Feedback Control

ENGINEERING DESIRABLE SYSTEM DYNAMICS

Trajectory Controller

Equilibrium.

Stability?

Stability in the Sense of Lyapunov "Stability i.s.L."

An equilibrium point \mathbf{x}_e of the system $\dot{\mathbf{x}} = f(\mathbf{x})$ is **stable** in the sense of Lyapunov if for any $\epsilon > 0$, there exists a value $\delta(t_0, \epsilon) > 0$ such that if $\|\mathbf{x}(t_0, \mathbf{x}_0) - \mathbf{x}_e\| < \delta$ then $\|\mathbf{x}(t; t_0, \mathbf{x}_0) - \mathbf{x}_e\| < \epsilon$ for all $t \geq t_0$.

- > An equilibrium point is unstable if it is not stable i.s.L.
- \succ The equilibrium point is *uniformly stable* i.s.L. if $\delta = \delta(\epsilon)$.

Stability i.s.L. is Weak just by Itself

- > Stability i.s.L. means that the system state will remain close to the equilibrium point.
- > Stability i.s.L. bounds how much the system state will fluctuate around the equilibrium point.

Does not answer...

- ➤ Will it ever reach the equilibrium point?
- ➤ Will it stay at the equilibrium point for all future times?

Asymptotic Stability

> An equilibrium point is asymptotically stable i.s.L. if it is:

1. Stable (i.s.L.)

For any $\epsilon > 0$, there exists a value $\delta(t_0, \epsilon) > 0$ such that if $\|\mathbf{x}(t_0, \mathbf{x}_0) - \mathbf{x}_e\| < \delta$ then $\|\mathbf{x}(t; t_0, \mathbf{x}_0) - \mathbf{x}_e\| < \epsilon$ for all $t \ge t_0$.

2. Convergent

$$\mathbf{x}(t;t_0,\mathbf{x}_0) \to \mathbf{x}_e \text{ as } t \to \infty.$$
 $x(t)_{\uparrow}$

Asymptotic Stability

➤ Note: Convergence alone does not necessarily imply (asymptotic) stability! Why?

Still does not answer...

How fast does it converge?

Exponential Stability

An equilibrium point $x_e=0$ is exponentially stable if there exists coefficient $m\geq 0$ and rate $\alpha\geq 0$ such that

$$||x(t)|| \le ||x_0|| me^{-\alpha(t-t_0)}$$

For all x_o in some ball around $x_e = 0$.

Local vs Global

These are local definitions of stability about an equilibrium point.

• We were free to choose small δ in order to start x_0 near x_e .

We say an equilibrium point x_e is globally stable if it is stable for all initial conditions x_0 .

Stability of LTI Systems

Linear-Time Invariant (LTI) systems:

$$\dot{\mathbf{x}} = A\mathbf{x}$$
 $\mathbf{x} \in \mathbb{R}^n$ $A \in \mathbb{R}^{n \times n}$, constant

- \triangleright An LTI system is **asymptotically stable** if and only if all the eigenvalues of A have **strictly negative** real parts.
- \triangleright For LTI systems, asymptotic stability \Leftrightarrow exponential stability.
- The system is **marginally stable** if and only if all the eigenvalues of A have **nonpositive** real parts, at least one has zero real part, and every eigenvalue with zero real parts has its algebraic multiplicity equal to it's geometric multiplicity.

Control of a First Order System

Problem

- $_{\circ}$ Kinematic model $\dot{x}=u$
- Want to follow trajectory $\mathbf{x}^{\text{des}}(t)$

General approach

- Define error $\mathbf{e}(t) = \mathbf{x}^{\text{des}}(t) \mathbf{x}(t)$
- Want $\mathbf{e}(t)$ to converge exponentially to 0

Strategy

- Find \mathbf{u} such that $\dot{\mathbf{e}} + K_p \mathbf{e} = 0$
- If $K_p > 0$ then $\mathbf{e}(t) = \exp(-K_p(t t_0)) \mathbf{e}(t_0)$
- $\mathbf{u}(t) = \dot{\mathbf{x}}^{\mathrm{des}}(t) + K_n \mathbf{e}(t)$

Control of a Second Order System

Problem

- State x and input u
- Kinematic model $\ddot{\mathbf{x}} = \mathbf{u}$
- Want to follow trajectory $\mathbf{x}^{\text{des}}(t)$

General approach

- Define error $\mathbf{e}(t) = \mathbf{x}^{\text{des}}(t) \mathbf{x}(t)$
- Want $\mathbf{e}(t)$ to converge exponentially to 0

Strategy

- Find \mathbf{u} such that $\ddot{\mathbf{e}} + K_d \dot{\mathbf{e}} + K_p \mathbf{e} = 0$
- Pick some K_p , $K_d > 0$
- $\mathbf{u}(t) = \ddot{\mathbf{x}}^{\mathrm{des}}(t) + K_d \dot{\mathbf{e}}(t) + K_p \mathbf{e}(t)$

