

Iron Ore Controlled Document

Standard Track Maintenance Code of Practice Rail Engineering Number: 0002664

Version: 5.0

Track Maintenance Code Of Practice

Electronic Approval Record

Author Role	Name	Date of Change
	Mathew Kenworthy	04/16
Reviewer Role	Name	Date of Change
Track Reliability Specialist	Ben Fenton	04/16
Approver Role	Name	Date of Change
Acting Manager Rail Engineering	Glenn Osborne	04/16

Key Stakeholders

The following people and roles have a stated interest in this document and should be informed of any significant changes to content:

Department	Name	Position
Track & Signals	Michael Rose	Manager Track & Signals
Track & Signals	Adrian Balasso	Acting Superintendent Track and Signals Analysis and Improvement
Track & Signals	Luke Bolzan	Superintendent Track Maintenance
Track & Signals	Nick Tegousis	Superintendent Track Maintenance
Track & Signals	Jonas Lindberg	Superintendent Major Works
Rail Engineering	Glenn Osborne	Acting Manager Rail Engineering
Rail Engineering	Darryl Jones	Superintendent Engineering Technical Support
Rail Engineering	Ben Fenton	Track Reliability Specialist

Document Amendment and Approval Record

Version	Date	Description of Changes	Revised By & Position	Reviewed By & Position	Approved By & Position
1.0	10/10/11	New Document	Michael Sheridan Senior Track Engineer	Michael Sheridan Senior Track Engineer	Bobby Tang Superintendent Track Engineering
2.0	24/05/13	GRAA audit action 'TFAADQL1212005985'			
2.1	29/07/13	Table 3.3 – typographical corrections; Table 12.4 – revision to wide gauge & tight gauge thresholds for Category 2 and 3 Track.	Ed Crisp Senior Track Engineer	Ed Crisp Senior Track Engineer	Bobby Tang Superintendent Track Engineering
3.0	28/01/16	Retired version published in error	N/A	N/A	N/A

Iron Ore Controlled Document

Standard Track Maintenance Code Of Practice

4.0	30/01/16	New Document Structure Change of content as per MOC 412898297	Ben Fenton Track Reliability Specialist	Joe Gero Engineering Technical Support	Murray Lynch Acting Manager Rail Engineering
5.0	20/04/16	Format and minor content revisions following review by Track Maintenance representatives.	Mathew Kenworthy	Ben Fenton Track Reliability Specialist	Glenn Osborne Acting Manager Rail Engineering

Track Maintenance Code Of Practice

Page Intentionally Left Blank

Track Maintenance Code Of Practice

Contents

1. I	FOREWORD	10
1.1	1. DOCUMENT SCOPE AND PURPOSE	11
1.2	2. THE BHPBIO RAILROAD	12
1.3	3. DOCUMENT APPLICATION	14
1.4	4. DOCUMENT UPDATE PROCEDURE	15
1.5	5. DOCUMENT USER OBLIGATIONS	16
1.6	6. Auditing	17
1.7	7. DOCUMENT INTERPRETATION	18
1.8	8. Overriding Circumstances	19
1.9	9. Work management and use of 1SAP	20
1.1	10. REFERENCE DOCUMENTS	21
2. /	ASSETS	28
2.1	1. Track	29
2.2	2. Rail	31
2.3	3. Sleepers	36
2.4	4. Fastenings, Insulators and Pads	39
2.5	5. Ballast	41
2.6	6. Turnouts	46
2.7	7. Insulated Rail Joints	49
2.8	8. MECHANICAL NON-INSULATED RAIL JOINTS	51
2.9	9. Welded Rail Joints	53
2.1	10. Level Crossings	56
2.1	11. Bridges And Culverts	60
2.1	12. Earthworks	62
2.1	13. Access Road	63
2.1	14. Signs	64
2.1	15. Clearances	66
2.1	16. Commissioning	67
2.1	17. Asset Protection	68
3. I	INSPECTIONS	70
3.1	1. VISUAL TRACK INSPECTION	71
3.2		
3.3		
3.4		
3.5		
3.6	· · · · · · · · · · · · · · · · · · ·	
3.7		
3.8		
3.9		
3.1		
3.1	• • • • • • • • • • • • • • • • • • • •	
3.1		
3.1		
3.1		
3.1		
3.1		
3.1		
3.1		
	DEFECTS	
→. I	DLFLC13	

Iron Ore Controlled Document

Standa	ard Track Maintenance Code Of Practice	
4.1.	DEFECT RESPONSE CODES	113
4.2.	Track Geometry and Stability	116
4.3.	RAIL	123
4.4.	SLEEPERS AND FASTENINGS	132
4.5.	BALLAST	135
4.6.	Turnouts	138
4.7.	MECHANICAL RAIL JOINTS	144
4.8.	Bridges And Culverts	147
4.9.	SIGNS	_
4.10.	CLEARANCES	150
4.11.	GUARD RAILS	151
5. ACT	TIVITIES (MAINTENANCE STRATEGY)	152
5.1.	Rerail	153
5.2.	CUTTING RAIL	154
5.3.	Drilling Holes in Rail	155
5.4.	RAIL REPAIRS	156
5.5.	Non-welded Rail Joint Repair	159
5.6.	Repair Welds	160
5.7.	Tamping	161
5.8.	GRINDING	163
5.9.	RAIL STRESS CONTROL (OPPORTUNITY)	166
5. TER	RMINOLOGY	167
7 ADE	DENDICES	172

Track Maintenance Code Of Practice

Tables

TABLE 1-1 TRACK CATEGORIES	
TABLE 2-1 APPROVED RAIL TYPES	
TABLE 2-2 DESIGN NEUTRAL TEMPERATURE (STRESS FREE)	
TABLE 2-3 ALLOWABLE SLEEPER TYPES	
TABLE 2-4 SLEEPER DIMENSIONS	
TABLE 2-5 NOMINAL BALLAST PROFILES	
TABLE 2-6 TURNOUT SELECTION	
TABLE 2-7 APPROVED LEVEL CROSSING TYPES	56
TABLE 3-1 CONDITIONS TO BE OBSERVED DURING TRACK INSPECTION	
TABLE 3-2 TCMV DATA RETENTION PERIODS	_
TABLE 3-3 VISUAL RAIL WEAR INSPECTION FREQUENCY WITHIN 6MM OF WEAR LIMITS	
TABLE 3-4 LEVEL CROSSING (PUBLIC ACCESS) INSPECTION FREQUENCY	
TABLE 3-5 LEVEL CROSSING (PRIVATE ACCESS) INSPECTION FREQUENCY	
TABLE 3-6 BRIDGE AND CULVERT INSPECTION FREQUENCY	
TABLE 4-1 DEFECT RESPOPNSE CODES	
TABLE 4-2 DEFECT SEVERITY COLOUR CODING	
TABLE 4-3 GEOMETRY PARAMETER DESCRIPTIONS (EM80)	
TABLE 4-4 GEOMETRY DEFECTS TOP	
TABLE 4-5 GEOMETRY DEFECTS HORIZONTAL ALIGNMENT	
TABLE 4-6 GEOMETRY DEFECTS WIDE GAUGE	
TABLE 4-7 GEOMETRY DEFECTS TIGHT GAUGE	
TABLE 4-8 GEOMETRY DEFECTS LONG TWIST	
TABLE 4-9 GEOMETRY DEFECTS MEDIUM TWIST	
TABLE 4-10 GEOMETRY DEFECTS SHORT TWIST	
TABLE 4-11 GEOMETRY DEFECTS CROSS LEVEL (TANGENT TRACK)	
TABLE 4-12 GEOMETRY DEFECTS CROSS LEVEL (CURVE TRACK)	
TABLE 4-13 TRACK CONDITION INDEX QUALITY BANDS	
TABLE 4-14 MAXIMUM TRACK DEFLECTION	
TABLE 4-15 CLUSTERS OF CONSECUTIVE PUMPING SLEEPERS	
TABLE 4-16 INSTRUMENTED ORE CAR DEFECTS	
TABLE 4-17 68KG/M RAIL TOP WEAR LIMITS	
TABLE 4-18 RAIL HEIGHT LIMITS	
TABLE 4-19 68KG/M RAIL SIDE WEAR LIMITS	
TABLE 4-20 RAIL HEAD AREA WEAR LIMITS	
TABLE 4-21 GAUGE FACE ANGLE	
TABLE 4-22 ROLLING CONTACT FATIGUE DEFECTS	
TABLE 4-23 RAIL SURFACE IRREGULARITIES	
TABLE 4-24 INTERNAL RAIL DEFECT PROTECTION AND RESPONSE	
TABLE 4-25 GRINDING QUALITY INDEX DEFECTS	
TABLE 4-26 GRINDING QUALITY INDEX CALCULATION WEIGHTINGS	
TABLE 4-27 RAIL PROFILE DEFECTS (MANUAL MEASUREMENT)	
TABLE 4-28 RAIL PROFILE DEFECTS (ELECTRONIC MEASUREMENT)	
TABLE 4-29 MISSING/NON-LOAD BEARING SLEEPERS	
TABLE 4-30 INEFFECTIVE FASTENINGS SINGLE RAIL	
TABLE 4-31 INEFFECTIVE SLEEPERS AND FASTENINGS BOTH RAILS	
TABLE 4-32 INEFFECTIVE BALLAST SHOULDERS	
TABLE 4-33 SWITCH AREA DEFECT RESPONSES	
TABLE 4-34 CROSSING AREA DEFECT RESPONSES	
TABLE 4-35 FISHPLATE CRACKS AND BREAKS	
TABLE 4-36 MISSING, INEFFECTIVE AND LOOSE BOLTS	
TABLE 4-37 NON-INSULATED NON-WELDED RAIL JOINT GAP DEFECTS	
TABLE 4-38 IRJ ELECTRICAL INSULATION DEFECTS	145

Iron Ore Controlled Document

Standard	Track Maintenance Code Of Practice	
TABLE 4-39 RAIL END POS	ST WEAR	145
TABLE 4-40 RAIL JOINT DI	EFLECTION DEFECTS	146
TABLE 4-41 SIGN REPAIR	TIMEFRAMES	148
	DEFECTS	
TABLE 5-1 RAIL AND WEL	D REPAIR STRATEGY	156
TABLE 5-2 NON-WELDED	RAIL JOINT REPAIR	159
TABLE 5-3 RAIL GRINDING	G MGT FREQUENCIES	163
	G SPECIAL SITES	
TABLE 5-5 GRINDING PRO	DFILE TOLERANCES	165
TABLE 5-6 STRESS ADJUST	TMENT BASED ON CURVE RADIUS	166

Track Maintenance Code Of Practice

Figures

FIGURE 1-1 BHPBIO RAILROAD MAP	12
FIGURE 2-1 RAIL IDENTIFICATION MARKINGS	32
FIGURE 2-2 DESIGN TAPER OF TRANSITION RAIL	34
FIGURE 2-3 TYPICAL TRACK CROSS-SECTION AND BALLAST PROFILE	_
FIGURE 2-4 BALLAST DEPTH TRANSITION	
FIGURE 4-1 CYCLIC GEOMETRY CALCULATION METHOD.	
FIGURE 4-1 CYCLIC GEOMETRY CALCULATION METHOD	119

Standard Track Maintenance Code Of Practice

1. FOREWORD

Track Maintenance Code Of Practice

1.1. DOCUMENT SCOPE AND PURPOSE

The purpose of this code of practice is to set out the Standards and Requirements to ensure the efficient operation and maintenance of the BHPBIO owned and operated Railroad, including Mainline Track, Passing Tracks, Terminals and other ancillary Tracks.

The document covers:

1. Assets

Accepted types, handling, storage, reuse and disposal

2. Inspections

Strategies for monitoring the BHPBIO Railroad condition including type, content and frequency

Defects

Allowable asset condition thresholds for application during inspections, including mitigating actions for threshold exceedances

4. Maintenance Activities

Maintenance strategies including what maintenance shall be carried out based upon what triggers

The document use process is as follows:

- 1. Understand the asset,
- 2. Carry out the required inspection,
- 3. Identify defects and apply immediate responses,
- 4. Carry out maintenance.

This code of practice recognises that the BHPBIO Railroad is designed, constructed and operated for the purpose of supporting a mining operation, by transporting ore from the mines to a port. In this respect the document's purpose is to support efficient and economical operation of the BHPBIO Railroad. As such, thresholds and limits herein relate primarily to maintenance thresholds and limits considering inspection frequencies, deterioration rates and experience and are designed to minimise wear, extend component life and improve reliability, efficiency and serviceability.

Content relating to the safe operation and maintenance of the BHPBIO Railroad is also contained in the Railroad Rule Book. In addition to the Railroad Rule Book, this code of practice provides upper or lower limit thresholds with corresponding response codes for the purpose of safety and/or protecting the asset from terminal damage.

The contents of this code of practice are applicable for the maintenance of track for rail operations up to 40 Tonnes Axle Load with a total loading profile on the track of 375 Million Gross Tonnes Per Annum (equivalent to railing 276 Million tonnes of ore).

Track Maintenance Code Of Practice

1.2. THE BHPBIO RAILROAD

FIGURE 1-1 BHPBIO RAILROAD MAP

This code of practice applies to the BHPBIO Railroad shown in the following map:

Track Maintenance Code Of Practice

The BHPBIO Railroad has been categorised based on gross railed tonnage, line speed and performance requirements and comprises the following Track Categories:

TABLE 1-1 TRACK CATEGORIES

TRACK TYPES	CATEGORY 1A	CATEGORY 1	CATEGORY 2	CATEGORY 3
Mainline Track		✓		
Passing Track			✓	
Back Track				✓
Mine Balloon Loop	Q		✓	
Hedland Yard Arrival Track	Not Currently In Use		✓	
Hedland Yard Other Track	rently			✓
Newman Yard Arrival Track	ot Cui		✓	
Newman Yard Other Track	Z			✓
Mooka Staging Facility			✓	
Finucane Island Yard			✓	
Other Yard Tracks, Service Roads				✓
Goldsworthy Line	Under Care and Maintenance			

Track names are differentiated by use of the line reference which is unique for each route, e.g. Newman Mainline (NML), Mining Area C (MAC), Jimblebar (JBL), and each yard, e.g. Newman Yard (NY), Hedland Yard (HY). The track is then defined within the line by either type or orientation, separated in the reference code by a hyphen e.g. Newman Mainline West Track (NML-WT), Mining Area C East Track (MAC-ET), Jimblebar Single Track (JBL-ST).

In duplicated track areas, the track on the left when facing away from port is the East Track (ET) and the track on the right is the West Track (WT). In mainline areas with only one track the track is the Single Track (ST).

The rail on the left when facing away from port is the East Rail (ER) and the rail on the right is the West Rail (WR).

Track Maintenance Code Of Practice

1.3. DOCUMENT APPLICATION

This code of practice is only for use by authorised staff and contractors of BHPBIO in relation to the Railroad operations of the Company in the Pilbara.

This code of practice shall be kept confidential by such users and also by anybody to whom it is submitted for accreditation purposes and no information relating to this document shall be divulged to any person at any time, except with prior consent of BHPBIO.

This code of practice is copyright and no part of it shall be copied or reproduced for any purpose other than for the purpose of the Railroad operations of the Company in the Pilbara, nor shall it be published or used in relation to other railroads, except with prior written consent of BHPBIO.

Track Maintenance Code Of Practice

1.4. DOCUMENT UPDATE PROCEDURE

This code of practice shall reside in a controlled document storage location, where it is available for general access, but locked against editing. At the time of writing, the designated system for this purpose is 1Doc Controlled Documents. Updates to this code of practice shall be controlled by Rail Engineering and approved by the Manager Rail Engineering.

Revisions of this code of practice will be published every three months to incorporate additions and changes made as a result of:

- changes in materials and equipment,
- development and research,
- findings following investigations into accidents and incidents,
- changes in methodologies, operations and practices.

Any technical changes will be subject to risk assessment and the BHPBIO Management of Change process, if required. The revision of this code of practice should be an output of this change process.

Formal audit of this code of practice shall have a defined period of not more than two years and the undertaking of this activity shall be the responsibility of the Rail Engineering Superintendent.

Some changes that adversely affect risk and safety of the BHPBIO Railroad may need to be communicated to the rail safety regulator. The Safe Working department should be consulted whenever a safety or risk related change is proposed.

This code of practice should be managed and controlled in compliance with the BHPBIO Document control Specification. Document updates shall be made in the controlled document version following change approval process, and communicated to the document users by means of company approved alerts and notifications. Details of the update shall be recorded in the Document Amendment Record at the front of this code of practice, including section number and brief description of the change.

It is important to note that any changes made within this code of practice should be checked against other relevant documents listed within the Reference Document tables.

Sections of this code of practice can be suspended by including 'Under Review' in the section title. Sections that are Under Review may not be active, in which case consideration should be given to other mitigating actions to ensure that users of this code of practice have sufficient information to continue to safely carry out their duties. Users of sections that are Under Review should be aware that changes to the section are likely to occur.

Similarly, new sections that were not previously covered in this code of practice shall be indicated by including 'Opportunity' in the section title. Sections identified with Opportunity are not active however users of this code of practice should be aware that these sections are likely to become active.

Track Maintenance Code Of Practice

1.5. DOCUMENT USER OBLIGATIONS

Users of this code of practice should ensure they are using the most recent version, as shown on the cover page and available within the 1Doc Controlled Documents system.

If a user of this code of practice becomes aware of circumstances where compliance with this document may compromise safety they must contact his or her supervisor to resolve the immediate situation, and report the circumstances to the Senior Track Engineer.

A user of this code of practice, including any accreditation body, who finds any provision of the code

- unclear, out of date or in need of improved expression;
- permits or requires some action which is or could be unsafe, unnecessary or inefficient;
- factually incorrect,

Shall advise the Senior Track Engineer of the details as soon as practicable.

Track Maintenance Code Of Practice

1.6. AUDITING

Auditing of compliance with this code of practice shall be carried out every two years as a minimum. The audit shall be carried out under the governance and guidance of the Rail Engineering department and may include engagement of an independent third-party consultant.

The audit shall encompass the main elements of this code of practice with the objective of ensuring that the information presented is followed and appropriately executed.

All gaps identified will be presented to the relevant Track and Signals Superintendent(s) and Manager for final approval and agreement of formalised actions to close the gaps. All identified gaps shall then be assigned deadlines and managed accordingly by the Track and Signals department and relevant delegates until completion.

Track Maintenance Code Of Practice

1.7. DOCUMENT INTERPRETATION

This code of practice is based on the experience, research and policies of BHPBIO. As such, any clarification of a meaning should be sought from BHPBIO.

Track Maintenance Code Of Practice

1.8. OVERRIDING CIRCUMSTANCES

Although adherence to this code of practice is a requirement, innovation and continual improvement is always supported. On occasions the Senior Track Engineer may deem that, due to other contributing factors, it would be reasonable and beneficial to BHPBIO to work outside of the requirements of this code of practice. Overriding the requirements of this code of practice can only be approved by the Senior Track Engineer and shall be documented in writing. Safety, however, shall never be compromised.

If the approved non-compliance is short term and related only to a specific situation then this shall be clearly and explicitly documented within the 1SAP system (see below) including date and time of the non-compliance, contributing factors, external considerations and decisions.

If the non-compliance is widespread and applicable as an ongoing requirement and/or applicable to different situations then the BHPBIO Management of Change process and document update process shall be initiated and any permanent decisions and changes shall be documented.

Track Maintenance Code Of Practice

1.9. WORK MANAGEMENT AND USE OF 1SAP

The approved Computer Maintenance Management System (CMMS) for the BHPBIO Railroad is 1SAP. 1SAP shall be used to manage the preventative and corrective maintenance of the BHPBIO Railroad assets and store history regarding the execution of this maintenance.

Where inspections or maintenance are required to occur on a set frequency 1SAP shall be utilised to automatically create Work Orders. The inspection or maintenance requirement, either as instructions or in checklist format (Preventative Maintenance Instruction (PMI)), shall be linked to the Work Order. A copy of both the Work Order and the PMI shall be carried with the person executing the task.

The completed PMI shall be scanned and attached to the Inspection Notification. Any defects detected during these inspections shall be raised as subsequent Notifications to the executed inspection notification, and be raised against the specific affected assets.

Defects identified during ad-hoc inspections shall be raised as a new Notification against the specific asset which is defective.

Note that 1SAP manages the maintenance and records the maintenance history. Other systems such as the Track Condition Monitoring System (TCMS) are used to record reliability data such as that obtained from the Track Condition Monitoring Vehicle.

Track Maintenance Code Of Practice

1.10. REFERENCE DOCUMENTS

1.10.1. 1DOC

The following documents can be found in 1DOC.

Asset Management Managed Document AM0001317	Corrosion Classification And Treatment
Asset Management Managed Document AM0106047	Structural Integrity Management E-Room Structure
Asset Management Managed Document AM0106052	Structural Integrity Completing Inspection Records Using The Structural Defect Register Spreadsheet
Asset Management Managed Document AM0106053	Structural Integrity Inspection Review Using The Structural Defect Register Spreadsheet

1.10.2. Controlled Documents

The documents below can be found in the Controlled Documents section of the Iron Ore portal.

	·
CD - 0118073	Train Control Asset Protection Systems
CD - 0119118	Rail Rule Book M05 Signal, Boards & Signs
CD - 0119120	Rail Rule Book M07 Service & Work Trains
CD - 121599	WAIO Extreme Weather Procedure
SPR-HIS-SAF-071	Hot Works Procedure
SPR-RTS-GEN-001	Broken Rail Procedure
Standard – 0018959	Structural Integrity Management Standard
WIN - 0076715	Work Instruction - 5 Year Structural Inspection of a Culvert
WIN - 0106592	Work Instruction - Ballast Deck Bridge Inspections
WIN - 0071998	Work Instruction - Stat Insp Signage
WIN - 0076696	Work Instruction - 1Y Safety Certify Rail Bridge
WIN - 0076701	Work Instruction - Installation MSA Rail Slider WAH
WIN - 0076702	Work Instruction - 1Y Mech Insp Bridge Transom
WIN - 0076703	Work Instruction - 1Y Mech Insp Bridge Ballast
WIN - 0076704	Work Instruction - 1Y Mech Svce Bridge Transom
WIN - 0076705	Work Instruction - 1Y Mech Svce Bridge Ballast
WIN - 0076706	Work Instruction - 1Y Mech Insp Bridge Transom WAH
WIN - 0076709	Work Instruction - Verify Cmon Bridge Type A WAH
WIN - 0076710	Work Instruction - Verify Cmon Bridge Type A
WIN - 0076714	Work Instruction - 1 Year Mechanical Service of a Culvert
WIN - 0076717	Work Instruction - Verify Cmon Bridge Type D WAH
WIN - 0076718	Work Instruction - Verify Cmon Bridge Type D
WIN - 0076720	Work Instruction - Culvert Service

Standard Track Maintenance Code Of Practice

WIN - 0078027	Work Instruction - Excavator Operation of
WIN - 0087638	Work Instruction - Box Turnout Ballast (Manual)
WIN - 0087639	Work Instruction - Grind & Svce Turnout SNX
WIN - 0087640	Work Instruction - Repl Turnout Closure Rail
WIN - 0087641	Work Instruction - Grind & Svce Turnout RBM
WIN - 0087643	Work Instruction - Repl Turnout Insulated Rail Joint (Glued)
WIN - 0087648	Work Instruction - Tamp Turnout Bearers (Manual)
WIN - 0087649	Work Instruction - Lube & Svce Turnout SNX
WIN - 0087651	Work Instruction - Repl Turnout Rollers
WIN - 0087652	Work Instruction - Repl Turnout Spreader Bar
WIN - 0087653	Work Instruction - Lube & Svce Turnout RBM
WIN - 0087655	Work Instruction - Adj Turnout Bearer
WIN - 0087657	Work Instruction - Svce Turnout per Way Welding RBM
WIN - 0087658	Work Instruction - Svce Turnout per Way Welding SNX
WIN - 0096245	Work Instruction - Repl Rail
WIN - 0102286	Work Instruction - Ballast Dropping (Remote)
WIN - 0102849	Work Instruction - Mobile Flashbutt Welding
WIN - 0104402	Work Instruction - Re-rail Operations
WIN - 0106222	Work Instruction - Unloading Rail Steel Train
WIN - 0106278	Work Instruction - Picking up Rail Steel Train
WIN - 0106581	Work Instruction - Inspecting Access Roads
WIN - 0106584	Work Instruction - Remove / Replace Handrails - DeGrey Bridge
WIN - 0106585	Work Instruction - Access Road Sign Installation
WIN - 0106586	Work Instruction - Fastening Bolts on Bridge Structures
WIN - 0106589	Work Instruction - NDT of Infrastructure
WIN - 0106590	Work Instruction - Timber Transom Bridge Inspections
WIN - 0108666	Work Instruction - Rail Stress Testing
WIN - 0109654	Work Instruction - Fixed Flashbutt Welding Operations
WIN - 0109975	Work Instruction - Condition Based Switch Tamping Inspection
WIN - 0109976	Work Instruction - Condition Based Tamping Track Inspection
WIN - 0112354	Work Instruction - Sleeper Replacement
WIN - 0112355	Work Instruction - Ballast Pan Hungry Board Replacement
WIN - 0112356	Work Instruction - Repair Access Road Washout
WIN - 0118434	Work Instruction - Ballast Remediation (Boghole)
WIN - 106581	Work Instructions - Inspecting Access Roads
WIN - 106585	Work Instructions - Access Road Sign Installation
WIN-RTS-RTM-100	Work Instruction - Hand Tamping (Hydraulic, Pneumatic & Petrol)
· · · · · · · · · · · · · · · · · · ·	·

Standard Track Maintenance Code Of Practice

WIN-RTS-GEN-001	Work Instruction - Steel Train - Loading of Long Welded Rail with Gantry Cranes
WIN-RTS-PMI-001	Work Instruction - Daily Access Roads Inspection (Road Signage and Guide Posts)
WIN-RTS-PMI-002	Work Instruction - Daily Access Roads Inspection (Road Surface & Culverts)
WIN-RTS-PMI-003	Work Instruction - 6 Monthly Access Roads Inspection
WIN-RTS-RTM-076	Work Instruction - Clamp Rail Defect and Installation of Mini-plug
WIN-RTS-RTM-090	Work Instruction - Gemco Re-Sleepering Machine (Operation of)
WIN-RTS-RTM-091	Work Instruction - Glued Joints (Making of)
WIN-RTS-RTM-092	Work Instruction - Repl Turnout Check Rail
WIN-RTS-RTM-096	Work Instruction - Hi Rail (Operation of)
WIN-RTS-RTM-098	Work Instruction - Level Crossing (Crossing over with Track Mounted Machinery)
WIN-RTS-RTM-099	Work Instruction - Installation of Level Crossings (Concrete Panels)
WIN-RTS-RTM-102	Work Instruction - Repl Insulated Rail Joint (Mechanical)
WIN-RTS-RTM-104	Work Instruction - Use of Oxy & Propane Gas
WIN-RTS-RTM-106	Work Instruction - Rail Drill (Operation of Rotorbroach)
WIN-RTS-RTM-118	Work Instruction - Sleeper Pads (Changing of)
WIN-RTS-RTM-122	Work Instruction - Repl Turnout Stock Rail & Switch Blade
WIN-RTS-RTM-124	Work Instruction - Repl Turnout Crossing (Frog)
WIN-RTS-RTM-125	Work Instruction - Switches (Servicing of)
WIN-RTS-RTM-127	Work Instruction - Aluminothermic Welding
WIN-RTS-RTM-129	Work Instruction - Re-railing (Lengths of 25m or less)
WIN-RTS-RTM-134	Work Instruction - Ballast Dropping (Main Line)
WIN-RTS-RTM-135	Work Instruction - Ballast Train Plough (Operation of)
WIN-RTS-RTM-149	Work Instruction - Daily Access Road Inspections
WIN-RTS-RTM-150	Work Instruction - 6 Monthly Access Road Inspections
WIN-RTS-RTM-176	Work Instruction - Application & Removal of Clips & Fastenings
WIN-RTS-RTM-178	Work Instruction - Turnout - Stock Rail Replacement (Yard)
WIN-RTS-RTM-183	Work Instruction - Front End Loader Operation
WIN-RTS-RTM-187	Work Instruction - Installation of Level Crossings (STRAIL)
WIN-RTS-RTM-189	Work Instruction - Remove/Replace Plates
WIN-RTS-RTM-190	Work Instruction - Switch Grinding
1	·

Track Maintenance Code Of Practice

1.10.3. ProjectWise

The following documents can be found on ProjectWise.

