-								
_	0 a	28 A	~ *********	a a	/ 4 51	The T.	M D	
	reverse a	75. (U) 18U	CPCPX IUNI ((I D/IO) L	A LASTER RETIGNED LA COMP	111.4K.1 (.A.1)	A TOME	fracaruant.	
,	2/1/2		deces (British	பதிப்புரிமையுக	A THE WALL OF THE PROPERTY OF	11161110	Meser rett;	
				NORSON TO THE WAR THE PARTY OF				

යි ලංකා විතාහ දෙපාර්තමේන්තුව ලී ලංකා විතාහ දෙපාර්තම්න්තුව යි ලංකා විතාහ දෙපාර්තමේන්තුව මූහෝගාන්ව පරිදු නිතාහන්න්තාව මූහෝගාන්ව පරිදු නිතාහන්නේ සිට පරිදු නිතාහන්නේ පරිදු නිතාහන්න් සිට පරිදු නිතාහන්නේ පරිදු නිතාහන් පරිදු නිතාහන් පරිදු නිතාහන්නේ පරිදු නිතා

අධානයක පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2015

සං**යුක්ත ගණිතය** இணைந்த கணிதம் Combined Mathematics

පැය තුනයි மூன்று மணித்தியாலம் Three hours

ව්භාග අංකය		Cono	ರಂಖದ							
------------	--	------	------	--	--	--	--	--	--	--

උපදෙස් :

- 🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
 - A කොටස (පුශ්න 1 10) සහ B කොටස (පුශ්න 11 17).

සීයමු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පි<mark>ළිතුරු,</mark> සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

- * B කොටස:
 - පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය. B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විහාග ශාලාධිපතිට හාර දෙන්න.
- 🐺 පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලා<mark>වෙන්</mark> පිටනට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(1)	0) සංයුක්ත ගණි	DG I		
කොටස	පුශ්න අංකය	ලකුණු		
	J			
Vounde statistics.	2			
follows to a second	3			
· conditions	4			
A	5			
	6			
	7			
	8			
	9			
	10			
	11			
r common and a second	12			
H Websterlieb	13			
В	14			
deritte premarkets	15			
1	16			
	17			
	<u>ිකතුව</u>			
4	ුතිශත ය			

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ł	ඉලක්කමෙන්	
A THE PROPERTY OF	අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂක	
පරීක්ෂා කළේ: ¹	
2	
අධීක්ෂණය කළේ:	

1	
7	
Ų	
1	
1	
-	
1	
	10
1	
ı	
	40
1	
ļ	
1	
1	
1	10
1	
١	
١	
1	
١	
١	
١	
١	10
١	
١	
ı	
ļ	
١	
١	
١	
١	
١	Œ
١	
١	
١	
١	
ļ	
ļ	
ı	
ı	
ı	
ı	
ļ	
į	
-	
-	
1	
1	
1	
	W
Į	
j	
J,	(1)

	A කොටස	_)
1.	ගණිත අභසුගන මූලධර්මය භාවිතයෙන්, සියලු $n\in \mathbb{Z}^+$ සඳහා 8^n-3^n යන්න 5 හි පූර්ණ සංඛාහමය ගුණාකාරයස	ช่
	බව සාධනය කරන්න.	
		.
	·	
		.
		1
		,
-		
2.	$\left x\right <2-x^2$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.	
Ó		
	[තුන්වැනි පිටුව බලන්)

	D
ı	
	(T)
l	
	10
	TO I
	70
[
	TO I
	X
	ì
_	
	W
	M
	7
	D

3.	අාගන්ඩ් සටහනක් මත $ z-3+4i =2$ සමීකරණය සපුරාලන z සංකීර්ණ සංඛ්‍යාව මගින් නිරූපණය කරනු ලබන ලක්ෂායේ පථය වන C හි දළ සටහනක් අඳින්න. ඒනයින් , C මත පිහිටි z සඳහා $ z+4i $ හි වැඩිතම හා අඩුතම අගයන් සොයන්න.	

		1
-		
		ŀ
		-
		-
4.	$n\in\mathbb{Z}^+$ හා $n\geq 5$ යැයි ගනිමු. $\left(3x+rac{2}{x} ight)^n$ හි ද්වීපද පුසාරණයේ x^{n-10} හි සංගුණකය 100 ට වඩා අඩු වේ. n හි	ŀ
	අගය සොයන්න.	
		-

		ľ
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

[හතරවැති පිටුව බලන්න.

5.	$n\in \mathbb{Z}^+$ සඳහා, $\lim_{y o a}rac{y^n-a^n}{y-a}=na^{n-1}$ පුතිඵලය භාවිතයෙන් හෝ අන් කුමයකින් හෝ
- Annual Control of the Control of t	$\lim_{x \to 0} \frac{\left(x + \sqrt{2}\right)^4 - 4}{\sin 4x} = 2\sqrt{2} \text{බව පෙන්වන්න.}$
	······································
-	
	······································
	•
l	
6.	එක ම රූප සටහනක $y=e^x$ හා $y=e^{-x}$ වකු දෙකෙහි දළ සටහන් අඳින්න. x -අක්ෂයෙන් ද $-1 \le x \le 0$ පරාසය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
б.	
б.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
б.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය
6.	තුළ $y=e^x$ වකුයෙන් හා $0 \le x \le 1$ පරාසය තුළ $y=e^{-x}$ වකුයෙන් ද ආවෘත වන පෙදෙසෙහි වර්ගඵලය

1		
		1
1		
1		
1		
1		
ı		
ı		77
1		10
1		
ı		
l		
ı		
1		
ľ		
ı		
ı		
1		10
l		U)
ı		
l		
l		
l		
l.		
Г	Ī	
l	7	
		$\boldsymbol{\varpi}$
		70
l		
l		
l		
l		
ĺ		
		T
		10
l		
l		
1	L	
ľ		
ı		
	7	
		W
		Ξ
	_	
	1	
		(T)
		W
ı		
		(1)

7.		2 10
	මගින් දෙනු ලැබේ. $rac{\mathrm{d} y}{\mathrm{d} x}$ වනුත්පන්නය $ heta$ ඇසුරෙන් සොයා, $ heta=rac{\pi}{4}$ වන ලක්ෂායෙහි දී C වකුයට ඇ	Ę
	අහිලම්බයේ සමීකරණය $x-\sqrt{2}y+2=0$ බව පෙන්වන්න.	
		٠.
		.
	······································	٠.
-		
		.
		$\cdot $
		٠
	······································	٠
	······································	٠
		٠
		•
8.	A(10,0) as B(0,5) and as a second of a sec	ı
Ο.	$A\left(10,0 ight)$ හා $B\left(0,5 ight)$ ලක්ෂා යා කරන සරල රේඛාව $C\left(1,2 ight)$ හා $D\left(3,6 ight)$ ලක්ෂා යා කරන CD රේඛා	-
o.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
Ο.		
0.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
0.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
0.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
0.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
0.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
0.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
0.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
.	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	
	ඛණ්ඩයෙහි ලම්බ සමච්ඡේදකය බව පෙන්වන්න.	

1	
	T
l	10
l	
l	
l	
l	
l	O
l	
l	
l	
l	
l	
l	
l	
l	4
l	
l	
l	a ³ [3
l	
١	
l	42
l	(D)
l	
l	
l	
l	
l	
l	
l	TO .
l	
	X
l	ľì
I	4
l	
l	
l	
l	
l	(D)
l	
ĺ	
l	
	17
,	
О.	(D)
	Ă

O මූල ලක්ෂාය ඔස්සේ ද $y=1$ රේඛාවේත් $x^2+y^2-2x-2y+1=0$ වෘත්තයේත් ඡේදන ලක්ෂා දෙ
ඔස්සේ ද යන වෘත්තයේ කේන්දුය හා අරය සොයන්න.
$\sin lpha + \sin eta = 1$ හා $\cos lpha + \cos eta = \sqrt{3}$ යැයි ගනිමු; මෙහි $lpha$ හා eta සුළු කෝණ වේ. $lpha + eta$ හි අගය සොයන්න
<u></u>

രാള 0 രാത്രാ സൗറ്റ് (ഗ്രസ്ത്ര് വളിവ്വ്യിയെല്ലെല്ലു/All Rights Reserved)

இ டின்ற சிறும் දෙපාර්තමේත්තුව ලී டின்ற சிறும் දෙපාර්තමේන්තුව ලී දැන්න ද දැන්න දැන

අධායන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2015

සංයුක්ත ගණිතය

இணைந்த கணிதம்

Combined Mathematics

B කොටස

* පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න.

 ${f 11.}\,(a)\,\,x\,$ හි මානුය ${f 4\,}$ වූ $F(x),\,\,G(x)\,$ හා $H(x)\,$ යන බහුපද පහත දැක්වෙන පරිදි දෙනු ලැබේ.

$$F(x) = (x^2 - \alpha x + 1)(x^2 - \beta x + 1)$$
, මෙහි α හා β තාත්ත්වික නියත වේ;

$$G(x) = 6x^4 - 35x^3 + 62x^2 - 35x + 6$$

$$H(x) = x^4 + x^2 + 1.$$

(i) F(x)=0 හා G(x)=0 යන දෙකට ම එක ම මූල තිබේ නම්, α හා β මූල වශයෙන් ඇති වර්ගජ සමීකරණය $6x^2-35x+50=0$ බව පෙන්වන්න.

ඒනයින්, G(x)=0 සමීකරණයෙහි සියලු ම මූල සොයන්න.

- (ii) F(x) = H(x) වෙයි නම්, α හා β ට තිබිය හැකි අගයන් සොයා, H(x) = 0 සමීකරණයේ මූල තාත්ත්වික **නො වන** බව පෙන්වන්න.
- (b) (i) $f(x) \equiv 2x^4 + \gamma x^3 + \delta x + 1$ යැයි ගනිමු; මෙහි γ හා δ තාත්ත්වික නියත වේ. $f\left(-\frac{1}{2}\right) = 0$ හා f(-2) = 21 බව දී ඇති විට, f(x) හි තාත්ත්වික ඒකජ සාධක දෙක සොයන්න.
 - (ii) සියලු ම තාත්ත්වික x සඳහා $(x^2 + x + 1) P(x) + (x^2 1) Q(x) = 3x$ සමීකරණය සපුරාලන P(x) හා Q(x) ඒකජ පුකාශන දෙක සොයන්න.
- 12.(a) නිපුණතා සංදර්ශන තරගයක විනිසුරුවන් ලෙස කටයුතු කිරීම සඳහා සාමාජික සාමාජිකාවන් හතර දෙනකුගෙන් සමන්විත විනිසුරු මඩුල්ලක් පිහිටුවා ගත යුතුව ඇත. මෙම විනිසුරු මඩුල්ල තෝරා ගත යුතුව ඇත්තේ කීඩිකාවන් තුන් දෙනකු, කීඩකයින් දෙදෙනකු, ගායිකාවන් හය දෙනකු, ගායකයින් පස් දෙනකු, නිළියන් දෙදෙනකු හා නළුවන් හතර දෙනකුගෙන් සමන්විත කණ්ඩායමකිනි. පුධාන විනිසුරු, කීඩකයකු හෝ කීඩිකාවක හෝ විය යුතු ය. විනිසුරු මඩුල්ලේ අනෙක් තිදෙනා තෝරා ගත යුතු වන්නේ කීඩක කීඩිකාවන් හැර කණ්ඩායමේ ඉතිරි අයගෙන් ය. පහත දැක්වෙන එක් එක් අවස්ථාවේ දී විනිසුරු මඩුල්ල පිහිටුවා ගත හැකි වෙනස් ආකාර ගණන සොයන්න.
 - (i) අඩු තරමින් එක් ගායිකාවක හා එක් ගායකයකු මඩුල්ලට ඇතුළත් විය යුතු ම නම්,
 - (ii) පුධාන විනිසුරු ඇතුළුව පිරිමි දෙදෙනකු හා ගැහැනු දෙදෙනකු මඩුල්ලේ සිටිය යුතු ම නම්,
 - (iii) පුධාන විනිසුරු ක්‍රීඩිකාවක විය යුතු ම නම්.
 - (b) $r\in \mathbb{Z}^+$ සඳහා $A(r+5)^2-B(r+1)^2=r+C$ වන පරිදි A,B හා C නියතවල අගයන් සොයන්න.

ජනයින්. අපරිමිත ශේණියක r වන පදය $U_r = \frac{8}{(r+1)^2(r+3)(r+5)^2}$ යන්න f(r) - f(r+2) ලෙස පුකාශ කළ හැකි බව පෙන්වන්න; මෙහි f(r) යනු නිර්ණය කළ යුතු ශිතයක් වේ.

 $\sum_{r=1}^n U_r$ ශ්‍රේණියේ ඓකාස සොයා, $\sum_{r=1}^\infty U_r$ ශ්‍රේණිය, $\frac{1}{8^2} + \frac{1}{15^2}$ ඓකාසයට අභිසාරි වන බව **අපෝහනය** කරන්න.

13.(a) A, B හා C නාහස තුනක්

$$\mathbf{A} = \begin{pmatrix} 0 & 2 & -3 \\ 0 & -1 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix}$$
 හා $\mathbf{C} = \begin{pmatrix} 3 & 4 \\ 2 & 3 \\ 1 & 2 \end{pmatrix}$ මගින් දෙනු ලැබේ.

- (i) $\mathbf{AC} = \mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ බව පෙන්වන්න. \mathbf{CA} ගුණිනයන් සොයන්න.
- (ii) BC = I, වන පරිදි a, b, c හා d හි අගයන් සොයන්න.
- (iii) ($\lambda \mathbf{A} + \mu \mathbf{B}$) $\mathbf{C} = \mathbf{I}$, වෙයි නම්, λ හා μ සම්බන්ධ කෙරෙන සමීකරණයක් ලබා ගන්න.

