Quadratization-based methods for solving unconstrained polynomial optimization problems

Amélie Lambert

joint work with S. Elloumi, A. Lazare, D. Porumbel

MIP 25

Conservatoire National des arts et Métiers - Cédric

le cnam cedric EA4629

Presentation of the problem and literature

The unconstrained polynomial optimization problem

$$\text{(P)} \quad \begin{cases} \min \quad F(x) = \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ \\ \text{s. t.} \quad 0 \leq x_i \leq 1 \\ \quad x_j \in \{0,1\} \end{cases} \quad \forall i \in \mathcal{C}$$

- n variables x_i , and $\mathcal{C} \cup \mathcal{I} = \{1, \dots n\}$
- F(x) is a polynomial of degree d

$$\Gamma_d^n = \{ \alpha \in \mathbb{N}^n : \sum_{i=1}^n \alpha_i \leq d \}, \ \alpha \in \mathbb{N}^n \text{ with } \alpha_i \text{ the power of } x_i \}$$

The unconstrained polynomial optimization problem

$$\text{(P)} \quad \begin{cases} \min \quad F(x) = \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ \\ \text{s. t.} \quad 0 \leq x_i \leq 1 \\ \quad x_j \in \{0, 1\} \end{cases} \quad \forall i \in \mathcal{C}$$

- n variables x_i , and $\mathcal{C} \cup \mathcal{I} = \{1, \dots n\}$
- F(x) is a polynomial of degree d

$$\Gamma_d^n = \{ \alpha \in \mathbb{N}^n : \sum_{i=1}^n \alpha_i \leq d \}, \ \alpha \in \mathbb{N}^n \text{ with } \alpha_i \text{ the power of } x_i \}$$

Challenge: combination of the integrality of some of the variables and the non-convexity of polynomial F(x).

The unconstrained polynomial optimization problem

$$\text{(P)} \quad \begin{cases} \min \quad F(x) = \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ \\ \text{s. t.} \quad 0 \leq x_i \leq 1 \\ \quad x_j \in \{0, 1\} \end{cases} \quad \forall i \in \mathcal{C}$$

- n variables x_i , and $\mathcal{C} \cup \mathcal{I} = \{1, \dots n\}$
- F(x) is a polynomial of degree d

$$\Gamma_d^n = \{ \alpha \in \mathbb{N}^n : \sum_{i=1}^n \alpha_i \leq d \}, \ \alpha \in \mathbb{N}^n \text{ with } \alpha_i \text{ the power of } x_i \}$$

Challenge: combination of the integrality of some of the variables and the non-convexity of polynomial F(x).

Our aim: Compute tight convex lower bounds of (P).

Standard approach:

- 1. Compute relaxations tight and/or easy to solve
- 2. Tighten relaxation or perform branch-and-bound

One-phase relaxation

SDP hierarchy of relaxations [Lasserre, 03]

One-phase relaxation

Separable under-estimators [Buchheim, D'Ambrosio, 16]

One-phase relaxation

Standard linearization (enriched by cutting planes)h [DelPia, Walter 22]

Two-phase relaxation

Phase 1: quadratization methods [Crama 17] [Buchheim, Rinaldi 07]

Two-phase relaxation

Phase 1: quadratization methods [Crama 17][Buchheim, Rinaldi 07]

Phase 2: Standard linearization [McCormick, 76]

Two-phase relaxation

Phase 1: quadratization methods [Crama 17][Buchheim, Rinaldi 07]

Phase 2: SDP relaxations [Anstreicher, 09]

Two-phase relaxation

Phase 1: quadratization methods [Crama 17][Buchheim, Rinaldi 07]

Phase 2: Quadratic Convex Reformulation: PQCR [L., Elloumi, Lazare 21]

Comparaison of the approaches from the bound point of view

Computing a linear relaxation of (P)

How to compute a linear relaxation ?

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ 0 \le x_i \le 1 \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases}$$

How to compute a linear relaxation ?

