X24 — Проводники в магнитном поле

А1^{0.60} Пусть момент времени $t_0 = 0$ груз находится в начале координат, а проекция его скорости на ось x равна v_0 . Определите зависимости координаты x(t) и скорости $v_x(t)$ груза от времени t. Ответ выразите через v_0 , v_0 , v_0 и v_0 .

Запишем уравнение движения груза:

$$m\ddot{x} = -\beta \dot{x} - kx \Rightarrow \ddot{x} + \frac{\beta}{m} \dot{x} + \frac{k}{m} x = 0.$$

С учётом введённых обозначений:

$$\ddot{x} + 2\gamma\dot{x} + \omega_0^2 x = 0.$$

Будем искать решение в комплексной форме:

$$x = Re \left\{ Ae^{\lambda t} \right\},\,$$

где $A \neq 0$ и λ - некоторые комплексные числа. Тогда:

$$A\left(\lambda^2 + 2\gamma\lambda + \omega_0^2\right) = 0 \Rightarrow \lambda = -\gamma \pm i\sqrt{\omega_0^2 - \gamma^2}.$$

Решение представляет собой сумму решений, соответствующих разным значениям λ :

$$x(t) = e^{-\gamma t} Re \left\{ A_1 e^{i\sqrt{\omega_0^2 - \gamma^2} t} + A_2 e^{-i\sqrt{\omega_0^2 - \gamma^2} t} \right\} = C e^{-\gamma t} \sin \left(\sqrt{\omega_0^2 - \gamma^2} t + \varphi_0 \right),$$

где C и ϕ_0 - действительные числа. Дифференцируя:

$$v_{x}(t) = Ce^{-\gamma t} \left(\sqrt{\omega_0^2 - \gamma^2} \cos \left(\sqrt{\omega_0^2 - \gamma^2} t + \varphi_0 \right) - \gamma \sin \left(\sqrt{\omega_0^2 - \gamma^2} t + \varphi_0 \right) \right).$$

Для момента времени t = 0 имеем:

$$\begin{cases} x(0) = C \sin \varphi_0 \\ v_x(0) = C \left(\sqrt{\omega_0^2 - \gamma^2} \cos \varphi_0 - \gamma \sin \varphi_0 \right) \end{cases}$$

С учётом начальных условий:

$$\begin{cases} x(0) = 0 \\ v_x(0) = v_0 \end{cases} \Rightarrow \begin{cases} \varphi_0 = 0 \\ C = \frac{v_0}{\sqrt{\omega_0^2 - \gamma^2}} \end{cases}$$

Окончательно получим:

Ответ:

$$x(t) = \frac{v_0}{\sqrt{\omega_0^2 - \gamma^2}} e^{-\gamma t} \sin\left(\sqrt{\omega_0^2 - \gamma^2} t\right).$$

Ответ:

$$v_X(t) = \frac{v_0 \omega_0}{\sqrt{\omega_0^2 - \gamma^2}} e^{-\gamma t} \cos \left(\sqrt{\omega_0^2 - \gamma^2} t + \arcsin \frac{\gamma}{\omega_0} \right).$$

A2^{0.40} Получите точное выражение для Q. Ответ выразите через ω_0 и γ .

с Страница 1 из 9 ≈ ∞

Перепишем выражение для добротности в следующем виде:

$$Q = \frac{2\pi}{1 - \left(\frac{v_1}{v_0}\right)^2},$$

где v_1 - проекция скорости груза при повторном прохождении начала координат с тем же направлением скорости. Величина скорости v_1 достигается через период T, равный:

$$T = \frac{2\pi}{\sqrt{\omega_0^2 - \gamma^2}}.$$

Тогда:

$$\frac{v_1}{v_0} = e^{-\gamma T} = e^{-2\pi\gamma/\sqrt{\omega_0^2 - \gamma^2}},$$

откуда получим:

Ответ:

$$Q = \frac{2\pi}{1 - e^{-4\pi\gamma/\sqrt{\omega_0^2 - \gamma^2}}}.$$

A3^{0.20} Получите приближённое выражение для добротности Q при слабом затухании ($\gamma \ll \omega_0$). Ответ выразите через m,k и β .

