This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

...SU.... 1012918

3(50) A 61 M 1/03

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБР

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3363971/28-13

(22) 03.12.81

(46) 23.04.83. Бюл. № 15

(72) В.Б.Гандадымов, В.А.Громыко, В.Л.Эвентов, О.Н.Сэпи, К.А.Вабаян А.А. Дмитриев, Ю.Б.Васильев и О.А.Хазова.

(71) Институт медико-биологических проблем

(53) 615.9(088.8) (56) 1. Пытель Н.Я. и др. Искусственная почка и ее клиническое применение. м., "медицина", 1961, с.10-30.

2. Twiss E.E. etal Dyalysis Sis temy corporating the use, poc EOMix 1966, c.262-264.

(54) (57) СПОСОБ ОЧИСТКИ ДИАЛИЗИРУЮЩЕ ГО РАСТВОРА В АППАРАТЕ "ИСКУССТВЕН-НАЯ ПОЧКА", путем пропускания цирку лирующего раствора через сорбционный фильтр с активированным углем, отличающийся тем, что, с целью уменьшения вывода из диализата неорганических солей и микроэлементов и увеличения степени очистки диализата от мочевины и креатинина, активированный уголь перед употреблением обрабатывают металлами платиновой группы в количестве. 0,01-0,1 вес. в и регенерируют его для многократного использования окислением на воздухе в течение 1,5-2 ч при 105-180°C.

Изобретение относится к медицине, в частности к токсикологии, и может быть использовано для очистки диализирующего раствора в аппаратах "искусственная почка" от различных токсических веществ, таких как мочевина, креатинин и т.п.

Известен способ очистки диализирующего раствора в аппаратах "искусственная почка", согласно которому используют 50 л циркулирующего диализирующего раствора и 7,5 кг угля для регенерации диализата[1].

известен также способ очистки диализирующего раствора в аппаратах "искусственная почка" путем пропускания циркулирующего раствора через сорбционный фильтр с активированным углем, что позволяет использовать его многократно[2].

Однако, при использовании известного способа возможен значитейьный вывод из организма больного необходимых ему микроэлементов, таких как Со, Ті, Сг, 21, Sn и др., переходящих через полупроницаемую мембрану диализатора из крови больного в диализирующий раствор, что приводит к возникновению у больных различных заболеваний, таких как анемия, нарушение солевого обмена и т.п.

Цель изобретения - уменьшение вывода из организма неорганических солей и микроэлементов, улучшение глубины очистки диализата от мочевины и креатинина.

Эта цель достигается, согласно за способу очистки диализирующего раствора в аппарате "искусственная почва", путем пропускания циркулирующего раствора через сорбционный фильтр с активированным углем, и активиробанным уголь перед употреблением обрабатывают металлами платиновой группы в количестве 0,01-0,1 вес. и регенерируют его для многократного использования окислением на воздухе в течение 1,5-2 ч при 105-180°C.

Использование обработанного таким образом угля позволяет уменьшить количество рециркулирующего диализирующего раствора до 10 л и снизить количество необходимого для его регенерации сорбента до 1 кг. Кроме того, за счет промотирования угля

платиной увеличивается его сорбционная емкость по мочевине и креатинину. После насыщения сорбента продуктами авотистого метаболизма он подвергается термической регенерации, примем промотирование платиной позволяет снизить температуру регенерации до 150°С по сравнению с обычной (800-900°С). Снижение температуры способствует сохранению структуры сорбента, что в свою очередь позволяет многократно его использовать. Промотированию подвергают угли марок СКТ-6, СКТ-7, ПАУ-СВ.

Промотирование активированного угля платиной осуществляют следующим образом.

Высушенный уголь пропитывают раствором платино-хлористоводородной кислоты и далее обрабатывают формальдегидом в щелочной среде для восстановления платины. Затем уголь промывают дистиллированной водой и переводят в активное состояние путем прогревания его в сушильном шкафу при 105-180°С в течение 1,5-2 ч. На промотированных углях проводят сорбцию из диализирующего раствора и после завершения процесса сорбции уголь регенерируют путем прогревания в сушильном шкафу при 105-180°С, в течение 1,5-2 ч в присутствии воздуха. Сорбцию проводят из 2 л диализирующего раствора с добавлением 300 мл мочи здорового человека. Перфузию раствора осуществляют роликовым насосом со скоростью 0,5 л/мин через колонку с 140 г сухого сорбента. Исходный уровень мочевины 250 мг %, креатинина 23 мг %.

Способ осуществляют следующим образом.

В контур диализата включают параллельно две колонки с промотированным углем (емкостью 0.5 л каждая), из которых одна работает в сорбционном режиме, другая в регенерационном. Каждые полтора часа колонки меняют местами, а диализ идет непрерывно.

В таблице приведены результаты по адсорбционной способности углей, модифицированных 0,01% платины, в зависимости от количества регенераций.

Количество регенерация	Адсорбция мочевины, %			
	СКТ-6А, 0,01% платины	ПАУ-СВ, 0,01% платины		
1	34	356		
2	35	35,6		
· 3	34	35,5		

•

			•
oall .	должен	ие та	блипы

	Количество регенераций	Адсорбция, мочевины, %					
_		СКТ-6А, 0,0 платины		IAУ-СВ, 0,(іластины	18		
	4		34	*	36		
	. 5		34,5		35,8		
	6 .	• . •	33,5		36		
	7		.34		36 :	•	
	. 8		33.8		35		•
	. 9	,	23.6		34.6		
	10		23.5		34	,	
	11		22.7		26.2		
			•				

Из таблицы видно, что платинированный уголь можно регенерировать более 10 раз и его адсорбционная емкость практически не падает.

Предлагаемый способ очистки диализирующего раствора с применением промотированных углей обладает рядом существенных преимуществ по сравнению с известным. Проведение диали-

за с использованием промотированных углей поэволяет увеличить глубину очистки диализирующего раствора от мочевины и креатинина. Промотирование углея микроколичествами платины приводит к многократному приме-нению одних и тех же углея, что в свою очередь уменьшает вывод из организма больного неорганических солей и микроэлементов.

Составитель В.Бруслин Редактор А.Козориз Техред И. Гайду Корректор Ю. Макаренко 2835/6 Заказ Тираж 711 Подписное вниили государственного комитета СССР по делам изобретений и открытий 113035, Москва, ж-35, Раушская наб., д. 4/5 Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4