Design ED, EAD, and EDR Sliding-Stem Control Valves

Design ED, EAD, and EDR single-port control valves shown in figures 1, 2, 3, and 4 have balanced valve plugs, cage guiding, and metal-to-metal seating for all general applications over a wide range of process pressure drops and temperatures. These general purpose, sliding-stem valves are used for either throttling or on-off control of a wide variety of liquids and gases.

Unless otherwise noted, all NACE references are to NACE MR0175-2002.

The easy-e® Valve Family

Design ED, EAD, and EDR valves are part of the versatile easy-e family of Fisher® industrial control valves. easy-e valves share the following characteristics:

- Multiple trim material choices
- Trim temperature capability with standard metal seats to 427°C (800°F)
 - FGM gaskets
- Interchangeable, restricted-capacity trims and full-size trims match variable process flow demands
- Different cage/plug styles provide particular flow characteristics for highly-specialized applications. The standard cage comes in three different flow characteristics:
 - quick-opening
 - linear
 - equal percentage
- Noise in gaseous service may be attenuated by using Whisper Trim® I, Whisper Trim III (figure 10), and WhisperFlo® cages (figure 12)
- Optional constructions provide material compatibility with NACE MR0175-2002

Figure 1. Design ED Control Valve with Type 667 Actuator

• 316 stainless steel packing box parts are standard (including packing flange, studs, and nuts)

Contents

⁼ eatures	. 2
C-seal™ Trim Description	. 6
ENVIRO-SEAL® and HIGH-SEAL™	
Packing Systems	. 6
Tables	
C-seal Shutoff Classification	. 5
Available Constructions	
Typical Combinations of	
Metal Trim Parts	. 7
WhisperFlo Metal Trim Part Materials	
and Valve Body/Trim Temperature	
Capabilities	. 8
Materials and Temperature Limits for	
All Other Parts	11
Valve Body/Trim	
Temperature Capabilities	14
Bonnet Selection Guidelines	15
Maximum Flow Coefficients	15
Metal Trim Part Materials for	
Compatibility with NACE MR0175-2002	<u>.</u>
(Sour Service) Specifications,	
Environmental Restrictions Apply,	
Refer to Standard	16
Port Diameters, Valve Plug Travel, and	
Stem and Yoke Boss Diameters	17
Bolting Materials and Temperature Limits	
for Compatibility with	
NACE MR0175-2002	17
Dimensions	
Coefficients	
Specifications	37
ENVIRO-SEAL Packing System	
Specifications	39

Features

- Compliance with the Clean Air Act—Optional ENVIRO-SEAL packing systems (figure 7) provide an improved stem seal to help prevent the loss of process fluid. The ENVIRO-SEAL packing systems feature PTFE, Graphite ULF, or Duplex packing with live-loading for reduced packing maintenance.
- Valve Plug Stability— Rugged cage guiding provides high valve plug stability, which reduces vibration and mechanical noise.

- More Flow Capacity for Initial Investment— Streamlined flow passages in the the Design ED, EAD, and EDR valves provide excellent capacities and flow.
- Balanced Valve Plug Construction— Balanced valve plug construction permits use of smaller, lower-cost Fisher actuators. Also, trim inventory costs are cut because dimensional standardization permits use of most standard easy-e trim parts.
- High-Temperature Capability with Class IV or Class V Shutoff—Use of multiple graphite piston rings (figure 2) permit Class IV shutoff up to 593°C (1100°F).

Use of C-seal trim (see figure 6) permits Class V shutoff up to 593°C (1100°F).

- Compliance with European Standards— Valves are available with dimensions specified by EN/DIN standards. See figure 14.
- Sour Service Capability—Materials are available for applications handling sour fluids and gases. These materials comply with the requirements of NACE MR0175-2002.
- Operating Economy—Increased wear resistance provided by standard hardened stainless steel trim means long service life.
- Maintenance Economy—The valve body can stay in the pipeline during removal of trim parts. The Design EDR valve also features easy valve access without removing the actuator.

Note

Neither Emerson®, Emerson Process Management™, Fisher, nor any of their affiliated entities assumes responsibility for the selection, use and maintenance of any product. Responsibility for the selection, use, and maintenance of any product remains with the purchaser and end-user.

8-INCH VALVE WITH OPTIONAL MULTIPLE PISTON RINGS FOR CLASS IV SHUTOFF (ALSO AVAILABLE IN OTHER SIZES)

Figure 2. Design ED Sectional

Figure 3. Design EAD Sectional

Figure 4. Design EDR Sectional

Figure 5. Typical Valve with WhisperFlo® Aerodynamic Trim

Table 1. C-seal[™] Shutoff Classification

VALVE DESIGN	VALVE SIZE	PORT DIA	AMETER	CACE CTVI E	ANSI/FCI LEAKAGE
(CLASS)	Inches	mm	Inches	CAGE STYLE	CLASS
	2.5	73	2.875	Eq. %, Linear,	
	3	87.3	3.4375	Whisper I, Cav III, 1 stage	
	3	73	2.875	Cavilli O ataga	
	4	73	2.875	Cav III, 2 stage	
	4	73 111.1	2.875 4.375	Eq. %, Linear, Whisper I, Cav III, 1 stage	V to 593°C (1100°F) [for port diameters
Design ED (Class 150-600)		136.5	5.375	Whisper III (A3, B3, C3, D3), Cav III, 2 stage	from 73 through 203.2 mm (2.875 through 8-inch) with optional
	6	177.8	7	Eq. %, Linear, Whisper I, Cav III, 1 stage	C-seal trim]
		177.8	7	Cav III, 2 stage	
	8	203.2	8	Eq. %, Linear, Whisper I, Cav III, 1 stage	

Figure 6. C-seal[™] Trim

August 2006

Table 2. Available Constructions

		VALVE BODY MATERIAL AND END CONNECTION STYLE(1)											
DEGION	VALVE	Carl	on Steel, All	oy Steel, or	Ca	ast Iron Valve I	Body						
DESIGN	SIZE, INCH	Screwed	RF	or RTJ Flan	ged	Butt-	Socket Weld	Screwed	Class 125	Class 250			
			Class 150	Class 300	Class 600	welding			FF Flanged	RF Flanged			
	1, 1.5, or 2	Х	X	X	X	Х	Х	Х	X	Х			
ED	1.25	X						X					
	2.5, 3, 4, 6, or 8		Х	X	X	Х			X	X			
EAD	1 or 2		Х	Х	Х	Х							
EAD	3, 4, or 6		X	Х	X	Х							
	1, 1.5, or 2	Х	Х	Х	Х	Х	Х	Х	X	Х			
EDR	1.25	X						X					
	2.5, 3, or 4		X	X	X	Х			X	X			
	ble Construction.	: FF - Flat Faced	I, RF - Raised Fa	ice, RTJ - Ring T	ype Joint.								

C-seal™ Trim Description

C-seal trim is available for valves with port diameters from 2.875 inches through 8 inches.

With C-seal trim, a balanced valve can achieve high-temperature, Class V shutoff. Because the C-seal plug seal is formed from metal (N07718 nickel alloy) rather than an elastomer, a valve equipped with the C-seal trim can be applied in processes with a fluid temperature of up to 593°C (1100°F).

ENVIRO-SEAL® and HIGH-SEAL™ Packing Systems

ENVIRO-SEAL and HIGH-SEAL packing systems offer exceptional sealing capabilities. They easily install in your existing valves or can be purchased with new valves. These systems may help prevent the loss of process fluid. The long operational life and reliability of these systems also reduces your maintenance costs and downtime.

For applications requiring compliance with environmental protection regulations, the unique Fisher ENVIRO-SEAL packing system (figure 7) and a unique ENVIRO-SEAL bellows seal system (figure 8) are offered. The patented emission control packing system keeps emission concentrations below the EPA 100 ppm requirement.

For an excellent stem seal in applications that are not environmentally-sensitive, the Fisher HIGH-SEAL Graphite ULF packing system (figure 7) is offered. The HIGH-SEAL packing system provides excellent sealing at pressure/temperature ratings beyond ENVIRO-SEAL limits. ENVIRO-SEAL systems may also be applied for excellent stem sealing in higher pressure/temperature applications not requiring EPA compliance.

ENVIRO-SEAL packing systems, available with PTFE, Graphite ULF, or Duplex packing, and the HIGH-SEAL packing systems, Graphite ULF and graphite composite, feature live-loading and unique packing-ring arrangements for long-term, consistent sealing performance.

Table 3. Typical Combinations of Metal Trim Parts(1) for all Valves Except Those for NACE Specification, Whisper Trim® III, and WhisperFlo® Cages

Trim Designation	Valve Plug	Cage	Seat Ring	Liner (Design EAD Valve Only)
1 (standard for Design ED, EAD, and EDR in all valve body materials except CF8M)	S41600 hardened to 38 HRC	CB7Cu-1 hardened to 40 HRC	S41600 or CA15 ⁽²⁾ (410 stainless steel), both hardened to 38 HRC	S41600 hardened to 38 HRC
3 and 3H ⁽³⁾	S31600 with seat and guide hard faced with CoCr-A hardfacing alloy	R30006 (alloy 6)	R30006 (alloy 6)	
4	S31600	CB7Cu-1 hardened to 40 HRC	S31600	S31600
27	S31600 with seat and guide hard faced with CoCr-A hardfacing alloy	CF8M with electroless	R30006 (alloy 6)	
28	S31600 with seat hard faced with CoCr-A hardfacing alloy	nickel coating (ENC)	nsoude (alloy e)	
29 (standard for CF8M bodies in all designs)	S31600	CF8M with electroless nickel coating (ENC)	S31600	S31600
37 and 37H ⁽³⁾	S31600 with seat and guide hard faced with CoCr-A hardfacing alloy	CB7Cu-1 hardened to 40 HRC	R30006 (alloy 6)	

Table 4. Whisper Trim® III Metal Trim Part Materials and Body/Trim Temperature Capabilities (6-inch Design ED only)

TRIM DESIGNA-	VALVE	CAGE	CAGE CAGE		SEAT	BODY, BONNET		TEMPE	ERIAL RATUF BILITY		
TION	PLUG	0/102	RETAINER	D3 CAGE ONLY)	RING	& BONNET SPACER	0	С		°F	
				ONLT)			Min	Max	Min	Max	
301 (standard for all body materials except	S17400 hardened to 40 HRC	S41600 hardened to 38 HRC	Carbon steel NACE with electroless nickel coating	Steel	410 SST hardened to 38 HRC	WCC carbon steel or WC9 chrome moly steel	-29	343	-20	650	
S31600)	4011110	0011110	(ENC)		0011110	CF8M (316 SST)	-29	163	-20	325	
301A	S17400 hardened to 40 HRC	S41600	WCC Ion Nitrided	Steel	S41600	WCC carbon steel or WC9 chrome moly steel	232	427	450	800	
304	S31600 with seat and guide hard faced with	S41600 hardened to	Carbon steel NACE with electroless	Steel	S31600 with seat hard faced with	WCC carbon steel, WC9 chrome moly steel	-29	343	-20	650	
	CoCr-A hard- facing alloy	38 HRC	nickel coating (ENC)		CoCr-A hard- facing alloy	CF8M (316 SST)	-29	177	-20	350	
313 (NACE compatible) ⁽¹⁾	S31600 with seat and guide hard faced with CoCr-A hard- facing alloy	S31600 with electroless nickel coating (ENC)	Carbon steel NACE with electroless nickel coating (ENC)	Steel	S31600 with seat hard faced with CoCr-A hard- facing alloy	WCC carbon steel, WC9 chrome moly steel, or CF8M (316 SST)	-29	343	-20	650	
315	S31600 with seat and guide hard faced with	Electrolized	Electrolized	S31600	S31600 with seat hard faced with	WCC carbon steel or WC9 chrome moly steel	-29	260	-20	500	
	CoCr-A hard- facing alloy	316 SST	316 SST		CoCr-A hard- facing alloy	CF8M (316 SST)	-198	537 ⁽²⁾	-325	1000 ⁽²⁾	
318	S31600 with seat and guide	WC9/Nitrided	WC9/Nitrided	WC9	S31600 with seat	WCC carbon steel	-29	427	-20	800	
510	hard-faced with CoCr-A	VVC3/Millided	VVC3/Millided	VVC3	hard-faced with CoCr-A	WC9 chrome moly steel	-29	593	-20	1100	

Nonterrous-alloy combinations are also available. Consult your L.
 CA15 is used for 6- and 8-inch full-size and restricted-trim valves.
 Trims 3H and 37H have clearances for high-temperature service.

Level D3 cage carried be certified to NACE. Use \$16/ENC cage retainer instead.
 May be used up to 593°C (1100°F) if manufacturing process controls carbon content to 0.04% minimum or 0.08% maximum.

