Exercice 1. Chute de grêle

Les grêlons sont des particules de glace dont les chutes en très grand nombre depuis certains nuages constituent la grêle. On a mesuré expérimentalement leur vitesse à l'arrivée au sol (v_s). Cette vitesse varie, en fonction de la masse du grêlon, entre $v_s = 15$ et $v_s = 100$ km.h⁻¹.

On cherche à connaître le modèle mécanique permettant d'expliquer ces valeurs. Pour cela, on modélise le grêlon par une boule de glace (densité de la glace: $\rho_{glace} = 917 \ kg.m^3$) de rayon $R = 5 \ mm$ qui chute d'un nuage situé à une altitude $h = 1500 \ m$. On prendra $g = 9.81 \ m.s^{-2}$. On prendra un axe Oz descendant tel qu'à t = 0, z = 0 et v = 0. On teste alors trois modèles mécaniques différents :

- 1. On néglige les forces de frottement fluide dues à l'air.
- a) Déterminer v = f(t) et z = f(t).
- b) Calculer t_c la durée de la chute et en déduire v_s .
- c) Conclure sur la validité du modèle.
- **2.** On considère une force de frottement fluide due à l'air de la forme $\vec{f} = -\alpha \vec{v}$ avec $\alpha = 6\pi R \eta_{air}$ où R est le rayon du grêlon et $\eta_{air} = 1,8.10^{-5}$ kg. m^{-1} . s^{-1} est la viscosité de l'air.
- a) Établir l'équation différentielle en v(t).
- b) Résoudre cette équation et donner v = f(t).
- c) Montrer que le grêlon ne peut dépasser une vitesse limite v_l que l'on calculera.
- d) Déterminer l'équation z = f(t).
- e) La fonction z = f(t) est tracée sur le graphique de la figure ci-dessous. Déterminer une valeur approchée de t_c et en déduire v_s .
- f) Conclure sur la validité du modèle.

- 3. On considère une force de frottement fluide due à l'air de la forme $\vec{f} = -\beta v \vec{v}$ avec $\beta = 0.225\pi R^2 \rho_{air}$ où R est le rayon du grêlon et $\rho_{air} = 1.6 \text{ kg.m}^{-3}$ est la densité de l'air.
- a) Établir l'équation différentielle en v = f(t).
- b) En posant $w(z) = v^2(z)$, montrer que l'équation précédente v = f(t) peut s'écrire : $\frac{1}{2} \frac{dw}{dz} + \frac{\beta}{m} w = g$

On rappelle ici que pour une fonction u = f(z(t)): $\frac{du}{dt} = \frac{du}{dz} \frac{dz}{dt}$

- c) Résoudre cette équation différentielle et en déduire l'équation v = f(z).
- d) Montrer que le grêlon ne peut dépasser une vitesse limite v_l que l'on calculera.
- e) Calculer v_s .
- f) Conclusion.

Exercice2. Montgolfière (extrait du sujet d'examen 2^{nde} session 2019)

Une montgolfière est constituée d'un ballon sphérique de volume $V=2145\ m^3$ ouvert vers le bas, donc en communication avec l'atmosphère, et d'une nacelle avec son équipement. Le volume V du ballon sera supposé constant. Un brûleur permet de réchauffer l'air à l'intérieur du ballon et de le maintenir à la température souhaitée.

La température extérieure est $\theta_e=17,0^{\circ}C$ et on chauffe l'air intérieur à la température $\theta_i=35,0^{\circ}C$.

La masse volumique de l'air dépend de la température, elle vaut $\rho_e=1,21~kg.m^{-3}$ à $\theta_e=17,0^{\circ}C$ et $\rho_i=1,14~kg.m^{-3}$ à $\theta_i=35,0^{\circ}C$ (à pression ambiante).

On rappelle que la poussée d'Archimède a pour expression générale $\overrightarrow{F_A} = -\rho V \overrightarrow{g}$, avec ρ la masse volumique du fluide dans lequel le système est plongé, V le volume du système et \overrightarrow{g} l'accélération de la pesanteur, de valeur $q=9.81~m.~s^{-2}$.

Tous les résultats numériques seront donnés avec 3 chiffres significatifs.

1. La montgolfière est au sol, prête à partir.

- 1.1. Calculer l'intensité F_P du poids de l'air enfermé dans le ballon. Préciser la direction et le sens du vecteur $\overrightarrow{F_P}$ représentatif de ce poids.
- 1.2. Préciser la direction et le sens du vecteur $\overrightarrow{F_A}$ représentatif de la poussée d'Archimède sur le ballon. Vérifier que son intensité F_A est égale à 2,55. 10^4N .
- 1.3. On appelle masse limite soulevable M_m la masse maximale qui pourra être soulevée quand on supprime les liens avec le sol (enveloppe du ballon, nacelle, équipement, passager(s) éventuel(s)). Déduire la valeur M_m des deux questions précédentes.

