

IEE352 - Procesamiento Digital de Señales

Clase 12: Filtros Adaptivos 1

Dr. Marco A. Milla Sección Electricidad y Electrónica (SEE) Pontificia Universidad Católica del Perú (PUCP)

email: milla.ma@pucp.edu.pe

Filtros Óptimos

Filtro Wiener FIR

Diseñar un filtro W(z) tipo FIR causal que permita recuperar una señal d[n] a partir de una señal observada x[n] = d[n] + v[n].

Considerando que x[n] y d[n] son procesos estacionarios en el sentido amplio (WSS), vamos a resolver el problema minimizando el error cuadrático medio:

$$\xi = E\{ |e[n]|^2 \},$$

donde la señal de error es la diferencia entre el valor deseado d[n] y el estimado $\hat{d}[n]$,

$$e[n] = d[n] - \hat{d}[n].$$

Filtros Óptimos

Filtro Wiener FIR

La solución del problema se obtiene a partir de resolver la siguiente ecuación

$$\mathbf{R}_{x}\bar{\mathbf{w}} = \bar{\mathbf{r}}_{dx} \implies \bar{\mathbf{w}}_{opt} = \mathbf{R}_{x}^{-1}\bar{\mathbf{r}}_{dx}$$

donde \mathbf{R}_x es la matriz de autocorrelaciones de x[n], y $\bar{\mathbf{r}}_{dx}$ es el vector de correlaciones cruzadas entre las señales d[n] y x[n].

Algunas dificultades:

- Para resolver el problema se requiere conocer las correlaciones $r_x[k]$ y $r_{dx}[k]$, o, alternativamente, haber realizado suficientes ensayos (muestras) para calcularlas.
- Si la matrix ${f R}_x$ es muy grande, la inversión de esta matriz es computacionalmente costosa, inclusive ${f R}_x$ puede ser no invertible.

Filtros Adaptivos

Conceptos previos

Autovalores (eigenvalues): Los valores propios (autovalores) de una matriz cuadrada pueden usarse para determinar si esta es invertible, o si el cálculo de la inversa será sensible a los errores numéricos. Dada una matriz \mathbf{A} , sus autovalores λ deben cumplir la siguiente ecuación

$$\mathbf{A}\bar{x}=\lambda\bar{x}$$
,

cuyas soluciones se encuentran a partir de resolver la siguiente expresión

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0.$$

Norma L^p : La norma-p de un vector $\bar{x} = [x_1, x_2, ..., x_N]$ es la raíz p-ésima de la suma de los valores absolutos de los elementos del vector elevados a la potencia p, es decir,

$$\|\bar{x}\|_{p} = \left(\sum_{n=1}^{N} |x_{n}|^{p}\right)^{1/p}.$$

Filtros Adaptivos

Introducción

Si x[n] y d[n] son dos procesos aleatorios no estacionarios, los coeficientes del filtro que minimizan el error cuadrático medio $E\{|e[n]|^2\}$ van a depender de n, es decir

$$\hat{d}[n] = \sum_{k=0}^{M-1} w_n[k] x[n-k]$$

donde $w_n[k]$ es el valor en el tiempo n del k-ésimo coeficiente del filtro.

Alternativa 1: A partir de la derivación clásica de Wiener los coeficientes pueden ser estimados de la siguiente forma:

$$\mathbf{R}_{x}^{n}\,\bar{\mathbf{w}}^{n}=\bar{\mathbf{r}}_{dx}^{n}\implies\bar{\mathbf{w}}^{n}=(\mathbf{R}_{x}^{n})^{-1}\,\bar{\mathbf{r}}_{dx}^{n}.$$

Alternativa 2: Relajando la condición que $\bar{\mathbf{w}}^n$ minimiza el error cuadrático medio, se puede implementar una ecuación de actualización de coeficientes, tal que,

$$\bar{\mathbf{w}}^{n+1} = \bar{\mathbf{w}}^n + \Delta \bar{\mathbf{w}}^n.$$

donde $\Delta \bar{\mathbf{w}}^n$ es una corrección aplicada a $\bar{\mathbf{w}}^n$ para formar los nuevos coeficientes $\bar{\mathbf{w}}^{n+1}$.

