2015-AE-27-39

1

AI24BTECH11021 - Manvik Muthyapu

1)	An aircraf	t in le	vel and	unaccel	erated f	flight w	ith a	velocity	of v_{∞}	=	300	m/s	requires	a power	i of
	$9 \times 10^{6} W$.	If the	aircraft	weighs	1.5×10	$0^5 N$, th	e lift-	to-drag r	ratio $\frac{L}{D}$	is					
				_				10 or .	ν						

2) The percentage change in the lift-off distance for a 20 % increase in aircraft weight is _____

- 3) Consider a monoplane wing and a biplane wing with identical airfoil sections, wingspans and incidence angles in identical conditions in a wind tunnel. As compared to the monoplane, the biplane experiences
 - a) a higher lift and a higher drag
 - b) a higher lift and a lower drag
 - c) a lower lift and a lower drag
 - d) a lower lift and a higher drag
- 4) A statically stable trimmed aircraft experiences a gust and the angle of attack reduces momentarily. As a result, the center of pressure of the aircraft
 - a) shifts forward
 - b) shifts rearward
 - c) does not shift
 - d) coincides with the neutral point
- 5) Consider a wing of elliptic planform, with its aspect ratio $AR \to \infty$. Its lift-curve slope, $\frac{dC_L}{d\alpha}$ =
- 6) An ideal gas in a reservoir has a specific stagnation enthalpy of h_0 . The gas is isentropically expanded to a new specific stagnation enthalpy of $\frac{h_0}{2}$ and velocity u. The flow is one-dimensional and steady. Then $\frac{u^2}{h_0} = \underline{\qquad}$.
- 7) The Reynolds number, Re is defined as $\frac{U_{\infty}L}{v}$ where L is the length scale for a flow, U_{∞} is its reference velocity and v is the coefficient of kinematic viscosity. In the laminar boundary layer approximation, comparison of the dimensions of the convection term $u\frac{\partial u}{\partial x}$ and the viscous term $v\frac{\partial^2 u}{\partial x^2}$ leads to the following relation between the boundary layer thickness δ and Re
 - a) $\delta \propto \sqrt{Re}$
 - b) $\delta \propto 1/\sqrt{Re}$
 - c) $\delta \propto Re$
 - d) $\delta \propto 1/Re$
- 8) Isentropic efficiencies of an aircraft engine operating at typical subsonic cruise conditions with the following components intake, compressor, turbine and nozzle are denoted by η_i, η_c, η_t and η_n , respectively. Which one of the following is correct?
 - a) $\eta_i < \eta_c < \eta_t < \eta_n$
 - b) $\eta_t < \eta_i < \eta_c < \eta_n$
 - c) $\eta_c < \eta_t < \eta_i < \eta_n$
 - d) $\eta_c < \eta_i < \eta_t < \eta_n$
- 9) A rocket nozzle is designed to produce maximum thrust at an altitude, H = 8km from the sea level. The nozzle operates in
 - a) under-expanded condition for H > 8km
 - b) under-expanded condition for H < 8km
 - c) sonic exit condition for H < 8km

- d) unchoked condition for H < 8km
- 10) In the solution of d²y/dx + y = 0, if the values of the integration constants are identical and one of the initial conditions is specified as y(0) = 1, the other initial condition y'(0) = _____.
 11) For x > 0, the general solution of the differential equation dy/dx = 1 2y asymptotically approaches
- 12) For a parabola defined by $y = ax^2 + bx + c$, $a \ne 0$, the coordinates (x, y) of the extremum are
 - a) $\left(\frac{-b}{2a} + \frac{\sqrt{b^2 4ac}}{2a}, 0\right)$ b) $\left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{2a}\right)$ c) $\left(\frac{-b}{2a}, \frac{-b^2 + 4ac}{4a}\right)$ d) (0, c)
- 13) The 2-D stress state at a point P in the x-y coordinate system is $\begin{bmatrix} 60 & 50 \\ 50 & -40 \end{bmatrix} MPa$. The magnitude of the tangential stress (inMPa) on a surface normal to the x- axis at P is ______.