

034IN - FONDAMENTI DI AUTOMATICA FUNDAMENTALS OF AUTOMATIC CONTROL A.Y. 2023-2024

Part VII: Step-Response Analysis

Gianfranco Fenu, Thomas Parisini

Department of Engineering and Architecture

Step Response

$$x(0) = 0;$$
 $u(t) = 1(t)$

- ◆ For asymptotically stable systems, the step response describes the way the systems "moves" from an equilibrium to another
- ★ The characteristics of the step response are a key element in the requirements for a control systems

Characteristic Parameters of the Step Response

- Steady-state value: $\bar{y} = y(\infty)$
- Settling time: $t_{s,\varepsilon}$
- Rise time: t_r
- Delay time: t_d
- Peak time: t_p
- Peak value: y_p
- Max. overshoot: $A = y_p y(\infty)$
- Max. % overshoot:

$$\Delta\% = 100 \cdot A/y(\infty)$$

- "Period" of oscillations: T
- Damping factor: B/A

Step Response: First Order Systems

• Case A)

$$G(s) = \frac{\mu}{1+s\tau} \,; \quad \mu > 0; \, \tau > 0 \qquad \text{strictly proper first-order system}$$
 asymptotic stability

Case B)

$$G(s) = \frac{\mu(1+sT)}{1+s\tau}\,; \quad \mu > 0; \, \tau > 0 \quad \text{non strictly proper first-order system}$$
 asymptotic stability

Step Response: First Order Systems (contd.)

Case A)

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right]$$
$$= \mathcal{L}^{-1} \left[\frac{\mu}{s(1+s\tau)} \right]$$

$$= \mathcal{L}^{-1} \left[\frac{\mu}{s} - \frac{\mu \tau}{1 + s\tau} \right]$$

$$= \mu \left(1 - e^{-t/\tau} \right), \quad t \ge 0$$

Settling-Time Calculation

For example, the settling time for $\varepsilon = 0.01$ can be characterised as follows:

$$1 - e^{-t/\tau} = 0.99 \implies e^{-t/\tau} = 0.01 \implies e^{t/\tau} = 100$$

$$t_{s,0.01} = \tau \ln 100 \simeq 4.6\tau$$

The calculation of the rising time t_r and the delay time t_d follows similar lines.

The following approximations are useful:

$$t_r \simeq 2.2\tau$$
 $t_d \simeq 0.7\tau$ $t_{s,0.05} \simeq 3\tau$ $t_{s,0.01} \simeq 4.6\tau$

Remark: without loss of generality, from now on we shall use t_s as a shorthand for $t_{s,0.01}$

Qualitative Analysis of the Step Response

Step Response: First Order Systems (contd.)

Case B)

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right]$$

$$= \mathcal{L}^{-1} \left[\frac{\mu(1+sT)}{s(1+s\tau)} \right]$$

$$= \mathcal{L}^{-1} \left[\frac{\mu}{s} + \frac{\mu(T-\tau)}{1+s\tau} \right]$$

$$= \mu \left(1 + (\alpha - 1)e^{-t/\tau} \right), \quad t \ge 0 \text{ with } T = \alpha \tau$$

Note that (the system is not strictly proper): $\lim_{t\to 0^+}y(t)=\mu\frac{T}{\tau}\neq 0$

Qualitative Analysis of the Step Response

Step Response: Second Order Systems

Case A)

$$G(s) = \frac{\mu}{(1+s\tau_1)(1+s\tau_2)}$$
 real poles, no zeros

Case B)

$$G(s) = \frac{\mu(1+sT)}{(1+s\tau_1)(1+s\tau_2)}$$
 real poles, one zero

• Case C)

$$G(s) = \frac{\varrho}{(s + \sigma + i\omega)(s + \sigma - i\omega)}$$
 complex poles, no zeros

Case D)

$$G(s) = rac{arrho(1+sT)}{(s+\sigma+j\omega)(s+\sigma-j\omega)}$$
 complex poles, one zero

