EECS126 Course Notes [Spring 2021]

Patrick Yin
 Updated April 1, 2021

Contents

1	Not	re e	3
2	Pro	bability Basics	4
3	Info	ormation Theory	4
4	Dis	crete Time Markov Chains (DTMCs)	4
5	Pois	sson Processes	5
	5.1	Construction	5
	5.2	Conditional Distribution of Arrivals	6
	5.3	Merging	6
	5.4	Splitting (a.k.a Thinning)	6
	5.5	Random Incidence Paradox	7
6	Cor	ntinuous Time Markov Chains (CTMCs)	8
	6.1	Construction	8
	6.2	Stationary Distributions	8
	6.3	Classification of States	8
	6.4	Big Theorem	9
	6.5	Examples	9
		6.5.1 M/M/s queue	9
		6.5.2 Birth Death Chain	9
		$6.5.3 M/M/\infty$ queue	10
	6.6	First Step Equations (FSE)	10
	6.7	Uniformization	10
	٠.,	6.7.1 Context	10
		6.7.2 Construction	11
7	Rar	ndom Graphs	11

1 Note

These course notes are my notes from EECS 126: Probability and Random Processes. The course is linked here. These course notes are in progress.

2 Probability Basics

In progress...

3 Information Theory

In progress...

4 Discrete Time Markov Chains (DTMCs)

In progress...

5 Poisson Processes

5.1 Construction

A Poisson Process is an example of a counting process. A counting process $(N_t)_{t\geq 0}$ is a non-decreasing continuous-time integer-valued random process, which has right continuous sample paths.

Definition 5.1 (Poisson Process). A rate- λ Poisson Process (i.e. $\operatorname{PP}(\lambda)$) is a counting process with i.i.d inter-arrival times $S_i \overset{\text{IID}}{\sim} \operatorname{Exp}(\lambda)$. Equivalently, a counting process is $\operatorname{PP}(\lambda)$ iff $N_0 = 0$, $N_t - N_s \sim \operatorname{Poisson}(\lambda(t-s))$ for $0 \le s \le t$, and $(N_t)_{t \ge 0}$ has independent increments.

To elaborate on this, we will define T_i to be the arrival times, so $T_i = \min\{t \geq 0 : N_t \geq i\}$, which is the time of *i*th arrival. We also define the inter-arrival time, $S_i = T_i - T_{i-1}$, for $i \geq 1$.

Theorem 1. If $(N_t)_{t\geq 0}$ is a $PP(\lambda)$, then for $t\geq 0$, $N_t\sim Poisson(\lambda t)$. I.e. $Pr\{N_t=n\}=\frac{e^{-\lambda t}(\lambda t)^n}{n!}$

Proof.

$$Pr\{N_{t} = n\} = Pr\{T_{n} \leq t < T_{n+1}\}$$

$$= \mathbb{E}[\mathbb{1}_{\{T_{n} \leq t\}} \mathbb{1}_{\{t \leq T_{n} + S_{n+1}\}}]$$

$$= \int f_{T_{n}}(s) \mathbb{1}_{\{s \leq t\}} \mathbb{E}[\mathbb{1}_{\{t \leq s + S_{n+1}\}}] ds$$

$$= \int_{0}^{t} f_{T_{n}}(s) \mathbb{E}[\mathbb{1}_{\{t - s \leq S_{n+1}\}}] ds$$

$$= \int_{0}^{t} f_{T_{n}}(s) e^{-\lambda(t - s)} ds$$

$$= \int_{0}^{t} \frac{\lambda e^{-\lambda s} (\lambda s)^{n-1}}{(n - 1)!} e^{-\lambda(t - s)} ds \ (f_{T_{n}}(s) \text{ is Erlang})$$

$$= \frac{\lambda^{n} e^{-\lambda t}}{(n - 1)!} \int_{0}^{t} s^{n-1} ds$$

$$= \frac{(\lambda t)^{n} e^{-\lambda t}}{n!}$$

Remark. By the memoryless property of $\operatorname{Exp}(\lambda)$, if $(N_t)_{t\geq 0} \sim \operatorname{PP}(\lambda)$, then $(N_{t+s}-N_s)_{t\geq 0} \sim \operatorname{PP}(\lambda)$ for all $s\geq 0$. Moreover, $(N_{t+s}-N_s)_{t\geq 0}$ is independent of $(N_\tau)_{0\leq \tau\leq s}$. In particular, Poisson Processes have independent and stationary increments. If $t_0<\ldots< t_k$, then $(N_{t_1}-N_{t_0}),\ldots,(N_{t_k}-N_{t_{k-1}})$ are independent and $(N_{t_i}-N_{t_{i-1}})\sim\operatorname{Poisson}(\lambda(t_i-t_{i-1}))$ for all i.

