Chen-Zhu Xie

Portfolio: 🗘 🔼 in Scholar: Г

Preference: 6

Contact: 💟 🛚

Personality: aries INTP ab

EDUCATION

Nanjing University	College o	iences Nanjing, Jiangsu						
Doctor of Philosophy	Optical Engineering	<i>Q.E.</i> − <i>Top 15%</i> □	Nonlinear Fourier Optics 🕡 – 2025.06					
Dissertation: "Analytic 3D vector linear non-uniform & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\varepsilon}}, \bar{\bar{\chi}}$ dielectrics"								
Master 's Studies	Quantum Electronics	Courses Score – 93.5 🌎	THz OAM Source – 2022.06					
	Northeastern University School of Physics, College of Science Shenyang, Liaoning							
Northeastern Unive	rsity Scho	ol of Physics, College of Scie	nce Shenyang, Liaoning					
Northeastern Univer	rsity Scho Applied Physics	ol of Physics, College of Scie GPA Rank – 1/400	DDTank Aimbots – 2020.06					
Bachelor of Science	Applied Physics	GPA Rank − 1/400 😱	, ,					

PERSONAL PROJECTS

Behind NLAST ¹	$0 \rightarrow 1$: Techniques crafted from scratch in my acedemic project : NLAST			
	→ Managed to realize <i>tree</i> -print feature in CMD lines without knowing <i>any tree</i> -packages			

in order to visualize run-time Call Stack with buried checkpoints & display crucial info
 to understand the hierarchical structure of my code from a more abstract perspective
 Enabled multi-threads to accelerate for loops in python while preserving the loops' order
 Implemented through utilizing the producer-consumer model (producer = thread pool)

→ Allow users to select which parts of the codes in the *for loops* to *parallelize* in CPU

- → Transform *multi-layer for loops* into *nested multi-threads*: each thread = a new thread pool
- → Future model will move away from *python* as the primary language & shift to GPU
 - → Favoring GPU is driven by "fields in physics = arrays/matrices in math/programs"
 - → Haven't decided which to employ: CUDA, Jax, webGL2, webGPU, Mojo or Bend?
- ullet Developed a log file system to track & record the operating status for debugging
- → to output script parameters (**kwargs) for rapid reproducibility of data in the future
- → to store data files & folders, and their metadata for swift data import and reutilization
- → Achieved automatic skipping of functions that return repeated values stored in memory
 - → via @decorators: let precomputation assess whether to execute the decorated function
- Wrap *matplotlib* into plot_1d(, _2d, _3d, .gif ...) for data visualization
- → sped up by customized multi-threading as well ... Python | SiYuan | Mathematica [repo]

