Flash Attention on FPGA

Aakarsh A

Department of Computer Science and Automation Indian Institute of Science

May 23, 2025

Overview

1. Flash Attention Implementation in brief

2. e^{-x} Implementation

3. Future Work

Block Level Design

- Phase 1 : Calculation of \widetilde{m}_{ij} , \widetilde{P}_{ij} and \widetilde{l}_{ij} $S_{ij} = Q_i K_j^T$ $\widetilde{m}_{ij} = rowmax(S_{ij})$
- $\tilde{P}_{ij} = \exp(S_{ij} \tilde{m}_{ij})$
- $\tilde{l}_{ij} = rowsum(\tilde{P}_{ij})$

Focus on Phase - 2

```
\begin{split} & \text{Phase 2 : Calculation of} \ \ \mathbf{m}_{l}^{new} \text{and} \ l_{l}^{new} \\ & \cdot \quad \mathbf{m}_{i}^{new} = \max(m_{i}, \tilde{m}_{ij}) \,, \\ & \cdot \quad l_{i}^{new} = e^{m_{i} - m_{i}^{new}} l_{i} + e^{\tilde{m}_{ij} - m_{i}^{new}} \tilde{l}_{ij} \end{split}
```


RTL Components

- Negative Exponential Engine
- BRAM/URAM Access and Storage
- Timing and Control Unit
- Vector Multiplier
- Vector Adder
- Subtractor
- Comparator

e^{-x} Implementation

Different Approaches for RTL Implementation

	Latency - CC	Memory Usage	Compute Resources
CORDIC	High - O(n)	Low - LUT	Shift registers & adders
Piece-Wise Approximation	2 - 3	Medium - Accuracy parameter	Few DSPs & adders
Look Up Table Approach	1	High - Accuracy parameter	Null
Hybrid (LUT & $2^{\frac{x}{\ln 2}}$)	1 - 2	Low - Store in LUTs	Few DSPs & adders
Hybrid (LUT & Series Approx.)	1 - 2	Low - Store in LUTs	Few DSPs & adders

Table: Brief Comparative Study on a similar accuracy scale

Every approach in the above table can be pipelined, and the maximum operating frequency is dependent on the hardware.

Hybrid Approach: Part 1

Hybrid Approach: Part 2

Condition for operation in 1 clock cycle:

3 Multipliers + 1 Comparator + 1 shift operation + 3 adders less than T_c The above condition is chosen based on the slowest path. Based on our frequency of operation, we can make it for 2 clock cycles as well.

Why Hybrid Approach?

Our goal: Hardware acceleration.

- Faster Memory Access (Infer LUTs) at the expense of hardware (DSPs).
- Minimize Latency and maximize operation frequency.

Future Work

- 1. Accuracy comparison between different implementation techniques. Target error: Less than 0.005
- 2. RTL implementation of the Timing and Control Unit, along with other subunits,
- 3. Verification of Phase-2 on the Alveo V80 FPGA.

The End