

BETA-CD: A Bayesian Meta-learned Cognitive Diagnosis Framework for Personalized Learning

Haoyang Bi, Enhong Chen*, Weidong He, Han Wu, Weihao Zhao, Shijin Wang, Jinze Wu

University of Science and Technology of China

2023.01.01

- 1 Background
- 2 Method
- **3** Experiment
- 4 Conclusion

- 1 Background
- 2 Method
- **3** Experiment
- 4 Conclusion

Personalized Learning

- ▶ Personalized learning is a main component in *intelligent tutoring systems*
- Customize learning process and study experience for each individual student
- ► How to achieve personalized learning?
 - capture the student's personal state
 - provide downstream educational services
- ► Advantages of personalized learning:
 - lower practice burden
 - higher service quality

- ► Focus on the fundamental part of personalized learning
 - ► How to accurately capture personal states
- Cognitive Diagnosis (CD): a standard psychometric task for each student
 - ▶ Input: practice data (i.e., whether he/she answered questions correctly)
 - ▶ Output: cognitive state estimation (i.e., how well he/she grasps related knowledge)
- ► Cognitive Diagnosis Model (CDM): Math modeling to cognitive states
 - ► Example: Item Response Theory (IRT) Model

 - $ightharpoonup r_{ij}$: response, θ_i : student's trait; ϕ_j : item's difficulty

- ► Existing CDMs faces two challenges in personalized learning scenario
- Coping with data sparsity
 - Personalized learning requires minimum practice burden
 - However, fewer practice data lead to risk of overfitting
- Measuring reliability
 - Downstream applications heavily depend on the results of cognitive diagnosis
 - ▶ Being agnostic about an unreliable result may be dangerous
- Need a principled way to conduct CD tasks in personalized learning

- ▶ Propose a general Bayesian mETA-learned Cognitive Diagnosis framework (BETA-CD) to address the challenges
- ► Introduce Bayesian hierarchical modeling for CD task to unifiedly incorporate prior knowledge and model uncertainty
- ► Formulate a meta-learning objective to automatically exploit prior knowledge from historical data and solve it with gradient-based variational inference
- Conduct extensive experiments on various datasets and models to validate the effectiveness and generality of BETA-CD

- 1 Background
- 2 Method
- 3 Experiment
- 4 Conclusion

- ▶ M students, $S = \{s_i\}_{i=1}^M$, N questions; $Q = \{q_j\}_{j=1}^N$; recorded triplets (s_i, q_j, r_{ij}) ; cognitive diagnosis model (CDM) $p(r_{ij} = 1 | q_i, \theta_i)$
- ▶ **Problem Definition** Suppose an intelligent tutoring system with a cognitive diagnosis model parametrized by θ . Given the historical students $S = \{s_i\}_{i=1}^{M}$ with recorded practice data $\{(Q_i, R_i)\}_{i=1}^{M}$, for any new student $s_* \notin S$, our goal is to obtain a personalized cognitive state estimation θ_* via a small amount of new practice data (Q_*, R_*) .

- ► Key idea
 - Prior knowledge exploitation: alleviate overfitting with meta-knowledge in massive data from other students
 - Model uncertainty quantification: enhance cognitive diagnosis results with probabilistic explanability
- Framework components
 - Bayesian Hierarchical Modeling: represent prior knowledge and model uncertainty
 - ▶ Meta-learned Prior Knowledge: meta-learning technique to exploit prior knowledge
 - ► Gradient-based Variational Inference: algorithm acceleration with approximation

Bayesian Hierarchical Modeling

- Traditional way of estimating point-wise cognitive states
 - $\theta_* = \arg\min_{\theta} \log p(R_* | Q_*, \theta)$
 - Prone to overfit with few data
 - Little information about reliability
- ▶ View cognitive states in a probabilistic perspective
 - Prior distribution $p(\theta_i|\psi)$
 - ▶ Posterior distribution $p(\theta|Q_*, R_*, \psi)$
 - Bayesian inference $\theta_* \sim p(\theta|Q_*, R_*, \psi) = \frac{p(\theta|\psi)p(R_*|Q_*, \theta, \psi)}{\int p(\theta|\psi)p(R_*|Q_*, \theta, \psi)d\theta}$.

Bayesian Hierarchical Modeling

- ► The prior contains knowledge about the overall student population
 - e.g., average ability level
 - shared by all students
- ▶ The posterior represents the personal diagnosis result
 - can measure uncertainty such as entropy
 - specific to each student
- Next: how to specify a proper prior?

