A New Ensemble Learning Framework for 3D Biomedical Image Segmentation

Hao Zheng, Yizhe Zhang, Lin Yang, Peixian Liang, Zhuo Zhao, Chaoli Wang, Danny Z. Chen

Department of Computer Science and Engineering
University of Notre Dame
Indiana, USA
hzheng3@nd.edu

3D biomedical image segmentation

Challenges in 3D image segmentation

- Large image size in 3D and limited GPU memory
- Trade-off between inter-slice information and the size of field of view

2D: 572 x 572 x 1

3D: 64 x 64 x 64

Previous methods to circumvent this trade-off

Triplanes

Multi-stage 2D + 3D

Previous methods to circumvent this trade-off

Triplanes

Still not full 3D

Multi-stage 2D + 3D

2D results may dominate

Our idea: Ensemble learning

- Ensemble learning: Unifying the merits of multiple base-learners
 - 2D models (large field of view)
 - 3D models (inter-slice information)

Base-learners

Our approach: Diverse base-learners + meta-learner

- Diverse base-learners: Each has a unique geometric view of the 3D data
- Meta-learner: Learn how to combine base-learners (instead of simple averaging/voting)

Our approach: Diverse base-learners

- Diverse base-learners: Each has a unique geometric view of the 3D data
- Meta-learner: Learn how to combine base-learners (instead of simple averaging/voting)

Our approach: Meta-learner

- Diverse base-learners: Each has a unique geometric view of the 3D data
- Meta-learner: Learn how to combine base-learners (instead of simple averaging/voting)

Our approach: We focus on the meta-learner

- Diverse base-learners: Each has a unique geometric view of the 3D data
- Meta-learner: Learn how to combine base-learners (instead of simple averaging/voting)
- In our study, we focus on how to design a best possible meta-learner

Previous meta-learners

Learning via fitting the ground truth

$$\ell(\theta_{\mathcal{H}}) = \sum_{i=1}^{n} \ell_{mce}(\theta_{\mathcal{H}}(x_i, S(PL_i)), GT_i)$$

A key issue: Overfitting

Linear combination [1]

Super learner [2]

Limited capability

Not practical when training data are scarce

Our need: A powerful meta-learner with a new scheme to reduce overfitting

- [1] The relative performance of ensemble methods with deep convolutional neural networks for image classification
- [2] Super learner. Statistical applications in genetics and molecular biology

Previous meta-learners

Learning via fitting the ground truth

$$\ell(\theta_{\mathcal{H}}) = \sum_{i=1}^{n} \ell_{mce}(\theta_{\mathcal{H}}(x_i, S(PL_i)), GT_i)$$

A key issue: Overfitting

Linear combination [1]

Limited capability

Super learner [2]

Not practical when training data are scarce

Our need: A powerful meta-learner with a new scheme to reduce overfitting

Previous meta-learners

Learning via fitting the ground truth

$$\ell(\theta_{\mathcal{H}}) = \sum_{i=1}^{n} \ell_{mce}(\theta_{\mathcal{H}}(x_i, S(PL_i)), GT_i)$$

A key issue: Overfitting

Linear combination [1]

Limited capability

Super learner [2]

Not practical when training data are scarce

Our need: A powerful meta-learner with a new scheme to reduce overfitting

Part I: Our meta-learner structure

To capture knowledge of each base-learner, we design an FCN based meta-learner

Part I: Our meta-learner structure

To capture knowledge of each base-learner, we design an FCN based meta-learner

Part II: A new unsupervised training scheme

- Key ideas to reduce overfitting
 - Achieve ensemble by finding a balance among base-learners' results (instead of directly fitting the ground truth)
 - Utilize abundant unlabeled raw images
- Our solution:
 - View base-learners' results as pseudo-labels ("fake" ground truth)
 - Find a balance via network training

$$\ell(\theta_{\mathcal{H}}) = \sum_{i=1}^{n} \ell_{mce}(\theta_{\mathcal{H}}(x_i, S(PL_i)), GT_i)$$

$$\ell(\theta_{\mathcal{H}}) = \sum_{i=1}^{n} \sum_{m=1}^{m} \ell_{mce}(\theta_{\mathcal{H}}(x_i, S(PL_i)), f_j(x_i))$$

