# **Supervised Learning**

**Chapter VI: Decision Tree Learning** 

Johannes Jurgovsky

## **Outline**

## **Decision Tree Learning**

- 1. Introduction
- 2. Impurity Function
- 3. Algorithms
- 4. Pruning
- 5. Ensemble Learning
- 6. Random Forest

# 1. Introduction

Specification of Classification Problems [ML Introduction]

Characterization of the model (model world):

- $\square$  *X* is a set of feature vectors, also called feature space.
- $\Box$  Y is a set of classes.
- $\neg y: X \to Y$  is the ideal classifier for X.
- $D = \{(\mathbf{x}_1, y(\mathbf{x}_1)), \dots, (\mathbf{x}_n, y(\mathbf{x}_n))\} \subseteq X \times Y \text{ is a set of examples.}$

## Decision Tree for the Concept "EnjoySport"

| Example | Sky   | Temperature | Humidity | Wind   | Water | Forecast | EnjoySport |
|---------|-------|-------------|----------|--------|-------|----------|------------|
| 1       | sunny | warm        | normal   | strong | warm  | same     | yes        |
| 2       | sunny | warm        | high     | strong | warm  | same     | yes        |
| 3       | rainy | cold        | high     | strong | warm  | change   | no         |
| 4       | sunny | warm        | high     | strong | cool  | change   | yes        |



## Decision Tree for the Concept "EnjoySport"

| Example | Sky   | Temperature | Humidity | Wind   | Water | Forecast | EnjoySport |
|---------|-------|-------------|----------|--------|-------|----------|------------|
| 1       | sunny | warm        | normal   | strong | warm  | same     | yes        |
| 2       | sunny | warm        | high     | strong | warm  | same     | yes        |
| 3       | rainy | cold        | high     | strong | warm  | change   | no         |
| 4       | sunny | warm        | high     | strong | cool  | change   | yes        |



Partitioning of *X* at the root node:

$$X = \{\mathbf{x} \in X : \mathbf{x}|_{\mathsf{Sky}} = \mathsf{sunny}\} \ \cup \ \{\mathbf{x} \in X : \mathbf{x}|_{\mathsf{Sky}} = \mathsf{cloudy}\} \ \cup \ \{\mathbf{x} \in X : \mathbf{x}|_{\mathsf{Sky}} = \mathsf{rainy}\}$$

### **Definition 1 (Splitting)**

Let X be feature space and let D be a set of examples. A splitting of X is a partitioning of X into mutually exclusive subsets  $X_1, \ldots, X_s$ . I.e.,  $X = X_1 \cup \ldots \cup X_s$  with  $X_j \neq \emptyset$  and  $X_j \cap X_{j'} = \emptyset$ , where  $j, j' \in \{1, \ldots, s\}, j \neq j'$ .

A splitting  $X_1, \ldots, X_s$  of X induces a splitting  $D_1, \ldots, D_s$  of D, where  $D_j$ ,  $j = 1, \ldots, s$ , is defined as  $\{(\mathbf{x}, y(\mathbf{x})) \in D \mid \mathbf{x} \in X_j\}$ .

## **Definition 1 (Splitting)**

Let X be feature space and let D be a set of examples. A splitting of X is a partitioning of X into mutually exclusive subsets  $X_1, \ldots, X_s$ . I.e.,  $X = X_1 \cup \ldots \cup X_s$  with  $X_j \neq \emptyset$  and  $X_j \cap X_{j'} = \emptyset$ , where  $j, j' \in \{1, \ldots, s\}, j \neq j'$ .

A splitting  $X_1, \ldots, X_s$  of X induces a splitting  $D_1, \ldots, D_s$  of D, where  $D_j$ ,  $j = 1, \ldots, s$ , is defined as  $\{(\mathbf{x}, y(\mathbf{x})) \in D \mid \mathbf{x} \in X_j\}$ .

A splitting depends on the measurement scale of a feature:

1. m-ary splitting induced by a (nominal) feature A with finite domain:

$$A = \{a_1, \dots, a_m\} : X = \{\mathbf{x} \in X : \mathbf{x}|_A = a_1\} \cup \dots \cup \{\mathbf{x} \in X : \mathbf{x}|_A = a_m\}$$

## **Definition 1 (Splitting)**

Let X be feature space and let D be a set of examples. A splitting of X is a partitioning of X into mutually exclusive subsets  $X_1, \ldots, X_s$ . I.e.,  $X = X_1 \cup \ldots \cup X_s$  with  $X_j \neq \emptyset$  and  $X_j \cap X_{j'} = \emptyset$ , where  $j, j' \in \{1, \ldots, s\}, j \neq j'$ .

