TD 1 : Révisions et espaces métriques

Définitions. Un espace métrique est la donnée d'un ensemble X et d'une application distance $d: X \times X \to \mathbb{R}_+$ telle que

- (séparation) pour tous $x, y \in X$, $d(x, y) = 0 \iff x = y$;
- (symétrie) pour tous $x, y \in X$, d(x, y) = d(y, x);
- (inégalité triangulaire) pour tous $x, y, z \in X$, $d(x, z) \le d(x, y) + d(y, z)$.

La boule ouverte de centre x et de rayon r > 0 est $B(x,r) = \{y \in X, d(x,y) < r\}$.

Une partie $O \subset X$ est ouverte si pour tout $x \in O$, il existe r > 0 tel que $B(x,r) \subset O$.

Une partie $F \subset X$ est fermée si elle est le complémentaire d'un ouvert.

Une suite $(x_n) \in X^{\mathbb{N}}$ converge vers $x \in X$, et on note $x_n \to x$, si $d(x_n, x) \to 0$ quand $n \to +\infty$. X est compact (au sens de Bolzano-Weierstrass) si de toute suite, on peut extraire une sous-suite convergente.

Exercice 1 : Intérieur et Adhérence

Soit (X, d) un espace métrique.

- 1. Montrer qu'une union quelconque d'ouverts de X est encore un ouvert. Que dire d'une intersection quelconque d'ouverts? D'une intersection finie d'ouverts?
- 2. Montrer qu'une intersection quelconque de fermés est un fermé. Que dire d'une union quelconque de fermée ? D'une union finie de fermés ?
- 3. Soit A une partie de X. Comment définir, avec ce qui précède, le plus grand ouvert inclus dans A? On l'appelle intérieur de A et on le note \mathring{A} . Comment définir le plus petit fermé qui contient A? On l'appelle adhérence de A et le note \overline{A} .
- 4. a) Montrer que l'adhérence de A est l'ensemble des limites possibles pour les suites à valeurs dans A:

$$\overline{A} = \{ x \in X \mid \exists (x_n) \in A^{\mathbb{N}}, \ x_n \longrightarrow x \}.$$

- b) Montrer que l'adhérence de A est le complémentaire de l'intérieur du complémentaire de A.
- 5. Au maximum, combien de sous-ensembles distincts peut-on créer en composant les opérations "prendre l'adhérence d'une partie" et "prendre l'intérieur d'une partie" : $A, \ \mathring{A}, \ \overline{A}, \ \overset{\circ}{\overline{A}}, \dots$?

Solution de l'exercice 1

1. Soit $(U_i)_{i\in I}$ une famille d'ouverts de X. Soit $U^* = \bigcup_{i\in I} U_i$. Pour montrer que U^* est ouvert, soit $x\in U^*$. Alors on dispose de $i_0\in I$ tel que $x\in U_{i_0}$. Donc il existe r>0 tel que $B(x,r)\subset U_{i_0}\subset U^*$, et par conséquent, U^* est ouvert. Une intersection quelconque d'ouverts n'est pas ouverte, par exemple

$$\bigcap_{n \ge 1}] - 1/n, 1/n [= \{0\}.$$

En revanche, une intersection finie d'ouverts est ouverte. Soit $U_1, ..., U_n$ des ouverts, $U^* = \bigcap_{i=1}^n U_i$. Soit $x \in U^*$, et pour i = 1, ..., n, soit $r_i > 0$ tel que $B(x, r_i) \subset U_i$.

Corentin Gentil 1 ENS Paris, DMA

Alors $r = \min(r_1, ..., r_n) > 0$ et $B(x, r) \subset U^*$. (On remarque que si $r_1 \leq r_2$, alors $B(x, r_1) \subset B(x, r_2)$).

2. Soit $(F_i)_{i\in I}$ une collection de fermés. Alors

$$\bigcap_{i \in I} F_i = \left(\bigcup_{i \in I} (F_i^C)\right)^C,$$

donc $\cap F_i$ est fermé comme complémentaire d'une union d'ouverts (chaque F_i^C est ouvert).

Les points suivants de la question 2 s'obtiennent de même par passage au complémentaire.

3. L'intérieur d'un ensemble A est défini comme le plus grand ouvert inclus dans A, et comme une union d'ouverts est ouverte, on peut écrire :

$$\mathring{A} = \bigcup_{O \subset A \text{ ouvert}} O.$$

De même,

$$\overline{A} = \bigcap_{A \subset F \text{ ferm\'e}} F.$$

De telles manipulations sont courantes dans différents domaines des mathématiques, notamment pour définir des notions comme "plus petit sous-groupe engendré" ou "tribu engendrée", etc.

4. a) Soit $\tilde{A} = \{x \in X \mid \exists (x_n) \in A^{\mathbb{N}}, x_n \longrightarrow x\}$. D'une part, $\tilde{A} \subset \overline{A}$. En effet, par l'absurde si $x \in \tilde{A} \setminus \overline{A}$, alors en particulier $x \in \overline{A}^C$ qui est ouvert, donc on dispose de r > 0 tel que $B(x,r) \cap \overline{A} = \emptyset$. Par conséquent, aucune suite à valeurs dans A ne peut converger vers x, ce qui contredit le fait que $x \in \tilde{A}$.

D'autre part, $\overline{A} \subset \widetilde{A}$. Il suffit pour cela d'observer que :

- \tilde{A} contient A (prendre une suite constante pour approcher les points de A).
- \tilde{A} est fermé. En effet, si $x \notin \tilde{A}$, alors on dispose de r > 0 tel que $B(x,r) \subset X \setminus \tilde{A}$. Sinon, pour $n \in \mathbb{N}$ quelconque, on dispose de $x_n \in \tilde{A}$ tel que $d(x_n, x) \leq 2^{-n}$. Comme $x_n \in \tilde{A}$, on dispose d'une suite à valeurs dans A convergeant vers x_n et en particulier de $y_n \in A$ tel que $d(y_n, x_n) \leq 2^{-n}$. Par inégalité triangulaire, $d(x, y_n) \leq 2^{-n+1}$, mais par hypothèse, $d(y_n, x) > r$ ce qui contredit $d(y_n, x) \to 0$.
- b) On veut montrer que $\overline{A} = (\mathring{A^C})^C$, soit, de façon équivalente, $\overline{A}^C = \mathring{A^C}$ (le terme de droite est l'intérieur du complémentaire). Procédons par double inclusion.
 - D'une part, $A \subset \overline{A}$, donc $\overline{A}^C \subset A^C$. \overline{A}^C est par conséquent un ouvert inclus dans A^C , donc il est inclus dans son intérieur par définition de l'intérieur. Ainsi, $\overline{A}^C \subset \mathring{A}^C$.
 - D'autre part, on veut montrer que $\mathring{A^C} \subset \overline{A}^C$. Notons $B = A^C$, l'inclusion que l'on veut montrer se réécrit $\mathring{B} \subset \overline{B^C}^C$. En passant au complémentaire, cette inclusion est équivalente à $\overline{B^C} \subset (\mathring{B})^C$. Or, $\overline{B^C}$ est le plus petit fermé contenant B^C , et $(\mathring{B})^C$ est clairement un fermé, qui contient B^C . D'où l'inclusion.

