Tema 3: Series de Fourier

- 1. Introducción.
- 2. Autofunciones de los sistemas LTI.
- 3. Ortogonalidad.
- 4. Representaciones de Fourier.
- 5. Series de Fourier continuas (FS).
 - 1. Análisis y síntesis.
 - 2. Aproximación de mínimos cuadrados.
 - 3. Convergencia.
 - 4. Propiedades.
- 6. Series de Fourier discretas (DTFS o DFT).
- 7. Series de Fourier y sistemas LTI.

3.1 Introducción

Para los sistemas LTI:

- ¿Ventaja de expresar señales en términos de funciones base $\phi_k[n]$?
- Una buena base: generalidad, sencillez.
- Funciones base del tema 2: impulsos desplazados,

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k] \to y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

Funciones base Fourier: exponenciales complejas,

$$\phi(t) = e^{st}, \qquad \phi[n] = z^n.$$

3.2 Autofunciones de los sistemas LTI (I)

- Sea $\mathbf{A} \in \mathbb{C}^{m \times m}$ una matriz cuadrada.
- Un vector no nulo $\mathbf{x} \in \mathbb{C}^m$ es un vector propio y $\lambda \in \mathbb{C}$ un autovalor si

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$
.

- Idea clave: la acción de la matriz A sobre un subespacio S de \mathbb{C}^m se reduce a una multiplicación escalar.
- El conjunto de los autovalores de A es su espectro, un subconjunto de $\mathbb C$ denotado por $\Lambda(A)$.
- Elementos del espacio vectorial: vectores.
- Operadores sobre los elementos: matrices.

3.2 Autofunciones de los sistemas LTI (II)

- Elementos del espacio vectorial: funciones.
- Operadores sobre los elementos: sistemas.
- $\blacksquare H\{\phi(t)\} = h(t) * \phi(t).$
- La acción del sistema sobre las funciones es una convolución.
- Una función no nula $\phi(t)$ es una autofunción y λ es un autovalor si

$$H\{\phi(t)\} = \lambda\phi(t).$$

■ Idea clave: la acción del sistema $H\{\cdot\}$ sobre ciertas funciones se reduce a una multiplicación escalar.

3.2 Autofunciones de los sistemas LTI (III)

La operación del sistema sobre una autofunción es simplemente una multiplicación escalar

$$H\{\phi_k(t)\} = \lambda_k \phi_k(t).$$

- Idea: tomar como base para representar funciones las autofunciones de los sistemas LTI.
- $lacksquare{\,}lacksquare{\,}lacksquare{\,}lacksquare{\,}lacksquare{\,}a[k]\phi_k(t)$,

$$y(t) = H\{x(t)\} = \sum_{k} a[k]\lambda_k \phi_k(t).$$

La entrada y la salida son combinación lineal de las funciones base.

3.2 Autofunciones de los sistemas LTI (IV)

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau.$$

 \blacksquare Si $x(t) = e^{st}$,

$$y(t) = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)} d\tau = e^{st} \int_{-\infty}^{\infty} h(\tau)e^{-s\tau} d\tau \equiv H(s)x(t).$$

Autovalor λ :

$$H(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau} d\tau.$$

 $s = \alpha + j\Omega$. Si $\alpha = 0$, transformada de Fourier. Si $\alpha \neq 0$, transformada de Laplace.

3.2 Autofunciones de los sistemas LTI (V)

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k].$$

 $\blacksquare \operatorname{Si} x[x] = z^n,$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]z^{n-k} = z^n \sum_{k=-\infty}^{\infty} h[k]z^{-k} \equiv H(z)x[n].$$

Autovalor *λ*:

$$H(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k}.$$

 $z = re^{j\omega}$. Si r = 1, transformada de Fourier. Si $r \neq 1$, transformada z.

