Mediation

Adam Garber

Norwegian University of Science and Technology - A Course in MplusAutomation

	May 30, 2021	
Lab preparation		
Load packages		
library(mediation)		

library(tidyverse)
library(MplusAutomation)
library(here)
library(gt)
library(gtsummary)

Change starting location to folder 15-mediation

```
source("rep_functions.R")
change_here(glue("{project_location}/15-mediation"))
here()
## [1] "/Users/agarber/github/NTNU-workshop/15-mediation"
```

Lab outline

- 1. Estimate a mediation model using the {mediation} package
- 2. Estimate the same model using the Structural Equation Modeling (SEM) framework with $\{MplusAutomation\}$
- 3. For the second empirical example, estimate parallel models using the mediation and SEM methods

A quick detour - Equivalent models

 $Figure.\ \ Picture\ adapted\ from\ SEM\ slides\ by\ Sacha\ Epskamp\ http://sachaepskamp.com/files/SEM22019/SEM2_2019_Week2_slides.pdf$

The empirical examples of mediation used in this exercise are from the following article

Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). Mediation: R package for causal mediation analysis.

https://cran.r-project.org/web/packages/mediation/vignettes/mediation.pdf

Data source for example 1

Brader T, Valentino NA, Suhat E (2008). What Triggers Public Opposition to Immigration? Anxiety, Group Cues, and Immigration. American Journal of Political Science, 52(4), 959–978.

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-5907.2008.00353.x

To see metadata run - ?framing

Read in the framing dataset

```
set.seed(4212020)

data("framing", package = "mediation")

framing <- droplevels(framing) %>% # drop factor levels with frequency zero
    mutate(emo = emo - 2)
```

Take a look at variables used in the mediation model

Name	Labels
emo	Measure of subjects' negative feeling during the experiment (1-10). 1 indicates the most negative feeling.
treat	Framing codition interaction term. News story with conditions tone (Negative/Positive) and ethnic identity
$cong_mesg$	Whether subjects requested sending an anti-immigration message to Congress on their behalf.
age	Age of subject (18-85)
educ	Education (1-4)
gender	Gender (Male/Female)
income	Subjects' income, measured as a 19-point scale.

Look at descriptives table for the framing dataset using {gtsummary}

Characteristic	N = 265
emo	4.97 (2.77)
treat	68~(26%)
$cong_mesg$	88 (33%)
age	48 (16)
educ	
less than high school	20~(7.5%)
high school	92 (35%)
some college	70~(26%)
bachelor's degree or higher	83 (31%)
gender	
male	126 (48%)
female	139 (52%)
income	11 (4)

Estimate a mediation model in R using {mediation}

step 1: fit a linear model of the mediator (emo) regressed on treatment (treat) and pre-treatment covariates

step 2: fit a general linear model (glm) with the binary outcome variable cong_mesg regressed on treatment (treat), mediator, and pre-treatment covariates

step 3: estimate the mediation effects with bias corrected bootstrapped confidence intervals

```
med_out <- mediate(med_fit, out_fit, treat = "treat", mediator = "emo",</pre>
                  boot = TRUE, boot.ci.type ="bca", sims = 100)
summary(med_out)
##
## Causal Mediation Analysis
##
## Nonparametric Bootstrap Confidence Intervals with the BCa Method
##
                           Estimate 95% CI Lower 95% CI Upper p-value
## ACME (control)
                             0.0812
                                         0.0238
                                                        0.13 <2e-16 ***
## ACME (treated)
                             0.0822
                                          0.0238
                                                        0.14 <2e-16 ***
## ADE (control)
                                                                0.72
                             0.0112
                                         -0.0921
                                                        0.12
                                        -0.1031
## ADE (treated)
                             0.0122
                                                        0.13
                                                                0.72
## Total Effect
                             0.0934
                                        -0.0200
                                                        0.26
                                                                0.16
## Prop. Mediated (control)
                             0.8698
                                                      668.91
                                                                0.16
                                       420.8309
## Prop. Mediated (treated)
                             0.8804
                                      367.5789
                                                      584.02
                                                                0.16
## ACME (average)
                             0.0817
                                        0.0228
                                                        0.13 <2e-16 ***
## ADE (average)
                             0.0117
                                        -0.0976
                                                        0.13
                                                               0.72
                             0.8751
                                                                0.16
## Prop. Mediated (average)
                                       394.2049
                                                      626.46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Sample Size Used: 265
##
## Simulations: 100
```

Run mediation model 1 using the Structural Equation Modeling framework with {MplusAutomation}

```
m1_mediate <- mplusObject(
    TITLE = "m1 mediate framing",
    VARIABLE =
        "usevar =
            cong_mesg emo treat age
        educ gender income;

        categorical = cong_mesg; ! outcome is binary",

ANALYSIS = "bootstrap = 500; ! set number of bootstrap samples (500 for example purposes)" ,

MODEL =
    "emo on treat age educ gender income; ! mediator linear regression
        cong_mesg on emo treat age educ gender income; ! outcome GLM regression</pre>
```

Model 1 Mplus output

STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

	Estimate	S.E.	Est./S.E.	P-Value	
Effects from TREAT to CONG_MES					
Total Total indirect	0.109 0.101	0.075 0.031	1.453 3.253	0.146 0.001	
Specific indirect CONG_MES EMO TREAT	0.101	0.031	3.253	0.001	
Direct CONG_MES TREAT	0.008	0.071	0.119	0.905	

Data source for example 2

Vinokur AD, Price RH, Schul Y (1995). Impact of the JOBS Intervention on Unemployed Workers Varying in Risk for Depression. American Journal of Community Psychology, 23(1), 39–74.