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ 0 \le x_i \le 1 \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases}$$

Add auxiliary variables Y_{α} that model the monomials x^{α} : $Y_{\alpha} = x^{\alpha}$

$$Y_{\alpha} = x^{\alpha} \xrightarrow{\text{relax}} \mathcal{L} \left\{ egin{array}{l} Y_{\alpha} \leq x_{i} & \text{if } \alpha_{i} \neq 0 \\ Y_{\alpha} \geq \sum_{i} \alpha_{i} x_{i} + \sum_{i} \alpha_{i} - 1 \\ Y_{\alpha} \geq 0 \end{array} \right.$$

How to compute a linear relaxation?

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ 0 \le x_i \le 1 \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases} \xrightarrow{\text{relax}} (LP) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} Y_{\alpha} \\ (x, Y_{\alpha}) \in \mathcal{L} \\ 0 \le x_i \le 1 \ i \in \mathcal{C} \cup \mathcal{I} \end{cases}$$

Add auxiliary variables Y_{α} that model the monomials x^{α} : $Y_{\alpha} = x^{\alpha}$

How to compute a linear relaxation?

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ 0 \leq x_i \leq 1 \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases} \xrightarrow{\underline{\operatorname{relax}}} (LP) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} Y_{\alpha} \\ (x, Y_{\alpha}) \in \mathcal{L} \\ 0 \leq x_i \leq 1 \ i \in \mathcal{C} \cup \mathcal{I} \end{cases}$$

Add auxiliary variables Y_{α} that model the monomials x^{α} : $Y_{\alpha} = x^{\alpha}$

Toy example: size and initial gap comparison

10 continuous variables, 100 monomials, optimal value =-6.00

	(<i>LP</i>)
Nb aux var	100
Nb cont	465
Root LB	-16.3
Root gap	172.4

Quadratization schemes and quadratic reformulations

Decompose each monomial with a *quadratization scheme* ${\cal S}$

 $x_1x_2x_3x_4x_5$

Decompose each monomial with a $quadratization\ scheme\ {\cal S}$

Decompose each monomial with a quadratization scheme ${\cal S}$

- Add $z_1 = x_1 x_2 x_3 x_4 = z_2 z_3$
- Add $z_2 = x_1 x_2$
- Add $z_3 = x_3 x_4$

Decompose each monomial with a quadratization scheme ${\cal S}$

 \implies Easy to build (QP) a quadratic reformulation of (P)

$$(P) \begin{cases} \min \ x_1 x_2 x_3 x_4 x_5 \\ 0 \le 1 \le u_i \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases}$$

$$\Leftrightarrow (QP) \begin{cases} \min \ z_1 x_5 \\ z_1 = z_2 z_3 \\ z_2 = x_1 x_2 \\ z_3 = x_3 x_4 \\ 0 \le x_i \le 1 \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases}$$

Decompose each monomial with a *quadratization scheme* ${\cal S}$

 \implies Easy to build (QP) a quadratic reformulation of (P)

$$(P) \begin{cases} \min \ x_1 x_2 x_3 x_4 x_5 \\ 0 \le x_i \le 1 \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases} \Leftrightarrow (QP) \begin{cases} \min \ z_1 x_5 \\ z_1 = z_2 z_3 \\ z_2 = x_1 x_2 \\ z_3 = x_3 x_4 \\ 0 \le x_i \le 1 \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases}$$

Quadratic reformulation of (P)

Given a quadratization scheme S

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_{d}^{n}} m_{\alpha} x^{\alpha} \\ 0 \leq x_{i} \leq 1 \ i \in \mathcal{C} \\ x_{j} \in \{0, 1\} \ j \in \mathcal{I} \end{cases} \Leftrightarrow (QP_{\mathcal{S}}) \begin{cases} \min f(z) = \langle Q, zz^{\top} \rangle + c^{\top} z \\ z \in \mathcal{S} \\ 0 \leq z_{i} \leq 1 \ i \in \mathcal{C} \\ z_{j} \in \{0, 1\} \ j \in \mathcal{I} \end{cases}$$

Quadratic reformulation of (P)

Given a quadratization scheme S

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ 0 \leq x_i \leq 1 \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases} \Leftrightarrow (QP_{\mathcal{S}}) \begin{cases} \min \ f(z) = \langle Q, zz^{\top} \rangle + c^{\top} z \\ z \in \mathcal{S} \\ 0 \leq z_i \leq 1 \ i \in \mathcal{C} \\ z_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases}$$

Good news:

- f(z) is quadratic: Q is a constant Hessian matrix
- We come back to the quadratic case: large literature

Quadratic reformulation of (P)

Given a quadratization scheme S

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ 0 \leq x_i \leq 1 \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases} \Leftrightarrow (QP_{\mathcal{S}}) \begin{cases} \min \ f(z) = \langle Q, zz^{\top} \rangle + c^{\top} z \\ z \in \mathcal{S} \\ 0 \leq z_i \leq 1 \ i \in \mathcal{C} \\ z_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases}$$

Good news:

- f(z) is quadratic: Q is a constant Hessian matrix
- We come back to the quadratic case: large literature

But is still hard to solve:

- z >> x: potentially large number of auxiliary variables
- Objective function f(z) is still non convex
- Constraint set $\mathbf{z} \in \mathcal{S}$, $z_j \in \{0,1\}$ $j \in \mathcal{I}$ is a non-convex set.

Convexification by linearization

Linearization of the constraints

• Binary constraints:

$$\text{if } \mathcal{I} \neq \emptyset, \ z_j \in \{0,1\} \ j \in \mathcal{I} \quad \xrightarrow{\text{relax}} \quad z_j \in [0,1].$$

Linearization of the constraints

• Binary constraints:

$$\text{if } \mathcal{I} \neq \emptyset, \ z_j \in \{0,1\} \ j \in \mathcal{I} \quad \xrightarrow{\text{relax}} \quad z_j \in [0,1].$$

• Linearization of constraints of the quadratization scheme:

$$z \in \mathcal{S} \quad \xrightarrow{\mathrm{relax}} \quad z \in \mathcal{L}$$

$$\begin{cases} z_k = x_i x_j \\ \ell_i \le x_i \le u_i \\ \ell_j \le x_j \le u_j \end{cases} \xrightarrow{\text{relax}} \mathcal{L} \begin{cases} z_k \le u_j x_i + \ell_i x_j - u_j \ell_i \\ z_k \le u_i x_j + \ell_j x_i - u_i \ell_j \\ z_k \ge u_j x_i + u_i x_j - u_i u_j \\ z_k \ge \ell_j x_i + \ell_i x_j - \ell_i \ell_j \end{cases}$$

McCormick envelopes [McCormick 76]

Linearization of the constraints

• Binary constraints:

$$\text{if } \mathcal{I} \neq \emptyset, \ z_j \in \{0,1\} \ j \in \mathcal{I} \quad \xrightarrow{\text{relax}} \quad z_j \in [0,1].$$

• Linearization of constraints of the quadratization scheme:

$$z \in \mathcal{S} \quad \xrightarrow{\mathrm{relax}} \quad z \in \mathcal{L}$$

$$\begin{cases} z_k = x_i x_j \\ x_i \in \{0, 1\} \\ x_j \in \{0, 1\} \end{cases} \iff \mathcal{L} \begin{cases} z_k \leq x_i \\ z_k \leq x_j \\ z_k \geq x_i + x_j - 1 \\ z_k \geq 0 \end{cases}$$

Standard linearization [Fortet 59]

Remark: the equivalence holds if x_i or x_j are binary variables.

Linearization of the objective function

$$(P) \Leftrightarrow (QP_{\mathcal{S}}) \begin{cases} \min \ \langle Q, zz^{\top} \rangle + c^{\top}z \\ z \in \mathcal{S} \\ 0 \leq z_{i} \leq 1 \ i \in \mathcal{C} \\ z_{j} \in \{0, 1\} \ j \in \mathcal{I} \end{cases}$$

ullet Add auxiliary variables Y that model the products $zz^{ op}$

Linearization of the objective function

$$(P) \Leftrightarrow (QP_{\mathcal{S}}) \begin{cases} \min \ \langle Q, zz^{\top} \rangle + c^{\top}z \\ z \in \mathcal{S} \\ 0 \leq z_{i} \leq 1 \ i \in \mathcal{C} \\ z_{j} \in \{0, 1\} \ j \in \mathcal{I} \end{cases} \xrightarrow{\text{relax}} (LQP_{\mathcal{S}}) \begin{cases} \min \ \langle Q, Y \rangle + c^{\top}z \\ z \in \mathcal{L} \\ (z, Y) \in \mathcal{L} \\ 0 \leq z_{i} \leq 1 \ i \in \mathcal{C} \cup \mathcal{I} \end{cases}$$