Разложение знаменателя при $\gamma \ll \omega_0$ следующее:

$$1 - e^{-4\pi\gamma/\sqrt{\omega_0^2 - \gamma^2}} \approx 1 - e^{-4\pi\gamma/\omega_0} \approx 1 - \left(1 - \frac{4\pi\gamma}{\omega_0}\right) = \frac{4\pi\gamma}{\omega_0},$$

откуда получим приближение для добротности при слабом затухании Q:

$$Q \approx \frac{\omega_0}{2\gamma}.$$

Подставляя ω_0 и γ , получим:

Ответ:

$$Q \approx \frac{\sqrt{mk}}{\beta(H)}.$$

 ${\bf B1}^{0.60}$ Отклонение *х* груза от положения зависит от времени *t* следующим образом:

$$x(t) = A \sin \left(\Omega t + \varphi_0\right)$$

Найдите A и φ_0 . Ответы выразите через A_0 , Ω , ω_0 и γ .

Уравнение движения следующее:

$$m\ddot{x} = k(A_0 \sin \Omega t - x) - \beta \dot{x},$$

откуда:

$$\ddot{x} + 2\gamma\dot{x} + \omega_0^2 \Delta x = \omega_0^2 A_0 \sin \Omega t.$$

Будем искать решение в виде:

$$x = Re\left\{\hat{A}e^{i\Omega t}\right\},\,$$

с Страница 2 из 9 ≈

где $\hat{A} \neq 0$ - некоторое комплексное число. Тогда:

$$\hat{A}\left((\omega_0^2 - \Omega^2) + 2i\Omega\gamma\right) = \omega_0^2 A_0 e^{-i\pi/2}.$$

Выразим A:

$$\hat{A} = \frac{\omega_0^2 A_0 \left((\omega_0^2 - \Omega^2) - 2 i \Omega \gamma \right) e^{-i \pi/2}}{\left((\omega_0^2 - \Omega^2)^2 + 4 \gamma^2 \Omega^2 \right)} = \frac{A_0 \omega_0^2 e^{-i (\pi/2 - \varphi)}}{\sqrt{(\omega_0^2 - \Omega^2)^2 + 4 \gamma^2 \omega_0^2}},$$

где φ - аргумент комплексного числа $z=(\omega_0^2-\Omega^2)-2i\Omega\gamma$. Извлекая действительную часть, найдём:

$$\Delta x(t) = \frac{A_0 \omega_0^2}{\sqrt{(\omega_0^2 - \Omega^2)^2 + 4 \gamma^2 \Omega^2}} \mathrm{sin} \left(\Omega t + \varphi\right).$$

Таким образом:

$$A = \frac{A_0 \omega_0^2}{\sqrt{(\omega_0^2 - \Omega^2)^2 + 4\gamma^2 \Omega^2}} \qquad \varphi_0 = \varphi.$$

При определении ϕ есть три случая:

$$\varphi = \begin{cases} -\arctan\frac{2\gamma\Omega}{\omega_0^2 - \Omega^2} & \text{при} \quad \Omega {<} \omega_0 \\ \\ -\frac{\pi}{2} & \text{при} \quad \Omega = \omega_0 \\ \\ -\pi -\arctan\frac{2\gamma\Omega}{\omega_0^2 - \Omega^2} & \text{при} \quad \Omega {>} \omega_0 \end{cases}$$

Таким образом:

Ответ:

$$A = \frac{A_0 \omega_0^2}{\sqrt{(\omega_0^2 - \Omega^2)^2 + 4\gamma^2 \Omega^2}}.$$

$$\varphi_0 = \begin{cases} -\arctan \frac{2\gamma\Omega}{\omega_0^2 - \Omega^2} & \text{при} \quad \Omega < \omega_0 \\ -\frac{\pi}{2} & \text{при} \quad \Omega = \omega_0 \\ -\pi -\arctan \frac{2\gamma\Omega}{\omega_0^2 - \Omega^2} & \text{при} \quad \Omega > \omega_0 \end{cases}$$

В2^{0.30} Получите точные выражения для резонансной циклической частоты $\Omega_{\rm pes}$ и соответствующей ей амплитуды колебаний $A_{\rm pes}$. Ответы выразите через ω_0 , γ и A_0 . Считайте, что $\gamma \sqrt{2} < \omega_0$.

