Probleme recapitulative

- 1. Considerăm următorul cod:
- 1) se aleg aleatoriu şi independent trei numere X_1, X_2 şi X_3 astfel:
 - X_1 este ales aleatoriu din vectorul u = [3; 1; 1; 2; 2; 3; 2; 3; 1; 1];
 - X_2 este ales aleatoriu din vectorul v = [2; 1; 1; 3; 3; 2; 3; 2; 1; 1];
 - X_3 este alea aleatoriu din vectorul w = [3; 2; 2; 1; 1; 3; 1; 3; 2; 2];
- 2) se returnează $X = X_1 + X_2 + X_3$.

Determinați: a) probabilitatea ca outputul X să fie 4;

- b) probabilitatea ca outputul X să fie mai mic sau egal decât 8;
- c) probabilitatea ca outputul X să fie 4, știind că outputul X este mai mic sau egal decât 8.

R: a)
$$P(X = 4) = P(X_1 = 2, X_2 = 1, X_3 = 1) + P(X_1 = 1, X_2 = 2, X_3 = 1) + P(X_1 = 1, X_2 = 1, X_3 = 2)$$

= $0.3 \cdot 0.4 \cdot 0.3 + 0.4 \cdot 0.3 \cdot 0.3 + 0.4 \cdot 0.4 \cdot 0.4 = 0.136$.

- b) $P(X \le 8) = 1 P(X_1 = X_2 = X_3 = 3) = 1 0.3 \cdot 0.3 \cdot 0.3 = 1 0.027 = 0.973.$ c) $P(X = 4 | X \le 8) = \frac{P(X = 4)}{P(X \le 8)} = \frac{0.136}{0.973} = \frac{136}{973}.$
- 2. Se consideră vectorul aleator discret (U, V) cu distribuția dată sub formă tabelară:

U	-1	1	b
1	0,25	0,05	a
3	0,3	a	0,1

- a) Să se determine constantele reale a și b, știind că E(V) = 0.15.
- b) Sunt variabilele aleatoare U şi V independente?
- c) Să se calculeze valoarea medie a variabilei aleatoare $(U-3)^2$.

R: a)
$$2a + 0.4 + 0.3 = 1 \Rightarrow a = 0.15$$
; $P(V = -1) = 0.55$, $P(V = 1) = 0.2$, $P(V = b) = 0.25$, $E(V) = -0.55 + 0.2 + b \cdot 0.25 = 0.15 \Rightarrow b = 2$.

- b) P(U=1) = 0.45, P(V=1) = 0.2, P(U=1, V=1) = 0.05
 - $\Rightarrow P(U=1) \cdot P(V=1) \neq P(U=1,V=1)$ pentru că $0.09 \neq 0.05$
- c) P(U=1) = 0.45; $P(U=3) = 0.55 \Rightarrow E((U-3)^2) = 0.45 \cdot 4 = 1.8$.
- 3. Timpul de reacție (în secunde) al unui proces chimic este o variabilă aleatoare, notată cu X, care are funcția de densitate $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} \frac{3a^3}{x^4}, & x > a \\ 0, & x \le a \end{cases}$$
 unde $a > 0$ este parametru necunoscut.

Să se calculeze $P(X \leq 2a)$ și E(X) în funcție de a.

4. Un cod binar format din trei biți $B_3B_2B_1$ este generat conform rețelei Bayes reprezentate alăturat cu următoarele probabilități: $P(B_1 = 1) = 0.4$; $P(B_2 = 1|B_1 = 1) = P(B_3 = 0|B_1 = 1) = 0.4$ 0.2; $P(B_2 = 0|B_1 = 0) = P(B_3 = 1|B_1 = 0) = 0.3$.

c) distribuția produsului $B_1 \cdot B_2 \cdot B_3$; d) valoarea medie a codului trecut în baza 10.

