

明 細 書

有機機能素子およびその製造方法

技術分野

[0001] 本発明は有機機能素子に係り、特に有機半導体素子、有機薄膜トランジスタ素子(以下、薄膜トランジスタをTFTと記す)、有機エレクトロルミネッセンス素子(以下、エレクトロルミネッセンスをELと記す)およびそれらの製造方法に関する。

背景技術

[0002] 近年、平面表示装置(フラットディスプレイ)が多くの分野、場所で使われており、情報化が進む中でますます重要性が高まっている。現在、フラットディスプレイの代表といえば液晶ディスプレイ(LCDとも称する)であるが、LCDとは異なる表示原理に基づくフラットディスプレイとして、有機EL、無機EL、プラズマディスプレイパネル(PDPとも称する)、ライトエミッティングダイオード表示装置(LEDとも称する)、蛍光表示管表示装置(VFDとも称する)、フィールドエミッションディスプレイ(FEDとも称する)等の開発も活発に行なわれている。これらの新しいフラットディスプレイはいずれも自発光型と呼ばれるもので、LCDとは次の点で大きく異なりLCDには無い優れた特徴を有している。

[0003] LCDは受光型と呼ばれ、液晶は自身では発光することではなく、外光を透過、遮断するいわゆるシャッターとして動作し表示装置を構成する。このため光源を必要とし、一般にバックライトが必要である。これに対して自発光型は、装置自身が発光するため別光源が不要である。LCDのような受光型では、表示情報の様態にかかわらず常にバックライトが点灯し、全表示状態とほぼ変わらない電力を消費することになる。これに対して自発光型は、表示情報に応じて点灯する必要のある箇所だけが電力を消費するだけなので、受光型表示装置に比較して電力消費が少ないという利点が原理的にある。

[0004] 同様にLCDでは、バックライト光源の光を遮断して暗状態を得るために少量であっても光漏れを完全に無くすことは困難であるのに対して、自発光型では発光しない状態がまさに暗状態であるので理想的な暗状態を容易に得ることができ、コントラストに

おいても自発光型が圧倒的に優位である。

[0005] また、LCDは液晶の複屈折による偏光制御を利用しているため、観察する方向によって大きく表示状態が変わるものとされる視野角依存性が強いが、自発光型ではこの問題がほとんど無い。

[0006] さらに、LCDは有機弾性物質である液晶の誘電異方性に由来する配向変化を利用して、原理的に電気信号に対する応答時間が1ms以上である。これに対して、開発が進められている上記の技術では電子／正孔といつてもいわゆるキャリア遷移、電子放出、プラズマ放電等を利用して、応答時間はns桁であり液晶とは比較にならないほど高速であり、LCDの応答の遅さに由来する動画残像の問題が無い。

[0007] これらの中でも特に有機ELの研究が活発である。有機ELはOEL(Organic EL)または有機ライトエミッティングダイオード(OLED:Organic Light Emitting Diode)とも呼ばれている。

[0008] OEL素子、OLED素子は陽極と陰極の一対の電極間に有機化合物を含む層(EL層)を挟持した構造となっており、タン氏等の「陽電極／正孔注入層／発光層／陰電極」の積層構造が基本になっている(例えば、特許文献1参照)。また、タン氏等が低分子材料を用いているのに対して、ヘンリー氏等は高分子材料を用いている(例えば、特許文献2参照)。

[0009] また、正孔注入層や電子注入層を用いて効率を向上させたり、発光層に蛍光色素等をドープして発光色を制御することも行なわれている。また、有機ELは10V以下の比較的低電圧駆動で高輝度発光が得られるため、水銀使用の問題がある蛍光灯に変わる照明装置としての応用も期待されている。

[0010] 図9は従来の有機EL素子51の基本的な断面構造を示す模式図である。有機ELは電極間に電場を印加しEL層に電流を通じることで発光させるが、従来は一重項励起状態から基底状態に戻る際の蛍光発光のみを利用していたが、最近の研究により三重項励起状態から基底状態に戻る際の燐光発光を有効に利用することができるようになり効率が向上している。

[0011] 通常、有機EL素子51はガラス基板やプラスチック基板等の透光性の基板52上に

透明電極を形成してから、発光層54であるEL層、対向電極の順に形成して製造される。一般には、EL層のエネルギー準位に対するITO等の透明電極の仕事関数の関係から、透明電極を陽電極53とし、対向電極に金属を用いて陰電極55とすることが多い。上記のような有機EL素子51では、透明電極53側から発光58を確認することができる。有機EL素子51では、必要に応じて正孔注入層56や電子注入層57をそれぞれEL層と電極の間に配置することで高効率化や長寿命化に優れた効果があることが知られている。

- [0012] なお、本明細書では、正孔注入層と正孔輸送層は同義に、また、電子注入層と電子輸送層は同義に扱うこととする。
- [0013] EL層の形成方法としては、一般に、EL層の材料として低分子材料を使う場合にはマスクを使った真空蒸着法が用いられ、高分子材料では溶液化してインクジェット法やスピンドル塗布法、印刷法、転写法等が用いられる。
- [0014] 近年では塗布可能な低分子材料も報告されている。このうち、低分子材料のマスク真空蒸着法では、真空装置および蒸着マスクの大型化が難しいという制約から、大型化への対応および大型基板を用いての多数枚作成が困難であるという問題がある。これは開発段階での試作程度の作製であれば問題が無いが、本格的な生産段階ではタクトやコストの面で市場競争力が弱いことを意味している。一方、高分子材料や塗布可能な低分子材料では、インクジェット法、印刷法、キャスト法、交互吸着法、スピンドル塗布法、ディップ法等のウェットプロセスによる成膜ができるため、上記の大型基板対応への問題が少なく、有機EL素子の形成方法として塗布プロセスが有望である。
- [0015] 次に、図9に示した有機EL素子の製造方法について説明する。
透明電極は透明基板にITOやIZOの透明導電膜をスパッタリングや真空蒸着することで、有機EL製造とは別に準備することができる。上記の透明電極上に、例えば、特許文献2に記載されている高分子有機EL材料であるPPV(ポリフェニレンビニレン)を有機溶媒に溶解させてスピンドル塗布する。最後に、例えば、AlやAg等の低仕事関数金属を真空蒸着により成膜して陰電極とする。
- [0016] しかし、上記の製造工程では陰電極を蒸着成膜するため、特にその工程にだけ大

掛かりな真空装置が必要になり、また、真空引きのために製造タクトが滞ったりするため、塗布成膜できる有機EL材料の特徴を十分に活かしきれていないという問題があった。

[0017] 上記の有機材料の塗布プロセスの優位性を電極の蒸着形成のために十分に活かしきれていないという問題に対して、金属を溶解して形成された陰極を有する有機EL素子およびその製造方法が提案されている(例えば、特許文献3参照)。

[0018] 仕事関数の低い物質は良好な電子注入効果を有するが、この点でアルカリ金属およびアルカリ土類金属が最適であり、従来の蒸着等により製造される有機EL素子では、アルカリ金属またはアルカリ土類金属とこれら以外の金属との合金を有機EL素子の電子注入電極に用いることが提案されている(例えば、特許文献4、5、6参照)。

[0019] しかしながら、特許文献3に記載されている陰電極として使用可能な低融点金属(合金組成)は、特許文献3の表1に示されるように、すべてSnを含有する合金であり、いずれの合金も融点が160°Cを超えており。また、特許文献3には、その表1に記載の他に、Ga、K、Cs、Rb等の金属を用いることもできると記載されているが、Ga、K、Cs、Rbはそれぞれの融点が29°C、63°C、28°C、38°Cと極めて低い融点を有する金属である。