Corentin Gentil 2 ENS Paris, DMA

5. Tout d'abord, pour toutes parties A et B, $\mathring{A} = \mathring{A}$ et $\overline{\overline{B}} = \overline{B}$. En remarquant que le passage à l'adhérence et à l'intérieur sont des opérations croissantes pour l'inclusion, montrons maintenant que l'on a pour tout partie $A: \overline{\mathring{A}} = \overline{\mathring{A}}$. D'un côté,

$$\mathring{A} \subset \overline{\mathring{A}} \Rightarrow \mathring{A} = \mathring{\mathring{A}} \subset \overline{\mathring{\mathring{A}}}$$

$$\Rightarrow \overline{\mathring{\mathring{A}}} \subset \overline{\mathring{\mathring{A}}}.$$

De la même manière,

$$\overset{\circ}{\mathring{A}} \subset \overline{\mathring{A}} \Rightarrow \overset{\overline{\circ}}{\mathring{A}} \subset \overline{\overset{\circ}{\mathring{A}}} = \overline{\mathring{A}}.$$

On a donc bien la double inclusion. Par des manipulations similaires, ou tout simplement en passant au complémentaire,

$$\frac{\stackrel{\circ}{=}}{B} = \stackrel{\circ}{B}.$$

Ainsi, les seules parties que l'on peut espérer distinguer sont

$$A, \mathring{A}, \overline{\mathring{A}}, \frac{\mathring{\circ}}{\mathring{A}}, \overline{\overline{A}}, \overline{\overline{A}}, \frac{\overline{\circ}}{\overline{A}}.$$

On vérifie que pour l'ensemble suivant, ces 7 parties sont distinctes :

$$A = \{0\} \cup [1; 2[\cup]2; 3] \cup ([4; 5] \cap \mathbb{Q}).$$

Exercice 2: A vos suites

- 1. Dans \mathbb{R} , pour la distance usuelle, quelle est l'adhérence de :
 - a) un singleton $\{x\}$?
 - b) ℚ?
 - c) l'ensemble des valeurs d'une suite convergente $\{x_n, n \in \mathbb{N}\}$, où $(x_n) \in \mathbb{R}^{\mathbb{N}}$.
- 2. Dans $\mathbb{R}^n,$ où $n\geq 2,$ quelle est l'adhérence de :
 - a) $\mathbb{R} \times \{0\}^{n-1}$?
 - b) si n=2, la partie de \mathbb{R}^2 donnée par $\{(x,\sin(\frac{1}{x})), \mid x>0\}$?
- 3. Dans l'ensemble des fonctions bornées continues de \mathbb{R} dans \mathbb{R} muni de la norme infinie $\|\cdot\|_{\infty}$, quelle est l'adhérence des fonctions \mathcal{C}^{∞} à support compact?
- 4. Dans l'ensemble des fonctions continues de [0,1] dans \mathbb{R} muni de la norme infinie, quelle est l'adhérence de l'ensemble des fonctions continues, affines sur les segments $[2^{-n-1},2^{-n}]$ pour tout $n \in \mathbb{N}$?

Solution de l'exercice 2

- 1. a) Les singletons sont fermés donc égaux à leur adhérence.
 - b) L'adhérence de \mathbb{Q} dans \mathbb{R} est \mathbb{R} tout entier, en utilisant la définition séquentielle de l'adhérence, et pour $x \in \mathbb{R}$, en considérant $x_n = 2^{-n} \lfloor 2^n x \rfloor \in \mathbb{Q}$.

Corentin Gentil 3 ENS Paris, DMA

- c) Soit $(x_n) \in \mathbb{R}^{\mathbb{N}}$ une suite convergente dans R vers un réel l, et $A = \{x_n, n \in \mathbb{N}\}$. Alors $\overline{A} = \{x_n, n \in \mathbb{N}\} \cup \{l\}$. En effet, $A \cup \{l\} \subset \overline{A}$ car on peut trouver pour chaque point de $A \cup \{l\}$ une suite à valeurs dans A convergent vers ce point. De plus, cet ensemble est fermé car complémentaire d'un ouvert. En effet, si $x \in \mathbb{R} \setminus (A \cup \{l\})$, soit $r = \frac{|x-l|}{2}$ et soit $N \in \mathbb{N}$ tel que pour $n \geq N$, $|x_n l| \leq r$. Alors en prenant $r' = \frac{1}{2}\min\{|x x_k|, k \leq N\} \cup \{r\}$, on s'assure que $B(x, r) \cap (A \cup \{l\}) = \emptyset$, d'où le résultat.
- 2. a) $\mathbb{R} \times \{0\}^{n-1}$ est fermé car c'est un sous espace vectoriel de dimension finie.
 - b) Soit $B = \{(x, \sin(\frac{1}{x})), | x > 0\}$. Soit $(x_n, y_n) \in B^{\mathbb{N}}$ une suite convergente. Comme (x_n) est à valeurs strictement positives, distinguons deux cas :
 - soit $x_n \to x > 0$. Dans ce cas, par continuité de la fonction $t > 0 \mapsto \sin(1/t)$, alors $y_n \to \sin(1/x)$ donc la limite de la suite est dans B,
 - soit $x_n \to 0$, et dans ce cas les limites possibles pour (y_n) sont exactement les réels $y \in [-1, 1]$ (faire un dessin!).

Ainsi, $\overline{B} = B \cup \{0\} \times [-1, 1]$.

