Теория Рамсея

В графе на достаточно большом количестве вершин без больших клик обязательно есть большое независимое множество вершин.

Числа Рамсея

• Основным объектом изучения в этом разделе будут полные графы, рёбра которых покрашены в несколько цветов. Напомним, что множество вершин, образующих полный подграф, а также сам этот подграф мы называем кликой.

Определение числа Рамсея

- Пусть $m,n\in\mathbb{N}$. Число Рамсея r(m,n) это наименьшее из всех таких чисел $x\in N$, что при любой раскраске рёбер полного графа на x вершинах в два цвета обязательно найдётся клика на n вершинах с рёбрами цвета 1 или клика на m вершинах с рёбрами цвета 2.
- Рамсей доказал, что число r(m,n) существует (то есть, конечно).
- Очевидно,
- r(n,1) = r(1,n) = 1,
- • r(n,2) = r(2,n) = n,
- • r(m,n)=r(n,m).

Двумерные числа Рамсея: оценки сверху для случая двух цветов.

Теорема 1

 * (P. Erdos, G.Szekeres, 1935.) Пусть $n,m\geq 2$ — натуральные числа. Тогда выполнены следующие утверждения.

- 1. $r(n,m) \le r(n,m-1) + r(n-1,m)$.
- 2. Если оба числа $r(n,m{-}1)$ и $r(n{-}1,m)$ чётные, то $r(n,m) \leq r(n,m{-}1) + r(n{-}1,m){-}1.$

Доказательство.

- 1. Рассмотрим клику на r(n,m-1)+r(n-1,m) вершинах с рёбрами цветов 1 и 2 и ее произвольную вершину a. От вершины а отходит r(n,m-1)+r(n-1,m)-1 рёбер цветов 1 и 2.
 - Предположим, что от вершины a отходит хотя бы r(n,m-1) рёбер цвета 2. Рассмотрим концы этих ребер. Среди них есть либо клика на n вершинах с рёбрами цвета 1, либо клика на m-1 вершинах с рёбрами цвета 2. В первом случае теорема доказана, а во втором случае случае добавим вершину a и получим клику на m вершинах с рёбрами цвета 2.
 - ullet Предположим, что от вершины a отходит не более r(n,m-1)-1 рёбер цвета 2. Тогда a инцидентна хотя бы r(n-1,m) рёбрам цвета 1. Аналогично получаем, что в графе есть искомая клика.
- 2. Рассмотрим клику на r(n,m-1)+r(n-1,m)-1 вершинах с рёбрами цветов 1 и 2 и её произвольную вершину а.
 - ullet Если вершине а инцидентны хотя бы r(n,m-1) рёбер цвета 2 или хотя бы r(n-1,m) рёбер цвета 1, то мы найдём в графе клику на n вершинах с рёбрами цвета 1 или клику на m вершинах с рёбрами цвета 2
 - ullet Остаётся случай, когда вершине а инцидентны ровно r(n,m-1)-1 рёбер цвета 2 и ровно r(n-1,m)-1 рёбер цвета 1, то же самое для всех остальных вершин.
 - ullet Это означает, что в графе из рёбер цвета 2 всего r(n,m-1)+r(n-1,m)-1 вершин и степень каждой вершины равна r(n,m-1)-1. Однако, тогда в графе нечётное количество вершин нечётной степени.

Оценка снизу на r(k,k).

Теорема 2

(Р. Erdos, 1947.) Для любого натурального числа $\mathsf{k} \ge 2$ выполняется неравенство $r(k,k) \ge 2^{k/2}.$

Доказательство.

- $r(2,2)=2\geq 2^{2/2}$. Далее $k\geq 3$.
- Зафиксируем множество различных помеченных вершин $v_1,...,v_n$. Пусть g(n,k) доля среди всех графов на вершинах $v_1,...,v_n$ тех графов, что содержат клику на k вершинах. Всего графов на наших вершинах, очевидно, $2^{C_n^2}$ (каждое из возможных $C_n^2 = \frac{n(n-1)}{2}$ рёбер можно провести или не провести).

