Matrix Theory EE5609 - Assignment 1

Sandhya Addetla PhD Artificial Inteligence Department

> 05-Sep-2020 AI20RESCH14001

Abstract—This document provides a solution for the problem of finding slopes of two lines, slope of one line being double of the slope of another line. and tangent of the angle between them is 1/3.

I. PROBLEM STATEMENT

The slope of a line is double of the slope of another line. If the tangent of the angle between them is 1/3, find the slopes of the lines.

II. THEORY

Consider the lines as two directional vectors $\vec{v_1}$ and $\vec{v_2}$. Angle between the two vectors can be obtained by dot product of the two vectors.

Fig. 1. Angle between two vectors

$$\theta = \vec{v_1} \cdot \vec{v_2}$$

The dot product of the vectors is given by

$$\vec{v_1} \cdot \vec{v_2} = |\vec{v_1}| |\vec{v_2}| \cos\theta$$

III. SOLUTION

Here these two vectors are considered to be passing through origin. The equations for these two vectors are:-

$$y = m_1 x$$
$$y = m_2 x$$

Where m_1 and m_2 are slopes of the vectors $\vec{v_1}$ and $\vec{v_2}$ respectively. Let $m_1 = m$. Given $m_2 = 2m$

These vectors can be represented as below:-

$$ec{oldsymbol{v_1}} = egin{pmatrix} 1 \ m \end{pmatrix} ec{oldsymbol{v_2}} = egin{pmatrix} 1 \ 2m \end{pmatrix}$$

The dot product of the vectors is given by

$$\vec{v_1} \cdot \vec{v_2} = |\vec{v_1}| |\vec{v_2}| \cos\theta$$

Given that $tan\theta$ is $\frac{1}{3}$. By Pythagorus theorem, we can obtain $cos\theta$ as $\frac{3}{\sqrt{10}}$. therefore,

$$cos\theta = \frac{\vec{v_1} \cdot \vec{v_2}}{|\vec{v_1}| |\vec{v_2}|}$$
$$\frac{3}{\sqrt{10}} = \frac{1*1 + m*2m}{\sqrt{1 + m^2}\sqrt{1 + 4m^2}}$$

Applying square on both sides

$$9 * (1 + m^{2})(1 + 4m^{2}) = 10(1 + 2m^{2})^{2}$$
$$4m^{4} - 5m^{2} + 1 = 0$$
$$m_{1} = m = 1, -1, \frac{1}{2}, \frac{-1}{2}$$

Substituting the value of m_1 we get value of $m_2 = 2, -2, 1, -1$

IV. CONCLUSION

The slopes m_1 and m_2 of vectors $\vec{v_1}$ and $\vec{v_2}$ for the said conditions are: -

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \end{pmatrix}, \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}, \begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix}$$