Pontifícia Universidade Católica do Paraná

Projeto de Sistemas Microprocessados

Prof.: Vilson Rodrigo Mognon/Afonso Ferreira Miguel - 2° Semestre

ALUNO:	DATA:	/	,	/

LABORATÓRIO – CONVERSOR ANALÓGICO DIGITAL E SERIAL

Objetivo: Desenvolver um programa em Assembly para monitorar a tensão de entrada do conversor AD e transmitir o resultado para o computador pela porta serial.

1) Acesse o item "Entrega Item 1" da pasta da Atividade 2 no Blackboard (Atividades TDE\2.TDE\Entrega Item 1). Baixe e descompacte o arquivo ZIP ("imagens.zip"). Na pasta descompactada, localize o arquivo de forma de onda com seu login (nome no Blackboard).

Considerando que o sinal mostrado é um sinal serial com 1 STOP BIT e SEM PARIDADE, identifique a mensagem recebida pela forma de onda. Para auxiliá-lo na identificação dos caracteres, acesse o site http://www.asciitable.com.

Para entregar a mensagem decodificada, siga os passos indicados no mesmo item do Blackboard.

2) Consulte a seção USART do datasheet do Atmega328 e defina os valores dos registradores UCSR0A, UCSR0B, UCSR0C para estabelecer uma comunicação serial assíncrona com as seguintes características:

Velocidade de 9600 bps	Definir valor do bit $U2X = 1$ em $UCSR0A$
	Definir valor do par de registradores UBRRH:UBRRL
8 bits de dados	Definir valor dos bits UCSZ2:UCSZ1:UCSZ0 em UCSR0B e UCSR0C
1 stop bit	Definir valor do bit USBS em UCSR0C
Sem paridade	Definir valor dos bits UPM1:UPM0 em UCSR0C
Sem utilização de interrupção	Definir valor dos bits RXCIE e TXCIE em UCSR0B
Comunicação bidirecional.	Definir valor dos bits RXEN e TXEN em UCSR0B
Comunicação assíncrona.	Definir valor do bit UMSEL em UCSR0C

Registro de controle da velocidade da serial e status UBRR:

UBRR0H	UBRR0L

Registro de controle e status

UCSR0A	7	6	5	4	3	2	1	0	HEXA
Nome	RXC0	TXC0	UDRE0	FE0	DOR0	PE0	U2X0	МРСМ0	
Valor	-	•	•	•	-	•			

Registro de controle e status

UCSR0B	7	6	5	4	3	2	1	0	HEXA
Nome	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	
Valor							-	-	

Registro de controle e status

UCSR0C	7	6	5	4	3	2	1	0	HEXA
Nome	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOL0	
Valor									

3) O conversor analógico-digital (ADC) dos microcontroladores Atmel é de 10 bits, isso significa que o resultado da conversão pode ir de 0 a 1023. Qual a expressão linear que relaciona a tensão de entrada, a tensão de referência e o valor binário lido nos registradores do ADC?
4) Com o ajuste para a esquerda (ADLAR), o mesmo conversor analógico-digital pode ser usado com 8 bits facilmente (usando apenas ADCH), isso significa que o resultado da conversão pode ir de 0 a 255. Para este caso, qual a expressão linear que relaciona a tensão de entrada, a tensão de referência e o valor binário lido nos registradores do ADC?

- 5) Consulte a seção ADC do datasheet e defina os valores dos registradores abaixo para operar o conversor, com as seguintes características:
 - Leitura do canal do potenciômetro;
 - Frequência do clock do ADC = 125kHz;
 - Referência = AVcc;
 - Ajuste para a esquerda -> usar apenas 8 bits (ADCH).

ADC Multiplexer - Registro de seleção

A	DMUX	7	6	5	4	3	2	1	0	HEXA
ı	Nome	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	
	Valor									

ADC - Registro de controle e status										
ADCSRA	7	6	5	4	3	2	1	0	HEXA	
Nome	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0		
Valor										

6) Complete o fluxograma abaixo, correspondente a função de aquisição de uma amostra.

7) Desenvolver um programa que monitore o valor analógico presente no canal onde está ligado o potenciômetro. Quando a placa Arduino receber o caractere '+', realizar uma conversão do ADC e transferir o conteúdo para a porta serial do computador no FORMATO STRING (caracteres):

"NOME:
$$ADC = 0x\%X$$
"

Exemplo:

"AFONSO:
$$ADC = 0x3E$$
"

Recomendação para criação das funções:

- pause_R16_us e pause_R16_ms: Rotinas de temporização, calibrado para o clock de 16MHz. O valor da pausa está em R16;
- tx R16: Enviar um caractere ASCII (binário de 0-255) do registrador R156 para a porta serial
- rx R16: Recebe um caractere da porta serial no registrador R16;
- adc conv: Realiza uma aquisição do conversor ADC do canal escolhido, conforme fluxograma anterior;
- tabela_R16: Pega um valor em uma tabela indexado pelo registrador R16;
- u4_to_hex: Converte os 4 bits menos significativos de um registrador (valor binário de 0-15) para o caractere ASCII hexadecimal equivalente (para usar, veja as instruções Assembly: "lsr", "lsl" ou "swap");