Homework0916 Due date: 20210923, 1 P.M.

1-1 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	B	O	0	Ω	ω	Θ
<i>a</i> .	$\lg^k n$	n^{ϵ}					
<i>b</i> .	n^k	c^n					
c.	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	lg(n!)	$\lg(n^n)$					

1-1 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	B	0	0	Ω	ω	Θ
<i>a</i> .	$\lg^k n$	n^{ϵ}	Υ	Υ	N	Ν	N
<i>b.</i>	n^k	c^n	Υ	Υ	N	N	N
<i>c</i> .	\sqrt{n}	$n^{\sin n}$	Ν	N	N	N	N
d.	2^n	$2^{n/2}$	Z	N	Υ	Υ	N
e.	$n^{\lg c}$	$c^{\lg n}$	Υ	N	Υ	N	Υ
f.	lg(n!)	$\lg(n^n)$	Υ	N	Υ	N	Υ

1-2 Ordering by asymptotic growth rates

a. Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots, g_{30} of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.

$$\lg(\lg^* n) \quad 2^{\lg^* n} \quad (\sqrt{2})^{\lg n} \quad n^2 \quad n! \quad (\lg n)! \\
 (\frac{3}{2})^n \quad n^3 \quad \lg^2 n \quad \lg(n!) \quad 2^{2^n} \quad n^{1/\lg n} \\
 \ln \ln n \quad \lg^* n \quad n \cdot 2^n \quad n^{\lg \lg n} \quad \ln n \quad 1 \\
 2^{\lg n} \quad (\lg n)^{\lg n} \quad e^n \quad 4^{\lg n} \quad (n+1)! \quad \sqrt{\lg n} \\
 \lg^* (\lg n) \quad 2^{\sqrt{2 \lg n}} \quad n \quad 2^n \quad n \lg n \quad 2^{2^{n+1}}$$

$$\lg^* n = \min \{ i \ge 0 : \lg^{(i)} n \le 1 \} .$$

The iterated logarithm is a very slowly growing function:

$$\lg^* 2 = 1,
 \lg^* 4 = 2,
 \lg^* 16 = 3,
 \lg^* 65536 = 4,
 \lg^* (2^{65536}) = 5.$$

$$2^{2^{n+1}}$$

$$2^{2^{n}} n^{3}$$

$$(n+1)! n^{2} = 4^{\lg n} \ln n$$

$$n! n \lg n \text{ and } \lg(n!) \sqrt{\lg n}$$

$$e^{n} n = 2^{\lg n} \ln \ln n$$

$$n \cdot 2^{n} (\sqrt{2})^{\lg n} (= \sqrt{n}) 2^{\lg^{*} n}$$

$$2^{n} 2^{\sqrt{2 \lg n}} \lg^{*} n \text{ and } \lg^{*} (\lg n)$$

$$(3/2)^{n} (\lg n)^{\lg n} = n^{\lg \lg n} n^{1/\lg n} (= 2) \text{ and } 1$$

$$(\lg n)!$$

1-3 Asymptotic notation properties

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

- a. f(n) = O(g(n)) implies g(n) = O(f(n)).
- **b.** $f(n) + g(n) = \Theta(\min(f(n), g(n))).$
- c. f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.
- **d.** f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$.

Let f(n) and g(n) be asymptotically positive functions.

- **a.** No, f(n) = O(g(n)) does not imply g(n) = O(f(n)). Clearly, $n = O(n^2)$ but $n^2 \neq O(n)$.
- **b.** No, f(n) + g(n) is not $\Theta(\min(f(n), g(n)))$. As an example notice that $n + 1 \neq \Theta(\min(n, 1)) = \Theta(1)$.
- **c.** Yes, if f(n) = O(g(n)) then lg(f(n)) = O(lg(g(n))) provided that $f(n) \ge 1$ and $lg(g(n)) \ge 1$ are greater than or equal 1. We have that:

$$f(n) \le cg(n) \Rightarrow \lg f(n) \le \lg(cg(n)) = \lg c + \lg g(n)$$

To show that this is smaller than $b \lg g(n)$ for some constant b we set $\lg c + \lg g(n) = b \lg g(n)$. Dividing by $\lg g(n)$ yields:

$$b = \frac{\lg(c) + \lg g(n)}{\lg g(n)} = \frac{\lg c}{\lg g(n)} + 1 \leqslant \lg c + 1$$

The last inequality holds since $\lg g(n) \ge 1$.

d. No, f(n) = O(g(n)) does not imply $2^{f(n)} = O(2^{g(n)})$. If f(n) = 2n and g(n) = n we have that $2n \le 2 \cdot n$ but not $2^{2n} \le c2^n$ for any constant c by exercise 3.1 - 4.

1-4 Consider sorting n numbers stored in array A by first finding the largest element of A and exchanging it with the element in A[n]. Then find the second largest element of A, and exchange it with A[n-1]. Continue in this manner for all n elements of A. Write pseudocode for this algorithm, and answer the following questions: What loop invariant does this algorithm maintain? Give the best-case and worst-case running times of selection sort in asymptotic notation.

Answer:

Loop invariant: At the start of the i-th iteration, the subarray A[n-i+1,n] consists of the largest i elements of A in sorted order.

Best-case running time: $\Theta(n^2)$

Worst-case running time: $\Theta(n^2)$