Circuiti Combinatori

Programma delle prossime lezioni

Funzioni booleane

Algebra di Boole

Semplificazione logica

Notazione

Dominio

▶ L'insieme contiene solo due elementi: B = {0, 1}

Variabili

Useremo variabili per denotare gli elementi, indicate con le lettere x, y, z, oppure anche a, b, c, ...

Per le funzioni indicheremo

- $f(x_1, ..., x_n) : B^n \to B$
- ▶ Funzione scalare di n variabili
- Ogni variabile prende valore 0 / 1, risultato vale solo 0 / 1

Funzioni vettoriali

- $F(x_1, ..., x_n) : B^n \to B^m$
- ▶ Le tratteremo come *m* funzioni indipendenti di *n* variabili ciascuna

Operatori

Circuito

- Rappresentano i connettivi logici fondamentali
- ▶ AND $(x, y) : B^2 \rightarrow B$
 - ▶ Indicato come: $x \cdot y$, xy
 - ► Il risultato di AND vale 1 se e solo se entrambe le variabili assumono il valore 1
 - Chiamata anche congiunzione, intersezione, greatest lower bound
- - ▶ Indicato come: x + y
 - ► Il risultato di OR vale 1 se e solo se almeno una delle due variabili assume il valore 1
 - Chiamata anche disgiunzione, unione, least upper bound
- - ▶ Indicato come: \overline{x} x' $\sim x$
 - ▶ Il risultato di NOT vale 1 se x vale 0, e vale 0 se x vale 1
 - ▶ Chiamata anche complementazione o negazione

Tabella della verità

- Funzione definita enumerando i valori che essa assume in corrispondenza a ciascuna combinazione di ingressi
 - Invece di un "grafico" rappresentiamo la funzione tramite una tabella, detta tabella della verità della funzione

х	У	AND
0	0	0
0	1	0
1	0	0
1	1	1

х	У	OR
0	0	0
0	1	1
1	0	1
1	1	1

х	NOT
0	1
1	0

Altri esempi

Confronto

• f(x, y) vale 1 solo se x = y

х	У	Conf
0	0	1
0	1	0
1	0	0
1	1	1

Confronto multiplo

► f(a, b, c) vale 1 solo se a = be $b \neq c$

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Altri operatori a 2 variabili

NAND

$$(x \bullet y)'$$

NOR

$$(x + y)'$$

х	У	NAND	NOR	XOR	XNOR
0	0	1	1	0	1
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	0	0	1

► EXOR – EXNOR

$$\rightarrow x \oplus y = xy' + x'y$$

$$(x \bigoplus y)' = x'y' + xy$$

Dominio delle funzioni

- Il numero delle possibili combinazioni dei valori delle variabili è finito
 - ▶ Con n variabili e 2 soli valori (0 e 1) sono possibili solo 2ⁿ diverse combinazioni
- Esempio

```
 B^2 = \{ (0,0), (0,1), (1,0), (1,1) \}
```

▶
$$B^3 = \{ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) \}$$

Dimensione delle tabelle

Esempi: *n* è il numero degli ingressi

▶
$$n = 4$$
 $2^{4-3} = 2^1$ = 2 byte
▶ $n = 8$ $2^{8-3} = 2^5$ = 32 byte
▶ $n = 16$ $2^{16-3} = 2^{13}$ = 8 kbyte
▶ $n = 32$ $2^{32-3} = 2^{29}$ = 512 Mbyte
▶ $n = 36$ $2^{36-3} = 2^{33}$ = 8 Gbyte

Tabelle quindi difficilmente manipolabili

- ► Funzioni di decine di variabili sono normali (un sommatore a 16 bit ha 32 + 1 ingressi)
- Occorre trovare una rappresentazione delle funzioni molto più compatta

Espressioni

 Una funzione può essere anche rappresentata come un'espressione facente uso degli operatori già definiti

- f(a, b, c) = ab + b'c
- Utilizziamo gli operatori AND, OR e NOT
- ▶ Convenzionalmente diamo precedenza alle operazione AND rispetto alla OR

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Circuito

- L'espressione può essere realizzata combinando i circuiti delle porte logiche
 - f(a, b, c) = ab + b'c

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f(a, b, c) = a'(b(a + c)' + b'(a + c'))$$

Operatore più esterno (l'ultimo)

- $f(a, b, c) = a' \cdot (...)$
- Porta AND

Operatore successivo

- $f(a, b, c) = a' \cdot (... + ...)$
- Porta OR

Successivo ancora

- $f(a, b, c) = a' \cdot (b \cdot (...)' + b' \cdot (...))$
- Due porte AND
- Complementazioni

Infine

- f(a, b, c) = a' (b(a + c)' + b'(a + c'))
- Due porte OR

Esempio: dal circuito all'espressione

Considerate il circuito a destra

 Attenzione che è un po' diverso da prima

Partendo dall'uscita

- $f(a, b, c) = a' \cdot (...)$
- $f(a, b, c) = a' \cdot (... + ...)$
- $f(a, b, c) = a' \cdot (b \cdot (...) + (...) \cdot b')$
- f(a, b, c) = a'(b(a + c') + (a + c')b')

