

(Группа)

Преподаватель

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T y \text{ им. H. Э. Баумана})$

ФАКУЛЬТ	TET	Фундаментальные науки		
КАФЕДРА	Прикладная математика			
	Лабора	торная работа №4		
τ	Нисленное ре	шение краевых задач для		
	-	о уравнения Пуассона		
Стуленты	ФН2-62Б	З.И. Абрамов, Г.А. Швенов		

(И.О. Фамилия)

С.А. Конев

(И.О. Фамилия)

Оглавление

1. Контрольные вопросы	3
2. Дополнительные вопросы	5
3. Результаты	8
Список использованных источников	11

1. Контрольные вопросы

1. Оцените число действий, необходимое для перехода на следующий слой по времени методом переменных направлений.

Выпишем первые этапы метода переменных направлений в случае граничных условий I рода:

$$F(y) = \frac{2}{\tau}y + \Lambda_2 y + \varphi, \quad F_{ij}^k = F(y_{ij}^k),$$

$$\frac{1}{h_1^2} y_{i-1,j}^{k+1/2} - 2\left(\frac{1}{h_1^2} + \frac{1}{\tau}\right) y_{ij}^{k+1/2} + \frac{1}{h_1^2} y_{i+1,j}^{k+1/2} = -F_{ij}^k,$$

$$u_{0,j} = \Omega_{0,j}, \quad u_{N_1,j} = \Omega_{N_1,j}, \quad j = 1, 2, \dots, N_2 - 1.$$

Для вычисления F_{ij}^k требуется порядка $3N_1N_2$ умножений. 2 и 3 строки представляет собой N_2-1 трехдиагональных СЛАУ размерности N_1-1 . Для их решения требуется примерно $5N_1N_2$ операций. Такой же порядок операций получается и для остальных этапов:

$$\hat{F}(y) = \frac{2}{\tau}y + \Lambda_1 y + \varphi, \quad \hat{F}_{ij}^{k+1/2} = \hat{F}(y_{ij}^{k+1/2}),$$

$$\frac{1}{h_2^2} y_{i,j-1}^{k+1} - 2\left(\frac{1}{h_2^2} + \frac{1}{\tau}\right) y_{ij}^{k+1} + \frac{1}{h_2^2} y_{i,j+1}^{k+1} = -\hat{F}_{ij}^{k+1/2},$$

$$u_{i,0} = \Omega_{i,0}, \quad u_{i,N_2} = \Omega_{i,N_2}, \quad i = 1, 2, \dots, N_1 - 1.$$

Таким образом, для перехода на следующий слой по времени требуется порядка $16N_1N_2$ операций.

- 2. Почему при увеличении числа измерений резко возрастает количество операций для решения неявных схем (по сравнению с одномерной схемой)?
 - При повышении размерности увеличивается размерность F, т.е. увеличивается количество операций, причем во столько раз, сколько узлов N_n по добавленной размерности, а также количество таких элементов F. Также увеличивается сложность прогонки в такое же количество раз. Таким образом, количество операций составляет $O(N_1 \dots N_n)$, где n— размерность пространства, что резко увеличивает сложность перехода к новому временному слою, N_i количество узлов по каждой координатной оси.
- 3. Можно ли использовать метод переменных направлений в областях произвольной формы?

Да, метод переменных направлений достаточно просто использовать в случае области произвольного вида. Основное отличие от прямоугольной области будет состоять в том, что при решении СЛАУ для $y_{ij}^{k+1/2}$ диапазон изменения

индекса i будет не константным, а зависеть от j. Также при нахождении y_{ij}^{k+1} диапазон j будет зависеть от i.

4. Можно ли использовать метод переменных направлений для решения пространственных и вообще п-мерных задач?

Продольно-поперечная схема на задачи с $p \geqslant 3$ непосредственно не обобщается вследствие возникающих несимметричности и условной устойчивости. Имев-шаяся в двумерном случае симметричность давала равные (по модулю) ошибки с разными знаками на двух последовательных шагах, компенсировавшие друг друга.