Case A)

$$G(s) = \frac{\mu}{(1+s\tau_1)(1+s\tau_2)}; \quad \mu > 0; \quad \tau_1 \neq \tau_2$$

$$\left. egin{array}{l} au_1 > 0 \\ au_2 > 0 \end{array}
ight\} \, ext{asymptotic stability}$$

Without loss of generality, assume $\tau_1 > \tau_2$

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right] = \mathcal{L}^{-1} \left[\frac{\mu}{s(1+s\tau_1)(1+s\tau_2)} \right]$$
$$= \mathcal{L}^{-1} \left[\frac{A}{s} + \frac{B}{1+s\tau_1} + \frac{C}{1+s\tau_2} \right]$$

where

$$A = \frac{\mu}{(1+s\tau_1)(1+s\tau_2)}\Big|_{s=0} = \mu$$

$$B = \frac{\mu}{s(1+s\tau_2)}\Big|_{s=-1/\tau_1} = \frac{\mu}{-\frac{1}{\tau_1}(1-\frac{\tau_2}{\tau_1})} = \frac{\mu\tau_1^2}{\tau_2-\tau_1}$$

$$C = \frac{\mu}{s(1+s\tau_1)}\Big|_{s=-1/\tau_2} = \frac{\mu}{-\frac{1}{\tau_2}(1-\frac{\tau_1}{\tau_2})} = \frac{\mu\tau_2^2}{\tau_1-\tau_2}$$

Hence:

$$y(t) = \mathcal{L}^{-1} \left[\frac{\mu}{s} + \frac{\frac{\mu \tau_1^2}{\tau_2 - \tau_1}}{1 + s\tau_1} + \frac{\frac{\mu \tau_2^2}{\tau_1 - \tau_2}}{1 + s\tau_2} \right]$$

$$= \mu \left(1 - \frac{\tau_1}{\tau_1 - \tau_2} e^{-t/\tau_1} + \frac{\tau_2}{\tau_1 - \tau_2} e^{-t/\tau_2} \right), \quad t \ge 0$$

Characteristics:

- $y(\infty) = \mu > 0$
- y(0) = 0
- $\dot{y}(0) = 0$ $\ddot{y}(0) = \frac{\mu}{\tau_1 \tau_2} > 0$

Qualitative Analysis of the Step Response

Approximate Calculation of the Settling Time

If $\tau_1 \gg \tau_2$:

$$y(t) = \mu \left(1 - \frac{\tau_1}{\tau_1 - \tau_2} e^{-t/\tau_1} + \frac{\tau_2}{\tau_1 - \tau_2} e^{-t/\tau_2} \right), \quad t \ge 0$$

$$\simeq \mu \left(1 - e^{-t/\tau_1} \right), \quad t \ge 0$$

$$t_s \simeq 4.6\tau_1$$

In general, in the absence of zeros, the most influential poles on the qualitative behaviour of the step response are the ones closer to the imaginary axis.

Qualitative Analysis: Comparison Between First and Second Order DITRIESTE

$$G'(s) = \frac{\mu}{1 + s\tau_1}$$

$$G''(s) = \frac{\mu}{(1 + s\tau_1)(1 + s\tau_2)}; \, \tau_1 \gg \tau_2$$

- The main difference lies in the initial transient behaviour
- For a given settling time, the stepresponse in the second-order case without zeros has a "slower" dynamics

Case B)

$$G(s) = \frac{\mu(1+sT)}{(1+s\tau_1)(1+s\tau_2)}; \quad \mu > 0; \quad \tau_1 \neq \tau_2$$

$$\left. \begin{array}{c} \tau_1 > 0 \\ \tau_2 > 0 \end{array} \right\} \qquad \qquad \text{asymptotic stability}$$

