Algorithms and Probability

Week 5

Definition 2.1. Ein diskreter Wahrscheinlichkeitsraum ist bestimmt durch eine Ergebnismenge $\Omega = \{\omega_1, \omega_2, \ldots\}$ von Elementarereignisen. Jedem Elementarereignis ω_i ist eine (Elementar-)Wahrscheinlichkeit $\Pr[\omega_i]$ zugeordnet, wobei wir fordern, dass $0 \leq \Pr[\omega_i] \leq 1$ und

$$\sum_{\omega \in \Omega} \Pr[\omega] = 1.$$

Eine Menge $E \subseteq \Omega$ heisst Ereignis. Die Wahrscheinlichkeit Pr[E] eines Ereignisses ist definiert durch

$$\Pr[\mathsf{E}] := \sum_{\omega \in \mathsf{E}} \Pr[\omega].$$

Ist E ein Ereignis, so bezeichnen wir mit $\bar{E} := \Omega \setminus E$ das Komplementärereignis zu E.

Probability

Note that the set Ω must be countable. In this course we will use mostly finite Ω .

Example

We throw a single, six-sided fair dice once; we observe the number on top.

Q: What is the Ergebnismenge Ω ?

A:
$$\Omega = \{1,2,3,4,5,6\}$$

 \mathbf{Q} : How would you describe the Ereignis E "the dice shows an even number"?

A:
$$E = \{2,4,6\}$$

Q: What is the probability of Ereignis E, i.e. Pr[E]?

A:
$$\Pr[E] = \sum_{\omega \in E} \Pr[\omega] = 1/6 + 1/6 + 1/6 = 1/2.$$

Probability

Lemma 2.2. Für Ereignisse A, B gilt:

1.
$$Pr[\emptyset] = 0$$
, $Pr[\Omega] = 1$.

- 2. $0 \le \Pr[A] \le 1$.
- 3. $Pr[\bar{A}] = 1 Pr[A]$.
- 4. Wenn $A \subseteq B$, so folgt $Pr[A] \le Pr[B]$.

Probability

Satz 2.3 (Additionssatz). Wenn die Ereignisse A_1, \ldots, A_n paarweise disjunkt sind (also wenn für alle Paare $i \neq j$ gilt, dass $A_i \cap A_j = \emptyset$), so gilt

$$\Pr\left[\bigcup_{i=1}^{n} A_i\right] = \sum_{i=1}^{n} \Pr[A_i].$$

Korollar 2.6. (Boolesche Ungleichung, Union Bound) Für Ereignisse A_1, \ldots, A_n gilt

$$\Pr\left[\bigcup_{i=1}^n A_i\right] \leq \sum_{i=1}^n \Pr[A_i].$$

Siebformel

What is the cardinality of $A \cup B$, i.e. what is $|A \cup B|$?

$$\left| \begin{array}{c|c} A & \nearrow & B \\ \end{array} \right| = \left| \begin{array}{c|c} A & + & B \\ \end{array} \right| - \left| \begin{array}{c|c} \nearrow & \nearrow & B \\ \end{array} \right|$$

We have $|A \cup B| = |A| + |B| - |A \cap B|$.

Siebformel

 $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

The number indicates how often elements of the particular segments are counted using the expression blow/above.

Siebformel

$$|A| + |B| + |C|$$
 $-|A \cap B| - |A \cap C| - |B \cap C|$

$$|A| + |B| + |C|$$
 $-|A \cap B| - |A \cap C| - |B \cap C|$
 $+|A \cap B \cap C|$

Illustration source: Wikipedia.

Siebformel

Satz 2.5. (Siebformel, Prinzip der Inklusion/Exklusion) Für Ereignisse A_1, \ldots, A_n ($n \ge 2$) gilt:

$$\begin{array}{lll} \Pr\left[\bigcup_{i=1}^{n}A_{i}\right] & = & \sum_{l=1}^{n}(-1)^{l+1}\sum_{1\leq i_{1}<\dots< i_{l}\leq n}\Pr[A_{i_{1}}\cap\dots\cap A_{i_{l}}]\\ \\ & = & \sum_{i=1}^{n}\Pr[A_{i}]-\sum_{1\leq i_{1}< i_{2}\leq n}\Pr[A_{i_{1}}\cap A_{i_{2}}]\\ \\ & & + \sum_{1\leq i_{1}< i_{2}< i_{3}\leq n}\Pr[A_{i_{1}}\cap A_{i_{2}}\cap A_{i_{3}}]-\dots\\ \\ & & + (-1)^{n+1}\cdot\Pr[A_{1}\cap\dots\cap A_{n}]. \end{array}$$

There are a few different ways we can write this formula, see here: Wikipedia.

