

FCC Test Report

FCC ID : VQK-F03F

Equipment : Mobile Phone

Model No. : F-03F

Brand Name : FUJITSU

Applicant : FUJITSU LIMITED

Address : 1-1, Kamikodanaka 4-chome, Nakahara-ku,

Kawasaki 211-8588, Japan

Standard : 47 CFR FCC Part 15.247

Received Date : Sep. 13, 2013

Tested Date : Oct. 03 ~ Oct. 16, 2013

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Iac-MRA

Report No.: FR391304AE Report Version: Rev. 01 Page: 1 of 39

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	
1.5	Test Standards	11
1.6	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Condition	12
2.2	The Worst Test Modes and Channel Details	12
3	TRANSMITTER TEST RESULTS	13
3.1	Conducted Emissions	13
3.2	6dB and Occupied Bandwidth	18
3.3	RF Output Power	
3.4	Power Spectral Density	22
3.5	Unwanted Emissions into Restricted Frequency Bands	24
3.6	Unwanted Emissions into Non-Restricted Frequency Bands	36
4	TEST LABORATORY INFORMATION	39

Release Record

Report No.	Version	Description	Issued Date
FR391304AE	Rev. 01	Initial issue	Oct. 21, 2013

Report No.: FR391304AE Page : 3 of 39

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 2.435MHz 31.59 (Margin -14.41dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 101.78MHz 35.82 (Margin -7.68dB) - PK	Pass
15.247(b)(3)	Fundamental Emission Output Power	Power [dBm]: -1.61	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR391304AE Page: 4 of 39

1 General Description

1.1 Information

1.1.1 Product Details

Product Name	Mobile Phone
Brand Name	FUJITSU
Model Name	F-03F
IMEI Code	353704050015387, 353704050015494, 353704050000330
H/W Version	V2.1.0
S/W Version	R17.1e

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	Bluetooth Mode	Ch. Freq. (MHz)	Channel Number	Data Rate			
2400-2483.5	BT LE	2402-2480	0-39 [40]	1 Mbps			

1.1.3 Antenna Details

Ant. No. Type		Gain (dBi)	Connector	Remark
1	λ /4 Monopole	0		

1.1.4 EUT Operational Condition

Supply Voltage	□ AC mains	□ DC	
Type of DC Source	☐ Internal DC supply		Battery

Report No.: FR391304AE Page: 5 of 39

1.1.5 Accessories

	Accessories					
No.	Equipment	Description				
		Brand Name: Fujitsu limited				
1	Battery	Model Name: CA54310-0045				
		Power Rating: O/P: 3.8Vdc, 2600mA				
		Brand Name: Fujitsu limited				
2	Cradle	Model Name: F44				
		Power Rating: O/P: 5.0Vdc, 1.5A				

1.1.6 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
37	2402.00	18	2442.00
0	2404.00	19	2444.00
1	2406.00	20	2446.00
2	2408.00	21	2448.00
3	2410.00	22	2450.00
4	2412.00	23	2452.00
5	2414.00	24	2454.00
6	2416.00	25	2456.00
7	2418.00	26	2458.00
8	2420.00	27	2460.00
9	2422.00	28	2462.00
10	2424.00	29	2464.00
38	2426.00	30	2466.00
11	2428.00	31	2468.00
12	2430.00	32	2470.00
13	2432.00	33	2472.00
14	2434.00	34	2474.00
15	2436.00	35	2476.00
16	2438.00	36	2478.00
17	2440.00	39	2480.00

Report No.: FR391304AE Page: 6 of 39

1.1.7 Test Tool and Power Setting

Test tool	QRCT, Ver 3.0.6.0				
Modulation Mode		Test Frequency (MHz)	2480 Default		
Wodulation Wode	2402	2440	2480		
GFSK/1Mbps	Default	Default	Default		

1.2 Local Support Equipment List

	Support Equipment List								
No.	No. Equipment Brand Model S/N FCC ID Signal cable / Length (r								
1	Adapter	NTT docomo	AC Adaptor 04			1m non-shielded with 2 cores			
2	Earphone	Apple	MD827FE/A			1.2m non-shielded w/o core			

Note: Item 1 was provided by client.

