Bayesian Methods for Multimedia Signal Processing

A. Taylan Cemgil

Signal Processing and Communications Lab.

ACM Multimedia 2007, Augsburg, Germany Tutorial1a September 24, 2007

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Goals of this Tutorial

- Model based approach
- ... rather than description of algorithms for solving specific problems
- Illustrate with examples how certain problems in multimedia signal analysis can be approached using generic tools
- Motivate participants to investigate further
- ... provide alternative perspective to existing solutions
- ... and hopefully provide new inspiration

Goals of this Tutorial

- Provide a basic understanding of underlying principles of probabilistic modeling and Bayesian inference
- Orientation in the broad literature of Bayesian machine learning and statistical signal processing
- Focus on fundamental concepts rather than technical details,
- ... we avoid heavy use of algebra by a graphical notation
- ... but there will be some maths

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

_

First Part, Basic Concepts

- Introduction
- Bayes' Theorem,
- Trivial toy example to clarify notation
- Graphical Models
 - Bayesian Networks
 - Undirected Graphical models, Markov Random Fields
 - Factor graphs
- Maximum Likelihood, Penalised Likelihood, Bayesian Learning
- Basic Building Blocks in model construction
 - Probability distributions, Exponential family

Second Part, Models and Applications

- Hidden Markov Models,
- Tempo tracking, Score-performance matching
- Inference in Hidden Markov Models
 - * Forward Backward Algorithm
 - * Viterbi
 - * Exact inference by message passing: Belief Propagation
- Linear Dynamical systems, Kalman Filter Models
 - Tracking
 - Computer Accompaniment
 - Kalman Filtering and Smoothing
 - Audio Restoration and Interpolation

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

4

- Topic-Term Models
- Latent Semantic indexing
- Generative aspect model, Latent Dirichlet allocation
- Factorial Models, Sparsity, Model selection
 - Audio Source Separation
 - Polyphonic Pitch Tracking
 - Approximate Inference in Factorial Models
- Final Remarks and Bibliography

- Switching State Space models, Changepoint Models
 - Pitch tracking
- Particle Filtering
- Nonlinear Dynamical Systems
 - Object tracking in video
 - Particle Filtering, Sequential Monte Carlo
- Markov Random Fields
- Denoising, Source Separation
- Markov Chain Monte Carlo, Gibbs sampler
- Variational Bayes

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

5

Bayes' Theorem [13, 15]

Thomas Bayes (1702-1761)

What you know about a parameter λ after the data \mathcal{D} arrive is what you knew before about λ and what the data \mathcal{D} told you.

$$\begin{array}{rcl} p(\lambda|\mathcal{D}) & = & \frac{p(\mathcal{D}|\lambda)p(\lambda)}{p(\mathcal{D})} \\ \text{Posterior} & = & \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Evidence}} \end{array}$$

An application of Bayes' Theorem: "Source Separation"

Given two fair dice with outcomes λ and y,

$$\mathcal{D} = \lambda + y$$

What is λ when $\mathcal{D} = 9$?

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

"Bureaucratical" derivation

Formally we write

$$\begin{array}{rclcrcl} p(\lambda) & = & \mathcal{C}(\lambda; [& 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ p(y) & = & \mathcal{C}(y; [& 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ \end{array}]) \\ p(\mathcal{D}|\lambda, y) & = & \delta(\mathcal{D} - (\lambda + y)) \end{array}$$

$$\begin{array}{lcl} p(\lambda,y|\mathcal{D}) & = & \frac{1}{p(\mathcal{D})} \times p(\mathcal{D}|\lambda,y) \times p(y)p(\lambda) \\ \\ \text{Posterior} & = & \frac{1}{\text{Evidence}} \times \text{Likelihood} \times \text{Prior} \end{array}$$

Kronecker delta function denoting a degenerate (deterministic) distribution $\delta(x) = \left\{ \begin{array}{cc} 1 & x=0 \\ 0 & x \neq 0 \end{array} \right.$

An application of Bayes' Theorem: "Source Separation"

$$\mathcal{D} = \lambda + y = 9$$

$\mathcal{D} = \lambda + y$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	2	3	4	5	6	7
$\lambda = 2$	3	4	5	6	7	8
$\lambda = 3$	4	5	6	7	8	9
$\lambda = 4$	5	6	7	8	9	10
$\lambda = 5$	6	7	8	9	10	11
$\lambda = 6$	7	8	9	10	11	12

Bayes theorem "upgrades" $p(\lambda)$ into $p(\lambda|\mathcal{D})$.

But you have to provide an observation model: $p(\mathcal{D}|\lambda)$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

_

Prior

$$p(y)p(\lambda)$$

$p(y) \times p(\lambda)$	y = 1	y=2	y = 3	y=4	y = 5	y = 6
$\lambda = 1$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 2$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 3$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 4$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 5$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 6$	1/36	1/36	1/36	1/36	1/36	1/36

 \bullet A table with indicies λ and y

10

• Each cell denotes the probability $p(\lambda, y)$

Likelihood

$$p(\mathcal{D} = 9|\lambda, y)$$

$p(\mathcal{D} = 9 \lambda, y)$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1
$\lambda = 4$	0	0	0	0	1	0
$\lambda = 5$	0	0	0	1	0	0
$\lambda = 6$	0	0	1	0	0	0

- A table with indicies λ and y
- The likelihood is **not** a probability distribution, but a positive function.

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

12

Likelihood × Prior

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y)$$

$p(\mathcal{D}=9 \lambda,y)$	y = 1	y = 2	y = 3	y=4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/36
$\lambda = 4$	0	0	0	0	1/36	0
$\lambda = 5$	0	0	0	1/36	0	0
$\lambda = 6$	0	0	1/36	0	0	0

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

13

Evidence

$$p(\mathcal{D} = 9) = \sum_{\lambda,y} p(\mathcal{D} = 9|\lambda,y)p(\lambda)p(y)$$
$$= 0 + 0 + \dots + 1/36 + 1/36 + 1/36 + 1/36 + 0 + \dots + 0$$
$$= 1/9$$

$p(\mathcal{D}=9 \lambda,y)$	y = 1	y=2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/36
$\lambda = 4$	0	0	0	0	1/36	0
$\lambda = 5$	0	0	0	1/36	0	0
$\lambda = 6$	0	0	1/36	0	0	0

Posterior

$$p(\lambda, y | \mathcal{D} = 9) = \frac{1}{p(\mathcal{D})} p(\mathcal{D} = 9 | \lambda, y) p(\lambda) p(y)$$

$p(\mathcal{D}=9 \lambda,y)$	y=1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/4
$\lambda = 4$	0	0	0	0	1/4	0
$\lambda = 5$	0	0	0	1/4	0	0
$\lambda = 6$	0	0	1/4	0	0	0

$$1/4 = (1/36)/(1/9)$$

Marginal Posterior

$$p(\lambda|\mathcal{D}) = \sum_{y} \frac{1}{p(\mathcal{D})} p(\mathcal{D}|\lambda, y) p(\lambda) p(y)$$

	$p(\lambda \mathcal{D}=9)$	y = 1	y = 2	y = 3	y=4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0	0
$\lambda = 3$	1/4	0	0	0	0	0	1/4
$\lambda = 4$	1/4	0	0	0	0	1/4	0
$\lambda = 5$	1/4	0	0	0	1/4	0	0
$\lambda = 6$	1/4	0	0	1/4	0	0	0

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

The "proportional to" notation

$$p(\lambda|\mathcal{D}=9) \propto p(\lambda,\mathcal{D}=9) = \sum_{y} p(\mathcal{D}=9|\lambda,y)p(\lambda)p(y)$$

	$p(\lambda, \mathcal{D} = 9)$	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0	0
$\lambda = 3$	1/36	0	0	0	0	0	1/36
$\lambda = 4$	1/36	0	0	0	0	1/36	0
$\lambda = 5$	1/36	0	0	0	1/36	0	0
$\lambda = 6$	1/36	0	0	1/36	0	0	0

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Exercise

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

- 1. Find the following quantities
 - Marginals: $p(x_1)$, $p(x_2)$
 - Conditionals: $p(x_1|x_2)$, $p(x_2|x_1)$
 - Posterior: $p(x_1, x_2 = 2)$, $p(x_1|x_2 = 2)$
 - Evidence: $p(x_2 = 2)$
 - $p(\{\})$
 - Max: $p(x_1^*) = \max_{x_1} p(x_1|x_2 = 1)$
 - Mode: $x_1^* = \arg \max_{x_1} p(x_1|x_2 = 1)$
 - Max-marginal: $\max_{x_1} p(x_1, x_2)$
- 2. Are x_1 and x_2 independent ? (i.e., Is $p(x_1, x_2) = p(x_1)p(x_2)$?)

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

• Marginals:

$p(x_1)$	
$x_1 = 1$	0.6
$x_1 = 2$	0.4

$p(x_2)$	$x_2 = 1$	$x_2 = 2$
	0.4	0.6

· Conditionals:

$p(x_1 x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.75	0.5
$x_1 = 2$	0.25	0.5

_	$p(x_2 x_1)$	$x_2 = 1$	$x_2 = 2$
	$x_1 = 1$	0.5	0.5
-	$x_1 = 2$	0.25	0.75

17

16

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

Posterior:

$p(x_1, x_2 = 2)$	$x_2 = 2$
$x_1 = 1$	0.3
$x_1 = 2$	0.3

$p(x_1 x_2=2)$	$x_2 = 2$
$x_1 = 1$	0.5
$x_1 = 2$	0.5

Evidence:

$$p(x_2 = 2) = \sum_{x_1} p(x_1, x_2 = 2) = 0.6$$

Normalisation constant:

$$p(\{\}) = \sum_{x_1} \sum_{x_2} p(x_1, x_2) = 1$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

20

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

• Max: (get the value)

$$\max_{x_1} p(x_1|x_2=1) = 0.75$$

Mode: (get the index)

$$\operatorname*{argmax}_{x_1} p(x_1 | x_2 = 1) = 1$$

• Max-marginal: (get the "skyline") $\max_{x_1} p(x_1, x_2)$

$\max_{x_1} p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
	0.3	0.3

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

21

Another application of Bayes' Theorem: "Model Selection"

Given an unknown number of fair dice with outcomes $\lambda_1, \lambda_2, \dots, \lambda_n$,

$$\mathcal{D} = \sum_{i=1}^{n} \lambda_i$$

How many dice are there when $\mathcal{D} = 9$?