J	•
073-C-00647	No. 20 R910 Turnout Swing Nose Crossing - Fanned Concrete Sleepers 68kg Rail
000-C-12012	Roads Typical Sections
000-C-12013	Road Furniture – Typical Details
000-C-12058	Location Signs and Markers - Layout and Details
000-C-12059	Survey Track Monument - Post Position and Plate Layout
000-M-00067	Railway Rolling Stock - Line Clearance Diagrams
000-R-00024	Zero Cant and 1:60 Cant Reducing Bearers - Mainline Turnout Installation
000-R-00025	1:60 Cant Reducing Bearers - Yard Turnout Installation
000-R-00026	Turnout Construction and Maintenance Pad – 1 in 10 Turnouts
000-R-00027	Turnout Construction and Maintenance Pad – 1 in 15 Turnouts
000-R-00028	Turnout Construction and Maintenance Pad – 1 in 20 Turnouts
000-R-00029	Typical IRJ Placement - 1 in 10, 1 in 15 and 1 in 20 Turnouts
000-R-00030	Typical IRJ Placement - 1 in 10, 1 in 15 and 1 in 20 Crossovers
067-M-02279	Train Load out - Pandrol Rail Clip Type e2043
073-C-00461	Concrete Sleeper Manufacturing Plant - Prestressed Concrete Sleepers Details
073-C-00580	No. 10 Turnout RH 68kg - Fanned Concrete Sleepers
073-C-12009	No. 15 Turnout RH Swing Nose Crossing - Fanned Concrete Sleepers 68kg Rail
076-M-01285	Rolling Stock Handbook - Index Page
076-M-01286	Rolling Stock Handbook - Loading Gauge and Structure Clearance Diagrams
076-M-01287	Rolling Stock Handbook - Loadout Tunnel Clearance Diagrams
DESC-000-C-00001	Design Criteria - Track Design
DESC-000-C-00002	Design Criteria - Earthworks and Drainage
FUSP-000-E-00004	Functional Specification - Signalling
SPEC-000-C-00117	Specification - Tracklaying Construction Requirements
SPEC-000-C-12001	Specification - Ballast Manufacture and Supply
SPEC-000-C-12002	Specification - Flashbutt Welding Of Rails
SPEC-000-C-12004	Specification - Design, Manufacture and Supply Heavy Haul Railway Derailer
SPEC-000-C-12005	Specification - Design, Manufacture and Supply of Turnouts, Catchpoints and Insulated Rail Joint
SPEC-000-C-12006	Specification - Design, Manufacture and Supply of Buffer Stop

Standard Track Maintenance Code Of Practice

SPEC-000-C-12007	Specification - Heavy Haul Rails
SPEC-000-C-12008	Specification - Heavy Haul Railway Level Crossing Panels
SPEC-000-R-00001	Specification - Prestressed Concrete Sleepers - Design, Manufacture and Supply
SPEC-000-R-00002	Specification – Numbering and Titling Rail Asset
SPEC-000-S-00053	Specification - General Demolition Requirements
SPEC-000-S-00067	Specification - Aluminothermic Welding of Rails
SPEC-006-E-12122	Specification - Level Crossing Design and Construction
SPEC-073-C-12000	Specification - Non-Destructive Testing Ultrasonic Testing –General Requirements
SPEC-073-C-12001	Specification - Non-Destructive Testing of In Track Rail & Rail Welds via Rail Flaw Detection Vehicle
SPEC-073-C-12002	Specification - Non-Destructive Testing Ultrasonic Testing –Hand Testing of Rail Welds and Rail
SPEC-073-C-12003	Specification - Non-Destructive Testing Magnetic Particle Testing – General Requirements
SPEC-073-C-12004	Specification - Non-Destructive Testing Magnetic Particle Testing – Hand Yokes Colour Contrast
SPEC-073-C-12005	Specification - Non-Destructive Testing Magnetic Particle Testing – Hand Yokes Colour Contrast- Rail Flashbutt Welds
SPEC-073-C-12006	Specification - Rail Defects – Classification of Defects and Assessment of Defect Severity
SPEC-073-C-12007	Specification - Defects - Classification of Rail Surface Condition Associated with Rolling Contact Fatigue Damage
SPEC-077-M-00002	Specification - Rail Grinding Machine
TMAN-073-C-12000	Technical Manuals and/or Design Manuals - 1 in 20 Swing Nose Crossings Turnouts & Crossovers
TMAN-073-C-12001	Technical Manuals and/or Design Manuals - 1 in 10 Swing Nose Crossings Turnouts & Crossovers
TMAN-073-C-12002	Technical Manuals and/or Design Manuals - 1 in 15 Swing Nose Crossings Turnouts & Crossovers

Track Maintenance Code Of Practice

1.10.4. Standards

The following documents are Australian Standards and can be found on Standards On-Line.

AS 1085	Railway Track Material (All Parts)
AS 1085.1	Railway Track Material - Steel Rails
AS 1085.10	Railway Track Material - Rail Anchors
AS 1085.13	Railway Track Material - Spring Fastening Spikes for Sleeper Plates
AS 1085.14	Railway Track Material - Prestressed Concrete Sleepers
AS 1085.19	Railway Track Material - Resilient Fastening Assemblies
AS 1085.2	Railway Track Material - Fishplates
AS 1085.20	Railway Track Material - Welding of Steel Rail
AS 1085.3	Railway Track Material - Sleeper Plates
AS 1085.4	Railway Track Material - Fishbolts and Nuts
AS 1085.7	Railway Track Material - Spring Washers
AS 1085.8	Railway Track Material - Dogspikes
AS 1929	Non-Destructive Testing – Glossary of Terms
AS 2083	Calibration Blocks and Their methods of Use in Ultrasonic Testing
AS 2207	Non-Destructive Testing – Ultrasonic Testing of Fusion Welded Joints in Carbon And Low Alloy Steel
AS 3600 – 2009	Concrete Structures
AS 3818 Parts 1 and 2	Timber—Heavy Structural Products— Visually graded
AS 3998	Non-Destructive Testing – Qualification and Certification of Testing Personnel
AS 4100	Steel Structures
AS 4799	Installation of Underground Utility Services and Pipelines with Railway Boundaries
AS 5100	Bridge Design
AS/NZ ISO 3834	Quality Requirements for Fusion Welding of Metallic Materials
AS 1742.7	Manual of Uniform Traffic Control Devices - Railway Crossings
AS 1743	Road Signs – Specifications
AS 4292	Railway Safety Management

Standard Track Maintenance Code Of Practice

AGRD03/10	Austroads publication – Guide to Road Design – Part 3: Geometric Design
AREMA Ch 1.4 Engineering	American Railway Engineering and Maintenance-of-way Association – Chapter 1, Part 4 Culverts
AREMA Ch 10	American Railway Engineering and Maintenance-of-way Association – Chapter 10, Structures, Maintenance and Construction
AREMA Ch 15	American Railway Engineering and Maintenance-of-way Association – Chapter 15, Steel Structures
ROA W2-89-1-92	Ultrasonic Testing of Rail in Railway Applications

Track Maintenance Code Of Practice

2. ASSETS

Track Maintenance Code Of Practice

2.1. TRACK

2.1.1. Types and Use

The New, Removed and Modified Asset Master Data Procedure shall be adhered to whenever a track asset is installed, removed or modified on any part of the BHPBIO Railroad.

Newly constructed track shall be designed and constructed in accordance with the relevant specifications listed in Section 2.1.2. Reconstruction of track as part of a maintenance function shall be carried out in accordance with the relevant sections of this document.

Maintenance of track shall be performed using material defined through Section 2 to tolerances as defined in Section 4. If maintenance takes place whilst trains are in operation and where track may be at significant variance from the designed horizontal or vertical alignment (for example skeleton track following ballast cleaning, reconstruction or through track deviations) the following additional guidelines should apply:

- the maximum speed allowed should be 20 km/h, all movements should be monitored and controlled from trackside;
- the vertical alignment deviation measured using the mid-ordinate offset of a 10 metre chord at any location should not exceed 25 mm;
- the horizontal alignment measured using the mid-ordinate offset of a 10 metre chord at any location should not exceed 40 mm.

2.1.2. Reference Documents

SPEC-000-C-00117	WAIO Standards – Rail Track Work – Tracklaying Construction Requirements
DESC-000-C-00001	Design Criteria Track Design
AS 7643	Railway Infrastructure Track Stability
AS 1085	Railway Track Material (All Parts)
TBC	New, Removed and Modified Asset Master Data Procedure

2.1.3. Handling and Storing

Assets shall be handled and stored to ensure that they do not suffer damage or cause damage to other assets.

Spare materials shall be stored in approved warehouses and inventory managed locations.

2.1.4. Reuse and Disposal

Assets should be reused if:

- it is safe to do so;
- it is reasonably practicable to do so;
- the asset condition allows for continued use;

Track Maintenance Code Of Practice

- all required inspections and tests are carried out prior to reuse;
- · overall material costs can be reduced; and
- maintenance costs can be maintained or reduced.

Any asset identified for reuse shall be checked for suitability against the points above prior to reinstallation into track.

The decommissioning and disposal of any assets within the Rail corridor shall comply with the BHPBIO Management of Change Process and be carried out in accordance with the appropriate BHPBIO Disposal policies. Consideration should be given to:

- Health,
- Safety,
- Environment,
- Community.

Large steel components being prepared for removal to scrap shall:

- have a visible and obvious area of the material/component (typically the upward facing surface) painted with red paint;
- be placed in a safe and accessible position for ease of collection.

Track Maintenance Code Of Practice

2.2. **RAIL**

2.2.1. Types and Installation

The predominant rail section in use on the BHPBIO Railroad is 68kg/m. Other rail sections are currently present in localised areas, e.g. 71kg/m and smaller sections on some low category tracks. Any renewal of rails shall only be completed using 68kg/m rail unless otherwise approved by the Senior Track Engineer.

For details including, but not limited to, manufacturing and quality requirements, mechanical and chemical properties and steel grade refer to SPEC-000-C-12007.

2.2.1.1. Rail Section

The accepted rail section for use on the BHPBIO Railroad for both new construction and maintenance of existing track is 68 kg/m. The nominal dimensions of 68 kg/m rail shall be based on AS1085.1 and comply with the requirements given in SPEC-000-C-12007. The equivalent AREMA rail section is 136RE.

2.2.1.2. Rail Types

The following table designates rail types that are or may be available for installation on the BHPBIO Railroad.

Rail grades are not to be used without reference and strict adherence to the relevant stationary and mobile flashbutt welding requirements.

TABLE 2-1 APPROVED RAIL TYPES

MANUFACTURER	GRADE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Nippon Steel	HE400	✓	1	√
Corporation (NSC)	HEX	Only with prior approval from the Senior Track Engineer		
OneSteel	Head Hardened (HH)	×	×	√
Voestalpine Schienen (VAE)	UHC400	Only with prior approval from the Senior Track Engineer		
Pangang	PG4HT	Only with prior approval from the Senior Track Engineer		

The rail types shown in the table above are identifiable by marks on the web of the rail. Examples of these marks are shown in the following images. The unique rail grade identifier is highlighted.

Track Maintenance Code Of Practice

FIGURE 2-1 RAIL IDENTIFICATION MARKINGS

Nippon HE400,

Unique Identifier Stamp: HE400

Nippon HEX,

Unique Identifier Stamp: 141 AB

Onesteel HH,

Unique Identifier Stamp: ONE

Voestalpine UHC400,

Unique Identifier Stamp: UHC

Track Maintenance Code Of Practice

Pangang PG4HT

Unique Identifier Stamp: PG4

2.2.1.3. Rail Head Profile

New 68 kg/m rail should be supplied with the specific BHPBIO rolled rail head profile, as detailed in SPE-000-C-12007. The BHPBIO rolled profile is designed to limit rail grinding works required to install target modified rail profiles.

2.2.1.4. Rail Cant

The rail seat for rail on all concrete sleepers shall provide a 1:30 (nominal) cant (inclination relative to the sleeper).

The rail seat for rail on all timber sleepers shall provide a 1:40 (nominal) cant (inclination relative to the sleeper) and lie within the 1:35 to 1:45 range. Plate cutting into sleeper must be limited to 1:45.

All turnouts shall have a flat rail seat (zero cant).

Transition sleepers shall be used for the transition between different rail cants when the rail cant difference is steeper than 1:20.

2.2.1.5. Rail Neutral Temperature

Rail shall be installed within a rail temperature range shown in the table below. Rail temperature shall be measured on the shaded side of the rail.

TABLE 2-2 DESIGN NEUTRAL TEMPERATURE (STRESS FREE)

MINIMUM	MAXIMUM
37°C	42°C

2.2.1.6. Closure Rails

Closure Rails shall conform to the following criteria in addition to other requirements in Section 2.2.4:

- the head profile shall be compatible with the rail head profile of the rail to be removed such that rail misalignments are not introduced into track,
- there shall be a maximum rail height difference of 8mm (with the use of step welds). If this tolerance cannot be met a transition rail is to be used,
- closure rails shall have a minimum length of 6m on tangents and 9m on curves.

Track Maintenance Code Of Practice

2.2.1.7. Transition Rails

Transition rails are to be used to join rail of different heights and are mandatory when the rail height difference exceeds 8mm. Transition Rails shall conform to the following criteria:

- rail head height should be machined from new rail (185.7 mm) at a rate not steeper than 12 mm over a 6m length as shown in Figure 2-2,
- rail head profile shall be maintained,
- transition rails shall be installed on both rails,
- transition rails shall be installed directly opposite each other. Staggering of transition rails is not permitted.

FIGURE 2-2 DESIGN TAPER OF TRANSITION RAIL

2.2.1.8. Rail Lubrication and Friction Modifying Agents (Opportunity)

Rail lubrication is currently only in use at Car Dumper 3 in Hedland Yard. There is currently no provision for installation of further rail lubrication devices on the BHPBIO Railroad network.

2.2.2. Reference Documents

DESC-000-C-00001	Design Criteria Track Design
SPEC-000-C-00117	WAIO Standards – Rail Track Work – Tracklaying Construction Requirements
SPEC-000-C-12002	Flashbutt Welding Of Rail
SPEC-000-C-12007	Heavy Haul Rails
SPEC-000-S-00067	Aluminothermic Welding of Rails
AS 1085.1	Rail Track Materials - Steel Rails
WIN – 0109654	Fixed Flashbutt Welding Operations
WIN – 0102849	Mobile Flashbutt Welding
WIN-RTS-RTM-127	Aluminothermic Welding
WIN-RTS-GEN-001	Steel Train - Loading of Long Welded Rail with Gantry Cranes
WIN – 0106222	Unloading Rail Steel Train

WIN – 0106278	Picking up Rail Steel Train
WIN - 0104402	Re-rail Operations
WIN-RTS-RTM-129	Re-railing (Lengths of 25m or less)
WIN - 0096245	Replace Rail
WIN-RTS-RTM-076	Clamp Rail Defect and Installation of Mini-plug

2.2.3. Handling and Storage

To ensure that potential damage caused by transportation, handling and installation of rail is minimised, the procedures listed above shall be adhered to.

When rail that has the potential for reuse is being recovered from track, care should be taken to minimise any damage that may be caused.

2.2.4. Reuse and Disposal

All used rails shall be quarantined until sorted and classified based on assessment against the following, as per Section 4.3:

- presence of internal and surface rail defects, by visual and ultrasonic means of inspection;
- presence of top and side wear.

Other than for use as part worn closure rails, rail shall not be re-used in catergory1 track.

Transposing of rails is not recommended.

Ultrasonic testing of the entire rail length to be reused shall be undertaken prior to being returned to track.

In addition the following should be considered to assess the suitability of rail reuse:

- presence of welds;
- rail cross section;
- gauge face angle;
- rail end straightness;
- rail twist;
- metallurgical properties.

Rail that has the potential for reuse shall be marked in such a manner that its reuse potential is clear and unambiguous. In particular the rail should be marked, and be segregated into stacks differentiated by:

- rail size and lengths;
- amount of wear.

Where rail requires further classification, it shall be quarantined from reusable rail to prevent its use back in track.

All non-reusable rail components shall be clearly marked and disposed of as soon as practicable after release from track as per Section 2.1.4.

Track Maintenance Code Of Practice

2.3. SLEEPERS

2.3.1. Types and Installation

Pre-stressed concrete sleepers and bearers shall be designed and manufactured in accordance with the methods described in AS 1085.14 and SPEC-000-R-00001. Commissioning of new sleepers onto the BHPBIO Railroad shall be accompanied by appropriate testing documentation and certification. Sleeper design shall facilitate:

- 1435mm gauge;
- 68kg/m rail;
- 1:30 rail cant;
- Sleeper spacing at 600mm;
- Resilient fastenings;
- 50 tonne nominal axel load;
- 80km/h operating speed;

Timber grade and performance requirements for timber sleepers and bearers shall be in accordance with AS 3818 Parts 1 and 2.

Timber and concrete bearers for switch and crossing structures may also be designed using the beam on elastic foundation analysis similar to that used for sleepers; however some additional considerations may be necessary as follows:

- Allowance for additional length of bearers over standard sleepers.
- Allowance for centrifugal forces through curved pairs of rail,
- Allowance for forces and movements induced from switch motors and other such equipment.

Hollow steel sleepers may be used if designed, constructed and installed in line with relevant specifications and with approval from the Senior Track Engineer.

Sleepers shall be installed perpendicular to the centreline of the track with spacing as defined by Table $2-4\pm10$ mm. Skewing shall be limited to ±10 mm measured at the sleeper ends.

Concrete sleepers shall be used for Category 1 and 2 tracks when carrying out sleeper replacement; however timber and steel sleepers are in use in localised areas on Category 2 and 3 track. Allowable use of different sleeper types is shown in Table 2-3 below.

TABLE 2-3 ALLOWABLE SLEEPER TYPES

TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Timber Sleepers	х	✓	✓
Concrete Sleepers	✓	✓	✓
Steel Sleepers	х	✓	✓
Hollow Steel Sleepers	Only with prior approval from Senior Track Engineer		

Track Maintenance Code Of Practice

The sleeper size and spacing for current use on the BHPBIO Railroad shall be as follows:

TABLE 2-4 SLEEPER DIMENSIONS

TYPE	LENGTH	WIDTH	HEIGHT	SPACING
Timber Sleepers	2600mm	225mm	150mm	533mm
	minimum	minimum	minimum	nominal
Timber Bearers	2600mm	300mm	175mm	533mm
	minimum	minimum	minimum	nominal
Prestressed concrete sleepers	2550mm	240mm	240mm	600mm
	minimum	minimum	minimum	nominal
Prestressed concrete bearers	2600mm	248mm	248mm	600mm
	minimum	minimum	minimum	nominal
Steel Sleepers (Trak-Lok 2)	2590mm	300mm	118mm	600mm nominal

For movements of maintenance and construction traffic at low speed, at least one (1) sleeper in every four (4) shall be fastened to the rail in tangent track and at least one (1) sleeper in every two (2) in curves less than 900m radius. For those movements, both rails shall be fastened to the same sleeper.

2.3.2. Reference Documents

SPEC-000-R-00001	Prestressed Concrete Sleepers Design, Manufacture and Supply Specification
SPEC-000-C-00117	WAIO Standards – Rail Track Work – Tracklaying Construction Requirements
073-C-461	Prestressed concrete sleepers details
AS 3818 Parts 1 and 2	Timber—Heavy structural products— Visually graded
AS 1085.8	Dog spike (Timber Sleepers)
AS 1085.13	Spring fastening for sleeper plates (Timber Sleepers)
AS 1085.3	Sleeper Plates (Timber)
AS 1085.19	Resilient Clip, Shoulder, Insulator, Plates
AS 1085.10	Rail Anchors
AS 1085.14	Railway track material - Prestressed concrete sleepers
WIN – 0112354	Sleeper Replacement
WIN-RTS-RTM-090	Gemco Re-Sleepering Machine (Operation of)

Track Maintenance Code Of Practice

2.3.3. Handling and Storage

Sleepers and turnout bearers shall be handled, transported and installed in a manner so as to prevent damage to the sleepers or any other track components. Sleepers and turnout bearers shall be stacked on level stable ground using timber packing between layers as per manufacturer recommendation such that unacceptable stresses will not be induced in the sleepers.

2.3.4. Reuse and Disposal

Upon removal from track all sleepers and associated components shall be sorted and segregated into one of the following categories:

- Reusable
- Quarantine
- Disposal

Sleepers that have the potential for reuse shall be marked in such a manner that the reuse potential is clear and unambiguous. In addition the design and type (if applicable) and the number of units shall be marked for sleepers segregated into stacks differentiated by:

- wear or damage to concrete;
- suitability for use in Category 1, 2 or 3 tracks;
- damaged iron shoulder.

Where sleepers require further classification they shall be quarantined from reusable materials to prevent use back in track.

All non-reusable sleepers and associated components shall be clearly marked and disposed of as soon as practicable after release from track. Non-reusable sleepers include steel sleepers for mainline tracks.

Non-reusable treated timber sleepers, bearers and transoms shall be quarantined for separate disposal in compliance with environmental requirements.

Track Maintenance Code Of Practice

2.4. FASTENINGS, INSULATORS AND PADS

2.4.1. Types and Installation

Fastening assemblies shall comply with the appropriate Australian Standards as described below. Testing shall meet the criteria for pre-production fastening tests in AS 1085.19. Commissioning of new fastening assemblies onto the BHPBIO Railroad shall be accompanied by appropriate testing documentation and certification. Fastenings shall be applied in accordance with the manufacturer's instructions, using approved tools. Each rail seat shall have fastenings properly applied to both sides of the rail foot.

Rail pad and insulators are to be purpose designed to achieve 1435mm gauge with 1:30 rail seat cant.

Creep resistant Pandrol Hytrel type pads are currently being trialled on steep grade areas and areas susceptible to skewing of sleepers.

Heavy duty insulators (IN55195) are currently used on the field side of the high rail on all sleepers around tight radius curves (<900m radius).

Note that specialist clips are used on steel sleepers. Engineering advice should be sought when dealing with sleeper fastenings on steel sleepers.

2.4.1.1. Resilient Fastening Assemblies

Resilient fastening assemblies shall be used on Category 1 and 2 track. Fastening type shall be Heavy Haul Pandrol "E" type fastenings or equivalent to suit approved concrete sleepers and rail section.

Resilient fastening assembly components shall comply with the appropriate Australian Standards detailed in Section 2.4.2. These standards generally define materials, material tests, manufacture, design/specification of the component, and component testing and compliance.

Testing shall meet the criteria for pre-production fastening tests in AS 1085.14.

2.4.1.2. Non-Resilient Fastening Assemblies

Non-resilient fastenings can be used on Category 3 track however resilient fastenings are preferable.

Non-Resilient fastening assembly components shall be manufactured to conform to the appropriate Australian Standard as detailed in Section 2.4.2.

For tangent track and curved track with Continuously Welded Rail (CWR) the following fastening assembly or equivalent shall be used:

- double shouldered sleeper plates should be used to provide a nominal rail cant of 1 in 40 on tangent track towards the centre of the track (except in special circumstances such as turnouts) (see AS 1085.3);
- dogspikes 4 (four) 19 mm square shank or equivalent per sleeper plate should be used.

Rail anchors should be used to box anchor every 4th sleeper as a minimum. For curves of radius 300m or less, additional fastenings may be necessary to reduce the need for excessive maintenance intervention.

Additional rail anchors may be necessary in areas of significant rail movement. Even with 100% rail anchors, rail movement cannot always be stopped. In these situations resilient fasteners or other monitoring and maintenance practices should be considered.

Track Maintenance Code Of Practice

2.4.2. Reference Documents

067-M-02279	Pandrol Rail Clip Type e2043
AS 1085.8	Dog Spike (Timber Sleepers)
AS 1085.3	Sleeper Plates (Timber)
AS 1085.19	Resilient Clip, Shoulder, Insulator, Plates
AS 1085.14	Railway track material - Prestressed concrete sleepers
AS 1085.10	Rail Anchors
WIN-RTS-RTM-176	Application & Removal of Clips & Fastenings
WIN-RTS-RTM-118	Sleeper Pads (Changing of)

2.4.3. Handling and Storage

Fastenings shall be handled, transported and installed in a manner so as to prevent damage to the fastenings or any other track components.

2.4.4. Reuse and Disposal (Under Review)

Upon removal from track all fastenings shall be sorted and segregated into one of the following categories:

- Reusable
- Quarantine
- Disposal

Inspection of fastening toe loads may be undertaken for the purposes of assessing the suitability of fastenings for re-use. The inspection should comprise of a visual inspection of clip condition along with testing of the toe load applied to the rail foot from the clip. Use of a go/no-go gauge is recommended to simply determine the approximate toe load being applied by the clip.

Fastenings that are suitable for reuse based upon visual condition assessment and toe load testing results shall be marked in such a manner that the reuse potential is clear and unambiguous. Fastening type (if required) and number of units should also be included in these markings.

Where fastenings require further classification they shall be quarantined from reusable materials to prevent use back in track.

All non-reusable fastenings shall be clearly marked and disposed of as soon as practicable after release from track. Non re-usable materials include:

- pads;
- insulators;
- clips taken from curved track.

Track Maintenance Code Of Practice

2.5. BALLAST

2.5.1. Types and Installation

Ballast is provided as part of the track structure to:

- facilitate corrective adjustment of the track geometry;
- evenly distribute load to the formation;
- resist vertical, longitudinal and horizontal movement of the track;
- allow drainage of water from the track;
- provide voids for the storage of contaminants and fouling material.

For material specification and acceptance testing for the supply of railroad ballast refer to SPEC-000-C-12001.

Ballast shall be positioned and suitably compacted up to 50mm (± 10 mm) below design sleeper base prior to the placement of skeleton track. Ballast shall be laid in layers not exceeding 100mm and compacted by a minimum of 3 passes of a $1400 - 1800 \text{kg/m}^2$ vibrating plate or compacting equivalent (e.g. Rollers, Wacker Plates).

Final ballasting, after placement of skeleton track, should be performed via ballast cars. The track should then be mechanically lifted through the final ballast drop. This final lift shall not exceed 60mm.

Placement of skeleton track prior to ballasting should be avoided where possible due to the potential for damage to the formation during track lifts.

Before newly ballasted track of length greater than 25m is accepted into full operation the ballast profile shall be consolidated by means of either:

- dynamic track stabilising machine, simulating the passage of 100,000 gross tonnes followed by a 45km/h temporary speed restriction until the track geometry is measured, confirmed and approved; or
- the passage of 100,000 gross tonnes at a temporary speed restriction of 25km/h followed by a 45km/h temporary speed restriction until the track geometry is measured, confirmed and approved.

Appropriate follow-up tamping shall be carried out to ensure that the track geometry is within construction tolerances at the end of the consolidation period.

For newly ballasted track of length shorter than 25m the ballast profile shall be consolidated by means of traffic passage at a temporary speed restriction of 45km/h for a minimum of 48hrs and shall include a follow-up tamp within this period. Detailed inspection of track geometry as a minimum shall be carried out after 48hrs and prior to opening the track to normal traffic.

For new track design and construct projects the installed ballast depth will take account of the design loading, the depth and strength of the designed sub ballast capping and the formation.

See SPEC-000-C-12001 for details regarding required ballast grade and mechanical properties.

Track Maintenance Code Of Practice

2.5.1.1. Ballast Profile

A typical track cross-section illustrating ballast profile is shown in Figure 2-3.

Ballast shoulder height (H) is measured from the base of sleeper to the underside of the rail. It is therefore determined by the sleeper design. Ballast shoulders are to be flat and level with the underside of the rail for the full width of the ballast shoulder.

Ballast depth (Z) is measured under the rail seat (of the low rail on curves) from the base of the sleeper to the bottom of the ballast layer and does not include sub ballast where used. Sufficient ballast depths are critical to minimise and evenly distribute rolling stock loads on the formation. Ballast depths in excess of those shown in Table 2-5 decrease the stability of the track and if not managed appropriately may result in uncontrolled settlement and cause early degradation of track geometry. Ballast depths in excess of those shown in Table 2-5 require additional engineering controls and approval from the Senior Track Engineer.

Ballast shoulder width (W) is measured from the extreme end of the sleeper, not the visible end when the track is fully ballasted. The measurement extends to the end of the level ballast shoulder, to the start point of the shoulder slope.

Ballast cribs shall be full and level with the top of the sleepers.

Formation should be designed to allow maintenance track lifts up to 150mm with the associated additional ballast profile width without compromising walkway widths e.g. allow for additional 450mm width of ballast profile at base of ballast.

FIGURE 2-3 TYPICAL TRACK CROSS-SECTION AND BALLAST PROFILE

Nominal ballast profile dimensions for track on the BHPBIO Railroad are given in Table 2-5 for different track types and categories.

Track Maintenance Code Of Practice

TABLE 2-5 NOMINAL BALLAST PROFILES

PARAMETER	TRACK TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Minimum Ballast Depth (Z) From Base of Sleeper	Tangents Curves ≥ 900m Radius Turnouts ≥ 1:20	320mm	200mm	200mm
to Top of Formation	Curves < 900m Radius Turnouts < 1:20	320mm	200mm	200mm
Maximum Ballast Depth (Z) From Base of Sleeper to Top of Formation	All Track Types	400mm	400mm	400mm
Shoulder Slope	All Track Types	1 : 1.5	1 : 1.5	1 : 1.5
Minimum Shoulder Width (W) From	Tangents Curves ≥ 900m Radius Turnouts ≥ 1:20	300mm	300mm	300mm
Sleeper End	Curves < 900m Radius Turnouts < 1:20	550mm	300mm	300mm

Effective ballast is critical in maintaining surface and sub-surface drainage. Inadequate drainage is detrimental to the ballast and formation and results in accelerated degradation of the ballast and formation resulting in poorer track support and poorer track geometry. Retention of water within the ballast can lead to the formation of bogholes. When >30% of the material is smaller than 13.5mm particle size then the effectiveness of the ballast may be reduced. Consideration should be given to the cost benefit of renewing the ballast compared to the ongoing maintenance requirements to maintain track geometry. When laying new ballast, ballast depth should not exceed the limits described in Table 2-5 where practicable. Where this is not possible, additional engineering controls may be required to alleviate the risk of excessive track settlement. Engineering assessment is required in these situations and the method of control shall be approved by the Senior Track Engineer. These controls include:

- installation of 'Geogrid' into ballast layers;
- installation of 'Geoweb' into ballast layers;
- increased tamping and maintenance regimes;
- use of road base instead of ballast in lower layers;
- increased compaction during construction.

