

边界网关协议 (BGP)

BGP 协议

BGP 协议交换信息的过程

BGP 所交换的网络可达性的信息就是要<mark>到达某个网络所要经过的一系列 AS</mark>。当 BGP 发言人互相交换了网络可达性的信息后,各 BGP 发言人就根据所采用的策略从收到的路由信息中找出到达各 AS 的较好路由。

BGP发言人交换路径向量:

自治系统 AS₂ 的 BGP 发言人通知主干网 AS₁的 BGP 发言人: "要到达网络 N1、 N2、N3 和 N4 可经过 AS₂。"

BGP发言人交换路径向量:

主干网还可发出通知: "要到达网络 N5、N6 和 N7 可沿路径(AS₁, AS₃)。"

BGP 协议报文格式

一个 BGP 发言人与其他自治系统中的 BGP 发言人要交换路由信息,就要**先建立 TCP 连接**,即通过TCP传送,然后在此连接上交换 BGP 报文以建立 BGP 会话(session),利用 BGP 会话交换路由信息。

BGP 协议特点

BGP 支持 CIDR, 因此 BGP 的路由表也就应当包括目的网络前缀、下一跳路由器,以及到达该目的网络所要经过的各个自治系统序列。

在 BGP 刚刚运行时,BGP 的邻站是交换整个的 BGP 路由表。但以后只需要在发生变化时更新有变化的部分。这样做对节省网络带宽和减少路由器的处理开销都有好处。

BGP-4 的四种报文

- 1.OPEN(打开)报文:用来与相邻的另一个BGP发言人建立关系,并认证发送方。
- 2.UPDATE (更新)报文:通告新路径或撤销原路径。
- 3.KEEPALIVE (保活)报文:在无UPDATE时,周期性证实邻站的连通性:也作为OPEN的确认。
- 4.NOTIFICATION (通知)报文:报告先前报文的差错:也被用于关闭连接。

三种路由协议比较

RIP是一种分布式的基于距离向量的内部网关路由选择协议,通过广播UDP报文来交换路由信息。

OSPF是一个内部网关协议,要交换的信息量较大,应使报文的长度尽量短,所以不使用传输层协议(如UDP或TCP),而是直接采用IP。

BGP是一个外部网关协议,在不同的自治系统之间交换路由信息,由于网络环境复杂,需要保证可靠传输,所以采用TCP。

协议	RIP	OSPF	BGP	
类型	内部	内部	外部	
路由算法	距离-向量	链路状态	路径-向量	
传递协议	UDP	IP	TCP	
路径选择	跳数最少	代价最低	较好,非最佳	
交换结点	和本结点相邻的路由器	网络中的所有路由器	和本结点相邻的路由器	
交换内容	当前本路由器知道的全	与本路由器相邻的所有路 由器的链路状态	首次	整个路由表
	部信息,即自己的路由 表		非首次	有变化的部分