Liquid: Intelligent Resource Estimation and Network-Efficient Scheduling for Deep Learning Jobs on Distributed GPU Clusters

Edge System Reading Group @ SEU Haodong Tian

Dec. 18, 2023

Introduction

Accurate DL job resource requirement estimation and intelligent resource scheduling are two main challenges for building efficient DL job running platforms.

- Resource requirement estimation
 - Job resource requirement specified by users often inaccurate \rightarrow **over-provisioning** or **performance degradation**.
- Intelligent resource scheduling
 - Avoiding parameter communication overhead → **network-efficient** scheduling.

Motivation - Resource Requirement Estimation

Law of diminishing marginal utility

Exists an appropriate value of the computing resources amount for running a given DL job.

Beyond that amount, the job execution time is similar, but the extra allocated resource is wasted.

Motivation - Intelligent Resource Scheduling

- Distributed training by Parameter Server (PS)

 Exchanging large scale parameter gradients with other nodes per iteration.
- Network bandwidth would become bottleneck
 Workers need to communicate and synchronize with the PS in each epoch.
 Resource scheduling plans have a significant impact on job execution performance.

System Framework Overview

- DL Program Layer
- Job Resource Estimation and Scheduling Layer
 - Job resource requirement estimation model
 - network-efficient scheduling algorithm
- Cluster Resource Layer

DL Job Resource Requirement Estimation

- Feature: job types and key parameters, e.g., $batch_size$, $num_batches$, num_ps , $num_workers$, etc.
- Label: Job Resource Requirement Vector

- Resource Requirement Vector Estimation Model
 - ∘ Offline training (Random Forest) ← DL jobs usually executed multiple times in real world
 - Training data: Randomly pick job parameters and resource allocation, utilizing Law of diminishing
 marginal utility to find the appropriate resource requirement vector

Network-Efficient DL Job Scheduling

- Find a mapping from containers to idle computing nodes ← resource/environment isolation by containerization (?)
- Execution time consists of N iterations. Each iteration ccan be divided into training time T_t and synchronization time T_{sy} . Besides, there is a launching time T_l and model saving time T_{sa} .

$$T_e = T_l + N imes (T_t + T_{sy}) + T_{sa}$$

ullet Prior work finds that T_{sy} dominates the execution time o consider network communication bandwidth (among containers) where job instances are located

$$Cost(Node_1, Node_2) = egin{cases} 0, & same\ node \\ number\ of\ nodes\ in\ the\ rack, \\ number\ of\ nodes\ in\ the\ domain, \end{cases} same\ rack$$

Network-Efficient DL Job Scheduling

- Workflow of the network-efficient DL job scheduling
- Immediate Scheduling Strategy → DL jobs submitted to cluster one by one with long time intervals
- Group Genetic Algorithm Based Batch Scheduling Strategy → DL jobs come quickly and can be grouped in batch for scheduling

Network-Efficient DL Job Scheduling - Immediate Scheduli 東南大學

• Purpose of scheduling of job *i*:

$$\min_{\kappa \in lpha_i} Score_{\kappa}$$

$$Score_{\kappa} = \lambda imes Cost_{\kappa} + (1-\lambda) imes \sum_{j \in eta_{\kappa}} Fitness_{j}$$

$$Cost_{\kappa} = \sum_{m=1}^{numps_{\kappa}} \sum_{n=1}^{numw_{\kappa}} Cost(PS_m, W_n)$$

$$Fitness_{j} = -rac{ReqGPU_{j} + UsedGPU_{j}}{TotalGPU_{j}}$$

• Tends to distribute instances in a **centralized manner** (?)

Best-fit Algorithm

- 1. For each instance of the job, select candidate computing nodes that meet the resource requirement
- 2. Use the evaluation function to calculate the score after placing the instance on the candidate computing node
- 3. Select the candidate node with the smallest score, and place the instance on the computing node (*remove the node from the candidate node set*) (?)
- 4. Iterate until all instances are placed

Network-Efficient DL Job Scheduling - Batch Scheduling

Gene representation of a scheduling plan

 $GeneticFitness = -\sum Score_{\kappa_i} - NumNU$

Network-Efficient DL Job Scheduling - Batch Scheduling

Crossover operation

- Select intersection point (computing node) and intersection location
- Delete computing nodes with duplicate containers
- Add the deleted containers to the remaining computing nodes using firstfit algorithm

Network-Efficient DL Job Scheduling - Batch Scheduling

Mutation operation

- Select a computing node randomly, deleting the node and the containers on it
- Replace the deleted container on the remaining nodes using first-fit algorithm

System Optimization

Pre-Scheduling Data Transmission

 DL job running process can be divided into launching phase, training phase and saving phase ← Following job can be scheduled to the GPU ahead for preparation when a job comes to the end of the training phase

Fine-Grained GPU Sharing

 Exclusive use of GPU → Sharing GPU when executing tasks for development and testing purposes (low requirement for GPU resources)

Event-Driven Scheduler

Polling → Event-driven

Evaluation - Resource Requirement Estimation Model

(a) RMSE (smaller is better) (b) R2 (larger is better)

• Pre-Scheduling Data Transmission

Fine-Grained GPU Sharing

Fine-Grained GPU Sharing

(a) NVIDIA Tesla K80 GPU

(b) NVIDIA Teala T4 GPU

Event-Driven Scheduler

(b) NeuMF

Evaluation - Overall Performance

• Immediate Scheduling Strategy

Evaluation - Overall Performance

Group Genetic Algorithm Based Batch Scheduling Strategy

Discussion

- Instance Overcommitment?
 - Resource Allocation ↓
 - Latency ↑ (Meet Quality-of-Service)
- Enable online training for estimation model?
 - Require large amount of training data
 - Mondrian Forest (online random forest algorithm)
- Take hardware heterogeneity into consideration?
 - Different hardware configurations
 - Aligned batch size?
- Inter-container resource contention?
 - Take inter-container metrics (e.g. CPU Cache Miss Rate) into consideration