- Add auxiliary variables Y that model the products zz^{\top}
- Use set \(\mathcal{L} \) to get a convex relaxation

 $(LQP_{\mathcal{S}})$ is a linear relaxation of (P) with auxiliary variables z and Y

Linearization of the objective function

$$(P) \Leftrightarrow (QP_{\mathcal{S}}) \begin{cases} \min \ \langle Q, zz^{\top} \rangle + c^{\top}z \\ z \in \mathcal{S} \\ 0 \leq z_{i} \leq 1 \ i \in \mathcal{C} \\ z_{j} \in \{0, 1\} \ j \in \mathcal{I} \end{cases} \xrightarrow{\text{relax}} (LQP_{\mathcal{S}}) \begin{cases} \min \ \langle Q, Y \rangle + c^{\top}z \\ z \in \mathcal{L} \\ (z, Y) \in \mathcal{L} \\ 0 \leq z_{i} \leq 1 \ i \in \mathcal{C} \cup \mathcal{I} \end{cases}$$

- Add auxiliary variables Y that model the products zz^{\top}
- Use set ∠ to get a convex relaxation
- $(LQP_{\mathcal{S}})$ is a linear relaxation of (P) with auxiliary variables z and Y

Theorem If S is disjoint, we have $v(LQP_S) \ge v(LP)$.

(disjoint : the intersection of the 2 sets of a decomposition is empty)

Toy example: size and initial gap comparison

10 continuous variables, 100 monomials, optimal value =-6.00

	(LP)	$(LQP_{\mathcal{S}})$	
Nb aux var	100	225	
Nb cont	465	675	
Root LB	-16.3	-12.9	
Root gap	172.4	114.7	

Convexification by Quadratic Convex Relaxation

What is Quadratic Convex Relaxation? We have $f(z) = \langle Q, zz^{\top} \rangle + c^{\top}z$ with Q indefinite Goal: perturb Q while keeping the value of f(z)

We have $f(z) = \langle Q, zz^{\top} \rangle + c^{\top}z$ with Q indefinite Goal: perturb Q while keeping the value of f(z)

$$f_{\phi}(z, Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle$$

- 1. Add variable $Y = zz^T$
- 2. Add a matrix parameter ϕ

We have $f(z) = \langle Q, zz^{\top} \rangle + c^{\top}z$ with Q indefinite Goal: perturb Q while keeping the value of f(z)

$$f_{\phi}(z, Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle$$

$$f_{\phi}(z, Y) = f(z) \quad \text{if } Y = zz^{\top}$$

- 1. Add variable $Y = zz^T$
- 2. Add a matrix parameter ϕ

We have $f(z) = \langle Q, zz^{\top} \rangle + c^{\top}z$ with Q indefinite Goal: perturb Q while keeping the value of f(z)

$$f_{\phi}(z, Y) = f(z)$$
 if $Y = zz^{\top}$
 $f_{\phi}(z, Y) = \langle Q + \phi, zz^{\top} \rangle + c^{\top}z - \langle \phi, Y \rangle$

 $f_{\phi}(z, Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle$

We have $f(z) = \langle Q, zz^{\top} \rangle + c^{\top}z$ with Q indefinite Goal: perturb Q while keeping the value of f(z)

$$f_{\phi}(z, Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle$$

$$f_{\phi}(z, Y) = f(z) \quad \text{if } Y = zz^{\top}$$

$$f_{\phi}(z, Y) = \langle Q + \phi, zz^{\top} \rangle + c^{\top}z - \langle \phi, Y \rangle$$

- 1. Add variable $Y = zz^T$
- 2. Add a matrix parameter ϕ

Choose ϕ such that $Q + \phi \succeq 0$, e.g. $\phi = \operatorname{diag}(-\lambda_{min}(Q))$.