Посчитаем графы с кликой на k вершинах так: существует

$$C_n^k = rac{n!}{k!(n-k)!} = rac{n(n-1)(n-2)...(n-k+1)}{k!} < rac{n^k}{k!}$$

- способов выбрать k вершин для клики в нашем множестве, после чего все рёбра между ними будем считать проведёнными, а остальные рёбра выбираются произвольным образом.
- Таким образом, каждый граф с кликой на k вершинах будет посчитан, причём некоторые даже более одного раза. Количество графов с кликой размера k оказывается не более, $C_n^k * 2^{C_n^2 C_k^2}$. Следовательно,

$$g(n,k) \leq rac{C_n^k * 2^{C_n^2 - C_k^2}}{2^{C_n^2}} = rac{C_n^k}{2^{C_k^2}} < rac{n^k}{k! * 2^{C_k^2}} \hspace{1cm} (1)$$

ullet Подставив $n < 2^{k/2}$ в неравенство (1), мы получаем

$$rac{2^{k^2/2}*2^{-C_k^2}}{k!} = rac{2^{k/2}}{k!} < rac{1}{2}$$

- ullet Предположим, что $r(k,k)=n<2^{k/2}$ и разобьём все графы на n вершинах на пары G,\overline{G} (граф и его дополнение).
- ullet Так как $g(n,k)<rac{1}{2}$, то существует пара, в которой ни G, ни \overline{G} не содержат клики на k вершинах. Рассмотрим раскраску рёбер K_n в два цвета, в которой рёбра цвета 1 образуют граф G . В такой раскраске нет клики на k вершинах ни цвета 1, ни цвета 2, противоречие.
- ullet Следовательно, $r(k,k) \geq 2^{k/2}.$

Следствие 1

Для любых $k,m\in\mathbb{N}$ таких, что $2\leq k\leq m$, выполняется неравенство $r(k,m)\geq 2^{k/2}.$

Двумерные числа Рамсея: оценка сверху для случая более чем двух цветов.

Числа Рамсея для раскрасок в несколько цветов

• Естественным обобщением классических чисел Рамсея является случай, когда рёбра полного графа красятся не в два, а в произвольное число цветов.

Определение

Пусть $k,n_1,...,n_k\in\mathbb{N}$. Число Рамсея $r(k;n_1,...,n_k)$ — это наименьшее из всех таких чисел $x\in\mathbb{N}$, что при любой раскраске рёбер полного графа на x вершинах в k цветов для некоторого $i\in[1..k]$ обязательно найдётся клика на n_i вершинах с рёбрами цвета i.

ullet Отметим, что r(2;n,m) — это определённое ранее число Рамсея r(n,m).

(P. Erdos, G.Szekeres, 1935.) Пусть $k, n_1, ..., n_k \geq 2$ — натуральные числа. Тогда

$$r(k;n_1,...,n_k) \leq r(k;n_1-1,n_2,...,n_k) + r(k;n_1,n_2-1,...,n_k) + \cdots + r(k;n_1,n_2,...,n_k-1) - k + 2.$$

Доказательство.

- ullet Рассмотрим клику на $p=r(k;n_1-1,n_2,...,n_k)+r(k;n_1,n_2-1,...,n_k)+\cdots+r(k;n_1,n_2,...,n_k-1)-k+2$ вершинах с рёбрами цветов 1,...,k и ее произвольную вершину a. От вершины a отходит p-1 рёбер цветов 1,...k.
- ullet Мы хотим доказать, что существует такое $j \in \{1,...,k\}$, для которого найдется клика на n_j вершинах с рёбрами цвета j.
- Предположим, что от вершины a отходит хотя бы $r(k;n_1,...,n_i-1,...,n_k)$ рёбер цвета i. Рассмотрим концы этих ребер. Среди них есть либо клика на n_s вершинах с рёбрами цвета $s \neq i$, либо клика на n_i-1 вершинах с рёбрами цвета i. В последнем случае добавим вершину а и получим клику на m вершинах с рёбрами цвета i.
- ullet Остается случай, когда для каждого i вершине a инцидентно не более $r(k;n_1,...,n_i{-}1,...,n_k){-}1$ рёбер цвета i. Тогда а инцидентна не более чем

$$r(k;n_1-1,n_2,...,n_k)-1+r(k;n_1,n_2-1,...,n_k)-1+\cdots+r(k;n_1,n_2,...,n_k-1)-1=p-2$$
 рёбрам,

противоречие.

