10/586788

IAP11 Rec'd PCT/PTO 21 JUL 2006

Beschreibung

Plasmaangeregtes chemisches Gasphasenabscheide-Verfahren, Silizium-Sauerstoff-Stickstoff-haltiges Material und Schicht-Anordnung

Die Erfindung betrifft ein plasmaangeregtes chemisches Gasphasenabscheide-Verfahren, ein Silizium-Sauerstoff-Stickstoff-haltiges Material und eine Schicht-Anordnung.

10

15

5

Integrierte Schaltungs-Anordnungen werden mit immer höherer Packungsdichte erzeugt. Dies hat zur Folge, dass Leiterbahnen in Metallisierungsebenen einen immer kleineren Abstand voneinander aufweisen. Dadurch steigen Kapazitäten, die zwischen den Leiterbahnen gebildet werden und zu hohen Signallaufzeiten, einer hohen Verlustleistung und unerwünschtem Übersprechen führen, d.h. zu einer Wechselwirkung zwischen auf benachbarten Leiterbahnen angelegten Signalen.

20

35

Häufig wird als Isolationsmaterial zwischen den Leiterbahnen Siliziumoxid als Dielektrikum verwendet, dessen relative Dielektrizitätskonstante ϵ_r =3.9 beträgt.

Zum Reduzieren der relativen Dielektrizitätskonstante ϵ_r , was zu einer Verringerung des Werts der Koppelkapazitäten zwischen in ein Isolationsmaterial eingebetteten Leiterbahnen führt, werden so genannte Low-k-Materialien verwendet, d.h. Materialien mit einem geringen Wert ϵ_r als Material für Intermetalldielektrika.

Aus dem Stand der Technik ist auch bekannt, Hohlräume zwischen Leiterbahnen innerhalb einer Leiterbahnebene zu erzeugen, um den Wert der relativen Dielektrizitätskonstante und somit den Wert der Koppelkapazität zu verringern. Das isolierende Dielektrikum, das die Kapazität zwischen den Leiterbahnen bestimmt, weist im Bereich von Hohlräumen eine

relative Dielektrizitätskonstante ϵ_r auf, die annähernd gleich eins ist. Die Leiterbahnen selbst sind zum Entkoppeln von der Umgebung von einer Materialschicht aus Siliziumoxid oder einem Low-k-Material umgeben.

5

10

15

35

Die hohen Koppelkapazitäten C zwischen benachbarten Leiterbahnen, die bei zunehmend miniaturisierten Schaltkreisen immer größer werden, führen gemeinsam mit dem Widerstand R einer Leiterbahn zu einer RC-Schaltverzögerung von auf den Leiterbahnen transportierten Signalen. Diese RC-Schaltverzögerung kann unter Verwendung von Luftlöchern (Airgaps) als Alternative zu Low-k-Materialien verringert werden, da bei Verwendung von Luftlöchern zwischen Leiterbahnen die effektive Dielektrizitätskonstante $\epsilon_{\rm r}$ als Isolationsmaterial zwischen Metallisierungsbahnen erheblich verringert wird. Realisierungsmöglichkeiten für Airgaps sind beispielsweise in [1] bis [4] offenbart.

Um einen Hohlraum zwischen benachbarten Leiterbahnen nach außen hin abzudichten bzw. zu verschließen, kann ein solcher Hohlraum oder Graben in einer Schicht-Anordnung mittels Abscheidens einer den Graben bedeckenden Deckschicht versiegelt werden. Beim Abdichten eines grabenartigen Hohlraums zwischen Leiterbahnen wird angestrebt, dass das 25 Material einer solchen Deckschicht sich auf der obersten Schicht gut abscheidet, nicht hingegen in den Graben eindringt und somit den Hohlraum zwischen benachbarten Leiterbahnen in unerwünschter Weise mit Material auffüllt, wodurch wiederum die relative Dielektrizitätskonstante ε_r

Als Material für eine solche Deckschicht eignet sich durch Ozon-aktivierte Zersetzung von Tetraethylorthosilikat (TEOS) gebildetes Siliziumoxid (sogenanntes "Ozon/TEOS"), das sich selektiv gut auf Silan-basiertem Siliziumoxid als Material der obersten Schicht abscheiden lässt, nicht hingegen auf Siliziumnitrid als Material im Inneren des Grabens. Selektive

Abscheidung bedeutet, dass das abzuscheidende Material als Deckschicht zum Verschließen des Hohlraums auf Silanbasiertem Siliziumoxid aufwächst, auf Siliziumnitrid hingegen nicht oder nur mit sehr geringer Rate.

5

10

Daher wird gemäß dem Stand der Technik als Material zwischen Airgap-Strukturen zwischen Leiterbahnen häufig Siliziumnitrid verwendet, wohingegen eine mit einer Deckschicht zuzuwachsende Oberflächenschicht einer solchen Schicht-Anordnung häufig aus Silan-basiertem Siliziumoxid gebildet wird. Allerdings hat diese Materialkonfiguration den Nachteil, dass aufgrund der hohen relativen Dielektrizitätskonstante von Siliziumnitrid (ϵ_r =8) eine für viele Anwendungen zu hohe RC-Schaltverzögerung auftritt.

15

20

30

In [5] ist ein Verfahren zum Bilden einer Siliziumoxynitridschicht beschrieben mittels eines CVD-Verfahrens unter Verwendung eines Plasmas und eines Mischgases, wobei das Mischgas ein organisches Silangas und ein Nitriergas enthält auf und zwischen Leiterbahnen eines Halbleiterchips. Die Siliziumoxynitridschicht weist gemäß den Angaben in [5] eine gute Kantenbedeckung auf.

Andere Verfahren zum Bilden einer Siliziumoxynitridschicht mit einer guten Kantenbedeckung sind in [6] und [7] beschrieben

[8] beschreibt das Bilden einer Struktur mit Airgaps zwischen den Leiterbahnen. Die gebildete Schicht mit Airgaps wird jedoch unter Verwendung von SiH₄ gebildet und damit unter Verwendung eines anorganischen Silizium-Precursormaterials.

Eine andere Airgap-Struktur ist in [9] beschrieben, wobei diese Struktur unter Verwendung nur einer "Airgap-Schicht" und, zur Erhöhung des "Aspektverhältnisses" zwischen den Leiterbahnen und damit zur automatischen Bildung von Airgaps,

einer auf die Leiterbahnen zusätzlich aufgebrachten Pad-Oxid-Schicht, erzeugt wird.

Der Erfindung liegt insbesondere das Problem zugrunde, ein Material, ein Verfahren zum Herstellen des Materials und eine Schicht-Anordnung mit diesem Material bereitzustellen, welches Material eine ausreichend geringe relative Dielektrizitätskonstante hat und sich nicht oder nur schlecht selektiv auf Ozon/TEOS abscheiden lässt.

10

15

20

Das Problem wird durch ein plasmaangeregtes chemisches Gasphasenabscheide-Verfahren, durch ein Silizium-Sauerstoff-Stickstoff-haltiges Material und durch eine Schicht-Anordnung mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.

