Однако такой путь часто приводит к очень громоздкой рациональной функции, поэтому следует иметь в виду, что в ряде случаев существуют и другие возможности рационализации интеграла.

b. В случае интегралов вида $\int R(\cos^2 x, \sin^2 x) \, dx$ или $\int r(\lg x) \, dx$, где r(u) — рациональная функция, удобна подстановка $t = \lg x$, ибо

$$\cos^2 x = \frac{1}{1 + \lg^2 x}, \quad \sin^2 x = \frac{\lg^2 x}{1 + \lg^2 x},$$
 $dt = \frac{dx}{\cos^2 x}, \quad \text{r. e.} \quad dx = \frac{dt}{1 + \lg^2 x}.$

Выполнив указанную подстановку, получим соответственно

$$\int R(\cos^2 x, \sin^2 x) \, dx = \int R\left(\frac{1}{1+t^2}, \frac{t^2}{1+t^2}\right) \frac{dt}{1+t^2},$$
$$\int r(tg \, x) \, dx = \int r(t) \frac{dt}{1+t^2}.$$

с. В случае интегралов вида

$$\int R(\cos x, \sin^2 x) \sin x \, dx \quad \text{или} \quad \int R(\cos^2 x, \sin x) \cos x \, dx$$

можно внести функции $\sin x$, $\cos x$ под знак дифференциала и сделать замену $t=\cos x$ или $t=\sin x$ соответственно. После замены эти интегралы будут иметь вид

$$-\int R(t,1-t^2)\,dt$$
или $\int R(1-t^2,t)\,dt.$

Пример 15.

$$\int \frac{dx}{3+\sin x} = \int \frac{1}{3+\frac{2t}{1+t^2}} \cdot \frac{2\,dt}{1+t^2} =$$

$$= 2\int \frac{dt}{3t^2+2t+3} = \frac{2}{3}\int \frac{d\left(t+\frac{1}{3}\right)}{\left(t+\frac{1}{3}\right)^2+\frac{8}{9}} = \frac{2}{3}\int \frac{du}{u^2+\left(\frac{2\sqrt{2}}{3}\right)^2} =$$

$$= \frac{1}{\sqrt{2}} \operatorname{arctg} \frac{3u}{2\sqrt{2}} + c = \frac{1}{\sqrt{2}} \operatorname{arctg} \frac{3t+1}{2\sqrt{2}} + c = \frac{1}{\sqrt{2}} \operatorname{arctg} \frac{3\operatorname{tg} \frac{x}{2}+1}{2\sqrt{2}} + c.$$

Здесь мы воспользовались универсальной заменой $t=\operatorname{tg} \frac{x}{2}$. Пример 16.

$$\int \frac{dx}{(\sin x + \cos x)^2} = \int \frac{dx}{\cos^2 x (\operatorname{tg} x + 1)^2} = \int \frac{d \operatorname{tg} x}{(\operatorname{tg} x + 1)^2} = \int \frac{dt}{(t+1)^2} =$$

$$= -\frac{1}{t+1} + c = c - \frac{1}{1+\operatorname{tg} x}.$$

Пример 17.

$$\int \frac{dx}{2\sin^2 3x - 3\cos^2 3x + 1} = \int \frac{dx}{\cos^2 3x (2 \operatorname{tg}^2 3x - 3 + (1 + \operatorname{tg}^2 3x))} =$$

$$= \frac{1}{3} \int \frac{d \operatorname{tg} 3x}{3 \operatorname{tg}^2 3x - 2} = \frac{1}{3} \int \frac{dt}{3t^2 - 2} = \frac{1}{3 \cdot 2} \sqrt{\frac{2}{3}} \int \frac{d\sqrt{\frac{3}{2}}t}{\frac{3}{2}t^2 - 1} = \frac{1}{3\sqrt{6}} \int \frac{du}{u^2 - 1} =$$

$$= \frac{1}{6\sqrt{6}} \ln \left| \frac{u - 1}{u + 1} \right| + c = \frac{1}{6\sqrt{6}} \ln \left| \frac{\sqrt{\frac{3}{2}}t - 1}{\sqrt{\frac{3}{2}}t + 1} \right| + c = \frac{1}{6\sqrt{6}} \ln \left| \frac{\operatorname{tg} 3x - \sqrt{\frac{2}{3}}}{\operatorname{tg} 3x + \sqrt{\frac{2}{3}}} \right| + c.$$

Пример 18.

$$\int \frac{\cos^3 x}{\sin^7 x} dx = \int \frac{\cos^2 x \, d \sin x}{\sin^x 7 \, x} = \int \frac{(1 - t^2) \, dt}{t^7} =$$

$$= \int (t^{-7} - t^{-5}) \, dt = -\frac{1}{6} t^{-6} + \frac{1}{4} t^{-4} + c = \frac{1}{4 \sin^4 x} - \frac{1}{6 \sin^6 x} + c.$$

5. Первообразные вида $\int R(x, y(x)) dx$. Пусть, как и в пункте 4, R(x, y) — рациональная функция. Рассмотрим некоторые специальные первообразные вида

$$\int R(x,y(x))\,dx,$$

где $y = y(x) - \phi$ ункция от x.

