Zinematika: Ebazpenak

Ariketak

Ariketa 01. Higikari baten hasierako posizioa, hasierako abiadura eta azelerazioa, hurrenez hurren, hauek dira: +60 m; +25 m/s; -4 m/s². Kalkulatu eta eman: a) higiduraren ekuazioak (posizioa, abiadura); b) noiz eta non geldituko den; c) noiz eta zer abiaduraz pasako den jatorritik.

Higiduraren taula						
t (s)	x (m)	v (m/s)	a (m/s²)	deskribapena		
∀t	60 + 25 t - 2 t ²	25 - 4 t	-4	ekuazioa		
0	60	25	-4	hasierako egoera		
6,25	138,125	0	-4	gelditzen da (v=0)		
14,56	0	-33,24	-4	pasa jatorritik (x=0)		

Ariketa 02. Higikari baten hasierako posizioa +50 m-koa da eta +4 m/s-ko hasierako abiadura du. Lehen bost segundotan +18 m desplazatu bada, kalkulatu eta eman: a) azelerazioa; b) higiduraren ekuazioak (posizioa eta abiadura); c) non eta noiz geldituko den; d) zenbateko abiadura izango duen t=2,5 s denean.

Higiduraren taula					
t (s)	x (m)	v (m/s)	a (m/s²)	deskribapena	
∀t	50 + 4 t - 0,08 t ²	4 - 0,16 t	-0,16	ekuazioa	
0	50	4	-0,16	hasierako egoera	
5	68		-0,16	t = 5 s denean (Δx=18 m)	
25	100	0	-0,16	gelditu da (v=0)	
2,5		3,6	-0,16	t = 2,5 s denean	

(2) Lehen
$$5s-tan ... \Delta x = x - x_0 \rightarrow 18m = x - 50m \rightarrow x = 68m$$

$$x_5 = x_0 + v_0 t + \frac{1}{2} at^2 \rightarrow 68m = 50m + 4 \frac{m}{5} \times 5s + \frac{1}{2} a \cdot 25s^2 \rightarrow 68 = 50 + 20 + 12.5 a \rightarrow -2 = 12.5 a \rightarrow a = -0.16 \frac{m}{5}^2$$

$$x = x_0 + v_0 t + \frac{1}{2} at^2 \xrightarrow{x_0 = 50; v_0 = 4;} x = 50 + 4t - 0.08t^2 (m)$$

$$v = v_0 + at \xrightarrow{v_0 = 4; a = -0.16} v = 4 - 0.16t = 0 \rightarrow t = \frac{4}{0.16} \rightarrow t = 25s$$

$$x = 50 + (4 \times 25) - 0.08 \times 25^2 = 50 + 100 - 50 = 100 \text{ m}$$

$$d) t = 2.5 \text{ s. denean } \rightarrow v = 4 - (0.16 \times 2.5) = 3.6 \frac{m}{5}$$

$$X = 50 + 4t + \frac{1}{2}at^2$$
 $V = 4 + at$

ekuazio haueK

une guztitan betetzen dira

beraz

t=5 denean, x= 68 m balio behar du

v = 4 - 0.16 + (m/s)

posizioaren ekuazioan ordezkatuz

$$68 = 50 + (4 \times 5) + \frac{1}{2} a 5^{2} \rightarrow 68 = 70 + 12,5 a \rightarrow$$

$$\rightarrow a = \frac{68 - 70}{12,5} = \boxed{-0,16 \frac{m}{5^{2}}} \rightarrow \text{abiaduraren balioa}$$

$$0,16 \text{ m/s jeisten da}$$
segunduro

Higiduraren ekuazioak:

$$x = 50 + 4t - 0.08t^{2}$$
 (m)
 $v = 4 - 0.16t$ (m/s)

EKuazioak kalkulatzeko erabili dugun prozesua:

$$X = X_0 + V_0 t + \frac{1}{2} at^2$$
 $V = V_0 + at$
 $X_0 = 50m$
 $V = 4 + at$
 $V_0 = 4 m/s$
 $APLIKATU KASLI BATI AZELERAZIDA KALKULATZEKO$
 $A = -0.16 m/s^2$
 $AZELERAZIOA ORDEZKATUZ$
 $AZELERAZIOA ORDEZKATUZ$
 $AZELERAZIOA ORDEZKATUZ$

