Odkrivanje enačb in predznanje

Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za matematiko in fiziko Institut Jožef Stefan, Odsek za tehnologije znanja (E8)

Maj 2023

Odkrivanje enačb: tretji Keplerjev zakon

Rekonstrukcija Keplerjevega tretjega zakona iz podatkov

$$d^3/p^2 = const$$

opazovanja in zakonitost

(mean) distance from Sun

Pregled predavanja

- Motivacija
- Kontekstno-neodvisne gramatike
 - Deterministične gramatike
 - Tvorjenje stavkov
 - Verjetnostne gramatike
- ③ Od predznanja do gramatik
 - (Ne)Omejeni prostori enačb
 - Znanje o merskih enotah spremenljivk
 - Znanje s konkretnega področja uporabe

Ustvarjanje strukture E(X): Generate

Več možnosti

- Stohastični evolucijski pristop (običajna, široko uporabljena možnost)
- 2 Sistematični pristop: deterministične gramatike
- 3 Stohastični pristop: verjetnostne gramatike

Formalne gramatike in jeziki

Formalna gramatika G določa

- ullet Kako tvoriti nize znakov (besede) iz podane abecede Σ
- Ki so pravilni oz. sledijo predpisani sintaksi jezika

Nizi znakov, besede in jeziki

- Množico vseh možnih besed nad abecedo Σ označimo z Σ^*
- Dolžina niza $w \in \Sigma^*$ je število znakov v w, oznaka |w|
- Jezik gramatike G nad abecedo Σ je množica vseh pravilnih besed, t.j., besed, ki sledijo sintaksi, oznaka z $L(G) \subseteq \Sigma^*$

Definicija kontekstno-neodvisne gramatike

Gramatike uporabljamo za definiranje sintakse jezikov.

Kontekstno neodvisna (context-free) gramatika $G = (N, \Sigma, R, S)$

- N je množica nekončnih simbolov, tudi spremenljivk
- Σ je abeceda, množica končnih simbolov, črk
- $R \subseteq N \times (N \cup \Sigma)^*$ je množica produkcijskih pravil oblike $A \to \alpha$:
 - A ∈ N je nekončni simbol
 - $\alpha \in (N \cup \Sigma)^*$ je niz končnih in nekončnih simbolov
- $S \in N$ je začetni nekončni simbol

Končni in nekončni simboli

Končni simboli

- Ustrezajo črkam abecede za tvorjenje besed
- Običajno jih pišemo z majhno začetnico
- Osnovni simboli za tvorjenje matematičnih izrazov, npr. x, y, c, +, \cdot
- Spomnimo se: c je oznaka za konstantni parameter

Nekončni simboli

- Ustrezajo nizom znakov, ki so (ponavljajoči se) sestavni deli besed
- Običajno jih pišemo z veliko začetnico
- Matematični podizrazi, kot so npr. monomi, $c \cdot x$ ali $c \cdot x \cdot y$

Besede in izpeljave

Beseda

- Zaporedje končnih simbolov $w \in \Sigma^*$
- Primer: linearni matematični izraz $c + c \cdot x$

Korak izpeljave z gramatiko G ustreza relaciji \Rightarrow_G

$$\beta A \gamma \Rightarrow_{\mathsf{G}} \beta \alpha \gamma$$

- $\alpha, \beta, \gamma \in (N \cup \Sigma)^*$ so nizi končnih in nekončnih simbolov
- $A \in N$ je nekončni simbol
- $A \rightarrow \alpha \in R$ je produkcijsko pravilo

4 D > 4 D > 4 E > 4 E > E = 99 C

Izpeljava besede in jezik gramatike

Izpeljava besede $w \in L(G)$

$$S \Rightarrow_G^* w$$

- S je začetni nekončni simbol gramatike G
- \Rightarrow_G^* je tranzitivna ovojnica relacije \Rightarrow_G
- Predstavlja torej zaporedje korakov izpeljave od S do w

