第14章 代数系统

计算机工程与科学学院 封卫兵

14.2 代数系统

- 14.2.1 代数系统的定义与实例
- 14.2.2 代数系统的分类
- 14.2.3 子代数系统与积代数系统
- 14.2.4 代数系统的同态与同构

14.2.1 代数系统定义与实例

- **定义14.7** 非空集合 S 和 S 上 k 个一元或二元运算 f_1 , f_2 , ..., f_k 组成的 系统称为一个代数系统, 简称代数,记作 < S, f_1 , f_2 , ..., f_k > .
- **例**: 1) <N, +>, <Z, +, ·>, <R, +, ·> 是代数系统, +和·分别表示普通加法和乘法;
 - 2) $< M_n(\mathbf{R}), +, \cdot >$ 是代数系统,+ 和 · 分别表示 n 阶 $(n \ge 2)$ 实矩阵的加法和乘法;
 - 3) $\langle P(S), \cup, \cap, \rangle$ 是代数系统, ∪和 ∩ 为并和交, \sim 为绝对补;

14.2.1 代数系统定义与实例

例: 4) $<\mathbf{Z}_n$, \oplus , $\otimes>$ 是代数系统, $Z_n = \{0, 1, ..., n-1\}$, \oplus 和 \otimes 分别 表示模 n 的加法和乘法,对于 $x, y \in \mathbf{Z}_n$,

 $x \oplus y = (x + y) \mod n$, $x \otimes y = (xy) \mod n$.

注:

- 1) 对于代数系统 $< S, f_1, f_2, ..., f_k >$, 其中的集合 S 称为载体;
- 2) 对于某些代数系统,具有某种特异元素(例如关于二元运算的单位元)也作为系统的性质,此时可以将这个特异元素作为系统的成分列出来,例如<A, \circ ,e>,这时e 也称作代数常数.

定义14.8 (1) 如果两个代数系统 $V_1 = \langle S_1, f_1^{(1)}, ..., f_n^{(1)} \rangle$ 和

 $V_2 = \langle S_2, f_1^{(2)}, ..., f_n^{(2)} \rangle$ 中运算的个数相同,对应运算的元数相同

且代数常数的个数也相同,则称它们是同类型的代数系统。

例: $V_1 = \langle N, +, \times \rangle$,

 $V_{\gamma} = \langle \mathbf{Z}_{n}, \oplus, \otimes \rangle$

2 个运算,

2个运算,

+, × 都是二元运算

⊕, ⊗ 都是二元运算

+: 代数常数(单位元)

⊕:代数常数(单位元)

×: 代数常数 (单位元、零元) ⊗: 代数常数 (单位元、零元)

定义14.8 (2) 如果两个同类型的代数系统对应的运算所规定的运算性质也相同,则称为同种的代数系统。

例: $V_1 = \langle \mathbf{R}, +, \cdot, 0, 1 \rangle$

 $V_2 = \langle M_n(\mathbf{R}), +, \cdot, \theta, E \rangle$, θ 为 n 阶全 0 矩阵, E 为 n 阶单位矩阵

$$V_3 = \langle P(B), \cup, \cap, \varnothing, B \rangle$$

是同类型的代数系统?

运算个数: 2, 对应运算的元数: 2, 代数常数: 2

是同种的代数系统?

$V_1 = \langle \mathbf{R}, +, \cdot, 0, 1 \rangle$	$V_2 = \langle M_n(\mathbf{R}), +, \cdot, \theta, E \rangle$	$V_3 = \langle P(B), \cup, \cap, \emptyset, B \rangle$
+ 可交换, 可结合	+ 可交换, 可结合	U 可交换, 可结合
· 可交换, 可结合	· 不可交换, 可结合	∩ 可交换, 可结合
+ 满足消去律	+ 满足消去律	U 不满足消去律
·满足消去律	·满足消去律	∩ 不满足消去律
·对 + 可分配	·对 + 可分配	⋂対 ∪ 可分配
+ 对 · 不可分配	+ 对·不可分配	∪对∩可分配
+ 与·没有吸收律	+ 与·没有吸收律	∪与⋂满足吸收律
+ 具有单位元	+ 具有单位元	∪ 具有单位元
对于+,每个元素都可逆	对于+,每个元素都可逆	对于 U , 不是每个元素都可逆

 V_1 , V_2 与 V_3 都不是同种的代数系统.

