CE 6305, Homework 2 Answers

- 1. Perform redundant BSD addition to do the following sums, and give the intermediate values and answer, just as they are displayed by the applet:
 - (a) $1\overline{1}\overline{1}110 + 011010$
 - (b) $1\overline{1}1\overline{1}10 + 001\overline{1}01$
 - (c) $100110 + 011\overline{1}10$

Comment on the results obtained in each case.

Answer:

(a)

X: 1 \overline{1} \overline{1} 1 1 0 : 14 Y: 0 1 1 0 1 0 : 26 e: 1 1 0 0 0 0

s: $1 \ 0 \ 0 \ \overline{1} \ 0 \ 0$

 $c{:}\ 0\ 0\ 1\ 1\ 0\ 0$

Z: 1 0 1 0 0 0 : 40

Here, the e_i signal is coded so that it is a 1 when $c_i \in \{0, \overline{1}\}$. Note that $X=1, Y=\overline{1}$, or vice versa, causes e=1.

(b)

 $X: 1 \overline{1} 1 \overline{1} \overline{1} 0 : 18$ $Y: 0 0 1 \overline{1} 0 1 : 5$ e: 1 0 1 1 0 0 $s: 1 \overline{1} 0 0 \overline{1} \overline{1}$ $c: 0 1 \overline{1} 0 1 0$

Z: $1\ 0\ \overline{1}\ 0\ 0\ \overline{1}$: 23

Nothing very interesting happens here.

The answer is incorrect because there was a carry-out from the most significant column. The answer does, however, fit in the range, which is [-63,63]. Any carry-out from the left hand end of the adder can be used to signal overflow. It might, however, be possible to apply a correction step to the result when an overflow occurs. For example, in the result obtained above, the carry-out together with the two MS digits of the answer are $10\overline{1}$ and this can be changed to 011. Here are some transformations that can be applied:

- 2. Design an unlimited carry-free addition system for radix = 3, and digit set $d_i \in [-4, 5]$.
 - (a) Give suitable values for λ and μ .

Answer:

$$\lambda \geq \frac{\alpha}{r-1}$$

$$\geq \frac{4}{2}$$

$$\lambda = 2$$

$$\mu \geq \frac{\beta}{r-1}$$

$$\geq \frac{5}{2}$$

$$\mu = 3$$

(b) Determine the range of values for the transfer digits for each intermediate sum value, $p_i \in [-8, 10]$.

Answer:

t[i+1]	-2	-1	0	1	2	3
p[i]	[-8,-4]	[-5,-1]	[-2,2]	[1,5]	[4,8]	[7,10]

(c) If there are 8 digits in a number in this system, what is the corresponding range?

Answer:

[-13120,16400]

(d) Show the system ay work by giving the working to the addition: [-3,4,4,-1] + [5,4,-2,-4].

Answer:

$$X: -3 \ 4 \ 4 \ -1 = -34$$

$$Y: 5 \ 4 \ -2 \ -4 = 161$$

s:
$$5 - 101 = 127$$

3. In which of the following is an unlimited carr-free system possible?

(a)
$$r = 3, \ \alpha = 1, \ \beta = 2$$

(b)
$$r = 2, \ \alpha = 1, \ \beta = 1$$

(c)
$$r = 10, \ \alpha = 4, \ \beta = 5$$

(d)
$$r = 4$$
, $\alpha = 2$, $\beta = 2$

Answer:

The rules are:

(i)
$$(r > 2) \land (\rho \ge 3)$$

(ii)
$$(r > 2) \land (\rho = 2) \land (\alpha \neq 1) \land (\beta \neq 1)$$

where
$$\rho = \alpha + \beta + 1 - r$$

(a)
$$\rho = 1$$
, both rules fail

(b)
$$r = 2$$
, both rules fail

(c)
$$\rho = 0$$
, both rules fail

(d)
$$\rho = 1$$
, both rules fail

None of these systems permits unlimited carry-free addition.