中国农业大学

2022~2023 学年春季学期 (2023.06)

高等数学 A (下) 课程考试试题

(本试卷共八道大题,考试时间100分钟)

→,	、单项选择题(本题共有 5 道小题,每小题 3 分,满分 15 分)
1,	设有二元函数 $z = f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$,则函数在 $(0,0)$ 点处().
	(A) 不连续 (B) 连续但偏导数 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 不存在
	(C) 连续且偏导数 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 都存在,但不可微 (D)可微
2、	函数 $z = x^2 + y^2$ 在点(1,1)沿 $l = \{-1, -1\}$ 方向的方向导数为 ().
	(A) 最大 (B) 最小 (C) 0 (D) 1
3、	L 为 $y = x^2$ 上从点 $(0,0)$ 到 $(1,1)$ 的一段弧,则曲线积分 $I = \int_L \sqrt{y} ds = ($
	(A) $\int_0^1 \sqrt{1+4x^2} dx$ (B) $\int_0^1 \sqrt{y} \sqrt{1+y} dy$ (C) $\int_0^1 x \sqrt{1+4x^2} dx$ (D) $\int_0^1 \sqrt{y} \sqrt{1+\frac{1}{y}} dy$
4、	设有平面区域 $D = \{(x,y) -a \le x \le a, x \le y \le a\}, D_1 = \{(x,y) 0 \le x \le a, x \le y \le a\},$
	则 $\iint_{D} \left(\sin x \sin y + x^{2}y\right) dxdy = $ ().
	(A) $2\iint_{D_1} x^2 y dx dy$ (B) $\iint_{D_1} \sin x \sin y dx dy$ (C) $4\iint_{D_1} (\sin x \sin y + x^2 y) dx dy$ (D) 0
5、	f(x)在 $x=0$ 处有任意阶导数是函数 $f(x)$ 能展成关于 x 的幂级数的().
	(A) 充分但不必要条件 (B) 必要但不充分条件
	(C) 充要条件 (D) 既不充分也不必要条件
_,	、填空题(本题共有5道小题,每小题3分,满分15分)
1,	若向量 α, β 的模分别为 $ \alpha = 2, \beta = 2\sqrt{3}$, $\alpha + \beta$ 的模为 $ \alpha + \beta = 2$, 则 α, β 的夹角

为_____.

考生诚信承诺

- 1. 本人清楚学校关于考试管理、考场规则、考试作弊处理的规定,并严格遵照执行.
- 2. 本人承诺在考试过程中没有作弊行为,所做试卷的内容真实可信.

- 2、曲面 $z = y + \ln \frac{x}{z}$ 在点(1,1,1) 处的切平面方程是_____.
- 3、把积分 $\int_0^1 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy$ 表示为极坐标系下先对 ρ 积分的二次积分为______.
- 4、设f(x,y)为连续函数, $f(x,y) = x \iint_{\Sigma} f(x,y) dS + y^2$,其中 Σ 为 $x^2 + y^2 + z^2 = 1$, 则 $f(x,y) = ______.$
- 5、已知 $f(x) = x + 1, x \in [0,1), S(x)$ 是以 1 为周期的函数 f(x) 傅里叶级数的和函数,则 $S(0) = _____.$
- 三、(本题满分10分)求过点 M(1,1,1) 且与直线

$$l_1: \frac{x-1}{2} = \frac{y+2}{-2} = \frac{z}{1}, \quad l_2: \begin{cases} 2x-y-5=0\\ y-2z+1=0 \end{cases}$$
 都垂直的直线方程.

- 四、(本题满分 10 分)设 $z = f(xy, \frac{x}{y})$,其中函数 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.
- 五、(本题满分 12 分)形状为椭球 $4x^2+y^2+4z^2 \le 16$ 的空间探测器进入地球大气层,其表面开始受热,1 小时后在探测器的点(x,y,z)处的温度 $T=8x^2+4yz-16z+600$,求探测器表面最热的点.
- 六、(本题满分 12 分)计算曲线积分 $\oint_L \frac{x dy y dx}{x^2 + y^2}$,其中 L 是以点 C(1,0) 为中心,以 R 为半 径的圆周 $(R \neq 1)$,取逆时针方向.
- 七、(本题满分 12 分)设 Σ 为曲面 $z = x^2 + y^2 (z \le 1)$ 的上侧,计算曲面积分 $I = \iint_{\Sigma} (x-1)^3 \, dy \, dz + (y-1)^3 \, dz \, dx + (z-1) \, dx \, dy.$
- 八、(本题满分14分)
 - 1、判定级数 $\sum_{n=1}^{\infty} \frac{n\cos^2\frac{n\pi}{3}}{2^n}$ 的收敛性; 2、求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} \left(\frac{1}{3}\right)^n$ 的和.