# T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte V)*





Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

### Recapitulando

- Anteriormente, vimos como lidar com problemas de classificação que envolvem mais de duas classes, também chamados de problemas de classificação multiclasses através das abordagens:
  - Um-Contra-Resto
  - Um-Contra-Um
  - Regressão Softmax
- Neste tópico, veremos as *métricas* mais utilizadas para medir o *desempenho de classificadores*.

### Métricas para avaliação de classificadores

- As métricas para avalição do desempenho de classificadores que estudaremos são:
  - Matriz de confusão
    - Várias métricas podem ser extraídas da matriz.
  - Pontuação-F1 (*F1-score*)
  - Curva Característica Operacional do Receptor (do inglês, Receiver Operating Characteristic - ROC)

$$\boldsymbol{C} = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1Q} \\ C_{21} & C_{22} & \dots & C_{2Q} \\ \vdots & \ddots & \vdots \\ C_{Q1} & C_{Q2} & \dots & C_{QQ} \end{bmatrix}$$

- O nome, *matriz de confusão* mostra o quanto um classificador está se *confundindo*.
- A matriz permite verificar quais classes o classificador tem maior dificuldade em classificar.
- A matriz de confusão contabiliza o número de classificações corretas e incorretas para cada uma das Q classes existentes.
- É uma matriz quadrada com dimensões  $\mathbb{R}^{Q \times Q}$ .

$$\boldsymbol{C} = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1Q} \\ C_{21} & C_{22} & & C_{2Q} \\ \vdots & \ddots & \vdots \\ C_{Q1} & C_{Q2} & \dots & C_{QQ} \end{bmatrix}$$

- A *diagonal principal* de *C* fornece o número de *classificações corretas*.
- A q-ésima linha indica o total de exemplos que foram classificados como pertencentes a q-ésima classe, incluindo exemplos que pertencem e não pertencem à classe.
- A q-ésima coluna indica o total de exemplos que realmente pertencem à qésima classe, incluindo classificações corretas e incorretas.



Quantidade de exemplos realmente pertencentes à classe 1.

- $C_{11}$  indica quantos exemplos da classe 1 foram corretamente atribuídos à classe 1.
- $C_{12}$  indica quantos exemplos da classe 2 foram atribuídos à classe 1.



Rótulos: classes a que realmente

pertencem os exemplos

### Matriz de confusão para caso binário (Q=2)



**Classes Verdadeiras** 

- *Verdadeiros Positivos* (TP): número de exemplos da classe positiva,  $C_2$ , classificados corretamente.
- Verdadeiros Negativos (TN): número de exemplos da classe negativa,  $C_1$ , classificados corretamente.
- Falsos Positivos (FP): número de exemplos atribuídos à classe positiva, mas que pertencem à classe negativa.
- Falsos Negativos (FN): número de exemplos atribuídos à classe negativa, mas que pertencem à classe positiva.

Nós podemos calcular algumas métricas de desempenho importantes a partir das informações contidas na matriz de confusão.

### Acurácia

$$acurácia = \frac{TP + TN}{TP + FN + FP + TN}$$

- Acurácia mede a proporção de exemplos classificados corretamente em relação ao total de exemplos avaliados.
- Em outras palavras, a acurácia fornece uma indicação de quão bem o modelo está fazendo suas predições corretas em comparação com todas as previsões feitas.
- É uma métrica útil para avaliar a performance geral do modelo.

### Acurácia

$$acurácia = \frac{TP + TN}{TP + FN + FP + TN}$$

- A acurácia é, geralmente, a primeira escolha para medir a qualidade de um classificador.
- Entretanto, ela pode ser *enganosa com problemas desbalanceados*.
  - Problemas onde uma ou algumas classes têm muito mais exemplos do que as demais.
- Nesses casos, ela pode nos levar a concluir que um classificador ruim é muito bom.
- Portanto, ela só é usada para avaliar o desempenho geral de um classificador quando as classes estão balanceadas.

### Acurácia

• Analisando a equação da acurácia, o que aconteceria se TP fosse muito maior do que TN, FN e FP?

$$\lim_{TP\to\infty} acurácia = \lim_{TP\to\infty} \left( \frac{TP + TN}{TP + TN + FN + FP} \right) = \frac{TP}{TP} = 1.$$

- O mesmo aconteceria se TN fosse muito maior do que TP, FN e FP
- Portanto, quando temos *classes desbalanceadas, precisamos analisar outras métricas*.
- Ela também é enganosa quando os custos de falsos positivos e falsos negativos não são iguais.

### Precisão

$$precisão = \frac{TP}{FP + TP}$$

| TN | FN |
|----|----|
| FP | TP |

- Precisão é a proporção de exemplos da classe positiva corretamente classificados (TP) em relação a todos os exemplos atribuídos à classe positiva (TP + FP).
- É uma boa medida para determinar a qualidade do classificador quando os custos de falsos positivos são altos.
  - Por exemplo, na classificação de spams (verdadeiro positivo), um falso positivo significa que um ham (verdadeiro negativo) foi classificado como spam. O usuário de email pode perder emails importantes se a precisão for baixa.

