

Department of Computer Engineering

6th SEM Mini Project

REAL-TIME SIGN LANGUAGE CONVERSION TO TEXT

Group No. : 3A10

Members:

Naina Makhijani 15

Shreeyash Gaiki 57

Yamini Mirashe 26

Saloni Sable 19

Project Guide:

Dr. Kapil Gupta

CONTENT

- Project Overview
- Project Aim
- Objectives
- Dataset
- Algorithm
- ML Model
- Workflow
- Schedule Diagram
- Requirements
- References

PROJECT OVERVIEW

Project Title:

Real-time Sign Language Conversion to Text

Problem Statement:

To develop a system that can recognize sign language gestures in real-time and convert them into text.

PROJECT AIM

Aim:

Our project aims to create a computer application and train a model which when shown a real time video of hand gestures of American Sign Language shows the output for that particular sign in text format on the screen.

The primary goal is to bridge the communication gap between individuals who use sign language and those who may not be familiar with it, facilitating seamless and inclusive communication.

OBJECTIVES

To implement a machine learning model which will identify 26 English alphabet (A-Z or a-z), Numbers (0 to 9) and Black space.

To develop a user interface consisting of a camera screen to capture real-time video of hand gestures and a text-box to display the converted sentence in English.

DATASET

We will be using following datasets:

- American Sign Language Dataset
- American Sign Language

While training each image will be labelled to its character.

The dataset consist of 6000 different images of each letter and 70 different images of each number, total 169k images of training data.

ALGORITHM

- Continuous stream of images is captured and processed for image normalization and other filtering to feed into ML model.
- Processed frames are given to trained model, which classifies the input image with the gesture letter.
- Model maps each frame to a letter and if same frame is detected for more than few frames, then it is taken into consideration for word forming.
- Space between the words are considered using blank symbol.
- The sentence formed is displayed on the output screen.

ML MODEL

Convolutional Neural Networks

- CNNs consist of multiple convolutional layers each layer containing numerous "filters" which perform feature extraction.
- Initially these "filters" are random and by training, the feature extraction gets better.
- CNN is primarily used for image classification.
- During training, the CNN learns to optimize its internal parameters to accurately map input frames to corresponding gesture.
- Adjustments are made to improve the model's accuracy and generalization.

ML MODEL

Convolutional Neural Networks

• Different filter layers will be applied to each image frame to ease the model processing, also increasing its accuracy in different conditions.

WORKFLOW

- Project Planning and Research
- Data Collection and Preprocessing
- Model selection and Architecture
- Model training
- Integration with Text Generation
- Real-Time Implementation
- User Interface Development
- Testing and Evaluation

sign language to text

Read-only view, generated on 03 Feb 2024

Kea	id-only	/ view, generated on U3 Feb 2024					
	ACTI	VITIES	ASSIGNEE	EH	START	DUE	96
	Proj	ect Planning and Research:			29/Jan	03/Feb	73%
1	9	Objective Definition	Na, Sh, Ya	-	29/Jan	03/Feb	100%
2	②	User Requirements	Saloni	-	29/Jan	03/Feb	100%
3	\odot	Research	Na, Sh, Ya	-	29/Jan	03/Feb	20%
	Data Collection and Preprocessi			-	05/Feb	11/Feb	33%
5	②	Dataset Selection	All	-	05/Feb	07/Feb	100%
6	\odot	Annotation	All	-	07/Feb	11/Feb	0%6
7	\odot	Preprocessing	All	-	07/Feb	11/Feb	096
	Mod	del Selection and Architectu		-	12/Feb	17/Feb	0%
9	\odot	Choose Model	All	-	12/Feb	17/Feb	0%
10	\odot	Architecture Design	All	-	12/Feb	17/Feb	0%6
	Training the ASL Recognition M			-	18/Feb	02/Mar	0%
12	\odot	Data Splitting	All	-	18/Feb	24/Feb	0%6
13	\odot	Model Training	All	-	18/Feb	28/Feb	0%
14	\odot	Fine-Tuning	All	-	28/Feb	02/Mar	0%
	Integration with Text Generati			-	03/Mar	09/Mar	0%
16	\odot	Choose Text Generation Mo	All	-	03/Mar	09/Mar	0%
17	\odot	Integration	All	-	03/Mar	09/Mar	0%
	Real-Time Implementation:				10/Mar	17/Mar	0%
19	\odot	Real-Time Processing	All	-	10/Mar	17/Mar	0%
20	\odot	Stream Processing	All	-	10/Mar	17/Mar	0%
Use		r Interface Development:		-	18/Mar	24/Mar	0%
22	\odot	Design Interface	All	-	18/Mar	24/Mar	0%
23	\odot	Integration	All	-	18/Mar	24/Mar	0%
	Testing and Evaluation:			-	25/Mar	03/Apr	0%
25	\odot	Functional Testing	All	-	25/Mar	29/Mar	0%
26	\odot	User Testing	All		27/Mar	03/Apr	0%

SCHEDULE DIAGRAM

REQUIREMENTS

Software:

- Python 3
- Tensorflow
- OpenCV
- NumPY
- Keras
- pyttsx3
- Dataset

Tools:

- IDE
- GitHub
- Documentation
- Jupyter

Notebook

REFERENCES

- What is CNN?(https://youtu.be/QzY57FaENXg si=VqNrYcp8trtWBPaZ)
- Simple explanation of CNN (https://youtu.be/zfiSAzpy9NM?si=afI-3hDU8HaAX-4Y)
- Sign language using CNN (https://youtu.be/NQPV2344cGE? si=fSUcEZ94BXPRQiRn)
- A brief guide to CNN (https://medium.com/nybles/a-brief-guide-to-convolutional-neural-network-cnn-642f47e88ed4)
- Tools used in ML (https://neptune.ai/blog/top-tools-to-run-a-computer-vision-project)
- Kaggle dataset (https://www.kaggle.com/datasets/kapillondhe/american-sign-language), (https://www.kaggle.com/datasets/ayuraj/asl-dataset)

THANK YOU