Espressioni

- Diverse espressioni possono rappresentare la medesima funzione
 - Per l'esempio precedente:
 - f(a, b, c) = ab + b'c
 - f(a, b, c) = a'b'c + ab'c + abc' + abc
 - Verificate che le due espressioni abbiano la stessa tabella
- La dimensione delle espressioni è meno influenzata dal numero di variabili
 - L'espressione dipende da cosa la funzione calcola, non dal numero di variabili
 - Difficile determinare una dimensione a priori

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Uso delle funzioni logiche

- Possiamo usare una funzione logica per esprimere le finalità di un sistema
- Esempio
 - ▶ Abbassare le tende se c'è il sole o se si preme un comando
 - A meno che non ci sia troppo vento

Variabili

- ▶ **sole**: 0 se non c'è, 1 se c'è
- comando: 0 non attivo, 1 attivo
- vento: 0 non c'è vento, 1 c'è troppo vento
- ▶ tende: 0 alzate, 1 abbassate

Tabella della verità

sole	comando	vento	tende
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Abbassa solo se non c'è vento, e solo se c'è il sole oppure se è stato dato il comando

Funzione corrispondente

- Se c'è il vento, le tende devono stare alzate (tende = 0), quindi occorre mettere il complemento di vento a fattore con AND
 - ▶ tende = vento' · ...
- Le tende devono essere abbassate (tende = 1) se c'è il sole (sole = 1) oppure (inclusivo) se viene dato il comando (comando = 1)
 - ▶ tende = ... · (sole + comando)
- Complessivamente
 - tende = vento' · (sole + comando)

Esempio di progetto

Realizzazione di spia della cintura di sicurezza

- ▶ Si realizzi un dispositivo per automobili che accenda una spia qualora l'automobile sia accesa e la cintura di sicurezza non sia allacciata
- Derivare la funzione logica che rappresenta la specifica
- ▶ Dalla funzione, disegnare il circuito corrispondente

Esempio di progetto

Realizzazione di spia della cintura di sicurezza

- Si realizzi un dispositivo per automobili che accenda una spia qualora l'automobile sia accesa e la cintura di sicurezza non sia allacciata
- ▶ Variabili del circuito
 - spia (uscita): 0 spenta, 1 accesa
 - quadro (ingresso): 0 spento, 1 acceso
 - cintura (ingresso): 0 slacciata, 1 allacciata
- spia = quadro cintura'

Take away

- Ogni sistema segue una certa logica di funzionamento
- Possiamo esprimere tale logica tramite delle funzioni booleane
- Le funzioni possono essere rappresentate da delle espressioni dalle quali è facile ricavare un circuito

Obiettivo: manipolare funzioni complesse e gestire il funzionamento di una rete nel tempo

Algebra di Boole

21 Reti Logiche

Come manipolo le espressioni?

Manipolazioni algebriche

- Le espressioni possono essere manipolate grazie alle proprietà delle operazioni fondamentali
 - Ogni proprietà esprime una equivalenza: due espressioni sono equivalenti se rappresentano la medesima funzione
 - Usiamo le proprietà per derivare una nuova espressione equivalente a quella data
- Esempio: Idempotenza
 - $\rightarrow x + x = x$
 - \rightarrow $X \bullet X = X$
- Come si dimostra?
 - Basta provare tutte le combinazioni di ingresso (induzione completa)
 - In altre parole, si confronta la tabella della verità dell'espressione a sinistra con quella dell'espressione a destra
 - Se sono uguali allora le espressioni sono equivalenti

Assiomi dell'algebra booleana

Identità

- x + 0 = x
- $\rightarrow y \cdot 1 = y$

Commutativa

- \rightarrow x + y = y + x
- $\rightarrow x \cdot y = y \cdot x$

Distributiva

Complementazione

Teoremi dell'algebra booleana

Proprietà associativa

- > x + (y + z) = (x + y) + z
- Questa proprietà ci permette di definire in maniera univoca le operazioni AND ed OR di più di 2 variabili
- Analogamente si hanno porte logiche a più ingressi

Teoremi dell'algebra booleana

Legge dell'elemento nullo

$$x + 1 = 1$$

$$\rightarrow$$
 $x \bullet 0 = 0$

Involuzione

$$(x')' = x$$

Idempotenza

$$\rightarrow$$
 $x + x = x$

$$\rightarrow$$
 $x \bullet x = x$

Assorbimento

$$\rightarrow$$
 $x + xy = x$

Dimostrazione

$$x + xy = x1 + xy = x(1 + y) = x1 = x$$

Semplificazione

Adiacenza

$$(x + y)(x + y') = x$$

Teoremi dell'algebra booleana

Legge di De Morgan

- $(x+y)'=x'\bullet y' (x'+y')'=x\bullet y$
- $(x \bullet y)' = x' + y' \qquad (x' \bullet y')' = x + y$

Manipolare espressioni

- Le proprietà ci consentono di ridurre la dimensione delle espressioni, e quindi dei circuiti
- Ma come trovo una prima espressione se ho solo una tabella della verità?

Semplifico il problema

а	b	С	f(a, b, c)	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	0	
1	1	1	1	

а	b	С	f(0, b, c)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0

а	b	С	f(1, b, c)
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$f(0, b, c) = b' + c'$$
 $f(1, b, c) = c$

$$f(1, b, c) = c$$

Come ricombinarle?

