Problemas geométricos que arrancan de la teoría clásica de funciones

Celia de Frutos Palacios

17 de julio de 2018

Capítulo 1

Teorema de Fatou y Teorema de Carathéodory

Para empezar vamos a realizar una pequeña introducción a la integral de Poisson. A continuación probaremos el Teorema de Fatou para límites radiales. Por último hablaremos sobre aplicaciones conformes y demostraremos el Teorema de Carathéodory.

En este capítulo abordamos varios problemas clásicos relacionados con el comportamiento en la frontera de funciones holomorfas (y armónicas) y la profunda relación existente entre los valores que toma la función en el borde y los que toma en el dominio abierto que limitan, incluso cuando la función no puede extenderse con continuidad al borde. Presentamos la integral de Poisson para construir explícitamente funciones armónicas en el disco a partir de funciones continuas en el borde. Mediante esta técnica, abordamos la existencia de límites radiales en casi todo punto de funciones holomorfas y acotadas en el disco unidad: es el resultado conocido como Teorema de Fatou. La función definida a través de los límites radiales permite presentar un teorema de identidad referido a arcos del borde del disco. El capítulo se completa con varios resultados de naturaleza geométrica, en los que se caracterizan las funciones conformes (que conservan ángulos y orientación) y se prueba que las aplicaciones conformes entre el disco y un dominio de Jordan admiten extensiones a la frontera. El capítulo concluye mostrando cómo la inyectividad en el borde de funciones holomorfas en dominios de Jordan se traduce en inyectividad en todo el dominio.

1.1. La Integral de Poisson

Definición 1.1.1. Se llama núcleo de Poisson a la función P definida por

$$P: (r,t) \in [0,1) \times \mathbb{R} \mapsto P_r(t) = \sum_{n=-\infty}^{\infty} r^{|n|} e^{int}. \tag{1.1}$$

Podemos considerar el núcleo de Poisson como una función de dos variables r y t o como una familia de funciones de t que dependen de r.

Dado $z = re^{i\theta}$, con $r \in [0, 1)$ y $\theta \in \mathbb{R}$ se tiene que

$$P_r(\theta - t) = \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2} = \text{Re}\left[\frac{e^{it} + z}{e^{it} - z}\right]$$
(1.2)

para todo $t \in \mathbb{R}$. En efecto:

$$P_r(t) = \sum_{n=-\infty}^{\infty} r^{|n|} e^{int} = 1 + \sum_{n=1}^{\infty} r^n e^{int} + \sum_{n=1}^{\infty} r^n e^{-int} = 1 + \sum_{n=1}^{\infty} r^n (e^{int} + e^{-int}) = 1 + \sum_{n=1}^{\infty} r^n 2 \operatorname{Re}(e^{int}) = \operatorname{Re}\left[1 + 2 \sum_{n=1}^{\infty} (re^{it})^n\right] = \operatorname{Re}\left[1 + 2 \frac{re^{it}}{1 - re^{it}}\right] = \operatorname{Re}\left[\frac{1 + re^{it}}{1 - re^{it}}\right].$$

Por otra parte,

$$\operatorname{Re}\left[\frac{1+re^{it}}{1-re^{it}}\right] = \operatorname{Re}\left[\frac{(1+re^{it})(1-re^{it})}{|1-re^{it}|^2}\right] = \frac{1-r^2}{1-2r\cos t + r^2}.$$
(1.3)

así que

$$P_r(t) = \frac{1 - r^2}{1 - 2r\cos t + r^2} = \text{Re}\left[\frac{1 + re^{it}}{1 - re^{it}}\right].$$
 (1.4)

Proposición 1.1.2. El núcleo de Poisson satisface las siguientes propiedades:

$$(I) \qquad \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t)dt = 1;$$

- (II) $P_r(t) > 0$ para todo $t \in \mathbb{R}$;
- (III) $P_r(t) = P_r(-t)$ para todo $t \in \mathbb{R}$, y $P_r(t)$ es periódica en t de periodo 2π ;
- (IV) $P_r(t) < P_r(\delta) \text{ si } 0 < \delta < |t| \le \pi;$
- (V) $\lim_{r \to 1^{-}} P_r(\delta) = 0 \text{ para todo } \delta \in (0, \pi].$

Demostración. (I) Dado $r,\,0\leq r<1,$ la serie (1.1) converge uniformemente en t. Así que

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} r^{|n|} e^{int} dt = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} r^{|n|} \int_{-\pi}^{\pi} e^{int} dt = 1.$$

- (II) De las ecuaciones (1.3) y (1.4), tenemos que $P_r(t) = (1 r^2) |1 re^{it}|^{-2} > 0$ ya que r < 1.
 - (III) Es consecuencia trivial de la expresión (1.4).

(IV) Fijados r, δ y t en las condiciones indicadas se verifica que $\cos t < \cos \delta$, de donde se sigue que $P_r(t) < P_r(\delta)$.

(v) De la ecuación (1.4), tenemos que $\lim_{r\to 1^-} (1-r^2) = 0$ y $\lim_{r\to 1^-} (1-2r\cos\delta + r^2) \neq 0$ así que $\lim_{r\to 1^-} P_r(\delta) = 0$.

Definición 1.1.3. Se llama integral de Poisson de una función $f \in L^1(\partial \mathbb{D})$ a la función F dada por

$$F: z = re^{i\theta} \in \mathbb{D} \mapsto F(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt.$$

Algunas veces nos convendrá referirnos a ella como F = P[f].

Además si f lleva $\partial \mathbb{D}$ en los reales, (1.2) nos muestra que

$$P[f](z) = \operatorname{Re}\left[\frac{1}{2} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} f(e^{it}) dt\right].$$

También haciendo el cambio de variable $\theta - t = x$ se tiene la igualdad

$$F(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x) f(e^{i(\theta + x)}) dx.$$

El siguiente teorema proporciona una solución al problema de Dirichlet. De hecho esta solución es única y coincide precisamente con la integral de Poisson de f.

Teorema 1.1.4. Sean $f: \partial \mathbb{D} \to \mathbb{R}$ una función continua y F = P[f]. Entonces la función

$$u: z = re^{i\theta} \in \overline{\mathbb{D}} \mapsto u(re^{i\theta}) = \begin{cases} f(e^{i\theta}) & si \ r = 1 \\ F(re^{i\theta}) & si \ 0 \le r < 1 \end{cases}$$

es continua en $\overline{\mathbb{D}}$, armónica en \mathbb{D} y coincide con f en $\partial \mathbb{D}$.

Demostración. Claramente u coincide con f en la frontera del disco, por definición. Para ver que u es armónica en \mathbb{D} , observamos que si $0 \le r < 1$ entonces

$$u(re^{i\theta}) = \operatorname{Re}\left[\frac{1}{2} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} f(e^{it}) dt\right].$$

Por lo que u es armónica en \mathbb{D} . Solo nos falta probar que u es continua en $\overline{\mathbb{D}}$. Como u es armónica en \mathbb{D} , es continua en \mathbb{D} , así que queda probar que u es continua en cada punto de $\partial \mathbb{D}$.

Vamos a probar que para todo $\alpha \in [-\pi, \pi]$ y todo $\varepsilon > 0$, existe un $\delta > 0$ tal que para todo $z \in D(e^{i\alpha}, \delta) \cap \overline{\mathbb{D}}$ se verifica

$$\left| u(re^{i\theta}) - f(e^{i\alpha}) \right| < \varepsilon$$

Una vez probemos esto último, tendremos que u es continua en $e^{i\alpha}$ puesto que f es una función continua.

Dado $\varepsilon > 0$, la continuidad de f en α nos da que existe un $\delta > 0$ tal que

$$|f(e^{it}) - f(e^{i\alpha})| < \frac{\varepsilon}{3}, \text{ si } |t - \alpha| < \delta.$$

Sea $M = \max\{\left|f(e^{i\theta})\right| : |\theta| \le \pi\}$. Por la Proposición 1.1.2 (v), existe $\rho \in (0,1)$ tal que

$$P_r(\theta) < \frac{\varepsilon}{3M}$$

para $\rho < r < 1$ y $|\theta| \ge \frac{1}{2}\delta$. Consideremos el arco $A = \{e^{i\theta} : |\theta| < \frac{\delta}{2}\}$. Entonces, si $e^{i\theta} \in A$ y $\rho < r < 1$, tenemos

$$\begin{aligned} \left| u(re^{i\theta}) - u(e^{i\alpha}) \right| &= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x) f(e^{i(\theta+x)}) dx - \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x) f(e^{i\alpha}) dx \right| = \\ &= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x) \left[f(e^{i(\theta+x)}) - f(e^{i\alpha}) \right] dx \right| \leq \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x) \left| f(e^{i(\theta+x)}) - f(e^{i\alpha}) \right| dx = \\ &= \frac{1}{2\pi} \int_{|x| \leq \frac{\delta}{2}} P_r(x) \left| f(e^{i(\theta+x)}) - f(e^{i\alpha}) \right| dx + \\ &+ \frac{1}{2\pi} \int_{|x| \geq \frac{\delta}{2}} P_r(x) \left| f(e^{i(\theta+x)}) - f(e^{i\alpha}) \right| dx. \end{aligned}$$

Ahora bien, si $|x| < \frac{\delta}{2}$, tenemos que $|\theta + x - \rho| \le |\theta - \rho| + |x| < \frac{\delta}{2} + \frac{\delta}{2} = \delta$, se verifica que $|f(e^{i(\theta + x)}) - f(e^{i\alpha})| < \frac{\varepsilon}{3}$, y como

$$\frac{1}{2\pi} \int_{|x| < \frac{\delta}{2}} P_r(x) dx \le \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x) dx = 1,$$

el primer sumando es menor que $\frac{\varepsilon}{3}$. Por otra parte si $|x| \geq \frac{\delta}{2}$ y $|\theta| \leq \frac{\delta}{2}$ entonces $P_r(|x|) \leq P_r(\frac{\delta}{2}) < \frac{\varepsilon}{3M}$ pues $r \in (\rho,1)$. Como $\left|f(e^{i(\theta+x)}) - f(e^{i\alpha})\right| \leq M$, se tiene que el segundo sumando es menos que $\frac{\varepsilon}{3}$, con lo que $\left|u(re^{i\theta}) - u(e^{i\alpha})\right| < \varepsilon$.

Finalmente, para ver que u es única, supongamos que v es una función continua en \mathbb{D} que es armónica en \mathbb{D} y $v(e^{i\theta}) = f(e^{i\theta})$ para todo θ . Entonces u - v es armónica en \mathbb{D} y (u-v)(z) = 0 para todo $z \in \partial \mathbb{D}$. Se sigue del Principio del Módulo Máximo que $u-v \equiv 0$.

