyl-1,3-dithiolan-2-y1, 4,5-dimethyl-1,3-
          oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
         dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
  10
          4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
          5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
          2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
          1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
         4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
  15
         dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
         hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
         dioxolan-2-yl,
                          4-allyloxymethyl-1,3-dioxolan-2-yl,
         propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
         1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
  20
         allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
         1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
         4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
         1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
- 25
         4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
         1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                   5-propargyloxymethyl-1,3-oxathiolan-2-yl,
         2-y1,
         acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
         oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
 30
         carboxy-1,3-dithiolan-2-yl,
                                            4-methoxycarbonyl-1,3-
         dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
         butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
        n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
        4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
        1,3-dithiolan-2-y1,
                                 4-ethoxycarbonyl-4-methyl-1,3-
        dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
        2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
        n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                               4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
        1,3-dioxan-2-y1,
                            4,6-dimethyl-1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-y1, 5,5-dimethyl-1,3-oxathian-2-y1, 4,4-dimethyl-1,3-.
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
20
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
       dioxan-2-yl,
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
25
       dioxan-2-yl,
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
30
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

-C(CH₃)(O-n-C₅H₁₁)₂, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3oxathiolan-2-yl, 5-ethyl-2-methyl-1,3-oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-10 trimethyl-1,3-dithiolan-2-yl, 2,4,5-trimethyl-1,3oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethy1-2-15 methyl-1,3-dioxolan-2-yl, 4-chloromethyl-2-methyl-1,3dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 -20 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 4 methoxymethyl-2-methyl-1,3-dioxolan-2-yl, allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-1,3-dioxolan-2-yl, 25 4-methoxymethyl-2-methyl-1,3dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-30 1,3-oxathiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, 2-methvl-4methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
          4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
          ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                    4 -
                                                                  4-n-
         butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                    4 -
         methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
   5
         ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                    4 -
         butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
         4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                     2,4-dimethyl-4-
         methoxycarbonyl-1,3-dithiolan-2-yl,
                                                     2,4-dimethy1-4-
         ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
 10
         carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
         butoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-n-
         butoxycarbonyl-1,3-dithiolan-2-yl,
                                                  4-cyanomethy1-2-
        methyl-1,3-dioxolan-2-yl,
                                        4-cyanomethyl-2-methyl-1,3-
 15
        dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
        dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
        1,3-dioxan-2-y1,
                             2,5-dimethyl-1,3-dithian-2-yl,
        dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
        2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
20
        1,3-dioxan-2-yl, 2,5,5-trimethyl-1,3-dithian-2-yl, 2,4,6-
        trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
        2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
        1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
        hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
25
        2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
30
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH<sub>3</sub>)=N-CH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -C(CH<sub>3</sub>)=N-CH<sub>2</sub>C=CH, -C(CH<sub>3</sub>)=N-CH<sub>2</sub>C=C-CH<sub>3</sub>,
       -C(CH_3)=N-cyclopropy1, -C(CH_3)=N-cyclobuty1, -C(CH_3)=N-cyclo-
       pentyl, -C(CH3)=N-cyclohexyl, -C(CH3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
 -C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
 -C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
 -C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
 -C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
 -C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-Cl-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
  -C(CH_3, =N-OCH_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
   -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
   -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
   -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
   -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
   -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
   -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
   -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
   -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
   -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-
cyclobutyl, -C(CH<sub>3</sub>)=N-NH-cyclopentyl, -C(CH<sub>3</sub>)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C=CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH<sub>3</sub>)=CH-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-O-cyclopropyl,
 -C(CH<sub>3</sub>)=CH-CO-O-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-O-cyclopentyl,
 -C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclonexyl, -C(CH_3)=C(CH_3)-CO-O-cycloneptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclo-
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
  -C(CH_3)=C(C_2H_5)-CO-O-cycloneptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
  -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
  -C(CH_3)=C(Cl)-CO-O-n-C_4H_9, -C(CH_3)=C(Cl)-CO-O-tert.-C_4H_9,
  -C(CH_3)=C(Cl)-CO-O-cyclopropyl, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,\\
```

```
-C(CH_3)=C(CI)-CO-O-cyclopentyl, -C(CH_3)=C(CI)-CO-O-cyclohexyl,
-C(CH_3)=C(CI)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloneptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3) = CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3) = C(CH_3) - CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Cl)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
 -C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
 -C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
 -C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{.}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2C1,
-C(CH_3)=C(CH_3)+CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
 -C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
 -C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(Cl)-CO-CH_3,
 -C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
 -C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
 -C(CH_3)=C(Cl)-CO-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-CH_2Cl,
 -C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
 -C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
 -C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
 -C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
 -C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2Cl, -C(CH_3)=C(Br)-CO-CH_2Br,
-C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
-C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
-C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
-C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
-C(CH<sub>3</sub>)=C(CN)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(CN)-CO-CH<sub>2</sub>Cl,
-C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
-C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
-C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(Cl)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3) = CH - CO - NH - C_2H_5, -C(CH_3) = CH - CO - N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH_3)=CH-CO-NH-cyclobutyl, -C(CH_3)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclonexyl, -C(CH_3)=CH-CO-NH-cycloneptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-l-yl,
-C(CH_3)=CH-CO-piperidin-1-yl, -C(CH_3)=CH-CO-morpholin-4-yl,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-C
pyrrolidin-l-yl, -C(CH_3)=C(CH_3)-CO-piperidin-l-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH_3-C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2C_1
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_6H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(Cl)-CO-N(C_2H_5)_2, -C(CH_3)=C(Cl)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl)
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-l-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-1-y1, -C(CH_3)=C(CN)-CO-morpholin-4-y1,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
  -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
  -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(CH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
-C(CH_3)=C(Cl)-CO-SC_2H_5, -C(CH_3)=C(Cl)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(CI)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CI)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH_3, -CH=NC_2H_5, -CH=N-n-C_3H_5, -CH=N-i-C_3H_5, -CH=N-n-C_4H_9,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C=CH,
-CH=NCH2CEC-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH-N-3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-4-NO_2-C_6H_4, -CH=N-4-CN-C_6H_4, -CH=N-2, 4-(C1,C1)-C_6H_4,
-CH=N-2, 4-(CH_3, CH_3)-C_6H_4, -CH=N-CH_2OCH_3, -CH=N-CH_2OC_2H_5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC<sub>2</sub>H<sub>5</sub>, -CH=N-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=N-O-i-C<sub>3</sub>H<sub>7</sub>, -CH=N-O-n-C<sub>4</sub>H<sub>9</sub>,
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH_(CH3)-C=CH, -CH=N-O-CH2-CH=CH-CH3, -CH=N-O-CH2-CH2-C1,
   -CH=N-O-CH2-CH2-F, -CH=N-O-CH2-CF3, -CH=N-O-CH2-CH=CHC1,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH_2-CH=CH-CH_2-O-CH_3, -CH=N-O-CH_2-CH=CH-CH_2-O-tert.-C_4H_9,
  -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
  -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-CI-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CHCH<sub>2</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>-CH=C(CH<sub>3</sub>)-C<sub>6</sub>H<sub>5</sub>
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH<sub>2</sub>)<sub>3</sub>C=C-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n=C_3H_7, -CH=N-NH-1=C_3H_7, -CH=N-NH-n=C_4H_9,
 -CH=N-NH-i-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclohexyl, -CH=N-NH-cycloheptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-NO2-C6H4), -CH=N-NH-(4-F-C6H4),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(CH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclonexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloneptyl,
 -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_{2}H_{5})-CO-O-n-C_{4}H_{9}, -CH=C(C_{2}H_{5})-CO-O-tert.-C_{4}H_{9},
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclopexyl,
 -CH=C(C_2H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH_3,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(C1)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-O-n-C4Hg; -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH<sub>1</sub>(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH3)-OC2H5, -CH=CH-CO-O-CH2CH2-OCH3,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH2-O-i-C3H5, -CH=C(C1)-CO-OCH(CH3)-OCH3,
-CH=C(C1)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-OCH_3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH2-O-i-C3H5, -CH=C(Br)-CO-OCH(CH3)-OCH3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)+CO+OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO+OCH<sub>2</sub>-O+n+C<sub>3</sub>H<sub>5</sub>,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CN)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH_2)_3-Br, -CH=CH-CO-OCH_2-CH=CH_2, -CH=CH-CO-OCH_2-C=CH,
-CH=CH-CO-OCH 2-CN, -CH=CH-CO-O(CH2) 2-CN, -CH=C(CH3)-CO-OCH2-CF3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH \stackrel{\cdot}{=} C(C_2H_5) - CO - OCH_2 - CCl_3, -CH = C(C_2H_5) - CO - OCH_2 - oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH_2-CC1_3, -CH=C(C1)-CO-OCH_2-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH_2-C\equiv CH, -CH=C(C1)-CO-OCH_2-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH_2-CCl_3, -CH=C(Br)-CO-OCH_2-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CN)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C \equiv CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH2)2-CN, -CH=CH-CO-CH3, -CH=CH-CO-C2H5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=GH-CO-tert.-C4Hg, -CH=CH-CO-CH2Cl, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>Cl,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHC12,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(C_1)-CO-CH_3, -CH=C(C_1)-CO-C_2H_5,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
-CH=C(C1)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C1)-CO-CH<sub>2</sub>C1, -CH=C(C1)-CO-CH<sub>2</sub>Br,
-CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
-CH=C(C1)-CO-CH(OCH_3)_2, -CH=C(C1)-CO-CH_2-SCH_3, -CH=C(Br)-CO-CH_3,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH<sub>2</sub>Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
-CH=C(CN)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-n-C4Hg, -CH=C(CN)-CO-tert.-C4Hg, -CH=C(CN)-CO-CH2C1,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>6</sub>H<sub>5</sub>,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
\neg CH = C(C_2H_5) - CO - (4 - C_1 - C_6H_4), -CH = C(C_1) - CO - C_6H_5, -CH = C(Br) - CO - C_6H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, -CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3);
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
 -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
 -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
 -CH=C(C2H5)-CO-NH-CH2CH=C(C2H5)2, -CH=C(C2H5)-CO-NH-CH2C=CH,
 -CH=C(C2H5)-CO-N(CH3)-CH2C=CH, -CH=C(C2H5)-CO-NH-(CH2)2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C_1)-CO-NH_2, -CH=C(C_1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(C1)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(C1)-CO-NH-cyclopropyl, -CH=C(C1)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-l-yl, -CH=C(Cl)-CO-piperidin-l-yl,
 -CH=C(C1)-CO-morpholin-4-yl, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
-CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(Br)-CO-N(C2H5)2, -CH=C(Br)-CO-NH-n-C3H7,
-CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH2CH=C(Br)2,
-CH=C(Br)-CO-NH-CH2C=CH, -CH=C(Br)-CO-N(CH3)-CH2C=CH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH_3, -CH=C(CN)-CO-N(CH_3)_2, -CH=C(CN)-CO-NH-C_2H_5,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CN)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CN)-CO-NH-(CH_2)_2C1, -CH=C(CN)-CO-NH-C_6H_5, -CH=CH-CO-SCH_3,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
-CH=C(C2H5)-CO-S-tert.-C4H9, -CH=C(C1)-CO-SCH3,
- \text{CH=C(C1)} - \text{CO-SC}_2 \text{H}_5, \quad - \text{CH=C(C1)} - \text{CO-S-n-C}_3 \text{H}_7, \quad - \text{CH=C(C1)} - \text{CO-S-i-C}_3 \text{H}_7,
-CH=C(Cl)-CO-S-n-C_4H_9, -CH=C(Cl)-CO-S-tert.-C_4H_9,
-CH=C(Br)-CO-SCH<sub>3</sub>, -CH=C(Br)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-S-n-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C4Hg, -CH=C(CN)-CO-S-tert.-C4Hg,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_{2}H_{5})-CO-OC_{2}H_{5}, -CH=C(CO-n-C_{3}H_{7})-CO-OC_{2}H_{5},
 -CH=C(COCH<sub>3</sub>)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)_2-COOH,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=CH-CH<sub>2</sub>-CH(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CH(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
  -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
  -CH=CH-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
       -CH(O-i-C_4H_9)_2, -CH(O-s-C_4H_9)_2, -CH(O-tert.-C_4H_9)_2,
       -CH(S-n-C4Hg)2, -CH(S-i-C4Hg)2, -CH(S-s-C4Hg)2,
       -CH(S-tert.-C4Hg)2, -CH(OC5H11)2,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                 4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
       oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-yl, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl,
                                                  4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       2-y1,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                          4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
        n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
        4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                  4-ethoxycarbonyl-4-methyl-1,3-
        1,3-dithiolan-2-yl,
        dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
 5
        2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
        n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
        cyanomethyl-1,3-dioxolan-2-yl,
                                                  4-cyanomethyl-1,3-
        dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
        oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
        dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                              4,6-dimethyl-1,3-dioxan-2-yl,
        1,3-dioxan-2-yl,
        dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
        4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
        2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-...
15
        oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
        methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                                 4-acetoxymethyl-1,3-
        4-allyloxymethyl-1,3-dioxan-2-yl,
        dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                          4-chloromethyl-1,3-dithian-2-yl,
        dioxan-2-yl,
        dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
        4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                         4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
        dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                         4-n-butoxycarbonyl-1,3-dithian-2-yl,
        dithian-2-yl,
        methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
        carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
        methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
        dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
        4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
        -C(CH<sub>3</sub>)(OCH<sub>3</sub>)<sub>2</sub>, -C(CH<sub>3</sub>)(SCH<sub>3</sub>)<sub>2</sub>, -C(CH<sub>3</sub>)(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -C(CH<sub>3</sub>)(SC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
        -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
        -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
        -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2,
        -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH<sub>3</sub>)(O-n-C<sub>5</sub>H<sub>11</sub>)",
```

-C(CH₃)(O-n-C₅H₁₁)₂, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-yl, 2,4-dimethyl-1,3-oxathiolan-2-yl, 2,5-dimethyl-1,3oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-5 ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-5-ethyl-2-methyl-1,3-oxathiolan-2-yl, oxathiolan-2-vl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethyl-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3methyl-1,3-dioxolan-2-yl, 15 dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 4-2-y1, 4 hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 4 -4 methoxymethy1-2-methyl-1,3-dioxolan-2-yl, allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-25 1,3-dioxolan-2-yl, dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-30 1,3-oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-35 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4 - n -
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                               4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                               4 -
5
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-
                                                 2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               2,4-dimethyl-4-n-
                                                4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                    4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
       1,3-dioxan-2-yl, 2,5-dimethyl-1,3-dithian-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH_3, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-Cl-C_6H_4), -C(CH_3)=N-(3-Cl-C_6H_4),
-C(CH_3)=N-(4-C1-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3) = N-(2-CF_3-C_6H_4), -C(CH_3) = N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-\ThetaH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
 -C(CH<sub>3</sub>)=N-OCH(CH<sub>3</sub>)-CH=CH<sub>2</sub>, -C(CH<sub>3</sub>)=N-OCH<sub>2</sub>-C\equivCH,
 -C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
 -C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
 -C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-Cl-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
   -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
   -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cyclonepty1, -C(CH_3)=N-N(CH_3)2, -C(CH_3)=N-N(C_2H_5)2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C=CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C_1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2, 4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
 -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
 -C(CH_3)=CH-CO-O-cyclobuty1, -C(CH_3)=CH-CO-O-cyclopenty1,
 -C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-C_4H_9
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_
  cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
  -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
  -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
  -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
  -C(CH_3)=C(Cl)-CO-O-cyclopropyl, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(C1)-CO-O-cyclopentyl, -C(CH_3)=C(C1)-CO-O-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl.
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2C1,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH<sub>3</sub>)=C(Cl)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(Cl)-CO-CH<sub>2</sub>Cl,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-CH(OCH_3)_2, -C(CH_3)=C(Cl)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2Cl,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-C1-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclonexyl, -C(CH_3)=CH-CO-NH-cycloneptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH<sub>3</sub>)=CH-CO-piperidin-1-y1, -C(CH<sub>3</sub>)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)-C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-y1,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2C1, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloneptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-1-yl, -C(CH_3)=C(Cl)-CO-piperidin-1-yl
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-1-yl,
 -C(CH_3)=C(Br)-CO-piperidin-l-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(CH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(C1)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
 -C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
 -C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
 -C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
 -C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
 -C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
 -C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5
 -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(C_1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
 -C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
 -C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
 -C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
 -C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
 -C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
 -C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
 -C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH3, -CH=NC2H5, -CH=N-n-C3H5, -CH=N-i-C3H5, -CH=N-n-C4H9,
-CH=NCH 2CH=CH 2, -CH=NCH 2CH=CH 2-CH 3, -CH=NCH 2C=CH,
-CH=NCH<sub>2</sub>C=C-CH<sub>3</sub>, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH-N-3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-OCH3-C6H4, -CH=N-3-OCH3-C6H4, -CH=N-4-OCH3-C6H4,
-CH=N-4-NO_2-C_6H_4, -CH=N-4-CN-C_6H_4, -CH=N-2, 4-(C1,C1)-C_6H_4,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC<sub>2</sub>H<sub>5</sub>, -CH=N-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=N-O-i-C<sub>3</sub>H<sub>7</sub>, -CH=N-O-n-C<sub>4</sub>H<sub>9</sub>,
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl<sub>1</sub>
   -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
  -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
  -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
  -CH=N-O-(CH<sub>2</sub>)4-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)4-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH<sub>2</sub>)4-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)4-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH 2CH=CH-4-CI-C6H4, -CH=N-O-CH2CH=CH-3-OCH3-C6H4,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-C1-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CHCH<sub>2</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>-CH=C(CH<sub>3</sub>)-C<sub>6</sub>H<sub>5</sub>
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C\equiv C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
 -CH=N-NH-i-C4Hg, -CH=N-NH-s-C4Hg, -CH=N-NH-tert.-C4Hg,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
-CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-NO2-C6H4), -CH=N-NH-(4-F-C6H4),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2,4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(CH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
 -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopentyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(C1)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl.
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH_3,
 -CH=C(CN)-CO-OC_2H_5, -CH=C(CN)-CO-O-n-C_3H_7, -CH=C(CN)-CO-O-i-C_3H_7,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
 -CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
 -CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclonexyl,
 -CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
 -CH=CH-CO-OCH_2-O-i-C_3H_5, -CH=CH-CO-OCH(CH_3)-OCH_3,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C2H5)-CO-O-CH2CH2-OC2H5, -CH=C(C1)-CO-OCH2-OCH3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH(CH3)-OC2H5, -CH=C(C1)-CO-O-CH2CH2-OCH3,
-CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-OCH2-OC2H5, -CH=C(Br)-CO-OCH2-O-n-C3H5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH2-OC2H5, -CH=C(CN)-CO-OCH2-O-n-C3H5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C=CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
-CH=C(C2H5)-CO-O(CH2)3-Br, -CH=C(C2H5)-CO-OCH2-CH=CH2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C_1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Cl)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Cl)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH2)3-Br, -CH=C(Br)-CO-OCH2-CH=CH2,
-CH=C(Br)-CO-OCH_2-C\equiv CH, -CH=C(Br)-CO-OCH_2-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CN)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CN)-CO-O(CH_2)_3-Br, -CH=C(CN)-CO-OCH_2-CH=CH_2,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH2)2-CN, -CH=CH-CO-CH3, -CH=CH-CO-C2H5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=GH-CO-tent.-C4Hg, -CH=CH-CO-CH2Cl, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>C1,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7.
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH<sub>2</sub>C1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
 -CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(C1)-CO-CH_3, -CH=C(C1)-CO-C_2H_5,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
-CH=C(Cl)-CO-tert.-C4Hg, -CH=C(Cl)-CO-CH2Cl, -CH=C(Cl)-CO-CH2Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
 -CH=C(C1)-CO-CH(OCH_3)_2, -CH=C(C1)-CO-CH_2-SCH_3, -CH=C(Br)-CO-CH_3,
 -CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
 -CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH;Cl,
 -CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
 -CH=C(CN)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-n-C_4H_9, -CH=C(CN)-CO-tert.-C_4H_9, -CH=C(CN)-CO-CH_2CI,
 -CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>5</sub>H<sub>5</sub>,
 -CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
 -CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
 -CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_6H_5,
 -CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
 -CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
 -CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C=CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
-CH=CH-CO-NH-C_{6}H_{5}, -CH=C(CH_{3})-CO-NH_{2}, -CH=C(CH_{3})-CO-NHCH_{3},
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, -CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NHCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>2</sub>):
```

```
-CH=C(C2H5)-CO-NH-C2H5, -CH=C(C2H5)-CO-N(C2H5)2,
  -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
 -CH=C(C_2H_5)-CO-NH-cyclobuty1, -CH=C(C_2H_5)-CO-NH-cyclopenty1,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclohexyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cycloheptyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclooctyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-yl, -CH=E(C_2H_5)-CO-morpholin-4-yl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>C≡CH,
 -GH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(Cl)-CO-NH<sub>2</sub>, -CH=C(Cl)-CO-NHCH<sub>3</sub>,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(C1)-CO-pyrrolidin-1-yl, -CH=C(C1)-CO-piperidin-1-yl,
 -CH=C(C1)-CO-morpholin-4-yl, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CQ-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2C≡CH, -CH=C(Br)-CO-N(CH3)-CH2C≡CH,
-CH=C(Br)-CO-NH-(CH_2)_2Cl, -CH=C(Br)-CO-NH-C_6H_5, -CH=C(CN)-CO-NH_2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(\dot{C}N)-CO-N(C_2H_5)<sub>2</sub>, -CH=C(\dot{C}N)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2CECH, -CH=C(CN)-CO-N(CH3)-CH2CECH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2Hg, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C1)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C(Cl)-CO-S-n-C4Hg, -CH=C(Cl)-CO-S-tert.-C4Hg,
-CH=C(Br)-CO-SCH3, -CH=C(Br)-CO-SC2H5, -CH=C(Br)-CO-S-n-C3H7,
-CH=C(Br)-CO-S-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-S-n-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
-CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_{2}H_{5})-CO-OC_{2}H_{5}, -CH=C(CO-n-C_{3}H_{7})-CO-OC_{2}H_{5},
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
-CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C3H7)-CO-OC2H5, -CH=C(COO-n-C3H7)2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH 3) 2, -CH=CH-CH=C(CN)-CO-OCH 3,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH<sub>3</sub>)-CH=C(CT)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH<sub>2</sub>-CH(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CH(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
 -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
  -CH=CH-CH2-CO-OCH3, -CH=CH-CH2-CO-OC2H5,
  -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
         -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
         -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
         -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
         -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
         -CH(S-tert.-C_4H_9)_2, -CH(OC_5H_{11})_2,
         1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
         yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                   4-methyl-1,3-oxathiolan-2-yl,
                                                        5-methyl-1,3-
         2-yl,
         oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
         dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
  5
         oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
         dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
         2-yl, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
         oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
         dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
 10
         4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
         5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
         2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
         1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
         4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
 15
         dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
         hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
         dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
         propargyloxymethyl-1,3-dioxolan-2-yl,
                                                    4-acetoxymethyl-
         1,3-dioxolan-2-yl, 4-methoxymethyl-1,3-dithiolan-2-yl, 4-
 20
         allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
         1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
         4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
         1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
         4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
. 25
         1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                   5-propargyloxymethyl-1,3-oxathiolan-2-yl,
         acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
         oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
         carboxy-1,3-dithiolan-2-yl, 4-methoxycarbonyl-1,3-
 30
         dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
         butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
 .5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl,
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
                                              4-cyanomethyl-1,3-
       cyanomethyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
       1,3-dioxan-2-y1, 4,6-dimethyl-1,3-dioxan-2-y1,
       dimethyl-1,3-dioxan-2-yl,5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-.
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl,4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                        4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                        4-n-butoxycarbonyl-1,3-dithian-2-yl,
       dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                        4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
        -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2.
        -C(CH3)(O-n-C5H11)",
```

 $-C(CH_3)(O-n-C_5H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-5 ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-5-ethyl-2-methyl-1,3-oxathiolan-2-yl, oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethyl-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3methyl-1,3-dioxolan-2-yl, 15 dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 -4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, methoxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 -2-methyl-4allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-1,3-dioxolan-2-yl, 25 dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-1,3-oxathiolan-2-yl, . 30 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
        4-methoxycarbony1-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
        ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4 - n -
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
 5
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                   2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                                2,4-dimethyl-4-n-
                                                 4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                      4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                            2,5-dimethyl-1,3-dithian-2-yl,
        1,3-dioxan-2-y1,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
        2-y1, 2,4,6-trimethyl-1,3-dioxan-2-y1, 2,4,4-trimethyl-
        1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
        2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
        1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
        2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl,4-
        hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
        2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
        dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
        4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
        2-methyl-1,3-dithian-2-yl,
        -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
        -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
        -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
        -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
        pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
        -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
        -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-Cl-C_6H_4), -C(CH_3)=N-(3-Cl-C_6H_4),
-C(CH_3)=N-(4-C1-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
   -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tent.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloneptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
 -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
 -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
 -C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
 -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
 -C(CH_3)=CH-CO-O-cyclonexyl, -C(CH_3)=CH-CO-O-cycloneptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
  -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_
  propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C
   cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
   -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
   -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
   -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
   -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
   -C(CH_3)=C(Cl)-CO-O-cyclopropyl, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(Cl)-CO-O-cyclopentyl, -C(CH_3)=C(Cl)-CO-O-cyclopexyl,
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclonexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclonexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3) = CH - CO - OCH_2 - OC_2H_5, -C(CH_3) = CH - CO - OCH_2 - O - n - C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-C0-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-C0-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
--C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-O-(CH<sub>2</sub>)<sub>3</sub>-Br, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{.}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-(CH<sub>2</sub>)<sub>3</sub>-Br, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2C1, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHC1_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2C1,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(Cl)-CO-CH_3,
 -C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
 -C(CH_3)=C(C1)-CO-i-C_3H_7, -C(CH_3)=C(C1)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-C0-tert.-C_4H_9, -C(CH_3)=C(C1)-C0-CH_2C1,
 -C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
 -C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
 -C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
 -C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
 -C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
  -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
  -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
  -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2Cl,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
 -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
 -C(CH_3) = CH - CO - NH - C_2H_5, -C(CH_3) = CH - CO - N(C_2H_5)_2,
-C(CH_3) = CH - CO - NH - n - C_3H_7, -C(CH_3) = CH - CO - NH - i - C_3H_7,
-C(CH<sub>3</sub>)=CH-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopropyl,
-C(CH_3)=CH-CO-NH-cyclobutyl, -C(CH_3)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)-C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)-C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)-C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-c
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH_3)=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2C1, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloneptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\Xi CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
-C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-1-yl,
 -C(CH<sub>3</sub>)=C(Br)-CO-piperidin-1-yl, -C(CH<sub>3</sub>)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH<sub>3</sub>)=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-y1, -C(CH_3)=C(CN)-CO-morpholin-4-y1.
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(CH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
 -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(C1)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CH=C(C1)-CO-OCH<sub>3</sub>, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

-CHO, -COCH₃, -COC₂H₅, -CO-n-C₃H₇, -CO-i-C₃H₇, -CO-n-C₄H₉, $-\mathsf{CO-i-C_4H_9}, -\mathsf{CO-s-C_4H_9}, -\mathsf{CO-tert.-C_4H_9}, -\mathsf{CO-CH_2CH=CH_2}, -\mathsf{CO-CF_3},$ -COCCl₃, -COCH₂C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclopentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH₃, -CO-COOC₂H₅, -CH=NH, -CH=NCH3, -CH=NC2H5, -CH=N-n-C3H5, -CH=N-i-C3H5, -CH=N-n-C4H9, -CH=NCH₂CH=CH₂, -CH=NCH₂CH=CH₂-CH₃, -CH=NCH₂C≡CH, -CH=NCH₂C=C-CH₃, -CH=N-cyclopropyl, -CH=N-cyclobutyl, -CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl, -CH=N-CH2-CH2Cl, -CH=N-CH2Cl, -CH=N-C6H5, -CH=N-4-Br-C6H4, -CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4, -CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4, -CH=N-2-CH3-C6H4, -CH=N-3-CH3-C6H4, -CH=N-4-CH3-C6H4, -CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4, -CH=N-2-OCH3-C6H4, -CH=N-3-OCH3-C6H4, -CH=N-4-OCH3-C6H4, -CH=N-4-NO2-C6H4, -CH=N-4-CN-C6H4, -CH=N-2,4-(C1,C1)-C6H4, -CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5, -CH=N-CH2CH2OCH3, -CH=N-CH2CH2OC2H5, -CH=N-OH, -CH=N-OCH3, -CH=N-OC₂H₅, -CH=N-O-n-C₃H₇, -CH=N-O-i-C₃H₇, -CH=N-O-n-C₄H₉, -CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHC1,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
  -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
  -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
  -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH2CH=CH-4-C1-C6H4, -CH=N-O-CH2CH=CH-3-OCH3-C6H4,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)_CH=CH-4-C_1-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CHCH<sub>2</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>-CH=C(CH<sub>3</sub>)-C<sub>6</sub>H<sub>5</sub>
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C\equiv C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
 -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHCH<sub>3</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
 -CH=N-NH-i-C<sub>4</sub>Hg, -CH=N-NH-s-C<sub>4</sub>Hg, -CH=N-NH-tert.-C<sub>4</sub>Hg,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C\equivCH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C\equivCH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
-CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
-CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO2-C6H4), -CH=N-NH-(4-F-C6H4),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N (CH3) 2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(CH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclonexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloneptyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-COOH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_{2}H_{5})-CO-O-n-C_{4}H_{9}, -CH=C(C_{2}H_{5})-CO-O-tert.-C_{4}H_{9},
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopentyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclonexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
-CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloneptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
-CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
-CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
-CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH_2-OCH_3,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH_3)-OC_2H_5, -CH=CH-CO-O-CH_2CH_2-OCH_3,
-CH=CH-CO-O-CH2CH2-OC2H5, -CH=C(CH3)-CO-OCH2-OCH3,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-OCH_2-OC_2H_5, -CH=C(C_2H_5)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH2-OC2H5, -CH=C(Br)-CO-OCH2-O-n-C3H5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH3)-OC2H5, -CH=C(CN)-CO-O-CH2CH2-OCH3,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH2)3-Br, -CH=CH-CO-OCH2-CH=CH2, -CH=CH-CO-OCH2-CECH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_{2}H_{5})-CO-O(CH_{2})_{3}-Br, -CH=C(C_{2}H_{5})-CO-OCH_{2}-CH=CH_{2},
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(Cl)-CO-OCH_2-CF_3,
-CH=C(Cl)-CO-OCH_2-CCl_3, -CH=C(Cl)-CO-OCH_2-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH2-CECH, -CH=C(C1)-CO-OCH2-CN,
-CH=C(C1)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(Br)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(Br)-CO-OCH_2-CCl_3, -CH=C(Br)-CO-OCH_2-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH_2-C\equiv CH, -CH=C(Br)-CO-OCH_2-CN,
-CH=C(Br)-CO-O(CH_2)_2-CN, -CH=C(CN)-CO-OCH_2-CF_3,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C \equiv CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C_3H_7, -CH=CH-CO-i-C_3H_7, -CH=CH-CO-n-C_4H_9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>C1,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH<sub>2</sub>C1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
-CH=C(C2H5)-CO-CH2-OCH3, -CH=C(C2H5)-CO-CH(OCH3)2,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Cl)-CO-CH<sub>3</sub>, -CH=C(Cl)-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=C(C1)-CO-n-C3H7, -CH=C(C1)-CO-i-C3H7, -CH=C(C1)-CO-n-C4H9,
-CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
-CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
-CH=C(Cl)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Cl)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH;Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
-CH=C(CN)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-CH<sub>2</sub>C<sub>1</sub>,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-C1-C_6H_4), -CH=C(C1)-CO-C_6H_5, -CH=C(Br)-CO-C_6H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, -CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2C1, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NHCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
 -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
 -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
 -CH=C(C2H5)-CO-N(CH3)-CH2C=CH, -CH=C(C2H5)-CO-NH-(CH2)2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH_3)_2, -CH=C(C1)-CO-NH-C_2H_5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(C1)-CO-NH-cyclopropyl, -CH=C(C1)-CO-NH-cyclobutyl,
-CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
-CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
-CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
-CH=C(C1)-CO-morpholin-4-y1, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
-CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
-CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(Br)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(Br)-CO-NH-(CH_2)_2C1, -CH=C(Br)-CO-NH-C_6H_5, -CH=C(CN)-CO-NH_2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2CECH, -CH=C(CN)-CO-N(CH3)-CH2CECH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC 2H5, -CH=CH-CO-S-n-C 3H7, -CH=CH-CO-S-i-C 3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H5, -CH=C(C_2H5)-CO-S-n-C_3H7,
-CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(C_1)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C(Cl)-CO-S-n-C4Hg, -CH=C(Cl)-CO-S-tert.-C4Hg,
-CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
-CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
-CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_{2}H_{5})-CO-OC_{2}H_{5}, -CH=C(CO-n-C_{3}H_{7})-CO-OC_{2}H_{5},
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_{3}\right) - \mathsf{CH} = \mathsf{C}\left(\mathsf{Br}\right) - \mathsf{CO} - \mathsf{OC}_{2}\mathsf{H}_{5}, \quad -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_{3}\right) - \mathsf{CH} = \mathsf{C}\left(\mathsf{CN}\right) - \mathsf{CO} - \mathsf{NH}_{2},
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CH=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
 -CH=CH-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
         -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
         -CH(O-i-C_4H_9)_2, -CH(O-s-C_4H_9)_2, -CH(O-tert.-C_4H_9)_2,
         -CH(S-n-C4Hg) 2, -CH(S-i-C4Hg) 2, -CH(S-s-C4Hg) 2,
         -CH(S-tert.-C_4Hg)_2, -CH(OC_5H_{11})_2,
         1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
         yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                   4-methyl-1,3-oxathiolan-2-yl,
                                                       5-methyl-1,3-
         oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
         dithiolan-2-yl, 4-ethyl-1,3-oxathiolan-2-yl, 5-ethyl-1,3-
         oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
         dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
         2-yl, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
         oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
         dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
 10
         4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
         5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
         2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
         1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
         4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
 15
         dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
         hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
         dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl, 4-
         propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
         1,3-dioxolan-2-yl, 4-methoxymethyl-1,3-dithiolan-2-yl, 4-
 20
         allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
         1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
         4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
         1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
         4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
- 25
         1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                   5-propargyloxymethyl-1,3-oxathiolan-2-yl,
         acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
         oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                            4-methoxycarbonyl-1,3-
         carboxy-1,3-dithiolan-2-yl,
 30
         dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
         butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
       1,3-dithiolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
 5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                              4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                           4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-vl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl,
                                            4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                      4-n-butoxycarbonyl-1,3-dithian-2-yl,
       dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
        -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH_3)(O-n-C_5H_{11})",
```

```
-C(CH_3)(O-n-C_3H_{11})_2, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
      1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl,
      dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
      2-yl, 2,4-dimethyl-1,3-oxathiolan-2-yl, 2,5-dimethyl-1,3-
      oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
5
      ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
                         5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
      oxathiolan-2-yl,
      2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
      dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
                                        2,4,5-trimethyl-1,3-
      trimethyl-1,3-dithiolan-2-yl,
10
      oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
      dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
                                             4-chloromethyl-2-
      methyl-5-vinyl-1,3-oxathiolan-2-yl,
                                  4-chloromethyl-2-methyl-1,3-
      methyl-1,3-dioxolan-2-yl,
15
      dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
              5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
      hydroxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                           4 -
      hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                           4 -
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                           5 -
20
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                           4 -
      methoxymethyl-2-methyl-1,3-dioxolan-2-yl,
       allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                  2-methyl-4-
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                            4-methoxymethyl-2-methyl-1,3-
25
       1,3-dioxolan-2-yl,
       dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
       2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
       4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                               4-allyloxymethyl-2-methyl-1,3-
30
       1,3-oxathiolan-2-yl,
                            5-allyloxymethyl-2-methyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-4-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-5-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
       oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                   2-methyl-4-
       5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
35
                                                  2-methy1-4-
       methylthiomethyl-1,3-dioxolan-2-yl,
       methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
5
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl,
                                             2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               2,4-dimethyl-4-n-
                                                4-cyanomethy1-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-y1,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-Cl-C_6H_4), -C(CH_3)=N-(3-Cl-C_6H_4),
-C(CH_3)=N-(4-C1-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
 -C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
 -C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
 -C(CH_3)=N-CH(CH_3)-C\Xi CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
 -C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
 -C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-Cl-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
  -C(CH_3, =N-OCH_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH<sub>3</sub>)=N-OCH<sub>2</sub>-CH=CH-CH<sub>2</sub>-(4-CH<sub>3</sub>O-C<sub>6</sub>H<sub>4</sub>),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
   -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
   -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
   -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
   -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
   -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
   -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-
 cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
 -C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
 -C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
 -C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
 -C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
 -C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
 -C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
 pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
 4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
 -C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
 -C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
  -C(CH_3)=N-NH-(2,4-(NO_2)_2+C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
  -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
  -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
  -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
 -C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
  -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
  -C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
  -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
  -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
  -C(CH_3)=C(CH_3)-CO-O-cyclonexyl, -C(CH_3)=C(CH_3)-CO-O-cycloneptyl,
  -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
  -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
  -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cycl
  cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
   -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
   -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
   -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
   -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
   -C(CH_3)=C(CI)-CO-O-cyclopropyl, -C(CH_3)=C(CI)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(Cl)-CO-O-cyclopentyl, -C(CH_3)=C(Cl)-CO-O-cyclonexyl
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclonexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3) = CH - CO - OCH_2 - OC_2H_5, -C(CH_3) = CH - CO - OCH_2 - O - n - C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-C0-0-i-C_3H_7, -C(CH_3)=C(C1)-C0-0CH(CH_3)-0CH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH_3, -C(CH_3)=C(CH_3)-CO-OCH_2-CN_3
-C(CH_3) \stackrel{!}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(Cl)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Cl)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2C1,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(Cl)-CO-CH_3,
-C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
-C(CH_3)=C(C1)-CO-i-C_3H_7, -C(CH_3)=C(C1)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
 -C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
 -C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
 -C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
-C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
-C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
-C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
-C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
-C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
-C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
-C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3) = CH - CO - NH - n - C_3H_7, -C(CH_3) = CH - CO - NH - i - C_3H_7,
-C(CH<sub>3</sub>)=CH-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopropyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclonexyl, -C(CH_3)=CH-CO-NH-cycloneptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH<sub>3</sub>)=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -C(CH<sub>3</sub>)=CH-CO-NH-CH<sub>2</sub>C\equivCH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(CI)-CO-NH_2, -C(CH_3)=C(CI)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclonexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloneptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C=CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-1-yl,
 -C(CH_3)=C(CN)-CO-piperidin-1-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
  -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
  -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(CH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(C1)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH3, -CH=NC2H5, -CH=N-n-C3H5, -CH=N-i-C3H5, -CH=N-n-C4Hg,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH2CEC-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH_2-CH_2Cl, -CH=N-CH_2Cl, -CH=N-C_6H_5, -CH=N-4-Br-C_6H_4,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH3-C6H4, -CH=N-3-OCH3-C6H4, -CH=N-4-OCH3-C6H4,
-CH=N-4-NO2-C6H4, -CH=N-4-CN-C6H4, -CH=N-2, 4-(C1, C1)-C6H4,
-CH=N-2, 4-(CH<sub>3</sub>, CH<sub>3</sub>)-C<sub>6</sub>H<sub>4</sub>, -CH=N-CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C_4H_9, -CH=N-O-s-C_4H_9, -CH=N-O-tert.-C_4H_9,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
  -CH=N-O-CH(CH<sub>3</sub>)-CECH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
  -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
  -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
  -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
  -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
  -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
  -CH=N-O-(CH_2)_4-4-CI-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
  -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-4-C1-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>+C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>,
 -CH=N-O-CH<sub>2</sub>CH=CHCH<sub>2</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>-CH=C(CH<sub>3</sub>)-C<sub>6</sub>H<sub>5</sub>
 -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C\equiv C-4-F-C_6H_4,
 -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
 -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
 -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>1</sub>H<sub>5</sub>,
 -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
 -CH=N-NH-i-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>g</sub>,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH<sub>3</sub>)<sub>2</sub>,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH 2-C=CH, -CH=N-NHCH 2-C=CH, -CH=N-N(CH 3)-CH 2-C=CH,
-CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
-CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
-CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N (CH3) 2, -CH=CH-COOH,
-CH=CH-CO-OCH3, -CH=CH-CO-OC2H5, -CH=CH-CO-O-n-C3H7,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(CH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH_3)-CO-O-cyclonexyl, -CH=C(CH_3)-CO-O-cycloneptyl,
 -CH=C(C_2H_5)-COOH, -CH=C(C_2H_5)-CO-OCH_3, -CH=C(C_2H_5)-CO-OC_2H_5,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C_2H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH_3,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(C1)-CO-O-cyclopentyl, -CH=C(C1)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
-CH=C(Br)-CO-OC_{2}H_{5}, -CH=C(Br)-CO-O-n-C_{3}H_{7}, -CH=C(Br)-CO-O-i-C_{3}H_{7},
-CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
-CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
-CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
-CH=C(Br)-CO-O-cycloneptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC_2H_5, -CH=C(CN)-CO-O-n-C_3H_7, -CH=C(CN)-CO-O-i-C_3H_7,
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloneptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=CH-CO-OCH_2-O-i-C_3H_5, -CH=CH-CO-OCH(CH_3)-OCH_3,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH2CH2-OC2H5, -CH=C(CH3)-CO-OCH2-OCH3,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C2H5)-CO-O-CH2CH2-OC2H5, -CH=C(C1)-CO-OCH2-OCH3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH_1(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH3)-OC2H5, -CH=C(C1)-CO-O-CH2CH2-OCH3,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CN)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH_2)_3-Br, -CH=CH-CO-OCH_2-CH=CH_2, -CH=CH-CO-OCH_2-C\equiv CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(Cl)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH_2-CC1_3, -CH=C(C1)-CO-OCH_2-oxirany1,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(Br)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CN)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CN)-CO-O(CH_2)_3-Br, -CH=C(CN)-CO-OCH_2-CH=CH_2,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=CH-CO-CH<sub>3</sub>, -CH=CH-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=GH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHC12, -CH=CH-CO-CH2-OCH3, -CH=CH-CO-CH(OCH3)2,
-CH=CH-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2C1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
-CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(C1)-CO-CH_3, -CH=C(C1)-CO-C_2H_5,
-CH=C(C1)-CO-n-C3H7, -CH=C(C1)-CO-i-C3H7, -CH=C(C1)-CO-n-C4H9,
-CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
-CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
-CH=C(C1)-CO-CH(OCH_3)_2, -CH=C(C1)-CO-CH_2-SCH_3, -CH=C(Br)-CO-CH_3,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH2Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-CH<sub>2</sub>Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_6H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
-CH=CH-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-NH<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NHCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH<sub>3</sub>)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, -CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3)
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
 -CH=C(C2H5)-CO-NH-n-C3H7, -CH=C(C2H5)-CO-NH-i-C3H7,
 -CH=C(C<sub>2</sub>\dot{H}_5)-CO-NH-tert.-C<sub>4</sub>\dot{H}_9, -CH=C(C<sub>2</sub>\dot{H}_5)-CO-NH-cyclopropyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclonexyl, -CH=C(C_2H_5)-CO-NH-cycloneptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C=CH,
 -CH=C(C2H5)-CO-N(CH3)-CH2C=CH, -CH=C(C2H5)-CO-NH-(CH2)2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C_3H_7, -CH=C(C1)-CO-NH-tert.-C_4H_9,
 -CH=C(C1)-CO-NH-cyclopropyl, -CH=C(C1)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
-CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
-CH=C(Br)-CO-NHCH_3, -CH=C(Br)-CO-N(CH_3)_2, -CH=C(Br)-CO-NH-C_2H_5,
-CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-y1, -CH=C(Br)-CO-piperidin-1-y1,
-CH=C(Br)-CQ-morpholin-4-yl, -CH=C(Br)-CO-NH-CH2CH=C(Br)2,
-CH=C(Br)-CO-NH-CH2C≡CH, -CH=C(Br)-CO-N(CH3)-CH2C≡CH,
-CH=C(Br)-CO-NH-(CH_2)_2C1, -CH=C(Br)-CO-NH-C_6H_5, -CH=C(CN)-CO-NH_2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(\dot{C}N)-CO-N(C_2H_5)<sub>2</sub>, -CH=C(\dot{C}N)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-NH-i-C_3H_7, -CH=C(CN)-CO-NH-tert.-C_4H_9,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-l-yl, -CH=C(CN)-CO-piperidin-l-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH<sub>2</sub>CH=C(CN)<sub>2</sub>,
-CH=C(CN)-CO-NH-CH<sub>2</sub>C\congCH, -CH=C(CN)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\congCH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC 2H5, -CH=CH-CO-S-n-C 3H7, -CH=CH-CO-S-i-C 3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH_3)-CO-SCH<sub>3</sub>,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(C_1)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C(Cl)-CO-S-n-C4Hg, -CH=C(Cl)-CO-S-tert.-C4Hg,
-CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
-CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
-CH=C(CN)-CO-S-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=C(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC _2H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH<sub>3</sub>)-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
  -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
  -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
  -CH=CH-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
         -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
         -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
         -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
         -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
         -CH(S-tert.-C4Hg)2, -CH(OC5H11)2,
         1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
         yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                   4-methyl-1,3-oxathiolan-2-yl,
                                                        5-methvl-1,3-
         2-v1,
         oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
         dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
  5
                             4,5-dimethyl-1,3-dioxolan-2-yl,
         oxathiolan-2-yl,
         dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
         2-y1, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
         oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
         dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
 10
         4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
         5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
         2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
         1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
         4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
 15
         dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
         hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
         dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
         propargyloxymethyl-1,3-dioxolan-2-yl,
                                                   4-acetoxymethyl-
         1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
 20
         allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
         1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
         4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
         1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
         4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
- 25
         1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                   5-propargyloxymethyl-1,3-oxathiolan-2-yl,
         acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
         oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                            4-methoxycarbonyl-1,3-
  30
         carboxy-1,3-dithiolan-2-yl,
         dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
         butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
                                              4-cyanomethyl-1,3-
       cyanomethyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-...
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

 $-C(CH_3)(O-n-C_5H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-5 oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3oxathiolan-2-yl, 5-ethyl-2-methyl-1,3-oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4trimethyl-1,3-dithiolan-2-yl, 2,4,5-trimethyl-1,3-10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethyl-2methyl-5-vinyl-1,3-oxathiolan-2-yl, methyl-1,3-dioxolan-2-yl, 4-chloromethyl-2-methyl-1,3-15 dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 4 methoxymethy1-2-methy1-1,3-dioxolan-2-y1, 2-methyl-4allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-1,3-dioxolan-2-yl, 25 dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-30 1,3-oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4 - n -
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
5
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cyanomethyl-2-
                                      4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethyl-1,3-dioxan-2-y1, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH_3, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
 -C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
 -C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH<sub>3</sub>)=N-OCH<sub>2</sub>-CH=CH-CH<sub>2</sub>-(4-CH<sub>3</sub>O-C<sub>6</sub>H<sub>4</sub>),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
   -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
   -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
   -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
   -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
 cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
 -C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
 -C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
 -C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
 -C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
 -C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
 pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl, -C
 4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-Cl-C_6H_4),
  -C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
  -C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
 -C(CH_3)=N-NH-(2, 4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
  -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
 -C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
  -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
  -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
  -C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
  -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
  -C(CH<sub>3</sub>)=CH-CO-O-cyclohexyl, -C(CH<sub>3</sub>)=CH-CO-O-cycloheptyl,
  -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
  -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
  -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
  -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
   -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
  -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
   -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-C_4H_9
  cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
   -C(CH_3)=C(C_2H_5)-CO-O-cycloneptyl, -C(CH_3)=CH-COOH,
   -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
    -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
   -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
    -C(CH_3)=C(Cl)-CO-O-cyclopropyl, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(C1)-CO-O-cyclopentyl, -C(CH_3)=C(C1)-CO-O-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCI_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyI,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{!}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-(CH<sub>2</sub>)<sub>3</sub>-Br, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(Cl)-CO-OCH_2-CCl_3, -C(CH_3)=C(Cl)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Cl)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Cl)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-c(CH_3)=c(Br)-co-ocH_2-ccl_3, -c(CH_3)=c(Br)-co-ocH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\Xi CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
 -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
 -C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
 -C(CH_3) = CH - CO - NH - n - C_3H_7, -C(CH_3) = CH - CO - NH - i - C_3H_7,
 -C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
 -C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
 -C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
 -C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
 -C(CH_3)=CH-CO-piperidin-1-yl, -C(CH_3)=CH-CO-morpholin-4-yl,
 -C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C=CH.
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
 -C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
'-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
 hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl
 cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-l-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3) = C(C_2H_5) - CO - NH - CH_2C = CH, -C(CH_3) = C(C_2H_5) - CO - N(CH_3) - CH_2C = CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2C1, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(C1)-CO-NH-i-C_3H_7, -C(CH_3)=C(C1)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloneptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3) = C(C1) - CO - N(CH_3) - CH_2C = CH_3 - C(CH_3) = C(C1) - CO - NH - (CH_2)_2C1
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
  -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
  -C(CH_3)=C(CN)-CO-piperidin-1-y1, -C(CH_3)=C(CN)-CO-morpholin-4-y1,
  -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
  -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
  -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(CH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(Cl)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH_-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH_-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

