5.1. Semi-classical approximation

Electron is a particle moving with group velocity:

$$\vec{v} = \frac{1}{\hbar} \nabla_{\vec{k}} E(\vec{k})$$

Wave-function changes according to:

$$\hbar \dot{\vec{k}} = -e\vec{\mathcal{E}}$$

i.a.
$$\hbar \vec{k} \neq m \vec{v}$$

Bloch oszillation

5.2 Electrical conductivity

5. Transport properties

115

$$\vec{j} = \frac{-2e}{(2\pi)^3} \int_{BZ,occ.} d^3k \ \vec{v}(\vec{k}) = \frac{-2e}{(2\pi)^3} [\int_{BZ} d^3k \ \vec{v}(\vec{k}) - \int_{BZ,unocc.} d^3k \ \vec{v}(\vec{k})] = \frac{2e}{(2\pi)^3} \int_{BZ,unocc.} d^3k \ \vec{v}(\vec{k})$$

electrons

holes

Effective mass tensor

$$\frac{1}{m_{ij}^*} = \frac{1}{\hbar^2} \frac{\partial^2 E(\vec{k})}{\partial k_i \partial k_j}$$

flat band ⇒ heavy electrons or holes dispersing band ⇒ light electrons or holes

5.2 Boltzmann equation

5. Transport properties

117

$$f(\vec{k},t) = f_0(\vec{k}) + \frac{e\mathcal{E}}{\hbar} \tau(\vec{k}) \nabla_{\vec{k}} f(\vec{k},t)$$
$$\simeq f_0(\vec{k} + \frac{e\mathcal{E}}{\hbar} \tau(\vec{k}))$$

 $\sigma_{ij} = \frac{2e^2}{(2\pi)^3} \int_{BZ} d^3k \ v(\vec{k})_i \ v(\vec{k})_j \ \tau(\vec{k}) \delta(E(\vec{k}) - E_F)$

for τ independent of \vec{k} :

$$\sigma = \frac{e^2}{3} v_F^2 \ \tau_F D(E_F)$$

for free electron gas $D(E_F) = \frac{3}{2} \frac{n}{E_F}$:

$$\sigma = \frac{e^2 \tau_F}{m} \cdot n = \mu \cdot n$$

with carrier mobility

$$\mu = \frac{e^2 \tau}{m}$$

5.2 Electrical conductivity of metals

5. Transport properties

119

Li	Ве	Table 3 Electrical conductivity and resistivity of metals at 295 K (Resistivity values as given by G. T. Meaden, Electrical resistance of														С		N	0		F	Ne
1.07 9.32	3.08	metals, Plenum, 1965; residual resistivities have been subtracted.)																				
Na	Mg	1 1														s		Р	s	ヿ	CI	Ar
2.11 4.75	2.33 4.30	Conductivity in units of 10 ⁵ (ohm-cm) ⁻¹ . 3. Resistivity in units of 10 ⁻⁶ ohm-cm. 2.																				
к	Ca	Sc	Sc Ti		V Cr		Mn		e Co		Ni	Cu	Cu Zn		Ga		e	As	Se		Br	Kr
1.39 7.19	2.78 3.6	0.21 46.8	0.2			0.78 12.9	0.072	9.8			1.43 7.0	5.8		69 92	0.6							
Rb	Sr	Υ	Zr	N	b	Мо	Тс	Rı	ı Ri	h	Pd	Ag	С	d	In	s	n (w)	Sb	Те		ı	Xe
0.80 12.5	0.47 21.5	0.17 58.5	0.2			1.89 5.3	~0.7				0.95 10.5	6.2		.38	1.1		91	0.24				
Cs	Ва	La	Hf	Ta		w	Re	0:	i Ir		Pt	Au	Н	g liq.	TI	Р	b	Bi	Ро	\exists	At	Rn
0.50 20.0	0.26 39.	0.13 79.	0.3 30.			1.89 5.3	0.54 18.6	1 9		96 1	0.96 10.4	4.5		10 5.9	0.6		48 1.0	0.086 116.	0.2 46.			
Fr	Ra	Ac		Се	Pr	N	d F	m	Sm	Eu	7	âd	ТЬ	Dy		Но	Er	Т	m	Yb	L	u
			U	0.12	0.15 67.	5 0.			0.10	0.1		0.070 34.	0.090	0.1		0.13 77.7	0.1		16	0.38		19
			1	Th	Pa	U	-	۱p	Pu	Am	\rightarrow	Cm	Bk	Cf	_	Es	Fm	-	_	No	, J.	_

Temperature dependence (Matthiesen rule)

$$\rho = 1/\sigma = \rho_0(\alpha + \beta \cdot T)$$

At low temperatures:

$$\rho \propto (\frac{T}{\Theta_D})^5$$

5.3. Thermal conductivity

5. Transport properties

121

$$\vec{j}_O = -\lambda \cdot \nabla T$$

Elektronen:

Leitfhigkeit:

$$\lambda_{el} = \frac{1}{3}c_v^{el} \cdot v_F^2 \cdot \tau_{el} \qquad \sigma = ne^2 \tau_\sigma/m$$

$$c_v^{el} = (\pi^2/3)k_B T^2 D(E_F) = (\pi^2/2)k_B T^2 (n/E_F)$$

$$\frac{\lambda_{el}}{\sigma} = \frac{1}{3} (\frac{\pi k_B}{e})^2 T$$

electron

hole

open orbit

$$\dot{E}(\vec{k}) = \nabla_{\vec{k}} E(\vec{k}) \cdot \dot{\vec{k}} = 0$$

$$E(\vec{k}) = const.$$

5.4. Electrons in magnetic fields

5. Transport properties

123

condensation on Landau levels, Landau - cylinders

$$E_{\nu} = E_0(k_z) + (\nu + 1/2)\hbar\omega_c$$

$$\omega_c = \frac{e \cdot B}{m_c^*}$$

$$m_c^* = \frac{\hbar^2}{2\pi} \frac{\partial A(E, k_z)}{\partial E}$$

5.4. de Haas - van Alphen effect

$$\Delta(\frac{1}{B}) = \frac{2\pi e}{\hbar} \frac{1}{A_F}$$

Oscillation of the magnetic susceptibility With external magnetic field

5.5. E \(\perp \) B - Hall Effect

5. Transport properties

$$\hbar \vec{k} = -e(\vec{\mathcal{E}} + \vec{v} \times \vec{B}) = -e(\vec{v} - \vec{w}) \times \vec{B}$$

Drift velocity: $\vec{w} = \frac{\vec{\mathcal{E}} \times \vec{B}}{R^2}$ $\vec{j} = -ne \ \vec{w}$

$$\vec{j} = -ne \ \vec{w}$$

Hall field: $E_y = R_H j_x \cdot B, j_y = 0$

Hall coefficient: $R_H = -1/ne$

Non-closed orbits or carriers with different mobility or concentration \Rightarrow R_H depends on magnetic field B

125