Vorlesungsmitschrift

Algorithmen und Berechenbarkeit

Vorlesung 03

Letztes Update: 2018/02/22 - 19:21 Uhr

Laufzeiten

- $O(n^2)$ beschreibt die Menge aller Funktionen, die nicht wesentlich schneller wachsen als n^2 .
 - In $O(n^2)$: n, $n^{1,99}$, n^2 , $10 \cdot n^2$, $n \cdot \log(n)$, $n \cdot \log^2(n)$
 - Nicht in $O(n^2)$: n^3 , $n^2 \cdot \log(n)$, 2^n
- $\Omega(n^2)$ beschreibt die Menge aller Funktionen, die mindestens so schnell wie n^2 wachsen (asymptotisch).
 - In $\Omega(n^2)$: n^2 , $n^2 \cdot \log(n)$, $n^{2,1}$, 2^n
 - Nicht in $\Omega(n^2)$: $n \cdot \log(n)$, $n^{1,9}$, \sqrt{n} , $n \cdot \log^2(n)$, $\frac{n^2}{\log(n)}$
- $\omega(n^2)$ beschreibt die Menge aller Funktionen, die echt schneller wachsen als n^2 .
 - In $\omega(n^2)$: $n^{2,1}$, $n^2 \cdot \log(n)$, 2^n
 - Nicht in $\omega(n^2)$: n^2 , $n \cdot \log(n)$, $\frac{n^2}{\log(n)}$, $\log(n)$
- $\Theta(n^2)$ beschreibt die Menge aller Funktionen, die sowohl in $O(n^2)$ als auch in $\Omega(n^2)$ enthalten sind.

Vergleichsbasiertes Sortieren

Es wird Vergleichsbasiertes Sortieren von n Objekten betrachtet, wobei die Elemente nur verglichen werden dürfen. Hier stellt sich die **Frage**: Was ist die Komplexität des vergleichsbasierten Sortierens?

Die ersten Überlegungen stellen klar: Jeder Sortieralgorithmus liefert eine obere Schranke für T(n):

1

- Bubblesort $\Rightarrow T(n) \in O(n^2)$
- Mergesort $\Rightarrow T(n) \in O(n \cdot \log(n))$

Es kann bewiesen werden, dass $T(n) \in \Omega(n \cdot \log(n)) \Rightarrow T(n) \in \Theta(n \cdot \log(n))$ [**Beweis**] Man betrachte einen beliebigen Algorithmus \mathcal{A} zum Sortieren. \mathcal{A} vergleicht e_i mit e_j .

Exemplarische Vergleiche beim vergleichsbasierten Sortieren

Ein Blatt in diesem Baum heißt im Prinzip: Der Algorithmus hat fertig sortiert. Es heißt aber genauso: Der Algorithmus hat "herausgefunden", was die "Permutation" der Eingabe war. Daraus folgt, dass der Baum n! Blätter haben muss. Es zeigt sich außerdem, dass die Worst-Case-Laufzeit des Algorithmus \mathcal{A} genau der Tiefe des Baumes entspricht. Damit stellt sich die nächste **Frage**: Was ist die minimale Tiefe eines Binärbaumes, der n! Blätter hat?

$$2^{n} = n!$$

$$\left(n! \approx \left(\frac{n}{e}\right)^{\frac{n}{e}} \Rightarrow x = \log_{2}\left(\frac{n}{e}\right)^{\frac{n}{e}} \Rightarrow x = n \cdot \log(n)\right)$$

Monte-Carlo und Las-Vegas Algorithmen ineinander umwandeln

Es stellt sich die **Frage**, ob jeder Las-Vegas-Algorithmus in einen Monte-Carlo-Algorithmus umgewandelt werden kann, und andersherum.

Las-Vegas ⇒ Monte-Carlo

Die Idee besteht aus folgender Überlegung: Lasse den Las-Vegas-Algorithmus eine bestimmte Anzahl an Schritten laufen und breche dann ab. War der Las-Vegas-Algorithmus bis dahin fertig, so muss auch das Ergebnis korrekt sein. War der Las-Vegas-Algorithmus bis dahin nicht fertig, dann gibt es auch kein korrektes Ergebnis.

Die zentrale **Frage**, die sich hier anfügt: Wie lange darf der Algorithmus laufen und was ist seine Erfolgswahrscheinlichkeit?

Sei nun \mathcal{A} ein Las-Vegas-Algorithmus mit erwarteter Laufzeit f(n). \mathcal{A} darf nun für maximal $\alpha \cdot f(n)$ $|\alpha| \geq 1$ Schritte laufen. Falls der Algorithmus bis dahin fertig ist, ist das Ergebnis sicher korrekt. Ist der Algorithmus bis dahin nicht fertig, so wird $M\ddot{u}ll$ zurückgegeben.

Dieser modifizierte Algorithmus hat immer eine Laufzeit von $< \alpha \cdot f(n)$. Die Wahrscheinlichkeit, dass $M\ddot{u}ll$ zurückgegeben wird, ist gleich der Wahrscheinlichkeit, dass \mathcal{A} länger als $\alpha \cdot f(n)$ Zeit zum Sortieren benötigt.

Monte-Carlo ⇒ Las-Vegas

Nicht alle Monte-Carlo-Algorithmen können ohne Weiteres in Las-Vegas-Algorithmen umgewandelt werden.

Für manche Probleme ist die Verifikation des Ergebnisses einfacher als die Berechnung:

- Sortieren: $O(n \cdot \log(n))$ vs. O(n).
- Kürzeste Wege: $O(n \cdot \log(n+m))$ vs. O(m).

Das Überführen von Monte-Carlo- in Las-Vegas-Algorithmen ist möglich, wenn man einen effizienten *Checker* hat.

- Monte-Carlo-Algorithmus \mathcal{A} hat eine Laufzeit von f(n).
- Checker \mathcal{O} hat eine Laufzeit von f(n).
- Die Erfolgswahrscheinlichkeit von \mathcal{A} sei p(n).

Mit folgendem Algorithmus kann dann ein Las-Vegas-Algorithmus erzeugt werden:

- 1. Lasse Algorithmus laufen
- Überprüfe Ergebnis mit Checker Falls korrekt, dann fertig Falls nicht korrekt, zurück zu 1.

Die erwartete Laufzeit \mathcal{R} ist dann

$$\mathcal{R} = p(n) \cdot (f(n) + g(n))$$

$$+ ((1 - p(n)) \cdot p(n) \cdot (f(n) + g(n))) \cdot 2$$

$$+ ((1 - p(n))^{2} \cdot p(n) \cdot (f(n) + g(n))) \cdot 3$$

$$+ \dots$$

$$= \left(f(n) + g(n)) \cdot p(n) \cdot \sum_{i=1}^{\infty} ((1 - p(n))^{i} < \frac{f(n) + g(n)}{p(n)}) \cdot (i + 1) \right)$$

Anhang

Markov-Ungleichung

Sei X eine nicht negative Zufallsvariable mit $E[X] = \mu$. Dann gilt:

$$P(X \ge \alpha \cdot \mu) \le \frac{1}{\alpha}$$