¹ Non-linear Angular Spectrum Theory

DDTank Aimbots An inverse solving toolkit for a projectile game similar to Angry Birds 2017.04 ullet Established an aerodynamic model with air resistance $oldsymbol{R} = -koldsymbol{v}$ for the game DDTank woheadrightarrow by solving $v' \propto R + F$, where driving force F = gravity G + wind force W \rightarrow which lead to the core transcendental equation $1 - e^{kt} + kt = k^2 M(\mathbf{F}; \Delta \mathbf{r}, \hat{\mathbf{v}}_0)$ \rightarrow that can be numerically solved by Newton's method for t with given $k, F; \Delta r, \hat{v}_0$ ▶ Finally, for each Δr , \hat{v}_0 , one can obtain corresponding initial velocity $v_0(k, F; t, M)$ \bullet after k, F are determined (by the game engine itself) - v_0 ends up the very info required to accurately hit an enemy at a distance of Δr from you Software Features: multi-OS/end, multi-hit_mode, multi-trajectory, multi-thread supported → Multi-OS: classic Web game on Windows, Mobile game on Android & Android Emulator \rightarrow Multi-hit_mode: charge-mode for value v_0 , drag_mode (like angry birds) for extended curve \rightarrow Multi-trajectory: predicts up to 6 = $(1+2)^*2$ trajectories for the player: split 3 + backward 3 → Multi-threading: succeeded in coordinating multiple timers to implement multi-threading • Capturing game data semi-automatically with computer vision (using findmulticolorEX in dm.dll) Achieved automatic skipping of functions that return repeated values stored in memory → via @decorators: let precomputation assess whether to execute the decorated function Wrap *matplotlib* into plot_1d(, _2d, _3d, .gif ...) for data visualization → sped up by customized multithreading as well ... Python | SiYuan | Mathematica [repo] **DDTank Aimbots** An inverse solving toolkit for a projectile game similar to Angry Birds 2017.04 ullet Established an aerodynamic model with air resistance $oldsymbol{R} = -koldsymbol{v}$ for the game DDTank lacktriangle by solving $oldsymbol{v}' \propto oldsymbol{R} + oldsymbol{F}$, where driving force $oldsymbol{F}$ = gravity $oldsymbol{G}$ + wind force $oldsymbol{W}$ \rightarrow which lead to the core transcendental equation $1 - e^{kt} + kt = k^2 M(\mathbf{F}; \Delta \mathbf{r}, \hat{\mathbf{v}}_0)$ \rightarrow that can be numerically solved by Newton's method for t with given $k, F; \Delta r, \hat{v}_0$ ightharpoonup Finally, for each $\Delta m{r}, \hat{m{v}}_0$, one can obtain corresponding initial velocity $v_0\left(k, m{F}; t, M\right)$ \bullet after k, F are determined (by the game engine itself) Software Features: multi-OS/end, multi-hit_mode, multi-trajectory, multi-thread supported → Multi-OS: classic Web game on Windows, Mobile game on Android & Android Emulator \rightarrow Multi-hit_mode: charge-mode for value v_0 , drag_mode (like angry birds) for extended curve \rightarrow Multi-trajectory: predicts up to $6 = (1+2)^2$ trajectories for the player: split 3 + backward 3 → Multi-threading: succeeded in coordinating multiple timers to implement multi-threading Capturing game data semi-automatically with computer vision (using findmulticolorEX in dm.dll) Achieved automatic skipping of functions that return repeated values stored in memory → via @decorators: let precomputation assess whether to execute the decorated function • Wrap *matplotlib* into plot_1d(, _2d, _3d, .gif ...) for data visualization → sped up by customized multithreading as well ... Python | SiYuan | Mathematica [repo] **DDTank Aimbots Analytic solution** 2023.02 -• Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT. • The next generation of this project will come really close to the exact solution • logging system o J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R. ∘ JOSA.A. | O.E. #tightly focus #ē̄ anisotropy | Light.Sci.App. | O.E. PPT <u>1 2 3</u> ... •

Three Books Closed-form $E_3(\mathbf{r})$ in $\left[\nabla^2 + k_3^2\right] E_3(\mathbf{r}) = -k_{03}^2 \chi(\mathbf{r}) E_1(\mathbf{r}) E_2(\mathbf{r})$ 2022.02 –

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Developed a log file system to record and output script runtime parameters**kwargs,
 - o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
 - o L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
 - O.L. | P.R.A.

SCIENTIFIC ACTIVITIES

[0] The 4th Nanjing University Doctoral Interdisciplinary Innovation Forum

"Analytic vector linear & nonlinear Fourier crystal optics in arbitrary $\bar{\epsilon}$, $\bar{\bar{\chi}}$ dielectrics" | Oral [PPT] 2024.05.29

[-1] 2023 CSOE-NJU² Book Club Meeting & Sharing Session

"A guided tour to Ray & Wave Optics Simulation" | Oral [PPT]

2023.12.09

[-2] Academic Café Salon of the Research Group

"Bi-directional notes on Nonlinear Optics in a roam-like app: RoamEdit" | Oral [PDF]

