

ASCII Art Animation

Team:#awfullyPYTHONIC

Members:金淑媛、王倩淑、杨思佳、尹悦舟

导师:鲍杨

2018-6-15

01.Introduction

02.Thinking

03.Modules

04.Conclusion

01. Introduction

Why did we choose this topic and how did we make decisions

▼ 杨思佳 mainly focused on writing and revising the report.

And we present together! ©

Get some modules.

SECOND

Decide the main route to take.

THIRD

Solve some problems.

02. Thinking

Pictures are made of pixels.

Every pixel has its gray value(light and shade degree).

The core of the algorithm is to match gray value to the corresponding character.

Gray value is vary from 0(black) to 255(white).

Color picture is made of three colors: Red, Green, Blue(RGB).

We can use the following formula to convert RGB values to the corresponding gray value:

$$Gray = 0.2126 * r + 0.7152 * g + 0.0722 * b$$

Or we can use the existing function in cv2 cv2.cvtColor() to do this.

The order of characters corresponding to gray value from large to small is:

\$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!II;:,\"^`'.

On the basis of the above contents, we use the following ideas for conversion:

- 1. correspond each character to the gray value of a section.
- 2. divide the picture into appropriate pixel blocks, calculate the gray value of each block line by line, and correspond to the characters.
- 3. write characters line by line to a .txt file and generate pictures.

This is the original version.

The following is the result: Result during the test and final result

Convert video into ASCII character video

Video is made of many frame images.

Read every frame in the video in a loop and then convert it into a character picture.

To make the video more complete, we add music to it afterwards.

Click here to watch the character video

Problems we met and solved

There is a distortion of the edge on the right side. Read line by line VS Read one by one

Brainstorm to add functions and refine codes

How about real-time transferring people?

Brainstorm to add functions and refine codes

Refine our codes

Combine

Add other functions

03. Modules

What modules we used in our code and what are their functions

OpenCV was built to provide a common infrastructure for computer vision applications.

The numpy system has a powerful N dimensional array object. This tool can be used to store and process large matrices.

The os module provides a portable way of using operating system dependent functionality.

The argparse module makes it easy to write user-friendly command line

The subprocess module allows you to spawn new processes, connect to their input/output/error pipes, and obtain their return codes.

- 4. cv2.putText(img,' words', (50,150),cv2.FONT_HERSHEY_COMPLEX, 6,(0,0,255),25)
- 5. cv2.waitkey(delay)
 # wait for key
- 6. cv2.namedWindow('Char Image') #create a window

cv2.imwrite cv2.VideoWriter()

Numpy.empty()

Numpy.zeros((2,3))

Several types of the data

create an empty canvas

canvas =
np.zeros(sp,
np.wint8)

名称	描述
bool	用一个字节存储的布尔类型(True或False)
inti	由所在平台决定其大小的整数(一般为int32或int64)
int8	一个字节大小,-128 至 127
int16	整数, -32768 至 32767
int32	整数, -2 ** 31 至 2 ** 32 -1
int64	整数, -2 ** 63 至 2 ** 63 - 1
uint8	无符号整数, 0 至 255
uint16	无符号整数, 0 至 65535
uint32	无符号整数, 0至2**32-1
uint64	无符号整数, 0至2**64-1
float16	半精度浮点数: 16位, 正负号1位, 指数5位, 精度10位
float32	单精度浮点数: 32位, 正负号1位, 指数8位, 精度23位
float64或float	双精度浮点数: 64位, 正负号1位, 指数11位, 精度52位
complex64	复数,分别用两个32位浮点数表示实部和虚部
complex128或complex	复数,分别用两个64位浮点数表示实部和虚部

On Windows, attempting to remove a file that is in use causes an exception to be raised

We can use this function to split the pathname path into a pair (root, extension

os.remove(file.split ('.')[0] + '.mp3') os.remove(name

+' .avi')

os.path.splitext

(file)[1]

Argparse Is a comprehensive parameter processing libra

The first step in using argparse is to create a parser object and tell it what parameters it will have.

parser. add argument() #Add parameters

parser.add_argument('-r', '--ratio', type=int,
nargs='?', default=10)

In this line, we add the parameter of compression ratio.

[subprocess]

```
# get audio file

def video2mp3(file):
    out_file = file.split('.')[0] + '.mp3'

subprocess.call('ffmpeg -i ' + file + ' -f mp3 ' + out_file, shell=True)
```


subprocess.call()

Create a subprocess that runs at the same time with the main process

04. Conclusion

Let us present the result to you!

Thanks for your listening@