Многомерные числа Рамсея: доказательство конечности.

• Результат этого раздела не относится к классической теории графов, но тесно с ней связан. Даже формулировать определения и результаты мы будем не на языке графов.

Определение

Пусть $m,k,n_1,...,n_k\in\mathbb{N}$, причём $n_1,...,n_k\geq m$. Число Рамсея $r_m(k;n_1,...,n_k)$ — это наименьшее из всех таких чисел $x\in\mathbb{N}$, что при любой раскраске m-элементных подмножеств x-элементного множества M в k цветов для некоторого $i\in[1..k]$ обязательно найдётся такое множество W_i , что $|W_i|$ = n_i и все m-элементные подмножества множества W_i имеют цвет i. Число m называется размерностью числа Рамсея $r_m(k;n_1,...,n_k)$.

ullet Нетрудно понять, что числа Рамсея размерности 2 — это определённые выше числа Рамсея для

клик.

- ullet При количестве цветов, равном 2, этот параметр мы будем опускать и писать $r_m(n_1,n_2)$ вместо $r_m(2;n_1,n_2).$
- ullet Для каждого множества M через M^k мы будем обозначать множество всех k-элементных подмножеств M.

Теорема 4

(F. Ramsey, 1930.) Пусть $m, k, n_1, ..., n_k$ — натуральные числа, причём $k \geq 2$, а $n_1, ..., n_k \geq m$. Тогда число Рамсея $r_m(k; n_1, ..., n_k)$ существует (то есть, конечно).

Доказательство.

- 1. Мы будем доказывать теорему **по индукции**. Начнем со случая k=2. Приступая к доказательству для числа $r_m(n_1,n_2)$ мы будем считать доказанным утверждение теоремы для чисел Рамсея всех меньших размерностей и чисел Рамсея размерности m с меньшей суммой n_1+n_2 . В качестве базы будем использовать случай чисел Рамсея размерности 2, разобранный в n_1
 - Мы докажем, что

$$r_m(n_1, n_2) - 1 \le p = r_{m-1}(r_m(n_1 - 1, n_2), r_m(n_1, n_2 - 1)).$$

- ullet Рассмотрим (p+1)-элементное множество M и выделим в нём элемент a.
- ullet Пусть $M_0=M\setminus \{a\}$, а $ho:M^m o \{1,2\}$ произвольная раскраска в два цвета. Определим раскраску $ho':M_0^{m-1} o \{1,2\}$: для каждого множества $B\in M^{m-1}$ положим $ho'(B):=
 ho(B\cup \{a\})$.
- Так как $|M_0|=p=r_{m-1}(r_m(n_1-1,n_2),r_m(n_1,n_2-1))$, либо существует $r_m(n_1-1,n_2)$ -элементное подмножество $M_1\subset M_0$, для которого $\rho'(B)=1$ на всех $B\in M_1^{m-1}$, либо существует $r_m(n_1,n_2-1)$ -элементное подмножество $M_2\subset M_0$, для которого $\rho'(B)=2$ на всех $B\in M_2^{m-1}$ Случаи аналогичны, рассмотрим первый случай и множество M_1 .
- По индукционному предположению из $|M_1|=r_m(n_1-1,n_2)$ следует, что либо существует n_1-1 элементное подмножество $N_1\subset M_1$, для которого $\rho(A)=1$ на всех $A\in N_1^m$, либо существует n_2 -элементное подмножество $N_2\subset M_1$, для которого $\rho(A)=2$ на всех $A\in N_2^m$
- Во втором случае искомое подмножество найдено (это N_2)
- ullet Рассмотрим первый случай и множество $N=N_1\cup\{a\}$. Пусть $A\in N_m$. Если $A
 ot\equiv a$, то $A\in N_1^m$ и, следовательно, ho(A)=1. Если же $A\ni a$, то множество $A\setminus\{a\}\in N_1^{m-1}\subset M_1^{m-1}$ и потому $ho(A)=
 ho'(A\setminus\{a\})=1$. Учитывая, что $|N|=n_1$, мы нашли искомое подмножество и в этом случае.

