ALGEBRAIC STRUCTURES

DEFINITION. A **binary operation** on a set A is a function f that maps each and every ordered pair (a,b) A A to an element of A. That is f: A A A.

Notation: Denote binary operations by * and denote the element assigned to the ordered pair (a,b) by a*b. In other words, f(a,b) = a*b.

DEFINITION. A set A is said to be **closed** under the operation * if it has the following property: if a and b are elements of the set A, then a*b A

Remark: If $A = \{a_1, a_2, \dots, a_n\}$ is a finite set, we can define a binary operation on A by means of a table, as follows:

*	a_1	\mathbf{a}_2	 \mathbf{a}_{j}	•••	\mathbf{a}_{n}
	a_1*a_1				
\mathbf{a}_{2}	$a_2^*a_1$	a_2*a_2	 a₂*aϳ		a_2*a_n
:	:	:	:		:
\mathbf{a}_{i}	a _i *a₁	a_i*a_2	 a _i *a _j		$a_i^*a_n$
:		:	:		:
\mathbf{a}_{n}	$a_n * a_1$	a_n*a_2	 $a_n * a_j$		$a_n^*a_n$

Properties of Binary Operations

- A binary operation on a set A is said to be **commutative** if a*b = b*a for all elements a and b in A.
- A binary operation on a set A is said to be **associative** if (a*b)*c = (a*b)*c for all elements a and b in A.

GROUPOIDS, SEMIGROUPS and GROUPS

DEFINITION. A **groupoid**, denoted by (G,*), is a nonempty set G *together* with a binary operation * defined on G.

DEFINITION. A **semigroup** denoted by (S,*) is a nonempty set S *together* with an *associative* binary operation * defined on S.

Remark: a*b is also known as the product of a and b.

DEFINITION. The semigroup (S,*) is said to be **commutative semigroup** if * is also a commutative operation.

DEFINITION. Let (S,*) be a semigroup and let T be a subset of S. If T is closed under the operation *, then (T,*) is called a **subsemigroup** of (S,*).

DEFINITION. An element e in a semigroup (S,*) is called an **identity element** if e*a = a*e = a for all elements a in S.

THEOREM. If a semigroup (S,*) has an identity element, that identity

element is unique.

DEFINITION. A **monoid** is a semigroup (M,*) that has an identity element.

DEFINITION. Let (M,*) be a monoid with identity element e, and let T be a nonempty subset of M. If

- a) T is closed under the operation *, and
- b) the identity element e of M is also in T,

then (T,*) is called a **submonoid** of (M,*).

DEFINITION. An element a' in a monoid (M,*) with identity element e is called the **inverse of a** if a*a' = a'*a = e for every element a in M.

THEOREM. If a monoid (M,*) has an inverse element, that *inverse* element is unique for every element a.

DEFINITION. A **group** is a monoid (G,*) with identity element e, which *also* has an inverse element a' for each element a in S.

DEFINITION. A group (G,*) is said to be an **abelian group** if * is *also* commutative.

DEFINITION. If G is a finite group, then the **order of G**, denoted by |G| is the number of elements in G.

DEFINITION. Let (H.*) be a subset of group (G.*) such that

- a) the identity element e in G is also in H;
- b) if for every element a in H there exists an inverse a' also in H: and
- c) H is closed under the binary operation *.

then (H,*) is called a **subgroup** of (G,*).

CYCLIC GROUPS

- DEFINITION. Suppose (S,*) is a semigroup and let a S. For n Z^+ , the powers of a can be defined recursively as follows:
 - a) $a^1 = a$
 - b) $a^n = a^{n-1}*a$ for n ³ 2

Moreover if (S,*) is a monoid with identity element e, $a^0 = e$.

THEOREM. Let (G,*) be a group and let a G. Then $H = \{a^n \mid n \in Z\}$ is a subgroup of (G,*) and is the smallest subgroup of G which contains a.

DEFINITION. $H = \{a^n | n Z\}$ is the **cyclic subgroup** of G generated by a, denoted by a > 0.

DEFINITION. An element a of a group G generates G and is a generator for G if a > G itself. A group G, is cyclic if there is some element G in G which generates G.