The impact on academic productivity owing to the COVID-19 pandemic

- Andrew R. Casey*,1,2, Ilya Mandel*,1,2, Prasun K. Ray³, and friends?
- ⁴ School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia
- ⁵ Center of Excellence for Astrophysics in Three Dimensions (ASTRO-3D), Australia
- ⁶ Department of Mathematics, Imperial College London, London, United Kingdom
- ⁷ 'Publish or perish' is an expression that refers to the pressure on academics to consistently
- 8 publish research to ensure a successful career in academia. With a global pandemic that has
- 9 changed how businesses operate, has it also changed the academic publishing system? Many
- fields undeterred; posting just as many as before. Some fields show a large increase (q-bio),
- Others, mostly experimental fields, show a marked decline in preprints.
- Peer-reviewed publications are the most common measure of productivity in academia. The arXiv? (https://arxiv.org) is a distribution service for research publications before they are printed in a journal (i.e., a pre-print). A pre-print on arXiv does not ensure that the contents have already passed peer-review, but most material on arXiv eventually goes through peer-review because it is now standard in many research fields to post to arXiv either during or after the peer-review process?. For this reason, the number of pre-prints posted to arXiv approximates the number of peer-reviewed publications written at any time.
- Here we make quantitative comparisons of the number of pre-prints posted to arXiv be-

fore and during the pandemic. While we investigate the impact that the COVID-19 pandemic has
had on different fields of research, we are unable to identify or differentiate between authors and
communities whose productivity has been significantly harmed by the pandemic, and those who
were largely unscathed. The authors of this article wholly recognise that the COVID-19 pandemic
has impacted people in unequal ways?.?.? Generational inequality, career stage, personal circumstances, carer responsibilities, work environments, places of employment, and many other factors,
all significantly contribute to the disproportionate and unequal impact the pandemic has had on a
scientist's capacity to conduct research. These factors are more important determinants to research
capacity than a scientist's primary field of research. While this limited analysis does not address
these issues, it is important to consider that while a community as a cohort has not yet demonstrated a significant change in productivity, many researchers have faced significant challenges and
suffered physically, mentally, emotionally, and professionally.

We retrieved metadata for 1.38 million pre-prints posted on the arXiv between 1 April 2007 and 31 May 2021. The metadata includes the creation date, research field(s), title, author name(s), abstract, and other miscellaneous information. There is an increasing number of pre-prints posted to arXiv each year in nearly every field (Figure 1). These long-term trends are relatively predictable from year to year, allowing us to measure any change in academic productivity due to the COVID-19 pandemic. We used the number of publications from January 2008 to December 2019 to predict the expected number of monthly preprints in 2020 in each field. We modelled the number of monthly pre-prints in each field with a quasi-periodic gaussian kernel function?, allowing us to accurately predict long-term trends and periodicity in given fields of research (Figure 1). In about

two-thirds of research fields the number of pre-prints posted since January 2020 agree excellently
with the model predictions, indicating no collective impact (positive or negative) on academic
productivity due to the COVID-19 pandemic.

Border closures and travel restrictions have forced many academic conferences to shift to
online-only platforms, or be cancelled entirely. The immediate impact of cancelling a conference
is readily apparent in pre-print counts in lattice physics (arXiv code hep-lat; Figure 1), where most
pre-prints are posted around December each year as conference proceedings from the International
Symposium on Lattice Field Theory. In 2020 the conference was cancelled? and no accompanying
pre-prints exist. However, the impact on research from travel restrictions is likely to be much
longer than what is represented by the drop in lattice physics pre-prints. Discussions at conferences
or collaborative visits frequently spark new research ideas that might lead to a publication many
months or years later.

Some research projects require laboratories or specialised equipment, or data to be collected over years. The pandemic has forced many laboratories to close or operate with restricted access, which could lead to long-lasting delays in ongoing experiments or immediate drops in publication rates in part due to difficulty in accessing completed (or nearly completed) experiment data. There is some evidence of this in pre-print numbers already, with 20% fewer pre-prints in high energy physics (hep-ex) in 2020 than expected by our model. But declines in pre-prints is not ubiquitous across experimental fields. The closest comparable field of phenomenology in high energy physics (hep-ph) showed no decline. And experimental research in condensed matter (cond-mat) saw a

20% increase in pre-prints in 2020 above expectation. Segmenting condensed matter pre-prints by research topic shows that most of this increase (in cond-mat) was driven by an increase in material science pre-prints (cond-mat.mtrl-sci), a sub-field of condensed matter that focusses on laboratory methods and techniques. Despite the COVID-19 pandemic restricting access to essential laboratory equipment, this shift to publish methods and experimental design work – which might otherwise be neglected due to ongoing laboratory work – produced an immediate boost in condensed matter research. This is likely an effect with a limited lifespan: eventually, condensed matter (and other experimental) research will require laboratory access to continue publishing.