Filtros Adaptivos

Esquema general de Filtro Adaptivo

Descripción

Gradiente descendente es un algoritmo de optimización iterativa que sirve para encontrar un mínimo local de una función diferenciable F(x). La secuencia iterativa generada es

$$x_{k+1} = x_k - \mu \nabla F(x_k)$$

donde $\nabla F(x_k)$ es la gradiente de la función a minimizar y $\mu > 0$ es el tamaño del paso (step size).

Ejemplo - Una variable

Dada la función $f(x) = x^2 + 1$, encontrar el punto x que minimiza f(x).

Algoritmo:
$$x_{k+1} = x_k - \mu \nabla F(x_k)$$

Gradiente:
$$\nabla f(x) = \frac{\partial f}{\partial x} = 2x$$
 (dirección)

Inicializando:
$$x_0 = 8$$
 y $\mu = 0.25$

$$x_1 = x_0 - \mu \nabla f(x_0) = 8 - 0.25 \times 16 = 4$$

$$x_2 = x_1 - \mu \nabla f(x_1) = 4 - 0.25 \times 8 = 2$$

$$x_3 = x_2 - \mu \nabla f(x_2) = 2 - 0.25 \times 4 = 1$$

$$x_4 = x_3 - \mu \nabla f(x_3) = 1 - 0.25 \times 2 = 0.5$$

Ejemplo - Dos variables

Dada la función

$$f(x_1, x_2) = (x_1 - 4)^2 + (x_2 - 4)^2$$
,

encontrar el punto (x_1, x_2) que minimiza la función.

Algoritmo:

$$\begin{bmatrix} x_1^{k+1} \\ x_2^{k+1} \end{bmatrix} = \begin{bmatrix} x_1^k \\ x_2^k \end{bmatrix} - \mu \begin{bmatrix} \frac{\partial f(x_1, x_2)}{\partial x_1} \\ \frac{\partial f(x_1, x_2)}{\partial x_2} \end{bmatrix} \\
\bar{\mathbf{x}}^{k+1} \quad \bar{\mathbf{x}}^k \quad \nabla f$$

Ejercicio computacional

Desarrollar un programa basado en el concepto de gradiente descendente para minimizar la función $f(x) = \frac{1}{2}x_1^2 + \alpha x_2^2$ para distintos valores del paso μ ,

$$\begin{bmatrix} x_1^{k+1} \\ x_2^{k+1} \end{bmatrix} = \begin{bmatrix} x_1^k \\ x_2^k \end{bmatrix} - \mu \begin{bmatrix} x_1^k \\ 2\alpha \cdot x_2^k \end{bmatrix} \cdot \frac{\bar{\mathbf{x}}^k}{\bar{\mathbf{x}}^{k+1}} \quad \bar{\mathbf{x}}^k \quad \nabla f$$

Pregunta: ¿Cómo el paso μ y el factor α alteraran la convergencia?

Planteamiento

Dada la función error cuadrático medio $\xi[n] = E\{ |e[n]|^2 \}$, se puede usar el método de gradiente descendente para calcular los coeficientes de los filtros de manera iterativa

$$\bar{\mathbf{w}}^{n+1} = \bar{\mathbf{w}}^n - \mu \, \nabla \, \xi[n] \, .$$

Considerando que W(z) es real y que $e[n] = d[n] - \hat{d}[n] = d[n] - \sum_{k=0}^{M-1} w[k]x[n-k]$, entonces la gradiente de $\xi[n]$ está dada por

$$\nabla \xi[n] = \nabla E\{ |e[n]|^2 \} = 2E\{e[n] \nabla e[n] \} = -2E\{e[n] \bar{\mathbf{x}}^n \}$$

$$\nabla e[n] = \nabla E\{|e[n]|\} = 2E\{e[n] \vee e[n]\} = -2E\{e[n]\mathbf{x}^n\}$$

$$\nabla e[n] = \begin{bmatrix} \frac{\partial e[n]}{\partial w^n[0]} \\ \frac{\partial e[n]}{\partial w^n[1]} \\ \vdots \\ \frac{\partial e[n]}{\partial w^n[M-1]} \end{bmatrix} = \begin{bmatrix} -x[n-0] \\ -x[n-1] \\ \vdots \\ -x[n-M+1] \end{bmatrix} = -\bar{\mathbf{x}}^n.$$

Planteamiento

La secuencia iterativa sería

$$\bar{\mathbf{w}}^{n+1} = \bar{\mathbf{w}}^n + 2\mu E\{e[n]\,\bar{\mathbf{x}}^n\} .$$