A splitting  $X_1, \ldots, X_s$  of X induces a splitting  $D_1, \ldots, D_s$  of D, where  $D_j$ ,  $j = 1, \ldots, s$ , is defined as  $\{(\mathbf{x}, y(\mathbf{x})) \in D \mid \mathbf{x} \in X_j\}$ .

A splitting depends on the <u>measurement scale</u> of a feature:

1. m-ary splitting induced by a (nominal) feature A with finite domain:

$$A = \{a_1, \dots, a_m\} : X = \{\mathbf{x} \in X : \mathbf{x}|_A = a_1\} \cup \dots \cup \{\mathbf{x} \in X : \mathbf{x}|_A = a_m\}$$

2. Binary splitting induced by a (nominal) feature *A*:

$$A' \subset A$$
:  $X = \{ \mathbf{x} \in X : \mathbf{x}|_A \in A' \} \cup \{ \mathbf{x} \in X : \mathbf{x}|_A \notin A' \}$ 

3. Binary splitting induced by an ordinal feature *A*:

$$v \in dom(A):$$
  $X = \{\mathbf{x} \in X : \mathbf{x}|_A \succeq v\} \cup \{\mathbf{x} \in X : \mathbf{x}|_A \prec v\}$ 



- The syntax  $\mathbf{x}|_A$  denotes the projection operator, which returns that vector component (dimension) of  $\mathbf{x} = (x_1, \dots, x_p)$  that is associated with A. Without loss of generality this projection can be presumed being unique.
- $\Box$  A splitting of *X* into two disjoint, non-empty subsets is called a binary splitting.
- $\Box$  We consider only splittings of X that are induced by a splitting of a single feature A of X. Keyword: monothetic splitting

### **Decision Trees Basics**

### **Definition 2 (Decision Tree)**

Let X be feature space and let Y be a set of classes. A <u>decision tree</u> T for X and Y is a finite tree with a distinguished root node. A non-leaf node t of T has assigned (1) a set  $X(t) \subseteq X$ , (2) a splitting of X(t), and (3) a one-to-one mapping of the subsets of the splitting to its successors.

X(t) = X iff t is root node. A leaf node of T has assigned a class from Y.

### **Definition 2 (Decision Tree)**

Let X be feature space and let Y be a set of classes. A <u>decision tree</u> T for X and Y is a finite tree with a distinguished root node. A non-leaf node t of T has assigned (1) a set  $X(t) \subseteq X$ , (2) a splitting of X(t), and (3) a one-to-one mapping of the subsets of the splitting to its successors.

X(t) = X iff t is root node. A leaf node of T has assigned a class from Y.

## Classification of some $\mathbf{x} \in X$ given a decision tree T:

- 1. Find the root node of T.
- 2. If t is a non-leaf node, find among its successors that node whose subset of the splitting of X(t) contains  $\mathbf{x}$ . Repeat this step.
- 3. If t is a leaf node, label  $\mathbf{x}$  with the respective class.
- $\rightarrow$  The set of possible decision trees forms the hypothesis space H.

| Remai | ks:                                                                                                         |
|-------|-------------------------------------------------------------------------------------------------------------|
|       | The classification of an $\mathbf{x} \in X$ determines a unique path from the root node of $T$ to some leaf |

- □ At each non-leaf node a particular feature of **x** is evaluated in order to find the next node along with a possible next feature to be analyzed.
- □ Each path from the root node to some leaf node corresponds to a conjunction of feature values, which are successively tested. This test can be formulated as a decision rule. Example:

IF Sky=rainy AND Wind=weak THEN EnjoySport=yes

If all tests in T are of the kind shown in the example, namely, a comparison with a single feature value, all feature domains must be finite.

- $\Box$  If in all non-leaf nodes of T only one feature is evaluated at a time, T is called a *monothetic* decision tree. Examples for *polythetic* decision trees are the so-called oblique decision trees.
- □ Decision trees became popular in 1986, with the introduction of the ID3 Algorithm by J. R. Quinlan.

node of T.