The field of quantitative biology (q-bio) research showed then largest increase in pre-prints in 2020 above expectation. There were X q-bio pre-prints since the COVID-19 pandemic began, double the expected number (numbers). This increase is explainable by an increase in COVID-19 related research, as there were X quantitative biology pre-prints in 2020 with pandemic-related terms in their title or abstract (see Methods), and just Y in the decade prior. Monthly arXiv pre-prints in quantitative biology research have returned to pre-pandemic levels since January 2021. Quantitative biology is only a sub-field of biology, and most biology pre-prints are posted to the bioRxiv (https://biorxiv.org), a dedicated biology pre-print server. Only a fraction of quantitative biology pre-prints will be posted to the arXiv.

An increase in quantitative biology research during a global pandemic is unsurprising. However, the arXiv data shows that this increase in pre-prints was not driven by a minority of researchers posting twice as many pre-prints. In 2020 there was a peak in the number of new authors appearing for the first time in the quantitative biology literature (Figure 2) while the number of
new authors in all other fields remained steady. The sudden influx of new authors cannot be explained by large newly-formed collaborations working together to tackle the impending pandemic
(Figure 4). The increase in pre-prints (and new authors) is driven by small (1-4) groups of authors
where many (or all) had never before posted pre-prints to quantitative biology before, either as
leading- or co-author (Figure ??).

Some of these new authors in quantitative biology have never before appeared in other arXiv 87 fields. Indeed, there are many quantitative biology pre-prints written about the COVID-19 pan-88 demic where no author has ever appeared in the arXiv before. An examination of these pre-prints 89 reveals that many are established biologists who have not used the arXiv before, and are now doing 90 so presumably to help ensure that their COVID-19 research is more widely available. This repre-91 sents a genuine increase in new researchers to the arXiv, and a boost to making quantitative biology 92 research more widely accessible. Of those new authors in quantitative biology who also appear in other arXiv fields, some of this will be due to name confusion: where two researchers in different fields share the same publishing name. However, a careful examination of pandemic-related pre-prints in quantitative biology that were posted in 2020 shows that many were indeed written by researchers from other fields (primarily physicists and mathematicians), who had never before posted about quantitative biology. These pre-prints tend to focus on modelling the COVID-19 outbreak using public data sets.

Drop in physics.comp-ph and physics.soc-ph

100

In March 2020 nearly 60% of the pre-prints in quantitative biology on arXiv were related to the pandemic (Figure ??). In mid 2021 this has dropped to about 20% of quantitative biology pre-prints, even though the number of monthly quantitative biology pre-prints has now returned to pre-pandemic levels. Pandemic-related pre-prints also appeared in other fields (computer science, physics, statistics, and quantitative finance, all peaking around March 2020, but pandemic-related pre-prints constituted less than 10% of the pre-prints in these fields.

The COVID-19 pandemic has had disparate impacts on research productivity in different 107 fields. Some fields show a drop in research outputs. Few show an increase, either driven by 108 pandemic-related research or by shifts away from experimental research to topics that do not re-109 quire ongoing laboratory access. In this study we have only focussed on quantity of publications, 110 and not their quality. While citations are the most commonly used measure of impact of academic 111 publications, that metric becomes a more biased statistic when many related pre-prints are all be-112 ing posted nearly at the same time. The relatively long timescales of academic research would suggest that the full impact on academic productivity due to the COVID-19 pandemic is yet to be 114 seen. Even among the measurable changes that we have discussed, none have fully returned to normality: even while quantitative biology pre-prints have returned to pre-pandemic levels, 20% of the research in that field is now related to the ongoing pandemic. For those fields without a 117 measurable drop in research outputs yet, it's plausible that many of the pre-prints being posted are 118 research projects that were well underway before the pandemic, with the full impact of academic 119 research yet to be seen. 120

Figure 1: Most fields saw no change in the number of pre-prints posted due to the COVID-19 7 pandemic. The model. The exception is quantitative biology (q-bio), where the spike in 2020 is in part caused by COVID-19 related pre-prints authored by people who are non-established biologists.

