

Institute for Bioinformatics and Medical Informatics

BIO-4372 Cheminformatics

L05 Topological Structure Comparison

Part II: Maximum Common Substructure

Winter Semester 2022-23 Philipp Thiel

Problem introduction

- Two molecule case
 - Example: atom mapping in chemical reactions
 - Reduction to a well-known graph-based problem
 - Maximum clique detection
 - Bron-Kerbosch algorithm
- Multiple molecule case
 - Example: Identification of active core structure
 - Extension non-trivial
 - Pairwise search for maximal common substructure

Maximum Common Substructure: MCS

- Maximum Common Substructure: MCS
- The largest common substructure of two molecules
- Very important concept in cheminformatics
 - Also used in other molecular science areas
 - An overview can be found in Ehrlich and Rarey (2011) ¹
- Two problem variants have cheminformatic use cases:
 - 1. Two molecule case
 - 2. Multiple molecule case

Two Molecule Case

- Atom mapping for chemical reactions
- Chemical reactions transform educt(s) into product(s)
- Large databases of chemical reactions exist
- Learning from that information would be extremely useful
 - Prediction of chemical reactivity
- Required to achieve this goal(s):
 - Reactions have to be balanced
 - 2. Reactions have to be atom-mapped

Two Molecule Case

- Atom mapping for chemical reactions
- Experimental approach: isotope-labeling experiments and NMR
 - Expensive in time and money
- Computational strategies of utmost interest
 - Active research field
- MCS is a key technique

Modified after: Fooshee D. et al. (2013) J. Chem. Inf. Model., 53, 2812-9

Two Molecule Case

- Atom mapping for chemical reactions
- MCS mapping

Modified after: Fooshee D. et al. (2013) J. Chem. Inf. Model., 53, 2812-9

Essential Problem

- We first discuss the two molecule case
 - Multiple molecule case less explored
- Variant of Maximum Common Subgraph Isomorphism
 - NP-complete in the general case ¹
- Maximum Common Substructure for molecules
 - Labeled graph with bounded node degree
 - Cf. lecture L03 Chemical Data Representation
 - Solvable for most medium sized molecules in acceptable time
 - That is within seconds

Essential Problem

Given: Molecular graphs G₁=(V₁, E₁) and G₂=(V₂, E₂) and a node labeling function μ: V₁ ∪ V₂ → Σ

• Problem: Find a bijection m: $V_1' \rightarrow V_2'$ mapping each node from $V_1' \subseteq V_1$ on a node from $V_2' \subseteq V_2$ such that $\mu(v) = \mu(m(v)) \ \forall \ v \in V_1'$

• As we search for a **maximum** common substructure the mapping m should be **maximal**. That is no other mapping exists that maps more than $|V_1|$ nodes.

Essential Problem: Topology

Problem: mapping is not topology preserving
 ⇒ chemically not meaningful!

Essential Problem: Topology

We need to define appropriate constraints:
 To preserve topology we have to ensure that adjacent nodes in G₁ can only be mapped onto adjacent nodes in G₂

Essential Problem: Topology

Topology constraints preserve chemistry

Essential Problem

Formally, we have to add the following requirement:

$$(u, v) \in E_1 \Leftrightarrow (m(u), m(v)) \in E_2$$

- Topology constraint significantly complicates problem
- Questions:
 - 1. How many such mappings exist?
 - 2. How to identify suitable mappings?

Number of Possible Mappings

- Worst case:
 - In G₁ and G₂: all labels are identical
 - G_1 and G_2 are complete
- Consequence: all unique bijections are valid
- Assuming $|V_1| = |V_2| = n$ we have n! possible mappings of G_1 onto G_2 and thus **exponentially many!**
- How can we identify such mappings efficiently?