Track Maintenance Code Of Practice

2.5.1.2. Ballast Depth Transitions

Where changes in ballast depths are required, (for example at transitions from old ballast track to newly installed ballast track) suitable transitions should be installed.

A rate of 1:100 shall be used to ramp from one depth to another. E.g. a transition from 200mm effective ballast depth to 300mm ballast depth is a change in depth of 100mm, requiring a ramp length of 10m.

FIGURE 2-4 BALLAST DEPTH TRANSITION

If the change in ballast depth is less than 100mm, or if the length of newly installed ballast is less than 10m then ballast ramps with a length of 1.8m should be installed with constant grade transitions at each end of the works.

2.5.2. Reference Documents

SPEC-000-C-12001	WAIO Standards – Rail Trackwork - Ballast Manufacture and Supply
WIN-RTS-RTM-134	WIN - Ballast Dropping (Main Line)
WIN - 102286	WIN - Ballast Dropping (Remote)
WIN - 112355	WIN - Ballast Pan Hungry Board Replacement
WIN - 118434	WIN - Ballast Remediation (Boghole)
WIN-RTS-RTM-135	WIN - Ballast Train Plough (Operation of)
WIN - 87638	WIN - Box Turnout Ballast (Manual)
WIN - 99690	WIN - Complete Ballast Treatment

2.5.3. Handling and Storage

The handling and storage of ballast within the confines of a quarry or as part of a construction project shall be carried out in line with SPEC-000-C-12001. For all other maintenance activities involving ballast the following applies.

Ballast shall be handled in such a way to avoid contamination and degradation. Vehicles used for handling and transportation shall be clean and free from rubbish and substances which may foul or damage the ballast. Stockpile lay down areas shall be located and prepared to reduce the risk of ballast contamination from underlying ground or from flooding. Relocation and stock piling of ballast shall be minimised as far as is practicable to reduce the risk of contamination and degradation.

Track Maintenance Code Of Practice

When extreme weather events are forecast to impact the BHPBIO Railroad then new ballast shall be stored in ballast wagons towards each end of the BHPBIO Railroad for the purpose of repair of any potential wash-away. It is recommended that at least 10 fully loaded ballast wagons are stationed towards each end of the railroad in locations that are not susceptible to flooding.

2.5.4. Reuse and Disposal

Ballast shall only be reused in track if it is cleaned of fouling and returned to compliance with the ballast grading requirements in SPEC-000-C-12001.

All non-reusable ballast shall be quarantined from good material to prevent its use back in track prior to disposal. All non-reusable ballast shall be correctly disposed of as soon as practicable after removal from track, accounting for any environmental considerations concerning contaminants within the ballast as per BHPBIO HSE guidelines. Testing may be required prior to removal from the rail corridor.

Track Maintenance Code Of Practice

2.6. TURNOUTS

2.6.1. Types and Installation

Turnouts comprise of a switch area and a crossing area. There are 3 types of crossings currently in use on the BHPBIO Railroad:

- Swing Nose Crossing (SNX) (1:10 / 1:15 / 1:20);
- Monoblock Crossing (1:10 / 1:15);
- Rail Bound Manganese (RBM) Crossing (1:10 / 1: 15).

Any changes to turnout type and assembly are subject to testing and assessment as specified in the SPEC-000-C-12005 and in the Foreword of this code of practice. SPEC-000-C-12005 shall be complied with as a minimum when designing new style turnout assemblies. Common bearer arrangements shall not be included in future designs and installations of crossovers on the BHPBIO Railroad due to difficulties in lifting common bearers during maintenance works.

Table 2-6 details the switch and crossing assemblies that are allowed for use on the BHPBIO Railroad, based on track category. Note that some 1:10 SNX assemblies are currently in use on Category 1 track acting as turnouts to backtracks, however the table below shall be complied with for any future installation works.

TABLE 2-6 TURNOUT SELECTION

CROSSING TYPE	TURNOUT SIZE	MAX DESIGN DIVERGE SPEED	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
	1:10 Standard (R221.026)	25 km/h	×	✓	\
	1:15 Standard (R320m)	35 km/h	✓	✓	~
Swing Nose Crossing (SNX)	1:15 Tangential (R500m)	45 km/h	1	1	√
	1:20 Standard (R910m)	60 km/h	1	1	√
	1:20 Tangential (R1000m)	65 km/h	✓	√	>
Monoblock Crossing	1:10 Standard (R221.026)	25 km/h	×	√	\
Rail Bound Manganese	1:10 Standard (R221.026)	25 km/h	×	1	√
Crossing (RBM)	1:15 Standard (R320m)	35 km/h	×	1	✓

Maximum design diverge speed is based on a cant deficiency of 55mm and rounded down to the nearest 5km/h.

Track Maintenance Code Of Practice

All turnouts, Left Hand (LH) and Right Hand (RH) are to be set out and assembled in accordance with the appropriate technical manual or specification. Installation shall be performed by an experienced person and in accordance with the appropriate procedure. Drawings and installation manuals are listed in Section 2.6.2.

Transition sleepers shall be used on both the entry and exit of turnouts and installed as per the manufacturer's design drawings.

Turnout bearers are typically deeper than standard sleepers. Consideration should be given to ensuring that required ballast depth is maintained beneath turnouts.

2.6.2. Reference Documents

AS 1085.21	Turnouts, Switches and Crossings
TMAN-073-C-12001	1:10 Swing Nose Crossings
073-C-00580/1 073-C-00580/2	1:10 LH and RH Turnout 68kg Rail Layout Drawings
TMAN-073-C-12002	1:15 Swing Nose Crossings
073-C-12009	1:15 Turnout 68kg Rail SNX Layout Drawing
TMAN-073-C-12000	1:20 Swing Nose Crossings
073-C-00647	1:20 R910m Turnout 68kg Rail SNX Layout Drawing
TMAN -073-C-12255	RBM Crossings
SPEC-000-C-12005	Design, Manufacture and Supply of Turnouts, Catchpoints and Insulated Rail joints
SPEC-000-C-00117	WAIO Standards – Rail Track Work – Tracklaying Construction Requirements
000-R-00026	Trackwork – Turnout Construction and Maintenance Pad – 1 in 10 Turnout
000-R-00027	Trackwork – Turnout Construction and Maintenance Pad – 1 in 15 Turnout
000-R-00028	Trackwork – Turnout Construction and Maintenance Pad – 1 in 20 Turnout
000-R-00030	Trackwork – Typical IRJ Placement 1in10, 1in15 and 1in20 Crossover
000-R-00029	Trackwork – Typical IRJ Placement 1in10, 1in15 and 1in20 Turnouts
000-R-00024	Trackwork – Zero and 1:60 Cant Reducing Bearer Mainline Turnout Installation
000-R-00025	Trackwork –1:60 Cant Reducing Bearer Yard Turnout Installation
WIN-RTS-RTM-092	Replace Turnout Check Rail
WIN-RTS-RTM-122	Replace Turnout Stock Rail & Switch Blade
WIN-RTS-RTM-124	Replace Turnout Crossing (Frog)
WIN-RTS-RTM-178	Turnout - Stock Rail Replacement (Yard)

Track Maintenance Code Of Practice

WIN-RTS-RTM-125	Switches (Servicing of)
WIN - 0087639	Grind & Service Turnout SNX
WIN - 0087649	Lube & Service Turnout SNX
WIN - 0087641	Grind & Service Turnout RBM
WIN - 0087653	Lube & Service Turnout RBM
WIN - 0087640	Replace Turnout Closure Rail
WIN-RTS-RTM-190	Switch Grinding
WIN-RTS-RTM-189	Remove/Replace Plates
WIN - 0087648	Tamp Turnout Bearers (Manual)
WIN - 0087650	Replace Turnout Heel Blocks
WIN - 0087651	Replace Turnout Rollers
WIN - 0087652	Replace Turnout Spreader Bar
WIN - 0087655	Adjust Turnout Bearer

2.6.3. Handling and Storage

Turnout components shall be handled and stored to ensure that they do not suffer damage or cause damage to other assets.

Spare materials shall be stored in approved warehouses and inventory managed locations.

2.6.4. Reuse and Disposal

All turnout components shall be quarantined until sorted and classified based on assessment against the following, as per Section 4.3:

- potential for reuse in other parts of the BHPBIO Railroad,
- presence of internal and surface rail defects, by visual and ultrasonic means of inspection,
- presence of top and side wear,
- presence of rail damage,
- potential for repair.

Turnout components that have the potential for reuse should be marked in such a manner that their reuse potential is clear and unambiguous.

All non-reusable rail components shall be clearly marked and disposed of as soon as practicable after release from track as per Section 2.1.4.

Track Maintenance Code Of Practice

2.7. INSULATED RAIL JOINTS

2.7.1. Types and Installation

All new insulated rail joints shall be a minimum of Grade A insulated rail joint assemblies in accordance with SPEC-000-C-12005 and use 6 hole joint bars. Only Nippon (NSC) grade HE400 insulated rail joints are approved for installation into the BHPBIO Railroad. Use of any other rail type requires the approval of the Senior Track Engineer.

Rail ends are to be straight cut by mechanical device and not flame cut and shall be centrally suspended between sleepers.

Every time an insulated rail joint is replaced in track an 'Insulated Joint Installation' form shall be completed and sent to Track and Signals Analysis & Improvement team within seven (7) days. The installation date of the insulated rail joint shall be written beside the plate on the field side in white paint pen.

Insulated rail joints should be installed in to track using flashbutt welds.

Each pair of insulated rail joints shall be installed in the same sleeper crib, i.e. square, not staggered.

There shall be a minimum distance of 4.8 metres between any weld and the insulated rail joint centre (key). This requires that all insulated rail joints be a minimum length of 9.6 metres when installed into track.

At signals/mainline switches the insulated rail joints shall be placed a minimum of 3.5m past the signal in the direction of normal travel. At switch toes where there is no signal, the insulated rail joints shall be placed within 15m of the switch toes.

2.7.2. Reference Documents

AS 1085.12	Insulated Joint Assemblies
SPEC-000-C-12005	Design, Manufacture and Supply of Turnouts, Catchpoints and Insulated Rail joints
SPEC-000-C-12002	Flashbutt Welding of Rails
FUSP-000-E-00004	WAIO Standard Signalling Design Principles
WIN-RTS-RTM-091	Glued Joints (Making of)
WIN-RTS-RTM-102	Replace Insulated Rail Joint (Mechanical)
WIN - 0087643	Replace Turnout Insulated Rail Joint (Glued)

2.7.3. Handling and Storage

Insulated rail joints shall be handled, transported and installed in a manner so as to prevent damage to the joint or any other track components. Each insulated rail joint shall be supported in five (5) evenly spaced locations using timber gluts.

Track Maintenance Code Of Practice

2.7.4. Reuse and Disposal

Insulated rail joints shall not be reused once removed from track and should be clearly marked and disposed of as soon as practicable after release from track as per Section 2.1.4.

Track Maintenance Code Of Practice

2.8. MECHANICAL NON-INSULATED RAIL JOINTS

2.8.1. Types and Installation

Mechanical rail joint design shall be in accordance with standard fishplated joints covered in AS 1085.2, or be equal to or exceed the performance of current proven designs. The standards shown in Section 1.10.4 generally define the materials, material tests, manufacture, design and specification of the components, and component testing and compliance.

Permitted permanent and temporary rail joints are as follows:

2.8.1.1. Permanent Rail Joint

The use of non-insulated rail joints as permanent rail joints on plain line track is only allowable in Track Category 3 locations such as Yards.

In crossings, turnouts and other locations where fixed joints are used, the use of swage lock fastenings in lieu of bolts is a preferred alternative method of fastening. However due to the higher forces imposed on the joint components from the tensile loading across this fastening type, joint components should be checked for suitability.

Permanent rail joint design and installation shall include the following:

- 6 hole/6 bolt fishplated joints;
- each pair of rail joints shall be installed in the same sleeper crib, i.e. square, not staggered;
- joints shall be centrally suspended between sleepers.

Fishplated rail joint components shall be manufactured to conform to the appropriate Australian Standards referenced in Section 1.10.4.

2.8.1.2. Temporary Rail joints

Temporary rail joints may be formed with clamped fishplates provided that a minimum of three (3) G clamps are used with each fishplate set. Temporary joints formed using fishplates and G clamps in operational Category 1 track shall be subjected to a 25km/h speed restriction and be replaced with permanent joints within 48 hours.

Temporary rail joints formed using Robel clamps in operational Category 1 track shall be replaced with permanent joints within 72 hours.

2.8.1.3. Other Joints

Expansion switches, junctions and other permanent joints not covered by AS 1085 shall be supplied in compliance with an approved specification or standard. These joints shall be subject to testing and assessment against the approved specification or standard prior to use on the BHPBIO Railroad.

Track Maintenance Code Of Practice

2.8.2. **Reference Documents**

AS 1085.2	Fishplates
AS 1085.4	Fishbolts and Nuts
AS 1085.7	Spring Washers
SPEC-000-C-00117	WAIO Standards – Rail Track Work – Tracklaying Construction Requirements
WIN-RTS-RTM-076	Clamp Rail Defect and Installation of Mini-plug
SPR-RTS-GEN-001	Broken Rail Procedure
WIN-RTS-RTM-106	Rail Drill (Operation of Rotorbroach)
WIN-RTS-RTM-107	Rail Drill (Operation of)

Track Maintenance Code Of Practice

2.9. WELDED RAIL JOINTS

2.9.1. Types and Installation

Recommended types of weld processes for joining rails include the following:

- Flashbutt welding;
- Aluminothermic welding.

Flashbutt welds are the preferred type rail joint as aluminothermic welds are known to have a higher probability of failure under service conditions at BHPBIO.

2.9.1.1. Flashbutt Welds (Under Review)

Fixed flashbutt welding operations and (welding using fixed flashbutt welding plant) shall be in compliance with SPEC-000-C-12002 and in accordance with WIN-0109654.

Mobile flashbutt welds installed in the field shall be in compliance with SPEC-000-C-12002 and installed in accordance with WIN-0102849.

All welding procedures shall be qualified as per AS 1085.20.

The welder executing the weld shall be fully trained, competent and hold current certification and Verification of Competency (VOC) to weld on the BHPBIO Railroad. All welders shall be qualified as per AS 1085.20.

Welders and welding equipment shall be audited for compliance on a frequency not exceeding one year. More frequent assessment may be required where evidence of non-conformance is identified. Performance specification should include as a minimum:

- Welding current,
- Upset force or pressure,
- Upset displacement,
- Welding time,
- Location,
- Rail size,
- Rail grade.

Corrective actions in the event of non-conformances may include:

- withdrawal of the welder certification,
- recalibration of welding equipment,
- retraining of welder.

When welding rails together, a maximum height difference of 5mm is acceptable. If rail height differences exceed this then a transition rail shall be used as per Section 2.2.

Care must be exercised to ensure correct processes are utilised when welding rails of differing grades.

Track Maintenance Code Of Practice

Weld quality shall be initially confirmed by the welder by means of visual observation of the welding process, review of the graph or meter and by completion of a visual inspection and magnetic particle test after weld installation. This shall be carried out by the welder for every weld installed prior to allowing unrestricted traffic. When a process non-conformance is identified possible corrective actions include:

- stopping of the welding activity;
- reassessment of the process;
- rework including potential installation of a new rail plug.

Confirmation that no visual defects have been identified is documented by completion of a Weld Report. The weld shall be identified on both the Weld Report and on the web of the rail adjacent to the weld.

All welds shall be internally non-destructively tested as per Section 3.11. Fixed flashbutt welds shall be tested upon production prior to being installed into track. Mobile flashbutt welds shall be tested within 14 days of installation.

2.9.1.2. Aluminothermic Welds

Aluminothermic weld materials shall be supplied and proof tested in accordance with methods and frequencies defined in AS 1085.20.

Aluminothermic welding shall be carried out in compliance with SPEC-000-S-00067 and in accordance with WIN-RTS-RTM-127.

The welder executing the weld shall be fully trained, competent and hold current certification to weld on the BHPBIO Railroad. Welders shall be qualified based on AS 1085.20 and shall hold the following certifications:

- Cert 2 in Rail Infrastructure,
- Certified as competent for the AT welding procedure that is approved and in use at BHPBIO,
- Welders Assistant Theory/Practical.

Welders shall be audited for compliance on a frequency not exceeding 1 year. More frequent assessment may be required where evidence of non-conformance is identified. Corrective actions in the event of non-conformances may include withdrawal of the welder certification and/or retraining of the welder.

Care must be exercised when welding rails of differing grades. Approved rail grade types are documented in Section 2.2.

The gap between rails prior to the weld being installed shall be controlled and maintained within the limit values specified in WIN-RTS-RTM-127.

Welding rails of different heights shall be closely managed and shall comply with the limit values specified in WIN-RTS-RTM-127. Weld quality shall be initially confirmed by the welder by means of visual observation of the welding process and by completion of a visual inspection and magnetic particle test after weld installation. This shall be carried out by the welder for every weld installed prior to allowing unrestricted traffic. When a process non-conformance is identified possible corrective actions include:

- stopping of the welding activity;
- reassessment of the process;
- rework including potential installation of a new rail plug.

Track Maintenance Code Of Practice

Confirmation that no visual defects have been identified is documented by completion of a Weld Report. The weld shall be identified on both the Weld Report and on the web of the rail adjacent to the weld using the following weld identification protocol:

YY MM Welder ID Weld# for month

e.g. 1510AA01

All welds shall be internally non-destructively tested as per Section 3.11.

2.9.1.3. Welds on Bridges

All rail welds on or within 50m of a bridge should be of flashbutt type. Aluminothermic welds should only be used in an emergency or as a temporary repair, if a mobile flashbutt welder is not available.

In this instance, aluminothermic welds on or within 50 metres of a bridge are to be protected through plating using the drill and bolt method.

Aluminothermic welds on or within 50 metres of a bridge are to be plated and then clamped for a period of 24 hours to allow sufficient time for weld cooling. Once a weld has been in track for more than 24 hours, the weld must be drilled and bolted.

The aluminothermic weld shall be removed and replaced with a flashbutt weld within 28 days of installation.

2.9.2. Reference Documents

AS 1085.20	Welding of Steel Rail
WIN-RTS-RTM-127	Aluminothermic Welding
SPR-HIS-SAF-034	Hot Work Permit Procedure
WIN-RTS-RTM-104	Use of Oxy and Propane Gas
WIN-0102849	Mobile Flashbutt Welding
WIN-0109654	Fixed Flashbutt Welding Operations
SPEC-000-C-00117	WAIO Standards – Rail Track Work – Tracklaying Construction Requirements
SPEC-000-S-00067	Aluminothermic Welding of Rails
AS 3834	Quality requirements for fusion welding of metallic materials
SPEC-000-C-12002	Flashbutt Welding of Rails

2.9.3. Handling and Storage

Weld material handling and storage to be defined.

2.9.4. Reuse and Disposal

Compromised materials shall be segregated from good condition materials and clearly marked for disposal to prevent them being put into track. Materials shall be appropriately disposed of as soon as is practicable.

Track Maintenance Code Of Practice

2.10. LEVEL CROSSINGS

Level Crossings throughout the BHPBIO Railroad should be clearly identified as one of the following access types:

- Public Level Crossings
 - Public level crossings are provided to maintain continuity of a public thoroughfare.
- Private (Operations) Level Crossings
 - Service level crossings are level crossings that provide access only for BHPBIO Railroad operations by authorised persons.

2.10.1. Types and Installation

Table 2-7 defines the approved types of level crossings for installation on the BHPBIO Railroad. Note that other level crossing types are currently in operation on the BHPBIO Railroad including:

- constructed from welded rail lengths;
- superseded concrete/steel design;
- superseded Humes crossing panel design;
- superseded steel design.

Any renewal of level crossings shall only be completed using types shown in the approved crossing types table below.

 MANUFACTURER
 MODEL
 TRACK CATEGORY 1
 TRACK CATEGORY 2
 TRACK CATEGORY 3

 Strail
 NA
 ✓
 ✓
 ✓

 JD
 JD150
 ✓
 ✓
 ✓

 JD
 JD250
 ✓
 ✓
 ✓

TABLE 2-7 APPROVED LEVEL CROSSING TYPES

Note that selection of a suitable level crossing type shall consider the expected vehicle loading and volume of traffic, in addition to the track category and maintenance requirements.

When designing and installing level crossings, consideration shall be given to the following:

- sight distance and obstructions;
- time for road vehicles to traverse and clear the level crossing;
- time for pedestrians to clear the level crossing;
- ability of legal road vehicles with clearance limitations (e.g. low-loaders) to negotiate the level crossing;
- design speed of the road;
- track alignments;

Track Maintenance Code Of Practice

- method of panel fixation;
- superelevation of both track and the road.

Specific consideration should be given to:

- suitable rail anchoring arrangements;
- provision of suitable wheel flange way;

considering maximum size of wheel flanges of trains allowed through the level crossing, clearance between track gauge and wheel set gauge and track radius through the level crossing.

track drainage;

maintains track drainage through or appropriately deviated around the level crossing and avoids obstruction to track side drainage systems.

- provision of road surface water flow away from the crossing;
- a suitable road surface;
- the road configuration;
- compatibility with the approach road surface;
- clearances from turnouts, rail welds, curves and insulated rail joints;
- avoidance of obstruction of track side access roads;
- clearances to overhead and adjacent structures.

Level crossing components shall be installed in accordance with the manufacturer's instructions, unless such instructions are non-compliant with this code of practice in which case approval from the Senior Engineer shall be required.

Suitable 'geofabric' should be utilised to provide a separation layer between the sub-ballast and track formation and should extend up to the interface between the road pavement sub-base layers and ballast.

In general, the level crossing surface shall be flush with the top of the rail, planar between the two rails and flush with the approach roads.

Road alignment shall be designed in accordance with Austroads publication AGRD03/10: Guide to Road Design – Part 3: Geometric Design, and the requirements of the relevant road authority.

The following shall be confirmed as a minimum, prior to assembly of any level crossing components:

- fill in track ballast flush with sleeper surface and compact,
- clear all pavement debris and other foreign materials off track bed,
- visually inspect fastenings, retighten if they are loose and replace any damaged or missing fastening hardware,
- check the accuracy of sleeper spacing as per manufacturers requirements,
- check track geometry is to the proper horizontal and vertical alignment,
- check there are no additional crossing obstructions (i.e. rail joints).

Track Maintenance Code Of Practice

2.10.2. Reference Documents

DESC-000-C-00001	Design Criteria Track Design
SPEC-000-C-12008	Heavy Haul Railway Crossing Panels Specification
SPEC-006-E-12122	Signal Level Crossing Design and Construction Specification
AGRD03/10	Austroads publication – Guide to Road Design – Part 3: Geometric Design
AS 7658	Railway Infrastructure – Railway Level Crossing
WIN-RTS-RTM-098	Level Crossing (Crossing over with Track Mounted Machinery)
WIN-RTS-RTM-099	Installation of Level Crossings (Concrete Panels)
WIN-RTS-RTM-187	Installation of Level Crossings (STRAIL)

2.10.3. Handling and Storage

Level crossing components shall be handled, transported and installed in a manner so as to prevent damage to the sleepers or any other track components. Level crossing panels shall be lifted using designated lifting points using suitable lifting apparatus.

Level crossing panels shall be stacked on level stable ground as per manufacturer recommendation in such a manner that unacceptable stresses will not be induced in the panels and contact damage between panels is avoided.

2.10.4. Reuse and Disposal

Modification of level crossing approaches, controls or components shall only be conducted after thorough risk assessment has been completed and hazards identified.

The decommissioning and disposal of level crossing equipment and systems shall be controlled and shall take into account the following requirements:

- maintaining safe railroad and level crossing operations during decommissioning and disposal,
- ensuring that decommissioned equipment is clearly identified as such,
- preventing inappropriate use of decommissioned equipment prior to disposal, and
- eliminating as far as practicable any public or private hazard associated with decommissioned equipment, giving consideration to both short and long-term condition.

Decommissioning of a level crossing may involve one or more of the following actions:

- closing a level crossing,
- closing a railroad line,
- deactivation of a level crossing when a railroad line is 'suspended' but not closed,
- replacing equipment with new equipment as an upgrade,
- changing the access type of the level crossing (e.g. closure of a level crossing to vehicular traffic, changing from public crossing to private crossing etc.).

Track Maintenance Code Of Practice

The decommissioning of a level crossing shall involve consultation between the stakeholders of the level crossing, which include the rail and road authorities as well as the community and will comply with the BHPBIO Management of Change Procedure.

All non-reusable level crossing components should be clearly marked and disposed of as soon as practicable after release from track as per Section 2.1.4.

Track Maintenance Code Of Practice

2.11. BRIDGES AND CULVERTS

2.11.1. Types and Installation

Design and rating of structures shall comply with DESC-000-C-00002 and DESC-000-C-00001 and take into account the following documents where applicable:

- AS 5100 Bridge Design Code,
- AS 4799 Installation of Services and Pipelines with railway boundaries,
- AREMA,
- other structures: Relevant Australian Standard.

Replacement bridge and culvert structures shall, as far as is practicable, be installed on the existing track alignment or be installed in such a location as to improve the track alignment. Maintaining or improving track alignment requires that no additional horizontal curves are introduced.

The manufacturer and installer of culvert remediation materials shall ensure that remediated culverts, at a minimum, meet the original culvert strength (as new). In addition the manufacturer shall demonstrate that any new material meets the requirements for both abrasion and impact resistance for the application.

Major structures such as road and rail bridges should have the location marked on the structure.

In addition to master data, relating to bridge and culvert structures, stored in the 1SAP system, a register providing detailed information regarding all under track structures shall be maintained.

2.11.1.1. Structures Owned by Other Parties

Suitable derailment and crash protection shall be provided to protect structures owned by other persons or organisations that interface with the BHPBIO Railroad.

Where a structure owned by another person or organisation is considered to present an unacceptable risk to the safe passage of trains, the following actions should be undertaken:

- notify the relevant person or organisation in writing requesting appropriate action be taken to reduce the risk to acceptable levels,
- consider the need to impose operational restrictions or other means to reduce any immediate risk.

If the risk is not addressed satisfactorily then consideration should be given to reporting the situation to the appropriate regulatory authority for resolution.

2.11.2. Reference Documents

DESC-000-C-00002	WAIO Design Criteria Earthworks and Drainage
DESC-000-C-00001	WAIO Design Criteria Track Design
AS 4799	Installation of Services and Pipelines with Railway Boundaries
SPEC-000-S-00053	WAIO Demolition Works
AS 5100	Bridge Design Code

Standard Track Maintenance Code Of Practice

AREMA Ch10	American Railway Engineering and Maintenance of Way Association – Chapter 10 Structures, Maintenance and Construction
WIN - 0106584	Remove / Replace Handrails DeGrey Bridge
WIN - 0076701	Installation MSA Rail Slider WAH
WIN - 0076709	Verify Common Bridge Type A WAH
WIN - 0076710	Verify Common Bridge Type A
WIN - 0076717	Verify Common Bridge Type D WAH
WIN - 0076718	Verify Common Bridge Type D
WIN - 0076720	Culvert Service
WIN - 0106586	Fastening Bolts on Bridge structures
WIN - 0106589	NDT of Infrastructure
WIN - 0106590	Timber Transom Bridge inspections
WIN - 0106592	Ballast Deck Bridge Inspections
WIN - 0112355	Ballast Pan Hungry Board Replacement

2.11.3. Handling and Storage

Bridge and culvert components shall be handled and stored to ensure that they do not suffer damage or cause damage to other assets.

Spare materials shall be stored in approved warehouses and inventory managed locations.

2.11.4. Reuse and Disposal

Bridge and culvert components will usually be replaced once their useful life has expired. As such bridges and culverts that have been used in track will typically not be reused and will require decommissioning, demolition (as per SPEC-000-S-00053), and disposal.

All non-reusable bridge and culvert components shall be clearly marked and disposed of as soon as practicable after release from track as per Section 2.1.4.

In the event that bridge and culvert components are removed from track during their useful life and they have potential for reuse then a thorough structural assessment shall be undertaken by a trained and competent structural engineer and a formal risk assessment be undertaken prior to reuse of the components.