Jezik L(G) gramatike G

$$L(G) = \{w : S \Rightarrow_G^* w\}$$

To je množica vseh besed, ki jih lahko izpeljemo z gramatiko G.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 G

Gramatika za linearne matematične izraze: končni simboli

- Spremenljivke: x_1, x_2, \ldots, x_p
- 2 Konstantni parameter: c
- Operatorja: + in ·

Gramatika za linearne izraze: nekončni simboli in pravila

Nekončni simbol za spremenljivke V

- p produkcijskih pravil oblike $V \rightarrow x_i$, $i = 1, 2, \dots p$
- Krajši zapis $V o x_1 \mid x_2 \mid \ldots \mid x_p$

Nekončni simbol za linearne člene, monome M

- Enostavno pravilo $M \rightarrow c \cdot V$
- Produkt konstantnega parametra in spremenljivke

Nekončni simbol za linearne matematične izraze E

- Rekurzivno pravilo $E \rightarrow E + M$
- ullet Enostavno pravilo, robni pogoj rekurzije E
 ightarrow c

Gramatika za linearne izraze: celotna definicija

$$\Sigma = \{+, \cdot, c, x_1, x_2, \dots, x_p\}$$

$$N = \{E, M, V\}$$

$$R = \begin{cases}
E \to E + M \\
E \to c \\
M \to c \cdot V \\
V \to x_1 \\
V \to x_2 \\
\vdots \\
V \to x_p
\end{cases}$$

$$S = E$$

Izpeljava linearnega izraza $c + c \cdot x_1 + c \cdot x_2$

$$E \rightarrow$$

$$[E \rightarrow E + M] \rightarrow E + M$$

$$[E \rightarrow E + M] \rightarrow E + M + M$$

$$[E \rightarrow c] \rightarrow c + M + M$$

$$[M \rightarrow c \cdot V] \rightarrow c + c \cdot V + M$$

$$[M \rightarrow c \cdot V] \rightarrow c + c \cdot V + c \cdot V$$

$$[V \rightarrow x_1] \rightarrow c + c \cdot x_1 + c \cdot V$$

$$[V \rightarrow x_2] \rightarrow c + c \cdot x_1 + c \cdot x_2$$

Drevo izpeljave linearnega izraza $c + c \cdot x_1$

- Korensko vozlišče je S ∈ N
- Notranja vozlišča so nekončni, končna vozlišča pa končni simboli
- Vsako notranje vozlišče razvejano s produkcijskim pravilom
- Izpeljana beseda je sprehod po končnih vozliščih od leve proti desni

4□ > 4□ > 4□ > 4□ > 4□ > 9

Drevo izpeljave linearnega izraza $c + c \cdot x_1 + c \cdot x_2$

Dva načina uporabe gramatik

Običajna: Razčlenjevanje besed na osnovi sintakse, parsing

- Od podane besede w do (drevesa) izpeljave
- Preverjanje pravilnosti sintakse podane besede

Pri odkrivanju enačb: Tvorjenje besed

- Sistematično naštevanje ali (naključno) tvorjenje besed
- Lahko tvorimo strukture izrazov za prvo fazo odkrivanja enačb

Tvorjenje (drevesa izpeljave) besede

```
Require: G = (N, \Sigma, R, S) je kontekstno-neodvisna gramatika Require: A \in N je nekončni simbol, pri prvem klicu je A = S Ensure: t je drevo izpeljave v G s korenskim vozliščem A
```

```
function GenerateParseTree(G, A)
    iz R izberi pravilo A \rightarrow X_1 X_2 \dots X_{\nu}
    for i \in \{1, 2, ..., k\} do
        if X_i \in N then
             t_i = \text{GenerateParseTree}(G, X_i)
        else
             t_i = list X_i
        end if
    end for
    return tree (koren A. nasledniki t_1, t_2, \ldots t_k)
end function
```

Sistematično naštevanje dreves izpeljave

Enostaven algoritem

- Začni z najbolj enostavnim drevesom izpeljave
- Na vsakem koraku zamenjaj najbolj desno poddrevo z naslednjim

Potrebujemo delno ureditev produkcijskih pravil gramatike

- Bolj enostavna produkcijska pravila: bolj plitva drevesa
- Bolj zapletena produkcijska pravila: bolj globoka drevesa

Globina simbola $X \in N \cup \Sigma$

Globina najbolj plitvega drevesa izpeljave s korenom X.