Without loss of generality, assume $\tau_1 > \tau_2$

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right] = \mathcal{L}^{-1} \left[\frac{\mu}{s(1+s\tau_1)(1+s\tau_2)} \right]$$
$$= \mathcal{L}^{-1} \left[\frac{A}{s} + \frac{B}{1+s\tau_1} + \frac{C}{1+s\tau_2} \right]$$

where

$$A = \frac{\mu(1+sT)}{(1+s\tau_1)(1+s\tau_2)} \Big|_{s=0} = \mu$$

$$B = \frac{\mu(1+sT)}{s(1+s\tau_2)} \Big|_{s=-1/\tau_1} = \frac{\mu(1-T/\tau_1)}{-\frac{1}{\tau_1}(1-\frac{\tau_2}{\tau_1})} = \frac{\mu\tau_1(\tau_1-T)}{\tau_2-\tau_1}$$

$$C = \frac{\mu(1+sT)}{s(1+s\tau_1)} \Big|_{s=-1/\tau_2} = \frac{\mu(1-T/\tau_2)}{-\frac{1}{\tau_2}(1-\frac{\tau_1}{\tau_2})} = \frac{\mu\tau_2(\tau_2-T)}{\tau_1-\tau_2}$$

Hence:

$$y(t) = \mu \left(1 - \frac{\tau_1 - T}{\tau_1 - \tau_2} e^{-t/\tau_1} + \frac{\tau_2 - T}{\tau_1 - \tau_2} e^{-t/\tau_2} \right), \quad t \ge 0$$

Characteristics:

•
$$y(\infty) = \mu > 0$$

• $y(0) = 0$
• $\dot{y}(0) = \frac{\mu T}{\tau_1 \tau_2} \begin{cases} > 0, & \text{if } T > 0 \\ < 0, & \text{if } T < 0 \end{cases}$

Qualitative Analysis of the Step Response

- overshoot
- undershoot

Case C)

$$G(s) = \frac{\varrho}{(s + \sigma + j\omega)(s + \sigma - j\omega)}$$

$$\mu = G(0) = \frac{\varrho}{\sigma^2 + \omega^2}$$

poles:
$$-\sigma \pm j\omega$$

$$\sigma > 0$$
 asymptotic stability

$$\omega > 0$$

$$\varrho > 0$$

$$Y(s) = \frac{G(s)}{s} = \frac{A}{s} + \frac{Bs + C}{s^2 + 2\sigma s + \sigma^2 + \omega^2}$$

$$As^2 + 2A\sigma s + A\sigma^2 + A\omega^2 + Bs^2 + Cs = \varrho$$

$$\begin{cases} A + B = 0 \\ 2A\sigma + C = 0 \\ A(\sigma^2 + \omega^2) = \varrho \end{cases}$$

$$\begin{cases} A + B = 0 \\ 2A\sigma + C = 0 \\ A(\sigma^2 + \omega^2) = \varrho \end{cases} \longrightarrow \begin{cases} A = \frac{\varrho}{\sigma^2 + \omega^2} = \mu \\ B = -\mu \\ C = -2\sigma\mu \end{cases}$$

$$Y(s) = \mu \left[\frac{1}{s} - \frac{s + 2\sigma}{s^2 + 2\sigma s + \sigma^2 + \omega^2} \right] = \mu \left[\frac{1}{s} - \frac{s + \sigma + \sigma}{(s + \sigma)^2 + \omega^2} \right]$$

$$= \mu \left[\frac{1}{s} - \frac{s+\sigma}{(s+\sigma)^2 + \omega^2} - \frac{\sigma}{\omega} \frac{\omega}{(s+\sigma)^2 + \omega^2} \right]$$

Hence:
$$y(t) = \mu \left[1 - e^{-\sigma t} \cos(\omega t) - \frac{\sigma}{\omega} e^{-\sigma t} \sin(\omega t) \right], \quad t \ge 0$$

$$= \mu \left[1 - e^{-\sigma t} \left(\cos(\omega t) + \frac{\sigma}{\omega} \sin(\omega t) \right) \right], \quad t \ge 0$$

$$= \mu \left[1 - \frac{\sqrt{\sigma^2 + \omega^2}}{\omega} e^{-\sigma t} \sin(\omega t + \varphi) \right], \quad t \ge 0$$

damped oscillations

where
$$\varphi = \arccos\left(\frac{\sigma}{\sqrt{\sigma^2 + \omega^2}}\right)$$

