lesson four - student resource sheet

Lesson Objective: Find exact or approximate square roots of numbers, and classify real numbers (rational, irrational, integers, whole, natural).

Vocabulary Box

real numbers – The combined set of rational numbers and irrational numbers. Examples: -22, 0, 100, $\sqrt{2}$, $\frac{3}{4}$.

natural numbers – The counting numbers. Examples: 1, 2, 3, and so on.

whole numbers – The set of numbers that includes 0 and all of the natural numbers. Examples: 0, 1, 2, 3, and so on.

integers – The set of numbers containing 0, the natural numbers, and all the negatives of the natural numbers. Examples: -3, -2, -1, 0, 1, 2, 3, and so on.

rational numbers – Numbers that can be expressed as the ratios of two integers. Examples: $5, -2, \frac{3}{7}, 4\frac{1}{2}, 0.25, 15\%$.

irrational numbers – Numbers that cannot be expressed as the ratios of two integers. Examples: π , $\sqrt{5}$ (but not $\sqrt{9}$, which is 3 or -3).

square root – For x, the number that, when multiplied by itself, gives the number x. Examples: $\sqrt{100} = 10$. $\sqrt{100} = -10$. $\sqrt{8} \approx 2.83$.

Complete the following practice problems on your own. Your teacher will review the answers. Make sure that you show all of your work.

<u>Directions</u>: Correctly place the following sets of numbers in the Venn diagram below: natural numbers, whole numbers, integers, rational number, irrational numbers.

All of the numbers in the Venn diagram are real numbers.

<u>Directions</u>: Now place each of the following numbers in the appropriate region of the Venn diagram.

- 1. 65%
- 2. -8
- 3. $\frac{9}{5}$
- 4. 0
- 5. 1
- 6. π

lesson four - student resource sheet

- √8
- 8. √9
- 9. $0.8\overline{3}$

<u>Directions</u>: Approximate each square root to the nearest tenth.

- 1. $\sqrt{40}$
- 2. $\sqrt{11}$

- 1. Approximate $\sqrt{54}$ to the nearest hundredth.
- 2. Now, approximate it to the nearest thousandth.

Zeeshan wants to make a map of his town. He wants to determine how many miles away certain places are from his house. He decides to map out his town using a grid. Use the information below to help him.

- Using the sheet of grid paper on the next page, draw a coordinate plane with x- and yaxes. The x-axis represents east (positive direction) and west (negative direction). The y-axis represents north (positive direction) and south (negative direction). Each gridline represents one mile.
- 2. Zeeshan's town is made up of square blocks, with his house located at the origin. Place a point at the origin and label it HOME.
- 3. Zeeshan's school is located one mile east and two miles north of his house. Plot this point on the grid and label it SCHOOL.
- 4. To determine how far Zeeshan's school is from his house, use the distance formula. The distance formula is: distance = $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$. The formula tells us to subtract the x-values of each point and then square the result. Then, subtract the y-values of each point and square the result. Next, add these two numbers together, and then take the square root. For the distance between home and school, the formula would *look* like this: $\sqrt{(1-0)^2 + (2-0)^2} = \sqrt{1^2 + 2^2} = \sqrt{1+4} = \sqrt{5}$. Estimate the value of $\sqrt{5}$ to determine how far the school is from Zeeshan's house.
- 5. The grocery store is 2 miles east and 3 miles north of Zeeshan's house. Plot this point on the grid and label it STORE.
- 6. Use the distance formula to estimate the distance from Zeeshan's house to the store.

lesson four - student resource sheet

- 7. Zeeshan's best friend, Shaunda, lives 3 miles west and 4 miles north of Zeeshan's house. Plot this point on the grid and label it SHAUNDA.
- 8. Use the distance formula to determine the distance from Zeeshan's house to Shaunda's house.

Challenge: Determine the distance from Shaunda's house to the school.

- 1. Name a rational number that is not an integer.
- 2. Name an irrational number other than π .
- 3. Approximate $\sqrt{60}$ to the nearest tenth.

lesson five - student resource sheet

Lesson Objective: Evaluate algebraic expressions for a given replacement set to include integers and rational numbers. (Include expressions with exponents.)