-CHO, -COCH₃, -COC₂H₅, -CO-n-C₃H₇, -CO-i-C₃H₇, -CO-n-C₄H₉, $-\text{CO-i-C}_4\text{Hg}, \quad -\text{CO-s-C}_4\text{Hg}, \quad -\text{CO-tert.-C}_4\text{Hg}, \quad -\text{CO-CH}_2\text{CH=CH}_2, \quad -\text{CO-CF}_3,$ -COCCl₃, -COCH₂C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclopentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH₃, -CO-COOC₂H₅, -CH=NH, -CH=NCH₃, -CH=NC₂H₅, -CH=N- π -C₃H₅, -CH=N- π -C₄H₉, -CH=NCH₂CH=CH₂, -CH=NCH₂CH=CH₂-CH₃, -CH=NCH₂C≡CH, -CH=NCH2CEC-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl, -CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl, -CH=N-CH₂-CH₂Cl, -CH=N-CH₂Cl, -CH=N-C₆H₅, -CH=N-4-Br-C₆H₄, -CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4, -CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4, -CH=N-2-CH₃-C₆H₄, -CH=N-3-CH₃-C₆H₄, -CH=N-4-CH₃-C₆H₄, -CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4, $-CH=N-2-OCH_3-C_6H_4$, $-CH=N-3-OCH_3-C_6H_4$, $-CH=N-4-OCH_3-C_6H_4$, $-CH=N-4-NO_2-C_6H_4$, $-CH=N-4-CN-C_6H_4$, -CH=N-2, $4-(C1,C1)-C_6H_4$, -CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5, -CH=N-CH₂CH₂OCH₃, -CH=N-CH₂CH₂OC₂H₅, -CH=N-OH, -CH=N-OCH₃, $-{\sf CH=N-OC}_{\,2}{\sf H_5}\,, \quad -{\sf CH=N-O-n-C}_{\,3}{\sf H_7}\,, \quad -{\sf CH=N-O-i-C}_{\,3}{\sf H_7}\,, \quad -{\sf CH=N-O-n-C}_{\,4}{\sf H_9}\,,$ -CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,

```
-CH=N-O-CH2CH=CH2, -CH=N-O-CH(CH3)CH=CH2, -CH=N-O-CH2C=CH,
    -CH=N-O-CH(CH<sub>3</sub>)-C\equivCH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
    -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
    -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C_4H_9,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-CI-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-Cl-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CHCH<sub>2</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>-CH=C(CH<sub>3</sub>)-C<sub>6</sub>H<sub>5</sub>
  -CH=N-O-(CH_2)_2CH=CH-3, 4(CI,CI)-C_6H_3, -CH=N-O-(CH_2)_3C=C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=n-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=n-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH_3)COO-n-C_4H_9, -CH=N-NH_2, -CH=N-NHCH_3, -CH=N-NHC_2H_5,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>g</sub>,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
  -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
  -CH=N-N(C_{2}H_{5})_{2}, -CH=N-N(C_{3}H_{7})_{2}, -CH=N-N(i-C_{3}H_{7})(CH_{3}),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3)2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C _3H_7, -CH=CH-CO-O-n-C _4H_9, -CH=CH-CO-O-tert.-C _4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH_3)-CO-O-cyclohexyl, -CH=C(CH_3)-CO-O-cycloheptyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-COOH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
  -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopentyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(C1)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclonexyl,
 -CH=C(Br)-CO-O-cycloneptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(CN)-CO-OC_2H_5, -CH=C(CN)-CO-O-n-C_3H_7, -CH=C(CN)-CO-O-i-C_3H_7,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
 -CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
 -CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloneptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH2-OC2H5, -CH=CH-CO-OCH2-O-n-C3H5,
-CH=CH-CO-OCH_2-O-i-C_3H_5, -CH=CH-CO-OCH(CH_3)-OCH_3,
-CH=CH-CO-OCH(CH3)-OC2H5, -CH=CH-CO-O-CH2CH2-OCH3,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-OCH_2-OC_2H_5, -CH=C(C_2H_5)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH2-OC2H5, -CH=C(C1)-CO-OCH2-O-n-C3H5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CN)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_{2}H_{5})-CO-OCH_{2}-CCl_{3}, -CH=C(C_{2}H_{5})-CO-OCH_{2}-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Cl)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH_2)_3-Br, -CH=C(Br)-CO-OCH_2-CH=CH_2,
-CH=C(Br)-CO-OCH2-CECH, -CH=C(Br)-CO-OCH2-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(CN)-CO-OCH2-C=CH, -CH=C(CN)-CO-OCH2-CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=GH-CO-tert.-C4Hg, -CH=CH-CO-CH2Cl, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Br, -CH=C(CH<sub>3</sub>)-CO-CHCl<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2Cl,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
 -CH=C(C2H5)-CO-CH2-SCH3, -CH=C(C1)-CO-CH3, -CH=C(C1)-CO-C2H5,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
 -CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
 -CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
 -CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH2Cl,
 -CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
 -CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
 -CH=C(CN)-CO-n-C4Hg, -CH=C(CN)-CO-tert.-C4Hg, -CH=C(CN)-CO-CH2C1,
 -CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_6H_6,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=CH-CO-NH-CH<sub>2</sub>C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH_3)-CO-N(CH_3)_2, -CH=C(CH_3)-CO-NH-C_2H_5,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH_3)-CO-NH-i-C_3H_7, -CH=C(CH_3)-CO-NH-tert.-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, ~CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NHCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
  -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclonexyl, -CH=C(C_2H_5)-CO-NH-cycloneptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>C\equivCH,
 -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH_3)_2, -CH=C(C1)-CO-NH-C_2H_5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(C1)-CO-NH-cyclopropyl, -CH=C(C1)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
 -CH=C(C1)-CO-morpholin-4-y1, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH2C=CH, -CH=C(C1)-CO-N(CH3)-CH2C=CH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH_3, -CH=C(Br)-CO-N(CH_3)_2, -CH=C(Br)-CO-NH-C_2H_5,
 -CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
 -CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH_2)_2Cl, -CH=C(Br)-CO-NH-C_6H_5, -CH=C(CN)-CO-NH_2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CN)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C<sub>4</sub>H<sub>9</sub>, -CH=CH-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-SCH<sub>3</sub>,
 -CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(C_1)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-S-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-S-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(C1)-CO-S-n-C4Hg, -CH=C(C1)-CO-S-tert.-C4Hg,
-CH=C(Br)-CO-SCH<sub>3</sub>, -CH=C(Br)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-S-n-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
 -CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
-CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_{2}H_{5})-CO-OC_{2}H_{5}, -CH=C(CO-n-C_{3}H_{7})-CO-OC_{2}H_{5},
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-\pi-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -\mathsf{CH=C}\left(\mathsf{CF}_{3}\right)-\mathsf{CO-O-tert}.-\mathsf{C}_{4}\mathsf{Hg},\ -\mathsf{CH=C}\left(\mathsf{COOCH}_{3}\right){}_{2},\ -\mathsf{CH=C}\left(\mathsf{COOC}_{2}\mathsf{H}_{5}\right){}_{2},
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH_3, -CH=CH-CH=CH-CO-OC_2H_5,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(C1)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH<sub>2</sub>-CH(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CH(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
 -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -C\mathcal{H}=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
        -CH(OCH<sub>3</sub>)<sub>2</sub>, -CH(SCH<sub>3</sub>)<sub>2</sub>, -CH(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH(SC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH(O-n-C<sub>3</sub>H<sub>7</sub>)<sub>2</sub>,
        -CH(0-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(0-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C_4H_9)_2, -CH(OC_5H_{11})_2,
        1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
        yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                   4-methyl-1,3-oxathiolan-2-yl,
                                                         5-methyl-1,3-
        2-y1,
        oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
        dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
                            4,5-dimethyl-1,3-dioxolan-2-yl,
        oxathiolan-2-yl,
        dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
        2-y1, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
        oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
        dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
        4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
        5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
        2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
        1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
        4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
                          4-allyloxymethyl-1,3-dioxolan-2-yl,
        dioxolan-2-yl,
                                                      4-acetoxymethyl-
        propargyloxymethyl-1,3-dioxolan-2-yl,
        1,3-dioxolan-2-yl, 4-methoxymethyl-1,3-dithiolan-2-yl, 4-
20.
        allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
        1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
        4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
        1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
        4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
        1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                  5-propargyloxymethyl-1,3-oxathiolan-2-yl,
        2-yl,
        acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                             4-methoxycarbonyl-1,3-
        carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                             4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                           4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-y1, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
       dioxan-2-yl, 4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                         4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2,
        -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
        -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
        -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
        -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH<sub>3</sub>)(O-n-C<sub>5</sub>H<sub>11</sub>)",
```

```
-C(CH_3)(O-n-C_3H_{11})_2, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
       1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
       2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-
      oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
5
      ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
      oxathiolan-2-yl,
                         5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
       2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
      dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
      trimethyl-1,3-dithiolan-2-yl,
                                         2,4,5-trimethyl-1,3-
10
      oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
      dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
                                             4-chloromethyl-2-
      methyl-5-vinyl-1,3-oxathiolan-2-yl,
                                  4-chloromethyl-2-methyl-1,3-
15
      methyl-1,3-dioxolan-2-yl,
      dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
              5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                            4 -
                                                           4 -
      hydroxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                           4 -
      hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                           5 -
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
20
      hydroxymethy1-2-methy1-1,3-oxathiolan-2-y1,
                                                           4 -
      methoxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                           4 -
      allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                   2-methyl-4-
      propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                              4-methoxymethyl-2-methyl-1,3-
25
      1,3-dioxolan-2-yl,
      dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
      2-yl, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
      4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
      2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                               4-allyloxymethyl-2-methyl-1,3-
30
      1,3-oxathiolan-2-yl,
                            5-allyloxymethyl-2-methyl-1,3-
      oxathiolan-2-yl,
                           2-methyl-4-propargyloxymethyl-1,3-
      oxathiolan-2-yl,
                           2-methyl-5-propargyloxymethyl-1,3-
      oxathiolan-2-yl,
      oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                  2-methyl-4-
      5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
35
                                                  2-methyl-4-
      methylthiomethyl-1,3-dioxolan-2-yl,
      methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4 - n -
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
 5
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
10
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
       carbonyl-1,3-dithiolan-2-yl,
                                             2,4-dimethyl-4-n-
                                                2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cyanomethyl-2-
       methyl-1,3-dioxolan-2-yl, 4-cyanomethyl-2-methyl-1,3-
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-y1,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethy1-1,3-dioxan-2-y1, 2,4,4-trimethy1-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropy1, -C(CH_3)=N-cyclobuty1, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4); -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-Cl-C_6H_4), -C(CH_3)=N-(3-Cl-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
-C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
-C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-1-C_4H_9, -C(CH_3)=N-NH-S-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH<sub>3</sub>)=N-NH-cyclopentyl, -C(CH<sub>3</sub>)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C=CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclonexyl, -C(CH_3)=CH-CO-O-cycloneptyl,
-C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
-C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
-C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
-C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
-C\left(CH_{3}\right)=C\left(C_{2}H_{5}\right)-CO-i-C_{3}H_{7},\quad -C\left(CH_{3}\right)=C\left(C_{2}H_{5}\right)-CO-O-n-C_{4}H_{9},
-C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cy
propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)-C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
 -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
 -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
 -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy(, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(C1)-CO-O-cyclopentyl, -C(CH_3)=C(C1)-CO-O-cyclonexyl,
-C(CH_3)=C(C1)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-G_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclonexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3) = CH - CO - OCH_2 - OC_2H_5, -C(CH_3) = CH - CO - OCH_2 - O - n - C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-O-i-C_3H_7, -C(CH_3)=C(Cl)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{!}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_1)=CH-CO-CH_2C1, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_3(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-c(CH_3)=c(Cl)-co-i-c_3H_7, -c(CH_3)=c(Cl)-co-n-c_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2Cl, -C(CH_3)=C(Br)-CO-CH_2Br,
   -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
   -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
   -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
   -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
  -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
  -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
  -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
  -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
  -C(CH_3)=CH-CO-(4-C1-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
  -C(CH_3)=C(CH_3)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
  -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
  -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
  -C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
  -C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
  -C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
 -C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
 -C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
 -C(CH_3)=CH-CO-NH-cyclooctyl, -C(CH_3)=CH-CO-pyrrolidin-1-yl,
 -C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
 -C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
 -C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)-C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)-C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-c
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloneptyl, -C(C_2H_5)-CO-NH-cycloneptyl, -C(C_2H_5)-CO-NH-cyclon
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2C1, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(C1)-CO-NH-i-C_3H_7, -C(CH_3)=C(C1)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(C1)-CO-NH-cyclopropy1, -C(CH_3)=C(C1)-CO-NH-cyclobuty1,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-1-y1, -C(CH_3)=C(CN)-CO-morpholin-4-y1,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH<sub>3</sub>)=C(Br)-CO-SC<sub>2</sub>H<sub>5</sub>, -C(CH<sub>3</sub>)=C(Br)-CO-S-n-C<sub>3</sub>H<sub>7</sub>,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_{2H_5}, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-n-C<sub>3</sub>H<sub>5</sub>, -CH=N-i-C<sub>3</sub>H<sub>5</sub>, -CH=N-n-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH 2C=C-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-\mathsf{CH} = \mathsf{N} - \mathsf{CH}_2 - \mathsf{CH}_2 \mathsf{Cl}, \quad -\mathsf{CH} = \mathsf{N} - \mathsf{CH}_2 \mathsf{Cl}, \quad -\mathsf{CH} = \mathsf{N} - \mathsf{C}_6 \mathsf{H}_5, \quad -\mathsf{CH} = \mathsf{N} - \mathsf{4} - \mathsf{Br} - \mathsf{C}_6 \mathsf{H}_4,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-C1-C_6H_4, -CH=N-2-Br-C_6H_4, -CH=N-2-F-C_6H_4,
-CH=N-2-CH_3-C_6H_4, -CH=N-3-CH_3-C_6H_4, -CH=N-4-CH_3-C_6H_4,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH3-C6H4, -CH=N-3-OCH3-C6H4, -CH=N-4-OCH3-C6H4,
-CH=N-4-NO_2-C_6H_4, -CH=N-4-CN-C_6H_4, -CH=N-2, 4-(C1,C1)-C_6H_4,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C_4H_9, -CH=N-O-s-C_4H_9, -CH=N-O-tert.-C_4H_9,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C\equivCH,
    -CH=N-O-CH(CH3)-CECH, -CH=N-O-CH2-CH=CH-CH3, -CH=N-O-CH2-CH2-C1,
    -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
   -CH=N-O-CH2-CCl=CH2, -CH=N-O-CH2-CBr=CH2, -CH=N-O-CH2-CH=CCl-CH3,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH<sub>2</sub>)4-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)4-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)CH=CH-4-C1-C<sub>5</sub>H<sub>4</sub>,
  -CH=N-O-CH_2CH=CHCH_2-4-OCH_3-C_6H_4, -CH=N-O-CH_2-CH=C(CH_3)-C_6H_5
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C\equiv C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C4Hg, -CH=N-NH-s-C4Hg, -CH=N-NH-tert.-C4Hg,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
  -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C\equivCH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C\equivCH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO2-C6H4), -CH=N-NH-(4-F-C6H4),
 -CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
 -CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-\pi-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-Í-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-O-n-C<sub>4</sub>H<sub>9</sub>, -CH=CH-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
  -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
  -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopentyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclohexyl,
 \neg CH=C(C_2H_5)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH_3,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(C1)-CO-O-cyclopentyl, -CH=C(C1)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloneptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH_2CH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-OCH_3,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH2-OC2H5, -CH=C(C1)-CO-OCH2-O-n-C3H5,
-CH=C(Cl)-CO-OCH2-O-i-C3H5, -CH=C(Cl)-CO-OCH(CH3)-OCH3,
-CH=C(C1)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(8r)-CO-OCH_2-OC_2H_5, -CH=C(8r)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C2H5)-CO-OCH2-C=CH, -CH=C(C2H5)-CO-OCH2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH2-CC13, -CH=C(C1)-CO-OCH2-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CN)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CN)-CO+O(CH_2)_3-Br, -CH=C(CN)-CO+OCH_2-CH=CH_2,
-CH = C(CN) - CO - OCH_2 - C \equiv CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=GH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Br, -CH=C(CH<sub>3</sub>)-CO-CHCl<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>Cl,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHC12,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Cl)-CO-CH<sub>3</sub>, -CH=C(Cl)-CO-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(Cl)-CO-n-C3H7, -CH=C(Cl)-CO-i-C3H7, -CH=C(Cl)-CO-n-C4Hg,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
 -CH=C(Cl)-CO-CHCl2, -CH=C(Cl)-CO-CH2-OCH3,
-CH=C(C1)-CO-CH(OCH_3)_2, -CH=C(C1)-CO-CH_2-SCH_3, -CH=C(Br)-CO-CH_3,
-CH=C(Br)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH<sub>2</sub>Cl,
-CH=C(Br)-CO-CH_2Br, -CH=C(Br)-CO-CHCl_2, -CH=C(Br)-CO-CH_2-OCH_3,
 -CH=C(Br)-CO-CH(OCH_3)_2, -CH=C(Br)-CO-CH_2-SCH_3, -CH=C(CN)-CO-CH_3,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C_4H_9, -CH=C(CN)-CO-tert.-C_4H_9, -CH=C(CN)-CO-CH_2CI,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-(4-Cl-C<sub>6</sub>H<sub>4</sub>), -CH=C(Cl)-CO-C<sub>6</sub>H<sub>5</sub>, -CH=C(Br)-CO-C<sub>6</sub>H<sub>5</sub>,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C≡CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH_3)-CO-NH-i-C_3H_7, -CH=C(CH_3)-CO-NH-tert.-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, >-CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2C1, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3);
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
 -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
 -CH=C(C2H5)-CO-NH-CH2CH=C(C2H5)2, -CH=C(C2H5)-CO-NH-CH2C=CH,
 -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH_3)_2, -CH=C(C1)-CO-NH-C_2H_5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C_3H_7, -CH=C(C1)-CO-NH-tert.-C_4H_9,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(C1)-CO-NH-cycloheptyl, -CH=C(C1)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
 -CH=C(C1)-CO-morpholin-4-yl, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(C1)-CO-NH-(CH2)2C1, -CH=C(C1)-CO-NH-C6H5, -CH=C(Br)-CO-NH2,
-CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH2CH=C(Br)2,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=\acute{c}(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH_2C\equiv CH, -CH=C(CN)-CO-N(CH_3)-CH_2C\equiv CH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC 2Hs, -CH=CH-CO-S-n-C 3H7, -CH=CH-CO-S-i-C 3H7,
-CH=CH-CO-S-\pi-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(C_1)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C(C1)-CO-S-n-C_4H_9, -CH=C(C1)-CO-S-tert.-C_4H_9,
-CH=C(Br)-CO-SCH<sub>3</sub>, -CH=C(Br)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-S-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(Br)-CO-S-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-S-n-C<sub>4</sub>H<sub>9</sub>,
-CH=C\left(Br\right)-CO-S-tert.-C_{4}H_{9}, \quad -CH=C\left(CN\right)-CO-SCH_{3}, \quad -CH=C\left(CN\right)-CO-SC_{2}H_{5},
-CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
-CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
- \text{CH=C} \left( \text{COCH}_{3} \right) - \text{CO-O-n-C}_{3} \text{H}_{7}, \quad - \text{CH=C} \left( \text{COC}_{2} \text{H}_{5} \right) - \text{CO-O-n-C}_{3} \text{H}_{7},
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=C(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH<sub>3</sub>)-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(Cl)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -CH=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CN)-CO-NH_2,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH _2-CH(COOCH _3) _2, -CH=CH-CH _2-CH(COOC _2H_5) _2,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CA=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH2-CO-NH2, -CH=CH-CH2-CO-NH-CH3, -CH=CH-CH2-CO-N(CH3)2,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>, -CH(OC<sub>5</sub>H<sub>11</sub>)<sub>2</sub>,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       2-y1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
                           4,5-dimethyl-1,3-dioxolan-2-yl,
       oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-yl, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                           4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                               4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                               4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-y1, 5,5-dimethyl-1,3-oxathian-2-y1, 4,4-dimethyl-1,3-...
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl, 4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1, 3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                        4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dithian-2-yl,
       dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                         4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH<sub>3</sub>)(O-n-C<sub>5</sub>H<sub>11</sub>)",
```

 $-C(CH_3)(O-n-C_3H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, 2,4dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-yl, 2,4-dimethyl-1,3-oxathiolan-2-yl, 2,5-dimethyl-1,3oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-5 ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-5-ethyl-2-methyl-1,3-oxathiolan-2-yl, oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4trimethyl-1,3-dithiolan-2-yl, 2,4,5-trimethyl-1,3-10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethyl-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3-15 methyl-1,3-dioxolan-2-yl, dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 -4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 4 methoxymethy1-2-methyl-1,3-dioxolan-2-yl, 4 allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-1,3-dioxolan-2-yl, 25 dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-1,3-oxathiolan-2-yl, 30 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
5
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl,
                                            2,4-dimethyl-4-n-
                                               2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cyanomethyl-2-
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-yl, 2,5,5-trimethyl-1,3-dithian-2-yl, 2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(2H_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-1-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHCl, -C(CH_3)=N-OCH_2-C(Cl)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-1-C_4H_9, -C(CH_3)=N-NH-S-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-
cyclobutyl, -C(CH3)=N-NH-cyclopentyl, -C(CH3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloneptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
 4-y1, -C(CH_3)=N-NH-C_5H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
 -C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
 -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
 -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
 -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
 -C(CH_3)=CH-CO-O-cyclonexyl, -C(CH_3)=CH-CO-O-cycloneptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
  -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
  -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cycl
  propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2
  cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
   -C(CH_3)=C(C_2H_5)-CO-O-cycloneptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
   -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
   -C(CH_3)=C(Cl)-CO-O-n-C_4H_9, -C(CH_3)=C(Cl)-CO-O-tert.-C_4H_9,
   -C(CH_3)=C(Cl)-CO-O-cyclopropy \overline{l}, -C(CH_3)=C(Cl)-CO-O-cyclobuty l
```

```
-C(CH_3)=C(CI)-CO-O-cyclopentyl, -C(CH_3)=C(CI)-CO-O-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3) = CH - CO - OCH(CH_3) - OC_2H_5, -C(CH_3) = CH - CO - OCH_2CH_2 - OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3) = C(CH_3) - CO - OCH_2 - OC_2H_5, -C(CH_3) = C(CH_3) - CO - OCH_2 - O - n - C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH_1, -C(CH_3)=C(CH_3)-CO-OCH_2-CN_1
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH_3)=C(Cl)-CO-OCH_2-CCl_3, -C(CH_3)=C(Cl)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2C1, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHC1_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_1(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
-C(CH_3)=C(C1)-CO-i-C_3H_7, -C(CH_3)=C(C1)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
  -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
  -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
  -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
  -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
  -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2CI,
  -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(Cl)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
 -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
 -C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
 -C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
 -C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
 -C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
 -C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
 -C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
 -C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C=CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)+CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C=CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3^2)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-c
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-y1, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(Cl)-CO-NH_2, -C(CH_3)=C(Cl)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3) - C(CI) - CO - S - i - C_3H_7, -C(CH_3) = C(CI) - CO - S - n - C_4H_9,
-C(CH_3)=C(Cl)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_{2}H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C=CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-n-C<sub>3</sub>H<sub>5</sub>, -CH=N-i-C<sub>3</sub>H<sub>5</sub>, -CH=N-n-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH<sub>2</sub>C=C-CH<sub>3</sub>, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH-N-3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-OCH3-C6H4, -CH=N-3-OCH3-C6H4, -CH=N-4-OCH3-C6H4,
-CH=N-4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CN-C<sub>6</sub>H<sub>4</sub>, -CH=N-2, 4-(Cl, Cl)-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2, 4-(CH_3, CH_3)-C_6H_4, -CH=N-CH_2OCH_3, -CH=N-CH_2OC_2H_5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-CI-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-4-C1-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-Cl-C_6H_4,
  -CH=N-O-CH_2CH=CHCH_2-4-OCH_3-C_6H_4, -CH=N-O-CH_2-CH=C(CH_3)-C_6H_5
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C=C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=N-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=N-NH-n-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-NH-i-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>g</sub>,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3) 2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C _3H_7, -CH=CH-CO-O-n-C _4H_9, -CH=CH-CO-O-tert.-C _4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\xiH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
 -CH=C(C_2H_5)-COOH, -CH=C(C_2H_5)-CO-OCH_3, -CH=C(C_2H_5)-CO-OC_2H_5,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-n-C<sub>4</sub>H<sub>g</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>g</sub>,
 -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(C1)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(8r)-CO-O-n-C4Hg, -CH=C(8r)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
-CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH2-OC2H5, -CH=CH-CO-OCH2-O-n-C3H5,
-CH=CH-CO-OCH_2-O-i-C_3H_5, -CH=CH-CO-OCH(CH_3)-OCH_3,
-CH=CH-CO-OCH(CH3)-OC2H5, -CH=CH-CO-O-CH2CH2-OCH3,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH2-OC2H5, -CH=C(C1)-CO-OCH2-O-n-C3H5,
-CH=C(C1)-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH2-OC2H5, -CH=C(Br)-CO-OCH2-O-n-C3H5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-OCH_3,
-CH=C(CN)-CO+OCH_2-OC_2H_5, -CH=C(CN)-CO+OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CN)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CN)-CO-O-CH_2CH_2-OC_2H_5, -CH=CH-CO-OCH_2-CF_3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH_2)_3-Br, -CH=CH-CO-OCH_2-CH=CH_2, -CH=CH-CO-OCH_2-C=CH,
-CH=CH-CO-OCH2-CN, -CH=CH-CO-O(CH2)2-CN, -CH=C(CH3)-CO-OCH2-CF3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
-CH=C(C_{2}H_{5})-CO-O(CH_{2})_{3}-Br, -CH=C(C_{2}H_{5})-CO-OCH_{2}-CH=CH_{2},
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH_2-CC1_3, -CH=C(C1)-CO-OCH_2-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH_2-C\equiv CH, -CH=C(C1)-CO-OCH_2-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\stackrel{\triangle}{=}CH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCI_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-i-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-n-C<sub>4</sub>H<sub>9</sub>,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl_2, -CH=CH-CO-CH_2-OCH_3, -CH=CH-CO-CH(OCH_3)_2,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_{2}H_{5})-CO-CH_{3}, -CH=C(C_{2}H_{5})-CO-C_{2}H_{5}, -CH=C(C_{2}H_{5})-CO-n-C_{3}H_{7}.
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C\left(C_{2}H_{5}\right)-CO-tert.-C_{4}H_{9}, \quad -CH=C\left(C_{2}H_{5}\right)-CO-CH_{2}C1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C_{2}H_{5})-CO-CH_{2}-SCH_{3}, -CH=C(C_{1})-CO-CH_{3}, -CH=C(C_{1})-CO-C_{2}H_{5},
-CH=C(C1)-CO-n-C3H7, -CH=C(C1)-CO-i-C3H7, -CH=C(C1)-CO-n-C4Ha,
-CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
-CH=C(Cl)-CO-CHCl<sub>2</sub>, -CH=C(Cl)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Cl)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Cl)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH;Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH_3)_2, -CH=C(Br)-CO-CH_2-SCH_3, -CH=C(CN)-CO-CH_3,
-CH=C(CN)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-CH<sub>2</sub>C1,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-Cl-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-(4-C1-C<sub>5</sub>H<sub>4</sub>), -CH=C(C1)-CO-C<sub>6</sub>H<sub>5</sub>, -CH=C(Br)-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-n-C_3H_7, -CH=CH-CO-NH-i-C_3H_7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-l-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=CH-CO-NH-CH<sub>2</sub>C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH_3)-CO-N(CH_3)_2, -CH=C(CH_3)-CO-NH-C_2H_5,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, \simCH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>.
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3):
```

```
-CH=C(C2H5)-CO-NH-C2H5, -CH=C(C2H5)-CO-N(C2H5)2,
  -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
 -CH=C(C_2H_5)-CO-NH-cyclobuty1, -CH=C(C_2H_5)-CO-NH-cyclopenty1,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
 -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C_1)-CO-NH_2, -CH=C(C_1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(Cl)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Cl)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-l-yl, -CH=C(Cl)-CO-piperidin-l-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH2C≡CH, -CH=C(C1)-CO-N(CH3)-CH2C≡CH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(8r)-CO-N(C_2H_5)_2, -CH=C(8r)-CO-NH-n-C_3H_7,
 -CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
 -CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2C=CH, -CH=C(Br)-CO-N(CH3)-CH2C=CH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH_2C\equiv CH, -CH=C(CN)-CO-N(CH_3)-CH_2C\equiv CH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C_4H_9, -CH=CH-CO-S-tert.-C_4H_9, -CH=C(CH_3)-CO-SCH_3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(Cl)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C(C1)-CO-S-n-C_4H_9, -CH=C(C1)-CO-S-tert.-C_4H_9,
-CH=C(Br)-CO-SCH<sub>3</sub>, -CH=C(Br)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-S-n-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C4Hg, -CH=C(CN)-CO-S-tert.-C4Hg,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC_{2}H_{5}, -CH=C(CH_{3})-CH=C(CN)-CO-OCH_{3},
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(C1)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -\mathsf{CH}=\mathsf{C}\left(\mathsf{CH}_{3}\right)-\mathsf{CH}=\mathsf{C}\left(\mathsf{Br}\right)-\mathsf{CO}-\mathsf{OC}_{2}\mathsf{H}_{5},\quad -\mathsf{CH}=\mathsf{C}\left(\mathsf{CH}_{3}\right)-\mathsf{CH}=\mathsf{C}\left(\mathsf{CN}\right)-\mathsf{CO}-\mathsf{NH}_{2},
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CA=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-\underline{C}H_2-CO-NH_2, -CH=CH-CH_2-CO-NH-CH_3, -CH=CH-CH_2-CO-N(CH_3)_2,
        -CH(OCH<sub>3</sub>)<sub>2</sub>, -CH(SCH<sub>3</sub>)<sub>2</sub>, -CH(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH(SC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH(O-n-C<sub>3</sub>H<sub>7</sub>)<sub>2</sub>,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C_4H_9)_2, -CH(O-s-C_4H_9)_2, -CH(O-tert.-C_4H_9)_2,
        -CH(S-n-C4Hg)2, -CH(S-i-C4Hg)2, -CH(S-s-C4Hg)2,
        -CH(S-tert.-C_4H_9)_2, -CH(OC_5H_{11})_2,
        1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                        5-methyl-1,3-
        2-yl,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5 .
                            4,5-dimethyl-1,3-dioxolan-2-yl,
       oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-yl, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                  5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                            4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
         n-but Txycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
         4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                 4-ethoxycarbonyl-4-methyl-1,3-
         1,3-dithiolan-2-yl,
         dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
  5
         2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
         n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
         cyanomethyl-1,3-dioxolan-2-yl,
                                                4-cyanomethyl-1,3-
         dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
         oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
         dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                             4,6-dimethyl-1,3-dioxan-2-yl,
         1,3-dioxan-2-yl,
         dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
         4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
         2-y1, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-.
 15
         oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
         methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
         4-allyloxymethyl-1,3-dioxan-2-yl,
                                               4-acetoxymethyl-1,3-
         dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
         methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
 20
         yl, 4-acetoxymethyl-1,3-dithian-2-yl,4-chloromethyl-1,3-
                          4-chloromethyl-1,3-dithian-2-yl,
         dioxan-2-yl,
         dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
         4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                         4-n-butoxycarbonyl-1,3-dioxan-2-yl,
         dioxan-2-yl,
 25
         methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                         4-n-butoxycarbonyl-1,3-dithian-2-yl,
         dithian-2-yl,
         methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
         carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
         methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
  30
         dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
         4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
         -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2,
         -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
         -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
         -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
         -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
         -C(CH_3)(O-n-C_5H_{11})",
```

 $-C(CH_3)(O-n-C_5H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-5 oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-5-ethyl-2-methyl-1,3-oxathiolan-2-yl, oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-4-chloromethyl-2-methyl-1,3-15 methyl-1,3-dioxolan-2-yl, dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 4 methoxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-1,3-dioxolan-2-yl, 25 dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-30 1,3-oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4 - n -
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
 5
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                   2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                                2,4-dimethyl-4-n-
                                                 4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                      4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
       1,3-dioxan-2-yl, 2,5-dimethyl-1,3-dithian-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-yl, 2,5,5-trimethyl-1,3-dithian-2-yl, 2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2, 5, 5-trimethyl-1, 3-oxathian-2-y1, 2, 4, 4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1, 3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-Cl-C_6H_4), -C(CH_3)=N-(3-Cl-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(Cl)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
-C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4);
-C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
-C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-1-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
 cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
 -C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
 -C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
 -C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C=CH,
 -C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
 -C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
 -C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
 pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
 4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
  -C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
 -C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
 -C(CH_3)=N-NH-(2, 4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
  -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
 -C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
  -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
  -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
  -C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropy1,
  -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
  -C(CH_3)=CH-CO-O-cyclonexyl, -C(CH_3)=CH-CO-O-cycloneptyl,
  -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
  -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
  -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
  -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
  -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
  -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
  propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)-C(C_2H_5)-CO-O-Cyclobutyl, -C(CH_3)-C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)
  cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
   -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
   -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
   -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
   -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
   -C(CH_3)=C(Cl)-CO-O-cyclopropy (, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH<sub>3</sub>)=C(Cl)-CO-O-cyclopentyl, -C(CH<sub>3</sub>)=C(Cl)-CO-O-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclonexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3
-C(CH_3) = CH - CO - OCH_2 - OC_2H_5, -C(CH_3) = CH - CO - OCH_2 - O - n - C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CF_3,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-(CH<sub>2</sub>)<sub>3</sub>-Br, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2C1, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHC1_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)^2-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(Cl)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(CI)-CO-CH(OCH_3)_2, -C(CH_3)=C(CI)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2Cl, -C(CH_3)=C(Br)-CO-CH_2Br,
  -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
  -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
  -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
  -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
  -C(CH<sub>3</sub>)=C(CN)-CO-CH<sub>2</sub>Br, -C(CH<sub>3</sub>)=C(CN)-CO-CHCl<sub>2</sub>,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-CI-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
 -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
 -C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
 -C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
 -C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
 -C(CH_3)=CH-CO-NH-cyclobutyl, -C(CH_3)=CH-CO-NH-cyclopentyl,
 -C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
 -C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-yl, -C(CH_3)=CH-CO-morpholin-4-yl,
\pm C(CH_3) = CH - CO - NH - CH_2CH = CH_2, -C(CH_3) = CH - CO - NH - CH_2C = CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-c
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3) = C(C_2H_5) - CO - NH - (CH_2)_2Cl, -C(CH_3) = C(C_2H_5) - CO - NH - C_5H_5,
-C(CH_3)=C(Cl)-CO-NH_2, -C(CH_3)=C(Cl)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclonexyl,
-C(CH_3)=C(C1)-CO-NH-cycloheptyl, -C(CH_3)=C(C1)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
-C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-1-yl,
-C(CH_3)=C(Br)-CO-piperidin-1-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
-C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\Xi CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
 -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
 -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
 -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)-C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH<sub>3</sub>)=C(Cl)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(Br)-CO-SCH<sub>3</sub>,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
\neg C(CH_3) = C(CH_3) - CH = C(CN) - CO - OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OC<sub>2</sub>H<sub>5</sub>.
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-\mathsf{CO-i-C_4H_9}, -\mathsf{CO-s-C_4H_9}, -\mathsf{CO-tert.-C_4H_9}, -\mathsf{CO-CH_2CH=CH_2}, -\mathsf{CO-CF_3},
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC_2H<sub>5</sub>, -CH=NH,
-CH=NCH_3, -CH=NC_2H_5, -CH=N-n-C_3H_5, -CH=N-i-C_3H_5, -CH=N-n-C_4H_9,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH 2C=C-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-C1-C_6H_4, -CH=N-2-Br-C_6H_4, -CH=N-2-F-C_6H_4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH-N-3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CN-C<sub>6</sub>H<sub>4</sub>, -CH=N-2, 4-(Cl, Cl)-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C_4H_9, -CH=N-O-s-C_4H_9, -CH=N-O-tert.-C_4H_9,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH.(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH_2-CH_2-F, -CH=N-O-CH_2-CF_3, -CH=N-O-CH_2-CH=CHC1,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(0)CH_3, -CH=N-OC(0)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
  -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-4-C1-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-Cl-C_6H_4,
  -CH=N-O-CH_2CH=CHCH_2-4-OCH_3-C_6H_4, -CH=N-O-CH_2-CH=C(CH_3)-C_6H_5
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C\equiv C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
 -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
 -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
 -CH=N-NH-i-C4Hg, -CH=N-NH-s-C4Hg, -CH=N-NH-tert.-C4Hg,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C_6H_5, -CH=N-NH-(4-Cl-C_6H_4),
-CH=N-NH-(4-NO_2-C_6H_4), -CH=N-NH-(4-F-C_6H_4),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3) 2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C _3H_7, -CH=CH-CO-O-_n-C _4H_9, -CH=CH-CO-O-tert.-C _4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\mathcal{C}H_3)-COOH, -CH=C(\mathcal{C}H_3)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-COOH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopentyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO+O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
-CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
-CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
-CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH_3,
-CH=C(CN)-CO-OC_{2}H_{5}, -CH=C(CN)-CO-O-n-C_{3}H_{7}, -CH=C(CN)-CO-O-i-C_{3}H_{7},
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloneptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH2-O-i-C3H5, -CH=CH-CO-OCH(CH3)-OCH3,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-OCH2-OC2H5, -CH=C(Br)-CO-OCH2-O-n-C3H5,
-CH=C(Br)-CO-OCH2-O-i-C3H5, -CH=C(Br)-CO-OCH(CH3)-OCH3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(8r)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=c(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(Cl)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Cl)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH2-CCl3, -CH=C(CN)-CO-OCH2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(CN)-CO-OCH_2-C\equiv CH, -CH=C(CN)-CO-OCH_2-CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl_2, -CH=CH-CO-CH_2-OCH_3, -CH=CH-CO-CH(OCH_3)_2,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7.
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>Cl,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2.
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
 -CH=C(C2H5)-CO-CH2-SCH3, -CH=C(C1)-CO-CH3, -CH=C(C1)-CO-C2H5,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
 -CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
 -CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
 -CH=C(Br)-CO-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(Br)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(Br)-CO-CH<sub>2</sub>C<sub>1</sub>,
 -CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
 -CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
 -CH=C(CN)-CO-n-C4Hg, -CH=C(CN)-CO-tert.-C4Hg, -CH=C(CN)-CO-CH2C1,
 -CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_3H_5,
 -CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
 -CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
 -CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_5H_5,
 -CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
 -CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
 -CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=CH-CO-NH-tert.-C4Hq, -CH=CH-CO-NH-cyclopropyl,
 -CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
 -CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
 -CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
 -CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=CH-CO-NH-CH<sub>2</sub>C≡CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C=CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
 -CH=CH-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-NH<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NHCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, ~CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
  -CH=C(C_2H_5)-CO-NH-cyclobuty1, -CH=C(C_2H_5)-CO-NH-cyclopenty1,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclohexyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cycloheptyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclooctyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-pyrrolidin-l-yl,
  -CH=C(C_2H_5)-CO-piperidin-l-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C<sub>1</sub>,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(Cl)-CO-NH-i-C_3H_7, -CH=C(Cl)-CO-NH-tert.-C_4H_9,
 -CH=C(C1)-CO-NH-cyclopropyl, -CH=C(C1)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(C1)-CO-pyrrolidin-1-y1, -CH=C(C1)-CO-piperidin-1-y1,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH2C=CH, -CH=C(C1)-CO-N(CH3)-CH2C=CH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(Br)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(Br)-CO-NH-(CH_2)_2Cl, -CH=C(Br)-CO-NH-C_6H_5, -CH=C(CN)-CO-NH_2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=Ć(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2C≡CH, -CH=C(CN)-CO-N(CH3)-CH2C≡CH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
 -CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
 -CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H5, -CH=C(C_2H5)-CO-S-n-C_3H7,
 -CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
 -CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(Cl)-CO-SCH_3,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
 -CH=C(C1)-CO-S-n-C_4H_9, -CH=C(C1)-CO-S-tert.-C_4H_9,
 -CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
 -CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -\mathsf{CH}=\mathsf{C}\left(\mathsf{CF}_{3}\right)-\mathsf{CO}-\mathsf{O}-\mathsf{tert}.-\mathsf{C}_{4}\mathsf{Hg},\ -\mathsf{CH}=\mathsf{C}\left(\mathsf{COOCH}_{3}\right)_{2},\ -\mathsf{CH}=\mathsf{C}\left(\mathsf{COOC}_{2}\mathsf{H}_{5}\right)_{2},
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH<sub>3</sub>)-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(C1)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -CH=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CN)-CO-NH_2,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CH=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-\underline{CH}_2-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n+C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>, -CH(OC<sub>5</sub>H<sub>11</sub>)<sub>2</sub>,
        1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
        yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                        5-methvl-1,3-
        2-yl,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
        dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
                            4,5-dimethyl-1,3-dioxolan-2-yl,
        oxathiolan-2-yl,
        dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
        2-y1, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
        oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
        4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
        5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
        2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
        1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
        4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
        dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
        hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
                         4-allyloxymethyl-1,3-dioxolan-2-yl,
        dioxolan-2-yl,
                                                    4-acetoxymethyl-
       propargyloxymethyl-1,3-dioxolan-2-yl,
        1,3-dioxolan-2-yl, 4-methoxymethyl-1,3-dithiolan-2-yl, 4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
        1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
        1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                            4-methoxycarbonyl-1,3-
        carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
 5
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl,
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                              4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                           4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-y1,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-...
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl,4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1, 3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2,
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

```
-C(CH_3)(O-n-C_5H_{11})_2, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
       1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
       2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-
5
      oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
      ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
                         5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
      oxathiolan-2-yl,
       2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
      dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
                                         2,4,5-trimethy1-1,3-
       trimethyl-1,3-dithiolan-2-yl,
10
       oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
       dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
                                             4-chloromethyl-2-
      methyl-5-vinyl-1,3-oxathiolan-2-yl,
                                  4-chloromethyl-2-methyl-1,3-
      methyl-1,3-dioxolan-2-yl,
15
      dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
              5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                            4 –
      hydroxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                            4 -
       hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                            4 -
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                            5 -
20
       hydroxymethy1-2-methy1-1,3-oxathiolan-2-y1,
                                                            4 -
                                                            4 -
      methoxymethy1-2-methy1-1,3-dioxolan-2-y1,
                                                   2-methyl-4-
       allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
      propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                              4-methoxymethyl-2-methyl-1,3-
25
       1,3-dioxolan-2-yl,
      dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
       2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
       4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                               4-allyloxymethyl-2-methyl-1,3-
30
       1,3-oxathiolan-2-yl,
                            5-allyloxymethyl-2-methyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-4-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-5-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
       oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                   2-methyl-4-
       5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
35
      methylthiomethyl-1,3-dioxolan-2-yl,
                                                  2-methyl-4-
      methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
 5 .
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               2,4-dimethyl-4-n-
                                                4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
       methyl-1,3-dioxolan-2-yl, 4-cyanomethyl-2-methyl-1,3-
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-yl, 2,5,5-trimethyl-1,3-dithian-2-yl, 2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclonexyl, -C(CH_3)=N-cycloneptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-Cl-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-Cl-C_6H_4),
-C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cyclohepty1, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2, 4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
-C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
-C(CH_3)=C(CH_3)-CO-O-cyclobuty1, -C(CH_3)=C(CH_3)-CO-O-cyclopenty1,
-C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cycl
propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)=C(C_2H_5)-CO-O-Cyclobutyl
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
 -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
 -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
 -C(CH_3)=C(Cl)-CO-O-n-C_4H_9, -C(CH_3)=C(Cl)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobuty l
```

```
-C(CH_3)=C(C1)-CO-O-cyclopentyl, -C(CH_3)=C(C1)-CO-O-cyclopexyl,
-C(CH_3)=C(Cl)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclonexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclonexyl,
-C(CH_3)=C(CN)-CO-O-cycloneptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-O-i-C_3H_7, -C(CH_3)=C(Cl)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_5^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
 -C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
 -C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
 -C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
 -C(CH_3) = C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
 -C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
 -C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
 -C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
 -C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
 -C(CH_3)=C(C1)-CO-OCH_2-CCl_3, -C(CH_3)=C(C1)-CO-OCH_2-oxiranyl,
 -C(CH_3)=C(Cl)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Cl)-CO-OCH_2-CH=CH_2,
 -C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
 -C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
 -C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
 -C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
 -C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
 -C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
 -C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
 -C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
 -C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
 -C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
 -C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
 -C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
 -C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
 -C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3) = C(CH_3) - CO - C_2H_5, -C(CH_3) = C(CH_3) - CO - n - C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
 -C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(C1)-CO-CH_3,
 -C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
 -C(CH_3)=C(C1)-CO-i-C_3H_7, -C(CH_3)=C(C1)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
 -C(CH_3)=C(Cl)-CO-CHCl_2, -C(CH_3)=C(Cl)-CO-CH_2-OCH_3,
 -C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
 -C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
 -C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
 -C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
-C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2;
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
 -C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH<sub>3</sub>)=CH-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopropyl;
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3) = CH - CO - NH - C_6H_5, -C(CH_3) = C(CH_3) - CO - NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl
-C(CH_3)-C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)-C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-l-yl, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-y1, -C(CH_3)=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(Cl)-CO-N(C_2H_5)_2, -C(CH_3)=C(Cl)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclonexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(Cl)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
 -C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
  -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
  -C(CH_3)=C(CN)-CO-piperidin-1-y1, -C(CH_3)=C(CN)-CO-morpholin-4-y1,
  -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
  -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
  -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(GH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(C1)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-n-C<sub>3</sub>H<sub>5</sub>, -CH=N-i-C<sub>3</sub>H<sub>5</sub>, -CH=N-n-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH<sub>2</sub>C=C-CH<sub>3</sub>, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C_6H_4, -CH=N-4-F-C_6H_4, -CH=N-2-C_1-C_6H_4, -CH=N-3-C_1-C_6H_4,
-CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH-N-3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-OCH_3-C_6H_4, -CH=N-3-OCH_3-C_6H_4, -CH=N-4-OCH_3-C_6H_4,
-CH=N-4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CN-C<sub>6</sub>H<sub>4</sub>, -CH=N-2, 4-(C1, C1)-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
    -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
    -CH=N-O-CH2-CH2-F, -CH=N-O-CH2-CF3, -CH=N-O-CH2-CH=CHC1,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-CI-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-C_1-C_6H_4,
  -CH=N-O-CH_2CH=CHCH_2-4-OCH_3-C_6H_4, -CH=N-O-CH_2-CH=C(CH_3)-C_6H_5
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-3, 4(C1, C1)-C<sub>6</sub>H<sub>3</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>3</sub>C\equivC-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH_3)OCH_3, -CH=N-OCH(CH_3)COOCH_3,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C_4H_9, -CH=N-NH-s-C_4H_9, -CH=N-NH-tert.-C_4H_9,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
  -CH=N-NH-cyclohexyl, -CH=N-NH-cycloheptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
  -CH=N-NHCH 2-C=CH, -CH=N-NHCH 2-C=CH, -CH=N-N(CH3)-CH2-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH_3, -CH=N-NH-COOC_2H_5, -CH=N-NH-COO-tert.-C_4H_9,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>5</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
 -CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C _3H_7, -CH=CH-CO-O-n-C _4H_9, -CH=CH-CO-O-tert.-C _4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
 -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl.
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
-CH=C(C1)-CO-O-cycloneptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH2-OC2H5, -CH=CH-CO-OCH2-O-n-C3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH_3)-OC_2H_5, -CH=CH-CO-O-CH_2CH_2-OCH_3,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH<sub>2</sub>-CN, -CH=CH-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH_2-CC1_3, -CH=C(C1)-CO-OCH_2-oxirany1,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(Br)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH2-CECH, -CH=C(Br)-CO-OCH2-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH\pmC(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>C1,
-CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Br, -CH=C(CH<sub>3</sub>)-CO-CHCl<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_{2}H_{5})-CO-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-n-C_{4}H_{9},
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2C1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
 -CH=C(C2H5)-CO-CH2-OCH3, -CH=C(C2H5)-CO-CH(OCH3)2,
 -CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(C_1)-CO-CH_3, -CH=C(C_1)-CO-C_2H_5,
 -CH=C(Cl)-CO-n-C3H7, -CH=C(Cl)-CO-i-C3H7, -CH=C(Cl)-CO-n-C4Hg,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH3Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
 -CH=C(C1)-CO-CH(OCH_3)_2, -CH=C(C1)-CO-CH_2-SCH_3, -CH=C(Br)-CO-CH_3,
 -CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
 -CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH<sub>2</sub>C1.
 -CH=C(Br)-CO-CH_2Br, -CH=C(Br)-CO-CHCl_2, -CH=C(Br)-CO-CH_2-OCH_3,
 -CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
 -CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
 -CH=C(CN)-CO-n-C4Hg, -CH=C(CN)-CO-tert.-C4Hg, -CH=C(CN)-CO-CH<sub>2</sub>Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=CH-CO-(4-CI-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_5H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C≡CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C=CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, >-CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH_3)-CO-NH-CH_2C\equiv CH, -CH=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NHCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>):
```

```
-CH=C(C2H5)-CO-NH-C2H5, -CH=C(C2H5)-CO-N(C2H5)2,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
  -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclohexyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cycloheptyl,
  -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
  -CH=C(C_2H_5)-CO-piperidin-l-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
  -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH_2
  -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2C1,
  -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C_1)-CO-NH_2, -CH=C(C_1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH_3)_2, -CH=C(C1)-CO-NH-C_2H_5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(C1)-CO-NH-cyclopropyl, -CH=C(C1)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(C1)-CO-pyrrolidin-1-y1, -CH=C(C1)-CO-piperidin-1-y1,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
 -CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
 -CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH2CH=C(Br)2,
-CH=C(Br)-CO-NH-CH2C=CH, -CH=C(Br)-CO-N(CH3)-CH2C=CH,
-CH=C(Br)-CO-NH-(CH_2)_2Cl, -CH=C(Br)-CO-NH-C_6H_5, -CH=C(CN)-CO-NH_2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2CECH, -CH=C(CN)-CO-N(CH3)-CH2CECH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC 2H5, -CH=CH-CO-S-n-C 3H7, -CH=CH-CO-S-i-C 3H7,
 -CH=CH-CO-S-n-C_4H_9, -CH=CH-CO-S-tert.-C_4H_9, -CH=C(CH_3)-CO-SCH_3,
 -CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
 -CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
 -CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
 -CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
 -CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C1)-CO-SCH<sub>3</sub>,
 -CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
 -CH=C(Cl)-CO-S-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(Cl)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
 -CH=C(Br)-CO-S-tert.-C_4H_9, -CH=C(CN)-CO-SCH_3, -CH=C(CN)-CO-SC_2H_5,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_{2}H_{5})-CO-OC_{2}H_{5}, -CH=C(CO-n-C_{3}H_{7})-CO-OC_{2}H_{5},
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(C1)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -CH=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CN)-CO-NH_2,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH<sub>2</sub>-CH(COOCH<sub>3</sub>)_2, -CH=CH-CH<sub>2</sub>-CH(COOC<sub>2</sub>H<sub>5</sub>)_2,
 -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -C\Re=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH2-CO-NH2, -CH=CH-CH2-CO-NH-CH3, -CH=CH-CH2-CO-N(CH3)2,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C<sub>4</sub>H<sub>g</sub>)<sub>2</sub>, -CH(OC<sub>5</sub>H<sub>11</sub>)<sub>2</sub>,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methvl-1,3-
       2-yl,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
                           4,5-dimethyl-1,3-dioxolan-2-yl, 4,4-
       oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethyl-1,3-dithiolan-2-y1, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl,
                                                  4-acetoxymethyl-
       1,3-dioxolan-2-yl, 4-methoxymethyl-1,3-dithiolan-2-yl, 4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                          4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
 5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
                                              4-cyanomethyl-1,3-
       cyanomethyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl,
                                                    5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-.
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-y1,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                        4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                         4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH3)(O-n-C5H11)",
```

```
-C(CH_3)(O-n-C_3H_{11})_2, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
       1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl,
      dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
       2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-
5
      oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
      ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
      oxathiolan-2-yl,
                         5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
      2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
      dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
                                         2,4,5-trimethyl-1,3-
      trimethyl-1,3-dithiolan-2-yl,
10
      oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
      dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
      methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-
                                  4-chloromethyl-2-methyl-1,3-
      methyl-1,3-dioxolan-2-yl,
15
      dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
              5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                            4 -
      hydroxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                           4 -
                                                           4 -
      hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                           5 -
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
20
      hydroxymethy1-2-methy1-1,3-oxathiolan-2-y1,
                                                           4 -
      methoxymethy1-2-methy1-1,3-dioxolan-2-y1,
                                                           4 -
      allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                   2-methyl-4-
      propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                              4-methoxymethyl-2-methyl-1,3-
      1,3-dioxolan-2-yl,
25
      dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
      2-yl, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
      4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
      2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                               4-allyloxymethyl-2-methyl-1,3-
30
      1,3-oxathiolan-2-yl,
                            5-allyloxymethyl-2-methyl-1,3-
      oxathiolan-2-yl,
                           2-methyl-4-propargyloxymethyl-1,3-
      oxathiolan-2-yl,
                           2-methyl-5-propargyloxymethyl-1,3-
      oxathiolan-2-yl,
      oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                  2-methy1-4-
35
      5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                 2-methyl-4-
      methylthiomethyl-1,3-dioxolan-2-yl,
      methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
 5
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                             2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cyanomethyl-2-
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-...
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25 %
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropy1, -C(CH_3)=N-cyclobuty1, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C\cdot(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C=CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2+C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
 -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
 -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
-C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
-C(CH_3)=C(CH_3)-CO-O-cyclonexyl, -C(CH_3)=C(CH_3)-CO-O-cycloneptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)=C(C_2H_5)-CO-O-Cyclobutyl
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
 -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
 -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(Cl)-CO-O-n-C_3H_7, -C(CH_3)=C(Cl)-CO-i-C_3H_7,
 -C(CH_3)=C(Cl)-CO-O-n-C_4H_9, -C(CH_3)=C(Cl)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy(, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(CI)-CO-O-cyclopentyl, -C(CH_3)=C(Cl)-CO-O-cyclonexyl,
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclonexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-C0-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br_1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\cong CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{!}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CCl_3, -C(CH_3)=C(C1)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2C1, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_(CH_3)=C(Cl)-CO-CH_3,
-C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
-C(CH_3)=C(C1)-CO-i-C_3H_7, -C(CH_3)=C(C1)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
-C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
-C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
-C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-CI-C_6H_4), -C(CH_3)=C(CI)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclonexyl, -C(CH<sub>3</sub>)=CH-CO-NH-cycloneptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-NHCH<sub>3</sub>, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-y1, -C(CH_3)=C(CH_3)-CO-piperidin-1-y1,
-C(CH_3)=C(CH_3)-CO-morpholin-4-y1,
-C(CH_3)-C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)-C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl.
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-l-yl, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2C1, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(Cl)-CO-N(CH_3)_2, -C(CH_3)=C(Cl)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-
y1, -C(CH_3)=C(Cl)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\Xi CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3) = C(COOCH_3)_2, -C(CH_3) = C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

