Computing Counterfactual Explanations of Linear Problems

Henri Lefebvre, Martin Schmidt

Trier University (Germany), Department of Mathematics

Darmstadt, 2024

Understanding Energy Model Decisions

Understanding Energy Model Decisions

Understanding Energy Model Decisions

Outline

Motivation

Problem Formulation

Penalty Alternating Direction Method (PADM)

Applying the PADM to the Single-Level Reformulation

Numerical Results

Energy Model

NETLIB Instances

Conclusion

Outline

Motivation

Problem Formulation

Penalty Alternating Direction Method (PADM)

Applying the PADM to the Single-Level Reformulation

Numerical Results

Energy Model

NETLIB Instances

Conclusion

The Underlying Optimization Problem

We consider the linear optimization problem

$$\min_{y} \quad f^{\top} y \quad \text{s.t.} \quad \bar{D} y \ge b$$

The Underlying Optimization Problem

We consider the linear optimization problem

$$\min_{y} \quad f^{\top} y \quad \text{s.t.} \quad \bar{D} y \ge b$$

Its modified counterpart reads

$$\min_{y} f^{\top}y \quad \text{s.t.} \quad D(x)y \geq b$$

with
$$d_{ij}(\mathbf{x}) = \bar{d}_{ij} + \tilde{d}_{ij}^{\top}\mathbf{x}$$
 for some $\mathbf{x} \in X$

The Underlying Optimization Problem

We consider the linear optimization problem

$$\min_{y} \quad f^{\top}y \quad \text{s.t.} \quad \bar{D}y \geq b$$

Its modified counterpart reads

$$\min_{y} f^{\top} y \quad \text{s.t.} \quad D(x) y \ge b$$

with
$$d_{ij}(\mathbf{x}) = \bar{d}_{ij} + \tilde{d}_{ij}^{\top}\mathbf{x}$$
 for some $\mathbf{x} \in X$

Goal: Find an x so that an optimal point y^* is in the desired space Y

Problem Formulation

```
 \begin{aligned} &\inf_{\mathbf{x},y} \quad f(\mathbf{x}) \\ &\text{s.t.} \quad \mathbf{x} \in X \\ &\quad y \in Y \\ &\quad y \in \arg\min_{\bar{y}} \left\{ f^{\top} \bar{y} \ : \ D(\mathbf{x}) \bar{y} \geq b \right\} \end{aligned}
```

Bilevel Constraint

$$y \in \operatorname*{arg\,min}_{ar{y}} \left\{ f^{ op} ar{y} \; : \; D(x) ar{y} \geq b
ight\}$$

Bilevel Constraint

$$y \in \operatorname*{arg\,min}_{\bar{y}} \left\{ f^{ op} \bar{y} \; : \; D(\mathbf{x}) \bar{y} \geq b \right\}$$

Single-Level Constraint

There exists λ s.t.

$$\begin{split} &D(\mathbf{x})\mathbf{y} \geq \mathbf{b} \\ &D(\mathbf{x})^{\top} \lambda = \mathbf{f}, \quad \lambda \geq 0 \\ &\mathbf{f}^{\top} \mathbf{y} \leq \mathbf{b}^{\top} \lambda \end{split}$$

Bilevel Constraint

$$y \in \arg\min_{\bar{y}} \left\{ f^{\top} \bar{y} : D(\mathbf{x}) \bar{y} \geq b \right\}$$

 $\inf_{x,y} f(x)$ s.t. $x \in X, y \in Y$ $y \in \arg\min_{\bar{y}} \left\{ f^{\top} \bar{y} : D(x) \bar{y} \ge b \right\}$

Single-Level Constraint

There exists λ s.t.

$$D(x)y \ge b$$

$$D(x)^{\top} \lambda = f, \quad \lambda \ge 0$$

$$f^{\top} y \le b^{\top} \lambda$$

Bilevel Constraint

$$y \in \operatorname*{arg\,min}_{\bar{y}}\left\{f^{\top}\bar{y} \ : \ D(x)\bar{y} \geq b\right\}$$

Single-Level Constraint

There exists λ s.t.

$$D(\mathbf{x})\mathbf{y} \ge \mathbf{b}$$

$$D(\mathbf{x})^{\top} \lambda = \mathbf{f}, \quad \lambda \ge 0$$

$$\mathbf{f}^{\top} \mathbf{y} \le \mathbf{b}^{\top} \lambda$$

$$\inf_{\mathbf{x},y} f(\mathbf{x})$$
s.t. $\mathbf{x} \in X, y \in Y$

$$D(\mathbf{x})y \ge b$$

$$D(\mathbf{x})^{\top} \lambda = f, \quad \lambda \ge 0$$

$$f^{\top} y \le b^{\top} \lambda$$

Outline

Motivation

Problem Formulation

Penalty Alternating Direction Method (PADM)

