Homework for Linear Algebra (XXVI)

Yijia Chen

Exercise 1. Is the (or a for that matter) singular value decomposition of a matrix unique?

Exercise 2. Find the eigenvalues and the singular values of

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}.$$

Exercise 3. Compute the singular value decomposition of the Fibonacci matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

Exercise 4. Suppose u_1, \ldots, u_n and v_1, \ldots, v_n are orthonormal bases for \mathbb{R}^n . Construct the matrix $A = U\Sigma V^T$ that transforms each v_j into u_j to give $Av_1 = u_1, \ldots, Av_n = u_n$.

Exercise 5. Let S be a symmetric matrix. Prove that S is positive semidefinite, i.e., the eigenvalues of S are all nonnegative if and only if for all $x \in \mathbb{R}^n$ we have

$$\boldsymbol{x}^{\mathrm{T}} \mathbf{S} \boldsymbol{x} \geqslant \mathbf{0}.$$