2021.05.21

PUBLICATIONS

- [0] P. Chen, X. Xu, T. Wang, C. Zhou, D. Wei, J. Ma, J. Guo, X. Cui, X. Cheng, **C. Xie**, S. Zhang, S. Zhu, M. Xiao, and Y. Zhang, Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing, Nature Communications **14**, 5523 (2023)
- [-1] J. Guo, Y. Zhang, H. Ye, L. Wang, P. Chen, D. Mao, C. Xie, Z. Chen, X. Wu, M. Xiao, and Y. Zhang, Spatially Structured-Mode Multiplexing Holography for High-Capacity Security Encryption, ACS Photonics 10, 757–763 (2023)

ACADEMIC FOCUS

Next generation high N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics 🜍 2024.06 -!Paraxial k_0^{ω} High N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics 😱 2024.03 -Emphasizing G_{xyz}^{ω} **3D** vector non-uniform analytic linear & nonlinear Fourier crystal optics 😱 2023.12 -Involving $\bar{\bar{\chi}}_{(1)}^{(2)}$ anisotropy **Vector** non-uniform analytic linear & nonlinear Fourier crystal optics 😱 2023.06 -!Unitary $G_{\omega}^{\pm} \Leftarrow$!Hermitian $\bar{\bar{\varepsilon}}_{r}^{\omega} \Rightarrow$ **Non-uniform** analytic linear & nonlinear Fourier crystal optics 😱 2023.03 -Solution E_{ω}^{\pm} to $(\nabla^2 + k_{\omega\pm}^2) E_{\omega}^{\pm} \propto P_{\omega+}^{(2)}$ **Analytic** linear & nonlinear Fourier crystal optics 🕤 2022.09 -Solution $\mathcal{F}[E_3] = \mathcal{F}[f(\mathcal{F}^{-1}[\cdot])]$ to the Eq. below **Nonlinear** angular spectrum theory for SFG 😱 2022.06 -Solution $\mathcal{F}[E_3] = \iiint \text{to } (\nabla^2 + k_3^2) E_3(r) \propto P_3^{(2)}(r)$ **Nonlinear** convolution solution to SFG 😱 2022.03 -Nonlinear THz LiNbO₃-based metasurface Quit THz project formally | COMSOL -2022.01BWOPO + THz optical parametric amplification Mathematica | BookxNote Pro -2021.12THz backward optical parametric oscillator (BWOPO) Mathematica | VBA Excel - 2021.11 Multi-cycle THz orbital angular momentum (OAM) source RoamEdit | Blender - 2021.11

PPT 1234 ... 😱

² The Nanjing University student branch of the Chinese Society for Optical Engineering

🕠 Narrow-band THz OAM source via Optical Rectification (OR)	Python Blender	- 2021.10
\bigcirc Electricity $\xrightarrow{\text{produce}}$ Acoustics $\xrightarrow{\text{modulate}}$ Optics	RoamEdit VBA Excel	- 2021.07
\bigcirc Visible Photons $\xrightarrow{\text{SPDC}}$ THz Spectroscopy	BookxNote Pro GeoGebra VBA Excel	- 2021.06
Cavity Phase Matching = Sheet OPO	Paint 3D RoamEdit GeoGebra VBA Excel	- 2021.05
THz Holography via Optical Rectification	Matlab GeoGebra VBA Excel	- 2021.01
\bigcirc Femtosecond laser $\xrightarrow{\text{Optical Rectification}}$ Terahertz (THz)	GeoGebra VBA Excel	- 2020.12
\square Multicycle THz pulse generation by OR in LiNbO ₃ crystals	VBA PowerPoinT	- 2020.10