Ariketa 03. Eskiatzaile bat geldiunetik abiatu da eta 3 segundotan 9 metro egin ditu azelerazio konstantez. Eskema grafikoa egin ondoren, kalkulatu: a) azelerazioa; b) lehenengo 5 segundotan eginiko distantzia; c) zenbat denbora beharko du 90 km/h-ko abiadura lortzeko

Higiduraren taula					
t (s)	x (m)	v (m/s)	a (m/s²)	deskribapena	
∀t	t²	2 t	2	ekuazioa	
0	0	0	2	hasierako egoera	
3	9		2	t = 3 s denean	
12,5		25	2	90 km/h lortzeko	
5	25		2	t = 5	

(3)
$$a$$
 $t = 3 \text{ s} \rightarrow x = x_0 + v_0 t + \frac{1}{2}at^2 \rightarrow 9 = \frac{1}{2} \cdot a \cdot 9 \rightarrow 9 = 4,5 \text{ a} \rightarrow \frac{1}{5^2}$

(b) $x_5 = 5^2 = 25 \text{ m} \rightarrow \Delta x = 25 - 0 \rightarrow \Delta x = 25 \text{ m}$

(c) $v = 90 \frac{\text{km}}{\text{h}} \frac{1\text{h}}{3600 \text{ s}} \times \frac{1000 \text{ m}}{1 \text{ km}} = 25 \frac{\text{m}}{5}$
 $v = 2t \rightarrow 25 \frac{\text{m}}{5} = 2 \frac{\text{m}}{5^2} \cdot t \rightarrow t = \frac{25}{2} \rightarrow t = 12,5 \text{ s}$

Ariketa 04. Motozikleta bat azeleratu egin da pausagunetik hasita eta 104,4 km/h abiadura hartu du 10 s-tan. Kalkulatu denbora-tarte horretan ibilitako distantzia metrotan.

Higiduraren taula					
t (s) x (m) v (m/s) a (m/s²) deskribapena					
∀t	1,45 t²		2,9	ekuazioa	
0	0	0	2,9	hasierako egoera	
10	1 45	29	2,9	t = 10 s	

Ariketa 05. Automobil baten abiadura handitu da 59,4 km/h baliotik 77,4 km/h baliora 4 segundotan. Kalkulatu: a) azelerazioa; b) 4 segundo horietan ibilitako distantzia

Higiduraren taula					
t (s) x (m) v (m/s) a (m/s²) deskribapena					
∀t	16,5 t + 0,625 t ²		1,25	ekuazioa	
0	0	16,5	1,25	hasierako egoera	
4	76	21,5	1,25	t = 4 s denean	

$$V_0 = 59.4 \frac{\text{km}}{h} \frac{1 \text{h}}{3600 \text{ s}} \frac{1000 \text{ m}}{1 \text{km}} = 16.5 \text{ m/s}$$

$$V_4 = 77.4 \frac{\text{km}}{h} \frac{1 \text{h}}{3600 \text{ s}} \frac{1000 \text{ m}}{1 \text{km}} = 21.5 \text{ m/s}$$

$$\alpha = \frac{\Delta N}{E} \Rightarrow \alpha = \frac{21.5 - 16.5}{4} \Rightarrow \alpha = 1.25 \frac{\text{m}}{\text{s}^2}$$

$$X = X_0 + V_0 t + \frac{1}{2} \alpha t^2 \Rightarrow X = 16.5 t + 0.625 t^2 \text{ (m)}$$

$$E = 4 \text{ s} \text{ denean ... } X = (16.5 \times 4) + (0.625 \times 4^2) = 66 + 10 = 76 \text{ m}$$

$$\Delta X = X - X_0 \dots \Delta X = 76 \text{ m}$$

Ariketa 06. Maider eta Itziar 2 km-ko distantziara daude eta zuzen-zuzen hurbiltzen ari dira elkarrengana. Maider, ezkerretik abiatuta, 4 km/h abiaduraz doa eta Itziar, eskuinetik abiatuta aldi berean, 3 km/h-ko abiaduraz. Kalkulatu non eta noiz elkartuko diren.

