Final

Chapter 4 Qualitative theory of differential equations

4.1 Introduction

$$egin{cases} rac{dx}{dt} = f_1(t,x,y) \ rac{dy}{dt} = f_2(t,x,y) \end{cases}$$

equilibrium point $\ o \ f_1(t,x,y) = f_2(t,x,y) = 0$

4.2 Stability of linear systems

Consider the real parts of eigenvalues

 $orall j, Re(\lambda_j) < 0 \, o \,$ asymptotically stable

$$\exists j, Re(\lambda_i) > 0 \rightarrow \mathsf{unstable}$$

$$Re(\lambda_i) = 0$$

n linearly independent v_j , or we can solve v_j from only $(A-\lambda I)v=0$ ightharpoonup stable

We need to solve v_i from $(A-\lambda I)v=0$ and $(A-\lambda I)v^2=0$ \rightarrow unstable

4.3 Stability of equilibrium solutions

First solve for equilibrium point $\ \ \vec{f}_1(t,x,y) = f_2(t,x,y) = 0$

Then find Jacobian matrix

$$\mathbf{F}(\vec{x}) = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} \cos y - \sin x - 1 \\ x - y - y^2 \end{pmatrix}.$$

Taylor expanding the solution about (0,0), we have with $\vec{z} = \vec{x} - (0,0)$ that

$$\begin{split} \frac{d}{dt}\vec{z} &= \frac{d}{dt}\vec{x} = \mathbf{F} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} \Big|_{(0,0)} \vec{z} + \mathbf{g}(\vec{z}) \\ &= \begin{pmatrix} -\cos x & -\sin y \\ 1 & -1 - 2y \end{pmatrix} \Big|_{(0,0)} \vec{z} + \mathbf{g}(\vec{z}) \\ &= \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} \vec{z} + \mathbf{g}(\vec{z}). \end{split}$$

Finally determine stability

4.4 The phase-plane

$$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$$

$$\frac{dy}{dx} = \frac{-x}{y} \rightarrow \text{circle}$$

$$rac{dy}{dx}=rac{-M}{N}$$
 $ightarrow$ $M+Nrac{dy}{dx}=0$, $\phi=\int Mdx+f_1(y)=\int Ndy+f_2(x)$

4.7 Phase portraits of linear system

$$\lambda_1 < \lambda_2 < 0$$

$$0<\lambda_1<\lambda_2$$

same as above, reversed the direction

$$\lambda_1=\lambda_2<0$$

two linearly independent eigenvectors v.s. one linearly independent eigenvectors

$$\lambda_1=\lambda_2>0$$

same as above, reversed the direction

$$\lambda_1 < 0 < \lambda_2$$

$$\lambda_1=lpha+ieta, \lambda_2=lpha-ieta$$
 $lpha=0$ v.s. $lpha<0$ v.s. $lpha>0$

Figure 6. (a) $\alpha = 0$; (b) $\alpha < 0$; (c) $\alpha > 0$

Chapter 5 Separation of variables and Fourier series

5.1 Two point boundary-value problems

$$rac{d^2y}{dx^2}+\lambda y=0$$
, $y(0)=0$, $y(l)=0$

nontrivial y
$$_{ o}$$
 $\lambda=rac{n^2\pi^2}{l^2}, n=1,2,...;y(x)=c\sinrac{n\pi x}{l}$

Case 1:
$$\lambda=0$$
 $\rightarrow y=c_1x+c_2$

Case 2:
$$\lambda < 0 ext{ } ext{$$

Case 3:
$$\lambda > 0$$
 $\Rightarrow y = c_1 \cos(\sqrt{\lambda}x) + c_2 \sin(\sqrt{\lambda}x)$

Final 4