

Plan de test

Projet Toby

Plan de test

Projet Toby

Les informations d'identification du document

Référence du document :	D7
Version du	1.01
document:	
Date du	14/12/2020
document:	
Auteurs:	FLEURY Pierre
	JORDAN Célia
	JULIARD Victor
	KOSAREVA Margarita

Les éléments de vérification du document

Validé par :	FLEURY Pierre
	JORDAN Célia
	JULIARD Victor
Validé le :	14/12/2020
Soumis le :	14/12/2020
/m 1	Doggan and Alaskassians
Type de	Document électronique
diffusion :	(.pdf)
· -	-
· -	-
· -	-
diffusion :	(.pdf)
diffusion :	(.pdf) Standard/Etudiants

Mots clés : plan de test

Table des matières

1.	Introdu	action	4
-	1.1 Ob	jectifs et méthodes	4
2.	Concep	ts de base	4
3.	Test for	nctionnels	4
•	3.1 Po	ur chaque scénario	4
	3.1.1	Identification	4
	3.1.2	Description	4
	3.1.3	Contraintes	5
	3.1.4	Dépendances	6
	3.1.5	Procédure de test	6
4.	Test d'i	ntégration	9
2	4.1 Po	ur chaque scénario	9
	4.1.1	Identification	9
	4.1.2	Description	9
	4.1.3	Contraintes	9
	4.1.4	Dépendances	9
	4.1.5	Procédure de test	9
5	Tests 11	nitaires	10

1. Introduction

1.1 Objectifs et méthodes

Le but de ce projet est de crée un code qui permette au robot de récupérer un maximum de palet sur un terrain défini (3m*2m) et de les ramener dans les « cages ». Pour cela il faut que le robot puisse maitriser plusieurs méthodes et qu'il puisse repérer tout seul les différents palets sur le plateau. Les palets sont normalement placer à un endroit fixe mais ils peuvent se retrouver à être déplacer, le robot doit donc pouvoir les détecter peu importe leur position.

2. Concepts de base

Afin de comprendre sans difficulté le document voici quelques définitions :

Int	Type d'un objet qui doit être un nombre entier
Float	Type d'un objet qui doit être un nombre entier ou réel
String	Type d'un objet qui doit être une chaine de caractère
Char	Type d'un objet qui doit être un seul caractère

3. Test fonctionnels

3.1 Pour chaque scénario

3.1.1 Identification

Chaque test est répété plusieurs fois afin de les vérifier au mieux.

Méthodes	Test 1	Test 2	Test 3
Avancer (int v, int	1.01	1.02	1.03
d)			
Reculer (int v, int	1.04	1.05	1.06
d)			
Orienter (int a)	1.07	1.08	1.09
Rechercher ()	1.10	1.11	1.12
getDistance ()	1.13	1.14	1.15
ouvrirPinces()	1.16	1.17	1.18
fermerPinces()	1.19	1.20	1.21
CapteurCouleur()	1.22	1.23	1.24
isPressed()	1.25	1.26	1.27

3.1.2 Description

1.01	On test la méthode avancer sur 30cm avec une vitesse de		
	500mm/sec sur un espace plat.		
1.02	On test la méthode avancer sur 1m avec une vitesse de 500mm/sec		
	sur un espace plat.		

1.03	On test la méthode avancer sur 1m avec une vitesse de 400mm/sec
	sur un espace plat.
1.04	On test la méthode reculer sur 30cm avec une vitesse de
	500mm/sec sur un espace plat.
1.05	On test la méthode reculer sur 1m avec une vitesse de 500mm/sec
	sur un espace plat.
1.06	On test la méthode reculer sur 1m avec une vitesse de 40mm/sec
	sur un espace plat.
1.07	On test la méthode orienter de 45° avec une vitesse de 100mm/sec
	sur un espace plat.
1.08	On test la méthode orienter de 90° avec une vitesse de 100mm/sec
	sur un espace plat.
1.09	On test la méthode orienter de 180° avec une vitesse de 100mm/sec
	sur un espace plat.
1.10	On test la méthode rechercher avec le palet à droite .
1.11	On test la méthode rechercher avec le palet à gauche .
1.12	On test la méthode rechercher avec le palet derrière .
1.13	On test la méthode getDistance() avec une distance de 30cm .
1.14	On test la méthode getDistance() avec une distance de 50cm .
1.15	On test la méthode getDistance() avec une distance de 1m .
1.16	On test la méthode ouvrirPinces() avec la vitesse maximum
	possible pendant 100 secondes
1.17	On test la méthode ouvrirPinces() avec la vitesse maximum
	possible pendant 400 secondes
1.18	On test la méthode ouvrirPinces() avec la vitesse maximum
	possible pendant 800 secondes
1.19	On test la méthode fermerPinces() avec la vitesse maximum
	possible pendant 100 secondes
1.20	On test la méthode fermerPinces() avec la vitesse maximum
	possible pendant 400 secondes
1.21	On test la méthode fermerPinces() avec la vitesse maximum
	possible pendant 800 secondes
1.22	On test la méthode CapteurCouleur() avec du rouge, sur un espace
	plat.
1.23	On test la méthode CapteurCouleur() avec du bleu, sur un espace
	plat.
1.24	On test la méthode CapteurCouleur() avec du blanc, sur un espace
	plat.
1.25	On test la méthode isPressed() en enclenchant le capteur toucher à
	la main pendant quelques secondes
1.26	On test la méthode isPressed() en faisant avancer le robot de 1m
4 7 =	afin que le capteur soit enclencher par le palet qui lui est à 30cm
1.27	On test la méthode isPressed() en faisant avancer le robot de m afin
	que le capteur soit enclencher par le palet qui lui est à 30cm

