Jeremy Yeaton Viviane Déprez, PhD

Backgroun

Research Question

Experimenta Design

Results

Conclusion

Evidence for Prosodic Phrase Marking in French Double Negation

An experimental approach

Jeremy Yeaton Viviane Déprez, PhD

École normale supérieure de Paris Rutgers University

ConSOLE XXVI: UCL, London February 16, 2018

Backgroun

Research Question

Experimenta Design

Design

Result

Discussion

Conclusions

Nobody Say Nothing!

- Negative Concord: A single negation reading of a sequence of Negative Concord Items (NCI) Nobody say anything
- Negative **Discord**: Double negation Nobody say nothing → Everybody say something

But French can do both: Personne ne dit rien.

Rackgroup

Research

Experimenta

Design

Discussion

Conclusions

- 1 Background
- 2 Research Questions
- 3 Experimental Design
- 4 Results
- 5 Discussion
- **6** Conclusions

Background

Research Questions

Experimenta Design

Design

Disamosi

Discussio

Conclusions

Macro-Parametric Theory

Generative Theoretical Stance

NC languages are distinguished from DN ones by a macro-parameter (Zanutini 1991, Haegeman 1995, Zeijlstra 2004)

- French, Spanish, Catalan, etc.: NC Languages
- English, Dutch, German, etc.: DN Languages

Predictions:

- No real NC/DN ambiguity in languages
- DN Emerging in an NC language, or NC in a DN one would be a marked "anomaly", not part of the grammar

Jeremy Yeaton Viviane Déprez, PhD

Background

Research Question

Experimenta Design

Results

. .

Conclusions

The Nature of NCI

NCI are non-negative expressions

NC reading from sentential negation (overt or covert):

- Indefinites (Zeijlstra 2004, Chierchia 2013)
 ¬∃x∃y[x said y]: Negated Indefinites
- Universals (Giannakidou 2000, Shimoyama 2012)
 ∀x∀y¬[x said y]: Negated Universals

Prediction: No DN readings

NCI are negative expressions

NC reading from Resumptive Quantification (May 1989, de Swart & Sag 2002, Déprez 1997, 2000, 2011)

- NO< x, y > [x said y]: Resumptive Quantification (NC)
- NO< x > NO< y > [x said y]: Scopal interaction (DN)

Prediction: Both NC & DN possible, but unclear why languages differ

Background

Research Questions

Experimenta Design

Design

Discussii

Conclusions

The Nature of NCI

NCIs are **ambiguous** expressions (Micro-parametric approach)

- Lexical ambiguity (Longobardi 1986)
- Structural ambiguity (Déprez 1997...2000)
 - [DP...[NP NCI]]: non-negative
 - [_DP NCI[_NP...]]: negative

Déprez 2011: NEG feature is interpretable at Phase Edge If DP = phase, NCI = negative

- 1 At DP edge and
- 2 At vP or TP/CP edge

If DP \neq phase, only (2) matters

 Prediction: NC & DN subject to structural conditions, DP internal & sentential, that can differ within and across languages

Jeremy Yeaton Viviane Déprez, PhD

Background

The Case of French

Déprez et al, 2015, Picture choice task € 100 € 7/38

Jeremy Yeaton Viviane Déprez, PhD

${\sf Background}$

Research Question

Experimenta

Design

Result

Discussio

Conclusion

DN/NC and Prosody

Afrikaans (Huddlestone 2010):

Results supporting a prosodic distinction between DN/NC readings

Dutch (Fonville & de Swart 2013):

Mixed results: no characteristic prosody, but some patterns more closely associated with one type of reading

Problem: Design assumed context = accessed reading, no verification

Catalan (Prieto et al 2013, Tubau et al 2015):

Clear prosodic distinction in DN vs NC readings in answers to negative questions with NCI

Problem: In French, answers to negative questions with an NCI are not ambiguous: always DN

Background

Research Questions

Experimenta Design

Results

Conclusion

French Prosody

- No experimental evidence that prosody is a disambiguating factor in French, but some notes in the literature (Corblin 1996, Tovena & Corblin 2008)
- French uses phrasing to mark focus (Féry 2000), indicated by duration, intensity, and tone
- In simple SVO sentences, *Major Prosodic Phrases (MaP)* are identified by a pitch movement, a lengthening, or a pause (*Avanzi et al, 2014*)

Backgroun

Research Questions

Experimenta

2 03.8.1

Discussion

Conclusions

Research Question

- 1 Is prosody used in disambiguating French transitive sentences with two NCIs?
- What are the prosodic indicators which are employed by speakers to mark these differences?

