Chapter 1

GEOMETRICAL APPLICATIONS OF DIFFERENTIATION

Facts and Formulas

EXERCISE 1

Circle the correct answer.

A function is increasing when:

(A)
$$\frac{dy}{dx} > 0$$
 (B) $\frac{dy}{dx} = 0$ (C) $\frac{dy}{dx} < 0$

(B)
$$\frac{dy}{dx} = 0$$

(C)
$$\frac{dy}{dx} < 0$$

2. A function is decreasing when:

(A)
$$\frac{dy}{dx} > 0$$
 (B) $\frac{dy}{dx} = 0$ (C) $\frac{dy}{dx} < 0$

(B)
$$\frac{dy}{dx} = 0$$

(C)
$$\frac{dy}{dx} < 0$$

3. A curve is concave upwards at *P* when:

(A)
$$\frac{d^2y}{dx^2} > 0 \text{ at } P$$

(B)
$$\frac{d^2y}{dx^2} < 0 \text{ at } P$$

(A)
$$\frac{d^2y}{dx^2} > 0$$
 at P (B) $\frac{d^2y}{dx^2} < 0$ at P (C) $\frac{d^2y}{dx^2} = 0$ at P

A curve is concave downwards at *P* when: 4.

(A)
$$\frac{d^2y}{dx^2} > 0 \text{ at } P$$

(B)
$$\frac{d^2y}{dx^2} < 0 \text{ at } P$$

(A)
$$\frac{d^2y}{dx^2} > 0 \text{ at } P$$
 (B) $\frac{d^2y}{dx^2} < 0 \text{ at } P$ (C) $\frac{d^2y}{dx^2} = 0 \text{ at } P$

At x = a, if f'(a) = 0 and f''(a) > 0, then there exists at x = a: 5.

(A) a maximum turning point. (B) a minimum turning point.

At x = a, if f'(a) = 0 and f''(a) < 0, then there exists at x = a: 6.

a maximum turning point.

(B) a minimum turning point.

At x = a, if f''(a) = 0 and there is a sign change in f''(x) on either side of x = a, then 7. there exists at x = a:

a point of inflexion. (A)

a maximum turning point. (B)

(C) a minimum turning point. (D) a horizontal point of inflexion.

At x = a, if f'(a) = 0, f''(a) = 0 and there is a sign change in f''(x) on either side of 8. x = a, then there exists at x = a:

a point of inflexion. (A)

a maximum turning point. (B)

a minimum turning point. (C)

a horizontal point of inflexion. (D)

9. Given: (I) maximum turning point

minimum turning point (II)

point of inflexion (III)

horizontal point of inflexion (IV)

The tangent is parallel to the x axis for,

(A)

I and II only (B)

I, II and IV (C)

all of the above

Interpreting the First and Second Derivatives

EXERCISE 2

1. For what values of x are the functions, whose derivatives are given, increasing?

$\frac{dy}{dx} = 3x$		11111
	4	1
	$\frac{3}{dx} = 3x$	$\frac{dy}{dx} = 3x$

(d)
$$\frac{dy}{dx} = x^2 + 3$$

$$\frac{dy}{dx} = x^2 - 7x + 12$$

2. For what values of *x* are the functions, whose derivatives are given, decreasing?

(a)
$$\frac{dy}{dx} = -5x$$

(b)	$\frac{dy}{dx} = 4x$	
		1
		1
		A

(c)
$$\frac{dy}{dx} = -2$$

(d)
$$\frac{dy}{dx} = -x^2$$

(e)
$$\frac{dy}{dx} = x^2 - 1$$

$$(f)^* \qquad \frac{dy}{dx} = (x+5)(x-1)$$

$$\frac{dy}{dx} = x^2 + 8x + 12$$

$$\frac{dy}{dx} = \frac{-2}{(x-6)^2}$$

For what values of x is the 3. (a) function $y = 6x^2 - 12x + 8$

increasing?

For what values of x is the function $y = 2x^3 - 6x + 5$

increasing?

For what values of x is the (c) function $y = 4x^2 + 16x - 3$ decreasing?

For what values of x is the (d) function $y = x^3 - 27x + 2$

4. For what values of x is the (a) function $y = 4x^3 - 6x^2 + 7$

concave up?

For what values of x is the (b) function $y = 30x^2 - 5x^3$ concave up?

For what values of x is the (c)*function $y = 3x^4 - 72x^2 + 5$ concave down?

- For what values of x is the function $y = -x^4$ concave down?
- If $C = 36m^2 m^3$ is a cost function, 5. where m is the number of units produced, for what values of m is

6.

