Rachunek Prawdopodobieństwa 1R Lista zadań nr 9

 1^* . (Kolekcjoner kuponów) Załóżmy, że w loterii są kupony o n typach i że w każdym losowaniu (niezależnie od liczby poprzednich losowań) kupon o danym typie jest wylosowany z prawdopodobieństwem n. Każde kolejne losowanie jest niezależne od poprzednich. Niech X_n oznacza liczbę losowań potrzebnych do zgromadzenia pełnej kolekcji kuponów. Pokaż, że

$$\frac{X_n}{n\log n} \stackrel{\mathbb{P}}{\to} 1.$$

 ${f 2}^*$. Niech f będzie dowolną funkcją ciągłą na [0,1]. Ustalmy $p\in [0,1]$. Niech $\{X_i\}$ będzie ciągiem niezależnych zmiennych losowych takich, że $\mathbb{P}[X_i=1]=1-\mathbb{P}[X_1=0]=p$ i niech $S_n=X_1+\ldots+X_n$. Pokaż, że

$$\mathbb{E}f(S_n/n) = f(p)$$

jednostajnie ze względu na p. Wywnioskuj stąd twierdzenie Weierstrassa mówiące, że każdą funkcję ciągłą na [0,1] można przybliżyć ciągiem wielomianów zbieżnych jednostajnie.

 ${\bf 3}^*$. Do n urn wrzucono losowo k_n kul (tzn. dana kula może trafić do urny z prawdopodobieństwem 1/n). Oznaczmy przez X_n liczbę pustych urn. Pokaż, że jeżeli k_n/n zbiega do c, to

$$\frac{X_n}{n} \stackrel{\mathbb{P}}{\to} e^{-c}$$
.

4. Pokaż, że jeśli 0 , to

$$(\mathbb{E}|X|^p)^{1/p} \leq (\mathbb{E}|X|^q)^{1/q}.$$

5. (Reguła n sigm) Pokaż, że jeśli $\mathrm{Var}(X) = \sigma^2 < \infty$, to

$$\mathbb{P}(|X - \mathbb{E}X| > n\sigma) \le \frac{1}{n^2}.$$

6. (Duże odchylenia) Niech $\{X_i\}_{i\geq 1}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie takich, że $\mathbb{E}e^{tX_1}<\infty$ dla każdego $t\in\mathbb{R}$. Wówczas dla każdego $a>\mathbb{E}X_1$

$$\mathbb{P}\bigg(\sum_{i=1}^{n} X_i \ge na\bigg) \le e^{-nI(a)},$$

dla funkcji

$$I(a) = \sup_{t \ge 0} (ta - \log \mathbb{E}[e^{tX_1}]).$$

Ponadto dla każdego $a < \mathbb{E}X_1$

$$\mathbb{P}\bigg(\sum_{i=1}^{n} X_i \le na\bigg) \le e^{-nI_{-}(a)},$$

dla funkcji

$$I_{-}(a) = \sup_{t < 0} \left(ta - \log \mathbb{E}[e^{tX_1}] \right).$$

7. (Duże odchylenia dla rozkładu dwumianowego) Niech X_n będzie zmienną losową o rozkładzie Bin(n,p). Wówczas dla $a \in (p,1]$,

$$\mathbb{P}(X_n \ge na) \le e^{-nI(a)},$$

gdzie

$$I(a) = a \log(a/p) + (1-a) \log((1-a)/(1-p)).$$

8*. (Nierówność Bernsteina). Niech X_1,X_2,\ldots,X_n będą niezależnymi zmiennymi losowymi takimi, że $\mathbb{P}[X_i=1]=\mathbb{P}[X_i=-1]=1/2$ i niech $S_n=X_1+\ldots+X_n$. Pokaż, że dla każdego r>0

$$\mathbb{P}\left[\frac{S_n}{\sqrt{n}} \ge r\right] \le e^{-r^2/2}.$$

9. Pokaż, że jeżeli X_n jest liczbą orłów w n rzutach monetą, to

$$\mathbb{P}(|X_n - n/2| \ge \sqrt{2n\log n}/2) \le \frac{2}{n}.$$

 ${f 10}^*$. Niech $U_i,\,i=1,2,..$ będzie ciągiem niezależnych zmiennych losowych o takim samym rozkładzie: $\mathbb{P}(U_i=1)=\mathbb{P}(U_i=-1)=1/2.$ Zdefiniujmy $S_n=U_1+..+U_n.$ Pokaż, że

$$\limsup_{n\to\infty}\frac{|S_n|}{\sqrt{2n\log n}}\leq 1 \qquad \text{p.w.}$$