Внешние формы

Пусть $V=\mathbb{R}^n$ — векторное пространство с базисом $\{e_1,\ldots,e_n\}$, а V^* — пространство *линейных функционалов* на V с двойственным базисом $\{e^1,\ldots,e^n\}$, то есть $e^i(e_j)$ равно 1 при i=j и 0 иначе.

Bнешняя k-форма на V — это кососимметрическая k-линейная функция. Пространство внешних k-форм

$$\Lambda^k(V) = \langle e^{j_1} \wedge \ldots \wedge e^{j_k} \mid j_1 < \ldots < j_k \rangle$$

имеет размерность C_n^k .

Звезда Ходжа $\star \colon \overset{\cdot }{\Lambda}{}^k(V) \to \Lambda^{n-k}(V)$ — это изоморфизм линейных пространств, заданный формулой

$$\star (e^{j_1} \wedge \ldots \wedge e^{j_k}) = \operatorname{sgn} \sigma_{j_1,\ldots,j_n} \cdot e^{j_{k+1}} \wedge \ldots \wedge e^{j_n},$$

где σ_{j_1,\dots,j_n} — перестановка n различных чисел.

Скалярное произведение позволяет отождествлять формы и k-векторы: $\sharp \colon \Lambda^k \to \Lambda_k, \ e^{j_1} \wedge \ldots \wedge e^{j_k} \mapsto e_{j_1} \wedge \ldots \wedge e_{j_k}, \ \mathsf{u} \ \flat = \sharp^{-1}$

ГКП-7, упр.1. Пусть $\omega^k \in \Lambda^k(V)$, где k нечётно. Докажите, что $\omega^k \wedge \omega^k = 0$.

ГКП-7, упр.2. Пусть $a=a_1e_1+a_2e_2+a_3e_3\in\mathbb{R}^3$. Докажите, что отображение $a\mapsto a^{\flat}$ — изоморфизм пространств $\mathbb{R}^3\cong\Lambda^1(\mathbb{R}^3)$. Проверьте, что $a^{\flat}=a_1e^1+a_2e^2+a_3e^3$.

ГКП-7, упр.3. Пусть $\omega_1 = e^1 + e^2 + e^3, \ \omega_2 = e^1 - e^2 + 2e^3 \in \Lambda^1(\mathbb{R}^3).$ Вычислите $\star \omega_1, \star \omega_2$ и $\star (\omega_1 \wedge \omega_2).$

ГКП-7, упр.4. Пусть $\omega \in \Lambda^1(\mathbb{R}^n)$.

- (a) Покажите, что $\star(\star\omega)=-\omega$ для n=2 и $\star(\star\omega)=\omega$ для n=3.
- (b) Покажите, что $\star(\star\omega) = (-1)^{n+1}\omega$ для любого $n \ge 2$.
- (c*) Что можно сказать про $\star(\star\omega)$, если ω внешняя k-форма?

Дифференциальные формы

На многообразии M в точке p касательное пространство $\mathbf{T}_p(M)$ имеет базис $\left\{\frac{\partial}{\partial x_1},\dots,\frac{\partial}{\partial x_n}\right\}$, а двойственное ему *кокасательное* пространство $\mathbf{T}_p^*(M)$ имеет двойственный базис $\{dx_1,\dots,dx_n\}$.

Дифференциальная к-форма

$$\omega = \sum_{j_1 < \dots < j_k} \omega_{j_1 \dots j_k}(x) dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

— это набор k-форм в касательных пространствах к M, гладко зависящий от точки: $\omega_{j_1...j_k}(x)$ — гладкие функции. Внешний дифференциал $d\colon \Lambda^k(V)\to \Lambda^{k+1}(V)$ переводит k-форму ω в k+1-форму

$$d\omega = \sum_{j_1 < \dots < j_k} d\omega_{j_1 \dots j_k}(x) dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

•

ГКП-7, упр.5. Докажите, что

- (b) $d^2\omega = d \circ d(\omega) = 0$ для всех ω .
- (c) $d(\omega_1^k \wedge \omega_2^m) = d\omega_1^k \wedge \omega_2^m + (-1)^k \omega_1^k \wedge d\omega_2^m$.

ГКП-7, упр.6. Кодифференциал δ переводит $\omega \in \Lambda^k(M)$ в $\delta\omega := \star(d(\star\omega))$.

- (a) Докажите, что если k=0, то $\delta\omega=0$.
- (b) Докажите, что если $\omega \in \Lambda^k(M)$, то $\delta \omega \in \Lambda^{k-1}(M)$.
- (c) Вычислите $\delta\omega$ для $\omega=e^ydx+(x+y)^2dy\in\Lambda^1(\mathbb{R}^2).$

ГКП-7, упр.7. Обобщённый Лапласиан на k-формах задаётся по формуле

$$\Delta := \delta d + d\delta = \star d \star d + d \star d \star .$$

- (a) Пусть $f(x,y) = xy + 2y^2$. Вычислите Δf , используя формулу выше и стандартную формулу из анализа. Сравните результат.
- (b) Вычислите $\Delta \omega$ для $\omega = xdx + zdy ydz \in \Lambda^1(\mathbb{R}^3)$.

ГКП-7, упр.8. Пусть $\omega = 2dx + xdy$ — дифференциальная 1-форма на \mathbb{R}^2 , A = (0,0), B = (1,1). Проинтегрируйте ω вдоль ориентированных отрезков AB и BA. Как соотносятся эти два значения?

Дискретные внешние формы

ГКП-7, упр.9. Пусть V — сетка с вершинами $A=(0,1),\ B=(1,1),\ C=(1,0),\ D=(0,0),$ а $f\colon V\to \mathbb{R}$ — функция на вершинах, то есть 0-форма, как на рисунке:

Вычислите df и d(df).

ГКП-7, упр.10. Для тех же V и f, что в предыдущей задаче, рассмотрим $h\colon V\to \mathbb{R}$ со значениями $h(A)=-3,\ h(B)=0,\ h(C)=2,\ h(D)=3.$ Вычислите

- (1) $f \wedge_{0.0} h$,
- (2) $w = (df) \wedge_{1,0} h$,
- (3) $(dw) \wedge_{2,0} h$,
- (4) $(df) \wedge_{1,1} (dh)$.

ГКП-7, упр.11. Пусть $g: \mathbb{R}^2 \to \mathbb{R}$ — дифференциальная 0-форма, заданная формулой $g = y^2(x + 2y)$.

- (a) Предъявите дискретизацию формы g на сетке V из предыдущих задач (через значения в вершинах). Обозначим её $\tilde{g}\colon V\to\mathbb{R}$.
- (b) Найдите (гладкий) дифференциал dg.
- (c) Найдите (дискретный) дифференциал $d\tilde{g}$.
- (d) Проинтегрируйте 1-форму из (b) по каждому ребру сетки.
- (e) Почему ответы в (c) и (d) оказались одинаковы?

ГКП-7, упр.12. Обозначим углы напротив ребра (v_i, v_j) так, как показано на рисунке.

Используя общую формулу оператора Лапласа

$$\Delta\omega = (\star d \star d + d \star d \star)\omega,$$

выведите дискретную формулу Лапласиана:

$$(\Delta f)_i = \frac{1}{2 \cdot \operatorname{Area}(v_i^*)} \cdot \sum_j (\operatorname{ctg} \alpha_{ij} + \operatorname{ctg} \beta_{ij}) (f(v_i) - f(v_j)),$$

где f — функция на сетке.