Weil Pairings and the MOV Algorithm Transforming the ECDLP over \mathbb{F}_p to the DLP over \mathbb{F}_{p^k}

T. Ian Martiny

Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260 tim24@pitt.edu

April 12, 2014

Rational functions

Definition

A rational function in one variable is any quotient of polynomials i.e.,

$$f(x) = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_k x^k} = \frac{(x - \alpha_1)^{e_1} (x - \alpha_2)^{e_2} \dots (x - \alpha_r)^{e_r}}{(x - \beta_1)^{d_1} (x - \beta_2)^{d_2} \dots (x - \beta_s)^{d_s}}$$

We call the α_i 's roots and the β_i 's poles of the rational function f(x).

< ロ > ∢母 > ∢差 > ∢差 > 差 のQで

I. Martiny (Pitt) Weil Pairings April 12, 2014 2 / 30

Divisors

Definition

The divisor of a rational function is the formal sum:

$$div(f(x)) = e_1[\alpha_1] + e_2[\alpha_2] + \cdots + e_r[\alpha_r] - d_1[\beta_1] - d_2[\beta_2] - \cdots - d_s[\beta_2]$$

Definition

The group of divisors on an elliptic curve $E: y^2 = x^3 + ax + b$ is all formal sums:

$$D = \sum_{P \in F} n_p[P]$$

Where $n_p \in \mathbb{Z}$ and only finitely many are non-zero.

This is the Free Abelian group on the elements of E

◆ロ > ← 個 > ← 差 > ← 差 > 一差 ● から(*)

I. Martiny (Pitt) Weil Pairings April 12, 2014 3 / 30

Degree and Sum

Definition

The degree of a divisor D is:

$$\deg(D) = \sum_{P \in E} n_P$$

Definition

The Sum of a divisor D is:

$$\mathsf{Sum}(D) = \sum_{P \in E} n_P P$$

I. Martiny (Pitt)

Weil Pairings

Relationship between divisors of rational functions and divisors of Elliptic curves

Theorem

Let E be an elliptic curve. Let $D = \sum_{P \in E} n_P[P]$ be a divisor on E. Then D is the divisor of a rational function on E iff

$$deg(D) = 0$$
 $Sum(D) = O$

Recall that for $m \in \mathbb{N}$ $E[m] = \{P \in E : mP = \mathcal{O}\}$ or over a field $E(k)[m] = \{P \in E(k) : mP = \mathcal{O}\}$

Example

Suppose $P \in E[m]$ examine the divisor $D = m[P] - m[\mathcal{O}]$ Then $\deg(D) = m - m = 0$ and $\operatorname{Sum}(D) = mP - m\mathcal{O} = \mathcal{O} - \mathcal{O} = \mathcal{O}$ Thus D satisifies our Theorem, so there is some rational function $f_p(x,y)$ on E with $\operatorname{div}(f_p) = m[P] - m[\mathcal{O}]$

I. Martiny (Pitt) Weil Pairings April 12, 2014 5 / 30

Bilinear pairings

Definition

A bilinear pairing on an elliptic curve E will be a homomorphism $B: E \times E \to \mathbb{F}^*$ such that:

$$B(v_1 + v_2, w) = B(v_1, w) \cdot B(v_2, w)$$

$$B(v, w_1 + w_2) = B(v, w_1) \cdot B(v, w_2)$$

I. Martiny (Pitt) Weil Pairings

6 / 30

Ideas of Weil Pairing

The Weil Pairing will take a pair of points $P, Q \in E[m]$ and will return as output $e_m(P, Q)$, an mth root of unity, in the base field. With the given properties:

$$e_m(P_1 + P_2, Q) = e_m(P_1, Q) \cdot e_m(P_2, Q)$$

 $e_m(P, Q_1 + Q_2) = e_m(P, Q_1) \cdot e_m(P, Q_2)$

I. Martiny (Pitt) Weil Pairings April 12, 2014 7 / 30

Weil Pairing

Definition

Let $P,Q \in E[m]$ and let f_P , f_Q be rational functions on E satisfying $\operatorname{div}(f_P) = m[P] - m[\mathcal{O}]$ and $\operatorname{div}(f_Q) = m[Q] - m[\mathcal{O}]$. Then the Weil Pairing of P and Q is:

$$e_m(P,Q) = \frac{f_P(Q+S)}{f_P(S)} / \frac{f_Q(P-S)}{f_Q(-S)}$$

Where S is any point on E, $S \notin \{\mathcal{O}, P, -Q, P-Q\}$

I. Martiny (Pitt) Weil Pairings April 12, 2014 8 / 30

Well-definedness of Weil pairing with respect to functions

Suppose f_P and \tilde{f}_P are both rational functions with divisor $m[P] - m[\mathcal{O}]$. Then $f_P = c\tilde{f}_P$ so:

$$\frac{\tilde{f}_P(Q+S)}{\tilde{f}_P(S)} = \frac{cf_P(Q+S)}{cf_P(S)} = \frac{f_P(Q+S)}{f_P(S)}$$

Similarly for f_Q and \tilde{f}_Q

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

I. Martiny (Pitt) Weil Pairings April 12, 2014 9 / 30

Well-definedness of Weil pairing with respect to point S

Let
$$F: E \setminus \{\mathcal{O}, P, -Q, P-Q\} \to \mathbb{F}^*$$

$$F(S) = \frac{f_P(Q+S)}{f_P(S)} / \frac{f_Q(P-S)}{f_Q(-S)} = \frac{f_P(Q+S)f_Q(-S)}{f_P(S)f_Q(P-S)}$$

$$\operatorname{div}(F) = m[P - Q] + m[-Q] + m[\mathcal{O}] + m[P]$$
$$-m[P - Q] - m[-Q] - m[\mathcal{O}] - m[P]$$

(4日) (個) (注) (注) (注) (200)

I. Martiny (Pitt) Weil Pairings April 12, 2014 10 / 30

Facts about the Weil Pairing

Facts

Fact 1: The Weil Pairing is bilinear.

Fact 2: $e_m(P, Q)^m = 1$.

Fact 3: The Weil Pairing is alternating i.e.,

$$e_m(P, P) = 1 \implies e_m(P, Q) = e_m(Q, P)^{-1}$$

Fact 4: The Weil Pairing is non-degenerate i.e,

if
$$e_m(P,Q) = 1 \forall Q \in E[m] \implies P = \mathcal{O}$$

I. Martiny (Pitt)

Unhelpful example - computing a Weil Pairing

Let m = 2 and $E : y^2 = x^3 + ax + b = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$. Note that $\alpha_1 + \alpha_2 + \alpha_3 = 0$.

Let $P_1=(\alpha_1,0)$, $P_2=(\alpha_2,0)$, $P_3=(\alpha_3,0)$ these are points of order 2. And let $f_{P_i}=x-\alpha_i$ then $\operatorname{div}(f_{P_i})=2[P_i]-2[\mathcal{O}]$. Let S=(x,y) be any allowable point on E, then to compute $e_2(P_1,P_2)$ we will need $x(P_1-S)$ and $x(P_2+S)$.

$$x(P_1 - S) = \left(\frac{-y}{x - \alpha_1}\right)^2 - x - \alpha_1$$

$$= \frac{y^2 - (x - \alpha_1)^2 (x + \alpha_1)}{(x - \alpha_1)^2}$$

$$= \frac{(x - \alpha_1)(x - \alpha_2)(x - \alpha_3) - (x - \alpha_1)^2 (x + \alpha_1)}{(x - \alpha_1)^2}$$

since $y^2 = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$

4 D > 4 D > 4 E > 4 E > E 9 9 9 9

I. Martiny (Pitt) Weil Pairings April 12, 2014 12 / 30

Example cont'd

$$= \frac{(x - \alpha_2)(x - \alpha_3) - (x - \alpha_1)(x + \alpha_1)}{x - \alpha_1}$$

$$= \frac{(-\alpha_2 - \alpha_3)x + \alpha_2\alpha_3 + \alpha_1^2}{x - \alpha_1}$$

$$= \frac{\alpha_1x + \alpha_2\alpha_3 + \alpha_1^2}{x - \alpha_1}$$

since
$$\alpha_1 + \alpha_2 + \alpha_3 = 0$$

Similarly,

$$X(P_2+S) = \frac{\alpha_2 x + \alpha_1 \alpha_3 + \alpha_2^2}{x - \alpha_2}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