3.3 Ortogonalidad (I)

- Sean $\phi(t)$ y $\psi(t)$ dos funciones periódicas de periodo T.
- Definición de producto interno:

$$\langle \phi(t), \psi(t) \rangle = \int_{\langle T \rangle} \phi(t) \psi^*(t) dt.$$

- Definición de ortogonalidad: dos funciones son ortogonales si su producto interno es nulo.
- Proposición: las funciones base $\phi_k(t) = e^{jk\Omega_0 t}$, con $\Omega_0 = 2\pi/T$, son ortogonales.

$$\langle \phi_k(t), \phi_m(t) \rangle = T \delta_k^m.$$

3.3 Ortogonalidad (II)

$$\langle \phi_k(t), \phi_m(t) \rangle = \int_{\langle T \rangle} e^{jk\Omega_0 t} e^{-jm\Omega_0 t} dt = \int_0^T e^{j(k-m)\Omega_0 t} dt$$

- Si k=m, el integrando es $e^0=1$ y $\langle \phi_k(t), \phi_m(t) \rangle = T$.
- \blacksquare Si $k \neq m$,

$$\langle \phi_k(t), \phi_m(t) \rangle = \frac{1}{j(k-m)\Omega_0} e^{j(k-m)\Omega_0 t} \Big|_0^T = 0,$$

ya que $e^{j(k-m)\Omega_0 T} = e^{j(k-m)2\pi} = 1$.

■ En resumen, $\langle \phi_k(t), \phi_m(t) \rangle = T[k=m] = T\delta_k^m$.

3.3 Ortogonalidad (III)

- Sean $\phi[n]$ y $\psi[n]$ dos funciones periódicas de periodo N.
- Definición de producto interno:

$$\langle \phi[n], \psi[n] \rangle = \sum_{n=\langle N \rangle} \phi[n] \psi^*[n],$$

donde $n = \langle N \rangle$ significa que n recorre N enteros consecutivos.

- Definición de ortogonalidad: dos secuencias son ortogonales si su producto interno es nulo.
- Proposición: las secuencias base $\phi_k[n] = e^{jk\omega_0 n}$, con $\omega_0 = 2\pi/N$, son ortogonales.

$$\langle \phi_k[n], \phi_m[n] \rangle = N\delta_k^m.$$

3.3 Ortogonalidad (IV)

$$\langle \phi_k[n], \phi_m[n] \rangle = \sum_{n=0}^{N-1} e^{jk\omega_0 n} e^{-jm\omega_0 n} = \sum_{n=0}^{N-1} e^{j(k-m)\omega_0 n}$$

- Si k=m, el sumando es $e^0=1$ y $\langle \phi_k[n], \phi_m[n] \rangle = N$.
- \blacksquare Si $k \neq m$,

$$\langle \phi_k[n], \phi_m[n] \rangle = \frac{1 - e^{-j(k-m)\omega_0 N}}{1 - e^{-j(k-m)\omega_0}} = 0,$$

ya que
$$\omega_0 N = 2\pi$$
 y $e^{-j(k-m)2\pi} = 1$.

■ En resumen, $\langle \phi_k[n], \phi_m[n] \rangle = N\delta_k^m$.

3.4 Representaciones de Fourier (I)

3.4 Representaciones de Fourier (II)

	T.	Continua	Discreta	
	Periódica	$x(t) = \sum_{k=-\infty}^{\infty} a[k]e^{jk\Omega_0 t}$ $a[k] = \frac{1}{T} \int_{\langle T \rangle} x(t)e^{-jk\Omega_0 t} dt$ FS	$x[n] = \sum_{k=\langle N\rangle} a[k]e^{jk\omega_0 n}$ $a[k] = \frac{1}{N} \sum_{n=\langle N\rangle} x[n]e^{-jk\omega_0 n}$ DTFS (DFT)	Discreta
	Aperiódica	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$ $X(j\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$ FT	$x[n] = \frac{1}{2\pi} \int_{2\pi}^{} X(e^{j\omega})e^{j\omega n} d\omega$ $X(e^{j\omega}) = \sum_{n=-\infty}^{} x[n]e^{-j\omega n}$ DTFT	Continua
		Aperiódica	Periódica	F.

3.5 Series de Fourier continuas (FS)

- Aplicable a señales periódicas continuas.
- $\blacksquare x(t+T) = x(t)$, $\forall t$: periodo T, pulsación $\Omega_0 = 2\pi/T$.
- $\phi(t) = e^{j\Omega_0 t}$ periódica de periodo $T = 2\pi/\Omega_0$.
- $lackbox{\bullet} \phi_k(t) = e^{jk\Omega_0 t}$, $k \in \mathbb{Z}$: periodo fundamental T/|k|.

$$x(t) = \sum_{k=-\infty}^{\infty} a[k]\phi_k(t) = \sum_{k=-\infty}^{\infty} a[k]e^{jk\Omega_0 t}, \text{ periodica de periodo } T.$$

- Representación de x(t) como una serie de Fourier:
 - Frecuencia angular fundamental Ω_0 .
 - \blacksquare Coeficientes a[k].

