TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P01A, 14 Mai 2021 Entrega em 15 mai 2021, 09:30. Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: Assinatura: _____

 ${f 1}$ [25] Considere o programa a seguir

```
fib = [0,1]
2  n = 1
3  while n < 10 :
4   n += 1
5   newf = fib[n-1] + fib[n-2]
6   fib.append(newf)
7  print(fib)</pre>
```

Sem rodar o programa, explique quais são os cálculos que o programa faz, e escreva a sua saída.

2 [25] Langhaar [1951]: Uma estrela de densidade ρ e diâmetro D vibra com frequência n: a vibração consiste em uma mudança cíclica de forma, mudando de elipsóide alongado em uma direção para esfera para elipsóide alongado em outra direção, e assim sucessivamente. Supõe-se que as variáveis que regem o fenômeno são essas três mais a constante universal de gravitação G (lembre-se: a lei da gravitação universal de Newton é $|F| = GMm/r^2$). Obtenha todos os grupos adimensionais que regem o problema. Escolha **obrigatoriamente** D, n e ρ como variáveis que participam de todos os grupos.

 ${f 3}$ [25] A figura ao lado ilustra a "regra do ponto do meio", em que a integral

$$I = \int_{a}^{b} f(x) \, \mathrm{d}x$$

é aproximada pela soma das áreas dos retângulos com as alturas dadas pelo valor da função no centro de cada intervalo $[x_0,x_1], [x_1,x_2], \ldots, [x_{n-1},x_n]$ onde, como sempre, $a \equiv x_0$ e $x_n \equiv b$. Considere $\Delta x = x_n - x_{n-1}$ constante. Obtenha a fórmula geral para I utilizando a "fórmula do ponto do meio", para um número genérico de pontos n.

 $oldsymbol{4}$ [25] Escreva, rode, e entregue a listagem (em um arquivo em separado) de um programa em Python que calcula

$$I = \int_0^{\pi} \operatorname{sen}(x) \, \mathrm{d}x$$

utilizando a regra do ponto do meio e 100 intervalos de integração.

REFERÊNCIAS REFERÊNCIAS

Referências

Langhaar, H. L. (1951). Dimensional analysis and theory of models. John Wiley & Sons, New York.