Problem Variants

- MCS can refer to different problem variants
- Two groups of variants can be distinguished:
 - Connected and Disconnected MCS
 - 2. MCIS and MCES

Problem Variants

- MCS can refer to different problem variants
- Two groups of variants can be distinguished:
 - 1. Connected and Disconnected MCS
 - 2. MCIS and MCES

Problem Variants

- MCS can refer to different problem variants
- Two groups of variants can be distinguished:
 - Connected and Disconnected MCS
 - 2. MCIS and MCES

Algorithmic Approaches

- A lot of algorithms have been proposed to solve MCS ¹
 - Exact algorithms
 - Maximum Clique-based
 - Backtracking
 - Dynamic programming ²
 - Approximate algorithms
 - Genetic algorithms
 - Combinatorial optimization
 - Others
- Solution in polynomial time for tree-like graphs with bounded node degree ²

1. Raymond J.W. and Willett P. (2002) J. Comput. Aided Mol. Des., 16, 521-33 2. Akutsu T. (1993) IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E76-A, 1488

Algorithmic Approaches

Algorithms for MCS can thus also be classified ^{1,2}

1. Raymond J.W. and Willett P. (2002) *J. Comput. Aided Mol. Des.*, 16, 521-33 2. Ehrlich H.C. and Rarey M. (2011) *WIREs Comput. Mol. Sci.*, 1: 68-79, doi: 10.1002/wcms.5

MCS: Maximum Clique Approach Cliques

- MCS can be reduced to detection of a maximum clique
- Given a graph G = (V, E)
 - Clique: a complete subgraph of G.
 - Maximal clique: a clique where no further v ∈ V
 can be added (including its induced edges)
 such that the resulting subgraph is again a clique.
 - Maximum clique: largest maximal clique(s) of G
 with respect to the number of nodes.

MCS: Maximum Clique Approach Cliques

Graph G

Cliques

Graph G: some cliques ...

MCS: Maximum Clique Approach Cliques

Graph G: two maximal cliques ...

MCS: Maximum Clique Approach Cliques

Graph G: maximum clique

MCS: Maximum Clique Approach Overview

- Clique detection works on a single graph
- Questions:
 - What graph is that?
 - 2. How do we generate that graph from our molecular graphs?
 - 3. How can we calculate maximum cliques?
- We will discuss these steps in the following

MCS: Maximum Clique Approach Compatibility Graph

- Target graph: compatibility graph
 - Association graph
 - Correspondence graph
 - Modular product graph
- We have to molecular graphs A and B
- We have one compatibility graph
 - → Obviously the latter needs to be calculated from *A* and *B*

Compatibility Graph

• Given two (molecular) graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$, the compatibility graph G_C is defined as the vertex set $V_C\subseteq V_1\times V_2$ where $\mu(v_{1i})=\mu(v_{2i})$ for all $\langle v_{1i},v_{2i}\rangle \in V_C$ and in which $\langle v_{1i},v_{2i}\rangle$ and $\langle v_{1r},v_{2s}\rangle$ are adjacent iff

$$(v_{1i},v_{1r})\in E_1 \text{ and } (v_{2j},v_{2s})\in E_2$$
 or
$$(v_{1i},v_{1r})\notin E_1 \text{ and } (v_{2j},v_{2s})\notin E_2$$
 Topology preservation!

for $v_{1i} \neq v_{1r}$ and $v_{2i} \neq v_{2s}$

Compatibility Graph

Construction of G_C

MCS: Maximum Clique Approach Compatibility Graph

Construction of G_C

kartesian set
1 and 11 are connected
4 to 14
and every other node has the same
compatibility: 2-13 is connected and 3-12 are
disconnected just as 1 is disconnected to 3

Compatibility Graph

Construction of G_C

Compatibility Graph

Construction of G_C

Compatibility Graph

Maximum clique in G_C corresponds to MCS between G₁ and G₂

MCS: Maximum Clique Approach Maximum Clique Problem

- Well known but also NP-complete
 - Reducible to 3-SAT
- A number of algorithms exist for solving this problem
- Example: Bron-Kerbosch algorithm ¹
 - Popular in cheminformatics
 - Easy to implement
- One key problem remains:

MCS cannot be solved efficiently for large molecules and is still computationally expensive even for small to medium-sized molecules

