

BumJun, Park

N/A

FCC ID: YY3-14248 IC ID: 11695A-14248

Report No.: DRTFCC1410-1334

Harvey Sung

Total 59pages

SAR TEST REPORT

Т	est item	:	Mobile Computer		
N	Model No.		FCC: NAUTIZ X8 /	IC:	14248
	Order No.	•	DEMC1407-02978, DEM	/IC1407	-02987
	Date of receipt	:	2014-07-21		
T	est duration	:	2014-08-20		
	Date of issue	:	2014-10-27		
·	Jse of report	:	FCC Original Grant & IC	certific	ation
Applicant :	Handheld Group	pΑ	λB		
	Kinnegatan 17,	53	133 Lidköping Sweden	(
Test laboratory :	DT&C Co., Ltd. 42, Yurim-ro, 15		peon-gil, Cheoin-gu, Yong	gin-si, G	yeonggi-do, Korea 449-935
Te	st rule part	:	CFR §2.1093 & RSS-10	02	
Tes	st environment	:	See appended test repo	ort	
Te	st result	:	⊠ Pass □] Fail	
	est report is inhibited o	othe	test report are limited only to the er than its purpose. This test rep t the written approval of DT&C (ort shall r	supplied by applicant and not be reproduced except in full,
Tested by:	Wi	itne	essed by:		Reviewed by:
My Mh					Jung
Engineer	En	ngir	neer		Technical Director

Table of Contents

1. DESCRIPTION OF DEVICE	5
1.1 Guidance Applied	6
1.2 Device Overview	
1.3 Nominal and Maximum Output Power Specifications	6
1.4 DUT Antenna Locations	
1.6 Power Reduction for SAR	
1.7 Device Serial Numbers	
2. INTROCUCTION	
3. DESCRIPTION OF TEST EQUIPMENT	10
3.1 SAR MEASUREMENT SETUP	10
3.2 ES3DV3 Probe Specification	11
3.3 Probe Calibration Process	
3.3.1 E-Probe Calibration	
3.4 Data Extrapolation	
3.5 SAM Twin PHANTOM	
3.6 Device Holder for Transmitters 3.7 Brain & Muscle Simulation Mixture Characterization	
3.8 SAR TEST EQUIPMENT	۱۵ 16
4. TEST SYSTEM SPECIFICATIONS	
5. SAR MEASUREMENT PROCEDURE	18
5.1 Measurement Procedure	
6. DEFINITION OF REFERENCE POINTS	
6.1 Ear Reference Point	19
6.2 Handset Reference Points	
7. TEST CONFIGURATION POSITIONS FOR HANDSETS	20
7.1 Device Holder	
7.2 Positioning for Cheek/Touch	
7.3 Positioning for Ear / 15 ° Tilt	
7.4 Body-Worn Accessory Configurations	
7.5 Extremity Exposure Configurations	
9. FCC MEASUREMENT PROCEDURES	
9.1 Measured and Reported SAR	
9.2 SAR Testing with 802.11 Transmitters	
·	
9.2.2 Frequency Channel Configurations	
10. RF CONDUCTED POWERS	
10.1 WLAN Conducted Powers	
10.2 Bluetooth Conducted Powers	
11.1 Tissue Verification	
11.2 1631 Oysigin veningation	
12. SAR TEST RESULTS	28
12. SAR TEST RESULTS	28
12.1 Head SAR Results	28 29
12.1 Head SAR Results	

13. SAR MEASUREMENT VARIABILITY	31
13.1 Measurement Variability	31
13.2 Measurement Uncertainty	31
14. IEEE P1528 -MEASUREMENT UNCERTAINTIES	32
15.CONCLUSION	34
16. REFERENCES	35
Attachment 1. – Probe Calibration Data	37
Attachment 2. – Dipole Calibration Data	49
Attachment 3. – SAR SYSTEM VALIDATION	58

Test Report Version

Test Report No.	Date	Description
DRTFCC1410-1334	Oct. 27, 2014	Final version for approval

1. DESCRIPTION OF DEVICE

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

General Information:

General information.							
EUT type	Mobile Computer						
FCC ID	YY3-14248						
IC ID	11695A-14248						
Equipment model name	NAUTIZ X8						
Equipment serial no.	Identical prototype						
Mode(s) of Operation	2.4 GHz W-LAN (80	02.11b/g/n HT20))				
TX Frequency Range	2412 ~ 2462 MHz (802.11b)						
RX Frequency Range	RX Frequency Range 2412 ~ 2462 MHz (802.11b)						
	Band	Measured Conducted Power	Reported SAR				
Equipment Class			1g SAR (W/kg)		10g Extremity SAR (W/kg)		
3.000		[dBm]	Head	Body-worn	Hand		
DTS	2.4 GHz W-LAN	18.13	0.071	0.105	0.377		
DSS/DTS	Bluetooth	3.63		١	I/A		
FCC Equipment Class	Licensed Portable	Transmitter Held	to Ear (PCE	Ξ)			
Date(s) of Tests	2014-08-20						
Antenna Type	Internal Type Anter	ına					
Functions	, ,	ous transmission	• .	HT20)) supported * & WLAN	3		

1.1 Guidance Applied

- IEEE 1528-2003
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05r02 (General SAR Guidance)
- FCC KDB Publication 648474 D04 Handset SAR v01r02
- FCC KDB Publication 690783 D01 SAR Listings on Grants v01r03
- FCC KDB Publication 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- FCC KDB Publication 865664 D02 RF Exposure Reporting v01r01

1.2 Device Overview

Band & Mode	Operating Modes	Tx Frequency
2.4 GHz WLAN	Data	2412 ~ 2462 MHz
Bluetooth	Data	2402 ~ 2480 MHz

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05r02.