Track Maintenance Code Of Practice

2.12. EARTHWORKS

2.12.1. Types and Installation

Earthworks shall be designed in accordance with DESC-000-C-00002 and in such a way so as not to risk the integrity of the overlying track construction. DESC-000-C-00001 shall be consulted for track design.

Design and rating of earthworks and geotechnical structures should where necessary include geotechnical investigation and specialist geotechnical advice of the site and materials.

Earthworks in relation to construction and maintenance of BHPBIO Railroad shall adhere to the following:

- be of suitable stiffness to support the applied static and dynamic loads,
- be suitably compacted,
- be suitably free draining and not subject to seasonal variation.

2.12.2. Reference Documents

DESC-000-C-00002	WAIO Design Criteria Earthworks and Drainage
DESC-000-C-00001	WAIO Design Criteria Track Design
WIN-RTS-RTM-183	Front End Loader Operation
WIM - 0078027	Excavator operation of

2.12.3. Handling and Storage

Earthwork materials shall be handled in such a way to avoid contamination and degradation. Vehicles used for handling and transportation shall be clean and free from rubbish and substances which may foul or damage the material. Stockpile lay down areas shall be located and prepared to reduce the risk of contamination from underlying ground or from flooding. Relocation and stock piling of earthwork material shall be minimised as far as is practicable to reduce the risk of contamination and degradation.

2.12.4. Reuse and Disposal

All non-reusable excavated material shall be quarantined from good material to prevent its reuse prior to disposal. Excavated material shall be placed in such a position as to cause the least inconvenience to vehicular traffic and other construction work. Excess material shall be removed from the site and deposited and spread neatly at approved disposal sites.

Topsoil or road base material to be reused shall be stockpiled separately from other material.

Track Maintenance Code Of Practice

2.13. ACCESS ROAD

2.13.1. Types and Installation

The BHPBIO Railroad access road shall be of asphalt or graded earth construction. It shall provide vehicular access to the track for maintenance purposes for light and heavy vehicles. The access road shall provide sufficient width for bidirectional travel, including appropriate signage. Where bi-directional travel is not possible then appropriate traffic management signage shall be installed to manage traffic flow. Relevant Australian Standards shall be complied with to achieve these requirements.

The access road shall be maintained to provide a surface suitable for light off-road vehicles travelling at 80km/hr. Where this speed is not possible due to geography or structures then appropriate speed restrictions shall be implemented and communicated via appropriate signage.

Where bridges across waterways are not provided for vehicular access then suitable ford crossings shall be installed with water depth markers visible to approaching vehicles.

Access points to the BHPBIO Railroad for hi-rail vehicles shall be provided off the main access road. The minimum acceptable form of hi-rail access will be precast concrete crossing panels and designed to enable heavy hi-rail vehicles (mobile flashbutt welding machines, ultrasonic car, hi-rail truck) to drive onto and off the track. Minimum width shall be 6m.

2.13.2. Reference Documents

DESC-000-C-00002	Design Criteria Earthworks and Drainage
WIN - 112356	WIN - Repair Access Road Washout
000-C-12012	Roads – Typical Sections
000-C-12013	Road Furniture – Typical Details
WIN-RTS-RTM-149	Daily Access Road Inspections
WIN-RTS-RTM-150	6 Monthly Access Road Inspections
WIN - 0106581	Inspecting Access Roads

Track Maintenance Code Of Practice

2.14. **SIGNS**

This Section applies to permanent and temporary infrastructure operating signs that provide information and directions for BHPBIO Railroad users. These include signs for the following:

- permanent speed restrictions including curves and turnouts,
- temporary speed restrictions including track, work site, warning and caution signs,
- protection including worksites and obstructions,
- warning signs including whistle signs and advance warning signs,
- change of operations system or operational parameters (e.g. RTS, train order, radio channel, station/yard limits),
- structure, equipment and location identification signs including kilometre posts,
- track monuments.

It should be noted that this does not include road signage.

A register of all permanent operational signs shall be maintained, containing details such as sign locations, type and purpose.

2.14.1. Types and Installation

All signs should be constructed in line with the Australian Standards listed below. In addition, general requirements and recommendations for design and placement are as follows:

Trackside signs:

- shall be positioned to be clearly visible to the train crew of an approaching movement during day and night conditions. Sign positioning shall be such that no obstruction is permitted when viewed from the driver's normal operating position;
- where practicable, shall be erected on the left side of the track in the direction of increasing kilometres;
- shall use retroreflective material;
- may be erected independently or be fixed to other appropriate infrastructure;
- shall be placed in positions of low hazard;
- shall have reverse sides that are neutral in appearance;
- may have their meaning qualified by the attachment of qualification plates;
- may have their shape modified to meet clearance limitations;
- should have a border around their perimeter to improve their visibility.

Track Maintenance Code Of Practice

The following also apply:

- Additional trackside signs designed for specific local conditions may be erected,
- Track monuments shall be designed and installed in accordance with SPEC-000-C-00117,
- Kilometre signs should be located at every kilometre, positioned on both sides of dual track
 and on single track sections they should be visible from the track and from the access road.
 The kilometre posts indicate the distance from a set point and are used to identify a specific
 location on the section of line and track. Note: Markings on the rail also indicate 100m
 intervals of track.

2.14.2. Reference Documents

AS 4292	Railway Safety Management
AS 1742.7	Manual of uniform traffic control devices
AS 1743	Road Signs – Specifications
SPEC-000-C-00117	WAIO Standards – Rail Track Work – Tracklaying Construction Requirements
000-C-12058	Trackwork – Location Signs and Markers Layout and Details
000-C-12059	Trackwork – Track Monument
CD - 0119118	RRB M05 Signal, Boards and Signs
CD - 0106585	Access Road Sign Installation

2.14.3. Handling and Storage

Signs shall be handled, transported and stored in a manner so as to prevent damage to the signs.

2.14.4. Reuse and Disposal

Signs that are deemed inadequate, whether by specification, damage or visibility, shall be removed and if required replaced. All signs shall be segregated into one of the following categories:

- Reusable
- Disposal

Signs that have the potential for reuse shall be marked in such a manner that the reuse potential is clear and unambiguous.

All non-reusable signs and associated components shall be clearly marked and disposed of as soon as practicable after release from removal.

Track Maintenance Code Of Practice

2.15. CLEARANCES

Clearances to structures and to adjacent track, including between primary and divergent track, shall be maintained as per DESC-000-C-00001 and clearance drawings documented below. The standard minimum clearance to all structures on the mainline including signals shall be 4876mm either side of track centreline.

Where a guard rail has been fitted to provide protection to a structure in the event of a derailment the structure outline should be widened to accommodate derailed rolling stock running against the guard rail.

If a vehicle does not conform to the dimensions stated in the referenced documents then the traffic may be accepted subject to the satisfactory completion of a risk assessment which shows that the vehicle will pass all track side structures on the route. In accepting such traffic, it is recognised that it is 'exceptional' and can only travel under conditions of passage dictated by the out of gauge loading procedure documented in the Rail Rule Book Module 7, CD – 0119120.

2.15.1. Reference Documents

076-M-01285	Rolling Stock Handbook Index Page
076-M-01286	Loading Gauge and Structure Clearance Diagrams
076-M-01287	Loadout Tunnel Clearance Diagrams
000-M-00067	Railway Rolling Stock Line Clearance Diagram
DESC-000-C-00001	Design Criteria Track Design
CD - 0119120	Rail Rule Book M07 Service & Work Trains

Track Maintenance Code Of Practice

2.16. COMMISSIONING

Requirements concerning the confirmation of asset suitability when opening to rail traffic following maintenance activities are documented in Section 3.5. Commissioning major projects shall be carried out in compliance with the relevant project specifications. The content that follows provides guidance to the asset maintenance owner in the situation of receiving newly commissioned assets.

When accepting newly commissioned assets the following shall be considered by the receiving party:

- Suitable and acceptable updates to the 1SAP functional location structure to reflect the new or changed asset have been provided,
- Any required maintenance documentation has been provided and attached to the relevant functional locations in 1SAP,
- Suitable early maintenance has been carried out on the asset, or suitable plans for the execution of early maintenance has been communicated and accepted by the Track and Signals department,
- Any additional required maintenance equipment has been provided and is fit for purpose,
- Asset walkthrough has been completed by a trained and competent inspector as defined in Section 3,
- Checks made to confirm that the asset complies with maintenance requirements specified in this code of practice.

If the inspections identify any non-conformance with the standards, the opening speed shall be reduced in accordance with the appropriate guidelines specified within this code of practice. The track shall not be opened until the appropriate checks confirming compliance have been completed and documented.

The track may be opened with minor non-conformances if the risks of doing so are formally assessed and documented and approval is granted by the Senior Track Engineer.

2.16.1. Reference Documents

SPEC-000-C-00117	WAIO Standards – Rail Track Work – Tracklaying Construction Requirements
------------------	--

Track Maintenance Code Of Practice

2.17. ASSET PROTECTION

Asset protection systems utilised on the BHPBIO Railroad include:

- Derailers,
- Catchpoints,
- Wheel and bearing monitors,
- Dragging equipment detectors,
- Rail temperature detectors,
- Weighbridges,
- Stream flow detectors,
- Level crossing warning and barricading systems,
- Video imagery systems.

Some asset protection systems are designed to protect the assets from rolling stock failure rather than track asset failure and are managed and maintained by departments other than track maintenance. These protection systems, however, typically reside on the track asset and need to be considered when carrying out track maintenance works.

Design and approval of the installation of asset protection systems shall consider the ease of maintenance of the track.

Asset protection systems that form part of the track structure such as derailers and catchpoints shall be managed and maintained by the Track Maintenance department.

2.17.1. Derailers (Opportunity)

Derailers are installed on the BHPBIO Railroad to protect assets and personnel from train roll away. Different types are installed including manually controlled and electrically operated types.

2.17.2. Guard Rails (Opportunity)

Guard rails are not mandatory however may be used on the BHPBIO Railroad wherever there is a risk of a derailed train causing damage to a structure, or where the presence of a structure or other hazard would cause the consequence of a derailment to be greater. Guard rails, when installed, shall comply with the following requirements:

- Guard rails shall be AS 68 kg/m rail or other equivalent sections with rail head wear not exceeding 40%,
- Both sides of the track shall be protected, unless the identified hazard is only on one side of the track, where a single guard rail may be installed for protection from that hazard,
- The top of the guard rail shall remain clear of the loading gauge, preferably be at the level of the adjacent running rail surface, or below it by no more than 50 mm,
- The working face of the guard rail that comes into contact with derailed wheels should be approximately 250 mm from the gauge face of the running rail, and be located to keep derailed wheels on the sleepers and to avoid rolling stock impacts with structures,

Track Maintenance Code Of Practice

- Guard rails should extend 10m past the end of the structure or any other hazard being protected,
- Guard rails should be fastened to at least every second sleeper and preferably to every sleeper,
- Guard rail lengths shall be joined using 4-hole fishplate joints (or equivalent) as a minimum,
- The ends of the guard rails shall be:
 - flared away from the running rails;
 - o vee shaped where there are pairs of guard rails between the running rails;
 - o fastened to every sleeper.

2.17.3. Reference Documents

SPEC-000-C-12005	Design, Manufacture and Supply of Turnouts, Catchpoints and Insulated Rail Joints
SPEC-000-C-12006	Design, Manufacture and Supply of Buffer Stop Specification
SPEC-000-C-12004	Design, Manufacture and Supply Heavy Haul Railway Derailer Specification
CD - 0118073	Train Control Asset Protection Systems

Track Maintenance Code Of Practice

3. INSPECTIONS

Track Maintenance Code Of Practice

3.1. VISUAL TRACK INSPECTION

3.1.1. Inspection Purpose

The purpose of visual track inspections is to check the general condition of all aspects of the rail corridor to ensure safe passage of trains. The person executing the inspection should keep a lookout for track defects and conditions (i.e. indicators of a defect) that may affect the integrity of the track structure.

These inspections may be carried out from an on-rail vehicle traveling at a speed consistent with the scope of the inspection, or by walking. Minor defects that are identified, such as missing bolts or rail flow at IRJs, shall be rectified by the person executing the inspection if safe to do so. If not safe to do so, or the person is unable to do so, a notification to carry out the repairs shall be raised

The conditions that should be considered and noted when observed include the following:

TABLE 3-1 CONDITIONS TO BE OBSERVED DURING TRACK INSPECTION

RAIL AND WELDED JOINTS		
broken rails and rail welds	unusual vehicle tracking patterns	
rail and rail weld deformations and discontinuities	rail corrugation	
wheel burns	rail crippling	
damage to rail surface or section	other obvious indications of defects (e.g. bleeding)	
unusual patterns of gauge face contact	Other surface defects	
NON-WELDED JOINTS (INCLUDING IRJS)		
broken, missing or loose bolts	rail end batter	
broken plates	insulation breakdown	
metal flow across joint	track circuit bond wire damage	
vertical deformation	other obvious defects or missing components	
RAIL	WEAR	
high wear rates (e.g. presence of filings)	other unusual and obvious wear patterns and defects indicating for example poor vehicle tracking, sharp points in curves or excess/deficiency in track superelevation	
excessive top or side rail wear		
GUARD RAILS		
missing or ineffective rail/sleeper fastenings	obvious damage to components	
lack of guard rail continuity		

Track Maintenance Code Of Practice

BALLAST		
track sections with inadequate ballast profile	heaped ballast or gaps at sleeper ends that indicate lateral track movement, or a migration of ballast away from the track	
track sections where the ballast profile may interfere with the operation of infrastructure (e.g. signals or switches) or rolling stock	accelerated loss of track geometry (especially following unusual weather events) that may indicate poor ballast quality	
bogholes or wet spots	other obvious defects that may affect track stability and support	
indications of poor sleeper support by ballast (e.g. cracking of sleepers and bearers, excessive vertical sleeper movement)	whitening of the ballast indicating movement of the ballast and rounding of angular edges	
fines contamination		
SLEEPERS		
damaged, split, cracked, broken or missing components	indications of incorrect rail cant	
indications of lateral movement of fastenings and sleeper plates on timber sleepers	abnormal deterioration of sleepers and fastening condition; other obvious defects that may affect the track structural integrity or stability	
indication of sleeper movement (e.g. bunching, skewing)		
TURNOUTS		
broken crossings, switch blades, or rails	wheel marks which indicate incorrect wheel/rail interaction	
missing components	rail creep which may for example lead to displacement of components and rail alignment problems	
damage to any component that does not allow it to perform its intended function including switch operating equipment	rail pulling including at the point and splice rails of fabricated crossings	
flange way and other obstructions	other obvious defects that may affect continuity of support and direction to rolling stock	
track geometry defects	broken crossings, switch blades, or rails	

Track Maintenance Code Of Practice

LATERAL STABILITY		
lateral misalignments including "kicks" in tangent track	track movement, indicated by for example gaps between sleepers and ballast (laterally and longitudinally)	
curved track sections with sharp or flat curvature	heaped ballast	
rail breaks (i.e. excessive local tensile rail stresses contributing to pull-rail apart)	skewed sleepers	
indications of incorrect rail stress, for example twists and misalignments in the rail at temperatures well below design neutral, which may indicate the rail is in compression	other obvious defects or conditions that may affect lateral track stability	
marks on the rail indicating longitudinal movement of the rail (creep) through the fastening assemblies		
GEON	METRY	
track geometry defects including those that may indicate problems with the underlying sub-structure	obvious variations in track alignment that may, for example, affect clearances or track stability	
locations where track geometry has deteriorated notably since last inspection	alignment defects and signs of movement that could cause excessive vibration of track-mounted signalling equipment	
locations where the geometry is inconsistent with the track either side (e.g. a sudden change in curve radius)	alignment defects and signs of movement that could affect the operation and/or reliability of switches, crossings and associated equipment	
evidence of recent or current movement (including voids at sleeper end)	other obvious defects that may affect track stability and support	
unusual wear patterns on the rail	indications of cyclic geometry (including signs of hunting rolling stock)	
LEVEL CF	COSSINGS	
any obstructions to flangeway clearances	abnormal road surface conditions	
poor track geometry on approaches and through level crossings	damage to level crossing components	
STRUCTURES		
changes in the alignment of the structure (e.g. as indicated by track geometry error or movement in vertical or horizontal alignment)	other obvious defects that may affect the structure's integrity	
component or structural member damage, for example as caused by derailment, collision, dragging equipment on rolling stock or vandalism	damage or subsidence of safety handrails associated with structures and/or embankments	

Track Maintenance Code Of Practice

EARTHWORKS		
indications of recent movement including slippage, slumping, settlement or heaving	earthwork scour and/or erosion including narrow formation leading to loss of ballast and undercutting of the toe of embankments and cuttings by water or wind	
fissures and cracks in formation or earth batters	water seepage from embankments and cuttings	
rock, earth, or other debris falling on or near the track	damage to embankments or cuttings including that caused by construction or vehicle access	
loss of track geometry	conditions that may cause future slip, scour, slump, settlement including burning off or clearing of steep embankments and cuttings	
track subsidence due to ground movements	any other occurrence likely to impact on the stability of earthworks	
SIG	GNS	
damaged, missing or unreadable signs	any location where sight distance is deficient or the view by the train crew of the sign or signal may be obscured	
CLEARANCES		
track obstructions	evidence of recent or current movement	
changes in track or structure location since previous inspection	fouling point markers are not visible, conspicuous or performing the function intended	
visible markings or damage to structures	evidence of recent or current movement of dropped long welded rail	
inadequate horizontal and vertical alignment past or through structures	other obvious defects that may affect clearances	
VEGET	TATION	
vegetation growing in the track ballast	vegetation growing that obstructs visibility of level crossings	
vegetation growing that obstructs visibility of signs		
FIRE HAZARDS		
high risk fire locations including presence of combustible rubbish and vegetation	indication of unreported fires	
infringement on firebreaks of combustible materials		

Track Maintenance Code Of Practice

DRAINAGE		
scour	indications of floods overtopping a structure	
blockage or partial blockage of the waterway or track drain due to debris, rubbish or silt	culvert/drain damage or collapse	
damage to waterways, drains or cesses by construction or vehicle access		
ASSET PROTECTION		
damaged or missing asset protection systems including derailers, guard rails, dragging equipment detectors, wheel and bearing monitors, cold rail detectors	signs of potential failure of asset protection systems	

3.1.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Visual Patrol Track Inspection	3 days	4 days	6 months

Where multiple tracks run parallel, with track centres \leq 6m and local factors that allow for the adjacent track to be viewed without obstruction, then running on one track may constitute an inspection of both tracks however the speed of the inspection shall be adjusted appropriately to enable the inspector to observe conditions on both tracks. In this scenario the inspections shall alternate from one track to the other each time the inspection is carried out.

e.g. for Category 1 track in a dual track section, both tracks shall be travelled on within a 1 week period.

3.1.3. Reference Documents

WIN-RTS-RTM-096	Hi Rail (Operation of)
-----------------	------------------------

3.1.4. Inspector

The person carrying out the inspection shall:

- be suitably qualified to a minimum Cert 3 Rail Infrastructure level;
- be competent in identifying track defects;
- have knowledge of local factors;
- be knowledgeable regarding this code of practice.

3.1.5. Documentation

Track Maintenance Code Of Practice

3.2. DETAILED TRACK INSPECTION

3.2.1. Inspection Purpose

Detailed track inspections shall be carried out on foot and may require the use of measurement or testing equipment. Detailed track inspections may be required in the following situations:

- A defect is identified during visual track inspection that requires further assessment,
- A defect is identified during other inspections that requires assessment,
- Unusual deterioration is observed that requires further investigation,
- A cluster of defects is identified that may warrant an increased defect response code,
- External factors are identified that may require a change in a defect response code,
- Defects are suspected but cannot be confirmed visually and require further testing,
- Planning for maintenance activities,
- Planning for renewal activities,
- Scoping of track upgrades,
- Monitoring of known problem sites,
- Monitoring of geometry defect sites if the Track Condition Monitoring Vehicle inspections are not carried out within the required timeframes,
- As part of a track handback procedure following maintenance or a significant event.

Detailed track inspections shall be carried out as necessary where, for any reason (e.g. slips, floods, earthquakes, driver reports, TCMV reports, irregularity reports etc.), it is suspected that changes in geometry may have occurred. Sites with a history of geometry irregularities such as cyclic geometry shall be inspected in detail if any change in geometry is observed.

Where a higher than expected deterioration in gauge has been detected between inspections the track shall be subjected to a detailed inspection of sleeper effectiveness and appropriate actions taken.

Detailed inspections of the rail in particular may be undertaken by use of ultrasonic technology, as covered in Section 3.7, though other tests may also be used in certain circumstances including but not limited to:

- radiographic testing,
- magnetic particle testing,
- dye penetrant testing,
- eddy current and magnetic induction.

3.2.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Detailed Track Inspection	As required	As required	As required

Track Maintenance Code Of Practice

3.2.3. Inspector

The person carrying out the inspection shall:

- be suitably qualified to a minimum Cert 3 Rail Infrastructure level;
- be competent in identifying track defects;
- have knowledge of local factors;
- be knowledgeable regarding this code of practice;
- be trained and competent in the use of any required measurement or test equipment.

3.2.4. Documentation

Track Maintenance Code Of Practice

3.3. TRACK CONDITION MONITORING VEHICLE INSPECTION

3.3.1. Inspection Purpose

Track Condition Monitoring Vehicle (TCMV) inspections shall be carried out for the purpose of monitoring the condition of the track geometry, rail wear and rail profile. With full coverage of the Category 1 and Category 2 tracks, the data from the TCMV can be used to provide quantifiable and comparable information regarding the condition of the track across the BHPBIO Railroad.

Track geometry, rail profile and rail wear shall be monitored to ensure that sufficient time is provided to plan and execute maintenance works prior to defect limits being exceeded, as per Section 4.2.

Readings from different geometry measurement devices must be considered in terms of the load applied to the track by the device. Heavier loading may result in larger geometry deviations being observed.

The Track and Signals Analysis and Improvement Superintendent is responsible for ensuring that:

- the TCMV data collection systems are adequately calibrated and serviced;
- suitable documented procedures are in place for analysis of all recorded data;
- returned data is clearly organised and accessible for stakeholder use;
- appropriate procedures are in place for the circulation of information for inspection and rectification work notification;
- recorded data is processed and made available in a suitable database for analysis.

3.3.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Track Recording Vehicle Geometry Inspection	6 weeks	26 weeks	NA
Track Recording Vehicle Rail Profile Inspection	12 weeks	26 weeks	NA
Track Recording Vehicle Rail Wear Inspection	12 weeks	26 weeks	NA

Note that without input from the Instrumented Ore Cars (IOC), maximum interval between TCMV geometry inspections for Category 1 tracks shall be decreased to 4 weeks.

If the inspection frequencies above for geometry inspections cannot be adhered to then an appropriate increase in visual track inspections shall be undertaken. These shall focus in detail on locations that had poor or deteriorating geometry at the last TCMV inspection and areas at risk of cyclic geometry development.

If the inspection frequencies above for rail profile cannot be adhered to then an appropriate increase in visual track inspections shall be undertaken. These shall focus in detail on high risk areas with tight curves and steep gradient to monitor for and report any rail profile defects.

If the inspection frequencies above for rail wear cannot be adhered to then other sources of rail wear data shall be sought and used. This may be from the continuous ultrasonic rail defect identification

Track Maintenance Code Of Practice

inspections for example. Limitations of other data sources in terms of ability to record both top and side wear shall be considered and high risk areas with tight curves and steep gradient shall have visual rail wear inspections carried out.

3.3.3. Inspector

The person operating the systems on board the Track Condition Monitoring Vehicle shall be suitably trained and competent.

The data from the track condition monitoring vehicle shall be reviewed by a trained, competent and suitably qualified Engineer.

3.3.4. Documentation

Confirmation of successful inspection completion, along with any further required actions shall be documented in 1SAP.

Data gathered during the inspection shall be kept for a minimum of two years, however depending on the data type, should be kept for significantly longer to enable condition monitoring and deterioration tracking.

Beyond the two year period of all data retention, where applicable, the following minimum requirements apply for:

- total data retention period,
- maximum period between stored data sets.

TABLE 3-2 TCMV DATA RETENTION PERIODS

DATA TYPE	MAXIMUM PERIOD BETWEEN STORED DATA SETS	DATA RETENTION PERIOD
Geometry	26 weeks	10 Years
Rail Profile	26 weeks	10 Years
Rail Wear	26 weeks	15 Years
Driver Eye View Video Imagery	1 year	5 years
Track Defect Imagery	NA	NA
All Defect Types and Locations	NA	10 Years

Track Maintenance Code Of Practice

3.4. INSTRUMENTED ORE CAR INSPECTION

3.4.1. Inspection Purpose

The track shall be inspected by means of un-manned instrumented ore cars that report dynamic movement of the ore car in response to the track (via displacement transducers mounted on the springs and accelerometers mounted on the side frame). Instrumented ore cars shall measure the following parameters:

- Bounce (average suspension travel of the left and right spring nests),
- Body rock (difference in suspension travel of the left and right spring nests),
- Suspension travel (maximum suspension travel of the ore car),
- Vertical acceleration (vertical acceleration of the un-sprung mass, measured on the side frame).

The data collected by the instrumented ore car inspections should identify track locations where the ore cars do not run smoothly, due to:

- larger rail surface defects such as spalls;
- poor track geometry;
- pumping track including at welded and non-welded rail joints.

Data generated by the IOCs shall be processed and made available in a suitable database for analysis. Recordings exceeding thresholds as detailed in Section 4.2.6 shall be analysed and detailed visual inspections initiated.

The severity of the response recorded by the instrumented ore cars is dependent on the speed at which the ore car is travelling at the time of the measurement. As such the raw data shall be corrected for speed to normalise the results for all speeds.

Consideration should also be given to the characteristics of different bogie and spring types. Instrumentation should be attached to a representative sample of the main bogie and spring types in operation.

3.4.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Instrumented Ore Car Inspection	2 days	NA	NA

3.4.3. Documentation

Defects identified during IOC inspections shall be inspected, confirmed and appropriate actions put in place through the use of 1SAP.

Defect data shall be retained for a minimum of 10 years.

Track Maintenance Code Of Practice

3.5. TRACK WORK HANDBACK AND QUALITY INSPECTION (UNDER REVIEW)

3.5.1. Inspection Purpose

Track work handback and quality inspections should be carried out to ensure that the track is handed back to operations in a fit for purpose state, and to facilitate continual improvement in the quality of maintenance works executed. This will be achieved by means of post work quality checks by both the work executor and by impartial inspectors.

3.5.1.1. Track Work Handback Inspection

Prior to the handback of maintenance sites to rail operations the person in charge of the work shall carry out a visual inspection of the site to ensure that all works have been completed to a satisfactory standard that enables the safe passage of rolling stock.

For major maintenance works involving renewal and/or multiple maintenance activities then the relevant procedure for track handback should be followed.

3.5.1.2. Track Work Quality Inspection

Track work quality inspections should be carried out by an impartial inspector who was not involved in the execution of the work. The inspector should provide to the executing work group, and to the Senior Track Engineer, information regarding:

- good work practices observed;
- good work finishes observed;
- good housekeeping;
- defects not rectified during maintenance works;
- defects introduced during maintenance works;
- areas for improvement;
- learnings from the task execution.

The information provided by these inspections should include some or all of the following:

- photos of completed works,
- written feedback.
- measurements.

Track work quality inspections shall be carried out on foot, and may be completed during visual track inspections. The person completing the inspection shall have with them the information from 1SAP regarding the works completed and shall restrict their feedback to these works only.

Track Maintenance Code Of Practice

3.5.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Track Work Handover Inspection	Prior to track handback	Prior to track handback	Prior to track handback
Track Work Quality Inspection	Within 7 days of work completion	Within 7 days of work completion	Within 7 days of work completion

3.5.3. Inspector

The person carrying out the inspection shall:

- be suitably qualified to a minimum Cert 3 Rail Infrastructure level;
- be competent in track handback procedures (Handback Inspection);
- be competent in identifying track defects;
- have knowledge of local factors;
- be knowledgeable regarding this code of practice;
- be impartial from the execution of the completed maintenance works (Work Quality Inspection).

3.5.4. Documentation

Confirmation of successful inspection completion, along with any further required actions shall be documented in 1SAP.

For major maintenance works where detailed handback and other documentation is required then completed, approved and signed documentation shall be uploaded to 1SAP.

Track Maintenance Code Of Practice

3.6. VISUAL RAIL WEAR INSPECTION

3.6.1. Inspection Purpose

The purpose of visual rail wear inspections is to identify locations where rail is approaching wear limits, allowing sufficient time to plan and execute maintenance works prior to limits being exceeded.

Visual rail wear inspections shall be carried out by a walking inspection in locations where mechanised rail wear inspections do not occur (such as in yards), or have not occurred within the required timeframes (for category 1 and 2 track), to confirm that the rail is in suitable condition for the safe passage of trains.

Visual rail wear inspections shall involve measurements being taken at a minimum of three locations on a given track with a maximum spacing between measurement locations of:

- 500m on tangent track and curves ≥ 900m radius;
- 100m on curves < 900m radius.

