

Diagnostic Medical Image Processing Prof. Dr.-Ing. Andreas Maier Exercises (DMIP-E) WS 2016/17

Projection Models

Frank Schebesch, Tobias Würfl, Matthias Utzschneider, Yixing Huang, Asmaa Khdeir, Houman Mirzaalian

Exercise Sheet 3

7 Projections

- (i) We want to find the projection of the point X on the image plane as shown in the figure.
 - What kind of projection is that and how is X mapped to its projection point X' on the image plane?
 - Which difficulty is connected with this mapping?
 - Which kind of mapping could we use instead if we wanted to approximate the projection from above?
 - For both projection models, write down the mapping for 3-D to 2-D cartesian coordinates.

(ii) Of the following projection models, for which ones do all projected points pass through the origin of the camera coordinate system?

\square respective projection	\square orthographic projection
\Box weak-perspective projection	\Box paraperspective projection
\Box perspective projection	\Box no-perspective projection
	2+1

8 Homogeneous Coordinates

(i) Find the intersection point of the following two lines:

$$l_1: 3x + 4y = 6,$$

 $l_2: x + y = 2.$

(ii) Compute the intersection of the parallel 2-D lines [a,b,c] and [a,b,c'] (notation from the lecture).

(Hint: Check out which 2-D point you get if you calculate the cross product of the coordinate axes.)

- (iii) Can you find an inhomogeneous 2-D representation of the intersection point? Otherwise describe why you cannot.
- (iv) Do these results in 2-D match the intuition that parallel lines "meet at infinity"?

1 + 1 + 1 + 1

9 Camera Parameters

- (i) What are extrinsic camera parameters and intrinsic camera parameters?
- (ii) With your new digital camera (focal length f=0.3 cm, zero pinhole offset, perfect square pixels, i.e., $k_x = k_y$, camera skew is exactly 90°) you want to study the effects of perspective distortion. Therefore you take a picture of the rails at an inoperative side track near your local train station. The coordinates of the camera's optical center with respect to the world coordinate system are $C = (0,0,h)^T$, where h = 60 cm. The camera's principal axis is parallel to the rails. Write the expression for the camera's full projection matrix P.
- (iii) An object is observed and its center is located at $\mathbf{x}_0 = (1.2, 3.6, 2.0)^T \in \mathbb{R}^3$. The object is rotated around the x-axis by $\theta_x = 30^{\circ}$ and by $\theta_y = 90^{\circ}$ around the y-axis. Furthermore the camera is translated by $\mathbf{t} = (1.3, 2.2, 2.0)^T$. Finally the object is projected perspectively to the image plane with focal length f=4.
 - Does it make a difference which rotation to perform first? Why?
 - State the translation, rotation and projection mapping in a single transformation matrix T and apply T appropriately to find the homogeneous point $\mathbf{x}'_1 \in \mathbb{P}^3$.
 - Calculate the projected center $\mathbf{x}_1 \in \mathbb{R}^3$.

0.5 + 1 + 1.5

Latest submission date: 11/25/2016

Total: 10