LINEAR ALGEBRA (MT-121)

CHAPTER 6

EIGENVALUES

AND

EIGENVECTORS

Eigenvalues and Eigenvectors

To explain eigenvalues, we first explain eigenvectors. Almost all vectors change direction, when they are multiplied by A. Certain exceptional vectors x are in the same direction as Ax. Those are the "eigenvectors". Multiply an eigenvector by A, and the vector Ax is a number λ times the original x.

The basic equation is $Ax = \lambda x$. The number λ is an eigenvalue of A.

The eigenvalue λ tells whether the special vector \boldsymbol{x} is stretched or shrunk or reversed or left unchanged—when it is multiplied by A. We may find $\lambda = 2$ or $\frac{1}{2}$ or -1 or 1. The eigenvalue λ could be zero! Then $A\boldsymbol{x} = 0\boldsymbol{x}$ means that this eigenvector \boldsymbol{x} is in the nullspace.

Eigenvalues provide valuable insights into the behavior and properties of linear transformations represented by matrices, making them a powerful tool in various mathematical and computational contexts.

Eigenvector of an Identity Matrix

If A is the identity matrix, every vector has Ax = x. All vectors are eigenvectors of I. All eigenvalues "lambda" are $\lambda = 1$. This is unusual to say the least. Most 2 by 2 matrices have two eigenvector directions and two eigenvalues. We will show that $\det(A - \lambda I) = 0$.

Example

Example 1 The matrix A has two eigenvalues $\lambda = 1$ and $\lambda = 1/2$. Look at $\det(A - \lambda I)$:

$$A = \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix} \quad \det \begin{bmatrix} .8 - \lambda & .3 \\ .2 & .7 - \lambda \end{bmatrix} = \lambda^2 - \frac{3}{2}\lambda + \frac{1}{2} = (\lambda - 1)\left(\lambda - \frac{1}{2}\right).$$

I factored the quadratic into $\lambda - 1$ times $\lambda - \frac{1}{2}$, to see the two eigenvalues $\lambda = 1$ and $\lambda = \frac{1}{2}$. For those numbers, the matrix $A - \lambda I$ becomes *singular* (zero determinant). The eigenvectors x_1 and x_2 are in the nullspaces of A - I and $A - \frac{1}{2}I$.

$$(A-I)x_1=0$$
 is $Ax_1=x_1$ and the first eigenvector is $(.6, .4)$.

$$(A - \frac{1}{2}I)x_2 = 0$$
 is $Ax_2 = \frac{1}{2}x_2$ and the second eigenvector is $(1, -1)$:

$$\mathbf{x}_1 = \begin{bmatrix} .6 \\ .4 \end{bmatrix}$$
 and $A\mathbf{x}_1 = \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix} \begin{bmatrix} .6 \\ .4 \end{bmatrix} = \mathbf{x}_1$ $(A\mathbf{x} = \mathbf{x} \text{ means that } \lambda_1 = 1)$

$$\boldsymbol{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $A\boldsymbol{x}_2 = \begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} .5 \\ -.5 \end{bmatrix}$ (this is $\frac{1}{2}\boldsymbol{x}_2$ so $\lambda_2 = \frac{1}{2}$).

If x_1 is multiplied again by A, we still get x_1 . Every power of A will give $A^n x_1 = x_1$. Multiplying x_2 by A gave $\frac{1}{2}x_2$, and if we multiply again we get $(\frac{1}{2})^2$ times x_2 .

Example

When A is squared, the eigenvectors stay the same. The eigenvalues are squared.

Figure 6.1: The eigenvectors keep their directions. $A^2x = \lambda^2x$ with $\lambda^2 = 1^2$ and $(.5)^2$.

Use of Eigenvalues to find Aⁿ

Assume a square matrix A as
$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$
 with $\lambda = 1$ and $\frac{1}{2}$ We may find A², A³, as $A^2 = \begin{bmatrix} 0.7 & 0.45 \\ 0.3 & 0.55 \end{bmatrix}$, $A^3 = \begin{bmatrix} 0.65 & 0.525 \\ 0.35 & 0.475 \end{bmatrix}$

How to find A¹⁰⁰?