#### **Notation**

Let T be decision tree for X and Y, let D be a set of examples, and let t be a node of T. Then we agree on the following notation:

- $\ \square\ X(t)$  denotes the subset of the feature space X that is represented by t. (as used in the decision tree definition)
- $\ \square\ D(t)$  denotes the subset of the example set D that is represented by t, where  $D(t) = \{(\mathbf{x}, y(\mathbf{x})) \in D \mid \mathbf{x} \in X(t)\}$ . (see the <u>splitting definition</u>)

### Illustration:





- $\Box$  The set X(t) is comprised of those members **x** of X that are filtered by a path from the root node of T to the node t.
- $\Box$  *leaves*(T) denotes the set of all leaf nodes of T.
- $lue{}$  A single node t of a decision tree T, and hence T itself, encode a piecewise constant function. This way, t as well as T can form complex non-linear classifiers. The functions encoded by t and T differ in the number of evaluated features of  $\mathbf{x}$ , which is one for t and the tree height for T.
- $\Box$  In the following we will use the symbols "t" and "T" to denote also the classifiers that are encoded by a node t and a tree T respectively:

 $t, T: X \to Y$  (instead of  $y_t, y_T: X \to Y$ )

Algorithm Template: Construction

Algorithm: DT-construct Decision Tree Construction

Input: D (Sub)set of examples.

Output: t Root node of a decision (sub)tree.

#### DT-construct(D)

- 1. t = newNode()label(t) = representativeClass(D)
- 2. IF impure(D)THEN criterion = splitCriterion(D)ELSE return(t)
- 3.  $\{D_1, \ldots, D_s\} = decompose(D, criterion)$
- 4. FOREACH D' IN  $\{D_1, \ldots, D_s\}$  DO addSuccessor(t, DT-construct(D'))

**ENDDO** 

5. return(t)

#### [Illustration]

Algorithm Template: Classification

Algorithm: DT-classify Decision Tree Classification

Input: **x** Feature vector.

t Root node of a decision (sub)tree.

Output:  $y(\mathbf{x})$  Class of feature vector  $\mathbf{x}$  in the decision (sub)tree below t.

```
DT-classify(\mathbf{x}, t)
```

1. IF isLeafNode(t)THEN return(label(t))ELSE  $return(DT-classify(\mathbf{x}, splitSuccessor(t, \mathbf{x}))$ 

#### Remarks:

- $\Box$  Since *DT-construct* assigns to each node of a decision tree T a class, each subtree of T (as well as each pruned version of a subtree of T) represents a valid decision tree on its own.
- □ Functions of *DT-construct*:
  - representativeClass(D)Returns a representative class for the example set D. Note that, due to pruning, each node may become a leaf node.
  - impure(D)
    Evaluates the (im)purity of a set D of examples.
  - splitCriterion(D)Returns a split criterion for X(t) based on the examples in D(t).
  - decompose(D, criterion)
    Returns a splitting of D according to criterion.
  - addSuccessor(t, t')
    Inserts the successor t' for node t.
- □ Functions of *DT-classify*:
  - isLeafNode(t)Tests whether t is a leaf node.
  - $splitSuccessor(t, \mathbf{x})$ Returns the (unique) successor t' of t for which  $\mathbf{x} \in X(t')$  holds.

#### When to Use Decision Trees

### Problem characteristics that may suggest a decision tree classifier:

- □ the objects can be described by feature-value combinations.
- □ the domain and range of the target function are discrete
- hypotheses take the form of disjunctions
- □ the training set contains noise

### Selected application areas:

- medical diagnosis
- fault detection in technical systems
- □ risk analysis for credit approval
- basic scheduling tasks such as calendar management
- classification of design flaws in software engineering

On the Construction of Decision Trees

- □ How to exploit an example set both efficiently and effectively?
- According to what rationale should a node become a leaf node?
- How to assign a class for nodes of impure example sets?
- □ How to evaluate decision tree performance?

**Splitting** 

Let t be a leaf node of an incomplete decision tree, and let D(t) be the subset of the example set D that is represented by t. [Illustration]

Possible criteria for a splitting of X(t):

1. Size of D(t).

2. Purity of D(t).

3. Ockham's Razor.

## **Splitting**

Let t be a leaf node of an incomplete decision tree, and let D(t) be the subset of the example set D that is represented by t. [Illustration]

## Possible criteria for a splitting of X(t):

### 1. Size of D(t).

D(t) will not be partitioned further if the number of examples, |D(t)|, is below a certain threshold.