5. Fie X v.a. care indică timpul de restartare al unui anumit sistem și are funcția de densitate $f_X: \mathbb{R} \to \mathbb{R}$

$$f_X(t) = \begin{cases} c (3-t)^2, & 0 < t < 3 \\ 0, & \text{altfel.} \end{cases}$$

- a) Determinați valoarea constantei c.
- b) Determinați funcția de repartiție F_X .

c) Determinați $P(1 < X < 2)$ și $P(X < 2 X > 1)$.
6. Într-o urnă sunt 4 bile verzi, 5 bile albastre, 6 bile roșii. Se extrag fără returnare 3 bile. Care este probabilitatea ca la extragerea a doua să se obțină o bilă verde și la extragerea a treia o bilă roșie?
7. 5 bile numerotete congequity de le 1 le 5 gunt egogete enigental în med elector. Determinati
 7. 5 bile numerotate consecutiv de la 1 la 5 sunt așezate orizontal în mod aleator. Determinați: a) probabilitatea ca prima și ultima bilă să aibe numere pare;
b) probabilitatea ca primele două bile să aibe numere impare;
 c) probabilitatea ca bilele cu numere pare să fie alăturate; d) probabilitatea să nu fie două bile cu numere de aceași paritate alăturate.
8. Un cod de 5 cifre este generat aleator. Care este probabilitatea ca
a) toate cifrele să fie distincte?
b) să conțină doar cifre pare distincte?
c) exact 3 cifre să fie egale? d) să conțină doar cifrele 1, 2, 3 (de exemplu: 12131, 22113, 31312, etc.)?
9. Se dau două urne. Prima urnă conține 2 bile negre și 3 bile roșii. A doua urnă conține 3 bile negre și 2 bile roșii. Se aruncă un zar. Dacă se obține un număr par, atunci se extrag două bile din prima urnă, cu repunerea bilei extrase în
urnă. Dacă se obține un număr impar, atunci se extrag două bile din a doua urnă, fără repunerea bilei extrase în urnă.
Fie X variabila aleatoare care indică numărul de bile roșii extrase. Determinați: a) distribuția lui X ;
b) valoarea medie lui X ;
c) funcția de repartiție a lui X ;

d) valoarea medie a numărului de repetiții independente ale experimentului descris mai sus până la prima repetiție a

experimentului în urma căreia se obțin două bile roșii.

10. Icsulescu face naveta cu microbusul. El ajunge în fiecare zi în autogară la ora 16:30 cu o întârziere T (în minute) care are funcția de repartiție $F_T(t)=\begin{cases} 0, & t<0\\ \frac{t}{10}, & t\in[0,10]. \end{cases}$ Microbusul pornește la ora 16:39. Determinați: 1, & t>10

- a) probabilitatea ca Icsulescu să piardă microbusul:
- b) valoarea medie a întârzierii lui Icsulescu;
- c) valoarea medie a numărului de zile succesive (cu întârzieri independente) când Icsulescu prinde microbusul până la prima zi când pierde microbusul;
- d) probabilitatea ca în 5 zile (cu întârzieri independente) Icsulescu să piardă microbuzul în cel puțin două zile.

- 11. Se alege uniform aleator un punct în dreptunghiul $[1,2] \times [2,4] \subset \mathbb{R}^2$. Să se calculeze:
- a) probabilitatea ca punctul să fie în dreptunghiul $\left[\frac{4}{3}, \frac{5}{3}\right] \times \left[\frac{5}{2}, \frac{7}{2}\right]$;
- b) valoarea medie a pătratului distanței de la punctul ales la origine.

- 12. Fie $N \sim Unid(5)$. Se generează apoi un cod binar cu N cifre, în care probabilitatea de apariție a lui 0, respectiv 1, este egală cu 0.5 (de exemplu: N=2, X=01; N=3, X=010; N=1, X=1). Să se calculeze:
- a) P(X = 1011|N = 4);
- b) probabilitatea ca suma S, a cifrelor lui X, să fie egală cu 3.

R: a)
$$P(X = 1011|N = 4) = \frac{P(\{X = 1011\} \cap \{N = 4\})}{P(N = 4)} = \frac{P(\{X = 1011\})}{P(N = 4)} = \frac{\frac{1}{2^4}}{\frac{1}{5}} = \frac{5}{2^4}.$$

b) $P(S = 3) = \sum_{i=1}^{5} P(S = 3|N = i)P(N = i) = \frac{1}{5} \sum_{i=3}^{5} \frac{C_i^3}{2^i}.$

b)
$$P(S=3) = \sum_{i=1}^{5} P(S=3|N=i)P(N=i) = \frac{1}{5} \sum_{i=3}^{5} \frac{C_i^3}{2^i}$$
.