At each measurement location the following shall be recorded for both rails:

- Rail height/Top wear,
- Side wear,
- Gauge face angle,
- Unusual wear patterns and defects.

3.6.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Visual rail wear inspection	Validation or As Required	Validation or As Required	12 months

For curves < 900m radius on high trafficked tracks, high wear rates are likely. As such, these locations shall be treated as special locations and shall be inspected more frequently once rail wear is within 6mm of the limit thresholds set out in Section 4.3 for top, side or head area wear. The inspection frequency shall be determined based upon the average wear experienced during the previous 12 month period. The wear experienced should be calculated using data from the previous inspection. See the following example regarding calculating wear rate:

Example rail wear for curve with radius < 900m and rail height limit of 172mm:

Rail height measured today = 176 mm

Rail height measured 12 months previous = 179 mm

Annual top wear rate = 3 mm

Next visual rail height inspection required in 4 months. Rerail should be planned to occur within the next 15 months, prior to rail height reducing to 172mm.

Track Maintenance Code Of Practice

TABLE 3-3 VISUAL RAIL WEAR INSPECTION FREQUENCY WITHIN 6MM OF WEAR LIMITS

WEAR DURING PERVIOUS 12 MONTHS (ANNUAL WEAR RATE)	INSPECTION FREQUENCY
≤ 1mm	12 months
2mm	6 months
3mm	4 months
≥ 4mm	2 months

If wear rates appear to be accelerating, or if ultrasonic testing of the rail for internal defects is difficult due to poor rail surface condition, then inspection frequencies shall be increased to a suitable level as deemed by the Inspector. Increased rail grinding shall also be considered where surface conditions are poor.

Note that locations where high wear rates (>4mm/year) are experienced then consideration should be given to scheduling rerail on a periodic basis.

3.6.3. Inspector

The person carrying out the inspection shall:

- be suitably qualified to a minimum Cert 3 Rail Infrastructure level;
- be competent in the use of rail wear measurement tools;
- be competent in identifying track defects;
- have knowledge of local factors;
- be knowledgeable regarding this code of practice.

3.6.4. Documentation

Confirmation of successful inspection completion, along with any further required actions shall be documented in 1SAP.

Areas of track approaching wear limits shall be recorded and all items specified in Section 3.6.1 shall be documented to enable subsequent inspections to be scheduled as per Table 3-3.

Track Maintenance Code Of Practice

3.7. ULTRASONIC RAIL INSPECTION

3.7.1. Inspection Purpose

Ultrasonic rail inspections shall be carried out for the purposes of identifying internal and surface defects to enable their removal to be scheduled in accordance with Section 4. Inspection intervals shall be based on rail haulage rates and be expressed in million gross tonnes (MGT). Inspection intervals will therefore vary between different sections of the rail network. The minimum inspection frequency is five (5) MGT.

Continuous ultrasonic rail inspections shall be carried out using a rail-mounted vehicle in compliance with relevant standards and specifications as listed in Section 3.7.2.

Manual non-destructive testing shall be undertaken during continuous ultrasonic rail defect identification inspection for the following reasons:

- to confirm suspected defects indicated by the continuous ultrasonic inspection,
- to confirm the type, size and location of the internal rail defect,
- where there are suspected defects as found by visual inspection,
- when known defects are due to be re-inspected and reassessed.

Manual testing may also be necessary when the condition of the rail is such that testing from a rail-mounted vehicle us not possible.

The configuration of the ultrasonic testing system, including the number and configuration of the ultrasonic transducers, shall be determined on the basis of the defect types to be detected. Details of defect types which are known to occur in the BHPBIO Railroad are documented in SPEC-073-C-12006. As a basis the following standards should be used to derive the work instructions:

- AS 2083 for calibration of equipment,
- AS 1085.20 for weld test procedure.

The configuration of ultrasonic transducers and testing methodology is included in SPEC-073-C-12002.

It is important that all rail is tested for defects to mitigate the risk of rail breaks. As such, where testing is not possible within the required timeframes due to either track access problems or poor rail surface conditions, the untested location shall be immediately reported to the Senior Track Engineer and recorded in the 1SAP system as a notification.

3.7.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Continuous Ultrasonic Rail Defect Identification Inspection	As defined in SPEC-073-C-12001		2001

Rolling Stock related defects, such as dragging wheels and/or flat wheels, may cause rail defects and give cause to carry out extraordinary ultrasonic rail inspection.

Track Maintenance Code Of Practice

3.7.3. Reference Documents

SPEC-073-C-12000	Non-Destructive Testing Ultrasonic Testing –General Requirements
SPEC-073-C-12001	Non-Destructive Testing of In Track Rail & Rail Welds via Rail Flaw Detection Vehicle
SPEC-073-C-12002	Non-Destructive Testing Ultrasonic Testing –Hand Testing of Rail Welds and Rail
SPEC-073-C-12003	Non-Destructive Testing Magnetic Particle Testing – General Requirements
SPEC-073-C-12004	Non-Destructive Testing Magnetic Particle Testing – Hand Yokes Colour Contrast
SPEC-073-C-12005	Non-Destructive Testing Magnetic Particle Testing – Hand Yokes Colour Contrast- Rail Flashbutt Welds
SPEC-073-C-12006	Rail Defects – Classification of Defects and Assessment of Defect Severity
SPEC-073-C-12007	Defects – Classification of Rail Surface Condition Associated with Rolling Contact Fatigue Damage
AS 2083	Calibration of Equipment
AS 1085.20	Weld Test Procedure
AS 1929	Non-Destructive Testing – Glossary of Terms
AS 3998	Non-Destructive Testing – Qualification and Certification of Testing Personnel
AS 2207-2	Non-Destructive Testing – Ultrasonic Testing of Fusion Welded Joints in Carbon And Low Alloy Steel
ROA W2-89-1-92	Ultrasonic Testing of Rail in Railway Applications

3.7.4. Documentation

Confirmation of successful inspection completion, along with any further required actions shall be documented in 1SAP.

Defects identified that require immediate response (as defined in Section 4.3) shall be reported immediately to the relevant area track maintenance Supervisor so that mitigation and rectification works can be initiated. Defect reports documenting all defects identified shall be provided daily and used to raise work notifications in 1SAP and for upload to Ramsys.

Track Maintenance Code Of Practice

3.8. BALLAST INSPECTION

3.8.1. Inspection Purpose

Ballast inspections shall be carried out to assess the condition of the ballast, sub-ballast and formation below what is visible at the surface. These inspections shall include trial pits as required and may include ground penetrating radar inspections.

Trial pit inspections may be required in the following situations:

- Visible signs of ballast degradation (whitening of the ballast, powdered and rounded ballast) are identified during other inspections,
- Track pumping (excessive vertical movement) is identified during other inspections,
- IOC defects indicative of track support issues,
- · Bogholes are identified during other inspections,
- Track geometry defects are identified and not resolved with standard maintenance practices,
- Concerns are raised regarding locations of shallow or deep ballast,
- Ground penetrating radar identifies areas of concern,
- Scoping of track renewal sites,
- Heavy vegetation growth is identified during other inspections,
- Narrow formation resulting in fall away of ballast shoulders is identified during other inspections.

Trial pits should be excavated beneath the rail seat to a depth sufficient to identify the base of effective ballast. Measurements and photos should be taken prior to refilling the pit.

Ground penetrating radar inspections may be carried out to assist the assessment of:

- effective ballast depth;
- ballast fouling rates;
- ballast quality;
- indicative deterioration rates.

Note that ballast profile shall be monitored during visual track inspections. OPPORTUNITY – Ballast profile to be measured with a new generation Track Condition Monitoring Vehicle (due 2016).

3.8.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Trial pit ballast inspection	As required	As required	As required
Ground penetrating radar inspection	As required	As required	NA

Track Maintenance Code Of Practice

3.8.3. Inspector

The person carrying out the trial pit ballast inspection shall:

- be suitably qualified to a minimum Cert 3 Rail Infrastructure level;
- be competent in identifying ballast fouling;
- be knowledgeable regarding this code of practice.

The person carrying out the ground penetrating inspection shall:

- be expertly trained and competent in executing ground penetrating radar inspections;
- have previous and demonstrated experience in use of ground penetrating radar technology on railways.

3.8.4. Documentation

Confirmation of successful inspection completion, along with any further required actions shall be documented in 1SAP.

Details regarding trial pit location, date of excavation, depth measurements and photos should be stored.

Track Maintenance Code Of Practice

3.9. TURNOUT INSPECTION

3.9.1. Inspection Purpose

Turnout inspections, encompassing inspection of the switch and crossing areas, shall be carried out to check the general condition of all aspects of the turnout in question to ensure safe passage of rail traffic. The person executing the inspection should keep a lookout for defects and conditions (i.e. indicators of a defect) that may affect the integrity of the turnout structure.

Switch and crossing inspections shall be carried out on foot, and may be completed during visual track inspections. Regular walk-though inspections require only visual checks of the switch and crossing components however detailed inspections shall include measurements of the critical parameters which shall be compared to the thresholds defined in Section 4.6. Minor defects, such as missing or loose bolts, mal-adjusted spreader bars or unlubricated slide plates shall be rectified by the person executing the inspection if safe to do so. If not safe to do so, or the person is unable to do so, a notification to carry out the maintenance shall be raised

Due to the possibility that plastic deformation and flow of rail material may occur in newly-installed or recently maintained switch and crossing assemblies, an inspection should be performed one (1) week after installation or maintenance. Turnouts shall be checked for any metal flow and compliance with geometric tolerances. Any metal flow observed shall be ground off to maintain running edge and profile of rail, to correct shape and fit.

During switch and crossing inspections the slide chair plates shall be cleaned and lubricated using 'dry' graphite based lubrication.

In general, the following shall be checked during an inspection of a switch and crossing assembly:

- condition of running edge and surfaces,
- line and level through switch and crossing, ensuring the switchblade and swing nose (where applicable) are supported evenly and flat on the slide chair plates, brace plates and chair plates,
- brace plates in place and secure,
- condition and correct adjustment of spreader bars,
- general condition, looking for damage throughout,
- condition of and damage on all insulated connections to the switchblade and crossing,
- connecting rods and fittings to switch blades and swing nose (where applicable), ensuring good lubrication of joints to reduce binding.

The conditions that should be noted when observed and either fixed immediately or raised as a maintenance notification include the following. Note that exceedance of thresholds in Section 4.6 require immediate response:

Track Maintenance Code Of Practice

TURNOUT ASSEMBLIES			
missing or broken components	incorrect track geometry		
inadequate track centre to track centre at fouling points	rail and weld wear and defects		
SWITCH			
inadequate gauge at the toe of the switch rail and other locations in the critical area	switch rail toe break		
inadequate switch rail throat opening at the junction of heads	switch rail and stock rail wear		
inadequate switch rail toe/stock rail open throw dimension	switch rail cripple		
switch rail toe/stock rail closed gap	metal flow on all running rails		
mis-alignment of switch rails	poor switch support on chairs and base plates		
heel spread	poor heel block condition		
ill-fit of switch stops to stock rail	poor rail chair and baseplate condition		
poor condition of switch rail stops	poor rail joint condition including bolts		
SWITCH OPERATION			
obstructions	poor spreader bracket condition, attachment to switches, and pin or bolt connection to bars		
incorrect clearances of movable components	poor connecting rod and bar condition and incorrect adjustment		
poor lubrication, condition and visibility	inadequate lubrication of all movable pins and bolts		
poor spreader bar condition, straightness, insulation, correct adjustment and clearance under rails			
CROS	SING		
inadequate gauge at critical areas	running rail wear		
inadequate check rail effectiveness	metal flow		
vertical wear on the crossing nose	poor crossing nose condition		
inadequate flangeway clearances	crossing cracks		
inadequate flangeway depth	broken or cracked crossing spacer blocks		
wing rail wear	poor condition of check rail spacers		
poor rail alignment	poor condition of check rail and crossing bolts		

Track Maintenance Code Of Practice

FASTENINGS			
damaged fastenings (e.g. from incorrect installation, derailment, vandalism)	missing, ineffective (e.g. corrosion, wear, loose), incorrect type of fastenings (clips, insulating spacers, metal spacers, pads and special components including gaskets and abrasion plates)		
OTHER COMPONENTS			
insecure, damaged, missing or poor condition base plates and chairs	loss of or insufficient lubrication		
contamination of slide plate surfaces	insufficient ballast or poor ballast condition		
poor bearer condition	insecure, damaged, missing or poor condition signalling components		
poor check rail condition			

3.9.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Switch and Crossing Walk-through Inspection	2/week	2/week	2/week
Switch and Crossing Detailed Inspection	3 months	3 months	6 months

3.9.3. Inspector

The person carrying out the inspection shall:

- be suitably qualified to a minimum Cert 3 Rail Infrastructure level;
- be competent in identifying track defects;
- have knowledge of local factors;
- be knowledgeable regarding this code of practice.

3.9.4. Documentation

Confirmation of successful inspection completion, along with any further required actions shall be documented in 1SAP.

Appropriate inspections forms shall be completed and submitted to the Track and Signals Analysis and Improvement team within seven (7) days.

Track Maintenance Code Of Practice

3.10. RAIL STRESS / CREEP TESTING / MONITORING (OPPORTUNITY)

3.10.1. Inspection Purpose

Measurement, monitoring and assessment of the longitudinal stress within the rail should be carried out whenever the following events occur. Note that stress adjustment may then be required to return the rail to within the stress free temperature range:

- new or recycled rail is being laid into track,
- a stress check is being carried out,
- the rail adjustment is suspected to be out of tolerance, for example due to the presence of buckles,
- break-aways / pull-aparts,
- significant skewing of sleepers,
- mechanical joint failure,
- significant rail creep,
- significant changes in track alignment,
- indication of rail movement, such as insulator marks on the rail foot,
- the rail is cut and welded without consideration of stress management procedures.

In addition, rail stress should be monitored for changes at locations of known stress problems. These may include, but are not limited to:

- areas of steep gradient,
- areas with known switch component binding problems,
- concentrated areas of broken rails where rail stress was a contributing factor.

Monitoring of rail movement may also be carried out with the use of creep pegs. Though creep pegs will not provide rail stress data, they can be used to provide quantifiable data regarding amounts of movement and relative movement between the two rails.

3.10.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Rail Stress Testing	As required	As required	NA
Rail Creep Monitoring	Continuous at locations with known rail movement problems	NA	NA

3.10.3. Reference Documents

WIN 010866	Work Instruction - Rail Stress Testing
------------	--

Track Maintenance Code Of Practice

3.10.4. Inspector

The person carrying out the inspection shall:

- be suitably qualified to a minimum Cert 3 Rail Infrastructure level;
- be competent in the use of the track stress recording or rail creep monitoring equipment;
- have knowledge of local factors;
- be knowledgeable regarding this code of practice.

3.10.5. Documentation

Appropriate inspection forms shall be completed and submitted to the Track and Signals Analysis and Improvement team.

Track Maintenance Code Of Practice

3.11. RAIL WELD INSPECTION

3.11.1. Inspection Purpose

Weld inspections shall be carried out to ensure that all welds installed in the track, including aluminothermic, flashbutt and welded repairs, are of suitable quality and finish and to reduce the risk of broken welds.

3.11.1.1. Visual Weld Inspection

Immediately after the installation of the weld, and prior to the passage of normal rail traffic, the weld shall be visually inspected to ensure that the surface quality and finish complies with relevant procedures. The weld shall be:

- clean of any foreign material and excess steel left over from the welding process;
- suitably ground on the rail head surfaces to provide smooth passage of rolling stock;
- left in a condition that allows for non-destructive testing to be carried out.

Following visual inspection, a weld form shall be completed by the welder confirming that no visible defects are present.

3.11.1.2. Non-Destructive Weld Testing

All new welds installed in the field (not including fixed flashbutt welds) shall be magnetic particle tested immediately after installation. Non-destructive testing for internal rail defects shall be carried out within 14 days of installation. Testing shall comply with relevant specifications and shall confirm or otherwise the presence of internal defects that may cause the weld to fail.

Upon completion of the testing the weld shall be marked with indelible white paint dots placed on the rail at the weld on both the field and gauge faces of the rail. The test date, test details and operator details shall be written with indelible white paint pen in the web next to the weld.

3.11.1.3. Production Flashbutt Weld Testing

All mobile flashbutt welding machines shall be subjected to production weld tests as set out in SPEC-000-C-12002.

3.11.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Visual Inspection at Installation	Immediate after	Immediate after	Immediate after
	Installation	Installation	Installation
Magnetic Particle Testing	Immediate after	Immediate after	Immediate after
	Installation	Installation	Installation
Non-Destructive Testing	Within 14 days of installation	Within 14 days of installation	As Required

Track Maintenance Code Of Practice

3.11.3. Reference Documents

AS 2083	Calibration of Equipment
AS 1085.20	Weld Test Procedure
SPEC-073-C-12002	Non-Destructive Testing Ultrasonic Testing –Hand Testing of Rail Welds and Rail
SPEC-073-C-12003	Non-Destructive Testing Magnetic Particle Testing – General Requirements
SPEC-073-C-12004	Non-Destructive Testing Magnetic Particle Testing – Hand Yokes Colour Contrast
SPEC-073-C-12005	Non-Destructive Testing Magnetic Particle Testing – Hand Yokes Colour Contrast- Rail Flashbutt Welds
SPEC-073-C-12006	Rail Defects – Classification of Defects and Assessment of Defect Severity

3.11.4. Inspector

The person carrying out the visual weld inspection shall:

- be suitably qualified as per SPEC-000-C-12000;
- be a trained and competent BHPB Rail Welder;
- be assessed as having working knowledge of weld failure mechanisms;
- assessed as being competent in using this Code of Practice.

The person carrying out the non-destructive weld testing shall:

• be suitably qualified in the use of the testing equipment as per SPEC-000-C-12000.

3.11.5. Documentation

Appropriate inspection forms shall be completed and submitted to the Track and Signals Analysis and Improvement team. Weld reports and non-destructive weld testing reports shall be loaded to the weld management system which should be used to track all welds in track and their testing status.

Track Maintenance Code Of Practice

3.12. LEVEL CROSSING INSPECTION

3.12.1. Inspection Purpose

General level crossing inspections shall be scheduled in accordance with frequencies set out in Section 3.12.2 and should be carried out when suspected defects are identified from conditions observed during other inspections. General Inspections shall be sufficient to observe and document level crossing condition and significant changes in condition since the previous inspection. The integrity of level crossings should be assessed to verify capacity to safely perform the required function. Where changes to the configuration or condition of the level crossing have been identified, an appropriate capacity assessment should be made to determine required actions.

General inspections shall include the tasks of the visual track inspection and in addition look for conditions or changes in the conditions which may affect the function of the level crossing including the following:

- condition of rail,
- condition of sleepers and fastenings,
- fines build up around rails causing moisture retention,
- track pumping under load,
- flangeway clearances,
- track geometry,
- · condition of road surface and alignment,
- condition and alignment of crossing panels,
- line of sight for both road and rail traffic.

For each level crossing inspected the following should also be carried out:

- re-inspection of previously reported defects that require monitoring as determined from previous inspections,
- inspection of known defect types common to the particular level crossing form and material,
- site testing and measurement where required.

Detailed inspection shall be scheduled in accordance with frequencies set out in Section 3.12.2 and should be carried out in lieu of a general inspection. A detailed inspection shall address all requirements of a general inspection but shall include sufficient removal of the crossing surface to enable a proper assessment to be made of the condition of the track structure beneath.

Public Access Level Crossings shall be reviewed every 5 years to ensure significant changes in traffic volumes have not changed the level of protection or design required.

Track Maintenance Code Of Practice

3.12.2. Inspection Frequency

TABLE 3-4 LEVEL CROSSING (PUBLIC ACCESS) INSPECTION FREQUENCY

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
General inspection	12 weeks	12 weeks	NA
Detailed inspection	2 years	2 years	NA
Review of Design and Level of Protection	5 years	5 years	NA

TABLE 3-5 LEVEL CROSSING (PRIVATE ACCESS) INSPECTION FREQUENCY

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
General inspection	6 months	6 months	2 years
Detailed inspection	2 years	2 years	NA

Note that detailed inspections should be planned to occur at the same time as maintenance of the crossing, or of the track through the crossing requiring panel removal, to minimise disruption.

3.12.3. Documentation

Track Maintenance Code Of Practice

3.13. BRIDGE AND CULVERT INSPECTION

3.13.1. Inspection Purpose

The integrity of bridge and culvert structures shall be assessed to verify their capacity to safely perform the required function. Where changes to the configuration or condition of a bridge or culvert are identified, an appropriate capacity assessment should be carried out to determine required actions. Assessment and subsequent actions should be in line with the documents specified in relevant parts of Section 2 of this code of practice and be performed by a suitably qualified engineer.

Inspections shall be scheduled in accordance with frequencies set out in Section 3.13.2 and shall also be carried out when suspected defects are observed during other visual inspections.

Detailed inspections shall be carried out in accordance with relevant procedures shown in Section 3.13.3. Detailed inspections shall be sufficient to observe and document structure condition, including condition of the track over the structure, and encompass maintenance activities such as but not limited to:

- bolt tightening,
- debris clearing,
- cleaning,
- maintenance of access routes.

Structural inspections shall be carried out in accordance with relevant procedures shown in Section 3.13.3 and in accordance with the frequencies set out in Table 3-6. Structural inspections should also be carried out following flood events in which water levels reached or exceeded the top of headstocks. Bridges and culverts should be checked for scour and other obvious defects that may be caused by flood water following flood events resulting in water levels at or in excess of half (1/2) the pier height or three quarters (3/4) the culvert height.

Structural inspections shall be sufficient to observe and document structure condition and significant changes in condition since the previous inspection. Inspections shall include the tasks of the visual track inspection and in addition identifying conditions or changes in the conditions which may affect the function of the bridge including the following:

- defects or changes in the structural integrity of components; i.e. corrosion, concrete degradation,
- loose, missing or damaged bolts and components in deck joints,
- restricted movement or improper functioning deck joints,
- looseness or major damage such as cracking, splitting, distortion or excessive movement of deck, girders, piers, abutments, braces, abutment sheeting and wing walls,
- obvious defects such as spalling, cracking, staining, dampness, corrosion or excessive vibration in any component,
- termite activity, rotting, marine borer or other insect attack on timber transoms,
- noticeable build-up of deposits of aggressive salts, dirt, silt debris and bird droppings on iron and steel elements,
- damage caused by derailment, collision, dragging equipment on rolling stock or vandalism,
- undermining of footings and foundations,

Track Maintenance Code Of Practice

- erosion and scour of embankments,
- unusual discolouration,
- unusual seepage of water,
- · restricted drainage of weep holes in abutments and retaining walls,
- accumulations of debris, vegetation growth, silting and scour in waterways under the bridge,
- crushing of components.

For each structure inspected the following should also be carried out:

- re-inspection of previously reported defects that require monitoring as determined from previous inspections,
- inspection of known defect types common to the particular structural form and material,
- site testing and measurement where required.

Structural verification, certification and non-destructive testing shall be carried out by independent 3rd parties and shall be scheduled to occur in accordance with the frequencies set out below.

3.13.2. Inspection Frequency

TABLE 3-6 BRIDGE AND CULVERT INSPECTION FREQUENCY

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Bridge and Culvert Detailed inspections	1 year	1 year	1 year
Bridge Structural Inspections	1 year	1 year	1 year
Culvert Structural Inspections	5 years	5 years	5 years
Structural Verification	5 years	5 years	5 years

3.13.3. Reference Documents

WIN - 0076702	1Y Mechanical Inspection Bridge Transom
WIN - 0076703	1Y Mechanical Inspection Bridge Ballast
WIN - 0076704	1Y Mechanical Service Bridge Transom
WIN - 0076705	1Y Mechanical Service Bridge Ballast
WIN - 0076706	1Y Mechanical Inspection Bridge Transom WAH
WIN - 0076696	1Y Safety Certify Rail Bridge
WIN - 0076714	1 Year Mechanical Service of a Culvert
WIN - 0076715	5 Year Structural Inspection of a Culvert
WIN - 0106584	Remove / Replace Handrails DeGrey Bridge

WIN - 0076701	Installation MSA Rail Slider WAH
WIN - 0076709	Verify Common Bridge Type A WAH
WIN - 0076710	Verify Common Bridge Type A
WIN - 0076717	Verify Common Bridge Type D WAH
WIN - 0076718	Verify Common Bridge Type D
WIN - 0076720	Culvert Service
WIN - 0106586	Fastening Bolts on Bridge structures
WIN - 0106589	NDT of Infrastructure
WIN - 0106590	Timber Transom Bridge inspections
WIN - 0106592	Ballast Deck Bridge Inspections
WIN - 0112355	Ballast Pan Hungry Board Replacement
Standard – 0018959	Structural Integrity Management Standard
AS 4100	Steel Structures
AS 3600 – 2001	Concrete Structures
Asset Management Managed Document AM0001317	Corrosion Classification And Treatment
Asset Management Managed Document AM0106047	Structural Integrity Management E-Room Structure
Asset Management Managed Document AM0106052	Structural Integrity Completing Inspection Records Using The Structural Defect Register Spreadsheet
Asset Management Managed Document AM0106053	Structural Integrity Inspection Review Using The Structural Defect Register Spreadsheet
AREMA Ch 1.4 Engineering	American Railway Engineering and Maintenance of way Association – Chapter 1 Part 4 Culverts
AREMA Ch 10	American Railway Engineering and Maintenance of way Association – Chapter 10 Structures, Maintenance and Construction
AREMA Ch 15	American Railway Engineering and Maintenance of way Association – Chapter 15 Steel Structures

3.13.4. Documentation

Track Maintenance Code Of Practice

3.14. RAILROAD EARTHWORKS INSPECTION

3.14.1. Inspection Purpose

Earthworks inspections shall be carried out to confirm the presence of suspected defects identified from other visual inspections or in response to reported movement, instability or failure of earthworks to allow necessary actions to be determined. The condition of the earthworks at the location shall be assessed to verify their capacity to safely perform the necessary function, determined in terms of providing both stability and clearances to track structures.

Sections of track with identified earthworks instability or with a history of earthwork instability should be nominated as special locations until rectification or earthworks stabilisation work can be carried out. A register of these locations shall be maintained and inspections scheduled within 1SAP. Inspections of special locations shall be scheduled at intervals appropriate to each location dependent on nature of instability, condition and other seasonal factors, but should not exceed 6 months. These inspections shall also be considered following significant events as per Section 3.18. These inspections shall have sufficient detail to observe and document earthworks conditions and changes in condition that affect their vulnerability to instability.

Earthworks inspections may include use of monitoring equipment and analysis for the purpose of identifying the cause of the earthwork instability, and correctly specifying the required remedial works.

Rail traffic may need to be restricted until the suspected defect or failure is inspected and the necessary actions assessed.

3.14.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Earthworks Inspection	As required		
Special Location Scheduled Earthworks Inspection	Scheduled frequency based upon historic performance and current condition of the special location, but not exceeding 6 months		

3.14.3. Inspector

The person carrying out the inspection shall:

- be a suitably qualified Civil Engineer, experienced in earthworks;
- be competent in identifying earthwork defects;
- have knowledge of local factors.

3.14.4. Documentation

Track Maintenance Code Of Practice

3.15. ACCESS ROAD INSPECTION

3.15.1. Inspection Purpose

The purpose of access road inspections is to check the general condition of all aspects of the access road to ensure safe passage of vehicles. The person executing the inspection should keep a lookout for conditions that may affect the integrity and safe use of the access road.

These inspections should be carried out from a road vehicle traveling at a speed consistent with the scope of the inspection. Minor defects that are identified, such loose items in the access road, shall be rectified by the person executing the inspection if safe to do so. If not safe to do so, or the person is unable to do so, a notification to do the repairs shall be raised.

The person carrying out the inspections shall look out for the following:

- missing delineators,
- missing or damaged signs,
- · inadequate sighting distances,
- obstructions,
- sections of the access road that are impassable to road traffic,
- sections of the access road that are restricted to particular vehicle types,
- washaways (particularly important following extended periods of wet weather or significant rain events),
- corrugation of the road surface,
- missing, damaged or dirty signage,
- depth of water a creek crossings (particularly important following extended periods of wet weather or significant rain events).

3.15.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Access Road Inspection	As required following significant events, but not exceeding 4 week		ot exceeding 4 weeks

Document- 0002664 Version No: 5.0 Page 102 of 181

Standard Track Maintenance Code Of Practice

3.15.3. Reference Documents

WIN-RTS-PMI-001	Daily Access Roads Inspection (Road Signage and Guide Posts)
WIN-RTS-PMI-002	Daily Access Roads Inspection (Road Surface & Culverts)
WIN-RTS-PMI-003	6 Monthly Access Roads Inspection
0106581	Inspecting Access Roads
WIN-RTS-RTM-149	Daily Access Road Inspections
WIN-RTS-RTM-150	6 Monthly Access Road Inspections

3.15.4. Inspector

The person carrying out the inspection shall:

- be suitably qualified to drive on the BHPBIO access road,
- have knowledge of local factors;
- be knowledgeable regarding this code of practice.

