Generalisation in theory and practice

Christos Dimitrakakis

September 26, 2024

Outline

Quality metrics

Supervised machine learning problems

Generalisation

Estimating quality

Methodology

Learning and generalisation

Introduction Bias and variance

Generalisation

PAC Learning

The realisable setting

Classification

The classifier as a decision rule

A decision rule $\pi(a|x)$ generates a decision $a \in [m]$. It is the conditional probability of a given x.

A note on conditional probabilities

Even though normally conditional probabilities are defined as $P(A|B) = P(A \cap B)/P(B)$, the probability of the decision a is undefined without a given x. So it's better to think if $\pi(a|x)$ as a collection of distributions on a, one for each value of x.

Deterministic predictions given a model P(y|x)

Here, we pick the most likely class:

$$\pi(a|x_t) = \mathbb{I}\left\{a = \argmax_{y} P(y|x_t)\right\}$$

Randomised predictions given a model P(y|x)

Here, we randomly select a class according to our model:

3/29

The accuracy of a single decision

$$U(a_t, y_t) = \mathbb{I}\left\{a_t = y_t\right\} = \begin{cases} 1, & \text{if } a_t = y_t \\ 0, & \text{otherwise} \end{cases}$$

The accuracy on a dataset

Let $D = (x_t, y_t) : t \in [T]$ be a dataset. We can measure the accuracy:

$$U(\pi, D) \triangleq \frac{1}{T} \sum_{t=1}^{T} \pi(y_t|x_t)$$

The expected accuracy of a decision rule

If $(x,y) \sim P$, the accuracy U of a stochastic decision rule π under the distribution P is the probability it predicts correctly

$$U(\pi, P) \triangleq \int_{\text{General Inaction in theory.}} dP(x) \sum_{x=0}^{m} P(y|x) \pi(y|x) + \sum_{x=0}^{m} P(x|x) \pi(x) + \sum_{x=0}^{m} P(x|x) +$$

Beyond classification: Generalised decision rules

Consider a spam application, where the e-mail client can decide between different action for emails. Different actions being best for each type of e-mail. The quality of each action can be captured through a utility function.

Utility of the spam decision problem

What utility function would you use for the spam detection problem?

Utility	Pass	Flag	Trash
Normal			
Spam			
Virus			

The utility function $U: \mathcal{Y} \times \mathcal{A} \to \mathbb{R}$

The utility function U(y, a) is a real-valued function so that, for a label y, we prefer taking action a to a' iff U(y, a) > U(y, a').

The optimal decision

Given:

- ightharpoonup A model P(y|x) of class probabilities
- ightharpoonup A utility U(y,a) for each class and action combination

Expected utility

We can calculate the expected utility of any decision

$$\mathbb{E}[U|a,x] = \sum_{y} P(y|x,a)U(y,a) = \sum_{y} P(y|x)U(y,a)$$

Here the first equality follows from the definition of conditional expectation and P(y|x,a) = P(y|x) as the label does not depend on our actions.

The optimal decision

Consequently, for any observation x, we can take the action maximising expected utility:

$$a^* = \arg\max_{a} \mathbb{E}[U|a,x]$$

4 D > 4 B > 4 B > 4 B > 900

6/29

The optimal decision rule

- ightharpoonup A model P(y|x) of class probabilities
- ightharpoonup A utility U(y,a) for each class and action combination
- A decision rule $\pi(a|x)$ assigning probability to action a for every possible input x

Expected utility over a dataset.

We can calculate the expected utility of the decision rule by marginalising over all actions

$$\mathbb{E}[U|\pi, D] = \sum_{t=1}^{T} \mathbb{E}[U|\pi, x_t] = \sum_{t=1}^{T} \sum_{a \in \mathcal{A}} \mathbb{E}[U|\pi, x_t]$$

Here the first equality follows from the definition of conditional expectation and P(y|x,a) = P(y|x) as the label does not depend on our actions.

The optimal decision

Consequently, for any observation x, we can take the action maximising expected utility:

$$a^* = \arg\max_{a} \mathbb{E}[U|a,x]$$

Taking into account the probability

- For classification, it makes sense to look at the probability of the labels.
- If we are not very confident about our prediction, this should be taken into account:
- ▶ Define P(y|x) to be our classifier's probability for label y, given features x. Then we can use two simple metrics:

Precision

The average probability of the actual class:

$$\sum_{t=1}^T P(y_t|x_t)/T$$

- ▶ If we always assign probability 1 to the correct label, this score is 1.
- If we always assign probability 1/m to all labels, the score is 1/m.