- 3. Soit $C = \mathcal{C}_c^{\infty}(\mathbb{R})$. L'adhérence de C est l'ensemble des fonctions continues qui tendent vers 0 en $\pm \infty$. D'une part, cet ensemble et fermé. D'autre part, si f est continue et tend vers 0 en $\pm \infty$, et pour $\varepsilon > 0$ montrons que l'on peut approcher f par une fonction de C à ε près.
 - Soit R > 0 tel que si $|x| \ge R$, $|f(x)| \le \varepsilon$. Par le théorème de Weierstrass (densité des polynômes dans l'espace des fonctions continues sur un segment), soit P un polynôme tel que $|P-f||_{[-R-1,R+1],\infty} \le \varepsilon$ (on applique le théorème de Weirestrass à la restriction de f au segment [-R-1,R+1]). Soit $h \in C$ telle que h=1 sur le segment [-R,R], h est à support dans [-R-1,R+1] et h est à valeurs dans [0,1]. Alors $Ph \in C$ et $||Ph-f|| \le 3\varepsilon$.
- 4. Soit *D* l'ensemble décrit dans l'énoncé. *D* est fermé donc égal à son adhérence. Il suffit de vérifier qu'une limite uniforme de fonctions affines sur un segment est affine sur un segment, ce qui est immédiat (c'est vrai pour la convergence simple).

Exercice 3 : Un produit dénombrable d'espaces métriques

Soit $((X_i, d_i))_{i \in \mathbb{N}}$ une famille d'espaces métriques. On considère l'espace produit $X = \prod_{i \in I} X_i$ dont les éléments sont les suites $(x_i)_{i \in I}$ telles que pour tout $i \in I, x_i \in X_i$.

- 1. Préliminaires : Convergence dominée pour les séries. Soient $(u_{n,k})_{(n,k)\in\mathbb{N}^2}$ une famille de suites réelles, $(l_k)_{k\in\mathbb{N}}$ et $(d_k)_{k\in\mathbb{N}}$ deux suites réelles. On suppose que :
 - $\forall k \in \mathbb{N}, u_{n,k} \to l_k \text{ quand } n \to \infty;$
 - $\forall k, n \in \mathbb{N}^2, |u_{n,k}| \leq |d_k|;$
 - $\sum_{k\in\mathbb{N}} |d_k| < +\infty$.

Montrer que la suite $s_n := \sum_{k \in \mathbb{N}} u_{n,k}$ est bien définie et converge vers une limite que l'on déterminera.

2. On définit sur $X \times X$ l'application

$$d: (x,y) \in X \times X \mapsto \sum_{i \in \mathbb{N}} \frac{1}{2^i} \min(1, d_i(x_i, y_i))$$

Montrer que d définit une distance sur X.

3. Soit $(x_n) \in X^{\mathbb{N}}$ et $x \in X$. Montrer l'équivalence (\star) :

$$x_n \to x \iff \forall i \in \mathbb{N}, (x_n)_i \to_{n \to \infty} x_i$$

4. Montrer que si pour tout $i \in \mathbb{N}$, X_i est compact, alors il en va de même pour (X, d).

Solution de l'exercice 3

1. La bonne définition de s_n est évidente par l'hypothèse de domination, qui implique d'ailleurs $|l_k| \leq d_k$. $L = \sum_{k \in \mathbb{N}} l_k$ est donc bien défini. On va montrer que $s_n \to L$. Pour cela, on va montrer que $\lim \sup |s_n - L| = 0$. Pour $N_0 \in \mathbb{N}$ fixé, on a :

$$|s_n - L| \le \left| \sum_{k=0}^{N_0} u_{n,k} - \sum_{k=0}^{N_0} l_k \right| + \sum_{k>N_0} |u_{n,k}| + \sum_{k>N_0} |l_k| \le \left| \sum_{k=0}^{N_0} u_{n,k} - \sum_{k=0}^{N_0} l_k \right| + 2 \sum_{k>N_0} |d_k|$$

On peut donc passer à la lim sup dans l'inégalité et on a :

$$\limsup |s_n - L| \le 2 \sum_{k > N_0} |d_k|$$

Ceci étant vrai pour tout $N_0 \in \mathbb{N}$, on peut faire $N_0 \to +\infty$ et on a bien $\limsup |s_n - L| \le 0$.

- 2. d est bien définie comme série absolument convergente. $d \ge 0$.La symétrie est évidente. Il faut vérifier l'inégalité triangulaire et la séparation vient du faite que $d(x,y) = 0 \iff \forall i \in \mathbb{N}, d_i(x_i, y_i) = 0 \iff \forall i \in \mathbb{N}, x_i = y_i \iff x = y$. Donc d est une distance.
- 3. Supposons $x_n \to x$ et soit $i \in \mathbb{N}$. $\min(1, d_i(x_i, (x_n)_i)) \le 2^i d(x_n, x) \to 0$ donc $(x_n)_i \to x_i$. Réciproquement, supposons que pour tout $i \in \mathbb{N}, (x_n)_i \to x_i$. On applique alors la question 1 à $u_{n,k} = \frac{1}{2^k} \min(1, d_k((x_n)_k, x_k)), l_k = 0, d_k = \frac{1}{2^k}$ et on montre que $d(x_n, x) \to 0$.
- 4. A ce stade, la seule notion de compacité connue est celle de Bolzano-Weirstrass : de toute suite, on peut extraire une sous-suite convergente (équivalent avec le critère de Borel-Lebesgue pour un espace métrique). On réalise une **extraction diagonale**. Soit $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$. Par compacité de chacun des X_i , on sait que l'on peut trouver $\phi_i:\mathbb{N}\longrightarrow\mathbb{N}$ strictement croissante telle que $x_{\phi_i(n)}^i\longrightarrow x_{\infty}^i$. Cependant, il n'y a aucune raison que $\phi_1=\phi_2=\dots$ On doit donc procéder autrement pour trouver une extraction pour les gouverner toutes.
 - Soit ϕ_1 qui convient pour (x_n^1) .
 - On considère maintenant la suite $(x_{\phi_1(n)}^2)$ à valeurs dans X_2 qui est compact. On peut donc extraire de cette suite une sous suite convergente. Ainsi, on dispose de ϕ_2 une extraction telle que $(x_{\phi_1\circ\phi_2(n)}^2)$ converge.
 - On considère maintenant la suite $(x^3_{\phi_1 \circ \phi_2(n)})$ à valeurs dans X_3 qui est compact. On procède de même pour que $(x^3_{\phi_1 \circ \phi_2 \circ \phi_3(n)})$ converge.
 - etc.

