Piotr Wojtylak

University of Opole, Opole, Poland

Piotr Wojtylak

University of Opole, Opole, Poland

Wojciech Dzik

Silesian University, Katowice, Poland

Piotr Wojtylak

University of Opole, Opole, Poland

Wojciech Dzik

Silesian University, Katowice, Poland

key words: consequence operations, projective unification, admissible rules, structural completeness

Piotr Wojtylak

University of Opole, Opole, Poland

Wojciech Dzik

Silesian University, Katowice, Poland

key words: consequence operations, projective unification, admissible rules, structural completeness

Piotr Wojtylak

University of Opole, Opole, Poland

Wojciech Dzik

Silesian University, Katowice, Poland

key words: consequence operations, projective unification, admissible rules, structural completeness

Les Diablerets, 1 February, 2015

- Projective Unification in Modal Logic, The Logic Journal of the IGPL 20(2012) No.1, 121–153.
- Modal Consequence Relations Extending S4.3, Notre Dame Journal of Formal Logic, (to appear)
- Almost structurally complete consequence operations extending **S4.3**, (in preparation).

- Projective Unification in Modal Logic, The Logic Journal of the IGPL 20(2012) No.1, 121–153.
- Modal Consequence Relations Extending S4.3, Notre Dame Journal of Formal Logic, (to appear)
- Almost structurally complete consequence operations extending **S4.3**, (in preparation).

Theorem

Each unifiable formula has a projective unifier in **S4.3**. Consequently, each modal consequence operation extending **S4.3** is (structurally)-complete with respect finitary non-passive rules.

- Projective Unification in Modal Logic, The Logic Journal of the IGPL 20(2012) No.1, 121–153.
- Modal Consequence Relations Extending S4.3, Notre Dame Journal of Formal Logic, (to appear)
- Almost structurally complete consequence operations extending **S4.3**, (in preparation).

Each unifiable formula has a projective unifier in **S4.3**. Consequently, each modal consequence operation extending **S4.3** is (structurally)-complete with respect finitary non-passive rules.

Theorem

A modal logic L containing **S4** enjoys projective unification if and only if $S4.3 \subseteq L$.

Theorem

- (i) Each finitary consequence operation Cn extending **\$4.3** has a finite basis;
- (ii) Each consequence operation Cn extending **S4.3** coincide on finite sets with a FA modal consequence operation.

- (i) Each finitary consequence operation Cn extending **\$4.3** has a finite basis;
- (ii) Each consequence operation Cn extending **S4.3** coincide on finite sets with a FA modal consequence operation.

A consequence operation Cn is finitely approximable $(Cn \in FA)$ if $Cn = \overrightarrow{\mathbb{K}}$ for some class \mathbb{K} of finite matrices.

- (i) Each finitary consequence operation Cn extending **S4.3** has a finite basis;
- (ii) Each consequence operation Cn extending **S4.3** coincide on finite sets with a FA modal consequence operation.

A consequence operation Cn is finitely approximable $(Cn \in FA)$ if $Cn = \overrightarrow{\mathbb{K}}$ for some class \mathbb{K} of finite matrices.

Theorem

A modal consequence operation Cn extending **S4.3** is structurally complete with respect to infinitary non-passive rules iff Cn is FA.

- (i) Each finitary consequence operation Cn extending **S4.3** has a finite basis;
- (ii) Each consequence operation Cn extending **S4.3** coincide on finite sets with a FA modal consequence operation.

A consequence operation Cn is finitely approximable $(Cn \in FA)$ if $Cn = \overrightarrow{\mathbb{K}}$ for some class \mathbb{K} of finite matrices.

Theorem

A modal consequence operation Cn extending **S4.3** is structurally complete with respect to infinitary non-passive rules iff Cn is FA.

We provide an uniform basis for all non-passive admissible rules of any $L \in NExt(S4.3)$ consisting of infinitary rules like

$$\frac{\{\Box(\alpha_i \leftrightarrow \alpha_j) \to \alpha_0 : 0 < i < j\}}{\alpha_0}$$

Modal Logic

Modal Logic

Let Var be the set of *propositional variables* and Fm be the set of *modal formulas* in $\{\rightarrow, \perp, \square\}$. For each formula α , let $Var(\alpha)$ denote the (finite) set of variables occurring in α .

Let Var be the set of propositional variables and Fm be the set of modal formulas in $\{\rightarrow, \bot, \Box\}$. For each formula α , let $Var(\alpha)$ denote the (finite) set of variables occurring in α .

By a *modal logic* we mean any proper subset of *Fm* closed under substitutions, closed under

$$MP: \frac{\alpha \to \beta, \alpha}{\beta}$$
 and $RG: \frac{\alpha}{\Box \alpha}$,

containing all classical tautologies, and

$$\Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta).$$

Let Var be the set of propositional variables and Fm be the set of modal formulas in $\{\rightarrow, \bot, \Box\}$. For each formula α , let $Var(\alpha)$ denote the (finite) set of variables occurring in α .

By a $modal\ logic$ we mean any proper subset of Fm closed under substitutions, closed under

$$MP: \frac{\alpha \to \beta, \alpha}{\beta}$$
 and $RG: \frac{\alpha}{\Box \alpha}$,

containing all classical tautologies, and

$$\Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta).$$

Each modal logic is an extension of the logic ${\bf K}$ with axiom schemata. ${\bf S4}$ extends ${\bf K}$ with

 $\begin{array}{ll} (\mathcal{T}): \Box \alpha \to \alpha & \text{oraz} & \textbf{(4)}: \Box \Box \alpha \to \Box \alpha. \text{ The logic $\textbf{54.3}$ contains additionally } \Box (\Box \alpha \to \Box \beta) \vee \Box (\Box \beta \to \Box \alpha); \text{ and $\textbf{55}$ is axiomatized with (5)}: \Diamond \Box \alpha \to \Box \alpha. \end{array}$

Given a modal logic L, we define its global entailment relation Cn_L . Thus, $\alpha \in Cn_L(X)$ means that α can be derived from $X \cup L$ using the rules MP and RG.

Given a modal logic L, we define its global entailment relation Cn_L . Thus, $\alpha \in Cn_L(X)$ means that α can be derived from $X \cup L$ using the rules MP and RG.

Theorem

If **S4**
$$\subseteq$$
 L, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

Given a modal logic L, we define its global entailment relation Cn_L . Thus, $\alpha \in Cn_L(X)$ means that α can be derived from $X \cup L$ using the rules MP and RG.

Theorem

If **S4**
$$\subseteq$$
 L, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

By a modal consequence operation we mean any structural consequence operation Cn which extends $Cn_{\mathbf{K}}$. Thus, Cn may be given by extending a modal logic with some inferential rules.

Given a modal logic L, we define its global entailment relation Cn_L . Thus, $\alpha \in Cn_L(X)$ means that α can be derived from $X \cup L$ using the rules MP and RG.

Theorem

If **S4**
$$\subseteq$$
 L, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

By a *modal consequence operation* we mean any structural consequence operation Cn which extends Cn_K . Thus, Cn may be given by extending a modal logic with some inferential rules. Let us note that such extensions may violate the above deduction theorem.

Given a modal logic L, we define its global entailment relation Cn_L . Thus, $\alpha \in Cn_L(X)$ means that α can be derived from $X \cup L$ using the rules MP and RG.

Theorem

If **S4**
$$\subseteq$$
 L, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

By a modal consequence operation we mean any structural consequence operation Cn which extends Cn_K . Thus, Cn may be given by extending a modal logic with some inferential rules. Let us note that such extensions may violate the above deduction theorem.

Let NExt(L) denote the lattice of all normal extensions of L.

Given a modal logic L, we define its global entailment relation Cn_L . Thus, $\alpha \in Cn_L(X)$ means that α can be derived from $X \cup L$ using the rules MP and RG.

Theorem

If **S4**
$$\subseteq$$
 L, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

By a *modal consequence operation* we mean any structural consequence operation Cn which extends Cn_K . Thus, Cn may be given by extending a modal logic with some inferential rules. Let us note that such extensions may violate the above deduction theorem.