Bei dem erfindungsgemäßem plasmaangeregten chemischen Gasphasenabscheide-Verfahren zum Bilden eines Silizium-Sauerstoff-Stickstoff-haltigen Materials wird während des Zuführens von Silizium-Material und Sauerstoff-Material Stickstoff-Material unter Verwendung eines organischen Silizium-Precursormaterials zugeführt.

Ferner ist erfindungsgemäß ein Silizium-Sauerstoff
Stickstoff-haltiges Material geschaffen, das gemäß dem plasmaangeregten chemischen Gasphasenabscheide-Verfahren mit den oben beschriebenen Merkmalen hergestellt ist.

Die erfindungsgemäße Schicht-Anordnung enthält ein Substrat

und zwei elektrisch leitfähige Strukturen auf dem Substrat.

Zumindest ein Teilbereich zwischen den zwei elektrisch
leitfähigen Strukturen ist materialfrei. Silizium-SauerstoffStickstoff-haltiges Material mit den oben beschriebenen
Merkmalen ist zumindest teilweise auf und/oder zwischen den

zwei elektrisch leitfähigen Strukturen gebildet. Ferner
enthält die Schicht-Anordnung eine Zwischenschicht aus
elektrisch isolierendem Material auf dem Silizium-Sauerstoff-

Stickstoff-haltigen Material und eine selektiv auf der Zwischenschicht gebildete Deckschicht, mittels welcher der materialfreie Bereich zwischen den zwei elektrisch leitfähigen Strukturen gegenüber der Umgebung versiegelt ist.

5

Eine Grundidee der Erfindung ist darin zu sehen, ein Herstellungsverfahren für ein Silizium-Sauerstoff-Stickstoffhaltiges Material bereitzustellen, mit welchem Verfahren ein Material erhalten wird, das überwiegend Silizium-Sauerstoff Komponenten enthält und somit eine relative 10 Dielektrizitätskonstante hat, die ähnlich gering wie jene von Siliziumoxid ist $(\varepsilon_r=3.9)$. Das gemäß dem erfindungsgemäß beanspruchten plasmaangeregten chemischen Gasphasenabscheide-Verfahren hergestellte Silizium-Sauerstoff-Stickstoff-haltige 15 Material enthält zusätzlich eher geringe Mengen von Stickstoff (vorzugsweise im einstelligen Prozentbereich). Die Stickstoffkomponente des mittels des erfindungsgemäßen Verfahrens hergestellten Silizium-Sauerstoff-Stickstoffhaltigen Materials bewirkt anschaulich Siliziumnitridähnliche Eigenschaften hinsichtlich der Abscheidbarkeit von 20 Ozon/TEOS darauf. Anders ausgedrückt ist das Material der Erfindung sehr schlecht dazu geeignet, dass Ozon/TEOS darauf abgeschieden werden kann. Die Kombination aus einem geringen k-Wert und einer geringen Neigung, als Träger zum Abscheiden von Ozon/TEOS zu dienen, bewirkt eine hervorragende Eignung 25 des erfindungsgemäß hergestellten Materials als Intermetalldielektrikum eines integrierten Schaltkreises mit

Anders ausgedrückt weist das erfindungsgemäß hergestellte Material im Wesentlichen die günstigen dielektrischen Eigenschaften von Siliziumoxid auf (d.h. einen geringen Wert der relativen Dielektrizitätskonstante und somit eine geringe RC-Schaltverzögerung), simultan hat die

Airgap-Strukturen.

Materialzusammensetzung (wahrscheinlich insbesondere die Stickstoff-Komponente darin) die Wirkung, dass das Material, das auf der Basis eines organischen Precursors gebildet ist,

hinsichtlich des selektiven Abscheidens von Ozon/TEOS
Materialeigenschaften aufweist, die eher Siliziumnitrid
ähneln. Somit ist ein ideales Material als
Intermetalldielektrikum zwischen Leiterbahnen einer Low-kAnordnung bereitgestellt. Aufgrund der guten mechanischen
Stabilität des Materials erlaubt es auch das Bilden von
Airgaps zwischen Strukturen des Materials.

Somit ist es erfindungsgemäß realisiert, das gemäß dem Stand der Technik verwendete Siliziumnitrid als Material zwischen Airgaps durch ein Material auf Basis von Siliziumoxid zu ersetzen, ohne die Vorteile der selektiven Abscheidung verlieren.

Dieses Material wird erfindungsgemäß hergestellt, indem abgesehen von einem organischen Silizium-Precursormaterial als Quelle für die Siliziumkomponente und die Sauerstoffkomponente des erfindungsgemäßen Materials zusätzlich Stickstoffmaterial in die PECVD-Verfahrenskammer ("plasma enhanced chemical vapour deposition") eingebracht wird, wodurch das erfindungsgemäße Material erhalten wird. Bei Verwendung dieses Verfahrens werden anschaulich geringe Mengen Stickstoff in eine im Wesentlichen auf Siliziumoxidmaterial basierenden Matrix eingebaut, was zu der vorteilhaften Kombination von Materialeigenschaften führt.

Siliziumoxid wird häufig durch einen plasmaaktivierten TEOS
Prozess abgeschieden (sogenanntes "PE-TEOS"). Basierend auf
der Beobachtung, dass auf Siliziumnitrid keine oder nur eine
30 sehr geringe Ozon/TEOS Abscheidung erfolgt, wird
erfindungsgemäß dem PE-TEOS Prozess Stickstoff zugesetzt.
Durch den Einbau geringer Stickstoffmengen, typischerweise im
Prozentbereich, kann die Selektivität der Ozon/TEOS
Abscheidung stark erhöht werden, so dass ähnlich wie bei
35 Siliziumnitrid keine oder nur eine äußerst geringe
Abscheidung von Ozon/TEOS auf der Schicht erfolgt. Simultan
bleiben die Eigenschaften von Siliziumoxid weitgehend

erhalten. Die effektive Dielektrizitätskonstante einer Airgap-Struktur mit dem modifizierten PE-TEOS sinkt, je nach Geometrie, im Vergleich zu den Varianten mit Siliziumnitrid von Werten im Bereich von drei auf Werte um zwei.

5

Die mit dem erfindungsgemäßen Verfahren hergestellten Siliziumoxid-haltigen Schichten mit eingebautem Stickstoffmaterial weisen typischerweise einen Brechungsindex von n=1.5 auf, wohingegen mittels thermischen Oxidierens hergestelltes Siliziumoxid einen Brechungsindex von 1.45 hat. Der Stickstoffgehalt des erfindungsgemäßen Materials liegt typischerweise im Atomprozentbereich. Eine Abscheidung von Ozon/TEOS findet auf dieser Art von mit geringen Mengen Stickstoff versehenem Siliziumoxid nicht oder nur sehr schlecht statt.

Essentiell zum Erreichen der vorteilhaften Materialeigenschaften des Materials der Erfindung ist die Verwendung eines organischen (d.h. auf Kohlenstoff-

Verbindungen basierenden) Silizium-Precursormaterials, vorzugsweise Tetraethylorthosilikat (TEOS), auch bezeichnet als Tetraethoxysilan. Mit dem anorganischen Material Silan (SiH₄) zum Beispiel kann das Material mit den vorteilhaften Eigenschaften nicht erhalten werden.