Pour construire l'extraction adaptée à (x_n) , définissons $\psi: n \mapsto \phi_1 \circ ... \circ \phi_n(n)$. Cela définit bien une extraction, et assure la convergence coordonnée par coordonnée, qui est bien la convergence définie par la distance.

Exercice 4 : Distance de Hausdorff sur l'ensemble des compacts

On note \mathcal{K} l'ensemble des compacts non vides de \mathbb{R}^d pour $d \geq 1$. Pour $A \in \mathcal{K}$, on pose

$$d_A: x \in \mathbb{R}^d \mapsto \inf_{a \in A} |x - a|$$

Enfin, pour A et $B \in \mathcal{K}$, on définit $\delta(A, B) = ||d_A - d_B||_{\infty}$.

- 1. Montrer que pour tous $A, B \in \mathcal{K}$, $\delta(A, B)$ est bien défini et que δ est une distance. (On l'appelle la distance de Hausdorff).
- 2. Pour $\varepsilon > 0$ et $A \in \mathcal{K}$, on pose

$$V_{\varepsilon}(A) := \{ x \in \mathbb{R}^d; d_A(x) \le \varepsilon \}$$

Soient A et $B \in \mathcal{K}$ et $\varepsilon > 0$. Montrer que $\delta(A, B) \leq \varepsilon \iff A \subset V_{\varepsilon}(B)$ et $B \subset V_{\varepsilon}(A)$.

3. On note \mathcal{K}_0 l'ensemble des parties finies non vides de \mathbb{R}^d . Montrer que \mathcal{K}_0 est dense dans \mathcal{K} . Indication : on pourra montrer que si $K \subset \mathbb{R}^d$ est compact, alors pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ et $x_1, \ldots, x_n \in K$ tels que $K \subset \bigcup_{i=1}^N B(x_i, \varepsilon)$.

Solution de l'exercice 4

1. Soient $A, B \in \mathcal{K}$. La bonne définition de d_A et d_B provient du fait que l'on minimise une fonction continue sur un compact. En outre, ces applications sont 1-Lipschitziennes donc continues. On doit alors montrer que $d_A - d_B$ est bornée. Pour cela, on remarque qu'il existe R > 0 tel que $A \cup B \subset B(0, R)$. Dès lors, si |x| > R, $d_A(x) \ge |x| - R$ et $d_B(x) \le |x| + R$, de sorte que $d_B(x) - d_A(x) \le 2R$. De même $d_A(x) - d_B(x) \le 2R$ et donc $d_A - d_B$ est bornée sur $\mathbb{R}^d \setminus B(0, R)$. Par continuité, elle est bornée sur $\overline{B(0, R)}$, donc bornée sur \mathbb{R}^d .

Vérifions les 3 axiomes de la définition d'une distance :

- séparation : supposons que $\delta(A, B) = 0$, de sorte que $d_A = d_B$. Si $x \in A$, $d_A(x) = 0 = d_B(x)$. Or B est fermé donc $x \in B$ et ainsi $A \subset B$. Symétriquement, $B \subset A$ et donc A = B.
- inégalité triangulaire : clair.
- symétrie : clair.
- 2. On suppose que $\delta(A, B) \leq \varepsilon$. Si $x \in A, d_A(x) = 0$, donc $d_B(x) \leq \varepsilon$. Ainsi, il existe $y \in B, |x y| \leq \varepsilon$ et donc $x \in V_{\varepsilon}(B)$. On montre de même que $B \subset V_{\varepsilon}(A)$. Réciproquement, on suppose que $B \subset V_{\varepsilon}(A)$ et $A \subset V_{\varepsilon}(B)$. Montrons que $d_A d_B \leq \varepsilon$. Soit $x \in \mathbb{R}^d$ et soit $b \in B$ tel que $d_B(x) = |x b|$. Puisque $b \in V_{\varepsilon}(A)$, il existe $a \in A$ tel que $|a b| \leq \varepsilon$. Mais alors, $d_A(x) \leq |x a| \leq |x b| + |a b|$ et donc $d_A(x) d_B(x) \leq \varepsilon$. De même, $d_B d_A \leq \varepsilon$, ce qui prouve le résultat souhaité.
- 3. Soit $A \in \mathcal{K}$ et $\varepsilon > 0$. Par compacité de A, il existe $X \in \mathcal{K}_0$ tel que $X \subset A$ et $A \subset \bigcup_{x \in X} B(x, \varepsilon)$, et donc $A \subset V_{\varepsilon}(X)$. Par la question précédente $\delta(A, X) \leq \varepsilon$.

Exercice 5 : Distance ultramétrique

Corentin Gentil 6 ENS Paris, DMA

Soit (X, d) un espace métrique. On dit que d est ultramétrique si elle vérifie de plus la propriété (plus forte que l'inégalité triangulaire) :

$$\forall x, y, z \in X, d(x, z) \le \max(d(x, y), d(y, z))$$

- 1. Montrer que pour tous $x, y, z \in X$, $d(x, y) \neq d(y, z) \implies d(x, z) = \max(d(x, y), d(y, z))$.
- 2. Montrer que tout point d'une boule ouverte en est un centre.
- 3. Étant donnée deux boules ouvertes, montrer que ou bien l'une est incluse dans l'autre, ou bien elles sont disjointes.
- 4. (**Exemple : La distance p-adique**). Soit p un nombre premier. Tout nombre rationnel non nul x peut s'écrire de manière unique sous la forme $x = p^n \frac{a}{b}$ avec $n \in \mathbb{Z}$, $a \in \mathbb{Z}^*, b \in \mathbb{N}^*$ premiers avec p et premiers entre eux et on pose $v_p(x) = n$. On définit sur $\mathbb{Q} \times \mathbb{Q}$,

$$d_p(x,y) = \begin{cases} 0 \text{ si } x = y\\ p^{-v_p(x-y)} \text{ sinon} \end{cases}$$

- a) Montrer que d_p définit une distance ultramétrique.
- b) Montrer que $p^n \to 0$ quand $n \to \infty$.

