Academic notes: 1B Analysis

J. Mak (January 9, 2015) [From notes of R. S. Ward, Durham]*

I. SEQUENCES AND LIMITS

A. Inequalities

Here we deal mainly with real analysis. Recall that we have the following number sets:

- natural numbers $\mathbb{N} = \{1, 2, 3, \cdots\};$
- integers $\mathbb{Z} = \{\cdots, -1, 0, 1, \cdots\};$
- rationals $\mathbb{Q} = \{p/q \mid p, q \in \mathbb{Z}, q \neq 0\};$
- reals, \mathbb{R} .

 \mathbb{R} contains numbers that are not algebraic, i.e., numbers that are not roots of $\sum_{i=1}^{n} a_i x^i = 0$ (e.g., π , e); these numbers are called <u>transcendental</u>. We note that \mathbb{R} is ordered and <u>complete</u> (roughly speaking, there is a real number between any two chosen real numbers).

Given distinct $x, y \in \mathbb{R}$, we have the following properties for 'less than' (and analogous ones for other inequalities):

- if x < y, y < z, then x < z (transitivity);
- if x < y, a < b, then a + x < b + y;
- if x < y, c > 0, then cx < cy;
- if, on the other hand, x < y but c < 0, then cx > cy;
- if x < y and x, y > 0, then 1/x > 1/y.

Example Some examples with inequalities:

1. Define for all $x \in \mathbb{R}$ such that $-3(4-x) \le 12$. This gives

$$-12 + 3x \le 12$$
 \Leftrightarrow $3x \le 24$ \Leftrightarrow $x \le 8$.

2. Solve (x+2)/3 < (5-2x)/4.

$$4x + 8 < 15 - 6x$$
 \Leftrightarrow $10x < 7$ \Leftrightarrow $x < 7/10$.

3. Solve $x^2 - 4x + 3 > 0$.

$$(x-3)(x-1) > 0$$
 \Leftrightarrow $x > 3 \text{ or } x < 1$,

after taking into account of the same of the quadratic.

4. Solve $3/(x-2) \le x$.

Since (x-2) could be less than zero, instead of multiplying across, we note that

$$\frac{3}{x-2}-x \leq 0 \qquad \Leftrightarrow \qquad \frac{x^2-2x-3}{x-2} \geq 0 \qquad \Leftrightarrow \qquad \frac{(x-3)(x+1)}{x-2} \geq 0.$$

Assuming $x \neq 2$, the inequality is not valie for x < -1 and 2 < x < 3, so the solutions are $-1 \leq x < 2$ or $x \geq 3$.

^{*} julian.c.l.mak@googlemail.com

B. Absolute values

The absolute value of x is defined to be

$$|x| \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

We then have the following identities:

- the triangle inequality, $|x + y| \le |x| + |y|$;
- $||x| |y|| \le |x y|$, which is a variation of the above;
- |x| < c iff -c < x < c;
- $x^2 < c \text{ iff } 0 \le |x| < c$.

Example Solve $|x+2| \leq |2x-1|$.

$$(x+2)^2 \le (2x-1)^2$$
 \Leftrightarrow $0 \le 3x^2 - 8x - 3 = (3x+1)(x-3),$

so $x \ge 3$ or $x \le -1/3$.

C. Sequence

A sequence is a function which maps \mathbb{N} to \mathbb{R} . Sequences are notatied as

$$\{x_n\}_{n=1}^{\infty} = \{x_1, x_2, \cdots x_n\},\$$

where the list is ordered.

Example We have the following sequences:

- $x_n = 17$ for all n gives $\{17, 17, \dots\}$;
- $x_n = n \text{ gives } \{1, 2, 3 \cdots \};$
- $x_n = 1/n$ gives $\{1, 1/2, 1/3, \dots\}$;
- $x_n = (-1)^{n+1}$ gives $\{1, -1, 1, \cdots\}$.

Let $\{x_n\}$ be a sequence. We say that the sequence tends to the $\underline{\lim} L$, written $\lim_{n\to\infty} x_n = L$ (or $x_n \to L$ as $n \to \infty$) if, given any $\epsilon > 0$, there is some N such that

$$|x_n - L| < \epsilon$$
 for all $n \ge N$,

or, in words, the sequence becomes arbitrarily close to L at some point.

Example To show that $x_n = 1/n \to 0$ as $n \to \infty$, we observe that

$$|x_n - L| = \frac{1}{n} - 0 = \frac{1}{n} < \epsilon \qquad \Leftrightarrow \qquad \frac{1}{\epsilon} < n.$$

So, given some ϵ , we take $N > 1/\epsilon$ as required.

Suppose $\{x_n\}$ and $\{y_n\}$ are sequences, with $x_n \to L$ and $y_n \to K$ as $n \to \infty$, then, for constants A and B, we have:

- $Ax_n + By_n \to AL + BK$ as $n \to \infty$;
- $x_n y_n \to KL$ as $n \to \infty$;
- $x_n/y_n \to L/K$ as $n \to \infty$ for $K \neq 0$.

Theorem I.1 If f(x) is <u>continuous</u> and $x_n \to L$ as $n \to \infty$, then $f(x_n) \to f(L)$ as $n \to \infty$.

Theorem I.2 Suppose $0 \le x_n \le y_n$ and $y_n \to 0$ as $n \to \infty$, then $x_n \to 0$ as $n \to \infty$.

Proof Let $\epsilon>0$ be given, then $|x_n-0|=x_n\leq y_n=|y_n-0|$. Since $y_n\to 0$, by definition, there is some N that $|y_n-0|<\epsilon$ for all n>N, so $|x_n\to -0|\leq |y_n-0|\leq \epsilon$ for all $n\geq N$, and indeed $x_n\to 0$ as $n\to \infty$.

In general, for $z_n \leq x_n \leq y_n$, if $z_n, y_n \to L$, then $x_n \to L$ as $n \to \infty$.

Example 1. Find the limit of $x_n = (x+3)/\sqrt{4n^2-2}$ as $n \to \infty$.

$$x_n \equiv \frac{1+3/n}{4-2/n^2} \to \frac{1}{\sqrt{4}} = \frac{1}{2}$$

since $n^{-p} \to 0$ if p > 0.

2. Find the limit of $x_n = (n^2 n!)/(n+2)!$ as $n \to \infty$.

$$x_n \equiv \frac{n^2}{(n+1)(n+2)} = \frac{1}{3/n + 2/n^2 + 1} \to 1.$$

- 3. Find the limit of $x_n = (n + \sin^2 n)/\sqrt{4n 1}$ as $n \to \infty$. Since $\sin^2 n$ fluctuates between 0 and 1, this is small compared to n at large n. However, at large n, the sequence goes like \sqrt{n} , so there is no limit.
- 4. Find the limit of $x_n = \sqrt{n}(\sqrt{n-1} \sqrt{n})$ as $n \to \infty$.

$$x_n \equiv \frac{\sqrt{n}(\sqrt{n-1}-\sqrt{n})^2}{(\sqrt{n-1}-\sqrt{n})} = \frac{1}{\sqrt{1+1/n}+1} \to \frac{1}{2}.$$

5. Find the limit of $x_n = n^{-1} \log(3^n + n^3)$ as $n \to \infty$.

We use the observation that exponentials increase at a rate such that $e^n > n^p > \log n$, so

$$x_n \equiv \frac{1}{n} \log[3^n(1 + \frac{n^3}{3^n})] = \frac{1}{n} [n \log 3 + \log(1 + \frac{n^3}{3^n})] \to \log 3,$$

since the exponential kills the algebraic term, and the algebraic term kills the log term.

6. Find the limit of $x_n = t^{1/n}$ as $n \to \infty$.

Either define $y_n = \log x_n$ and find the limit of y_n accordingly, or simply observe that the exponent goes to 0, so $x_n \to 1$.

7. Find the limit of $x_n = (n^2 + n^3 e^{-n})/(\log 2^n + \log n^8)^2$ as $n \to \infty$.

$$x_n = \frac{1 + ne^{-n}}{(\log 2 - (8/n)\log n)^2} \to \frac{1}{(\log 2)^2}.$$

Theorem I.3 If $x \to L$ as $n \to \infty$, and $x_n < 0$ for all n, then $L \le 0$.

Proof We proceed with a proof by contradiction. Assume that L>0 and $x_n\to L$ as $n\to\infty$, and that we may choose and ϵ small enough. Since $x_n\to L$, we can find an integer N such that $|x_N-L|<\epsilon$ for all $n\ge N$. But $|x_N-L|< L$, so

$$-L < x_N - L < L \qquad \rightarrow \qquad x_N > 0,$$

which is the contradiction we need, and thus $L \leq 0$.

Theorem I.4 If |t| < 1, then $x_n = t^n \to 0$ as $n \to \infty$.

Proof Using the definition and that $u^{1/n} \to 0$ as $n \to \infty$, let $\epsilon > 0$ be given. We want N such that $|t|^n < \epsilon$ for all $n \ge N$. For $|t|^N < \epsilon$, $|t| < \epsilon^{1/N}$. Since |t| < 1, $|t|^{N+1} = |t|^N |t| < |t|^N$, and it is clear that if $|t| < \epsilon^{1/N}$, then $|t|^N < \epsilon$, so

$$0 < |t|^n < |t|^N < \epsilon$$

for all n > N. Since $e^{1/n} \to 1$ as $n \to \infty$, there is some n such that $e^{1/n} > |t|$ is possible, as required.

Corollary I.5 If t > 1, t^n has no limit as $n \to \infty$.

Proof Suppose t > 1 and we assume $t \to L$ as $n \to \infty$. Then

$$1 = 1^n = t^n \left(\frac{1}{t}\right)^n \to L \cdot 0 = 0,$$

which is a contradiction, so there is no limit L.

Example Find the limit of $x_n = [(2n+3)/(n-1/2)]^n$ as $n \to \infty$.

For large $n, x_n \sim (2n/n)^n = 2^n < x_n$, so by comparison, x_n does not have a limit.

Theorem I.6 If $c \in \mathbb{R}$, then $(1 + c/n)^n \to e^c$ as $n \to \infty$.

Proof Notice that

$$\log y = \int_1^y \frac{1}{x} dx, \qquad \log \left(1 + \frac{c}{n}\right)^n = n \log \left(1 + \frac{c}{n}\right) = n \int_1^{1 + c/n} \frac{1}{x} dx,$$

so

$$\frac{c}{n} \frac{1}{1 + c/n} < n \int_{1}^{1 + c/n} \frac{1}{x} \, \mathrm{d}x < 1 \cdot \frac{c}{n} \qquad \to \qquad \frac{cn}{n + c} \log \left(1 + \frac{c}{n} \right)^{n} < c.$$

By squeezing, $\log(1+c/n)^n \to c$, so $(1+c/n)^n \to e^c$ as $n \to \infty$.

