Kapitola 1. Funkční posloupnosti a řady

Definice 1.1. (funkční posloupnosti)

Funkční posloupnost (= posloupnost funkcí) je zobrazení, které každému přirozenému číslu $n \in \mathbb{N}$ přiřazuje právě jednu funkci f_n definovanou na množině $D \subset \mathbb{R}$:

$$n\mapsto f_n(x),\quad x\in D.$$

Funkce f_n se nazývá n-tý člen funkční posloupnosti (f_n) .

$$\left(extit{pišeme:}\quad (f_n(x))\,,\quad (f_n(x))_{n=1}^{+\,\infty}\,,\quad (f_n(x);\;n\in\mathbb{N})\,,\quad (f_1(x),f_2(x),\ldots,f_n(x),\ldots)\,,\quad x\in D
ight.$$

Definice 1.2. (bodová konvergence)

Řekneme, že funkční posloupnost (f_n)

- 1. konverguje v bodě $a\in D$ k číslu $b\in \mathbb{R}$, pokud $\lim_{n\to +\infty}f_n(a)=b$,
- 2. diverguje v bodě $a\in D$, pokud $\lim_{n\to +\infty}f_n(a)=\pm\infty$ nebo $\lim_{n\to +\infty}f_n(a)$ neexistuje,
- 3. konverguje na množině $M\subset D$ k limitní funkci f, pokud $orall \ x\in M:\ f(x)=\lim_{n o +\infty}f_n(x)\in \mathbb{R}$,

$$\left(extit{pišeme:} \quad f_n(x)
ightarrow f(x), \,\, x \in M; \quad f_n \stackrel{M}{
ightarrow} f
ight.
ight)$$

4. diverguje na množině $M\subset D$, pokud diverguje v každém bodě $x\in M$.

Obor konvergence (f_n) je množina K všech $x \in D$, ve kterých (f_n) konverguje k limitní funkci (limitě) f.

$$egin{pmatrix} p$$
íše m e: $f_n o f$ $\end{pmatrix}$

Definice 1.3. (stejnoměrná konvergence)

Řekneme, že funkční posloupnost (f_n) konverguje stejnoměrně k funkci f na množině $M\subset D$, pokud platí

$$orall \, arepsilon > 0 \,\, \exists \, n_0 \in \mathbb{N} \,\, orall \, n \in \mathbb{N} \,\, orall \, x \in M: \,\, n > n_0 \quad \Rightarrow \quad |f_n(x) - f(x)| < arepsilon.$$

Říkáme také, že funkce f je **stejnoměrná limitní funkce (limita) funkční posloupnosti** (f_n) **na množině** M.

$$\left(extit{pišeme:} \quad f_n(x)
ightrightarrows f(x), \ x \in M; \quad f_n \stackrel{M}{
ightharpoonup} f
ight.$$

Věta 1.4. (o vztahu mezi bodovou a stejnoměrnou konvergencí)

Jestliže funkční posloupnost (f_n) konverguje stejnoměrně na množině M k limitní funkci f, potom konverguje bodově na M k téže limitní funkci f.

Věta 1.5. (postačující podmínka stejnoměrné konvergence)

Nechť funkční posloupnost (f_n) konverguje na množině M k limitní funkci f. Jestliže existuje reálná posloupnost (a_n) taková, že

- $1. \lim_{n \to +\infty} a_n = 0,$
- 2. pro skoro všechna $n \in \mathbb{N}$ a pro všechna $x \in M$ platí $|f_n(x) f(x)| \leq a_n$,

potom funkční posloupnost (f_n) konverguje stejnoměrně na množině M k limitní funkci f.

Věta 1.6. (nutná a postačující podmínka stejnoměrné konvergence)

Funkční posloupnost (f_n) konverguje stejnoměrně na množině M k limitní funkci f právě tehdy, když platí

$$\lim_{n o +\infty} \sup_{x\in M} |f_n(x)-f(x)|=0.$$

Věta 1.7. (Bolzano-Cauchyovo kritérium stejnoměrné konvergence)

Funkční posloupnost (f_n) konverguje stejnoměrně na množině M k limitní funkci f právě tehdy, když

$$orall \, arepsilon > 0 \,\, \exists \, n_0 \in \mathbb{N} \,\, orall \, m \in \mathbb{N} \,\, orall \, n \in \mathbb{N} \,\, orall \, x \in M: \,\, m > n_0 \,\, \wedge \,\, n > n_0 \,\, \Rightarrow \,\, |f_m(x) - f_n(x)| < arepsilon.$$

Věta 1.8. (o záměně limit)

Nechť funkční posloupnost (f_n) konverguje stejnoměrně na množině M k limitní funkci f, nechť x_0 je hromadný bod množiny M a předpokládejme, že pro všechna $n \in \mathbb{N}$ existuje $\lim_{x \to x_0} f_n(x)$. Potom

$$\lim_{n o +\infty} \left(\lim_{x o x_0} f_n(x)
ight) = \lim_{x o x_0} \left(\lim_{n o +\infty} f_n(x)
ight) = \lim_{x o x_0} f(x).$$

Věta 1.9. (o spojitosti limitní funkce)

Nechť (f_n) je posloupnost funkcí spojitých na intervalu I, která na I konverguje stejnoměrně k limitní funkci f. Potom funkce f je také spojitá na I.