Vocabulary Box

evaluate – Substitute number values into; find a numerical expression for. Example:

$$\frac{x}{5} + \frac{3}{4}$$
 evaluated for $x = 8$ is equal to $\frac{47}{20}$.

You will complete the following practice problems with your partner. Then your teacher will review the answers. Make sure that you show all important work.

1. Evaluate
$$2 - w$$
 for $w = \frac{9}{4}$.

2. Evaluate
$$\frac{3}{2} - x$$
 for $x = -\frac{5}{7}$.

3. Evaluate
$$-\frac{2}{3}y - \frac{1}{8}$$
 for $y = \frac{1}{6}$.

4. Evaluate
$$z^3$$
 for $z = -\frac{2}{7}$.

A. Vocabulary Words

- 1. Write a definition for the word evaluate.
- 2. What is the root of the word *evaluate*? How does that help you remember the definition?

B. Summarize What We Learned Today

<u>Directions</u>: Write three sample problems like the ones that we studied today. Be sure to include negative numbers, fractions, and exponents. Then write a few sentences explaining how to evaluate algebraic expressions for a given replacement set to include integers and rational numbers, including expressions with exponents. You will use this explanation as a reference.

<u>lesson six - student resource sheet</u>

Lesson Objective: Evaluate algebraic expressions for a given replacement set to include integers and rational numbers. (Include expressions with exponents.)

Vocabulary Box

evaluate – Substitute number values into; find a numerical expression for. Example:

$$\frac{x}{5} + \frac{3}{4}$$
 evaluated for $x = 8$ is equal to $\frac{47}{20}$.

Complete the following practice problems on your own. Your teacher will review the answers. Make sure that you show all of your work.

1. Evaluate
$$u - \frac{2}{3}$$
 for $u = -\frac{3}{2}$

2. Evaluate
$$2v + \frac{5}{4}$$
 for $v = -1\frac{1}{2}$

3. Evaluate
$$\frac{1}{9}$$
 - w for w = $-\frac{7}{6}$

4. Evaluate
$$6\frac{2}{3}x$$
 for $x = -1\frac{1}{5}$

5. Evaluate
$$-7\frac{1}{4} - 3y$$
 for $y = -\frac{1}{2}$

6. Evaluate
$$z^3$$
 for $z = -\frac{6}{5}$

7. Evaluate
$$a^4$$
 for $a = -\frac{3}{4}$

8. Evaluate kmn for
$$k = -\frac{2}{9}$$
, $m = -\frac{8}{3}$, and $n = \frac{15}{32}$

1. Evaluate
$$c^2 - d^2$$
 for $c = -\frac{2}{3}$ and $d = -\frac{2}{5}$

2. Evaluate
$$(x + y)(w + z)$$
 for $w = -\frac{1}{2}$, $x = -2$, $y = -\frac{3}{4}$, and $z = 3$

lesson six - student resource sheet

Bull's-eye!

For each problem, choose the correct "arrow" that when substituted for *x* in the "bow" will come closest to the "target." As you work, try to use problem-solving strategies that will decrease the amount of unnecessary work that you have to do. Make a note of those strategies.

Problem	Arrows	Bow	Target
1	-39, -13, 0, 26	−3x +52	156
2	5.12, 8.89, 12.35, 17.92	x³	700
3	$\frac{2}{3}, \frac{5}{3}, \frac{8}{3}, \frac{11}{3}$	$\frac{9}{8}x + \frac{81}{80}$	5
4	$-82\frac{6}{11}$, $-29\frac{1}{12}$, $9\frac{1}{2}$, $41\frac{9}{10}$	$x-\frac{1}{3}x$	-20

1. Evaluate 9 – a for a =
$$\frac{27}{2}$$

2. Evaluate
$$-\frac{4}{3}b$$
 for $b = -2\frac{2}{9}$

3. Evaluate
$$c^4$$
 for $c = -\frac{5}{2}$