Algebra

— Blatt 2 —

(Tutoriumsblatt)

Aufgabe 0 (Vorbereitung auf das Tutorium)

- (a) Sei G eine Gruppe. Was sind die Elemente von $\operatorname{Aut}(G)$, und wie ist die Verknüpfung auf $\operatorname{Aut}(G)$ definiert? Geben Sie das Neutralelement der Gruppe und für jedes $\tau \in \operatorname{Aut}(G)$ das Inverse an.
- (b) Welche Bedingungen müssen erfüllt sein, damit eine Teilmenge $U \subseteq G$ eine Untergruppe ist?
- (c) Aus der Vorlesung ist bekannt, dass eine Untergruppe U von G selbst wieder eine Gruppe ist. Was ist die Verknüpfung von U?
- (d) Wie ist der Kern eines Gruppenhomomorphismus $\phi: G \to H$ definiert? Wie sieht der Kern aus, wenn ϕ injektiv ist?
- (e) Durch welche beiden Eigenschaften ist die von einer Teilmenge $S \subseteq G$ erzeugte Untergruppe $\langle S \rangle$ charakterisiert?
- (f) Was ist eine zyklische Gruppe?

Aufgabe 1

Es sei G eine Gruppe und $U \subseteq G$ eine Teilmenge. Zeigen Sie: Genau dann ist U eine Untergruppe von G, wenn $U \neq \emptyset$ und $ab^{-1} \in U$ für alle $a, b \in U$ gilt.

Aufgabe 2

Sei G eine Gruppe. Dann wird $Z(G)=\{g\in G\mid gh=hg \text{ für alle }h\in G\}$ das Zentrum von G genannt.

- (a) Für jedes $g \in G$ definieren wir jeweils die Abbildung $\tau_g : G \to G$, $h \mapsto ghg^{-1}$. Zeigen Sie, dass die Menge $U = \{\tau_g \mid g \in G\}$ eine Untergruppe von $\operatorname{Aut}(G)$ ist.
- (b) Weisen Sie nach, dass $\phi: G \to \operatorname{Aut}(G), g \mapsto \tau_g$ ein Gruppenhomomorphismus ist, und dass $\ker(\phi) = Z(G)$ gilt.

Aufgabe 3

- (a) Zeigen Sie, dass in der Gruppe $(\mathbb{Q}, +)$ die Gleichung $\langle \frac{1}{2}, \frac{1}{3} \rangle = \langle \frac{1}{6} \rangle$ gilt.
- (b) Bestimmen Sie (mit Nachweis) ein $r \in \mathbb{Q}$, so dass $\langle \frac{1}{2}, \frac{1}{3}, \frac{1}{5} \rangle = \langle r \rangle$ erfüllt ist.
- (c) Zeigen Sie, dass $U = \{\frac{a}{2^k} \mid a \in \mathbb{Z}, k \in \mathbb{N}_0\}$ keine zyklische Untergruppe von $(\mathbb{Q}, +)$ ist.

Aufgabe 4 (Zahlentheorie)

Seien R und S Ringe. In Analogie zu den Gruppen bezeichnen wir R und S als isomorph und schreiben $R \cong S$, wenn ein Isomorphismus $\phi: R \to S$ von Ringen (also ein bijektiver Ringhomomorphismus) existiert.

- (a) Zeigen Sie: Gilt $R \cong S$ und ist R ein Integritätsbereich (bzw. ein Körper), dann ist auch S ein Integritätsbereich (bzw. ein Körper).
- (b) Sei K ein Körper mit vier Elementen. Zeigen Sie, dass die Menge $M = \{m \cdot 1_K \mid m \in \mathbb{Z}\}$ mit $\{0_K, 1_K\}$ übereinstimmt, und dass es sich bei M um ein zweielementigen Teilkörper von K handelt.

Dieses Blatt wird vom 2. bis zum 4. November im Tutorium bearbeitet.