13. Departamentul de resurse umane al unei companii mari suspectează că angajații iau în medie pauza de prânz (care cf. contractului durează maxim 1 oră) mult mai lungă. Pe baza unui eșantion format din 36 de angajați s-a obținut o medie de 70 minute și o abatere standard de 15 minute pentru durata pauzei. Formulați ipoteza nulă și ipoteza alternativă și testați cu un nivelul de semnificație de 5% dacă în medie durata pauzei este respectată sau este depășită. Construiți un interval de încredere bilateral pentru abaterea standard a duratei pauzei de prânz.

u	0.02	0.025	0.04	0.05	0.95	0.96	0.975	0.98
tinv(u, 35)	-2.13	-2.03	-1.80	-1.69	1.69	1.80	2.03	2.13
chi2inv(u, 35)	20.03	20.57	21.82	22.47	49.80	50.93	53.20	54.24
norminv(u, 0, 1)	-2.05	-1.96	-1.75	-1.64	1.64	1.75	1.96	2.05

14. Fie $x_1, \ldots, x_{10} \in (0,1)$ date statistice pentru caracteristica X, a cărei funcție de densitate este $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} 2\theta x^{2\theta - 1}, \operatorname{dacă} 0 < x \le 1 \\ 0, \operatorname{dacă} x \notin (0, 1] \end{cases},$$

unde $\theta > 0$ este parametru necunoscut. Să se estimeze θ cu ajutorul a) metodei verosimilității maxime; b) metodei momentelor.

15. Fie $X_1,...,X_n,...$ variabile aleatoare independente, care au aceeași distribuție

$$P(X_i = -1) = P(X_i = 1) = 0.5$$
 pentru fiecare $i \in \mathbb{N}^*$.

Fie $Y_i = \max\{X_i, X_{i+1}\}$ pentru $1 \le i \le n-1$.

- (a) Să se determine distribuția de probabilitate pentru Y_i , $1 \le i \le n-1$.
- (b) Să se calculeze valoarea medie și varianța pentru $Y_i,\,1\leq i\leq n-1.$
- (c) Fie $Z_n = \frac{1}{n}(X_1^3 + X_2^3 + ... + X_n^3), n \in \mathbb{N}^*$. Spre ce valoare converge aproape sigur şirul $(Z_n)_n$?

- 16. Timpul de servire a unui client la un anumit ghișeu la o bancă durează în medie 10 minute și poate fi descrisă de o variabilă aleatoare exponențială.
 - (a) Cu ce probabilitate servirea unui client durează cel mult un sfert de oră?
 - (b) În medie cât ar trebui să dureze timpul de servire a unui client, dacă probabilitatea ca timpul de servire a unui client să fie mai mare decât un sfert de oră este egală cu 0.1?

Indicație: Funcția de densitate a distribuției exponențiale $X \sim Exp(\lambda)$ este

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & : x > 0\\ 0 & : x \le 0. \end{cases}$$

17. a) Fie X variabila aleatoare care indică de câte ori a apărut numărul 1 la 3 aruncări ale unui zar. Să se calculeze E(X). b) Dacă se aruncă de 432 ori trei zaruri, de câte ori apare $\hat{\imath}n$ medie tripletul (1,1,1)?

18. Fie $U \sim Unif[1,2]$ cu funcția de densitate $f_U : \mathbb{R} \to \mathbb{R}$

$$f_U(x) = \begin{cases} 1, \text{ pentru } x \in [1, 2], \\ 0, \text{ altfel } . \end{cases}$$

- a) Să se arate P(U > 0) = 1.
- b) Să se determine funcția de repartiție pentru U și 1/U.
- c) Să se determine funcția de densitate pentru 1/U.

19. Probabilitatea ca un anumit tip de cip să fie defect este 0.06. O componentă pentru calculator are instalate 12 astfel de cipuri. Componenta este funcțională dacă 11 sau mai multe dintre cipuri sunt operaționale.						
(1) Calculați probabilitatea ca						
(1a) 12 astfel de cipuri să fie funcționale;(1b) componenta să fie funcțională.						
(2) Dacă un calculator are instalate 4 astfel de componente, care este probabilitatea ca cel puțin 3 dintre ele să fie funcționale?						
(3) Dacă 3 astfel de componente sunt instalate pe un calculator, care este probabilitatea ca în total mai mult de 30 de chipuri să fie funcționale?						
20. Se studiază caracteristica: timpul de producție a unui anumit produs. Această caracteristică se presupune a fi normal distribuită și s-a realizat un eșantion cu 25 de valori (în minute). Pe baza acestora s-a obținut o valoare medie de 8.1 minute și o abatere standard de 1.6 minute. Cu un nivel de semnificație $\alpha = 0.05$, testați dacă se poate afirma: a) abaterea standard a timpului de prelucrare este 1.5 minute; b) media timpului de prelucrare este 7.8 minute.						