Однако в этом случае можно использовать локально-одномерную схему также с использованием промежуточных (дробных) слоев. Эта схема имеет лишь суммарную аппроксимацию, а на промежуточных слоях она не аппроксимирует исходное дифференциальное уравнение. Однако ошибки аппроксимации при суммировании гасят друг друга. Так что решение на «целом» слое оказывается приближением точного. Ее запись приведена в дополнительном вопросе «Трехмерный случай».

5. Можно ли использовать метод переменных направлений на неравномерных сетках?

Метод переменных направлений невозможно использовать на неравномерных сетках, так как в этом случае невозможно выделить эти самые направления.

2. Дополнительные вопросы

1. Монотонность. Выведите условия положительности коэффициентов для схемы переменных направлений.

Схема записывается следующим образом:

$$\frac{2}{\tau}y^{k+1/2} - \Lambda_1 y^{k+1/2} = \frac{2}{\tau}y^k + \Lambda_2 y^k + \varphi,$$
$$\frac{2}{\tau}y^{k+1} - \Lambda_2 y^{k+1} = \frac{2}{\tau}y^{k+1/2} + \Lambda_1 y^{k+1/2} + \varphi.$$

Вычтем первое выражение из второго и выразим $y^{k+1/2}$:

$$\begin{split} \frac{2}{\tau}y^{k+1} - \frac{2}{\tau}y^{k+1/2} - \Lambda_2 y^{k+1} + \Lambda_1 y^{k+1/2} &= \frac{2}{\tau}y^{k+1/2} - \frac{2}{\tau}y^k + \Lambda_1 y^{k+1/2} - \Lambda_2 y^k, \\ \frac{2}{\tau}(y^{k+1} + y^k) - \Lambda_2 (y^{k+1} - y^k) &= \frac{4}{\tau}y^{k+1/2}, \\ y^{k+1/2} &= \frac{1}{2}(y^{k+1} + y^k) - \frac{\tau}{4}\Lambda_2 (y^{k+1} - y^k). \end{split}$$

Подставим во второе выражение исходной схемы и сократим слагаемые:

$$\frac{1}{\tau}y^{k+1} - \frac{1}{2}\Lambda y^{k+1} + \frac{\tau}{4}\Lambda_1\Lambda_2 y^{k+1} = \frac{1}{\tau}y^k + \frac{1}{2}\Lambda y^k + \frac{\tau}{4}\Lambda_1\Lambda_2 y^k + \varphi,$$

где $\Lambda=\Lambda_1+\Lambda_2$. Заметим, что узлы $y_{i+1,j+1}^{k+1},\,y_{i+1,j-1}^{k+1},\,y_{i-1,j+1}^{k+1}$ и $y_{i-1,j-1}^{k+1}$ указаны только лишь в слагаемом вида $\Lambda_1\Lambda_2y^{k+1}$. Распишем его:

$$\begin{split} & \Lambda_1 \Lambda_2 y^{k+1} = \Lambda_1 \left(\frac{y^{k+1}_{i,j+1} - 2y^{k+1}_{i,j} + y^{k+1}_{i,j-1}}{h_2^2} \right) = \frac{1}{h_2^2} \left(\Lambda_1 y^{k+1}_{i,j+1} - 2\Lambda_1 y^{k+1}_{i,j} + \Lambda_1 y^{k+1}_{i,j-1} \right) = \\ & = \frac{1}{h_1^2 h_2^2} \Big(y^{k+1}_{i+1,j+1} - 2y^{k+1}_{i,j+1} + y^{k+1}_{i-1,j+1} - 2(y^{k+1}_{i+1,j} - 2y^{k+1}_{i,j} + y^{k+1}_{i-1,j}) + y^{k+1}_{i+1,j-1} - 2y^{k+1}_{i,j-1} + y^{k+1}_{i-1,j-1} \Big). \end{split}$$

Видно, что коэффициенты при указанных узлах положительны. Таким образом, после переноса их направо они станут отрицательными. Также можно показать, что коэффициенты при $y_{i,j+1}^{k+1}$, $y_{i,j-1}^{k+1}$, $y_{i-1,j}^{k+1}$ и $y_{i-1,j}^{k+1}$ будут положительными, т.е. условие положительности коэффициентов в любом случае не выполняется.

