Searching and Sorting

Jeremy Chow 10-2-2018

Table Of Content - Searching

- **❖** Linear Search
- Binary Search
- Binary Search on Answer
- Ternary Search

Table Of Content - Sorting

- Comparison Based Sorting
 - ➤ Bubble Sort
 - ➤ Insertion Sort
 - > Selection Sort
 - ➤ Merge Sort
 - > Quick Sort

- **❖** Non-comparison Based Sorting
 - > Counting Sort
 - > Radix Sort

Searching - Introduction

- Usage
 - Locating an object in an array
 - > Finding an optimal number for a problem
- Often require preprocessing

Linear Search (線性搜尋法)

- * aka Sequential Search
- ❖ Most basic and freuently used seaching algorithm
- Start checking from the begining to the end
- (Situational) Optimization Stop until a match is found

Linear Search

* Example - Searching an element X in an array A with distinct elements

```
for(int i = 0; i < n; i++)
    if(a[i] == x){
        pos = i;
        break;
    }</pre>
```

Linear Search

Situation	Time Complexity
Best	O(1) / O(N)
Worst	O(N)
Average	O(N)

Linear Search

- ❖ If we need to perform searching for Q times on an array with size N
- Overall time complexity = O(NQ)
- When N and Q is large (e.g. N, $Q \le 10^5$)
- Program will not be able to execute in 1s

* We need some searching algorithm faster than linear search!

Binary Search (二分搜尋法)

- ❖ Recall the "Guess Number" (估數字) game
- ❖ We do not need to guess 100 times in order to guess the target number
- ❖ Instead the optimal way is to guess the middle number within the range
- \bullet e.g target = 11

- $49 \rightarrow 1 24 \rightarrow 1 11 \rightarrow 7 11$
- \bullet 10 11 \rightarrow 11 11 \rightarrow 11
- * Required almost 7 guess!

- * Requirment : Sorted
- ❖ For each search, eliminate impossible region
 - \rightarrow $A_0 \le A_1 \le ... \le A_{n-1}$
 - \rightarrow If key < A_k, then key < A_i for i \ge k
 - \rightarrow If key $> A_k$, then key $> A_i$ for $i \le k$

1	3	3	4	6	7	7	8	9	9	10	11	12	15	18
---	---	---	---	---	---	---	---	---	---	----	----	----	----	----

- **•** If key = 6 and k = 7 (A_k = 8)
- \bullet There is no point on searching $A_{8..14}$

- ❖ Set the searching range as the entire array
- Repeat the following process until the key is found
 - > Calculate the midpoint
 - Compare key with A[midpoint]
 - ➤ If key < A[midpoint], then continue searching on the first half of the array
 - A[midpoint] to A[upper bound] does not contain the key
 - ➤ If key > A[midpoint], then continue searching on the second half of the array
 - A[lower_bound] to A[midpoint] does not contain the key

- ❖ Seems like correct....
- Try to search 6 on array A

```
int lb, mid, ub;
lb = 0; ub = n - 1;

while (lb <= ub) {
    mid = (lb + ub) / 2;
    if (key <= a[mid]) ub = mid;
    else lb = mid;
}

if(key == a[ub]) printf("FOUND\n");
else printf("NOT FOUND\n");</pre>
```

lb							mid							ub
1	3	3	4	6	7	7	8	9	9	10	11	12	15	18
lb	mid ub													
1	3	3	4	6	7	7	8	9	9	10	11	12	15	18
			lb		mid		ub							
1	3	3	4	6	7	7	8	9	9	10	11	12	15	18
			lb	mid	ub									
1	3	3	4	6	7	7	8	9	9	10	11	12	15	18
lb mid&ub														
1	3	3	4	6	7	7	8	9	9	10	11	12	15	18
	Infinite loop!								I	I	I			

Correct Implementation

```
int lb, mid, ub;
lb = -1; ub = n;

while (ub - lb > 1) {
    mid = (ub + lb) / 2;
    if (key <= a[mid]) ub = mid;
    else lb = mid;
}

if (ub < n && key == a[ub]) printf("FOUND\n");
else printf("NOT FOUND\n");</pre>
```

❖ Time Complexity : O(log N)

- **\Delta** Why "mid = (ub + lb) / 2"?
 - > The expected area eliminated is largest

Applications

- > Check if an element exists in an array
- > Find its position if it exists
- > If it is not exists, the position it should be inserted into
- \rightarrow The smallest element $\ge x / \ge x$
- \rightarrow The largest element \leq x / \leq x

❖ C++ useful functions

- binary_search(begin, end, x)
 - returns true / false whether x is present
- lower_bound(begin, end, x)
 - \blacksquare returns the pointer to leftmost element $\ge x$
- > upper bound(begin, end, x)
 - \blacksquare returns the pointer to leftmost element > x

Binary Search on Answer

- Binary Search on "Answer" instead of array
- ❖ If a task asks you to find max possible value such that...
- Assume the answer is x, then you can binary search for x if:
 - There is an efficient way to check whether a value v is possible
 - \rightarrow It is possible for all x' <= x; and it is impossible for all x' > x

❖ Vice versa, you can binary search for minimum possible value if...