No sé exactamente qué es lo que quieres que cite, ¿el principio del módulo máximo quizás? Este enunciado es de Conway Functions of one complex variable 1: Sea $U\subseteq \mathbb{C}$ un conjunto acotado, y sea f una función continua en el conjunto cerrado \overline{U} que es holomorfa en U. Entonces el máximo de |f| en \overline{U} (que siempre existe) se alcanza en la frontera del conjunto, ∂U . En otras palabras, máx \overline{U} $|f| = \text{máx}_{\partial U} |f|$.

1.2. El Teorema de Fatou

Como veremos más adelante, funciones holomorfas y acotadas en el disco unidad pueden tener comportamiento irregular en los puntos del borde del disco, no admitiendo una extensión continua. Sin embargo, esta clase de funciones sí tienen, en casi todo punto, límites radiales. Esto, vía el teorema de Fatou, permite definir sobre el borde una función acotada que, a su vez, sirve para recuperar información sobre la función en el interior.

Para demostrar el Teorema de Fatou nos vamos a basar en unos resultados clásicos del libro [chap. 11] rudin.

Teorema 1.2.1. Si $f \in L^1(\partial \mathbb{D})$ y F = P[f], entonces

$$\lim_{r \to 1} F(re^{i\theta}) = f(e^{i\theta}).$$

Teorema 1.2.2 (Teorema de Fatou). Para toda función $f \in \mathcal{H}^{\infty}(\mathbb{D})$, existe una función $f^* \in L^{\infty}(\partial \mathbb{D})$ definida por

$$f^*(e^{it}) = \lim_{r \to 1} f(re^{it}) \tag{1.5}$$

en casi todo punto.

Se tiene la igualdad $||f||_{\infty} = ||f^*||_{\infty}$. Para todo $z \in \mathbb{D}$, la fórmula integral de Cauchy

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f^*(\xi)}{\xi - z} d\xi \tag{1.6}$$

se satisface, donde γ es el círculo unidad positivamente orientado: $\gamma(t)=e^{it}, 0\leq t\leq 2\pi$.

Las funciones $f^* \in L^{\infty}(\partial \mathbb{D})$ que se obtienen mediante este procedimiento son precisamente aquellas que cumplen la siguiente relación

$$\frac{1}{2\pi i} \int_{-\pi}^{\pi} f^*(e^{it}) e^{-int} dt = 0, n = -1, -2, \dots$$
(1.7)

Demostración. La existencia de f^* se sigue de los teoremas 1.2.1 y 1.1.4. Además, por (1.5), tenemos que $||f^*||_{\infty} \leq ||f||_{\infty}$.

Si $z \in U$ y |z| < r < 1, tomemos $\gamma_r(t) = re^{it}, 0 \le t \le 2\pi$. Entonces,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(\xi)}{\xi - z} d\xi = \frac{r}{2\pi} \int_{-\pi}^{\pi} \frac{f(re^{it})}{re^{it} - z} e^{it} dt$$

Sea $\{r_n\}$ una sucesión tal que $r_n \to 1$. Por el teorema de la convergencia dominada de Lebesgue tenemos que

$$f(z) = \lim_{n \to \infty} \frac{r_n}{2\pi} \int_{-\pi}^{\pi} \frac{f(r_n e^{it})}{r_n e^{it} - z} e^{it} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f^*(e^{it})}{1 - z e^{-it}} dt.$$
 (1.8)

Por lo que ya hemos probado (1.6). Por el teorema de Cauchy, se sigue que

$$\int_{\gamma_r} f(\xi)\xi^n d\xi = 0, n = 0, 1, \dots$$

Tomando de nuevo una sucesión $\{r_n\}$ que tienda a 1, el teorema de la convergencia dominada garantiza que f^* cumple (1.7). Además, podemos convertir (1.8) en una integral de Poisson, si $z = re^{i\theta}$,

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=0}^{\infty} r^n e^{in(\theta-t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=-\infty}^{\infty} r^{|n|} e^{in(\theta-t)} dt =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta-t) f^*(e^{it}) dt.$$
(1.9)

De esto concluimos que $||f||_{\infty} \leq ||f^*||_{\infty}$, así que ambas normas coinciden.

Por último, si f^* satisface (1.7) y definimos f como (1.8) para todo $z \in \mathbb{D}$, entonces, por (1.8), $f \in \mathcal{H}(\mathbb{D})$. Además, (1.7) implica que la integral de Cauchy (1.8) es igual a la integral de Poisson (1.9). Por lo tanto, f es acotada, y la representación de f como la integral de Poisson de f^* muestra que (1.5) se satisface en casi todo punto por el Teorema 1.2.1.

Como hemos demostrado, f es la integral de Poisson de f^* por lo que f^* es la solución al problema de Dirichlet de f.

Gracias a la expresión de la fórmula de Cauchy anterior, tenemos un teorema de identidad si nos restringimos a un subarco del disco unidad.

Teorema 1.2.3. Sea $f \in \mathcal{H}^{\infty}(\mathbb{D})$, J un subarco de $\partial \mathbb{D}$ y $f^*(e^{it}) = 0$ en casi todo punto de J. Entonces f(z) = 0 para todo $z \in \mathbb{D}$.

Demostración. Sea n>0 un entero tal que la longitud de J es mayor que $\frac{2\pi}{n}$, sea $\eta=\exp(\frac{2\pi i}{n})$ y tomemos

$$g(z) = \prod_{k=1}^{n} f(\eta^k z)$$

donde $z \in \mathbb{D}$.

Como f es acotada y $f^* = 0$ en casi todo punto de J, tenemos que $g^* = 0$ en casi todo punto de T, y $g \in \mathcal{H}^{\infty}(\mathbb{D})$. Como g es la integral de Cauchy de g^* , g(z) = 0 para todo $z \in \mathbb{D}$. Si el conjunto de los ceros de f es como mucho numerable, entonces también lo es el conjunto de los ceros de g pues es la unión de n conjuntos obtenidos por rotaciones. Pero todo punto de \mathbb{D} es un cero de g por lo que f = 0.

Como se puede observar de este último resultado, el comportamiento en (un subconjunto de) la frontera determina el comportamiento dentro del disco.

1.3. Aplicaciones conformes. Teorema de Carathéodory

Analizamos el concepto de función conforme, que está ligado al del función holomorfa en el contexto de las funciones complejas con derivadas parciales continuas. El resultado central es el Teorema de Carathéodory, que permite extender con continuidad a la frontera cualquier función conforme entre el disco y un dominio de Jordan.

Definición 1.3.1. Sean U y $V \subset \mathbb{C}^n$. Se dice que una aplicación $f: U \to V$ es conforme en un punto $u \in U$ si preserva la orientación y los ángulos entre curvas que pasan por u.

Proposición 1.3.2. Sea $U \subset \mathbb{C}$. Una aplicación $f: U \to \mathbb{C}$ es conforme en U si $f \in \mathcal{H}(U)$ y $f'(z) \neq 0$ para todo $z \in U$.

Demostración. Supongamos que f(z) es una función holomorfa en U tal que $f'(z) \neq 0$ para $z \in U$ y consideremos $f: z \to w = f(z)$. Sea $\gamma: [a, b] \to U$ una curva suave. Consideremos $\lambda = (f \circ \gamma)(t)$. Por la regla de la cadena, λ es continuamente diferenciable y como $f'(\gamma(t)) \neq 0$, tenemos

$$\lambda'(t) = f'(\gamma(t))\gamma'(t). \tag{1.10}$$

Por lo tanto, λ es una curva suave en el plano w.

Sean $\gamma_1, \gamma_2 : [a, b] \to U$ curvas suaves tales que $c = \gamma_1(a) = \gamma_2(a)$. Definimos el ángulo θ entre γ_1 y γ_2 en c como el argumento de $\frac{\gamma'_2(a)}{\gamma'_1(a)}$. Como el argumento es aditivo para la multiplicación de funciones, tenemos que

$$\arg \lambda'_1(a) = \arg f'(c) + \arg \gamma'_1(a)$$

$$\arg \lambda'_2(a) = \arg f'(c) + \arg \gamma'_2(a)$$

y entonces

$$\arg \frac{\lambda_2'(a)}{\lambda_1'(a)} = \arg \lambda_2'(a) - \arg \lambda_1'(a) = \arg \gamma_2'(a) - \arg \gamma_1'(a) = \arg \frac{\gamma_2'(a)}{\gamma_1'(a)}.$$

Así, el ángulo entre las curvas λ_1 y λ_2 en $d=\lambda_1(a)=\lambda_2(a)$ es igual al ángulo θ entre las curvas γ_1 y γ_2 en c.

A continuación, vamos a probar un resultado recíproco a éste que incluye algunas restricciones adicionales sobre f.

Proposición 1.3.3. Sean $U \subset \mathbb{C}$ y $f: U \to \mathbb{C}$ una aplicación conforme en U que admite derivadas parciales continuas con respecto a x e y. Entonces $f \in \mathcal{H}(U)$ y $f'(z) \neq 0$ para todo $z \in U$.

Demostración. Fijemos z un punto arbitrario de U, y elijamos $\varepsilon > 0$ tal que $D(z, \varepsilon) \subset U$. Consideremos la familia de curvas suaves $\gamma_{\theta}(t) = z + te^{i\theta}$, $0 \le t \le \varepsilon$, $\theta \in \mathbb{R}$. Nótese que el ángulo entre γ_0 y γ_{θ} en z es θ .