It can be found directly using the Eigenvalues of A.

$$A^{100} = \begin{bmatrix} 0.6 & 0.6 \\ 0.4 & 0.4 \end{bmatrix}$$

FACT: If A is a square matrix having λ as its Eigenvalue and $n \ge 0$, then λ^n is an Eigenvalue of Aⁿ.

Use of Eigenvalues to find Aⁿ

For A =
$$\begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$
, we have $\lambda_1 = 1$ and $\lambda_2 = \frac{1}{2}$, $x_1 = \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Note that 1st Column of A is a combination of the two Eigenvectors.

$$\begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix} + (0.2) \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} \mathbf{0.8} \\ \mathbf{0.2} \end{bmatrix} = x_1 + (0.2)x_2$$

Now if we multiply A with 1st column of A to find A², it gives $\begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix} \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix}$, it gives

 $\begin{bmatrix} 0.7 \\ 0.2 \end{bmatrix}$ (1st column of A²), which is the same as

$$A\begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix} + (\frac{1}{2})(0.2) \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} \mathbf{0}.7 \\ \mathbf{0}.3 \end{bmatrix} = x_1 + \lambda_2(0.2)x_2$$

Now to find the 1st column of A¹⁰⁰, we have

$$A^{99} \begin{bmatrix} 0.8 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix} + \left(\frac{1}{2}\right)^{99} (0.2) \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} \mathbf{0}.7 \\ \mathbf{0}.3 \end{bmatrix} = x_1 + \lambda_2^{99} (0.2) x_2$$

Example

The eigenvector x_1 is a "steady state" that doesn't change (because $\lambda_1 = 1$). The eigenvector x_2 is a "decaying mode" that virtually disappears (because $\lambda_2 = .5$). The higher the power of A, the more closely its columns approach the steady state.

This particular A is a *Markov matrix*. Its largest eigenvalue is $\lambda = 1$. Its eigenvector $x_1 = (.6, .4)$ is the *steady state*—which all columns of A^k will approach.

Example

Find the eigenvalues and eigenvectors of this symmetric 3 by 3 matrix S:

Symmetric matrix
$$S = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
Singular matrix $S = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$

Solution Since all rows of S add to zero, the vector $\mathbf{x} = (1, 1, 1)$ gives $S\mathbf{x} = \mathbf{0}$. This is an eigenvector for $\lambda = 0$. To find λ_2 and λ_3 I will compute the 3 by 3 determinant:

$$\det(S - \lambda I) = \begin{vmatrix} 1 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix} = \frac{(1 - \lambda)(2 - \lambda)(1 - \lambda) - 2(1 - \lambda)}{= (1 - \lambda)[(2 - \lambda)(1 - \lambda) - 2]}$$
$$= \frac{(1 - \lambda)(-\lambda)(1 - \lambda) - 2(1 - \lambda)}{= (1 - \lambda)(-\lambda)(3 - \lambda)}.$$

Those three factors give $\lambda = 0, 1, 3$. Each eigenvalue corresponds to an eigenvector (or a line of eigenvectors):

$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 $Sx_1 = \mathbf{0}x_1$ $x_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ $Sx_2 = \mathbf{1}x_2$ $x_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ $Sx_3 = \mathbf{3}x_3$.

I notice again that eigenvectors are perpendicular when S is symmetric. We were lucky to find $\lambda = 0, 1, 3$. For a larger matrix I would use eig(A), and never touch determinants.