 $\mathbf{D} = \begin{pmatrix} -3 & 8 & -6 \\ 2 & -5 & 4 \end{pmatrix}$ නාහසය, \mathbf{A} හා \mathbf{B} ඇසුරෙන් පුකාශ කර, **ඒනයින්**, \mathbf{DC} ගුණිතය සොයන්න.

(b) z සංකීර්ණ සංඛාාවක් $z = \cos \theta + i \sin \theta$ ලෙස දෙනු ලැබේ; මෙහි $\theta(-\pi < \theta \le \pi)$ තාත්ත්වික පරාමිතියකි. ආගන්ඩ් සටහනක් මත z නිරූපණය කරන ලක්ෂායේ C පථය සොයන්න.

 $\cos heta$ හා $\sin heta$ සඳහා පුකාශන z හා $\frac{1}{7}$ ඇසුරෙන් ලබා ගන්න.

$$w = \frac{2z}{z^2 + 1}$$
 හා $t = \frac{z^2 - 1}{z^2 + 1}$ යැයි ගනිමු; මෙහි z යන්න $z \neq \pm i$ වන පරිදි C මන පිහිටයි.

- (i) Im (w)=0 හා Re (t)=0 බව පෙන්වන්න. **ජනයින්**, හෝ අන් කුමයකින් හෝ, $w^2+t^2=1$ බව තවදුරටත් පෙන්වන්න.
- (ii) w = 2 සමීකරණය සපුරාලන z සංකීර්ණ සංඛන සොයන්න.
- (iii) t=i සමීකරණය සපුරාලන z සංකීර්ණ සංඛාන සොයන්න.
- 14.(a) $x \neq 0$ සඳහා $y = x \sin \frac{1}{x}$ යැයි ගතිමු.

(i)
$$x \frac{dy}{dx} = y - \cos \frac{1}{x}$$
 80

(ii)
$$x^4 \frac{d^2y}{dx^2} + y = 0$$

බව පෙන්වන්න.

(b) $x \neq 1$ සඳහා $f(x) = \frac{2x^2 + 1}{(x - 1)^2}$ යැයි ගනිමු.

f(x) හි පළමු වයුත්පත්නය හා හැරුම් ලක්ෂාය සොයන්න. හැරුම් ලක්ෂාය හා ස්පර්ශෝත්මුඛ දක්වමින්, y = f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

(c) දී ඇති රූපයෙහි, ABCD යනු, BC හා AD සමාන්තර පාද සහිත නුපීසියමකි. සෙන්ටිමීටරවලින් මනිනු ලබන එහි පාදවල දිග AB = CD = a, BC = b හා AD = b + 2x මගින් දෙනු ලැබේ; මෙහි 0 < x < a වේ. BE හා CF යනු පිළිවෙළින් B හා C ශීර්ෂවල සිට AD පාදය මතට ඇඳි ලම්බ වේ.

ABCD නුපීසියමේ වර්ගඵලය S(x), වර්ග සෙන්ටීමීටරවලින් $S(x)=(b+x)\sqrt{a^2-x^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.

 $a=\sqrt{6}$ හා b=4 නම්, x හි එක්තරා අගයකට S(x) උපරිම වන බව තවදුරටත් පෙන්වා, x හි මෙම අගය හා තුපීසියමේ උපරිම වර්ගඵලය සොයන්න.

15.(a)
$$\int_0^\pi f(x) \, \mathrm{d}x = \int_0^\pi f(\pi - x) \, \mathrm{d}x$$
 බව පෙන්වන්න.
$$\int_0^{\frac{\pi}{2}} \sin^2 x \, \mathrm{d}x = \frac{\pi}{4} \ \text{බවත් පෙන්වන්න}.$$
 ජනයින්, $\int_0^\pi x \sin^2 x \, \mathrm{d}x = \frac{\pi^2}{4}$ බව පෙන්වන්න.

- (b) සුදුසු ආදේශයක් හා **කොටස් වශයෙන් අනුකලන** කුමය භාවිතයෙන්, $\int x^3 e^{x^2} \,\mathrm{d}x$ සොයන්න.
- (c) $\frac{1}{x^3-1} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}$ වන පරිදි A,B හා C නියතවල අගයන් සොයන්න.

ජනගීන්, $\frac{1}{x^3-1}$ යන්න x විෂයයෙන් අනුකලනය කරන්න.

- (d) $t = anrac{x}{2}$ ආදේශය භාවිතයෙන්, $\int\limits_0^{\frac{\pi}{2}} rac{\mathrm{d}x}{5 + 4\cos x + 3\sin x} = rac{1}{6}$ බව පෙන්වන්න.
- 16. වෘත්ත දෙකක සමීකරණ $x^2+y^2+2gx+2fy+c=0$ හා $x^2+y^2+2g'x+2f'y+c'=0$ යැයි ගතිමු. මෙම වෘත්ත පුලම්බ ලෙස ඡේදනය වේ නම්, 2gg'+2ff'=c+c' බව පෙන්වන්න.

 $x^2 + y^2 - 8x - 6y + 16 = 0$ සමීකරණය සහිත C වෘත්තය x-අක්ෂය ස්පර්ශ කරන බව පෙන්වන්න.

O මූලයෙහි පොදු කේන්දය පිහිටන, අරය r වූ C_1 වෘත්තයක් හා අරය R (> r) වූ C_2 වෘත්තයක් පිළිවෙළින් A හා B ලක්ෂාවල දී C වෘත්තය ස්පර්ශ කරයි. r හා R හි අගයන් ද A හා B හි ඛණ්ඩාංක ද සොයන්න.

S යනු, C හා C_1 යන වෘත්ත දෙක ම පුලම්බ ලෙස ඡේද<mark>නය</mark> කරන හා y-අක්ෂය ස්පර්ශ කරන වෘත්තයක් යැයි ගනිමු. S සඳහා තිබිය හැකි සමීකරණ දෙක සොය<mark>න්න.</mark>

C හා C_2 යන වෘත්ත දෙකට ම B ලක්ෂායෙහි දී අඳින ලද පොදු ස්පර්ශකයට x-අක්ෂය P හි දී ද y-අක්ෂය Q හි දී ද හමු වේ. පොදු ස්පර්ශකයේ සමීකරණය 4x + 3y = 40 බවත්, PQ රේඛා ඛණ්ඩය විෂ්කම්භයක් ලෙස ඇති වෘත්තයේ සමීකරණය $3(x^2 + y^2) - 30x - 40y = 0$ බවත් පෙන්වන්න.

- $17.(a) \cos^2(\alpha+\beta)+\cos^2\alpha+\cos^2\beta-2\cos(\alpha+\beta)\cos\alpha\cos\beta=1$ බව පෙන්වන්න.
 - (b) $f(x) = \cos 2x + \sin 2x + 2(\cos x + \sin x) + 1$ යැයි ගනිමු. f(x) යන්න $k(1 + \cos x) \sin(x + \alpha)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි k හා α යනු නිර්ණය කළ යුතු නියත වේ.

$$g(x)$$
 යන්න $\frac{f(x)}{1+\cos x}=\sqrt{2}\left\{g(x)-1\right\}$ වන ලෙස ගනිමු; මෙහි $-\frac{\pi}{2}\leq x\leq \frac{\pi}{2}$ වේ.

y=g(x) හි පුස්තාරයේ දළ සටහනක් ඇඳ **ඒනයින්**, ඉහත දී ඇති පරාසය තුළ f(x)=0 සමීකරණයට එක වීසඳුමක් පමණක් ඇති බව පෙන්වන්න.

(c) සුපුරුදු අංකනයෙන්, ABC තිුකෝණයක් සඳහා සයින් නීතිය භාවිතයෙන්,

$$a(b-c) \csc \frac{A}{2} \cot \frac{A}{2} = (b+c)^2 \tan \left(\frac{B-C}{2}\right) \sec \left(\frac{B-C}{2}\right)$$
 බව පෙන්වන්න.

Debartment of Examinations, Sri Lamkar

	கிஷ் இ இது அத்தின் (முழுப் பதுப்புரிமையுடையது /Att Rights Reserved)
	இ ஒறு වනග දෙපාර්ගමේන්තුව இ ஒறை විභාග දෙපාර්ගම්න්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் புதன்றத் திணைக்களும் இவங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் Department of Examinations, Sri Lanka Department of இலங்கையு, Sri III ki இது தொண்டு இலங்கையும் இலங்கைப் பரீட்சைத் திணைக்களும் Department of Examinations, Sri Lanka Department of இலங்கையே, Sri III ki இரு தொழுக்கும் இலங்கையும்.
	இலங்கைப் பர்ட்சைக் கிணைக்களும் இலங்கைப் பூடனசத் திணைக்களும் இலங்கைப் பர்ட்சைத் திணைக்களும்
	Department of Examinations, Sri Lanka Department of Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka
-	Department of the second profession of complementary of the second profession of the second prof

ල් ලංකා විතාන දෙපාර්තමේන්තුව ල් ලංකා විතාන දෙපාර්තමේන්තුව දී. අංකාද මහතු අදහාරතමේන්තුව ල් අංකා දිනක දෙපාරතමේන්තුව இலங்கைப் பரீட்சைத் தினைக்களம் இலங்கைப் பேடிவசத் தினைக்களம் இலங்கைப் பூட்சைத் தினைக்களம் இலங்கைப் பரீட்சைத் தினைக்களம்

						3				#			15	× ~ 4 ~	*****
	501	JA189	n - 0	23 3.	- 65 89 E	ያት ይመ~~~	355	- 23 2 3	@es		<i>)</i> (3)(3)	s, 20		20200	
	-														
			-Arm		THE RESERVE	******				क्टल भेग	11076	CKLIK	2015.	C) # 6	11111
	ĊО	UUUL	- tolt_li	COIO)	- Onlin			2	U.U	O(11)		608,	muli-k-k-		щ
Ī															
	C_{2}	maral	At	ificati	a	Lanc	ation	LAAV	AU	A H	XOMIN	ation.	- A 1101	19T - Zi	++->-

සංයුක්ත ගණිතය II II இணைந்த கணிதம் II Combined Mathematics

පැය තුනයි மூன்று மணித்தியாலம் Three hours

ව්භාග අංකය

උපදෙස් :

- 🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
 - **A කොටස** (පුශ්න 1 10) සහ **B කොටස** (පුශ්න 11 17).
- * A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

- * B කොටස:
 - පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සප<mark>යා ඇති</mark> කඩදාසිවල ලියන්න.
- st නියමිත කාලය අවසන් වූ පසු f A කොටසෙහි පිළිතුරු පතුය. f B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටිත පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- පුශ්ත පතුයෙහි **B කොටස පමණක්** විභාග ශාලාව<mark>ෙන් පි</mark>ටතට ගෙන යාමට ඔබට අවසර ඇත.
- මෙම පුශ්ත පතුයෙහි g මගින් ගුරුත්වජ ත්<mark>වරණය දැක්</mark>වෙයි.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(1	(10) සංයුක්ත ගණිතය II						
කොටස	පුශ්න අංකය	ලකුණු					
	1						
	2						
	3						
	4						
A	5						
	6						
	7						
	8						
	9						
	10						
-	11						
	12						
	13						
В	14						
	15						
	16						
	17						
	එකතුව						
	පුතිශතය						

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

-	ඉලක්කමෙන්	
	අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂක)	
පරීක්ෂා කළේ:	1 2	
අධීක්ෂණය කළේ:		

කොටස
 WALKE KE

1.	ස්කත්ධ පිළිවෙළින් m හා $2m$ වූ A හා B අංශු දෙකක්, අචල කුඩා සැහැල්ලු සුමට C කප්පියක් උඩින් යන $2l$ දිගකින් යුතු සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට සම්බන්ධ කර ඇත. එක් එක් අංශුව C ට l ගැඹුරකින් අල්ලා තබා පද්ධතිය මෙම පිහිටීමෙන් නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. ශක්ති සංස්ථිති මුලධර්මය යෙදීමෙන්, එක් එක් අංශුව $x(< l)$ දුරක් චලනය වී ඇති විට එක් එක් අංශුවෙහි
	v වේගය, $v^2=rac{2gx}{3}$ මගින් දෙනු ලබන බව පෙන්වන්න. ඒනයින් , හෝ අන් කුමයකින් හෝ, පද්ධතියේ ත්වරණය සොයන්න.
2.	දෙකෙළවර ම විවෘත, දිග l වූ ඍජු සිහින් සු <mark>මට OA</mark> නලයක්, O ඉහළ කෙළවර තිරස් පොළොවට
2.	
2.	දෙකෙළවර ම විවෘත, දිග l වූ ඍජු සිහින් සුමට OA නලයක්, O ඉහළ කෙළවර තිරස් පොළොවට $h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් න <mark>ලය දි</mark> ගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන්
2.	$h(>\!l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $rac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත,
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන්
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ
2.	$h(>l)$ උසක් ඉහළින් ඇති ව, යටි අත් සිරස සමග $\frac{\pi}{3}$ කෝණයක් සාදන පරිදි සවී කර ඇත. නලය ඇතුළත, O හි සීරුවෙන් තබනු ලැබූ අංශුවක් නලය දිගේ පහළට ලිස්සා යයි. ඊළඟට අංශුව A කෙළවරින් නලයෙන් ඉවත්ව ගොස්, O සිට $\sqrt{3}l$ තිරස් දුරකින් වූ B ලක්ෂායක දී පොළොව සමග ගැටෙයි. (i) A හි දී අංශුවේ

₽	
1	O
L	
1	
1	
1	
1	
1	
ı	
l	10
1	
ı	
ı	
L	
ı	
ı	
L	
Г	
1	
1	
1	
1	10
1	
L	
ı	
ı	
l	
l	
ı	
	W
ı	
l	
1	
L	
Г	
ı	
ı	
l	
l	
	7
l	
L	
1	
I	
1	
l	
١.	
1	
	<u> </u>
1	(D)
l	W
ı	
1	السن
	Ē.
	TO .
	4
1	
ත	(U)