 $\rm https://link.springer.com/content/pdf/10.1007/BF02506922.pdf$

To see metadata run - ?jobs

Note: For this example we will ignore the issue of non-compliance addressed in Tingley et al. (2014) as this causal inference topic is beyond the scope of this course.

Read in the data from the job search intervention study (jobs)

```
data("jobs", package = "mediation")
```

Take a look at variables used in the mediation model

Name	Label
depress2 (Y)	Measure of depressive symptoms post-treatment.
treat (X)	Indicator variable for whether participant was randomly selected for the JOBS II training program. $1 = as$
job_dich (Z)	The job_seek measure recoded into two categories of high and low. 1 = high job search self-efficacy.
sex	Indicator variable for sex. $1 = female$
age	Age in years.
marital	Factor with five categories for marital status.
nonwhite	Indicator variable for race. $1 = \text{nonwhite}$.
educ	Factor with five categories for educational attainment.
income	Factor with five categories for level of income.

Look at descriptives of the framing dataset using {gtsummary}

step 1: fit a binomial logist model using glm with the binary mediator (job_dich) regressed on treatment (treat) and pre-treatment covariates

step 2: fit a linear model with depression score (depress2) regressed on treatment, mediator, and pre-treatment covariates

step 3: Estimate the mediation effects with bias corrected bootstrapped confidence intervals.

```
## Causal Mediation Analysis
## Nonparametric Bootstrap Confidence Intervals with the BCa Method
                 Estimate 95% CI Lower 95% CI Upper p-value
##
## ACME
                  -0.0148
                               -0.0536
                                               0.00
                                                       0.02 *
## ADE
                  -0.0306
                                               0.04
                                                       0.56
                               -0.1032
## Total Effect
                  -0.0454
                               -0.1303
                                               0.03
                                                       0.28
                               -1.2982
## Prop. Mediated 0.3257
                                               4.91
                                                      0.26
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Sample Size Used: 899
##
##
## Simulations: 100
```

Run mediation model 2 as a SEM model with {MplusAutomation}

```
m2_jmediate <- mplusObject(</pre>
  TITLE = "m2 jobs mediate",
  VARIABLE =
   "usevar = treat sex
   age marital nonwhite
   educ income depress2 job_dich;
   categorical = job_dich; ! moderator is binary",
  ANALYSIS =
  "bootstrap = 500; ! set number of bootstrap draws (500 for example purposes)",
  "job_dich on treat sex age marital nonwhite educ income;
   depress2 on job_dich treat sex age marital nonwhite educ income;
   Model indirect:
   depress2 ind treat; ",
  OUTPUT =
    "sampstat standardized cinterval (bcbootstrap); ! bias-corrected bootstrap",
 PLOT = "type=plot2;",
  usevariables = colnames(jobs),
 rdata = jobs)
```

Model 2 Mplus output

STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Е	stimate	S.E.	Est./S.E.	P-Value
Effects from TREAT to	DEPRESS2			
Total Total indirect	-0.043 -0.029	0.033 0.012	-1.306 -2.385	0.192 0.017
Specific indirect 1 DEPRESS2 JOB_DICH TREAT	-0.029	0.012	-2.385	0.017
Direct DEPRESS2 TREAT	-0.015	0.033	-0.440	0.660

Run model 3 including the mediator*treatement interaction (potential outcomes framework)

For further reading on this topic see chapter 3 of Regression and mediation analysis using Mplus (Muthen et al., 2017)


```
m3_jmed <- mplusObject(

TITLE = "m3 MX jobs mediate",

VARIABLE =
   "usevar =
        treat sex age marital nonwhite
        educ income depress2 job_dich mx; ",

DEFINE = "mx = job_dich*treat;",

ANALYSIS = "bootstrap = 500; ",

MODEL =
   "job_dich on treat sex age marital nonwhite educ income;
   depress2 on job_dich treat mx sex age marital nonwhite educ income;

Model indirect:
   depress2 MOD job_dich mx treat; ",

OUTPUT =
   "sampstat cinterval(bootstrap); ",</pre>
```

Model 3 Mplus output

TOTAL, INDIRECT, AND DIRECT EFFECTS BASED ON COUNTERFACTUALS (CAUSALLY-DEFINED EFFECTS)

Effects from TREAT to DEPRESS2

	Estimate	S.E.	Est./S.E.	P-Value	
Tot natural IE	-0.026	0.011	-2.357	0.018	
Pure natural DE	-0.022	0.055	-0.401	0.688	
Total effect	-0.048	0.055	-0.878	0.380	
Other effects					
Pure natural IE	-0.023	0.012	-1.938	0.053	
Tot natural DE	-0.026	0.052	-0.494	0.621	
Total effect	-0.048	0.055	-0.878	0.380	

References

Brader T, Valentino NA, Suhat E (2008). What Triggers Public Opposition to Immigration? Anxiety, Group Cues, and Immigration. American Journal of Political Science, 52(4), 959–978.

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Ingels, S. J., Pratt, D. J., Herget, D. R., Burns, L. J., Dever, J. A., Ottem, R., . . . & Leinwand, S. (2011). High School Longitudinal Study of 2009 (HSLS: 09): Base-Year Data File Documentation. NCES 2011-328. National Center for Education Statistics.

Muthén, B. O., Muthén, L. K., & Asparouhov, T. (2017). Regression and mediation analysis using Mplus. Los Angeles, CA: Muthén & Muthén.

Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). Mediation: R package for causal mediation analysis.

Vinokur AD, Price RH, Schul Y (1995). Impact of the JOBS Intervention on Unemployed Workers Varying in Risk for Depression. American Journal of Community Psychology, 23(1), 39–74.

Wickham et al., (2019). Welcome to the tidy verse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686