Informe del Proyecto

Título: Sistema de Reconocimiento de Placas Vehiculares con Ubicación

Materia: Gestión de Proyectos en Ingeniería de Sistemas **Elaborado por:** David Quintero - Luis García - Brian García

1. Justificación

El control y registro de vehículos es una necesidad creciente en entornos como parqueaderos, peajes, zonas residenciales, empresas de transporte y entornos urbanos. Un sistema automatizado que combina el reconocimiento de placas vehiculares con geolocalización permite aumentar la eficiencia, reducir el error humano y facilitar la trazabilidad de vehículos.

Este proyecto propone una solución tecnológica que utiliza visión por computador y geolocalización para identificar placas de manera automática, registrar la ubicación y almacenar los datos para consultas posteriores.

2. Objetivo General

Desarrollar un sistema que permita la captura automática de placas vehiculares, su lectura mediante técnicas de visión por computador, la obtención de su ubicación geográfica y el almacenamiento de la información en una base de datos para su posterior consulta.

3. Objetivos Específicos

- Implementar un módulo de captura de imágenes o video de vehículos.
- Desarrollar un sistema de detección y reconocimiento de placas mediante redes neuronales y OCR (reconocimiento óptico de caracteres).
- Integrar un servicio de geolocalización para asociar coordenadas GPS a cada registro.
- Diseñar y configurar una base de datos para el almacenamiento seguro de la información.
- Construir una interfaz web que permita la búsqueda y visualización de registros en lista y en mapa.
- Realizar pruebas para evaluar la precisión y velocidad del sistema.

4. Alcance

Incluye:

- Captura de imágenes/video.
- o Reconocimiento automático de placas.
- o Obtención de ubicación GPS o estática.
- o Registro en base de datos.
- o Consulta por web con visualización en lista y mapa.

No incluye:

- o Control físico de acceso vehicular (barreras o semáforos).
- o Integración con sistemas de tránsito externos.
- o Procesamiento de video en la nube en tiempo real.

5. Requerimientos Técnicos

Hardware:

- Cámara IP, USB o de smartphone.
- Raspberry Pi 4 o computadora con GPU compatible (opcional para acelerar IA).
- o Módulo GPS NEO-6M (en caso de uso con Raspberry Pi).

Software:

- Python 3.x.
- Framework de IA: YOLOv5/YOLOv8 para detección de placas.
- o OCR: Tesseract OCR o EasyOCR.
- o OpenCV para procesamiento de imágenes.

- Base de datos: MySQL o PostgreSQL.
- o Interfaz web: Flask o Django.
- o API de mapas: Google Maps API o Leaflet.

Otros:

o Conexión a Internet (para carga de mapas y consultas remotas).

6. Cronograma de Actividades

Semana	Actividad
1	Análisis de requerimientos y selección de tecnologías
2	Desarrollo del módulo de detección de placas
3	Integración del OCR y geolocalización GPS
4	Implementación de la base de datos
5	Desarrollo de la interfaz web de consulta
6	Pruebas y ajustes del sistema
7	Documentación y presentación final

7. Presupuesto Estimado

Concepto	Costo aproximado
Raspberry Pi 4 (4GB RAM)	\$300.000 COP
Módulo GPS NEO-6M	\$60.000 COP
Cámara USB HD	\$120.000 COP
Servicios API (Google Maps, cuota básica)	\$50.000 COP
Otros (cables, soporte, almacenamiento)	\$40.000 COP
Total estimado	\$570.000 COP

8. Análisis de Riesgos

Riesgo	Probabilidad	Impacto	Mitigación
Placas sucias o dañadas	Media	Media	Aplicar filtros de imagen y mejorar el OCR
Baja iluminación	Alta	Alta	Uso de cámaras con visión nocturna o iluminación adicional
Pérdida de señal GPS	Media	Media	Almacenar datos en caché y enviar cuando se recupere la conexión
Problemas de privacidad	Alta	Alta	Cumplir con normativas de protección de datos y encriptar información sensible

9. Flujo del Sistema

- 1. La cámara captura la imagen del vehículo.
- 2. El modelo de detección localiza la placa en la imagen.
- 3. El OCR extrae el texto de la matrícula.
- 4. Se obtiene la ubicación GPS o se asigna una ubicación fija.
- 5. El sistema registra la información en la base de datos con fecha y hora.
- 6. El usuario consulta los registros y puede verlos en una lista o en un mapa interactivo.

10. Conclusión

El sistema de reconocimiento de placas vehiculares con ubicación representa una solución eficiente para el control y registro de vehículos, combinando inteligencia artificial y geolocalización. Su implementación permite optimizar procesos, reducir errores humanos y ofrecer herramientas de consulta rápidas y precisas, lo que resulta de gran utilidad en múltiples escenarios de gestión vehicular.