

Tema 2 (parte 1). Morfología y configuración del robot

Morfología de un robot manipulador industrial

Estructura mecánica. Partes. Articulaciones

Movilidad (GDL) de cadenas cinemáticas. Cadenas abiertas y cerradas.

Espacio de trabajo del robot

Configuraciones típicas. Robots SCARA

Elementos terminales y herramientas

Sistema de potencia y control

Índice

Morfología de un robot manipulador industrial

¿Qué elementos o subsistemas componen un robot manipulador?

- 1. Estructura mecánica
- Actuadores
- 3. Sensores
- Sistema de transmisión
- 5. <u>Sistema de interacción</u>
 <u>con el entorno (elementos</u>
 <u>terminales o</u>
 <u>herramientas)</u>
- 6. <u>Sistema de potencia y</u> <u>control (controlador)</u>

Estructura mecánica. Partes

Es una cadena cinemática: Estructura formada por varios eslabones (*links*) unidos mediante articulaciones o ejes (*joints*), que permiten un movimiento relativo entre eslabones consecutivos.

Hay un eslabón fijo (base o bastidor)

Debido a la similitud con la anatomía de un brazo humano, a veces se usan los mismos términos para los diferentes eslabones y articulaciones

Articulaciones en sistemas mecánicos

Articulaciones (pares cinemáticos) en robótica

- Prismáticas o de desplazamiento: movimiento relativo de traslación.
 Lineales o tipo L (a) y ortogonales, tipo O (b)
- De rotación: giro tipo R (c), tipo T (d) y tipo V (e)

Movilidad de una cadena cinemática (I)

- El movimiento de un cuerpo que puede desplazarse libremente en el espacio (3D) se puede descomponer en 3 traslaciones y 3 rotaciones respecto de una base fija = 6 Grados de Libertad (GDL o DOF)
- En el plano (2D) hay dos traslaciones y una rotación = 3 GDL
- En una cadena cinemática, alguno de esos movimientos elementales puede desaparecer

La movilidad o Grados de Libertad (GDL, DOF) de una cadena cinemática son el número de movimientos independientes que permanecen

Movilidad de una cadena cinemática (II)

 Para calcular la movilidado número de grados de libertad podemos usar la fórmula o criterio de Gruebler

$$NDoF = \lambda \cdot (n - j - 1) + \sum_{i=1}^{j} f_i$$

Donde:

 λ : DoF del espacio de trabajo (3 en plano; 6 en espacio)

n: Número de eslabones (incluida la base)

j: Número de articulariones (joints)

 f_i : DoF en la articulación i

Cadena cinemática cerrada y abierta

- Cadena cinemática cerrada: cuando se puede llegar desde cualquier eslabón a otro mediante al menos dos caminos.
- Cadena cinemática abierta: cuando sólo hay un camino posible

Hay robots industriales de cadena abierta (los mas comunes, llamados *robot serie*) y de cadena cerrada (*robot paralelo*, normalmente más ligeros, suelen permitir aceleraciones más altas)

GDL típicos en robots manipuladores industriales

Típicamente, los robots manipuladores industriales son cadenas cinemáticas abiertas (serie) con un único eslabón fijo (base) y varias articulaciones prismáticas o rotatorias (1 DoF por articulación)

Ejercicio: calcula los DoF (tanto en el plano como en el espacio) de un robot manipulador serie formado por x+1 eslabones y x articulaciones de tipo prismáticas o rotatorias.

¿Cuántas articulaciones necesitamos para conservar los 6 DoF en el espacio?

FANUC LR Mate 200iC - Universal Robots UR5 - ABB IRB 120

NDoF = x

GDL típicos en robots manipuladores industriales

$$NDoF = \lambda \cdot (n - j - 1) + \sum_{i=1}^{J} f_i$$
 Espacio $\lambda = 6$ Plano $\lambda = 3$
$$NDoF = 6 \cdot (x + 1 - x - 1) + \sum_{i=1}^{x} 1$$

$$NDoF = 3 \cdot (x + 1 - x - 1) + \sum_{i=1}^{x} 1$$

 $ND \circ F = x$

Para conservar los 6 DoF en el espacio, es necesario que el robot tenga, al menos, 6 articulaciones.

Ejemplo DoF

GDL en robots paralelo

Robot Delta o tipo 3T1R paralelo:

ABB IRB 360 FlexPicker (3+1 GDL)

https://www.youtube.com/watch?v=v1x64Zg1-hE&ab_channel=RBTX

https://www.youtube.com/watch?v=aPTd8XDZOEk

GDL en robots paralelo

Robot 3D Hexapteron (6 GDL)

Espacio o envolvente de trabajo del robot

El espacio de trabajo (efectivo) o envolvente de trabajo de un robot se define como el agrupamiento de puntos que se pueden alcanzar con su elemento terminal.

Perfil y planta del espacio de trabajo típico de un robot serie industrial de 6 ejes.

Representación volumétrica del espacio de trabajo de un robot paralelo 3T1R

Configuraciones típicas de robots serie industriales

En la industria se utilizan diferentes configuraciones de robots, varias de ellas con menos de 6 GDL, ya que suelen ser suficientes para realizar las tareas requeridas.

Las configuraciones más habituales son:

Los más comunes son los angulares o antropomórficos, seguidos de los cartesianos y los SCARA

Los cilíndricos y ésféricos eran más habituales en los inicios de la robótica. Ahora están prácticamente en desuso

Robots cartesiano

Robots SCARA

Acrónimo de Selective Compliant Assembly (Articulated) Robot Arm Creado en 1978, consta de 4 ejes y usa en labores de "pick and place" (embalaje y montaje vertical) por su simplicidad y relación calidad/precio Al tener menos ejes que un robot angular, suele ser algo más rápido

Ejemplos de robots SCARA

WYAMAHA

YAMAHA YK-XGS (tipo inverso)

.