I. Martiny (Pitt) Weil Pairings April 12, 2014 13 / 30

Example cont'd

Recall $f_{P_i} = x - \alpha_i$, and with the assumption P_1, P_2 are distinct non-zero points in E[2] we directly compute $e_2(P_1, P_2)$

$$\begin{split} e_{2}(P_{1},P_{2}) &= \frac{f_{P_{1}}(P_{2}+S)}{f_{P_{1}}(S)} / \frac{f_{P_{2}}(P_{1}-S)}{f_{P_{2}}(-S)} \\ &= \frac{x(P_{2}+S) - \alpha_{1}}{x(S) - \alpha_{1}} / \frac{x(P_{1}-S) - \alpha_{2}}{x(-S) - \alpha_{2}} \\ &= \frac{\frac{\alpha_{2}x + \alpha_{1}\alpha_{3} + \alpha_{2}^{2}}{x - \alpha_{1}}}{x - \alpha_{1}} / \frac{\frac{\alpha_{1}x + \alpha_{2}\alpha_{3} + \alpha_{1}^{2}}{x - \alpha_{1}} - \alpha_{2}}{x - \alpha_{2}} \\ &= \frac{(\alpha_{2} - \alpha_{1})x + \alpha_{1}\alpha_{3} + \alpha_{2}^{2} + \alpha_{1}\alpha_{2}}{(\alpha_{1} - \alpha_{2})x + \alpha_{2}\alpha_{3} + \alpha_{1}^{2} + \alpha_{1}\alpha_{2}} \\ &= \frac{(\alpha_{2} - \alpha_{1})x + \alpha_{2}^{2} - \alpha_{1}^{2}}{(\alpha_{1} - \alpha_{2})x + \alpha_{1}^{2} - \alpha_{2}^{2}} \\ &= -1 \end{split}$$

A Theorem to help compute the Weil Pairing

Theorem

Given P, Q on E, let λ be the slope of the line connecting P, Q, or $\lambda = \infty$, or the slope of the tangent line, if necessary. Then define

$$g_{P,Q}(x,y) = \begin{cases} \frac{y - y_P - \lambda(x - x_P)}{x + x_P + x_Q - \lambda^2} & \text{if } \lambda \neq \infty \\ x - x_P & \text{if } \lambda = \infty \end{cases}$$

Then
$$div(g_{P,Q}) = [P] + [Q] - [P + Q] - [O]$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

I. Martiny (Pitt) Weil Pairings April 12, 2014 15 / 30

Proof.

If $\lambda \neq \infty$ let $y = \lambda x + \nu$ be the line through P and Q, this will intersect E at P,Q, and -(P+Q). Thus $\operatorname{div}(y - \lambda x - \nu) = [P] + [Q] + [-P-Q] - 3[\mathcal{O}]$

Notice by our addition formula: $x_{P+Q} = \lambda^2 - x_P - x_Q$. So $\operatorname{div}(x - x_{P+Q}) = [P+Q] + [-P-Q] - 2[\mathcal{O}]$. Finally, $g_{P,Q} = \frac{y - \lambda x - \nu}{x - p + Q}$ and thus $\operatorname{div}(g_{P,Q}) = [P] + [Q] - [P+Q] - [\mathcal{O}]$

I. Martiny (Pitt) Weil Pairings April 12, 2014 16 / 30

Miller's Algorithm

Goal: construct f_P with $\operatorname{div}(f_P) = m[P] - [mP] - (m-1)[\mathcal{O}]$. Thus when $P \in E[m] \operatorname{div}(f_P) = m[P] - m[\mathcal{O}]$. First for $m \in \mathbb{N}$ write $m = m_0 + m_1 \cdot 2 + \cdots + m_{n-1} \cdot 2^{n-1}$ with $m_{n-1} \neq 0$.

