Analisi Matematica II

Serie di Fourier

Virginia De Cicco

Sapienza Univ. di Roma

October 22, 2017

Serie di Fourier

In questa lezione introduciamo le serie di Fourier.

Dapprima introduciamo le funzioni generalmente continue e sommabili.

Diciamo che una funzione f è generalmente continua in un intervallo [a, b] se ha al più un numero finito di discontinuità in [a, b].

Notiamo che esistono funzioni che non sono generalmente continue: basta considerare la funzione

$$f(x) = \frac{1}{\operatorname{sen}\frac{1}{x}}$$

che è discontinua in 0 e nei punti del tipo $x=\frac{1}{k\pi}$, con $k\in\mathbb{Z}\setminus\{0\}$, dove \mathbb{Z} denota l'insieme degli interi relativi.

Diciamo che una funzione f generalmente continua è sommabile in un intervallo [a,b] se

$$\int_{a}^{b} |f(x)| dx < +\infty. \tag{1}$$

Osserviamo che una funzione generalmente continua potrebbe non essere sommabile. Basta considerare la funzione

$$f(x) = \begin{cases} \frac{1}{|x|^{\beta}} & x \in [-\pi, \pi] \setminus \{0\} \\ 1 & x = 0, \end{cases}$$
 (2)

che non è sommabile per $\beta \geq 1$ (si noti che per $\beta < 1$ tale funzione è invece sommabile).

Funzioni periodiche

Una funzione $f:\mathbb{R}\to\mathbb{R}$ si dice periodica di periodo T (o T-periodica) se per ogni $x\in\mathbb{R}$ si ha

$$f(x+T)=f(x). (3)$$

Ovviamente se una funzione è periodica con periodo T>0, allora è anche periodica con periodo $2T,3T,\ldots,kT$, con $k\in\mathbb{N}$.

Nel seguito intenderemo per periodo il più piccolo numero T tale che (3) valga.

Monomi trigonometrici

Fissati $k \in \mathbb{N}$ e $a, b \in \mathbb{R}$ la funzione seguente ottenuta come combinazione di $\cos kx$ e $\sec kx$

$$f(x) = a \cos kx + b \sin kx$$

è periodica di periodo 2π .

In realtà il suo periodo minimo è $\frac{2\pi}{k}$, essendo

$$cos\left(k\left(x+\frac{2\pi}{k}\right)\right) = cos\left(kx+2\pi\right) = cos kx$$

е

$$\operatorname{sen}\left(k\left(x+\frac{2\pi}{k}\right)\right) = \operatorname{sen}\left(kx+2\pi\right) = \operatorname{sen}kx.$$

Polinomi trigonometrici

Le somme finite

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$$
, a_0 , a_k , $b_k \in \mathbb{R}$.

di funzioni del tipo precedente si dicono *polinomi trigonometrici di ordine n* e sono funzioni 2π -periodiche.

Esempi di tali funzioni sono:

$$\cos x + \sin x$$
, $2\sin 8x - 3\cos 5x + 4\sin 2x$.

Serie trigonometriche

Supponiamo che la successione di funzioni $S_n(x)$ converga per ogni $x \in \mathbb{R}$ ad una funzione S(x).

Ciò equivale a dire che la serie seguente

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

converge puntualmente e ha per somma la funzione S(x).

Tale somma è necessariamente una funzione 2π -periodica.

Tale serie è detta serie trigonometrica di coefficienti $a_0, a_k, b_k \in \mathbb{R}$.

Banale, ... ma non troppo

Esame del 21 - 9 - 2011

Domanda a risposta multipla

Il coefficiente di Fourier a_2 della funzione $f(x) = 9 + \cos 4x + 3 \sin 2x$ è

a)
$$a_2 = 1$$
 b) $a_2 = 3$ c) $a_2 = 2$ d) $a_2 = 0$.

Soluzione: d)

Serie trigonometriche e sviluppabilità in serie di Fourier

Ci si può chiedere il viceversa:

data una funzione f(x) 2π -periodica, essa è *sviluppabile in serie trigonometrica*, i.e. è possibile costruire una serie trigonometrica che converga ad f(x) per ogni $x \in \mathbb{R}$?