Table 5. WhisperFlo® Metal Trim Part Materials and Valve Body/Trim Temperature Capabilities (4- and 6-inch Design ED only)

TRIM		l				MATERIA	L TEMPER	ATURE CAP	PABILITY	
DESIGNA-	VALVE BODY	VALVE PLUG	CAGE	CAGE RETAINER	SEAT	٥	С	°F		
TION	ВОВТ	FLOG		NETAINEN		Min	Max	Min	Max	
901	WCC	S41600	S41000	WCC ENC	S41600	-29	343	-20	650	
902	wcc	S31600/CoCrA Seat and Guide	S41000	WCC ENC S31600/CoCrA -29 343 -20		-20	650			
915	WCC	S31600/CoCrA Seat and Guide	S41000/Nitride	WCC/Nitride	ide S31600/CoCrA 343 427 650		650	800		
916	WC9	S31600/CoCrA Seat and Guide	S41000/Nitride	WC9/Nitride	VC9/Nitride S31600/CoCrA 343		538	650	1000	
926	wcc	S31600/CoCrA Seat and Guide	S41000 NACE	WCC/NACE/ENC	JACE/ENC S31600/CoCrA -29 343 -20		-20	650		
936	316 CF8M	S31600/CoCrA Seat and Guide	S31603/CRCT	S31600/ENC	S31600/CoCrA	-198	343	-325	650	
946	316 CF8M	S31600/CoCrA Seat and Guide	S31603/CRCT	S31600/Nitride	S31600/CoCrA	343	538	650	1000	

TYPICAL HIGH-SEAL PACKING SYSTEM WITH GRAPHITE ULF PACKING

SPRINGS FOLLOWER PACKING

TYPICAL ENVIRO-SEAL PACKING SYSTEM WITH GRAPHITE ULF PACKING

W8532-1

TYPICAL ENVIRO-SEAL PACKING SYSTEM WITH DUPLEX PACKING

Figure 7. ENVIRO-SEAL[®] and HIGH-SEAL[™] Packing Systems

Figure 8. Cutaway of ENVIRO-SEAL® Bellows Seal Bonnet and Internal Shroud, Showing Bellows

Table 6. Materials and Temperature Limits for All Other Parts

	PART		MATE	RIAL	MATERIA	L TEMPER	ATURE CA	PABILITY
					°(2	٥	F
					Min	Max	Min	Max
	Cast iron valve body	Cap screws	Steel SAE Grade 5		-29	232	-20	450
	WCC, or WC9	Studs	Steel SA-193-B7		_29	427(1)	-20	800 ⁽¹⁾
PART Cast iron valve body	Nuts	Steel SA-194-2H		-23	427(1)	-20	800(1)	
		Studs	Steel SA-193-B7		-46	343(1)	-50	650 ⁽¹⁾
	PART		0.10		000			
Body-to-bonnet bolting. See table 12 for NACE bolting materials and temperature limits Piston ring Valve plug stem Pin (Design ED or EA Castle nut and cotter Load ring (8 inch Desi Restricted trim adapto Seat ring, bonnet and Spiral wound gaskets Shim Packing (temperatures shown are material temperature capabilities). See table 8 for proper bonet selection.	WC9 valve body				-29	566 ⁽¹⁾	-20	1050 ⁽¹⁾
bolting		Cap screws Steel SAE Grade 5	11 11 11					
	Cast iron valve body Cap screws Steel SAE Grade 5	-48	427 ⁽¹⁾	-55	800 ⁽¹⁾			
temperature		MATERIAL MATERIAL MATERIAL TEMPERATURE CAPA C	Th					
Body-to-bonnet bolting. See table 12 for NACE bolting materials and temperature limits Piston ring Valve plug stem Pin (Design ED or EA Castle nut and cotter Load ring (8 inch Design ED or EA Castle nut and cotter Load ring (8 inch Design ED or EA Castle nut and cotter Load ring (8 inch Design ED or EA Castle nut and cotter Load ring (8 inch Design ED or EA Castle nut and cotter Load ring (8 inch Design ED or EA Castle nut and cotter Load ring (8 inch Design ED or EA Castle nut and cotter Load ring (1 inch ED or EA Castle nut and cotter land en capabilities). See table 8 for proper toonnet selection. Packing flange, stude with standard but Packing flollower, and or lantern ring Packing box ring Extension		Studs	304 stainless steel SA-320	-B8		matls	-325	matls
		Nuts	304 stainless steel SA-194	-8		limiting		limiting factors
	Cast iron valve body	316 stainless steel SA-193	-B8M (strain hardened)	100(2)	427(1)	205(2)	800 ⁽¹⁾	
		Nuts	316 stainless steel SA-194	Min Max Min M Max A Min A Min Max A Min Max A Min Min A Min Max A Min Min A Min Min Max A Min Min Min A Min Mi				0000
Piston ring			Graphite (FMS 17F27)	Oxidizing service		427		800
			Graphito (Files 171 27)	Non-oxidizing service	-46 ⁽³⁾	482	-50 ⁽³⁾	900
			Graphito (EMS17E20)	Oxidizing service	kidizing service $-46^{(3)}$ 560		-50 ⁽³⁾	1000
			Graprille (Fivio 171 59)	Non-oxidizing service	-46 ⁽³⁾	593	-50 ⁽³⁾	1100
			S31600 (S20910, NACE S	td.)				
, , ,	77		S31600		-198 ⁽²⁾	593	-325 ⁽²⁾	1100
Load ring (8 inch D	Design ED valve only)	1					ļ	600
								1100
Restricted trim ada	aptors							
							_	
Seat ring, bonnet a	and cage gaskets		. ,					1100 ⁽⁴⁾
Spiral wound gask	ets		<u> </u>	ndard)				1100 ⁽⁴⁾
			N04400/composition		-73			450
Shim						These ma limiting	aterials not g factors	
								_
(temperatures								450
			PTFE/composition		-73	232	-100	450
capabilities).			Graphite ribbon/filament		-198	538 ⁽⁶⁾	-325	1000 ⁽⁶⁾
proper bonnet				mperature	371	649	700	1200
Packing flange, stuused with standard	uds and nuts when d bonnet		S31600		-198 ⁽²⁾	593 ⁽¹⁾	-325 ⁽²⁾	1100 ⁽¹⁾
	and packing spring ⁽⁵⁾		S31600		-198 ⁽²⁾	593	-325 ⁽²⁾	1100
Packing box ring			S31600					
bonnet			S41600		-29	427	-20	800
bushing		Other trims	S31600		-198 ⁽²⁾	593	-325 ⁽²⁾	1100
1 Lubricated pute of	ana atau dand		•		•	•	•	•

^{1.} Lubricated nuts are standard.
2. May be used down to -254°C (-425°F) if manufacturing process includes Charpy impact test.
3. This minimum is due to thermal expansion differential between piston ring and cage at low temperatures.
4. Except 427°C (800°F) on oxidizing service.
5. Spring is used only with single PTFE V-ring packing; lantern ring replaces spring in other packings.
6. Except 371°C (700°F) on oxidizing service.

WITH CLASS 600 TO WCC OR LCC/HT STEEL VALVE BODY

WITH CLASS 600 1 316 STAINLESS STEEL (CF8M) VALVE BODY

 $\fbox{1}$ DO NOT EXCEED THE MAXIMUM PRESSURE AND TEMPERATURE FOR THE CLASS RATING OF THE VALVE MATERIAL USED. EVEN THOUGH THE TRIMS SHOWN MAY HAVE HIGHER CAPABILITIES.

BE ESPECIALLY CAREFUL TO SPECIFY SERVICE TEMPERATURE IF TRIM 3 OR 37 IS SELECTED AS DIFFERENT THERMAL EXPANSION RATES REQUIRE SPECIAL PLUG CLEARANCES. SPECIFY TRIM 37H FOR TEMPERATURES ABOVE 210°C (410°F). SPECIFY TRIM 3H FOR TEMPERATURES

3 TRIM 29 MAY BE USED UP TO 103 BAR (1500 PSI) WITH CLEAN, DRY GAS.
4 USE TRIM 27 INSTEAD OF TRIM 29 FOR NONLUBRICATING FLUIDS SUCH
AS SUPERHEATED STEAM OR DRY GASES BETWEEN 149 AND 316°C (300 AND 600°F).

Figure 9. Typical Trim Used for All Valves Except 4- and 6-Inch Design ED with Whisper Trim® III Cage and WhisperFlo® Cage

Figure 10. Whisper Trim® III Cage in 6-Inch Design ED Valve

1) DO NOT EXCEED THE MAXIMUM PRESSURE AND TEMPERATURE FOR THE CLASS RATING OF THE BODY MATERIAL USED, EVEN THOUGH THE TRIM SHOWN MAY HAVE HIGHER CAPABILITIES.

A2703-4 / IL

Figure 11. Typical Trim Used for 6-Inch Design ED Valves with Whisper Trim[®] III Cages

Table 7. Valve Body/Trim Temperature Capabilities(1) For All Valves Except 6-Inch Design ED with Whisper Trim® III Cage and 4and 6-Inch Design ED with WhisperFlo® Cage

VALVE BODY/BONNET ⁽²⁾ MATERIAL	TRIM DESIGNATION	VALVE SIZE AND DESIGN		TEMPERA	ATURE LITY		
WATERIAL	DESIGNATION		°C		°F		
			Min	Max	MATERIAL EMPERATURE CAPABILITY Max Min	Max	
	1, 3, 27, or 29	All	-29	232	-20	450	
Cast iron	37	All	-29	210	-20	410	
	37H	All	210	232	410	450	
	1	All	-29	427	-20	800	
	4	All	-29	210	-20	410	
WCC steel	27	All (except limited to 338°C [640°F] for 4- and 6-inch sizes)	-29	343	-20	650	
	29	All	-29	149 ⁽⁴⁾	-20	300 ⁽⁴⁾	
	37	All	-29	210	-20	410	
	37H	All	210	427	410	800	
	1 or 3	All	-29	427	-20	800	
	27	All (except limited to 338°C [640°F] for 4- and 6-inch sizes)	-29	343	-20	650	
WC9 chrome moly	29	All	-29	149 ⁽⁴⁾	-20	300 ⁽⁴⁾	
steel	37	All	-29	210	-20	410	
	3H	All	427	593	800	1100	
	37H	All	210	427	410	800	
	1	All	-29	343	-20	650	
	4	All	-46	210	-50	410	
LCC/HT steel	27	All (except limited to 338°C [640°F] for 4- and 6-inch sizes)	-46	343	-50	650	
	29	All	-46	149 ⁽⁴⁾	-50	300 ⁽⁴⁾	
	37	All	-46	210	-50	410	
	37H	All	210	343	410	650	
	27	All	-198 ⁽³⁾	343	-325 ⁽³⁾	650	
CF8M (316	28	All	-198 ⁽³⁾	149 ⁽⁴⁾	-325(3)	300 ⁽⁴⁾	
stainless steel)	29	All	-198 ⁽³⁾	149 ⁽⁴⁾	-325(3)	300 ⁽⁴⁾	

- 1. For metal trim parts only. Restricted trim and full-sized limits are the same.

 2. Same material also used for bottom flange, if required.

 3. May be used down to -254°C (-425°F) if manufacturing process includes Charpy impact test.

 4. Lubricating service allows usage to 316°C (600°F).

Figure 12. WhisperFlo® Cage in 4- and 6-Inch Design ED Valve

Table 8. Bonnet Selection Guidelines

BONNET STYLE	PACKING MATERIAL	IN-BODY PROCESS	TEMPERATURE LIMITS ⁽¹⁾
BONNETSTILE	PACKING MATERIAL	°C	°F
Plain: Standard for all valves through	PTFE V-ring	-18 to 232	0 to 450
6-inch valve body size with 2-13/16 yoke boss diameter Standard for 6-inch and	PTFE/Composition	-18 to 232	0 to 450
8-inch valves in cast iron and WCC steel bonnet material with 3-9/16 yoke boss diameter	Graphite ribbon/filament	-18 to maximum shown in table 6	0 to maximum shown in table 6
Style 1 Cast Extension:	PTFE V-ring	10 1- 107	50 t- 000
Standard for 8-inch valves in S31600	PTFE/Composition	-46 to 427	-50 to 800
bonnet material with 3-9/16 yoke boss diameter	Graphite ribbon/filament	-46 to to maximum shown in table 6	-50 to maximum shown in table 6
Style 2 Cast Extension: Optional for 2-inch through	PTFE V-ring		_150 to 800
yoke boss diameter	PTFE/Composition	-101 10 427	-130 to 000
with 3-9/16 yoke boss diameter. Not available for 8-inch valve in S31600 bonnet material	Graphite ribbon/filament	-101 to maximum shown in table 6	-150 to maximum shown in table 6
ENVIRO-SEAL bellows seal bonnet	PTFE	For exceptional stem sealing capa Bulletin 59.1:070, ENVIRO-SEAL Bonnets, for pressure/temperature	Bellows Seal
	Graphite ULF		
● Optional for 2-inch through 4-inch valve sizes with 2-13/16 inch yoke boss diameter ■ Optional for 6-inch and 8-inch valves with 3-9/16 yoke boss diameter. Not available for 8-inch valve in S31600 bonnet material	PTFE/Composition Graphite ribbon/filament PTFE	in table 6 For exceptional stem sealing capa Bulletin 59.1:070, ENVIRO-SEAL	in table 6 abilities. See Bellows Seal

^{1.} These in-body process temperatures assume an outside, ambient temperature of 21°C (70°F) and no insulation on the bonnet. When using any packing at low process temperatures, a cast extension bonnet may have to be used to prevent packing damage which could result from the formation of valve stem frost. Material selection for trim and other components will also be limiting factors.