Part II: Training scheme 1 — Random fit

Part II: Training scheme 2 — Nearest neighbor fit (NN-fit)

Visual comparison

Applications

HVSMR 2016 Challenge Dataset

Method	Overall score	
3D U-Net (Çiçek et al. 2016)	-0.419	-
VoxResNet (Chen et al. 2017)	-0.202	-← 3D models
DenseVoxNet (Yu et al. 2017)	-0.161	
Wolterink et al. (Wolterink et al. 2016)	-0.036	← Tri-planar
VFN* (Xia et al. 2018)	0.108	← Multi-stage 2D+3D
Base learner 2D (xy)	0.13	-
Base learner 2D (xz)	-0.098	
Base learner 2D (yz)	0.108	
Base learner 3D	0.13	
Average ensemble	0.2	
Our meta-learner		-
(only training data)	0.215	

Mouse Piriform Cortex Dataset

Method	V_{Fscore}^{Rand}
N4 (Ciresan et al. 2012)	0.9304
VD2D (Lee et al. 2015)	0.9463
VD2D3D (Lee et al. 2015)	0.9720
M^2FCN (Shen et al. 2017)	0.9866
Our 2D base-learner	0.9948
Our 3D base-learner	0.9956
Average ensemble of 2D and 3D	0.9959
Random-fit (only training data)	0.9963
NN-fit (only training data)	0.9967

HVSMR 2016 Challenge Dataset

Method	Overall score		
3D U-Net (Çiçek et al. 2016)	-0.419		
VoxResNet (Chen et al. 2017)	-0.202		
DenseVoxNet (Yu et al. 2017)	-0.161		
Wolterink et al. (Wolterink et al. 2016)	-0.036		
VFN* (Xia et al. 2018)	0.108		
Base learner 2D (xy)	0.13		
Base learner 2D (xz)	-0.098		
Base learner 2D (yz)	0.108		
Base learner 3D	0.13		
Average ensemble	0.2		
Our meta-learner			
(only training data)	0.215		
Our meta-learner			
(transductive)	0.234		

Mouse Piriform Cortex Dataset

Method	V_{Fscore}^{Rand}
N4 (Ciresan et al. 2012)	0.9304
VD2D (Lee et al. 2015)	0.9463
VD2D3D (Lee et al. 2015)	0.9720
M^2 FCN (Shen et al. 2017)	0.9866
Our 2D base-learner	0.9948
Our 3D base-learner	0.9956
Average ensemble of 2D and 3D	0.9959
Random-fit (only training data)	0.9963
NN-fit (only training data)	0.9967
Random-fit (transductive)	0.9967
NN-fit (transductive)	0.9970

Quantitative comparison — Semi-supervised setting

HVSMR 2016 Challenge Dataset

Quantitative comparison — Ablation study

HVSMR 2016 Challenge Dataset

Setting	Inputs raw image (x_i)	$S(PL_i)$	Supervision of training set	Transductive learning	Supervision of testing set	Traini random fit		Overall score
S1		✓ /	GT		<u> </u>			0.075
S2	✓	✓	GT					0.192
S3	✓	✓	GT	✓	PL	✓		0.217
S4	✓	✓	GT + PL	✓	PL	✓		0.205
S5	✓	✓	GT + PL	✓	PL	✓	✓	0.224
S6	✓	✓	PL			✓		0.199
S7	✓	✓	PL			✓	✓	0.215
S 8	✓	✓	PL	✓	PL	✓		0.218
S 9	✓	√	PL	√	PL	√	1	0.234

- Random-fit + NN-fit vs. Random-fit alone (S7 > S6, S5 > S4, S9 > S8)
- Meta training using pseudo-labels vs. ground truth
 - Only training data (S7 > S2)
 - Transductive settings: (1) only GT (S3); (2) GT + PL (S4 & S5); (3) only PL (S8)

Summary & conclusions

- Introduce a new **ensemble learning framework** to segment 3D biomedical images
- Propose to use **heterogeneous base learners** with different geometric views of 3D data
- Propose to use **pseudo labels** and design a **sophisticated meta learner** to distillate knowledge from base learners
- Propose two optimization strategies (Random-fit & NN-fit) for training the meta learner
- Empirical experiments demonstrate that overfitting is alleviated considerably

Thank you! Q&A