For what values of x is: f(x) = 0? (a) f(x) > 0?f(x) < 0? (c)

7.

(a) What are the *x* values of the turning points?

For what values of x is:

- (b) f(x) increasing?
- (c) f(x) decreasing?
- (d) f(x) concave up?
- (e) f(x) concave down?

Stationary Points and Their Nature

EXERCISE 3

1. Using calculus, locate the turning point of each of the following functions and determine the nature of the point:

(a)*
$$y = 12x - 2x^2$$

	F	
	Ÿ.	
	i e	
	1	
	1	
	l.	
	N. Contraction of the contractio	
	!	
	, i	
h		
	h	

(b)
$$y = 3x^2 - 12x + 10$$

(c)
$$y = -5x^2 + 20x + 1$$

- 2. For the function $y = x^2 10x + 21$:
 - (a) locate the turning point.
 - (b) determine its nature.
 - (c) state the y intercept.
 - (d) state the x intercepts.
 - (e) sketch the curve, showing all of the above.

3.* For the function $y = -x^2 + 7x + 8$:

(a)	locate the turning point.	
		į
1		-
1		
i i		

(b) determine its nature.

(c) state the y intercept.
1	
ı	
1	

(d) state the x intercepts.

sketch the curve, showing all of (e) the above.

Curve Sketching

EXERCISE 4

For the function $y = x^3 + 5 \cdot 5x^2 + 10x + 1$: 1.

> locate the x values of the turning points.

For the function $y = x^3 - 5x^2 + 3x - 4$: 2.

> (a) locate the turning points.

j.	
(b)	determine their nature.
1	
1	
ì	
Į.	
i	
1	
i	
1	

(c)	state	the y	interce	ept.	
	•				1
					- 1

sketch the curve, showing all of (d) the above.

For the function $y = 5x^3 - 60x + 1$: 3.

> locate the turning points. (a)

(b) determine their nature.

(c) state the y intercept.

(d) sketch the curve, showing all of the above.

(e) What is the maximum value of the function in the domain

UII	c function	II III UIC	doma	111
	$3 \le x \le 5$			
1				
1				
1				
1				
17				
i .				
10				
î.				

(f) What is the minimum value of the function in the domain

4.* (a) Expand x(x+3)(x+1).

(b)	Locate all the turning points or
	the function

$$y = \frac{1}{4}x^4 + \frac{4}{3}x^3 + \frac{3}{2}x^2.$$

	 4	3		
				0.00
1				1
i				
ŀ				
!				
1				
i				
1				_
L	 	.1	atuma of the	

(c) Determine the nature of the

(d) sketch the curve, showing all of the above.

5. Explain why the function $y = x^3 + 5x$ has no turning points.

Find the point on the curve $y = x^3 + 9x^2$ 6.

EXERCISE 5

- For $f(x) = 2x^3 54x$:
 - locate all turning points and determine their nature.

- For $f(x) = x^3 3x + 5$: 2.*
 - (a) locate all turning points and determine their nature

	0000111111	
1		
98		
(4		
0		
98		
1		
1		
3		
1		
\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
14		
4		
()		
31		
1		
9		
1		
3		
31		
9		
0		
1		
1		
1		
SAME INCOME.	4	 . 01

- locate any points of inflexion.
- sketch the function.

- For the function $y = x^3 + 6x^2 + 9x + 2$: 3.
 - find all turning points and determine their nature.

(b) find any points of inflexion.

(b) Thid any points of inflexion.

(c) sketch y = f(x) (include the y intercept).

(d) sketch the derivative f'(x) of

(e) sketch the second derivative f''(x) of the function.

- (f) Complete: the turning points of y = f(x) are located on the integral of the graph of the first derivative.
- (g) Complete: the point of inflexion of y = f(x) is located on the of the graph of the second derivative.
- 4. (a) On the given set of axes sketch (not to scale) the function which has the following attributes:

f(0) = 7,	f'(0) = 0,	f''(0) > 0
f(1) = 8,	f'(1)=0,	f''(1) < 0
f(2) = 7,	f'(2) = 0,	f''(2) > 0
Changes in	n concavit	y occur when
x = 0.42 at	nd x = 1.58	3.

(b) State the domain for which the curve is concave down.

curve is concave down.
i e
I .

EXERCISE 6

1. $f(x) = x^3 + 6x^2 + 12x + 7$

(a)
$$f'(x) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

(b)
$$f''(x) =$$

- (c) Evaluate f(-2)
- (d) Evaluate f'(-2)
- (e) Evaluate f''(-2)
- (f) Evaluate f''(-1)

Evaluate f''(-3)(g)

(h) Complete:

point of inflexion occurs at (since both $f'(x) = \int_{0}^{x} f'(x) dx$ $f''(x) = \int_{0}^{\infty} at$ this point, and f''(x) changes on either side of this point.

2.*

Locate stationary point(s) for the (a) function $f(x) = x^3 - 12x^2 + 48x$ and determine the nature of the

point(s).

(b) Sketch y = f(x).

(c)

(d) Sketch y = f''(x).

For a function y = f(x), 3. (a)

 $f''(x) = (x+2)^2$. Explain why there is not a point of inflexion at x = -2 for this function.

(b) Which of the following graphs (A) or (B) could represent the function whose second derivative has this graph?

EXERCISE 7

- For $f(x) = x^4 + \frac{8}{3}x^3 + 1$;
 - locate all turning points and determine their nature. (a)

locate any points of inflexion.

sketch the function, (c)

- For $f(x) = -3x^4 8x^3$: 2.*
 - locate all turning points and determine their nature.

locate any points of inflexion.

(c) sketch the function.

Connect the points A and B to 3. demonstrate:

y is increasing at an increasing

y is increasing at a decreasing rate. (c)

(d) y is decreasing at a constant rate.

y is decreasing at an increasing (e) rate

y is decreasing at a decreasing (f) rate.

4. Draw the function which passes through A and B and which satisfies the given conditions:

(a)
$$\frac{dy}{dx} > 0$$
 and $\frac{d^2y}{dx^2} > 0$

 $\frac{dy}{dx} > 0$ and $\frac{d^2y}{dx^2} < 0$ (b)

(c) $\frac{dy}{dx} < 0$ and $\frac{d^2y}{dx^2} > 0$

- (d) $\frac{dy}{dx} < 0$ and $\frac{d^2y}{dx^2} < 0$
- Show the following on the set of axes below. The section from:
 - (a) A to B is increasing at an increasing rate.
 - (b) B to C is decreasing at an increasing rate.
 - (c) C to D is increasing at a decreasing rate.
 - (d) D to E is decreasing at a decreasing rate.

EXERCISE 8

- 1. For the function $f(x) = \frac{2}{x^2}$:
 - (a) Use calculus to show that there are no turning points or points of inflexion.

(b) Determine algebraically whether the function is even, odd, or neither.

- (c) Complete: As $x \to \infty$, $f(x) \to \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ As $x \to -\infty$, $f(x) \to \begin{bmatrix} \\ \\ \\ \end{bmatrix}$ As $x \to 0$, $f(x) \to \begin{bmatrix} \\ \\ \\ \end{bmatrix}$
- (d) An asymptote occurs when $x = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

(e)

Sketch y = f(x)

- 2.* For the function $f(x) = 2x + \frac{32}{x}$:
 - (a) locate all turning points and determine their nature. Check for any points of inflexion.

- (b) A vertical asymptote occurs when $x = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
- (c) Draw the graph of y = 2x.

(d) Sketch $f(x) = 2x + \frac{32}{x}$ on the graph in part (c).

Matching the graph of a Function with its First Derivative

EXERCISE 9

Match a graph of y = f(x) from the first column with a possible graph of its first derivative y = f'(x)in the second column.

1.

2.

3.

4.

(a quadratic function)

5.

6.

7.

A.

B.

C.

ANSWERS

D.

E.

F.,

G.

Maxima and Minima Problems

EXERCISE 10

1. For each of the following pair of equations, express A in terms of xonly:

(a)	A =	xy;	y = 9	$\theta - 2x$	
£:					
1					
i .					
1					
1					

(c)	A =	2x +	3y;	xy =	200

(d)	A = 3	$3xy$; x^2	$+y^{2} =$	25	
					1

2. Two identical rectangular paddocks, as shown below, are to be enclosed using 60 metres of fencing.

State the equation for the length (a) of fencing.

(b) Make y the subject of this equation

enclosed is	A = 30x -	$\frac{3x^2}{2}$

Show that the total area to be

(c)

(d)	Fin	d values	for x	and	y to	give
	the	maximu	m ar	ea A.		

- 3.* A farmer decides to fence a rectangular area for storage, using part of the rear wall of his barn as one boundary. He needs an area of 800 m². Fencing will cost \$14 per metre.
 - Determine the dimensions of the (a) enclosure so that the cost of the fencing will be minimised.