### Recall

$$recall = \frac{TP}{FN + TP}$$



- Recall ou sensibilidade é a proporção de exemplos da classe positiva corretamente classificados.
- O recall calcula quantos exemplos realmente positivos o classificador captura em relação a todos exemplos positivos.
- É uma boa medida para determinar a qualidade de um classificador quando os custos de falsos negativos são altos.
  - Por exemplo, na classificação de doenças, se um paciente doente (verdadeiro positivo) for classificado como não doente (falso negativo). O custo associado ao falso negativo será extremamente alto se a doença for contagiosa.

### Especificidade

$$especificidade = \frac{TN}{TN + FP}$$

 Especificidade ou taxa de verdadeiros negativos é a proporção de exemplos da classe negativa corretamente classificados.



### Taxas de falso positivo e negativo

$$TFN = \frac{FN}{FN + TP}$$



- Taxa de falso negativo (TFN): é a proporção de exemplos da classe positiva classificados incorretamente.
- Taxa de falso positivo (TFP): é a proporção de exemplos da classe negativa classificados incorretamente.

$$TFP = \frac{FP}{FP + TN}$$



### OK, consigo calcular as métricas para problemas binários, mas e quando Q > 2?

### Matriz de confusão para caso multiclasses (Q > 2)

- É possível calcular as métricas anteriores para o cenário multiclasses (i.e., Q > 2).
- Para isso, basta *selecionar*, uma vez, *cada classe como sendo a classe positiva*, enquanto todas as demais classes formam a classe negativa.
  - Estratégia *um-contra-o-resto*.
  - lacktriangle Ou seja, transformamos um problema com  $oldsymbol{Q}$  classes em  $oldsymbol{Q}$  problemas binários.
- Assim, obtém-se os valores das *métricas para cada uma das Q classes*.
- Vejamos um exemplo para Q=3, ou seja,  $\mathcal{C}_1$ ,  $\mathcal{C}_2$  e  $\mathcal{C}_3$ .

### Matriz de confusão para caso multiclasses (Q = 3)

Classe  $C_1$  é a positiva.

|                     | + (C <sub>1</sub> ) | Verdadeiros<br>Positivos (TP) | Falsos<br>Positivos (FP)      | Falsos<br>Positivos (FP)      |
|---------------------|---------------------|-------------------------------|-------------------------------|-------------------------------|
| Classes<br>Preditas | - (C <sub>2</sub> ) | Falsos<br>Negativos (FN)      | Verdadeiros<br>Negativos (TN) | Verdadeiros<br>Negativos (TN) |
|                     | - (C <sub>3</sub> ) | Falsos<br>Negativos (FN)      | Verdadeiros<br>Negativos (TN) | Verdadeiros<br>Negativos (TN) |
|                     |                     | + (C <sub>1</sub> )           | - (C <sub>2</sub> )           | - (C <sub>3</sub> )           |
|                     |                     | Classes Verdadeiras           |                               |                               |

### Matriz de confusão para caso multiclasses (Q = 3)

Classe  $C_2$  é a positiva.

|                     | - (C <sub>1</sub> ) | Verdadeiros<br>Negativos (TN) | Falsos<br>Negativos (FN)      | Verdadeiros<br>Negativos (TN) |
|---------------------|---------------------|-------------------------------|-------------------------------|-------------------------------|
| Classes<br>Preditas | + (C <sub>2</sub> ) | Falsos<br>Positivos (FP)      | Verdadeiros<br>Positivos (TP) | Falsos<br>Positivos (FP)      |
|                     | - (C <sub>3</sub> ) | Verdadeiros<br>Negativos (TN) | Falsos<br>Negativos (FN)      | Verdadeiros<br>Negativos (TN) |
|                     |                     | - (C <sub>1</sub> )           | + (C <sub>2</sub> )           | - (C <sub>3</sub> )           |
|                     |                     | Classes Verdadeiras           |                               |                               |

### Matriz de confusão para caso multiclasses (Q = 3)

Classe  $C_3$  é a positiva.

|                     | - (C <sub>1</sub> ) | Verdadeiros<br>Negativos (TN) | Verdadeiros<br>Negativos (TN) | Falsos<br>Negativos (FN)      |
|---------------------|---------------------|-------------------------------|-------------------------------|-------------------------------|
| Classes<br>Preditas | - (C <sub>2</sub> ) | Verdadeiros<br>Negativos (TN) | Verdadeiros<br>Negativos (TN) | Falsos<br>Negativos (FN)      |
|                     | + (C <sub>3</sub> ) | Falsos<br>Positivos (FP)      | Falsos<br>Positivos (FP)      | Verdadeiros<br>Positivos (TP) |
|                     |                     | - (C <sub>1</sub> )           | - (C <sub>2</sub> )           | + (C <sub>3</sub> )           |
|                     |                     | Classes Verdadeiras           |                               |                               |