[0020] また、特許文献3には、EL層を成膜した陽電極基板上に溶融した金属を塗布する方法が記載されているが、金属を加熱、溶融した状態で塗布する具体的な手法は示されていない。さらに、特許文献3では、導電性ペーストをEL層上に印刷した後に175°Cに加熱してペーストを硬化させる方法が記載されているが、導電性ペーストとして銀ペーストを使用しており、銀の融点は960°Cと高く、この場合ペースト樹脂を熱硬化させているにすぎず、金属としての銀が溶融していないのは明白である。

[0021] 有機EL素子等の有機機能素子においては、実用上、電極の金属の融点選択が非常に重要となる。特許文献3に記載されるように、融点が非常に高い金属や非常に低い金属は次のような問題を生じてしまう。すなわち、電極とする金属の融点が高い場合には、電極形成時の有機材料層の高温安定性が問題となり、有機材料層のガラス転移温度を大きく超える加熱温度は有機材料層に深刻なダメージを与えててしまうという問題があった。

[0022] 一方、電極とする金属の融点が低い場合には、機能素子としての保存安定性が問題となる。例えば、夏季の自動車内等の環境下では、室温が非常に高くなり、有機EL素子を表示装置として利用する場合に、電極とする金属の融点が非常に低いと、電極が高温のために融解してしまい装置が破壊されてしまうという問題があった。

[0023] 以上は有機EL素子の例を用いて説明したが、有機材料層としての有機機能材料と電極から構成される有機機能素子においては同様の問題がある。

[0024] また、特許文献4、5、6に記載の有機EL素子においては、アルカリ金属、アルカリ土類金属は大気中で酸化性、燃焼性が強く不安定であるため取り扱いが難しく、従来は蒸着等による真空下での成膜しか出来なかった。

[0025] 特許文献4、5、6に記載の技術は、例えば、多種類の金属を独立の蒸着源として、共蒸着によりアルカリ金属またはアルカリ土類金属を含有する合金領域を発光層近傍に形成するものであり、真空蒸着により電極を形成するものである。また、他の技術は、アルカリ金属またはアルカリ土類金属と他の金属の合金を用いてはいるが、合金をターゲット材として蒸着法やスパッタ法により電極を形成するものであり、合金を用いているにもかかわらず蒸着法やスパッタ法により製造しているのは、用いられる合金の融点が高いために、真空成膜法を用いないで製造する事は出来ないという問題があった。

[0026] 特許文献1:特許第1526026号公報
特許文献2:特許第3239991号公報
特許文献3:特開2002-237382号公報
特許文献4:特開平9-320763号公報
特許文献5:特開平10-12381号公報
特許文献6:特開平11-329746号公報

発明の開示

発明が解決しようとする課題

[0027] 本発明は上記のような問題点に鑑みてなされたものであり、有機TFT素子に代表される有機半導体素子や有機EL素子等の有機機能素子において、有機材料層への電極形成において蒸着を用いる必要が無く、大型化が容易で製造コストが低減でき

、また、電極形成において有機材料層に損傷を与えることが無く、環境の変化に影響されない高い信頼性を有する有機機能素子およびその製造方法を提供することを目的とするものである。

課題を解決するための手段

- [0028] このような目的を達成するために、本発明の有機機能素子は、少なくとも複数の電極と有機材料層から構成される有機機能素子であって、少なくとも一つの該電極が、上記有機材料層のガラス転移温度より30°C高い温度以下の融点である金属で構成されていることを特徴とするものである。
- [0029] 本発明は、有機EL素子、有機TFT素子、有機半導体素子等の有機機能素子を構成する電極の少なくとも一つに、有機半導体層、有機発光層等の有機材料層のガラス転移温度よりも大幅に高くなっている温度よりも低い温度で溶融する低融点の金属を用いることにより、蒸着によることなく電極を形成するものである。電極金属の溶融温度が有機発光層、有機半導体層等の有機材料層のガラス転移温度よりも30°Cを超えて高くなると、有機発光層、有機半導体層等の有機材料層に深刻な損傷を与えてしまうからである。
- [0030] 本発明の有機機能素子は、少なくとも複数の電極と有機材料層から構成される有機機能素子であって、少なくとも一つの該電極が、70°C以上であって上記有機材料層のガラス転移温度より30°C高い温度以下の融点の金属で構成されていることを特徴とするものである。
- [0031] 有機機能素子である有機EL素子は、真夏の車内のような高温環境下でも安定して使用できるためには、実用的には電極とする金属の融点は70°Cが下限であり、融点が70°C未満であると熱による融解の問題を生じてしまう。特に有機EL素子は表示装置に利用されることが多く、他の有機機能素子のようにいわゆるパッケージや冷却等の処理が難しいため重要な課題である。
- [0032] 本発明の有機機能素子は、少なくとも複数の電極と有機材料層から構成される有機機能素子であって、少なくとも一つの該電極が、70°C以上160°C以下の融点の金属で構成されていることを特徴とするものである。
- [0033] 電極金属の融点が160°Cを超えると、電極形成時に有機発光層等の有機材料層

に大きな損傷を与えててしまうからである。

- [0034] 本発明の有機機能素子は、該電極を構成する金属がBiと他の金属の合金であることを特徴とするものである。
- [0035] また、本発明の有機機能素子は、好ましい形態として、該電極を構成する金属のBi成分が他の金属よりも多いことを特徴とするものである。また、該電極を構成する金属がBiと、Sn、Pb、Cd、Sb、Inのいずれかのうち1種類あるいは2種類あるいは3種類あるいは4種類あるいは5種類の金属との合金であることを特徴とするものである。
- [0036] 本発明の他の有機機能素子は、該電極を構成する金属がSnとBiの合金であり、Sn成分がBi成分より多いことを特徴とするものである。
- [0037] また、本発明の他の有機機能素子は、該電極を構成する金属がInとSnの合金であることを特徴とするものである。
- [0038] 本発明においては、上記有機機能素子が有機EL素子、もしくは有機TFT素子、もしくは有機半導体素子のいずれかであるようにしたものであり、上記のいずれかに記載した該電極を有するものである。また、有機EL素子の場合には、該電極が陰電極であるようにしたものである。
- [0039] 特に有機EL素子において、電極としてBiを主成分とする合金を用いることで、陰電極からEL層への電子注入が良好となる利点もある。陰電極には電子を放出し易いという観点から低仕事関数金属が使用され、一般に代表的な金属として仕事関数4.2 eVのAlが好適に使用されることが多い。本発明において、電極金属の主成分であるBiは仕事関数がAlに近く、例えば、Bi—Pb—Sn(重量比50:25:25%)の合金では4.1eVとAlとほぼ同等の仕事関数である。
- [0040] 特に有機EL素子において、電極としてInを主成分とする合金を用いることで、陰電極からEL層への電子注入が良好となる利点もある。Inの仕事関数も4.1eVとAlとほぼ同等である。
- [0041] 有機EL素子では電圧、輝度、効率といった特性の点で実用的な素子を作製するためには電子注入層が重要であり、他の有機TFT等の有機機能素子においても、より大きな電流を制御できるため良好な電子注入機能を有する電極は重要である。
- [0042] 本発明の有機機能素子は、少なくとも複数の電極と有機材料層から構成される有

機機能素子であって、少なくとも一つの該電極が、アルカリ金属またはアルカリ土類金属を含有した金属よりなり、該金属の融点が200°C以下であることを特徴とするものである。