- 2. При k > 2 будем вести индукцию по k с доказанной выше базой k = 2.
 - Докажем неравенство

$$r_m(k; n_1, ..., n_k) \leq q = r_m(r_m(k-1; n_1, ..., n_{k-1}), n_k).$$

- ullet Рассмотрим множество M на q вершинах и произвольную раскраску $ho:M^m o [1..k]$ в k цветов.
- ullet Рассмотрим раскраску $ho':M^m o 0,k$, в которой цвета 1,...,k-1 раскраски ho склеены в цвет 0.
- ullet Тогда существует либо такое подмножество $M_0\subset M$, что $|M_0|=r_m(k-1;n_1,...,n_{k-1})$ и ho'(A)=0 на всех $A\in M_0^m$, либо существует такое n_k -элементное подмножество $M_k\subset M$, что ho(A)=
 ho'(A)=k на всех $A\in M_k^m$.
- ullet Во втором случае M_k искомое подмножество, а в первом случае заметим, что на любом подмножестве $A\in M_0^m$ из ho'(A)=0 следует $ho(A)\in [1..k-1]$. Исходя из размера множества M_0 , по индукционному предположению получаем, что найдётся искомое подмножество множества M для одного из цветов 1,...,k-1.

Применение теории Рамсея: задача о выпуклом n-угольнике.

- ullet Для любого $m\geq 3$ мы докажем, что если взять на плоскости очень много точек общего положения (никакие три не лежат на одной прямой), среди них найдется m, образующих выпуклый m-угольник
- ullet Выпуклая оболочка k точек минимальный по включению выпуклый многоугольник, все их содержащий. Известно, что вершины выпуклой оболочки всегда некоторые из наших точек.
- ullet Если все k точек являются вершинами своей выпуклой оболочки, то они образуют выпуклый k -угольник.

Лемма 1

На плоскости дано множество M из k точек общего положения на плоскости таких, что любой 4 -угольник с вершинами в 4 из этих точек выпуклый. Тогда точки из M образуют выпуклый k -угольник.

Доказательство.

- ullet Предположим противное и рассмотрим выпуклую оболочку точек множества M, тогда в ней s < k вершин.
- ullet Триангулируем этот s-угольник диагоналями и рассмотрим точку $A\in M$, не являющуюся вершиной M.
- ullet Точка A попала внутрь одного из треугольников триангуляции скажем, в $B_1B_2B_3$ (см.

рисунок). Тогда $B_1B_2AB_3$ — невыпуклый четырёхугольник, противоречие.

Лемма 2

Из любых 5 точек общего положения на плоскости можно выбрать 4, образующие выпуклый 4угольник.

Доказательство

- \bullet Рассмотрим выпуклую оболочку наших 5 точек. Если это 4- или 5-угольник, Лемма доказана.
- ullet Пусть выпуклая оболочка треугольник ABC. Внутри него расположены еще оставшиеся точки скажем, X и Y.
- ullet Прямая XY не может проходить через вершину треугольника ABC (точки в общем положении), а значит, XY пересекает две стороны треугольника скажем, AB и BC (см. рисунок).
- ullet Тогда 4-угольник AXYC- выпуклый.

