CLAIMS

W W T1		•	•		•	
1 X / F	not	10	\sim	laim	Δd	10.
V V I	141	1.5			Call	

	1) A method for reducing power in MRAM comprising:
2	(a) storing information in a RAM buffer;
	(b) reading the information from the RAM buffer;
4	(c) writing the information to the MRAM;
	(d) such that all storage cells connected to a selected wordline in the MRAM
6	are written.
2	2) The method in Claim 1 wherein the RAM buffer is an SRAM buffer.
2	3) The method in Claim 1 wherein the RAM buffer is a DRAM buffer.
2	4) The method in Claim 1 wherein the RAM buffer is an array of flip-flops.
	5) A method for reducing power in MRAM comprising:
2	(a) storing information from N write cycles in a RAM buffer;
	(b) reading the information from the RAM buffer using fewer than N read
4	cycles;
	(c) writing the information to the MRAM using fewer than N write cycles;

6	(d) such that the number of power-up sequences required to write the
	information to the MRAM is reduced.
2	6) The method in Claim 5 wherein the RAM buffer is an SRAM buffer.
2	7) The method in Claim 5 wherein the RAM buffer is a DRAM buffer.
2	8) The method in Claim 5 wherein the RAM buffer is an array of flip-flops.
	9) A method for reducing power in MRAM comprising:
2	(a) storing information from N write cycles in a RAM buffer;
	(b) reading the information from the RAM buffer using one read cycle;
4	(c) writing the information to the MRAM using one write cycle;
	(d) such that only one power-up sequence is used to write the information to
6	the MRAM.
8	10) The method in Claim 9 wherein the RAM buffer is an SRAM buffer.
2	11) The method in Claim 9 wherein the RAM buffer is a DRAM buffer.

	12) The method in Claim 9 wherein the RAM buffer is an array of flip-flops.
2	
	13) A system for reducing power in MRAM comprising:
2	(a) a RAM buffer;
	(b) a MRAM;
4	(c) wherein the RAM buffer stores information;
	(d) wherein the information stored in the RAM buffer is written to the MRAM
6	such that all storage cells connected to a selected wordline in the MRAM
	are written.
8	
	14) The system in Claim 13 wherein the RAM buffer is an SRAM buffer.
2	
	15) The system in Claim 13 wherein the RAM buffer is a DRAM buffer.
2	
	16) The system in Claim 13 wherein the RAM buffer is an array of flip-flops.
2	
	17) A system for reducing power in MRAM comprising:
2	(a) a RAM buffer;
	(b) a MRAM;
4	(c) wherein the RAM buffer stores information for N cycles;

	(d) wherein the information stored in the RAM buffer is written to the MRAM
6	in less than N cycles;
	(e) wherein the number of power-up sequences required to write the
8	information to the MRAM is reduced.
10	
	18) The system in Claim 17 wherein the RAM buffer is an SRAM buffer.
2	
	19) The system in Claim 17 wherein the RAM buffer is a DRAM buffer.
2	
	20) The system in Claim 17 wherein the RAM buffer is an array of flip-flops.
2	
	21) A greature for an duraing manager in MD AM accomplising.
2	21) A system for reducing power in MRAM comprising:
2	(a) a RAM buffer;
4	(b) a MRAM;
4	(c) wherein the RAM buffer stores information for N cycles;
_	(d) wherein the information stored in the RAM buffer is written to the MRAM
6	in one cycle;
0	(e) wherein only one power-up sequence is required to write the information
8	to the MRAM.
10	
* •	

2	22) The system in Claim 21 wherein the RAIM buffer is an SRAIM buffer.
2	23) The system in Claim 21 wherein the RAM buffer is a DRAM buffer.
2	24) The system in Claim 21 wherein the RAM buffer is an array of flip-flops.
	25) A system for reducing power in MRAM comprising:
2	(a) a means for electronically reading and writing information;
	(b) a MRAM;
4	(c) wherein the means for electronically reading and writing information
	stores information for N cycles;
6	(d) wherein the information stored in the means for electronically reading and
	writing information is written to the MRAM in less than N cycles;
8	(e) wherein the number of power-up sequences required to write the
	information to the MRAM is reduced.
10	
12	