Varied	lades	Line	ales	de
un	espac	cio ve	ecto	rial

Esp. Liliana Caputo Prof. Itatí Sosa

INTRODUCCION

- Al estudiar funciones lineales, vimos que la gráfica de una función lineal es siempre una recta, de donde puede pensarse que una recta es el conjunto de puntos del plano de coordenadas (x,y), que satisfacen la ecuación y = ax + b, donde a y b son números reales fijos.
- Si R es una recta del plano cuya ecuación explícita es: R) y = mx + n (es decir R es la gráfica de la función lineal f tal que f(x) = mx + n, decimos que m se denomina <u>pendiente</u> <u>de</u> <u>R</u> y es la tangente trigonométrica del ángulo que forman R y el semieje positivo de las x. En cambio, n se denomina ordenada al origen y es f(0). Así pues, R corta al eje y en el punto de coordenadas (0, n).

INTRODUCCION

Sin embargo, no toda recta del plano es la gráfica de una función lineal, tal es el caso de la recta roja

del siguiente gráfico:

Por ello, a continuación, presentaremos un nuevo concepto que nos permitirá hallar la ecuación de cualquier recta del plano.

DEFINICION DE V. L.

Sea (\mathbb{V} , +, \mathbb{K} , .) un espacio vectorial, a $\in \mathbb{V}$ y S un subespacio de \mathbb{V} . Llamamos **variedad lineal** en \mathbb{V} al siguiente subconjunto de \mathbb{V} :

$$M = \{a + x / x \in S\}.$$

Notación: A M así definido lo denotamos con M = a + S

Si M = a + S es una variedad lineal en \mathbb{V} , S se llama **subespacio paralelo** de M y se lo denota con W(M) es decir, M = a + W(M).

Si a = (0, 3) y S = $\overline{\{(1,2)\}}$

Resulta S = $\{(x, 2x) \in \mathbb{R}^2 / x \in \mathbb{R}\} = = \{(x,y) \in \mathbb{R}^2 / y = 2x\}.$

Entonces, la variedad lineal

$$M = a + S = \{(x, 2x + 3) \in \mathbb{R}^2 / x \in \mathbb{R}\} = \{(x,y) \in \mathbb{R}^2 / y = 2x + 3\}.$$

Geométricamente, \mathring{S} es la recta azul (pasa por el origen), cuya ecuación es y = 2x, y M es la recta roja que pasa por el punto de coordenadas (0,3), de ecuación y = 2x + 3.

EJEMPLO 2

Si a = (-1, 5) y S = $\overline{\{(0,1)\}}$, entonces:

S = $\{(0, z) \in \mathbb{R}^2 \mid z \in \mathbb{R}\}\$ es decir la recta

de ecuación x = 0 (eje y) y:

M = a + S = {(-1, z + 5)
$$\in \mathbb{R}^2$$
 / z $\in \mathbb{R}$ } =

EJEMPLO 3

Si a = (0, 0, 2) y S = $\overline{\{(1,0,0)(0,1,0)\}}$, se tiene que S = $\{(x, y, z) \in \mathbb{R}^3 / z = 0\}$ es el plano (xy) y M es el plano señalado con rojo en la figura tal que:

$$M = a + S = \{(x, y, z) \in \mathbb{R}^3 / z = 2\}$$

MAS EJEMPLOS

Ejemplo 4:

Todo subespacio S de un espacio vectorial es una variedad lineal, puesto que $S=\theta+S$ es decir, que S=W(S).

Ejemplo 5:

Todo subconjunto unitario $M=\{v\}$ de un espacio vectorial es una variedad lineal, cuyo subespacio paralelo es el subespacio trivial $\{\theta\}$, puesto que $M=v+\{\theta\}$.