Теорема 5

Для любого $m\geq 3$ существует такое $k_m\in\mathbb{N}$, что среди любых k_m точек общего положения на плоскости есть m, образующих выпуклый m-угольник.

Доказательство

- ullet Пусть $k_m=r_4(m,5)$
- ullet Рассмотрим любые k_m точек общего положения на плоскости и покрасим четверки этих точек в цвет 1, если они образуют выпуклый 4- угольник, и в цвет 2—если не выпуклый.
- ullet Тогда найдутся либо m точек, все четверки среди которых цвета 1, либо 5 точек, все четверки

среди которых цвета 2.

- В первом случае по <u>Лемме 1</u> мы нашли m точек, образующих выпуклый m-угольник.
- Второй случай невозможен по <u>Лемме 2</u>.

Применение теории Рамсея: теорема Шура об одноцветном решении уравнения x+y=z.

Теорема 6

(I. Schur, 1917.) Пусть $n\in\mathbb{N}$, а натуральные числа от 1 до n покрашены в k цветов. Тогда при любом достаточно большом n найдется одноцветное решение уравнения x+y=z в числах $\{1,...,n\}$.

Доказательство

- ullet Пусть $n \geq r(k;3,...,3)$ (здесь k троек)
- ullet Соединим каждые два числа $s,t \in \{1,\cdots n\}$ ребром, покрашенным в цвет |s-t|.
- ullet Тогда найдется треугольник с одноцветными рёбрами скажем, из чисел a>b>c.
- ullet Это означает, что a-b,b-c,a-c одноцветное решение уравнения x+y=z, так как (a-b)+(b-c)=a-c.

Лемма о произвольном дереве-подграфе

• Ещё один способ обобщения классической теории Рамсея — замена клик на произвольные графы-шаблоны.

Определение

Пусть H_1, H_2 — два данных графа. Число Рамсея $r(H_1, H_2)$ — это наименьшее из всех таких чисел $x \in \mathbb{N}$, что при любой раскраске рёбер полного графа на x вершинах в два цвета обязательно найдётся подграф с рёбрами цвета 1, изоморфный H_1 , или подграф с рёбрами цвета 2, изоморфный H_2 .

ullet Из результатов классической теории Рамсея понятно, что числа $r(H_1,H_2)$ обязательно существуют (то есть, конечны). Интересно, что иногда их можно точно вычислить.

Пусть m>1, а граф H таков, что $v(H)\geq (m-1)(n-1)+1$ и $\alpha(H)\leq m-1$. Тогда граф H содержит в качестве подграфа любое дерево на n вершинах.

Доказательство.

ullet Зафиксируем m и проведём индукцию по n. База для n=1 очевидна.

Индукционный переход $n{-}1 o n (n>1).$

ullet Рассмотрим произвольное дерево T_n на n вершинах, пусть дерево T_{n-1} получено из T_n удалением висячей вершины (см. рис.а).

- ullet Пусть U максимальное независимое множество вершин графа H. Тогда $|U|=lpha(H)\leq m-1$, следовательно, $v(H-U)\geq (m-1)(n-2)+1$ и, очевидно, $lpha(H-U)\leq m-1$
- ullet По индукционному предположению граф H-U содержит в качестве подграфа дерево T_{n-1} . Пусть a вершина этого дерева, присоединив к которой висячую вершину, мы получим дерево T_n .
- ullet Заметим, что множество $U \cup \{a\}$ не является независимым ввиду максимальности U, следовательно, вершина a смежна хотя бы с одной вершиной $x \in U$.
- ullet Так как $x
 ot\in V(T_{n-1})$, можно присоединить вершину x к вершине a дерева T_{n-1} . В результате мы получим дерево T_n в качестве подграфа графа H.

Числа Рамсея для проимзвольных графов. Теорема Хватала

Теорема 7

(V.Chvatal, 1977.) Пусть T_n — дерево на n вершинах. Тогда $r(T_n,K_m)=(m-1)(n-1)+1$. Доказательство.

