Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по курсовой работе по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Игнатьев Даниил Дмитриевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2023 г.

Содержание

1	Пос	становка задачи	2
2		<u>-</u>	2 2 2
3	Pea	лизация	3
4	Рез	ультаты	3
5	Обо	суждение	6
C	Спис	сок иллюстраций	
	1	Визуальзация выборки, Y_1	4
	2	Точечная линейная регрессия для Y_1	
	3	Информационное множество для Y_1	
	4	Коридор совместных значений для Y_1	6

1 Постановка задачи

Необходимо для заданных выборок найти точную линейную регрессию, информационные множества и коридоры решений. Сравнить полученные результаты.

2 Теория

2.1 Точечная линейная регрессия

Рассматривается задача восстановления зависимости для выборки (X, (Y)), $X = \{x_i\}_{i=1}^n, \mathbf{Y} = \{\mathbf{y}_i\}_{i=1}^n, x_i$ - точеный, \mathbf{y}_i - интервальный. Пусть искомая модель задана в классе линейных функций

$$y = \beta_0 + \beta_1 x \tag{1}$$

Поставим задачу оптимизацию 2 для нахождения точечных оценок параметров β_0, β_1 .

$$\sum_{i=1}^{m} w_i \to \min$$

$$\operatorname{mid} \mathbf{y}_i - w_i \cdot \operatorname{rad} \mathbf{y}_i \le X\beta \le \operatorname{mid} \mathbf{y}_i + w_i \cdot \operatorname{rad} \mathbf{y}_i$$

$$w_i \ge 0, i = 1, ..., m$$

$$w, \beta - ?$$
(2)

Задачу 2 можно решить методами линейного программирования.

2.2 Информационное множество

Информационным множеством задачи восстановления зависимости будем называть множество значений всех параметров зависимости, совместных с данными в каком-то смысле.

Коридором совместных зависимостей задачи восстановления зависимости называется многозначное множество отображений Υ , сопоставляющее каждому значению аргумента x множество

$$\Upsilon(x) = \bigcup_{\beta \in \Omega} f(x, \beta) \tag{3}$$

, где Ω - информационное множество, x - вектор переменных, β - вектор оцениваемых параметров.

Информационное множество может быть построено, как пересечение полос, заданных

$$\mathbf{y}_{i} \le \beta_{0} + \beta_{1} x_{i1} + \dots + \beta_{m} x_{im} \le \overline{\mathbf{y}_{i}} \tag{4}$$

, где $i = \overline{1,n} \mathbf{y}_i \in \mathbf{Y}, x_i \in X, X$ - точечная выборка переменных, \mathbf{Y} - интервальная выборка откликов.

3 Реализация

Проект реализован на языке Python v. 3.2.5. GitHub.

4 Результаты

Данные S_X были взяты из файлов $data/poly_i.csv$, где $i \in \{0, 1, ..., 9\}$.

Набор значений X точечный и одинаков для всех выборок.

X = [-0.5, -0.35714286, -0.21428571, -0.07142857, 0.07142857, 0.21428571, 0.35714286, 0.5]. Набор значений отклика Y - интервальный.

Построим линейную регрессию и найдём информационное множество.

Рассмотрим выборку Y следующим образом. $y=[\min_{t\in S_i}S_i,\max_{t\in S_i}S_i],$ $y_i\in Y_1.$

Рис. 1: Визуальзация выборки, Y_1

Построим линейную регрессию, решив задачу 2 для выборки Y_1 .

Рис. 2: Точечная линейная регрессия для Y_1

Получим следующие оценки для параметров: $\beta_0=6.333, \beta_1=10.267.$ Тогда полученная модель имеет вид y=6.333+10.267x.

Найдём для данной выборки информационное множество.

Рис. 3: Информационное множество для Y_1

На рис. 3 можно заметит, что найденные параметры β_0, β_1 решением задачи 2 лежат внутри информационного множества.

Построим коридор совместных значений для выборки Y_1 и информационного множества 3 и оценим значения выходной переменной y вне пределов значений входной переменной x.

Рис. 4: Коридор совместных значений для Y_1

На рис. 4 видно, что построенная точечная регрессия лежит внутри коридора совместных значений, что согласуется с рис. 3.

5 Обсуждение

Полученные результаты в виде больших параметров β_0 , β_1 , а также широкого коридора совместных решений обусловлены большой нтервальной неопределённостью. Также стоит отметить, что точечная линейная регрессия попала в информационное множество.