Band & Mo	de	Modulated Average [dBm]
IEEE 802.11b (2.4 GHz)	Maximum	18.5
IEEE 802.11b (2.4 GHZ)	Nominal	17.5
IEEE 903 11 ~ (2.4 CH=)	Maximum	15.5
IEEE 802.11g (2.4 GHz)	Nominal	14.5
IEEE 902 115 /2 4 CH-)	Maximum	15.5
IEEE 802.11n (2.4 GHz)	Nominal	14.5
Pluotooth 1 Mbps	Maximum	4.0
Bluetooth 1 Mbps	Nominal	3.0
Pluotooth 2 Mbno	Maximum	4.0
Bluetooth 2 Mbps	Nominal	3.0
Pluotooth 2 Mbno	Maximum	4.0
Bluetooth 3 Mbps	Nominal	3.0

1.4 DUT Antenna Locations

Report No.: DRTFCC1410-1334

Note 1: Exact antenna dimensions and separation distances are shown in the "Antenna Location_YY3-14248" in the FCC Filing. Note 2: Since the diagonal dimension of this device is > 160 mm and < 200 mm, it is considered a "Phablet"

Mode	Phablet Sides for SAR Testing							
Wode	Тор	Bottom	Front	Rear	Right	Left		
2.4G W-LAN(802.11b/g/n)	0	Х	0	0	0	0		

Table 1.1 Phablet Sides for SAR Testing

Note:

1. Particular DUT edges were not required to be evaluated for Phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 648474 D04v01r02. The antenna document shows the distances between the transmit antennas and the edges of the device.

1.5 SAR Test Exclusions Applied

(A) WIFI & BT

Per FCC KDB 447498 D01v05r02, **the 1g SAR exclusion threshold for distances < 50 mm** is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 3.0$$

Based on the maximum conducted power of **Bluetooth** (rounded to the nearest mW) and the antenna to user separation distance, **Bluetooth SAR was not required**; $[(3/10)^* \sqrt{2.480}] = 0.4 < 3.0$.

Based on the maximum conducted power of **2.4 GHz WIFI** (rounded to the nearest mW) and the antenna to user separation distance, **2.4 GHz WIFI SAR was required**; $[(71/10)^*]\sqrt{2.462} = 11.1 > 3.0$.

Per FCC KDB 447498 D01v05r02, **the 10g SAR exclusion threshold for distances < 50 mm** is defined by the following equation:

$$\frac{\textit{Max Power of Channel (mW)}}{\textit{Test Separation Dist (mm)}} * \sqrt{\textit{Frequency(GHz)}} \le 7.5$$

Based on the maximum conducted power of **Bluetooth** (rounded to the nearest mW) and the antenna to user separation distance, **Bluetooth SAR was not required**; $[(3/5)^* \sqrt{2.480}] = 0.8 < 7.5$.

Based on the maximum conducted power of **2.4 GHz WIFI** (rounded to the nearest mW) and the antenna to user separation distance, **2.4 GHz WIFI SAR was required**; $[(71/5)^* \sqrt{2.462}] = 22.2 > 7.5$.

Per FCC KDB Publication 648474 D04v01r02, this device is considered a "Phablet" since the diagonal dimension is greater than 160 mm and less than 200 mm. Extremity SAR tests are required when wireless router mode does not apply or if wireless router 1 g SAR > 1.2 W/Kg. Because wireless router mode does not supported, extremity SAR tests were required.

Per KDB Publication 447498 D01v05r02, the maximum power of the channel was rounded to the nearest mW before calculation.

1.6 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.7 Device Serial Numbers

Band & Mode	Head Serial Number	Body-Worn Serial Number	
2.4 GHz WLAN	FCC #1	FCC #1	

2. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95*.1-2005 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU)absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 2.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR MEASUREMENT SETUP

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-2600 3.40 GHz desktop computer with Windows NT system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Figure 3.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

3.2 ES3DV3 Probe Specification

Report No.: DRTFCC1410-1334

Calibration In air from 10 MHz to 4 GHz

In brain and muscle simulating tissue at Frequencies of

300 MHz, 450 MHz, 600 MHz, 750 MHz, 835 MHz, 900 MHz, 1750 MHz, 1900 MHz,

2300 MHz, 2450 MHz

Frequency 10 MHz to 4 GHz

Linearity $\pm 0.2 \text{ dB } (30 \text{ MHz to 4 GHz})$

Dynamic 10 μ W/g to > 100 mW/g

Range Linearity: $\pm 0.2 \text{ dB}$

Dimensions Overall length: 337 mm

Tip length 20 mm

Body diameter 12 mm

Tip diameter 3.9 mm

Distance from probe tip to sensor center 2.0 mm

Application SAR Dosimetry Testing

Compliance tests of mobile phones

Figure 3.2 Triangular Probe Configurations

Figure 3.3 Probe Thick-Film Technique

DAE System

The SAR measurements were conducted with the dosimetric probe ES3DV3, designed in the classical triangular configuration(see Fig. 3.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

