1 Continuité uniforme

Définition 1.1.

Soit $f; I \subset \mathbb{R} \to \mathbb{R}$. On dit que f est uniformément continue sur I si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in I, |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

La différence avec la continuité simple est que δ ne dépend pas de x (c'est le même pour tous les x).

Exemple 1.1. $f(x) = x^2$ est continue sur \mathbb{R} mais pas uniformément continue. En effet, si on prend $\varepsilon = 1$, pour tout $\delta > 0$, on peut choisir $y = x + \frac{1}{x}$ avec $x > \frac{1}{\delta}$, alors $|x - y| = \frac{1}{x} < \delta$ mais

$$|f(x) - f(y)| = |x^2 - (x + \frac{1}{x})^2| = |-\frac{2}{x} - \frac{1}{x^2}| \ge 1.$$

À vérif

Proposition 1.1

L'ensemble des fonctions uniformément continues sur un intervalle I est un espace vectoriel.

Proposition 1.2

La composition de deux fonctions uniformément continues est uniformément continue.

Proposition 1.3: Caractérisation séquentielle de la continuité uniforme

Soit $f:I\subset\mathbb{R}\to\mathbb{R}$. Alors f est uniformément continue sur I si et seulement si pour toutes suites (x_n) et (y_n) dans I telles que

$$|x_n - y_n| \to 0 \implies |f(x_n) - f(y_n)| \to 0$$

Se questionner sur les valeurs abs ici

T)	á	~	~+-	ati		1	1	
1)(em	on	SEL	atı	ıon		. 1	

 \grave{A} faire

1.1 Théorème de Heine

Théorème 1.1: Heine

Toute fonction continue sur un segment est uniformément continue.

Démonstration 1.2.

Par l'absurde

 \grave{A} faire