3.	සුමට තිරස් මේසයක් මත u පුවේගයෙන් චලනය වෙමින් පවතින ස්කන්ධය m වූ P අංශුවක්, P හි පෙතෙහි නිසලව
	තිබෙන m ස්කන්ධය සහිත වෙනත් ${\cal Q}$ අංශුවක් සමග සරල ලෙස ගැටෙයි. අංශු දෙක අතර පුතාාගති සංගුණකය
	$e\left(0\!<\!e\!<\!1 ight)$ නම්, ගැටුමෙන් පසු P හා Q හි පුවේගවල ඓකාංය හා අන්තරය සඳහා පුකාශන, u හා e ඇසුරෙන්
	ලබා ගන්න. ඒනයින් , හෝ අන් කුමයකින් හෝ, ගැටුමට පසු පද්ධතියේ ඉතිරි වන චාලක ශක්තිය, මුල් චාලක
	ශක්තියට දරන අනුපාතය, $\left(1+e^2\right)$: 2 බව පෙන්වන්න.
	······································
4.	එන්ජිම H kW ජවයකින් කිුයා කරමින් ස්කන් <mark>ධය මෙ</mark> ටුික් ටොත් M වූ ලොරියක්, ඍජු සමතලා පාරක් දිගේ
4.	එන්ජිම H kW ජවයකින් කිුිිියා කරමින් ස්කන්ධය මෙටුික් ටොන් M වූ ලොරියක්, සෘජු සමතලා පාරක් දිගේ u m s $^{-1}$ නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H$ kW ජවයකින් කිුිිිිිිිිි කරමින්, තිරසට $lpha$ කෝණයක්
4.	$u \ { m m \ s^{-1}}$ නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \ { m kW}$ ජවයකින් කිුිිියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිනයට පුතිරෝධය තිරස් චලිනයට ඇති
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \ { m m \ s^{-1}}$ නියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \ { m kW}$ ජවයකින් කිුිිියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිනයට පුතිරෝධය තිරස් චලිනයට ඇති
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4 .	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න
4.	$u \text{ m s}^{-1}$ තියත පුවේගයකින් ගමන් කරයි. ඉන් පසුව, එන්ජිම $2H \text{ kW}$ ජවයකින් කියා කරමින්, තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ ලොරිය ඉහළට චලනය වන අතර, චලිතයට පුතිරෝධය තිරස් චලිතයට ඇති පතිලෝධය ම වේ. ඉඩ ඉඩ අවස්ථාවේ දී ලොරියේ අපරිම වේගය $2Hu$ m_s වෙන සහස්වන්න

38708

5.	සුපුරුදු අංකනයෙන්, O මූලයක් අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළිවෙළින් $\lambda {f i} + \mu {f j}$ හා $\mu {f i} - \lambda {f j}$ වේ; මෙහි λ හා μ යනු $0 < \lambda < \mu$ වන පරිදි වූ තාත්ත්වික සංඛාා වේ. $A\hat{O}B$ සෘජු
	කෝණයක් බව පෙත්වත්ත. AB රේඛා ඛණ්ඩයෙහි මධා ලක්ෂාය C යැයි ගනිමු. \overrightarrow{OC} දෙශිකයේ විශාලත්වය
	2 නම් හා එය ${f i}$ ඒකක ලෛදශිකය සමග ${\pi\over 6}$ ක කෝණයක් සාදයි නම්, λ හා μ හි අගයන් සොයන්න.
	G
	and the second of the second o
6.	ඒකාකාර සිහින් බර දණ්ඩක්, එහි එක කෙළවරක් රඑ තිරස් ගෙබිමක් මත හා අනෙක් කෙළවර සුමට සිරස්
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස්
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස්
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය
6.	බිත්තියකට එරෙහිව නිසලව තිබේ. දණ්ඩ බිත්තිය සමග $ heta$ සුළු කෝණයක් සාදමින්, බිත්තියට ලම්බ සිරස් තලයක පිහිටයි. මෙම පිහිටීමේ දී දණ්ඩ සමතුලිතව තිබීම සඳහා, දණ්ඩ හා ගෙබීම අතර μ ඝර්ෂණ සංගුණකය

-4-

$I \setminus I$	$A(x) = \frac{1}{A}, P(B) = \frac{1}{A}$	$=\frac{1}{2}$ so $P(A \cup$	$JB \cup C) = \frac{3}{}$	බව තවදුරටත් දී ඇති	විට, $P(C)$ සම්භාවිතාව	සොයන්න.
ζ	4' '	2	4		, , ,	
	• • • • • • • • • • • • • • • • • • • •		*************	******		**********
• • • • • •	• • • • • • • • • • • • • • • • • • • •	.,.,.,	**************	***************************************	.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******
			***************************************	******	*****************	
• • • • •			**************	***************************************		

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		************			
	*************		*********	*******		
		.,	*************	***********		.,
	**************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***********	*********		· · · · · · · · · · · · · · · ·
			*************			*****
			************			*******

	*************				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*
• • • • •	***************		*************		• • • • • • • • • • • • • • • • • • • •	********
	************	*************	***************			
					ින් 2 ක් දෝෂ සහිත බ	
පාචිච	චී කළ හැකි බව	ටත් දැනගෙන අ	ඇත. දෝෂ සහි	ත බල්බ 2 ම හඳුනා ශ	නන්නා තුරු එකකට පෑ	98 8@mm
					20000 200 00000000000000000000000000000	Ho desim
වශලේ	ාන් බල්බ පරීක්	ෂා කරනු ලැබේ	D.			90 deo;m
වශයේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
වශයේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්	මේ සම්භාවිතාව සොර	
වශයේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
)ශලේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		
වශයේ (i)	ාන් බල්බ පරීක් බල්බ දෙකක් පණ	ෂා කරනු ලැබේ මණක්,). (ii) බල්බ තු	නක් පමණක්		

		\	
1		1	
L	Ì		
I			
ı			
١			
		1	
l			
Ī			
	i		
l			
I		3	
l			
l			
١	· Re		
h			
l			
l			
ŀ			
l			
l			
l			
l		1	
I			
L			
	J		
l			
١			
	90	٠	
ľ			
1			
		di	
	1		
)			
ı.			1

	පූර්ණ සංඛන					٠ - ستا			သဏယာ ထု		
	S =	$\{1, 2, 4, x, y\}$, 11, 13	}.							
	සංඛනාවල ඡ	මධානය y නම්	වී, <i>x</i> හා <i>y</i>	හි අගයන්	නිර්ණය ක	ාරන්න. ස	ංඛපාවල ව්	වීචලතාව	$\frac{120}{7}$ බ ϵ) පෙත්වත	ත්ත.
				**********	*********		*******	********			
							***********	********		,,,,,,,,,,,	
	*************					**********		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	******						*				K
		************		* * * * * * * * * * * * * * *					• • • • • • • • • • • • • • • • • • • •		
		******					*****				
		******			• • • • • • • • • • • • •		*****			•••••	
		**************			• • • • • • • • • • • • • • • • • • • •						

		************						,	• • • • • • • • • • •		
		******		• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • •		
		**************	********	• • • • • • • • • • • •						*********	
		*************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • • • • • • • • • • • • • • • • •					* * * * * * * * * * * * * *	,,,,,,,,,,,,,	
		**********	********	.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					,,,,,,,,,,,,	*********	
		*************									1
).		2,3,4,5,6 ලැ ක්කුට ලැබුණා (ඩ දැමූ වි	වීට දාදු ක	තැටයේ උ	ඩත්
).		ක්නට ලැබුණු ර	අංකවල ස	පංඛපාත ව	ාාප්තිය ප	හත දැක්	_ອ ້ວ:	- <u>-</u>	ටිට දාදු ස	තැටයේ උස්	ඩත්
).		ක්නට ලැබුණු (අංකය	අංකවල ස 1	සංඛාහාත ව	නාප්තිය ප 3	හත දැක් 4	_ම ව්: 5	6	ට දාදු ස	තැටගේ උෑ	ඩත්
).	මුහුණගත් දැ	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
).	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු (අංකය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
).	මුහුණගත් දැ	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
1.	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
).	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
).	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාහජ්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			
	මුහුණතේ දැ සංඛ්‍යාත වා	ක්නට ලැබුණු ශ අංකය සංඛාහනය	අංකවල ස <u>1</u> <i>a</i>	යංඛනාත ව 2 9	ාාප්තිය ප 3 γ	හත දැක් 4 11	9ව්: 5 8	6			

ซินอู อ ชิซิลซิ ซุเฮิวัลซิ /เบูเนูน่ บฐนันที่ตอนบุตนพฐ/All Rights Reserved)

ලි ලංකා විභාග දෙපාර්තමේත්තුව ලි ලංකා විභාග දෙපාර්ත්තුව සිටුවේ. මුවියින් පාර්ත්තම්ත්තුව ලි ලංකා විභාග දෙපාර්තමේත්තුව இහங்கைப் பூட்சைத் திணைக்களம் இலங்கைப் பூட்சைத் திணைக்களும் இலங்கைப் பூட்சைத் திணைக்களும் இலங்கைப் பூட்சைத் திணைக்களும் Department of Examinations, Sri Lanka Department of Carlos Salas Sala

අධායන පොදු සහනික පතු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2015

සංයුක්ත ගණිතය

II

இணைந்த கணிதம் II Combined Mathematics II

B කොටස

* පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

- 11.(a) P හා Q අංශු දෙකක් අවල තිරස් ගෙබීමක් මත ලක්ෂා දෙකක සිට පිළිවෙළින් u හා $\frac{u}{\sqrt{2}}$ වේගවලින් සිරස් ව ඉහළට, එක විට පුක්ෂේප කරනු ලැබේ. ගෙබීම සිට $\frac{u^2}{4g}$ උසකින් අවල සුමට තිරස් සිවිලිමක් ඇත. සිවිලිමත් එය සමග ගැටෙන P අංශුවත් අතර පුතාපාගති සංගුණකය $\frac{1}{\sqrt{2}}$ වන අතර, අංශු දෙක ගුරුත්වය යටතේ පමණක් ඉහළට හා පහළට චලනය වේ.
 - (i) P අංශුව සිවිලිම සමග ගැටීමට මොහොතකට පෙර එහි වේගයක්, ගැටීම සිදු වන මොහොත දක්වා ගත වූ T_1 කාලයත් සොයන්න.

P අංශුව එහි පුක්ෂේප ලක්ෂාය කරා $\frac{u\sqrt{3}}{2}$ වේගයෙන් ආපසු පැමිණෙන බව පෙන්වන්න.

- (ii) Q අංශුව, සිවිලිමට යන්තමින් ළඟා වන බව පෙන්වා, එම මොහොත දක්වා ගත වූ T_2 කාලය සොයන්න.
- (iii) P හා Q අංශු දෙකෙහි පුක්ෂේප මොහොතේ සිට ආපසු අදාළ පුක්ෂේප ලක්ෂා වෙතට පැමිණීම දක්වා, ඒවායේ චලිත සඳහා පුවේග-කාල පුස්තාරවල දළ සටහන්, එක ම රූපයක අඳින්න.
- (iv) පුවේග-කාල පුස්තාර භාවිතයෙන්, P අංශුව සිවිලිම සමග ගැටෙන මොහොතේ දී Q අංශුව, සිවිලිමට $\frac{u^2}{2g} \left(\sqrt{2}-1\right)^2$ සිරස් දුරක් පහළින් තිබෙන බව පෙන්වන්න.
- (b) S නැවක්, u ඒකාකාර වේගයෙන් උතුරු දිශාවට යාතුා කරයි. එහි සරල රේඛීය පෙත P වරායක සිට නැගෙනහිර පැත්තට p ලම්බ දුරකින් පිහිටා ඇත. එක්තරා මොහොතක දී, \overline{PS} හි දිශාව නැගෙනහිරින් දකුණට 45° කෝණයක් සාදන විට දී ම, S නැව හමු වීම සඳහා B_1 හා B_2 සැපයුම් බෝට්ටු දෙකක් P වරායේ සිට වෙනස් දිශා දෙකකට $v\left(\frac{u}{\sqrt{2}} < v < u\right)$ ඒකාකාර වේගයෙන් එක විට ගමන් අරඹයි. මෙම බෝට්ටු පිළිවෙළින් T_1 හා T_2 (> T_1) කාලවල දී S නැවට ළඟා වේ. $\frac{v}{u} = \sqrt{\frac{2}{3}}$ බව තවදුරටත් දී ඇත්නම්, S නැවට සාපේක්ෂ ව B_1 හා B_2 බෝට්ටුවල චලිත සඳහා සාපේක්ෂ පුවේග නිකෝණ දෙකෙහි දළ සටහන් එක ම රූපයක ඇඳ, P වරායේ සිට S නැව වෙත ගමන් කිරීමේ දී B_1 හා B_2 බෝට්ටුවල නියම චලිත දිශා සොයන්න.

තවදුරටත්, $T_2-T_1=\ {2\sqrt{3}\ p\over u}$ බව පෙන්වන්න.

12.(a) දී ඇති රූපයේ, ABC තිුකෝණය, ස්කන්ධය M වූ ජිකාකාර සුමට කුඤ්ඤයක ගුරුත්ව කේන්දුය ඔස්සේ යන සිරස් හරස්කඩක් නිරූපණය කරයි. කුඤ්ඤය තුළ BC ට සමාන්තර වූ DE සිහින් සුමට පීල්ලක් ඇත. AB හා AC රේඛා, අදාළ මුහුණත්වල උපරිම බැවුම් රේඛා වන අතර $\hat{ABC} = \alpha$ හා $\hat{BAC} = \frac{\pi}{2}$ වේ.