3.5.1 Análisis y síntesis (I)

■ Supongamos que x(t) = x(t+T) puede ponerse como

$$x(t) = \sum_{k=-\infty}^{\infty} a[k]\phi_k(t) = \sum_{k=-\infty}^{\infty} a[k]e^{jk\Omega_0 t}.$$

■ ¿Cuánto valen los coeficientes a[n], $n \in \mathbb{Z}$?

$$\langle x(t), \phi_n(t) \rangle = \sum_{k=-\infty}^{\infty} a[k] \langle \phi_k(t), \phi_n(t) \rangle = \sum_{k=-\infty}^{\infty} a[k] T \delta_k^n = a[n] T;$$

despejando

$$a[n] = \frac{1}{T} \langle x(t), \phi_n(t) \rangle, \qquad n \in \mathbb{Z}.$$

3.5.1 Análisis y síntesis (II)

La ecuación de análisis

$$a[n] = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-jn\Omega_0 t} dt, \qquad n \in \mathbb{Z},$$

determina los coeficientes espectrales o de Fourier a[n].

La ecuación de síntesis

$$x(t) = \sum_{k=-\infty}^{\infty} a[k]e^{jk\Omega_0 t},$$

sintetiza x(t) sumando ∞ exponenciales complejas.

- $\blacksquare a[k]$ indica cuánto de $\phi_k(t)$ está presente en x(t).
- El coeficiente a[0] es el valor medio de x(t).

3.5 Ejemplos

Calcular los coeficientes de Fourier de

$$x(t) = 3\cos\left(\frac{\pi}{2}t + \frac{\pi}{4}\right).$$

Calcular los coeficientes de Fourier de la señal x(t) construida repitiendo el pulso $[|t| < T_s]$ con un periodo T. Particularizar para $T_s = T/8$. {ej35a.m}

3.5.2 Aproximación mínimos cuadrados (I)

- Sea x(t) = x(t+T), $\forall t$.
- Construimos $\hat{x}(t) = \hat{x}(t+T)$ con $\phi_k(t)$, $|k| \leq N$,

$$\hat{x}(t) \equiv \sum_{k=-N}^{N} b[k]e^{jk\Omega_0 t}.$$

El error entre ambas también es periódico

$$\epsilon(t) \equiv \hat{x}(t) - x(t), \qquad E \equiv \frac{1}{T} \int_{\langle T \rangle} |\epsilon(t)|^2 dt.$$

- Pregunta: ¿cuánto valen los coeficientes b[k] que hacen el error MSE lo más pequeño posible?
- Mejor aproximación LS.

3.5.2 Aproximación mínimos cuadrados (II)

$$E = \frac{1}{T} \int_{\langle T \rangle} \left| \sum_{k=-N}^{N} b[k] e^{jk\Omega_0 t} - x(t) \right|^2 dt.$$

■ Criterio de minimización de E:

$$\frac{\partial E}{\partial b[k]} = 0, |k| \le N.$$

Expandiendo el módulo cuadrado (sumas en k y m)

$$E = \frac{1}{T} \int_{\langle T \rangle} \left(\sum_{k=-N}^{N} b[k] e^{jk\Omega_0 t} - x(t) \right) \left(\sum_{m=-N}^{N} b[m] e^{jm\Omega_0 t} - x(t) \right)^* dt$$