## 2. Purity of D(t).

D(t) will not be partitioned further if all examples in D are members of the same class.

#### 3. Ockham's Razor.

D(t) will not be partitioned further if the resulting decision tree is not improved significantly by the splitting.

Splitting (continued)

Let D be a set of examples over a feature space X and a set of classes  $Y = \{y_1, y_2, y_3, y_4\}$ . Distribution of D for two possible splittings of X:



Splitting (continued)

Let D be a set of examples over a feature space X and a set of classes  $Y = \{y_1, y_2, y_3, y_4\}$ . Distribution of D for two possible splittings of X:



- $\Box$  The left splitting should be preferred, since it minimizes the *impurity* of the subsets of D in the leaf nodes. The argumentation presumes that the misclassification costs are independent of the classes in Y.
- $\Box$  The impurity is a function defined on  $\mathcal{P}(D)$ , the set of all subsets of an example set D.

### **Definition** 3 (Impurity Function $\iota$ )

Let  $k \in \mathbb{N}$ . An impurity function  $\iota : [0; 1]^k \to \mathbb{R}$  is a partial function defined on the standard k-1-simplex  $\Delta^{k-1}$  for which the following properties hold:

- (a)  $\iota$  becomes minimum at points (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, ..., 0, 1).
- (b)  $\iota$  is symmetric with regard to its arguments,  $p_1, \ldots, p_k$ .
- (c)  $\iota$  becomes maximum at point  $(1/k, \ldots, 1/k)$ .

### **Definition** 4 (Impurity of an Example Set $\iota(D)$ )

Let D be a set of examples, let  $Y = \{y_1, \dots, y_k\}$  be set of classes, and let  $y : X \to Y$  be the ideal classifier for X. Moreover, let  $\iota : [0;1]^k \to \mathbb{R}$  an impurity function. Then, the impurity of D, denoted as  $\iota(D)$ , is defined as follows:

$$\iota(D) = \iota\left(\frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D : y(\mathbf{x}) = y_1\}|}{|D|}, \dots, \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D : y(\mathbf{x}) = y_k\}|}{|D|}\right)$$

### **Definition** 4 (Impurity of an Example Set $\iota(D)$ )

Let D be a set of examples, let  $Y = \{y_1, \dots, y_k\}$  be set of classes, and let  $y : X \to Y$  be the ideal classifier for X. Moreover, let  $\iota : [0;1]^k \to \mathbb{R}$  an impurity function. Then, the impurity of D, denoted as  $\iota(D)$ , is defined as follows:

$$\iota(D) = \iota\left(\frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D : y(\mathbf{x}) = y_1\}|}{|D|}, \dots, \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D : y(\mathbf{x}) = y_k\}|}{|D|}\right)$$

### **Definition** 5 (Impurity Reduction $\Delta \iota$ )

Let  $D_1, \ldots, D_s$  be a partitioning of an example set D, which is induced by a splitting of a feature space X. Then, the resulting impurity reduction, denoted as  $\Delta \iota(D, \{D_1, \ldots, D_s\})$ , is defined as follows:

$$\Delta\iota(D, \{D_1, \dots, D_s\}) = \iota(D) - \sum_{j=1}^s \frac{|D_j|}{|D|} \cdot \iota(D_j)$$

#### Remarks:

- □ The standard k-1-simplex comprises all k-tuples with non-negative elements that sum to 1:  $\Delta^{k-1} = \left\{ (p_1, \dots, p_k) \in \mathbb{R}^k : \sum_{i=1}^k p_i = 1 \text{ and } p_i \geq 0 \text{ for all } i \right\}$
- Observe the different domains of the impurity function  $\iota$  in the Definitions 3 and 4, namely,  $[0;1]^k$  and D. The domains correspond to each other: the set of examples, D, defines via its class portions an element from  $[0;1]^k$  and vice versa.
- The <u>properties</u> in the definition of  $\iota$  suggest to minimize the <u>external path length</u> of T with respect to D in order to minimize the overall impurity characteristics of T.
- $\Box$  Within the *DT-construct* algorithm usually a greedy strategy (local optimization) is employed to minimize the overall impurity characteristics of a decision tree T.