Table 9. Maximum Flow Coefficients for Full-Sized Trim with Equal Percentage Cage and Normal Flow Direction

Val	ve Design	Valve Size, Inch	C _v at Max. Valve Plug Travel
		1, 1.25	17.2
		1.5	35.8
	ED	2	59.7
		2.5	99.4
		3	136
		4	224
		6	394
		8(1)	567
		8(2)	819
		1	18.5
		2	48.1
	with liner without liner	3	149
		4	152
EAD		6	336
LAD		1	19.0
		2 3	47.2
			148
	IIIIEI	4	156
		6	328
		1, 1.25	17.2
		1.5	35.8
	EDR	2	59.7
	LDII	2.5	99.4
		3	136
		4	224
1. Wit 2. Wit	h 51 mm (2 inch) t h 76 mm (3 inch) t	travel.	

Table 10. Metal Trim Part Materials for Compatibility with NACE MR0175-2002 (Sour Service) Specifications, Environmental Restrictions Apply, Refer to Standard

Trim Designation	Valve Plug	Cage	Seat Ring for Standard Metal Seat Construction	Optional Liner for Metal Seat (EAD only)	Valve Stem, Packing Follower, Lantern Ring, Packing Box Ring, and Pin	Load Ring ⁽¹⁾
85	S31600	S31600 with electroless nickel coating (ENC)	S31600	S31600		
86	S31600 with seat hard faced with CoCr-A hardfacing alloy	S31600 with electroless nickel coating (ENC)	R30006 (alloy 6)		S20910 (Valve Stem) S31600 (All Other Parts)	N05500
87	S31600 with seat and guide hard faced with CoCr-A hardfacing alloy	S31600 with electroless nickel coating (ENC)	R30006 (alloy 6)			
1. 8-inch valve only.		•	•	•		

Table 11. Port Diameters, Valve Plug Travel, and Stem and Yoke Boss Diameters

		PORT MAX VALVE PLUG TRAVEL				STEM AND YOKE BOSS DIAMETERS									
Design E	D or EDR	Desig	n EAD						Sta	ndard			Op	tional	
Full-Sized	Restricted-	Full-Sized	Restricted-					Sto	em	Yok	e Boss	Ste	em	Yoke	Boss
Trim	Capacity Trim	Trim	Capacity Trim	mm	Inch	mm	Inch	mm	Inch	mm	Inch	mm	Inch	mm	Inch
1 or 1.25	1.5	1	2	33.3	1.3125	19	0.75	9.5	3/8	_	2-1/8	12.7	1/2	71	2-13/16
	2			33.3	1.3125	19	0.75	12.7	1/2	71	2-13/16				
1.5		2		47.6	1.875	19	0.75	9.5		54	2-1/8	12.7	1/2	71	2-13/16
	2.5		3	47.6	1.875	19	0.75	1.7	1/2	71	2-13/16				
2	3		4	58.7	2.3125	29	1.125	12.7	1/2	71	2-13/16	19.1	3/4	90	3-9/16
2.5	4	3	6	73.0	2.875	38	1.5	12.7	1/2	71	2-13/16	19.1	3/4	90	3-9/16
3		4		87.3	3.4375	38	1.5	12.7	1/2	71	2-13/16	19.1	3/4	90	3-9/16
				87 ⁽³⁾	3.4375 ⁽³⁾	76 ⁽³⁾	3(3)	10.7	4 /0	- 1	0.1010	19.1	3/4	90	3-9/16
4		6		111.1	4.375	51	2	12.7	1/2	71	2-13/16	25.4	1	127	5
2(1)				177.8 ⁽²⁾	7 ⁽²⁾	51 ⁽²⁾	2(2)								
6 ⁽¹⁾				136 ⁽³⁾	5.375 ⁽³⁾	76 ⁽³⁾	3(3)	40.4	0/4		0.040	25.4	1	407	_
- (1)					_	51	2	19.1	3/4	90	3-9/16	or 31.8	or 1-1/4	127	5
8 ⁽¹⁾				203.2	8	76	3					31.0	1-1/4		
Not availa	ble in Design EDF	R valve.							•	•	l l				

Table 12. Bolting Materials and Temperature Limits for Compatibility with NACE MR0175-2002

VALVE MATE				TEMPER CAPABI		
		BOLTING MATERIAL	°C		°F	:
			Min	Max	Min	Max
		NACE MR0175-2002 (non-exposed l	polting) (Standard)			
WCC and	Studs	Steel SA-193-B7	-48(2)	407	-55(2)	
CF8M (316 SST)	Nuts	Steel SA-194-2H	-48(2)	427	-55(2)	800
	Requires	NACE MR0175-2002 (exposed bo Derating of Valve ⁽¹⁾ When These Body-to-		als are Used		
MCC and CEOM	Studs	Steel SA-193-B7M	-48(2)	407	-55(2)	000
WCC and CF8M	Nuts	Steel SA-194-2HM	-48 ⁽²⁾	427	-55(-)	800

Derating is not required for Class 300 valves. Derating may be required for valves rated determining the derating of valves when these body-to-bonnet bolting materials are used.
 -29°C (-20°F) with WCC valve body material.

^{2.} Standard-travel cages.
3. Whisper Trim III (6-inch Design ED) and WhisperFlo cages (4- and 6-inch Design ED).

FOR STANDARD METAL SEATING WITH CLASS 600 1 WCC OR LCC/HT VALVE BODY

FOR STANDARD METAL SEATING WITH CLASS 600 1316 STAINLESS STEEL (CF8M) VALVE BODY

NOTES:

1) DO NOT EXCEED THE MAXIMUM PRESSURE AND TEMPERATURE FOR THE CLASS RATING OF THE VALVE MATERIAL USED, EVEN THOUGH THE TRIM SHOWN MAY HAVE HIGHER CAPABILITIES.

2 USE TRIM 87 INSTEAD OF TRIM 85 FOR NONLUBRICATING FLUIDS SUCH

AS SUPERHEATED STEAM OR DRY GASES BETWEEN 149 AND 316°C (300 AND 600°F).

C0575-2 / IL

Figure 13. Typical Trim Used for NACE MR0175-2002 (Sour Service)

Table 13. Design ED and EDR Dimensions

					Α					G (N	ЛАХ)
VALVE SIZE,				Class, En	d Connection	on Style ⁽¹⁾					
INCH	Scrd or SW	125 FF or 150 RF	150 RTJ	250 RF or 300 RF	300 RTJ	BW or 600 RF	600 RTJ	PN16-40 ⁽²⁾	PN63-100 ⁽²⁾	Design ED	Design EDR
						mm	_				
1	210	184	197	197	210	210	210	160	230	60	119
1.25	229									60	119
1.5	251	222	235	235	248	251	251	200	260	71	116
2	286	254	267	267	282	286	289	230	300	78	133
2.5		276	292	292	308	311	314	290	340	90	159
3		298	311	317	333	337	340	310	380	97	168
4		353	365	368	384	394	397	350	430	129	192
6		451	464	473	489	508	511	480	550	162	
8		543	556	568	584	610	613	600	650	191	
						Inch					
1	8.25	7.25	7.75	7.75	8.25	8.25	8.25			2.38	4.69
1.25	9.00									2.38	4.69
1.5	9.88	8.75	9.25	9.25	9.75	9.88	9.88			2.81	4.56
2	11.25	10.00	10.50	10.50	11.12	11.25	11.38	See	See	3.06	5.25
2.5		10.88	11.38	11.50	12.12	12.25	12.38	mm	mm	3.56	6.25
3		11.75	12.25	12.50	13.12	13.25	13.38	below	below	3.81	6.62
4		13.88	14.38	14.50	15.12	15.50	15.62			5.06	7.56
6		17.75	18.25	18.62	19.25	20.00	20.12			5.50	
8		21.38	21.88	22.38	23.00	24.00	24.12			7.50	

^{1.} End connection style abbreviations: BW - Buttwelding, FF - Flat Faced, Scrd - Screwed, SW - Socketweld, RF - Raised Face, RTJ - Ring Type Joint.
2. Valves which meet DIN flange standards and have DIN face-to-face dimensions are available only from Europe. Valves which meet DIN flange standards but not DIN face-to-face standards are available in the US. Consult your Emerson Process Management sales office.

Figure 14. Design ED and EDR Dimensions (also see tables 13, 14, and 15)

Table 14. Design ED and EDR Dimensions

			D FOR	PLAIN BONN	ET		
VALVE			Design El	D	De	sign E	DR
SIZE,		St	em Diame	eter	Ster	n Diam	eter
INCH				mm			
	9.5	12.7	19.1	25.4 or 31.8	9.5	12.7	19.1
1 or 1.25	127	149			113	124	
1.5	124	146			122	133	
2		165	162			148	140
2.5		187	184			157	152
3		191	187			167	159
4		221	217	238		198	191
6 ⁽¹⁾			251	270			
6(2)			312	330			
8			375 ⁽³⁾				
				Inch			
	3/8	1/2	3/4	1 or 1-1/4	3/8	1/2	3/4
1 or 1.25	5.00	5.88			4.44	4.88	
1.5	4.88	5.75			4.81	5.25	
2		6.50	6.38			5.81	5.50
2.5		7.38	7.25			6.31	6.00
3		7.50	7.38			6.56	6.25
4		8.69	8.56	9.38		7.81	7.50
6 ⁽¹⁾			9.88	10.62			
6 ⁽²⁾			12.26	13.00			
8			14.75 ⁽³⁾				
 All except 	t Whispe	r Trim III	and Whisper	rFlo cages.			

Table 15. Design ED and EDR Dimensions

VALVE		Style	1 Ext. Bonn	et	Sty	le 2 Ext. Bor	net	ENVIRO-SE	AL Bellows	Seal Bonr
SIZE,		Ste	m Diameter		9	tem Diamete	er	S	tem Diamete	er
INCH					mm)		•		
	9.5	12.7	19.1	25.4 or 31.8	9.5	12.7	19.1	9.5	12.7	19.1
1 or 1.25	213	251			303	319		321		
1.5	210	248			300	316		317		
2		267				465			384	
2.5		289	272			492				
3		292	297			495	487		518	518
4		322	327	370		526	518		541	
6 ⁽¹⁾			357	402			543			573
6 ⁽²⁾			418	462			604			
8			421	450			621			
		•	•		Incl	i	•	•	•	•
	3/8	1/2	3/4	1 or 1-1/4	3/8	1/2	3/4	3/8	1/2	3/4
1 or 1.25	8.38	9.88			11.94	12.56		12.62		
1.5	8.25	9.75			11.81	12.44		12.50		
2		10.50				18.31			15.12	
2.5		11.38	10.69			19.38				
3		11.50	11.69			19.50	19.19		20.38	20.38
4		12.69	12.88	14.56		20.69	20.38		21.31	
6 ⁽¹⁾			14.06	15.81			21.38			22.56
6 ⁽²⁾			16.44	18.19			23.76			
8			16.56	17.75			24.44			

All except Whisper Trim III and WhisperFlo cages.
 Whisper Trim III and WhisperFlo cages.
 Available only in cast iron or WCC steel for the stem diameter with plain bonnet.

Table 16. Design EAD Dimensions

				AA												
VALVE	Class	s 150	Class	s 300	Class 600											
SIZE,			End Co	onnectio	on Style ⁽¹⁾											
INCH	RF	RTJ	RF	RTJ	BW, SW or RF	RTJ										
				mm												
1	92	98	98	105	105	105										
2	92 98 127 133 149 156 176 183 225 232		133	141	143	144										
3	149	156	159	167	168	170										
4	176	183	184	197	197	198										
6	225	232	254	256												
		176 183 184 197 197 198														
1	3.62	3.88	3.88	4.12	4.12	4.12										
2	5.00	5.25	5.25	5.56	5.62	5.69										
3	5.88	6.12	6.25	6.56	6.62	6.69										
4	6.94	7.19	7.25	7.56	7.75	7.81										
6	8.88	9.12	9.31	9.62	10.00	10.06										
					velding, FF - Flat Faced, TJ - Ring Type Joint.	Scrd -										

Figure 15. Design EAD Dimensions (also see tables 16 and 17)

Table 17. Design EAD Dimensions

							DD							
VALVE		Pla	ain Bonn	et	Style 1	Extension	Bonnet	Style 2	Extension	Bonnet	ENVIRO-SEAL Bellows Seal			
SIZE, INCH					Stem D	iameter					Bonnet			
INCH					m	m								
	9.5	12.7	19.1	25.4 or 31.8	9.5	12.7	19.1	9.5	12.7	19.1	Contact			
1	111	133		your										
2	98	121			184	223		278	291		Emerson			
3		149	146			251	256		454		sales office.			
4		140	137			241	246		445	437	caroo cinico.			
6		144	141	187		246	251		449	441				
					In	ch					ENVIRO-SEAL			
	3/8	1/2	3/4	1 or 1-1/4	3/8	1/2	3/4	3/8	1/2	3/4	Bellows Seal Bonnet			
1	4.38	5.25			7.75	9.25		11.44	12.00		Contact			
2	3.88	4.75			7.25	8.75		10.94	11.44		Contact your			
3		5.88	5.75			9.88	10.06		17.88		•			
4		5.50	5.38			9.50	9.69		17.50	17.19	Emerson			
6		5.69	5.56	7.38		9.69	9.88		17.69	17.38	sales office.			

