Использование метода перевала в нестационарных задачах квантовой механики

Махно А А

Воронежский государственный университет

Руководитель Флегель А В

Содержание

- 1 Постановка задачи
- 2 Метод перевала
- 3 Аналитическое ршение
- 4 Численное решение
- 5 Сравнение результатов

Постановка задачи

В квантовой механике одноэлектронная математическая модель атома, подверженного воздействию лазерного импульса, описывается нестационарным уравнением Шредингера для электронной волновой функции

$$\left[i\hbar\frac{\partial}{\partial t} + \frac{\hbar^2}{2m}\nabla^2 - U(r) - V(\mathbf{r}, t)\right]\Psi(\mathbf{r}, t) = 0$$

Волновая функция при $r o \infty$

$$\Psi(\mathbf{r},t) = -\frac{2\pi\hbar^2}{mk} \int_{-\infty}^{t} e^{-i\epsilon t'/\hbar} G(\mathbf{r},t;0,t') f(t') dt', \qquad (1)$$

где $G({f r},t;{f r}',t')$ - функция Грина, имеющая вид

$$G(\mathbf{r},t;\mathbf{r}',t') = -\theta(t-t')\frac{i}{\hbar} \left[\frac{m}{2\pi i \hbar (t-t')} \right]^{3/2} e^{iS(\mathbf{r},t;\mathbf{r}',t')/\hbar},$$

Граниченое условие при r o 0

$$\Psi(\mathbf{r},t) \sim \left(B(\epsilon) + \frac{1}{r}\right) f(t) e^{-i\epsilon t/\hbar}$$
 (2)

Переходя в атомную систему единиц ($|e|=m_e=\hbar=1$), и сшивая уравнения (1) и (2), получаем систему:

$$\sum_{n=-\infty}^{0} [B(\epsilon + n\omega) - i(2(\epsilon + n\omega))^{1/2}] f_n e^{-in\omega t} =$$

$$= \sum_{m=-\infty}^{0} \mathcal{M}(\epsilon + m\omega, t) f_m e^{im\omega t}, \tag{3}$$

где для расчета образа фурье функции f (f_i) , потребуется вычислять матричный элемент

$$\mathcal{M}(\epsilon, t) = \sqrt{\frac{1}{2\pi i}} \int_0^\infty \frac{e^{i\epsilon\tau}}{\tau^{3/2}} \left[e^{iS(t, t-\tau)} - 1 \right]. \tag{4}$$

Метод перевала

Метод перевала применяется для оценки при больших значениях параметра λ интегралов вида

$$I(\lambda) = \int_{a}^{b} \phi(t) e^{\lambda f(t)} dt$$

Преобразуя их к виду

$$I(\lambda) \sim e^{\lambda f(z_0)} \sqrt{\frac{2\pi}{|f''(z_0)|}} \phi(z_0) e^{i\theta} \frac{1}{\sqrt{\lambda}},$$

где z_0 - корни уравнения f'(t) = 0.

В интеграле $\mathcal{M}(\epsilon,t)$ роль большого параметра λ играет величина:

$$\lambda = \frac{1}{2\mathcal{T}} \int_{-\mathcal{T}/2}^{\mathcal{T}/2} A^2(\tau) d\tau. \tag{5}$$

40.40.45.45.5.000

Аналитическое ршение

Итоговая формула, получанная методом перевала

$$\mathcal{M}(\epsilon, t) \simeq \sum_{t_0} \frac{e^{iS(t, t_0)}}{\sqrt{D}(t - t_0)^{3/2}},\tag{6}$$

где $S = \epsilon(t-t_0) + S(t,t_0)$,

$$D = \alpha(t_0, t, t_0) \left[F(t_0) - \frac{1}{(t - t_0)^2} \int_{t_0}^t A(\tau) d\tau + \frac{A(t_0)}{t - t_0} \right]$$

и t_0 - корни уравнения $\alpha^2(t_0, t, t_0) = 2\epsilon$.

Рассмотрим вклад точки t=t' в интеграл ${\mathcal M}$

Аналитическое решение

Решим уравнение $\alpha^2(t_0,t,t_0)=2\epsilon$ для $\epsilon\geq 0$. На рисунке изображена функция $\alpha(t',t,t')$, t=0.

Аналитическое решение

Аналогично, $\alpha(t', t, t')$ для случая t = 20.

Для получения точного численного решения использовалась библиотека GNU GSL, а также FFTW. Сравнивая вид преобразования Фурье с видом искомого интеграла \mathcal{M} , получаем (t=const), что если

$$f(\tau) = \frac{1}{\tau^{3/2}} (e^{iS(t,t-\tau)} - 1)$$

И

$$\hat{f}(\xi) = \int_0^\infty e^{i\tau\xi} f(\tau) d\tau,$$

TO

$$\mathcal{M}(\epsilon,t) = \frac{1}{\sqrt{2\pi i}}\hat{f}(\epsilon).$$

Численное решение

Значение ϵ может не совпасть с одной из частот преобразования, в таком случае используем линейное приближение.

Решения седлового уравнения для различных параметров

Сравнение решений для параметров $\epsilon=$ 0.4, $F_0=$ 2, $\omega=$ 0.8

Сравнение решений для параметров $\epsilon =$ 0.4, $F_0 =$ 2, $\omega =$ 0.8 на отрезке t = [20,70]

Сравнение решений для параметров $\epsilon=0.35, F_0=2.2, \omega=0.8$

Сравнение решений для параметров $\epsilon = 0.35, F_0 = 2.2, \omega = 0.8$ на отрезке t = [20, 70]

Изменим параметр F_0 ($\epsilon=0.35, F_0=1.6, \omega=0.8$).

Уменьшение параметра F_0 влечет за собой уменьшение величины λ , что ухудшает перевальную оценку

Использование метода перевала в нестационарных задачах квантовой механики

Махно А А

Воронежский государственный университет

Руководитель Флегель А В

Краткий список литературы

- Араманович И.Г. Левин В.И. Уравнения математической физики. М.: Наука, 1969. 288 с.
- М.В. Федорюк. Метод перевала. М.: Главная редакция физико-математической литературы изд-ва «Наука», 1977. 368 с.
- Лаврентьев М.А Шабат Б.В. Методы теории функций комплексного переменного. М.: Главная редакция физико-математической литературы изд-ва «Наука», 1973. 736 с.
- Wong R. Asymptotic Approximations of Integrals. NY.: SIAM, 2001. 543 p.