Aggiungo condizione

а	b	С	f(a, b, c)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

а	b	С	f(a, b, c)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

а	b	С	f(a, b, c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Spezzo in 2

$$a'(b'+c')$$

ac

$$f(a, b, c) = ac + a'(b' + c')$$

Teorema di espansione di Shannon

▶ Sia *f* una funzione di *n* variabili. Allora

$$f(x_1, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + x'_1 \cdot f(0, x_2, ..., x_n)$$

- La variabile x₁ seleziona una delle due forme della funzione
 - ▶ Quella in cui si sostituisce 1 quando $x_1 = 1$
 - Quella in cui si sostituisce 0 quando $x_1 = 0$
- Riduzione delle variabili
 - Notare come $f(1, x_2, ..., x_n)$ e $f(0, x_2, ..., x_n)$ non dipendano più da x_1

Esempio

Sia f(a, b, c) = a'(b' + c') + c(a + b')

```
▶ f(a, b, c) = a \cdot f(1, b, c) + a' \cdot f(0, b, c)

= a \cdot [1'(b' + c') + c(1 + b')] + a' \cdot [0'(b' + c') + c(0 + b')]

= a \cdot [0(b' + c') + c(1)] + a' \cdot [1(b' + c') + c(b')]

= a \cdot [c] + a' \cdot [(b' + c') + cb']

= a \cdot [c] + a' \cdot [b' + c' + cb']

= ac + a'(b' + c' + cb')
```

Si noti

►
$$f(1, b, c) = c$$

 $f(0, b, c) = b' + c' + cb'$

Applicazione ricorsiva

Le funzioni $f(1, x_2, ..., x_n)$ e $f(0, x_2, ..., x_n)$ possono a loro volta essere espanse sulla variabile x_2

```
f(x_1, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + x'_1 \cdot f(0, x_2, ..., x_n)
f(x_1, ..., x_n) = x_1 \cdot [x_2 \cdot f(1, 1, x_3, ..., x_n) + x'_2 \cdot f(1, 0, x_3, ..., x_n)] + x'_1 \cdot [x_2 \cdot f(0, 1, x_3, ..., x_n) + x'_2 \cdot f(0, 0, x_3, ..., x_n)]
f(x_1, ..., x_n) = x_1 \cdot [x_2 \cdot f(1, 1, x_3, ..., x_n) + x'_2 \cdot f(0, 0, x_3, ..., x_n)] + x'_1 \cdot [x_1 \cdot f(1, 1, x_3, ..., x_n) + x'_1 \cdot f(1, 1, x_3, ..., x_n)] + x'_1 \cdot f(1, 1, x_3, ..., x_n) + x'_1 \cdot f(1, 1, x_3, ..., x_n)]
```

 $+x_1'x_2'$ • $f(0,0,x_2,...,x_n)$

Osservare la struttura

 Un prodotto di variabili moltiplica la funzione valutata sulle variabili che assumono valore 1 se in forma affermata, e 0 se in forma negata

Espansione completa

La funzione f valutata in un punto è un preciso valore (0 o 1), che possiamo ottenere dalla tabella della verità

Espandendo su tutte le variabili

▶
$$f(x_1, ..., x_n) = x_1 x_2 x_3 \cdot \cdot \cdot x_{n-1} x_n \cdot f(1, 1, 1, ..., 1, 1) + x_1 x_2 x_3 \cdot \cdot \cdot x_{n-1} x'_n \cdot f(1, 1, 1, ..., 1, 0) + x_1 x_2 x_3 \cdot \cdot \cdot x'_{n-1} x_n \cdot f(1, 1, 1, ..., 0, 1) + x_1 x_2 x_3 \cdot \cdot \cdot x'_{n-1} x'_n \cdot f(1, 1, 1, ..., 0, 0) - \dots + x'_1 x_2 x_3 \cdot \cdot \cdot x_{n-1} x_n \cdot f(0, 1, 1, ..., 1, 1) + x'_1 x_2 x_3 \cdot \cdot \cdot x_{n-1} x'_n \cdot f(0, 1, 1, ..., 1, 0) + \dots + x'_1 x'_2 x'_3 \cdot \cdot \cdot x_{n-1} x'_n \cdot f(0, 0, 0, ..., 1, 1) + x'_1 x'_2 x'_3 \cdot \cdot \cdot x_{n-1} x'_n \cdot f(0, 0, 0, ..., 1, 0) + x'_1 x'_2 x'_3 \cdot \cdot \cdot x'_{n-1} x'_n \cdot f(0, 0, 0, ..., 1, 0) + x'_1 x'_2 x'_3 \cdot \cdot \cdot x'_{n-1} x'_n \cdot f(0, 0, 0, ..., 0, 1) + x'_1 x'_2 x'_3 \cdot \cdot \cdot x'_{n-1} x'_n \cdot f(0, 0, 0, ..., 0, 1) + x'_1 x'_2 x'_3 \cdot \cdot \cdot x'_{n-1} x'_n \cdot f(0, 0, 0, ..., 0, 1) + x'_1 x'_2 x'_3 \cdot \cdot \cdot x'_{n-1} x'_n \cdot f(0, 0, 0, ..., 0, 1) + x'_1 x'_2 x'_3 \cdot \cdot \cdot x'_{n-1} x'_n \cdot f(0, 0, 0, ..., 0, 1) + x'_1 x'_2 x'_3 \cdot \cdot \cdot x'_{n-1} x'_n \cdot f(0, 0, 0, ..., 0, 0, ..., 0, 1) + x'_1 x'_2 x'_3 \cdot \cdot \cdot x'_{n-1} x'_n \cdot f(0, 0, 0, ..., 0, 0$$