Assume that any number n is equally likely

Another application of Bayes' Theorem: "Model Selection"

Given all n are equally likely (i.e., p(n) is flat), we calculate (formally)

$$p(n|\mathcal{D}=9) = \frac{p(\mathcal{D}=9|n)p(n)}{p(\mathcal{D})} \propto p(\mathcal{D}=9|n)$$

$$p(\mathcal{D}|n=1) = \sum_{\lambda_1} p(\mathcal{D}|\lambda_1) p(\lambda_1)$$

$$p(\mathcal{D}|n=2) = \sum_{\lambda_1} \sum_{\lambda_2} p(\mathcal{D}|\lambda_1, \lambda_2) p(\lambda_1) p(\lambda_2)$$
...

$$p(\mathcal{D}|n=n') = \sum_{\lambda_1,\dots,\lambda_{n'}} p(\mathcal{D}|\lambda_1,\dots,\lambda_{n'}) \prod_{i=1}^{n'} p(\lambda_i)$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Another application of Bayes' Theorem: "Model Selection"

- Complex models are more flexible but they spread their probability mass
- Bayesian inference inherently prefers "simpler models" Occam's razor
- ullet Computational burden: We need to sum over all parameters λ

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

25

Probabilistic Inference

A huge spectrum of applications – all boil down to computation of

• expectations of functions under probability distributions: Integration

$$\langle f(x) \rangle = \int_{\mathcal{X}} dx p(x) f(x)$$
 $\langle f(x) \rangle = \sum_{x \in \mathcal{X}} p(x) f(x)$

• modes of functions under probability distributions: Optimization

$$x^* = \underset{x \in \mathcal{X}}{\operatorname{argmax}} p(x) f(x)$$

• any "mix" of the above: e.g.,

$$x^* = \underset{x \in \mathcal{X}}{\operatorname{argmax}} p(x) = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{Z}} dz p(z) p(x|z)$$

Divide and Conquer

Probabilistic modelling provides a methodology that puts a clear division between

- What to solve : Model Construction
- Both an Art and Science
- Highly domain specific
- How to solve : Inference Algorithm
 - Mechanical (In theory! not in practice)
 - Generic

24

Applications of Probability Models

- Classification
- Optimal Decision, given a loss function
- Finding interesting (hidden) structure
 - Clustering, Segmentation
 - Dimensionality Reduction
 - Outlier Detection
- Finding a compact representation = Data Compression
- Prediction

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

2

Graphical Models

- formal languages for specification of probability models and associated inference algorithms
- historically, introduced in probabilistic expert systems (Pearl 1988) as a visual guide for representing expert knowledge
- today, a standard tool in machine learning, statistics and signal processing

Probability Models

+

Inference Algorithms

=

Bayesian Numerical Methods

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Graphical Models

- provide graph based algorithms for derivations and computation
- pedagogical insight/motivation for model/algorithm construction
 - Statistics:
 - "Kalman filter models and hidden Markov models (HMM) are equivalent upto parametrisation"
 - Signal processing:
 - "Fast Fourier transform is an instance of sum-product algorithm on a factor graph"
 - Computer Science:
 - "Backtracking in Prolog is equivalent to inference in Bayesian networks with deterministic tables"
- Automated tools for code generation start to emerge, making the design/implement/test cycle shorter

Important types of Graphical Models

- Useful for Model Construction
- Directed Acyclic Graphs (DAG), Bayesian Networks
- Undirected Graphs, Markov Networks, Random Fields
- Influence diagrams
- ..
- Useful for Inference
- Factor Graphs
- Junction/Clique graphs
- Region graphs
- **–** ...

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

32

Directed Graphical models (DAG)

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

33

DAG Example: Two dice

$$p(\mathcal{D}, \lambda, y) = p(\mathcal{D}|\lambda, y)p(\lambda)p(y)$$

DAG with observations

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y)$$

Directed Graphical models

- Each random variable is associated with a node in the graph.
- We draw an arrow from $A \to B$ if $p(B| \dots, A, \dots)$ ($A \in parent(B)$),
- The edges tell us *qualitatively* about the factorization of the joint probability
- For N random variables x_1, \ldots, x_N , the distribution admits

$$p(x_1, \dots, x_N) = \prod_{i=1}^N p(x_i|\mathsf{parent}(x_i))$$

• Describes in a compact way an algorithm to "generate" the data – "Generative models"

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Undirected Graphical Models

Examples

Model	Structure	factorization
Full	2 2 2	$p(x_1)p(x_2 x_1)p(x_3 x_1,x_2)p(x_4 x_1,x_2,x_3)$
Markov(2)	$z_1 \longrightarrow z_2 \longrightarrow z_1 \longrightarrow z_1$	$p(x_1)p(x_2 x_1)p(x_3 x_1,x_2)p(x_4 x_2,x_3)$
Markov(1)	(x_1) (x_2) (x_3) (x_4)	$p(x_1)p(x_2 x_1)p(x_3 x_2)p(x_4 x_3)$
	x_1 x_3 x_4	$p(x_1)p(x_2 x_1)p(x_3 x_1)p(x_4)$
Factorized	(x_1) (x_2) (x_3) (x_4)	$p(x_1)p(x_2)p(x_3)p(x_4)$

Removing edges eliminates a term from the conditional probability factors.

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

37

Undirected Graphical Models

• Define a distribution by non-negative local compatibility functions $\phi(x_{\alpha})$

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{\alpha} \phi(x_{\alpha})$$

where α runs over **cliques** : fully connected subsets

Examples

$$p(\mathbf{x}) = \frac{1}{Z}\phi(x_1, x_2)\phi(x_1, x_3)\phi(x_2, x_4)\phi(x_3, x_4) \qquad p(\mathbf{x}) = \frac{1}{Z}\phi(x_1, x_2, x_3)\phi(x_2, x_3, x_4)$$

$$p(\mathbf{x}) = \frac{1}{Z}\phi(x_1, x_2, x_3)\phi(x_2, x_3, x_4)$$

Possible Model Topologies

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

41

Factor graphs [14]

- A bipartite graph. A powerful graphical representation of the inference problem
 - Factor nodes: Black squares. Factor potentials (local functions) defining the posterior.
 - Variable nodes: White Nodes. Define collections of random variables
 - Edges: denote membership. A variable node is connected to a factor node
 if a member variable is an argument of the local function.

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y) = \phi_1(\lambda, y)\phi_2(\lambda)\phi_3(y)$$

Exercise

Factor graphs

• For the following Graphical models, write down the factors of the joint distribution and plot an equivalent factor graph and an undirected graph.

Answer (Markov(1))

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Answer (IFA – Factorial)

$$p(h_1)p(h_2)\prod_{i=1}^4 p(x_i|h_1,h_2)$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

45

Answer (IFA – Factorial)

• We can also cluster nodes together

Inference and Learning

• Data set

$$\mathcal{D} = \{x_1, \dots x_N\}$$

ullet Model with parameter λ

$$p(\mathcal{D}|\lambda)$$

• Maximum Likelihood (ML)

$$\lambda^{\mathsf{ML}} = \arg\max_{\lambda} \log p(\mathcal{D}|\lambda)$$

• Predictive distribution

$$p(x_{N+1}|\mathcal{D}) \approx p(x_{N+1}|\lambda^{\mathsf{ML}})$$

44

Regularisation

Prior

$$p(\lambda)$$

• Maximum a-posteriori (MAP) : Regularised Maximum Likelihood

$$\lambda^{\mathsf{MAP}} = \arg\max_{\lambda} \log p(\mathcal{D}|\lambda) p(\lambda)$$

Predictive distribution

$$p(x_{N+1}|\mathcal{D}) \approx p(x_{N+1}|\lambda^{\mathsf{MAP}})$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Bayesian Learning

- We treat parameters on the same footing as all other variables
- We integrate over unknown parameters rather than using point estimates (remember the many-dice example)
- Avoids overfitting
- Natural setup for online adaptation
- Model selection
 - (arguably) many problems in music processing are model selection problems

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

40

Bayesian Learning

• Predictive distribution

$$p(x_{N+1}|\mathcal{D}) = \int d\lambda \ p(x_{N+1}|\lambda)p(\lambda|\mathcal{D})$$

• Bayesian learning is just inference ...

Example Applications and Models

Medical Expert Systems

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

52

Medical Expert Systems

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

53

Medical Expert Systems

Medical Expert Systems

Medical Expert Systems

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

56

Model Selection: Variable selection in Polynomial Regression

• Given $\mathcal{D} = \{t_j, x(t_j)\}_{j=1...J}$, what is the order N of the polynomial?

$$x(t) = \sum_{i=0}^{N} s_{i+1}t^{i} + \epsilon(t)$$

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

57

Bayesian Variable Selection

- Generalized Linear Model Column's of C are the basis vectors
- ullet The exact posterior is a mixture of 2^W Gaussians
- ullet When W is large, computation of posterior features becomes intractable.

Regression

Regression

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Clustering

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

61

Clustering

$$(\mu_a^*, \mu_b^*, \pi^*) = \underset{\mu_a, \mu_b, \pi}{\operatorname{argmax}} \sum_{c_{1:N}} \prod_{i=1}^N p(x_i | \mu_a, \mu_b, c_i) p(c_i | \pi)$$

Computer vision / Cognitive Science

How many rectangles are there in this image?

60

Computer vision / Cognitive Science

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

6

Computer Vision

How many people are there in these images?