Report No.: FR391304AE Page: 7 of 39

1.3 Test Setup Chart

Report No.: FR391304AE Page: 8 of 39

1.4 The Equipment List

Test Item	Conducted Emission							
Test Site	Conduction room 1 / (CO01-WS)							
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibration							
EMC Receiver	R&S	ESCS 30	100169	Oct. 15, 2013	Oct. 14, 2014			
LISN	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-667	Dec. 04, 2012	Dec. 03, 2013			
LISN (Support Unit)	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2012	Dec. 03, 2013			
ISN	TESEQ	ISN T800	34406	Apr. 08, 2013	Apr. 07, 2014			
ISN	TESEQ	ISN T200A	30494	Apr. 09, 2013	Apr. 08, 2014			
ISN	TESEQ	ISN ST08	22589	Jan. 24, 2013	Jan. 23, 2014			
RF Current Probe	FCC	F-33-4	121630	Dec. 04, 2012	Dec. 03, 2013			
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 25, 2012	Dec. 24, 2013			
ESH3-Z6 V-Network(+)	R&S	ESH3-Z6	100920	Nov. 21, 2012	Nov. 20, 2013			
ESH3-Z6 V-Network(-)	R&S	ESH3-Z6	100951	Jan. 30, 2013	Jan. 29, 2014			
Two-Line V-Network	R&S	ENV216	101579	Jan. 07, 2013	Jan. 06, 2014			
50 ohm terminal	NA	50	03	Apr. 22, 2013	Apr. 21, 2014			
50 ohm terminal (Support Unit)	NA	50	04	Apr. 22, 2013	Apr. 21, 2014			

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 29, 2012	Nov. 28, 2013
Power Meter	Anritsu	ML2495A	1218007	Oct. 22, 2012	Oct. 21, 2013
Power Sensor	Anritsu	MA2411B	1207367	Oct. 22, 2012	Oct. 21, 2013
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014
Note: Calibration Inter	val of instruments listed	d above is one year.			

Report No.: FR391304AE Page: 9 of 39

Test Item	Radiated Emission above 1GHz 966 chamber1 / (03CH01-WS)										
Test Site											
Instrument	Manufacturer	Calibration Date	Calibration Until								
3m semi-anechoic chamber	CHAMPRO	SAC-03	03CH01-WS	Jan. 04, 2013	Jan. 03, 2014						
Spectrum Analyzer	R&S	FSV40	101498	Jan. 24, 2013	Jan. 23, 2014						
Receiver	R&S	ESR3	101658	Jan. 28, 2013	Jan. 27, 2014						
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jan. 11, 2013	Jan. 10, 2014						
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Feb. 18, 2013	Feb. 17, 2014						
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Jan. 14, 2013	Jan. 13, 2014						
Amplifier	Burgeon	BPA-530	100219	Nov. 28, 2012	Nov. 27, 2013						
Amplifier	Agilent	83017A	MY39501308	Dec. 18, 2012	Dec. 17, 2013						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 25, 2012	Dec. 24, 2013						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 25, 2012	Dec. 24, 2013						
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 25, 2012	Dec. 24, 2013						
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-001	Dec. 25, 2012	Dec. 24, 2013						
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-002	Dec. 25, 2012	Dec. 24, 2013						
control	EM Electronics	EM1000	60612	N/A	N/A						

Loop Antenna	R&S	HFH2-Z2	100330	Nov. 15, 2012	Nov. 14, 2014			
Amplifier	MITEQ	AMF-6F-260400	9121372	Apr. 19, 2013	Apr. 18, 2015			
Note: Calibration Interval of instruments listed above is two year.								

