■ HOME

[Convolutional Neural Networks] week2. Deep convolutional models: case studies

2017-11-22 / VIEWS: 3

[TOC]

I-Case studies

Why look at case studies?

Good way to get intuition of different component of CNN: case study & reading paper.

Outline

- classic networks:
 - LeNet-5
 - AlexNet
 - VGG
- ResNet (152-layer NN)
- Inception

Classic Networks

LeNet-5(1998)

[LeCun et al., 1998. Gradient-based learning applied to document recognition]

Goal: recognize hand-written digits.

image \rightarrow 2 CONV-MEANPOOL layers, all CONV are valid (without padding) \rightarrow 2 FC \rightarrow softmax

takeaway (patterns still used today):

- as go deeper, n_H, n_W goes down, n_C goes up
- conv-pool repeated some times, then FC-FC-output

sidenote:

- used sigmoid/tanh as activation, instead of ReLU.
- has non-linearity after pooling
- · orignial paper hard to read

AlexNet

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

Same pattern: conv-maxpool layers \rightarrow FC layers \rightarrow softmax but much more params.

sidenote:

use ReLU as activation

- multi-GPU training
- "local response normalization" (LRN): normalize across all channels (not widely used today).
- a lot hparams to pick

VGG-16

Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]

Much less hparams:

All CONV: 3 3,s=1,padding=same, MAXPOOL: 2 2,s=2

 \rightarrow e.g. "(CONV 64) * 2" meaning 2 conv layers (3*3,s=1,padding=same) of 64 channels.

note:

- pretty large even by modern standard: 138M params
- simplicity in architecture: POOL reduce n_H/n_W by 2 each time;
 CONV n_C=64->128->256->512 (increase by 2), very systematic.

ResNets

Very deep NN are hard to train → ResNet: *skip connections*, to be able to train ~100 layers NN.

Residual block

[He et al., 2015. Deep residual networks for image recognition]

Normal NN: from a[l] to a[l+2], two linear & ReLU operations. "main path".

ResNet: a[l] taks shortcut and goes directly to a[l+2]'s non-linearity . " shortcut " / " skip connection ".

Using residual block allows training very deep NN:

stack them to get ResNet (i.e. add shortcuts to "plain" NN).

Problem of training plain NN: *training error goes up (in practice) when having deeper NN*.

Because deeper NN are harder to train (vanishing/exploding gradients, etc.)

With ResNet: training error goes down even with deeper layers.

Why ResNets Work

$$a[1+2] = g(z[1+2] + a[1])$$

= $g(w[1+1] * a[1+1] + b[1+1] + a[1])$

- \rightarrow note: when applying weight decay, w can be small (w~=0, b~=0)
- \Rightarrow a[I+2] ~= g(a[I]) = a[I] (assume g=ReLU)
- \Rightarrow it's easy to get a[I+2]=a[I], i.e. identity function from a[I] to a[I+2] is easily learned
- → whereas in plain NN, it's difficult to learn an identity function between layers, thus more layers make result *worse*

- → adding 2 layers doesn't hurt the network to learn a shallower NN's function, i.e. performance is not hurt when increasing #layers.
- → when necessary can do even better than learning identity function

Side note:

- z[1+2] and a[1] have the same dimension (so that they can be added in g) → i.e. many "same" padding are used to preserve dimension.
- If their dimensions are not matched (e.g. for pooling layers) \rightarrow add extra w_s to be applied on a[1].

$$a^{\text{T2}} = g(\frac{1}{2} + a^{\text{T2}}) + a^{\text{T2}} + a^{\text{T2}}) = g(a^{\text{T2}})$$

$$= g(\frac{1}{2} + a^{\text{T2}}) + a^{\text{T2}} + a^{\text{T2}}) = g(a^{\text{T2}})$$

$$= g(a^{\text{T2}})$$

$$= a^{\text{T2}}$$

$$= a^{\text{T2}}$$

Networks in Networks and 1x1 Convolutions

[Lin et al., 2013. Network in network]

Using 1*1 conv: for one single channel, just multiply the input image(slice) by a constant...