Прежде всего, ясно, что если удастся сделать замену x = x(t) так, что обе функции x = x(t) и y = y(x(t)) окажутся рациональными функциями от t, то x'(t) — тоже рациональная функция и

$$\int R(x, y(x)) dx = \int R(x(t), y(x(t)))x'(t) dt,$$

т. е. дело сведется к интегрированию рациональной функции.

Мы рассмотрим следующие специальные случаи задания функции y = y(x).

а. Если
$$y = \sqrt[n]{\frac{ax+b}{cx+d}}$$
, где $n \in \mathbb{N}$, то, полагая $t^n = \frac{ax+b}{cx+d}$, получаем

$$x = \frac{d \cdot t^n - b}{a - c \cdot t^n}, \quad y = t,$$

и подынтегральное выражение рационализируется.

Пример 19.

$$\int \sqrt[3]{\frac{x-1}{x+1}} dx = \int t d\left(\frac{t^3+1}{1-t^3}\right) = t \cdot \frac{t^3+1}{1-t^3} - \int \frac{t^3+1}{1-t^3} dt =$$

$$= t \cdot \frac{t^3+1}{1-t^3} - \int \left(\frac{2}{1-t^3} - 1\right) dt = t \cdot \frac{t^3+1}{1-t^3} + t - 2\int \frac{dt}{(1-t)(1+t+t^2)} =$$

$$\begin{split} &=\frac{2t}{1-t^3}-2\int\left(\frac{1}{3(1-t)}+\frac{2+t}{3(1+t+t^2)}\right)dt=\\ &=\frac{2t}{1-t^3}+\frac{2}{3}\ln|1-t|-\frac{2}{3}\int\frac{\left(t+\frac{1}{2}\right)+\frac{3}{2}}{\left(t+\frac{1}{2}\right)^2+\frac{3}{4}}\,dt=\\ &=\frac{2t}{1-t^3}+\frac{2}{3}\ln|1-t|-\frac{1}{3}\ln\left[\left(t+\frac{1}{2}\right)^2+\frac{3}{4}\right]-\frac{2}{\sqrt{3}}\arctan\frac{2}{\sqrt{3}}\left(t+\frac{1}{2}\right)+c, \end{split}$$
 где $t=\sqrt[3]{\frac{x-1}{x+1}}.$

b. Рассмотрим теперь случай, когда $y = \sqrt{ax^2 + bx + c}$, т. е. речь идет об интегралах вида

$$\int R(x, \sqrt{ax^2 + bx + c}) dx.$$

Выделяя полный квадрат в трехчлене $ax^2 + bx + c$ и делая соответствующую линейную замену переменной, сводим общий случай к одному из следующих трех простейших:

$$\int R(t, \sqrt{t^2+1}) dt, \quad \int R(t, \sqrt{t^2-1}) dt, \quad \int R(t, \sqrt{1-t^2}) dt.$$
 (18)

Для рационализации этих интегралов теперь достаточно положить соответственно

$$\sqrt{t^2+1}=tu+1,$$
 или $\sqrt{t^2+1}=tu-1,$ или $\sqrt{t^2+1}=t-u;$ $\sqrt{t^2-1}=u(t-1),$ или $\sqrt{t^2-1}=u(t+1),$ или $\sqrt{t^2-1}=t-u;$ $\sqrt{1-t^2}=u(1-t),$ или $\sqrt{1-t^2}=u(1+t),$ или $\sqrt{1-t^2}=tu\pm1.$

Эти подстановки были предложены еще Эйлером (см. задачу 3 в конце параграфа).

Проверим, например, что после первой подстановки мы сведем первый интеграл к интегралу от рациональной функции.

В самом деле, если $\sqrt{t^2+1}=tu+1$, то $t^2+1=t^2u^2+2tu+1$, откуда

$$t = \frac{2u}{1 - u^2}$$

и, в свою очередь,

$$\sqrt{t^2+1}=\frac{1+u^2}{1-u^2}$$
.

Таким образом, t и $\sqrt{t^2+1}$ выразились рационально через u, а следовательно, интеграл привелся к интегралу от рациональной функции.

Интегралы (18) подстановками $t=\operatorname{sh}\varphi$, $t=\operatorname{ch}\varphi$, $t=\sin\varphi$ (или $t=\cos\varphi$) соответственно приводятся также к тригонометрической форме

$$\int R(\operatorname{sh}\varphi, \operatorname{ch}\varphi) \operatorname{ch}\varphi \, d\varphi, \qquad \int R(\operatorname{ch}\varphi, \operatorname{sh}\varphi) \operatorname{sh}\varphi \, d\varphi$$