Diagonalization

• A square matrix A is said to be diagonalizable if it can be expressed in the form $A = X^{-1}\Lambda X$, where X is a matrix whose columns are eigenvectors of A, and Λ is a diagonal matrix with the eigenvalues of A on the diagonal.

$$AX = A[x_1 \ x_2 \dots \ x_n] = [\lambda x_1 \ \lambda x_2 \dots \ \lambda x_n] = [x_1 \ x_2 \dots \ x_n] \begin{bmatrix} \lambda_1 \ 0 \ 0 \dots \ 0 \\ 0 \ \lambda_2 0 \dots \ 0 \\ \dots \ 0 \ 0 \ \dots \ \lambda_n \end{bmatrix} = X\Lambda$$

• Since $AX = X\Lambda$, $A = X \Lambda X^{-1}$ (if X is invertible).

- 1 The columns of $AX = X\Lambda$ are $Ax_k = \lambda_k x_k$. The eigenvalue matrix Λ is diagonal.
- ${m 2} \ {m n}$ independent eigenvectors in X diagonalize A

$$A=X\Lambda X^{-1}$$
 and $\Lambda=X^{-1}AX$

3 The eigenvector matrix X also diagonalizes all powers A^k :

$$A^k = X\Lambda^k X^{-1}$$

- 4 Solve $u_{k+1} = Au_k$ by $u_k = A^k u_0 = X\Lambda^k X^{-1} u_0 = c_1(\lambda_1)^k x_1 + \cdots + c_n(\lambda_n)^k x_n$
- 5 No equal eigenvalues $\Rightarrow X$ is invertible and A can be diagonalized. Equal eigenvalues $\Rightarrow A$ might have too few independent eigenvectors. Then X^{-1} fails.
- **6** Every matrix $C = B^{-1}AB$ has the **same eigenvalues** as A. These C's are "**similar**" to A.

Diagonalization Suppose the n by n matrix A has n linearly independent eigenvectors x_1, \ldots, x_n . Put them into the columns of an eigenvector matrix X. Then $X^{-1}AX$ is the eigenvalue matrix Λ :

Eigenvector matrix XEigenvalue matrix Λ

$$X^{-1}AX = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}. \tag{1}$$

The matrix A is "diagonalized." We use capital lambda for the eigenvalue matrix, because the small λ 's (the eigenvalues) are on its diagonal.

Example 1 This A is triangular so its eigenvalues are on the diagonal: $\lambda = 1$ and $\lambda = 6$.

Eigenvectors
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$X^{-1}$$
 A X = Λ
In other words $A = X\Lambda X^{-1}$. Then watch $A^2 = X\Lambda X^{-1}X\Lambda X^{-1}$. So A^2 is $X\Lambda^2 X^{-1}$.

 A^2 has the same eigenvectors in X and squared eigenvalues in Λ^2 .

Why is $AX = X\Lambda$? A multiplies its eigenvectors, which are the columns of X. The first column of AX is Ax_1 . That is λ_1x_1 . Each column of X is multiplied by its eigenvalue:

A times X
$$AX = A \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \end{bmatrix}.$$

The trick is to split this matrix AX into X times Λ :

$$X \text{ times } \Lambda$$

$$\left[\lambda_1 x_1 \quad \cdots \quad \lambda_n x_n \right] = \left[x_1 \quad \cdots \quad x_n \right] \left[\begin{matrix} \lambda_1 \\ & \ddots \\ & & \lambda_n \end{matrix} \right] = X \Lambda.$$

Keep those matrices in the right order! Then λ_1 multiplies the first column x_1 , as shown. The diagonalization is complete, and we can write $AX = X\Lambda$ in two good ways:

$$AX = X\Lambda$$
 is $X^{-1}AX = \Lambda$ or $A = X\Lambda X^{-1}$. (2)

$$A^k = (X\Lambda X^{-1})(X\Lambda X^{-1})\dots(X\Lambda X^{-1}) = X\Lambda^k X^{-1}$$

Remarks

Remark 1 Suppose the eigenvalues $\lambda_1, \ldots, \lambda_n$ are all different. Then it is automatic that the eigenvectors x_1, \ldots, x_n are independent. The eigenvector matrix X will be invertible. Any matrix that has no repeated eigenvalues can be diagonalized.

