

Description

The VST08N061 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

V_{DS} =88V,I_D =18A

 $R_{DS(ON)}$ =6.1m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =7.1m Ω (typical) @ V_{GS} =4.5V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST08N061-S8	VST08N061	SOP-8	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	88	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	18	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	12.7	Α
Pulsed Drain Current	I _{DM}	72	А
Maximum Power Dissipation	P _D	3.5	W
Derating factor		0.028	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	210	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	36	°C/W
--	-----------------	----	------

Electrical Characteristics (T_A =25 $^{\circ}$ C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	88	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =88V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.7	2.2	V
Orain-Source On-State Resistance	Б	V _{GS} =10V, I _D =18A	-	6.1	7.5	mΩ
	R _{DS(ON)}	V _{GS} =4.5V, I _D =18A	-	7.1	9.0	mΩ
Forward Transconductance	g _{FS}	V _{DS} =10V,I _D =18A	50	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =40V,V _{GS} =0V, F=1.0MHz	-	5360		PF
Output Capacitance	C _{oss}		-	611		PF
Reverse Transfer Capacitance	C _{rss}	r-1.0Winz	-	48.6		PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V _{DD} =40V,I _D =18A	-	16.4	-	nS
Turn-on Rise Time	t _r		-	10.5	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =1.6 Ω	-	45.4	-	nS
Turn-Off Fall Time	t _f		-	6.5	-	nS
Total Gate Charge	Qg	V _{DS} =50V,I _D =18A,	-	79	-	nC
Gate-Source Charge	Q _{gs}		-	16.5	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	12.1	-	nC
Drain-Source Diode Characteristics			•	•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =18A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	18	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	105	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	200	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 2)

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

lp- Drain Current (A)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance