Lois continues classiques

Feuille d'exercices

- **1** Soit X une variable aléatoire suivant la loi normale $\mathcal{N}(0,1)$.
 - 1. Calculer les probabilités suivantes :

$$\begin{split} \mathbb{P}(X \leqslant 1,\!63) \quad \mathbb{P}(X < 1,\!63) \quad \mathbb{P}(X \leqslant -1,\!41) \\ \mathbb{P}(X \geqslant -1,\!52) \quad \mathbb{P}(1,\!536 \leqslant X < 1,\!624). \end{split}$$

2. Calculer les seuils *x* définis par :

$$\mathbb{P}(X \leqslant x) = 0.9463 \quad \mathbb{P}(X \leqslant x) = 0.0537 \quad \mathbb{P}(|X| \leqslant x) = 0.4844.$$

- Soit X une variable aléatoire suivant la loi normale $\mathcal{N}(7, 4^2)$.
- 1. Calculer les probabilités suivantes :

$$\mathbb{P}(X < 7) \quad \mathbb{P}(X \leqslant 12,12) \quad \mathbb{P}(X \leqslant 8,26) \quad \mathbb{P}(5,25 < X \leqslant 9,13).$$

2. Déterminer les seuils x définis par :

$$\mathbb{P}(X \le x) = 0.9162 \quad \mathbb{P}(X > x) = 0.9418 \quad \mathbb{P}(-x + 14 < X < x) = 0.9418.$$

 $\boxed{\bf 3}$ Soit X une variable aléatoire suivant la loi normale $\mathcal{N}(1,2)$. Déterminer une densité de

$$Y_1 = X^2, \quad Y_2 = \frac{1}{1 + X^2} \quad \text{ et } \quad Y_3 = \frac{1}{1 - X^2}.$$

- 4 Soient deux variables aléatoires indépendantes : X suivant la loi $\gamma(\frac{1}{2})$ et B prenant uniformément ses valeurs dans $\{-1,1\}$. On pose $Y = \sqrt{X}$ et Z = BY.
 - **1.** Déterminer une densité de Y.
 - 2. a. Déterminer une densité de Z. Indication. On pourra exprimer la fonction de répartition de Z en considérant le système complet associé à B.
 - **b.** Reconnaître la loi de Z et donner sans calcul son espérance et sa variance.
- **5 1.** En utilisant la loi normale centrée réduite, montrer que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- 2. En utilisant une loi normale bien choisie, calculer les intégrales suivantes :

a.
$$\int_{-\infty}^{+\infty} e^{-2t^2-4t-2} dt$$
;

b.
$$\int_{-\infty}^{+\infty} t e^{-2t^2 - 4t - 2} dt$$
;

a.
$$\int_{-\infty}^{+\infty} \mathbf{e}^{-2t^2-4t-2} dt$$
; **b.** $\int_{-\infty}^{+\infty} t \mathbf{e}^{-2t^2-4t-2} dt$; **c.** $\int_{-\infty}^{+\infty} t^2 \mathbf{e}^{-2t^2-4t-2} dt$.

3. Exprimer les intégrales suivantes à l'aide de la fonction de répartition Φ de la loi normale centrée réduite puis en donner des valeurs approchées :

a.
$$\int_0^1 e^{-t^2/2} dt$$
;

a.
$$\int_0^1 e^{-t^2/2} dt$$
; **b.** $\int_0^2 e^{-2t^2+4t-2} dt$; **c.** $\int_0^{1/2} e^{-4t^2-4t} dt$.

c.
$$\int_0^{1/2} e^{-4t^2-4t} dt$$

6 Loi du khi-deux

- \star Soit $r \in \mathbb{N}^*$. On appelle loi du χ^2 à r degrés de liberté la loi de la variable 2Z, si Z est une variable aléatoire de loi $\gamma(\frac{r}{2})$.
 - 1. Déterminer la densité, l'espérance et la variance d'une variable aléatoire X suivant la loi du χ^2 à r degrés de liberté.
 - **2. a.** Montrer que :

$$orall \lambda > 0, \quad orall n \in \mathbb{N}^*, \quad \mathbf{e}^{\lambda} = \sum\limits_{k=0}^{n-1} rac{\lambda^k}{k!} + \int_0^{\lambda} \mathbf{e}^{\lambda-t} rac{t^{n-1}}{(n-1)!} \, \mathrm{d}t.$$

- **b.** Pour $\lambda > 0$ et $n \in \mathbb{N}^*$, on considère une variable aléatoire Y_{λ} suivant la loi de Poisson de paramètre λ ainsi qu'une variable aléatoire X_{2n} suivant la loi du χ^2 à 2ndegrés de liberté. Montrer que $\mathbb{P}(X_{2n} > 2\lambda) = \mathbb{P}(Y_{\lambda} < n)$.
- c. Donner l'allule de la courbe représentative de la fonction de répartition F₆ d'une variable suivant la loi du χ^2 à 6 degrés de liberté. Préciser les valeurs de $F_6(0)$, $F_6(4)$ et $F_6(8)$.
- 3. Soient X_1, \ldots, X_r des variables aléatoires mutuellement indépendantes gaussiennes centrées réduites.
 - **a.** Déterminer la loi de X_1^2 .
 - **b.** En déduire la loi de $X_1^2 + \cdots + X_r^2$.
 - c. Tracer sur un même graphe l'allure des fonctions de répartition de deux variables aléatoires, l'une suivant la loi du χ^2 à r degrés de liberté, l'autre la loi du χ^2 à sdegrés de liberté où r < s.
- 7 | 1. Si X est une variable aléatoire de loi uniforme sur [0, 1], quelle est la loi de Y = $-\ln X$?
- **2.** Soient X_1, \ldots, X_n des variables aléatoires indépendantes de loi uniforme sur]0, 1].
 - **a.** Déterminer la loi de la variable $Z_n = \prod_{i=1}^n X_i$.
 - **b.** Calculer $\mathbb{E}(Z_n)$.
- 8 Des voyageurs arrivent de façon aléatoire dans la salle des pas perdus de la gare de Lyon. Pour tout t > 0, on suppose que la variable aléatoire N_t , égale au nombre de voyageurs arrivant entre les instants 0 et t, suit une loi de Poisson de paramètre αt , où $\alpha > 0$ est un paramètre donné.
 - 1. On note X₁ l'instant d'arrivée du premier voyageur.
 - **a.** Déterminer $\mathbb{P}(X_1 > t)$ pour t > 0 et reconnaître la loi de X_1 .
 - **b.** Donner sans calcul l'espérance et la variance de X₁.
 - **2.** Pour $n \ge 2$, on considère la variable aléatoire X_n égale à l'instant d'arrivée du n-ième voyageur.
 - **a.** Montrer que la fonction de répartition F_{X_n} de X_n est donnée par :

$$\forall t \in \mathbb{R}, \quad F_{X_n}(t) = \mathbb{1}_{\mathbb{R}_+}(t) \left(1 - \mathbf{e}^{-\alpha t} \sum_{k=0}^{n-1} \frac{(\alpha t)^k}{k!}\right)$$

- **b.** En déduire une densité f_n de X_n . Reconnaître la loi de X_n
- **c.** En déduire l'espérance et la variance de X_n .

9 À l'instant t=0, un piéton se trouve au bord d'une route à sens unique qu'il désire traverser.

On note T_1 la variable aléatoire égale au temps qui s'écoule entre le début de l'expérience et le passage de la première voiture puis, plus généralement, pour tout $i \geqslant 2$, T_i la durée entre le passage de la i-1-ième voiture et de la i-ième voiture. On suppose que les T_i , $i \geqslant 1$, sont mutuellement indépendantes et suivent une même loi exponentielle de paramètre $\lambda > 0$. Prudent, le piéton décide de ne traverser à l'instant t que si la prochaine voiture à passer est éloignée de lui d'une distance supérieure à une certaine distance de sécurité. Le temps nécessaire à un voiture pour parcourir cette distance de sécurité est noté a (toutes les voitures sont supposées rouler à la même vitesse).

On note X la variable aléatoire égale à l'instant où le piéton peut traverser la route pour la première fois. On note N le nombre de voitures qui passeront devant le piéton avant que celui-ci puisse traverser.

On pose $p = \mathbf{e}^{-\lambda a}$ et q = 1 - p.

- **1. a.** Exprimer les probabilités $\mathbb{P}(X = 0)$ et $\mathbb{P}(N = 0)$ en fonction de p.
 - **b.** Pour $n \ge 1$, déterminer $\mathbb{P}(T_1 \le a, \dots, T_n \le a, T_{n+1} > a)$ en fonction de p. En déduire la loi de N.
 - **c.** Soit $n \ge 1$. Pour tout $i \in [1, n]$, déterminer une densité pour la loi de T_i conditionnellement à l'événement [N = n].
- **2. a.** Déterminer l'espérance $\mathbb{E}(T_i | N = n)$ pour $n \in \mathbb{N}$ et $i \in [1, n]$.
 - **b.** Calculer l'espérance conditionnelle $\mathbb{E}(X | N = n)$ pour $n \in \mathbb{N}$.
 - **c.** En déduire l'espérance de X en fonction de *a*.
- Soient X et Y deux variables aléatoires indépendantes suivant la loi normale centrée réduite. On pose Z = max(X, Y).
 - 1. Rappeler l'expression d'une densité f commune à X et Y. On note Φ la fonction de répartition associée.
 - 2. Déterminer une densité pour la variable aléatoire Z.
 - 3. À l'aide d'une intégration par parties, justifier que Z admet une espérance que l'on calculera.
 - 4. Montrer que X^2 et Z^2 ont même loi. En déduire la variance de Z.
- Une puce se déplace dans \mathbb{R}^3 rapporté à un repère $(O; e_1, e_2, e_3)$. À l'instant 0, elle se trouve à l'origine O=(0,0,0). À tout instant $n\in\mathbb{N}^*$, elle effectue un déplacement $D_n=(D_{n,1},D_{n,2},D_{n,3})$. On suppose que les trois variables aléatoires $D_{n,1},D_{n,2}$ et $D_{n,3}$ sont indépendantes et suivent la même loi normale $\mathcal{N}(0,1)$. On suppose de plus que tous les déplacements sont indépendants.

Pour tout $n \in \mathbb{N}^*$, on pose $S_{n,i} = \sum_{k=1}^n D_{k,i}$ pour tout $i \in [1,3]$ et $S_n = (S_{n,1}, S_{n,2}, S_{n,3})$. On s'intéresse à l'événement $A_n = [S_n \in [-1,1]^3]$.

- **1. a.** Déterminer la loi de $S_{n,1}$.
 - **b.** Exprimer la probabilité $p_n = \mathbb{P}(|S_{n,1}| \leq 1)$ à l'aide de la fonction de répartition Φ de la loi normale centrée réduite. Grâce à un développement limité de Φ , donner

un équivalent de p_n lorsque $n \to \infty$.

- **c.** Déterminer un équivalent de $\mathbb{P}(A_n)$ lorsque $n \to \infty$.
- **2. a.** Montrer que :

$$\forall n, m \in \mathbb{N}^*, \quad \mathbb{P}\Big(\bigcup_{k=n}^{m+n} A_k\Big) \leqslant \sum_{k=n}^{n+m} \mathbb{P}(A_k).$$

b. En déduire

$$\lim_{n\to\infty}\mathbb{P}\Big(\bigcup_{k\geqslant n}\mathsf{A}_k\Big).$$

c. Déterminer

$$\mathbb{P}\Big(\bigcap_{n\geqslant 1}\bigcup_{k\geqslant n}A_k\Big).$$

- 3. Qu'en déduire concernant le déplacement de la puce?
- Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes suivant une même loi exponentielle de paramètre $\lambda > 0$. On pose, pour tout $n \in \mathbb{N}^*$:

$$S_n = \sum_{k=1}^n X_k$$
 et $U_n = \min(X_1, \dots, X_n)$.

- **1.** Pour $n \in \mathbb{N}^*$, montrer que U_n suit une loi exponentielle et en préciser le paramètre.
- **2.** Pour $n \in \mathbb{N}^*$, donner une densité de S_n puis montrer que :

$$\forall x \in \mathbb{R}_+, \quad \mathbb{P}(S_n > x) = \mathbf{e}^{-\lambda x} \sum_{k=0}^{n-1} \frac{(\lambda x)^k}{k!}.$$

3. On considère une variable aléatoire N, définie sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ que les X_n , $n \in \mathbb{N}$, et suivant une loi géométrique de paramètre $p \in]0,1[$. On suppose les variables N et X_n , $n \in \mathbb{N}^*$, mutuellement indépendantes.

On considère les variables aléatoires $S=S_N$ et $U=U_N$ définies, pour tout $\omega\in\Omega$, par :

$$S(\omega) = S_{N(\omega)}(\omega)$$
 et $U(\omega) = U_{N(\omega)}(\omega)$.

- a. Démontrer que U est une variable à densité dont on précisera une densité.
- **b.** Déterminer la fonction de répartition de S. En déduire la loi de S et montrer que $\mathbb{E}(S)=\mathbb{E}(X_1)\,\mathbb{E}(N).$

Programmation:

- > Classe: 4, 7, 8, 9, 10, 6
- > TD: 1, 2, 5
- > DL: 11, 12