Bron-Kerbosch Algorithm

- Given: A graph G = (V, E), e.g. a compatibility graph
- Bron and Kerbosch proposed a simple algorithm using recursive tree-search with backtracking
- It enumerates all maximal cliques
 - The maximum clique thus being part of it
- It uses three node lists:
 - C: current clique candidate nodes
 - M: nodes of next maximal clique
 - N: tested nodes that are not part of the next maximum clique

MCS: Maximum Clique Approach Bron-Kerbosch Algorithm

```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
```

Function BronKerbosch (M, C, N)

```
if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
         return;
```

end

for each $u \in C$ do

```
M_{new} = M \cup \{u\};
      C_{new} = \{ v \in C \mid (u, v) \in E \};
      N_{new} = \{ v \in N \mid (u, v) \in E \};
      if C_{new} == N_{new} == \emptyset then
             printMaxClique(M_{new});
      else
             BronKerbosch(M_{new}, C_{new}, N_{new});
      end
      N = N \cup \{u\};
      C = C \setminus \{u\};
end
```


М	С	N
	1,2,3,4,5	

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

MCS: Maximum Clique Approach Bron-Kerbosch Algorithm

In : Graph G = (V, E)Out: List L with all maximal cliques of GC = V; $M = N = \emptyset$;

Function BronKerbosch (M, C, N)

check if node has connection to every node in cand set: cant update the list anymore

d = 0	М	С	N
current		1,2,3,4,5	
new			

end

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

MCS: Maximum Clique Approach

Bron-Kerbosch Algorithm

In : Graph G = (V, E)

Out: List L with all maximal cliques of G

C = V;

 $M = N = \emptyset;$

Function BronKerbosch (M, C, N)

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ | return:

end

for each $u \in C$ do

```
M_{new} = M \cup \{u\};
C_{new} = \{v \in C \mid (u, v) \in E\};
N_{new} = \{v \in N \mid (u, v) \in E\};
\text{if } C_{new} == N_{new} == \emptyset \text{ then}
\mid \text{ printMaxClique}(M_{new});
\text{else}
\mid \text{ BronKerbosch}(M_{new}, C_{new}, N_{new});
\text{end}
N = N \cup \{u\};
C = C \setminus \{u\};
```

all connected to C make it to C new

d = 0	М	С	N
current		1,2,3,4,5	
new	1		

 \mathbf{end}


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch(M, C, N)

if \exists u \in N \ with \ (u, v) \in E \ \forall v \in C \ then

return;
end
```


d = 0	М	С	N
current		1,2,3,4,5	
new	1	2,3,4	


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch(M, C, N)

if \exists u \in N \ with \ (u, v) \in E \ \forall v \in C \ then
return:
```

end

```
\begin{aligned} & \text{for each } u \in C \text{ do} \\ & M_{new} = M \cup \{u\}; \\ & C_{new} = \{v \in C \mid (u,v) \in E\}; \\ & N_{new} = \{v \in N \mid (u,v) \in E\}; \\ & \text{if } C_{new} == N_{new} == \emptyset \text{ then} \\ & & \text{printMaxClique}(M_{new}); \\ & \text{else} \\ & & & \text{BronKerbosch}(M_{new}, C_{new}, N_{new}); \\ & \text{end} \\ & N = N \cup \{u\}; \\ & C = C \setminus \{u\}; \end{aligned}
```


d = 0	М	С	N
current		1,2,3,4,5	
new	1	2,3,4	

 \mathbf{end}


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
      if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
            return:
      end
      foreach u \in C do
            M_{new} = M \cup \{u\};
            C_{new} = \{ v \in C \mid (u, v) \in E \};
            N_{new} = \{ v \in N \mid (u, v) \in E \};
            if C_{new} == N_{new} == \emptyset then
                   printMaxClique(M_{new});
            else
                   BronKerbosch(M_{new}, C_{new}, N_{new});
             end
            N = N \cup \{u\};
```


d = 0	М	С	N
current		1,2,3,4,5	
new	1	2,3,4	

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

end

 $C = C \setminus \{u\};$


