Time-Memory Tradeoffs für Subset Sum und Dekodierung Masterarbeit

Alexander Kulpe

Ruhr-Universität Bochum

11. März 2024

Inhaltsverzeichnis

Motivation

Grundlagen Subset Sum

Subset Sum Tradeoff

Grundlagen Dekodierung

Dekodierung Tradeoff

Inhaltsverzeichnis

Motivation

Grundlagen Subset Sum

Subset Sum Tradeof

Grundlagen Dekodierung

Dekodierung Tradeof

Motivation: Codebasierte Kryptographie

- kann als vektorielle Subset Sum Variante aufgefasst werden
- ⇒ Verbesserungen für Subset Sum hilft bei Dekodierung

Inhaltsverzeichnis

Grundlagen Subset Sum

Subset Sum

Problem: RANDOM SUBSET SUM

- Gegeben: $((a_1,\ldots,a_n),t)\in (\mathbb{Z}_{2^n})^n\times (\mathbb{Z}_{2^n})^n$ mit $t=\sum_{i=1}^n \varepsilon_i a_i \bmod 2^n$, $\varepsilon\in \{0,1\}^n\left(\frac{n}{2}\right)$
- Gesucht: ε
- Anwendung bei ISD-Algorithmen / Kryptanalyse
- Beste Algorithmen sehr speicherintensiv
- ⇒ Time-Memory Tradeoffs

Erste Algorithmen

Brute-Force

- Laufzeit: $\tilde{\mathcal{O}}(2^n)$
- Speicher: $\tilde{\mathcal{O}}(1)$

Meet-in-the-Middle

$$\sum_{i=1}^{n} \varepsilon_i a_i = t \bmod 2^n$$

$$\Leftrightarrow \sum_{i=1}^{\frac{n}{2}} \varepsilon_i a_i = t - \sum_{i=\frac{n}{2}+1}^n \varepsilon_i a_i \bmod 2^n$$

- Laufzeit: $\tilde{\mathcal{O}}\left(2^{\frac{n}{2}}\right)$
- Speicher: $\tilde{\mathcal{O}}\left(2^{\frac{n}{2}}\right)$

Schroeppel-Shamir

$$\sum_{i=1}^{\frac{n}{4}} \underbrace{\varepsilon_i a_i}_{L_1} + \sum_{i=\frac{n}{4}+1}^{\frac{n}{2}} \underbrace{\varepsilon_i a_i}_{L_2} = t - \sum_{i=\frac{n}{2}+1}^{\frac{3}{4}n} \underbrace{\varepsilon_i a_i}_{L_3} - \sum_{i=\frac{3}{4}n+1}^n \underbrace{\varepsilon_i a_i}_{L_4} \bmod 2^n$$

Laufzeit: $\tilde{\mathcal{O}}\left(2^{\frac{n}{2}}\right)$, Speicher: $\tilde{\mathcal{O}}\left(2^{\frac{n}{4}}\right)$

Erste Algorithmen II

Lemma (7-Dissection-Tradeoff)

 $rac{1}{7} \leq \lambda \leq rac{1}{4}$. RANDOM SUBSET SUM lösbar in erwarteter Speicher $M = \tilde{\mathcal{O}}\left(2^{\lambda n}\right)$ und erwarteter Zeit $T = \tilde{\mathcal{O}}\left(2^{rac{2}{3}(1-\lambda)n}\right)$.

Repräsentationen

- Idee: Betrachte größeren Suchraum mit noch mehr Lösungen
- Suchraum MITM: $S = \{0,1\}^{\frac{n}{2}} \times \{0\}^{\frac{n}{2}}$
- Suchraum Repräsentationen: $S = \{0,1\}^n \left(\frac{n}{4}\right)$
- Statt einer Lösung $\varepsilon \in \{0,1\}^n \left(\frac{n}{2}\right)$ nun $\binom{n/2}{n/4}$ -viele Repräsentationen $(\varepsilon_1,\varepsilon_2) \in \mathcal{S}^2$ mit $\varepsilon = \varepsilon_1 + \varepsilon_2$