3.3 Probe Calibration Process

3.3.1 E-Probe Calibration

Report No.: DRTFCC1410-1334

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

 $SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$

where: where:

 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

Figure 3.4 E-Field and Temperature Measurements at 900MHz

Figure 3.5 E-Field and Temperature Measurements at 1800MHz

3.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{gf}{dcp_{i}}$$
 with V_{i} = compensated signal of channel i (i=x,y,z)
 U_{i} = input signal of channel i (i=x,y,z)
 C_{i} = crest factor of exciting field (DASY parameter)
 C_{i} = crest factor of exciting field (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z)
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^2$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] p = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

3.5 SAM Twin PHANTOM

The SAM Twin Phantom V5.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 3.6)

Figure 3.6 SAM Twin Phantom

SAM Twin Phantom Specification:

Construction

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching

three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as

Twin SAM V4.0, but has reinforced top structure.

Shell Thickness 2 ± 0.2 mm

Filling Volume Approx. 25 liters

Dimensions Length: 1000 mm

Width: 500 mm

Height: adjustable feet

Specific Anthropomorphic Mannequin (SAM) Specifications:

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected alongthemid-sagittal plane into right and left halves (see Fig. 3.7). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimized reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15cm to minimize reflections from the upper surface.

Figure 3.7 Sam Twin Phantom shell

3.6 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.8 Mounting Device

3.7 Brain & Muscle Simulation Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Figure 3.9 Simulated Tissue

Table 3.1 Composition of the Tissue Equivalent Matter

Ingredients	Frequency (MHz)									
(% by weight)	835		1900		2450		5200 ~ 5800			
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body		
Water	40.19	50.75	55.24	70.23	71.88	73.40	65.52	80.00		
Salt (NaCl)	1.480	0.940	0.310	0.290	0.160	0.060	-	-		
Sugar	57.90	48.21	_	-	-	-	-	-		
HEC	0.250	-	_	-	-	-	-	-		
Bactericide	0.180	0.100	-	-	-	-	-	-		
Triton X-100	-	-	_	-	19.97	-	17.24	-		
DGBE	-	-	44.45	29.48	7.990	26.54	-	-		
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	-		
Polysorbate (Tween) 80	-	-	-	-	-	-	-	20.00		
Target for Dielectric Constant	41.5	55.2	40.0	53.3	39.2	52.7	-	-		
Target for Conductivity (S/m)	0.90	0.97	1.40	1.52	1.80	1.95	-	-		

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

3.8 SAR TEST EQUIPMENT

Table 3.2 Test Equipment Calibration

	Туре	Manufacturer	Model	Cal.Date	Next.Cal.Date	S/N
\boxtimes	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
\boxtimes	Robot	SCHMID	TX60L	N/A	N/A	F12/5LP5A1/A/01
\boxtimes	Robot Controller	SCHMID	C58C	N/A	N/A	F12/5LP5A1/C/01
\boxtimes	Joystick	SCHMID	N/A	N/A	N/A	S-12030401
\boxtimes	Intel Core i7-2600 3.40 GHz Windows 7 Professional	N/A	N/A	N/A	N/A	N/A
\boxtimes	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA
\boxtimes	Mounting Device	SCHMID	Holder	N/A	N/A	SD000H01KA
\boxtimes	Twin SAM Phantom	SCHMID	QD000P40CD	N/A	N/A	1679
	2mm Oval Phantom ELI5	SCHMID	QDOVA002AA	N/A	N/A	1166
\boxtimes	Data Acquisition Electronics	SCHMID	DAE3	2014-01-21	2015-01-21	519
\boxtimes	Dosimetric E-Field Probe	SCHMID	ES3DV3	2014-03-27	2015-03-27	3328
	Dummy Probe	N/A	N/A	N/A	N/A	N/A
	835MHz SAR Dipole	SCHMID	D835V2	2013-09-05	2015-09-05	4d159
	1800 MHz SAR Dipole	SCHMID	D1800V2	2014-07-18	2016-07-18	2d047
	1900MHz SAR Dipole	SCHMID	D1900V2	2013-09-05	2015-09-05	5d176
\boxtimes	2450MHz SAR Dipole	SCHMID	D2450V2	2013-09-10	2015-09-10	920
	2600 MHz SAR Dipole	SCHMID	D2600V2	2014-05-20	2016-05-20	1016
\boxtimes	Network Analyzer	Agilent	E5071C	2013-10-21	2014-10-21	MY46106970
\boxtimes	Signal Generator	Agilent	ESG-3000A	2014-06-26	2015-06-26	US37230529
\boxtimes	Amplifier	EMPOWER	BBS3Q7ELU	2013-09-12	2014-09-12	1020
	High Power RF Amplifier	EMPOWER	BBS3Q8CCJ	2013-10-22	2014-10-22	1005
\boxtimes	Power Meter	HP	EPM-442A	2014-02-28	2015-02-28	GB37170267
\boxtimes	Power Meter	Anritsu	ML2495A	2014-03-12	2015-03-12	1306007
\boxtimes	Wide Bandwidth Power Sensor	Anritsu	MA2490A	2014-03-12	2015-03-12	1249001
\boxtimes	Power Sensor	HP	8481A	2014-02-28	2015-02-28	3318A96566
\boxtimes	Power Sensor	HP	8481A	2014-01-07	2015-01-07	3318A96030
\boxtimes	Dual Directional Coupler	Agilent	778D-012	2014-01-07	2015-01-07	50228
\boxtimes	Directional Coupler	HP	773D	2014-06-27	2015-06-27	2389A00640
	Low Pass Filter 1.5GHz	Micro LAB	LA-15N	2014-01-07	2015-01-07	N/A
\boxtimes	Low Pass Filter 3.0GHz	Micro LAB	LA-30N	2013-09-12	2014-09-12	N/A
	Low Pass Filter 6.0GHz	Micro LAB	LA-60N	2014-02-27	2015-02-27	03942
\boxtimes	Attenuators(3 dB)	Agilent	8491B	2014-06-27	2015-06-27	MY39260700
\boxtimes	Attenuators(10 dB)	WEINSCHEL	23-10-34	2014-01-07	2015-01-07	BP4387
	Step Attenuator	HP	8494A	2013-09-12	2014-09-12	3308A33341
\boxtimes	Dielectric Probe kit	SCHMID	DAK-3.5	2014-01-07	2015-01-07	1092
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	2014-02-28	2015-02-28	GB43461134
	Wideband Radio Communication Tester	Rohde Schwarz	CMW500	2013-09-12	2014-09-12	101414
\boxtimes	Power Splitter	Anritsu	K241B	2013-10-22	2014-10-22	1701102
\boxtimes	Bluetooth Tester	TESCOM	TC-3000B	2014-06-26	2015-06-26	3000B640046