Solution de l'exercice 5

- 1. Supposons par exemple que d(x,y) < d(y,z) et montrons que d(x,z) = d(y,z). L'inégalité $d(x,z) \le d(y,z)$ est claire. L'autre sens s'obtient en remarquant que $d(y,z) \le \max(d(x,z),d(x,y))$ et que l'on ne peut pas avoir $d(x,y) \ge d(x,z)$ sinon notre hypothèse serait contredite.
- 2. Soit $y \in B(x,r)$. On vérifie que B(x,r) = B(y,r) aisément : si $z \in B(x,r), d(y,z) \le \max(d(x,y),d(x,z)) < r$. De même, $x \in B(y,r)$ donc $d(x,z) \le d(y,z)$ pour tout $z \in B(y,r)$.
- 3. Si deux boules B(x,r) et $B(y,\rho)$ ne sont pas disjointes et $z \in B(x,r) \cap B(y,\rho)$, alors B(x,r) = B(z,r) et $B(y,\rho) = B(z,\rho)$ par la question précédente donc si par exemple $r \le \rho, B(x,r) \subset B(y,\rho)$.
- 4. a) La séparation et la symétrie sont claires. Il suffit de vérifier l'inégalité ultramétrique (qui implique l'inégalité triangulaire), qui est une conséquence de

$$v_p(a+b) \ge \min(v_p(a), v_p(b))$$

que l'on vérifie aisément en écrivant $a=p^n\frac{x}{y}, b=p^m\frac{c}{d}$ et donc si par exemple $n=\min(n,m),$

$$a+b = p^{n}\left(\frac{x}{y} + p^{m-n}\frac{a}{b}\right) = p^{n}\frac{A}{yb}$$

où p ne divise pas yb (mais éventuellement A) de sorte que $v_p(a+b) \ge n$. b) $v_p(p^n) = \frac{1}{p^n} \to 0$ donc $p^n \to 0$.

Exercice 6: Limites supérieure et inférieure

Corentin Gentil 7 ENS Paris, DMA

Soit (u_n) une suite réelle. On définit les quantités suivantes, à valeurs dans $\mathbb{R} \cup \{-\infty, +\infty\}$:

$$\liminf_{n} u_n := \sup_{n \in \mathbb{N}} \inf_{k \ge n} u_k \quad , \quad \limsup_{n} u_n := \inf_{n \in \mathbb{N}} \sup_{k > n} u_k$$

1. Vérifier que les suites $(\inf_{k\geq n} u_k)_{n\in\mathbb{N}}$ et $(\sup_{k\geq n} u_k)_{n\in\mathbb{N}}$ sont respectivement croissantes et décroissantes. En déduire que :

$$\lim\inf_n u_n \coloneqq \lim_{n \to +\infty} \inf_{k \ge n} u_k \quad ; \quad \limsup_n u_n \coloneqq \lim_{n \to +\infty} \sup_{k \ge n} u_k$$

- 2. a) On suppose que (u_n) est majorée. Montrer que $l = \limsup_n u_n$ est une valeur d'adhérence de (u_n) i.e. il existe une extraction $\phi : \mathbb{N} \to \mathbb{N}$ telle que $u_{\phi(n)} \to l$.
 - b) Que dire si (u_n) est minorée? Quel théorème est ainsi démontré?
 - c) Que dire si (u_n) est non majorée? non minorée?
- 3. Soit l une valeur d'adhérence de (u_n) . Montrer que $\liminf_n u_n \leq l \leq \limsup_n l$.
- 4. Montrer que (u_n) converge si et seulement si $\limsup_n u_n = \liminf_n u_n$ et que dans ce cas, $\lim_{n\to\infty} u_n = \limsup_n u_n = \liminf_n u_n$. On pourra se contenter du cas (u_n) bornée.
- 5. a) Soit $(u_n), (v_n)$ deux suites réelles telles pour tout $n \in \mathbb{N}, u_n \leq v_n$. Vérifier que

$$\liminf_{n} u_n \le \liminf_{n} v_n \quad ; \quad \limsup_{n} u_n \le \limsup_{n} v_n$$

- b) Réinterpréter le "théorème des gendarmes" à partir de ces constatations.
- 6. Applications.
 - a) **Théorème de Cauchy-Hadamard.** Soit (a_n) une suite complexe. Montrer que le rayon de convergence $R \in [0, +\infty]$ de la sérié $\sum a_n z^n$ est donné par la formule :

$$\frac{1}{R} = \limsup_{n} |a_n|^{\frac{1}{n}}$$

- b) **Lemme de Fekete.** Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle sous-additive i.e. telle que pour tous $n, m \in \mathbb{N}, u_{n+m} \leq u_n + u_m$.
 - i Soit $k \in \mathbb{N}^*$ fixé. Montrer qu'il existe $c_k \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}$,

$$\frac{u_n}{n} \le \frac{u_k}{k} + \frac{c_k}{n}$$

- ii En déduire que $\frac{u_n}{n} \to \inf_k \frac{u_k}{k} \in \mathbb{R} \cup \{-\infty\}$.
- c) Soit (E, d) un espace métrique. On considère deux suites de fonctions de E dans \mathbb{R} , $(f_n), (g_n)$ et $f: E \to \mathbb{R}$ telles que :
 - (a) Pour tout $n \in \mathbb{N}$, f_n et g_n sont continues;
 - (b) Pour tout $n \in \mathbb{N}$ et $x \in E$, $f_n(x) \le f(x) \le g_n(x)$;
 - (c) Pour tout $x \in E$, $f_n(x) \to f(x)$, $g_n(x) \to f(x)$.

Montrer que f est continue.

