DEEP LEARNING-BASED SOFTWARE ENGINEERING

Citation: Chen X P, Hu X, Huang Y, et al. Deep learning-based software engineering: progress, challenges, and opportunities. Sci China Inf Sci, 2025

Presented By: Rahul Kavati

Introduction

- Rise of deep learning (DL) as a transformative force in software engineering (SE)
- Shift from manual, rule-based approaches to data-driven automation
- Overview of paper's goal: survey DL's impact on 12 key SE tasks

Objectives of the Study

- Map deep learning techniques to SE subareas
- Highlight research progress, challenges, and opportunities
- Provide a unified view to guide future AI4SE research

Deep Learning Techniques

- CNNs, RNNs, LSTMs, Transformers
- Pre-trained models: BERT, CodeBERT, GraphCodeBERT, UnixCoder
- Application across code, text, graphs

Software Engineering Tasks

01

Requirements engineering

02

Code generation

03

Code summarization

04

Defect prediction

05

Bug finding

06

Fault localization

07

Bug report management

Code Summarization

- Purpose: Generate natural language descriptions of code
- DL Techniques:
 - Seq2Seq (LSTM) models
 - Transformer-based models (e.g., CodeBERT, UnixCoder)
 - Multi-modal input: code tokens, ASTs, CFGs
- Benefits:
 - Enhances code comprehension and maintenance
 - Supports automatic documentation
- Challenges:
 - Quality and consistency of training data
 - Evaluating summary accuracy
 - Avoiding hallucinations or misleading summaries

Contributions of the paper

- Task-oriented classification of DL applications in SE
- Analysis of over 600 papers
- Discussion of models, datasets, tools, and gaps
- Emphasis on cross-cutting themes (e.g., explainability, scalability)

Research challenges Identified

- Dataset scarcity and labeling effort
- Generalization across projects/languages
- Integration with development workflows
- Trust, explainability, and reproducibility

Proposed Framework

- Model-task alignment guidance
- Importance of benchmark datasets
- Advocates for explainable DL in SE
- Promotes reuse of knowledge via pre-trained models

Conclusions

- DL is reshaping SE with substantial progress in many areas
- Code summarization among key areas of impact
- Still, major challenges remain in data, tools, and evaluation

Future works

- Build diverse, high-quality datasets
- Improve interpretability of DL models
- Apply LLMs to collaborative and interactive SE tasks
- Study real-world adoption and trust in Al-generated artifacts

#