Coefficients

Table 18. Design EAD, Quick Opening Cage, With Liner

																uick Op haracte	
Valve Size,	Port D	iameter		kimum vel ⁽¹⁾	Flow Coeffi-	Coeffs. for 6 mm			Valv	ve Open	ing—Pei	cent of	Total Tra	avel			F _L ⁽³⁾
Inches	mm	Inches	mm	Inches	cient	(0.25 in) Travel ⁽²⁾	10	20	30	40	50	60	70	80	90	100	
					C_{v}	14.2	5.14	9.24	13.1	16.2	18.8	20.9	22.4	23.4	24.0	24.0	0.90
1	33.3	0.3125	19	0.75	$K_{\!\scriptscriptstyle V}$	12.3	4.45	7.99	11.3	14.0	16.3	18.1	19.4	20.2	20.8	20.8	
					X _T	0.800	0.629	0.703	0.761	0.809	0.775	0.713	0.677	0.652	0.630	0.630	
					C _v	29.4	8.77	17.1	26.2	36.1	45.4	53.4	59.3	63.6	67.3	70.7	0.76
	47.6	1.875	19	0.75	K_{V}	25.4	7.59	14.8	22.7	31.2	39.3	46.2	51.3	55.0	58.2	61.2	
0					X _T	0.573	0.480	0.513	0.568	0.570	0.577	0.589	0.628	0.618	0.656	0.656	
2					C _v	17.3	5.91	10.1	15.1	21.7	29.4	37.3	43.7	48.5	52.4	55.2	0.60
	33.3	1.3125 (4)	19	0.75	K_{V}	15.0	5.11	8.74	13.1	18.8	25.4	32.3	37.8	42.0	45.3	47.7	
	()	()			X _T	0.543	0.404	0.584	0.570	0.522	0.478	0.431	0.396	0.370	0.344	0.326	
					C _v	30.6	24.2	47.2	77.8	108	133	148	159	171	181	183	0.76
	73.0	2.875	38	1.5	K_{V}	26.5	20.9	40.8	67.3	93.4	115	128	138	148	157	158	
					X _T	0.540	0.517	0.534	0.504	0.545	0.582	0.636	0.651	0.616	0.575	0.569	
3					C _v	29.8	7.96	15.5	25.7	37.4	49.0	61.2	72.5	83.1	92.8	102	0.60
	47.6 (4)	1.875 (4)	19	0.75	K _v	25.8	6.89	13.4	22.2	32.4	42.4	52.9	62.7	71.9	80.3	88.2	
	(- /	(- /			X _T	0.576	0.549	0.624	0.603	0.541	0.525	0.482	0.452	0.422	0.391	0.349	
					C _v	37.1	22.3	46.3	77.1	117	155	180	197	212	230	235	0.72
	87.3	3.4375	38	1.5	K _v	32.1	19.3	40.0	66.7	101	134	156	170	183	199	203	
					X _T	0.580	0.616	0.547	0.537	0.531	0.529	0.575	0.629	0.635	0.609	0.620	
4					C _v	31.4	14.4	28.3	46.1	66.7	87.5	107	124	138	149	160	0.61
	58.7 (4)	2.3125	29	1.125	K _v	27.2	12.5	24.5	39.9	57.7	75.7	92.6	107	119	129	138	
	(· /	(.)			X _T	0.548	0.509	0.533	0.505	0.486	0.482	0.465	0.443	0.416	0.387	0.354	
					C _v	50.0	39.8	84.0	150	219	279	332	379	420	435	435	0.71
	111.1	4.375	51	2	K _V	43.3	34.4	72.7	130	189	241	287	328	363	376	376	
					X _T	0.578	0.597	0.599	0.577	0.581	0.581	0.578	0.565	0.527	0.533	0.533	
6					C _v	38.7	23.9	47.1	74.9	109	142	174	201	219	244	248	0.59
	73.0 (4)	2.875 (4)	38	1.5	K _v	33.5	20.7	40.7	64.8	94.3	123	151	174	189	211	215	
	(-1)	(-)			X _T	0.353	0.353	0.353	0.353	0.353	0.356	0.352	0.353	0.352	0.353	0.354	

^{1.} When using Type 655-EAD as a control valve for on-off service, the maximum travel for sizing purposes is 0.75 inch (19 mm).

2. When sizing self-operated regulators, use coefficients listed for 0.25 inch (6 mm) travel.

3. At 100% travel.

4. Restricted trim.

Table 19. Design EAD, Quick Opening Cage, Without Liner

With	out	Line	r													uick Op haracte	
Valve Size,	Port D	Diameter		kimum avel ⁽¹⁾	Flow Coeffi-	Coeffs. for 6 mm			Valv	re Open	ing—Pe	rcent of	Total Tra	avel			F _L (3)
Inches	mm	Inches	mm	Inches	cient	(0.25 in) Travel ⁽²⁾	10	20	30	40	50	60	70	80	90	100	-
					C _v	14.8	5.07	9.36	13.6	16.8	19.2	20.9	22.2	23.1	23.6	23.7	0.87
1	33.3	0.3125	19	0.75	K _v	12.8	4.39	8.10	11.8	14.5	16.6	18.1	19.2	20.0	20.4	20.5	
					X _T	0.757	0.638	0.753	0.753	0.766	0.736	0.703	0.670	0.650	0.640	0.636	
					C_{v}	28.0	8.06	15.7	24.9	34.3	43.1	51.0	57.1	61.4	64.6	67.2	0.87
	47.6	1.875	19	0.75	K_{V}	24.2	6.97	13.6	21.5	29.7	37.3	44.1	49.4	53.1	55.9	58.1	
2					X _T	0.629	0.531	0.621	0.623	0.631	0.641	0.638	0.656	0.676	0.686	0.682	
2	00.0	4 0405			C _v	17.2	6.02	10.4	15.4	20.9	27.1	33.7	38.5	41.7	44.2	45.6	0.71
	33.3	1.3125	19	0.75	K_v	14.9	5.21	9.00	13.3	18.1	23.4	29.2	33.3	36.1	38.2	39.4	
	, ,				X _T	0.573	0.470	0.541	0.570	0.575	0.563	0.526	0.510	0.492	0.476	0.470	
					C _v	39.2	23.4	47.9	78.7	108	128	142	153	163	171	171	0.81
	73.0	2.875	38	1.5	K_{ν}	33.9	20.2	41.4	68.1	93.4	111	123	132	141	148	148	
3					X_{T}	0.576	0.588	0.573	0.534	0.573	0.635	0.662	0.654	0.626	0.600	0.605	
3	47.0	1.075			C _v	29.1	8.27	15.9	25.6	36.0	46.8	56.4	64.6	72.1	79.3	86.1	0.72
	47.6 (4)	1.875 (4)	19	0.75	K_{V}	25.2	7.15	13.8	22.1	31.1	40.5	48.8	55.9	62.4	68.6	74.5	
					X _T	0.609	0.488	0.603	0.610	0.594	0.575	0.574	0.569	0.561	0.530	0.490	
					C _v	39.0	23.9	48.2	80.3	118	151	178	195	209	223	223	0.76
	87.3	3.4375	38	1.5	K_{V}	33.7	20.7	41.7	69.5	102	131	154	169	181	193	193	
4					X _T	0.562	0.588	0.566	0.554	0.556	0.580	0.610	0.659	0.669	0.644	0.650	
4	50.7	0.0405			C _v	30.9	13.6	27.0	43.9	62.5	80.6	96.0	109	120	127	133	0.73
	58.7 (4)	2.3125	29	1.125	K_{ν}	26.7	11.8	23.4	38.0	54.1	69.7	83.0	94.3	104	110	115	
					X_{T}	0.608	0.593	0.614	0.582	0.578	0.587	0.590	0.576	0.547	0.533	0.513	
					C _v	45.8	37.6	79.6	142	207	265	311	351	383	398	398	0.76
	111.1	4.375	51	2	K_{ν}	39.6	32.5	68.9	123	179	229	269	304	331	344	344	
6					X _T	0.652	0.680	0.652	0.639	0.639	0.655	0.686	0.683	0.666	0.657	0.667	
U	70.0	0.075			C _v	35.4	21.8	43.1	71.5	103	130	154	173	188	198	206	0.74
	73.0 (4)	2.875 (4)	38	1.5	K_{V}	30.6	18.9	37.3	61.8	89.1	112	133	150	163	171	178	
					X_T	0.671	0.624	0.650	0.652	0.618	0.659	0.659	0.646	0.620	0.595	0.568	

Nhen using Type 655-EAD as a control valve for on-off service, the maximum travel for sizing purposes is 19 mm (0.75 inch).
 When sizing self-operated regulators, use coefficients listed for 6 mm (0.25 inch) travel.
 At 100% travel.
 Restricted trim.

Table 20. Design EAD, Linear Cage, With Liner

Valve Size,	Port D	Diameter		imum avel	Flow Coeffi-			Valv	e Open	ing—Pe	rcent of	Total Tra	avel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	
					C_{V}	2.71	5.17	8.14	10.7	13.0	15.2	17.2	19.1	20.7	22.0	0.90
1	33.3	1.3125	19	0.75	K_{ν}	2.34	4.47	7.04	9.26	11.2	13.1	14.9	16.5	17.9	19.0	
					X_{T}	0.632	0.692	0.719	0.772	0.786	0.777	0.755	0.722	0.682	0.634	
					C _v	3.77	6.94	11.3	16.1	21.0	26.7	33.1	40.1	46.8	53.8	0.82
	47.6	1.875	19	0.75	K_{ν}	3.26	6.00	9.77	13.9	18.2	23.1	28.6	34.7	40.5	46.5	
2					X _T	0.665	0.675	0.663	0.642	0.627	0.616	0.617	0.607	0.633	0.661	
2	00.0	4.0405			C_{v}	2.95	5.49	8.65	12.1	15.7	19.3	23.4	29.7	35.7	41.0	0.66
	33.3	1.3125 (2)	19	0.75	K_{V}	2.55	4.75	7.48	10.5	13.6	16.7	20.2	25.7	30.9	35.5	
	, ,	, ,			X _T	0.474	0.592	0.587	0.581	0.579	0.584	0.564	0.487	0.451	0.426	
					C _v	10.3	24.0	38.8	54.3	69.8	86.5	102	124	141	155	0.80
	73.0	2.875	38	1.5	K_{V}	8.91	20.8	33.6	47.0	60.4	74.8	88.2	107	122	134	
3					X _T	0.630	0.623	0.618	0.598	0.599	0.591	0.619	0.603	0.614	0.614	
3					C _v	3.37	6.45	10.6	15.3	19.8	25.3	32.2	40.1	48.4	58.1	0.74
	47.6 (2)	1.875 (2)	19	0.75	K_{ν}	2.92	5.58	9.17	13.2	17.1	21.9	27.9	34.7	41.9	50.3	
	()	()			X _T	0.630	0.682	0.693	0.665	0.663	0.637	0.600	0.588	0.569	0.548	
					C _v	12.7	31.6	54.1	77.8	103	128	149	171	191	208	0.78
	87.3	3.4375	38	1.5	K _V	11.0	27.3	46.8	67.3	89.1	111	129	148	165	180	
4					X _T	0.677	0.638	0.596	0.590	0.552	0.548	0.573	0.594	0.613	0.627	
4					C _v	6.70	15.3	25.2	37.0	50.2	64.5	79.4	94.6	110	124	0.66
	58.7 (2)	2.3125 (2)	29	1.125	K _V	5.80	13.2	21.8	32.0	43.4	55.8	68.7	81.8	95.2	107	
	, ,	, ,			X _T	0.705	0.590	0.596	0.573	0.536	0.509	0.493	0.490	0.471	0.445	
					C _v	25.4	53.6	83.0	113	146	179	218	263	309	350	0.78
	111.1	4.375	51	2	K_{V}	22.0	46.4	71.8	97.7	126	155	189	227	267	303	
0					X _T	0.670	0.666	0.666	0.659	0.631	0.627	0.623	0.624	0.630	0.617	
6					C _v	10.6	25.2	41.1	57.7	76.1	94.8	116	139	168	195	0.67
	73.0 (2)	2.875 (2)	38	1.5	K_{ν}	9.17	21.8	35.6	49.9	65.8	82.0	100	120	145	169	
	\-/	\-/			X _T	0.445	0.443	0.448	0.445	0.445	0.445	0.443	0.448	0.442	0.444	