3.5.2 Aproximación mínimos cuadrados (III)

$$E = \frac{1}{T} \sum_{k=-N}^{N} \sum_{m=-N}^{N} b[k]b^*[m] \int_{\langle T \rangle} e^{j(k-m)\Omega_0 t} dt$$

$$- \sum_{k=-N}^{N} b[k] \frac{1}{T} \int_{\langle T \rangle} x^*(t) e^{jk\Omega_0 t} dt$$

$$- \sum_{m=-N}^{N} b^*[m] \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-jm\Omega_0 t} dt$$

$$+ \frac{1}{T} \int_{\langle T \rangle} |x(t)|^2 dt.$$

3.5.2 Aproximación mínimos cuadrados (IV)

Si definimos

$$a[k] \equiv \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-jk\Omega_0 t} dt,$$

entonces

$$E = \sum_{k=-N}^{N} \sum_{m=-N}^{N} b[k]b^*[m]\delta_k^m$$

$$- \sum_{k=-N}^{N} b[k]a^*[k] - \sum_{k=-N}^{N} b^*[k]a[k] + \frac{1}{T} \int_{\langle T \rangle} |x(t)|^2 dt.$$

3.5.2 Aproximación mínimos cuadrados (V)

$$E = \sum_{k=-N}^{N} |b[k]|^2 - \sum_{k=-N}^{N} b[k]a^*[k] - \sum_{k=-N}^{N} b^*[k]a[k] + \frac{1}{T} \int_{\langle T \rangle} |x(t)|^2 dt$$

$$= \sum_{k=-N}^{N} |b[k] - a[k]|^2 - \sum_{k=-N}^{N} |a[k]|^2 + \frac{1}{T} \int_{\langle T \rangle} |x(t)|^2 dt$$

- Criterio de optimización: $\partial E/\partial b[k] = 0$.
- Sólo el primer término depende de b[k].
- Suma de cantidades positivas.
- Mínimo si b[k] = a[k].

3.5.2 Aproximación mínimos cuadrados (VI)

Los coeficientes que minimizan el error cuadrático

$$b[k] = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-jk\Omega_0 t} dt, \qquad |k| \le N;$$

son los coeficientes de Fourier.

Normalmente (bajo las condiciones de convergencia), si $N \to \infty$, entonces $\hat{x}(t) \to x(t)$.

3.5 Ejemplos

- Coeficientes de señales pares (a[k] = a[-k]: cosenos) e impares.
- Calcular a[k] si x(t) par o impar. Si además x(t) real.
- Ejemplo: $x(t) = 1 t^2$, $t \in [-1, 1]$ {ej35b.m}

$$\int x^2 \cos ax \, dx = \frac{2x}{a} + \left(\frac{x^2}{a} - \frac{2}{a^3}\right) \sin ax.$$

■ En el ejemplo anterior, encontrar la mejor aproximación de x(t) por una constante, y por $a + b \cos \pi t$. Dibujar.

3.5.3 Convergencia (I)

- $\hat{x}(t)$ es la mejor aproximación LS de x(t).
- Si existe $\hat{x}(t)$, $\lim_{N\to\infty} E_N = 0$.

$$\hat{x}(t) = \sum_{k=-\infty}^{\infty} a[k]e^{jk\Omega_0 t}.$$

- ¿Cuándo podremos decir $\hat{x}(t) = x(t)$?
- En principio, con $\phi_k(t)$ sólo funciones continuas.
- No todas las x(t) son representables, pero sí muchas.
- ¿Bajo qué condiciones existe? Puede que $a[k]=\infty$, o que $\sum\limits_k a[k]\phi_k(t)=\infty$.

3.5.3 Convergencia (II)

Criterio 1: aplicable a señales que tienen energía finita en un periodo. Si

$$\int_{\langle T \rangle} |x(t)|^2 dt < \infty \qquad (\to a[k] < \infty),$$

entonces:

■ El error $\epsilon(t)$ tiene energía cero. El error MSE es cero.

$$\int_{\langle T \rangle} |\epsilon(t)|^2 dt = 0.$$

■ Esto no significa que $x(t) = \hat{x}(t)$, $\forall t$.

3.5.3 Convergencia (II)

Criterio 2: aplicable a señales que verifican las condiciones de Dirichelet:

1. Integrable en valor absoluto

$$\int_{\langle T \rangle} |x(t)| \, dt < \infty \qquad (\to |a[k]| < \infty).$$

- 2. # finito de máx. y mín. por periodo (variación acotada).
- 3. # finito de discontinuidades en un periodo.

Si CD, entonces $x(t) = \hat{x}(t)$, $\forall t$; excepto en las discontinuidades, dónde $\hat{x}(t) \rightarrow (x(t^+) + x(t^-))/2$.