BC අඩංගු මුහුණත අවල සුමට ති්රස් මේසයක් මත සිටින පරිදි කුඤ්ඤය තබා ඇත. එක එකක ස්කන්ධය

m වූ P හා Q අංශු දෙකක් පිළිවෙළින් DE හා DB මත තබා ඒවා, D ලක්ෂායෙහි පිහිටි කුඩා සුමට සැහැල්ලු කප්පියක් උඩින් යන සැහැල්ලු අවිතනා තන්තුවකින් ඇදා ඇත. ස්කන්ධය $\frac{m}{2}$ වූ S අංශුවක් AC මත ලක්ෂායක තබා P හා Q සම්බන්ධ කෙරෙන තන්තුව ඇදී තිබිය දී, පද්ධතිය මෙම පිහිටීමෙන් නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ.

P අංශුවට ED දිගේ ද Q අංශුවට DB දිගේ ද S අංශුවට AC දිගේ ද චලිත සමීකරණ ලියා දක්වන්න. තවදුරටත්, මුළු පද්ධතියට ම BC දිගේ චලිත සමීකරණය ලියන්න. **ඒනයින්.** කුඤ්ඤයේ ත්වරණය \overrightarrow{BC} හි දිශාවට $\frac{mg\sin\alpha}{2M+3m-2m\cos\alpha}$ බව පෙන්වන්න.

(b) ABCD සිහින් සුමට නලයක් පහත රූපයේ දැක්වෙන ආකාරයට නවා ඇත. නලයේ AB කොටස සෘජු වේ. BCD කොටසට අරය a හා කේන්දය O වූ අර්ධ වෘත්තාකාර හැඩයක් ඇති අතර BD විෂ්කම්භය AB ට ලම්බ වේ. AB තිරස් ව හා ඉහළින් ම ඇතිව නලය සිරස් තලයක සවීකර ඇත. නලය ඇතුළත, ස්කන්ධය m වූ P අංශුවක්

හා ස්කන්ධය 3m වූ Q අංශුවක් $l\left(>\frac{\pi a}{2}\right)$ දිගැනි සැහැල්ලු අවිතනා තන්තුවකින් සම්බන්ධ කර ඇත. ආරම්භයේ දී, තන්තුව ඇදී AB දිගේ තිබෙන අතර Q අංශුව B ලක්ෂායේ තබා ඇත. Q අංශුව මෙම පිහිටීමේ සිට යන්තමින් විස්ථාපනය කරනු ලැබීමෙන් t කාලයක දී OQ අරය θ සුළු කෝණයකින් හැරේ.

ශක්ති සංස්ථිති මූලධර්මය යෙදීමෙන්, $\left(\frac{\mathrm{d}\, heta}{\mathrm{d} t}\right)^2 = \frac{3g}{2a}(1-\cos\theta)$ බව පෙන්වන්න.

ජ්නයීන්, හෝ අත් කුමයකිත් හෝ, P අංශුවේ ත්වරණය $\frac{3g}{4}\sin heta$ බව පෙන්වන්න.

t කාලයේ දී Q අංශුව මත න<mark>ලයෙ</mark>න් ඇති කරන පුතිකිුයාව හා තන්තුවේ ආතතිය සොයන්න.

13. ස්වාභාවික දිග a හා පුතුනස්ථතා මාපාංකය 2mg වූ සැහැල්ලූ පුතුනස්ථ තන්තුවක එක කෙළවරක් අචල A ලක්ෂායකට ගැට ගසා ඇත. A හි මට්ටමට ඉහළින් සවිකරන ලද B කුඩා සුමට නාදැත්තක් උඩින් තන්තුව යන අතර, තන්තුවේ අනෙක් කෙළවරට ස්කන්ධය m වූ P අංශුවක් සම්බන්ධ කර ඇත. AB දුර a වන අතර, BA යට අත් සිරස සමග සාදන කෝණය $\frac{\pi}{3}$ වේ. ආරම්භයේ දී P අංශුව B නාදැත්තට යන්තමින් පහළින් තබා සිරස් ව පහළට $u = \sqrt{\frac{5ga}{8}}$ වේගයෙන් පුක්ෂේප කරනු ලැබේ. කාලය t වන විට තන්තුවේ විතතිය x යැයි ගනිමු. P අංශුවෙහි සරල අනුවර්තී චලිතය සඳහා සමීකරණය $\ddot{X} + \omega^2 X = 0$ ආකාරයෙන් පුකාශ කළ හැකි බව පෙන්වන්න; මෙහි $X = x - \frac{a}{2}$ හා $\omega^2 = \frac{2g}{a}$ වේ. මෙම චලිත සමීකරණය සඳහා, $\dot{X}^2 = \omega^2 \left(A^2 - X^2\right)$ ආකාරයේ විසඳුමක් උපකල්පනය කරමින්, සරල අනුවර්තී චලිතයේ විස්තාරය $A = \frac{3a}{4}$ බව පෙන්වා, අංශුව ළඟා වන පහත් ම පිහිටීම වූ E ලක්ෂාය සොයන්න.

සරල අනුවර්තී චලිතයේ C කේන්දුය පසු කර අංශුව යන විට එහි වේගය $\frac{3u}{\sqrt{5}}$ බව පෙන්වන්න.

අනුරූප වෘත්ත චලිතය සැලකීමෙන්, හෝ අන් කුමයකින් හෝ, P අංශුව පහළට චලනය වීමේ දී C පසු කර යෑමට ගන්නා කාලය $\sqrt{\frac{a}{2g}}\left\{\frac{\pi}{2}-\cos^{-1}\left(\frac{2}{3}\right)\right\}$ බව පෙන්වන්න.

තවදුරටත්, P අංශුව එහි පහත් ම පිහිටීම වූ E වෙත ළඟා වීමට ගන්නා කාලයත්, නාදැත්ත මත තන්තුවෙන් ඇති කරනු ලබන බලයේ උපරිම විශාලත්වයත් සොයන්න. 14. xy-තලයේ O මූලය අනුබද්ධයෙන් A,B හා C ලක්ෂාවල පිහිටුම් දෙශික, සුපුරුදු අංකනයෙන්, පිළිවෙළින් $\mathbf{i}+\mathbf{j},2\mathbf{i}+3\mathbf{j}$ හා $4\mathbf{i}+2\mathbf{j}$ වේ. $\overrightarrow{BP}=\frac{1}{3}$ \overrightarrow{BC} වන පරිදි BC මත පිහිටි P ලක්ෂායේ පිහිටුම් දෙශිකය සොයන්න. ABCD තුපීසියමක D ශීර්ෂය ගනු ලබන්නේ BC පාදය AD ට සමාන්තර වන පරිදි ද PD,AC ට ලම්බ වන පරිදි ද වේ. D හි පිහිටුම් දෛශිකය $\frac{11}{3}\mathbf{i}-\frac{1}{3}\mathbf{j}$ බව පෙන්වන්න.

දුර මීටරවලින් ද බලය නිව්ටනවලින් ද මනින ලද, xy-තලයෙහි බල හතරකින් සමන්විත වන පද්ධතියක් පහත දැක්වෙන පරිදි දී ඇත.

කිුිිිියා ලක්ෂායෙහි බණ්ඩාංක	බලයේ Ox , Oy දිශාවලට සංරචක
B(2,3)	$\mathbf{F}_{\mathbf{i}} = (2, 4)$
C (4, 2)	$\mathbf{F}_2 = (3, 1)$
L(0,1)	$\mathbf{F}_3 = (6, 12)$
M(0,6)	$\mathbf{F}_4 = (9, 3)$

- (i) \mathbf{F}_1 හා \mathbf{F}_2 බල දෙකෙහි O මූලය හා A (1,1) ලක්ෂාය වටා සූර්ණ ශූතා වන බව පෙන්වා, **ඒනයින්**, \mathbf{F}_1 , \mathbf{F}_2 , \mathbf{F}_3 හා \mathbf{F}_4 බල හතරෙන් සමන්විත පද්ධතියෙහි O මූලය වටා G සූර්ණය දක්ෂිණාවර්ත අතට $60~\mathrm{N}$ m විශාලත්වයෙන් යුතු වන බව පෙන්වන්න.
- (ii) පද්ධතියෙහි ${f R}$ සම්පුයුක්තයේ (X,Y) සංරචක සොයන්න. **ඒනයින්**, ${f R}$ හි කි<mark>යා රේ</mark>ඛාවට y-අක්ෂය හමු වන ලක්ෂාය සොයන්න.
- (iii) බල පද්ධතිය (0,-4) ලක්ෂායෙහි කියා කරන තනි බලයකින් හා සූර්ණය G_1 වූ යුග්මයකින් පුතිස්ථාපනය කරනු ලැබේ. G_1 හි අගය සොයා, තනි බලයේ කියා රේඛාව $D\Big(\frac{11}{3},-\frac{1}{3}\Big)$ ලක්ෂාය ඔස්සේ යන බව පෙන්වන්න.
- 15.(a) AB, BC, CD, DE හා EA ඒකාකාර බර දඬු පහක් ඒවායේ කෙළවරවලින් සුමට ලෙස සන්ධි කර රූපයේ දැක්වෙන පරිදි ABCDE පංචාසුයක හැඩයේ රාමු සැකිල්ලක් සාදා ඇත. BC, CD හා DE දඬු එක එකක දිග l හා බර W වේ. AB හා EA දඬු එක එකක දිග 2l හා බර 2W වේ. දිග l වූ සැහැල්ලු PQ දණ්ඩක P හා Q දෙකෙළවර පිළිවෙළින් AE හා AB හි මධාා ලක්ෂාවලට සුමට ලෙස අසව් කර ඇත. A සන්ධියෙන් නිදහස් ලෙස එල්ලා ඇති රාමු සැකිල්ල සිරස් තලයක සමතුලිනව පිහිටයි.

B සන්ධියෙහි පුතිකිුයාවේ තිරස් හා සිරස් සංරචක වන (X,Y) ද PQ සැහැල්ලු දණ්ඩේ තෙරපුම වන T ද නිර්ණය කිරීම සඳහා පුමාණවත් සමීකරණ ලියා දක්වන්න. **ඒනයින්**, B සන්ධියේ දී AB දණ්ඩ මත පුතිකියාව සොයා, $T=\frac{7W}{\sqrt{3}}$ බව පෙන්වන්න.

- (b) දෘඪ සැහැල්ලු දඬු හතක් ඒවායේ කෙළවරවලින් නිදහස් ලෙස සන්ධි කර සාදා ගත් **සමම්භික** රාමු සැකිල්ලක් රූපයේ දැක්වේ. AB,BC හා DE දඬු තිරස් වේ. $A\hat{D}E = C\hat{E}D = 45^\circ$ සහ $B\hat{D}E = B\hat{E}D = 30^\circ$ වේ. රාමු සැකිල්ලට A,B හා C සන්ධිවල දී රූපයේ දැක්වෙන භාර යොදා ඇති අතර, D හා E සන්ධිවල දී සමාන P සිරස් බලවලින් ආධාර කර ඇත. P හි අගය සොයන්න.
 - බෝ අංකනය යෙදීමෙන්, A හා D සන්ධි සඳහා පුනාසාබල සටහන් එක ම රූපයක අඳින්න. **ඒනයින්**, AD, AB, DE හා DB දඬුවල පුතාසාබල සොයා, ඒවා ආකති හෝ තෙරපුම් වශයෙන් පුකාශ කරන්න.

16. අාධාරකයේ අරය a හා උස h වූ ඒකාකාර ඝන කේතුවක හා අරය a වූ ඒකාකාර ඝන අර්ධගෝලයක ස්කන්ධ කේත්දුවල පිහිටුම්, **අනුකලනය** භාවිතයෙන් සොයන්න.

ස්කන්ධය M, අරය a හා කේන්දුය O වූ ඒකාකාර සන අර්ධගෝලයකින්, ආධාරකයේ අරය a හා උස a වූ C නම් සෘජු වෘත්ත කේතුව ඉවත් කිරීමෙන් ලැබෙන සන වස්තුව R යැයි ගනිමු. M ඇසුරෙන් R සන වස්තුවේ ස්කන්ධය, හා ස්කන්ධ කේන්දුයේ පිහිටීම සොයන්න.

ඊළඟට රූපයේ දැක්වෙන ආකාරයට S සංයුක්ත වස්තුවක් සැදෙන පරිදි C සන කේතුව R සන වස්තුවට සම්බන්ධ කරනු ලැබේ. මෙහි දී C හි ආධාරකයේ වෘත්තාකාර දාරය R හි ගැටියට දෘඪ ලෙස සම්බන්ධ කරනු ලබන්නේ ගැටියේ O කේන්දුය C හි ආධාරකයේ කේන්දුය සමග සම්පාත වන පරිදි ය.

S සංයුක්ත වස්තුවේ ගුරුත්ව කේන්දුය G, එහි සමමිතික අක්ෂය මත, ආධාරකවල පොදු කේන්දුය වන O සිට $rac{a}{8}$ දුරකින් පිහිටන බව පෙන්වන්න.

- (a) S සංයුක්ත වස්තුව, දාරයේ P ලක්ෂායකිත් තිදහස් ලෙස එල්ලනු ලැබේ.
 - (i) සමමිතික අක්ෂය වන OV හි තිරසට ආනතිය සොයන්න; මෙහි V යනු C හි ශීර්ෂයයි.
 - (ii) සමම්තික අක්ෂය තිරස් ලෙස තබා ගැනීම සඳහා V ශීර්ෂයට ඇඳිය යුතු අංශුවේ m ස්කන්ධය, M ඇසුරෙන් සොයන්න.
- (b) V හි දී සම්බන්ධ කරන ලද m ස්කන්ධය ද සහිත S සංයුක්ත වස්තුව, එල්ලන ලද ලක්ෂායෙන් ඉවත් කර, එහි අර්ධගෝලීය පෘෂ්ඨය අචල සුමට තිරස් නලයක ඇතිව සමතුලිනව තබනු ලැබේ. OV අක්ෂය හා උඩු අත් සිරස අතර කෝණයේ අගය පරාසය සොයන්න.
- 17.(a) මිනිසෙක්, යතුරු පැදිය, පා පැදිය හෝ පයින් යන ගමන් කුම තුනෙන් එකක් පමණක් යොදා ගනිමින්, නිශ්චිත මාර්ගයක් දිගේ අනතුරු සහිත ගමනක් යයි.