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

65

Visual Tracking

Navigation, Robotics

Navigation, Robotics

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

70

Computer Accompaniment

(Music Plus One, Raphael 2000 [18], Dannenberg and Raphael 2006)

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

69

Audio Restoration

- During download or transmission, some samples of audio are lost
- Estimate missing samples given clean ones

Examples: Audio Restoration

$$p(\mathbf{x}_{\neg \kappa} | \mathbf{x}_{\kappa}) \propto \int d\mathcal{H} p(\mathbf{x}_{\neg \kappa} | \mathcal{H}) p(\mathbf{x}_{\kappa} | \mathcal{H}) p(\mathcal{H})$$
 $\mathcal{H} \equiv \text{(parameters, hidden states)}$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

71

Restoration

(Cemgil and Godsill 2005 [5])

- Piano
 - Signal with missing samples (37%)
- Reconstruction, 7.68 dB improvement
- Original
- Trumpet
- Signal with missing samples (37%)
- Reconstruction, 7.10 dB improvement
- Original

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

72

74

Basic Building Blocks

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

73

Probability Distributions: Exponential Family

- Following distributions are used often as elementary building blocks:
 - Gaussian
 - Gamma, Inverse Gamma, (Exponential, Chi-square, Wishart)
 - Dirichlet
 - Discrete (Categorical), Bernoulli, multinomial
- All of those distributions can be written as

$$p(x|\theta) = \exp\{\theta^{\top}\psi(x) - A(\theta)\}$$

$$A(\theta) = \log \int_{\mathcal{X}^n} dx \; \exp(\theta^\top \psi(x)) \; \text{log-partition function}$$

$$\theta \qquad \qquad \text{canonical parameters}$$

$$\psi(x) \qquad \qquad \text{sufficient statistics}$$

Example: Bernoulli

Binary (Bernoulli) random variable $c=\{0,1\}$ with probability of sucsess w

$$p(c = 1|w) = w$$
 $p(c = 0|w) = 1 - w$

We write

$$p(c|w) = w^{c}(1-w)^{1-c}$$

$$= \exp(c\log w + (1-c)\log(1-w))$$

$$= \exp\left(\log(\frac{w}{1-w})c + \log(1-w)\right)$$

$$= \mathcal{C}(c;w)$$

 \mathcal{C} stays for categorical

Example, Univariate Gaussian

The Gaussian distribution with mean m and covariance S has the form

$$\mathcal{N}(x; m, S) = (2\pi S)^{-1/2} \exp\{-\frac{1}{2}(x - m)^2/S\}$$

$$= \exp\{-\frac{1}{2}(x^2 + m^2 - 2xm)/S - \frac{1}{2}\log(2\pi S)\}$$

$$= \exp\{\frac{m}{S}x - \frac{1}{2S}x^2 - \left(\frac{1}{2}\log(2\pi S) + \frac{1}{2S}m^2\right)\}$$

$$= \exp\{\underbrace{\binom{m/S}{-\frac{1}{2}/S}}_{\theta}^{\top}\underbrace{\binom{x}{x^2}}_{\psi(x)} - A(\theta)\}$$

Hence by matching coefficients we have

$$\exp\left\{-\frac{1}{2}Kx^{2} + hx + g\right\} \Leftrightarrow S = K^{-1} \quad m = K^{-1}h$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

76

Example, Gaussian

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

77

Example, Inverse Gamma

The inverse Gamma distribution with shape a and scale b

$$\mathcal{IG}(r; a, b) = \frac{1}{\Gamma(a)} \frac{r^{-(a+1)}}{b^a} \exp(-\frac{1}{br})$$

$$= \exp\left(-(a+1)\log r - \frac{1}{br} - \log\Gamma(a) - a\log b\right)$$

$$= \exp\left(\left(\frac{-(a+1)}{-1/b}\right)^{\top} \left(\frac{\log r}{1/r}\right) - \log\Gamma(a) - a\log b\right)$$

Hence by matching coefficients, we have

$$\exp\left\{\alpha\log r + \beta\frac{1}{r} + c\right\} \Leftrightarrow a = -\alpha - 1 \quad b = -1/\beta$$

Example, Inverse Gamma

Example, Beta

$$\mathcal{B}(w; a, b) \equiv \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} w^{a-1} (1-w)^{b-1}$$

$$= \exp\left((a-1)\log w + (b-1)\log(1-w) - A(a,b)\right)$$

$$= \exp\left(\left(a-1 \ b-1\right) \left(\frac{\log w}{\log(1-w)}\right) - A(a,b)\right)$$

$$A(a,b) = \log\Gamma(a) + \log\Gamma(b) - \log\Gamma(a+b)$$

Mean:

$$\langle w \rangle_{\mathcal{B}} = a/(a+b)$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Example, Beta

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

81

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the probability of sucsess \boldsymbol{w} of a binary (Bernoulli) random variable \boldsymbol{c}

$$p(c|w) = \mathcal{C}(c;w) = \exp(c\log w + (1-c)\log(1-w))$$

$$p(w) = \mathcal{B}(w;a,b)$$

$$p(w|c) \propto p(c|w)p(w)$$

$$\propto \exp(c\log w + (1-c)\log(1-w))$$

$$\times \exp((a-1)\log w + (b-1)\log(1-w))$$

$$\propto \mathcal{B}(w;a+c,b+(1-c))$$

$$p(w|c) = \begin{cases} \mathcal{B}(w;a+1,b) & c=1\\ \mathcal{B}(w;a,b+1) & c=0 \end{cases}$$

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the variance ${\it R}$ of a zero mean Gaussian.

$$p(x|R) = \mathcal{N}(x; 0, R)$$

 $p(R) = \mathcal{IG}(R; a, b)$

$$\begin{split} p(R|x) & \propto & p(R)p(x|R) \\ & \propto & \exp\left(-(a+1)\log R - (1/b)\frac{1}{R}\right)\exp\left(-(x^2/2)\frac{1}{R} - \frac{1}{2}\log R\right) \\ & = & \exp\left(\left(\begin{array}{c} -(a+1+\frac{1}{2}) \\ -(1/b+x^2/2) \end{array}\right)^\top \left(\begin{array}{c} \log R \\ 1/R \end{array}\right)\right) \\ & \propto & \mathcal{IG}(R; a+\frac{1}{2}, \frac{2}{x^2+2/b}) \end{split}$$

Like the prior, this is an inverse-Gamma distribution.

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference of variance R from x_1, \ldots, x_N .

$$p(R|x) \propto p(R) \prod_{i=1}^{N} p(x_i|R)$$

$$\propto \exp\left(-(a+1)\log R - (1/b)\frac{1}{R}\right) \exp\left(-\left(\frac{1}{2}\sum_{i}x_i^2\right)\frac{1}{R} - \frac{N}{2}\log R\right)$$

$$= \exp\left(\left(\begin{array}{c} -(a+1+\frac{N}{2})\\ -(1/b+\frac{1}{2}\sum_{i}x_i^2) \end{array}\right)^{\top} \left(\begin{array}{c} \log R\\ 1/R \end{array}\right)\right) \propto \mathcal{IG}(R; a+\frac{N}{2}, \frac{2}{\sum_{i}x_i^2 + 2/b})$$

Sufficient statistics are additive

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Inverse Gamma, $\sum_{i} x_i^2 = 10$ N = 10

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

85

Inverse Gamma, $\sum_i x_i^2 = 100$ N = 100

Inverse Gamma, $\sum_i x_i^2 = 1000$ N = 1000

Example: AR(1) model

$$x_k = Ax_{k-1} + \epsilon_k \qquad \qquad k = 1 \dots K$$

$$k = 1 \dots K$$

 ϵ_k is i.i.d., zero mean and normal with variance R.

Estimation problem:

Given x_0, \ldots, x_K , determine coefficient A and variance R (both scalars).

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

88

AR(1) model, Generative Model notation

$$A \sim \mathcal{N}(A; 0, P)$$

$$R \sim \mathcal{IG}(R; \nu, \beta/\nu)$$

$$x_k | x_{k-1}, A, R \sim \mathcal{N}(x_k; Ax_{k-1}, R) \qquad x_0 = \hat{x}_0$$

Observed variables are shown with double circles

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

AR(1) Model. Bayesian Posterior Inference

$$p(A,R|x_0,x_1,\ldots,x_K) \propto p(x_1,\ldots,x_K|x_0,A,R)p(A,R)$$

Posterior \propto Likelihood \times Prior

Using the Markovian (conditional independence) structure we have

$$p(A, R|x_0, x_1, \dots, x_K) \propto \left(\prod_{k=1}^K p(x_k|x_{k-1}, A, R)\right) p(A)p(R)$$

Numerical Example

Suppose K=1,

By Bayes' Theorem and the structure of AR(1) model

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

= $\mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{IG}(R; \nu, \beta/\nu)$

Numerical Example

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

$$= \mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{IG}(R; \nu, \beta/\nu)$$

$$\propto \exp\left(-\frac{1}{2}\frac{x_1^2}{R} + x_0x_1\frac{A}{R} - \frac{1}{2}\frac{x_0^2A^2}{R} - \frac{1}{2}\log 2\pi R\right)$$

$$\exp\left(-\frac{1}{2}\frac{A^2}{P}\right)\exp\left(-(\nu+1)\log R - \frac{\nu}{\beta}\frac{1}{R}\right)$$

This posterior has a nonstandard form

$$\exp\left(\alpha_1 \frac{1}{R} + \alpha_2 \frac{A}{R} + \alpha_3 \frac{A^2}{R} + \alpha_4 \log R + \alpha_5 A^2\right)$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Numerical Example, the prior p(A,R)

Equiprobability contour of p(A)p(R)

 $A \sim \mathcal{N}(A; 0, 1.2)$ $R \sim \mathcal{IG}(R; 0.4, 250)$

$$x_1 = -6$$

Suppose: $x_0 = 1$ $x_1 = -6$ $x_1 \sim \mathcal{N}(x_1; Ax_0, R)$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Numerical Example, the posterior p(A, R|x)

Note the bimodal posterior with $x_0 = 1, x_1 = -6$

- $A \approx -6 \Leftrightarrow$ low noise variance R.
- $A \approx 0 \Leftrightarrow \text{high noise variance } R$.

