Section 3.2 – Basic Properties of the Laplace Transform

The Laplace Transform of Derivatives

Proposition

Suppose y is a piecewise differentiable function of exponential order. Suppose also that y' is of the exponential order.

$$\mathcal{L}(y')(s) = s. \, \mathcal{L}(y)(s) - y(0)$$
$$= sY(s) - y(0)$$

Proof

$$\mathcal{L}(y')(s) = \int_0^\infty y'(t)e^{-st}dt$$

$$= \lim_{T \to \infty} \int_0^T y'(t)e^{-st}dt$$

$$= \lim_{T \to \infty} \left[e^{-st}y(t) \Big|_{t=0}^T + s \int_0^T y(t)e^{-st}dt \right]$$

$$= \lim_{T \to \infty} e^{-st}y(t) - y(0) + s. \mathcal{L}(y)(s)$$

Let:
$$|y(t)| \le Ce^{at}$$

 $e^{-sT} |y(T)| \le Ce^{aT} e^{-sT}$
 $e^{-sT} |y(T)| \le Ce^{-(s-a)T}$; which converges to 0 for $s > a$ as $T \to \infty$. Therefore,
 $\mathcal{L}(y')(s) = s$. $\mathcal{L}(y)(s) - y(0)$

Proposition

$$\mathcal{L}(y'')(s) = s^2. \,\mathcal{L}(y)(s) - sy(0) - y'(0)$$
$$= s^2.Y(s) - sy(0) - y'(0)$$

Proposition

$$\mathcal{L}(y^{(k)})(s) = s^k \cdot \mathcal{L}(y)(s) - s^{k-1}y(0) - \dots - sy^{(k-2)}(0) - y^{(k-1)}(0)$$
$$= s^k \cdot Y(s) - s^{k-1}y(0) - \dots - sy^{(k-2)}(0) - y^{(k-1)}(0)$$

Laplace Transform Linear

$$\mathcal{L}[\alpha f(t) + \beta g(t)](s) = \alpha \mathcal{L}[f(t)](s) + \beta \mathcal{L}[g(t)](s)$$

Example

Find the Laplace transform of $f(t) = 3\sin 2t - 4t + 5e^{3t}$

Solution

$$\mathcal{L}\left[3\sin 2t - 4t + 5e^{3t}\right](s) = 3\mathcal{L}\left[\sin 2t\right](s) - 4\mathcal{L}\left[t\right](s) + 5\mathcal{L}\left[e^{3t}\right](s)$$
$$= 3\left(\frac{2}{4+s^2}\right) - 4\left(\frac{1}{s^2}\right) + 5\left(\frac{1}{s-3}\right)$$

Example

Transform the initial value problem into an algebraic equation involving $\mathcal{L}(y)$. Solve the resulting equation for the Laplace transform of y.

$$y'' - y = e^{2t}$$
 with $y(0) = 0$ and $y'(0) = 1$

Solution

For the right-hand side

$$\mathcal{L}\left(e^{2t}\right)(s) = \frac{1}{s-2}$$

$$\mathcal{L}\{y'' - y\}(s) = \mathcal{L}\{y''\}(s) - \mathcal{L}\{y\}(s)$$

$$= s^2 \cdot \mathcal{L}(y)(s) - sy(0) - y'(0) - \mathcal{L}(y)(s)$$

$$= s^2 \cdot Y(s) - sy(0) - y'(0) - Y(s) \qquad y(0) = 0 \text{ and } y'(0) = 1$$

$$= s^2 \cdot Y(s) - 1 - Y(s)$$

$$s^2 \cdot Y(s) - Y(s) - 1 = \frac{1}{s-2}$$

$$Y(s)(s^2-1) = \frac{1}{s-2} + 1$$

$$Y(s) = \frac{1}{s^2 - 1} \left[\frac{1}{s - 2} + 1 \right]$$
$$= \frac{1}{(s - 1)(s + 1)} \left[\frac{s - 1}{s - 2} \right]$$
$$= \frac{1}{(s - 2)(s + 1)}$$

Laplace Transform of the Product of an Exponential with a Function

The result is a translation in the Laplace transform

$$\mathcal{L}\left(e^{ct}f(t)\right)(s) = F(s-c)$$

Example

Compute the Laplace transform of the function $g(t) = e^{2t} \sin 3t$

Solution

Let
$$f(t) = \sin 3t \rightarrow F(s) = \frac{3}{s^2 + 9}$$

With c = 2

$$\mathcal{L}\left(e^{2t}f(t)\right)(s) = F(s-c)$$

$$= \frac{3}{\left(s-2\right)^2 + 9}$$

$$= \frac{3}{s^2 - 4s + 13}$$

Proposition: Derivative of a Laplace Transform

$$\mathcal{L}(s) = -F'(s)$$

$$\mathcal{L}\left[t^{n}.f(t)\right](s) = \left(-1\right)^{n} F^{(n)}(s)$$

Example

Compute the Laplace transform of t^2e^{3t}

Solution

$$f(t) = e^{3t} \Rightarrow F(s) = \frac{1}{s-3}$$

$$F'(s) = \frac{-1}{\left(s-3\right)^2}$$

$$F''(s) = \frac{2}{\left(s-3\right)^3}$$

$$\mathcal{L}\left[t^2e^{3t}\right](s) = (-1)^2 F''(s)$$
$$= \frac{2}{\left(s-3\right)^3}$$

Exercises Section 3.2 - Basic Properties of the Laplace Transform

Find the Laplace transform and defined the time domain of

1.
$$y(t) = t^2 + 4t + 5$$

2.
$$y(t) = -2\cos t + 4\sin 3t$$

3.
$$y(t) = 2\sin 3t + 3\cos 5t$$

Transform the initial value problem into an algebraic equation involving $\mathcal{L}(y)$. Solve the resulting equation for the Laplace transform of y.

