Algorithmic Challenges: From Suffix Array to Suffix Tree

Michael Levin

Higher School of Economics

Algorithms on Strings Algorithms and Data Structures at edX

Outline

Construct suffix Tree

Input: String S

Output: Suffix tree of S

- You already know how to construct suffix tree
- But $O(|S|^2)$ will only work for short strings
- You will learn to build it in O(|S| log |S|) which enables very long texts!

General Plan

- \blacksquare Construct suffix array in $O(|S| \log |S|)$
- Compute additional information in O(|S|)
- Construct suffix tree from suffix array and additional information in O(|S|)

Suffix array and suffix tree S = ababaa\$ 0 \$ 1 a\$ 2 aa\$ 3 abaa\$

4 ababaa\$ 5 baa\$ 6 babaa\$

Definition

The longest common prefix (or just "lcp") of two strings S and T is the longest such string u that u is both a prefix of S and T. We denote by LCP(S, T) the length of the "lcp" of S and T.

Example

LCP("ababc", "abc") = 2 LCP("a", "b") = 0

Suffix array, suffix tree and lcp S = ababaa\$ 0 \$ 1 a\$

Suffix array, suffix tree and lcp S = ababaa\$ 0 \$ 1 a\$

Suffix array, suffix tree and lcp S = ababaa0 \$ 1 a**\$**

Suffix array, suffix tree and lcp S = ababaa\$ 0 \$ 1 a\$

Suffix array, suffix tree and lcp S = ababaa\$

Suffix array, suffix tree and lcp S = ababaa\$

Suffix array, suffix tree and lcp S = ababaa\$ 0 \$ 1 a\$

Suffix array, suffix tree and lcp

LCP array

Definition

Consider suffix array A of string S in the raw form, that is $A[0] < A[1] < A[2] < \cdots < A[|S| - 1]$ are all the suffixes of S in lexicographic order. LCP array of string S is the array lcp of size |S| - 1 such that for each i such that $0 \le i \le |S| - 2,$

$$lcp[i] = LCP(A[i], A[i+1])$$

LCP array S = ababaa\$ 0 \$ lcp = [, , , , ,]

1 a\$ lcp = [, , , , ,]2 aa\$

3 abaa\$
4 ababaa\$
5 baa\$

LCP array S = ababaa\$ 0 \$ 1 a\$ lcp = [, , , , ,]

2 aa\$

3 abaa\$ 4 ababaa\$

5 baa\$

LCP array S = ababaa\$ 0 \$ lcp = [0, , , , ,]

2 aa\$3 abaa\$

3 abaa\$
4 ababaa\$
5 baa\$

LCP array S = ababaa\$ 0 \$ lcp = [0,1, , , ,]

2 aa\$
3 ahaa\$

3 abaa\$4 ababaa\$5 baa\$

LCP array S = ababaa\$ 0 \$ lcp = [0, 1, 1, , ,]1 a\$ 2 aa\$

3 abaa\$

5 baa\$

6 babaa\$

LCP array S = ababaa\$ 0 \$ lcp = [0, 1, 1, 3, ,]1 a\$ 2 aa\$

3 abaa\$

5 baa\$

6 babaa\$

LCP array S = ababaa\$ 0 \$ 1 a\$ lcp = [0, 1, 1, 3, 0,]

2 aa\$

3 abaa\$ 4 ababaa\$

5 baa\$

LCP array S = ababaa\$ 0 \$ lcp = [0, 1, 1, 3, 0, 2]1 a\$

2 aa\$ 3 abaa\$

4 ababaa\$ 5 baa\$

LCP array property

Lemma

For any i < j, LCP(A[i], A[j]) $\leq lcp[i]$ and LCP(A[i], A[j]) $\leq lcp[j-1]$.

• • •

ababababa

i+1 abababc

abbcabab

. . .

i <mark>ababab</mark>aba

i+1 abababc

abbcabab

. . .

i <mark>ab</mark>abababa

i + 1 xxxxxxxxx

<mark>ab</mark>bcabab

If LCP(A[i], A[j]) > LCP(A[i], A[i+1])

```
700
```

ababababa

 $i + 1 \times XXXXXXXXX = 1$

...

j abbcabab

If LCP(A[i], A[i]

If LCP(A[i], A[j]) > LCP(A[i], A[i+1])Consider k = LCP(A[i], A[i+1])

```
į
```

i <mark>ab</mark>abababa

k = 1

j <mark>ab</mark>bcabab

```
If k = |A[i+1]|, then A[i+1] < A[i]
```

• • •

i ababababa

i + 1 axxxxxxxx k = 1

...

