Slovník Laplaceovy transformace, důležité vztahy a pravidla

	Obraz $F(s)$	
Definice: $f(t), t > 0$	$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt, \ s \in \mathbb{C}$	
$\int_0^\infty \mathrm{e}^{-\sigma_0 t} f(t) \mathrm{d}t \text{ existuje pro } \sigma_0 \in \mathbb{R}$	$F(s)$ je definováno pro Re $s>\sigma_0$	
Linearita: $af(t) + bg(t), \ a, b \in \mathbb{R}$	aF(s) + bG(s)	
Konvoluce: $f * g := \int_0^t f(t - \tau)g(\tau) d\tau$	Součin: $F(s) \cdot G(s)$	
Derivace: $f'(t)$	sF(s) - f(0+)	
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0+) - \dots - f^{(n-1)}(0+)$	
Integrace: $\int_0^t f(\tau) \mathrm{d}\tau$	$\frac{1}{s}F(s)$	
-tf(t)	Derivace: $F'(s)$	
$(-1)^n t^n f(t)$	$F^{(n)}(s)$	
$\frac{1}{t} f(t)$	Integrace: $\int_{s}^{\infty} F(x) dx$	
Posunutí: $f(t-a)u(t-a), a > 0$	$e^{-as}F(s) u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$	
$e^{-at}f(t)$	Posunutí: $F(s+a)$	
Změna měřítka: $f(ct), c > 0$	$\frac{1}{c}F\left(\frac{s}{c}\right)$	
Periodická fce: $f(t+p) = f(t)$	$\frac{\int_0^p e^{-st} f(t) dt}{1 - e^{-ps}}$	
f(t) , f(t+p) = -f(t)	$F(s) \coth \frac{ps}{2}$	

F(s)	f(t)	F(s)	f(t)
1	$\delta(t)$	$\frac{s}{(s^2+a^2)^2}$	$\frac{t\sin at}{2a}$
e^{-as}	$\delta(t-a)$	$\frac{s^2}{(s^2 + a^2)^2}$	$\frac{\sin at + at\cos at}{2a}$
$\frac{1}{s}$	1	$\frac{1}{(s^2 + a^2)(s^2 + b^2)}$	$\frac{b\sin at - a\sin bt}{ab(b^2 - a^2)}$
$\frac{1}{s^2}$	t	$\frac{s}{(s^2 + a^2)(s^2 + b^2)}$	$\frac{\cos at - \cos bt}{b^2 - a^2}$
$\frac{1}{s^n} \ (n \in \mathbb{N})$	$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{(s+a)^2 + b^2}$	$\frac{1}{b} e^{-at} \sin bt$
$\frac{1}{s^a} \ (a > 0)$	$\frac{t^{a-1}}{\Gamma(a)}$	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$
$\frac{1}{s+a}$	e^{-at}	$\frac{1}{s^4 - a^4}$	$\frac{\sinh at - \sin at}{2a^3}$
$\frac{1}{(s+a)^n} \ (n \in \mathbb{N})$	$\frac{t^{n-1}e^{-at}}{(n-1)!}$	$\frac{s}{s^4 + 4a^4}$	$\frac{\sin at \sinh at}{2a^2}$
$\frac{1}{(s+a)(s+b)}$	$\frac{e^{-at} - e^{-bt}}{b - a}$	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{\pi t}}$
$\frac{1}{s^2 + a^2}$	$\frac{1}{a}\sin at$	$\arctan \frac{a}{s}$	$\frac{\sin at}{t}$
$\frac{s}{s^2 + a^2}$	$\cos at$	$\frac{1 - e^{-ks}}{s}$	u(t) - u(t - k)
$\frac{1}{s^2 - a^2}$	$\frac{1}{a}\sinh at$	$\frac{1}{s^a} e^{-ks} \ (a > 0)$	$\frac{(t-k)^{a-1}}{\Gamma(a)} u(t-k)$
$\frac{s}{s^2 - a^2}$	$\cosh at$	$\frac{1}{(s^2+1)(1-e^{-\pi s})}$	$\frac{1}{2}(\sin t + \sin t)$
$\frac{1}{s(s^2+a^2)}$	$\frac{1 - \cos at}{a^2}$	$\frac{a \coth(\frac{\pi s}{2a})}{s^2 + a^2}$	$ \sin at $
$\frac{1}{s^2(s^2+a^2)}$	$\frac{at - \sin at}{a^3}$	$\frac{1}{s(1+e^{-as})}$	
$\frac{1}{(s^2+a^2)^2}$	$\frac{\sin at - at\cos at}{2a^3}$	$\frac{1}{s} \tanh as$	

Pozor! Vyskytuje-li se ve výrazu aa b, je vždy $a\neq 0,\, b\neq 0$ a $a^2\neq b^2.$