Tomemos la familia de curvas $\lambda_{\theta} = f \circ \gamma_{\theta}$. Como f es conforme, el ángulo entre λ_0 y λ_{θ} , es decir, el argumento de $\frac{\lambda'_{\theta}(0)}{\lambda'_{0}(0)}$ es igual a θ . Si escribimos el argumento de $\lambda'_{0}(0)$ como α , el argumento de $\lambda'_{\theta}(0)$ será $\alpha + \theta$ y, por tanto,

$$e^{-i(\theta+\alpha)}\lambda_{\theta}'(0) = |\lambda_{\theta}'(0)| > 0.$$
 (1.11)

Además, la regla de la cadena nos dice que

$$\lambda_{\theta}'(0) = u_x \cos \theta + u_y \sin \theta + i(v_x \cos \theta + v_y \sin \theta) = = (u_x + iv_x) \cos \theta + (u_y + iv_y) \sin \theta = f_x \cos \theta + f_y \sin \theta.$$
(1.12)

y, por la fórmula de Euler,

$$2\lambda'_{\theta}(0) = (f_x - if_y)e^{i\theta} + (f_x + if_y)e^{-i\theta}.$$

Entonces por (1.11),

$$(f_x - if_y)e^{-i\alpha} + (f_x + if_y)e^{-2i\theta - i\alpha} = 2|\lambda'_{\theta}(0)|.$$

Derivando en ambos lados con respecto a θ , obtenemos

$$-2i(f_x + if_y)e^{-2i\theta - i\alpha} = \frac{2d}{d\theta} |\lambda'_{\theta}(0)|.$$

Como el ángulo θ es arbitrario, $e^{-2i\theta-i\alpha}$ es un giro arbitrario. Como además la parte de la derecha de la igualdad solo toma valores reales, $-2i(f_x+if_y)$ bajo cualquier giro tiene que ser real. De esto se sigue que

$$f_x + i f_y = 0$$

por lo que

$$u_x + v_y + i(v_x + u_y) = 0.$$

Como vemos, u(x,y) y v(x,y) satisfacen las ecuaciones de Cauchy-Riemann en U. Luego f(z) = u(x,y) + iv(x,y) es holomorfa en $z = x + iy \in U$. Además se tiene que $f(z) \neq 0, z \in U$. En efecto, como $\lambda'_{\theta}(0) \neq 0$, (1.12) garantiza que no pueden anularse a la vez u_x y u_y . Por lo tanto, como $|f'(x+iy)|^2 = u_x^2(x,y) + u_y^2(x,y)$, se tiene el resultado.

Teorema 1.3.4 (Teorema de Carathéodory). Sea φ una aplicación conforme del disco unidad \mathbb{D} en un dominio de Jordan Ω . Entonces φ tiene una extensión continua al disco cerrado $\overline{\mathbb{D}}$, y la extensión es inyectiva de $\overline{\mathbb{D}}$ en $\overline{\Omega}$.

Demostración. Vamos a suponer que Ω está acotado. Fijemos $\zeta \in \partial \mathbb{D}$. Primero vamos a probar que φ tiene una extensión continua en ζ . Sea $0 < \delta < 1$,

$$D(\zeta, \delta) = \{z : |z - \zeta| < \delta\}$$

y tomemos $\gamma_{\delta} = \mathbb{D} \cap \partial D(\zeta, \delta)$. Entonces $\varphi(\gamma_{\delta})$ es una curva de Jordan de longitud

$$L(\delta) = \int_{\gamma_{\delta}} |\varphi'(z)| ds.$$

Por la desigualdad de Cauchy-Schwarz, tenemos

$$L^{2}(\delta) \leq \pi \delta \int_{\gamma_{\delta}} |\varphi'(z)|^{2} ds,$$

entonces para $\rho < 1$

$$\int_{0}^{\rho} \frac{L^{2}(\delta)}{\delta} d\delta \leq \pi \int \int_{\mathbb{D} \cap D(\zeta, \rho)} |\varphi'(z)|^{2} dx dy = \pi \operatorname{Area}(\varphi(\mathbb{D} \cap D(\zeta, \rho))) < \infty.$$

Figura 1.1: Las curvas γ_{δ_n} y $\varphi(\gamma_{\delta_n})$.

Entonces, existe una sucesión $\{\delta_n\} \downarrow 0$ tal que $L(\delta_n) \to 0$. Cuando $L(\delta_n) < \infty$, la curva $\varphi(\gamma_{\delta_n})$ tiene extremos $\alpha_n, \beta_n \in \overline{\Omega}$ y ambos puntos deben estar en $\Gamma = \partial \Omega$. De hecho, si $\alpha_n \in \Omega$, entonces algún punto cerca de α_n tiene dos preimágenes distintas en \mathbb{D} y esto es imposible pues φ es inyectiva. Además,

$$|\alpha_n - \beta_n| \le L(\delta_n) \to 0. \tag{1.13}$$

Sea σ_n el subarco cerrado de Γ que tiene extremos α_n y β_n y con un diámetro menor. Entonces (1.13) implica que diam $(\sigma_n) \to 0$ porque Γ es homeomorfa al círculo. Por el teorema de la curva de Jordan, $\sigma_n \cup \varphi(\gamma_{\delta_n})$ divide al plano en dos regiones, y una de ellas, llamémosla U_n es acotada. Entonces $U_n \subset \Omega$ ya que $\mathbb{C}^* \setminus \overline{\Omega}$ es conexo por arcos. Como

$$\operatorname{diam}(\partial U_n) = \operatorname{diam}(\sigma_n \cup \varphi(\gamma_{\delta_n})) \to 0, \tag{1.14}$$

concluimos que

$$\operatorname{diam}(U_n) \to 0. \tag{1.15}$$

Tomamos $D_n = \mathbb{D} \cup \{z : |z - \zeta| < \delta_n\}$. Sabemos que para n suficientemente grande, $\varphi(D_n) = U_n$. Si no, por conexión tendríamos que $\varphi(\mathbb{D} \setminus \overline{D_n}) = U_n$ y

$$diam(U_n) \ge diam(\varphi(B(0, 1/2))) > 0$$

que contradice con (1.15). Entonces diam $(\varphi(D_n)) \to 0$ y $\bigcap \overline{\varphi(D_n)}$ es un solo punto pues $\varphi(D_{n+1}) \subset \varphi(D_n)$. Esto significa que φ tiene una extensión continua en $\mathbb{D} \cap \{\zeta\}$. La extensión a todos estos puntos define una aplicación continua en $\overline{\mathbb{D}}$.

Denotemos ahora por φ a la extensión $\varphi: \overline{\mathbb{D}} \to \overline{\Omega}$. Como $\varphi(\mathbb{D}) = \Omega$, φ lleva $\overline{\mathbb{D}}$ en $\overline{\Omega}$. Para probar que φ es inyectiva, supongamos que $\varphi(\zeta_1) = \varphi(\zeta_2)$, $\zeta_1 \neq \zeta_2$. El argumento utilizado para mostrar que $\alpha_n \in \Gamma$, también prueba que $\varphi(\partial \mathbb{D}) = \Gamma$, así que podemos suponer que $\zeta_i \in \partial \mathbb{D}$, j = 1, 2. La curva de Jordan

$$\{\varphi(r\zeta_1): 0 \le r \le 1\} \cup \{\varphi(r\zeta_2): 0 \le r \le 1\}$$

acota al dominio $W \subset \Omega$, luego $\varphi^{-1}(W)$ es una de las dos componentes de

$$\mathbb{D} \setminus (\{r\zeta_1 : 0 \le r \le 1\} \cup \{r\zeta_2 : 0 \le r \le 1\}).$$

Pero como $\varphi(\partial \mathbb{D}) \subset \Gamma$,

$$\varphi(\partial \mathbb{D} \cap \partial \varphi^{-1}(W)) \subset \partial W \cap \partial \Omega = \{\varphi(\zeta_1)\}\$$

y φ es constante en un arco de $\partial \mathbb{D}$. Se tiene que φ es constante, por el principio de reflexión de Schwarz, y esta contradicción prueba que $\varphi(\zeta_1) \neq \varphi(\zeta_2)$.

En la sección anterior, hemos utilizado el Teorema de Fatou para resolver el problema de Dirichlet en el disco \mathbb{D} . De manera análoga, también vamos a poder hacer uso del Teorema de Carathéodory para resolver el problema de Dirichlet, pero esta vez sin restringirnos necesariamente al disco unidad \mathbb{D} sino a un dominio de Jordan cualquiera Ω . Para ello vamos a aplicar una transformación conforme φ que lleva el disco en el dominio Ω . Así pues, utilizando la notación del teorema anterior, sea f una aplicación en Γ tal que $f \circ \varphi$ es integrable en $\partial \mathbb{D}$, entonces

$$u: z = re^{i\theta} \in \Omega \mapsto u(re^{it}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f \circ \varphi(e^{it}) dt$$

es armónica en Ω . Por los teoremas 1.3.4 y 1.2.1,

$$\lim_{z \to \zeta} u(z) = f(\zeta) \tag{1.16}$$

cuando $z \in \Omega$ y la función $f \circ \varphi$ es continua en $\varphi^{-1}(\zeta) \in \partial \mathbb{D}$. En particular, si f es continua en Γ , entonces (1.16) se satisface para todo $\zeta \in \Gamma$ y u(z) resuelve el problema de Dirichlet para f en Ω .

Al final de la demostración del Teorema 1.3.4 hemos utilizado un resultado clásico, el Principio de Reflexión de Schwarz, que enunciamos a continuación.

Teorema 1.3.5 (Principio de Reflexión de Schwarz). Sea U^+ un conjunto abierto conexo del semiplano superior y supongamos que la frontera de U^+ contiene un intervalo abierto $I \subset \mathbb{R}$. Sea U^- la reflexión de U^+ en el eje real, $U^- = \{z : \bar{z} \in U^+\}$, y tomemos $U = U^+ \cup I \cup U^-$.

Si f = u + iv es una función holomorfa en U^+ y $\lim_{n\to\infty} v(z_n) = 0$ para toda sucesión $\{z_n\} \subset U^+$ que converge a un punto de I. Entonces f tiene una prolongación analítica única F en U que verifica

$$F(z) = f(z) \text{ si } z \in U^+,$$
 $F(\bar{z}) = \overline{F(z)} \text{ si } z \in U.$

El teorema anterior puede aplicarse a situaciones más generales cuando el dominio considerado es equivalente a través de una función biholomorfa al abierto del resultado precedente.

Teorema 1.3.6 (Principio de Reflexión de Schwarz). Sea V un conjunto abierto de \mathbb{C} y supongamos que es la unión disjunta $V = V^+ \cup \gamma \cup V^-$, donde V^+ y V^- son abiertos de \mathbb{C} y γ es una curva. Suponemos que existe una aplicación biholomorfa entre V y U

$$\psi: U \to V$$

tal que

$$\psi(U^+) = V^+, \qquad \qquad \psi(I) = \gamma \qquad \qquad \psi(U^-) = V^-.$$

La notación $U = U^+ \cup I \cup U^-$ es la misma que antes.

Si g = u + iv es una función holomorfa en V^+ y $\lim_{n\to\infty} v(z_n) = 0$ para toda sucesión $\{z_n\} \subset V^+$ que converge a un punto de γ . Entonces g tiene una prolongación analítica en V.

El resultado que presentamos a continuación es un recíproco parcial del teorema de Carathéodory. Muestra que la inyectividad en el borde del dominio se traslada al interior, en condiciones adecuadas.

