

Energie- und Stoffströme am Holzpelletheizkessel

Regenerative Wärmetechnik (RWT), Laborversuch Pelletkessel

24. Juni 2022

Verfasser: Julia Metla 563309

Azarya Ekaputra Arkyoda 564507 Yousef Mahmoud 565158 Martin Teichert 564191

Studiengang: Regenerative Energien

Semester: SoSe 2021/22

Gutachter: Prof. Dr.-Ing. Mirko Barz

Inhaltsverzeichnis

Abbild ¹	ungsverzeichnis			
1 E	rläuterung der Symbole, Formelzeichen und Indizes			
2 E	inführung			
3 M	lesswerte			
4 A	uswertung			
4.1	Berechnung der zugeführten Energie durch den Brennstoff			
4.2	Berechnung der abgeführten Nutzwärme			
4.3	Berechnung der Abstrahlverluste			
4.4	Berechnung der Abgasverluste			
4.5	Energiebilanz im Sankey-Diagramm			
Literaturverzeichnis				
Abbild	lungsverzeichnis			
1 5	Sankey-Diagramm für den durchgeführten Pelletkesselversuch			

1 Erläuterung der Symbole, Formelzeichen und Indizes

Symbol	Einheit	Bezeichnung
\dot{H}_i	W	Enthalpiestrom Brennstoff
\dot{m}_{Br}	kg/h	Massenstrom Brennstoff
H_i	kWh/kg	Heizwert Pellets
Δm	kg	Brennstoffverbrauch
Δt	h	Versuchszeitraum
\dot{Q}_{Nutz}	W	Nutzwärmeleistung
\dot{m}_{Kreis}	kg/s	Massenstrom im Heizwasserkreislauf
C_{p,H_2O}	kJ/(kg*K)	Spezifische Wärmekapazität von Wasser
$t_{R\ddot{ ext{u}}ck}$	°C	Rücklauftemperatur
t_{Vor}	°C	Vorlauftemperatur
\dot{V}_{Kreis}	m³/h	Volumenstrom im Heizwasserkreislauf
ρ_{H_2O}	kg/m³	Dichte von Wasser
η_K	%	Kesselwirkungsgrad
\dot{Q}_{WV}	W	Wärmeverluststrom (Kesseloberfläche)
α	W/(m²*K)	Wärmeübertragungskoeffizient
$A_{O,Kessel}$	m ²	Kesseloberfläche
$t_{O,Kessel}$	°C	Kesseloberflächentemperatur
t_U	°C	Umgebungstemperatur
M_L	kgLuft/kgBrennstoff	Luftmassenbedarf
λ	-	Luftüberschusszahl
$M_{tL,min}$	kgLuft/kgBrennstoff	Mindestluftmassenbedarf (trockene Luft)
X_U	-	Absolute Umgebungsfeuchte
$CO_{2,max}$	%	Maximaler CO ₂ -Gehalt
CO_2	%	Gemessener CO ₂ -Gehalt
co	ppm	Gemessener CO-Gehalt
\dot{m}_L	kg _{Luft} /h	Luftmassenstrom
\dot{m}_G	kg _{Gas} /h	Abgasmassenstrom
$c_{p,G}$	kJ/(kg*K)	Spezifische Wärmekapazität des Abgases
x_x	%	Anteil des Stoffes x am Abgas
$c_{p,x}$	kJ/(kg*K)	Spezifische Wärmekapazität des Stoffes x
M_W	kgwasser/kgBrennstoff	In der Verbrennungsluft enthaltenes
		Wasser
H	-	Wasserstoffanteil des Brennstoffes
W	-	Relative Feuchte des Brennstoffes
\dot{m}_W	kgw _{asser} /h	Wasserdampfstrom des Abgases
\dot{H}_G	kW	Abgasverluste
t_G	°C	Abgastemperatur

2 Einführung

3 Messwerte

Tabelle 1: Tabellarische Darstellung der aufgenommenen Messwerte

		Wasser	Abgastemp. in °C	
Zeit in min	O_2 -Anteil	Volumenstrom in m ³ /h	ΔT in °C	92
0	11.60	1.778	8	
1	14.20	1.800	7	Außentemp. in °C
2	9.60	1.780	6	24.8
3	11.90	1.729	8	
4	10.90	1.821	6	Eimer voll Masse in kg
5	9.90	1.802	7	2.612
6	10.30	1.848	7	
7	12.60	1.745	7	Eimer leer Masse in kg
8	10.90	1.799	7	0.808
9	11.60	1.789	7	
10	10.50	1.803	7	verbrauchter BS in kg
11	10.80	1.736	7	1.804
12	11.80	1.776	8	
13	11.10	1.962	7	$\dot{m}_{ m Brennstoff}$ in kg/h
14	11.00	1.828	8	3.608
15	11.00	1.774	7	
16	12.40	1.714	7	Brennkesseltemp. in °C
17	11.70	1.741	7	800
18	8.30	1.698	7	
19	11.80	1.789	8	
20	10.40	1.815	7	
21	11.90	1.800	8	
22	10.30	1.812	7	
23	11.20	1.772	7	
24	10.20	1.925	7	
25	11.00	1.754	7	
26	11.00	1.785	7	
27	9.80	1.780	7	
28	11.90	1.808	7	
29	11.70	1.772	7	
30	10.80	1.759	7	
Mittelwerte	11.10%	1.790	7.129	