- [0043] 本発明では上述した様に有機機能材料に対して適切な温度の融点金属を電極として用いるが、これらの金属にアルカリ金属、アルカリ土類金属を含有させることで、高い電子注入機能を有し安定性に優れた電極材料金属を得ることができ、これにより更に特性の優れた有機機能素子を製造することができる。
- [0044] 本発明の有機機能素子は、該電極を構成する金属がBiと他の金属の合金であり、Bi成分が他の金属よりも多く、Biと、Sn、Pb、Cd、Sb、Inのいずれかのうち1種類あるいは2種類あるいは3種類あるいは4種類あるいは5種類の金属と、少なくとも1種類のアルカリ金属またはアルカリ土類金属を含有することを特徴とするものである。
- [0045] 本発明の他の有機機能素子は、該電極を構成する金属がSnとBiの合金であり、Sn成分がBi成分より多く、これと少なくとも1種類のアルカリ金属またはアルカリ土類金属を含有することを特徴とするものである。
- [0046] 本発明の他の有機機能素子は、該電極を構成する金属がInとSnの合金であり、これと少なくとも1種類のアルカリ金属またはアルカリ土類金属を含有することを特徴とするものである。
- [0047] 本発明の有機機能素子は、該アルカリ金属またはアルカリ土類金属の1種類が0.01—1体積%、好ましくは0.05—0.5体積%であることを特徴とするものである。また、好ましい形態として、該アルカリ金属またはアルカリ土類金属の1種類が0.01—1重量%、好ましくは0.05—0.5重量%であることを特徴とするものである。好ましいアルカリ金属またはアルカリ土類金属はCa、Li、Cs、Mg、Srの群から選択されるものである。
- [0048] 上述のように、本発明の有機機能素子は、少なくとも複数の電極と有機材料層から構成される有機機能素子であって、少なくとも一つの該電極が、上記アルカリ金属、アルカリ土類金属を含有し、有機機能材料に対して適切な温度、200°C以下の融点金属から構成されていることを特徴とするものである。
- [0049] 特開2002-237382号公報に記載の低融点金属には高い電子注入機能に必要

なアルカリ金属は含有されておらず、また、特開平9-320763号公報、特開平10-12381号公報、特開平11-329746号公報に記載の蒸着源としてのアルカリ金属含有の金属は融点がいずれも本発明よりも高く溶融形成が出来ないものである。本発明で有機機能素子の電極として利用するアルカリ金属を含有する200°C以下の低融点金属そのものが新規な物質である。

- [0050] 本発明の有機機能素子は、上記有機材料層と該有機材料層に対向する凹部を有する基材とによって構成される間隙部に上記金属が充填形成されたことを特徴とするものである。
- [0051] 本発明の他の有機機能素子は、上記凹部を有する基材が一つ以上の孔部を有し、該孔部が硬化した金属によって封止されていることを特徴とするものである。
- [0052] 本発明の有機機能素子の他の製造方法は、上記有機材料層上に少なくとも一つの該電極を構成する金属の粒子ペーストを塗布し、該粒子ペーストの金属を溶融、冷却させて電極を形成することを特徴とするものである。また、本発明の有機機能素子の製造方法においては、上記有機機能素子が有機EL素子、もしくは有機TFT素子、もしくは有機半導体素子のいずれかであるようにしたものである。
- [0053] 本発明の有機機能素子の他の製造方法は、少なくとも一つの該電極を構成する金属を溶融させて保持する凹部を有する基材と上記有機材料層を形成した基板とを、有機材料層と金属が接する様に対向させて押圧し、上記金属を上記有機材料層に転写、冷却することにより電極を形成することを特徴とするものである。
- [0054] 本発明の有機機能素子の他の製造方法は、有機材料層と該有機材料層に対向する一つ以上の孔部を設けた凹部を有する基材とによって間隙部を構成し、該間隙部に上記孔部を通して少なくとも一つの該電極を構成する金属を溶融させて注入し、冷却することにより電極を形成することを特徴とするものである。
- [0055] 本発明の有機機能素子の他の製造方法は、上記電極の形成を、孔部への金属の配置、間隙部及び一定の周辺空間の真空排気、周辺空間の気体開放をこの順に行う真空注入法により間隙部への金属注入を行うことにより電極を形成することを特徴とするものである。
- [0056] 本発明の有機機能素子の他の製造方法は、上記電極の形成を、孔部への金属の

配置、金属を配置しない他の孔部からの間隙部内の気体の吸出をこの順に行うことにより間隙部への金属注入を行うことにより電極を形成することを特徴とするものである。いわゆる真空注入法と間隙内の気体を吸出する方法である。

- [0057] 本発明の有機機能素子の他の製造方法は、上記真空注入法による電極の形成あるいは、上記間隙部内の気体の吸出による電極の形成を不活性気体中で行うことを持つものである。
- [0058] 本発明の有機機能素子の他の製造方法は、上記不活性気体が窒素、アルゴン、窒素とアルゴンの混合気体であることを特徴とするものである。
- [0059] 本発明の有機機能素子の他の製造方法は、上記孔部を、上記溶融した金属を冷却硬化させることによって封止し、凹部を有する基材を備えたことを特徴とするものである。
- [0060] 本発明の有機機能素子の他の製造方法は、上記凹部及び間隙部の形状によって電極を定型に形成することを特徴とするものである。
- [0061] 本発明の有機機能素子の他の製造方法は、上記凹部及び間隙部が複数のストライプ形状からなることを特徴とするものである。
- [0062] 本発明の有機機能素子の他の製造方法は、上記凹部を有する基材がガラス、金属、セラミック、樹脂のいずれか1種類から選択されるものか、あるいは2種類以上の複合材料で形成されるものであることを特徴とするものである。
- [0063] また、本発明の有機機能素子の製造方法においては、上記有機機能素子が有機EL素子、もしくは有機TFT素子、もしくは有機半導体素子のいずれかであるようにしたものである。

発明の効果

- [0064] 本発明により、有機材料層上に蒸着等の真空成膜方法を用いることなく電極を形成して、有機機能素子、特に有機EL素子、有機TFT素子等を作製することができ、これらの機能素子の大型化、製造コスト低減を実現することができる。また、電極形成において有機材料層に損傷を与えず、環境の変化に影響されない高い信頼性を有する有機機能素子が可能となる。

本発明の有機機能素子は、真空中もしくは不活性気体中で素子作製が出来るため

、発光面の発光均一性がより向上し、電極形状も任意に制御できるため、発光素子としての完成度を向上させることができる。また、溶融金属を冷却硬化して孔部を塞ぐことにより封止を同時にい素子を完成させることも可能である。

図面の簡単な説明

[0065] [図1]本発明の有機EL素子の一実施形態を示す基本構成概念図であり、製造工程を示す説明図である。

[図2]本発明の有機EL素子の他の製造方法を示す説明図である。

[図3]本発明の有機EL素子の本発明の製造方法を示す説明図である。

[図4]本発明の有機EL素子の他の本発明の製造方法を示す説明図である。

[図5]本発明の有機EL素子の他の本発明の製造方法を示す説明図である。

[図6]本発明の有機EL素子の他の本発明の製造方法を示す説明図である。

[図7]図6に示した本発明の有機EL素子の製造方法を示す説明図である。

[図8]本発明の有機EL表示装置の製造方法を示す説明図である。

[図9]従来の有機EL素子の断面構造を示す模式図である。

[図10]本発明の表示装置を搭載した電子機器の例である。

[図11]本発明の実施例のTFT素子の断面構成図である。

[図12]本発明の有機EL素子の構成および製造工程を示す説明図である。

符号の説明

[0066]