Globine končnih simbolov $a \in \Sigma$

Očitno velja d(a) = 0.

Globine nekončnih simbolov $A \in N$

$$d(A) = \min_{r \in R: \, r = A \to \alpha} : d(r)$$

Globina pravila d(r) je definirana na naslednji prosojnici.

Globina produkcijskega pravila $r \in R$

Naj bo produkcijsko pravilo $r = A \rightarrow X_1 X_2 \dots X_k$

$$d(r) = 1 + \max\{d(X_1), d(X_2), \dots, d(X_k)\}$$

Globina najbolj plitvega drevesa izpeljave s korenom A v katerem uporabimo pravilo r.

Primer izračuna globine, prvi korak, globina d=0

Vsi končni simboli

- $d(x_i) = 0, i = 1, 2, ..., p$
- d(c) = 0
- d(+) = 0
- $d(\cdot) = 0$

Primer izračuna globine, drugi korak, globina d=1

Produkcijska pravila, ki imajo na desni simbole z znano globino

•
$$d(V \rightarrow x_i) = 1 + \max(0) = 1, i = 1, 2, ..., p$$

•
$$d(E \to c) = 1 + \max(0) = 1$$

Nekončni simboli s pravili znane globine

•
$$d(V) = \min(1, 1, ..., 1) = 1$$

•
$$d(E) = \min(d(E \to c) = 1, d(E \to E + M) > 1) = 1$$

Primer izračuna globine, drugi korak, globina d=2

Produkcijska pravila, ki imajo na desni simbole z znano globino

•
$$d(M \rightarrow c \cdot V) = 1 + max(0, 0, 1) = 2$$

Nekončni simboli s pravili znane globine

•
$$d(M) = \min(d(M \rightarrow c \cdot V) = 2) = 2$$

Primer izračuna globine, tretji korak, globina d=3

Produkcijska pravila, ki imajo na desni simbole z znano globino

•
$$d(E \rightarrow E + M) = 1 + max(1, 0, 2) = 3$$

Nekončni simboli s pravili znane globine

Vsi nekončni simboli že imajo znano globino, ni več izračunov.

Delna urejenost produkcijskih pravil na osnovi globine

- $E: M \rightarrow c \leq E \rightarrow E + M$
- $M: M \rightarrow c \cdot V$
- $V: V \to x_1 \preccurlyeq V \to x_2 \preccurlyeq \ldots \preccurlyeq V \to x_p$

Zdaj je vse pripravljeno za naštevanje dreves izpeljave.

Dva algoritma za naštevanje dreves omejene globine

Najbolj enostavno drevo izpeljave

- GenerateParseTree: izbiramo najbolj enostavna pravila
- Produkcijska pravila z najnižjim indeksom v delno urejenem seznamu

Naslednje drevo izpeljave

- Vsakemu notranjemu vozlišču drevesa pripišemo indeks pravila
- Za vsako vozlišče v seznamu obratnega pregleda drevesa
 - Če je vozlišče končno, gremo naprej
 - Če je vozlišče notranje in je indeks produkcijskega pravila manjši od števila pravil, zamenjamo pravilo z naslednjim
 - Sicer pa zbrišemo poddrevo notranjega vozlišča
- Po potrebi dokončamo drevo z najbolj enostavnimi poddrevesi

Najbolj enostavno drevo izpeljave

GenerateParseTree: izbiramo najbolj enostavna pravila.

| | | |

Izpeljemo torej izraz c.

Naslednje drevo izpeljave (1)

- Edino notranje vozlišče je E
- Produkcijsko pravilo za E zamenjamo z naslednjim
- Dokončamo drevo z najbolj enostavnimi drevesi izpeljave

Izpeljemo torej izraz $c + c \cdot x_1$.

