ZEMRIS	Ime i prezime	JMBAG
Operacijski sustavi, međuispit		

- 1. (*Zadatak nosi ukupno 7 bodova*.) U nekom sustavu javljaju se prekidi P3 u 0 ms, P2 u 1 ms i oba prekida P1 i P4 istovremeno u 3 ms. Prioritet prekida određen je brojem (P4 ima najveći prioritet). Obrada svakog prekida traje po 2 ms. Grafički prikazati aktivnosti procesora u glavnom programu (GP), procedurama za obradu prekida (Pi) te procedurama za prihvat prekida (PP) i povratak iz prekida (PiP) i to:
 - a) (1) u idealnom slučaju

b) (2) **bez sklopa za prihvat prekida, bez programske potpore i obrada uz zabranjeno prekidanje** uz trajanje prihvata prekida (PP) od 1 ms te trajanja povratka iz prekida (PiP) od 0,5 ms

c) (2) **sa sklopom za prihvat prekida** uz trajanje prihvata prekida od 0,5 ms (PP) te trajanje povratka iz prekida od 0,5 ms (PiP)

d) (2) Navesti sve registre **sklopa za prihvat prekida** i njihov sadržaj kao i stanje na sustavskom stogu u trenutku 2ms:

sustavski sto	og:	 	
registri:			

Prostor za postupak:

2.	(Zadatak nosi ukupno 6 bodova.)						
	(0,5) U sustavu sa sklopom za prihvat prekida prioritet prekida određuje prekidna rutina / procesor / sklop za prihvat prekida / jezgra OS-a / pristupni sklop , a za vrijeme obrade prekida prekidanje je / nije omogućeno (<i>zaokružiti ili potcrtati točne odgovore</i> .).						
	(0,5) Prekidna rutina na svom početku prvo						
	(0,5) Sklop s neposrednim pristupom spremniku ima sljedeća 4 registra (dovoljno je navesti samo kratice)						
	(0,5) Koje registre sadrži sklop za prihvat prekida?						
	(0,5) Navesti strukture podataka koje koristi prekidna rutina za obradu prekida prema prioritetima u sustavu bez sklopa za prihvat prekida						
	(0,5) Što je hipervizor?						
	(0,5) Jedan od uvjeta koji mora zadovoljavati algoritam međusobnog isključivanja je i da dretva koja zastane kritičnom odsječku ne smije spriječiti drugu dretvu da uđe u kritični odsječak? DA / NE						
	(0,5) Ako se pozove j_fja Postavi_BSEM(i) kada je semafor neprolazan i u redu BSEM(i) je jedna dretva tada će se dogoditi sljedeće						
	(1) Ulazak u jezgru zbiva se kada se dogodi i tada se poziva						
	(1) Za ispravnu sinkronizaciju tri potrošača i jednog proizvođača preko ograničenog međuspremnika potrebno je opća semafora i binarna semafora.						
3.	(3) (<i>Postupak ili obrazloženje obavezno navesti na košuljici</i>) Navedeni program će slovo A ispisati puta slovo B puta i slovo C puta (navesti koliko puta).						
	<pre>#include <stdio.h></stdio.h></pre>						
	int main(){						
	<pre>fork(); if (fork() == 0) {</pre>						
	<pre>printf("A\n");</pre>						
	<pre>if (fork() != 0) printf("B\n");</pre>						
	<pre>printf("C\n");</pre>						
	return 0;						
	}						
4.	(4) U promatranom trenutku stanje sustava je sljedeće: dretva 1 je aktivna; dretve 2, 3 i 4 su u redu opće semafora S (dretva 2 je prva u redu, a dretva 4 zadnja) te dretve 5, 6 i 7 su u redu pripravnih dretvi (dretva 5 j prva u redu, a dretva 7 je zadnja). Svi redovi organizirani su po redu prispijeća (FIFO). Ako tada dretva pozove jezgrinu funkciju PostaviOSem(S), kako će izgledati struktura podataka jezgre nakon poziva?						
	red Aktivna_D: red Pripravne_D:						
	red OSEM[S]: OSEM[1].v =						
	Postupak:						