-CHO, -COCH₃, -COC₂H₅, -CO-n-C₃H₇, -CO-i-C₃H₇, -CO-n-C₄H₉, -CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3, -COCCl₃, -COCH₂C=CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclopentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH₃, -CO-COOC₂H₅, -CH=NH, -CH=NCH₃, -CH=NC₂H₅, -CH=N-n-C₃H₅, -CH=N-i-C₃H₅, -CH=N-n-C₄H₉, -CH=NCH₂CH=CH₂, -CH=NCH₂CH=CH₂-CH₃, -CH=NCH₂CECH, -CH=NCH₂C=C-CH₃, -CH=N-cyclopropyl, -CH=N-cyclobutyl, -CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl, -CH=N-CH₂-CH₂Cl, -CH=N-CH₂Cl, -CH=N-C₆H₅, -CH=N-4-8r-C₆H₄, -CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4, -CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4, -CH=N-2-CH₃-C₆H₄, -CH=N-3-CH₃-C₆H₄, -CH=N-4-CH₃-C₆H₄, -CH=N-2-CF₃-C₆H₄, -CH-N-3-CF₃-C₆H₄, -CH=N-4-CF₃-C₆H₄, -CH=N-2-OCH₃-C₆H₄, -CH=N-3-OCH₃-C₆H₄, -CH=N-4-OCH₃-C₆H₄, $-CH=N-4-NO_2-C_6H_4$, $-CH=N-4-CN-C_6H_4$, -CH=N-2, $4-(C1,C1)-C_6H_4$, -CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5, -CH=N-CH₂CH₂OCH₃, -CH=N-CH₂CH₂OC₂H₅, -CH=N-OH, -CH=N-OCH₃, $-CH=N-OC_{2}H_{5}$, $-CH=N-O-n-C_{3}H_{7}$, $-CH=N-O-i-C_{3}H_{7}$, $-CH=N-O-n-C_{4}H_{9}$, -CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
    -CH=N-O-CH(CH<sub>3</sub>)-CECH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl<sub>2</sub>
    -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHC1,
    -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>4</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>5</sub>H<sub>4</sub>,
   -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-C_1-C_6H_4,
   -CH=N-O-CH_2CH=CHCH_2-4-OCH_3-C_6H_4, -CH=N-O-CH_2-CH=C(CH_3)-C_6H_5
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-3, 4(C1, C1)-C<sub>6</sub>H<sub>3</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>3</sub>C=C-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=N-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=N-NH-n-C<sub>4</sub>H<sub>9</sub>,
  -CH=N-NH-i-C4Hg, -CH=N-NH-s-C4Hg, -CH=N-NH-tert.-C4Hg,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
  -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
  -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH _2-C=CH, -CH=N-NHCH _2-C=CH, -CH=N-N(CH _3)-CH _2-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO_2-C_6H_4), -CH=N-NH-(4-F-C_6H_4),
 -CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
 -CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3)2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-COOH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
  -CH=C(C_{2}H_{5})-CO-O-n-C_{4}H_{9}, -CH=C(C_{2}H_{5})-CO-O-tert.-C_{4}H_{9},
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
  -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C_4H_9, -CH=C(C1)-CO-O-tert.-C_4H_9,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(C1)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_{2}H_{5}, -CH=C(Br)-CO-O-n-C_{3}H_{7}, -CH=C(Br)-CO-O-i-C_{3}H_{7},
 -CH=C(Br)-CO-O-n-C_4H_9, -CH=C(Br)-CO-O-tert.-C_4H_9,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
 -CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
 -CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH3)-OC2H5, -CH=CH-CO-O-CH2CH2-OCH3,
-CH=CH-CO-O-CH2CH2-OC2H5, -CH=C(CH3)-CO-OCH2-OCH3,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-OCH_2-OC_2H_5, -CH=C(C_2H_5)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C2H5)-CO-OCH(CH3)-OC2H5, -CH=C(C2H5)-CO-O-CH2CH2-OCH3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH2-OC2H5, -CH=C(C1)-CO-OCH2-O-n-C3H5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH2-OC2H5, -CH=C(Br)-CO-OCH2-O-n-C3H5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH2-CN, -CH=CH-CO-O(CH2)2-CN, -CH=C(CH3)-CO-OCH2-CF3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
-CH=C(C_{2}H_{5})-CO-O(CH_{2})_{3}-Br, -CH=C(C_{2}H_{5})-CO-OCH_{2}-CH=CH_{2},
-CH=C(C_{2}H_{5})-CO-OCH_{2}-C\equiv CH, -CH=C(C_{2}H_{5})-CO-OCH_{2}-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(Cl)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH_2-CC1_3, -CH=C(C1)-CO-OCH_2-oxirany1,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH_2-C\equiv CH, -CH=C(C1)-CO-OCH_2-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH_2-CCl_3, -CH=C(Br)-CO-OCH_2-oxiranyl,
-CH=C(Br)-CO-O(CH_2)_3-Br, -CH=C(Br)-CO-OCH_2-CH=CH_2,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH_2)_2-CN, -CH=C(CN)-CO-OCH_2-CF_3,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2Cl, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH_3)-CO-tert.-C_4H_9, -CH=C(CH_3)-CO-CH_2C1,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_{2}H_{5})-CO-CH_{3}, -CH=C(C_{2}H_{5})-CO-C_{2}H_{5}, -CH=C(C_{2}H_{5})-CO-n-C_{3}H_{7},
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2C1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHC12,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
 -CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(Cl)-CO-CH_3, -CH=C(Cl)-CO-C_2H_5,
-CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
-CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
-CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
-CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH2Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C4Hg, -CH=C(CN)-CO-tert.-C4Hg, -CH=C(CN)-CO-CH<sub>2</sub>Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-C1-C_6H_4), -CH=C(C1)-CO-C_6H_5, -CH=C(Br)-CO-C_6H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH_3)-CO-N(CH_3)_2, -CH=C(CH_3)-CO-NH-C_2H_5,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclonexyl,
-CH=C(CH_3)-CO-NH-cycloheptyl, -CH=C(CH_3)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, ~CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_{2}H_{5})-CO-NH-n-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-NH-i-C_{3}H_{7},
 -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
 -CH=C(C2H5)-CO-N(CH3)-CH2C=CH, -CH=C(C2H5)-CO-NH-(CH2)2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C_1)-CO-NH_2, -CH=C(C_1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C_3H_7, -CH=C(C1)-CO-NH-tert.-C_4H_9,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(C1)-CO-pyrrolidin-1-y1, -CH=C(C1)-CO-piperidin-1-y1,
 -CH=C(C1)-CO-morpholin-4-yl, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
-CH=C(Br)-CO-NHCH_3, -CH=C(Br)-CO-N(CH_3)_2, -CH=C(Br)-CO-NH-C_2H_5,
 -CH=C(8r)-CO-N(C_2H_5)_2, -CH=C(8r)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CQ-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=\underline{C}(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2C=CH, -CH=C(CN)-CO-N(CH3)-CH2C=CH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C_4H_9, -CH=CH-CO-S-tert.-C_4H_9, -CH=C(CH_3)-CO-SCH_3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H5, -CH=C(C_2H5)-CO-S-n-C_3H7,
-CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
-CH=C(C_{2}H_{5})-CO-S-tert.-C_{4}H_{9}, -CH=C(C_{1})-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C\left(C1\right)-CO-S-n-C_{4}H_{9}, \quad -CH=C\left(C1\right)-CO-S-tert.-C_{4}H_{9},
-CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
-CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C_4H_9, -CH=C(CN)-CO-SCH_3, -CH=C(CN)-CO-SC_2H_5,
-CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
-CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
-CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
-CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
-CH=C(COC_{2}H_{5})-CO-OC_{2}H_{5}, -CH=C(CO-n-C_{3}H_{7})-CO-OC_{2}H_{5},
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
-CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
-CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=C(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(Cl)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -CH=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CN)-CO-NH_2,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CH=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -\mathsf{CH}=\mathsf{CH}-\mathsf{CH}_2-\mathsf{CH}(\mathsf{CH}_3)-\mathsf{CO}-\mathsf{OCH}_3,\quad -\mathsf{CH}=\mathsf{CH}-\mathsf{CH}_2-\mathsf{CH}(\mathsf{CH}_3)-\mathsf{CO}-\mathsf{OC}_2\mathsf{H}_5,
 -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH2-CO-NH2, -CH=CH-CH2-CO-NH-CH3, -CH=CH-CH2-CO-N(CH3)2,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C_4H_9)_2, -CH(O-s-C_4H_9)_2, -CH(O-tert.-C_4H_9)_2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C_4H_9)_2, -CH(OC_5H_{11})_2,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                 4-methyl-1,3-oxathiolan-2-yl,
                                                    5-methyl-1,3-
       2-v1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5 ·
       oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
       carboxy-1,3-dithiolan-2-yl, 4-methoxycarbonyl-1,3-
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
                                              4-cyanomethyl-1,3-
       cyanomethyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                           4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-y1,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-y1, 5,5-dimethyl-1,3-oxathian-2-y1, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl, 4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                        4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2,
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2,
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

```
-C(CH<sub>3</sub>)(O-n-C<sub>5</sub>H<sub>11</sub>)<sub>2</sub>, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
       1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
       2-yl, 2, 4-dimethyl-1, 3-oxathiolan-2-yl, 2, 5-dimethyl-1, 3-
 5
       oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
       ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
                          5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
       oxathiolan-2-yl,
       2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
       dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
                                         2,4,5-trimethyl-1,3-
       trimethyl-1,3-dithiolan-2-yl,
10
       oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
       dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
                                              4-chloromethyl-2-
       methyl-5-vinyl-1,3-oxathiolan-2-yl,
                                   4-chloromethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
15
       dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
              5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                             4 -
       hydroxymethy1-2-methy1-1,3-dioxolan-2-y1,
                                                             4 -
       hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                             4 -
       hydroxymethy1-2-methy1-1,3-oxathiolan-2-y1,
                                                             5.-
20
       hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                             4 -
                                                             4 -
       methoxymethyl-2-methyl-1,3-dioxolan-2-yl,
       allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                    2-methyl-4-
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                               4-methoxymethyl-2-methyl-1,3-
25
       1,3-dioxolan-2-yl,
       dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
       2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
       4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                                4-allyloxymethyl-2-methyl-1,3-
30
       1,3-oxathiolan-2-yl,
                             5-allyloxymethyl-2-methyl-1,3-
       oxathiolan-2-yl,
                            2-methyl-4-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
                            2-methyl-5-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
       oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                    2-methyl-4-
       5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
35
                                                   2-methyl-4-
       methylthiomethyl-1,3-dioxolan-2-yl,
       methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
 5
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               2,4-dimethyl-4-n-
                                                4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                      4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-...
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-yl, 2,5,5-trimethyl-1,3-dithian-2-yl, 2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-1-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4)_1,
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cyclohepty1, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-Co-O-Cyclo-Co-O-Cyclo-Co-O-Cyclo-Co-O-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)=C(C_2H_5)-CO-O-CO-O-CYCLOBUTY
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
 -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
 -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
 -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobuty l
```

```
-C(CH_3)=C(C1)-CO-O-cyclopentyl, -C(CH_3)=C(C1)-CO-O-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-C0-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
- \texttt{C} \, (\texttt{CH}_3) = \texttt{C} \, (\texttt{Br}) \, - \texttt{CO} - \texttt{O} - \texttt{i} \, - \texttt{C} \, _3 \texttt{H}_7 \, , \quad - \texttt{C} \, (\texttt{CH}_3) = \texttt{C} \, (\texttt{Br}) \, - \texttt{CO} - \texttt{OCH} \, (\texttt{CH}_3) \, - \texttt{OCH}_3 \, ,
-c(CH_3)=c(Br)-co-och(CH_3)-oc_2H_5^2, -c(CH_3)=c(Br)-co-och_2CH_2-och_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CF_3,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CCl_3, -C(CH_3)=C(C1)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2C_1,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-CH_2Cl,
-C(CH_3) = C(Cl) - CO - CHCl_2, -C(CH_3) = C(Cl) - CO - CH_2 - OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
-C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
-C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(Cl)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH_3)=CH-CO-NH-cyclobutyl, -C(CH_3)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-y1, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3) = C(C_2H_5) - CO-NH-(CH_2)_2Cl, -C(CH_3) = C(C_2H_5) - CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
 -C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
 -C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
 -C(CH_3)=C(C1)-C0-pyrrolidin-1-y1, -C(CH_3)=C(C1)-C0-piperidin-1-y1
 y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
 -C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(CI)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
 -C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
 -C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
 -C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-1-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
  -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
  -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
  -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
  -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
  -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(GH_3)=C(CN)-CO-NH-i-C_3H_7,
  -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
  -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
  -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
  -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
  -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
  -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
  -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
  -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(GH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
   -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
   -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
   -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
   -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
   -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(CI)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

I-12

where W has one of the following meanings:

-CHO, -COCH₃, -COC₂H₅, -CO-n-C₃H₇, -CO-i-C₃H₇, -CO-n-C₄H₉, $-CO-i-C_4H_9$, $-CO-s-C_4H_9$, $-CO-tert.-C_4H_9$, $-CO-CH_2CH=CH_2$, $-CO-CF_3$, -COCCl₃, -COCH₂C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclopentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH₃, -CO-COOC₂H₅, -CH=NH, -CH=NCH3, -CH=NC2H5, -CH=N-n-C3H5, -CH=N-1-C3H5, -CH=N-n-C4H9, -CH=NCH₂CH=CH₂, -CH=NCH₂CH=CH₂-CH₃, -CH=NCH₂C≡CH, -CH=NCH2CEC-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl, -CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl, $-CH=N-CH_2-CH_2Cl$, $-CH=N-CH_2Cl$, $-CH=N-C_6H_5$, $-CH=N-4-Br-C_6H_4$, -CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4, -CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4, -CH=N-2-CH₃-C₆H₄, -CH=N-3-CH₃-C₆H₄, -CH=N-4-CH₃-C₆H₄, -CH=N-2-CF₃-C₆H₄, -CH-N-3-CF₃-C₆H₄, -CH=N-4-CF₃-C₆H₄, $-CH=N-2-OCH_3-C_6H_4$, $-CH=N-3-OCH_3-C_6H_4$, $-CH=N-4-OCH_3-C_6H_4$, -CH=N-4-NO₂-C₆H₄, -CH=N-4-CN-C₆H₄, -CH=N-2, 4-(C1, C1)-C₆H₄, -CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5, -CH=N-CH₂CH₂OCH₃, -CH=N-CH₂CH₂OC₂H₅, -CH=N-OH, -CH=N-OCH₃, $-CH=N-OC_{2}H_{5}$, $-CH=N-O-n-C_{3}H_{7}$, $-CH=N-O-i-C_{3}H_{7}$, $-CH=N-O-n-C_{4}H_{9}$, -CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
    -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
    -CH=N-O-CH2-CH2-F, -CH=N-O-CH2-CF3, -CH=N-O-CH2-CH=CHC1,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-CI-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>5</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-Cl-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CHCH<sub>2</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>-CH=C(CH<sub>3</sub>)-C<sub>6</sub>H<sub>5</sub>
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1, C1)-C_6H_3, -CH=N-O-(CH_2)_3C\equiv C-4-F-C_6H_4,
 -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C_4H_g, -CH=N-NH-s-C_4H_g, -CH=N-NH-tert.-C_4H_g,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloheptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>5</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO2-C6H4), -CH=N-NH-(4-F-C6H4),
 -CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
 -CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
 -CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-\pi-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH_3)-CO-O-cyclohexyl, -CH=C(CH_3)-CO-O-cycloheptyl,
 -CH=C(C_2H_5)-COOH, -CH=C(C_2H_5)-CO-OCH_3, -CH=C(C_2H_5)-CO-OC_2H_5,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH_3,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C_4H_g, -CH=C(Br)-CO-O-tert.-C_4H_g,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH3)-OC2H5, -CH=CH-CO-O-CH2CH2-OCH3,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH_3)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C_2H_5)-CO-OCH_2-OCH_3,
-CH=C(C_2H_5)-CO-OCH_2-OC_2H_5, -CH=C(C_2H_5)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH2-O-i-C3H5, -CH=C(CN)-CO-OCH(CH3)-OCH3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH_2)_3-Br, -CH=CH-CO-OCH_2-CH=CH_2, -CH=CH-CO-OCH_2-C\equiv CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO+OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO+OCH<sub>2</sub>-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH_2-C\equiv CH, -CH=C(C1)-CO-OCH_2-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH_2)_3-Br, -CH=C(Br)-CO-OCH_2-CH=CH_2,
-CH=C(Br)-CO-OCH2-C=CH, -CH=C(Br)-CO-OCH2-CN,
-CH=C(Br)-CO-O(CH_2)_2-CN, -CH=C(CN)-CO-OCH_2-CF_3,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2Cl,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Cl)-CO-CH<sub>3</sub>, -CH=C(Cl)-CO-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(C1)-CO-n-C3H7, -CH=C(C1)-CO-i-C3H7, -CH=C(C1)-CO-n-C4Hg,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
 -CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
 -CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
 -CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH;Cl,
 -CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
 -CH=C(CN)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-n-C_4Hg, -CH=C(CN)-CO-tert.-C_4Hg, -CH=C(CN)-CO-CH_2CI,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH<sub>3</sub>)-CO-(4-Cl-C<sub>6</sub>H<sub>4</sub>), -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-C<sub>6</sub>H<sub>5</sub>,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-(4-Cl-C<sub>6</sub>H<sub>4</sub>), -CH=C(Cl)-CO-C<sub>6</sub>H<sub>5</sub>, -CH=C(Br)-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=C(CN)-CO-C<sub>6</sub>H<sub>5</sub> -CH=CH-CO-NH<sub>2</sub>, -CH=CH-CO-NHCH<sub>3</sub>,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C_3H_7, -CH=CH-CO-NH-i-C_3H_7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=CH-CO-NH-CH<sub>2</sub>C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, ~-CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH_3)-CO-morpholin-4-yl, -CH=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2,
-CH=C(CH_3)-CO-NH-CH_2C\equiv CH, -CH=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NHCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>\frac{1}{2}</sub>):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
 -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
 -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
 -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclohexyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH_2
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C_1)-CO-NH_2, -CH=C(C_1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C_3H_7, -CH=C(C1)-CO-NH-tert.-C_4H_9,
 -CH=C(C1)-CO-NH-cyclopropyl, -CH=C(C1)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
 -CH=C(C1)-CO-morpholin-4-yl, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
-CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(C1)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1, -CH=C(C1)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(Br)-CO-NH<sub>2</sub>,
-CH=C(Br)-CO-NHCH_3, -CH=C(Br)-CO-N(CH_3)_2, -CH=C(Br)-CO-NH-C_2H_5,
-CH=C(Br)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH2CH=C(Br)2,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH_3, -CH=C(CN)-CO-N(CH_3)_2, -CH=C(CN)-CO-NH-C_2H_5,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2CECH, -CH=C(CN)-CO-N(CH3)-CH2CECH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC 2Hs, -CH=CH-CO-S-n-C 3H7, -CH=CH-CO-S-i-C 3H7,
 -CH=CH-CO-S-n-C<sub>4</sub>H<sub>9</sub>, -CH=CH-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-SCH<sub>3</sub>,
 -CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
 -CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
 -CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
 -CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
 -CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(Cl)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
 -CH=C(C1)-CO-S-n-C_4H_9, -CH=C(C1)-CO-S-tert.-C_4H_9,
 -CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
 -CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_{2}H_{5})-CO-OC_{2}H_{5}, -CH=C(CO-n-C_{3}H_{7})-CO-OC_{2}H_{5},
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=C(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(C1)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH<sub>2</sub>-CH(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CH(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
 -CH=CH-CH<sub>2</sub>-CH(CN)-GO-OCH<sub>3</sub>, -C\neq-CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -\mathsf{CH} = \mathsf{CH} - \mathsf{CH}_2 - \mathsf{CH}(\mathsf{CH}_3) - \mathsf{CO} - \mathsf{OCH}_3, \quad -\mathsf{CH} = \mathsf{CH} - \mathsf{CH}_2 - \mathsf{CH}(\mathsf{CH}_3) - \mathsf{CO} - \mathsf{QC}_2 \mathsf{H}_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH2-CO-NH2, -CH=CH-CH2-CO-NH-CH3, -CH=CH-CH2-CO-N(CH3)2,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C_4H_9)_2, -CH(O-s-C_4H_9)_2, -CH(O-tert.-C_4H_9)_2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C<sub>4</sub>H<sub>g</sub>)<sub>2</sub>, -CH(OC<sub>5</sub>H<sub>11</sub>)<sub>2</sub>,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       2-yl,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
       oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethy1-1,3-dithiolan-2-y1, 4,5-dimethy1-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
                         4-allyloxymethyl-1,3-dioxolan-2-yl,
       dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                          4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
       1,3-dithiolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl,
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                              4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                           4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-y1, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dithian-2-yl,
       dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                        4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

```
-C(CH_3)(O-n-C_5H_{11})_2, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
       1,3-dithiolan-2-yl,
                           2-methyl-1,3-oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
       2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-
5
      oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
      ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
      oxathiolan-2-yl,
                         5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
      2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
      dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
                                        2,4,5-trimethyl-1,3-
      trimethyl-1,3-dithiolan-2-yl,
10
      oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
      dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
                                            4-chloromethy1-2-
      methyl-5-vinyl-1,3-oxathiolan-2-yl,
      methyl-1,3-dioxolan-2-yl, 4-chloromethyl-2-methyl-1,3-
15
      dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
             5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                           4-
      hydroxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                           4 -
      hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                           4 -
      hydroxymethy1-2-methy1-1,3-oxathiolan-2-y1,
                                                           5 -
20
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                           4 -
                                                           4 -
      methoxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                   2-methyl-4-
      allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
      propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                              4-methoxymethyl-2-methyl-1,3-
25
       1,3-dioxolan-2-yl,
      dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
      2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
      4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
      2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                               4-allyloxymethyl-2-methyl-1,3-
30
       1,3-oxathiolan-2-yl,
                            5-allyloxymethyl-2-methyl-1,3-
      oxathiolan-2-yl,
                           2-methyl-4-propargyloxymethyl-1,3-
      oxathiolan-2-yl,
                           2-methyl-5-propargyloxymethyl-1,3-
      oxathiolan-2-yl,
      oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                  2-methyl-4-
      5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
35
                                                  2-methyl-4-
      methylthiomethyl-1,3-dioxolan-2-yl,
      methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
5
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                 2,4-dimethyl-4-
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
                                               2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cyanomethyl-2-
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-y1,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethy1-1,3-oxathian-2-y1, 2,4,4-trimethy1-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropy1, -C(CH_3)=N-cyclobuty1, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(Cl)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloneptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
-C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
-C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
-C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
-C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cycl
propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
 -C(CH_3)=C(C_2H_5)-CO-O-cycloneptyl, -C(CH_3)=CH-COOH,
 -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
 -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobuty l
```

```
-C(CH_3)=C(CI)-CO-O-cyclopentyl, -C(CH_3)=C(CI)-CO-O-cyclonexyl,
-C(CH_3)=C(C1)-CO-O-cyclonepty1, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH<sub>3</sub>)=C(Br)-CO-O-cyclopropyl, -C(CH<sub>3</sub>)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloneptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3) = CH - CO - OCH(CH_3) - OC_2H_5, -C(CH_3) = CH - CO - OCH_2CH_2 - OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3) = C(CH_3) - CO - OCH(CH_3) - OC_2H_5, -C(CH_3) = C(CH_3) - CO - OCH_2CH_2 - OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{!}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-(CH<sub>2</sub>)<sub>3</sub>-Br, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(Cl_1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br_1)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\Xi CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2C1,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(Cl)-CO-CH_3,
-C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
-C(CH_3)=C(C1)-CO-i-C_3H_7, -C(CH_3)=C(C1)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(Cl)-CO-CHCl_2, -C(CH_3)=C(Cl)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_5H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
 -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
 -C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
 -C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
 -C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-yl, -C(CH_3)=CH-CO-morpholin-4-yl,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)-C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)-C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3^2)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
-C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
-C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(Cl)-CO-SCH<sub>3</sub>,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9;
-C(CH<sub>3</sub>)=C(Cl)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(Br)-CO-SCH<sub>3</sub>,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH<sub>3</sub>)=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(CN)-CO-SCH<sub>3</sub>,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C_4H_9, -CO-s-C_4H_9, -CO-tert.-C_4H_9, -CO-CH_2CH=CH_2, -CO-CF_3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH3, -CH=NC2H5, -CH=N-n-C3H5, -CH=N-i-C3H5, -CH=N-n-C4H9,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH2CEC-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH-N-3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-OCH_3-C_6H_4, -CH=N-3-OCH_3-C_6H_4, -CH=N-4-OCH_3-C_6H_4,
-CH=N-4-NO_2-C_6H_4, -CH=N-4-CN-C_6H_4, -CH=N-2, 4-(C1,C1)-C_6H_4,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_2H_5, -CH=N-O-n-C_3H_7, -CH=N-O-i-C_3H_7, -CH=N-O-n-C_4H_9,
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
   -CH=N-O-CH2-CC1=CH2, -CH=N-O-CH2-CBr=CH2, -CH=N-O-CH2-CH=CC1-CH3,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH_2-CH=CH-CH_2-O-CH_3, -CH=N-O-CH_2-CH=CH-CH_2-O-tert.-C_4H_9,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-CI-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-C1-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-Cl-C_6H_4,
  -CH=N-O-CH_2CH=CHCH_2-4-OCH_3-C_6H_4, -CH=N-O-CH_2-CH=C(CH_3)-C_6H_5
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C=C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHCH<sub>3</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C_4H_9, -CH=N-NH-s-C_4H_9, -CH=N-NH-tert.-C_4H_9,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO_2-C_6H_4), -CH=N-NH-(4-F-C_6H_4),
 -CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
 -CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3)2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-_n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-COOH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=C(C_{2}H_{5})-CO-O-n-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-O-i-C_{3}H_{7},
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(Cl)-CO-O-n-C4Hg, -CH=C(Cl)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloneptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloneptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(CN)-CO-OC_{2}H_{5}, -CH=C(CN)-CO-O-n-C_{3}H_{7}, -CH=C(CN)-CO-O-i-C_{3}H_{7},
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
 -CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
 -CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
 -CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Cl)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-OCH_3,
-CH=C(Br)-CO-OCH2-OC2H5, -CH=C(Br)-CO-OCH2-O-n-C3H5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
 -CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
 -CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
 -CH=C(CN)-CO-OCH2-O-i-C3H5, -CH=C(CN)-CO-OCH(CH3)-OCH3,
 -CH=C(CN)-CO-OCH(CH3)-OC2H5, -CH=C(CN)-CO-O-CH2CH2-OCH3,
 -CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
 -CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
 -CH=CH-CO-O(CH_2)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
 -CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
 -CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
 -CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
 -CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
 -CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
 -CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
 -CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
 -CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
 -CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(Cl)-CO-OCH_2-CF_3,
 -CH=C(Cl)-CO-OCH2-CCl3, -CH=C(Cl)-CO-OCH2-oxiranyl,
 -CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
 -CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
 -CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
 -CH=C(Br)-CO-OCH_2-CCl_3, -CH=C(Br)-CO-OCH_2-oxiranyl,
 -CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
 -CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
 -CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
 -CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
 -CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
 -CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=GH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl2, -CH=CH-CO-CH2-OCH3, -CH=CH-CO-CH(OCH3)2,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2C_1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Cl)-CO-CH<sub>3</sub>, -CH=C(Cl)-CO-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
 -CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>1</sub>,
 -CH=C(Br)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH2C1,
 -CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C_4H_9, -CH=C(CN)-CO-tert.-C_4H_9, -CH=C(CN)-CO-CH_2C1,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_6H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=CH-CO-NH-CH<sub>2</sub>C≡CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C6H5, -CH=C(CH3)-CO-NH2, -CH=C(CH3)-CO-NHCH3,
-CH=C(CH_3)-CO-N(CH_3)_2, -CH=C(CH_3)-CO-NH-C_2H_5,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_2,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>.
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3);
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
  -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 --CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-piperidin-1-y1, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-morpholin-4-yl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>C=CH,
 -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH_3)_2, -CH=C(C1)-CO-NH-C_2H_5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C_3H_7, -CH=C(C1)-CO-NH-tert.-C_4H_9,
 -CH=C(C1)-CO-NH-cyclopropyl, -CH=C(C1)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloneptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH2C≡CH, -CH=C(C1)-CO-N(CH3)-CH2C≡CH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(Br)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(Br)-CO-NH-(CH_2)_2Cl, -CH=C(Br)-CO-NH-C_6H_5, -CH=C(CN)-CO-NH_2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2CECH, -CH=C(CN)-CO-N(CH3)-CH2CECH,
-CH=C(CN)-CO-NH-(CH2)2C1, -CH=C(CN)-CO-NH-C6H5, -CH=CH-CO-SCH3,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(C_1)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
 -CH=C(C1)-CO-S-n-C_4H_9, -CH=C(C1)-CO-S-tert.-C_4H_9,
 -CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
 -CH=C(Br)-CO-S-tert.-C_4H_9, -CH=C(CN)-CO-SCH_3, -CH=C(CN)-CO-SC_2H_5,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_{2}H_{5})-CO-OC_{2}H_{5}, -CH=C(CO-n-C_{3}H_{7})-CO-OC_{2}H_{5},
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH<sub>3</sub>)-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(C1)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -C\Re-CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH2-CO-NH2, -CH=CH-CH2-CO-NH-CH3, -CH=CH-CH2-CO-N(CH3)2,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C4Hg)<sub>2</sub>, -CH(O-s-C4Hg)<sub>2</sub>, -CH(O-tert.-C4Hg)<sub>2</sub>,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>, -CH(OC<sub>5</sub>H<sub>11</sub>)<sub>2</sub>,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       2-yl,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1,3-oxathiolan-2-yl,5-ethyl-1,3-
 5
                           4,5-dimethyl-1,3-dioxolan-2-yl,
       oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
                       4-allyloxymethyl-1,3-dioxolan-2-yl,
       dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl,
                                                   4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                           4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
       1,3-dithiolan-2-yl,
                                 4-ethoxycarbonyl-4-methyl-1,3-
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
 5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                               4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-vl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                        4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dithian-2-yl,
       dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                         4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
        -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
        -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH<sub>3</sub>)(O-n-C<sub>5</sub>H<sub>11</sub>)",
```

```
-C(CH<sub>3</sub>)(O-n-C<sub>5</sub>H<sub>11</sub>)<sub>2</sub>, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
       1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
       2-yl, 2,4-dimethyl-1,3-oxathiolan-2-yl, 2,5-dimethyl-1,3-
       oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
 5
      ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
       oxathiolan-2-yl,
                         5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
       2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
      dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
       trimethyl-1,3-dithiolan-2-yl,
                                         2,4,5-trimethyl-1,3-
10
       oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
       dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
                                              4-chloromethyl-2-
       methyl-5-vinyl-1,3-oxathiolan-2-yl,
                                   4-chloromethyl-2-methyl-1,3-
      methyl-1,3-dioxolan-2-yl,
15
       dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
              5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                             4-
       hydroxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4 -
       hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                             4 -
       hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                             5 -
20
       hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                             4 -
                                                             4 -
      methoxymethyl-2-methyl-1,3-dioxolan-2-yl,
       allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                    2-methyl-4-
      propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                               4-methoxymethyl-2-methyl-1,3-
25
       1,3-dioxolan-2-yl,
      dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
       2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
       4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                                4-allyloxymethyl-2-methyl-1,3-
30
       1,3-oxathiolan-2-yl,
                             5-allyloxymethyl-2-methyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-4-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-5-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
       oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                    2-methyl-4-
       5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
35
                                                   2-methy1-4-
      methylthiomethyl-1,3-dioxolan-2-yl,
      methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
 5
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                   2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl,
                                             2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-n-
                                                4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
       methyl-1,3-dioxolan-2-yl,
                                      4-cyanomethyl-2-methyl-1,3-
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-yl, 2,5,5-trimethyl-1,3-dithian-2-yl, 2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-yl, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH_3, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2Cl, -C(CH_3)=N-CH_2Cl, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-C1-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3) = N-OCH(CH_3) - CH=CH_2, -C(CH_3) = N-OCH_2-C=CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(Cl)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-N-C_3H_7, -C(CH_3)=N-NH-1-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-1-C_4H_9, -C(CH_3)=N-NH-S-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
 -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
 -C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
 -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
 -C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
 -C(CH_3)=CH-CO-O-cyclonexyl, -C(CH_3)=CH-CO-O-cycloneptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3) = C(CH_3) - CO - O - cyclohexyl, -C(CH_3) = C(CH_3) - CO - O - cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cycl
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_
  cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
  -C(CH_3)=C(C_2H_5)-CO-O-cycloneptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
  -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
  -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
  -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(Cl)-CO-O-cyclopentyl, -C(CH_3)=C(Cl)-CO-O-cyclonexyl,
-C(CH_3)=C(Cl)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclonexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-O-i-C_3H_7, -C(CH_3)=C(Cl)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(Cl)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Cl)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2C1, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_1CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
-C(CH_3)=C(C1)-CO-i-C_3H_7, -C(CH_3)=C(C1)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-C0-tert.-C_4H_9, -C(CH_3)=C(C1)-C0-CH_2C1,
-C(CH_3)=C(Cl)-CO-CHCl_2, -C(CH_3)=C(Cl)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2CI, -C(CH_3)=C(Br)-CO-CH_2Br,
  -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
  -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
  -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
  -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH<sub>3</sub>)=C(CN)-CO-CH<sub>2</sub>Br, -C(CH<sub>3</sub>)=C(CN)-CO-CHCl<sub>2</sub>,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(Cl)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
 -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
 -C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
 -C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
 -C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
 -C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
 -C(CH_3)=CH-CO-NH-cyclonexyl, -C(CH_3)=CH-CO-NH-cycloneptyl,
 -C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C=CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7.
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-c
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-l-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(Cl)-CO-N(CH_3)_2, -C(CH_3)=C(Cl)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(C1)-CO-NH-cycloheptyl, -C(CH_3)=C(C1)-CO-NH-cyclooctyl,
-C(CH<sub>3</sub>)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH<sub>3</sub>)=C(Cl)-CO-piperidin-l-
y1, -\varepsilon(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(Cl)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
-C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
-C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
-C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
-C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
-C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
-C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-1-y1, -C(CH_3)=C(CN)-CO-morpholin-4-y1,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
 -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
 -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
 -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
-C(CH_3)=C(Cl)-CO-SC_2H_5, -C(CH_3)=C(Cl)-CO-S-n-C_3H_7,
-C(CH_3) -C(C1)-C0-S-i-C_3H_7, -C(CH_3)=C(C1)-C0-S-n-C_4H_9,
-C(CH<sub>3</sub>)=C(Cl)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(Br)-CO-SCH<sub>3</sub>,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH<sub>3</sub>)=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OCH<sub>3</sub>, -C(CH<sub>3</sub>)=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C=CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-n-C<sub>3</sub>H<sub>5</sub>, -CH=N-i-C<sub>3</sub>H<sub>5</sub>, -CH=N-n-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C\(\text{ECH}\),
-CH=NCH2C=C-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH2-CH2Cl, -CH=N-CH2Cl, -CH=N-C6H5, -CH=N-4-Br-C6H4,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH-N-3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CN-C<sub>6</sub>H<sub>4</sub>, -CH=N-2, 4-(C1, C1)-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_2H_5, -CH=N-O-n-C_3H_7, -CH=N-O-i-C_3H_7, -CH=N-O-n-C_4H_9,
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH.(CH3)-CECH, -CH=N-O-CH2-CH-CH3, -CH=N-O-CH2-CH2-C1,
   -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
  -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH2CH=CH-4-C1-C6H4, -CH=N-O-CH2CH=CH-3-OCH3-C6H4,
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH_2CH=CHCH_2-4-OCH_3-C_6H_4, -CH=N-O-CH_2-CH=C(CH_3)-C_6H_5
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH<sub>2</sub>)<sub>3</sub>C=C-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH_3)OCH_3, -CH=N-OCH(CH_3)COOCH_3,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
 -CH=N-NH-i-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>g</sub>,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO2-C6H4), -CH=N-NH-(4-F-C6H4),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3) 2, -CH=CH-COOH,
-CH=CH-CO-OCH3, -CH=CH-CO-OC2H5, -CH=CH-CO-O-n-C3H7,
-CH=CH-CO-O-i-C _3H_7, -CH=CH-CO-O-n-C _4H_9, -CH=CH-CO-O-tert.-C _4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\Theta<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclonexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloneptyl,
  -CH=C(C_2H_5)-COOH, -CH=C(C_2H_5)-CO-OCH_3, -CH=C(C_2H_5)-CO-OC_2H_5,
  -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
  -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
  -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH_3,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(CN)-CO-OC_2H_5, -CH=C(CN)-CO-O-n-C_3H_7, -CH=C(CN)-CO-O-i-C_3H_7,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
 -CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
 -CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
 -CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=CH-CO-OCH2-OC2H5, -CH=CH-CO-OCH2-O-n-C3H5,
 -CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH2-O-i-C3H5, -CH-C(C1)-CO-OCH(CH3)-OCH3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH_2)_3-Br, -CH=CH-CO-OCH_2-CH=CH_2, -CH=CH-CO-OCH_2-C=CH.
-CH=CH-CO-OCH2-CN, -CH=CH-CO-O(CH2)2-CN, -CH=C(CH3)-CO-OCH2-CF3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(Cl)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH_2-CC1_3, -CH=C(C1)-CO-OCH_2-oxirany1,
-CH=C(C1)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(C1)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(C1)-CO-OCH_2-C\equiv CH, -CH=C(C1)-CO-OCH_2-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH_2-CCl_3, -CH=C(Br)-CO-OCH_2-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH_2)_3-Br, -CH=C(CN)-CO-OCH_2-CH=CH_2,
-CH=C(CN)-CO-OCH2-C≡CH, -CH=C(CN)-CO-OCH2-CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2CI, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2Cl,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Cl)-CO-CH<sub>3</sub>, -CH=C(Cl)-CO-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(Cl)-CO-n-C3H7, -CH=C(Cl)-CO-i-C3H7, -CH=C(Cl)-CO-n-C4H9,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
-CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>1</sub>,
 -CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH2Cl,
 -CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH_3)_2, -CH=C(Br)-CO-CH_2-SCH_3, -CH=C(CN)-CO-CH_3,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C_4H_9, -CH=C(CN)-CO-tert.-C_4H_9, -CH=C(CN)-CO-CH_2C1,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-C1-C_6H_4), -CH=C(C1)-CO-C_6H_5, -CH=C(Br)-CO-C_6H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-\pi-C <sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C <sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-NH<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NHCH<sub>3</sub>,
-CH=C(CH_3)-CO-N(CH_3)_2, -CH=C(CH_3)-CO-NH-C_2H_5,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, ~CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH_3)-CO-NH-CH_2C\equiv CH, -CH=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_{2}H_{5})-CO-NH-n-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-NH-i-C_{3}H_{7},
  -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclohexyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cycloheptyl,
  -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
  -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
  -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
  -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C_1)-CO-NH_2, -CH=C(C_1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C_3H_7, -CH=C(C1)-CO-NH-tert.-C_4H_9,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(C1)-CO-NH-cycloheptyl, -CH=C(C1)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-l-yl, -CH=C(Cl)-CO-piperidin-l-yl,
 -CH=C(C1)-CO-morpholin-4-y1, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH_3, -CH=C(Br)-CO-N(CH_3)^{-2}, -CH=C(Br)-CO-NH-C_2H_5,
 -CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
 -CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2C≡CH, -CH=C(Br)-CO-N(CH3)-CH2C≡CH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH<sub>2</sub>CH=C(CN)<sub>2</sub>,
-CH=C(CN)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CN)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H5, -CH=C(C_2H5)-CO-S-n-C_3H7,
 -CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(Cl)-CO-SCH_3,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
 -CH=C(Cl)-CO-S-n-C_4H_9, -CH=C(Cl)-CO-S-tert.-C_4H_9,
-CH=C(Br)-CO-SCH<sub>3</sub>, -CH=C(Br)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-S-n-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_{2}H_{5})-CO-OC_{2}H_{5}, -CH=C(CO-n-C_{3}H_{7})-CO-OC_{2}H_{5},
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=C(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(C1)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_{3}\right) - \mathsf{CH} = \mathsf{C}\left(\mathsf{Br}\right) - \mathsf{CO} - \mathsf{OC}_{2}\mathsf{H}_{5}, \quad -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_{3}\right) - \mathsf{CH} = \mathsf{C}\left(\mathsf{CN}\right) - \mathsf{CO} - \mathsf{NH}_{2},
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -C\Re=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH2-CO-NH2, -CH=CH-CH2-CO-NH-CH3, -CH=CH-CH2-CO-N(CH3)2,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>, -CH(OC<sub>5</sub>H<sub>11</sub>)<sub>2</sub>,
        1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
       2-y1,
                                                      5-methyl-1,3-
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
       oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
                        4-allyloxymethyl-1,3-dioxolan-2-yl,
       dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl,
                                                  4-acetoxymethyl-
       1,3-dioxolan-2-yl, 4-methoxymethyl-1,3-dithiolan-2-yl, 4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                           4-methoxycarbonyl-1,3-
30
       carboxy-1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
       1,3-dithiolan-2-yl,
                                4-ethoxycarbonyl-4-methyl-1,3-
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
 5 .
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl,
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                              4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10.
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
       1,3-dioxan-2-yl, 4,6-dimethyl-1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-..
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1, 3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1, 3-dithian-2-yl,
                                                              1,3-
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dithian-2-yl,
       dithian-2-yl,
                                                        4-ethoxy-
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2,
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

 $-C(CH_3)(O-n-C_3H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-5 oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3oxathiolan-2-yl, 5-ethyl-2-methyl-1,3-oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethyl-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3-15 methyl-1,3-dioxolan-2-yl, dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 4hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 -5 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 20 4:hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 4 methoxymethy1-2-methy1-1,3-dioxolan-2-y1, allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-25 1,3-dioxolan-2-yl, dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-30 1,3-oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methy1-4-35 5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4 - n -
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
 5
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                              4 - n -
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl,
                                             2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                                2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cyanomethyl-2-
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-y1,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethy1-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropy1, -C(CH_3)=N-cyclobuty1, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHCl, -C(CH_3)=N-OCH_2-C(Cl)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(Cl)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
-C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
-C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
-C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
-C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cycl
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)-C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)
  cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
  -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
 -C(CH_3)=C(Cl)-CO-O-n-C_4H_9, -C(CH_3)=C(Cl)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy \overline{l}, -C(CH_3)=C(Cl)-CO-O-cyclobuty l
```

```
-C(CH_3)=C(C1)-CO-O-cyclopentyl, -C(CH_3)=C(C1)-CO-O-cyclonexyl,
-C(CH_3)=C(Cl)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclopexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-O-i-C_3H_7, -C(CH_3)=C(Cl)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\cong CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{.}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(Cl)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2C1,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(Cl)-CO-CHCl_2, -C(CH_3)=C(Cl)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
-C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
 -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
 -C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
 -C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclonexyl, -C(CH_3)=CH-CO-NH-cycloneptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-y1,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morphol m-4-y1, -C(CH_3)=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2C1, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(C1)-CO-NH-i-C_3H_7, -C(CH_3)=C(C1)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(CI)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH<sub>3</sub>)=C(Br)-CO-piperidin-l-yl, -C(CH<sub>3</sub>)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-1-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C=CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
 -C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(CI)-CO-S-i-C_3H_7, -C(CH_3)=C(CI)-CO-S-n-C_4H_9,
-C(CH_3)=C(C1)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH<sub>3</sub>)=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OCH<sub>3</sub>, -C(CH<sub>3</sub>)=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

-CHO, -COCH₃, -COC₂H₅, -CO-n-C₃H₇, -CO-i-C₃H₇, -CO-n-C₄H₉, $-\text{CO-i-C}_4\text{Hg}, \quad -\text{CO-s-C}_4\text{Hg}, \quad -\text{CO-tert.-C}_4\text{Hg}, \quad -\text{CO-CH}_2\text{CH=CH}_2, \quad -\text{CO-CF}_3,$ -COCCl₃, -COCH₂C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclopentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH₃, -CO-COOC₂H₅, -CH=NH, $-CH=NCH_3$, $-CH=NC_2H_5$, $-CH=N-n-C_3H_5$, $-CH=N-i-C_3H_5$, $-CH=N-n-C_4H_9$, -CH=NCH2CH=CH2, -CH=NCH2CH=CH2-CH3, -CH=NCH2CECH, -CH=NCH₂C=C-CH₃, -CH=N-cyclopropyl, -CH=N-cyclobutyl, -CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl, $-CH=N-CH_2-CH_2Cl$, $-CH=N-CH_2Cl$, $-CH=N-C_6H_5$, $-CH=N-4-Br-C_6H_4$, $-CH=N-3-F-C_6H_4$, $-CH=N-4-F-C_6H_4$, $-CH=N-2-C_1-C_6H_4$, $-CH=N-3-C_1-C_6H_4$, -CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4, -CH=N-2-CH₃-C₆H₄, -CH=N-3-CH₃-C₆H₄, -CH=N-4-CH₃-C₆H₄, -CH=N-2-CF₃-C₆H₄, -CH-N-3-CF₃-C₆H₄, -CH=N-4-CF₃-C₆H₄, -CH=N-2-OCH₃-C₆H₄, -CH=N-3-OCH₃-C₆H₄, -CH=N-4-OCH₃-C₆H₄, $-CH=N-4-NO_2-C_6H_4$, $-CH=N-4-CN-C_6H_4$, -CH=N-2, $4-(C1,C1)-C_6H_4$, -CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5, -CH=N-CH₂CH₂OCH₃, -CH=N-CH₂CH₂OC₂H₅, -CH=N-OH, -CH=N-OCH₃, $-CH=N-OC_{2}H_{5}$, $-CH=N-O-n-C_{3}H_{7}$, $-CH=N-O-i-C_{3}H_{7}$, $-CH=N-O-n-C_{4}H_{9}$, -CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C\equivCH,
    -CH=N-O-CH(CH3)-CECH, -CH=N-O-CH2-CH=CH-CH3, -CH=N-O-CH2-CH2-C1,
    -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
    -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(0)CH<sub>3</sub>, -CH=N-OC(0)C<sub>2</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>-CN,
   -CH=N-O-CH_2-CH=CH-CH_2-O-CH_3, -CH=N-O-CH_2-CH=CH-CH_2-O-tert.-C_4H_9,
  -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-4-C1-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-C1-C_6H_4,
  -CH=N-O-CH2CH=CHCH2-4-OCH3-C6H4, -CH=N-O-CH2-CH=C(CH3)-C6H5
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-3, 4(C1, C1)-C<sub>6</sub>H<sub>3</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>3</sub>C\equivC-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-1-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C_4H_g, -CH=N-NH-s-C_4H_g, -CH=N-NH-tert.-C_4H_g,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
  -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
  -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
-CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C _3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\Theta<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
  -CH=C(C_2H_5)-COOH, -CH=C(C_2H_5)-CO-OCH_3, -CH=C(C_2H_5)-CO-OC_2H_5,
  -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
  -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopentyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-O-n-C_4H_9, -CH=C(Br)-CO-O-tert.-C_4H_9,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH_3,
 -CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
 -CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
 -CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclonexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH_3)-OC_2H_5, -CH=CH-CO-O-CH_2CH_2-OCH_3,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-OCH_3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-OCH_3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH_2)_3-Br, -CH=CH-CO-OCH_2-CH=CH_2, -CH=CH-CO-OCH_2-C=CH.
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CH<sub>3</sub>)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(Cl)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Cl)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-i-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-n-C<sub>4</sub>H<sub>9</sub>,
-CH=GH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7.
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>Cl,
```

```
-CH=C(C_2H_5)-CO-CH<sub>2</sub>Br, -CH=C(C_2H_5)-CO-CHC1<sub>2</sub>,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(C_1)-CO-CH_3, -CH=C(C_1)-CO-C_2H_5
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
 -CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
 -CH=C(Br)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH;Cl,
 -CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
 -CH=C(CN)-CO-C2H5, -CH=C(CN)-CO-n-C3H7, -CH=C(CN)-CO-i-C3H7,
 -CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_9H_9,
 -CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-(4-Cl-C<sub>6</sub>H<sub>4</sub>), -CH=C(Cl)-CO-C<sub>6</sub>H<sub>5</sub>, -CH=C(Br)-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C≡CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, >-CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
  -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
  -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C=CH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C_3H_7, -CH=C(C1)-CO-NH-tert.-C_4H_9,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
 -CH=C(C1)-CO-morpholin-4-yl, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(Br)-CO-N(C2H5)2, -CH=C(Br)-CO-NH-n-C3H7,
 -CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH_2CH=C(Br)_2,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2CECH, -CH=C(CN)-CO-N(CH3)-CH2CECH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
 -CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
 -CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
 -CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
 -CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
 -CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
 -CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C1)-CO-SCH<sub>3</sub>,
 - \text{CH=C(Cl)} - \text{CO-SC}_2 \text{H}_5, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ n - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{CH=C(Cl)} - \text{CO-S-} \\ i - \text{C}_3 \text{H}_7, \quad - \text{C}_3 \text{H
 -CH=C(Cl)-CO-S-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(Cl)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Br)-CO-SCH<sub>3</sub>, -CH=C(Br)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-S-n-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
 -CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
  -CH=C(CN)-CO-S-n-C4Hg, -CH=C(CN)-CO-S-tert.-C4Hg,
 -CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
  -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 - \text{CH=C} \left( \text{COCH}_{3} \right) - \text{CO-O-n-C}_{3} \text{H}_{7}, \quad - \text{CH=C} \left( \text{COC}_{2} \text{H}_{5} \right) - \text{CO-O-n-C}_{3} \text{H}_{7},
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
  -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
  -CH=C(CF<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=C(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
  -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
  -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
  -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
  -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
  -CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
  -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
  -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
  -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
  -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
  -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
  -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CA=CH-CH_2-CH(CN)-CO-OC_2H_5,
   -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
   -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
   -CH=CH-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
   -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-\underline{\text{CH}}_2-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(0-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(0-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
        -CH(S-n-C4Hg) 2, -CH(S-i-C4Hg) 2, -CH(S-s-C4Hg) 2,
        -CH(S-tert.-C<sub>4</sub>H<sub>g</sub>)<sub>2</sub>, -CH(OC<sub>5</sub>H<sub>11</sub>)<sub>2</sub>,
        1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                        5-methvl-1,3-
        2-y1,
        oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
                            4,5-dimethyl-1,3-dioxolan-2-yl,
        oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
        2-y1, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
        oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
        4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
        5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
        2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
        1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
        4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
                                                   4-acetoxymethyl-
       propargyloxymethyl-1,3-dioxolan-2-yl,
       1,3-dioxolan-2-yl, 4-methoxymethyl-1,3-dithiolan-2-yl, 4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
        1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
        4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
        1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                  5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-y1, 4-methylthiomethyl-1,3-dioxolan-2-y1, 4-
                                            4-methoxycarbonyl-1,3-
30
       carboxy-1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
 5
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                              4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl,
                                                    5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                           4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl, 4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                      4-chloromethyl-1,3-dithian-2-yl,
                                                              1,3-
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                        4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