Example

1. We have

$$x_n = \left(\frac{n-2}{n+1}\right)^{3n} = \left(1 - \frac{3}{n+1}\right)^{3n} = \left[\left(1 - \frac{3}{n+1}\right)^n\right]^3 = \left[\frac{(1-3/(n+1))^{n+1}}{(1-3/(n+1))}\right]^3 \to \left[\frac{e^{-3}}{1-0}\right]^3 = e^{-9}$$

2. To find the limit of $x_n = (3^n + 2^n)^{1/n}$, we observe that

$$3^n < 3^n + 2^n < 3^n + 3^n = 2 \cdot 3^n$$
 \Leftrightarrow $(3^n)^{1/n} < x_n < 2^{1/n} \cdot (3^n)^{1/n}$

so, by squeezing, since $2^{1/n} \to 1$, $x_n \to 3$. Alternatively, since $3^n > 2^n$, we have, for large n,

$$\log x_n = \frac{1}{n}\log(3^n + 2^n) \to \frac{1}{n}\log 3^n = \log 3,$$

so $x_n \to 3$.

Proposition I.7 $(\log n)/\sqrt{n} \to 0$ as $n \to \infty$.

Proof We observe that

$$0 \le \frac{\log n}{\sqrt{n}} = \frac{1}{\sqrt{n}} \int_1^n \frac{1}{x} \, \mathrm{d}x \le \frac{1}{\sqrt{n}} \int_1^n \frac{1}{x^{3/4}} \, \mathrm{d}x = \frac{1}{\sqrt{n}} \left[4x^{1/4} \right]_1^n \to 0,$$

so $(\log n)/\sqrt{n} \to 0$ as $n \to \infty$ by squeezing.

This result generalises to $(\log n)/n^p \to 0$ as $n \to \infty$ for any p > 0.

Proposition I.8 $n^p/e^n \to 0$ as $n \to \infty$ for $p \in \mathbb{R}$.

Proof We observe that

$$\frac{p}{n}\log n \to 0 \quad \Leftrightarrow n^{p/n} \to e^0 = 1,$$

and thus

$$\frac{n^{p/n}}{\mathrm{e}} \to \frac{1}{e} < \frac{1}{2}.$$

Then there exists an n such that $0 < n^{p/n}/e < 1/2$, and raising this to the n-th power gives $0 < n^p/e^n < 1/2^n \to 0$ as $n \to \infty$, as required.

D. Sup and inf

A set $X \in \mathbb{R}$ has a maximum $k = \max(X)$ if $k \in X$ and $x \le k$ fro all $x \in X$. The minimum $\min(X)$ is similarly defined. For example, for $X = \{n^{-1} \mid n \in \mathbb{N}\}$, $\max(X) = 1$ but $\min(X)$ is not defined. A set X is <u>bounded above</u> if there exists k such that $x \le k$ for $x \in X$, and similar for X to be <u>bounded below</u>. With the above example, the set is bounded below and above by 0 and 1 respectively. Although there are infinitely many bounds for X, there is the largest of the lower bound and the smallest of the upper bound.

Let X be bounded above, then the supremum $\sup X$ exists if, (i), $\sup X$ is an upper bound of X, and (ii), for any other upper bound of X denoted K, $\sup X \leq K$. We note that the second condition is equilvalent to $\sup \in X$, or there exists $x_n \in X$ where $x_n \to \sup X$ as $n \to \infty$. The definition is similar for the infimum, denoted inf X.

Example For the following sets, find the supremum and infimum.

- 1. X=(0,3). The guess is that the supremum and infimum are respectively 3 and 0. To show this for the supremum, we note that clearly $x \in X$ has $x \le 3$. Then defining the sequence $x_n = 3 1/n$, we have $x_n \in X$, and clearly $x_n \to 3$ as $n \to \infty$, as required (similarly for the infimum).
- 2. For $X=\{n/(1+n^2)\mid n\in\mathbb{N}\}$, we guess that $\sup X=1/2$ whilst $\inf X=0$. For the infimum, it is easy to see that $x\in X$ satisfies $x\geq 0$. Also, $n/(1+n^2)\to 0$ as $n\to\infty$, as required. for the supremum, we observe that $n/(1+n^2)$ is a decreasing function bounded by $x_1=1/2$, and since $1/2\in X$, we have $\sup X=1/2$.
- 3. For $X=\{mn/(1+m^2+n^2)\mid m,n\in\mathbb{N}\}$, we have that $x\in X$ is positive, and either m or $n\to\infty$ yields $mn/(1+m^2+n^2)\to 0$, so $\inf X=0$. Taking m=n, we have $n^2/(1+2n^2)\to 1/2$, so we make a guess that $\sup X=1/2$. Now.

$$\frac{mn}{1+m^2+n^2} \le \frac{1}{2} \qquad \Leftrightarrow \qquad 0 \le (m-n)^2 + 1,$$

which is obviously true, and since $n^2/(1+2n^2) \rightarrow 1/2$, sup X = 1/2.

4. For $X=\{(n^2-4n+4)/(2n^2+1)\mid n\in \mathbb{K}\}=\{1/3,0,1/19,\cdots (1/2)\}$, where the last term is in brackets because it is the limit of $n\to\infty$. Then $\inf X=0$ because $(n-2)^2/(2n^2+1)\geq 0$, and $0\in X$. To show that $\sup X=1/2$, we observe that

$$\frac{(n-2)^2}{2n^2+1} \le \frac{1}{2}$$
 \Leftrightarrow $2n^2-8n+8 \le 2n^2+1$ \Leftrightarrow $n \ge \frac{7}{8}$,

which is true since $n \in \mathbb{N}$. Furthermore, the limit of the sequence tends to 1/2, as required.

5. Find the supremum and infimum of $S = \{n/(4+n^2) \mid n \in \mathbb{N}\}.$

Note that $S = \{1/5, 1/4, 3/15 \cdots (0)\}$, so we guess that $\inf S = 0$ and $\sup S = 1/4$. Since $n/(4+n^2) > 0$ as n > 0 and $n/(4+n^2) \to 0$ as $n \to \infty$, we have the former. Observing that

$$\frac{n}{4+n^2} \le \frac{1}{4} \qquad \Leftrightarrow \qquad (n-2)^2 \ge 0$$

and $1/4 \in S$, we have the latter.

Remark \mathbb{R} is constructed such that, for $X \subseteq \mathbb{R}$, there exists $\sup X$ and $\inf X$, i.e., \mathbb{R} is continuous for the interval $(-\infty, +\infty)$, a property known as completeness.

Let X be a set, and $f: X \to \mathbb{R}$ a function, and we denote the image as f(X). We say that f is <u>bounded above</u> if f(X) is bounded above, and then $\sup f = \sup f(X)$, and similarly for the infimum.

Example For the following f and X, find the infimum and supremum if they exist.

1. For $f(x) = x^2$ and $x \in \mathbb{R}$, $f(X) = [0, \infty)$. f(X) is not bounded above so the supremum does not exist, but it is bounded below, and inf f = 0.

2. Let $f(x) = (x^2 \cos x)/(1 + x^2)$, x > 0. We note that

$$\leq 0 \frac{x^2}{1+x^2} < 1, \qquad -1 \leq \cos x \leq 1,$$

so -1 < f(x) < 1, so the guess is that sup f = 1 and inf f = -1.

For the supremum, we noted already that f(x) < 1. Letting $x = 2\pi n$, then $x \cos x = 1$, and $f(2\pi n) = (2\pi n)^2/(1 + (2\pi n)^2) \to 1$, as required.

For the infimum, we also noted that f(x) > -1, so taking $x = 2\pi n + \pi$, so that $\cos x = -1$, we have $(-1)(2\pi n + \pi)^2/(1 + (2\pi n + \pi)^2) \to -1$, as required.

3. For f(x) = (x+1)/(x+2) with x > 0, find the supremum and infimum.

We note that f(0) = 1/2 and that $f(x) \to 1$ as $x \to \infty$. We could differentiate to find the extrema, or just guess that $\inf f = 1/2$ and $\sup f = 1$. For the supremum, we see that

$$\frac{x+1}{x+2} \le 1 \qquad \Leftrightarrow \qquad 1 \le 2$$

since x + 2 > 0, and we have already showed $f(x) \to 1$, thus $\sup f = 1$. For the infimum, we have

$$\frac{x+1}{x+2} \ge \frac{1}{2} \qquad \Leftrightarrow \qquad x \ge 0,$$

and that $f(x) \to 1/2$ as $x \to 0$, so inf f = 0.

Theorem I.9 Let $f, g: X \to \mathbb{R}$ be two functions, both bounded above. Then f+g is bounded, and

$$\sup f + \inf g \le \sup (f + g) \le \sup f + \sup g.$$

Proof By definition, $f(x) \le \sup f$, $g(x) \le \sup g$ for all $x \in X$, so $f(x) + g(x) \le \sup f + \sup g$. Since $\sup f + \sup g$ is an upper bound, but the $\sup(f+g)$ is the least upper bound, so we have

$$\sup(f+g) \le \sup f + \sup g.$$

With $f(x) + g(x) \le \sup(f+g)$, we have $f(x) \le \sup(f+g) - g(x)$, and since $g(x) \ge \inf g$, we have $-g(x) \le -\inf g$, so $f(x) \le \sup(f+g) - \inf g$. This is an upper bound, but $\sup f$ is the least upper bound, so

$$\sup f + \inf g \le \sup (f + g).$$

E. Sequences revisited

A sequence $\{x_n\}_{n=1}^{\infty}$ is increasing if $x_{n+1} \geq x_n$ for all n, and similarly it is decreasing if $x_{n+1} \leq x_n$.

Theorem I.10 If $\{x_n\}_{n=1}^{\infty}$ is increasing and bounded, then $x_n \to \sup\{x_n\}$ as $n \to \infty$.

Proof Since $\{x_n\}$ is bounded, $\sup\{x_n\}$ exists by completeness. Given an $\epsilon>0$, we have that $x_n\leq L$ and there exists an N such that $x_n>\sup\{x_n\}-\epsilon$ (because otherwise $\sup\{x_n\}-\epsilon$ will be a smaller upper bound). Then, for $n\geq N$, $x_n\geq x_N>\sup\{x_n\}-\epsilon$ since it is increasing, so

$$\sup\{x_n\} + \epsilon > \sup\{x_n\} \ge x_n > L - \epsilon \qquad \Rightarrow \qquad \epsilon > x_n - \sup\{x_n\} > -\epsilon \qquad \Leftrightarrow \qquad |x_n - \sup\{x_n\}| < \epsilon,$$

thus $x_n \to \sup\{x_n\}$ as required.

If $\{x_n\}_{n=1}^{\infty}$ is a sequence, then a <u>subsequence</u> is $\{x_{n_i}\}_{i=1}^{\infty}$ with $n_1 < n_2 < \cdots$. For example, $\{x_{2n}\} = \{x_1, x_3 \cdots\}$ is a subsequence of $\{x_n\}$.