e solo se la funzione in quel punto vale 1

Espansione completa

Espandendo su tutte le variabili

▶
$$f(x_1, ..., x_n) = x_1 x_2 x_3 \cdot ... \cdot x_{n-1} x_n \cdot f(1, 1, 1, ..., 1, 1) +$$

$$+ x_1 x_2 x_3 \cdot ... \cdot x_{n-1} x_n \cdot f(1, 1, 1, ..., 1, 0) +$$

$$+ x_1 x_2 x_3 \cdot ... \cdot x_{n-1} x_n \cdot f(1, 1, 1, ..., 0, 1) +$$

$$+ x_1 x_2 x_3 \cdot ... \cdot x_{n-1} x_n \cdot f(1, 1, 1, ..., 0, 0) +$$
...
$$+ x_1' x_2 x_3 \cdot ... \cdot x_{n-1} x_n \cdot f(0, 1, 1, ..., 1, 1) +$$

$$+ x_1' x_2 x_3 \cdot ... \cdot x_{n-1} x_n \cdot f(0, 1, 1, ..., 1, 0) +$$
...
$$+ x_1' x_2' x_3' \cdot ... \cdot x_{n-1} x_n \cdot f(0, 0, 0, ..., 1, 1) +$$

$$+ x_1' x_2' x_3' \cdot ... \cdot x_{n-1} x_n \cdot f(0, 0, 0, ..., 1, 0) +$$

Si può dunque scrivere l'espansione completa di Shannon partendo dalla tabella della verità e guardando solo le righe dove la funzione vale 1

- Per ogni 1 si guarda il valore di tutte le variabili per quella riga
- Se alla variabile è assegnato 1 compare in forma affermata nel prodotto
- Se alla variabile è assegnato 0 compare in forma negata nel prodotto

Esempio

f(a, b, c) = a'(b' + c') + c(a + b')

▶
$$f(a, b, c) = a'b'c' \cdot f(0, 0, 0) + a'b'c \cdot f(0, 0, 1) + a'bc' \cdot f(0, 1, 0) + a'bc \cdot f(0, 1, 1) + ab'c' \cdot f(1, 0, 0) + ab'c \cdot f(1, 0, 1) + abc' \cdot f(1, 1, 0) + abc' \cdot f(1, 1, 0) + abc \cdot f(1, 1, 1)$$

а	b	С	f(a, b, c)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

•
$$f(a, b, c) = a'b'c' + a'b'c + a'bc' + ab'c + abc$$

Forme canoniche

- L'espansione completa di una funzione è un'espressione univoca
 - Perché i termini dell'espressione derivano dalla tabella della verità
- Due funzioni uguali hanno quindi la stessa espansione completa
- L'espansione completa è quindi detta forma canonica
 - In forma canonica, due espressioni sono uguali se e solo se le corrispondenti funzioni sono uguali
 - Non vale per espressioni normali: funzioni uguali possono essere in generale rappresentate da espressioni diverse
 - ... ma hanno la stessa forma canonica

Conseguenze

- Qualunque funzione booleana può essere espressa tramite gli operatori logici di base
 - Basta esprimerla in forma canonica!
 - ▶ Risultato non ovvio: non vale, per esempio, in analisi
- Bastano in realtà due soli operatori
 - Per il teorema di De Morgan
 - ▶ x + y = (x' y')' (OR espressa con sole AND e NOT)
 - $x \cdot y = (x' + y')'$ (AND espressa con sole OR e NOT)
 - Uno degli operatori di base è superfluo!

Seconda forma canonica

Il teorema di Shannon vale anche in forma duale

$$f(x_1, ..., x_n) = (x_1 + f(0, x_2, ..., x_n)) \cdot (x'_1 + f(1, x_2, ..., x_n))$$

Espandendo su tutte le variabili

$$f(x_{1}, ..., x_{n}) = (x_{1} + x_{2} + \cdots + x_{n} + f(0, 0, ..., 0)) \cdot (x_{1} + x_{2} + \cdots + x'_{n} + f(0, 0, ..., 1)) \cdot ... \cdot (x'_{1} + x'_{2} + \cdots + x_{n} + f(1, 1, ..., 0)) \cdot (x'_{1} + x'_{2} + \cdots + x'_{n} + f(1, 1, ..., 1))$$

Dualità

- ▶ In ogni termine, una variabile compare affermata se valutata in 0, negata se valutata in 1
- Il termine viene eliminato se la funzione vale 1
- Partendo dalla tabella, si scelgono le righe in cui la funzione vale 0

Esempio

f(a, b, c) = a'(b' + c') + c(a + b')

►
$$f(a, b, c) = \frac{(a + b + c + f(0, 0, 0))}{(a + b + c' + f(0, 0, 1))}$$

• $\frac{(a + b' + c + f(0, 1, 0))}{(a + b' + c' + f(0, 1, 1))}$
• $\frac{(a + b' + c' + f(1, 0, 0))}{(a' + b + c' + f(1, 0, 1))}$
• $\frac{(a' + b + c' + f(1, 1, 0))}{(a' + b' + c' + f(1, 1, 1))}$

