COMP30026 Models of Computation Assignment 1

Emmanuel Macario - 831659

September, 2018

Challenge 1

	P	\overline{Q}	R	$((\neg P \land Q) \Rightarrow \neg R) \Rightarrow R$	R	
	0	0	0	0	0	
	0	0	1	1	1	
	0	1	0	0	0	
a.	0	1	1	1	1	·· (
	1	0	0	0	0	
	1	0	1	1	1	
	1	1	0	0	0	
	1	1	1	1	1	
						,

$$\therefore ((\neg P \land Q) \Rightarrow \neg R) \Rightarrow R \equiv R$$

	P	Q	R	$(P \Rightarrow (Q \lor R)) \land (P \Leftrightarrow Q)$	$P \Leftrightarrow Q$
	0	0	0	1	1
	0	0	1	1	1
	0	1	0	0	0
b.	0	1	1	0	0
	1	0	0	0	0
	1	0	1	0	0
	1	1	0	1	1
	1	1	1	1	1

$$: (P \Rightarrow (Q \lor R)) \land (P \Leftrightarrow Q) \equiv P \Leftrightarrow Q$$

$$\begin{array}{|c|c|c|c|c|c|} \hline P & Q & P \Rightarrow (P \Leftrightarrow Q) & P \Rightarrow Q \\ \hline 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ \hline \end{array}$$

$$\therefore P \Rightarrow (P \Leftrightarrow Q) \equiv P \Rightarrow Q$$

	P	Q	R	$P \lor (R \Rightarrow Q)$	$(Q \Rightarrow P) \Rightarrow (R \Rightarrow P)$	
	0	0	0	1	1	
	0	0	1	0	0	
	0	1	0	1	1	
d.	0	1	1	1	1	$\therefore P \lor (R \Rightarrow Q) \equiv (Q \Rightarrow P) \Rightarrow (R \Rightarrow P)$
	1	0	0	1	1	
	1	0	1	1	1	
	1	1	0	1	1	
	1	1	1	1	1	

Challenge 2

Firstly, let us define both inhabitant's statements in propositional logic. Inhabitant P's statements are equivalent to $\neg Q$ and Q', respectively. Inhabitant Q's statements are equivalent to P and $\neg P'$, respectively.

We are given information that the statements given by the inhabitants P and Q respectively must be either true or false, but cannot be a mixture of both. In other words, if an inhabitant lies, then every statement they say is guaranteed to be a false statement.

This means that if inhabitant P is telling the truth, then $\neg Q \land Q'$ is true, otherwise $Q \land \neg Q'$ must be true. Similarly, if inhabitant Q is telling the truth, then $P \land \neg P'$ must be true, otherwise $\neg P \land P'$ must be true.

Let A mean P is telling the truth, and B mean Q is telling the truth. We can surmise when P and Q are lying or telling the truth via truth tables.

P	P'	A
0	0	1
0	1	0
1	0	0
1	1	1

Q	Q'	B
0	0	1
0	1	0
1	0	0
1	1	1

It can be seen that P is truthful when $P \Leftrightarrow P'$ is true, and lies when $P \oplus P'$ is true. The same notions hold for inhabitant Q, with respect to literals Q and Q'.

Now, we can extract the maximal amount of information provided by the two inhabitants, in the form of propositional formulas (1) and (2).

$$((P \Leftrightarrow P') \land (\neg Q \land Q')) \oplus ((P \oplus P') \land (Q \land \neg Q')) \tag{1}$$

$$((Q \Leftrightarrow Q') \land (P \land \neg P')) \oplus ((Q \oplus Q') \land (\neg P \land P')) \tag{2}$$

Using a truth table, we can determine for each of P and Q whether they are a knight or a knave, and whether they are healthy or sick.

P	P'	Q	Q'	$((P \Leftrightarrow P') \land (\neg Q \land Q')) \oplus ((P \oplus P') \land (Q \land \neg Q'))$	$((Q \Leftrightarrow Q') \land (P \land \neg P')) \oplus ((Q \oplus Q') \land (\neg P \land P'))$
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	0	1	1	0
1	1	1	0	0	0
1	1	1	1	0	0

We know that both formulas must be true. Therefore, there is only *one* possible scenario. That is, P is a healthy knave and Q is a sick knight.

Challenge 3

a. The two formulas are not equivalent. For example, consider the interpretation I with domain $D = \{0,1\}$ and P(0). Additionally, let Q always be false.

For this interpretation, it can be seen that $I \vDash \forall x (P(x)) \Rightarrow Q$, but $I \nvDash \forall x (P(x) \Rightarrow Q)$. Hence, $\forall x (P(x)) \Rightarrow Q \nvDash \forall x (P(x) \Rightarrow Q)$.

Therefore, $\forall x(P(x)) \Rightarrow Q$ is not equivalent to $\forall x(P(x) \Rightarrow Q)$.

Challenge 4

- a. $\forall x \forall y (M(x, y) \Rightarrow F(x))$
- b. $\forall x \forall y ((U(x) \land M(y, x)) \Rightarrow U(y))$
- c. $\forall x ((F(x) \land U(x) \land B(x)) \Rightarrow D(x))$
- d. $\forall x \forall y ((U(x) \land M(x, y) \land D(x)) \Rightarrow D(y))$
- e. $\forall x((S(x) \land U(x)) \Rightarrow B(x))$

The *Horn clauses* generated are as follows:

- a. $\{\neg M(x,y), F(x)\}$
- b. $\{\neg U(x), \neg M(y, x), U(y)\}$
- c. $\{\neg F(x), \neg U(x), \neg B(x), D(x)\}$
- d. $\{\neg U(x), \neg M(x), \neg D(x), D(y)\}$
- e. $\{\neg S(x), \neg U(x), B(x)\}$

Challenge 5

a. (a1)
$$\forall x \forall y (N(x,y) \Rightarrow N(y,x))$$

(a2)
$$\forall x \forall y \exists u ((M(u,x) \land \neg M(u,y)) \Rightarrow N(x,y))$$

(a3)
$$\forall x (\neg \exists u (M(u, x)) \Rightarrow E(x))$$

(a4)
$$\forall x \forall y \forall u ((D(x,y) \land M(u,x)) \Rightarrow \neg M(u,y))$$

Challenge 6

See Grok.