Solution de l'exercice 6

- 1. $\{u_k, k \geq n\} \subset \{u_k, k \geq n-1\}$ donc $\inf_{k \geq n-1} u_k \leq \inf_{k \geq n} u_k$. De même pour la suite des supremums.
 - Les égalités à montrer proviennent du fait qu'une suite croissante converge (au sens large, en incluant $\pm \infty$) vers le supremum des valeurs qu'elle prend. Idem pour une suite décroissante et l'infimum des valeurs qu'elle prend.
- a) Par récurrence, supposons que l'on a construit $\phi(0) < ... < \phi(n)$ tels que $|l u_{\phi(n)}| \le$ 2^{-k} . Alors soit $\psi(n+1) > \phi(n)$ tel que $\sup_{k \ge \psi(n+1)} u_k \ge l - 2^{-n-2}$, qui existe par définition du sup, et soit $\phi(n+1) \ge \psi(n+1)$ tel que $u_{\phi(n+1)} \ge \sup_{k \ge \psi(n+1)} u_k - 2^{-n-2}$. Alors on a bien $u_{\phi(n+1)} \ge l - 2^{-n-1}$, d'où la construction de l'extraction.
 - b) Si (u_n) est minorée, on montre le même résultat avec la liminf. Ainsi, si (u_n) est bornée, on retrouve le théorème de Bolzano-Weierstrass.
 - c) Si (u_n) n'est pas majorée, sa limite supérieure vaut $+\infty$ et on dispose toujours d'une sous-suite qui converge vers la limite supérieure de u.
- 3. Par l'absurde, supposons (quitte à considérer -u), que $l > \limsup u_n$. Soit

$$l' \in (\limsup u_n, l).$$

Alors on dispose d'une infinité de termes u_k tels que $u_k > l'$. Par conséquent, pour tout n, $\sup_{k>n} u_k \ge l'$, ce qui contredit $l' > \limsup u_n$.

- Si (u_n) converge vers l, comme on a vu que les limites sup et inf sont aussi valeurs d'adhérence, $l = \limsup u_n = \liminf u_n$ par unicité de la valeur d'adhérence d'une suite convergente.
 - Réciproquement, si on a égalité des limites sup et inf, on est dans le cas d'une suite bornée qui possède une unique valeur d'adhérence, donc cette suite est convergente.
- a) Ces inégalités sont immédiates par définition des bornes supérieure et inférieure 5. d'un ensemble.
 - b) Si $u_n \le v_n \le w_n$ et $\lim_n u_n = \lim_n w_n$, alors en combinant les questions 5a et 4, on retrouve le théorème des gendarmes.
- 6. a) Rappelons que par le lemme d'Abel, le rayon de convergence d'une série est défini comme le sup des r > 0 tels que $(a_n r^n)$ est bornée. Ainsi, si r > R, on a $\limsup_{n} |a_n|^{\frac{1}{n}} r > 1$, donc $|a_n| r^n$ n'est pas bornée (on extrait une sous suite convergente vers la limite sup, et on observe qu'en élevant à la puissance n, la sous-suite extraite tend vers l'infini).

En revanche, si r < R, $\limsup_{n} |a_n|^{\frac{1}{n}} r < 1$ donc la suite $|a_n|^{\frac{1}{n}} r$ est bornée par 1 à partir d'un certain rang, donc en élevant à la puissance n, est globalement bornée, d'où le résultat.

b) i – On veut montrer que $u_n \leq \frac{n}{k}u_k + c_k$. Pour cela, si k est fixé, il suffit d'écrire la division euclidienne de n par k, à savoir n = qk + r, puis d'écrire que par sous-additivité, $u_n \leq qu_k + u_r$. Ainsi, en remarquant que $q = \frac{n-r}{k}$,

$$u_n \le \frac{n}{k} u_k - \frac{r}{k} u_k + u_r,$$

ce qui donne le résultat en notant $c_k = \sup_{r=0,\dots,k-1} -\frac{r}{k}u_k + u_r$. ii – D'une part, $\limsup_n \frac{u_n}{n} \leq \limsup_n \frac{u_k}{k} + \frac{c_k}{n} = \frac{u_k}{n}$ par la question 5a, et parce que la suite $(\frac{u_k}{k} + \frac{c_k}{n})_n$ est convergente. Comme c'est vrai pour tout $k \geq 1$, on en déduit $\limsup_n \frac{u_n}{n} \leq \inf_k \frac{u_k}{k}$. D'autre part, par définition de la limite inf d'une suite, $\liminf_n \frac{u_n}{n} \geq \inf_{n \in \mathbb{N}^*} \frac{u_n}{n}$. Ainsi, $\liminf_n \frac{u_n}{n} = \limsup_n \frac{u_n}{n}$, d'où la convergence vers $\inf_k \frac{u_k}{k}$.

c) Soit $(x_p) \in E^{\mathbb{N}}$, telle que $x_p \to x \in E$. On veut montrer que $f(x_p) \to f(x)$. Soit $l_1 = \liminf_p f(x_p)$ et $l_2 = \limsup_p f(x_p)$. Alors pour $n \in \mathbb{N}$,

$$f_n(x) = \liminf_p f_n(x_p) \le l_1,$$

où la première égalité est vraie par continuité de f_n . Ceci étant vrai pour tout n, on en déduit $f(x) \leq l_1$. De même, $l_2 \leq f(x)$ en appliquant le même raisonnement à g_n et avec une limite sup. Ainsi, $l_1 = l_2 = f(x)$, d'où la continuité.

Corentin Gentil 10 ENS Paris, DMA

Exercice 7 : Ensemble triadique de Cantor

Soit \mathcal{T}_k , $k \in \{0, 1, 2\}$ l'application qui à un intervalle $I = [a, b] \subset [0, 1]$ lui associe l'intervalle de [0, 1], $J = [a + \frac{k(b-a)}{3}, a + \frac{(k+1)(b-a)}{3}]$. On définit par récurrence une suite de familles finies d'intervalles compacts de [0, 1] par $I_0 = \{[0, 1]\}$ et

$$I_{n+1} = \bigcup_{I \in I_n} \{ \mathcal{T}_0(I), \mathcal{T}_2(I) \}$$

On pose alors $K_n = \bigcup_{I \in I_n} I$ et $K = \bigcap_{n \in \mathbb{N}} K_n$.

- 1. Montrer que K est compact.
- 2. Montrer que l'application

$$f: x \in \{0, 1\}^{\mathbb{N}^*} \mapsto \sum_{n \in \mathbb{N}^*} \frac{2x_n}{3^n} \in [0, 1]$$

a pour image K et réalise un homéomorphisme, où l'on munit $\{0,1\}^{\mathbb{N}^*}$ de la distance de l'exercice 2.