а	b	С	f(a, b, c)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

•
$$f(a, b, c) = (a + b' + c')$$
 • $(a' + b + c)$ • $(a' + b' + c)$

SOP e POS

La prima forma canonica è anche detta somma di prodotti

- O, in Inglese, Sum Of Products (SOP)
- ▶ E' una grossa somma, in cui ogni termine è un prodotto di variabili affermate o negate
- f(a, b, c) = a'b'c' + a'b'c + a'bc' + ab'c + abc

La seconda forma canonica è anche detta prodotto di somme

- O, in Inglese, Product Of Sums (POS)
- ▶ E' un grosso prodotto, in cui ogni termine è una somma di variabili affermate o negate
- f(a, b, c) = (a + b' + c') (a' + b + c) (a' + b' + c)

Sintesi a due livelli

Come rendere la manipolazione sistematica

I livelli

Livello: massimo numero di porte logiche attraversate dall'ingresso all'uscita

$$f(a, b, c) = ab + b'c$$

$$f(a, b, c) = a'(b(a + c') + (a + c')b')$$

Sintesi a due livelli

Ci limiteremo a mano a realizzazioni a due livelli

- Teoricamente semplice da ottenere
- ▶ In prima analisi, è anche il circuito più veloce
- Talvolta però di grosse dimensioni (e.g., addizionatore)
- Alla base dei metodi per realizzazioni multi-livello

Un'espressione a due livelli deve essere

- O una somma di prodotti (primo livello tutto di AND seguito da una OR)
- Oppure un prodotto di somme (primo livello tutto di OR seguito da una AND)
- (per la proprietà associativa)

Terminologia

Letterali

- Un letterale è una variabile in forma affermata o in forma negata
- ▶ Esempi: x x' y' b a'
- La funzione f(a, b, c) = a'b'c' + a'b'c + a'bc' + ab'c + abc ha 3 variabili e 15 letterali
- La funzione f(a, b, c) = a'b' + a'c' + ac ha 3 variabili e 6 letterali
- Misureremo la complessità di un'espressione dal suo numero di letterali
 - Ogni letterale diventa l'ingresso di una porta logica
 - Quindi il numero di letterali è correlato con il numero di transistori del circuito

Terminologia

Prodotto fondamentale (minterm)

- Un prodotto in cui ogni variabile compare una volta come letterale
- ▶ a'b'c' a'b'c a'bc' ab'c abc

Somma fondamentale (maxterm)

- Una somma in cui ogni variabile compare una volta come letterale
- (a+b'+c) (a'+b+c') (a'+b'+c) (a+b+c)

Le forme canoniche fanno uso di minterm e maxterm

- ► I minterm di una funzione corrispondono agli 1 della sua tabella della verità
- ▶ I maxterm di una funzione corrispondono agli 0 della sua tabella della verità

Implicanti

- Siano f e g funzioni di n variabili
- Si definisce g un implicante di f se e solo se, per qualunque assegnamento $(x_1, ..., x_n)$ alle variabili
 - Se $g(x_1, ..., x_n) = 1$, allora $f(x_1, ..., x_n) = 1$
 - Quando g è un implicante di f, se g vale 1 in qualche punto, allora anche f vale 1, ma se g vale 0, allora f può essere indifferentemente 0 o 1

Esempio:

- Le funzioni g(x, y, z) = xy g(x, y, z) = z g(x, y, z) = y'z sono implicanti di f
- ▶ La funzione g(x, y, z) = x non è un implicante

Esempio

x	у	z	f(x, y, z)	ху	Z	y′z	Х
0	0	0	0	0	0	0	0
0	0	1	1	0	1	1	0
0	1	0	0	0	0	0	0
0	1	1	1	0	1	0	0
1	0	0	0	0	0	0	— ①
1	0	1	1	0	1	1	
1	1	0	1	1	0	0	1
1	1	1	1	1	1	0	1

- Ogni implicante copre una parte della funzione
- Abbiamo fatto a pezzi la funzione f(x, y, z) = xy + z
 - f(x, y, z) = y'z + z + xy

Implicanti come mattoni

- Un implicante rappresenta un "pezzo" di una funzione
 - L'implicante può essere usato per rappresentare parte, ma non necessariamente tutti gli 1 di una funzione
 - Vari implicanti possono essere usati per rappresentare differenti pezzi di una funzione
 - I vari pezzi possono anche sovrapporsi
 - La funzione è data dall'OR di appropriati implicanti

Come trovare gli implicanti?

Partiamo dai minterm

- Dopo tutto i minterm sono implicanti!
- Ognuno copre però soltanto un 1 della funzione

Cerchiamo di espanderli

- Usiamo le proprietà dell'algebra Booleana
- Mettiamo assieme dei minterm in modo da formare termini più grossi (con meno letterali)
- Ci limitiamo ad implicanti in forma di prodotto di letterali
 - *ab*′ : ok
 - $\rightarrow ab' + a'b$: non ok

Esempio: il multiplexer 2 a 1

- Si progetti un circuito che permetta di scegliere uno tra due segnali a e b tramite un comando s
 - Quando s = 0, si deve scegliere a
 - Quando s = 1, si deve scegliere b
- Scriviamo la prima forma canonica
 - \rightarrow m = s'ab' + s'ab + sa'b + sab
- Applichiamo l'adiacenza logica

 - Supponiamo che x sia un gruppo di letterali, ed y una variabile
 - Sulla mappa corrispondono a righe in cui m = 1 e che differiscono per una sola variabile
 - \rightarrow m = s'ab' + s'ab + sa'b + sab
 - m = s'a + sb
 - Ridotto da 12 a 4 letterali