Let NExt(L) denote the lattice of all normal extensions of L. $EXT_{fin}(L)$ be the lattice of finitary consequence extensions of Cn_L

Given a modal logic L, we define its global entailment relation Cn_L . Thus, $\alpha \in Cn_L(X)$ means that α can be derived from $X \cup L$ using the rules MP and RG.

Theorem

If **S4**
$$\subseteq$$
 L, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

By a modal consequence operation we mean any structural consequence operation Cn which extends Cn_K . Thus, Cn may be given by extending a modal logic with some inferential rules. Let us note that such extensions may violate the above deduction theorem.

Let $\operatorname{NExt}(L)$ denote the lattice of all normal extensions of L. $\operatorname{EXT}_{fin}(L)$ be the lattice of finitary consequence extensions of Cn_L and $\operatorname{EXT}(L)$ is the lattice of all extensions of Cn_L .

Given a modal logic L, we define its global entailment relation Cn_L . Thus, $\alpha \in Cn_L(X)$ means that α can be derived from $X \cup L$ using the rules MP and RG.

Theorem

If
$$S4 \subseteq L$$
, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \to \alpha \in Cn_L(X)$.

By a *modal consequence operation* we mean any structural consequence operation Cn which extends Cn_K . Thus, Cn may be given by extending a modal logic with some inferential rules. Let us note that such extensions may violate the above deduction theorem.

Let $\operatorname{NExt}(L)$ denote the lattice of all normal extensions of L. $\operatorname{EXT}_{fin}(L)$ be the lattice of finitary consequence extensions of Cn_L and $\operatorname{EXT}(L)$ is the lattice of all extensions of Cn_L . The lattice ordering in each case is determined by inclusion.

Modal algebra $\mathcal{A}=(A,\to,\bot,\Box)$ is an extension of a Boolean algebra (A,\to,\bot) with a monadic operator operator \Box (1) $\Box\top=\top;$ (2) $\Box(a\wedge b)=\Box a\wedge\Box b,$ for $a,b\in A$.

Modal algebra
$$\mathcal{A}=(A,\to,\bot,\Box)$$
 is an extension of a Boolean algebra (A,\to,\bot) with a monadic operator operator \Box
(1) $\Box\top=\top$; (2) $\Box(a\wedge b)=\Box a\wedge\Box b$, for $a,b\in A$.

Modal algebras will be regarded as logical matrices with a designated element \top .

Modal algebra
$$\mathcal{A}=(A,\to,\bot,\Box)$$
 is an extension of a Boolean algebra (A,\to,\bot) with a monadic operator operator \Box (1) $\Box\top=\top$; (2) $\Box(a\wedge b)=\Box a\wedge\Box b$, for $a,b\in A$.

Modal algebras will be regarded as logical matrices with a designated element \top . Each valuation $v: Var \to A$ extends to a homomorphism $v: For \to A$. If $v(\alpha) = \top$ for some v, then α is said to be *satisfiable* in A; in symbols $\alpha \in Sat(A)$.

Modal algebra
$$\mathcal{A}=(A,\to,\bot,\Box)$$
 is an extension of a Boolean algebra (A,\to,\bot) with a monadic operator operator \Box (1) $\Box\top=\top$; (2) $\Box(a\land b)=\Box a\land\Box b$, for $a,b\in A$.

Modal algebras will be regarded as logical matrices with a designated element \top . Each valuation $v: Var \to A$ extends to a homomorphism $v: For \to A$. If $v(\alpha) = \top$ for some v, then α is said to be *satisfiable* in A; in symbols $\alpha \in Sat(A)$. Let Log(A) be the set of formulas valid in A.

Modal algebra
$$\mathcal{A}=(A,\to,\bot,\Box)$$
 is an extension of a Boolean algebra (A,\to,\bot) with a monadic operator operator \Box
(1) $\Box\top=\top;$ (2) $\Box(a\wedge b)=\Box a\wedge\Box b,$ for $a,b\in A$.

Modal algebras will be regarded as logical matrices with a designated element \top . Each valuation $v: Var \to A$ extends to a homomorphism $v: For \to A$. If $v(\alpha) = \top$ for some v, then α is said to be *satisfiable* in \mathcal{A} ; in symbols $\alpha \in Sat(\mathcal{A})$. Let $Log(\mathcal{A})$ be the set of formulas valid in \mathcal{A} . Given a class \mathbb{K} of modal algebras, we put $Log(\mathbb{K}) = \bigcap \{Log(\mathcal{A}) : \mathcal{A} \in \mathbb{K}\}$.

Modal algebra
$$\mathcal{A}=(A,\to,\bot,\Box)$$
 is an extension of a Boolean algebra (A,\to,\bot) with a monadic operator operator \Box
(1) $\Box\top=\top;$ (2) $\Box(a\wedge b)=\Box a\wedge\Box b,$ for $a,b\in A$.

Modal algebras will be regarded as logical matrices with a designated element \top . Each valuation $v: Var \to A$ extends to a homomorphism $v: For \to A$. If $v(\alpha) = \top$ for some v, then α is said to be *satisfiable* in \mathcal{A} ; in symbols $\alpha \in Sat(\mathcal{A})$. Let $Log(\mathcal{A})$ be the set of formulas valid in \mathcal{A} . Given a class \mathbb{K} of modal algebras, we put $Log(\mathbb{K}) = \bigcap \{Log(\mathcal{A}) : \mathcal{A} \in \mathbb{K}\}$.

Theorem

For each modal logic L there is a class \mathbb{K} of modal algebras such that $L = \text{Log}(\mathbb{K})$.

Modal algebra
$$\mathcal{A}=(A,\to,\bot,\Box)$$
 is an extension of a Boolean algebra (A,\to,\bot) with a monadic operator operator \Box
(1) $\Box\top=\top;$ (2) $\Box(a\wedge b)=\Box a\wedge\Box b,$ for $a,b\in A$.

Modal algebras will be regarded as logical matrices with a designated element \top . Each valuation $v: Var \to A$ extends to a homomorphism $v: For \to A$. If $v(\alpha) = \top$ for some v, then α is said to be *satisfiable* in \mathcal{A} ; in symbols $\alpha \in Sat(\mathcal{A})$. Let $Log(\mathcal{A})$ be the set of formulas valid in \mathcal{A} . Given a class \mathbb{K} of modal algebras, we put $Log(\mathbb{K}) = \bigcap \{Log(\mathcal{A}) : \mathcal{A} \in \mathbb{K}\}$.

Theorem

For each modal logic L there is a class \mathbb{K} of modal algebras such that $L = \text{Log}(\mathbb{K})$.

It means each modal logic has na adequate class of modal algebras.

Matrix consequences

Each modal algebra \mathcal{A} generates modal consequence operation $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X) \Leftrightarrow (v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top, \text{ dla } v \colon Var \to A).$$

Each modal algebra \mathcal{A} generates modal consequence operation $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X) \Leftrightarrow (v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top, \text{ dla } v \colon Var \to A).$$

For each class \mathbb{K} of modal algebras, we put $\overrightarrow{\mathbb{K}} = \bigwedge \{ \overrightarrow{\mathcal{A}} : \mathcal{A} \in \mathbb{K} \}.$

Each modal algebra \mathcal{A} generates modal consequence operation $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X) \Leftrightarrow (v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top, \text{ dla } v \colon Var \to A).$$

For each class \mathbb{K} of modal algebras, we put $\overrightarrow{\mathbb{K}} = \bigwedge \{ \overrightarrow{\mathcal{A}} : \mathcal{A} \in \mathbb{K} \}$.

Theorem

For each modal consequence operation Cn there exists a class \mathbb{K} of modal algebras such that $Cn = \overrightarrow{\mathbb{K}}$.

Each modal algebra \mathcal{A} generates modal consequence operation $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X) \Leftrightarrow (v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top, \text{ dla } v \colon Var \to A).$$

For each class \mathbb{K} of modal algebras, we put $\overrightarrow{\mathbb{K}} = \bigwedge \{ \overrightarrow{\mathcal{A}} : \mathcal{A} \in \mathbb{K} \}$.

