Information Gain

Getting Started with ML

Information Gain

- It is decrease value of Entropy as the tree progresses to leaf nodes.
- It gives which attributes will have order.
- Entropy is a prerequisite.

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

$$Entropy(9,5) = 0.94$$

$$Entropy (Play Golf, Outlook) = 0.693$$

$$Entropy (Play Golf, Temp) = 0.9114$$

$$Entropy (Play Golf, Humidity) = 0.7885$$

$$Entropy (Play Golf, Windy) = 0.892$$

Getting Started with ML - Raunak M. Joshi

Information Gain Formula

$$Gain(Y,C) = Entropy(Y) - \sum_{v \in C} \frac{|Y_v|}{Y} * Entropy(Y_v)$$

$$E(PGOutlook)$$

= $P(Sunny) * E(3,2) + P(Overcast) * E(4,0) + P(Rainy) * E(2,3)$

$$E(Play\ Golf, Outlook) = \{ \left(\frac{5}{14}\right) * 0.971 + \left(\frac{4}{14}\right) * 0 + \left(\frac{5}{14}\right) * 0.971 \}$$

Entropy (Play Golf, Outlook) = 0.693

Outlook	mp	Humidity	Windy	Play Golf
Rainy	þt	High	FALSE	No
Rainy	þt	High	TRUE	No
Overcast	þt	High	FALSE	Yes
Sunny	ild	High	FALSE	Yes
Sunny	ol	Normal	FALSE	Yes
Sunny	ol	Normal	TRUE	No
Overcast	ol	Normal	TRUE	Yes
Rainy	ild	High	FALSE	No
Rainy	ol	Normal	FALSE	Yes
Sunny	ild	Normal	FALSE	Yes
Rainy	ild	Normal	TRUE	Yes
Overcast	ild	High	TRUE	Yes
Overcast	þt	Normal	FALSE	Yes
Sunny	ild	High	TRUE	No

$$Gain(Y,C) = Entropy(Y) - \sum_{v \in C} \frac{|Y_v|}{Y} * Entropy(Y_v)$$

$$Gain(Playing\ Golf, Outlook) = 0.94 - \{\left(\frac{5}{14}\right) * 0.971 + \left(\frac{4}{14}\right) * 0 + \left(\frac{5}{14}\right) * 0.971\}$$

 $Gain(Playing\ Golf, Outlook) = 0.94 - 0.693 = 0.247$

 $Therefore\ Gain(Playing\ Golf, Outlook) = Entropy(Playing\ Golf) - Entropy(Playing\ Golf, Outlook)$

$$Entropy (Play Golf, Temp)$$

$$= P(Hot) * E(2,2) + P(Mild) * E(4,2) + P(Cool) * E(3,1)$$

Entropy (Play Golf, Temp) =
$$\{\left(\frac{4}{14}\right) * 1 + \left(\frac{6}{14}\right) * 0.92 + \left(\frac{4}{14}\right) * 0.81\}$$

Entropy(Play Golf, Temp) = 0.9114

Outlook	Temp	umidity	Windy	Play Golf
Rainy	Hot	igh	FALSE	No
Rainy	Hot	igh	TRUE	No
Overcast	Hot	igh	FALSE	Yes
Sunny	Mild	igh	FALSE	Yes
Sunny	Cool	ormal	FALSE	Yes
Sunny	Cool	ormal	TRUE	No
Overcast	Cool	ormal	TRUE	Yes
Rainy	Mild	igh	FALSE	No
Rainy	Cool	ormal	FALSE	Yes
Sunny	Mild	ormal	FALSE	Yes
Rainy	Mild	ormal	TRUE	Yes
Overcast	Mild	igh	TRUE	Yes
Overcast	Hot	ormal	FALSE	Yes
Sunny	Mild	igh	TRUE	No

$$Gain(Y,C) = Entropy(Y) - \sum_{v \in C} \frac{|Y_v|}{Y} * Entropy(Y_v)$$

$$Gain(Play\ Golf, Temp) = 0.94 - \{\left(\frac{4}{14}\right) * 1 + \left(\frac{6}{14}\right) * 0.92 + \left(\frac{4}{14}\right) * 0.81\}$$

$$Gain(Play\ Golf, Temp) = 0.94 - 0.9114 = \mathbf{0.0286}$$

 $Therefore\ Gain(Play\ Golf, Temp) = Entropy(Playing\ Golf) - Entropy(Play\ Golf, Temp)$

 $Entropy(Play\ Golf, Humidity) = P(High) * E(3,4) + P(Normal) * E(6,1)$

Entropy (Play Golf, Humidity) = $\{\left(\frac{7}{14}\right) * 0.985 + \left(\frac{7}{14}\right) * 0.592\}$

Entropy (Play Golf, Humidity) = 0.7885

Outlook	Temp	Humidity	Vindy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

$$Gain(Y,C) = Entropy(Y) - \sum_{v \in C} \frac{|Y_v|}{Y} * Entropy(Y_v)$$

$$Gain(Play\ Golf, Humidity) = 0.94 - \{\left(\frac{7}{14}\right) * 0.985 + \left(\frac{7}{14}\right) * 0.592\}$$

 $Gain(Play\ Golf, Humidity) = 0.94 - 0.7885 = \mathbf{0.1515}$

 $Therefore\ Gain(Play\ Golf, Humidity) = Entropy(Playing\ Golf) - Entropy(Play\ Golf, Humidity)$

 $Entropy(Play\ Golf, Windy) = P(TRUE) * E(3,3) + P(FALSE) * E(6,2)$

Entropy (Play Golf, Windy) = $\left\{ \left(\frac{6}{14} \right) * 1 + \left(\frac{8}{14} \right) * 0.811 \right\}$

Entropy (Play Golf, Windy) = 0.892

			٠,		
Outlook	Temp	Humidity		Windy	Play Golf
Rainy	Hot	High		FALSE	No
Rainy	Hot	High		TRUE	No
Overcast	Hot	High		FALSE	Yes
Sunny	Mild	High		FALSE	Yes
Sunny	Cool	Normal		FALSE	Yes
Sunny	Cool	Normal		TRUE	No
Overcast	Cool	Normal		TRUE	Yes
Rainy	Mild	High		FALSE	No
Rainy	Cool	Normal		FALSE	Yes
Sunny	Mild	Normal		FALSE	Yes
Rainy	Mild	Normal		TRUE	Yes
Overcast	Mild	High		TRUE	Yes
Overcast	Hot	Normal		FALSE	Yes
Sunny	Mild	High		TRUE	No

$$Gain(Y,C) = Entropy(Y) - \sum_{v \in C} \frac{|Y_v|}{Y} * Entropy(Y_v)$$

$$Gain(Play\ Golf, Windy) = 0.94 - \{\left(\frac{6}{14}\right) * 1 + \left(\frac{8}{14}\right) * 0.811\}$$

 $Gain(Play\ Golf, Windy) = 0.94 - 0.892 = \mathbf{0.048}$

 $Therefore\ Gain(Play\ Golf, Windy) = Entropy(Playing\ Golf) - Entropy(Play\ Golf, Windy)$

All the Information Gain Values

 $Gain(Playing\ Golf, Outlook) = 0.94 - 0.693 = \mathbf{0.247}$ $Gain(Play\ Golf, Temp) = 0.94 - 0.9114 = \mathbf{0.0286}$ $Gain(Play\ Golf, Humidity) = 0.94 - 0.7885 = \mathbf{0.1515}$ $Gain(Play\ Golf, Windy) = 0.94 - 0.892 = \mathbf{0.048}$