Lineare Algebra

— Blatt 2 —

(Globalübungsblatt)

Aufgabe 1 (bereits mehrmals im Staatsexamen vorgekommen) (5+5 Punkte)

- (a) Es seien G eine Gruppe und U_1, U_2, V Untergruppen von G mit $V \subseteq U_1 \cup U_2$. Zeigen Sie, dass $V \subseteq U_1$ oder $V \subseteq U_2$ gilt.
- (b) Sei G eine Gruppe und U eine Untergruppe von G mit der Eigenschaft, dass die Mengendifferenz $G \setminus U = \{g \in G \mid g \notin U\}$ endlich ist. Zeigen Sie, dass dann G endlich ist oder U = G gilt.

 $Hinweis\ zu\ (b)$ Zeigen Sie zunächst, dass für jedes $g\in G\setminus U$ durch die Zuordnung $u\mapsto gu$ jeweils eine injektive Abbildung $U\to G\setminus U$ definiert ist.

Aufgabe 2 (2+2+3+3 Punkte)

Sei S_3 die symmetrische Gruppe in drei Elementen. Bekanntlich sind die Elemente von S_3 gegeben durch $S_3 = \{ id, (12), (13), (23), (123), (132) \}.$

- (a) Bestimmen Sie für jedes $\sigma \in S_3$ die Elemente der erzeugten Untergruppe $\langle \sigma \rangle$.
- (b) Zeigen Sie, dass jede Untergruppe U von S_3 mit S_3 übereinstimmt, sobald sie mindestens einen 2und einen 3-Zykel enthält.
- (c) Zeigen Sie mit Hilfe von Aufgabe 2 vom Tutoriumsblatt und Satz (2.13) aus der Vorlesung, dass $Aut(S_3)$ isomorph zu S_3 ist.
- (d) Beweisen Sie, oder widerlegen Sie durch ein konkretes Gegenbeispiel: Ist G eine abelsche Gruppe, dann ist auch $\operatorname{Aut}(G)$ abelsch. (Betrachten Sie die Gruppe $G = (\mathbb{F}_2^2, +)$ und stellen Sie einen Zusammenhang zwischen $\operatorname{Aut}(G)$ und $\operatorname{GL}_2(\mathbb{F}_2)$ her.)

Aufgabe 3 (3+3+4 Punkte)

Wir betrachten die Gruppe $G = (\mathbb{Z}^2, +)$, wobei + wie üblich die komponentenweise Addition bezeichnet.

- (a) Zeigen Sie, dass $S = \{(3,1), (5,2)\}$ ein Erzeugendensystem von G ist.
- (b) Weisen Sie nach, dass $U = \langle (2,4), (-3,-6) \rangle$ eine zyklische Untergruppe von G ist.
- (c) Zeigen Sie, dass G selbst nicht zyklisch ist

Aufgabe 4 (Zahlentheorie) (2+2+3+3 Punkte)

In der Vorlesung wurde das direkte Produkt $R \times S$ zweier Ringe eingeführt.

- (a) Zeigen Sie, dass die Einheitengruppe von $R \times S$ durch $R^{\times} \times S^{\times}$ gegeben ist.
- (b) Welche Bedingung muss erfüllt sein, damit $(r, s) \in R \times S$ ein Nullteiler ist? (Bitte begründen Sie, dass die angegebene Bedingung ein notwendiges und hinreichendes Kriterium für Nullteiler ist.)
- (c) Beweisen Sie, dass $R \times S$ dann und nur dann ein Integritätsbereich ist, wenn einer der beiden Ringe R, S ein Nullring und der andere ein Integritätsbereich ist.
- (d) Setzen wir nun voraus, dass R ein Ring der Charakteristik 2 und S ein Ring der Charakteristik 3 ist. Zeigen Sie, dass $\operatorname{char}(R \times S) = 6$ gilt.

Abgabe: Dienstag, 9. November 2021, 12:15 Uhr

Verspätete Abgaben können aus organisatorischen Gründen leider nicht nachträglich angenommen werden. Bitte geben Sie auf jeder Abgabe die Nummer Ihrer Übungsgruppe an.