Chapitre 10B:

TRIANGLES SEMBLABLES

0) Introduction:

Regrouper les triangles ci-dessous :

I) Triangles semblables – superposables :

1) Définition : Triangles semblables :

Deux triangles sont semblables lorsque leurs trois angles sont deux à deux de même mesure.

On dit aussi que ces triangles sont de même forme.

Exemple:

Dans les triangles ci-contre, $\widehat{A} = \widehat{A}'$, $\widehat{B} = \widehat{B}'$ et $\widehat{C} = \widehat{C}'$ donc les triangles ABC et A'B'C' sont semblables.

Exercice:

Les triangles *ABC* et *MNP* sont semblables ? Justifier la réponse.

Remarque:

Pour que deux triangles soient semblables, il suffit que deux angles de l'un des triangles soient égaux à deux angles de l'autre triangle (le fait que la somme des mesures des angles d'un triangle est égale à 180° impose l'égalité de la troisième mesure des angles des triangles).

2) <u>Définition (Cas Particulier)</u>: Triangles superposables:

Deux triangles sont superposables lorsque leurs trois côtés sont deux à deux de même longueur.

Exemple:

Les triangles ABC, DEF et GHI ci-dessous sont superposables.

Exercice:

Le quadrilatère ABCD est un parallélogramme.

Expliquer pourquoi les triangles ABC et ADC sont superposables.

Remarque:

Deux triangles superposables sont semblables.

(la démonstration sera faite en 3^{ème})

II) Triangles semblables et proportionnalité: (Admis)

(Sert à calculer la longueur d'un côté d'un triangle)

1) Propriété 1 : Triangles semblables et proportionnalité :

Si deux triangles ABC et A'B'C' sont semblables,

alors

Longueurs du petit 🛕	AB	AC	ВС
Longueurs du grand $igwedge$	A'B'	A'C'	B'C'

est un tableau de proportionnalité.

Exemple:

2) Exercice rédigé:

Enoncé : Dans la figure ci-dessous, calculer les longueurs AC et EF.

Solution:

On sait que:

Dans les triangles ci-dessus,

 $\widehat{A} = \widehat{A}'$, $\widehat{B} = \widehat{B}'$ (et après calcul $\widehat{C} = \widehat{C}'$).

Par définition, les triangles *ABC* et *DEF* sont semblables.

<u>Or :</u>

Si les triangles ABC et DEF sont semblables, alors

Longueurs du petit Δ	AB	AC	ВС
Longueurs du grand Δ	DE	DF	EF

est un tableau de proportionnalité.

Donc:

Longueurs du petit Δ	4 cm	AC	5,3 cm
Longueurs du grand Δ	2,8 cm	4,2 cm	EF

est un tableau de proportionnalité.

Calcul de AC	<u>Calcul de EF</u>	
En utilisant : 4 cm	En utilisant : 4 cm	
On obtient (d'après le produit en croix) :	On obtient (d'après le produit en croix) :	
$AC = \frac{4 cm \times 4.2 cm}{2.8 cm}$	$EF = \frac{2.8 \ cm \times 5.3 \ cm}{4 \ cm}$	
ainsi :	ainsi :	
$AC = \frac{16,8}{2,8}$	$EF = \frac{14,84}{4}$	
donc:	donc:	
AC = 6 cm.	EF = 3.71 cm.	

III) Proportionnalité et Triangles semblables : (Admis)

(Sert à montrer que deux triangles sont semblables)

1) Propriété 2 : Triangles semblables et proportionnalité :

Si deux triangles ont leurs côtés respectifs proportionnels alors ils sont semblables.

Exemple:

Diagramme :

2) Exercice rédigé:

Enoncé : Justifier que les triangles ABC et MNP ci-dessous, sont des triangles semblables.

Solution:

On sait que:

$$\frac{\overline{AB}}{MN} = \frac{6,4}{4} = 1,6$$
; $\frac{PN}{AC} = \frac{8}{5} = 1,6$ et $\frac{PM}{CB} = \frac{9,6}{6} = 1,6$ et donc que :

Longueurs du petit Δ	AB	AC	ВС
Longueurs du grand Δ	MN	PN	MP

est un tableau de proportionnalité.

O<u>r :</u>

Si deux triangles ont leurs côtés respectifs proportionnels alors ils sont semblables.

Donc:

Les triangles ABC et MNP sont semblables.