Table 21. Design EAD, Linear Cage, Without Liner

Valve Size,		ort meter	-	cimum ravel	Flow Coeffi-			Valv	re Open	ing—Pe	rcent of	Total Tra	avel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	-
					C _v	2.90	5.78	8.85	11.6	13.9	16.0	18.0	19.7	21.2	22.3	0.89
1	33.3	1.3125	19	0.75	K _v	2.51	5.00	7.66	10.0	12.0	13.8	15.6	17.0	18.3	19.3	
					X _T	0.778	0.704	0.699	0.736	0.745	0.747	0.730	0.699	0.664	0.624	
					C_{v}	3.68	6.98	11.3	15.9	20.8	26.4	32.7	39.2	45.7	52.5	0.84
	47.6	1.875	19	0.75	K _V	3.18	6.04	9.77	13.8	18.0	22.8	28.3	33.9	39.5	45.4	
2					X _T	0.676	0.667	0.684	0.666	0.624	0.627	0.632	0.625	0.655	0.679	
2	00.0	1 0105			C_{v}	3.01	5.45	8.95	12.5	15.9	19.1	23.3	28.4	33.2	37.6	0.73
	33.3	1.3125 (2)	19	0.75	K _V	2.60	4.71	7.74	10.8	13.8	16.5	20.2	24.6	28.7	32.5	
	, ,	, ,			X _T	0.790	0.768	0.661	0.618	0.608	0.611	0.582	0.545	0.535	0.516	
					C _v	10.9	25.1	41.3	58.4	75.7	93.9	112	128	143	153	0.83
	73.0	2.875	38	1.5	K _v	9.43	21.7	35.7	50.5	65.5	81.2	96.9	111	124	132	
0					X _T	0.736	0.638	0.591	0.548	0.538	0.532	0.543	0.583	0.619	0.631	
3					C_{v}	3.61	6.92	11.1	15.5	20.6	26.4	33.2	41.4	50.1	60.2	0.78
	47.6 (2)	1.875 (2)	19	0.75	K _v	3.12	5.99	9.60	13.4	17.8	22.8	28.7	35.8	43.3	52.1	
	. ,	,			X _T	0.623	0.721	0.694	0.684	0.663	0.630	0.602	0.570	0.568	0.546	
					C _v	14.0	33.8	56.3	80.2	104	127	148	169	185	201	0.81
	87.3	3.4375	38	1.5	K _V	12.1	29.2	48.7	69.4	90.0	110	128	146	160	174	
4					X _T	0.640	0.638	0.611	0.588	0.570	0.568	0.593	0.622	0.660	0.664	
4					C _v	7.02	15.7	25.7	36.9	48.6	60.9	72.9	84.6	97.2	108	0.76
	58.7 (2)	2.3125 (2)	29	1.125	K _V	6.07	13.6	22.2	31.9	42.0	52.7	63.1	73.2	84.1	93.4	
	, ,	, ,			X _T	0.712	0.626	0.625	0.597	0.587	0.577	0.590	0.604	0.580	0.566	
					C _v	24.2	51.2	81.8	109	140	171	208	256	300	341	0.78
	111.1	4.375	51	2	K_{V}	20.9	44.3	70.8	94.3	121	148	180	221	260	295	
0					X _T	0.643	0.697	0.666	0.693	0.672	0.668	0.684	0.663	0.668	0.662	
6					C_{v}	10.2	22.8	36.6	52.1	68.0	84.5	102	124	147	168	0.74
	73.0 (2)	2.875 (2)	38	1.5	K _v	8.82	19.7	31.7	45.1	58.8	73.1	88.2	107	127	145	
	\-/	\-/			X _T	0.592	0.651	0.661	0.635	0.619	0.619	0.615	0.584	0.568	0.556	

Table 22. Design EAD, Equal Percentage Cage, With Liner

Valve Size,		ort meter		rimum avel	Flow Coeffi-			Valv	e Open	ing—Pe	rcent of	Total Tra	avel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	
					C _v	1.02	1.49	2.07	2.70	3.92	5.68	8.18	11.7	15.5	18.5	0.93
1	33.3	1.3125	19	0.75	K_{v}	0.882	1.29	1.79	2.34	3.39	4.91	7.08	10.1	13.4	16.0	
					X _T	0.902	0.902	0.820	0.740	0.741	0.737	0.738	0.734	0.742	0.739	
					C _v	1.44	2.38	3.54	5.10	7.60	11.6	18.1	26.9	37.8	48.1	0.83
	47.6	1.875	19	0.75	K_{V}	1.25	2.06	3.06	4.41	6.57	10.0	15.7	23.3	32.7	41.6	
0					X _T	0.619	0.649	0.671	0.678	0.666	0.639	0.574	0.578	0.578	0.576	
2	00.0	1 0105			C _v	0.792	1.28	1.84	2.56	3.78	5.66	8.64	13.3	19.9	27.6	0.75
	33.3 (2)	1.3125 (2)	19	0.75	K _V	0.685	1.11	1.59	2.21	3.27	4.90	7.47	11.5	17.2	23.9	
	, ,	, ,			X _T	0.648	0.654	0.682	0.659	0.683	0.661	0.592	0.534	0.479	0.468	
					C _v	4.38	7.99	12.1	16.5	24.2	36.5	56.6	85.9	116	151	0.78
	73.0	2.875	38	1.5	K _V	3.79	6.91	10.5	14.3	20.9	31.6	49.0	74.3	100	131	
0					X _T	0.783	0.746	0.680	0.652	0.620	0.588	0.551	0.525	0.553	0.550	
3					C _v	1.31	2.28	3.48	5.05	7.58	11.9	18.2	26.7	38.4	50.5	0.78
	47.6 (2)	1.875 (2)	19	0.75	K _v	1.13	1.97	3.01	4.37	6.56	10.3	15.7	23.1	33.2	43.7	
	. ,	()			X _T	0.804	0.758	0.719	0.725	0.696	0.634	0.637	0.611	0.561	0.530	
					C _v	2.31	0.470	7.45	11.3	17.8	28.7	47.9	77.5	112	152	0.81
	87.3	3.4375	38	1.5	K _v	2.00	0.41	6.44	9.77	15.4	24.8	41.4	67.0	96.9	131	
					X _T	0.780	0.780	0.791	0.726	0.652	0.630	0.565	0.546	0.549	0.545	
4					C _v	2.24	3.67	5.44	7.81	11.7	17.9	27.6	41.9	62.6	86.3	0.73
	58.7 (2)	2.3125	29	1.125	K _v	1.94	3.17	4.71	6.76	10.1	15.5	23.9	36.2	54.1	74.6	
	(-)	(-/			X _T	0.630	0.668	0.662	0.672	0.659	0.610	0.593	0.574	0.500	0.456	
					C_{v}	5.54	11.0	18.1	30.9	51.7	84.3	136	205	276	336	0.74
	111.1	4.375	51	2	K _v	4.79	9.52	15.7	26.7	44.7	72.9	118	177	239	291	
_					X _T	0.727	0.684	0.657	0.624	0.599	0.585	0.590	0.587	0.573	0.576	
6					C _v	1.32	3.73	7.20	11.1	17.5	27.6	43.4	67.8	102	147	0.74
	73.0 (2)	2.875 (2)	38	1.5	K _v	1.14	3.23	6.23	9.60	15.1	23.9	37.5	58.6	88.2	127	
	(-)	(-)			Хт	0.455	0.458	0.454	0.457	0.453	0.454	0.454	0.455	0.454	0.454	

Table 23. Design EAD, Equal Percentage Cage, Without Liner

Valve Size,	_	ort meter		rimum avel	Flow Coeffi-			Valv	/e Open	ing—Pe	rcent of	Total Tra	avel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	_
					C _v	1.08	1.62	2.20	2.96	4.18	6.04	8.74	12.5	16.5	19.0	0.91
1	33.3	1.3125	19	0.75	K _v	0.934	1.40	1.90	2.56	3.62	5.22	7.56	10.8	14.3	16.4	
					X _T	0.912	0.860	0.808	0.771	0.742	0.706	0.693	0.699	0.697	0.694	
					C _v	1.67	2.60	3.82	5.43	7.79	12.2	18.9	27.4	37.8	47.2	0.85
	47.6	1.875	19	0.75	K _V	1.44	2.25	3.30	4.70	6.74	10.6	16.3	23.7	32.7	40.8	
0					X _T	0.680	0.690	0.702	0.725	0.707	0.619	0.622	0.621	0.619	0.623	
2	00.0	1 0105			C _v	1.11	1.55	2.05	2.87	4.07	5.95	8.84	13.4	19.6	26.8	0.79
	33.3	1.3125 (2)	19	0.75	K _V	0.960	1.34	1.77	2.48	3.52	5.15	7.65	11.6	17.0	23.2	
	, ,	, ,			X _T	0.938	0.899	0.848	0.789	0.761	0.692	0.636	0.568	0.519	0.507	
					C _v	4.59	8.29	12.0	16.9	25.0	37.7	57.3	85.1	121	148	0.80
	73.0	2.875	38	1.5	K _v	3.97	7.17	10.4	14.6	21.6	32.6	49.6	73.6	105	128	
0					X _T	0.779	0.744	0.715	0.684	0.630	0.582	0.583	0.579	0.578	0.580	
3					C _v	1.56	2.51	3.68	5.40	7.65	11.7	18.2	27.0	37.3	47.8	0.84
	47.6 (2)	1.875 (2)	19	0.75	K _v	1.35	2.17	3.18	4.67	6.62	10.1	15.7	23.4	32.3	41.3	
	. ,	, ,			X _T	0.834	0.807	0.768	0.718	0.756	0.723	0.679	0.627	0.615	0.615	
					C _v	2.51	5.10	8.03	12.0	18.7	30.7	47.4	80.3	116	156	0.81
	87.3	3.4375	38	1.5	K_{V}	2.17	4.41	6.95	10.4	16.2	26.6	41.0	69.5	100	135	
					X _T	0.890	0.770	0.744	0.701	0696	0.637	0.668	0.572	0.566	0.565	
4					C _v	2.33	3.56	5.64	8.18	11.9	18.0	28.2	42.6	62.2	81.8	0.79
	58.7 (2)	2.3125 (2)	29	1.125	K _V	2.02	3.08	4.88	7.08	10.3	15.6	24.4	36.8	53.8	70.8	
	. ,	, ,			X _T	0.753	0.846	0.702	0.666	0.682	0.656	0.619	0.609	0.559	0.530	
					C _v	5.51	10.9	17.9	30.2	50.5	82.0	133	200	269	328	0.78
	111.1	4.375	51	2	K_{V}	4.77	9.43	15.5	26.1	43.7	70.9	115	173	233	284	
0					X _T	0.705	0.701	0.663	0.646	0.612	0.604	0.606	0.605	0.596	0.604	
6					C _v	4.00	7.63	11.1	15.0	23.3	35.0	53.3	79.6	112	144	0.78
	73.0 (2)	2.875 (2)	38	1.5	K _v	3.46	6.60	9.60	13.0	20.2	30.3	46.1	68.9	96.9	125	
	_'	(-)			X _T	0.670	0.698	0.725	0.731	0.637	0.629	0.599	0.597	0.573	0.571	

Table 24. Design EAD, Whisper Trim® I Cage

Whis	per 1	rim I	- Flo	ow Up)									Charac	Linear teristic
Valve Size,		ort meter	-	cimum ravel	Flow Coeffi-			Va	lve Oper	ning—Pe	rcent of	Total Tra	vel		
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100
					C _v	2.17	5.30	8.44	11.8	14.7	16.6	19.5	21.5	23.1	24.1
1	33.3	1.3125	19	0.75	K _V	1.88	4.58	7.30	10.2	12.7	14.4	16.9	18.6	20.0	20.8
					X _T	0.390	0.406	0.424	0.454	0.456	0.490	0.490	0.506	0.526	0.536
					C _v	4.98	11.0	19.7	27.9	34.5	40.6	45.7	50.1	53.7	55.9
2	47.6	1.875	19	0.75	K _V	4.31	9.52	17.0	24.1	29.8	35.1	39.5	43.3	46.5	48.4
	2 17.0				X _T	0.670	0.633	0.403	0.330	0.322	0.327	0.343	0.359	0.372	0.386
					C _v	12.4	30.4	48.3	67.6	84.2	95.2	112	123	132	138
3	73.0	2.875	38	1.5	K _v	10.7	26.3	41.8	58.5	72.8	82.3	96.9	106	114	119
					X _T	0.307	0.303	0.330	0.329	0.332	0.331	0.361	0.360	0.360	0.375
					C _v	16.7	42.9	67.5	91.2	113	133	152	168	182	194
4	87.3	3.4375	38	1.5	K _v	14.4	37.1	58.4	78.9	97.7	115	131	145	157	168
					X _T	0.738	0.411	0.378	0.331	0.323	0.342	0.354	0.370	0.391	0.400
				C _v	28.8	70.4	112	157	195	220	260	285	310	320	
6	111.1	4.375	51	2	K _v	24.9	60.9	96.9	136	169	190	225	247	268	277
					X _T	0.303	0.331	0.361	0.330	0.330	0.360	0.360	0.390	0.391	0.403

