Inferential Statistics

First semester, 2022

Exercises on Confidence sets and Hypothesis testing

Instructor: Erlis Ruli (ruli@stat.unipd.it), Department of Statistical Sciences

Example 6.1 Let X > 0 be the number of defective items in a shipment of a very large number of items and suppose that $X \sim F_{\theta}$, with p.d.f. $f(x;\theta) = c_{\theta}\theta^x$, x = 1, 2, ..., with $\theta \in (0,1)$ the unknown parameter and $c_{\theta} > 0$ a real depending on θ . Consider a sample of size 1 from this model.

- (a) Discuss a test statistic for $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$ of level or size α ; compute the test with $\theta_0 = 1/2$ and $\alpha = 0.0625$. Is this a test of size α ?
- (b) Compute the power of the test when $\theta = 0.9$ and $\theta_0 = 1/2$ and $\alpha = 0.0625$.
- (c) Derive the Wald confidence interval (CI) for θ of level 1α with a sample of size n; compute the CI with $\alpha = 0.9$ given an observed sample with $\overline{x} = 10$ and n = 30.
- (d) Derive the likelihood-based confidence set for θ , with $\alpha = 0.9$ given an observed sample with $\overline{x} = 10$ and n = 30.

Solution.

(a) We may use NP Lemma but before that we have to check that the monotone likelihood ratio (MLR) property holds. Thus consider the pair (θ_1, θ_2) , with $\theta_1, \theta_2 \in (0, 1)$ and $\theta_1 < \theta_2$, then

$$\frac{L(\theta_2)}{L(\theta_1)} = \frac{1 - \theta_2}{1 - \theta_1} \left(\frac{\theta_2}{\theta_1}\right)^{X - 1}$$

Since $\theta_2/\theta_1 > 1$ and $1-\theta_i > 0$, then $\frac{L(\theta_2)}{L(\theta_1)}$ is an increasing function of X, thus the distribution satisfies the MLR property.

Note that $\Theta_0 = (0, \theta_0]$ and $\Theta_1 = (\theta_0, 1)$. By the NP Lemma, the size α critical region R must be the set of all samples X such that for any two values $\theta_1 \in \Theta_0$ and $\theta_2 \in \Theta_1$

$$\frac{L(\theta_2)}{L(\theta_1)} = \left(\frac{1-\theta_2}{1-\theta_1}\right) \left(\frac{\theta_2}{\theta_1}\right)^{X-1} \ge k \text{ for all } X \in R,$$

and

$$\frac{L(\theta_2)}{L(\theta_1)} = \left(\frac{1-\theta_2}{1-\theta_1}\right) \left(\frac{\theta_2}{\theta_1}\right)^{X-1} < k \text{ for all } X \not\in R.$$

Thus for all samples in R we must have

$$\left(\frac{\theta_2}{\theta_1}\right)^{X-1} \ge k\left(\frac{1-\theta_1}{1-\theta_2}\right) \iff X \ge \log\left(k\left(\frac{1-\theta_1}{1-\theta_2}\right)\right) - \log(\theta_2/\theta_1) + 1$$
$$\iff X \ge c,$$

for some c. The test is thus

reject
$$H_0$$
 if $X \in R$, where $R = \{X : X \ge c\}$

and c is the value that solves

$$\alpha \ge \sup_{\theta \in \Theta_0} P_{\theta}(X \in R) = \sup_{\theta \in \Theta_0} \sum_{x=c}^{\infty} (1 - \theta) \theta^{x-1}$$
$$\ge \sup_{\theta \in \Theta_0} \{\theta^{c-1}\}.$$

For $\theta_0 = 1/2$ and $\alpha = 0.065$ we have to solve

$$0.0625 \ge \sup_{\theta \le 1/2} \{ \theta^{c-1} \}.$$

Since c is discrete, we can solve this equation by trying each possible value of c. Thus

- with c = 1, $\sup_{\theta \le 1/2} \{\theta^{c-1}\} = 1 > 0.0625$,
- with c = 2, $\sup_{\theta \le 1/2} \{\theta\} = 1/2 > 0.0625$,
- with c = 3, $\sup_{\theta \le 1/2} \{\theta^2\} = (1/2)^2 > 0.0625$
- with c = 4, $\sup_{\theta < 1/2} \{\theta^3\} = (1/2)^3 > 0.0625$
- with c = 5, $\sup_{\theta \le 1/2} \{\theta^4\} = (1/2)^4 = 0.0625$.

