SD – Seminar 11 05.01.2021

ARBORI BINARI DE CAUTARE

Implementarea cu structuri inlantuite

```
struct nod {
    int inf
    nod * stg
    nod * drp
}
ArbBinCautare alias pentru nod *.
```

Pr. 1 Sa se scrie un subprogram care afiseaza valorile k dintr-un arbore binar de cautare cu proprietatea: $k1 \le k \le k2$, unde k1 si k2 sunt parametri de intrare ai subprogramului. Care este complexitatea subprogramului propus?

Exemplu:

 $k1 = 17 \text{ si } k2 = 35 \rightarrow 18, 20, 25, 32$

$$k1 = 1$$
 si $k2 = 100 \rightarrow 7, 10, ..., 40$ (toate vf.)

$$k1 = 19 \text{ si } k2 = 21 \rightarrow 20$$

$$k1 = 50 \text{ si } k2 = 100 \implies \text{nimic}$$

I Parcurgere + si verificarea conditiei \rightarrow O(n), n = nr de vf din arbore; $\Omega(n) \rightarrow \Theta(n)$

II Apel conditionat:

```
procedure subinterval( nod * t, int k1, int k2 )
begin

if t != NULL then { \\ parcurgere preordine
        if ( k1 <= t->inf and t->inf <= k2) then print t->inf
        if (t->inf >= k1) then subinterval (t->stg, k1, k2)
        if (t->inf <= k2) then subinterval (t->drp, k1, k2)
}
```

end

 $\Omega(h)$, O(n)

[?] putem exprima complexitatea procedurii si in functie de k1 si k2 ?

Pr. 2 Scrieti o procedura care aduna la fiecare nod dintr-un arbore binar de cautare valorile mai mari decat valoarea curenta.


```
suma <- 0 \\ transfromaArbore(t) \\ procedure transformaArbore( nod *t ) \ complexitate: O(n), \ \Omega(n) \\ begin \\ if t != NULL then \{ \\ transformaArbore(t->drp) \\ suma <- t->inf + suma; t->inf <- suma \\ transformaArbore(t->stg) \\ \} \\ end
```

Arbori binari de cautare echilibrati: arbori AVL

Def. Un arbore de cautare este AVL echilibrat daca pentru orive varf v, avem:

$$|h(v->stg) - h(v->drp)| <= 1$$

Def. Factorul de echilibrare al unui nod v: h(v->stg) - h(v->drp)

Lema. Daca t este abrore binar de cautare AVL-echilibrat cu n noduri interne, atunci $h(t) = \Theta(\log n)$.

Echilibrarea se face prin rotatii:

SIMPLE:

- la dreapta
- la stanga

DUBLE:

- la dreapta
- la stanga

Rotatie simpla la dreapta

aux <- t->stg t->stg <- aux->drp aux->drp <- t return aux

end

Rotatie dubla la dreapta

(Cand rotatiile simple nu sunt suficiente)

- rotatie simpla stanga cu x-y, urmata de o rotatie simpla dreapta cu z-y

function rotatieDublaDreapta(nod * t) \\ t este adresa radacinii y. Complexitate: O(1) **begin**

t->stg <- rotatieSimplaStanga(t->stg) return rotatieSimplaDreapta(t)

end

Exemplu de inserare intr-un arbore AVL echilibrat

Inseram noua cheie 5 in urmatorul arbore binar de cautare AVL echilibrat.

Se memoreaza pe o stiva de noduri, drumul de la radacina la nodul inserat. Stiva: [12, 8, 4, 6

Iterativ, se scoate un nod de pe stiva, se verifica factorul de echilibrare. In cazul in care apare un nod critic (factorul de echilibrare este 2 sau -2), atunci se aplica rotatiile corespunzatoare pentru a reechilibra subarborele cu radacina in nodul critic.

fe(6) = 1

fe(4) = -1

fe(8) = 2 !!! - rotatie dubla la dreapta cu nodul 8

Stiva: [12 fe(12) = 1]

Pr. 3 Scrieti o functie care verifica daca un arbore binar de cautare este AVL echilibrat.

function esteAVL(t) begin

end

Pr. 4 Scrieti o functie care verifica daca exista o pereche de valori intr-un arbore binar de cautare echilibrat care sa aiba suma egala cu x. Complexitate timp a functiei trebuie sa fie O(n), unde n este numarul de noduri din arbore. Se poate folosi $O(\log n)$ spatiu de memorie suplimentar.