9/29

Negative Log-Loss

Here we assign look at the logarithm of the probability. This really penalises bad guesses.

$$\sum_{t=1}^{T} \ln P(y_t|x_t)/T$$

- ▶ If we always assign probability 1 to the correct label, this score is 0.
- If we assign probability 0 to even a single label, the score is $-\infty$.

from sklearn.metrics import log_loss

in scikitlearn implements log-loss (not negative)

Regression

The regressor as a deterministic decision rule

A decision rule π generates a decision $a \in \mathbb{R}^m$.

- For deterministic rules $\pi(x)$ is the prediction for x.
- Since we can almost never guess correctly, we need to define the quality of our predictions somehow, either as a utility $U(y_t, a_t)$ or a loss function $\ell(y_t, a_t)$.

Mean-Squared Error on a Dataset

This is the squared difference in predicted versus actual values:

$$\frac{1}{T} \sum_{t=1}^{T} [y_t - \pi(x_t)]^2$$

Expected MSE

If $(x, y) \sim P$, the expected MSE of a deterministic decision rule $\pi: \mathcal{X} \to \mathbb{R}$ is

$$\int_{\mathcal{X}} \int_{\mathcal{Y}} dP(x,y) [y-\pi(x)]^2.$$

Probabilistic regression

The regressor as a stochastic decision rule

A decision rule π generates a decision $a \in \mathbb{R}^m$.

- For stochastic rules $\pi(a|x)$ defines a density over predictions.
- In this case it is natural to define $\pi(y_t, x_t)$ as our metric.

Likelihood on a Dataset

The mean-square error is simply the squared difference in predicted versus actual values:

$$\prod t = 1^T \pi(y_t|x_t)$$

We will later see a link between this metric, mean-square error and estimation.

Training and overfitting

Training data

- \triangleright $D = ((x_t, y_t) : t = 1, ..., T).$
- $\triangleright x_t \in \mathcal{X} \ v_t \in \mathcal{V}$

Assumption: The data is generated i.i.d.

- $(x_t, y_t) \sim P$ for all t (identical)
- $\triangleright D \sim P^T$ (independent)

The optimal decision rule for P

$$\max_{\pi} U(\pi, P) = \max_{\pi} \int_{\mathcal{X} \times \mathcal{V}} dP(x, y) \sum_{a} \pi(a|x) U(a, y)$$

The optimal decision rule for D

$$\max_{\pi} U(\pi, D) = \max_{\pi} \sum_{(x,y) \in D} \sum_{a} \pi(a|x) U(a,y)$$

The Train/Validation/Test methodology

Main idea

Use each piece of data once to make decisions and measure

Training set

Use to decide low-level model parameters

Validation set

Use to decide between:

- different hyperparameters (e.g. K in nearest neighbours)
- model (e.g. neural networks versus kNN)

Test set

Use to measure the final quality of a model

Cross-validation (XV)

ldea

Use XV to select hyperparameters instead of a single train/valid test.

Methodology

- Split training set D in k different subsets
- At iteration i
- Use the \$i\$-th subset for validation
- ▶ Use all the remaining k-1 subsets for training
- Average results on validation sets

Bootstrapping

ldea

- How to take into account variability?
- Resample the data and repeat your calculations for each resample

Boostrap samples

- \triangleright Input: Data D of size T
- ightharpoonup For t in $\{1,\ldots,T\}$
- Select i uniformly in [T] Add the \$i\$-th point to D_b
 - \triangleright Return D_h

The wrong way to do XV for subset selection

- 1. Screen the predictors: find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels.
- 2. Using just this subset of predictors, build a multivariate classifier.
- 3. Use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error of the final model.

Is this a correct application of cross-validation?

Consider a scenario with N = 50 samples in two equal-sized classes, and p = 5000quantitative predictors (standard Gaussian) that are independent of the class labels. The true (test) error rate of any classifier is 50%.

The right way to do XV for feature selection

- 1. Divide the samples into K cross-validation folds (groups) at random.
- 2. For each fold $k = 1, 2, \ldots, K$
- 3. Find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels, using all of the samples except those in fold k.
- 4. Using just this subset of predictors, build a multivariate classifier, using all of the samples except those in fold k.
- 5. Use the classifier to predict the class labels for the samples in fold k.

Learning and generalisation

How well can decision rule perform?

Estimation theory view

- Bias: The expected difference between the estimated value and the unknown parameter
- ► Variance: The expected difference between the estimated value and the unknown parameter

Learning theory view

- Approximation ability: How well a class of rules can approximate the optimal one.
- Statistical error: How easy it is to choose the best rule in the class.

