Neural Network Learning Methods

Delta Learning Rule

- Supervised learning, only applicable for continuous activation function
- •The learning signal r is called delta and defined as:

$$r = [d_i - f(\mathbf{w}_i'\mathbf{x})] \cdot f'(\mathbf{w}_i'\mathbf{x})$$

- Derived by calculating the gradient vector with respect to $\mathbf{w}i$ of the squared error.

$$E = \frac{1}{2} \begin{bmatrix} d_{x} - f(\mathbf{w}_{x}'\mathbf{x}) \end{bmatrix}^{2}$$

$$\nabla E = -\begin{bmatrix} d_{x} - f(\mathbf{w}_{x}'\mathbf{x}) \end{bmatrix} f'(\mathbf{w}_{x}'\mathbf{x}) \cdot \mathbf{x}$$

$$\frac{\partial E}{\partial \mathbf{w}_{y}} = -\begin{bmatrix} d_{x} - f(\mathbf{w}_{x}'\mathbf{x}) \end{bmatrix} f'(\mathbf{w}_{x}'\mathbf{x}) \cdot \mathbf{x}$$

$$DSCOE/ENTC/M/Musral Network Vishakha$$

Delta Rule(Widrow-Hoff Rule)

Step 0: Weights and bias are set to some random values but not zero. Set the learning rate parameter α .

Step 1: Perform Steps 2–6 when stopping condition is false. Step 2: Perform Steps 3–5 for each bipolar training pair s:t. Step 3: Set activations for input units i = 1 to n.

Step 4: Calculate the net input to the output unit.

Delta Rule(Widrow-Hoff Rule)

Step 5: Update the weights and bias for i=1 to n:

 $w_i(\text{new}) = w_i(\text{old}) + \alpha (t - y_{in}) x_i$ $b(\text{new}) = b(\text{old}) + \alpha (t - y_{in})$

Step 6: If the highest weight change that occurred during training is smaller than a specified tolerance then stop the training process, else continue. This is the test for stopping condition of a network.

The range of learning rate can be between 0.1 to 1.0.

Delta Rule(Widrow-Hoff Rule)

Implement OR function with bipolar inputs and targets using Adaline network.

Solution: The truth table for OR function with bipolar inputs and targets is shown below.

x_1	x_2	1	t		
1	1	1	1		
1	-1	1			
-1	1	1			
-1	-1	1	_		

(Learning rate=0.1, Initial weights =all 0.1)

DJSCE/EXTC/VII/Nueral Network /Vishakha Kelkar

Delta Rule(Widrow-Hoff Rule)

The initial weights are taken to be $w_1=w_2=b=0.1$ and the learning rate $\alpha=0.1$ For the first input sample, $x_1=1, x_2=1, t=1$, we calculate the net input as

$$y_{in} = b + \sum_{i=1}^{n} x_i w_i$$

$$= b + \sum_{i=1}^{2} x_i w_i$$

$$y_{in} = b + x_1 w_1 + x_2 w_2$$

$$y_{in} = 0.1 + 1 \times 0.1 + 1 \times 0.1$$

$$y_{in} = 0.3$$

DJSCE/EXTC/VII/Nueral Network /Vishakha Kelkar

Delta Rule(Widrow-Hoff Rule)

Now compute $(t - y_{in}) = (1 - 0.3) = 0.7$. Updating the weights we obtain,

$$w_i(\text{new}) = w_i(\text{old}) + \alpha(t - y_{in})x_i$$

where $\alpha(t-y_{in})x_i$ is called as weight change Δw_i . The new weights are obtained as

$$w_1(\text{new}) = w_1(\text{old}) + \Delta w_1$$

= 0.1 + 0.1 × 0.7 × 1
= 0.1 + 0.07
 $w_1(\text{new}) = 0.17$

DJSCE/EXTC/VII/Nueral Network /Vishakl

Delta Rule(Widrow-Hoff Rule)

$$w_2(\text{new}) = w_2(\text{old}) + \Delta w_2$$

= 0.1 + 0.1 × 0.7 × 1

$$w_2(\text{new}) = 0.17$$

$$b(\text{new}) = b(\text{old}) + \Delta b$$

$$= 0.1 + 0.1 \times 0.7$$

$$b(new) = 0.17$$

$$E = (t - y_{in})^2 = (0.7)^2 = 0.49$$

The final weights after presenting first input sample are

$$w = [0.17 \ 0.17 \ 0.17]$$

and error E = 0.49.