$V_1 = \langle \mathbf{R}, +, \cdot, 0, 1 \rangle$	$V_2 = \langle M_n(\mathbf{R}), +, \cdot, \theta, E \rangle$	$V_3 = \langle P(B), \cup, \cap, \varnothing, B \rangle$
+ 可交换, 可结合	+ 可交换, 可结合	U 可交换, 可结合
· 可交换, 可结合	· 不可交换, 可结合	∩ 可交换, 可结合
+ 满足消去律	+ 满足消去律	U 不满足消去律
·满足消去律	·满足消去律	∩ 不满足消去律
·对 + 可分配	·对 + 可分配	⋂対∪可分配
+ 对 · 不可分配	+ 对·不可分配	∪对⋂可分配
+ 与·没有吸收律	+ 与·没有吸收律	∪与⋂满足吸收律
+ 具有单位元	+ 具有单位元	U 具有单位元
对于+,每个元素都可逆	对于+,每个元素都可逆	对于 U , 不是每个元素都可逆

如果选取上述为分类规定, V_1, V_2 与 V_3 同种? \checkmark

子代数

定义14.9 设 $V = \langle S, f_1, f_2, ..., f_k \rangle$ 是代数系统, $B \neq S$ 的非空子集,如果 $B \bowtie f_1, f_2, ..., f_k$ 都是封闭的,且 $B \bowtie S$ 含有相同的代数 常数,则称 $\langle B, f_1, f_2, ..., f_k \rangle$ 是 V 的子代数系统,简称子代数. 有时将子代数系统简记为 B.

注:对于任何代数系统 V, 其子代数一定存在.

子代数 (续)

例:

- 1) N 是 <Z, +>的子代数? ✓
- 2) N 也是 <Z, +, 0 > 的子代数? ✓
- 3) N {0} 是 < Z, + > 的子代数? ✓
- 4) N {0} 是 <Z, +,0> 的子代数? ×

关于子代数的术语

最大的子代数: 就是 / 本身;

最小的子代数: V 中所有代数常数构成集合 B, 且 B 对 V 中所有运算 封闭,则 B 就构成了V 的最小的子代数;

注: 不是所有代数常数构成的集合 B 都是最小的子代数.

例: <**Z**, +, ×, 1, 0>, 则 *B* = {1, 0}, 最小子代数为 <*B*, +, ×, 1, 0> ? **X**

最小子代数为: <N,+, ×, 1, 0>

关于子代数的术语(续)

平凡的子代数: 最大和最小子代数称为 V 的平凡子代数;

真子代数: 若 $B \in S$ 的真子集,则 B 构成的子代数称为 V 的真子代数.

例: 设 $V = \langle \mathbf{Z}, +, 0 \rangle$, 令 $n\mathbf{Z} = \{ nz \mid z \in \mathbf{Z} \}$, n 为自然数,则:

 $_{nZ}$ 是 V 的子代数,

当 n=1 和 0 时, $n\mathbb{Z}$ 是 V 的平凡的子代数,

其他的都是 1/ 的非平凡的真子代数 .

积代数

两个同类型的代数系统可以构造积代数系统.

定义14.10 设 $V_1 = \langle S_1, \circ \rangle$ 和 $V_2 = \langle S_2, * \rangle$ 是代数系统,

其中。和*是二元运算. V_1 与 V_2 的积代数 $V = \langle S_1 \times S_2, \cdot \rangle$,

$$\forall \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in S_1 \times S_2$$
, $\langle x_1, y_1 \rangle \cdot \langle x_2, y_2 \rangle = \langle x_1 \circ x_2, y_1 * y_2 \rangle$.

例: $V_1 = \langle \mathbf{Z}, + \rangle$, $V_2 = \langle M_2(\mathbf{R}), \cdot \rangle$, 积代数 $\langle \mathbf{Z} \times M_2(\mathbf{R}), \circ \rangle$ 为:

$$\forall <_{z_{1}}, M_{1}>, <_{z_{2}}, M_{2}> \in \mathbb{Z} \times M_{2}(\mathbb{R}), \quad <_{z_{1}}, M_{1}> \circ <_{z_{2}}, M_{2}> = <_{z_{1}} +_{z_{2}}, M_{1} \cdot M_{2}>.$$

$$\left\langle 5, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle \circ \left\langle -2, \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \right\rangle = \left\langle 3, \begin{pmatrix} 2 & -1 \\ 2 & 0 \end{pmatrix} \right\rangle$$

积代数的性质

设 $V_1 = \langle S_1, \circ \rangle$ 和 $V_2 = \langle S_2, * \rangle$ 是代数系统,其中。和 * 是二元运算.