The bias/variance trade-off

- ▶ Dataset $D \sim P$.
- ightharpoonup Predictor $f_D(x)$
- ▶ Target function $y = f(x) + \epsilon$
- $ightharpoonup \mathbb{E}\,\epsilon = 0$ zero-mean noise with variance $\sigma^2 = \mathbb{V}(\epsilon)$

MSE decomposition

$$\mathbb{E}[(f - f_D)^2] = \mathbb{V}(f_D) + \mathbb{B}(f_D)^2 + \sigma^2$$

Variance

How sensitive the estimator is to the data

$$\mathbb{V}(f_D) = \mathbb{E}[(f_D - \mathbb{E}(f_D))^2]$$

Bias

What is the expected deviation from the true function

$$\mathbb{B}(f_D) \triangleq \mathbb{E}[(f_D - f)]$$

Example: mean estimation

- ▶ Data $D = y_1, \ldots, y_T$ with $\mathbb{E}[y_t] = \mu$.
- ▶ Goal: estimate μ with some estimator f_D to minimise
- ► MSE: $\mathbb{E}[(y f_D)^2]$, the expected square difference between new samples our guess.

Optimal estimate

To minimise the MSE, we use $f^* = \mu$. This gives us two ideas:

Empirical mean estimator:

- $f_D = \sum_{t=1}^T x_t / T.$
- $\mathbb{V}(f_D) = \mathbb{E}[f_D \mu] = 1/\sqrt{T}$
- $ightharpoonup \mathbb{B}(f_D) = 0.$

Laplace mean estimator:

- $f_D = \sum_{t=1}^T (\lambda + x_t)/T.$
- $\mathbb{V}(f_D) = \mathbb{E}[f_D \mu] = \frac{1}{1 + \sqrt{T}}$
- $ightharpoonup \mathbb{B}(f_D) = O(1/T).$

A proof of the bias/variance trade-off

- \triangleright RV's $v_t \sim P$. $\mathbb{E}[v_t] = \mu$. $v_t = \mu + \epsilon_t$.
- \triangleright Estimator f_D , $D = v_1, \dots, v_{t-1}$

$$\mathbb{E}[(f_{D} - y_{t})^{2}] = \mathbb{E}[f_{D}^{2}] - 2 \mathbb{E}[f_{D}y_{t}] + \mathbb{E}[y_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}y_{t}] + \mathbb{E}[y_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}] \mathbb{E}[y_{t}] + \mathbb{E}[y_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}]\mu + \mathbb{E}[y_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}]\mu + \mathbb{E}[(\mu + \epsilon_{t})^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}]\mu + \mathbb{E}[\mu^{2} + 2\mu\epsilon_{t} + \epsilon_{t}^{2}]$$

$$= \mathbb{V}[f_{D}] + \mathbb{E}[f_{D}]^{2} - 2 \mathbb{E}[f_{D}]\mu + \mu^{2} + \sigma^{2}$$

$$= \mathbb{V}[f_{D}] + (\mathbb{E}[f_{D}] - \mu)^{2} + \sigma^{2}$$

$$= \mathbb{V}(f_{D}) + \mathbb{E}(f_{D})^{2} + \sigma^{2}$$

22/29

Generalisation error

Regret decomposition

Let the optimal rule be $^* \in$, the best approximate rule be $\hat{\pi}^* \in$ and our rule be $^* \in$. We call the difference between the performance of * and * our regret:

$$\underbrace{U(^*,P)-U(\hat{},P)}_{\text{regret}} = \underbrace{U(^*,P)-U(^*,P)}_{\text{approximation error}} + \underbrace{U(^*,P)-U(\hat{},P)}_{\text{estimation error}}$$

We can bound the regret by bounding each term separately.

- The approximation error tells us how expressive our class of rules is, i.e. how much we lose by looking at a restricted class \hat{H} of rules. It is similar to estimator bias.
- ► The statistical error tells us how well the empirical performance on *D* approximates the true performance. It is similar to estimator variance.
- As a rule of thumb, the larger our class, the better the possible approximation but the higher the statistical error.

23/29

Approximation error

- lackbox Our model limits us to a set of decision rules $\hat{\Pi}\subset\Pi$.
- ▶ The most we could do is find the best rule in $\hat{\Pi}$.
- This still leaves a gap:

$$\Delta \triangleq \max_{\pi \in \Pi} U(\pi, P) - \max_{\hat{\pi} \in \hat{\Pi}} U(\pi, P)$$

The gap can be characterised in some cases.

Example: ϵ -net on Lipschitz $U(\cdot, P)$.

