ИСПИТ ПО ОСНОВИ НА ЕЛЕКТРОТЕХНИКА

30.8.2018

I група задачи (испитот трае 150 минути)

1. (13 поени) Даден е плочест кондензатор со површина на електродите S и растојание меѓу нив d. Дел од просторот меѓу електродите е исполнет со диелектрична плоча која има релативна диелектрична константа ε_r =5 со дебелина d/5, а останатиот простор е воздух. Познато е дека вкупната електростатска енергијата во кондензаторот изнесува W_e .

Со граничните услови кои важат на разделната површина диелектрик/воздух и со Гаусов закон да се определат изразите за интензитетите на векторите на јачина на електричното поле и електрично поместување во кондензаторот. Да се определи електричниот полнеж со кој е наелектризиран кондензаторот и површинската густина со кој истиот е распределен по површината на електродата. Да се определат напонот и капацитивноста на кондензаторот.

$$(\varepsilon_0 = 8.854 \cdot 10^{-12} \approx 10^{-9} / (36\pi) \text{ F/m})$$

2. (10 поени) Да се определи бројот на равенки и непознати за решавање на електричното коло со примена на методата на независни потенцијали во јазли. Да се постави и реши системот равенки и да се определат потенцијалите во јазлите. Потоа да се определат моќностите на:

отпорникот R_6 , струјниот извор I_8 и напонскиот извор E_2 .

$$R_1 = R_2 = R_3 = 20\Omega$$
 $R_4 = R_5 = R_6 = 10\Omega$
 $I_S = 1 A$
 $E_1 = 10V$ $E_2 = 20V$

3. (14 поени) Во колото прикажано на сликата при отворен прекинувач П моќноста на ЕМС E_8 изнесува $P_{E8}{=}50$ W. Да се определи струјата низ отпорникот R_2 при затворен прекинувач.

$$\begin{array}{lll} R_1{=}2\Omega & R_2{=}8\Omega \\ R_3{=}3\Omega & R_4{=}1\Omega \\ R_5{=}3\Omega & R_6{=}5\Omega \\ R_7{=}8\Omega & R_8{=}2\Omega \\ R_9{=}5\Omega \\ E_8{=}25V \\ I_g{=}1A \end{array}$$

- 4. (13 поени) Торусно јадро со магнетна константа μ_0 има правоаголен напречен пресек со радиуси a и b и висина h. На јадрото, во одредени насоки рамномерно и густо се намотани две намотки со N_1 и N_2 навивки.
- а) Колку ќе изнасува магнетната енергија во системот ако само низ првата намотка тече струја I_1 .
- б) Колку ќе изнасува магнетната енергија во системот ако само низ втората намотка тече струја I_2 .
- в) Колку ќе изнасува магнетната енергија во системот ако истовремено низ двете намотки течат соодветните струи I_1 и I_2 .

ИСПИТ ПО ОСНОВИ НА ЕЛЕКТРОТЕХНИКА

30.8.2018

II група задачи (испитот трае 150 минути)

1. (13 поени) Даден е плочест кондензатор со површина на електродите S и растојание меѓу нив d. Дел од просторот меѓу електродите е исполнет со диелектрична плоча која има релативна диелектрична константа ϵ_r =5 со дебелина 4d/5, а останатиот простор е воздух. Познато е дека вкупната електростатска

енергијата во кондензаторот изнесува W_e .

Со граничните услови кои важат на разделната површина диелектрик/воздух и со Гаусов закон да се определат изразите за интензитетите на векторите на јачина на електричното поле и електрично поместување кондензаторот. Да ce определи електричниот полнеж со кој е наелектризиран кондензаторот и површинската густина со кој истиот е распределен по површината на електродата. Да се определат напонот и капацитивноста на кондензаторот.

$$(\varepsilon_0 = 8.854 \cdot 10^{-12} \approx 10^{-9} / (36\pi) \text{ F/m})$$

2. (10 поени) Да се определи бројот на равенки и непознати за решавање на електричното коло со примена на методата на независни потенцијали во јазли. Да се постави и реши системот равенки и да се определат потенцијалите во јазлите. Потоа да се определат моќностите на:

отпорникот R_6 , струјниот извор I_8 и напонскиот

извор E_2 .

$$R_1 = R_2 = R_3 = 20\Omega$$
 $R_4 = R_5 = R_6 = 10\Omega$
 $I_S = 1 A$
 $E_1 = 10V$ $E_2 = 20V$

3. (14 поени) Во колото прикажано на сликата при отворен прекинувач Π моќноста на ЕМС E_9 изнесува P_{E9} =50W. Да се определи струјата низ отпорникот R₁ при затворен прекинувач.

$$\begin{array}{ll} R_1{=}2\Omega & R_2{=}8\Omega \\ R_3{=}3\Omega & R_4{=}1\Omega \\ R_5{=}3\Omega & R_6{=}5\Omega \\ R_7{=}8\Omega & R_8{=}2\Omega \\ R_9{=}5\Omega \\ E_3{=}14V \\ E_9{=}25V \\ I_g{=}1A \end{array}$$

4. (13 поени) Торусно јадро со магнетна константа μ_0 има правоаголен напречен пресек со радиуси а и в и висина в. На јадрото, во одредени насоки рамномерно и густо се намотани две намотки со N_1 и N_2 навивки.

а) Колку ќе изнасува магнетната енергија во системот ако само низ првата намотка тече струја I_1 .

- б) Колку ќе изнасува магнетната енергија во системот ако само низ втората намотка тече струја I_2 .
- в) Колку ќе изнасува магнетната енергија во системот ако истовремено низ двете намотки течат соодветните струи I_1 и I_2 .

