

NetApp Storage Systems Overview

NetApp Solutions

NetApp March 08, 2022

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-n_netapp_ontap.html on March 08, 2022. Always check docs.netapp.com for the latest.

Table of Contents

NetApp Storage Overview	
NetApp ONTAP	
NetApp Element: Red Hat OpenShift with NetApp	

NetApp Storage Overview

NetApp has several storage platforms that are qualified with our Astra Trident Storage Orchestrator to provision storage for applications deployed on Red Hat OpenShift.

- AFF and FAS systems run NetApp ONTAP and provide storage for both file-based (NFS) and block-based (iSCSI) use cases.
- Cloud Volumes ONTAP and ONTAP Select provide the same benefits in the cloud and virtual space respectively.
- NetApp Cloud Volumes Service (AWS/GCP) and Azure NetApp Files provide file-based storage in the cloud
- NetApp Element storage systems provide for block-based (iSCSI) use cases in a highly scalable environment.

Each storage system in the NetApp portfolio can ease both data management and movement between on-premises sites and the cloud, ensuring that your data is where your applications are.

The following pages have additional information about the NetApp storage systems validated in the Red Hat OpenShift with NetApp solution:

- NetApp ONTAP
- NetApp Element

Next: NetApp Storage Integrations Overview

NetApp ONTAP

NetApp ONTAP is a powerful storage-software tool with capabilities such as an intuitive GUI, REST APIs with automation integration, Al-informed predictive analytics and corrective action, non-disruptive hardware

upgrades, and cross-storage import.

For more information about the NetApp ONTAP storage system, visit the NetApp ONTAP website.

ONTAP provides the following features:

- A unified storage system with simultaneous data access and management of NFS, CIFS, iSCSI, FC, FCoE, and FC-NVMe protocols.
- Different deployment models include on-premises on all-flash, hybrid, and all-HDD hardware configurations; VM-based storage platforms on a supported hypervisor such as ONTAP Select; and in the cloud as Cloud Volumes ONTAP.
- Increased data storage efficiency on ONTAP systems with support for automatic data tiering, inline data compression, deduplication, and compaction.
- · Workload-based, QoS-controlled storage.
- Seamless integration with a public cloud for tiering and protection of data. ONTAP also provides robust data protection capabilities that sets it apart in any environment:
 - NetApp Snapshot copies. A fast, point-in-time backup of data using a minimal amount of disk space with no additional performance overhead.
 - NetApp SnapMirror. Mirrors the Snapshot copies of data from one storage system to another. ONTAP supports mirroring data to other physical platforms and cloud-native services as well.
 - NetApp SnapLock. Efficiently administration of non-rewritable data by writing it to special volumes that cannot be overwritten or erased for a designated period.
 - NetApp SnapVault. Backs up data from multiple storage systems to a central Snapshot copy that serves as a backup to all designated systems.
 - NetApp SyncMirror. Provides real-time, RAID-level mirroring of data to two different plexes of disks that are connected physically to the same controller.
 - NetApp SnapRestore. Provides fast restoration of backed-up data on demand from Snapshot copies.
 - NetApp FlexClone. Provides instantaneous provisioning of a fully readable and writeable copy of a NetApp volume based on a Snapshot copy.

For more information about ONTAP, see the ONTAP 9 Documentation Center.

NetApp ONTAP is available on-premises, virtualized, or in the cloud.

NetApp platforms

NetApp AFF/FAS

NetApp provides robust all-flash (AFF) and scale-out hybrid (FAS) storage platforms that are tailor-made with low-latency performance, integrated data protection, and multi-protocol support.

Both systems are powered by NetApp ONTAP data management software, the industry's most advanced data-management software for highly-available, cloud-integrated, simplified storage management to deliver enterprise-class speed, efficiency, and security your data fabric needs.

For more information about NETAPP AFF/FAS platforms, click here.

ONTAP Select

ONTAP Select is a software-defined deployment of NetApp ONTAP that can be deployed onto a hypervisor in your environment. It can be installed on VMware vSphere or on KVM and provides the full functionality and experience of a hardware-based ONTAP system.

For more information about ONTAP Select, click here.

Cloud Volumes ONTAP

NetApp Cloud Volumes ONTAP is a cloud-deployed version of NetApp ONTAP available to be deployed in a

number of public clouds, including: Amazon AWS, Microsoft Azure, and Google Cloud.

For more information about Cloud Volumes ONTAP, click here.

Next: NetApp Storage Integrations Overview

NetApp Element: Red Hat OpenShift with NetApp

NetApp Element software provides modular, scalable performance, with each storage node delivering guaranteed capacity and throughput to the environment. NetApp Element systems can scale from 4 to 100 nodes in a single cluster and offer a number of advanced storage management features.