 $-C(CH_3)(O-n-C_5H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-5 oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3oxathiolan-2-yl, 5-ethyl-2-methyl-1,3-oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethyl-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3methyl-1,3-dioxolan-2-yl, 15 . dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 4 methoxymethy1-2-methy1-1,3-dioxolan-2-y1, allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-25 1,3-dioxolan-2-yl, dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-30 1,3-oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
 5
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-n-
                                               4-cyanomethy1-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-y1,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethyl-1,3-dioxan-2-y1, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
 -C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
 -C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
 -C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
 -C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
 -C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
 -C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
 -C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
 -C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
 -C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
 -C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
 -C(CH_3)=N-OCH_2-CH=CHCl, -C(CH_3)=N-OCH_2-C(Cl)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
  -C(CH_3, =N-OCH_2-CH=CH-(4-Cl-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
   -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
   -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
   -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
   -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
   -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
   -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
   -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
   -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
   -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropy1, -C(CH_3)=N-NH-cyclopropy1
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
 -C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
 -C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
 -C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperîdin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
 -C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
 -C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
 -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
 -C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclonexyl, -C(CH_3)=C(CH_3)-CO-O-cycloneptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
  -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cycl
  propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-CO-O-CYCLOBUTYL, -C(CH_3)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2
  cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
  -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
  -C(CH_3)=C(Cl)-CO-O-n-C_3H_7, -C(CH_3)=C(Cl)-CO-i-C_3H_7,
  -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
   -C(CH_3)=C(Cl)-CO-O-cyclopropy(, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(Cl)-CO-O-cyclopentyl, -C(CH_3)=C(Cl)-CO-O-cyclonexyl,
-C(CH_3)=C(C1)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH<sub>3</sub>)=C(Br)-CO-O-cyclopropyl, -C(CH<sub>3</sub>)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclopexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3) = C(C_2H_5) - CO - OCH_2CH_2 - OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Cl)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-O-(CH<sub>2</sub>)<sub>3</sub>-Br, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CF_3,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-(CH<sub>2</sub>)<sub>3</sub>-Br, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH<sub>3</sub>)=C(Cl)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -C(CH<sub>3</sub>)=C(Cl)-CO-OCH<sub>2</sub>-oxiranyl,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2C1,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-G_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-CH_2Cl,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-CH(OCH_3)_2, -C(CH_3)=C(Cl)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2Cl, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3) = C(CN) - CO - C_2H_5, -C(CH_3) = C(CN) - CO - n - C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
-C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
-C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
-C(CH_3)=CH-CO-(4-C1-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH<sub>3</sub>)=CH-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopropyl,
-C(CH_3)=CH-CO-NH-cyclobutyl, -C(CH_3)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2Cl,
-C(CH_3) = CH-CO-NH-C_6H_5, -C(CH_3) = C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-y1,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-l-yl, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH3)=C(C2H5)-CO-NH-CH2CH=C(C2H5)2,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(Cl)-CO-NH_2, -C(CH_3)=C(Cl)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(C1)-CO-NH-i-C_3H_7, -C(CH_3)=C(C1)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\Xi CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(CI)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
-C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-l-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
 -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-n-C<sub>3</sub>H<sub>5</sub>, -CH=N-i-C<sub>3</sub>H<sub>5</sub>, -CH=N-n-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH2CEC-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH3-C6H4, -CH=N-3-OCH3-C6H4, -CH=N-4-OCH3-C6H4,
-CH=N-4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CN-C<sub>6</sub>H<sub>4</sub>, -CH=N-2, 4-(C1, C1)-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_2H_5, -CH=N-O-n-C_3H_7, -CH=N-O-i-C_3H_7, -CH=N-O-n-C_4H_9,
-CH=N-O-i-C_4H_9, -CH=N-O-s-C_4H_9, -CH=N-O-tert.-C_4H_9,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C\equivCH,
    -CH=N-O-CH(CH<sub>3</sub>)-C\equivCH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
    -CH=N-O-CH2-CH2-F, -CH=N-O-CH2-CF3, -CH=N-O-CH2-CH=CHC1,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH2CH=CH-4-C1-C6H4, -CH=N-O-CH2CH=CH-3-OCH3-C6H4,
   -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH2CH=CHCH2-4-OCH3-C6H4, -CH=N-O-CH2-CH=C(CH3)-C6H5
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C=C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH_3)OCH_3, -CH=N-OCH(CH_3)COOCH_3,
  -CH=N-OCH(CH<sub>3</sub>)COO-\pi-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>g</sub>,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH _2-C=CH, -CH=N-NHCH _2-C=CH, -CH=N-N(CH _3)-CH _2-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
 -CH=N-NH-(2,4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-O-n-C<sub>4</sub>H<sub>9</sub>, -CH=CH-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
 -CH=C(C_{2}H_{5})-COOH, -CH=C(C_{2}H_{5})-CO-OCH_{3}, -CH=C(C_{2}H_{5})-CO-OC_{2}H_{5},
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CQ-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_{2}H_{5}, -CH=C(Br)-CO-O-n-C_{3}H_{7}, -CH=C(Br)-CO-O-i-C_{3}H_{7},
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-O-n-C_4H_9, -CH=C(CN)-CO-O-tert.-C_4H_9,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH_2-O-i-C_3H_5, -CH=CH-CO-OCH(CH_3)-OCH_3,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C_1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH2-OC2H5, -CH=C(C1)-CO-OCH2-O-n-C3H5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=C(CN)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CN)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH_2)_3-Br, -CH=CH-CO-OCH_2-CH=CH_2, -CH=CH-CO-OCH_2-C=CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(Cl)-CO-OCH_2-CF_3,
-CH=C(Cl)-CO-OCH2-CCl3, -CH=C(Cl)-CO-OCH2-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH_2-C\equiv CH, -CH=C(C1)-CO-OCH_2-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH_2)_3-Br, -CH=C(Br)-CO-OCH_2-CH=CH_2,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>C1,
-\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_3\right) - \mathsf{CO} - \mathsf{CH}_2 \mathsf{Br}, \quad -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_3\right) - \mathsf{CO} - \mathsf{CHCl}_2, \quad -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_3\right) - \mathsf{CO} - \mathsf{CH}_2 - \mathsf{CCH}_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>Cl,
```

```
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>Br, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CHCl<sub>2</sub>,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C2H5)-CO-CH2-SCH3, -CH=C(C1)-CO-CH3, -CH=C(C1)-CO-C2H5,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
-CH=C(C1)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C1)-CO-CH<sub>2</sub>C1, -CH=C(C1)-CO-CH<sub>2</sub>Br,
-CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
-CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
-CH=C(Br)-CO-C_{2}H_{5}, -CH=C(Br)-CO-n-C_{3}H_{7}, -CH=C(Br)-CO-i-C_{3}H_{7},
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH<sub>2</sub>Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C_4H_9, -CH=C(CN)-CO-tert.-C_4H_9, -CH=C(CN)-CO-CH_2Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_6H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C≡CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH_3)-CO-N(CH_3)_2, -CH=C(CH_3)-CO-NH-C_2H_5,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, ~CH=C(CH<sub>3</sub>)-CO-piperidin-l-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_{2}H_{5})-CO-NH-n-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-NH-i-C_{3}H_{7},
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
  -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
  -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
  -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-l-yl,
  -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
  -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(Cl)-CO-NH<sub>2</sub>, -CH=C(Cl)-CO-NHCH<sub>3</sub>,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(Cl)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Cl)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-l-yl, -CH=C(Cl)-CO-piperidin-l-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2C≡CH, -CH=C(CN)-CO-N(CH3)-CH2C≡CH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC 2H5, -CH=CH-CO-S-n-C 3H7, -CH=CH-CO-S-i-C 3H7,
 -CH=CH-CO-S-n-C_4H_9, -CH=CH-CO-S-tert.-C_4H_9, -CH=C(CH_3)-CO-SCH_3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
 -CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
 -CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(C_1)-CO-SCH<sub>3</sub>,
 -CH=C(C1)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-S-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-S-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(C1)-CO-S-n-C4Hg, -CH=C(C1)-CO-S-tert.-C4Hg,
 -CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=C(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH<sub>2</sub>-CH(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CH(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
 -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -C\mathbf{H}=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH2-CO-NH2, -CH=CH-CH2-CO-NH-CH3, -CH=CH-CH2-CO-N(CH3)2,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
       -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
       -CH(S-tert.-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>, -CH(OC<sub>5</sub>H<sub>11</sub>)<sub>2</sub>,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                 4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       2-y1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
       oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl, 4,4-
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-yl, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
                        4-allyloxymethyl-1,3-dioxolan-2-yl,
       dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                          4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                 4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
5
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                               4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-y1, 5,5-dimethyl-1,3-oxathian-2-y1, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                        4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                         4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2,
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2,
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH<sub>3</sub>)(O-n-C<sub>5</sub>H<sub>11</sub>)",
```

 $-C(CH_1)(O-n-C_2H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-yl, 2, 5-dimethyl-1, 3-5 oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-5-ethyl-2-methyl-1,3-oxathiolan-2-yl, oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4trimethyl-1,3-dithiolan-2-yl, 2,4,5-trimethy1-1,3-10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethyl-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3methyl-1,3-dioxolan-2-yl, 15 dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 4 -4 hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 4 -4 methoxymethy1-2-methy1-1,3-dioxolan-2-y1, 2-methyl-4allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-25 1,3-dioxolan-2-yl, dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-1,3-oxathiolan-2-yl, 30 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
 5
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl,
                                             2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cyanomethyl-2-
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
       1,3-dioxan-2-yl,
                           2,5-dimethyl-1,3-dithian-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-yl, 2,5,5-trimethyl-1,3-dithian-2-yl, 2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1, 3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(2H_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(Cl)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cyclohepty1, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
 -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
-C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
-C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-Co-O-Cyclo-CO-O-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-C
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
  -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
  -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobuty l
```

```
-C(CH_3)=C(Cl)-CO-O-cyclopentyl, -C(CH_3)=C(Cl)-CO-O-cyclonexyl,
-C(CH_3)=C(Cl)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3) = CH - CO - OCH_2CH_2 - OC_2H_5, -C(CH_3) = C(CH_3) - CO - OCH_2 - OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3) = C(CH_3) - CO - O - i - C_3H_7, -C(CH_3) = C(CH_3) - CO - OCH(CH_3) - OCH_3,
-C(CH_3) = C(CH_3) - CO - OCH(CH_3) - OC_2H_5, -C(CH_3) = C(CH_3) - CO - OCH_2CH_2 - OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O+i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-O-i-C_3H_7, -C(CH_3)=C(Cl)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) = C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(Cl)-CO-OCH_2-CCl_3, -C(CH_3)=C(Cl)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Cl)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Cl)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_3CH_3)=C(Cl)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
-C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(Cl)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropy1,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclonexyl, -C(CH_3)=CH-CO-NH-cycloneptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH<sub>3</sub>)=CH-CO-piperidin-1-yl, -C(CH<sub>3</sub>)=CH-CO-morpholin-4-yl,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholTn-4-y1, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2C1, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclonexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(Cl)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
 -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
 -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3) = C(C1) - CO - S - i - C_3H_7, -C(CH_3) = C(C1) - CO - S - n - C_4H_9,
-C(CH_3)=C(CI)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
 -C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
 -C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
 -C(CH<sub>3</sub>)=CH-CH=CH-COOH, -C(CH<sub>3</sub>)=CH-CH=CH-CO-OCH<sub>3</sub>,
 -C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
 -C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
 -C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
 -C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
 -C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
 -C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
 -C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
 -C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
  -C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where A has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C_4H_9, -CO-s-C_4H_9, -CO-tert.-C_4H_9, -CO-CH_2CH=CH_2, -CO-CF_3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C\(\exists\) -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-n-C<sub>3</sub>H<sub>5</sub>, -CH=N-i-C<sub>3</sub>H<sub>5</sub>, -CH=N-n-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH<sub>2</sub>C=C-CH<sub>3</sub>, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH3-C6H4, -CH=N-3-CH3-C6H4, -CH=N-4-CH3-C6H4,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-4-NO_2-C_6H_4, -CH=N-4-CN-C_6H_4, -CH=N-2, 4-(C1,C1)-C_6H_4,
-CH=N-2, 4-(CH_3, CH_3)-C_6H_4, -CH=N-CH_2OCH_3, -CH=N-CH_2OC_2H_5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C_4H_9, -CH=N-O-s-C_4H_9, -CH=N-O-tert.-C_4H_9,
```

```
-CH=n-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=n-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=n-O-CH<sub>2</sub>C=CH,
    -CH=N-O-CH_{CH_3}) -C\equiv CH_1, -CH=N-O-CH_2-CH_2-CH_3, -CH=N-O-CH_2-CH_2-CH_3
    -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
    -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH<sub>3</sub>, -CH=N-OC(O)C<sub>2</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>-CN,
   -CH=N-O-CH_2-CH=CH-CH_2-O-CH_3, -CH=N-O-CH_2-CH=CH-CH_2-O-tert.-C_4H_9,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-CI-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CHCH<sub>2</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>-CH=C(CH<sub>3</sub>)-C<sub>6</sub>H<sub>5</sub>
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-3, 4(C1, C1)-C<sub>6</sub>H<sub>3</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>3</sub>C\equivC-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH_3)OCH_3, -CH=N-OCH(CH_3)COOCH_3,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C\equivCH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C\equivCH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3) 2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-\pi-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C _3H_7, -CH=CH-CO-O-n-C _4H_9, -CH=CH-CO-O-tert.-C _4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
  -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
  -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(Cl)-CO-O-n-C4Hg, -CH=C(Cl)-CO-O-tert.-C4Hg,
 -CH=C(C1)-CO-O-cyclopropyl, -CH=C(C1)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH_3,
 -CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
 -CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
 -CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclonexyl,
 -CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH2CH2-OC2H5, -CH=C(CH3)-CO-OCH2-OCH3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH2-O-i-C3H5, -CH=C(C1)-CO-OCH(CH3)-OCH3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH2-O-i-C3H5, -CH=C(CN)-CO-OCH(CH3)-OCH3,
-CH=C(CN)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CN)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_{2}H_{5})-CO-O(CH_{2})_{2}-CN, -CH=C(C1)-CO-OCH_{2}-CF_{3},
-CH=C(C1)-CO-OCH_2-CC1_3, -CH=C(C1)-CO-OCH_2-oxirany1,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH_2-C\equiv CH, -CH=C(C1)-CO-OCH_2-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C_3H_7, -CH=CH-CO-i-C_3H_7, -CH=CH-CO-n-C_4H_9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2Cl, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>1</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_{2}H_{5})-CO-CH_{3}, -CH=C(C_{2}H_{5})-CO-C_{2}H_{5}, -CH=C(C_{2}H_{5})-CO-n-C_{3}H_{7},
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2Cl,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C3H5)-CO-CHCl3,
-CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
-CH=C(C_{2}H_{5})-CO-CH_{2}-SCH_{3}, -CH=C(Cl)-CO-CH_{3}, -CH=C(Cl)-CO-C_{2}H_{5},
-CH=C(Cl)-CO-n-C3H7, -CH=C(Cl)-CO-i-C3H7, -CH=C(Cl)-CO-n-C4H9,
-CH=C(Cl)-CO-tert.-C4Hg, -CH=C(Cl)-CO-CH2Cl, -CH=C(Cl)-CO-CH9Br,
-CH=C(C1)-CO-CHC1_2, -CH=C(C1)-CO-CH_2-OCH_3,
-CH=C(Cl)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Cl)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH2Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
-CH=C(CN)-CO-C_{2}H_{5}, -CH=C(CN)-CO-n-C_{3}H_{7}, -CH=C(CN)-CO-i-C_{3}H_{7},
-CH=C(CN)-CO-n-C_4Hg, -CH=C(CN)-CO-tert. -C_4Hg, -CH=C(CN)-CO-CH_2Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_6H_5,
-CH=CH-CO-(4-Cl-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C2H5)-CO-(4-C1-C6H4); -CH=C(C1)-CO-C6H5, -CH=C(Br)-C0-C5H5,
-CH=C(CN)-CO-C<sub>6</sub>H<sub>5</sub> -CH=CH-CO-NH<sub>2</sub>, -CH=CH-CO-NHCH<sub>3</sub>,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclonexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-l-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=CH-CO-NH-CH<sub>2</sub>C≡CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, \simCH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C≡CH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3)
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C2H5)-CO-NH-n-C3H7, -CH=C(C2H5)-CO-NH-i-C3H7,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
 -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclohexyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-l-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
 -CH=C(C2H5)-CO-NH-CH2CH=C(C2H5)2, -CH=C(C2H5)-CO-NH-CH2C=CH,
 -CH=C(C2H5)-CO-N(CH3)-CH2C=CH, -CH=C(C2H5)-CO-NH-(CH2)2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH_3)_2, -CH=C(C1)-CO-NH-C_2H_5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C_3H_7, -CH=C(C1)-CO-NH-tert.-C_4H_9,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclonexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-l-yl, -CH=C(Cl)-CO-piperidin-l-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH2CH=C(Cl)2,
 -CH=C(C1)-CO-NH-CH2C≡CH, -CH=C(C1)-CO-N(CH3)-CH2C≡CH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
-CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH2CH=C(Br)2,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH_2)_2Cl, -CH=C(Br)-CO-NH-C_6H_5, -CH=C(CN)-CO-NH_2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2CECH, -CH=C(CN)-CO-N(CH3)-CH2CECH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(C_1)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C(C1)-CO-S-n-C_4H_9, -CH=C(C1)-CO-S-tert.-C_4H_9,
-\mathsf{CH} = \mathsf{C}\left(\mathsf{Br}\right) - \mathsf{CO} - \mathsf{SCH}_3, \quad -\mathsf{CH} = \mathsf{C}\left(\mathsf{Br}\right) - \mathsf{CO} - \mathsf{SC}_2\mathsf{H}_5, \quad -\mathsf{CH} = \mathsf{C}\left(\mathsf{Br}\right) - \mathsf{CO} - \mathsf{S} - \mathsf{n} - \mathsf{C}_3\mathsf{H}_7,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C_4H_9, -CH=C(CN)-CO-SCH_3, -CH=C(CN)-CO-SC_2H_5,
-CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CN)-CO-OCH_3,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_{3}\right) - \mathsf{CH} = \mathsf{C}\left(\mathsf{Cl}\right) - \mathsf{CO} - \mathsf{OCH}_{3}, \quad -\mathsf{CH} = \mathsf{C}\left(\mathsf{CH}_{3}\right) - \mathsf{CH} = \mathsf{C}\left(\mathsf{Br}\right) - \mathsf{CO} - \mathsf{OCH}_{3},
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -\mathsf{CH=C}\left(\mathsf{CH}_{3}\right)-\mathsf{CH=C}\left(\mathsf{Br}\right)-\mathsf{CO-OC}_{2}\mathsf{H}_{5},\quad -\mathsf{CH=C}\left(\mathsf{CH}_{3}\right)-\mathsf{CH=C}\left(\mathsf{CN}\right)-\mathsf{CO-NH}_{2},
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -C\mathcal{H}=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH2-CO-OCH3, -CH=CH-CH2-CO-OC2H5,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-\frac{CH_2}{CO-NH_2}, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
       -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
       -CH(0-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(0-n-C_4H_9)_2,
       -CH(O-i-C_4H_9)_2, -CH(O-s-C_4H_9)_2, -CH(O-tert.-C_4H_9)_2,
       -CH(S-n-C4Hg) 2, -CH(S-i-C4Hg) 2, -CH(S-s-C4Hg) 2,
       -CH(S-tert.-C4Hg)2, -CH(OC5H11)2,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                 4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       2-yl,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
                           4,5-dimethyl-1,3-dioxolan-2-yl,
       oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethy1-1,3-dithiolan-2-y1, 4,5-dimethy1-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
                        4-allyloxymethyl-1,3-dioxolan-2-yl, 4-
       dioxolan-2-yl,
                                                  4-acetoxymethyl-
       propargyloxymethyl-1,3-dioxolan-2-yl,
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                          4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl,
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                              4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                           4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl,4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
       dioxan-2-yl,
25
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dithian-2-yl,
       dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                        4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
        -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH_3)(O-n-C_5H_{11})",
```

```
-C(CH_3)(O-n-C_5H_{11})_2, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
                           2-methyl-1,3-oxathiolan-2-yl,
      1,3-dithiolan-2-yl,
      dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
      2-yl, 2,4-dimethyl-1,3-oxathiolan-2-yl, 2,5-dimethyl-1,3-
      oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
5
      ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
                         5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
      oxathiolan-2-yl,
      2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
      dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
                                        2,4,5-trimethyl-1,3-
      trimethyl-1,3-dithiolan-2-yl,
10
      oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
      dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
                                             4-chloromethyl-2-
      methyl-5-vinyl-1,3-oxathiolan-2-yl,
                                  4-chloromethyl-2-methyl-1,3-
      methyl-1,3-dioxolan-2-yl,
15
      dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
              5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                            4-
      hydroxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                            4 -
      hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                            4 -
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                            5 -
20
                                                            4 -
      hydroxymethy1-2-methy1-1,3-oxathiolan-2-y1,
                                                            4 -
      methoxymethy1-2-methy1-1,3-dioxolan-2-y1,
      allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                   2-methyl-4-
      propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                              4-methoxymethyl-2-methyl-1,3-
       1,3-dioxolan-2-yl,
25
      dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
      2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
       4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                               4-allyloxymethyl-2-methyl-1,3-
30
       1,3-oxathiolan-2-yl,
                            5-allyloxymethyl-2-methyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-4-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-5-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
       oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                   2-methyl-4-
       5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
35
                                                  2-methyl-4-
      methylthiomethyl-1,3-dioxolan-2-yl,
       methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
 5
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl,
                                            2,4-dimethyl-4-n-
                                                2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                                 4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                      4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
25
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl,4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH_3, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropy1, -C(CH_3)=N-cyclobuty1, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-Cl-C_6H_4), -C(CH_3)=N-(3-Cl-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
 -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloneptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
-C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-C_4H_9
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
 -C(CH_3)=C(C_2H_5)-CO-O-cycloneptyl, -C(CH_3)=CH-COOH,
 -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
 -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy \cite{(CH_3)}=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(Cl)-CO-O-cyclopentyl, -C(CH_3)=C(Cl)-CO-O-cyclonexyl,
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH<sub>3</sub>)=C(CN)-CO-O-cyclopropyl, -C(CH<sub>3</sub>)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-O-i-C_3H_7, -C(CH_3)=C(Cl)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Cl)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Cl)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_1CH_3)=C(Cl)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(C1)-CO-i-C_3H_7, -C(CH_3)=C(C1)-CO-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-CH_2Cl,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-CH(OCH_3)_2, -C(CH_3)=C(Cl)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3) = C(Br) - CO - CH_2 - SCH_3, -C(CH_3) = C(CN) - CO - CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tent:-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
-C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-CI-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
--C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, --C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH<sub>3</sub>)=CH-CO-piperidin-l-yl, -C(CH<sub>3</sub>)=CH-CO-morpholin-4-yl,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-y1, -C(CH_3)=C(CH_3)-CO-piperidin-1-y1,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C=CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloneptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3) = C(C_2H_5) - CO-NH-(CH_2)_2C1, -C(CH_3) = C(C_2H_5) - CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(Cl)-CO-N(C_2H_5)_2, -C(CH_3)=C(Cl)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C2H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclonexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl)
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(Cl)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(C1)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2.
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3) = CH - CH_2 - CH(COOCH_3)_2, -C(CH_3) = CH - CH_2 - CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-\mathsf{CO-i-C_4H_9}, \ -\mathsf{CO-s-C_4H_9}, \ -\mathsf{CO-tert.-C_4H_9}, \ -\mathsf{CO-CH_2CH=CH_2}, \ -\mathsf{CO-CF_3},
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-\pi-C<sub>3</sub>H<sub>5</sub>, -CH=N-\pi-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH<sub>2</sub>C=C-CH<sub>3</sub>, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH_3-C_6H_4, -CH=N-3-OCH_3-C_6H_4, -CH=N-4-OCH_3-C_6H_4,
-CH=N-4-NO2-C6H4, -CH=N-4-CN-C6H4, -CH=N-2,4-(C1,C1)-C6H4,
-CH=N-2,4-(CH3,CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC<sub>2</sub>H<sub>5</sub>, -CH=N-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=N-O-i-C<sub>3</sub>H<sub>7</sub>, -CH=N-O-n-C<sub>4</sub>H<sub>9</sub>,
-CH=N-O-i-C_4H_9, -CH=N-O-s-C_4H_9, -CH=N-O-tert.-C_4H_9,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH2-CH2-F, -CH=N-O-CH2-CF3, -CH=N-O-CH2-CH=CHC1,
   -CH=N-O-CH2-CCl=CH2, -CH=N-O-CH2-CBr=CH2, -CH=N-O-CH2-CH=CCl-CH3,
   -CH=N-OC(O)CH<sub>3</sub>, -CH=N-OC(O)C<sub>2</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
  -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-4-C1-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-C_1-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CHCH<sub>2</sub>-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>-CH=C(CH<sub>3</sub>)-C<sub>6</sub>H<sub>5</sub>
  -CH=N-Q-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-Q-(CH_2)_3C\equiv C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHCH<sub>3</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=N-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=N-NH-n-C<sub>4</sub>H<sub>9</sub>,
  -CH=N-NH-i-C4Hg, -CH=N-NH-s-C4Hg, -CH=N-NH-tert.-C4Hg,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
  -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH 2-C=CH, -CH=N-NHCH 2-C=CH, -CH=N-N(CH3)-CH2-C=CH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-NO_2-C_6H_4), -CH=N-NH-(4-F-C_6H_4),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3) 2, -CH=CH-COOH,
-CH=CH-CO-OCH3, -CH=CH-CO-OC2H5, -CH=CH-CO-O-n-C3H7,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
 -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C_2H_5)-CO-O-cycloheptyl, -CH=C(C_1)-COOH, -CH=C(C_1)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
-CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
-CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-O-n-C_4H_9, -CH=C(CN)-CO-O-tert.-C_4H_9,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH_2CH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-OCH_3,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C_1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH2-O-i-C3H5, -CH=C(C1)-CO-OCH(CH3)-OCH3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-OCH_3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH2)3-Br, -CH=CH-CO-OCH2-CH=CH2, -CH=CH-CO-OCH2-C=CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH<sub>3</sub>)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_{2}H_{5})-CO-OCH_{2}-C\equiv CH, -CH=C(C_{2}H_{5})-CO-OCH_{2}-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Cl)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH_2)_3-Br, -CH=C(Br)-CO-OCH_2-CH=CH_2,
-CH=C(Br)-CO-OCH2-C≡CH, -CH=C(Br)-CO-OCH2-CN,
-CH=C(Br)-CO-O(CH2)2-CN, -CH=C(CN)-CO-OCH2-CF3,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH_2)_3-Br, -CH=C(CN)-CO-OCH_2-CH=CH_2,
-CH=C(CN)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CN)-CO-OCH<sub>2</sub>-CN,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=CH-CO-CH<sub>3</sub>, -CH=CH-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl_2, -CH=CH-CO-CH_2-OCH_3, -CH=CH-CO-CH(OCH_3)_2,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
-CH=C(C_{2}H_{5})-CO-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-n-C_{4}H_{9},
-CH=C(C_{2}H_{5})-CO-tert.-C_{4}H_{9}, -CH=C(C_{2}H_{5})-CO-CH_{2}C1,
```

```
-CH=C(C_2H_5)-CO-CH<sub>2</sub>Br, -CH=C(C_2H_5)-CO-CHCl<sub>2</sub>,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(C1)-CO-CH_3, -CH=C(C1)-CO-C_2H_5,
 -CH=C(C1)-CO-n-C3H7, -CH=C(C1)-CO-i-C3H7, -CH=C(C1)-CO-n-C4Hg,
-CH=C(Cl)-CO-tert.-C4Hg, -CH=C(Cl)-CO-CH2Cl, -CH=C(Cl)-CO-CH2Br,
-CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
-CH=C(Cl)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Cl)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH2Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C4Hg, -CH=C(CN)-CO-tert.-C4Hg, -CH=C(CN)-CO-CH<sub>2</sub>Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>6</sub>H<sub>5</sub>,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_5H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=CH-CO-NH-CH<sub>2</sub>C≡CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C_{6}H_{5}, -CH=C(CH_{3})-CO-NH_{2}, -CH=C(CH_{3})-CO-NHCH_{3},
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)+CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_{2}H_{5})-CO-NH_{2}, -CH=C(C_{2}H_{5})-CO-NHCH_{3}, -CH=C(C_{2}H_{5})-CO-N(CH_{3}):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
   -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
   -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopropyl,
   -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclohexyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cycloheptyl,
  -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-l-yl,
  -CH=C(C_2H_5)-CO-piperidin-1-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
  -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
  -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2CI,
  -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C_1)-CO-NH_2, -CH=C(C_1)-CO-NHCH_3,
  -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
  -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
  -CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
  -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
  -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
  -CH=C(Cl)-CO-NH-cycloneptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
  -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
  -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
  -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH_3, -CH=C(Br)-CO-N(CH_3)_2, -CH=C(Br)-CO-NH-C_2H_5,
  -CH=C(Br)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
  -CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
  -CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
 -CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
 -CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
 -CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
 -CH=C(Br)-CQ-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
 -CH=C(Br)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(Br)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
 -CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
 -CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
 -CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
 -CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
 -CH=C(CN)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CN)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i+C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H5, -CH=C(C_2H5)-CO-S-n-C_3H7,
-CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(C1)-CO-SCH_3,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C(Cl)-CO-S-n-C<sub>4</sub>H<sub>9</sub>, -CH=C(Cl)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-SCH<sub>3</sub>, -CH=C(Br)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-S-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
-CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
-CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CH<sub>3</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -C#=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
  -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-GH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C_4H_9)_2, -CH(O-s-C_4H_9)_2, -CH(O-tert.-C_4H_9)_2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C_4Hg)_2, -CH(OC_5H_{11})_2,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       2-y1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
                           4,5-dimethyl-1,3-dioxolan-2-yl,
       oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-yl, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
                                                   4-acetoxymethyl-
       propargyloxymethyl-1,3-dioxolan-2-yl,
       1,3-dioxolan-2-yl, 4-methoxymethyl-1,3-dithiolan-2-yl, 4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                           4-methoxycarbonyl-1,3-
30
       carboxy-1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
       1,3-dithiolan-2-yl,
                                4-ethoxycarbonyl-4-methyl-1,3-
5
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
                                              4-cyanomethyl-1,3-
       cyanomethyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-y1, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25.
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                      4-n-butoxycarbonyl-1,3-dithian-2-yl,
       dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_{2}, -C(CH_3)(SCH_3)_{2}, -C(CH_3)(OC_2H_5)_{2}, -C(CH_3)(SC_2H_5)_{2}.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

 $-C(CH_3)(O-n-C_5H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-5 oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3oxathiolan-2-yl, 5-ethyl-2-methyl-1,3-oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethyl-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3methyl-1,3-dioxolan-2-yl, 15 dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 4 methoxymethy1-2-methy1-1,3-dioxolan-2-y1, 4 allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-1,3-dioxolan-2-yl, 25 dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-30 1,3-oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
 5
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
                                             2,4-dimethyl-4-n-
       carbonyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                                2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cyanomethyl-2-
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-yl, 2,5,5-trimethyl-1,3-dithian-2-yl, 2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
25
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1, 3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-Cl-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH<sub>3</sub>)=N-NH-cyclopentyl, -C(CH<sub>3</sub>)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C=CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-C_4H_9, -C(CH_3)=N-NH-CO-O-C_4H_9, -C(CH_3)=N-NH-CO-O-C_5
pyrrolidin-l-yl, -C(CH_3)=N-piperidin-l-yl, -C(CH_3)=N-morpholin-pyrrolidin-l-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
 -C(CH_3)=CH-CO-O-cyclonexyl, -C(CH_3)=CH-CO-O-cycloneptyl,
-C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
-C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-CO-O-Cyclo-Co-O-Cyclo-CO-O-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Co-O-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-Cyclo-C
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)=C(C_2H_5)-CO-O-O-Cyclobutyl
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
 -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
 -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
 -C(CH_3)=C(Cl)-CO-O-n-C_4H_9, -C(CH_3)=C(Cl)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy 1, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(C1)-CO-O-cyclopentyl, -C(CH_3)=C(C1)-CO-O-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO+O-n-C_3H_7, -C(CH_3)=C(Br)-CO+i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclopexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloneptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-O-i-C_3H_7, -C(CH_3)=C(Cl)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{!}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH_3)=C(Cl)-CO-OCH_2-CCl_3, -C(CH_3)=C(Cl)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\Xi CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2C1,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_1CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-CH_2Cl,
-C(CH_3) = C(C1) - CO - CHC1_2, -C(CH_3) = C(C1) - CO - CH_2 - OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-C1-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclonexyl, -C(CH<sub>3</sub>)=CH-CO-NH-cycloneptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH<sub>3</sub>)=CH-CO-piperidin-1-yl, -C(CH<sub>3</sub>)=CH-CO-morpholin-4-yl,
-C(CH<sub>3</sub>)=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -C(CH<sub>3</sub>)=CH-CO-NH-CH<sub>2</sub>C\equivCH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH<sub>3</sub>)=CH-CO-NH-C<sub>6</sub>H<sub>5</sub>, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-NH<sub>2</sub>,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_g, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3^2)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloneptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH_3)=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(C1)-CO-NH-i-C_3H_7, -C(CH_3)=C(C1)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(Cl)-CO-NH-CH_2CH=C(Cl)_2, -C(CH_3)=C(Cl)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
 -C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
 -C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
 -C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-1-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
  -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
  -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
  -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
  -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
  -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropy.1,
  -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
  -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
  -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
  -C(CH_3)=C(CN)-CO-piperidin-1-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
  -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
  -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
   -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
   -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
   -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
   -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
   -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
   -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
   -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
   -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
   -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3) = CH - CH_2 - CO - OC_2H_5, -C(CH_3) = C(COOCH_3) - CH_2 - CO - OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-n-C<sub>3</sub>H<sub>5</sub>, -CH=N-i-C<sub>3</sub>H<sub>5</sub>, -CH=N-n-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH2C=C-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH3-C6H4, -CH=N-3-CH3-C6H4, -CH=N-4-CH3-C6H4,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH_3-C_6H_4, -CH=N-3-OCH_3-C_6H_4, -CH=N-4-OCH_3-C_6H_4,
-CH=N-4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CN-C<sub>6</sub>H<sub>4</sub>, -CH=N-2, 4-(C1, C1)-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2, 4-(CH_3, CH_3)-C_6H_4, -CH=N-CH_2OCH_3, -CH=N-CH_2OC_2H_5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
    -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
    -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(0)CH<sub>3</sub>, -CH=N-OC(0)C<sub>2</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>-CN,
   -CH=N-O-CH_2-CH=CH-CH_2-O-CH_3, -CH=N-O-CH_2-CH=CH-CH_2-O-tert.-C_4H_9,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-C_1-C_6H_4,
   -CH=N-O-CH_2CH=CHCH_2-4-OCH_3-C_6H_4, -CH=N-O-CH_2-CH=C(CH_3)-C_6H_5
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-3, 4(C1, C1)-C<sub>6</sub>H<sub>3</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>3</sub>C\equivC-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH_3)OCH_3, -CH=N-OCH(CH_3)COOCH_3,
 -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHCH<sub>3</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>g</sub>,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
  -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO2-C6H4), -CH=N-NH-(4-F-C6H4),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C_3H_7, -CH=CH-CO-O-n-C_4H_9, -CH=CH-CO-O-tert.-C_4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH_3)-CO-O-cyclonexyl, -CH=C(CH_3)-CO-O-cycloneptyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-COOH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopentyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclonexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
 -CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
 -CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloneptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH2-O-i-C3H5, -CH=CH-CO-OCH(CH3)-OCH3,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH2CH2-OC2H5, -CH=C(CH3)-CO-OCH2-OCH3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH2-O-i-C3H5, -CF=C(C1)-CO-OCH(CH3)-OCH3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-OCH_3,
-CH=C(Br)-CO-OCH2-OC2H5, -CH=C(Br)-CO-OCH2-O-n-C3H5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH2-OC2H5, -CH=C(CN)-CO-OCH2-O-n-C3H5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH<sub>2</sub>-CN, -CH=CH-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(Cl)-CO-OCH_2-CF_3,
-CH=C(Cl)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Cl)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH_2-C\equiv CH, -CH=C(C1)-CO-OCH_2-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH_2-CCl_3, -CH=C(Br)-CO-OCH_2-oxiranyl,
-CH=C(Br)-CO-O(CH_2)_3-Br, -CH=C(Br)-CO-OCH_2-CH=CH_2,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH_2)_3-Br, -CH=C(CN)-CO-OCH_2-CH=CH_2,
-CH = C(CN) - CO - OCH_2 - C \equiv CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2Cl, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHC12, -CH=CH-CO-CH2-OCH3, -CH=CH-CO-CH(OCH3)2,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7,
- \text{CH=C} \left( \text{C}_{2}\text{H}_{5} \right) - \text{CO-i-C}_{3}\text{H}_{7} \, , \quad - \text{CH=C} \left( \text{C}_{2}\text{H}_{5} \right) - \text{CO-n-C}_{4}\text{H}_{9} \, ,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2C1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHC12,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Cl)-CO-CH<sub>3</sub>, -CH=C(Cl)-CO-C<sub>2</sub>H<sub>c</sub>,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_3,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH2Br,
 -CH=C(Cl)-CO-CHCl<sub>2</sub>, -CH=C(Cl)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
 -CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
 -CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH;Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>1</sub>,
 -CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
 -CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
 -CH=C(CN)-CO-n-C<sub>4</sub>H<sub>g</sub>, -CH=C(CN)-CO-tert.-C<sub>4</sub>H<sub>g</sub>, -CH=C(CN)-CO-CH<sub>2</sub>Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-Cl-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-Cl-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-Cl-C_5H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_5H_5
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH_3)-CO-NH-i-C_3H_7, -CH=C(CH_3)-CO-NH-tert.-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, →CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>.
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2C1, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NHCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
  -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
  -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cycloocty1, -CH=C(C_2H_5)-CO-pyrrolidin-1-y1,
 -CH=C(C_2H_5)-CO-piperidin-l-yl, -CH=C(C_2H_5)-CO-morpholin-4-yl,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C=CH,
 -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\cong CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2CI,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH_3)_2, -CH=C(C1)-CO-NH-C_2H_5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(Cl)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Cl)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-l-yl, -CH=C(Cl)-CO-piperidin-l-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH2C=CH, -CH=C(C1)-CO-N(CH3)-CH2C=CH,
 -CH=C(C1)-CO-NH-(CH2)2C1, -CH=C(C1)-CO-NH-C6H5, -CH=C(Br)-CO-NH2,
 -CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
 -CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
 -CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH_2)_2Cl, -CH=C(Br)-CO-NH-C_6H_5, -CH=C(CN)-CO-NH_2,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C_3H_7, -CH=C(CN)-CO-NH-tert.-C_4H_9,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=\underline{C}(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=\tilde{C}(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CN)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
-CH=C(C_{2}H_{5})-CO-S-tert.-C_{4}H_{9}, -CH=C(C_{1})-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C(Cl)-CO-S-n-C4Hg, -CH=C(Cl)-CO-S-tert.-C4Hg,
-CH=C(Br)-CO-SCH3, -CH=C(Br)-CO-SC2H5, -CH=C(Br)-CO-S-n-C3H7,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH_3, -CH=CH-CH=CH-CO-OC_2H_5,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(Cl)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -CH=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CN)-CO-NH_2,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CH=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
 -CH=CH-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH2-CO-NH2, -CH=CH-CH2-CO-NH-CH3, -CH=CH-CH2-CO-N(CH3)2,
        -CH(OCH<sub>3</sub>)<sub>2</sub>, -CH(SCH<sub>3</sub>)<sub>2</sub>, -CH(OC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH(SC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH(O-n-C<sub>3</sub>H<sub>7</sub>)<sub>2</sub>,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
        -CH(S-n-C4Hg)2, -CH(S-i-C4Hg)2, -CH(S-s-C4Hg)2,
        -CH(S-tert.-C_4H_9)_2, -CH(OC_5H_{11})_2,
        1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                                                       5-methyl-1,3-
                  4-methyl-1,3-oxathiolan-2-yl,
       2-y1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
       oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethyl-1,3-dithiolan-2-y1, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
                         4-allyloxymethyl-1,3-dioxolan-2-yl,
       dioxolan-2-yl,
                                                    4-acetoxymethyl-
       propargyloxymethyl-1,3-dioxolan-2-yl,
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       2-y1,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-y1, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                            4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                 4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                               4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-...
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl,4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                        4-n-butoxycarbonyl-1,3-dioxan-2-yl,
       dioxan-2-yl,
25
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dithian-2-yl,
       dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
        -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
        -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
        -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
        -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
        -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH<sub>3</sub>)(O-n-C<sub>5</sub>H<sub>11</sub>)",
```

 $-C(CH_3)(O-n-C_3H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-2-methyl-1,3-oxathiolan-2-yl, 1,3-dithiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-5 oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-5-ethyl-2-methyl-1,3-oxathiolan-2-yl, oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethy1-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3methyl-1,3-dioxolan-2-yl, 15 dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 4hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, methoxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-25 1,3-dioxolan-2-yl, dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-1,3-oxathiolan-2-yl, 30 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methy1-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4 - n -
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
 5
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
                                             2,4-dimethyl-4-n-
       carbonyl-1,3-dithiolan-2-yl,
                                               2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                                 4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(2H_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2Cl, -C(CH_3)=N-CH_2Cl, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-Cl-C_6H_4), -C(CH_3)=N-(3-Cl-C_6H_4),
-C(CH_3)=N-(4-C1-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-0CH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
 -C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
 -C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
 -C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
 -C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
 -C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
 -C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
 -C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
 -C(CH_3)=N-OCH_2-CH=CHCl, -C(CH_3)=N-OCH_2-C(Cl)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
  -C(CH_3, =N-OCH_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_5H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
   -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
   -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
   -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
   -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH<sub>3</sub>)=N-NH-cyclopentyl, -C(CH<sub>3</sub>)=N-NH-cyclohexyl,
 -C(CH_3)=N-NH-cyclohepty1, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C=CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
 -C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
 -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
 -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
 -C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
 -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
 -C(CH_3)=CH-CO-O-cyclonexyl, -C(CH_3)=CH-CO-O-cycloneptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cycl
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
  -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
 -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
  -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
  -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
  -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(Cl)-CO-O-cyclopentyl, -C(CH_3)=C(Cl)-CO-O-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Cl)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CI)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CI)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{!}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_JCH_3)=C(Cl)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH_3)=CH-CO-NH-cyclobutyl, -C(CH_3)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-l-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl, -C(Cl)-CO-piperidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl, -C(CH_3)=C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Cl)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
 -C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
 -C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
 -C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
  -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
  -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
  -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
  -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
  -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
  -C(CH_3)=C(CN)-CO-piperidin-1-y1, -C(CH_3)=C(CN)-CO-morpholin-4-y1,
  -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
  -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
  -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_2H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
   -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
   -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
   -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
   -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(C1)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
 -C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
 -C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
 -C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
 -C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
 -C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
 -C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
 -C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
 -C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
 -C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-\text{CO-i-C}_4\text{Hg}, -\text{CO-s-C}_4\text{Hg}, -\text{CO-tert.-C}_4\text{Hg}, -\text{CO-CH}_2\text{CH=CH}_2, -\text{CO-CF}_3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-\pi-C<sub>3</sub>H<sub>5</sub>, -CH=N-\pi-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH2CEC-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-Cl-C_6H_4, -CH=N-2-Br-C_6H_4, -CH=N-2-F-C_6H_4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH_3-C_6H_4, -CH=N-3-OCH_3-C_6H_4, -CH=N-4-OCH_3-C_6H_4,
-CH=N-4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CN-C<sub>6</sub>H<sub>4</sub>, -CH=N-2, 4-(Cl, Cl)-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC<sub>2</sub>H<sub>5</sub>, -CH=N-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=N-O-i-C<sub>3</sub>H<sub>7</sub>, -CH=N-O-n-C<sub>4</sub>H<sub>9</sub>,
-CH=N-O-i-C_4H_9, -CH=N-O-s-C_4H_9, -CH=N-O-tert.-C_4H_9,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-Cl-C_6H_4,
  -CH=N-O-CH2CH=CHCH2-4-OCH3-C6H4, -CH=N-O-CH2-CH=C(CH3)-C6H5
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C\equiv C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH_3)OCH_3, -CH=N-OCH(CH_3)COOCH_3,
  -CH=N-OCH(CH<sub>3</sub>)COO-\pi-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHCH<sub>3</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=\dot{N}-NH-\dot{I}-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH _2-C=CH, -CH=N-NHCH _2-C=CH, -CH=N-N(CH _3)-CH _2-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-O-n-C<sub>4</sub>H<sub>9</sub>, -CH=CH-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\Theta<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
  -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
  -CH=C(C_{2}H_{5})-CO-O-n-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-O-i-C_{3}H_{7},
  -CH=C(C_{2}H_{5})-CO-O-n-C_{4}H_{9}, -CH=C(C_{2}H_{5})-CO-O-tert.-C_{4}H_{9},
 -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclonexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C_4H_9, -CH=C(C1)-CO-O-tert.-C_4H_9,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(C1)-CO-O-cycloneptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH_3,
 -CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH2-OC2H5, -CH=CH-CO-OCH2-O-n-C3H5,
-CH=CH-CO-OCH_2-O-i-C_3H_5, -CH=CH-CO-OCH(CH_3)-OCH_3,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Cl)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
 -CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
 -CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
 -CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_{2}H_{5})-CO-O(CH_{2})_{3}-Br, -CH=C(C_{2}H_{5})-CO-OCH_{2}-CH=CH_{2},
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(Cl)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH<sub>2</sub>-CC1<sub>3</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(Br)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(Br)-CO-OCH_2-CCl_3, -CH=C(Br)-CO-OCH_2-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH_2-C\equiv CH, -CH=C(Br)-CO-OCH_2-CN,
-CH=C(Br)-CO-O(CH_2)_2-CN, -CH=C(CN)-CO-OCH_2-CF_3,
-CH=C(CN)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CN)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH = C(CN) - CO - OCH_2 - C = CH, -CH = C(CN) - CO - OCH_2 - CN,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=CH-CO-CH<sub>3</sub>, -CH=CH-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2Cl, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_2H_5)-CO-CH_3, -CH=C(C_2H_5)-CO-C_2H_5, -CH=C(C_2H_5)-CO-n-C_3H_7.
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_{2}H_{5})-CO-tert.-C_{4}H_{9}, -CH=C(C_{2}H_{5})-CO-CH_{2}Cl,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHC12,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C_{2}H_{5})-CO-CH_{2}-SCH_{3}, -CH=C(C_{1})-CO-CH_{3}, -CH=C(C_{1})-CO-C_{2}H_{5},
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
 -CH=C(C1)-CO-tert.-C4Hg, -CH=C(C1)-CO-CH2C1, -CH=C(C1)-CO-CH3Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
 -CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
 -CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
 -CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH;Cl,
 -CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH_3)_2, -CH=C(Br)-CO-CH_2-SCH_3, -CH=C(CN)-CO-CH_3,
 -CH=C(CN)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(CN)-CO-n-C_4H_9, -CH=C(CN)-CO-tert.-C_4H_9, -CH=C(CN)-CO-CH_2C1,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=CH-CO-C<sub>5</sub>H<sub>5</sub>,
 -CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-(4-Cl-C<sub>6</sub>H<sub>4</sub>), -CH=C(Cl)-CO-C<sub>6</sub>H<sub>5</sub>, -CH=C(Br)-CO-C<sub>5</sub>H<sub>5</sub>,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH<sub>3</sub>)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CH_3)-CO-NH-i-C_3H_7, -CH=C(CH_3)-CO-NH-tert.-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, ~CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2C1, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH<sub>2</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NHCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_{2}H_{5})-CO-NH-n-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-NH-i-C_{3}H_{7},
  -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
  -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
  -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-l-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
 -CH=C(C2H5)-CO-NH-CH2CH=C(C2H5)2, -CH=C(C2H5)-CO-NH-CH2C=CH,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C=CH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C_1)-CO-NH_2, -CH=C(C_1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C2H5)2, -CH=C(C1)-CO-NH-n-C3H7,
 -CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclonexyl,
 -CH=C(Cl)-CO-NH-cycloneptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(C1)-CO-pyrrolidin-1-yl, -CH=C(C1)-CO-piperidin-1-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
-CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(Br)-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-n-C<sub>3</sub>H<sub>7</sub>,
-CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH2CH=C(Br)2,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=\underline{C}(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-l-yl, -CH=C(CN)-CO-piperidin-l-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH<sub>2</sub>CH=C(CN)<sub>2</sub>,
-CH=C(CN)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CN)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C_4H_9, -CH=CH-CO-S-tert.-C_4H_9, -CH=C(CH_3)-CO-SCH_3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C1)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-S-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-S-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(C1)-CO-S-n-C_4H_9, -CH=C(C1)-CO-S-tert.-C_4H_9,
-CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
-CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C\left(Br\right)-CO-S-tert.-C_{4}H_{9}, \quad -CH=C\left(CN\right)-CO-SCH_{3}, \quad -CH=C\left(CN\right)-CO-SC_{2}H_{5},
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=C(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC_2H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(Cl)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CP=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -CH=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CH(CH<sub>3</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
 -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
        -CH(S-n-C4Hg)2, -CH(S-i-C4Hg)2, -CH(S-s-C4Hg)2,
        -CH(S-tert.-C_4H_9)_2, -CH(OC_5H_{11})_2,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       2-y1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1,3-oxathiolan-2-yl,5-ethyl-1,3-
 5
       oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl, 4,4-
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethyl-1,3-dithiolan-2-y1, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                           4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
       1,3-dithiolan-2-yl,
                                 4-ethoxycarbonyl-4-methyl-1,3-
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
 5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl,
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
                                              4-cyanomethyl-1,3-
       cyanomethyl-1,3-dioxolan-2-yl,
      dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-...
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