25

Das erfindungsgemäß verwendete plasmaangeregte chemische Gasphasenabscheide-Verfahren (PECVD) ist eine spezielle Technik innerhalb des allgemeineren CVD-Verfahrens ("chemical vapour deposition").

30

35

Das CVD-Verfahren ist eine Beschichtungstechnologie zum Abscheiden dünner Schichten aus der Gasphase auf einem festen Substrat. Das Prinzip des CVD Verfahrens besteht darin, dass gasförmige Ausgangsmaterialien, sogenannte Precursoren (Vorläufer), über ein Substrat geleitet und chemisch in deren Bestandteile zerlegt werden, wodurch auf der Substratoberfläche eine neue Schicht aufwächst. Das Zerlegen

der Precursoren erfolgt zumeist thermisch, d.h. mittels
Heizens des Substrats. Das eigentliche Abscheiden erfolgt
unter Beteiligung einer chemischen Reaktion. Beispielsweise
reagiert eine flüchtige gasförmige Komponente mit einem
anderem Gas zu einem festen Material, das auf dem Substrat
abgeschieden wird. Allerdings sind bei dem CVD Verfahren die
Prozesstemperaturen relativ hoch.

Mit wesentlich geringeren Prozesstemperaturen ist das plasmaangeregte chemische Gasphasenabscheide-Verfahren (PECVD, "plasma enhanced chemical vapour deposition") durchführbar. Während bei einem CVD-Prozess die Gasphasenreaktion durch thermische Energie infolge Heizens des Substrats ausgelöst wird, beruht ein PECVD-Verfahren auf der Überführung eines Gases in den Plasmazustand in der Nähe der Substratoberfläche. Eines der Reaktionsprodukte ist dabei ein fester Stoff, der sich auf der Oberfläche niederschlägt, wodurch eine neue Schicht aus dem erfindungsgemäßen Material gebildet wird. In einem PECVD-Reaktor wird zwischen dem Substrathalter, der als Elektrode dient, und einer weiteren Elektrode durch ein starkes elektrisches Wechselfeld ein Plasma gezündet. Durch die Energie des Feldes werden Bindungen der in den PECVD-Reaktor eingeleiteten Gasmoleküle aufgebrochen und die Gasmoleküle zersetzt.

25

30

35

10

15

20

Gemäß einem weiteren Aspekt der Erfindung ist ein Verfahren zum Herstellen einer Schicht-Anordnung geschaffen,

• bei dem über einem Substrat mit einer Mehrzahl von elektrisch leitfähigen Strukturen und/oder über einem Teil der Oberfläche der elektrisch leitfähigen Strukturen eine Schicht aus Sauerstoff-Material Stickstoff-Material mittels eines plasmaangeregten chemischen Gasphasenabscheide-Verfahrens gebildet wird, wobei während des Zuführens von Silizium-Material und Sauerstoff-Material mittels eines organischen Silizium-Precursormaterials Stickstoff-Material zugeführt wird, wobei die Schicht aus Sauerstoff-Material Stickstoff-

Material gebildet wird derart, dass zwischen den Leiterbahnen ein materialfreier Bereich verbleibt,

- bei dem auf der Schicht aus Sauerstoff-Material
 Stickstoff-Material eine Zwischenschicht aus elektrisch isolierendem Material aufgebracht wird, und
- bei dem selektiv auf der Zwischenschicht eine Deckschicht aufgebracht wird, mittels welcher der materialfreie Bereich zwischen den elektrisch leitfähigen Strukturen gegenüber der Umgebung versiegelt wird, so dass der materialfreie Bereich einen Hohlraum ausbildet.

Ferner wird eine Schicht-Anordnung bereitgestellt,

mit einem Substrat;

verbleibt;

5

10

- mit zwei elektrisch leitfähigen Strukturen auf dem Substrat, wobei zumindest ein Teilbereich zwischen den zwei elektrisch leitfähigen Strukturen materialfrei ist;
 - mit einer Schicht aus Silizium-Sauerstoff-Stickstoffhaltigem Material, welches mittels eines
- plasmaangeregten chemischen GasphasenabscheideVerfahrens gebildet wurde, wobei während des Zuführens
 von Silizium-Material und Sauerstoff-Material mittels
 eines organischen Silizium-Precursormaterials
 Stickstoff-Material zugeführt wurde, wobei die Schicht
 derart auf den zwei elektrisch leitfähigen Strukturen
 aufgebracht ist, dass zwischen den zwei elektrisch
 leitfähigen Strukturen ein materialfreier Bereich
- mit einer Zwischenschicht aus elektrisch isolierendem
 Material auf der Schicht aus Silizium-Sauerstoff Stickstoff-haltigem Material;
 - mit einer selektiv auf der Zwischenschicht gebildeten Deckschicht, mittels welcher der materialfreie Bereich zwischen den zwei elektrisch leitfähigen Strukturen gegenüber der Umgebung versiegelt ist.

35

Insbesondere wurde anschaulich erfindungsgemäß erkannt, dass auf dem auf oben beschriebene Weise gebildeten Silizium-Sauerstoff-Stickstoff-haltigem Material das Material der Deckschicht nicht abgeschieden wird, womit eine selektive

5 Abscheidung der Deckschicht nur auf der Zwischenschicht zum "Schließen der Airgaps" erreicht wird, ohne dass die Breite der Airgaps zwischen den leitfähigen Strukturen reduziert wird. Damit wird auf sehr einfache Weise ein Schließen der Airgaps mittels der Deckschicht erreicht, wobei ein zusätzlicher Vorteil in der niedrigen relativen Dielektrizitätskonstante des Silizium-Sauerstoff-Stickstoffhaltigem Materials zu sehen ist.

Bevorzugte Weiterbildung der Erfindung ergeben sich aus den 15 abhängigen Ansprüchen.

Als organisches Silizium-Precursormaterial wird vorzugsweise ein Sauerstoff-haltiges Material verwendet. Dieses Sauerstoff-haltige Material kann als Sauerstoffquelle zum Bilden des erfindungsgemäßen Silizium-Sauerstoff-Stickstoffhaltigen Materials dienen.

Besonders günstig ist es, als organisches SiliziumPrecursormaterial Tetraethylorthosilikat (TEOS), d.h.

25 (C₂H₅O)₄Si, zu verwenden. Dieses Material stellt in besonders günstiger Weise eine Siliziumquelle und eine Sauerstoffquelle für das erfindungsgemäß gebildete Silizium-SauerstoffStickstoff-haltige Material dar, in welches aufgrund der chemischen Prozesse beim Zersetzen des TEOS-Materials

30 simultan eingeleitetes Stickstoffmaterial eingebaut wird.

Alternativ können im Rahmen der Erfindung zum Beispiel die folgenden Materialien als organisches SiliziumPrecursormaterial verwendet werden: Methyltriethoxysilan (MTrEOS), Dimethyldiethoxysilan (DMDEOS),
Trimethylethoxysilan (TrMEOS) und/oder Tetramethylsilan (TMS).