<mark>ab</mark>bcabab

Otherwise $A[j][k] = A[i][k] \neq A[i+1][k]$

$$i + 1$$
 acxxxxxxx $k = 1$... \bigvee j abbcabab

If A[j][k] = A[i][k] < A[i+1][k], then A[j] < A[i+1] — contradiction

```
.
```

i ababababa i + 1 aaxxxxxxxx k = 1...

j <mark>ab</mark>bcabab

If A[i][k] > A[i+1][k], then A[i] > A[i+1]

contradiction

Computing LCP array

- For each i, compute

 LCP(A[i], A[i + 1]) via comparing A[i]

 and A[i + 1] character-by-character
- O(|S|) for each i, O(|S|) different i total time $O(|S|^2)$
- How to do this faster?

Outline

Idea

Lemma

Let h be the longest common prefix between S_{i-1} and its adjacent (next) suffix in the suffix array of string S. Then the longest common prefix between S_i and its adjacent (next) suffix in the suffix array is at least h-1.

index	sorted suffix	LCP
		• • •
i = 10	a\$	
7	abra\$	
j = 3	acadabra\$	
• • •	• • •	• • •
i - 1 = 9	ra \$	
j - 1 = 2	ra\$ racadabra\$	

index	sorted suffix	LCP
		•••
i = 10	a \$	
7	abra\$	
j = 3	acadabra\$	
i - 1 = 9	ra \$	h=2
j - 1 = 2	racadabra\$	

index	sorted suffix	LCP
		• • •
i = 10	a\$	
7	abra \$	
j = 3	acadabra\$	
• • •		
i - 1 = 9	ra \$	h=2
j - 1 = 2	racadabra\$	

index	sorted suffix	LCP
	· · ·	
i = 10	a\$	$1 \ge h - 1$
7	abra\$	
• • •	1 1 A	
j = 3	acadabra\$	
i - 1 = 9		h = 2
j - 1 = 2	racadabra\$	

Idea

- Start by computing LCP(A[0], A[1]) directly
- Instead of computing to LCP(A[1], A[2]), move A[0] one position to the right in the string, get some A[k] and compute LCP(A[k], A[k+1])
- Repeat this until LCP array is fully computed
- Length of the LCP never decreases by

Notation

Let $A_{n(i)}$ be the suffix starting in the next position in the string after A[i]

Example

- $\bullet A[0] = \text{``ababdabc''}, A[1] = \text{``abc''}$
 - Compute LCP(A[0], A[1]) = 2 directly • LCP($A_{n(0)}, A_{n(1)}$) \geq
 - LCP(A[0], A[1]) 1
- A[0] < A[1] ⇒ A_{n(0)} < A_{n(1)}
 LCP of A_{n(0)} with the next in order A[j] is also at least

Example

■ LCP($A_{n(0)}, A_{n(1)}$) ≥

- $\bullet A[0] = \text{``ababdabc''}, A[1] = \text{``abc''}$
- Compute LCP(A[0], A[1]) = 2 directly
- LCP(A[0], A[1]) 1
- A[0] < A[1] ⇒ A_{n(0)} < A_{n(1)}
 LCP of A_{n(0)} with the next in order A[j] is also at least

Example

- $LCP(A_{n(0)}, A_{n(1)}) \ge$
- LCP(A[0], A[1]) 1
- A[0] < A[1] ⇒ A_{n(0)} < A_{n(1)}
 LCP of A_{n(0)} with the next in order A[j] is also at least LCP(A[0], A[1]) 1
 - Compute $LCP(A_{n(0)}, A[j])$ directly,

Algorithm

- Compute LCP(A[0], A[1]) directly, save as lcp
- First suffix goes to the next in the string
- Second suffix is the next in the order
- Compute LCP knowing that first lcp − 1 characters are equal, save lcp
- Repeat

LCPOfSuffixes(S, i, j, equal)

```
lcp \leftarrow max(0, equal)
while i + lcp < |S| and j + lcp < |S|:
```

```
if S[i + lcp] == S[j + lcp]:
```

break

else:

return lcp

 $lcp \leftarrow lcp + 1$

InvertSuffixArray(order)