 $-C(CH_3)(O-n-C_3H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-5 ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3oxathiolan-2-vl, 5-ethyl-2-methyl-1,3-oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-4-chloromethyl-2-methyl-1,3methyl-1,3-dioxolan-2-yl, 15 dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, methoxymethy1-2-methy1-1,3-dioxolan-2-y1, allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-1,3-dioxolan-2-yl, 25 dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-30 1,3-oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-vl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-35 5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, methylthiomethyl-1,3-dioxolan-2-yl, 2-methyl-4methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
 5
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
                                                  2,4-dimethyl-4-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               2,4-dimethyl-4-n-
                                                4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-yl, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl,4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(2H_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-C1-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-Cl-C_6H_4), \cdots
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropy1, -C(CH_3)=N-NH-cyclopropy1
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
-C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
-C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
-C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
-C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
-C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-C_4H_9
propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)-C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
 -C(CH_3)=C(C_2H_5)-CO-O-cycloneptyl, -C(CH_3)=CH-COOH,
 -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
 -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{i}, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(C1)-C0-0-cyclopentyl, -C(CH_3)=C(C1)-C0-0-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH<sub>3</sub>)=C(CN)-CO-O-cycloheptyl, -C(CH<sub>3</sub>)=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-C(CH_3) = CH - CO - OCH_2 - OC_2H_5, -C(CH_3) = CH - CO - OCH_2 - O - n - C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C\,(C\,H_{\,3})\,+C\,(C\,_{2}H_{\,5})\,-C\,0\,-O\,-\,i\,-C\,_{3}H_{\,7}\,,\quad -C\,(C\,H_{\,3})\,+C\,(C\,_{2}H_{\,5})\,-C\,O\,-O\,C\,H\,(C\,H_{\,3})\,-O\,C\,H_{\,3}\,,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Cl)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-C0-0-i-C_3H_7, -C(CH_3)=C(C1)-C0-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-C0-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-C0-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\cong CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CF_3,
-C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-CO-OCH_2-CC1_3, -C(CH_3)=C(C1)-CO-OCH_2-oxirany1,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-B_r, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\Xi CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2C1, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(Cl)-CO-CHCl_2, -C(CH_3)=C(Cl)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2Cl,
 -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
 -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
 -C(CH_3)=CH-CO-(4-C1-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
 -C(CH_3)=C(CH_3)-CO-(4-CI-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
 -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-(4-Cl-C<sub>6</sub>H<sub>4</sub>), -C(CH<sub>3</sub>)=C(Cl)-CO-C<sub>6</sub>H<sub>5</sub>,
 -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
 -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH<sub>3</sub>)=CH-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopropyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclonexyl, -C(CH_3)=CH-CO-NH-cycloneptyl,
-C(CH_3)=CH-CO-NH-cyclooctyl, -C(CH_3)=CH-CO-pyrrolidin-1-yl,
-C(CH<sub>3</sub>)=CH-CO-piperidin-1-yl, -C(CH<sub>3</sub>)=CH-CO-morpholin-4-yl,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7.
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-c
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloneptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-yl, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH3)=C(C2H5)-CO-NH-CH2CH=C(C2H5)2,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(C_{H_3}) = C(C_{2H_5}) - CO - NH - (CH_2)_2Cl, -C(CH_3) = C(C_{2H_5}) - CO - NH - C_{5H_5},
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(C1)-CO-NH-i-C_3H_7, -C(CH_3)=C(C1)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(C1)-CO-NH-cyclopropyl, -C(CH_3)=C(C1)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloneptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(Cl)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
-C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-l-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-1-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CI)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
--C(CH<sub>3</sub>)=C(Cl)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(Br)-CO-SCH<sub>3</sub>,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7; -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3) = C(CH_3) - CH = C(CN) - CO - OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C4Hg, -CO-s-C4Hg, -CO-tert.-C4Hg, -CO-CH2CH=CH2, -CO-CF3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH3, -CH=NC2H5, -CH=N-n-C3H5, -CH=N-i-C3H5, -CH=N-n-C4Hg,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH2C=C-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH3-C6H4, -CH=N-3-OCH3-C6H4, -CH=N-4-OCH3-C6H4,
-CH=N-4-NO_2-C_6H_4, -CH=N-4-CN-C_6H_4, -CH=N-2, 4-(C1,C1)-C_6H_4,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC 2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH2-CH2-F, -CH=N-O-CH2-CF3, -CH=N-O-CH2-CH=CHC1,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(0)CH_3, -CH=N-OC(0)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-CI-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-(CH<sub>2</sub>)CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH2CH=CHCH2-4-OCH3-C6H4, -CH=N-O-CH2-CH=C(CH3)-C6H5
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C=C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH_3)OCH_3, -CH=N-OCH(CH_3)COOCH_3,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHCH<sub>3</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
 -CH=N-NH-i-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>g</sub>,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclohexyl, -CH=N-NH-cycloheptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
-CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2,4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N (CH3) 2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C _3H_7, -CH=CH-CO-O-n-C _4H_9, -CH=CH-CO-O-tert.-C _4H_9,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\xiH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-\dot{C}O-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
 -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloneptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(Cl)-CO-O-n-C4Hg, -CH=C(Cl)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH_3
-CH=C(CN)-CO-OC_2H_5, -CH=C(CN)-CO-O-n-C_3H_7, -CH=C(CN)-CO-O-i-C_3H_7,
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH 2-OC 2H5, -CH=CH-CO-OCH 2-O-n-C 3H5,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH3)-OC2H5, -CH=CH-CO-O-CH2CH2-OCH3,
-CH=CH-CO-O-CH2CH2-OC2H5, -CH=C(CH3)-CO-OCH2-OCH3,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C_2H_5)-CO-OCH_2-OC_2H_5, -CH=C(C_2H_5)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH2-OC2H5, -CH=C(Br)-CO-OCH2-O-n-C3H5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH3)-CO-OCH2-C=CH, -CH=C(CH3)-CO-OCH2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equivCH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH_2-CCl_3, -CH=C(Br)-CO-OCH_2-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(CN)-CO-OCH2-C=CH, -CH=C(CN)-CO-OCH2-CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2Cl, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>C1,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_{2}H_{5})-CO-CH_{3}, -CH=C(C_{2}H_{5})-CO-C_{2}H_{5}, -CH=C(C_{2}H_{5})-CO-n-C_{3}H_{7},
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2Cl,
```

```
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>Br, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CHCl<sub>2</sub>,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Cl)-CO-CH<sub>3</sub>, -CH=C(Cl)-CO-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
 -CH=C(Cl)-CO-tert.-C4Hg, -CH=C(Cl)-CO-CH2Cl, -CH=C(Cl)-CO-CH2Br,
 -CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
 -CH=C(Cl)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Cl)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>1</sub>,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
 -CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH_2Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=C(Br)-CO-CH(OCH_3)_2, -CH=C(Br)-CO-CH_2-SCH_3, -CH=C(CN)-CO-CH_3,
-CH=C(CN)-CO-C<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-n-C4Hg, -CH=C(CN)-CO-tert.-C4Hg, -CH=C(CN)-CO-CH<sub>2</sub>Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_{2}H_{5})-CO-(4-C_{1}-C_{6}H_{4}), -CH=C(C_{1})-CO-C_{6}H_{5}, -CH=C(B_{r})-CO-C_{5}H_{5},
-CH=C(CN)-CO-C_6H_5 -CH=CH-CO-NH_2, -CH=CH-CO-NHCH_3,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
-CH=CH-CO-NH-C6H5, -CH=C(CH3)-CO-NH2, -CH=C(CH3)-CO-NHCH3,
-CH=C(CH_3)-CO-N(CH_3)_2, -CH=C(CH_3)-CO-NH-C_2H_5,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, ~CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3):
```

```
-CH=C(C2H5)-CO-NH-C2H5, -CH=C(C2H5)-CO-N(C2H5)2,
  -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
  -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclohexyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
 -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH+C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
-CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH<sub>2</sub>CH=C(CN)<sub>2</sub>,
-CH=C(CN)-CO-NH-CH2CECH, -CH=C(CN)-CO-N(CH3)-CH2CECH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
 -CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
 -CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
 -CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
 -CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
 -CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
 -CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
 -CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(Cl)-CO-SCH_3,
 -CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
 -CH=C(Cl)-CO-S-n-C4Hg, -CH=C(Cl)-CO-S-tert.-C4Hg,
 -CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
 -CH=C(Br)-CO-S-tert.-C_4H_9, -CH=C(CN)-CO-SCH_3, -CH=C(CN)-CO-SC_2H_5,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
-CH=C(CN)-CO-S-n-C4Hg, -CH=C(CN)-CO-S-tert.-C4Hg,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC_2H_5)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -\mathsf{CH=C}\left(\mathsf{CF}_{3}\right)-\mathsf{CO-O-tert}.-\mathsf{C}_{4}\mathsf{H}_{9},\ -\mathsf{CH=C}\left(\mathsf{COOCH}_{3}\right){}_{2},\ -\mathsf{CH=C}\left(\mathsf{COOC}_{2}\mathsf{H}_{5}\right){}_{2},
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH_3, -CH=CH-CH=CH-CO-OC_2H_5,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC_2H<sub>5</sub>, -CH=C(CH_3)-CH=C(CN)-CO-OCH_3,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(Cl)-CO-OCH_3, -CH=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH<sub>2</sub>-CH(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CH(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
 -CH=CH-CH<sub>2</sub>-CH(CN)-CO-OCH<sub>3</sub>, -C\mathcal{H}=CH-CH<sub>2</sub>-CH(CN)-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
  -CH=CH-CH2-CO-OCH3, -CH=CH-CH2-CO-OC2H5,
 -CH=C(COOCH<sub>3</sub>)-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=C(COOCH<sub>3</sub>)-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
```

```
-CH=CH-\underline{\text{CH}}_2-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
       -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C_4H_9)_2, -CH(O-s-C_4H_9)_2, -CH(O-tert.-C_4H_9)_2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C_4H_9)_2, -CH(OC_5H_{11})_2,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                                                       5-methyl-1,3-
                  4-methyl-1,3-oxathiolan-2-yl,
       2-y1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5.
                            4,5-dimethyl-1,3-dioxolan-2-yl,
       oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-yl, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
                        4-allyloxymethyl-1,3-dioxolan-2-yl,
       dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl,
                                                   4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                           4-methoxycarbony1-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
        n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
        4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
        1,3-dithiolan-2-yl,
                                  4-ethoxycarbonyl-4-methyl-1,3-
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
 5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                                4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                             4,6-dimethyl-1,3-dioxan-2-yl,
        1,3-dioxan-2-vl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl,4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                               4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                         4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
                                                           4-ethoxy-
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
        -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
        -C(CH<sub>3</sub>)(O-s-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>, -C(CH<sub>3</sub>)(O-tert.-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>, -C(CH<sub>3</sub>)(S-n-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>,
        -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH_3)(O-n-C_5H_{11})",
```

 $-C(CH_3)(O-n-C_5H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-yl, 2,4-dimethyl-1,3-oxathiolan-2-yl, 2,5-dimethyl-1,3oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-5 ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-5-ethyl-2-methyl-1,3-oxathiolan-2-yl, oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethy1-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3methyl-1,3-dioxolan-2-yl, 15 dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 4-2-yl, hydroxymethyl-2-methyl-1,3-dioxolan-2-yl, 4 -4 hydroxymethyl-2-methyl-1,3-dithiolan-2-yl, 5 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 20 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, methoxymethy1-2-methy1-1,3-dioxolan-2-y1, 4 -2-methyl-4allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-1,3-dioxolan-2-yl, 25 dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-30 1,3-oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methyl-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methy1-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4 - n -
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
 5
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                              4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               2,4-dimethyl-4-n-
                                                4-cyanomethy1-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-y1,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethy1-1,3-oxathian-2-y1, 2,4,4-trimethy1-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropy1, -C(CH_3)=N-cyclobuty1, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-Cl-C_6H_4), -C(CH_3)=N-(3-Cl-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH<sub>3</sub>)=N-OCH(CH<sub>3</sub>)-CH=CH<sub>2</sub>, -C(CH<sub>3</sub>)=N-OCH<sub>2</sub>-C\equivCH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-Cl-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cyclohepty1, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C=CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-l-yl, -C(CH_3)=N-piperidin-l-yl, -C(CH_3)=N-morpholin-pyrrolidin-l-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2, 4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
 -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
 -C(CH<sub>3</sub>)=CH-CO-O-cyclohexyl, -C(CH<sub>3</sub>)=CH-CO-O-cycloheptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(CH_3)=C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-C(C_2H_5)-CO-O-cyclo-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
  -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
  -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
  -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
  -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(C1)-CO-O-cyclopentyl, -C(CH_3)=C(C1)-CO-O-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclonexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)-C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)-C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{!}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(Cl)-CO-OCH_2-CCl_3, -C(CH_3)=C(Cl)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CI)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CI)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(Cl)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH_1, -C(CH_3)=C(CN)-CO-OCH_2-CN_1
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH<sub>3</sub>)=CH-CO-n-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-tert.-C<sub>4</sub>H<sub>9</sub>,
-C(CH_3)=CH-CO-CH_2C1, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2Cl,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-CO-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-CH(OCH_3)_2, -C(CH_3)=C(Cl)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2Cl,
-C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
-C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
-C(CH_3)=CH-CO-(4-C1-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(Cl)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclonexyl, -C(CH_3)=CH-CO-NH-cycloneptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(CH_3)-CO-NH-C_9H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-yl, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl
y1, -C(CH_3)=C(Cl)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\Xi CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(C1)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
 -C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-l-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-y1, -C(CH_3)=C(CN)-CO-morpholin-4-y1,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
  -C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(GH_3)=CH-CO-SCH_3,
  -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
  -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(C1)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
-C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
-C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
-C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
-C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
-C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
-C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CI)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-\text{CO-i-C}_4\text{Hg}, -\text{CO-s-C}_4\text{Hg}, -\text{CO-tert.-C}_4\text{Hg}, -\text{CO-CH}_2\text{CH=CH}_2, -\text{CO-CF}_3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH<sub>3</sub>, -CH=NC<sub>2</sub>H<sub>5</sub>, -CH=N-\pi-C<sub>3</sub>H<sub>5</sub>, -CH=N-\pi-C<sub>4</sub>H<sub>9</sub>,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH2C=C-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C_6H_4, -CH=N-4-F-C_6H_4, -CH=N-2-C_1-C_6H_4, -CH=N-3-C_1-C_6H_4,
-CH=N-4-Cl-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH3-C6H4, -CH=N-3-CH3-C6H4, -CH=N-4-CH3-C6H4,
-CH=N-2-CF3-C6H4, -CH-N-3-CF3-C6H4, -CH=N-4-CF3-C6H4,
-CH=N-2-OCH_3-C_6H_4, -CH=N-3-OCH_3-C_6H_4, -CH=N-4-OCH_3-C_6H_4,
-CH=N-4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CN-C<sub>6</sub>H<sub>4</sub>, -CH=N-2, 4-(C1, C1)-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, \quad -CH=N-O-n-C_{3}H_{7}, \quad -CH=N-O-i-C_{3}H_{7}, \quad -CH=N-O-n-C_{4}H_{9}, \quad -CH=N-O
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C\equivCH,
    -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
    -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
    -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
   -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
   -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>-O-tert.-C<sub>4</sub>H<sub>9</sub>,
   -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
   -CH=N-O-(CH_2)_4-4-CI-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
   -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
   -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
   -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-Cl-C_6H_4,
  -CH=N-O-CH_2CH=CHCH_2-4-OCH_3-C_6H_4, -CH=N-O-CH_2-CH=C(CH_3)-C_6H_5
  -CH=N-O-(CH<sub>2</sub>)<sub>2</sub>CH=CH-3, 4(C1, C1)-C<sub>6</sub>H<sub>3</sub>, -CH=N-O-(CH<sub>2</sub>)<sub>3</sub>C\equivC-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
  -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
  -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
  -CH=N-NH-i-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>g</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>g</sub>,
  -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH2-C=CH, -CH=N-NHCH2-C=CH, -CH=N-N(CH3)-CH2-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
 -CH=N-morpholin-4-y1, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>), -CH=N-NH-(4-F-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2, 4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-O-n-C<sub>4</sub>H<sub>9</sub>, -CH=CH-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\ThetaH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH_3)-CO-O-cyclobutyl, -CH=C(CH_3)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-COOH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OC<sub>2</sub>H<sub>5</sub>,
  -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
  -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
  -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopentyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclohexyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
 -CH=C(C1)-CO-O-n-C4Hg, -CH=C(C1)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
 -CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
 -CH=C(Br)-CO-O-n-C_4H_9, -CH=C(Br)-CO-O-tert.-C_4H_9,
 -CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
 -CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
 -CH=C(Br)-CO-O-cycloneptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(CN)-CO-OC_2H_5, -CH=C(CN)-CO-O-n-C_3H_7, -CH=C(CN)-CO-O-i-C_3H_7,
 -CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
 -CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
 -CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
 -CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
 -CH=CH-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=CH-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=CH-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH2CH2-OC2H5, -CH=C(CH3)-CO-OCH2-OCH3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH3)-OC2H5, -CH=C(C1)-CO-O-CH2CH2-OCH3,
-CH=C(C1)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(8r)-CO-OCH_2-OC_2H_5, -CH=C(8r)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH2-OC2H5, -CH=C(CN)-CO-OCH2-O-n-C3H5,
-CH=C(CN)-CO-OCH2-O-i-C3H5, -CH=C(CN)-CO-OCH(CH3)-OCH3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH2)3-Br, -CH=CH-CO-OCH2-CH=CH2, -CH=CH-CO-OCH2-CECH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(C_2H_5)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH_2-CCl_3, -CH=C(C1)-CO-OCH_2-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH_2)_3-Br, -CH=C(Br)-CO-OCH_2-CH=CH_2,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH_2)_2-CN, -CH=C(CN)-CO-OCH_2-CF_3,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(CN)-CO-OCH2-CECH, -CH=C(CN)-CO-OCH2-CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2Cl, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl<sub>2</sub>, -CH=CH-CO-CH<sub>2</sub>-OCH<sub>3</sub>, -CH=CH-CO-CH(OCH<sub>3</sub>)<sub>2</sub>,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>C1,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_{2}H_{5})-CO-CH_{3}, -CH=C(C_{2}H_{5})-CO-C_{2}H_{5}, -CH=C(C_{2}H_{5})-CO-n-C_{3}H_{7},
-CH=C(C_2H_5)-CO-i-C_3H_7, -CH=C(C_2H_5)-CO-n-C_4H_9,
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH<sub>2</sub>Cl,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2,
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
-CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(C_1)-CO-CH_3, -CH=C(C_1)-CO-C_2H_5,
-CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
-CH=C(Cl)-CO-tert.-C4Hg, -CH=C(Cl)-CO-CH2Cl, -CH=C(Cl)-CO-CH3Br.
-CH=C(Cl)-CO-CHCl2, -CH=C(Cl)-CO-CH2-OCH3,
-CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
-CH=C(Br)-CO-C_{2}H_{5}, -CH=C(Br)-CO-n-C_{3}H_{7}, -CH=C(Br)-CO-i-C_{3}H_{7},
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH;Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH_3)_2, -CH=C(Br)-CO-CH_2-SCH_3, -CH=C(CN)-CO-CH_3,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C4Hg, -CH=C(CN)-CO-tert.-C4Hg, -CH=C(CN)-CO-CH<sub>2</sub>Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-Cl-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C2H5)-CO-(4-C1-C6H4), -CH=C(C1)-CO-C6H5, -CH=C(Br)-CO-C6H5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH_3)_2, -CH=CH-CO-NH-C_2H_5, -CH=CH-CO-N(C_2H_5)_2,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hq, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-1-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C≡CH,
-CH=CH-CO-N(CH3)-CH2C=CH, -CH=CH-CO-NH-(CH2)2C1,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, >-CH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH_3)-CO-morpholin-4-yl, -CH=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
  -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
  -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
  -CH=C(C_2H_5)-CO-NH-cyclobutyl, -CH=C(C_2H_5)-CO-NH-cyclopentyl,
  -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclohexyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cycloheptyl,
  -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C_2H_5)-CO-piperidin-1-y1, -CH=C(C_2H_5)-CO-morpholin-4-y1,
 -CH=C(C2H5)-CO-NH-CH2CH=C(C2H5)2, -CH=C(C2H5)-CO-NH-CH2C=CH,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C1)-CO-NH_2, -CH=C(C1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C3H7, -CH=C(C1)-CO-NH-tert.-C4Hg,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
 -CH=C(C1)-CO-morpholin-4-yl, -CH=C(C1)-CO-NH-CH<sub>2</sub>CH=C(C1)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
 -CH=C(Br)-CO-NHCH_3, -CH=C(Br)-CO-N(CH_3)_2, -CH=C(Br)-CO-NH-C_2H_5,
 -CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CQ-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(Br)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=\underline{C}(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=Ć(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CN)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CN)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(CN)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=CH-CO-SCH<sub>3</sub>,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
 -CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H_5, -CH=C(C_2H_5)-CO-S-n-C_3H_7,
-CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,

'ACH=C(C2H5)-CO-S-tert.-C4H9, -CH=C(C1)-CO-SCH3,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
 -CH=C(C1)-CO-S-n-C_4H_9, -CH=C(C1)-CO-S-tert.-C_4H_9,
-CH=C(Br)-CO-SCH3, -CH=C(Br)-CO-SC2H5, -CH=C(Br)-CO-S-n-C3H7,
 -CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
 -CH=C(Br)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CN)-CO-SCH<sub>3</sub>, -CH=C(CN)-CO-SC<sub>2</sub>H<sub>5</sub>,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C4Hg, -CH=C(CN)-CO-S-tert.-C4Hg,
 -CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -CH=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CN)-CO-NH_2,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH<sub>2</sub>-CH(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CH(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CR=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
 -CH=C(COOCH_3)+CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-CH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C4Hg)2, -CH(O-s-C4Hg)2, -CH(O-tert.-C4Hg)2,
        -CH(S-n-C4Hg)2, -CH(S-i-C4Hg)2, -CH(S-s-C4Hg)2,
        -CH(S-tert.-C4Hg)2, -CH(OC5H11)2,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                  4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       2-y1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
       oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-yl, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                           4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
        n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
        4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
        1,3-dithiolan-2-yl,
                                4-ethoxycarbonyl-4-methyl-1,3-
        dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
 5
        2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
        n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
        cyanomethyl-1,3-dioxolan-2-yl,
                                               4-cyanomethyl-1,3-
        dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
        oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
        dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
        1,3-dioxan-2-yl,
                            4,6-dimethyl-1,3-dioxan-2-yl,
        dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
        4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
        2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
        4-allyloxymethyl-1,3-dioxan-2-yl,
                                              4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
       dioxan-2-yl,
                        4-chloromethyl-1,3-dithian-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
25
       dioxan-2-yl,
                        4-n-butoxycarbonyl-1,3-dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-y1,
                       4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
30
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2,
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2,
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
       -C(CH_3)(O-n-C_5H_{11})",
```

```
-C(CH_3)(O-n-C_5H_{11})_2, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
       1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
       2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3-
5
      oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
      ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
      oxathiolan-2-yl,
                       5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
       2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
      dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
      trimethyl-1,3-dithiolan-2-yl,
                                         2,4,5-trimethyl-1,3-
10
      oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
       dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
      methyl-5-vinyl-1,3-oxathiolan-2-yl,
                                             4-chloromethyl-2-
15
      methyl-1,3-dioxolan-2-yl,
                                  4-chloromethyl-2-methyl-1,3-
      dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
              5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                            4-
      hydroxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                           4 -
      hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                           4 -
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                           5 -
20
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                           4 -
                                                           4 -
      methoxymethyl-2-methyl-1,3-dioxolan-2-yl,
      allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                   2-methyl-4-
      propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                              4-methoxymethyl-2-methyl-1,3-
25
       1,3-dioxolan-2-yl,
      dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
      2-yl, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
       4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
      2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                               4-allyloxymethyl-2-methyl-1,3-
30
       1,3-oxathiolan-2-yl,
                            5-allyloxymethyl-2-methyl-1,3-
      oxathiolan-2-yl,
                           2-methyl-4-propargyloxymethyl-1,3-
      oxathiolan-2-yl,
                           2-methyl-5-propargyloxymethyl-1,3-
      oxathiolan-2-yl,
      oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                   2-methyl-4-
35
      5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                  2-methyl-4-
      methylthiomethyl-1,3-dioxolan-2-yl,
      methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
        4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                 4 -
        ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                              4-n-
        butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                 4 -
 5
        methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                 4 -
        ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                              4-n-
        butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
        4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                   2,4-dimethyl-4-
                                                  2,4-dimethyl-4-
        methoxycarbonyl-1,3-dithiolan-2-yl,
        ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
. 10
        carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
        butoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-n-
        butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cyanomethyl-2-
                                      4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
        dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
        dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
        1,3-dioxan-2-yl,
                            2,5-dimethyl-1,3-dithian-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
        2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
        1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
        1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
        2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
        2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
        dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
        4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
        2-methyl-1,3-dithian-2-yl,
        -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
        -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
        -C(CH_3)=N+CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
        -C(CH_3)=N-cyclopropy1, -C(CH_3)=N-cyclobuty1, -C(CH_3)=N-cyclo-
        pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
        -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
        -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-Cl, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
-C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
-C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
-C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
  -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cyclohepty1, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
 -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
 -C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
 -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
 -C(CH<sub>3</sub>)=CH-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-O-cyclopropyl,
 -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
 -C(CH_3)=CH-CO-O-cyclohexyl, -C(CH_3)=CH-CO-O-cycloheptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
  -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
  -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cyclo-O-cycl
  propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(CH_3)-C(C_2H_5)-CO-O-Cyclobutyl, -C(CH_3)-C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C
   cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
   -C(CH_3)=C(C_2H_5)-CO-O-cycloneptyl, -C(CH_3)=CH-COOH,
   -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
   -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
   -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
   -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobuty l
```

```
-C(CH_3)=C(C1)-CO-O-cyclopenty1, -C(CH_3)=C(C1)-CO-O-cyclohexy1,
-C(CH_3)=C(Cl)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3) = CH - CO - OCH_2CH_2 - OC_2H_5, -C(CH_3) = C(CH_3) - CO - OCH_2 - OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Cl)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-O-i-C_3H_7, -C(CH_3)=C(Cl)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_5^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\Xi CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) \stackrel{!}{=} C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3) = C(C_2H_5) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(Cl) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C1)-C0-OCH_2-CC1_3, -C(CH_3)=C(C1)-C0-OCH_2-oxirany1,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH_3)=CH-CO-n-C_4H_9, -C(CH_3)=CH-CO-tert.-C_4H_9,
-C(CH_3)=CH-CO-CH_2C1, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHC1_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2+SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2C1,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(Cl)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-CH_2Cl,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2C1, -C(CH_3)=C(Br)-CO-CH_2Br,
 -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
 -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
 -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
-C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
-C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2C1,
-C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
-C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
-C(CH_3)=CH-CO-(4-C1-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO-(4-Cl-C_6H_4), -C(CH_3)=C(Cl)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3) = CH - CO - NH - C_2H_5, -C(CH_3) = CH - CO - N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH_3)=CH-CO-NH-cyclobutyl, -C(CH_3)=CH-CO-NH-cyclopentyl,
-C(CH_3)=CH-CO-NH-cyclohexyl, -C(CH_3)=CH-CO-NH-cycloheptyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclooctyl, -C(CH<sub>3</sub>)=CH-CO-pyrrolidin-1-yl,
-C(CH<sub>3</sub>)=CH-CO-piperidin-1-yl, -C(CH<sub>3</sub>)=CH-CO-morpholin-4-yl,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2C1,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl.
-C(CH_3)=C(CH_3)-CO-NH-C_6H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpho 11n-4-y1, -C(CH_3)=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\Xi CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\Xi CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(Cl)-CO-NH_2, -C(CH_3)=C(Cl)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-NH-i-C_3H_7, -C(CH_3)=C(Cl)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(C1)-CO-NH-cyclopentyl, -C(CH_3)=C(C1)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloheptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(Cl)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
 -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(Br)-CO-piperidin-1-y1, -C(CH_3)=C(Br)-CO-morpholin-4-y1,
 -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\Xi CH,
 -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
 -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
 -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
 -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
 -C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
 -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yl,
 -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
 -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
 -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
 -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
  -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
  -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
  -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
  -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
  -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
  -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C1)-CO-SCH_3,
-C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
 -C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
 -C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
 -C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
 -C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
 -C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
 -C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
 -C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
  -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
  -C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
  -C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
  -C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
  -C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
  -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
  -C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
  -C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
  -C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
  -C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
  -C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-CO-i-C<sub>4</sub>H<sub>9</sub>, -CO-s-C<sub>4</sub>H<sub>9</sub>, -CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CO-CH<sub>2</sub>CH=CH<sub>2</sub>, -CO-CF<sub>3</sub>,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH_3, -CH=NC_2H_5, -CH=N-n-C_3H_5, -CH=N-i-C_3H_5, -CH=N-n-C_4H_9,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH2C=C-CH3, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C_6H_4, -CH=N-4-F-C_6H_4, -CH=N-2-C1-C_6H_4, -CH=N-3-C1-C_6H_4,
-CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH-N-3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-4-NO2-C6H4, -CH=N-4-CN-C6H4, -CH=N-2,4-(C1,C1)-C6H4,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C4Hg, -CH=N-O-s-C4Hg, -CH=N-O-tert.-C4Hg,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
  -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
  -CH=N-OC(0)CH_3, -CH=N-OC(0)C_2H_5, -CH=N-O-CH_2-CN,
  -CH=N-O-CH_2-CH=CH-CH_2-O-CH_3, -CH=N-O-CH_2-CH=CH-CH_2-O-tert.-C_4H_9,
  -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
  -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
  -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-Cl-C_6H_4,
  -CH=N-O-CH2CH=CHCH2-4-OCH3-C6H4, -CH=N-O-CH2-CH=C(CH3)-C6H5
  -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C\equiv C-4-F-C_6H_4,
  -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
  -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
 -CH=N-OCH(CH<sub>3</sub>)COO-n-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH<sub>2</sub>, -CH=N-NHCH<sub>3</sub>, -CH=N-NHC<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-n-C_3H_7, -CH=N-NH-i-C_3H_7, -CH=N-NH-n-C_4H_9,
 -CH=N-NH-i-C4Hg, -CH=N-NH-s-C4Hg, -CH=N-NH-tert.-C4Hg,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloneptyl, -CH=N-N(CH<sub>3</sub>)<sub>2</sub>,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-NHCH<sub>2</sub>-C=CH, -CH=N-N(CH<sub>3</sub>)-CH<sub>2</sub>-C=CH,
 -CH=N-NHCH2CF3, -CH=N-NH-CO-CH3, -CH=N-NH-CO-CH2H5,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
-CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
-CH=N-NH-(4-NO_2-C_6H_4), -CH=N-NH-(4-F-C_6H_4),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
-CH=N-NH-(2,4-(NO_2)_2-C_6H_3), -CH=N-NH-CO-NH_2, -CH=N-NH-CO-NHCH_3,
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3)2, -CH=CH-COOH,
-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-n-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-O-i-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-O-n-C<sub>4</sub>H<sub>9</sub>, -CH=CH-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\mathcal{C}H<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH<sub>3</sub>)-CO-O-cyclobutyl, -CH=C(CH<sub>3</sub>)-CO-O-cyclopentyl,
```

```
-CH=C(CH<sub>3</sub>)-CO-O-cyclohexyl, -CH=C(CH<sub>3</sub>)-CO-O-cycloheptyl,
 -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C_2H_5)-CO-O-cyclopropyl, -CH=C(C_2H_5)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
--CH=C(C1)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C1)-CO+O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Cl)-CO-O-n-C4Hg, -CH=C(Cl)-CO-O-tert.-C4Hg,
 -CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
 -CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
-CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
-CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
-CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
-CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
-CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
-CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC_2H_5, -CH=C(CN)-CO-O-n-C_3H_7, -CH=C(CN)-CO-O-i-C_3H_7,
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclohexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH2-OC2H5, -CH=CH-CO-OCH2-O-n-C3H5,
-CH=CH-CO-OCH_2-O-i-C_3H_5, -CH=CH-CO-OCH(CH_3)-OCH_3,
-CH=CH-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-OC_2H_5, -CH=C(CH_3)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH<sub>2</sub>-O-i-C<sub>3</sub>H<sub>5</sub>, -CH=C(C1)-CO-OCH(CH<sub>3</sub>)-OCH<sub>3</sub>,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-OCH_3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH<sub>3</sub>)-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH2)3-Br, -CH=CH-CO-OCH2-CH=CH2, -CH=CH-CO-OCH2-C=CH,
-CH=CH-CO-OCH<sub>2</sub>-CN, -CH=CH-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C_2H_5)-CO-OCH_2-C\equiv CH, -CH=C(C_2H_5)-CO-OCH_2-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(Cl)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH2-CC13, -CH=C(C1)-CO-OCH2-oxiranyl,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(Br)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(Br)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH_2)_2-CN, -CH=C(CN)-CO-OCH_2-CF_3,
-CH=C(CN)-CO-OCH_2-CCl_3, -CH=C(CN)-CO-OCH_2-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH\pmC(CN)-CO-OCH<sub>2</sub>-C\pmCH, -CH\pmC(CN)-CO\pmOCH<sub>2</sub>-CN,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=CH-CO-CH<sub>3</sub>, -CH=CH-CO-C<sub>2</sub>H<sub>5</sub>,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHCl2, -CH=CH-CO-CH2-OCH3, -CH=CH-CO-CH(OCH3)2,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>Cl,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_{2}H_{5})-CO-CH_{3}, -CH=C(C_{2}H_{5})-CO-C_{2}H_{5}, -CH=C(C_{2}H_{5})-CO-n-C_{3}H_{7},
-CH=C(C_{2}H_{5})-CO-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-n-C_{4}H_{9},
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2C1,
```

```
-CH=C(C2H5)-CO-CH2Br, -CH=C(C2H5)-CO-CHCl2.
 -CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Cl)-CO-CH<sub>3</sub>, -CH=C(Cl)-CO-C<sub>2</sub>H<sub>5</sub>,
 -CH=C(C1)-CO-n-C_3H_7, -CH=C(C1)-CO-i-C_3H_7, -CH=C(C1)-CO-n-C_4H_9,
-CH=C(Cl)-CO-tert.-C4Hg, -CH=C(Cl)-CO-CH2Cl, -CH=C(Cl)-CO-CH3Br,
-CH=C(Cl)-CO-CHCl2, -CH=C(Cl)-CO-CH2-OCH3,
-CH=C(Cl)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Cl)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>1</sub>,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH<sub>2</sub>Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(CN)-CO-CH<sub>3</sub>,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C_4H_9, -CH=C(CN)-CO-tert.-C_4H_9, -CH=C(CN)-CO-CH_2Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-C1-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH<sub>3</sub>)-CO-(4-C1-C<sub>6</sub>H<sub>4</sub>), -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-C<sub>6</sub>H<sub>5</sub>,
-CH=C(C_2H_5)-CO-(4-C1-C_6H_4), -CH=C(C1)-CO-C_6H_5, -CH=C(Br)-CO-C_5H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-NH-i-C<sub>3</sub>H<sub>7</sub>,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=CH-CO-NH-CH<sub>2</sub>C=CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1,
-CH=CH-CO-NH-C_6H_5, -CH=C(CH_3)-CO-NH_2, -CH=C(CH_3)-CO-NHCH_3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cycloheptyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, \simCH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH_3)-CO-NH-CH_2C\equiv CH, -CH=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3)
```

```
-CH=C(C2H5)-CO-NH-C2H5, -CH=C(C2H5)-CO-N(C2H5)2,
 -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
 -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-l-yl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-piperidin-1-y1, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-morpholin-4-y1,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
 -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2Cl,
 -CH=C(C_2H_5)-CO-NH-C_6H_5, -CH=C(C_1)-CO-NH_2, -CH=C(C_1)-CO-NHCH_3,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Cl)-CO-NH-cyclopropyl, -CH=C(Cl)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-l-yl, -CH=C(Cl)-CO-piperidin-l-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
-CH=C(C1)-CO-NH-CH_2C\equiv CH, -CH=C(C1)-CO-N(CH_3)-CH_2C\equiv CH,
-CH=C(C1)-CO-NH-(CH_2)_2C1, -CH=C(C1)-CO-NH-C_6H_5, -CH=C(Br)-CO-NH_2,
-CH=C(Br)-CO-NHCH<sub>3</sub>, -CH=C(Br)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(Br)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(Br)-CO-N(C_2H_5)_2, -CH=C(Br)-CO-NH-n-C_3H_7,
-CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=C(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-1-yl, -CH=C(CN)-CO-piperidin-1-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CN)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CN)-CO-NH-(CH_2)_2Cl, -CH=C(CN)-CO-NH-C_6H_5, -CH=CH-CO-SCH_3,
```

```
-CH=CH-CO-SC 2H5, -CH=CH-CO-S-n-C 3H7, -CH=CH-CO-S-i-C 3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH_3)-CO-SCH_3,
 -CH=C(CH3)-CO-SC2H5, -CH=C(CH3)-CO-S-n-C3H7,
-CH=C(CH_3)-CO-S-I-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
 -CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
 -CH=C(C_2H5)-CO-SC_2H5, -CH=C(C_2H5)-CO-S-n-C_3H7,
 -CH=C(C_{2}H_{5})-CO-S-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-S-n-C_{4}H_{9},
 -CH=C(C_{2}H_{5})-CO-S-tert.-C_{4}H_{9}, -CH=C(C_{1})-CO-SCH<sub>3</sub>,
 -CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
 -CH=C(Cl)-CO-S-n-C4Hg, -CH=C(Cl)-CO-S-tert.-C4Hg,
 -CH=C(Br)-CO-SCH<sub>3</sub>, -CH=C(Br)-CO-SC<sub>2</sub>H<sub>5</sub>, -CH=C(Br)-CO-S-n-C<sub>3</sub>H<sub>7</sub>,
 -CH=C(Br)-CO-S-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(Br)-CO-S-n-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(Br)-CO-S-tert.-C_4H_9, -CH=C(CN)-CO-SCH_3, -CH=C(CN)-CO-SC_2H_5,
 -CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
 -CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
 -CH=C(COCH<sub>3</sub>)-CO-OCH<sub>3</sub>, -CH=C(COC<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>3</sub>,
 -CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
 -CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
 -CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
 -CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
  -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
  -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
  -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
  -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
  -CH=CH-CH<sub>2</sub>-CH(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CH(COOC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
  -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CH=CH-CH_2-CH(CN)-CO-OC_2H_5,
  -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
  -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-COOH,
  -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
  -CH=C(COOCH_3)-CH_2-CO-OCH_3, -CH=C(COOCH_3)-CH_2-CO-OC_2H_5,
```

```
-CH=CH-GH2-CO-NH2, --CH=CH-CH2-CO-NH-CH3, -CH=CH-CH2-CO-N(CH3)2,
        -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
        -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
        -CH(O-i-C_4Hg)_2, -CH(O-s-C_4Hg)_2, -CH(O-tert.-C_4Hg)_2,
        -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
        -CH(S-tert.-C<sub>4</sub>H<sub>9</sub>)<sub>2</sub>, -CH(OC<sub>5</sub>H<sub>11</sub>)<sub>2</sub>,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                 4-methyl-1,3-oxathiolan-2-yl,
                                                      5-methyl-1,3-
       2-y1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1, 3-oxathiolan-2-yl, 5-ethyl-1, 3-
 5
       oxathiolan-2-yl, 4,5-dimethyl-1,3-dioxolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethy1-1,3-dithiolan-2-y1, 4,5-dimethy1-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
       1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
       4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
       4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
       1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
       acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
       oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                           4-methoxycarbonyl-1,3-
       carboxy-1,3-dithiolan-2-yl,
30
       dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
       1,3-dithiolan-2-yl,
                                4-ethoxycarbonyl-4-methyl-1,3-
5
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl, 4-
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
                                              4-cyanomethyl-1,3-
       cyanomethyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
       4-allyloxymethyl-1,3-dioxan-2-yl, 4-acetoxymethyl-1,3-
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
                        4-chloromethyl-1, 3-dithian-2-yl,
       dioxan-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                       4-n-butoxycarbonyl-1,3-dioxan-2-yl,
25
       dioxan-2-yl,
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
       -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2.
       -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH_3)(O-n-C_5H_{11})",
```

 $-C(CH_3)(O-n-C_5H_{11})_2$, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl, dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-2-y1, 2, 4-dimethyl-1, 3-oxathiolan-2-y1, 2, 5-dimethyl-1, 3oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-5 ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-5-ethyl-2-methyl-1,3-oxathiolan-2-yl, oxathiolan-2-yl, 2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-2,4,5-trimethyl-1,3trimethyl-1,3-dithiolan-2-yl, 10 oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-4-chloromethyl-2methyl-5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-2-methyl-1,3methyl-1,3-dioxolan-2-yl, 15 dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl, 4hydroxymethy1-2-methy1-1,3-dioxolan-2-y1, 4 hydroxymethy1-2-methy1-1,3-dithiolan-2-y1, 4 hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5 -20 hydroxymethy1-2-methy1-1,3-oxathiolan-2-y1, 4 methoxymethy1-2-methy1-1,3-dioxolan-2-y1, 4 allyloxymethyl-2-methyl-1,3-dioxolan-2-yl, 2-methyl-4propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-4-methoxymethyl-2-methyl-1,3-1,3-dioxolan-2-yl, 25 dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl, 4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-4-allyloxymethyl-2-methyl-1,3-30 1,3-oxathiolan-2-yl, 5-allyloxymethyl-2-methyl-1,3oxathiolan-2-yl, 2-methyl-4-propargyloxymethyl-1,3oxathiolan-2-yl, 2-methyl-5-propargyloxymethyl-1,3oxathiolan-2-yl, oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 2-methy1-4-5-acetoxy-2-methyl-1,3-oxathiolan-2-yl, 35 2-methyl-4methylthiomethyl-1,3-dioxolan-2-yl, methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4-n-
       butoxycarbony1-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                                4 -
5
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
                                                             4-n-
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl, 2,4-dimethyl-4-n-
                                               2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               4-cyanomethyl-2-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-y1, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-yl,2,5,5-trimethyl-1,3-dithian-2-yl,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-y1, 2,5,5-trimethyl-1,3-oxathian-2-y1, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2Cl, -C(CH_3)=N-CH_2Cl, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-C1-C_6H_4), -C(CH_3)=N-(3-C1-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3;
 -C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-C1-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3,=N-OCH_2-CH=CH-(4-Cl-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
   -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
   -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-1-C_4H_9, -C(CH_3)=N-NH-S-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropyl, -C(CH_3)=N-NH-cyclopropyl
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-i-yl, -C(CH_3)=N-piperidin-l-yl, -C(CH_3)=N-morpholin-pyrrolidin-l-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
 -C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2, 4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
 -C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
 -C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
 -C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
 -C(CH_3)=CH-CO-O-cyclonexyl, -C(CH_3)=CH-CO-O-cycloneptyl,
 -C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
 -C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_
 cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
 -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
 -C(CH_3)=C(C1)-CO-O-n-C_3H_7, -C(CH_3)=C(C1)-CO-i-C_3H_7,
  -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
  -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobutyl,
```

```
-C(CH_3)=C(Cl)-CO-O-cyclopentyl, -C(CH_3)=C(Cl)-CO-O-cyclohexyl,
-C(CH_3)=C(Cl)-CO-O-cycloheptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cyclobutyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3) = C(CH_3) - CO - OCH_2CH_2 - OC_2H_5, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C1)-CO-O-i-C_3H_7, -C(CH_3)=C(C1)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Cl)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_3^2, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(C1)-CO-OCH_2-CF_3,
-C(CH_3)=C(Cl)-CO-OCH_2-CCl_3, -C(CH_3)=C(Cl)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-CO-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(Br)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH<sub>3</sub>)=CH-CO-n-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-tert.-C<sub>4</sub>H<sub>9</sub>,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2C_1,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C_JCH_3)=C(Cl)-CO-CH_3,
-C(CH_3)=C(Cl)-CO-C_2H_5, -C(CH_3)=C(Cl)-CO-n-C_3H_7,
-C(CH_3)=C(C1)-CO-i-C_3H_7, -C(CH_3)=C(C1)-CO-n-C_4H_9,
-C(CH_3)=C(Cl)-CO-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-CH_2Cl,
-C(CH_3)=C(Cl)-CO-CHCl_2, -C(CH_3)=C(Cl)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2Cl, -C(CH_3)=C(Br)-CO-CH_2Br,
-C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
-C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
-C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
-C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
-C(CH<sub>3</sub>)=C(CN)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=C(CN)-CO-CH<sub>2</sub>C1,
-C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
-C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
-C(CH_3)=CH-CO-(4-CI-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
-C(CH_3)=C(CH_3)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
-C(CH_3)=C(C_2H_5)-CO+(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
-C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
-C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
-C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
-C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
-C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclobutyl, -C(CH<sub>3</sub>)=CH-CO-NH-cyclopentyl,
-C(CH<sub>3</sub>)=CH-CO-NH-cyclonexyl, -C(CH<sub>3</sub>)=CH-CO-NH-cycloneptyl,
-C(CH_3)=CH-CO-NH-cyclooctyl, -C(CH_3)=CH-CO-pyrrolidin-1-yl,
-C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH_3)=CH-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=CH-CO-NH-(CH_2)_2Cl,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)-C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CH_3)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CH_3)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7;
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
morpholin-4-y1, -C(CH<sub>3</sub>)=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-CH<sub>2</sub>CH=C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2Cl, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(Cl)-CO-N(C_2H_5)_2, -C(CH_3)=C(Cl)-CO-NH-n-C_3H_7,
-C(CH_3)=C(C1)-CO-NH-i-C_3H_7, -C(CH_3)=C(C1)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(Cl)-CO-NH-cyclopentyl, -C(CH_3)=C(Cl)-CO-NH-cyclohexyl,
-C(CH_3)=C(Cl)-CO-NH-cycloneptyl, -C(CH_3)=C(Cl)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl, -C(Cl)-CO-piperidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-yl, -C(CH_3)=C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl)-C(Cl
y1, -C(CH_3)=C(C1)-CO-morpholin-4-y1,
 -C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
 -C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
 -C(CH_3)=C(Cl)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
 -C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
 -C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
 -C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
 -C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
 -C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
  -C(CH_3)=C(Br)-CO-NH-cyclonexyl, -C(CH_3)=C(Br)-CO-NH-cycloneptyl,
  -C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-l-yl,
  -C(CH_3)=C(Br)-CO-piperidin-1-yl, -C(CH_3)=C(Br)-CO-morpholin-4-yl,
  -C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
  -C(CH_3)=C(Br)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(Br)-CO-NH-(CH_2)_2C1,
  -C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
  -C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
  -C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
  -C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
  -C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl,
  -C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
   -C(CH_3)=C(CN)-CO-NH-cyclonexyl, -C(CH_3)=C(CN)-CO-NH-cycloneptyl,
   -C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-1-yl,
   -C(CH_3)=C(CN)-CO-piperidin-l-yl, -C(CH_3)=C(CN)-CO-morpholin-4-yl,
   -C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
   -C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2C1,
   -C(CH_3)=C(CN)-CO-NH-C_5H_5, -C(GH_3)=CH-CO-SCH_3,
   -C(CH_3)=CH-CO-SC_2H_5, -C(CH_3)=CH-CO-S-n-C_3H_7,
   -C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
   -C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
    -C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
    -C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
    -C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
    -C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
    -C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CI)-CO-SCH_3,
-C(CH_3)=C(Cl)-CO-SC_2H_5, -C(CH_3)=C(Cl)-CO-S-n-C_3H_7,
-C(CH_3)=C(C1)-CO-S-1-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
-C(CH_3)=C(C1)-CO-S-tent.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
-C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
-C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
-C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
-C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
-C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
-C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
-C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
-C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
-C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
-C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
-C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
 -C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
 -C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
 -C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
 -C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
 -C(CH<sub>3</sub>)=CH-CH=CH-COOH, -C(CH<sub>3</sub>)=CH-CH=CH-CO-OCH<sub>3</sub>,
 -C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
 -C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(Cl)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
 -C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
  -C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
  -C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
  -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
  -C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
  -C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
  -C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
  -C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
  -C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