5.2 Conditional Distribution of Arrivals

Theorem 2. Conditioned on $\{N_t = n\}$, $(T_1, ..., T_n) \stackrel{d}{=} (U_{(0)}, ..., U_{(n)})$ where $U_{(i)}$ are the order statistics of n Uniform (0,t) random variables.

In other words, given n arrivals occurred up to time t, the arrival times look like i.i.d Unif(0, t) random variables in distribution.

Proof. Let $0 = t_0 \le t_1 \le ... \le t_n \le t$, then

$$\begin{split} f_{T_1T_2...T_n|N_t}(t_1...t_n|n) &= \frac{Pr\{N_t = n | T_1 = t_1, ..., T_n = t_n\}}{Pr\{N_t = n\}} f_{T_1...T_n}(t_1...t_n) \\ &= \frac{Pr\{N_t - N_{t_n} = 0\}}{Pr\{N_t = n\}} \prod_{i=1}^n f_{S_i}(t_i - t_{i-1}) \\ &= \frac{e^{-\lambda(t-t_n)}}{e^{-\lambda t} \frac{(\lambda t)^n}{n!}} \prod_{i=1}^n \lambda e^{-\lambda(t_i-t_{i-1})} \\ &= \frac{n!}{t^n} \text{ (density of uniform random order statistics)} \end{split}$$

5.3 Merging

Theorem 3. If $(N_{1,t}) \sim PP(\lambda_1)$ and $(N_{2,t}) \sim PP(\lambda_2)$ are independent, then $(N_{1,t} + N_{2,t}) \sim PP(\lambda_1 + \lambda_2)$.

Proof. We will show that the sum of the two independent Poisson Processes satisfies the three properties of a PP:

- 1. $N_{1,0} + N_{2,0} = 0 + 0 = 0$
- 2. For 0 < s < t,

$$(N_{1,t} + N_{2,t}) - (N_{1,s} + N_{2,s}) = (N_{1,t} - N_{1,s}) + (N_{2,t} - N_{2,s})$$

$$\stackrel{d}{=} Poisson(\lambda_1(t-s)) * Poisson(\lambda_2(t-s))$$

$$= Poisson((\lambda_1 + \lambda_2)(t-s))$$

3. $(N_{1,t}+N_{2,t})_{t\geq 0}$ has independent increments since $(N_{1,t})_{t\geq 0}$, $(N_{2,t})_{t\geq 0}$ has independent increments.

5.4 Splitting (a.k.a Thinning)

Theorem 4. Let $p_1, ..., p_k$ be non-negative such that $\sum_{i=1}^k p_i = 1$ and $(N_t)_{t\geq 0}$ be a $PP(\lambda)$. Mark each arrival with label "i" with probability p_i , independently of all other arrivals so that $(N_{i,t})_{t\geq 0}$ be the process that counts arrivals marked with "i". Then $(N_{i,t})_{t\geq 0}$, for i=1,...,k, are independent Poisson Processes with respective rates $p_i\lambda$ for i=1,...,k.

Proof. We will only prove for k = 2. This is sufficient because we can simply do induction to get k > 2. For k = 2, we let $p_1 = p$ and $p_2 = 1 - p$.

$$\begin{split} Pr\{N_{1,t} = n, N_{2,t} = m\} &= Pr\{N_{1,t} = n, N_{2,t} = m, N_t = n + m\} \\ &= Pr\{1_{t} = n, N_{2,t} = m | N_t = n + m\} Pr\{N_t = n + m\} \\ &= \binom{n+m}{n} p^n (1-p)^m e^{-\lambda t} \frac{(\lambda t)^{n+m}}{(n+m)!} \\ &= e^{(-p\lambda)t} \frac{(p\lambda t)^n}{n!} e^{(-(1-p)\lambda)t} \frac{((1-p)\lambda t)^m}{m!} \\ &= \text{Poisson}(p\lambda t) \text{Poisson}((1-p)\lambda t) \end{split}$$

5.5 Random Incidence Paradox

Consider $(N_t)_{t\geq 0} \sim PP(\lambda)$ and pick a random time t_0 . What is the expected length of the inter-arrival interval in which t_0 falls?

Say it falls between T_i and T_{i+1} . Then the length of the inter-arrival interval is $L = (t_0 - T_i) + (T_{i+1} - t_0)$. We know that $T_{i+1} - t_0 \sim \text{Exp}(\lambda)$ by the memoryless property of the exponential distribution. We also know that

$$Pr(t_0 - T_i > s) = Pr(\text{no arrivals in } (t_0 - s, s)) = Pr(N_{t_0} - N_{t_0 - s} = 0) = e^{-\lambda s}$$

so $t_0 - T_i \sim \text{Exp}(\lambda)$. By linearity of expectation, $\mathbb{E}[L] = \frac{2}{\lambda}$. If we arrive at a random time, we are more likely to land in a long interval.