	5	а	b	m(a,b,s)
	0	0	0	0
L	0	0	1	0
	0	1	0	1
	0	1	1	1
Ι	1	0	0	0
	1	0	1	1
I	1	1	0	0
	1	1	1	1

Circuiti

Reti Logiche

Interpretazione geometrica

- Nella mappa, chiamiamo term un gruppo di 1 di f che non sia un minterm
 - Con un solo colpo prendiamo diversi 1
 - ► E' come scrivere la forma canonica, ma si tralasciano le variabili il cui valore cambia
 - ▶ s'ab' + s'ab diventa s'a
 - Si possono scrivere direttamente!
 - Facili da individuare quando le righe sono una vicina all'altra
 - Meno facile quando sono lontane

Trucco

- Disponiamo le righe in modo che cambi una sola variabile alla volta
- In questo modo termini logicamente adiacenti sono vicini anche fisicamente sulla tabella

Interpretazione geometrica

Modifichiamo l'ordine delle righe

- Invece del codice binario normale si usa il codice Gray
- Tra una riga e la successiva cambia solamente una variabile
- Adesso entrambi i termini sono vicini

Non funziona sempre

- Abbiamo una sola dimensione
- ▶ Un termine risulta ancora spezzato
- Dobbiamo sfruttare dimensioni aggiuntive

La mappa di Karnaugh

La prima colonna è vicina all'ultima!

La mappa di Karnaugh

E questo raggruppamento?

- ▶ Non è esprimibile tramite un solo prodotto
- ▶ E' la somma dei due implicanti precedenti: ab + sb

Take away

Ci limitiamo a fare espressioni a due livelli

- Gli implicanti sono termini prodotto
- Possiamo trovarli per adiacenza logica sull'espressione

Trasformiamo l'adiacenza logica in geometrica

 Occorre mettere vicine nello spazio le righe della tabella che sono logicamente vicine

Raggruppiamo gli 1 in termini

- Mettiamo assieme gli 1 che stanno vicini
- Cerchiamo i raggruppamenti più grossi (hanno meno letterali)

Adiacenze a tre variabili: 2 uni

a \ bc	00	01	11	10
0	1	1	0	0
1	0	0	0	0

a'	b'
•	

n\ /a	00	01	4.4	10
a \ bc	UU	01	11	10
0	0	1	1	0
1	0	0	0	0

a'c

a \ bc	00	01	11	10
0	0	0	1	1
1	0	0	0	0

a'b

a \ bc	00	01	11	10
0	0	0	0	0
1	1	1	0	0

ab'

a \ bc	00	01	11	10
0	0	0	0	0
1	0	1	1	0

ac

a \ bc	00	01	11	10
0	0	0	0	0
1	0	0	1	1

ab

Adiacenze a tre variabili: 2 uni

a \ bc	00	01	11	10
0	1	0	0	1
1	0	0	0	0

a'	c'
u	L

a \ bc	00	01	11	10
0	0	0	0	0
1	1	0	0	1

ac'

a \ bc	00	01	11	10	
0	1	0	0	0	
1	1	0	0	0	

a \ bc	00	01	11	10
0	0	1	0	0
1	0	1	0	0

b'c

a \ bc	00	01	11	10
0	0	0	1	0
1	0	0	1	0

bc

a \ bc	00	01	11	10
0	0	0	0	1
1	0	0	0	1

bc'

Adiacenze a tre variabili: 4 uni

a \ bc	00	01	11	10	
0	1	1	0	0	
1	1	1	0	0	
h'					

a \ bc	00	01	11	10
0	0	1	1	0
1	0	1	1	0

a \ bc	00	01	11	10	
0	0	0	1	1	
1	0	0	1	1	
b					

a \ bc	00	01	11	10
0	1	0	0	1
1	1	0	0	1
		C'		

a \ bc	00	01	11	10
0	1	1	1	1
1	0	0	0	0

a \ bc	00	01	11	10
0	0	0	0	0
1	1	1	1	1

a'

a

Adiacenze a tre variabili: tutti o nessuno

a \ bc	00	01	11	10
0	1	1	1	1
1	1	1	1	1

a \ bc	00	01	11	10
0	0	0	0	0
1	0	0	0	0

Reti Logiche

Esempi di semplificazione

Come scegliamo gli implicanti?

Alcuni implicanti sono primi

- Si dice che un implicante è primo quando non è contenuto in un altro implicante
- Gli implicanti contenuti in altri implicanti si possono buttare via

s\ab	00	01	11	16
0	0	0	1	1
1	0	1	1	0

- ▶ Nel caso del multiplexer i minterm *non* sono primi ($sa'b \rightarrow sb$)
- Alcuni implicanti primi sono ridondanti
 - Per il multiplexer ci sono 3 implicanti primi
 - ▶ s'a sb ab
 - Uno dei tre non serve (ab) perché gli altri da soli già coprono la funzione
- Alcuni implicanti primi sono essenziali
 - Coprono un 1 non coperto da nessun altro implicante primo
 - Devono necessariamente comparire in qualunque copertura minima
 - s'a ed sb sono essenziali

