Math250aHw13

Trustin Nguyen

November 29, 2023

Exercise 1: Let K be a subfield of \mathbb{C} and \mathfrak{a} , b elements in K^{\times} . Show equivalence between

- $K(\sqrt{a}) = K(\sqrt{b})$.
- There exists $c \in K^{\times}$ with $a = bc^2$.

Proof. $(2 \to 1)$ Suppose that there is a $c \in K^{\times}$ such that $a = bc^2$. Then $c^{-1} \in K^{\times}$ and

$$K(\sqrt{a}) = K(\sqrt{bc^2}) = K(c\sqrt{b}) = K(\sqrt{b})$$

 $(1 \rightarrow 2)$ Suppose that $K(\sqrt{a}) = K(\sqrt{b})$. Then we have that

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \in K(\sqrt{a})$$

Fields have inverses, so we have

$$\frac{\sqrt{a}}{\sqrt{b}}c = 1$$

Therefore,

$$ac^2 = b \text{ or } a = b(c^{-1})^2$$

Exercise 4: Let E/K be a finite field extension. Prove that if E : K is a prime number, E/K has no proper intermediate fields, and for each $\alpha \in E$ such that $\alpha \notin K$ we therefore have $E = K(\alpha)$.

Proof. Suppose that $K \subseteq F \subseteq E$ is a field extension. Then

$$[E:K] = [E:F][F:K]$$

Since [E:K] is prime/irreducible in \mathbb{Z} , we have that either [E:F] or [F:K] is 1. Then $F\cong K$ or $F\cong E$.

Exercise 6: Let K be an infinite field and E an extension of degree n > 1 over K. Show that the quotient group E^{\times}/K^{\times} of the multiplicative groups of E and K is infinite.

Proof. We have the extension $K \subseteq E$. Let n = [E : K] > 1 and therefore, $1, \alpha_1, \ldots, \alpha_{n-1}$ be a basis for E over K. Then any element of E^{\times} can be represented as

$$\lambda_0 + \lambda_1 \alpha_1 + \cdots + \lambda_{n-1} \alpha_{n-1}$$

For $\lambda_i \in K$. We send this under the quotient map to E^{\times}/K^{\times} . Notice that at least one of the λ_i are not 0, because $0 \notin E^{\times}$. Then wlog, say we can divide through by this λ_i :

$$\left(\frac{\lambda_0}{\lambda_i} + \frac{\lambda_1}{\lambda_i}\alpha_1 + \dots + \alpha_i + \dots + \frac{\lambda_{n-1}}{\lambda_i}\alpha_{n-1}\right) \cdot \mathsf{K}^\times$$

is the image of the quotient map to E^{\times}/K^{\times} . Then each element of E^{\times}/K^{\times} is in correspondence to a ratio between the coefficients, $\lambda_0, \ldots, \lambda_{n-1}$, points in projective space. We fix an element to be 1 while varying another coordinate over elements of our field to get infinitely many points in projective space. So we are done.

Exercise 7: Let the circle of radius 1 centered at $z_1 = 1$ intersect S at z_2 and z_3 . Let z_4 be the intersection of the line through z_2 and z_3 with the line through 0 and z_1 . Beginning at z_1 , mark off the distance $|z_4 - z_2|$ against the circle S, seven times in succession.

Does this mean that Gauss's statement (see F12 in chapter 5) that $e^{2\pi i/7} \notin \Delta\{0,1\}$ is an error? Show that the points obtained according to the procedure above are the powers z, z^2, \ldots, z^7 of the complex number $z = \frac{5}{8} + \frac{1}{8}\sqrt{39}i$. It follows that $65536z^7 = 65530 - 142\sqrt{39}i$.

Proof. Let $z_5 = a + bi$ be the first mark with distance $|z_4 - z_2|$ away from z_1 .

We first have that $|z_4-z_2|=\sqrt{3}/2$. This is because we have that the triangle formed by $0,z_1,z_2$ is equilateral, z_2-z_4 is a perpendicular bisector, so it is the height of the triangle. We take $(\frac{1}{2})^2+h^2=1$ and we get $h=\frac{\sqrt{3}}{2}$. Therefore, $\|z_5\|=\frac{\sqrt{3}}{2}$. So we now have the system of equations:

$$a^{2} + b^{2} = 1$$
$$(1 - a)^{2} + b^{2} = \frac{3}{4}$$

So

$$a^{2} + b^{2} = 1$$

$$1 - 2a + a^{2} + b^{2} = \frac{3}{4}$$

$$2 - 2a = \frac{3}{4}$$

$$-2a = \frac{-5}{4}$$

$$a = \frac{5}{8}$$

Then using

$$a^2 + b^2 = 1$$

we have $\frac{25}{64} + b^2 = 1$, $b^2 = \frac{39}{64}$. Therefore, $b = \frac{\sqrt{39}}{8}$. So we have $z_5 = \frac{5}{8} + \frac{\sqrt{39}}{8}i$ and $65536z^7 = 65530 - 142\sqrt{39}i$. So $z^7 \neq 1$ and it is not a heptagon.