Beispiel (n = 8)

- MITM: $\varepsilon = 10100110$
- Repräsentationen:

$$\begin{array}{lll} (10100000,00000110) & (10000100,00100010) & (10000010,00100100) \\ (00100100,10000010) & (00100010,10000100) & (00000110,10100000) \\ \end{array}$$

	MITM	Repräsentationen
$ \mathcal{S} $	$2^{\frac{n}{2}}$	$\binom{n}{n/4} = 2^{0,8113n}$
Lösungen	1	$\binom{n/2}{n/4} = 2^{n/2}$

 \Rightarrow Betrachte nur einen $2^{-n/2}$ -Anteil des Suchraums für eine Lösung

HGJ

Inhaltsverzeichnis

Subset Sum Tradeoff

Subset Sum Tradeoff: Impliziter Tradeoff

- Beobachtung: Obere Level dominieren Speicher- und Laufzeitkomplexität
- Lösungsansätze:
 - Erhöhe Tiefe des Suchbaums
 - Tausche Algorithmus zur Basislistenkonstruktion aus

Subset Sum Tradeoff: Höhere Tiefe I

monoton fallend* und konvergent

^{*}Conditions apply

Subset Sum Tradeoff: Höhere Tiefe II

Subset Sum Tradeoff: Schroeppel-Shamir

- monoton fallend und konvergent
- Schroeppel-Shamir für feste Tiefe X < 10 besser als MITM
- BCJ-XM = BCJ-XS
- ⇒ Tiefe wichtiger als Algorithmus zur Basislistenkonstruktion

Subset Sum Tradeoff: 7-Dissection

- $\log M \ge 0,21n$: monoton fallend und konvergent
- ullet $\log M \leq 0,20n$: Basislistenkonstruktion dominiert Laufzeitkomplexität
 - ⇒ Geringere Tiefe besser (?)

Subset Sum Tradeoff: 7-Dissection II ($\log M \le 0, 20n$)

- BCJ: BCJ-XD schlechter als 7-Dissection
- ullet BBSS: BBSS-XD besser als 7-Dissection mit optimaler Tiefe 3

Subset Sum Tradeoffs: Aktueller Tradeoff / Wiederverwendung bereits berechneter Subtrees

 D_3

Subset Sum Tradeoffs: Wiederverwendung von bereits berechneten Subtrees

- $\log M \ge 0.19n$: monoton fallend und konvergent
- $0,16n \leq \log M \leq 0,18n$: monoton fallend und konvergent, geringere optimale Tiefe
- $\log M \le 0,15n$: Basislistenkonstruktion und untere Liste in geringerer Tiefe besser balanciert (BCJ: Tiefe 3,4, BBSS: Tiefe 4)

Subset Sum Tradeoff: Contribution

- ullet BCJ: Verbesserung um bis zu $\tilde{\mathcal{O}}\left(2^{0,0099n}\right)$ bzw. 2,68~%
- BBSS: Verbesserung um bis zu $\tilde{\mathcal{O}}\left(2^{0,0155n}\right)$ bzw. 4,22~%

Inhaltsverzeichnis

Grundlagen Dekodierung

Syndromdekodierung

- linearer [n, k, d]-Code C: C ist Untervektorraum von \mathbb{F}_2^n mit Länge n, Dimension k und Distanz d
- Parity-Check-Matrix $P: C = \{c \mid c \in \mathbb{F}_2^n, Pc^t = 0\}$
- c Codewort, x = c + e fehlerhaftes Codewort mit Fehlervektor e
- Syndrom $s: s = Px^t = P(c^t + e^t) = Pe^t$

Syndromdekodierungsproblem

- **Gegeben:** Parity-Check-Matrix $P \in \mathbb{F}_2^{(n-k) \times n}$, Syndrom $s \in \mathbb{F}_2^{n-k}$, Gewicht w
- **Gesucht:** Fehlervektor $e \in \mathbb{F}_2^n(w)$ s.d. $Pe^t = s$
- half distance: $w = \lfloor \frac{d-1}{2} \rfloor$
- full distance: w = d 1