Naslednje drevo izpeljave (2a)

- Prvo notranje vozlišče v obratnem pregledu je V
- ullet Produkcijsko pravilo $V o x_1$ zamenjamo z naslednjim $V o x_2$

Izpeljemo torej izraz $c + c \cdot x_2$.

Naslednje drevo izpeljave (2b)

- Prvo notranje vozlišče v obratnem pregledu je V
- ullet Produkcijsko pravilo $V o x_{p-1}$ zamenjamo z naslednjim $V o x_p$

Izpeljemo torej izraz $c + c \cdot x_p$.

Naslednje drevo izpeljave (3a)

- ullet Prvi dve notranji vozlišči v obratnem pregledu sta V in M
- Pri nobenem nimamo na voljo naslednjega produkcijskega pravila
- Naslednje notranje vozlišče je E
- ullet Produkcijsko pravilo E o c zamenjamo z naslednjim E o E+M

Nato dokončamo drevo, naslednja prosojnica.

Naslednje drevo izpeljave (3b)

• Dokončamo drevo z najbolj enostavnimi drevesi izpeljave

Izpeljemo torej izraz $c + c \cdot x_1 + c \cdot x_1$.

Problem: ogromno število dreves izpeljave

Rešitve

- Uporabniško podana omejitev globine dreves
- Različne strategije nepopolnega preiskovanja prostora dreves
- Naključna tvorba dreves in verjetnostne gramatike

Verjetnosti produkcijskih pravil

Vsakemu produkcijskemu pravilu $r \in R$

Priredimo verjetnost P(r).

Za vsak nekončni simbol A velja

$$\sum_{r \in R: \, r = A \to \alpha} P(r) = 1$$

Vsota verjetnosti produkcijskih pravil za isti nekončni simbol je 1.

Verjetnost P(w) izpeljane besede $w \in L(G)$

Je produkt verjetnosti vseh produkcijskih pravil v drevesu izpeljave w.

$$P(w) = \prod_{r \in R} P(r)^{f(r)}$$

f(r) je število pojavitev pravila r v izpeljavi/ drevesu $S \Rightarrow_G^* w$.

Verjetnost $P_G(S,d)$ dreves izpeljav globine največ d

Je enaka verjetnosti, da pri naključnem vzorčenju dreves izpeljave izberemo drevo globine največ d.

Rekurzivna formula za $P_G(X, d)$, za $X \in N \cup \Sigma$

$$P_G(X,d) = \begin{cases} 1 & ; X \in \Sigma \land d \geq 0 \\ 0 & ; X \in N \land d = 0 \\ \sum_{r \in R: r = X \rightarrow X_1 X_2 \dots X_k} P(r) \prod_{i=1}^k P_G(X_i, d-1) & ; X \in N \land d \geq 1 \end{cases}$$

Verjetnostna gramatika za linearne izraze

$$\Sigma = \{+, \cdot, c, x_1, x_2\}$$

$$N = \{E, M, V\}$$

$$R = \left\{ \begin{array}{ccc} E & \rightarrow & E + M \mid c \\ M & \rightarrow & c \cdot V \\ V & \rightarrow & x_1 \mid x_2 \end{array} \right\}$$

$$S = LE$$

- $P(V \rightarrow x_i) = 1/2, i = 1, 2$
- $P(M \rightarrow c \cdot V) = 1$
- $P(E \to c) = 1 p$, $P(E \to E + M) = p$

(ロ) (倒) (ヨ) (ヨ) (ヨ) (の)

Primerjava verjetnostne in deterministične gramatike

Vrednost p uravnava verjetnost bolj enostavnih enačb.

