Mathematical Thinking. Test Flight Assignment Solutions.

Okon Samuel

Question 8

Proposition 1. If the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

Proof. Let $\{a_n\}_{n=1}^{\infty}$ be any sequence and M be any real number greater than 0. Suppose that $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$ and is denoted by $\lim_{n \to \infty} a_n = L$.

Then from the definition of a limit of a sequence, for every $\epsilon > 0$, there exists a $N \in \mathbb{Z}^+$ such that, n > N

$$\Rightarrow |a_n - L| < \epsilon$$

$$\Rightarrow M|a_n - L| < M\epsilon$$

$$\Rightarrow |Ma_n - ML| < M\epsilon$$

Hence $(\forall \epsilon \in \mathbb{R}^+)(\exists N \in \mathbb{Z}^+)(|Ma_n - ML| < M\epsilon).$

Let $\epsilon_o = M\epsilon$ (i.e $\epsilon = \frac{\epsilon_o}{M}$), then $\epsilon_o > 0$ since ($\epsilon > 0$ and M > 0).

Hence $\mathbb{R}^+ = \{ \epsilon : \epsilon \in \mathbb{R} \land \epsilon > 0 \} = \{ \epsilon_o : \epsilon_o \in \mathbb{R} \land \epsilon_o > 0 \}.$

It follows that, $(\forall \epsilon_o \in \mathbb{R}^+)(\exists N \in \mathbb{Z}^+)(|Ma_n - ML| < M\epsilon_o)$.

Hence the limit of the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the ML as $n \to \infty$ for any real number M > 0.