Sheet 3 (Outer measures and Lebesgue's measure)

Deadline: October 13th, 10:00 a.m.

We write λ (λ^*) for Lebesgue's (outer) measure and \mathcal{M}_{λ^*} for the σ -algebra of Lebesgue-measurable sets.

Exercise 1 (3 points) Let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ an outer measure on X and a sequence of pairwise disjoint μ^* -measurable sets $(E_n)_1^\infty \subseteq \mathcal{M}_{\mu^*}$. Prove that

$$\mu^* \left(E \cap \bigcup_{n \ge 1} E_n \right) = \sum_{n \ge 1} \mu^* (E \cap E_n), \quad \text{for every } E \subseteq X.$$

Exercise 2 (3 points) Let $\pi: \mathbb{R}^2 \to \mathbb{R}$ be the projection of \mathbb{R}^2 onto \mathbb{R} , i.e., $\pi(x,y) = x$. Define a function $\mu^*: \mathcal{P}(\mathbb{R}^2) \to [0, +\infty]$ by $\mu^*(A) = \lambda^*(\pi(A))$.

- 1. Show that μ^* is an outer measure on \mathbb{R}^2 .
- 2. Show that $B \in \mathcal{M}_{\mu^*}$ if and only if there are $B_0, B_1 \in \mathcal{M}_{\lambda^*}$ such that $B_0 \subseteq B_1, \lambda^*(B_1 \setminus B_0) = 0$ and $B_0 \times \mathbb{R} \subseteq B \subseteq B_1 \times \mathbb{R}$.

Exercise 3 (Sufficient and necessary conditions for Lebesgue's measurability, 6 points) Prove the following assertions about a set $E \subseteq \mathbb{R}$ are equivalent:

- 1. $E \in \mathcal{M}_{\lambda^*}$.
- 2. For every $\varepsilon > 0$ there is an open set $G = G_{\varepsilon}$ such that $E \subseteq G$ and $\lambda^*(G \setminus E) < \varepsilon$.
- 3. There is a set $K \in \mathcal{G}_{\delta}$ such that $E \subseteq K$ and $\lambda^*(K \setminus E) = 0$.
- 4. For every $\varepsilon > 0$ there is a closed set $F = F_{\varepsilon}$ such that $F \subseteq E$ and $\lambda^*(E \setminus F) < \varepsilon$.
- 5. There is a set $H \in \mathcal{F}_{\sigma}$ such that $H \subseteq E$ and $\lambda^*(E \setminus H) = 0$.

Note: \mathcal{G}_{δ} (\mathcal{F}_{σ}) denotes the collection of intersections (unions) of countable families of open (closed) real sets.

Exercise 4 (4 points) Let $E \in \mathcal{M}_{\lambda^*}$ such that $\lambda(E) > 0$. Show that for every $\alpha \in (0,1)$ there is an open interval $I \subset \mathbb{R}$ such that $\lambda(E \cap I) > \alpha \lambda(I)$.

Exercise 5 (4 points) Denote by λ_0 the restriction of Lebesgue's measure to $\mathcal{B}([0,1])$, the Borel sets of [0,1]. Suppose there exist $E \in \mathcal{B}([0,1])$ and $\alpha \in (0,1)$ such that

$$\lambda_0(E \cap J) > \alpha \lambda_0(J),$$

for every interval $J \subseteq [0,1]$. Show that $\lambda_0(E) = 1$.