Remarks

- The point estimates such as ML or MAP are not always representative about the solution
- (Unfortunately), exact posterior inference is only possible for few special cases
- Even very simple models can lead easily to complicated posterior distributions
- Ambiguous data usually leads to a multimodal posterior, each mode corresponding to one possible explanation

Remarks

- A-priori independent variables often become dependent a-posteriori ("Explaining away")
- The difficulty of an inference problem depends, among others, upon the particular "parameter regime" and observed data sequence

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Approximate Inference

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

97

A Toy Model

$$\begin{array}{rcl} s_1 & \sim & p(s_1) = \mathcal{N}(s_1; \mu_1, P_1) \\ \\ s_2 & \sim & p(s_2) = \mathcal{N}(s_2; \mu_2, P_2) \\ \\ x|s_1, s_2 & \sim & p(x|s_1, s_2) = \mathcal{N}(x; s_1 + s_2, R) \end{array}$$

Gibbs Sampling

$$p(x = \hat{x}|s_1, s_2)$$

Gibbs Sampling

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

100

Gibbs Sampling

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

101

Gibbs Sampling, t=20

Gibbs Sampling, t = 100

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

104

Gibbs Sampling

 A remarkable fact is that we can estimate any desired expectation by ergodic averages

$$\langle f(\mathbf{s}) \rangle_{\mathbf{P}} \approx \frac{1}{t - t_0} \sum_{n = t_0}^{t} f(\mathbf{s}^{(n)})$$

- ullet Consecutive samples $\mathbf{s}^{(t)}$ are dependent but we can "pretend" as if they are independent!
- The sequence of samples are obtained from a Markov chain, hence the name MCMC

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

05

Variational Bayes (VB), mean field

We will approximate the posterior \mathcal{P} with a simpler distribution \mathcal{Q} .

$$\mathcal{P} = \frac{1}{Z_x} p(x = \hat{x}|s_1, s_2) p(s_1) p(s_2)$$

$$\mathcal{Q} = q(s_1) q(s_2)$$

Here, we choose

$$q(s_1) = \mathcal{N}(s_1; m_1, S_1)$$
 $q(s_2) = \mathcal{N}(s_2; m_2, S_2)$

A "measure of fit" between distributions is the KL divergence

Kullback-Leibler (KL) Divergence

• A "quasi-distance" between two distributions $\mathcal{P} = p(x)$ and $\mathcal{Q} = q(x)$.

$$KL(\mathcal{P}||\mathcal{Q}) \equiv \int_{\mathcal{X}} dx p(x) \log \frac{p(x)}{q(x)} = \langle \log \mathcal{P} \rangle_{\mathcal{P}} - \langle \log \mathcal{Q} \rangle_{\mathcal{P}}$$

• Unlike a metric, (in general) it is not symmetric,

$$KL(\mathcal{P}||\mathcal{Q}) \neq KL(\mathcal{Q}||\mathcal{P})$$

• But it is non-negative (by Jensen's Inequality)

$$KL(\mathcal{P}||\mathcal{Q}) = -\int_{\mathcal{X}} dx p(x) \log \frac{q(x)}{p(x)}$$

$$\geq -\log \int_{\mathcal{X}} dx p(x) \frac{q(x)}{p(x)} = -\log \int_{\mathcal{X}} dx q(x) = -\log 1 = 0$$

OSSS example, cont.

Let the approximating distribution be factorized as

$$Q = q(s_1)q(s_2)$$

$$q(s_1) = \mathcal{N}(s_1; m_1, S_1)$$
 $q(s_2) = \mathcal{N}(s_2; m_2, S_2)$

The m_i and S_i are the *variational* parameters to be optimized to minimize

$$KL(\mathcal{Q}||\mathcal{P}) = \langle \log \mathcal{Q} \rangle_{\mathcal{Q}} - \left\langle \log \underbrace{\frac{1}{Z_x} \phi(s_1, s_2)}_{=\mathcal{P}} \right\rangle_{\mathcal{Q}}$$
 (1)

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

108

The form of the solution

- No direct analytical solution
- We obtain fixed point equations in closed form

$$q(s_1) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$

$$q(s_2) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_1)})$$

Note the nice symmetry

The form of the mean field solution

$$0 \leq \langle \log q(s_1)q(s_2)\rangle_{q(s_1)q(s_2)} + \log Z_x - \langle \log \phi(s_1, s_2)\rangle_{q(s_1)q(s_2)}$$

$$\log Z_x \geq \langle \log \phi(s_1, s_2)\rangle_{q(s_1)q(s_2)} - \langle \log q(s_1)q(s_2)\rangle_{q(s_1)q(s_2)}$$

$$\equiv -F(p; q) + H(q) \tag{2}$$

Here, F is the *energy* and H is the *entropy*. We need to maximize the right hand side.

Evidence
$$\geq$$
 -Energy + Entropy

Note r.h.s. is a **lower bound** [16]. The mean field equations **monotonically** increase this bound. Good for assessing convergence and debugging computer code.

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

109

Variational Message Passing on a Factor Graph

- Factor nodes: Factor potentials (local functions) defining the posterior \(\mathcal{P} \).
- Variable nodes: Now, think of them as "factors" of the approximating distribution Q. (Caution non standard interpretation!)

Fixed Point Iteration

$$\log q(s_1) \leftarrow \log p(s_1) + \langle \log p(x = \hat{x}|s_1, s_2) \rangle_{q(s_2)}$$

$$\log q(s_2) \ \leftarrow \ \log p(s_2) + \langle \log p(x = \hat{x} | s_1, s_2) \rangle_{q(s_1)}$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

112

VB Convergence

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

113

Direct Link to Expectation-Maximisation (EM) [12]

Suppose we choose one of the distributions degenerate, i.e.

$$\tilde{q}(s_2) = \delta(s_2 - \tilde{m})$$

where \tilde{m} corresponds to the "location parameter" of $\tilde{q}(s_2)$. We need to find the closest degenerate distribution to the actual mean field solution $q(s_2)$, hence we take one more KL and minimize

$$\tilde{m} = \underset{\xi}{\operatorname{argmin}} KL(\delta(s_2 - \xi)||q(s_2))$$

It can be shown that this leads exactly to the EM fixed point iterations.

Iterated Conditional Modes (ICM) [2, 11]

If we choose both distributions degenerate, i.e.

$$\tilde{q}(s_1) = \delta(s_1 - \tilde{m}_1)$$

 $\tilde{q}(s_2) = \delta(s_2 - \tilde{m}_2)$

It can be shown that this leads exactly to the ICM fixed point iterations. This algorithm is equivalent to coordinate ascent in the original posterior surface $\phi(s_1, s_2)$.

$$\tilde{m}_1 = \operatorname*{argmax}_{s_1} \phi(s_1, s_2 = \tilde{m}_2)$$

 $\tilde{m}_2 = \operatorname*{argmax}_{s_2} \phi(s_1 = \tilde{m}_1, s_2)$

ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences in terms of fixed points.

Figure 1: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

116

Models and Applications

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

117

Time series models and Inference, Terminology

In music signal processing and machine learning many phenomena are modelled by dynamical models

- x is the latent state (tempo, pitch, velocity, attitude, class label, ...)
- ullet y are observations (samples, onsets, sensor reading, pixels, features, ...)
- In a full Bayesian setting, x includes unknown model parameters

Online Inference, Terminology

- Filtering: $p(x_k|y_{1:k})$
 - Distribution of current state given all past information
 - Realtime/Online/Sequential Processing

- Potentially confusing misnomer:
- More general than "digital filtering" (convolution) in DSP but algoritmically related for some models (KFM)

Online Inference, Terminology

- Prediction $p(y_{k:K}, x_{k:K}|y_{1:k-1})$
- evaluation of possible future outcomes; like filtering without observations

• Accompaniment, Tracking, Restoration

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

120

Hidden Markov Model [17]

• Mixture model evolving in time

- Observations y_k are continuous or discrete
- ullet Latent variables x_k are discrete
 - Represents the fading memory of the process
- Exact inference possible if x_k has a "small" number of states

Offline Inference, Terminology

• Smoothing $p(x_{0:K}|y_{1:K})$, Most likely trajectory – Viterbi path $\arg\max_{x_{0:K}} p(x_{0:K}|y_{1:K})$ better estimate of past states, essential for learning

• Interpolation $p(y_k, x_k | y_{1:k-1}, y_{k+1:K})$ fill in lost observations given past and future

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

121

Tempo, Rhythm, Meter analysis

Bar Pointer Model (Whiteley, Cemgil, Godsill 2006)

Filtering

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

124

Smoothing

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

125

Score-Performance matching (Peeling, Cemgil, Godsill)

• Given a musical score, associate note events with the audio

Score-Performance matching - Graphical Model

$$v_{\nu,\tau} \sim \mathcal{IG}(v_{\nu,\tau}; a, 1/(a\lambda\sigma_{\nu}(r_{\tau})))$$

Score-Performance matching

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

128

Exact Inference in HMM, Forward/Backward Algorithm

Forward Pass

$$\begin{array}{lcl} p(y_{1:K}) & = & \sum_{x_{1:K}} p(y_{1:K}|x_{1:K})p(x_{1:K}) \\ \\ & = & \underbrace{\sum_{x_{K}} p(y_{T}|x_{K}) \sum_{x_{K}-1} p(x_{K}|x_{K-1}) \cdots \sum_{x_{2}} p(x_{3}|x_{2})}_{\alpha_{1}} \underbrace{p(y_{2}|x_{2}) \sum_{x_{1}} \underbrace{p(x_{2}|x_{1})}_{\alpha_{2}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}}$$

Backward Pass

$$p(y_{1:K}) = \sum_{x_1} p(x_1)p(y_1|x_1) \dots \underbrace{\sum_{x_{K-1}} p(x_{K-1}|x_{K-2})p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\sum_{x_K} p(x_K|x_{K-1})p(y_K|x_K)}_{\beta_{K-1}} \underbrace{\mathbf{1}}_{\beta_K}$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

129

Exact Inference in HMM, Viterbi Algorithm

- Merely replace sum by max, equivalent to dynamic programming
- Forward Pass

$$\begin{array}{lll} p(y_{1:K}|x_{1:K}^*) & = & \displaystyle \max_{x_{1:K}} p(y_{1:K}|x_{1:K}) p(x_{1:K}) \\ \\ & = & \displaystyle \max_{x_{1:K}} p(y_{T}|x_{K}) \max_{x_{1:K}} p(x_{K}|x_{K-1}) \ldots \max_{x_{2}} p(x_{3}|x_{2}) \underbrace{p(y_{2}|x_{2}) \underbrace{\max_{x_{1}} p(x_{2}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) \underbrace{p(y_{1}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|$$

Backward Pass

$$p(y_{1:K}|x_{1:K}^*) = \max_{x_1} p(x_1) p(y_1|x_1) \dots \underbrace{\max_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\max_{x_K} p(x_K|x_{K-1}) p(y_K|x_K)}_{\beta_K} \underbrace{\mathbf{1}}_{\beta_K}$$

Exact Inference on general factor graphs

- When the factor graph is a tree, one can define a local message propagation
 - If factor graph is not a tree, one can always do this by clustering nodes together
- Sum-product
 - Generalises Forward/Backward
 - Rule:

"The message sent from a node v on an edge e is the product of the local function at v (or the unit function if is a variable node) with all messages received at v on edges other than e, summarized for the variable associated with e."

