Krzysztof Pszeniczny nr albumu: 347208 str. 1/1 Seria: ostatnia

Zadanie 68

Pierwszość I

Wystarczy pokazać, że dziedziną jest

$$(k[x, y, z]/(xy - z^2))/(x, z) \simeq k[x, y, z]/(xy - z^2, x, z) \simeq k[x, y, z]/(x, y) \simeq k[y]$$

co jest oczywiste.

Nieprymarność I²

Wystarczy znaleźć dzielnik zera niebędący nilpotentem w

$$(k[x,y,z]/(xy-z^2))/(x,z)^2 \simeq k[x,y,z]/(xy-z^2,x^2,xz,z^2) \simeq k[x,y,z]/(xy,x^2,xz,z^2)$$

Latwo widać, że takim dzielnikiem jest y. Istotnie, $xy \in (xy, x^2, xz, z^2)$, zaś ponieważ jest to ideał jednomianowy to stwierdzamy łatwo patrząc na generatory, że $\forall_n y^n \notin (xy, x^2, xz, z^2)$.

Rozkład prymarny I²

Twierdzę, że w R mamy $I^2 = (x) \cap (y, xz, x^2)$.

Po pierwsze, są to ideały prymarne, gdyż

$$(k[x, y, z]/(xy - z^2))/(x) \simeq k[x, y, z]/(xy - z^2, x) \simeq k[x, y, z]/(z^2, x) \simeq k[y, z]/(z^2)$$
(1)

nie ma dzielników zera poza nilpotentami. Analogicznie:

$$(k[x,y,z]/(xy-z^2))/(y,xz,x^2) \simeq k[x,y,z]/(xy-z^2,y,xz,x^2) \simeq k[x,y,z]/(z^2,x^2,xz,y) \simeq k[x,z]/(x^2,z^2,xz)$$

gdzie na pewno wielomiany o niezerowym wyrazie wolnym nie są dzielnikami zera, zaś wszystkie pozostałe już w kwadracie są zerem, więc jest to ideał prymarny.

Teraz należy wykazać zawierania. Oczywiście $x^2, xy, z^2 \in (x), x^2, xy, z^2 \in (y, xz, x^2)$ (oczywiście pamiętając, że $xy = z^2$). Rozpatrzmy teraz element P należący do $(x) \cap (y, xz, x^2)$, a zatem $P = \varpi x = \xi y + \zeta xz + \rho x^2$ dla pewnych $\varpi, \xi, \zeta, \rho \in \mathbb{R}$. Jednak stąd mamy $x(\varpi - \zeta z - \rho x) = \xi y$. Jeśli $\xi \notin (x)$, to ponieważ ideał (x) jest prymarny, $y^n \notin (x)$, lecz 1, który ciągiem izomorfizmów zachowujących y, z którego widzimy, że w odpowiednim pierścieniu ilorazowym y nie podlega żadnym relacjom), zatem sprzeczność. Zatem $\xi \in (x)$, czyli $\xi = Fx$, zatem $Y = Fxy + \zeta xz + \rho x^2 = Fz^2 + \zeta xz + \rho x^2 \in (z^2, xz, x^2) = I^2$.

Zadanie 70

Mamy, że $I = (x^2, xz, xy, yz)$. Twierdzę, że $I = (x, z) \cap (y, x) \cap (z, y, x^2)$.

Każdy z tych trzech ideałów jest prymarny, gdyż: $k[x,y,z]/(x,z) \simeq k[y]$, co jest w ogóle dziedziną, więc w szczególności każdy dzielnik zera jest nilpotentem. Analogicznie z (y,x). Zaś $k[x,y,z]/(z,y,x^2) \simeq k[x]/(x^2)$, gdzie oczywiście każdy dzielnik zera (tj. ax) jest nilpotentem.

Zawieranie \subseteq jest oczywiste: x^2, xz, xy, yz oczywiście należą do każdego z tych trzech ideałów. Udowodnijmy zawieranie \supseteq . Można tutaj zastosować metodę analogiczną do diagramów z wykładu, gdyż są to ideały jednomianowe. Jednomiany nienależące do I to: $1, x, y, z, y^k, z^k$. Łatwo widać, że nie należą one do odpowiednio: $(x, z), (z, y, x^2), (x, z), (y, x), (x, z), (y, x)$. Zatem mamy równość.

Algebra Termin: 2015-01-21