Course notes: Logistic Regression

Logistic regression vs Linear regression

Logistic regression implies that the possible outcomes are **not** numerical but rather categorical.

Examples for categories are:

- Yes / No
- Will buy / Won't Buy
- 1/0

Linear regression model: $Y = \theta_0 + \theta_1 X_1 + ... + \theta_k X_k + \varepsilon$

Logistic regression model:
$$p(X) = \frac{e^{(\beta_0 + \beta_1 X_1 + ... + \beta_k X_k)}}{1 + e^{(\beta_0 + \beta_1 X_1 + ... + \beta_k X_k)}}$$

Logistic model

The logistic regression predicts the probability of an event occurring.

Visual representation of a logistic function

Logistic regression model

Logistic regression model

$$\frac{p(X)}{1-p(X)} = e^{(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)}$$

The logistic regression model is not very useful in itself. The right-hand side of the model is an exponent which is very computationally inefficient and generally hard to grasp.

Logit regression model

When we talk about a 'logistic regression' what we usually mean is 'logit' regression – a variation of the model where we have taken the log of both sides.

$$\log \left(\frac{p(X)}{1-p(X)}\right) = \log \left(e^{(\beta_0 + \beta_1 x + \dots + \beta_k x_k)}\right)$$
$$\log \left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 x + \dots + \beta_k x_k$$

$$\log (odds) = \beta_0 + \beta_1 x + \cdots + \beta_k x_k$$

ODDS =
$$\frac{p(X)}{1 - p(X)}$$

Coin flip odds:

The odds of getting heads are 1:1 (or simply 1)

Fair die odds:

The odds of getting 4 are 1:5 (1 to 5)

Logistic regression model

The dependent variable, y;
This is the variable we are trying to predict.

Indicates whether our model found a solution or not.

Coefficient of the intercept, b₀; sometimes we refer to this variable as constant or bias.

Coefficient of the independent variable i: b_i; this is usually the most important metric – it shows us the relative/absolute contribution of each independent variable of our model. For a logistic regression, the coefficient contributes to the **log odds** and cannot be interpreted directly.

McFadden's pseudo-R-squared, used for comparing variations of the same model. Favorable range [0.2,0.4].

Log-Likelihood* (the log of the likelihood function). Always negative. We aim for this to be as high as possible.

Log-Likelihood-Null is the loglikelihood of a model which has no independent variables. It is used as the benchmark 'worst' model.

Log-**Likelihood** Ratio p-value measures of our model is statistically different from the benchmark 'worst' model.

*Likelihood function: a function which measures the goodness of fit of a statistical model. MLE (Maximum Likelihood Estimation) tries to maximize the likelihood function.

Underfitting

Overfitting

The model has not captured the underlying logic of the data.

Our training has focused on the particular training set so much it has "missed the point".