We have $f(z) = \langle Q, zz^{\top} \rangle + c^{\top}z$ with Q indefinite **Goal:** perturb Q while keeping the value of f(z)

$$f_{\phi}(z, Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle$$

$$f_{\phi}(z, Y) = f(z)$$
 if $Y = zz^{\top}$

$$f_{\phi}(z, Y) = \langle Q + \phi, zz^{\top} \rangle + c^{\top}z - \langle \phi, Y \rangle$$

- 1. Add variable $Y = zz^T$
- 2. Add a matrix parameter ϕ

Compute ϕ such that

i.
$$Q + \phi \succeq 0$$

i. $Q + \phi \succeq 0$ *ii.* the bound is tight

⇒ use SDP optimization

$$(SDP) \begin{cases} \min \langle Q, Z \rangle + c^T x \\ (z, Z) \in \mathcal{L} \leftarrow \phi \\ Z - zz^T \succeq 0 \end{cases}$$

We have $f(z) = \langle Q, zz^{\top} \rangle + c^{\top}z$ with Q indefinite Goal: perturb Q while keeping the value of f(z)

$$f_{\phi}(z, Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle$$

$$f_{\phi}(z, Y) = f(z)$$
 if $Y = zz^{\top}$

$$f_{\phi}(z, Y) = \langle Q + \phi, zz^{\top} \rangle + c^{\top}z - \langle \phi, Y \rangle$$

- 1. Add variable $Y = zz^T$
- 2. Add a matrix parameter ϕ

Compute ϕ such that

i.
$$Q + \phi \succeq 0$$

ii. the bound is tight

$$\Longrightarrow$$
 use SDP optimization

To improve the bound: add quadratic cuts to SDP

Quadratization scheme for monomial $x_1x_2x_3x_4x_5 = z_1x_5$.

$$S = \left\{ z_1 = z_2 z_3, z_2 = x_1 x_2, z_3 = x_3 x_4 \right\}$$

Quadratization scheme for monomial $x_1x_2x_3x_4x_5 = z_1x_5$.

$$S = \left\{ z_1 = z_2 z_3, z_2 = x_1 x_2, z_3 = x_3 x_4 \right\}$$

if $z_j \in \{0, 1\}$:

• Binary variables: $z_j^2 - z_j = 0$

if
$$0 \le z_i \le 1$$
:

• Box constraints $z_i^2 - z_i \le 0$

Quadratization scheme for monomial $x_1x_2x_3x_4x_5 = z_1x_5$.

$$S = \left\{ z_1 = z_2 z_3, z_2 = x_1 x_2, z_3 = x_3 x_4 \right\}$$

if $z_i \in \{0, 1\}$:

- Binary variables: $z_j^2 z_j = 0$
- Identities of the quadratization: $\Rightarrow z_1 z_2 z_3 = 0$

if $0 \le z_i \le 1$:

- Box constraints $z_i^2 z_i \le 0$
- Identities of the quadratization $\Rightarrow z_1 z_2 z_3 = 0$

Quadratization scheme for monomial $x_1x_2x_3x_4x_5 = z_1x_5$.

$$S = \left\{ z_1 = z_2 z_3, z_2 = x_1 x_2, z_3 = x_3 x_4 \right\}$$

if $z_i \in \{0, 1\}$:

- Binary variables: $z_j^2 z_j = 0$
- Identities of the quadratization: $\Rightarrow z_1 z_2 z_3 = 0$
- Binary variables + quadratization: $\Rightarrow z_1 z_1 z_2 = 0$ and $z_1 z_1 z_3 = 0$.

if $0 \le z_i \le 1$:

- Box constraints $z_i^2 z_i \le 0$
- Identities of the quadratization $\Rightarrow z_1 z_2 z_3 = 0$
- Box constraints + quadratization $\Rightarrow z_1 z_1 z_2 \le 0$ and $z_1 z_1 z_3 \le 0$.

• Our idea use K quadratization schemes: $S = \bigcup_{k=1}^{K} S_k$ \Longrightarrow generate more quadratic cuts.

