Théorèmes de convergence

1 Théorème de convergence monotone (ou théorème de Beppo-Levi)

Théorème.

Soit (X, \mathcal{M}, μ) un espace mesuré

 $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de X dans \bar{R}^+

On suppose que $(f_n)_{n\in\mathbb{N}}$ est croissante et qu'elle converge simplement vers une fonction $f:X\to R^+$ Alors f est mesurable et:

$$\int_{X} f d\mu = \lim_{n \to +\infty} \int_{X} f_n d\mu$$

Corollaire.

Soit (X, \mathcal{M}, μ) un espace mesuré

 $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de X dans \bar{R}^+ $\sum_{n\in\mathbb{N}} f_n$ est mesurable et :

$$\int_{X} \sum_{n \in \mathbf{N}} f_n d\mu = \sum_{n \in \mathbf{N}} \int_{X} f_n d\mu$$

2 Théorème de convergence dominé de Lebesgue

Théorème.

Soit (X,\mathcal{M},μ) un espace mesuré, $(f_n)_{n\in\mathbb{N}}$ suite de fonctions de X dans C mesurables On suppose que:

 $i)(fn)_{n\in\mathbb{N}}$ converge simplement vers f

ii) Domination: il esxiste g de X dans \mathbf{R}^+ intégrable telle que $\forall n \in \mathbf{N} | f_n | \leq g$ Alors f est mesurable, $f_n, f \in \mathcal{L}^1(X, \mu)$ et:

$$\int_{X} |f_n - f| d\mu \to_{n \to \infty} 0$$

En particulier : $\lim_{n\to\infty} \int_X f_n(t)dt = \int_X f(t)dt$

3 Théorème de continuité

Théorème.

Soit (X,\mathcal{M},μ) un espace mesuré

(E,d) un espace métrique

$$f: X \times E \to \mathbf{C}$$

 $(x, \lambda) \to f(x, \lambda)$

On suppose que:

 $i)\forall \lambda \in E, x \to f(x, \lambda) \ est \ mesurable$

ii)Pour presque tout $x, \lambda \to f(x, \lambda)$ est continue

iii)Domination: il existe une fonction $g \in \mathcal{L}^1(X,\mu)$ positive telle que: $\forall \lambda \in E, |f(x,\lambda)| \leq g(x)$ presque partout en x

Alors $F: E \to \mathbf{C}$ est continue $\lambda \to \int_{\mathbf{Y}} f(x,\lambda) d\mu_x$

Preuve.

```
\forall \lambda \in E, |f(x,\lambda)| \leq g(x) \ presque \ partout \ en \ x \ et \ g \in \mathcal{L}^1(X,\mu) \ donc : \\ \int_X f(x,\lambda) d\mu_x \leq \int_X g(x) d\mu_x < +\infty \\ Donc \ F \ est \ bien \ définie \\ Soit \ (\lambda_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}} \ telle \ que \ \lambda_n \to \lambda \in E \\ On \ pose \ h_n(x) = f(x,\lambda_n), h(x) = f(x,\lambda) \\ h_n(x) \to h(x) \ presque \ partout \ en \ x \\ |h_n(x)| \leq g(x) \ et \ g \in \mathcal{L}^1(X,\mu) \ donc \ par \ th\'eor\`eme \ de \ convergence \ domin\'e \ de \ Lebesgue : \\ \int_X f(x,\lambda_n) d\mu_x \to \int_X f(x,\lambda) d\mu_x \\ F(\lambda_n) \to F(\lambda) \ donc \ F \ est \ continue
```

Remarque. Si E est un ouvert de \mathbb{R}^d , on peut montrer la continuité sur les compacts de E ou uniquement sur les boules de E. La continuité étant une propriété locale, on obtiendra ainsi la continuité sur tout E.

4 Théorème de dérivation

Théorème.

```
Soit (X,\mathcal{M},\mu) un espace mesuré 

E un intervalle de \mathbf{R}

f: X \times E \to \mathbf{C}

(x,\lambda) \to f(x,\lambda)

On suppose que : i) \forall \lambda \in E, x \to f(x,\lambda) est intégrable 

ii) Pour presque tout x,\lambda \to f(x,\lambda) est dérivable 

iii) Domination : il existe une fonction g \in \mathcal{L}^1(X,\mu) positive telle que : \forall \lambda \in E, |\partial_2 f(x,\lambda)| \leq g(x) presque 

partout en x

Alors F: E \to \mathbf{C} est dérivable sur E et: \lambda \to F(\lambda)

\forall \lambda \in E, F'(\lambda) = \int_X \partial_2 f(x,\lambda) d\mu(x)

On convient que \partial_2 f(x,\lambda) = 0 si cette dérivée n'existe pas.
```