1 Basic Logic

1. truth value:

P	Q	$P \wedge \neg P$	$P \vee \neg P$	$(P \lor Q) \Rightarrow (P \land Q)$	$(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$
Т	Т	F	Т	T	Т
F	Т	F	Т	F	F
Т	F	F	Т	F	Т
F	F	F	Т	T	Т

Table 1: truth value table

2.
$$(1)Q \land \neg Q = F, P \Rightarrow (Q \land \neg Q) = \neg P \lor F = \neg P$$

 $(2)(P \land \neg Q) \Rightarrow Q = \neg P \lor Q \lor Q = \neg P \lor Q = P \Rightarrow Q$

3.
$$(1)P \land Q \Rightarrow R$$

 $(2)Q \Rightarrow P$
 $(3)P \Leftarrow Q$

- 4. We denote that "bear is smart" as P, "bear is lazy" as Q, then "bear is not smart" can be denoted as $\neg P$. We have $(P \land Q \lor (\neg P)) \land P$, it's equivalent to $P \land Q$, then Q must be true.
- 6. We denote "At door 1,2,3" as P,Q,R, one of them is true ,while we can get another infomation:one of $\neg P, \neg Q,Q$ is true. Due to "not Q then $\neg Q$ ", we can infer that $\neg P$ is false. (We can confirm while Q=R =false, it can satisifies the requirements of the question) so the treasure is behind the Door 1!
- 7. We denote . . . can leads to the capital as P,Q,R, then $P \wedge (R \Rightarrow Q) = (\neg P) \wedge (\neg R) = P \wedge (\neg Q)$ =False. Combine the first and the third formula $P \wedge (\neg R \vee Q \vee \neg Q) = P$ =False, then from the second $\neg R$ =False. We are not sure about the stone path ,but we are sure that the dirt path can lead to capital.
- 8. Denote "a + 1 == 0" as P ,b + 1 == 0 as Q, then $ab+a+b \neq -1 = (a+1)(b+1) == 0 = \neg P \land \neg Q$
- 9. (1) Use the proof by coontrodiction. Not losing generaity , we assume that $a=1\,$