DIMENSION DE UNA V.L.	
 Sea M una variedad lineal de un espacio vectorial, definimos la dimensión de M como 	
la dimensión de su subespacio paralelo. Entonces, dim (M) = dim (W(M)).	
Así pues: en los ejemplos 1 y 2, dim (M) = 1.	
En el 3, dim (M) = 2.Para el ejemplo 4, dim (M) = dim(S).	
→ En el ejemplo 5, dim (M) = 0.	
V BABALELAG	
V.L. PARALELAS Sean M y L dos variedades lineales del	
espacio vectorial (\mathbb{V} , +, \mathbb{K} , .). Decimos que M es paralela a L si, y sólo si, $W(M) \subset W(L)$.	
Notación: M L se lee "M es paralela a L". Resulta trivial que M M puesto que todo	
conjunto está incluido en sí mismo. De igual modo, si M, L y N son tres	
variedades lineales de un mismo espacio vectorial tales que $M L \wedge L N$, se demuestra	
fácilmente que M N	
V.L. PARALELAS	
Veamos a continuación que si dos variedades lineales M y L son tales que M ∥ L, no	
necesariamente L M. En efecto, si M y L son dos variedades lineales en el espacio, tales	
que: M = $(1, 2, 3) + \overline{\{(1, 1, 0)\}}$ y L = $(1, 3, 0) + \overline{\{(1, 0, 0), (0, 1, 0)\}}$. Entonces:	
$W(M) \subset W(L)$ pues si $(x, y, z) \in W(M)$, resulta para algún $\alpha \in \mathbb{R}$: $(x, y, z) = \alpha(1, 1, 0) = (\alpha, \alpha, 0) = \alpha(1, 1, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 1, 0, 0) = (\alpha, \alpha, 0, 0) = \alpha(1, 0, 0, $	
= $(\alpha, 0, 0)+(0, \alpha, 0) = \alpha(1, 0, 0) + \alpha(0, 1, 0) \in W(L)$. Pero como $\dim(W(M)) = 1 < 2 = \dim(W(L))$,	

 $W(L) \not\subset W(M)$.

V.	I	$D\Delta$	RΔ	AL I	FI.	Δς
v .						-

- Probaremos a continuación que si M||L, L||M si, y sólo si, dim (M) = dim (L).
- Observación: Toda variedad lineal M es paralela a su subespacio paralelo pues, W(M) está incluido en sí mismo.
- Así pues, en el plano, la relación de paralelismo de rectas es una relación de equivalencia, dado que todas las rectas del plano son variedades lineales de dimensión

V.L. ORTOGONALES

Sea (\mathbb{V} , +. \mathbb{R} , .) un espacio vectorial en el cual se ha definido un producto interno < >, S y S' dos subespacios de \mathbb{V} .

Diremos que S y S' son **ortogonales** si, y sólo si, $\forall v \in S$, $\forall w \in S'$: $\langle v, w \rangle = 0$.

Notación: S ⊥ S'.

Asimismo, dos variedades lineales M y L son ortogonales si, y sólo si, $W(M) \perp W(L)$.

Notación: M ⊥ L.

V. L. ALABEADAS

Sean M y L dos variedades lineales de un mismo espacio vectorial. Diremos que M y L son alabeadas, si M \cap L = $\phi \wedge$ M #L.

Ejemplo: Sean las rectas en el espacio:

M = (1,-1,0) + $\overline{\{(1,1,1)\}}$ y L = (1,0,0) + $\overline{\{(2,0,1)\}}$. Probemos que M \cap L = $\phi \wedge$ M \oplus L.

VARIEDADES LINEALES EN EL PLANO ECUACIONES DE LA RECTA	
ORSERVACION IMPORTANTE	

Dada una recta del plano R tal que su ecuación explícita es: R) y = ax + b, como R es una variedad lineal del plano de dimensión 1, resulta:

R = $(0, b) + \overline{\{(1, a)\}} = \{(x, y) \in \mathbb{R}^2 / y = ax + b\}$ Si S es la recta de ecuación x = p, con $p \in \mathbb{R}$, se tiene que S = (p, 0) + $\overline{\{(0,1)\}}$ Ejemplos:

R) y = -3x + 5, entonces, R = $(0, 5) + \overline{((1, -3))}$ S) $x = -\sqrt{3}$, luego, $S = (-\sqrt{3}, 0) + \overline{(0, 1)}$

PROPOSICIONES

Sean R, S, M y L rectas del plano cuyas ecuaciones son: R) y = mx + n S) y = ax + bM) x = p L) x = q (p y q números reales fijos) **Entonces:**

- ▶ Proposición 1: $R \parallel S \Leftrightarrow m = a$.
- ▶ Proposición 2: M || L.
- ▶ Proposición 3: Si $m \neq 0$: $R \perp S \Leftrightarrow a = -m^{-1}$.
- ▶ Proposición 4: $M \perp S \Leftrightarrow a = 0$.
- ▶ Proposición 5: $R || S \wedge R \neq S \Leftrightarrow R \cap S = \phi$

ECUACION VECTORIAL

Sean v, $w \in \mathbb{R}^2$ fijos y $R \subset \mathbb{R}^2$ una variedad lineal de dimensión 1 es decir, una recta, tal que $R = w + \overline{\{v\}}$. Entonces, <u>la ecuación vectorial de R</u> está dada por:

R)
$$z = w + \lambda v, \forall \lambda \in \mathbb{R}$$
.

Ejemplo: Sean w = (-1, 5) y v = (-3, 1), entonces, la ecuación vectorial de R es:

R)
$$z = (-1, 5) + \lambda \cdot (-3, 1), \forall \lambda \in \mathbb{R}$$
.

ECUACION VECTORIAL

Gráficamente:

ECUACIONES PARAMETRICAS

Sea R $\subset \mathbb{R}^2$ la recta cuya ecuación vectorial es: R) z = w + $\lambda.v$, $\forall \lambda \in \mathbb{R}$.

Sean z = (x, y), w = (a, b) $y v = (x_y, y_y)$. Entonces, resulta:

 $(\underline{x}, y) = (a, b) + \lambda.(x_v, y_v)$, para algún $\lambda \in \mathbb{R}$. De donde: $(x, y) = (a + \lambda.x_v, b + \lambda.x_v)$ y, por igualdad de pares ordenados se obtienen <u>las ecuaciones paramétricas de R</u>, como sigue:

$$R: \begin{cases} x = a + \lambda . x_v \\ y = b + \lambda . y_v \end{cases} \quad \lambda \in \mathbb{R}$$

ECUACIONES PARAMETRICAS

Vemos que si $x_v = 0 \lor y_v = 0$, las ecuaciones paramétricas de R son:

Si
$$x_v = 0 \land y_v \neq 0$$

$$R: \begin{cases} x = a \\ y = b + \lambda y_v \end{cases}, con \lambda \in \mathbb{R}$$

En cambio, si $y_v = 0 \land x_v \neq 0$

$$R: \begin{cases} x = a \, + \, \lambda x_v \\ y = b \end{cases}, \, \text{con} \, \lambda {\in} \mathbb{R}$$

Si $x_v = y_v = 0$, R se reduce a un punto es decir, R = {(a, b)}

EJEMPLO

Para el ejemplo dado antes, teníamos que R es la recta del plano, cuya ecuación vectorial es: R) $z = (-1, 5) + \lambda . (-3, 1), \forall \lambda \in \mathbb{R}$.

Entonces, sus ecuaciones paramétricas son:

$$R: \begin{cases} x = -1 - 3. \lambda \\ y = 5 + \lambda \end{cases} \lambda \in \mathbb{R}$$

OTRAS ECUACIONES DE LA RECTA

Sea R una recta del plano cuyas ecuaciones paramétricas son:

$$R: \begin{cases} x = a + \lambda x_v \\ y = b + \lambda y_v \end{cases}, con \lambda \in \mathbb{R}$$
siendo $x_v \neq 0 \neq y_v$.

