

ANALIZA DANYCH TERMALNYCH

Podczerwień termalna 3-14 µm

Transmisja atmosferyczna

- Dane optyczne korzystają z promieniowania Słonecznego odbitego od obiektu.
- Maksymalna koncentracja energii Slonecznej występuje przy długości fali 0,5 µm (maximum promieniowania padającego na powierzchnie Ziemi i odbitego od niej)
- Energia promienista od Ziemi jest niewielka, dominuje w nocy.
- Temperatura Ziemi wynosi średnio 290 K, więc maksimum przypada na 9,7
- . Okna atmosferyczne: 3-5 μm i 8-15 μm

Energia cieplna

- Thermal IR energy = heat = ciepło
- Promieniowanie termalne jest emitowane i odbijane.
- Emisja następuje dla każdego obiektu którego temperatura jest większa od zera bezwzględnego (0 K)

Podstawy teoretyczne

- Obrazy termalne przedstawiają rozkład temperatury radiacyjnej (Trad) powierzchni terenu.
- Trad = E⁴ × Tkin
- iloczyn temperatury (Tkin) i zdolności emisyjnej E materiałów tworzących powierzchnię
- Temperatura radiacyjna temperatura ciała doskonale czarnego, dla której jego całkowita zdolność emisyjna jest równa całkowitej zdolności emisyjnej badanego obiektu.
- Temperatura kinetyczna przejaw wewnętrznej energii ciała jego ciepła (radiacyjna skupia się na emitowanym cieple). Mierzymy ją termometrem.

Emisyjność (emissivity) zdolność obiektu do emisji energii promienistej. Stosunek energii emitowanej przez obiekt do energii promieniowania przez ciało doskonale czarne o tej samej temperaturze. Zależy od rodzaju materialu, geometrii powierzchni, długości fali i kąta obserwacji

Road

10.5

Wheat (soil)

Zobrazowania termalne

- Pozwalają na rejestrację ilości wyemitowanej energii przez daną powierzchnię
- Im jaśniejszy obraz tym większa rejestrowana emisja, a tym samym większa temperatura radiacyjna obiektu

Satelitarne dane termalne

- NOAA skaner AVHRR -
- 2 kanały TIR
 1,1 km
- LANDSAT 5 skaner Thematic
- Mapper – 10,40-12,50 μm
- 120 m LANDSAT 7 skaner Enhanced
- Thematic Mapper

 10,4-12,5 µm
- 60 m TERRA ASTER
- 5 kanałów TIR
- od 8,1 do 11,6 μm
- MODIS – 16 kanałów TIR
- 3.7 14,5 μm

Zalety zobrazowań termalnych

- · Pomiar temperatury ciał na odległość
- · Nocna obserwacja Ziemi
- Możliwość analiz ciągłych = całodobowych
- Nie są wrażliwe na zamglenia i dymy
- · Badanie powierzchni wodnej
- · Detekcja innych cech niż za pomocą VIS i IR

Wady zobrazowań termalnych

- Niska rozdzielczość przestrzenna (TIR niesie ze sobą bardzo mało energii)
- Parametry systemu obrazującego muszą spełniać ściśle określone kryteria
 - Detektory z bardziej odpornych i bardziej kosztochłonnych materiałów
 - Technologia dużo droższa niż ta pozwalająca rejestrować VIS czy NIR
 - Utrzymanie bardzo niskich temperatur, gdyż rejestrowane promieniowanie jest bardzo słabe, i trzeba wyeliminować ciepło własne sensora
- Dane trudne do kalibracji, gdyż różnice w temperaturach mogą być bardzo subtelne i są bardzo zależne od wilgotności atmosfery, dlatego też trudno przewidzieć zależności
- Interpretacja

Zastosowania

- Temperatura powierzchni Ziemi (LST) i mórz (SST)
- Geologia (zjawiska wulkaniczne, fotolineamenty)
- Kondycja roślinności (stres wodny)
- Obszary pokryte lodem
- Oceany (prądy morskie, spływ zanieczyszczeń)
- Pożary (pogorzeliska, ogniska zapalne)
- · Wojsko (zamaskowani żołnierze wroga, ukryte bazy)
- Urbanizacja (zanieczyszczenia, miejska wyspa ciepła)
- Strefa podbiegunowa (długie noce)

Przykłady zastosowań Oerke E.C., Lindenthal M., Fröhling P., Steiner U., 2005, Digital infrared thermography for the assessment of leaf pathogens.

Miejska wyspa ciepła 289,63-300,09 K 300,49-30,30 K 300,50-310,02 K W L Fig. 1. Emissivity-corrected LST map of Indianapolis, United States. LSTs were derived from a Landsat ETM+ thermal infrared image of June 22, 2000. (Source: Weng et al., 2004).

Procedura obliczania

- 1. Import danych Landsat
- 2. Kalibracja obrazu: współczynnika odbicia i brightness temperature
- 3. Wycięcie obrazu
- 4. Obliczanie wskaźnika NDVI
- 5. Obliczenie emisyjności
- 6. Obliczenie temperatury LST
- 7. Maskowanie wody na podstawie obrazu wielospektralnego

Kalibracja temperatury efektywnej brightness temperature

$$T = \frac{K2}{\ln\left(\frac{K1}{L_{\lambda}} + 1\right)}$$

- · Temperatura efektywna w Kelvinach
- K1, K2 stała kalibracyjna zależna od sensora
- L radiancja strumień promieniowania na jednostkę powierzchni na jednostkę kąta bryłowego (wat na steradian na metr kwadratowy)

Emisyjność

$$\varepsilon = \begin{cases} 0.979 - 0.035 \, Red & NDVI < 0.2 \\ 0.986 + 0.004 \, P_V & 0.2 \leq NDVI \leq 0.5 \\ 0.99 & NDVI > 0.5 \end{cases}$$

$$P_V = \left[\frac{NDVI - NDVI_{min}}{NDVI_{max} - NDVI_{min}} \right]^2$$

Red - kanał 3

Emisyjność

- Obliczenie wskaźnika NDVI
- · Obliczenie emisyjności wg wzoru
- b3 = reflectance band 3, b1 = NDVI

Obliczenie LST w stopniach C

$$S_t = \frac{T}{1 + (\lambda * T/\rho) \ln \varepsilon} - 273.15$$

- S_t temperatura powierzchni;
- T temperatura efektywna;
- λ długość fali;
- ε emisyjność;
- " $\rho = (h^*c/\sigma)$ ", where:
 - $-\sigma$ stała Boltzmanna = 1.38 × 10⁻²³ J/K;
 - $h stała Plancka = 6.626 \times 10^{-34} Js;$
 - -c prędkość światła = 2.998 \times 108 m/s.

b1 = Brightness temperature, b2 = Emissivity

Analiza

- Maskowanie
- Kartogram temperatur