NOTE: The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by DT&C before each test. The brain and muscle simulating material are calibrated by DT&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material. Each equipment item was used solely within its respective calibration period.

4. TEST SYSTEM SPECIFICATIONS

Automated TEST SYSTEM SPECIFICATIONS:

<u>Positioner</u>

Robot Stäubli Unimation Corp. Robot Model: TX90XL

Repeatability 0.02 mm

No. of axis 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor Intel Core i7-2600

Clock Speed 3.40 GHz

Operating System Windows 7 Professional DASY5 PC-Board

Data Converter

Features Signal, multiplexer, A/D converter. & control logic

Software DASY5

Connecting Lines Optical downlink for data and status info

Optical uplink for commands and clock

PC Interface Card

Function 24 bit (64 MHz) DSP for real time processing

Link to DAE 4

16 bit A/D converter for surface detection system

serial link to robot

direct emergency stop output for robot

E-Field Probes

Model ES3DV3 S/N: 3328

Construction Triangular core fiber optic detection system

Frequency 10 MHz to 4 GHz

Linearity ± 0.2 dB (30 MHz to 4 GHz)

Phantom

Phantom SAM Twin Phantom (V5.0)

Shell MaterialCompositeThickness $2.0 \pm 0.2 \text{ mm}$

Figure 2.2 DASY5 Test System

5. SAR MEASUREMENT PROCEDURE

5.1 Measurement Procedure

Report No.: DRTFCC1410-1334

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r03 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r03 (See Table 5-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

Figure 5.1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r03 (See Table 5-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 3-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

	Maximum Area Scan	Maximum Zoom Scan	Max	Minimum Zoom Scan		
Frequency	Resolution (mm) $(\Delta x_{area}, \Delta y_{area})$	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	Graded Grid Δz _{zoom} (1)* Δz _{zoom} (n>1)*		Volume (mm) (x,y,z)
			$\Delta z_{zoom}(n)$			
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤12	≤5	≤5	≤ 4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤ 4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 22

Table 5.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r03

*Also compliant to IEEE 1528-2013 Table 6

6. DEFINITION OF REFERENCE POINTS

6.1 Ear Reference Point

Figure 6.1 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the Ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.5. The plane Passing, through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck- Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

Figure 6.1 Close-up side view of ERP

6.2 Handset Reference Points

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 6.2 Front, back and side view SAM Twin Phantom

Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

7. TEST CONFIGURATION POSITIONS FOR HANDSETS

7.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

7.2 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was hen rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). (See Figure 7.2)

7.3 Positioning for Ear / 15 ° Tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 7.3).

Figure 7.2 Side view w/relevant markings

Figure 7.3 Front, Side and Top View of Ear/15°Position

7.4 Body-Worn Accessory Configurations

Report No.: DRTFCC1410-1334

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6.7). Per FCC KDB Publication 648474 D04v01r02, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05r02 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for

Figure 6.7 Sample Body-Worn Diagram

hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

7.5 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v05r02 should be applied to determine SAR test requirements.

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, unless it is confirmed otherwise through KDB inquiries, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance.