Despejando λ en cada ecuación, resulta:

$$\lambda = \frac{x-a}{x_v} \, \wedge \, \lambda = \frac{y-b}{y_v} \text{, si } x_v \, \neq 0 \, \wedge \, y_v \, \neq 0$$

$$De\ donde:\ \frac{x-a}{x_v}\,=\,\frac{y-b}{y_v}$$

ECUACION EXPLICITA

Si a partir de:
$$\frac{x-a}{x_v} = \frac{y-b}{y_v}$$

despejamos y, obtenemos:

$$y = \frac{y_v}{x_v} (x - a) + b = \frac{y_v}{x_v} x - a \frac{y_v}{x_v} + b.$$

Llamando m = $\frac{y_v}{x_v}$ y n = - a $\frac{y_v}{x_v}$ + b, resulta la ecuación explícita de la recta que ya conocíamos: R) y = mx + n.

ECUACION IMPLICITA O GRAL.

A partir de la ecuación R) y = mx + n se tiene que: mx - y + n = 0.

Si A = m, B = -1 y C = n, se obtiene la ecuación implícita o general de R, como sigue:

R)
$$Ax + By + C = 0$$
.

EJEMPLO

Para el ejemplo dado:

$$R: \begin{cases} x = -1 - 3. \lambda \\ y = 5 + \lambda \end{cases}, con \lambda \in \mathbb{R}$$

 $R: \begin{cases} x=-1-3.\lambda\\ y=5+\lambda \end{cases} \text{, con } \lambda \in \mathbb{R}$ Se tiene que: $\frac{x+1}{-3}$ = y - 5, de donde y - 5 =

 $=-\frac{1}{3}x-\frac{1}{3}$ y la ecuación explícita de R es:

$$y = -\frac{1}{3}x - \frac{1}{3} + 5 = -\frac{1}{3}x + \frac{14}{3}$$

 $y = -\frac{1}{3}x - \frac{1}{3} + 5 = -\frac{1}{3}x + \frac{14}{3}$ En consecuencia, - 3y = x - 14, de donde la ecuación implícita o general de R es:

$$x + 3y - 14 = 0$$

RECTA QUE PASA POR 2 PUNTOS

Sean p, $q \in \mathbb{R}^2$.

Afirmamos que la recta R_{pq} que contiene a p y a q es: R_{pq} = $q + \{p - q\}$.

En efecto: dim (R_{pq}) = dim(p-q) = 1 y además:

$$\begin{aligned} p &= p + q - q = q + (p - q) \in \underline{q} + \overline{\{p - q\}} = R_{pq} \\ q &= q + 0.(p - q) \in \underline{q} + \overline{\{p - q\}} = R_{pq} \end{aligned}$$

RECTA QUE PASA POR 2 PUNTOS: ECUACION

Sean p, $q \in \mathbb{R}^2$ / p = (x_p, y_p) y q = (x_q, y_q) . Si $x_p = x_q \lor y_p = y_q$, resulta que: R_{pq}) x = $x_p \lor R_{pq}$) y = y_p

En cambio, si $X_p \neq X_q \wedge y_p \neq y_q$, sus ecuaciones paramétricas son:

$$R_{pq}$$
: $\begin{cases} x = x_q + \lambda(x_p - x_q) \\ y = y_q + \lambda(y_p - y_q) \end{cases}$, con $\lambda \in \mathbb{R}$.

De donde:

$$\frac{x-x_q}{(x_p-x_q)} = \frac{y-y_q}{(y_p-y_q)} \Longrightarrow y-y_q = \frac{(y_p-y_q)}{(x_p-x_q)} \big(x-\ x_q\big)$$

HAZ DE RECTAS QUE PASAN POR q En la ecuación de la recta R_{pq}, vemos que

$$\mathbf{m} = \frac{(\mathbf{y}_{\mathbf{p}} - \mathbf{y}_{\mathbf{q}})}{(\mathbf{x}_{\mathbf{p}} - \mathbf{x}_{\mathbf{q}})}$$

es la pendiente de la recta, con lo cual, para cada $m \in \mathbb{R}$ la ecuación $y - y_q = m (x - x_q)$, corresponde a una recta que contiene a q. Entonces, por q pasan infinitas rectas (tantas como números reales existen) y la ecuación del haz de rectas que pasan por q es:

$$R_q$$
) $y - y_q = m (x - x_q), \forall m \in \mathbb{R}$.