$egin{array}{c} e_1 \ w \end{array}$	$\frac{e_2}{0}$		
I_{n-k}	$P_1^{-1}P_2$	=	$P_1^{-1}s$

- $e_1 + P_1^{-1} P_2 e_2 = P_1^{-1} s$
- Für $e_2 = 0^k$ gilt $e_1 = P_1^{-1} s$
- \Rightarrow Permutiere P, sodass $\operatorname{wt}(e_1) = w$

e_1	e_2	1	
w	0		
		1	
7	p-1 p		D^{-1} .
I_{n-k}	$P_1^{-1}P_2$	=	$P_1^{-1}s$

- $e_1 + P_1^{-1} P_2 e_2 = P_1^{-1} s$
- Für $e_2=0^k$ gilt $e_1=P_1^{-1}s$
- \Rightarrow Permutiere P, sodass $\operatorname{wt}(e_1) = w$
- Laufzeit: $T = Pr[gute Permutation]^{-1}$

- $e_1 + P_1^{-1}P_2e_2 = P_1^{-1}s$
- Für $e_2 = 0^k$ gilt $e_1 = P_1^{-1} s$
- \Rightarrow Permutiere P, sodass $\operatorname{wt}(e_1) = w$
- Laufzeit: $T = Pr[gute Permutation]^{-1}$
- Lässt sich die Wahrscheinlichkeit für eine gute Permutation erhöhen?

ISD

Prange:

Lee-Brickell:

$$w-p$$
 p

 $n-k-\ell$ ℓ k

Leon:

 $\begin{array}{c|c|c|c} w-p & 0 & p \\ \hline w-p & 0 & p/2 & p/2 \end{array}$

Stern:

Finniasz/Sendrier: w-p p/2 p/2

MMT/BJMM:

$$w-p$$
 $p/2$ $p/2$

MMT

Repräsentationen:

$$1 = 0 + 1$$

$$1 = 1 + 0$$

$$0 = 0 + 0$$

• optimale Tiefe: 2

BJMM

Repräsentationen:

$$1 = 0 + 1$$

 $1 = 1 + 0$
 $0 = 0 + 0$

0 = 1 + 1

• optimale Tiefe: 3

Inhaltsverzeichnis

Dekodierung Tradeoff

Dekodierung Tradeoff: Impliziter Tradeoff

Dekodierung Tradeoff: Wiederverwendung von bereits berechneten Subtrees [EZ23]

MMT Tradeoff: Contribution

- half distance: Verbesserung um bis zu $\tilde{\mathcal{O}}\left(2^{0,000175n}\right)$ / 0,32~%
- full distance: Verbesserung um bis zu $\tilde{\mathcal{O}}\left(2^{0,000492n}\right)$ / 0,43~%
- BJMM: keine Verbesserung

Zusammenfassung / Ausblick

Subset Sum

- Tiefe erhöhen
- Austausch Algorithmen zur Basislistenkonstruktion
- Wiederverwendung von bereits berechneten Subtrees
- BCJ: Verbesserung um bis zu $\tilde{\mathcal{O}}(2^{0,0099n})$ bzw. 2, 68 %
- BBSS: Verbesserung um bis zu $\tilde{\mathcal{O}}$ $(2^{0,0155n})$ bzw. 4,22%

Dekodierung

- MMT: Verbesserung um bis zu $\tilde{\mathcal{O}}(2^{0,000492n})$ / 0,43 %
- BJMM: keine Verbesserung
- ⇒ BJMM asymptotisch besser. MMT in Praxis bevorzugt

Offene Fragen

- Weitere Anwendungen des neuen Subset Sum Tradeoffs
- Implementierung von neuer MMT-Variante und Analyse

Achtung

Optimale Algorithmenparameter sind im Allgemeinen nicht optimal für Tradeoffs!

Fragen?