3.5.4 Propiedades de la FS (I)

Si a[k] son los coeficientes de Fourier de x(t)

$$x(t) = \sum_{k=-\infty}^{\infty} a[k]e^{jk\Omega_0 t}, \qquad \text{(síntesis)}$$

$$a[k] = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-jk\Omega_0 t} dt, \quad k \in \mathbb{Z}, \quad \text{(análisis)}$$

diremos que x(t) y a[k] son un par transformado, y lo representaremos por

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a[k].$$

3.5.4 Propiedades de la FS (II)

- Linealidad: $z(t) = Ax(t) + By(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} Aa[k] + Bb[k]$ (A).
- Desplazamiento temporal: $x(t-t_0) \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jk\Omega_0 t_0} a[k]$ (A).
- Inversión temporal: $x(-t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a[-k]$ (A).
- Conjugación: $x^*(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a^*[-k]$ (A).
- Escalado temporal: $x(\alpha t) = \sum_{k} a[k]e^{jk(\alpha\Omega_0)t}$.
- Multiplicación: $x(t)y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a[k] * b[k]$ (S x S).

3.5.4 Propiedades de la FS (III)

Convolución periódica (A x A):

$$x(t) \circledast y(t) \equiv \int_{\langle T \rangle} x(\tau)y(t-\tau) d\tau \stackrel{\mathcal{FS}}{\longleftrightarrow} Ta[k]b[k].$$

- Diferenciación: $\dot{x}(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} jk\Omega_0 a[k]$.
- Integración: $\int_{-\infty}^{t} x(\tau) d\tau \stackrel{\mathcal{FS}}{\longleftrightarrow} a[k]/(jk\Omega_0)$.
- Relación de Parseval (ej. 3.46):

$$\frac{1}{T} \int_{\langle T \rangle} |x(t)|^2 dt = \sum_k |a[k]|^2,$$

(pot media $x(t) = \sum$ pot media comp. armónicas)

3.5.4 Propiedades de la FS (IV)

■ Si hacemos $y(t) = x^*(t)$ y aplicamos (Multiplicación)

$$c[k] = \sum_{n=-\infty}^{\infty} a[n]b[k-n] = \sum_{n=-\infty}^{\infty} a[n]a^*[n-k],$$

$$c[0] = \sum_{n=-\infty}^{\infty} |a[n]|^2 = \frac{1}{T} \int_{\langle T \rangle} |x(t)|^2 dt.$$
 (Parseval)

- Demostrar que si x(t) es par (impar), a[k] también (Inversión temporal).
- Si $x(t) \in \mathbb{R}$, a[k] simétrica conjugada (Conjugación).
- Si x(t) real y par, a[k] también.
- Si x(t) real e impar, a[k] imaginarios e impares.

3.6 Secuencias periódicas (DTFS, DFT)

- Aplicable a secuencias periódicas discretas.
- $\blacksquare x[n+N] = x[n]$, $\forall n$: periodo N, pulsación $\omega_0 = 2\pi/N$.
- lacktriangle Como la FS para x(t) continuas periódicas era

$$x(t) = \sum_{k=-\infty}^{\infty} a[k]\phi_k(t) = \sum_{k=-\infty}^{\infty} a[k]e^{jk\Omega_0 t},$$

podríamos pensar que para x[n] discretas,

$$x[n] = \sum_{k=-\infty}^{\infty} a[k]\phi_k[n] = \sum_{k=-\infty}^{\infty} a[k]e^{jk\omega_0 n};$$

pero no es totalmente correcto, ya que...

3.6 Secuencias periódicas (DTFS, DFT)

- Mientras que todas las $\phi_k(t)$ son distintas, las $\phi_k[n]$ no.