• Objective function : $z_1x_5 = z_4z_3$

- Objective function : $z_1x_5 = z_4z_3$
- Other quadratic cuts: $z_2z_3=z_5x_4$ (represent monomial $x_1x_2x_3x_4$)

We build 2 families of quadratic cuts:

We build 2 families of quadratic cuts:

- Valid inequalities $\langle D_r, zz^{\top} \rangle + d_r^{\top} z \leq 0$
 - ightarrow we directly add them to our convex relaxation ($\it CQP_S$)

We build 2 families of quadratic cuts:

• Valid inequalities $\langle D_r, zz^{\top} \rangle + d_r^{\top} z \leq 0$ \rightarrow we directly add them to our convex relaxation (CQP_S)

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ \ell_i \leq x_i \leq u_i \ i \in \mathcal{C} \\ x_j \in \{0,1\} \ j \in \mathcal{I} \end{cases} \xrightarrow{relax} (CQP_{\mathcal{S}}) \begin{cases} \min \ f(z) = \langle Q, zz^{\top} \rangle + c^{\top} z \\ z \in \mathcal{L} \\ (x,Y) \in \mathcal{L} \\ \langle D_r, Y \rangle + d_r^{\top} z \leq 0 \\ 0 \leq z_i \leq 1 \ i \in \mathcal{C} \cup \mathcal{I} \end{cases}$$

We build 2 families of quadratic cuts:

• Valid inequalities $\langle D_r, zz^{\top} \rangle + d_r^{\top} z \leq 0$ \rightarrow we directly add them to our convex relaxation (CQP_S)

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ \ell_i \leq x_i \leq u_i \ i \in \mathcal{C} \\ x_j \in \{0,1\} \ j \in \mathcal{I} \end{cases} \xrightarrow{relax} (CQP_{\mathcal{S}}) \begin{cases} \min \ f(z) = \langle Q, zz^\top \rangle + c^\top z \\ z \in \mathcal{L} \\ (x,Y) \in \mathcal{L} \\ \langle D_r, Y \rangle + d_r^\top z \leq 0 \\ 0 \leq z_i \leq 1 \ i \in \mathcal{C} \cup \mathcal{I} \end{cases}$$

• Valid equalities $\langle A_r, zz^{\top} \rangle + a_r^{\top}z = 0$ \rightarrow we will use them to convexify the objective function

$$f_{\gamma,\phi}(z,Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle + \sum_{r=1}^{m} \gamma_r (\langle A_r, zz^{\top} \rangle + a_r z)$$

$$f_{\gamma,\phi}(z,Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle + \sum_{r=1}^{m} \gamma_r (\langle A_r, zz^{\top} \rangle + a_r z)$$

$$f_{\gamma,\phi}(z,Y) = f(z) \quad \text{if } Y = zz^{\top} \text{ and } \langle A_r, zz^{\top} \rangle + a_r z = 0$$

$$f_{\gamma,\phi}(z,Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle + \sum_{r=1}^{m} \gamma_r (\langle A_r, zz^{\top} \rangle + a_r z)$$

$$f_{\gamma,\phi}(z,Y) = f(z) \quad \text{if } Y = zz^{\top} \text{ and } \langle A_r, zz^{\top} \rangle + a_r z = 0$$

$$f_{\gamma,\phi}(z,Y) = \langle Q + \sum_{r=1}^{m} \gamma_r A_r + \phi, zz^{\top} \rangle + (c + a_r)^{\top} z - \langle \phi, Y \rangle$$

$$f_{\gamma,\phi}(z,Y) = f(z) + \langle \phi, zz^{\top} - Y \rangle + \sum_{r=1}^{m} \gamma_r (\langle A_r, zz^{\top} \rangle + a_r z)$$

$$f_{\gamma,\phi}(z,Y) = f(z) \quad \text{if } Y = zz^{\top} \text{ and } \langle A_r, zz^{\top} \rangle + a_r z = 0$$

$$f_{\gamma,\phi}(z,Y) = \langle Q + \sum_{r=1}^{m} \gamma_r A_r + \phi, zz^{\top} \rangle + (c + a_r)^{\top} z - \langle \phi, Y \rangle$$

If
$$\left(Q + \sum_{r=1}^{m} \gamma_r A_r + \phi\right)$$
 is SDP then $f_{\gamma,\phi}(z,Y)$ is a convex function

Given a parameter γ , add quadratic cuts $\langle A_r, zz^\top \rangle + a_r^\top z = 0$ to $f_{\phi}(z, Y)$.