- 1. Докажем, что $r(T_n,K_m)\geq (m{-}1)(n{-}1)+1$
 - ullet Для этого предъявим раскраску рёбер графа $K_{(m-1)(n-1)}$, в которой нет ни одного связного подграфа на n вершинах с рёбрами цвета 1 и нет клики на m вершинах с рёбрами цвета 2.

Разобьём вершины графа на m-1 клику по n-1 вершине и покрасим все рёбра этих клик в цвет 1, а остальные рёбра — в цвет 2.

- ullet Тогда любой связный подграф с рёбрами цвета 1 содержит не более n-1 вершины, в частности, нет подграфа с рёбрами цвета 1, изоморфного T_n . Рёбра цвета 2 (то есть, все оставшиеся рёбра) образуют (m-1)-дольный граф, в котором, очевидно, нет клики на m вершинах.
- 2. Рассмотрим произвольную раскраску рёбер полного графа $K_{(m-1)(n-1)+1}$ в два цвета и его остовный подграф G_1 с рёбрами первого цвета.
 - Предположим, что не существует клики на m вершинах с рёбрами цвета 2. Тогда m>1 и $\alpha(G1)\leq m-1$. По <u>Лемме 3</u> граф G_1 содержит в качестве подграфа любое дерево на n вершинах, в частности, дерево, изоморфное T_n

Оценка количества рёбер в графе, удовлетворяющем наследственному свойству.

Наследственное свойство

Определение

- ullet Назовем свойство P графа наследственным, если для любого графа G, удовлетворяющего свойству P, любой индуцированный подграф H графа G также удовлетворяет свойству P.
- ullet Обозначим через P(n) наибольшее возможное количество рёбер в графе на n вершинах, удовлетворяющем свойству P.
- ullet Наследственных свойств довольно много. Например, свойства "граф не содержит подграфа, изоморфного данному" или "хроматическое число графа не превосходит k" являются наследственными.

Теорема 8

Пусть P — наследственное свойство графов и $n \geq 3$. Тогда $P(n) \leq rac{n}{n-2} P(n-1)$

Доказательство

- ullet Рассмотрим удовлетворяющий свойству P граф G на n вершинах с e(G)=P(n). Пусть $V(G)=v_1,...,v_n.$
- ullet Так как граф $G_i=G-v_i$ индуцированный подграф G —также удовлетворяет свойству P, мы имеем неравенство $e(G)-d_G(v_i)=e(G_i)\leq P(n-1)$.
- ullet Сложив такие неравенства для всех $i\in [1..n]$, мы получим

$$(n-2)P(n) = (n-2)e(G) = ne(G) - \sum_{i=1}^n d_G(v_i) \le n \cdot P(n-1),$$

ΤK

$$\sum_{i=1}^n d_G(v_i) = 2e(G)$$

откуда немедленно следует утверждение теоремы.

Задача о запрещенном подграфе

Определение. Пусть H — некоторый фиксированный граф. Через ex(v,H) мы обозначим наибольшее возможное количество рёбер в графе на v вершинах, не содержащем подграфа, изоморфного H.

- ullet Мы рассмотрим самый простой случай задачи о запрещенном подграфе это задача о максимальном числе рёбер в графе без полного подграфа K_n
- ullet (n -1)-дольный граф это граф, вершины которого разбиты на n-1 долю так, что внутри долей нет ребер.
- ullet Полный (n-1)-дольный граф имеет все рёбра между долями.
- ullet Очевидно, полный s-дольный граф при $s \geq n$ содержит K_n , а при $s \leq n{-}1$ не содержит K_n
- ullet Пусть v=q(n-1)+r, где r остаток от деления v на n-1. Обозначим через $T_{v,n}$ полный (n-1)-дольный граф на v вершинах с r долями размера q+1 и n-1-r долями размера q.

Лемма 4

Среди всех s-дольных графов на v вершинах, где $s \leq n{-}1$, наибольшее число ребер имеет $T_{v,n}$

Доказательство.

