Modern Algebra HW1

Michael Nameika

August 2022

Section 2 Problems

7. Is * defined on \mathbb{Q} by letting a * b = a - b commutative? Associative? I claim that * is neither associative nor commutative. To see * is not commutative, let a = 1, b = 2 and note that

$$a * b = 1 - 2 = -1$$

and

$$b * a = 2 - 1 = 1 \neq a * b$$

To see * is not associative, let a=5, b=c=1 and consider

$$a * (b * c) = a * (1 - 1) = 5 * 0 = 5 - 0 = 5$$

and now consider

$$(a*b)*c = (5-1)*1 = 4-1 = 3 \neq a*(b*c)$$

9. Is * defined on \mathbb{Q} by letting a * b = ab/2 commutative? Associative? I claim that * is both associative and commutative.

Proof: Let $a, b, c \in \mathbb{Q}$ and first consider a * b. By definition of *,

$$a * b = ab/2$$

and by commutativity of multiplication on \mathbb{Q} ,

$$ab/2 = ba/2$$

by definition of *,

$$ba/2 = b * a$$

That is,

$$a * b = b * a$$

So * is commutative. We now wish to show that * is associative. First consider

$$a * (b * c) = a * (bc/2) = a(bc/2)/2$$

by associativity of multiplication on \mathbb{Q} , we find

$$a(bc/2)/2 = (ab/2)c/2 = (a*b)*c$$

Thus, * is associative.

Section 2 Extra Problems

1) On Q, define an operation * by setting, for each pair a/b and c/d in Q,

$$a/b * c/d = (ad+bc)/bd$$

Is * well-defined? If so, prove that it is. If not, give a counterexample.

I claim that * is well-defined. Let a/b, $c/d \in \mathbb{Q}$ and suppose that a/b can also be represented by a'/b', and that c/d can be similarly represented by c'/d'. We wish to show that a/b * c/d and a'/b' * c'/d' represent the same value. To begin, by definition of *,

$$a/b * c/d = (ad + bc)/bd$$

and

$$a'/b' * c'/d' = (a'd' + b'c')/b'd'$$

To show these represent the same value, we must show that (ad + bc)b'd' = (a'd' + b'c')bd. Let us first compute the left hand side:

$$(ad + bc)b'd' = adb'd' + bcb'd'$$

by commutativity of multiplication on \mathbb{Q} ,

$$= ab'(dd') + cd'(bb')$$

and since a/b and a'/b' represent the same value, we have that ab' = a'b. Similarly for c/d and c'/d', we have cd' = c'd. Substituting these into the above equation, we find

$$ab'(dd') + cd'(bb') = a'b(dd') + c'd(bb')$$

Factoring out bd, we get

$$a'b(dd') + c'd(bb') = (a'd' + c'b')(bd)$$

finally, we have

$$(ad + bc)b'd' = (a'd' + b'c')bd$$

So * is well defined.

2) On Q, define an operation * by setting, for each pair a/b and c/d in Q,

$$a/b * c/d = (a - c)/bd$$

Is * well-defined? If so, prove that it is. If not, give a counterexample.

I claim that * is not well-defined. To see this, let a/b = 1/2, c/d = 2/3 and note that

$$a/b * c/d = 1/2 * 2/3 = (1-2)/6 = -1/6$$

Notice that 1/2 can also be represented as 2/4, and now note

$$2/4 * 2/3 = (2-2)/12 = 0/12 = 0 \neq -1/6$$

That is, * is not well-defined.

Section 4 Problems

2. Let * be defined on $2\mathbb{Z} = \{2n \mid n \in \mathbb{Z}\}$ by letting a * b = a + b. Does * give a group structure on $2\mathbb{Z}$?

I claim $\langle 2\mathbb{Z}, * \rangle$ forms a group.

Proof: Let $a, b, c \in 2\mathbb{Z}$. We must first show associativity holds. Consider a * (b * c):

$$a * (b * c) = a * (b + c) = a + (b + c)$$

by associativity of addition,

$$a + (b+c) = (a+b) + c$$

by definition of *,

$$= (a * b) * c$$

So * is associative.