Impossible	X	Possible
------------	---	----------

Binary Search on Answer

Greedy, Dynamic Programming, ... etc. may be used in check(x)

Binary Search on Answer

- \diamond Let the function be f(x)
- lower_bound and upper_bound of answer be lb and ub

ightharpoonup Time Complexity : $O(f(x) \log(ub - lb))$

M1023 Seating Plan

- ❖ Given an array a[1..n], choose m elements such that the minimum absolute difference is maximized
- Observation 1
 - For $x \ge 0$, if we can choose m elements such that the minimum absolute difference is $\ge x$
 - \triangleright We can always choose m elements such that the minimum absolute difference is $\ge x 1$
 - \triangleright We are going to find the maximium x!

Possible	X	Impossible
		_

M1023 Seating Plan

Observation 2

- > Optimal way to choose m element with minimum absolute difference >= target :
- \triangleright Assume the array is sorted, we always choose the a[0](smallest)
- \rightarrow Then we choose the first element such that a[i] a[pre] >= target
- > Repeat previous step until m element is chosen
- ➤ If m element can not be chosen, then there is no way to choose m element with minimum absolute difference >= target

M1023 Seating Plan

Answer is $\geq = 6!$

 \Rightarrow Example: m = 3

Answer is < 16 such you can't choose 3 element with minimum absolute difference 16!

Ternary Search (三分搜尋法)

- Find the max/min of a single-peek function
- ❖ If we want to find minimum value of a function
- Requirments:
 - \rightarrow f(x-1) < f(x) for all lb <= x < a (to the left of a)
 - \rightarrow f(x) < f(x+1) for all a < x <= ub (to the right of a)
 - ➤ lb and ub are the lower_bound and upper_bound of the answer
 - > Note the stricty < condition
- \bigstar Exception: f(x) = f(x + 1) = minimum is acceptable
- Useful in many optimization problems

Ternary Search

- Repeat the following process until the precision is high enough
 - ➤ Let m1 be the one-third point, m2 be the two-third point of the searching range
 - \blacksquare m1=low+(high-low)/3, m2=high-(high-low)/3
 - \rightarrow If f(m1) < f(m2), then continue searching from m1 to high
 - The peak value does not lie between low to m1
 - ➤ Else continue searching from low to m2
 - The peak value does not lie between m2 to high
- ❖ Time Complexity : *O(logN)*

Ternary Search

```
double lo = lb, hi = ub, m1, m2;
while(hi - lo > EPS){
    m1 = (lo * 2 + hi) / 3;
    m2 = (lo + hi * 2) / 3;
    if(f(m1) > f(m2)) lo = m1;
    else hi = m2;
}
printf("MINIMUM %.121f\n", lo);
```

Conclusion - Searching

❖ Use different searching algorithm in different situations

- ❖ Number of element is small / time limit is not strict → linear search
- **❖** Searching on sorted array → binary search
- ❖ Searching extreme value on a single-peek function → ternary search

Sorting - Introduction

- Reordering array elements into specific order (usually ascending)
- Sometime sorting is used for algorithm preprecessing
 - > Searching
 - > Greedy
 - > Dynamic programing

Sorting - Introduction

- Many ways to sort an array
- Some are faster, and some are slower
- Some are easier to code, some are harder to code

Comparison Based	Comparison Based	Non-comparison Based			
Sorting (Slow)	Sorting (Faster)	Sorting			
Bubble SortInsertion SortSelection Sort	Quick SortMerge Sort	Counting SortRadix Sort			

Bubble Sort (冒泡排序法)

- Starting from the start of the array, compare two adjacent elements
 - \rightarrow if (a[i] > a[i+1]) swap(a[i], a[i+1]);
- After we process the array for one round, the greatest element will be in the correct place (right-most)
- ❖ In kth iteration, the kth largest element will be bubbled to the correct place
- Other elements may still be out of order
- Repeat this process for n 1 times

- ❖ Bubble Sort Dry run
- Sorting an array with size 5

```
for(int i = 0; i < n - 1; i++)
  for(int j = 0; j < n - i - 1; j++)
        if (a[j] > a[j + 1]) {
            int tmp = a[j];
            a[j] = a[j + 1];
            a[j + 1] = tmp;
        }
```