Impurity Functions Based on the Misclassification Rate

#### Definition for two classes:

$$\iota_{\textit{misclass}}(p_1, p_2) = 1 - \max\{p_1, p_2\} = \left\{ egin{array}{ll} p_1 & \text{if } 0 \leq p_1 \leq 0.5 \\ 1 - p_1 & \text{otherwise} \end{array} \right.$$

$$\iota_{\textit{misclass}}(D) = 1 - \max\left\{\frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D: y(\mathbf{x}) = y_1\}|}{|D|}, \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D: y(\mathbf{x}) = y_2\}|}{|D|}\right\}$$

Impurity Functions Based on the Misclassification Rate

#### Definition for two classes:

$$\iota_{\textit{misclass}}(p_1, p_2) = 1 - \max\{p_1, p_2\} = \left\{ egin{array}{ll} p_1 & \text{if } 0 \leq p_1 \leq 0.5 \\ 1 - p_1 & \text{otherwise} \end{array} \right.$$

$$\iota_{\textit{misclass}}(D) = 1 - \max\left\{\frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D: y(\mathbf{x}) = y_1\}|}{|D|}, \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D: y(\mathbf{x}) = y_2\}|}{|D|}\right\}$$

Graph of the function  $\iota_{\textit{misclass}}(p_1, 1 - p_1)$ :



[Graph: Entropy, Gini]

Impurity Functions Based on the Misclassification Rate (continued)

#### Definition for *k* classes:

$$\iota_{\mathit{misclass}}(p_1,\ldots,p_k) = 1 - \max_{i=1,\ldots,k} \ p_i$$

$$\iota_{\textit{misclass}}(D) = 1 - \max_{y \in Y} \ \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D : y(\mathbf{x}) = y\}|}{|D|}$$

Impurity Functions Based on Entropy (continued)

#### Definition for two classes:

$$\iota_{\textit{entropy}}(p_1, p_2) = -(p_1 \log_2(p_1) + p_2 \log_2(p_2))$$

$$\iota_{\textit{entropy}}(D) = -\left(\frac{|\{(\mathbf{x},y(\mathbf{x})) \in D: y(\mathbf{x}) = y_1\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x},y(\mathbf{x})) \in D: y(\mathbf{x}) = y_1\}|}{|D|} + \frac{|\{(\mathbf{x},y(\mathbf{x})) \in D: y(\mathbf{x}) = y_2\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x},y(\mathbf{x})) \in D: y(\mathbf{x}) = y_2\}|}{|D|}\right)$$

Impurity Functions Based on Entropy (continued)

#### Definition for two classes:

$$\iota_{\textit{entropy}}(p_1, p_2) = -(p_1 \log_2(p_1) + p_2 \log_2(p_2))$$

$$\begin{split} \iota_{\textit{entropy}}(D) = -\left(\frac{|\{(\mathbf{x},y(\mathbf{x})) \in D: y(\mathbf{x}) = y_1\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x},y(\mathbf{x})) \in D: y(\mathbf{x}) = y_1\}|}{|D|} + \\ \frac{|\{(\mathbf{x},y(\mathbf{x})) \in D: y(\mathbf{x}) = y_2\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x},y(\mathbf{x})) \in D: y(\mathbf{x}) = y_2\}|}{|D|} \right) \end{split}$$

## Graph of the function $\iota_{\textit{entropy}}(p_1, 1 - p_1)$ :



[Graph: Misclassification, Gini]

Impurity Functions Based on Entropy (continued)

Graph of the function  $\iota_{\mathit{entropy}}(p_1,p_2,1-p_1-p_2)$  :





Impurity Functions Based on Entropy (continued)

#### Definition for *k* classes:

$$\iota_{ extit{entropy}}(p_1,\ldots,p_k) = -\sum_{i=1}^k p_i \log_2(p_i)$$

$$\iota_{\textit{entropy}}(D) = -\sum_{i=1}^k \ \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D: y(\mathbf{x}) = y_i\}|}{|D|} \cdot \log_2 \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D: y(\mathbf{x}) = y_i\}|}{|D|}$$

Impurity Functions Based on Entropy (continued)