Esquema cinemático de configuraciones típicas

Robot cartesiano

Robot SCARA

Robot cilíndrico

Robot angular o antropomórfico

Robot esférico o polar

Resumen de configuración, esquema cinemático, espacio de trabajo, ejes y grados de libertad (I)

Resumen de configuración, esquema cinemático, espacio de trabajo, ejes y grados de libertad (II)

Robot	Axes				
Principle	Kinematic Chain	Workspace	Wrist (DOF)		
		an	1 1	2	2
SCARA robot	77777777		2		
	<u></u>	A	2 9	3 📗 🖰 🎉	
articulated robot	7/17/17/17			3	3 1000000000000000000000000000000000000

Elementos terminales o herramientas. Tipos

Los robots industriales son versátiles y readaptables a una gran variedad de aplicaciones.

Los elementos terminales (end effectors) son los encargados de permitir una interacción específica o tarea concreta de un robot con el entorno.

- 1. Elementos de sujeción y manipulación: pinzas o garras (*grippers*), ventosas, etc.
- 2. Herramientas terminales: pistolas de pintura, soldadura, corte, pegado y sellado, *ad hoc*, multiherramientas, etc.

Elementos de sujeción y manipulación

Sirven para la sujeción de piezas, permitiendo la realización de tareas de "coger y dejar" (pick and place).

TIPO DE SUJECIÓN	ACCIONAMIENTO	UTILIZACIÓN	
Pinzas de precisión Desplazamiento angular Desplazamiento lineal	Neumático Electrónico	Transporte y manipulación de piezas sobre los que no importe presionar.	
Pinzas de enganche	Neumático Electrónico	Piezas de grandes dimensiones o sobre las que no se pueden ejercer precisión.	
Ventosa de vacío	Neumático	Cuerpo con superficie lisa poco porosa (cristal, plástico etc.)	
Electroimán	Electrónico	Piezas ferromagnéticas	

El sistema más común es el de pinza o garra (gripper) que puede accionarse electrónica o neumáticamente.

Los dedos de la pinza (típicamente dos o tres) se pueden mover de manera lineal (paralelo) o angular, y se suelen diseñar a medida.

Ejemplos de pinzas y garras

Diseño de sistemas de sujeción y manipulación ad hoc

Sistemas de sujeción y manipulación ad hoc de SIPA SOLUTIONS

Ejemplos de elementos de sujeción de vacío

DESTACO
single
vacuum
cups,
spring cup
mount and
venturis

ABB FlexGripper (Pinza + 10 zonas de vacío) para robots de paletizado hasta 40 kg

3D-V 4 vacuum gripper for Universal Robots

Mixto: pinza + ventosa

Ejemplos de elementos de sujeción magnéticos

Dos configuraciones típicas:

Electroimanes

Suitable for transporting

 Imanes permanentes accionados por aire comprimido

https://youtu.be/xBr5N1gPuLE

Ejemplos de elementos de sujeción magnéticos

https://youtu.be/qLAxIOyp2UQ

https://youtu.be/-f9xew2WGz8

Soft grippers

https://youtu.be/jOc3e5O5OPM

https://youtu.be/c1vxuhYwPKY

https://youtu.be/rKX3IKg5Qok

Herramientas terminales

Muchas otras aplicaciones requieren del uso de una herramienta, que debe ser construida de maner específica o adaptada para la muñeca del robot:

- Pistola de soldadura por puntos (spot welding gun)
- Pistola de soldadura por arco (arc welding gun)
- Pistola de pintura por spray (spray painting gun)
- Herramientas de corte por laser, plasma o chorro a presión (Laser cutter, plasma cutter, water jet cutter)
- Corte por abrasión: amoladora (grinder)
- Broca de perforación (drilling spindle)
- Cepilladora, desbarbadora (brushing, deburring tools)
- Dispensadora, pegadora, selladora (gluing, dispensing, sealing tools)

Ejemplos de herramientas de soldadura

Robot con pistola de soldadura por puntos

Robot con pistola de soldadura por arco

FANUC: https://www.youtube.com/watch?v=21hTsTvx iI KUk

Ejemplos de herramientas terminales

Pintura por spray y sellado

https://youtu.be/Dam61WpeSmo

Herramienta de corte por laser Precitec YK52 ABB: https://www.youtube.com/watch?v=7k20Zp5aPjY

Herramienta para eliminación de rebabas (desbarbado)
https://www.youtube.com/watch?v=t98aRt8hS2c

Multiherramientas

En ocasiones una misma herramienta terminal puede constar de varias "subherramientas", iguales o distintas:

Cambio automático de herramienta

Es posible programar un robot industrial para que pueda cambiar de herramienta automáticamente (sistemas *Schunk*, *ATI Industrial Automation...*)

Cambio automático de herramienta

Sistema de potencia y control (controlador)

El controlador del robot es una parte fundamental del mismo, que permite:

- 1. Realizar el control cinemático y dinámico de la unidad mecánica
- 2. Dotar de potencia eléctrica a los motores de los ejes y al resto de accionamientos
- 3. Programar el robot (mediante la unidad de programación externa)
- 4. Comunicar el robot con el mundo exterior (buses industriales: ProfiNet, Ethernet/IP)
- 5. Gestionar y supervisar los sistemas de seguridad y emergencia.

Teachpendant

El teachpendant es la consola de programación in situ del robot industrial

- Permite la definición del TCP de la herramienta
- Incluye mandos para controlar la posición y orientación del robot, así como elementos de seguridad (seta de emergencia)
- Se puede utilizar para definir puntos en el espacio o para almacenar en memoria la posición actual del robot
- Permite la programación de rutinas y manejo de I/O del controlador