- 1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.
- 2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold. The normal tablet procedures in KDB 616217 are required when the over diagonal dimension of the device is > 20.0 cm. Hotspot mode SAR is not required when normal tablet procedures are applied. Extremity 10-g SAR is also not required for the front (top) surface of large form factor full size tablets. The more conservative tablet SAR results can be used to support the 10-g extremity SAR for phablet mode.
- 3. The simultaneous transmission operating configurations applicable to voice and data transmissions for both phone and mini-tablet modes must be taken into consideration separately for 1-g and 10-g SAR to determine the simultaneous transmission SAR test exclusion and measurement requirements for the relevant wireless modes and exposure conditions.

8. RF EXPOSURE LIMITS

Uncontrolled Environment:

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment:

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-2005

	HUMAN EXPO	SURE LIMITS
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

Report No.: DRTFCC1410-1334 FCC ID: YY3-14248 / IC ID: 11695A-14248 Date of issue: Oct. 27, 2014

9. FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

9.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05r02, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

9.2 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

9.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.2.2 Frequency Channel Configurations

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

10. RF CONDUCTED POWERS

10.1 WLAN Conducted Powers

	-			802.11b (2.4 GHz) C	onducted Power (dBn	n)			
Mode	Freq.	Channel		Data R	Data Rate (Mbps)				
	(MHz)		1	2	5.5	11			
	2412	1	<u>18.13</u>	18.06	18.06	18.00			
802.11b	2437	6	18.12	18.12	18.05	18.01			
	2462	11	18.04	17.97	17.96	17.92			

Table 10.3 IEEE 802.11b Average RF Power

	5				802.11g (2.	.4 GHz) Co	nducted Po	wer (dBm)		
Mode	Freq.	Channel				Data Rat	e (Mbps)			
	(MHz)		6	9	12	18	24	36	48	54
	2412	1	14.98	14.81	14.89	14.87	14.83	14.91	14.80	14.61
802.11g	2437	6	15.02	14.92	14.88	14.82	14.84	14.78	14.84	14.90
	2462	11	14.94	14.83	14.81	14.78	14.78	14.71	14.82	14.67

Table 10.4 IEEE 802.11g Average RF Power

	5			802	2.11n HT20	(2.4 GHz)	Conducted	Power (dE	Bm)	
Mode	Freq.	Channel				Data Rat	e (Mbps)			
	(MHz)		6.5	13	19.5	26	39	52	58.5	65
200.44	2412	1	15.37	15.29	15.24	15.20	15.31	15.19	15.27	14.56
802.11n	2437	6	15.30	15.23	15.21	15.17	15.21	15.24	15.12	14.44
(HT-20)	2462	11	15.39	15.30	15.23	15.16	15.15	15.15	15.17	14.56

Table 10.5 IEEE 802.11n HT20 Average RF Power

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 / April 2013 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The underlined data rate and channel above were tested for SAR.

Figure 10.2 Power Measurement Setup for Bandwidths < 50 MHz

10.2 Bluetooth Conducted Powers

Channel	Frequency	Pov	G Output wer bps)	Frame AV Pov (2Ml	•	Pov	G Output wer bps)
	(MHz)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)
Low	2402	2.76	1.888	3.43	2.203	3.44	2.208
Mid	2441	3.22	2.099	3.56	2.270	3.63	2.307
High	2480	2.44	1.754	3.22	2.099	3.23	2.104

Table 10.6 Bluetooth Frame Average RF Power

Note:

The average conducted output powers of Bluetooth were measured using following test setup and a wideband gated RF power meter when the EUT is transmitting at its maximum power level.

Figure 10.4 Power Measurement Setup

11. SYSTEM VERIFICATION

11.1 Tissue Verification

				MEASU	RED TISSUE F	PARAMETERS				
Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Measured Frequency [MHz]	Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, Er	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]
				2412	39.268	1.766	37.975	1.763	-3.29	-0.17
Aug. 20. 2014	2450	20.7	21.2	2437	39.223	1.788	37.896	1.791	-3.38	0.17
Aug. 20. 2014	Head	20.7	21.2	2450	39.200	1.800	37.855	1.805	-3.43	0.28
				2462	39.184	1.813	37.822	1.817	-3.48	0.22
				2412	52.751	1.914	51.322	1.922	-2.71	0.42
Aug 20 2014	2450	20.7	20.0	2437	52.717	1.938	51.228	1.965	-2.82	1.39
Aug. 20. 2014 Body	20.7	20.9	2450	52.700	1.950	51.228	1.965	-2.79	0.77	
				2462	52.685	1.967	51.201	1.928	-2.82	-1.98

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification:

- The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container Trapped air bubbles beneath the flange were minimized by placing the probe at a slight
- The complex admittance with respect to the probe aperture was measured The complex relative permittivity , for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho' d\rho'$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency,

11.2 Test System Verification

Prior to assessment, the system is verified to the± 10 % of the specifications at 2450 MHz by using the SAR Dipole kit(s). (Graphic Plots Attached)

Table 11.1 System Verification Results

	SYSTEM DIPOLE VERIFICATION TARGET & MEASURED													
SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation [%]		
Е	2450	D2450V2, SN:920	Aug. 20. 2014	Head	20.7	21.2	3328	250	52.8	12.9	51.60	-2.27		
Е	2450	D2450V2, SN: 920	Aug. 20. 2014	Body	20.7	20.9	3328	250	48.9	13.0	52.00	6.34		

Table 11.2 System Verification Results - Extremity SAR

	SYSTEM DIPOLE VERIFICATION TARGET & MEASURED (10g)													
SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp.[°C]	Liquid Temp.[°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{10g} (W/kg)	Measured SAR _{10g} (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation [%]		
Е	2450	D2450V2, SN:920	Aug. 20. 2014	Head	20.7	21.2	3328	250	24.5	5.88	23.52	-4.00		
Е	2450	D2450V2, SN: 920	Aug. 20. 2014	Body	20.7	20.9	3328	250	23.0	5.66	22.64	-1.57		

Note1: System Verification was measured with input 250 mW and normalized to 1W.