4 Auswertung

4.1 Berechnung der zugeführten Energie durch den Brennstoff

Um die zugeführte Brennstoffwärme H_i zu bestimmen, ist zunächst der mittlere Brennstoffmassenstrom $\dot{m}_{\text{Brennstoff,feucht}}$ zu ermitteln. Diese ergibt sich durch die Differenz der Masse des Eimers vor und nach dem Versuch geteilt durch die Versuchsdauer.

$$\dot{m}_{\rm Br} = \frac{m_{\rm Eimer, vor} - m_{\rm Eimer, nach}}{\Delta t} \tag{1}$$

$$\dot{m}_{\rm Br} = \frac{m_{\rm Eimer, vor} - m_{\rm Eimer, nach}}{\Delta t}$$

$$= \frac{2,612 \,\text{kg} - 0,808 \,\text{kg}}{0,5 \,\text{h}} = 3,608 \,\text{kg}$$
(1)

Mit dem Brennstoffmassenstrom und dem angegebenen Heizwert H_i ergibt sich der zugeführte Brennstoffwärmestrom H_i durch Multiplikation der beiden Größen.

$$\dot{H}_{\rm i} = H_{\rm i} \cdot m_{\rm Br} = 5,3 \,\text{kWh/kg} \cdot 3,608 \,\text{kg/h} = 19,122 \,\text{kW}$$
 (3)

4.2 Berechnung der abgeführten Nutzwärme

Die abgeführte Nutzwärme durch das Wasser kann mittels $\dot{Q} = \dot{m} \cdot c_{\rm p} \cdot \Delta T$ bestimmt werden. Dafür wird der Massenstrom \dot{m} mithilfe des Volumenstromes \dot{V} und der Dichte ρ bestimmt. Diese liegt bei 983,19 kg/m³. Für die spezifische Wärmekapazität wird ein Wert von 4,18 kJ/(kg K) angenommen.

$$\dot{Q} = \dot{V} \cdot \rho \cdot c_{\rm p} \cdot \Delta T \tag{4}$$

$$= 1,790 \,\mathrm{m}^3/(3600 \,\mathrm{s}) \cdot 983,19 \,\mathrm{kg/m}^3 \cdot 4,18 \,\mathrm{kJ/(kg \, K)} \cdot 7,129 \,\mathrm{K} = 14,569 \,\mathrm{kW} \tag{5}$$

4.3 Berechnung der Abstrahlverluste

Um die Abstrahlverluste an die Umgebung zu bestimmen, sind die Reaktoroberflächen und deren Temperaturen die entscheidenden Größen. Grundsätzlich setzt sich der Abstrahlverlust aus Wärmeleitung, Wärmestrahlung und Konvektion zusammen, wobei die Wärmeleitung aufgrund der sehr geringen Leitfähigkeit der Luft häufig vernachlässigt werden kann. Vor allem, wenn sich die Luft an der Oberfläche des Reaktors bewegt, überwiegt der konvektive Wärmeverlust gegenüber den anderen beiden Wärmeübertragungsmechanismen. Um die Verluste möglichst genau zu bestimmen, wurde die Reaktoroberfläche je nach Temperatur in verschiedene Bereiche unterteilt, wie in Tabelle 2 dargestellt wurde.

Tabelle 2: Einteilung der Kesseloberfläche in mehrere Bereiche mit den aufgenommenen Temperaturen und berechneten Flächen

	Fläche / m ²	Temp / K	Temp / °C
Oben	0,366	$305,\!15$	32
Aschekasten	0,163	312,15	39
Vordere Klappe	0,085	303,15	30
Restliche Fläche	2,548	$301,\!15$	28

Für jeden einzelnen Bereich mit der Temperatur $t_{\rm O,Kessel,i}$ und einer Fläche von $A_{\rm O,Kessel,i}$ lässt sich der konvektive Abstrahlverlust wie folgt berechnen. α ist dabei der konvektive Wärmeübergangskoeffizient an der Oberfläche, welcher mit $8.4~{\rm W/(m^2K)}$ angenommen wird.