Stohastičen algoritem za odkrivanje enačb

Require: Verjetnostna gramatika $G = (N, \Sigma, R, S \text{ za matematične izraze,}$ število vzorčenj n, podatkovna množica D, ciljna spremenljivka y Ensure: Seznam enačb eqns, urejen po naraščajoči napaki na S

```
function ProGED(G, n, D, y)

eqns = []

for i \in \{1, 2, ..., n\} do

(e, p) = GenerateParseTree(G, S)

e_c = CanoncicalForm(e)

(eqn, error) = EstimateParameters(y = e_c, D)

eqns.append(eqn, p, error)

end for

return eqns.sort(key=error, order=increasing)

end function
```

Gramatika za linearne izraze

$$N = \{E, M, V\}$$

$$\Sigma = \{+, \cdot, c, x_1, x_2, \dots, x_p\}$$

$$R = \left\{ \begin{array}{ccc} E & \rightarrow & E + M \mid c \\ M & \rightarrow & c \cdot V \\ V & \rightarrow & x_1 \mid x_2 \mid \dots \mid x_p \end{array} \right\}$$

$$S = E$$

Gramatika za polinomske izraze

$$N = \{E, M, V\}$$

$$\Sigma = \{+, \cdot, c, x_1, x_2, \dots, x_p\}$$

$$R = \left\{ \begin{array}{ccc} E & \rightarrow & E + c \cdot M \mid c \\ M & \rightarrow & M \cdot V \mid V \\ V & \rightarrow & x_1 \mid x_2 \mid \dots \mid x_p \end{array} \right\}$$

$$S = E$$

Gramatika za racionalne izraze

$$N = \{RE, E, M, V\}$$

$$\Sigma = \{+, \cdot, /, (\cdot), c, x_1, x_2, \dots, x_p\}$$

$$R = \left\{ \begin{array}{c} RE \rightarrow (E) / (E) \\ E \rightarrow E + c \cdot M \mid c \\ M \rightarrow M \cdot V \mid V \\ V \rightarrow x_1 \mid x_2 \mid \dots \mid x_p \end{array} \right\}$$

$$S = RE$$

Univerzalna gramatika za poljuben aritmetični izraz

$$N = \{E, F, T, FE, V\}$$

$$\Sigma = \{+, -, \cdot, /, (,), \sin, \cos, \exp, \dots, c, x_1, x_2, \dots, x_p\}$$

$$R = \begin{cases}
E \to E + F \mid E - F \mid F \\
F \to F * T \mid F / T \mid T \\
T \to (E) \mid FE \mid V \mid c \\
FE \to \sin(E) \mid \cos(E) \mid \exp(E) \mid \dots \\
V \to x_1 \mid x_2 \mid \dots \mid x_p
\end{cases}$$

$$S = F$$

Merske enote in sestavljanje

Znane enote opazovanih spremenljivk

- Tri spremenljivke: čas t, hitrost v in pot s
- Osnovne enote: meter [m] in sekunda [s]
- Sestavljena enota: meter na sekundo m/s

Pravila za kombiniranje enot

- Sestavljene enote tvorimo z množenjem in deljenjem
- Seštevamo in odštevamo le enake enote

Merske enote kot vektorji

Predpostavimo nabor osnovnih enot $\mathcal{U}_O = \{[m], [s]\}$

- Sestavljeno enoto lahko predstavimo kot vektor potenc osnovnih enot
- ullet Osnovni enoti [m] in [s] prestavljata enotska vektorja (1,0) in (0,1)
- Enoto za hitrost $[m/s] = [m \cdot s^{-1}]$ predstavlja vektor (1, -1)

Atributna gramatika in enote

Atributna gramatika

- Vsakemu simbolu gramatike priredimo atribut(e)
- Vsakemu pravilu priredimo še atributno pravilo

Vsakemu simoblu priredimo vektorsko predstavitev enote

- Atributna pravila povedo pravila za enote
- Pravila za prirejanje enot
- Pravila za preverjanje ustreznosti enot

Atributna pravila za enote

Pravila za prirejanje enot

- $F.u1 \rightarrow F.u2 + T.u3$: u1 = u2 + u3
- $F.u1 \rightarrow F.u2/T.u3$: u1 = u2 u3
- $V.u1 \to X_{cas}$: u1 = (0,1)
- $V.u1 \to X_{pot}$: u1 = (1,0)