- ullet Пусть H- подходящий под условие граф с максимальным числом ребер. Понятно, что он является полным s-дольным для некоторого s < n-1.
- ullet Можно считать H полным (n-1)-дольным графом с долями размеров $k_1,...,k_{n-1}$ (при s< n-1 добавим доли размера 0), где $k_1+\cdots+k_{n-1}=v$.
- ullet Количество ребер полного графа на v вершинах равно $rac{v(v-1)}{2}$, а количество рёбер полного графа на k_i вершинах равно $rac{k_i(k_i-1)}{2}$
- Следовательно,

$$e(H) = \frac{v(v-1)}{2} - \sum_{i=1}^{n-1} \frac{k_i(k_i-1)}{2} = \frac{v(v-1)}{2} + \sum_{i=1}^{n-1} \frac{k_i}{2} - \sum_{i=1}^{n-1} \frac{k_i^2}{2} = \frac{v^2}{2} - \sum_{i=1}^{n-1} \frac{k_i^2}{2}$$

- ullet Значит, e(H) максимально, когда $\sum_{i=1}^{n-1} k_i^2$ минимально
- ullet При $\sum_{i=1}^{n-1} k_i = v$ минимум суммы квадратов достигается на "почти равных" $k_1,...,k_{n-1}$ случае графа $T_{v,n}$
- ullet В самом деле, пусть для $k_1,...,k_{n-1}$ сумма их квадратов минимальна. Рассмотрим наибольшее и наименьшее числа скажем, k_i и k_j . Если $k_i-k_j\geq 2$, то $k_i^2+k_j^2>(k_i-1)^2+(k_j+1)^2$, что противоречит выбору $k_1,...,k_{n-1}$.
- Значит, при минимальной $\sum_{i=1}^{n-1} k_i^2$ минимум и максимум из чисел $k_1,...,k_{n-1}$ отличаются не более чем на 1. Так как они целые числа, то при v=q(n-1)+r, где r остаток от деления v на n-1 это как раз r чисел q+1 и n-1-r чисел q. Это случай графа $T_{v,n}$.
- Количество ребер графа Tv,n Нетрудно подсчитать:

$$e(T_{v,n}) = rac{(n-2)(v^2-r^2)}{2(n-1)} + rac{r(r-1)}{2}$$

где r — остаток от деления v на n-1.

Графы без K_n : теорема Турана.

Теорема 9

(Р. Tur´an, 1941.) При n ≥ 3

$$ex(v,K_n)=e(T_{v,n})=rac{(n-2)(v^2-r^2)}{2(n-1)}+rac{r(r-1)}{2}$$

где r — остаток от деления v на n-1.

Доказательство

- ullet Пусть H граф без K_n на v вершинах.
- ullet Для $a,b\in V(H)$ будем писать $a\sim b$, если $N_H(a)=N_H(b)$
- \bullet Если $a\sim b$, то очевидно, что a и b несмежны. Следовательно, a и b не могут входить в одну клику K_n .
- ullet Понятно, что $a\sim b$ отношение эквивалентности. Значит, V(H) разбито на классы эквивалентности по \sim .
- Пусть $a \not\sim b$ и эти вершины несмежны. НУО $d_H(a) \geq d_H(b)$. Тогда заменим весь класс эквивалентности вершины b на вершины, эквивалентные a. Количество ребер не уменьшится, но станет меньше классов эквивалентности. Так как эквивалентные вершины не могут входить вместе в K_n , в полученном графе также нет K_n .
- ullet Будем выполнять такие операции, пока это возможно. Процесс конечен (уменьшается число классов эквивалентности), значит, он закончится, и в результате получится граф G без K_n , в котором $e(G) \geq e(H)$ и любые две неэквивалентные вершины смежны.
- ullet Пусть в G ровно s классов эквивалентности. Тогда G Полный s-дольный граф, в котором доли именно эти классы. Так как G не содержит $K_n, s \leq n-1$.
- ullet По Лемме 4 мы имеем $e(G) \leq e(T_{v,n})$