Applying the PADM to the Single-Level Reformulation

Numerical Results

Energy Model

NETLIB Instances

Conclusion

A General Optimization Problem

$$\min_{\mathbf{x},y} F(\mathbf{x},y)$$
s.t. $\mathbf{x} \in \mathcal{X}, y \in \mathcal{Y},$

$$g(\mathbf{x},y) \leq 0.$$

A General Optimization Problem

$$\begin{aligned} \min_{\mathbf{x}, \mathbf{y}} \quad & F(\mathbf{x}, \mathbf{y}) \\ \text{s.t.} \quad & \mathbf{x} \in \mathcal{X}, \quad \mathbf{y} \in \mathcal{Y}, \\ & g(\mathbf{x}, \mathbf{y}) \leq 0. \end{aligned}$$

Assumption: Solving over x for fixed y is easy, and the other way around.

Alternating Direction Method

```
Given: Initial values (\mathbf{x}^0, \mathbf{y}^0) \in \mathcal{X} \times \mathcal{Y}.

for i = 0, 1, \ldots do

Choose \mathbf{x}^{i+1} \in \arg\min \left\{ F(\mathbf{x}, \mathbf{y}^i) : g(\mathbf{x}, \mathbf{y}^i) \leq 0, \mathbf{x} \in \mathcal{X} \right\}.

Choose \mathbf{y}^{i+1} \in \arg\min \left\{ F(\mathbf{x}^{i+1}, \mathbf{y}) : g(\mathbf{x}^{i+1}, \mathbf{y}) \leq 0, \mathbf{y} \in \mathcal{Y} \right\}.

end for
```

Alternating Direction Method

```
Given: Initial values (\mathbf{x}^0, \mathbf{y}^0) \in \mathcal{X} \times \mathcal{Y}.

for i = 0, 1, \dots do

Choose \mathbf{x}^{i+1} \in \arg\min \left\{ F(\mathbf{x}, \mathbf{y}^i) : g(\mathbf{x}, \mathbf{y}^i) \leq 0, \mathbf{x} \in \mathcal{X} \right\}.

Choose \mathbf{y}^{i+1} \in \arg\min \left\{ F(\mathbf{x}^{i+1}, \mathbf{y}) : g(\mathbf{x}^{i+1}, \mathbf{y}) \leq 0, \mathbf{y} \in \mathcal{Y} \right\}.

end for
```

Good (from a theoretical viewpoint): Convergence is well understood

Alternating Direction Method

```
Given: Initial values (\mathbf{x}^0, \mathbf{y}^0) \in \mathcal{X} \times \mathcal{Y}.

for i = 0, 1, \ldots do

Choose \mathbf{x}^{i+1} \in \arg\min_{\mathbf{x}} \left\{ F(\mathbf{x}, \mathbf{y}^i) : g(\mathbf{x}, \mathbf{y}^i) \leq 0, \mathbf{x} \in \mathcal{X} \right\}.

Choose \mathbf{y}^{i+1} \in \arg\min_{\mathbf{y}} \left\{ F(\mathbf{x}^{i+1}, \mathbf{y}) : g(\mathbf{x}^{i+1}, \mathbf{y}) \leq 0, \mathbf{y} \in \mathcal{Y} \right\}.

end for
```

Good (from a theoretical viewpoint): Convergence is well understood

Issues (from a practical viewpoint):

- 1. Sub-problems may be infeasible because of the coupling constraints
- 2. Poor performance

A Penalized Problem

 $[u]^+ = \max\{0, u\}$

For some penalty parameter $\mu \in \mathbb{R}^m_{>0}$,

$$\min_{\substack{\mathbf{x}, \mathbf{y} \\ \mathbf{x}, \mathbf{y}}} F(\mathbf{x}, \mathbf{y})$$
s.t. $\mathbf{x} \in \mathcal{X}, \quad \mathbf{y} \in \mathcal{Y}$

$$g(\mathbf{x}, \mathbf{y}) \leq 0$$

$$\downarrow$$

$$\min_{\mathbf{x}, \mathbf{y}} F(\mathbf{x}, \mathbf{y}) + \sum_{i=1}^{m} \mu_{i} [g_{i}(\mathbf{x}, \mathbf{y})]^{+}$$
s.t. $\mathbf{x} \in \mathcal{X}, \quad \mathbf{y} \in \mathcal{Y}$

