LECTURE 18: CAYLEY-HAMILTON AND BILINEAR FORMS

We begin this lecture with the proof of Cayley-Hamilton. Recall the statement.

Theorem 0.1 (Cayley-Hamilton). Let $T: V \to V$ be linear with dim $V < \infty$. Writing c_T for the characteristic polynomial of T

$$c_T(T) = 0.$$

Proof. We will only give a proof in the case that \mathbb{F} is algebraically closed. The general case follows by doing a field extension. (You can see many different proofs online or in textbooks though.) Since \mathbb{F} is algebraically closed we may factor the characteristic polynomial

$$c_T(x) = (x - \lambda_1)^{n_1} \cdots (x - \lambda_k)^{n_k} ,$$

where $\lambda_1, \ldots, \lambda_k$ are the distinct eigenvalues. Let B be a basis such that $[T]_B^B$ is in Jordan form. Last lecture it was shown that n_i is equal to the dimension of \hat{E}_{λ_i} .

So taking $v \in B$ such that $v \in \hat{E}_{\lambda_i}$, we get

$$(c_T(T))(v) = (T - \lambda_1 I)^{n_1} \cdots (T - \lambda_k I)^{n_k}(v) = \left(\prod_{j \neq i} (T - \lambda_j I)^{n_j}\right) (T - \lambda_i I)^{n_i}(v)$$
.

In last lecture it was shown that if $(T - \lambda_i I)^{\dim \hat{E}_{\lambda_i}}$ restricted to \hat{E}_{λ_i} is zero. Therefore $c_T(T)(v) = \vec{0}$. Since $c_T(T)$ sends all basis vectors to $\vec{0}$, it must be the zero operator.

We can now finish with the uniqueness of Jordan form.

Theorem 0.2 (Uniqueness of Jordan form). Let $T: V \to V$ be linear with \mathbb{F} algebraically closed. If B and B' are bases such that $[T]_B^B$ and $[T]_{B'}^{B'}$ are in Jordan form, these matrices are equal up to permutation of blocks.

Proof. Write $\lambda_1, \ldots, \lambda_k$ for the distinct eigenvalues of T. Setting S_i as the generalized eigenvectors in B corresponding to λ_i and S'_i the same for B', we have from last lecture that

$$S_i, S_i'$$
 are bases for \hat{E}_{λ_i} .

Therefore both S_i and S_i' are chain bases for $T - \lambda_i I$ restricted to \hat{E}_{λ_i} . By the uniqueness of nilpotent form, the number of chains of each length is the same in S_i , S_i' . This means the number of Jordan blocks of each size for λ_i is the same in B and B'. This is true for all i, and proves the theorem.

BILINEAR FORMS

We now move to bilinear forms, which are 2-linear functions.

Definition 0.3. A 2-linear function $f: V \times V \to \mathbb{F}$ is called a bilinear form. The set $Bil(V, \mathbb{F})$ of bilinear forms on V forms a vector space.

If V is finite dimensional then we can find a matrix form for f in terms of a basis.

Theorem 0.4. Let f be a bilinear form on V and B a basis for V. Define the matrix $[f]_B^B$ by

$$([f]_B^B)_{i,j} = f(v_j, v_i) .$$

Then for all $v, w \in V$, we have

$$[w]_B^t[f]_B^B[v]_B \ .$$

Furthermore, $[f]_B^B$ is the unique matrix such that this equation holds for all $v, w \in V$.

Proof. To show this, let B be a basis for V and write $B = \{v_1, \ldots, v_n\}$. If $v, w \in V$, write

$$v = a_1 v_1 + \dots + a_n v_n \text{ and } w = b_1 v_1 + \dots + b_n v_n$$
.

Then

$$f(v,w) = f(a_1v_1 + \dots + a_nv_n, w) = \sum_{i=1}^n a_i f(v_i, w) = \sum_{i=1}^n a_i f(v_i, b_1v_1 + \dots + b_nv_n)$$

$$= \sum_{i=1}^n a_i \left[\sum_{j=1}^n b_j f(v_i, v_j) \right]$$

$$= \sum_{i=1}^n \left([v]_B \right)_{i,1} \sum_{j=1}^n \left([w]_B \right)_{1,j}^t \left([f]_B^B \right)_{j,i}$$

$$= \sum_{i=1}^n \left([w]_B^t [f]_B^B \right)_{1,i} \left([v]_B \right)_{i,1}$$

$$= [w]_B^t [f]_B^B [v]_B.$$

For uniqueness, note that if A is any matrix such that $f(v, w) = [w]_B^t A[v]_B$ for all v, w, we apply this to v_i, v_j :

$$f(v_j, v_i) = [v_i]_B^t A[v_j]_B = e_i^t A e_j = A_{i,j}$$
.