For more information about NetApp Element storage systems, visit the NetApp Solidfire website.

iSCSI login redirection and self-healing capabilities

NetApp Element software leverages the iSCSI storage protocol, a standard way to encapsulate SCSI commands on a traditional TCP/IP network. When SCSI standards change or when the performance of Ethernet networks improves, the iSCSI storage protocol benefits without the need for any changes.

Although all storage nodes have a management IP and a storage IP, NetApp Element software advertises a single storage virtual IP address (SVIP address) for all storage traffic in the cluster. As a part of the iSCSI login process, storage can respond that the target volume has been moved to a different address and therefore it cannot proceed with the negotiation process. The host then reissues the login request to the new address in a process that requires no host-side reconfiguration. This process is known as iSCSI login redirection.

iSCSI login redirection is a key part of the NetApp Element software cluster. When a host login request is received, the node decides which member of the cluster should handle the traffic based on the IOPS and the capacity requirements for the volume. Volumes are distributed across the NetApp Element software cluster and are redistributed if a single node is handling too much traffic for its volumes or if a new node is added. Multiple copies of a given volume are allocated across the array.

In this manner, if a node failure is followed by volume redistribution, there is no effect on host connectivity beyond a logout and login with redirection to the new location. With iSCSI login redirection, a NetApp Element software cluster is a self-healing, scale-out architecture that is capable of non-disruptive upgrades and operations.

NetApp Element software cluster QoS

A NetApp Element software cluster allows QoS to be dynamically configured on a per-volume basis. You can use per-volume QoS settings to control storage performance based on SLAs that you define. The following three configurable parameters define the QoS:

- **Minimum IOPS.** The minimum number of sustained IOPS that the NetApp Element software cluster provides to a volume. The minimum IOPS configured for a volume is the guaranteed level of performance for a volume. Per-volume performance does not drop below this level.
- **Maximum IOPS.** The maximum number of sustained IOPS that the NetApp Element software cluster provides to a particular volume.
- **Burst IOPS.** The maximum number of IOPS allowed in a short burst scenario. The burst duration setting is configurable, with a default of 1 minute. If a volume has been running below the maximum IOPS level, burst credits are accumulated. When performance levels become very high and are pushed, short bursts of IOPS beyond the maximum IOPS are allowed on the volume.

Multitenancy

Secure multitenancy is achieved with the following features:

- **Secure authentication.** The Challenge-Handshake Authentication Protocol (CHAP) is used for secure volume access. The Lightweight Directory Access Protocol (LDAP) is used for secure access to the cluster for management and reporting.
- Volume access groups (VAGs). Optionally, VAGs can be used in lieu of authentication, mapping any number of iSCSI initiator-specific iSCSI Qualified Names (IQNs) to one or more volumes. To access a volume in a VAG, the initiator's IQN must be in the allowed IQN list for the group of volumes.
- Tenant virtual LANs (VLANs). At the network level, end-to-end network security between iSCSI initiators and the NetApp Element software cluster is facilitated by using VLANs. For any VLAN that is created to isolate a workload or a tenant, NetApp Element Software creates a separate iSCSI target SVIP address that is accessible only through the specific VLAN.
- VRF-enabled VLANs. To further support security and scalability in the data center, NetApp Element software allows you to enable any tenant VLAN for VRF-like functionality. This feature adds these two key capabilities:
 - L3 routing to a tenant SVIP address. This feature allows you to situate iSCSI initiators on a separate network or VLAN from that of the NetApp Element software cluster.
 - Overlapping or duplicate IP subnets. This feature enables you to add a template to tenant
 environments, allowing each respective tenant VLAN to be assigned IP addresses from the same IP
 subnet. This capability can be useful for in-service provider environments where scale and preservation
 of IPspace are important.

Enterprise storage efficiencies

The NetApp Element software cluster increases overall storage efficiency and performance. The following features are performed inline, are always on, and require no manual configuration by the user:

- **Deduplication.** The system only stores unique 4K blocks. Any duplicate 4K blocks are automatically associated to an already stored version of the data. Data is on block drives and is mirrored by using the NetApp Element software Helix data protection. This system significantly reduces capacity consumption and write operations within the system.
- **Compression.** Compression is performed inline before data is written to NVRAM. Data is compressed, stored in 4K blocks, and remains compressed in the system. This compression significantly reduces capacity consumption, write operations, and bandwidth consumption across the cluster.
- Thin-provisioning. This capability provides the right amount of storage at the time that you need it, eliminating capacity consumption that caused by overprovisioned volumes or underutilized volumes.
- Helix. The metadata for an individual volume is stored on a metadata drive and is replicated to a

secondary metadata drive for redundancy.

Element was designed for automation. All the storage features are available through APIs. These APIs are the only method that the UI uses to control the system.

Next: NetApp Storage Integrations Overview.

Copyright Information

Copyright © 2022 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.