11

Penalty Alternating Direction Method

```
Given: Initial values (\mathbf{x}^{0,0}, \mathbf{y}^{0,0}) \in \mathcal{X} \times \mathcal{Y} and \mu^0 \in \mathbb{R}^r_{>0}.
for i = 0, 1, ... do
      Set i \leftarrow 0
      while (x^{i,j}, y^{i,j}) is not a partial minimizer of the penalized problem do
            Choose \mathbf{x}^{i+1} \in \arg\min\left\{\phi(\mathbf{x}, \mathbf{y}^i; \mu) : \mathbf{x} \in \mathcal{X}\right\}
            Choose \mathbf{y}^{i+1} \in \arg\min\left\{\phi(\mathbf{x}^{i+1},\mathbf{y};\mu): \mathbf{y} \in \mathcal{Y}\right\}
            Set i \leftarrow i + 1
      end while
      Choose new penalty parameters \mu^{j+1} \geq \mu^j.
end for
```

Penalty Alternating Direction Method

```
Given: Initial values (\mathbf{x}^{0,0}, \mathbf{y}^{0,0}) \in \mathcal{X} \times \mathcal{Y} and \mu^0 \in \mathbb{R}^r_{>0}.
for i = 0, 1, ... do
      Set i \leftarrow 0
      while (\mathbf{x}^{i,j}, \mathbf{y}^{i,j}) is not a partial minimizer of the penalized problem do
            Choose \mathbf{x}^{i+1} \in \arg\min\left\{\phi(\mathbf{x},\mathbf{y}^i;\mu): \mathbf{x} \in \mathcal{X}\right\}
            Choose y^{i+1} \in \arg\min \left\{ \phi(\mathbf{x}^{i+1}, y; \mu) : y \in \mathcal{Y} \right\}
            Set i \leftarrow i + 1
      end while
      Choose new penalty parameters \mu^{j+1} \geq \mu^j.
end for
```

Good: Convergence is well understood, e.g., Geißler et al. (2017).

Outline

Motivation

Problem Formulation

Penalty Alternating Direction Method (PADM)

Applying the PADM to the Single-Level Reformulation

Numerical Results

Energy Mode

NETLIB Instances

Conclusion

Applying the PADM to the Single-Level Reformulation

Single-Level Reformulation

inf
$$f(x)$$

s.t. $x \in X$, $y \in Y$
 $D(x)y \ge b$
 $D(x)^{\top}\lambda = f$, $\lambda \ge 0$
 $f^{\top}y \le b^{\top}\lambda$

Applying the PADM to the Single-Level Reformulation

Single-Level Reformulation

inf
$$f(x)$$

s.t. $x \in X$, $y \in Y$
 $D(x)y \ge b$
 $D(x)^{\top}\lambda = f$, $\lambda \ge 0$
 $f^{\top}y \le b^{\top}\lambda$

Penalized Problem

$$\min_{\mathbf{x}, \mathbf{y}, \lambda} f(\mathbf{x}) + \sum_{i=1}^{m} \rho_i \left[b_i - d_i(\mathbf{x}) \mathbf{y} \right]^+ + \sum_{j=1}^{n} \mu_j \left| c_j - d_{\cdot j}(\mathbf{x})^\top \lambda \right|$$
s.t. $\mathbf{x} \in X$, $\mathbf{y} \in Y$, $\lambda > 0$, $\mathbf{f}^\top \mathbf{y} < \mathbf{b}^\top \lambda$

The Sub-problems

1. Try to find feasible primal-dual point given \hat{x} by solving

$$\min_{\mathbf{y},\lambda} \quad \sum_{i=1}^{m} \rho_{i} \left[b_{i} - d_{i}.(\hat{\mathbf{x}}) \mathbf{y} \right]^{+} + \sum_{j=1}^{n} \mu_{j} \left| c_{j} - d_{j}(\hat{\mathbf{x}})^{\top} \lambda \right|$$
s.t. $\mathbf{y} \in Y$, $\lambda \geq 0$, $\mathbf{f}^{\top} \mathbf{y} \leq \mathbf{b}^{\top} \lambda$

The Sub-problems

1. Try to find feasible primal-dual point given \hat{x} by solving

$$\min_{y,\lambda} \quad \sum_{i=1}^{m} \rho_i \left[b_i - d_{i\cdot}(\hat{\mathbf{x}}) y \right]^+ + \sum_{j=1}^{n} \mu_j \left| c_j - d_{\cdot j}(\hat{\mathbf{x}})^\top \lambda \right|$$
s.t. $y \in Y$, $\lambda \ge 0$, $f^\top y \le b^\top \lambda$