Theorem I.11 (Bolzano-Weierstrass) Every bounded sequence contains a subsequence which has a a limit.

Remark This actually applies to any complete field, not just for \mathbb{R} (e.g., \mathbb{R}^n).

Example $\{(-1)^{n+1}\}_{n=1}^{\infty}$ is bounded but has no limit. However, the subsequences $\{x_{2n-1}\}_{n=1}^{\infty} \to 1$ and $\{x_{2n}\}_{n=1}^{\infty} \to -1$.

II. SERIES AND CONVERGENCE

Given a sequence $\{x_n\}_{n=1}^{\infty}$, what is $\sum_{n=1}^{\infty} x_n$? This <u>series</u> could <u>converge</u> or <u>diverge</u> depending on whether the infinite sum is defined. Usually a test is done to test the convergence of a series.

Given $\{x_n\}_{n=1}^{\infty}$, the <u>partial sum</u> $S_k = \sum_{n=1}^k x_n$. $\{S_k\}_{n=1}^{\infty}$ is a sequence, and if $S_k \to S$ as $k \to \infty$, then $\sum_{n=1}^{\infty} x_n$ converges to S. If S_k has no limit, then the series $\{x_n\}_{n=1}^{\infty}$ diverges.

Example Find the partial sums and determine whether the series associated with the following sequences converge:

- 1. $x_n = 1$. This gives $S_k = k$, and there is no limit as $k \to \infty$, so the sum diverges.
- 2. $x_n = 1/[n(n+1)]$. By partial fractions, we have

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1},$$

so

$$S_k = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{k+1},$$

so $S_k \to 1$ as $k \to \infty$, and hence the series converges.

3. Fixing $t \in \mathbb{R}$, and take $x_n = t^n$, we have

$$\sum_{n=0}^{\infty} = \sum_{n=0}^{\infty} t^n = 1 + t + t^2 + \cdots,$$

which is known as a geometric series. We observe that

$$S_k = 1 + t + \dots + t^k$$
, $tS_k = t + t^2 + \dots + t^{k+1}$,

so that

$$S_k - tS_k = 1 - t^{k+1}$$
 \Rightarrow $S_k = \frac{1 - t^{k+1}}{1 - t},$

assuming $t \neq 1$. Observe that $1 - t^{k+1} < 1 - t$ iff |t| < 1, so the series converges to 1 as $k \to \infty$ iff |t| < 1, otherwise it diverges.

4. $x_n = 1/n$. The sum $\sum_{n=1}^{\infty} = 1 + 1/2 + 1/3 + \cdots$ is known as the <u>harmonic series</u>. Observer that

$$S_1 = 1 = \frac{2}{2}$$
, $S_2 = 3/2$, $S_4 = S_2 + \frac{1}{3} + \frac{1}{4} > \frac{3}{2} + \frac{1}{4} + \frac{1}{4} = \frac{4}{2}$, $S_8 = S_4 + \dots > 2 + 4 \cdot \frac{1}{8} = \frac{5}{2}$

and it may be shown by induction that $S_{2^p} \ge (p+2)/2$, and thus S_k has no limit, and the series diverges.

Theorem II.1 If $\sum_{n=1}^{\infty} x_n$ converges, then $x_n \to 0$ as $n \to \infty$.

Proof With the definition of the partial sum $S_k = \sum_{n=1}^k x_n$, we have $S_k - S_{k-1} = x_k$. Since $\sum x_n$ converges, then $S_k, S_{k-1} \to S$ as $k \to \infty$, so $S_k - S_{k-1} = x_k \to 0$.

Note the converse is not true. The harmonic series does not converge even though the sequence goes to zero.

Theorem II.2 If $\sum_{n=1}^{\infty} x_n$ converges to S, and $\sum_{n=1}^{\infty} y_n$ converges to T, and $A, B \in \mathbb{R} - \{0\}$, then $\sum_{n=1}^{\infty} (Ax_n + By_n)$ converges to AS + BT.

Proof Apply the corresponding limits of S_k of x_n and y_n .

A. Comparison test

Theorem II.3 (Comparison test) Suppose $0 \le x_n \le y_n$ for all n, and $\sum_{n=1}^{\infty} y_n$ converges to T, then $\sum_{n=1}^{\infty} x_n$ converges to S with $0 \le S \le T$.

Proof Let $S_k = \sum^k x_n$ and $T_k = \sum^k y_n$. We note that since $x_n \ge 0$, both S_k and T_k as a sequence is increasing, with $T_k \to T$ as $k \to \infty$. Then $S_k \le T_k \le T$, so S_k is bounded and $\sup\{S_k\} = S$ exists, with $0 \le S \le T$.

Example Test the convergence of the following series associated with the sequences:

1. $x_n = 1/n^2$. We observe that

$$z_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}, \qquad \sum_{n=1}^{\infty} = 1$$

from a previous example. We also note that $0 < 1/(n+1)^2 < 1/[n(n+1)]$ for all n. By comparison, $\sum_{n=1}^{\infty} (n+1)^{-2}$ converges to some L with $0 \le 0 \le 1$. Then

$$\sum_{n=1}^{\infty} = \frac{1}{4} + \frac{1}{9} + \dots \le 1, \qquad \Rightarrow \qquad \sum_{n=1}^{\infty} = 1 + \frac{1}{4} + \frac{1}{9} + \dots \le 2,$$

so the sum converges (and in fact converges to $\pi^2/6$, a result which may be obtained for example by the consideration of a Fourier series problem).

2. Assuming that $\sum_{n=1}^{\infty} 1/n^p$ converges iff p>1, test the convergence of the series with $x_n=n/\sqrt{n^8+2}$.

The rough argument is that $x_n \sim n/\sqrt{n^8} = 1/n^3$ for large n, which converges, so we set up the comparison to try and proof convergence. One such that works is $0 \le x_n \le 1/n^3$ for all n, so the series converges.

3. $x_n = (n+3)/\sqrt{2n^3-1}$.

a similar argument gives $x_n \sim n/\sqrt{2n^3} = 1/\sqrt{2n}$, so we expect a divergence, so we set up the comparison to proof a divergence. Noting that n+3>3 and $\sqrt{2n^3-1}<\sqrt{2n^3}$, we have $0<\frac{1}{\sqrt{2n}}< x_n$, and since $\sum 1/\sqrt{2n}$ diverges, the series diverges.

4. $x_n = n^2/e^n$.

We know already that $n^8/\mathrm{e}^n \to 0$, so we expect convergence. Since $n^10/\mathrm{e}^n > n^8/\mathrm{e}^n$ and $n^10/\mathrm{e}^n \to 0$ as $n \to \infty$, n^10/e^n is bounded above by some $K < \infty$ for all n, thus $0 \le n^8/\mathrm{e}^n \le K/n^2$, so by comparison, the series converges.

5. $x_n = 1/(2 + \sqrt{n})$.

We expect this to diverge since $x_n \sim 1/\sqrt{n}$ for large n. One way is to note that since $2 \le 2\sqrt{n}$, we have $2 + \sqrt{n} \le 3\sqrt{n}$ and so $x_n \ge 1/(3\sqrt{n})$, which shows divergence. Another is to note that

$$x_n\sqrt{n} = \frac{\sqrt{n}}{2+\sqrt{n}} \ge \frac{\sqrt{n}}{\sqrt{n}+\sqrt{n}} = \frac{1}{2}$$

since we are increasing the denominator. Thus $x_n \ge 1/(2\sqrt{n})$, and so since $\sum 1/\sqrt{n}$ diverges, the $\sum x_n$ diverges.

6. $x_n = (\log n^2)/n^2$.

We assume that $\sum 1/n^p$ converges iff p>1. Since $(\log n^2)/n^{1/2}\to 0$ as $n\to\infty$, the sequence is bounded and $(\log n^2)/n^{1/2}\le k$ for all n. Then

$$0 \le \frac{\log n^2}{\sqrt{n}} \frac{1}{n^{3/2}} = x_n \le \frac{K}{n^{3/2}},$$

and so $\sum x_n$ converges by comparison.

7. $x_n = \sqrt{(2n+1)/(3n^2-1)}$.

Roughly, $x_n \sim 1/n$, so we expect divergence. We have

$$\sqrt{\frac{2n+1}{3n^2-1}} > \sqrt{\frac{2n}{3n^2-1}} > \sqrt{\frac{2n}{3n^2}},$$

so the series diverges by comparison.

Theorem II.4 If x_n is absolute convergent, i.e., if $\sum_{n=1}^{\infty} |x_n|$ is convergence, then this implies that $\sum_{n=1}^{\infty} x_n$ is convergent (but the converse is not true).

Proof Assuming absolute convergence, then since $-|x_n| \le x_n \le |x_n|$, we have $0 \le x_n + |x_n| \le 2|x_n|$, and so $\sum x_n$ converges by comparison.

Example For $x_n = \cos n^2/n^2$, we have $0 \le |\cos n^2/n^2| \le 1/n^2$, so the series converges.

B. Ratio test

Theorem II.5 (Ratio test) Suppose $\{x_n\}_{n=1}^{\infty}$ is a sequence of non-zero numbers, and $|x_{n+1}/x_n| \to L$ as $n \to \infty$. Then the associated series is divergent and convergent if L > 1 and L < 1 respectively. If L = 1, the series could be either (e.g., $x_n = 1$ and $x_n = 1/n^2$ is divergent and convergent respectively).

Proof For L>1, there exists N such that $|x_{n+1}/x_n|>1$ for $n\geq N$, and so $0<|x_N|<|x_{N+1}|<|x_{N+2}|<\cdots$, thus $\{x_n\}\not\to 0$, and the series diverges.

For L < 1, we consider a comparison test with the geometric series $\sum_{n=1}^{\infty} t^n$. Choosing $t \in (L,1)$, we have, for some $n \ge N$, $|x_{n+1}/x_n| \to L < t$, so $|x_{N+1}| < t|x_N|$, $|x_{N+2}| < t|x_{N+1}| < t^2|x_N|$ etc., and $|x_{N+i}| < t^i|x_N|$. Then $\sum_{i=1}^{\infty} t^i|x_N| = |x_N| \sum_{i=1}^{\infty} t^i$, so $\sum_{i=1}^{\infty} |x_{n+i}|$ converges by comparison test, and thus $\sum_{i=1}^{\infty} x_{N+i}$ converges absolutely. Since we may add arbitrary finite values to convergent sums without violating convergence, $\sum_{n=1}^{\infty} x_n$ converges.