where W has one of the following meanings:

```
-CHO, -COCH<sub>3</sub>, -COC<sub>2</sub>H<sub>5</sub>, -CO-n-C<sub>3</sub>H<sub>7</sub>, -CO-i-C<sub>3</sub>H<sub>7</sub>, -CO-n-C<sub>4</sub>H<sub>9</sub>,
-\text{CO-i-C}_4\text{Hg}, -\text{CO-s-C}_4\text{Hg}, -\text{CO-tert.-C}_4\text{Hg}, -\text{CO-CH}_2\text{CH=CH}_2, -\text{CO-CF}_3,
-COCCl<sub>3</sub>, -COCH<sub>2</sub>C≡CH, -CO-cyclopropyl, -CO-cyclobutyl, -CO-cyclo-
pentyl, -CO-cyclohexyl, -CO-CN, -CO-COOCH<sub>3</sub>, -CO-COOC<sub>2</sub>H<sub>5</sub>, -CH=NH,
-CH=NCH3, -CH=NC2H5, -CH=N-n-C3H5, -CH=N-1-C3H5, -CH=N-n-C4H9,
-CH=NCH<sub>2</sub>CH=CH<sub>2</sub>, -CH=NCH<sub>2</sub>CH=CH<sub>2</sub>-CH<sub>3</sub>, -CH=NCH<sub>2</sub>C≡CH,
-CH=NCH<sub>2</sub>C=C-CH<sub>3</sub>, -CH=N-cyclopropyl, -CH=N-cyclobutyl,
-CH=N-cyclopentyl, -CH=N-cyclohexyl, -CH=N-cycloheptyl,
-CH=N-CH<sub>2</sub>-CH<sub>2</sub>Cl, -CH=N-CH<sub>2</sub>Cl, -CH=N-C<sub>6</sub>H<sub>5</sub>, -CH=N-4-Br-C<sub>6</sub>H<sub>4</sub>,
-CH=N-3-F-C6H4, -CH=N-4-F-C6H4, -CH=N-2-C1-C6H4, -CH=N-3-C1-C6H4,
-CH=N-4-C1-C6H4, -CH=N-2-Br-C6H4, -CH=N-2-F-C6H4,
-CH=N-2-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-3-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH-N-3-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>, -CH=N-4-CF<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
-CH=N-2-OCH3-C6H4, -CH=N-3-OCH3-C6H4, -CH=N-4-OCH3-C6H4,
-CH=N-4-NO_2-C_6H_4, -CH=N-4-CN-C_6H_4, -CH=N-2, 4-(C1,C1)-C_6H_4,
-CH=N-2, 4-(CH3, CH3)-C6H4, -CH=N-CH2OCH3, -CH=N-CH2OC2H5,
-CH=N-CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>, -CH=N-CH<sub>2</sub>CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>, -CH=N-OH, -CH=N-OCH<sub>3</sub>,
-CH=N-OC_{2}H_{5}, -CH=N-O-n-C_{3}H_{7}, -CH=N-O-i-C_{3}H_{7}, -CH=N-O-n-C_{4}H_{9},
-CH=N-O-i-C_4H_9, -CH=N-O-s-C_4H_9, -CH=N-O-tert.-C_4H_9,
```

```
-CH=N-O-CH<sub>2</sub>CH=CH<sub>2</sub>, -CH=N-O-CH(CH<sub>3</sub>)CH=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>C=CH,
   -CH=N-O-CH.(CH<sub>3</sub>)-C=CH, -CH=N-O-CH<sub>2</sub>-CH=CH-CH<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-Cl,
   -CH=N-O-CH<sub>2</sub>-CH<sub>2</sub>-F, -CH=N-O-CH<sub>2</sub>-CF<sub>3</sub>, -CH=N-O-CH<sub>2</sub>-CH=CHCl,
   -CH=N-O-CH<sub>2</sub>-CCl=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CBr=CH<sub>2</sub>, -CH=N-O-CH<sub>2</sub>-CH=CCl-CH<sub>3</sub>,
  -CH=N-OC(O)CH_3, -CH=N-OC(O)C_2H_5, -CH=N-O-CH_2-CN,
  -CH=N-O-CH_2-CH=CH-CH_2-O-CH_3, -CH=N-O-CH_2-CH=CH-CH_2-O-tert.-C_4H_9,
  -CH=N-O-(CH_2)_3-C_6H_5, -CH=N-O-(CH_2)_4-C_6H_5,
  -CH=N-O-(CH_2)_4-4-Cl-C_6H_4, -CH=N-O-(CH_2)_4-4-OCH_3-C_6H_4,
  -CH=N-O-(CH_2)_4-4-CH_3-C_6H_4, -CH=N-O-(CH_2)_4-4-F-C_6H_4,
  -CH=N-O-CH<sub>2</sub>CH=CH-C<sub>6</sub>H<sub>5</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-4-F-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-CH<sub>2</sub>CH=CH-4-Cl-C<sub>6</sub>H<sub>4</sub>, -CH=N-O-CH<sub>2</sub>CH=CH-3-OCH<sub>3</sub>-C<sub>6</sub>H<sub>4</sub>,
  -CH=N-O-(CH_2)_2CH=CH-4-F-C_6H_4, -CH=N-O-(CH_2)CH=CH-4-C_1-C_6H_4,
  -CH=N-O-CH2CH=CHCH2-4-OCH3-C6H4, -CH=N-O-CH2-CH=C(CH3)-C6H5
 -CH=N-O-(CH_2)_2CH=CH-3, 4(C1,C1)-C_6H_3, -CH=N-O-(CH_2)_3C\equiv C-4-F-C_6H_4,
 -CH<sub>2</sub>=N-OCHOCH<sub>3</sub>, -CH=N-OC<sub>2</sub>H<sub>4</sub>OCH<sub>3</sub>, -CH=N-OCH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>,
 -CH=N-OCH(CH<sub>3</sub>)OCH<sub>3</sub>, -CH=N-OCH(CH<sub>3</sub>)COOCH<sub>3</sub>,
 -CH=N-OCH(CH3)COO-n-C4H9, -CH=N-NH2, -CH=N-NHCH3, -CH=N-NHC2H5,
 -CH=N-NH-n-C<sub>3</sub>H<sub>7</sub>, -CH=N-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=N-NH-n-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-NH-i-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH-s-C<sub>4</sub>H<sub>9</sub>, -CH=N-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-NH-cyclopropyl, -CH=N-NH-cyclobutyl, -CH=N-NH-cyclopentyl,
 -CH=N-NH-cyclonexyl, -CH=N-NH-cycloheptyl, -CH=N-N(CH_3)_2,
 -CH=N-N(C_2H_5)_2, -CH=N-N(C_3H_7)_2, -CH=N-N(i-C_3H_7)(CH_3),
 -CH=N-NHCH 2-C=CH, -CH=N-NHCH 2-C=CH, -CH=N-N(CH3)-CH2-C=CH,
 -CH=N-NHCH<sub>2</sub>CF<sub>3</sub>, -CH=N-NH-CO-CH<sub>3</sub>, -CH=N-NH-CO-CH<sub>2</sub>H<sub>5</sub>,
 -CH=N-NH-COOCH<sub>3</sub>, -CH=N-NH-COOC<sub>2</sub>H<sub>5</sub>, -CH=N-NH-COO-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=N-pyrrolidin-1-yl, -CH=N-piperidin-1-yl,
-CH=N-morpholin-4-yl, -CH=N-NH-C<sub>6</sub>H<sub>5</sub>, -CH=N-NH-(4-Cl-C<sub>6</sub>H<sub>4</sub>),
 -CH=N-NH-(4-NO_2-C_6H_4), -CH=N-NH-(4-F-C_6H_4),
-CH=N-NH-(4-CH_3O-C_6H_4), -CH=N-NH-(2,4-Cl_2-C_6H_3),
^{-}CH=N-NH-(^{2}, 4-(^{NO}_{2})_{2}-C_{6}H_{3}), -CH=N-NH-CO-NHC_{3}, -CH=N-NH-CO-NHCH_{3},
-CH=N-NH-CO-NHC 2H5, -CH=N-NH-CO-N(CH3) 2, -CH=CH-COOH,
-CH=CH-CO-OCH3, -CH=CH-CO-OC2H5, -CH=CH-CO-O-n-C3H7,
-CH=CH-CO-O-i-C<sub>3</sub>H<sub>7</sub>, -CH=CH-CO-O-n-C<sub>4</sub>H<sub>9</sub>, -CH=CH-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=CH-CO-O-cyclopropyl, -CH=CH-CO-O-cyclobutyl,
-CH=CH-CO-O-cyclopentyl, -CH=CH-CO-O-cyclohexyl,
-CH=CH-CO-O-cycloheptyl, -CH=C(\xiH<sub>3</sub>)-COOH, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>3</sub>,
-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CO-O-n-C_3H_7,
-CH=C(CH_3)-CO-O-i-C_3H_7, -CH=C(CH_3)-CO-O-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-O-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-O-cyclopropyl,
-CH=C(CH_3)-CO-O-cyclobutyl, -CH=C(CH_3)-CO-O-cyclopentyl,
```

```
-CH=C(CH_3)-CO-O-cyclohexyl, -CH=C(CH_3)-CO-O-cycloheptyl,
 -CH=C(C2H5)-COOH, -CH=C(C2H5)-CO-OCH3, -CH=C(C2H5)-CO-OC2H5,
 -CH=C(C_2H_5)-CO-O-n-C_3H_7, -CH=C(C_2H_5)-CO-O-i-C_3H_7,
 -CH=C(C_2H_5)-CO-O-n-C_4H_9, -CH=C(C_2H_5)-CO-O-tert.-C_4H_9,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclopropyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cyclobutyl,
 -CH=C(C_2H_5)-CO-O-cyclopentyl, -CH=C(C_2H_5)-CO-O-cyclohexyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-O-cycloheptyl, -CH=C(Cl)-COOH, -CH=C(Cl)-CO-OCH<sub>3</sub>,
 -CH=C(C1)-CO-OC_2H_5, -CH=C(C1)-CO-O-n-C_3H_7, -CH=C(C1)-CO-O-i-C_3H_7,
-CH=C(Cl)-CO-O-n-C4Hg, -CH=C(Cl)-CO-O-tert.-C4Hg,
-CH=C(Cl)-CO-O-cyclopropyl, -CH=C(Cl)-CO-O-cyclobutyl,
-CH=C(Cl)-CO-O-cyclopentyl, -CH=C(Cl)-CO-O-cyclohexyl,
-CH=C(Cl)-CO-O-cycloheptyl, -CH=C(Br)-COOH, -CH=C(Br)-CO-OCH<sub>3</sub>,
-CH=C(Br)-CO-OC_2H_5, -CH=C(Br)-CO-O-n-C_3H_7, -CH=C(Br)-CO-O-i-C_3H_7,
-CH=C(Br)-CO-O-n-C4Hg, -CH=C(Br)-CO-O-tert.-C4Hg,
-CH=C(Br)-CO-O-cyclopropyl, -CH=C(Br)-CO-O-cyclobutyl,
-CH=C(Br)-CO-O-cyclopentyl, -CH=C(Br)-CO-O-cyclohexyl,
-CH=C(Br)-CO-O-cycloheptyl, -CH=C(CN)-COOH, -CH=C(CN)-CO-OCH<sub>3</sub>,
-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CN)-CO-O-n-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-O-i-C<sub>3</sub>H<sub>7</sub>,
-CH=C(CN)-CO-O-n-C4Hg, -CH=C(CN)-CO-O-tert.-C4Hg,
-CH=C(CN)-CO-O-cyclopropyl, -CH=C(CN)-CO-O-cyclobutyl,
-CH=C(CN)-CO-O-cyclopentyl, -CH=C(CN)-CO-O-cyclonexyl,
-CH=C(CN)-CO-O-cycloheptyl, -CH=CH-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=CH-CO-OCH2-OC2H5, -CH=CH-CO-OCH2-O-n-C3H5,
-CH=CH-CO-OCH2-O-i-C3H5, -CH=CH-CO-OCH(CH3)-OCH3,
-CH=CH-CO-OCH(CH_3)-OC_2H_5, -CH=CH-CO-O-CH_2CH_2-OCH_3,
-CH=CH-CO-O-CH2CH2-OC2H5, -CH=C(CH3)-CO-OCH2-OCH3,
-CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CO-OCH<sub>2</sub>-O-n-C<sub>3</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-OCH_2-O-i-C_3H_5, -CH=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-CH=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -CH=C(CH_3)-CO-O-CH_2CH_2-OCH_3,
-CH=C(CH<sub>3</sub>)-CO-O-CH<sub>2</sub>CH<sub>2</sub>-OC<sub>2</sub>H<sub>5</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(C2H5)-CO-OCH2-OC2H5, -CH=C(C2H5)-CO-OCH2-O-n-C3H5,
-CH=C(C_2H_5)-CO-OCH_2-O-i-C_3H_5, -CH=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-CH=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C_2H_5)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C_2H_5)-CO-O-CH_2CH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-OCH_3,
-CH=C(C1)-CO-OCH_2-OC_2H_5, -CH=C(C1)-CO-OCH_2-O-n-C_3H_5,
-CH=C(C1)-CO-OCH_2-O-i-C_3H_5, -CH=C(C1)-CO-OCH(CH_3)-OCH_3,
-CH=C(C1)-CO-OCH(CH_3)-OC_2H_5, -CH=C(C1)-CO-O-CH_2CH_2-OCH_3,
-CH=C(C1)-CO-O-CH2CH2-OC2H5, -CH=C(Br)-CO-OCH2-OCH3,
-CH=C(Br)-CO-OCH_2-OC_2H_5, -CH=C(Br)-CO-OCH_2-O-n-C_3H_5,
-CH=C(Br)-CO-OCH_2-O-i-C_3H_5, -CH=C(Br)-CO-OCH(CH_3)-OCH_3,
```

```
-CH=C(Br)-CO-OCH(CH3)-OC2H5, -CH=C(Br)-CO-O-CH2CH2-OCH3,
-CH=C(Br)-CO-O-CH2CH2-OC2H5, -CH=C(CN)-CO-OCH2-OCH3,
-CH=C(CN)-CO-OCH_2-OC_2H_5, -CH=C(CN)-CO-OCH_2-O-n-C_3H_5,
-CH=C(CN)-CO-OCH_2-O-i-C_3H_5, -CH=C(CN)-CO-OCH(CH_3)-OCH_3,
-CH=C(CN)-CO-OCH(CH3)-OC2H5, -CH=C(CN)-CO-O-CH2CH2-OCH3,
-CH=C(CN)-CO-O-CH2CH2-OC2H5, -CH=CH-CO-OCH2-CF3,
-CH=CH-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=CH-CO-OCH<sub>2</sub>-oxiranyl,
-CH=CH-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=CH-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>, -CH=CH-CO-OCH<sub>2</sub>-C≡CH,
-CH=CH-CO-OCH_2-CN, -CH=CH-CO-O(CH_2)_2-CN, -CH=C(CH_3)-CO-OCH_2-CF_3,
-CH=C(CH_3)-CO-OCH_2-CCl_3, -CH=C(CH_3)-CO-OCH_2-oxiranyl,
-CH=C(CH_3)-CO-O(CH_2)_3-Br, -CH=C(CH_3)-CO-OCH_2-CH=CH_2,
-CH=C(CH_3)-CO-OCH_2-C\equiv CH, -CH=C(CH_3)-CO-OCH_2-CN,
-CH=C(CH_3)-CO-O(CH_2)_2-CN, -CH=C(C_2H_5)-CO-OCH_2-CF_3,
-CH=C(C_2H_5)-CO-OCH_2-CCl_3, -CH=C(C_2H_5)-CO-OCH_2-oxiranyl,
-CH=C(C_2H_5)-CO-O(CH_2)_3-Br, -CH=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-C≡CH, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-OCH<sub>2</sub>-CN,
-CH=C(C_2H_5)-CO-O(CH_2)_2-CN, -CH=C(C1)-CO-OCH_2-CF_3,
-CH=C(C1)-CO-OCH_2-CC1_3, -CH=C(C1)-CO-OCH_2-oxirany1,
-CH=C(C1)-CO-O(CH_2)_3-Br, -CH=C(C1)-CO-OCH_2-CH=CH_2,
-CH=C(C1)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(C1)-CO-OCH<sub>2</sub>-CN,
-CH=C(C1)-CO-O(CH_2)_2-CN, -CH=C(Br)-CO-OCH_2-CF_3,
-CH=C(Br)-CO-OCH_2-CCl_3, -CH=C(Br)-CO-OCH_2-oxiranyl,
-CH=C(Br)-CO-O(CH_2)_3-Br, -CH=C(Br)-CO-OCH_2-CH=CH_2,
-CH=C(Br)-CO-OCH<sub>2</sub>-C\equivCH, -CH=C(Br)-CO-OCH<sub>2</sub>-CN,
-CH=C(Br)-CO-O(CH<sub>2</sub>)<sub>2</sub>-CN, -CH=C(CN)-CO-OCH<sub>2</sub>-CF<sub>3</sub>,
-CH=C(CN)-CO-OCH<sub>2</sub>-CCl<sub>3</sub>, -CH=C(CN)-CO-OCH<sub>2</sub>-oxiranyl,
-CH=C(CN)-CO-O(CH<sub>2</sub>)<sub>3</sub>-Br, -CH=C(CN)-CO-OCH<sub>2</sub>-CH=CH<sub>2</sub>,
-CH=C(CN)-CO-OCH_2-C\equiv CH, -CH=C(CN)-CO-OCH_2-CN,
-CH=C(CN)-CO-O(CH_2)_2-CN, -CH=CH-CO-CH_3, -CH=CH-CO-C_2H_5,
-CH=CH-CO-n-C3H7, -CH=CH-CO-i-C3H7, -CH=CH-CO-n-C4H9,
-CH=CH-CO-tert.-C4Hg, -CH=CH-CO-CH2C1, -CH=CH-CO-CH2Br,
-CH=CH-CO-CHC12, -CH=CH-CO-CH2-OCH3, -CH=CH-CO-CH(OCH3)2,
-CH=CH-CO-CH_2-SCH_3, -CH=C(CH_3)-CO-CH_3, -CH=C(CH_3)-CO-C_2H_5,
-CH=C(CH_3)-CO-n-C_3H_7, -CH=C(CH_3)-CO-i-C_3H_7, -CH=C(CH_3)-CO-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(CH<sub>3</sub>)-CO-CH<sub>2</sub>C1,
-CH=C(CH_3)-CO-CH_2Br, -CH=C(CH_3)-CO-CHCl_2, -CH=C(CH_3)-CO-CH_2-OCH_3,
-CH=C(CH_3)-CO-CH(OCH_3)_2, -CH=C(CH_3)-CO-CH_2-SCH_3,
-CH=C(C_{2}H_{5})-CO-CH_{3}, -CH=C(C_{2}H_{5})-CO-C_{2}H_{5}, -CH=C(C_{2}H_{5})-CO-n-C_{3}H_{7},
-CH=C(C_{2}H_{5})-CO-i-C_{3}H_{7}, -CH=C(C_{2}H_{5})-CO-n-C_{4}H_{9},
-CH=C(C_2H_5)-CO-tert.-C_4H_9, -CH=C(C_2H_5)-CO-CH_2C_1,
```

```
-CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CH<sub>2</sub>Br, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-CHCl<sub>2</sub>,
-CH=C(C_2H_5)-CO-CH_2-OCH_3, -CH=C(C_2H_5)-CO-CH(OCH_3)_2,
-CH=C(C_2H_5)-CO-CH_2-SCH_3, -CH=C(C_1)-CO-CH_3, -CH=C(C_1)-CO-C_2H_5,
-CH=C(Cl)-CO-n-C3H7, -CH=C(Cl)-CO-i-C3H7, -CH=C(Cl)-CO-n-C4Hq,
-CH=C(Cl)-CO-tert.-C4Hg, -CH=C(Cl)-CO-CH2Cl, -CH=C(Cl)-CO-CH3Br,
-CH=C(C1)-CO-CHC12, -CH=C(C1)-CO-CH2-OCH3,
-CH=C(C1)-CO-CH(OCH<sub>3</sub>)<sub>2</sub>, -CH=C(C1)-CO-CH<sub>2</sub>-SCH<sub>3</sub>, -CH=C(Br)-CO-CH<sub>3</sub>,
-CH=C(Br)-CO-C_2H_5, -CH=C(Br)-CO-n-C_3H_7, -CH=C(Br)-CO-i-C_3H_7,
-CH=C(Br)-CO-n-C4Hg, -CH=C(Br)-CO-tert.-C4Hg, -CH=C(Br)-CO-CH<sub>2</sub>Cl,
-CH=C(Br)-CO-CH<sub>2</sub>Br, -CH=C(Br)-CO-CHCl<sub>2</sub>, -CH=C(Br)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(Br)-CO-CH(OCH_3)_2, -CH=C(Br)-CO-CH_2-SCH_3, -CH=C(CN)-CO-CH_3,
-CH=C(CN)-CO-C_2H_5, -CH=C(CN)-CO-n-C_3H_7, -CH=C(CN)-CO-i-C_3H_7,
-CH=C(CN)-CO-n-C_4H_g, -CH=C(CN)-CO-tert. -C_4H_g, -CH=C(CN)-CO-CH_2Cl,
-CH=C(CN)-CO-CH<sub>2</sub>Br, -CH=C(CN)-CO-CHCl<sub>2</sub>, -CH=C(CN)-CO-CH<sub>2</sub>-OCH<sub>3</sub>,
-CH=C(CN)-CO-CH(OCH_3)_2, -CH=C(CN)-CO-CH_2-SCH_3, -CH=CH-CO-C_5H_5,
-CH=CH-CO-(4-Cl-C_6H_4), -CH=C(CH_3)-CO-C_6H_5,
-CH=C(CH_3)-CO-(4-C1-C_6H_4), -CH=C(C_2H_5)-CO-C_6H_5,
-CH=C(C_2H_5)-CO-(4-Cl-C_6H_4), -CH=C(Cl)-CO-C_6H_5, -CH=C(Br)-CO-C_5H_5,
-CH=C(CN)-CO-C6H5 -CH=CH-CO-NH2, -CH=CH-CO-NHCH3,
-CH=CH-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=CH-CO-NH-C<sub>2</sub>H<sub>5</sub>, -CH=CH-CO-N(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>,
-CH=CH-CO-NH-n-C3H7, -CH=CH-CO-NH-i-C3H7,
-CH=CH-CO-NH-tert.-C4Hg, -CH=CH-CO-NH-cyclopropyl,
-CH=CH-CO-NH-cyclobutyl, -CH=CH-CO-NH-cyclopentyl,
-CH=CH-CO-NH-cyclohexyl, -CH=CH-CO-NH-cycloheptyl,
-CH=CH-CO-NH-cyclooctyl, -CH=CH-CO-pyrrolidin-l-yl,
-CH=CH-CO-piperidin-1-yl, -CH=CH-CO-morpholin-4-yl,
-CH=CH-CO-NH-CH2CH=CH2, -CH=CH-CO-NH-CH2C≡CH,
-CH=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C=CH, -CH=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-CH=CH-CO-NH-C6H5, -CH=C(CH3)-CO-NH2, -CH=C(CH3)-CO-NHCH3,
-CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CH_3)-CO-N(C_2H_5)_2, -CH=C(CH_3)-CO-NH-n-C_3H_7,
-CH=C(CH<sub>3</sub>)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CH<sub>3</sub>)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopropyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclobutyl,
-CH=C(CH<sub>3</sub>)-CO-NH-cyclopentyl, -CH=C(CH<sub>3</sub>)-CO-NH-cyclohexyl,
-CH=C(CH_3)-CO-NH-cycloneptyl, -CH=C(CH_3)-CO-NH-cyclooctyl,
-CH=C(CH<sub>3</sub>)-CO-pyrrolidin-1-yl, \simCH=C(CH<sub>3</sub>)-CO-piperidin-1-yl,
-CH=C(CH<sub>3</sub>)-CO-morpholin-4-yl, -CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>CH=C(CH<sub>3</sub>)<sub>2</sub>,
-CH=C(CH<sub>3</sub>)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
-CH=C(CH_3)-CO-NH-(CH_2)_2Cl, -CH=C(CH_3)-CO-NH-C_6H_5,
-CH=C(C_2H_5)-CO-NH_2, -CH=C(C_2H_5)-CO-NHCH_3, -CH=C(C_2H_5)-CO-N(CH_3):
```

```
-CH=C(C_2H_5)-CO-NH-C_2H_5, -CH=C(C_2H_5)-CO-N(C_2H_5)_2,
 -CH=C(C_2H_5)-CO-NH-n-C_3H_7, -CH=C(C_2H_5)-CO-NH-i-C_3H_7,
 -CH=C(C_2H_5)-CO-NH-tert.-C_4H_9, -CH=C(C_2H_5)-CO-NH-cyclopropyl,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclobutyl, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-cyclopentyl,
 -CH=C(C_2H_5)-CO-NH-cyclohexyl, -CH=C(C_2H_5)-CO-NH-cycloheptyl,
 -CH=C(C_2H_5)-CO-NH-cyclooctyl, -CH=C(C_2H_5)-CO-pyrrolidin-1-yl,
 -CH=C(C2H5)-CO-piperidin-1-y1, -CH=C(C2H5)-CO-morpholin-4-y1,
 -CH=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2, -CH=C(C_2H_5)-CO-NH-CH_2C\equiv CH,
 -CH=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH, -CH=C(C_2H_5)-CO-NH-(CH_2)_2C1,
 -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(Cl)-CO-NH<sub>2</sub>, -CH=C(Cl)-CO-NHCH<sub>3</sub>,
 -CH=C(C1)-CO-N(CH3)2, -CH=C(C1)-CO-NH-C2H5,
 -CH=C(C1)-CO-N(C_2H_5)_2, -CH=C(C1)-CO-NH-n-C_3H_7,
 -CH=C(C1)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(C1)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
 -CH=C(C1)-CO-NH-cyclopropyl, -CH=C(C1)-CO-NH-cyclobutyl,
 -CH=C(Cl)-CO-NH-cyclopentyl, -CH=C(Cl)-CO-NH-cyclohexyl,
 -CH=C(Cl)-CO-NH-cycloheptyl, -CH=C(Cl)-CO-NH-cyclooctyl,
 -CH=C(Cl)-CO-pyrrolidin-1-yl, -CH=C(Cl)-CO-piperidin-1-yl,
 -CH=C(Cl)-CO-morpholin-4-yl, -CH=C(Cl)-CO-NH-CH<sub>2</sub>CH=C(Cl)<sub>2</sub>,
 -CH=C(C1)-CO-NH-CH<sub>2</sub>C\equivCH, -CH=C(C1)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH,
 -CH=C(C1)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>C1, -CH=C(C1)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(Br)-CO-NH<sub>2</sub>,
 -CH=C(Br)-CO-NHCH_3, -CH=C(Br)-CO-N(CH_3)_2, -CH=C(Br)-CO-NH-C_2H_5,
 -CH=C(8r)-CO-N(C_2H_5)_2, -CH=C(8r)-CO-NH-n-C_3H_7,
 -CH=C(Br)-CO-NH-i-C_3H_7, -CH=C(Br)-CO-NH-tert.-C_4H_9,
-CH=C(Br)-CO-NH-cyclopropyl, -CH=C(Br)-CO-NH-cyclobutyl,
-CH=C(Br)-CO-NH-cyclopentyl, -CH=C(Br)-CO-NH-cyclohexyl,
-CH=C(Br)-CO-NH-cycloheptyl, -CH=C(Br)-CO-NH-cyclooctyl,
-CH=C(Br)-CO-pyrrolidin-1-yl, -CH=C(Br)-CO-piperidin-1-yl,
-CH=C(Br)-CO-morpholin-4-yl, -CH=C(Br)-CO-NH-CH<sub>2</sub>CH=C(Br)<sub>2</sub>,
-CH=C(Br)-CO-NH-CH2CECH, -CH=C(Br)-CO-N(CH3)-CH2CECH,
-CH=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl, -CH=C(Br)-CO-NH-C<sub>6</sub>H<sub>5</sub>, -CH=C(CN)-CO-NH<sub>2</sub>,
-CH=C(CN)-CO-NHCH<sub>3</sub>, -CH=C(CN)-CO-N(CH<sub>3</sub>)<sub>2</sub>, -CH=C(CN)-CO-NH-C<sub>2</sub>H<sub>5</sub>,
-CH=C(CN)-CO-N(C_2H_5)_2, -CH=C(CN)-CO-NH-n-C_3H_7,
-CH=C(CN)-CO-NH-i-C<sub>3</sub>H<sub>7</sub>, -CH=C(CN)-CO-NH-tert.-C<sub>4</sub>H<sub>9</sub>,
-CH=C(CN)-CO-NH-cyclopropyl, -CH=\underline{C}(CN)-CO-NH-cyclobutyl,
-CH=C(CN)-CO-NH-cyclopentyl, -CH=C(CN)-CO-NH-cyclohexyl,
-CH=C(CN)-CO-NH-cycloheptyl, -CH=C(CN)-CO-NH-cyclooctyl,
-CH=C(CN)-CO-pyrrolidin-l-yl, -CH=C(CN)-CO-piperidin-l-yl,
-CH=C(CN)-CO-morpholin-4-yl, -CH=C(CN)-CO-NH-CH2CH=C(CN)2,
-CH=C(CN)-CO-NH-CH2C≡CH, -CH=C(CN)-CO-N(CH3)-CH2C≡CH,
-CH=C(CN)-CO-NH-(CH_2)_2Cl, -CH=C(CN)-CO-NH-C_6H_5, -CH=CH-CO-SCH_3,
```

```
-CH=CH-CO-SC2H5, -CH=CH-CO-S-n-C3H7, -CH=CH-CO-S-i-C3H7,
-CH=CH-CO-S-n-C4Hg, -CH=CH-CO-S-tert.-C4Hg, -CH=C(CH3)-CO-SCH3,
-CH=C(CH_3)-CO-SC_2H_5, -CH=C(CH_3)-CO-S-n-C_3H_7,
-CH=C(CH_3)-CO-S-i-C_3H_7, -CH=C(CH_3)-CO-S-n-C_4H_9,
-CH=C(CH<sub>3</sub>)-CO-S-tert.-C<sub>4</sub>H<sub>9</sub>, -CH=C(C<sub>2</sub>H<sub>5</sub>)-CO-SCH<sub>3</sub>,
-CH=C(C_2H5)-CO-SC_2H5, -CH=C(C_2H5)-CO-S-n-C_3H7,
-CH=C(C_2H_5)-CO-S-i-C_3H_7, -CH=C(C_2H_5)-CO-S-n-C_4H_9,
-CH=C(C_2H_5)-CO-S-tert.-C_4H_9, -CH=C(C_1)-CO-SCH<sub>3</sub>,
-CH=C(C1)-CO-SC_2H_5, -CH=C(C1)-CO-S-n-C_3H_7, -CH=C(C1)-CO-S-i-C_3H_7,
-CH=C(C1)-CO+S-n-C_4H_9, -CH=C(C1)-CO-S-tert.-C_4H_9,
-CH=C(Br)-CO-SCH_3, -CH=C(Br)-CO-SC_2H_5, -CH=C(Br)-CO-S-n-C_3H_7,
-CH=C(Br)-CO-S-i-C_3H_7, -CH=C(Br)-CO-S-n-C_4H_9,
-CH=C(Br)-CO-S-tert.-C_4H_9, -CH=C(CN)-CO-SCH_3, -CH=C(CN)-CO-SC_2H_5,
-CH=C(CN)-CO-S-n-C_3H_7, -CH=C(CN)-CO-S-i-C_3H_7,
-CH=C(CN)-CO-S-n-C_4H_9, -CH=C(CN)-CO-S-tert.-C_4H_9,
-CH=C(COCH_3)-CO-OCH_3, -CH=C(COC_2H_5)-CO-OCH_3,
-CH=C(CO-n-C_3H_7)-CO-OCH_3, -CH=C(COCH_3)-CO-OC_2H_5,
-CH=C(COC_2H_5)-CO-OC_2H_5, -CH=C(CO-n-C_3H_7)-CO-OC_2H_5,
-CH=C(COCH_3)-CO-O-n-C_3H_7, -CH=C(COC_2H_5)-CO-O-n-C_3H_7,
-CH=C(CO-n-C_3H_7)-CO-O-n-C_3H_7, -CH=C(CF_3)-CO-OCH_3,
 -CH=C(CF_3)-CO-OC_2H_5, -CH=C(CF_3)-CO-O-n-C_3H_7,
 -CH=C(CF_3)-CO-O-i-C_3H_7, -CH=C(CF_3)-CO-O-n-C_4H_9,
 -CH=C(CF_3)-CO-O-tert.-C_4H_9, -CH=C(COOCH_3)_2, -CH=C(COOC_2H_5)_2,
-CH=C(COOCH_3)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)-CO-OCH_3,
 -CH=C(COO-n-C_3H_7)-CO-OC_2H_5, -CH=C(COO-n-C_3H_7)_2,
 -CH=CH-CH=CH-COOH, -CH=CH-CH=CH-CO-OCH<sub>3</sub>, -CH=CH-CH=CH-CO-OC<sub>2</sub>H<sub>5</sub>,
 -CH=CH-CH=C(COOCH<sub>3</sub>)<sub>2</sub>, -CH=CH-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=CH-CH=C(CN)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-OCH<sub>3</sub>,
 -CH=C(GH_3)-CH=C(CN)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
 -CH=C(CH<sub>3</sub>)-CH=C(Cl)-CO-OCH<sub>3</sub>, -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OCH<sub>3</sub>,
 -CH=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5, -CH=C(CH_3)-CH=C(Cl)-CO-OC_2H_5,
 -CH=C(CH<sub>3</sub>)-CH=C(Br)-CO-OC<sub>2</sub>H<sub>5</sub>, -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH<sub>2</sub>,
 -CH=C(CH<sub>3</sub>)-CH=C(CN)-CO-NH-CH<sub>3</sub>, -CH=CH-(CH<sub>2</sub>)<sub>2</sub>-COOH,
 -CH=CH-(CH_2)_2-CO-OCH_3, -CH=CH-(CH_2)_2-CO-OC_2H_5,
 -CH=CH-CH_2-CH(COOCH_3)_2, -CH=CH-CH_2-CH(COOC_2H_5)_2,
 -CH=CH-CH_2-CH(CN)-CO-OCH_3, -CH=CH-CH_2-CH(CN)-CO-OC_2H_5,
 -CH=CH-CH_2-CH(CH_3)-CO-OCH_3, -CH=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
 -CH=CH-(CH_2)_2-CO-NH_2, -CH=CH-(CH_2)_2-CO-NH-CH_3, -CH=CH-CH_2-COOH,
 -CH=CH-CH_2-CO-OCH_3, -CH=CH-CH_2-CO-OC_2H_5,
 -CH=C(COOCH<sub>3</sub>)-CH<sub>2</sub>-CO-OCH<sub>3</sub>, -CH=C(COOCH<sub>3</sub>)-CH<sub>2</sub>-CO-OC<sub>2</sub>H<sub>5</sub>,
```

```
-CH=CH-CH<sub>2</sub>-CO-NH<sub>2</sub>, -CH=CH-CH<sub>2</sub>-CO-NH-CH<sub>3</sub>, -CH=CH-CH<sub>2</sub>-CO-N(CH<sub>3</sub>)<sub>2</sub>,
       -CH(OCH_3)_2, -CH(SCH_3)_2, -CH(OC_2H_5)_2, -CH(SC_2H_5)_2, -CH(O-n-C_3H_7)_2,
       -CH(O-i-C_3H_7)_2, -CH(S-n-C_3H_7)_2, -CH(S-i-C_3H_7)_2, -CH(O-n-C_4H_9)_2,
       -CH(O-i-C_4Hg)_2, -CH(O-s-C_4Hg)_2, -CH(O-tert.-C_4Hg)_2,
       -CH(S-n-C_4H_9)_2, -CH(S-i-C_4H_9)_2, -CH(S-s-C_4H_9)_2,
       -CH(S-tert.-C_4H_9)_2, -CH(OC_5H_{11})_2,
       1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-
       yl, 4-methyl-1,3-dioxolan-2-yl, 4-methyl-1,3-dithiolan-
                 4-methyl-1,3-oxathiolan-2-yl,
                                                     5-methyl-1,3-
       2-y1,
       oxathiolan-2-yl, 4-ethyl-1,3-dioxolan-2-yl, 4-ethyl-1,4-
       dithiolan-2-yl, 4-ethyl-1,3-oxathiolan-2-yl, 5-ethyl-1,3-
5
                           4,5-dimethyl-1,3-dioxolan-2-yl,
       oxathiolan-2-yl,
       dimethyl-1,3-dioxolan-2-yl, 4,5-dimethyl-1,3-dithiolan-
       2-y1, 5,5-dimethyl-1,3-dithiolan-2-yl, 4,5-dimethyl-1,3-
       oxathiolan-2-yl, 5,5-dimethyl-1,3-oxathiolan-2-yl, 4,4-
       dimethyl-1,3-oxathiolan-2-yl, 4-vinyl-1,3-dioxolan-2-yl,
10
       4-vinyl-1,3-dithiolan-2-yl, 4-vinyl-1,3-oxathiolan-2-yl,
       5-vinyl-1,3-oxathiolan-2-yl, 4-chloromethyl-1,3-dioxolan-
       2-yl, 4-chloromethyl-1,3-dithiolan-2-yl, 4-chloromethyl-
       1,3-oxathiolan-2-yl, 5-chloromethyl-1,3-oxathiolan-2-yl,
       4-hydroxymethyl-1,3-dioxolan-2-yl, 4-hydroxymethyl-1,3-
15
       dithiolan-2-yl, 4-hydroxymethyl-1,3-oxathiolan-2-yl, 5-
       hydroxymethyl-1,3-oxathiolan-2-yl, 4-methoxymethyl-1,3-
       dioxolan-2-yl, 4-allyloxymethyl-1,3-dioxolan-2-yl,
       propargyloxymethyl-1,3-dioxolan-2-yl,
                                                  4-acetoxymethyl-
       1,3-dioxolan-2-yl,4-methoxymethyl-1,3-dithiolan-2-yl,4-
20
       allyloxymethyl-1,3-dithiolan-2-yl, 4-propargyloxymethyl-
        1,3-dithiolan-2-yl, 4-acetoxymethyl-1,3-dithiolan-2-yl,
        4-methylthiomethyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
        1,3-oxathiolan-2-yl, 5-methoxymethyl-1,3-oxathiolan-2-yl,
        4-allyloxymethyl-1,3-oxathiolan-2-yl, 5-allyloxymethyl-
25
        1,3-oxathiolan-2-yl, 4-propargyloxymethyl-1,3-oxathiolan-
                 5-propargyloxymethyl-1,3-oxathiolan-2-yl,
        acetoxymethyl-1,3-oxathiolan-2-yl, 5-acetoxymethyl-1,3-
        oxathiolan-2-yl, 4-methylthiomethyl-1,3-dioxolan-2-yl, 4-
                                           4-methoxycarbonyl-1,3-
        carboxy-1,3-dithiolan-2-yl,
30
        dioxolan-2-yl, 4-ethoxycarbonyl-1,3-dioxolan-2-yl, 4-n-
        butoxycarbonyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-1,3-
```

```
dithiolan-2-yl, 4-ethoxycarbonyl-1,3-dithiolan-2-yl, 4-
       n-butoxycarbonyl-1,3-dithiolan-2-yl, 4-methoxycarbonyl-
       4-methyl-1,3-dioxolan-2-yl, 4-methoxycarbonyl-4-methyl-
                                4-ethoxycarbonyl-4-methyl-1,3-
       1,3-dithiolan-2-yl,
       dioxolan-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithiolan-
5
       2-yl, 4-n-butoxycarbonyl-4-methyl-1,3-dioxolan-2-yl,
       n-butoxycarbonyl-4-methyl-1,3-dithiolan-2-yl,
       cyanomethyl-1,3-dioxolan-2-yl,
                                              4-cyanomethyl-1,3-
       dithiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, 1,3-
       oxathian-2-yl, 5-methyl-1,3-dioxan-2-yl, 5-methyl-1,3-
10
       dithian-2-yl, 5-methyl-1,3-oxathian-2-yl, 5,5-dimethyl-
                            4,6-dimethyl-1,3-dioxan-2-yl,
       1,3-dioxan-2-yl,
       dimethyl-1,3-dioxan-2-yl, 5,5-dimethyl-1,3-dithian-2-yl,
       4,6-dimethyl-1,3-dithian-2-yl, 4,4-dimethyl-1,3-dithian-
       2-yl, 5,5-dimethyl-1,3-oxathian-2-yl, 4,4-dimethyl-1,3-
15
       oxathian-2-yl, 6,6-dimethyl-1,3-oxathian-2-yl, 4-hydroxy-
       methyl-1,3-dioxan-2-yl, 4-methoxymethyl-1,3-dioxan-2-yl,
                                             4-acetoxymethyl-1,3-
       4-allyloxymethyl-1,3-dioxan-2-yl,
       dioxan-2-yl, 4-hydroxymethyl-1,3-dithian-2-yl, 4-methoxy-
       methyl-1,3-dithian-2-yl, 4-allyloxymethyl-1,3-dithian-2-
20
       yl, 4-acetoxymethyl-1,3-dithian-2-yl, 4-chloromethyl-1,3-
       dioxan-2-yl, 4-chloromethyl-1,3-dithian-2-yl,
       dioxepan-2-yl, 1,3-dithiepan-2-yl, 1,3-dioxep-5-en-2-yl,
       4-methoxycarbonyl-1,3-dioxan-2-yl, 4-ethoxycarbonyl-1,3-
                        4-n-butoxycarbonyl-1,3-dioxan-2-yl,
       dioxan-2-yl,
25
       methoxycarbonyl-1,3-dithian-2-yl, 4-ethoxycarbonyl-1,3-
       dithian-2-yl, 4-n-butoxycarbonyl-1,3-dithian-2-yl,
       methoxycarbonyl-4-methyl-1,3-dioxan-2-yl,
       carbonyl-4-methyl-1,3-dioxan-2-yl, 4-n-butoxycarbonyl-4-
       methyl-1,3-dioxan-2-yl, 4-methoxycarbonyl-4-methyl-1,3-
30
       dithian-2-yl, 4-ethoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       4-n-butoxycarbonyl-4-methyl-1,3-dithian-2-yl,
       -C(CH_3)(OCH_3)_2, -C(CH_3)(SCH_3)_2, -C(CH_3)(OC_2H_5)_2, -C(CH_3)(SC_2H_5)_2.
       -C(CH_3)(O-n-C_3H_7)_2, -C(CH_3)(O-i-C_3H_7)_2, -C(CH_3)(S-n-C_3H_7)_2,
       -C(CH_3)(S-i-C_3H_7)_2, -C(CH_3)(O-n-C_4H_9)_2, -C(CH_3)(O-i-C_4H_9)_2,
        -C(CH_3)(O-s-C_4H_9)_2, -C(CH_3)(O-tert.-C_4H_9)_2, -C(CH_3)(S-n-C_4H_9)_2,
        -C(CH_3)(S-i-C_4H_9)_2, -C(CH_3)(S-s-C_4H_9)_2, -C(CH_3)(S-tert.-C_4H_9)_2,
        -C(CH_3)(O-n-C_5H_{11})",
```

```
-C(CH_3)(O-n-C_5H_{11})_2, 2-methyl-1,3-dioxolan-2-yl, 2-methyl-
       1,3-dithiolan-2-yl, 2-methyl-1,3-oxathiolan-2-yl,
      dimethyl-1,3-dioxolan-2-yl, 2,4-dimethyl-1,3-dithiolan-
      2-yl, 2,4-dimethyl-1,3-oxathiolan-2-yl, 2,5-dimethyl-1,3-
      oxathiolan-2-yl, 4-ethyl-2-methyl-1,3-dioxolan-2-yl, 4-
5
      ethyl-2-methyl-1,3-dithiolan-2-yl, 4-ethyl-2-methyl-1,3-
                        5-ethyl-2-methyl-1,3-oxathiolan-2-yl,
      oxathiolan-2-yl,
      2,4,5-trimethyl-1,3-dioxolan-2-yl, 2,4,4-trimethyl-1,3-
      dioxolan-2-yl, 2,4,5-trimethyl-1,3-dithiolan-2-yl, 2,4,4-
                                         2,4,5-trimethyl-1,3-
      trimethyl-1,3-dithiolan-2-yl,
10 -
      oxathiolan-2-yl, 2,4,4-trimethyl-1,3-oxathiolan-2-yl, 2-
      methyl-4-vinyl-1,3-dioxolan-2-yl, 2-methyl-4-vinyl-1,3-
      dithiolan-2-yl, 2-methyl-4-vinyl-1,3-oxathiolan-2-yl, 2-
                                             4-chloromethy1-2-
      methyl-5-vinyl-1,3-oxathiolan-2-yl,
      methyl-1,3-dioxolan-2-yl, 4-chloromethyl-2-methyl-1,3-
15
       dithiolan-2-yl, 4-chloromethyl-2-methyl-1,3-oxathiolan-
              5-chloromethyl-2-methyl-1,3-oxathiolan-2-yl,
       hydroxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                            4. -
       hydroxymethyl-2-methyl-1,3-dithiolan-2-yl,
                                                            4 -
       hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                            5 -
20
      hydroxymethyl-2-methyl-1,3-oxathiolan-2-yl,
                                                            4 -
       methoxymethy1-2-methy1-1,3-dioxolan-2-y1,
                                                            4 -
       allyloxymethyl-2-methyl-1,3-dioxolan-2-yl,
                                                   2-methyl-4-
       propargyloxymethyl-1,3-dioxolan-2-yl, 4-acetoxy-2-methyl-
                              4-methoxymethyl-2-methyl-1,3-
       1,3-dioxolan-2-yl,
25
       dithiolan-2-yl, 4-allyloxymethyl-2-methyl-1,3-dithiolan-
       2-y1, 2-methyl-4-propargyloxymethyl-1,3-dithiolan-2-yl,
       4-acetoxy-2-methyl-1,3-dithiolan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-oxathiolan-2-yl, 5-methoxymethyl-2-methyl-
                               4-allyloxymethyl-2-methyl-1,3-
       1,3-oxathiolan-2-yl,
30
                             5-allyloxymethyl-2-methyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-4-propargyloxymethyl-1,3-
       oxathiolan-2-yl,
                           2-methyl-5-propargyloxymethyl-1,3-
       oxathiolan-2-vl,
       oxathiolan-2-yl, 4-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
                                                   2-methyl-4-
       5-acetoxy-2-methyl-1,3-oxathiolan-2-yl,
35
                                                  2-methyl-4-
       methylthiomethyl-1,3-dioxolan-2-yl,
       methylthiomethyl-1,3-dithiolan-2-yl, 4-carboxy-2-methyl-
```

```
1,3-dioxolan-2-yl, 4-carboxy-2-methyl-1,3-dithiolan-2-yl,
       4-methoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                             4 - n -
       butoxycarbonyl-2-methyl-1,3-dioxolan-2-yl,
                                                                4 -
       methoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
5
                                                                4 -
       ethoxycarbonyl-2-methyl-1,3-dithiolan-2-yl,
       butoxycarbonyl-2-methyl-1,3-dithiolan-2-yl, 2,4-dimethyl-
       4-methoxycarbonyl-1,3-dioxolan-2-yl,
                                                  2,4-dimethyl-4-
       methoxycarbonyl-1,3-dithiolan-2-yl,
                                                  2,4-dimethyl-4-
       ethoxycarbonyl-1,3-dioxolan-2-yl, 2,4-dimethyl-4-ethoxy-
10
       carbonyl-1,3-dithiolan-2-yl,
                                             2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dioxolan-2-yl,
                                               2,4-dimethyl-4-n-
       butoxycarbonyl-1,3-dithiolan-2-yl,
                                                4-cvanomethyl-2-
                                     4-cyanomethyl-2-methyl-1,3-
       methyl-1,3-dioxolan-2-yl,
       dithiolan-2-yl, 2-methyl-1,3-dioxan-2-yl, 2-methyl-1,3-
15
       dithian-2-yl, 2-methyl-1,3-oxathian-2-yl, 2,5-dimethyl-
                           2,5-dimethyl-1,3-dithian-2-yl,
       1,3-dioxan-2-y1,
       dimethyl-1,3-oxathian-2-yl, 2,5,5-trimethyl-1,3-dioxan-
       2-yl, 2,4,6-trimethyl-1,3-dioxan-2-yl, 2,4,4-trimethyl-
       1,3-dioxan-2-y1,2,5,5-trimethyl-1,3-dithian-2-y1,2,4,6-
20
       trimethyl-1,3-dithian-2-yl, 2,4,4-trimethyl-1,3-dithian-
       2-yl, 2,5,5-trimethyl-1,3-oxathian-2-yl, 2,4,4-trimethyl-
       1,3-oxathian-2-yl, 2,6,6-trimethyl-1,3-oxathian-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dioxan-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dioxan-2-yl, 4-allyloxymethyl-2-methyl-1,3-
25
       dioxan-2-yl, 4-acetoxymethyl-2-methyl-1,3-dioxan-2-yl, 4-
       hydroxymethyl-2-methyl-1,3-dithian-2-yl, 4-methoxymethyl-
       2-methyl-1,3-dithian-2-yl, 4-allyloxymethyl-2-methyl-1,3-
       dithian-2-yl, 4-acetoxymethyl-2-methyl-1,3-dithian-2-yl,
       4-chloromethyl-2-methyl-1,3-dioxan-2-yl, 4-chloromethyl-
30
       2-methyl-1,3-dithian-2-yl,
       -C(CH_3)=NH, -C(CH_3)=N-CH_3, -C(CH_3)=N-C_2H_5, -C(CH_3)=N-n-C_3H_7,
       -C(CH_3)=N-i-C_3H_7, -C(CH_3)=N-n-C_4H_9, -C(CH_3)=N-CH_2CH=CH_2,
       -C(CH_3)=N-CH_2CH=CH_2-CH_3, -C(CH_3)=N-CH_2C\equiv CH, -C(CH_3)=N-CH_2C\equiv C-CH_3,
       -C(CH_3)=N-cyclopropyl, -C(CH_3)=N-cyclobutyl, -C(CH_3)=N-cyclo-
       pentyl, -C(CH_3)=N-cyclohexyl, -C(CH_3)=N-cycloheptyl,
       -C(CH_3)=N-CH_2-CH_2C1, -C(CH_3)=N-CH_2C1, -C(CH_3)=N-C_6H_5,
       -C(CH_3)=N-(2-F-C_6H_4), -C(CH_3)=N-(3-F-C_6H_4), -C(CH_3)=N-(4-F-C_6H_4),
```

```
-C(CH_3)=N-(2-Cl-C_6H_4), -C(CH_3)=N-(3-Cl-C_6H_4),
-C(CH_3)=N-(4-Cl-C_6H_4), -C(CH_3)=N-(2-CH_3-C_6H_4),
-C(CH_3)=N-(3-CH_3-C_6H_4), -C(CH_3)=N-(4-CH_3-C_6H_4),
-C(CH_3)=N-(2-CF_3-C_6H_4), -C(CH_3)=N-(3-CF_3-C_6H_4),
-C(CH_3)=N-(4-CF_3-C_6H_4), -C(CH_3)=N-(2-OCH_3-C_6H_4),
-C(CH_3)=N-(3-OCH_3-C_6H_4), -C(CH_3)=N-(4-OCH_3-C_6H_4),
-C(CH_3)=N-(4-NO_2-C_6H_4), -C(CH_3)=N-(4-CN-C_6H_4),
-C(CH_3)=N-(2,4-Cl_2-C_6H_3), -C(CH_3)=N-(2,4-(CH_3)_2-C_6H_3),
-C(CH_3)=N-CH_2-OCH_3, -C(CH_3)=N-CH_2-OC_2H_5, -C(CH_3)=N-CH_2CH_2-OCH_3,
-C(CH_3)=N-CH_2CH_2-OC_2H_5, -C(CH_3)=N-OH, -C(CH_3)=N-OCH_3,
-C(CH_3)=N-OC_2H_5, -C(CH_3)=N-O-n-C_3H_7, -C(CH_3)=N-O-i-C_3H_7,
-C(CH_3)=N-O-n-C_4H_9, -C(CH_3)=N-O-i-C_4H_9, -C(CH_3)=N-O-s-C_4H_9,
-C(CH_3)=N-O-tert.-C_4H_9, -C(CH_3)=N-OCH_2-CH=CH_2,
-C(CH_3)=N-OCH(CH_3)-CH=CH_2, -C(CH_3)=N-OCH_2-C\equiv CH,
-C(CH_3)=N-CH(CH_3)-C\equiv CH, -C(CH_3)=N-OCH_2-CH=C-CH_3,
-C(CH_3)=N-OCH_2CH_2-C1, -C(CH_3)=N-OCH_2CH_2-F, -C(CH_3)=N-OCH_2-CF_3,
-C(CH_3)=N-OCH_2-CH=CHC1, -C(CH_3)=N-OCH_2-C(C1)=CH_2,
 -C(CH_3)=N-OCH_2-C(Br)=CH_2, -C(CH_3)=N-OCH_2-CH=C(C1)-CH_3,
 -C(CH_3)=N-O-CO-CH_3, -C(CH_3)=N-O-CO-C_2H_5, -C(CH_3)=N-OCH_2-CN,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-OCH_3,
 -C(CH_3)=N-OCH_2-CH=CH-CH_2-O-tert.-C_4H_9, -C(CH_3)=N-O-(CH_2)_3-C_6H_5,
 -C(CH_3)=N-O-(CH_2)_4-C_6H_5, -C(CH_3)=N-O-(CH_2)_4-(4-Cl-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_4-(4-CH_3-C_6H_4), -C(CH_3)=N-O-(CH_2)_4-(4-F-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-C_6H_5, -C(CH_3)=N-OCH_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3, =N-OCH_2-CH=CH-(4-CI-C_6H_4),
 -C(CH_3)=N-OCH_2-CH=CH-(3-CH_3O-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-F-C_6H_4),
 -C(CH_3)=N-O-(CH_2)_2-CH=CH-(4-C1-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=CH-CH_2-(4-CH_3O-C_6H_4),
  -C(CH_3)=N-OCH_2-CH=C(CH_3)-C_6H_5,
  -C(CH_3)=N-O-(CH_2)_2-CH=CH-(3,4-Cl_2-C_6H_3),
  -C(CH_3)=N-O-(CH_2)_3-C\equiv C-(4-F-C_6H_4), -C(CH_3)=N-OCH_2-OCH_3,
  -C(CH_3)=N-OCH_2CH_2-OCH_3, -C(CH_3)=N-OCH_2-OC_2H_5,
  -C(CH_3)=N-OCH(CH_3)-OCH_3, -C(CH_3)=N-OCH(CH_3)-CO-OCH_3,
  -C(CH_3)=N-OCH(CH_3)-CO-O-n-C_4H_9, -C(CH_3)=N-NH_2, -C(CH_3)=N-NH-CH_3,
  -C(CH_3)=N-NH-C_2H_5, -C(CH_3)=N-NH-n-C_3H_7, -C(CH_3)=N-NH-i-C_3H_7,
   -C(CH_3)=N-NH-n-C_4H_9, -C(CH_3)=N-NH-i-C_4H_9, -C(CH_3)=N-NH-s-C_4H_9,
```

```
-C(CH_3)=N-NH-tert.-C_4H_9, -C(CH_3)=N-NH-cyclopropy1, -C(CH_3)=N-NH-cyclopropy1, -C(CH_3)=N-NH-cyclopropy1
cyclobutyl, -C(CH_3)=N-NH-cyclopentyl, -C(CH_3)=N-NH-cyclohexyl,
-C(CH_3)=N-NH-cycloheptyl, -C(CH_3)=N-N(CH_3)_2, -C(CH_3)=N-N(C_2H_5)_2,
-C(CH_3)=N-N(n-C_3H_7)_2, -C(CH_3)=N-N(i-C_3H_7)_2,
-C(CH_3)=N-NH-CH_2-C=CH, -C(CH_3)=N-NH-CH_2-C\equiv CH,
-C(CH_3)=N-N(CH_3)-CH_2-C\equiv CH, -C(CH_3)=N-NH-CH_2CF_3,
-C(CH_3)=N-NH-CO-CH_3, -C(CH_3)=N-NH-CO-C_2H_5, -C(CH_3)=N-NH-CO-OCH_3,
-C(CH_3)=N-NH-CO-OC_2H_5, -C(CH_3)=N-NH-CO-O-tert.-C_4H_9, -C(CH_3)=N-NH-CO-O-Tert.-C_4H_9
pyrrolidin-1-yl, -C(CH_3)=N-piperidin-1-yl, -C(CH_3)=N-morpholin-1-yl
4-y1, -C(CH_3)=N-NH-C_6H_5, -C(CH_3)=N-NH-(4-C1-C_6H_4),
-C(CH_3)=N-NH-(4-NO_2-C_6H_4), -C(CH_3)=N-NH-(4-F-C_6H_4),
-C(CH_3)=N-NH-(4-CH_3O-C_6H_4), -C(CH_3)=N-NH-(2,4-Cl_2-C_6H_3),
-C(CH_3)=N-NH-(2,4-(NO_2)_2-C_6H_3), -C(CH_3)=N-NH-CO-NH_2,
-C(CH_3)=N-NH-CO-NHCH_3, -C(CH_3)=N-NH-CO-NHC_2H_5,
-C(CH_3)=N-NH-CO-N(CH_3)_2, -C(CH_3)=CH-COOH, -C(CH_3)=CH-CO-OCH_3,
-C(CH_3)=CH-CO-OC_2H_5, -C(CH_3)=CH-CO-O-n-C_3H_7,
 -C(CH_3)=CH-CO-i-C_3H_7, -C(CH_3)=CH-CO-O-n-C_4H_9,
-C(CH_3)=CH-CO-O-tert.-C_4H_9, -C(CH_3)=CH-CO-O-cyclopropyl,
-C(CH_3)=CH-CO-O-cyclobutyl, -C(CH_3)=CH-CO-O-cyclopentyl,
-C(CH_3)=CH-CO-O-cyclonexyl, -C(CH_3)=CH-CO-O-cycloneptyl,
-C(CH_3)=C(CH_3)-COOH, -C(CH_3)=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-O-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-O-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-O-cyclopropyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclobutyl, -C(CH_3)=C(CH_3)-CO-O-cyclopentyl,
 -C(CH_3)=C(CH_3)-CO-O-cyclohexyl, -C(CH_3)=C(CH_3)-CO-O-cycloheptyl,
 -C(CH_3)=C(C_2H_5)-COOH, -C(CH_3)=C(C_2H_5)-CO-OCH_3,
 -C(CH_3)=C(C_2H_5)-CO-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-O-n-C_3H_7,
 -C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-O-n-C_4H_9,
 -C(CH_3)=C(C_2H_5)-CO-O-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-Co-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-CO-O-cyclo-Co-O-cyclo-Co-O-cyclo-Co-O-cy
 propyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclobutyl, -C(C_2H_5)-CO-O-Cyclobutyl, -C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C_2H_5)-C(C
  cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-O-cyclohexyl,
  -C(CH_3)=C(C_2H_5)-CO-O-cycloheptyl, -C(CH_3)=CH-COOH,
  -C(CH_3)=CH-CO-OCH_3, -C(CH_3)=CH-CO-OC_2H_5,
  -C(CH_3)=C(Cl)-CO-O-n-C_3H_7, -C(CH_3)=C(Cl)-CO-i-C_3H_7,
  -C(CH_3)=C(C1)-CO-O-n-C_4H_9, -C(CH_3)=C(C1)-CO-O-tert.-C_4H_9,
  -C(CH_3)=C(Cl)-CO-O-cyclopropy \hat{l}, -C(CH_3)=C(Cl)-CO-O-cyclobuty l
```

```
-C(CH_3)=C(C1)-CO-O-cyclopentyl, -C(CH_3)=C(C1)-CO-O-cyclonexyl,
-C(CH_3)=C(C1)-CO-O-cycloneptyl, -C(CH_3)=C(Br)-COOH,
-C(CH_3)=C(Br)-CO-OCH_3, -C(CH_3)=C(Br)-CO-OC_2H_5,
-C(CH_3)=C(Br)-CO-O-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-O-n-C_4H_9, -C(CH_3)=C(Br)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(Br)-CO-O-cyclopropyl, -C(CH_3)=C(Br)-CO-O-cycloputyl,
-C(CH_3)=C(Br)-CO-O-cyclopentyl, -C(CH_3)=C(Br)-CO-O-cyclohexyl,
-C(CH_3)=C(Br)-CO-O-cycloheptyl, -C(CH_3)=C(CN)-COOH,
-C(CH_3)=C(CN)-CO-OCH_3, -C(CH_3)=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CN)-CO-O-n-C_3H_7, -C(CH_3)=C(CN)-CO-i-C_3H_7,
-C(CH_3)=C(CN)-CO-O-n-C_4H_9, -C(CH_3)=C(CN)-CO-O-tert.-C_4H_9,
-C(CH_3)=C(CN)-CO-O-cyclopropyl, -C(CH_3)=C(CN)-CO-O-cyclobutyl,
-C(CH_3)=C(CN)-CO-O-cyclopentyl, -C(CH_3)=C(CN)-CO-O-cyclohexyl,
-C(CH_3)=C(CN)-CO-O-cycloheptyl, -C(CH_3)=CH-CO-OCH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=CH-CO-O-i-C_3H_7, -C(CH_3)=CH-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=CH-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=CH-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=CH-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-O-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CH_3)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C_2H_5)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-O-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH(CH_3)-OC_2H_5,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-O-i-C_3H_7, -C(CH_3)=C(Cl)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(C1)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(C1)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(Br)-CO-O-i-C_3H_7, -C(CH_3)=C(Br)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(Br)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(Br)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2-O-n-C_3H_7,
-C(CH_3)=C(CN)-CO-O-i-C_3H_7, -C(CH_3)=C(CN)-CO-OCH(CH_3)-OCH_3,
-C(CH_3)=C(CN)-CO-OCH(CH_3)-OC_2H_5, -C(CH_3)=C(CN)-CO-OCH_2CH_2-OCH_3,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-OC_2H_5, -C(CH_3)=CH-CO-OCH_2-CF_3,
-C(CH_3)=CH-CO-OCH_2-CCl_3, -C(CH_3)=CH-CO-OCH_2-oxiranyl,
-C(CH_3)=CH-CO-O-(CH_2)_3-Br, -C(CH_3)=CH-CO-OCH_2-CH=CH_2,
-C(CH_3)=CH-CO-OCH_2-C\equiv CH, -C(CH_3)=CH-CO-OCH_2-CN,
```

```
-C(CH_3)=CH-CO-OCH_2CH_2-CN, -C(CH_3)=C(CH_3)-CO-OCH_2-CF_3,
-C(CH_3)=C(CH_3)-CO-OCH_2-CCl_3, -C(CH_3)=C(CH_3)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CH_3)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CH_3)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CH_3)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CH_3)-CO-OCH_2-CN,
-C(CH_3) = C(CH_3) - CO - OCH_2CH_2 - CN, -C(CH_3) = C(C_2H_5) - CO - OCH_2 - CF_3,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-CCl_3, -C(CH_3)=C(C_2H_5)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(C_2H_5)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C_2H_5)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-OCH_2-CN,
-C(CH_3)=C(C_2H_5)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Cl)-CO-OCH_2-CF_3,
-C(CH_3)=C(C1)-C0-OCH_2-CC1_3, -C(CH_3)=C(C1)-C0-OCH_2-oxiranyl,
-C(CH_3)=C(C1)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(C1)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(C1)-C0-OCH_2-C\equiv CH, -C(CH_3)=C(C1)-C0-OCH_2-CN,
-C(CH_3)=C(C1)-CO-OCH_2CH_2-CN, -C(CH_3)=C(Br)-CO-OCH_2-CF_3,
-C(CH_3)=C(Br)-CO-OCH_2-CCl_3, -C(CH_3)=C(Br)-CO-OCH_2-oxiranyl,
-C.(CH_3)=C.(Br)-CO-O-(CH_2)_3-Br, -C.(CH_3)=C.(Br)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(Br)-CO-OCH_2-C\Xi CH, -C(CH_3)=C(Br)-CO-OCH_2-CN,
-C(CH_3)=C(Br)-CO-OCH_2CH_2-CN, -C(CH_3)=C(CN)-CO-OCH_2-CF_3,
-C(CH_3)=C(CN)-CO-OCH_2-CCl_3, -C(CH_3)=C(CN)-CO-OCH_2-oxiranyl,
-C(CH_3)=C(CN)-CO-O-(CH_2)_3-Br, -C(CH_3)=C(CN)-CO-OCH_2-CH=CH_2,
-C(CH_3)=C(CN)-CO-OCH_2-C\equiv CH, -C(CH_3)=C(CN)-CO-OCH_2-CN,
-C(CH_3)=C(CN)-CO-OCH_2CH_2-CN, -C(CH_3)=CH-CO-CH_3,
-C(CH_3)=CH-CO-C_2H_5, -C(CH_3)=CH-CO-n-C_3H_7, -C(CH_3)=CH-CO-i-C_3H_7,
-C(CH<sub>3</sub>)=CH-CO-n-C<sub>4</sub>H<sub>9</sub>, -C(CH<sub>3</sub>)=CH-CO-tert.-C<sub>4</sub>H<sub>9</sub>,
-C(CH_3)=CH-CO-CH_2Cl, -C(CH_3)=CH-CO-CH_2Br, -C(CH_3)=CH-CO-CHCl_2,
-C(CH_3)=CH-CO-CH_2-OCH_3, -C(CH_3)=CH-CO-CH(OCH_3)_2,
-C(CH_3)=CH-CO-CH_2-SCH_3, -C(CH_3)=C(CH_3)-CO-CH_3,
-C(CH_3)=C(CH_3)-CO-C_2H_5, -C(CH_3)=C(CH_3)-CO-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-CH_2C1,
-C(CH_3)=C(CH_3)-CO-CH_2Br, -C(CH_3)=C(CH_3)-CO-CHCl_2,
-C(CH_3)=C(CH_3)-CO-CH_2-OCH_3, -C(CH_3)=C(CH_3)-CO-CH(OCH_3)_2,
-C(CH_3)=C(CH_3)-CO-CH_2-SCH_3, -C(CH_3)=C(C_2H_5)-CO-CH_3,
-C(CH_3)=C(C_2H_5)-CO-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-n-C_4H_9,
-C(CH_3)=C(C_2H_5)-CO-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-CH_2Cl,
-C(CH_3)=C(C_2H_5)-CO-CH_2Br, -C(CH_3)=C(C_2H_5)-CO-CHCl_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-OCH_3, -C(CH_3)=C(C_2H_5)-CO-CH(OCH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-CH_2-SCH_3, -C(CH_3)=C(C1)-CO-CH_3,
-C(CH_3)=C(C1)-CO-C_2H_5, -C(CH_3)=C(C1)-CO-n-C_3H_7,
-C(CH_3)=C(Cl)-CO-i-C_3H_7, -C(CH_3)=C(Cl)-CO-n-C_4H_9,
-C(CH_3)=C(C1)-C0-tert.-C_4H_9, -C(CH_3)=C(C1)-C0-CH_2C1,
-C(CH_3)=C(C1)-CO-CHC1_2, -C(CH_3)=C(C1)-CO-CH_2-OCH_3,
-C(CH_3)=C(C1)-CO-CH(OCH_3)_2, -C(CH_3)=C(C1)-CO-CH_2-SCH_3,
-C(CH_3)=C(Br)-CO-CH_3, -C(CH_3)=C(Br)-CO-C_2H_5,
-C(CH_3)=C(Br)-CO-n-C_3H_7, -C(CH_3)=C(Br)-CO-i-C_3H_7,
-C(CH_3)=C(Br)-CO-n-C_4H_9, -C(CH_3)=C(Br)-CO-tert.-C_4H_9,
```

```
-C(CH_3)=C(Br)-CO-CH_2Cl, -C(CH_3)=C(Br)-CO-CH_2Br,
   -C(CH_3)=C(Br)-CO-CH_2-OCH_3, -C(CH_3)=C(Br)-CO-CH(OCH_3)_2,
   -C(CH_3)=C(Br)-CO-CH_2-SCH_3, -C(CH_3)=C(CN)-CO-CH_3,
   -C(CH_3)=C(CN)-CO-C_2H_5, -C(CH_3)=C(CN)-CO-n-C_3H_7,
   -C(CH_3)=C(CN)-CO-i-C_3H_7, -C(CH_3)=C(CN)-CO-n-C_4H_9,
   -C(CH_3)=C(CN)-CO-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-CH_2Cl,
  -C(CH_3)=C(CN)-CO-CH_2Br, -C(CH_3)=C(CN)-CO-CHCl_2,
  -C(CH_3)=C(CN)-CO-CH_2-OCH_3, -C(CH_3)=C(CN)-CO-CH(OCH_3)_2,
  -C(CH_3)=C(CN)-CO-CH_2-SCH_3, -C(CH_3)=CH-CO-C_6H_5,
  -C(CH_3)=CH-CO-(4-Cl-C_6H_4), -C(CH_3)=C(CH_3)-CO-C_6H_5,
  -C(CH_3)=C(CH_3)-CO-(4-CI-C_6H_4), -C(CH_3)=C(C_2H_5)-CO-C_6H_5,
  -C(CH_3)=C(C_2H_5)-CO-(4-C1-C_6H_4), -C(CH_3)=C(C1)-CO-C_6H_5,
  -C(CH_3)=C(Br)-CO-C_6H_5, -C(CH_3)=C(CN)-CO-C_6H_5, -C(CH_3)=CH-CO-NH_2,
  -C(CH_3)=CH-CO-NHCH_3, -C(CH_3)=CH-CO-N(CH_3)_2,
 -C(CH_3)=CH-CO-NH-C_2H_5, -C(CH_3)=CH-CO-N(C_2H_5)_2,
 -C(CH_3)=CH-CO-NH-n-C_3H_7, -C(CH_3)=CH-CO-NH-i-C_3H_7,
 -C(CH_3)=CH-CO-NH-tert.-C_4H_9, -C(CH_3)=CH-CO-NH-cyclopropyl,
 -C(CH_3)=CH-CO-NH-cyclobutyl, -C(CH_3)=CH-CO-NH-cyclopentyl,
 -C(CH_3)=CH-CO-NH-cyclonexyl, -C(CH_3)=CH-CO-NH-cycloneptyl,
 -C(CH_3)=CH-CO-NH-cyclooctyl, -C(CH_3)=CH-CO-pyrrolidin-1-yl,
 -C(CH_3)=CH-CO-piperidin-1-y1, -C(CH_3)=CH-CO-morpholin-4-y1,
-C(CH_3)=CH-CO-NH-CH_2CH=CH_2, -C(CH_3)=CH-CO-NH-CH_2C\equiv CH,
-C(CH<sub>3</sub>)=CH-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C\equivCH, -C(CH<sub>3</sub>)=CH-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-C(CH_3)=CH-CO-NH-C_6H_5, -C(CH_3)=C(CH_3)-CO-NH_2,
-C(CH_3)=C(CH_3)-CO-NHCH_3, -C(CH_3)=C(CH_3)-CO-N(CH_3)_2,
-C(CH_3)=C(CH_3)-CO-NH-C_2H_5, -C(CH_3)=C(CH_3)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CH_3)-CO-NH-n-C_3H_7, -C(CH_3)=C(CH_3)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CH_3)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-NH-
cyclopropyl, -C(CH_3)=C(CH_3)-CO-NH-cyclobutyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclopentyl, -C(CH_3)=C(CH_3)-CO-NH-
cyclohexyl, -C(CH_3)=C(CH_3)-CO-NH-cycloheptyl,
-C(CH_3)=C(CH_3)-CO-NH-cyclooctyl, -C(CH_3)=C(CH_3)-CO-
pyrrolidin-1-yl, -C(CH_3)=C(CH_3)-CO-piperidin-1-yl,
-C(CH_3)=C(CH_3)-CO-morpholin-4-yl,
-C(CH_3)=C(CH_3)-CO-NH-CH_2CH=C(CH_3)_2, -C(CH_3)=C(CH_3)-CO-NH-CH_2C\equiv CH,
-C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -C(CH<sub>3</sub>)=C(CH<sub>3</sub>)-CO-NH-(CH<sub>2</sub>);Cl,
-C(CH_3)=C(CH_3)-CO-NH-C_5H_5, -C(CH_3)=C(C_2H_5)-CO-NH_2,
-C(CH_3)=C(C_2H_5)-CO-NHCH_3, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-C_2H_5, -C(CH_3)=C(C_2H_5)-CO-N(C_2H_5)_2,
-C(CH_3)=C(C_2H_5)-CO-NH-n-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-NH-i-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclopropyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclobutyl,
-C(CH_3)=C(C_2H_5)-CO-NH-cyclopentyl, -C(CH_3)=C(C_2H_5)-CO-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-cyclo-NH-c
hexyl, -C(CH_3)=C(C_2H_5)-CO-NH-cycloheptyl, -C(CH_3)=C(C_2H_5)-CO-NH-
cyclooctyl, -C(CH_3)=C(C_2H_5)-CO-pyrrolidin-1-yl,
```

```
-C(CH_3)=C(C_2H_5)-CO-piperidin-1-y1, -C(CH_3)=C(C_2H_5)-CO-
 morpholin-4-yl, -C(CH_3)=C(C_2H_5)-CO-NH-CH_2CH=C(C_2H_5)_2,
 -C(CH_3)=C(C_2H_5)-CO-NH-CH_2C\equiv CH, -C(CH_3)=C(C_2H_5)-CO-N(CH_3)-CH_2C\equiv CH,
-C(CH_3)=C(C_2H_5)-CO-NH-(CH_2)_2C1, -C(CH_3)=C(C_2H_5)-CO-NH-C_5H_5,
-C(CH_3)=C(C1)-CO-NH_2, -C(CH_3)=C(C1)-CO-NHCH_3,
-C(CH_3)=C(C1)-CO-N(CH_3)_2, -C(CH_3)=C(C1)-CO-NH-C_2H_5,
-C(CH_3)=C(C1)-CO-N(C_2H_5)_2, -C(CH_3)=C(C1)-CO-NH-n-C_3H_7,
-C(CH_3)=C(C1)-CO-NH-i+C_3H_7, -C(CH_3)=C(C1)-CO-NH-tert.-C_4H_9,
-C(CH_3)=C(Cl)-CO-NH-cyclopropyl, -C(CH_3)=C(Cl)-CO-NH-cyclobutyl,
-C(CH_3)=C(C1)-CO-NH-cyclopenty1, -C(CH_3)=C(C1)-CO-NH-cyclohexy1,
-C(CH_3)=C(C1)-CO-NH-cycloheptyl, -C(CH_3)=C(C1)-CO-NH-cyclooctyl,
-C(CH_3)=C(Cl)-CO-pyrrolidin-l-yl, -C(CH_3)=C(Cl)-CO-piperidin-l-
yl, -C(CH_3)=C(Cl)-CO-morpholin-4-yl,
-C(CH_3)=C(C1)-CO-NH-CH_2CH=C(C1)_2, -C(CH_3)=C(C1)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(C1)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(C1)-CO-NH-(CH_2)_2C1,
-C(CH_3)=C(CI)-CO-NH-C_6H_5, -C(CH_3)=C(Br)-CO-NH_2,
-C(CH_3)=C(Br)-CO-NHCH_3, -C(CH_3)=C(Br)-CO-N(CH_3)_2,
-C(CH_3)=C(Br)-CO-NH-C_2H_5, -C(CH_3)=C(Br)-CO-N(C_2H_5)_2,
-C(CH_3)=C(Br)-CO-NH-n-C_3H_7, -C(CH_3)=C(Br)-CO-NH-i-C_3H_7,
-C(CH_3)=C(Br)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-NH-cyclopropyl,
-C(CH_3)=C(Br)-CO-NH-cyclobutyl, -C(CH_3)=C(Br)-CO-NH-cyclopentyl,
-C(CH_3)=C(Br)-CO-NH-cyclohexyl, -C(CH_3)=C(Br)-CO-NH-cycloheptyl,
-C(CH_3)=C(Br)-CO-NH-cyclooctyl, -C(CH_3)=C(Br)-CO-pyrrolidin-1-yl,\\
-C(CH<sub>3</sub>)=C(Br)-CO-piperidin-1-yl, -C(CH<sub>3</sub>)=C(Br)-CO-morpholin-4-yl,
-C(CH_3)=C(Br)-CO-NH-CH_2CH=C(Br)_2, -C(CH_3)=C(Br)-CO-NH-CH_2C\equiv CH,
-C(CH<sub>3</sub>)=C(Br)-CO-N(CH<sub>3</sub>)-CH<sub>2</sub>C≡CH, -C(CH<sub>3</sub>)=C(Br)-CO-NH-(CH<sub>2</sub>)<sub>2</sub>Cl,
-C(CH_3)=C(Br)-CO-NH-C_6H_5, -C(CH_3)=C(CN)-CO-NH_2,
-C(CH_3)=C(CN)-CO-NHCH_3, -C(CH_3)=C(CN)-CO-N(CH_3)_2,
-C(CH_3)=C(CN)-CO-NH-C_2H_5, -C(CH_3)=C(CN)-CO-N(C_2H_5)_2,
-C(CH_3)=C(CN)-CO-NH-n-C_3H_7, -C(CH_3)=C(CN)-CO-NH-i-C_3H_7,
-C(CH_3)=C(CN)-CO-NH-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-NH-cyclopropyl.
-C(CH_3)=C(CN)-CO-NH-cyclobutyl, -C(CH_3)=C(CN)-CO-NH-cyclopentyl,
-C(CH_3)=C(CN)-CO-NH-cyclohexyl, -C(CH_3)=C(CN)-CO-NH-cycloheptyl,
-C(CH_3)=C(CN)-CO-NH-cyclooctyl, -C(CH_3)=C(CN)-CO-pyrrolidin-l-yi,
-C\left(CH_{3}\right)=C\left(CN\right)-CO-piperidin-1-y1, \quad -C\left(CH_{3}\right)=C\left(CN\right)-CO-morpholin-4-y1,
-C(CH_3)=C(CN)-CO-NH-CH_2CH=C(CN)_2, -C(CH_3)=C(CN)-CO-NH-CH_2C\equiv CH,
-C(CH_3)=C(CN)-CO-N(CH_3)-CH_2C\equiv CH, -C(CH_3)=C(CN)-CO-NH-(CH_2)_2Cl,
-C(CH_3)=C(CN)-CO-NH-C_6H_5, -C(GH_3)=CH-CO-SCH_3,
-C(CH_3) = CH - CO - SC_2H_5, -C(CH_3) = CH - CO - S - n - C_3H_7,
-C(CH_3)=CH-CO-S-i-C_3H_7, -C(CH_3)=CH-CO-S-n-C_4H_9,
-C(CH_3)=CH-CO-S-tert.-C_4H_9, -C(CH_3)=C(CH_3)-CO-SCH_3,
-C(CH_3)=C(CH_3)-CO-SC_2H_5, -C(CH_3)=C(CH_3)-CO-S-n-C_3H_7,
-C(CH_3)=C(CH_3)-CO-S-i-C_3H_7, -C(CH_3)=C(CH_3)-CO-S-n-C_4H_9,
-C(CH_3)=C(CH_3)-CO-S-tert.-C_4H_9, -C(CH_3)=C(C_2H_5)-CO-SCH_3,
-C(CH_3)=C(C_2H_5)-CO-SC_2H_5, -C(CH_3)=C(C_2H_5)-CO-S-n-C_3H_7,
-C(CH_3)=C(C_2H_5)-CO-S-i-C_3H_7, -C(CH_3)=C(C_2H_5)-CO-S-n-C_4H_9,
```

```
-C(CH_3)=C(C_2H_5)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Cl)-CO-SCH_3,
 -C(CH_3)=C(C1)-CO-SC_2H_5, -C(CH_3)=C(C1)-CO-S-n-C_3H_7,
 -C(CH_3)=C(C1)-CO-S-i-C_3H_7, -C(CH_3)=C(C1)-CO-S-n-C_4H_9,
 -C(CH_3)=C(C1)-CO-S-tert.-C_4H_9, -C(CH_3)=C(Br)-CO-SCH_3,
 -C(CH_3)=C(Br)-CO-SC_2H_5, -C(CH_3)=C(Br)-CO-S-n-C_3H_7,
 -C(CH_3)=C(Br)-CO-S-i-C_3H_7, -C(CH_3)=C(Br)-CO-S-n-C_4H_9,
 -C(CH_3)=C(Br)-CO-S-tert.-C_4H_9, -C(CH_3)=C(CN)-CO-SCH_3,
 -C(CH_3)=C(CN)-CO-SC_2H_5, -C(CH_3)=C(CN)-CO-S-n-C_3H_7,
 -C(CH_3)=C(CN)-CO-S-i-C_3H_7, -C(CH_3)=C(CN)-CO-S-n-C_4H_9,
 -C(CH_3)=C(CN)-CO-S-tert.-C_4H_9, -C(CH_3)=C(COCH_3)-CO-OCH_3,
 -C(CH_3)=C(COC_2H_5)-CO-OCH_3, -C(CH_3)=C(CO-n-C_3H_7)-CO-OCH_3,
 -C(CH_3)=C(COCH_3)-CO-OC_2H_5, -C(CH_3)=C(COC_2H_5)-CO-OC_2H_5,
 -C(CH_3)=C(CO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COCH_3)-CO-O-n-C_3H_7,
 -C(CH_3)=C(COC_2H_5)-CO-O-n-C_3H_7, -C(CH_3)=C(CO-n-C_3H_7)-CO-O-n-C_3H_7,
 -C(CH_3)=C(CF_3)-CO-OCH_3, -C(CH_3)=C(CF_3)-CO-OC_2H_5,
 -C(CH_3)=C(CF_3)-CO-O-n-C_3H_7, -C(CH_3)=C(CF_3)-CO-O-i-C_3H_7,
 -C(CH_3)=C(CF_3)-CO-O-n-C_4H_9, -C(CH_3)=C(CF_3)-CO-O-tert.-C_4H_9,
 -C(CH_3)=C(COOCH_3)_2, -C(CH_3)=C(COOC_2H_5)_2,
 -C(CH_3)=C(COOCH_3)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)-CO-OCH_3,
 -C(CH_3)=C(COO-n-C_3H_7)-CO-OC_2H_5, -C(CH_3)=C(COO-n-C_3H_7)_2,
 -C(CH_3)=CH-CH=CH-COOH, -C(CH_3)=CH-CH=CH-CO-OCH_3,
 -C(CH_3)=CH-CH=CH-CO-OC_2H_5, -C(CH_3)=CH-CH=C(COOCH_3)_2,
 -C(CH_3)=CH-CH=C(CN)-CO-OCH_3, -C(CH_3)=CH-CH=C(CN)-CO-OC_2H_5,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OCH_3,
 -C(CH_3)=C(CH_3)-CH=C(CN)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OCH_3, -C(CH_3)=C(CH_3)-CH=C(Br)-CO-OCH_3,
-C(CH_3)=C(CH_3)-CH=C(CH_3)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(C1)-CO-OC_2H_5,
-C(CH_3)=C(CH_3)-CH=C(Br)-CO-OC_2H_5, -C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH_2,
-C(CH_3)=C(CH_3)-CH=C(CN)-CO-NH-CH_3, -C(CH_3)=CH-(CH_2)_2-COOH,
-C(CH_3)=CH-(CH_2)_2-CO-OCH_3, -C(CH_3)=CH-(CH_2)_2-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(COOCH_3)_2, -C(CH_3)=CH-CH_2-CH(COOC_2H_5)_2,
-C(CH_3)=CH-CH_2-CH(CN)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CN)-CO-OC_2H_5,
-C(CH_3)=CH-CH_2-CH(CH_3)-CO-OCH_3, -C(CH_3)=CH-CH_2-CH(CH_3)-CO-OC_2H_5,
-C(CH_3)=CH-(CH_2)_2-CO-NH_2, -C(CH_3)=CH-(CH_2)_2-CO-NH-CH_3,
-C(CH_3)=CH-CH_2-COOH, -C(CH_3)=CH-CH_2-CO-OCH_3,
-C(CH_3)=CH-CH_2-CO-OC_2H_5, -C(CH_3)=C(COOCH_3)-CH_2-CO-OCH_3,
-C(CH_3)=C(COOCH_3)-CH_2-CO-OC_2H_5, -C(CH_3)=CH-CH_2-CO-NH_2,
-C(CH_3)=CH-CH_2-CO-NH-CH_3, -C(CH_3)=CH-CH_2-CO-N(CH_3)_2.
```

