Foncteurs, Monades et Zippers

Jérémy Cochoy

Paris RB

Février 2018

- Foncteurs applicatifs
 - Fonctions
 - Types
 - Foncteurs
- 2 Monades
 - Construction
 - Théorie
- Applications In Real Life
 - Monade de listes
 - La Monade Maybe de Ruby

Les fonctions

On considère des fonctions pures :

- déterministe
- sans effet de bord

add2 了

Les fonctions

On considère des fonctions pures :

- déterministe
- sans effet de bord

add2 🕉


```
def add2(n)
end
```

Qu'appelons nous un type?

Pour nous, c'est un ensemble de valeurs.

- $Integer = \{-2147483648, \dots, 2147483647\}$
- $NilClass = \{nil\}$
- Boolean = $\{True, False\}$
- \bullet [Nilclass] = {[], [True], [False], [True, False], [False, True], . . .}

Les types

Qu'appelons nous un type?

Pour nous, c'est un ensemble de valeurs.

Exemples:

- $Integer = \{-2147483648, \dots, 2147483647\}$
- $NilClass = \{nil\}$
- $Boolean = \{True, False\}$
- $[Nilclass] = \{[], [True], [False], [True, False], [False, True], \ldots \}$

Les types

Qu'appelons nous un type?

Pour nous, c'est un ensemble de valeurs.

Exemples:

- $Integer = \{-2147483648, \dots, 2147483647\}$
- $NilClass = \{nil\}$
- $Boolean = \{True, False\}$
- $[Nilclass] = \{[], [True], [False], [True, False], [False, True], \ldots \}$

Les types

Les fonctions sont de type : $a \rightarrow b$

- floor : : Float -> Integer
- 2.method(:+):: Integer -> Integer

Les fonctions se composent

- f1::a-> b
- f2::b->c
- $\{ |x| | f2(f1(x)) \} : : a -> c$

```
sum = ->(a, b) do
a + b
end
```

```
sum = ->(a, b) do
a + b
end
```

```
irb > sum.(2,3)
=> 5
```

```
sum = ->(a, b) do
a + b
end
```

```
irb > sum.(2,3)
=> 5
```

```
irb > sum.curry.(1)
=> #<Proc:0x00000000288c3c0 (lambda)>
irb > sum.curry.(1).(2)
=> 3
```

```
sum = ->(a, b) do
  a + b
end
```

Curryfication

- sum :: (a, b) -> c
- sum.curry : : a -> (b -> c)

```
sum = ->(a, b) do
 a + b
end
```

Curryfication

- sum :: (a, b) -> c
- sum.curry : : a -> b -> c


```
sum = ->(a, b) do
    a + b
end
```

Curryfication

- sum :: (a, b) -> c
- sum.curry : : a -> b -> c

Exerci<u>ce</u>

compose : : (a -> b) -> (b -> c) -> (a -> c)

Les foncteurs applicatifs

Un foncteur F agit sur les types ...

- a => F a
- a => [a]
- a => Tree a
- a => Maybe a

... et sur les fonctions

•
$$a -> b => Fa -> Fb$$

- fmap 2.method(:+2):: F Int -> F Int
- fmap floor : : F Float -> F Int

Les foncteurs applicatifs

Un foncteur F agit sur les types ...

- a => F a
- a => [a]
- a => Tree a
- \bullet a => Maybe a

... et sur les fonctions

- a -> b => F a -> F b
- fmap 2.method(:+2):: F Int -> F Int
- fmap floor : : F Float -> F Int

Donnée dans un contexte

Foncteurs

Un foncteur permet de passer d'un monde (les types a) vers un autre (les types Fa).

Maybe: Une implémentation


```
class Just < Maybe
  def self.call(value)
    new [value]
  end
end
```

```
irb > Just.(3)
=> #<Just:0x00000000359c010 @content=[3]>
```

Maybe: Une implémentation


```
class Nothing < Maybe</pre>
  def self.call()
    new []
  end
end
```

```
irb> Nothing.()
=> #<Nothing:0x000000002d97d38 @content=[]>
```

Maybe : Une implémentation

```
class Maybe
  private_class_method :new
  def initialize(content)
    @content = content
  end
  def from_maybe(default_value)
    return default_value if @content.empty?
    @content.first
  end
end
```



```
irb > Just.(3).from_maybe
=> 3
irb > Nothing.().from_maybe
=> nil
```

Functorial mapping

On ne peut plus appliquer la fonction telle quelle :

Functorial mapping

Mais le foncteur nous donne une nouvelle flèche.

