Họ tên sinh viên	MSSV	Lớp (thứ - tiết)	100 kg

Chú ý: Sinh viên thay bằng QR code của mã số sinh viên (ví dụ: 23119012), có thể tham khảo tại https://barcode.tec-it.com)

Quick question: chapter 04

Lưu ý: Trong mỗi thiết kế yêu cầu sinh viên thực hiện

- Sơ đồ khối (nguyên lý, cấu trúc)
- Bảng trạng thái
- Mô tả bằng ngôn ngữ Verilog cho module cần thiết kế,
- Mô tả Verilog cho module dùng để kiểm tra thiết kế
- Kết quả mô phỏng quá trình kiểm tra, có phân tích
- Module test được đặt tên theo cú pháp: tensv_testbench_tenmodule, ví dụ để test module encoder, sinh viên Nguyen Van An phải đặt tên module test như sau:

 An_testbench_encoder. Các kết quả mô phỏng phải được chụp màn hình bao gồm cả tên của module test trong đó có tên sinh viên thì mới hợp lệ
- 1. Thiết kế và mô phỏng kiểm chứng mạch cộng 4 bít từ mạch cộng toàn phần 1 bit, sử dụng mô tả cấu trúc.

2. Thiết kế và mô phỏng kiểm chứng mạch đa hợp $8\ \mathrm{sang}\ 1$

Figure 1: Sơ đồ khối mạch đa hợp 8 sang 1

Bảng trạng thái

S1	S2	S3	О
0	0	0	I1
0	0	1	I2
0	1	0	I3
0	1	1	I4
1	0	0	I5
1	0	1	I6
1	1	0	I7
1	1	1	I8

Mô tả bằng ngôn ngữ Verilog

```
module mux8to1(
input wire [7:0] w,
input wire [2:0] s,
output reg y);
```

```
always @(w,s)
case(s)
0: y = w[0];
1: y = w[1];
2: y = w[2];
3: y = w[3];
4: y = w[4];
5: y = w[5];
6: y = w[6];
default: y = w[7];
endcase
endmodule
```

Mô tả Verilog cho module dùng để kiểm tra thiết kế

```
`timescale 1ns/1ns // define timescale
module dung_tb_mux8to1();
reg [7:0] w;
reg [2:0] s;
wire y;
// initialize w and s to 000 and 00, respectively
initial begin
W = 0;
s = 0;
end
// generate w0- w3
always forever #10 w[0] = \sim w[0];
always forever #20 w[1] = \sim w[1];
always forever #40 w[2] = \sim w[2];
always forever #80 w[3] = \sim w[3];
always forever #100 w[4] = \sim w[4];
always forever \#200 \text{ w}[5] = \text{~w}[5];
always forever #400 w[6] = \sim w[6];
always forever \#800 \text{ w}[7] = \text{-w}[7];
//generate 4 state of s by increasing s by 1
always forever #500 s = s + 1;
// conect w,s,y to moduke mux41
mux8to1 m0(w,s,y);
endmodule
```


Figure 2: TUTU viết mô tả

3. Thiết kế và mô phỏng kiểm chứng mạch giải đa hợp 1 sang 8

Figure 3: Sơ đồ mạch giải đa hợp 1 sang 8

Bảng trạng thái

Sele	ction I	nputs								
S2	S1	S0	Y7	Y6	Y5	Y4	Y3	Y2	Y 1	Y0
0	0	0	0	0	0	0	0	0	0	I
0	0	1	0	0	0	0	0	0	I	0
0	1	0	0	0	0	0	0	I	0	0
0	1	1	0	0	0	0	I	0	0	0
1	0	0	0	0	0	I	0	0	0	0
1	0	1	0	0	I	0	0	0	0	0
1	1	0	0	I	0	0	0	0	0	0
1	1	1	I	0	0	0	0	0	0	0

Mô tả bằng ngôn ngữ Verilog

```
module mux8to1(
input wire [7:0] w,
input wire [2:0] s,
output reg y);
always @(w,s)
case(s)
0: y = w[0];
1: y = w[1];
2: y = w[2];
3: y = w[3];
4: y = w[4];
5: y = w[5];
6: y = w[6];
default: y = w[7];
endcase
endmodule
```

Mô tả Verilog cho module dùng để kiểm tra thiết kế

```
`timescale 1ns/1ns // define timescale
module dung_tb_demux1to8();
reg in;
reg [2:0] sel;
wire [7:0] out;
initial begin
in = 1;
sel = 0;
end
// generate sel0- sel2
always forever #10 sel[0] = ~sel[0];
always forever #20 sel[1] = ~sel[1];
always forever #40 sel[2] = ~sel[2];
always forever #80 in = in + 1;
// conect in,sel,out to module demux8to1
demux1to8 m1(in,sel,out);
endmodule
```


Figure 4: Mô tả sau..

4. Thiết kế và mô phỏng mạch giả mã 3 sang 8 có tín hiệu cho phép (enable –EN) ngõ ra tích cực mức thấp

Figure 5: tín hiệu cho phép mức cao (EN = 1) của mạch giải mã

Bảng trạng thái

Input				Output							
En	A	В	C	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
1	X	X	X	1	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1	1	1	0
0	0	0	1	1	1	1	1	1	1	0	1
0	0	1	0	1	1	1	1	1	0	1	1
0	0	1	1	1	1	1	1	0	1	1	1
0	1	0	0	1	1	1	0	1	1	1	1
0	1	0	1	1	1	0	1	1	1	1	1
0	1	1	0	1	0	1	1	1	1	1	1
0	1	1	1	0	1	1	1	1	1	1	1

Mô tả bằng ngôn ngữ Verilog

```
module decoder3to8_en0(
input wire [2:0] in,
input wire en,
output reg [7:0] out);

always @(in or en)
   if (en == 0)
      out = ~(8'b00000001 << in);
   else
      out = 8'b11111111;
endmodule</pre>
```

Mô tả Verilog cho module dùng để kiểm tra thiết kế

```
`timescale 1ns/1ns // define timescale
module dung_tb_decoder3to8_en0();
reg [2:0] in;
reg en;
wire [7:0] out;
// initialize w and s to 000 and 00, respectively
initial begin
en = 1;
in = 0;
end
always forever #10 in[0] = ~in[0];
always forever #20 in[1] = ~in[1];
always forever #40 in[2] = ~in[2];
always forever #50 en = 0;
decoder3to8_en0 m3(in,en,out);
endmodule
```


5. Thiết kế và mô phỏng mạch giả mã 3 sang 8 có tín hiệu cho phép (enable –EN), ngõ ra tích cực mức cao

Figure 6: tín hiệu cho phép mức cao (EN = 1) của mạch giải mã

Bảng trạng thái

Input				Output							
En	A	В	C	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
0	X	X	X	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

Mô tả bằng ngôn ngữ Verilog

```
module decoder3to8_en1(
input wire [2:0] in,
input wire en,
output reg [7:0] out);

always @(in or en)
   if (en == 1)
      out = (8'b000000001 << in);
   else
      out = 8'b000000000;
endmodule</pre>
```

Mô tả Verilog cho module dùng để kiểm tra thiết kế

```
`timescale 1ns/1ns // define timescale
module dung_tb_decoder3to8_en1();
reg [2:0] in;
reg en;
wire [7:0] out;
// initialize w and s to 000 and 00, respectively
initial begin
en = 0;
in = 0;
end
always forever #10 in[0] = ~in[0];
always forever #20 in[1] = ~in[1];
always forever #40 in[2] = ~in[2];
always forever #40 en = ~en;
decoder3to8_en1 m2(in,en,out);
endmodule
```

