# **K-NN Intuition**

Machine Learning A-Z

© SuperDataScience

# What K-NN does for you



Machine Learning A-Z

## What K-NN does for you



Machine Learning A-Z

© SuperDataScience

# What K-NN does for you



Machine Learning A-Z

#### How did it do that?

STEP 1: Choose the number K of neighbors



STEP 2: Take the K nearest neighbors of the new data point, according to the Euclidean distance



STEP 3: Among these K neighbors, count the number of data points in each category



STEP 4: Assign the new data point to the category where you counted the most neighbors



Your Model is Ready

Machine Learning A-Z

© SuperDataScience

#### **K-NN algorithm**



Machine Learning A-Z

## **Euclidean Distance**



Euclidean Distance between P<sub>1</sub> and P<sub>2</sub> =  $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 

Machine Learning A-Z

© SuperDataScience

# **K-NN algorithm**

STEP 2: Take the K = 5 nearest neighbors of the new data point, according to the Euclidean distance



Machine Learning A-Z

## **K-NN algorithm**

STEP 3: Among these K neighbors, count the number of data points in each category



Machine Learning A-Z

© SuperDataScience

#### **K-NN algorithm**

STEP 4: Assign the new data point to the category where you counted the most neighbors



Machine Learning A-Z

## **K-NN algorithm**

STEP 4: Assign the new data point to the category where you counted the most neighbors



Machine Learning A-Z

© SuperDataScience

#### **K-NN algorithm**

STEP 4: Assign the new data point to the category where you counted the most neighbors



Machine Learning A-Z