HW4

1

In order to prove this, we must prove there exists a function f such that $x \in A_{TM} \leftrightarrow f(x) \in L_{343}$

Remember $x = \langle M, w \rangle$ and $f(x) = \langle M' \rangle$

M' on input y:

- Run M on w
- If M accepts:
 - Check if y is equal to "CSDS 343 is fun"
 - If yes -> Accept
 - Else
 - * Check if y is equal to "MATH 343 is fun"
 - * If yes -> Accept
 - * Else -> Reject
- If M rejects:
 - -M' rejects

2

3

A Prove $A_{TM} \leq_M L_{add}$

In order to prove this, we must prove there exists a function f such that $x \in A_{TM} \leftrightarrow f(x) \in L_{add}$

Remember x = < M, w > and f(x) = < M' >

M' on input y:

- Run M on w
- If M accepts:
 - Run
- If M rejects:
 - -M' rejects

$\mathbf{B} \ \mathbf{Prove} \ \bar{A_{TM}} \leq_M L_{add}$

In order to prove this, we must prove there exists a function f such that $x \in A_{TM}^- \leftrightarrow f(x) \in L_{add}$

Remember x = < M, w > and f(x) = < M' >

M' on input y:

- Run M on w
- If M accepts:
 - Run
- If M rejects:
 - -M' rejects