Note2: To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, probe and DAE as the SAR tests in the same time period.

Note3: Full system validation status and results can be found in Attachment 3.

Figure 11.1 Dipole Verification Test Setup Diagram & Photo

12. SAR TEST RESULTS

12.1 Head SAR Results

Table 12.1 DTS Head SAR

						MEASU	JREMENT RES	ULTS						
FREQU	JENCY	Mode	Service	Maximum Allowed	Conducted Power	Drift Power	Phantom	Device Serial	Data Rate	Duty	1g SAR	Scaling	1g Scaled	Plots
MHz	Ch	Mode	Oct vice	Power [dBm]	[dBm]	[dB]	Position	Number	[Mbps]	Cycle	(W/kg)	Factor	SAR (W/kg)	#
2412	1	802.11b	DSSS	18.5	18.13	0.050	Left Touch	FCC #1	1	1:1	0.041	1.089	0.045	
2412	1	802.11b	DSSS	18.5	18.13	0.170	Right Touch	FCC #1	1	1:1	0.058	1.089	0.063	
2437	6	802.11b	DSSS	18.5	18.12	0.120	Right Touch	FCC #1	1	1:1	0.065	1.091	0.071	A1
2462	11	802.11b	DSSS	18.5	18.04	0.130	Right Touch	FCC #1	1	1:1	0.059	1.112	0.066	
2412	1	802.11b	DSSS	18.5	18.13	-0.020	Left Tilt	FCC #1	1	1:1	0.038	1.089	0.041	
2412	1	802.11b	DSSS	18.5	18.13	0.030	Right Tilt	FCC #1	1	1:1	0.042	1.089	0.046	
				Spatial Peak	SAFETY LIMIT Population Exp					Head 6 W/kg (m aged over	٠,			

12.2 Standalone Body-Worn SAR Worn SAR Results

Table 12.2 DTS Body-Worn SAR

						MEASU	REMENT RE	SULTS						
FREQU	ENCY	Mode/		Maximum Allowed	Conducted	Drift	Spacing	Device	Data	Duty	1g	Scaling	1g Scaled	Plots
MHz	Ch	Band	Service	Power [dBm]	Power [dBm]	Power [dB]	[Side]	Serial Number	Rate [Mbps]	Cycle	SAR (W/kg)	Factor	SAR (W/kg)	#
2412	1	802.11b	DSSS	18.5	18.13	-0.080	10 mm [Rear]	FCC #1	1	1:1	0.065	1.089	0.071	
2412	1	802.11b	DSSS	18.5	18.13	0.020	10 mm [Front]	FCC #1	1	1:1	0.096	1.089	0.105	A2
			S	5.1-2005– SAF patial Peak e/General Pop	ETY LIMIT	sure					Body W/kg (mW/ ged over 1			

12.3 Hand SAR Results

Table 12.3 DTS Hand SAR

					N	IEASUREI	MENT RESU	LTS						
FREQU	ENCY	Mode/	Service	Maximum Allowed	Conducted Power	Drift Power	Spacing	Device Serial	Data Rate	Duty	10g SAR	Scalin g	10g Scaled SAR	Plots #
MHz	Ch	Band		Power [dBm]	[dBm]	[dB]	[Side]	Number	[Mbps]	Cycle	(W/kg)	Factor	(W/kg)	#
2412	1	802.11b	DSSS	18.5	18.13	0.130	0 mm [Top]	FCC #1	1	1:1	0.121	1.089	0.132	
2412	1	802.11b	DSSS	18.5	18.13	0.050	0 mm [Front]	FCC #1	1	1:1	0.178	1.089	0.194	
2412	1	802.11b	DSSS	18.5	18.13	0.050	0 mm [Rear]	FCC #1	1	1:1	0.089	1.089	0.097	
2412	1	802.11b	DSSS	18.5	18.13	0.110	0 mm [Right]	FCC #1	1	1:1	0.037	1.089	0.040	
2412	1	802.11b	DSSS	18.5	18.13	-0.150	0 mm [Left]	FCC #1	1	1:1	0.346	1.089	0.377	A3
			Sp	.1-2005– SAFI atial Peak /General Popi	ETY LIMIT	ıre					Body W/kg (mW/g ed over 10 g	•	-	

12.4 SAR Test Notes

General Notes:

1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, and FCC KDB Publication447498 D01v05r02.

- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05r02.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r02, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was not > 1.2 W/kg, no additional SAR evaluations using a headset cable were performed.
- 8. Per FCC KDB 865664 D01v01r03, variability SAR tests were performed when the measured SAR results for a frequency band were greater than 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 14 for variability analysis.