G

A 4 km/h

$$\frac{3 \text{ km/h}}{h}$$
 $\frac{8}{2000}$
 $V_A = 4 \frac{\text{km}}{h} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ h}}{3600 \text{ s}} = 1.11 \frac{\text{m}}{5} \longrightarrow \text{eskutinerantz ...} \oplus V_A = +1.11 \frac{\text{m}}{5}$
 $V_B = 3 \frac{\text{km}}{h} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ h}}{3600 \text{ s}} = 0.83 \frac{\text{m}}{5} \longrightarrow \text{ezkerreantz ...} \oplus V_B = -0.83 \frac{\text{m}}{5}$

EKuazioak

$$\begin{cases} X_A = 1.11 \text{ t} \text{ (m)} \\ X_B = 2000 - 0.83 \text{ t} \text{ (m)} \end{cases}$$

ELKartzen direnean ...

$$\begin{cases} X_A = 1.11 \text{ t} \text{ (m)} \\ X_B = 2000 \longrightarrow \text{l} = 1031 \text{ s} \text{ l} \text{ min 11s} \\ \text{Noiz ELKARTZEN DIREN} \end{cases}$$
 $X_A = X_B = 1.11 \times 1031 = \boxed{1144 \text{ m}}$

NON ELKARTZEN DIREN

Ariketa 07. Dorre baten altuera neurtzeko, goiko partetik objektu bat askatu eta lurrera iristeko zenbat denbora behar duen neurtuko dugu. Objektua lurrera iristeko 3,2 s behar baditu, kalkulatu: a) dorrearen altuera; b) lurra jotzean izango duen abiadura.

Higiduraren taula						
t (s) y (m) v (m/s) a (m/s²) deskribapena						
∀t	y ₀ - 5 t ²	-10 t	-10	ekuazioa		
0	y ₀ = 51,2 m	0 (erortzen utzi)	-10	hasierako egoera		
3,2	0	-32	-10	lurrera iritsi (y=0)		

$$\begin{array}{l}
7 \\
9 = 9_0 + v_0 t + \frac{1}{2} a t^2 \xrightarrow{v_0 = 0} y = 9_0 - 5t^2 \\
t = 3,2 \text{ s denean } y = 0 \\
\downarrow 0 = 9_0 - 5 (3,2)^2 \longrightarrow 9_0 = 51,2 \text{ m}
\end{array}$$

$$\downarrow v = -10 \times 3,2 = -32 \frac{\text{m/s}}{\text{s}}$$

(7) - JAHZI LIBREA

Jauzi librearen ekuazioak

Jauzi librearen ekuazioak
$$y = y_0 + v_0 t - 5t^2 \quad (m)$$

$$v = v_0 - 10 \cdot t \quad (m/s)$$

$$y_0 = ?$$

$$v_0 = 0 \rightarrow \text{"utzi erortzen"}$$

$$y = y_0 - 5t^2 \quad (m)$$

$$v = -10 \cdot t \quad (m/s)$$
Gure

Gorputzaren

EKUAZIOAK

TALLA:

edozein
$$y_0 - 5t^2$$
 -lot ekuazioak

0 y_0 0 hasiera

3,2 0 lurra jotzean

$$\begin{cases} y = y_0 - 5t^2 & t = 3.2 \text{ s denean} \\ y = 0 \text{ da} & \\ y = 0 \text{ da} & \\ & BALIO HORIEK \\ ORDEZKATUZ & \end{cases}$$

ORDEZKATUZ

$$0 = y_0 - 5 \times (3,2)^2$$

$$0 = y_0 - 51, 2$$

$$0 = y_0 - 51, 2$$

$$y_0 = 51.2 \text{ m}$$

lurra jotzean (t= 3,2 s denean) abiadura:

$$V = -10 \times 3,2 \rightarrow V = -32 \text{ m/s}$$

minus: beherantz

Ariketa 08. Tranpolin-jauzilari batek 10 metroko altuera duen palanka batetik utzi du erortzen bere burua. Kalkulatu: a) uretara iristeko behar izan duen denbora; b) uretara iristean izan duen abiadura.