Table 25. Design ED, Class 125-600, Quick Opening Cage

Quic	k O	peniı	ng													iick Op haracte	
Valve Size,		Port meter	-	rimum vel ⁽¹⁾	Flow Coeffi-	Coeffs for 6 mm (0.25 Inch)			Valve	e Openi	ng—Pe	rcent of	Total T	ravel			F _L ⁽³⁾
Inches	mm	Inches	mm	Inches	cient	Travel ⁽²⁾	10	20	30	40	50	60	70	80	90	100	
1 000					C _v	14.7	4.86	9.39	13.4	16.9	18.9	20.3	21.1	21.8	21.9	22.1	0.81
1 and 1.25	33.3	1.3125	19	0.75	K_{ν}	12.7	4.20	8.12	11.6	14.6	16.3	17.6	18.3	18.9	18.9	19.1	
					X_{T}	0.703	0.556	0.744	0.724	0.666	0.626	0.584	0.566	0.549	0.554	0.556	
					C _v	22.6	7.79	14.4	20.5	26.8	32.0	36.6	39.4	41.3	42.7	44.0	0.79
	47.6	1.875	19	0.75	K_{V}	19.5	6.74	12.5	17.7	23.2	27.7	31.7	34.1	35.7	36.9	38.1	
	47.0	1.075	13	0.73	X _T	0.679	0.494	0.641	0.682	0.680	0.686	0.661	0.649	0.638	0.616	0.597	
1.5					F_d		0.22	0.28	0.32	0.34	0.35	0.36	0.36	0.36	0.36	0.36	
	33.3	1.3125			C _v	16.2	5.05	9.99	14.7	20.0	24.0	25.7	26.2	27.4	28.6	29.9	0.88
	(4)	(4)	19	0.75	K_{V}	14.0	4.37	8.64	12.7	17.3	20.8	22.2	22.7	23.7	24.7	25.9	
					X_T	0.942	0.803	0.904	0.946	0.872	0.838	0.849	0.874	0.832	0.795	0.756	
					C _v	29.7	13.4	26.8	39.9	51.3	62.9	70.6	73.7	75.6	76.8	77.6	0.77
	58.7	2.3125	29	1.125	K_{V}	25.7	11.6	23.2	34.5	44.4	54.4	61.1	63.8	65.4	66.4	67.1	
	50.7	2.0120	20	1.120	X _T	0.773	0.605	0.695	0.737	0.761	0.703	0.658	0.641	0.635	0.626	0.623	
2					F_d		0.24	0.30	0.33	0.35	0.36	0.36	0.36	0.36	0.36	0.36	
	33.3	1.3125			C _v	16.7	4.80	9.58	14.9	20.2	25.7	29.3	31.2	31.2	31.2	31.2	0.87
	(4)	(4)	19	0.75	K_{V}	14.4	4.15	8.29	12.9	17.5	22.2	25.3	27.0	27.0	27.0	27.0	
					X_T	0.705	0.578	0.733	0.695	0.698	0.666	0.689	0.735	0.791	0.805	0.805	
					C _v	33.4	20.9	39.6	58.8	74.2	84.9	97.0	103	106	108	109	0.81
	73.0	2.875	38	1.5	K_{v}	28.9	18.1	34.3	50.9	64.2	73.4	83.9	89.1	91.7	93.4	94.3	
	70.0	2.070	00	1.5	X _T	0.635	0.601	0.684	0.738	0.767	0.744	0.689	0.669	0.658	0.660	0.652	
2.5					F_d		0.25	0.31	0.34	0.35	0.36	0.36	0.36	0.36	0.36	0.35	
	47.6	1.875			C _v	25.3	7.83	15.2	22.8	31.0	40.0	48.3	54.9	60.3	66.4	71.2	0.86
	(4)	(4)	19	0.75	K_{v}	21.9	6.77	13.1	19.7	26.8	34.6	41.8	47.5	52.2	57.4	61.6	
					X_{T}	0.642	0.498	0.618	0.627	0.636	0.640	0.669	0.725	0.758	0.737	0.710	
					C _v	43.6	27.2	52.2	77.9	99.5	124	140	149	154	158	161	0.77
	87.3	3.4375	38	1.5	K_{V}	37.7	23.5	45.2	67.4	86.1	107	121	129	133	137	139	
	07.0	0.4073		'.5	X _T	0.635	0.626	0.671	0.745	0.796	0.703	0.657	0.619	0.602	0.591	0.577	
3					F _d		0.22	0.29	0.32	0.34	0.35	0.36	0.36	0.36	0.36	0.36	
	58.7	2.3125			C _v	35.2	15.9	31.7	47.2	60.7	74.4	83.6	87.3	89.5	91.0	91.9	0.86
	(4)	(4)	29	1.125	K_{V}	30.4	13.8	27.4	40.8	52.5	64.4	72.3	75.5	77.4	78.7	79.5	
					X_{T}	0.852	0.718	0.837	0.889	0.905	0.842	0.784	0.763	0.760	0.744	0.744	

-continued-

Table 25. Design ED, Class 125-600, Quick Opening Cage (continued)

Valve Size,	_	ort meter	-	rimum vel ⁽¹⁾	Flow Coeffi-	Coeffs for 6 mm (0.25			Valve	Openi	ng—Pe	rcent of	Total T	ravel			F _L ⁽³⁾
Inches	mm	Inches	mm	Inches	cient	Inch) Travel ⁽²⁾	10	20	30	40	50	60	70	80	90	100	
					C_{v}	45.9	37.7	75.0	125	163	193	220	238	247	251	251	0.79
	111.1	4.375	51	2	K_{V}	39.7	32.6	64.9	108	141	167	190	206	214	217	217	
	111.1	4.375	51	2	X _T	0.607	0.623	0.689	0.733	0.764	0.762	0.723	0.689	0.669	0.683	0.694	
4					F _d		0.22	0.27	0.29	0.31	0.31	0.31	0.31	0.31	0.31	0.30	
	70.0	0.075			C_{v}	39.8	25.0	47.2	70.1	88.5	101	116	123	127	129	130	0.89
	73.0 (4)	2.875 (4)	38	1.5	K_{V}	34.4	21.6	40.8	60.6	76.6	87.4	100	106	110	112	112	
					X_{T}	0.841	0.707	0.879	0.948	0.989	0.956	0.875	0.851	0.834	0.840	0.834	
					C_{v}	92.0	73.6	150	232	306	353	389	416	441	451	460	0.82
	177.8	7	51	2	K_{v}	79.6	63.7	130	201	265	305	336	360	381	390	398	
	177.0	'	31		X_{T}	0.660	0.664	0.651	0.667	0.694	0.722	0.742	0.728	0.723	0.719	0.710	
6					F_d		0.17	0.22	0.25	0.26	0.27	0.28	0.28	0.28	0.28	0.28	
	111.1	4.375			C _v	64.9	52.3	101	150	199	247	284	310	329	345	358	0.87
	(4)	(4)	51	2	K_{v}	56.1	45.2	87.4	130	172	214	246	268	285	298	310	
					X_{T}	0.758	0.774	0.763	0.771	0.778	0.763	0.761	0.717	0.699	0.707	0.691	
					C _v	108	80.3	188	290	389	480	554	615	658	705	744	0.87
8	203.2	8	51	2	K_{V}	93.4	69.5	163	251	336	415	479	532	569	610	644	
					X_{T}	0.653	0.670	0.628	0.679	0.731	0.766	0.806	0.829	0.859	0.863	0.866	
					C _v	108	135	291	434	551	639	706	759	807	841	863	0.85
8	203.2	8	76	3	K_{V}	93.4	117	252	375	477	553	611	657	698	727	746	
	200.2		, 0		X_{T}	0.653	0.643	0.699	0.757	0.807	0.838	0.861	0.857	0.841	0.838	0.827	
					F_d		0.19	0.24	0.26	0.27	0.28	0.28	0.28	0.28	0.28	0.27	

^{1.} When using Type 655-ED or 655-ET as a control valve for on-off service, the maximum travel for sizing purposes is 19 mm (0.75-inch).

2. When using self-operated regulators, use coefficients listed for 6 mm (0.25-inch) travel.

3. At 100% travel.

4. Restricted trim.

Notes: The coefficients shown on this page are also appropriate for Design EDR.

Table 26. Design ED, Class 125-600, Linear Cage

		g.,, -			Lilleal Co	9-										Linear
Linea	ar														Charac	
Valve Size,		ort meter		rimum vel ⁽²⁾	Flow Coeffi-			Va	ve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	
					C_{v}	3.21	5.50	8.18	10.9	13.2	15.0	16.9	18.6	19.9	20.6	0.84
1 & 1.25	33.3	1.3125	19	0.75	K _v	2.78	4.76	7.08	9.43	11.4	13.0	14.6	16.1	17.2	17.8	
					X _T	0.340	0.644	0.494	0.509	0.532	0.580	0.610	0.629	0.628	0.636	
					C _v	4.23	7.84	11.8	15.8	20.4	25.3	30.3	34.7	37.2	39.2	0.82
	47.0	4.075	40	0.75	K _v	3.66	6.78	10.2	13.7	17.6	21.9	26.2	30.0	32.2	33.9	
	47.6	1.875	19	0.75	X _T	0.656	0.709	0.758	0.799	0.738	0.729	0.708	0.686	0.683	0.656	
1.5					F _d	0.30	0.37	0.41	0.44	0.44	0.41	0.38	0.35	0.34	0.34	
					C _v	2.92	5.70	9.05	12.5	15.6	18.5	21.1	23.9	26.8	29.2	0.91
	33.3	1.3125	19	0.75	K _v	2.53	4.93	7.83	10.8	13.5	16.0	18.3	20.7	23.2	25.3	
	(-)	(-)			X _T	0.690	0.651	0.633	0.634	0.650	0.666	0.708	0.718	0.737	0.733	
					C _v	7.87	16.0	24.9	33.4	42.1	51.8	62.0	68.1	70.6	72.9	0.77
	-0-	0.0405	-00	4 405	K_{V}	6.81	13.8	21.5	28.9	36.4	44.8	53.6	58.9	61.1	63.1	
	58.7	2.3125	29	1.125	X _T	0.641	0.720	0.728	0.767	0.793	0.754	0.683	0.658	0.652	0.638	
2					F _d	0.30	0.35	0.36	0.37	0.37	0.36	0.35	0.35	0.34	0.33	
					C _v	3.53	6.36	9.92	13.3	16.5	19.7	22.7	25.6	29.3	33.3	0.87
	33.3	1.3125	19	0.75	K _v	3.05	5.50	8.58	11.5	14.3	17.0	19.6	22.1	25.3	28.8	
	(0)	(0)			X _T	0.456	0.529	0.549	0.582	0.611	0.633	0.671	0.723	0.727	0.694	
					C _v	9.34	21.6	35.5	49.5	62.7	74.1	83.6	93.5	102	108	0.81
					K _v	8.08	18.7	30.7	42.8	54.2	64.1	72.3	80.9	88.2	93.4	
	73.0	2.875	38	1.5	X _T	0.680	0.660	0.644	0.669	0.674	0.706	0.716	0.687	0.658	0.641	
2.5					F _d	0.27	0.33	0.35	0.36	0.35	0.34	0.32	0.29	0.27	0.27	
					C _v	4.10	8.09	12.3	16.7	21.1	26.8	33.7	41.3	49.2	57.0	0.84
	47.6 (3)	1.875 (3)	19	0.75	K _v	3.55	7.00	10.6	14.4	18.3	23.2	29.2	35.7	42.6	49.3	
	(-)	(-)			X _T	0.668	0.646	0.684	0.688	0.698	0.694	0.678	0.668	0.669	0.666	
					C _v	14.5	32.9	52.1	70.4	88.5	105	118	133	142	148	0.82
	07.0	0.4075	-00	4-	K_{V}	12.5	28.5	45.1	60.9	76.6	90.8	102	115	123	128	
	87.3	3.4375	38	1.5	X _T	0.671	0.699	0.697	0.720	0.733	0.718	0.707	0.650	0.630	0.620	
3					F _d	0.26	0.32	0.35	0.36	0.36	0.36	0.36	0.28	0.29	0.30	
					C _v	8.06	16.9	26.7	37.5	49.0	61.4	73.8	85.3	94.7	102	0.85
	58.7 (3)	2.3125	29	1.125	K _v	6.97	14.6	23.1	32.4	42.4	53.1	63.8	73.8	81.9	88.2	
	(0)	(0)			X _T	0.592	0.614	0.662	0.672	0.674	0.676	0.694	0.722	0.736	0.732	
					C _v	23.3	50.3	78.1	105	127	152	181	203	223	236	0.82
					K _v	20.2	43.5	67.6	90.8	110	131	157	176	193	204	
	111.1	4.375	51	2	X _T	0.691	0.714	0.720	0.731	0.764	0.757	0.748	0.762	0.732	0.688	
4					F _d	0.31	0.36	0.38	0.38	0.37	0.35	0.32	0.30	0.27	0.28	
					C _v	9.77	22.6	37.2	51.8	65.7	77.5	87.5	97.9	107	113	0.84
	73.0 (3)	2.875	38	1.5	K _V	8.45	19.5	32.2	44.8	56.8	67.0	75.7	84.7	92.6	97.7	
	(3)	(3)			X _T	0.926	0.899	0.873	0.904	0.919	0.962	0.972	0.937	0.891	0.872	
	1	1	1	1		l	ı	l	l	<u> </u>	<u> </u>	l	1	<u> </u>	1	1

-continued-

Table 26. Design ED, Class 125-600, Linear Cage (continued)

Valve Size,		ort meter	-	imum vel ⁽²⁾	Flow Coeffi-			Val	ve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	
					C _v	46.3	107	171	228	279	327	367	402	420	433	0.84
	177.0	7	F-4	2	K_{V}	40.0	92.6	148	197	241	283	317	348	363	375	
	177.8	/	51	2	X _T	0.656	0.727	0.744	0.781	0.803	0.800	0.784	0.758	0.755	0.740	
6					F _d	0.21	0.26	0.29	0.30	0.31	0.31	0.31	0.28	0.28	0.28	
	444.4	4.075			C _v	16.7	38.6	65.4	93.7	123	156	194	244	290	322	0.88
	111.1	4.375 (3)	51	2	K_{V}	14.4	33.4	56.6	81.1	106	135	168	211	251	279	
	, ,	,			X _T	0.762	0.698	0.675	0.684	0.681	0.660	0.676	0.657	0.685	0.703	
					C_{v}	60.2	129	206	285	363	444	526	581	640	688	0.87
8(2)	203.2	8	51	2	K _v	52.1	112	178	247	314	384	455	503	554	595	
					X _T	0.704	0.721	0.657	0.651	0.683	0.713	0.740	0.801	0.821	0.839	
					C _v	91.4	207	325	440	550	639	711	760	795	846	0.87
	202.2	0.0	76	,	K_{V}	79.1	179	281	381	476	553	615	657	688	732	
8	203.2	8	76	3	X _T	0.651	0.624	0.677	0.746	0.786	0.803	0.823	0.836	0.843	0.807	
					F _d	0.23	0.28	0.30	0.31	0.31	0.31	0.31	0.31	0.31	0.31	

Notes: The coefficients shown on this page are also appropriate for Design EDR.

