|          |  | 1 |  |  |  |  | _ |
|----------|--|---|--|--|--|--|---|
| Reg. No. |  |   |  |  |  |  |   |
|          |  |   |  |  |  |  |   |

## **B.Tech. DEGREE EXAMINATION, JUNE 2023**

**Third Semester** 

## 18EEC201J - ANALYSIS OF ELECTRIC CIRCUITS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:

- (i) Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40<sup>th</sup> minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time: 3 hours

Max. Marks: 100

CO PO

1 1

 $PART - A (20 \times 1 = 20 Marks)$ 

**Answer ALL Questions** 

- 1. Find the value of current I in the given circuit.
  - $\begin{array}{c|c}
    4\Omega \\
    \hline
    1 \\
    3V \\
    \hline
    6\Omega
    \end{array}$
  - (A) -0.2A

(B) -0.8A

(C) 0.2A

- (D) 0.8A
- 2. What is the conductance value of electric kettle for 250V and 500W?
- 1 1 1

(A) 0.5mひ

(B) 8mV

(C) 0.5び

- (D) 20
- 3. Find the current I<sub>0</sub> in the circuit.

1 1 1

1 1



- (A) 12A
- (C) 6A

- (B) 9 A (D) 3 A
- 4. Determine the equivalent resistance RAB in the circuit.



- (A)  $3.33 \Omega$
- (C)  $10 \Omega$

- (B)  $6.67 \Omega$
- (D) 6Ω

| 5.          | What is the value of average power absorbed by an impedance $Z = (30 - j70)\Omega$ is connected across $120 \angle 0^{\circ}V$ .                          | 1       | 1    | 2     | 1 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|---|
|             | (A) 240 W (B) 120 W<br>(C) 74.48 W (D) 66 W                                                                                                               |         |      |       |   |
| 6.          | Find the value of $\omega_0$ in a series resonance circuit. The voltage $E = 200 \angle 0^{\circ}V$ , $R = 10\Omega$ , $L = 10mH$ and $C = 1\mu F$        | 1       | 1    | 2     | 1 |
|             | (A) 10 rad/s (B) 10 <sup>4</sup> rad/s (C) 10 <sup>3</sup> rad/s (D) 10 <sup>2</sup> rad/s                                                                |         |      |       |   |
|             | In a two terminal passive element, the voltage across it and current through it are $V_1 = 40 \angle -15^{\circ}V$ and $I_1 = 1.6 \angle -105^{\circ}A$ . | 1       | 1    | 2     | 1 |
|             | (A) An inductance of reactance (B) An inductance of reactance $25\Omega$ 0.04 $\Omega$                                                                    |         |      |       |   |
|             | (C) A capacitance of reactance (D) A capacitance of reactance $25\Omega$ $0.04\Omega$                                                                     |         |      |       |   |
|             | What is the unit for complex power? (A) kW (B) VAR                                                                                                        | 1       | 1    | 3     | 1 |
|             | (C) Watts (D) VA                                                                                                                                          |         |      |       |   |
| 9.          | Thevenin's equivalent circuit consists of  (A) Voltage source in parallel with (B) Voltage source in series with an                                       | 1       | 1    | 3     | 1 |
|             | impedance impedance  (C) Current source in series with (D) Current source in parallel with impedance                                                      |         |      |       |   |
| 10.         | Find the Thevenin's voltage with respect to $6\Omega$ resistor.                                                                                           | 1       | 2    | 3     | 1 |
|             | $ \begin{array}{c c}  & & I_0 \\  & & 3\Omega \\  & & & 6\Omega \end{array} $                                                                             |         |      |       |   |
|             | (A) 180 V (B) 90 V<br>(C) 9.47 V (D) 20 V                                                                                                                 |         |      |       |   |
|             |                                                                                                                                                           | 1       | 2    | 3     | 1 |
| 11.         | What is the value of maximum real power supplied in the circuit? $3 \Omega \qquad \text{j4 } \Omega$                                                      |         |      |       |   |
|             |                                                                                                                                                           |         |      |       |   |
|             | 60∠0°V                                                                                                                                                    |         |      |       |   |
|             | (A) 300 W (B) 150 W                                                                                                                                       |         |      |       |   |
|             | (C) 100 W (D) 50 W                                                                                                                                        |         |      |       |   |
| 12.         | The circuit which satisfies reciprocity theorem is called as                                                                                              | 1       | 2    | 3     | 1 |
|             | <ul><li>(A) Short circuit</li><li>(B) Open circuit</li><li>(C) Linear circuit</li><li>(D) Non-linear circuit</li></ul>                                    |         |      |       |   |
| Page 2 of 6 |                                                                                                                                                           | 10JA3-1 | 8EEC | :201J |   |
| U V         |                                                                                                                                                           |         |      |       |   |