```
\label{eq:continuous} \begin{array}{l} \textbf{In} \quad \textbf{:} \; \text{Graph} \; G = (V, E) \\ \textbf{Out:} \; \text{List} \; L \; \text{with all maximal cliques of} \; G \\ C = V; \\ M = N = \emptyset; \end{array}
```

Function BronKerbosch (M, C, N)

d = 1	М	С	N
current	1	2,3,4	
new			

end


```
\label{eq:continuous} \begin{split} \mathbf{In} & : \mathsf{Graph}\ G = (V, E) \\ \mathbf{Out:}\ \mathsf{List}\ L \ \mathsf{with}\ \mathsf{all}\ \mathsf{maximal}\ \mathsf{cliques}\ \mathsf{of}\ G \\ C = V; \\ M = N = \emptyset; \\ & \mathbf{Function}\ \mathsf{BronKerbosch}(M, C, N) \end{split}
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ | return:

end

d = 1	М	С	N
current	1	2,3,4	
new	1,2		

end


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch(M, C, N)

if \exists u \in N \text{ with } (u, v) \in E \text{ } \forall v \in C \text{ then}

return;
end

foreach u \in C \text{ do}

M_{new} = M \cup \{u\};
```

foreach $u \in C$ do
$M_{new} = M \cup \{u\};$
$C_{new} = \{ v \in C \mid (u, v) \in E \};$
$N_{new} = \{ v \in N \mid (u, v) \in E \};$
if $C_{new} == N_{new} == \emptyset$ then
$\texttt{printMaxClique}(M_{new});$
else
$\texttt{BronKerbosch}(M_{new}, C_{new}, N_{new});$
end
$N = N \cup \{u\};$
$C = C \setminus \{u\};$
end

d = 1	М	С	N
current	1	2,3,4	
new	1,2	4	

end


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch(M, C, N)

if \exists u \in N \ with \ (u, v) \in E \ \forall v \in C \ then
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ return;

end

d = 1	М	C	N
current	1	2,3,4	
new	1,2	4	

end


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
      if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
            return:
      end
      for
each u \in C do
            M_{new} = M \cup \{u\};
            C_{new} = \{ v \in C \mid (u, v) \in E \};
            N_{new} = \{ v \in N \mid (u, v) \in E \};
            if C_{new} == N_{new} == \emptyset then
                   printMaxClique(M_{new});
            else
                   BronKerbosch(M_{new}, C_{new}, N_{new});
             end
```


d = 1	М	С	N
current	1	2,3,4	
new	1,2	4	

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

end

 $N = N \cup \{u\};$ $C = C \setminus \{u\};$


```
\label{eq:continuous} \begin{split} \mathbf{In} & : \mathrm{Graph}\ G = (V, E) \\ \mathbf{Out:}\ \mathrm{List}\ L \ \mathrm{with\ all\ maximal\ cliques\ of}\ G \\ C = V; \\ M = N = \emptyset; \end{split}
```

Function BronKerbosch (M, C, N)

d = 2	М	С	N
current	1,2	4	
new			

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

end


```
In : Graph G=(V,E)
Out: List L with all maximal cliques of G
C=V;
M=N=\emptyset;
Function BronKerbosch(M,C,N)
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ | return;

end

d = 2	М	С	N
current	1,2	4	
new	1,2,4		

 \mathbf{end}


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
      if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
            return;
      end
      for
each u \in C do
            M_{new} = M \cup \{u\};
            C_{new} = \{ v \in C \mid (u, v) \in E \};
            N_{new} = \{ v \in N \mid (u, v) \in E \};
            if C_{new} == N_{new} == \emptyset then
                   printMaxClique(M_{new});
            else
                   BronKerbosch(M_{new}, C_{new}, N_{new});
             end
```