A test of size α is thus to reject H_0 if $X \geq 5$. Note that if α was 0.05 then we could only build a test of level α .

(b) The power function is $\gamma(\theta) = P_{\theta}(X \in R)$ for all $\theta \in \Theta_1$, thus

$$\gamma(0.9) = \sum_{x=5}^{\infty} 0.1 \cdot 0.9^{x-1} = 0.6561$$

(c) It can be checked that the MLE is $\widehat{\theta} = (\overline{X} - 1)/\overline{X}$ and by the large sample property of the MLE

$$\widehat{\theta} \stackrel{d}{\longrightarrow} N(\theta, I_n(\theta)^{-1}),$$

with $I_n(\theta) = \theta(1-\theta)^2/n$ we have the pivot $\frac{\widehat{\theta}-\theta}{se(\widehat{\theta})} \sim N(0,1)$, with $se(\widehat{\theta}) = \sqrt{I_n(\theta)^{-1}}$. Although this pivot is correct, it is not easy to use since $se(\widehat{\theta})$ depends on the unknown parameter θ . Thus, instead of $se(\widehat{\theta})$ we may prefer to use $\widehat{se}(\widehat{\theta}) = \sqrt{I_n(\widehat{\theta})^{-1}}$, so

$$P_{\theta}\left(-z_{\alpha/2} \leq \frac{\widehat{\theta} - \theta}{\widehat{se}(\widehat{\theta})} \leq z_{\alpha/2}\right) = P_{\theta}\left(\widehat{\theta} - z_{\alpha/2}\widehat{se}(\widehat{\theta}) \leq \theta \leq \widehat{\theta} + z_{\alpha/2}\widehat{se}(\widehat{\theta})\right)$$

$$\to 1 - \alpha,$$

and the desired confidence interval is thus $[\theta \pm z_{\alpha/2}\widehat{se}(\widehat{\theta})]$. With the observed sample we get $\widehat{\theta} = 0.9$, and $\widehat{se}(\widehat{\theta}) \doteq 0.0173$ and the CI is $[0.9 \pm 1.645 \cdot 0.0173] = [0.872, 0.928]$. With the given sample we are 90% confident that the true value θ is between 0.871 and 0.928.

(d) Since there is only one parameter, under the hypothesis $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$ we have the pivot

$$2\log \frac{\sup_{\theta \in (0,1)} L(\theta)}{L(\theta_0)} = 2(\ell(\widehat{\theta}) - \ell(\theta_0)) \stackrel{d}{\longrightarrow} \chi_1^2 \text{ for all } \theta_0 \in (0,1).$$

We see that $2(\ell(\widehat{\theta}) - \ell(\theta)) = 2((n\overline{X} - 1)(\log(\overline{X} - 1) - \log \theta) + (1 - n - n\overline{X})\log \overline{X} - n\log(1 - \theta))$ thus the $1 - \alpha$ likelihood-based confidence set is

$$\{\theta \in (0,1): 598 \log 9 - 658 \log 10 - 60 \log (1-\theta) - 598 \log \theta \le 2.701.\}$$

Example 6.2 Let $Y_i \stackrel{\text{iid}}{\sim} \text{Poi}(\theta_1)$, i = 1, ..., n and $X_j \stackrel{\text{iid}}{\sim} \text{Poi}(\theta_2)$, j = 1, ..., m, with Y_i, X_j being independent for all i, j.

- (a) Construct the log-likelihood ratio test for testing $H_0: \theta_1 = \theta_2$ against $H_1: \theta_1 \neq \theta_2$ at the level α . Compute the test with observed samples $\overline{y} = 3$, $\overline{x} = 5$, m = 15, n = 10, and get the associated p-value.
- (b) Test the above hypothesis by constructing a suitable Wald CI and apply it to the observed samples given above.
- (c) Test the above hypothesis by constructing a suitable Wald CI in case of dependent samples; assuming n = m = 15, can you apply this CI to the above observed samples?

Solution.

