INF580 LARGE SCALE MATHEMATICAL OPTIMIZATION

Instructor: Leo Liberti

Project 6: random projection

Ming Cheng Yunhao Chen

16/03/2022

Summary

1. Problem formulation

2. Solution retrieval

3. Implementation details

4. Results

Problem formulation

Random projection + Linear programming

$$P \equiv \min\{c^{\mathrm{T}}x \mid Ax = b, x \ge 0\}$$

$$D \equiv \max\{b^{\mathrm{T}}y \mid A^{\mathrm{T}}y \le c\}$$

$$TP \equiv min\{c^{\mathsf{T}}x \mid TAx = Tb, x \ge 0\}$$

$$TD \equiv max\{(Tb)^{\mathrm{T}}u \mid (TA)^{\mathrm{T}}u \le c\}$$

Dimension:

```
A (m,n)
x, c (n,1)
```

T (k,m) -> random projection matrix u (k,1)

k<m<n

Problem formulation

Theorem 1 (Johnson-Lindenstrauss Lemma). Given $\epsilon \in (0,1)$ and an $m \times n$ matrix A, there exists a $k \times m$ matrix T such that:

$$\forall 1 \le i \le j \le n \quad (1 - \epsilon) ||A_i - A_j|| \le ||TA_i - TA_j|| \le (1 + \epsilon) ||A_i - A_j||$$

where k is $O(\epsilon^{-2} \ln n)$.

The "distance structure" between columns of **TA** remains approximately the same as columns in **A**.

Solution of TP is a good approximation of solution of P?

Solution retrieval

From TP to P:

$$\mathcal{F}(P) \equiv \{ x \in \mathbb{R}^n \mid Ax = b, x \ge 0 \}$$
$$(TP)_{\theta} \equiv \min \left\{ c^T x \mid TAx = Tb, \sum_{j=1}^n x_j \le \theta, x \ge 0 \right\}$$

Theorem 2. Assume $\mathcal{F}(P)$ is bounded and non-empty. Let y^* be an optimal dual solution of P of minimal Euclidean norm. Given $0 \le \delta \le |v(P)|$, we have

$$v(P) - \delta \le v((TP)_{\theta}) \le v(P)$$

with probability at least $p = 1 - 4ne^{-C(\epsilon^2 - \epsilon^3)k}$, where $\epsilon = O\left(\frac{\delta}{\theta^2 ||y^*||}\right)$. v(P) = optimal objective function value of <math>P

The objective function value of projected problem v(TP) is a good approximation of objective value of primal problem v(P).

Solution retrieval

From TP to P:

On the other hand, given x' the solution of TP, we can prove that $Ax' \neq b$ almost surely. (cf Chapter 5 in paper [1]). Therefore, the projected problem directly gives us an approximate optimal objective function value, but not the optimum itself.

Solution retrieval

From TD to P:

Implementation details

Generate a feasible problem:

We generate A,x,T and c where:

 $A \sim U[-1,1[$ with size(m,n)

 $x,c \sim U[0,1[$ with size (n,1)

 $T \sim N(0,1/k)$ with size(k,m)

B is calculated by A*x with size (m,1) TA is calculated by T*A with size (k,n)

TB is calculated by T^*B with size (k,1)

k<m<n

$$P \equiv \min\{c^{\mathrm{T}}x \mid Ax = b, x \ge 0\}$$

$$TP \equiv \min\{c^{\mathsf{T}}x \mid TAx = Tb, x \ge 0\}$$

$$TD \equiv max\{(Tb)^{\mathrm{T}}u \mid (TA)^{\mathrm{T}}u \leq c\}$$

Program Introduction

We set basicly m=500, n=700, k=300.

We analysed:

- 1. objective function value
- 2. feasibility error: $\frac{\|Ax b\|_1}{\|b\|_1}$
- 3. cpu time (s)

We studied the impact of parameter changes:

- 1. k: from 50 to 300
- 2. m: from 150 to 500
- 3. density: 1, 0.8, 0.6, 0.4

Results (1): density 1

The first setup is: $m = 500, n = 700, k = 50 \rightarrow 500, \text{density} = 1$

The second setup is: $m = 350 \rightarrow 700, n = 700, k = 300, \text{density} = 1$

Results (2): density 0.8

The Third setup is: $m = 500, n = 700, k = 50 \rightarrow 500, \text{density} = 0.8$

The fourth setup is: $m = 350 \rightarrow 700, n = 700, k = 300, \text{density} = 0.8$

Results (3): density 0.6

The fifth setup is: $m = 500, n = 700, k = 50 \rightarrow 500, \text{density} = 0.6$

The sixth setup is: $m = 350 \rightarrow 700, n = 700, k = 300, \text{density} = 0.6$

Results (4): density 0.4

The fifth setup is: $m = 500, n = 700, k = 50 \rightarrow 500, \text{density} = 0.4$

The sixth setup is: $m = 350 \rightarrow 700, n = 700, k = 300, \text{density} = 0.4$

Results—interpretation (objctive function value)

m=500,

the effect of k:

Results—interpretation (objctive function value)

k=300,

the effect of m:

Results—interpretation (feasibility error)

the effect of k and m:

Results—interpretation (computation time)

The effect of k:

Results—interpretation (computation time)

The effect of m:

References

[1] Ky Vu, Pierre-Louis Poirion, and Leo Liberti. Random projections for linear programming. arXiv e-prints, page arXiv:1706.02768, June 2017.