Diagrama de fases

Diego J. Raposo

djrs@poli.br

diegoraposo@hotmail.com

Cronograma

- Definições e conceitos <u>básicos</u> (fases + solubilidade + equilíbrios estável e metaestável);
- Regra das fases de Gibbs;
- Diagramas de fase em condições de equilíbrio estável;
 - Diagramas <u>unários</u> (pressão-temperatura);
 - Diagramas binários (pressão-composição ou temperatura-composição);
- Sistemas binários **isomorfos**:
 - Diagrama binário (temperatura-composição) fases, composição e <u>regra da alavanca</u>;
 - Desenvolvimento de microestrutura;

Definições e conceitos básicos

- Constituinte: espécie química definida;
- Fase (F): características físicas e químicas uniformes ao longo do material;
- Mistura: porção da matéria com mais de um constituinte ou mais de uma fase;
- Componente (C): constituinte de uma mistura cuja quantidade pode ser variada de maneira independente;
- Soluto/solvente: constituinte em menor/maior quantidade;

Componentes vs. Constituintes

Definições e conceitos básicos

- Sistema:
 - Porção do espaço com uma ou mais substâncias (temperatura e composição definidas);
 - Mistura de certos componentes com temperatura definida mas composição variável.
- Mistura homogênea (solução): mais de um constituinte em uma única fase;
- Mistura heterogênea: um ou mais constituintes em diferentes fases no sistema.

Exemplos de misturas

Solubilidade e soluções em líquidos

- Água e etanol: completamente miscível/solúvel, miscível/solúvel em todas as proporções.
- Água e *n*-octano: completamente imiscível/insolúvel;
- Água e açúcar: miscível (p, T, c)
 - Solução (insaturada): diluída, concentrada;
 - Solução saturada;
 - Solução supersaturada;

Solubilidade e soluções em líquidos

Soluções sólidas

- Metais + impurezas: soluções sólidas (misturas homogêneas) ou uma mistura heterogênea (com duas ou mais fases);
- Para saber quantas fases há em uma mistura e suas propriedades é preciso entender como interpretar o diagrama de fases no equilíbrio estável (mesmo quando desejamos propriedades que dependem de equilíbrios metaestáveis).

Regra das fases de Gibbs

- Sistemas dependem da pressão (p), temperatura (T) e concentração (c) de seus componentes (composição).
 Quaisquer outras variáveis podem ser expressas como função delas;
- Josiah Willard Gibbs provou que o número de variáveis independentes que podem variar em um sistema, *F*, segue a relação:

$$F = C - P + 2$$

 n° de variáveis = n° de componentes — n° de fases + 2

$$F = C - P + 2$$

Diagrama unário (pT)

ou pressão-temperatura

Curva de pressão de vapor (L + G)

$$C = 1, P = 1$$

 $F = 2$

p e T variam c é uma função dessas duas

Quaisquer pontos fora das linhas:

$$C = 1, P = 1, F = 2$$
 (p e T ind.)

Curvas de coexistência:

$$C = 1, P = 2, F = 1 \text{ (p ou T)}$$

Ponto triplo:

$$C = 1, P = 3, F = 0$$
 (p e T fixos)

Diagrama unário (pT)

Para componente puro (C = 1), F pode ser no máximo 3. Embora possam haver mais de 3 fases diferentes no diagrama pT, não há um ponto com mais de três fases coexistindo!

Diagramas binários

Apenas esse nos interessa, pois desejamos variar a composição para melhorar material

- Mistura binária: C = 2;
- Misturas heterogêneas:
 - Açúcar + água:

$$c_{\rm S} = \frac{n_{\rm S}}{V}$$
 $c_{\rm A} = \frac{n_{\rm A}}{V}$

 c_i : concentração molar de i (mol/L)

 n_i : quantidade de i (mol)

V: volume total da solução (L)

Escala de conc. boa para quando soluto é apenas parcialmente miscível no solvente

Solução insaturada

$$C = 2, P = 1$$

 $F = 3$

Pode variar p, T ou c de um dos componentes **Ex.:** se fixa c_s, c_A é determinado

Solução saturada

$$C = 2$$
, $P = 2$
 $F = 2$
Pode variar apenas dois:
p e T (pois c é fixo)

Diagramas binários

- Misturas homogêneas (soluções):
 - Benzeno + tolueno:

$$C = 2, P = 1 \rightarrow F = 3$$

p, $T e x_E$ (ou x_A) variam

$$x_{\rm E} = \frac{n_{\rm E}}{n_{\rm E} + n_{\rm A}}$$

$$x_{\mathbf{A}} = \frac{n_{\mathbf{A}}}{n_{\mathbf{E}} + n_{\mathbf{A}}}$$

x_i: fração molar de i (adimensional)

 n_i : quantidade de i (mol)