end

This algorithm is simply the double-and-add algorithm for adding points on elliptic curves. Using that

$$\mathsf{div}(g_{\mathcal{T},\mathcal{T}}) = 2[\mathcal{T}] - [2\mathcal{T}] - [\mathcal{O}]$$

$$div(g_{T,P}) = [T] - [P] - [T + P] - [O]$$

return f

I. Martiny (Pitt) Weil Pairings April 12, 2014 17 / 30

Example following divisor of f

Example

Let
$$m = 5 = 1 + 1 \cdot 2^2$$
. Thus $n - 1 = 2$. Let $P \in E[5]$ Initialization: $T = P$, $f = 1$, $div(f) = 0$. $i = 1$: $f = 1^2 \cdot g_{P,P}$, $T = 2P$,

$$\operatorname{div}(f) = 2[P] - [2P] - [\mathcal{O}]$$

 $m_1 = 0$ so skip the if step. i = 0: $f = f^2 \cdot g_{2P,2P}$, T = 4P,

$$div(f) = 2[P] - [2P] - [\mathcal{O}] + 2[P] - [2P] - [\mathcal{O}] + 2[2P] - [4P] - [\mathcal{O}]$$

=4[P] + -[4P] - 3[\mathcal{O}]

18 / 30

I. Martiny (Pitt) Weil Pairings April 12, 2014

Example cont'd

Example

$$m_0 = 1$$
 so compute:

$$f = f \cdot g_{4P,P}, T = 5P = \mathcal{O}.$$

$$div(f) = 4[P] + -[4P] - 3[\mathcal{O}] + [4P] + [P] - [5P] - [\mathcal{O}]$$

= 5[P] - 5[\mathcal{O}]

I. Martiny (Pitt) Weil Pairings April 12, 2014 19 / 30

Example computation

Example

Let $E: y^2 = x^3 + 30x + 34$ over \mathbb{F}_{631} . P = (36,60), Q = (121,387) are both points of order 5 on $E(\mathbb{F}_{631})$. Choose the S = (0,36). Then Miller's Algorithm gives:

$$\frac{f_P(Q+S)}{f_P(S)} = \frac{103}{219} = 473 \in \mathbb{F}_{631}$$

$$\frac{f_Q(P-S)}{f_Q(-S)} = \frac{284}{204} = 88 \in \mathbb{F}_{631}$$

So,

$$e_5(P,Q) = \frac{473}{88} = 242 \in \mathbb{F}_{631}$$

Embedding degree

A result from Algebraic Geometry gives that if E is an elliptic curve over \mathbb{F}_p and $m \in \mathbb{N}$ with $p \not| m$ then there is some $k \in \mathbb{N}$ such that

$$E(\mathbb{F}_{p^k}) \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

Definition

The embedding degree $k \in \mathbb{N}$ of E with respect to m is the smallest k such that:

$$E(\mathbb{F}_{p^k}) \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

21 / 30

I. Martiny (Pitt) Weil Pairings April 12, 2014

MOV algorithm

Let E be an elliptic curve over \mathbb{F}_p and $P \in E(\mathbb{F}_P)[m]$ (generally m is a prime $m \neq p$, and usually $m > \sqrt{p} + 1$). Let k be the embedding degree with respect to m; suppose we know how to solve the DLP in \mathbb{F}_{p^k} . Let $Q \in E(\mathbb{F}_P)$ with Q = nP, we wish to find this n.

- 1. Compute $N = \#E(\mathbb{F}_{p^k})$ [Note: m|N since by assumption $E(\mathbb{F}_p)$ has a point of order m]
- 2. Choose any $T \in E(\mathbb{F}_{p^k})$; $T \not\in E(\mathbb{F}_p)$
- 3. Compute T' = (N/m)T[If $T' = \mathcal{O}$ go back to step 2]
- 4. Compute the Weil Pairing values:

$$\alpha = e_m(P, T')$$
 $\beta = e_m(Q, T')$

[If $\alpha = 1$ go back to step 2]

- 5. Solve the DLP for $\beta = \alpha^n$
- 6. Then Q = nP.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Wait, what?

The Weil Pairing is a non-degenerate, bilinear pairing, that creates an mth root of unity, thus $e_m(P, T')^r = 1$ iff m|r.

