CLAIMS

1. A compound of formula (I),

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

10 n is 0, 1 or 2;

5

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

15 R^1 is C_{1-6} alkyl or thienyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =0;

R³ is a radical selected from

20
$$-(CH_2)_{s^-}NR^8R^9$$
 (a-1),
-O-H (a-2),
-O-R¹⁰ (a-3),
-S- R¹¹ (a-4), or
——C \equiv N (a-5),

25 wherein

s is 0, 1, 2 or 3;

 R^8 is –CHO, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkylcarbonyl, di(C_{1-6} alkyl)amino C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl, piperidinyl C_{1-6} alkyl, piperidinyl C_{1-6} alkylaminocarbonyl, C_{1-6} alkyloxy,

thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC₁₋₆alkyl, or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl;

R⁹ is hydrogen or C₁₋₆alkyl;

 R^{10} is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^{11} is di(C₁₋₆alkyl)aminoC₁₋₆alkyl; or R³ is a group of formula

(b-1),

5 wherein

t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

10

20

25

$$R^{12}$$
 HN NH R^{12} R^{12} R^{12} R^{12} R^{12} R^{12} R^{12} R^{12} R^{12} R^{12}

$$R^{13}$$
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}

wherein each R¹² independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy, 15

 C_{1-6} alkyloxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkylamino, di(phenyl C_{2-6} alkenyl), $piperidinyl C_{1\text{--}6} alkyl, \ C_{3\text{--}10} cycloalkyl, \ C_{3\text{--}10} cycloalkyl C_{1\text{--}6} alkyl,$ aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino; and each R¹³ independently is hydrogen, piperidinyl or aryl;

R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C1-6alkyl, C1-6alkyloxy, di(C1-6alkyl)amino, di(C1-6alkyl)aminoC1-6alkyloxy or C1-6alkyloxycarbonyl; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

-O-CH₂-O (d-1), -O-(CH₂)₂-O- (d-2), 5 -CH=CH-CH=CH- (d-3), or -NH-C(O)-NR¹⁴=CH- (d-4), wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

with the proviso that when

10

15

n is 0, X is N, R^1 is C_{1-6} alkyl, R^2 is hydrogen, R^3 is a group of formula (b-1), t is 0, Z is the heterocyclic ring system (c-2) wherein said heterocyclic ring system Z is attached to the rest of the molecule with a nitrogen atom, and R^{12} is hydrogen; then at least one of the substituents R^4 , R^5 or R^6 is other than hydrogen, halo, C_{1-6} alkyl or C_{1-6} alkyloxy.

- 2. A compound as claimed in claim 1 wherein
- n is 0 or 1; X is N or CR⁷, wherein R⁷ is hydrogen; R¹ is C₁₋₆alkyl; R² is hydrogen;
 R³ is a radical selected from (a-1) or (a-2) or is group of formula (b-1); s is 0, 1 or 2;
 R⁸ is C₁₋₆alkyl or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl; t is 0, 1 or 2; Z is a heterocyclic ring system selected from (c-1), (c-2), (c-3), (c-4), (c-5) or (c-11); each R¹² independently is hydrogen or C₁₋₆alkyloxyC₁₋₆alkylamino; each R¹³ independently is hydrogen; and R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo or C₁₋₆alkyl.
- A compound according to claim 1 and 2 wherein
 n is 0 or 1; X is N; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is a radical of formula (a-1)
 or is a group of formula (b-1); s is 0; R⁸ is arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl;
 t is 0; Z is a heterocyclic ring system selected from (c-1) or (c-2); each R¹²
 independently is hydrogen or C₁₋₆alkyloxyC₁₋₆alkylamino; each R¹³ independently
 is hydrogen; and R⁴, R⁵ and R⁶ are each independently selected from hydrogen or
 halo.
- 4. A compound according to claim 1, 2 and 3 selected from compound No 5, compound No 9, compound No 2 and compound No 1.

- 5. A compound as claimed in any of claims 1 to 4 for use as a medicine.
- 5 6. A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1 to 4.

1

- 7. A process of preparing a pharmaceutical composition as claimed in claim 6 wherein the pharmaceutically acceptable carriers and a compound as claimed in claim 1 to 4 are intimately mixed.
 - 8. Use of a compound for the manufacture of a medicament for the treatment of a PARP mediated disorder, wherein said compound is a compound of formula (I)

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

20

15

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

R¹ is C₁₋₆alkyl or thienyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =0;

R³ is a radical selected from

 $-(CH_2)_{s}-NR^8R^9$ 10 (a-1),-O-H (a-2),-O-R¹⁰ (a-3),-S- R¹¹ (a-4), or ---C≡N (a-5),

15 wherein

s is 0, 1, 2 or 3;

R⁸ is -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkyl, piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy,

20 thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl, haloindozolylpiperidinylC_{1.6}alkyl, or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl;

R⁹ is hydrogen or C₁₋₆alkyl;

R¹⁰ is C₁₋₆alkyl, C₁₋₆alkylcarbonyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl; and 25 R^{11} is di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

or R³ is a group of formula

$$-(CH_2)_{t}-Z-$$
 (b-1),

wherein

t is 0, 1, 2 or 3; 30

Z is a heterocyclic ring system selected from

$$HN = R^{12} + HN = R^{12} + R^{12}$$

15

20

25

$$R^{12}$$
 R^{12} R^{12}

5 wherein each R^{12} independently is hydrogen, C_{1-6} alkyl, aminocarbonyl, hydroxy,

C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino; and each R¹³ independently is hydrogen, piperidinyl or aryl;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, di($C_{1\text{-}6}$ alkyl)amino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy or $C_{1\text{-}6}$ alkyloxycarbonyl; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

(d-1),

$$-O-(CH_2)_2-O-$$
 (d-2),

$$-NH-C(O)-NR^{14}=CH-$$
 (d-4),

wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl or phenyl substituted with halo, C_{1-6} alkyl or C_{1-6} alkyloxy.