Honors & Awards

Academia	Doctor's Qualification Exam (Oral)	Excellent		<i>Top 15%</i>	Nanjing U.	2024.01
	Bachelar Thesis 😱 & Defense 🕒	Excellent		1/90	Northeastern U.	2020.06
Competition	Three Provinces Achievement Expo	Exhibition		Leader	Three Prov.	2019.10
	"Challenge Cup" Tech Competition	Grand prize		Leader	Liaoning Prov.	2019.06
Scholarships & Fellowships	Academic Fellowship	1st class		¥40,000	Nanjing U.	2020-24
	"Jinchuan" Scholarship	1st place		¥5,000	Northeastern U.	2019.04
	Academic Scholarship	1st place		¥2,000	Northeastern U.	2018.06
	Entrance Scholarship	3rd place		¥5,000	Leshan No.1 H.S.	2013.09
Honors	Graduation with Honor	Outstanding			Northeastern U.	2020.07
&	League Member	Excellent			Northeastern U.	2019.11
Titles	Undergraduate Student	Excellent	(7)		Northeastern U.	2018.12
Memberships	Chinese Society for Optical Engineering	Member			Nanjing U.	2021-25
	"Qian Sanqiang" Talent Class	Head			I.H.E.P.	2017-20

RESEARCH PROJECTS

3D Vector Nonlinear Fourier Crystal Optics

 $\mathbf{Solving} \left[\left[(\boldsymbol{\nabla} \times)^2 - k_0^2 \bar{\bar{\boldsymbol{\varepsilon}}} \cdot \right] \underline{\boldsymbol{E}}(\boldsymbol{r}) = k_0^2 \bar{\bar{\boldsymbol{\xi}}} : \mathcal{F}_{\omega}^{-1} \left[\widetilde{\boldsymbol{E}}_{\mathrm{p}} \widetilde{\boldsymbol{E}}_{\mathrm{p}} \right] (\boldsymbol{r}) \right] \mathbf{analytically} \qquad 2023.05 - \mathbf{E}_{\omega} \cdot \mathbf{E}_{\omega} \cdot$

- The first & fastest white box solver ever for this inhomogeneous wave equation o or other similar equations, with unprecedented efficiency-accuracy product
- No competitors for the time being: other methods or software including o k-space RK4, pseudo-spectral, SSF, Green's Function methods, FDTD, COMSOL...
- Reproduced well-known papers, all of which provide either zero or wrong theory:
 - Nat.Photo. #proven theoratically wrong by this project #femtosecond pump
 - O.E. #Bloembergen's legacy2 #experiment | O.M.E. #z-component
 - \circ O.E. | Q.E. #high N.A. # $\bar{\bar{\chi}}$ anisotropy

PPT <u>123</u> ... •

Complex Vector Linear

Fourier Crystal Optics

Analytic solution E(r) to $\left[\left(\mathbf{\nabla}\times\right)^2-k_0^2\bar{\bar{\mathbf{\varepsilon}}}\cdot\right]E(r)=\mathbf{0}$ where $\varepsilon_{ij}\in\mathbb{C}$ 2023.02 -

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- The next generation of this project will come really close to the exact solution
- Reproduced well-known papers, some are purely experimental (too hard to model): o J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.
 - o JOSA.A. | O.E. #tightly focus $\#\bar{\epsilon}$ anisotropy | Light.Sci.App. | O.E.

PPT 123 ... 😱

Real Scalar Nonlinear

Fourier Crystal Optics

Closed-form $E_3(\mathbf{r})$ in $\left[\nabla^2 + k_3^2\right]E_3(\mathbf{r}) = -k_{03}^2 \chi(\mathbf{r})E_1(\mathbf{r})E_2(\mathbf{r})$ 2022.02 -

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Reproduced well-known papers & models with maximum accuracy & efficiency: o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L. ○ L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump ○ O.L. | P.R.A. PPT 1234 ... (7)

Extracurricular Activities

Detailed explanation of what you do at this club

- Member at Some Club 2017-Current
- · Member at Some Club 2016-2017
- Detailed explanation of what you do at this club
- · Volunteer at Some Event Fall 2019 Detailed explanation of what you do in this event
- · Volunteer at Some Event Winter 2015 Detailed explanation of what you do in this event

SKILLS

- Skill Group: List of technologies

LANGUAGES

- Language: language proficiency level
- EXAM: details
- Language: language proficiency level
- Language: language proficiency level