Дифференцируя знаменатель по Ω^2 , получим:

$$-2(\omega_0^2 - \Omega^2) + 4\gamma^2 = 0,$$

откуда:

Ответ:

$$\Omega_{\rm pes} = \sqrt{\omega_0^2 - 2\gamma^2}.$$

Подставляя $\Omega_{\text{рез}}$ в выражение для A, находим:

с Страница 3 из 9 ≈ ∞

Ответ:

$$A_{\text{pe3}} = \frac{A_0 \omega_0^2}{2\gamma \sqrt{\omega_0^2 - \gamma^2}}.$$

B3^{0.30} Получите приближённые выражения для $\Omega_{\rm pes}$, $A_{\rm pes}$ и $\Delta \omega$ при слабом затухании ($\gamma \ll \omega_0$). Ответы выразите через A_0 , ω_0 и γ .

Упрощённые выражения для $\Omega_{\rm pes}$ и $A_{
m pes}$ получаются тривиально и принимают следующий вид:

Ответ:

$$\Omega_{
m pe3}pprox\omega_0 \qquad A_{
m pe3}pproxrac{A_0\omega_0}{2
u}.$$

Рассмотрим циклическую частоту $\Omega = \Omega_{pe3} + \Delta \Omega$, где $\Delta \Omega \ll \Omega_{pe3}$. Величину Ω_{pe3} можно считать равной ω_0 , поскольку:

$$\Omega_{\text{pes}} = \sqrt{\omega_0^2 - 2\gamma^2} \approx \omega_0 - \frac{\gamma^2}{\omega_0}.$$

Отклонение $\Omega_{\rm pe3}$ от ω_0 представляет собой величину второго порядка малости. Тогда для подкоренного выражения получим:

$$\left(\omega_0^2 - \Omega^2\right)^2 + 4\gamma^2\Omega^2 \approx \left(\omega_0^2 - (\omega_0 + \Delta\Omega)\right)^2 + 4\gamma^2\left(\omega_0 + \Delta\Omega\right)^2 \approx 4\omega_0^2\Delta\Omega^2 + 4\gamma^2\omega_0^2.$$

Величина ΔΩ такова, что подкоренное выражение вдвое больше соответствующего резонансу. Отсюда:

$$4\Delta\Omega^2\omega_0^2+4\gamma^2\omega_0^2=8\gamma^2\omega_0^2 \Longrightarrow \Delta\Omega_{1,2}=\pm\gamma.$$

Поскольку $\Delta\omega = \Delta\Omega_1 - \Delta\Omega_2$, получим:

Ответ:

$$\Delta\omega=2\gamma$$
.

С1 $^{0.30}$ Найдите индукцию B_x магнитного поля кольца на его оси в точке с координатой x. Ответ выразите через x, R, I и магнитную постоянную μ_0 .

Из закона Био-Савара-Лапласа:

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{\left[\vec{r} \times d\vec{r}\right]}{r^3},$$

где \vec{r} - радиус-вектор элемента кольца относительно точки с координатой x. Для каждой точки кольца:

$$r = \sqrt{R^2 + x^2}.$$

Интеграл по контуру от векторного произведения получим из его геометрического смысла:

$$\oint_L \left[\vec{r} \times d\vec{r} \right] = 2\vec{S} = 2\pi R^2 \vec{e}_x,$$

откуда:

Ответ:

$$B_X(x) = \frac{\mu_0 I R^2}{2 (R^2 + x^2)^{3/2}}.$$

 ${f C2^{1.00}}$ Определите магнитный момент $ec{m}$ диска. Ответ выразите через $ec{e}_{\scriptscriptstyle X}, r_0$, h,
ho и \dot{B} .