- Max-product
 - Generalises Viterbi

Look at the seminal tutorial paper by Kschischang, Frey and Loeliger [14] on factor graphs.

Exact Inference on general factor graphs

variable to local function:

$$\mu_{x \rightarrow f}(x) = \prod_{h \in n(x) \setminus \{f\}} \mu_{h \rightarrow x}(x)$$

local function to variable:

$$\mu_{f \to x}(x) = \sum_{r \in x} \left(f(X) \prod_{y \in n(f) \setminus \{x\}} \mu_{y \to f}(y) \right)$$

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

132

Kalman Filter Models, Linear Dynamical Systems

- The latent variables s_k and observations y_k are continuous
- The transition and observations models are linear
 - Example: a point moving on the real line
 - A deterministic dynamical system with two state variables

$$\mathbf{s}_k = \begin{pmatrix} \mathsf{position} \\ \mathsf{velocity} \end{pmatrix}_k = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{s}_{k-1} = \mathbf{A} \mathbf{s}_{k-1}$$

$$y_k = \mathsf{position}_k = \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{s}_k = \mathbf{C}\mathbf{s}_k$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

133

Tracking

• We allow random (unknown) accelerations

$$\mathbf{s}_{k} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{s}_{k-1} + \epsilon_{k}$$
$$= \mathbf{A}\mathbf{s}_{k-1} + \epsilon_{k}$$

$$y_k = (1 \ 0) \mathbf{s}_k + \nu_k$$
$$= \mathbf{C} \mathbf{s}_k + \nu_k$$

Tracking

• In generative model notation

$$\mathbf{s}_k \sim \mathcal{N}(\mathbf{s}_k; \mathbf{A}\mathbf{s}_{k-1}, Q)$$

 $y_k \sim \mathcal{N}(y_k; \mathbf{C}\mathbf{s}_k, R)$

 Tracking = estimating the latent state of the system = Kalman filtering

Kalman Filtering and Smoothing (two filter formulation)

Forward Pass

$$p(y_{1:K}) = \underbrace{\int_{x_K} p(y_T|x_K) \int_{x_{K-1}} p(x_K|x_{K-1})}_{\alpha_K} \dots \int_{x_2} p(x_3|x_2) \underbrace{p(y_2|x_2) \int_{x_1} p(x_2|x_1)}_{\alpha_2} \underbrace{p(y_1|x_1) \underbrace{p(y_1|x_1)}_{\alpha_1} \underbrace{p$$

Backward Pass

$$p(y_{1:K}) = \int_{x_1} p(x_1)p(y_1|x_1) \dots \underbrace{\int_{x_{K-1}} p(x_{K-1}|x_{K-2})p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\int_{x_K} p(x_K|x_{K-1})p(y_K|x_K)}_{\beta_{K-1}} \underbrace{\mathbf{1}}_{\beta_K}$$

• Replace summation by integration

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

136

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

137

$$p(y_1|s_1)p(s_1)$$

$p(s_2|y_1) \propto \int ds_1 p(s_2|s_1) p(y_1|s_1) p(s_1)$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

140

$p(s_5|y_{1:5})$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

141

Computer Accompaniment

(Music Plus One, Raphael 2000 [18], Dannenberg and Raphael 2006)

ullet c_k are score positions of notes of the soloist and $l_k=c_k-c_{k-1}$

$$\begin{aligned} \mathbf{s}_k &= \begin{pmatrix} 1 & l_k \\ 0 & 1 \end{pmatrix} \mathbf{s}_{k-1} + \epsilon_k = \mathbf{A}_k \mathbf{s}_{k-1} + \epsilon_k & y_k = C \mathbf{s}_k + \nu_k \\ \epsilon_k &\sim \mathcal{N}(\epsilon; 0, Q_k) \\ \nu_k &\sim \mathcal{N}(\nu; m_k, R_k) & \text{(note k dependent mean and variance!)} \end{aligned}$$

Music Plus One

• Note that this is ruthless simplification, see Chris Raphaels' papers...

Switching State Space models

- We introduce latent switch variables to switch between different transition and observation models
- Powerful framework for modelling nonstationary processes and nonlinear dynamical systems

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

144

Inference in Switching State Space models

- Unlike HMM's or KFM's, summing over c_k does not simplify the filtering density.
- \bullet Number of Gaussian kernels to represent exact filtering density $p(c_k,s_k|y_{1:k})$ increases exponentially

• Bad news: exact inference problem is shown to be NP hard

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

145

Example

Suppose that a score can consist of only two notes:

Sequential Monte Carlo (Particle Filtering)

 Main idea: Select a branch to expand with a probability propotional to the evidence

Particle Filtering for tracking

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

148

Sequential Monte Carlo

- This variant is known as Mixture Kalman Filter or Rao-Blackwellized Particle filter (Chen and Liu 2001 [9], Cemgil 2002 [6], Hainsworth and MacLeod 2003)
- (For this model) algorithmically similar to Breadth first search/Multi Hypothesis Tracking/Genetic algorithms
- Generic tool for inference with a rich background theory (Doucet, et. al. 2001, Del Moral, "Feynman-Kac Formulae", 2005)
- Many applications in various fields
- Robotics, Navigation, Econometrics,...

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

149

Changepoint models

$$r_k \sim p(r_k|r_{k-1}) \qquad \qquad \text{Indicators} \in \{\text{new}, \text{reg}\}$$

$$\theta_k \sim [r_k = \text{reg}] \underbrace{f(\theta_k|\theta_{k-1})}_{\text{Transition}} + [r_k = \text{new}] \underbrace{\pi(\theta_k)}_{\text{Reinitialization}} \qquad \text{Latent State}$$

 $y_k \sim p(y_k|\theta_k)$ Observations

Example: Single Key, Onsets

• Each changepoint denotes the onset of a new audio event

Dynamic Harmonic Model (Cemgil et. al. 2005, 2006) [4, 7]

$$\begin{array}{cccc} r_k|r_{k-1} & \sim & p(r_k|r_{k-1}) \\ s_k|s_{k-1},r_k & \sim & \underbrace{[r_k=0]\mathcal{N}(As_{k-1},Q)}_{\text{reg}} & + & \underbrace{[r_k=1]\mathcal{N}(0,S)}_{\text{new}} \\ & y_k|s_k & \sim & \mathcal{N}(Cs_k,R) \end{array}$$

$$A = \begin{pmatrix} G_{\omega} & & & \\ & G_{\omega}^{2} & & \\ & & \ddots & \\ & & & G_{\omega}^{H} \end{pmatrix}^{N} \qquad G_{\omega} = \rho_{k} \begin{pmatrix} \cos(\omega) & -\sin(\omega) \\ \sin(\omega) & \cos(\omega) \end{pmatrix}$$

damping factor $0<\rho_k<1,$ framelength N and damped sinusoidal basis matrix C of size $N\times 2H$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

152

Monophonic model [7]

- ullet We introduce a pitch label indicator m
- At each time k, the process can be in one of the {"mute", "sound"} $\times M$ states.

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

153

Monophonic Pitch Tracking

Monophonic Pitch Tracking = Online estimation (filtering) of $p(r_k, m_k|y_{1:k})$.

• If pitch is constant exact inference is possible

Tracking Pitch Variations

• Allow m to change with k. We take a fine grid Piano-roll, e.g. $Q = 2^{1/128}$

• Intractable, need to run a particle filter

Real Data Results

Top: F major scale played on an electric bass. Bottom: Estimated MAP configuration $(r, m)_{1:T}$.

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

156

Real Data Results

A finer analysis with $\mathcal{Q}=2^{1/48}$ reveals that the 5'th and 7'th degree of the scale are intonated slightly low.