2. Etude du mouvement d'ascension de la montgolfière.

On s'intéresse maintenant au mouvement d'ascension verticale de la montgolfière. On suppose que, quittant le sol à vitesse initiale nulle, elle s'élève verticalement dans l'atmosphère. On néglige les variations de pression, de température et d'accélération de la pesanteur dues à l'altitude.

Dans ce mouvement ascensionnel, la montgolfière est soumise aux forces suivantes :

- Le poids $\overrightarrow{F_P}$ de l'air à l'intérieur (masse M_P) de l'enveloppe,
- La poussée d'Archimède $\overrightarrow{F_A}$,
- Le poid $\overrightarrow{\Pi}$ de l'ensemble des équipements (nacelle, enveloppe, passager) dont la masse totale est M=130~kg,
- Une force $\overrightarrow{F_R}$ de frottements de l'air sur la montgolfière, verticale et dirigée vers le sol, d'intensité proportionnelle au carré de la vitesse de la montgolfière $F_R(t) = k \ v^2(t)$,
 - k étant une constante k = 60,0 S.I. et v(t) étant la valeur algébrique de la vitesse de la montgolfière à l'instant t, mesurée selon la verticale ascendante Oz.

Le mouvement est étudié selon un axe vertical Oz, de vecteur unitaire $\vec{\iota}$ dirigé vers le haut, l'origine O étant au sol. L'origine des temps t=0 est prise à l'instant où la montgolfière quitte le sol.

- 2.1. Ecrire sous forme vectorielle la relation fondamentale de la dynamique pour le mouvement du centre de masse de la montgolfière.
- 2.2. Que donne la projection de la relation précédente selon l'axe Oz?
- 2.3. Montrer que l'équation précédente se met sous la forme d'une équation différentielle :
- $\frac{dv(t)}{dt} + Av^2(t) = B$ où A et B sont des constantes dont on précisera l'expression. L'application numérique pour les valeurs de A et B n'est pas demandée.

Pour la suite du problème, on prendra : $A=23,3.\,10^{-3}m^{-1}$ et $B=76,8.\,10^{-3}ms^{-2}$

2.4. L'équation différentielle précédente peut être résolue analytiquement. On montre alors que la vitesse tend vers une valeur *constante*. En déduire la valeur de cette vitesse limite V_L en fonction de A et B.

Application numérique : calculer V_L numériquement.

- 2.5. Les graphes d'évolution de la vitesse v(t) et de l'altitude z(t) résultant de mesures réalisées toutes les 5 secondes avec des appareils embarqués sont donnés à la page suivante.
- a) L'examen des graphes est-il en accord avec le modèle proposé précédemment ? Pourquoi ?
- b) Dans l'intervalle de temps 0 < t < 15 s, on approxime v(t) par une courbe linéaire. Comment s'appelle ce type de mouvement ? Quelle est approximativement la valeur de l'accélération ?
- c) Déterminer le temps t_1 mis par la montgolfière pour que partant du sol, sa vitesse atteigne 95% de sa vitesse limite mesurée. Déterminer l'altitude correspondante z_1 .
- (2.6. non traitée)
- 2.7. Mouvement pour les altitudes $z > z_2 = 130 m$.
- a) Qu'est-ce qui caractérise le mouvement pour des altitudes z telles que $z>z_2=130\ m$ et comment s'appelle ce type de mouvement ?
- b) Déterminer l'équation horaire z(t) du mouvement de la montgolfière dans le repère de temps et d'espace proposé.
- c) Quelle est la durée du mouvement entre les altitudes z_2 et $z_3 = 300 m$?

Exercice3. (bonus) Frottements solides

On veut tracter un bloc de béton d'une tonne en le faisant glisser sur une surface plastique. Quelle force doit-on appliquer pour mettre en mouvement le bloc ? Quelle force minimale doit-on ensuite appliquer pour maintenir le mouvement ? Les coefficients de frottement dynamique et statique de l'interface pneu/béton sont respectivement 0.7 et 1.

Exercice 4. (bonus) (Extrait de la préparation au concours puissance alpha.) Déterminer si les affirmations a, b, c et d sont vraies ou fausses.