### Precisão versus recall

$$precisão = \frac{TP}{FP + TP}$$

$$recall = \frac{\text{TP}}{\text{FN} + \text{TP}}$$

- A precisão não fornece informações a respeito da quantidade de falsos negativos.
- Por outro lado, o recall não fornece informações a respeito da quantidade de falsos positivos.
- Mas e se os custos associados a falsos positivos e negativos forem iguais?
- Nesse caso, para analisarmos o desempenho de um classificador, precisamos de uma métrica que combine as duas.

#### F1-score

- O F1-score combina as duas métricas em uma única.
- A métrica dá a mesma importância a precisão e para o recall.
- Valores de  $F_1$  próximos de 1 indicam que o *classificador* obteve ótimos resultados tanto de *precisão* quanto de *recall*.
- Em outras palavras,  $F_1 \approx 1$  significa que FN e FP  $\approx 0$ .

$$F_1 = rac{ ext{TP}}{ ext{TP} + rac{ ext{FN} + ext{FP}}{2}} = 2rac{ ext{precisão} imes recall}{ ext{precisão} + recall}.$$

### Curva característica de operação do receptor



- Também conhecida como curva ROC.
- É um gráfico que mostra o desempenho de um *classificador binário* conforme seu *limiar de quantização (ou discriminação), T*, é variado.
- A curva é criada plotando-se o recall em função da taxa de falsos positivos para vários valores de T.
- Quanto mais à esquerda e para cima estiver a curva ROC de um classificador, melhor será o seu desempenho.

### Curva característica de operação do receptor



- A linha em *vermelho*, indica um *classificador puramente aleatório*.
  - Um bom *classificador* fica o mais à esquerda possível dessa linha.
- Classes sem sobreposição apresentam uma curva ROC paralela aos eixos do recall e da TFP (linha azul tracejada).
- Classes sem sobreposição têm classificação perfeita quando T=0.5, representando 100% de **recall** (i.e., sem falsos negativos) e 100% de **especificidade** (i.e., sem falsos positivos).

### Como as curvas ROC são obtidas?



- Em geral, classificadores binários apresentam em sua saída a probabilidade para um exemplo de entrada.
- Em seguida, essas probabilidades são discretizadas para que se tenha a decisão final.
- Por exemplo, se o valor de  $h_a(x(i))$  ultrapassa um determinado *limiar*, T, ele é mapeado no valor 1 (classe positiva,  $C_2$ ).
- Caso contrário, ele é mapeado no valor 0 (classe negativa,  $C_1$ ).

### Como as curvas ROC são obtidas?



- Sendo assim, ao plotarmos a taxa de verdadeiro positivo (ou recall) versus a taxa de falso positivo para diferentes valores de limiar, T, obtemos a curva ROC associada a um classificador binário.
- A escolha do limiar de decisão diferente de 0.5 pode melhorar o desempenho de um classificador binário em situações de desbalanceamento de classes, custos assimétricos de erro (i.e., precisão ou recall).

### Comparando classificadores com a curva ROC



- Usamos curvas ROC para comparar classificadores binários.
- Para isso, criamos uma *curva ROC* para cada um deles.
- Por exemplo, considerem as curvas na figura ao lado.
- Para decidir qual o melhor classificador, podemos analisar a área sob a curva (ASC) ROC.
- ASC é outra métrica da qualidade de um classificador.
  - É um número entre 0 e 1. Quanto maior a ASC, melhor será o classificador.



## Qual é o melhor classificador usando esta métrica?

### Comparando classificadores com a curva ROC



 O classificador A tem melhor desempenho, pois tem ASC maior do que a do classificador B.

#### Vantagens da curva ROC

- Possibilita a análise de diferentes métricas ao longo da variação do limiar de quantização.
- Auxilia na avaliação de diferentes limiares de quantização.

#### Desvantagens

- Usada em problemas de classificação binária.
- No caso multiclasses, devemos utilizar as estratégias um-contra-o-resto ou um-contra-um e plotar várias curvas ROC.

### Tarefas

- Quiz: "T320 Quiz Classificação (Parte V)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #5.
  - Pode ser baixado do MS Teams ou do GitHub.
  - Pode ser respondido através do link acima (na nuvem) ou localmente.
  - Instruções para resolução e entrega dos laboratórios.

### Obrigado!

### verdadeiro positivo falso positivo Você está Você está grávida. grávido. Você não Você não está grávida. está grávido.

falso negativo

verdadeiro negativo

#### Taxa de verdadeiros positivos



Curva para classes sem sobreposição

