EXP 6502

Technical reference

Table of contents

I. Specifications

II. Architecture

- 1. Block diagram
- 2. Memory map
- 3. Bank switching
- 4. Control register
- 5. Clock switching
- 6. Expansion ports
- 7. Built-in I/O

III. Schematic diagram

- 1. CPU and memory
- 2. Address decoding
- 3. I/O
- 4. Expansion ports
- 5. Clock and reset
- 6. Power

IV. PCB layout

- 1. Top layer
- 2. Bottom layer
- 3. Jumper configuration

I. Specifications

- W65C02 microprocessor at up to 8 MHz (MOS 6502 compatible)
- 64 kB SRAM
- 32 kB EEPROM (read only)
- W65C22 Versatile Interface Adapter
- 7 general purpose expansion ports
- Bank switching, access to up to 160 kB of memory
- Software controllable glitchless clock switching (8 MHz / configurable fraction of 8 MHz)
- Power-on reset circuit
- Built-in beeper speaker
- Built-in LED
- 5 built-in push buttons with interrupt capability
- Single 5V DC power input
- CMOS only logic ICs (higher speed / less power)

II. Architecture

1. Block diagram

2. Memory map

Address	BANK 0	BANK 1	BANK 2	BANK 3	Control	Address	I/O space
\$FFFF			EXT 0 HI	EXT 1 HI	HB1/HB0	\$6FFF	
	ROM	HIRAM					ЮН
			EXT 0 LO	EXT 1 LO	LB1/LB0		
\$8000						\$6800	
\$7000	LORAM				-	\$6700	IO7 (EXP7)
\$6000	I/O	LORAM			RIO	\$6600	IO6 (EXP6)
\$5FFF			•			\$6500	IO5 (EXP5)
						\$6400	IO4 (EXP4)
	LORAM					\$6300	IO3 (EXP3)
						\$6200	IO2 (EXP2)
						\$6100	IO1 (TFT/EXP1)
\$0000						\$6000	VIA

The lower half of the address space contains 32 kB of RAM (the low RAM) and the I/O space. The I/O space sits between \$6000 and \$6FFF. It can be switched out to access the 4 kB of RAM located at the same memory addresses.

The I/O space is made of two parts. The bottom one is divided in 8 pages, each of these controlling one I/O peripheral. The first I/O page is reserved for the built in VIA. The 7 others are each attributed to a different expansion port. The top part of the I/O space, IOH, is available on every expansion port, in case they need more I/O addresses.

The upper half of the address space is divided in two blocks, each of them is multiplied in 4 banks. One bank in each block can be selected at a time, and the two blocks can have a different bank selected.

The first bank gives access to the ROM of the computer, it is selected by default at start up or after reset.

The second one gives access to 32 kB of RAM, the high RAM.

The third and fourth ones give access to memory placed on the expansion ports. The chip select signals of these banks are accessible on any expansion port.

3. Bank switching

The bank switching in the lower half of the address space is controlled by the RIO signal, bit 3 of the control register. It allows switching the window between \$6000 and \$6FFF to the I/O space, when RIO is low, or to the low RAM, when RIO is high.

The bank switching in the upper half of the address space is controlled by the LB0, LB1, HB0 and HB1 signals, bits 4 to 7 of the control register. The bits LB0 and LB1 control the bank switching in the bottom block (\$8000 to \$BFFF). HB0 and HB1 control the switching in the top block (\$C000 to \$FFFF).

The first bank, bank 0, is mapped to the ROM, in the two blocks. It is enabled in the bottom block when LB1 = 0 and LB0 = 0, and in the top block when HB1 = 0 and HB0 = 0.

The bank 1, is mapped in the two blocks to the high RAM. It is enabled in the bottom block when LB1 = 0 and LB0 = 1, and in the top block when HB1 = 0 and HB0 = 1.

The bank 2 enables the external high memory 0, EXTOHI in the top block when HB1 = 1 and HB0 = 0. It enables the external low memory 0, EXTOLO when LB1 = 1 and LB0 = 0.

The bank 3 enables the external high memory 1, EXT1HI in the top block when HB1 = 1 and HB0 = 1. It enables the external low memory 1, EXT1LO when LB1 = 1 and LB0 = 1.

