

T3.1 | Interactive and dynamic data visualization

htmlwidgets and shiny

Marta Coronado Zamora 4 October 2024

Keep in touch

Theory lessons

Marta Coronado Zamora	Jose F. Sánchez
marta.coronado@prof.esci.upf.edu	jose.sanchez@prof.esci.upf.edu
y @geneticament	
Institut Botànic de Barcelona (CSIC-CMCNB)	Germans Trias i Pujol Research Institute (IGTP)

Practical lessons

Content

- Interactive data visualization
- In R
 - o htmlwidgets
 - ∘ shiny

Get started!

Interactive and dynamic data visualization

Link

Exercise | Describe the previous visualizations. Are they dynamic? And interactive? If so, what types of interaction do you identify?

Types of interaction

- Interactive plot area
 - Action: hover, click, brush
 - Response: zoom, identify, link, add/remove
- Interactive controls (outside the plot)
 - Action: click, drag
 - Response: choose data set, variables, parameters and redraw

How interaction works

• Basic framework: web browsers html + css + JavaScript

• Options for interaction:

Client-side
 Static html page with JavaScript code
 Executed within the browser

Server-side
 Dynamic html page
 Executed in the host machine

In R

In recent years there has been a shift from using static R graphics to using interactive JavaScript web components for data analysis and data visualization: we need **R Bindings to JavaScript libraries**

• The htmlwidgets package

Provides a framework for creating R bindings to JavaScript libraries. HTML Widgets can be:

- Used at the R console for data analysis just like conventional R plots
- Embedded within R Markdown documents
- Incorporated into Shiny web applications
- Saved as standalone web pages

Executed in browser (client-side)
Standalone html file

• Shiny applications

Framework for interactive web applications in R Executed in host machine (server-side) Needs R running

htmlwidgets

What are htmlwidgets?

Bridge between R and JavaScript libraries:

R package	JavaScript library
plotly	plotly.js (D3.js)
networkD3	D3.js
dygraphs	Dygraphs.js
leaflet	leaflet.js
•••	•••

Full list of htmlwidgets

Example: plotly

Example: networkD3

Example: dygraphs

Example: leaflet

Exercise | Tranform the following graphics made with ggplot2 into plotly interactive versions. What kind of interaction does plotly add?

```
p1 ← ggplot(iris, aes(Sepal.Length, Petal.Length, shape = Species, colour = Species)) +
   geom_point()

p2 ← ggplot(iris, aes(Species, Petal.Length, fill = Species)) +
   geom_boxplot()
```

Answer:

Shiny

What is Shiny?

- Framework to create dynamic, reactive html pages without html, css or JavaScript
 - There isn't any static html output
 - Needs an R session running
- Creates web applications
 - Interactive visualizations
 - Much more

Gallery of Shiny apps

Syntax

```
library(shiny)

# Web page
ui \(
\text{ fluidPage()}

# Running R session
server \(
\text{ function(input, output){}}

# Connection ui + server
shinyApp(ui = ui, server = server)
```

Two basic files: ui.R and server.R (or have them both in app.R)

- ui
 - html specifications (R functions)
 - input functions
 - output functions
- server
 - instructions to build and rebuild R objects
 - refers to input and output in ui

Let's create a Shiny app!

First, install the shiny package:

```
install.packages("shiny")
library(shiny)
```

Create a new Shiny Web App in RStudio:

Let's create a Shiny app!

First, install the shiny package:

```
install.packages("shiny")
library(shiny)
```

As an application name you can type test_app and create a Single File (app.R) and save it in a Directory:

Run the app! Run App -

Parts of the UI

UI is de facto an HTML file.

- In building myui (or ui.R file) what we really do is to construct an HTML file with R functions.
- By default, uses bootstrap, the most popular HTML, CSS, and JS framework for developing responsive, mobile first projects on the web.