Pravila za preverjanje ustreznosti enot

- $E.u1 \rightarrow E.u2 + F.u3$: u1 == u2 == u3
- $F.u1 \to T.u2$: u1 == u2
- $FE.u1 \rightarrow \sin(E.u2)$: u1 == u2 == (0,0)

Epidemiološki model SIR

Spremenljivke

- t je čas, N je velikost opazovane populacije
- S(t), s(t) = S(t)/N, število in delež dovzetnih v opazovani populaciji
- I(t), i(t) = I(t)/N, število in delež okuženih v opazovani populaciji
- R(t), r(t) = R(t)/N, število in delež ozdravelih v populaciji

Celotna opazovana populacija se ne spreminja s časom

- S(t) + I(t) + R(t) = N
- s(t) + i(t) + r(t) = 1

Enačba za populacijo dovzetnih s(t)

- Populacija dovzetnih nikoli ne narašča
- Pada zaradi kritičnih kontaktov med dovzetnimi in okuženimi
- ullet Predpostavka: v enoti časa, okuženi ima eta kritičnih kontaktov
- Delež teh kontaktov z dovzetnimi je $\beta s(t)$
- ullet Torej, vsak okuženi okuži $eta\,s(t)$ dovzetnih na dan

Število okuženih v enoti časa je torej $\beta s(t) I(t)$

$$rac{dS(t)}{dt} = -eta \, s(t) \, I(t) \, \, \, {
m oziroma} \, \, rac{ds(t)}{dt} = -eta \, s(t) \, i(t)$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q (C)

Enačba za populacijo ozdravelih r(t)

- ullet Predpostavka: v enoti časa je γ delež okuženih, ki ozdravi
- ullet Če okužba traja d enot časa, je $\gamma=1/d$

Delež ozdravelih v enoti časa je torej $\gamma i(t)$

$$\frac{dr(t)}{dt} = \gamma i(t)$$

Enačba za populacijo okuženih i(t)

- Iz enačbe s(t) + i(t) + r(t) = 1 dobimo
- ds(t)/dt + di(t)/dt + dr(t)/dt = 0

Torej

$$rac{di(t)}{dt} = -rac{ds(t)}{dt} - rac{dr(t)}{dt}$$
 oziroma $rac{di(t)}{dt} = eta \, s(t) \, i(t) - \gamma \, i(t)$

Tri diferencialne enačbe modela SIR

$$\frac{ds(t)}{dt} = -\beta s(t) i(t)$$

$$\frac{di(t)}{dt} = \beta s(t) i(t) - \gamma i(t)$$

$$\frac{dr(t)}{dt} = \gamma i(t)$$

Gramatika za epidemiološke modele

$$N = \{SIR, SR, IR, RR, Contact, Recovery\}$$

$$\Sigma = \{+, -, \cdot, c, s, i, r\}$$

$$SIR \rightarrow SR; IR; RR$$

$$SR \rightarrow -Contact$$

$$IR \rightarrow Contact - Recovery$$

$$RR \rightarrow Recovery$$

$$Contact \rightarrow c \cdot s \cdot i$$

$$Recovery \rightarrow c \cdot i$$

$$S = SIR$$

Odkrivanje diferencialnih enačb (DE)

Ciljne spremenljivke

- Niso več osnovne (opazovane) spremenljivke
- Temveč njihovi časovni odvodi

Dva pristopa

- Numerično izračunamo časovne odvode, algebraične enačbe
- 2 Med ocenjevanjem parametrov numerična simulacija DE

Reference in implementacije

Odkrivanje enačb in deterministične gramatike

- Lagramge (Todorovski 1998; Todorovski in Džeroski 1997)
- kt.ijs.si/~ljupco/ed/lagrange.html

Verjetnostne gramatike

- ProGED (Brence in ost. 2021), merske enote (Brence in ost. 2023)
- github.com/brencej/ProGED