Age structure of well-mixed compartmental systems

Department Biogeochemical Processes

Overview

We find general formulas for the transit time and age distributions in well-mixed compartmental systems. As an example we consider a simple three-pool global carbon model with nonlinearities in two different scenarios:

steady state pre-industrial system before 1765

perturbed adding fossil fuels to the atmosphere,
considering land use change,

1765-2500

Main quantities of interest

transit time time that a particle needs to travel through

the system

exit time — entry time

system age for particles in the system

current time - entry time

compartment system age of particles in a compartment age

Mathematical description

Well-mixed compartmental systems can be descibed by a system of generally **nonlinear** ordinary differential equations of the form

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{A}(\mathbf{x}(t), t)\mathbf{x}(t) + \mathbf{u}(t), \quad t > t_0,$$
(1)

with a given initial value x_0 .

Reduction to linear nonautonomous systems

We assume to know (at least numerically) the unique solution of (1) and denote it by x. We then plug it into A(x, t) and obtain the **linear** system of ordinarzy differential equations.

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{u}(t), \quad t > t_0$$

This equation has the general solution formula

$$\mathbf{x}(t) = \underbrace{\Phi(t, t_0)\mathbf{x}_0}_{\text{age}(t)=t-t_0+\text{initial age}} + \int_{t_0}^t \underbrace{\Phi(t, \tau)\mathbf{u}(\tau)}_{\text{age}(t)=t-\tau} d\tau,$$

where Φ is the so-called state transition matrix. This leads immediately to the vector of age densities

$$\rho(a,t) = \begin{cases} \Phi(t,t_0)\rho_0(a-(t-t_0)), & a \ge t-t_0, \\ \Phi(t,t-a)\mathbf{u}(t-a), & a < t-t_0, \end{cases}$$

where ρ_0 is the initial age distribution.

Pre-industrial (<1765), system in steady state

Transit time density $p_T(t) = \mathbf{z}^T e^{t \, \mathbf{A}} \, \mathbf{u}$ System age density $p_A(a) = \sum_i \left(e^{a \, \mathbf{A}} \, \mathbf{u} \right)_j$

Compartmental age density $p_j(a) = (e^{a A} u)_j$

Model Pre-industrial (<1765) + perturbed (1765-2500)

External input fluxes

$$u_S = 45$$
, $u_A(t) = \text{fossil-fuels}(t)$

 $F_{AT} = 60 (x_A/700)^{0.2}$ $F_{TA}(t) = 60 x_T/3000$ + land-use-change(t)

 $F_{AS} = 100 x_A / 700$ $F_{SA} = 100 (x_S / 1000)^{10}$

 $F_{SD} = 45 x_S / 1000$

State transition matrix

one-dimensional $\Phi(t,t_0)=\exp\left[(t-t_0)A(t)\right]$ exponential function multi-dimensional, $\Phi(t,t_0)=\exp\left[(t-t_0)A(t)\right]$ matrix exponential autonomous

multi-dimensional, $\frac{d}{dt}\Phi(t,t_0)=\mathrm{A}\Phi(t,t_0)$ nonautonomous

only numerical solution

Perturbed (1765-2500)

Transit time

If we define the (backward) transit time of a particle as the age of the particle at the time when it exits the system, we can easily derive explicit formulas for its distribution from the age distribution.

The simple approach stock/flux for the transit time is valid only for a system in steady state. Out of steady state, stock(t)/flux(t) cannot be interpreted as a transit time.

Evoluti Year	on Author	\mathbf{System}	Quantity	Geometric structure	Example	
1983	Anderson	steady state	mean	point		increas
2009	Manzoni et al.	steady state (simple structure)	density	curve over age		ing
2016	Rasmussen et al.	linear time dependent	mean	curve over time		informati
2016	Metzler & Sierra	steady state (all structures)	density	curve over age		ion
2017	Metzler et al.	linear/nonlinear time dependent	density	surface over age and time		

Classification

A(x(t),t) nonlinear, A(x(t)), u(t) nonautonomous A(x(t)), u nonlinear, autonomous A(t), u linear, A, u(t) nonautonomous A(t), u(t) A, u linear, autonomous

- x(t) vector of compartment content (e.g. C) at time tA compartmental matrix, describes fluxes between compartments
- z(t) external outflux vector at time t
- $\mathbf{u}(t)$ external input vector at time t

Bibliography

Anderson DH (1983) Compartmental modeling and tracer kinetics, vol 50. Springer Science & Business Media

Manzoni S, Katul GG, Porporato A (2009) Analysis of soil carbon transit times and age distributions using network theories. Journal of Geophysical Research 114(G4):1âĂŞ14, DOI10.1029/2009JG001070 Metzler H, MÃijller M, Sierra CA Age and transit time distributions of well-mixed compartmental systems, PNAS

Metzler H, Sierra CA (2016, in review) Linear autonomous compartmental models as continuous-time Markov chains: transit time and system age distributions

Rasmussen M, Hastings A, Smith MJ, Agusto FB, Chen-Charpentier BM, Hoffman FM, Jiang J, Todd-Brown KEO, Wang Y, Wang YP, Luo Y (2016) Transit times and mean ages for nonautonomous and autonomous compartmental systems. J Math Biol