Teorema 1.3.7. Sea Γ una curva simple, cerrada y suave con interior Ω . Sea $f \in \mathcal{H}(\Gamma \cup \Omega)$ una aplicación inyectiva en Γ . Entonces f es holomorfa e inyectiva en Ω .

Demostración. La aplicación w = f(z) lleva Γ en un camino simple, cerrado y suave Γ' . Sea w_0 un punto arbitrario que no esté en Γ' . Entonces, si llamamos Γ_+ al camino positivamente orientado,

$$n = \frac{1}{2\pi i} \int_{\Gamma_{\perp}} \frac{f'(z)}{f(z) - w_0} dz = \frac{1}{2\pi i} \int_{\Gamma'} \frac{dw}{w - w_0}.$$

Ahora la última integral es cero si w_0 está fuera de Γ' y es ± 1 si w_0 está dentro de Γ' . Sin embargo, n no puede ser negativo pues la primera integral nos da el número de ceros

14 CAPÍTULO 1. TEOREMA DE FATOU Y TEOREMA DE CARATHÉODORY

de $f(z) - w_0$ dentro de Γ . Entonces, n = 1 si w_0 está dentro de Γ' .

Esto prueba que $f(z) = w_0$ tiene una sola solución si w_0 está dentro de Γ' , que f(z) es holomorfa e inyectiva en Ω y lleva Ω en Ω' (el interior de Γ') y que la dirección positiva de Γ' se corresponde con la dirección positiva de Γ .

Capítulo 2

Ejemplos

Empezar comentando cómo calcular el radio de convergencia, que los ejemplos son de series con radio de convergencia 1 y que vas a mostrar cómo difieren el comportamiento en la frontera de unos a otros.

En esta sección vamos a estudiar el comportamiento de algunas series de potencias en el borde de su disco de convergencia.

Ejemplo 2.0.1. Mostrar que

$$\sum_{n=0}^{\infty} z^n, \, |z| < 1$$

diverge en todo punto tal que |z|=1.

Demostración. Es fácil ver que $1-z^{n+1}=(1-z)(1+z+z^2+\cdots+z^n)$. Por lo tanto, si $z\neq 1$, se tiene que

$$1 + z + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}. (2.1)$$

Por un lado, si |z| < 1 entonces $\lim_{n \to \infty} z^n = 0$ y la serie converge a

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.$$

Ahora bien, si |z| > 1 entonces $\lim_{n \to \infty} z^n = \infty$ y la serie diverge. Pero, ¿qué pasa cuando |z| = 1? La serie de potencias $\sum_{n=0}^{\infty} z^n$ diverge en todos los puntos del radio de convergencia pues $|z^n|$ no tiende a 0 cuando $n \to \infty$.

Sin embargo, $\sum_{n=0}^{\infty} z^n$ puede ser extendida a la función globalmente analítica $\frac{1}{1-z}$ en $\mathbb{C} \setminus \{1\}$ gracias a una cantidad finita de prolongaciones analíticas.

Tomemos a un punto cualquiera de $\mathbb{C} \setminus \{1\}$ y conectémoslo al origen 0 mediante la curva de Jordan $\gamma \subset \mathbb{C} \setminus \{1\}$. Fijemos un punto z_1 en γ que cumpla |z| < 1. $\sum_{n=0}^{\infty} z^n$

puede ser extendida analíticamente en z_1 de la siguiente forma:

$$\frac{1}{1-z} = \frac{1}{1-z_1 - (z-z_1)} = \frac{1}{1-z_1} \frac{1}{1-\frac{z-z_1}{1-z_1}} = \frac{1}{1-z_1} \sum_{n=0}^{\infty} \left(\frac{z-z_1}{1-z_1}\right)^n =$$

$$= \sum_{n=0}^{\infty} \frac{1}{(1-z_1)^{n+1}} (z-z_1)^n, |z-z_1| < |1-z_1|.$$

De nuevo, tomemos z_2 en γ tal que $|z_2-z_1|<|1-z_1|$ y $|z_2|\geq 1$. Podemos extender la serie de potencias a z_2 de la misma forma:

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{1}{(1-z_2)^{n+1}} (z-z_2)^n, |z-z_2| < |1-z_2|.$$

Después de un número finito de iteraciones, dado que la curva es un conjunto compacto, alcanzaremos el punto a y tendremos

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{1}{(1-a)^{n+1}} (z-a)^n, |z-a| < |1-a|.$$

Así, decimos que hemos obtenido la prolongación analítica de $\sum_{n=0}^{\infty} z^n$ que pasa por la curva γ .

Figura 2.1: Prolongaciones analíticas.

Ejemplo 2.0.2. Mostrar que

$$g(z) = \sum_{n=1}^{\infty} \frac{z^n}{n}, |z| < 1$$

diverge en z = 1 y converge en el resto de punto tales que |z| = 1;

Demostración. En primer lugar, cabe destacar que la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge. Para demostrar que la serie diverge en z=1 y converge en el resto de punto tales que |z|=1 vamos a aplicar el criterio de Dirichlet, que recordamos a continuación.

Sean $\{a_n\} \subset \mathbb{R}$ y $\{b_n\} \subset \mathbb{C}$ succesiones tales que:

- 1. $\{a_n\}$ es monótona con límite 0
- 2. Las sumas parciales de la serie $\sum_{n=1}^{\infty} b_n$ están acotadas

entonces $\sum_{n=1}^{N} a_n b_n$ converge.

En nuestro caso vamos a tomar $a_n = \frac{1}{n}$ y $b_n = z^n$. La primera condición se cumple, veamos la que resta:

$$\left| \sum_{n=1}^{N} z^n \right| = \left| \frac{z - z^{N+1}}{1 - z} \right| \le \frac{2}{|1 - z|},$$

si $z \neq 1$, para todo $N \in \mathbb{N}$.

Esto muestra que la condición se satisface para todo $z \neq 1$ en el disco unidad. Por lo tanto, la serie converge para todo z tal que $|z| \leq 1, z \neq 1$ y diverge para |z| > 1.

Vamos a ver que la suma de la serie es $\log \frac{1}{1-z}$. En efecto, derivando tenemos que

$$g'(z) = \sum_{n=1}^{\infty} z^{n-1} \Rightarrow zg'(z) = \sum_{n=1}^{\infty} z^n = \frac{z}{1-z}.$$

Si integramos ahora la expresión de la derecha tenemos que la suma es log $\frac{1}{1-z}$ puesto que g(0) = 0.

Ejemplo 2.0.3. Mostrar que

$$f(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2}, |z| < 1$$

converge absoluta y uniformemente en |z| = 1.

Demostración. Por el criterio mayorante de Weierstrass, es fácil ver que converge absoluta y uniformemente si $|z| \le 1$ dado que

$$\sum_{n=1}^{\infty} \left| \frac{z^n}{n^2} \right| \le \sum_{n=1}^{\infty} \left| \frac{1}{n^2} \right| < \infty.$$

Esta función f define una función holomorfa y acotada en el disco abierto \mathbb{D} , que además es continua en el disco cerrado $\overline{\mathbb{D}}$. Sin embargo, no puede extenderse a una función que

sea derivable en z = 1.

$$f'(z) = \sum_{n=1}^{\infty} \frac{z^{n-1}}{n} \Rightarrow zf'(z) = \sum_{n=1}^{\infty} \frac{z^n}{n} = g(z) = \log \frac{1}{1-z}.$$

Ejemplo 2.0.4. Mostrar que la serie lagunar,

$$h(z) = \sum_{n=0}^{\infty} z^{2^n}, |z| < 1$$

tiene una singularidad en cada punto tal que |z|=1.

Demostración. Sea $h(z) = \sum_{n=0}^{\infty} z^{2^n} = z + z^2 + z^4 + z^8 + \cdots$. Podemos escribir lo siguiente:

$$h(z^2) = h(z) - z, h(z^4) = h(z^2) - z^2,$$

y aplicando inducción tenemos que

$$h(z^{2^k}) = h(z^{2^{k-1}}) - z^{2^{k-1}}$$

Así,

$$h(z) = z + h(z^2) = z + z^2 + h(z^4) = \dots = z + z^2 + \dots + z^{2^{k-1}} + h(z^{2^k}).$$

Si $m, n \in \mathbb{N}$ y $r \in (0, 1)$ y llamamos r a $e^{2\pi i \frac{m}{2^n}}$, tenemos que

$$h(r^{2^n}) = \sum_{k=0}^{\infty} (r^{2^n})^{2^k} = \sum_{k=0}^{\infty} r^{2^n \cdot 2^k} = \sum_{k=0}^{\infty} r^{2^{(n+k)}} = \sum_{k=0}^{\infty} r^{2^k}.$$

Como

$$\sum_{k=n}^{\infty} r^{2^k} \ge \sum_{k=n}^{N} r^{2^k} > (N+1)r^{2^k} \to N+1,$$

entonces $\lim_{r \to 1} \left| h(re^{2\pi i \frac{m}{2^n}}) \right| = \infty \ \forall m, n.$

Puesto que $\{e^{2\pi i \frac{m}{2^n}}: m, n \in \mathbb{N}\}$ es denso en $\partial \mathbb{D}$, todos los puntos del borde del disco unidad son singulares.

Ejemplo 2.0.5. Mostrar que la función

$$f(z) = \exp\left(\frac{z+1}{z-1}\right), z \in \mathbb{D}$$

es holomorfa, |f(z)| < 1 para todo $z \in \mathbb{D}$, y $f(t) \to 0$ cuando $t \to 1^-$.

Demostración. La función f es holomorfa ya que es la composición de funciones holomorfas. Obsérvese que el único punto singular es z=1 y f y todas sus derivadas tienen límite radial 0 en $e^{i\theta}=1$.

La función $g(z) = \frac{z+1}{z-1}$ lleva el disco en el semiplano izquierdo $H = \{w : \text{Re}(w) < 0\}$, así que z = 1 se corresponde con ∞ y $\partial \mathbb{D} \setminus \{1\}$ se corresponde con el eje imaginario. Así pues, la exponencial $e^{g(z)}$ es holomorfa en $\partial \mathbb{D} \setminus \{1\}$ y lleva H en \mathbb{D} :

$$|e^z| = |e^{x+iy}| = |e^x(\cos y + i \sin y)| = e^x < 1.$$

La aplicación g es una transformación de Möbius, y dichas transformaciones tienen la propiedad de que llevan circunferencias y rectas en circunferencias y rectas. Como la función lleva -1 a 0, i a -i y -i a i, la imagen del círculo |z|=1, ha de ser una recta.