I claim that e = 0 is the identity element of $\langle 2\mathbb{Z}, * \rangle$. Note that $n = 0 \in \mathbb{Z}$ and that $2n = 2 \times 0 = 0 \in 2\mathbb{Z}$. Now consider a * e and e * a:

$$a * e = a + 0 = a$$

$$e * a = 0 + a = a = a * e$$

So * has an identity element, namely e = 0.

Now, for any $a \in 2\mathbb{Z}$, $a^{-1} = -a \in 2\mathbb{Z}$ since

$$a * a^{-1} = a + (-a) = 0 = e$$

and

$$a^{-1} * a = -a + a = 0 = e = a * a^{-1}$$

So each element has an inverse. Since * is associative, has an identity element, and each $a \in 2\mathbb{Z}$ has an inverse under *, $\langle 2\mathbb{Z}, * \rangle$ forms a group.

4. Let * be defined on \mathbb{Q} by letting a*b=ab. Does * give a group structure on \mathbb{Q} ?

I claim that $\langle \mathbb{Q}, * \rangle$ forms a group.

Proof: Let $a, b, c \in \mathbb{Q}$ and first consider a * (b * c):

$$a * (b * c) = a * (bc) = abc$$

By associativity of multiplication on \mathbb{Q} :

$$abc = (ab)c$$

$$=(ab)*c$$

$$= (a*b)*c$$

So * is associative.

I claim the identity element is given by e=1. Quickly note that $1\in\mathbb{Q}$ and that

$$a * e = a \times 1 = a$$

$$e * a = 1 \times a = a = a * e$$

So * has an identity element.

Finally, I claim that * has an inverse for each element $a \in \mathbb{Q}$ and that the inverse is given by $a^{-1} = 1/a$. Notice that since $a \in \mathbb{Q}$, there exist

 $m \in \mathbb{Z}, n \in \mathbb{N}$ such that a = m/n. Then $1/a = 1/(m/n) = n/m \in \mathbb{Q}$. Additionally,

$$a * a^{-1} = a(1/a) = 1 = e$$

 $a^{-1} * a = 1/a(a) = 1 = e = a * a^{-1}$

So * has an identity element for each $a \in \mathbb{Q}$. Thus, $\langle \mathbb{Q}, * \rangle$ forms a group.

18. Determine if the following is a group: All $n \times n$ matrices with determinant either 1 or -1 under matrix multiplication.

Denote the set of all $n \times n$ matrices with determinant either 1 or -1 by $D_{\pm 1}$. I claim that $\langle D_{\pm 1}, * \rangle$ forms a group where * is standard matrix multiplication.

Proof: To begin, we must show that $D_{\pm 1}$ is closed under matrix multiplication. Let $M, N \in D_{\pm 1}$ and that, by determinant properties,

$$det(MN) = det(M)det(N)$$
$$= (\pm 1)(\pm 1)$$
$$= \pm 1$$

So $MN \in D_{\pm 1}$. So we have that * defines a binary operation on D_1 . Now we must show that associativity holds. Let $M, N, K \in D_{\pm 1}$ and consider

$$M*(N*K) = M*(NK) = MNK$$

By associativity of matrix multiplication,

$$MNK = (MN)K = (MN) * K = (M * N) * K$$

So associativity holds.

I claim that there exists an identity element, namely $e = I_n$ where I_n is an $n \times n$ diagonal matrix of ones. Note that $\det(I_n) = 1$, so $I_n \in D_{\pm 1}$. Notice

$$M*I_n=M(I_n)=M$$

$$I_n * M = I_n(M) = M = M * I_n$$

So * has an identity element on $D_{\pm 1}$. Finally, I claim that for any $M \in D_{\pm 1}$, its inverse element is M^{-1} where M^{-1} denotes the standard matrix inverse.

Recall that a square matrix M is invertible if and only if $\det(M) \neq 0$. For any $M \in D_{\pm 1}$, $\det(M) = \pm 1$, so M is invertible. Now notice

$$M * M^{-1} = MM^{-1} = I_n$$

 $M^{-1} * M = M^{-1}M = I_n = M * M^{-1}$

That is, each $M \in D_{\pm 1}$ has an inverse under *. So $\langle D_{\pm 1}, * \rangle$ forms a group.