Data Mining

ASSOCIATIVE CLASSIFICATION

Prof. Dr. Hikmat Ullah Khan Department of Information Technology

UNIVERSITY OF SARGODHA, SARGODHA

Lesson from Holy Quran

Agenda

- Association Rule Leaning
 - Frequent Pattern Finding
 - Finding Rules from Pattern
- Two metrics
 - Support
 - Confidence
- Steps to Apply Association Rule learning for Supervised Learning
 - Example

Main Concept

What Is Frequent Pattern Analysis?

- □ Frequent pattern: a pattern
- What is a Pattern?
- □ (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- History
- □ First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of two concepts, we study here
- ☐ Finding Frequent Itemsets
- ☐ Finding Association Rule.

Applications

- Basket data analysis,
 - cross-marketing/sale campaign analysis,
- Document Analysis
 - Co-occurance of words in a document
- Web Analysis
 - Usage Analysis (Log (click stream) analysis)
 - Content Analysis (C0-Occurance of Content/words/users)
 - Structure Analysis (a group of pages pointing to same page)
- Expert Group Finding
- Social Network Analysis
 - Similar Interest Finding
 - Terrorist Network

Main Concepts

- Concepts:
 - An item: an item/article in a basket
 - !: the set of all items sold in the store
 - A transaction: items purchased in a basket; it may have..TID (transaction ID)
 - A transactional dataset: A set of transactions
- $\Box I = \{i_1, i_2, ..., i_m\}$: a set of *items*.
- □ Transaction *t* :
 - $\blacksquare t$ a set of items, and $t \subseteq I$.
- □ Transaction Database T: a set of transactions $T = \{t_1, t_2, ..., t_n\}$.

- Market basket transactions:
 - t1: {bread, cheese, milk}
 - t2: {apple, eggs, salt, yogurt}
 - venile (transaction ie)
 - tn: {biscuit, eggs, milk}

More Concepts

- An itemset is a set of items.
 - E.g., X = {milk, bread, cereal} is an itemset.
- A k-itemset is an itemset with k items.
 - E.g., {milk, bread, cereal} is a 3-itemset

 \square A transaction t contains X, a set of items (itemset) in I, if $X \subseteq t$.

Support & Confidence

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- □ Itemset $X = \{x_1, ..., x_k\}$
 - Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let
$$\sup_{min} = 50\%$$
, $\operatorname{conf}_{min} = 50\%$
Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}
Association rules:
 $A \to D$ (60%, 100%)
 $D \to A$ (60%, 75%)

Mixture of Two diverse Learning

- Classification
 - Using Supervised Learning for Classification tasks
 - Classical examples and applications
 - Typical Two –phase method
- Association Rule Learning
 - Finding Frequent Pattern
 - Learning Rules from Frequent Itemset
- This is mixture of both these techniques
 - Classification using Association Rule Learning

Example

- WE have learnt all about both techniques
- Let us learn new method using existing Knowledge
- Let us Learn using Our Classical Example of Buys-PC data
- This is applicable for Categorical type like DT
- Numeric Values have to be converted into Nominal or Ordinal ways

Recall Attributes n its types, Class

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

TEST DATA

```
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)
```

Step-1: Use Symbols for diverse

Attribute value	New symbol
age<=30	a
age ₃₁₄₀	b
age _{>40}	c
income _{high}	h
income _{medium}	m
income _{low}	1
student _{yes}	S
student _{no}	t
credit_rating _{fair}	F
credit_rating _{excellent}	Е

- Let us take the Table data and Transform Each Instance Tuple into new Symbol based Approach
- Write Symbol for Each Instance and write its class as well.
- For instance
 - Age is less than 30
 - Income is medium
 - Student is yes
 - Credit Rating is Fair
 - Class is YES
- Write in an Instance Tuple???

```
1 {a, h, t, f, No}
2 {a, h, t, e, No}
3 {b, h, t, f, Yes}
4 {c, m, t, f, Yes}
5 {c, 1, s, f, Yes}
6 {c, 1, s, e, No}
7 {b, 1, s, e, Yes}
8 {a, m, t, f, No}
9 {a, l, s, f, Yes}
10 {c, m, s, f, Yes}
11 {a, m, s, e, Yes}
12 {b, m, t, e, Yes}
13 {b, h, s, f, Yes}
14 {c, m, t, e, No}
```

- Let us Take Each SYMBOL one by One and then for Each value of Calss,
 COMPUTE SUPPORT
- Recall Support
 - Support.Count
 - Count based Support
 - Support based on %age value
 - Min Sup

LET US TAKE 2 as Minimum Support

Prune all rules less than 2.

C1 and F1

Candidate	Support
a, Class=yes	2
a, Class=no	3
b, Class=yes	4
b, Class=no	•
c, Class=yes	3
c, Class=no	2
h, Class=yes	2
h, Class=no	2
m, Class=yes	4
m, Class=no	2
1, Class=yes	3
1, Class=no	1
s, Class=yes	6
s, Class=no	1
t, Class=yes	3
t, Class=no	4
f, Class=yes	6
f, Class=no	2
e, Class=yes	3
e, Class=no	3

Step-3 Iteration 2

- NEXT Step is to Compute Support
- For All Combination of Symbols and for Each Class (YES n NO in this case)
- Apply Min support
- Prune Rules not satisfying min support.