Compounds I in which X^1 and X^2 are each oxygen, R^1 is halogen, R^2 is hydrogen or fluorine, R^3 and R^4 are each C_1 - C_6 -alkyl or partially or completely halogenated C_1 - or C_2 -alkyl and R^5 is hydrogen, or R^4 and R^5 together form a tetramethylene chain, are very particularly preferred.

The substituted 3-phenyluracils are obtainable by various methods, preferably by one of the following processes:

5

10

15

20

a) Cyclization of an enamine ester of the formula II or of an enamine-carboxylate of the formula III

 L^1 is low molecular weight alkyl, preferably C_1 - C_4 -alkyl, or phenyl.

As a rule, the reaction is carried out in an inert solvent or diluent, preferably in the presence of a base.

Suitable solvents or diluents are inert aprotic organic solvents, for example aliphatic or cyclic ethers, such as 1,2-dimethoxyethane, tetrahydrofuran and dioxane, aromatic hydrocarbons, such as benzene, toluene and xylenes, and inert polar organic solvents, such as dimethylformamide or dimethyl sulfoxide, or water, and the polar solvents may also be used as a mixture with a nonpolar hydrocarbon, such as n-hexane.

Preferred bases are alkali metal alcoholates, in

particular sodium alcoholates, such as sodium methylate, and sodium ethylate, alkali metal hydroxides, in particular sodium hydroxide and potassium hydroxide, alkali metal carbonates, in particular sodium carbonate and potassium carbonate, and alkali metal hydrides, in particular sodium hydride.

5

10

15

20

25

30

When sodium hydride is used, the solvent is particularly preferably an aliphatic or cyclic ether, such as tetrahydrofuran, as well as dimethylformamide and dimethyl sulfoxide.

The amount of base is preferably from 0.5 to 2 times the molar amount, based on the amount of II or III.

In general, a reaction temperature of -78°C to the boiling point of the reaction mixture, in particular from -60 to 60°C, is advisable.

Depending on the nature of the base used, products I in which R³ is hydrogen are present, after the cyclization, in the form of the corresponding metal salt of the general formula Ic

(M° = one equivalent of a metal ion, in particular an alkali metal ion, such as sodium), for example in the form of the corresponding alkali metal salt in the case of the abovementioned preferred bases containing an alkali metal. The salt can be isolated and purified in a conventional manner, for example by recrystallization.

Products I in which R³ is hydrogen are obtained by acidifying the reaction mixture obtained after the cyclization, for example with hydrochloric acid.

b) Alkylation or acylation of a substituted 3-phenyl-uracil I in which R³ is hydrogen

$$\begin{array}{c|c}
R^4 & & \\
\hline
R^5 & & \\
\hline
X^2 & & \\
\hline
N & & \\
X^2 & & \\
\hline
N & & \\
R^2 & & \\
R^1 & & \\
\hline
R & & \\
I & (R^3 = H)
\end{array}$$
I alkylation

5

10

15

20

25

(... -

The alkylation is usually carried out with a halide, preferably with the chloride or bromide, or with the sulfate of an alkane, of an alkene, of an alkyne, of a cycloalkane, of a cyanoalkane, of a haloalkane, of a phenylalkane or of an alkoxyalkane.

Examples of suitable acylating agents are formyl halides, alkanecarbonyl halides or alkoxycarbonyl halides, the chlorides and bromides being preferred in each case.

The alkylation is advantageously carried out in the presence of an inert organic solvent and of a base, for example in a protic solvent, such as a lower alcohol, preferably ethanol, if necessary as a mixture with water, or in an aprotic solvent, such as an aliphatic or cyclic ether, preferably 1,2-dimethoxyethane, tetrahydrofuran or dioxane, an aliphatic ketone, preferably acetone, an amide, preferably dimethylformamide, or a sulfoxide, preferably dimethyl sulfoxide.

In a particularly preferred embodiment, the cyclization product (method a) present as a salt is alkylated without prior isolation from the reaction mixture, and in this case excess base, for example sodium hydride, a sodium alcoholate or sodium carbonate, originating from the cyclization of the compound II or III may also be present. However, this base has no adverse effect; if desired, a further amount of the diluent which was also used for the cyclization of the compound II or III may also be added.

10

5

10

15

20

25

The acylation with a halide can be carried out in a similar manner, the reaction particularly preferably being carried out in this case in an aprotic solvent and in the presence of sodium hydride as base.

The reaction temperature is in general from 0 to about 100°C, preferably from 0 to 40°C.

c) Substitution of a halogen atom in the phenyl moiety of the substituted 3-phenyluracils I (R¹ = halogen) by the cyano group

Hal is halogen, preferably chlorine or bromine.

The reaction is advantageously carried out in the presence of an aprotic, polar solvent, for example of an alkylnitrile, such as acetonitrile, propionitrile or butyronitrile, of an alkylurea such as N,N,N',N'-tetramethylurea, of a dialkylamide, such as dimethylformamide, or of a dialkyl sulfoxide, such as dimethyl sulfoxide, or in N-methyl-2-pyrrolidone, 1,2-dimethylimidazolidin-2-one, 1,2-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone or hexamethylphosphorotriamide.

The reaction is usually carried out using a metal cyanide, in particular a transition metal cyanide, such as copper(I) cyanide, at elevated temperatures, preferably at from 150 to 250°C.

The starting materials are advantageously used in stoichiometric amounts, but an excess of metal cyanide, for example up to 4 times the molar amount (based on the amount of starting material I in which R^1 is halogen),

may also be advantageous.

derivate of the formula Conversion of a pyrimidone d) · IVa or IVb into an enol ether Ia or Ib

· IVa

$$R^{2}$$
 R^{3}
 R^{2}
 R^{5}
 R^{5}
 R^{5}
 R^{2}
 R^{2}
 R^{5}
 R^{5

IVb

Ιb

Hal is chlorine or bromine;

Me is one equivalent of a metal ion, in particular of a transition metal ion, of an alkali metal ion, such as sodium or potassium, or of an alkaline earth metal ion, such as calcium or magnesium.

Sodium is particularly preferred.

The reaction of the pyrimidone derivatives IVa or IVb with alkanols, alkenols, alkynols (R3'-OH) or alkanethiols, alkenethiols or alkynethiols (R3'-SH) is advantageously carried out in the presence of an organic base, pyridine being particularly preferred.

The amount of base is not critical; usually, from 0.5 to 2 times the molar amount, based on the amount of IVa or IVb, is sufficient.

The reactions of IVa with H-X1-R3' and of IVb with H-X2-R3' can be carried out either in the absence of a solvent in an excess of R3'-OH or R3'-SH or in a suitable inert organic solvent, for example in an aromatic, such as toluene or xylene, in an ether, such as diethyl ether, tetrahydrofuran or 1,2-dimethoxyethane, or in a halo-

15

20

25

10

hydrocarbon, such as dichloromethane or chlorobenzene.

When the compound R^{3'}-OH is used, the reaction is preferably carried out in the absence of a solvent, using from 1 to about 150 times the amount, based on the amount of pyrimidone derivative IVa or IVb, of R^{3'}-OH.

5

10

15

20

25

30

In the reaction with a salt of the formula M^{θ} °O- $R^{3'}$ or M^{θ} °S- $R^{3'}$, it is advisable to use equimolar amounts of pyrimidone derivative and salt, but an excess of the salt of up to about 20 mol % (based on the amount of pyrimidone derivative) may also be advantageous.

A reaction temperature of from 0 to $50\,^{\circ}\text{C}$, preferably from 10 to $30\,^{\circ}\text{C}$, is usually sufficient.

If they cannot be prepared directly by the cyclization under basic conditions, described as method a), the salts of the compounds I in which R³ is hydrogen can also be obtained in a conventional manner from the products of the present method d). For this purpose, for example, the substituted 3-phenyluracil I in which R³ is hydrogen is added to the aqueous solution of an inorganic or an organic base. The salt formation usually takes place at a sufficient rate at as low as 20-25°C.

It is particularly advantageous to prepare the sodium salt by dissolving the 3-phenyluracil I (R³ = hydrogen) in aqueous sodium hydroxide solution at 20-25°C, equivalent amounts of 3-phenyluracil and sodium hydroxide being used. The salt of the 3-phenyluracil can then be isolated, for example, by precipitation with a suitable inert solvent or by evaporating off the solvent.

Salts of the 3-phenyluracils whose metal ion is not an alkali metal ion can usually be prepared by double decomposition of the corresponding alkali metal salt in aqueous solution. Water-insoluble metal salts of 3-phenyluracil can generally be prepared in this manner.

e) Acetalation of a compound I in which W is -C(=0)-R⁸

The acetalation is generally carried out in an inert aprotic organic solvent, for example in an aliphatic or cyclic ether, such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran or dioxane, in an aromatic hydrocarbon, such as benzene or toluene, o-, m-or p-xylene or mesitylene, or in a chlorohydrocarbon, such as methylene chloride, chloroform or chlorobenzene, unless it is effected in the absence of a solvent in an excess of H-X³R⁵, H-X⁴R⁷ or H-X³(R⁵R⁷)X⁴-H.

Any water of reaction formed can be removed in a conventional manner from the reaction mixture, for example by means of a water separator.

The acetalation is preferably carried out in the presence of an organic acid, such as p-toluenesulfonic acid, and/or of a Lewis acid, such as tin tetrachloride, tin(II) chloride, iron(III) chloride, tellurium tetrachloride or boron trifluoroetherate, or of a suitable catalyst, such as montmorillonite K 10, the amount of acid usually being from 0.5 to 100 mol %, based on the amount of starting material to be acetalated.

The ratios are not critical. For complete conversion, all reactants are used in about a stoichiometric ratio, but an excess of $H-X^3R^6$ and $H-X^4R^7$ or $H-X^3(R^6R^7)X^4-H$ is preferably used.

If the starting materials $H-X^3R^6$ and $H-X^4R^7$ or $H-X^3(R^6R^7)X^4-H$ are used simultaneously as diluents, they are present in a larger excess.

10

5

15

 $\mathcal{F}_{\mathbb{N}^{2}}$

20

The reactions are carried out in general at from -78 to 180°C, preferably from -40 to 150°C.

If product mixtures are obtained, for example when R^6 and R^7 do not form a common radical and X^3R^6 and X^4R^7 are not identical, they can, if desired, be purified and separated by conventional methods, such as crystallization and chromatography.

5

10

15

In particular, compounds of the formula I where W is $-C(R^8)(X^3R^6)(X^4R^7)$, R^6 and R^7 do not form a common radical and X^3R^6 and X^4R^7 are not identical can also be prepared by other methods known from the literature (cf. for example Tetrahedron Lett. <u>32</u> (1991), 467-470, and the literature cited there).

f) Acetal cleavage of a compound I in which W is $-C(R^8)(X^3R^6)(X^4R^7)$

The acetal cleavage can be carried out without the addition of an acid, in the presence of an acid, for example of a mineral acid, such as hydrochloric acid and sulfuric acid, or of an organic carboxylic acid, such as formic acid, acetic acid, oxalic acid or trifluoroacetic acid, in the presence of an acidic ion exchanger, such as Amberlite (trade mark of Aldrich) IR120 or IRC84, or in the presence of a transition metal salt, such as mercury(II) oxide, copper(I) oxide or iron(III) chloride.

Examples of suitable solvents or diluents are aromatics, such as benzene, toluene and o-, m- and p- xylene, aliphatic or cyclic ethers, such as 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran and dioxane, alcohols, such as methanol, ethanol and iso-propanol, polar organic solvents, such as dimethylform-amide, dimethyl sulfoxide and acetonitrile, ketones, such as acetone and butanone, and water.

The reaction is preferably carried out in the absence of a solvent in an excess of the acid used for the acetal cleavage, formic acid being particularly preferred.

For complete conversion, the starting materials I in which W is $-C(R^8)(X^3R^6)(X^4R^7)$ and H_2X^5 are used in at least a stoichiometric ratio, but an excess of H_2X^5 of up to about 200 mol % is also possible.

The amount of acid, ion exchanger or transition metal salt is not critical. In general, up to about 300 mol %, based on the amount of $\rm H_2X^5$, is sufficient.

As a rule, the reaction temperature is from -78 to 180°C, preferably from 0°C to the boiling point of the particular diluent.

Further methods which can be used for the preparation of the substituted 3-phenyluracils I are described in Houben-Weyl, Handbuch der Org. Chemie, 4th Edition, Vol. E3, page 362 et seq.

g) Olefination of compounds I $(W = -C(R^8) = 0)$

15

10

5

20

25

30

The reaction can be carried out using the following phosphorylides Va to Vd, phosphonium salts VIa to VId and phosphonates VIIa to VIId:

	Phosphorylides V:	$R^3P=C(R^9)-CO-R^{10}$		۷a,
5		$R^3P-C(R^9)-CH_2-CO-R^{10}$		Vb,
•		$R^3P=C(R^9)-C(R^{11})=C(R^{12})-CO-R^{10}$		Vc,
		$R^3P=C(R^9)-CH_2-CH(R^{13})-CO-R^{10}$		Vd;
	Phosphonium salts VI:	R_3P^9 -CH(R^9)-CO- R^{10}	Hal ^e	VIa,
		R ₃ P ⁹ -CH(R ⁹)-CH ₂ -CO-R ¹⁰	Hal [⊖]	VIb,
10		R_3P^9 -CH(R^9)-CR ¹¹ =CR ¹² -CO-R ¹⁰	Hal ^e	VIc,
		R_3P^9 -CH(R^9)-CH ₂ -CH R^{13} -CO- R^{10}	Hal ^e	VId;
	Phosphonates VII:	(RO) ₂ PO-CH(R ⁹)-CO-R ¹⁰		VIIa,
		$(RO)_2PO-CH(R^9)-CH_2-CO-R^{10}$	•	VIIb,
,		(RO) ₂ PO-CH(R ⁹)-CR ¹¹ =CR ¹² -CO-R ¹⁰		VIIc,
15 -		(RO) ₂ PO-CH(R ⁹)-CH ₂ -CHR ¹³ -CO-R ¹⁰		VIId.

20

25

Those phosphorylides Vb and Vd, phosphonium salts VIb and VId and phosphonates VIIb and VIId in which R¹⁰ is hydrogen, alkyl or cycloalkyl are not very suitable.

The radicals R on the phosphorus may be identical or different and are, for example, branched or straight-chain C₁-C₈-alkyl, C₅- or C₆-cycloalkyl and in particular phenyl which may carry further substituents which are inert for the reaction, for example C₁-C₄-alkyl, such as methyl, ethyl or tert-butyl, C₁-C₄-alkoxy, such as methoxy, or halogen, such as fluorine, chlorine or bromine. Unsubstituted phenyl radicals are preferred since the starting material triphenylphosphine used for the preparation of the phosphorylides V and phosphonium salts VI is particularly economical and furthermore the

10

15

20

25

30

35

very unreactive, solid triphenylphosphine oxide which can be readily separated off is formed in the reactions.

For example, the methods described in Houben-Weyl, Methoden der Organischen Chemie, Volume E2, 1982, page 345 et seq. are suitable for the preparation of the phosphonates VII.

Suitable solvents are inert organic solvents, for example aromatics, such as toluene and o-, m- and p-xylene, ethers, such as 1,2-dimethoxyethane, diethyl ether, tetrahydrofuran and dioxane, polar organic solvents, such as dimethylformamide and dimethyl sulfoxide, or alcohols, such as methanol, ethanol and isopropanol.

In the olefination of I where W is $-C(R^8)=0$ with a phosphonium salt VI or a phosphonate VII, the reaction is carried out in the presence of a base, alkali metal alkyls, such as n-butyllithium, alkali metal hydrides and alcoholates, such as sodium hydride, sodium ethylate and potassium tert-butylate, and alkali metal and alkaline earth metal hydroxides, such as calcium hydroxide, being particularly suitable.

For complete conversion, all reactants are used in about a stoichiometric ratio, but an excess of base of about 10 mol % is preferably used.

In general, the reaction temperature is from -40 to 150°C.

The compounds of the formulae V, VI and VII are known or can be prepared by known methods (cf. for example Houben-Weyl, Methoden d. Org. Chemie, Vol. El, page 636 et seq., Georg Thieme Verlag, Stuttgart, 1982, ibid. Vol. E2, page 345 et seq. and Chem. Ber. 95 (1962), 3993).

A further possibility for the preparation of 3-phenyluracils I where W is -CR⁸=CR⁹-CO-R¹⁰ and R¹⁰ is hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, phenyl or alkoxyalkyl is the conventional aldol condensation. Suitable conditions for this purpose are described in, for example, Nielsen, Org. React. 16 (1968), 1 et seq.

Suitable further methods for synthesizing compounds of the formula I where W is $-C(R^8)=C(R^9)-CO-R^{10}$, $-CH(R^8)=CH(R^9)-CO-R^{10}$, $-CR^8=CR^{11}-CH_2-CO-R^{12}$, $-CR^8=CR^{11}-CH_2-CO-R^{12}$, and R^9 or R^{11} is hydrogen, cyano, alkoxycarbonyl or alkylcarbonyl are both the Knoevenagel condensation and the Perkin condensation. Suitable conditions are described in, for example, Org. React. 15 (1967), 204 et seq. (Knoevenagel) or Johnson, Org. React. 1 (1942), 210 et seq. (Perkin).

Compounds in which R^{10} is $-NR^{18}R^{19}$ or $-SR^{17}$ can be prepared, for example, in a conventional manner by converting compounds in which R^{10} is hydroxyl into the corresponding acyl halides (R^{10} is halogen) and subsequently reacting the products with a corresponding amine $H-NR^{18}R^{19}$ or thiol $H-SR^{17}$ or with a reactive derivative of these compounds.

h) Reaction of compounds I $(W = -C(R^8)=0)$ with amines, hydroxylamines or hydrazines

The reaction is usually carried out in an inert organic solvent or diluent, for example in an aromatic, such as toluene or xylene, in a chlorohydrocarbon, such as dichloromethane, chloroform or chlorobenzene, in an ether, such as diethyl ether, 1,2-dimethoxyethane or tetrahydrofuran, in an alcohol, such as methanol or ethanol, or in a mixture of the stated solvents.

If the amines $\rm H_2N-R^{14}$ are in the form of salts, for example as hydrochlorides or oxalates, the addition of a base, preferably sodium carbonate, potassium carbonate, sodium bicarbonate, triethylamine or pyridine,

20

5

10

15

is preferable for their liberation.

5

10

15

20

25

The resulting water of reaction can, if desired, be removed from the reaction mixture by distillation or with the aid of a water separator.

The reaction temperature is usually from -30 to 150°C, preferably from 0 to 130°C.

i) Cleavage of compounds I where W is $-C(R^8)=N-R^{14}$

The cleavage reaction is carried out in the absence of a solvent or in an inert solvent or diluent with water or a reactive derivative of water.

The reaction can be carried out by hydrolysis or under oxidative conditions, a reaction temperature of from -78 to 180°C, preferably from 0°C to the boiling point of the diluent being preferable.

Examples of suitable solvents or diluents are aromatics, such as benzene, toluene and o-, m- and p-xylene, chlorinated hydrocarbons, such as dichloromethane, chloroform and chlorobenzene, ethers, such as dialkyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, alcohols, such as methanol and ethanol, ketones, such as acetone, esters of organic acids, such as ethyl acetate, or water and mixtures of the stated solvents.

The reaction is advantageously carried out in the presence of a mineral acid, such as hydrochloric acid, hydrobromic acid or sulfuric acid, of a carboxylic acid, such as acetic acid or trifluoroacetic acid, or of a sulfonic acid, such as p-toluenesulfonic acid.

In the procedure under oxidative conditions, oxidizing agents such as lead tetraacetate, sodium hypochloride and hydrogen peroxide are particularly suitable.

If desired, the reaction may additionally be carried out in the presence of a catalyst, such as copper(II) sulfate, titanium tetrachloride or boron trifluoroetherate.

5

10

15

20

25

The amounts of acid, oxidizing agent and catalyst may be varied within wide limits. Usually, both the amount of acid and the amount of catalyst are from 5 to 200 mol % and the amount of oxidizing agent is from 25 to 400 mol %, based on the amount of the compound to be oxidized, but they may also be used in a considerably larger excess.

k) Reaction of a substituted 3-phenyluracil I in which X² is oxygen with a sulfurization reagent

The reaction is carried out as a rule in an inert solvent, for example in an aromatic hydrocarbon, such as toluene or o-, m- or p-xylene, in an ether, such as diethyl ether, 1,2-dimethoxyethane or tetrahydrofuran, or in an organic amine, such as pyridine.

Particularly suitable sulfurization reagents are phosphorus(V) sulfide and 2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-dithione (Lawesson's

reagent).

5

10

15

20

25

The amount of sulfurization reagent is not critical; from 1 to 5 times the molar amount, based on the 3-phenyluracil to be sulfurized, is usually used.

The reaction temperature is usually from 20 to 200°C, preferably from 40°C to the boiling point of the solvent.

1) Halogenation of a substituted 3-phenyluracil I in which R⁵ is hydrogen

R4
$$\times$$
 X1 \times Alogenation \times R4 \times R2 \times Halogen \times R4 \times R2 \times R4 \times R2 \times R1 \times R2 \times R1 \times R2 \times R1 \times R3 \times R4 \times R4 \times R2 \times R1 \times R2 \times R1 \times R2 \times R1 \times R3 \times R4 \times R2 \times R1 \times R2 \times R1 \times R3 \times R4 \times R2 \times R1 \times R2 \times R1 \times R3 \times R4 \times R2 \times R1 \times R2 \times R1 \times R1 \times R2 \times R1 \times R3 \times R4 \times R2 \times R1 \times R2 \times R1 \times R

The halogenation is carried out as a rule in an inert organic solvent or diluent. For example, aliphatic carboxylic acids, such as acetic acid, or chlorinated aliphatic hydrocarbons, such as methylene chloride, chloroform and carbon tetrachloride, are suitable for the chlorination and bromination. Low boiling aliphatic carboxylic acids, such as acetic acid, are particularly preferred for the iodination.

Elemental chlorine or bromine and sulfuryl chloride or sulfuryl bromide are particularly suitable for the chlorination and bromination, a reaction temperature of from 0 to 60°C, preferably from 10 to 30°C, being preferable.

If desired, the chlorination and bromination can be carried out in the presence of an acid acceptor, sodium acetate and tertiary amines, such as triethylamine, dimethylamiline and pyridine, being particularly preferred.

Elemental iodine is a particularly preferred iodinating agent, and in this case the reaction

temperature is from 0 to 110°C, preferably from 10 to 30°C.

The iodination is particularly advantageously carried out in the presence of a mineral acid, such as fuming nitric acid.

The amount of halogenating agent is not critical; equimolar amounts of halogenating agent or an excess of up to about 200 mol %, based on the starting material to be halogenated, are usually used.