Theorem

For each modal consequence operation Cn there exists a class \mathbb{K} of modal algebras such that $Cn = \overrightarrow{\mathbb{K}}$.

 $L \in \mathsf{FMP}$ means that L has an adequate family of finite algebras.

Each modal algebra \mathcal{A} generates modal consequence operation $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X) \Leftrightarrow (v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top, \text{ dla } v \colon \textit{Var} \to \textit{A}).$$

For each class \mathbb{K} of modal algebras, we put $\overrightarrow{\mathbb{K}} = \bigwedge \{ \overrightarrow{\mathcal{A}} : \mathcal{A} \in \mathbb{K} \}.$

Theorem

For each modal consequence operation Cn there exists a class \mathbb{K} of modal algebras such that $Cn = \overrightarrow{\mathbb{K}}$.

 $L \in \mathsf{FMP}$ means that L has an adequate family of finite algebras. A consequence operation Cn is *finitely approximatizable* ($Cn \in \mathsf{FA}$) if $Cn = \overrightarrow{\mathbb{K}}$ where each $\mathcal{A} \in \mathbb{K}$ is finite.

Each modal algebra \mathcal{A} generates modal consequence operation $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X) \Leftrightarrow (v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top, \text{ dla } v \colon \textit{Var} \to \textit{A}).$$

For each class $\mathbb K$ of modal algebras, we put $\overrightarrow{\mathbb K}=igwedge\{\overrightarrow{\mathcal A}:\mathcal A\in\mathbb K\}.$

Theorem

For each modal consequence operation Cn there exists a class \mathbb{K} of modal algebras such that $Cn = \overrightarrow{\mathbb{K}}$.

 $L \in \mathsf{FMP}$ means that L has an adequate family of finite algebras. A consequence operation Cn is *finitely approximatizable* ($Cn \in \mathsf{FA}$) if $Cn = \overrightarrow{\mathbb{K}}$ where each $A \in \mathbb{K}$ is finite. If, additionally, \mathbb{K} is finite, then Cn is said to be *strongly finite* ($Cn \in \mathsf{SF}$).

Each modal algebra \mathcal{A} generates modal consequence operation $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X) \Leftrightarrow (v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top, \text{ dla } v \colon \textit{Var} \to \textit{A}).$$

For each class \mathbb{K} of modal algebras, we put $\overrightarrow{\mathbb{K}} = \bigwedge \{ \overrightarrow{\mathcal{A}} : \mathcal{A} \in \mathbb{K} \}.$

Theorem

For each modal consequence operation Cn there exists a class \mathbb{K} of modal algebras such that $Cn = \overrightarrow{\mathbb{K}}$.

 $L \in \mathsf{FMP}$ means that L has an adequate family of finite algebras. A consequence operation Cn is *finitely approximatizable* $(Cn \in \mathsf{FA})$ if $Cn = \overrightarrow{\mathbb{K}}$ where each $A \in \mathbb{K}$ is finite. If, additionally, \mathbb{K} is finite, then Cn is said to be *strongly finite* $(Cn \in \mathsf{SF})$.

Theorem

If Cn is strongly finite (Cn \in SF), then Cn is finitary (Cn \in Fin);

Each modal algebra \mathcal{A} generates modal consequence operation $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X) \Leftrightarrow (v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top, \text{ dla } v \colon Var \to A).$$

For each class \mathbb{K} of modal algebras, we put $\overrightarrow{\mathbb{K}} = \bigwedge \{ \overrightarrow{\mathcal{A}} : \mathcal{A} \in \mathbb{K} \}.$

Theorem

For each modal consequence operation Cn there exists a class \mathbb{K} of modal algebras such that $Cn = \overrightarrow{\mathbb{K}}$.

 $L \in \mathsf{FMP}$ means that L has an adequate family of finite algebras. A consequence operation Cn is *finitely approximatizable* ($Cn \in \mathsf{FA}$) if $Cn = \overrightarrow{\mathbb{K}}$ where each $\mathcal{A} \in \mathbb{K}$ is finite. If, additionally, \mathbb{K} is finite, then Cn is said to be *strongly finite* ($Cn \in \mathsf{SF}$).

Theorem

If Cn is strongly finite (Cn \in SF), then Cn is finitary (Cn \in Fin); For consequence operations over (**S4.3**): FA \cap Fin = SF.

*S*4.3-models

Topological Boolean Algebras (TBA's) are modal algebras which are models for **S4**; i.e., they fulfill

(3) $\Box a \leq a$; (4) $\Box \Box a = \Box a$, for each $a \in A$.

Topological Boolean Algebras (TBA's) are modal algebras which are models for **S4**; i.e., they fulfill

(3)
$$\Box a \leq a$$
; (4) $\Box \Box a = \Box a$, for each $a \in A$.

Any (Kripke) structure $\mathfrak{F} = (V, R)$ consists of a non-empty set V and a binary relation R on V. Each $\mathfrak{F} = (V, R)$ determines a modal algebra \mathfrak{F}^+ , on the power set A = P(V), with $\Box a = \{x \in V : R(x) \subseteq a\}$, where $R(x) = \{y \in V : xRy\}$.

Topological Boolean Algebras (TBA's) are modal algebras which are models for **S4**; i.e., they fulfill

(3)
$$\Box a \leq a$$
; (4) $\Box \Box a = \Box a$, for each $a \in A$.

Any (Kripke) structure $\mathfrak{F} = (V, R)$ consists of a non-empty set V and a binary relation R on V. Each $\mathfrak{F} = (V, R)$ determines a modal algebra \mathfrak{F}^+ , on the power set A = P(V), with $\Box a = \{x \in V : R(x) \subseteq a\}$, where $R(x) = \{y \in V : xRy\}$.

A subset C of V is called a *cluster* if xRy and yRx, for each $x,y \in C$. Symbols 1, 2 and 3, etc., stand for 1- , 2- and 3-element clusters, which are **S5** models. Then \mathfrak{n}^+ is called a *Henle Algebra*.

Topological Boolean Algebras (TBA's) are modal algebras which are models for **S4**; i.e., they fulfill

(3)
$$\Box a \leq a$$
; (4) $\Box \Box a = \Box a$, for each $a \in A$.

Any (Kripke) structure $\mathfrak{F} = (V, R)$ consists of a non-empty set V and a binary relation R on V. Each $\mathfrak{F} = (V, R)$ determines a modal algebra \mathfrak{F}^+ , on the power set A = P(V), with $\Box a = \{x \in V : R(x) \subseteq a\}$, where $R(x) = \{y \in V : xRy\}$.

A subset C of V is called a *cluster* if xRy and yRx, for each $x,y\in C$. Symbols 1, 2 and 3, etc., stand for 1- , 2- and 3-element clusters, which are **S5** models. Then \mathfrak{n}^+ is called a *Henle Algebra*.

Finite subdirectly irreducible **S4.3**-algebras are *TBA*'s in which all open elements (i.e. such a's that $\Box a = a$) form a chain. They coincide with algebras \mathfrak{F}^+ for finite *quasi chains* \mathfrak{F} which are, in turn, determined by *lists*, i.e. finite sequences of positive integers.

A substitution ε is a *unifier* for a formula α (a set X) in logic L if $\varepsilon(\alpha) \in L$ (if $\varepsilon[X] \subseteq L$).

A substitution ε is a *unifier* for a formula α (a set X) in logic L if $\varepsilon(\alpha) \in L$ (if $\varepsilon[X] \subseteq L$). Logical constants $\{\bot, \top\}$ form a 2-element subalgebra, say **2**, of Lindenbauma-Tarski's algebra for L (if $L \supseteq S4$). Unifiers $v \colon Var \to \{\bot, \top\}$ will be called *ground unifiers*.

A substitution ε is a *unifier* for a formula α (a set X) in logic L if $\varepsilon(\alpha) \in L$ (if $\varepsilon[X] \subseteq L$). Logical constants $\{\bot, \top\}$ form a 2-element subalgebra, say **2**, of Lindenbauma-Tarski's algebra for L (if $L \supseteq S4$). Unifiers $v \colon Var \to \{\bot, \top\}$ will be called *ground unifiers*.