с Страница 4 из 9 ≈ ∞

Из закона электромагнитной индукции Фарадея получим:

$$\mathcal{E}_{ ext{инд}} = -rac{d\Phi}{dt} = -\pi r^2 \dot{B} = 2\pi r E_{ ext{вихр}},$$

откуда:

$$E_{\text{вихр}} = -\frac{\dot{B}r}{2}.$$

Из закона Ома в дифференциальной форме:

$$\vec{j} = \frac{\vec{E}}{\rho}$$

откуда:

$$j(r) = -\frac{\dot{B}r}{2\rho}.$$

Момент кольцевого тока высотой h и толщиной dr равен:

$$dm_{\chi}=\pi r^{2}dI=\pi r^{2}jhdr=-rac{\pi \dot{B}h}{2
ho}r^{3}dr,$$

откуда:

$$m_{\chi}=-\frac{\pi \dot{B}h}{2\rho}\int\limits_{0}^{r_{0}}r^{3}dr.$$

Интегрируя, находим:

Ответ:

$$\vec{m} = -\vec{e}_x \cdot \frac{\pi r_0^4 h \dot{B}}{8\rho}.$$

 ${f C3^{0.50}}$ Определите магнитный момент $ec{m}$ шара. Ответ выразите через $ec{e}_x$, R_0 , ho и \dot{B} .

Воспользуемся сферическими координатами (т.е будем отсчитывать угол θ от положительного направления оси x). Тогда для r_0 и h имеем:

$$r_0 = R_0 \sin \theta$$
 $h = d(R_0(1 - \cos \theta)) = R_0 \sin \theta d\theta$.

Тогда для элемента магнитного момента шара имеем:

$$dm_X = -\frac{\pi R_0^5 \dot{B}}{8\rho} \sin^5 \theta d\theta,$$

откуда:

$$m_X = -\frac{\pi R_0^5 \dot{B}}{8\rho} \int_0^{\pi} \sin^5 \theta d\theta.$$

Проинтегрируем полученное выражение с помощью подстановки $x=\cos\theta$:

$$\int_{0}^{\pi} \sin^{5}\theta d\theta = \int_{-1}^{1} (1 - x^{2})^{2} dx = \int_{-1}^{1} (1 - 2x^{2} + x^{4}) dx = \left(x - \frac{2x^{3}}{3} + \frac{x^{5}}{5}\right) \Big|_{-1}^{1} = \frac{16}{15},$$

откуда:

Ответ:

$$\vec{m} = -\vec{e}_x \cdot \frac{2\pi R_0^5 \dot{B}}{15\rho}.$$

с Страница 5 из 9 ≈

C4^{0.40} Получите производную по времени индукции магнитного поля кольца в центре шара dB_x/dt , эквивалентную величине \dot{B} . Ответ выразите через v, I, R, x и магнитную постоянную μ_0 .

При движении шара индукция магнитного поля $B_{x}(x) = B_{x}(x(t))$, т.е является сложной функцией времени, поэтому имеем:

$$\dot{B_X} = \frac{dB_X}{dt} = \frac{dB_X}{dx}\frac{dx}{dt} = v\frac{dB_X}{dx}$$

Найдём производную dB_x/dx :

$$\frac{dB_x}{dx} = -\frac{3\mu_0 I R^2 x}{2(R^2 + x^2)^{\frac{5}{2}}},$$

откуда:

Ответ:

$$\dot{B} = -\frac{3\mu_0 I R^2 x v}{2(R^2 + x^2)^{\frac{5}{2}}}.$$

С5^{0.50} Найдите коэффициент пропорциональности $\beta(x)$. Ответ выразите через I, R, x, R_0, ρ и магнитную постоянную μ_0 .