Procedimento

- Obiettivo: trovare il più piccolo insieme di implicanti <u>primi</u> che ricoprano tutta la funzione
 - Primi perché altrimenti ci sarebbero implicanti con meno letterali
 - Insieme più piccolo per ridurre il numero di termini
 - Alcuni implicanti primi potrebbero essere esclusi (ridondanti)
- Si scrive la tabella della verità in forma di mappa di Karnaugh
 - Ricordare che la numerazione segue il codice Gray
- Partendo dai minterm ci si espande per trovare gli implicanti primi
 - Espandersi in tutte le direzioni per trovare le adiacenze
 - Quando non ci si può più espandere si è arrivati all'implicante primo
- Si scrive l'espressione degli implicanti guardando le variabili che sono costanti
 - Basta guardare le cifre scritte sulle righe e colonne della mappa
- Si sceglie un insieme di implicanti non ridondante
 - Prendiamo tutti gli implicanti primi essenziali
 - Si coprono i rimanenti 1 scegliendo un insieme piccolo (cosa non banale)

Esempio

a \ bc	00	01	11	10
0	0	0	1	1
1	0	1	1	1

Implicanti primi

▶ b

- ac
- Entrambi essenziali
- f = b + ac

Nota bene

- ▶ Un 1 è coperto più volte (corrisponde al minterm abc)
- Non è un problema, due porte AND saranno attive
- ▶ Meglio che non usare ab'c
- ▶ La porta AND a 1 ingresso si può togliere e collegare b direttamente alla porta OR

Esempio: scacchiera (odd function)

a \ bc	00	01	11	10
0	0	1	0	1
1	1	0	1	0

I minterm non sono espandibili

- Sono tutti implicanti primi
- Mappa a scacchiera non minimizzabile
- f = ab'c' + a'b'c + abc + a'bc'

Si tratta di una rete di EXOR

▶
$$f = b'(ac' + a'c) + b(ac + a'c')$$

▶
$$f = b'(ac' + a'c) + b(ac' + a'c)' = b'(a \oplus c) + b(a \oplus c)'$$

$$f = b \oplus (a \oplus c) = a \oplus b \oplus c$$

$$(ac + a'c') =$$
 $(ac + a'c')'' =$
 $((ac)' (a'c')')' =$
 $((a' + c') (a'' + c''))' =$
 $((a' + c') (a + c))' =$
 $(a'a + a'c + c'a + cc')' =$
 $(a'c + c'a)' =$
 $(ac' + a'c)'$

Esempio: conta uni

- Si realizzi un circuito con 3 ingressi ed una uscita che indichi quanti ingressi sono a 1
 - Occorre innanzi tutto codificare l'uscita
 - Per esempio la codifichiamo in binario
 - ▶ Vi sono da 0 a 3 possibili ingressi a 1, quindi 4 combinazioni (0, 1, 2 e 3)
 - Sono sufficienti due cifre binarie
- La funzione da realizzare ha 2 uscite
 - Le trattiamo come due funzioni indipendenti
 - Ma i loro valori devono essere tra loro collegati

Tabella della verità

а	b	с	s ₁	s ₀
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Una colonna per ogni uscita

- Sono due funzioni diverse, ma le determiniamo contemporaneamente
- Per la semplificazione le trattiamo separatamente

Mappe di Karnaugh

Due mappe, una per ciascuna uscita

- ▶ Le semplifichiamo separatamente
- $ightharpoonup s_0 = a \oplus b \oplus c$

а	b	c	s ₁	<i>s</i> ₀
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

		31		
a \ bc	00	01	11	10
0	0	0	1	0
1	0	1	1	1

5.

		3 0		
a \ bc	00	01	11	10
0	0		0	1
1	1	0	1	0

C

Circuiti

Due circuiti

- $ightharpoonup s_0 = a \oplus b \oplus c$

 S_1

a \ bc	00	01	11	10
0	0	0	1	0
1	0	1		1

a \ bc	00	01	11	10
0	0	1	0	1
1	1	0	1	0

Esempio: priority encoder

- Come prima, ma questa volta vogliamo sapere l'indice dell'ingresso a 1 con valore più alto
 - ▶ Diamo ad *a* indice 1, a *b* indice 2 e a *c* indice 3
 - Se c = 1, l'uscita deve valere 3
 - ▶ Se c = 0 e b = 1, l'uscita deve valere 2
 - Se c = 0, b = 0 e a = 1, l'uscita deve valere 1
 - Se sono tutti a 0, l'uscita vale 0
- Utile per esempio per codificare le priorità degli interrupt
 - Ci serve l'indice dell'interrupt attivo a priorità più alta

Tabella e mappe

Semplificando

$$> s_0 = ab' + c$$

5	1
	1

a \ bc	00	01	11	10
0	0	1	1	1
1	0	1	1	1

а	b	С	s ₁	s ₀
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

 S_0

a \ bc	00	01	11	10
0	0	1	1	0
1	1	1	1	0

Lieve modifica ad s_0

Scambiamo le ultime due righe

- \blacktriangleright Per s_0 ora la scelta è più complessa
- ▶ Gli implicanti a'c e ac' sono essenziali, quindi ci vogliono per forza
- Il restante 1 si può coprire in due modi