Theorem

The following conditions are equivalent for each $L \supseteq S4$: (i) α is L-unifiable; (ii) α has a ground unifier w L; (iii) α is satisfiable in 2; (iv) $\sim \alpha \notin Tr = Log(2)$.

A substitution ε is a *unifier* for a formula α (a set X) in logic L if $\varepsilon(\alpha) \in L$ (if $\varepsilon[X] \subseteq L$). Logical constants $\{\bot, \top\}$ form a 2-element subalgebra, say **2**, of Lindenbauma-Tarski's algebra for L (if $L \supseteq S4$). Unifiers $v \colon Var \to \{\bot, \top\}$ will be called *ground unifiers*.

Theorem

The following conditions are equivalent for each $L \supseteq S4$:

- (i) α is L-unifiable; (ii) α has a ground unifier w L;
- (iii) α is satisfiable in **2**; (iv) $\sim \alpha \notin \mathsf{Tr} = \mathsf{Log}(\mathbf{2})$.

A unifier ε is said to be *projective* for X if $\varepsilon(\beta) \leftrightarrow \beta \in Cn_L(X)$, for each formula β ; we say that L has *projective unification*, if each L-unifiable formula has a projective unifier is L.

A substitution ε is a *unifier* for a formula α (a set X) in logic L if $\varepsilon(\alpha) \in L$ (if $\varepsilon[X] \subseteq L$). Logical constants $\{\bot, \top\}$ form a 2-element subalgebra, say **2**, of Lindenbauma-Tarski's algebra for L (if $L \supseteq S4$). Unifiers $v \colon Var \to \{\bot, \top\}$ will be called *ground unifiers*.

Theorem

The following conditions are equivalent for each $L \supseteq S4$:

(i) α is L-unifiable; (ii) α has a ground unifier w L;

(iii) α is satisfiable in **2**; (iv) $\sim \alpha \notin \mathsf{Tr} = \mathsf{Log}(\mathbf{2})$.

A unifier ε is said to be *projective* for X if $\varepsilon(\beta) \leftrightarrow \beta \in Cn_L(X)$, for each formula β ; we say that L has *projective unification*, if each L-unifiable formula has a projective unifier is L.

We consider (infinitary) inferential rules X/β .

We consider (infinitary) inferential rules X/β . Finitary rules may be reduced to the form α/β .

We consider (infinitary) inferential rules X/β . Finitary rules may be reduced to the form α/β . Given a set R of rules and a modal logic L, we denote the modal consequence operation extending Cn_L with the rules R by Cn_L^R . If $Cn=Cn_L^R$, then R is said to be a (rule-)basis of the consequence Cn on the ground of L.

We consider (infinitary) inferential rules X/β . Finitary rules may be reduced to the form α/β . Given a set R of rules and a modal logic L, we denote the modal consequence operation extending Cn_L with the rules R by Cn_L^R . If $Cn = Cn_L^R$, then R is said to be a (rule-)basis of the consequence Cn on the ground of L. The consequence Cn_L^R is finitary if the rules R are finitary.

We consider (infinitary) inferential rules X/β . Finitary rules may be reduced to the form α/β . Given a set R of rules and a modal logic L, we denote the modal consequence operation extending Cn_L with the rules R by Cn_L^R . If $Cn = Cn_L^R$, then R is said to be a (rule-)basis of the consequence Cn on the ground of L. The consequence Cn_L^R is finitary if the rules R are finitary. The rule X/β is said to be admissible for a modal consequence operation Cn, if $\varepsilon[X] \subseteq Cn(\emptyset)$ implies $\varepsilon(\beta) \in Cn(\emptyset)$, for each substitution ε .

We consider (infinitary) inferential rules X/β . Finitary rules may be reduced to the form α/β . Given a set R of rules and a modal logic L, we denote the modal consequence operation extending Cn_I with the rules R by Cn_L^R . If $Cn = Cn_L^R$, then R is said to be a (rule-)basis of the consequence Cn on the ground of L. The consequence Cn_L^R is finitary if the rules R are finitary. The rule X/β is said to be *admissible* for a modal consequence operation Cn, if $\varepsilon[X] \subseteq Cn(\emptyset)$ implies $\varepsilon(\beta) \in Cn(\emptyset)$, for each substitution ε . The rule is *derivable* for *Cn* (is *Cn*–derivable), if $\beta \in Cn(X)$.

We consider (infinitary) inferential rules X/β . Finitary rules may be reduced to the form α/β . Given a set R of rules and a modal logic L, we denote the modal consequence operation extending Cn_I with the rules R by Cn_L^R . If $Cn = Cn_L^R$, then R is said to be a (rule-)basis of the consequence Cn on the ground of L. The consequence Cn_L^R is finitary if the rules R are finitary. The rule X/β is said to be *admissible* for a modal consequence operation Cn, if $\varepsilon[X] \subseteq Cn(\emptyset)$ implies $\varepsilon(\beta) \in Cn(\emptyset)$, for each substitution ε . The rule is *derivable* for *Cn* (is *Cn*–derivable), if $\beta \in Cn(X)$. The consequence operation Cn is structurally complete ($Cn \in SCpl$) if every admissible rule for Cn is Cn-derivable.

We consider (infinitary) inferential rules X/β . Finitary rules may be reduced to the form α/β . Given a set R of rules and a modal logic L, we denote the modal consequence operation extending Cn_I with the rules R by Cn_L^R . If $Cn = Cn_L^R$, then R is said to be a (rule-)basis of the consequence Cn on the ground of L. The consequence Cn_L^R is finitary if the rules R are finitary. The rule X/β is said to be *admissible* for a modal consequence operation Cn, if $\varepsilon[X] \subseteq Cn(\emptyset)$ implies $\varepsilon(\beta) \in Cn(\emptyset)$, for each substitution ε . The rule is *derivable* for *Cn* (is *Cn*–derivable), if $\beta \in Cn(X)$. The consequence operation Cn is structurally complete ($Cn \in SCpl$) if every admissible rule for Cn is Cn-derivable. $Cn \in SCpl_{fin}$ means that each finitary rule which is admissible for *Cn* is *Cn*–derivable.

The rule X/β is passive if X is not unifiable,

The rule X/β is passive if X is not unifiable, e.g.

$$P_2: \frac{\Diamond \alpha \wedge \Diamond \sim \alpha}{\beta}$$

The rule X/β is passive if X is not unifiable, e.g.

$$P_2: \frac{\Diamond \alpha \wedge \Diamond \sim \alpha}{\beta}$$

Cn is almost structurally complete, $Cn \in ASCpl$, if each admissible non-passive rule is derivable (for Cn).

The rule X/β is passive if X is not unifiable, e.g.

$$P_2: \frac{\Diamond \alpha \wedge \Diamond \sim \alpha}{\beta}$$

Cn is almost structurally complete, $Cn \in ASCpl$, if each admissible non-passive rule is derivable (for Cn).

Corollary

 $Cn \in ASCpl_{fin}$ for each $Cn \in EXT(\mathbf{S4.3})$.

The rule X/β is passive if X is not unifiable, e.g.

$$P_2: \frac{\Diamond \alpha \wedge \Diamond \sim \alpha}{\beta}$$

Cn is almost structurally complete, $Cn \in ASCpl$, if each admissible non-passive rule is derivable (for Cn).

Corollary

 $Cn \in ASCpl_{fin}$ for each $Cn \in EXT(S4.3)$.

Corollary

If $Cn \in EXT(S4.3M)$, where (M) is McKinsey's axiom $\Box \Diamond \alpha \rightarrow \Diamond \Box \alpha$, then $Cn \in ASCpl_{(fin)} \Leftrightarrow Cn \in SCpl_{(fin)}$.

The rule X/β is passive if X is not unifiable, e.g.

$$P_2: \frac{\Diamond \alpha \wedge \Diamond \sim \alpha}{\beta}$$

Cn is almost structurally complete, $Cn \in ASCpl$, if each admissible non-passive rule is derivable (for Cn).