 V_1 与 V_2 的积代数是 $V = \langle S_1 \times S_2, \cdot \rangle$

1) 若。和 * 运算是可交换的, 那么·运算也是可交换的;

证明: $\forall \langle x_1, y_1 \rangle$, $\langle x_2, y_2 \rangle \in S_1 \times S_2$,

$$< x_1, y_1 > \cdot < x_2, y_2 > = < x_1 \circ x_2, y_1 * y_2 >$$

$$= < x_2 \circ x_1, y_2 * y_1 >$$

$$= < x_2, y_2 > \cdot < x_1, y_1 > .$$

积代数的性质 (续)

2) 若。和*运算是可结合的,那么·运算也是可结合的;

证明:
$$\forall \langle x_1, y_1 \rangle$$
, $\langle x_2, y_2 \rangle$, $\langle x_3, y_3 \rangle \in S_1 \times S_2$, $(\langle x_1, y_1 \rangle \cdot \langle x_2, y_2 \rangle) \cdot \langle x_3, y_3 \rangle = (\langle x_1 \circ x_2, y_1 * y_2 \rangle) \cdot \langle x_3, y_3 \rangle$ $= \langle (x_1 \circ x_2) \circ x_3, (y_1 * y_2) * y_3 \rangle$ $= \langle x_1 \circ (x_2 \circ x_3), y_1 * (y_2 * y_3) \rangle$ $= \langle x_1, y_1 \rangle \cdot \langle x_2 \circ x_3, y_2 * y_3 \rangle$ $= \langle x_1, y_1 \rangle \cdot \langle x_2 \circ x_3, y_2 * y_3 \rangle$ $= \langle x_1, y_1 \rangle \cdot \langle \langle x_2, y_2 \rangle \cdot \langle x_3, y_3 \rangle)$.

积代数的性质 (续)

3) 若。和 * 运算是幂等的, 那么·运算也是幂等的;

证明:
$$\forall \langle x, y \rangle \in S_1 \times S_2$$
, $\langle x, y \rangle \cdot \langle x, y \rangle = \langle x \circ x, y * y \rangle = \langle x, y \rangle$

4) 若。和 * 运算分别具有单位元 e_1 和 e_2 ,那么·运算也具有单位元 $<e_1,e_2>$;

证明:
$$\forall \langle x, y \rangle \in S_1 \times S_2$$
,

$$\cdot = =$$

 $\cdot = =$

所以, $\langle e_1, e_2 \rangle$ 是·运算的单位元.

积代数的性质 (续)

5) 若。和 * 运算分别具有零元 θ_1 和 θ_2 , 那么·运算也具有零元 $<\theta_1$, $\theta_2>$;

证明: $\forall \langle x, y \rangle \in S_1 \times S_2$,

$$<\theta_1, \ \theta_2> \cdot < x, \ y> = <\theta_1 \circ x, \ \theta_2*y> = <\theta_1, \ \theta_2> < x, \ y> \cdot <\theta_1, \ \theta_2> = < x \circ \theta_1, \ y*\theta_2> = <\theta_1, \ \theta_2> < < x \circ \theta_1, \ y*\theta_2> = < x \circ \theta_2> < < x \circ$$

6) 若 x 关于。的逆元为 x^{-1} , y 关于 * 的逆元为 y^{-1} , 那么 < x, y> 关于·运算也具有逆元 $< x^{-1}$, $y^{-1}>$.

证明:设。和*运算分别具有单位元 e_1 和 e_2 ,那么·运算也

具有单位元
$$\langle e_1, e_2 \rangle$$
. $\forall \langle x, y \rangle \in S_1 \times S_2$,

$$\langle x, y \rangle \cdot \langle x^{-1}, y^{-1} \rangle = \langle x \circ x^{-1}, y * y^{-1} \rangle = \langle e_1, e_2 \rangle$$

$$\cdot = =$$

积代数的性质 (总结)

- 1) 若。和 * 运算是可交换的, 那么·运算也是可交换的;
- 2) 若。和 * 运算是可结合的, 那么·运算也是可结合的;
- 3) 若。和 * 运算是幂等的, 那么·运算也是幂等的;
- 4) 若。和 * 运算分别具有单位元 e_1 和 e_2 ,那么·运算也具有单位元 $< e_1, e_2 >$;
- 5) 若。和 * 运算分别具有零元 θ_1 和 θ_2 , 那么·运算也具有零元 $<\theta_1$, $\theta_2>$;
- 6) 若 x 关于。的逆元为 x^{-1} , y 关于 * 的逆元为 y^{-1} , 那么 $\langle x, y \rangle$ 关于·运算也具有逆元 $\langle x^{-1}, y^{-1} \rangle$.