$$\dot{Q}_{\mathrm{WV}_{\mathrm{konv.}}} = \alpha \cdot \sum_{i} A_{\mathrm{O,Kessel,i}} \cdot (t_{\mathrm{O,Kessel,i}} - t_{\mathrm{U}})$$
 (6)

$$\dot{Q}_{WV_{konv.}} = 8,4 \,\text{W}/(\text{m}^2\text{K}) \cdot (2,548 \cdot (301,15 - 297,95) + 0,366 \cdot (305,15 - 297,95) + 0,163 \cdot (312,15 - 297,95) + 0,085 \cdot (303,15 - 297,95)) \,\text{m}^2\text{K} = 0,114 \,\text{kW}$$
(7)

Der strahlungsbedingte Abstrahlverlust kann nach oben hin abgeschätzt werden, wenn für den Formfaktor F und für den Emissionsgrad ϵ jeweils das Maximum von 1 angenommen wird. Da die abgestrahlte Wärme früher oder später auf eine Fläche mit Umgebungstemperatur trifft und es sich bei der Kesseloberfläche um Kunststoff handelt, sind beide Annahmen sogar relativ genau. Mithilfe der Stefan-Boltzmann Konstante von $\sigma = 5,67 \cdot 10^{-8} \, \text{W/(mšK)}$ ergeben sich die Strahlungsverluste mit folgender Formel:

$$\dot{Q}_{\mathrm{WV}_{\mathrm{strahl.}}} = \sigma \cdot F \cdot \epsilon \cdot \sum A_{\mathrm{O,Kessel,i}} \cdot (t_{\mathrm{O,Kessel,i}}^4 - t_{\mathrm{U}}^4)$$
 (8)

$$\dot{Q}_{\mathrm{WV}_{\mathrm{strahl.,max}}} = \sigma \cdot \sum A_{\mathrm{O,Kessel,i}} \cdot (t_{\mathrm{O,Kessel,i}}^4 - t_{\mathrm{U}}^4) \quad (9)$$

$$\dot{Q}_{WV_{strahl.,max}} = 5,67 \cdot 10^{-8} \frac{W}{m^2 K^4} \cdot (2,548 \cdot (301,15^4 - 297,95^4) + 0,366 \cdot (305,15^4 - 297,95^4) + 0,163 \cdot (312,15^4 - 297,95^4) + 0,085 \cdot (303,15^4 - 297,95^4)) m^2 K^4 = 0,084 \text{ kW}$$
 (10)

4.4 Berechnung der Abgasverluste

Um die Abgasverluste $\dot{H}_{\rm G}$ zu bestimmen, ist analog zu der Berechnung der Nutzwärme folgende Formel anzuwenden:

$$\dot{H}_{\rm G} = \dot{m}_{\rm G} \cdot c_{\rm p,G} \cdot \Delta T \tag{11}$$

Dabei ergibt sich ΔT als Differenz zwischen Abgas- und Umgebungstemperatur. Für den Massenstrom $\dot{m}_{\rm G}$ und ΔT gilt:

$$\Delta T = t_{\rm G} - t_{\rm U} = 94\,^{\circ}\text{C} - 24, 8\,^{\circ}\text{C} = 67, 2\,\text{K}$$
 (12)

$$\dot{m}_{\rm G} = \dot{m}_{\rm Br} + \dot{m}_{\rm L} \tag{13}$$

Der durchschnittliche Brennstoffmassenstrom $\dot{m}_{\rm Br}$ ergibt sich hierbei über die Massendifferenz des Nachfüllgefäßes vor und nach dem Versuch. Der Luftmassenstrom $\dot{m}_{\rm L}$ ergibt sich mit dem Luftmassenbedarf $M_{\rm tL,min}$ mit der Luftzahl λ . Diese wiederum ergibt sich aus dem Sauerstoffanteil im Abgas O_2 , da in diesem nur noch der Sauerstoff enthalten ist, der stöchiometrisch nicht benötigt wird. Für λ gilt daher:

$$\lambda = \frac{0,21}{0,21 - O_2} = \frac{0,21}{0,21 - 0,111} = 2,12 \tag{14}$$

Der Luftmassenbedarf $M_{\rm tL,min}$ ergibt sich mittels chemischer Zusammensetzung der verwendeten Holzpellets (C: 50,9% - O: 42% - H: 6,6% - S: 0%) mithilfe der folgenden Formel:

$$M_{\text{tL,min}} = 11,44 \cdot C + 34,33 \cdot H + 4,29 \cdot (S - O) \tag{15}$$

$$= 11,44 \cdot 0,509 + 34,33 \cdot 0,066 + 4,29 \cdot (0 - 0,42) = 6,29 \,\mathrm{kg/kg_{Br}}$$
 (16)

