Written Assignment 5

Lucas Bouck

3/28/16

1 Problem 1a

Let f and g be functions with a common domain D. Show that if f and g are both continuous at a point $a \in D$ then the function fg is continuous at a.

Proof:

Let f and g be functions with a common domain D. Assume that f and g are both continuous at a point $a \in D$. We must show that fg is continuous at a. There will be two cases.

Case 1: Suppose a is an isolated point. Since fg has the domain D, and $a \in D$, then fg is continuous at a.

Case 2: Suppose a is a cluster point. Since f and g are continuous at a, $\lim_{x\to a} f(x) = f(a)$ and $\lim_{x\to a} g(x) = g(a)$. Let $x_n \in D \setminus \{a\}$ be a sequence with $x_n \to a$. By the sequential characterization of limits, $f(x_n) \to f(a)$ and $g(x_n) \to g(a)$. Because $f(x_n) \to f(a)$ and $g(x_n) \to g(a)$, $fg(x_n) \to f(a)g(a)$. This means $\lim_{x\to a} fg(x) = fg(a)$ and fg is continuous at a.

2 Problem 1b

Let f and g be functions with a common domain D. Show that if f and g are both continuous at a point $a \in D$ then the function $\alpha f + \beta g$ is continuous at a.

Proof:

Let f and g be functions with a common domain D. Assume that f and g are both continuous at a point $a \in D$. We must show that $\alpha f + \beta g$ is continuous at a. There will be two cases.

Case 1: Suppose a is an isolated point. Since $\alpha f + \beta g$ has the domain D, and $a \in D$, then $\alpha f + \beta g$ is continuous at a.

Case 2: Suppose a is a cluster point. Since f and g are continuous at a, $\lim_{x\to a} f(x) = f(a)$ and $\lim_{x\to a} g(x) = g(a)$. Let $x_n \in D \setminus \{a\}$ be a sequence with $x_n \to a$. By the sequential

characterization of limits, $f(x_n) \to f(a)$ and $g(x_n) \to g(a)$. Because $f(x_n) \to f(a)$ and $g(x_n) \to g(a)$, $\alpha f(x_n) \to \alpha f(a)$, and $\beta g(x_n) \to \beta g(a)$. Then $\alpha f + \beta g \to \alpha f(a) + \beta g(a)$. This means $\lim_{x\to a} (\alpha f + \beta g)(x) = \alpha f(a) + \beta g(a)$ and $\alpha f + \beta g$ is continuous at a.

3 Problem 2

Let f and g be continuous functions on \mathbb{R} . Prove that the composite function $f \circ g$ is also continuous on \mathbb{R} .

Proof:

Let f and g be continuous functions on \mathbb{R} . Let $a \in \mathbb{R}$. We want to show that for all $\epsilon > 0$ there exists a $\delta > 0$ such that for all $x \in \mathbb{R}$ if $|x - a| < \delta$ then $|f(g(x)) - a| < \epsilon$. Since both f is continuous at a, there exist $\delta_1 > 0$ such that for all $y \in \mathbb{R}$ if $|y - a| < \delta$ then $|f(y) - f(a)| < \epsilon$. We know that g is continuous at a and $\delta_1 > 0$, so there exists a $\delta_2 > 0$ such that for all $x \in \mathbb{R}$ if $|x - a| < \delta_2$ then $|g(x) - g(a)| < \delta_1$. This means if $|x - a| < \delta_2$, then $|g(x) - g(a)| < \epsilon$. Therefore, there exists a $\delta > 0$ such that for all $x \in \mathbb{R}$ if $|x - a| < \delta$ then $|f(g(x)) - f(g(a))| < \epsilon$, and $f \circ g$ is continuous at a.