Graph

Graph

- Adalah kumpulan obyek atau aktivitas
- Direpresentasikan sebagai kumpulan titik (nodes/vertices) dan garis (arcs/edges)
- Contoh :
 - Travelling salesman problem
 - Shortest path problem

Notasi graph

Garis pada graph dinotasikan sebagai

$$e = [u, v]$$

dimana

e:garis

u: titik asal

v: titik tujuan

Notasi graph

Jalur pada graph dinotasikan sebagai

$$P = (v_0, v_1, ..., v_n)$$

dimana

P: jalur

v_i: titik jalur

n: jumlah titik jalur

Bentuk-bentuk graph

- Connected graph
- Isolated graph
- Completed graph
- Directed graph

Connected graph

Isolated graph

Completed graph

Directed graph

Directed graph

Directed graph

One-way traffic (single path)

Two-way traffic (multi path)

Representasi beban

	1	2	3	4	5
1		1	3	1	ı
2	ı		1	ı	5
3	3	-		2	-
4	-	-	-		1
5	-	-	-	ı	

Matriks beban

	1	2	3	4	5
1		1	3	ı	ı
2	-		1	-	5
3	3	ı		2	ı
4	-	-	-		1
5	ı	ı	- 1	ı	

#define M ... //big integer

Representasi Jalur

	1	2	3	4	5
1				ı	ı
2	-		V	-	V
3	V	-			-
4	ı	1	1		
5	ı	ı	ı	ı	

Matriks Jalur

	1	2	3	4	5
1				-	-
2	-			-	√
3		-			-
4	-	-	1		1
5	1	I	I	ı	

Representasi Rute

	1	2	3	4	5
1		0	0	ı	ı
2	ı		0	ı	0
3	0	ı		0	ı
4	1	1			0
5	-	-	-	-	

Matriks rute

	1	2	3	4	5
1		0	0	ı	ı
2	-		0	-	0
3	0	-		0	-
4	-	-	-		0
5	ı	ı	ı	ı	

#define M ... //big integer

Shortest path problem Multi path (Algoritma Warshall)

Melakukan pengecekan apakah beban langsung Q(i, j) memang lebih kecil daripada beban melalui titik perantara Q(i,k)+Q(k,j)

if
$$((Q(i,k)+Q(k,j)) < Q(i, j))$$

 $Q(i, j) \leftarrow Q(i,k)+Q(k,j)$

Q	1	2	3	4	5
1	M	1	3	M	М
2	М	М	1	М	5
3	3	М	М	2	М
4	М	М	М	М	1
5	М	М	М	М	М

$$Q(1,3) = 3$$

Beban langsung

$$Q(1,1) + Q(1,3) = M+3$$

 $Q(1,2) + Q(2,3) = 2$
 $Q(1,3) + Q(3,3) = 3+M$
 $Q(1,4) + Q(4,3) = M+M$

Q(1,5) + Q(5,3) = M+M

Beban melalui perantara

$$Q(1,3) = 2$$

if
$$((Q(i,k)+Q(k,j)) < Q(i, j))$$

 $Q(i, j) \leftarrow Q(i,k)+Q(k,j)$

Algoritma Warshall (untuk beban)

for k=1 to n
for i=1 to n
for j=1 to n
if
$$((Q(i,k)+Q(k,j)) < Q(i,j))$$

 $Q(i,j) \leftarrow (Q(i,k)+Q(k,j))$

Algoritma Warshall (untuk jalur)

```
for k=1 to n

for i=1 to n

for j=1 to n

P(i,j) \leftarrow P(i,j) OR (P(i,k) AND P(k,j))
```

Pencarian rute

```
for k=1 to n

for i=1 to n

for j=1 to n

if ((Q(i,k) + Q(k,j)) < Q(i,j)) {

if (R(k,j) = 0)

R(i,j) \leftarrow k

else

R(i,j) \leftarrow R(k,j)

}
```

Cara membaca matriks rute

R	1	2	3	4	5
1		0	2	ന	4
2	3	1	0	3	4
3	0	1	2	0	4
4	M	M	M	M	0
5	M	M	M	M	М

Rute 1-5?

Rute 1-5?

Ambil nilai di baris 1, kolom 5 = 4 \rightarrow push

Ambil nilai di baris 1, kolom 4 = 3 → push

Ambil nilai di baris 1, kolom 3 = 2 → push

Ambil nilai di baris 1, kolom 2 = 0 (stop) → pop

2
3
4

Rute =
$$1 - 2 - 3 - 4 - 5$$

R	1	2	3	4	5
1	3	0	2	3	4
2	3	1	0	3	4
3	0	1	2	0	4
4	M	M	M	M	0
5	M	M	М	M	М

Shortest path problem Single path (Algoritma Dijkstra)

- Tentukan titik asal dan titik tujuan sebelum proses
- Akumulasikan jarak minimal dan simpan ke titik berikutnya.
- Lakukan dari titik asal sampai titik tujuan

- 1. Buat matriks I(berukuran n x n) untuk menerima masukan beban dari semua node
- 2. Masukkan node asal & tujuan
- 3. Buat matriks Q (berukuran n) untuk menyimpan beban total minimal.
 - Inisialisasi: node asal diberi nilai 0, selainnya diberi nilai M (big integer)
- 4. Buat matriks R (berukuran n) untuk menyimpan rute yang ditempuh.
 - Inisialisasi: semua node diberi nilai: -1
- 5. Insialisasi Queue.
- 6. enqueue (asal)

(continued)

- 7. Selama Queue tidak kosong lakukan langkah 8 16
- 8. currentNode ← dequeue()
- 9. i ← 0
- 10. Selama i < n lakukan langkah 11 16
- 11. Jika I[currentNode][i] != M lakukan langkah 12 15
- 12. Jika I [currentNode] [i] + Q[currentNode] < Q[i] lakukan 13 & 15
- **13.** Q[i] ← I[currentNode][i] + Q[currentNode]
- **14.** R[i] ← currentNode
- 15. Jika i != asal && i != tujuan && i tdk ada dlm Queue enqueue(i)
- **16**. i++

Titik asal = 1 Titik tujuan = 5

Rute: 1 - 2 - 3 - 4 - 5 dengan beban minimal = 5