But for >1 channels: each output number is inner prod of input channel "slice" and conv filter.

1 1 conv: ~= fully-connected layer applied to each of n_H n_W slices, adds non-linearity to NN.

→ 1 1 conv also called " network in network*" example:

To shrink #channels via 1*1 conv.

Inception Network Motivation

[Szegedy et al. 2014. Going deeper with convolutions]

Instead of choosing filter size, do them all in parallel.

note: use SAME padding & stride=1 to have the same n_H, n_W

Problem: computation cost.

example: input shape = 28 28 192, filter 5 5 192, 32 filters, output

shape = 28 28 32

totoal #multiplication = 28 * 28 * 32 * 5 * 5 * 192 = 120M

→ reduce #computation with 1*1 conv

Reduce n_C of input by 1 1 conv ("bottleneck-layer") before doing the 5 5 conv.

Does bottleneck layer hurt model performance ? \rightarrow no.

Inception Network

Inception module:

For max pooling layer, out n_C equals input n_C \rightarrow use a 1 1 conv to shrink n_C*.

Inception network:

- Putting inception modules together.
- Have side branches: taking hidden layer and feed to FC for output.
- ensure features from hidden units at intermediate layers are not too bad for prediction kind of regularization

The name "inception" come from: a meme...

http://knowyourmeme.com/memes/we-need-to-go-deeper

Andrew Ng

II-Practical advice for using ConvNets

Advices on how to use these classical CNN models.

Using Open-Source Implementation

Difficult to replicate the work just from paper: a lot of details&hparams

→ use open-sourced version.

Transfer Learning

Download weights of other's NN as pretrained params.

→ pretrained params are trained on huge datasets, and takes weeks to train on multiple GPUs.

example: cat detector

- 3 class: tigger/misty/neither
- training set at hand is small
- → download both code and weights online

e.g. ImageNet NN

- → change last layer's softmax
- → all Conv/Pool layers set *frozen* (not trainable)
- → only training softmax layer's weight with training set.

OR:

Precompute the hidden layer (fixed function mapping from x to feature vector) and save to disk.

 \rightarrow train a shallow model on top. \rightarrow save computation.

If have a large training set at hand \Rightarrow freeze a few layers and train the rest.

If have a *huge* dataset: train the whole NN.

Data Augmentation

More data are alway welcome.

Common augmentation method:

- Mirroring
- Randome cropping
- Rotation/Shearing/Local warping: used a bit less in practice
- Color shifting

In practice: shifts drawn from some random distribution.

e.g. PCA-color-augmentation (details in AlexNet paper): ~keep overall color the same.

Implementaing distortions during training

If data is huge \rightarrow CPU thread to get *stream* of images \rightarrow add distortion for each image \rightarrow form minibatch of data \rightarrow pass to training.

State of Computer Vision

Observations for DL for CV.

Data VS. hand-engineering

As more data are available → simpler algo, less hand-engineering.

Learing algo has 2 sources of knowledge:

- labeled data
- hand engineered features / network architecture / specialized components

Transfer learning can help when dataset is small.

Tips for doing well on benchmarks/winning competitions

• Ensembling:

Train several(3~15) NN independently, then average their outputs.

• Multi-crop at test time

Predict on multiple versions of test images and average results.

e.g. 10-crop at test time

關鍵詞:<u>神經網絡</u> AlexNet

相關推薦:

Carvana Image Masking Challenge-1st Place Winner's Interview

DL05: Convolutional Neural Networks

Image classification with Keras and deep learning

Custom Layers in CoreML

<u>Text Classification – Classifying product titles using Convolutional</u>
<u>Neural Network and Wor...</u>

[Convolutional Neural Networks] week3. Object detection

Art: Neural Style Transfer

Read more posts by this author.

 Share this post

掃文資訊 © 2017 / runtime 0.157049s / size: 11083