(a) Note that $\theta_1, \theta_2 \in \mathbb{R}_{>0}$, thus the pair $(\theta_1, \theta_2) \in \mathbb{R}_{>0} \times \mathbb{R}_{>0} = \Theta$. Since Y_i and X_j are independent, the joint distribution of the two samples is

$$f_{Y_1,\dots,Y_m,X_1,\dots,X_n}(y_1,\dots,y_m,x_1,\dots,x_n;\theta_1,\theta_2) = f_{Y_1}(y_1;\theta_1)\cdots f_{Y_m}(y_m;\theta_1)f_{X_1}(x_1;\theta_2)\cdots f_{X_n}(x_n;\theta_2)$$

$$= \left(\prod_{i=1}^m f_{Y_i}(y_i;\theta_1)\right) \left(\prod_{j=1}^n f_{X_j}(x_j;\theta_2)\right),$$

where $f_{X_j}(x_j; \theta_2)$ is the p.d.f. of $Poi(\theta_2)$. But when we see it as a function of (θ_1, θ_2) , this is the likelihood function $L(\theta_1, \theta_2)$. In this problem we see that the likelihood is actually the product to two functions with separate arguments

$$L(\theta_1, \theta_2) = L_1(\theta_1)L_2(\theta_2).$$

Under H_1 we take the maximum of the likelihood over Θ . But as the likelihood factorises, the sup is much simpler

$$\sup_{(\theta_1,\theta_2)\in\Theta} L(\theta_1,\theta_2) = \left(\sup_{\theta_1\in\mathbb{R}_{>0}} L_1(\theta_1)\right) \left(\sup_{\theta_2\in\mathbb{R}_{>0}} L_2(\theta_2)\right) = L_1(\widehat{\theta}_1)L_2(\widehat{\theta}_2),$$

where $\widehat{\theta}_1 = \overline{Y}$ and $\widehat{\theta}_2 = \overline{X}$. Under H_0 we have the constraint $\theta_1 = \theta_2$ thus let $\Theta_0 = \{(\theta_1, \theta_2) \in \Theta : \theta_1 = \theta_2\}$. We have to find $\sup_{(\theta_1, \theta_2) \in \Theta_0} L(\theta_1, \theta_2)$, which is equivalent to $\sup_{\theta_1 \in \mathbb{R}_{>0}} L(\theta_1, \theta_1)$. For, note that

$$L(\theta_1, \theta_1) = L_1(\theta_1) L_2(\theta_1) = \left(\prod_{i=1}^m \frac{e^{-\theta_1 \theta_1^{Y_i}}}{Y_i!} \right) \left(\prod_{j=1}^n \frac{e^{-\theta_1 \theta_1^{X_j}}}{X_j!} \right)$$
$$= e^{-(n+m)\theta_1} \theta_1^{\sum_i Y_i + \sum_j X_j} \frac{1}{(\prod_i Y_i!) (\prod_j X_j!)}.$$

You can check that the maximum of this function is at $\widehat{\theta}_0 = \frac{\sum_i Y_i + \sum_j X_j}{n+m}$, and thus $\sup_{\theta_1 \in \mathbb{R}_{>0}} L(\theta_1, \theta_1) = L(\widehat{\theta}_0, \widehat{\theta}_0)$. The likelihood ratio statistic is then

$$\Lambda_n = \frac{\overline{Y}^{m\overline{Y}} \overline{X}^{n\overline{X}}}{\left(\frac{n\overline{Y} + m\overline{X}}{n+m}\right)^{n\overline{Y} + m\overline{X}}}.$$

The LRT is thus to

reject H_0 if λ_n^{obs} , the observed value of $\lambda_n = 2 \log \Lambda_n$, is greater than some threshold c,

defined such that $\alpha \geq \sup_{(\theta_1,\theta_2)\in\Theta_0} P_{(\theta_1,\theta_2)}(\lambda_n \geq c)$. In this case, such a probability is not computable since there is no exact distribution for Λ_n or for λ_n . We may appeal to the large sample property of λ_n . In particular, in our case we have that

$$\lambda_n \stackrel{d}{\longrightarrow} \chi_1^2$$

since $dim(\Theta) - dim(\Theta_0) = 1$, thus the choice $c = \chi^2_{1,\alpha}$ will lead to a test with rejection region of size approximately equal to α .

