Abteilung Maschinelles Lernen Institut für Softwaretechnik und theoretische Informatik Fakultät IV, Technische Universität Berlin Prof. Dr. Klaus-Robert Müller Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 11

Exercise 1: Designing a Neural Network (20 P)

We would like to implement a neural network that classifies data points in \mathbb{R}^2 according to decision boundary given in the figure below.

We consider as an elementary computation the threshold neuron whose relation between inputs $(a_i)_i$ and output a_j is given by

$$z_j = \sum_i a_i w_{ij} + b_j \qquad a_j = 1_{z_j > 0}.$$

(a) Design at hand a neural network that takes x_1 and x_2 as input and produces the output "1" if the input belongs to class A, and "0" if the input belongs to class B. Draw the neural network model and $write\ down$ the weights w_{ij} and bias b_i of each neuron.

Exercise 2: Backward Propagation (5+15 P)

We consider a neural network that takes two inputs x_1 and x_2 and produces an output y based on the following set of computations:

$$z_3 = x_1 \cdot w_{13} + x_2 \cdot w_{23}$$
 $z_5 = a_3 \cdot w_{35} + a_4 \cdot w_{45}$ $y = a_5 + a_6$
 $a_3 = \tanh(z_3)$ $a_5 = \tanh(z_5)$
 $z_4 = x_1 \cdot w_{14} + x_2 \cdot w_{24}$ $z_6 = a_3 \cdot w_{36} + a_4 \cdot w_{46}$
 $a_4 = \tanh(z_4)$ $a_6 = \tanh(z_6)$

- (a) Draw the neural network graph associated to this set of computations.
- (b) Write the set of backward computations that leads to the evaluation of the partial derivative $\partial y/\partial w_{13}$. Your answer should avoid redundant computations. Hint: $\tanh'(t) = 1 (\tanh(t))^2$.

Exercise 3: Neural Network Optimization (10+10+10 P)

Consider the one-layer neural network

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x}$$

applied to data points $\boldsymbol{x} \in \mathbb{R}^d$, and where $\boldsymbol{w} \in \mathbb{R}^d$ is the parameter of the model. We would like to optimize the mean square error objective:

$$J(\boldsymbol{w}) = \mathbb{E}_{\hat{p}} \Big[\frac{1}{2} (\boldsymbol{w}^{\top} \boldsymbol{x} - t)^2 \Big],$$

where the expectation is computed over an empirical approximation \hat{p} of the true joint distribution $p(\boldsymbol{x},t)$. The ground truth is known to be of type: $t|\boldsymbol{x}=\boldsymbol{v}^{\top}\boldsymbol{x}+\varepsilon$, with the parameter \boldsymbol{v} unknown, and where ε is some small i.i.d. Gaussian noise. The input data follows the distribution $\boldsymbol{x}\sim\mathcal{N}(\boldsymbol{\mu},\sigma^2I)$ where $\boldsymbol{\mu}$ and σ^2 are the mean and variance.

- (a) Compute the Hessian of the objective function J at the current location w in the parameter space, and as a function of the parameters μ and σ of the data.
- (b) Show that the condition number of the Hessian is given by: $\frac{\lambda_1}{\lambda_d} = 1 + \frac{\|\boldsymbol{\mu}\|^2}{\sigma^2}$.
- (c) Explain for this particular problem what would be the advantages and disadvantages of centering the data before training. Your answer should include the following aspects: (1) condition number and speed of convergence, (2) ability to reach a low prediction error.

Exercise 4: Programming (30 P)

Download the programming files on ISIS and follow the instructions.