6 Continuous Time Markov Chains (CTMCs)

6.1 Construction

Intuitively, a CTMC is a markov chain where we need to wait for $Exp(\lambda)$ time before transitioning to the next state.

Definition 6.1 (CTMC). Let S be a countable state space. A CTMC is defined in terms of a rate matrix Q satisfying $[Q]_{ij} \geq 0$ for $i \neq j$, $i, j \in S$ and $\sum_{j \in S} [Q]_{ij} = 0$ for all $i \in S$. Specifically, the transition rate for state i is $q_i := [Q]_{ii} = -\sum_{j \neq i} [Q]_{ij}$. We also have $[Q]_{ij} = q_i p_{ij}$ such that $\sum_{j \in S} p_{ij} = 1$ where $p_{ii} = 0$ and $p_{ij} \geq 0$. p_{ij} are the transition probabilities for an associated DTMC called the jump chain.

A CTMC with rate matrix Q works as followed:

- 1. Start with $X_0 = i$.
- 2. Hold for $\text{Exp}(q_i)$ amount of time, then jump to state $j \in S$ with probability p_{ij} where $j \in S$.
- 3. Repeatedly apply the previous line above at next states (starting at state j).

We can equivalently define CTMCs by their jump rates q_{ij} . On entering state i, consider independent random variables $T_j \sim \text{Exp}(q_{ij})$ for $j \in S \setminus \{i\}$ and jump to state $j^* = \text{argmin}_{j \in S}(T_j : j \in S)$ at time T_{j^*} . This valid due to the splitting property of Poisson Processes.

Remark. This is called a markov chain by the memoryless property of the exponential distribution:

$$Pr(X_{t+\tau} = j | X_t = i, X_s = i_s, 0 \le s < t) = Pr(X_{t+\tau} | X_t = i)$$

6.2 Stationary Distributions

Definition 6.2 (CTMC Stationarity). A probability vector π is (without considering pathological cases) a stationary distribution for a CTMC with rate matrix Q if $\pi Q = 0$. This called the rate conservation principle. This is equivalent to $\pi_j q_j = \sum_{i \in S} \pi_i q_{ij}$ for all $j \in S$. In other words, assuming that $Pr(X_t = i) = \pi_i$, the rate at which transitions are made out of j is equal to the rate at which transitions are made into j.

6.3 Classification of States

Similar to DTMCs, we can classify the states.

• We say i and j communicate (i.e. $i \leftrightarrow j$) iff $i \leftrightarrow j$ is a jump chain iff we can travel $i \to j$ and back.

- Classes in CTMC are same as those in associated jump chain.
- State j is transient if, given $X_0 = j$, $(X_t)_{t\geq 0}$ re-enters state j finitely many times with probability one. State j is recurrent otherwise.
- For a recurrent state j, define $T_j = \min\{t \geq 0 : X_t = j \text{ and } X_s \neq j \text{ for some } s < t \}$.
- State j is positive recurrent if $\mathbb{E}[T_j|X_{0J}] = \infty$.
- State j is null recurrent if $\mathbb{E}[T_i|X_0=j]=\infty$.
- Transience/Positive Recurrence/Null Recurrence are class properties
- There is no concept of periodicity.

6.4 Big Theorem

Theorem 5. We define $P_{ij}^t := Pr(X_t = j | X_0 = i)$ and $m_j := \mathbb{E}[T_j | X_0 = j]$. For an irreducible CTMC, exactly one of the following is true:

- 1. Either all states are transient or all states are null recurrent. In this case, no stationary distribution exits, and $\lim_{t\to\infty} P_{ij}^t = 0$ for all $i, j \in S$.
- 2. All states are positive recurrent. In this case, a unique stationary distribution exits and satisfies $\pi_j = \frac{1}{m_j q_j} = \lim_{t \to \infty} P_{ij}^t$ for all $i, j \in S$.

Remark. Stationary distribution in CTMC is not the same as the stationary distribution in the jump chain. Generally speaking, $\widetilde{\pi_j} = \frac{\pi_j q_j}{\sum_{i \in S} q_i \pi_i}$ given that $\sum_{i \in S} q_i \pi_i < \infty$ where $\widetilde{\pi_j}$ is the stationary distribution of the jump chain.

6.5 Examples

6.5.1 M/M/s queue

Customers arrive to a system with s servers according to $\operatorname{PP}(\lambda)$. If a server is available, the arrival is immediately serviced, which takes $\stackrel{IID}{\sim} \operatorname{Exp}(\mu)$. If no server is available, the arrival waits until one becomes available. Let $(X_t)_{t\geq 0}$ denote the number of customers in system at time $t\geq 0$. We can model this

with
$$q_{n,n+1} = \lambda$$
 and $q_{n,n-1} = \begin{cases} n\mu & 1 \le n \le s \\ s\mu & n > s \end{cases}$.