d = 2	М	С	N
current	1,2	4	
new	1,2,4		

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

end

 $N = N \cup \{u\};$ $C = C \setminus \{u\};$


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
      if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
            return:
      end
      foreach u \in C do
            M_{new} = M \cup \{u\};
            C_{new} = \{ v \in C \mid (u, v) \in E \};
            N_{new} = \{ v \in N \mid (u, v) \in E \};
            if C_{new} == N_{new} == \emptyset then
                   printMaxClique(M_{new});
            else
                   BronKerbosch(M_{new}, C_{new}, N_{new});
             end
            N = N \cup \{u\};
```


d = 2	М	С	N
current	1,2	4	
new	1,2,4		

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

end

 $C = C \setminus \{u\};$


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ return: end

foreach $u \in C$ do

 $M_{new} = M \cup \{u\};$ $C_{new} = \{ v \in C \mid (u, v) \in E \};$

 $N_{new} = \{ v \in N \mid (u, v) \in E \};$

if $C_{new} == N_{new} == \emptyset$ then $printMaxClique(M_{new});$

else

BronKerbosch $(M_{new}, C_{new}, N_{new});$

end

 $N = N \cup \{u\};$

 $C = C \setminus \{u\};$

end

end

d = 2	М	C	N
current	1,2	4	
new	1,2,4		


```
\begin{split} &\mathbf{In} \quad \text{: Graph } G = (V, E) \\ &\mathbf{Out:} \text{ List } L \text{ with all maximal cliques of } G \\ &C = V; \\ &M = N = \emptyset; \\ &\mathbf{Function BronKerbosch}(M, C, N) \\ &\middle| \quad \mathbf{if } \exists u \in N \text{ } with \text{ } (u, v) \in E \text{ } \forall v \in C \text{ then} \end{split}
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ return;

end

d = 2	М	С	N
current	1,2	4	
new	1,2,4		

L
1,2,4

end


```
In : Graph G=(V,E)
Out: List L with all maximal cliques of G
C=V;
M=N=\emptyset;
Function BronKerbosch(M,C,N)
```

if $\exists u \in N \text{ } with \text{ } (u,v) \in E \text{ } \forall v \in C \text{ } \mathbf{then}$ | return; end

```
\begin{aligned} & \text{for each } u \in C \text{ do} \\ & M_{new} = M \cup \{u\}; \\ & C_{new} = \{v \in C \mid (u,v) \in E\}; \\ & N_{new} = \{v \in N \mid (u,v) \in E\}; \\ & \text{if } C_{new} == N_{new} == \emptyset \text{ then} \\ & \mid & \text{printMaxClique}(M_{new}); \\ & \text{else} \\ & \mid & \text{BronKerbosch}(M_{new}, C_{new}, N_{new}); \\ & \text{end} \\ \hline & N = N \cup \{u\}; \end{aligned}
```


d = 2	М	С	N
current	1,2	4	
new	1,2,4		

L
1,2,4

 \mathbf{end}

end

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

 $C = C \setminus \{u\};$


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch(M, C, N)

if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ th}
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ | return; end

for each $u \in C$ do

 $M_{new} = M \cup \{u\};$ $C_{new} = \{v \in C \mid (u, v) \in E\};$

 $N_{new} = \{ v \in N \mid (u, v) \in E \};$

if $C_{new} == N_{new} == \emptyset$ then

 $printMaxClique(M_{new});$

else

 $BronKerbosch(M_{new}, C_{new}, N_{new});$

end

 $N = N \cup \{u\};$

 $C = C \setminus \{u\};$

 \mathbf{end}

 end

d = 2	М	С	N
current	1,2		4
new	1,2,4		

L	
1,2	,4


```
\label{eq:continuous_continuous} \begin{split} \mathbf{In} & : \mathbf{Graph} \ G = (V, E) \\ \mathbf{Out:} \ \mathrm{List} \ L \ \mathrm{with \ all \ maximal \ cliques \ of} \ G \\ C = V; \\ M = N = \emptyset; \\ \mathbf{Function} \ \mathrm{BronKerbosch}(M, C, N) \\ & \middle| \quad \mathbf{if} \ \exists u \in N \ with \ (u, v) \in E \ \forall v \in C \ \mathbf{th} \end{split}
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ | return; end

foreach $u \in C$ do

d = 2	М	С	N
current	1,2		4
new	1,2,4		

L
1,2,4

 \mathbf{end}


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
      if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
            return:
      end
      foreach u \in C do
            M_{new} = M \cup \{u\};
            C_{new} = \{ v \in C \mid (u, v) \in E \};
            N_{new} = \{ v \in N \mid (u, v) \in E \};
            if C_{new} == N_{new} == \emptyset then
                   printMaxClique(M_{new});
            else
                   BronKerbosch(M_{new}, C_{new}, N_{new});
             end
            N = N \cup \{u\};
```