Поскольку шар движется вдоль оси х:

$$\vec{F} = m_x \cdot \frac{\partial \vec{B}}{\partial x} = \vec{e}_x \cdot m_x \frac{dB_x}{dx}.$$

Для магнитного момента $m_{\scriptscriptstyle X}$ имеем:

$$m_{X} = -\frac{2\pi R_0^5 v}{15\rho} \cdot \frac{dB_X}{dX},$$

откуда:

$$F_{x} = -\frac{2\pi R_0^5}{15\rho} \left(\frac{dB_{x}}{dx}\right)^2 v.$$

Подставляя dB_x/dx , находим:

Ответ:

$$\beta(x) = \frac{3\pi\mu_0^2 I^2 R^4 R_0^5 x^2}{10\rho(R^2 + x^2)^5}.$$

Сб^{0.80} Определите удельное сопротивление ρ шара, используемого в первом эксперименте. Ответ выразите через m, k, R_0, R, H, I и магнитную постоянную μ_0 .

Первый пик достигается при значении $\Delta x \approx 47$ у.е, а 12-ый - при $\Delta x \approx 6$ у.е. Отсюда:

$$\frac{\gamma}{\sqrt{\omega_0^2 - \gamma^2}} \approx \frac{\ln\left(\frac{47}{6}\right)}{11 \cdot 2\pi} \approx 0.0297 \Rightarrow \frac{\gamma}{\omega_0} \approx 0.03 \ll 1.$$

При этом имеем:

$$\frac{\omega_0}{2\gamma} = \frac{\sqrt{mk}}{\beta(H)},$$

откуда:

$$\beta(H) \approx \frac{2\gamma\sqrt{mk}}{\omega_0}$$

и окончательно

Ответ:

$$\rho = 15.7 \cdot \frac{\mu_0^2 I^2 R_0^5 R^4 H^2}{\sqrt{mk} (R^2 + H^2)^5}$$

С7^{0.70} Определите удельное сопротивление ρ шара, используемого во втором эксперименте. Ответ выразите через m, k, R_0, R, H, I и магнитную постоянную μ_0 .

Из выражения для резонансной амплитуды найдём:

$$Q = \frac{A_{\rm pes}}{A_0} = \frac{\sqrt{mk}}{\beta(H)} \approx 25$$

откуда окончательно:

Ответ:

$$\rho = 23.6 \frac{\mu_0^2 I^2 R_0^5 R^4 H^2}{\sqrt{mk} (R^2 + H^2)^5}$$

D1^{0.60} Определите индукцию B_z магнитного поля соленоида, а также её производную dB_z/dz в точке с координатой z. Ответ выразите через μ_0 , n, I, R и z.

Из теоремы о телесном угле для магнитного поля имеем:

$$B_{z}=rac{\mu_{0}i\Omega_{ ext{fork}}}{4\pi},$$

где i=In - линейная плотность токов соленоида, а $\Omega_{\rm fok}$ - телесный угол, под которым видна его боковая поверхность. Телесный угол, под которым видна боковая поверхность соленоида, равен телесному углу, под которым видно его основание из точки с координатой z, поэтому имеем:

$$\Omega_{\text{for}} = 2\pi (1 - \cos \alpha) = 2\pi \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right).$$

Таким образом:

Ответ:

$$B_z = \frac{\mu_0 nI}{2} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right).$$

Дифференцируя, находим:

Ответ:

$$\frac{dB_z}{dz} = -\frac{\mu_0 n I R^2}{2(R^2 + z^2)^{3/2}}.$$

D2^{1.00} Определите линейную плотность тока i на поверхности цилиндра в точке с координатой z. Ответ выразите через μ_0 , x и $dB_z(z)/dz$.

Поскольку снаружи цилиндра индукцию магнитного поля можно считать равной индукции магнитного поля соленоида, имеем:

$$B_{z(in)} = B_z(z-x) \qquad B_{z(out)} = B(z).$$

Из теоремы о циркуляции для индукции магнитного поля получим:

$$(B_{z(in)} - B_{z(out)}) \approx -x \frac{dB_z}{dz} = \mu_0 ix,$$

откуда:

Ответ:

$$i(z) = -\frac{x}{\mu_0} \frac{dB_z}{dz}.$$

D3^{1.50} Определите силу F_x , действующую на цилиндр со стороны магнитного поля соленоида. Ответ выразите через μ_0 , r, R, n, I и x.