9. Use according to claim 8 of a PARP inhibitor of formula (I) for the manufacture of a medicament for the treatment of a PARP-1 mediated disorder.

- 10. Use according to claim 8 and 9 wherein the treatment involves chemosensitization.
- 11. Use according to claims 8 and 9 wherein the treatment involves radiosensitization.

12. A combination of a compound of formula (I) with a chemotherapeutic agent

10

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1 or 2;

15

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

R¹ is C₁₋₆alkyl or thienyl;

20

R² is hydrogen, hydroxy, C₁₋₆alkyl, C₃₋₆alkynyl or taken together with R³ may form =O;

R³ is a radical selected from

wherein

30 s is 0, 1, 2 or 3;

 R^8 , R^{10} and R^{11} are each independently selected from –CHO, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkylcarbonyl, amino, C_{1-6} alkylamino,

$$\begin{split} & \text{di}(C_{1\text{-}6}\text{alkyl})\text{amino}C_{1\text{-}6}\text{alkyl}, \ C_{1\text{-}6}\text{alkyloxycarbonyl}, \ C_{1\text{-}6}\text{alkylcarbonylamino}C_{1\text{-}6}\text{alkyl}, \\ & \text{piperidinyl}C_{1\text{-}6}\text{alkylaminocarbonyl}, \ piperidinyl, \ piperidinyl}C_{1\text{-}6}\text{alkyl}, \\ & \text{piperidinyl}C_{1\text{-}6}\text{alkylaminocarbonyl}, \ C_{1\text{-}6}\text{alkyloxy}, \ thienyl}C_{1\text{-}6}\text{alkyl}, \\ & \text{pyrrolyl}C_{1\text{-}6}\text{alkyl}, \ \text{aryl}C_{1\text{-}6}\text{alkylpiperidinyl}, \ \text{arylcarbonyl}C_{1\text{-}6}\text{alkyl}, \\ & \text{arylcarbonylpiperidinyl}C_{1\text{-}6}\text{alkyl}, \ \text{haloindozolylpiperidinyl}C_{1\text{-}6}\text{alkyl}, \ \text{or} \\ & \text{aryl}C_{1\text{-}6}\text{alkyl}(C_{1\text{-}6}\text{alkyl})\text{amino}C_{1\text{-}6}\text{alkyl}; \ \text{and} \\ & R^9 \ \text{is hydrogen or} \ C_{1\text{-}6}\text{alkyl}; \end{aligned}$$

or R³ is a group of formula

$$-(CH_2)_t-Z-$$
 (b-1),

10 wherein

5

t is 0, 1, 2 or 3;

(c-9)

Z is a heterocyclic ring system selected from

(c-10)

wherein each R¹² independently is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino,

(c-11)

$$-C_{1\text{-}6} \text{alkanediyl} -N \\ \text{hydroxy, aryl,} \\ -C_{1\text{-}6} \text{alkanediyl} \\ \text{O}$$

 $C_{1\text{-}6}$ alkylamino $C_{1\text{-}6}$ alkyloxy, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl, piperidinyl $C_{1\text{-}6}$ alkyl,

 C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkylamino, morpholino, C_{1-6} alkylimidazolyl, or pyridinyl C_{1-6} alkylamino;

each R¹³ independently is hydrogen, piperidinyl or aryl;

5

10

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C_{1-6} alkyl, C_{1-6} alkyloxy, amino, amino C_{1-6} alkyl, di(C_{1-6} alkyl)amino, di(C_{1-6} alkyl)amino C_{1-6} alkyloxy or C_{1-6} alkyloxycarbonyl, or C_{1-6} alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, C_{1-6} alkyloxy, or amino C_{1-6} alkyloxy; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

-O-CH₂-O (d-1), -O-(CH₂)₂-O- (d-2), 15 -CH=CH-CH=CH- (d-3), or -NH-C(O)-NR¹⁴=CH- (d-4), wherein R¹⁴ is C_{1-6} alkyl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

20

25

13. A process for preparing a compound as claimed in claim 1, characterized by a) the hydrolysis of intermediates of formula (VIII), according to art-known methods, by submitting the intermediates of formula (VIII) to appropriate reagents, such as, tinchloride, acetic acid and hydrochloric acid, in the presence of a reaction inert solvent, e.g. tetrahydrofuran.

30

b) the cyclization of intermediates of formula (X), according to art-known cyclizing procedures into compounds of formula (I) wherein X is CH, herein referred to as compounds of formula (I-j), preferably in the presence of a suitable Lewis Acid, e.g. aluminum chloride either neat or in a suitable solvent such as, for example, an

10

15

aromatic hydrocarbon, e.g. benzene, chlorobenzene, methylbenzene and the like; halogenated hydrocarbons, e.g. trichloromethane, tetrachloromethane and the like; an ether, e.g. tetrahydrofuran, 1,4-dioxane and the like or mixtures of such solvents.

c) the condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) wherein R^h is C₁₋₆alkyl, into compounds of formula (I), wherein X is N, herein referred to as compounds of formula (I-i), in the presence of a carboxylic acid, e.g. acetic acid and the like, a mineral acid such as, for example hydrochloric acid, sulfuric acid, or a sulfonic acid such as, for example, methanesulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid and the like.