Example Test the convergence of the series associated with the following sequences:

1. $x_n = c^n/n!$, for $c \in \mathbb{R} - \{0\}$.

$$\left| \frac{x_{n+1}}{x_n} \right| = \left| \frac{c^{n+1}}{(n+1)!} \frac{n!}{c^n} \right| = \left| \frac{c}{n+1} \right| \to 0$$

as $n \to \infty$, so the series converges by ratio test (in fact converges to $e^c - 1$, by considering a Taylor series for example).

2. $x_n = n!(2/n)^n$.

$$\left| \frac{x_{n+1}}{x_n} \right| = \frac{(n+1)! 2^{n+1}}{(n+1)^{n+1}} \frac{n^n}{n! 2^n} = 2 \left[1 + \frac{1}{n} \right]^{-1} \to \frac{2}{e} < 1$$

as $n \to \infty$, so the series converges by the ratio test.

C. Integral test

Theorem II.6 (Integral test) Let f(x) by a positive decreasing function for $x \ge 1$. Let

$$F(m) = \int_{1}^{m} f(x) dx, \qquad x_n = F(n),$$

then $\sum_{n=1}^{\infty} x_n$ converges iff $F(m) \to L < \infty$ as $m \to \infty$.

Proof By definition,

$$F(m) = \int_{1}^{m} f(x) \, dx = \left(\int_{1}^{2} + \int_{2}^{3} \dots + \int_{m-1}^{m} f(x) \, dx = \sum_{k=1}^{m-1} \int_{k}^{k+1} f(x) \, dx = \sum_{k=1}^{m-1} I_{k}, \right)$$

so F(m) is the partial sum of $\sum_{k=1}^{\infty} I_k$, has F(m) has a limit iff $\sum I_k$ converges. Now, by assumption, f(x) is a decreasing function, so, for $x \in (k, k+1)$,

$$I_k = \int_k^{k+1} f(x) \, \mathrm{d}x \le \int_k^{k+1} f(k) \, \mathrm{d}x = f(k)[1]_k^{k+1} = f(k) = x_k,$$

and we can show that $x_{k+1} \leq I_k \leq x_k$. If $\sum x_k$ converges, then the partial sums converge and $F(m) \to L < \infty$ as $m \to \infty$. Conversely, if the partial sums converge, then $\sum x_{k+1}$ converges. Adding finite values does not affect convergence, thus $\sum_{n=1}^{\infty}$ converges.

Example Test the convergence of the series associated with the following sequences:

1. $x_n = 1/n^p$.

Defining $F(m)=\int_1^m 1/x^p \,\mathrm{d}x$, if p=1, $F(m)=\log m$, otherwise we have $F(m)=(M^{1-p}-1)/(1-p)$. Since $\log m\to\infty$ and $(M^{1-p}-1)/(1-p)\to L<\infty$ iff $1< p, \sum_{n=1}^\infty 1/n^p$ converges iff p>1.

2. $x_n = 1/[4n(\log n)^2]$ with $n \ge 2$.

An application of the ratio or comparison test fails to yield any conclusion about this. If we define

$$f(x) = \frac{1}{4x(\log x)^2},$$

we observe that f(x) > 0 for x > 0, and f(x) is a decreasing function. With the substitution $u = \log x$, we have

$$F(m) = \int_2^m \frac{\mathrm{d}x}{4x(\log n)^2} = \frac{1}{4} \int_{\log 2}^{\log m} \frac{\mathrm{d}u}{u^2} = \frac{1}{4\log 2} - \frac{1}{4\log m} \to \frac{1}{4\log 2}$$

as $m \to \infty$, so the series converges by the integral test.

D. Alternating sign test

Note that all previous test proves absolute convergence. This proves conditional convergence.

Theorem II.7 (Alternating sign test) Suppose $\{x_n\}_{n=1}^{\infty}$ is a positive decreasing sequence and $x_n \to 0$ as $n \to \infty$, then $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ converges.

Proof We look at $S_k = \sum_{n=1}^k (-1)^{n+1} x_n$. Suppose k is odd, then

$$S_{2p-1} = (x_1 - x_2) + (x_3 - x_4) \cdots + (x_{2p-3} - x_{2p-2}) + x_{2p-1}.$$

Since $\{x_n\}$ is a positive decreasing sequence, $(x_{2p-3}-x_{2p-2})>0$ for all admissible p values, so $\{S_{2p-1}\}$ is bounded below and has limit M.

Suppose now k is even, then a similar manipulation has

$$S_{2p} = y_1 - (x_2 - x_3) \cdots - (x_{2p-2} - x_{2p-1}) - x_{2p},$$

and, with this grouping, the brackets terms all all positive, so $S_{2p} \leq x_1$, thus it is bounded above with limit L. So then $S_{2p} = S_{2p-1} - x_{2p}$, and since $x_n \to 0$, the relation tends to L = M - 0, thus L = M as $p \to \infty$, and since the partial sums tend to a limit, the series $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ converges.

Example Test the convergence of the series associated with the following sequences:

1. $x_n = (-1)^{n+1}/n = 1 - 1/2 + 1/3 - 1/4 + \cdots$

Since $1/n \to 0$ and is a positive decreasing sequence, the sequence $\sum_{n=1}^{\infty} (-1)^{n+1}/n$ converges by the alternative sign test(in fact converges to $\log 2$).

2. $x_n = \tan(\pi/n)\cos(\pi n)$ for $n \ge 3$.

Note that $\cos(\pi n) = (-1)^n$, and since $\tan(\pi/n)$ is positive and decreasing, the series $\sum_{n=3}^{\infty} \tan(\pi/n) \cos(\pi n)$ converges by the alternative sign test.

E. Complex sequences and series

A complex sequence $\{z_n\}_{n=1}^{\infty}$ is like a sequence except it is for complex numbers $z_n \in \mathbb{C}$. By definition, since $\{|z_n-c|\}_{n=1}^{\infty} \in \mathbb{R}$, $z_n \to c \in \mathbb{C}$ as $n \to \infty$ if $|z-c| \to 0$ as $n \to \infty$ by analogous definitions.

Example Determine whether the following sequences converge, and if they do, find the limit:

1.
$$z_n = 1/(n + i)$$
.

There are several ways to see this. One is to guess the limit. We expect the limit in this case to go to zero. To show this, observe that

$$|z_n - 0| = |z_n| = \frac{1}{|n+1|} = \frac{1}{\sqrt{n^2 + 1}} \to 0,$$

so
$$z_n \to 0$$
 as $n \to \infty$.

Another possible way to see this is to make use of the rules for calculus of limits. We have

$$z_n = \frac{1/n}{1 + 1/n} \to \frac{0}{1+0} = 0$$

as $n \to \infty$.

We could also show determine how the real and imaginary parts behave as $n \to \infty$. We have

$$z_n = \frac{n}{n^2 + 1} - i\frac{1}{n^2 + 1} \to 0 + 0i = 0,$$

as required.

2.
$$z_n = [\sqrt{n^2 + 1}/(n + 2i)] \cdot \exp[i\pi n/(\sqrt{n^2 + 1} + \sqrt{n^2 - 1})].$$

$$z_n = \frac{\sqrt{1+1/n^2}}{1+2\mathrm{i}/n} \exp\left(\frac{\mathrm{i}\pi}{\sqrt{1+1/n^2}+\sqrt{1-1/n^2}}\right) \to \mathrm{e}^{\mathrm{i}\pi/2} = \mathrm{i}$$

as $n \to \infty$.

3.
$$z_n = \sqrt{n^3 + 1}/(n^2 + 2i)e^{i\pi^2}$$
.

$$|z_n| = \left| \frac{\sqrt{n^3 + 1}}{n^2 + 2i} \right| \cdot 1 = \frac{\sqrt{1/n + 1/n^4}}{|1 + 2i/n^2|} \to 0$$

as
$$n \to 0$$
, so $z_n \to 0$.

4.
$$z_n = (2 + e^n)^{-1} \exp[n + 3in\pi/(\sqrt{n^2 + 1} + \sqrt{n^2 - 1})].$$

$$z_n = \frac{\mathrm{e}^n}{2 + \mathrm{e}^n} \exp\left(\frac{3\mathrm{i}\pi}{\sqrt{1 + 1/n^2} + \sqrt{1 - 1/n^2}}\right) = \frac{1}{2\mathrm{e}^{-n} + 1} \exp\left(\frac{3\mathrm{i}\pi}{\sqrt{1 + 1/n^2} + \sqrt{1 - 1/n^2}}\right) \to \mathrm{e}^{3\pi\mathrm{i}/2} = -\mathrm{i}$$

as $n \to \infty$.

Theorem II.8 Let $\{z_n\}$ be a complex sequence, then since $z_n = x_n + \mathrm{i} y_n$, $\{x_n\}$ and $\{y_n\}$ are real sequences. For $c = ax + \mathrm{i} b$, $z_n \to c$ as $n \to \infty$ iff $x_n \to a$ and $y_n \to b$ as $n \to \infty$.

Proof Assuming $x_n \to a$ and $y_n \to b$ as $n \to \infty$, we have, by the triangle inequality

$$|z_n - c| = \sqrt{(x_n - a)^2 + (y_n - b)^2} \le |x_n - a| + |y_n - b| \to 0,$$

so $z_n \to c$ by squeezing. Conversely, assuming $z_n \to c$, since

$$0 \le |x_n - a| \le |z_n - c|, \qquad 0 \le |y_n - b| \le |z_n - c|$$

again by triangle inequality, $x_n \to a$ and $y_n \to b$ as $n \to \infty$ by squeezing.

Theorem II.9 If $z_n = x_n + iy_n$, then $\sum_{n=1}^{\infty} z_n$ converges iff $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ converges.

Proof Apply the previous theorem to the individual partial sums.

Theorem II.10 If $\sum_{n=1}^{\infty} |z_n|$ converges, then $\sum_{n=1}^{\infty} z_n$ converges.

Proof Since $0 \le |x_n| \le |z_n|$ and $0 \le |y_n| \le |z_n|$ by the triangle inequality, if $\sum_{n=1}^{\infty} |z_n|$ converges, this implies that $\sum_{n=1}^{\infty} |x_n|$ and $\sum_{n=1}^{\infty} |y_n|$ converges, and so by the absolute convergence theorem (on x_n and y_n) and the previous theorem, this implies the convergence of $\sum_{n=1}^{\infty} z_n$.

Theorem II.11 If $\sum_{n=1}^{\infty} z_n$ converges, then $z_n \to 0$ as $n \to \infty$.

Proof This is analogous to the one for the real case.

Example Determine the convergence of the series associated with the following sequences:

1. $z_n = c^n$, $c \in \mathbb{C}$, the complex geometric series.

Analogous to the real case, the partial sum is $S_k = (1 - c^{k+1})/(1 - c)$ for $c \neq 1$. Observe that $|c^{k+1}| = |c|^{k+1} \to 0$ iff |c| < 1, so the series converges iff |c| < 1, and converges to 1/(1 - c) when it does converge.

2. $z_n = 1/(1 = in^2)$.