3.15.5. Documentation

Track Maintenance Code Of Practice

3.16. RAILROAD SIGNS INSPECTION

3.16.1. Inspection Purpose

Inspections of railroad signs shall be undertaken to ensure that all signs are to standard, are visible and conspicuous and are performing the function intended. This inspection shall include the tasks detailed in Section 3.1 relevant to signs in addition to inspection of the line of sight. This inspection shall be carried out by on-rail inspection at the specified sight distance as near as practicable to the train driver's normal operating position.

Inspections may be undertaken as part of other inspections as long as the speed of inspection is adjusted accordingly to provide adequate time to execute the inspections.

3.16.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Sign Inspection	1 year	1 year	1 year

3.16.3. Reference Documents

WIN - 0071998	Stat Inspect Signage
---------------	----------------------

3.16.4. Inspector

The person carrying out the inspection shall:

- be suitably qualified to a minimum Cert 3 Rail Infrastructure level;
- be competent in identifying required signage;
- have knowledge of local factors;
- be knowledgeable regarding this code of practice.

3.16.5. Documentation

Track Maintenance Code Of Practice

3.17. CLEARANCES INSPECTION

3.17.1. Inspection Purpose

Clearance inspections shall be carried out to ensure the maintenance of a rail corridor with sufficient clearance to allow the safe passage of trains past structures and adjacent tracks and rolling stock. Section 2.15 should be consulted for details regarding required clearances.

Clearance inspections shall include all relevant parts of the track visual inspection and also include measurements of the following:

- clearance from datum points to specified locations,
- distance between track centrelines (including fouling clearances at turnouts),
- track cant if specified on the datum,
- track curvature if specified on the datum.

These inspections and measurements shall be carried out at special locations of known clearance degradation or potential clearance degradation. A register should be populated and maintained documenting these special locations. Inspection frequencies should take into account the associated level of risk, potential degradation rates and seasonal variations at the clearance location. Laser scanning technology may be used to aid in the measurement of clearances.

A clearance inspection including determination of the available clearances should also be carried out when there are suspected defects following work affecting the location of the track(s) or structure or defects are identified during other visual inspections.

Where clearances are not in compliance with requirements referenced in this code of practice then consideration shall be given to risk mitigation actions including but not limited to temporary speed restrictions, temporary track closure and temporary structure closure until remediation works are carried out.

3.17.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Clearance Inspection	As required	As required	As required
Special Location Scheduled Clearance Inspection	Scheduled frequency based upon historic performance and current condition of the special location, but not exceeding 6 months		

Track Maintenance Code Of Practice

3.17.3. Reference Documents

076-M-01285	Rolling Stock Handbook Index Page
076-M-01286	Loading Gauge and Structure Clearance Diagrams
076-M-01287	Loadout Tunnel Clearance Diagrams
000-M-00067	Railway Rolling Stock Line Clearance Diagram
DESC-000-C-00001	Design Criteria Track Design
CD - 0119120	RRB M07 Service & Work Trains

3.17.4. Inspector

The person carrying out the inspection shall:

- be suitably qualified to carry out clearance measurements;
- have knowledge of local factors;
- be knowledgeable regarding this code of practice.

3.17.5. Documentation

Track Maintenance Code Of Practice

3.18. SIGNIFICANT EVENT INSPECTION

3.18.1. Inspection Purpose

Significant event inspections shall be carried out after one of the following events occur with a severity such that verification of the condition of the track or any track supporting structures is required prior to opening the track for normal traffic:

- major rain storm, sustained heavy rainfall or flooding,
- cyclone,
- seismic activity,
- fire,
- derailment,
- track obstruction,
- landslides,
- structural collapse,
- extreme hot weather.

Inspections that may be required, and shall be considered whether applicable to each event type, include but are not limited to:

- Visual Track Inspection.
- Detailed Track Inspection,
- Track Condition Monitoring Vehicle Inspection,
- Switch and Crossing Inspection,
- Bridge and Culvert Inspection,
- Earthworks Inspection,
- Access Road Inspection,
- Signs Inspection.

Detailed inspections as per the relevant parts of Section 3 may be required to determine the presence and severity of suspected defects identified from other visual inspections or in response to reported defects such as track buckles, track shift or rail pull-apart to allow actions to be determined. Temporary speed restrictions shall be considered until suspected defects can be assessed.

Significant event inspections of track, bridges and culverts are necessary to determine if the structural integrity of any track or track supporting structure has been compromised. If integrity cannot be determined initially by visual inspection then a trained and competent person, prior to opening the track to normal rail traffic, shall consider whether temporary speed restrictions are required at the affected locations until detailed inspections can be carried out. If any bridges or culverts have been found to have compromised structural integrity, it is important that the response is proportional to the risk and severity of the damage sustained.

The Track and Signals Cyclone procedure (0113700) shall be adhered to for all cyclone events.

Track Maintenance Code Of Practice

3.18.2. Inspection Frequency

INSPECTION TYPE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3	
MAJOR RAIN EVENT AND/OR CYLCONE / FLOODING				
Visual Track Inspection	Visual Track Inspection			
TCMV Inspection	As soon as practicable following improvement in weather conditions and a sufficient lowering of water levels to allow an inspection to be executed safely as per CD 0113700			
Bridge and Culvert Inspection				
Access Road Inspection				
	SEISMIC A	CTIVITY		
Visual Track Inspection	Following the end of notable seismic activity			
Bridge and Culvert Structural Inspection				
FIRE				
Visual Track Inspection	As soon as practical once the fire has passed and a fire authority has deemed that it			
Bridge and Culvert Inspection	is safe			
DERAILMEN	DERAILMENT / TRACK OBSTRUCTION / STRUCTURAL COLLAPSE / LANDSLIDES			
Detailed Track Inspection				
Bridge and Culvert Inspection	As soon as practicable following rectification works post the event			
TCMV Inspection				
EXTREME HOT WEATHER				
Visual Track Inspection	As close as possible to the time of the peak temperature for the day if the peak ambient temperature exceeds 50 degrees Celsius			
Detailed Track Inspection	On the day prior to or following the onset of peak temperatures			

3.18.3. Reference Documents

CD 0121599	WAIO Extreme Weather Procedure
CD 0113700	Track and Signals Cyclone Procedure

3.18.4. Inspector

The person carrying out the inspection shall comply with the requirements in the part of Section 3 covering the relevant inspection type.

Track Maintenance Code Of Practice

At all sites where a significant event has occurred the personnel carrying out the inspections shall be aware of the potential hazards involved in inspecting the site. This includes but is not limited to the following hazards:

- burnt stumps and trees,
- melted and hot assets,
- falling objects,
- stored energy,
- unstable land and underfoot conditions,
- flash flooding,
- flowing water,
- fallen power lines.

3.18.5. Documentation

Confirmation of successful inspection completion, along with any further required actions shall be documented in 1SAP.

Track Maintenance Code Of Practice

4. DEFECTS

Track Maintenance Code Of Practice

4.1. DEFECT RESPONSE CODES

The following table details the responses that shall be applied when a defect is detected or observed on track. These codes apply consistently across all defect types.

TABLE 4-1 DEFECT RESPOPNSE CODES

RESPONSE CODE	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
A	CLOSE TRACK UNTIL REPAIRED OR PROTECT AND TREAT AS RESPONSE CODE B	Close Track until repaired or Protect and treat as Response Code B	Close Track until repaired or Protect and treat as Response Code B
В	APPLY 25KPH TSR PROTECT IF REQUIRED CARRY OUT INSPECTION OF THE DEFECT AND PROTECTION (IF APPLICABLE) DAILY UNTIL REPAIRED	Apply 10kph TSR Protect if required Carry out inspection of the defect and protection (if applicable) daily until repaired	Apply 10kph TSR Protect if required Carry out inspection of the defect and protection (if applicable) daily until repaired
С	APPLY 45KPH TSR PROTECT IF REQUIRED CARRY OUT INSPECTION OF THE DEFECT DURING SCHEDULED INSPECTIONS UNTIL REPAIRED	Apply 25kph TSR Protect if required Carry out inspection of the defect during scheduled inspections until repaired	Apply 25kph TSR Protect if required Carry out inspection of the defect during scheduled inspections until repaired
D	APPLY 60KPH TSR PROTECT IF REQUIRED CARRY OUT INSPECTION OF THE DEFECT DURING SCHEDULED INSPECTIONS UNTIL REPAIRED	Apply 45kph TSR Protect if required Carry out inspection of the defect during scheduled inspections until repaired	NA
E	PROTECT IF REQUIRED MONITOR FOR DETERIORATION OF DEFECT DURING SCHEDULED INSPECTIONS UNTIL REPAIRED	Protect if required Monitor for deterioration of defect during scheduled inspections until repaired	Protect if required Monitor for deterioration of defect during scheduled inspections until repaired

Where the assessment responses include increased monitoring, knowledge of local performance history and local factors that may affect deterioration rate of the defect concerned is required. The increased monitoring frequency should be determined by these factors. Increased monitoring should be continued until rectification work is carried out or until the defect is re-assessed and the response is downgraded.

Track Maintenance Code Of Practice

Defects are subject to re-assessment at any time. This reassessment may result in a response action that is more stringent or less stringent. Lifting or relaxing of Temporary Speed Restrictions (TSRs) shall only be carried out by personnel with a current TSR lifting competency.

Temporary Speed Restrictions should only be imposed in conjunction with completion of a Temporary Speed Restriction form. If a TSR is placed by non-track maintenance staff, such as train drivers, the area shall be inspected and a TSR form (including the reference number) completed within 24hrs by a competent person from the Track and Signals department.

Each TSR shall be given a unique reference number. The reference number is located at the top of the TSR form and shall be written in the format below:

Initials Day Day Month Month - Number (for that day)

(E.g.: John Smith imposes his first TSR on 12th July, the reference will be JS1207 – 01)

It is mandatory that this reference number is given to train control when any TSR is placed by track maintenance personnel.

4.1.1. Repair Timeframes

For some defect types a recommended repair timeframe is provided. These timeframes are provided to reduce the risk of failure due to the defect and to minimise the likelihood of further damage to other track components.

These timeframes are provided in the response tables, shown in brackets after the immediate defect response code. These timeframes should be followed. For example:

- (24h) Rectification works should be carried out within 24 hours,
- (4w) Rectification works should be carried out within 4 weeks,
- (6m) Rectification works should be carried out within 6 months.

If repair timeframes cannot be achieved direction should be sought from Senior Track Engineer for guidance on prioritisation of works.

Track Maintenance Code Of Practice

4.1.2. Defect Protection

Various forms of protection are available for different defect types to mitigate against catastrophic failure. Protection may take the form of gathering further detailed on site information to allow for an informed decision to be made in terms of required speed restriction or track closure. It may also involve or take the form of physical protection. Protection options include but are not limited to the following:

- Install insulated rail joint plates and clamps,
- Install rail fishplates and G clamps,
- Install Robel clamps (Opportunity),
- Reduce train speed for loaded trains, empty trains or both,
- Carry out field observations of trains passing over the defect at defined speeds,
- Clamp switch and crossing in either straight or reverse position,
- Install rail mini-plug.

A suitably trained and competent person shall decide upon the appropriate protection to apply to ensure the safe operation of the railroad is maintained.

If rail fishplates are used as protection for a rail defect at a weld then bow plates shall be used.

For containment of severity 1 / broken rail a 600mm plug may be installed as per WIN-RTS-RTM-076.

Track Maintenance Code Of Practice

4.1.3. Ultrasonic Defect Severity Identification

If defects with specific severity levels require location demarcation on track then the following colour coding shall be used. The type of defect shall be clear and unambiguous. All other maintenance markings on track, not applicable to defect severity, should be marked in white or pink and shall not be applied using the colours in the table below;

TABLE 4-2 DEFECT SEVERITY COLOUR CODING

DEFECT	SEVERITY 1	SEVERITY 2	SEVERITY 3
Identification Colour	Red	Yellow	Blue

Track Maintenance Code Of Practice

Page Intentionally Left Blank

Track Maintenance Code Of Practice

4.2. TRACK GEOMETRY AND STABILITY

4.2.1. Geometry

TABLE 4-3 GEOMETRY PARAMETER DESCRIPTIONS (EM80)

PARAMETER	DESCRIPTION
Gauge	Gauge is measured between the gauge (or inside) face of the rails 14 mm below the surface of the rail.
Horizontal Alignment	Horizontal alignment is measured using the mid-ordinate offset (versine) of a 10m chord. Limits have been set based on the variation from the actual design versine. A fitted versine (obtained by using the average actual measured versine over a defined length of track such as a curve) can be used in lieu of the design versine where the fitted versine still complies with the minimum design standards.
Тор	Top is measured using the offset 1.8m from one end of a 10m chord.
Cross Level Variation	Cross level is the difference in height between opposing rails at a single point along the track. The variation in cross level is measured as the variation from the design cross level.
Twist	Twist is the variation in actual track cross level (i.e. the difference in level of the two rails) over a defined length.

4.2.2. Singular Geometry Defects

Geometry defects are localised defects where a given geometric parameter exceeds set thresholds over a longitudinal distance of greater than 2 metres. If left in track these defects will contribute to increased maintenance requirements and may deteriorate to a size where the risk of derailment is increased. The implementation of speed restrictions may reduce the impact and likelihood of geometry defects propagating and extend reaction timescales.

The responses defined in this section are based on measurements obtained from the Track Condition Monitoring Vehicle (EM80) and relate to isolated geometric defects. A more stringent response than that mandated by the geometry alone may be necessary if deterioration of the infrastructure both at the defect and on adjoining track is in evidence.

All quoted thresholds are for loaded track conditions and represent minimum values for each severity band. Due consideration must be given when taking unloaded field measurements as these can be expected to be significantly lower than those measured under load.

Unless stated, all quoted values are both positive and negative limits.

TABLE 4-4 GEOMETRY DEFECTS TOP

PARAMETER	RESPONSE (SEVERITY)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Тор	E (Sev 3)	15mm	20mm	20mm
	D (Sev 2)	20mm	25mm	25mm
	A (Sev 1)	36mm	36mm	36mm

Track Maintenance Code Of Practice

When loss of Top is observed above an undertrack structure the structure shall be inspected for structural defects.

TABLE 4-5 GEOMETRY DEFECTS HORIZONTAL ALIGNMENT

PARAMETER	RESPONSE (SEVERITY)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Horizontal Alignment	E (Sev 3)	18mm	24mm	24mm
	D (Sev 2)	24mm	34mm	34mm
	A (Sev 1)	43mm	45mm	45mm

TABLE 4-6 GEOMETRY DEFECTS WIDE GAUGE

PARAMETER	RESPONSE (SEVERITY)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Wide Gauge	E (Sev 3)	+22mm	+24mm	+24mm
	D (Sev 2)	+24mm	+26mm	+26mm
	A (Sev 1)	+28mm	+34mm	+34mm

Where higher than expected deterioration in wide gauge defects is experienced then a detailed track inspection shall be carried out to assess sleeper and fastening effectiveness.

Should static gauge be measured on timber sleeper track at or greater than 1458mm action must be taken to restore within maintenance limits within 36 hours of identification.

TABLE 4-7 GEOMETRY DEFECTS TIGHT GAUGE

PARAMETER	RESPONSE (SEVERITY)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Tight Gauge	E (Sev 3)	-12mm	-12mm	-12mm
	D (Sev 2)	-14mm	-14mm	-14mm
	A (Sev 1)	-16mm	-18mm	-18mm

Measurement of tight gauge includes the effect of any rail head flow present.

TABLE 4-8 GEOMETRY DEFECTS LONG TWIST

PARAMETER	RESPONSE (SEVERITY)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Long Twist (14.47m)	E (Sev 3)	35mm	40mm	40mm
	D (Sev 2)	40mm	46mm	46mm
	A (Sev 1)	52mm	60mm	60mm

Track Maintenance Code Of Practice

Field measurements may consider base lengths rounded to the nearest metre, however due consideration must be given to the measurements being in the unloaded condition.

TABLE 4-9 GEOMETRY DEFECTS MEDIUM TWIST

PARAMETER	RESPONSE (SEVERITY)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
	E (Sev 3)	16mm	20mm	20mm
Medium Twist (6.25m)	D (Sev 2)	20mm	23mm	23mm
(0.25)	A (Sev 1)	26mm	30mm	30mm

Field measurements may consider base lengths rounded to the nearest metre, however due consideration must be given to the measurements being in the unloaded condition.

TABLE 4-10 GEOMETRY DEFECTS SHORT TWIST

PARAMETER	RESPONSE (SEVERITY)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Short Twist (1.83m)	E (Sev 3)	14mm	16mm	16mm
	D (Sev 2)	16mm	18mm	18mm
	A (Sev 1)	20mm	22mm	22mm

Field measurements may consider base lengths rounded to the nearest metre, however due consideration must be given to the measurements being in the unloaded condition.

TABLE 4-11 GEOMETRY DEFECTS CROSS LEVEL (TANGENT TRACK)

PARAMETER	RESPONSE (SEVERITY)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Cross Level (Tangent Track) (Deviation from design)	E (Sev 3)	30mm	30mm	30mm
	D (Sev 2)	45mm	45mm	45mm
	A (Sev 1)	75mm	75mm	75mm

TABLE 4-12 GEOMETRY DEFECTS CROSS LEVEL (CURVE TRACK)

PARAMETER	RESPONSE (SEVERITY)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
	D (Sev 3)	30mm	30mm	30mm
Cross Level (Curve Track) (Deviation from design)	B (Sev 2)	45mm	45mm	45mm
(2 on a son son a song n,	A (Sev 1)	75mm	75mm	75mm

Track Maintenance Code Of Practice

4.2.3. Cyclic Geometry Defects (Opportunity)

Cyclic geometry defects are known to present an increased risk of derailments when they result in increased dynamic response of rail traffic, in particular ore cars, at a wavelength of approximately 12m.

Cyclic geometry defects shall to be categorised when any of the following criteria are found to exist for 2+ cycles on an 11-13 metre wavelength:

- ≥ 8 mm Alignment;
- ≥ 10 mm Medium Twist;
- ≥ 5 mm Short Twist;
- ≥ 6 mm Top.

In order to identify areas of potential cyclic geometry the following calculation shall be applied to the geometry parameters recorded by the Track Condition Monitoring Vehicle.

FIGURE 4-1 CYCLIC GEOMETRY CALCULATION METHOD

Calculation shall be made by summing the absolute peak values at each of the following locations and comparing to the limits set out below for each parameter:

$$A + B + C + D + E$$

- > 40mm for alignment
- > 50mm for medium twist
 - > 25mm for short twist
 - > 30mm for top

Identification of potential cyclic geometry from track condition monitoring vehicle data or field measurements shall initiate a detailed track inspection to occur within 24 hours. Upon confirmation of a cyclic geometry problem by a suitably skilled and competent person then a 50km/h temporary speed restriction shall be placed.

Track Maintenance Code Of Practice

4.2.4. Track Condition Index (Under Review – Conversion to SD)

Track Condition Index (TCI) is a single unit of measurement of geometry related Track Condition of any 100 metre segment of track. This value is calculated through the application of weightings to returned geometrical measurements. Geometrical parameter weightings have been defined based on their influence to track performance.

TCI is categorised into four quality bands as shown in 4.12

TABLE 4-13 TRACK CONDITION INDEX QUALITY BANDS

QUALITY BAND	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Good	< 11.9	12 – 19.9	NA
Satisfactory	12 – 19.9	20 – 24.9	NA
Poor	20 – 24.9	25 <	NA
Very Poor	25 <	30 <	NA
Urgent Maintenance	30 <	NA	NA

4.2.5. Track Deflection / Pumping

Pumping is the condition that allows excessive vertical movement of the sleeper (estimated to be greater than 7 mm) under load from passing rolling stock, and is generally characterised by the presence of powdering, mud or slurry in the ballast. These conditions may not always be visually obvious and the initial identification of track pumping locations may come from other inspections discussed below. Track geometry criteria may govern in this situation.

Due to track pumping being a movement of the track under load from passing rolling stock, the track condition monitoring vehicle may not observe the full movement due to having lighter axel loads. Track deflection may however be more accurately observed from instrumented ore cars in a loaded condition and track deflection gauges such as void meters. As such, defects should be considered against track geometry and instrumented ore car data as well as the thresholds shown below.

4.2.5.1. Maximum Track Deflection

For singular pumping sleepers, or clusters of consecutive pumping sleepers, Table 4-14 defines the maximum track deflection observed and the applicable defect responses.

TABLE 4-14 MAXIMUM TRACK DEFLECTION

DEFLECTION	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Deflection > 7mm	E	NA	NA
Deflection > 12mm	D (2w)	E (2w)	NA
Deflection > 20mm	C (2w)	D (2w)	E
Deflection > 30mm	В	С	С

Track Maintenance Code Of Practice

4.2.5.2. Clusters of Consecutive Pumping Sleepers

Where clusters of consecutive pumping sleepers are observed, Table 4-15 defines the applicable defect responses. These should be considered in conjunction with Table 4-14 and the most conservative response applied.

Table 4-15 considers that maximum deflection of at least one sleeper exceeds the minimum deflection specified in Table 4-14.

TABLE 4-15 CLUSTERS OF CONSECUTIVE PUMPING SLEEPERS

NUMBER OF CONSECUTIVE PUMPING SLEEPERS	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
3 - 5	D	E	
6 - 10	C D		E
>10	В	С	С

4.2.6. Instrumented Ore Cars

Where an instrumented ore car identifies a track defect then the location shall be inspected and the cause ascertained to enable a notification to be raised in 1SAP for rectification.

TABLE 4-16 INSTRUMENTED ORE CAR DEFECTS

PARAMETER	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
	≥ 8mm	E	NA	NA
Bounce (mm)	≥ 10mm	E	E	NA
	≥ 12mm	D	E	E
	≥ 12mm	E	NA	NA
Body Rock (mm)	≥ 15mm	Е	E	NA
	≥ 18mm	D	E	E
	≥ 25g	Е	NA	NA
Sideframe Acceleration (g)	≥ 40g	Е	E	NA
	≥ 50g	D	E	E
Suspension Travel (mm)	≥ 12mm	E	NA	NA
	≥ 15mm	E	E	NA
	≥ 18mm	D	E	E

Track Maintenance Code Of Practice

Page Intentionally Left Blank

Track Maintenance Code Of Practice

4.3. RAIL

4.3.1. Wear

There are generally two types of rail wear. Top wear resulting from the rail head being worn down by rail traffic or grinding, and side wear resulting from the gauge face of the rail being worn by passing wheels.

Top wear is the dominant wear mechanism for low rails of curves, tangent tracks and curves with radius greater than 900 m. Side wear becomes a significant wear mechanism for the high rail of curves sharper than 900 m radius.

Top wear, side wear or a combination of both will result in a reduction in the rail head cross sectional area. When assessing limits for rail wear, the worst case of top wear, side wear and head area wear shall be used when determining appropriate responses.

Rail wear limits specified in Table 4-17 to Table 4-20 apply to the worst location and not the average rail wear for the segment of track being considered (such as a curve).

Rail wear thresholds are specified to reduce the risk of broken rails, which may occur more frequently in worn rails. Consideration should be given to the historic prevalence of rail defects when defining rerail priorities.

For rail conditions which approach the applicable wear limit, other factors that may indicate the need for a more stringent response shall be considered; these include but are not limited to:

- Presence, density and history of internal rail defects;
- Presence, density and severity of surface rail defects;
- Ability for ultrasonic testing to be successfully carried out;
- Track support conditions;
- Sleeper and fastening conditions;
- Track geometry;
- Presence and density of other weak points such as welds.

4.3.1.1. Top Wear Limits

Top wear is measured at the centreline of the rail, perpendicular to the rail foot, and is the difference in rail height between new rail and worn rail. The values shown in the table below refer to 68kg/m rail.

Track Maintenance Code Of Practice

TABLE 4-17 68KG/M RAIL TOP WEAR LIMITS

APPLICATION	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
	Top Wear > 8.7mm	E	E	E
Curve < 900m Radius	Top Wear > 12.7mm	С	D	E
	Top Wear > 13.7mm	Α	А	А
Curve ≥ 900m Radius Tangent	Top Wear > 11.7mm	E	E	E
	Top Wear > 15.7mm	С	D	E
3	Top Wear > 16.7mm	Α	А	Α

4.3.1.2. Rail Height Limits

Rail Height defects are a result of top wear. The values shown in the table below are applicable to both 68kg/m and 71kg/m rail.

TABLE 4-18 RAIL HEIGHT LIMITS

APPLICATION	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
	Rail Height < 177mm	E	E	E
Curve < 900m Radius	Rail Height < 173mm	С	D	E
	Rail Height < 172mm	Α	А	А
Curve ≥ 900m Radius Tangent	Rail Height < 174mm	E	E	E
	Rail Height < 170mm	С	D	E
J. gem	Rail Height < 169mm	А	А	Α

4.3.1.3. Side Wear Limits

Side wear is measured 15 mm below the running surface. The values shown in the table below refer to 68kg/m rail.

TABLE 4-19 68KG/M RAIL SIDE WEAR LIMITS

APPLICATION	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
All	Side Wear > 18mm	E	E	E
All	Side Wear > 22mm	С	D	E
All	Side Wear > 23mm	Α	В	В
Curve High Rail	Side Wear > 33mm	А	А	А

Track Maintenance Code Of Practice

Increased side wear on curve high rails is allowable on category 2 and 3 track with a 10km/h speed restriction and increased inspections in place. This situation assumes that:

- there is no side wear on the low rail of the curve;
- sleepers and fastenings are all effective in restraining the rail and maintaining track gauge;
- gauge widening has not been applied to the sleepers and fastenings;
- top wear and head area wear limits are not exceeded.

If these requirements are not met then a more stringent response is required.

4.3.1.4. Head Area Wear Limits

The limit of head area loss is 40% before mitigating actions need to be taken. To facilitate calculation of rail head area loss in the field the following method shall be applied.

Head area loss shall be calculated by combining together the top and side wear measurements at a given location. For example:

TC1 Example 1 Top Wear = 13mm

Side Wear = 10mm

Total = 23mm LIMIT

TC3 Example 2 Top Wear = 1mm

Side Wear = 32mm

Total = 33mm LIMIT

TABLE 4-20 RAIL HEAD AREA WEAR LIMITS

APPLICATION	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
All	(Top + Side Wear) > 18mm	E	E	E
All	(Top + Side Wear) > 22mm	С	D	E
All	(Top + Side Wear) > 23mm	А	В	В
Curve High Rail	(Top + Side Wear) > 33mm	NA	Α	Α

Note: if top wear exceeds the limits specified in Table 4-17response code shall be applied as per Table 4-17.

4.3.2. Gauge Face Angle

TABLE 4-21 GAUGE FACE ANGLE

APPLICATION	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
All	26 degrees	Α	Α	В

Track Maintenance Code Of Practice

The gauge face angle of rails shall not exceed 26 degrees from vertical, over a length of rail of more than 2m.

4.3.3. Surface

Rail surface defects cause increased dynamic impact loading on the track structure under the passing load of rolling stock. These defects result in damage to other components in the track structure as well as in the wheels of rolling stock, and increase the likelihood of internal rail defects forming and resulting in rail breaks.

4.3.3.1. Rolling Contact Fatigue (Under Review)

TABLE 4-22 ROLLING CONTACT FATIGUE DEFECTS

ROLLING CONTACT FATIGUE (RCF)	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Crack Length > 30mm	Е	Е	E

Where necessary hand testing shall be carried out to test the depth of RCF.

Note that the application of temporary speed restrictions on curves may cause an increased rate of deterioration of the RCF. The application of a temporary speed restriction shall be used to manage the increased risk of defect formation and rail failure, however the RCF shall be removed as soon as possible and temporary speed restriction lifted.

At sites with reoccurring RCF problems the track cant and rolling stock speed shall be assessed to ensure that the correct track geometry is applied.

4.3.3.2. Rail and Weld Surface Irregularities

The tolerances for rail running surface irregularities are shown below and cover the following activities:

- laying of rail in track,
- production of rail lengths for installation,
- insertion of rail welds into track including those for closure rails,
- rail in track,
- welds in track.

Where rail is being installed in track, the following parameters shall be checked prior to opening the track for normal traffic. Where rail already exists in track then the following parameters shall be checked to assess the requirements for defect responses including temporary speed restrictions.

TABLE 4-23 RAIL SURFACE IRREGULARITIES

PARAMETER	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Peak (Weld) Measured with 1m straight edge and Starret Gauge	> 0.5mm	E	E	NA
Dip	> 0 mm	E	E	NA

Track Maintenance Code Of Practice

Weld Alignment (Gauge Face) Measured with 1m straight edge and Starret Gauge	> ±0.5 mm	E	E	NA
Weld Colour	Blue Weld (ground too hot)	E	E	NA
AT Weld Position Within Crib	Touching Sleeper	E	E	NA
Head Spalling / Shelling	Visible	E (Sev 3)	E (Sev 3)	E (Sev 3)
Weld Break Out (field side of rail)	Any loss of weld on the field side of a rail	E Clamp within 24 hours	E Clamp within 24 hours	NA
Wheel Burns	Visible	E	E	NA
Corroded Rail	> 3mm section loss in web or foot	E (7d)	E	E

Defects of these sizes will result in increased maintenance requirements and may cause track geometry defects as well as deterioration of components such as sleepers and ballast due to high impact loads.