2. Критерий останова. Какой критерий останова Вы использовали в счете на установление?

Наиболее простым критерием останова является выполнение условия

$$\|\hat{y} - y\| \leqslant \varepsilon;$$

однако он недостаточно надежен, поскольку разностное решение устанавливается медленно. Можно показать [2], что разность решений уравнения теплопроводности и уравнения Пуассона экспоненциально стремится к нулю по норме $\| \ \|_{L_2}$ при $t \to \infty$. Таким образом, установление происходит почти по геометрической прогрессии, и можно получить более надежный критерий:

$$\|\hat{y} - y\| \le \varepsilon (1 - \nu), \quad \text{где } \nu = \frac{\|\hat{y} - y\|}{\|y - \check{y}\|}.$$

Этот критерий и был реализован в нашей программе.

3. Трехмерный случай. Обобщите продольно-поперечную схему на трехмерный случай. Предоставьте запись схемы.

Для многомерного случая обобщением продольно-поперечной схемы является локально-одномерная схема. Рассмотрим уравнение

$$u_t = \sum_{i=1}^p u_{x_i x_i} + f.$$

Аппроксимируем это уравнение, используя симметричную неявную схему

$$y_t = \sum_{i=1}^p \Lambda_i y^{(0,5)} + \varphi,$$

 $(\Lambda_i$ — разностная вторая производная по координате x_i).

Наряду с исходной схемой построим локально-одномерную схему. Для этого между слоями t и \hat{t} введем p+1 промежуточных слоев с шагами τ/p между ними. Первый слой соответствует моменту времени t, последний с номером p+1 — моменту времени \hat{t} . На каждом таком слое с номером α суммарный оператор в правой части заменим оператором Λ_{α} . Обозначим решение на промежуточных шагах через w_{α} , $\alpha=1,2,\ldots,p$. Тогда w_{α} является решением следующей разностной задачи:

$$\frac{1}{\tau}(\hat{w}_{\alpha} - w_{\alpha}) = \frac{1}{2}\Lambda_{\alpha}(\hat{w}_{\alpha} + w_{\alpha}) + \varphi_{\alpha}, \quad \alpha = 1, 2, \dots, p;$$

$$w_{1} = y, w_{2} = \hat{w}_{1}, \dots, w_{p} = \hat{w}_{p-1}, \hat{w}_{p} = \hat{y}.$$

Очевидно, что для любого p соответствующее уравнение является одномерным, решаемым методом обычной прогонки. Остальные независимые переменные участвуют в нем только в качестве параметров. Поэтому и схема называется локально-одномерной.

4. Порядок сходимости. Покажите, что рассматриваемая схема имеет порядок сходимости, предсказываемый теорией (составьте таблицу погрешностей и порядков сходимости в зависимости от шагов τ , h_1 и h_2).

Метод переменных направлений обладает квадратичной скоростью сходимости по времени и пространству, т.е. $O(\tau^2 + h_1^2 + h_2^2)$.

Для проверки порядка сходимости возьмем следующий пример уравнения теплопроводности:

$$u_t = \Delta u, \quad (x_1, x_2) \in [0, 2] \times [0, 1],$$

 $u\Big|_{(x_1, x_2) \in \Gamma} = 0, \quad u(x_1, x_2, 0) = \sin\left(\frac{\pi x_1}{2}\right) \sin(\pi x_2),$

точное решение которого имеет вид $u = \exp\left(-\frac{5\pi^2}{4}t\right)\sin\left(\frac{\pi x_1}{2}\right)\sin(\pi x_2).$

1аолица 1. Порядок сходимости					
$h_1, h_2 = h_1/2, \tau = 5h_1$	AbsErr (τ, h_1, h_2)	Δ	$\log_2 \Delta$		
0.02	0.0265178	_	_		
0.01	0.00607478	4.36523	2.12606		
0.005	0.00152092	3.99415	1.99789		
0.0025	0.000370375	4.10643	2.03788		
0.00125	9.36522e-05	3.9548	1.9836		
0.000625	2.35981e-05	3.96863	1.98864		

Таблица 1. Порядок сходимости

5. Время выхода на стационар. Как в зависимости от τ меняется время выхода решения на стационар?