Observe that

$$\left| \frac{1}{1 + \mathrm{i}n^2} \right| = \frac{1}{\sqrt{1 + n^4}} < \frac{1}{n^2},$$

and by comparison and the absolute convergence test, the series converges.

3. $z_n = 1/(1 + i\sqrt{n})$.

$$z_n = \frac{1}{1+n} - i\frac{\sqrt{n}}{1+n},$$

and the sequence associated with the real part may be shown to diverge by comparing to 1/2n for example, so the series diverges.

Theorem II.12 (Ratio test) If $|z_{n+1}/z_n| \to L$ as $n \to \infty$, then if L < 1, $\sum_{n=1}^{\infty} z_n$ converges, whilst it diverges when L > 1, and it is inconclusive if L = 1.

Proof If L < 1, then $\sum_{n=1}^{\infty} z_n$ converges by the absolute convergence test. If L > 1, $|z_n| \not\to 0$, so we do not have convergence.

Example For $z_n = (n+i)/(2^n+i)$,

$$\left| \frac{z_{n+1}}{z_n} \right| = \left| \frac{n+1+i}{2^{n+1}+i} \right| \cdot \left| \frac{n+i}{2^n+i} \right| = \sqrt{\frac{(n+1)^2+1}{n^2+1}} \sqrt{\frac{4^n+1}{4^{n+1}+1}} \to \frac{1}{2}$$

as $n \to \infty$, so the series converges by the ratio test.

A power series in z is a series of the form $\sum_{n=0}^{\infty} a_n x^n$, where a_n are constant complex coefficients. Associated with any such series is the radius of convergence $R \ge 0$. The series converges if |z| < R, and it diverges for |z| > R. The two special cases are when R = 0 (so we have convergence iff z = 0) and R being infinite, which means the series converges for any z.

Sometimes the ratio test gives us R, through

$$\left| \frac{a_{n+1}z^{n+1}}{a_nz^n} \right| = \left| \frac{a_{n+1}}{a_n} \right| |z_n|.$$

Supposing $|a_{n+1}/a_n| \to L$, the power series converges if L|z| < 1 and diverges if L|z| > 1, so the radius of convergence is R = 1/L.

Example Find the radius of convergence for the following power series:

 $1. \sum_{n=1}^{\infty} (2^n/n) z^n.$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{2^{n+1}}{n+1} \frac{n}{2^n} \right| \to 1 \cdot 2 = 2$$

as $n \to \infty$, so R = 1/2.

2. $\sum_{n=0}^{\infty} (n^2/3^n)z^n$.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)^2}{n^2} \frac{3^n}{3^{n+1}} \right| \to 1 \cdot \frac{1}{3} = \frac{1}{3}$$

as $n \to \infty$, so R = 3.

3. $\sum_{n=1}^{\infty} [(n!)^3 2^n / (3n)!] z^n$.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{[(n+1)!]^3}{(n!)^3} \frac{2^{n+1}}{2^n} \frac{(3n)!}{(3n+3)!} \right| = \left| \frac{2(n+1)^3}{(3n+3)(3n+2)(3n+1)} \right| \to \frac{2}{27}$$

as $n \to \infty$, so R = 27/2.

Lemma II.13 Suppose $\sum_{n=1}^{\infty} a_n c^n$ converges and $c \neq 0$, then if |z| < |c|, $\sum_{n=1}^{\infty} a_n z^n$ converges absolutely.

Proof Since $\sum a_n c^n$ converges, $a_n c^n \to 0$ as $n \to \infty$, so there exists M such that $|a_n c^n| \le M$ for all n. Then

$$|a_n z^n| = \left| a_n \left(\frac{z}{c} \right)^n c^n \right| \le M \left| \frac{z}{c} \right|^n.$$

Since |z| < |c| by assumption, |z/c| < 1, so the geometric series converges, and by comparison, $\sum a_n z^n$ converges absolutely.

Theorem II.14 For any power series $\sum_{n=1}^{\infty}$, one of the following possibilities hold:

- 1. $\sum a_n z^n$ converges for z=0, and R=0;
- 2. $\sum a_n z^n$ converges absolutely for all $z \in \mathbb{C}$, so $R = \infty$;
- 3. There exists R > 0 for which the power series converges absolutely if |z| < R, and diverges if |z| > R.

Proof Let $S = \{x \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_n w^n \text{ converges for some } w, |w| = n\}$. Then:

- 1. the first case is the trivial case where for $S = \{0\}$, and $\sup S = R = 0$;
- 2. if S is unbounded, then R is infinite, and $\sum a_n z^n$ converges for all $z \in \mathbb{C}$. Observe that $|z| \in \mathbb{R}$, but this cannot be an upper bound since S is unbounded, so there exists $x \in S$ such that |z| < x, and hence there exists $w \in \mathbb{C}$ such that |z| < |w|, and $\sum a_n w^n$ converges, so $\sum a_n z^n$ converges absolutely by comparison;
- 3. if S is bounded and $R = \sup S$, then for R > 0, |z| < R, and there exists $x \in S$ with |z| < x such that $\sum a_n w^n$ converges, and so by previous lemme, $\sum a_n z^n$ converges absolutely. If |z| > R, then $|z| \notin S$, and by the definition of S, the power series diverges.

F. Taylor series

Suppose we have a sequence $\{f_n(x)\}_{n=0}^{\infty}$, $x \in \mathbb{R}$. Let $f(x) = \sum_{n=0}^{\infty} f_n(x)$. One special case of this is when $f_n(x) = a_n x^n$, where a_n are constants, and we have a power series. Then it follows also from the previous lemma that is $\sum a_n c^n$ converges for c > 0, $\sum a_n x^n$ converges absolutely for all $x \in (-c, c)$. So then

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{n=0}^{\infty} a_n x^n \right) = \sum_{n=1}^{\infty} n a_n x^{n-1}, \qquad x \in (-c, c),$$

and

$$\int_{a}^{b} \sum_{n=0}^{\infty} a_n x^n \, dx = \sum_{n=0}^{\infty} \int_{a}^{b} a_n x_n \, dx, \qquad -c < a < b < c.$$

This is only true for infinite power series (note: and the integration is possible because we have <u>uniform convergence</u> in this case).

For certain functions f(x) and certain ranges of z, we can write

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \qquad a_n = \frac{1}{n!} f^{(n)}(0).$$

This says that the power series converges and, furthermore, to f(x) for certain ranges of x. Some notable examples of Taylor series are:

1. if f(x) is a polynomial then trivially the Taylor series is f(x) for all $x \in \mathbb{R}$;

2.

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \cdots, \quad x \in \mathbb{C};$$

3. Remembering that $\cosh x + \sinh x = e^x$, we have that

$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots, \qquad \cosh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$

4. using $e^{i\theta} = \cos \theta + i \sin \theta$, we have that

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots, \qquad \sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots.$$

5.

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \qquad |x| < 1$$

(note that x = 1 is actually defined, with $\log 2 = 1 - 1/2 + 1/3 + \cdots$);

6.

$$(1+x)^c = 1 + \sum_{n=1}^{\infty} {c \choose n} x^n, \qquad {c \choose n} = \frac{c(c-1)\cdots(c-n+1)}{n!}.$$

Example The energy of an object with mass m and speed v is, in Einstein's model of energy and relativistic kinetic energy,

$$E = mc^3(c^2 - v^2)^{-1/2} = mc^2(1 - v^2/c^2)^{-1/2},$$

where c is the speed of light, and |v/c| < 1 (an object cannot travel faster than the speed of light). Then a Taylor expansion of this gives, in powers of v^2/c^2 ,

$$E = m\left(1 + \frac{1}{2}\frac{v^2}{c^2} + \frac{3}{8}\left(\frac{v^2}{c^2}\right)^2 + \cdots\right)c^2 = mc^2 + \frac{1}{2}mv^2 + \frac{3}{8}\frac{mv^4}{c^2} + \cdots, \qquad |v| < c$$

We know that $E=mc^2$ is the Einstein rest energy equation, and $E=mv^2/2$ is the Newtonian energy equation for moving mass; the rest are relativistic corrections which are only significant when $v \lesssim c$.

Example Using $(1-x)^{-1} = 1 + x + x^2 + x^3 + \cdots$, derive the first two terms of the Taylor series for $g(x) = (1 + 2x^3)^{-2}$. Let $x = -2x^3$. Then $g(x) = (1 - (2x^3) + (2x^3)^2 + \cdots)^2 = 1 - 4x^3 + 12x^6 + \cdots$.

III. INTEGRATION

There are different definitions of the integral, with different properties.

A. Riemann integral

A partition of a closed interval [a, b] is a finite set of real numbers $\{x_0, x_1, \dots x_n\}$ where

$$a = x_0 < x_1 < x_2 \cdots < x_n = b.$$

Let f(x) be defined and bounded on [a, b], and \mathcal{P} be a partition of [a, b], i.e., $\mathcal{P} = \{x_0, x_1, \dots x_n\}$. Then the <u>upper Riemann sum</u> $\mathcal{U}(\mathcal{P})$ and <u>lower Riemann sum</u> $\mathcal{L}(\mathcal{P})$ of f(x) relative to \mathcal{P} are, respectively,

$$\mathcal{U}(\mathcal{P}) = \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot \sup_{x \in [x_i, x_{i-1}]} f(x), \qquad \mathcal{L}(\mathcal{P}) = \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot \inf_{x \in [x_i, x_{i-1}]} f(x).$$

Geometrically, $(x_i - x_{i-1})$ is the base of the rectangle, and the sup and inf part are the height of the rectangles that bounds the graph f(x) just above and just below respectively.

Example For f(x) = x on [0, 1], let $\mathcal{P} = \{i/n\}_{i=0}^n$. Then since $x_i - x_{i+1} = 1/n$ for all i, we have

$$\mathcal{U}(\mathcal{P}) = \frac{1}{n} \left(\frac{1}{n} + \frac{2}{n} \dots + \frac{n}{n} \right) = \frac{1}{n^2} (1 + 2 \dots + n) = \frac{1}{n^2} \frac{1}{2} n(n+1) = \frac{n+1}{2n}$$

(the sum of the first n integers is the nth triangle number), and

$$\mathcal{L}(\mathcal{P}) = \frac{1}{n} \left(0 + \frac{1}{n} \dots + \frac{n-1}{n} \right) = \frac{1}{n^2} \frac{1}{2} (n-1)n = \frac{n-1}{2n}.$$

Additionally, notice that $\mathcal{U}(\mathcal{P}) < 1/2$ and $\mathcal{L}(\mathcal{P}) > 1/2$, with $\mathcal{U}(\mathcal{P}) - \mathcal{L}(\mathcal{P}) \to 0$ as $n \to \infty$.

