# 제 4 장 확률이론

#### 집합 용어 및 표기법

집합(set)은 서로 구별되는 대상을 순서와 무관하게 모은 것이고, 원소(element)는 집합에 속하는 각각의 대상을 말한다. 집합의 원소는 어떤 것이라도 무방하다. 예) 숫자, 글자, 국가 등

집합 표현

① 언어로 표현

A is the set whose members are the first ten positive integers.

② 원소나열법

 $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ 

 $A = \{1, 2, 3, ..., 10\}$  The ellipsis indicates that the list continues in the obvious way.

③ 조건제시법

A = { x : x is an integer, 1≤x≤10} ← {원소: 원소의 조건}

 $A = \{ x \mid x \text{ is an integer, } 1 \le x \le 10 \} \leftarrow :(\text{colon})$  또는 |(vertical bar) 사용

원소가 두 개 이상의 변수로 이루어진 경우는 ()를 사용한다. 예: 통계학 시험 점수  $\rightarrow$  (중간고사점수, 기말고사점수, 퀴즈점수, 과제물점수)  $\rightarrow$  (95, 98, 100, 85)

## 함수(function)의 이해

f(x) = y

Input x에 대응하는 Output y를 찾아준다.

일반적인 형식: 함수 이름(Input) = Output

예: 개당 가격이 천원이 어떤 제품을 x개 구입할 때의 구매 총액 구매 총액(x) = 1,000x

함수 이름은 "구매 총액"처럼 길어도 무관하며, 흔히 f, g, P, p, F 등을 많이 사용한다.

# 1. 확률의 이론

## 1.1 동등발생정의-equally likely definition

 $P(A) = \frac{A \text{가 일어날 경우의 수}}{\text{가능한 모든 경우의 수}} = \frac{N_A}{N}$ 

여기서, N: 상호배타적이고 동등발생적인 결과의 수 (mutually exclusive and equally likely outcomes)

Na: N개의 결과 중 사건 A에 해당(조건 A에 부합)하는 결과의 수



#### 예) 주사위를 던졌을 때 (주사위 윗면에) 나오는 수 (1)

P(3보다 작은 수가 발생)  $\leftarrow 3$ 보다 작은 수가 발생할 확률  $= P(A) \qquad \qquad \leftarrow 3$ 보다 작은 수가 발생하는 사건을 A라 정의하면  $= \frac{N_a}{N} \qquad \leftarrow 주$ 사위 경우의 수를 N이라 하고, 3보다 작은 수들의 경우의 수를  $N_a$ 라 하면 = 2/6

#### 예) 주사위를 던졌을 때 (주사위 윗면에) 나오는 수 (2)

가능한 모든 경우를 나열하면 1,2,3,4,5,6이고, 모든 경우의 수는 6이다. → 주사위 던지는 실험을 아무리 많이 반복하여도 결과의 경우는 총 6개이다.

#### 1.1.1 mutually exclusive:

사건 A와 B가 상호배타적이란 'A와 B가 동시에 발생하지 않는다.'를 의미한다. 1이 나오면서 2 또는 3이 나오는 경우는 없다. 한 번 시행에 발생하는 결과는 1부터 6까지의 숫자 중 단 하나일 뿐, 2개 이상이 겹치는 경우는 없다.

- ① 상호배타적 사건들: 1,2 주사위를 던졌을 때 1이면서 2인 경우는 없다.
- ② 상호배타적이지 않은 사건들: '짝수', '5보다 작은 수' 주사위를 던졌을 때 2 또는 4가 나오면, '짝수'이면서 '5보다 작은 수' 모두에 해당된다.

#### 1.1.2 equally likely

(주사위를 던지는) 시행의 결과로 1이 2보다 더 많이 발생하거나, 2가 3보다 더 많이 발생한다고 간주할 어떤 근거도 없다. 6개의 결과 중 어떤 것도 다른 것보다 발생 확률이 더 크다고 간주할 근거가 없으므로, 각 결과의 발생 확률을 동일한 값으로 간주한다.

- ① equally likely에 해당하는 event들: 주사위 던졌을 때 나오는 숫자들: 1, 2, ..., 6 동전 던졌을 때의 결과: 앞면, 뒷면
- ② equally likely에 해당되지 않는 event들: 성적 결과: 0, 1, 2, ..., 100

주사위를 던졌을 때 2가 나오는 경우의 수 .... 1(2 하나만 해당) 짝수인 경우의 수 ...... 3(2,4,6 해당) 4보다 큰 경우의 수 ...... 2(5,6 해당) 7보다 큰 경우의 수 ...... 0(해당되는 경우 없음) 0보다 작은 경우의 수 ...... 0(해당되는 경우 없음)

주사위를 던졌을 때 2가 나올 확률 = 2가나오는경우의수 주사위를 던졌을 때나오는 모든경우의수

기호로 표현하면 → P(2) = 1/6

주사위를 던졌을 때 짝수가 나올 확률

## 1.1.3 주사위 예를 통한 확률의 특성 이해

① *P*(*A*)의 값이 음수일 수 있는가?

동등발생정의에 의하면  $P(A) = \frac{A \times 9 \times 9 \times 7}{100 \times 100 \times 100}$  이다.

'A가 일어날 경우의 수'는 0이므로(음수가 아니므로), P(A)는 음수가 될 수 없다.

② P(A)의 최소값은?

위에서 언급한 것처럼 'A가 일어날 경우의 수'는 최소 0이므로, P(A)의 최소값은 0이다.

- 예)  $P(-1) = \frac{-1$ 이 발생할 경우의 수 가능한 모든 경우의 수
- =  $\frac{0 \{ \text{주사위에 } -1 \text{이 없으므로 발생경우의 수는 0이다.} \}}{6 \{ \text{가능한 모든 경우의 수는 1,2,...,6 총 6이다.} \}}$
- ③ P(A)의 최대값은?

A가  $\{7\}$  장한 모든 경우의 수 $\}$ 와 같다면, 분자와 분모가 동일하므로 P(A)는 1이 된다.

예) A는 정수라 하자. 주사위 결과 1, 2, ..., 6 중 정수에 해당하는 결과의 수는 모두 6이다. 그러므로  $P(정수) = \frac{6}{6} = 1$ 이 된다.

정리하면,  $0 \le P(A) \le 1$ 이 성립한다.

이 개념에 의한 확률계산은 순전히 이론적인 추론에 근거한 것(실제 실험자료를 수집할 필요 없다.)

#### 연습문제 1.

- 문제 1. 동등발생정의를 수식으로 표현하시오. 단, N: 상호배타적이고 동등발생적인 결과의 수, n: N개의 결과 중 사건 A 에 해당(조건 A 에 부합)하는 결과의 수를 나타냅니다.
- 문제 2. 동등발생정의를 수식으로 표현하시오. 단, N: 상호배타적이고 동등발생적인 결과의 수,  $N_b$ : N개의 결과 중 사건 B에 해당(조건 B에 부합)하는 결과의 수를 나타냅니다.
- 문제 3. 주사위를 던졌을 때 3이 나올 확률은?
- 문제 4. 주사위를 던졌을 때 2 이하의 값이 나올 확률은?

문제 5. ≤ P(A) ≤

## 1.2 상대빈도정의-relative frequency definition

 $P(A) = \lim_{n \to \infty} \frac{r}{n}$ , P(A): A 사건이 발생할 확률

n: 총시행횟수

r: A 사건이 발생한 횟수

#### Example: 동전을 던졌을 때 앞면이 나올 확률에 관한 컴퓨터 모의실험

컴퓨터가 생성한 Random Number 값이 0.5 미만이면 앞면이 나온 것으로 간주하고, 그렇지 않으면 뒷면이 나온 것으로 간주한다. 여기서, Random Number는 0과 1 사이의 값을 갖는 무작위값이다.

총 실험횟수: 10

| 시행횟수 (A) | Random 값 | 앞면 발생 여부 * | 누적발생횟수(B) | 확률 (B/A) |
|----------|----------|------------|-----------|----------|
| 1        | 0.5021   | 0          | 0         | 0.0000   |
| 2        | 0.5637   | 0          | 0         | 0.0000   |
| 3        | 0.6343   | 0          | 0         | 0.0000   |
| 4        | 0.4624   | 1          | 1         | 0.2500   |
| 5        | 0.1630   | 1          | 2         | 0.4000   |
| 6        | 0.4065   | 1          | 3         | 0.5000   |
| 7        | 0.5009   | 0          | 3         | 0.4286   |
| 8        | 0.5408   | 0          | 3         | 0.3750   |

| 9  | 0.8204 | 0 | 3 | 0.3333 |
|----|--------|---|---|--------|
| 10 | 0.9753 | 0 | 3 | 0.3000 |

앞면이면 (0.5 미만이면) 1, 아니면 (0.5 이상이면) 0의 값을 갖는다.

| i번째 시행      | i 번째까지의 발생횟수 평균 |          |          |          |          |  |
|-------------|-----------------|----------|----------|----------|----------|--|
| 1인계 기왕      | 실험 1            | 실험 2     | 실험 3     | 실험 4     | 실험 5     |  |
| 1           | 1.000000        | 1.000000 | 1.000000 | 0.000000 | 0.000000 |  |
| 10          | 0.400000        | 0.500000 | 0.500000 | 0.700000 | 0.300000 |  |
| 100         | 0.470000        | 0.470000 | 0.520000 | 0.480000 | 0.500000 |  |
| 1,000       | 0.507000        | 0.510000 | 0.492000 | 0.499000 | 0.520000 |  |
| 10,000      | 0.499400        | 0.496400 | 0.495400 | 0.505600 | 0.505600 |  |
| 100,000     | 0.501620        | 0.500230 | 0.503050 | 0.501330 | 0.499200 |  |
| 1,000,000   | 0.500734        | 0.499970 | 0.500968 | 0.500317 | 0.500380 |  |
| 10,000,000  | 0.500007        | 0.499865 | 0.499889 | 0.499806 | 0.499781 |  |
| 100,000,000 | 0.499997        | 0.499991 | 0.500003 | 0.499993 | 0.499998 |  |



# 연습문제 2.

- 문제 1. 상대빈도정의를 수식으로 표현하시오. 단, P(A): A 사건이 발생할 확률, n: 총시행횟수, r: A 사건이 발생한 횟수를 의미합니다.
- 문제 2. 상대빈도정의에 의하면, 주사위를 12 번 던졌을 때 6 이 나온 상대빈도는 정확히 1/6 이다. True, False

## 1.3 주관적 확률개념-subjective probability concept

이용 가능한 정보에 근거하여 어떤 사건이 일어날 것이라고 주관적으로 믿고 있는 정도

# 2. 실험과 표본 공간

실험: experiment, 어떤 결과에 대한 관찰이거나 측정치를 구하는 절차

표본공간: sample space, 실험의 결과로 얻어진 가능한 모든 사건의 집합

## Example 두 개의 동전을 던지는 실험

앞면이면 0, 뒷면이면 1; 표기 (첫째 동전의 실험결과, 둘째 동전의 실험결과) 표본공간 S = {(0,0), (0,1), (1,0), (1,1)}

## 3. 확률법칙

## 3.1 확률의 특성 (확률의 공리)

공리 1. 0 ≤ P(A) ≤ 1

공리 2. P(S) = 1

공리 3.  $P(\overline{A}) = 1 - P(A)$ , 여기서  $\overline{A}$ 는 사건 A가 발생하지 않는 사건이다.

A와 Ā: 상호배타적(mutually exclusive)이며 동시에 완전포괄적(collectively exhaustive)인 관계이다.

A는 A' 또는 A'로 표기하기도 한다.

Sample Space, S



## 3.2 덧셈법칙

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

사건 A와 B가 배타적인 경우:  $P(A \cup B) = P(A) + P(B) : P(A \cap B) = 0$ 

**3.2.1 Example)**  $P(A \cup B) = ?$ 



$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{480}{500} + \frac{470}{500} - \frac{460}{500} = \frac{490}{500}$$



$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= P(A) + P(B) \text{ since } P(A \cap B) = 0$$

$$= \frac{200}{500} + \frac{150}{500} = 0.70$$

- 연습문제 3. 사건 A는 주사위를 던졌을 때 2 이하의 값이 나오는 사건을, 사건 B는 짝수가 나오는 사건을 의미한다고 하자.
- 문제 1. 사건 A 는 주사위를 던졌을 때 2 이하의 값이 나오는 사건을 의미하다면,  $\overline{A}$ 란 \_\_\_\_ 사건을 의미한다.
- 문제 2. 주사위 6개의 값 중 사건 A에 속하는 값을 모두 나열하시오.

문제 3. P(A) =

문제 4.  $P(\overline{A}) =$ 

문제 5.  $P(A) + P(\overline{A}) =$ 

문제 6. 주사위 6개의 값 중 사건 B에 속하는 값을 모두 나열하시오.

문제 7. P(B) =

문제 8. 주사위 6 개의 값 중 사건 A 에도 속하고 사건 B 에도 속하는 값을 모두 나열하시오.

문제 9.  $P(A \cap B) =$ 

문제 10. 주사위 6개의 값 중 사건 A 또는 B에 속하는 값을 모두 나열하시오.

문제 11.  $P(A \cup B) =$ 

# 3.3 결합확률과 한계확률

특정 사안에 대한 성별 찬성, 반대 인원 (총인원 1,000명)

→ 횡단적 자료(cross-sectional data)

|       | 찬성(B1) | 반대(B2) | 합계    |
|-------|--------|--------|-------|
| 남(A1) | 250    | 450    | 700   |
| 여(A2) | 200    | 100    | 300   |
| 합계    | 450    | 550    | 1,000 |

|       | 찬성(B1) | 반대(B2) | 합계      |
|-------|--------|--------|---------|
| 남(A1) | 1      | 2      | 1)+2)   |
| 여(A2) | 3      | 4      | 3+4     |
| 합계    | 1+3    | 2+4    | 1+2+3+4 |

## 연습문제 4.

문제 1. 위의 표에서 250의 의미는?

문제 2. 위의 표에서 300의 의미는?

문제 3. 위의 표에서 1,000의 의미는?

문제 4. 어떤 횡단적 자료의 부분 정보이다. 전체 표를 완성하시오.

|    | 국산 | 외제 | 합계  |
|----|----|----|-----|
| 소형 | 10 |    | 25  |
| 중형 |    | 10 | 50  |
| 대형 |    |    |     |
| 합계 | 70 |    | 100 |

특정 사안에 대한 성별 찬성, 반대 확률

|                    | 찬성(B <sub>1</sub> )                          | 반대(B <sub>2</sub> )                            | 합계                                             |
|--------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|
| 남(A <sub>1</sub> ) | $P(A_1 \cap B_1)$                            | $P(A_1 \cap B_2)$                              | $P(A_1 \cap B_1) + P(A_1 \cap B_2)$ $= P(A_1)$ |
| 여(A <sub>2</sub> ) | $P(A_2 \cap B_1)$                            | $P(A_2 \cap B_2)$                              | $P(A_2 \cap B_1) + P(A_2 \cap B_2)$ $= P(A_2)$ |
| 합계                 | $P(A_1 \cap B_1) + P(A_2 \cap B_1) = P(B_1)$ | $P(A_1 \cap B_2) + P(A_2 \cap B_2)$ $= P(B_2)$ | $P(A_1)+P(A_2) = P(B_1)+P(B_2)$<br>= $P(S)$    |

|                    | 찬성(B <sub>1</sub> ) | 반대(B <sub>2</sub> ) | 합계                  |
|--------------------|---------------------|---------------------|---------------------|
| 남(A <sub>1</sub> ) | $\frac{250}{1,000}$ | $\frac{450}{1,000}$ | $\frac{700}{1,000}$ |
| 여(A <sub>2</sub> ) | 200<br>1,000        | $\frac{100}{1,000}$ | 300<br>1,000        |
| 합계                 | 450<br>1,000        | 550<br>1,000        | 1,000<br>1,000      |

## 3.3.2 결합확률 - joint probability, 두 사건이 동시에 일어날 확률

$$P(A_1 \cap B_1) = \frac{250}{1,000} = 0.25$$

## 3.3.3 한계확률 - marginal probability, 관련된 결합확률을 더한 확률

$$P(B_1) = P(A_1 \cap B_1) + P(A_2 \cap B_1) = 0.25 + 0.20 = 0.45$$

위의 예에서 개체(item)는 사람

각 사람마다 두 속성을 관찰 - 속성 1. 성별; 속성 2. 찬반

결합확률이란 특정한 두 속성값을 모두 충족하는 비율(예: 남자-반대, 또는 찬성-여자 등)을 의미하고

한계확률이란 특정한 한 속성값을 만족시키는 비율(예: 반대 – 남녀 불문, 여자 – 찬반 불문 등)을 의미한다.

## 연습문제 5.

문제 1. 위의 표에서 0.250의 의미는?

문제 2. 위의 표에서 0.300의 의미는?

문제 3. 위의 표에서 여자일 확률은 어떤 확률들의 합과 동일한가?(한계확률)

## 3.4 조건확률(조건부확률, conditional probability)

관련된 사건이 일어난 조건 하에서 또 다른 사건이 발생할 확률

어떤 사건이 일어난 또는 일어날 조건 하에서, 즉 변화된 표본공간에서 어떤 사건이 일어날 확률

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \ P(B) > 0 \leftarrow \text{the probability of A given B}$$
  
example)  $P(A_2|B_2) = \frac{P(A_2 \cap B_2)}{P(B_2)} = \frac{0.10}{0.55} = 0.18$ 

## Example) Stat.-현재 통계학 수강생, Female-여학생, Soongsil Univ.-숭실대학교



숭실대학교가 표본공간 S이라면, Stat.이나 Female 모두 Soongsil University 이내에 있는 원소들만 의미가 있다.







숭실대 내의 Female



숭실대 내의 Stat.은 P(Stat.|Soongsil University)로 표기해야 하지만, 모든 원소는 표본 공간인 Soongsil University 내에서만 의미가 있으므로 P(Stat.|Soongsil University)에서 | 뒷부분은 생략하고 P(Stat.)으로 표기한다.

조건부 확률이란 동일한 사건을 다루지만, 표본공간이 변경되는 경우이다. 예를 들어 P(Stat.)과 P(Stat.|Female)은 모두 Stat.이란 Event를 다루지만, P(Stat.)의 경우는 표본공간이 Soongsil이고 P(Stat.|Female)의 경우는 표본공간이 Female이다. 단, 여기서 Stat.이

나 Female 모두 원래 표본공간 내에서의 Stat.과 Female을 의미한다.



## 연습문제 6.

|                    | 찬성(B <sub>1</sub> ) | 반대(B <sub>2</sub> ) | 합계   |
|--------------------|---------------------|---------------------|------|
| 남(A <sub>1</sub> ) | 0.25                | 0.45                | 0.70 |
| 여(A <sub>2</sub> ) | 0.20                | 0.10                | 0.30 |
| 합계                 | 0.45                | 0.55                | 1.00 |

문제 1. 임의로 한 명을 선택했을 때, 그 사람이 찬성일 확률은?

문제 2. 한 명을 선택했더니 남자였다. 그 사람이 찬성일 확률은?(조건부 확률)

문제 3. 한 명을 선택했더니 찬성이었다. 그 사람이 남자일 확률은? (조건부 확률)

# 연습문제 7.

| No | 거주형태 | 거주지  | 연령     | 성별 | No | 거주형태 | 거주지  | 연령     | 성별 |
|----|------|------|--------|----|----|------|------|--------|----|
| 1  | 단독세대 | 비수도권 | 35세 미만 | 여자 | 11 | 아파트  | 수도권  | 35세 미만 | 남자 |
| 2  | 단독세대 | 비수도권 | 35세 이상 | 남자 | 12 | 아파트  | 수도권  | 35세 미만 | 남자 |
| 3  | 아파트  | 비수도권 | 35세 미만 | 남자 | 13 | 아파트  | 수도권  | 35세 이상 | 남자 |
| 4  | 아파트  | 수도권  | 35세 미만 | 여자 | 14 | 아파트  | 수도권  | 35세 미만 | 남자 |
| 5  | 아파트  | 수도권  | 35세 이상 | 남자 | 15 | 단독세대 | 수도권  | 35세 미만 | 남자 |
| 6  | 아파트  | 비수도권 | 35세 미만 | 남자 | 16 | 아파트  | 비수도권 | 35세 이상 | 남자 |
| 7  | 단독세대 | 수도권  | 35세 이상 | 여자 | 17 | 단독세대 | 수도권  | 35세 미만 | 남자 |
| 8  | 단독세대 | 수도권  | 35세 이상 | 여자 | 18 | 단독세대 | 수도권  | 35세 이상 | 남자 |
| 9  | 아파트  | 비수도권 | 35세 이상 | 남자 | 19 | 아파트  | 비수도권 | 35세 미만 | 남자 |
| 10 | 단독세대 | 비수도권 | 35세 미만 | 남자 | 20 | 아파트  | 비수도권 | 35세 미만 | 남자 |

문제 1. P(단독세대, 수도권)

문제 2. P(단독세대)

문제 3. P(수도권 | 단독세대)

문제 4. P(단독세대 | 수도권)

문제 5. P(단독세대 | 수도권, 남자)

문제 6. P(단독세대 | 수도권, 남자, 35 세 미만)

## 3.5 확률의 곱셈법칙

 $P(A \cap B) = P(A) \times P(B \mid A) = P(B) \times P(A \mid B) \leftarrow$  조건부확률 공식으로부터 유도  $P(A \cap B)$ 는 P(A,B)로도 표기함.

## 연습문제 8.

문제 1.  $P(A \cap B) = 0.7$ , P(B) = 0.9 일 때, P(A|B)

문제 2.  $P(A \cap B) = 0.3$ , P(B) = 0.9 일 때, P(A|B)

문제 3.  $P(A \cap B) = 0.5$ , P(B) = 0.9 일 때, P(A|B)

문제 4.  $P(A \cap B) = 0.6$ , P(B) = 0.9 일 때, P(A|B)

문제 5. P(A|B) = 0.3, P(B) = 0.5일 때,  $P(A \cap B)$ 

문제 6. P(A|B) = 0.3, P(B) = 0.4 일 때,  $P(A \cap B)$ 

## 3.6 복원추출과 비복원추출

#### Example 복원추출과 비복원추출

주머니에 붉은 공(R) 4개와 파란 공(B) 6개가 있다. 처음에 파란 공이 나오고 다음에 빨간 공이 나올 확률은?

#### 3.6.1 복원추출

복원추출의 경우(공을 꺼낸 뒤 색을 확인하고 다시 넣는다. 그러므로 주머니 안의 공의 수는 항상 일정하다.)

P(첫 시행에서 파란 공을 꺼내고 그리고 다음 시행에서 빨간 공을 꺼낸다.)

$$= P(B,R) = P(B) \cdot P(R|B) = \frac{6}{10} \cdot \frac{4}{10} = 0.24$$

 $\rightarrow$  복원추출의 경우, P(R|B) = P(R)이 성립하며, P(R|R) = P(R)도 성립한다.

- → 먼저 시행 결과가 다음 시행 결과에 영향을 끼치지 않는다.
- → 두 사건은 서로 독립적이다.

#### 3.6.2 비복원추출

비복원추출의 경우(한 번 꺼낸 공을 다시 주머니에 넣지 않는다. 그러므로 주머니 안의 공의 수는 시행할 때마다 하나씩 줄어든다.)

P(첫 시행에서 파란 공을 꺼내고 그리고 다음 시행에서 빨간 공을 꺼낸다.)

$$= P(B,R) = P(B) \cdot P(R|B) = \frac{6}{10} \cdot \frac{4}{9} = 0.27$$

- $\rightarrow$  비복원추출의 경우,  $P(R) = \frac{4}{10}$ ,  $P(R|B) = \frac{4}{9}$ ,  $P(R|R) = \frac{3}{9}$ 이다.
- → 먼저 시행 결과가 다음 시행 결과에 영향을 끼친다.
- → 두 사건은 서로 종속적이다.

## 3.7 독립사건

 $P(A \mid B) = P(A), P(B \mid A) = P(B) \rightarrow 표본공간이 변화해도 확률 불변$ 

$$P(A,B) = P(A) \cdot P(B|A) = P(A) \cdot P(B)$$
 since  $P(B \mid A) = P(B)$ 

**연습문제 9.** 단지에 붉은 공(R) 4개와 파란 공(B) 2개가 있다고 하자.

- 문제 1. 복원 추출을 가정하자. P(B) =?
- 문제 2. 복원 추출을 가정하자.  $P(B \mid R) = ?$ (첫 번째 추출에서 R이 나온 조건 하에서 두 번째 추출에서 B가 나올 확률)
- 문제 3. 비복원 추출을 가정하자.  $P(B \mid R) = ?$
- 문제 4. 복원 추출에서 *P*(*B* ∩ *R*) 값은? (첫 번째 추출에서 B가 그리고 두 번째 추출에서 R이 선택될 확률은?)
- 문제 5. 비복원 추출에서 *P(B ∩ R)* 값은? (첫 번째 추출에서 B가 그리고 두 번째 추출에서 R이 선택될 확률은?)
- 문제 6. 비복원 추출의 경우, 먼저 추출된 공과 이후에 추출된 공은 서로 독립적이다.

## 3.8 확률나무

#### 3.8.1 확률나무 표기법



○은 마디(node), —은 가지(branch)라 한다.

node에서 오른쪽으로 뻗은 branch들은 node에서 발생하는 모든 경우들을 표기한다.

branch 위에는 해당 사건을, 아래에는 해당 사건이 발생할 확률을 기입한다.

각각의 사건들은 상호배타적이고 완전포괄적이다 (mutually exclusive and collectively exhaustive): 어떤 event도 다른 event와 함께 발생할 수 없고, 노드에서 발생하는 어떤 event도 반드

시 event 1부터 event m 중 하나에 속한다.

node에 속한 조건부 확률의 합은 항상 1이다.

## 확률나무의 예



## ① 결합사건



첫 번째 마디는 전체를 의미하고, 두 번째 마디는 전체에서 B를 거친 단계를, 마지막 마디는 전체에서 B, 가,a를 거친 단계를 의미한다.

#### ② 조건부확률



첫 번째 조건부 확률은 전체에서 B로 갈 확률(S에서 B로 갈 확률)을, 두 번째 조건부 확률은 전체에서 B를 거친 단계에서 가로 갈 확률(S,B에서 가로 갈 확률)을, 세 번째

조건부 확률은 전체에서 B, 가를 거친 단계에서 a로 갈 확률(S,B,가에서 a로 갈 확률) 을 의미한다.

## ③ 결합확률



확률의 곱셈법칙에 따라 결합확률은 다음과 같이 계산된다.

$$P(S,B) = P(B \mid S) \times P(S) = 0.2$$
  
 $P(S,B,7) = P(7 \mid S,B) \times P(S,B) = 0.06$   
 $P(S,B,7),a) = P(a \mid S,B,7) \times P(S,B,7) = 0.03$ 

## 3.8.2 확률나무 계산의 예



연습문제 10. 어떤 테스트 결과는 다음과 같다. 확률나무에서 알파벳은 조건부확률, (숫자)는 결합확률을 의미한다.

|    | 합격 | 불합격 |
|----|----|-----|
| 국어 | 15 | 25  |
| 영어 | 10 | 15  |
| 수학 | 20 | 15  |



문제 1. a.의 값은?

문제 2. (1)의 값은?

문제 3. d.의 값은?

문제 4. (4)의 값은?

문제 5. 다음 중 합이 1.0 이 아닌 것은 모두 표기하시오.

① a+b+c ② (1)+(2)+(3) ③ f+g ④ (4)+(5)

문제 6. 전체를 (1), (2), (3)으로 표현하시오. (결합확률을 결합확률로 표기)

문제 7. (1), (2), (3)을 (4), (5), ..., (9)로 표기 (결합확률을 결합확률로 표기)

문제 8. a, b, c 를 (1), (2), (3)으로 표현하시오. (결합확률로 조건부확률 표기)

문제 9. d, e, f, g, h, i 를 (4), (5), ..., (9)로 표현하시오. (결합확률로 조건부확률 표기)

문제 10. (1), (2), (3)을 a, b, c 로 표현하시오. (조건부확률로 결합확률 표기)

문제 11. (4), (5), ..., (9)를 a, b, ..., i 로 표현하시오. (조건부확률로 결합확률 표기)

# 4. 베이즈정리

영국의 Bayes(1702~1761)-관찰된 표본자료로부터 그 자료가 속한 모집단을 어떻게 추론할 것인가를 연구

## 4.1 베이즈 정리의 Example

어떤 회사 제품의 불량률은 1%. 어떤 검사 기법을 사용하여 불량 여부 판정. 그 검사 기법으로 불량인 제품을 불합격 판정할 확률은 0.98이고, 정상 제품을 불합격 판정할 확률은 0.04이다. 판정 결과가 합격일 때, 실제 그 제품이 불량일 확률은?

 P(불량) = 0.01, P(정상) = 0.99
 → prior probability

 P(불합격 | 불량) = 0.98 ... 불량 제품을 불합격 판정하는 조건부 확률 → likelihood

 P(불합격 | 정상) = 0.04 ... 정상 제품을 불합격 판정하는 조건부 확률

Q: 불합격 판정받은 제품이 실제 불량일 확률,  $P(불량 \mid 합격)? \rightarrow posterior probability$ 

## 4.1.1 주어진 정보



## 4.1.2 도출해야 할 정보



## 4.1.3 도출과정



|    | 합격     | 불합격    | 합계     |
|----|--------|--------|--------|
| 정상 | 0.9504 | 0.0396 | 0.9900 |
| 불량 | 0.0002 | 0.0098 | 0.0100 |
| 합계 | 0.9506 | 0.0494 | 1.0000 |

P(정상|합격) = 0.9504/0.9506 = 0.99979

P(불량|합격) = 0.0002/0.9506 = 0.00021

P(정상|불합격) = 0.0396/0.0494 = 0.801619

P(불량|불합격) = 0.0098/0.0494 = 0.198381



$$P(불량|합격) = \frac{P(합격 \cap 불량)}{P(합격)}$$

## 4.2 베이즈 정리(Bayes' Theorem) 공식



주어진 정보

$$P(B_1), P(B_2), \cdots, P(B_n)$$

$$P(A|B_1), P(A|B_2), \cdots, P(A|B_n)$$

도출하고 싶은 정보  $P(B_k|A)$ 

$$P(B_k|A) = \frac{P(B_k \cap A)}{P(A)}$$
 이므로,  $P(B_k \cap A)$ 와  $P(A)$  값을 구하면 된다.

주어진 정보로부터  $P(B_k \cap A)$ 와 P(A) 구하는 법

$$P(B_k \cap A) = P(B_k) \cdot P(A|B_k)$$

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_k) + \dots + P(A \cap B_n)$$

$$= P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) + \dots + P(B_n) \cdot P(A|B_n)$$

$$= \sum_{i=1}^{n} P(B_i) \cdot P(A|B_i)$$

정리하면,

$$P(B_k|A) = \frac{P(B_k) \cdot P(A|B_k)}{\sum_{i=1}^n P(B_i) \cdot P(A|B_i)}$$

연습문제 11. 동일한 형태의 상자들이 3개 있는 데, 2개는 흰 색이고 1개는 검은 색이다. 모든 흰 상자에는 빨간 볼펜이 3자루씩, 파란 볼펜이 2자루씩 들

어 있고, 검은 상자에는 빨간 볼펜이 1자루, 파란 볼펜이 4자루 들어 있다.

문제를 풀기 전에 위의 정보를 사용하여 아래 표를 완성한다.

|       | 빨간 볼펜                     | 파란 볼펜            | 합계   |
|-------|---------------------------|------------------|------|
| 흰 상자  | $2/3 \times 3/5$<br>=6/15 | 2/3×2/5<br>=4/15 | 2/3  |
| 검은 상자 | $1/3 \times 1/5$<br>=1/15 | 1/3×4/5<br>=4/15 | 1/3  |
| 합계    | 7/15                      | 8/15             | 1.00 |

- 문제 1. 흰 상자를 택한다면 파란 볼펜을 꺼낼 확률은? P(파란볼펜 | 흰 상자)
- 문제 2. 상자를 하나 택하여 볼펜을 하나 꺼내 보는 실험을 반복한다. 이때 파란 색 볼펜이 선택될 확률은?
- 문제 3. 상자 하나를 택하여 볼펜을 하나 꺼내 보니 파란 색 볼펜이었다. 이때 볼펜을 꺼낸 상자가 흰 색 상자일 확률은?

# 연습문제 정답

- 1. (1)  $P(A) = \frac{n}{N}$ , (2)  $P(B) = \frac{n_b}{N}$ , (3) 1/6, (4) 1/3, (5)  $0 \le P(A) \le 1$
- 2. (1)  $P(A) = \lim_{n \to \infty} \frac{r}{n}$ , (2) False
- 3. (1) 3 이상의 값이 나오는, (2) {1,2}, (3) 1/3, (4) 2/3, (5) 1.0, (6) {2,4,6}, (7) 1/2, (8) {2}, (9) 1/6, (10) {1,2,4,6}, (11) 2/3
- 4. (1) 남자이면서 찬성인 사람의 수 (2) Ans. 여자의 수(찬성, 반대 불문)
  - (3) 전체 인원(남녀, 찬성, 반대 불문)
  - (4)

|    | 국산 | 외제 | 합계  |
|----|----|----|-----|
| 소형 | 10 | 15 | 25  |
| 중형 | 40 | 10 | 50  |
| 대형 | 20 | 5  | 25  |
| 합계 | 70 | 30 | 100 |

- 5. (1) 전체 인원 중 임의로 한 명을 선택했을 때, 그 사람이 남자이면서 찬성일 확률 (결합확률)
  - (2) 전체 인원 중 임의로 한 명을 선택했을 때, 그 사람이 여자일 확률 (한계확률)
  - (3) 여자이면서 찬성일 확률 + 여자이면서 반대일 확률

6. (1) 
$$P(B_1) = 0.45 \leftarrow \frac{450}{1,000}$$

Note. 표본공간 S에서의 사건  $B_1$ 에 대한 확률을 자세히 표기하면  $P(B_1|S)$ 이다. 사건  $A_1,A_2,B_1,B_2$  모두 표본공간 S에서 정의된 사건들이므로  $P(B_1|S)$ 는 간략히  $P(B_1)$ 으로 표기한다.

$$P(B_1|S)$$
를 조건부확률 공식으로 풀면  $P(B_1|S) = \frac{P(B_1 \cap S)}{P(S)}$  인데,

$$\frac{P(B_1 \cap S)}{P(S)} = P(B_1)$$
이고  $P(S) = 1$ 이므로  $P(B_1|S) = P(B_1)$ 가 된다.

|       | 찬성(B1) | 반대(B2) | 합계   |
|-------|--------|--------|------|
| 남(A1) | 0.25   | 0.45   | 0.70 |
| 여(A2) | 0.20   | 0.10   | 0.30 |
| 합계    | 0.45   | 0.55   | 1.00 |

굵은 테두리는 표본공간을, 굵은 숫자는 사건의 확률을 의미한다.

(2) 
$$P(B_1|A_1) = \frac{P(B_1 \cap A_1)}{P(A_1)} = \frac{0.25}{0.70}$$

Note.  $P(B_1|A_1)$ 은 사건  $B_1$ 에 대한 확률이지만 표본공간이 S에서  $A_1$ 으로 수정된다. 표본공간이 변경되었으므로, 사건  $B_1$ 은 표본공간  $A_1$ 에 속한  $B_1$ 만 고려한다.

- → 찬성이면서 남자만 고려하지, 찬성이면서 여자는 고려치 않는다.
- $\rightarrow$  찬성이면서 남자라는 사건은  $B_1 \cap A_1$ 이다.

|                    | 찬성(B <sub>1</sub> ) | 반대(B <sub>2</sub> ) | 합계   |
|--------------------|---------------------|---------------------|------|
| 남(Aı)              | 0.25                | 0.45                | 0.70 |
| 여(A <sub>2</sub> ) | 0.20                | 0.10                | 0.30 |
| 합계                 | 0.45                | 0.55                | 1.00 |

(3) 
$$P(A_1|B_1) = \frac{P(A_1 \cap B_1)}{P(B_1)} = \frac{0.25}{0.45}$$

Note.  $P(A_1|B_1)$ 은 사건  $A_1$ 에 대한 확률이지만 표본공간이 S에서  $B_1$ 으로 수정된다.

|  | 찬성(B <sub>1</sub> ) | 반대(B <sub>2</sub> ) | 합계 |
|--|---------------------|---------------------|----|
|  |                     |                     |    |

| 남(A1)              | 0.25 | 0.45 | 0.70 |
|--------------------|------|------|------|
| 여(A <sub>2</sub> ) | 0.20 | 0.10 | 0.30 |
| 합계                 | 0.45 | 0.55 | 1.00 |

- 7. (1) 5/20 = 0.25, (2) 8/20 = 0.40, (3) 4/8 = 0.50, (4) 4/11 = 0.3636
  - (5) 3/8 = 0.375, (6) 2/5 = 0.40
- 8. (1) 0.7/0.9 (2) 0.3/0.9 (3) 0.5/0.9 (4) 0.6/0.9 (5)  $0.3 \times 0.5$  (6)  $0.3 \times 0.4$
- 9. (1) 2/6, (2) 2/6, (3) 2/5, (4)  $P(B) \cdot P(R|B) = P(B) \cdot P(R) = \frac{2}{6} \cdot \frac{4}{6} = \frac{2}{9}$ ,
  - (5)  $P(B) \cdot P(R|B) = \frac{2}{6} \cdot \frac{4}{5} = \frac{4}{15}$ , (6) False
- 10. (1) 0.40 전체 중 국어의 비율 -조건부 (2) 0.40 전체 중 국어의 비율 결합
  - (3) 15/40 = 3/8 국어 중 합격 비율 -조건부
  - (4) 0.15 전체 중 국어이면서 합격의 비율 -결합
  - (5) 4 → 전체 중 국어의 비율과 같다.
  - (6) 전체 = (1)+(2)+(3), P(전체) = P(국어)+P(영어)+P(수학)
  - (7) (1) = (4)+(5), (2) = (6)+(7), (3) = (8)+(9), P(국어) = P(국어, 합격)+P(국어, 불합격), P(영어) = P(영어, 합격)+P(영어, 불합격), P(수학) = P(수학, 합격)+P(수학, 불합격)

(8) 
$$a = \frac{(1)}{(1)+(2)+(3)} = (1)$$
  $\therefore$  (1)+(2)+(3) = 1,  $b = \frac{(2)}{(1)+(2)+(3)} = (2),$   $c = \frac{(3)}{(1)+(2)+(3)} = (3),$ 

$$(9) \ d = \frac{(4)}{(4)+(5)}, e = \frac{(5)}{(4)+(5)}, f = \frac{(6)}{(6)+(7)}, g = \frac{(7)}{(6)+(7)}, ..., i = \frac{(9)}{(8)+(9)},$$

- $(10)(1) = a \cdot 1 = a, (2) = b \cdot 1 = b, (3) = c \cdot 1 = c,$
- (11)  $(4) = (1) \cdot d = ad$ ,  $(5) = (1) \cdot e = ae$ , (6) = (2)f = bf, (7) = (2)g = bg, (8) = (3)h = ch, (9) = (3)i = ci
- 11. (1) P(파란볼펜 | 흰 상자) = (4/15)/(2/3) = 2/5, (2) P(파란볼펜) = 8/15,
  - (3) P(흰 상자 | 파란 볼펜) = (4/15)/(8/15) = 1/2