Report No.: FR391304AE Page: 10 of 39

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

ANSI C63.10-2009

FCC KDB 558074 D01 DTS Meas Guidance v03r01

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Parameters	Uncertainty						
Bandwidth	±35.286 Hz						
Conducted power	±0.536 dB						
Frequency error	±35.286 Hz						
Temperature	±0.3 °C						
Conducted emission	±2.946 dB						
AC conducted emission	±2.43 dB						
Radiated emission	±2.49 dB						

Report No.: FR391304AE Page: 11 of 39

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By	Tested Date
AC Conduction	CO01-WS	21°C / 66%	Peter Lin	Oct. 16, 2013
Radiated Emissions	03CH01-WS	21°C / 66%	Peter Lin	Oct. 04, 2013
RF Conducted	TH01-WS	24°C / 61%	Brad Wu	Oct. 02, 2013

FCC site registration No.: 657002IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data rate (Mbps)	Test Configuration
AC Power Line Conducted Emissions	BT LE	2402	1Mbps	1, 2
Radiated Emissions < 1GHz	BT LE	2402	1Mbps	1, 2
Radiated Emissions > 1GHz	BT LE	2402 / 2440 / 2480	1Mbps	1
Fundamental Emission Output Power				
6dB bandwidth	BT LE	2402 / 2440 / 2480	1Mbps	1
Power spectral density				

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.
- 2. The EUT had been tested by following test configurations for radiated emission below 1GHz.
 - 1) Configuration 1: Adapter mode
 - 2) Configuration 2: Cradle mode
- Adapter and cradle mode had been pretested for radiated emission above 1GHz and found that the adapter mode was the worst case and was selected for final test.

Report No.: FR391304AE Page: 12 of 39

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit								
Frequency Emission (MHz)	Quasi-Peak	Average						
0.15-0.5	66 - 56 *	56 - 46 *						
0.5-5	56	46						
5-30	60	50						
Note 1: * Decreases with the logarith	m of the frequency.							

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR391304AE Page: 13 of 39

3.1.4 Test Result of Conducted Emissions

Report No.: FR391304AE Page: 14 of 39

Modulation					Test F	1Hz)	2480	2480			
ower Phase		Neutral			Test C	Test Configuration			1		
									2		
	80 Level (dBu)	/)							Date: 2	2013-10-	16
	70										
									CISPR/CN	S/VCCI-	В
	60										
	50							CIS	PR/CNS/V	CCI-B A	V
	40 🗥			i.		M.	udb.				
	MIN PLANT	1 . 1	JALL AN	LON MANY	MANY BINA	W NIM		HAMINIAN ON THE HISTORY OF THE WAR	MANA TENNA	u	
	30				#	"W 7 "	"	MANAGE AND A STATE OF THE SAME OF	111	may Harry M	14
	20	1 1 1 1 1								18	YM
		166									
	10										
	0							<u></u>			
	0.150.2		0.5	1	Frequ	2 iency (MH		5 10)	20	30
	Freq	Level	Limit	Over	Read	LISN	cable				
	MHz	dBuV	Line dBuV	Limit dB	Level dBuV	factor dB	loss	Remark			
1	0.199	34.01	53.67	-19.66	33.79	0.04	0.18	Average			
2	0.199			-24.77	38.68	0.04	0.18	QP			
3	0.489			-19.38	26.68		0.05				
4		32.01			31.88	0.08	0.05				
5		28.24				0.17	0.11	Control of the second s			
7		27.95					0.19				
8		39.48				0.18	0.19	The state of the s			
9		27.29					0.24	0.000			
	3.922			-17.38			0.24				
10	14.907			-20.75				Average			
10 11 12		33.59	60.00	-26.41	32.53	0.93	0.13	QP			