 - Existen sólo N $\phi_k[n]$ distintas de periodo N.
- Por lo tanto el sumatorio no debe estar extendido a infinitas $\phi_k[n]$, sino sólo a N consecutivas

$$x[n] = \sum_{k=\langle N \rangle} a[k]\phi_k[n].$$

3.6.1 Análisis y síntesis (I)

Supongamos que x[n] = x[n+N] puede ponerse como

$$x[n] = \sum_{k=\langle N \rangle} a[k]\phi_k[n] = \sum_{k=\langle N \rangle} a[k]e^{jk\omega_0 n}.$$

• ¿Cuánto valen los coeficientes a[k]?

$$\langle x[n], \phi_m[n] \rangle = \sum_{k=\langle N \rangle} a[k] \langle \phi_k[n], \phi_m[n] \rangle = \sum_{k=\langle N \rangle} a[k] N \delta_k^m = a[m] N;$$

despejando

$$a[m] = \frac{1}{N} \langle x[n], \phi_m[n] \rangle \left(= \frac{1}{N} \langle x[n], \phi_{m+N}[n] \rangle = a[m+N] \right).$$

3.6.1 Análisis y síntesis (II)

La ecuación de análisis

$$a[m] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jm\omega_0 n}, \qquad m \in \langle N \rangle,$$

determina los coeficientes espectrales a[m].

- Tanto x[n] como a[m] son periódicas de periodo N.
- La ecuación de síntesis

$$x[n] = \sum_{k=\langle N \rangle} a[k] e^{jk\omega_0 n},$$

sintetiza x[n] sumando N exponenciales complejas.

 $\blacksquare a[k]$ indica cuánto de $\phi_k[n]$ está presente en x[n].

3.6.2 Aproximación mínimos cuadrados (I)

- Sea x[n] = x[n+N], $\forall n$.
- Construimos $\hat{x}[n] = \hat{x}[n+N]$ con $\phi_k[n]$, $0 \le k \le M \le N$,

$$\hat{x}[n] \equiv \sum_{k=0}^{M-1} b[k]e^{jk\omega_0 n}.$$

El error entre ambas también es periódico

$$\epsilon[n] \equiv \hat{x}[n] - x[n], \qquad E \equiv \frac{1}{N} \sum_{n=\langle N \rangle} |\epsilon[n]|^2.$$

- Pregunta: ¿cuánto valen los coeficientes b[k] que hacen el error MSE lo más pequeño posible?
- Mejor aproximación LS.

3.6.2 Aproximación mínimos cuadrados (II)

$$E = \frac{1}{N} \sum_{n=\langle N \rangle} \left| \sum_{k=0}^{M-1} b[k] e^{jk\omega_0 n} - x[n] \right|^2.$$

■ Criterio de minimización de *E*:

$$\frac{\partial E}{\partial b[k]} = 0, 0 \le k \le M.$$

Expandiendo el módulo cuadrado (sumas en k y m)

$$E = \frac{1}{N} \sum_{n=\langle N \rangle} \left(\sum_{k=0}^{M-1} b[k] e^{jk\omega_0 n} - x[n] \right) \left(\sum_{m=0}^{M-1} b[m] e^{jm\omega_0 n} - x[n] \right)^*$$

3.6.2 Aproximación mínimos cuadrados (III)

$$E = \frac{1}{N} \sum_{k=0}^{M-1} \sum_{m=0}^{M-1} b[k]b^*[m] \sum_{n=\langle N \rangle} e^{j(k-m)\omega_0 n}$$

$$- \sum_{k=0}^{M-1} b[k] \frac{1}{N} \sum_{n=\langle N \rangle} x^*[n] e^{jk\omega_0 n}$$

$$- \sum_{m=0}^{M-1} b^*[m] \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jm\omega_0 n}$$

$$+ \frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2.$$

3.6.2 Aproximación mínimos cuadrados (IV)

Si definimos

$$a[k] \equiv \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\omega_0 n},$$

entonces

$$E = \sum_{k=0}^{M-1} \sum_{m=0}^{M-1} b[k]b^*[m]\delta_k^m$$

$$- \sum_{k=0}^{M-1} b[k]a^*[k] - \sum_{k=0}^{M-1} b^*[k]a[k] + \frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2.$$

3.6.2 Aproximación mínimos cuadrados (V)

$$E = \sum_{k=0}^{M-1} |b[k]|^2 - \sum_{k=0}^{M-1} b[k]a^*[k] - \sum_{k=0}^{M-1} b^*[k]a[k] + \frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2$$

$$= \sum_{k=0}^{M-1} |b[k] - a[k]|^2 - \sum_{k=0}^{M-1} |a[k]|^2 + \frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2$$

- Criterio de optimización: $\partial E/\partial b[k] = 0$.
- Sólo el primer término depende de b[k].
- Suma de cantidades positivas.
- Mínimo si b[k] = a[k].