3.1.3 Contraintes

1.01 à	La vitesse des moteurs ainsi que la synchronisation des roues.
1.09	

1.10 à	On ne peut pas faire de distinction entre un palet et un mur a
1.12	part une fois que l'on est assez proche de celui-ci.
1.13 à	Comme la distance est détecter par une vision en forme de cône il
1.15	faut bien faire attention à ce que rien ne soit capter dans les
	alentours qui serait gênant.
1.16 à	Il ne faut pas trop ouvrir ou trop fermer les pinces pour éviter de
1.21	casser le mécanisme.
1.22 à	La lumière ambiante n'est pas toujours la même ainsi le blanc
1.24	n'est pas le même selon celle-ci.
1.25 à	Le capteur toucher ne s'enclenche que s'il est pressé pendant une
1.27	petite durée ainsi il peut se retrouver à ne pas toujours être
	presser par le palet.

3.1.4 Dépendances

1.01 à	La synchronisation des roues
1.09	
1.10 à	Les méthodes avancer(), orienter() et getDistance()
1.12	
1.13 à	Les méthodes prédéfinis getDistanceMode() et fetchSample([],int)
1.15	
1.16 à	Les méthodes prédéfinis rotate(int) et getMaxSpeed()
1.21	
1.22 à	Les méthodes prédéfinis setFloodlight(color),
1.24	fetchSample(color,int)
1.25 à	La méthode prédéfini fetchSample([],int)
1.27	

3.1.5 Procédure de test

Test	Résultats	Critère de	Résultats
	attendus	validation	obtenus
1.01	On veut que le	Si le robot avance	Le robot avance
	robot avance	bien en ligne	bien droit.
	droit.	droite	
1.02	On veut que le	Si le robot avance	Le robot n'avance
	robot avance	bien en ligne	pas bien droit, la
	droit.	droite	vitesse des
			moteurs est trop
			rapide
1.03	On veut que le	Si le robot avance	Le robot avance
	robot avance	bien en ligne	bien droit.
	droit.	droite	
1.04	On veut que le	Si le robot recule	Le robot recule
	robot recule	bien en ligne	bien droit.
	droit.	droite	
1.05	On veut que le	Si le robot recule	Le robot ne
	robot recule	bien en ligne	recule pas bien
	droit.	droite	droit, la vitesse

			des moteurs est
			trop rapide
1.06	On veut que le robot recule droit.	Si le robot recule bien en ligne droite	Le robot recule bien droit.
1.07	On veut que le robot tourne de 45°	Si le robot tourne de 45°	Le robot tourne correctement.
1.08	On veut que le robot tourne de 90°	Si le robot tourne de 90°	Le robot tourne correctement.
1.09	On veut que le robot tourne de 180°	Si le robot tourne de 180°	Le robot tourne correctement.
1.10	On veut que le robot distingue un mur d'un palet	Si le robot arrive à récupérer un palet	Il y arrive bien.
1.11	On veut que le robot distingue un mur d'un palet	Si le robot arrive à récupérer un palet	Il détecte les murs avant le palet et prend donc beaucoup de temps mais fini par le récupérer.
1.12	On veut que le robot distingue un mur d'un palet	Si le robot arrive à récupérer un palet	Il détecte les murs avant le palet et prend donc beaucoup de temps mais fini par le récupérer.
1.13	On veut que le robot nous retourne la distance devant lui	Si le robot retourne la bonne distance	Le robot retourne bien la bonne distance
1.14	On veut que le robot nous retourne la distance devant lui	Si le robot retourne la bonne distance	Le robot retourne bien la bonne distance
1.15	On veut que le robot nous retourne la distance devant lui	Si le robot retourne la bonne distance	Le robot retourne bien la bonne distance
1.16	On veut que le robot ouvre les pinces assez pour récupérer un palet	Si l'ouverture est assez grande pour récupérer un palet	L'ouverture n'est pas assez grande
1.17	On veut que le robot ouvre les	Si l'ouverture est assez grande	L'ouverture est assez grande

