Поиск потенциала электрического поля между заряженными пластинами

Докладчик: Егоров А. Д. Научный руководитель: Казаков К. Е.

Группа ФН2-62Б

14 июня 2023 г.

Постановка задачи

Задача

Найти потенциал электрического поля между двумя бесконечными пластинами, профиль одной из которых плоский, а профиль другой описывается некоторой периодической функцией. Значения потенциала на пластинах заданы и константны.

Математическая формулировка задачи

$$\begin{cases} \Delta u(x, y) = 0, \\ u(x, y_a) = \varphi_a, \\ u(x, w(x)) = \varphi_w, \\ u(x, y) = u(x + T, y). \end{cases}$$

w(x) — периодическая функция, задающая профиль искривленной пластины, φ_a, φ_w — значения потенциалов на пластинах.

Иллюстрация области, в которой будет решаться задача

Аппроксимация уравнения Лапласа

Представим решение задачи в виде $u=u_0+u_g$, где u_0 — функция, обращающаяся в ноль на границе Γ_D , u_g — произвольная функция, значения которой совпадают с g на границе области, $u_g|_{\Gamma_D}=g$.

Задача с однородными граничными условиями первого рода на Γ_D относительно функции u_0

$$\left\{ egin{aligned} -\Delta u &= \Delta u_{
m g} & {
m B} & \Omega, \ u_0 &= 0 & {
m Ha} & \Gamma_D. \end{aligned}
ight.$$

Слабая постановка задачи для определения $u_0 \in V_D$

$$\int_{\Omega} \nabla u_0 \cdot \nabla v \, d\Omega = -\int_{\Omega} \nabla u_g \cdot \nabla v \, d\Omega,$$
$$v \in V_D = \{ v \in V : v | r_D = 0 \},$$

Пространство V состоит из произвольных заданных в Ω функций, имеющих суммируемые с квадратом первые производные.

Аппроксимация методом конечных элементов

$$\int_{\Omega} \nabla u_{0,h} \cdot \nabla \varphi_i \, d\Omega = - \int_{\Omega} \nabla u_{g,h} \cdot \nabla \varphi_i \, d\Omega, \quad i \in I.$$

где φ_i — функции, образующие базис в пространстве V_h (конечномерное пространство аппроксимирующее V), $i=\overline{1,N}$,

I — множество идексов ф-ий φ_i , образующих базис в пространстве $V_{D,h} = V_h \cap V_D(\Omega)$, Γ_D . $M = |I| < N, \; |I| > 1$.

Представляя неизвестное решение в виде линейной комбинации базисных функций: $\sum_{i=1}^{N} u_i = \sum_{i=1}^{N} u_i$

 $u_{0,h} = \sum_{i \in I} u_{0,h,i} \varphi_i, \quad u_{g,h} = \sum_{i=1} u_{g,h,i} \varphi_i,$

Получим СЛАУ для определения неизвестных коэффициентов $\{u_{0,h,i}\}$:

$$Au_{0,h}=b, (1)$$

где $A=A_{M\times M}$ — матрица жесткости, $b=b_{M\times 1}$,

$$A_{ij} = \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j \, d\Omega, \ i, j \in I, \quad b_i = -\sum_{i=1}^{N} u_{g,h,j} \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j \, d\Omega, \ i \in I.$$

Триангуляция области

Зададим правильную триангуляцию ${\mathcal T}$ области $\Omega.$

Для отдельного треугольника $T\in\mathcal{T}$ с координатами вершин $P_i=(x_i,y_i),$ $i=\overline{1,3},$ базисные функции φ_i , соответствующие этим вершинам, в T продолжены линейно.

$$\varphi_i(x_j, y_j) = \delta_{ij}, \quad \nabla \varphi_i(x, y) = \frac{1}{2|T|} \begin{pmatrix} y_{i+1} - y_{i+2} \\ x_{i+2} - x_{i+1} \end{pmatrix}, \ i, j = 1, 2, 3,$$

где |T| — площадь треугольника. Тогда формулы коэффициентов СЛАУ (1) примут вид

$$A_{ij} = \sum_{T \in \mathcal{T}} \int_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega = \sum_{T \in \mathcal{T}} \frac{1}{4|T|} \begin{pmatrix} y_{i+1} - y_{i+2} \\ x_{i+2} - x_{i+1} \end{pmatrix}^{T} \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}, \ i,j \in I,$$

$$b_{i} = -\sum_{j=1}^{N} u_{g,h,j} \sum_{T \in \mathcal{T}} \int_{T} \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, d\Omega =$$

$$= -\sum_{j=1}^{N} u_{g,h,j} \sum_{T \in \mathcal{T}} \frac{1}{4|T|} \begin{pmatrix} y_{i+1} - y_{i+2} \\ x_{i+2} - x_{i+1} \end{pmatrix}^{T} \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}, \quad i \in I.$$

Задача № 1

Условие:

$$\begin{cases} \Delta \varphi(x, y) = 0, \\ \varphi(x, 0) = \varphi(0, y) = \varphi(4, y) = 0, \\ \varphi(x, 2) = 10. \end{cases}$$

Точное решения

Разбиение области Ω с элементы с $S_{max}=0.01$

Решение на сетке с $S_{\it max} = 0.01$

$$\operatorname{avg}(\operatorname{AbsErr}) = \frac{1}{N} \sum_{i=1}^{N} |u_{\operatorname{exact},i} - u_{\operatorname{approx},i}|, \quad N$$
 — количество узлов сетки

$$\operatorname{Err}_{L_2}^2 = \|u_{\mathsf{exact}} - u_{\mathsf{approx}}\|_{L_2}^2 \approx \sum_{i=1}^{N_{\mathsf{el}}} S_i \sum_{j=1}^3 \frac{(u_{\mathsf{exact}, ij} - u_{\mathsf{approx}, ij})^2}{3}.$$

 N_{el} — количество конечных элементов, S_i — площадь i-ого конечного элемента, $u_{exact,\ ij},\ u_{approx,\ ij}$ — точное и приближенное значения решения в j-ом узле i-ого элемента.

