Math 4000/6000 - Homework #6

posted October 10, 2016; due at the start of class on October 19, 2016

"Art is fire plus algebra." – Jorge Luis Borges

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. 3.1.2(a), and then $f(x) = x^2 + 2x + 2$, $g(x) = x^2 + 1$, $F = \mathbb{Z}_3$
- 2. 3.1.6.
- 3. 3.1.10(a,c,e,f).
- 4. 3.1.15.

Hint: You may assume, without proof, that the product rule holds for derivatives of polynomials over an arbitrary field. That is, (fg)' = f'g + fg'.

- 5. 3.1.18
- 6. Let A be an integral domain, and let $a, b \in A$. Show that the following three conditions are all equivalent:
 - (a) $a \mid b$ and $b \mid a$,
 - (b) $a = b \cdot u$ for some unit u in A,
 - (c) $b = a \cdot u'$ for some unit u' in A.

Remark. Elements a and b that satisfy any one of these equivalent conditions are called associate elements.

- 7. Let A be an integral domain. For $a, b \in A$, we say that $d \in A$ is a **greatest common divisor** (or **gcd**) of a and b if d is a common divisor divisible by every common divisor. (This generalizes the definition we made in class for A = F[x].) Prove that if d is a gcd of a and b, then d' is also a gcd of a and b if and only if $d' = u \cdot d$ for some unit u.
- 8. Let F be a field.
 - (a) Show that the units in F[x] are exactly the nonzero constants. Remark. It follows from this problem and Exercise 7 that if g(x) is any one gcd of a(x) and b(x), then all gcds have the form $c \cdot g(x)$, where c is a nonzero constant. Remember that we made this claim in class.
 - (b) Let $a(x), b(x) \in F[x]$, not both zero. Show that if g(x) is any gcd of a(x) and b(x), then g(x) = a(x)X(x) + b(x)Y(x) for some $X(x), Y(x) \in F[x]$.

 Hint: You already know this for the particular gcd that is output by the Euclidean algorithm.
- 9. (The Gaussian integers) Let $\mathbb{Z}[i]$ be the subset of complex numbers defined by $\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\}.$

- (a) Check that $\mathbb{Z}[i]$ is a subring of \mathbb{C} . Hint: Use Problem 8(a) from your last homework.
- (b) Define a function $N: \mathbb{C} \to \mathbb{R}$ by $N(z) = z \cdot \overline{z}$. Explain why N(z) is a nonnegative integer for every $z \in \mathbb{Z}[i]$. For which $z \in \mathbb{Z}[i]$ is N(z) = 0?
- (c) Prove that N(zw) = N(z)N(w) for all $z, w \in \mathbb{C}$.
- (d) Using your work in (b) and (c), find (with proof) all units in $\mathbb{Z}[i]$. Hint: First show that $z \in \mathbb{Z}[i]$ is a unit if and only if N(z) = 1.
- 10. (More on $\mathbb{Z}[i]$) In this exercise, we outline a proof of the following **division algorithm** for $\mathbb{Z}[i]$:

Division algorithm for $\mathbb{Z}[i]$: Let $a, b \in \mathbb{Z}[i]$, with $b \neq 0$. Then there exist $q, r \in \mathbb{Z}[i]$ with

$$a = bq + r$$
, and $N(r) < N(b)$. (\dagger)

Example: Let a = 10 + i and b = 2 - i. We have

$$10 + i = (2 - i) \underbrace{(4 + 2i)}_{q} + \underbrace{i}_{r},$$

where 1 = N(i) < N(2 - i) = 5.

- (a) Explain (perhaps with a picture) why every complex number is within a distance ^{√2}/₂ of some element of Z[i].

 Hint: Think geometrically about the complex plane. Where are the elements of Z[i] located there?
- (b) Given $a, b \in \mathbb{Z}[i]$ with $b \neq 0$, let Q = a/b. (Remember that \mathbb{C} is a field, so a/b exists in \mathbb{Q} .) From part (a), you can find a Gaussian integer q with $|a/b-q| \leq \frac{\sqrt{2}}{2}$. Prove that if we define r := a bq, then (†) holds. In fact, prove the stronger statement that $N(r) \leq \frac{1}{2}N(b)$.
- (c) Find q and r satisfying (†) if a = 5 + 7i and b = 3 i.
- 11. (*) (An example of elements without a gcd) Let $\sqrt{-3}$ denote the complex number $i\sqrt{3}$. Define $\mathbb{Z}[\sqrt{-3}]$ as $\{a+b\sqrt{-3}: a,b\in\mathbb{Z}\}$. Then $\mathbb{Z}[\sqrt{-3}]$ is a subring of \mathbb{C} . (This is easy to check, but you are not asked to do so.) Prove that the elements a=4 and $b=2+2\sqrt{-3}$ do not have a gcd in $\mathbb{Z}[\sqrt{-3}]$.

Hint: Define a function N(z) on $\mathbb{Z}[\sqrt{-3}]$ by putting $N(z) = z\bar{z}$. You may use without proof that N(z) is nonnegative-integer valued, that N(z) = 0 iff z = 0, that N(z) = 1 iff z is a unit, and that N(zw) = N(z)N(w). (The proofs are the same as for $\mathbb{Z}[i]$.) It may help to first prove the lemma that if $a \mid b$ (in $\mathbb{Z}[\sqrt{-3}]$), then $N(a) \mid N(b)$ (in \mathbb{Z}).