Report No.: FR391304AE Page: 15 of 39

Power Phase		GFSK				Test F	req. (N	/lHz)	2480	
	Power Phase		Line		Test C	onfigu	2	2		
	80 Level (dBu	v)							Date: 20	013-10-16
	80	*)							Dute: 20	
	70									
	70								CISPR/CNS	WCCL B
	60	-		0 0					CISPR/CNS	VCCI-B
	50			11 113				С	ISPR/CNS/VC	CI-B AV
	30									
	40		W. .			- Like	Lua Hu.		M. Il	
	/\ M /\	M /W.	YALA	May Mil	Mil	I LMMING		Made and white	MA INDAMENTAL STATES	
	30		[4 7]	T PIN WITH	THE WAY		4 11 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11.00	h.pollhooder
	20	N. II	3	T.	11 hindi					Application of
	S ₂	1:								
	10									
	0.150.2		0.5	1		2		5	10	20 30
					Frequ	ency (MH	lz)			
	Freq	Level			Read	LISN	cable	#201 gr		
	MHz	dBuV	dBuV	Limit dB	dBuV	dB	loss	Remark		
1 2		30.85						Average QP		
3	0.679	21.99	46.00	-24.01	21.85	0.10	0.04	Average		
		33.13								
4	4 645	26 11		-19.89				Average		
5				-74 16						
5 6	1.645	31.84				0.19				
5 6 7	1.645 2.371	31.84	46.00	-16.14	29.47	0.21	0.18	Average		
5 6	1.645 2.371 2.371	31.84	46.00 56.00	-16.14 -21.68	29.47 33.93	0.21	0.18	Average		
5 6 7 8	1.645 2.371 2.371 3.820	31.84 29.86 34.32	46.00 56.00 46.00	-16.14 -21.68 -19.11	29.47 33.93 26.49	0.21 0.21 0.17	0.18 0.18 0.23	Average QP Average		
5 6 7 8 9	1.645 2.371 2.371 3.820 3.820 15.552	31.84 29.86 34.32 26.89	46.00 56.00 46.00 56.00 50.00	-16.14 -21.68 -19.11 -20.58 -19.93	29.47 33.93 26.49 35.02 28.89	0.21 0.21 0.17 0.17 1.04	0.18 0.18 0.23 0.23 0.14	Average QP Average QP Average		

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dBuV) = Limit Line (dBuV) – Level (dBuV).

Report No.: FR391304AE Page: 16 of 39

Modulation		LE			Test F	req. (N	IHz)	2480
Power Phase		Neutral			Test C	onfigu	ration	2
	80 Level (dBu	V)						Date: 2013-10-16
	70							
	60						С	ISPR/CNS/VCCI-B
							CISE	PR/CNS/VCCI-B AV
	50				A.i.			
	40	ا سال	n. kan kadhadkan, a shirib	VIVALANIA		MM	1	hophyddyla.
	30	VILAMIYI	J. Valvidad hadra	יין ווווין ויי			Mary Mysty by John 4	1 TO THE PARTY OF
	20	111 111 11 1	1	3 5				. 144 AM
	4555							
	10							
	0.150.2	0	.5 1	(<u>-</u>	2		5 10	20 30
					iency (MH			
	Freq	Level 1	Limit Over Line Limit	Read Level	LISN factor	cable	Remark	
	MHz	dBuV	dBuV dB	dBuV	dB	dB	020000000000000000000000000000000000000	
1	0.202	29.88	53.54 -23.66	29.66	0.04	0.18	Average	
2	0.202		63.54 -24.32	39.00	0.04	0.18	QP	
3 4	1.310 1.310		46.00 -23.29 56.00 -21.59	22.46		0.09	Average QP	
5	1.762		46.00 -25.91		0.18	0.14	Average	
6	1.762		56.00 -23.58			0.14	QP	
7	2.435	F = 10 (1/2) E = 2 (1/2) E = 1	46.00 -14.41	31.23	0.18	0.18	Average	
8	2.435		56.00 -15.66	39.98		0.18	QP	
9	3.799 3.799		46.00 -18.87 56.00 -18.86	26.75 36.76		0.23	Average QP	
10			50.00 -22.99				Average	
10 11	14.138			32.25		0.13		