Figure 2: The number of new author names appearing in the literature by field. Fields established well before 2007 (e.g., astro-ph) show an apparent influx of authors at the time the data starts

(2007) These author names are dominated by established academics. The slow change in new

Figure 3:

21 References

123 Supplementary Information

- Supplementary information is linked to the online version of the paper at www.nature.com/nature.
- Acknowledgements Peter Skands (Monash University) and Ross Young (University of Adelaide) for comments on publication trends.
- Author Information Reprints and permissions information is available at www.nature.com/reprints. The
 authors declare that they have no competing financial interests. Correspondence and requests for materials
 should be addressed to andrew.casey@monash.edu

Figure 4: The increase in quantitative biology pre-prints in 2020 cannot be attributed to large collaborations. Here we segment q-bio pre-prints by the number of authors, showing that in 2020 a sharp increase was observed for single-author papers and small (2-4 authors) collaborations.

Figure 5: The number of pre-prints in selected sub-fields where the pandemic may have caused a change in publication rates.

30 Methods

131 Data retrieval

We use the arXiv data set² submitted by Cornell University to the Kaggle website. This data set includes the identifier and metadata for all pre-prints posted to arXiv, and is updated weekly. A pre-print's identifier is defined by the year and month that the pre-print was posted, and the number of pre-prints already posted in that month (across all fields). For each pre-print the metadata includes the title, author name(s), abstract, research field(s), and the date the pre-print was first posted. Pre-prints posted prior to 2007 use a different identifier scheme, and for this reason we have excluded pre-prints earlier than this date. The data set used for analysis includes 1,379,332 pre-prints posted

between 2007-03-30 and 2020-12-30.

140 Segmenting by research field

Pre-prints posted to the arXiv can be cross-listed in multiple fields of research, and multiple sub-141 fields. For example, one pre-print may have a primary field of research as stellar astrophysics 142 (astro-ph.SA) and be cross-listed in computer science. These field(s) of research are supplied by 143 the corresponding author. It is a subjective decision whether to include more than one field of 144 research, or what those fields of research would be. For this reason, throughout this work when 145 we segment by research field we take the primary parent research field provided and ignore any 146 cross-listed fields of research. When we segment pre-prints by sub-field, we similarly take the 147 primary sub-field provided and ignore any cross-listings. 148

149 Long-term modelling of pre-print counts

We use monthly pre-print counts per primary research field from 2007-01 until 2019-12 to make predictions for the number of pre-prints expected in 2020. We use a Gaussian process with a quasi-periodic kernel () to model. We fix the period of the kernel to be 1 year.

153 Uniquely identifying authors

The metadata available to us does not include institutional affiliations, or identifiers that would uniquely identify an author. For these reasons, we have taken steps to minimise the effects of name confusion. There are two primary ways that name confusion could impact our inferences. In the

first scenario, two people with the same name are amalgamated and treated as a single author that is
on average twice as productive (or more, for very common names) as other authors. In the second
scenario, an author will sometimes publish as 'A. B. Smith', and other times publish as 'A. Smith'.

A careful exploration of the data shows that this is a very frequent scenario, and if left uncorrected,
would appear as many 'unique' authors with half as many publications on average.

We have taken a simple approach to address name confusion. We first define a unique author 162 by family name and the initial of the first given name ('Family-name, I.'), such that we intention-163 ally group together authors that may share the same initial of their second given name. While our 164 approach to name confusion is grossly simple, it is unlikely that these choices have any substantial 165 impact on our inferences. Any common name is likely to appear in the literature early in the data 166 set, and will not impact the conclusions we draw about how publishing changed in 2020. While common names will appear between different fields (e.g., quantitative biology and physics), by showing this as a function of time we get an intrinsic measure of the name ambiguity between 169 fields, and we see the increase in overlap when a spike in quantitative biology papers occurs. Nevertheless, we manually inspected hundreds of quantitative biology pre-prints that entirely consisted 171 of 'new authors' and cross-referenced these with Google Scholar to confirm that these authors were 172 established researchers in other fields, and not biologists posting pre-prints for the first time.

174 Code availability

The software developed to retrieve and analyse these data is publicly accessible online¹. All data

was sourced from the arXiv.

¹https://github.com/andycasey/arxiv-covid