Eksamen på Økonomistudiet, vinter 2014-2015

Reeksamen

Makro A

2. årsprøve

16. februar, 2015

(3-timers skriftlig prøve uden hjælpemidler)

Alle delspørgsmål, 1.1-1.3 og 2.1-2.8, skal besvares og alle tæller lige meget ved bedømmelsen.

I Opgave 1 er fokus på de verbale, intuitive forklaringer, men formel analyse og notation kan inddrages efter ønske.

I Opgave 2 er de formelle og beregningsmæssige elementer i fokus, men verbale, intuitive forklaringer er fortsat vigtige.

Dette opgavesæt består i alt af 4 sider inkl. denne.

Opgave 1: Fagforeningsmodeller for strukturel arbejdsløshed

- 1.1 Redegør for grundlæggende antagelser om arbejdsmarkedet i såkaldte fagforeningsmodeller for strukturel ledighed.
- 1.2 Redegør for de centrale antagelser om fagforeningernes adfærd i den slags modeller.
- 1.3 Diskutér om den form for strukturel arbejdsløshed, en fagforeningsmodel kan frembringe, er ufrivillig eller frivillig. Redegør for hvordan fagforeningsmodeller kan bidrage til forståelse af et af konjunkturbevægelsernes såkaldt stiliserede fakta.

Opgave 2: Konstant arbejdsstyrke i en R&D-baseret, semi-endogen vækstmodel: Stagnation eller vækst?

Ligningerne (1)-(6) nedenfor udgør en R&D-baseret vækstmodel for en lukket økonomi. Variablen A_t er det teknologiske niveau i betydningen den produktive effekt af mængden af idéer udviklet i R&D-sektoren (forskningssektoren) og taget i brug i produktionen.

Ligning (1) er den aggregerede produktionsfunktion for færdigvarer med output Y_t og input af kapital K_t og af arbejdskraft L_{Yt} . Ligning (2) er den aggregerede produktionsfunktion for forskningssektoren med output $A_{t+1} - A_t$ og arbejdsinput L_{At} . Om outputelasticiteten ϕ mht. eksisterende teknologi er (udover $\phi > 0$) antaget $\phi < 1$; i pensumbogens sprogbrug er dette tilfældet med semi-endogen vækst. Ligning (3) beskriver akkumulationen af kapital K_t , og ligning (4) beskriver udviklingen i arbejdsstyrken L_t . Ligning (5) siger, at den samlede mængde arbejdskraft L_t bruges i enten færdigvaresektoren eller forskningssektoren, og ligning (6) siger, at andelen s_R bruges i sidstnævnte.

Vækstraten i arbejdsstyrken kan evt. være 0 (nul), jf. antagelsen $n \ge 0$ i ligning (4).

$$Y_t = K_t^{\alpha} \left(A_t L_{Yt} \right)^{1-\alpha}, \quad 0 < \alpha < 1 \tag{1}$$

$$A_{t+1} - A_t = \rho A_t^{\phi} L_{At}, \quad \rho > 0, \quad 0 < \phi < 1$$
 (2)

$$K_{t+1} = sY_t + (1 - \delta) K_t, \quad 0 < s, \delta < 1$$
 (3)

$$L_{t+1} = (1+n)L_t, \quad n \ge 0$$
 (4)

$$L_{Yt} + L_{At} = L_t (5)$$

$$L_{At} = s_R L_t, \quad 0 < s_R < 1 \tag{6}$$

Modellens eksogene parametre $\alpha, \rho, \phi, s, \delta, n$ og s_R opfylder de angivne parameterrestriktioner. Der antages givne, strengt positive initialværdier K_0 , A_0 og L_0 for tilstandsvariablene. Der anvendes definitionerne: $k_t \equiv \frac{K_t}{L_t}$, $y_t \equiv \frac{Y_t}{L_t}$, $\tilde{k}_t \equiv \frac{k_t}{A_t}$, $\tilde{y}_t \equiv \frac{y_t}{A_t}$ og $g_t \equiv \frac{A_{t+1} - A_t}{A_t}$, hvor g_t er den teknologiske vækstrate.

- 2.1 Antag i dette delspørgsmål et konstant, strengt positivt arbejdsinput i forskningssektoren, $L_{At} = L_A > 0$ for alle t. Redegør ud fra ligning (2) for hvordan produktionen af ny teknologi $A_{t+1} - A_t$, det teknologiske niveau A_t og den teknologiske vækstrate g_t da vil udvikle sig over tid, herunder på helt langt sigt.
- **2.2** Vis at modellen indebærer følgende dynamiske ligning (transitionsligning) for den teknologiske vækstrate:

$$g_{t+1} = (1+n) g_t (1+g_t)^{\phi-1}$$
 (8)