WLAN Notes:

- Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. WIFI transmission was verified using a spectrum analyzer.
- 3. Since the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels was not required.

Report No.: DRTFCC1410-1334 FCC ID: YY3-14248 / IC ID: 11695A-14248 Date of issue: Oct. 27, 2014

13. SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r03, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2. A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3. A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01r03, the standard measurement uncertainty analysis per IEEE 1528-2003 was not required.

14. IEEE P1528 -MEASUREMENT UNCERTAINTIES

2450 MHz Head

Error Description	Uncertainty	Probability	Divisor	(Ci)	Standard	vi 2 or
Error Description	value ±%	Distribution	DIVISOI	1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.144 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	8
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	8
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.309 %	8
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	8
Liquid conductivity (Meas.)	± 4.8	Normal	1	0.64	± 4.8 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.7	Normal	1	0.6	± 4.7 %	∞
Combined Standard Uncertainty					± 12.3 %	330
Expanded Uncertainty (k=2)					± 24.6 %	

The above measurement uncertainties are according to IEEE P1528 (2003)

Report No.: DRTFCC1410-1334

2450 MHz Body

Error Description	Uncertainty	Probability	Divisor	(Ci)	Standard	vi 2 or
	value ±%	Distribution		1g	(1g)	Veff
Measurement System						
Probe calibration	± 6.0	Normal	1	1	± 6.0 %	∞
Axial isotropy	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Hemispherical isotropy	± 9.6	Rectangular	√3	1	± 5.543 %	∞
Boundary Effects	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Probe Linearity	± 4.7	Rectangular	√3	1	± 2.714 %	∞
Detection limits	± 0.25	Rectangular	√3	1	± 0.144 %	∞
Readout Electronics	± 1.0	Normal	1	1	± 1.0 %	∞
Response time	± 0.8	Rectangular	√3	1	± 0.462 %	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.501 %	∞
RF Ambient Conditions	± 3.0	Rectangular	√3	1	± 1.732 %	∞
Probe Positioner	± 0.4	Rectangular	√3	1	± 0.231 %	∞
Probe Positioning	± 2.9	Rectangular	√3	1	± 1.674 %	∞
Algorithms for Max. SAR Eval.	± 1.0	Rectangular	√3	1	± 0.577 %	∞
Test Sample Related						
Device Positioning	± 2.9	Normal	1	1	± 2.9 %	145
Device Holder	± 3.6	Normal	1	1	± 3.6 %	5
Power Drift	± 5.0	Rectangular	√3	1	± 2.887 %	∞
Physical Parameters						
Phantom Shell	± 4.0	Rectangular	√3	1	± 2.309 %	∞
Liquid conductivity (Target)	± 5.0	Rectangular	√3	0.64	± 2.887 %	∞
Liquid conductivity (Meas.)	± 4.3	Normal	1	0.64	± 4.3 %	∞
Liquid permittivity (Target)	± 5.0	Rectangular	√3	0.6	± 2.887 %	∞
Liquid permittivity (Meas.)	± 4.8	Normal	1	0.6	± 4.8 %	∞
Combined Standard Uncertainty					± 12.2 %	330
Expanded Uncertainty (k=2)					± 24.4 %	

The above measurement uncertainties are according to IEEE P1528 (2003)

Report No.: DRTFCC1410-1334 FCC ID: YY3-14248 / IC ID: 11695A-14248 Date of issue: Oct. 27, 2014

15.CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s)tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease).

Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

16. REFERENCES

Report No.: DRTFCC1410-1334

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Pre standard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.

- [21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Net book and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] 615223 D01 802 16e WiMax SAR Guidance v01, Nov. 13, 2009
- [30] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

Attachment 1. - Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Digital EMC (Dymstec)

Certificate No: ES3-3328_Mar14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3328

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

March 27, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: March 28, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3328_Mar14

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3328_Mar14

Page 2 of 11

ES3DV3 - SN:3328

March 27, 2014

Probe ES3DV3

SN:3328

Manufactured:

January 24, 2012

Repaired:

March 24, 2014

Calibrated:

March 27, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3328_Mar14

Page 3 of 11

ES3DV3-SN:3328

Report No.: DRTFCC1410-1334

March 27, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.05	1.08	1.11	± 10.1 %
DCP (mV) ⁸	108.6	103.5	103.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	201.8	±3.8 %
		Y	0.0	0.0	1.0		208.6	
		Z	0.0	0.0	1.0		208.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3328_Mar14

Page 4 of 11

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

ES3DV3-SN:3328

March 27, 2014

Date of issue: Oct. 27, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
300	45.3	0.87	7.64	7.64	7.64	0.14	1.50	± 13.3 %
450	43.5	0.87	6.75	6.75	6.75	0.20	1.80	± 13.3 %
600	42.7	0.88	6.60	6.60	6.60	0.15	1.20	± 13.3 %
750	41.9	0.89	6.55	6.55	6.55	0.31	1.90	± 12.0 %
835	41.5	0.90	6.32	6.32	6.32	0.28	2.01	± 12.0 %
900	41.5	0.97	6.21	6.21	6.21	0.38	1.67	± 12.0 %
1750	40.1	1.37	5.26	5.26	5.26	0.72	1.16	± 12.0 %
1900	40.0	1.40	5.08	5.08	5.08	0.80	1.15	± 12.0 %
2300	39.5	1.67	4.77	4.77	4.77	0.80	0.92	± 12.0 %
2450	39.2	1.80	4.50	4.50	4.50	0.60	1.43	± 12.0 %

