Analysis of Partial Differential Equations Exercise sheet I (Chapter 1)

1. (The Picard-Lindelöf / Cauchy-Lipschitz theorem) Consider $\mathbf{F}: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ continuous and locally Lipschitz in the second variable i.e., for each $\bar{\mathbf{u}} \in \mathbb{R}^d$, there exist constants $\delta > 0$ and L > 0 such that

$$|\mathbf{u} - \bar{\mathbf{u}}| < \delta \implies |\mathbf{F}(\cdot, \mathbf{u}) - \mathbf{F}(\cdot, \bar{\mathbf{u}})| \le L|\mathbf{u} - \bar{\mathbf{u}}|.$$

Consider the following ODE:

$$\mathbf{u}'(t) = \mathbf{F}(t, \mathbf{u}(t)), \quad \mathbf{u}(0) = \mathbf{u}_0 \in \mathbb{R}^d.$$

- (a) Prove the existence and uniqueness of a maximal C^1 solution on $(-T_c^-, T_c^+)$ with $T_c^-, T_c^+ > 0$ i.e., the solution cannot be continued for times beyond $-T_c^-$ and T_c^+ . (b) Prove moreover that if $T_c^+ < +\infty$ then $\mathbf{u}(t)$ is unbounded as $t \to T_c^+$.
- 2. Show that the following ODEs have infinitely many solutions:

$$\begin{cases} u'(t) = \sqrt{u(t)}, & t \in (0, a), \\ u(0) = 0. \end{cases}$$
 (1)

Show further that the solutions to (1) split into TWO different types.

$$\begin{cases} u'(t) = \frac{4t u(t)}{u(t)^2 + t^2}, & t \in (0, a), \\ u(0) = 0. \end{cases}$$
 (2)

Show further that the solutions to (2) split into FIVE different types.

3. Show that the solution to the following ODE blows up in finite time:

$$\begin{cases} u'(t) = u(t)^2, & t \in (0, t_c), \\ u(0) = u_0 > 0. \end{cases}$$
 (3)

- (a) What is the value of the critical time t_c ?
- (b) Does the blow-up behaviour of u(t) still holds when $u(t)^2$ is replaced by $-u(t)^2$ in (3)?
- 4. Show that the solution $u: \mathbb{R}_+ \to \mathbb{R}$ to the following second order ODE is global:

$$\begin{cases} u''(t) + \sin(u(t)^2) = 0, & t \in \mathbb{R}_+, \\ (u(0), u'(0)) = (u_0, u_1) \in \mathbb{R}^2. \end{cases}$$
 (4)

5. (The Gronwall lemma) For some $T > 0, C \ge 0$, let $u, v \in C^1([0,T); \mathbb{R}_+)$ be such that:

$$\forall t \in [0, T), \quad u(t) \le C + \int_0^t v(s)u(s) \,\mathrm{d}s.$$

Show that u satisfies

$$\forall t \in [0, T), \quad u(t) \le C \exp\left(\int_0^T v(s) \, \mathrm{d}s\right).$$

Hint: Set $w(t) := C + \int_0^t v(s)u(s) ds$ and check $w'(t) - v(t)w(t) \le 0$ for all $t \in [0,T)$.

6. (Approximation of solutions to ODE) Let $F \in C^1(\mathbb{R}; \mathbb{R})$. First let $u, v \in C^1([0,T]; \mathbb{R})$ solutions to

$$u'(t) = F(u(t))$$
 for $t \in \mathbb{R}_+$ and $u(0) = u_0 \in \mathbb{R}$, $v'(t) = F(v(t))$ for $t \in \mathbb{R}_+$ and $v(0) = v_0 \in \mathbb{R}$.

(a) Prove that for any T > 0,

$$\forall t \in [0, T], \quad |u(t) - v(t)| \le |u_0 - v_0|e^{C_T t} \tag{5}$$

(b) Identity the constant C_T in (5).

Assume second that $u, v \in C^1([0,T];\mathbb{R})$ are solutions to

$$|u'(t) - F(u(t))| \le \varepsilon_1 \text{ for } t \in \mathbb{R}_+ \text{ and } u(0) = u_0 \in \mathbb{R},$$

 $|v'(t) - F(v(t))| < \varepsilon_2 \text{ for } t \in \mathbb{R}_+ \text{ and } v(0) = v_0 \in \mathbb{R},$

for some $\varepsilon_1, \varepsilon_2 > 0$.

(c) Prove that for any T > 0,

$$\forall t \in [0, T], \quad |u(t) - v(t)| \le |u_0 - v_0|e^{C_T t} + (\varepsilon_1 + \varepsilon_2) \frac{e^{C_T t} - 1}{C_T}.$$

7. (Osgood uniqueness Theorem) Let I be an interval of \mathbb{R} , and $\mathbf{F}: I \times \mathbb{R}^d \to \mathbb{R}^d$ a continuous function. Let Ω be an open subset of \mathbb{R}^d endowed with the euclidean norm, $t_0 \in I$, $\mathbf{u}_0 \in \Omega$. We suppose that

$$\forall (t, \mathbf{y}_1, \mathbf{y}_2) \in I \times \Omega \times \Omega, \quad |\mathbf{F}(t, \mathbf{y}_1) - \mathbf{F}(t, \mathbf{y}_2)| \le \omega(|\mathbf{y}_1 - \mathbf{y}_2|)$$

where $\omega \in C(\mathbb{R}_+, \mathbb{R}_+)$ an increasing function which satisfies

$$\omega(0) = 0, \quad \forall \sigma > 0, \quad \omega(\sigma) > 0, \quad \text{and} \quad \forall \alpha > 0, \quad \int_0^\alpha \frac{1}{\omega(\sigma)} d\sigma = +\infty.$$
 (6)

Let $\mathbf{u}_1, \mathbf{u}_2: I \to \Omega$ be two differentiable functions which are solutions to the Cauchy problem:

$$\begin{cases} \mathbf{u}'(t) = \mathbf{F}(t, \mathbf{u}(t)), \\ \mathbf{u}(t_0) = \mathbf{u}_0. \end{cases}$$

- (a) Show that $\mathbf{u}_1 = \mathbf{u}_2$.
- (b) Give an example of an increasing function $\omega \in C(\mathbb{R}_+, \mathbb{R}_+)$ which satisfies (6).
- 8. (Cauchy-Peano theorem) Consider $\mathbf{F}: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ merely continuous, and the ODE:

$$\mathbf{u}'(t) = \mathbf{F}(t, \mathbf{u}(t)), \quad \mathbf{u}(0) = \mathbf{u}_0 \in \mathbb{R}^d$$

Prove the existence of a maximal C^1 solution on $(-T_c^-, T_c^+)$ with $T_c^-, T_c^+ > 0$.

Hint. From the fundamental theorem of calculus the ODE can be reframed as $\mathbf{u}(t) = \mathbf{u}_0 + \int_0^t \mathbf{F}(s, \mathbf{u}(s)) \, \mathrm{d}s$ and we define the *Picard iteration*:

$$\mathbf{u}_{n+1}(t) = \mathbf{u}_0 + \int_0^t \mathbf{F}(s, \mathbf{u}_n(s)) \, ds, \quad \mathbf{u}_{n+1}(0) = \mathbf{u}_0 \in \mathbb{R}^d, \quad n \ge 0,$$

initialised with $\mathbf{u}_0(t) = \mathbf{u}_0$ for all t. Prove that locally around t = 0 the sequence is uniformly bounded and uniformly equicontinuous. Recall and use the Arzéla-Ascoli theorem to prove the compactness of the sequence for the uniform convergence. Show that the cluster point is a solution to the ODE.