DJSCE/EXTC/VII/Nueral Network /Vishakha Kelkar

Inputs	Target	Net		Weight changes		Weights				
		input				w_1	w2	ь	Error	
$x_1 x_2 1$	t	Yin	$t-y_{in}$	Δw_1	Δw_2	Δb	(0.1	0.1	0.1)	$(t-y_{in})^2$
EPOCH-1		0.2	0.7	2.25	0.05	2.05		0.45	0.48	0.10
1-11	1	0.3	0.7	0.07	0.07	0.07	0.17	0.17	0.17	0.49
1 -1 1	1	0.17	0.83	0.083	-0.083 0.0913	0.083	0.253	0.087	0.253	0.69
1 11	1	0.0043	-1.0043	-0.0913 0.1004		0.0913	0.1617	0.1783	0.3443	0.83
-1-11	-1	0.0043	-1.0043	0.1004	0.1004	-0.1004	0.2621	0.2181	0.2439	1.01
EPOCH-2										
1 11	1	0.7847	0.2153	0.0215	0.0215	0.0215	0.2837	0.300	0.2654	0.046
1 - 11	1	0.2488	0.7512	0.7512	-0.0751	0.0751	0.3588	0.225	0.3405	0.564
-1 11	1	0.2069	0.7931	-0.7931	0.0793	0.0793	0.2795	0.304	4 0.4198	0.629
-1 - 11	-1	-0.1641	-0.8359	0.0836	0.0836	-0.0836	0.3631	0.388	0.336	0.699
			DJSCI	E/EXTC/VII/Nue	eral Network /	Vishakha				

Step 1 Input is vector $\mathbf{x_1}$, initial weight vector is \mathbf{w}^1 :

$$net^{1} = \mathbf{w}^{1} \mathbf{x}_{1} = 2.5$$

$$o^{1} = f(net^{1}) = 0.848$$

$$f'(net^{1}) = \frac{1}{2} [1 - (o^{1})^{2}] = 0.140$$

$$\mathbf{w}^{2} = c(d_{1} - o^{1})f'(net^{1})\mathbf{x}_{1} + \mathbf{w}^{1}$$

$$= [0.974 \quad -0.948 \quad 0 \quad 0.526]^{I}$$

DJSCOE/EXTC/VI/Nueral Network Vishakha Kelkar Step 2 Input is vector \mathbf{x}_2 , weight vector is \mathbf{w}^2 :

$$net^{2} = \mathbf{w}^{2t}\mathbf{x}_{2} = -1.948$$

$$o^{2} = f(net^{2}) = -0.75$$

$$f'(net^{2}) = \frac{1}{2}[1 - (o^{2})^{2}] = 0.218$$

$$\mathbf{w}^{3} = c(d_{2} - o^{2})f'(net^{2})\mathbf{x}_{2} + \mathbf{w}^{2}$$

$$= [0.974 \quad -0.956 \quad 0.002 \quad 0.531]^{t}$$

DJSCOE/EXTC/VI/Nueral Network Vishakha Kelkar

Step 3 Input is x_3 , weight vector is \mathbf{w}^3 :

$$net^{3} = \mathbf{w}^{3}t_{\mathbf{x}_{3}} = -2.46$$

$$o^{3} = f(net^{3}) = -0.842$$

$$f'(net^{3}) = \frac{1}{2}[1 - (o^{3})^{2}] = 0.145$$

$$\mathbf{w}^{4} = c(d_{3} - o^{3})f'(net^{3})\mathbf{x}_{3} + \mathbf{w}^{3}$$

$$= [0.947 - 0.929 \quad 0.016 \quad 0.505]^{t}$$

DJSCOE/EXTC/VI/Nueral Network Vishakh

Perform two training steps of the network as in Figure 2.24 using the delta learning rule for $\lambda=1$ and c=0.25. Train the network using the following data pairs

$$\begin{pmatrix} \mathbf{x}_1 = \begin{bmatrix} 2\\0\\-1 \end{bmatrix}, & d_1 = -1 \end{pmatrix}, & \begin{pmatrix} \mathbf{x}_2 = \begin{bmatrix} 1\\-2\\-1 \end{bmatrix}, & d_2 = 1 \end{pmatrix}$$

The initial weights are ${\bf w}^1=$ [1 0 1] t . [Hint: Use $f'(net)=(1/2)(1-o^2)$ and f(net) as in (2.3a).]

DJSCOE/EXTC/VI/Nueral Network Vishakha