Si tomamos una sucesión $\{t_n\}$ en el intervalo (-1,1) que converge a 1 cuando n tiende a ∞ , se tiene que $g(t_n) = \frac{t+1}{t-1}$ tiende a $-\infty$ cuando t tiende a 1^- . Por lo tanto,

$$\frac{t+1}{t-1} \xrightarrow[t\to 1^-]{} - \infty \Rightarrow \exp\left(\frac{t+1}{t-1}\right) \xrightarrow[t\to 1^-]{} 0.$$

Sin embargo, la función f no tiene límite en 1. Por ejemplo, si tomamos la sucesión $\{z_n\}$ definida por $z_n = g(w_n)$, siendo $\{w_n\}$ la sucesión de término general $-1 + 2n\pi i$. Entonces,

$$z_n = \frac{2n\pi i}{-2 + 2n\pi i} = \frac{n\pi i}{n\pi i - 1} = \frac{(n\pi i + 1)n\pi i}{-n^2\pi^2 - 1} = \frac{-n^2\pi^2 + in\pi}{-n^2\pi^2 - 1}.$$

Como $g = g^{-1}$ tenemos

$$e^{g(z_n)} = e^{w_n} \to e^{-1} \neq 0.$$

Estudiaremos este ejemplo con más detalle en el Capítulo 4, centrándonos de nuevo en el comportamiento de la función en el punto singular z=1.

Capítulo 3

Productos infinitos. Productos de Blaschke

3.1. Productos infinitos

¿Su producto infinito se define como el límite de los productos parciales $u_1u_2\cdots u_N$ o $u_{n_0}u_{n_0+1}\cdots u_N$?

Definición 3.1.1. Sea $\{u_n\}$ una sucesión de números complejos que puede anularse en una cantidad finita de elementos hasta un cierto $n_0 \in \mathbb{N}$, a partir del cual todos los elementos serán no nulos. Su producto infinito se define como el límite de los productos parciales $u_1u_2\cdots u_N$ cuando N tiende a infinito:

$$\prod_{n=1}^{\infty} u_n = \lim_{N \to \infty} \prod_{n=1}^{N} u_n.$$

Además, decimos que el producto converge cuando el límite existe y no es cero. En otro caso, se dice que el producto diverge.

Añadir resultados de convergencia y convergencia absoluta en productos infinitos

Proposición 3.1.2. Sea $\{u_n\}$ una sucesión de números complejos no nulos. Si lím $u_n = 1$ y la serie

$$\sum_{n=1}^{\infty} \log u_n$$

converge absolutamente, es decir, $\sum_{n=1}^{\infty} |\log u_n|$ converge, entonces el producto infinito

$$\prod_{n=1}^{\infty} u_n$$

converge absolutamente.

Demostración. Si n es suficientemente grande, entonces u_n puede escribirse como $u_n = 1 - \alpha_n$, donde $|\alpha_n| < 1$, y entonces podemos definir $\log u_n$ como $\log (1 - \alpha_n)$. Por hipótesis, se sigue que la serie

$$\sum_{n=1}^{\infty} \log u_n = \sum_{n=1}^{\infty} \log (1 - \alpha_n)$$

converge. Así que las sumas parciales

$$\sum_{n=1}^{N} \log u_n$$

tienen límite. Como la función exponencial es continua, podemos exponenciar las sumas parciales y vemos que

$$\prod_{n=1}^{\infty} u_n = \lim_{N \to \infty} \prod_{n=1}^{N} u_n$$

existe.

Lema 3.1.3. Sea $\{\alpha_n\}$ una sucesión de números complejos tales que $\alpha_n \neq 1$ para todo n. Supongamos que

$$\sum_{n=1}^{\infty} |\alpha_n|$$

converge. Entonces

$$\prod_{n=1}^{\infty} (1 - \alpha_n)$$

converge absolutamente.

Demostración. Para una cantidad finita n, tenemos que $|\alpha_n| < \frac{1}{2}$, así que $\log(1 - \alpha_n)$ está definido por la serie usual, y para alguna constante C, tenemos

$$|\log (1 - \alpha_n)| < C |\alpha_n|$$
.

Por tanto, el producto converge absolutamente por definición y utilizando la hipótesis de que $\sum_{n=1}^{\infty} |\alpha_n|$ converge.

Los dos Lemas anteriores nos permiten relacionar la convergencia de un producto infinito con la convergencia de las series de potencias, lo cual nos va a ser de gran ayuda ya que estas últimas son mucho más fáciles de manejar.

Añadir comentario sobre la equivalencia de las tres situaciones.

3.2. Productos de Blaschke

Proposición 3.2.1. Sea $\{\alpha_n\}$ una sucesión en el disco unidad \mathbb{D} tal que $\alpha_n \neq 0$ para todo n y $\sum_{n=1}^{\infty} (1-|\alpha_n|)$ converge. Entonces el producto de Blaschke

$$B(z) = \prod_{n=1}^{\infty} \frac{\alpha_n - z}{1 - \overline{\alpha_n} z} \frac{|\alpha_n|}{\alpha_n}$$

converge uniformemente en \mathbb{D} . La función B(z) define una función holomorfa en el disco unidad que tiene los mismos ceros que α_n . Además $|B(z)| \leq 1$ y $|B(e^{i\theta})| = 1$ en casi todo punto.

Demostración. Sea

$$b_n(z) = \frac{\alpha_n - z}{1 - \overline{\alpha_n}z} \frac{|\alpha_n|}{\alpha_n}.$$

Por el Lema 3.1.3, sabemos que $\prod_{n=1}^{\infty} b_n$ converge uniformemente en \mathbb{D} a una función holomorfa que tiene los mismos ceros que $\{\alpha_n\}$ si y solo si $\sum_{n=1}^{\infty} |1-b_n|$ converge uniformemente en todo subconjunto compacto de \mathbb{D} . Para $|\alpha_n| < 1$ y $|z| \le r < 1$, se tiene

$$|1 - b_n(z)| = \left| 1 + \frac{z - \alpha_n}{1 - \overline{\alpha_n} z} \frac{|\alpha_n|}{\alpha_n} \right| = \left| \frac{(1 - \overline{\alpha_n} z)\alpha_n + (z - \alpha_n) |\alpha_n|}{(1 - \overline{\alpha_n} z)\alpha_n} \right| = \left| \frac{\alpha_n + z |\alpha_n|}{\alpha_n (1 - \overline{\alpha_n} z)} \right| (1 - |\alpha_n|) \le \frac{1 + r}{1 - r} (1 - |\alpha_n|).$$

pues si $|\alpha_n| < 1$ y $|z| \le r$ se verifican $|\alpha_n + z|\alpha_n| \le 1 + r$, y $|1 - \overline{\alpha_n}z| \ge 1 - |\overline{\alpha_n}| |z| \ge 1 - r$.

Entonces para $|z| \leq r < 1$, se tiene

$$\sum_{n=1}^{\infty} |1 - b_n(z)| \le \frac{1+r}{1-r} \sum_{n=1}^{\infty} (1 - |\alpha_n|),$$

y la serie $\sum_{n=1}^{\infty} |1 - b_n(z)|$ converge absoluta y uniformemente en el disco cerrado de radio r. Por lo que $B(z) = \prod_{n=1}^{\infty} b_n$ converge uniformemente en \mathbb{D} .

Como $b_n(z)$ son funciones holomorfas en \mathbb{D} y su producto infinito converge uniformemente en los compactos de \mathbb{D} , se tiene que B(z) define una función holomorfa en el disco unidad.

Además, se cumple $|B(z)| \leq 1$ por la caracterización de los automorfismos del disco unidad ya que los términos $\frac{\alpha_n - z}{1 - \overline{\alpha_n} z}$ definen un automorfismo del disco unidad que lleva el disco abierto en el disco abierto y el borde en el borde.

Así pues, aplicando el Teorema de Fatou, B(z) tiene límites radiales $\left|B(e^{i\theta})\right| \leq 1$ en casi todo punto. Para ver que $\left|B(e^{i\theta})\right| = 1$ en casi todo punto, tomemos $B_n(z) = \prod_{k=1}^n b_k(z)$ el producto parcial. Entonces, $\frac{B}{B_n}$ es otro producto de Blaschke y

$$\left| \frac{B(0)}{B_n(0)} \right| \le \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{B(e^{i\theta})}{B_n(e^{i\theta})} \right| d\theta = \frac{1}{2\pi} \int_0^{2\pi} \left| B(e^{i\theta}) \right| d\theta.$$

Tomando $n \to \infty$, obtenemos

$$\frac{1}{2\pi} \int_0^{2\pi} \left| B(e^{i\theta}) \right| d\theta = 1,$$

y, por consiguiente, $\left|B(e^{i\theta})\right|=1$ en casi todo punto

Podemos enunciar un resultado similar al anterior si permitimos que α_n se anule m veces, lo que significa que B se anulará en los mismos puntos que α_n . Haciendo uso de la Proposición anterior, lo que atañe a la convergencia y los límites radiales inmediato y no precisa demostración.

Corolario 3.2.1.1. Sea $\{\alpha_n\}$ una sucesión en el disco unidad \mathbb{D} tal que $\sum_{n=1}^{\infty} (1 - |\alpha_n|)$ converge. Sea m el número de α_n iguales a cero. Entonces el producto de Blaschke

$$B(z) = z^m \prod_{|\alpha_n| \neq 0} \frac{\alpha_n - z}{1 - \overline{\alpha_n} z} \frac{|\alpha_n|}{\alpha_n}$$

converge uniformemente en \mathbb{D} . La función B(z) define una función holomorfa en el disco unidad que tiene los mismos ceros que α_n . Además $|B(z)| \leq 1$ y $|B(e^{i\theta})| = 1$ en casi todo punto.

Capítulo 4

$\mathcal{H}^{\infty}(\mathbb{D})$ como álgebra de Banach

En este capítulo vamos a trabajar con $\mathcal{H}^{\infty}(\mathbb{D})$ como el álgebra de las funciones holomorfas acotadas en el disco unidad.

4.1. Álgebra de Banach

Definición 4.1.1. Un espacio vectorial complejo X, dotado de una norma $\|\cdot\|$ se denomina espacio de Banach si es completo.

En nuestro caso particular, $\mathcal{H}^{\infty}(\mathbb{D})$ es un espacio vectorial complejo, que dotado con la norma infinito

$$||f||_{\infty} = \sup_{|z|<1} |f(z)|,$$

es normado y completo sobre $\mathbb C$ puesto que el límite uniforme sobre compactos de una sucesión de funciones holomorfas es una función holomorfa. Atendiendo a la definición anterior, decimos que $(\mathcal H^\infty(\mathbb D),\|\cdot\|_\infty)$ es un espacio de Banach.