$$(P) \begin{cases} \min \sum_{\alpha \in \Gamma_d^n} m_{\alpha} x^{\alpha} \\ \ell_i \leq x_i \leq u_i \ i \in \mathcal{C} \\ x_j \in \{0, 1\} \ j \in \mathcal{I} \end{cases} \xrightarrow{\text{relax}} (CQP_{\mathcal{S}, \gamma, \phi}) \begin{cases} \min \ f_{\gamma, \phi}(z, Y) \\ z \in \mathcal{L} \\ \langle D_r, Y \rangle + d_r^{\top} z \leq 0 \\ (z, Y) \in \mathcal{L} \\ \ell_i \leq z_i \leq u_i \ i \in \mathcal{C} \cup \mathcal{I} \end{cases}$$

Compute (γ^*, ϕ^*) leading to the tightest bound :

$$(LB): \left\{ \max_{(Q+\sum \gamma_r A_r + \phi) \succeq 0} v(P_{\mathcal{S},\gamma,\phi}) \right\}$$

 \implies Use Semidefinite programming to solve (LB)

Solving (LB) with Semidefinite programming

$$(CQP_{\mathcal{S},\gamma,\phi}) \begin{cases} \min \ f_{\gamma,\phi}(z,Y) \\ z \in \mathcal{L} \\ \langle D_r, Y \rangle + d_r^\top z \leq 0 \\ (z,Y) \in \mathcal{L} \\ \ell_i \leq z_i \leq u_i \ i \in \mathcal{C} \cup \mathcal{I} \end{cases} (SDP) \begin{cases} \min \ \langle Q,Z \rangle + c^\top x \\ \langle D_r,Z \rangle + d_r^\top z \leq 0 \\ \langle A_r,Z \rangle + a_r^\top z = 0 \\ (z,Z) \in \mathcal{L} \\ Z - zz^\top \succeq 0 \end{cases}$$

Solving (LB) with Semidefinite programming

$$(\textit{CQP}_{\mathcal{S},\gamma,\phi}) \begin{cases} \min \ f_{\gamma,\phi}(z,Y) \\ z \in \mathcal{L} \\ \langle \textit{D}_r, Y \rangle + \textit{d}_r^\top z \leq 0 \\ (z,Y) \in \mathcal{L} \\ \ell_i \leq z_i \leq u_i \ i \in \mathcal{C} \cup \mathcal{I} \end{cases} \begin{cases} \min \ \langle \textit{Q}, \textit{Z} \rangle + \textit{c}^\top x \\ \langle \textit{D}_r, \textit{Z} \rangle + \textit{d}_r^\top z \leq 0 \leftarrow \phi_1 \\ \langle \textit{A}_r, \textit{Z} \rangle + \textit{a}_r^\top z = 0 \leftarrow \gamma \\ (z,Z) \in \mathcal{L} \leftarrow \phi_2 \\ Z - zz^\top \succeq 0 \end{cases}$$

• Let γ , ϕ_1 and ϕ_2 the dual variables of (SDP)

Solving (LB) with Semidefinite programming

$$(\textit{CQP}_{\mathcal{S},\gamma,\phi}) \begin{cases} \min \ f_{\gamma,\phi}(z,Y) \\ z \in \mathcal{L} \\ \langle D_r,Y \rangle + d_r^\top z \leq 0 \ (\textit{SDP}) \end{cases} \begin{cases} \min \ \langle Q,Z \rangle + c^\top x \\ \langle D_r,Z \rangle + d_r^\top z \leq 0 \leftarrow \phi_1 \\ \langle A_r,Z \rangle + a_r^\top z = 0 \leftarrow \gamma \\ (z,Z) \in \mathcal{L} \leftarrow \phi_2 \\ Z - zz^\top \succeq 0 \end{cases}$$

• Let γ , ϕ_1 and ϕ_2 the dual variables of (SDP)

Theorem We have $v(LB) = v(SDP) = v(CQP_{S,\gamma^*,\phi^*=\phi_1^*+\phi_2^*})$ where $\gamma^*, \phi^* = \phi_1^* + \phi_2^*$ are the optimal dual variables to (SDP)

To sum up: an exact algorithm to solve (P)

Polynomial Quadratic Convex Reformulation - mixed-integer case

Phase 1: Generate K schemes of F(x), and get $S = \bigcup_{k=1}^K S_k$

PQCR for the mixed-case [L., Porumbel 25]

To sum up: an exact algorithm to solve (P)