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

157

Polyphony: Factorial Dynamic Harmonic Model [4]

$$\begin{split} r_{0,\nu} &\sim \mathcal{C}(r_{0,\nu}; \pi_{0,\nu}) \\ \theta_{0,\nu} &\sim \mathcal{N}(\theta_{0,\nu}; \mu_{\nu}, P_{\nu}) \\ r_{k,\nu}|r_{k-1,\nu} &\sim \mathcal{C}(r_{k,\nu}; \pi_{\nu}(r_{t-1,\nu})) & \text{Changepoint indicator} \\ \theta_{k,\nu}|\theta_{k-1,\nu} &\sim \mathcal{N}(\theta_{k,\nu}; A_{\nu}(r_k)\theta_{k-1,\nu}, Q_{\nu}(r_k)) & \text{Latent state} \\ y_k|\theta_{k,1:W} &\sim \mathcal{N}(y_k; C_k\theta_{k,1:W}, R) & \text{Observation} \end{split}$$

Visual Tracking

(Video1) (Video2) (Video3)

Visual Tracking – Multimodal Posteriors

The Kalman Filter looses track due to occlusion

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

160

Visual Tracking – Multimodal Posteriors

Particle Filter with poorly designed proposal

Particle Filter with better proposal

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

161

Visual Tracking – Multimodal Posteriors

Mixture Kalman Filter

Sequential Monte Carlo - Particle Filtering

- \bullet We try to approximate the so-called filtering density with a set of points/Gaussians \equiv particles
- Algorithms are intuitively similar to randomised search algorithms but are best understood in terms of sequential importance sampling and resampling techniques

Importance Sampling (IS)

Consider a probability distribution with (possibly unknown) normalisation constant

$$p(\mathbf{x}) = \frac{1}{Z}\phi(\mathbf{x})$$
 $Z = \int d\mathbf{x}\phi(\mathbf{x}).$

IS: Estimate expectations (or features) of $p(\mathbf{x})$ by a weighted sample

$$\langle f(\mathbf{x}) \rangle_{p(\mathbf{x})} = \int dx f(\mathbf{x}) p(\mathbf{x})$$

$$\langle f(\mathbf{x}) \rangle_{p(\mathbf{x})} \ \approx \ \sum_{i=1}^{N} \tilde{w}^{(i)} f(\mathbf{x}^{(i)})$$

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

164

Importance Sampling (cont.)

• Change of measure with weight function $W(\mathbf{x}) \equiv \phi(x)/q(x)$

$$\langle f(\mathbf{x}) \rangle_{p(\mathbf{x})} = \frac{1}{Z} \int d\mathbf{x} f(\mathbf{x}) \frac{\phi(\mathbf{x})}{q(\mathbf{x})} q(\mathbf{x}) = \frac{1}{Z} \left\langle f(\mathbf{x}) \frac{\phi(\mathbf{x})}{q(\mathbf{x})} \right\rangle_{q(\mathbf{x})} \equiv \frac{1}{Z} \left\langle f(\mathbf{x}) W(\mathbf{x}) \right\rangle_{q(\mathbf{x})}$$

If Z is unknown, as is often the case in Bayesian inference

$$Z = \int d\mathbf{x} \phi(\mathbf{x}) = \int d\mathbf{x} \frac{\phi(\mathbf{x})}{q(\mathbf{x})} q(\mathbf{x}) = \langle W(\mathbf{x}) \rangle_{q(\mathbf{x})}$$

$$\langle f(\mathbf{x}) \rangle_{p(\mathbf{x})} = \frac{\langle f(\mathbf{x})W(\mathbf{x}) \rangle_{q(\mathbf{x})}}{\langle W(\mathbf{x}) \rangle_{q(\mathbf{x})}}$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

165

Importance Sampling (cont.)

• Draw $i = 1, \dots N$ independent samples from q

$$\mathbf{x}^{(i)} \sim q(\mathbf{x})$$

• We calculate the importance weights

$$W^{(i)} = W(\mathbf{x}^{(i)}) = \phi(\mathbf{x}^{(i)})/q(\mathbf{x}^{(i)})$$

Approximate the normalizing constant

$$Z = \langle W(\mathbf{x}) \rangle_{q(\mathbf{x})} \approx \sum_{i=1}^{N} W^{(i)}$$

Desired expectation is approximated by

$$\langle f(\mathbf{x}) \rangle_{p(\mathbf{x})} = \frac{\langle f(\mathbf{x}) W(\mathbf{x}) \rangle_{q(\mathbf{x})}}{\langle W(\mathbf{x}) \rangle_{q(\mathbf{x})}} \approx \frac{\sum_{i=1}^{N} W^{(i)} f(\mathbf{x}^{(i)})}{\sum_{i=1}^{N} W^{(i)}} \equiv \sum_{i=1}^{N} \tilde{w}^{(i)} f(\mathbf{x}^{(i)})$$

Here $\tilde{w}^{(i)} = W^{(i)} / \sum_{j=1}^N W^{(j)}$ are normalized importance weights.

Importance Sampling (cont.)

166

Resampling

• Importance sampling computes an approximation with weighted delta functions

$$p(x) \approx \sum_{i} \tilde{W}^{(i)} \delta(x - x^{(i)})$$

- In this representation, most of $\tilde{W}^{(i)}$ will be very close to zero and the representation may be dominated by few large weights.
- Resampling samples a set of new "particles"

$$x_{\sf new}^{(j)} \sim \sum_i \tilde{W}^{(i)} \delta(x-x^{(i)})$$

$$p(x) ~ pprox ~ rac{1}{N} \sum_{j} \, \delta(x - x_{\mathsf{new}}^{(j)})$$

- Since we sample from a degenerate distribution, particle locations stay unchanged. We merely dublicate (, triplicate, ...) or discard particles according to their weight.
- This process is also named "selection", "survival of the fittest", e.t.c., in various fields (Genetic algorithms, Al..).

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

168

Sequential Importance Sampling, Particle Filtering

Apply importance sampling to the SSM to obtain some samples from the posterior $p(x_{0:K}|y_{1:K})$.

$$p(x_{0:K}|y_{1:K}) = \frac{1}{p(y_{1:K})} p(y_{1:K}|x_{0:K}) p(x_{0:K}) \equiv \frac{1}{Z_y} \phi(x_{0:K})$$
(3)

Key idea: sequential construction of the proposal distribution q, possibly using the available observations $y_{1:k}$, i.e.

$$q(x_{0:K}|y_{1:K}) = q(x_0) \prod_{k=1}^{K} q(x_k|x_{1:k-1}y_{1:k})$$

Resampling

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

169

Markov Random Fields

Markov Random Fields

- A set of random variables $\xi = \{\xi_i\}_{i \in \mathcal{V}}$, Given
 - an undirected graph with vertex set ${\mathcal V}$ and undirected edge set ${\mathcal E}$
 - A set of local potential functions (with parameters a)

$$p(\boldsymbol{\xi}; \mathbf{a}) = \frac{1}{Z_{\mathbf{a}}} \prod_{i \in \mathcal{V}} \phi_i(\xi_i) \prod_{(i,j) \in \mathcal{E}} \psi_{i,j}(\xi_i, \xi_j)$$

 $\phi_i(\xi_i; \mathbf{a})$:

(Singleton)

 $\psi_{i,j}(\xi_i,\xi_j;\mathbf{a})$:

(Pairwise)

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

172

VB or Gibbs

VB

$$q^{(\tau)}(v_k) \leftarrow \exp(\phi_k + \langle \log \psi_{k,k} + \log \psi_{k,k+1} \rangle_{q^{(\tau)}(z_k)q^{(\tau)}(z_{k+1})})$$

Gibbs

$$v_k^{(\tau)} \sim p(v_k|z_{k-1}, z_k, y_k) \propto p(y_k|v_k) \psi_{k,k}(z_k^{(\tau)}) \psi_{k,k+1}(z_{k+1}^{(\tau)})$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

173

VB or Gibbs

VB

$$q^{(\tau)}(z_k) \leftarrow \exp(\phi_k + \langle \log \psi_{k,k-1} + \log \psi_{k,k} \rangle_{q^{(\tau)}(v_k)q^{(\tau)}(v_{k+1})})$$

Gibbs

$$z_k^{(\tau)} \sim p(z_k|v_{k-1}, v_k) \propto \psi_{k,k-1}(v_{k-1}^{(\tau)})\psi_{k,k}(v_k^{(\tau)})$$

Harmonic-Transient Decomposition

• Source 1: Horizontal: Tie across time: harmonic continuity

• Source 2: Vertical: Tie across frequency: transients, pulse like sounds

Harmonic-Transient Decomposition

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

176

Denoising - Piano

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

177

Denoising - Speech

Topic-Term-Document Models

Text Processing, Latent Semantic Indexing

Deerwester et al. (1990), Berry et al. (1995), Manning, Schuetze, Raghavan (2007)

- We are given a database of documents $D = \{d_1, \dots, d_j, \dots, d_N\}$
- \bullet Each document contains several terms from a codebook of terms $T=\{t_1,\ldots,t_i,\ldots,t_M\}$
- Retrieval,
 - Given a query q (for example a set of few terms $T_q\subset T$) retrieve a set of documents $D^q_{\rm Retrieved}$
 - Assume we know the set of relevant documents $D^q_{\sf Relevant} \subset D$ (with respect to the query q)
 - Quality Measures:

$$\begin{aligned} \text{Precision}^q &=& \frac{|D^q_{\text{Relevant}} \cap D^q_{\text{Retrieved}}|}{|D^q_{\text{Retrieved}}|} && \text{Recall}^q = \frac{|D^q_{\text{Relevant}} \cap D^q_{\text{Retrieved}}|}{|D^q_{\text{Relevant}}|} \end{aligned}$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

180

Representation: Term-Document matrix $A \in \mathbb{R}^{M \times N}$

• Rows : terms t_i , $i = 1 \dots M$

• Columns: documents $d_j = 1 \dots N$

	j.caesar	hamlet	othello	macbeth	rom&jul	sonnets
caesar	270	2	1	1	0	0
brutus	379	1	0	0	0	0
malcolm	0	0	0	60	0	0
muse	0	0	1	1	0	16
:						
love	34	68	80	19	150	195
friend	23	14	18	5	13	16
the	610	1148	759	733	682	446
traitor	1	0	0	5	1	0
traitors	9	0	1	3	0	0
:						
napkin	0	1	3	0	0	0
sword	15	16	10	14	8	1
laptop	0	0	0	0	0	0

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

181

Term-Document matrix

Counts

Term-Document matrix

• Incidence (zero-one) matrix

Singular Value Decomposition (SVD)

For any $A \in \mathbb{R}^{M \times N}$, there exist **orthogonal** matrices $U \in \mathbb{R}^{M \times M}$ and $V \in \mathbb{R}^{N \times N}$ such that

$$U = [u_1, \dots, u_M] \qquad V = [v_1, \dots, v_N]$$

such that

$$U^{\top}AV = \mathbf{diag}(\sigma_1, \dots, \sigma_p) \in \mathbb{R}^{M \times N}$$

with $p = \min\{M, N\}$. We have

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

184

186

Singular Value Decomposition (SVD)

$$A = U \times \Sigma \times V^{\top}$$

$$\begin{pmatrix}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{pmatrix} = \begin{pmatrix}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet
\end{pmatrix} \times \begin{pmatrix}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{pmatrix}$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