	pinces assez pour récupérer un	pour récupérer un palet	
	palet	un paiet	
1.18	On veut que le	Si l'ouverture est	L'ouverture est
1,10	robot ouvre les	assez grande	trop grande
	pinces assez pour	pour récupérer	trop grande
	récupérer un	un palet	
	palet	un paict	
1.19	On veut que le	Si l'ouverture est	La fermeture
1.10	robot ferme les	assez petite pour	n'est pas assez
	pinces assez pour	récupérer un	petite
	récupérer un	palet	P
	palet	r	
1.20	On veut que le	Si l'ouverture est	La fermeture
	robot ferme les	assez petite pour	tient bien le palet
	pinces assez pour	récupérer un	
	récupérer un	palet	
	palet		
1.21	On veut que le	Si l'ouverture est	La fermeture est
	robot ferme les	assez petite pour	trop petite cela
	pinces assez pour	récupérer un	décale les pinces
	récupérer un	palet	
	palet	~~··	-1.
1.22	On veut voir s'il	S'il ne capte rien	Il ne détecte rien
	ne détecter pas		
	du blanc alors		
1.00	qu'il y a du rouge	CV:1	T1 1/4
1.23	On veut voir s'il	S'il ne capte rien	Il ne détecte rien
	ne détecter pas du blanc alors		
	qu'il y a du rouge		
1.24	On veut voir s'il	S'il capte du	Il ne détecte rien
1,24	détecte du blanc	blanc	ce qui ne va pas.
1.25	On veut que le	S'il détecte que le	Il le détecte bien
1.20	robot détecte un	capteur toucher	If it detecte bien
	palet si le	est enclencher	
	capteur toucher		
	est enclencher		
1.26	On veut que le	S'il détecte que le	Il le détecte bien
	robot détecte un	capteur toucher	
	palet si le	est enclencher	
	capteur toucher		
	est enclencher		
1.27	On veut que le	S'il détecte que le	Il ne le détecte
	robot détecte un	capteur toucher	pas toujours bien
	palet si le	est enclencher	
	capteur toucher		
	est enclencher		

4. Test d'intégration

4.1 Pour chaque scénario

4.1.1 Identification

Méthodes	Test 1	Test 2	Test 3
getPremierPalet()	2.01	2.02	2.03
deposerPalet()	2.04	2.05	2.06

4.1.2 Description

2.01	On test la méthode getPremierPalet() en mettant celui-ci à 30cm
	avec une vitesse de 500mm/sec sur un espace plat.
2.02	On test la méthode getPremierPalet() en mettant celui-ci à 50cm
	avec une vitesse de 500mm/sec sur un espace plat.
2.03	On test la méthode getPremierPalet() en mettant celui-ci à 1m
	avec une vitesse de 500mm/sec sur un espace plat.
2.04	On test la méthode deposerPalet() en mettant celui-ci à droite de
	la ligne d'arrivée avec une vitesse de 500mm/sec sur un espace
	plat.
2.05	On test la méthode deposerPalet() en mettant celui-ci à gauche de
	la ligne d'arrivée avec une vitesse de 500mm/sec sur un espace
	plat.
2.06	On test la méthode deposerPalet() en mettant celui-ci à face de la
	ligne d'arrivée avec une vitesse de 500mm/sec sur un espace plat.

4.1.3 Contraintes

2.01 à	Ce n'est que du code dur ainsi si le palet n'est pas placer
2.03	correctement cela ne fonctionnera pas
2.04 à	Il faut qu'il puisse détecter le mur d'en face à moins d'une
2.06	certaine distance

4.1.4 Dépendances

2.01 à	Il faut que les méthodes avancer et orienter fonctionne bien.
2.03	
2.04 à	Il faut que les méthodes avancer, getDistance et orienter
2.06	fonctionne bien

4.1.5 Procédure de test

Test	Résultats	Critère de	Résultats
	attendus	validation	obtenus

2.01	On veut que le robot récupère le palet rapidement et qu'il le ramène dans les « cages »	Si le robot ramène le palet au bon endroit	Cela fonctionne bien.
2.02	On veut que le robot récupère le palet rapidement et qu'il le ramène dans les « cages »	Si le robot ramène le palet au bon endroit	Cela fonctionne bien.
2.03	On veut que le robot récupère le palet rapidement et qu'il le ramène dans les « cages »	Si le robot ramène le palet au bon endroit	Cela ne fonctionne pas correctement il ne récupère pas le palet.
2.04	On veut que le robot ramène le palet dans les « cages »	Si le robot ramène le palet au bon endroit	Cela fonctionne bien.
2.05	On veut que le robot ramène le palet dans les « cages »	Si le robot ramène le palet au bon endroit	Cela fonctionne bien.
2.06	On veut que le robot ramène le palet dans les « cages »	Si le robot ramène le palet au bon endroit	Cela fonctionne bien.

5. Tests unitaires

Pour notre projet, aucun test unitaire n'a été nécessaire car cela était plus simple et non indispensable.