d = 1	М	С	N
current	1	2,3,4	
new	1,2	4	

L				
1,2,4				

 \mathbf{end}

end

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

 $C = C \setminus \{u\};$


```
\label{eq:continuous} \begin{split} \mathbf{In} & : \operatorname{Graph}\,G = (V,E) \\ \mathbf{Out:} \text{ List } L \text{ with all maximal cliques of } G \\ C &= V; \\ M &= N = \emptyset; \\ \mathbf{Function} \text{ BronKerbosch}(M,C,N) \end{split}
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ return;

end

d = 1	М	C	N
current	1	2,3,4	
new	1,2	4	

L				
1,2,4				


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
```

```
if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
         return:
```

end

d = 1	М	С	N
current	1	3,4	2
new	1,2	4	

L				
1,2,4				

end


```
In : Graph G=(V,E)
Out: List L with all maximal cliques of G
C=V;
M=N=\emptyset;
Function BronKerbosch(M,C,N)
```

```
if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then} return;
```

```
foreach u \in C do M_{new} = M \cup \{u\};
```

$$C_{new} = \{ v \in C \mid (u, v) \in E \};$$

 $N_{new} = \{ v \in N \mid (u, v) \in E \};$

if
$$C_{new} == N_{new} == \emptyset$$
 then

printMaxClique (M_{new}) ;

else

 $BronKerbosch(M_{new}, C_{new}, N_{new});$

end

 $N = N \cup \{u\};$

 $C = C \setminus \{u\};$

end

end

d = 1	М	С	N
current	1	3,4	2
new	1,2	4	

	L
1	,2,4


```
In : Graph G = (V, E)

Out: List L with all maximal cliques of G

C = V;

M = N = \emptyset;
```

Function BronKerbosch (M, C, N)

```
if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then} return;
```

end

d = 1	М	С	N
current	1	3,4	2
new	1,3	4	

L
1,2,4

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

end


```
In : Graph G = (V, E)

Out: List L with all maximal cliques of G

C = V;

M = N = \emptyset;

Function BronKerbosch(M, C, N)

if \exists u \in N \text{ with } (u, v) \in E \text{ } \forall v \in C \text{ then}

return;

end

foreach u \in C do

M_{new} = M \cup \{u\};

C_{new} = \{v \in C \mid (u, v) \in E\};

N_{new} = \{v \in N \mid (u, v) \in E\};

if C_{new} = N_{new} = \emptyset \text{ then}

printMaxClique(M_{new});
```

BronKerbosch $(M_{new}, C_{new}, N_{new});$

d = 1	М	С	N
current	1	3,4	2
new	1,3	4	

L
1,2,4

end

end

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

else

end

 $N = N \cup \{u\};$ $C = C \setminus \{u\};$


```
\begin{split} &\mathbf{In} \quad \mathbf{:} \; \mathbf{Graph} \; G = (V, E) \\ &\mathbf{Out:} \; \mathbf{List} \; L \; \mathbf{with} \; \mathbf{all} \; \mathbf{maximal} \; \mathbf{cliques} \; \mathbf{of} \; G \\ &C = V; \\ &M = N = \emptyset; \\ &\mathbf{Function} \; \mathbf{BronKerbosch}(M, C, N) \\ &\middle| \quad \mathbf{if} \; \exists u \in N \; with \; (u, v) \in E \; \forall v \in C \; \mathbf{then} \end{split}
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ return;

end

d = 1	М	С	N
current	1	3,4	2
new	1,3	4	

L
1,2,4

end 1. Bron C. and Kerbo