මිනිසා මෙම ගමනාගමන කුම යොදා ගැනීමේ සම්භාවිතා පිළිවෙළින් $p,\,2p$ හා 3p වේ නම්, p හි අගය සොයන්න.

ඔහු මෙම ගමනාගමන කුම යොදා ගැනීමේ දී අනතුරක් සිදු වීමේ සම්භාවිතා පිළිවෙළින් $\frac{1}{5}$, $\frac{1}{10}$ සහ $\frac{1}{20}$ වේ නම්, තනි ගමනක දී අනතුරක් සිදු වීමේ සම්භාවිතාව ගණනය කරන්න.

ගමන අතරතුරේ දී මිනි<mark>සාට</mark> අනතුරක් සිදු වී ඇති බව දන්නේ නම්, මිනිසා ගමන් කරමින් සිටියේ,

(i) යතුරු පැදියෙන්, (ii) පා පැදියෙන්, (iii) පයින්

වීමේ සම්භාවිතාව ගණනය කරන්න.

වඩාත් ආරක්ෂිත වූගේ කුමන ගමනාගමන කුමය ද? ඔබගේ පිළිතුර සනාථ කරන්න.

(b) කාර්මික විදහල සිසුන් 100 ක කණ්ඩායමක් මහා මාර්ගයක එක්තරා කොටසක් මනින ලද අතර, ඔවුන්ගේ මිනුම් පහත සඳහන් සංඛානත වගුවේ දක්වා ඇත.

දි <mark>ග</mark> (මීටර) <i>x</i>	99.8	99.9	100.0	100.1	100.2	100.3	100.4
සංඛාහාතය f	5	7	12	33	25	15	3

උපකල්පිත මධානය $\overline{X}_a=100.1$ හා d=0.1 සඳහා, $y=\frac{x-\overline{X}_a}{d}$ පරිණාමනය භාවිතයෙන්, අනුරූප y හා y^2 අගයන් ඇතුළත් කෙරෙන පරිදි ඉහත වගුව විස්තීරණය කරන්න. y හි මධානය සොයා, **ජනයින්** x හි මධානය 100.123 බව පෙන්වන්න.

 $\sqrt{1.917} \approx 1.385$ බව ගතිමින්, සංඛාහත වහාප්තියේ සම්මත අපගමනය, ආසන්න වශයෙන් දශමස්ථාන තුනකට නිවැරදි ව, ගණනය කරන්න.

ងិជទ្ធ ២ សិមិត្តមិ ជុះសិស៊ីមិ (ហូយូប់ បង្សប់ប្រៅសេសបុរាយរង្វេ/All Rights Reserved)

g gem) இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பிடிவித் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of Examina

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2015 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2015 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2015

கூலுகை පොදු පරීක්ෂණය பொதுச் சாதாரணப் பரீட்சை Common General Test

පැය දෙකයි මිනිත්තු තිහයි

இரண்டு மணித்தியாலமும் முப்பநு நிமிடமும் Two hours and thirty minutes

- උපදෙස්: * පිටු අංක පිළිවෙළට පුශ්න පතුය සකස් කරගන්න.
 - * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
 - 🕸 ගණක යන්තු භාව්තයට ඉඩ දෙනු නොලැබේ.
 - * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ **විභාග අංකය** ලියන්න.
 - 🔻 උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න.
 - * 1 සිට 60 තෙක් එක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාම<mark>න් ගැළපෙන</mark> පිළිතුර තෝරා ගෙන, එය උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක් (×) යොදා දක්වන්න.
- **01.** 2015 ලෝක කුසලාන කිුකට් තරගාවලියේ, අර්ධ අවසාන තරග සඳහා පෙනී සිටියේ පහත සඳහ<mark>න්</mark> කුමන රටවල් හතරෙහි කණ්ඩායම් ද?
 - (1) ඕස්ටේලියාව, ඉන්දියාව, ශුී ලංකාව සහ දකුණු අපිකාව
 - (2) ඕස්ටේුලියාව, ඉන්දියාව, නවසීලන්තය සහ දකුණු අපිකාව
 - (3) ඕස්ටේලියාව, නවසීලන්තය, පාකිස්ථානය සහ ඉන්දියාව
 - (4) ඕස්ටේුලියාව, නවසීලන්තය, ශුී ලංකාව සහ ඉන්දියාව
 - (5) ඕස්ටේුලියාව, නවසීලන්තය, ඉන්දියාව සහ එංගලන්තය
- 02. 2014 වර්ෂයේ මාර්තු මාසයේ දී අංක MH370 දරන ජාතාන්තර මගී පුවාහන ගුවන් යානය පියාසර කරමින් තිබිය දී අතුරුදහන් විය. මෙම ගුවන් යානය අයත් වූ රට කුමක් ද?
 - (1) මැලේසියාව

(2) සිංගප්පුරුව

(3) මෝල්ඩෝවා

- (4) මොරොක්කෝව
- (5) ඉන්දුනීසියාව
- 03. ISIS යනු අන්තවාදී කැරලි කණ්ඩායමකි. මෙම කණ්ඩායම පහත සඳහන් කුමන රටෙහි භූමි පුදේශයක් පාලනය කරයි ද?
 - (1) සවුදි අරාබිය
- (2) ඉරානය
- (3) ඉරාකය
- (4) ලෙබනනය
- (5) මොරොක්කෝව
- **04.** 2014 සැප්කැම්බර් 17 වැනි දින සමරන ලද්දේ ශී<mark>ම</mark>ත් අනගාරික ධර්මපාලතුමාගේ කී වැනි ජන්ම සංවත්සරය ද?
 - (1) 100
- (2) 120
- (3) 125
- (4) 150
- (5) 160

- 05. 2016 වර්ෂයේ දී හුීෂ්ම ඔලිම්පික් කීඩා තරග පවත්වනු ලබන්නේ,
 - (1) එක්සත් රාජධානියේ ය.
- (2) ජපානයේ ය.

(3) ස්පාඤ්ඤයේ ය.

(4) කටාර්වල ය.

- <mark>(</mark>5) බුසීලයේ ය.
- **06.** ආසියානු කලාපයේ ආයෝජන <mark>වනාප</mark>ෘති සඳහා මූලා සැපයීම් වෙනුවෙන් ආසියානු පොදු කාර්ය සංවිධාන ආයෝජන බැංකුව (AIIB) 2014 ඔක්තෝබ<mark>ර්</mark> මාසයේ ස්ථාපිත කෙරිණි. AIIB හි මූලස්ථානය පිහිටියේ,
 - (1) මැලේසියාවේ ය.
- (2) චීනයේ ය.

(3) හොංකොංවල ය.

- (4) සිංගප්පූරුවේ ය.
- (5) ඉන්දියාවේ ය.
- 07. 2014 ලෝක කු<mark>සලාන (T2</mark>0) විස්සයි විස්ස අවසන් කිුකට් තරගයේ දී ශී ලංකාව, ඉන්දියාව පරාජය කර ශූරතාව දිනා ගත්තේ ය. මෙ<mark>ම</mark> තරගයේ දී ශී ලංකා කණ්ඩායමේ නායකත්වය දැරුවේ කවු ද?
 - (1) ටී. එම්. දිල්ශාන්

- (2) මහේල ජයවර්ධන
- (3) කුමාර් සංගක්කාර

- (4) දිනේෂ් චන්දිමාල්
- (5) ලසිත් මාලිංග
- - (1) වසරකට වරක්

- (2) වසර 2 කට වරක්
- (3) වසර 3 කට වරක්

- (4) වසර 4 කට වරක්
- (5) වසර 5 කට වරක්
- **09.** මිනිසුන් කිහිපදෙනකු ජීවිතක්ෂයට පත්කරමින් සහ 200 කට වැඩි පිරිසක් අතුරුදහන් කරමින් 2014 ඔක්තෝබර් 29 වැනි දින නායයාමකට ලක් වූ දිස්තිුක්කය කුමක් ද?
 - (1) රත්නපුර
- (2) නුවරඑළිය
- (3) මහතුවර
- (4) බදුල්ල
- (5) මාතලේ
- 10. දැනට ඉදිවෙමින් පවතින සාම්පූර් විදුලි බලාගාරය කියාත්මක කෙරෙන්නේ,
 - (1) ගල් අඟුරු බලයෙනි.
- (2) ජල විදුලි බලයෙනි.
- (3) සූර්ය ශක්තියෙනි.

(4) සුළං බලයෙනි.

(5) උදම් තරංග බලයෙනි.

- 11. නිදන්ගත වකුගඩු ආබාධය (CKD), උතුරුමැද පළාතේ (NCP) බරපතල සෞඛා ගැටලුවකි. වර්තමාන තොරතුරුවලට අනුව NCP හි CKD සඳහා පුබලම හේතුව වී ඇත්තේ,
 - (1) ඇතැම් පළිබෝධතාශකවලින් විෂ වූ ජලය භාවිතයයි.
 - (2) ජලාශවල බැර ලෝහ තිබීමයි.
 - (3) පොහොර භාවිතය පුළුල්ව වනාප්ත වීමයි.
 - (4) ජලය සහ පස අධික ලෙස දූෂණය වීමයි.
 - (5) NCP හි ජනතාවගේ ජීවන රටා වෙනස් වීමයි.
- 12. සංගණන හා සංඛාාන දෙපාර්තමේන්තුව මගින් 2015 මාර්තු මාසයේ මුදා හරින ලද දත්තවලට අනුව, රටේ තොරතුරු තාක්ෂණ සාක්ෂරතාව ඉහළ ගොස් ඇත්තේ
 - (1) 3% දක්වා ය.
- (2) 16% දක්වා ය. (3) 20% දක්වා ය. (4) 25% දක්වා ය. (5) 40% දක්වා ය.

- 13. ශ්‍රේඪාධිකරණයේ නියෝගයට අනුව, 19 වන වාවස්ථා සංශෝධනයේ යෝජිත පනතෙහි, ජනමත විචාරණයකින් ජනතාවගේ අනුමැතිය ලබා ගත යුතු, ලක්ෂණයක් වන්නේ පහත සඳහන් ඒවා අතුරෙන් කවරක් ද?
 - (1) වාවස්ථාපිත මණ්ඩලය නැවත පණ ගැන්වීම සහ නිදහස් කොමිනේ සභා කාර්ය මණ්ඩල පිහිටුවීම
 - (2) පුද්ගලයකු ජනාධිපතිවරයා වශයෙන් පත්වීම දෙවරකට සීමා කිරීම නැවත හඳුන්වා දීම
 - (3) වසර හතරහමාරකට පසු ව පමණක් ජනාධිපතිවරයාට පාර්ලිමේන්තුව විසුරුවා හැරීමේ බලය ලබා දීම
 - (4) ජනාධිපතිධුරයේ සහ පාර්ලිමේන්තුවේ කාල සීමාව වසර හයේ සිට වසර පහ දක්වා අඩු කිරීම
 - (5) අමාතා මණ්ඩලයේ පුධානියා ලෙස අගුාමාතාවරයා පත් කිරීම සහ ඔහුට අමාතාවරුන් සංඛාව, විෂයය සහ කාර්යයන් අමාතාවරුන්ට පැවරීම තීරණය කිරීමට හැකියාව ලබා දීම
- 14. 2015 අපේල් 25 දින නේපාලයේ ඇති වූ පුබල භුමිකම්පාව සිදු වූ වහාම ශී් ලංකාව විවිධ ආකාරවලින් නේපාලයට ආධාර කරන ලදී. ශුී ලංකාවේ දායකත්වය පිළිබඳ ව පහත සඳහන් කුමන පුකාශය **අස**ත්<mark>ෂ වේ</mark> ද?
 - (1) ශී් ලංකා චෛදාා කණ්ඩායමක් භූමිකම්පාවෙන් අනතුරට පත් වූ අයට පුති<mark>කාර</mark> කරන ලද අතර දුරස්ථ කඳුකර පුදේශවල ජංගම සායන පවත්වන ලදී.
 - (2) ශී් ලංකා රජය, ගෘහස්ථ ගෑස් අතුළු ව බනිජ තෙල් නිෂ්පාදන තේපාල <mark>රජය වෙ</mark>න සපයන ලදී.
 - (3) ඉංජිනේරු බලඇණි වීසින් සමහර හින්දු පූජනීය ස්ථානවල ව<mark>ටපිටාව</mark> පිරිසිදු කර, බැතිමතුන්ට ආගමික වත් පිළිවෙත් කිරීමට අවස්ථා සලසා දෙන ලදී.
 - (4) අවශා පුද්ගලයන් සඳහා බෙදා හැරීමට අතාවශා භාණ්ඩ රගත් SLAF ගුවන් යානාව ශී ලංකා රජය විසින් නේපාලයට පිටත් කර යවන ලදී.
 - (5) ශී් ලංකා යුධ හමුදා ඉංජිනේරු බලඇණි විසින් <mark>ගිල</mark>න්<mark>ර</mark>එ හා අතාවශා භාණ්ඩ ගෙන යන වාහනවලට ගමනාගමනය සඳහා මාර්ග පිළිසකර කරදෙන ලදී.
- 15. මෙම වර්ෂයේ ජනවාරි සිට මැයි දක්වා කාලය<mark>ේ</mark> දී <mark>ජ</mark>විත අහිමිවීම් කිහිපයක් සමග ඉන්ෆ්ලුවෙන්සා A වර්ගයේ රෝගීන් 100 කට අධික පුමාණයක් ශීූ ලංකා<mark>වේ විවිධ</mark> පුදේශවලින් වාර්තා විය. මෙම විශේෂිත වෛරසය හඳුන්වනු ලබන්නේ,
 - (1) H1N1 ලෙස ය. (2) H2N2 ලෙස ය. (3) H3N2 ලෙස ය. (4) H5N1 ලෙස ය. (5) H7N7 ලෙස ය.
- 16. $\bigcirc\bigcirc\bigcirc\bigcirc$ = $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ හා $\bigcirc\bigcirc\bigcirc$ = $\triangle\triangle$ \triangle ලෙස දී ඇති විට, $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$ තුලා වන්නේ \triangle කීයකට ද?
 - (1) 3
- (3) 9
- (4) 12
- 17. නිමල්ගේ අත් ඔරලෝසුව <mark>හරියටම</mark> පැය එකක් අඩුවෙන් වේලාව පෙන්වයි. හොංකොං වේලාව, ශී් ලංකාවේ වේලාවට වඩා පැය තුනක් ඉදිරියෙ<mark>න් නම්</mark>, නිමල්ගේ ඔරලෝසුව ප.ව. 4.00 පෙන්වන විට හොංකොං වේලාව කුමක් විය හැකි ද?
 - (1) ප.ව. 1.00
- (2) ප.ව. 2.00
- (3) ප.ව. 7.00
- (4) ප.ව. 8.00
- (5) ප.ව. 9.00
- 18. අමිල තම මවට <mark>වඩා අවු</mark>රුදු 28 කින් බාල ය. 1968 වසරේ උපන් අමිලගේ සොහොයුරා, ඔහුගේ මවට වඩා අවුරුදු 38 කින් බාලය. අම්ල උපන්නේ කුමන වසරේ දී ද?
 - (1) 1938
- (2) 1948
- (3) 1958
- (4) 1978
- (5) 1988
- 19. රාජු<mark>ගේ වයස</mark> හා බන්දුලගේ වයස අතර අනුපාතය 3 : 2 වේ. වසර හයකට පෙර, රාජුගේ වයස ඔහුගේ දැන් වයසෙන් අර්ධයකි. බන්දුලගේ දැන් වසය කීය ද?
 - (1) අවුරුදු 6
- (2) අවුරුදු 8
- (3) අවුරුදු 10
- (4) අවුරුදු 12
- (5) අවුරුදු 16
- ${f 20.}$ N යනු ඉලක්කම් දෙකේ සංඛාාවක් වන අතර එහි ඉලක්කම් දෙකෙහි ගුණිතය ${f 8}$ වේ. N ට ${f 18}$ ක් එකතු කළ විට පිළිතුර ලෙස ලැබෙන සංඛ්යාව N හි ඉලක්කම් මාරු කළ විට ලැබෙන සංඛ්යාව වේ. N සමාන වන්නේ,
 - (1) 18ටය.
- (2) 24ටය.
- (3) 42ටය.
- (4) 72ටය.
- (5) 81 ට ය.
- 21. HAREN, KISHAN හා TUAN යන නම් පිළිවෙළින් 23516,894236 හා 7036 ලෙස කේත කර ඇත්නම්, SRIKANTH යන නමට අදාළ කේතය වන්නේ,
- (1) 45936872 a. (2) 45987632 a. (3) 45983672 a.
- (4) 48953672 ය.
- (5) 45983276 a.