Vorzugsweise werden bei dem plasmaangeregten chemischen Gasphasenabscheide-Verfahren der Erfindung Tetraethylorthosilikat (TEOS) und Stickstoff (N₂) als Precursoren verwendet, wobei das Flussratenverhältnis von Tetraethylorthosilikat zu Stickstoff zwischen 1:10 und 1:1 eingestellt wird. Als Flussratenverhältnis wird der Quotient aus den Flussraten (z.B. in sccm, Standardkubikzentimeter pro Minute) der beiden Einzelkomponenten verstanden.

10

Weiter vorzugsweise wird das Flussratenverhältnis von Tetraethylorthosilikat zu Stickstoff zwischen 1:5 und 1:2 eingestellt.

Besonders vorteilhaft ist es, das Flussratenverhältnis von Tetraethylorthosilikat zu Stickstoff zwischen 11:40 und 7:20 einzustellen.

Während des plasmaangeregten chemischen Gasphasenabscheide-20 Verfahrens kann Helium als Trägergas zugeführt werden.

Der Druck in der Verfahrenskammer wird vorzugsweise zwischen 440Pa und 1750Pa, weiter vorzugsweise zwischen 700Pa und 1100Pa eingestellt.

25

Die Temperatur in der Verfahrenkammer kann zwischen 300°C und 500°C betragen, wobei eine Temperatur zwischen 380°C und 430°C besonders vorteilhaft ist.

Im Weiteren wird das erfindungsgemäße Silizium-Sauerstoff-Stickstoff-haltige Material, das gemäß dem erfindungsgemäßen plasmaangeregten chemischen Gasphasenabscheide-Verfahren hergestellt ist, näher beschrieben. Ausgestaltungen des plasmaangeregten chemischen Gasphasenabscheide-Verfahrens

gelten auch für das Silizium-Sauerstoff-Stickstoff-haltige Material, und Ausgestaltungen des Silizium-Sauerstoff-

Stickstoff-haltigen Materials gelten auch für das plasmaangeregte chemische Gasphasenabscheide-Verfahren.

Das Silizium-Sauerstoff-Stickstoff-haltige Material enthält
vorzugsweise zwischen 0.1 Atomprozent und 10 Atomprozent
Stickstoff. Weiter vorzugsweise sind in dem erfindungsgemäßen
Material zwischen 0.5 Atomprozent und 5 Atomprozent
Stickstoff enthalten. Besonders günstig ist es, die Parameter
des plasmaangeregten chemischen Gasphasenabscheide-Verfahrens
derart einzustellen, dass zwischen 1.4 Atomprozent und 2.3
Atomprozent Stickstoff in dem Material enthalten sind. In
diesem Falle ist eine besonders gute Balance zwischen
geringer Dielektrizitätskonstante und besonders schlechter
Selektivität bezüglich des Aufwachsens von Ozon/TEOS
erreichbar.

Das Atomprozentverhältnis zwischen Sauerstoff und Silizium ist vorzugsweise zwischen 1.8 und 1.99. Mit anderen Worten ist das Silizium-Sauerstoff-Stickstoff-haltige Material gegenüber stöchiometrischem Siliziumoxid mit einem Atomprozentverhältnis zwischen Sauerstoff und Silizium von zwei dahingehend modifiziert, dass anschaulich Sauerstoffmaterial (zumindest teilweise) durch das zusätzliche Stickstoffmaterial ersetzt ist.

25

30

20

Zusätzlich zu dem Siliziummaterial, dem Sauerstoffmaterial und dem Stickstoffmaterial kann das erfindungsgemäße Material zwischen 0.4 Atomprozent und 2.4 Atomprozent Kohlenstoff aufweisen. Möglicherweise kann auch der Kohlenstoff zu den günstigen Materialeigenschaften beitragen, da das erfindungsgemäße Ziel erst bei Verwendung eines organischen, d.h. kohlenstoffhaltigen, Silizium-Precursormaterials erreicht wird.

Ferner kann das Silizium-Sauerstoff-Stickstoff-haltige Material der Erfindung zwischen 3 Atomprozent und 13 Atomprozent Wasserstoff aufweisen.

Besonders günstige Materialeigenschaften werden mit einem Material der Summenformel $Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}$ erreicht. Jeder der Indexzahlen (1.00, 1.90, usw.) in der genannten Summenformel kann um zwanzig Prozent nach oben oder unten variieren, weiter vorzugsweise um 10 Prozent, noch weiter vorzugsweise um 3 Prozent, ohne dass die vorteilhaften Eigenschaften des Materials verloren gehen würden.

- Im Weiteren werden Ausgestaltungen der erfindungsgemäßen Schicht-Anordnung beschrieben. Ausgestaltungen des Silizium-Sauerstoff-Stickstoff-Materials gelten auch für die Schicht-Anordnung und umgekehrt.
- Bei der erfindungsgemäßen Schicht-Anordnung kann die Zwischenschicht aus Silan-basiertem (SiH₄) Siliziumoxid gebildet sein. Wird dann eine Deckschicht aus Siliziumoxid selektiv abgeschieden, das basierend auf Ozon-aktiviertem Tetraethylorthosilikat gebildet ist, so wird eine Schicht-
- Anordnung erhalten, die nach außen hin sicher abgeschlossen ist, da das Material der Deckschicht anschaulich einen Graben der Schicht-Anordnung überwachsen kann. Simultan ist aufgrund der Materialkombination vermieden, dass beim Aufwachsen einer solchen Deckschicht der Graben teilweise mit Deckschicht-
- Material gefüllt wird, was aus der schlechten Abscheidbarkeit des Materials der Deckschicht auf dem erfindungsgemäßen Material innerhalb des Grabens resultiert.

Es ist anzumerken, dass die genauen Prozessparameter zum Herstellen des erfindungsgemäßen Materials von der Prozesskammer, etc. abhängen.

Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im Weiteren näher erläutert.

35

Es zeigen:

- Figur 1 eine Querschnittsansicht einer Schicht-Anordnung gemäß einem ersten Ausführungsbeispiel der Erfindung,
- Figur 2 eine elektronenmikroskopische Querschnittsansicht einer Schicht-Anordnung ohne Verwendung des erfindungsgemäßen Materials,
 - Figur 3 eine elektronenmikroskopische Querschnittsansicht einer Schicht-Anordnung unter Verwendung des erfindungsgemäßen Materials,
 - Figur 4 eine andere elektronenmikroskopische

 Querschnittsansicht einer Schicht-Anordnung unter

 Verwendung des erfindungsgemäßen Materials,
- Figur 5 eine Querschnittsansicht einer Schicht-Anordnung gemäß einem zweiten Ausführungsbeispiel der Erfindung,
- Figur 6 eine Querschnittsansicht einer Schicht-Anordnung gemäß einem dritten Ausführungsbeispiel der Erfindung.
- Gleiche oder ähnliche Komponenten in unterschiedlichen Figuren sind mit gleichen Bezugsziffern versehen.

Die Darstellungen in den Figuren sind schematisch und nicht maßstäblich.