а	b	С	s ₁	s ₀
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

	1			
a \ bc	00	01	11	10
0	0	1	1	1
1	0	1	1	1

 S_1

Circuito

Take away

- Avete visto come semplificare una funzione di 3 variabili
 - Procedimento piuttosto semplice
 - Attenzione solo alla scelta degli implicanti
 - Con un po' di pratica si fa molto in fretta
- Se ci sono più uscite le si trattano separatamente
 - Ma la funzione vettoriale deve essere progettata nel suo complesso
 - Si potrebbe fare la minimizzazione congiunta
- Facile costruire blocchetti di uso generico
 - Multiplexer
 - Conta uni
 - Priority encoder

Mappe a 4 e più variabili

- Le mappe di Karnaugh si possono scrivere anche a 4 e più ingressi
 - Diventano più grosse
 - Trovare le adiacenze diventa un poco più complesso, soprattutto sopra le 5 variabili
- Il procedimento rimane comunque sempre lo stesso
 - Trovare gli implicanti primi
 - Tenere gli essenziali
 - Scegliere tra gli altri in modo da coprire la funzione

Mappe a 4 variabili

- I minterm saranno ora espressioni di 4 letterali
 - ▶ ab'cd' a'bcd abc'd' abcd
- Gruppi di due 1 saranno termini a 3 letterali
 - ▶ ab'd' a'cd bc'd' abc
- Gruppi di quattro 1 saranno termini a 2 letterali
 - b'd' a'c c'd' ab
- Gruppi di otto 1 saranno termini a 1 letterale
 - ▶ b'
 c
 d'
 a
- La mappa adesso diventa quadrata
 - Aggiungiamo una variabile alle righe e numeriamo sempre secondo il codice Gray

Adiacenze a 4 variabili: 4 uni

ab \ cd	00	01	11	10
00	1	1	0	0
01	0	0	0	0
11	0	0	0	0
10	1	1	0	0

b'c'

ab \ cd	00	01	11	10
00	0	0	0	0
01	1	1	0	0
11	1	1	0	0
10	0	0	0	0

bc'

ab \ cd	00	01	11	10
00	0	0	0	0
01	0	1	1	0
11	0	1	1	0
10	0	0	0	0

bd

ab \ cd	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	1	1
10	0	0	1	1

ac

Adiacenze a 4 variabili: 4 uni

ab \ cd	00	01	11	10
00	1	1	1	1
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

a'b'

ab \ cd	00	01	11	10
00	0	1	0	0
01	0	1	0	0
11	0	1	0	0
10	0	1	0	0

c'd

ab \ cd	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	0	0

ab

ab \ cd	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	0	0	0
10	1	0	0	1

b'd'

Adiacenze a 4 variabili: 8 uni

ab \ cd	00	01	11	10	
00	1	1	1	1	
01	1	1	1	1	
11	0	0	0	0	
10	0	0	0	0	
a'					

ab \ cd	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

d

o\cd	00	01	11	10
00	1	1	1	1
01	0	0	0	0
11	0	0	0	0
10	1	1	1	1
	0	0	0	0

ab \ cd	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

b'

Esempio

xy/zw	00	01	11	10
00	1	0	1	1
01	0	1	1	0
11	0	1	1	0
10		1	1	1

zw xw yw y'w' xy' y'z

Identifichiamo gli implicanti primi

- Ci sono 6 implicanti primi, tutti da quattro uni
- Ci sono molti implicanti da 2 uni, ma nessuno di essi è primo
- Non ci sono implicanti da 8 uni

Troviamo quelli essenziali

▶ y'w' e yw sono essenziali

Me ne servono poi almeno altri due

- ▶ Uno tra xy' e xw
- ▶ Uno tra zw e y'z

Per esempio

- f = y'w' + yw + xw + zw
- $f = (y \oplus w)' + w(x + z)$

Da NON fare

xy/zw	00	01	11	10
00	1	0	1	1
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

- Metto implicanti NON primi
- Per esempio
 - f = y'w' + yw + xy'w + x'y'zw
- Soluzione più costosa!!
 - xy'w è contenuto in xw o in xy'
 - x'y'zw è contenuto in zw o in y'z
 - Usate quello con meno letterali!!
 - Non importa se si coprono degli 1 più volte

Esempio

xy/zw	00	01	11	10
00	1	0	1	0
01	1	1	1	1
11	0	1	0	0
10	1	1	0	0

xz'w yz'w x'zw x'y y'z'w' xy'z'

Identifichiamo gli implicanti primi

- Ci sono 6 implicanti primi da due uni
- C'è un implicante da 4 uni

Troviamo quelli essenziali

- ▶ x'zw e x'y sono essenziali
- Come copro i restanti uni?
 - Posso usarne 3
 - Oppure solo 2

Ottengo

f = x'zw + x'y + xz'w + y'z'w'

Due possibili insiemi non ridondanti

- Uno è più piccolo dell'altro
- Un metodo è cercare di minimizzare le sovrapposizioni

Uso delle "porte" logiche

Insiemi di operatori completi

- L'algebra di Boole è definita dai tre operatori base
 - ▶ AND, OR e NOT
 - Con essi, per il teorema di Shannon, è possibile rappresentare tutte le funzioni booleane
- Gli esempi precedenti mostrano che altri insiemi di operatori possono essere usati per definire l'algebra
 - ▶ AND, NOT
 - ▶ OR, NOT
 - NAND
 - ▶ NOR
 - > XOR, AND
 - ▶ XOR, OR
- Si dicono insiemi di operatori completi
 - Gli insiemi di operatori completi sono sufficienti per realizzare tutte le funzioni logiche