Nazwisko:		
Imię:		Podpis:
Numer albumu:		-

Prace bez podanego numeru albumu lub bez podpisu nie będą oceniane. Odpowiedzi na poszczególne pytania należy koniecznie wpisać (jako cyfry) do poniższej tabeli. Zakreślanie odpowiedzi w tekstach pytań nie będzie uwzględniane. Punktacja podana jest na lewym marginesie. Podczas testu nie wolno korzystać z żadnych pomocy oprócz prostych kalkulatorów naukowych. Każde pytanie ma dokładnie jedną prawidłową odpowiedź. Czas trwania testu: 35 minut.

UWAGA! W niniejszym kluczu każde pytanie może mieć więcej niż jedną odpowiedź prawidłową i więcej niż trzy nieprawidłowe. Do docelowego testu wybierana jest spośród nich dokładnie jedna odpowiedź prawidłowa i dokładnie trzy nieprawidłowe. Odpowiedzi prawidłowe są w tekście klucza wyróżnione pogrubieniem.

Pyt.	A	В	С	D	Е	F	G	\sum
Pkt.	1	2	1	1	1	1	1	8
Odp.								

1p. A. Niepewność standardowa pomiaru

opisuje odchylenie standardowe możliwego rozrzutu położenia rzeczywistej wartości wielkości mierzonej wokół wyniku pomiaru
 określona jest dla przyrządów spełniających międzynarodowe standardy JCGM
 opisuje przedział wokół wyniku pomiaru w którym prawdziwa wartość wielkości mierzonej znajduje się z prawdopodobieństwem 95%
 dla pomiaru złożonego zawsze stanowi sumę niepewności pomiarów składowych

2p. B.

Przy bezpośrednim pomiarze prądów $I_1,\,I_2,\,I_3,\,I_4$ względny błąd metody pobrania, związany z niezerową rezystancją amperomierza, jest co do modułu:

- 1. największy dla pomiaru I_1 2. taki sam dla pomiaru każdego z prądów 3. najmniejszy dla pomiaru I_2 4. najmniejszy dla pomiaru I_3 5. największy dla pomiaru I_4
- 4. najminejszy dia pomiaru 13 3. największy dia pomiaru 14
- 1p. C. Funkcjonalność oscyloskopu z cyfrowym luminoforem (DPO) jest niezbędna do:
 - obserwacji jak często wstępują nieprawidłowe pozycje punktów w konstelacji sygnału telekomunikacyjnego
 pomiaru czasu narastania zbocza sygnału okresowego o bardzo krótkim okresie sekwencji poziomów logicznych na wielu liniach magistrali komunikacyjnej jednocześnie
 wyświetlenia widma sygnału radiowego dokładnie wtedy, gdy sygnał sterujący nadajnikiem osiągnie zadaną wartość
- 1p. D. Amperomierz cyfrowy wskazał wartość 1,3002 mA, a obliczona według wzorów podanych w specyfikacji niepewność graniczna wyniosła przed zaokrągleniem 10,323... μA. Poprawnie zaokrągleny wynik końcowy pomiaru wynosi:
 - **1.** $(1,300\pm0,011)$ **mA** 2. $(1,3\pm0,011)$ mA 3. $(1,3\pm0,010)$ mA 4. $(1,3002\pm0,0104)$ mA
 - 5. $(1,300 \pm 0,0104)$ mA

- 1p.
- E. Pomiar napięcia $U=10~{
 m V}$ będzie obarczony **najmniejszą** niepewnością graniczną, gdy zostanie wykonany woltomierzem
 - 1. analogowym klasy 0,5 na zakresie $U_z=25~{\rm V}$ 2. cyfrowym o niepewności granicznej 1,2% wyniku plus pięć razy wartość ostatniej cyfry na zakresie 0,000 do 9,999 V 3. cyfrowym o niepewności granicznej 0,35% wyniku plus 0,6% napięcia zakresowego na zakresie $U_z=15~{\rm V}$ 4. analogowym klasy 0,2 na zakresie $U_z=75~{\rm V}$ 5. analogowym klasy 1 na zakresie $U_z=15~{\rm V}$ 6. cyfrowym o niepewności granicznej 1,5% wyniku plus wartość ostatniej cyfry na zakresie 0,000 do 9,999 V 7. cyfrowym o niepewności granicznej 1% wyniku plus pięć razy wartość ostatniej cyfry na zakresie 0,00 do 9,99 V 8. cyfrowym o niepewności granicznej 0,3% wyniku plus 0,5% napięcia zakresowego na zakresie $U_z=20~{\rm V}$ 9. cyfrowym o niepewności granicznej 0,4% wyniku plus 0,4% napięcia zakresowego na zakresie $U_z=30~{\rm V}$
- 1p.
- F. Które zdanie jest prawdziwe dla cyfrowego przyrządu pomiarowego mierzącego dodatnie wartości wielkości X:
 - 1. Przy ustalonym zakresie pomiarowym X_Z , niepewność graniczna względna δ_g rośnie, gdy wartość mierzona X_M maleje. 2. Przy ustalonym zakresie pomiarowym X_Z , niepewność graniczna Δ_g rośnie, gdy wartość mierzona X_M maleje. 3. Przy ustalonym zakresie pomiarowym X_Z i założeniu równomiernego rozkładu niepewności, niepewność standardowa u(X) maleje, gdy wartość mierzona X_M rośnie. 4. Przy ustalonej wartości mierzonej X_M zakres pomiarowy X_Z nie wpływa na niepewność graniczną względną δ_g .
- 1p.
- G. Mierzone pośrednio napięcie opisane jest wzorem $U=I(R_1+R_2)$. Zmierzono wielkości składowe: I=5 mA, $R_1=1$ k Ω , $R_2=4$ k Ω , a wyniki pomiarów są nieskorelowane. Niepewności standardowe pomiarów składowych wynoszą odpowiednio u(I)=0,05 mA, $u(R_1)=0,03$ k Ω , $u(R_2)=0,04$ k Ω . Przed ostatecznym zaokrągleniem niepewność u(U) wynosi w przybliżeniu
 - **1.** 0, 3536 V 2. 0, 07 V 3. 0, 11 V 4. 0, 125 V 5. 0, 300 V