Implémentation de fmap

```
def fmap(f)
  ->(box) do
    case box
    when Nothing
      return Nothing.()
    when Just
      r = f.(box.from_maybe)
      Just.(r)
    end
  end
end
```

Functorial mapping

$$add2 = ->(x) \{x + 2\}$$

```
add2.call Just.(3)
# NoMethodError (undefined method '+' for
    \# < \text{Just} : 0 \times 0000000003485280 \ \text{@content} = [3] > )
(fmap add2).call Just.(3)
\# = \# \{Just: 0x0000000036f8ff8 @content = [5] \}
```

Dura lex sed lex

Un foncteur doit respecter des lois

- fmap id = id
- fmap $(p \circ q) = (fmap p) \circ (fmap q)$

id =
$$->(x)$$
 {x}
(p o q) = $->(x)$ { p.(q.(x)) }

Dura lex sed lex

Un foncteur doit respecter des lois

- fmap id = id
- fmap $(p \circ q) = (fmap p) \circ (fmap q)$

id =
$$->(x)$$
 {x}
(p o q) = $->(x)$ { p.(q.(x)) }

Dura lex sed lex

Un foncteur doit respecter des lois

- fmap id = id
- fmap $(p \circ q) = (fmap p) \circ (fmap q)$

```
id = ->(x) \{x\}
(p \circ q) = ->(x) \{ p.(q.(x)) \}
```

Un foncteur est un endofoncteur de la catégorie des types.

Monades

Donnée dans un contexte

Une monade place une valeur dans un contexte.

L'exemple de Maybe : Just 3

Donnée dans un contexte

Un contexte peut aussi ne pas contenir de valeur.

L'exemple de Maybe : Nothing

Placer une donnée dans un contexte

L'opérateur pure

pure :: a -> F a

Quelques cas particuliers

- Just
- [] <<

D'autres types

- Maybe = Nothing | Just a
- Tree = Leaf | Node a (Tree a) (Tree a)
- Either = Left a | Right b

Un traitement qui peut échouer,

Une fonction de type Int -> Maybe Int.

Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

```
Si M est un foncteur, on peut composer f::a \rightarrow M b avec f map g::
M b \rightarrow M (M c).
```

Composer des traitements avec échec

```
Comment composer f :: a -> M b et g :: b -> M c?
```

```
Si M est un foncteur, on peut composer f::a \rightarrow M b avec f map g::
M b \rightarrow M (M c).
```

```
Que faire d'un M (M c)?
```

join :: M (M a) -> M a

join :: M (M a) -> M a

join Just.(Just.(3)).

join :: M (M a) -> M a

join :: M (M a) -> M a

join Just.(Nothing.()).

Une implémentation de join :

```
def join(bbox)
  case bbox
  when Nothing
    Nothing.()
  when Just
    bbox.from_maybe
  end
end
```

L'opérateur rfish

On cherche à définir la composition.

```
rfish :: (a -> M b) -> (b -> M c) -> (a -> M c)
```

```
• (fmap g) o f :: a -> M (M c)
```

• join :: M (M a) -> M a

L'opérateur rfish

On cherche à définir la composition.

```
rfish :: (a -> M b) -> (b -> M c) -> (a -> M c)
```

Nous avons:

- (fmap g) o f :: a -> M (M c)
- join :: M (M a) -> M a

L'opérateur rfish

On cherche à définir la composition.

```
rfish :: (a -> M b) -> (b -> M c) -> (a -> M c)
```

Nous avons:

- (fmap g) o f :: a -> M (M c)
- join :: M (M a) -> M a

On peut maintenant composer f et g.

```
def rfish(f, g)
  ->(x) do
    join (fmap g).(f.(x))
  end
end
```

Récapitul<u>atif</u>

Une monade, c'est

- pure : : a -> M a
- fmap : : (a -> b) -> (M a -> M b)
- join :: M (M a) -> M a

A must read

O RLY?

Bob Dylan

Dura lex sed lex

Une monade doit respecter des lois

- pure o f \equiv (fmap f) o pure
- join o fmap (fmap f) \equiv (fmap f) o join
- join o fmap join ≡ join o join
- join o fmap pure ≡ join o pure = id

Monades - Catégories

Une monade (T, μ, η) est la donnée d'un endofoncteur $T: C \to C$ et de deux transformations naturelles $\mu: T \circ T \to T$ et $\eta: 1_C \to T$ telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X)) \qquad T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow \qquad \downarrow^{\mu_X} \qquad T(\eta_X) \downarrow \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X) \qquad T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire $\mu \circ T\mu = \mu \circ \mu_T$ et $\mu \circ T\eta = \mu \circ \eta_T = id_T$.