6.5.2 Birth Death Chain

Individuals give birth $\stackrel{\text{IID}}{\sim} PP(\lambda)$ and have lifetimes $\stackrel{\text{IID}}{\sim} \operatorname{Exp}(\mu)$. Let X_t be the number of individuals in population at time t. We can model this with $q_{n,n+1} = n\lambda$ and $q_{n,n-1} = n\mu$. Note that this means $q_n = n(\lambda + \mu)$ so then $p_{n,n+1} = \frac{\lambda}{\lambda + \mu}$ and $p_{n,n-1} = \frac{\mu}{\lambda + \mu}$, so the DT jump chain is also a birth-death chain

6.5.3 M/M/ ∞ queue

This is the same of the M/M/s queue problem except there are infinite servers. In this case $q_{n,n+1} = \lambda$ and $q_{n,n-1} = n\mu$. If we solve $\pi Q = 0$, we see that $\pi_n = \frac{e^{-\lambda/\mu}(\lambda/\mu)^n}{n!}$. By the Big Theorem, $X_t \stackrel{d}{\to} \operatorname{Poisson}(\lambda/\mu)$ where X_t is the number of people in the system at time t.

6.6 First Step Equations (FSE)

If $A \subseteq S$, define $T_A = \min_t \{t \ge 0 : X_t \in A\}$. We want to compute $\mathbb{E}[T_A | X_0 = i]$, so we will use FSEs to do this. Define $t_i := \mathbb{E}[T_A | X_0 = i]$ and $t_i = 0 \ \forall i \in A$. Then we want to if $t_i = \mathbb{E}[\text{hold time}] + \sum p_{ij}t_j \ \forall i \in S$. Thus our FSEs are

$$t_i = 0 \quad \forall i \in A$$

$$t_i = \frac{1}{q_i} + \sum_{j \in S} p_{ij} t_j \quad \forall i \notin A$$

6.7 Uniformization

Uniformization is an approach to compute CTMC transition probabilities by simulating a DTMC.

6.7.1 Context

For context, consider a CTMC with transition rates $(q_i)_{i \in S}$ and assume $\exists M > 0$ s.t. $q_i \leq M \quad \forall i \in S$. We want to find P_t for some $t \geq 0$. Here,

$$[P_t]_{ij} := Pr(X_t = j | x_0 = i)$$

Markovity gives the Chapman-Kolmogorov Equations, which is $P^{s+t} = P^s P^t \quad \forall s, t \ge 0$. We can also show that for $h \approx 0$, $P^h \approx I + hQ + O(h)$ so

$$\begin{split} P^{t+h} &= P^t P^h \\ &\approx P^t (I + hQ + O(h)) \\ \frac{P^{t+h} - P^t}{h} &= P^t Q + \frac{O(h)}{h} \\ \frac{\partial}{\partial t} P^t &= P^t Q \\ P^t &= e^{tQ} := \sum_{k \geq 0} \frac{(tQ)^k}{k!} \quad \forall t \geq 0 \end{split}$$

So we've found a way to compute P^t , but this becomes intractable for large state spaces. This is where uniformization comes in.

6.7.2 Construction

Let us define a uniformized DTMC which is a DTMC, given $\gamma \geq M$, with transition probabilities

$$p_{ij} = \frac{q_{ij}}{\gamma}$$
 $p_{ii} = 1 - \frac{q_i}{\gamma}$ $i, j \in S$

If P_u = transition matrix with uniformed DTMC, then $P_u = I + \frac{1}{\gamma}Q$. So observe $\pi P_u = \pi + \frac{1}{\gamma}\pi Q$. In other words, $\pi P_u = \pi \iff \pi Q = 0 \iff \pi$ is a stationary distribution for both the CTMC and uniformized DTMC. So we're beginning to see that the behavior of the two chains are similar. In fact, we can see that

$$P_u^n = (I + \frac{1}{\gamma}Q)^n \approx e^{\frac{n}{\gamma}Q}$$

So to estimate P^t , we can run the uniformized DTMC for $n \approx \gamma t$ steps because $P^t = e^{tQ} \approx e^{\frac{n}{\gamma}Q} \approx P^n_u$. Notice that with a larger γ , we get a better approximation.

7 Random Graphs

Definition 7.1 (Erdős–Rényi Random Graphs). Fix $n \geq 1$ and $p \in [0, 1]$. A random graph G(n, p) is an undirected graph on n vertices, where each edge is placed independently with probability p.