11- Chiusura di un insieme di attributi

Prof.ssa Maria De Marsico demarsico@di.uniroma1.it

Cosa vogliamo ottenere

- Quando si decompone uno schema di relazione R su cui è definito un insieme di dipendenze funzionali F, oltre ad ottenere schemi in 3NF occorre
 - 1) preservare le dipendenze
 - 2) poter ricostruire tramite join tutta e sola l'informazione originaria.
- Le dipendenze funzionali che si vogliono preservare sono tutte quelle che sono soddisfatte da ogni istanza legale di R, cioè le dipendenze funzionali in F⁺.
- Quindi si è interessati a calcolare F+ ...
- E sappiamo come farlo ... ma ...

Cosa vogliamo ottenere

- ...calcolare F^+ richiede tempo **esponenziale** in |R|.
- Ricordiamo che se $X \rightarrow Y \in F^+$, per le regole della decomposizione e dell'unione, si ha che $X \rightarrow Z \in F^+$, per ogni $Z \subseteq Y$; pertanto ... il calcolo di $|F^+|$ è **esponenziale** in |R|.
- Fortunatamente per i nostri scopi è sufficiente avere un metodo per decidere se una dipendenza funzionale X→Y appartiene ad F⁺ (cioè alla chiusura di un insieme di dipendenze)
- Ciò può essere fatto calcolando X⁺ e verificando se Y X⁺.
- Infatti ricordiamo il lemma : $X \rightarrow Y \in F^A$ se e solo se $Y \subseteq X^+...$
- ... e il teorema che dimostra che F^A = F⁺

Utilità della chiusura X⁺

- Vedremo che il calcolo di X⁺ è utile in diversi casi
- Verificare le condizioni perché un insieme di attributi sia chiave di uno schema
- Verificare se una decomposizione preserva le dipendenze funzionali dello schema originario

- ...

Come si calcola X⁺

• Per il calcolo della chiusura dell'insieme di attributi X, denotata con X⁺, possiamo usare il seguente algoritmo.

Algoritmo «Calcolo di X +»

X può essere un **singolo attributo**

Input uno schema di relazione R, un insieme F di dipendenze funzionali su R, un sottoinsieme X di R;

Output la chiusura di X rispetto ad F (restituita nella variabile

Z);

begin

$$S:=\{A/Y\rightarrow V\in F\land A\in V\land Y\subseteq Z\}$$

while

$$S \not\subset Z$$

do

begin

$$S:=\{A/Y\rightarrow V\in F\land A\in Y\}$$

end

Si inseriscono in S i **singoli** attributi che compongono le parti destre di dipendenze in F la cui parte sinistra è contenuta in Z (in pratica decomponendo le parti destre).

All'inizio Z è proprio X, quindi inseriamo gli attributi che sono determinati funzionalmente da X; una volta che questi sono entrati in Z, da questi ne aggiungiamo altri (per transitività).

Possiamo «numerare» gli insiemi Z successivi

Z⁽ⁱ⁾ è l'insieme ottenuto dopo la i-esima iterazione del while

end

Come si calcola X⁺

• Per il calcolo della chiusura dell'insieme di attributi X, denotata con X^+ , possiamo usare il seguente algoritmo.

Algoritmo «Calcolo di X +»

X può essere un **singolo attributo**

Input uno schema di relazione R, un insieme F di dipendenze funzionali su R, un sottoinsieme X di R;

Output la chiusura di X rispetto ad F (restituita nella variabile

Z);

begin

$$S:=\{A/Y\rightarrow V\in F\land A\in V\land Y\subseteq Z\}$$

while

$$S \not\subset Z$$

do

begin

$$S:=\{A/Y\rightarrow V\in F\land A\in Y\}$$

end

end

All'iterazione i+1 aggiungiamo in S i singoli attributi che compongono le parti destre di dipendenze *in F* la cui parte sinistra \grave{e} contenuta in $Z^{(i)}$ cio \grave{e} $S:=\{A/Y \rightarrow V \in F \land A \in V \land Y \subseteq Z^{(i)}\}$

Alla fine di ogni iterazione aggiungiamo qualcosa a Z, **ma non eliminiamo MAI** nessun attributo

L'algoritmo si ferma quando il **nuovo** insieme S che otteniamo è (**già**) contenuto nell'insieme Z, cioè quando **non possiamo** aggiungere **nuovi** attributi alla chiusura transitiva di X.

Vediamo che stiamo usando implicitamente F^A

F= {AB->C, B->D, AD->E, CE->H} R=ABCDEHL

Vogliamo calcolare la chiusura di AB

```
Z=AB
```

 $S=\{C, D\}$ AB->C in F, per inserire D AB->B (RIF) + B->D (in F) = AB->D (TRANS)

S ha qualcosa in più?

 $Z=\{A,B,C,D\}$

 $S=\{C,D,E\}$ per inserire E AB->B (RIF) + B->D (in F) + AB->AD (AUM) + AD->E (in F) = AB->E (TRANS)

S ha qualcosa in più?

Z= ABCDE

S= CDEH per inserire H AB->C (in F) + AB->AD (AUM di B->D in F) + AD->E (in F) + AB->E (TRANS) + AB->CE (UNIONE) + CE->H (in F) = AB -> H (TRANS)

S ha qualcosa in più?

Z= ABCDEH S=CDEH Estendere la variabile Z da cui prendiamo i determinanti nei cicli while successivi equivale ad applicare gli assiomi di Armstrong

S ha qualcosa in più? STOP

L'algoritmo è corretto

Teorema: L'Algoritmo «**Calcolo di X** +» calcola correttamente la chiusura di un insieme di attributi *X* rispetto ad un insieme *F* di dipendenze funzionali.

Dim. Indichiamo con $Z^{(0)}$ il valore iniziale di $Z(Z^{(0)}=X)$ e con $Z^{(i)}$ ed $S^{(i)}$, $i \ge 1$, i valori di Z ed S **dopo** l'i-esima esecuzione del corpo del ciclo; è facile vedere che $Z^{(i)} \subseteq Z^{(i+1)}$, per ogni i.

Ricordiamo:

In $Z^{(i)}$ ci sono gli attributi aggiunti a Z fino alla i-esima iterazione Alla fine di ogni iterazione aggiungiamo qualcosa a Z, ma non eliminiamo MAI nessun attributo

Sia j tale che $S(j)\subseteq Z(j)$ (cioè, Z(j) è il valore di Z quando l'algoritmo termina); proveremo che:

 $A \in Z^{(j)}$ se e solo se $A \in X^+$.

Parte solo se. Mostreremo per induzione su i che Z⁽ⁱ⁾ <u>C</u>X+, per ogni i. (e quindi, in particolare Z^(j) <u>C</u>X+.)
riflessività

Base dell'induzione: i=0. Poiché $Z^{(0)}=X$ e $X\subseteq X^+$, si ha $Z^{(0)}\subseteq X^+$. Induzione: i>0. Per l'ipotesi induttiva $Z^{(i-1)}\subseteq X^+$.

Sia \boldsymbol{A} un attributo in $\boldsymbol{Z^{(i)}}$ - $\boldsymbol{Z^{(i-1)}}$;

È stato aggiunto **proprio** durante la iesima iterazione perché **non era** in **Z**⁽ⁱ⁻¹⁾

deve esistere una dipendenza $Y \rightarrow V \in F$ tale che $Y \subseteq Z^{(i-1)}$ e $A \in V$. Poiché $Y \subseteq Z^{(i-1)}$, per l'ipotesi induttiva si ha che $Y \subseteq X^+$; pertanto, per il Lemma, $X \rightarrow Y \in F^A$. Poiché $X \rightarrow Y \in F^A$ e $Y \rightarrow V \in F$, per l'assioma della transitività si ha $X \rightarrow V \in F^A$ e quindi, per il Lemma, $V \subseteq X^+$. Pertanto, per ogni $A \in Z^{(i)} - Z^{(i-1)}$ si ha $A \in X^+$. Da ciò segue, per l'ipotesi induttiva, che $Z^{(i)} \subseteq X^+$.

Gli attributi in **Z**⁽ⁱ⁻¹⁾ ci sono per ipotesi induttiva e abbiamo mostrato che ci vanno anche quelli inseriti in **Z all'i-esima iterazione** del ciclo

Parte se. Sia A un attributo in X⁺ e sia j tale che S^(j) ⊆Z^(j) (cioè, Z^(j) è il valore di Z quando l'algoritmo si termina). Mostreremo che A ∈ Z^(j).

Poiché $A \in X^+$, si ha $X \rightarrow A \in F^+$ (per il Teorema); pertanto $X \rightarrow A$ deve essere soddisfatta da **ogni** istanza legale di R. Si consideri la seguente istanza r di R:

		$Z^{(j)}$				μ R- Z ^(j)	
			\	1			
1	1		1	1	1		1
1	1		1	0	0		0

•Mostriamo prima che r è un'istanza legale di R.

	$Z^{(j)}$						R- Z ^(j)		
r	1	1		1	1	1		1	
•	1	1		1	0	0		0	

Mostriamo prima che r è un'istanza legale di R.

Infatti, se,

per assurdo,

esistesse in F una dipendenza funzionale $V \rightarrow W$ non soddisfatta da r, si dovrebbe avere $V \subseteq Z^{(j)}$ (i valori delle due tuple sono uguali SOLO in quel sottoinsieme di R), e serve che siano uguali per poter dire che la dipendenza NON E' soddisfatta)

e $W \cap (R - Z^{(j)}) \neq \emptyset$; (i valori delle due tuple <u>sono diversi SOLO</u> in <u>quel</u> sottoinsieme di R) ma, in tal caso, si avrebbe $S^{(j)} \not\subset Z^{(j)}$ (contraddizione).

PERCHE'?

		ı	Z (j)		R- Z ^(j)			
r	1	1		1	1	1		1
	1	1		1	0	0		0

Abbiamo assunto che j è il valore per cui $S^{(j)} \subseteq Z^{(j)}$ (all'iterazione j **non abbiamo aggiunto NIENTE** di nuovo, e quindi da lì in poi non potremo farlo neppure continuando).

Se fosse $V \subseteq Z^{(j)}$ e $W \cap (R - Z^{(j)}) \neq \emptyset$ avrei qualche elemento di W non è ancora in $Z^{(j)}$; applicando l'algoritmo alla iterazione j+1 potrei ancora raccogliere in S questi NUOVI elementi tramite $V \rightarrow W$ e poi inserirli in $Z^{(j+1)}$. L'algoritmo però si ferma solo quando non è più possibile inserire nuovi elementi in Z, che significa che da quel punto in poi continueremmo ad ottenere sempre lo stesso insieme S che è stato già aggiunto a Z, e quindi siamo ad una contraddizione

Parte se (continua)

		ı	$Z^{(j)}$			R]- Z (j)	
		/					Λ	
r	1	1		1	1	1		1
	1	1		1	0	0		0

•Poiché r è un'istanza legale di R deve soddisfare $X \rightarrow A$; (che è in F +) (se esistono due tuple uguali su X devono essere uguali anche su A). Esistono due tuple uguali su X? **CERTO!**

 $X = Z^{(0)} \subseteq Z^{(j)}$, e le due tuple sono uguali su TUTTI gli attributi in $Z^{(j)}$; ma allora le due tuple DEVONO essere uguali anche su A, che, allora, deve essere in $Z^{(j)}$.

Osservazione: proprietà dell'insieme vuoto

- Prima di tutto va sottolineato che la notazione $\{\emptyset\}$ indica l'insieme che contiene l'insieme vuoto (insieme di insiemi) e non va pertanto confusa con il semplice insieme vuoto \emptyset
- l'insieme vuoto è un <u>sottoinsieme</u> di ogni insieme A:

$$\forall A : A \supset \emptyset$$

l'<u>unione</u> di un qualunque insieme A con l'insieme vuoto è A:

$$\forall A : A \cup \emptyset = A$$

- l'<u>intersezione</u> di un qualunque insieme A con l'insieme vuoto è l'insieme vuoto: $\forall A : A \cap \emptyset = \emptyset$
- il <u>prodotto cartesiano</u> di un qualunque insieme A con l'insieme vuoto è l'insieme vuoto: $\forall A : A \times \emptyset = \emptyset$
- l'unico sottoinsieme dell'insieme vuoto è l'insieme vuoto stesso
- il numero di elementi dell'insieme vuoto (vale a dire la sua cardinalità) è zero; l'insieme vuoto è quindi finito: | Ø |=0

Esempio

Dato lo schema di relazione R = (A, B, C, D, E, H) e il seguente insieme di dipendenze funzionali su R
F = { AB→ CD, EH→ D, D→ H }

calcolare le chiusure degli insiemi A, D e AB

$$R = (A, B, C, D, E, H)$$
 $F = \{AB \rightarrow CD, EH \rightarrow D, D \rightarrow H\}$

begin

*Z:=***A**;

 $S:=\{L/Y \rightarrow V \in F \land L \in V \land Y \subseteq A\} = \emptyset$ (A da solo non determina alcun altro attributo)

controllo while ($S \not\subset Z$?): $\emptyset \subset A$ **quindi non** entriamo nella prima iterazione del while

end

$$A += A$$

$$R = (A, B, C, D, E, H)$$
 $F = \{AB \rightarrow CD, EH \rightarrow D, D \rightarrow H\}$

begin

*Z:=***D**;

 $S:=\{L/Y \rightarrow V \in F \land L \in V \land Y \subseteq D\}=H \text{ (per la dipendenza } D \rightarrow H \text{)}$

controllo while (SZZ?): HZD **quindi** entriamo nella prima iterazione del while

begin (prima iterazione del while)

$$Z:=Z\cup S=D\cup H=DH$$

 $S:=\{L/Y \rightarrow V \in F \land L \in V \land Y \subseteq DH\} = H \text{ (per la dipendenza } D \rightarrow H \text{)}$

end

controllo while: H⊂ DH (non abbiamo aggiunto niente di nuovo)

usciamo dal while

end

$$D = DH$$

begin

R = (A, B, C, D, E, H)

 $F = \{AB \rightarrow CD, EH \rightarrow D, D \rightarrow H\}$

Z:=AB;

 $S:=\{A/Y \rightarrow V \in F \land A \in V \land Y \subseteq AB\}=CD \text{ (per la dipendenza AB} \rightarrow CD)=CD$

controllo while (SZZ?): CDZAB quindi entriamo nella prima iterazione del while begin (prima iterazione del while)

$$Z:=Z \cup S = AB \cup CD = ABCD$$

$$S:=\{A/Y \rightarrow V \in F \land A \in V \land Y \subseteq ABCD\} = \{C, D\}$$

(per la

dipendenza AB→ CD), <u>H</u> (per la dipendenza D→ H)}=CDH

end

controllo while: *CDH* ⊄ ABCD (abbiamo aggiunto H, quindi entriamo nella seconda iterazione)

begin (seconda iterazione del while)

$$Z:=Z\cup S=ABCD\cup CDH=ABCDH$$

 $S:=\{A/Y \rightarrow V \in F \land A \in V \land Y \subseteq ABCDH\} = \{C, D \text{ (per la dipendenza } \}$

AB→ CD), H (per la dipendenza D→ H)}=CDH

end

controllo while: *CDH C* ABCDH (non abbiamo aggiunto nulla di nuovo)

usciamo dal while

end

AB += ABCDH

Esercizio

• Dato lo schema di relazione R = (A, B, C, D, E, H, I) e il seguente insieme di dipendenze funzionali su R

$$F = \{A \rightarrow E, AB \rightarrow CD, EH \rightarrow I, D \rightarrow H\}$$

calcolare la chiusura dell'insieme AB

La successione delle Z e delle S sarà

Z = AB

 $S = CDE (per A \rightarrow E, AB \rightarrow CD)$

Ciclo while

Iter. 1 parte con Z= ABCDE, calcola S= CDEH (A \rightarrow E, AB \rightarrow CD, D \rightarrow H)

Iter. 2 parte con Z= ABCDEH, calcola S= CDEH \underline{I} (..., D \rightarrow H, $\underline{EH}\rightarrow \underline{I}$)

Iter. 3 parte con Z= ABCDEHI, calcola S= CDEHI_(...)

CDEH I ABCDEHI quindi usciamo dal ciclo while

AB+=ABCDEHI AB determina funzionalmente tutto lo schema ...