Identifying Corrupted Labels using Loss Values

Dataset: $(X, \mathbf{y}) = \{(x_i, y_i)\}_{i=1}^n$, where some labels y_i may be corrupted.

Hypothesis: Incorrectly labeled samples (x_i, y_i) often yield higher loss values $\mathcal{L}(f(x_i), y_i)$ during model training.

Method: Increase the loss gap between correct and incorrect labels using the ALSO optimizer^a.

^aA. Beznosikov et al. Mirror-Prox Algorithm with Linear Convergence Rate and its Application for Dynamic Loss Scaling // 2025.

