CONTEXT FREE GRAMMARS AND LANGUAGES

IF 2124 TEORI BAHASA FORMAL OTOMATA

Judhi S.

Context-Free Grammars and Languages

- We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs.
- Contex-Free Languages (CFL's) played a central role natural languages since the 1950's, and in compilers since the 1960's.
- Context-Free Grammars (CFG's) are the basis of BNF-syntax.
- Today CFL's are increasingly important for XML and their DTD's.

We'll look at: CFG's, the languages they generate, parse trees, pushdown automata, and closure properties of CFL's.

Informal example of CFG's

Consider $L_{pal} = \{w \in \Sigma^* : w = w^R\}$

For example otto $\in L_{pal}$, madamimadam $\in L_{pal}$.

In Finnish language e.g. saippuakauppias $\in L_{pal}$ ("soap-merchant")

Let $\Sigma = \{0,1\}$ and suppose L_{pal} were regular.

Let n be given by the pumping lemma. Then $0^n10^n \in L_{pal}$. In reading 0^n the FA must make a loop. Omit the loop; contradiction.

Let's define L_{pal} inductively:

Basis: ϵ , 0, and 1 are palindromes.

Induction: If w is a palindrome, so are 0w0 and 1w1.

Circumscription: Nothing else is a palindrome.

CFG's is a formal mechanism for definitions such as the one for ${\cal L}_{pal}.$

- 1. $P \rightarrow \epsilon$
- 2. $P \rightarrow 0$
- 3. $P \rightarrow 1$
- 4. $P \rightarrow 0P0$
- 5. $P \rightarrow 1P1$

0 and 1 are terminals

P is a variable (or nonterminal, or syntactic category)

P is in this grammar also the *start symbol*.

1-5 are productions (or rules)

Formal definition of CFG's

A context-free grammar is a quadruple

$$G = (V, T, P, S)$$

where

V is a finite set of variables.

T is a finite set of *terminals*.

P is a finite set of *productions* of the form $A \to \alpha$, where A is a variable and $\alpha \in (V \cup T)^*$

S is a designated variable called the $start\ symbol$.

Example:
$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$
, where $A = \{P \to \epsilon, P \to 0, P \to 1, P \to 0P0, P \to 1P1\}$.

Sometimes we group productions with the same head, e.g. $A = \{P \rightarrow \epsilon |0|1|0P0|1P1\}$.

Example: Regular expressions over $\{0,1\}$ can be defined by the grammar

$$G_{regex} = (\{E\}, \{0, 1\}, A, E)$$

where A =

$$\{E \rightarrow \mathbf{0}, E \rightarrow \mathbf{1}, E \rightarrow E.E.E. \rightarrow E+E.E. \rightarrow E^{\star}, E \rightarrow (E)\}$$

Example: (simple) expressions in a typical prog lang. Operators are + and *, and arguments are identifiers, i.e. strings in $L((a+b)(a+b+0+1)^*)$

The expressions are defined by the grammar

$$G = (\{E, I\}, T, P, E)$$

where $T = \{+, *, (,), a, b, 0, 1\}$ and P is the following set of productions:

- 1. $E \rightarrow I$
- 2. $E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

Derivations using grammars

- Recursive inference, using productions from body to head
- *Derivations*, using productions from head to body.

Example of recursive inference:

	String	Lang	Prod	String(s) used
(i)	a	I	5	-
(ii)	b	I	6	-
(iii)	b0	I	9	(ii)
(iv)	b00	I	9	(iii)
(v)	a	E	1	(i)
(vi)	b00	E	1	(iv)
(vii)	a + b00	E	2	(v), (vi)
(viii)	(a + b00)	E	4	(vii)
(ix)	a*(a+b00)	E	3	(v), (viii)

Let G = (V, T, P, S) be a CFG, $A \in V$, $\{\alpha, \beta\} \subset (V \cup T)^*$, and $A \to \gamma \in P$.

Then we write

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

or, if G is understood

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

and say that $\alpha A\beta$ derives $\alpha \gamma \beta$.

We define $\stackrel{*}{\Rightarrow}$ to be the reflexive and transitive closure of \Rightarrow , IOW:

Basis: Let $\alpha \in (V \cup T)^*$. Then $\alpha \stackrel{*}{\Rightarrow} \alpha$.

Induction: If $\alpha \stackrel{*}{\Rightarrow} \beta$, and $\beta \Rightarrow \gamma$, then $\alpha \stackrel{*}{\Rightarrow} \gamma$.