^{1.} At 100% travel.
2. If coefficients listed above for the 8-inch linear cage with 51 mm (2-inch) travel are not sufficient for your application, consider using the quick opening cage. The 8-inch quick opening cage with 51 mm (2-inch) travel has approximately a linear characteristic.
3. Restricted trim.

Table 27. Design ED, Class 125-600, Equal Percentage Cage, Flow Down

Баша	J D				-									Eq	ual Perc	entage
Equa	ai Pe	ercer	แล่	е											Charac	teristic
Valve Size,		ort meter		rimum ravel	Flow Coeffi-			Val	ve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	-
					C_{v}	0.783	1.54	2.20	2.89	4.21	5.76	7.83	10.9	14.1	17.2	0.88
1 & 1.25	33.3	1.3125	19	0.75	K_{V}	0.677	1.33	1.90	2.50	3.64	4.98	6.77	9.43	12.2	14.9	
					X _T	0.766	0.614	0.587	0.667	0.672	0.687	0.743	0.760	0.733	0.667	
					C_{v}	1.52	2.63	3.87	5.41	7.45	11.2	17.4	24.5	30.8	35.8	0.84
	47.6	4 075	40	0.75	K _v	1.31	2.27	3.35	4.68	6.44	9.69	15.1	21.2	26.6	31.0	
	47.6	1.875	19	0.75	X _T	0.780	0.735	0.716	0.715	0.738	0.727	0.690	0.685	0.685	0.679	
1.5					F _d	0.64	0.63	0.63	0.64	0.46	0.45	0.30	0.31	0.35	0.38	
					C _v	1.12	1.56	2.22	3.10	4.27	6.17	9.01	13.1	18.2	23.1	0.91
	33.3	1.3125	19	0.75	K_{V}	0.969	1.35	1.92	2.68	3.69	5.34	7.79	11.3	15.7	20.0	
	(-)	(=)			X _T	0.821	0.864	0.820	0.703	0.721	0.679	0.665	0.639	0.650	0.700	
					C _v	1.66	2.93	4.66	6.98	10.8	16.5	25.4	37.3	50.7	59.7	0.85
					K _v	1.44	2.53	4.03	6.04	9.34	14.3	22.0	32.3	43.9	51.6	
	58.7	2.3125	29	1.125	X _T	0.827	0.834	0.774	0.727	0.687	0.684	0.702	0.736	0.686	0.687	
2					F _d	0.41	0.50	0.53	0.58	0.37	0.32	0.27	0.26	0.29	0.31	
					C _v	0.923	1.42	2.09	2.84	4.11	5.83	8.58	12.8	18.5	24.3	0.88
	33.3	1.3125	19	0.75	K _v	0.798	1.23	1.81	2.46	3.56	5.04	7.42	11.1	16.0	21.0	
	(2) (2)	(2)			X _T	0.775	0.744	0.742	0.707	0.715	0.714	0.714	0.641	0.621	0.649	
					C _v	3.43	7.13	10.8	15.1	22.4	33.7	49.2	71.1	89.5	99.4	0.84
	72.0 2.075			K _V	2.97	6.17	9.34	13.1	19.4	29.2	42.6	61.5	77.4	86.0		
	73.0	2.875	38	1.5	X _T	0.778	0.702	0.678	0.677	0.658	0.654	0.661	0.665	0.661	0.660	
2.5					F _d	0.45	0.49	0.49	0.47	0.35	0.32	0.30	0.24	0.25	0.27	
					C _v	1.57	2.57	3.82	5.44	7.64	11.5	18.2	26.7	35.1	43.9	0.89
	47.6 (2)	1.875 (2)	19	0.75	K _V	1.36	2.22	3.30	4.71	6.61	9.95	15.7	23.1	30.4	38.0	
	(2)	(2)			X _T	0.801	0.756	0.713	0.677	0.648	0.672	0.628	0.635	0.706	0.710	
					C _v	4.32	7.53	10.9	17.1	27.2	43.5	66.0	97.0	120	136	0.82
					K _V	3.74	6.51	9.43	14.8	23.5	37.6	57.1	83.9	104	118	
	87.3	3.4375	38	1.5	X _T	0.774	0.706	0.682	0.635	0.616	0.602	0.663	0.693	0.670	0.675	
3					F _d	0.52	0.63	0.68	0.39	0.36	0.29	0.26	0.28	0.30	0.32	
					C _v	1.75	3.11	4.77	7.07	10.7	17.0	27.9	41.5	58.0	70.7	0.87
	58.7 (2)	2.3125	29	1.125	K _V	1.51	2.69	4.13	6.12	9.26	14.7	24.1	35.9	50.2	61.2	
	(2)	(2)			X _T	0.944	0.840	0.803	0.757	0.735	0.642	0.531	0.613	0.629	0.702	
					C _v	5.85	11.6	18.3	30.2	49.7	79.7	125	171	205	224	0.82
					K _V	5.06	10.0	15.8	26.1	43.0	68.9	108	148	177	194	
	111.1	4.375	51	2	X _T	0.731	0.650	0.643	0.645	0.632	0.625	0.672	0.742	0.737	0.716	
4					F _d	0.45	0.42	0.40	0.33	0.30	0.28	0.23	0.24	0.26	0.28	
•					C _v	3.82	7.65	11.4	16.9	25.5	38.2	60.5	85.7	105	112	0.89
	73.0	2.875	38	1.5	K _V	3.30	6.62	9.86	14.6	22.1	33.0	52.3	74.1	90.8	96.9	
	(2)	(2)			X _T	0.746	0.700	0.694	0.669	0.640	0.627	0.591	0.644	0.735	0.813	

-continued-

Table 27. Design ED, Class 125-600, Equal Percentage Cage, Flow Down (continued)

Valve Size,	ze, Diameter	-	imum avel	Flow Coeffi-			Val	ve Open	ing—Pe	rcent of	Total Tra	vel			F _L ⁽¹⁾	
Inches	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100	
					C_{v}	12.9	25.8	43.3	67.4	104	162	239	316	368	394	0.85
	177.8	7	51	2	K_{V}	11.2	22.3	37.5	58.3	90.0	140	207	273	318	341	
	177.8	/	51	2	X _T	0.688	0.680	0.682	0.709	0.700	0.720	0.736	0.744	0.780	0.778	
6					F _d	0.39	0.44	0.47	0.33	0.29	0.22	0.22	0.24	0.25	0.26	
		4.075			C _v	5.40	10.1	15.8	26.7	45.2	71.2	111	169	232	274	0.88
	111.1	4.375 (2)	51	2	K_{V}	4.67	8.74	13.7	23.1	39.1	61.6	96.0	146	201	237	
	, ,	(2) (2)			X _T	0.834	0.834	0.735	0.654	0.626	0.613	0.614	0.610	0.629	0.695	
					C_{v}	18.5	38.0	58.4	86.7	130	189	268	371	476	567	0.85
8	203.2	8	51	2	K_{V}	16.0	32.9	50.5	75.0	112	163	232	321	412	490	
					X _T	0.727	0.623	0.600	0.588	0.580	0.587	0.599	0.611	0.671	0.724	
					C _v	27.0	58.1	105	188	307	478	605	695	761	818	0.86
0	000.0	8	76	_	K_{V}	23.4	50.3	90.8	163	266	413	523	601	658	708	
8	203.2	8	76	3	X _T	0.644	0.654	0.636	0.611	0.643	0.615	0.725	0.809	0.804	0.807	
					F _d	0.28	0.26	0.23	0.20	0.17	0.22	0.24	0.25	0.25	0.26	
1. At 100 2. Restric																

Notes: The coefficients shown on this page are also appropriate for Design EDR. $\begin{tabular}{ll} \hline \end{tabular}$

Table 28. Design ED, Class 125-600, Whisper Trim® I Cage, Flow Up

Whis														Charae	Linear cteristic
Valve Size,		ort meter		rimum ravel	Flow Coeffi-			٧	alve Ope	ning—Pe	rcent of T	otal Trav	el		
Inches ⁽¹⁾	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100
					C _v	3.28	7.39	12.0	14.2	14.9	15.3	15.7	16.0	16.4	16.8
1 & 1.25	33.3	1.3125	19	0.75	K _v	2.84	6.39	10.4	12.3	12.9	13.2	13.6	13.8	14.2	14.5
					X _T	0.581	0.605	0.617	0.644	0.764	0.790	0.809	0.813	0.795	0.768
					C _v	2.62	7.42	13.9	20.8	23.2	24.2	24.9	25.4	26.1	26.7
	47.6	1.875	19	0.75	K _v	2.27	6.42	12.0	18.0	20.1	20.9	21.5	22.0	22.6	23.1
1.5					X _T	0.892	0.766	0.632	0.498	0.614	0.771	0.876	0.919	0.901	0.894
1.5					C _v	3.12	7.36	13.0	18.5	20.7	21.4	21.8	23.1	23.9	25.2
	33.3	1.3125	19	0.75	K_{V}	2.70	6.37	11.2	16.0	17.9	18.5	18.9	20.0	20.7	21.8
	(-)	(-)			X _T	0.559	0.605	0.460	0.383	0.472	0.622	0.768	0.823	0.874	0.857
					C _v	7.30	19.2	34.6	42.2	45.5	47.0	47.1	47.2	47.2	48.0
	58.7	2.3125	29	1.125	K_{V}	6.31	16.6	29.9	36.5	39.4	40.7	40.7	40.8	40.8	41.5
					X _T	0.604	0.467	0.318	0.387	0.526	0.689	0.843	0.899	0.940	0.938
2					C _v	2.86	6.79	11.7	18.4	23.6	27.9	30.9	33.5	35.3	36.7
	33.3	1.3125 (2)	19	0.75	K _V	2.47	5.87	10.1	15.9	20.4	24.1	26.7	29.0	30.5	31.7
	(2)	(2)			X _T	0.672	0.755	0.547	0.386	0.358	0.377	0.398	0.431	0.470	0.483
	1				C _v	12.2	32.6	49.7	54.4	55.9	59.8	64.0	67.7	71.4	74.0
	73.0	2.875	38	1.5	K _V	10.6	28.2	43.0	47.1	48.4	51.7	55.4	58.6	61.8	64.0
					X _T	0.748	0.428	0.414	0.589	0.792	0.877	0.857	0.792	0.712	0.719
2.5	47.6 1.875				C _v	3.11	8.31	14.9	22.4	29.9	36.0	41.6	46.4	50.5	53.6
	47.6 (2)	1.875 (2)	19	0.75	K _V	2.69	7.19	12.9	19.4	25.9	31.1	36.0	40.1	43.7	46.4
		(2)			X _T	0.603	0.761	0.596	0.467	0.397	0.395	0.398	0.411	0.427	0.439
					C _v	16.5	40.3	70.8	88.0	92.1	90.7	90.3	92.6	95.6	99.1
	87.3	3.4375	38	1.5	K _V	14.3	34.9	61.2	76.1	79.7	78.5	78.1	80.1	82.7	85.7
					X _T	0.685	0.471	0.331	0.378	0.532	0.753	0.929	0.983	0.968	0.923
3					C _v	8.15	19.1	33.2	47.6	60.8	72.1	81.8	90.1	97.4	103
	58.7 (2)	2.3125	29	1.125	K _V	7.05	16.5	28.7	41.2	52.6	62.4	70.8	77.9	84.3	89.1
	(2)	(2)			X _T	0.720	0.660	0.500	0.439	0.406	0.412	0.437	0.472	0.504	0.510
					C _v	33.9	76.6	117	135	137	137	141	149	157	169
	111.1	4.375	51	2	K _V	29.3	66.3	101	117	119	119	122	129	136	146
					X _T	0.607	0.385	0.352	0.467	0.682	0.887	0.977	0.958	0.921	0.811
4					C _v	13.6	32.5	54.3	75.5	94.6	112	127	141	153	160
	73.0 (2)	2.875 (2)	38	1.5	K _V	11.8	28.1	47.0	65.3	81.8	96.9	110	122	132	138
	(2)	(2)			XT	0.674	0.481	0.374	0.344	0.345	0.354	0.370	0.385	0.407	0.428
					C _v	55.8	125	196	245	270	286	297	308	323	338
6	177.8	7	51	2	K _V	48.3	108	170	212	234	247	257	266	279	292
J			"	_	X _T	0.294	0.323	0.286	0.322	0.406	0.494	0.579	0.644	0.673	0.662
					C _v	100	226	337	436	502	581	641	655	659	681
			76	3	K_{V}	86.5	195	292	377	434	503	554	567	570	589
			(3,4)	(3,4)	X _T	0.456	0.490	0.470	0.427	0.452	0.468	0.521	0.624	0.703	0.701
8	203.2	8			C _v	142	303	428	542	611	652	669	689	700	726
			29	4	- K _V	123	262	370	469	529	564	579	596	606	628
			(5)	(5)	X _T	0.549	0.450	0.436	0.441	0.513	0.624	0.707	0.709	0.729	0.718
				Λ1	0.040	0.400	0.400	0.771	0.010	0.024	0.707	0.703	0.723	0.710	

 ⁶⁻inch E-body with restricted Whisper Trim not available. Use EW body where this trim is desired.
 Restricted trim.
 Travel limited to 70 mm (2.75 inches) with Class IV ED valve plug.
 Travel limited to 64 mm (2.5 inches) with anti-extrusion ring or ET-C valve plug.
 Travel limited to 95 mm (3.75 inches) with anti-extrusion ring or ET-C valve plug.