 $\Delta \iota_{\mathit{entropy}}$  corresponds to the information gain  $H(\mathcal{A}) - H(\mathcal{A} \mid \mathcal{B})$ :

$$\underline{\underline{\Delta\iota}_{\textit{entropy}}} = \iota_{\textit{entropy}}(D) \qquad - \qquad \underbrace{\sum_{j=1}^{s} \frac{|D_j|}{|D|} \cdot \iota_{\textit{entropy}}(D_j)}_{H(\mathcal{A}|\mathcal{B})}$$

Impurity Functions Based on Entropy (continued)

 $\Delta \iota_{\textit{entropy}}$  corresponds to the information gain  $H(\mathcal{A}) - H(\mathcal{A} \mid \mathcal{B})$ :

$$\underline{\underline{\Delta\iota}_{\textit{entropy}}} = \iota_{\textit{entropy}}(D) \qquad - \qquad \underbrace{\sum_{j=1}^{s} \frac{|D_j|}{|D|} \cdot \iota_{\textit{entropy}}(D_j)}_{H(\mathcal{A}|\mathcal{B})}$$

#### Legend:

- $\square$   $\iota_{entropy}(D) = \iota_{entropy}P[A_1], \ldots, P[A_k])$
- $\square$   $\iota_{entropy}(D_j) = \iota_{entropy}(P[A_1 \mid B_j], \ldots, P[A_k \mid B_j]), j = 1, \ldots, s$
- $\Box \iota_{\mathit{entropy}}(p_1,\ldots,p_k) = -\sum_{i=1}^k p_i \cdot \log_2(p_i)$
- $\square \frac{|D_j|}{|D|} = P[B_j], \ j = 1, \dots, s$
- $A_i$ ,  $i=1,\ldots,k$ , denotes the event that  $\mathbf{x} \in X(t)$  belongs to class  $y_i$ . The experiment A corresponds to the classification  $y:X(t)\to Y$ .
- $\exists B_j, \ j=1,\ldots,s$ , denotes the event that  $\mathbf{x} \in X(t)$  has value  $b_j$  for feature B. The experiment  $\mathcal{B}$  corresponds to evaluating feature B and entails the following splitting:

$$X(t) = X(t_1) \cup \ldots \cup X(t_s) = \{ \mathbf{x} \in X(t) : \mathbf{x}|_B = b_1 \} \cup \ldots \cup \{ \mathbf{x} \in X(t) : \mathbf{x}|_B = b_s \}$$

 $\square$   $P[A_i], P[B_i], P[A_i \mid B_i]$  are estimated as relative frequencies based on D.

Impurity Functions Based on the Gini Index

#### Definition for two classes:

$$\iota_{\textit{Gini}}(p_1, p_2) = 1 - ({p_1}^2 + {p_2}^2) = 2 \cdot p_1 \cdot p_2$$

$$\iota_{\mathit{Gini}}(D) = 2 \cdot \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D : y(\mathbf{x}) = y_1\}|}{|D|} \cdot \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D : y(\mathbf{x}) = y_2\}|}{|D|}$$

Impurity Functions Based on the Gini Index

### Definition for two classes:

$$\iota_{\textit{Gini}}(p_1, p_2) = 1 - ({p_1}^2 + {p_2}^2) = 2 \cdot p_1 \cdot p_2$$

$$\iota_{\textit{Gini}}(D) = 2 \cdot \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D: y(\mathbf{x}) = y_1\}|}{|D|} \cdot \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D: y(\mathbf{x}) = y_2\}|}{|D|}$$

Graph of the function  $\iota_{\textit{Gini}}(p_1, 1 - p_1)$ :



[Graph: Misclassification, Entropy]

Impurity Functions Based on the Gini Index (continued)

### Definition for *k* classes:

$$\iota_{\mathit{Gini}}(p_1,\ldots,p_k) = 1 - \sum_{i=1}^k (p_i)^2$$

$$\iota_{\textit{Gini}}(D) = \left(\sum_{i=1}^k \frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D : y(\mathbf{x}) = y_i\}|}{|D|}\right)^2 - \sum_{i=1}^k \left(\frac{|\{(\mathbf{x}, y(\mathbf{x})) \in D : y(\mathbf{x}) = y_i\}|}{|D|}\right)^2$$

$$=1-\sum_{i=1}^{k} \left(\frac{|\{(\mathbf{x},y(\mathbf{x}))\in D: y(\mathbf{x})=y_i\}|}{|D|}\right)^2$$