- 1. 51 有機EL素子
- 2. 52 基板
- 3. 53 透明電極(陽電極)
- 4. 54 発光層
- 5. 55 金属電極(陰電極)
- 5a 溶融金属
- 5b 金属ペースト
- 6. 56 正孔注入(輸送)層
- 7. 57 電子注入(輸送)層
- 58 発光

- 9 ホットプレート
- 10 ディスペンサ
- 11 スクリーン版
- 12 スキージ
- 13 表示部
- 14 操作部
- 15 機器
- 16 レンズ部
- 17 ゲート電極
- 18 ソース電極
- 19 ドレイン電極
- 20 有機半導体層
- 21 絶縁層
- 22 凹部を有する基材
- 22a 間隙部
- 23 孔部
- 24 気体の吸出
- 25 耐熱容器
- 26 パッキング
- 27 隔壁部材
- 28 シール材
- 29 ストライプ部

発明を実施するための最良の形態

[0067] 本発明の実施の形態について、図面を参照して詳しく説明する。

本発明において電極として用いる金属合金の組成比と融点を表1に例示する。

[0068] [表1]

No	合金成分(重量%)	融点(°C)
1	Bi-Pb-Sn(50:25:25%)	93
2	Bi-Pb-Sn(50, 0:31, 2:18, 8%)	94
3	Bi-Pb-Sn(50, 0:28, 0:22, 0%)	100
4	Bi-Pb-Sn-Cd(40, 0:40, 0:11, 5:8, 5%)	130
5	Bi-Pb-Sn-Sb(47, 7:33, 2:18, 8:0, 3%)	130
6	Bi-Pb-Sn-Cd(50, 0:26, 7:13, 3:10, 0%)	70
7	Bi-Pb-Sn-Cd(50, 0:25, 0:12, 5:12, 5%)	72
8	Bi-Cd(60, 0:40, 0%)	144
9	Bi-Cd-In(60, 0:35, 5:5, 0%)	137
10	Bi-Sn-Ag(57, 0:42, 0:0, 5%)	194
11	Sn-Bi(57, 0:43, 0%)	139
12	In-Sn(52, 0:48, 0%)	117

[0069] 表1の金属合金を母材として、アルカリ金属またはアルカリ土類金属を含有させる方法としては、通常これらの大気可燃性金属を取り扱う方法により行うことができる。例えば、窒素、アルゴン等の不活性気体置換した加熱炉あるいは真空加熱炉により溶融、混合、冷却する方法である。

[0070] 高い電子注入機能を発現させるためのアルカリ金属またはアルカリ土類金属の添加量は、体積比あるいは重量比で母材金属合金に対して0.01～1%、好ましくは0.05～0.5%であり、母材金属合金の融点は変化しない。アルカリ金属またはアルカリ土類金属は、Ca、Li、Cs、Mg、Srの群から選択することが好ましい。

[0071] 表1に示す金属合金およびこれらにアルカリ金属またはアルカリ土類金属を含有させた金属を電極として形成するために、本発明では、図1～図6のいずれかに示す製造工程を用いる。以下、製造工程を例示により理解し易くするために、有機EL素子の例にしたがって説明する。なお、本発明においては、同じ部位を示す場合には同じ符号を用いている。

[0072] 図1は、本発明の有機EL素子1を形成する製造方法の一例であり、発光層4上で陰電極5を構成する金属を溶融する製造方法である。図2は、本発明の有機EL素子1を形成する他の製造方法の例であり、発光層4上に陰電極5を構成する溶融金属5aを塗布する製造方法である。図3は、本発明の有機EL素子1を形成する本発明の製造方法を示す工程図であり、発光層4上に陰電極5を構成する金属ペースト5bを塗布し、金属を溶融させて電極を形成する製造方法である。図4は、本発明の有機E

L素子1を形成する他の本発明の製造方法の例であり、陰電極5を構成する溶融金属5aを凹部を有する基材22で保持し、発光層4を形成した基板2と、発光層4と溶融金属5aが接する様に対向させて転写する製造方法である。図5は、本発明の有機EL素子1を形成する他の本発明の製造方法の例であり、発光層4と対向する凹部を有する基材22とによって間隙部22aを構成し、間隙部22a及び一定の周辺空間の真空排気、周辺空間の気体開放をこの順に行ういわゆる真空注入により、設けられた孔部23から間隙部22aへ陰電極を構成する溶融金属5aを注入する製造方法である。図6は、本発明の有機EL素子1を形成する他の本発明の製造方法の例であり、発光層4と対向する凹部を有する基材22とによって間隙部22aを構成し、間隙部22aの気体を吸出することにより、設けられた孔部23から間隙部22aへ陰電極を構成する溶融金属5aを注入する製造方法である。

[0073] なお、図1～図6において、2は基板、3は陽電極(透明電極)、9はホットプレートを示す。

[0074] 図1に示す製造方法は、発光層4上に設置した陰電極5を形成する金属をホットプレート9等を用いて加熱、溶融、冷却する方法であり、簡易な設備で製造可能であるが、電極が厚い膜になりがちである。膜厚が厚いと有機物である有機EL層と電極金属の膨張、収縮係数が大きく異なるため、電極の剥離や有機EL層と電極の界面で接触不良を生じることがある。

[0075] 図2や図3に示す製造方法は、電極膜厚を制御しやすい利点がある。電極膜厚は50 μm 以下、さらにより好ましくは20 μm 以下とすることが好ましい。

[0076] 本発明の有機EL素子1において、発光層4上に溶融した陰電極5を構成する金属を塗布する製造方法として、例えば、図2に示すように、ディスペンサ10を用いて任意の形状に溶融金属5aを塗布することができる。この際、ディスペンサ10のノズル等の加熱する部分をSUS等の安定金属で加工することが望ましい。

[0077] 本発明では、金属を50 μm 径以下の微粒子に加工して樹脂バインダに分散することで金属ペースト5bを作製することができる。

[0078] 本発明では、金属ペースト5bを塗布後に加熱して金属粒子自体を溶融することで、従来の金属ペーストの樹脂のみを熱硬化させる方法に比較し、より導電性の向上、

発光層との密着性、発光層／陰電極界面の分子レベルでの結合を強くすることができ、良好な発光特性の有機EL素子の作製方法と言える。例えば、図3に示す本発明の製造方法のように、金属ペースト5bの塗布にはスクリーン印刷等を用いることができる。

なお、図3において、11はスクリーン版、12はスキージを示す。

[0079] これらの製造方法によって大気中で形成された有機EL素子は電圧、輝度といった発光特性は優れているが、均一性が十分ではない。ある程度の面積の電極では面内で発光むらが発生し易く、発光層に接する電極面に酸化膜が形成されていると推測される。均一性を改善するためには窒素やアルゴンなどの不活性気体置換したいわゆるグローブボックス内で電極形成を行う事が望ましいが、図1、図2、図3の製造方法では以下の問題が有る。グローブボックス内の低い水分濃度及び酸素濃度によって酸化膜の形成を防ぐ事ができるが、水分濃度が低いために液体に近い形状の溶融した金属の接触角が非常に高くなり発光層上ではじいてしまい形成が困難である。

[0080] 図4の本発明の製造方法は、接触角の高い状態でも電極を形成する事ができ、均一性の改善に有効である。また、この方法は当該凹部を有する基材22の凹部の形状によって電極を任意の形状、膜厚に形成することが容易である。

[0081] 本発明では、電極成型用の凹部を有する基材22を剥離して電極を転写しても良いし、また、この方法によれば、凹部を有する基材22を残す事によって、水分、酸素に対して劣化し易い有機機能性材料を大気から隔離する封止材としてそのまま利用することもできる。