Оценка погрешности аппроксимации решения в зависимости от длины ребра и максимальной площади конечного элемента для задачи \mathbb{N} 1

N	S _{max}	avg(h)	avg(AbsErr)	$\operatorname{Err}^2_{L_2}$
216	0.05	0.3	0.0289	0.0539
1020	0.01	0.135	0.0121	0.0147
1874	0.005	0.1	0.0044	0.0042
10778	0.001	0.041	0.00107	0.00096
22124	0.0005	0.029	0.00053	0.00046

Разбиение области Ω с $S_{max}=0.01$ и $\mathrm{avg}\left(h_{max}/h_{min}
ight)pprox 1.4$

Разбиение области Ω с $S_{max}=0.01$ и $\mathrm{avg}\left(h_{max}/h_{min}
ight)pprox 1.1$

avg(h)		$\max\left(\frac{h_{max}}{h_{min}}\right)$	avg(AbsErr)	$\operatorname{Err}^2_{L_2}$
0.3	1.1	1.5	0.03	0.05
0.3	1.4	2	0.02	0.034
0.135	1.1	1.4	0.01	0.015
0.127	1.4	2.3	0.008	0.013
0.04	1.1	1.4	0.001	0.001
0.04	1.4	2.3	0.003	0.007
0.038	1	1.5	0.0007	0.0004
0.036	1.4	2.3	0.0052	0.0047

Задача № 2

Область $\Omega = \{-\infty \leqslant x \leqslant \infty, \ w(x) \leqslant y \leqslant 2\}, \ w(x)$ — периодическая функция с периодом $T=2, \ w(x)=|x-1|+1, \forall x \in [0,2],$ потенциал на верхней пластине равен 0 B, на нижней -10 B.

Рассмотрим задачу при $x \in [0,2]$:

$$\begin{cases} \Delta \varphi(x, y) = 0, \\ \varphi(x, 2) = 0, \\ \varphi(x, w(x)) = 10, \\ \varphi(0, y) = \varphi(2, y). \end{cases}$$

Разбиение Ω с $S_{max}=0.01$

Решение на сетке с $S_{max}=0.01$

Решение на отрезке [0,6] на сетке с $S_{max} = 0.01$

Область решения	Kоординаты (x, y)	Значение потенциала $arphi$, В
1 период $w(x)$	(0.0, 1.27)	6.3158
т период W(х)	(2.0, 1.27)	6.3158
	(0.0, 1.27)	6.3093
3 периода <i>w</i> (<i>x</i>)	(2.0, 1.27)	6.2896
э периода и (х)	(4.0, 1.27)	6.2946
	(6.0, 1.27)	6.3093
1 период $w(x)$	(0.0, 1.92)	0.6551
т период $w(x)$	(2.0, 1.92)	0.6551
	(0.0, 1.92)	0.6547
3 периода <i>w</i> (<i>x</i>)	(2.0, 1.92)	0.6549
о периода и (х)	(4.0, 1.92)	0.6555
	(6.0, 1.92)	0.6547

Область $\Omega=\{-\infty\leqslant x\leqslant\infty,\ w(x)\leqslant y\leqslant2\},\ w(x)=\frac{1}{2}sin\left(\frac{\pi x}{2}\right)$, потенциал на верхней пластине равен 12 В, на нижней — -7 В.

Рассмотрим задачу при $x \in [1, 5]$:

$$\begin{cases} \Delta \varphi(x, y) = 0, \\ \varphi(x, 2) = 0, \\ \varphi(x, w(x)) = 10, \\ \varphi(0, y) = \varphi(2, y). \end{cases}$$

Разбиение Ω с $S_{max}=0.001$

Решение на сетке с $S_{max} = 0.001$

Решение на отрезке [1,13] на сетке с $S_{\it max}=0.001$

Область решения	Kоординаты (x, y)	Значение потенциала $arphi$, В
1 HODINGE W(V)	(1.0, 1.25)	3.4191
1 период $w(x)$	(5.0, 1.25)	3.4191
	(1.0, 1.25)	3.4191
3 периода $w(x)$	(5.0, 1.25)	3.4185
э периода и (х)	(9.0, 1.25)	3.4184
	(13.0, 1.25)	3.4191
1	(1.0, 1.6)	7.4927
1 период <i>w</i> (<i>x</i>)	(5.0, 1.6)	7.4927
	(1.0, 1.6)	7.4927
3 периода $w(x)$	(5.0, 1.6)	7.4926
э периода и (х)	(9.0, 1.6)	7.4927
	(13.0, 1.6)	7.4927

Заключение

В ходе курсовой работы был изучен и реализован метод конечных элементов для решения уравнения Лапласа. Реализация метода была проверена на тестовом примере с известным решением, также с ее помощью были решены и исследованы несколько вариантов исходной задачи с разными профилями пластин и заданными на них потенциалами. Все описанные подходы выполнены на языке C++ с демонстрацией результатов работы.