Lab3 ExprEval Design

> 二义性分析:

一元取负运算符和二元减法运算符在词法分析中已经将其区分开来,如果它前一个 Token 是数值或右括号时为减法运算符 MINUS, 若'-'是第一个字符,或者其他情况说明"-"为取负运算符 NEG。

> 词法分析的设计与实现

根据所给出的正则表达式构造 DFA 然后进行编程实现。

对所给的输入生成一串 Token 流,然后交给 Parser 类进行语法和语义分析。

在其中会检查一些词法错误

算符优先关系定义

算符优先级表大致如实验文档所给出的

级别	描述	算符	结合性质					
1	括号	()						
2	预定义函数	sin cos max min						
3	取负运算(一元运算符)	-	右结合					
4	求幂运算	^	右结合					
5	乘除运算	* /						
6	加减运算	+ -						
7	关系运算	= <> < <= > >=						
8	非运算	!	右结合					
9	与运算	&						
10	或运算	I						
11	选择运算(三元运算符)	?:	右结合					

对应的表格大致如下:

	decimal	TRUE	FALSE	sin	cos	max	min	neg	,	+	_	*	/	_	()	?	:	>	>=	<	<=	=	$\langle \rangle$	&	Ц	!	\$
decimal	1	1	1	1	1	1	1	>	>	>	>	>	>	>	1	>	>	>	>	>	>	>	>	>	>	>	>	>
TRUE	1	1	1	1	1	1	1	>	>	>	>	>	>	>	1	>	>	>	>	>	>	>	>	>	>	>	>	>
FALSE	1	1	1	1	1	1	1	>	>	>	>	>	>	>	1	>	>	>	>	>	>	>	>	>	>	>	>	>
sin	5	5	5	5	5	5	5	5	5	5	5	5	5	5	=	5	5	5	5	5	5	5	5	5	5	5	5	>
cos	5	5	5	5	5	5	5	5	5	5	5	5	5	5	=	5	5	5	5	5	5	5	5	5	5	5	5	>
max	5	5	5	5	5	5	5	5	5	5	5	5	5	5	=	5	5	5	5	5	5	5	5	5	5	5	5	>
min	5	5	5	5	5	5	5	5	5	5	5	5	5	5	=	5	5	5	5	5	5	5	5	5	5	5	5	>
neg	<	<	<	<	<	<	<	<	>	>	>	>	>	>	<	>	>	>	>	>	>	>	>	>	>	>	>	>
,	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	<	<	<	<	<	<	<	<	<	<	<	>
+	<	<	<	<	<	<	<	<	>	>	>	<	<	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
-	<	<	<	<	<	<	<	<	>	>	>	<	<	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
*	<	<	<	<	<	<	<	<	>	>	>	>	>	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
/	<	<	<	<	<	<	<	<	>	>	>	>	>	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
-	<	<	<	<	<	<	<	<	>	>	>	>	>	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
(<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	=	<	6	<	<	<	<	<	<	<	<	<	4
)	1	1	1	>	>	>	>	1	>	>	>	>	>	>	1	>	>	>	>	>	>	>	>	>	>	>	>	>
?	<	<	<	<	<	<	<	<	6	<	<	<	<	<	<	6	<	=	<	<	<	<	<	<	<	<	<	>
:	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	<	>	<	<	<	<	<	<	<	<	<	>
>	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
>=	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
<	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
<=	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
=	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
\Diamond	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	>	>	>	>	>	>	>	>	>	>	>	>
&	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	>	>	<	<	<	<	<	<	>	>	<	>
	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	>	>	<	<	<	<	<	<	<	>	<	>
i	<	<	<	<	<	<	<	<	>	<	<	<	<	<	<	>	>	>	<	<	<	<	<	<	>	>	<	>
\$	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	3	<	<	<	<	<	<	<	<	<	<	<	

> 语法分析与语义处理的设计与实现

```
根据 OPP 的 parser table 进行移近和归约操作。大致伪代码如下
initialize();
for (;;) {
if (top == $ && lookahead == $)
    accept();
topOp = stack.topMostTerminal();
if (topOp < lookahead | | topOp \equiv lookahead) {
    // shift
    stack.push(lookahead);
    lookahead = scanner.getNextToken();
// reduce
     do {
         topOp = stack.pop();
    } while (stack.topMostTerminal() > | | \equiv topOp);
} else
    error(); }
```

▶ 程序运行的屏幕截图

截图只上一张,其他的具体请看测试样例。

> 实验的心得体会

这次的实验的问题不是在于实验本身的难度问题,主要是它把之前所学习的词法分析和语法分析的 OPP 结合在一起了。本身这两者的编程实现都需要一点时间,所以这次实验虽然有些艰难,但是真正完成后感觉自己学到了很多,也提升了很多。