2. Try to repair infeasibilities of $(\hat{y}, \hat{\lambda})$ by choosing a new x

$$\min_{\mathbf{x}} f(\mathbf{x}) + \sum_{i=1}^{m} \rho_{i} \left[b_{i} - d_{i} \cdot (\mathbf{x}) \hat{\mathbf{y}} \right]^{+} + \sum_{j=1}^{n} \mu_{j} \left| c_{j} - d_{j} \cdot (\mathbf{x})^{\top} \hat{\lambda} \right|$$
s.t. $\mathbf{x} \in X$

Outline

Motivation

Problem Formulation

Penalty Alternating Direction Method (PADM)

Applying the PADM to the Single-Level Reformulation

Numerical Results

Energy Mode

NETLIB Instances

Conclusion

Outline

Motivation

Problem Formulation

Penalty Alternating Direction Method (PADM)

Applying the PADM to the Single-Level Reformulation

Numerical Results

Energy Model

NETLIB Instances

Conclusion

One Example

We consider a given week with

- 1. costs for buying electricity
- 2. price for selling electricity surplus
- 3. house demands
- 4. cost for buying photovolatic panels
- 5. historical data on PV availability:

Status Quo: Only Buying From the Grid

The Question

Keeping the current prices.

What should the PV availability be like so that one invests in PV panels?

The Question

Keeping the current prices.

What should the PV availability be like so that one invests in PV panels?

More explicitly: we ask for producing 1000 kWh during the week.

The Question

Keeping the current prices.

What should the PV availability be like so that one invests in PV panels?

More explicitly: we ask for producing 1000 kWh during the week.

Answer...

Modified Solution

Outline

Motivation

Problem Formulation

Penalty Alternating Direction Method (PADM)

Applying the PADM to the Single-Level Reformulation

Numerical Results

Energy Mode

NETLIB Instances

Conclusion

Instances based on the NETLIB library, adapted by Kurtz et al. (2024)

Type	Category	Intervals
# Variables	small	$0 \le n \le 534$
	medium	$534 \le n \le 2167$
	large	$2167 \le n \le 22275$
# Constraints	small	$0 \le m \le 351$
	medium	$351 \le m \le 906$
	large	$906 \le m \le 16675$

Instances based on the NETLIB library, adapted by Kurtz et al. (2024)

Туре	Category	Intervals
# Variables	small	$0 \le n \le 534$
	medium	$534 \le n \le 2167$
	large	$2167 \le n \le 22275$
# Constraints	small	$0 \le m \le 351$
	medium	$351 \le m \le 906$
	large	$906 \le m \le 16675$

• Randomly selects 1, 5, or 10 columns which are mutable

Instances based on the NETLIB library, adapted by Kurtz et al. (2024)

Туре	Category	Intervals
# Variables	small	$0 \le n \le 534$
	medium	$534 \le n \le 2167$
	large	$2167 \le n \le 22275$
# Constraints	small	$0 \le m \le 351$
	medium	$351 \le m \le 906$
	large	$906 \le m \le 16675$

- Randomly selects 1, 5, or 10 columns which are mutable
- A total of 5 760 instances

Instances based on the NETLIB library, adapted by Kurtz et al. (2024)

Туре	Category	Intervals
# Variables	small	$0 \le n \le 534$
	medium	$534 \le n \le 2167$
	large	$2167 \le n \le 22275$
# Constraints	small	$0 \le m \le 351$
	medium	$351 \le m \le 906$
	large	$906 \le m \le 16675$

- Randomly selects 1, 5, or 10 columns which are mutable
- A total of 5 760 instances
- ullet Not all instances are feasible ($\sim 55\%$)

ECDF of computation times for $f = \|\cdot\|_1$

Solution Quality

Outline

Motivation

Problem Formulation

Penalty Alternating Direction Method (PADM)

Applying the PADM to the Single-Level Reformulation

Numerical Results

Energy Model

NETLIB Instances

Conclusion

Conclusion

What We Have Done:

- 1. Computing counterfactual explanations of linear problems is challenging
- 2. We derive a single-level reformulation which we heuristically solve by the PADM
- 3. We can characterize the computed solutions (stationary points of the single-level reformulation)

What to Do Then:

- 1. Polish the preprint and submit
- 2. Can we do the same for strong counterfactual explanations
- 3. Discuss next project steps