With the observed samples as above we obtain $\lambda_n^{obs} = 2\log\frac{3^{45}5^{50}}{\left(\frac{45+50}{15+10}\right)^{45+50}} \doteq 70.01$. With $\alpha = 0.05$, $\chi_{1,0.05}^2 = 3.84$, so we reject H_0 . Furthermore, the p-value is $p(\chi_1^2 \geq 70.01) < 0.001$, so there is a strong evidence against H_0 .

(b) The above hypotheses can be restated as $H_0: \delta = 0$ against $H_1: \delta \neq 0$, where $\delta = \theta_1 - \theta_2$. We can thus test H_0 by computing a CI for δ and applying the test:

if 0 is inside the CI we do not reject H_0 , otherwise we reject H_0 .

If the CI has confidence level $1-\alpha$ then the test has level or size α .

By the equivariance principle of the MLE we can estimate δ by the estimator $\hat{\delta} = \hat{\theta}_1 - \hat{\theta}_2$.

By the large sample properties of the MLE, we have $\widehat{\theta}_1 \stackrel{d}{\longrightarrow} N(\theta_1, \widehat{se}(\theta_1)^2)$ and $\widehat{\theta}_2 \stackrel{d}{\longrightarrow} N(\theta_2, \widehat{se}(\theta_2)^2)$ and since the samples Y_i and X_j are independent also $\widehat{\theta}_1$ is independent from $\widehat{\theta}_2$; here $\widehat{se}(\widehat{\theta}_1) = \sqrt{I_n(\widehat{\theta}_1)^{-1}}$.

Thus

$$\widehat{\delta} = \widehat{\theta}_1 - \widehat{\theta}_2 \stackrel{d}{\longrightarrow} N\left(\theta_1 - \theta_2, \widehat{se}(\widehat{\theta}_1)^2 + \widehat{se}(\widehat{\theta}_2)^2\right),$$

and so

$$\frac{\widehat{\delta}-(\theta_1-\theta_2)}{\sqrt{\widehat{se}(\widehat{\theta}_1)^2+\widehat{se}(\widehat{\theta}_2)^2}} \, \stackrel{d}{\longrightarrow} \, N\big(0,1\big).$$

Therefore

$$\begin{split} &1-\alpha = P_{\theta}\left(\left|\frac{\widehat{\delta}-\delta}{\sqrt{\widehat{se}(\widehat{\theta}_{1})^{2}+\widehat{se}(\widehat{\theta}_{2})^{2}}}\right| \leq z_{\alpha/2}\right) \\ &1-\alpha = P_{\theta}\left(-z_{\alpha/2} \leq \frac{\widehat{\delta}-\delta}{\sqrt{\widehat{se}(\widehat{\theta}_{1})^{2}+\widehat{se}(\widehat{\theta}_{2})^{2}}} \leq z_{\alpha/2}\right) \\ &1-\alpha = P_{\theta}\left(\widehat{\delta}-z_{\alpha/2}\sqrt{\widehat{se}(\widehat{\theta}_{1})^{2}+\widehat{se}(\widehat{\theta}_{2})^{2}} \leq \delta \leq \widehat{\delta}+z_{\alpha/2}\sqrt{\widehat{se}(\widehat{\theta}_{1})^{2}+\widehat{se}(\widehat{\theta}_{2})^{2}}\right), \end{split}$$

and the desired confidence interval with approximate level $1-\alpha$ is $[\widehat{\delta}\pm z_{\alpha/2}\sqrt{\widehat{se}(\widehat{\theta}_1)^2+\widehat{se}(\widehat{\theta}_2)^2}]$. With the observed sample we get the observed confidence interval [-3.64,-0.36]. Since $\delta=0$ is not inside the interval we reject H_0 .

(c) We build a Wald CI by finding a suitable pivot. Let $D_i = Y_i - X_i$, for i = 1, ..., n, $\overline{D} = n^{-1} \sum_i D_i = \overline{Y} - \overline{X}$ and $S_D^2 = (n-1)^{-1} \sum_i (D_i - \overline{D})^2$ and note that D_i are independent; let $\delta = E(D_i) = \theta_1 - \theta_2$ and $\sigma_D^2 = \text{var}(D_i)$.