Higiduraren taula							
t (s)	t (s) y (m) v (m/s) a (m/s²) deskribapena						
∀t	10 - 5 t ²	-10 t	-10	ekuazioa			
0	10	0 (erortzen utzi)	-10	hasierako egoera			
1,41	0	-14,1	-10	uretara iritsi (y=0)			

(8)
$$y = y_0 + v_0 t + \frac{1}{2} a t^2$$
 $y = 10 - 5 t^2$ (m)
 $y = y_0 + v_0 t + \frac{1}{2} a t^2$ $y = 10 - 5 t^2$ (m)
 $y = 0 \rightarrow 0 = 10 - 5 t^2 \Rightarrow t = 1,415$
 $y = 0 \rightarrow 0 = 10 - 5 t^2 \Rightarrow t = 1,415$
 $y = -10 t \rightarrow v = -10 \times 1,41 = -14,1 \text{ m/s}$

Jauzi Librearen ekuazioak

$$y = y_0 + v_0 t - 5t^2$$
 (m)
 $V = v_0 - 10t$ (m/s)

$$y = 10 - 5t^2 \text{ (m)}$$

Uretara iristean ... y=0

L→
$$y = 0 = 10 - 5t^2$$
 → $5t^2 = 10$ → $t = \sqrt{2}$ → $t = 1,41s$

behar du uretara

$$v = -10 t$$
 $t = 1,41 s$
 $v = -14,1 \text{ m/s}$
behar du iristeko

 $v = -14,1 \text{ m/s}$
beherantz

Ariketa 09. Hona hemen A eta B bi higikarien hasierako posizioa eta t=5 s denean. Biak abiadura konstantez mugitzen dira

Kalkulatu eta eman: a) bi higikarien posizioaren ekuazioak; b) non eta noiz elkartuko diren.

$$\Delta x = x - x_0 \rightarrow \Delta x = (40 \text{ m}) - (-10 \text{ m}) = 50 \text{ m} \text{ ibili du}$$

$$5 \text{ s-tan}$$

"A"-ren abiadura

$$V_A = \frac{\Delta x}{t} = \frac{50 \text{ m}}{5 \text{ s}} \rightarrow V_A = 10 \text{ m/s}$$

"B"-ren desplazamendua eta abiadura

$$\triangle x = x - x_0 = (30m) - (0m) = 30 m$$

$$V_{B} = \frac{30 \, \text{m}}{5 \, \text{s}} = 6 \, \frac{\text{m}}{\text{s}}$$

"A" eta "B"-ren eKuazioak

$$X_A = -10 + 10 t$$

$$x_B = 6t$$

Non eta noiz elkartuko diren

denean elkartuko dira

$$X_A = X_B = 6 \times 2,5 = 15 \text{ m}$$
 posizioan elkartuko dira

Ariketa 10. 40 m-k altueratik gorputz bat botatzen da gorantz 20 m/s-ko abiaduraz. Kalkulatu eta eman: a) higiduraren ekuazioak (posizioa eta abiadura); b) zer altuera hartuko duen; c) zer abiaduraz iritsiko den lurrera.

Higiduraren taula					
t (s)	y (m)	v (m/s)	a (m/s²)	deskribapena	
∀t	40 + 20 t - 5 t ²	20 - 10 t	-10	ekuazioa	
0	40	20	-10	hasierako egoera	
2	60	0	-10	altuera maximoa (v=0)	
5,46	0	-34,6	-10	lurrera iritsi (y=0)	

(b)
$$y = y_0 + v_0 t + \frac{1}{2} at^2 \xrightarrow{y_0 = 40} v_0 = 20$$

$$v = v_0 + at \xrightarrow{v_0 = 20} v = 20 - 10 t (\text{m/s})$$
altuera maximoa:
$$v = 0 \rightarrow 20 - 10 t = 0 \rightarrow t = 2s \rightarrow y = 40 + (20 \times 2) - 5 \times 2^2 = 60 \text{ m}$$
lurrera initsi:
$$y = 0 \rightarrow 0 = 40 + 20t - 5t^2 \rightarrow t^2 - 4t - 8 = 0$$

$$t = \frac{4 \pm \sqrt{16 + 32}}{2} \rightarrow t = 5,46 s$$

$$v = 20 - 10 t \xrightarrow{t = 5,46} v = 20 - 54,6 = -34,6 \text{ m/s}$$