TUTORIAL – wstępny projekt w języku VHDL

Uruchomienie systemu projektowego ISE Design Suite 14.7

Na wstępie należy utworzyć katalog dla projektu...

System uruchamia się poprzez dwukrotne kliknięcie lewym klawiszem myszki na ikonie *ISE Design Suite*, lub wybierając z rozwijanego menu: *Start* \rightarrow *Xilinx Design Tools* \rightarrow *64-bit Project Navigator*. Po uruchomieniu programu pojawia się nawigator projektu *ISE Project Navigator*.

Plik licencyjny

W czasie pierwszego uruchomienia systemu projektowego należy dołączyć plik licencyjny poprzez:

- · Help \rightarrow Manage License...,
- · w kolejnym oknie Xilinx License Configuration Manager wybrać zakładkę Manage Licenses,
- nacisnąć *Load License* i wskazać plik licencyjny *Xilinx_2016.03.lic*.
 (=> staff(\\oceanic)(P:) => szy.....=> Xilinx_2016.03.lic)

Utworzenie nowego projektu typu HDL

- 1. Wybrać *File* → *New Project*... uruchamiając aplikację *New Project Wizard*
- 2. W polu Location: ustawić utworzony folder dla projektu
- 3. W polu Name: wpisać nazwę projektu, np. witek
- 4. Sprawdzić czy w polu *Top-level source type:* jest wybrana opcja *HDL*
- 5. Nacisnąć przycisk Next
- 6. Zgodnie z posiadaną płytką testową wypełnić pola okna *Project Settings*, gdzie najważniejsze ustawienia to:

Family → Spartan6

Device → XC6SLX16

Package → CSG324

Preferred Language → VHDL

- 7. Nacisnąć przycisk Next
- 8. W oknie *Project Summary* nacisnąć *Finish*

Opis działania układu w języku VHDL

- 1. Wybrać **Project** → **New Source...** uruchamiając **New Source Wizard**
- 2. W oknie Select Source Type zaznaczyć typ VHDL Module
- 3. W polu File name: wpisać nazwę gates
- 4. W polu *Location* powinien być wybrany folder projektu

- 5. Nacisnąć Next
- 6. W oknie *Define Module* wypełnić odpowiednie kolumny nazwami sygnałów (*Port Name*) i ich parametrami (*Direction*), jak poniżej

- 7. Nacisnąć *Next*
- 8. W oknie Summary nacisnąć Finish
- 9. W utworzonym pliku *gates.vhd* opisać działanie układu jak poniżej (można usunąć "zielony" tekst :), zapisać plik

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity gates is
  port( a : in std_logic;
        b : in std_logic;
        y : out std_logic );
end gates;

architecture Behavioral of gates is begin
  y <= a and b;
end Behavioral;</pre>
```


10. W celu sprawdzenia poprawności kodu w języku VHDL należy w obszarze Hierarchy zaznaczyć plik gates – Behavioral (gates.vhd), następnie w polu Processes rozwinąć wiersz Synthesize – XST i uruchomić Check Syntax, poprawić ewentualne błędy...

Symulacja działania układu

- 1. Wybrać **Project** → **New Source...** uruchamiając **New Source Wizard**
- 2. W oknie Select Source Type zaznaczyć typ VHDL Test Bench

- 3. W polu *File name:* wpisać nazwę *test*
- 4. W polu *Location* powinien być wybrany folder projektu...
- 5. Nacisnąć *Next*
- 6. W kolejnym oknie Assiociate Source powinien być zaznaczony gates, nacisnąć Next
- 7. W oknie **Summary** nacisnąć **Finish**
- 8. W utworzonym module testowym **test.vhd** można zastosować przykładowy algorytm testowy jak poniżej. Moduł ustala stany na wejściach **a** i **b**, którymi są kolejne kombinacje binarne zmieniane co 50 ns. Ostatnia instrukcja **wait** zatrzymuje symulację.

