

Prof. Me. Renato Alves Ferreira email: renato.ferreira@fmu.br

Disciplina:

MICROCONTROLADORES e IoT

Semana 1 Apresentação

- Professor
- Disciplina Microcontroladores e IoT
- Método de Avaliação

Composição da média final = (N1*0,4) + (N2*0,6) - Aprovação média >=6

• Controle da frequência 75% (+- 5 dias de ausência)

Orientações gerais

Introdução a Microcontroladores

Sistema de avaliação

AVALIAÇÃO

A Média Final (MF) da disciplina considera os seguintes elementos e valores:

N1	N2		
A1 – Avaliação(ões) a ser(em) definida(s) de acordo com os objetivos de aprendizagem [nota de 0 a 10]	A2 – Avaliação(őes) a ser(em) definida(s) de acordo com os objetivos de aprendizagem (9,0 pontos) + APS – Atividade Prática Supervisionada (1,0 ponto) [nota de 0 a 10]		
	OU		
	SUB – Avaliação Substitutiva		
	[nota de 0 a 10]		

A Média Final (MF) é calculada por meio da média ponderada das duas notas, N1 e N2, com peso, respectivamente de 40% e 60%, resultante da seguinte equação:

$$MF = (N1*0,4) + (N2*0,6)$$

Para aprovação, a Média Final deverá ser igual ou superior a 6,0 (seis), além da necessária frequência mínima de 75% nas aulas.

O estudante que não realizar a A2 ou não atingir a média final 6,0 (seis) na disciplina, poderá realizar uma Avaliação Substitutiva (SUB), cuja nota substituirá a nota de A2 obtida, caso seja maior.

O que esperar da disciplina

Ementa

Aborda a evolução da arquitetura e organização de microcontroladores. Discute questões relacionadas ao conjunto básico de instruções, programação, modos de endereçamento, pilhas, organização de memórias e interfaces de comunicação.

Objetivos

Analisar e projetar hardware e software de sistemas microcontrolados e suas interfaces. Explicar o princípio de funcionamento dos microprocessadores/microcontroladores 8051, 8085, ATMEL ATMEGA 328, ARM. Desenvolver programas em Assembly e/ou Linguagem C, C++, utilizando ambientes de simulação. Utilizar ferramentas de análise, desenvolvimento e depuração de programas para o microprocessador/microcontrolador. Entender, Projetar e Configurar cenários com elementos da IoT.

Referências

BIBLIOGRAFIA BÁSICA

Gimenez, S. P. Microcontroladores 8051: conceitos, operações, fluxogramas e programação. [recurso eletrônico, Minha Biblioteca]. 1ª ed. Erica, 2015.

Gimenez, S. P. Microcontroladores 8051: teoria e prática. [recurso eletrônico, Minha Biblioteca]. 1ª ed. Erica, 2010.

Monk, S. Internet das Coisas: Uma Introdução com o Python - Série Tekne. Link: https://integrada.minhabiblioteca.com.br/books/9788582604793

BIBLIOGRAFIA COMPLEMENTAR

Nicolosi, D. E. C. Microcontrolador 8051 detalhado. [recurso eletrônico, Minha Biblioteca]. 9ª ed. Erica, 2013

Oliveira, C. L. V.; Zanetti, H. A. P. Arduino descomplicado: como elaborar projetos de eletrônica. [recurso eletrônico, Minha Biblioteca]. 1ª ed. Erica, 2015.

Monk, S. Programação com Arduino: começando com sketches. [recurso eletrônico, Minha Biblioteca]. 2ª ed. Bookman, 2015.

Monk, S. Programação com Arduino II: passos avançados com sketches. [recurso eletrônico, Minha Biblioteca]. 2ª ed. Bookman, 2017.

Monk, S. 30 Projetos com Arduino. [recurso eletrônico, Minha Biblioteca]. 2ª ed. Bookman, 2014.

Stallings, W. Arquitetura e Organização de Computadores [recurso eletrônico, Minha Biblioteca]. 8ª ed. Pearson, 2010.