Dans notre cas C la catégorie des types.

Monades - Catégories

Une monade (T, μ, η) est la donnée d'un endofoncteur $T: C \to C$ et de deux transformations naturelles $\mu: T \circ T \to T$ et $\eta: 1_C \to T$ telles que :

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X)) \qquad T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow \qquad \qquad \downarrow^{\mu_X} \qquad T(\eta_X) \downarrow \qquad \qquad \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X) \qquad T(T(X)) \xrightarrow{\mu_X} T(X)$$

c'est à dire $\mu \circ T\mu = \mu \circ \mu_T$ et $\mu \circ T\eta = \mu \circ \eta_T = id_T$.

Dans notre cas C la catégorie des types.

pure est une T.N.

pure $.f \equiv (fmap f) .pure$

$$X \xrightarrow{f} Y$$

$$\downarrow^{\eta_X} \qquad \qquad \downarrow^{\eta_Y}$$

$$T(X) \xrightarrow{T(f)} T(Y)$$

join est une T.N.

join . fmap
$$(fmap f) \equiv (fmap f)$$
 . join

$$T(T(X)) \xrightarrow{T(T(f))} T(T(Y))$$

$$\downarrow^{\mu_X} \qquad \qquad \downarrow^{\mu_Y}$$

$$T(X) \xrightarrow{T(f)} T(Y)$$

Associativité

join . fmap join ≡ join . join

$$T(T(T(X))) \xrightarrow{T(\mu_X)} T(T(X))$$

$$\downarrow^{\mu_{T(X)}} \downarrow^{\mu_X}$$

$$T(T(X)) \xrightarrow{\mu_X} T(X)$$

$$\mu \circ T\mu = \mu \circ \mu_T$$

Existence d'un neutre

join . fmap pure ≡ join . pure = id

$$T(X) \xrightarrow{\eta_{T(X)}} T(T(X))$$

$$T(\eta_{X}) \downarrow \qquad \qquad \downarrow^{\mu_{X}}$$

$$T(T(X)) \xrightarrow{\mu_{X}} T(X)$$

$$\mu \circ T\eta = \mu \circ \eta_T = id_T$$

Et dans la vraie vie?

Tout ça, à quoi ça sert?

Calculs non déterministes

Déterministe : Calcul produisant une valeur.

Non déterministe : Calcul produisant plusieurs valeurs.

Quelques exemples


```
powers = ->(n) do
  [n, n*n, n*n*n]
end
```

```
neighbors = ->(n) do
  [n-1, n+1]
end
```

Implémentation de fmap

C'est tout simplement Array#map

$$[1,2,3] \xrightarrow{\mathsf{fmap f}} [f(1),f(2),f(3)]$$

```
def fmap(f)
  ->(list) { list.map(f) }
end
```

Join et RFish


```
def join(llist)
  llist.flatten(1)
end
```

```
rfish
```

join

```
def rfish(f, g)
  ->(x) { f.(x).map(&g).flatten }
end
```

Monade de listes

Example d'utilisation

```
irb> rfish(neighbors, neighbors).(42)
=> [40, 42, 42, 44]
irb> rfish(powers, powers).(2)
=> [2, 4, 8, 4, 16, 64, 8, 64, 512]
irb> rfish(neighbors, powers).(42)
=> [41, 1681, 68921, 43, 1849, 79507]
irb> rfish(->(x) { [x, -x] }, neighbors).(42)
=> [41, 43, -43, -41]
```

La monade nil

En ruby Maybe s'appelle nil

Union disjointe $a \mid |\{nil\}\}$.

La monade nil

Opérateur bind &.

some_computation(42)&.get_value("bidirectional")

Opérateur bind &.

- & :: $a | |\{nil\} -> (a -> b| |\{nil\}) -> b| |\{nil\}|$
- bind : : M a -> (a -> M b) -> M b

On aurait aussi pu parler de...

- Left/Right Fish and Bind
- List comprehension
- Monades transformeurs
- Comonades et zippers
- Application aux automates cellulaires

Qui suis-je?

Dr. Jérémy Cochoy

jeremy.cochoy@gmail.com http://techgate.fr

Backend Developper

Merci pour votre attention!