```
\begin{aligned} &\textbf{In} &: \text{Graph } G = (V, E) \\ &\textbf{Out: List } L \text{ with all maximal cliques of } G \\ &C = V; \\ &M = N = \emptyset; \\ &\textbf{Function BronKerbosch}(M, C, N) \\ & & \textbf{if } \exists u \in N \text{ with } (u, v) \in E \text{ } \forall v \in C \text{ then } \\ & & \text{return; } \\ & \textbf{end} \\ & & \textbf{foreach } u \in C \text{ do} \\ & & M_{new} = M \cup \{u\}; \\ & & C_{new} = \{v \in C \mid (u, v) \in E\}; \\ & & N_{new} = \{v \in N \mid (u, v) \in E\}; \\ & & \textbf{if } C_{new} == N_{new} == \emptyset \text{ then } \\ & & \text{printMaxClique}(M_{new}); \end{aligned}
```

BronKerbosch $(M_{new}, C_{new}, N_{new});$

d = 1	М	С	N
current	1	3,4	2
new	1,3	4	

L	
1,2,4	

end

end

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

else

end

 $N = N \cup \{u\};$ $C = C \setminus \{u\};$


```
\label{eq:continuous} \begin{split} \mathbf{In} & : \mathrm{Graph}\ G = (V, E) \\ \mathbf{Out:}\ \mathrm{List}\ L \ \mathrm{with\ all\ maximal\ cliques\ of}\ G \\ C = V; \\ M = N = \emptyset; \end{split}
```

Function BronKerbosch (M, C, N)

d = 2	М	С	N
current	1,3	4	
new			

L
1,2,4

end 1. Bron C.


```
\label{eq:continuous} \begin{split} \mathbf{In} & : \mathsf{Graph}\ G = (V, E) \\ \mathbf{Out:}\ \mathsf{List}\ L \ \mathsf{with}\ \mathsf{all}\ \mathsf{maximal}\ \mathsf{cliques}\ \mathsf{of}\ G \\ C = V; \\ M = N = \emptyset; \\ & \mathbf{Function}\ \mathsf{BronKerbosch}(M, C, N) \end{split}
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ | return:

end

d = 2	М	С	N
current	1,3	4	
new	1,3,4		

L	
1,2	,4

end


```
In : Graph G = (V, E)

Out: List L with all maximal cliques of G

C = V;

M = N = \emptyset;

Function BronKerbosch(M, C, N)

if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}

return;

end

foreach u \in C \text{ do}

M_{new} = M \cup \{u\};

C_{new} = \{v \in C \mid (u, v) \in E\};

N_{new} = \{v \in N \mid (u, v) \in E\};

if C_{new} = = N_{new} = \emptyset \text{ then}
```

 $printMaxClique(M_{new});$

BronKerbosch $(M_{new}, C_{new}, N_{new});$

d = 2	М	С	N
current	1,3	4	
new	1,3,4		

L	
1,2,4	

 \mathbf{end}

end

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

else

end

 $N = N \cup \{u\};$ $C = C \setminus \{u\};$


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
      if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
            return:
      end
      foreach u \in C do
            M_{new} = M \cup \{u\};
            C_{new} = \{ v \in C \mid (u, v) \in E \};
            N_{new} = \{ v \in N \mid (u, v) \in E \};
            if C_{new} == N_{new} == \emptyset then
                   printMaxClique(M_{new});
            else
                   BronKerbosch(M_{new}, C_{new}, N_{new});
             end
            N = N \cup \{u\};
```


d = 2	М	С	N
current	1,3	4	
new	1,3,4		

L
1,2,4

 \mathbf{end}

end

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

 $C = C \setminus \{u\};$


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
```

```
if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
         return:
```

end

d = 2	М	С	N
current	1,3	4	
new	1,3,4		

L	
1,2,4	

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

end


```
\label{eq:continuous} \begin{split} \mathbf{In} & : \mathsf{Graph}\ G = (V, E) \\ \mathbf{Out:}\ \mathsf{List}\ L \ \mathsf{with}\ \mathsf{all}\ \mathsf{maximal}\ \mathsf{cliques}\ \mathsf{of}\ G \\ C = V; \\ M = N = \emptyset; \\ & \mathbf{Function}\ \mathsf{BronKerbosch}(M, C, N) \end{split}
```