(b) What is the cost of fencing this enclosure?		(b) Calculate the maximum volume of the box.
	5.	Calculate the radius and height of a closed cylindrical can which will give the minimum surface area if the can has a volume of 2400 cm ³ . (4 dec.pl.)
The frame of a rectangular prism (with square base) is to be constructed using 64 cm of wire. (a) Find the dimensions of the prism that will give the maximum volume for the box.		

4.

6.		surface area of a closed cylinder 0π cm ² .		[
	(a)	Calculate the radius and height of the cylinder which will give the maximum volume (2 dec.pl.)		
			8.*	A rectangular garden bed of area 32 m ² is to have a concrete path 0.5 metres wide above and below it, and a path 1 metre wide each side (shown below). Find the dimensions of the garden bed so that the total area (garden bed and paths) is a minimum.
	(b)	Find the maximum volume.		
7.*	60 75 is to l	pen rectangular tank is to hold 50 litres of water. The base length be 3 times its width. Determine imensions of the tank so that the ce area is a minimum.		

An object is projected into the air. The height (h metres) of the object after
t seconds is given by $h = 60t - 5t^2$

What is the maximum height the (a)

11.*

(a)	1 0	
	object reaches?	
	1	
	1	
1	1	
1	1	
	3	
1		
	8	
ì		
i i		
1		
1		
1		1
74 N	II 1- 1- a often reaching its	

How long after reaching its (b) maximum height is the object

The revenue from a company's product 10. is given by $R = 180m + 42m^2 - m^3$ where m is the output (per unit of time). Determine the output that will give maximum revenue.

SUMMARY

- A function is increasing when $\frac{dy}{dx}$ 0 1,
- A function is decreasing when $\frac{dy}{dx} = 0$ 2.
- To determine the nature of a turning point means to determine whether it is a 3. turning point.
- A stationary point is a point on y = f(x) such that the gradient at the point has a 4. value of and thus the tangent at that point is to the x axis.
- A turning point occurs when $\frac{dy}{dx} = \frac{1}{1}$. 5.
- Complete, for a minimum turning point: 6.

7. Complete, for a maximum turning point:

8. Curve sketching techniques

- (a) Find turning points by solving $\frac{dy}{dx} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- (b) Determine their nature by considering the of the first derivative either side of the point (as shown in **6.** and **7.** above) or by substituting the x value of the turning points into the and considering its sign.
- (c) Locate the y intercept by substituting $x = \frac{1}{2}$.
- 9. If $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} > 0$ at a point, there is a turning point.
- 10. If $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} < 0$ at a point, there is a turning point.
- 11. A function is concave upwards when $\frac{d^2y}{dx^2}$ 0
- 12. A function is concave downwards when $\frac{d^2y}{dx^2}$ | 0
- 13. A point of inflexion is a change in
- 14. A point of inflexion exists when $\frac{d^2y}{dx^2}$ 0 and
- 15. A horizontal point of inflexion exists when $\frac{dy}{dx} = \begin{bmatrix} 0 \text{ and } \frac{d^2y}{dx^2} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$ and

ANSWERS

Geometrical Applications of Differentiation

Exercise 1 (page 1)

- 1. A 2. C 3. A 4. B 5. B 6. A 7. A
- 8. D 9. C

Exercise 2 (page 2)

- **1.(a)** x > 0 **(b)** x < 0 **(c)** x < 3

- (d) all real x (e) * (f) x < -2 and x > 3
- (g) x > 4 and x < 3
- **2.(a)** x > 0 **(b)** x < 0 **(c)** all real x
- (d) all real x except x = 0

- (e) -1 < x < 1 (f) * (g) -6 < x < -2
- (h) all real x except x = 6
- **3.(a)** x > 1 **(b)** x > 1 and x < -1 **(c)** x < -2

- (d) -3 < x < 3

- **4.(a)** $x > \frac{1}{2}$ **(b)** x < 2 **(c)** * **(d)** all real x
- 5. m > 24
- **6.(a)** -3, 1, 4 **(b)** -3 < x < 1, x > 4
- (c) x < -3, 1 < x < 4

- **7.(a)** -3 and 2 **(b)** -3 < x < 2 **(c)** x < -3 and x > 2
- (d) $x < -\frac{1}{2}$ (e) $x > -\frac{1}{2}$

Exercise 3 (page 4)

- **1.(a)** * **(b)** Min (2, -2) **(c)** Max (2, 21)

