Assignment 15, Linear Algebra 1

Oleg Sivokon

<2016-06-03 Fri>

Contents

1	Pro	Problems													
	1.1	Problem 1	3												
		1.1.1 Answer 1	3												
		1.1.2 Answer 2	3												
	1.2	Problem 2	3												
		1.2.1 Answer 3	3												
		1.2.2 Answer 4	3												
	1.3	Problem 3	3												
		1.3.1 Answer 5	4												
		1.3.2 Answer 6	4												
		1.3.3 Answer 7	4												
	1.4	Problem 4	4												
		1.4.1 Answer 8	4												
		1.4.9 Angwor 0	1												

	1.4.3	Answer	10 .	•			•		٠		•		٠					•	 •	•	•		•	•	4
1.5	Proble	em 5														 •				•			•		4
	1.5.1	Answer	11 .						•							 ٠									5
	1.5.2	Answer	12 .													 •				•					5
1.6	Problem 6															5									
	161	Answer	- 13																						E

1 Problems

1.1 Problem 1

For each of the given transformations check if it is linear:

- 1. $T: \mathbb{R}_2[x] \to \mathbb{R}_4[x]$ defined as $T(f(x)) = (x^3 x)f(x^2)$.
- 2. $T: \mathbb{M}_{n \times n}^{\mathbb{R}} \to \mathbb{M}_{n \times n}^{\mathbb{R}}$ defined as T(X) = AXA for some $A \in \mathbb{M}_{n \times n}^{\mathbb{R}}$.

1.1.1 Answer 1

1.1.2 Answer 2

1.2 Problem 2

- 1. Does there exist an isomorphism $T: \mathbb{R}_3[x] \to \mathbb{R}^3$ for which $T(x^2 + 2x) = (1, 2, 1)$, T(x+1) = (0, 1, 1), $T(x^2 2) = (1, 0, -1)$?
- 2. Given linear space V and linear transformations $S,T:V\to V$, prove that, if V is finite-dimensional and $\ker S=\{0\}$, then $\operatorname{im} TS=\operatorname{im} S$.

1.2.1 Answer 3

1.2.2 Answer 4

1.3 Problem 3

Let $T: \mathbb{R}^5 \to \mathbb{R}^5$ be a linear transformation s.t. $T^2 = 0$.

- 1. Prove that im $T \subseteq \ker T$.
- 2. What are the possible values for the dimension of $\ker T$?
- 3. Let U be a subspace of \mathbb{R}^5 s.t. dim U=3, prove that $U\cap\ker T\neq\{0\}$.

- 1.3.1 Answer 5
- 1.3.2 Answer 6
- 1.3.3 Answer 7

1.4 Problem 4

Let $a \in \mathbb{R}$ and $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Let B = ((1,0,0),(1,1,0),(1,1,1)) be a basis in \mathbb{R}^3 . Then T with respect to the basis B is given by

$$[T]_B = \begin{bmatrix} a & 1-1 & 0\\ a & 2a & 2a+2\\ a+1 & a+1 & 2a+2 \end{bmatrix}.$$

Also, $(2, 2, 2) \in \ker T$.

- 1. Find a and compute T(x, y, z) for any $(x, y, z) \in \mathbb{R}^3$.
- 2. Find the matrix representing T with respect to standard basis.
- 3. Find basis for $\operatorname{im} T$ and $\ker T$.
- 1.4.1 Answer 8
- 1.4.2 Answer 9
- 1.4.3 Answer 10

1.5 Problem 5

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by T(x,y) = (x+2y,y)

1. Find the basis B of \mathbb{R}^2 s.t.

$$[T]_B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} .$$

2. Prove that

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

1.5.1 Answer 11

1.5.2 Answer 12

1.6 Problem 6

Let $a, b, c \in \mathbb{R}$, prove that $A \sim B \sim C$.

$$A = \begin{bmatrix} b & c & a \\ c & a & b \\ a & b & c \end{bmatrix}, B = \begin{bmatrix} c & a & b \\ a & b & c \\ b & c & a \end{bmatrix}, C = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}.$$

1.6.1 Answer 13