

Visual Localization based on Binary Features

Diploma Thesis Final Presentation

Julian Straub, B.Sc.

Advisors: Dipl.-Ing. Sebastian Hilsenbeck, M.Sc.

and Dipl.-Ing. Georg Schroth

Visual Localization System Overview

Parallel Tracking and Mapping (PTAM)

PTAM Tracking Failure

Frame-to-frame tracking

Pose refinement using 2D-3D point correspondences

- Motion blur
- Fast rotations
- Rapid lighting changes

Loss of pose estimate

PTAM's built-in Relocalization Algorithm

Visual Localization System Overview

Relocalization Strategy using Binary Features

Frame-to-frame tracking

Robust Levenberg Marquardt algorithm for pose refinement

Progressive Sample Consensus (PROSAC) for pose recovery

Locality-Sensitive Hashing (LSH)

2D-3D point correspondences

Binary Robust Features (BRIEF)

Locality-Sensitive Hashing (LSH)

- Use hashing for approximate Nearest Neighbour (NN) search
- Hash function: look at m randomly selected bit positions in the BRIEF descriptor

Use I hash tables to improve probability to find true NN

LSH Query

Visual Localization System Overview

Content-based Image Retrieval (CBIR)

Quantizer for Binary Features

k-Binary Means Clustering

- 1. Initialize k means from random features
- 2. Assign features to closest mean (Hamming distance)
- 3. Recompute means and go back to 2. if not converged

CBIR from Virtual Views DB for Localization

Dataset for Relocalization Evaluation

Datalogger Application for Android for video and IMU data collection

Tablet mounted on Trolley to get groundtruth trajectory

Trajectory of 100m and 8:01min length

LSH Parameters for Relocalization in 15k Features

90% precision

59 µs per query

23x faster than NN

4.4 MiB memory consumption

Institute for Media Technology Prof. Dr.-Ing. Eckehard Steinbach

Relocalization using keyframes

Relocalization using **BRIEF**

Julian Straub 8/20/2012 19

Relocalization Timing

Average Duration of Relocalization: 169ms

Time for extraction of the same number of SURF features: 450ms

Relocalization while Walking Straight

Dataset for Large Scale Localization Evaluation

100k virtual views from TUMindoor dataset with 35M BRIEF features

252 query images at known positions

LSH Parameters for 200k kBM Quantizer for CBIR

90% precision

560 µs per query

9x faster than NN

142 MiB memory consumption

Virtual Views CBIR

Duration of kBM clustering 200k quantizer: 4.5 h 500k quantizer: 13.5 h

Quantization time per BRIEF 200k quantizer: 0.37 ms 500k quantizer: 0.90 ms

Storage on disk 200k quantizer: 6.2 MB 500k quantizer: 16 MB

Conclusion

Relocalization based on BRIEF

169 ms – 2x as fast as solely extracting the same number of SURF features

Robust in indoor environments

kBM quantizer for CBIR
Virtual Views Localization
Partial Vocabularies

BRIEF features enable fast localization without sacrificing accuracy

Outlook

Global localization and PTAM initialization from Server

PROSAC Precision and Timing

LSH - Building the Hash Tables

Nearest Neighbour k-Binary Means Query

LSH k-Binary Means Query

Relocalization Within Explored Territory

Conclusion

- BRIEF Feature based relocalization presents significant improvement over PTAM's built-in relocalization mechanism.
- BRIEF Feature based relocalization is twice as fast as solely extracting the same number of SURF features
- Novel kBM quantizer for visual word creation from binary features for CBIR

Outlook

Global localization and PTAM initialization from Server

