Семестриално контролно по Дискретни структури, 01.12.2024г.

Име: ______, Φ Н: _____, Група: ____

Задача	1	2	3	4	5	Общо
получени точки						
максимум точки	6	6	6	6	6	30

Задача 1. Редицата на Фибоначи f_i е определена със следните условия:

- (1) $f_0 = 0$, $f_1 = 1$
- $(2) \ f_n = f_{n-1} + f_{n-2}$ за всяко n > 1

Докажете, че за всяко n>0 е вярна следната формула:

$$f_{n-1}f_{n+1} = f_n^2 + (-1)^n$$

Задача 2. Разглеждаме релацията $\bot \subseteq \mathbb{N}^+ \times \mathbb{N}^+$, дефинирана като

$$x\perp y \stackrel{def}{\longleftrightarrow} rac{x}{y}$$
 е нечетно цяло число

- а) Да се докаже, че 🗆 е частична наредба
- б) Предложете релация на еквивалентност над \mathbb{N}^+ , която има безброй много безкрайни класове на еквивалентност.

Задача 3. За производно множество X и функция $f: X \to X$ дефинираме

$$f^0=id_X$$

$$f^{k+1}=f\circ f^k \quad \text{ sa } k\in\mathbb{N}$$

- а) Да се докаже, че ако има $n \geq 1$, за което f^n е биекция, то f е биекция
- б) Конструирайте биекция $f:\mathbb{N}\to\mathbb{N}$, такава, че за всяко $n\geq 1,\,f^n\neq id_\mathbb{N}$

Задача 4. Нека |X| = n.

- а) Колко са двойките (A, B), такива, че $A, B \subseteq X$?
- б) Колко са двойките (A,B), такива, че $A,B\subseteq X$ и $A\cap B=\emptyset$?
- в) Колко са двойките (A, B), такива, че $A, B \subseteq X$ и $|A \cap B| = k$?

Задача 5. Всяко квадратче на квадратна мрежа 5×5 се оцветява в един от 4 цвята. Да се намери броят на оцветяванията на мрежата, такива, че контурът ѝ е двуцветен, а във вътрешността всеки цвят се среща поне веднъж.