(Zadatak nosi ukupno 3 boda.) Sustav zadataka je zadan u obliku lanca: Z₁ → Z₂ → Z₃ → Z₄ → Z₅→ Z₆→ Z₇→ Z₈, a zadaci imaju domene (D) i kodomene (K) smještene u memorijske lokacije M₁, M₂, M₃, M₄, i M₅ prema tablici:

	Z 1	Z2	Z3	Z 4	Z 5	Z 6	Z 7	Z8
M1			K		K	D		
M2	D	K						K
M3		D	D	D,K			K	
M4	K		D		D	K		
M5							D	D

a) (2) Skicirati maksimalno paralelni sustav zadataka uzimajući u obzir njihov međusobni odnos u lancu. Mjesto za postupak i rješenje:

c) (0,5) Zadaci 3 i 8 su zavisni / nezavisni (zaokružiti).

b) (0,5) Za sinkronizaciju maksimalno paralelnog sustav zadataka uzimajući u obzir njihov međusobni odnos u lancu potrebno je _____ općih semafora.

6. (3) (*Postupak obavezno navesti na košuljici*.) U jednoprocesorskom računalu pokrenut je sustav dretvi *D1*, *D2* i *D3* s prioritetima 1, 2 i 3, tim redom. Najviši prioritet je 3. Svi zadaci koje obavljaju dretve su istog oblika *Dx*. Red pripravnih dretvi i red semafora su prioritetni. Aktivna je dretva koja je prva u redu pripravnih (nema posebnog reda aktivnih dretvi). Prije pokretanja sustava dretvi semafor S je bio neprolazan. Nakon nekog vremena sve dretve se nađu u redu semafora S. Ako se tada pozove procedura PostaviBSEM(S) na zaslonu će se ispisati do završetka rada svih dretvi (važan je i redoslijed ispisa):

```
Dretva Dx{
    za(i=1 do x) {
        ČekajBSEM(S);
        piši(Px);
        PostaviBSEM(S);
        piši(Zx);
    }
}
```

7. (4) Neki problem riješen je s pomoću četiri dretve: jednom ulaznom dretvom, dvije radne dretve i jednom izlaznom dretvom. Ulazna dretva dobavlja podatke te preko globalne varijable *ulaz* podatke prosljeđuje radnim dretvama na obradu. Radna dretva rezultat zapisuje u globalnu varijablu *izlaz* koju na kraju izlazna dretva pohranjuje. Sinkronizirati dretve binarnim semaforima, tj. nadopuniti prikazani kod isključivo jezgrinim funkcijama ČekajBSem(i) i PostaviBSem(j) ('i' i 'j' zamjeniti brojevima) te navesti početne vrijednosti semafora.

podatak ulaz, izlaz; //globalne varijable							
dretva ulazna(){	dretva radna(){	dretva izlazna(){					
podatak a; //lokalna varijabla	podatak a; //lokalna varijabla	podatak a; //lokalna varijabla					
while(1){	while(1){	while(1){					
<pre>a = dohvati_podatak();</pre>	a = obradi_podatak(ulaz);	A = izlaz;					
ulaz = a;	izlaz = a;	pohrani(a);					
}	}	}					
}	}	}					

emaiori i njinove poc	ethe viljedhosti	 	

C ---- C---: : ..:: 1----- ... × -4--- ---:: - 4----+:

RJEŠENJA

- 1. (*Zadatak nosi ukupno 7 bodova*.) U nekom sustavu javljaju se prekidi P3 u 0 ms, P2 u 1 ms i oba prekida P1 i P4 istovremeno u 3 ms. Prioritet prekida određen je brojem (P4 ima najveći prioritet). Obrada svakog prekida traje po 2 ms. Grafički prikazati aktivnosti procesora u glavnom programu (GP), procedurama za obradu prekida (Pi) te procedurama za prihvat prekida (PP) i povratak iz prekida (PiP) i to:
 - a) (1) u idealnom slučaju

b) (2) **bez sklopa za prihvat prekida, bez programske potpore i obrada uz zabranjeno prekidanje** uz trajanje prihvata prekida (PP) od 1 ms te trajanja povratka iz prekida (PiP) od 0,5 ms

c) (2) **sa sklopom za prihvat prekida** uz trajanje prihvata prekida od 0,5 ms (PP) te trajanje povratka iz prekida od 0,5 ms (PiP)

d) (2) Navesti sve registre **sklopa za prihvat prekida** i njihov sadržaj kao i stanje na sustavskom stogu u trenutku 2ms:

sustavski stog: ____00000, reg[0]____

registri: ____K_Z=0100 i T P=0010____

vrijeme	K_Z	T_P	sustavski stog
t < 0	0000	0000	_
t = 0	0010	0000	-
	0000	0010	00000,reg[0]
t = 1	0100	0010	00000,reg[0]
t = 2	0100	0010	00000,reg[0]