| 13  |           |                                                   | ant of a RL circuit                      |       | $R = 40\Omega$ and $L = 5H$ .                                     | 1     | 1   | 4  |    |
|-----|-----------|---------------------------------------------------|------------------------------------------|-------|-------------------------------------------------------------------|-------|-----|----|----|
|     | , ,       | 5 ms<br>8 s                                       |                                          |       | 200 s<br>0.125 s                                                  |       |     |    |    |
|     | Ì         |                                                   |                                          | _     |                                                                   |       |     |    |    |
| 14  | . Find    | the I(t) for the                                  | circuit current of                       | I(s)  | $=\frac{4}{s+50}$                                                 | 1     | 1   | 4  |    |
|     | (A)       | $4e^{-50t}A$                                      |                                          |       | $4e^{-0.02}A$                                                     |       |     |    |    |
|     | (C)       | $4e^{-12.5t}A$                                    |                                          | (D)   | $4e^{-0.08t}A$                                                    |       |     |    |    |
| 15. | load      | at is the value of having impedate voltage is 400 | ince of $75.96^{\circ}\Omega$ re         | or ba | lanced delta connected inductive es a phase current of 25A, while | 1     | 1   | 5  |    |
|     |           | 43.30 A                                           |                                          |       | 25.30 A                                                           |       |     |    |    |
|     | (C)       | 8.3 A                                             | ×                                        | (D)   | 75 A                                                              |       |     |    |    |
| 16. | A ca      | pacitor of 0.2F                                   | has zero initial                         | cha   | rge. Its transform impedance is                                   | 1     | 1   | 4  | ]  |
|     | (A)       | 0.2s                                              |                                          | (B)   | 5 s                                                               |       |     |    |    |
|     | (C)       | 5/s                                               |                                          | (D)   | 0.2/s                                                             |       |     |    |    |
| 17. | Find      | the real power o                                  | consumed by a bal                        | ance  | ed three phase load.                                              | 1     | 1   | 5  | 1  |
|     | (A)       | $p = \sqrt{3}E_{1}I_{1}\cos\theta$                | 9 (                                      |       |                                                                   |       |     |    |    |
|     |           |                                                   | $\cos \theta$                            | (D)   | $P = 3E_l I_l \cos \theta$                                        |       |     |    |    |
| 18. | $I_B = 3$ | $5\angle -100A$ .                                 | for three phase                          | e se  | quence of ABC system, with                                        | 1     | 1   | 5  | 1  |
|     |           | 5∠140 <i>A</i>                                    |                                          |       | 5∠100 <i>A</i>                                                    |       |     |    |    |
|     | (C)       | 5∠-140 <i>A</i>                                   | п (                                      | D)    | 5∠20 <i>A</i>                                                     |       |     |    |    |
| 19. | Find.     | Z <sub>11</sub> for the two p                     | ort network show                         | n in  | figure.                                                           | 1     | 1   | 5  | 1  |
|     |           |                                                   | 5Ω                                       |       |                                                                   |       |     |    |    |
|     |           |                                                   |                                          | \$    | 10 Ω                                                              |       |     |    |    |
|     |           |                                                   | 0                                        | }     | 10 52                                                             |       |     |    |    |
|     | (A)       |                                                   | (                                        | B)    | 10 Ω                                                              |       |     |    |    |
|     | (C)       | 15 Ω                                              | (                                        | D) 3  | 3.33 Ω                                                            |       |     |    |    |
| 20. | The in    | verse hybrid pa                                   | rameter g <sub>22</sub> is               |       |                                                                   | 1     | 1   | 5  | 1  |
|     |           | mpedance                                          |                                          | B) A  | <br>Admittance                                                    |       |     |    |    |
|     | (C)       | Voltage ratio                                     | (I                                       | _     | Current ratio                                                     |       |     |    |    |
|     |           |                                                   | DADT DEL                                 | _ 24  | D. Wallander                                                      |       |     |    |    |
|     |           |                                                   | $PART - B (5 \times 4)$<br>Answer ANY FI |       |                                                                   | Marks | BL. | CO | PO |
| 21. | Write     | the node equati                                   | ons for the circuit                      | shov  | vn in figure.                                                     | 4     | 1   | 1  | 2  |
|     |           | Ţ.                                                | $V_1 = {}_{8\Omega} = V$                 |       | 10Ω V <sub>3</sub>                                                |       |     |    |    |
|     |           |                                                   |                                          |       | -W                                                                |       |     |    |    |
|     |           | 12A(†)                                            | <b>ξ</b> 4Ω <b>(</b>                     | )18A  | 6Ω ₹ 124A                                                         |       |     |    |    |
|     |           |                                                   |                                          |       |                                                                   |       |     |    |    |

