Regular expressions: derivations

Which of the following statements is true? If it is true, give a derivation; if not, explain.

- 1. $a \in L(a+b)$
- $2. ab \in L((a+b))$
- $3. ab \in L((a+b)(a+b))$
- $4. \ aa \in \mathsf{L}(a+a)$
- $5. \ \varepsilon \ \in \ \mathsf{L}(b*)$
- $6. \ b \ \in \ \mathsf{L}(b*)$
- 7. $bb \in L(b*)$
- $8. \in L()$

Regular expressions: properties

Two regular expressions r and r' are equivalent if for all xs, $xs \in \mathsf{L}(r)$ if and only if $xs \in \mathsf{L}(r')$.

Prove the following regular expressions are equivalent, for all regular expression a,b,c.

- 1. a and a + 0
- 2. a + a and a
- 3. a+b and b+a
- 4. a + (b + c) and (a + b) + c
- 5. 1a and a
- 6. $(a^*)^*$ and a^*

Evaluation of lambda terms

Given the following definitions:

$$I = \lambda x.x$$

$$K = \lambda xy.x$$

$$S = \lambda xyz.(xz)(yz)$$

Give a derivation of:

- 1. *Ia*
- $2.\ KIab$
- 3. (IK)(II)
- 4. S(K(Ka))(Kb)c

The typed lambda calculus

Let Γ be an environment including:

- \bullet one : N
- is Even : N - > B
- not: B -> B
- add : N->N->N

Give typing derivations for the following terms:

- 1. isEven one
- 2. add one one
- 3. $\lambda x : B. \operatorname{not}(\operatorname{not} x)$
- 4. $\lambda x : N$. one
- 5. $\lambda x: N.\lambda y: N.$ is Even x
- 6. $\lambda x:(N\to N).$ not