Escala de concentração boa para quando soluto é totalmente miscível no solvente

Diagrama pressão-composição

Diagrama temperatura-composição

Diagramas binários de ligas isomorfas

• Sistema Ni + Cu;

Sistema isomorfo:

componentes completamente solúveis entre si tanto na fase sólida quanto na líquida

Informações do diagrama

- Especificando um ponto no diagrama de temperaturacomposição, podemos dizer com relação a liga:
 - Quais e quantas fases;
 - Quanto de cada componente;
 - Quanto de cada fase;

[Observe que enquanto que o número de componentes em diagramas binários é fixo e igual a dois, o número de fases pode exceder esse valor]

Cu/Ni: 80/20 $T = 1100 \, ^{\circ}C$

1 fase: α

Cu/Ni: 60/40

 $T = 1400 \, ^{\circ}C$

1 fase: L

Cu/Ni: 20/80

 $T = 1400 \, {}^{\circ}C$

2 fases: α/L

PERGUNTAS E PROBLEMAS

Limite de Solubilidade

- **9.1** Considere o diagrama de fases açúcar-água da Figura 9.1.
 - (a) Que quantidade de açúcar dissolverá em 1000 g de água a 80°C (176°F)?
 - **(b)** Se a solução líquida saturada da parte (a) for resfriada até 20°C (68°F), parte do açúcar precipitará como um sólido. Qual será a composição da solução líquida saturada (em %p açúcar) a 20°C?
 - **(c)** Que quantidade do açúcar sólido sairá da solução no resfriamento até 20°C?
- **9.1** (a) $m_S = 2846$ g;
 - **(b)** $C_L = 64 \text{ %p açúcar};$
 - (c) $m_S = 1068 \text{ g}$

Diagramas de Fases de Um Componente (ou Unários)

- 9.5 Considere uma amostra de gelo a –15°C e 10 atm de pressão. Usando a Figura 9.2, que mostra o diagrama de fases pressão-temperatura para H₂O. determine a pressão à qual a amostra deve ser elevada ou reduzida para fazer com que ela (a) se funde e (b) se sublime.
- **9.5 (b)** A pressão deve ser reduzida para aproximadamente 0,003 atm

Quanto de cada componente (Cu/Ni)

- Regiões com 1 fase:
 - Posição da liga no diagrama;

Cu/Ni: 80/20 $T = 1100 \, ^{\circ}C$

1 fase: α

80% de Cu 20% de Ni

Cu/Ni: 60/40

 $T = 1400 \, {}^{\circ}C$

1 fase: L

60% de Cu

40% de Ni

Quanto de cada componente (Cu/Ni)

- Regiões com múltiplas fases:
 - Interseção da linha de amarração com as linhas liquidus e solidus.

Cu/Ni: 65/35 $T = 1250 \, ^{\circ}C$

2 fases: α/L

Em L: 31,5% de Ni 68,5% de Cu Em a:

42,5% de Ni

Quanto de cada fase (α/L)

- Regiões com 1 fase:
 - Posição da liga no diagrama;

Cu/Ni: 80/20T = 1100 °C

1 fase: α

80% de Cu

20% de Ni

100% de α

Cu/Ni: 60/40

 $T = 1400 \, ^{\circ}C$

1 fase: L

60% de Cu

40% de Ni

100% de L

Quanto de cada fase (α/L)

- Regiões com múltiplas fases:
 - Regra da alavanca.

$$W_{\alpha} = \frac{C_0 - C_{\rm L}}{C_{\alpha} - C_{\rm L}}$$

$$W_{\alpha} = \frac{C_0 - C_{\mathrm{L}}}{C_{\alpha} - C_{\mathrm{L}}} \qquad W_{\mathrm{L}} = \frac{C_{\alpha} - C_{\mathrm{0}}}{C_{\alpha} - C_{\mathrm{L}}}$$

Cu/Ni: 65/35
T = 1250 °C
2 fases:
$$\alpha/L$$

$$W_L = \frac{42.5 - 35}{42.5 - 31.5}$$

$$= 0.68$$

Percentual por Massa da liga (incluindo Cu e Ni)

$$W_{\alpha} = \frac{35 - 31,5}{42,5 - 31,5} = 0,32$$

Deduza a regra da alavanca

- Definições;
- <u>Etapa 1</u> (conservação da massa total);
- Etapa 2 (conservação da massa de um componente em fases distintas);
- Etapa 3 (combinação para resultado final).