- 22. දී ඇති රූපයේ තිබෙන තිකෝණ සංඛ්යාව සොයන්න.
 - (1) 12
- (2) 18
- (3) 22(5) 30
- (4) 26

23. දී ඇති ඝනකය සෑදීමට පහත දී ඇති රටාවලින් නැවිය යුත්තේ කුමන රටාව ද?

24. පෙන්වා ඇති හැඩය සෑදීම සඳහා ඒකරාශී කළ යුතු වන්නේ පහත සඳහන් කුමන හැඩ සමූහය ද?

- 25. එක් විශේෂ ඉරිදා දිනක නිමල් පහත සඳහන් කිුයාකාරකම් හය සිදු කිරීමට බලාපොරොත්තු වෙයි. 🦴
 - * දෙමව්පියන් සමග සාප්පු යාම
- 🌞 අම්මා සමග ගෙවත්තේ වැඩ කිරීම
- * මිතුරත් සමග කිුකට් කිුීඩා කිරීම
- * තම කාමරය පවිතු කිරීම

* සපත්තු මැදීම

* බයිසිකලය සර්විස් කිරීම

එක් එක් තියාකාරකම එක් වතාවක් පමණක් සිදු කරන අතර, එක් වතාවකට සිදු කරනු ලබන්නේ එක් කියාකාරකමකි. කියාකාරකම් සිදු කරන අනුපිළිවෙළ පහත දී ඇති තත්ත්වවලට යටත් වේ.

- 🛮 ගෙවතු වැඩ අවසන් වූ වහාම සාප්පු යාම
- සාප්පු යාමට පෙර කාමරය පවිතු කිරීම
- සපත්තු මැදීමට පෙර බයිසිකලය සර්විස් කිරීම
- 🏮 කුිකට් කුීඩා කිරීමට පෙර හෝ කුීකට් කුීඩා කිරීමෙන් පසු බයිසිකලය සර්විස් කිරීම

කාමරය පවිතු කිරීමට පෙර සපත්තු මැදීම සිදු කරයි නම්, ගෙවත්තේ වැඩ කිරීම සිදු විය යුත්තේ,

- (1) පළමුවැනියට ය. (2) දෙවැනියට ය. (3) තුන්වැ<mark>නියට ය.</mark> (4) හතරවැනියට ය. (5) පස්වැනියට ය.
- 26. X + Y මගින් අදහස් කෙරෙන්නේ X යනු Y ගේ සහෝදරයා බව ද X Y මගින් අදහස් කෙරෙන්නේ X යනුY ගේ සොහොයුරිය බව ද $X \times Y$ මගින් අදහස් කෙ<mark>රෙන්නේ X යනු Y ගේ පියා බව ද නම්, පහන සඳහන් කුමක් C, M ගේ පුතා බව අදහස් කරයි ද?</mark>
 - (1) $M-N\times C+F$
- (2) $F-C+N\times M$
- (3) $N+M-F\times C$

- (4) $M \times N C + F$
- (5) M-N+F×C
- 27. උෂ්ණත්වය 30 °C හෝ ඊට වැඩි වූ සෑම අවස්ථාවක ම අපේල් මාසය තුළ කොළඹ ආර්දුතාව 75% හෝ ඊට වඩා වැඩි විය. මෙම මාසය තුළ උෂ්ණත්වය 25 °C සිට 38 °C දක්වා විචලනය විය.

ඉහත වගන්තිය සතා න<mark>ම්, අපේ</mark>ල් මාසය තුළ කොළඹ උෂ්ණත්වය හා ආර්දුතාව පිළිබඳ පහත සඳහන් කුමක් තිවැරදි වාර්තාවක් විය **නොහැකි ද**ු ?

- (1) 28 °C, 72%.
- (2) 29°C,73%.
- (3) 30°C,74%.
- (4) 31°C,75%.
- (5) 36 °C, 76%.
- 28. 2009 2015 කාල වකවානුව තුළ එක්තරා විභාගයකින් සමත් වූ ශිෂා පුතිශතය පුස්තාරයේ පෙන්වයි. පහත සඳහන් කුමන වර්ෂයේ දී/වර්ෂවල දී විභාගයට ඉදිරිපත් වූ ශිෂායන්ගෙන් 2/3 කට වඩා සමත් **නොවුණි ද**?
 - (1) 2012 දී පමණ
- (2) 2012 හා 2013
- (3) 2012 so 2014
- (4) 2013 හා 2014
- (5) 2014දී පමණි

[හතරවැනි පිටුව බලන්න.

පුශ්න අංක 29 සහ 30 පහත සඳහන් වගුව මත පදනම් වේ.

පෞද්ගලික අංශයේ පිරිමි, අනියම් සේවකයන් සඳහා දිනක සාමානා වැටුප රුපියල්වලින් පහත වගුවේ දී ඇත.

අංශය	2010	2011	2012	2013
තේ	545	617	691	764
රබර්	588	658	741	853
පොල්	700	783	887	997
වී	658	704	787	882
වඩු කර්මාන්තය	1000	1115	1248	1334
පෙදරේරු වැඩ	994	1093	1216	1304

29. 2010 සිට 2013 දක්වා ආදායමේ කුඩාතම වැඩි වීම සිදු වී ඇති අංශය කුමක් ද?

(1) පෙදරේරු වැඩ (2) රබර්

(3) පොල්

(4) වී

(5) තේ

30. 2012 සිට 2013 දක්වා ආදායම වැඩි ම පුතිශතයකින් ඉහළ ගොස් ඇත්තේ කුමන අංශයේ ද?

(1) වඩු කර්මාන්තය (2) පෙදරේරු වැඩ (3) තේ

(4) රබර්

(5) පොල්

පුශ්න අංක 31 සහ 32 දී ඇති වගුව මත පදනම් වේ. 2008 සිට 2013 දක්වා කාල පරිච්ඡේදය තුළ ශීු ලංකාවේ ආනයනවල මුළු අගයන් (I) හා අපනයනවල මුළු අගයන් (E) ආසන්න වශයෙන් රුපියල් බිලියනවලින් වගුවේ දී ඇත.

වර්ෂ	2008	2009	2010	2011	2012	2013
I	1512	1122	1385	2111	2261	2293
Е	885	818	937	1107	1171	1292

31. ආනයන අගයන් අපනයන අගයන්ට වඩා අවම වශයෙන් 50% කට වඩා වැඩි වී ඇත්ත<mark>ේ වර්ෂ කී</mark>යක ද?

(1) 1

(2) 2

(3) 3

(4) 4

(5) 5

32. දී ඇති කාලය තුළ අපනයනවල සාමානා අගය රුපියල් බිලියනවලින් කො<mark>පමණ ද?</mark>

(1) 950

(2) 1035

(3) 1065

(4) 1135

(5) 1235

33. පෙර දශකවලට වඩා පසුගිය දශකය තුළ, භුමිකම්පා, ගිනිකඳු පිපිරීම් හා අසාමානා කාලගුණ තත්ත්ව, මිනිසුන්ට පීඩාකාරී ලෙස බලපෑම් ඇති කරමින් ස්වාභාවික වාසන ඇති කිරීමට හේතු විය. ස්වාභාවික පරිසරයකින් යුක්ත පෘථිවි ගෝලය වාසයට නුසුදුසු තත්ත්වයට පත්ව ඇති බවත් අනතුරුදායක බවත්, නිගමනය කළ හැකි අතර අප මෙම පුවණතාවට හේතු සෙවීමට කාලගුණ සහ භූ විදාහඥයන් යෙදවිය යුතු ය.

පහත සඳහන් පුකාශවලින් කුමක් සතා නම්, ඉහත නිගමනය බරපතල ලෙස දූර්වල කරයි ද?

- (1) පෙර දශකවලට වඩා පසුගිය දශකය තුළ ස්වාභාවි<mark>ක</mark> වසසන සඳහා වඩා හොඳ පූර්ව අනතුරු හැඟවීමේ පද්ධති කාලගුණ හා භූ විදාහඥයන් විසින් ඉදිරිප<mark>ත් කර ඇත</mark>.
- (2) පෙර දශකවලට වඩා පසුගිය දශකය තුළ ස්වාභාවික වෘසනවලින් අනතුරට පත්වූවන් සඳහා ජාතාන්තර සහන පුයන්න වඩාත් හොඳින් සංවිධානය කර ඇත.
- (3) ඇත අතීතයේ මෙන් ම මෑත අතීතයේත් ඇති වූ පුබල භූමිකම්පා, ගිනිකඳු පිපිරීම්, ඉඩෝර, නායයෑම් සහ ගංවතුර ඇති වීම් පිළිබඳ ව වාර්තා ඇත.
- (4) ජනගහන පීඩනය සහ දිළිඳුකුම, වැඩි වන ජන සංඛ්‍යාව ස්වාභාවික ව්‍යස්තවලට අවකාශ ඇති පුදේශවල ජීවත් වීම කෙරෙහි දැඩි ලෙස බල<mark>පා ඇත.</mark>
- (5) දේශගුණය කෙරෙහි බලපෑමක් කළ හැකි තරමට පසුගිය දශකයේ ජනතාවගේ භූමි පරිභෝජනය ඇසුරෙන් වෙනසක් ඇති වී නැත.
- 34. අක්මාව, වකුගඩු හා ස්නායු පද්ධතියට හානි පැමිණවිය හැකි සමහර කාර්මික රසායනික දුවා නිතරම පොදු ජල සැපයුම්වලට මුදා හැරේ. දිනකට ජලය ලීටර 2ක් පානය කිරීමෙන් පුද්ගලයකුට ශරීරගත වන කාර්මික රසායනික දුවා පුමාණය මානව සෞඛා කෙරෙහි සැලකිය යුතු හානියක් සිදු නොකරයි නම්, වර්තමානයේ පරීක්ෂා කර ඇති ජලය පිරිසිදු යැ'යි සැලකේ, නමුත්, මෙම කුමය මගින් ඇති කරන ලද පුමිතිය පොදු ජනතාව පුමාණවත් මට්ටමකට ආරක්ෂා නොකරන බවට බොහෝ වීෂ අධායයන විශේෂඥයෝ අදහස් පළ කරති.

පහත සඳහන් පුකාශවලින් කුමක් සතාඃ නම්, එමගින් විෂ අධාංයන විශේෂඥයන්ගේ ඉහත සඳහන් අදහසට හොඳම අනුබලයක් ලැබේ ද?