En la práctica $E\{e[n]\bar{\mathbf{x}}^n\}$ es desconocido, por ello, se reemplaza con una aproximación como la media muestral,

$$\hat{E}\{e[n]\,\bar{\mathbf{x}}^n\} = \frac{1}{L} \sum_{l=0}^{L-1} e[n-l]\,\bar{\mathbf{x}}^{n-l}.$$

Incorporando la aproximación en la secuencia iterativa tenemos

$$\bar{\mathbf{w}}^{n+1} = \bar{\mathbf{w}}^n + \frac{2\mu}{L} \sum_{l=0}^{L-1} e[n-l] \bar{\mathbf{x}}^{n-l}.$$

Planteamiento

Caso especial: Considerando solo un punto para el promedio muestral (L=1) tenemos

$$\hat{E}\{e[n]\,\bar{\mathbf{x}}^n\} = e[n]\,\bar{\mathbf{x}}^n.$$

Finalmente el algoritmo LMS está dado por

$$\bar{\mathbf{w}}^{n+1} = \bar{\mathbf{w}}^n + 2\mu e[n] \,\bar{\mathbf{x}}^n$$

$$\begin{bmatrix} w^{n+1}[0] \\ w^{n+1}[1] \\ \vdots \\ w^{n+1}[M-1] \end{bmatrix} = \begin{bmatrix} w^n[0] \\ w^n[1] \\ \vdots \\ w^n[M-1] \end{bmatrix} + 2\mu e[n] \begin{bmatrix} x[n] \\ x[n-1] \\ \vdots \\ x[n-M+1] \end{bmatrix}$$

$$\bar{\mathbf{w}}^n$$

Alternativamente, cada coeficiente del filtro cumple la siguiente relación iterativa

$$w^{n+1}[k] = w^n[k] + 2\mu e[n]x[n-k], \qquad k = 0,1,...,M-1.$$

Algoritmo 1: Algoritmo LMS para un filtro adaptivo FIR de longitud M.

Parámetros: M = Longitud del filtro

 μ = Tamaño de paso (step size)

Inicialización: $\bar{\mathbf{w}}^0 = [0,0,...,0]^T$

Computar: For n = 0, 1, 2, ...

(a)
$$\hat{d}[n] = (\bar{\mathbf{w}}^n)^T \bar{\mathbf{x}}^n$$

(b)
$$e[n] = d[n] - \hat{d}[n]$$

(c)
$$\mathbf{\bar{w}}^{n+1} = \mathbf{\bar{w}}^n + 2\mu e[n]\mathbf{\bar{x}}^n$$

Nota: Señal estimada
$$\hat{d}[n] = \sum_{k=0}^{M-1} w^n[k]x[n-k] = (\bar{\mathbf{w}}^n)^T \bar{\mathbf{x}}^n$$
.

Identificador de sistema

Recordar: El algoritmo LMS estima filtros de la forma $W^n(z) = \sum_{k=0}^{M-1} w^n[k]z^{-k}$.

Cancelador de ruido

Cancelador de ruido

Suponiendo que la señal deseada d[n] es una sinusoidal:

$$d[n] = \sin(n\omega_0 + \phi)$$

que la secuencia de ruido $v_1[n]$ y $v_2[n]$ son procesos AR(1) cuyas ecuaciones de diferencias son

$$v_1[n] = 0.8 v_1[n-1] + g[n] \implies H_1(z) = \frac{1}{1 - 0.8 z^{-1}}$$

$$v_2[n] = -0.6 v_2[n-1] + g[n] \implies H_2(z) = \frac{1}{1 + 0.6 z^{-1}}$$

donde g[n] es ruido blanco gaussiano con varianza igual a uno.

Esquema de un predictor lineal

Algoritmo LMS

Datos adicionales

Aspectos de la convergencia:

- Dependiendo de μ , la convergencia puede ser más rápida o más lenta.
- Cuando $n \to \infty$, MSE temporal será constante.
- Cuando $n \to \infty$, $\bar{\mathbf{w}}^n \to \bar{\mathbf{w}}_{\mathrm{opt}}$ (en la media).
- Si x[n] y d[n] son procesos WSS $\Longrightarrow \bar{\mathbf{w}}_{\mathrm{opt}} = \mathbf{R}^{-1}\bar{\mathbf{r}}_{dx}$ (filtro Wiener).