Corollary

 $Cn \in ASCpl_{fin}$ for each $Cn \in EXT(S4.3)$.

Corollary

If $Cn \in EXT(S4.3M)$, where (M) is McKinsey's axiom $\Box \Diamond \alpha \rightarrow \Diamond \Box \alpha$, then $Cn \in ASCpl_{(fin)} \Leftrightarrow Cn \in SCpl_{(fin)}$.

Passive rules over **S4.3**

Passive rules over **S4.3**

Let $n \ge 0$ and let us consider the sublanguage of Fm spanned on p_1, \ldots, p_n . There are 2^n (Boolean) atoms there and each of them can be represented by the formula

$$p_1^{\sigma(1)} \wedge \cdots \wedge p_n^{\sigma(n)}$$

where $\sigma: \{1, ..., n\} \to \{0, 1\}$, and $p^0 = p$, and $p^1 = p$. Suppose we denote these atoms by: $\theta_1, ..., \theta_{2^n}$

Passive rules over **S4**.3

Let $n \ge 0$ and let us consider the sublanguage of Fm spanned on p_1, \ldots, p_n . There are 2^n (Boolean) atoms there and each of them can be represented by the formula

$$p_1^{\sigma(1)} \wedge \cdots \wedge p_n^{\sigma(n)}$$

where $\sigma: \{1, ..., n\} \to \{0, 1\}$, and $p^0 = p$, and $p^1 = p$. Suppose we denote these atoms by: $\theta_1, ..., \theta_{2^n}$

Theorem

Each finitary consequence operation $Cn \in \mathrm{EXT}(\mathbf{S4.3})$ is an extension of some Cn_L (for $L \supseteq \mathbf{S4.3}$ and some $n \ge 0$) with a finite number of passive rules

$$\frac{\Diamond \theta_1 \wedge \dots \wedge \Diamond \theta_s}{\alpha}$$

where $2 \le s \le 2^n$ and $Var(\alpha) \cap \{p_1, \ldots, p_n\} = \emptyset$.

Theorem

Let $Cn \ge Cn_L$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $L = Cn(\emptyset) = \text{Log}(\mathbb{K})$.

Theorem

Let $Cn \geq Cn_L$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $L = Cn(\emptyset) = \operatorname{Log}(\mathbb{K})$. Then one can find $\mathbb{K}_1, \dots, \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1 \supseteq \dots \supseteq \mathbb{K}_m$ and $Cn(X) = \overrightarrow{\mathbb{L}}(X)$, for each finite sets X, where $\mathbb{L} = \mathbb{K}_m \cup (\mathbb{K}_{m-1} \setminus \mathbb{K}_m) \times (\mathfrak{m} - \mathbf{1})^+ \cup \dots \cup (\mathbb{K}_1 \setminus \mathbb{K}_2) \times \mathbf{1}^+$

Theorem

Let $Cn \geq Cn_L$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $L = Cn(\emptyset) = \operatorname{Log}(\mathbb{K})$. Then one can find $\mathbb{K}_1, \dots, \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1 \supseteq \dots \supseteq \mathbb{K}_m$ and $Cn(X) = \overrightarrow{\mathbb{L}}(X)$, for each finite sets X, where $\mathbb{L} = \mathbb{K}_m \cup (\mathbb{K}_{m-1} \setminus \mathbb{K}_m) \times (\mathfrak{m} - 1)^+ \cup \dots \cup (\mathbb{K}_1 \setminus \mathbb{K}_2) \times 1^+$

Corollary

Let $L \in \operatorname{NExt}$ **S4.3** and let \mathbb{K} an adequate for L class of finite subdirectly irreducible S4.3-algebras. Then

Theorem

Let $Cn \geq Cn_L$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $L = Cn(\emptyset) = \operatorname{Log}(\mathbb{K})$. Then one can find $\mathbb{K}_1, \dots, \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1 \supseteq \dots \supseteq \mathbb{K}_m$ and $Cn(X) = \overrightarrow{\mathbb{L}}(X)$, for each finite sets X, where $\mathbb{L} = \mathbb{K}_m \cup (\mathbb{K}_{m-1} \setminus \mathbb{K}_m) \times (\mathfrak{m} - 1)^+ \cup \dots \cup (\mathbb{K}_1 \setminus \mathbb{K}_2) \times 1^+$

Corollary

Let $L \in \operatorname{NExt}$ **S4.3** and let \mathbb{K} an adequate for L class of finite subdirectly irreducible S4.3-algebras. Then

(i)
$$\beta \in \overrightarrow{\mathbb{K}}(X, \alpha)$$
 iff $\Box \alpha \to \beta \in \overrightarrow{\mathbb{K}}(X)$.

Theorem

Let $Cn \geq Cn_L$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $L = Cn(\emptyset) = \operatorname{Log}(\mathbb{K})$. Then one can find $\mathbb{K}_1, \dots, \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1 \supseteq \dots \supseteq \mathbb{K}_m$ and $Cn(X) = \overrightarrow{\mathbb{L}}(X)$, for each finite sets X, where $\mathbb{L} = \mathbb{K}_m \cup (\mathbb{K}_{m-1} \setminus \mathbb{K}_m) \times (\mathfrak{m} - 1)^+ \cup \dots \cup (\mathbb{K}_1 \setminus \mathbb{K}_2) \times 1^+$

Corollary

Let $L \in \operatorname{NExt}$ **S4.3** and let \mathbb{K} an adequate for L class of finite subdirectly irreducible S4.3-algebras. Then

(i)
$$\beta \in \overrightarrow{\mathbb{K}}(X, \alpha)$$
 iff $\Box \alpha \to \beta \in \overrightarrow{\mathbb{K}}(X)$.

(ii)The structurally complete extension of Cn_L is determined by

$$\mathbb{K} \times \mathbf{1}^+ = \{ \mathcal{B} \times \mathbf{1}^+ : \mathcal{B} \in \mathbb{K} \}.$$

By use of the above theorem we can describe the lattice $\mathrm{EXT}_{fin}(L)$ of all finitary consequence extensions of any logic L over **S4.3**.

By use of the above theorem we can describe the lattice $\mathrm{EXT}_{\mathit{fin}}(L)$ of all finitary consequence extensions of any logic L over **S4.3**. The results, however, would be insufficient for $\mathrm{EXT}(L)$.

By use of the above theorem we can describe the lattice $\mathrm{EXT}_{fin}(L)$ of all finitary consequence extensions of any logic L over **\$4.3**. The results, however, would be insufficient for $\mathrm{EXT}(L)$. Exceptions are tabular (and strongly finite) logics

By use of the above theorem we can describe the lattice $\mathrm{EXT}_{fin}(L)$ of all finitary consequence extensions of any logic L over **S4.3**. The results, however, would be insufficient for $\mathrm{EXT}(L)$. Exceptions are tabular (and strongly finite) logics

Lemma

Suppose that $L \in NExt(\mathbf{S4.3})$. Then L is tabular iff Cn_L is strongly finite (i.e. $Cn_L \in SF$).

By use of the above theorem we can describe the lattice $\mathrm{EXT}_{fin}(L)$ of all finitary consequence extensions of any logic L over **S4.3**. The results, however, would be insufficient for $\mathrm{EXT}(L)$. Exceptions are tabular (and strongly finite) logics

Lemma

Suppose that $L \in \operatorname{NExt}(\mathbf{S4.3})$. Then L is tabular iff Cn_L is strongly finite (i.e. $Cn_L \in SF$).

Theorem

If a logic $L \in \text{NExt}(S4.3)$ is tabular, then $\text{EXT}(L) \subseteq SF$ and consequently $\text{EXT}(L) = \text{EXT}_{fin}(L)$.

By use of the above theorem we can describe the lattice $\mathrm{EXT}_{fin}(L)$ of all finitary consequence extensions of any logic L over **S4.3**. The results, however, would be insufficient for $\mathrm{EXT}(L)$. Exceptions are tabular (and strongly finite) logics

Lemma

Suppose that $L \in \operatorname{NExt}(\mathbf{S4.3})$. Then L is tabular iff Cn_L is strongly finite (i.e. $Cn_L \in SF$).