Round	A[0]	A[1]	A[2]	A[3]	A[4]
i=0,j=0	2	4	5	1	3
i=0,j=1	2	4	5	1	3
i=0,j=2	2	4	5	1	3
i=0,j=3	2	4	1	5	3
i=1,j=0	2	4	1	3	5
i=1,j=1	2	4	1	3	5
i=1,j=2	2	1	4	3	5
i=2,j=0	2	1	3	4	5
i=2,j=1	1	2	3	4	5
i=3,j=0	1	2	3	4	5
Result	1	2	3	4	5

```
for(int i = 0; i < n - 1; i++)
    for(int j = 0; j < n - i - 1; j++)
        if (a[j] > a[j + 1]) {
            int tmp = a[j];
            a[j] = a[j + 1];
            a[j + 1] = tmp;
        }
```

Optimized version

Advantage

- > Easy to code, understand and memorize
- > Require little additional space
- \triangleright O(N) when array is almost sorted (Optimized)

Disadvantage

- \triangleright Best (without optimization) = Worst = Average time complexity = O(N²)
- ➤ Worst case : Reverse order, the total number of comparisons

$$(n-1) + (n-2) + ... + 2 + 1 = n * (n-1) / 2$$

- ❖ Want to know no. of adjacent swapping to sort an array without using bubble sort?
- Inversion
 - \rightarrow number of pair (i, j) where i < j but a[i] > a[j]
 - \triangleright Sorted = 0 inversion
 - \triangleright Reversed order = n * (n 1) / 2 inversions
- ❖ Inversion can be find in O(NlogN) in many ways

Insertion Sort (插入排序法)

- Method we often used in sorting playing cards
- ❖ We have some sorted playing cards in our hand
- Now we receieved a new playing card
- Insert it into the right position

Insertion Sort

- ❖ Iterate for N-1 times, from 1 to N-1 (Zero Based)
- ❖ In ith iteration, we have i sorted playing cards in our hand and now we receive a new playing cards A[i] (
- ❖ We find the right position of A[i] and insert it into there

Insertion Sort

- ❖ Insertion Sort Dry run
- Sorting an array with size 5

```
for(int i = 1; i < n; i++){
    for(int j = i; j >= 1; j--)
        if(a[j - 1] > a[j])
        swap(a[j - 1], a[j]);
        else break;
}
```

Round	A[0]	A[1]	A[2]	A[3]	A[4]
i=1,j=1	2	4	5	1	3
i=2,j=2	2	4	5	1	3
i=3,j=3	2	4	5	1	3
i=3,j=2	2	4	1	5	3
i=3,j=1	2	1	4	5	3
i=4,j=4	1	2	4	5	3
i=4,j=3	1	2	4	3	5
i=4,j=2	1	2	3	4	5
Result	1	2	3	4	5

Insertion Sort

❖ Number of swap = inversions too!

Insertion Sort

- Advantage
 - > Similar to those mentioned in Bubble Sort

- Disadvantage
 - \triangleright Time Complexity is still O(N²)

Selection Sort (選擇排序法)

- Repeatedly moving the maximum / minimum in the unsorted part to the front of the unsorted part
- ❖ Like what we usually did in the beginning of 鋤大D

Selection Sort

- ❖ Iterate for N-1 times
- ❖ In ith iteration, find the maximum element in a[0..n-i-1]
- ❖ Swap it with a[n-i-1]

Selection Sort

- Selection Sort Dry run
- Sorting an array with size 5

```
for (int i = 0; i < n - 1; i++){
    int ind = 0;
    for (int j = 1; j < n - i; j++){
        if (a[j] > a[ind])
            ind = j;
    }
    swap(a[ind], a[n - i - 1]);
```

Round	A[0]	A[1]	A[2]	A[3]	A[4]
Original	2	4	5	1	3
i=0	2	4	3	1	5
i=1	2	1	3	4	5
i=2	2	1	3	4	5
i=3	1	2	3	4	5
Result	1	2	3	4	5

Selection Sort

- Advantage
 - > Easy to code, understand and memorize
 - > Require little additional space
- Disadvantage
 - \triangleright Time complexity is still O(N²)

 \clubsuit Max no. of swap = N-1 instead of N * (N-1) / 2

Merge Sort (合併排序法)

- \bullet If we have 2 sorted array, we can merge them into 1 sorted array in O(N)
- ❖ Make sure of this idea
- Divide-and-conquer
 - > Split large problem into smaller problems

- Split an array a[lo..hi] into two halves and recursively sort them
 - \rightarrow a[lo..mid] and a[mid + 1..hi]
 - > Split "sorting N elements" into two "sorting N / 2 elements"
- ♦ Merge a[lo..mid] and a[mid + 1..hi] into a[lo..hi] in O(N)
- Now we sorted a[lo..hi]!