22. Using source transformation, determine the value of V<sub>0</sub> for the circuit <sup>4</sup> <sup>1</sup> <sup>1</sup> <sup>2</sup> shown in figure.



23. Determine the capacitive impedance for the circuit shown in figure.



24. Calculate the impedance of the circuit shown in figure.



25. Calculate the current through  $1\Omega$  resistor using superposition theorem.



- 26. Find the time constant of a RC circuit with  $R = 20\Omega$  and  $C = 250 \mu F$ .
- 27. Find the Y<sub>11</sub> of the circuit shown in figure.



 $PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a. For the circuit shown in figure, determine the node voltages  $V_1$  and  $V_2$ .  $V_2$  and  $V_3$  Also calculate the currents in the resistor.



10JA3-18EEC201J

1 2 2

3

2

b. Using mesh analysis, calculate the currents  $I_1$ ,  $I_2$  and  $I_3$ 



29. a. Find the node voltages for the circuit shown in figure.



- b. Resistance of  $2\Omega$  and coil having a resistance of  $3\Omega$  and inductive reactance of  $12\Omega$  are connected in series and it is fed by a voltage of  $50 \angle 0^{\circ} V$ . Determine the circuit current voltage across resistance, voltage across coil and draw the phasor diagram.
- 30. a. Calculate the current Ix using superposition theorem.



b. Determine the maximum real power delivered to the load impedance  $Z_L$ .



31. a. Find the circuit current for the time constant t>0, the capacitor has initial  $^{12}$   $^{1}$   $^{4}$   $^{2}$  charge  $q_0 = 2500 \mu C$ , at time t=0 the switch is closed.



12

12

12

12

1

1

2 2

2 2

1 3

1 2

b. Determine the resulting transient current for the time t>0, for the RL  $^{12}$   $^{1}$   $^{4}$   $^{2}$  circuit, the source voltage of  $e = 150\sin(500t)V$  is applied at time t=0.



32. a. Determine the inverse hybrid parameters(g) for the given circuit.

12 1 5 2

5



b. Across 400V, 3-phase supply mains, a star connected balanced load of  $(16+j12)\Omega$  impedance is connected. By taking phase-A as reference, determine the line currents and the power absorbed by the load if the two wattmeters are used to measure the power. What will be the reading of the wattmeters?

\* \* \* \* \*