3. Montrer que K est d'intérieur vide.

Solution de l'exercice 7

- 1. K est fermé comme intersection de fermés, et borné donc compact.
- 2. On vérifie par récurrence que K_n est réunion de 2^n intervalles de taille 3^{-n} . En outre, si $j = (j_1, \ldots, j_n) \in \{0, 1\}^n$, $a_j = \sum_{i=1}^n \frac{2j_i}{3^i}$ alors,

$$K_n = \bigcup_{j \in \{0,1\}^n} [a_j, a_j + \frac{1}{3^n}]$$

- Im $(f) \subset K$: Soit $x = \sum_{i=1}^{n} \frac{2x_i}{3^i} \in \text{Im}(f)$. Soit $n \in \mathbb{N}$. On pose $j = (x_1, \dots, x_n)$ et on vérifie que $a_j \leq x \leq a_j + \frac{1}{3^n}$ de sorte que $x \in K_n$ et donc $x \in K$.
- $K \subset \text{Im}(f)$. Soit $x \in K$. On peut écrire x en base $3: x = \sum_{i=1}^{\infty} \frac{y_i}{3^i}$. Premier cas: il existe $n \in \mathbb{N}^*$ et $j \in \{0,1\}^n$ tel que $x = a_j$ ou $x = a_j + \frac{1}{3^n}$. Alors, $x = f(j,0,0,\dots) \in \text{Im}(f)$ ou $x = f(j,1,1\dots) \in \text{Im}(f)$. Deuxième cas: L'assertion précédente est fausse. Soit $n \in \mathbb{N}^*$ et supposons par exemple que $a_j < x < a_j + \frac{1}{3^n}$ pour tous $j \in \{0,1\}^n$. L'unicité de l'écriture propre en base 3 assure que les n premiers chiffres en base 3 de x sont $(2j_1,\dots,2j_n)$ et donc $x \in \text{Im}(f)$.
- f est injective : c'est essentiellement l'unicité de l'écriture propre en base 3. (soit refaire la preuve, soit adapter en remarquant que f donne soit l'écriture propre soit l'écriture impropre d'un nombre).
- f est continue : si $x, y \in \{0, 1\}^{\mathbb{N}^*}$,

$$|f(x) - f(y)| \le \sum_{i=1}^{\infty} \frac{2}{3^i} d(x_i, y_i) \le 2 \sum_{i=1}^{\infty} \frac{1}{2^i} \min(1, d(x_i, y_i)) = 2d(x, y)$$

et f est Lipschitzienne donc continue.

- f est un homéomorphisme : f est un bijection continue et $\{0,1\}^{N^*}$ est compact (cf. exo 1). On va montrer que cela suffit pour que f soit un homéomorphisme. Il suffit de montrer que l'image par f de tout ouvert est ouvert ou bien de tout fermé est fermé. Or, si $F \subset K$ est fermé, il est compact, et l'image d'un compact par une application continue est compact, donc fermé!
- 3. Si \mathring{K} est non vide, il contient un intervalle centré en un point $x \in K$ et de taille plus petite qu'un certain $\frac{1}{3^N}$. Si $x = \sum_{n=1}^{\infty} \frac{2x_n}{3^n}$, le point $y = \sum_{n=1}^N \frac{2x_n}{3^n} + \frac{1}{3^{N+1}}$ est dans cet intervalle mais pas dans K. C'est absurde. Donc $\mathring{K} = \emptyset$.

Exercice 8 : Théorème de plongement de Arens-Eells

Soit X un espace métrique, $x_0 \in X$, \mathcal{F} l'ensemble des parties finies non vides de X et $\mathcal{B}(\mathcal{F})$ l'espace vectoriel des fonctions bornées de \mathcal{F} dans \mathbb{R} muni de la norme uniforme. Pour tout $x \in X$, on note

$$f_x: A \in \mathcal{F} \mapsto d(x,A) - d(x_0,A) \in \mathbb{R}$$

Montrer que $x \mapsto f_x$ est une isométrie de X sur son image dans $\mathcal{B}(\mathcal{F})$. En déduire que tout espace métrique est isométrique à un fermé d'un sous-espace vectoriel normé.

Solution de l'exercice 8

Soit $x \in X$.

Si $A \in \mathcal{F}$, il existe a_0 tel que $d(x_0, A) = d(x_0, a_0)$. On a alors

$$f_x(A) = d(x, A) - d(x_0, a_0) \le d(x, a_0) - d(x_0, a_0) \le d(x, x_0)$$

De même, on montre que $-f_x(A) = d(x_0, A) - d(x, A) \le d(x, x_0)$. On en déduit que $f_x \in \mathcal{B}(\mathcal{F})$ et que $||f_x||_{\infty} \le d(x, x_0)$.

Si $A = \{x\}, d(x, A) = 0$ et $d(x_0, A) = d(x_0, x)$ donc on a en fait égalité :

$$||f_x||_{\infty} = d(x, x_0)$$

On observe que si x et $y \in X$, $f_x - f_y = d(x, \dot) - d(y, \dot)$. On a donc juste changer le point de base x_0 en y, de sorte que l'on a

$$||f_x - f_y||_{\infty} = d(x, y)$$

Ceci démontre que $\phi: x \mapsto f_x$ est une isométrie.

Attention néanmoins! Il n'y a aucune raison que $\phi(X)$ soit fermé dans $\mathcal{B}(\mathcal{F})$. (On peut montrer que si X est complet, alors c'est le cas). On considère plutôt $V = \text{Vect}(f_x, x \in X)$ et on montre que $\phi(X)$ est fermé dans V.

Soit $(x_n) \in X^{\mathbb{N}^*}$ telle que (f_{x_n}) converge vers $f \in V$. On peut écrire $f = \sum_{i=1}^N f_{y_i}$ avec $y_1, \ldots, y_N \in X$. Posons alors $A = \{x_0, y_1, \ldots, y_N\}$ qui vérifie f(A) = 0. On a alors $f_{x_n}(A) \to 0$ et donc $d(x_n, A) \to 0$. Montrons alors qu'il existe $z \in A$ tel que $x_n \to z$.

Posons pour cela $\epsilon := \inf_{a,b \in A} d(a,b)$. Il existe $N \in \mathbb{N}$ tel que pour tout $n, p \geq N$,

$$d(x_n, A) < \frac{\epsilon}{4} ; d(x_n, x_p) < \frac{\epsilon}{4}$$

Corentin Gentil 12 ENS Paris, DMA

(Le 2ème point vient du fait que ϕ est une isométrie que et (f_{x_n}) converge). Soit alors $z \in A$ tel que $d(x_N, A) = d(x_N, z)$. Si $n \ge N, d(x_n, z) \le d(x_n, x_N) + d(x_N, z) < \epsilon/2$. Or, par définition de ϵ , si $y \in A, y \ne z, d(x_n, z) \ge d(y, z) - d(x_n, z) \ge \epsilon/2$. Ainsi, pour tout $n \ge N, d(x_n, A) = d(x_n, z)$ et par suite, $x_n \to z$. Ainsi, $f_{x_n} \to f_z$ et donc $f = f_z$, ce qui achève la démonstration.