- (1) දුරස්ථ පුදේශවල බෝතල් කරන සිසිල් බීම වැනි බීමවල අඩංගු ජල පුමාණය පරිභෝජනය කිරීම ද දිනකට පානය කරන ජලය ලීටර 2 ට අඩංගු වේ.
- (2) සමහර කාර්මික රසායනික දුවා අඩු විෂ සහිත වන නමුත්, වියදම අධික බැවින් ඒවා කර්මාන්තවල භාවිත නොකෙරේ.
- (3) ජලය පොදු සැපයුම් පද්ධතියට මුදා හැරීමට පෙර, ජල පවිතුාගාර මධාාස්ථාන, බැක්ටීරියා සහ අනෙකුත් ජිවීන් පෙරා ඉවත් කෙරේ.
- (4) දැනගෙන වුවත් විෂ රසායනික දුවා ජල සැපයුම්වලට මුදා හැරීමට ඉඩ හරිමින් කර්මාන්තශාලාවලින් පරිසර දූෂණය සිදු කරන්නන්ට දඩ ගැසීම හෝ දඬුවම් පැමිණවීම සිදු කෙරෙන්නේ කලාතුරකිනි.
- (5) පානය කිරීමට වඩා සේදීමේ දී සහ නෑමේ දී බොහෝ කාර්මික රසායන දුවා සම හරහා අවශෝෂණය වීම මගින් ශරීරයට ඇතුළු වේ.

- 35. එක්තරා සමාගමක කාර්යාලයක සේවකයන් 50 දෙනකු සිටින අතර ඔවුන්ගෙන් 22 දෙනෙක් ගිණුම්කරණය පිළිබඳ පාඨමාලාවක් හදාරති. 15 දෙනකු මූලෳකරණය පිළිබඳ පාඨමාලාවක් හදාරත අතර 14 දෙනෙක් අලෙවිකරණය පිළිබඳ පාඨමාලාවක් හදාරති. සේවකයන්ගෙන් නවදෙනකු නිශ්චිතවම පාඨමාලා දෙකක් හදාරන අතර එක් සේවකයෙක් පාඨමාලා තුනම හදාරයි. සේවකයන් 50 දෙනාගෙන් කී දෙනෙක් කිසි ම පාඨමාලාවක් හැදෑරීමෙන් වැළකී සිටිත් ද?
 - (1) 0 (2) 9 (3) 10 (4) 11 (5)
- 36. සමන් පැය 5 ක දී ඒකක N සංඛාාවක් නිෂ්පාදනය කරයි. සමන් සහ නිමල් තනි තනිව වැඩ කරන නමුත් එක ම අවස්ථාවේ පැය 2 ක දී ඒකක N සංඛාාවක් නිෂ්පාදනය කරති. ඒකක N සංඛාාවක් තනිවම නිෂ්පාදනය කිරීමට නිමල් කොපමණ කාලයක් ගනියි ද?
 - (1) පැය 1 මිනිත්තු 26
- (2) පැය 1 මිනිත්තු 53
- (3) පැය 2 මිනිත්තු 30

- (4) පැය 3 මිනිත්තු 20
- (5) පැය 3 මිනිත්තු 30
- 🗣 අංක 37 සිට 39 තෙක් පුශ්න පහත දී ඇති පුස්තාරය මත පදනම් වේ.

X නම් විශ්ව විදාහලයක, ගැහැනු හා පිරිමි අධායන කාර්ය මණ්ඩලයේ වහාප්තිය පුතිශතයක් ලෙස හා ඔවුන් විශේෂිත වන විෂය ක්ෂේතුය පහත සඳහන් පුස්තාරයේ පෙන්වා ඇත.

- 37. මෙම විශ්ව විදාහලයේ මුළු පිරිමි අධායන කාර්ය මණ්ඩලය සියයට එකොළහට වඩා වැඩි වන ක්ෂේතු ගණන කොපමණ ද?
 - (1) දෙකයි
- (2) තුනයි
- (3) නතරයි
- (4) පහයි
- (5) හයයි
- 38. සමාජ විදාහ අංශයේ ගැහැනු අධායන කාර්ය මණ්ඩල සාමාජිකාවන් ගණන සියයට 75 කින් වැඩි කිරීමට නම්, සමාජ විදාහ අධානනාංශයේ සිටීය යුතු මුළු ගැහැනු සාමාජිකාවන් ගණන කොපමණ ද?
 - (1) 12
- (2) 14
- (3) 21
- (4) 2
- (5) 30
- 39. මානව ශාස්තු අංශයේ සිටින පිරිමි ප්‍රතිශතය ආසත්න වශයෙන් කොපමණ ද?
 - (1) 35%
- (2) 38%
- (3) 41%
- (4) 45%
- (5) 51%

🥯 අංක 40 සිට 42 තෙක් පුශ්න, පහත සඳහන් ඡේදය මත පදනම් වේ.

එක්තරා විශ්ව <mark>විදහාල</mark>යක ස්වාභාවික විදහා අංශයේ සිසුන් උපාධියට සුදුසුකම් සපුරාලීම සඳහා මානව ශාස්තු, ස්වාභාවික විදහා හා සමාජ විදහා යන ක්ෂේතු තුනෙන් තෝරාගත් පාඨමාලා දොළහක් සම්පූර්ණ කළ යුතු ය. පහත සඳහන් අවශාතා සපුරාලන පරිදි සිසුන් විසින් පාඨමාලා තෝරාගත යුතු ය.

- අවශා ක්රන පාඨමාලා දොළහෙන් **හයක්** අවම වශයෙන් ස්වාභාවික විදන අංශයෙන් විය යුතු ය.
- ු අ<mark>වශා</mark> කරන පාඨමාලා දොළහෙන් **පහක්** අවම වශයෙන් මානව ශාස්තු හා සමාජ විදාපාවලින් විය යුතු අතර, මානව ශාස්තු අංශයෙන් තෝරාගන යුතු සංඛාහව **තුනකට** නොවැඩි විය යුතු අතර අවම වශයෙන් **එකක්වත්** විය යුතු ය.
- 40. ශිෂායෙකු ස්වාභාවික විදාහ පාඨමාලා හයක් සම්පූර්ණ කර ඇත්නම්, පහත දී ඇති පාඨමාලා එකතුවෙන් කුමක් තෝරා ගැනීම ඔහුට/ඇයට උපාධිය ලැබීම සඳහා අවශාතා සම්පූර්ණ නොකෙරේ ද?
 - (1) මානව ශාස්තු පාඨමාලා තුනක් සහ සමාජ විදහා පාඨමාලා තුනක්
 - (2) මානව ශාස්තු පාඨමාලා දෙකක් සහ සමාජ විදාහ පාඨමාලා හතරක්
 - (3) මානව ශාස්තු එක් පාඨමාලාවක්, ස්වාභාවික විදහා එක් පාඨමාලාවක් සහ සමාජ විදහ පාඨමාලා හතරක්
 - (4) මානව ශාස්තු එක් පාඨමාලාවක්, ස්වාභාවික විදහා පාඨමාලා දෙකක් සහ සමාජ විදහ පාඨමාලා තුනක්
 - (5) මානව ශාස්තු පාඨමාලා තුනක්, ස්වාභාවික විදාහ එක් පාඨමාලාවක් සහ සමාජ විදාහ පාඨමාලා දෙකක්

- 41. උපාධිය සඳහා සුදුසුකම් සපුරාලීමට අවශා වන අවම සමාජ විදාා පාඨමාලා ගණන
 - (1) 1 a
- (2) 2 ය.
- (3) 3 ය.
- (4) 4 cs
- (5) 5 ය.
- 42. ශිෂායකු ස්වාභාවික විදාහ පාඨමාලා හයක් සහ එක් සමාජ විදාහ පාඨමාලාවක් සම්පූර්ණ කර ඇත්නම්, උපාධිය සඳහා සුදුසුකම් සපුරාලීමට අවශා පාඨමාලා කාණ්ඩයට අවම වශයෙන් තිබිය යුතු ම වන්නේ,
 - (1) මානව ශාස්තු පාඨමාලා දෙකකි.
- (2) මානව ශාස්තු පාඨමාලා තුනකි.
- (3) එක් ස්වාභාවික විදන පාඨමාලාවකි.
- (4) එක් සමාජ විදනා පාඨමාලාවකි.
- (5) සමාජ වීදහා පාඨමාලා තුනකි.
- ullet අංක ullet 43 සිට ullet 45 තෙක් පුශ්න සඳහා ගැටලුවක් සහ X හා Y වගන්ති දෙකක් දී ඇත. පහත දී ඇති උපදෙස් අනුව ඔබේ පුතිචාරය තෝරන්න.
 - st විසඳුම සෙවීමට X පුකාශය පමණක් පුමාණවත් නම්, A තෝරන්න.
 - st විසඳුම සෙවීමට Y පුකාශය පමණක් පුමාණවත් නම්, B තෝරන්න.
 - st විසඳුම සෙවීමට X පුකාශය හා Y පුකාශය යන දෙකෙන් ඕනෑ ම එකක් පුමාණවත් නම්, C තෝරන්න.
 - st විසඳුම සෙවීමට X හා Yපුකාශ දෙක ම අවශා නම්, D තෝරන්න.
 - st විසඳුම සෙවීමට X හා Y යන පුකාශවල දී ඇති තොරතුරු පුමාණවත් නො වේ නම්, E තෝරන්න.
- 43. Pසිට Q දක්වා යාමට ගත වන කාලය කොපමණ ද? Pසිට Q දක්වා යාමට හා ආපසු P දක්වා ඒමට පැය 4 ක් ගත වේ.
 - $X \to \operatorname{Q}$ සිට P දක්වා යාමට ගත වන කාලයට වඩා 25% කින් වැඩි කාලයක් P සිට Q දක්වා යාමට ගත වේ.
 - Y P සහ Q අතර මැද R පිහිටන අතර P සිට R දක්වා යාමට සහ ආපසු P දක්වා ඒමට පැය 2 ක කාලයක් ගත වේ.
 - (1) A
- (2) B
- (3) C
- (4)
- (5) E
- $oxed{44.}\;LMNO$ යනු සෘජුකෝණාසුයකි. වඩා විශාල වර්ගඵලයක් ඇත්තේLOUV හෝ NMVU දෙකෙන් කුමන කොටසට ද?
 - X VMට වඩා OU විශාල වේ.
 - Y NM ව වඩා OU විශාල වේ.
 - (1) A
- (2) B
- (3) C

- (4) D
- (5) E

- 45. රමේෂ්ගේ සතියක වැටුප කොපමණ ද?
 - X රමේෂ්ගේ සතියක වැටුප, නිමල්ගේ සතියක වැටුප මෙන් <mark>දෙගුණයකි</mark>.
 - Y නිමල්ගේ සතියක වැටුප, සරත්ගේ සතියක වැටුපේත්, ර \mathbf{e} ම්මගේ සතියක වැටුපේත් එකතුවෙන් 40% කි.
 - (1) A
- (2) B
- (3) C
- (4) D
- (5) E

👂 අංකු 46 හා 47 පුශ්න සඳහා පහත සඳහන් ඡේදය කියව<mark>න්න</mark>.

නීතිමය හා සදාචාරාත්මක අයිතීන්වලට ගරු කිරීම පුතික්ෂේප කරන, රියදුරන්ගේ අශිෂ්ට හැසිරීමෙන් මහා මාර්ගයේ රිය අනතුරු සිදු වේ. එම නිසා මහා මාර්ගයේ සිදු වන මෙම වාසනය සමාජ පුශ්නයක් ලෙස සැලකිය හැකි ය. නිෂ්පාදකයාගේ පාර්ගවයෙන් මෙන් ම කලින් කල මාර්ගයේ සිදු කෙරෙන යෝගාතා පිරික්සීම යන අංශ දෙක ම අනුව වාහන සඳහා ආරක්ෂක පුමිති තත්ත්ව ඉහළ නංවා ඇත. ඊට අමතරව වේග සීමා අඩු කර ඇත. මෙම කිුිියාමාර්ග හේතුවෙන් අනතුරු සිදු වීමේ ශීඝුතාව අඩු වී ඇත. නමුත්, රියදුරන්ගේ හැසිරීමේ සුළු දියුණුවක් පමණක් පැවතීම හෝ රියදුරන්ගේ හැසිරීමේ කිසිදු දියුණුවක් දක්නට නොමැති වීම නිසා රිය අනතුරු සම්බන්ධ විශේෂඥයෝ කනස්සල්ලට පත්ව සිටිති.

- 46. ඡේදයට අනුව, රිය අනතුරු සමාජ පුශ්නයක් ලෙස සැලකිය හැක්කේ,
 - (1) මෝටර් රථය අන්ත<mark>ුරාදායක</mark> නිෂ්පාදනයක් නිසා ය.
 - (2) අපරික්ෂාකාරී රියදුරත්ට වඩා උපදුව සහිත මාර්ග තත්ත්ව හේතුවෙන් මාර්ග අනතුරු බොහෝමයක් සිදු වන නිසා ය.
 - (3) මාර්ග අනතුරු බොහෝමයක් සිදු වන්නේ මාර්ග නීති කෙරෙහි අවධානය යොමු නොකරන රියදුරන් නිසා ය.
 - (4) රිය අනතු<mark>රු බො</mark>හෝමයක් සඳහා හේතු වන වැරදි, රියදුරන්ට පමණක් සීමා නො වන නිසා ය.
 - (5) බරපතල ආර්ථික හානි සඳහා රිය අනතුරු හේතු වන නිසා ය.
- 47. ඡේදයට අනුව රිය අනතුරු සංඛ්යාව අඩු වී ඇත්තේ,
 - (1) ආරක්ෂිතව වාහන ධාවනය කෙරෙහි සැලකිය යුතු පුගමනයක් ඇති කර ඇති නිසා ය.
 - (2) වාහන ධාවනය, නිරන්තර සැලකිලිමත් බව හා අවධානය අවශා වන කුසලතාපූර්ණ කර්තවායක් බව බොහෝ මිනිසුන් දන්නා නිසා ය.
 - (3) මාර්ග තුළ දී අතිශයින් ම සැලකිලිමත් විය යුතු බවට රියදුරන්ට අනතුරු අඟවා ඇති නිසා ය.
 - (4) වාහන ධාවනය වඩාත් හොඳින් සිදු කරන්නේ කෙසේ දැ'යි රියදුරන් අවසානයේ ඉගෙන ගෙන ඇති නිසා ය.
 - (5) රියදුරත්ගේ ආකල්පවල දියුණුවක් ඇති වී තිබෙන නිසා ය.

