Started on	Monday, 17 February 2025, 10:22 AM
State	Finished
Completed on	Monday, 17 February 2025, 10:28 AM
Time taken	5 mins 51 secs
Grade	7.00 out of 10.00 (70%)

Question 1

Correct

Mark 2.00 out of 2.00

Suppose the NFA, M=(Q, Σ , q_0 , A, δ) where Q={ q_0 , q_1 , q_2 }, Σ ={0,1}, A={ q_2 } and δ specified as follows is given.

Current State q	δ(q,0)	δ(q,1)
q 0	{q ₀ }	{q ₀ , q ₁ }
q ₁	{q ₂ }	{q ₂ }
q ₂	Ø	Ø

To find an equivalent DFA, M1=(Q1, Σ , {q0}, A1, δ_1), complete the following table with suitable values for each state.

Current State q	δ1(q,0)	δ1(q,1)
{q ₀ }	{q ₀ }	{q0,q1}
{q0,q1}	{q ₀ , q ₂ }	{q0,q1,q2}
{q ₀ ,q ₂ }	{q ₀ }	{q0,q1}
{q0,q1,q2}	{q0, q2}	{q0,q1,q2}

Question 2 Incorrect Mark 0.00 out of 3.00				
	the correct statement(s) about Finite Automata and Regular Languages. one or more:			
□ a.	If L_1 = {strings containing 1001} and L_2 = {strings not containing 1001}, then the minimum state DFAs for L_1 and L_2 have an equal number of states.			
✓ b.	An NFA accepts a string w only if every path that corresponds to w starts from the initial state and terminates in an accepting state.			
□ c.	A DFA that accepts the language L = $\{0^n1^n \mid n \ge 0\}$ has at least n states.			
□ d.	The language L = $\{ww^R \mid w \in \Sigma^* \text{ with } \Sigma = \{0,1\}\}$ is regular. (Here w^R represents the reverse of string w)			
Question	3			
Correct				
Mark 2.00	out of 2.00			

Consider the language L given by expression (a|b)*b(a|b) over the alphabet $\{a,b\}$. What is the **minimum number of states** and the **number of accepting states**, respectively, in **DFA** that accepts the language L?

Select one:

- a. Number of states = 5 and number of accepting states = 1
- \bigcirc b. Number of states = 4 and number of accepting states = 1
- Od. Number of states = 5 and number of accepting states = 2

Question 4

Correct

Mark 1.00 out of 1.00

Consider the following FA.

What regular expression is represented by this FA?

Select one:

- A. (α|b)
- B. (ab|ba)*
- C. ∧
- D. (a|b)+

Question 5

Correct

Mark 2.00 out of 2.00

Consider the following Nondeterministic Finite Automaton (NFA):

$$M = (Q, \Sigma, q_0, A, \delta)$$

- $\begin{array}{l} \boldsymbol{\cdot} \, Q = \{q_0, q_1, q_2\} \\ \boldsymbol{\cdot} \, \boldsymbol{\Sigma} = \{0, 1\} \\ \boldsymbol{\cdot} \, A = \{q_2\} \end{array}$

- The transition function is defined as follows:

State	$\delta(q,0)$	$\delta(q,1)$
q_0	$\{q_0, q_1\}$	$\{q_0\}$
q_1	ϕ	$\{q_2\}$
q_2	ϕ	ϕ

Using subset construction, which of the following sets represents the accepting states in the equivalent DFA?

Select one:

$$\ \, \circ \ \, \text{a.} \ \, \big\{ \{q_0,q_1,q_2\}, \{q_2\} \big\} \\$$

$$\ \, \circ \ \, b. \ \, \big\{ \big\{ q_0, q_1, q_2 \big\}, \big\{ q_0, q_2 \big\}, \big\{ q_2 \big\} \big\}$$

$$\ \, \circ \ \, \left\{ \{q_0,q_1,q_2\},\{q_0,q_2\} \right\}$$

$$\odot$$
 d. $\{\{q_0,q_2\}\}$ \checkmark