- Assume $U(\pi, P)$ is a Lipschitz function of π for all P, i.e. $|U(\pi, P) U(\pi', P)| \le Ld(\pi, \pi')$ for some metric d.
- Let $\hat{\Pi}$ be an ϵ -net on Π , i.e. $\max_{\pi \in \Pi} \min_{\pi' \in \hat{\Pi}} d(\pi, \pi') = \epsilon$.
- ▶ Then $\Delta < L\epsilon$.

Estimation error

- ▶ First, let us bound $U(^*, P) U(\hat{P}, P)$ by making an assumption.
- Then, we can prove that our assumption holds with high probability.

Lemma

Let $f,g:S\to\mathbb{R}$. If $\|f-g\|_\infty\leq\epsilon$ and $f(x)\geq f(z)$, while $g(y)\geq g(z)$, for all z, i.e. x,y maximise f,g respectively

$$f(x) - f(y) \le 2\epsilon$$
.

This holds as: $f(x) - f(y) \le g(x) + \epsilon - f(y) \le g(y) + \epsilon - f(y) \le 2\epsilon$.

Corollary

If $|U(,P)-U(,D)| \leq \epsilon$ for all π then

$$U(^*, P) - U(\hat{P}, P) \leq 2\epsilon$$

▶ Let us now prove that, with high probability, $|U(P) - U(D)| \le \epsilon$.

Bounding the estimation error

For any fixed rule \in and utility function $U: \times \mathcal{X}^T \rightarrow [0,1]$,

$$P^{T}(|U(,D)-U(,P)| \ge \epsilon) \le 2 \exp(-2T\epsilon^2).$$

This is a direct application of Hoeffding's inequality¹. Taking the union bound over the set gives:

$$P^{T}(\exists \in \hat{}: |U(,D) - U(,P)| \ge \epsilon) \le 2 ||\exp(-2T\epsilon^{2}).$$

Setting the right side equal to δ and re-arranging,

$$P^T\left(\max_{i\in I}|U(,D)-U(,P)|\geq \sqrt{\frac{\ln(2|I/\delta)}{2T}}
ight)\leq \delta.$$

Example: ϵ -net.

Christos Dimitrakakis

In a n dimensional space we require $| = O(\epsilon^{-n})$. This means that our statistical error is $O(\sqrt{n \ln(1/\epsilon \delta)/T})$.

Generalisation in theory and practice

26/29

September 26, 2024

¹See Hoeffding's inequality in the confidence intervals presentation ♂ ➤ ← ≧ ➤ ← ≧ ➤ → へ ҈ ♡ へ ҈ ♡

- ▶ Input: a finite set of rules $\hat{}$, data D, utility U
- ▶ Return $\hat{}$ ∈ arg max $_{c}$ U(, D).

Regret of the finite hypothesis algorithm.

With probability $1-\delta$

$$U(\hat{r}, P) \ge U(\hat{r}, P) - \sqrt{2 \ln(2 || / \delta) / T}$$
 (1)

$$U(^*,P) - U(\hat{},P) \le \Delta + \sqrt{2\ln(2||\delta|/T)}$$
 (2)

Examples

- ▶ ML estimation: $U(\beta, D) = P_{\beta}(D)$ is the data likelihood.
- \triangleright Accuracy, etc: U(D).

VC Dimension

Shattering

If a $S \subset \mathcal{X}$ can with |S| = m, can be assigned any labelling y_1, \ldots, y_m by a \in , then we say shatters S.

The VC dimension

This is the largest-size set S that can shatter.

Example: Perceptrons on \mathbb{R}^2

This class has VC dimension 3 on the plane.

Binary classification

Learning algorithm λ

- ▶ Takes data $D = \{(x_t, y_t)\}$ as input
- Generates deterministic decision rules : $X \rightarrow \{0,1\}$,

The loss of a rule.

- ▶ Assume an existing concept class $* \in$
- ▶ Distribution $x_t \sim P$ is i.i.d. and $x_1, \ldots, x_T \sim P^T$.
- The loss under distribution P is

$$L() = P(\{x : (x) \neq^* (x)\})$$

Realisable PAC learner

▶ $\lambda : (\mathcal{X} \times \mathcal{Y})^* \to \text{is } (\epsilon, \delta)$ -PAC, if for any P and $\epsilon, \delta > 0$, and any concept $^* \in$, there is T such that

$$P^{T}(\{D: L[\lambda(D)] > \epsilon\}) < \delta, \qquad D = (\{x_{t}, {}^{*}(x_{t})\}), x_{t} \sim P.$$