 $pos \leftarrow array of size |order|$ for i from 0 to |pos| - 1:

for i from 0 to |pos| - 1: $pos[order[i]] \leftarrow i$ return pos

ComputeLCPArray(S, order)

```
lcpArray \leftarrow array \text{ of size } |S| - 1
lcp \leftarrow 0
posInOrder \leftarrow InvertSuffixArray(order)
suffix \leftarrow order[0]
for i from 0 to |S| - 1:
   orderIndex \leftarrow posInOrder[suffix]
  if orderIndex == |S| - 1:
     lcp \leftarrow 0
     suffix \leftarrow (suffix + 1) \mod |S|
     continue
   nextSuffix \leftarrow order[orderIndex + 1]
  lcp \leftarrow LCPOfSuffixes(S, suffix, nextSuffix, lcp - 1)
   lcpArray[orderIndex] \leftarrow lcp
```

 $suffix \leftarrow (suffix + 1) \mod |S|$ return lcpArray

Analysis

Lemma

This algorithm computes LCP array in O(|S|)

- Each comparison increases lcp
- $lcp \leq |S|$
- Each iteration lcp decreases by at most 1
- Number of comparisons is O(|S|)

Outline

S = ababaa6 \$ 5 a\$

4 aa\$

Building suffix tree

0 ababaa\$

3 baa\$

1 babaa\$

2 abaa\$

0 ababaa\$

3 baa\$

1 babaa\$

Building suffix tree S = ababaa\$

1 babaa\$

Building suffix tree S = ababaa6 \$ 5 a\$ 4 aa\$ 2 abaa\$ 0 ababaa\$

3 baa\$

1 babaa\$

Building suffix tree S = ababaa\$ 6 \$

Building suffix tree

Algorithm

- Build suffix array and LCP array
- Start from only root vertex
- Grow first edge for the first suffix
- For each next suffix, go up from the leaf until LCP with previous is below
- Build a new edge for the new suffix

class SuffixTreeNode:

SuffixTreeNode parent
Map<char, SuffixTreeNode> children
integer stringDepth
integer edgeStart
integer edgeEnd

STFromSA(S, order, lcpArray)

```
root \leftarrow new SuffixTreeNode(
  children = \{\}, parent = nil, stringDepth = 0,
  edgeStart = -1, edgeEnd = -1)
lcpPrev \leftarrow 0
curNode \leftarrow root
for i from 0 to |S| - 1:
  suffix \leftarrow order[i]
  while \operatorname{curNode.stringDepth} > \operatorname{lcpPrev}:
     curNode \leftarrow curNode.parent
  if curNode.stringDepth == lcpPrev:
     curNode \leftarrow CreateNewLeaf(curNode, S, suffix)
  else:
     edgeStart \leftarrow order[i-1] + curNode.stringDepth
     offset \leftarrow lcpPrev - curNode.stringDepth
     midNode \leftarrow BreakEdge(curNode, S, edgeStart, offset)
     curNode \leftarrow CreateNewLeaf(midNode, S, suffix)
  if i < |S| - 1:
     lcpPrev \leftarrow lcpArray[i]
return root
```

CreateNewLeaf(node, S, suffix)

```
leaf \leftarrow new SuffixTreeNode(
  children = \{\},
```

parent = node,stringDepth = |S| - suffix,edgeStart = suffix + node.stringDepth,

edgeEnd = |S| - 1

return leaf

 $node.children[S[leaf.edgeStart]] \leftarrow leaf$

BreakEdge(node, S, start, offset)

```
startChar \leftarrow S[start]
midChar \leftarrow S[start + offset]
midNode \leftarrow new SuffixTreeNode
  children = \{\},
  parent = node,
  stringDepth = node.stringDepth + offset,
  edgeStart = start,
  edgeEnd = start + offset - 1
midNode.children[midChar] \leftarrow node.children[startChar]
node.children[startChar].parent \leftarrow midNode
node.children[startChar].edgeStart+ = offset
node.children[startChar] \leftarrow midNode
return midNode
```

Analysis

Lemma

This algorithm runs in O(|S|)

- Total number of edges in suffix tree is O(|S|)
 - For each edge, we go at most once down and at most once up
 - Constant time to create a new edge and possibly a new node

Conclusion

- Can build suffix tree from suffix array in linear time
- Can build suffix tree from scratch in time $O(|S| \log |S|)$