Theorem

If a logic $L \in \operatorname{NExt}(\mathbf{S4.3})$ is tabular, then $\operatorname{EXT}(L) \subseteq SF$ and consequently $\operatorname{EXT}(L) = \operatorname{EXT}_{fin}(L)$.

We show $\mathrm{EXT}(Cn) \subseteq FA$ and $\mathrm{EXT}(Cn) \equiv \mathrm{EXT}_{fin}(L)$ (where \equiv is a lattice isomorphism and $L = Cn(\emptyset)$) for every consequence operation $Cn \in FA$ extending (**S4.3**).

By use of the above theorem we can describe the lattice $\mathrm{EXT}_{fin}(L)$ of all finitary consequence extensions of any logic L over **S4.3**. The results, however, would be insufficient for $\mathrm{EXT}(L)$. Exceptions are tabular (and strongly finite) logics

Lemma

Suppose that $L \in \operatorname{NExt}(\mathbf{S4.3})$. Then L is tabular iff Cn_L is strongly finite (i.e. $Cn_L \in SF$).

Theorem

If a logic $L \in \operatorname{NExt}(\mathbf{S4.3})$ is tabular, then $\operatorname{EXT}(L) \subseteq SF$ and consequently $\operatorname{EXT}(L) = \operatorname{EXT}_{fin}(L)$.

We show $\mathrm{EXT}(Cn) \subseteq FA$ and $\mathrm{EXT}(Cn) \equiv \mathrm{EXT}_{fin}(L)$ (where \equiv is a lattice isomorphism and $L = Cn(\emptyset)$) for every consequence operation $Cn \in FA$ extending (**S4.3**).

FA logics

FA logics

We should stress that, in contrast to the finitary case, infinitary modal consequence operations over $\bf S4.3$ are not characterized by finite algebras. We can prove

FA logics

We should stress that, in contrast to the finitary case, infinitary modal consequence operations over **S4.3** are not characterized by finite algebras. We can prove

Theorem

For consequence operations over S4.3: FA = ASCpl.

We should stress that, in contrast to the finitary case, infinitary modal consequence operations over **S4.3** are not characterized by finite algebras. We can prove

Theorem

For consequence operations over **S4.3**: FA = ASCpl.

Corollary

For consequence operations over **S4.3**: $ASCpl \cap Fin = SF$.

We should stress that, in contrast to the finitary case, infinitary modal consequence operations over **S4.3** are not characterized by finite algebras. We can prove

Theorem

For consequence operations over **S4.3**: FA = ASCpl.

Corollary

For consequence operations over **S4.3**: $ASCpl \cap Fin = SF$.

We have distinguished four variants of structural completeness: *SCpl*, *SCpl*_{fin}, *ASCpl* and *ASCpl*_{fin}.

We have distinguished four variants of structural completeness: SCpl, $SCpl_{fin}$, ASCpl and $ASCpl_{fin}$.

To show that $SCpl \neq SCpl_{fin}$ (or $ASCpl \neq ASCpl_{fin}$) it suffices to consider the rule :

$$(\varrho) \qquad \frac{\{\Box(\alpha_i \leftrightarrow \alpha_j) \to \alpha_0 : 0 < i < j\}}{\alpha_0}$$

We have distinguished four variants of structural completeness: $SCpl_i, SCpl_{fin}, ASCpl$ and $ASCpl_{fin}$.

To show that $SCpl \neq SCpl_{fin}$ (or $ASCpl \neq ASCpl_{fin}$) it suffices to consider the rule :

$$(\varrho) \qquad \frac{\{\Box(\alpha_i \leftrightarrow \alpha_j) \to \alpha_0 : 0 < i < j\}}{\alpha_0}$$

It can be easily seen that the rule is valid for each finite modal algebra which means it is derivable for the modal consequence operation \overrightarrow{A} determined by a finite A.

We have distinguished four variants of structural completeness: *SCpl*, *SCpl*_{fin}, *ASCpl* and *ASCpl*_{fin}.

To show that $SCpl \neq SCpl_{fin}$ (or $ASCpl \neq ASCpl_{fin}$) it suffices to consider the rule :

$$(\varrho) \qquad \frac{\{\Box(\alpha_i \leftrightarrow \alpha_j) \to \alpha_0 : 0 < i < j\}}{\alpha_0}$$

It can be easily seen that the rule is valid for each finite modal algebra which means it is derivable for the modal consequence operation \overrightarrow{A} determined by a finite A. Since each modal logic extending **S4.3** is know to have the finite model property, we obtain admissibility of the rule for any extension of **S4.3**.

We have distinguished four variants of structural completeness: *SCpl*, *SCpl*_{fin}, *ASCpl* and *ASCpl*_{fin}.

To show that $SCpl \neq SCpl_{fin}$ (or $ASCpl \neq ASCpl_{fin}$) it suffices to consider the rule :

$$(\varrho) \qquad \frac{\{\Box(\alpha_i \leftrightarrow \alpha_j) \to \alpha_0 : 0 < i < j\}}{\alpha_0}$$

It can be easily seen that the rule is valid for each finite modal algebra which means it is derivable for the modal consequence operation \overrightarrow{A} determined by a finite A. Since each modal logic extending **S4.3** is know to have the finite model property, we obtain admissibility of the rule for any extension of **S4.3**.On the other hand , ϱ is not derivable for **S4.3** (nor **S4.3M**) as p_0 cannot be deduced, in **S4.3**, from any finite subset of $\{\Box(p_i\leftrightarrow p_j)\to p_0: 0< i< j\}$.

We have distinguished four variants of structural completeness: *SCpl*, *SCpl*_{fin}, *ASCpl* and *ASCpl*_{fin}.

To show that $SCpl \neq SCpl_{fin}$ (or $ASCpl \neq ASCpl_{fin}$) it suffices to consider the rule :

$$(\varrho) \qquad \frac{\{\Box(\alpha_i \leftrightarrow \alpha_j) \to \alpha_0 : 0 < i < j\}}{\alpha_0}$$

It can be easily seen that the rule is valid for each finite modal algebra which means it is derivable for the modal consequence operation \overrightarrow{A} determined by a finite A. Since each modal logic extending **S4.3** is know to have the finite model property, we obtain admissibility of the rule for any extension of **S4.3**.On the other hand , ϱ is not derivable for **S4.3** (nor **S4.3M**) as p_0 cannot be deduced, in **S4.3**, from any finite subset of $\{\Box(p_i\leftrightarrow p_j)\to p_0: 0< i< j\}$. So, **S4.3** \in $ASCpl_{fin}\setminus ASCpl$ (and **S4.3M** \in $SCpl_{fin}\setminus SCpl$).

We have distinguished four variants of structural completeness: *SCpl*, *SCpl*_{fin}, *ASCpl* and *ASCpl*_{fin}.

To show that $SCpl \neq SCpl_{fin}$ (or $ASCpl \neq ASCpl_{fin}$) it suffices to consider the rule :

$$(\varrho) \qquad \frac{\{\Box(\alpha_i \leftrightarrow \alpha_j) \to \alpha_0 : 0 < i < j\}}{\alpha_0}$$

It can be easily seen that the rule is valid for each finite modal algebra which means it is derivable for the modal consequence operation \overrightarrow{A} determined by a finite A. Since each modal logic extending **S4.3** is know to have the finite model property, we obtain admissibility of the rule for any extension of **S4.3**.On the other hand , ϱ is not derivable for **S4.3** (nor **S4.3M**) as p_0 cannot be deduced, in **S4.3**, from any finite subset of $\{\Box(p_i\leftrightarrow p_j)\to p_0: 0< i< j\}$. So, **S4.3** \in $ASCpl_{fin}\setminus ASCpl$ (and **S4.3M** \in $SCpl_{fin}\setminus SCpl$).

The projective unification of **\$4.3** will not be preserved if we extend the concept of projective unifier on infinite sets of formulas.

