

高知工科大学 経済・マネジメント学群

計量経済学

9. 交差項の利用

た内 勇生

yanai.yuki@kochi-tech.ac.jp

このトピックの目標

- 回帰分析で交差項を使う方法を理解する
 - ▶ 交差項とは?
 - ▶ 交差項を使って回帰分析の結果を解釈する方法

交差項を含む回帰分析

説明変数が応答変数に与える影響は一定か?

- · 応答変数 Y
- · 説明変数 X
- •回帰モデル: $Y_i \sim \text{Normal}(\beta_0 + \beta_1 X_i, \sigma)$
 - \blacktriangleright モデルの仮定 (σ_{1}) : β_{1} はある1つの値(定数)
 - つまり、X が1単位変化するのに応じた Y の変化量は一定

一定とは限らないのでは?

• Z:調整変数(説明変数の1種)

▶ Z の値によって、「X が Y に与える影響」が変わる

調整変数を含む回帰モデル

- •回帰モデル: $Y_i \sim \text{Normal}(\mu_i = \beta_0 + \beta_1 X_i, \sigma)$
 - β_0 は Z の関数: $\beta_0 = \gamma_0 + \gamma_2 Z_i$ とする
 - β_1 は Z の関数: $\beta_1 = \gamma_1 + \gamma_3 Z_i$ とする

$$\mu_{i} = \beta_{0} + \beta_{1}X_{i}$$

$$= (\gamma_{0} + \gamma_{2}Z_{i}) + (\gamma_{1} + \gamma_{3}Z_{i})X_{i}$$

$$= \gamma_{0} + \gamma_{1}X_{i} + \gamma_{2}Z_{i} + \gamma_{3}X_{i}Z_{i}$$

▶よって、回帰モデルは、

$$Y_i \sim \text{Normal}(\gamma_0 + \gamma_1 X_i + \gamma_2 Z_i + \gamma_3 X_i Z_i, \sigma)$$

調整変数を含む回帰モデル(続)

- $Y_i \sim \text{Normal}(\gamma_0 + \gamma_1 X_i + \gamma_2 Z_i + \gamma_3 X_i Z_i, \sigma)$
 - ▶ *Y* を *X* と *Z* と *XZ* に回帰する重回帰
 - $-\gamma_k$ (k=0,1,2,3) を推定し、そこから β_1 を推定する
 - $> \gamma_3 X_i Z_i$: 交差項, 交互作用項 (interaction term)
 - Rでは、 lm(Y ~ X * Z, data = d)

Zがダミー変数の場合

$$Y_i \sim \text{Normal}(\mu_i = \gamma_0 + \gamma_1 X_i + \gamma_2 Z_i + \gamma_3 X_i Z_i, \sigma)$$

• $Z_i = 0$ のとき:

$$\hat{Y}_i = \gamma_0 + \gamma_1 X_i + \gamma_2 \cdot 0 + \gamma_3 \cdot X_i \cdot 0 = \gamma_0 + \gamma_1 X_i$$

• $Z_i = 1$ のとき:

$$\hat{Y}_i = \gamma_0 + \gamma_1 X_i + \gamma_2 \cdot 1 + \gamma_3 \cdot X_i \cdot 1 = \gamma_0 + \gamma_1 X_i + \gamma_2 + \gamma_3 X_i$$

= $(\gamma_0 + \gamma_2) + (\gamma_1 + \gamma_3) X_i$

- ★ Z の値によって、
 - ightharpoons回帰直線の「切片」が変わる($\gamma_2 \neq 0$ のとき): γ_0 or $\gamma_0 + \gamma_2$
 - ightharpoons回帰直線の「傾き」が変わる($\gamma_3 \neq 0$ のとき): γ_1 or $\gamma_1 + \gamma_3$

Zがダミー変数の場合(続)

 $Y_i \sim \text{Normal}(\mu_i = \gamma_0 + \gamma_1 X_i + \gamma_2 Z_i + \gamma_3 X_i Z_i, \sigma)$

- $Z_i = 0$ のとき:切片は γ_0 、傾き(X が Y に与える影響)は γ_1
- $Z_i = 1$ のとき:切片は $\gamma_0 + \gamma_2$ 、傾き(X が Y に与える影響)は $\gamma_1 + \gamma_3$
- ★ 推定された偏回帰係数の意味
 - γ_0 :Z=0 のときの回帰直線の切片
 - γ_1 : Z=0 のときの回帰直線の傾き
 - ν_2 : Z=1 のときと Z=0 のときとの回帰直線の切片の差
 - γ_3 : Z=1 のときと Z=0 のときとの回帰直線の傾きの差

Zが量的変数の場合

$$Y_i \sim \text{Normal}(\mu_i = \gamma_0 + \gamma_1 X_i + \gamma_2 Z_i + \gamma_3 X_i Z_i, \sigma)$$