Definición 4.1.2. Decimos que un álgebra B, dotada de una norma $\|\cdot\|$ es un álgebra de Banach si como espacio normado $(B, \|\cdot\|)$ es un espacio de Banach y, además, para el producto satisface:

$$\forall x, y \in B: \|x \cdot y\| \le \|x\| \cdot \|y\|.$$

De nuevo, podemos ver $\mathcal{H}^{\infty}(\mathbb{D})$ como un álgebra, con las operaciones naturales. En efecto, si $f, g \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\alpha, \beta \in \mathbb{C}$, entonces

$$\alpha f + \beta g \in \mathcal{H}^{\infty}(\mathbb{D})$$
$$fg \in \mathcal{H}^{\infty}(\mathbb{D}).$$

Así, $\mathcal{H}^{\infty}(\mathbb{D})$ es un álgebra de Banach conmutativa (con la función constante 1 como elemento unidad) puesto que es un álgebra conmutativa y un espacio de Banach cuya norma asociada cumple la siguiente propiedad:

$$\forall f, g \in \mathcal{H}^{\infty}(\mathbb{D}) : \|f \cdot g\|_{\infty} \le \|f\|_{\infty} \cdot \|g\|_{\infty}.$$

4.2. Espacio dual de un álgebra de Banach

Definición 4.2.1. Sea B un espacio de Banach complejo. Consideramos B^* el espacio de las aplicaciones $\varphi: B \to \mathbb{C}$ lineales y continuas. B^* es un espacio vectorial y tiene una norma natural dada por:

$$\|\varphi\| = \sup_{\|x\| \le 1} |\varphi(x)|.$$

Con esta norma, B^* es un espacio de Banach al que llamamos espacio dual de B.

Además de la topología inducida por la norma en el espacio dual B^* , vamos a considerar otra topología denominada topología débil-* en B^* que está definida de la siguiente manera. Sea $\varphi_0 \in B^*$, y tomemos una cantidad finita de elementos $x_1, \ldots x_n \in B$ y $\varepsilon > 0$. Los entornos de φ_0 serán los conjuntos que contienen uno de la forma U, donde

$$U = \{ \varphi \in B^* : |\varphi(x_k) - \varphi_0(x_k)| < \varepsilon, k = 1, \dots, n \}.$$

Un abierto de esta topología será, por tanto, cualquier unión de tales entornos U.

Esta topología se denota por $\sigma(B^*, B)$. Es la topología más débil de B^* tal que todas las funciones $\varphi \to \varphi(x)$ son continuas de B^* en \mathbb{C} , con $x \in B$.

Un resultado importante de análisis funcional que usaremos en nuestro desarrollo es el Teorema de Alaouglu, que establece la compacidad de la bola unidad cerrada de cualquier espacio dual, cuando se considera dotado de la topología débil-*. Obsérvese que en dimensión infinita, la bola unidad no es compacta en ningún espacio para la topología dada por la norma.

Teorema 4.2.2 (de Alaouglu). La bola unidad cerrada de B* es compacto en la topología débil-*.

4.3. El espectro de un álgebra

¿Debería hacer como antes: introducirlo primero para B y luego seguir para $\mathcal{H}^{\infty}(\mathbb{D})$?

Recordemos que $\phi: \mathcal{H}^{\infty}(\mathbb{D}) \to \mathbb{C}$ es un homomorfismo de álgebras si para todos $f, g \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\alpha, \beta \in \mathbb{C}$ se cumple:

$$\phi(\alpha f + \beta g) = \alpha \phi(f) + \beta \phi(g)$$

$$\phi(f \cdot g) = \phi(f) \cdot \phi(g).$$
(4.1)

El espectro de $\mathcal{H}^{\infty}(\mathbb{D})$, denotado por $\mathfrak{M} = \mathfrak{M}(\mathcal{H}^{\infty}(\mathbb{D}))$, es el espacio de los homomorfismos $\phi : \mathcal{H}^{\infty}(\mathbb{D}) \to \mathbb{C}$ no nulos. Observamos que tales homomorfismos verifican que son continuos y $\|\phi\| = 1$ ya que $\phi(1) = 1$.

Tal y como hemos construido (/definido) \mathfrak{M} , es un subconjunto del espacio dual $\mathcal{H}^{\infty}(\mathbb{D})^*$. De hecho, está contenido en la bola unidad de $\mathcal{H}^{\infty}(\mathbb{D})^*$ que, dotada con la topología débil-*, es un compacto, por lo que \mathfrak{M} como subconjunto de $\mathcal{H}^{\infty}(\mathbb{D})^*$ dotado con dicha topología es un espacio Hausdorff compacto. Además, \mathfrak{M} es cerrado en $\mathcal{H}^{\infty}(\mathbb{D})^*$ dotado con la topología débil-*.

Llegados a este punto queremos asociar cada elemento x de B con una función continua sobre $\mathfrak{M}(B)$. Para ello vamos a definir la siguiente aplicación

$$\widehat{x}: \mathfrak{M}(B) \to \mathbb{C}$$
 $\varphi \mapsto \varphi(x).$

Si dotamos a $\mathfrak{M}(B)$ con la topología débil-*, tenemos que cada \widehat{x} es una función continua en $\mathfrak{M}(B)$. Más aún, por definición, la topología débil-* es la topología más débil de $\mathfrak{M}(B)$ que hace que cada \widehat{x} sea continua. Así pues, tenemos la siguiente representación a la que se le suele denominar **transformada de Gelfand**

$$x \to \widehat{x}$$
.

La imagen de B bajo este homomorfismo es el álgebra \widehat{B} de las funciones continuas sobre $\mathfrak{M}(B)$ que toman valores complejos. Es decir,

$$\widehat{B} = \{\widehat{x} : \mathfrak{M}(B) \to \mathbb{C} \mid x \in B\}.$$

En particular, para el álgebra $\mathcal{H}^{\infty}(\mathbb{D})$ la construcción se describe de la siguiente manera. Tenemos la aplicación

$$\widehat{f}: \mathfrak{M} \to \mathbb{C}$$
 $\phi \mapsto \phi(f),$

para cada $f \in \mathcal{H}^{\infty}(\mathbb{D})$, donde cada \widehat{f} es continua sobre el \mathfrak{M} si dotamos a \mathfrak{M} con la topología débil-*. Esto da lugar a la representación $f \to \widehat{f}$. De esta manera, vamos a poder interpretar $\mathcal{H}^{\infty}(\mathbb{D})$ como el álgebra de las funciones continuas en el espacio compacto \mathfrak{M} .

Al espacio \mathfrak{M} se le suele denominar espacio de ideales maximales de $\mathcal{H}^{\infty}(\mathbb{D})$. Para cada $\phi \in \mathfrak{M}$, el núcleo de ϕ es un ideal maximal del álgebra $\mathcal{H}^{\infty}(\mathbb{D})$. Recíprocamente, todo ideal maximal en $\mathcal{H}^{\infty}(\mathbb{D})$ se corresponde con el núcleo de un homomorfismo en \mathfrak{M} . Más adelante estudiaremos la estructura de este espacio.

Hablar más de la relación de \mathfrak{M} con los ideales maximales.

En principio, los únicos homomorfismos complejos que se pueden identificar claramente son las evaluaciones punto a punto del disco abierto \mathbb{D} . Si $z \in \mathbb{D}$,

$$\delta_z: \mathcal{H}^{\infty}(\mathbb{D}) \to \mathbb{C}$$

$$f \mapsto f(z).$$

Así pues, las evaluaciones en puntos del disco abierto son elementos del espectro y cumplen $|\delta_z| = 1$ para todo $z \in \mathbb{D}$.

Hablar más de las evaluaciones. ¿Qué más hay que decir?

4.4. La proyección del espectro sobre el disco

Existe una proyección natural continua que lleva \mathfrak{M} en el disco unidad cerrado. Si denotamos por id la función identidad de \mathbb{D} ,

$$id(z) = z, z \in \mathbb{D},$$

la aplicación que buscamos lleva los homomorfismos $\phi \in \mathfrak{M}$ en su correspondiente valor en la función id. Así pues, la aplicación que nos interesa es \widehat{id} . Para evitar confusiones, vamos a introducir una notación alternativa para referirnos a la función \widehat{id} . Si $\phi \in \mathfrak{M}$,

$$\pi: \mathfrak{M} \to \overline{\mathbb{D}}$$

$$\phi \mapsto \phi(\mathrm{id}). \tag{4.2}$$

Nótese que la función identidad tiene norma 1 y cada $\phi \in \mathfrak{M}$ también, por lo que $|\pi(\phi)| \leq 1$. Es decir, la imagen de π está contenida en el disco unidad cerrado.

Teorema 4.4.1. La aplicación $\pi: \mathfrak{M} \to \overline{\mathbb{D}}$ definida por (4.2) es continua. π es inyectiva sobre el disco abierto \mathbb{D} y π^{-1} aplica homeomórficamente \mathbb{D} sobre un abierto de \mathfrak{M} .

Demostración. π es continua por definición. Veamos que π lleva \mathfrak{M} en el disco cerrado. En efecto, ya hemos observado antes que cada punto del disco abierto \mathbb{D} está en la imagen de π puesto que $\pi(\delta_{\lambda}) = \lambda$. Como \mathfrak{M} es un conjunto compacto que contiene a \mathbb{D} , y la imagen de un compacto por una aplicación continua es también un compacto, entonces $\pi(\mathfrak{M})$ es compacto. Así pues, como $\pi(\mathfrak{M})$ es un conjunto compacto que contiene a \mathbb{D} , contiene todo el disco cerrado $\overline{\mathbb{D}}$.

Veamos ahora que π es inyectiva sobre el disco. Para ello supongamos que $|\lambda| < 1$ y $\pi(\phi) = \phi(\mathrm{id}) = \lambda$, con $\phi \in \mathfrak{M}$. Si $f(\lambda) = 0$, entonces $f(z) = (z - \lambda)g(z)$ y

$$\phi(f) = \phi(z - \lambda)\phi(f) = 0 \cdot \phi(f) = 0.$$

Si
$$f(\lambda) = c$$
, entonces $f(z) = c + g(z)$, con $g(z) = 0$ y

$$\phi(f) = \phi(c) + \phi(g) = c + 0 = c.$$

Por lo tanto, $\phi(f) = f(\lambda)$ para toda $f \in \mathcal{H}^{\infty}(\mathbb{D})$, es decir, ϕ es la evaluación en λ . Esto prueba que π es inyectiva sobre los puntos del disco unidad \mathbb{D} .