~	
- ⊀	•

5

10

Schritt	1. Fill	2. STAB	3. DEPOSIT	4. PUMP
Verfahrens-	nur A	nur A	nur A	nur A
Kammer		<u> </u>		
Schrittende-	mittels Zeit	mittels Zeit	mittels Zeit	mittels Zeit
steuerung				,
maximale	10.0s	10.0s	60.0s	5.0s
Schritt-Zeit				

	····			· · · · · · · · · · · · · · · · · · ·
Endpunkt-	kein	kein	kein	kein
wahl	Endpunkt	Endpunkt	Endpunkt	Endpunkt
Druck	geregelt auf	geregelt auf	geregelt auf	Drossel voll
	880Pa	880Pa	880Pa	offen
RF-Leistung,	OW, Auto, B-	OW, Auto, B-	900W, Auto,	OW, Auto, B-
Match, Modus	zu-B	zu-B	B-zu-B	zu-B
RF Tune	0.0V	0.0V	0.0V	0.0V
Sollwert				
RF2-	OW, Auto	OW, Auto	OW, Auto	OW, Auto
Leistung,				
Match				
Temperatur	415°C	400°C	400°C	400°C
Suszeptor				
Temperatur-	0.0°C/s	0.0°C/s	0.0°C/s	0.0°C/s
rampe				
Purge	Aus	Aus	Aus	Aus
Suszeptor	250mils	250mils	250mils	250mils
Spacing				
Gasflüsse	02:700sccm	02:155sccm	02:150sccm	
	He:2500sccm	He:850sccm	He:700sccm	
	TEOS:700sccm	TEOS:550sccm	TEOS:550sccm	
	N2:2000sccm	N2:2000sccm	N2:2000sccm	

Tabelle 1

Tabelle 1 zeigt die Schritte und Parameter eines

Prozessablaufs für eine "P5000"-Anlage der Firma Applied

Materials TM, mit dem Silizium-Sauerstoff-Stickstoff-haltiges

Material (d.h. eine modifizierte PE-TEOS-Schicht) gemäß einem bevorzugten Ausführungsbeispiel der Erfindung hergestellt werden kann.

10

Im Weiteren wird bezugnehmend auf Tabelle 1 der Ablauf dieses Verfahrens zum Herstellen des erfindungsgemäßen Silizium-Sauerstoff-Stickstoff-haltigen Materials gemäß einem bevorzugten Ausführungsbeispiel der Erfindung beschrieben.

20

Zunächst wird in einem ersten Schritt, dem sogenannten GasEinfüllschritt, bei einer maximalen Schritt-Zeit von 10.0s
der Druck in der Verfahrenskammer auf 880Pa eingestellt. Bei
ausgeschalteter Hochfrequenzleistung wird die Temperatur des

Suszeptors von der Standardtemperatur 400°C auf 415°C erhöht,
so dass beim späteren Einladen der kalten Silizium-Scheibe
keine Abkühlung des Suszeptors eintritt. Als Gasflüsse werden
für eine O2-Komponente (Sauerstoff) 700sccm
(Standardkubikzentimeter pro Minute), für ein HeliumTrägergas 2500sccm, für TEOS als einen organischen SiliziumPrecursor eine Flussrate von 700sccm und für Stickstoff eine
Flussrate von 2000sccm eingestellt.

In einem zweiten Verfahrensabschnitt, Stabilisierschritt genannt, wird die maximale Schrittzeit bei 10.0s gehalten. Der Druck in der Verfahrenskammer wird weiterhin auf 880Pa gehalten. Ohne Hochfrequenzleistung wird dann die Temperatur des Suszeptors auf 400°C gebracht und eine Modifikation der Gasflüsse dahingehend vorgenommen, dass die O2-Komponente auf 155sccm, die Helium-Trägergas-Komponente auf 850sccm, die TEOS-Komponente auf 550sccm und die Stickstoff-Komponente auf 2000sccm gebracht wird.

In einem dritten Verfahrensabschnitt, der als

Abscheideschritt bezeichnet wird, wird die Schrittzeit entsprechend der gewünschten Schichtdicke eingestellt. Bei einer Schrittzeit von 60.0s wird zum Beispiel eine Schicht von ca. 450nm Dicke aufgewachsen. Der Druck in der Kammer wird auf 880Pa gehalten, und Hochfrequenz wird mit einer

Leistung von 900W zugeschaltet. Die Temperatur des Suszeptors wird auf 400°C gehalten. Die Gasflüsse werden folgendermaßen eingestellt: Die O2-Komponente wird auf 150sccm eingestellt, die Helium-Komponente auf 700sccm, die TEOS-Komponente wird auf 550sccm geregelt und die Stickstoff-Komponente auf 2000sccm.

In einem vierten Verfahrensabschnitt, hier als Pumpverfahren bezeichnet, wird die maximale Schritt-Zeit wird auf 5s verringert. Hinsichtlich des Drucks wird die Drossel vollständig geöffnet, die Hochfrequenzleistung wird auf 0W zurückgeschaltet. Ferner werden die Gasflüsse von Sauerstoff, Helium, TEOS und Stickstoff zurückgefahren.

Im Weiteren wird bezugnehmend auf **Fig.1** eine Schicht-Anordnung 100 gemäß einem ersten Ausführungsbeispiel der Erfindung beschrieben.

Die Schicht-Anordnung 100 weist ein Silizium-Substrat 101 auf, auf dem eine erste Kupfer-Leiterbahn 102 und eine zweite Kupfer-Leiterbahn 103 gebildet sind. Der Bereich zwischen den beiden elektrisch leitfähigen Strukturen 102, 103 ist materialfrei, nämlich der Bereich von Airgaps 107.

Erfindungsgemäß hergestelltes Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}-Material 104 ist auf den beiden elektrisch leitfähigen Strukturen 102, 103 gebildet. Auf dem

- Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}-Material 104 ist eine Silan-basierte Siliziumoxid-Zwischenschicht 105 aufgebracht. Auf der Silan-basierten Siliziumoxid-Zwischenschicht 105 ist eine Ozon/TEOS-Deckschicht 106 (d.h. durch Ozon-aktivierte Zersetzung von Tetraethylorthosilikat gebildetes
- 25 Siliziumoxid) gebildet, mittels welcher der materialfreie Bereich 107 zwischen den zwei elektrisch leitfähigen Strukturen 102, 103 gegenüber der Umgebung versiegelt ist.

Das erfindungsgemäße Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}-Material 104
30 bedeckt teilweise die Kupfer-Leiterbahnen 102, 103. Das
erfindungsgemäße Material weist hinsichtlich seiner
dielektrischen Eigenschaften im Wesentlichen jene von
Siliziumoxid auf. Somit ist die effektive
Dielektrizitätskonstante des Bereichs zwischen den
35 Leiterbahnen 102, 103, gebildet von den Airgaps 107 mit ε_r
ungefähr eins (und ggf. Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}-Material
104 mit ε_r ungefähr 3.9) sehr gering. Somit sind bei Anliegen

von Signalen an die Kupfer-Leiterbahnen 102, 103 RC-Signalverzögerungszeiten gering und somit ein unerwünschtes Übersprechen zwischen den Leiterbahnen 102, 103 vermieden. Beim Verschließen oder Versiegeln, d.h. beim vollständigen Bedecken, des Grabens, der aus Komponenten 102 bis 105 gebildet ist, wird die Ozon/TEOS Deckschicht 106 selektiv nur auf der Silan-basierten Siliziumoxid-Zwischenschicht 105 gebildet, wobei aufgrund des in dem erfindungsgemäßen $Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}$ -Material 104 enthaltenen Stickstoffbestandteils ein unerwünschtes selektives 10 Abscheiden von Deckschicht-Material auf dem $Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}$ -Material 104 vermieden ist. Somit kann die Deckschicht 106 den Hohlraum nach außen hin sicher versiegeln, ohne dass unerwünschterweise Material in die Airgaps 107 eingebracht würde, was zu einer unerwünschten 15 Erhöhung des effektiven ϵ_r -Werts zwischen den Leiterbahnen 102, 103 führen würde.

