1

AI1110: Probability And Random Variables Assignment 2

Mannem Charan(AI21BTECH11019)

Abstract—This document provides solution of Assignment 2(ICSE 2019 12 Q.5(a))

Question 5(a): Show that the function f(x) = $|x-4|, x \in R$ is continuous, but not differentiable at x=4.

Key Concept:

- 1) A function f is said to be continuous at x =a, iff the following three conditions satisfied.
 - i The limit $\lim_{x\to a} f(x)$ should exist and it is finite.
 - ii The functional value f(a) should exist and it is finite.
 - iii $\lim_{x\to a} f(x) = f(a)$.
- 2) A function f is said to be differentiable at x = aif and only if the limit,

$$\lim_{h\to 0} \frac{f\left(a+h\right) - f\left(a\right)}{h}$$

exists.

Solution:

Given

$$f(x) = \begin{cases} x - 4, & x \ge 4 \\ 4 - x, & x < 4 \end{cases}$$

We can say f is continuous at x = 4,iff

$$\lim_{x \to 4} f(x) = f(4) \tag{1}$$

In other words f should satisfy,

$$f\left(4^{-}\right) = f\left(4^{+}\right) = f\left(4\right) \tag{2}$$

where,

$$f\left(4^{-}\right) = \lim_{h \to 0} f\left(4 - h\right) \tag{3}$$

$$f\left(4^{+}\right) = \lim_{h \to 0} f\left(4 + h\right) \tag{4}$$

$$f\left(4\right) = 0$$

$$f\left(4^{-}\right) = \lim_{h \to 0} f\left(4 - h\right) \tag{6}$$

$$= \lim_{h \to 0} 4 - (4 - h) \tag{7}$$

$$= \lim_{h \to 0} h \tag{8}$$

$$\implies f\left(4^{-}\right) = 0 \tag{9}$$

And,

$$f(4^{+}) = \lim_{h \to 0} f(4+h)$$
 (10)

$$= \lim_{h \to 0} (4+h) - 4 \tag{11}$$

$$=\lim_{h\to 0}h\tag{12}$$

$$= \lim_{h \to 0} h \tag{12}$$

$$\implies f(4^+) = 0 \tag{13}$$

Using (5), (9), (13), we can say that f is continuous at x = 4 and this can be seen in Fig 1.

Now from the concept of differentiability, we can say f is differentiable at x = 4 iff the limit,

$$lim_{h\to 0} \frac{f(4+h) - f(4)}{h}$$

exists.

In that case f should satisfy,

$$\lim_{h \to 0} \frac{f(4+h) - f(4)}{h} = \lim_{h \to 0} \frac{f(4) - f(4-h)}{h}$$
(14)

LHS:

$$\lim_{h \to 0} \frac{f(4+h) - f(4)}{h} = \lim_{h \to 0} \frac{((4+h) - 4) - 0}{h} \tag{15}$$

$$=\lim_{h\to 0}\frac{h}{h}\tag{16}$$

$$=1 \tag{17}$$

$$\implies \lim_{h \to 0} \frac{f(4+h) - f(4)}{h} = 1. \tag{18}$$

(5) **RHS:**

$$\lim_{h \to 0} \frac{f(4) - f(4 - h)}{h} = \lim_{h \to 0} \frac{0 - (4 - (4 - h))}{h}$$
(19)

$$= \lim_{h \to 0} \frac{-h}{h} \tag{20}$$

$$= -1 \tag{21}$$

$$\implies \lim_{h \to 0} \frac{f(4) - f(4 - h)}{h} = -1.$$

$$\therefore LHS \neq RHS$$
(22)

Hence, function f(x) is not differentiable at x = 4. This can be seen in Fig 2.

Therefore we proved that f(x) = |x - 4| is continuous, but not differentiable at x = 4.

Fig. 1.

Fig. 2.