ECUACION VECTORIAL DEL PLANO

Sean u, v, w $\in \mathbb{R}^3$ y $\pi \subset \mathbb{R}^3$ una variedad lineal, tal que dim (π) = 2 y π = w + $\overline{\{u,v\}}$. Como la dimensión de π es 2, u y v son linealmente independientes. Entonces, la ecuación vectorial de π es:

 $\begin{array}{c} \pi) \ p = w + \lambda.u + \mu.v, \ \forall \lambda, \ \mu \in \mathbb{R} \\ \underline{\text{Ejemplo}} \colon \text{Dados } w = (\text{-1, 0, -2), } u = (2, 1, 3) \ \ y \\ v = (\text{-2, 3, -1}) \ \text{la ecuación de } \pi \ \text{es:} \\ \pi) \ p = (\text{-1, 0, -2}) \ + \lambda.(2, 1, 3) + \mu.(\text{-2, 3, -1}), \\ \forall \lambda, \ \mu \in \mathbb{R} \end{array}$

ECUACIONES PARAMETRICAS DEL PLANO

Asimismo, p = (x, y, z) $\in \pi$, siendo π el plano de ecuación π) p = w + λ .u + μ .v, $\forall \lambda$, $\mu \in \mathbb{R}$, y además w = (a, b, c) y v = (v₁, v₂, v₃) las ecuaciones paramétricas de π son:

$$\pi \colon \begin{cases} x = a + \lambda u_1 + \mu v_1 \\ y = b + \lambda u_2 + \mu v_2, \text{ con } \lambda, \, \mu \in \mathbb{R} \\ z = c + \lambda u_3 + \mu v_3 \end{cases}$$

Para el ejemplo dado, se tiene:

$$\pi{:}\begin{cases} x = -1 + 2\lambda - 2\mu \\ y = \lambda + 3\mu \quad \text{, con } \lambda, \mu \in \mathbb{R} \\ z = -2 + 3\lambda - \mu \end{cases}$$

ECUACION IMPLICITA DEL PLANO

Si $\pi \subset \mathbb{R}^3$ es un plano cuyas ecuaciones paramétricas son:

$$\pi \colon \begin{cases} x = a + \lambda u_1 + \mu v_1 \\ y = b + \lambda u_2 + \mu v_2, \, \text{con } \lambda, \, \mu \in \mathbb{R} \\ z = c + \lambda u_3 + \mu v_3 \end{cases}$$

Para cada punto p = $(x, y, z) \in \pi$, podemos considerar el sistema de ecuaciones lineales con dos incógnitas siguiente:

$$\begin{cases} \lambda u_1 + \mu v_1 = x - a \\ \lambda u_2 + \mu v_2 = y - b \\ \lambda u_3 + \mu v_3 = z - c \end{cases}$$

ECUACION IMPLICITA DEL PLANO

Como u y v son linealmente independientes, el rango de la matriz ampliada (A') es 2 es decir, menor que su orden. En consecuencia, A' no es invertible, de donde su determinante es cero. Luego:

$$D(A') = \begin{vmatrix} u_1 & v_1 & x-a \\ u_2 & v_2 & y-b \\ u_3 & v_3 & z-c \end{vmatrix} = (-1)^{1+3}(x-a) \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} +$$

$$+(-1)^{2+3}(y-b)\begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix} + (-1)^{2+3}(z-c)\begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix} = 0$$

