WS 2010

30.03.2010

Formale Grundlagen der Informatik II

Bsc Inf, JBA Inf

Versehen Sie bitte jedes Blatt mit Namen und Matrikelnummer und fangen Sie für jede Aufgabe eine neue Seite an. Nachname: _______

Matrikelnummer:

Aufgabe	1	2	3	4	5	Gesamt	Note
mögl. Punktzahl	12	12	12	12	12	48+12	
err. Punktzahl							

vor der Abgabe bitte hier falten und die Lösungsblätter hineinlegen

Die Klausur besteht aus 5 Aufgaben, die alle mit 12 Punkten bewertet sind. Um die maximale Punktzahl zu erreichen, brauchen Sie insgesamt 48 Punkte. Bei der Bewertung wird auf klare Darstellung und Begründungen Wert gelegt.

Aufgabe 1 (12 Punkte)

(a) Beweisen oder widerlegen Sie, dass

Eigentum des LZM

Technische Universität Darmstadt -FB Mathematik-

$$\varphi := ((p \to q) \to r) \to ((p \to r) \to r)$$

eine Tautologie ist.

(b) Eine dreistellige Aussagenlogische Operation $\$(p_1, p_2, p_3)$ sei wie folgt definiert:

$$(\$(p_1, p_2, p_3))^{\mathcal{I}} = 1$$
 gdw. $\mathcal{I}(p_1) + \mathcal{I}(p_2) + \mathcal{I}(p_3) \ge 2$.

Schreiben Sie \$ mit ∨ und ¬.

(c) Geben Sie zu $\neg(p \leftrightarrow q)$ logisch äquivalente Formeln in disjunktiver und konjunktiver Normalform an.

Aufgabe 2 (12 Punkte)

(a) Bestimmen Sie mit Hilfe des Hornformel-Algorithmus die minimale Belegung für die folgende Menge von Hornklauseln:

Wieviele erfüllende Belegungen gibt es insgesamt?

(b) Beweisen Sie mit Hilfe von aussagenlogischer Resolution, dass die folgende Formelmenge unerfüllbar ist:

$$\{p \to (q \land \neg r), \quad \neg q \lor r, \quad \neg (r \land \neg p), \quad \neg q \to p\}.$$

(c) Beweisen Sie mit Hilfe von Grundinstanzenresolution, dass die Formelmenge $\{\varphi_1, \varphi_2, \varphi_3\}$ unerfüllbar ist, wobei:

$$\begin{array}{rcl}
& \varphi_1 & := & \forall x \exists y \big(R(x,y) \land P(y) \land (R(y,x) \to \neg P(x)) \big), \\
& \varphi_2 & := & \exists x \forall y \big(P(y) \to R(y,x) \big), \\
& \varphi_3 & := & \forall x \forall y \forall z \big(R(x,y) \land R(y,z) \to R(x,z) \big).
\end{array}$$

Aufgabe 3 (12 Punkte)

(a) Geben Sie einen semantischen Beweis der folgenden prädikatenlogisch wahren Formel:

$$\varphi := \forall x \exists y \forall z \exists v \exists w \big(R(y, z) \to R(x, v) \land R(v, w) \big).$$

- (b) Bestimmen Sie die Herbrand-Normalform φ^H von φ .
- (c) Geben Sie eine tautologische Herbranddisjunktion von φ an.

Aufgabe 4 (12 Punkte)

Seien

$$\varphi_1 := \forall x \exists y \big(R(x, y) \land P(y) \big)
\varphi_2 := \forall x \forall y \big(R(x, y) \rightarrow (P(x) \leftrightarrow Q(y)) \big)
\varphi_3 := \exists x \big(P(x) \land \forall y (P(y) \rightarrow R(x, y)) \big)
\varphi_4 := \exists y \big(\neg P(y) \land Q(y) \big)$$

- (a) Wandeln Sie die Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ in Skolem-Normalform um.
- (b) Zeigen Sie semantisch, dass die Formelmenge $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ nicht erfüllbar ist.
- (c) Je drei der vier Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ sind gemeinsam erfüllbar. Weisen Sie dies für alle vier Kombinationen durch Angabe von Herbrand-Modellen nach.

Aufgabe 5 (12 Punkte)

Welche der folgenden Aussagen sind wahr? (Bitte ankreuzen, falsche Antworten geben Punktabzug.) In den letzten zwei Teilen dieser Aufgabe ist φ eine prädikatenlogische Formel ohne Quantoren, ohne Funktionssymbole, aber (eventuell) mit Gleichheit.

vahr	falsch	
		Die Formeln $A \leftrightarrow (B \leftrightarrow C)$ und $(A \leftrightarrow B) \leftrightarrow C$ sind logisch äquivalent.
		Die Junktoren \neg und \leftrightarrow bilden ein vollständiges System für die Aussagen-
		logik.
		Jeder Satz, der unendliche Modelle hat, hat auch endliche Modelle.
		Die erfüllbaren Sätze der Logik erster Stufe sind rekursiv aufzählbar.
		Jede in der Logik erster Stufe (mit Gleichheit) beweisbare Aussage von der
		Gestalt $\exists x \varphi(x)$ hat eine tautologische Herbranddisjunktion.
		Jede erfüllbare Aussage von der Gestalt $\exists x \forall y \varphi(x,y)$ hat ein endliches Mo-
		dell.