Solar Energy Generation

Team 1-10

Agenda

- Business Problem
- Data Source
- Data Cleansing
- Unsupervised Learning Models
 - Clustering
- Supervised Learning Models
 - o Tree + Linear Regression, Lasso, Ridge, Logistic, GAMs, KNN
- Best model
 - Performance on test data (two new sites!)

Business Problem

- Background
 - Energy and weather data for sites around the United States
- Goal
 - Understand significant variables
 - Predict solar energy generation
 - based on weather & irradiance
 - Important for utilities to know loads on the grid in advance
 - E.g. Predict next-day-loads the night beforehand

Data Source

- Source: SunDance dataset, part of SMART project
- 100 sites across US
- 1 csv for each site with hourly weather data for a year (2015)
 - Date, Time, Location, Temperature, Humidity, Wind Speed, Wind Direction, Pressure, Wind chill, Heat Index, Conditions (clear, hazy, ect.), Fog, Rain, Snow, Hail, Thunder, Tornado, ...
- 1 csv for each site with hourly energy data for a year
 - o Date, Time, Energy Usage, Solar Energy Generated
- Irradiance calculations for the locations in our training data
 - 1 csv for Denver, 1 for LA

Data Cleansing

- We chose 10 sites (in LA and Denver)
- Merged energy and weather data for each site
- Also merged in irradiance data from separate files using date, time, and location
- Merged all sites together
- Removed NAs, changed negative energy generated to zero
- Training data 79497 observations of 24 variables

```
Hour datetzname tempm tempi dewptm with depth dewptm dewpt
```

- Caret dummy, near zero variance, and correlated variables examined
- Variable selection for various models

Unsupervised Learning Model

- Clustering
 - Wanted to understand the different types of days and combinations of conditions that occur
 - 3D plotting using the rgl package

Clustering

- Pressure was not significant
- Low humidity and high temps -> more solar energy

Cluster	Conditions	Avg Solar Energy Generated
1 (Green)	Med temp, low humidity	0.641
2 (Red)	Med temp, high humidity	0.000155
3 (Black)	High temp, low humidity	2.64
4 (Blue)	Low temp, high humidity	0.365

tempm

Clustering

 Most energy generated between 3 PM and 7 PM

Cluster	Time	Average Solar Energy Generated
1	11 AM - 3 PM	1.43
2	3 PM - 7 PM	2.68
3	8 PM - Midnight	0.365
4	Midnight - 5 AM	0.0016
5	5 AM - 11 AM	0.0122

Supervised Learning Models

- Logistic
- KNN
- Linear Regression
- Boosting
- Ridge & Lasso
- GAMs
- Random Forest

Logistic Regression

Tuning Method

Added binary variable--1 if any energy was generated, 0 otherwise

Final Parameters

 Ran one model with all predictors, one with just three (irradiance, hour, location)

Training Accuracy

- First model predicted 92% of cases accurately
- Second model predicted 89% of cases accurately

KNN

Tuning Method

• For loop over K values (and select min MSE)

Final Parameters

• K = 19

Training Accuracy: MSE=0.420

Linear Regression

Tuning Method

• Ran a basic linear regression on all variables of a training set

Final Parameters

Im.fit<- Im(EnergyGenerated ~ ., data=trainset)

Training Accuracy

MSE of 0.7

GBM Boosting Model

Tuning Method

Tuned model by hand

Final Parameters

```
boostmodel = gbm(EnergyGenerated~., data = trainset,

distribution = "gaussian", n.trees = 100,

interaction.depth = 15, shrinkage = 0.01, bag.fraction = 0.5,

cv.folds = 10)
```

Training Accuracy

- MSE of 1.11

Ridge and Lasso

Tuning Method

- best lambda (feature penalty) chosen by 10-fold CV
- Best alpha (between ridge & lasso selection) chosen using a grid search
 - 0 to 1 in steps of 0.05

Final Parameters

- Alpha = 0.05 (close to ridge)
- Lambda = 0.005395222 (small penalty for including additional variables)
- thresh = 1e-12

Training Accuracy: 1.161

GAMs

Tuning Method - By hand

Natural and smoothing of different degrees and local splines

Final Parameters -

```
gam6 <- gam(EnergyGenerated ~ s(Hour, 23) + datetznameLA + ns(dewpti,20) + s(hum, 20) + ns(wspdm,20) + ns(wdird, 20) + ns(pressurem, 15) + s(tempi, 30) + s(Radiance, 30) + iconclear + iconcloudy + iconmostlycloudy + iconpartlycloudy + datetznameLA, data=train)
```

Training Accuracy: 0.692

Random Forests

Tuning Method

- Looped over mtry = 1 to 10 (out of 13 predictors)
- Best ntrees (from 1 to 500) chosen by lowest OOB error

Final Parameters

- Best mtry = 3
- Best ntree = 496

Training Accuracy 0.2941536

Best Model

Compare MSE for each model on the new test set

Model	MSE	MAE	MAAPE*
Linear Regression	0.805	0.708	1.167
GAMs	1.090	0.752	1.167
KNN	0.621	0.411	0.795
Random Forest	0.743	0.551	0.997

^{*}MAAPE is the mean arctangent absolute percentage error

Conclusions

- Best Model: KNN
- We can predict how much solar energy a site will generate with an average error of 0.411 kW
- We understand the important factors that influence solar generation
 - o Time of Day, Temperature, Humidity, Location, and Irradiance

Next Steps

- Include more of the sites.
 - especially those in other locations
- Obtain additional data
 - Size of array
 - Tilt-capability of array
 - E collected very different if tilting towards the sun
 - Solar Panel Physical Characteristics
 - Material (efficiency)

Links to Data

Energy/Weather Data (Sundance) - http://traces.cs.umass.edu/index.php/Smart/Smart

Irradiance Calculator - https://midcdmz.nrel.gov/solpos/solpos.html