The projective unification of **S4.3** will not be preserved if we extend the concept of projective unifier on infinite sets of formulas. Namely, let us suppose that ε is a unifier for the set $\{\Box(p_i \leftrightarrow p_j) \to p_0 : 0 < i < j\}$ in **S4.3** (notice that the set is unifiable) such that

$$(\varepsilon(\beta) \leftrightarrow \beta) \in Cn_{S4.3}(\{\Box(p_i \leftrightarrow p_j) \rightarrow p_0 : 0 < i < j\}), \text{ for each } \beta$$

The projective unification of **S4.3** will not be preserved if we extend the concept of projective unifier on infinite sets of formulas. Namely, let us suppose that ε is a unifier for the set $\{\Box(p_i\leftrightarrow p_j)\to p_0: 0< i< j\}$ in **S4.3** (notice that the set is unifiable) such that

$$(\varepsilon(\beta) \leftrightarrow \beta) \in Cn_{\mathbf{S4.3}}(\{\Box(p_i \leftrightarrow p_j) \rightarrow p_0 : 0 < i < j\}), \text{ for each } \beta$$

Since ϱ is **S4.3**-admissible and ε is a unifier for any $\Box(p_i \leftrightarrow p_j) \rightarrow p_0$ with 0 < i < j, we get $\varepsilon(p_0) \in$ **S4.3**. Thus, we obtain (for $\beta = p_0$)

$$p_0 \in Cn_{S4.3}(\{\Box(p_i \leftrightarrow p_j) \rightarrow p_0 : 0 < i < j\})$$

which is impossible. Consequently, the set $\{\Box(p_i \leftrightarrow p_j) \rightarrow p_0 : 0 < i < j\}$ cannot have a projective unifier in **S4.3** (and any weaker logic).

Let $Cn \in \mathrm{EXT}(\mathbf{S4.3})$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $Log(\mathbb{K}) = Cn(\emptyset) = L$.

Let $Cn \in \mathrm{EXT}(\mathbf{S4.3})$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $Log(\mathbb{K}) = Cn(\emptyset) = L$. Then one can find $\mathbb{K}_1 \supseteq \cdots \supseteq \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1$, and $\mathbb{K}_i = S(\mathbb{K}_i)$ for $i = 1, \ldots, m$, and $Cn =_{fin} \mathbb{L}$, where

$$\mathbb{L} = \mathbb{K}_m \cup (\mathbb{K}_{m-1} \setminus \mathbb{K}_m) \times (\mathfrak{m} - \mathfrak{1})^+ \cup \cdots \cup (\mathbb{K}_1 \setminus \mathbb{K}_2) \times \mathfrak{1}^+$$

Let $Cn \in \mathrm{EXT}(\mathbf{S4.3})$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $Log(\mathbb{K}) = Cn(\emptyset) = L$. Then one can find $\mathbb{K}_1 \supseteq \cdots \supseteq \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1$, and $\mathbb{K}_i = S(\mathbb{K}_i)$ for $i = 1, \ldots, m$, and $Cn = \lim_{n \to \infty} \mathbb{L}$, where $\mathbb{L} = \mathbb{K}_m \cup (\mathbb{K}_{m-1} \setminus \mathbb{K}_m) \times (\mathfrak{m} - \mathfrak{1})^+ \cup \cdots \cup (\mathbb{K}_1 \setminus \mathbb{K}_2) \times \mathfrak{1}^+$

Theorem

(i)
$$\overrightarrow{\mathbb{L}} = Cn^{ASCpI}$$
;

Let $Cn \in \text{EXT}(S4.3)$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $Log(\mathbb{K}) = Cn(\emptyset) = L$. Then one can find $\mathbb{K}_1 \supseteq \cdots \supseteq \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1$, and $\mathbb{K}_i = S(\mathbb{K}_i)$ for $i = 1, \dots, m$, and $Cn =_{fin} \overline{\mathbb{L}}$, where

$$\mathbb{L} = \mathbb{K}_m \cup (\mathbb{K}_{m-1} \setminus \mathbb{K}_m) \times (\mathfrak{m} - \mathfrak{1})^+ \cup \cdots \cup (\mathbb{K}_1 \setminus \mathbb{K}_2) \times \mathfrak{1}^+$$

Theorem

- (i) $\overrightarrow{\mathbb{L}} = Cn^{ASCpl}$; (ii) If $\overrightarrow{\mathbb{K}} < Cn$, then $Cn = \overrightarrow{\mathbb{L}}$:

Let $Cn \in EXT(S4.3)$ and \mathbb{K} be a class of finite subdirectly irreducible S4.3-algebras such that $Log(\mathbb{K}) = Cn(\emptyset) = L$. Then one can find $\mathbb{K}_1 \supseteq \cdots \supseteq \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1$, and $\mathbb{K}_i = S(\mathbb{K}_i)$ for $i = 1, \dots, m$, and $Cn =_{fin} \overline{\mathbb{L}}$, where

$$\mathbb{L} = \mathbb{K}_m \cup (\mathbb{K}_{m-1} \setminus \mathbb{K}_m) \times (\mathfrak{m} - \mathfrak{1})^+ \cup \cdots \cup (\mathbb{K}_1 \setminus \mathbb{K}_2) \times \mathfrak{1}^+$$

Theorem

- (i) $\overrightarrow{\mathbb{L}} = Cn^{ASCpl}$; (ii) If $\overrightarrow{\mathbb{K}} < Cn$, then $Cn = \overrightarrow{\mathbb{L}}$;

Corollary

$$\overrightarrow{\mathbb{K} \times \mathbf{1}^{+}} = C n_{L}^{SCpl}$$
 and $\overrightarrow{\mathbb{K}} = C n_{L}^{ASCpl}$.

Infinitary Admissible Rules

Infinitary Admissible Rules

Let Σ be the family of all strictly increasing number-theoretic functions. For each function $f \in \Sigma$, let r_f be

$$\frac{\{[\bigwedge_{n < j \le f(n)} \bigvee_{0 < i \le n} \Box(p_i \leftrightarrow p_j)] \to p_0 : n > 0\}}{p_0}$$

Example

Let f(n) = n + 1 for each n. Then r_f is equivalent to the rule ϱ :

$$\frac{\{\Box(p_i \leftrightarrow p_j) \to p_0 : 0 < i < j\}}{p_0}$$

Example

Let f(n) = n + 2 for each n. Then r_f is equivalent to

$$\frac{\{\Box(p_i \leftrightarrow p_{n+1}) \land \Box(p_j \leftrightarrow p_{n+2})) \rightarrow p_0 : 0 < i, j \le n\}}{p_0}$$

Note that the rules r_f are unifiable, i.e. they are non-passive as p_0/\top is a unifier for each of the premises.

Note that the rules r_f are unifiable, i.e. they are non-passive as p_0/T is a unifier for each of the premises.

Lemma

The rule r_f , for any $f \in \Sigma$, is valid in any finite algebra A, i.e.

$$p_0 \in \overrightarrow{\mathcal{A}}(\{[\bigwedge_{n < j \le f(n)} \bigvee_{0 < i \le n} \Box(p_i \leftrightarrow p_j)] \rightarrow p_0 : n > 0\})$$

Note that the rules r_f are unifiable, i.e. they are non-passive as p_0/\top is a unifier for each of the premises.

Lemma

The rule r_f , for any $f \in \Sigma$, is valid in any finite algebra A, i.e.

$$p_0 \in \overrightarrow{\mathcal{A}}(\{[\bigwedge_{n < j \le f(n)} \bigvee_{0 < i \le n} \Box(p_i \leftrightarrow p_j)] \to p_0 : n > 0\})$$

Thus, similarly as ϱ each rule r_f is admissible for any extension of **S4.3**.

Note that the rules r_f are unifiable, i.e. they are non-passive as p_0/\top is a unifier for each of the premises.