O equivalentemente, è possibile determinare dei coefficienti a_0, a_k, b_k in modo che la serie trigonometrica con essi costruita converga ad f(x)?

Vedremo successivamente delle condizioni sufficienti per la sviluppabilità in serie trigonometrica. Cominciamo con le condizioni necessarie.

Coefficienti di Fourier

Nella seguente proposizione diamo la forma che i coefficienti devono necessariamente avere perché tale sviluppo possa valere.

Proposizione

Sia f sviluppabile in serie trigonometrica, i.e.

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx.$$

Supponiamo inoltre che la serie converga uniformemente in $[-\pi,\pi]$.

Allora necessariamente i coefficienti hanno la seguente forma:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$
 $k = 0, 1, 2, ...$

е

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{sen} kx \, dx \qquad k = 1, 2, \dots .$$

Coefficienti di Fourier

I coefficienti a_k e b_k della precedente proposizione prendono il nome di coefficienti di Fourier e la serie con essi costruita è detta serie di Fourier di f.

Perchè tali coefficienti siano ben definiti basta che f sia 2π -periodica e sommabile in $[-\pi,\pi]$.

Notiamo che grazie all'ipotesi di sommabilità i coefficienti sono ben definiti. Infatti per ogni $k=0,1,2,\ldots$ si ha

$$|a_k| \le \int_{-\pi}^{\pi} |f(x)| |\cos kx| \, dx \le \int_{-\pi}^{\pi} |f(x)| \, dx < +\infty$$

e per ogni $k = 1, 2, \ldots$ si ha

$$|b_k| \leq \int_{-\pi}^{\pi} |f(x)| |\operatorname{sen} kx| \, dx \leq \int_{-\pi}^{\pi} |f(x)| \, dx < +\infty.$$

Coefficienti di Fourier

Si osservi che il coefficiente

$$\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx$$

è il valor medio di f sull'intervallo di periodicità .

Infine si noti che, grazie alla periodicità di f, nella definizione di tali coefficienti si potrebbe prendere, anzichè l'intervallo $[-\pi,\pi]$, un qualunque altro intervallo di ampiezza 2π (spesso negli esercizi useremo per esempio l'intervallo $[0,2\pi]$).

Coefficienti di Fourier di funzioni pari e dispari

Andiamo a considerare due casi particolari: quello in cui f sia una funzione pari e quello in cui f sia una funzione dispari.

Supponiamo che f sia 2π -periodica e pari (i.e. f(x) = f(-x) per ogni $x \in \mathbb{R}$). Allora ricordando che anche il coseno è pari, mentre il seno è dispari, si ha che $f(x) \cos kx$ risulta una funzione pari e $f(x) \sin kx$ dispari e quindi

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos kx \, dx \qquad k = 0, 1, 2, \dots$$

е

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{sen} kx \, dx = 0 \qquad k = 1, 2, \dots$$

Coefficienti di Fourier di funzioni pari e dispari

In maniera analoga, supponiamo che f sia 2π -periodica e dispari (i.e. f(x) = -f(-x) per ogni $x \in \mathbb{R}$). Allora si ha che $f(x) \cos kx$ risulta una funzione dispari e $f(x) \sin kx$ pari e quindi

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = 0$$
 $k = 0, 1, 2, ...$

e

$$b_k = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx = rac{2}{\pi} \int_{0}^{\pi} f(x) \sin kx \, dx \qquad k = 1, 2, \dots \; .$$

Esempio

Domanda a risposta multipla

Il coefficiente di Fourier b_2 della funzione f(x) = |sen x| è

a)
$$b_2 = 1$$
 b) $b_2 = 3$ c) $b_2 = 22$ d) $b_2 = 0$.

Soluzione: d) poichè tale funzione è pari.

Esame del 17 - 9 - 2012

Si scriva la serie di Fourier della funzione 2π -periodica definita in $[-\pi,\pi[$ da

$$f(x) = |x|$$

calcolandone esplicitamente i coefficienti.