Combinatorics

	geordnet	ungeordnet
mit Zurücklegen	n^k	$\binom{n+k-1}{k}$
ohne Zurücklegen	$n^{\underline{k}}$	$\binom{n}{k}$

	geordnet	ungeordnet
mit Zurücklegen	(1,1),(1,2),(1,3) (2,1),(2,2),(2,3) (3,1),(3,2),(3,3)	{1,1}, {1,2}, {1,3} {2,2}, {2,3}, {3,3}
ohne Zurücklegen	(1,2), (1,3), (2,1) (2,3), (3,1), (3,2)	{1, 2}, {1, 3}, {2, 3}

Example: k = 2 and n = 3, e.g. $S = \{1,2,3\}$.

Combinatorics: Intuition

I highly suggest reading the "Kombinatorik kurz und knapp" slides from Prof. Dr. Erich Walter Farkas who teaches the "Wahrscheinlichkeit und Statistik" course this semester.

I will upload the relevant slides on my website.

Example

Szenario: Wir mischen die Karten und geben Spieler A und B jeweils fünf Karten.

⇒
$$\Omega := \{(X,Y) \mid X,Y \subseteq C, X \cap Y = \emptyset, |X| = |Y| = 5\},$$

wobei $C = \{\$, \spadesuit, \heartsuit, \diamondsuit\} \times \{2,3,...,9,10,B,D,K,A\}\}.$ |C|=52

$$|\Omega| = \begin{cases} 52^{5} \cdot 52^{5} \\ \binom{52}{10} \cdot \binom{10}{5} \\ \frac{52!}{5! \cdot 5! \cdot 42!} \\ \binom{52}{5} \cdot \binom{47}{5} \end{cases}$$

Example

Szenario: Wir mischen die Karten und geben Spieler A und B jeweils fünf Karten.

$$\Omega := \{(X,Y) \mid X,Y \subseteq C, X \cap Y = \emptyset, |X| = |Y| = 5,$$
 wobei $C = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\} \times \{2,3,\ldots,9,10,B,D,K,A\}\}.$

Beispiel für ein Ereignis: E:= "Spieler A hat vier Asse"

$$= \frac{48 \cdot \binom{47}{5}}{|\Omega|}$$

Conditional Probability

Definition 2.8. A und B seien Ereignisse mit Pr[B] > 0. Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist definiert durch

$$Pr[A|B] := \frac{Pr[A \cap B]}{Pr[B]}.$$

"A bedingt auf B" oder "A gegeben B"

Definition 2.8. A und B seien Ereignisse mit Pr[B] > 0. Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist definiert durch

$$Pr[A|B] := \frac{Pr[A \cap B]}{Pr[B]}.$$

Conditional Probability

1. $\Pr[A \mid A] = 1$, because if we know A already happened, then the probability of A happening should be 1.

$$\Pr[A \mid A] = \frac{\Pr[A \cap A]}{\Pr[A]} = \Pr[A] / \Pr[A] = 1.$$

2. $\Pr[A \mid \Omega] = \Pr[A]$, since Ω doesn't give us any information about A.

$$\Pr[A \mid \Omega] = \frac{\Pr[A \cap \Omega]}{\Pr[\Omega]} = \Pr[A]/1 = 1.$$

3. If B already happened, then A can only happen if also $A \cap B$ happened, so $\Pr[A \mid B]$ should be proportional to $\Pr[A \cap B]$.

Example (Blackboard)

Conditional Probability

Satz 2.13. (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A_1, \ldots, A_n seien paarweise disjunkt und es gelte $B \subseteq A_1 \cup \ldots \cup A_n$. Dann folgt

$$Pr[B] = \sum_{i=1}^{n} Pr[B|A_i] \cdot Pr[A_i].$$

Illustration taken from "Wahrscheinlichkeit und Statistik" slides from this semester, first chapter.

Interactive Example (Blackboard)

Beispiel 1.30. Eine Urne enthält gleich viele gewöhnliche wie gezinkte Würfel. Bei den gezinkten Würfeln ist die 6 durch eine 7 ersetzt. Man zieht zufällig einen Würfel und würfelt damit.

Wie hoch ist die Wahrscheinlichkeit, dass die gewürfelte Zahl gerade ist?

Conditional Probability

Satz 2.15. (Satz von Bayes) Die Ereignisse A_1, \ldots, A_n seien paarweise disjunkt. Ferner sei $B \subseteq A_1 \cup \cdots \cup A_n$ ein Ereignis mit Pr[B] > 0. Dann gilt für ein beliebiges $i = 1, \ldots, n$

$$\Pr[A_i|B] = \frac{\Pr[A_i \cap B]}{\Pr[B]} = \frac{\Pr[B|A_i] \cdot \Pr[A_i]}{\sum_{j=1}^n \Pr[B|A_j] \cdot \Pr[A_j]}.$$

Independence

Definition 2.18. Die Ereignisse A und B heissen unabhängig, wenn gilt

$$Pr[A \cap B] = Pr[A] \cdot Pr[B].$$

$$\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{\Pr[A] \cdot \Pr[B]}{\Pr[B]} = \Pr[A]$$

"[...] das Vorwissen, dass B eintritt, keinen Einfluss auf die Wahrscheinlichkeit hat, mit der wir das Eintreten von A erwarten.", skript p. 101