- ▶ In the literature, the prior is manually determined
 - limited effect in preventing overfitting
- Discover prior knowledge automatically from practice data of historical students
 - optimizing the parametrized prior with a well-formulated meta-learning objective
- ► Key idea: exploit similar structures among CD tasks for each individual student
 - $ightharpoonup \mathcal{T}_i = (Q_i^t, R_i^t, Q_i^v, R_i^v)$: infer a student-specific posterior $p(\theta_i|Q_i^t, R_i^t, \psi)$ that fits well on the validation set (Q_i^v, R_i^v)
- Meta-learning objective:

$$\min_{\psi} \sum_{i=1}^{M} \mathcal{L}_{i}^{(m)}(\psi) \equiv \sum_{i=1}^{M} -\log p(R_{i}^{\mathsf{v}}|Q_{i}^{\mathsf{v}}, Q_{i}^{\mathsf{t}}, R_{i}^{\mathsf{t}}, \psi)$$
$$= \sum_{i=1}^{M} -\log \mathbb{E}_{\theta_{i} \sim p(\theta_{i}|Q_{i}^{\mathsf{t}}, R_{i}^{\mathsf{t}}, \psi)} \left[p(R_{i}^{\mathsf{v}}|Q_{i}^{\mathsf{v}}, \theta_{i}) \right].$$

Gradient-based Variational Inference

- Remaining problem: intractability of posterior
 - Especially in high-dimentional parameter space
- \triangleright Solution: use a variational distribution $q(\theta_i; \lambda_i)$ to approximate the posterior
 - ightharpoonup obtain $q(\theta_i; \lambda_i)$ by minimizing its KL divergence from the target distribution
- Posterior objective:

$$\begin{split} \lambda_i &= \arg\min_{\lambda} \mathsf{KL}\left[q(\theta_i;\lambda) \| p(\theta_i|Q_i^t,R_i^t,\psi)\right] \\ &= \arg\min_{\lambda} \int q(\theta_i;\lambda) \log\frac{q(\theta_i;\lambda) p(R_i^t|Q_i^t,\psi)}{p(R_i^t|Q_i^t,\theta_i) p(\theta_i|\psi)} d\theta_i \\ &= \arg\min_{\lambda} \mathbb{E}_{\theta_i \sim q(\theta_i;\lambda)}\left[-\log p(R_i^t|Q_i^t,\theta_i)\right] \\ &+ \mathsf{KL}\left[q(\theta_i;\lambda) \| p(\theta_i|\psi)\right] + \log p(R_i^t|Q_i^t,\psi). \end{split}$$

Accordingly define a local loss

$$\min_{\lambda_i} \mathcal{L}_i^{(l)}(\lambda_i) \equiv \mathbb{E}_{\theta_i \sim q(\theta_i; \lambda)} \left[-\log p(R_i^t | Q_i^t, \theta_i) \right] + \eta \, \mathsf{KL} \left[q(\theta_i; \lambda_i) \| p(\theta_i; \psi) \right]$$

And apply gradient-based optimization

$$\lambda_i \leftarrow \psi - \mathsf{SGD}_{\lambda_i}^K(\mathcal{L}_i^{(l)}(\lambda_i); \alpha),$$

- Advantages
 - Computationally efficient
 - Relate prior and posterior with gradient

BETA-CD Meta-training

Input: Historical students $S = \{s_i\}_{i=1}^{M}$ with practice data $\{T_i = (O_i, R_i)\}_{i=1}^{M}$

Parameter: KL weighting parameter η ; Mini-batch size T; Sampling sizes N_t , N_v ; Number of local updates K; Local update rate α ; Meta update rate γ

- Output: Meta-parameters ψ 1: Initialize ψ randomly
- 2: while ψ not converged do
- 3: Sample a mini-batch tasks T_i , i = 1: T
- 4: for each task Ti do
 - Train-validation split $\mathcal{T}_i = (Q_i^t, R_i^t, Q_i^v, R_i^v)$ Initialize $\lambda_i \leftarrow \psi$
- 6: 7:
- 7: **for** step k = 1 : K**do**
 - Sample $\hat{\theta}_i^{n_t} \sim q(\theta_i; \lambda_i), n_t = 1 : N_t$ Compute local loss by sampling:
- 9: Compute local loss by sampling: $\mathcal{L}_{i}^{(f)}(\lambda) \approx \frac{1}{N_{t}} \sum_{n_{t}=1}^{N_{t}} -\log p(R_{i}^{t}|Q_{i}^{t}, \hat{\theta}_{i}^{n_{t}}) + \eta \operatorname{KL}[q(\theta_{i}; \lambda_{i})||p(\theta_{i}|\psi)]$
- 10: Local Update: $\lambda_i \leftarrow \lambda_i \alpha \nabla_{\lambda_i} \mathcal{L}_i^{(l)}(\lambda_i)$
- 12: Sample $\hat{\theta}_i^{n_v} \sim q(\theta_i; \lambda_i), n_v = 1 : N_v$.
- 13: Compute meta-loss by sampling: $\mathcal{L}_{i}^{(m)}(\psi) \approx -\log\left(\frac{1}{N_{v}}\sum_{n_{v}=1}^{N_{v}}p(R_{i}^{v}|Q_{i}^{v},\hat{\theta}_{i}^{n_{v}})\right)$
 - end for
- 15: Meta Update: $\psi \leftarrow \psi \gamma \cdot \frac{1}{T} \sum_{i=1}^{T} \nabla_{\psi} \mathcal{L}_{i}^{(m)}(\psi)$
- 16: end while
- 17: return ψ