Excess iodine can be removed by means of saturated aqueous sodium bisulfite solution, for example after the reaction.

m) Reduction of a substituted 3-phenyluracil I in which W is cyano

The reaction is advantageously carried out in an inert organic solvent, for example an aromatic, such as toluene or o-, m- or p-xylene, an aliphatic or cyclic ether, such as diethyl ether, tert-butyl methyl ether, tetrahydrofuran or dioxane, a chlorohydrocarbon, such as methylene chloride, chloroform or chlorobenzene, or in an organic carboxylic acid, such as formic acid.

Examples of suitable reducing agents are hydrogen or metal salts, such as tin(II) chloride, metal hydrides, such as diisobutylaluminum hydride, diisopropylaluminum hyride, lithiumtrisethoxyaluminum hydride and lithiumbisethoxyaluminum hyride, or triethylsilane. Diisobutylaluminum hydride, formic acid or hydrogen is preferably used.

If desired, the reduction can be carried out in

10

5

15

20

the presence of a catalyst, such as triethyloxonium tetrafluoroborate or Raney nickel.

If the reaction is carried out in the absence of a diluent in formic acid as a reducing agent, the latter may also be present in a relatively large excess.

5

10

15

20

25

30

The most advantageous reaction temperature is dependent on the particular reducing agent but is in general from -78 to 150°C.

The enamine esters of the formula II which are required as starting materials are novel unless W is $-CH=CH-CO-OR^{14}$ where R^{14} is C_1-C_6 -alkyl or C_3-C_8 -alkenyl when R^4 is trifluoromethyl and R^5 is hydrogen (cf. U.S. Patent 4,979,982). They can likewise be used as herbicides.

The enamine esters II can be prepared by known methods, for example by one of the following processes:

The reaction is preferably carried out under essentially anhydrous conditions in an inert solvent or diluent, particularly preferably in the presence of an acidic or basic catalyst.

Particularly suitable solvents or diluents are organic solvents which form an azeotropic mixture with water, for example aromatics, such as benzene, toluene and o-, m- and p-xylene, halohydrocarbons, such as methylene chloride, chloroform, carbon tetrachloride and chlorobenzene, aliphatic and cyclic ethers, such as 1,2-dimethoxyethane, tetrahydrofuran and dioxane, or cyclohexane, as well as alcohols, such as methanol and ethanol.

Preferred acidic catalysts are strong mineral acids, such as sulfuric acid and hydrochloric acid, phosphorus-containing acids, such as orthophosphoric acid and polyphosphoric acid, organic acids, such as ptoluenesulfonic acid, and acidic cation exchangers, such as Amberlyst 15 (Fluka).

Examples of suitable basic catalysts are metal hydrides, such as sodium hydride, and particularly preferably metal alcoholates, such as sodium methylate and ethylate.

The β -ketoester VIII and the phenylurea IX are advantageously used in a stoichiometric ratio, or a slight excess of up to 10 mol % of one or other component is used.

From 0.5 to 50 mol %, based on the amount of a starting material, of a catalyst is usually sufficient.

In general, the reaction is carried out at from 60 to 120°C, or preferably at the boiling point of the reaction mixture for rapid removal of water formed.

5

10

15

25

30

 L^3 is C_1-C_4 -alkyl or phenyl.

This reaction can be carried out, for example, in an inert, water-miscible, organic solvent, for example an aliphatic or cyclic ether, such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran or dioxane, or a lower alcohol, in particular ethanol, the reaction temperature usually being from 50 to 100°C, preferably the boiling point of the reaction mixture.

The reaction can, however, also be carried out in

an aromatic diluent, such as benzene, toluene or o-, mor p-xylene, in which case the addition of either an acidic catalyst, such as hydrochloric acid or p-toluenesulfonic acid, or of a base, for example of an alkali metal alcoholate, such as sodium methylate and sodium ethylate, is preferable. In this process variant too, the reaction temperature is usually from 50 to 100°C, preferably from 60 to 80°C.

p)

The reaction is advantageously carried out in the presence of an essentially anhydrous, aprotic, organic solvent or diluent, for example of an aliphatic or cyclic ether, such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran or dioxane, of an aliphatic or aromatic hydrocarbon, such as n-hexane, benzene, toluene or o-, mor p-xylene, of a halogenated, aliphatic hydrocarbon, such as methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane or chlorobenzene, of an aprotic, polar solvent, such as dimethylformamide, hexamethylphosphorotriamide or dimethyl sulfoxide, or of a mixture of the stated solvents.

If desired, the reaction can also be carried out in the presence of a metal hydride base, such as sodium hydride or potassium hydride, of an alkali metal or alkaline earth metal alcoholate, such as sodium methylate, sodium ethylate or potassium tert-butylate, or of an organic tertiary base, such as triethylamine or pyridine, and the organic base may simultaneously serve as a solvent.

The starting materials are advantageously used in a stoichiometric ratio, or a slight excess of up to about

10

15

20

25

30

20 mol % of one or other component is used. If the reaction is carried out in the absence of a solvent and in the presence of an organic base, the latter is present in a relatively large excess.

The reaction temperature is preferably from -80 to 50°C, particularly preferably from -60 to 30°C.

q)

5

10

15

20

25

30

L1 and L4 are each C1-C4-alkyl or phenyl.

This reaction is advantageously carried out in an aprotic, polar solvent or diluent, such as dimethylform-amide, 2-butanone, dimethyl sulfoxide or acetonitrile, and advantageously in the presence of a base, for example of an alkali metal or alkaline earth metal alcoholate, in particular of a sodium alkanolate, such as sodium methylate, of an alkali metal or alkaline earth metal carbonate, in particular sodium carbonate, or of an alkali metal hydride, such as lithium hydride or sodium hydride.

Usually, from 1 to 2 times the molar amount, based on the amount of starting material, of base is sufficient.

The reaction temperature is in general from 80 to 180°C, preferably the boiling point of the reaction mixture.

Regarding the ratios of the starting materials, the statements made for method \mathbf{n}) are applicable.

In a particularly preferred embodiment, a sodium alcoholate is used as the base, and the alcohol formed in the course of the reaction is distilled off continuously.

The enamine esters of the formula II prepared in this manner can be cyclized to a salt of the substituted 3-phenyluracils I by process variant a) without isolation from the reaction mixture.

r)

5

10

15 .

20

This reaction is advantageously carried out in the presence of an essentially anhydrous, aprotic, organic solvent or diluent, if desired in the presence of a metal hydride base, such as sodium hydride and potassium hydride, or of an organic tertiary base, such as triethylamine or pyridine, and the organic base may also serve as the solvent.

Regarding the suitable solvents and ratios, the statements made for method o) are applicable.

The reaction temperature is as a rule from -80 to $150\,^{\circ}$ C, preferably from -60 $^{\circ}$ C to the particular boiling point of the solvent.

The enamine-carboxylates of the formula III are likewise novel and can be used as herbicides. They can be prepared by conventional processes, for example from an aniline derivative of the formula XVI according to the following reaction scheme:

XVII

XVI

XIX

10

15

20

25

30

35

In equation (G11), $R^{4'}$ and $R^{5'}$ are each hydrogen or C_1-C_4- alkyl.

The reactions according to equations 1 and 2 are preferably carried out in an anhydrous inert aprotic solvent, for example in a halohydrocarbon, such as methylene chloride, chloroform, carbon tetrachloride or chlorobenzene, an aromatic hydrocarbon, such as benzene, toluene or o-, m- or p-xylene, or an aliphatic or cyclic ether, such as diethyl ether, dibutyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane.

For the reaction of the lactone XV with the aniline derivative XVI according to equation (Gl1), it is preferable to add a basic catalyst, eg. 4-pyrrolidino-pyridine, 4-dimethylaminopyridine, 1,2-diazabicyclo-[2.2.2]octane, 1,5-diazabicyclo[4.3.0]non-5-ene, 1,8-diazabicyclo[5.4.0]undec-7-ene or diethylamine.

Since the reaction is exothermic, a reaction temperature of from -10 to 50°C, preferably from 10 to 30°C, is generally sufficient.

For the reaction of the compounds of the formulae XVIII and XVI with one another according to equation (G12), on the other hand, higher temperatures, for example from 70 to 140°C, in particular from 100 to 120°C, are advantageous.

The reaction according to equation (G13) is an aminolysis, which, as a rule, is carried out either in the absence of a solvent [cf. for example J. Soc. Dyes Col. 42 (1926), 81, Ber. 64 (1931), 970; Org. Synth., Coll. Vol. IV (1963), 80 and J. Am. Chem. Soc. 70 (1948), 2402] or in an inert anhydrous solvent or diluent, in partiuclar in an aprotic solvent, for example in an aromatic or haloaromatic, such as toluene, o-, m- or p-xylene or chlorobenzene.

It is advisable here to carry out the reaction in the presence of a basic catalyst, for example of a relatively high boiling amine [cf. for example Helv. Chim. Acta 11 (1928), 779 and U.S. Patent 2,416,738] or

pyridine.

The reaction temperature is preferably from about 20 to 160°C.

In all three preparation variants, the starting materials are advantageously used in a stoichiometric ratio, or a slight excess of up to about 10 mol % of one or other component is used. If the reaction is carried out in the presence of a basic catalyst, from 0.5 to 200 mol %, based on the amount of a starting material, is generally sufficient.

The subsequent reaction of the resulting compounds of the formula XVII with the compound $\rm H_2N\text{-}COOL^1$ is advantageously carried out in a substantially anhydrous solvent or diluent at atmospheric pressure, particularly preferably in the presence of an acidic catalyst.

Particularly suitable solvents or diluents are organic liquids which form azeotropic mixtures with water, for example aromatics, such as benzene, toluene and o-, m- and p-xylene, and halohydrocarbons, such as carbon tetrachloride and chlorobenzene.

Particularly suitable catalysts are strong mineral acids, such as sulfuric acid, organic acids, such as p-toluenesulfonic acid, phosphorus-containing acids, such as orthophosphoric acid and polyphosphoric acid, and acidic cation exchangers, such as Amberlyst 15 (Fluka).

In general, the reaction temperature is from about 70 to 150°C; for rapid removal of the resulting water of reaction, however, the reaction is advantageously carried out at the boiling point of the solvent.

The pyrimidinone derivatives IVa and IVb, which are used as starting materials in method d), can be obtained by halogenation, preferably chlorination or bromination, of 3-phenyluracils I in which R³ is hydrogen, in the absence of a solvent or in the presence of an inert solvent or diluent.

Particularly suitable solvents or diluents are aprotic organic liquids, for example aliphatic or

15

10

20

25

30

aromatic hydrocarbons, such as n-hexane, benzene, toluene and o-, m- and p-xylene, halogenated aliphatic hydrocarbons, such as methylene chloride, chloroform and 1,2-dichloroethane, halogenated aromatic hydrocarbons, such as chlorobenzene, or tertiary amines, such as N,N-dimethylaniline.

Particularly suitable halogenating agents are thionyl chloride, phosphorus pentachloride, phosphoryl chloride, phosphorus pentabromide and phosphoryl bromide. A mixture of phosphorus pentachloride and phosphoryl chloride or of phosphorus pentabromide and phosphoryl bromide can also be particularly advantageous.

When thionyl chloride is used as halogenating agent, it is preferable to add a catalytic amount of dimethylformamide.

The amount of halogenating agent is not critical; for complete conversion, at least equimolar amounts of halogenating agent and of the educt to be halogenated are required. However, a 1-fold to 8-fold molar excess of halogenating agent may also be advantageous.

The reaction temperatures are in general from 0°C to the reflux temperature of the reaction mixture, preferably from 20 to 120°C.

The compounds of the formulae IX, XII, XIII and XIV are likewise novel. They can be prepared by conventional methods, particularly advantageously from compounds of the formula XVI:

s) By phosgenation and hydrolysis of the products with ammonia

5

10

15

20

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$C1-C-NH$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{5}$$

$$R^{7}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{5}$$

$$R^$$

The process can be carried out in an inert, essentially anhydrous solvent or diluent or in the absence of a solvent, the compounds XVI preferably being reacted with phosgene or trichloromethyl chloroformate.

Particularly suitable solvents or diluents are aprotic, organic solvents, for example aromatics, such as toluene and o-, m- and p-xylene, halohydrocarbons, such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene, aliphatic or cyclic ethers, such as 1,2-dimethoxyethane, tetrahydrofuran and dioxane, and esters, such as ethyl acetate, as well as mixtures of these solvents.

Depending on the aniline derivative XVI used, the addition of a base, such as triethylamine, may be advantageous, for example in from 0.5 to 2 times the molar amount, based on the amount of XVI.

By choosing suitable reaction conditions, both the carbamoyl chlorides XIV and the phenylisocyanates XII can be obtained:

Thus, the carbamoyl chlorides XIV are usually obtained at low temperatures of from about -40 to 50°C, whereas a further increase in the temperature up to the boiling point of the reaction mixture leads predominantly to the formation of the phenylisocyanates XII, which can be reacted with ammonia or with a reactive derivative of

5

10

15

20

ammonia to give the phenylurea derivatives IX.

t) By reaction with alkali metal cyanates

M⁸ is one equivalent of a metal ion, in particular an alkali metal ion, such as sodium or potassium.

The reaction is carried out in an inert solvent or diluent, for example in an aromatic hydrocarbon, such as toluene or o-, m- or p-toluene, in an aliphatic or cyclic ether, such as tetrahydrofuran or dioxane, in a lower alcohol, such as methanol or ethanol, in water or in a mixture of the stated solvents.

The amount of cyanate is not critical; at least equimolar amounts of aniline derivative XVI and cyanate are required for complete conversion, but an excess of cyanate of up to about 100 mol % may also be advantageous.

The reaction temperature is in general from 0°C to the reflux temperature of the reaction mixture.

u) . By reaction with esters XX

5

10

15

20

 L^4 is C_1-C_4 -alkyl or phenyl and L^5 is halogen, preferably chlorine or bromine, C_1-C_4 -alkoxy or phenoxy.

Examples of suitable solvents or diluents are aromatic hydrocarbons, such as toluene and o-, m- and

p-xylene, halohydrocarbons, such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene, aliphatic or cyclic ethers, such as 1,2-dimethoxyethane, tetrahydrofuran and dioxane, esters, such as ethyl acetate, alcohols, such as methanol and ethanol, and water or two-phase mixtures of an organic solvent and water.

The reaction is advantageously carried out in the presence of a base, for example of an alkali metal hydroxide, carbonate or alcoholate, such as sodium hydroxide, sodium carbonate, sodium methylate or sodium ethylate, or of a tertiary amine, such as pyridine or triethylamine.

If desired, a catalyst, for example a Lewis acid, such as antimony trichloride, may also be added.

The starting compounds and the base are advantageously used in a stoichiometric ratio, but one or other component may also be present in an excess of up to about 100 mol %.

As a rule, the amount of catalyst is from 1 to 50, preferably from 2 to 30, mol %, based on the amount of aniline derivative XVI used.

The reaction temperature is in general from -40°C to the boiling point of the reaction mixture.

The starting compounds of the formula XVI and their preparation and all other compounds whose preparation is not described explicitly are known from the literature or said compounds can be prepared by conventional methods.

In the abovementioned processes for the synthesis of substituted 3-phenyluracils I, their salts, enolethers or intermediates, atmospheric pressure or the autogenous pressure of the particular solvent is advantageously used. Lower or higher pressure is possible but usually has no advantages.

Unless stated otherwise, the reagents and starting materials required for the preparation of the

20

5

10

15

25

30

substituted 3-phenyluracils I, Ia and Ib are known or can be prepared by conventional methods.

The particular reaction mixtures are worked up, as a rule, by conventional methods, for example by removing the solvent, distributing the residue in a mixture of water and a suitable organic solvent and isolating the product from the organic phase.

5

10

15

20

25

The substituted 3-phenyluracils may be obtained as isomer mixtures, which however can, if desired, be separated into the pure isomers by conventional methods, for example by crystallization or chromatography (if necessary, over an optically active adsorbate). Pure optically active isomers can be synthesized, for example, from corresponding optically active starting materials.

The substituted 3-phenyluracils I, Ia and Ib are suitable as herbicides both in the form of isomer mixtures and in the form of the pure isomers. In general they are well tolerated and therefore selective in broadleaved crops and in monocotyledon plants.

Depending on the particular application method, the substituted phenyluracils Ia and Ib or the agents containing them can be used in a large number of crop plants for eliminating undesirable plants, the following crops being mentioned as examples:

Botanical name	Common name
Allium cepa	onions
Ananas comosus	pineapples
Arachis hypogaea	peanuts (groundnuts)

. •	Botanical name	Common name
	Asparagus officinalis	asparagus
	Beta vulgaris spp. altissima	sugarbeets
	Beta vulgaris spp. rapa	fodder beets
5	Brassica napus var. napus	rapeseed
	Brassica napus var. napobrassica	swedes
	Brassica rapa var. silvestris	beets
	Camellia sinensis	tea plants
	Carthamus tinctorius	safflower
10	Carya illinoinensis	pecan trees
	Citrus limon	lemons
	Citrus sinensis	orange trees
	Coffea arabica (Coffea canephora,	coffee plants
	Coffea liberica)	
15	Cucumis sativus	cucumbers
	Cynodon dactylon	Bermudagrass in turf
		and lawns
	Daucus carota	carrots
	Elaeis guineensis	oil palms
20	Fragaria vesca	strawberries
	Glycine max	soybeans
	Gossypium hirsutum	cotton
	(Gossypium arboreum,	
	Gossypium herbaceum,	
25	Gossypium vitifolium)	
	Helianthus annuus	sunflowers
	Hevea brasiliensis	rubber plants
	Hordeum vulgare	barley
	Humulus lupulus	hops
30	Ipomoea batatas	sweet potatoes
	Juglans regia	walnut trees
	Lens culinaris	lentils
	Linum usitatissimum	flax
	Lycopersicon lycopersicum	tomatoes
35	Malus spp.	apple trees
	Manihot esculenta	cassava
	Medicago sativa	alfalfa (lucerne)

	Retorical name	Common name
	Botanical name	banana plants
	Musa spp. Nicotiana tabacum	tobacco
		CODACCO
•	(N. rustica) Olea europaea	olive trees
5	Oryza sativa	rice
	Phaseolus lunatus	limabeans
		snapbeans, green
	Phaseolus vulgaris	beans, dry beans
		· -
10	Picea abies	Norway spruce
	Pinus spp.	pine trees
	Pisum sativum	English peas
-	Prunus avium	cherry trees
	Prunus persica	peach trees
15	Pyrus communis	pear trees
	Ribes sylvestre	redcurrants
	Ricinus communis	castor-oil plants
	Saccharum officinarum	sugar cane
•	Secale cereale	rye
20	Solanum tuberosum	Irish potatoes
	Sorghum bicolor (s. vulgare)	sorghum
	Theobroma cacao	cacao plants
	Trifolium pratense	red clover
	Triticum aestivum	wheat
25	Triticum durum	durum wheat
	Vicia faba	tick beans
	Vitis vinifera	grapes
,	Zea mays	Indian corn, sweet
	•	corn, maize
30	The substituted 3-pheny	luracils I, Ia and Ib are

The substituted 3-phenyluracils I, Ia and Ib are also suitable for the desiccation and defoliation of plants. As desiccants, they are particularly suitable for drying out the above-ground parts of crop plants, such as potatoes, rape, sunflowers and soybeans. This permits completely mechanical harvesting of these important crop plants.

35

Also of commercial interest is the facilitation

10

15

20

25

30

35

of harvesting, which is permitted by concentrated dropping or a reduction in the adhesion to the tree in the case of citrus fruits, olives or other species and varieties of pomes, drupes and hard-shelled fruit. The same mechanism, ie. promotion of the formation of abscission tissue between the fruit or leaf part and the shoot part of the plant, is also essential for readily controllable defoliation of crops, for example cotton.

Furthermore, the shortening of the time interval in which the individual cotton plants ripen leads to higher fiber quality after harvesting.

Apart from their herbicidal and defoliant activity, some of the substituted 3-phenyluracils of the formuale I, Ia and Ib can also be used as growth regulators or for controlling pests from the class consisting of the insects, arachnids and nematodes. They can be used for controlling pests in crop protection and in the hygiene, stored materials and veterinary sectors.

The insect pests include, from the order of the butterflies (Lepidoptera), for example Agrotis ypsilon, Anticarsia argillacea, Agrotis segetum, Alabama gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Choristoneura fumiferana, Cheimatobia brumata, Choristoneura occidentalis, Cirphis unipuncta, Cydia nitidalis, pini, Diaphania pomonella, Dendrolimus Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Galleria mellonella, Grapholita subterranea, Heliothis armigera, Grapholita molesta, funebrana, Heliothis virescens, Heliothis zea, Hellula undalis, Hyponomeuta Hibernia defoliaria, Hyphantria cunea, malinellus, Keifferia lycopersicella, Lambdina fiscellaria, Laphygma exigua, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Lymantria Lymantria dispar, Loxostege sticticalis, Lyonetia clerkella, Malacosoma neustria, monacha,

10

15

20

25

30

35

Cordylobia

brassicae, Orgyia pseudotsugata, Ostrinia Mamestra Panolis flamea, Pectinophora gossypiella, nubilalis, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scarbra, Plutella xylostella, Pseudoplusia includens, Phyacionia frustrana, Scrobipalpula absoluta, Sitotroga cerelella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni and Zeiraphera canadensis; from the order of the beetles (Coleoptera), for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus Anthonomus pomorum, Atomaria linearis, grandis, undata, piniperda, Blitophaga Blastophagus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus Cerotoma trifurcata, Cassida nebulosa, betulae, Ceuthorrynchus assimilis, napi, Ceuthorrhynchus Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Diabrotica longicornis, Diabrotica 12-punctata, Diabrotica virgifera, Epilachna varivestis, Epitrix brasiliensis, Hylobius hirtipennis, Eutinobothrus Hypera postica, Hypera brunneipennis, typographus, Lema bilineata, Lema melanopus, Leptinotarsa californicus, Lissorhoptrus Limonius decemlineata, Melanotus communis, Meligethes oryzophilus, Melolontha hippocastani, Melolontha melolontha, Onlema oryzae, Ortiorrhynchus sulcatus, Otiorrhynchus ovatus, Phyllotreta chrysocephala, Phaedon cochleariae, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus and Sitophilus granaria; from the order of the Diptera, for example Aedes aegypti, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, bezziana, Chrysomya Ceratitis capitata, hominivorax, Chrysomya macellaria, Contarinia sorghicola,

anthropophaga,

Culex pipiens,

. 10

20

25

30

35

cucurbitae, Dacus oleae, Dasineura brassicae, Gasterophilus canicularis, intestinalis, Glossia morsitans, Haematobia irritans, Haplodiplosis equestris, Hylemyia platura, Hypoderma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mayetiola destructor, Musca domestica, Muscina stabulans, Oestrus ovis, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Rhagoletis cerasi, Rhagoletis pomonella, Tabanus bovinus, Tipula oleracea and Tipula paludosa;

from the order of the Thysanoptera, for example Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae,

Thrips palmi and Thrips tabaci;
from the order of the Hymenoptera, for example Athalia
rosae, Atta cephalotes, Atta sexdens, Atta texana,
Hoplocampa minuta, Hoplocampa testudinea, Monomorium
pharaonis, Solenopsis geminata and Solenopsis invicta;

Heteroptera, for from the order of the example Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Euchistus impictiventris, integriceps, Eurygaster Lyqus lineolaris, Leptoglossus phyllopus, pratensis, Nezara viridula, Piesma quadrata, Solubea

insularis and Thyanta perditor; order of the Homoptera, for example Adelges laricis, Aphidula Acyrthosiphon onobrychis, nasturtii, Aphis fabae, Aphis pomi, Aphis sambuci, Brachycaudus cardui, Brevicoryne brassicae, Cerosipha gossypii, Dreyfusia nordmannianae, Dreyfusia piceae, Dyasphis radicola, Dysaulacorthum pseudosolani, Empoasca euphorbiae, Macrosiphum Macrosiphum avenae, fabae, Metopolophium Macrosiphon Megoura viciae, rosae, dirhodum, Myzodes persicae, Myzus cerasi, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rhopalomyzus

Tetranychus

ascalonicus, Rhopalosiphum maidis, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Trialeurodes vaporariorum and Viteus vitifolii;

from the order of the Isoptera, for example Calotermes flavicollis, Leucotermes flavipes, Reticulitermes lucifugus and Termes natalensis;

10

20

25

cinnabarinus,

from the order of the Orthoptera, for example Acheta Blatella germanica, orientalis, Blatta domestica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta Melanoplus birittatus, Melanoplus femurmigratoria, rubrum, Melanoplus mexicanus, Melanoplus sanguinipes, septemfasciata, Nomadacris Melanoplus spretus, americana, Schistocerca americana, Periplaneta

15 Schistocerca peregrina, Stauronotus maroccanus and Tachycines asynamorus;

from the class of the Arachnoidea, for example Acarina, such as Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Bryobia Boophilus microplus, Brevipalpus phoenicis, praetiosa, Dermacentor silvarum, Eotetranychus carpini, Eriophyes sheldoni, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobins megnini, gallinae, Permanyssus Paratetranychus pilosus, Phyllocaptrata oleivora, Polyphagotarsonemus appendiculatus, Rhipicephalus ovis, Psoroptes Rhipicephalus evertsi, Saccoptes scabiei, Tetranychus

kanzawai,

pacificus, Tetranychus telarius and Tetranychus urticae;
from the class of the nematodes, for example root-knot
nematodes, eg. Meloidogyne hapla, Meloidogyne incognita
and Meloidogyne javanica, cyst-forming nematodes, eg.
Globodera rostochiensis, Heterodera avenae, Heterodera
glycinae, Heterodera schatii, Heterodera trifolii, and
stem and leaf eelworms, eg. Belonolaimus longicaudatus,

Tetranychus

stem and leaf eelworms, eg. Belonolaimus longicaudatus, Ditylenchus destructor, Ditylenchus dipsaci, Heliocotylenchus multicinctus, Longidorus elongatus, Radopholus similis, Rotylenchus robustus, Trichodorus primitivus, Tylenchorhynchus claytoni, Tylenchorhynchus dubius, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus and Pratylenchus goodeyi.

5

The active ingredients can be used as such, in the form of their formulations or in the application forms prepared therefrom, for example in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dusting agents, broadcasting agents or granules, by spraying, nebulizing, dusting, broadcasting and pouring. The application forms depend entirely on the intended uses; they should in any case ensure a very fine distribution of the novel active ingredients.

15

20

25

30

35

10

The formulations are prepared in a known manner, for example by extending the active ingredient with solvents and/or carriers, if desired with the use of emulsifiers and dispersants; where water is used as a diluent, other organic solvents may also be used as Suitable inert assistants for this auxiliary solvents. purpose are essentially mineral oil fractions having a medium to high boiling point, such as kerosene and diesel oil, as well as coal tar oils and oils with vegetable or animal origin, solvents, such as aromatics (eg. toluene or xylene), chlorinated aromatics (eg. chlorobenzenes), paraffins (eg. mineral oil fractions), alcohols methanol, ethanol, butanol or cyclohexanol), ketones (eg. cyclohexanone and isophorone), amines (eg. ethanolamine, N, N-dimethylformamide or N-methylpyrrolidone) and water; carriers such as ground natural minerals (eg. kaolins, aluminas, talc or chalk) and ground synthetic minerals (eq. finely divided silica or silicates); emulsifiers, such as nonionic and anionic emulsifiers (eg. polyoxyethylene fatty alcohol ethers, alkylsulfonates and arylsulfonates) and dispersants, such as ligninsulfite waste liquors and methylcellulose.

Aqueous application forms can be prepared from

emulsion concentrates, dispersions, pastes, wettable powders or water-dispersible granules by adding water. For the preparation of emulsions, pastes or oil dispersions, the substrates, as such or dissolved in an oil or solvent, can be homogenized in water by means of wetting agents, adherents, dispersants or emulsifiers. However, concentrates which consist of active ingredient, wetting agents, adherents, dispersants or emulsifiers and possibly solvents or oil and which are suitable for dilution with water can also be prepared.

5

10

15

20

25

30

35

Suitable surfactants are alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, for example lignin-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of fatty acids, alkyl- and alkylarylsulfonates, alkylsulfates, lauryl ether sulfates and fatty alcohol sulfates and salts of sulfated hexa-, hepta- and octadecanols, and of fatty alcohol glycol ethers, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene or of naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ethers, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenol polyglycol ethers, tributylphenyl polyglycol isotridecyl polyether alcohols, alkylaryl ethers, alcohol, fatty alcohol ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers or polyoxypropylene, lauryl alcohol polyglycol ether acetal, liquors waste or sorbitol esters, ligninsulfite methylcellulose.

Powders, broadcasting agents and dusting agents can be prepared by mixing or milling the active ingredients together with a solid carrier.

Granules, for example coated, impregnated and homogeneous granules, can be prepared by binding the active ingredients to solid carriers. Solid carriers are mineral earths, such as silica gel, silicas, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay,

dolomite, kieselguhr, calcium sulfate, magnesium sulfate, magnesium oxide, milled plastics, fertilizers, such as ammonium sulfate, ammonium phosphate, ammonium nitrate and ureas, and vegetable products, such as grain flours, bark meal, wood meal and nutshell meal, cellulosic powders and other solid carriers.

5

10

15

The concentrations of the active ingredients I, Ia and Ib in the ready-to-use formulations can be varied within wide ranges, for example from 0.0001 to 95% by weight. For use as herbicides or plant growth-regulating agents, concentrations of from 0.01 to 95, preferably from 0.5 to 90, % by weight of active ingredient are preferable. Formulations containing from 0.0001 to 10, preferably from 0.01 to 1, % by weight of active ingredient are suitable for use as insecticides. The active ingredients are used in a purity of from 90 to 100%, preferably from 95 to 100% (according to NMR spectrum).

Examples of such formulations are:

- 20 I. A solution of 90 parts by weight of compound No. 1.1 and 10 parts by weight of N-methyl- α -pyrrolidone, which is suitable for use in the form of very small drops.
- 11. A mixture of 20 parts by weight of compound No.

 1.2, 80 parts by weight of xylene, 10 parts by weight of the adduct of 8 to 10 mol of ethylene oxide with 1 mol of N-monoethanololeamide, 5 parts by weight of the calcium salt of dodecylbenzenesulfonic acid and 5 parts by weight of the adduct of 40 mol of ethylene oxide with 1 mol of castor oil. By finely distributing the mixture in 100,000 parts by weight of water, a dispersion which contains 0.02% by weight of the active ingredient is obtained.
- 35 III. An aqueous dispersion of 20 parts by weight of compound No. 3.1, 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol and 20

10

parts by weight of the adduct of 40 mol of ethylene oxide with 1 mol of castor oil. The mixture of this dispersion with 100,000 parts by weight of water contains 0.02% by weight of the active ingredient.

IV. An aqueous dispersion of 20 parts by weight of compound No. 2.1, 25 parts by weight of cyclohexanol, 65 parts by weight of a mineral oil fraction boiling within a range of 210 to 280°C and 10 parts by weight of the adduct of 40 mol of ethylene oxide with 1 mol of castor oil. The mixture of this dispersion with 100,000 parts by weight of water contains 0.02% of the active ingredient.

A mixture milled in a hammer mill and consisting 15 V. of 80 parts by weight of compound No. 3.1, 3 parts by weight of the sodium salt of diisobutylnaphthalene-a-sulfonic acid, 10 parts by weight of the sodium salt of a ligninsulfonic acid obtained from a sulfite waste liquor and 7 parts 20 by weight of silica gel powder. By finely distributing the mixture in 20,000 parts by weight of water, a spray liquor which contains 0.1% by weight of the active ingredient is obtained. 25

VI. An intimate mixture of 3 parts by weight of compound No. 3.2 and 97 parts by weight of finely divided kaolin. This dusting agent contains 3% by weight of active ingredient.

30 VII. An intimate mixture of 30 parts by weight of compound No. 3.3, 92 parts by weight of silica gel powder and 8 parts by weight of liquid paraffin which has been sprayed onto the surface of the silica gel. This formulation gives the active ingredient good adhesion.

VIII. A stable aqueous dispersion of 40 parts by weight of compound No. 4.1, 10 parts by weight of the

sodium salt of a phenolsulfonic acid/urea/formaldehyde condensate, 2 parts by weight of silica gel and 48 parts by weight of water, which can be further diluted.

A stable oily dispersion of 20 parts by weight of compound No. 1.1, 2 parts by weight of the calcium salt of dodecylbenzenesulfonic acid, 8 parts by weight of a fatty alcohol polyglycol ether, 20 parts by weight of the sodium salt of a phenolsulfonic acid/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil.

15

20

25

30

35

A mixture milled in a hammer mill and consisting of 10 parts by weight of compound No. 2.1, 4 parts by weight of the sodium salt of diisobutylnaphthalene-α-sulfonic acid, 20 parts by weight of the sodium salt of a ligninsulfonic acid obtained from a sulfite waste liquor, 38 parts by weight of silica gel and 38 parts by weight of kaolin. By finely distributing the mixture in 10,000 parts by weight of water, a spray liquor which contains 0.1% by weight of the active ingredient is obtained.

The active ingredients or the herbicidal and plant growth-regulating agents can be applied by the preemergence or postemergence method. The plants are usually sprayed or dusted with the active ingredients or the seeds of the test plants are treated with the active ingredients. If the active ingredients are less well tolerated by certain crop plants, it is possible to use application methods in which the herbicides are sprayed with the aid of the sprayers in such a way that the leaves of the sensitive crop plants are as far as possible not affected while the active ingredients reach the leaves of undesirable plants growing underneath or the uncovered oil surface (post-directed, lay-by).

The application rates of active ingredient are

from 0.001 to 5.0, preferably from 0.01 to 2, kg/ha of active ingredient, depending on the aim of control, the season, the target plants and the stage of growth.

To broaden the action spectrum and to achieve synergistic effects, the substituted 3-phenyluracils I, Ia and Ib can be mixed and applied together with a large number of members of other groups of herbicidal or growth-regulating active ingredients. For example, derivatives, benzothia-4H-3,1-benzoxazine diazines, N-phenylcarbamates, diazinones, 2,6-dinitroanilines, thiocarbamates, halocarboxylic acids, triazines, amides, ureas, diphenyl ethers, triazinones, uracils, benzofuran derivatives, cyclohexane-1,3-dione derivatives carry in the 2-position, for example, a carboxyl or carbimino, or quinolinecarboxylic acid derivatives, imidazolinones, sulfonamides, sulfonylureas, aryloxy- and hetaryloxyphenoxypropionic acids and their salts, esters and amides and others are suitable components for the mixture.

The substituted 3-phenyluracils I, Ia and Ib can also be applied together with other crop protection agents, such as herbicides, growth regulators, pesticides, fungicides and bactericides. These agents may be mixed with the novel agents in a weight ratio of from 1:100 to 100:1, if desired also directly before application (tank mix). Also of interest is the miscibility with mineral salt solutions which are used for eliminating nutrient and trace element deficiencies. Nonphytotoxic oils and oil concentrates may also be added.

5

10

15

20

25

Preparation Examples

Example 1

5

10

15

20

25

3-(4-Chloro-3-(2-chloro-2-ethoxycarbonylethen-1-yl)-phenyl)-2,4-dioxo-6-trifluoromethyl-1,2,3,4-tetrahydropyrimidine

At 0 to 5°C, a solution of 3.7 g of ethyl 3-amino-4,4,4trifluorocrotonate in 20 ml of toluene was added to a suspension of 0.53 g of sodium hydride in 100 ml of dimethyl-After the mixture had been stirred for 30 minutes, a solution of 5.7 g of 4-chloro-3-(α -chloroacrylic acid ethyl ester)-phenyl isocyanate in 30 ml of toluene was added at -30 to -25°C. The mixture was stirred for a further 5 hours at about 20-25°C, followed by hydrolysis with 150 ml of water. The reaction mixture was then neutralized with 10 wt% strength hydrochloric acid (pH = 7), and the aqueous phase was separated and extracted twice, each time with 100 ml of toluene. The combined organic phases were washed three times, each time with 50 ml of water, dried over sodium sulfate and evaporated down. The crude product was stirred with diisopropyl ether, separated off, and washed with diisopropyl ether and ligroin.

M.p.: 202-206°C.

Precursor stage

4-Chloro-3-(α -chloroacrylic acid ethyl ester)-phenyl isocyanate

A solution of 13.2 ml of trichloromethyl chloroformate in 40 ml of toluene was added to a suspension of 26.0 g of 4-chloro-3-(α -chloro-acrylic acid ethyl ester)-aniline in 200 ml of toluene. The mixture was stirred for 14 hours at about 20-25°C and then for 10 hours at 90-95°C. After the resulting precipitate had been separated off, the solvent was removed under reduced pressure and the residue was dried under a high vacuum. Oil.

The following compound was synthesized analogously: 3-(4-chloro-3-(methoxyiminomethyl)-phenyl)-2,4-dioxo-6-trifluoromethyl-1,2,3,4-tetrahydropyrimidine, m.p. 221-223°C (compound no. 1.2)

5

15

20

25

30

Example 2

3-[4-Chloro-3-(1,3-dioxan-2-yl)-phenyl]-2,4-dioxo-1-methyl-6-trifluoromethyl-1,2,3,4-tetrahydropyrimidine

At 0 to 5°C, a mixture of 51.2 g of ethyl 3-amino-4,4,4-trifluorocrotonate in 150 ml of toluene was added to a suspension of 7.3 g of sodium hydride in 200 ml of dimethylformamide. After the mixture had been stirred for 30 minutes, a solution of 62.2 g of 4-chloro-3-(1,3-di-oxolan-2-yl)-phenyl isocyanate in 150 ml of toluene was added at -30 to -25°C. After stirring for 5 hours at about 20 to 25°C, the mixture was hydrolyzed with water; the reaction mixture was then washed neutral with 10 wt% strength hydrochloric acid. The aqueous phase was extracted three times, each time with 100 ml of toluene. The combined organic phases were washed three times, each time with 50 ml of water, and then dried over sodium sulfate and evaporated down. The crude product was purified by flash chromatography on silica gel (developer: 1:1 mixture

of methylene chloride and ethyl acetate).

M.p.: 180-182°C.

Precursor stage

5

10

15

20

25

4-Chloro-3-(1,3-dioxolan-2-yl)-phenyl isocyanate

At about 20 to 25°C, 2.0 g of 4-chloro-3-(1,3-di-oxolan-2-yl)-aniline in 25 ml of ethyl acetate was added to a solution of 3.0 g of trichloromethyl chloroformate in 50 ml of toluene. This mixture was stirred for 2 hours at 20 to 25°C and then for 5 hours at the reflux temperature. The reaction mixture was then evaporated down and the residue was dried under a high vacuum. Yield: 2.0 g (oil).

Example 3

3-(4-Chloro-3-(2-chloro-2-ethoxycarbonyl-ethen-1-yl)-phenyl)-2,4-dioxo-1-methyl-6-trifluoromethyl-1,2,3,4-tetrahydropyrim-idine

A solution of 4.2 g of 3-[4-chloro-3-[2-chloro-2-ethoxy-carbonyl-ethen-1-yl]-phenyl]-2,4-dioxo-6-trifluoro-methyl-1,2,3,4-tetrahydropyrimidine in 30 ml of dimethyl-formamide was added to a suspension of 0.31 g of sodium hydride in 100 ml of dimethylformamide. After stirring for 1 hour, a solution of 1.70 g of methyl iodide in 20 ml of dimethylformamide was dripped in. After stirring for 20 hours at about 20 to 25°C the more readily volatile portions of the reaction mixture were removed under reduced pressure. The

oily residue was taken up with 150 ml of toluene and washed three times, each time with 50 ml of water, after which the diluent was dried, followed by evaporation under reduced pressure. The crude product obtained was stirred with ligroin, then separated again, dried and recrystallized from ethanol; m.p.: 159-160°C.

The following compounds were synthesized analogously: 3-(4-chloro-3-(methoxyoximinomethyl)-phenyl)-2,4-dioxo-1-methyl-6-trifluoromethyl)1,2,3,4-tetrahydropyrimidine; m.p.: 132-134°C (compound no. 3.2); 3-(4-chloro-3-(1,3-dioxolan-2-yl)-phenyl)-2,4-dioxo-1-methyl-6-trifluoromethyl-1,2,3,4-tetrahydropyrimidine; m.p.: 58-60°C (compound no. 3.3). Example 4

3-(4-Chloro-3-formyl-phenyl)-2,4-dioxo-1-methyl-6-trifluoro-methyl-1,2,3,4-tetrahydropyrimidine

5 ml of water was added to a solution of 1.9 g of 3-(4-chloro-3-(1,3-dioxolan-2-yl)-phenyl)-2,4-dioxo-1-methyl-6-trifluoromethyl-1,2,3,4-tetrahydropyrimidine in 45 ml of glacial acetic acid. After 12 hours' stirring at about 20 to 25°C and a further 5 hours' stirring at 40 to 50°C, 150 ml of water was stirred into the mixture. The precipitate was separated off, washed with water and ligroin, and dried. M.p.: 151-153°C.

Use Examples (herbicidal activity)

The herbicidal activity of the substituted phenyluracils I, Ia and Ib was demonstrated by greenhouse experiments:

The culture vessels used were plastic flower pots containing loamy sand with about 3.0% of humus as the

20

20

25

30

5

10

15

20

25

35

substrate. The seeds of the test plants were sown separately according to species.

In the preemergence treatment, the active ingredients suspended or emulsified in water were applied, directly after sowing, by means of finely distributing nozzles. The vessels were lightly watered in order to promote germination and growth and were then covered with transparent plastic covers until the plants had begun to grow. This covering ensures uniform germination of the test plants, unless this has been adversely affected by the active ingredients.

For the purpose of the postemergence treatment, the test plants were grown in the test vessels themselves or were planted in the test vessels a few days beforehand. The active ingredients suspended or emulsified in water were not applied until a height of growth of from 3 to 15 cm, depending on the form of growth.

The plants were kept at 10-25°C or 20-35°C, according to species. The test periods extended over from 2 to 4 weeks. During this time, the plants were tended and their reaction to the individual treatments was evaluated.

Rating was based on a scale from 0 to 100. 100 means no emergence of the plants or complete destruction of at least the above-ground parts and 0 means no damage or normal growth.

The plants used in the greenhouse experiments consisted of the following species:

	Botanical name	Common name
30	Abutilon theophrasti	velvet leaf
	Amaranthus retroflexus	redroot pigweed
	Solanum nigrum	black nightshade

At application rates of 0.06 and 0.03 kg/ha, undesirable broad-leaved plants can be very readily controlled with compound No. 3.1 by the postemergence method.

Use Examples (defoliation activity)

The comparative agent used was

A 6,7-dihydrodipyrido[1,2-alpha:2',1'-c]pyridilium as the dibromide monohydrate salt (common name: Diquat).

The comparative agent was used in the form of the preformulated commercial product.

The test plants used were young, 4-leaved cotton plants (without cotyledons) of the Stoneville 825 variety, which were grown under greenhouse conditions (relative humidity from 50 to 70%; day/night temperature 27/20°C).

USE EXAMPLE 1

The leaves of the young cotton plants were treated to run-off with aqueous formulations of the stated active ingredients (with the addition of 0.15% by weight, based on the spray liquor, of fatty alcohol alkoxylate Plurafac LF 700). The amount of water applied was equivalent to 1000 l/h. After 13 days, the number of dropped leaves and the degree of defoliation in % were determined. In the case of the untreated control plants, no dropping of leaves occurred.

Agent containing Converted applica- Defoliation active ingredient No. tion rate [kg/ha]

25	3.1	0.05	53
		0.10	73
	Δ.	0.10	0

The result shows that the novel substituted 3-phenyluracils I have a very good defoliant effect and are superior to the commercial product A in this respect.

Use Examples (insecticidal activity)

The insecticidal activity of the compounds of the general formulae I, Ia and Ib was demonstrated by the following experiments:

30

.5

10

15

The active ingredients were formulated

a) as a 0.1% strength solution in acetone or

5

15

- b) as a 10% strength emulsion in a mixture of 70% by weight of cyclohexanol, 20% by weight of Nekanil® LN (Lutensol® AP6, wetting agent having an emulsifying and dispersing action and based on ethoxylated alkylphenols) and 10% by weight of Emulphor® EL (Emulan® EL, emulsifier based on ethoxylated fatty alcohols)
- and were diluted to the desired concentration with acetone in the case of a) and with water in the case of b).

After completion of the experiments, the lowest concentration in each case at which the compounds still caused 80-100% inhibition or mortality (activity threshold or minimum concentration) in comparison with untreated control experiments was determined.

Substituted 3-phenyluracils

Summary

5

Substituted 3-phenyluracils I

 $(x^1-x^4=0 \text{ or } S;$ $W = -C(R^8) = X^5, -C(R^8)(X^3R^6)X^4R^7, -C(R^8) = C(R^9) - CO - R^{10},$ $-CH(R^8)-CH(R^9)-CO-R^{10}$, $-C(R^8)=C(R^9)-CH_2-CO-R^{10}$, $-C(R^8)=C(R^9)-C(R^{11})=C(R^{12})-CO-R^{10}$ or 10 $-C(R^8)=C(R^9)-CH_2-CH(R^{13})-CO-R^{10};$ $x^5 = 0$, S, $-NR^{14}$; $R^{14} = H$, OH, $C_1 - C_6 - alkyl$, $C_3 - C_6 - alkenyl$, $C_3 - C_6 - alkynyl$, $C_3-C_7-cycloalkyl$, $C_1-C_6-haloalkyl$, $C_1-C_6-alkoxy-C_1-C_6-alkyl$, C_1-C_6 -alkoxy, C_3-C_6 -alkenyloxy, C_3-C_6 -alkynyloxy, C_5-C_7 -15 cycloalkoxy, C_5 - C_7 -cycloalkenyloxy, C_1 - C_6 -haloalkoxy, C_3 - C_6 haloalkenyloxy, hydroxy- C_1 - C_6 -alkoxy, cyano- C_1 - C_6 -alkoxy, $c_3-c_7-cycloalkyl-c_1-c_6-alkoxy, c_1-c_6-alkoxy-c_1-c_6-alkoxy,$ c_1-c_6 -alkoxy- c_3-c_6 -alkenyloxy, c_1-c_6 -alkylcarbonyloxy, c_1-c_6 alkoxycarbonyl- C_2 - C_6 -alkoxy, C_1 - C_6 -alkylthio- C_1 - C_6 -alkoxy, 20 $di-(C_1-C_6-alkyl)-amino-C_1-C_6-alkoxy$, substituted or unsubstituted phenyl, substituted or unsubstituted phenyl- C_1 - C_6 -alkoxy, phenyl- C_3 - C_6 -alkenyloxy or phenyl- C_3 - C_6 -alkynyloxy, where one or two methylene groups of the carbon chains may be replaced by -0-, -S- or -N(${
m C_1-C_6-}$ 25 alkyl)-, or $-N(R^{15})R^{16}$: R^{15} , $R^{16} = H$, $C_1 - C_6 - alkyl$, $C_3 - C_6 - alkenyl$, $C_3 - C_6 - alkynyl$, $C_3-C_6-cycloalkyl, C_1-C_6-haloalkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl,$ C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl or substituted or 30 unsustituted phenyl, or R^{15} + R^{16} together with the common nitrogen atom = 4- to 7-

```
membered heterocycle, where a ring member may be replaced
        by -0-, -S0-, -N=, -NH- or -N(C_1-C_6-alkyl)-,
        R^6, R^7 = C_1 - C_6 - alkyl, C_3 - C_6 - alkenyl, C_3 - C_6 - alkynyl, C_1 - C_6 - alkynyl
        alkoxy-C_1-C_6-alkyl or
         R^6 + R^7 = substituted or unsubstituted saturated or unsatur-
 5
         ated 2- to 4-membered carbon chain which may bear an oxo
         substituent, it being possible for one member to be replaced
        by -0-, -S- or -N-;
        R^8 = H, CN, C_1 - C_6 - alkyl, C_3 - C_6 - alkenyl, C_3 - C_6 - alkynyl, C_1 - C_6 - alkynyl
        haloalkyl, C_3-C_7-cycloalkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl or
10
        C<sub>1</sub>-C<sub>6</sub>-alkoxycarbonyl;
        R^{\overline{9}}, R^{12} = H, CN, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo-
        c_1-c_6-alkyl, c_1-c_6-alkylcarbonyl, c_1-c_6-alkoxycarbonyl;
        R^{10} = H, O-R^{17}, S-R^{17}, substituted or unsubstituted C_1-C_6
        alkyl, C_3 - C_6-alkenyl, C_3 - C_6-alkynyl, C_1 - C_6-haloalkyl, C_3 - C_7-
15
        cycloalkyl, C_1-C_6-alkylthio-C_1-C_6-alkyl, -N(R<sup>15</sup>)R<sup>16</sup> or sub-
         stituted or unsubstituted phenyl;
        R^{17} = H, C_1 - C_6 - alkyl, C_3 - C_6 - alkenyl, C_3 - C_6 - alkynyl, C_3 - C_7 - alkynyl
         cycloalkyl, C_2-C_6-haloalkyl, C_3-C_6-haloalkenyl,cyano-C_1-C_6-
        alkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl or C_1-C_6-alkyl-oximino-C_1-C_6-
20
        alkyl, C_1-C_6-alkoxycarbonyl or substituted or unsubstituted
         phenyl;
        R^{11} = H, CN, halogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6
        alkynyl, C_1-C_6-alkoxy-C_1-C_6-alkyl, C_1-C_6-alkylcarbonyl, C_1-C_6-alkoxycarbonyl, -NR<sup>18</sup>R<sup>19</sup>, where R<sup>18</sup>, R<sup>19</sup> have one of the
25
        meanings for {\sf R}^{15}, {\sf R}^{16}, substituted or unsubstituted phenyl;
         R^{13} = H, CN, C_1 - C_6 - alkyl, C_1 - C_6 - alkoxycarbonyl;
         R^1 = halogen, CN, NO<sub>2</sub>, CF<sub>3</sub>;
         R^2 = H, halogen;
         R^3 = H, C_1 - C_6 - alkyl, C_3 - C_6 - alkenyl, C_3 - C_6 - alkynyl, C_3 - C_8 - alkynyl
30
         cycloalkyl, C_3-C_8-cycloalkylcarbonyl, C_1-C_6-cyanoalkyl, C_1-C_6-
         haloalkyl, C_1-C_6-alkoxy-C_1-C_6-alkyl, CHO, C_1-C_6-alkanoyl,
         c_1 - c_6-alkoxycarbonyl, c_1 - c_6-haloalkylcarbonyl, -N(R^{20})R^{21},
         where R^{20}, R^{21} have one of the meanings for R^{15}, R^{16}, substituted
         or unsubstituted phenyl or phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl;
35
         R^4 = H, CN, halogen, C_1-C_6-alkyl, C_2-C_6-alkenyl, C_2-C_6-alkynyl,
         c_3-c_7-cycloalkyl, c_1-c_6-haloalkyl, c_1-c_6-hydroxyalkyl, c_1-c_6-
```

cyanoalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl, substituted or unsubstituted phenyl; R^5 = H, CN, NO_2 , halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -hydroxy-alkyl, C_1 - C_6 -cyanoalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl, CHO, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, -N(R^{22}) R^{23} , where R^{22} , R^{23} have one of the meanings for R^{15} , R^{16} , substituted or unsubstituted phenyl or

 $R^4 + R^5 =$ substituted or unsubstituted, saturated or unsaturated 3- to 4-membered carbon chain (possibly with 1 to 3 heteroatoms),

with the proviso that R⁴ is not CF₃ at the same time as R⁵ is H when W is -CH=CH-CO-R¹⁰ where R¹⁰ is C₁-C₆-alkoxy or C₃-C₇-cycloalkoxy,

and the salts and enol ethers of I in which ${\sf R}^3$ is H.

The compounds I are suitable for the desiccation and defoliation of plants and as insecticides and herbicides.