Let f be defined and bounded on [a, b], and

$$\mathcal{U} = \inf{\{\mathcal{U}(\mathcal{P})\}}, \qquad \mathcal{L} = \sup{\{\mathcal{L}(\mathcal{P})\}}$$

for all possible partitions \mathcal{P} . Then f is Riemann integrable if $\mathcal{U} = \mathcal{L}$, and we write

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \mathcal{U} = \mathcal{L}.$$

Example For

$$f(x) = \begin{cases} 0, & \text{if } x \notin \mathbb{Q}, \\ 1, & \text{if } x \in \mathbb{Q}, \end{cases}, \qquad x \in [0, 1],$$

f is defined and bounded, but $\mathcal{U}(\mathcal{P}) = 1$ and $\mathcal{L}(\mathcal{P}) = 0$ for all \mathcal{P} , so f is not Riemann integrable.

Lemma III.1 If \mathcal{P} is a partition of [a,b] and we add one extra point to give \mathcal{P}' , then $\mathcal{L}(\mathcal{P}) \leq \mathcal{L}(\mathcal{P}') \leq \mathcal{L}(\mathcal{P}') \leq \mathcal{L}(\mathcal{P})$.

Proof Suppose we add x' into $(x_i - x_{i-1})$, then in $\mathcal{L}(\mathcal{P}')$, $(x_i - x_{i-1})$ inf f is replaced by

$$(x'-x_{i-1})\inf_{[x_{i-1},x']}f+(x_i-x')\inf_{[x',x_i]}f,$$

which is bigger than or equation, so $\mathcal{L}(\mathcal{P}) \leq \mathcal{L}(\mathcal{P}')$. Similarly, we have $\mathcal{U}(\mathcal{P}') \leq \mathcal{L}(\mathcal{P})$.

Lemma III.2 If \mathcal{P}_1 and \mathcal{P}_2 are two partitions of [a,b], with $\mathcal{P}_1 \subseteq \mathcal{P}_2$, then $\mathcal{L}(\mathcal{P}_1) \leq \mathcal{L}(\mathcal{P}_2) \leq \mathcal{L}(\mathcal{P}_2) \leq \mathcal{L}(\mathcal{P}_1)$.

Proof Apply previous lemma as many times as required.

Theorem III.3 Let f be defined and bounded on [a,b]. Then f is Riemann integrable iff for any $\epsilon > 0$, there exists a partition \mathcal{P} of [a,b] such that $\mathcal{U}(\mathcal{P}) - \mathcal{L}(\mathcal{P}) < \epsilon$.

Proof We first show that we always have $\mathcal{L} \leq \mathcal{U}$. Let \mathcal{P}_1 and \mathcal{P}_2 be any two partitions, and put $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$. By the lemma, we have

$$\mathcal{L}(\mathcal{P}_1) < \mathcal{L}(\mathcal{P}) < \mathcal{U}(\mathcal{P}) < \mathcal{L}(\mathcal{P}_2),$$

so taking the sup of the left hand side and the inf of the right hand side, we have $\mathcal{L} \leq \mathcal{U}$.

Suppose now f is Riemann integrable, so $\mathcal{L}=\mathcal{U}$. Let $\epsilon>0$ by given, then, by definition of \mathcal{L} , there exists a \mathcal{P}_2 such that $\mathcal{L}(\mathcal{P}_2)\geq \mathcal{L}-\epsilon/2$ (since \mathcal{L} is the supremum over all partitions). Similarly, we have some \mathcal{P}_1 where $\mathcal{U}(\mathcal{P}_1)\leq \mathcal{U}+\epsilon/2$. Let $\mathcal{P}=\mathcal{P}_1\cup\mathcal{P}_2$, then, by previous lemma, we have

$$\mathcal{L} - \frac{\epsilon}{2} < \mathcal{L}(\mathcal{P}_1) < \mathcal{L}(\mathcal{P}) < \mathcal{U}(\mathcal{P}) < \mathcal{U}(\mathcal{P}_2) < \mathcal{U} + \frac{\epsilon}{2},$$

and since $\mathcal{L} = \mathcal{U}$, we have $\mathcal{U}(\mathcal{P}) - \mathcal{L}(\mathcal{P}) < \epsilon$ after rearranging.

Suppose instead $\mathcal{U}(\mathcal{P}) - \mathcal{L}(\mathcal{P}) < \epsilon$ for all $\epsilon > 0$, then, by definition,

$$0 < \mathcal{U} - \mathcal{L} < \mathcal{U}(\mathcal{P}) - \mathcal{L}(\mathcal{P}) < \epsilon$$
.

For arbitrary small ϵ errors, we have $\mathcal{U} = \mathcal{L}$, so f is Riemann integrable.

Example Consider $f(x) = x^2$ on [0,1]. Let $\mathcal{P}_n = \{i/n\}_{i=0}^n$. Then observing that all intermediate terms cancel, $\mathcal{U}(\mathcal{P}_n) - \mathcal{L}(\mathcal{P}_n) = (1-0)/n$. For all $\epsilon > 0$, we take $1/n < \epsilon$, and this shows f(x) is Riemann integrable for $x \in [0,1]$. In fact, recalling the formula for the sum of the first n square numbers,

$$\mathcal{U}(\mathcal{P}_n) = \frac{1}{n} \left(\frac{1^2}{n^2} + \frac{2^2}{n^2} \dots + \frac{n^2}{n^2} \right) = \frac{1}{n^3} \frac{n(2n+1)(n+1)}{6} \to \frac{1}{3}$$

as $n \to \infty$, so $\int_0^1 x^2 dx = 1/3$, which we know already.

Theorem III.4 If f is an increasing function on [a, b] then f is Riemann integrable. (Similarly, if it is decreasing, consider -f.)

Proof Since f is increasing, on $[x_{i-1}, x_i]$, sup $f(x) = f(x_i)$ and inf $f(x) = f(x_{i-1})$. Let $\epsilon > 0$ be given, and take $\mathcal{P}_n = \{x_i = a + ih/n\}_{i=0}^n$, where h = b - a is the width of the rectangle. Then

$$\mathcal{U}(\mathcal{P}_n) = \frac{h}{n} \sum_{i=1}^n f(x_i), \qquad \mathcal{L}(\mathcal{P}_n) = \frac{h}{n} \sum_{i=1}^n f(x_{i-1}),$$

and

$$\mathcal{U}(\mathcal{P}_n) - \mathcal{L}(\mathcal{P}_n) = \frac{b-a}{n} (f(x_n) - f(x_0)) = \frac{b-a}{n} (f(b) - f(a)),$$

so choosing n big enough gives us $\mathcal{U}(\mathcal{P}_n) - \mathcal{L}(\mathcal{P}_n) < \epsilon$ as required.

Theorem III.5 If f is continuous on [a, b], then f is Riemann integrable.

Some properties of the integral:

- if $f(x) \ge 0$ for all $x \in [a, b]$, then $\int_a^b f(x) dx \ge 0$ (because both the supremum and infimum are both positive, so \mathcal{U} and \mathcal{L} are positive);
- if $f(x) \ge g(x)$ for all $x \in [a, b]$, then $\int_a^b f(x) dx \ge \int_a^b f(x) dx$ (since $f(x) g(x) \ge 0$ for all $x \in [a, b]$);
- $|\int_a^b f(x) dx| \le \int_a^b |f(x)| dx$ (since $-f(x) \le |f(x)| \le f(x)$);
- $\int [Af(x) + Bg(x)] dx = A \int f(x) dx + B \int g(x) dx$ (linearity);
- $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$ for $c \in (a,b)$.

B. Improper integrals

Let f(x) be continuous for $x \ge c$, and define $F(m) = \int_c^m f(x) dx$. If $f(m) \to L$ as $m \to \infty$, then we say that $\int_c^\infty f(x) dx$ converges to L, otherwise the integral diverges.

Example Determine the convergence of the following integrals:

1.
$$\int_0^\infty e^{-x} dx$$
. We have $F(m) = 1 - e^{-m} \to 1$ as $m \to \infty$, so it converges.

2. $\int_0^\infty \sin x \, dx$. We have $F(m) = 1 - \cos m$, and this does not converge, so integral diverges.

Proposition III.6 If $\int_0^\infty f(x) dx = L$ and $\int_0^\infty g(x) dx = K$, then $\int_0^\infty [Af(x) + Bg(x)] dx = AL + BK$.

Proposition III.7 If $\int_{c}^{\infty} f(x) dx$ converges and a > c, then $\int_{a}^{\infty} f(x) dx$ converges.

Theorem III.8 (Comparison test) Suppose f(x) and g(x) are continuous, with $0 \le f(x) \le g(x)$. If $\int_c^\infty g(x) dx$ converges, then $\int_c^\infty f(x) dx$ converges.

Proof Defining $F(m) = \int_c^m f(x) \, \mathrm{d}x$ and $G(m) = \int_c^m g(x) \, \mathrm{d}x$, then $F(m) \leq G(m)$, and both are increasing functions since $f,g \geq 0$. Since $G(m) \to K$ as $m \to \infty$, then $F(m) \leq G(m) \leq K$. F(m) is thus bounded, and by completeness axiom, F(m) tends to a limit as $m \to \infty$.

Example Determine the convergence of the following integrals:

1.
$$\int_{1}^{\infty} x^{-2} \log x^2 \, \mathrm{d}x.$$

By comparing with $x^{-1/2} \log x$, we observe that $x^{-1/2} \log x \to 0$ as $x \to \infty$, so g is bounded above by some K, with

$$0 \le x^{-2} \log x = x^{-3/2} (x^{-1/2} \log x) \le x^{-3/2} K.$$

By comparison, since $\int_1^\infty x^{-3/2} \, \mathrm{d}x$ converges, the integral converges.

2.
$$\int_{1}^{\infty} t/\sqrt{t^4+1} \, dt$$
.

This integral roughly goes like t^{-1} for large t, so we expect divergence. Indeed, for $t \ge 1$, $t^4 + 1 \le t^4 + t^4 \le 2t^4$, so

$$0 \le \int_1^\infty \frac{1}{\sqrt{2}} \frac{1}{t} dt \le \int_1^\infty \frac{t}{\sqrt{t^4 + 1}} dt,$$

so the integral diverges by comparison.

If $\int_0^\infty |f(x)| \, \mathrm{d}x$ converges, we say $\int_0^\infty f(x) \, \mathrm{d}x$ is <u>absolutely convergent</u>. If $\int_0^\infty f(x) \, \mathrm{d}x$ converges but $\int_0^\infty |f(x)| \, \mathrm{d}x$ diverges, then $\int_0^\infty f(x) \, \mathrm{d}x$ is <u>conditionally convergent</u>.

Theorem III.9 (Absolute convergence theorem) If $\int_a^\infty f(x) dx$ is absolutely convergent, then $\int_a^\infty f(x) dx$ converges.