Increases in the defect response may be required where the rail surface defect causes defects in other assets and parameters. When rail surface defects exist, the competent inspector shall ensure that track deflection and track geometry are checked for defects as a minimum and appropriate responses implemented.

4.3.4. Untestable Rail (Opportunity)

Once Rail has been identified as untestable by ultrasonic rail inspection the following immediate actions / controls shall be applied:

- Place a 25 km/h TSR on the specific section of track,
- Ensure that the responsible track department supervisor has been informed. The track department supervisor will then proceed to initiate TSR boards & transponders to the specific location if required,
- Track department supervisor shall inform the Major Works Contracts Supervisor / Coordinator to arrange the specific section of track to be ground by the Rail Grinding Operations team as soon as practicable,
- Specific section of track is ground to a testable condition,
- Major Works Contracts Supervisor / Coordinator inform ultrasonic rail inspections team, track has been ground and awaiting testing,
- Track is tested by ultrasonic rail inspection, if track is tested and is deemed satisfactory the TSR can be removed,
- Ultrasonic rail inspections team inform the Track Department Supervisor to remove all boards and transponders.

Track Maintenance Code Of Practice

4.3.5. Internal

Internal rail defects detected during continuous ultrasonic rail inspections and non-continuous non-destructive rail testing inspections shall be assessed and reported in accordance with the classification, position and sizing codes as specified in SPEC-073-C-12006.

The immediate defect responses along with required timeframes for applying protection are shown in the table below.

TABLE 4-24 INTERNAL RAIL DEFECT PROTECTION AND RESPONSE

SEVERITY	PROTECTION APPLIED WITHIN	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
1	Prior to next train	A (24h) See note below	Α	А
2	24h	E (14d)	E	E
3	4d	E (28d)	E	E

Note that for the following defect types reported as severity 1 the rail containing the defect shall be removed from track prior to the passage of the next train. A mini-plug may be installed as a temporary form of protection:

- broken rail;
- horizontal split head;
- horizontal split web;
- vertical split head;
- vertical split web;
- piped rail;
- head web separation in radius;
- foot web separation;
- bolt hole cracked/broken;
- wheel burn.

Known defects shall be positively identified in track with indelible marking to ensure traceability as well as visibility to rail mounted vehicle operators.

The repair of identified defects shall be in accordance with Section 5.4.

Track Maintenance Code Of Practice

4.3.6. Profile

The following table defines the defects and responses for the rail grinding quality index, as calculated by the mainline grinding machine.

TABLE 4-25 GRINDING QUALITY INDEX DEFECTS

APPLICATION	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Grinding Quality Index	< 90	E	E	E

Table 4-26 defines the weightings to be applied to measurements taken from different parts of the rail head for different track geometry applications when calculating the Grinding Quality Index.

TABLE 4-26 GRINDING QUALITY INDEX CALCULATION WEIGHTINGS

APPLICATION	GAUGE +60° TO +10°	CENTRE +10° TO -3°	FIELD -3º TO -16º
Tangent	40%	55%	5%
Curve – High Rail	40%	55%	5%
Curve – Low Rail	15%	60%	25%

The following table defines the rail profile defects and responses when measured using a profile gauge bar and a 3mm wide feeler gauge.

TABLE 4-27 RAIL PROFILE DEFECTS (MANUAL MEASUREMENT)

APPLICATION	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Gauge +60° to +10° Field -3° to -16° (Non-Contact Areas)	> 0.40mm	E	E	Ш
+10° to -3° (Running Band)	> 0.20mm	E	E	E
+10° to Gauge Corner Reference Point	> 0.35mm	E	E	E

Track Maintenance Code Of Practice

The following table defines the rail profile defects and responses when measured using an electronic device such as a mini-prof.

TABLE 4-28 RAIL PROFILE DEFECTS (ELECTRONIC MEASUREMENT)

APPLICATION	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Gauge +60° to +10° Field -3° to -16° (Non-Contact Areas)	> 0.20mm	E	E	E
+10° to -3° (Running Band)	> 0.15mm	E	E	E
+10° to Gauge Corner Reference Point	> 0.15mm	E	E	E

Track Maintenance Code Of Practice

Page Intentionally Left Blank

Track Maintenance Code Of Practice

4.4. SLEEPERS AND FASTENINGS

4.4.1. Missing/Non-load Bearing Sleepers

Table 4-29 shall be used in the assessment of response criteria for sleepers that are either missing or providing no support to the rail. Such a condition is likely to, but not necessarily, be due to wash-away damage, fire damage or derailment damage. It may also occur due to old and under-maintained sleepers and fastenings.

TABLE 4-29 MISSING/NON-LOAD BEARING SLEEPERS

CLUSTER OF CONSECUTIVE MISSING/NON-LOAD BEARING SLEEPERS	TRACK CATEGORY 1 TRACK CATEGORY 2		TRACK CATEGORY 3
1 missing or non-load bearing sleeper	С	D	E
2 or more missing or non-load bearing sleepers	А	А	А

Note that Table 4-29 shall only be used when adjacent sleepers are still effective. It refers to a solitary missing or non-load bearing sleeper or two or more consecutive missing or non-load bearing sleepers only.

Where multiple non-consecutive sleepers are missing within a group of sleepers further assessment by a competent person should be performed.

Where adjacent sleepers to the missing or non-load bearing sleeper(s) are ineffective further assessment using Table 4-30 should be performed.

4.4.2. Ineffective Sleepers and Fastenings

An individual sleeper/fastening assembly is judged ineffective if the sleeper/fastener does not provide adequate lateral, longitudinal and vertical support to the rail, caused by one or more of the following conditions:

- sleeper deterioration affecting rail support (e.g. aging, rot, corrosion);
- sleepers split, cracked or otherwise deteriorated at or through fastening components rendering the fastening ineffective;
- sleepers broken through;
- losses of sleeper cross-section or other defects as specified in the sleeper design;
- fastening assembly components not to specification (e.g. inadequate number of dogspikes or lockspikes, incorrect components);
- fastening assembly components missing, broken or loose (e.g. loose or missing shoulder inserts, anchors) resulting in loss of gauge, alignment or rail holding capacity;
- excessive back canting of rail (e.g. resulting from sleeper deterioration or cutting) resulting in lateral rail or sleeper plate movement.

Where sleepers or fastening assemblies are ineffective and contribute to track geometry irregularities the response tables in Section 4.2 shall be considered.

Track Maintenance Code Of Practice

The assessment of effectiveness should consider such things as partial effectiveness of individual sleepers, the contribution of the whole group to vertical and lateral support and local site conditions. Note that any defect identified shall, if possible, be rectified immediately, otherwise appropriate responses codes shall be adhered to.

The following tables give direction in assessing the responses to different situations, however it should be noted that the tables do not give direction for every combination of defective situations. A competent inspector shall assess the required response for each individual situation considering local factors including combination of ineffective and partially effective sleepers / fastenings.

TABLE 4-30 INEFFECTIVE FASTENINGS SINGLE RAIL

CLUSTER OF CONSECUTIVE INEFFECTIVE FASTENINGS ON A SINGLE RAIL	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
TAN	GENTS, CURVES ≥ 900M	RADIUS	
3 sleepers (6 fastenings)	D	D	E
4 – 5 sleepers (8 - 10 fastenings)	С	D	E
≥ 6 sleepers (≥ 12 fastenings)	А	А	Α
	CURVES < 900M RADIO	US	
3 sleepers (6 fastenings)	С	D	E
≥ 4 sleepers (≥ 8 fastenings)	А	Α	А

TABLE 4-31 INEFFECTIVE SLEEPERS AND FASTENINGS BOTH RAILS

CLUSTER OF CONSECUTIVE INEFFECTIVE SLEEPERS OR FASTENINGS ON BOTH RAILS	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
TAN	GENTS, CURVES ≥ 900M	RADIUS	
≤ 2 sleepers (≤ 8 fastenings)	E	E	E
3 sleepers (12 fastenings)	В	С	С
≥ 4 sleepers (≥ 16 fastenings)	А	А	A
	CURVES < 900M RADIO	JS	
1 sleeper (4 fastenings)	E	E	E
2 sleepers (8 fastenings)	В	С	С
≥ 3 sleepers (≥ 12 fastenings)	А	А	А

Note that Table 4-30 does not apply to missing sleepers or sleepers failing to provide any vertical support. See Table 4-29 for missing and non-load bearing sleepers.

Track Maintenance Code Of Practice

Where the response required involves closing the track or protecting and opening at a temporary speed restriction, application of effective fastenings shall occur prior to the next train.

Where adjacent or multiple clusters of ineffective sleepers or fastenings exist, an assessment should be undertaken by a competent inspector to determine if a more restrictive response is required.

Track Maintenance Code Of Practice

4.5. BALLAST

4.5.1. Depth

Deviations from the parameters set out in Section 0 regarding the required depths of ballast will result in accelerated degradation of the ballast and greatly increases the likelihood of the track suffering other defects such as track misalignments (buckles/kicks) and those relating to geometry, track pumping, rail, sleeper and fastening defects among others.

Where ballast depths are inadequate then work should be planned to remediate the problem, though defect responses as described in Section 4.1 will not be triggered unless the track begins to suffer other defects as described in this code of practice such as geometry, track pumping and component defects.

4.5.2. Shoulder Profile

The responses in Table 4-32 apply where ballast shoulder height (H) and width (W) deficiencies occur over lengths of 10m (17 sleepers) or greater. This deals with general ballast profile deterioration likely to impact on track lateral stability over time. The responses assume that crib ballast has not been substantially degraded from the full design profile.

Significant ballast disturbances, including more severe degradation over distances of less than 10m shall be assessed by a competent inspector taking into consideration factors such as track geometry, curvature, temperatures, rail traffic, track speed.

TABLE 4-32 INEFFECTIVE BALLAST SHOULDERS

DEFECTIVE BALLAST PROFILE OVER LENGTH OF > 10M	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3			
TANGENTS, CL	TANGENTS, CURVES ≥ 900M RADIUS, TURNOUTS ≥ 1:20					
225mm ≥ W > 150mm Or 200mm ≥ H > 125mm	E	NA	NA			
150mm ≥ W > 75mm Or 125mm ≥ H > 65mm	D	E	NA			
W ≤ 75mm Or H ≤ 65mm	В	С	E A (timber)			
H ≤ 0mm	А	А	A			
CURVES < 900M RADIUS, TURNOUTS < 1:20						
375mm ≥ W > 250mm Or 200mm ≥ H > 125mm	Е	NA	NA			

Track Maintenance Code Of Practice

DEFECTIVE BALLAST PROFILE OVER LENGTH OF > 10M	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
250mm ≥ W > 125mm Or 125mm ≥ H > 65mm	D	E	NA
W ≤ 125mm Or H ≤ 65mm	В	С	E A (timber)
H ≤0mm	А	Α	Α

Note:

- Height of ballast shoulder (H) is measured from the base of sleeper.
- Shoulder width (W) is measured from the extreme end of the sleeper, not the visible end when the track is fully ballasted.

The following assumptions are made when applying the responses above:

- Temperature is within the design range (see Section 2.2.1),
- Steel sleepers have full pods of ballast. If the pods are less than 3/4 full, then there should be an increased response by 2 categories (e.g. an E response goes to a C),
- Track geometry is within limits specified in Section 4.2.1. Alternate responses may be required
 according to the track geometry condition,
- Rail size of 68 kg/m and CWR/LWR (>110 metre) rail lengths.

4.5.3. Quality/Fouled

During normal operation and maintenance practices voids in the ballast layer fill with fines and contaminants. Other track defects can also result in rounded, powdered and crushed ballast, generally occurring in localised areas. Generally the track should be maintained with a minimum of 100mm of clean, angular ballast directly beneath the sleeper.

The following visible surface conditions are indicative of defective ballast:

- rounded ballast,
- white powder coating on the ballast,
- small size of individual ballast particles.

If visual inspection identifies the conditions above or if a detailed inspection of the sub-surface ballast condition suggests that more than 30% of the material is smaller than 13.5mm particle size then a competent person shall assess whether a defect response is required based upon other conditions such as:

- extents of inadequate ballast;
- track geometry;
- track pumping;

Track Maintenance Code Of Practice

- rail surface defects;
- site drainage;
- sleeper defects;
- other external factors.

A notification shall be raised to rectify the inadequate ballast conditions.

4.5.4. Bogholes

Bogholes shall be assessed for defect responses against the track pumping and geometry defect parts of Section 4.

Track Maintenance Code Of Practice

4.6. TURNOUTS

For turnouts designed and constructed in accordance with Section 2.6 the condition assessment and response criteria for switch and crossing areas should be in accordance with Table 4-33 and Table 4-34 respectively.

Definition of worn and defective switch and crossing conditions and critical areas for geometry are shown in the appendices.

In addition, at all times vertical, lateral, longitudinal and rotational restraint and support of the rails should be maintained to ensure acceptable geometry is presented to the rolling stock wheels. The list below shows other parts of this section that define condition assessment and response criteria for components relevant to switch and crossing structures:

- 4.2 Track,
- 4.3 Rail,
- 4.4 Sleepers and Fastenings,
- 4.5 Ballast,
- 4.7 Mechanical Rail Joints.

Where the condition identified is only a hazard for the facing condition the speed restriction is only required for the facing movement.

If the response code of close track is required but the defective condition only impacts traffic on either the diverge or the straight, but not both, then the switch and crossing may be clamped to prevent use of the defective part of the switch or crossing. A competent inspector shall inspect the assembly to confirm that the turnout can remain open in either the straight or diverge, whilst being protected by use of clamps.

Note that Table 4-34 does not apply to wheel flange bearing crossing designs.

TABLE 4-33 SWITCH AREA DEFECT RESPONSES

PARAMETER	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3	
SWITCH F	SWITCH RAIL THROAT OPENING DIMENSION (JUNCTION OF HEADS)				
Back of switch rail to stock rail (actual dimension)	< 40mm	С	D	E	
Note: Additional action maybe required for signalling purposes where the switch rail throat opening dimension is less than 50 mm.	< 35mm	А	А	А	
	SWITCH RAIL TOE/STOCK RAIL DIMENSION				
Open throw dimension	< 110mm	E	E	E	
Note: Additional action maybe required for signalling purposes.	< 100mm	В	С	С	

Track Maintenance Code Of Practice

PARAMETER	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
An alternative action to those specified is to prohibit facing train movements.	< 90mm	А	А	А
TRACK GAUGE (AT THE SWITCH TIP)				
Track Gauge dimension	< 1431mm	D	E	E
Note: For wide gauge in the switch critical area plain track	< 1427mm	В	С	С
limits also apply.	< 1425mm	А	А	Α
	KEY COMPONENT COND	DITION		
Heel block	Broken but still effective	С	D	E
Note: Applies to fixed heel blocks only. Pivot heel cracks and breaks should be assessed by a competent worker.	Missing/Broken and ineffective	А	А	А
Broken/Ineffective rail	2 consecutive	D	NA	NA
brace/chair	> 2 consecutive	А	А	А
Missing/Ineffective Switch bearing stops	2 consecutive	D	E	E
(To avoid rail roll-over)	> 2 consecutive	А	А	А
Ineffective bearers/ fasteners	2 consecutive	С	С	E
(in critical area) Note: Refer to Section 4.4 for the definition of "ineffective" sleepers and bearers	> 2 consecutive	А	А	А
Spreader Bar Note: An alternative action that may be taken is to install a switch clip in accordance with safe working rules.	Missing/broken	А	А	А
Ineffective bolts	The competent worker should assess individual defects identified for the effectiveness of the bolts. Ineffective bolts include missing or broken bolts. Loose bolts should be tightened. Missing or ineffective bolts should be replaced. Pivot heel blocks generally may be made up of connections which require some bolts to be not fully tightened providing for design switch movement.			en bolts. Loose eplaced. Pivot re some bolts to

SWITCH RAIL / STOCK RAIL SET

Notes:

An alternative action to those specified is to prohibit facing train movements on the relevantrail of the turnout.

Applies to conventional switches only (i.e. not undercut switches).

When a worn switch at the end of its service life is being replaced a new switch and stock rail set should be used.

Track Maintenance Code Of Practice

PARAMETER	DEFECT	TRACK	TRACK	TRACK
		CATEGORY 1	CATEGORY 2	CATEGORY 3
Switch blade damage	≥ 100mm	Е	Е	Е
(Length of defect with depth > 19 mm from the running surface, anywhere in the switch blade)				
Note: "Length of damage" also applies to consecutive areas of damage less than the length specified apart and forming a length greater than the length specified.	≥ 200mm	А	Α	Α
Stock or switch rail gauge face angle (from vertical at the point	≥ 18deg.	E	E	E
of wheel flange/rail contact at the switch tip area)				
Note: Where the gauge face angle limit is exceeded the action should be to replace the switch and stock rail set.	≥ 26deg.	А	Α	Α
Switch rail angle				
(from horizontal at any point between 19 mm and 30 mm below the running surface of the stock rail)	< 40deg.	А	А	А
	2mm	E	E	E
Stock rail gauge face wear	≥ 3mm	E	E	E
(Where the switch rail contacts the stock rail at gauge point)	It is recommended that the stock rail be replaced. Following repair it is necessary to check the fit between the switch rail and stock rail. The replacement of switches should be carried out with care where the stock rail is approaching this amount of wear to ensure a blunt nose is not presented to the wheel.			
Switch tip height	13mm	Е	Е	Е
(Distance from stock rail running surface to top of switch rail measured at the top of the arc at the switch nose)	≤ 12mm	А	А	А
Switch at tip	≥ 4mm	E	E	E
(As presented to the wheel) Note: Switch width includes effects of side wear on stock rails and closed gap between switch and stock rails. It is not recommended that the gap between the switch rail and stock rail exceeds 3 mm at any time.	≥ 6mm	В	С	С
	≥ 9mm	А	А	А

Track Maintenance Code Of Practice

PARAMETER	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Switch gauge corner radius	< 6mm	Note: It is recommended the switch corner radius be maintained to 6 mm or greater particularly where manganese or heat treated materials are used. All new switch and switch sets should be manufactured to meet this recommendation		
Crippled		Note: A crippled switch blade refers to a switch blade that has suffered damage from a run through or derailment. Such switch blades may be suitable for temporary repair and reinstallation to geometry suitable for train movements at a reduced speed. The switch blade may have been bent, twisted or have suffered wheel damage however it should be repaired to a condition suitable for the reduced speed of operation both in terms of geometry and structural integrity. The reduced speed of operation should not exceed 45 km/h.		

Track Maintenance Code Of Practice

TABLE 4-34 CROSSING AREA DEFECT RESPONSES

PARAMETER	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
CHECK RAIL EFFECTIVENESS Notes:				
An alterna	ative action to those specified is to p	orohibit facing train	n movement.	
is therefore a vital observation	theck rail is its ability to protect the or to be made during inspections. An acement/adjustment of the check ra	y sign of excessiv	e damage to the	crossing nose is
	< 1389mm	E	NA	NA
Nominal	< 1386mm	D	E	NA
Nominal	< 1384mm	С	D	E
	< 1382mm	А	А	А
	CROSSING NOS	E		
Vertical wear	> 5mm	E	E	NA
vertical wear	> 10mm	С	D	E
	WING RAIL			
Vertical wear	> 5mm	Е	E	NA
vertical wear	> 10mm	С	D	Е
	TRACK GAUGE			
For wid	Note: e gauge in the crossing critical area	plain track limits	also apply.	
	< 1430mm	E	NA	NA
Track gauge at the crossing nose	< 1427mm	D	E	E
	< 1425mm	В	С	С
KEY COMPONENT CONDITION				
Broken crossing nose within transfer length (width of break)	> 15mm	E	E	NA
	> 20mm	С	D	Е
	> 25mm	Α	А	А
Ineffective bearers/fasteners	1 only	Е	E	NA
(in critical area)	2 consecutive	С	D	E

Page 142 of 181

Track Maintenance Code Of Practice

PARAMETER	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Note: Refer to Section 4.4 for the definition of "ineffective" sleepers and bearers	> 2 consecutive	А	А	А
Spacer blocks	Broken/cracked E		E	Е
Cracks in cast crossings	Critical longitudinal or vertical crack that may lead to a piece of crossing eventually lifting or breaking out and affecting the running surface integrity	E	NA	NA
	Fully (not affecting the running surface) crack that runs the full section of the crossing such that the crossing is in two pieces, all fastenings are secure and does not impact on the running surface (e.g. Tangential area of crossing)	D	E	NA
	Fully (affecting the running surface) a crack that runs the full section of the crossing such that the crossing is in two pieces and fastenings are not secure or the break affects running surface integrity	А	А	А
Check rail bolts Note: The end bolts of all check rails should be effective.	Loose	E	E	E
	Missing/ineffective: ≤2	E	NA	NA
	Missing/ineffective: 3	D	E	E
	Missing/ineffective: >3	В	С	С
Ineffective crossing bolts	The competent worker should assess individual defects identified for the effectiveness of the bolts. Ineffective bolts include missing or broken bolts. Loose bolts should be tightened. Missing or ineffective bolts should be replaced.			
Crossing Flangeways	Flangeways should be checked for blockages and cleared where blocked.			
Rail defects	Refer to Section 4.2			

Track Maintenance Code Of Practice

4.7. MECHANICAL RAIL JOINTS

Defects detected in non-welded rail joints should be assessed and reported in accordance with the classification, position and sizing specified in below. The repair of identified defects shall be in accordance with Section 5.5.

4.7.1. Fishplate Cracks and Breaks

TABLE 4-35 FISHPLATE CRACKS AND BREAKS

DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
1 or both fishplates partially cracked	B (with protection*)	C (with protection*)	C (with protection*)
1 or both fishplates fully cracked	А	А	А

Where one or both fishplates at an insulated rail joint are fully cracked then the joint shall be replaced prior to the next train.

Where one or both fishplates at an insulated rail joint are partially cracked then the response shall be based on the track support conditions and whether the insulated rail joint type can be protected using plates and clamps. If the insulated rail joint cannot be protected then the joint shall be replaced within 24 hours.

4.7.2. Missing, Ineffective and Loose Bolts

Note that the table below regarding missing, ineffective and loose bolts at non-welded rail joints considers 6 bolt joint assemblies. Responses relating to a failure of all bolts within the joint can be applied to other size joints.

TABLE 4-36 MISSING, INEFFECTIVE AND LOOSE BOLTS

DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
1 missing, ineffective or loose bolt	E (6w)	E	NA
2 missing, ineffective or loose bolts	C (14d)	D	E
3 or more missing, ineffective or loose bolts	B (24h)	С	С
All bolts loose but with sufficient integrity to provide vertical & lateral support	B (24h)	С	C
All bolts loose without sufficient integrity to provide vertical & lateral support	А	А	А

4.7.3. Joint Gap

Note that the following table only applies to non-insulated rail joints. As such Track Category 1 and Track Category 2 responses relate only to temporary rail joints formed using fishplates and G clamps. Insulated rail joint gap failure will be in the form of closure of the gap or loss of insulation, resulting in failure of electrical insulation and is therefore covered in Table 4-38.

Track Maintenance Code Of Practice

TABLE 4-37 NON-INSULATED NON-WELDED RAIL JOINT GAP DEFECTS

DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Gap > 15mm	В	С	E
Gap > 20mm	B (24h)	С	C (24h)
Gap > 30mm	А	Α	А

Where joint gap defects are identified a competent inspector shall check for fishplate and fishbolt defects (especially broken bolts), visible rail discontinuities and defects, and stress control problems, and take appropriate actions for the defects found.

Where joint gap is found to be greater than 30mm then a competent inspector shall review risk of wheel climb (track curvature, horizontal angle at joint, foulness of joint, joint vertical and lateral integrity) during assessment of the required protection prior to opening to rail traffic.

4.7.4. Electrical Insulation

Note that the following table is applicable only to insulated rail joints.

TABLE 4-38 IRJ ELECTRICAL INSULATION DEFECTS

DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Failure of Electrical Insulation	А	Α	Α

4.7.5. Rail End Post Wear

End post wear shall be measured using a 100mm straight edge positioned longitudinally on the crown of the rail head, centred at the rail joint. A Starret gauge shall be used to measure the depth from straight edge to the rail head at the end of each rail.

TABLE 4-39 RAIL END POST WEAR

DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Rail end batter > 2mm	E	E	E

Defects of these sizes will result in increased maintenance requirements and may result in deterioration of components such as the rail joint, sleepers and ballast due to high impact loads.

Increases in the defect response may be required where the rail end post defect causes defects in other assets and parameters. When rail end post defects exist, the competent inspector shall ensure that track deflection (pumping) and track geometry are checked for defects as a minimum and appropriate responses implemented.

Track Maintenance Code Of Practice

4.7.6. Rail Joint Deflection

Deflection of a rail joint is the movement experienced by the rail joint under loading. Maximum deflection will be experienced under the passage of a loaded ore train. Deflection can be measured by various methods including, but not limited to:

- void meters,
- instrumented ore car,
- laser and rail mounted target,
- strain gauge.

It should be noted that different methods of measurement yield different readings with different accuracy. This should be considered in choosing an appropriate method and when calibrating readings.

TABLE 4-40 RAIL JOINT DEFLECTION DEFECTS

DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
Deflection > 7mm	E (6w)	E (6w)	NA
Deflection > 12mm	D (2w)	E (2w)	E

Note that all deflections of insulated rails joints greater than 7mm require an "Insulated Joint Deflection" form to be completed and sent to the Track and Signals Analysis and Improvement team.

Track Maintenance Code Of Practice

4.8. BRIDGES AND CULVERTS

The integrity of structures should be assessed to verify their capacity to safely perform the required function. Assessment of required responses and subsequent actions should be in line with the requirements detailed in Section 3.13 and with documents specified in Section 2.11 of this code of practice, and be performed by a suitably qualified engineer.

Temporary speed restrictions applied to track passing over under-track structures may be considered to manage:

- dynamic loading experienced by the structure;
- risk of derailment on the structure;
- safe execution of works or inspections on the structure.

The suitably qualified engineer shall be required to identify the required speed restriction to be applied to manage risks associated with the structure. The BHPBIO Rail Rule Book shall also be consulted for direction on safely executing works and inspections.

Track Maintenance Code Of Practice

4.9. SIGNS

Each sign should be assessed to ensure compliance with the required standards for the installation.

Where the sign installation site is assessed and does not comply with the required standard, appropriate action should be taken to ensure the immediate safety of operations. Follow up action should then be taken to ensure that the required standards are complied with.

Any amendment of signage should be carried out in accordance with the Management of Change procedures.

Where it is assessed that the sight line is obstructed appropriate action should be taken to ensure the immediate safety of operations. Follow up action should then be taken to ensure that the sight line is restored.

Where the sight line is permanently obstructed for the maximum operating speed then either:

- advance warning to drivers of trains should be provided;
- the sign should be relocated;
- operational restrictions should be imposed.

TABLE 4-41 SIGN REPAIR TIMEFRAMES

SIGN TYPE	REPAIR TIMFRAMES
	SAFETY SIGNAGE
Temporary Speed Restriction	
Worksite Protection	48 hours
Level Crossing Signage for Road Users	
	OPERATIONAL SIGNS
Location Boards	
Block Point Sign	
Permanent Speed Sign	
Clearance Point Sign	
Whistle Sign	7 days
Yard Limit Sign	r uays
Limit of Shunt Sign	
Attend to Derail Sign	
Change to Operation Systems or Operational Parameters (Such as RTS, radio channels etc.)	

Track Maintenance Code Of Practice

OTHER SIGNS		
Kilometre Post Sign		
Structure and Equipment Identification Sign		
No Trespassing Sign	28 days	
Property Boundary Sign		
Maintenance Boundary Sign		

Track Maintenance Code Of Practice

4.10. CLEARANCES

Clearances should be assessed against the clearance standards adopted for each track section.

Where the standard is infringed either:

- action should be taken to restore the clearances such that the standard is not infringed, with clearances monitored until this action is completed; or
- approval should be sought to register the clearance location as a permanent infringement of the standard following detailed clearance assessment.

Where permanent infringement of the standard for clearances has been permitted the results of inspections should be assessed to determine whether the track tolerances used to specify the clearance standards have been exceeded. Where the track tolerances have been exceeded either:

- action should be taken prior to the passage of the next train, to restore the track position such that the track tolerances are not exceeded; or
- restrictions should be applied to operations, prior to the passage of the next train, until action can be taken to restore the track position.

Track Maintenance Code Of Practice

4.11. GUARD RAILS

The responses to guard rail defects are shown below. Note that any defect identified shall, if possible, be rectified immediately otherwise the appropriate response as shown below shall be adhered to. Rectification works shall be completed within 28 days of identification of the defect.