BETA-CD Meta-testing

Input: A new student s_* with practice data (Q_*, R_*) **Parameter:** Trained meta-parameters ψ ; Number of local updates K; Local update rate α ; KL weighting parameter η ; Sampling size N_* ;

 $\textbf{Output} \colon \mathsf{Approximate} \ \mathsf{posterior} \ q(\theta_*; \lambda_*)$

- Initialize λ_∗ ← ψ
- 2: **for** step k = 1 : K**do**
- 3: Sample $\hat{\theta}_*^{n_t} \sim q(\theta_*; \lambda_*), n_t = 1: N_t$
- 4: Compute local loss by sampling: $\mathcal{L}_{*}^{t}(\lambda) \approx \frac{1}{N_{t}} \sum_{n_{t}=1}^{N_{t}} [-\log p(R_{*}|Q_{*},\hat{\theta}_{*}^{n_{t}}) + \eta \operatorname{KL}[q(\theta_{*};\lambda_{*}) \| p(\theta_{*}|\psi))]$
- 5: Local Update: $\lambda_* \leftarrow \lambda_* \alpha \nabla_{\lambda_*} \mathcal{L}_*^t(\lambda_*, \hat{\theta}_*^{nt})$ 6: end for
- 7: return $g(\theta_*; \lambda_*)$

- 1 Background
- 2 Method
- **3** Experiment
- 4 Conclusion

Experimental Setup

- Three real-world educational datasets
 - Different sizes and sources.
- ► Four types of CDMs
 - Include classical and deep models
- Data split
 - ► For students: 60% as historical students, 20% as new students for evaluation/test
 - ▶ For records: 20% records of each student as validation item set

Dataset	#Students	#Questions	#Logs		
ECPE	2,922	28	81,816		
ASSIST	1,670	1,960	355,376		
EXAM	3,750	1,179	158,178		

Evaluation Protocols

- Performance prediction
 - cognitive state is hard to observe
 - evaluate indirectly via student performance prediction task
 - essentially a binary classification task
 - use ACC and AUC as metrics
- Uncertainty quantification
 - whether the distributional result actually reflects uncertainty in prediction
 - reliability diagram: plotting the actual expected accuracy opposed to the output confidence of the model
 - expected calibration error (ECE): numerically measure the average distance in a reliability diagram

Overall Performance

- ▶ Below show the overall performance comparison on the ACC metric
 - outperform on all datasets and base models
 - more advantage with fewer data

Dataset	Size		IRT		MIRT		DINA		NCD	
	Jize	ORD-	BETA-	ORD-	BETA-	ORD-	BETA-	ORD-	BETA-	
	3	69.12	72.86	71.66	72.84	69.51	71.77	70.37	72.54	
ECPE	5	70.48	73.15	72.17	73.33	70.58	72.09	70.93	72.77	
	10	73.13	73.80	73.07	73.91	71.79	72.90	71.73	73.42	
ASSIST	3	60.81	67.46	65.37	67.24	52.45	63.67	61.77	64.93	
	5	63.51	68.14	65.71	68.19	53.13	63.85	61.86	65.30	
	10	65.99	69.28	66.51	68.97	54.15	64.14	62.25	65.84	
	3	70.06	75.25	75.01	75.58	63.07	70.49	69.42	75.07	
EXAM	5	72.46	75.62	75.38	75.65	64.34	71.15	70.18	75.16	
	10	74.63	75.97	76.13	76.23	65.81	71.51	71.03	75.17	

Ablation Study

- ► Evaluate with different components
 - ► No-ML: without meta-learning
 - ► No-BM: without Bayesian hierarchical modeling

Method	EC	PE	ASSIST		EXAM	
	ACC	AUC	ACC	AUC	ACC	AUC
Ordinary	70.48	68.11	63.51	67.12	72.46	73.91
No-ML	72.33	69.36	65.91	70.69	74.61	78.79
No-BM	72.77	72.17	67.93	73.33	75.48	80.83
BETA-CD	73.15	72.30	68.14	73.74	75.62	80.87

Uncertainty Calibration

- Evaluate the effectiveness of uncertainty quantification
- The uncertainty information contained in BETA-CD is much more consistent with real predictive uncertainty

22/25

- 1 Background
- 2 Method
- **3** Experiment
- 4 Conclusion

- Proposed a general Bayesian mETA-learned Cognitive Diagnosis framework (BETA-CD)
- Introduced Bayesian hierarchical modeling, meta-learned prior knowledge and gradient-based variational inference
- Addressed prior knowledge exploitation and model uncertainty quantification for cognitive diagnosis in the context of personalized learning
- Validated the proposed method with extensive experiments

Thank you!

