## Academic Year 2020-21

## **Tutorial #02**

## PH100: Mechanics and Thermodynamics

- 1. A 5-kg mass moves under the influence of a force  $\mathbf{F} = (4t^2 \mathbf{i} 3t\mathbf{j}) N$ , where t is the time in seconds (1 N = 1 newton). It starts at rest from the origin at t = 0. Find: (a) its velocity; (b) its position; and (c)  $\mathbf{r} \times \mathbf{v}$ , for any later time.
- 2. The two blocks shown in the sketch are connected by a string of negligible mass. If the system is released from rest, find how far block  $M_1$  slides in time t. Neglect friction.



3. Two blocks are in contact on a horizontal table. A horizontal force is applied to one of the blocks, as shown in the drawing. If  $m_1 = 2 kg$ ,  $m_2 = 1 kg$ , and F = 3 N, find the force of contact between the two blocks.



- 4. Two particles of mass m and M undergo uniform circular motion about each other at a separation R under the influence of an attractive force F. The angular velocity is  $\omega$  radians per second. Show that  $R = (F/\omega^2)(1/m + 1/M)$ .
- 5. In a concrete mixer, cement, gravel, and water are mixed by tumbling action in a slowly rotating drum. If the drum spins too fast the ingredients stick to the drum wall instead of mixing.

Assume that the drum of a mixer has radius R and that it is mounted with its axle horizontal. What is the fastest the drum can rotate without the ingredients sticking to the wall all the time? Assume g = 32 ft/s<sup>2</sup>.

6. The Atwood's machine shown in the drawing has a pulley of negligible mass. Find the tension in the rope and the acceleration of *M*.