Report No.: FR391304AE Page: 17 of 39

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

3.2.3 Test Setup

Report No.: FR391304AE Page: 18 of 39

3.2.4 Test Result of 6dB and Occupied Bandwidth

Mode	Freq. (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit of 6dB Bandwidth (kHz)
BT LE	2402	0.678	1.06	500
BT LE	2440	0.678	1.06	500
BT LE	2480	0.674	1.06	500

Report No.: FR391304AE Page: 19 of 39

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Cor	duct	ed po	ower shall not exceed 1Watt.							
\boxtimes	Ante	enna	gain <= 6dBi, no any corresponding reduction is in output power limit.							
	Ante	Antenna gain > 6dBi								
		The	n Fixed, point to point operations. e conducted output power from the intentional radiator shall be reduced by the amount in dB the directional gain of the antenna exceeds 6 dB							
		Sys Ope	ed, point to point operations tems operations. The same tems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point erations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 that the directional gain of the antenna exceeds 6 dBi.							
			tems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point rations ,no any corresponding reduction is in transmitter peak output power							
3.3.	2	Test	t Procedures							
\boxtimes	Max	Maximum Peak Conducted Output Power								
		Spe	ectrum analyzer							
		1.	Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.							
		2.	Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.							
		3.	Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.							
	\boxtimes	Pov	ver meter							
		1.	A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.							
\boxtimes	Max	kimur	m Conducted Output Power (For reference only)							
		Spe	ectrum analyzer							
		1.	Set RBW = 1MHz, VBW = 3MHz, Detector = RMS.							
		2.	Set the sweep time to: \geq 10 x (number of measurement points in sweep) x (maximum data rate per stream).							
		3.	Perform the measurement over a single sweep.							
		4.	Use the spectrum analyzer's band power measurement function with band limits set equal to the EBW(26dBc) band edges.							

Report No.: FR391304AE Page: 20 of 39

A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission

Report Version: Rev. 01

Nower meter

burst for measuring output power.

3.3.3 Test Setup

3.3.4 Test Result of Maximum Output Power

Mode	Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	
BT LE	2402	0.58	-2.35	30	
BT LE	2440	0.67	-1.75	30	
BT LE	2480	0.69	-1.61	30	

Mode	Freq. (MHz)	AV Power (mW)	AV Power (dBm)	Limit (dBm)	
BT LE	2402	0.53	-2.76	30	
BT LE	2440	0.62	-2.09	30	
BT LE	2480	0.64	-1.96	30	

Note: Average power is for reference only

Report No.: FR391304AE Page: 21 of 39

3.4 Power Spectral Density

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 10kHz, VBW = 30kHz.
 - 2. Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 10kHz, VBW = 30kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Set the sweep time to: ≥ 10 x (number of measurement points in sweep) x (maximum data rate per stream).
 - 4. Perform the measurement over a single sweep.
 - 5. Use the peak marker function to determine the maximum amplitude level.\

3.4.3 Test Setup

Report No.: FR391304AE Page: 22 of 39

3.4.4 Test Result of Power Spectral Density

Mode	Freq. (MHz)	Total Power Spectral Density (dBm/10kHz)	Limit (dBm/3kHz)		
BT LE	2402	-13.24	8		
BT LE	2440	-12.55	8		
BT LE	2480	-12.58	8		

Report No.: FR391304AE Page: 23 of 39

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit									
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300						
0.490~1.705	24000/F(kHz)	33.8 - 23	30						
1.705~30.0	30	29	30						
30~88	100	40	3						
88~216	150	43.5	3						
216~960	200	46	3						
Above 960	500	54	3						

