ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 07 giugno 2018

Esercizio A

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₃ in modo che, in condizioni di riposo, la tensione sul collettore di Q₂ sia 11.3 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₁. (R: R₃ = 6043.7 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 e C_2 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -1.8$)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A + \overline{B}}\right) \left(\overline{C} + \overline{DE}\right) + \left(\overline{A + B}\right) \left(\overline{C} + D\right) + AB\left(\overline{D} + \overline{E}\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori. (R: N = 18)

Esercizio C

$R_1 = 60 \Omega$	$R_6=1.8\;k\Omega$
$R_2 = 3 \text{ k}\Omega$	$R_7 = 1 \text{ k}\Omega$
$R_3 = 3 \text{ k}\Omega$	$C = 0.1 \mu F$
$R_4 = 400~\Omega$	$V_{CC} = 6 V$
$R_5 = 3.6 \text{ k}\Omega$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$, Q_2 ha una $R_{on} = 0$ e $V_T = -1V$, l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: $f = 5350 \, \text{Hz}$)