Для поиска времени выхода на стационар возьмем следующий пример:

$$\Delta u = 0, \quad (x_1, x_2) \in [0, 4] \times [0, 2],$$

$$u\Big|_{x_2=0} = 6 - \frac{3}{4}x_1, \quad u\Big|_{x_2=2} = 3 - \frac{3}{4}x_1,$$

$$u\Big|_{x_1=0} = 6 - \frac{3}{2}x_2, \quad u\Big|_{x_1=4} = 3 - \frac{3}{2}x_2,$$

точное решение которого имеет вид $u = 6 - \frac{3}{4}x_1 - \frac{3}{2}x_2$.

В качестве шагов по пространству возьмем $h_1 = 0.02, h_2 = 0.01,$ точность $\varepsilon = 0.01.$

Таблица 2. Время выхода на стационар

zweimae zi zpeim zzmena na erednemap					
au	Количество временных слоев	Время выхода на стационар			
0.02	283	5.66			
0.01	269	2.69			
0.005	181	0.905			
0.0025	174	0.435			
0.00125	196	0.245			

3. Результаты

Тестовая задача 1

$$\Delta u = 0, \quad (x_1, x_2) \in G = [0, 1] \times [0, 1],$$

$$u(x_1, x_2) = 1, \quad (x_1, x_2) \in \partial G.$$

Точное решение $u(x_1, x_2) = 1$.

Численное решение

$$L_1=1.0,\ L_2=2.0,\ h_1=0.001,\ h_2=0.001,\ eps=1e-3,\ \tau=0.1$$

Тестовая задача 2

$$\Delta u = 0, \quad (x_1, x_2) \in G = [0, 1] \times [0, 1],$$

$$\frac{\partial u}{\partial n}\Big|_{x_2 = 0} = -1, \quad \frac{\partial u}{\partial n}\Big|_{x_2 = 1} = 1,$$

$$u|_{x_1 = 0} = 1 + x_2, \quad u|_{x_1 = 0} = 1 + x_2.$$

Точное решение $u(x_1, x_2) = 1 + x_2$.

Численное решение

$$L_1 = 1.0, L_2 = 2.0, h_1 = 0.001, h_2 = 0.001, eps = 1e - 3, \tau = 0.1$$

Тестовая задача 3

$$\Delta u = 4, \quad (x_1, x_2) \in G = [0, 1] \times [0, 1],$$

$$\frac{\partial u}{\partial n}\Big|_{x_1 = 0} = 0, \quad \frac{\partial u}{\partial n}\Big|_{x_1 = 1} = 2,$$

$$u|_{x_2 = 0} = x_1^2, \quad u|_{x_2 = 1} = 1 + x_1^2.$$

Точное решение $u(x_1, x_2) = x_1^2 + x_2^2$.

Численное решение

$$L_1 = 1.0, L_2 = 2.0, h_1 = 0.001, h_2 = 0.001, eps = 1e - 3, \tau = 0.1$$

Тестовая задача 4 (наш тест)

$$\Delta u = 0, \quad (x_1, x_2) \in [0, 4] \times [0, 2],$$

$$u\Big|_{x_2=0} = 6 - \frac{3}{4}x_1, \quad u\Big|_{x_2=2} = 3 - \frac{3}{4}x_1,$$

$$u\Big|_{x_1=0} = 6 - \frac{3}{2}x_2, \quad u\Big|_{x_1=4} = 3 - \frac{3}{2}x_2,$$

Точное решение $u(x_1, x_2) = 6 - \frac{3}{4}x_1 - \frac{3}{2}x_2$.

Численное решение

$$L_1 = 4.0, L_2 = 2.0, h_1 = 0.02, h_2 = 0.01, eps = 1e - 2, \tau = 0.1$$

Список использованных источников

- 1. Γ аланин M.П., Cавенков E.Б. Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 592 с.
- 2. Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512 с.