G. Onde estão meus Genes

Time limit: 3s

Uma maneira que os cientistas tem para tentar medir como uma espécie evoluiu para outra é investigando como o genoma do ancestral se modificou para se transformar nesta outra espécie. Espécies intimamente relacionadas têm vários genes em comum e verifica-se que uma boa maneira de compará-las é através da comparação de como os genes comuns mudaram de lugar.

Uma das mutações mais comuns que alteram a ordem dos genes de genomas é a inversão. Se modelarmos um genoma como uma sequência de N genes sendo cada gene um número inteiro de 1 a N,então uma inversão é uma mutação que altera o genoma revertendo a ordem de um bloco de genes consecutivos. A inversão pode ser descrita por dois índices (i, j), $(1 \le i \le j \le N)$, indicando que ela inverte a ordem dos genes dentro de índices de i até j.

Assim, quando isto é aplicado para um genoma $[g1, \ldots, gi-1, gi, gi+1, \ldots, gj-1, gj, gj+1, \ldots, gN]$, obtém-se o genoma $[g1, \ldots, gi-1, gj, gj-1, \ldots, gi+1, gi, gj+1, \ldots, gN]$. Como um exemplo, a inversão de (3, 6), aplicado à genoma [1, 2, 3, 4, 5, 6, 7] dá [1, 2, 6, 5, 4, 3, 7]. Se depois que a inversão (1, 3) é aplicada, obtém-se o genoma [6, 2, 1, 5, 4, 3, 7].

Um cientista que está estudando a evolução de uma espécie deseja tentar uma série de inversões no genoma desta espécie. Em seguida, ele quer consultar a posição final de vários genes. Será que você aceita o desafio de ajudá-lo?

Entrada

A entrada contém vários casos de teste. A primeira linha de um caso de teste contém um inteiro N indicando o número de genes no genoma ($1 \le N \le 50000$). Você pode supor que o ordem inicial dos genes é a sequência de números inteiros de 1 a N em ordem crescente. A segunda linha de um caso de teste contém um inteiro R ($0 \le R \le 1000$) que indica o número de inversões a serem aplicadas ao genoma. Então, R linhas seguem, cada uma contendo dois inteiros i, j ($1 \le i \le j \le N$), separados por um único espaço, o qual indicam os dois índices que definem a inversão correspondente. Após a descrição das inversões há uma linha contendo um inteiro Q ($0 \le Q \le 100$), que indica o número de consultas para os genes, seguido de Q linhas, onde cada linha contém um inteiro representando um gene cuja posição final você deve determinar.

O final da entrada é indicada por N = 0.

Saída

Para cada caso de teste da entrada seu programa deve produzir $\mathbf{Q} + \mathbf{1}$ linhas de saída. A primeira linha deve conter a string "**Genome**", seguido do número do caso de teste. As seguintes \mathbf{Q} linhas devem conter um número inteiro, cada um representando as respostas das consultas.

Exemplo	de	Entrada
---------	----	---------

Exemplo de Saída

Exemplo de Entrada	Exemplo de Saída
9	Genome 1
1	1
3 6	6
4	4
1	1
3	Genome 2
5	1
1	5
5	
2	
1 2	
1 5	
2	
5	
2	
0	

ACM/ICPC South America Contest 2005

Por Vinícius Fortuna 💽 Brasil