

System Engineering Methods

ENSEEIHT

Course content

Course 1

- HCI, HSI, distributed systems, interactive software engineering
- First contact with Ingescape
- Presentation of the exam

Course 2

- Exam groups
- HCI & UX methodologies
- Visual programming with Ingescape

Course 3

- Software design patterns for HCI development
- Generating code and crossing models for interactive applications
- Verification & Validation applied to interactive systems

Course 4

- Methodologies for multidisciplinary and iterative System Engineering, notions of HSI
- Human Factor assessments, why and how
- Co-simulation and data record/replay with Ingescape

Course 5

Practical exchanges on your exam projects using system architecture models

Context of System Engineering

- How to tackle big engineering projects ?
 - Complex systems of systems
 - Several companies

For efficiency, safety, reliability, error management...

System Engineering: presentation

How to build complex systems ?

« Systems Engineering is a transdisciplinary and integrative approach to enable the successful realization, use and retirement of engineered systems, using systems principles and concepts, and scientific technological and management methods »

INCOSE

Customer **Systems Engineer** Software Engineering **Electrical Engineering** Mechanical Engineering

Systems Engineering: presentation

- Build the right system :
 - Define the customer's needs
 - Identify constraints : requirements, design, cost...
 - Define the right system to build
- Build the system right :
 - Follow development and construction
 - Manage risk & Cost
 - Integrate
 - Verify & Validate
 - Assess the system's value
- Manage the system :
 - Maintain the system
 - Manage the resources
 - Manage the end of life
- There are different Systems Engineering approaches. One of the most common ones is called Model-Based Systems Engineering.

First steps of any SE: understanding the needs of the customer

- Example : « I want to have a robot on Mars that can go around and collect samples. »
- Questions to answer :
 - What samples should be collected? Dust, earth, stones..? Is drilling required and at what depth?
 - Do you want to send the samples back? To analyze them on Mars?
 - How autonomous should the robot be ?
 - How far should the rover go?
 - What's the budget ?
 - ...

Core concepts of MBSE

Model-Based Systems Engineering

Model-Based Systems Engineering: presentation

- Formalized methodology for the development of complex systems used to support requirements, design, analysis, verification and validation
- Why models ?
 - Simplified representation
 - Illustrate behavior, functions, caracteristics
 - Share information with less complexity

Systems Engineering: origins of Model-Based Systems Engineering

Document-Based System Engineering

VS

Model-Based System Engineering

Source: INCOSE MBSE Workshop, Jan 2014

MBSE

How to describe a system : requirements, structures, behaviors

- Requirements : What is the system capable of ?
 - High-Level specifications → Detailed, verifiable requirements
- Structure : How is the system structure ?
 - High-level structure → individual systems
- Behavior : How does the system work in different scenarios ?
 - Workflows
 - Message exchange sequences
 - Descriptions

Examples

Exercise : Client Specifications

- Goal: « I want to have a robot on Mars that can go around and collect samples. »
- Client specifications :
 - The robot should be able to receive a sample collection site position from the orbiter.
 - The robot should drive autonomously on Mars from its position to the sample collection site.

Let's build a model together!

- Requirements : What is the system capable of ?
- Structure : How is the system structure ?
- Behavior : How does the system work?

SYSML

2. Behavior sd [Interaction] ABS Activation [ABS Activation] d1 : Traction Detector m1 : Brake Modulator

3. Requirements

4. Parametrics

Source: https://www.youtube.com/watch?v=998UznK9ogY

Source: https://www.youtube.com/watch?v=998UznK9ogY

ARCADIA by Thales

ARCADIA by Thales

Source: https://www.youtube.com/watch?v=Btz.hl ZU aW A8 &list=PLfrEYVpSG VLz4i-rHdk gW bl5j dVzHM RU n &i ndex:

Core concepts for MBSE

- Commonly expressed reproaches about MBSE
 - "Frightening / boring"
 - "Generates complexity"
 - "Not iterative / not agile"
 - "Bad tools"
 - "Not very collaborative / centered on architects"
 - "Expensive / time consuming"
 - "Does not help coding / makes coding harder"
- The fundamental causes
 - Non-minimal concepts
 - No support for **collaboration** and iterations

Requirements

Architecture of components

composition, data flows, services

Behaviors

sequence/activity diagrams, state machines, interface contracts, etc.

Urbanization, a.k.a. physical layer

Core activities for systems engineering and dev.

- Required qualities
 - Make the system observable and open from the beginning
 - Continuous assessment against requirements, external systems and the end-users
 - Minimize the cost of iterative tests and changes
 - Offer continuity between the activities, models, etc.

Requirements analysis

System architecture & design

Iterative development

Continuous tests & integration

Continuous Verification & Validation

Deployment & supervision

Back to the roots: the agile manifesto

Source: https://plays-in-business.com/pibold/wp-content/uploads/2011/03/agi le-manifesto1.gif

ingenulty i/o

Overcoming MBSE and development difficulties

Introduction of Human System Interaction

HSI Stakes

HSI Process

Human In The Loop

- Use domain specific simulators (Simulink)
- Refine user-centred activities
 - Inject and observe data
 - Describe scenarios, procedures
- Perform metrics
 - Record / Replay / Stats
 - Make scientific assessments and Human In The Loop simulations

Design a quantitative experimentation

Hypothesis The number of missed alarms and the detection time should increase with the mental charge of the user. • Initial hypothesis to test **Independent Variables** Alarm types, mental charge • Define what test conditions are needed Possible biaises Experience of the user **Dependent Variables** Number of missed alarms, detection time • Quantity to measure to quantify the experiment's results

Define analysis plan

Alarm Type (Visual / Auditive)

Mental Charge (Easy / Middle / High)

A1-N1

A1-N2

A1-N3

A2-N1

A2-N2

A2-N3

- Number of subjects
- Links between independent variables
- Need for completeness

Test Passation

Analyze the data

- For each test passation
 - Independent variables (test configuration)
 - Dependent variables (measured values)
 - Characteristics (interview with the subject)
- Confirm Hypothesis
 - Check for anomalies and biaises
 - Statistical methods to analyze the data

Conclusion

- How to design, integrate and manage complex systems ?
- MBSE :
 - Design structure, behavior, requirements for systems
- HSI:
 - Add human consideration for better performance, usability and reliability
 - Evaluate the system during its development with simulation and assessment
- What can help?
 - Cosimulation: integrate existing simulations
 - Data record & replay : develop with real data