So if Q = jP our goal is to find j, or to find $n \equiv j \pmod{m} [mP = \mathcal{O}]$. The MOV algorithm returns an n such that $e_m(Q, T') = e_m(P, T')^n$, thus by bilinearity:

$$e_m(P, T')^n = e_m(Q, T')$$

$$= e_m(jP, T')$$

$$= e_m(P, T')^j$$

Thus $e_m(P, T')^{n-j} = 1 \implies n \equiv j \pmod{m}$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

I. Martiny (Pitt)

23 / 30

Consequences of MOV algorithm

The algorithm is essentially unusable if our embedding degree $k > (\ln p)^2$, and in general, a random elliptic curve over \mathbb{F}_p will have embedding degree much larger than $(\ln p)^2$.

However a certain group of elliptic curves, namely super-singular curves, with $\#E(\mathbb{F}_p) = p+1$ have embedding degrees $k \leq 6$.

This algorithm should be seen more as a cautionary tale, if your elliptic curve has low embedding degree, your cryptosystem is NOT based off of the difficulty of the ECDLP, but rather the difficulty of the DLP.

24 / 30

Distortion maps

A main property of the Weil Pairing is that $e_m(P,P)=1$ for all P, which can cause issues in some cryptographic settings where Q=nP. Then $e_m(P,Q)=1$.

Definition

Let $m \ge 3$ be a prime and E be an elliptic curve and $P \in E[m]$. Then $\phi: E \to E$ is an m-distortion map for P if:

- (i) $\phi(nP) = n\phi(P)$, $\forall n \ge 1$
- (ii) $e_m(P, \phi(P))^r = 1$ iff m|r
- (iii) ϕ can be "efficiently" computed.

25 / 30

I. Martiny (Pitt) Weil Pairings April 12, 2014

Modified Weil Pairings

Definition

Let E be an elliptic curve, $P \in E[m]$ and ϕ be an m-distortion map for P. Then the modified Weil Pairing $\hat{\mathbf{e}}_m$ on E[m] (relative to ϕ) is:

$$\hat{e}_m(Q,Q')=e_m(Q,\phi(Q'))$$

Then $\hat{\mathbf{e}}_m(Q,Q\prime)=1$ iff $Q=\mathcal{O}$ or $Q'=\mathcal{O}$

I. Martiny (Pitt) Weil Pairings April 12, 2014 26 / 30

Tripartite Diffie-Hellman key exchange

Alice, Bob, and Carl want to all have a shared secret (key) with as few passes of information as possible:

Public Parameter Creation		
Alice, Bob, and Carl all decide and publish a finite field \mathbb{F}_q , an elliptic curve E/\mathbb{F}_q ,		
a point $P \in E(\mathbb{F}_q)$ of prime order m and an m -distortion map ϕ for P .		
Private Computations		
Alice	Bob	Carl
Choose secret n_A	Choose secret n_B	Choose secret <i>n_C</i>
Compute $Q_A = n_A P$	Compute $Q_B = n_B P$	Compute $Q_C = n_C P$
Publication of Values		
Alice, Bob, and Carl publish their points Q_A , Q_B , Q_C		
Further Private Computations		
Alice	Bob	Carl
	Compute $\hat{e}_m(Q_A, Q_C)^{n_B}$	Compute $\hat{e}_m(Q_A,Q_B)^{n_C}$
The shared secret value is $\hat{e}_m(P,P)^{n_A n_B n_C}$		

Cryptanalysis of Tripartite Diffie-Hellman

Clearly if an attacker can solve the ECDLP then the attacker has access to the key.

However, notice that the attacker has access to Q_A and P and can compute \hat{e}_m . Thus if the attacker can solve the DLP over \mathbb{F}_q they can find n_A since:

$$\hat{\mathbf{e}}_m(Q_A, P) = \hat{\mathbf{e}}_m(P, P)^{n_A}$$

So our security is based off the security of the ECDLP as well as the DLP. Thus in practice the Tripartite Diffie-Hellman requires a much larger base field.

28 / 30

References

"An Introduction to Mathematical Cryptography" - Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman "The Arithemetic of Elliptic Curves" - Joseph H. Silverman

Thanks for listening!

I. Martiny (Pitt) Weil Pairings April 12, 2014 30 / 30