Proof Given that $\int_a^\infty |f(x)| dx$ converges, we have, for all $x \ge a$,

$$0 \le f(x) + |f(x)| \le 2|f(x)|,$$

and so by comparison and linearity of the integral, $\int_a^\infty f(x) \, \mathrm{d}x$ converges.

Example Determine the convergence of the following integrals:

- $1. \int_{\pi}^{\infty} x^{-2} \cos x \, \mathrm{d}x.$
 - Since $|x^{-2}\cos x| = x^{-2}$, the integral converges absolutely, so the integral converges.
- $2. \int_{\pi}^{\infty} x^{-1} \sin x \, dt.$

Doing an integration by parts, we have

$$\int_{-\pi}^{m} \frac{\sin x}{x} \, dx = \left[-\frac{\cos x}{x} \right]_{\pi}^{m} - \int_{-\pi}^{m} \frac{\cos x}{x^{2}} \, dx = -\frac{\cos m}{m} - \frac{1}{\pi} - \int_{-\pi}^{m} \frac{\cos x}{x^{2}} \, dx.$$

From the previous example, all terms are finite as $m \to \infty$, so the integral converges.

We note however the integral is only conditionally convergent. Denoting

$$I_n = \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} \, \mathrm{d}x,$$

note that $\int_{\pi}^{\infty} f(x) dx = \sum_{n=1}^{\infty} I_n$. Let $x = n\pi + y$, then $y + n\pi \le (n+1)\pi$ as $y \le \pi$, so doing a change of variables and using the double angle formulae, we have

$$I_n = \int_0^{\pi} \frac{\sin y}{n\pi + y} \, \mathrm{d}y \ge \int_0^{\pi} \frac{\sin y}{(n+1)\pi} \, \mathrm{d}y = \frac{2}{(n+1)\pi},$$

and the series on the RHS diverges, so $\sum I_n$ diverges by comparison, and hence the integral is only conditionally convergent.

3. $\int_{1}^{\infty} (x^2 + \log x)^{-1} \sin \pi x \, dx$.

Since $0 \le |f(x)| \le x^{-2}$ on this domain, the integral converges absolutely by comparison.

Suppose f is continuous on (a, b]. Writing $F(\epsilon) = \int_{\epsilon}^{b} f(x) dx$, if $F(\epsilon) \to L$ as $\epsilon \to a$, the integral converges to L.

Example Determine the convergence of the following integrals:

1. $\int_0^1 1/x^p \cos x \, dx, p > 0.$

$$F(\epsilon) = \int_{\epsilon}^{1} \frac{1}{x^{p}} dx = \begin{cases} -\log \epsilon, & p = 1, \\ \frac{1 - \epsilon^{1-p}}{1 - p}, & p \neq 1. \end{cases}$$

This has a limit iff 1-p>0 as $\epsilon\to 0$, i.e., iff p<1. So, for example, $\int_0^1 1/x^2\,\mathrm{d}x$ diverges but $\int_0^1 1/\sqrt{x}\,\mathrm{d}x$ converges.

2. $\int_0^1 \log x \, dx$.

$$F(\epsilon) = \int_{\epsilon}^{1} \log x \, \mathrm{d}x = -1 - \epsilon \log \epsilon + \epsilon.$$

With $\epsilon = 1/y$, $\epsilon \to 0$ is equivalent to $y \to \infty$, and so $-\epsilon \log \epsilon = y^{-1} \log y \to 0$ as $\epsilon \to 0$, thus $F(\epsilon) \to -1$ as $\epsilon \to 0$, and hence the integral converges.

3. $\int_0^1 x^{-3/2} e^{-x} dx$.

Note that $1/e \le e^{-x} \le 1$ for $x \in [0, 1]$, so $x^{-3/2}e^{-x} \ge x^{-3/2}e^{-1}$. The integral $\int_0^1 x^{-3/2} dx$ diverges from the previous example, so the integral diverges by comparison.

4. $\int_0^1 x^{-1/2} \cos x \, dx$.

For $x \in (0,1], 0 < \cos x \le 1$, so $0 < x^{-1/2} \cos x \le x^{-1/2}$, so the integral converges by comparison.

5. $\int_0^1 x^{-1/2} \cos 2x \, dx$.

We note that $0 \le |x^{-1/2}\cos 2x| \le x^{-1/2}$, so the integral converges absolutely by comparison.

6. $\int_0^1 1/\sqrt{1-x^2} \, dx$.

Notice that $(1-x^2)^{-1/2}=(1-x)^{-1/2}(1+x)^{-1/2}$, so we can split this accordingly as partial fractions. A substitution with y=1-x gives $\int_0^1 y^{-1/2} \, \mathrm{d}y$ and converges by comparison. The second integral is finite and well-defined, so the total integral converges. (Alternatively, spot that we can use $x=\sin u$, and the integral has the value $\pi/2$.)

7. $\int_0^\infty (\log x)/(1+x^4) \, \mathrm{d}x$.

We split this integral into $\int_0^1 + \int_1^\infty$. For $x \in (0,1], 1 \le 1 + x^4 \le 2$, so

$$1 \le \frac{1}{1+x^4} \le \frac{1}{2} \qquad \Rightarrow \qquad \left| \frac{\log x}{1+x^4} \right| \le |\log x|,$$

so the first part of the integral converges. For the second integral, since $x^{-1} \log x \to 0$, $x^{-1} \log x \le K < \infty$, and so

$$0 \le \frac{\log x}{1 + x^4} \le \frac{\log x}{x} \frac{x}{1 + x^4} \le K \frac{x}{x^4} = \frac{K}{x^3},$$

so the second integral converges by comparison, and the whole integral converges.

8. $\int_0^\infty (x^3 + \sqrt{x})^{-c} dx, c \in \mathbb{R}.$

Let $f(x)=(x^3+\sqrt{x})^{-c}$ and consider $\int_0^1 f(x)\,\mathrm{d}x$ and $\int_1^\infty f(x)\,\mathrm{d}x$. for $0\le x\le 1$, $\sqrt{x}\le x^3+\sqrt{x}\le 2\sqrt{x}$, so $x^{-c/2}\ge f(x)\ge 2x^{-c/2}$, and the first integral converges iff c/2<1, or c<2. On the other hand, $x^3\le x^3+\sqrt{x}\le 2x^3$, so $x^{-3c}\ge f(x)\ge 2x^{-3/2}$, and the second integral converges iff 3c>1, or c>1/3. Thus the whole integral converges iff 1/3< c<2.

IV. LIMITS, CONTINUITY AND DIFFERENTIABILITY OF FUNCTIONS

A. Limits and continuity

Suppose a < c < b, and f(x) is defined in (a,b) except possibly at c. Then we say $f(c) \to L$ if, given $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \epsilon$ for all $\delta > |x - c|$ (i.e., we make arbitrary small errors if we choose are close enough to x = c).

Example Show whether the limit exists or not in these examples:

1. f(x) = 2x at c = 1.

We expect f(x) = 2 for $x \to 1$. Given $\epsilon > 0$, we have to $|f(x) - 2| < \epsilon$, which results in $2|x - 1| < \epsilon$, and we need to choose an appropriate δ . Taking $\delta = \epsilon/2$, we have

$$|x-1| < \delta = \frac{\epsilon}{2}$$
 \Leftrightarrow $2|x-1| < \epsilon$

as required. We could also choose $\delta = \epsilon/4$, which will give the same thing.

2. f(x) = H(x), the Heaviside function, with H(x) = 1 for x > 0 and zero otherwise, at x = 0.

In this case there is a jump at x=0 and we claim the limit does not exist at x=0. Suppose otherwise, and take $\epsilon=1/2$. We need to choose $\delta>0$ such that $|f(x)-L|<\epsilon$ for $|x-0|<\delta$, i.e., |f(x)-L|<1/2 if $|x|<\delta$.

If $x \in (-\delta, 0)$, f(x) = 0, so |L| < 1/2, and -1/2 < L < 1/2. If $x \in (0, \delta)$, then f(x) = 1, then |1 - L| < 1/2, and so 1/2 < L < 3/2. The two regions however are not over-lapping, so there we have a contradiction, and f(x) has no limit as $x \to 0$.

Suppose f(x) is defined for (a,b) and a < c < b, then f(x) is <u>continuous</u> at c if $f(x) \to f(x)$ if $x \to c$. More formally, given $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - f(x)| < \epsilon$$
 for all $|x - c| < \delta$.

Theorem IV.1 Let f(x) be continuous at x = c, and let $\{x_n\}_{n=1}^{\infty}$ be a sequence with $\lim_{x \to \infty} = c$. Then $f(x_n) \to f(x)$ as $n \to \infty$.

Proof Let $\epsilon > 0$ be given, and we seek an N such that $|f(x_n) - f(x)| < \epsilon$ for all $n \ge N$. First, by assumption, there exists $\delta > 0$ such that $|f(x) - f(x)| < \epsilon$ for all $|x - c| < \delta$. Then, there exists N such that $|x_n - c| < \delta$ for all $n \ge 1$ also by assumption, so we can always choose δ for given ϵ since we can choose a big enough n.

Example Determine the continuity of the following functions:

1. $f(x) = x^2$ at x = 1 using $\epsilon - \delta$.

For continuity, we want to show

$$|f(x) - f(1)| = |x^2 - 1| = |x - 1| \cdot |x + 1| < \epsilon$$

for small enough δ . Taking $\delta < 1$, if $|x - 1| < \delta$, then

$$|x-1| < 1$$
 \Rightarrow $1 < x+1 < 3$.

So we could take $\delta = \min\{\epsilon/3, 1\}$, i.e., $\delta < \epsilon/3$ and $\delta < 1$. Then we have |x+1| < 3 and $|x-1| > \epsilon/3$, so

$$|x+1| \cdot |x-1| < 3(\epsilon/3) = \epsilon.$$

f(x) = 1/x at x = 1 using ϵ - δ .

We want

$$|f(x) - f(1)| = \left|\frac{1}{x} - 1\right| = \left|\frac{x - 1}{x}\right| < \epsilon$$

given $|x-1| < \delta$. Let $\delta \le 1/2$, then if $|x-1| < \delta$, we have 2 > 1/x > 2/3, so we take $\delta = \min\{1/2, \epsilon/2\}$. This gives

$$\frac{1}{|x|} < 2 \qquad \text{and} \qquad |x-1| < \epsilon/2,$$

so $|x-1|/|x| < 2(\epsilon/2) = \epsilon$, so function is continuous at x=1. (If we instead chose $\delta \le 1$, we would have $|f(x)-f(1)| < \epsilon = \epsilon/2$, and the same conclusion holds.)

Theorem IV.2 Let f(x) and g(x) be continuous at x = c, then:

- 1. Af(x) + Bg(x) is continuous at x = c for $A, B \in \mathbb{R}$;
- 2. f(x)g(x) is continuous at x = c;
- 3. f(x)/g(x) is continuous at x = c for $g(x) \neq 0$ for all $x \in (c k, c + k)$;
- 4. if h(y) is continuous at d = f(c), then $(h \circ f)(x) = h(f(x))$ is continuous at x = c.

