Tutorial 10

Research Methods for Politcal Science A

Michele McArdle

15 & 16 December 2020

Outline

1. Q&A

Q&A

Question on Assignment 4?

Q&A

What is important in a Research Design?

- Define your Research Question and Hypotheses
- Define your DV and IV
- Operationalise your DV and IV
- Confounders
- Case Selection
- (Methodology)

RD

- Do masks reduce the spread of Covid-19?
- *H*₁: An increase in mask usage reduces the spread of Covid-19?

RD

■ DV: Spread of Covid-19

IV: Mask use

Operationalised:

- DV: 14-day infection rate per 100k people

- IV: Mask mandate (yes/no)

Possible Confounders:

- Not everybody is equally exposed
- Mask mandates aren't introduced alone (usually together with other measures)
- infection rates seem strongly correlated with climate
- urban areas have higher case rate than rural areas

RD

Case selection: We compare urban areas which have similar trends in Covid-19 trajectory, but one had a mask implementation the other did not.

Example: Munich vs. Zurich

```
\mu = 60; \, \sigma = 10
```

40 is 2 sd smaller than μ , about 2% probability that x is smaller than 40

70 is 1 sd larger than $\mu,$ hence about 16% probability that ${\bf x}$ is larger than 70

std. deviation of the sampling distribution = standard error mean of sampling distribution = mean of the population \neq mean of the sample

 H_{alt1} : The political orientation in the student population is different than in the general public.

 H_{alt2} : The political orientation in the student population is more left-wing (smaller) than in the general public.

 H_0 : There is no difference between the political orientation of the student population and the general population.

 H_{alt1} calls for a two-sided test, H_{alt2} for a one-sided test.

[1] FALSE

```
Two-Sided Test
t.sample <- (4.6-5)/(3/sqrt(100))
t.crit \leftarrow qt(p = 0.05/2, df = 100)
t.sample < t.crit
## [1] FALSE
t.sample > t.crit*-1
```

We cannot reject H_{0} because t-sample is neither larger or smaller than $|\pm 1.98|$

Two-Sided Test

```
t.sample <- (4.6-5)/(3/sqrt(100))

t.crit <- qt(p = 0.05, df = 100)

t.sample < t.crit</pre>
```

```
## [1] FALSE
```

We cannot reject H_0 because t-sample is not smaller than -1.66

Q&A

Questions?