同态映射的定义

同态映射的分类

单同态、满同态、同构、自同态

同态映射的实例

满同态映射的性质

同态映射

定义14.11 设 $V_1 = \langle S_1, \circ \rangle$ 和 $V_2 = \langle S_2, * \rangle$ 是代数系统,

其中。和 * 是二元运算. $f: S_1 \to S_2$, 且 $\forall x, y \in S_1$

$$f(x \circ y) = f(x) * f(y)$$

则称f为 V_1 到 V_2 的同态映射,简称同态.

同态映射 (续)

例:
$$V_1 = \langle \mathbf{R}, + \rangle, V_2 = \langle \mathbf{R}^+, \times \rangle$$

1) $f(x) = e^x$ 是 V_1 到 V_2 的同态,因为:

$$\forall x, y \in \mathbf{R}, \quad f(x+y) = e^{x+y} = e^x \times e^y = f(x) \times f(y)$$

2) $g(x) = \log x$ 是 V_2 到 V_1 的同态,因为:

$$\forall x, y \in \mathbf{R}^+, \quad g(x \times y) = \log(x \times y) = \log x + \log y = g(x) + g(y)$$

3) $h(x) = x^2$ 不是 V_1 到 V_2 的同态,因为:

$$h(2+3) = 25 \neq 36 = h(2) \times h(3)$$

同态映射的分类

同态映射如果是单射,则称为单同态;

 $g(x_1)=y_1$ $g(x_2)=y_1$ $g(x_3)=y_3$ $g(x_1\circ x_3)=$ $g(x_1)* g(x_3)=y_1*y_3$ $g(x_2\circ x_3)=$ $g(x_2)* g(x_3)=y_1*y_3$

如果是满射,则称为满同态,这时称 V_2 是 V_1 的同态像,记作 $V_1 \sim V_2$;如果是双射,则称为同构,也称代数系统 V_1 同构于 V_2 ,记作 $V_1 \cong V_2$. 对于代数系统 V,它到自身的同态称为自同态.

类似地可以定义单自同态、满自同态和自同构.

例: $V = \langle \mathbf{R}^*, \cdot \rangle$,判断下面的哪些函数是V的自同态?是否为单自同态、满自同态和自同构?

1)
$$f(x) = |x|$$
 自同态 \checkmark 单自同态 \times 满自同态 \times 自同构 \times $\forall x, y \in \mathbb{R}^*$, $f(x \cdot y) = |x \cdot y| = |x| \cdot |y| = f(x) \cdot f(y)$

2)
$$f(x) = 2x$$
 自同态 🗙

$$f(2\cdot 2) = f(4) = 8$$
, $f(2) \cdot f(2) = 4 \cdot 4 = 16$

3)
$$f(x) = x^2$$
 自同态 \checkmark 单自同态 \times 满自同态 \times 自同构 \times

$$\forall x, y \in \mathbf{R}^*, \quad f(x \cdot y) = (x \cdot y)^2 = x^2 \cdot y^2 = f(x) \cdot f(y)$$

例: $V = \langle \mathbf{R}^*, \cdot \rangle$,判断下面的哪些函数是V的自同态?是否为单自同态、满自同态和自同构?

$$f(1\cdot 1) = f(1) = -1$$
, $f(1) \cdot f(1) = (-1) \cdot (-1) = 1$

6)
$$f(x) = x + 1$$
 自同态 🗶

$$f(1.1) = f(1) = 2$$
, $f(1) \cdot f(1) = 2.2 = 4$

同态映射的实例

1) 设
$$V = \langle \mathbf{Z}, + \rangle$$
, $\forall a \in \mathbf{Z}$, 令

$$f_a: \mathbf{Z} \to \mathbf{Z}, \quad f_a(x) = ax$$

 f_a 是 V 的自同态? \checkmark

因为
$$\forall x, y \in \mathbb{Z}, \quad f_a(x+y) = a(x+y) = ax + ay = f_a(x) + f_a(y)$$

单自同态 ? ✓ 满自同态 ? Х 自同构 ? Х

当 $a = \underline{\pm 1}$ 时, f_a 为自同构

当 a=0 时称 f_0 为零同态.