- Split an array a[lo..hi] into two halves and recursively sort them
 - \rightarrow a[lo..mid] and a[mid + 1..hi]
 - > Split "sorting N elements" into two "sorting N / 2 elements"

```
♦ Merge a[lo..mid] and a[mid + 1..hi] into a[lo..hi] in O(N)
 int p = lo;
 int p1 = mid + 1;
 int ind = lo;
 while(p <= mid && p1 <= hi){
        if(a[p] \leftarrow a[p1])
        tmp[ind++] = a[p++];
        else
        tmp[ind++] = a[p1++];
 while(p <= mid) tmp[ind++] = a[p++];</pre>
 while(p1 <= hi) tmp[ind++] = a[p1++];</pre>
 for(int i = lo; i <= hi; i++)
 a[i] = tmp[i];
```

- * Compare elements of a[lo..mid] and a[mid+1..hi] from the beginning
- \Leftrightarrow if X <= Y then Z = X
- \Leftrightarrow else Z = Y
- Insert the rest of another array

when one of the array finish processing

```
X
```

```
int p = lo;
int p1 = mid + 1;
int ind = lo;
while(p <= mid && p1 <= hi){
      if(a[p] <= a[p1])
      tmp[ind++] = a[p++];
      else
      tmp[ind++] = a[p1++];
while(p <= mid) tmp[ind++] = a[p++];</pre>
while(p1 <= hi) tmp[ind++] = a[p1++];</pre>
for(int i = lo; i <= hi; i++)</pre>
a[i] = tmp[i];
```



```
int p = lo;
int p1 = mid + 1;
int ind = lo;
while(p <= mid && p1 <= hi){</pre>
      if(a[p] <= a[p1])
      tmp[ind++] = a[p++];
      else
      tmp[ind++] = a[p1++];
while(p \le mid) tmp[ind++] = a[p++];
while(p1 <= hi) tmp[ind++] = a[p1++];</pre>
for(int i = lo; i <= hi; i++)</pre>
a[i] = tmp[i];
```

Complete Implementation (One Based)

```
void merge_sort(int lo, int hi){
      if(lo == hi) return;
      int mid = (lo + hi) / 2;
      merge_sort(lo, mid);
      merge_sort(mid + 1, hi);
      int p = lo;
      int p1 = mid + 1;
      int ind = lo;
      while(p <= mid && p1 <= hi){</pre>
            if(a[p] <= a[p1])
            tmp[ind++] = a[p++];
            else
            tmp[ind++] = a[p1++];
      while(p <= mid) tmp[ind++] = a[p++];
      while(p1 <= hi) tmp[ind++] = a[p1++];</pre>
      for(int i = lo; i <= hi; i++)</pre>
      a[i] = tmp[i];
```

- Merge Sort follows divide-and-conquer approach
- Divide:
 - \triangleright Divide the n-element sequence into two (n/2)-element sequences
- Conquer:
 - > Sort the two subsequences recursively
- **Combine:**
 - ➤ Merge the two sorted subsequence to produce the answer

- **❖** Best = Worst = Average time complexity : O(NlogN)
- \diamond Way better compare to $O(N^2)$
- ❖ Can sort 10⁵ numbers within a second

* Can be used to find out the no. of inversions!

Quick Sort (快速排序)

- Similar algorithm with Merge Sort
- Use Divide-and-Conquer approach again!
- Instead of split the array into two equal part
- ❖ Pick a pivot (支點) p, separate the array into two part
- ❖ One contain value < p, One contain value > p

- In each function callwe need to sort the red part
- ❖ We split them into two red part
- * After some number of steps
- ❖ The array will become sorted

- ❖ We choose the middle element as pivot
- ❖ You can choose random element as pivot too
- Performance depends on choice of pivot

```
void quick_sort(int lo, int hi){
      if(lo >= hi) return;
      int mid = (lo + hi) / 2;
      int pivot = a[mid];
      int i = lo - 1, j = hi + 1;
      while (i < j) {
            do ++i; while (a[i] < pivot);</pre>
            do --j; while (a[j] > pivot);
            if(i < j) swap(a[i], a[j]);
      quick sort(lo, i - 1);
      quick sort(j + 1, hi);
```

- Divide-and-conquer process for sorting an array A[lo..hi]
- Divide:
 - ➤ A[lo..hi] is partitioned into two nonempty subarrays A[lo..q] and A[q+1..hi] such that each element of A[lo..q] is less than each element of A[q+1..hi]
- **Conquer:**
 - \rightarrow The two subarrays A[lo..q] and A[q+1..hi] are sorted by recursive calls to quicksort.

