

ADSR

Envelope Generator with Looping Mode, Time and Level control

Build Guide

PCB V2.1 Aug 2021

Written and Illustrated by Ruben Sponar

Introduction

The CubuSynth ADSR Module is a VC looping envelope generator based on the Electric Druid EnvGen8, with controls for the Attack, Decay, Sustain and Release stages, for overall Time of the envelope and CV inputs for Time and Level.

The EnvGen8 chip was written/designed by Tom Wiltshire aka "Electric Druid". For more information visit: https://electricdruid.net/product/envgen8/

- 1 ATTACK (1ms 10s)
 Sets the time, the Envelope takes to reach full level from the moment a gate is detected (Key is pressed)
- 2 DECAY (1ms 10s)
 Sets the time, after the envelope hits full level, to fade to the level set by the SUSTAIN Knob.
- 3 SUSTAIN (0% 100%) Sets the Volume to stay after the decay, while the GATE input is high.
- 4 RELEASE (1ms 10s)
 Sets the time for the fade out on falling edge of the GATE input (after the Key is released)
- MODE switch Select between exponential and linear curves.
- 6 PUNCH switch
 Adds extra thump to very short percussive envelopes
- 7 LOOPING MODE switch Allows selection between three different modes of operation. "Gated" mode acts as a normal envelope. "Gated Loop" will trigger the ATTACK stage when the GATE goes high, then continue looping whilst the GATE remains high, and will RELEASE to zero when the GATE goes low. The LFO Looping mode loops continuously and ignores input from the GATE.
- 8 TIME (x1 x100)
 Overall Time control which shortens the length of the entire envelope.
- 9 TIME CV Attenuator Attenuates incoming CV for Time modulation. Higher voltages will shorten the length of the envelope.
- TRIG Input
 Envelope goes to ATTACK stage on rising edge of Pulse while Gate can still be on. Re-trigger for the envelope, used for Polyphonic patches.
- 11 GATE Input Envelope goes to RELEASE stage on the falling edge.
- 12 Level CV Input
 Control the overall Volume of the envelope. Can be used for velocity
 control. If nothing is plugged in, the Volume stays on max.
- OUT CV-output of the envelope (0 to +5V)
- 14 LED Indicates the output voltage.
- 15 TIME CV
 CV Input for Time modulation. Higher voltages will shorten the length of the envelope.
- 16 INV. OUT Inverted voltage of the output CV (0 to -5V)

BUILD GUIDE

STEP 1 1N4148 x6

As always start with the smallest components. In this case it's the 1N4148 Diodes. Make sure the black line on the diode is lined up with the white stripe on the PCB.

Bend the solder legs outwards, so it doesn't fall when turning around the board. (same for STEP 2-10)

STEP 2 1N400X* x2

identify the 1N400X* diodes and put them in place. Again orientation is Important. These are the reverse voltage protection diodes. The white line on the diode has to line up with the stripe on the PCB silkscreen. Turn board around and solder everything in place.

*can be any from 1N4001 to 4007 or 1N5819 (marked as 1N4001 on the PCB)

STEP 3 330R resistors x2

When all diodes are soldered, look for the 330ohm resistors and put them in place.

Orientation on all resistors doesn't matter.

STEP 4 1k resistors x4

Find the 1k resistors and put them in place.

STEP 5 2k resistor x1

Identify the 2k resistor in the bag and put it in in place.

STEP 6 4.7k resistor x2

Identify the 4.7k resistors and put them in in place.

STEP 7 10k resistors x6

Identify the 10k resistors and put them in in place.

STEP 8 47k resistor x1

Identify the 47k resistor and put it in in place.

STEP 9 100k resistor x11

Identify the 100k resistors and put them in in place.

STEP 10 200k resistor x1

Identify the 200k resistor and put it in in place.

Make sure all resistor legs are bent slightly outwards so they don't fall out. Turn the board around and solder all resistors.

STEP 11 IC sockets

Look for the dip-8 and dip-14 sockets. Put the 14 pin sockets in place for the ENVGEN chip and the TL074 and the 8 pin socket for the TL072, with the notch looking to the top of the PCB.

You can bend 2 pins of each socket inwards, so they stay in place.

Find the 47pf capacitors marked "47". The orientation doesn't matter. Put them in place and bend the solder legs outwards, so it doesn't fall when turning around the board.

STEP 13 100nf ceramic capacitors x11

Identify all 100nf capacitors marked "104". Orientation doesn't matter. Put them in place and bend the solder legs outwards, so it doesn't fall when turning around the board.

Solder all ceramic capacitors in place.

STEP 14 BC547 transistors x3

Take the three BC547 transistors and bend its legs slightly outwards, so they fit in the holes. Make sure the Orientation of the transistor matches the marking on the PCB. The flat side of the transistor has to line up with the straight line on the PCB.

Turn the board around and solder the transistors.

STEP 15 16 pin Power connector

Now take the shrouded 16 pin connector and put it in place on the back of the PCB. Make sure the cut-out matches the marking in the silkscreen.

You can temporarely tape the Power header to the PCB so it doesn't fall out while soldering

Turn the board around and solder the power pins.

STEP 16 10uf electrolytic capacitor x1

Look for the 10uf capacitor and put it in place on the back of the board. Orientation is important. The white line on the capacitor must be facing downwards. Shorter leg goes in the squared hole.

STEP 17 47uf electrolytic capacitor x2

Look for the 47uf capacitors and put them in place. Again orientation is important. The white line on the capacitor is facing downwards. Shorter leg goes in the squared hole. Turn the board around and solder capacitors.

STEP 18 (Controls)

B10k potentiometer x5; B100k potentiometer x1; ON-ON switch (SPDT) x2; ON-OFF-ON switch (SPDT) x1; PJ-301M Jack (Thonkiconn) x6; LED x1

After all previos steps are done and all solder legs are cutted off, take the Potentiometers, jacks, switches and the LED and put them in place as marked on the PCB but don't solder yet.

If you have switches with solder lugs, a bit of pressure is needed to make them fit in the holes.

The upper and lower jacks each share a hole for ground. For the LED the orientation is important. Contrary to the capacitors, the longer leg goes in the square hole, flat side of the LED facing down.

When everything is in place, take the front panel and put it on top, so all controls go into each corresponding hole of the panel. Push the LED up, to line up to the front. Put all the nuts on the Potentiometers, switches and Jacks and tighten with your hands. Then carefully flip the board around and solder everything.

STEP 19 - Installing ICs and final check

Take off the front panel again and install the ICs. EnvGen8 chip on top, TL074 in the middle and TL072 down. Make sure the orientation is correct, the notch has to match the silkscreen, facing to the top of the PCB.

Check your soldering. If you see shorts or bad soldering, fix it up. Then check the power pins for shorts with your multimeter.

When everything looks fine, you can put the front panel back again, tighten all the Nuts and put the knobs on the Potentiometer. For best results, turn all Potentiometers counter-clockwise and push on the knobs, so the marking points towards the left end of the surrounding circle.

Congratulations, now you can power up your module and have fun patching!

https://www.tindie.com/stores/cubusynth/

https://www.etsy.com/shop/CubuSynth

https://www.facebook.com/cubusynth

https://www.instagram.com/cubusynth_modular/