CSE 350 Digital Electronics and Pulse Techniques

Signal Generator:
Square Wave and Triangular Wave

Course Instructor: Shomen Kundu (SDU)

Mail: shomen.kundu@bracu.ac.bd

Desk: 4N166

Signal Generator

We will study two types of signal generator

- i. Square wave generator
- ii. Triangular wave generator

Basic RC circuit

We know for capacitor,

$$I_C = C \frac{dV_C}{dt}$$

From the circuit,

$$\frac{V_{c} - V_{s}}{R} + C \frac{dV_{c}}{dt} = 0$$

$$\Rightarrow \int_{V_{c}(t_{1})}^{V_{c}(t_{2})} \frac{dV_{c}}{V_{c} - V_{s}} = -\frac{1}{RC} \int_{t_{1}}^{t_{2}} dt$$

$$\Rightarrow V_C(t_2) = V_S + (V_C(t_1) - V_S) e^{-(\frac{t_2 - t_1}{\tau})}$$

Basic RC circuit

We can see if $t_2 \to \infty$, then, $V_C(\infty) = V_S$ If $t_1 = 0$, $t_2 = t$, $\tau = RC$ we can simply use this form, $V_C(t) = V_C(\infty) + (V_C(0) - V(\infty)) e^{-\frac{t}{\tau}}$

Here is the square wave generator,

$$\Rightarrow V_{\chi}(t_2) = V_0 + (V_{\chi}(t_1) - V_0) e^{-(\frac{t_2 - t_1}{\tau})}$$

$$\Rightarrow t_2 - t_1 = \tau \ln \frac{V_o - V_x(t_1)}{V_o - V_x(t_2)}$$
 ----- (i)

Higher threshold voltage,

$$V_{TH} = V_H \frac{R_1}{R_1 + R_2}$$

Lower threshold voltage,

$$V_{TL} = V_L \frac{R_1}{R_1 + R_2}$$

Case 01: $0 < t < T_1$ Initially, $V_x(t=0) = V_{TL} \ and, V_o = V_H$ $Untill, V_x < V_{TH},$ $the \ output \ will \ remain \ at \ V_H$ But when $V_x > V_{TH}$ output will change.

We can use eq (i), $t_2 = T_1$, and $t_1 = 0$

$$T_1 - 0 = \tau \ln \frac{V_o - V(0)}{V_o - V(T_1)}$$

$$T_1 = R_x C_x \ln \frac{V_H - V_{TL}}{V_H - V_{TH}}$$

Case 02: $T_1 < t < T$ Initially, $V_x(t = T_1) = V_{TH} \ and, V_o = V_L$ Untill, $V_x > V_{TL}$, the output will remain at V_L But when $V_x < V_{TL}$ output will change.

We can use eq (i), $t_2 = T$, and $t_1 = T_1$

$$T - T_1 = \tau \ln \frac{V_o - V(T_1)}{V_o - V(T)}$$

$$T_2 = R_x C_x \ln \frac{V_L - V_{TH}}{V_L - V_{TL}}$$

Square wave generator Formulas

$$\dot{V}_{TL} = V_L \frac{R_1}{R_1 + R_2}$$

$$V_{TH} = V_H \frac{R_1}{R_1 + R_2}$$

$$T_2 = R_x C_x \ln \frac{V_L - V_{TH}}{V_L - V_{TL}}$$
 $T_1 = R_x C_x \ln \frac{V_H - V_{TL}}{V_H - V_{TH}}$

$$T_1 = R_x C_x \ln \frac{V_H - V_{TL}}{V_H - V_{TH}}$$

Duty cycle =
$$\frac{T_1}{T_1+T_2}$$
 * 100% or $\frac{T_1}{T}$ * 100%

For the Schmitt-trigger oscillator the saturation output voltages are +10V and -5V. $R_1=R_2=20~k\Omega$ and $C_x=0.01~\mu F$ and $R_x=10~k\Omega$. Determine the frequency of oscillation and duty cycle.

Find the duty cycle of the oscillator if the power supply of the OP-AMP is symmetrical.

[Hints: Symmetrical power supply

$$V_H = +V_{sat} \text{ and } V_L = -V_{sat}$$

Triangular wave generator

Here is the circuit of the triangular wave generator.

Integrator

Here,
$$I_C = C \frac{dV_C}{dt} = \frac{0 - V_S}{R_i}$$

 V_s is a constant voltage.

$$\Rightarrow \int_{V_{innital}}^{V_C} \frac{dV_c}{V_s} = -\frac{1}{R_i C} \int_{t_1}^t dt$$

$$V_C(t) = V_{initial} - \frac{V_S}{R_i C} (t - t_i)$$

Integrator

Triangular

$$\dot{V}_{TH} = -\frac{R_1}{R_2} V_L = -\frac{R}{pR} V_L = -\frac{V_L}{p}$$

$$V_{TL} = -\frac{V_H}{p}$$

CSE 350

Triangular

Case 01:
$$0 < t < T_1$$

$$V_C(t) = V_{initial} - \frac{V_S}{R_i C}(t - 0)$$

$$V_C(T_1) = V_{TL} \text{ and } V_C(0) = V_{TH}$$

$$T_1 = R_i C \left(\frac{V_{TH} - V_{TL}}{V_H} \right)$$

Case 02:
$$T_1 < t < T$$

Similarly,
$$T_2 = R_i C \left(\frac{V_{TL} - V_{TH}}{V_L} \right)$$

CSE 350

Formula of Triangular Wave

$$P = \frac{R_2}{R_1}, \qquad V_{TH} = -\frac{V_L}{p}, \qquad V_{TL} = -\frac{V_H}{p}$$

$$T_1 = R_i C \left(\frac{V_{TH} - V_{TL}}{V_H}\right)$$

$$T_2 = R_i C \left(\frac{V_{TL} - V_{TH}}{V_L}\right)$$

$$T = T1 + T2, \qquad f = \frac{1}{T},$$

$$Duty Cycle(Square) = \frac{T_1}{T_1 + T_2} * 100\%$$

$$Duty Cycle(Triangular) = \frac{T_2}{T_1 + T_2} * 100\%$$

$$Special Case: When $V_L = -V_H$

$$T = T1 + T2 = \frac{4R_i C}{P}$$$$

Answer the following question for the Triangular wave generator.

Given,
$$R_i = 10k$$
, $C = 10 \ \mu F$, $R_2 = pR = 20k$, $R1 = R = 10k$, $V_L = -V_H$ or $V_H = 15 \ V$, $V_L = -15 \ V$

- a). Draw the voltage V_A and V_B vs t plot with proper labeling.
- b.) Draw the VTC of the Schmitt trigger.
- c.) Find the frequency, Time period, Duty cycle of the Triangular wave, Duty cycle of the Square wave.

Answer the following question for the Triangular wave generator.

Given,
$$R_i = 10k$$
, $C = 10 \ \mu F$, $R_2 = pR = 20k$, $R1 = R = 10k$, $V_{\rm H} = 10 \ {\rm V}$, $V_{\rm L} = -12 \ {\rm V}$

- a). Draw the voltage V_A and V_B vs t plot with proper labeling.
- b.) Draw the VTC of the Schmitt trigger.
- c.) Find the frequency, Time period, Duty cycle of the Triangular wave, Duty cycle of the Square wave.