- 2. (Zadatak nosi ukupno 6 bodova.)
- (0,5) (*Zaokružiti točne odgovore*.) U sustavu sa sklopom za prihvat prekida prioritet prekida određuje **prekidna rutina / procesor / sklop za prihvat prekida / jezgra OS-a / pristupni sklop**, a za vrijeme obrade prekida prekidanje **je / nije** omogućeno.
- (0,5) Prekidna rutina na svom početku prvo pohrani kontekst
- (0,5) Sklop s neposrednim pristupom spremniku ima sljedeća 4 registra (dovoljno je navesti samo kratice)
 PR, RS, AR i BR
- (0,5) Koje registre sadrži sklop za prihvat prekida? K_Z i T_P (kontrolne zastavive i tekući prioritet)
- (0,5) Navesti strukture podataka koje koristi prekidna rutina za obradu prekida prema prioritetima u sustavu bez sklopa za prihvat prekida

_____T_P, K_Z i KON[N] (tekući prioritet, kontrolne zastavice i prostor za pohranu konteksta)

- (0,5) Što je hipervizor? Upravljač virtualnim strojevima
- (0,5) Jedan od uvjeta koji mora zadovoljavati algoritam međusobnog isključivanja je i da dretva koja zastane u kritičnom odsječku ne smije spriječiti drugu dretvu da uđe u kritični odsječak? DA / NE
- (0,5) Ako se pozove j_fja Postavi_BSEM(i) kada je semafor neprolazan i u redu BSEM(i) je jedna dretva tada će se dogoditi sljedeće dretva iz reda BSEM(i) premjestiti u red Pripravne_D
- (1) Ulazak u jezgru zbiva se kada se dogodi _____ prekid ____ i tada se poziva j_fja____
- (1) Za ispravnu sinkronizaciju tri potrošača i jednog proizvođača preko ograničenog međuspremnika potrebno je __2_ opća semafora i __1__ binarna semafora.
- 3. (3) Navedeni program će slovo A ispisati __2_ puta, slovo B __2_ puta i slovo C __6__ puta.

```
#include <stdio.h>
int main() {
    fork();
    if (fork() == 0) {
        printf("A\n");
        if (fork() != 0) printf("B\n");
    }
    printf("C\n");
    return 0;
}
```

4. (4) U promatranom trenutku stanje sustava je sljedeće: dretva 1 je aktivna; dretve 2, 3 i 4 su u redu općeg semafora S (dretva 2 je prva u redu, a dretva 4 zadnja) te dretve 5, 6 i 7 su u redu pripravnih dretvi (dretva 5 je prva u redu, a dretva 7 je zadnja). Svi redovi organizirani su po redu prispijeća (FIFO). Ako tada dretva 1 pozove jezgrinu funkciju PostaviOSem(S), kako će izgledati struktura podataka jezgre nakon poziva?

```
red Aktivna_D: ___5__ red Pripravne_D: ____6, 7, 1, 2____
red OSEM[1]: ___3, 4____ OSEM[1].v = __0__
```

 Prije poziva PostaviOSem(S):
 Međurezultati:
 Poslije poziva PostaviBSem(S):

 Aktivna_D: 1
 Aktivna_D: 5

 Red Pripravne_D: 5, 6, 7
 5, 6, 7, 1
 5, 6, 7, 1, 2
 Red Pripravne_D: 6, 7, 1, 2

 Red OSEM[S]: 2, 3, 4
 2,3, 4
 3, 4
 Red OSEM[S]: 3, 4 i OSEM[S].v=0

5. (*Zadatak nosi ukupno 3 boda*.) Sustav zadataka je zadan u obliku lanca: $\mathbb{Z}_1 \to \mathbb{Z}_2 \to \mathbb{Z}_3 \to \mathbb{Z}_4 \to \mathbb{Z}_5 \to \mathbb{Z}_6 \to \mathbb{Z}_7 \to \mathbb{Z}_8$, a zadaci imaju domene (D) i kodomene (K) smještene u memorijske lokacije M_1 , M_2 , M_3 , M_4 , i M_5 prema tablici:

	Z 1	Z 2	Z 3	Z4	Z 5	Z 6	Z 7	Z8
M1			K		K	D		
M2	D	K						K
M3		D	D	D,K			K	
M4	K		D		D	K		
M5							D	D

d) (2) Skicirati maksimalno paralelni sustav zadataka uzimajući u obzir njihov međusobni odnos u lancu.

- e) (0,5) Za sinkronizaciju maksimalno paralelnog sustav zadataka uzimajući u obzir njihov međusobni odnos u lancu potrebno je __7 općih semafora.
- f) (0,5) Zadaci 3 i 8 su zavisni / nezavisni (zaokružiti).
- 6. (3) (*Postupak navesti na košuljici*.) U jednoprocesorskom računalu pokrenut je sustav dretvi *D1*, *D2* i *D3* s prioritetima 1, 2 i 3, tim redom. Najviši prioritet je 3. Svi zadaci koje obavljaju dretve su istog oblika *Dx*. Red pripravnih dretvi i red semafora su prioritetni. Aktivna je dretva koja je prva u redu pripravnih (nema posebnog reda aktivnih dretvi). Prije pokretanja sustava dretvi semafor S je bio neprolazan. Nakon nekog vremena sve dretve se nađu u redu semafora S. Ako se tada pozove procedura PostaviBSEM(S) na zaslonu će se ispisati do završetka rada svih dretvi (važan je i redoslijed ispisa):

Red semafora	BSEM.v	Red pripravnih	P	Z
321	0	-		
21	0	3a	3	
1	0	3b2a		3
31	0	2a	2	
1	0	3a2b	3	
-	0	3b2b1a		3
3	0	2b1a		2
32	0	1a	1	
2	0	3a1b	3	
-	0	3b2a1b (3 završava)		3
-	0	2a1b	2	
-	1	2b1b (2 završava)		2
-	1	1b (1 završava)		1

7. (4) Neki problem riješen je s pomoću četiri dretve: jednom ulaznom dretvom, dvije radne dretve i jednom izlaznom dretvom. Ulazna dretva dobavlja podatke preko globalne varijable *ulaz* te podatke proslijeđuje radnim

dretvama na obradu. Radna dretva rezultat zapisuje u globalnu varijablu *izlaz* koju na kraju izlazna dretva pohranjuje. Sinkronizirati dretve binarnim semaforima, tj. nadopuniti prikazani kod **isključivo jezgrinim funkcijama** ČekajBSem(i) i PostaviBSem(j) ('i' i 'j' zamjeniti brojevima) te navesti početne vrijednosti semafora.

```
podatak ulaz, izlaz; //globalno
                              dretva radna(){
                                                                 dretva izlazna() {
dretva ulazna() {
                                podatak a;
                                                                  podatak a;
 podatak a;
                                while(1){
                                                                  while(1){
                                  a = obradi_podatak(ulaz);
 while(1){
                                                                    a = izlaz;
   a = dohvati podatak();
                                  izlaz = a;
                                                                    pohrani(a);
   ulaz = a;
                               }
}
dretva ulazna(){
                              dretva radna(){
                                                                 dretva izlazna(){
 podatak a;
                                 podatak a;
                                                                   podatak a;
 while(1){
                                 while(1){
                                                                   while(1){
                                   ČekajBSEM(2);
                                                                     ČekajBSEM(4);
    a =dohvati podatak();
                                   a =obradi podatak(ulaz);
                                                                     a = izlaz;
    ČekajBSEM(1);
                                   PostaviBSEM(1);
                                                                     PostaviBSEM(3);
    ulaz = a;
                                   ČekajBSEM(3);
                                                                     pohrani(a);
    PostaviBSEM(2);
                                   izlaz = a;
                                                                   }
                                   PostaviBSEM(4);
```

Semafori njihove i početne vrijednosti: BSEM(2).v=BSEM(4).v=0, a BSEM(1).v=BSEM(3).v=1