Soluzione: Essendo la funzione pari, si ha $b_n=0$ per ogni $n\in\mathbb{N}$. Si ha che

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \, dx = \pi$$

$$a_n = \frac{2}{\pi n^2} [(-1)^n - 1].$$

Quindi la serie di Fourier è

$$\frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1}{n^2} [(-1)^n - 1] \cos(nx) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} \cos((2k+1)x).$$

Alcune classi di funzioni

Definiamo ora alcune classi di funzioni che useremo in seguito.

Diciamo che una funzione f definita su un intervallo [a, b] è continua a tratti in [a, b] se esiste una suddivisione dell'intervallo [a, b] del tipo

$$a = x_0 < x_1 < \cdots < x_n = b$$

tale che

- per ogni $i=0,1,2,\ldots,n-1$ la funzione f(x) è continua negli intervalli aperti (x_i,x_{i+1})
- nei punti x_i ha al più discontinuità eliminabili o di tipo salto.

Alcune classi di funzioni

Diciamo che una funzione f definita su un intervallo [a,b] è C^1 a tratti in [a,b] (o regolare a tratti in [a,b]) se esiste una suddivisione dell'intervallo [a,b] del tipo

$$a = x_0 < x_1 < \cdots < x_n = b$$

tale che

- per ogni $i=0,1,2,\ldots,n-1$ la funzione f(x) è C^1 (i.e. derivabile e con derivata continua) negli intervalli aperti (x_i,x_{i+1})
- \bullet nei punti x_i ha al più discontinuità eliminabili o di tipo salto
- in tali punti ha derivata destra e sinistra finita.

Alcune classi di funzioni

Diciamo che una funzione f definita in $\mathbb R$ è continua a tratti in $\mathbb R$ (o C^1 a tratti in $\mathbb R$) se lo è in ogni intervallo $[a,b]\subset \mathbb R$.

Osserviamo che

- Le funzioni continue sono anche continue a tratti.
- Le funzioni C^1 sono anche C^1 a tratti.
- Le funzioni continue a tratti in $[-\pi, \pi]$ (e quindi in particolare le continue e anche le C^1 a tratti) sono sommabili.
- Ma non vale il viceversa (si veda l'esempio $\frac{1}{|x|^{\beta}}$ con $\beta < 1$, funzione sommabile, ma non continua a tratti) .

Convergenza della serie di Fourier

Poter scrivere la serie di Fourier di f, basta che f sia sommabile e periodica.

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

Per ottenere la convergenza

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx = f(x)$$

di tale serie a f bisogna richiedere delle ipotesi più forti.

Nei seguenti teoremi daremo delle condizioni sufficienti ad assicurare la convergenza puntuale, uniforme e totale.

Convergenza della serie di Fourier

Teorema sulla convergenza puntuale della serie di Fourier

Sia f una funzione 2π -periodica e regolare a tratti in \mathbb{R} .

Allora per ogni $x \in \mathbb{R}$ la serie di Fourier di f converge a

$$\frac{1}{2}[f(x+)+f(x-)],$$

cioè alla media tra il limite destro e sinistro in x

$$f(x+) = \lim_{y \to x^+} f(y)$$
 $f(x-) = \lim_{y \to x^-} f(y)$.

In particolare converge a f(x) nei punti di continuità , cioè dove f(x+) = f(x-).

Convergenza della serie di Fourier

Proposizione

Sotto le stesse ipotesi del teorema precedente, la serie di Fourier di f converge uniformemente in ogni sottointervallo [a,b] in cui f(x) è continua.

Teorema sulla convergenza totale della serie di Fourier

Sia f una funzione 2π -periodica, continua e regolare a tratti in $\mathbb R$. Allora la serie di Fourier di f converge totalmente in $\mathbb R$ (e quindi uniformemente) alla funzione f.

Teorema sull'integrazione termine a termine per una serie di Fourier

Sia f una funzione 2π -periodica e regolare a tratti in $\mathbb R$. Allora fissati $x_0,x\in [-\pi,\pi]$ si ha

$$\int_{x_0}^x f(t) dt = \frac{a_0}{2} (x - x_0) + \sum_{k=1}^{\infty} \int_{x_0}^x (a_k \cos kt + b_k \sin kt) dt.$$

Questo teorema afferma che una serie di Fourier di una funzione regolare a tratti in $\mathbb R$ si può integrare termine a termine anche senza la convergenza uniforme della serie stessa.