Lemma

The rule r_f , for any $f \in \Sigma$, is valid in any finite algebra A, i.e.

$$p_0 \in \overrightarrow{\mathcal{A}}(\{[\bigwedge_{n < j \le f(n)} \bigvee_{0 < i \le n} \Box(p_i \leftrightarrow p_j)] \to p_0 : n > 0\})$$

Thus, similarly as ϱ each rule r_f is admissible for any extension of **S4.3**. For any consequence operation Cn, let Cn^{Σ} be the extension of Cn with the rules $\{r_f\}_{f\in\Sigma}$. We prove that $\{r_f\}_{f\in\Sigma}$ is a rule basis for all admissible non-passive (infinitary) rules of any $Cn\in \mathrm{EXT}(\mathbf{S4.3})$:

Note that the rules r_f are unifiable, i.e. they are non-passive as p_0/\top is a unifier for each of the premises.

Lemma

The rule r_f , for any $f \in \Sigma$, is valid in any finite algebra A, i.e.

$$p_0 \in \overrightarrow{\mathcal{A}}(\{[\bigwedge_{n < j < f(n)} \bigvee_{0 < i \le n} \Box(p_i \leftrightarrow p_j)] \rightarrow p_0 : n > 0\})$$

Thus, similarly as ϱ each rule r_f is admissible for any extension of **S4.3**. For any consequence operation Cn, let Cn^{Σ} be the extension of Cn with the rules $\{r_f\}_{f\in\Sigma}$. We prove that $\{r_f\}_{f\in\Sigma}$ is a rule basis for all admissible non-passive (infinitary) rules of any $Cn\in \mathrm{EXT}(\mathbf{S4.3})$:

Theorem

$$Cn_{fin}^{\Sigma} = Cn^{\Sigma} = Cn^{ASCpl} =_{fin} Cn$$
, for any $Cn \in EXT(\mathbf{S4.3})$.

Corollaries

Corollaries

Corollary

Let $Cn \in \mathrm{EXT}(\mathbf{S4.3})$. Then Cn is almost structurally complete $(Cn \in ASCpl)$ iff the rules $\{r_f\}_{f \in \Sigma}$ are derivable for Cn (i.e. $Cn = Cn^{\Sigma}$).

Corollary

Let $Cn \in \mathrm{EXT}(\mathbf{S4.3})$. Then Cn is almost structurally complete $(Cn \in ASCpl)$ iff the rules $\{r_f\}_{f \in \Sigma}$ are derivable for Cn (i.e. $Cn = Cn^{\Sigma}$).

It also follows from the above result that almost structurally complete consequence operations are hereditary almost structurally complete, i.e.

Corollary

If
$$Cn, Cn' \in \mathrm{EXT}(\mathbf{S4.3})$$
, then

$$Cn \in ASCpl \land Cn \leq Cn' \Rightarrow Cn' \in ASCpl.$$

$$Cn \in FA \land Cn \leq Cn' \Rightarrow Cn' \in FA$$
.

Corollary

Let $Cn \in \mathrm{EXT}(\mathbf{S4.3})$. Then Cn is almost structurally complete $(Cn \in ASCpl)$ iff the rules $\{r_f\}_{f \in \Sigma}$ are derivable for Cn (i.e. $Cn = Cn^{\Sigma}$).

It also follows from the above result that almost structurally complete consequence operations are hereditary almost structurally complete, i.e.

Corollary

If
$$Cn$$
, $Cn' \in \mathrm{EXT}(\mathbf{S4.3})$, then

$$\mathit{Cn} \in \mathit{ASCpI} \land \mathit{Cn} \leq \mathit{Cn'} \Rightarrow \mathit{Cn'} \in \mathit{ASCpI}.$$

$$Cn \in FA \land Cn \leq Cn' \Rightarrow Cn' \in FA$$
.

The lattice ASCpl(**S4.3**)

The lattice ASCpI(S4.3)

Corollary

ASCpl(\$4.3) is a sublattice of $\mathrm{EXT}(\$4.3)$. The lattices ASCpl(\$4.3) and $\mathrm{EXT}_{fin}(\$4.3)$ are isomorphic and as the lattice isomorphisms one can take the mappings $Cn\mapsto Cn^\Sigma$ and $Cn\mapsto Cn_{fin}$.

The lattice $ASCpl(\mathbf{S4.3})$

Corollary

ASCpl(S4.3) is a sublattice of EXT(S4.3). The lattices ASCpl(S4.3) and EXT_{fin}(S4.3) are isomorphic and as the lattice isomorphisms one can take the mappings $Cn \mapsto Cn^{\Sigma}$ and $Cn \mapsto Cn_{fin}$.

The consequence operation $\overrightarrow{\mathbb{K}}$, where $\mathbb{K}=\mathrm{Alg}(\mathbf{S4.3})_{si\,fin}$, is the least element of the lattice $ASCpl(\mathbf{S4.3})$. This consequence operation can also be given as the ASCpl extension of $\mathbf{S4.3}$, that is as the extension of $Cn_{\mathbf{S4.3}}$ with the rules $\{r_f\}_{f\in\Sigma}$.

The lattice $ASCpl(\mathbf{S4.3})$

Corollary

ASCpl(S4.3) is a sublattice of $\mathrm{EXT}(S4.3)$. The lattices ASCpl(S4.3) and $\mathrm{EXT}_{fin}(S4.3)$ are isomorphic and as the lattice isomorphisms one can take the mappings $Cn\mapsto Cn^\Sigma$ and $Cn\mapsto Cn_{fin}$.

The consequence operation $\overrightarrow{\mathbb{K}}$, where $\mathbb{K}=\mathrm{Alg}(\mathbf{S4.3})_{si\,fin}$, is the least element of the lattice $ASCpl(\mathbf{S4.3})$. This consequence operation can also be given as the ASCpl extension of $\mathbf{S4.3}$, that is as the extension of $Cn_{\mathbf{S4.3}}$ with the rules $\{r_f\}_{f\in\Sigma}$. Each element of $ASCpl(\mathbf{S4.3})$ has a finite rule basis, over the above defined $\overrightarrow{\mathbb{K}}$, consisting of passive rules just as each element of $\mathrm{EXT}_{fin}(\mathbf{S4.3})$) over $\mathbf{S4.3}$.

Corollary

For each formula $\alpha \in Cn^{\Sigma}(X)$ we have:

- **1.** either a finitary proof (of α) in which we apply MP, RG and some finitary passive rules valid for Cn (with respect to some formulas in $L \cup X$);
- **2.** or α is given by a single application of one of the rules r_f with respect to formulas which have finitary proofs as above.

Corollary

For each formula $\alpha \in Cn^{\Sigma}(X)$ we have:

- **1.** either a finitary proof (of α) in which we apply MP, RG and some finitary passive rules valid for Cn (with respect to some formulas in $L \cup X$);
- **2.** or α is given by a single application of one of the rules r_f with respect to formulas which have finitary proofs as above.

In other words each formula $\alpha \in \mathit{Cn}^\Sigma(X)$ has a syntactic proof of the type $\leq \omega + 1$.

Corollary

For each formula $\alpha \in Cn^{\Sigma}(X)$ we have:

- **1.** either a finitary proof (of α) in which we apply MP, RG and some finitary passive rules valid for Cn (with respect to some formulas in $L \cup X$);
- **2.** or α is given by a single application of one of the rules r_f with respect to formulas which have finitary proofs as above.

In other words each formula $\alpha \in \mathit{Cn}^\Sigma(X)$ has a syntactic proof of the type $\leq \omega + 1$. Although the rules r_f , for $f \in \Sigma$, look artificial they generate a natural (and simple) proof system.

Corollary

For each formula $\alpha \in Cn^{\Sigma}(X)$ we have:

- **1.** either a finitary proof (of α) in which we apply MP, RG and some finitary passive rules valid for Cn (with respect to some formulas in $L \cup X$);
- **2.** or α is given by a single application of one of the rules r_f with respect to formulas which have finitary proofs as above.

In other words each formula $\alpha \in \mathit{Cn}^\Sigma(X)$ has a syntactic proof of the type $\leq \omega + 1$. Although the rules r_f , for $f \in \Sigma$, look artificial they generate a natural (and simple) proof system. The only problem is that the rule basis $\{r_f \colon f \in \Sigma\}$ has the cardinality \mathfrak{c} . We suspect that $\mathit{Cn}^\Sigma_{\mathbf{54}.3}$ has no countable rule basis though we failed to prove it and left this problem open.