Chapitre 3

Cas-test verticaux simple-colonne et robustesse des solutions

3.1 Description des cas-tests

3.1.1 Approfondissement de couche-limite par le vent (Kato and Phillips, 1969)

Les valeurs des paramètres pour ce cas d'étude sont :

H	50 m	ρ_0	1024 kg m^{-3}	r_D	$0~\mathrm{m~s^{-1}}$
N	100 niveaux	f	$0 \; {\rm s}^{-1}$	$z_{0,b}$	0 m
Δt	30 s	T	30 hours	Neu_bot	True
lin_eos	True	T_0	16 °C	α	$2 \times 10^{-4} {}^{o}\mathrm{C}^{-1}$

Les conditions initiales sont :

$$S(z, t = 0) = 35 \text{ psu}, \quad T(z, t = 0) = T_0 - N_0^2 (\alpha g)^{-1} |z|, \quad u(z, t = 0) = v(z, t = 0) = 0 \text{ m s}^{-1}$$

avec $N_0=0.01~{\rm s}^{-1}$ et $g=9.81~{\rm m~s}^{-2}$. Les conditions limites au fond sont

$$r_D(t) = 0 \text{ m s}^{-1}, \quad \Gamma_T(t) = -N_0^2(\alpha g)^{-1}, \quad \Gamma_S(t) = 0$$

et le forçage de surface (avec $u_{\star}^{s} = 0.01 \text{ m s}^{-1}$)

$$\tau_x(t)/\rho_0 = (u_*^s)^2$$
, $\tau_y = 0$, $Q_0(t) = 0$, $Q_s^{\downarrow}(t) = 0$, $S(E - P)(t) = 0$.

La quantité pertinente pour évaluer les simulations est l'évolution temporelle de la profondeur de couche de mélange (définie ici comme la profondeur à laquelle la viscosité turbulente atteint sa valeur *background*) dont il a été montré empiriquement que

$$D_{\rm ml}(t) = 1.05 u_{\star}^s \sqrt{t/N_0}$$

Des premiers résultats obtenus avec les schémas actuels de Croco et le schéma TKE de NEMO sont montrés sur la figure 3.1

FIGURE 3.1: Résultats pour le cas-test de Kato and Phillips (1969) avec 100 niveaux et $\Delta t = 30 \, \mathrm{s}$ (en haut) avec 100 niveaux et $\Delta t = 1200 \, \mathrm{s}$ (au milieu) et avec 10 niveaux et $\Delta t = 1200 \, \mathrm{s}$ (en bas). La ligne rouge horizontale correspond à une mesure empirique de la profondeur de couche de mélange.