Věta 1.10. (o integrování limitní funkce)

Nechť (f_n) je posloupnost funkcí integrovatelných na omezeném intervalu $I := \langle a, b \rangle$, která na něm konverguje stejnoměrně k limitní funkci f. Potom tato funkce f je také integrovatelná na intervalu I a pro každé $x \in I$ platí

$$\int\limits_{a}^{x}f(t)\;\mathrm{d}t=\int\limits_{a}^{x}\lim_{n
ightarrow+\infty}f_{n}(t)\;\mathrm{d}t=\lim_{n
ightarrow+\infty}\int\limits_{a}^{x}f_{n}(t)\;\mathrm{d}t.$$

Věta 1.11. (o derivování limitní funkce)

Nechť (f_n) je posloupnost funkcí diferencovatelných na intervalu I, která je konvergentní alespoň v jednom bodě $x_0 \in I$ a nechť posloupnost derivací (f'_n) konverguje stejnoměrně na intervalu I. Potom limitní funkce

$$f(x) = \lim_{n o +\infty} f_n(x)$$

je také diferencovatelná na I a pro každé $x \in I$ platí

$$f'(x) = \left[\lim_{n o +\infty} f_n(x)
ight]' = \lim_{n o +\infty} f'_n(x).$$

Definice 1.12. (funkční řada)

Nechť (f_n) je posloupnost funkcí f_n definovaných na množině $D \subset \mathbb{R}$. Symbol

$$\sum_{n=1}^{+\infty}f_n(x)=f_1(x)+f_2(x)+\cdots+f_n(x)+\cdots$$

se nazývá funkční řada (řada funkcí), funkci f_n se říká n-tý člen funkční řady. Funkci s_n určenou předpisem

$$s_n(x)=f_1(x)+f_2(x)+\cdots+f_n(x),\quad x\in D,$$

nazýváme n-tým částečným součtem fukční řady.

Posloupnost (s_n) nazýváme **posloupností částečných součtů funkční řady**.

Definice 1.13. (bodová konvergence funkční řady)

Řekneme, že funkční řada $\sum\limits_{n=1}^{+\infty}f_n(x)$

- 1. **konverguje v bodě** $a \in D$, pokud konverguje číselná řada $\sum\limits_{n=1}^{+\infty} f_n(a)$,
- 2. **diverguje v bodě** $a \in D$, pokud diverguje číselná řada $\sum\limits_{n=1}^{+\infty} f_n(a)$,
- 3. **konverguje na množině** $M\subset D$, pokud konverguje v každém bodě $x\in M$,
- 4. diverguje na množině $M\subset D$, pokud diverguje v každém bodě $x\in M$.

Obor konvergence funkční řady $\sum\limits_{n=1}^{+\infty}f_n(x)$ je množina K všech $x\in D$, ve kterých funkční řada bodově konverguje k **součtové funkci (součtu)** $s(x)=\lim_{n\to +\infty}s_n(x),\ x\in K.$

$$\left(extit{pišeme:} \quad s(x) = \sum\limits_{n=1}^{+\infty} f_n(x), \quad s = \sum\limits_{n=1}^{+\infty} f_n \quad
ight)$$

Věta 1.14. (absolutní konvergence funkční řady)

Řekneme, že funkční řada $\sum\limits_{n=1}^{+\infty}f_n(x)$ je

1. absolutně konvergentní v bodě $a \in D$, pokud je konvergentní číselná řada

$$\sum_{n=1}^{+\infty} |f_n(a)|$$
 ,

2. absolutně konvergentní na množině $M \subset D$, pokud je absolutně konvergentní v každém bodě $x \in M$.

Oborem absolutní konvergence funkční řady $\sum_{n=1}^{+\infty} f_n(x)$ nazýváme množinu K_a všech čísel $x \in D$, ve kterých funkční řada konverguje absolutně.

Věta 1.15. (postačující podmínka konvergence funkční řady)

Jestliže funkční řada $\sum\limits_{n=1}^{+\infty}|f_n|$ konverguje na množině M, potom funkční řada $\sum\limits_{n=1}^{+\infty}f_n$ konverguje na M.

Věta 1.16. (majorantní kritérium absolutní konvergence)

Nechť je dána funkční řada $\sum\limits_{n=1}^{+\infty}f_n(x)$, $x\in D$, a nechť $\sum\limits_{n=1}^{+\infty}b_n$ je číselná řada taková, že pro skoro všechna $n\in\mathbb{N}$ platí

$$orall \, x \in M \subset D: \ |f_n(x)| \leq b_n.$$

Je-li tato číselná řada $\sum\limits_{n=1}^{+\infty}b_n$ konvergentní, potom funkční řada $\sum\limits_{n=1}^{+\infty}f_n$ je absolutně konvergentní na M.

