

Low-lying spectroscopy of 200

M. Lozano-González, B. Fernández-Domínguez, J. Lois-Fuentes, F. Delaunay

USC-IGFAE and LPC-Caen February 2025

Physics case

Neutron-rich ²⁰O

- ightharpoonup N=8 shell gap
- Ground-state wave function

A recap on spectroscopic factors

Spectroscopic factors shed light on the occupancy of single-particle states:

$$\left.\frac{d\sigma}{d\Omega}\right|_{\rm exp} = C^2S \cdot \left.\frac{d\sigma}{d\Omega}\right|_{\rm s.p}, \quad \sum C^2S = (2j+1) \ {\rm in} \ {\rm IPSM}$$

Experimentally:

Reduction of $\sim 65 \%$!

- Short-range correlations: tensor forces,...
- Long-range: vibrations, giant resonances,...

Experimental setup

E796 was performed at LISE (GANIL) back in March 2022 under these experimental conditions:

- Beam: ²⁰O @ 35 AMeV
- Gas: 90 %D₂ and 10 % iC₄H₁₀
- Silicons: two front layers and one left. 500 µm-thick

Neutron removal $^{20}O(p,d)$ $^{20}O(d,t)$

Proton removal ²⁰O(d, ³He)

A glance at the analysis

Independent analyis from Juan: same general idea but different execution and (I hope) some improvements.

Good PID after vetoing punchthrough

 E_x resolution in very good agreement with simulations!

Results: (in)elastic scattering

These are the excitation energy spectra for protons and deuterons.

Only 1st excited state

Up to 7 $E_x > 0$ states observed!

Angular distributions for the **ground-state** and first excited states:

Remaining states: low stats. Coming soon.

For the proton scattering:

Issue: gs not reproduced by any OMP!

1st excited as well?

About normalizations

Just to recall the xs formula:

$$\frac{d\sigma}{d\Omega} = \frac{N}{N_{\rm beam}N_{\rm targets}\epsilon\Delta\Omega} = \frac{N}{\alpha\epsilon\Delta\Omega}$$

- $N_{\text{beam}} \leftarrow \text{CFA counter}$
- $ightharpoonup N_{\mathsf{targets}} \leftarrow \mathsf{Gas}\;\mathsf{mixture}.$ Sensitive to p.

Theo. lines need scaling (α) to match experimental data α in agreement with Juan's \Rightarrow Not likely ϵ issue

Which norm should we use?

Protons are more "reliable" 🤔

Excited states are populated up to $\sim 15\,\mathrm{MeV}$:

In and 2n **phase spaces** are included in the fit. Small (p,d) contamination at $\sim 16\,\mathrm{MeV}$ under control.

OMPs: Daehnick (d), Pang (t)

Feb 2025 | Oxygen spectroscopy

OMPs: Daehnick (d), Pang (t)

Few stats for some.
Rebinning is
foreseen.

Almost all are $\Delta L = 1!$

SF are compared with shell-model calculations with **YSOX** and **SFO-tls**.

Normalized to gs SF

More $p_{1/2}$ strength than predicted at $E_x < 10\,\mathrm{MeV}$

About ESPEs

Effective single-particle energies (ESPEs) are needed to locate the $1p_{1/2}$ and $1d_{5/2}$ orbits: Baranger's formula

$$\mathrm{ESPE}_{nlj} = \frac{\sum_{i+} (2j+1) \mathrm{SF}_{i+}(E_{i+} - E_0) + \sum_{i-} \mathrm{SF}_{i-}(E_0 - E_{i-})}{\sum_{i+} (2j+1) \mathrm{SF}_{i+} + \sum_{i-} \mathrm{SF}_{i-}}$$

Removal (—) from our (d,t) or (p,d) channels.

Adding (+) from ²⁰O(d,p)²¹O by B. Fernández-Domínguez et al. PRC 84 (2011)

Assuming all $\Delta L = 1$ states below $E_x = 10 \, \text{MeV}$ are $p_{1/2}...$

Smaller experimental gap than predicted!

Higher $1p_{1/2}$ occupation according to exp.

Note: *p-norm* refers to absolute SFs with (p,p) normalization, whereas *d-norm* to (d,d) data

Fewer states are populated in this channel:

Strong (d,d) background since we only identify the outgoing deuteron!

OMPs: CH89 (p), ADWA (d). Not so encouraging results:

Either Fresco or ZR
Twofnr fail to reproduce
gs 😕

Yet 1st excited state seems well-reproduced!