Conditional Prompt Learning for Vision-Language Models

Vinit Raj - 19CS10065 Aryan Agarwal - 19CS30005

Introduction

- Vision Language Models
- Task: Adapting pretrained models to other downstream datasets
- Prompt Learning and Context Optimization

Vision Language Models

Textual as well as visual cues are used in learning process. Not just one word labels but often more descriptive.

1. Contrastive pre-training

CLIP

Task

• Classic vision models need lot of data but perform very good in their specified tasks

 But they need considerable effort to adapt to a new task or even same task with out of set inputs.

• Vision language models address this by not learning a benchmark but trying to learn useful embeddings that can be tuned efficiently for other downstream tasks.

Prompt Learning and Context Optimization

- Handcrafted prompts are time consuming to generate and often have large implication of model performance
- So we automate prompt engineering using context words.

Figure 2: Overview of context optimization (CoOp).

Methodology

Extra Meta net that produces input conditional token which helps in reducing the overfitting problem that CoOp experiences on the base classes.

Methodology

- The Meta network produces input conditional values π from the feature map of the image and then adds it to context vectors.
- Then we find the similarity of each image with all the context vectors and then use softmax loss for each image and each text prompt.

$$p(y|\mathbf{x}) = \frac{\exp(\sin(\mathbf{x}, g(\mathbf{t}_y(\mathbf{x})))/\tau)}{\sum_{i=1}^{K} \exp(\sin(\mathbf{x}, g(\mathbf{t}_i(\mathbf{x}))/\tau)}.$$

Evaluation

• Generalization from base to new classes within a dataset

(a) Average over	11 datasets.
------------------	--------------

	Base	New	Н	
CLIP	69.34	74.22	71.70	
CoOp	82.69	63.22	71.66	
CoCoOp	80.47	71.69	75.83	

(b) ImageNet.

	Base	New	Н	
CLIP	72.43	68.14	70.22	
CoOp	76.47	67.88	71.92	
CoCoOp	75.98	70.43	73.10	

Cross dataset transfer

	Source	Source Target										
	ImageNet	Caltech101	OxfordPets	StanfordCars	Flowers102	Food101	FGVCAircraft	SUN397	DTD	EuroSAT	UCF101	Average
CoOp [62] CoCoOp	71.51 71.02	93.70 94.43	89.14 90.14	64.51 65.32	68.71 71.88	85.30 86.06	18.47 22.94	64.15 67.36	41.92 45.73	46.39 45.37	66.55 68.21	63.88 65.74
Δ	-0.49	+0.73	+1.00	+0.81	+3.17	+0.76	+4.47	+3.21	+3.81	-1.02	+1.66	+1.86

Evaluation

• Domain Generalization

	Learnable?	Source	Target					
		ImageNet	ImageNetV2	ImageNet-Sketch	ImageNet-A	ImageNet-R		
CLIP [40]		66.73	60.83	46.15	47.77	73.96		
CoOp [62]	✓	71.51	64.20	47.99	49.71	75.21		
CoCoOp	✓	71.02	64.07	48.75	50.63	76.18		

Conclusion

- Vision Language Models have vastly greater adaptive capabilities compared to classic CNN models that treat textual labels only as discrete values.
- These models extract semantic information from the text information provided and combining it with images provides deeper understanding of the subject matter.
- One such model CLIP uses contrastive learning to create a joint embedding space for the text and image, CoCoOp further improve the adaptation capability of the model by making the context vectors dependent on the image