Falta ver que π^{-1} aplica homeomórficamente \mathbb{D} sobre un abierto de \mathfrak{M} . Lo encontré en el Hoffman, yo tampoco lo entiendo. ¿Lo quito?

Si tomamos $\Delta = \pi^{-1}(\mathbb{D}) = \{\phi_z : z \in \mathbb{D}\}$, entonces π lleva Δ homeomórficamente en el disco \mathbb{D} ya que la topología de Δ es la topología débil definida por las aplicaciones \widehat{f} y la topología de \mathbb{D} es la topología débil definida por las aplicaciones $f \in \mathcal{H}^{\infty}(\mathbb{D})$.

Definición 4.4.2. Si $\alpha \in \overline{\mathbb{D}}$, decimos que $\pi^{-1}(\alpha)$ es la fibra de \mathfrak{M} sobre α y lo denotamos por \mathfrak{M}_{α} ,

$$\mathfrak{M}_{\alpha} = \pi^{-1}(\alpha) = \{ \phi \in \mathfrak{M} : \phi(\mathrm{id}) = \alpha \}.$$

Si $z \in \mathbb{D}$, la fibra de \mathfrak{M} sobre z coincide con la evaluación en z, es decir,

$$\mathfrak{M}_z = \{\delta_z\}.$$

La definición anterior hace que podamos descomponer el espectro como unión disjunta de sus fibras. ¿Cómo hacemos esto?

Observemos que la imagen de toda función constante por cualquier elemento del espectro es ella misma. Además, la identidad es una función de $\mathcal{H}^{\infty}(\mathbb{D})$ de norma 1.

En base a la Definición 4.4.2, es sencillo ver que las fibras sobre los puntos del disco abierto tienen un único elemento; mientras que sobre los números del borde del disco la fibra tiene muchos.

La fibra \mathfrak{M}_{α} es un conjunto cerrado de \mathfrak{M} . Intuitivamente, los elementos de \mathfrak{M}_{α} son los homomorfismos complejos de \mathfrak{M} que se comportan como la "evaluación en α ", es decir, los homomorfismos $\phi \in \mathcal{H}^{\infty}(\mathbb{D})$ que llevan cada $f \in \mathcal{H}^{\infty}(\mathbb{D})$ en algo parecido al valor límite f(z) cuando z se aproxima a α . Vamos a ver esto con más detalle a continuación.

A partir de esto, es evidente que para cualquier función f que pueda extenderse con continuidad al disco cerrado, la función \widehat{f} es constante en cada fibra \mathfrak{M}_{α} puesto que tal f es el límite uniforme de polinomios en z. De hecho, la continuidad de f en cualquier punto de la frontera implica que \widehat{f} es constante en la fibra \mathfrak{M}_{α} .

Teorema 4.4.3. Sea f una función en $\mathcal{H}^{\infty}(\mathbb{D})$ y sea α un punto del círculo unidad. Sea $\{z_n\}$ una sucesión de puntos en el disco unidad \mathbb{D} que converge a α , y supongamos que el límite

$$\zeta = \lim_{n \to \infty} f(z_n)$$

existe. Entonces existe un homomorfismo complejo ϕ en la fibra \mathfrak{M}_{α} tal que $\phi(f) = \zeta$.

Demostración. Sea $J = \{h \in \mathcal{H}^{\infty}(\mathbb{D}) : \lim_{n \to \infty} h(z_n) = 0\}$ un ideal propio en $\mathcal{H}^{\infty}(\mathbb{D})$. J está contenido en un ideal maximal M, esto es, existe un homomorfismo complejo ϕ de $\mathcal{H}^{\infty}(\mathbb{D})$ del que M es el núcleo. En particular, $\phi(h) = 0$ para todo $h \in J$. Las funciones $(z - \alpha)$ y $(f - \zeta)$ están ambas en J. Entonces, $\phi(z) = \alpha$ y $\phi(f) = \zeta$. Por lo tanto ϕ es el homomorfismo buscado.

Teorema 4.4.4. Sea f una función en $\mathcal{H}^{\infty}(\mathbb{D})$ y sea α un punto del círculo unidad. La función \widehat{f} es constante en la fibra \mathfrak{M}_{α} si y solo si f se puede extender con continuidad a $\mathbb{D} \cup \{\alpha\}$.

Demostración. Supongamos primero que f se puede extender con continuidad a $\mathbb{D} \cup \{\alpha\}$. Esto significa que existe un número complejo ζ tal que $\lim_{z_n \to \alpha} f(z_n) = \zeta$ para toda sucesión $\{z_n\}$ en \mathbb{D} que converge a α . Queremos mostrar que \widehat{f} vale constantemente ζ en la fibra \mathfrak{M}_{α} , es decir, $\phi(f) = \zeta$ para todo $\phi \in \mathfrak{M}_{\alpha}$.

Podemos suponer que $\zeta = 0$. Sea $h(z) = \frac{1}{2}(1 + z\alpha^{-1})$, así que $h(\alpha) = 1$ y |h| < 1 en cualquier otro lugar dentro del disco unidad cerrado. Como f es continua en α y toma el valor 0, es fácil ver que $(1 - h^n)f$ converge uniformemente a f cuando $n \to \infty$. Si ϕ es un homomorfismo complejo de $\mathcal{H}^{\infty}(\mathbb{D})$ que yace en la fibra \mathfrak{M}_{α} , es decir, $\phi(z) = \alpha$, entonces $\phi(h) = 1$. Por lo tanto, $\phi[(1 - h^n)f] = 0$, y, como ϕ es continua, $\phi(f) = 0$. Así, \hat{f} es la función idénticamente nula en \mathfrak{M}_{α} .

Si \widehat{f} es constante en la fibra \mathfrak{M}_{α} , entonces el Teorema 4.4.3 muestra directamente que f se puede extender con continuidad a $\mathbb{D} \cup \{\alpha\}$.

4.5. Estructura topológica de \mathfrak{M} / Otro título

Podemos ahora hacernos algunas preguntas de carácter topológico sobre el espacio de ideales maximales de $\mathcal{H}^{\infty}(\mathbb{D})$. Las evaluaciones punto a punto llevan el disco unidad abierto en un conjunto abierto Δ de \mathfrak{M} . El resto de homomorfismos yacen en las fibras \mathfrak{M}_{α} . La cuestión que nos planteamos es la siguiente: ¿son esos homomorfismos realmente límites de δ_z en la topología de \mathfrak{M} ? En otras palabras, ¿es el disco \mathbb{D} denso en \mathfrak{M} ? A esta pregunta se le ha denominado El Problema de la Corona. A continuación vamos a dar una formulación algebraica equivalente.

Teorema 4.5.1 (Teorema de la Corona). El problema de la corona es equivalente a:

Sean $f_1, \ldots, f_n \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\delta > 0$ tales que para cada $z \in \mathbb{D}$ se tiene

$$|f_1(z)| + \cdots + |f_n(z)| \ge \delta,$$

entonces existen $g_1, \ldots, g_n \in \mathcal{H}^{\infty}(\mathbb{D})$ tales que $f_1g_1 + \cdots + f_ng_n = 1$.

Demostración. Supongamos que \mathbb{D} es denso. Sean $f_1, \ldots, f_n \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\delta > 0$ tales que para cada $z \in \mathbb{D}$ se tiene

$$|f_1(z)| + \cdots + |f_n(z)| \ge \delta.$$

Si la función constante 1 no se pudiera escribir de la forma $f_1g_1 + \cdots + f_ng_n$, con $g_1, \ldots, g_n \in \mathcal{H}^{\infty}(\mathbb{D})$, tomemos $\phi \in \mathfrak{M}$ no nulo tal que el ideal maximal ker ϕ contiene al ideal propio generado por f_1, \ldots, f_n .

Como \mathbb{D} es denso en \mathfrak{M} con la topología débil-*, existe una red $\{z_{\alpha}\}\subset\mathbb{D}$ que tiende a ϕ . En particular, para cada f_j se tiene que $\lim_{\alpha} f_j(z_{\alpha}) = \widehat{f}_j(\phi) = 0, 1 \leq j \leq n$. Esto contradice la acotación relativa a $|f_1(z)| + \cdots + |f_n(z)|$.

Recíprocamente, supongamos que \mathbb{D} no es denso en \mathfrak{M} , entonces existe un elemento no nulo $\phi_0 \in \mathfrak{M}$ que no está en la adherencia de \mathbb{D} . Por definición de la topología de \mathfrak{M} , existen funciones $f_1, \ldots, f_n \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\delta > 0$ tales que $\phi_0(f_j) = 0, j = 1, \ldots, n$ y el abierto

$$\{\phi \in \mathfrak{M} : |\phi(f_i)| < \delta, 1 \le j \le n \}$$

no corta a \mathbb{D} . En particular, para cada $z \in \mathbb{D}$ se cumple que

$$|f_1(z)| + \cdots + |f_n(z)| > \delta$$

y las funciones f_1, \ldots, f_n están en un ideal propio de $J \subset \mathcal{H}^{\infty}(\mathbb{D})$ ya que $J \subset \ker \phi_0$.

La afirmación de que f_1, \ldots, f_n están en un ideal propio es equivalente a la afirmación de que la función constante 1 no se puede escribir de la forma $f_1g_1 + \cdots + f_ng_n = 1$, con $g_1, \ldots, g_n \in \mathcal{H}^{\infty}(\mathbb{D})$, ya que $\phi(1) = 1$ y $\phi(f_1g_1 + \cdots + f_ng_n) = \phi(f_1)\phi(g_1) + \cdots + \phi(f_n)\phi(g_n) = 0$.

Definición 4.5.2. Dados $f \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\alpha \in \overline{\mathbb{D}}$, definimos el conjunto de valores adherentes de f en α como

$$Cl(f, \alpha) = \{ \zeta : \exists \{z_n\} \in \mathbb{D}, \lim_{n \to \infty} z_n = \alpha, \lim_{n \to \infty} f(z_n) = \zeta \}.$$

Esto es, $\zeta \in Cl(f, \alpha)$ si y solo si existe una sucesión z_n en \mathbb{D} que tiende a α tal que $f(z_n)$ tiende a ζ . A cada número $\zeta \in Cl(f, \alpha)$ se le denomina valor adherente de f en α .