Remark 2 We can multiply eigenvectors by any nonzero constants. $A(cx) = \lambda(cx)$ is still true. In Example 1, we can divide x = (1, 1) by $\sqrt{2}$ to produce a unit vector.

MATLAB and virtually all other codes produce eigenvectors of length ||x|| = 1.

Remark 3 The eigenvectors in X come in the same order as the eigenvalues in Λ . To reverse the order in Λ , put the eigenvector (1,1) before (1,0) in X:

New order
$$6, 1$$

$$\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix} = \Lambda_{\mathbf{new}}$$

Remark 4 (repeated warning for repeated eigenvalues) Some matrices have too few eigenvectors. *Those matrices cannot be diagonalized*. Here are two examples:

Not diagonalizable
$$A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Remarks

Remark 1 Suppose the eigenvalues $\lambda_1, \ldots, \lambda_n$ are all different. Then it is automatic that the eigenvectors x_1, \ldots, x_n are independent. The eigenvector matrix X will be invertible. Any matrix that has no repeated eigenvalues can be diagonalized.

Remark 2 We can multiply eigenvectors by any nonzero constants. $A(cx) = \lambda(cx)$ is still true. In Example 1, we can divide x = (1, 1) by $\sqrt{2}$ to produce a unit vector.

MATLAB and virtually all other codes produce eigenvectors of length ||x|| = 1.

Remark 3 The eigenvectors in X come in the same order as the eigenvalues in Λ . To reverse the order in Λ , put the eigenvector (1,1) before (1,0) in X:

New order
$$6, 1$$

$$\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix} = \Lambda_{\mathbf{new}}$$

Remark 4 (repeated warning for repeated eigenvalues) Some matrices have too few eigenvectors. *Those matrices cannot be diagonalized*. Here are two examples:

Not diagonalizable
$$A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Example 2 Powers of A The Markov matrix $A = \begin{bmatrix} :8 : :3 \\ :7 \end{bmatrix}$ in the last section had $\lambda_1 = 1$ and $\lambda_2 = .5$. Here is $A = X\Lambda X^{-1}$ with those eigenvalues in the diagonal Λ :

Markov example
$$\begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix} = \begin{bmatrix} .6 & 1 \\ .4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & .5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ .4 & -.6 \end{bmatrix} = X\Lambda X^{-1}.$$

The eigenvectors (.6, .4) and (1, -1) are in the columns of X. They are also the eigenvectors of A^2 . Watch how A^2 has the same X, and the eigenvalue matrix of A^2 is Λ^2 :

Same X for
$$A^2$$
 $A^2 = X\Lambda X^{-1} X\Lambda X^{-1} = X\Lambda^2 X^{-1}$. (4)

Just keep going, and you see why the high powers A^k approach a "steady state":

Powers of A
$$A^k = X\Lambda^k X^{-1} = \begin{bmatrix} .6 & 1 \\ .4 & -1 \end{bmatrix} \begin{bmatrix} 1^k & 0 \\ 0 & (.5)^k \end{bmatrix} \begin{bmatrix} 1 & 1 \\ .4 & -.6 \end{bmatrix}.$$

As k gets larger, $(.5)^k$ gets smaller. In the limit it disappears completely. That limit is A^{∞} :

Limit
$$k \to \infty$$

$$A^{\infty} = \begin{bmatrix} .6 & 1 \\ .4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ .4 & -.6 \end{bmatrix} = \begin{bmatrix} .6 & .6 \\ .4 & .4 \end{bmatrix}.$$

Suppose the eigenvalue matrix Λ is fixed. As we change the eigenvector matrix X, we get a whole family of different matrices $A = X\Lambda X^{-1}$ —all with the same eigenvalues in Λ . All those matrices A (with the same Λ) are called **similar**.