Certificate No: ES3-3328_Mar14

Page 5 of 11

 $^{^{\}text{C}}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Date of issue: Oct. 27, 2014

Report No.: DRTFCC1410-1334

ES3DV3-SN:3328 March 27, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
300	58.2	0.92	7.11	7.11	7.11	0.09	1.10	± 13.3 %
450	56.7	0.94	7.06	7.06	7.06	0.15	1.59	± 13.3 %
600	56.1	0.95	6.66	6.66	6.66	0.03	1.15	± 13.3 %
750	55.5	0.96	6.22	6.22	6.22	0.45	1.51	± 12.0 %
835	55.2	0.97	6.14	6.14	6.14	0.28	2.04	± 12.0 %
900	55.0	1.05	6.02	6.02	6.02	0.63	1.31	± 12.0 %
1750	53.4	1.49	4.79	4.79	4.79	0.56	1.48	± 12.0 %
1900	53.3	1.52	4.61	4.61	4.61	0.47	1.65	± 12.0 %
2300	52.9	1.81	4.38	4.38	4.38	0.64	1.36	± 12.0 %
2450	52.7	1.95	4.17	4.17	4.17	0.80	1.14	± 12.0 %

c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

Certificate No: ES3-3328_Mar14 Page 6 of 11

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

diameter from the boundary.

ES3DV3-SN:3328

March 27, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3328_Mar14

Page 7 of 11

ES3DV3- SN:3328 March 27, 2014

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ES3DV3-SN:3328

March 27, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3328_Mar14

Page 9 of 11

ES3DV3- SN:3328 March 27, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3328_Mar14

Page 10 of 11

March 27, 2014

Date of issue: Oct. 27, 2014

ES3DV3-SN:3328

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3328

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-21.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

ACTION OF THE PROPERTY OF THE

Certificate No: ES3-3328_Mar14

Page 11 of 11

Attachment 2. – Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Date of issue: Oct. 27, 2014

Accredited by the Swiss Accreditation Service (SAS)

Zeughausstrasse 43, 8004 Zurich, Switzerland

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Digital EMC (Dymstec)

Accreditation No.: SCS 108

Certificate No: D2450V2-920_Sep13 CALIBRATION CERTIFICATE Object D2450V2 - SN: 920 QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 10, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 SN: 3205 Reference Probe ES3DV3 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Secondary Standards Scheduled Check Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 In house check: Oct-13 04-Aug-99 (in house check Oct-11) Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Name Function Calibrated by: Israe El-Naoug Laboratory Technician Gran El-Laurey Approved by: Katja Pokovic Technical Manager Issued: September 10, 2013

Certificate No: D2450V2-920_Sep13

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Date of issue: Oct. 27, 2014

C Service suisse d etalorimage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-920_Sep13

Page 2 of 8

Date of issue: Oct. 27, 2014

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.83 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.4 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	48.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.80 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-920_Sep13

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$56.7 \Omega + 2.3 j\Omega$	
Return Loss	- 23.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.8 Ω + 4.6 jΩ	
Return Loss	- 25.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 19, 2012	

Certificate No: D2450V2-920_Sep13

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 10.09.2013

Date of issue: Oct. 27, 2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 920

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.83 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.202 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dBW/kg

Certificate No: D2450V2-920_Sep13

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-920_Sep13

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 10.09.2013

Date of issue: Oct. 27, 2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 920

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ S/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.202 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 25.5 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.8 W/kgMaximum value of SAR (measured) = 16.3 W/kg

0 dB = 16.3 W/kg = 12.12 dBW/kg

Certificate No: D2450V2-920_Sep13

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-920_Sep13

Page 8 of 8

Attachment 3. - SAR SYSTEM VALIDATION

SAR System Validation

Per FCC KDB 865664 D02v01r01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r03 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

PERM. COND. **CW Validation** MOD. Validation SAR Probe Probe Probe CAL. Freq. Date MOD. Sensi-Probe Probe Dutv System [MHz] SN Type Point (er) (o) PAR tivity Linearity Isortopy Type Factor Ε 2014-04-01 3328 ES3DV3 Head 40.805 0.895 **PASS PASS PASS GMSK PASS** N/A F 1900 2014-04-02 3328 FS3DV3 1900 PASS PASS Head 38 773 1 347 PASS **PASS GMSK** N/A Ε 2450 2014-04-03 3328 ES3DV3 2450 Head 38.827 1.866 **PASS PASS PASS** OFDM N/A **PASS** Е 835 2014-04-04 3328 ES3DV3 835 53.451 0.991 PASS PASS PASS GMSK PASS Body N/A Е 1900 2014-04-05 ES3DV3 3328 1900 52 241 1 477 PASS PASS PASS **GMSK** PASS Body N/A Ε 2450 2014-04-07 3328 ES3DV3 2450 Body 51.349 1.988 **PASS PASS PASS** OFDM N/A **PASS**

Table Attachment 3.1 SAR System Validation Summary

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r03 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.