Si $\alpha \in \partial \mathbb{D}$, podemos escribir el conjunto de valores adherentes de f en α como

$$Cl(f,\alpha) = \bigcap_{r>0} \overline{f(\mathbb{D} \cap D(\alpha,r))}.$$
 (4.3)

De la misma manera, si nos restringimos a $z \in \mathbb{D}$, entonces $Cl(f,z) = \{\delta_z(f)\}$.

El conjunto de valores adherentes es un conjunto compacto, no vacío y conexo. Además, contiene un único punto si y solo si f es continua en $\mathbb{D} \cup \{\alpha\}$. Si f es holomorfa en α , y no constante, entonces $Cl(f,\alpha) = \{\delta_{\alpha}(f)\}$.

Teniendo en cuenta esta definición, otro enunciado alternativo al Teorema 4.4.3 sería el siguiente:

Teorema 4.5.3. Sea $f \in \mathcal{H}^{\infty}(\mathbb{D})$ y $\alpha \in \partial \mathbb{D}$. Si $\zeta \in Cl(f, \alpha)$, entonces existe un homomorfismo complejo ϕ en la fibra \mathfrak{M}_{α} tal que $\phi(f) = \zeta$, es decir, $\zeta \in \widehat{f}(\mathfrak{M}_{\alpha})$.

Por lo tanto, si $|\alpha|=1$, el contenido $Cl(f,\alpha)\subset \widehat{f}(\mathfrak{M}_{\alpha})$ se cumple. Veamos que también tenemos el recíproco.

Proposición 4.5.4. Para todo $f \in \mathcal{H}^{\infty}(\mathbb{D})$ y α tal que $|\alpha| = 1$ se cumple que

$$\widehat{f}(\mathfrak{M}_{\alpha}) \subset Cl(f,\alpha).$$

Demostración. Sea $\phi \in \mathfrak{M}_{\alpha}$. Veamos que existe una sucesión $\{z_n\} \subset \mathbb{D}$ tal que

- (I) $\lim_{n \to \infty} z_n = \alpha;$
- (II) $\lim_{n \to \infty} f(z_n) = \widehat{f}(\phi).$

Como Δ es denso en \mathfrak{M} con la topología débil-*, se cumple que existe $\{z_{\alpha}\}\subset\mathbb{D}$ tal que $\delta_{z_{\alpha}}\to\phi$. Es decir, para toda función $h\in\mathcal{H}^{\infty}(\mathbb{D})$ se tiene que $h(z_{\alpha})\to\widehat{h}(\phi)$. En particular, para la función identidad es cierto por lo que, como $\phi\in\mathfrak{M}_{\alpha}$, tenemos

$$\widehat{id}(\phi) = \pi(id) = \alpha.$$

Podemos elegir una sucesión (i_n) tal que se cumplan al mismo tiempo lím $z_{i_n} = \alpha$ y lím $f(z_{i_n}) = \widehat{f}(\phi)$. Es decir, si tomamos ahora $\{z_{\alpha_n}\}$ una subsucesión de $\{z_{\alpha}\}$ cumplirá que lím $_{n\to\infty} z_n = \alpha$ y, además, lím $_{n\to\infty} f(z_n) = \widehat{f}(\phi)$. Es decir, $\widehat{f}(\phi) \in Cl(f,\alpha)$.

Definición 4.5.5. Se dice que una función $f \in \mathcal{H}^{\infty}(\mathbb{D})$ es una función interna si $|f(e^{i\theta})| = 1$ en casi todo punto.

Los productos de Blaschke de los que hemos hablado en el Capítulo tal son un clásico ejemplo de función interna. Además de este tipo de funciones, la función $\exp\left(\frac{z+1}{z-1}\right)$, que introdujimos en el Ejemplo 2.0.5 es también una función interna.

Observamos que el conjunto de valores de adherencia de una función interna en el disco abierto puede ser, a lo sumo, el disco unidad cerrado, por el teorema de valor máximo. De hecho, esta es la situación general cuando se estudia el conjunto en los puntos singulares. Se tiene el siguiente resultado, cuya demostración puede encontrarse en [chap. 6]garnett1981bounded.

Teorema 4.5.6. Sea f una función interna en el disco abierto \mathbb{D} y sea $\alpha \in \partial \mathbb{D}$ una singularidad de f(z). Entonces $Cl(f, \alpha) = \overline{\mathbb{D}}$.

El Teorema anterior nos muestra que a pesar del Teorema de Fatou, el comportamiento en los puntos de la frontera puede ser impredecible. Por ejemplo, si consideramos un producto de Blaschke cuyos ceros sean densos en $\partial \mathbb{D}$, entonces el Teorema se cumple para todo $z \in \partial \mathbb{D}$. Sin embargo, la función tendrá límites radiales en casi todo punto.

Aquí vendría bien citar lo que pasa con la función singular, para la que se puede calcular explícitamente Cl(f,1). Y también hablar de los productos de Blaschke: decir que la sucesión (α_n) tiene puntos límite en el borde del disco, en los que entonces B no va a tener límite y eso da lugar a puntos w donde Cl(B,w) es todo el disco cerrado.

Así como para funciones internas se tiene la alternativa de que el conjuntos de valores adherentes o bien es un solo punto o bien es todo el disco, tratando con funciones no holomorfas se pueden presentar situaciones intermedias, como puede verse en el siguiente ejemplo.

Ejemplo 4.5.7. Sea $h: \mathbb{D} \to \mathbb{D}$ dada por

$$h(z) = -z\frac{\bar{z} - 1}{z - 1}.$$

Entonces el conjunto de valores adherentes Cl(h,1) de h en 1 se corresponde con la circunferencia unidad $\partial \mathbb{D}$.

Demostración. El conjunto de valores adherentes de h en 1 viene dado por

$$Cl(h,1) = \bigcap_{n=1}^{\infty} \overline{h(D_n)},$$

donde $D_n = \{z \in \mathbb{D} : |z-1| \le \frac{1}{n}\}$. Cl(h,1) es un conjunto compacto, conexo y no vacío. Ahora bien, $\lim_{x \to 1, 0 < x < 1} h(x) = -1$ y $\lim_{\theta \to 0} h(e^{i\theta}) = 1$.

Como $\mu \in Cl(h,1)$ si y solo si $\bar{\mu} \in Cl(h,1)$, pues $h(\bar{z}) = \overline{h(z)}$, y $|h(z)| = |z| \to 1$ si $z \to 1$, concluimos que $Cl(h,1) = \partial \mathbb{D}$.

Apéndice A

Notación

 $\mathcal{H}(U)$: espacio de las funciones holomorfas en U.

 $\mathcal{H}^\infty(U)$: espacio de las funciones holomorfas y acotadas en U.

 $\mathbb{D} :$ disco unidad.

 $\overline{\mathbb{D}}$: disco unidad cerrado.

 $\partial \mathbb{D}$: borde del disco unidad.

 $L^{\infty}(U)$: espacio de funciones medibles en U, esencialmente acotadas.

 $\mathfrak{M}(B)$: espacio de los homomorfismos complejos del álgebra B.

Lista de tareas pendientes

En este capítulo abordamos varios problemas clásicos relacionados con el comportamiento en la frontera de funciones holomorfas (y armónicas) y la profunda relación existente entre los valores que toma la función en el borde y los que toma en el dominio abierto que limitan, incluso cuando la función no puede extenderse con continuidad al borde. Presentamos la integral de Poisson para construir explícitamente funciones armónicas en el disco a partir de funciones continuas en el borde. Mediante esta técnica, abordamos la existencia de límites radiales en casi todo punto de funciones holomorfas y acotadas en el disco unidad: es el resultado conocido como Teorema de Fatou. La función definida a través de los límites radiales permite presentar un teorema de identidad referido a arcos del borde del disco. El capítulo se completa con varios resultados de naturaleza geométrica, en los que se caracterizan las funciones conformes (que conservan ángulos y orientación) y se prueba que las aplicaciones conformes entre el disco y un dominio de Jordan admiten extensiones a la frontera. El capítulo concluye mostrando cómo la inyectividad en el borde de funciones	
holomorfas en dominios de Jordan se traduce en inyectividad en todo el dominio. No sé exactamente qué es lo que quieres que cite, ¿el principio del módulo máximo quizás? Este enunciado es de Conway Functions of one complex variable 1:	3
Sea $U\subseteq\mathbb{C}$ un conjunto acotado, y sea f una función continua en el conjunto cerrado \overline{U} que es holomorfa en U . Entonces el máximo de $ f $ en \overline{U} (que siempre existe) se alcanza en la frontera del conjunto, ∂U . En otras palabras, $\max_{\overline{U}} f =\max_{\partial U} f $	6
tienen, en casi todo punto, límites radiales. Esto, vía el teorema de Fatou, permite definir sobre el borde una función acotada que, a su vez, sirve para recuperar información sobre la función en el interior	7
extender con continuidad a la frontera cualquier función conforme entre el disco y un dominio de Jordan	9 15

	i Su producto infinito se define como el limite de los productos parciales $u_1u_2\cdots u_N$	
	o $u_{n_0}u_{n_0+1}\cdots u_N$?	21
	Añadir resultados de convergencia y convergencia absoluta en productos infinitos	21
	Añadir comentario sobre la equivalencia de las tres situaciones	22
Ĭ	\Box ¿Debería hacer como antes: introducirlo primero para B y luego seguir para	
	$\mathcal{H}^{\infty}(\mathbb{D})$?	26
	Hablar más de la relación de $\mathfrak M$ con los ideales maximales	27
Ī	Hablar más de las evaluaciones. ¿Qué más hay que decir?	28
Ī	Falta ver que π^{-1} aplica homeomórficamente $\mathbb D$ sobre un abierto de $\mathfrak M$. Lo en-	
	contré en el Hoffman, yo tampoco lo entiendo. ¿Lo quito?	28
	La definición anterior hace que podamos descomponer el espectro como unión	
	disjunta de sus fibras. ¿Cómo hacemos esto?	29
	Observemos que la imagen de toda función constante por cualquier elemento	
	del espectro es ella misma. Además, la identidad es una función de $\mathcal{H}^{\infty}(\mathbb{D})$ de	
	norma 1	29
	En base a la Definición 4.4.2, es sencillo ver que las fibras sobre los puntos del	
	disco abierto tienen un único elemento; mientras que sobre los números del	
	borde del disco la fibra tiene muchos	29
	Aquí vendría bien citar lo que pasa con la función singular, para la que se	
	puede calcular explícitamente $Cl(f,1)$. Y también hablar de los productos de	
	Blaschke: decir que la sucesión (α_n) tiene puntos límite en el borde del disco,	
	en los que entonces B no va a tener límite y eso da lugar a puntos w donde	
	Cl(B, w) es todo el disco cerrado	32