All the matrices $A = BCB^{-1}$ are "similar." They all share the eigenvalues of C.

$$0, 1, 1, 2, 3, 5, 8, 13, \dots$$

comes from

$$F_{k+2} = F_{k+1} + F_k.$$

Let
$$u_k = \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix}$$

Let
$$u_k=egin{bmatrix} F_{k+1} \ F_k \end{bmatrix}$$
. The rule $egin{array}{c} F_{k+2}=F_{k+1}+F_k \ F_{k+1}=F_{k+1} \end{array}$ is $u_{k+1}=egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}u_k$.

$$u_{k+1} = egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix} u_k.$$

Every step multiplies by $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. After 100 steps we reach $u_{100} = A^{100}u_0$:

$$u_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad \dots, \quad \boldsymbol{u}_{100} = \begin{bmatrix} F_{101} \\ F_{100} \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix}$$
 leads to $\det(A - \lambda I) = \lambda^2 - \lambda - 1$ $\lambda_1 = \frac{1 + \sqrt{5}}{2} \approx 1.618$

$$\lambda_1 = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

$$\lambda_2 = \frac{1 - \sqrt{5}}{2} \approx -.618$$

$$x_1 = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix} \qquad x_2 = \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix} \qquad \qquad \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \qquad \qquad \Lambda^{100} = \begin{bmatrix} \lambda_1^{100} & 0 \\ 0 & \lambda_2^{100} \end{bmatrix}$$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

$$\Lambda^{100} = \begin{bmatrix} \lambda_1^{100} & 0 \\ 0 & \lambda_2^{100} \end{bmatrix}$$

$$u_{100} = Au_{99} = A(Au_{98}) = A^{100}u_{0}$$

 $A^{100} = X \Lambda^{100} X^{-1}$

$$A^{100} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1^{100} & 0 \\ 0 & \approx 0 \end{bmatrix} \begin{pmatrix} \frac{1}{\lambda_1 - \lambda_2} \end{pmatrix} \begin{bmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{bmatrix} = \begin{pmatrix} \frac{1}{\lambda_1 - \lambda_2} \end{pmatrix} \begin{bmatrix} \lambda_1^{101} & -\lambda_1^{101} \lambda_2 \\ \lambda_1^{100} & -\lambda_1^{100} \lambda_2 \end{bmatrix}$$

$$u_{100} = A^{100}u_{0}$$

but
$$u_{100} = \begin{bmatrix} F_{101} \\ F_{100} \end{bmatrix}$$

So
$$\begin{bmatrix} F_{101} \\ F_{100} \end{bmatrix} = \begin{pmatrix} \frac{1}{\lambda_1 - \lambda_2} \end{pmatrix} \begin{bmatrix} \lambda_1^{101} & -\lambda_1^{101} \lambda_2 \\ \lambda_1^{100} & -\lambda_1^{100} \lambda_2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} F_{101} \\ F_{100} \end{bmatrix} = \left(\frac{1}{\lambda_1 - \lambda_2} \right) \begin{bmatrix} \lambda_1^{101} \\ \lambda_1^{100} \end{bmatrix}$$

$$F_{100} = \left(\frac{1}{\lambda_1 - \lambda_2}\right) \lambda_1^{100} = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^{100}$$

$$u_{100} = \frac{(\lambda_1)^{100}x_1 - (\lambda_2)^{100}x_2}{\lambda_1 - \lambda_2}$$

We want $F_{100} =$ second component of u_{100} . The second components of x_1 and x_2 are 1. The difference between $\lambda_1 = (1 + \sqrt{5})/2$ and $\lambda_2 = (1 - \sqrt{5})/2$ is $\sqrt{5}$. And $\lambda_2^{100} \approx 0$.

100th Fibonacci number =
$$\frac{\lambda_1^{100} - \lambda_2^{100}}{\lambda_1 - \lambda_2} = \text{nearest integer to } \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^{100}. \quad (10)$$

Every F_k is a whole number. The ratio F_{101}/F_{100} must be very close to the limiting ratio $(1 + \sqrt{5})/2$. The Greeks called this number the "golden mean". For some reason a rectangle with sides 1.618 and 1 looks especially graceful.