PRAKTICKÁ ČÁST

Úloha: Vzdálenost cefeid

Jméno: Artem Gredilov Datum odevzdání:

Shrnutí úkolů:

- 1. S pomocí hodnot v souboru $\operatorname{\mathsf{ceph.txt}}$ spočtěte logaritmus periody uvedených hvězd. Do grafu vyneste veličiny $\log P$ a m. Nezapomeňte správně popsat osy grafu.
- 2. Prozkoumejte a oměřte světelné křivky na obrázku 1 a výsledky zaneste do tabulky 5. Ke zjištění periody změřte vzdálenosti mezi minimy nebo maximy. Měření proveď te několikrát a výsledky zapište do tabulky. Spočtěte průměrnou hodnotu a chybu. Podobně postupujte při měření hvězdných velikostí a určení střední hvězdné velikosti m_{str} . Výsledné hodnoty pro čtyři cefeidy vyneste do společného grafu s výsledky z bodu 1. Tyto čtyři body graficky odlište od ostatních (prázdným kroužkem, křížkem apod., aby nesplývaly se zbytkem bodů).
- 3. Vynesenými body v grafu proložte přímku.
- 4. Doplňte do grafu údaje z tabulky 6. Stupnice $\log P$ zůstane stejná. Nově vynesenými body také proložte přímku. Výsledný graf přiložte k praktiku.
- 5. Odečtěte vertikální rozdíl (m-M) mezi oběma přímkami a doplňte následující údaje:

Zjištěný modul vzdálenosti $(m-M)=\{1,1,2,\ldots,1,1,1,\ldots,1,1,1,1,\dots,1,1,1,1,\dots,1,1,1,\dots,1,1,\dots,1,1,\dots,1,1,\dots,1,1,\dots,1,1,\dots,$

6. Diskutujte přesnost určení vzdálenosti. Odhadněte, jak se jednotlivé kroky řešení podílely na nejistotě určení vzdálenosti SMC.

Přesnost této netody urtování vzda lenosti není velká. Záleží však na naších cílech. Pro přiblith e výpotty kosmologických vzda leností nuiže být vhadna, ale pro přesnějí vysled ky však vhodna nemí.
Prav děpodobně, rejdůle žitějším kohen při vypothu bylo získámí modulu vodalenosti. Čím přesněji bude tenosti.

Tabulka 5: Cefeidy v SMC. Data dle měření z projektu OGLE.

Hvězda	Měření	$m_{ m max}$	$m_{ m min}$	$m_{ m str}$	P	$\log P$
		[mag]	[mag]	[mag]	[dny]	
Cep-0793	1	14,56	15,35	15,155	0,85	-0,071
	2	14,55	15,36	15,155	0,86	-0,065
	3	14, 86	15,36	15,160	0,45	-0,071
	4	14, 56	15,35	15,155	0,15	-0,071
	5	14,96	15,35	15,165	0,16	-0,065
	průměr	14,958	15,354	15,156	0,854	-0,069
	chyba	0,002	0,002	0,005	0,002	0,001
Cep-0387	1	14,3	15,1	14,4	10,3	1,013
	2	14,3	15,15	14,12	10,3	1,013
	3	14,32	15,1	14,71	10,27	(,012
	4	14,3	15,1	14 17	10,3	1,013
	5	14,32	ارى	14,71	10,3	1,013
	průměr	14,308	15,11	14, 708	10,294	1, 013
	chyba	0,005	0,01	0,006	0,006	0,0002
Cep-0374	(13,57	14,8	14,185	28,63	1,460
	2	13,60	14,8	14,2	2 ξ , (3	1,460
	3	13,55	14,8	14,175	21,10	1,453
	4	13,55	14,8	14,175	28,63	1,460
	5	13,60	14, 8	14,2	28,85	1,460
	průměr	13,574	14,8	14,185	23,828	1,460
	chyba	0, 011	0	0,006	0,008	0,0002
Cep-0283	1	13,62	14,12	13,87	37,7	1,576
	2	13,60	[4,10	13,15	31,7	1,576
	7	13,65	14,15	13,5	37, 7	1,576
	4	13,60	14,12	13,26	37,5	1,574
	5	13,60	14,10	13,85	37,7	1,576
	průměr	13,614	14,118	13,866	31,66	1,576
	chyba	0,04	0,00\$	0,007	0,04	0,0004

Tabulka 6: Vybrané klasické cefeidy dle Krafta (1961).

Hvězda	$\log P$	M [mag]	Hvězda	$\log P$	M [mag]
SU Cas	0.29	-1.7	U Sgr	0.83	-3.5
EV Sct	0.49	-2.4	η Aql	0.86	-3.5
SS Sct	0.56	-2.4	RX Cam	0.90	-3.7
SU Cyg	0.58	-2.8	DL Cas	0.90	-3.7
Y Lac	0.64	-2.8	S Nor	0.99	-3.7
FF Aql	0.65	-3.1	Z Lac	1.04	-4.1
CF Cas	0.69	-3.4	RW Cas	1.17	-4.5
V350 Sgr	0.71	-3.0	Y Oph	1.23	-5.3
CV Mon	0.73	-3.0	T Mon	1.34	-5.6
RR Lac	0.81	-3.4	SV Vul	1.65	-6.4

Period-Luminosity relation

