Meta-CY квантовые вычисления: спектральные графы на многообразиях Калаби-Яу

Евгений Монахов LCC "VOSCOM ONLINE" Research Initiative https://orcid.org/0009-0003-1773-5476

2025

1. Центральная идея

В данной работе вводится вычислительная модель, в которой носителями информации являются не только кубиты или кудиты, но и волновые функции на многообразиях Калаби–Яу (СҮ). Подход объединяет геометрию СҮ с методами спектральной теории графов.

1.1 СҮ-бит

Для многообразия Калаби–Яу M комплексной размерности k CY- δum определяется как

$$\psi \in L^2(M, \mathbb{C}^d), \tag{1}$$

где d — локальная размерность (аналог кудита).

1.2 СҮ-графы

Система СY-битов может быть представлена графом G = (V, E), вложенным в M. Вес рёбер определяется расстояниями и топологическими циклами:

$$w_{ij} = f(\operatorname{dist}_{M}(p_i, p_j), \operatorname{Top}(M)). \tag{2}$$

1.3 Спектральный лапласиан

Лапласиан на таком графе кодирует как метрические, так и топологические свойства M. Собственные значения и векторы описывают возможные энергетические состояния и переходы.

2. Мотивация

- Классические компьютеры ограничены $\sim 10^{12}$ операций/с.
- Квантовые компьютеры: 2^n состояний за счёт кубитов.

- Кудиты: d^n состояний при d > 2.
- СҮ-биты: экспоненциальное расширение за счёт структуры СҮ.

3. Формальная структура

- Гильбертово пространство: $L^2(M, \mathbb{C}^d)$.
- Представление в виде графа: оператор смежности А.
- Гамильтониан:

$$H = -\Delta_{CY} + V + H_{\text{int}}$$

где Δ_{CY} — лапласиан на СҮ.

4. Потенциал масштабирования

Система	Локальная размерность	n = 10 узлов
Кубиты (2D)	2	$2^{10} \sim 10^3$
Кудиты $(d = 10)$	10	10^{10}
CY-3D $(m = 10)$	10^{3}	10^{30}
CY-6D $(m = 10)$	10^{6}	10^{60}

5. Дорожная карта исследований

- 1. Теоретика: СҮ-биты, СҮ-связи, лапласианы.
- 2. Математика: mirror symmetry, инварианты, топология СҮ.
- 3. Симуляции: спектральный анализ на торах T^2 , T^3 .
- 4. Эксперименты: прототипы на фотонных или ионных системах (d = 3 5).
- 5. Долгосрочная цель: масштабируемый СҮ-квантовый компьютер.

6. Заключение

Предложен новый подход в квантовой информатике: Meta-CY $\kappa вантовые вычисления. Он объединяет геометрию и топологию <math>CY$ c теорией спектральных графов, открывая возможность радикального расширения вычислительных мощностей.

Citation (BibTeX - EN)

@misc{CY_meta_quantum_2025,

author = {Evgeny Monakhov and LCC "VOSCOM ONLINE" Research Initiative},

title = {Meta-Quantum Computing on Calabi--Yau Manifolds},

year = {2025},
publisher = {Zenodo},