Backgroun

Research Questions

Experimenta

D co.g.

Discussion

Conclusions

Predictions/ Hypotheses

- 1 Like other languages (e.g.: Spanish, Catalan), the DN reading in French will be prosodically marked.
- Speakers will use a high pitch accent and extended duration to indicate this markedness.

Research Question

Experimental Design

resuits

DISCUSSIO

Conclusions

General Idea

- Native French speakers were presented with simple, ambiguous transitive sentences with one (Control) or two (Critical) NCIs in context
- They were then asked to (at their own pace)
 - Read the entirety silently for comprehension
 - Read it aloud (as though to a child)
 - **3** Respond to T/F question
- Responses were recorded on an Asus Orion PRO gaming headset with a noise filtering microphone
- Recording took place at the Laboratoire sur le Langage, le Cerveau, et la Cognition (L2C2) in Bron, France
- Total experimental time ≤ 20 minutes

Background

Research Question

Experimental Design

. . .

Diaguasi

Discussio

Conclusion

Some Examples

NC Context

1 Dans notre famille, on est tous allergique à l'alcool : (In our family, we are all allergic to alcohol)

DN Context

• Chez les jeunes, la consommation d'alcool est effrayante : (Among the youth, the rate of alcohol consumption is frightening)

Ambiguous Critical Item

Personne ne boit rien dans les soirées.
 (Nobody drinks nothing/ anything at parties)

Interpretation Verification

- 4 Ils ne boivent pas d'alcool. (They don't drink alcohol)
 - = **T** for NC interpretation
 - = **F** or DN interpretation

Question

Experimental Design

Doculto

Discuss

Conclusion

Stimuli

- 40 total context/sentence pairs (8 items \times 5 conditions):
 - 1 8 × Double Negative: Personne ne mange rien ici
 - 2 8 × Negative Concord: Personne ne mange rien ici
 - 3 8 × Negative Object: Marie ne mange rien ici
 - 4 8 × Negative Subject: Personne ne mange mie ici
 - $\mathbf{6}$ 8 \times Fillers
- Pseudorandomized
- Same 8 frequent monosyllabic verbs
- Same number of syllables in target sentence
- Maximized sonorant use where possible
- Final PP to avoid sentence boundary L tone on object NCI

Research Question:

Experimental Design

resures

D. .

Conclusions

Participants

- 20 native French speakers (M=4)
- Age 18-45 (mostly students at University of Lyon)
- Representative of diverse regions of France
- All had a minimum of a university degree

Background

Research Questions

Experimental Design

Design

Conclusion

Data

Condition	Structure	Abbreviation	n
Double Negation	NCI-NCI	DN	137
Negative Concord	NCI-NCI	NC	140
Subtotal Criticals			277
Single Negative Object	DP-NCI	NegOb	149
Single Negative Subject	NCI-DP	NegSub	149
Total			575

Backgroun

Research Questions

Experimental Design

. . .

Discuss

Conclusions

Analysis

- Utterances were excised from context and text-aligned using EasyAlign (J.-Ph. Goldman, 2011) in Praat (Boersma & Weenink, 2015)
- Extracted for each syllable using ProsodyPro (Xu, 2013):
 - Duration
 - Max F0
 - Min F0
 - 10 time-normalized F0 measurements
- Only the first 6 syllables are included: per sonne ne [verb] rien PP[1]
- F0 values were de-meaned
- Analysis performed in R (LM, LMEM)
- Removed 1,136/33,790 (3.4%) data points $\geq 3\sigma$ from μ