4.
$$y' - 5y = e^{-2t}$$
, with $y(0) = 1$

5.
$$y' - 4y = \cos 2t$$
, with $y(0) = -2$

6.
$$y'' + 2y' + 2y = \cos 2t$$
; with $y(0) = 1$ and $y'(0) = 0$

7.
$$y'' + 3y' + 5y = t + e^{-t}$$
; with $y(0) = -1$ and $y'(0) = 0$

Find the Laplace transform of $\mathcal{L}\{f(t)\}$

8.
$$f(t) = 2t^4$$

9.
$$f(t) = t^5$$

10.
$$f(t) = 4t - 10$$

11.
$$f(t) = 7t + 3$$

12.
$$f(t) = 3t^4 - 2t^2 + 1$$

13.
$$f(t) = (t+1)^3$$

14.
$$f(t) = (2t-1)^3$$

15.
$$f(t) = (t-1)^4$$

16.
$$f(t) = t^2 + 6t - 3$$

17.
$$f(t) = -4t^2 + 16t + 9$$

18.
$$f(t) = 3t^2 - e^{2t}$$

19.
$$f(t) = t^2 - e^{-9t} + 9$$

20.
$$f(t) = 6e^{-3t} - t^2 + 2t - 8$$

21.
$$f(t) = 5 - e^{2t} + 6t^2$$

22.
$$f(t) = t^2 e^{2t}$$

23.
$$f(t) = e^{-2t}(2t+3)$$

24.
$$f(t) = e^{-t}(t^2 + 3t + 4)$$

25.
$$f(t) = 1 + e^{4t}$$

26.
$$f(t) = e^{2t} \cos 2t$$

27.
$$f(t) = t^3 - te^t + e^{4t} \cos t$$

28.
$$f(t) = t^2 - 3t - 2e^{-t} \sin 3t$$

29.
$$f(t) = \sin^2 t$$

30.
$$f(t) = e^{7t} \sin^2 t$$

31.
$$f(t) = t \sin^2 t$$

32.
$$f(t) = \cos^3 t$$

33.
$$f(t) = te^{-t} \sin 2t$$

34.
$$f(t) = te^{2t} \cos 5t$$

35.
$$f(t) = t^2 + e^t \sin 2t$$

36.
$$f(t) = e^{-t} \cos 3t + e^{6t} - 1$$

$$37. \quad f(t) = e^{-2t} \sin 2t + t^2 e^{3t}$$

38.
$$f(t) = 2t^2e^{-2t} - t + \cos 4t$$

$$39. \quad f(t) = t \sin 3t$$

40.
$$f(t) = t^2 \cos 2t$$

41.
$$f(t) = (1 + e^{-t})^2$$

42.
$$f(t) = (1 + e^{2t})^2$$

43.
$$f(t) = (e^t - e^{-t})^2$$

44.
$$f(t) = 4t^2 - 5\sin 3t$$

$$45. \quad f(t) = \cos 5t + \sin 2t$$

46.
$$f(t) = e^{3t} \sin 6t - t^3 + e^t$$

47.
$$f(t) = t^4 + t^2 - t + \sin\sqrt{2}t$$

48.
$$f(t) = t^4 e^{5t} - e^t \cos \sqrt{7}t$$

49.
$$f(t) = e^{-2t} \cos \sqrt{3}t - t^2 e^{-2t}$$

50.
$$f(t) = 6e^{-5t} + e^{3t} + 5t^3 - 9$$

51.
$$f(t) = 4\cos 4t - 9\sin 4t + 2\cos 10t$$

52.
$$f(t) = 3 \sinh 2t + 3 \sin 2t$$

53.
$$f(t) = e^{3t} + \cos 6t - e^{3t} \cos 6t$$

54.
$$f(t) = t \cosh 3t$$

55.
$$f(t) = t^2 \sin 2t$$

56.
$$f(t) = \sinh kt$$

$$57. \quad f(t) = \cosh kt$$

$$58. \quad f(t) = e^t \sinh kt$$

59.
$$f(t) = e^{-t} \cosh kt$$

Transform the initial value problem into an algebraic equation involving $\mathcal{L}(y)$. Solve the resulting equation for the Laplace transform of y.

60.
$$y' + 2y = t \sin t$$
, with $y(0) = 1$

61.
$$y' + 2y = t^2 e^{-2t}$$
, with $y(0) = 0$

62.
$$y'' + y' + 2y = e^{-t}\cos 2t$$
, with $y(0) = 1$ and $y'(0) = -1$

63.
$$y' - 5y = e^{-2t}$$
, with $y(0) = 1$

64.
$$y' - 4y = \cos 2t$$
, with $y(0) = -2$

65.
$$y'' + 2y' + 2y = \cos 2t$$
; with $y(0) = 1$ and $y'(0) = 0$

66.
$$y'' + 3y' + 5y = t + e^{-t}$$
; with $y(0) = -1$ and $y'(0) = 0$