Quantum physics grew up widely in the second half of the 20th century, many people contributed to pushing forward on many quantum technologies. I was highly unaware of the new achievements that quantum technologies can give us in the forthcoming years and this is a great surprise to me because I can now learn from some of the cutting-edge that are performing on the quantum scene.

Report workbook

John Doe

John Doe

John Doe University October 2021

Contents

	${f P}$	Page
Li	ist of Figures	II
Li	ist of Tables	III
Li	ist of Equations	IV
G	lossary	V
D	eclaration	V
A	bstract	VII
1	Introduction	1
2	Another chapter 2.1 Section here	2 3
E_l	pilogue	E
Bi	ibliography	ϵ
Li	ist of Publications	7

List of Figures

]	Pa	$\mathbf{g}\mathbf{e}$
2.1	Disc sample figure																	3

List of Tables

	${f P}a$	age
2.1	Sample table	3
2.2	Table with complex cells	3
2.3	Complex table 2	4

List of Equations

			F	Page	Э
2.1	Theoretical Kittel equation expanded for a Permalloy thin-film for X-axe			;	3

Glossary

Glossary item 1 Glossary item 1 1

Glossary item 2 Glossary item 2 1

Declaration

I hereby declare that the work presented in this thesis is entirely my own and that I did not use any other sources and references than the listed ones. I have marked all direct or indirect statements from other sources contained therein as quotations. Neither this work nor significant parts of it were part of another examination procedure. I have not published this work in whole or in part before. The electronic copy is consistent with all submitted copies.

Zaragoza (Aragón), October 2021

Abstract

This is justified text.

Introduction

This is an introduction. this is bold this is italic text

This is Glossary item 1 and this is Glossary item 2.

Citation here [1]. Footnote url here 1.

Another footnote simple².

¹http://google.com ²this is a footnote

Another chapter

This is a chapter.

Second page.

Footnote url here with header³.

$$f = 28 \cdot \sqrt{(B_{DC} + (N_y - N_x) \cdot 0.86 \cdot 10^6 \cdot 4\pi \cdot 10^{-7}) \cdot (B_{DC} + (N_z - N_x) \cdot 0.86 \cdot 10^6) \cdot 4\pi \cdot 10^{-7}}$$

Equation 2.1: Theoretical Kittel equation expanded for a Permalloy thin-film for X-axe

2.1 Section here

This is a new section.

Item	Item
size1	size2
(nm)	(nm)
8	600
10	400
12	300

Table 2.1: Sample table

Figure 2.1: Disc sample figure

Item	Item	Item	Item
one	two	three	four
(m)	(m)	(m)	(m)
8	$15000 \times 800 \times 60$	7.5413550	0
10	$15000 \times 450 \times 60$	9.4630770	0
12	$15000 \times 350 \times 60$	10.368898	0

Table 2.2: Table with complex cells

 $^{^3}$ http://google.com

Item size	Object	Object width	Current	Gap @ 500nm	Gap $@ 1\mu m$
(μm)	(m)	(nm)	(mA)	(nT)	(nT)
		300		51.66902	29.08373
$15 \times 0.800 \times 0.06$	259.07	400	1.61000×10^4	50.82305	28.93193
10 // 0.000 // 0.00		600		48.54992	28.49336
		300		76.05934	42.81274
$15 \times 0.450 \times 0.06$	224.42	400	2.37000×10^4	74.81401	42.58931
		600		71.46784	41.94378
		300		84.72435	47.69013
$15 \times 0.350 \times 0.06$	229.52	400	2.64000×10^4	83.33715	47.44119
		600		79.61009	46.72226

Table 2.3: Complex table 2

Important note: This is a nice ToDO note.

Epilogue

This ia an epilogue.

Bibliography

[1] Yi Li, Tomas Polakovic, Yong-Lei Wang, Jing Xu, Sergi Lendinez, Zhizhi Zhang, Junjia Ding, Trupti Khaire, Hilal Saglam, Ralu Divan, John Pearson, Wai-Kwong Kwok, Zhili Xiao, Valentine Novosad, Axel Hoffmann, and Wei Zhang. Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices. *Physical review letters*, 123:107701, September 2019.

List of Publications

^[1] Fernando Luis, Pablo J. Alonso, Olivier Roubeau, Verónica Velasco, David Zueco, David Aguila, Leoní A. Barrios, and Guillem Aromí. A dissymmetric [gd₂] coordination molecular dimer hosting six addressable spin qubits, 2020.

^[2] Salvatore Savasta, Omar Di Stefano, Alessio Settineri, David Zueco, Stephen Hughes, and Franco Nori. Gauge principle and gauge invariance in quantum two-level systems, 2020.