Jeremy Yeaton Viviane Déprez, PhD

Background

Research Question

Experimenta Design

Results

Conclusions

Behavioral Overview

Jeremy Yeaton Viviane Déprez, PhD

Background

Research

Experimenta Design

Results

Conclusion

Behavioral Overview

Jeremy Yeaton Viviane Déprez, PhD

Daalianaiin

Research

Question

Experiment Design

Results

Diagonasia

Conclusions

Duration

Jeremy Yeaton Viviane Déprez, PhD

Backgroun

Research

Experiment

Results

Canalusian

Duration

Jeremy Yeaton Viviane Déprez, PhD

Backgroun

Research

Experiment

Results

Discussi

Conclusion

Range by Syllable

Jeremy Yeaton Viviane Déprez, PhD

Backgroun

Research

Experiment Design

Results

Discussion

Conclusion

Pitch Contours by Subject

Jeremy Yeaton Viviane Déprez, PhD

Background

Research

Experiment

Results

Discussion

Conclusion

Aggregated Pitch Contours

Jeremy Yeaton Viviane Déprez, PhD

Rackgroung

Research

Experiment

Results

D. .

Conclusion

A Closer Look

Jeremy Yeaton Viviane Déprez, PhD

Background

Research

Experiment

Results

Discussion

Conclusion

A Closer Look

Jeremy Yeaton Viviane Déprez, PhD

Backgroung

Research

Experiment

Results

Discussion

Conclusions

A Closer Look

Experiment: Design

Results

Discussi

Conclusion

NC Flattening

Linear Model:

 $F0^{\sim}$ timeseries + condition + time \times condition

1 Interaction effect of *timeseries* \times *condition*:

NC
$$(t = -4.558, p = 5.25e - 06)$$

NegSub $(t = 4.011, p = 6.11e - 05)$ ***
NegOb $(t = 2.549, p = 0.0108)$ *

2 Main effect of condition:

NC
$$(t = -5.077, p = 3.93e - 07)$$

NegSub $(t = -4.771, p = 1.87e - 06)$ ***
NegOb $(t = -2.006, p = 0.0449)$ *

3 Significant effect of *timeseries* across conditions

Backgroun

Research Question:

Experimenta Design

D coign

Discussion

Conclusions

Back to the Research Questions

- 1 Is prosody used in disambiguating French transitive sentences with two NCIs?
- What are the prosodic indicators which are employed by speakers to mark these differences?

Backgroun

Research Question

Experimenta

Design

Discussion

Circling Back to the Predictions

- Like other languages (e.g.: Spanish, Catalan), the DN reading in French will be prosodically marked.
- 2 Speakers will use a high pitch accent and extended duration to indicate this markedness.

Backgroun

Research Questions

Experimenta Design

Design

Discussion

Conclusion

Discussion: Duration

- Avanzi found that separate O phrasing is correlated with articulation rate (syllable duration)
- Extended duration in DN condition is encouraging for our hypothesis that NCl₂ is phrased separately

Backgroun

Research Question:

Experimenta Design

Ü

Discussion

Conclusion

Discussion: F0

The F0 distinctions we see on the second NCI are realizations of phrasing and tone:

NC

- Focus on *personne*
- rien is phrased as part of VP

```
L* H- L* H-/L- L% (([_{DP}\mathbf{Personne}]_{AP})([_{VP}\mathbf{ne}\ V\ \mathbf{rien}]_{AP})...([_{PP}...PP...]_{AP})_{IP})
```

DN

- Focus on personne
- VP is "dephrased" (Féry 2010)
- Focus on rien, which forms its own phrase
 L* H- L* LH- L%
 (([DPPersonne]AP) ne V ([DPrien]AP)...([PP...PP...]AP)IP)

Backgroun

Research Question

Experimenta Design

Discuss

Conclusions

Conclusions

- The availability of both readings rules out a Macro-Parametric approach
- This could support either a Resumptive Quantification approach or a Micro-Parametric one
- The acoustic cues that we see in French to mark phrasing might be clues to Syntax:
 - NC: NCI₂ is phrased within the VP & has H[TPPersonne [ne dit [VP [VPdit rien]]]]
 NCI₂ remains inside VP, so its NEG feature is not interpretable since it is not at an edge
 - **DN:** NCl₂ forms its own prosodic phrase with LH-[_{TP}Personne [ne dit [_{VP} rien [_{VP} rien]]]] NCl₂ is at vP edge where its NEG feature is interpretable

Research Question:

Experimenta Design

Discussi

Conclusions

Outstanding Questions and Next Steps

- Are these differences actually perceptible to speakers?
- Might speakers emphasize these features more in a situation with less clear context?
- Could these strategies be employed with less ambiguous types of multiple NCI sequences to the same effect?
- How can we investigate the processing of these different readings with an ERP study? Does one have a higher cost?