Thus A has the same entries as those of $[f]_B^B$.

Remarks.

• If we define the standard dot product of two vectors $\vec{a}, \vec{b} \in \mathbb{F}^n$ by

$$\vec{a} \cdot \vec{b} = a_1 b_1 + \dots + a_n b_n ,$$

where we have written the vectors $\vec{a} = (a_1, \ldots, a_n)$ and $\vec{b} = (b_1, \ldots, b_n)$, then we can write the above result as

$$f(v,w) = ([f]_B^B[v]_B) \cdot [w]_B .$$

• Given any $A \in M_{n,n}(\mathbb{F})$ and basis B of V (of size n), the function f_A , given by

$$f_A(v,w) = [w]_B^t A[v]_B$$

is bilinear (check this!) and has A for its matrix relative to B. To see this, we compute the (i, j)-th entry of $[f_A]_B^B$: it is

$$f_A(v_j, v_i) = [v_i]_B^t A[v_j]_B = e_i^t A e_j = A_{i,j}$$
.

• An important example comes from A = I. This corresponds to the dot product in basis B:

$$(v,w) \mapsto [w]_B^t[v]_B = [v]_B \cdot [w]_B .$$

• Given B a basis of V, the map $f \mapsto [f]_B^B$ is an isomorphism.

Proof. If $f, g \in Bil(V, \mathbb{F})$ and $c \in \mathbb{F}$,

$$([cf+g]_B^B)_{i,j} = (cf+g)(v_j, v_i) = cf(v_j, v_i) + g(v_j, v_i) = c([f]_B^B)_{i,j} + ([g]_B^B)_{i,j} ,$$

so $[cf+g]_B^B=c[f]_B^B+[g]_B^B$, proving linearity. If $[f]_B^B$ is the zero matrix, then

$$f(v,w) = [w]_B^t[f]_B^B[v]_B = 0$$
 for all $v,w \in V$,

so f is zero, proving injectivity. Last, if A is a given matrix in $M_{n,n}(\mathbb{F})$, we showed above that $[f_A]_B^B = A$. This means that the map is surjective and we are done.

Definition 0.5. The rank of a bilinear form f on a finite-dimensional vector space V is defined as $rank([f]_B^B)$ in any basis B.

To show this is well-defined will take a bit of work. Given a bilinear form f on V we can fix a vector $v \in V$ and define

$$L_f(v): V \to \mathbb{F}$$
 by $(L_f(v))(w) = f(v, w)$.

Since f is bilinear, this is a linear functional and thus lives in V^* . Let $Bil(V, \mathbb{F})$ be the vector space of bilinear forms on V.

We can nicely represent the matrix of L_f relative to the basis B and the dual basis B^* .

Proposition 0.6. $L_f: V \to V^*$ is a linear transformation and

$$[L_f]_{B^*}^B = [f]_B^B$$
.

Proof. Let $v_1, v_2 \in V$ and $c \in \mathbb{F}$. To show that $L_f(cv_1 + v_2) = cL_f(v_1) + L_f(v_2)$, we will need to apply these functionals to vectors in V. So let $w \in V$ and compute

$$L_f(cv_1 + v_2)(w) = f(cv_1 + v_2, w) = cf(v_1, w) + f(v_2, w)$$

= $cL_f(v_1)(w) + L_f(v_1)(w) = (cL_f(v_1) + L_f(v_2))(w)$.

This is true for all w, so L_f is linear.

The *i*-th column of $[L_f]_{B^*}^{B}$ is obtained by writing

$$B = \{v_1, \dots, v_n\}, B^* = \{v_1^*, \dots, v_n^*\}$$

and writing $L_f(v_i)$ in terms of B^* . Recall that if g is a linear functional then its representation in terms of the dual basis can be written

$$f = f(v_1)v_1^* + \cdots + f(v_n)v_n^*$$
.

Therefore we can write

$$L_f(v_i) = L_f(v_i)(v_1)v_1^* + \dots + L_f(v_i)(v_n)v_n^*$$

= $f(v_i, v_1)v_1^* + \dots + f(v_i, v_n)v_n^*$.

This means that the (j,i)-th entry of $[L_f]_{B^*}^B$ is (v_i,v_j) , the (j,i)-th entry of $[f]_B^B$.