# Two-dimensional generative modeling with the bivariate Gaussian

## Topics we'll cover

- Generative modeling of two-dimensional data
- 2 The bivariate Gaussian distribution
- 3 Decision boundary of the generative model

## The winery prediction problem

Which winery is it from, 1, 2, or 3?



Using one feature ('Alcohol'), error rate is 29%.

What if we use **two** features?

### The data set, again

#### Training set obtained from 130 bottles

• Winery 1: 43 bottles

• Winery 2: 51 bottles

• Winery 3: 36 bottles

• For each bottle, 13 features:

'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium',

'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins',

'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'

Also, a separate test set of 48 labeled points.

This time: 'Alcohol' and 'Flavanoids'.

## Why it helps to add features

Better separation between the classes!



Error rate drops from 29% to 8%.

### The bivariate Gaussian



Model class 1 by a bivariate Gaussian, parametrized by:

mean 
$$\mu=\begin{pmatrix}13.7\\3.0\end{pmatrix}$$
 and covariance matrix  $\Sigma=\begin{pmatrix}0.20&0.06\\0.06&0.12\end{pmatrix}$ 

#### Dependence between two random variables

Suppose  $X_1$  has mean  $\mu_1$  and  $X_2$  has mean  $\mu_2$ .

Can measure dependence between them by their covariance:

- $cov(X_1, X_2) = \mathbb{E}[(X_1 \mu_1)(X_2 \mu_2)] = \mathbb{E}[X_1X_2] \mu_1\mu_2$
- Maximized when  $X_1 = X_2$ , in which case it is  $var(X_1)$ .
- It is at most  $std(X_1)std(X_2)$ .

## The bivariate (2-d) Gaussian

A distribution over  $(x_1, x_2) \in \mathbb{R}^2$ , parametrized by:

- Mean  $(\mu_1,\mu_2)\in\mathbb{R}^2$ , where  $\mu_1=\mathbb{E}(X_1)$  and  $\mu_2=\mathbb{E}(X_2)$
- Covariance matrix  $\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$  where  $\begin{cases} \Sigma_{11} = \mathsf{var}(X_1) \\ \Sigma_{22} = \mathsf{var}(X_2) \\ \Sigma_{12} = \Sigma_{21} = \mathsf{cov}(X_1, X_2) \end{cases}$

Density is highest at the mean, falls off in ellipsoidal contours.

## **Density of the bivariate Gaussian**

- Mean  $(\mu_1,\mu_2)\in\mathbb{R}^2$ , where  $\mu_1=\mathbb{E}(X_1)$  and  $\mu_2=\mathbb{E}(X_2)$
- Covariance matrix  $\boldsymbol{\Sigma} = \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right]$

Density 
$$p(x_1, x_2) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix}\right)$$

## **Bivariate Gaussian: examples**

In either case, the mean is (1,1).



$$\Sigma = \left[ \begin{array}{cc} 4 & 0 \\ 0 & 1 \end{array} \right]$$



$$\Sigma = \left[ egin{array}{cc} 4 & 1.5 \ 1.5 & 1 \end{array} 
ight]$$

## The decision boundary

Go from 1 to 2 features: error rate goes from 29% to 8%.



What kind of function is this? And, can we use more features?