Homework 12

Math 55b

Due Tuesday, 28 April 2009.

- 1. Evaluate $\sum_{1}^{\infty} 1/n^6$ using the Laurent series for $\pi/\cot(\pi z)$ around z=0.
- 2. Evaluate $\int_0^{2\pi} d\theta/(2-\sin\theta)$.
- 3. Evaluate $\int_{0}^{\infty} dx/(1+x^{2})^{2}$.
- 4. Evaluate $\int_0^\infty x^{-a}/(x+1) dx$, where 0 < a < 1.
- 5. Given $p \in \mathbb{C}$, construct explicitly a sequence $z_n \to 0$ such that $\exp(1/z_n) \to p$. Can you, in fact, construct a sequence with $\exp(1/z_n) = p$?
- 6. Let $p_t(z) = z^d + a_1(t)z^{d-1} + \cdots + a_d(t)$ be a polynomial whose coefficients are analytic functions near t = 0. Suppose $p_0(z)$ has only simple zeros. Prove there are analytic functions $b_i(t)$ defined near t = 0 such that $p_t(z) = \prod_{i=1}^{d} (z b_i(t))$.
- 7. Prove or disprove: if $f: \Delta \to \mathbb{C}$ is an analytic function with n zeros (counted with multiplicities), then f'(z) has at least n-1 zeros in Δ . What happens if 'at least' is replaced with 'at most'?
- 8. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function such that f(z+1) = f(z). Show there is an entire function g(z) such that $f(z) = g(e^{2\pi iz})$. What is g(z) if $f(z) = \tan \pi z$? Show that if $f(z_n) \to 0$ whenever $|\operatorname{Im} z_n| \to \infty$, then f(z) = 0.
- 9. Show that the sum $f(z) = \sum_{-\infty}^{\infty} (z n)^{-2}$ converges locally uniformly to an analytic function on $\mathbb{C} \mathbb{Z}$. Then show $f(z) = \pi^2 / \sin^2(\pi z)$. (Hint: apply the preceding result to the difference.)
- 10. Find A, B, C such that

$$\sum_{-\infty}^{\infty} \frac{1}{(z-n)^4} = \frac{A}{\sin^4(\pi z)} + \frac{B}{\sin^2(\pi z)} + C.$$

Then, by considering the Laurent series of both sides around z=0, evaluate $\sum 1/n^4$.