- ❖ Best and Average time complexity = O(NlogN)
- \bullet However, Worst time complexity = $O(N^2)$
- ❖ We can construct a data such that it runs really really slow

❖ Although in most of the case, the time complexity of Quick Sort is O(NlogN)

Comparison Based Sorting

- \bullet We have some O(N²) sorting algorithm
- ❖ We can speed it up by using some O(NlogN) sorting algorithm
- Can we improve more?

- ❖ By some mathematical proof (refers to last year slide, P.36-37)
- * We can prove that the time complexity lower bound for comparison based sorting is O(NlogN)

Non-comparison Based algorithm

- **❖** Sorting without comparison (< or >)
- Does not always work
 - > Sorting floating point number
- Use depends on situations
 - data type
 - data range

Counting Sort (計數排序法)

- $Assume 1 \le A[i] \le M$ and all a[i] are integers
- * Count the occurrence of numbers in the array
- ❖ Add 1 to index x of the array cnt
 - \rightarrow If a[i] = x, then cnt[x]++;
- * After processing for the n numbers
- ❖ We get the frequency array cnt
- ❖ Iterate from 1 to M, we print number i for cnt[i] times

Counting Sort

Array A	2	4	5	1	3	1
	Index	1	2	3	4	5
Array cnt	cnt[i]	2	1	1	1	1
Result	1	1	2	3	4	5

Counting Sort

```
int a[] = \{2, 4, 5, 1, 3, 1\};
int n = 6;
int cnt[6];
int main(){
      for(int i = 0; i < n; i++)</pre>
      cnt[a[i]]++;
      for(int i = 1; i <= 5; i++)
             for(int j = 0; j < cnt[i]; j++)</pre>
             printf(" %d ", i);
      printf("\n");
```

Result

Counting Sort

- ❖ M is the range of the data
- \bullet Time complexity = O(M + N), Space complexity = O(M)
- Very fast sorting algorithm when M is small
- \clubsuit Works for sorting character too (M = 26 / 52)

- ***** When M is large, e.g. $1 \le A[i] \le 10^9$
- Counting Sort would be too slow

Radix Sort (基數排序法)

- aka card sort
- Sort n integers. Each integer has w digits
- For digit i = 0 (least-significant) to w 1 (most significant)
 - > Prepare 10 lists, one for each digit 0, 1, 2, ..., 9
 - ➤ Loop through the array: If the i-th digit of a number is x, insert it into list x
 - > Concatenate the 10 lists to form the new array for the next step

- ❖ Initialize an array of 10 buckets to empty
- \bullet for i = 1 to N
 - > place A[i] into the bucket with its last digit
- Use the same process to sort the second last digit
- Repeat until the first digit

Radix Sort example

(n = 8, w = 3)

Step i = 0 (units digit)

Result
251
671
401
532
602
335
477
237

Radix Sort example

From previous step:
251
671
401
532
602
335
477
237

Radix Sort example

Step i = 2 (hundreds digit)

0	
1	
ж.	

т.		
2	237	251

3	335
_	000

4	401	477

5	532
9	302

6	602	671

	7
ï	_

	Q	
	o	
_		

Result:

```
int a[] = {477, 251, 671, 532, 237, 401, 602, 335};
int n = 8;
vector <int> bucket[10];
int main(){
      for(int i = 0; i < 3; i++){
            for(int j = 0; j < 10; j++)
            bucket[j].clear();
            for(int j = 0; j < n; j++){</pre>
                  int digit = (a[j] \% (int)pow(10, i + 1)) / (int)pow(10, i);
                  bucket[digit].push back(a[j]);
            int p = 0;
            for(int j = 0; j < 10; j++){
                  for(int k = 0; k < bucket[j].size(); k++)</pre>
                  a[p++] = bucket[j][k];
      for(int i = 0; i < n; i++)</pre>
      printf(" %d ", a[i]);
      printf("\n");
```

Result

237 251 335 401 477 532 602 671

- **❖** Time Complexity : O(nw)
- \Rightarrow Space Complexity : O(n + w)

STL Support

Searching

- > lower bound
- > upper_bound
- binary_search
- ➤ equal_range

Sorting

- sort (default ascending)
- > You can write your own comparison criteria
- > e.g. sort descending

```
bool cmp(int u, int v){
    return u > v;
}
sort(a, a + n, cmp);
```

Q&A