PASSAGE SUMMARIZATION WITH RECURRENT MODELS FOR AUDIO-SHEET MUSIC RETRIEVAL

Luís Carvalho¹ and Gerhard Widmer¹,²
¹Institute of Computational Perception (CP-JKU), ²LIT Artificial Intelligence Lab

Task and Motivation

Audio-Sheet Music Retrieval (ASR):

- find the appropriate recording(s) from a database given a sheet music query, and vice versa
- raw data: audio recordings and scanned sheet music
- target: classical piano music

Limitations of deep-learning ASR methods:

- fine-grained annotated data for training
- Noteheads aligned to onsets
- we rely on synthetic data
- training samples are fixed in size
- different musical content in sample pairs
- global and local tempo variations

Our Approach and Proposed RNN Model

 learn cross-modal representations from longer and variablelength passages of music

 encode a pair of matching sequences of fixed-size snippets using GRUs

Benefits:

- weaker-level mappings
- handle the temporal mismatches

Experiments and Results

passage retrieval evaluation

	Audio-to-Score (A2S)					Score-to-Audio (S2A)				
	R@1	R@10	R@25	MRR	MR	R@1	R@10	R@25	MRR	MR
I MSMD (Full	ly synthe	tic)								
BL [1]	47.56	81.68	90.80	0.592	1	51.37	83.51	92.59	0.628	1
RNN	51.12	84.46	92.88	0.627	1	54.30	85.95	94.94	0.670	1
RNN-FT	55.27	87.98	95.02	0.651	1	56.32	87.12	96.44	0.697	1
RNN-FT-CCA	60.04	89.66	97.73	0.692	1	62.11	91.44	98.41	0.734	1
II RealScores_	Synth (S	heet musi	c scans ar	nd synthe	tic reco	ordings)				
BL [1]	20.19	55.47	74.99	0.343	7	25.15	70.27	83.11	0.391	5
RNN	25.09	61.24	78.27	0.374	5	30.15	72.47	86.89	0.439	3
RNN-FT	28.87	66.41	81.32	0.447	4	33.98	75.47	88.51	0.462	2
RNN-FT-CCA	33.36	69.49	83.88	0.481	3	37.35	79.22	89.95	0.538	1
III RealScores_	Rec (She	eet music	scans and	real reco	ordings))				
BL [1]	15.67	31.46	48.12	0.226	29	18.30	36.71	54.94	0.266	18
RNN	19.11	35.98	53.65	0.278	21	22.76	39.95	57.47	0.303	15
RNN-FT	22.39	39.53	57.19	0.338	18	26.76	42.77	59.38	0.371	7
RNN-FT-CCA	26.62	44.81	60.01	0.362	7	29.84	46.71	60.88	0.435	4

• embedding space analysis: pairwise cosine distances

contact email: <u>luis.carvalho@jku.at</u>