SISTEMAS DE CONTROL EN ROBÓTICA

Notas de Clase

Mauricio Arias Correa

Medellín, 2022

Atribución - No comercial - Sin derivar

Esta obra puede ser descargada y compartida con otras personas, siempre y cuando se den los créditos respectivos al autor. La obra no puede ser intervenida, no pueden generarse obras derivadas ni obtener beneficios comerciales.

Identificación de Sistemas

La identificación de sistemas

La identificación de sistemas tiene por objeto obtener el modelo de un sistema dinámico (variable) a partir de datos experimentales, expresado como una función de transferencia. Dicho modelo representará a la variable con bastante fidelidad.

Con los modelos obtenidos, se pueden realizar análisis de los sistemas, predicciones, diseños de controladores y filtros (cuando se trata de señales).

La identificación se puede realizar a partir de datos experimentales, cuya recolección se llevará a cabo por medio de un experimento diseñado específicamente para la identificación del sistema. En este caso, el usuario puede determinar que señales va a medir, cuándo y cómo las va a medir y también puede escoger las señales de entrada.

El objetivo del diseño del experimento es entonces, seleccionar los datos que proporcionen la máxima información posible.

En cualquier caso, existen técnicas de identificación cuyos procedimientos son claros y estandarizados en el campo del control de procesos. Dichas técnicas se pueden dividir en:

Identificación Fuera de Línea (Off-Line)

Los datos del sistema o variable son recogidos durante la experimentación, pero sin tener conectado dicho sistema al sistema mayor del que hace parte, motivo por el cuál se considera que está fuera de línea en un proceso.

Esto se puede entender con el ejemplo de quitar el servomotor de una articulación de robot y montarle un hardware de adquisición de datos a ese servomotor solamente, pretendiendo modelar la velocidad de este como variable a controlar. En ese caso, la técnica es válida, pero dado que el servomotor se ha sacado de la articulación (físicamente o porque su circuito se ha aislado), entonces se considera una identificación Off Line y si pretendemos que el controlador diseñado para la velocidad del motor sea eficaz, debemos obtener los modelos de los demás componentes de la articulación.

Identificación En línea (On-Line).

Los datos del sistema o variable son recogidos durante la experimentación. La diferencia con el método fuera de línea consiste en que no se desconecta el sistema, dispositivo o variable, del sistema mayor del cual hace parte. En el ejemplo de la articulación de robot, la adquisición de los datos de la variable velocidad del servomotor debería realizarse manteniendo el motor como parte de la articulación. De esa manera podremos modelar indirectamente la forma en que todos los demás sistemas que conforman la articulación afectan a la variable de interés. Eso se verá reflejado entonces en la función de transferencia.

En la identificación Off-Line los modelos resultantes del proceso de identificación contienen la información relevante acerca de la dinámica del proceso real en un vector de parámetros de dimensión finita. Los modelos se aproximan por medio de otros modelos (aproximaciones estadísticas):

- Regresión lineal
- Métodos de predicción del error
- Mínimos cuadrados
- Mínimos cuadrados generalizados
- Métodos de identificación paramétrica basados en análisis frecuencial

Identificación No-Paramétrica

La importancia de la adecuada elección del periodo de muestreo:

Tabla 1. Elección de periodo de muestreo para sistemas de control digital. Fuente [2]

Type of variable (or plant))	Sampling period (s)
Flow rate	1 – 3
Level	5 – 10
Pressure	1 – 5
Temperature	10 - 180
Distillation	10 - 180
Servo-mechanisms	0.001 - 0.05
Catalytic reactors	10 - 45
Cement plants	20 - 45
Dryers	20 – 45

Sistema de Primer Orden con Retardo

La dinámica del sistema desde la aplicación del estímulo hasta alcanzar el estado estacionario, tiene una duración de 4τ en un sistema de primer orden (la respuesta transitoria se alcanza en 4τ).

Sistema de Segundo Orden con Retardo

Sistema de Segundo Orden con Retardo

Sistema de Segundo Orden con Retardo

$$G_p(S) = \frac{Kw_n^2 e^{-\theta' S}}{S^2 + 2\xi w_n S + w_n^2} \qquad \xi < 1$$

$$G_p(S) = \frac{Ke^{-\theta' S}}{(\tau_1 S + 1)(\tau_2 S + 1)} \qquad \xi \ge 1$$

Donde:

$$\tau_{1,2} = \frac{\xi \pm \sqrt{\xi^2 - 1}}{w_n} \qquad K = \frac{\Delta Y}{\Delta U}$$

K = Ganancia de la planta.

 w_n =Frecuencia natural.

 $\xi=$ Coeficiente de amortiguamiento

 θ' = Tiempo muerto de la planta.