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR391304AE Page: 24 of 39

3.5.3 Test Setup

Report No.: FR391304AE Page: 25 of 39

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	150.28	19.90	43.50	-23.60	36.85	-16.95	Peak		
2	170.65	29.11	43.50	-14.39	46.37	-17.26	Peak		
3	177.44	25.63	43.50	-17.87	43.68	-18.05	Peak		
4	205.57	18.56	43.50	-24.94	37.90	-19.34	Peak		
5	328.76	27.77	46.00	-18.23	43.24	-15.47	Peak		
6	379.20	21.66	46.00	-24.34	35.84	-14.18	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR391304AE Page: 26 of 39

Modulation	GFSK	Test Freq. (MHz)	2480
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m		J	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	30.00	22.95	40.00	-17.05	40.68	-17.73	Peak		
2	147.37	26.08	43.50	-17.42	43.09	-17.01	Peak		
3	166.77	22.11	43.50	-21.39	39.17	-17.06	Peak		
4	224.00	25.06	46.00	-20.94	44.23	-19.17	Peak		
5	341.37	23.74	46.00	-22.26	38.88	-15.14	Peak		
6	412.18	22.28	46.00	-23.72	35.64	-13.36	Peak		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR391304AE Page: 27 of 39

Modulation	GFSK	Test Freq. (MHz)	2480
Polarization	Horizontal	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	142.52	24.45	43.50	-19.05	41.58	-17.13	Peak		
2	165.80	21.52	43.50	-21.98	38.54	-17.02	Peak		
3	191.99	22.79	43.50	-20.71	41.92	-19.13	Peak		
4	202.66	23.96	43.50	-19.54	43.25	-19.29	Peak		
5	352.04	17.96	46.00	-28.04	32.81	-14.85	Peak		
6	460.68	18.38	46.00	-27.62	30.66	-12.28	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR391304AE Page: 28 of 39

Modulation		GFS	K		-	Γest Fre	q. (MHz)		2480	2480	
Polarization		Verti	Vertical		-	Test Configuration 2			2	2	
90	Level (dBuV/m)									_
80											
O	,										
70) <u> </u>										
60	J										
									FCC	CLAS	S-B
50											
40) -	2	_								
30											
30	1	3 4		5	6						
20	-			+							
10	J										
'	30 1	00. 20	0. 30	0. 4	00. 50 Freque	0. 600 ncy (MHz)	0. 700.	800.	90	00.	1000
		Freg. F	mission	limit	Margin		Factor	Remark	Δ	NT	Turn
			level	LIMIT	riai gan	reading		remark		igh	Table
		MHz	dBuV/m	dBuV/ı	n dB	dBuV	dB			m	deg
1		30.00	29.91	40.00	-10.09	47.64	-17.73	Peak			
2		101.78	35.82	43.50		57.16	-21.34	Peak			
3		166.77	26.07		-17.43	43.13	-17.06	Peak			
4		185.20	21.66		-21.84	40.40	-18.74	Peak			
5 6		318.09 494.63			-24.43 -23.24	37.34 34.53		Peak Peak			

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR391304AE Page: 29 of 39

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR391304AE Page: 30 of 39

^{*}Factor includes antenna factor, cable loss and amplifier gain

Modulation	GFSK	Test Freq. (MHz)	2402
Polarization	Vertical		

	Freq. MHz	Emission level dBuV/m		Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1594.00	41.79	54.00	-12.21	48.09	-6.30	Average		
2	1594.00	58.85	74.00	-15.15	65.15	-6.30	Peak		
3	2390.00	28.62	54.00	-25.38	31.84	-3.22	Average		
4	2390.00	45.30	74.00	-28.70	48.52	-3.22	Peak		
5	4804.00	35.06	54.00	-18.94	30.78	4.28	Average		
6	4804.00	45.98	74.00	-28.02	41.70	4.28	Peak		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR391304AE Page: 31 of 39