- **2.(a)** (5, -4) **(b)** Min **(c)** 21 **(d)** 3 and 7
- (e)

3. *

Exercise 4 (page 5)

- **1.(a)** $x = \frac{-5}{3}$ and x = -2 **(b)** Min, Max
- **2.(a)** $\left(\frac{1}{3}, -3\frac{14}{27}\right)$, $\left(3, -13\right)$. **(b)** Max, Min

(c) -4

- **3.(a)** (2, -79) (-2, 81) **(b)** Min, Max **(c)** 1
- (d)

- (e) 326
- (f) -324
- 4. *
- 5. $\frac{dy}{dx} > 0$ for all values of x 6. (-3, 54)

Exercise 5 (page 7)

- **1.(a)** (-3, 108) Max (3, -108) Min **(b)** (0, 0)

- **3.(a)** (-3, 2) Max (-1, -2) Min **(b)** (-2, 0)
- (c), (d), (e)

- (f) x axis
- (g) x axis

4.(a)

(b) 0.42 < x < 1.58

Exercise 6 (page 8)

1.(a)
$$3x^2 + 12x + 12$$

(b)
$$6x + 12$$

- (d) 0 (e) 0 (f) 6 (g) -6
- (h) horizontal, (-2, -1), 0, 0, sign

2. *

3.(a) no change in sign around f''(-2)

(b) A

Exercise 7 (page 10)

- 1.(a) $(-2, -4\frac{1}{3})$ Min
- **(b)** (0, 1) horiz. pt. of inflex. $\left(-1\frac{1}{3}, -2\frac{13}{81}\right)$ pt. of inflex.

(c)

2. *

(c)

(d)

(e)

(b)

(c)

5.

Exercise 8 (page 12)

1.(a)
$$f'(x) \neq 0, f''(x) \neq 0$$
 (b) even

(c)
$$0, 0, \infty$$
 (d) 0

(e)

Exercise 9 (page 14)

- 1. C 2. D 3. G 4. A 5. F 6. B 7. E

Exercise 10 (page 15)

1.(a)
$$A = 9x - 2x^2$$
 (b) $A = 10x^2 - x^3$

(b)
$$A = 10x^2 - x^3$$

(c)
$$A = 2x + \frac{600}{x}$$

(c)
$$A = 2x + \frac{600}{x}$$
 (d) $A = \pm 3x\sqrt{25 - x^2}$

2.(a)
$$60 = 4y + 3x$$
 (b) $y = 15 - \frac{3}{4}x$

(b)
$$y = 15 - \frac{3}{4}x$$

(d)
$$x = 10, y = 7.5$$

4.(a) base length and height =
$$5\frac{1}{3}$$
 cm (b) 151.7 cm³

5.
$$r = 7.2557$$
 cm, $h = 14.5112$ cm

6.(a)
$$r = 7.07$$
 cm, $h = 14.15$ cm **(b)** 2222.01 cm³

Summary (page 19)

14. =, there is a change in the sign of
$$\frac{d^2y}{dx^2}$$
 on either side of the point.

15. =, =, there is a change in the sign of
$$\frac{d^2y}{dx^2}$$
 on either side of the point.

Integration

Exercise 1 (page 21)

Exercise 2 (page 24)

1.(a)
$$\frac{x^6}{6} + c$$
 (b) $\frac{p^8}{8} + c$ (c) $x^5 + c$

(d)
$$4x^4 + c$$
 (e) $\frac{-3x^4}{4} + c$ (f) $\frac{x^{10}}{2} + c$

(g)
$$\frac{x^3}{12} + c$$
 (h) $\frac{x^3}{5} + c$

2.(a)
$$\frac{10x^3}{9} + c$$
 (b) $\pi x^9 + c$ **(c)** $3x + c$

(d)
$$\pi x + c$$
 (e) $\frac{\pi x^2}{2} + c$ (f) $-2m + c$

(g)
$$\frac{x}{3} + c$$

Exercise 3 (page 24)

1.(a)
$$-\frac{1}{3x^3} + c$$
 (b) $-\frac{3}{x^2} + c$ (c) $-\frac{1}{2x^4} + c$

(d)
$$-\frac{1}{3x} + c$$
 (e) $-\frac{1}{5x^5} + c$ (f) $-\frac{1}{2x^6} + c$

2.(a)
$$\frac{5}{7}x^{\frac{7}{5}}$$
 (b) $\frac{5}{6}x^{1\cdot 2}$ **(c)** $8x^{\frac{7}{4}}$