 $\tau_1 \ y \ \tau_2 =$ Constantes de tiempo.

Para ΔU =Magnitud del escalón aplicado. obtener el

modelo:

 t_2 =Tiempo requerido para que la respuesta alcance el 45% del cambio total.

 t_1 =Tiempo requerido para que la respuesta alcance el 15% del cambio total.

 $x = \frac{t_2 - t_1}{t_2 - t_1}$

 $w_n = \frac{F_2(\xi)}{t_3 - t_1}$

 $F_3(\xi) = 0.922(1.66)^{\xi}$

 $\theta' = t_2 - \frac{F_3(\xi)}{\cdots}$

 t_3 =Tiempo requerido para que la respuesta alcance el 75% del cambio total.

 $\xi = \frac{0.0805 - 5.547(0.475 - x)^2}{x - 0.356}$

 $F_2(\xi) = \begin{cases} 2.6\xi - 0.6 & \xi \ge 1\\ 0.708(2.811)^{\xi} & \xi < 1 \end{cases}$

 ΔY =Cambio total en la salida de la planta.

IDENTIFICACIÓN NO PARAMÉTRICA - EJEMPLO

DC brushed motor

Se obtienen datos del motor a partir del catálogo de fabricante o de manera experimental (caracterización).

MOTOR DATA	Units	DC022C-1	DC022C-2	DC022C-3
Max DC Terminal Voltage	٧	36	36	36
Max Speed (Mechanical)	rpm	10000	10000	10000
Continuous Stall Torque	Nm	0.0057	0.0093	0.014
	oz-in	0.81	1.3	2.0
Peak Torque (Maximum)	Nm	0.018	0.037	0.066
	oz-in	2.6	5.3	9.3
Rotor Inertia	kg m2	0.00000052	0.00000068	0.00000081
	oz-in-s2	0.000073	0.000096	0.00011
Motor Weight	g	43	60	75
	OZ	1.5	2.1	2.7

Caracterización del motor DC
Para agregar un sensor de velocidad
tipo Tacogenerador (ejemplo).

V aplicado	V generado	Vel RPM
2,5v	0v	0
3v	1v	600RPM
6V	2,5V	1200RPM
11,2v	5v	2400RPM

EJERCICIO

A partir de la reacción del sistema obtenido en la gráfica 1, obtenga la función de transferencia para el Sistema POR y Sistema SOR, utilizando el método de identificación no paramétrica. (Los datos adquiridos se encuentran en el archivo: DatosEjercicio1.xls).

2. CÁLCULOS PARA LOS SISTEMAS POR Y SOR

Vf=Valor Final (promedio de los últimos 12 datos)	10,2
28,3%*Vf	2,8866
63,2%*Vf	6,4464
t1 (por interpolación lineal)	2,90001936
t2 (por interpolación lineal)	3,5663619
Ts (periodo de muestreo en segundos)	0,2
Θ' (en segundos)	2
au	1,5663619
t mínimo: 4 $ au$	6,26544762
t máximo: 5 $ au$	7,83180952
$\Delta \mathbf{Y}$	10,2
$\Delta {f U}$	1
K	10,2

3. SISTEMA POR

$$G1(S) = \frac{10,2e^{-2S}}{1,5663619S + 1}$$

APROXIMACIÓN MATEMÁTICA AL MODELO DE PRIMER ORDEN POR MEDIO DE LOS DATOS DE LA IDENTIFICACIÓN NO PARAMÉTRICA.

2. CÁLCULOS PARA LOS SISTEMAS POR Y SOR

VALOR FINAL (promedio de los últimos 12 datos)	10,2
$\Delta \mathbf{Y}$	10,2
ΔU	1
K	10,2
15%*Vf	1,53
45%*Vf	4,59
75%*Vf	7,65
t1(15%)	2,61806452
t2(45%)	3,21896869
t3(75%)	3,81033708
X	0,503999
ξ	0,51240412
F2(ξ), para x menor que 1	1,20235137
F3 (<i>ξ</i>)	1,1954054
\mathbf{w}_{n}	1,02527128
$(w_n)^2$	1,0511812
Factor del Numerador para SOR	10,7220482
2 * ξ *w _n	1,05070645

4. SISTEMA SOR

La función de transferencia del sistema (relación entre salida y entrada).

$$G2(S) = \frac{10,7220482e^{-2S}}{S^2 + 1,05070645S + 1,0511812}$$

APROXIMACIÓN MATEMÁTICA AL MODELO DE SEGUNDO ORDEN POR MEDIO DE LOS DATOS DE LA IDENTIFICACIÓN NO PARAMÉTRICA.