Claim 17 (Arbitrary modifications to a list ADT are not
$$\mathcal{I}$$
-confluent with respect to equality constraints on the size of the list). Consider the following transactions:
$$T_{1l} := del(x_i, l); \ add(x_a, l); \ commit$$

$$T_{2l} := del(x_i, l); \ add(x_b, l); \ commit$$
 and the list size invariant:
$$I_l(D) = \{size(l) = 1\}$$
 Now, the size invariant holds on a list of size one $(I_u(\{add(x_i, l)\}) \rightarrow true)$ and on independent state modifications:
$$T_{1l}(\{add(x_i, l)\}) = \{add(x_i, l), \ del(x_i, l), \ add(x_a, l)\}$$

$$T_{2l}(\{add(x_i, l)\}) = \{add(x_i, l), \ del(x_i, l), \ add(x_b, l)\}$$
 However, merging these states result in an invalid state:
$$I_l(\{add(x_i, l), \ del(x_i, l), \ add(x_a, l)\} \cup \{add(x_i, l), \ del(x_i, l), \ add(x_b, l)\}) \rightarrow false$$
 Therefore, $\{T_{1l}, T_{2l}\}$ is not \mathcal{I} -confluent under I_u .