${\it Class 12-Chemistry-CBSE-Exam-Formulas}$

October 20, 2025

Chapter	Concept	Formula	Variable Explanation
Solid State	Types of Solids	Ionic, Molecular, Covalent, Metallic solids	
	Unit Cell & Density	$[\rho = \frac{ZM}{a^3 N_A}]$	ρ : density, Z : atoms/unit cell, M : molar mass, a : cell edge length, N_A : Avogadro's number
	Packing Efficiency	SC: 52%, BCC: 68%, FCC: 74%	
Solutions	Concentration Terms Colligative Properties	$egin{aligned} & & & & & & & & & & & & & & & & & & &$	M : molarity, n : moles solute, V : volume (L); m : molality, W : solvent mass in kg ΔT_b : boiling point elevation, K_b : ebullioscopic constant, m : molality; ΔT_f : freezing point depression, K_f : cryoscopic
		[11 - 0767]	constant; Π : osmotic pressure, C : concentration, R : gas constant, T : temperature
	Raoult's Law	$[P_{\text{solution}} = V D^0 + V D^0]$	P: vapor pressure, X : mole fraction
	Van't Hoff Factor	$ \begin{aligned} X_A P_A^0 + X_B P_B^0 \\ [i = \frac{\text{observed value}}{\text{normal value}}] \end{aligned} $	Degree of dissociation/association factor
Electrochem	n istery nst	$[E=E^\circ {-\tfrac{0.0591}{n}\log Q}]$	E: cell potential, E °: standard potential, n :
	Equation Relation with Gibbs Free	$[\Delta G = -nFE]$	electrons transferred, Q : reaction quotient ΔG : Gibbs free energy change, n : electrons, F : Faraday constant, E : cell potential
	Energy Conductance	$\begin{split} [\kappa &= \frac{1}{R} \cdot \frac{l}{A}], \\ [\Lambda_m &= \frac{\kappa \cdot 1000}{C}] \end{split}$	κ : conductivity, R : resistance, l : length, A : area; Λ_m : molar conductivity, C : concentration (mol/L)
Chemical Kinetics	Rate Law	$[Rate = k[A]^m[B]^n]$	k: rate constant, $[A]$, $[B]$: reactant concentrations, m, n : reaction orders
	First Order Reaction	$[k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}],$ $[t_{1/2} = \frac{0.693}{k}]$	k : rate constant, t : time, $[R]_0$: initial concentration, $[R]$: concentration at time t
	Arrhenius Equation	$[k = Ae^{-\frac{\kappa_e}{RT}}]$	A: frequency factor, E_a : activation energy, R : gas constant, T : temperature

Chapter	Concept	Formula	Variable Explanation
Surface Chemistry The p-Block Elements	Adsorption Isotherm Tyndall Effect Group Trends Important Compounds	$\left[\frac{x}{m} = \frac{aP}{1+bP}\right]$ Shown by colloids, not true solutions Acidity, bond angles, oxidation states vary down the group NH , HNO , PCl , PCl , H SO , SO , Cl , HCl, Bleaching Powder	x: amount adsorbed, m : adsorbent mass, P : pressure, a,b : constants
The d- & f-Block Elements	Magnetic Moment	$[\mu = \sqrt{n(n+2)} \text{ BM}]$	μ : magnetic moment (Bohr Magneton), n : number of unpaired electrons
Coordination Com- pounds		cavariable oxidation states, colored ions, catalytic behavior e [Metal(Ligands)] with charges, e.g., [Cr(H O)] ³ Add ligand and ion charges to calculate Linkage,	
Haloalkanes & Haloarenes	Crystal Field Theory SN1 & SN2 Reactions Physical Properties	Coordination, Geometrical, Optical $[\Delta_0]$ splitting of d-orbitals in octahedral field] SN1: 2-step, tertiary preferred; SN2: 1-step, primary preferred Haloalkanes are polar, undergo substitution &	Δ_0 : crystal field splitting energy
Alcohols, Phenols & Ethers Aldehydes, Ketones & Carboxylic Acids	Reactions Acidity Order Tests	elimination Dehydration, oxidation, esterification Phenol > Alcohol > Water 2,4-DNP, Fehling's, Tollen's test (only for aldehydes)	

Chapter	Concept	Formula	Variable Explanation
	Reactions	Nucleophilic	
		addition, Aldol	
		condensation,	
		Cannizzaro, etc.	
Amines	Basicity	$2^{\circ} > 1^{\circ} > 3^{\circ}$	
	Order	(aqueous); opposite	
		in gas phase	
	Diazotization	$\mathrm{Aniline} + \mathrm{HNO} \ \rightarrow$	
		Diazonium salt	
		$(0-5^{\circ}C)$	
Biomolecul	es Carbohydrate	esMonosaccharides	
		(glucose),	
		Disaccharides	
		(sucrose),	
		Polysaccharides	
		(starch)	
	Proteins	Primary, Secondary,	
		Tertiary, Quaternary	
		structure	
	Enzymes	Biocatalysts, specific	
		action	
Polymers	Types	Addition (PE, PVC),	
		Condensation (Nylon	
		6,6), Copolymers	
		(Buna-S)	
	Natural	Starch, Cellulose,	
	Polymers	Proteins, Rubber	
Chemistry	Drugs	Analgesics,	
in		Antipyretics,	
Everyday		Antibiotics, Antacids	
Life			
	Cleansing	Soaps (sodium salts),	
	Agents	Detergents	
		(sulphonates)	