Esame del 21 - 6 - 2012

Domanda a risposta multipla

- (i) Si dia la definizione dei coefficienti di Fourier e di serie di Fourier.
- (ii) Si enuncino i teoremi sulla convergenza puntuale ed uniforme per una serie di Fourier.

Data la funzione

$$f(x) = \sin(3x) - 5\cos(7x),$$

- (iii) si calcolino i suoi coefficienti di Fourier;
- (iv) la serie di Fourier ad essa associata converge puntualmente? converge uniformemente?
- Soluzione: (iii) $b_3=1$, $b_k=0$ per ogni $k\neq 3$ e $a_7=-5$, $a_k=0$ per ogni $k\neq 7$. Converge uniformemente su tutto \mathbb{R} , poichè è C^1 .

Esempio

Sia f(x) la funzione, periodica di periodo 2π , definita in $[-\pi, \pi[$ da

$$f(x) = \begin{cases} -1 & |x| < 2\\ 0 & \text{altrove.} \end{cases}$$

Calcoliamo esplicitamente i coefficienti di Fourier di f(x). Osservando che la funzione è pari, si ha

$$a_0=-rac{4}{\pi}\,,$$

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos kx \, dx = -\frac{2}{\pi} \int_0^2 \cos kx \, dx = -\frac{2}{k\pi} \sin 2k \qquad \forall k = 1, 2, \dots$$

е

$$b_k = 0 \quad \forall k = 1, 2, \dots$$

Esempio

Quindi lo sviluppo di Fourier è

$$-\frac{2}{\pi} - \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} \operatorname{sen} 2k \cos kx.$$

Usando il teorema sulla convergenza puntuale, si ha che la serie di Fourier di f(x) converge nel punto di discontinuità x=2 a

$$-rac{1}{\pi}-rac{2}{\pi}\sum_{k=1}^{\infty}rac{1}{k}sen\,2k\,\cos 2k=rac{1}{2}[f(2+)+f(2-)]=-rac{1}{2}\,,$$

mentre nel punto di continuità $x=3\pi$ la serie di Fourier di f(x) converge a $f(3\pi)=0$.

Esame del 17 gennaio 2013

Data la funzione f(t), periodica di periodo 2π , definita per $t \in [0, 2\pi]$ da $f(t) = t - 2\pi$ (senza calcolare i suoi coefficienti di Fourier) la somma della sua serie di Fourier per $t=2\pi$ vale uno dei seguenti valori

- a) $-\pi$ b) π c) 2π d) -2π .

Soluzione: a)

Prodotto scalare tra funzioni continue a tratti

Nello spazio delle funzioni continue a tratti su un intervallo [a, b] si può introdurre quello che viene detto un *prodotto scalare* ed è così definito:

$$(f,g) = \int_a^b f(x)g(x) dx.$$

Questo prodotto tra funzioni gode delle stesse proprietà del prodotto scalare in \mathbb{R}^N :

$$(f,g) = (g,f),$$
 $(f,f) \ge 0,$ $(f,f) = 0$ se e solo se $f = 0,$ $(f,g+h) = (f,g) + (f,h).$

Prodotto scalare tra funzioni continue a tratti

Si dice che due funzioni continue a tratti f e g sono ortogonali se (f,g)=0. Inoltre nello spazio delle funzioni continue a tratti si può introdurre una distanza nel modo seguente

$$d(f,g) := \sqrt{(f-g,f-g)} = \sqrt{\int_a^b (f-g)^2} \ dx. \tag{4}$$

Uguaglianza di Parseval

Sia F_n l'insieme dei polinomi trigonometrici di ordine n, i.e. del tipo

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx,$$

che è incluso nell'insieme delle funzioni continue.

La famiglia di 2n + 1 funzioni

$$\frac{1}{2}$$
, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, . . . , $\cos nx$, $\sin nx$

costituisce quella che si dice una base ortogonale in F_n .