Example: Derivation of a*(a+b00) from E in the grammar of slide 138:

$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * (E) \Rightarrow$$
$$a*(E+E) \Rightarrow a*(I+E) \Rightarrow a*(a+E) \Rightarrow a*(a+I) \Rightarrow$$
$$a*(a+I0) \Rightarrow a*(a+I00) \Rightarrow a*(a+b00)$$

Note: At each step we might have several rules to choose from, e.g.

$$I*E \Rightarrow a*E \Rightarrow a*(E)$$
, versus $I*E \Rightarrow I*(E) \Rightarrow a*(E)$.

Note2: Not all choices lead to successful derivations of a particular string, for instance

$$E \Rightarrow E + E$$

won't lead to a derivation of a * (a + b00).

Leftmost and Rightmost Derivations

Leftmost derivation \Rightarrow : Always replace the leftmost variable by one of its rule-bodies.

Rightmost derivation \Rightarrow : Always replace the rightmost variable by one of its rule-bodies.

Leftmost: The derivation on the previous slide.

Rightmost:

$$E \underset{rm}{\Rightarrow} E * E \underset{rm}{\Rightarrow}$$

$$E*(E) \underset{m}{\Rightarrow} E*(E+E) \underset{m}{\Rightarrow} E*(E+I) \underset{m}{\Rightarrow} E*(E+I0)$$

$$\underset{rm}{\Rightarrow} E * (E + I00) \underset{rm}{\Rightarrow} E * (E + b00) \underset{rm}{\Rightarrow} E * (I + b00)$$

$$\Rightarrow_{rm} E * (a + b00) \Rightarrow_{rm} I * (a + b00) \Rightarrow_{rm} a * (a + b00)$$

We can conclude that $E \underset{rm}{\overset{*}{\Rightarrow}} a * (a + b00)$

The Language of a Grammar

If G(V,T,P,S) is a CFG, then the *language* of G is

$$L(G) = \{ w \in T^* : S \underset{G}{\overset{*}{\Rightarrow}} w \}$$

i.e. the set of strings over T^{*} derivable from the start symbol.

If G is a CFG, we call L(G) a context-free language.

Example: $L(G_{pal})$ is a context-free language.

Theorem 5.7:

$$L(G_{pal}) = \{ w \in \{0, 1\}^* : w = w^R \}$$

Proof: (\supseteq -direction.) Suppose $w = w^R$. We show by induction on |w| that $w \in L(G_{pal})$

Basis: |w|=0, or |w|=1. Then w is $\epsilon,0$, or 1. Since $P\to\epsilon,P\to0$, and $P\to1$ are productions, we conclude that $P\overset{*}{\underset{G}{\longrightarrow}} w$ in all base cases.

Induction: Suppose $|w| \ge 2$. Since $w = w^R$, we have w = 0x0, or w = 1x1, and $x = x^R$.

If w = 0x0 we know from the IH that $P \stackrel{*}{\Rightarrow} x$. Then

$$P \Rightarrow 0P0 \stackrel{*}{\Rightarrow} 0x0 = w$$

Thus $w \in L(G_{pal})$.

The case for w = 1x1 is similar.

(\subseteq -direction.) We assume that $w \in L(G_{pal})$ and must show that $w = w^R$.

Since $w \in L(G_{pal})$, we have $P \stackrel{*}{\Rightarrow} w$.

We do an induction of the length of $\stackrel{*}{\Rightarrow}$.

Basis: The derivation $P \stackrel{*}{\Rightarrow} w$ is done in one step.

Then w must be ϵ , 0, or 1, all palindromes.

Induction: Let $n \ge 1$, and suppose the derivation takes n + 1 steps. Then we must have

$$w = 0x0 \stackrel{*}{\Leftarrow} 0P0 \Leftarrow P$$

or

$$w = 1x1 \stackrel{*}{\Leftarrow} 1P1 \Leftarrow P$$

where the second derivation is done in n steps.

By the IH x is a palindrome, and the inductive proof is complete.

Sentential Forms

Let G = (V, T, P, S) be a CFG, and $\alpha \in (V \cup T)^*$. If

$$S \stackrel{*}{\Rightarrow} \alpha$$

we say that α is a *sentential form*.

If $S \Rightarrow_{lm} \alpha$ we say that α is a *left-sentential form*, and if $S \Rightarrow_{rm} \alpha$ we say that α is a *right-sentential form*

Note: L(G) is those sentential forms that are in T^* .

Example: Take G from slide 138. Then E * (I + E) is a sentential form since

$$E \Rightarrow E*E \Rightarrow E*(E) \Rightarrow E*(E+E) \Rightarrow E*(I+E)$$

This derivation is neither leftmost, nor rightmost

Example: a * E is a left-sentential form, since

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow} I * E \underset{lm}{\Rightarrow} a * E$$

Example: E*(E+E) is a right-sentential form, since

$$E \underset{rm}{\Rightarrow} E * E \underset{rm}{\Rightarrow} E * (E) \underset{rm}{\Rightarrow} E * (E + E)$$