3.6.2 Aproximación mínimos cuadrados (VI)

Los coeficientes que minimizan el error cuadrático

$$b[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\omega_0 n}, \qquad 0 \le k < M;$$

son los coeficientes de Fourier.

- Si $M \to N$, entonces $\hat{x}[n] \to x[n]$.
- E mínimo es nulo (Relación de Parseval).

3.6.3 Convergencia

$$\hat{x}[n] = \sum_{k=\langle N \rangle} a[k] e^{jk\omega_0 n}.$$

- Podemos encontrar una representación exacta mediante N términos para x[n] = x[n+N].
- $\blacksquare x[n] = \hat{x}[n], \forall n.$
- N números en ambos dominios (información), descripción completa.
- $\blacksquare a[k]$ es el espectro de x[n].
- Las dos secuencias proporcionan una descripción completa de la señal.

3.6.4 Propiedades de la DTFS (I)

Si a[k] son los coeficientes de Fourier de x[n]

$$x[n] = \sum_{k=\langle N\rangle} a[k] e^{jk\omega_0 n}, \qquad \text{(sintesis)}$$

$$a[k] = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n}, \qquad k \in \langle N \rangle, \qquad \text{(análisis)}$$

diremos que x[n] y a[k] son un par transformado, y lo representaremos por

$$x[n] \stackrel{\mathcal{DTFS}}{\longleftrightarrow} a[k].$$

3.6.4 Propiedades de la DTFS (II)

- Linealidad (A).
- Desplazamiento temporal (A).
- Primera diferencia: $x[n] x[n-1] \stackrel{\mathcal{DTFS}}{\longleftrightarrow} (1 e^{-jk\omega_0})a[k]$.
- Relación de Parseval:

$$\frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2 = \sum_{n=\langle N \rangle} |a[n]|^2.$$

- Multiplicación: $z[n] = x[n]y[n] \stackrel{\mathcal{DTFS}}{\longleftrightarrow} a[k] \circledast b[k]$
- Convolución periódica: $z[n] = x[n] \circledast y[n] \overset{\mathcal{DTFS}}{\longleftrightarrow} Na[k]b[k]$.

3.7 Series de Fourier y sistemas LTI

- Hemos visto que toda x[n] periódica y la gran mayoría de x(t) periódicas admiten representación mediante FS.
- Hemos visto que las exponenciales complejas son autofunciones de los sitemas LTI.
- Si $x(t) = e^{st}$, entonces $y(t) = H(s)e^{st}$, donde $H(s) = \int h(\tau)e^{-s\tau} d\tau$ es la función de sistema.
- Si $x[n] = z^n$, entonces $y[n] = H(z)z^n$, donde $H(z) = \sum_k h[k]z^{-k}$ es la función del sistema.

3.7 Series de Fourier y sistemas LTI (II)

- Si $s=j\omega$ y $z=e^{j\omega}$, $H(j\omega)=\int h(t)e^{-j\omega t}\,dt$ y $H(e^{j\omega})=\sum_k h[n]e^{-j\omega n}$ se denominan respuesta frecuencial.
- Si $x(t) = \sum_k a_k e^{jk\omega_0 t}$, entonces, $y(t) = \sum_k a[k]H(jk\omega_0)e^{jk\omega_0 t}$, es decir, $b[k] = H(jk\omega_0)a_k$.
- Si $x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n}$, entonces $y[n] = \sum_{k=\langle N \rangle} a_k H(e^{jk\omega_0}) e^{jk\omega_0}$. Es decir, $b_k = H(e^{jk\omega_0}) a_k$
- Filtrado.

3.5 Filtrado

- Autovalores: respuesta frecuencial $H(j\omega) = |H(j\omega)|e^{j\theta(\omega)}$.
- $\mathbf{x}(t) = A\cos(\omega t + \phi), h(t)$ real.
- Particularización si x(t) real. $a_k^* = a_{-k}$. $a_k = A_k e^j \theta_k = B_k + j C_k$. Si a_k real.
- Ejemplo: $h_1[n] = \frac{1}{2}(\delta[n] \pm \delta[n-1])$.