Questo significa che ogni elemento di F_n si ottiene come combinazione lineare di queste funzioni ed inoltre, esse sono ortogonali nel senso del prodotto scalare della sezione precedente.

Si dice che una funzione 2π -periodica è *di quadrato sommabile* se

$$\int_{-\pi}^{\pi} (f(x))^2 dx < +\infty.$$

Si noti che se f è di quadrato sommabile, allora è sommabile. Infatti basta osservare che da

$$(1-|f(x)|)^2\geq 0$$

si ha

$$|f(x)| \leq \frac{1}{2}(1+|f(x)|^2)$$

e quindi

$$\int_{-\pi}^{\pi} |f(x)| \, dx \leq \frac{1}{2} \int_{-\pi}^{\pi} (1 + |f(x)|^2) \, dx \leq \pi + \int_{-\pi}^{\pi} |f(x)|^2 \, dx < +\infty.$$

Si può provare che il prodotto scalare e la distanza definiti nel paragrafo precedente possono essere introdotti allo stesso modo anche nella classe delle funzioni di quadrato sommabile.

Teorema

Sia f una funzione 2π -periodica, generalmente continua e di quadrato sommabile. Siano a_0, a_k, b_k i coefficienti di Fourier di f e sia $S_n(x)$ la somma parziale n-esima della serie di Fourier di f, i.e.

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx.$$

Allora si ha:

1)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x) - S_n(x)|^2 dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx - \left[\frac{a_0^2}{2} + \sum_{k=1}^{n} (a_k^2 + b_k^2) \right];$$

2)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2)$$
 (uguaglianza di Parseval)

(in particolare, la serie numerica a secondo membro converge);

Teorema

3) al variare di $P \in F_n$, lo scarto quadratico medio

$$E_n = \int_{-\pi}^{\pi} |f(x) - P(x)|^2 dx = (d(f, P))^2$$

è minimo se $P(x) = S_n(x)$, i.e. S_n realizza la minima distanza di f(x) da F_n

$$d(f,S_n)=\min_{P\in F_n}d(f,P).$$

La diseguaglianza

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \le \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx,$$

che è parte dell'eguaglianza di Parseval, prende il nome di diseguaglianza di Bessel.

Convergenza in media quadratica

Si dice che la serie di Fourier converge in media quadratica se

$$\lim_{n\to+\infty}\int_{-\pi}^{\pi}|f(x)-S_n(x)|^2\,dx=0.$$

Dalla 1) e dalla 2)

1)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x) - S_n(x)|^2 dx = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx - \left[\frac{a_0^2}{2} + \sum_{k=1}^{n} (a_k^2 + b_k^2) \right];$$

2)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2)$$
 (uguaglianza di Parseval)

segue che:

Corollario 1

Sia f una funzione 2π -periodica, generalmente continua e di quadrato sommabile, la serie di Fourier converge in media quadratica.

Convergenza in media quadratica

Inoltre dalla 2) segue anche che:

Corollario 2

Sia f una funzione 2π -periodica, generalmente continua e di quadrato sommabile, si ha

$$\lim_{k \to +\infty} a_k = \lim_{k \to +\infty} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = 0$$

е

$$\lim_{k\to+\infty}b_k=\lim_{k\to+\infty}\int_{-\pi}^{\pi}f(x)\mathrm{sen}\,kx\,dx=0.$$

Esempio

Data la funzione f(t), $t\in\mathbb{R}$, periodica di periodo 2π definita per $t\in[0,2\pi[$ da

$$f(t) = \begin{cases} \frac{1}{t^{\alpha}} & t \in]0, 2\pi[, \\ 0 & t = 0, \end{cases}$$

essa è regolare a tratti per $\alpha=0$ e $\alpha\leq -1$

ed è di quadrato sommabile per $\alpha<\frac{1}{2}\,.$

Esempio

Per $\alpha=0$ e $\alpha\leq -1$ la somma della serie di Fourier di f in ogni punto t può essere definita senza calcolare esplicitamente i coefficienti di Fourier di f , usando il teorema sulla convergenza puntuale ed è

$$S(t) = 1$$
 se $\alpha = 0$,

mentre per $\alpha \leq -1$ si ha

In particolare, per $t=\frac{5}{2}\pi$ (punto di continuità) si ha

$$S\left(\frac{5}{2}\pi\right) = S\left(\frac{\pi}{2}\right) = \frac{1}{\left(\frac{\pi}{2}\right)^{\alpha}} = f\left(\frac{\pi}{2}\right),$$

mentre per $t=8\pi$ (punto di discontinuità) si ha

$$S(8\pi) = S(2\pi) = \frac{1}{2(2\pi)^{\alpha}}$$
.

