1.5 Question 5

1.5.A Find gcd(85327,59840).

$a = 85327, \ b = 59840$			
\Rightarrow	$85327 \div 59840$	=	1 R 25487
SWITCH: $a = b$, $b = R$			
$a = 59840, \ b = 25487$			
\Rightarrow	$59840 \div 25487$	=	2 R 8866
SWITCH: $a = b$, $b = R$			
$a = 25487, \ b = 8866$			
\Rightarrow	$25487 \div 8866$	=	2 R 7755
SWITCH: $a = b$, $b = R$			
$a = 8866, \ b = 7755$			
\Rightarrow	$8866 \div 7755$	=	1 R 1111
SWITCH: $a = b$, $b = R$			
a = 7755, b = 1111			
\Rightarrow	7755 ÷ 1111	=	6 R 1089
SWITCH: $a = b$, $b = R$			
$a = 1111, \ b = 1089$			
\Rightarrow	1111 ÷ 1089	=	1 R 22
SWITCH: $a = b$, $b = R$			
a = 1089, b = 22			
\Rightarrow	$1089 \div 22$	=	49 R 11
SWITCH: $a = b$, $b = R$			
a = 22, b = 11			
\Rightarrow	22 ÷ 11	=	2 R O

1.5.B Are numbers in A relative prime? Justify your answer.

No, they are not because 11 is their greatest common divisor.

$$85327 \div 11 = 7757$$

 $59840 \div 11 = 5440$

1.5.C Using Fermat's theorem find 4^{225} mod 13

We know from FERMAT'S LITTLE THEOREM that:

$$4^{12} \equiv 1 \pmod{13}$$

Furthermore from the rules of modulo-arithmetic, we know:

if
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$
then $ac \equiv bd \pmod{n}$

Exercise 01

Therefore we know that:

$$4^{216} \equiv 1 \pmod{13}$$

Because:

$$4^9 = 262.144 \equiv 12 \pmod{13}$$

Our result would be:

$$4^{225} \mod 13 = 12$$

1.5.D Using the Miller-Rabin test, say whether n=104717 is probably prime.

Find k and q:

$$n-1 = 104716 = 2^2 \times 26179 = 2^k \times q$$

RNG for a: a = 10

$$10^{26179} \mod 104717 = 1$$

⇒ Test returns "inconclusive"

RNG for *a*: a = 7312

$$7312^{26179} \mod 104717 = 104716$$

⇒ Test returns "inconclusive"

RNG for *a*: a = 18988

$$18988^{26179} \mod 104717 = 1$$

⇒ Test returns "inconclusive"

RNG for *a*: a = 23753

$$23753^{26179} \ mod \ 104717 \ = \ 1618$$

$$(23753^{26179})^2 \mod 104717 = 104716$$

⇒ Test returns "inconclusive"

Therefore 104717 is a prime with a chance of more than 99.6%!

1.5.E Compute the set of integers that solve the equation $3^k \equiv 12 \pmod{23}$ for k.

We know from the rules of modulo-arithmetic:

if
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$
then $ac \equiv bd \pmod{n}$

Furthermore we know (because 23 is prime) that:

$$3^{22} \equiv 1 \pmod{23}$$

Therefore we need to find *j*:

$$3^{j} \equiv 12 \pmod{23}$$
 , $0 < j < 22$

This is the case for j = 4 and j = 15. Hence, the set of integers, that solve this equation would be:

$$S = \{k \mid k = a \times 22 + j, a \in \mathbb{N}, j \in \{4, 15\}\}\$$