185

Singular Value Decomposition (SVD)

```
>> A =
    1
          2
    3
          5
>> [U S V] = svd(A)
                    % A == U*S*V'
U =
   -0.3559
          -0.2000
                    -0.9129
   -0.9309
           -0.0102
                     0.3651
   -0.0823
            0.9797 -0.1826
S =
    6.2638
             0.8744
   -0.5158
             0.8567
   -0.8567
            -0.5158
```

Singular Value Decomposition (SVD)

```
>> U(:,1) *S(1,1) *V(:,1)'
   1.1498
             1.9098
   3.0076
             4.9954
   0.2661
             0.4419
>> U(:,2)*S(2,2)*V(:,2)'
  -0.1498
             0.0902
  -0.0076
             0.0046
   0.7339 -0.4419
>> U(:,1)*S(1,1)*V(:,1)' + U(:,2)*S(2,2)*V(:,2)' %% == U*S*V' == A
   1.0000
             2.0000
   3.0000
             5.0000
   1.0000
             0.0000
>> A =
```

Singular Value Decomposition (SVD)

SVD expansion

$$A = \sum_{r=1}^{P} \sigma_r u_r v_r^{\top}$$
$$= U \operatorname{diag}(\sigma_1, \dots, \sigma_P) V^{\top}$$

The norm relations for $A \in \mathbb{R}^{M \times N}$, $P = \min\{M, N\}$

$$||A||_F^2 = \sigma_1^2 + \dots + \sigma_P^2$$

 $||A||_2^2 = \sigma_1^2$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Singular Value Decomposition of Term-Document Matrices

Another "term-document" matrix

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Singular Value Decomposition of Term-Document Matrices

$$A pprox U(:,1:n)S(1:n,1:n)V(:,1:n)^ op_{n=s}$$

Singular Value Decomposition of Term-Document Matrices

Rank-1 Matrices

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

192

Rank-1 Matrices

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

193

LSI: Summary and Remarks

• Low rank approximation to a term-document matrix by keeping the latent dimensions corresponding to *n* largest singular values of SVD

$$A \approx \sum_{r=1}^{n} \sigma_r U(:,r) V(:,r)^{\top}$$

- No direct statistical interpretation, but loosely
 - Each $r=1\dots n$ denotes a *latent topic* (n is the total number of topics)
 - U(i,r) corresponds to weight of the \emph{i} th term given the topic r
 - V(j,r) corresponds to emphasis of topic r in document j We can think $V(j,1:n)^{\top}$ as the coordinates of j'th document in an n dimensional $\it latent topic space$
 - The coordinates of a new document are computed by

$$v_{\mathsf{new}} = \Sigma^{-1} U^{\top} a_{\mathsf{new}}$$

Latent Semantic Space

LSI: Summary and Remarks

- Clustering, assessing similarity, visualisation ...
- Rationale: documents that share frequent co-occurring terms will be close in the latent space
- May deal with synonymy and polysemy
 - different words same meaning baggage-lugagge
 - same word different meaning spider (the animal - the web crawler)

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Probabilistic Latent Sematic Indexing, the Aspect Model

Hofmann, 1999

 $d \sim p(d)$ Document $z|d \sim p(z|d)$ Latent Topic

 $t|z \sim p(t|z)$ Term

More to come ...

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

197

Audio Source Separation

Estimate n hidden signals \mathbf{s}_t from m observed signals \mathbf{x}_t .

$$s_t^i \sim p(s_t^i)$$

 $x_t^j \sim \mathcal{N}(x; \mathbf{a}^j s_t^{1:n}, r^j)$

Factorial Models

Source Separation

Bayesian Model selection

198

Audio Source Separation

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

200

Audio Source Separation

• Hierarchical Prior Model (Fevotte and Godsill 2005 [10], Cemgil et. al. 2006 [3])

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

201

Reconstructions

Audio Source Separation, Inference

• Exact inference is not possible

Observations

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

204

A typical run, 250/250 Gibbs/VB with tempering

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

205

Reconstructions

Posterior surface is multimodal, each mode corresponding to a viable separation

Bayesian Variable Selection

- Generalized Linear Model Column's of C are the basis vectors
- ullet The exact posterior is a mixture of 2^W Gaussians
- ullet When W is large, computation of posterior features becomes intractable.

Generative model

$$r_{i} \sim \mathcal{C}(r_{i}; \pi)$$

$$s_{i}|r_{i} \sim \mathcal{N}(s_{i}; \mu(r_{i}), \Sigma(r_{i}))$$

$$\mathbf{x}|s_{1:W} \sim \mathcal{N}(\mathbf{x}; Cs_{1:W}, R)$$

$$C \equiv [C_{1} \dots C_{i} \dots C_{W}]$$

$$p(\mathbf{x}, s_{1:W}, r_{1:W}) = p(\mathbf{x}|s_{1:W}, r_{1:W}) \prod_{i=1}^{W} p(s_i|r_i)p(r_i)$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

Example 1: Variable selection in Polynomial Regression

Given $\{t_j, x(t_j)\}_{j=1...J}$, what is the order N of the polynomial?

$$x(t) = \sum_{i=0}^{N} s_{i+1}t^{i} + \epsilon(t)$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

209

Ex1: Regression

$$\mathbf{t} = \begin{pmatrix} t_1 & t_2 & \dots & t_J \end{pmatrix}^{\top}$$

$$C \equiv \begin{pmatrix} \mathbf{t}^0 & \mathbf{t}^1 & \dots & \mathbf{t}^{W-1} \end{pmatrix}$$

 1
 1
 1
 1
 1

 1
 2
 4
 8
 16

 1
 3
 9
 27
 81

1 4 16 64 256

 $egin{array}{lcl} r_i & \sim & \mathcal{C}(r_i; 0.5, 0.5) & r_i \in \{\mathsf{on}, \mathsf{off}\} \\ s_i | r_i & \sim & \mathcal{N}(s_i; 0, \Sigma(r_i)) \\ \mathbf{x} | s_{1 \cdot W} & \sim & \mathcal{N}(\mathbf{x}; Cs_{1 \cdot W}, R) \end{array}$

$$\Sigma(r_i = \mathsf{on}) \gg \Sigma(r_i = \mathsf{off})$$

Ex1: Regression

To find the "active" basis functions we need to calculate

$$r_{1:W}^* \equiv \underset{r_{1:W}}{\operatorname{argmax}} p(r_{1:W}|\mathbf{x}) = \underset{r_{1:W}}{\operatorname{argmax}} \int ds_{1:W} p(\mathbf{x}|s_{1:W}) p(s_{1:W}|r_{1:W}) p(r_{1:W})$$

Then, the reconstruction is given by

$$\hat{x}(t) = \left\langle \sum_{i=0}^{W-1} s_{i+1} t^i \right\rangle_{p(s_{1:W}|\mathbf{x}, r_{1:W}^*)}$$
$$= \sum_{i=0}^{W-1} \left\langle s_{i+1} \right\rangle_{p(s_{i+1}|\mathbf{x}, r_{1:W}^*)} t^i$$

208

Ex1: Regression

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

212

Ex1: Regression

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

213

Example 2: Chord Recognition

(Damped) Sinusoidal Basis

- $h = 1 \dots H$, number of harmonics, $t = 0 \dots T 1$, sample index
- $\bullet \ \omega$: fundamental frequency in rad, ρ damping coefficient

$$C(\omega) \equiv \begin{pmatrix} C_0^1 & \dots & C_0^H \\ \vdots & C_t^h & \vdots \\ C_{T-1}^1 & \dots & C_{T-1}^H \end{pmatrix}$$

$$C_t^h \equiv \rho^t \left(\cos(th\omega) \sin(th\omega) \right)$$

$$\mathbf{C} = \left[C(\omega_1) \dots C(\omega_{\nu}) \dots C(\omega_W) \right]$$

 See also Badeau, Boyer, David. Eds parametric modelling and tracking of audio signals. In DAFx 2002

Factor graph

$$\log \phi(r_{1:W}, s_{1:W}) = \sum_{i=1}^{W} (\log \pi(r_i))$$

$$+ \sum_{i=1}^{W} \left(-\frac{1}{2} s_i^{\top} \Sigma(r_i)^{-1} s_i + \mu(r_i)^{\top} \Sigma(r_i)^{-1} s_i - \frac{1}{2} \mu(r_i)^{\top} \Sigma(r_i)^{-1} \mu(r_i) - \frac{1}{2} \log |2\pi \Sigma(r_i)| \right)$$

$$- \frac{1}{2} \mathbf{x}^{\top} R^{-1} \mathbf{x} + s_{1:W}^{\top} C^{\top} R^{-1} \mathbf{x} - \frac{1}{2} s_{1:W}^{\top} C^{\top} R^{-1} C s_{1:W} - \frac{1}{2} \log |2\pi R|$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

216

218

MCMC versus Variational Bayes (VB)

ullet Each configuration of $r_{1:W}$ corresponds to a corner of a W dimensional hypercube

- MCMC moves along the edges stochastically
- Iterative Improvement moves along the edges greedly
- VB moves inside the hypercube deterministically

Approximating Structures

$$Q_1 = \prod_{i=1}^W Q(s_i)Q(r_i)$$

$$Q_1 = \prod_{i=1}^W Q(s_i)Q(r_i)$$
 $Q_2 = Q(s_{1:W})\prod_{i=1}^W Q(r_i)$ $Q_3 = \prod_{i=1}^W Q(s_i, r_i)$

$$Q_3 = \prod_{i=1}^W Q(s_i, r_i)$$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