Particule chargée dans un champ électrique

Une micro goutte d'huile électrisée de masse m et de charge q pénètre en O à l'instant t=0, avec une vitesse $\overrightarrow{v_0}$ horizontale, dans l'espace contenu entre deux plaques conductrices verticales chargées. Il y règne un champ électrique uniforme de valeur E.

Cette goutte possède un excédent de 10⁶ électrons. L'étude est menée dans le référentiel terrestre supposé galiléen.

Données: m = 0,16 mg; $E = 10^7 V. m^{-1}$; charge électrique élémentaire: $e = 1,6.10^{-19} C$; l'intensité du champ de pesanteur terrestre est: $g = 10m.s^{-2}$

- a) Cette goutte subit une force électrique horizontale dirigée vers la droite, de valeur: $F = 1, 6.10^{-6} N$
- b) La somme des forces appliquées à la goutte a une valeur égale à $(\sqrt{2} \times F) \mu N$
- c) Les équations horaires de la goutte sont:

$$x(t) = \frac{F}{2m}t^2 + v_o t$$
; $y(t) = 0$; $z(t) = \frac{F}{2m}t^2$

d) La goutte d'huile va être déviée vers le bas du dispositif.

Solutions. Ex1. Réponses :1) $v_s = 171.5 \text{ m.s}^{-1} 2$) $v_s = 167 \text{ m.s}^{-1}$; 3) $v_s = 12.9 \text{ m.s}^{-1}$

graden à
$$t=0$$
 ($\tau=0$, $v=0$)

 $\sigma=0$
 $\sigma=0$

2) a) Bilan des Forces:
$$\vec{P} = m\vec{g} = mg \vec{m}_2^2$$

• frottement fluide $\vec{f} = -\alpha \vec{r}$

PFD: $\vec{P} + \vec{f} = m\vec{a}$
 $m\vec{g} - \alpha \vec{v} = m\vec{a}$

Projection sur
$$Oz$$
: $ma = mg - \alpha \sigma$

$$\frac{d\sigma}{dt} + \frac{\alpha}{m}\sigma = g \quad \text{equation differentiable}$$

b) • ESSM :
$$\frac{d\sigma}{dt} = -\frac{\alpha}{m} \sigma$$

Solution
$$v = Ke^{-\frac{x}{m}t}$$

$$\delta'\hat{\omega}$$
: $\sigma(t) = \frac{mg}{d} \left(\Lambda - e^{-\frac{\kappa t}{m}t} \right)$

(AN)
$$m = \rho_{glace} \times \frac{L}{3} \pi R^{3}$$
, $g = 9.81 \, \text{m.s}^{2}$, $d = 6 \pi R \, m_{ain}$

$$U_{f} = \frac{mg}{d} = \frac{\rho_{glace} \times \frac{L}{3} \pi R^{3} \times 9^{\frac{1}{2}}}{6 \pi R \, m_{ain}} = \frac{2 \, \rho_{glace} \, R^{2} \times 9^{\frac{1}{2}}}{9 \, \text{m.s}^{2}} = \frac{2 \times 9.77 \times (5.10^{-3})^{2} \times 9.81}{9 \times 1, 8.10^{-5}}$$

$$= 2777 \, m.s^{-1} \simeq 10000 \, \text{km.s}^{-1}$$

2) d) Pour avoir z, an intègre o

$$\frac{dz}{dt}(t) = \frac{mg}{2} \left(1 - e^{-\frac{z}{mt}}\right)$$

$$z(t) = \sqrt{e}\left[t + \frac{m}{\alpha}e^{-\frac{\alpha}{m}t}\right] + c^{\dagger}e^{-\frac{\alpha}{m}t}$$

en t=0, 0= z(0) = 0 m + de

d'où:
$$z(t) = \sigma_{\ell} \left[t - \frac{m}{\alpha} \left(1 - e^{-\frac{\alpha}{m}t} \right) \right]$$

e) d'agris la combe, le 1500 m conesjond à to 17,7 s

d'où vs (te) = ve (1-e- te) 20,06 ve = 167 m.s = 600 km. h

f) MODELE NOW VALIDE.