WORKED SOLUTIONS

GEOMETRICAL APPLICATIONS OF DIFFERENTIATION

Exercise 2

Increasing when $\frac{dy}{dx} > 0$

$$\therefore x^2 - 4 > 0$$

$$x^2 > 4$$

$$x > 2$$
 and $x < -$

2(f)

Decreasing when $\frac{dy}{dx} < 0$

Concave down when $\frac{d^2y}{d^2} < 0$

Now
$$\frac{dy}{dx} = 12x^3 - 144x$$

$$\frac{d^2y}{dx^2} = 36x^2 - 144$$

$$36x^2 - 144 < 0$$

$$36x^2 < 144$$

$$x^{2} < 4$$

$$-2 < x < 2$$

Exercise 3

1(a)

$$y = 12x - 2x^2$$

St. pts. when $\frac{dy}{dx} = 0$ $\frac{dy}{dx} = 12 - 4x$ when 12 - 4x = 0

$$4x = 12$$

$$x = 3 \rightarrow y = 18$$

$$x = 3 \rightarrow y = 18$$

$$now \frac{d^2y}{dx^2} = -4 \quad (< 0 :: max)$$

Max turning pt. at (3,18)

3 $v = -x^2 + 7x + 8$

$$\frac{dy}{dx} = -2x + 7$$

$$\frac{d^2y}{dx^2} = -2$$

(a) turn. pts. $\frac{dy}{dx} = 0$

$$\therefore -2x + 7 = 0$$

$$x = 3 \cdot 5 \rightarrow y = 20 \cdot 25$$

 \therefore turn. pt. $(3 \cdot 5, 20 \cdot 25)$

(b)
$$\frac{d^2y}{dx^2} = -2 < 0$$
 : Max Turn. Pt.

- (c) y intercept when x = 0 i.e. y = 8
- (d) x intercepts when v = 0

 $-x^2 + 7x + 8 = 0$ (concave down)

$$-\left[x^2 - 7x - 8\right] = 0$$

$$-(x-8)(x+1) = 0$$

 \therefore x intercepts are 8, -1

(e)

Exercise 4

x(x+3)(x+1)

(a)
$$x(x^2 + 4x + 3)$$

$$x^3 + 4x^2 + 3x$$

(b) $y = \frac{1}{4}x^4 + \frac{4x^3}{3} + \frac{3x^2}{2}$

$$\frac{dy}{dx} = x^3 + 4x^2 + 3x$$

St. pts. when $\frac{dy}{dt} = 0$

$$x^3 + 4x^2 + 3x = 0$$

i.e.
$$x(x+3)(x+1) = 0$$

$$\therefore x = 0, x = -3 \text{ and } x = -1$$

St.Pts. $(0,0)(-3,-2\frac{1}{4}),(-1,\frac{5}{12})$

(c)
$$\frac{d^2y}{dx^2} = 3x^2 + 8x + 3$$

$$\frac{d^2y}{dx^2} = 3 > 0 \therefore \text{ Min at } (0,0)$$

$$x = -3$$
:

$$\frac{d^2y}{dx^2} = 6 > 0 :: Min at (-3, -2\frac{1}{4})$$

$$\frac{d^2y}{dr^2} = -2 < 0$$
 : Max at $(-1\frac{5}{12})$

(d)

Exercise 5

2
$$f(x) = x^3 - 3x + 5$$

$$f'(x) = 3x^2 - 3$$

$$f''(x) = 6x$$

(a) turn. pts.
$$f'(x) = 0$$

$$\therefore 3x^2 - 3 = 0$$

$$x^2 = 1$$

$$x = \pm 1$$

 \therefore turn. pts. (-1, 7) and (1, 3)

$$f''(-1) < 0$$
 : Max. T. Pt. at $(-1, 7)$

$$f''(1) > 0$$
 :: Min. T. Pt. at $(1,3)$

(b) Pts. of inflexion when f''(x) = 0

i.e.
$$6x = 0$$

$$x = 0 \rightarrow (0, 5)$$

Check for change in sign either side of (0,5)

$$\begin{cases} f''(-1) < 0 \\ f''(1) > 0 \end{cases}$$
 sign changes

$$\therefore$$
 Pt. of Inflex.at $(0,5)$

(c)