Parts of the UI:

- 1. HTML tags
- 2. Layout
- 3. Input (control widgets)
- 4. Output

UI: HTML tags

- You can build UI by using HTML tags
- Use names(tags) to see all available tags

Exercise | Modify your app.R adding the following code inside fluidPage() and run the app again.

Which HTML tags are you able to identify? What are they used for?

Answer:

UI: Layout

Panels

- Panel functions are used to put a group of elements together into a single 'panel'.
- There are several panel functions defined in shiny:

absolutePanel(), conditionalPanel(), fixedPanel(), headerPanel(), inputPanel(), mainPanel(), navlistPanel(),
sidebarPanel(), tabPanel(), tabsetPanel(), titlePanel(), wellPanel(),

Layouts

- Layout functions are used to organize panels and elements into an existing layout.
- There are several layout functions defined in shiny:

UI: Layout

Exercise | Which layouts and panels are used in the app.R?

Answer:

UI: Inputs (control widgets)

- Wigets are web elements that users can interact with.
- The standard Shiny widgets are:

UI: Inputs (control widgets)

- Increase counter: actionButton, actionLink
- TRUE/FALSE: checkboxInput
- Date: dateInput, dateRangeInput
- File: fileInput
- Number: numericInput
- Text: textInput, passwordInput
- Select elements: radioButtons, selectInput, sliderInput
- Trigger reaction: submitButton
- **Exercise** | Which widget(s) are used in the app.R?

Answer:

UI: Output

- The output will be updated automatically when an input widget changes: reactivity
 - when an user manipulates the app, Shiny reruns parts of server.R to create an updated output

Types of outputs:

• Plot: plotOutput

• Image: imageOutput

• Text: textOutput

• Code: verbatimTextOutput

• Table: tableOutput

UI and server: Output

Outputs - render*() and *Output() functions work together to add R output to the UI					
10 13 10 10 10 10 10 10 10 10 10 10 10 10 10	DT::renderDataTable(expr, options, callback, escape, env, quoted)	▶ dataTableOutput(outputId, icon,)			
R	renderImage(expr, env, quoted, deleteFile)	<pre>imageOutput(outputId, width, height, click, dblclick, hover, hoverDelay, hoverDelayType, brush, clickId, hoverId, inline)</pre>			
	<pre>renderPlot(expr, width, height, res,, env, quoted, func)</pre>	<pre>plotOutput(outputId, width, height, click, dblclick, hover, hoverDelay, hoverDelayType, brush, clickId, hoverId, inline)</pre>			
'deta-free': 3 dm. of 2 variables: 5 Squal-Length nom 5.3 3.4.4 4.2 5 Squal-Width : nom 3.3 3.3.2	<pre>renderPrint(expr, env, quoted, func, width)</pre>	verbatimTextOutput(outputId)			
	renderTable(expr,, env, quoted, func)	tableOutput(outputId)			
foo	renderText(expr, env, quoted, func)	textOutput(outputId, container, inline)			
Deitor a subline S	renderUI(expr, env, quoted, func)	uiOutput(outputId, inline, container,) htmlOutput(outputId, inline, container,)			

Shiny app summary

- **Exercise** | Create a shiny app named 'Cars' with the following requirements:
 - 1. Layout: sidebar layout.
 - 2. A **slider** in the sidebar panel with inputId "nrows" and label "Number of rows:", which controls how many rows of the data set datasets:: cars to use in the following analysis. The minimum value is 1, maximum value is 50 and default value is 10.
 - 3. In the main panel, create a **scatterplot** with x axis 'speed' and y axis 'dist' on the top and a table showing the data on the bottom, using outputId "carsPlot" and "carsTable" respectively.
 - 4. Use HTML tags to format the UI: indicating an app title and your name.
- You can use a subset of your data in ggplot as cars[1:input\$nrows,]
 - Answer:

Shiny app summary

Cars

speed	dist
4.00	2.00
4.00	10.00
7.00	4.00
7.00	22.00
8.00	16.00
9.00	10.00

Upload T3.1_slides.Rmd with the completed exercises (text included) to aul@-ESCI