CISA4358: Senior project and seminar Mohammad Abdel-Rahman

Model Evaluation

Evaluating a Predictive Model

K-Fold Cross Validation

- Split a data set into *k* partitions (i.e. folds).
- In each iteration, use *1* partition as the testing set and other *k-1* partitions as the training set.
- Aggregate the performance from the k tests (e.g., average)
- Variation
 - Stratified
 - Leave-one-out
- Typically considered sufficient:
 - 10 times 10-fold cross validation

Confusion Matrix

Predicted Class

Actual
Class

		Positive	Negative
	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

$$Accuracy = \frac{Number of correctly classified instances}{Total number of instances classified}$$

$$Precison = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F\text{-measure} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

The Problem with Accuracy

- An insurance claim data set contains 100 claim, 10 of which are fraud.
- Model 1: Predicting all claims as non-fraud
- Model 2: Using other information in the claim data

Predicting all claims as non-fraud

Predicted Class			
_		Fraud	Non-Fraud
Actual Class	Fraud	0	10
	Non-Fraud	0	90

• Accuracy: 90% vs 88%

• Precision: 50% vs 42.86%

• Recall: 0% vs 60%

• F-measure: 0% vs 50%

Model 2

Predicted Class				
_		Fraud	Non-Fraud	
Actual Class	Fraud	6	4	
	Non-Fraud	8	82	

Cost-Sensitive Classification

- Unequal cost among classes
 - Example:
 - It costs nothing if a correct prediction is made (TP and TN)
 - It costs \$1,000 if a non-fraud case is misclassified as fraud.
 - It costs \$10,000 if a fraud case is misclassified as non-fraud.
 - Total loss for using Model 1: 10*10,000 = 100,000
 - Total loss for using Model 2: 4*10,000+8*1,000 = 48,000

Prediction cost in thousand dollars

Predicted Class				
_		Fraud	Non-Fraud	
Actual Class	Fraud	0	10	
	Non-Fraud	1	0	