Exercise 6

2(a)
$$f(x) = x^3 - 12x^2 + 48x$$

$$f'(x) = 3x^2 - 24x + 48$$

St. Pts. when f'(x) = 0

i.e.
$$3x^2 - 24x + 48 = 0$$

$$x^2 - 8x + 16 = 0$$

$$(x-4)^2 = 0$$

$$x = 4 \rightarrow (4,64)$$

$$f''(x) = 6x - 24$$

at
$$(4,64)$$
 $f''(4) = 0$: NOT Max/Min

$$f''(3) = -6 < 0$$

$$f''(5) = 6 > 0$$
 concavity changes

... horizontal pt. of inflex. at (4, 64)

(b)

Exercise 7

2
$$f(x) = -3x^4 - 8x^3$$

$$f'(x) = -12x^3 - 24x^2$$

$$f''(x) = -36x^2 - 48x$$

(a) St. Pts when
$$f'(x) = 0$$

$$i.e. -12x^3 - 24x^2 = 0$$

$$-12x^{2}(x+2)=0$$

$$x = 0, x = -2$$

Check nature:

$$f''(0) = 0$$
 (possible pt. of inflex.)

$$f''(-2) = -48 < 0$$
 :: Max T Pt.

(b) Pts. of inflex.
$$f''(x) = 0$$

$$\therefore -36x^2 - 48x = 0$$

$$-12x(3x+4)=0$$

$$x = 0, \ x = -1\frac{1}{3}$$

Possible pts. (0,0) and $(-1\frac{1}{3}, 9\frac{13}{27})$

Check for change in concavity

$$(0,0) = \begin{cases} f''(-1) > 0 \\ f''(1) < 0 \end{cases}$$

change in concavity and since f'(0) = 0 and f''(0) = 0 there is a horizontal pt. of inflex. at (0, 0)

$$(-1\frac{1}{3}, 9\frac{13}{27}): \begin{cases} f''(-1) > 0 \\ f''(-2) < 0 \end{cases}$$

change in concavity, there is a

pt. of inflex. at
$$(-1\frac{1}{3}, 9\frac{13}{27})$$

Exercise 8

2
$$f(x) = 2x + \frac{32}{x}$$

i.e.
$$f(x) = 2x + 32x^{-1}$$

$$f'(x) = 2 - 32x^{-2} = 2 - \frac{32}{x^2}$$

$$f''(x) = 64x^{-3} = \frac{64}{x^3}$$

St. pts. when
$$f'(x) = 0$$

$$2 - \frac{32}{x^2} = 0$$

$$\frac{32}{x^2} = 2$$

$$2x^2 = 32$$

$$x^2 = 16$$

$$x = \pm 4$$

St.pts at (-4, -16) and (4, 16)

$$f''(-4) = -0.5 < 0$$

$$\therefore$$
 Max T. Pt. at $(-4, -16)$

$$f''(4) = 0.5 > 0$$

 $\therefore Min T. Pt. at (-4, -16)$

Possible Pts. of Inflex. when

f''(x) = 0, but no solutions for

$$\frac{64}{r^3} = 0$$
. No Pts. of Inflex.

(b) Vertical asymptote when x = 0

(Division by zero not defined)

(c) and (d)

Exercise 10

3(a)

$$A = xy$$

$$800 = xy$$

$$y = \frac{800}{x}$$

$$C = (y + 2x)(14)$$

$$C = 14y + 28x$$
$$C = 14\left(\frac{800}{2}\right) + 28x$$

$$C = \frac{11200}{x} + 28x$$

$$C = 11200x^{-1} + 28x$$

$$C' = -11200x^{-2} + 28$$

When
$$C' = 0$$

$$0 = -11200x^{-2} + 28$$

$$0 = \frac{-11200}{x^2} + 28$$

$$\frac{11200}{x^2} = 28$$

$$11200 = 28x^2$$

$$28x^2 = 11200$$

$$x^2 = \frac{11200}{28}$$

$$x^2 = 400$$

$$x = \pm 20 \quad \text{but } x > 0$$

$$\therefore x = 20$$

$$C'' = 22400x^{-3}$$

$$C'' = 22400(20)^{-3}$$

when
$$x = 20 \Rightarrow y = \frac{800}{20}$$
$$= 40$$

Min cost when x = 20, y = 40

(b)