Im Weiteren werden bezugnehmend auf Fig.2 und Fig.3 anhand
von elektronenmikroskopischen Aufnahmen Unterschiede zwischen
einem herkömmlichen Material und dem erfindungsgemäß
bereitgestellten Material veranschaulicht.

In Fig.2 ist eine Elektronenmikroskop-Aufnahme 200 einer

Querschnittsansicht einer Schicht-Anordnung gezeigt, bei der
als Dielektrikum 204 zwischen Airgaps 202 herkömmliches TEOS

Material verwendet worden ist. Wie aus Fig.2 ersichtlich ist,
wird beim Bilden einer Deckschicht 201 mittels eines
selektiven O₃/TEOS-Abscheideverfahrens unerwünschterweise ein

Randbereich 203 zwischen den Airgaps 202 und dem Dielektrikum
204 mit Material bedeckt, womit die Dielektrizitätskonstante
des Airgap-Bereichs unerwünschterweise erhöht wird.

Im Unterschied dazu ist bei der in Fig.3 gezeigten

Elektronenmikroskop-Aufnahme 300 einer erfindungsgemäßen
Schicht-Anordnung erkennbar, dass eine Deckschicht 201,
gebildet mittels eines selektiven Ozon/TEOS

30

35

Abscheideverfahrens, an Seitenwänden von Airgaps 202 keinerlei Strukturen bildet. Dies ist darauf zurückzuführen, dass anstelle der herkömmlichen Dielektrikumschicht 204 aus Fig.2 erfindungsgemäß als Material zwischen Airgaps 202 Si_{1.00}O_{1.90}H_{0.27}C_{0.045}H_{0.06}-Material 301 verwendet wird. Dadurch ist eine geringe Dielektrizitätskonstante im Bereich der Airgaps 202 erreicht, was für Low-k-Anwendungen äußerst vorteilhaft ist.

In Fig.4 ist eine andere Elektronenmikroskop-Aufnahme 400 als Querschnittsansicht einer erfindungsgemäßen Schicht-Anordnung gezeigt, bei der zusätzlich zu den in Fig.3 gezeigten Komponenten Kupfer-Leiterbahnen 401 gebildet sind. Da aufgrund des erfindungsgemäßen Materials 301 zwischen Airgaps 202 zwischen den Kupfer-Leiterbahnen 401 die effektive relative Dielektrizitätskonstante verringert ist (da erfindungsgemäß eine unerwünschte Seitenwandbedeckung der Airgaps 202 mit Ozon/TEOS Material einer Deckschicht 201 vermieden ist), sind die RC-Verzögerungszeiten der
Schaltkreis-Anordnung 400 aus Fig.4 gegenüber dem Stand der Technik signifikant verbessert.

Im Weiteren wird bezugnehmend auf **Fig.5** eine Querschnittsansicht einer Schicht-Anordnung 500 gemäß einem zweiten Ausführungsbeispiel der Erfindung beschrieben.

Die Leiterbahn-Anordnung 500 weist ein Grundsubstrat 502 auf. Als Material für dieses Grundsubstrat 502 wird Siliziumdioxid (SiO₂) gewählt. In dem Grundsubstrat 502 sind zwei

Leiterbahnen 503 aus Aluminium oder Kupfer gebildet.

Sowohl die Leiterbahnen 503 als auch das Grundsubstrat 502 werden von einer ersten Stoppschicht 504 bedeckt. Über der ersten Stoppschicht 504 ist ein Schichtstapel aus aufeinanderfolgend einer ersten Isolationsschicht 505, einer zweiten Stoppschicht 506, einer zweiten Isolationsschicht 507, einer dritten Stoppschicht 508, einer dritten

Isolationsschicht 509, einer Pufferschicht 510 sowie einer Trageschicht 511 angeordnet.

Gemäß dem vorliegenden Ausführungsbeispiel weisen die erste Stoppschicht 504, die zweite Stoppschicht 506, die dritte Stoppschicht 508 und eine vierte Stoppschicht 512 jeweils Siliziumnitrid (Si₃N₄) auf, welches elektrisch isolierend ist. Als Material für die erste Isolationsschicht 505, die zweite Isolationsschicht 507, die dritte Isolationsschicht 509 und die Pufferschicht 510 wird gemäß dem vorliegenden 10 Ausführungsbeispiel erfindungsgemäß hergestelltes Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}-Material verwendet. Für die Trageschicht 511 (auch als Zwischenschicht bezeichnet) wird auf Silan (SiH4) basierendes, plasmaangeregtes Siliziumdioxid 15 (SiO₂) verwendet. Dabei wird das auf Silan (SiH₄) basierende, plasmaangeregte Siliziumdioxid (SiO₂) üblicherweise in einem PECVD-Prozess (PECVD, "plasma enhanced chemical vapour deposition" bzw. plasmaangeregte chemische Gasphasenabscheidung) abgeschieden.

20

25

30

Das Grundsubstrat 502, die erste Stoppschicht 504, die erste Isolationsschicht 505, die zweite Stoppschicht 506, die zweite Isolationsschicht 507, die dritte Stoppschicht 508, die dritte Isolationsschicht 509 und die vierte Stoppschicht 512 werden in aufsteigender Richtung des Schichtstapels gebildet. Die Pufferschicht 510 wird von einer Pufferschichtoberfläche 513 nach oben begrenzt. In der Pufferschicht 510 und den darunter angeordneten Schichten ist ein Hohlraum 514 gebildet, welcher von der Pufferschichtoberfläche 513 aus bis zur zweiten Stoppschicht 506 in die darunter angeordneten Schichten hineinragt und eine Hohlraumtiefe TH aufweist.

Der Hohlraum 514 isoliert die zwei vergraben angeordneten 35 Leiterbahnen 503, welche teilweise die dritte Stoppschicht 508 sowie die dritte Isolationsschicht 509 ersetzen und

zusammen eine Leiterbahnebene definieren. Die mittels des Hohlraums 514 elektrisch isolierten Leiterbahnen 503 sind in einem Leiterbahnabstand A derart nebeneinander angeordnet, dass die jeweilige untere Leiterbahnoberfläche senkrecht zur Pufferschichtoberfläche 513 einen Abstand einer Leiterbahntiefe T_L aufweist, welche größer als die vertikale Dicke der Leiterbahnen 503 ist. Die Hohlraumtiefe T_H ist größer als die Leiterbahntiefe T_L , wodurch Streufelder zwischen benachbarten Leiterbahnen 503 in den Bereichen der Pufferschicht 510 direkt oberhalb und unterhalb der Leiterbahnen 503 reduziert werden. Der Hohlraum 514 weist eine Breite auf, welche gleich dem Leiterbahnabstand A ist.