217

Iterative Improvement

ration	r_1																							r_M	$\log p(y_{1:T}, r_{1:M})$
1	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1220638254
2	0	0	0	0	0	0	0	•	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	-665073975
3	0	0	0	0	0	0	0	•	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	•	-311983860
4	0	0	0	0	0	0	0	•	0	0	0	0	0	0	•	0	0	0	0	0	0	•	0	•	-162334351
5	0	0	0	0	0	0	0	•	•	0	0	0	0	0	•	0	0	0	0	0	0	•	0	•	-43419569
6	0	0	0	0	0	0	0	•	•	0	0	0	0	0	•	0	0	0	0	•	0	•	0	•	-1633593
7	0	0	0	0	0	0	0	•	•	0	0	•	0	0	•	0	0	0	0	•	0	•	0	•	-14336
8	0	0	0	0	0	0	0	•	•	0	•	•	0	0	•	0	0	0	0	•	0	•	0	•	-5766
9	0	0	0	0	0	0	0	•	0	0	•	•	0	0	•	0	0	0	0	•	0	•	0	•	-5210
10	0	0	0	0	0	0	0	0	0	0	•	•	0	0	•	0	0	0	0	•	0	•	0	•	-4664

-4664

Results, VB with tempering and reinitialisation

 $F_s = 22050 \text{ Hz}, N = 29 \text{ msec}, H = 1, \text{ Midinotes} = 30...50$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

220

Results, MCMC with tempering and reinitialisation

 $F_s = 22050 \text{ Hz}, N = 29 \text{ msec}, H = 1, \text{Midinotes} = 30...50$

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

221

Bayesian/Generative/Probabilistic approaches to Polyphonic Transcription

(Walmsley 2000, Davy and Godsill 2002, Raphael 2001, Abdallah 2002, Cemgil et. al. 2003-2006, Vincent 2003, Vincent and Plumbley 2005, Vogel, Jordan and Wessel 2005, Thornburg, Leitsnikov and Berger 2004, Blumensath and Davies 2006, Dubois and Davy 2005)

- Various related but different models
- Inference schemata
 - Reversible Jump MCMC
 - Iterative Improvement
 - Laplace approximation
 - Particle filtering
 - Variational Bayes, MCMC

Summary

- Bayesian Inference
- Graphical models
- Exact Inference
- Approximate inference

Summary, Attributes of Probabilistic Inference

- Exact ← Approximate
- Deterministic ← Stochastic
- Online → Offline

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

224

Summary of what we have mentioned

- Exact inference, Belief Propagation
- Approximate inference
 - Deterministic
 - * Variational Bayes,
 - * Expectation/Maximization (EM), Iterative Conditional Modes (ICM)
 - Stochastic
 - * Markov Chain Monte Carlo
 - * Importance Sampling,
 - * Particle filtering

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

225

Summary of what we have not mentioned

- Exact Inference (Junction Tree ...)
- Deterministic Inference
 - Assumed Density Filter (ADF), Extended Kalman Filter (EKF), Unscented Particle Filter
 - Structured Mean field
 - Loopy Belief Propagation, Expectation Propagation, Generalized Belief Propagation
 - Fractional Belief propagation, Bound Propagation, <your favorite name>
 Propagation
 - Graph cuts ...
- Stochastic
 - Unscented Particle Filter, Nonparametric Belief Propagation
 - Annealed Importance Sampling, Adaptive Importance Sampling
 - Hybrid Monte Carlo, Exact sampling, Coupling from the past

Bibliography

- General background about probability theory
- Graphical models
- Exact inference
- Variational Methods
- Markov Chain Monte Carlo
- Sequential Monte Carlo
- Applications

General background about probability theory

- Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to Probability. Athena Scientific, 2002
- Geoffrey Grimmet and David Stirzaker, Probability and Random Processes, (3rd Ed), Oxford, 2006

"Instant Classics" of Bayesian Machine Learning and Graphical Models

- Michael I. Jordan, Learning in Graphical Models, 1998
- David MacKay Information Theory, Learning and Inference Algorithms, 2003, Cambridge
- Chris Bishop, Machine Learning and Pattern Recognition, 2006, Springer

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

228

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

229

Further Reading, Variational Methods

- Jaakkola "Tutorial on variational approximation methods", 2000 http://people.csail.mit.edu/tommi/papers/Jaa-var-tutorial.ps
- Wainwright and Jordan 2003 [19] Berkeley EECS Tech. Rep.
- Frey and Jojic, PAMI 2005 [11]
- Winn and Bishop "Variational Message Passing" 2005 JMLR [20]

Further Reading, MCMC and SMC tutorials and overviews

- Andrieu, de Freitas, Doucet, Jordan. An Introduction to MCMC for Machine Learning, 2001
- Andrieu. Monte Carlo Methods for Absolute beginners, 2004
- Doucet, Godsill, Andrieu. "On Sequential Monte Carlo Sampling Methods for Bayesian Filtering", Statistics and Computing, vol. 10, no. 3, pp. 197-208, 2000
- Gilks, Richardson, Spiegelhalter, *Markov Chain Monte Carlo in Practice*, Chapman Hall, 1996
- Doucet, de Freitas, Gordon, Sequential Monte Carlo Methods in Practice, Springer, 2001

Text Processing and Information Retrieval

• Information Retrieval, Manning, Schuetze, and Raghavan, Cambridge University Press, 2007 (Draft)

http://www-csli.stanford.edu/ schuetze/information-retrieval-book.html

Modeling the Internet and the Web: Probabilistic Methods and Algorithms.
 Pierre Baldi, Paolo Frasconi, Padhraic Smyth, Wiley, 2003
 http://ibook.ics.uci.edu

Compression, Efficient Data Structures,

- Managing Gigabytes: Compressing and Indexing Documents and Images.
 Witten, Moffat and Bell. Morgan Kaufmann 1999
- Introduction to Data Compression. Khalid Sayood, Morgan Kaufmann (3rd Ed), 2005

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing, September 24, 2007, Augsburg

232

Music Applications

- Klapuri and Davy (Eds) Signal processing for Music Transcription, Springer, 2006
- Temperley, Probability and Music, MIT Press, 2007

Some Generic Software Packages

- Kevin Murphy's Matlab Bayesian Networks toolkit (BNT)
- Gilks, et. al. BUGS, WinBUGS (Bayesian analysis Using Gibbs Sampling) A powerful program that compiles Gibbs Samplers from
- Winn, et. al, VIBES Similar to BUGS but for variational inference

For source separation, there are some specialised libraries

- Petersen and Winther (DTU, Kopenhagen)
- Harva, Raiko, Honkela, Valpola "Bayes Blocks" (HUT, Helsinki)

Cemqil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

233

References

- [1] M. Allan and C. K. I. Williams. Harmonising chorales by probabilistic inference. In <u>Advances in Neural Information Processing Systems 17</u>, 2004.
- [2] J.E. Besag. On the statistical analysis of dirty pictures (with discussion). <u>Jr. R. Stat. Soc. B</u>, 48:259–302, 1986.
- [3] A. T. Cemgil, C. Fevotte, and S. J. Godsill. Variational and Stochastic Inference for Bayesian Source Separation. Digital Signal Processing, in Print, 2007.
- [4] A. T. Cemgil and S. J. Godsill. Efficient Variational Inference for the Dynamic Harmonic Model. In <u>Proc. of IEEE</u> Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, October 2005.
- [5] A. T. Cemgil and S. J. Godsill. Probabilistic Phase Vocoder and its application to Interpolation of Missing Values in Audio Signals. In <u>13th European Signal Processing Conference</u>, Antalya/Turkey, 2005. EURASIP.
- [6] A. T. Cemgil and H. J. Kappen. Monte Carlo methods for Tempo Tracking and Rhythm Quantization. <u>Journal of</u> Artificial Intelligence Research, 18:45–81, 2003.
- [7] A. T. Cemgil, H. J. Kappen, and D. Barber. A Generative Model for Music Transcription. <u>IEEE Transactions on Audio, Speech and Language Processing</u>, 14(2):679–694, March 2006.
- [8] A.T. Cemgil, H. J. Kappen, P. Desain, and H. Honing. On tempo tracking: Tempogram Representation and Kalman filtering. In <u>Proceedings of the 2000 International Computer Music Conference</u>, pages 352–355, Berlin, 2000. (This paper has received the Swets and Zeitlinger Distinguished Paper Award of the ICMC 2000).
- [9] R. Chen and J. S. Liu. Mixture Kalman filters. J. R. Statist. Soc., 10, 2000.
- [10] C. Févotte and S. J. Godsill. A Bayesian approach for blind separation of sparse sources.

 | IEEE Trans. Speech and Audio Processing, in press. In press Preprint available at http://persos.mist-technologies.com/~cfevotte/.

- [11] B. J. Frey and N. Jojic. A comparison of algorithms for inference and learning in probabilistic graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 2005.
- [12] Z. Ghahramani and M. Beal. Propagation algorithms for variational Bayesian learning. In Neural Information Processing Systems 13, 2000.
- [13] E. T. Jaynes. <u>Probability Theory, The Logic of Science</u>. Cambridge University Press, edited by G. L. Bretthorst, 2003.
- [14] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. <u>IEEE</u> Transactions on Information Theory, 47(2):498–519, February 2001.
- [15] D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.
- [16] Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in graphical models, pages 355–368. MIT Press, 1999.
- [17] L. R. Rabiner. A tutorial in hidden Markov models and selected applications in speech recognation. <u>Proc. of the IEEE</u>, 77(2):257–286, 1989.
- [18] C. Raphael. A probabilistic expert system for automatic musical accompaniment. <u>Journal of Computational and</u> Graphical Statistics, 10(3):467–512, 2001.
- [19] M. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Technical Report 649, Department of Statistics, UC Berkeley, September 2003.
- [20] J. Winn and C. Bishop. Variational message passing. Journal of Machine Learning Research, 6:661–694, 2005.

Thank you for your patience and attention!

Slides will be available online

http://www-sigproc.eng.cam.ac.uk/~atc27/acm-tutorial/

Cemgil ACM-MM 2007 Tutorial - Bayesian Methods for Multimedia Signal Processing. September 24, 2007, Augsburg

237