3) a) Bilan des faces:
$$\vec{P} = m\vec{g} = mg \vec{u}_z^2$$

$$\vec{f} = -\beta \vec{v} \vec{v} = -\beta \vec{v}^2 \vec{u}_z^2$$

$$\vec{P} + \vec{f} = m\vec{a}$$

$$m\vec{g} - \beta \vec{v} \vec{v} = m\vec{a}$$

$$mg \vec{u}_3 - \beta \vec{v}^2 \vec{u}_c = m \vec{a} \vec{u}_3$$

Projection som
$$O_2$$
: $ma = mg - \beta \sigma^2$

$$\frac{d\sigma}{dt} + \frac{\beta}{m} \sigma^2 = g \qquad \text{Equation differentiable}$$

Soir
$$W(z) = v^2(z)$$

(i) on transforme $v(t)$ on $\frac{dv}{dt} = \frac{dv}{dz} \times \frac{dz}{dt} = v \frac{dv}{dz}$

$$\frac{d\sigma}{dz} + \frac{\beta}{m}\sigma^2 = g$$
pose encore pb. $w(z)$

(ii)
$$W(z) = v^2(z)$$
 $\frac{dw}{dz} = \frac{dv^2}{dz} = 2v \frac{dv}{dz}$

d'où l'équation:
$$\frac{1}{2} \frac{dw}{dz} + \frac{B}{m} w = 9$$

c) facile à répondre:
$$\frac{dw}{dz} = -\frac{2\beta}{m}w + 2g$$

$$w(z) = Ke^{-\frac{2\beta}{m}z} + cte$$

$$SP : w = \frac{gm}{\beta}$$

$$CI : en z=0, \quad J=0 \Rightarrow w=0$$

$$d'où \quad w(z) = \frac{mg}{\beta} \left(1 - e^{-\frac{2\beta}{m}z}\right)$$

$$w(z) = \frac{mg}{\beta} \left(\Lambda - e^{-\frac{2\beta}{m}z} \right)$$

$$d'où \left[V(z) = \sqrt{w(z)} = \sqrt{\frac{mg}{\beta}} \left(\Lambda - e^{-\frac{2\beta}{m}z} \right)^{\frac{1}{2}} \right]$$

La viterse est compatible avec les valeurs mesuréer.

$$\frac{2\beta}{m}h = \frac{2 \times 0,725. \pi R^2 \beta_{ain} \times h}{m} = \frac{2 \times 2,83. h^{-5}}{4.8.40^{-4}} \times 1500 = 125$$

d'où: on a atteint la vitesse limite.

f) la viterse calculée est comparable à la viterse mesurée on peut donc commidére ce modèle comme valable

Ex2. Montgolfière

le) movement uniforment acceleré car
$$v(t)$$
 bisaie donc a = te.
 $a = peute de v(t) = \frac{1-0}{15-0} = 6,67.10^{-2} \text{ m s}^{-2}$

enz1, 29 = 1,85 m/s => Ec = 1/2 (130+1,14x 2145) x 1,852 Ec=4420 Jallo

$$E_{PP}(z_1) = (130+1,14\times2145) \times 9,81\times50 = 1,26.10^6 \text{ J}$$

 $E_{PA}(z_1) = -50\times1,21\times2145\times9,81 = -1,27.10^6 \text{ J}$

d) £ mex(21) n_55005 . > lanegie mecanique a diminué, cat normal priogriel y a do hattemente

$$t_2 = 430 \text{ m}$$
 $v_2 t_3 = 300 \text{ m}$
 $t_3 - t_2 = 300 - 430 = 873$

Ex3. Frottements solides

Bilan des forces : le poids P, la réaction R, le frottement f, la traction T. Seules R et P sont selon l'axe vertical, direction selon laquelle l'accélération est nulle donc R=mg. Par ailleurs la force de frottement statique maximale vaut $f=\mu_S R$ Donc le bloc est mis en mouvement pour une traction horizontale $T=f=\mu_S mg=1*1000*10=10~000~N$.

Ensuite le mouvement est maintenu pour T=f=µR=µmg=0.7*1000*10=7 000N

Ex4.

EATI
Partaele chargée dons un charup élechique:
a) $V = E = e E = e E = 11 = (1,6.10 \times 10^{-12} \times 10^{$
6) V P= mq eg = 0.16.10 × 10 eg : 11P1 = 1.6×10-6N
N.F.
P 450 F 7 7
c) V 2 emeloide Newton: ma = Fex + Fex
a(f/m; 0; F/m) N (F/w/t+10; 0; F/w/t)
d) V OTT (E t+ Vot; 0; E t2)
(2m / 2u)
c) V 2 eineloide Newton: $m\vec{a} = Fex + Fez$ $\vec{a}(F/m;0;F/m) \vec{v}(F/m)t + V_0;0;(F/m)t)$ $\vec{o}(\vec{r}(F/m)t) \vec{v}(F/m)t + V_0;0;(F/m)t)$ $\vec{o}(\vec{r}(F/m)t) \vec{v}(F/m)t) \vec{v}(F/m)t + V_0;0;(F/m)t)$