Die teilweise die dritte Stoppschicht 508 sowie die dritte

Isolationsschicht 509 ersetzenden Leiterbahnen 503 sind
mittels eines elektrischen Kontaktes 515 mit der im
Grundsubstrat 502 befindlichen Leiterbahn 503 elektrisch
gekoppelt und weisen gemäß dem vorliegenden
Ausführungsbeispiel das gleiche Material wie die im

Grundsubstrat 502 befindliche Leiterbahn 503 auf. Der
elektrische Kontakt 515 durchdringt hierzu die erste
Stoppschicht 504, die erste Isolationsschicht 505, die zweite
Stoppschicht 506 sowie die zweite Isolationsschicht 507.

- Ferner befinden sich übereinander die Pufferschicht 510 und die Trageschicht 511, wobei der Hohlraum 514 durch die Pufferschicht 510 hindurchragt sowie zum Teil in die Trageschicht 511 hineinragt.
- Der Hohlraum 514 wird mittels einer Deckschicht 516 bezüglich der Pufferschichtoberfläche 513 nach oben hin abgeschlossen. Die Deckschicht 516 weist ein Isolationsmaterial auf, welches sich selektiv ausschließlich an der Trageschicht 511 anlagert. Als Material für die Deckschicht 516 wird auf ozonaktiviertem Tetraethylorthosilikat (O3/TEOS) basierendes Siliziumdioxid (SiO2) verwendet. Selbstverständlich kann für die Deckschicht 516 auch ein anderes Material gewählt werden,

wenn dieses die oben beschriebene Selektivität hinsichtlich seines Anlagerungsverhaltens zeigt. Anschaulich ist die Deckschicht 516 derart ausgebildet, dass sie eine dem Hohlraum 514 zugewandte zwickelförmige Aussparung aufweist.

Folglich sollte die Trageschicht 511 senkrecht zur Pufferschichtoberfläche 513 eine ausreichende Dicke aufweisen, so dass der Hohlraum 514 auch oberhalb der zwickelförmigen Aussparung der Deckschicht 516 von der Deckschicht 516 vollständig abgeschlossen ist.

10

15

Die Deckschicht 516 sowie die Trageschicht 511 weisen eine gemeinsame Deckschicht/Trageschicht-Oberfläche 517 auf, welche diese beiden Schichten 516, 511 im Wesentlichen parallel zur Substratoberfläche 501 nach oben begrenzt. Auf dieser Deckschicht/Trageschicht-Oberfläche 517 ist schließlich noch eine fünfte Stoppschicht 518 angeordnet, auf welcher zusätzliche Leiterbahnebenen aufgebracht werden können.

Die Geometrie des Hohlraums 514 wird bevorzugt derart 20 gewählt, dass die Leiterbahn-Anordnung 500 eine ausreichend gute elektrische Isolierung der Leiterbahnen 503 innerhalb einer Leiterbahnebene bei einer ausreichenden Reduzierung der relativen Dielektrizitätskonstante ϵ_{r} aufweist. Gemäß diesem Ausführungsbeispiel weisen der Leiterbahnabstand A und somit 25 der Hohlraum 514 eine Breite von 400nm bis 500nm auf, welche fast gleich der Breite der Leiterbahnen 503 ist. Die Hohlraumtiefe TH weist gemäß diesem Ausführungsbeispiel einen Wert auf, welcher der zweifachen Dicke der Leiterbahnen 503 entspricht. Die Leiterbahnen 503 weisen gemäß diesem 30 Ausführungsbeispiel eine Dicke von ungefähr 600nm auf. Gemäß dem vorliegenden Ausführungsbeispiel weisen die einzelnen Stoppschichten eine Dicke von jeweils ungefähr 50nm auf. Die Isolationsschichten außer der dritten Isolationsschicht 509 sowie die Pufferschicht 510 und die Trageschicht 511 weisen 35 gemäß dem vorliegenden Ausführungsbeispiel eine Dicke von

jeweils ungefähr 150nm auf. Alternativ können selbstverständlich auch andere geeignete Maße gewählt werden.

Zum Herstellen der Leiterbahnen 503 kann entweder die Damascene-Technik oder die Metallätztechnik eingesetzt werden. Die Damascene-Technik wird vorzugsweise eingesetzt, wenn als Material für die Leiterbahnen 503 Kupfer verwendet wird, während die Metallätztechnik vorzugsweise eingesetzt wird, wenn als Material für die Leiterbahnen 503 Aluminium verwendet wird.

Bei einem nicht dargestellten Ausführungsbeispiel der Erfindung, welches im Wesentlichen dem gerade beschriebenen zweiten Ausführungsbeispiel der Erfindung gleicht, kann sich der Hohlraum 514 zusätzlich noch durch die zweite Stoppschicht 506 hindurch bis zur Grenzfläche zwischen der zweiten Stoppschicht 506 und der ersten Isolationsschicht 505 hin ausdehnen. Anschaulich ist zur Vergrößerung des Hohlraums 514 soviel Material der zweiten Stoppschicht 506 im Bereich des Hohlraums 514 entfernt, dass die darunter liegende erste Isolationsschicht 505 gerade freigelegt ist. Dies hat eine zusätzliche Reduzierung der effektiven relativen Dielektrizitätskonstante $\epsilon_{\rm r}$ zur Folge. Dies liegt daran, dass der größere Hohlraum 514 störende elektrische Streufelder zwischen den Leiterbahnen 503 zusätzlich reduziert.

In **Fig.6** ist eine Querschnittsansicht einer Schicht-Anordnung 600 (auch als Leiterbahn-Anordnung 600 bezeichnet) gemäß einem dritten Ausführungsbeispiel der Erfindung dargestellt.

30

10

15

20

25

Die Leiterbahn-Anordnung 600 gemäß dem dritten
Ausführungsbeispiel ist im Wesentlichen identisch zu der
Leiterbahn-Anordnung 500 gemäß dem zweiten
Ausführungsbeispiel. Die Unterschiede zwischen der
Leiterbahn-Anordnung 600 gemäß dem dritten
Ausführungsbeispiel und der Leiterbahn-Anordnung 500 gemäß
dem zweiten Ausführungsbeispiel sind wie folgt:

Der Hohlraum 514 weist bezüglich der Substratoberfläche 501 parallel zur Zeichenebene eine Hohlraumbreite B auf, welche größer als der Leiterbahnabstand A ist. Dies hat zur Folge,

5 dass die Form des Hohlraums 514 anschaulich mit einem "I" oder mit einem Knochen vergleichbar ist. Die größere Ausdehnung des Hohlraums 514 oberhalb und unterhalb der durch die benachbarten Leiterbahnen 503 gebildeten Leiterbahnebene trägt zu einer zusätzlichen Reduzierung der effektiven

10 relativen Dielektrizitätskonstante ε_r in der Leiterbahn-Anordnung 600 bei. Dies liegt daran, dass der größere Hohlraum 514 störende elektrische Streufelder zwischen den Leiterbahnen 503 zusätzlich reduziert.

Die dritte Stoppschicht 508 und die vierte Stoppschicht 512 weisen im Bereich des Hohlraums 514 eine Lochbreite C auf, welche kleiner ist als der Leiterbahnabstand A. Dies ist eine Folge des speziellen Herstellungsverfahrens, mit dem der ausgewölbte Hohlraum 514 in der Leiterbahn-Anordnung 600 gemäß dem dritten Ausführungsbeispiel hergestellt wird.