```
-- Outputs
signal y : std_logic;

BEGIN
-- Instantiate the Unit Under Test (UUT)
uut: gates PORT MAP ( a => a, b => b, y => y );

-- Stimulus process
stim_proc: process
begin

a<='0'; b<='0'; wait for 100 ns;
a<='0'; b<='1'; wait for 50 ns;
a<='1'; b<='0'; wait for 50 ns;
a<='1'; b<='1'; wait for 50 ns;
a<='1'; b<='1'; wait for 50 ns;
a<='0'; b<='0'; wait;
end process;

END;
```


9. Następnie w polu View: zaznaczyć Simulation, a w rozwijanym menu wybrać Behavioral

- 10. W obszarze Hierarchy zaznaczyć plik test behavior (test.vhd)
- 11. W polu *Processes* rozwinąć *ISim Simulator* i uruchomić *Behavioral Check Syntax*, poprawić ewentualne błędy...
- 12. Uruchomić symulację poprzez Simulate Behavioral Model
- 13. Wynik symulacji zaobserwować w postaci przebiegów sygnałów...

Implementacja projektu w układzie FPGA

1. W polu *View:* wybrać *Implementation* (wyjście z symulacji, powrót do projektowania...)

- 2. Wybrać **Project** → **New Source...** uruchamiając **New Source Wizard**
- 3. W oknie Select Source Type zaznaczyć typ Implementation Constrains File

- 4. W polu *File name:* wpisać nazwę *porty*
- 5. W polu *Location* powinien być wybrany folder projektu
- 6. Nacisnąć **Next**, a następnie **Finish**
- 7. Do projektu został dołączony plik tekstowy **porty.ucf** (rozwinąć wiersz **gates Behavioral (...)** w polu **Hierarchy**)
- 8. Jako zawartość pliku *porty.ucf* wpisać poniższy zapis, będący przyporządkowaniem sygnałów projektu do końcówek układu scalonego (zgodnie z posiadaną płytką testową), zapisać i zamknąć plik

