Propiedades de la integral

Teorema 1 Cualquier función continua definida en un rectángulo cerrado R es integrable.

Si $f(x,y) \geq 0$, la existencia de $\lim_{n \to \infty} S_n$ tiene un significado geométrico directo. Consideremos la gráfica de z = f(x,y) como la tapa de un sólido cuya base es el rectángulo R. Si tomamos cada \mathbf{c}_{jk} como un punto en el que f(x,y) tiene su valor mínimo² en R_{jk} , entonces $f(\mathbf{c}_{jk}) \Delta x \Delta y$ representa el volumen de una caja rectangular con base R_{jk} . La suma $\sum_{j,k=0}^{n-1} f(\mathbf{c}_{jk}) \Delta x \Delta y$ es igual al volumen de un sólido inscrito, parte del cual se muestra en la Figura 5.2.2.

De forma similar, si \mathbf{c}_{jk} es el punto donde f(x,y) alcanza su máximo sobre R_{jk} , entonces la suma $\sum_{j,k=0}^{n-1} f(\mathbf{c}_{jk}) \Delta x \Delta y$ es igual al volumen de un sólido circunscrito (véase la Figura 5.2.3).

Por tanto, si el $\lim_{n\to\infty} S_n$ existe y es independiente de $\mathbf{c}_{jk} \in R_{jk}$, se deduce que los volúmenes de los sólidos inscrito y circunscrito se aproximen al mismo límite cuando $n\to\infty$. Es razonable decir entonces que este límite es el volumen exacto del sólido bajo la gráfica de f. Luego el método de las sumas de Riemann sirve de base a los conceptos presentados de forma intuitiva en la Sección 5.1.

Hay un teorema que garantiza la existencia de la integral de ciertas funciones discontinuas. Necesitaremos este resultado en la siguiente

Figura 5.2.2 La suma de las cajas inscritas aproxima el volumen bajo la gráfica de z=f(x,y).

 $^{^2}$ Tal \mathbf{c}_{jk} existe en virtud de la continuidad de f en R; véase el Teorema 7 en la Sección 3.3.