Control for Trajectory Tracking

PD Control

- $u(t) = \ddot{\mathbf{x}}^{\mathrm{des}}(t) + K_d \dot{\mathbf{e}}(t) + K_p \mathbf{e}(t)$
- Proportional term $(\frac{K_p}{V_p})$ has a spring (capacitance) response
- Derivative term (K_d) has a dashpot (resistance) response

PID Control

- $u(t) = \ddot{\mathbf{x}}^{\text{des}}(t) + \frac{K_d \dot{\mathbf{e}}(t)}{K_l} + \frac{K_p \mathbf{e}(t)}{K_l} + \frac{K_l \int_0^t \mathbf{e}(\tau) d\tau }{\mathbf{e}(\tau)}$
- Integral term (K_I) makes steady state error go to 0
 - Accounts for model error or disturbances
- PID control generates a third-order closed-loop system

Control Gains

Gains change the system response

Stereotyped 2nd Order Response

$$\ddot{\mathbf{e}} + K_d \dot{\mathbf{e}} + K_p \mathbf{e} = 0$$

$$\ddot{\mathbf{e}} + 2\zeta \omega_n \dot{\mathbf{e}} + \omega_n^2 \mathbf{e} = 0$$

$$\lambda = -\omega_n (\zeta \pm i\sqrt{1 - \zeta^2})$$

For this simple example, can choose K_p and K_d to get a desired damping ratio.

Response to Disturbance

PD Position Controller

PD Controller for Z

$\mathsf{High}\, \mathit{K}_{\mathit{p}}$

$\mathsf{High}\, \mathit{K}_{\mathit{p}}$

Low K_p

High K_d

High K_d

Manual Tuning

Parameter Increased	K_{p}	$K_{\boldsymbol{d}}$	K_{I}
Rise Time	Decrease	-	Decrease
Overshoot	Increase	Decrease	Increase
Settling Time	-	Decrease	Increase
Steady-State Error	Decrease	-	Eliminate

"If I increase K_P, then
 Rise Time will Decrease, and
 Overshoot will Increase, and
 Steady-State Error will Decrease."

These are only general guidelines for "typical systems."

Ziegler-Nichols Method

Heuristic method for PID gain tuning

- 1. Set $K_d = K_I = 0$
- 2. Increase K_p until ultimate gain K_u where system starts to oscillate
- 3. Find oscillation period T_u at K_u
- 4. Set gains according to:

Controller	K_p	K_d	K_I
Р	$0.5K_u$		
PD	$0.8K_u$	$K_pT_u/8$	
PID	$0.6K_u$	$K_pT_u/8$	$2K_p/T_u$

$\ddot{y} = -g\phi$ $\ddot{z} = -g + \frac{u_1}{m}$ $\ddot{\phi} = \frac{u_2}{I_{xx}}$

Nested Control Structure

Specified by the position controller, not the user

Works when inner (attitude) control loop runs much faster (10x) than the outer (position) control loop

Control Equations

Recall for a second order system $\ddot{\mathbf{e}} + K_d \dot{\mathbf{e}} + K_p \mathbf{e} = 0$

For any configuration variable q we have

Control Equations

Lateral dynamics

$$\circ$$
 $\ddot{y} = -g\phi$

$$\circ \ \ddot{\phi} = \frac{u_2}{I_{xx}}$$

Desired attitude

$$\phi_{\rm des} = -\frac{\ddot{y}_c}{a}$$

$$\dot{\phi}_{\rm des} = 0$$

$$\dot{\phi}_{\rm des} = 0$$

Attitude controller

•
$$u_2 = I_{xx}\ddot{\phi}_c$$

Vertical dynamics

$$\circ \ \ddot{z} = -g + \frac{u_1}{m}$$

Z-position controller

$$\circ u_1 = m(\ddot{z}_c + g)$$

Control Equations

Control equations

$$u_{1} = m \left(g + \ddot{z}_{\text{des}} + k_{d,z} (\dot{z}_{\text{des}} - \dot{z}) + k_{p,z} (z_{\text{des}} - z) \right)$$

$$u_{2} = I_{xx} \left(\ddot{\phi}_{\text{des}} + k_{d,\phi} (\dot{\phi}_{\text{des}} - \dot{\phi}) + k_{p,\phi} (\phi_{\text{des}} - \phi) \right)$$

$$\phi_{\text{des}} = -\frac{1}{g} \left(\ddot{y}_{\text{des}} + k_{d,y} (\dot{y}_{\text{des}} - \dot{y}) + k_{p,y} (y_{\text{des}} - y) \right)$$

- Three sets of PD gains.
- Systematically tune using step responses.
 - Thrust
 - Roll
 - Position (depends on roll being well-tuned)

Trajectory Tracking (in time)

Follow trajectory exactly

Project

Make plots in your sandbox!

Run tests locally.

Gain tuning: Finding 12 magic numbers by trial and error won't work.

How to judge controller quality.

Order of tuning the cascaded controller.

Choose reasonable trajectories.

Practical constraints: actuator limits.