[0082] 図5の本発明の製造方法は、予め発光層4と対向させて凹部を形成した基材22を配置することで間隙部22aを形成する。この状態を空素子と定義する。空素子には孔部23を設けておき、溶融金属5aを該孔部23に配置し、例えば、空素子を容器内に配置し容器全体を真空排気した後に容器を大気開放することで、空素子内部と外部の気圧差を利用して、いわゆる真空注入法により金属電極5の形成を行う方法である。より均一性の高い発光状態の素子を得ることができる。間隙部22aは通常1mm以下の狭い幅で形成し、この狭い間隙を溶融金属5aが流れることで対流が生じ、合金

内部の劣化していないアルカリ金属が発光層4表面に均一に導入されることにより金属電極5が形成され、より均一性の高い発光状態が得られると考えられる。

[0083] 図6の本発明の製造方法は、予め発光層4と対向させて凹部を形成した基材22を配置することで間隙部22aを形成する。この状態を空素子と定義する。空素子には複数の孔部23を設けておき、溶融金属5aを該孔部23に配置し、他の孔部23から空素子内部の気体を吸出することで金属電極5の形成を行う方法である。間隙部内の気体の吸出による電極の形成は、窒素、アルゴン、窒素とアルゴンの混合気体等の不活性気体中で行うことが好ましい。グローブボックス内で製造することにより、より均一性の高い発光状態の素子を得ることができる。狭い間隙を溶融した金属が流れることで対流が生じ、合金内部の劣化していないアルカリ金属が発光層4表面に均一に導入されることにより陰電極5が形成され、より均一性の高い発光状態が得られると考えられる。

なお、図6において24は気体の吸出を示す。

[0084] 上記真空注入法においても、真空容器を不活性気体環境下に配置することで最終的に大気に曝される事が無くなり素子の長期の信頼性等においてより有効である。

[0085] 図5、図6では、対向する凹部を有する基材22に孔部23が形成されているが、発光層4を設けた基板2と対向する凹部を有する基材22を接着するシール材の一部を開口させても良い。

[0086] 図5、図6では、孔部23を塞ぐ溶融金属5aを冷却硬化させることで封止効果を同時に得ることもできる。図5(d)には、凹部を有する基材22を取り除いた状態の有機EL素子1の例を示すが、図6(d)には、冷却硬化させた溶融金属5aにより孔部23を封止し、凹部を有する基材22をそのまま封止材として用いた有機EL素子1の例を示す。

[0087] 図6の製造方法をより実際的に行う方法として、例えば、図7に示す製造方法がある。シール材28で構成される空素子の孔部23の一方をパッキング26を備えた隔壁部材27で密閉しておき、他の孔部23を溶融金属5aを保持する耐熱容器25に浸漬して空素子内部を吸気することで、大面積での金属電極の大量製造が可能となる。

[0088] 図4、図5、図6の製造方法は、凹部を有する基材22の形状によって電極形状を任

意に形成する事ができる。特に図8に示すように、複数本のストライプ形状の凹凸を形成したストライプ部29を有する凹部を有する基材22を使用することで、いわゆる表示装置を構成するための画素電極を形成することができ有効である。凹部を有する基材22の生産性、コストを考慮するとガラス、金属、セラミック、樹脂のいずれか1種類から選択されるものか、あるいは2種類以上の複合材料で形成されるものであることが望ましい。

[0089] 上述したように、有機EL素子では発光層に加えて正孔注入層や電子注入層を設けることで、発光特性、寿命が大幅に向ふ向上することが知られている。

[0090] これまで正孔注入層は水溶性のPEDOT／PSS(ポリエチレンジオキシチオフェン／ポリスチレンスルホネート)のような塗布形成できるものが知られている。塗布型の発光材料については上述した通りである。

[0091] これらの溶液材料と本発明の陰電極により、図12に示すように、蒸着を用いることなく全ての層を塗布形成できる高性能な有機EL素子を作製することができる。なお、図12において、1は有機EL素子、2は基板、3は陽電極(透明電極)、4は発光層、5は陰電極(金属電極)、6は正孔注入(輸送)層、7は電子注入(輸送)層を示す。

[0092] 図10に示すように、上記の本発明を用いて提供される表示装置を表示部13として搭載した機器15として、操作部14を備えた携帯電話やPDA(Personal Digital Assistant)タイプの端末、PC(Personal Computer)、テレビ受像機、ビデオカメラ、デジタルカメラ等を提供することができる。ここで、図10(d)において16はレンズ部を示す。

[0093] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

以上、本発明について説明したが、実施例に基づきさらに本発明を詳しく説明する。

実施例

[0094] (実施例1)

本発明の実施例として下記の溶液を調整した。

<有機EL層形成用塗布液の調整>

・ポリビニルカルバゾール	70重量部
・オキサジアゾール化合物	30重量部
・蛍光色素	1重量部
・モノクロルベンゼン(溶媒)	4900重量部

[0095] 蛍光色素がクマリン6の場合は501nmにピークを持つ緑色発光、ペリレンの場合は460～470nmにピークを持つ青色発光、DCM(ジシアノメチレンピラン誘導体)の場合は570nmにピークを持つ赤色発光が得られた。これらを各色の発光材料として用いた。

[0096] <EL表示素子の作製>

図9に示す断面形状のような有機EL素子を作製した。基板52はガラス、透明電極53は200nm厚のITOとした。基板52を洗浄後、正孔注入層56としてPEDOT／PSS(バイエル社製:Bayer CH8000)をスピンドル塗布により80nmの厚さに塗布し、160°Cで焼成して形成した。

次に、上記の赤色有機EL層形成用塗布液をPEDOT上にスピンドル塗布により80nmの厚さに塗布し、130°Cで焼成して形成した。

続いて、Bi-Pb-Sn(50:25:25%)組成の金属(合金)を図1に示すように、予め発光層4まで形成した基板2を金属合金の融点より5°C高い98°Cにしたホットプレート9で加熱し、発光層4上で上記金属を溶融して陰電極5を形成した。

電極形状、膜厚は発光層上に設置する金属合金塊の大きさ、厚さによって異なっていた。

[0097] 上記の素子をITOを陽極、金属電極を陰極として直流駆動したところ、3.6Vで発光開始し、7.2Vで輝度100cd/m²の発光強度であった。

[0098] (比較例1)

陰電極としてAlを真空蒸着した以外は実施例1と同様の構成で素子を作製した。3.4Vで発光開始し、7.1Vで輝度100cd/m²の発光強度と、実施例1の素子とほぼ変わらない発光特性であった。その結果、実施例1によるEL表示素子が蒸着法と同

等の発光素子特性を有することが確認された。

[0099] (比較例2)

陰電極として無溶剤の2液性エポキシ樹脂型銀ペーストを塗布し、175°Cで焼成した以外は実施例1と同様の構成で素子を作成したが、銀は溶融しておらず、発光層との密着性も強固ではなく、また発光層も高い熱により損傷しており、所望する発光特性は得られなかった。

[0100] (比較例3)

比較例2で130°Cで焼成した以外は比較例2と同様の構成で素子を作成したが所望する発光特性は得られなかった。熱による発光層の損傷は無いが、銀が溶融しておらず、発光層との密着性も強固ではないためと考えられる。

[0101] (実施例2)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

Bi—Pb—Sn(50. 0:31. 2:18. 8%)

[0102] (実施例3)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

Bi—Pb—Sn(50. 0:28. 0:22. 0%)

[0103] (実施例4)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

Bi—Pb—Sn—Cd(40. 0:40. 0:11. 5:8. 5%)