Jeremy Yeaton Viviane Déprez, PhD

Backgroun

Research Questions

Experimenta Design

Reculte

Discussi

Conclusions

Thank you for your attention!

Acknowledgements

Dr. Fanny Meunier, CNRS, L2C2 French Embassy in the U.S. Rutgers Comparative and Experimental Linguistics Lab Aresty Center for Undergraduate Research

jdyeaton27@gmail.com

Background

Research Question:

Experiment:

B 1

Discussio

Conclusions

R Output: Linear Model

```
Call:
lm(formula = demeaned_f0 ~ series * condition + series + condition,
    data = over46)
```

Residuals:

```
Min 1Q Median 3Q Max
-87.291 -12.271 0.894 11.842 97.834
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    128 7891
                                7.0734 18.207 < 2e-16 ***
series
                    -2.4613 0.1332 -18.483 < 2e-16 ***
                    -50.4014 9.9274 -5.077 3.93e-07 ***
conditionnc
conditionnegob
                    -19.6224
                                9.7837 -2.006
                                                0.0449 *
conditionnegsub
                    -47.1537 9.8829 -4.771 1.87e-06 ***
series:conditionnc
                   0.8520 0.1869 4.558 5.25e-06 ***
series:conditionnegob 0.4695
                                0.1842 2.549
                                                0.0108 *
series:conditionnegsub
                     0.7461
                                0.1860 4.011 6.11e-05 ***
---
```

```
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 20.76 on 7267 degrees of freedom Multiple R-squared: 0.1558, Adjusted R-squared: 0.155 F-statistic: 191.7 on 7 and 7267 DF, p-value: < 2.2e-16

Back to results

```
Evidence for
Prosodic
Phrase
Marking in
French Double
Negation
```

Backgroun

Research Question

Experimenta Design

_ .

Discussio

Conclusions

R Output: LMEM

```
Linear mixed model fit by REML ['lmerMod']
```

Formula: demeaned_f0 ~ series * condition + condition + series + (1 + condition | subj)

Data: over46

REML criterion at convergence: 63525.4

Scaled residuals:

Min 1Q Median 3Q Max -4.7017 -0.5404 -0.0309 0.4849 5.4231

Random effects:

Groups	Name	Variance	Std.Dev.	Corr		
subj	(Intercept)	60.61	7.785			
	conditionnc	59.59	7.719	-0.15		
	conditionnegob	83.66	9.147	-0.38	0.59	
	conditionnegsub	49.58	7.041	-0.31	0.18	0.54
Residual		353.04	18.789			
Number of	obs: 7275, group	ps: subj	, 20			

Fixed effects:

	Estimate	Std. Error	t value
(Intercept)	130.2274	6.6366	19.622
series	-2.4844	0.1206	-20.606
conditionnc	-52.0684	9.1518	-5.689
conditionnegob	-21.5778	9.0914	-2.373
conditionnegsub	-46.9842	9.0858	-5.171
series:conditionnc	0.8770	0.1692	5.182
series:conditionnegob	0.4982	0.1668	2.987
series:conditionnegsub	0.7371	0.1684	4.376

Correlation of Fixed Effects:

(Intr) series cndtnnc cndtnngb cndtnngs srs:cndtnnc srs:cndtnngb series -0.963

Backgroui

Research Questions

Experimenta Design

Design

Conclusions

R Output: ANOVA

```
Data: over46
Models:
full.lm: demeaned_f0 ~ series * condition + condition + series
ser_cond_slope.lmer: demeaned_f0 ~ series * condition + condition + series + (1 + ser_cond_slope.lmer: condition | subj)
Df AIC BIC loglik deviance Chisq Chi Df Pr(>Chisq)
full.lm 9 64787 64849 -32385 64769
ser_cond_slope.lmer 19 63565 63696 -31763 63527 1242.2 10 < 2.2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Back to result