Chapter 1: Iterative methods for linear systems Solutions

Exercise 23.-

a)
$$x^{(k+1)} = (I - \omega A)x^{(k)} + \omega b$$
.

a.1) If we denote \bar{x} to the limit of $\{x_n\}_n$, then $\bar{x} = (I - \omega A)\bar{x} + \omega b \Leftrightarrow A\bar{x} = b$.

a.2) Let us compute the range of values of ω for which we have $||I - \omega A||_{\infty} < 1$. It is clear that $||I - \omega A||_{\infty} = \max\{|1 - 4\omega| + 2|\omega|, |1 - 5\omega| + 2|\omega|\}$. If $\omega < 0$ then one has $|1 - 4\omega| > 1$ which implies $||I - \omega A||_{\infty} > 1$. So, we are restricted to positive values of ω .

There are several ways of studying the set of (positive) values of ω for which the two conditions $|1-4\omega|+2\omega<1, |1-5\omega|+2\omega<1$ hold, but a simple one is to to draw the graphics of the functions $f_1(x)=|1-4x|+2x$ and $f_2(x)=|1-5x|+2x$ for x>0 (see Fig. 1). Note that, as $\omega>0$ the condition $|1-4\omega|+2\omega<1$ is satisfied when $4\omega-1+2\omega<1$ which implies $\omega<\frac{1}{3}$. The condition $|1-5\omega|+2\omega<1$ is satisfied when $5\omega-1+2\omega<1$ which implies $\omega<\frac{2}{7}$. As $\frac{2}{7}<\frac{1}{3}$, the condition $|I-\omega A|_{\infty}<1$ is satisfied when $0<\omega<\frac{2}{7}$.

A second option is to look for a set of values of ω such that the spectral radius of the iteration matrix $I - \omega A$ is lower than 1. This can be done using the

Figure 1: Graphics of f_1 and f_2 .

Gerschgorin Theorem to show that the eigenvalues of A belong to the interval [2, 7]. Then, as $\lambda \in \operatorname{Spec}(A) \Leftrightarrow 1 - \omega \lambda \in \operatorname{Spec}(I - \omega A)$, let us ask for the condition $|1 - \omega \lambda| < 1$. It is clear that to have $1 - \omega \lambda < 1$ it is necessary to choose $\omega > 0$. Moreover, to have $-(1 - \omega \lambda) < 1$ for all $\lambda \in [2, 7]$ it is enough to ask for $\omega < \frac{2}{7}$. Hence, the range $0 < \omega < \frac{2}{7}$ guarantees that $\rho(I - \omega A)$ is lower than 1.

a.3) The minimum value of $||I-\omega A||_{\infty}$ is given by the intersection of the two graphs of Fig. 1, and it is easy to see that corresponds to $\omega = \frac{2}{9}$. For this value of ω , we have that $\beta = ||I-\omega A||_{\infty} = \frac{5}{9}$. Then, as $x^{(0)} = 0$, $x^{(1)} = \omega b$ and $||b||_{\infty} = 1$, we have

$$||x^{(k)} - \bar{x}||_{\infty} \le \frac{\beta^k}{1 - \beta} ||x^{(1)} - x^{(0)}||_{\infty} = \frac{1}{2} \left(\frac{5}{9}\right)^k < 10^{-12},$$

which implies k > 46.

b) Let us define $r=Ax^*-b$. If $A\bar{x}=b$, we have $A(x^*-\bar{x})=r$, or Ae=r ($e=x^*-\bar{x}$ is the error of the solution). Then, $\|e\|_{\infty}=\|A^{-1}r\|_{\infty}\leq \|A^{-1}\|_{\infty}\|r\|_{\infty}$. On the other hand, writing A=D(I-B) we have that $A^{-1}=(I-B)^{-1}D^{-1}$ and, using that $\|D^{-1}\|_{\infty}=\frac{1}{4}$, $\|B\|_{\infty}=\frac{1}{2}$, it follows that

$$||A^{-1}||_{\infty} \le \frac{1}{4}(1 + \frac{1}{2} + \frac{1}{2^2} + \cdots) = \frac{1}{2}.$$

Then, $||e||_{\infty} \le \frac{1}{2} \times 10^{-12}$.