4. Control register

The control register allows the software to switch the memory banks, to change the clock speed and to directly control an LED and the beeper speaker.

It is located at address \$0000 of the address space, in the zero page of the 6502 microprocessor, to allow faster access.

The function of each of its bits is given below:

7	6	5	4	3	2	1	0
HB1	HB0	LB1	LB0	RIO	SELCLK	CPUSPK	CPULED

- → Bit 0: CPULED
 - o Control signal for the built in LED.
- → Bit 1: CPUSPK
 - o Can be connected to the built in beeper speaker.
- → Bit 2: SELCLK
 - \circ Control the current clock source for the main clock ϕ_2 .
 - 0: divided clock
- 1: Oscillator clock

- → Bit 3: RIO
 - Select the I/O space or the low RAM between \$6000 and \$6FFF.
 - 0: I/O space
- 1: low RAM

- → Bit 4: LB0
 - LSB of the number of the selected bank in the bottom block of the upper half of the address space.
- → Bit 5: LB1
 - o MSB of the number of the selected bank in the bottom block of the upper half of the address space.
- → Bit 6: HB0
 - o LSB of the number of the selected bank in the top block of the upper half of the address space.
- → Bit 7: HB1
 - MSB of the number of the selected bank in the top block of the upper half of the address space.

5. Clock switching

The main clock of the computer, ϕ_2 , can be switched between two different sources: the oscillator clock or a divided version of the oscillator clock.

The default oscillator frequency is 8 MHz. A counter and a JK flip-flop generate a divided version of this clock. The dividing ratio can be configured with 4 jumpers on the computer. The ratio is between /2 when the value configured by the jumpers is set to 15, and /32 when the value is 0.

The dividing ratio follows the formula: R = 2*(16-n), where n is the value configured with the jumpers.

The oscillator clock can also be replaced by an external clock, placed on any of the expansion port. The external clock must be selected with the corresponding jumper.

6. Expansion ports

The computer has 7 general purpose expansion ports.

They give access to buffered versions of the address and data buses of the computer, to various control signals of the microprocessor and to the selecting signals for the external memory banks. They also have access to some pins of the VIA.

The expansion ports have access to the main clock, ϕ_2 , as well as the oscillator clock and the divided clock. This feature allows an expansion card to keep using one of these clocks while the computer has switched to another one, for instance for slow peripherals that couldn't handle the oscillator frequency. It is worth noting that the CPU can't access these peripherals while the clocks are different, as it would have an unpredictable behavior.

Any expansion port can take control of the computer, by setting low the EXTCTLB signal, which disables the busses of the CPU and reverses the direction of the address and data buffers. The RDY signal should be put low at the same time to effectively halt the CPU.

The expansion port 1 has an additional two pins header socket placed next to it. It is intended to be connected to the read and write pins of a TFT LCD screen (controlled by an ILI9341 IC or compatible) for write only access when the port 1 is connected to such a screen.

The following table is a pinout of an expansion port. They are all identical excepted the I/O select line IOxB which is different for each port, allowing to access each expansion card as a different I/O peripheral.

GND	2	1	GND
VDD	4	3	VDD
AE15	6	5	IOxB
AE14	8	7	CLKOSC
AE13	10	9	IOHB
AE12	12	11	CLKDIV
AE11	14	13	RW
AE10	16	15	PHI2
AE9	18	17	RSTB
AE8	20	19	PHI1
GND	22	21	GND
VDD	24	23	VDD
GND	26	25	GND
AE7	28	27	DE7
AE6	30	29	DE6
AE5	32	31	DE5
AE4	34	33	DE4
AE3	36	35	DE3
AE2	38	37	DE2
AE1	40	39	DE1
AE0	42	41	DE0
VDD	44	43	VDD
GND	46	45	GND
NMIB	48	47	IRQEXTB
RDY	50	49	EXTCTLB
EXTCLK	52	51	MLB
SYNC	54	53	VPB
EXTL0B	56	55	EXTH0B
EXTL1B	58	57	EXTH1B
CA1	60	59	CA2
CB1	62	61	CB2
GND	64	63	GND

The function of each of the pins is given below:

Signal	Active when	Function
AE0 to AE15	Х	buffered address bus
DE0 to DE7	Х	buffered data bus
IOxB	LOW	enabled when the corresponding memory page is accessed
IOHB	LOW	enabled when the top half of the I/O space is accessed
EXTLOB	LOW	enabled when the bottom bloc of bank 2 is accessed
EXTL1B	LOW	enabled when the bottom bloc of bank 3 is accessed
EXTH0B	LOW	enabled when the top bloc of bank 2 is accessed
EXTH1B	LOW	enabled when the top bloc of bank 3 is accessed
CLKOSC	Х	Clock at the output of the crystal oscillator
CLKDIV	Х	Divided clock
PHI2	Х	Main clock (CPU clock)
PHI1	Х	Inverted version of the main clock, generated by the CPU
EXTCLK	Х	Input for an eventual external clock
RSTB	LOW	Reset signal
RW	Х	Read (1) /write (0) signal
IRQEXTB	LOW	Interrupt request signal
NMIB	LOW	Non maskable interrupt request signal
EXTCTLB	LOW	Disables the data busses of the CPU and change the direction of the buffers
RDY	HIGH	When put LOW, halts the CPU. When it goes low indicate a WAI instruction
MLB	LOW	Active during the last three cycles of read-modify-write instructions of the CPU
VPB	LOW	Active when the CPU is retrieving interrupt vectors from memory
SYNC	HIGH	Active when the CPU is fetching an instruction opcode
CA1	Х	CA1 pin of the VIA
CA2	Х	CA2 pin of the VIA
CB1	Х	CB1 pin of the VIA
CB2	Х	CB2 pin of the VIA
VDD	Х	+5V DC
GND	Х	Ground

7. Built-in I/O

The computer has a built in Versatile Interface Adapter (VIA), of which the two GPIO ports are accessible on 2 pin header sockets. The CA1, CA2, CB1 and CB2 pins of the VIA are accessible on another pin header socket, as well as on every expansion port.

The bits 3, 4 and 5 of the PORT B of the VIA can be connected to an 8 to 3 priority encoder with jumpers. The inputs of the encoder are driven by 5 push buttons. When a button is pressed, the corresponding code is sent to the VIA. The encoder can generate an interrupt either directly or through the CA2 pin of the VIA, depending on the jumper configuration.

The VIA can also drive the built in beeper speaker when the jumper connected to the speaker is set accordingly.

The control register is connected to the red LED and can be connected to the speaker.

III. Schematic diagram

1. CPU and memory

2. Address decoding

3. I/O

4. Expansion ports

5. Clock and reset

6. Power

IV. PCB layout

1. Top layer

2. Bottom layer

3. Jumper configuration

The following table explains the function of each jumper on the computer:

Jumper	Connection	Function
JP0	1-2	The bit 0 of the value loaded in the divider counter at each new CLKDIV cycle is HIGH
	2-3	The bit 0 of the value loaded in the divider counter at each new CLKDIV cycle is LOW
JP1	1-2	The bit 1 of the value loaded in the divider counter at each new CLKDIV cycle is HIGH
	2-3	The bit 1 of the value loaded in the divider counter at each new CLKDIV cycle is LOW
JP2	1-2	The bit 2 of the value loaded in the divider counter at each new CLKDIV cycle is HIGH
	2-3	The bit 2 of the value loaded in the divider counter at each new CLKDIV cycle is LOW
JP3	1-2	The bit 3 of the value loaded in the divider counter at each new CLKDIV cycle is HIGH
	2-3	The bit 3 of the value loaded in the divider counter at each new CLKDIV cycle is LOW
JP4	None	Open connection
	1-2	Connect output SO of the encoder to the pin 3 of the PORT B of the VIA
JP5	None	Open connection
	1-2	Connect output S1 of the encoder to the pin 4 of the PORT B of the VIA
JP6	None	Open connection
	1-2	Connect output S2 of the encoder to the pin 6 of the PORT B of the VIA
JP7	1-2	The encoder directly drives the IRQEXTB signal
	2-3	The encoder is connected to the CA2 pin of the VIA, to trigger an interrupt
JP8	1-2	The speaker is connected to the pin 7 of the PORT B of the VIA (timer 1 output)
	2-3	The speaker is connected to the pin 1 of the control register, CPUSPK
JP9	1-2	The CLKOSC clock comes from the built in crystal oscillator
	2-3	The CLKOSC clock is connected to the EXTCLK pin of the expansion connectors