[0104] (実施例5)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

Bi—Pb—Sn—Sb(47. 7:33. 2:18. 8:0. 3%)

[0105] (実施例6)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

Bi—Pb—Sn—Cd(50. 0:26. 7:13. 3:10. 0%)

[0106] (実施例7)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

Bi—Pb—Sn—Cd(50. 0:25. 0:12. 5:12. 5%)

[0107] (実施例8)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

Bi—Cd (60. 0:40. 0%)

(実施例9)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

Bi—Cd—In (60. 0:35. 5:5. 0%)

[0108] (実施例10)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

Sn—Bi (57. 0:43. 0%)

[0109] (実施例11)

陰電極の金属を以下の合金とした以外は実施例1と同様の素子を作製した。

In—Sn (52. 0:48. 0%)

[0110] 実施例2から実施例11では、基板の加熱温度はそれぞれの金属融点より5°C高い温度とした。いずれの素子でも発光開始電圧が3. 6Vから3. 7V、輝度100cd/m²で発光する電圧が7. 2Vから7. 4Vであり、実施例1の素子とほぼ同等の発光特性であった。

[0111] (実施例12)

実施例1から実施例11の合金に、Caを体積比0. 04%混合して含有させた。両方の金属を窒素置換式の電気炉を用いて溶融、混合、冷却した。融点はいずれも母材合金と変わらなかった。

陰電極を上記金属とした以外は実施例1から実施例11と同様の素子を作製した。基板の加熱温度は、それぞれの金属融点より5°C高い温度とした。いずれの素子でも、発光開始電圧が2. 0Vから2. 1V、輝度100cd/m²で発光する電圧が5. 3Vから5. 5Vであり、実施例1から実施例11の素子よりも発光特性を低電圧化、高輝度化することができた。

[0112] (比較例4)

陰電極としてCaAlを連続で真空蒸着した以外は実施例12と同様の構成で素子を作製した。2. 0Vで発光開始し、4. 0Vで輝度100cd/m²の発光強度であった。

[0113] (実施例13)

実施例12においてCaを体積比0.1%と0.5%混合して含有させた以外は実施例12と同様の素子を作製した。いずれの素子でも発光開始電圧が2.0Vから2.1V、輝度100cd/m²で発光する電圧が3.9Vから4.1Vであり、実施例12よりも更に発光特性を低電圧化、高輝度化することができ、比較例4による蒸着Ca素子と同等の発光特性を発現することが確認された。

[0114] (実施例14)

実施例13においてCaを重量比で同様に混合して含有させた以外は実施例13と同様の素子を作製した。

実施例13と同様の電圧輝度特性を示し、比較例4による蒸着Ca素子と同等の発光特性を発現することが確認された。

[0115] (実施例15)

実施例13、実施例14においてCaをLi、Cs、Mg、Srとした以外は実施例13、実施例14と同様の素子を作製した。

いずれの素子も実施例13、実施例14と同様の電圧輝度特性を示し、これらのアルカリ金属、アルカリ土類金属を使用することにより、いずれも良好な発光特性を発現することが確認された。

[0116] (比較例5)

発光層を青色発光層とした以外は比較例4と同様の構成で素子を作製した。

2.0Vで発光開始し、5.8Vで輝度100cd/m²の発光強度であった。

[0117] (比較例6)

陰電極としてLiAlを連続で真空蒸着した以外は比較例5と同様の構成で素子を作製した。2.0Vで発光開始し、3.8Vで輝度100cd/m²の発光強度であった。青発光層では電子注入層としてCaよりもLiの方が良好であることが確認された。

[0118] (実施例16)

比較例5、比較例6において陰極を実施例13、14中のCaとLiをそれぞれ含有する金属とした以外は同様の素子を作製した。Ca含有金属の素子では比較例5と同様の発光特性、Li含有金属の素子では比較例6と同様の発光特性が得られた。

[0119] (実施例17)

実施例1から実施例16において製造した金属を大気中に放置しておき、1月後に再び同様の素子を作製したところ、いずれの素子でも当初の特性を再現する事ができた。通常は不安定であるアルカリ金属、アルカリ土類金属を他の金属に含有させることで安定に保存できる事が確認された。

[0120] (実施例18)

実施例1から実施例11までの陰電極の形成方法を、ディスペンサ塗布に変えた以外は実施例1から実施例11と同様の素子を作製した。SUS製シリンジを用いて、各金属の融点より5°C高い温度で溶融させた金属を発光層上に直接ディスペンサ塗布した。塗布膜厚は20 μmとなるようにした。

いずれの素子でも発光開始電圧が3. 6Vから3. 7V、輝度100cd/m²で発光する電圧が7. 2Vから7. 4Vと実施例1から実施例11の素子とほぼ変わらない発光特性であった。本実施例では、実施例1から実施例11に加えて、電極膜厚を薄く制御できるため発光面の発光均一性が向上し、電極形状も任意に制御できるため発光素子としての完成度が大幅に向上した。

[0121] (実施例19)

実施例1から実施例11までの陰電極の形成方法を、スクリーン印刷に変えた以外は実施例1から実施例11と同様の素子を作製した。各金属の微粒子を樹脂バインダに分散しペースト化して発光層上に印刷した。完成した陰電極の膜厚が20 μmとなるように印刷条件を設定した。印刷後に各金属融点より5°C高い温度に基板を加熱して、ペースト中の金属粒子を溶融、冷却して陰電極を形成した。

いずれの素子でも発光開始電圧が3. 6Vから3. 7V、輝度100cd/m²で発光する電圧が7. 2Vから7. 4Vと実施例1から実施例11の素子とほぼ変わらない発光特性であった。本実施例では、実施例1から実施例11に加えて、電極膜厚を薄く制御できるため発光面の発光均一性が向上し、電極形状も任意に制御できるため発光素子としての完成度が大幅に向上した。

[0122] (実施例20)

実施例18、実施例19の陰電極の形成方法を、グローブボックス内の図4の方法

とした以外は実施例18と実施例19と同様の素子を作製した。凹部を有する基材はガラス製とした。

いずれの素子でも発光開始電圧が3. 6Vから3. 7V、輝度100cd/m²で発光する電圧が7. 2Vから7. 4Vと実施例18、実施例19の素子とほぼ変わらない発光特性であった。本実施例では、実施例18、実施例19に加えて、グローブボックス内での素子作製が出来るため更に発光面の発光均一性が向上し、電極形状も任意に制御できるため発光素子としての完成度が更に大幅に向上了。

[0123] (実施例21)

実施例18、実施例19の陰電極の形成方法を、図5の真空注入法とした以外は実施例18と実施例19と同様の素子を作製した。間隙を構成する凹部を有する基材はガラス製とした。これと発光層を形成した基板とをUVシール接着して空素子を準備した。間隙のギャップを5 μm～500 μmとした素子を作製したが、いずれの素子でも発光開始電圧が3. 6Vから3. 7V、輝度100cd/m²で発光する電圧が7. 2Vから7. 4Vと実施例18、実施例19の素子とほぼ変わらない発光特性であった。本実施例では、実施例18、実施例19に加えて、真空での素子作製が出来るため更に発光面の発光均一性が向上し、電極形状も任意に制御できるため発光素子としての完成度が更に大幅に向上了。また、溶融金属を冷却硬化して孔部を塞ぐことにより封止を同時にを行い素子を完成させた。

[0124] (実施例22)