Магнитный момент бесконечно малого участка цилиндра составляет:

$$dm_z = i(z)\pi r^2 dz.$$

Для действующей на него силы dF_x имеем:

$$dF_{x} = dm_{z} \frac{dB_{z}}{dz}.$$

Подставляя выражение для і, получим:

$$dF_X = -\frac{\pi r^2 x}{\mu_0} \left(\frac{dB_z}{dz}\right)^2 dz.$$

Воспользуемся выражением для dB_z/dz :

$$dF_X = -\frac{\mu_0 \pi r^2 n^2 I^2 x R^4 dz}{4(R^2 + z^2)^3},$$

откуда с учётом большого удаление концов цилиндра от оснований соленоида:

$$F_X pprox -rac{\mu_0\pi r^2n^2I^2R^4x}{4}\int\limits_{-\infty}^{\infty}rac{dz}{(R^2+z^2)^3}.$$

Воспользуемся заменой переменной $z=R\operatorname{tg} \varphi$ и получим:

$$F_X = \frac{\mu_0 \pi r^2 n^2 I^2 R^4 x}{4} \int_{-\infty}^{\infty} \frac{dz}{(R^2 + z^2)^3} = \frac{\mu_0 \pi r^2 n^2 I^2 x}{4R} \int_{-\pi/2}^{\pi/2} \cos^4 \varphi d\varphi.$$

Вычислим последний интеграл:

$$\int_{-\pi/2}^{\pi/2} \cos^4 \varphi d\varphi = \int_{-\pi/2}^{\pi/2} \left(\frac{1 + \cos 2\varphi}{2} \right)^2 d\varphi = \int_{-\pi/2}^{\pi/2} \left(\frac{1}{4} + \frac{\cos 2\varphi}{2} + \frac{\cos^2 2\varphi}{4} \right) d\varphi =$$

$$= \int_{-\pi/2}^{\pi/2} \left(\frac{1}{4} + \frac{\cos 2\varphi}{2} + \frac{1}{4} \left(\frac{1 + \cos 4\varphi}{2} \right) \right) d\varphi = \int_{-\pi/2}^{\pi/2} \left(\frac{3}{8} + \frac{\cos 2\varphi}{2} + \frac{\cos 4\varphi}{8} \right) d\varphi =$$

$$= \left(\frac{3\varphi}{8} + \frac{\sin 2\varphi}{4} + \frac{\sin 4\varphi}{32} \right) \Big|_{-\pi/2}^{\pi/2} = \frac{3\pi}{8}.$$

$$\Longleftrightarrow \text{ Страница 8 из 9} \Longrightarrow$$

Таким образом:

Ответ:

$$F_{X} = -\frac{3\pi^{2}\mu_{0}\pi r^{2}n^{2}I^{2}}{32R}X.$$

D4^{0.30} Получите зависимость перемещения стержня x от времени t. Ответ выразите через μ_0, r, R, n, I и m.

Запишем уравнение движения цилиндра:

$$m\ddot{x}=-\frac{3\mu_0\pi^2r^2n^2I^2}{32R}x\Rightarrow\omega_0^2=\frac{3\mu_0\pi^2r^2n^2I^2}{32mR}\Rightarrow x(t)=A\sin\omega_0t+B\cos\omega_0t.$$

Определим константы А и В из начальных условий:

$$\begin{cases} x(0) = B = 0 \\ v_X(0) = \omega_0 A = v_0 \end{cases} \Rightarrow A = \frac{v_0}{\omega_0}$$

Таким образом:

Ответ:

$$x(t) = v_0 \sqrt{\frac{32mR}{3\mu_0 \pi^2 r^2 n^2 I^2}} \sin \sqrt{\frac{3\mu_0 \pi^2 r^2 n^2 I^2}{32mR}} t.$$