同态映射的实例 (续)

2) 设
$$V_1 = \langle \mathbf{R}, + \rangle$$
, $V_2 = \langle \mathbf{R}^*, \cdot \rangle$, 其中 $\mathbf{R}^* = \mathbf{R} - \{0\}$, 令

$$f: \mathbf{R} \to \mathbf{R}^*, \quad f(x) = e^x$$

那么 $f \in V_1$ 到 V_2 的同态映射 ? \checkmark

因为 $\forall x, y \in \mathbf{R}$ 有:

$$f(x + y) = e^{x+y} = e^{x} \cdot e^{y} = f(x) \cdot f(y).$$

单同态?✓ 满同态? ★ 同构? ★

同态映射的实例 (续)

3)
$$V = \langle Z_{n}, \oplus \rangle$$
, $f_p: Z_n \to Z_n$,
 $f_p(x) = (xp) \mod n$, $p = 0, 1, ..., n - 1$.

因为 $\forall x, y \in Z_n$

$$f_p(x \oplus y) = ((x \oplus y)p) \bmod n$$
$$= (xp) \bmod n \oplus (yp) \bmod n$$
$$= f_p(x) \oplus f_p(y)$$

所以, 存在 $n \cap V$ 的自同态.

同态映射的实例 (续)

3)
$$V = \langle Z_{n'} \oplus \rangle_{i} f_{p} \colon Z_{n} \rightarrow Z_{n'}$$

$$f_p(x) = (xp) \mod n$$
, $p = 0, 1, ..., n - 1$.

例: n=6, 则 $p=0,1,\ldots,5$, $x=0,1,\ldots,5$, 哪个是自同构?

$$f_0(x) = 0$$
, X $f_1(x) = x$, \checkmark

$$f_2(0) = f_2(3) = 0$$
, $f_2(1) = f_2(4) = 2$, $f_2(2) = f_2(5) = 4$,

$$f_3(0) = f_3(2) = f_3(4) = 0$$
, $f_3(1) = f_3(3) = f_3(5) = 3$,

$$f_4(0) = f_4(3) = 0$$
, $f_4(1) = f_4(4) = 4$, $f_4(2) = f_4(5) = 2$, \times

$$f_5(0) = 0$$
, $f_5(1) = 5$, $f_5(2) = 4$, $f_5(3) = 3$, $f_5(4) = 2$, $f_5(5) = 1$.

同态映射的实例 (续)

4)
$$V_1 = \langle \mathbf{Z}, + \rangle, V_2 = \langle \mathbf{Z}_n, \oplus \rangle, f : \mathbf{Z} \to \mathbf{Z}_n,$$

$$f(x) = (x) \mod n.$$

因为 $\forall x, y \in \mathbb{Z}$,

$$f(x+y) = (x+y) \bmod n = (x) \bmod n \oplus (y) \bmod n = f(x) \oplus f(y).$$

例: n=3, 则 f(x)=0, 1, 2

$$f(3x) = 0$$
, $f(3x + 1) = 1$, $f(3x + 2) = 2$

f 为哪种同态? 满同态

满同态映射的性质

设 V_1 和 V_2 是代数系统, $f: V_1 \to V_2$ 是满同态映射,则

- 1) 若 V_1 中的。运算是可交换 (可结合,幂等) 的,那么 V_2 中对应的。'运算也是可交换 (可结合,幂等)的;
- 2) 若 V_1 中的。对 * 运算是可分配的,那么 V_2 中对应的。'对 * * 运算也是可分配的;
- 3) 若 V_1 中的。和 * 运算是可吸收的,那么 V_2 中对应的。'和 * 运算也是可吸收的;

满同态映射的性质 (续)

设 V_1 和 V_2 是代数系统, $f: V_1 \to V_2$ 是满同态映射,则

- 4) 若 V_1 中。运算具有单位元 e_1 (或零元 θ_1), 那么 $f(e_1)$ (或 $f(\theta_1)$) 是 V_2 中关于对应的。'运算的单位元 (或零元);
- 5) 若x关于 V_1 中。运算的逆元为 x^{-1} , 那么f(x)在 V_2 中关于对应的。'运算的逆元为 $f(x^{-1})$.

满同态映射的性质 (证明)

设 V_1 和 V_2 是代数系统, $f: V_1 \rightarrow V_2$ 是满同态映射,则

1) 若 V_1 中的。运算是可结合的,那么 V_2 中对应的。'运算也是可结合的.

