Notes on Chapter 1 Problems

- C. To avoid making multiple output files I did not submit pictures of the triangle/star/snowflake. Each can easily be generated by setting the "level" variable to 0, 1, or any number above 1, respectively.
- D. The perimeter appears to be unbounded while the area appears to asymptotically approach 0.7 15.

Estimated values of the zeroth-order Bessel function:

Х	Estimated J₀(x)	MATLAB value	Difference in values
		(besselj)	
0.3	0.9775	0.9776	0.0001
0.9	0.8092	0.8075	-0.0017
1.1	0.7217	0.7196	0.0021
1.5	0.4835	0.5118	0.0283
2	0.0832	0.2239	0.1407

Problem 15 uses the files intrpf.m and chap1_problem15.m.

16.

Х	Estimated J ₀ (x)	MATLAB value	Difference in values
		(besselj)	
0.3	0.9772	0.9776	0.0004
0.9	0.8120	0.8075	-0.0045
1.1	0.7238	0.7196	-0.0042
1.5	0.5106	0.5118	0.0012
2	0.1854	0.2239	0.0385

The estimates are generally similar to problem 15's but perform better than 15 at higher values of x.

Problem 16 uses the files intrpf_2.m and chap1_problem16.m