ORIENTAÇÕES ACADÊMICAS (portfólio do estudante)

"Para tornar-se um profissional competente naquilo que faz, o mercado de trabalho exige que você mantenha uma atitude de buscar aprender sempre, de modo cada vez mais ativo e autônomo. "

Pensando nisso, suas aulas utilizam **metodologias ativas**, que buscam levá-lo(a) a envolver-se nas atividades e fomentar uma aprendizagem realmente significativa. As aulas são estruturadas em 3 partes:

COMO APRENDEMOS

A pirâmide de aprendizagem de Willian Glasser

CONVERSAR, PERGUNTAR, REPETIR, RELATAR, NUMERAR, REPRODUZIR RECORDAR, DEBATER, DEFINIR, NOMEAR

70% DISCUTINDO COM OUTROS

ESCREVER, INTERPRETAR, TRADUZIR, EXPRESSAR, REVISAR, IDENTIFICAR, COMUNICAR, AMPLIAR, UTILIZAR, DEMONSTRAR, PRATICAR, DIFERENCIAR, CATALOGAR

80% FAZENDO

EXPLICAR, RESUMIR, ESTRUTURAR, DEFINIR, GENERALIZAR, ELABORAR, ILUSTRAR

95% ENSINANDO AOS OUTROS

Indicações e referências

- https://scratch.mit.edu/;
- https://code.org/;
- https://www.arduino.cc/
- http://blog.novaeletronica.com.br/piinagem-ci-atmega328-arduino/
- https://www.arduino.cc/reference/pt/
- https://www.tinkercad.com/
- https://www.cisco.com/c/pt br/index.html
- http://www.logiccircuit.org/
- http://embarcados.com.br
- Overdose de Youtube com conteúdos pertinentes;
- Pesquisas diversas;

Introdução: Conceitos iniciais

- > Rever conceitos de Sistemas computacionais
- > Analisar as linguagens de programação associadas aos microcontroladores
- > Rever a Estrutura básica de um computador
- ➤ Diferentes tipos de arquitetura de computadores (Processadores, Microcontroladores, PIC 16F877A, Arduino, Raspyberry, z80)

Linguagens de programação para microcontroladores

- Assembly
- C/C++
- Linguagem padrão do Arduino baseada em C++
- Python

Simuladores de circuitos e testes de protótipos

- Tinkercad (https://www.tinkercad.com/things)
- EDSIM51 (https://www.edsim51.com/)
- Packet Tracer (https://www.cisco.com/c/pt_br/index.html)
- Circuito Lógico (http://www.logiccircuit.org/)
- Proteus (https://www.labcenter.com/)

Revisão sobre os Sistemas Computacionais

- Hardware
- Software (Sistemas operacionais e sistemas dedicados)
- Infraestrutura

Introdução a Microcontroladores e IoT

Estrutura básica do Computador

Arquitetura Von Neumann

Estrutura básica do Computador

Arquitetura de Harvard

Von Neumann x Harvard

RISC (Redudec Instruction Set Computer) e **CISC** (Complex Instruction Set Computer)

Von Neumann:

- Arquitetura mais simples;
- Mais lento pois não permite acesso simultâneo às memórias;
- Geralmente CISC

Exemplo:

4004 - 46 instruções

8080 - 78 instruções

8051 - 111 instruções

8085 - 150 instruções

Z80 - Mais de 500 instruções

Harvard:

- Arquitetura mais complexa;
- Mais rápido, pois permite acesso simultâneo às memórias;
- Geralmente RISC
- Permite o Pipelining

Exemplo:

- Intel 8086, 8088
- Microchip PIC 35 instruções

	CISC			RISC	
	IBM370	VAX	8086	SPARC I	MIPS I
		11/780			
Ano	1973	1973	1978	1981	1983
Nº Instr.	208	303	100	39	55
Microc.	54Kb	400Kb	11Kb	0	0
Instr. (bytes)	2-6	2-57	1-17	4	4

Diferentes arquitetura de processadores e controladores

- Microprocessadores (8080, Z80, 80286, 80486, Pentium)
- ➤ Microcontroladores (ARM, ATMEL AVR, 8051, PIC16F877A, 16F628A)

Plataformas de prototipagem (embarcados)

- Arduino
- Raspyberry Pi
- Arquitetura proprietária (Microchip, Multipic, etc)

Arduino Uno Atmega328

Arduino Pro Mini Atmega328

Raspberry PI

Encapsulamentos

Apresentação

Famílias de Microcontroladores

> PIC - fabricados pela Microchip

> Atmel AVR - fabricados pela Atmel

> Intel MCS - fabricados pela Intel

Exemplos Microcontroladores

Microcontrolador 8031 e 8051

Microcontrolador 8051

Pinagem para um encapsulamento de 40 pinos:

Pinagem atmega328 Arduino

Porta B tem pinos B0 para B5

Porta C tem pinos C0 a C5

Port D tem pinos D0 a D7

Microcontrolador ATMEGA328 (Arduino)

Pinagem atmega328 TQFP Arduino

Proposta para APS – Atividade Prática Supervisionada

Desenvolvimento de projeto prático em grupo

- Projetar circuitos microcontrolados com Arduino ou para IoT
- Programar com Arduino ou para Internet das coisas
- > Testar e demonstrar os códigos desenvolvidos

Te espero na próxima aula!