実施例18、実施例19の陰電極の形成方法を、グローブボックス内での図6の吸気法とした以外は実施例18、実施例19と同様の素子を作製した。間隙を構成する凹部を有する基材はガラス製とした。これと発光層を形成した基板とをUVシール接着して空素子を準備した。間隙のギャップを5 μm～500 μmとした素子を作製したが、いずれの素子でも発光開始電圧が3. 6Vから3. 7V、輝度100cd/m²で発光する電圧が7. 2Vから7. 4Vと、実施例18、実施例19の素子とほぼ変わらない発光特性であった。本実施例では、実施例18、実施例19に加えて、真空での素子作製が出来るため更に発光面の発光均一性が向上し、電極形状も任意に制御できるため発光素子としての完成度が更に大幅に向上了。また、溶融金属を冷却硬化して孔部

を塞ぐことにより封止を同時にい素子を完成させた。

[0125] (実施例23)

実施例20、実施例21、実施例22で、凹部を有する基材に図8に示す複数のストライプ形状の凹凸を加工して形成し、実施例20、実施例21、実施例22と同様に実施した。線幅を $50\text{ }\mu\text{m}$ ～ $300\text{ }\mu\text{m}$ 、線間を $10\text{ }\mu\text{m}$ ～ $30\text{ }\mu\text{m}$ として複数の素子を作製し、いずれもストライプ形状に対応した発光状態を示し、表示装置の電極として使用できることを確認した。

[0126] (実施例24)

実施例20で陰電極を実施例12から実施例16と同様とした以外は実施例20と同様の素子を作製した。

いずれの素子でも実施例12から実施例16と同様の発光特性であった。本実施例により、発光面の発光均一性が向上し、電極形状も任意に制御できるため発光素子としての完成度が大幅に向上した。

[0127] (実施例25)

実施例21で陰電極を実施例12から実施例16と同様とした以外は実施例21と同様の素子を作製した。

いずれの素子でも実施例12から実施例16と同様の発光特性であった。本実施例により、発光面の発光均一性が向上し、電極形状も任意に制御できるため発光素子としての完成度がさらに大幅に向上した。間隙を流れるによるアルカリ金属成分の表面導入の効果によると考えられる。

[0128] (実施例26)

実施例22で陰電極を実施例12から実施例16と同様とした以外は実施例22と同様の素子を作製した。

いずれの素子でも実施例12から実施例16と同様の発光特性であった。本実施例により、発光面の発光均一性が向上し、電極形状も任意に制御できるため発光素子としての完成度がさらに大幅に向上した。間隙を流れるによるアルカリ金属成分の表面導入の効果によると考えられる。

[0129] (実施例27)

実施例23で陰電極を実施例12から実施例16と同様とした以外は実施例23と同様の素子を作製した。いずれの素子でも実施例20、21、22と同様な発光特性、均一性のストライプ形状に対応した発光状態を示し、実用的な表示装置の電極として使用できることを確認した。

[0130] (実施例28)

有機半導体を用いて薄膜トランジスタ(TFT)素子を作製した。TFTに必要なゲート電極、ゲート絶縁層を基板上に形成した。ゲート電極はCr、ゲート絶縁層はSiO₂を用い、半導体層として導電性高分子材料であるポリチオフェンを塗布した。

図11に示す構造の通常の平面電極構造TFT素子(図11(a))、静電誘導型(SIT)TFT素子(図11(b))、トップアンドボトムコンタクト型TFT素子(図11(c))を作製した。なお、図11において、2は基板、17はゲート電極、18はソース電極、19はドレイン電極、20は有機半導体層、21は絶縁層を示す。

有機半導体層上に形成する電極を実施例1から実施例17の金属とし、加えて表1中のBi-Sn-Ag(57.5:42.0:0.5%)およびこれにCa、Li、Cs、Srをそれぞれ上記実施例同様の量加えた金属を用いた。融点は194°Cで母材と変わらなかった。ポリチオフェンは上述した有機EL材料よりもガラス転移温度が高いので、より融点の高い電極材料金属を選択する事ができる。これらの実施例の電極製造方法および実施例18から実施例22、実施例24から実施例26の電極製造方法で素子を作製した。

いずれの構造のTFT素子も、ゲート電圧の増減に応じてソース電極-ドレイン電極間に流れる電流が変化し、トランジスタ動作を確認した。

以上、本発明の実施例について説明したが、本発明はこれに限定されるものではない。

産業上の利用可能性

[0131] 本発明により、有機材料層上に蒸着等の真空成膜方法を用いることなく電極を形成して、有機機能素子、特に有機EL素子、有機TFT素子等を作製することができ、これらの機能素子の大型化、製造コスト低減を実現することができる。また、電極形成において有機材料層に損傷を与えることなく、環境の変化に影響されない高い信頼性を有する有機機能素子が可能となる。

本発明の有機機能素子は、真空中もしくは不活性気体中で素子作製が出来るため、発光面の発光均一性がより向上し、電極形状も任意に制御できるため、発光素子としての完成度を向上させることができる。また、溶融金属を冷却硬化して孔部を塞ぐことにより封止を同時に素子を完成させることも可能である。

請求の範囲

- [1] 少なくとも複数の電極と有機材料層から構成される有機機能素子であって、少なくとも一つの該電極が、前記有機材料層のガラス転移温度より30℃高い温度以下の融点である金属で構成されていることを特徴とする有機機能素子。
- [2] 少なくとも複数の電極と有機材料層から構成される有機機能素子であって、少なくとも一つの該電極が、70℃以上であって前記有機材料層のガラス転移温度より30℃高い温度以下の融点の金属で構成されていることを特徴とする有機機能素子。
- [3] 少なくとも複数の電極と有機材料層から構成される有機機能素子であって、少なくとも一つの該電極が、70℃以上160℃以下の融点の金属で構成されていることを特徴とする有機機能素子。
- [4] 該電極を構成する金属がBiと他の金属の合金であることを特徴とする請求項1から請求項3までのいずれかに記載の有機機能素子。
- [5] 該電極を構成する金属のBi成分が他の金属よりも多いことを特徴とする請求項1から請求項4までのいずれかに記載の有機機能素子。
- [6] 該電極を構成する金属がBiと、Sn、Pb、Cd、Sb、Inのいずれかのうち1種類あるいは2種類あるいは3種類あるいは4種類あるいは5種類の金属との合金であることを特徴とする請求項1から請求項5までのいずれかに記載の有機機能素子。
- [7] 請求項1から請求項4までのいずれかに記載の有機機能素子であって、該電極を構成する金属がSnとBiの合金であり、Sn成分がBi成分より多いことを特徴とする有機機能素子。
- [8] 該電極を構成する金属がInとSnの合金であることを特徴とする請求項1から請求項3までのいずれかに記載の有機機能素子。
- [9] 少なくとも複数の電極と有機材料層から構成される有機機能素子であって、少なくとも一つの該電極が、アルカリ金属またはアルカリ土類金属を含有した金属よりなり、該金属の融点が200℃以下であることを特徴とする有機機能素子。
- [10] 該電極を構成する金属がBiと他の金属の合金であり、Bi成分が他の金属よりも多く、Biと、Sn、Pb、Cd、Sb、In、Agのいずれかのうち1種類あるいは2種類あるいは3種類あるいは4種類あるいは5種類あるいは6種類の金属と、少なくとも1種類のアルカリ