TABLE 4-42 GUARD RAIL DEFECTS

PARAMETER	DEFECT	TRACK CATEGORY 1	TRACK CATEGORY 2	TRACK CATEGORY 3
	> 25% are missing or ineffective on either side of the guard rail	E (28d)	E (28d)	E
Sleeper Fastenings Missing or Ineffective	For splay rails or the ends of guard rails > 2 are missing or ineffective on consecutive sleepers	E (28d)	E (28d)	E
Component Damage	Any damaged components which may render the guard rail ineffective in the event of a derailment	E (28d)	E (28d)	E
Rail Joint Condition	Ineffective Rail Joint	E (28d)	E (28d)	E

Track Maintenance Code Of Practice

5. ACTIVITIES (MAINTENANCE STRATEGY)

Track Maintenance Code Of Practice

5.1. RERAIL

5.1.1. Activity

Rerail is the activity of replacing long lengths of rail, including pads, insulators and if appropriate, clips. Rail is typically replaced in lengths of 400m continuously welded rail, delivered to site by a steel train. Partial lengths of tangent track can be rerailed however rerail of curves shall extend to the tangent track at each end of the curve.

5.1.2. Strategy (Opportunity)

Rail shall be replaced based upon the following conditions:

- The extent of rail wear is approaching the wear limits,
- Rail surface condition.

Clips shall be replaced in the following situations:

- On all curves being rerailed,
- Where the clips show visible signs of corrosion or damage,
- Where there is evidence of rail creep,
- Where toe load testing identifies inadequate toe loads.

Prior to a rerail activity new rail shall be laid in the centre of track in the correct location, with individual strings overlapped by 1m at either end.

5.1.3. Reference Documents

SPEC-000-C-12007	Heavy Haul Rails
WIN - 0109654	Fixed Flashbutt Welding Operations
WIN - 0102849	Mobile Flashbutt Welding
WIN-RTS-RTM-127	Aluminothermic Welding
WIN-RTS-GEN-001	Steel Train - Loading of Long Welded Rail with Gantry Cranes
WIN - 0106222	Unloading Rail Steel Train
WIN - 0106278	Picking up Rail Steel Train
WIN - 0104402	Re-rail Operations
WIN-RTS-RTM-129	Re-railing (Lengths of 25m or less)
WIN - 0096245	Repl Rail

Track Maintenance Code Of Practice

5.2. CUTTING RAIL

Rail saw cutting is the preferred method of cutting rail and it is the only method permissible for preparation of closure rails to be welded into track. Cutting of rail shall be carried out as per the specified procedure (WIN-RTS-RTM-177).

Rail ends should be cut square to defined tolerances depending on the purpose of the cut.

Cuts should be made a minimum of 50mm from the end of the visible tip of any crack ends.

The first cut in to CWR shall be made by flame cutting. Rail saw cuts in this instance are prohibited. Flame cutting of rails shall conform to WIN-RTS-RTM-104 and be subject to the conditions set out below:

- flame cut rail should be trimmed using a rail saw. A minimum of 30 mm should be cut off the
 cooled rail ends immediately prior to welding, rail with flame cut ends should be inspected for signs
 of visible cracking prior to saw cutting,
- flame cutting may not be used in preparing rail ends for installation of a permanent non-welded rail joint;,
- both ends of the rail to be welded must be of the same condition i.e. both sawn.

Rail saw cutting must be performed prior to welding or plating rail.

Track Maintenance Code Of Practice

5.3. DRILLING HOLES IN RAIL

Rail drilling shall be carried out as per the specified procedures (WIN-RTS-RTM-106).

The drilling of holes in rails shall be minimised as far as practicable, e.g. by using rail mounted equipment that does not require drilling of the rail.

Marking the centre of the hole to be drilled shall be carried out using an appropriate template or equivalent. Holes shall be drilled square to the web via the use of an appropriate guidance mechanism.

Drilling operations require appropriate cooling of the drilling tool.

Under no circumstance are flame cut holes permitted in rail or other track components.

The location of boltholes for the installation of mechanical rail joints should be in accordance with the dimensions defined in AS 1085.2 and AS 1085.12. In all other cases the centre of drilled holes shall be within 5 mm of the neutral axis.

Diameter for holes drilled in rail:

Guard Rails: 38mm (1 1/2");
 Insulated Joints: 28mm (1 1/8");
 Fish Plates: 32mm (1 1/4");
 Blades: 32mm (1 1/4").

Where drilling is required, the drilling process should be controlled so as not to metallurgically or mechanically damage the rail. Any resulting burrs and projects shall be removed.

Track Maintenance Code Of Practice

5.4. RAIL REPAIRS

5.4.1. Activity

Rail repair is the activity of removing rail defects at a specific location and is likely to be carried out only on a single rail at that location. The method of repair can vary, as discussed below.

Rail repairs shall be carried out in accordance with Section 5.1 and Section 2.2

When installing a rail plug as a repair the rail plug should match the rail in track in terms of profile, type and wear. Any mismatch in rail type shall be recorded in 1SAP.

When installing on tangent track the rail plug shall be a minimum of 6m in length. When installing on a curve the rail plug shall be a minimum of 9m in length.

In turnouts welds are to be a minimum of 1.2 m from another weld or rail joint (mechanical or glued) provided that the weld or joint is ultrasonically tested and no defects are found. For this application a turnout is considered to be from the centre of the arrival insulated rail joint to the centre of the departure insulated rail joint.

5.4.2. Strategy

The approach to repair of defective rails and welds shall be carried out in accordance with Table 5-1 below. When a defect is to be removed consideration should be given to removal of any identified rail and weld defects in the vicinity. The rail removed shall be immediately rendered unable to be reused.

TABLE 5-1 RAIL AND WELD REPAIR STRATEGY

RAIL DEFECT TYPE	STRATEGY
Dip in running surface	The rail containing the defect shall be removed and replaced or the defect shall be removed by lifting
Gauge widening due to change in rail	The rail containing the defect shall be removed and replaced or the defect shall be removed by bending the rail
Gauge narrowing due to change in rail	
Peak in running surface	
Vertical deviation in rail running surface (Ramp angle)	The rail containing the defect shall be removed and replaced
Vertical step in rail running surface	or the defect shall be removed by grinding
Horizontal step in rail running surface	The delect shall be removed by grillding
Wheel burn	

Track Maintenance Code Of Practice

RAIL DEFECT TYPE	STRATEGY	
Gauge face angle exceeds defect limits over a length of more than 2m		
Bolt hole (crack, elongation or non-conforming)		
Broken foot		
Broken rail		
Corroded rail	The rail containing the defect shall be removed and replaced	
Notches	Tomovou una replaceu	
Weld defect (head, web or foot)		
Weld defect: surface (e.g. gas hole, hot tear, shrinkage, porosity)		
Derailment damage		
Transverse defect (including those from shells or wheel burns)		
Foot/web separation and head/web separation		
Horizontal split (head or web)		
Shatter crack	The complete rail between welds shall	
Mill defect	be replaced unless the rail has been examined in detail by manual Non-	
Multiple transverse defects	Destructive Testing (NDT) examination to determine the extent of the defect	
Piped rail		
Vertical split (head or web)		
Mechanical joint defect	The necessary repair should be determined by a competent worker and may include replacing the joint, replacing bolts, replacing plates	
Unclassified defect	The necessary repair should be determined by a competent worker	
Rail surface (e.g. rolling contact fatigue)	The necessary repair shall be determined by a competent inspector and include consideration of the location, extent and the impact on the ability to carry out NDT of the rail affected	
Weld defects in repairs of surface defects	NDT defects that occur are to be found in other defect classifications. Alignment defects may be corrected by grinding, surface repair or replacement with a closure rail	

Track Maintenance Code Of Practice

5.4.3. Reference Documents

WIN-RTS-RTM-129	Re-railing (Lengths of 25m or less)
WIN - 0096245	Repl Rail
WIN-RTS-RTM-076	Clamp Rail Defect and Installation of Mini-plug
SPR-RTS-GEN-001	Broken Rail Procedure
WIN-RTS-RTM-106	Rail Drill (Operation of Rotorbroach)
WIN-RTS-RTM-107	Rail Drill (Operation of)

Track Maintenance Code Of Practice

5.5. NON-WELDED RAIL JOINT REPAIR

5.5.1. Activity

The repair and installation of non-welded rail joints varies depends on the severity of defects at the joint. Often multiple defects need to be rectified to ensure that the joint remediation works are successful. These may include rectifying issues with ballast, sleeper, rail surface rail joint end batter.

5.5.2. Strategy

Based upon deflection measurements obtained during inspections assessed against defect thresholds the following remediation works shall be carried out:

TABLE 5-2 NON-WELDED RAIL JOINT REPAIR

DEFECT	MAINTENANCE ACTIVITY REQUIRED	TIMEFRAME
Deflection > 7mm	Replace ballast if condition exceeds thresholds, Respace sleepers (if required), Repair or replace rail joint, Restore ballast profile, Hand tamp joint	Within 6 weeks
Deflection > 12mm	Replace ballast if condition exceeds thresholds, Respace sleepers (if required), Repair or replace rail joint, Restore ballast profile, Hand tamp joint	Within 2 weeks

Where rail defects relating to the condition of the joint rail surface and/or end batter and/or joint gap exist then the defects shall be removed by grinding. If grinding is not sufficient to remove the defects then the rail joint shall be replaced and activities shown in the table above shall be followed.

Note that these actions relate only to the rectification requirements. Immediate defect response is still required as per Section 4.7.

Track Maintenance Code Of Practice

5.6. REPAIR WELDS

5.6.1. Activity

Manual metal arc, gas metal arc and flux cord arc welding processes are used to repair rail surfaces by introducing and building up weld material on the rail surface. Welding processes shall be carried out in accordance with WIN-0087657 and WIN-0087658. All materials shall be supplied in accordance with relevant Australian Standards or equivalent BHPBIO specifications and tested and approved prior to use on the BHPBIO Railroad and supported by Welding Procedure Qualifying Records and Welding Procedure Specifications.

The welder executing the weld shall be fully trained, competent and hold current certification and VOC to weld on the BHPBIO Railroad.

Welders and welding equipment shall be audited for compliance on a frequency not exceeding 1 year. More frequent assessment may be required where evidence of non-conformance is identified. Corrective actions in the event of non-conformances may include:

- withdrawal of the welder certification,
- reassessment of the welding process,
- retraining of welder.

Weld quality is initially confirmed by the welder by means of visual observation of the welding process and by completion of a visual inspection and magnetic particle test after weld installation. This shall be carried out by the welder for every weld installed prior to allowing unrestricted traffic. When a process non-conformance is identified possible corrective actions include:

- stopping of the welding activity;
- reassessment of the welding process;
- rework including potential installation of a new rail plug.

All repair welds with a depth greater than 5mm shall be internally non-destructively tested as per Section 3.11 within 14 days of installation to track.

5.6.2. Strategy (Under Review)

Rail surface repairs shall be carried out at the nose and the wing rails of crossings when defect thresholds in Section 4.6 are exceeded and in lieu of replacement of the crossing.

5.6.3. Reference Documents

WIN - 0087657	Turnout Welding RBM
WIN - 0087658	Turnout Welding SNX

Track Maintenance Code Of Practice

5.7. TAMPING

5.7.1. Activity

Tamping involves moving the track (rail and sleepers) into the required position to achieve the required track geometry. The ballast layer beneath the sleepers is then rearranged to provide support to maintain the desired track position. Re-positioning of the track is carried out by use of either powered mechanical tamping machines or manually with the use of jacks. Rearrangement of the ballast is achieved using vibratory equipment penetrated into the ballast layer, either as part of the powered mechanical tamping machine or by use of handheld vibratory tampers.

Tamping degrades the ballast which decreases its effectiveness so it is important to ensure that maintenance practices and strategies minimise the disturbance of the ballast while maintaining track geometry.

5.7.1.1. Mechanical Track Levelling, Alignment and Tamping

Ballast shall be tamped using an approved means of powered mechanical vibration and in accordance with the appropriate procedure.

Both ends of the sleeper shall be tamped simultaneously, both inside and outside of the rail seat area.

Under normal circumstances and standard ballast condition, in order to achieve a good and durable tamping quality, the distance between the bottom of the sleeper and the top of the tamping tine spade should be approximately 20mm.

5.7.1.2. Manual Track Levelling, Alignment and Tamping

Manual methods of track levelling, aligning and tamping are permitted for spot repairs. Ballast shall be firmly packed under the rail seat area for a distance of not more than 300mm out from each side of the rail foot. This is to ensure that centre loading of the sleeper does not occur. Ballast shall be tamped using approved equipment types following the appropriate procedure WIN-RTS-RTM-100

Correction of track geometry defects by shimming on ballasted track is not permitted.

5.7.1.3. Levelling, Alignment and Tamping of Turnouts

Tamping turnouts shall meet the standards for plain line track. Bearers should be tamped over their full length when any part is lifted. Bearers should be lifted in an even horizontal manner, or to the designed superelevation as applicable.

Tamping shall extend from the switch to encompass both the arrival and departure insulated rail joint locations, and extend a minimum of 10m beyond.

5.7.2. Strategy (Under Review)

Notes for potential inclusion:

- Possessions for plain line and turnout tamping shall be planned on cyclical basis based upon historic work requirements,
- Specific sites requiring tamping shall be identified using track geometry condition data,

Track Maintenance Code Of Practice

- Minimum 1km site length for Plain Line Tamping,
- Record geometry left behind using rear trolley and check for compliance with required quality.

When extreme weather events are forecast to impact the BHPBIO Railroad then tamping machines shall be stabled towards each end of the BHPBIO Railroad for the purpose of repair of any potential washaway. It is recommended machines are stabled towards each end of the railroad in locations that are not susceptible to flooding.

5.7.3. Reference Documents

WIN-RTS-RTM-100	Hand Tamping (Hydraulic, Pneumatic & Petrol)	
WIN - 0109975	Condition Based Switch Tamping Inspection	
WIN - 0109976	Condition Based Tamping Inspection	

Track Maintenance Code Of Practice

5.8. GRINDING

5.8.1. Activity

Rail grinding is a maintenance process whereby a vehicle or train is used to install/restore the required profile to the head of the rail and control surface defects and irregularities. This activity extends the life of the rail and improves the wear behaviour of both the rail and the rolling stock wheels.

All Rail grinding works should be carried out in accordance with the appropriate Rail Grinding Specification, SPEC-077-M-00002.

5.8.2. Strategy

Rail grinding requirements are linked to the volume of rail traffic passing over the rail. As such the frequencies for rail grinding are specified based upon Million Gross Tonnes (MGT) of traffic traversing the track section. Variations to the frequencies also occur based upon the curvature and gradient of the track.

Grinding frequency of the straight through a turnout shall be based upon the tonnage traversing the adjacent track section on the arrival side of the turnout. The grinding effort required on the diverge of the turnout shall be based upon the amount of wear present. The profile shall be rectified and damage removed in compliance with requirements discussed below in terms of rail removal and defect removal.

Turnout grinding activities shall extend to encompass the arrival and departure insulated rail joint locations and a minimum of 10m beyond.

Track geometry condition impacts on the wear of the rail profile and as such poorer track geometry can result higher demands for grinding.

The following table details the grinding requirements for all track other than that defined as special sites.

TABLE 5-3 RAIL GRINDING MGT FREQUENCIES

CURVATURE	GRADE	FREQUENCY	MINIMUM METAL REMOVAL
Curves < 900m	All	15 MGT	0.40mm from the main contact band of the rail
Curves ≥ 900m and < 2600m	All	22 MGT	0.20mm from the main contact band of the rail
Curves ≥ 2600m to Tangent, Turnouts	Uphill travelling towards port	33 MGT	0.20mm from the main contact band of the rail
Curves ≥ 2600m to Tangent, Turnouts	Level or downhill travelling towards port	50 MGT	0.20mm from the main contact band of the rail

Level crossings are to ground at the same frequency as the track either side of the level crossing in accordance with the above table.

Note that the requirement related to grade travelling towards port makes the assumption that loaded trains travel towards port. For parts of the BHPBIO Railroad where this is not the case then the direction of loaded travel shall be considered in assigning grinding frequencies.

Track Maintenance Code Of Practice

The table above specifies the minimum metal removal during a grinding maintenance activity. Sufficient metal shall be removed to ensure that minor surface defects such as rolling contact fatigue, shelling, pitting, wheel burns and corrugation are controlled, up to the maximum pre-approval metal removal limit.

The maximum pre-approval metal removal shall be 0.50mm from the main contact band of the rail. If a rail surface defect remains following the removal of 0.50mm of metal then further assessment is required by a trained and competent person prior to approval being granted to remove more metal. A further 0.30mm can be removed (to a total of 0.80mm) following the assessment of:

- the rail height and wear;
- the current traffic volumes and grinding frequencies;
- current geometry defects and concerns.

The target surface defect removal strategy, within the limitations of the metal removal quantities, is a minimum of 95% defect removal from rail during a single maintenance activity. Removal of less than this requires a notification to be raised in 1SAP for the rectification of the defect at a later date.

Due to the complexities of planning track access and support maintenance in some areas of the network (such as mine balloon loops) time based grinding frequencies are used to enable longer planning horizons. These sites are treated as special sites and should be monitored to ensure that the time based frequencies provide sufficient grinding maintenance and are regularly assessed against the MGT profile.

Note that wayside asset protection systems that impact on the ability of the grinding machine to carry out rail grinding are not considered as special sites, however this equipment shall be removed from track during grinding activities to ensure that works can be carried out.

TABLE 5-4 F	RAII	GRINDING	SPECIAL	SITES

LOCATION	FREQUENCY
Mine Loops	6 months
Newman Yard	1 year
Hedland Yard	1 year
Mooka Staging Facility	1 year

5.8.2.1. Grinding Newly Installed Rail

All newly installed rails, including on tangent and curved track and turnouts require grinding prior to the passage of 8MGT of traffic.

If tangent track cannot be ground prior to 8MGT of traffic then it shall be ground prior to the passage of 15MGT of traffic and shall be monitored until completed.

Track Maintenance Code Of Practice

5.8.3. Tolerances of Finish

TABLE 5-5 GRINDING PROFILE TOLERANCES

TYPE	0° TO 20°	20º TO 60º	NEGATIVE ANGLES
High Rail	±0.10 mm	±0.10 mm	±0.15 mm
Low Rail	±0.10 mm	±0.15 mm	±0.15 mm
Tangent	±0.10 mm	±0.10 mm	±0.15 mm
Switches	±0.10 mm	±0.10 mm	±0.15 mm

5.8.4. Reference Documents

SPEC-077-M-00002	Rail Grinding Machine Specification
------------------	-------------------------------------

Track Maintenance Code Of Practice

5.9. RAIL STRESS CONTROL (OPPORTUNITY)

Rail stress should be monitored and controlled to ensure that the rail is maintained within a design neutral (stress free) temperature range as specified in Section 2.2.

5.9.1. Activity

Assessment and, if necessary adjustment shall be carried out whenever the following events occur:

- new or recycled rail is being laid into track;
- a stress check is being carried out;
- the rail adjustment is suspected out of tolerance, for example due to the presence of:
 - o buckles;
 - break-aways / pull-aparts;
 - o significant skewing of sleepers;
 - mechanical joint failure;
 - o significant rail creep observed by bound switches or creep pegs;
 - significant changes in track alignment;
 - o installation of rail into track outside of the design stress free temperature.

CWR that is being stress adjusted should be subject to the following maximum adjustment lengths:

TABLE 5-6 STRESS ADJUSTMENT BASED ON CURVE RADIUS

CURVE RADIUS	MAXIMUM LENGTH OF ADJUSTMENT
> 1600m to tangent	500 metres
400m < to ≤ 1600m	300 metres
≤ 400m	150 metres

Note that the actual adjustment length will depend on equipment and practices used to ensure an even distribution of the adjustment over the adjustment length.

Track Maintenance Code Of Practice

6. TERMINOLOGY

Track Maintenance Code Of Practice

AT	Aluminothermic Weld
AI	A type of sleeper used under turnouts and special track. Bearers are generally larger in dimension than
Bearers	standard sleepers to provide support for both tracks as well as the increased loading experienced under such track structures
Catchpoint	A single or double blade switch placed on a siding to protect the mainline by derailing rail traffic that may enter or foul an adjacent running line
Check rails	A rail (inside or outside the running rail) used to restrain lateral movement of a derailed wheel-set. Used to protect structures or control the lateral movement of the wheel-set on bridges or in other higher risk situations.
Clearance	The distance between the nearest points of vehicles on adjacent tracks or from the nearest point of a vehicle to the face of an adjacent structure
Closure Rail	Rails making up a turnout or special track diamond configuration that are apart from those in the switch assemblies, crossings and checkrail units.
Competence	The possession of skills and knowledge, and the application of them to the standards required in employment
Converging (lines)	Lines meeting and joining to become one
Cross level	The difference in the rail level of the two rails in a track
Crossing	A track component that enables a wheel travelling along one rail to pass through the rail of a track which crosses its path. Also known as a 'Frog'
Crossing loop	A line, secondary to the mainline, provided primarily for crossing or passing train, track maintenance and rail vehicles
Crossover	A means by which trains pass from one track to an adjacent track. A crossover is constructed from two turnouts, one on each track facing opposite directions
CWR	Continuously Welded Rail
Derailer	A device which when fitted over the rail will prevent unwanted rail vehicle movements by derailing those vehicles
Diverging line	Dividing into two lines
Dragging Equipment Detector (DED)	A device fitted at rail height to detect any equipment dragging from a rail vehicle
Duplicated track (Bi- Directional)	Duplicated track sections permit rail traffic to follow, pass, cross, overtake or be routed around track obstructions and must not to be confused with loops
Failure	The consequence of a fault or error
Fastening	A combination of base plates, and fasteners used to attach the rail to the bearer
Fault	A defect in a system, product or other change which may cause an error
Fishplate	A metal joint bar used to connect adjacent rails. Refer to AS 1085.2
Formation	The full width of the top of embankments or the bottom of cuttings upon which the track is constructed
Frog	See Crossing
Gauge	The distance between the inside running (or gauge) faces of the two rails, measured at the gauge point.
Gauge face / Gauge line	The running side of a running rail
Guard rail	See Check rails
Heel block	Single or multiple blocks, depending on switch type, that rigidly fix the switch rail to the adjacent rail in the correct geometric configuration

Standard Track Maintenance Code Of Practice

Heel joint	The joint around which a pivot heeled switch rotates. The joint is made up of a steel block with fishplates and bolts which are designed to allow this movement
Hi-rail	A rubber tyred road / rail vehicle fitted with retractable rail wheels that can be readily placed on or removed from track at suitable locations
Hot Bearing Detector (HBD)	Hot Bearing Detector. (Sometimes called a Hot Box Detector). See track warning equipment
Hot Wheel Detector (HWD)	See track warning equipment
HSE	Health, Safety, Environment. Standards that aim to protect employees, the public, the environment and to comply with applicable laws to protect the Company's reputation.
Insulated Rail Joint (IRJ)	A rail joint manufactured from components and assembled such that the joined rails are electrically insulated from each other
Kilometre Location	The distance in kilometres from a set point, used to identify a specific place in a section
Level crossing	A level crossing is a location where the rail line and a road or pedestrian walkway cross paths on the same level
LH / RH	Left Hand / Right Hand
Loop (track)	The portion of track adjacent to and connected to the mainline within a station limits. Used for trains and / or other rail vehicles to follow, cross, pass or shunt. It is primarily a running track, not an inspection siding and is not to be confused with an up or down running track
LWR	Long Welded Rail
May	Denotes an option that is permitted
MGT	Million Gross Tonnes
Mini-plug	A temporary form of rail defect removal that involves cutting out a small portion of rail (containing the defect) and replacing it with a piece of rail of the same profile, type and wear. Mini-plugs are secured in track using mechanical joints.
NDT	Non-destructive Testing
Neutral temperature	The rail temperature at which the track has no longitudinal thermal stresses
PMI	Preventative Maintenance Instruction
Points	See Switch
Rail defect	A surface or internal fault in the rail which may affect the serviceable life of the rail
Rail cant	The angle at which running rails are inclined from vertical to the plane of the track
Rail head	That part of the rail which provides a running and guiding surface for the wheel
Rail – head hardened	Rail which has had the head heat treated after rolling to increase the hardness. Refer to AS 1085.1
Rail—joint— Mechanical	A rail joint made by mechanical means (as opposed to welding), generally using bolted fishplates
Rail network	Rail lines vested in and owned by BHP Billiton Iron Ore including passing loops and turnouts from those lines and associated rail infrastructure facilities including rail yards and load-outs. All areas within 3 metres of the nearest rail of any line

Track Maintenance Code Of Practice

Rail web	The vertical section of the rail that joins the head to the foot
RBM crossing	Rail Bound Manganese crossing
RCF	Rolling Contact Fatigue
Resilient fastenings	Resilient fastening assemblies provide a flexible restraint that holds the rail in position on the sleeper or other support structures by providing a spring force of known magnitude
Rolling stock	Any vehicle that operates on or uses a rail track, excluding a vehicle designed for both on and off track use. A collective term for a group of cars of various types, including locomotives
Safeworking	System of operating rules and procedures for the safe operation of rail vehicles and the protection of people and property on or in the vicinity of the rail
Safeworking Procedure	An approved written procedure for the execution of specific tasks and associated safety requirements
Shall	To be understood as mandatory
Should	Indicates a recommendation.
Siding	A section of line, other than a running line, used for shunting and the storage of rail vehicles
SNX	Swing Nose Crossing
Speed restriction	A reduction of the maximum permitted speed for a specified portion of the track
Stream Flow Detector (SFD)	See track warning equipment
Superelevation	The difference in level between the two rails of a track on a curve
Switch	A switch assembly consists of either a right and left hand switch and stockrail, complete with associated plating and fastenings
Switch and crossings	See Turnout
Switchblade	A machined tapered rail that allows the direction of a train to be altered to another line
TCI	Track Condition Index
TCMS	Track Condition Monitoring System
TCMV	Track Condition Monitoring Vehicle
Track	The guidance system (rails) on which the rolling stock travels and its immediate support which may include rail connectors, sleepers, ballast, switch and crossings, and substitute devices where used
Track buckle	A substantial misalignment contributed to by longitudinal thermal stresses overcoming the lateral resistance of the track
Track geometry	The vertical and horizontal alignment, cross level and superelevation of the track
Track Maintenance Machine (TMM)	A self-propelled rail vehicle used solely for the maintenance of the railway
Track section	Any portion of track, the limits of which are identified by location marker boards or fixed signals
Track speed	The maximum allowed train speed for a portion of track
Trackside Monitoring Equipment	Devices that monitor and respond to track, and rail vehicle conditions. (See trackside warning equipment)

Track Maintenance Code Of Practice

Trackside warning equipment	Those devices installed at various sites on track to detect and report on the condition of the track and passing rail traffic as they pass the detector location. These include: • (ABD) acoustic bearing detector; • (CRD) cold rail detector; • (CWD) cold wheel detector; • (DED) dragging equipment detector; • (HBD) hot bearing detector; • (HWD) hot wheel detector; • (SFD) stream flow detector; and • (WIM) wheel impact monitor
Train control	The control of trains by supervision of train running operations, coordination and forward planning of all elements of the rail system within the specified boundaries. Includes the monitoring of all traffic operated within the network to standards specified
TSR	Temporary Speed Restriction
Turnout	A complete track assembly that allows rolling stock to converge or diverge into or from a single track (respectively). A turnout consists of the following: (a) Switch assembly, (b) 'V' Crossing, (c) Checkrails, (d) Closure rails, (e) Bearers, (f) Plates, fasteners and rail joints, (g) Switch operating equipment
Twist	The change in the cross level between two track locations separated by a nominated distance interval
VOC	Verification of Competency
Work Instruction (WIN)	Documents which describe how a process is performed
Yard	A system of tracks, other than mainline running lines and sidings, used for making and breaking up trains, loading and unloading of trains and for other purposes, such as repair or storage of rolling stock

Track Maintenance Code Of Practice

7. APPENDICES

Track Maintenance Code Of Practice

FIGURE 4: DEFINITION OF SWITCH AND CROSSING AREAS

Track Maintenance Code Of Practice

FIGURE 5: SWITCH AREA DEFINITIONS

Track Maintenance Code Of Practice

FIGURE 6: CHECK RAIL EFFECTIVENESS DEFINITIONS

NOTE: Check rail effectiveness should be measured in the vicinity of the crossing nose. A distance equal to 2 times the distance from the Virtual Point to the start of the crossing nose (with the start of the crossing nose as the central point) is the critical area for the crossing.

Track Maintenance Code Of Practice

FIGURE 7: MEASUREMENT OF CROSSING NOSE BREAKS

NOTE: The distance (D) from the virtual point (VP) is defined as follows: D=(Width of the break at gauge line) x (crossing angle), e.g. D=160 mm for a 16 mm wide break on a 1 in 10 crossing.

FIGURE 8: CROSSING NOSE DEFINITIONS

Track Maintenance Code Of Practice

FIGURE 9: FLANGEWAY DEPTH AND CLEARANCE DEFINITIONS

Track Maintenance Code Of Practice

FIGURE 10: MEASUREMENT OF SWITCH BLADE BREAKS

Track Maintenance Code Of Practice

FIGURE 11: FLANGEWAY DEPTH AND CLEARANCE DEFINITIONS

Track Maintenance Code Of Practice

End of Document