Polynomial Quadratic Convex Reformulation - mixed-integer case

Phase 1: Generate K schemes of F(x), and get $S = \bigcup_{k=1}^K S_k$

Phase 2: Build the best quadratic convex relaxation

- i. Build quadratic cuts: $\langle D_r, zz^\top \rangle + d_r^\top z \leq 0$ and $\langle A_r, zz^\top \rangle + a_r^\top z = 0$
- ii. Solve (SDP) to compute the best parameters γ^* , and ϕ^*

PQCR for the mixed-case [L., Porumbel 25]

To sum up: an exact algorithm to solve (P)

Polynomial Quadratic Convex Reformulation - mixed-integer case

Phase 1: Generate K schemes of F(x), and get $S = \bigcup_{k=1}^K S_k$

Phase 2: Build the best quadratic convex relaxation

- i. Build quadratic cuts: $\langle D_r, zz^{\top} \rangle + d_r^{\top}z \leq 0$ and $\langle A_r, zz^{\top} \rangle + a_r^{\top}z = 0$
- ii. Solve (SDP) to compute the best parameters γ^* , and ϕ^*

Phase 3: Solve (P) by a spatial B&B based on the solution of $(CQP_{S,\gamma^*,\phi^*})$

PQCR for the mixed-case [L., Porumbel 25]

Toy example: size and initial gap comparison

10 continuous variables, 100 monomials, optimal value =-6.00

	(I P)	(LQP_S)	$(\mathit{CQP}_{\mathcal{S},\gamma^*,\phi^*})$				
		(LQIS)	K=1	K=2	K = 3	K = 4	
Nb aux var	100	225	336	364	455	1042	
Nb cont	465	675	1003	1108	1544	4291	
Root LB	-16.3	-12.9	-6.7	-6.6	-6.3	-6.0	
Root gap	172.4	114.7	11.6	9.9	5.2	0.0	

Preliminary computational results

Comparison initial gaps (in %)

100 instances of 10 continuous variables Each line is an average over 10 instances

# mon.	(LP)	$(LQP_{\mathcal{S}})$	$(CQP_{\mathcal{S},\gamma^*,\phi^*})$				
			K=1	K=2	K=3	K=4	
10	6.6	6.5	2.3	1.8	1.4	1.2	
20	11.4	7.3	1.6	1.5	0.7	0.5	
30	54.0	39.8	12.4	10.1	6.6	4.6	
40	74.6	52.9	13.2	12.2	5.7	3.2	
50	81.4	56.2	10.3	7.4	3.6	2.0	
60	114.2	76.7	14.8	13.1	8.6	4.3	
70	153.9	106.4	19.9	17.7	9.1	4.5	
80	140.9	93.4	13.3	11.7	7.2	3.7	
90	139.7	89.8	8.3	7.1	3.2	1.1	
100	62.9	35.7	0.5	0.1	0.1	0.1	

- Quadratic Convex relaxation significantly tighter
- The more K increases, the more we close the gap

Conclusion and perspectives

Conclusions et perspectives

Conclusions

- An exact 3-phases algorithm that handles continuous variables
- Allows to use several quadratization schemes.
- Encouraging first computational results
 - ightarrow Tighten the bound obtained by compared approaches

Future work

- Use conic bundle to accelerate the solution of (SDP)
- Improve the implementation of the B&B
- Handling problems with constraints

 $(\mathit{CQP}_{\mathcal{S},\gamma^*,\phi^*})$ - # vars and # cont

100 instances of 10 continuous variables Each line is an average over 10 instances

# mon.	K=1		K=2		K=3		K=4	
	# var	# cont						
10	66	80	79	108	120	229	167	330
20	121	198	142	255	215	605	324	910
30	160	299	188	399	271	857	440	1,396
40	206	461	230	558	323	1,131	560	1,990
50	233	579	273	763	354	1,258	649	2,393
60	261	696	292	838	382	1,370	731	2,797
70	280	796	313	942	400	1,421	796	3,089
80	301	836	334	987	432	1,519	912	3,621
90	326	974	360	1,112	456	1,581	992	3,980
100	200	526	232	656	301	931	600	2,243

- ullet Same family of quadratizations (K=1,2,3) small increase of the size
- ullet For K=4 incremental quadratization clearly increases the size.