Cálculo Diferencial e Integral IV (MAC248) Notas de Aula

Igor Carvalho Ramos Leal igorcarvalho@poli.ufrj.br

Universidade Federal do Rio de Janeiro 2023.1 4 de abril de 2023

Conteúdo

1	Séri	ies Infinitas			
		1.0.1 Sequências $(04/04/2023)$			
	1.1	Definição de Séries Numéricas			
	1.2	Condição Necessária para Convergência de uma Série Infinita			
	1.3	Séries Infinitas de Termos Positivos: Teste da Comparação, Teste			
		da Integral, Teste de D'Alembert (teste da razão)			
	1.4	Séries Alternadas: Teste de Leibniz (teste da série alternada)			
	1.5	Séries Absolutamente e Condicionalmente Convergentes			
	1.6	Séries de Potência: Definição, Intervalo de Convergência, Dife-			
		renciação e Integração de Séries de Potências			
	1.7	Séries de Taylor			
2	Solução por Séries de Equações Lineares de Segunda Ordem				
	2.1	Soluções por Sëries Próximo a Ponto Ordinário			
	2.2	Solução por Séries Poximo a Ponto Singular Regular (Método de			
		Frobenius)			
3	Transformadas de Laplace				
	3.1	Definição da Transformada de Laplace			
	3.2	Transformada de Laplace como transformação linear			
	3.3	Resolução de Problemas de Valor Inicial para Equações Diferenciais			
	3.4	Função Degrau			
	3.5	Propriedades da Transformada de Laplace			
	3.6	Resolução de Equações Diferenciais com Função Forçada Des-			
		contínua			
	3.7	'Função' Delta de Dirac e sua Transformada de Laplace			
	3.8	A Integral de Convolução			

4	\mathbf{Pro}	blemas de Valores de Contorno	1
	4.1	Problema de autovalores	1
	4.2	Problema de Sturm Liouville (opcional)	1
5	Séri	ies de Fourier	1
	5.1	Definição	1
	5.2	Teorema de Convergência de Fourier	1
	5.3	Séries de Senos e Cosenos de Fourier	1
6	Ean	nações Diferenciais Parciais(EDP) Clássicas	1
Ů	6.1		1
	6.2		1
	6.3	Equações do Calor:	
	0.0	6.3.1 Condições de Contorno: Dirichlet, Neumann, mista e Robin.	
	6.4	Equação da Onda:	
		6.4.1 Condições de Contorno: Dirichlet, Neumann e mista 4	
	6.5		1
		6.5.1 Condições de Contorno: Dirichlet e Neumann no Retângulo	
			1
1	\mathbf{S}	éries Infinitas	
1.0	0.1	Sequências $(04/04/2023)$	
16		nas importantes	
	• D	ado uma função f tal que $f(n)=a_n, \ \forall n\in \mathbb{N}$. Então, se $\lim_{x\to\infty}f(x)=$ $\Longrightarrow \lim a_n=L$	Ξ
	• Se	e $\lim a_n = 0$, então $\lim a_n = 0$	
		ado a sequência $b_n = f(a_n)$. Se $\lim a_n = L$ e f contínua em L , então m $b_n = \lim f(a_n) = f(\lim a_n)$)
	Exe	rcícios	
	1.	4.	
	1.		
		$\lim \frac{n}{\sqrt{10+n}}$ $n!$	
		$\sqrt{10+n}$ $\lim \frac{n!}{2^n}$	
	2.	2^n	
		$\lim \frac{n!}{n^n}$	
	D	ica! pensar em $MA \ge MG$ 5.	
	3.	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	J.	$\lim \frac{n^2}{c^n}$ $\lim \left(1+\frac{2}{n}\right)^2$	
		$\lim_{n \to \infty} \frac{1}{n}$	

- 1.1 Definição de Séries Numéricas
- 1.2 Condição Necessária para Convergência de uma Série Infinita
- 1.3 Séries Infinitas de Termos Positivos: Teste da Comparação, Teste da Integral, Teste de D'Alembert (teste da razão)
- 1.4 Séries Alternadas: Teste de Leibniz (teste da série alternada)
- 1.5 Séries Absolutamente e Condicionalmente Convergentes
- 1.6 Séries de Potência: Definição, Intervalo de Convergência, Diferenciação e Integração de Séries de Potências.
- 1.7 Séries de Taylor
- 2 Solução por Séries de Equações Lineares de Segunda Ordem
- 2.1 Soluções por Sëries Próximo a Ponto Ordinário
- 2.2 Solução por Séries Poximo a Ponto Singular Regular (Método de Frobenius)
- 3 Transformadas de Laplace
- 3.1 Definição da Transformada de Laplace
- 3.2 Transformada de Laplace como transformação linear
- 3.3 Resolução de Problemas de Valor Inicial para Equações Diferenciais
- 3.4 Função Degrau
- 3.5 Propriedades da Transformada de Laplace
- 3.6 Resolução de Equações Diferenciais com Função Forçada Descontínua
- 3.7 'Função' Delta de Dirac e sua Transformada de Laplace
- 3.8 A Integral de Convolução
- 4 Problemas de Valores de Contorno
- 4.1 Problema de autovalores
- 4.2 Problema de Sturm Liouville (opcional)
- 5 Séries de Fourier
- 5.1 Definição