Modulation	GFSK	Test Freq. (MHz)	2440
Polarization	Horizontal		

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1594.00	34.58	54.00	-19.42	40.88	-6.30	Average		
2	1594.00	50.06	74.00	-23.94	56.36	-6.30	Peak		
3	4880.00	32.44	54.00	-21.56	28.04	4.40	Average		
4	4880.00	44.66	74.00	-29.34	40.26	4.40	Peak		
5	7320.00	37.07	54.00	-16.93	28.14	8.93	Average		
6	7320.00	49.91	74.00	-24.09	40.98	8.93	Peak		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR391304AE Page: 32 of 39

Modulation	GFSK	Test Freq. (MHz)	2440
Polarization	Vertical		

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1594.00	41.01	54.00	-12.99	47.31	-6.30	Average		
2	1594.00	59.07	74.00		65.37	-6.30	Peak		
3	4880.00	34.92	54.00	-19.08	30.52	4.40	Average		
4	4880.00	45.44	74.00	-28.56	41.04	4.40	Peak		
5	7320.00	37.18	54.00	-16.82	28.25	8.93	Average		
6	7320.00	50.31	74.00	-23.69	41.38	8.93	Peak		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR391304AE Page: 33 of 39

Modulation Polarization				GFSK					Test F	req	2480			
				Hori	zontal			1						
		evel	(dBu\	//m)										
12														
10	30-												FCC CLAS	SS-B
6	60	2				8						FCC	C CLASS-B (
4	10	+	3	5		+								
2	20													
	0 <u>1</u>	000	40	000.	6000.	8000.	100		0. 1400 ency (Mi		6000. 180	00. 20000.	22000.	25000
			Fr	eq.	Emissio level		it	Margi	n SA read:		Factor	Remark	ANT High	Turn Table
			M	Hz ——	dBuV/r	n dBu	V/n	n dB	dBu\	v 	dB ———		Cm	deg
1 2					34.33 49.84			-19.67 -24.16			-6.30 -6.30	Averag Peak	e	
3				3.50				-25.86			-0.30	Averag	e	
4			248	3.50				-32.26		57	-2.83	Peak		

4.54

4.54

9.12

9.12

28.63

Average

Peak

Average

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

4960.00 32.83 54.00 -21.17 28.29

4960.00 45.21 74.00 -28.79 40.67

7440.00 49.59 74.00 -24.41 40.47

7440.00 37.75 54.00 -16.25

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR391304AE Page: 34 of 39

Report Version: Rev. 01

5

6

7

Modulation	GFSK	Test Freq. (MHz)	2480
Polarization	Vertical		

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	1594.00	41.35	54.00	-12.65	47.65	-6.30	Average		
2	1594.00	59.10	74.00	-14.90	65.40	-6.30	Peak		
3	2483.50	29.51	54.00	-24.49	32.34	-2.83	Average		
4	2483.50	42.40	74.00	-31.60	45.23	-2.83	Peak		
5	4960.00	34.81	54.00	-19.19	30.27	4.54	Average		
6	4960.00	45.38	74.00	-28.62	40.84	4.54	Peak		
7	7440.00	37.73	54.00	-16.27	28.61	9.12	Average		
8	7440.00	50.64	74.00	-23.36	41.52	9.12	Peak		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR391304AE Page: 35 of 39

3.6 Unwanted Emissions into Non-Restricted Frequency Bands

3.6.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

\boxtimes	The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band
	shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

The peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.6.3 Test Setup

Report No.: FR391304AE Page: 36 of 39

3.6.4 Unwanted Emissions into Non-Restricted Frequency Bands

Report No.: FR391304AE Page: 37 of 39

Report No.: FR391304AE Page: 38 of 39

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou Kwei Shan

Tel: 886-2-2601-1640 Tel: 886-3-271-8666

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei
City, Taiwan, R.O.C.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan
Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR391304AE Page: 39 of 39