IB Math SL AA

Formulas & Laws by topic

Nov. 2024 Edition

EXPONENTIAL

$$f(x) = \pm ab^{(x-h)} + k$$

Translations:

h	+ shifts left, - shifts right
k	+ shifts up, – shifts down
а	a > stretches, $a < $ shrinks
±	relfects over <i>x</i> -axis

FUNCTIONS

Functions can be one-to-one or many-to-one **Relations** are one-to-many

Many-to-one ∴ Is a **function**

One-to-many ∴ Is a **relation**

Domain:

All valid x outputs

Range:

All valid y outputs

Notations:

Interval Notation

Set Notation

Number Line

$$a \le x < b$$

 $\{x | a \le x < b\}$

Reciprocal Functions:

For
$$f(x) = \frac{b}{cx + d} + a$$
 where $b, c \neq 0$

Asymptotes: $x = -\frac{d}{c}$ and $y = \frac{a}{c}$

REFERENCE

 $\pi: 3.1415926535$

e : 2.7182818284

 ${\mathbb R}$: Real Numbers

QUADRATICS

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

 $\Delta = b^2 - 4ac$

 $\Delta > 0$ gives you an upwards curve (w/ minimum)

 $\Delta = 0$ gives you a straight line

 $\Delta < 0$ gives you a downwards curve (w/ maximum) Function Forms:

$ax^2 + bx + c$	Standard
$a(x+r_1)(x+r_2)$	Factored r being roots
$a(x-h)^2 + k$	Vertex (h, k) is the vertex

$$h = \frac{-b}{2a}$$
 To find k , just replace x with 0

LOGS

Addition	$\log_a m + \log_a n = \log_a m n$		
Substraction	$\log_a m - \log_a n = \log_a \left(\frac{m}{n}\right)$		
Powers	$log_a m^k = k \cdot log_a m$		
Base Change	$log_a m = \frac{log_b m}{log_b a}$		

Rules:

$$log_a 1 = 0$$

$$log_a a = 1$$

$$a^{\log_a \mathbf{x}} = \mathbf{x}$$

$$log_e x = ln x$$