Review (2.5)

Moment-generating function (m.g.f.) and its properties

- Calculating mean and variance through m.g.f.
- A note about discrete distribution

Today's Lecture(2.6)

- Poisson Processes, Poisson distribution.
- Mean, variance and m.g.f. of Poisson distribution.
- Poisson Approximation to Binomial distribution.

Poisson distribution

Examples:

1. Number of telephone calls arriving at a switchboard between 3pm and 5pm.

- 2. Number of defects in a 100-foot roll of aluminum screen that is 2 feet wide.
- 3. Number of road accidents in a year in US.

Poisson Process The Poisson process counts the number of events occurring in a fixed time or space, when

- the number of events occurring in non-overlapping intervals are independent.
- ullet events occur at a constant average rate of λ per unit time.
- events cannot occur simultaneously.

Definition: The random variable X has a $Poisson\ distribution$ if its p.m.f. is of the form

$$f(x) = \frac{\lambda^x}{x!}e^{-\lambda}$$
, for $x = 0, 1, 2, \cdots$

where $\lambda > 0$.

Connections between Poisson process and Poisson distribution

Let X_t be the number of events to occur in time t (units). Then $X_t \sim \mathsf{Poisson}(\lambda t)$, and

$$P(X_t = x) = \frac{(\lambda t)^x}{x!} e^{-\lambda t}$$
 for $x = 0, 1, 2, \dots,$

The parameter λ is called the rate of Poisson Process.

Example: Telephone calls enter a college switchboard on the average of two every 3 minutes. Let X be the number of calls in a 9 minutes period. Assuming it is a Poisson process, what is the distribution of X?

Note: for a Poisson process in space, let $X_A = \#$ events in area of size A. Then $X_A \sim \mathsf{Poisson}(\lambda A)$.

Example: Dandelions seeds are wind-spread. If we divide a natural lawn into 1 ${\rm ft}^2$ grids, we can count how many dandelions are in each grid. The number of dandelions in the area of size A is given by a Poisson distribution.

- (i) independence of dandelions: the presence of one dandelion in a grid does not make the presence of another more or less likely.
- (ii) homogeneity of grid: each grid is equally susceptible of containing dandelions.

Example: X_A = number of raisins in a volume A of current bun.

Figure 1: Effect of changing λ on Poisson distributions

Probability histogram of $\mathsf{Poisson}(\lambda)$

Mean and Variance of Poisson distribution

$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, 3, \dots,$$

• Step 1: Find the m.g.f. M(t)

• Step 2: Find the first and second derivatives

$$-M'(t) = \lambda e^{t} e^{\lambda(e^{t}-1)}.$$

- $M''(t) = (\lambda e^{t})^{2} e^{\lambda(e^{t}-1)} + \lambda e^{t} e^{\lambda(e^{t}-1)}.$

• Step 3: Find μ, σ^2 :

$$\mu = M'(0) = \lambda,$$
 $\sigma^2 = M''(0) - [M'(0)]^2 = (\lambda^2 + \lambda) - \lambda^2 = \lambda$

Note: It makes sense for $E(X)=\lambda$, by definition, λ is the average number of events per unit time in the Poisson process.

Example

The number of deer crossing a road at night during mating season in a particular rural area can be modeled with a Poisson distribution. A local survey conducted over 4 nights found a total of 20 deer crossings. Based on this information, what is the probability that ...

• fewer than three deer would cross on a given night during mating season in this area?

To compute this probability using the Poisson distribution, we need to know λ . In this case $\lambda=20/4=5$ deer crossings per night

• no deer would cross on the given night.

• at least three deers would cross on the given night.

Example

Example: In the decade of the 1980s, the number X of cases of diphtheria (an acute febrile contagious disease) reported each year in the United States followed a Poisson distribution with mean 2.4. What is the probability that

• At most three were reported?

• At least three were reported?

• Exactly three were reported?

x	0	1	2	3	4	5	6
$\overline{F(x)}$	0.091	0.308	0.570	0.779	0.904	0.964	0.988
	=	8	_				
$\overline{F(x)}$	0.997	0.999	1.000	1.000	1.000	1.000	

Poisson Approximation to Binomial distribution If the distribution of X is b(n,p), then Poisson distribution with $\lambda=np$ can approximate it well if n is large and p is small.

Example: Two dice are rolled 100 times, and the number of double sixes, X, is counted. The distribution of X is binomial with n=100 and $p=\frac{1}{36}$. Since n is large and p is small, we can approximate the binomial probabilities by Poisson probabilities with $\lambda=np=2.78$.

x	Binomial Prob	Poisson Approximation
0	0.0596	0.0620
1	.1705	.1725
2	.2414	.2397
3	.2255	.2221
4	.1564	.1544
5	.0858	.0858
6	.0389	.0398
7	0.0149	0.0158
8	0.0050	0.0055
9	0.0015	0.0017
10	0.0004	0.0005
11	0.0001	0.0001

In general, the approximation is quite accurate if $n \ge 20$ and $p \le 0.05$ or if $n \ge 100$ and $p \le 0.10$.

Example

The probability of being dealt a royal straight flush (ace, king, queen, jack, and ten of the same suit) in poker is about 1.54×10^{-6} . Suppose that an avid poker player sees 100 hands a week, 52 weeks a year, for 20 years. What is the probability that she never sees a royal straight flush dealt? What is the probability that she sees two royal straight flushes dealt? (Hint: use Poisson approximation)