DM ASSIGNMENT

Q1. Check the relations whether it is Reflexive, Irreflexive, Symmetric, Asymmetric, AntiSymmetric and Transitive Relation and justify your answer.

$$A=\{1,2,3,4\}$$

Relations	Reflexive	Irreflexive	Symmetric	AntiSymmetric	Asymmetric	Transitive
$R_1 = \Phi$						
$R_2 = A \times A$						
$R_3 = \{(1,1),(1,2),(2,1),(2,2), (3,4),(4,1),(4,4)\}$						
$R_4 = \{(1,1),(1,2),(2,1)\}$						
$R_5 = \{(2,1),(3,1),(3,2),(4,1),$ $(4,2),(4,3)\}$						

- Q2. Show whether the relation $(x,y) \subseteq R$, if $x \ge y$ defined on the set of +ve integers is a partial order relation.
- Q3. Which of the followings are partial order relation.

(a)
$$R = \{ (a,b) \mid a,b \in Z, a < b \}$$

(b)
$$R = \{ (a,b) \mid a,b \in Z, a \le b \}$$

(c)
$$R = \{(a,a),(b,b)\}$$
, $A = \{a,b\}$

(d)
$$R = \{(1,1),(1,2),(2,1)\}$$
, $A = \{1,2,3\}$

Q4. Which of the followings are Equivalence relation on given set A.

$$A = \{1,2,3,4,5\}$$

(a)
$$R = \{ \}$$

(b)
$$R = A \times A$$

(c)
$$R = \{(1,1),(3,5),(5,4),(1,5),(5,1)\}$$

(d)
$$R = \{(1,1),(2,2),(3,3),(4,4),(5,5),\}$$

Q5. Given relation is Equivalence relation or not.

R =
$$\{(a,b) ; |a-b| \text{ is even}\}$$
 a,b \subseteq A
A = $\{1,2,3,4,5\}$

Q6. Draw the Hasse diagram and calculate the number of lines

(a)
$$A = \{1,2,3,4,5,6,\}$$

(b)
$$< D60, / >$$

(c)
$$< P(A), \subseteq > A = \{1,2,3\}$$

(e)
$$<$$
P(X), \subseteq > X = {a,b,c,d}

Find the answer with the explanation for Question no. 7 to Question no 11

- 7. The number of onto functions (surjective functions) from set $X = \{a,b,c,d,e,f\}$ to set $Y = \{1,2,3\}$ is -----
 - a. <u>540</u>
 - b. 36
 - c. 729
 - d. 192
- 8. Let $A = \{1, 5, 8, 9\}$ and $B \{2, 4, 3\}$ And $f = \{(1, 2), (5, 4), (8, 2), (9, 4)\}$. Is f a surjective function?
 - a. Yes
 - b. No
- 9. Let $A = \{7,8,9\}$ and $B = \{7,8,9\}$ and f is onto from A to B then which of the following is correct?
 - a. F is one to one

- b. F if bijective
- c. F may be one to one or many to one
- d. None of these.
- 10. If $f: A \rightarrow B$ is an onto function then range of f is:
 - a. Subset of B
 - b. A
 - c. B
 - d. Cannot be determined
- 11. Is the given function onto? $g : R \rightarrow R$ defined by $g(x) = 1 + x^2$
 - a. Yes
 - b. No
 - c. Cannot decide
- 12. $f(x) = \sqrt{x}$ and g(x) = x2. What will be range of $(g \circ f)(x)$?
- 13.f and g are both defined on the set of real numbers and c is a constant $f(x) = cx 3 g(x) = cx + 5 If (f \circ g)(x) = (g \circ f)(x)$ for all values of x, what is the value of c?
- 14. Given $f(x) = \sqrt{(x + 2)}$ and $g(x) = \ln (1 x 2)$, find domain of $(g \circ f)(x)$.
- 15. State whether the following statement is True/False.

"Composite functions are commutative."