Schlussendlich ergeben sich folgende Werte:

$$\dot{m}_{\rm L} = \lambda \cdot M_{\rm tL,min} \cdot \dot{m}_{\rm Br} = 2,12 \cdot 6,29 \,\text{kg/kg}_{\rm Br} \cdot 3,608 \,\text{kg}_{\rm Br}/\text{h} = 48,12 \,\text{kg/h}$$
 (17)

$$\dot{m}_{\rm G} = \dot{m}_{\rm L} + \dot{m}_{\rm Br} = 48,12\,{\rm kg/h} + 3,608\,{\rm kg/h} = 51,72\,{\rm kg/h}$$
 (18)

Zur Bestimmung der spezifischen Wärmekapazität des Abgases $c_{\rm p,G}$ ist die Zusammensetzung des Abgases entscheidend. Vereinfacht kann das Abgas als Gemisch aus lediglich 4 Komponenten angenommen werden: Stickstoff, Sauerstoff, Wasserdampf und Kohlenstoffdioxid. Der Sauerstoffanteil $\xi_{\rm O_2}$ wurde hierbei direkt im Versuch bestimmt, wohingegen die anderen Anteile berechnet werden müssen. Dies geschieht mit den folgenden Formeln für den Wasserdampfanteil $\xi_{\rm H_2O}$, den Kohlendioxidanteil $\xi_{\rm CO_2}$ und den Stickstoffanteil $\xi_{\rm N_2}$. $X_{\rm U}$ ist dabei die absolute Feuchte der Luft, welche mithilfe eines Online-Rechners für Umgebungstemperatur und 50% relativer Luftfeuchtigkeit mit 11,4 g/m³ bzw. 0,0114 kg/kg (mit einer Dichte von 1 kg/m³) ermittelt wurde[1].

$$\xi_{\text{CO}_2} = 0, 21 - \xi_{\text{O}_2} = 0, 21 - 0, 111 = 0,099$$
(19)

$$\xi_{\text{H}_2\text{O}} = 9 \cdot H + W + X_{\text{U}} \cdot \lambda \cdot M_{\text{L,min}} = 9 \cdot 0,066 + 0,08 + 0,0114 \,\text{kg/kg} \cdot 2,12 \cdot 6,29 \,\text{kg/kg} = 0,0576 \tag{20}$$

$$\xi_{\text{N}_2} = 1 - \xi_{\text{O}_2} - \xi_{\text{CO}_2} - \xi H_2 O = 1 - 0, 111 - 0, 099 - 0, 0576 = 0, 7324$$
(21)

Mithilfe dieser Zusammensetzung und der spezifischen Wärmekapazitäten der einzelnen Komponenten kann die gewichtete spezifische Wärmekapazität des gesamten Abgases bestimmt werden. Hierbei gilt allgemein:

$$c_{\rm p,G} = \sum_{\rm i} c_{\rm p,i} \cdot \xi_{\rm i} \tag{22}$$

mit den spezifischen Wärmekapazitäten c_{pi} und den Anteilen der jeweiligen Komponenten ξ_i . Konkret ergibt sich:

$$c_{p,G} = c_{p,O_2} \cdot \xi_{O_2} + c_{p,CO_2} \cdot \xi_{CO_2} + c_{p,H_2O} \cdot \xi_{H_2O} + c_{p,N_2} \cdot \xi_{N_2}$$

$$= (0, 912 \cdot 0, 111 + 0, 846 \cdot 0, 099 + 1, 85 \cdot 0, 0576 + 1, 04 \cdot 0, 7324) \text{ kJ/(kg K)} = 1, 0533 \text{ kJ/(kg K)}$$

$$(24)$$

Somit ergeben sich insgesamt Abgasverluste von:

$$\dot{H}_{\rm G} = \dot{m}_{\rm G} \cdot c_{\rm p,G} \cdot \Delta T = 51,72 \,\text{kg}/(3600 \,\text{s}) \cdot 1,0533 \,\text{kJ/(kg K)} \cdot 67,2 \,\text{K} = 1,017 \,\text{kW}$$
 (25)

4.5 Energiebilanz im Sankey-Diagramm

Im nachfolgenden Diagramm ist die Energiebilanz mithilfe der auftretenden Leistungen in kW dargestellt. Es ist zu erkennen, dass zusätzliche Verluste auftreten, welche nicht berechnet werden. Diese zusätzlichen Verluste betragen etwa 17.5% der Brennstoffleistung.

 ${\bf Abbildung~1:}$ Sankey-Diagramm für den durchgeführten Pelletkesselversuch

Literaturverzeichnis

[1] wetterochs.de, *Luftfeuchtigkeit*, http://www.wetterochs.de/wetter/feuchte.html (Zugriff am: 24.06.2022).