Step-3 Iteration 2

Candidate	Support
a,-h, Class=yes	0
a, h, Class=no	2
b, h, Class=yes	2
c,-h, Class=yes	0
c,-h, Class=no	0
a, m, Class=yes	<mark>-1</mark>
a, m, Class=no	<mark>-1</mark>
b, m, Class=yes	<mark>-1</mark>
c, m, Class=yes	2
c,-m, Class=no	<mark>-1</mark>
-a ₋ -1, Class=yes	<mark>-1</mark>
-b,-l, Class=yes	1
c,-l, Class=yes	1

h,-s, Class=yes	1
h,-t, Class=yes	<mark>1</mark>
h, t, Class=no	2
m, s, Class=yes	2
m, t, Class=yes	2
m, t, Class=no	2
1, s, Class=yes	3
l,-t, Class=yes	0

a, s, Class=yes	2
a,-t, Class=yes	<mark>0</mark>
a, t, Class=no	2
b, s, Class=yes	2
b, t, Class=yes	2
c, s, Class=yes	2
c,-t, Class=yes	1
c,-t, Class=no	1

a,-f, Class=yes	1
a, f, Class=no	2
a,-e, Class=yes	1
<mark>a,−e, Class=no</mark>	1
b,-f, Class=yes	1
b, e, Class=yes	2
c, f, Class=yes	3
c,-f, Class=no	0
c,-e, Class=yes	<mark>0</mark>
c, e, Class=no	2

s, f, Class=yes	3
s, e, Class=yes	2
t, f, Class=yes	2
t, f, Class=no	2
t,-e, Class=yes	1
t, e, Class=no	2

h, f, Class=yes	2
h,-f, Class=no	<mark>1</mark>
h,-e, Class=yes	0
<mark>h,-e, Class=no</mark>	1
m, f, Class=yes	2
m,-f, Class=no	1
m, e, Class=yes	2
m, e, Class=no	<mark>1</mark>
1, f, Class=yes	2
l,-e, Class=yes	1

Step3: Iteration 3

- Remember to Generate Candidate Set and Final Set
- Here Candidate sets
 - are based on Symbols Combinations
- Final Rule set for Each Iteration
 - Is based on Application of Min Support

Out of Step 3, iteration 3 What about Step 3, Iteration 4? C4 = {}

C3 and F3	
Candidate	Support
a, h, t, Class=No	2
a, t, f, Class=No	2
b, s, e, Class=Yes	1
c, m, s, Class=Yes	O
c, m, f, Class=Yes	2
e, s, f, Class=Yes	1
m, s, f, Class=Yes	1
m, t, f, Class=Yes	1
l, s, f, Class=Yes	2

Step4: Rule Generation

- We will Generate Rules using Support and Confidence
- The Formula and Concepts of the Rules are same
- Only difference to note is that

RIGHT HAND side of Rule (Consequent Part of A Rule) is CLASS only

Let us take following Two threshold

Min Support: 10%

Min confidence: 60%

Step4: Rule Generation

```
Classification rules are:
                        : age =30 AND income<sub>high</sub> AND student<sub>no</sub> → Class=No (14.3%, 100%)
a, h, t → Class=No
a, t, f → Class=No : age<sub><=30</sub> AND student<sub>no</sub> AND credit rating<sub>fair</sub> → Class=No (14.3%,100%)
c, m, f → Class=Yes: age<sub>>40</sub> AND income<sub>medium</sub> AND credit rating<sub>fair</sub> → Class=Yes (14.3%,100%)
1, s, f → Class=Yes: income<sub>low</sub> AND student<sub>ves</sub> AND credit rating<sub>fair</sub> → Class=Yes (14.3%,100%)
h, f → Class=Yes
                        : income<sub>high</sub> AND credit rating<sub>fair</sub> → Class=Yes (14.3%,66.6%)
m. f → Class=Yes
                       : income<sub>medium</sub> AND credit rating<sub>fair</sub> > Class=Yes (14.3%, 66.6%) X
m. e → Class=Yes
                         : income<sub>medium</sub> AND credit rating<sub>excellent</sub> > Class=Yes (14.3%,66.6%)

 f → Class=Yes

                         income<sub>low</sub> AND credit rating<sub>fair</sub> → Class=Yes (14.3%,100%)
                         student<sub>ves</sub> AND credit rating<sub>fair</sub> → Class=Yes (21.4%,75%) X
s, f → Class=Yes
s, e → Class=Yes
                         studentyes AND credit ratingescellent > Class=Yes (14.3%,66.6%)
t. f -> Class=No :
                        student<sub>no</sub> AND credit rating<sub>fair</sub> -> Class=No (14.3%,50%)
t, e → Class=No
                        student<sub>no</sub> AND credit rating<sub>excellent</sub> -> Class=No (14.3%,66.6%)
h. t → Class=No
                        income<sub>high</sub> AND student<sub>no</sub> → Class=No (14.3%,66.6%)
m, s → Class=Yes
                          income<sub>medium</sub> AND student<sub>ves</sub> → Class=Yes (14.3%,100%) X
m. t -> Class=Yes
                          income<sub>modium</sub> AND student<sub>no</sub> → Class=Yes (14.3%,50%)
m, t -> Class=No : income<sub>medium</sub> AND student<sub>no</sub> -> Class=No (14.3%,50%)

 s → Class=Yes

                         income<sub>low</sub> AND student<sub>ves</sub> → Class=Yes (21.4%,75%)
a. f → Class=No
                        age<sub><=30</sub> AND credit rating<sub>fair</sub> → Class=No (14.3%,66.6%) X
b, e → Class=Yes
                        : age<sub>31.40</sub> AND credit rating<sub>excellent</sub> → Class=Yes (14.3%,100%)
c, f → Class=Yes
                         age<sub>>40</sub> AND credit rating<sub>fair</sub> → Class=Yes (21.4%,100%)
c. e → Class=No
                         age<sub>>40</sub> AND credit rating<sub>excellent</sub> → Class=No (14.3%,100%)
a, s → Class=Yes
                         age<sub><=30</sub> AND student<sub>ves</sub> → Class=Yes (14.3%,100%) X
a. t → Class=No
                        age_{<=30} AND student<sub>no</sub> \rightarrow Class=No (14.3%,66.6%)
b, s → Class=Yes
                          age<sub>31..40</sub> AND student<sub>ves</sub> → Class=Yes (14.3%,100%)
b. t → Class=Yes
                          age_{31.40} AND student<sub>no</sub> \rightarrow Class=Yes (14.3%,100%)
c, s → Class=Yes
                         age>40 AND studentyes → Class=Yes (14.3%,66.6%)
```

