

Delay Analysis for Multi-radio Cognitive Radio Networks

Tanvir Ahmed Khan

Email: takhandipu@gmail.com

[Supervised by: A. B. M. Alim Al Islam, Assistant Professor, CSE, BUET]

Background

- Licensed bands are highly (~85%) under-utilized [1]
- Cognitive Radio Networks (CRNs): Increase utilization of the licensed bands by learning corresponding spectrum occupancy
- Two types of users in a CRN [2]
 - Primary User (PU): Licensed users experiencing uninterrupted data tx
 - Secondary User (SU): Unlicensed users opportunistically using spectrum that is currently being free from PU's tx
- Applications: Military, emergency response, signature detection, etc. [3]

Motivation of Our Work

- Delay is an important performance measure for secondary users in cognitive radio networks
 - Several recent studies [4, 5, 6] have modeled delay in CRNs
 - o Consider only single-radio SUs and single data channel
- We study delay in asynchronous data tx over multi-radio SUs
 - Transmission strategies
 - o Fragmented: Data is fragmented over different channels
 - Back-up: Same data is transmitted over different channels
 - Our approach of study: Analytical formulation and simulation

Analytical Model for Total Transmission Delay

$$T_{pu_idle} = \frac{T_{ms}}{1 - p_{busy}} + \frac{(m+1)xT_{ms}}{2} + E[T_n] + T_{data}$$

$$p_{busy} = \frac{\lambda_{pu}}{\mu_{pu}} + \frac{(m-1)x\lambda_{su}}{(n-x+1)\mu_{su}}$$

$$E[T_{us}] = \frac{1}{\lambda_{pu}} \left(1 - e^{-\lambda_{pu}T_{pu_idle}}\right) - T_{pu_idle}e^{-\lambda_{pu}T_{pu_idle}}$$

$$p_{pu_idle} = e^{-\lambda_{pu}T_{pu_idle}}$$

$$E[T_{total}] = T_{pu_idle} + \frac{(1 - p_{pu_idle})}{p_{pu_idle}}E[T_{us}]$$

•Notations: $n \rightarrow$ number of PUs, $m \rightarrow$ number of SUs, $T_{ms} \rightarrow$ mini-slot time, $T_{us} \rightarrow$ unsuccessful data tx time, $\lambda \rightarrow$ arrival rate, $\mu \rightarrow$ service rate, $x \rightarrow$ number of radios used in data transmission

- •Analysis of the model: Through numerical simulation
 - Parametric values for numerical simulation
 - ο $\lambda_{pu} = 40$ Hz, $\mu_{pu} = 200$ Hz, $\lambda_{su} = 0.8$ Hz, $\mu_{su} = 20$ Hz

Simulation Results for Fragmented Data Transmission

Fig: Total transmission delay for fragmented data transmission

Simulation Results for Back-up Data Transmission

Fig: Total transmission delay for back-up data transmission

Delay Comparison between Two Approaches

Fig: Total transmission delay comparison between two approaches

Findings from Simulation Results

- Data transmission delay substantially decreases with the increase in the number of radios used in a SU
 - Fragmented data packet tx: Better for large data packets
 - Back-up data tx: Better results in case of smaller data packets
- However, <u>delay rapidly reaches the optimal value and for</u> <u>fragmented data packets it starts rising after that point</u>
- Total delay non-linearly increases with an increase in data packet size
- SUs experience minimum overhead due to PUs' sudden arrival

Conclusion and Future Work

- In this study, we introduce a model for asynchronous cognitive radio networks and formulate a closed form for point-to-point data transmission delay over multi-radio SUs
 - Our numerical results reveal that delay performance can be significantly improved through using multi-radio SUs
- Delay performance degrades if PU's channel utilization gets significantly high
- Future work: Multi-radio secondary users' performance in case of high data traffic from PUs

References

- "Report of the spectrum efficiency working group," FCC Spectrum Policy Task Force, Tech. Rep., Nov. 2002.
- 2. I. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, "A survey on spectrum management in cognitive radio networks," Communications Magazine, IEEE, vol. 46, no. 4, pp. 40–48, 2008.
- 3. I. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, "NeXt Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey," Comp. Networks J., vol. 50, Sept. 2006, pp. 2127–59.
- 4. S. Wang, J. Zhang, and L. Tong, "Delay analysis for cognitive radio networks with random access: A fluid queue view," in Proc. IEEE INFOCOM'10, 2010, pp. 1–9.
- 5. W. Ren, Q. Zhao, and A. Swami, "On the connectivity and multihop delay of ad hoc cognitive radio networks," Selected Areas in Communications, IEEE Journal on, vol. 29, no. 4, pp. 805–818, 2011.
- 6. M. Elmachkour, A. Kobbane, E. Sabir, and M. Koutbi, "New insights from a delay analysis for cognitive radio networks with and without reservation," in Wireless Communications and Mobile Computing Conference (IWCMC), 2012 8th International, 2012, pp. 65–70.

Department of Computer Science and Engineering (CSE), BUET