Characteristics:
$$\bullet$$
 $y(\infty) = \mu > 0$

- y(0) = 0
- $\bullet \quad \dot{y}(0) = 0$
- $\bullet \quad \ddot{y}(0) = \varrho > 0$

Qualitative Analysis of the Step Response

Characteristic Parameters of the Step Response

Recall from Part 4:

$$G(s) = \frac{\varrho}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

$$\omega_n^2 = \sigma^2 + \omega^2$$

$$\omega_n \xi = \sigma$$

$$\omega_n \sqrt{1 - \xi^2} = \omega$$

Parameters:

 ω_n natural angular frequency:

 $\xi = \cos(\alpha)$ damping ratio

Characteristic Parameters of the Step Response (contd.)

and:

$$G(s) = \frac{\varrho}{(s+\sigma+j\omega)(s+\sigma-j\omega)} = \frac{\varrho}{(s+\sigma)^2 + \omega^2}$$
$$= \frac{\varrho}{s^2 + 2\sigma s + \sigma^2 + \omega^2} = \frac{\varrho}{s^2 + 2\xi\omega_n s + \omega_n^2}$$
$$2\xi\omega_n \qquad \omega_n^2$$

$$G(s) = \frac{\varrho/\omega_n^2}{1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2} = \frac{\mu}{1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2}$$

where:
$$\mu:=rac{arrho}{\omega_n^2}$$

Characteristic Parameters of the Step Response (contd.)

Hence:

- Settling time: $t_s \simeq \frac{4.6}{\sigma} = \frac{4.6}{\xi \omega_n}$
- Peak time: $t_p = \frac{\pi}{\omega} = \frac{\pi}{\omega_n \sqrt{1 \xi^2}}$
- Peak value: $y_p = \mu \left[1 + e^{-\frac{\sigma\pi}{\omega}}\right] = \mu \left[1 + e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}}\right]$
- Maximum percentage overshoot: $\Delta\%=100\cdot\frac{A}{n}=e^{-\sigma\pi/\omega}=100\cdot e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}}$
- "Period" of oscillations: $T=\frac{2\pi}{\omega}=\frac{2\pi}{\omega_n\sqrt{1-\xi^2}}$ Damping factor: $\frac{B}{A}=\cdots=\Delta^2=e^{-2\sigma\pi/\omega}=e^{-\frac{2\xi\pi}{\sqrt{1-\xi^2}}}$

only depend on ξ but **not** on ω_n

Maximum Percentage Overshoot

Limit Cases

• No damping: $\xi = 0$

$$G(s) = \frac{\varrho}{s^2 + \omega_n^2}$$
 poles: $\pm j\omega_n$

Undamped oscillations

• Full damping: $\xi = 1$

$$G(s) = \frac{\varrho}{(s + \omega_n)^2}$$
 poles: $-\omega_n$; $-\omega_n$

No oscillations at all

Example 1

Hence:

$$\mu = G(0) = \frac{1}{k}$$

$$2\xi\omega_n = \frac{h}{M}$$

$$\omega_n^2 = \frac{k}{M}$$

$$s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2} = s^{2} + \frac{h}{M}s + \frac{k}{M}$$

$$\omega_n = \sqrt{\frac{k}{M}}$$

$$\xi = \frac{h}{2\sqrt{kM}}$$

Example 2

$$\begin{cases}
C\dot{x}_1 = u - x_2 \\
L\dot{x}_2 = x_1 - Rx_2 \\
y = Rx_2
\end{cases}$$

$$A = \begin{bmatrix} 0 & -1/C \\ 1/L & -R/L \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & -1/C \\ 1/L & -R/L \end{bmatrix} \qquad B = \begin{bmatrix} 1/C \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & R \end{bmatrix}$$

$$G(s) = \begin{bmatrix} 0 & R \end{bmatrix} \begin{bmatrix} s & 1/C \\ -1/L & s+R/L \end{bmatrix}^{-1} \begin{bmatrix} 1/C \\ 0 \end{bmatrix} = \dots = \frac{R/(LC)}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

$$\omega_n = \frac{1}{\sqrt{LC}}; \quad \xi = \frac{R}{2} \sqrt{\frac{C}{L}}; \quad \mu = R$$