金属またはアルカリ土類金属を含有することを特徴とする請求項9に記載の有機機能素子。

- [11] 該電極を構成する金属がSnとBiの合金であり、Sn成分がBi成分より多く、少なくとも1種類のアルカリ金属またはアルカリ土類金属を含有することを特徴とする請求項9に記載の有機機能素子。
- [12] 該電極を構成する金属がInとSnの合金であり、少なくとも1種類のアルカリ金属またはアルカリ土類金属を含有することを特徴とする請求項9に記載の有機機能素子。
- [13] 該アルカリ金属またはアルカリ土類金属の1種類が0.01～1体積%、好ましくは0.05～0.5体積%であることを特徴とする請求項9項から請求項12までのいずれかに記載の有機機能素子。
- [14] 該アルカリ金属またはアルカリ土類金属の1種類が0.01～1重量%、好ましくは0.05～0.5重量%であることを特徴とする請求項9項から請求項12までのいずれかに記載の有機機能素子。
- [15] 該アルカリ金属またはアルカリ土類金属がCa、Li、Cs、Mg、Srの群から選択されるものであることを特徴とする請求項9から請求項14までのいずれかに記載の有機機能素子。
- [16] 請求項1から請求項15までのいずれかに記載の有機機能素子において、前記有機材料層と該有機材料層に対向する凹部を有する基材とによって構成される間隙部に前記金属が充填形成されたことを特徴とする有機機能素子。
- [17] 前記間隙部が一つ以上の孔部を有し、該孔部が硬化した金属によって封止されていることを特徴とする請求項16に記載の有機機能素子。
- [18] 請求項1から請求項15までのいずれかに記載の有機機能素子において、前記有機材料層上に少なくとも一つの該電極を構成する金属の粒子ペーストを塗布し、該粒子ペーストの金属を溶融、冷却させて電極を形成することを特徴とする有機機能素子の製造方法。
- [19] 請求項1から請求項16までのいずれかに記載の有機機能素子において、少なくとも一つの該電極を構成する金属を溶融させて保持する凹部を有する基材と前記有機材料層を形成した基板とを、前記有機材料層と前記金属が接する様に対向させて

押圧し、前記金属を前記有機材料層に転写、冷却することにより電極を形成することを特徴とする有機機能素子の製造方法。

- [20] 請求項1から請求項17までのいずれかに記載の有機機能素子において、有機材料層と該有機材料層に対向する凹部を有する基材とによって一つ以上の孔部を設けた間隙部を構成し、該間隙部に前記孔部を通して少なくとも一つの該電極を構成する金属を溶融させて注入し、冷却することにより電極を形成することを特徴とする有機機能素子の製造方法。
- [21] 前記電極の形成を、孔部への金属の配置、間隙部及び一定の周辺空間の真空排気、周辺空間の気体開放をこの順に行う真空注入法により間隙部への金属注入を行うことにより電極を形成することを特徴とする請求項20に記載の有機機能素子の製造方法。
- [22] 前記電極の形成を、孔部への金属の配置、金属を配置しない他の孔部からの間隙部内の気体の吸出をこの順に行うことにより間隙部への金属注入を行うことにより電極を形成することを特徴とする請求項20に記載の有機機能素子の製造方法。
- [23] 前記間隙部への真空注入による電極の形成あるいは、前記間隙部内の気体の吸出による電極の形成を不活性気体中で行うことを特徴とする請求項21または請求項22に記載の有機機能素子の製造方法。
- [24] 前記不活性気体が窒素、アルゴン、窒素とアルゴンの混合気体であることを特徴とする請求項23に記載の有機機能素子の製造方法。
- [25] 前記孔部を、前記溶融した金属を冷却硬化させることによって封止し、凹部を有する基材を備えたことを特徴とする請求項20から請求項24までのいずれかに記載の有機機能素子の製造方法。
- [26] 前記凹部及び間隙部の形状によって電極を定型に形成することを特徴とする請求項19から請求項25までのいずれかに記載の有機機能素子の製造方法。
- [27] 前記凹部及び間隙部が複数のストライプ形状からなることを特徴とする請求項26に記載の有機機能素子の製造方法。
- [28] 前記凹部を有する基材がガラス、金属、セラミック、樹脂のいずれか1種類から選択されるものか、あるいは2種類以上の複合材料で形成されるものであることを特徴とす

る請求項19から請求項27までのいずれかに記載の有機機能素子の製造方法。

- [29] 請求項1から請求項17までのいずれかに記載の該電極を有し、前記有機機能素子が有機EL素子であることを特徴とする有機EL素子。
- [30] 該電極が陰電極であることを特徴とする請求項29に記載の有機EL素子。
- [31] 請求項29もしくは請求項30に記載の有機EL素子において、請求項18から請求項28までのいずれかに記載の該電極の形成方法を有することを特徴とする有機EL素子の製造方法。
- [32] 請求項1から請求項17までのいずれかに記載の該電極を有し、前記有機機能素子が有機半導体素子であることを特徴とする有機半導体素子。
- [33] 請求項32に記載の有機半導体素子において、請求項18から請求項28までのいずれかに記載の該電極の形成方法を有することを特徴とする有機半導体素子の製造方法。
- [34] 請求項1から請求項17までのいずれかに記載の該電極を有し、前記有機機能素子が有機TFT素子であることを特徴とする有機TFT素子。
- [35] 請求項34に記載の有機TFT素子において、請求項18から請求項28までのいずれかに記載の該電極の形成方法を有することを特徴とする有機TFT素子の製造方法。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

[図10]

[図11]

[図12]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/018498

A. CLASSIFICATION OF SUBJECT MATTER

Int.C1⁷ H05B33/10, H05B33/14, H05B33/26, H01L29/786, H01L29/80,
H01L21/28, H01L21/288

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.C1⁷ H05B33/10, H05B33/14, H05B33/26, H01L29/786, H01L29/80,
H01L21/28, H01L21/288

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2005
Kokai Jitsuyo Shinan Koho	1971-2005	Toroku Jitsuyo Shinan Koho	1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2002-237382 A (Stanley Electric Co., Ltd.), 23 August, 2002 (23.08.02), Full text; all drawings (Family: none)	1-8, 16, 17, 29, 30
Y		9-15, 18-19, 28, 31
A		20-27, 32-35
Y	JP 2-15595 A (Eastman Kodak Co.), 19 January, 1990 (19.01.90), Full text; all drawings & EP 278757 A & US 4885211 A & CA 1291551 C & DE 3856065 G	9-19, 28, 31
A	JP 2002-540591 A (E Ink Corp.), 26 November, 2002 (26.11.02), Par. No. [0076] & WO 200036666 A1 & AU 200021860 A & EP 1149423 A1 & US 2002053320 A1	32-35

Further documents are listed in the continuation of Box C.

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
29 March, 2005 (29.03.05)

Date of mailing of the international search report
12 April, 2005 (12.04.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl' H05B33/10, H05B33/14, H05B33/26, H01L29/786, H01L29/80, H01L21/28, H01L21/288

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl' H05B33/10, H05B33/14, H05B33/26, H01L29/786, H01L29/80, H01L21/28, H01L21/288

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年
 日本国公開実用新案公報 1971-2005年
 日本国実用新案登録公報 1996-2005年
 日本国登録実用新案公報 1994-2005年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2002-237382 A (スタンレー電気株式会社) 2002.08.23 全文、全図面 (ファミリー無し)	1-8, 16, 17, 29, 30
Y		9-15, 18-19, 28, 31
A		20-27, 32-35

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日

29.03.2005

国際調査報告の発送日

12.04.2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

森内 正明

2V 3208

電話番号 03-3581-1101 内線 3271

C(続き) . 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2-15595 A (イーストマン・コダック・カンパニー) 1990.01.19 全文、全図面 &EP 278757 A &US 4885211 A &CA 1291551 C &DE 3856065 G	9-19, 28, 31
A	JP 2002-540591 A (イーインク コーポレイション) 2002.11.26 【0076】 &WO 200036666 A1 &AU 200021860 A &EP 1149423 A1 &US 2002053320 A1	32-35

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.