- 🗣 අංක 48,49 හා 50 හි පුශ්නවල නිගමනයක් හා I,II,III ලෙස අංක කරන ලද තොරතුරු කාණ්ඩ තුනක් දී ඇත.
 - * තොරතුරු කාණ්ඩ තුනෙන් එක් කාණ්ඩයක් භාවිත කිරීමෙන් එම නිගමනයට එළඹිය හැකි නම්, A තෝරන්න.
 - st තොරතුරු කාණ්ඩ f I හා f II භාවිත කිරීමෙන් නිගමනයට එළඹිය හැකි නම්, f B තෝරන්න.
 - st තොරතුරු කාණ්ඩ I හා III භාවිත කිරීමෙන් නිගමනයට එළඹිය හැකි නම්, C තෝරන්න.
 - st තොරතුරු කාණ්ඩ ll හා ll හාවිත කිරීමෙන් නිගමනයට එළඹිය හැකි නම්, D තෝරන්න.
 - st තොරතුරු කාණ්ඩ I හා II හා III භාවිත කිරීමෙන් නිගමනයට එළඹිය හැකි නම්, E තෝරන්න.
- 48. නිගමනය : 2015 මාර්තු අපේල් මාසවල ඇති වූ අනපේක්ෂිත මහ වැසි හේතුවෙන් කිලිනොච්චි දිස්තික්කයේ වී ගොවීන්ගෙන් 50% කට අහිතකර බලපෑම් ඇති විය.
 - කිලිනොච්චි දිස්තිුක්කයේ වී ගොවීන්ගෙන් 30% ක්, මහ වැසි හේතුවෙන් වී පුරෝහණය නොවීමේ තර්ජනයට මුහුණ දුන්හ.
 - II. 2015 මාර්තු අපේල් මාසවල ඇති වූ මහ වැසි හේතුවෙන්, වී පැළ නොවුණු බැවින් කිලිනොච්චි දිස්තික්කයේ වී ගොවීන්ගෙන් 20% ක් වගා කටයුතු නොකළහ.
 - III. පැළ නොවීමේ තර්ජනයෙන් වැළකීමට වී ගොවීන්ගෙන් 30% ක් පැළ සිටුවීමේ කුමය භාවිත කළහ.
 - (1) A
- (2) B
- (3) C
- (4) D
- (5) i

- 49. නිගමනය : වර්ණය අනුව තරු වර්ගීකරණය කෙරේ.
 - තරු, වර්ණයෙන් විවිධ වේ.
 - කරුවක වර්ණය එහි මතුපිට උෂ්ණත්වය මත රඳා පවතී.
 - III. විවිධ තරුවල මතුපිට උෂ්ණත්වය වෙනස් වේ.
 - (1) A
- (2) B
- (3) C
- (4) D
- (5) E

- 50. නිගමනය : විමල්ගේ ලකුණුවලට වඩා කමල්ගේ ලකුණු අඩු ය.
 - කමල්ගේ ලකුණුවලට වඩා අමල්ගේ ලකුණු වැඩි ය.
 - II. අමල්ගේ ලකුණුවලට වඩා නිමල්ගේ ලකුණු වැඩි ය.
 - III. අමල්ගේ ලකුණුවලට වඩා විමල්ගේ ලකුණු වැඩි ය.
 - (1) A
- (2) B
- $(3)^{-}C$
- (4) D
- (5) I
- අංක 51 සහ 52 යන එක් එක් පුශ්නයේ, වගන්ති තුන බැගින් ඇති කෙටි <mark>ඡේද පහ</mark>ක් දී ඇත. එක් ඡේදයක පමණක් දී ඇති වගන්ති තුන තර්කානුකූල සම්බන්ධතාවක් පෙන්වයි. තර්කානුකූල සම්බ<mark>න්ධ</mark>තාවක් පෙන්වන ඡේදය තෝරන්න.
- **51.** (1) අරූන් ඉතා සතුටින් සිටියි. ඔහු පාසල් ගියේ ය. සන්ධාන කාලයේ දී ඔහු මිතුරන් සමග සෙල්ලම් කිරීමට ගියේ ය.
 - (2) සංජය ඉතා සතුටින් නොසිටියි. ඔහුගේ පියාට බැට් එකක් මිල <mark>දී ගැනීම</mark>ට නොහැකි විය. සංජයගේ පියා ගුරුවරයෙකි.
 - (3) සනත් ඔහුගේ පියා පැමිණෙන තුරු අශාවෙන් බලාගෙන සිටීයි. සනත්ගේ පියා අලුත් මෝටර් බයිසිකලයක් මිල දී ගත්තේ ය. සනත් පාසල් වෑන් රථයෙන් පාසල් යයි.
 - (4) අර්ජුන් සතුටින් සිටියි. අර්ජුන්ගේ මවට අලුතින් පිරිමි දරුවකු ඉපදී ඇත. අර්ජුන්ගේ පියා මෙම පුවත දුරකථනයෙන් අර්ජුන්ට පැවසී ය.
 - (5) කමල් 6 ශ්‍රේණියේ ඉගෙනුම ලබයි. කමල් අලුත් මෝටර් බයිසිකලයෙන් පියා සමග අද ගෙදර පැමිණියේ ය. කමල් සාමානායෙන් වෑන් රථයෙන් පාසලට යයි.
- 52. (1) මෑත ඉතිහාසයේ මාර්ග හොඳින් සං<mark>වර්ධ</mark>නය කර ඇත. පොලිස් සෝදිසි කිරීම් සියලු ම මාර්ගවල වැඩි කර ඇත. වැරදි කරන රියදුරන්ගෙන් ඒ මොහොතේ ම දඩ ගැසීම සිදු කරයි.
 - (2) උතුර දක්වා දුම්රිය මාර්ග පිළිසක<mark>ර කර</mark> ඇත. ශීඝුගාමී හා නගරාන්තර දුම්රිය සේවා වැඩි කර ඇත. සුඛෝපභෝගී බස් රථ සේවා නිරන්තරයෙන් කියාත්මක වේ.
 - (3) ඉන්ධන මිල පහළ ගොස් ඇත. ඉන්ධන අලෙවිය වැඩි වී ඇත. වැඩි දෙනා පොදු සහ පෞද්ගලික පුවාහන පද්ධති මගින් ගමන් කරති.
 - (4) පොහොර යෙදීමෙන්, අස්වැන්න වැඩි වී ඇත. කාබනික වගාව දිරිගන්වමින් ඇත. කාබනික ගොවිතැන මගින් නිෂ්පාදනය කරන ලද එළවලු සහ පලතුරු සෞඛ්‍යයට හිතකර ය.
 - (5) උක් ගස් ම<mark>ගින් සීනි</mark> නිෂ්පාදනය කෙරේ. ශී් ලංකාවේ සීනි නිෂ්පාදනය පුමාණවත් නො වේ. කිතුල් තෙලිජ්ජවලින් සීනි නිෂ්<mark>පාදනය</mark> කළ හැකි ය.
- ම මගියකු, K<mark>ando කු</mark>ලී රථ අයිතිකරුවකු හා රියදුරකු අතර ඇති වූ දුරකථන සංවාදයක් අනුපිළිවෙළ රහිතව පුශ්න අංක **53** හි දැක්වේ<mark>. වඩාත්</mark> තර්කානුකුල අනුපිළිවෙළක් දැක්වෙන පිළිතුර තෝරන්න.
- 53. A මහත්මයා, ඔබ Kando කුලී රථයක් වෙන් කර ගත්තා ද?
 - *B* ඔව්.
 - 🧲 මම නො. 20, චැපල් පටුමග, හැව්ලොක් පාර, කිරුලපන. මම සවස 3.00 ට නිවසින් පිටත් වී මාලබේට යනවා.
 - $m{D}$ ඔබේ තොරතුරු ලියාපදිංචි කර ඇත. අපේ රියදුරා ඉක්මනින් ඔබ සම්බන්ධ කර ගනීවි.
 - E මම Kando කුලී රථයේ පීටර්. මම නියම වෙලාවට එතැන ඉන්නවා.
 - F එය Kando කුලී රථයක් ද?
 - G ඔව් මහත්මයා, මට ඔබේ ලිපිනය, ගමනාන්තය සහ අවශා වේලාව දැනගන්න පුළුවන් ද?
 - H මහත්මයා, මම පීටර්, ඔබේ ගේට්ටුව අසල.
 - I මම ටික වෙලාවකින් එනවා, කරුණාකර ඉන්න.
 - J ස්තූතියි.
 - (1) ABCDEJHIFG

- (2) ABCDEJFGHI
- (3) ABFGCDEJHI

(4) FGCDEJABHI

(5) FGCDABEJHI

- 🛮 පුශ්න අංක 54 සහ 55 සඳහා පහත දී ඇති කිුයාකාරකම් කියවන්න.
 - A පුතා පාපැදියක් පදියි.
 - C පුතා තැපැල් කන්තෝරුවට ළඟා වෙයි.
 - E -මුද්දරය සහ ලියුම් කවරය අලවයි.
 - G ලියුම තැපැල් කරයි.
 - I -ලියුම් පෑඩයක් ගනියි.

- B ලියුම් කවරයක් ගනියි.
- D එය ලියුම් කවරය තුළට දමයි.
- F ලිපියක් ලියයි.
- H ලියුම් කවරයේ ලිපිනය ලියයි.
- J පූතා මුද්දරයක් මිල දී ගනියි.
- 54. පියකු විසින් ලියන ලද ලිපියක් තැපැල් කිරීම සඳහා තම පුතාට භාරදීමට පෙර අනුගමනය කරන ලද පියවර අනුපිළිවෙළින් දැක්වෙන පිළිතුර තෝරන්න.
 - (1) B, D, H
- (2) F, H, D
- (3) I, B, D
- (4) B, F, I
- (5) F, I, B
- 55. පුතා විසින් ලිපිය තැපැල් කිරීමට අදාළ කිුිියාකාරකම් දැක්වෙන නිවැරදි අනුපිළිවෙළ කුමක් ද?
 - (1) C, A, G
- (2) C, G, J
- (3) J, E, G
- (4) C, G, E
- (5) E, J, C
- 56. කිසියම් සිද්ධියකට අදාළ පින්තූර හයක් පහත දී ඇත. පින්තූරවල නිවැරදි අනුපිළිවෙළ දැක්වෙන පිළිතුර තෝරන්න.

(D)

(1) ACBDEF

- (2) FACBDE
- (3) ACBFDE
- (4) FCABDE
- (5) AFCBDE
- අංක 57 සහ 58 පුශ්න සඳහා පිළිතුරු සැපසීමට දී ඇති සංඥා අධ්‍යයනය කරන්න.

- 57. පහත සඳහන් ඒවා අතුරෙන් කුමක් 'සෞඛාව<mark>ත් ජීවිත සඳහා</mark> පරිසරය පවත්වා ගැනීම' හා සම්බන්ධ වේ ද?
 - (1) A සහ B
- (2) B සාහ C
- (3) *C* සහ *D*
- (4) D සාහ E
- (5) *E* සහ *F*
- 58. (a) සිට (d) දක්වා දී ඇති අනුපිළිවෙළ ලැ<mark>බෙ</mark>න පරිදි අදාළ සංඥා, අක්ෂර පිළිවෙළට සකස් කරන්න.
 - (a) ව්දුලියෙන් අනතුරු ඇති වීම
- (b) ගුණාත්මක භාණ්ඩයකි
- (c) ආබාධිත පුද්ගලයන් සඳහා
- (d) ගිනි ගන්නා සුළු ය.

- (1) ADCF
- (2) ADCE
- (3) *EACB*
- (4) *EDCF*
- (5) ADCB

👂 අංක 59 සහ 60 පුශ්න සඳ<mark>හා පහ</mark>ත දී ඇති ඡේදය කියවන්න.

ශී ලංකාවේ මහ රෝහල් වැඩි පුමාණයක් විවිධ උපකරණ භාවිත කරන ඉහළ තාක්ෂණ පුදේශ වේ. රෝගීන්ගේ රෝග හා ආබාධවලට හේතු සොයා බැලීමට භෞතික මිනුම් ලබා ගැනීම සඳහා මෙම උපකරණ භාවිත වේ. කුමානුකූලව සිදු කරනු ලබන භෞතික මිනුම්වලට උස සහ බර, ශරීර උෂ්ණත්වය, රුධිර පීඩනය සහ ECG ඇතුළත් වේ. රෝගීන්ගේ භෞතික මිනුම්, නිරෝගි පුද්ගලයන්ගේ භෞතික මිනුම් සමග සංසන්දනය කර, රෝග හෝ ආබාධ අනාවරණය කර ගැනීමට තොරතුරු ලබා ගැනේ.

- 59. ඡේද<mark>ය සවි</mark>ස්තරාත්මක ව පුකාශ කර ඇත්තේ,
 - (1) තාක්ෂණික උපකරණ පිළිබඳ ව ය.
 - (2) රෝගවලට හේතු පිළිබඳ ව ය.
 - (3) භෞතික මිනුම් පිළිබඳ ව ය.
 - (4) රෝහල්වල භාවිත කරන තාක්ෂණය පිළිබඳ ව ය.
 - (5) සෞඛාවත් පුද්ගලයන්ගෙන් ලබා ගන්නා තොරතුරු පිළිබඳ ව ය.
- ig| 60. ඡේදයේ දක්වා ඇති භෞතික මිනුම්වලින් ඉහළ තාක්ෂණික උපකරණ භාවිත කරන්නේ කුමක් සඳහා ද?
 - (1) ECG

(2) උෂ්ණත්වය

(3) රුධිර පීඩනය

(4) බර

(5) උස