Ein wichtiger Aspekt der Leiterbahn-Anordnungen 500, 600 gemäß der Erfindung ist darin zu sehen, dass als Material der Schichten 505, 507, 509, 510 das erfindungsgemäße mittels eines PECVD-Verfahrens hergestellte 25 $Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}$ -Material verwendet wird. Freiliegende Oberflächenbereiche insbesondere der Schichten 507, 510 sind bei einem nachfolgenden Bilden der Ozon/TEOS-Deckschicht 516 mittels eines selektiven Abscheideverfahrens sicher davor geschützt, unerwünschterweise mit Material der 30 Deckschicht 516 bedeckt zu werden, was zu einer teilweisen Auffüllung des Hohlraums 514 führen würde. Dies wiederum würde die effektive relative Dielektrizitätskonstante des Bereichs zwischen den Leiterbahnen 503 unerwünscht erhöhen. Aufgrund des Vorsehens der Schichten 505, 507, 509, 510 aus 35 Si_{1.00}O_{1.90}H_{0.27}C_{0.045}N_{0.06}-Material, das aufgrund seiner Materialzusammensetzung vor einem selektiven Abscheiden von

Material der Ozon/TEOS-Deckschicht 516 geschützt ist, wird bei der Ozon/TEOS-Abscheidung die Deckschicht 516 nur auf Oberflächenbereichen der Trageschicht 511 aus Silan-basiertem Siliziumoxid selektiv abgeschieden, wodurch der Hohlraum 514 von Material der Deckschicht 516 überwachsen und somit abgeschlossen wird.

In diesem Dokument sind folgende Veröffentlichungen zitiert:

- [1] WO 03/019649 A2;
- 5 [2] DE 101 25 019 A1;
 - [3] DE 191 09 778 A1;
 - [4] DE 199 57 302 A1;

10

- [5] DE 41 18 165 A1;
- [6] US 2001/0 019 903 A1;
- 15 [7] JP 06-216 122 A;
 - [8] US 6,211,057 B1;
 - [9] US 2003/0 176 055 A1.

Patentansprüche:

- 1. Verfahren zum Herstellen einer Schicht-Anordnung,
- bei dem über einem Substrat mit einer Mehrzahl von elektrisch leitfähigen Strukturen und/oder über einem Teil der Oberfläche der elektrisch leitfähigen Strukturen eine Schicht aus Sauerstoff-Material Stickstoff-Material mittels eines plasmaangeregten chemischen Gasphasenabscheide-Verfahrens gebildet wird, wobei während des Zuführens von Silizium-Material und Sauerstoff-Material mittels eines organischen Silizium-Precursormaterials Stickstoff-Material zugeführt wird, wobei die Schicht aus Sauerstoff-Material Stickstoff-Material gebildet wird derart, dass zwischen den
 Leiterbahnen ein materialfreier Bereich verbleibt,
 - bei dem auf der Schicht aus Sauerstoff-Material
 Stickstoff-Material eine Zwischenschicht aus elektrisch isolierendem Material aufgebracht wird, und
- bei dem selektiv auf der Zwischenschicht eine
 Deckschicht aufgebracht wird, mittels welcher der materialfreie Bereich zwischen den elektrisch leitfähigen Strukturen gegenüber der Umgebung versiegelt wird, so dass der materialfreie Bereich einen Hohlraum ausbildet.

25

- 2. Verfahren nach Anspruch 1, bei dem als organisches Silizium-Precursormaterial Tetraethylorthosilikat verwendet wird.
- 30 3. Verfahren nach Anspruch 1 oder 2,
 - bei dem Tetraethylorthosilikat und Stickstoff als Precursoren verwendet werden;
 - bei dem das Flussratenverhältnis von
 Tetraethylorthosilikat zu Stickstoff zwischen 1:10 und
 1:1 eingestellt wird.
 - 4. Verfahren nach einem der Ansprüche 1 bis 4,

- bei dem Tetraethylorthosilikat und Stickstoff als Precursoren verwendet werden;
- bei dem das Flussratenverhältnis von
 Tetraethylorthosilikat zu Stickstoff zwischen 1:5 und
 1:2 eingestellt wird.
 - 5. Verfahren nach einem der Ansprüche 1 bis 4,
 - bei dem Tetraethylorthosilikat und Stickstoff als Precursoren verwendet werden;
- bei dem das Flussratenverhältnis von
 Tetraethylorthosilikat zu Stickstoff zwischen 11:40 und
 7:20 eingestellt wird.
 - 6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem Helium als Trägergas zugeführt wird.
 - 7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem der Druck in der Verfahrenskammer zwischen 440Pa und 1750Pa eingestellt wird.

8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem die Temperatur in der Verfahrenskammer zwischen 300°C und 500°C eingestellt wird.

25 9. Schicht-Anordnung

15

- mit einem Substrat;
- mit zwei elektrisch leitfähigen Strukturen auf dem Substrat, wobei zumindest ein Teilbereich zwischen den zwei elektrisch leitfähigen Strukturen materialfrei ist;
- mit einer Schicht aus Silizium-Sauerstoff-Stickstoffhaltigem Material, welches mittels eines
 plasmaangeregten chemischen GasphasenabscheideVerfahrens gebildet wurde, wobei während des Zuführens
 von Silizium-Material und Sauerstoff-Material mittels
 eines organischen Silizium-Precursormaterials
 Stickstoff-Material zugeführt wurde, wobei die Schicht
 derart auf den zwei elektrisch leitfähigen Strukturen

aufgebracht ist, dass zwischen den zwei elektrisch leitfähigen Strukturen ein materialfreier Bereich verbleibt;

- mit einer Zwischenschicht aus elektrisch isolierendem Material auf der Schicht aus Silizium-Sauerstoff-Stickstoff-haltigem Material;
- mit einer selektiv auf der Zwischenschicht gebildeten Deckschicht, mittels welcher der materialfreie Bereich zwischen den zwei elektrisch leitfähigen Strukturen gegenüber der Umgebung versiegelt ist.
- 10. Schicht-Anordnung nach Anspruch 9, bei dem die Zwischenschicht aus Silan-basiertem Siliziumoxid gebildet ist.

11. Schicht-Anordnung nach Anspruch 10 oder 11, bei dem die Deckschicht aus Siliziumoxid gebildet ist, das basierend auf Ozon-aktiviert zersetztem

Tetraethylorthosilikat gebildet ist.

5

10

Zusammenfassung

5

10

Plasmaangeregtes chemisches Gasphasenabscheide-Verfahren, Silizium-Sauerstoff-Stickstoff-haltiges Material und Schicht-Anordnung

Die Erfindung betrifft ein plasmaangeregtes chemisches
Gasphasenabscheide-Verfahren zum Bilden eines SiliziumSauerstoff-Stickstoff-haltigen Materials, bei dem während des
Zuführens von Silizium-Material und Sauerstoff-Material
Stickstoff-Material unter Verwendung eines organischen
Silizium-Precursormaterials zugeführt wird.

Signifikante Figur 1