In general, a vector field is a function whose domain is a set of points in \mathbb{R}^2 or \mathbb{R}^3 and whose range is a set of vectors in V_2 or V_3 .

Definition 1. Let D be a set in \mathbb{R}^2 . A **vector field** on \mathbb{R}^2 is a function \mathbf{F} that assigns to each point (x,y) in D a two-dimensional vector $\mathbf{F}(x,y)$.

Since $\mathbf{F}(x,y)$ is a two-dimensional vector, we can write it in terms of its **component functions** P and Q as follows:

$$\mathbf{F}(x,y) = P(x,y) \mathbf{i} + Q(x,y) \mathbf{j}$$

P and Q are scalar functions and sometimes called ${\bf scalar}$ fields to distinguish them from vector fields.

Definition 2. A vector field \mathbf{F} is called a **conservative vector field** if it is the gradient of some scalar function, that is, if $\mathbf{F} = \nabla f$. f is called a **potential function** for \mathbf{F} .