TP 5 :	Projection sur un polyèdre et application en débuitage
<u>Q1)</u>	Le lagrangien s'écrit: $L(x, \lambda) = \frac{1}{2} \ x - p\ ^2 + \sum_{i=1}^{k} \lambda_i (a_i^T x - b)$ $= \frac{1}{2} \ x - p\ ^2 + \langle \lambda, Ax - b \rangle$
	$ \frac{\min_{x \in \mathbb{N}^d} \left((x, \lambda) = \min_{x} f_{\lambda}(x) \right)}{\left\{ x \text{ ext convexe} \left(\nabla^2 f_{\lambda} = 2 _{k} \right), \text{ done son minimiseur est lepoint } x_{\lambda} + q \nabla f_{\lambda}(x_{\lambda}) = 0 \right\}} $ $ \nabla f_{\lambda} = (x - p) + A^{T} \lambda \qquad \Rightarrow \qquad \chi_{\lambda} = p - A^{T} \lambda $
	Aimi (D) = $\max_{\lambda \in M} \min_{\chi \in \mathbb{R}^d} \{ 1/2, \lambda \}$ = $-\min_{\lambda \in M} - \frac{1}{2} \ p - A^T \lambda - p \ ^2 - \lambda^T (Ap - AA^T \lambda) + \lambda^T b$
	$\begin{split} & \langle \lambda(\lambda) \rangle_{z} - \frac{1}{2} \ A^{T} \lambda \ ^{2} - \lambda^{T} A_{P} + \ A^{T} \lambda \ ^{2} + \lambda^{T} b \\ & = \frac{1}{2} \ A^{T} \lambda \ ^{2} - \lambda^{T} A_{P} + \lambda^{T} b \\ & \langle \lambda(\lambda) \rangle_{z} = \frac{1}{2} \ A^{T} \lambda - p \ ^{2} - \frac{1}{2} \ p \ ^{2} + \lambda^{T} b \end{split}$
	$\nabla h(\lambda) = A(A^{T}\lambda - p) + b$ $= b - Ax_{\lambda}$

Qll Algorithme d'Uzova - $\nabla^2 h(\lambda) = AA^T \geq 0$ donc h cut convexe Si λ* t.q $S_{T}(\lambda^{*}) = \lambda^{*}$ $P_{\mathbb{R}^{k}_{+}}(\lambda^{*} - \tau \nabla h(\lambda^{*})) = \lambda^{*}$ λ* e R+ **⟨—**⟩ $\int_{\lambda^*} \int_{\lambda^*} \nabla h(\lambda^*) = \lambda^* -$ ∇h(λ*) = 0.