Notes: The coefficients shown on this page are also appropriate for Design EDR.

Table 29. Design ED, Class 125-600, Whisper Trim® III Cage, Flow Up

Valve Size,	_	ort meter		imum avel	Flow Coeffi-			Valve	Opening	-Perce	ent of To	tal Trave	el			X _T (1)
Inches	mm	Inches	mm	Inches	cient	Minimum ⁽³⁾	20	30	40	50	60	70	80	90	100	
							A3 ∆ P /I	P ₁ ≤0.6								
	400.5	E 07E	70		C _v	4.67	68.2	92.0	129	163	196	228	257	279	295	0.71
6	136.5	5.375	76	3	K _v	4.04	59.0	79.6	112	141	170	197	222	241	255	
							B3 ∆P/P	0.75 1≤0.75								
	400.5	E 07E	70		C _v	4.67	38.2	66.9	94.5	120	144	167	190	211	228	0.47
6	136.5	5.375	76	3	K _v	4.04	33.0	57.9	81.7	104	125	144	164	183	197	
							C3 ∆P/P	1≤0.85								
	400 5	E 07E	70		C _v	4.67	28.0	41.3	55.3	69.3	83.0	97.0	110	124	138	0.56
6	136.5	5.375	76	3	K _v	4.04	24.2	35.7	47.8	59.9	71.8	83.9	95.2	107	119	
							D3 ΔP/P	0.99								
	400.5	E 07E	70		C _v	4.67	6.67	9.50	19.9	31.4	46.0	61.0	75.7	89.7	104	0.56
6	136.5	5.375	76	3	K _v	4.04	5.77	8.22	17.2	27.2	39.8	52.8	65.5	77.6	90.0	

Notes: The coefficients shown on this page are also appropriate for Design EDR.

^{1.} This column lists x_T factors for Whisper Trim III cages at 100% travel.
2. Level D exhibits an equal percentage characteristic for the first 1.5 inches (38 mm) of travel, then linear characteristic.
3. This coefficient is minimum rather than 10% open. Valves should not be required to throttle at less than the specified minimum coefficient for an extended period of time. Erosion damage to the valve may result.

Specifications

Available Configurations

Design ED: Single-port, globe-style control valve with cage guiding, balanced valve plug, and push-down-to-close valve plug action (figures 1 and 2)

Design EAD: Angle version of Design ED control valve, used to facilitate piping or in applications where a self-draining valve is desired (figure 3) **Design EDR:** Same as Design ED control valve except with push-down-to-open valve plug action (figure 4)

Valve Sizes

See table 2

End Connection Styles⁽¹⁾⁽²⁾

Cast Iron Valves.

Flanged: Design ED, 1- through 8-inch, Class
■ 125 flat-face or ■ 250 raised-face flanges per
ASME B16.1

Screwed: Design ED, 1- through 2-inch, consistent with ASME B16.4

Steel and Stainless Steel Valves.

Flanged: Class ■ 150, 300, or 600 raised-face (RF) or ring-type joint (RTJ) flanges per ASME B16.5

Screwed or Socket Welding: 1- through 2-inch, consistent with ASME B16.11

Buttwelding: 1- through 8-inch.

Schedules 40 or 80 consistent with ASME B16.25

Socket weld end connection style is not available for Design EAD.

Also, see table 2 and figures 14 and 15

Maximum Inlet Pressures and Temperatures(1)(2)

As listed below, unless limited by maximum pressure drop or material temperature capabilities **Cast Iron Valves**.

Flanged: Consistent with Class 125B or 250B per ASME B16.1

Screwed: Consistent with Class 250 per ASME B16.4

Steel and Stainless Steel Valves.

Flanged: Consistent with Class 150, 300, and 600⁽³⁾ per ASME B16.34

Screwed or Welding: Consistent with Class 600⁽³⁾ per ASME B16.34

Maximum Pressure Drop(2)

Same as maximum inlet pressure for specific construction defined above, except where further limited as follows:

All Valves Except Those with Whisper Trim III and WhisperFlo Cages: See figure 9. Valves with Whisper Trim III Cages (6-inch Design ED): See figure 11 except where further limited by the following max Δ -P/P₁ ratio⁽⁴⁾—0.60 for level A3 cage, 0.75 for level B3 cage, 0.85 for level C3 cage, or 0.99 for level D3 cage Valves for NACE MR0175-2002: See figure 13

Shutoff Classifications per ANSI/FCI 70-2 and IEC 60534-4

Class II: Standard with single graphite ring and 33 through 203 mm (1.3125 through 8-inch) port size

Class III: Optional for valves with single graphite piston ring and 87 mm (3.4375 inch) or larger port diameter

Class IV: For valves with multiple graphite piston rings and 111 mm (4.375 inch) or larger port diameter

Class V High-Temperature: For valves with port diameters from 73 through 203.2 mm (2.875 through 8-inch) with optional C-seal trim. See table 1

Construction Materials

Valve Body, Bonnet, and Bonnet Spacer or Bottom Flange, if used: ■ Cast iron, ■ WCC carbon steel, ■ 316 stainless steel, ■ LCC/HT

carbon steel, ■ WC9 chrome moly steel, or

■ other materials upon request

Valve Plug, Cage, and Metal Seating Parts.

All Valves Except Those with Whisper Trim III and WhisperFlo Cages: See table 3.

Valves with Whisper Trim III and WhisperFlo Cages (4- and 6-inch Design ED): See tables 4 and 5.

Valves for NACE Specification: See table 10. **Bellows Seal Assembly:** ■ 316L stainless steel or ■ N04400

All Other Parts: See table 6

- continued -

ED Valve

Specifications (continued)

Material Temperature Capabilities⁽²⁾

Valve Body/Trim Combinations.

All Valves Except Those with Whisper Trim III and

WhisperFlo Cages: See table 7.

Valves with Whisper Trim III Cages (6-inch

Design ED): See table 4.

Valves with WhisperFlo Cages (4- and 6-inch

Design ED): See table 5. All Other Parts: See table 6

Flow Characteristics

Standard Cages: ■ Quick-opening, ■ linear, or

equal percentage

Whisper Trim and WhisperFlo Cages: Linear

Flow Directions

Design ED or EAD: ■ Standard Cage—Normally

down, Whisper Trim and WhisperFlo

Cages—Always up

Design EDR: ■ Standard Cage—Normally up.

■ Whisper Trim Cage—Always down

Flow Coefficients and Noise Level Prediction

See table 9, the section titled Coefficients in this bulletin, and Catalog 12

Port Diameters and Valve Plug Travels

See table 11

Yoke Boss and Stem Diameters

See table 11

Typical Bonnet Styles

- Plain or extension. See figures 14 and 15 for standard dimensions. See table 8 for selection
- ENVIRO-SEAL bellows seal bonnet. See figure 14 for standard dimensions.

See figure 8 for view of ENVIRO-SEAL bellows seal bonnet. Also, see Bulletin 59.1:070, ENVIRO-SEAL Bellows Seal Bonnets, for further information

Packing Arrangements

■ Single PTFE V-ring (standard), ■ double arrangements, ■ leak-off arrangements,

■ ENVIRO-SEAL packing system. See figure 7 for ENVIRO-SEAL configuration.

ENVIRO-SEAL Packing Systems in vacuum service: Standard ENVIRO-SEAL packing systems can be used in vacuum service with packing rings in standard orientation. Do not reverse the ENVIRO-SEAL PTFE packing rings. See Bulletin 59.1:061, ENVIRO-SEAL Packing Systems for Sliding-Stem Valves, for further information.

Approximate Weights

1 and 1.25 Inch Sizes: 14 kg (30 lb)

1.5 Inch Size: 20 kg (45 lb) 2 Inch Size: 39 kg (85 lb) **2.5 Inch Size:** 45 kg (100 lb) **3 Inch Size:** 57 kg (125 lb) 4 Inch Size: 77 kg (170 lb) 6 Inch Size: 159 kg (350 lb) 8 Inch Size: 408 kg (900 lb)

Additional Options

- Seal welding of Design EDR valve body/bonnet joint for temperatures above 232°C (450°F),
- lubricator, lubricator/isolating valve, drilled and tapped connection in extension bonnet for leak-off service, ■ valve body drain plug, ■ style 3 fabricated extension bonnet made on order to a specific length for cryogenic service, ■ style NS bonnet for seismic service requirements,
- packings suitable for nuclear service.
 C-seal trim for Class V high-temperature shutoff

DIN (or other) ratings and end connections can usually be supplied; consult your Emerson Process Management sales office.
 The pressure/temperature limits in this bulletin and in any applicable standard limitations should not be exceeded.
 Certain bonnet bolting material selections may require a Class 600 easy-e valve assembly to be derated. Contact your Emerson Process Management sales office for more information.

^{4.} Limitation based on excessive noise increases if max ΔP/P1 ratio for a given cage level is exceeded.

ENVIRO-SEAL Packing System Specifications

Applicable Stem Diameters

■ 9.5 mm (3/8 inches), ■ 12.7 (1/2), ■ 19.1 (3/4),

■ 25.4 (1), and ■ 31.8 (1-1/4) diameter valve

Maximum Pressure/Temperature Limits⁽¹⁾

To Meet the EPA Fugitive Emission Standard of 100 PPM⁽²⁾

For ENVIRO-SEAL PTFE and ENVIRO-SEAL Duplex packing systems: full Class 300 up to 232°C (450°F)

For ENVIRO-SEAL Graphite ULF packing system: 104 bar (1500 psig) at 316°C (600°F)

Construction Materials

PTFE Packing Systems.

Packing Ring and Lower Wiper: PTFE V-ring(3) Male and Female Adaptor Rings: Carbon-filled PTFE V-ring

Anti-Extrusion Washer: Filled PTFE Lantern Ring: S31600 (316 stainless steel)

Spring: ■ 17-7PH stainless steel or ■ N06600

Packing Box Flange: S31600

Packing Follower: S31600 lined with carbon-filled

PTFE

Packing Box Studs: Strain-hardened 316 stainless

Packing Box Nuts: 316 stainless steel SA194

Grade 8M

Graphite ULF Packing Systems.

Packing Ring: Graphite rings

Spring: ■ 17-7PH stainless steel or ■ N06600

Packing Box Flange: S31600

Packing Follower: S31600 lined with carbon-filled

PTFE

Packing Box Studs: Strain-hardened 316 stainless

steel

Packing Box Nuts: 316 stainless steel SA194

Grade 8M

Note

Neither Emerson, Emerson Process Management, Fisher, nor any of their affiliated entities assumes responsibility for the selection, use and maintenance of any product. Responsibility for the selection, use, and maintenance of any product remains with the purchaser and end-user.

^{1.} Refer to the valve specifications in this bulletin for pressure/temperature limits of valve parts. Do not exceed the pressure/temperature rating of the valve. Do not exceed any applicable code

^{1.} Hele to the valve specifications in this bulletin to pressure reinperature infines of valve parts. Both resceed the pressure reinperature raining of the resceeding product of the rescent raining of the r

ED Valve

ENVIRO-SEAL, HIGH-SEAL, easy-e, WhisperFlo, Whisper Trim, and Fisher are marks owned by Fisher Controls International LLC, a member of the Emerson Process Management business division of Emerson Electric Co. Emerson Process Management, Emerson, and the Emerson logo are trademarks and service marks of Emerson Electric Co. All other marks are the property of their respective owners. C-seal is a mark owned by Pressure Science, Inc. This product may be covered by one or more of the following patents: 5,129,625; 5,131,666; 5,056,757; 5,230,498; and 5,299,812 or under pending patents.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Neither Emerson, Emerson Process Management, Fisher, nor any of their affiliated entities assumes responsibility for the selection, use and maintenance of any product. Responsibility for the selection, use and maintenance of any product remains with the purchaser and end-user.

Emerson Process Management

Fisher

Marshalltown, Iowa 50158 USA Cernay 68700 France Sao Paulo 05424 Brazil Singapore 128461

www.Fisher.com