Věta 1.17. (stejnoměrná konvergence funkční řady)

Nechť funkční řada $\sum\limits_{n=1}^{+\infty}f_n(x)$, $x\in D$, konverguje na svém oboru konvergence $K\subset D$ k součtové funkci s, tj.

$$s(x) = \sum_{n=1}^{+\infty} f_n(x), \quad x \in K.$$

Řekneme, že daná **funkční řada konverguje stejnoměrně na množině** $M \subset K$ **k součtové funkci** s, pokud na této množině M konverguje stejnoměrně posloupnost $(s_n(x))$ částečných součtů funkční řady k součtové funkci s, tj.

$$s_n(x)
ightrightarrows s(x), \quad x \in M.$$

Věta 1.18. (nutná podmínka stejnoměrné konvergence funkční řady)

Nechť funkční řada $\sum\limits_{n=1}^{+\infty}f_n$ konverguje stejnoměrně na množině M .

Potom funkční posloupnost (f_n) konverguje stejnoměrně na množině M k nulové limitní funkci f(x)=0, tj.

$$f_n(x)
ightrightarrows 0,\quad x\in M.$$

Věta 1.19. (Cauchyovo kritérium stejnoměrné konvergence funkční řady)

Funkční řada $\sum\limits_{n=1}^{+\infty}f_n$ konverguje stejnoměrně na množině M právě tehdy, když

$$orall \, arphi > 0 \,\, \exists \, n_0 \in \mathbb{N} \,\, orall \, n \in \mathbb{N} \,\, orall \, p \in \mathbb{N} \,\, orall \, x \in M: \,\, n > n_0 \quad \Rightarrow \quad \left| egin{matrix} \sum_{k=n+1}^{n+p} f_k(x) \end{matrix}
ight| < arepsilon.$$

Věta 1.20. (Weierstrassovo kritérium stejnoměrné konvergence funkční řady)

Nechť je dána funkční řada $\sum\limits_{n=1}^{+\infty}f_n(x)$, $x\in D$, a nechť $\sum\limits_{n=1}^{+\infty}b_n$ je číselná řada taková, že pro skoro všechna $n\in\mathbb{N}$ platí

$$orall \, x \in M \subset D: \ |f_n(x)| \leq b_n.$$

Je-li tato číselná řada $\sum\limits_{n=1}^{+\infty}b_n$ konvergentní, potom funkční řada $\sum\limits_{n=1}^{+\infty}f_n$ je stejnoměrně konvergentní na M.

Věta 1.21. (o spojitosti součtové funkce)

Nechť $\sum\limits_{n=1}^{+\infty}f_n$ je funkční řada, která konverguje stejnoměrně na intervalu I k součtové funkci s. Jestliže všechny členy funkční řady $\sum\limits_{n=1}^{+\infty}f_n$ jsou funkce spojité na I, potom také součtová funkce s je spojitá na I.

Věta 1.22. (o integrování funkční řady)

Nechť $\sum_{n=1}^{+\infty} f_n$ je funkční řada, která konverguje stejnoměrně na omezeném intervalu I k součtové funkci s.

Jestliže všechny členy funkční řady $\sum\limits_{n=1}^{+\infty}f_n$ jsou funkce integrovatelné na I, potom pro každé $x_0,x\in I$ konverguje také funkční řada $\sum\limits_{n=1}^{+\infty}\int\limits_{x_0}^xf_n(t)\;\mathrm{d}t$ a její součet je $\int\limits_{x_0}^xs(t)\;\mathrm{d}t$, tj.

$$\int_{x_0}^x s(t) \; \mathrm{d}t = \int_{x_0}^x \left(\sum_{n=1}^{+\infty} f_n(t)
ight) \; \mathrm{d}t = \sum_{n=1}^{+\infty} \int_{x_0}^x f_n(t) \; \mathrm{d}t.$$

Věta 1.23. (o derivování funkční řady)

Nechť $\sum\limits_{n=1}^{+\infty}f_n$ je funkční řada, jejíž všechny členy f_n mají derivace f_n' na intervalu I.

Jestliže funkční řada derivací $\sum\limits_{n=1}^{+\infty}f'_n$ je stejnoměrně konvergentní na I a je-li funkční řada $\sum\limits_{n=1}^{+\infty}f_n$ konvergentní alespoň v jednom bodě $x_0\in I$, potom je konvergentní na celém intervalu I, a to stejnoměrně.

Navíc, pro součtovou funkci s funkční řady $\sum_{n=1}^{+\infty} f_n$ platí

$$orall x \in I: \; s'(x) = \left[\sum_{n=1}^{+\infty} f_n(x)
ight]' = \sum_{n=1}^{+\infty} f_n'(x).$$