ECUACION IMPLICITA DEL PLANO

$$\text{Luego: D(A') = } \left(\mathbf{x} - \mathbf{a}\right) \begin{vmatrix} \mathbf{u}_2 & \mathbf{v}_2 \\ \mathbf{u}_3 & \mathbf{v}_3 \end{vmatrix} + \left(\mathbf{y} - \mathbf{b}\right) \left(- \begin{vmatrix} \mathbf{u}_1 & \mathbf{v}_1 \\ \mathbf{u}_3 & \mathbf{v}_3 \end{vmatrix}\right) + \\$$

+
$$(z - c) \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix}$$
 = $(x - a)A + (y - b)B + (z - c)C = Ax + b$

$$+ By + Cz + (-aA - bB - cC) = Ax + By + Cz + D = 0,$$

llamando:

$$A = \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix}, B = -\begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix} = \begin{vmatrix} u_3 & v_3 \\ u_1 & v_1 \end{vmatrix}, C = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix}$$

$$y D = -aA - bB - cC., Ax + By + Cz + D = 0 \text{ es la ecuación}$$

implícita o general del plano π .

ECUACION IMPLICITA DEL PLANO

En el ejemplo,
$$\pi = (-1, 0, 2) + \overline{\{(2,1,3), (-2,3,-1)\}},$$

En el ejemplo,
$$\pi = (-1, 0, 2) + \overline{\{(2,1,3), (-2,3,-1)\}},$$
 luego: $A = \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 3 & -1 \end{vmatrix} = -1 - 9 = -10$
$$B = \begin{vmatrix} u_3 & v_3 \\ u_1 & v_1 \end{vmatrix} = \begin{vmatrix} 3 & -1 \\ 2 & -2 \end{vmatrix} = -6 + 2 = -4$$

$$C = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} = \begin{vmatrix} 2 & -2 \\ 1 & 3 \end{vmatrix} = 6 + 2 = 8$$

$$D = -aA - bB - cC = -(-1).(-10) - 0.(-4) - 2.8 = -26$$

$$B = \begin{vmatrix} u_3 & v_3 \\ u_1 & v_1 \end{vmatrix} = \begin{vmatrix} 3 & -1 \\ 2 & -2 \end{vmatrix} = -6 + 2 = -4$$

$$C = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} = \begin{vmatrix} 2 & -2 \\ 1 & 3 \end{vmatrix} = 6 + 2 = 8$$

De donde: π)-10x - 4y + 8z - 26 = 0 = 10x + 4y - 8z + 26

OBSERVACIÓN IMPORTANTE

Si π es un plano cuya ecuación implícita es

Ax + By + Cz + D = 0

con A = B = C = 0, entonces, debe ser D = 0y π es todo el espacio.

Esto contradice la hipótesis con la que venimos trabajando de que dim $(\pi) = 2$. En consecuencia, debe ser:

$$A \neq 0 \lor B \neq 0 \lor C \neq 0$$

ECUACIONES PARAMETRICAS

Dado un plano cuya ecuación general es:

$$\pi) Ax + By + Cz + D = 0$$

Despejando una incógnita (por ejemplo, si fuera C ≠ 0, despejamos z), se hallan las ecuaciones paramétricas como sique:

$$\pi : \begin{cases} x = \lambda & \text{De donde:} \\ y = \mu \\ z = -\frac{D}{C} - \frac{A}{C}\lambda - \frac{B}{C}\mu & \pi = (0, 0, -\frac{D}{C}) + \overline{\left\{\left(1,0, -\frac{A}{C}\right), \left(0,1, -\frac{B}{C}\right)\right\}} \end{cases}$$

Entonces: $W(\pi)$: Ax + By + Cz = 0

INTERSECCION DE 2 PLANOS

Dados dos planos π_1 y π_2 , de ecuaciones implícitas:

$$\pi_1$$
) $A_1x + B_1y + C_1z + D_1 = 0$

$$\pi_2$$
) $A_2x + B_2y + C_2z + D_2 = 0$

Vemos que la intersección de dichos planos es el conjunto solución del siguiente sistema de ecuaciones lineales:

$$\boxed{1} \begin{cases} A_1 x + B_1 y + C_1 z = -D_1 \\ A_2 x + B_2 y + C_2 z = -D_2 \end{cases}$$

INTERSECCION DE DOS PLANOS

Como el sistema ① es de 2 ecuaciones lineales con 3 incógnitas (x, y, z), es incompatible o es compatible indeterminado.

