1	2	3	4	5

APELLIDO Y NOMBRE:

No. de libreta:

Carrera:

ALGEBRA - FINAL (12/12/03)

1.- Sea $U = \{1, 2, 3, ..., 998, 999, 1000\}$ y sea \Re la relación en $\mathcal{P}(U) - \emptyset$ definida por $A \Re B \iff \min(A) = \min(B)$ y $\max(A) = \max(B)$,

(donde si X es un subconjunto de U, $\min(X)$ denota el menor elemento de X y $\max(X)$ el mayor).

Probar que \Re es una relación de equivalencia y calcular el cardinal de la clase de $A:=\{100,201\}$.

Pregunta Bonus: ξ Cuántas clases de equivalencia tiene la relación \Re ?

2.— Hallar el menor número natural a que satisface

$$\begin{cases} 7^{15}a \equiv -5 \pmod{12} \\ (a:425) = 5. \end{cases}$$

3.— Determinar y representar graficamente todos los $z \in \mathbb{C}$ que verifican simultáneamente:

$$\arg(z^3 (1+i) \overline{z}) \le \frac{3}{4} \pi \quad \text{y} \quad 1 \le |z-i| \le 2.$$

4.— Sean $f\in \mathbb{C}[x]$ y $\alpha\in \mathbb{C}$ raíz de f con multiplicidad 5. Se define la sucesión de polinomios $(f_n)_{n\in\mathbb{N}}$ como

$$f_1 := f$$
 y $f_{n+1} := (X - \alpha)^2 f_n + f^{n+1}$, $\forall n \ge 1$.

Encontrar y probar una fórmula para la multiplicidad de α como raíz de f_n .

5.— Calcular el número de factores irreducibles de $X^8 - X^4 - 1$ en $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

Se considerarán sólo las respuestas debidamente justificadas.