Lösungsvorschlag

Aufgabe 1: Kostenanalyse

	Anforderungen	Modelllösungen	
A1	Der Prüfling	Grundsätzlich gilt für jede Teilleistung: Der gewählte Lösungsansatz und Lösungsweg müssen nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden an dieser Stelle mit entsprechender Punktzahl bewertet. Bemerkung: Bei Multiple-Choice-Aufgaben gilt der jeweils angegebene Hinweis.	BE
1a	berechnet die Auslenkung y ₁ (t) des Pendels P ₁ jeweils nach einer und nach 1,25 Sekunden.	Für die Auslenkungsfunktion gilt $y_1(t)=3\cdot\sin(6\pi\cdot t)$. Es gilt $y(1)=0$ und $y(1,25)=-3$. Nach einer Sekunde beträgt die Auslenkung also 0 mm (das Pendel befindet sich wieder in Ruhelage) und nach 1,25 Sekunden beträgt die Auslenkung 3 mm nach links.	3
1b	entscheidet be- gründet, die Aus- lenkungsfunktion welches der bei- den Pendel in der Abbildung darge- stellt ist.	Die beiden Auslenkungsfunktionen unterscheiden sich nur in der Frequenz voneinander. Ablesen zeigt, dass innerhalb einer Sekunde drei Perioden durchlaufen werden. Somit gilt für die Frequenz $f=3$. Also gehört der Graph zur Auslenkungsfunktion für das Pendel P_1 .	3
1c	berechnet für das Pendel P ₂ die Zeit- punkte innerhalb der ersten halben Sekunde, an denen die Auslenkung genau 1 mm nach rechts betrug.	Für die Auslenkungsfunktion gilt $y_2(t) = 3 \cdot \sin(8\pi \cdot t)$. Da eine Auslenkung nach rechts gesucht ist, muss gegen den Wert 1 gelöst werden. Mit CAS finde $y_2(t) = 1 \iff t \approx 0,01 \lor t \approx 0,11 \lor t \approx 0,26 \lor t \approx 0,36$. Nach ca. 0,01; 0,11; 0,26 und 0,36 Sekunden beträgt die Auslenkung genau 1 mm nach rechts.	4
1d	zeigt, dass Y(t) eine Stammfunk- tion der Auslen- kungsfunktion des Pendels P ₂ ist.	Nach dem Hauptsatz der Differenzial- und Integralrechnung genügt es zu zeigen, dass $Y'(t) = y_2(t)$ gilt. Innere Funktion: $8\pi \cdot t \to 8\pi$. Äußere Funktion: $-\frac{3}{8\pi} \cdot \cos(y) \to \frac{3}{8\pi} \cdot \sin(y)$. Die Gesamtableitung ist das Produkt aus innerer und äußerer Ableitung. Es gilt $Y'(t) = 8\pi \cdot \frac{3}{8\pi} \cdot \sin(8\pi \cdot t) = y_2(t)$ und somit ist Y eine Stammfunktion der Auslenkungsfunktion des Pendels P_2 .	4
1e	ermittelt die Anzahl der Defekte für das Uhrenmodell x ₁₀ .	Es gilt 2,5 = $\frac{25+x_{10}}{10}$ \Leftrightarrow $x_{10}=0$. Somit wurde das Uhrenmodell x_{10} 0-mal als defekt reklamiert.	3
1f	beurteilt die beiden Behaup- tungen des Mitar- beiters.	Für den Median gilt hier $x_{Med} = 0.5 \cdot (x_5 \cdot x_6) = 3$. Da $3 > 2.5$ gilt, ist die erste Behauptung wahr. Die zweite Behauptung ist falsch. Ein einfaches Gegenbeispiel ist jede Datenreihe, die nur aus einem Wert besteht. In diesem Fall gilt stets $\bar{x} = x_{Med}$.	5
			22