Exercice 9 : Théorème de plongement de Tietze

On souhaite démontrer le théorème suivant :

Théorème. Soient (X, d) un espace métrique, $F \subset X$ fermé et $f : F \to \mathbb{R}$ continue et bornée. Alors il existe une application continue $g : X \to \mathbb{R}$ prolongeant f et ayant mêmes bornes inférieures et supérieures.

On considère donc X, F et f comme dans l'énoncé.

1. Pourquoi peut-on supposer que $m = \inf_{x \in F} f(x) > 0$? C'est ce que nous supposerons par la suite.

On définit
$$g$$
 comme suit : $g(x) = \begin{cases} f(x) \text{ si } x \in F \\ \inf_{y \in G} f(y) \frac{d(x,y)}{d(x,F)} \text{ sinon} \end{cases}$

- 2. Vérifier que g est bien définie et que g prolonge f.
- 3. Montrer que f et g ont même bornes.
- 4. Montrer que g est continue et conclure.

Solution de l'exercice 9

- 1. Il suffit de translater f pour se ramener au cas où $\inf_{x \in F} f(x) > 0$.
- 2. Si $x \notin F, d(x, F) \neq 0$ donc l'inf est bien défini et g est bien définie. g prolonge f clairement.
- 3. Pour l'inf, on a pour commencer inf $g \le \inf f$ car $\operatorname{Im} f \subset \operatorname{Im} g$. Pour le sens réciproque, on remarque déjà que si $x \in F, g(x) = f(x) \ge \inf f$. De plus, si $x \notin F, \frac{d(x,y)}{d(x,F)}f(y) \ge f(y) \ge \inf f$ et donc $g(x) \ge \inf f$. D'où $\inf g = \inf f$. Pour le sup, on a pour commencer sup $g \ge \sup f$ car $\operatorname{Im} f \subset \operatorname{Im} g$. Pour le sens réciproque, on remarque déjà que si $x \in F, g(x) = f(x) \le \sup f$. De plus, si $x \notin F$, il existe $y \in F$ tel que $\frac{d(x,y)}{d(x,F)}f(y) \le (1+\epsilon)f(y) \le (1+\epsilon)\sup f$ et donc $g(x) \le (1+\epsilon)\sup f$. En faisant $\epsilon \to 0$, on a bien $g(x) \le \sup f$. D'où $\sup g = \sup f$.
- 4. Continuité en $x_0 \notin F$: Soit $\epsilon > 0$. Il existe $\eta > 0$ tel que pour tout $x \in B(x_0, \eta)$, d(x, F) > c car $d(\cdot, F)$ est continue. Dans ce cas, $B(x_0, \eta) \subset F^c$. Soient x et $z \in B(x_0, \eta)$.

Corentin Gentil 13 ENS Paris, DMA

On peut trouver $y \in F$ tel que $f(y) \frac{d(x,y)}{d(x,F)} \le g(x) + \epsilon$. et

$$\begin{split} g(z) & \leq f(y) \frac{d(z,y)}{d(z,F)} \leq f(y) \frac{d(x,y) + d(x,z)}{d(z,F)} \\ & \leq f(y) \frac{d(x,y)}{d(z,F)} + \frac{2\eta \sup f}{c} \\ & \leq f(y) \frac{d(x,y)}{d(x,F)} + f(y) \frac{d(x,y)}{d(x,F)} \left(\frac{d(x,F) - d(z,F)}{d(z,F)} \right) + \frac{2\eta \sup f}{c} \\ & \leq g(x) + \epsilon + (g(x) + \epsilon) \frac{d(x,z)}{c} + \frac{2\eta \sup f}{c} \\ & \leq g(x) + \epsilon + \frac{(2\sup f + \epsilon)2\eta}{c} \end{split}$$

et donc si l'on choisit η assez petit, $g(z) \leq g(x) + 2\epsilon$. On peut inverser les rôles de x et z et donc pour tous $x, z \in B(x_0, \eta), |g(x) - g(z)| \leq 2\epsilon$, ce qui prouve la continuité de g en x_0 .

Continuité en $x_0 \in F$: il existe $0 < \eta < \min(1, \epsilon)$ tel que pour tous $y \in B(x_0, \eta) \cap F$, $|f(x_0) - f(y)| \le \epsilon$. Par continuité de la distance à une partie, il existe U, un voisinage de x_0 , tel que pour tout $x \in U$, $d(x, F) \le \frac{\eta}{2(1+\eta)}$. Soit alors $x \in U \cap B(x_0, \eta/2) \setminus F$. Il existe $y \in F$ tel que $d(x, y) \le d(x, F)(1 + \eta)$. Dans ce cas, $d(x, y) \le \eta/2$ et donc $d(x, x_0) < \eta$ de sorte que

$$g(x) \le f(y) \frac{d(x,y)}{d(x,F)} \le (1+\eta)(f(x_0) + \epsilon) \le f(x_0) + \eta(\sup f + \epsilon) + \epsilon$$

Il existe un voisinage V de x_0 tel que pour tout $x \in V$, $\frac{1}{m}(\eta d(x,F)+f(x_0)d(x,x_0)) \leq \eta/2$. Si $x \in V \cap B(x_0,\eta/2) \setminus F$ il existe $z \in F$ tel que $g(x)+\eta \geq f(z)\frac{d(x,z)}{d(x,F)}$. Dans ce cas, $d(x,z) \leq \frac{1}{m}(\eta d(x,F)+f(x_0)d(x,x_0))) \leq \eta/2$ puisque $g(x) \leq f(x_0)$ et $d(x,F) \leq d(x,x_0)$ et donc $|f(z)-f(x_0)| \leq \epsilon$. On a alors:

$$g(x) \ge f(z)\frac{d(x,z)}{d(x,F)} - \eta \ge (f(x_0) - \epsilon) - \eta \ge f(x_0) - 2\epsilon$$

En conclusion, si $x \in U \cap V \cap B(x_0, \eta/2)$ et si η est assez petit, $|g(x_0) - g(x)| \le 2\epsilon$, ce qui conclut la démonstration.

Corentin Gentil 14 ENS Paris, DMA