DISCRETE STRUCTURES – Assignment #2

Marasigan, Vem Aiensi A.

2-BSCS-2

1. Illustrate De Morgan's Law in Boolean Algebra.

Based on what I know so far, De Morgan's Law works like this.

for example we have: $\overline{A + B}$

or in other forms it can look like: \neg (A V B)

What De Morgan's Law do is that it simplifies the Boolean expression by distributing the negation to both variables and then change the OR (+, V) condition into an AND (\cdot, Λ) condition, and vice versa.

For example:

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

In the alternate writing

$$\neg (A \lor B) = \neg A \land \neg B$$

Same when: $\overline{A \cdot B} = \overline{A} + \overline{B}$

$$\neg (A \land B) = \neg A \lor \neg B$$

As proof, here is the truth table : $\overline{A + B} = \overline{A} \cdot \overline{B}$ or $\neg (A \lor B) = \neg A \land \neg B$

A	В	A+B	$\overline{A + B}$	Ā	B	$\overline{A} \cdot \overline{B}$
A	В	AVB	$\neg(AVB)$	¬A	¬B	$\neg A \land \neg B$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

Same as in : $\overline{A \cdot B} = \overline{A} + \overline{B}$ or $\neg (A \land B) = \neg A \lor \neg B$

A	В	A⋅B	$\overline{A \cdot B}$	Ā	$\overline{\mathrm{B}}$	$\overline{A} + \overline{B}$
A	В	AΛB	$\neg (A \land B)$	¬A	¬B	$\neg A \lor \neg B$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

We can notice that both results are the same.

2. Cite real-life applications of Boolean Algebra

As a common phenomenon these days of Online class, here is what I think that best describes the experience using Boolean Algebra.

This will show the relation of variables to be able to attend Final Exam

Considering this Boolean expression that I like: $I \cdot (L + C)$

The variables I, L, and C has these corresponding meaning

I = Internet

L = Laptop

C = Cellphone

I	L	С
1	1	1
Internet is available	Laptop is working	Cellphone is ready
1	1	0
Internet is available	Laptop is working	Low battery/No charge
1	0	1
Internet is available	Laptop is broken	Cellphone is ready
1	0	0
Internet is available	Laptop is broken	Low battery/No charge
0	1	1
No internet	Laptop is working	Cellphone is ready
0	1	0
No internet	Laptop is working	Low battery/No charge
0	0	1
No internet	Laptop is broken	Cellphone is ready
0	0	0
No internet	Laptop is broken	Low battery/No charge

_	,		
L + C	$I \cdot (L + C)$		
1	1		
A device can be used	Will be able to attend Exam		
1	1		
A device can be used	Will be able to attend Exam		
1	1		
A device can be used	Will be able to attend Exam		
0	0		
No device is available	Won't be able to attend exam		
1	0		
A device can be used	Won't be able to attend exam		
1	0		
A device can be used	Won't be able to attend exam		
1	0		
A device can be used	Won't be able to attend exam		
0	0		
No device is available	Won't be able to attend exam		

This concludes that you must have an **Internet Connection**, at least a **Laptop** or a **Cellphone**, or **both devices available** to be able to **attend the exam**, or else without having these requirements, you won't be able to attend the exam.