Now by the LLN

$$\frac{\sqrt{n}(\overline{D}-\delta)}{\sqrt{\sigma_D^2}} \stackrel{d}{\longrightarrow} N(0,1).$$

But from previous theory we know that S_D^2 is a consistent estimator for σ_D^2 , thus the above formula is asymptotically equivalent to

$$\frac{\sqrt{n}(\overline{D}-\delta)}{\sqrt{S_D^2}} \stackrel{d}{\longrightarrow} N(0,1),$$

which is a pivot for

Example 6.3 Let $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, i = 1, ..., n. Suppose that μ and σ^2 are unknown.

- (a) Construct a test for $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$; apply it to an observed sample with $\overline{x} = 1.5$, $s^2 = 1.1$, n = 23, given $\mu_0 = 1$ and $\alpha = 0.05$.
- (b) For (a) determine the sample size n needed in order to achieve β as close as possible to but not exceeding 0.01 given the true value (under H_1) is equal to $\mu_1 = 1.2$.
- (c) Construct an upper confidence set for σ^2 of level 1α and apply it to the observed sample in (a).

Solution.

Since σ^2 is unknown we cannot apply the NP Lemma (the MLR property cannot be applied either) but we can resort to the t-test. The pivot to be used is

$$T_n = \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t_{n-1}.$$

Intuitively we should reject H_0 if from our sample we get an average that is "too high", thus the rejection region should be of the form

$$R = \{X_1, \dots, X_n : \overline{X} \ge c\};$$

the threshold c is determined in such a way that the rejection region has size α . For any μ under H_0 ,

$$\alpha = \sup_{\mu \le \mu_0} P_{\mu}(\overline{X} \ge c) = \sup_{\mu \le \mu_0} P_{\mu}\left(\frac{\sqrt{n}(\overline{X} - \mu)}{S} \ge \frac{\sqrt{n}(c - \mu)}{S}\right)$$
$$= \sup_{\mu \le \mu_0} P\left(t_{n-1} \ge \frac{\sqrt{n}(c - \mu)}{S}\right)$$
$$= 1 - F_{t_{n-1}}\left(\frac{\sqrt{n}(c - \mu_0)}{S}\right),$$

where $F_{t_{n-1}}$ is the d.f. of the t_{n-1} random variable (see also Example 6.4, in Lecture 6.). By definition then $t_{n-1,\alpha} = \frac{\sqrt{n}(c-\mu_0)}{S}$ and $c = t_{n-1,\alpha}S/\sqrt{n} + \mu_0$. The test is thus to reject H_0 whenever $\overline{X} \geq t_{n-1,\alpha}S/\sqrt{n} + \mu_0$.

Since $\bar{x} = 1.05 < 1.38 = t_{22,0.05} \sqrt{1.1/23} + 1$, then we do not reject H_0 .

(b) The type size of II error is

$$\beta(\mu) = 1 - P\left(t_{n-1} \ge \frac{\sqrt{n}(t_{n-1,\alpha} - \mu)}{S}\right) \text{ for all } \mu > \mu_0,$$

but by assumption $\beta(\mu_1) = 0.01$ for $\mu_1 = 1.2$. Therefore n is found by solving

$$\beta(\mu_1) = 0.1 = 1 - P\left(t_{n-1} \ge \frac{\sqrt{n}(t_{n-1,\alpha}-2)}{S}\right),$$

from which we find that $n = \left(\frac{SF_{t_{n-1}}^{-1}(0.1)}{t_{n-1,\alpha}-1.2}\right)^2 \doteq 26.$

(c) Using the fact that $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$, then we have that

$$1 - \alpha = P_{\theta} \left(\frac{(n-1)S^2}{\sigma^2} \le \chi^2_{n-1,\alpha} \right) = P_{\theta} \left(\frac{(n-1)S^2}{\chi^2_{n-1,\alpha}} \le \sigma^2 \right)$$

where $\chi^2_{n-1,\alpha}$ is the upper α th quantile of the χ^2_{n-1} distribution, thus a $1-\alpha$ upper confidence interval for $\sigma^2\left[\frac{(n-1)S^2}{\chi^2_{n-1,\alpha}},\infty\right)$. With the observed sample at hand we have the 0.95 CI $[0.713,\infty)$.