En efecto, si S es el conjunto solución del sistema [1], A es su matriz asociada y A' la matriz orlada con los términos independientes, se tiene que:

$$S = \phi (R(A) = 1 \text{ y } R(A') = 2)$$

S es un conjunto infinito $(R(A) = R(A') \le 2)$. Veamos que los planos son paralelos ó S es una recta.

ECUACIONES IMPLICITAS DE LA RECTA

Como la intersección de dos planos no paralelos es una recta R, el sistema compatible de ecuaciones lineales siguiente se denomina **ecuaciones implícitas de la recta**

$$R: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Siendo cada ecuación del sistema la ecuación de uno de los planos que se intersecan.

ECUACION VECTORIAL DE LA RECTA EN EL ESPACIO

Sean v, $w \in \mathbb{R}^3$ y $R \subset \mathbb{R}^3$ una variedad lineal tal que dim(R) = 1 y R = w + $\overline{\{v\}}$. Entonces, la ecuación vectorial de R es:

$$\pi$$
) $p = w + \lambda v \ \forall \lambda \in \mathbb{R}$

Ejemplo: Dados w = (-1, 0, -2) y v = (2, 1, 3). La ecuación de R es:

R) p = (-1, 0, -2) +
$$\lambda$$
.(2, 1, 3), $\forall \lambda \in \mathbb{R}$

ECUACIONES PARAMETRICAS DE LA RECTA EN EL ESPACIO

Asimismo, $p = (x, y, z) \in R$, siendo R la recta de ecuación R) $p = w + \lambda.v, \forall \lambda \in \mathbb{R}$, y además w = (a, b, c) y $v = (v_1, v_2, v_3)$ las **ecuaciones** paramétricas de R son:

$$\text{R:} \begin{cases} x = a + \lambda v_1 \\ y = b + \lambda v_2, \, \text{con } \lambda \in \mathbb{R} \\ z = c + \lambda v_3 \end{cases}$$

Para el ejemplo dado, se tiene:

$$R \colon \begin{cases} x = -1 + 2\lambda \\ y = \lambda \end{cases}, \text{ con } \lambda \in \mathbb{R}$$

$$z = -2 + 3\lambda$$

ECUAC	ION	CAF	۲۲	ESIANA	DE	LA
RECTA	EN E	EL E	SP	ACIO		

Si R $\subset \mathbb{R}^3$ es una recta cuyas ecuaciones paramétricas son:

R:
$$\begin{cases} x = a + \lambda v_1 \\ y = b + \lambda v_2, \cos \lambda \in \mathbb{R} \\ z = c + \lambda v_3 \end{cases}$$

Despejando λ en cada ecuación e igualando, se obtiene la ecuación cartesiana de la recta en el espacio, dada por:

R)
$$\frac{x-a}{v_1}=\frac{y-b}{v_2}=\frac{z-c}{1}$$
, con $v_1,\,v_2,\,v_3\in\mathbb{R}$ - $\{0\}$
Para el ejemplo dado, se tiene:
$$\mathsf{R})\,\frac{x+1}{2}=\,y=\frac{z+2}{3}$$

R)
$$\frac{x+1}{2} = y = \frac{z+2}{3}$$

RECTAS ALABEADAS

Hemos visto que en el plano, si dos rectas tienen intersección vacía son paralelas es decir, que no existen rectas alabeadas en el plano.

De la misma forma, si la intersección de dos planos es vacía, vimos que dichos planos son paralelos es decir, no existen planos alabeados en el espacio.

Sólo podemos hablar de rectas alabeadas en el espacio.