Engenharia de Computação ECM253 – Linguagens Formais, Autômatos e Compiladores Métodos de prova em lógica de predicados

Slides da disciplina ECM253 – Linguagens Formais, Autômatos e Compiladores Curso de Engenharia de Computação Instituto Mauá de Tecnologia Prof. Marco Antonio Furlan de Souza

Validade

- Uma fbf proposicional sempre tem valor-verdade (depende dos valores-verdade atribuídos aos símbolos), enquanto que uma fbf predicativa pode ter ou não ter um valor-verdade (depende da interpretação);
- Pode haver um número infinito de interpretações possíveis para as fbfs predicativas e apenas 2ⁿ linhas para fbfs proposicionais com n símbolos proposicionais;
- O análogo à tautologia para as fbfs predicativas é a validade uma fbf predicativa é válida se for verdadeira para qualquer interpretação possível;
- Denota-se por \models A quando uma expressão A é valida;
- Se existe uma interpretação que faz uma expressão A ser verdadeira, então diz-se que tal interpretação satisfaz A ou que A é satisfazível;
- Como o número de interpretações pode ser infinito, não há um algoritmo em lógica de predicados para se determinar se uma fbf é válida.

Validade

Exemplos de fbfs da lógica de predicados e validade

- (∀x)P(x) → (∃x)P(x) é válida, pois se é verdade que o predicado é verdadeiro para todo x então é também para pelo menos um;
- $(\forall x)P(x) \rightarrow P(a)$ é **válida**, pois se é verdade que o predicado é verdadeiro para todo x então é também para o caso particular de um indivíduo a;
- $P(x) \to (Q(x) \to P(x))$ é **válida**, mesmo contendo a **variável livre** x;
- (∃x)P(x) → (∀x)P(x) não é válida, pois não se pode generalizar que se o predicado é válido para pelo menos um valor, então ele então será para todos.

Validade

Exercícios

- Decidir se cada uma das fbs a seguir é válida ou não, justificando.
 - (a) $(\exists x)A(x) \leftrightarrow \neg((\forall x)\neg A(x))$
 - (b) $(\forall x)A(x) \leftrightarrow \neg((\exists x)(\neg A(x)))$
 - (c) $(\forall x)(P(x) \lor Q(x)) \leftrightarrow (\forall x)P(x) \lor (\exists y)Q(y)$

Regras de equivalência

 São as mesmas da lógica proposicional, mas se acrescentam as seguintes equivalências (provadas anteriormente):

$$^{\diamond}$$
 ¬(∃x)A(x) \leftrightarrow (∀x)¬A(x) (negação do quantificador existencial, ne)

$$^{\diamond} \neg (\forall x) A(x) \leftrightarrow (\exists x) (\neg A(x))$$
 (negação do quantificador universal, nu)

• Exemplo de aplicação (trecho de prova)

1. $(\forall x)R(x)$	(hipótese)
2. $(\forall x)R(x) \rightarrow (\forall x)S(x)$	(hipótese)
3. $(\forall x)S(x)$	1,2, mp
4. $\neg\neg(\forall x)S(x)$	3, dn
5. $\neg((\exists x)(\neg S(x)))$	4, nu

Regras de inferência

• Utilizam-se as mesmas da lógica proposicional, e acrescentam-se as regras a seguir:

Regras de inferência			
De	Pode derivar	Nome/abreviação	Restrição no uso
$(\forall x)P(x)$	P(t) onde t é símbolo de variável ou constante.	Instanciação universal/ ui	Se t é uma variável, não pode aparecer no escopo de um quantificador para t .
$(\exists x)P(x)$	P(a) onde a é um sím- bolo constante não uti- lizado anteriormente na sequência de prova.	Instanciação existenci- al/ ei	Deve ser a primeira regra em- pregada para introduzir a na sequência.
P(x)	$(\forall x)P(x)$	Generalização univer- sal/ ug	P(x) não deve ter sido deduzido de qualquer hipótese onde x é livre e nem ter sido deduzido por instanciação existencial de qualquer fbf no qual x é livre.
P(x) ou $P(a)$, a constante	$(\exists x)P(x)$	Generalização existen- cial/ eg	Para sair de $P(a)$ para $(\exists x)P(x)$, x não deve aparecer em $P(a)$.

Regras de inferência

- Exemplo. Provar o argumento: Todos os humanos são mortais. Sócrates é humano. Portanto Sócrates é mortal.
- Se H(x) representa x é humano, M(x) representa x é mortal, e s é um símbolo constante a que foi atribuído Sócrates, então pode-se reescrever o argumento assim: $(\forall x)(H(x) \to M(x)) \land H(s) \to M(s)$.
- A partir daí, elabora-se a sequência de prova:

1. $(\forall x)(H(x) \to M(x))$	(hipótese)
2 . <i>H</i> (<i>s</i>)	(hipótese)
3. $H(s) \rightarrow M(s)$	1 ,ui
4. <i>M</i> (<i>s</i>)	2,3,mp

Regras de inferência

- **Exemplo**. Provar o argumento: $(\forall x)(P(x) \to Q(x)) \land (\forall x)P(x) \to (\forall x)Q(x)$.
- Sequência de prova:

1. $(\forall x)(P(x) \rightarrow Q(x))$	(hipótese)
2. $(\forall x)P(x)$	(hipótese)
3. $P(x) \rightarrow Q(x)$	1,ui
4. <i>P</i> (<i>x</i>)	2,ui
5. <i>Q</i> (<i>x</i>)	3,4,mp
6. $(\forall x)Q(x)$	5,ug

Exercícios

- Provar os argumentos a seguir:
 - (a) $(\exists x)P(x) \land (\forall x)(P(x) \rightarrow Q(x)) \rightarrow (\exists x)Q(x)$
 - (b) $(\exists x)R(x) \land \neg((\exists x)(R(x) \land S(x))) \rightarrow (\exists x)(\neg S(x))$

Referências bibliográficas

[1] GERSTING, J.L. Fundamentos matemáticos para a ciência da computação. 4.ed. Rio de Janeiro, RJ: LTC, 2001. 538 p. ISBN 85-216-1263-X.