Si osservi che per $\alpha < \frac{1}{2}$, essendo f generalmente continua e di quadrato sommabile, si ha che la sua serie di Fourier converge in media quadratica e vale l'uguaglianza di Parseval, grazie al Corollario 1.

Riepilogo sui diversi tipi di convergenza per la serie di Fourier

Data una funzione f 2π -periodica:

se f è continua e C^1 a tratti, allora la convergenza è totale (e quindi uniforme), la serie converge ad f(x) e dunque f è sviluppabile in serie di Fourier;

se f è C^1 a tratti, allora la convergenza è puntuale, la somma della serie è $\frac{f(x+)+f(x-)}{2}$ e la convergenza è uniforme in ogni intervallo in cui f(x) è continua;

se f è generalmente continua e di quadrato sommabile, allora la convergenza è in media quadratica.

Infine poiché una funzione continua a tratti è generalmente continua e di quadrato sommabile, allora si ha:

se f è continua a tratti, la convergenza è in media quadratica e vale l'eguaglianza di Parseval.

Classi di funzioni

- (i) Si dia la definizione di convergenza in media quadratica della serie di Fourier di una funzione f(t) periodica di periodo 2π e sommabile. Sotto quali ipotesi su f(t) si verifica e perché?
- (ii) Data la funzione, periodica di periodo 2π , definita da

$$f(t) = \begin{cases} \frac{1}{|\pi - t|^{\alpha/3}}, & t \in [0, 2\pi) - \{\pi\}, \\ 0, & t = \pi, \end{cases}$$

si dica per quali valori del parametro $\alpha>0\,,$ si ha convergenza in media quadratica.

Soluzione

(i) La serie di Fourier di f(t) converge in media quadratica se

$$\lim_{n} \int_{0}^{2\pi} (f(x) - S_{n}(x))^{2} dx = 0,$$

dove $S_n(x)$ è la somma parziale n-esima della serie di Fourier di f(x). Se f(x) è periodica di periodo 2π , generalmente continua e di quadrato sommabile nell'intervallo di ampiezza un periodo, la serie di Fourier di f(x) converge in media quadratica.

(ii) Basta $\alpha < 3/2$.

(i) Si dia la definizione di serie di Fourier di f(x), con f(x) periodica di periodo 2π e tale che

$$\int_0^{2\pi} |f(x)| dx < +\infty.$$

(ii) Data la funzione

$$f(x) = |\cos(x/2)|,$$

si dica, senza calcolarne i coefficienti di Fourier, se la sua serie di Fourier converge totalmente in $\mathbb R\,.$

Soluzione

(ii) La serie converge totalmente perché la funzione è regolare a tratti e continua in $\mathbb R$.

- (i) Data una funzione f(t), regolare a tratti e periodica di periodo 2π , si definisca la serie di Fourier di f(t), si dica quanto vale la sua somma S(t) e dove converge uniformemente.
- (ii) Data la funzione f(t), periodica di periodo π , definita da

$$f(t) = e^{2t}, t \in [0, \pi[,$$

si calcoli $S(5\pi)$ (cioè il valore della somma della serie di Fourier nel punto $t=5\pi$) e $f(5\pi)$.

Soluzione

(ii) Il punto $t=5\pi$ è un punto di discontinuità per la funzione periodica f(t) e dunque si ha

$$S(5\pi) = \frac{f(5\pi^-) + f(5\pi^+)}{2} = \frac{e^{2\pi} + 1}{2}.$$

Inoltre $f(5\pi) = f(0) = 1$.