Criterios de parada

- Número fijo de iteraciones
- Señal de error menor a un umbral: $|e[n]| < \tau$
- Error absoluto de filtros: $\|\bar{\mathbf{w}}^{n+1} \bar{\mathbf{w}}^n\|_1 < \tau$

Algoritmo LMS

Convergencia

• Para procesos WSS, el algoritmo LMS converge en la media si

$$0 < \mu < \frac{1}{\lambda_{\text{max}}},$$

donde λ_{max} es el mayor autovalor de la matriz \mathbf{R}_{χ} .

• Para procesos no WSS, el algoritmo LMS converge en la media cuadrática si

$$0 < \mu < \frac{1}{\sum_{k} \lambda_{k}} = \frac{1}{\operatorname{tr}\{\mathbf{R}_{x}\}}.$$

Nota: El autovalor λ_{\max} está limitado por la traza de \mathbf{R}_x : $\lambda_{\max} \leq \sum_n \lambda_n = \operatorname{tr}\{\mathbf{R}_x\}$. Notar que

la traza de \mathbf{R}_{x} es la potencia del vector de entrada $\bar{\mathbf{x}}^{n}$.

LMS Normalizado (N-LMS)

En la implementación de un filtro adaptivo LMS es muy importante la selección del paso μ :

$$0<\mu<\frac{1}{\text{Potencia de entrada}}\,.$$

En procesos WSS: La potencia del vector de entrada es $M r_{x}[0]$.

En procesos no WSS: La potencia del vector de entrada es $\mathrm{tr}\{\mathbf{R}_x\}$.

• Si x[n] es WSS entonces $\operatorname{tr}\{\mathbf{R}_x\} = M r_x[0] = M E\{|x[n]|^2\}$, luego, el límite más conservativo es

$$0 < \mu < \frac{1}{ME\{ |x[n]|^2 \}}.$$

• El valor esperado $E\{ |x[n]|^2 \}$ se puede estimar de la siguiente forma

$$\hat{E}\{ |x[n]|^2 \}$$
 se puede estimar de la siguiente forma
$$\hat{E}\{ |x[n]|^2 \} = \frac{1}{M} \sum_{k=0}^{M-1} |x[n-k]|^2 .$$

LMS Normalizado (N-LMS)

Expresado matricialmente

$$0 < \mu < \frac{1}{(\bar{\mathbf{x}}^n)^T \bar{\mathbf{x}}^n}.$$

Esta cota se incorpora en el algoritmo LMS al usar un paso de tamaño variable

$$\mu = \frac{\beta}{(\bar{\mathbf{x}}^n)^T \bar{\mathbf{x}}^n} = \frac{\beta}{\|\bar{\mathbf{x}}^n\|^2},$$

donde β es el tamaño de paso normalizado con cotas $0 < \beta < 1$.

La nueva ecuación de actualización de los coeficientes del filtro sería

$$\bar{\mathbf{w}}^{n+1} = \bar{\mathbf{w}}^n + 2\beta \frac{\bar{\mathbf{x}}^n}{\|\bar{\mathbf{x}}^n\|^2} e[n] .$$

La normalización $\|\bar{\mathbf{x}}^n\|^2$ altera la magnitud, no la dirección (gradiente).

LMS Normalizado (N-LMS)

En el algoritmo LMS, la gradiente es proporcional al vector $\bar{\mathbf{x}}[n]$.

- **Problema anterior:** Si $\bar{\mathbf{x}}^n$ es grande \Longrightarrow amplificación de ruido de gradiente. Solución: La normalización mitiga este problema
- Nuevo problema: Si $\|\bar{\mathbf{x}}^n\|^2$ es muy pequeño \Longrightarrow la gradiente explotaría. Solución:

$$\bar{\mathbf{w}}^{n+1} = \bar{\mathbf{w}}^n + 2\beta \frac{\bar{\mathbf{x}}^n}{\|\bar{\mathbf{x}}^n\|^2 + \epsilon} e[n] \text{ , donde } \epsilon \text{ es un número pequeño positivo.}$$

Nota: Comparando con algoritmo LMS, N-LMS requiere el computo adicional de $\|\bar{\mathbf{x}}^n\|^2$. Solución recursiva:

$$\|\bar{\mathbf{x}}^{n+1}\|^2 = \|\bar{\mathbf{x}}^n\|^2 + \|x[n+1]\|^2 - \|x[n-M+1]\|^2.$$

Muchas gracias!