Steven Rosendahl Homework 4

1. If p is prime and $p \mid a^k$, prove that $p \mid a$. Conclude that $p^k \mid a^k$.

Since $p \mid a^k$, we have that $p \mid aa^{k-1}$. Then $p \mid a$ or $p \mid a^{k-1}$, but not both. If we assume that $p \mid a^{k-1}$, we can say that $p \mid aa^{k-2}$. If $p \mid a^{k-2}$, then we have that $p \mid aa^{k-3}$. If we repeat this process, we will ultimately have that $p \mid aa^0$. Then $p \mid a$ or $p \mid a^0$. If $p \mid a$, then we are done. If $p \mid a^0$, then $p \mid 1$, which is a contradiction. Therefore, $p \mid a^0$ must divide a.

Assume $p \mid a$. Then a = pm for some $m \in \mathbb{Z}$. Raising both sides to the k power gives $a^k = p^k m^k$. Since $m^k \in \mathbb{Z}$, we can say that $m^k = j$. Then $a^k = p^k j$, so $p^k \mid a^k$.

 \triangle

2. Suppose that a and b are positive integers.

(a) If $a^2 \mid b^2$ prove that $a \mid b$. (Hint: Assuming that $a^2m = b^2$, use unique factorization to prove that m is a perfect square.)

Assume that $a^2 \mid b^2$. Then $b^2 = a^2 m$ for some $m \in \mathbb{Z}$. By the Fundamental Theorem of Arithmetic, we have that $(p_1^{\alpha_1} p_2^{\alpha_2} \dots p_j^{\alpha_j})^2 = (p_1^{\beta_1} p_2^{\beta_2} \dots p_k^{\beta_k})^2 m$ for $j, k \in \mathbb{Z}$ and $\alpha, \beta \in \mathbb{N}$.

(b) If n is a positive integer such that $a^n \mid b^n$ can we conclude that $a \mid b$? Either prove your answer or provide a counterexample.

3. Suppose that a and b are positive integers and p_1, p_2, \ldots, p_n are primes such that

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$$
 and $b = p_1^{\beta_1} p_2^{\beta_2} \dots p_n^{\beta_n}$,

where α_i and β_i are non-negative (possibly equal to 0) integers. Prove that

$$lcm(a,b) = p_1^{max(\alpha_1,\beta_1)} p_2^{max(\alpha_2,\beta_2)} \dots p_n^{max(\alpha_n,\beta_n)}.$$

Let L = lcm(a, b). We have by definition that $a \mid L$ and $b \mid L$. If we consider the case where $a \mid L$, then we have that L = am for some $m \in \mathbb{Z}$. We can arrange this as $\frac{L}{a}$, which is

$$\frac{L}{p_1^{\alpha_1}p_2^{\alpha_2}\dots p_n^{\alpha_n}} = \frac{p_1^{\gamma_1}p_2^{\gamma_2}\dots p_n^{\gamma_n}}{p_1^{\alpha_1}p_2^{\alpha_2}\dots p_n^{\alpha_n}} \text{ by the FTA}.$$

If we assume that $\gamma_i < \alpha_i$ for some $i \leq n$, then L < a, and $\frac{L}{a} \notin \mathbb{Z}$, which is a contradiction; we must have that $\gamma_i \geq \alpha_i$. Similarly, we can express $b \mid L$ as

$$\frac{p_1^{\gamma_1}p_2^{\gamma_2}\dots p_n^{\gamma_n}}{p_1^{\beta_1}p_2^{\beta_2}\dots p_n^{\beta_n}}=q\in\mathbb{Z}.$$

By the same argument, we must have that we must have that $\gamma_i \geq \beta_i$. If we take any arbitrary α_i such that $\alpha_i < \beta_i$, then letting $\gamma_i = \alpha_i$ would cause $\frac{L}{b} \notin \mathbb{Z}$; we also have that taking $\gamma_i = \beta_i$ when $\beta_i < \alpha_i$ will cause $\frac{L}{a} \notin \mathbb{Z}$. Therefore, γ_i must be the maximum of α_i, β_i for all i. We can conclude that the prime factorization of L must be $p_1^{\max(\alpha_1,\beta_1)}p_2^{\max(\alpha_2,\beta_2)}\dots p_n^{\max(\alpha_n,\beta_n)}$.

 \triangle

4. Determine whether each of the following statements is true or false. If true, prove it. If false, provide a counterexample.

(a) If $gcd(a, p^2) = p$ then $gcd(a^2, p^2) = p^2$.

We know that $p \mid a$ by the definition of the gcd. We can say that a = pn for some $n \in \mathbb{Z}$. Then $a^2 = p^2n^2$, so $p^2 \mid a^2$. Since p^2 is the greatest thing that divides p^2 and a > p so $a^2 > p^2$, $gcd(a^2, p^2) = p^2$.

- (b) If $gcd(a, p^2) = p$ and $gcd(b, p^2) = p^2$ then $gcd(ab, p^4) = p^3$. If we take the case where a = p and $b = p^3$, then we have $gcd(p, p^2) = p$ and $gcd(p^3, p^2) = p^2$. However, $gcd(p^4, p^4) \neq p^3$.
- (c) If $gcd(a, p^2) = p$ then $gcd(a + p, p^2) = p$. If we take a, p = 2, then we have that gcd(2, 4) = 2, but $gcd(4, 4) \neq 2$.
- 5. Prove that every prime $p \neq 3$ has the form 3q + 1 or 3q + 2 for some integer q. Moreover, prove that there are infinitely many primes of the form 3q + 2.

If we consider a prime number $p \neq 3$, we will get a remainder of either 1 or 2 when we divide it by three; if we get a remainder of 0, then that number was a multiple of 3 and therefore not prime. We also know that all prime numbers above 3 are odd. Therefore, by the division algorithm, we have that p = 3q + 1 or p = 3q + 2.

Assume that there are finitely many primes of the form 3q + 2. Then we can say

$$p_1 = 3q_1 + 2$$

$$p_2 = 3q_2 + 2$$

$$\dots$$

$$p_n = 3q_n + 2$$

We will let $m = 3p_1p_2 \dots p_k - 1$, which we can express as $3p_1p_2 \dots p_k - 3 + 2$. By factoring we have that $m = 3(p_1p_2 \dots p_k - 1) + 2$. Then we have a prime p = 3q + 2 that divides m. Since there are finitely many primes of this form, we have that $p = p_i$ for some $i \le n$. Without loss of generality, we will let i = 1. Then we have

$$1 = 3(p_1 p_2 \dots p_n) - m$$
$$= p_1(3p_2 p_3 \dots p_n - \frac{m}{p_1})$$
$$= p_1 j \text{ for some } j \in \mathbb{Z}$$

Therefore, $p_1 \mid 1$, which is a contradiction.

 \triangle

6. Two primes p and q with p < q are called twin primes if p + 2 = q. If p and q are twin primes with $3 , prove that <math>6 \mid p + 1$.