Proof All of these are fairly obvious except perhaps for the last one. Let $\epsilon > 0$ be given. We want to find an α such that

$$|h(y) - h(d)| < \epsilon$$
 given $|y - d| < \alpha$,

for y = f(x), d = f(x). So we want to find δ such that

$$|f(x) - f(c)| < \alpha$$
 given $|x - c| < \delta$.

We have $|x-c| < \delta$, so

$$|y - d| < \alpha$$
 \Rightarrow $|h(f(x)) - h(f(c))| < \epsilon$

as required.

Theorem IV.3 (Intermediate Value Theorem) For $f:[a,b] \to \mathbb{R}$ that is continuous, if f(a) < 0 and f(b) > 0, there exists $c \in [a,b]$ such that f(c) = 0. (This may be obviously shifted for f(c) = k.)

Proof We proceed by the bisection algorithm. Suppose we start with $a_1 = a$, and $b_1 = b$, then we look at $c = (b_1 - a_1)/2$. If f(c) = 0, we output this c. Else, if f(c) > 0, then we take $a_2 = a_1$, $b_2 = c$ and iterate, otherwise if f(c) < 0, we take $a_2 = c$, $b_2 = b_1$, and iterate; by construction, the initial assumptions are still satisfied at the iteration.

Either way, we either find c such that f(c) = 0 after a finite number of iterations, or we get $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$. By construction, these sequences satisfy the following properties:

- 1. $\{a_n\}$ and $\{b_n\}$ are increasing and decreasing sequences respectively;
- 2. $f(a_n) < 0$ and $f(b_n) > 0$ by construction;
- 3. by completeness of \mathbb{R} , $\{a_n\}$ is bounded above and $\{b_n\}$ is bounded below;
- 4. $b_n a_n = (b a)2^{1-n}$.

Then we clearly have $a_n \to L$ and $b_n \to K$, and

$$|L - K| = |L - a_n + a_n - b_n + b_n - K| \le |L - a_n| + |b_n - a_n| + |b_n - K| \to 0$$

as $n \to \infty$, so L = k. Then since $f(a_n) \to f(L)$ and $f(b_n) \to f(K)$ as $n \to \infty$ by continuity, but $f(a_n) < 0$ and $f(b_n) > 0$, $f(L) \le 0$ and $f(K) \ge 0$, with L = K, we have f(L) = 0, and we output this L as our c.

Theorem IV.4 If $f:[a,b] \to \mathbb{R}$ is continuous, then f is bounded.

Proof We proceed again by bisection to look for a contradiction. suppose f satisfies the assumptions but is not bounded, the, without loss of generality, suppose f is not bounded above on [a,b]. Let $a_1=a$ and $b_1=b$ and bisect to find the $c\in [a,b]$ value where f(c) is unbounded. Doing the iteration, we obtain sequences $a_n,b_n\to c$ where a_n and b_n satisfies the conditions above. If the function is not bounded above, there exists $x_n\in [a_n,b_n]$ such that $f(x_n)>n$ for all n. With this, $\{f(x_n)\}$ cannot have a limit, but since f is continuous, $f(x_n)\to f(c)$ as $n\to\infty$, which is a contradiction. A similar argument for boundedness below shows that f is bounded.

Theorem IV.5 If $f:[a,b] \to \mathbb{R}$ is continuous, then $\sup f$ is <u>attained</u>, i.e., there exists $c \in [a,b]$ such that $f(c) = \sup f(x)$. (Similarly for $\inf f$.)

Proof There exists sup f by the previous theorem. Suppose that sup f is not attained, therefore $f(x) < \sup f$ for all $x \in [a, b]$. Let $g(x) = (\sup f - f(x))^{-1}$. Since f(x) is continuous, sup f - f(x) is continuous and positive, so g(x) is continuous and well-defined. Applying the previous theorem to g shows that g is bounded also, so for g(x) < K for all $x \in [a, b]$, we have

$$\sup f - f(x) > \frac{1}{K} \qquad \Leftrightarrow \qquad f(x) < \sup f - \frac{1}{K}.$$

This violates the definition of the supremum, so we have a contradiction, and the supremum is attained.

Let f(x) be defined on $x \in (b, c)$. Then we say $f(x) \to L$ as $x \searrow b$ (x tending to b from the right/above) if, given $\epsilon > 0$, there exists δ such that $|f(x) - L| < \epsilon$ for $x \in (b, b + \delta)$. Similarly, we have $x \nearrow c$ (x tending to x from the left(below).

Theorem IV.6 If f(x) is defined on $x \in (a,b) \cup (b,c)$, then

$$\lim_{x \to b} f(x) = L \qquad \textit{iff} \qquad \lim_{x \searrow b} f(x) = \lim_{x \nearrow b} f(x) = L.$$

Proof Essentially follows by definition.

Theorem IV.7 If f(x) is an increasing function which is bounded above on (a,b), then $f(x) \to L = \sup_{x \to a} f(x) = \sup_{x \to a} f(x)$.

Proof There exists $\sup f$ by completeness of \mathbb{R} , with $f(x) \leq \sup f = L$ for all $x \in (a,b)$. Let $\epsilon > 0$ be given. Since $L - \epsilon$ is not an upper bound, there exists $x_0 \in (a,b)$ such that $f(x_0) > L - \epsilon$. Taking $\delta = b - x_0$, then for $x \in (b - \delta b)$, we have

$$L - \epsilon < f(x_0) \le f(x) \le g < L + \epsilon,$$

so $|f(x) - L| < \epsilon$, as required.

B. Differentiation

A function f(x) is differentiable at x = c if there exists

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

or, equivalently,

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$

In terms of ϵ - δ , f(x) is differentiable at x=c with derivative f'(c) there if, given $\epsilon>0$, there exists $\delta>0$ such that

$$\left| \frac{f(x) - f(c)}{x - c} - f'(c) \right| < \epsilon$$
 for all $|x - c| < \delta$.

Theorem IV.8 If f is differentiable at x = c, then f is continuous at x = c.

Proof

$$|f(x) - f(c)| = |x - c| \left| \frac{f(x) - f(c)}{x - c} \right| \to 0 \cdot f'(c) = 0$$

as $x \to c$, so f is continuous at x = c since f'(c) is finite by assumption.

Note that continuity does not imply differentiability.

Theorem IV.9 (Fundamental theorem of calculus) If f is continuous on [a,b], then $F(x) = \int_a^x f(t) dt$ is differentiable for $x \in (a,b)$ and F'(x) = f(x).

Proof Let $c \in (a,b)$ and f be continuous. Then, by definition, given $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(c)| < \epsilon$ for all $|x - c| < \delta$. For $0 < h < \delta$,

$$\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| = \left| \frac{1}{h} \left(\int_a^{c+h} f(t) dt - \int_a^c f(t) dt \right) - f(c) \right| = \left| \frac{1}{h} \int_c^{c+h} f(t) dt - f(c) \right|.$$

Now, $\int_{c}^{c+h} f(c) dt = hf(t)$, so by absorbing the term into one integral, we have the inequality

$$\left|\frac{1}{h}\int_{c}^{c+h}(f(t)-f(c))\,\mathrm{d}t\right|\leq\frac{1}{h}\int_{c}^{c+h}|f(t)-f(c)|\,\mathrm{d}t<\frac{1}{h}\int_{c}^{c+h}\epsilon\,\mathrm{d}t=\epsilon,$$

as required. A similar argument holds for $-\delta < h < 0$, so F(x) is differentiable for $|h| < \delta$, and F'(c) = f(c).

Remark Notice that we have

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a}^{x} f(t) \, \mathrm{d}t \right) = f(x),$$

but

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_a^b f(x, y) \, \mathrm{d}y \right) = \int_a^b \left(\frac{\partial}{\partial x} f(x, y) \right) \, \mathrm{d}y.$$

Theorem IV.10 (Leibniz rule) If f(x) and g(x) are differentiable, then

$$\frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x).$$

Proof By definition,

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} [f(x)g(x)] &= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \left[f(x+h)\frac{g(x+h) - g(x)}{h} + g(x)\frac{f(x+h) - f(x)}{h} \right] \\ &\to f(x)g'(x) + g(x)f'(x) \end{split}$$

because the functions are assumed to be differentiable.

A function f has a <u>local maximum</u> at x = a if there exists h > 0 such that $f(x) \le f(a)$ for all $x \in (a - h, a + h)$. A similar definition holds for local minimum.

Theorem IV.11 If f is differentiable at x = a and f has a local extrema at x = a, then f'(a) = 0.

Proof Suppose f has a local maximum at x = a, then

$$R(k) = \frac{f(a+k) - f(a)}{k} \to f'(a)$$

as $k \to 0$. For k > 0, $f(a+k) \le f(a)$ by assumption, so $R(k) \le 0$. Let $\{k_n\}$ be a positive decreasing sequence with $k_n \to 0$ as $n \to \infty$. So we have $R(k_n) \to f'(a) \le 0$ as $n \to \infty$. Similarly, for k < 0, $R(k) \ge 0$ because now the denominator is negative. With $\{k_n\} \to 0$ a negative increasing sequence, we have $R(k_n) \to f'(a) \ge 0$ as $n \to \infty$, so f'(a) = 0 for the individual one-sided limits to agree. A similar argument assuming for a local minimum shows at local extrema, f'(a) = 0.

Theorem IV.12 (Rolle's theorem) Let f be continuous on [a,b] and differentiable on (a,b), with f(a)=f(b), then there exists $c \in (a,b)$ such that f'(c)=0.

Proof since f is continuous, f is bounded and the bounds are attained, i.e., there exists $c_1, c_2 \in [a, b]$ such that $f(c_2) \leq f(x) \leq f(c_1)$ for all $x \in [a, b]$. If $f(c_1) = f(c_2)$, then f is constant and f'(x) = 0 for all $x \in [a, b]$, and the conclusion holds trivially. If $f(c_1) > f(c_2)$, then c_1 and c_2 cannot simultaneous be end points (because f(a) = f(b) by assumption). Taking c be one of the c_1 or c_2 which is in (a, b). If $c = c_1$, then f(c) is the local maximum, otherwise if $c = c_2$, then f(c) is a minimum minimum. In either case, f'(c) = 0 as required.

Theorem IV.13 (Mean value theorem) Let f be continuous on [a,b] and differentiable on (a,b). Then there exists $c \in (a,b)$ such that f'(c) = (f(b) - f(a))/(b - a).

Proof With g(x) = f(x) - [(f(b) - f(a))/(b - a)]x we have g(a) = g(b), and g satisfies the condition of Rolle's theorem, so g'(c) = f'(c) - (f(b) - f(a)/(b - a)) = 0, and we have the result.