when
$$x = 20 \Rightarrow C = \frac{11200}{(20)} + 28(20)$$

= 1120

7

Note: $60750 L = 60 \cdot 75 m^3$

$$V = Ah$$
$$= (3x)(x)h$$
$$= 3x^{2}h$$

$$60 \cdot 75 = 3x^2h$$

$$\frac{60 \cdot 75}{3x^2} = h$$

$$h = \frac{60 \cdot 75}{3x^2}$$

$$A = (3x)(x) + 2(x)(h) + 2(3x)(h)$$

$$=3x^2 + 2xh + 6xh$$

$$=3x^2 + 8xh$$

$$=3x^{2} + 8x \left(\frac{60 \cdot 75}{3x^{2}}\right)$$

$$=3x^2 + \frac{486x}{3x^2}$$

$$=3x^{2}+\frac{162}{x}$$

$$=3x^2 + 162x^{-1}$$

$$A' = 6x - 162x^{-2}$$

$$A'' = 6 + 324x^{-3}$$

When $A' = 0 \Rightarrow 0 = 6x - 162x^{-2}$

$$0 = 6x - \frac{162}{x^2} \quad (\times \ x^2)$$

$$0 = 6x^3 - 162$$

$$162 = 6x^3$$

$$x^3 = \frac{162}{6}$$

$$x^3 = 27$$

$$x = 3$$

Sub x = 3 into A''

$$A'' = 6 + 324(3)^{-3} > 0$$
: Min.

Dimensions:

When
$$x = 3 \Rightarrow h = \frac{60 \cdot 75}{3(3)^2} = 2 \cdot 25$$

When
$$x = 3 \Rightarrow 3x = 3(3) = 9$$

:. Tank is
$$9 \text{ m} \times 3 \text{ m} \times 2 \cdot 25 \text{ m}$$

8

Garden bed:
$$xy = 32 \Rightarrow y = \frac{32}{x}$$

Let outer area = A

$$A = (x+2)(y+1)$$

$$= xy + x + 2y + 2$$
$$= x(\frac{32}{2}) + x + 2(\frac{32}{2}) + 2$$

$$=32+x+\frac{64}{x}+2$$

$$= 34 + x + 64x^{-1}$$

$$\therefore A' = 1 - 64x^{-2} = 1 - \frac{64}{x^2}$$

$$\therefore A'' = 128x^{-3} = \frac{128}{x^3}$$

When A' = 0

$$0 = 1 - \frac{64}{x^2} (\times x^2)$$

$$0 = x^2 - 64$$

$$x^2 = 64$$

$$x = \pm 8 \qquad (x \neq -8)$$

$$\therefore x = 8$$

When x = 8:

$$A'' = \frac{128}{8^3} > 0$$
 : Min.

$$y = \frac{32}{8} = 4$$

Dimensions $x = 8 \,\mathrm{m}, y = 4 \,\mathrm{m}$

9(a)
$$h = 60t - 5t^2$$

 $h' = 60 - 10t$

$$h'' = -10 < 0 : Max.$$

When
$$h' = 0$$
: $0 = 60 - 10t$

$$10t = 60$$

$$t = 6$$

When
$$t = 6$$
: $h = 60(6) - 5(6)^2$
= $360 - 180$
= 180

Max. height 180 m

(b) let
$$h = 100$$

$$100 = 60t - 5t^2$$

$$5t^2 - 60t + 100 = 0$$
 (÷ 5)

$$t^2 - 12t + 20 = 0$$

$$(t-10)(t-2) = 0$$

$$t = 2,10$$
 but $t = 6$ was max h

$$\therefore t \neq 2 \Rightarrow t = 10$$

Time after max h = 10 - 6 = 4 sec

11(a) Speed =
$$\frac{\text{Distance}}{\text{Time}}$$

i.e.
$$S = \frac{D}{T}$$
 but $D = 750$

$$\therefore S = \frac{750}{T} \Rightarrow T = \frac{750}{S}$$

$$\therefore W = 45 \times T$$

$$=45\times\frac{750}{S}$$

$$=\frac{33750}{S}$$

(b) Let overall cost = C

$$C = (\cos t / \text{km}) \times (\text{no.of km}) + \text{Wages}$$

$$C = \left(0.25 + \frac{S}{250}\right) \times 750 + \frac{33750}{S}$$

$$C = 187 \cdot 5 + 3S + \frac{33750}{S}$$

$$C = 187 \cdot 5 + 3S + 33750S^{-1}$$

$$C' = 3 - 33750S^{-2} = 3 - \frac{33750}{S^2}$$

$$C'' = 67500S^{-3} = \frac{67500}{S^3}$$

When
$$C' = 0$$

$$0 = 3 - \frac{33750}{S^2} \quad (\times S^2)$$

$$0 = 3S^2 - 33750$$

$$33750 = 3S^2$$
 (÷ 3)

$$11250 = S^2$$

$$S = \pm 106 \cdot 06$$
 But $S > 0$

:. Economical speed is 106 km/h