Extrabeispiel: Wenn eine Zahl gerade ist, teile sie durch 2!

LOADI 17 **STORE 100**

LOAD 100

STORE 100

LOAD 100

LOADI 17

LOADI 17 **STORE 100**

MODI 2 CMPI 0

MODI 2 CMPI 0

LOAD 100

LOAD 100

LOAD 100

JGT ende

DIVI 2

DIVI 2 **STORE 100** DIVI 2

STORE 100

HOLD

STORE 100

HOLD

ende: HOLD

Alternative (oder zweiseitige bedingte Anweisung)

Extrabeispiel: Wenn eine Zahl gerade ist, teile sie durch 2,

sonst multipliziere sie mit 3!

LOADI 17 STORE 100

LOAD 100 MODI 2 CMPI 0 JGT ende LOAD 100 DIVI 2 STORE 100

ende: HOLD

LOADI 17 STORE 100

LOAD 100 MODI 2 CMPI 0 JGT sonst LOAD 100 DIVI 2 STORE 100 JMP ende

JMP ende sonst:

ende: HOLD

LOADI 17 STORE 100

LOAD 100 MODI 2

CMPI 0

JGT sonst

LOAD 100

DIVI 2

STORE 100

JMP ende

sonst: LOAD 100

MULI 3

STORE 100

ende: HOLD

Beispiel 4:

In den Speicherzellen 100 und 101 stehen zwei Zahlen. Die größere der beiden soll in Speicherzelle 102 eingetragen werden.

LOADI 19 STORE 100 LOADI 24 STORE 101 Beispiel 4:

In den Speicherzellen 100 und 101 stehen zwei Zahlen. Die größere der beiden soll in Speicherzelle 102 eingetragen werden.

Bedingung wahr

CMP 101

JLT Bedingungf

STORE 102

JMP ende

Bedingung falsch

bedingter

Sprung

Bedingung falsch

bedingter

Sprung

Sprung

Bedingungf: LOAD 101

STORE 102

ende: HOLD

Veranschauliche die Alternative in einer Zustandsübergangstabelle:

Bedingung wahr

Befehl	BZ	Akku	AS 100	AS 101	AS 102
LOAD 100	10	24	24	19	0
CMP 101	12	24	24	19	0
JLT Bedf	14	24	24	19	0
STORE 102	16	24	24	19	24
JMP ende	22	24	24	19	24
ende: HOLD	24	24	24	19	24

Bedingung falsch

Befehl	BZ	Akku	AS 100	AS 101	AS 102
LOAD 100	10	19	19	24	0
CMP 101	12	19	19	24	0
JLT Bedf	18	19	19	24	0
LOAD 101	20	24	19	24	0
STORE 102	22	24	19	24	24
ende: HOLD	24	24	19	24	24

Beispiel 5:

Berechne den Betrag einer Zahl a (in AS 100) und speichere ihn in Zelle 101.

LOADI -19 STORE 100

LOAD 100

JLT negativ

STORE 101

JMP ende

negativ: MULI -1

STORE 101

ende: HOLD

Wiederholung mit Bedingung

Beispiel 6:

Berechne 2ⁿ (z.B. für n=3). Gib die Lösung zuerst in Pseudocode an.

```
ergebnis = 1
n = 1
wiederhole, solange n<4
ergebnis = ergebnis * 2
n = n + 1
endewiederhole

Sprung, falls n - 4 >= 0
```

LOADI 1 STORE 100 #ergebnis STORE 101 #n

Was ändert sich wenn man statt n<4 die Bedingung n<=3 benutzt?

LOAD 101

schleife: CMPI 4

JGE ende

LOAD 100

MULI 2

STORE 100

LOAD 101

ADDI 1

STORE 101

JMP schleife

ende: HOLD

schleife: CMPI 3

JGT ende

LOAD n

schleife: CMPI 3

JGT ende

LOAD ergebnis

MULI 2

STORE ergebnis

LOAD n

ADDI 1

STORE n

JMP schleife

ende: HOLD

#Daten:

ergebnis: WORD 1

n: WORD 1

Beispiel7

```
i=1
natürliche Zahl n>0
ergebnis = 1
vorgänger = 0
```

wiederhole, solange i<=n

```
zwischenspeicher = ergebnis
ergebnis = ergebnis + vorgänger
vorgänger = zwischenspeicher
i = i+1
```

ergebnis