Case D)

$$G(s) = \frac{\mu(1+sT)}{1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2}; \quad 0 < \xi < 1; \ \omega_n > 0; \ \mu > 0$$

Characteristics of the step response:

$$\bullet \quad y(\infty) = \mu > 0$$

•
$$y(0) = 0$$

$$y(\infty) = \mu > 0$$

$$y(0) = 0$$

$$\dot{y}(0) = \mu T \omega_n^2$$

$$< 0, \quad \text{if } T < 0$$

Qualitative Analysis:

Comparison between Case C) (no zeros) and Case D) (one zero)

$$G'(s) = \frac{\mu}{1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2}$$

$$G''(s) = \frac{\mu(1+sT)}{1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2}$$

- Again, the main difference lies in the initial transient behaviour
- For a given settling time, the stepresponse in Case C) without zeros has a "slower" dynamics

Step Response for Systems of Order > 2

For simplicity, consider the case of real poles only:

$$G(s) = \frac{\mu}{s^g} \frac{\prod_{i=1}^{n} (1 + sT_i)}{\prod_{i=1}^{n} (1 + s\tau_i)}$$

Recall (in the absence of common factors in G(s)):

Asymptotic Stability Re(poles) < 0 $g \le 0$

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right]$$

Step Response for Systems of Order > 2 (contd.)

Initial Value Theorem

$$\lim_{t \to 0^+} y(t) = \lim_{s \to \infty} \int_{-s}^{s} \frac{1}{s} G(s) \begin{cases} = 0, & \text{if } m < n \\ \neq 0, & \text{if } m = n \end{cases}$$

Final Value Theorem

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} \int_{-s}^{s} \frac{1}{G(s)} \begin{cases} = \mu, & \text{if } g = 0 \\ = 0, & \text{if } g < 0 \end{cases}$$

Dominant Poles Approximation

Again, for simplicity, consider the case of real poles:

$$Y(s) = G(s)\frac{1}{s} = \frac{\alpha_0}{s} + \frac{\alpha_1}{1 + s\tau_1} + \dots + \frac{\alpha_n}{1 + s\tau_n}$$

$$y(t) = \mathcal{L}^{-1} \left[G(s) \frac{1}{s} \right]$$

$$= \alpha_0 + \frac{\alpha_1}{\tau_1} e^{-t/\tau_1} + \dots + \frac{\alpha_n}{\tau_n} e^{-t/\tau_n}$$

Assuming: $\tau_1 > \tau_2 > \cdots > \tau_n$

$$y(t) = \alpha_0 + \frac{\alpha_1}{\tau_1} e^{-t/\tau_1} + \dots + \frac{\alpha_n}{\tau_n} e^{-t/\tau_n}$$

$$\simeq \alpha_0 + rac{lpha_1}{ au_1} e^{-t/ au_1}$$
 dominant component, hence: $t_s \simeq 4.6 au_1$

Dominant Poles Approximation: Real Poles

- When using the dominant poles approximation:
 - It is important to "preserve" the gain
 - Zeros located close to the imaginary axis have to be properly taken into account
- This approximation is useful in qualitative analysis and the for initial and rough controller's design steps

Example

$$G(s) = \frac{400(1+s)}{(1+0.2s)(1+0.1s)(s^2+2s+4)}$$

$$\psi_n = 2$$

$$\xi = 1/2$$

$$\mu = G(0) = 100$$

poles:
$$-5$$

$$-10$$

$$-1 \pm j\sqrt{3}$$

zero: -1

Example (contd.)

