

## BREMBO HACKATHON

Data Science, Machine Learning, and GenAl Solutions Challenge

## GenAl & Brake Pad Recipe Creation

4th Runner Up (Keval, Harsh) Oct 15, 2023



# **OVERVIEW & METHODOLOGY**



### Motivation



#### Why this challenge?

 Novelty of the challenge, opening possibilities to discover completely new compounds

### What piqued our curiosity?

- Complexity and variation in type of dataset
- Exponential impact of the outcome, significantly reducing the amount of real-life tests needed



## Objective



- Come up with novel and diverse compounds with  $\mu = 0.6 \pm 0.1$
- Train an Al model to generate the time series values for Speed,
   Pressure, Temperature, and μ

| Material class<br>code | min<br>% | max<br>% |
|------------------------|----------|----------|
| Α                      | 0        | 12       |
| В                      | 1        | 30       |
| С                      | 0        | 18       |
| D                      | 0.4      | 1        |
| Е                      | 45       | 92       |
| F                      | 3        | 27       |





## Al Approach - Overview







## Data Analysis









### Al Approach for Performance Models

- TRIAL 1: Predict Time-series from compound composition
  - X Unable to follow the expected trend
  - X Not enough data to train the Al
- TRIAL 2: Predict delta from average trend line
  - Easier task for the model to learn
  - Predictions can roughly follow the desired trend







# **EVALUATION & RESULTS**





## **Generated Compounds**

Ours





# Friction Coeff. (µ)











## Pressure











## Speed









## Temperature











### Results - 1st on Leaderboard!



- Generated 15 new compounds
- Achieved excellent score for most metrics
- Still room for improvement

```
SUBMISSION RESULTS
## SUBMISSION 1 ---> N/A
## SUBMISSION 2 ---> N/A
## SUBMISSION 3 ---> 100.0/100
       score_type
                                   value
       technical_constraints
                                100
       technical_relevance
                                 41,4946
       technical_performance
                                100
       variability
                                 99.9995
```





# CONCLUSIONS







- Trained an excellent AI model to predict performance numbers for a new compound without actually producing and testing it
- Generated new and feasible compounds expected to perform well!

#### Next Steps:

- Use correlation between speed, pressure, temperature and μ
- Better algorithms for finding compounds
  - Evolutionary algorithms