```
NET "a" LOC="T10";
NET "b" LOC="T9";
NET "y" LOC="U16";
```

- 9. W obszarze *Hierarchy* zaznaczyć wiersz *gates Behavioral (...)*
- 10. Następnie w polu *Processes* uruchomić *Generate Programming File*

Uwaga!

Podczas pierwszej implementacji po uruchomieniu systemu projektowego *ISE Design Suite* należy ponownie uruchomić *Generate Programming File*, wybierając prawy przycisk myszki *Rerun All*. Taka operacja wynika z błędnego przypisywania końcówek układu scalonego do sygnałów projektu przy pierwszej implementacji, ale po ponownej re-implementacji problem "znika"...

Konfiguracja układu FPGA

- 1. Sprawdzić podłączenie płytki testowej!
- Następnie w polu Processes rozwinąć wiersz Configure Target Device i uruchomić Manage Configuration Project (iMPACT), jeśli pojawi się ostrzeżenie – nacisnąć OK
- 3. Pojawia się aplikacja *ISE iMPACT*, w polu *iMPACT Flows* uruchomić *Boundary Scan*

- 4. Następnie wybrać *File* → *Initialize Chain*
- 5. Jeśli pojawi się okno Assign New Configuration Files Query Dialog, to nacisnąć Yes
- 6. Następnie pojawia się okno **Assign New Configuration File**, w którym należy wskazać katalog projektu i wybrać plik **gates.bit**, nacisnąć **Open**
- 7. W kolejnym okienku *Attach SPI or BPI PROM* nacisnąć *No*
- 8. W oknie **Device Programming Properties -...** zatwierdzić proponowane opcje konfigurowania układów FPGA i PROM poprzez **OK**
- 9. Następnie nacisnąć prawym klawiszem myszki na symbolu układu FPGA i z listy poleceń wybrać **Program**. Konfigurowanie w toku...
- 10. Sprawdzić praktycznie działanie projektu...

HARMONOGRAM LABORATORIUM

LAB 1	 Projekt wstępny z instrukcji laboratoryjnej. Projekt zawierający bramki n-wejściowe typu AND, OR oraz XOR. Zaprojektować konwerter 3-bitowego kodu binarnego na kod "1 z 8" (na wyjściu aktywny stan 0 lub 1). Zaprojektować sumator dwóch liczb 4-bitowych.
LAB 2	 Zaprojektować 27-bitowy licznik binarny z kasowaniem asynchronicznym. (zastosować sygnał zegarowy z płytki testowej, osiem najbardziej znaczących bitów licznika wyprowadzić na diody LED) Zaprojektować 8-bitowy licznik Johnsona. (jako dzielnik częstotliwości sygnału zegarowego zastosować N-bitowy licznik binarny, dobrać N) Zaprojektować 8-bitowy licznik pierścieniowy typu "krążąca jedynka" . (zastosować dzielnik częstotliwości) Zmodyfikować punkt 3) tak, aby za pomocą suwaka wybierać pomiędzy "krążącą jedynką" a "krążącym zerem"
LAB 3	Indywidualne projekty z użyciem bloków kombinacyjnych i sekwencyjnych

Nexys 3

Family: Spartan 6

Device: XC6SLX16

Package: CSG324

Diody LED świecą po podaniu poziomu H na odpowiednią końcówkę układu FPGA:

Dioda LED	LD7	LD6	LD5	LD4	LD3	LD2	LD1	LD0
Końcówka układu FPGA	T11	R11	N11	M11	V15	U15	V16	U16

Naciśnięcie przycisku monostabilnego ustala poziom H na odpowiedniej końcówce układu FPGA:

Przycisk	BTNL	BTNR	BTNU	BTND	BTNS
Końcówka układu FPGA	C4	D9	A8	C9	B8

Osiem przełączników suwakowych umożliwia ustalenie poziomu H (pozycja UP) lub poziomu L (pozycja DOWN) na końcówkach układu FPGA:

Przełącznik	SW7	SW6	SW5	SW4	SW3	SW2	SW1	SW0
Końcówka układu FPGA	T5	V8	U8	N8	M8	V9	Т9	T10

Generator dostarcza sygnał o częstotliwości 100 MHz do układu poprzez końcówkę V10.

Nexys 2

Family: Spartan 3E

Device: XC3S500E

Package: FG320

Diody LED świecą po podaniu poziomu H na odpowiednią końcówkę układu FPGA:

Dioda LED	LD7	LD6	LD5	LD4	LD3	LD2	LD1	LD0
Końcówka układu FPGA	R4	F4	P15	E17	K14	K15	J15	J14

Naciśnięcie przycisku monostabilnego ustala poziom H na odpowiedniej końcówce układu FPGA:

Przycisk	BTN3	BTN2	BTN1	BTN0
Końcówka układu FPGA	H13	E18	D18	B18

Osiem przełączników suwakowych umożliwia ustalenie poziomu H (pozycja UP) lub poziomu L (pozycja DOWN) na końcówkach układu FPGA:

Przełącznik	SW7	SW6	SW5	SW4	SW3	SW2	SW1	SW0
Końcówka układu FPGA	R17	N17	L13	L14	K17	K18	H18	G18

Generator kwarcowy dostarcza sygnał o częstotliwości 50 MHz do układu poprzez końcówkę B8.

Spartan-3 Starter Kit

Family: **Spartan3**

Device: XC3S200

Package: FT256

Diody LED świecą po podaniu poziomu H na odpowiednią końcówkę układu FPGA:

Dioda LED	LD7	LD6	LD5	LD4	LD3	LD2	LD1	LD0
Końcówka układu FPGA	P11	P12	N12	P13	N14	L12	P14	K12

Naciśnięcie przycisku monostabilnego ustala poziom H na odpowiedniej końcówce układu FPGA:

Przycisk	BTN3	BTN2	BTN1	BTN0
Końcówka układu FPGA	L14	L13	M14	M13

Osiem przełączników suwakowych umożliwia ustalenie poziomu H (pozycja UP) lub poziomu L (pozycja DOWN) na końcówkach układu FPGA:

Przełącznik	SW7	SW6	SW5	SW4	SW3	SW2	SW1	SW0
Końcówka układu FPGA	K13	K14	J13	J14	H13	H14	G12	F12

Generator kwarcowy dostarcza sygnał o częstotliwości 50 MHz do układu poprzez końcówkę T9.

DODATEK – gdyby system projektowy nie działał poprawnie

<u>Dla systemu operacyjnego Windows 10 należy przed uruchomieniem systemu projektowego wykonać poniższe zmiany:</u>

ISE 14.7 64-bit - Turning off SmartHeap:

- 1) Navigate to the following ISE install directory: <install_path>\Xilinx\14.7\ISE_DS\ISE\lib\nt64\
- 2) Rename the file "libPortability.dll" to "libPortability.dll.orig".
- 3) Copy the "libPortabilityNOSH.dll" file to the same folder, and rename it to "libPortability.dll".

4) Repeat steps 1-3 in the following folder: <install path>\Xilinx\14.7\ISE DS\common\lib\nt64\

The above steps substitute the original "libPortability.dll" with a "libPortability.dll" file that has SmartHeap disabled, the NOSmartHeap (NOSH) version.

This does not negatively impact the operation of the tools, and should successfully work around the ISE 14.7 crash documented above.