证明: 因为 f 是满射, 所以 $\forall x, y, z \in V_2$, 存在 $a, b, c \in V_1$ 使得

$$f(a) = x$$
, $f(b) = y$, $f(c) = z$,

于是

$$(x \circ' y) \circ' z = (f(a) \circ' f(b)) \circ' f(c) = f(a \circ b) \circ' f(c)$$

$$= f((a \circ b) \circ c) = f(a \circ (b \circ c)) = f(a) \circ' (f(b \circ c))$$

$$= f(a) \circ' (f(b) \circ' f(c)) = x \circ' (y \circ' z)$$

满同态映射的性质 (证明续)

设 V_1 和 V_2 是代数系统, $f:V_1 \to V_2$ 是满同态映射,则

4) 若 V_1 中。运算具有单位元 e_1 ,那么 $f(e_1)$ 是 V_2 中关于对应的。'运算的单位元.

证明: 因为 f 是满射, 所以 $\forall x \in V_2$, 存在 $a \in V_1$ 使得 f(a) = x, 于是

$$x \circ' f(e_1) = f(a) \circ' f(e_1) = f(a \circ e_1) = f(a) = x$$
,

同理, $f(e_1) \circ' x = x$.

所以 $f(e_1)$ 是 V_2 中关于对应的。'运算的单位元.

例:
$$S_1 = \{ \langle a, b \rangle \mid a, b \in \mathbf{R} \}$$
, $V_1 = \langle S_1, \bullet \rangle$, 其中•的定义为 $\langle a_1, b_1 \rangle \bullet \langle a_2, b_2 \rangle = \langle a_1 a_2, b_1 b_2 \rangle$, $f: V_1 \to V_1$, $f(\langle a, b \rangle) = \langle a, 0 \rangle$,

不是满射,但是 1,的自同态,因为:

 $\forall x = \langle a_1, b_1 \rangle$, $\forall y = \langle a_2, b_2 \rangle \in V_1$, $f(x \bullet y) = f(\langle a_1 a_2, b_1 b_2 \rangle) = \langle a_1 a_2, 0 \rangle = \langle a_1, 0 \rangle \bullet \langle a_2, 0 \rangle = f(x) \bullet f(y)$, V_1 的单位元: $\langle 1, 1 \rangle$, 但是: $f(\langle 1, 1 \rangle) = \langle 1, 0 \rangle$ 不是 V_1 的单位元, 即,若 f 不是满射,则(4)不一定成立.

思考: 什么情况下(4)成立?

设 $S_2 = \{ \langle a, 0 \rangle \mid a \in \mathbb{R} \}$, $V_2 = \langle S_2, \bullet \rangle$, 则 $f: V_1 \to V_2$ 为满射, (4)成立.

满同态映射的性质 (证明续)

设 V_1 和 V_2 是代数系统, $f: V_1 \rightarrow V_2$ 是满同态映射,则

5) 若x关于 V_1 中。运算的逆元为 x^{-1} , 那么f(x)在 V_2 中关于对应的。'运算的逆元为 $f(x^{-1})$.

证明: 设 V_1 中。运算的单位元为 e_1 ,则 V_2 中关于对应的。'运算的单位元为 $f(e_1)$.

$$f(x) \circ' f(x^{-1}) = f(x \circ x^{-1}) = f(e_1),$$

同理, $f(x^{-1}) \circ' f(x) = f(x^{-1} \circ x) = f(e_1)$,

所以, $(f(x))^{-1} = f(x^{-1})$.

满同态映射的性质 (续)

设 V_1 和 V_2 是代数系统, $f: V_1 \rightarrow V_2$ 是满同态映射,则满同态 f 对性质的保持是单方向的,即

作业

14.914.10

研讨题

1) 设f 和g 是两个 $\langle S, \circ \rangle$ 到 $\langle V, * \rangle$ 的同态,其中二元运算 * 满足交换律和结合律,证明:

$$h(x) = f(x) * g(x),$$

也是 <S, >> 到 <V, *> 的同态.

- 2) 请写出代数系统 < N, $\times >$ 的所有子代数系统. 那么代数系统 < N, +, $\times >$ 的子代数系统有哪些. (要求考虑代数常数)
- 3) 设 V_1 和 V_2 都是一个代数系统 V 的子代数系统, 那么 $V_1 \cap V_2$ 和 $V_1 \cup V_2$ 也是 V 的子代数系统吗?若是证明之,若不是请举一例.