Step4: Rule Generation

```
a, h \rightarrow Class=No : age<sub><=30</sub> AND income<sub>high</sub> \rightarrow Class=No (14.3%,100%)
b, h \rightarrow Class=Yes : age<sub>31..40</sub> AND income<sub>high</sub> \rightarrow Class=Yes (14.3%,100%)
c, m \rightarrow Class=Yes : age<sub>>40</sub> AND income<sub>medium</sub> \rightarrow Class=Yes (14.3%,66.6%)
a \rightarrow Class=No: age_{=30} \rightarrow Class=No (21.4\%.60\%) X
b → Class=Yes
                   : age<sub>31 40</sub> → Class=Yes (28.6%,100%)
c → Class=Yes
                   : age<sub>>40</sub> → Class=Yes (21.4%,60%)
c → Class=No : age_40 → Class=No (14.3%,40%)
h -> Class=Yes : income<sub>kiek</sub> -> Class=Yes (14.3%,50%
h -> Class=No : income<sub>biob</sub>-> Class=No (14.3%,50%)
m → Class=Yes
                   : income<sub>medium</sub> → Class=Yes (28.6%,66.6%) X
m -> Class=No : income<sub>madium</sub> -> Class=No (14.3%,33.3%)
1 → Class=Yes
                   : income<sub>low</sub> 		 Class=Yes (21.4%,75%)
s → Class=Yes : student<sub>ves</sub> → Class=Yes (42.8%,85.7%) X
 → Class=Yes : student<sub>se</sub> → Class=Yes (21.4%,42.8%)
t- Class-No : student - Class-No (28.6%, 57.1%)
f → Class=Yes : credit rating<sub>fair</sub> → Class=Yes (42.8%,75%) X
f -> Class=No : credit rating<sub>fin</sub> -> Class=No (14.3%, 25%)
e - Class=Yes : credit rating_mollows - Class=Yes (21.4%,50%)
e > Class=No : credit rating___ollows > Class=No (21,4%,50%)
```

TEST DATA

```
X = (age <= 30,
Income = medium,
Student = yes
Credit_rating = Fair)
```

Step5: Apply Rules on Test Data here, following\ 9 are applicable

```
age_{\leq 30} AND student<sub>ves</sub> \rightarrow Class=Yes (14.3%, 100%)
income<sub>medium</sub> AND student<sub>ves</sub> → Class=Yes (14.3%,100%)
student<sub>ves</sub> -> Class=Yes (42.8%,85.7%)
student<sub>ves</sub> AND credit rating<sub>fair</sub> \rightarrow Class=Yes (21.4%,75%)
credit rating<sub>fair</sub> → Class=Yes (42.8%,75%)
income_{medium} \rightarrow Class=Yes (28.6\%,66.6\%)
age_{\leq 30} AND credit rating<sub>fair</sub> \rightarrow Class=No (14.3%,66.6%)
income<sub>medium</sub> AND credit rating<sub>fair</sub> → Class=Yes (14.3%,66.6%)
age_{<=30} \rightarrow Class=No (21.4\%,60\%)
```

Step6: Decision is based on Rule Voting

The highest confident rules predicts Class=Yes.

We would in that case predict Buys_computer = yes

In a vote case:

There are 7 rules predicting Class=Yes with combined confidence = 81.27%

There are 2 rules predicting Class=No with combined confidence = 63.3%

We would in that case predict Buys_computer = yes