2.3 Vis at i henhold til modellen er $\tilde{y}_t = \tilde{k}_t^{\alpha} (1 - s_R)^{1-\alpha}$ og vis videre, at modellen indebærer følgende dynamiske ligning for \tilde{k}_t :

$$\tilde{k}_{t+1} = \frac{1}{(1+n)(1+g_t)} \left[s\tilde{k}_t^{\alpha} (1-s_R)^{1-\alpha} + (1-\delta) \tilde{k}_t \right]$$
(9)

Beskriv karakteren af det dynamiske system i g_t og \tilde{k}_t bestående af ligningerne (8) og (9) mht. koblinger mellem de to ligninger, dvs. mht. den kausale sammenhæng mellem $(g_{t+1}, \tilde{k}_{t+1})$ og (g_t, \tilde{k}_t) . Vis at systemet kan omskrives til

$$g_{t+1} - g_t = (1+n) g_t (1+g_t)^{\phi-1} - g_t$$
 (8')

$$\tilde{k}_{t+1} - \tilde{k}_t = \frac{1}{(1+n)(1+g_t)} \left[s \tilde{k}_t^{\alpha} (1-s_R)^{1-\alpha} - (n+g_t+\delta+ng_t) \tilde{k}_t \right]$$
 (9')

2.4 Antag i dette delspørgsmål n > 0. Vis ved at etablere tilstrækkelige egenskaber for transitionskurven $(g_{t+1} \text{ som funktion af } g_t)$ og med illustration i et transitionsdiagram at ligning (8) indebærer, at g_t på langt sigt konvergerer mod steady stateværdien g_{se} givet ved

$$g_{se} = (1+n)^{\frac{1}{1-\phi}} - 1 \tag{10}$$

2.5 Antag i dette delspørgsmål n = 0. Vis igen med illustration i et transitionsdiagram at ligning (8) indebærer, at g_t på langt sigt konvergerer mod steady state-værdien g_{se} , som i dette tilfælde er lig med 0 (nul).

I det følgende skal der tegnes fasediagrammer hørende til det dynamiske system (8') og (9'). Fasedigrammet tegnes med g_t ud ad førsteaksen og \tilde{k}_t op ad andenaksen og skal rumme to kurver, som viser hhv. kombinationer af g_t og \tilde{k}_t , som indebærer, at $g_{t+1} - g_t = 0$, og kombinationer af g_t og \tilde{k}_t , der indebærer $\tilde{k}_{t+1} - \tilde{k}_t = 0$. For hvert af de delområder, disse kurver opdeler planen i, skal det ved pile angives, i hvilken retning (g_t, k_t) vil bevæge sig fra et punkt i det pågældende område.

2.6 Antag i dette delspørgsmål n > 0 og illustrér fasediagrammet for dette tilfælde. Skitsér i fasediagrammet et antal mulige baner for tidsudviklingen i (g_t, \tilde{k}_t) ud fra alternative startpunkter og redegør for, at udover at g_t konvergerer mod g_{se} (som allerede vist i spørgsmål 2.5), vil \tilde{k}_t konvergere mod

$$\tilde{k}^* = \left(\frac{s}{n + g_{se} + \delta + ng_{se}}\right)^{\frac{1}{1-\alpha}} (1 - s_R) \tag{11}$$

og $\tilde{y}_t \mod$

$$\tilde{y}^* = \left(\frac{s}{n + g_{se} + \delta + ng_{se}}\right)^{\frac{\alpha}{1 - \alpha}} (1 - s_R) \tag{12}$$

- **2.7** Betragt nu tilfældet n=0. Tegn igen fasediagrammet med alternative baner for (g_t, k_t) og redegør for, at også i dette tilfælde vil g_t , \tilde{k}_t og \tilde{y}_t konvergere mod bestemte steady state-værdier g_{se} , \tilde{k}^* og \tilde{y}^* og angiv disse. Er det muligt for økonomien i dette tilflælde at befinde sig i steady state, altså i et punkt hvor $g_t = g_{se}$ og $\tilde{k}_t = \tilde{k}^*$?
- **2.8** Antag fortsat n=0. Redegør for hvordan hhv. y_t (færdigvareproduktionen per arbejder) og vækstraten i y_t udvikler sig på langt sigt (anfør hvad disse størrelser går imod for $t \to \infty$) i henhold til den betragtede model.

I virkelighedens verden er fortsat befolkningsvækst næppe mulig (eller ønskelig) på langt sigt. Dette svarer til, at parameteren n i vores model realistisk set vil blive 0 (nul). Samtidig kan der argumenteres for, at det må betragtes som mest realistisk, at elasticiteten i frembringelsen af nye idéer mht. den eksisterende beholdning af idéer er mindre end en, svarende til $\phi < 1$ i vores model. Diskutér på denne baggrund og ud fra tankegangen i den R&D-baserede vækstmodel, om stagnation eller vedvarende fremgang i færdigvareproduktion per arbejder synes at være det mest oplagte "vækstperspektiv" på langt sigt.