Stat 88: Probability & Mathematical Statistics in Data Science

Lecture 10: 2/10/2021

Waiting times, exponential approximations

Sections 4.2, 4.3

Agenda

- Warm up with a cdf problem
- 4.2 Waiting times
- 4.3 Exponential approximations

• 1	L destributions
Different ways of writing o	X=# of H in 3 tosses of a fair coin (8) 6. Pc> "with probability"
	S la la cours
f(x)=P(X=x) 1/8 3/8 3/8 1/	(8) 6.pc= "with probability" (8) = F(x) defined for every real# (0, 2<0
Fra P(V/2) 1/0 4/9 7/8 8/4	5=1) = FCX) defined for every recons
F(X)=1 (N=1) 10 10	$\langle 0, 7 < 0 \rangle$
50 ωp. 1/8	1/8, x=0,3 -) 1/8, 05x<1
X= { 0 wp. 1/8 1 wp. 3/8 f(n)=	1/8, $x = 0,31/8$, $x = 1,21/8, 0 \le x < 11/8, 0 \le x < 11/8, 1 \le x < 21/8, 1 \le x < 31/8, 1 \le x < 31/8, 1 \le x < 31/8, 1 \le x < 3$
2/7/2/ 2 W.P 3/B	$\frac{3}{8}$, $\chi = 1,2$ $\frac{7}{8}$, $\chi \leq \chi \leq 3$
2/7/2 2 W.P 3/B 3 W.P 1/8	. 1) otherwise $1, 3 \stackrel{?}{=} \infty$

Cdf and Exercise 4.5.2

- Cumulative distribution function (cdf = F(x)) of a random variable X is another way of describing the distribution of the probability.
- $F(x) = P(X \le x)$

•
$$f(x) = P(X = x) = P(X \le x) - P(X \le x - 1) = F(x) - F(x - 1)$$

• A random variable *W* has the distribution shown in the table below. Sketch a graph of the cdf of *W*.

	W	-2	-1	0	1	3	[-2, -1]
	P(W=w)	0.1	0.3	0.25	0.2	0.15	
0.85							0, X < - 2
0.65 9 f(1)							0.1 -2 < 2 < -
$\mathcal{L}(0)$							0.4, -14 240
		0.9	•				0.65,05241
	0.1	[g. 2-1)					0.85,14243
-		1.4(-2)	.	+ +			1,273
2/9/2	21	-)) I	ک			3

Cdf and pmf

prob MASS function

• A random variable W has the distribution shown in the table below. Sketch a graph of the pmf of W, and shade in F(1)

W	-2	-1	0	1	3
P(W=w)	0.1	0.3	0.25	0.2	0.15

$$F(1) = P(X \le 1) = \sum_{x \le 1} f(x)$$

$$f(x) = P(X \le 1) = \sum_{x \le 1} f(x)$$

$$f(x) = P(X \le 1) = \sum_{x \le 1} f(x)$$

$$F(2) = F(1)$$

$$F(2) = \sum_{x \le 1} f(x)$$

Cdf is very useful because we often need sums of probabilities.

Draw 12 balls w/o repl. from a box with 10 red and 15 blue balls.

F(Jeff Bezos total wealth)

=0.1+0.3+0.25

= 0.85 = P(1

+0.2+0

(F(#d stace in known) =1 =

P(X65) = F(5)

of a red win is the number of spins until they see a red (so the number of P(R)=1) spins until and including the time the ball lands on a red pocket). P(+)P(NR)=20 · What is the probability that Ali will wait for 4 spins before their first win? (That

is, the first time the ball lands in red is the 4th spin or trial)

is, the first time the ball lands in red is the 4th spin or trial)
$$P(X=H) = P(FFFS) = \begin{pmatrix} 20 \\ 38 \end{pmatrix}^3 \cdot \begin{pmatrix} 18 \\ 38 \end{pmatrix}$$
• Say we have a sequence of *independent* trials (roulette spins, coin tosses, die rolls etc) each of which has outcomes of success or failure, and $P(S) = p$ on

- each trial. • Let T_1 be the number of trials up to and including the first success. Then T_1 is
- the waiting time until the first success.

• What are the values
$$T_1$$
 takes? What is its pmf $f(x)$?

$$T_1 = 1, 2, 3, 4, \dots$$

$$f(k) = P(T_1 = k) = (-p)^{k-1} p$$

$$F(S) = p$$

$$P(F) = -p$$

$$F(S) = p$$

$$F(F) = -p$$

$$F(F) = -p$$

Geometric distribution
$$\int_{K=1}^{\infty} f(K) = P \cdot \int_{I-Q}^{\infty} = P \cdot \int_{I-Q}^{\infty} = 1$$
• Say T_1 has the **geometric distribution**, denoted $T_1 \sim Geom(p)$ on $\{1, 2, 3, ...\}$
• $f(k) = P(T_1 = k) = (I-P)^{k-1}$, $P = \sum_{K=1}^{\infty} f(K) = \sum_{K=1}^{\infty} (I-P)^{k-1} P = \sum_{K=1}^{\infty} f(K) = \sum_{K=1}^{\infty} (I-P)^{k-1} P = \sum_{K=1}^{\infty} f(K) = \sum_{K=1}^{\infty} (I-P)^{k-1} P = \sum_{K=1}^{\infty} f(K) = \sum_{K=1}^{\infty} I(I-P)^{k-1} P = \sum_{K=1}^{\infty} f(K) = \sum_{K=1}^{\infty} I(I-P)^{k-1} P = \sum_{K=1}^{\infty} I(I-P)^{k-1} P$

• Check that it sums to 1. What is the cdf for this distribution? Can you think of an easy way to write down the cdf?

$$F(x) = P(x + x) = F(x)$$
Geometric (1/6) Distribution

$$F(x) = F(x)$$

2.5 $P(T_1 \le 2) = 1 - P(T_1 > 2) = 1 - 2^{2}$ 10 20 30 Value P(1/7 x)

P(T, >5) = 95 prob of first 5 trials being Failure

Back to rowlette & Ali

Say Ali spins until their 5 win

P(T = 17) = (16) (18) (20) (18)

P(Ts = 17) = (4) (38) (38) (18)

All an eight is on the 11th of the 11th

• Say we roll a 8 sided die.

What is the chance that the first time we roll an eight is on the 11th try?

• What is the chance that it takes us 15 times until the 4th time we roll eight? (That is, the waiting time until the 4th time we roll an eight is 15)

• What is the chance that we need more than 15 rolls to roll an eight 4 times?

• Notice that the right-tail probability of T_4 is a left hand (cdf) of the Binomial distribution for (15,1/8), and where k=3.