- X-Y 平面における回帰直線の切片: $\gamma_0 + \gamma_2 Z_i$
- X-Y 平面における回帰直線の傾き: $\gamma_1 + \gamma_3 Z_i$
- \star 切片も傾きも Z_i の値によって変わる!
- $Z_i = 0$ のとき:切片は γ_0 、傾き(X が Y に与える影響)は γ_1
- $Z_i \neq 0$ のとき:切片も傾き(X が Y に与える影響)も、 Z_i の値による
 - \blacktriangleright 回帰係数だけを見ても、X が Y に与える影響はわからない!!!
- $_{\bullet}Z_{i}$ を横軸、 $\gamma_{1}+\gamma_{3}Z_{i}$ (X が Y に与える影響)を縦軸にした図を作る!(A)
- $_{ullet}Z_i$ をいくつかの値に固定して、複数の回帰直線を図示する! (B)

10

(A) の例:説明変数が選挙費用,調整変数が有権者数の場合

(B) の例:説明変数が選挙費用,調整変数が有権者数の場合

(B) の例:説明変数が選挙費用,調整変数が議員経験の場合

Zが量的変数の場合(続)

$$Y_i \sim \text{Normal}(\mu_i = \gamma_0 + \gamma_1 X_i + \gamma_2 Z_i + \gamma_3 X_i Z_i, \sigma)$$

- ★ 推定された偏回帰係数の意味
 - γ_0 : Z=0 のときの回帰直線の切片
 - γ_1 : Z=0 のときの回帰直線の傾き
 - ▶ ½:? (説明しようと思えば説明できるが、わかりにくい)
 - ▶ 1/3:? (説明しようと思えば説明できるが、わかりにくい)
- Z_i が0をとらない変数だったら???
 - ▶ それぞれの偏回帰係数に意味がない:回帰係数を表で提示しても、読者に意味が伝わりにくい

説明変数を中心化する

$$Y_i \sim \text{Normal}(\tilde{\mu}_i = \tilde{\gamma}_0 + \tilde{\gamma}_1 \tilde{X}_i + \tilde{\gamma}_2 \tilde{Z}_i + \tilde{\gamma}_3 \tilde{X}_i \tilde{Z}_i, \sigma)$$

- $\lambda \tilde{X}_i: X_i$ を中心化したもの
- $\mathbf{\tilde{Z}}_i: Z_i$ を中心化したもの

★推定された偏回帰係数の意味

- \mathbf{r}_0 : $\tilde{Z} = 0$ のとき、すなわち Z が平均値のときの回帰直線の切片
- \mathbf{r}_1 : $\tilde{Z} = 0$ のとき、すなわち Z が平均値のときの回帰直線の傾き
- $\triangleright \tilde{\gamma}_2$:? (説明しようと思えば説明できるが、わかりにくい)
- $\triangleright \tilde{\gamma}_3$:? (説明しようと思えば説明できるが、わかりにくい)
- ・中心化することによって、 $\tilde{\gamma}_0$ と $\tilde{\gamma}_1$ の意味だけは解釈可能になることが保証される

15

交差項と交差項の元となる変数

- XZ には、X も Z も含まれている
 - ▶ $Y_i \sim \text{Normal}(\gamma_0 + \gamma_3 X_i Z_i, \sigma)$ でいいのでは?
 - ◆ 一般的には、ダメ! (Brambor et al. 2006 を参照)
- $\gamma_0 + \gamma_1 X_i + \gamma_2 Z_i + \gamma_3 X_i Z_i$ (1) と $\gamma_0 + \gamma_3 X_i Z_i$ (2) は何が違うのか?
 - $_{\triangleright}$ (2) は (1) の式に $_{\gamma_1} = 0$ かつ $_{\gamma_2} = 0$ という制約を加えている:強い仮定
 - $_{1}$ 「 $_{1}$ = 0 かつ $_{1}$ = 0 である」という理論的根拠があれば (2) を使っても良い
 - そうでなければ、(1)を推定する
 - ▶ 同様の理由で、一部だけ除くのもダメ:詳しくは実習で

16

交差項は除いていいの?

- $\gamma_0 + \gamma_1 X_i + \gamma_2 Z_i + \gamma_3 X_i Z_i$ (3) と $\gamma_0 + \gamma_1 X_i + \gamma_2 Z_i$ (4) は何が違うのか?
 - $_{
 ho}$ (4) は (3) の式に $_{
 ho_3}=0$ という制約を加えている:強い 仮定(?)
 - - 「当てはまりの良いモデル」と「シンプルだが有用な モデル (予測性能が良いことが多い)」のバランスを考える

交差項のまとめ

- ・ (交差項がなくてもそうだが、交差項がある場合は特に) 説明変数を中心 化すべき
- ・交差項を使うときは、交差項を構成するそれぞれの変数 も説明変数に加える (理論的に正当化できる場合は除く)
- ・交差項があるときは、**偏回帰係数だけでは意味がわから**ない(結果を表で示すだけで不十分!)
 - ▶ 効果を可視化(作図)する!

次のトピック

多重比較