if $\exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}$ return;

end

d = 2	М	С	N
current	1,3	4	
new	1,3,4		

L
1,2,4 1,3,4

 \mathbf{end}


```
In : Graph G = (V, E)
Out: List L with all maximal cliques of G
C = V;
M = N = \emptyset;
Function BronKerbosch (M, C, N)
      if \exists u \in N \text{ with } (u, v) \in E \ \forall v \in C \text{ then}
             return:
      end
      for
each u \in C do
            M_{new} = M \cup \{u\};
            C_{new} = \{ v \in C \mid (u, v) \in E \};
             N_{new} = \{ v \in N \mid (u, v) \in E \};
            if C_{new} == N_{new} == \emptyset then
                   printMaxClique(M_{new});
             else
                   BronKerbosch(M_{new}, C_{new}, N_{new});
             end
             N = N \cup \{u\};
            C = C \setminus \{u\};
      end
```


d =	М	С	N
current			
new			

L	
1,2,4 1,3,4 2,5 3,5	

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7

end

MCS: Maximum Clique Approach

Bron-Kerbosch Algorithm

- Enumerates all maximal cliques
- Runtime exponential in the number of nodes
- Also used for other cheminformatics problems
 - Pharmacophore matching (discussed in a later lecture)
- Popularity of the algorithm is due to its trivial implementation
- Much more advanced algorithms exist
 - C.f. second DIMACS Challenge ²
 - However, they are often very tricky to implement
- Efficient algorithms for approximate clique detection often yield very good results as well

1. Bron C. and Kerbosch J. (1973) Commun. ACM, 16, 575-7
2. Johnson D.S. and Trick M.A. (1996) Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, Bellcore and the American Mathematical Society

Motivation

- Maximum Common Substructure: MCS
- The largest common substructure of two molecules
- Very important concept in cheminformatics
 - Also used in other molecular science areas
 - An overview can be found in Ehrlich and Rarey (2011) ¹
- Two problem variants have cheminformatic use cases:
 - Two molecule case
 - 2. Multiple molecule case

Motivation

Multiple Molecule Case

We discussed substructure searching in detail

Question:

What are interesting substructures to search for?

Possible answer:

Molecules that are structurally related to known actives

Pharmacologically active compounds
 Given a set of active molecules, e.g. identified by HTS,
 identify largest common substructure and search for molecules
 that also contain it in order to be tested (SPP!).

Motivation

Multiple Molecule Case

Example: aldose reductase inhibitors

Motivation

Multiple Molecule Case

- Given: set of compounds with known property
 - Desired pharmacologic activity, identified e.g. by HTS
 - Same smell, desired material property, ...
- Goal: find new compounds possessing that property
- According to the SPP we should try to find structurally related compounds and test those

Approach:

Identify MCS of given compounds and use it as a query for a substructure search

Multiple Molecule Case

- Maximum clique approach not easily extendible
- Compatibility graph size grows exponentially
- Assume n molecular graphs of size m
 - \Rightarrow Worst case size of compatibility graph ¹:

$$\prod_{i=1}^{n} m_i^2$$

Efficient clique detection is infeasible here

Multiple Molecule Case

Pairwise MCS detection is not sufficient

Maximum Common Substructure *Multiple Molecule Case*

Pairwise Maximal Common Substructures (mCS) detection

Multiple Molecule Case

MCS is contained in the set of all pairwise intersected mCS

Multiple Molecule Case

- All mCS are enumerated by Bron-Kerbosch
- Idea:
 - Given a set of n molecules
 - Select a pivot molecule
 - Calculate mCS for pivot molecule and all other molecules
 - Iteratively intersect mCS sets
- Possible outcomes:
 - An empty set of intersections, thus no MCS
 - A list of MCS candidates
- Exemplary algorithm can look like the following

Multiple Molecule Case: Ingredients

- selectPivotMolecule(M):
 Select a pivot molecule from all molecules
- getMaximalCS (m_i, m_j) : Return all mCS for molecule pair m_i and m_j as substructures of m_j . Use for example the clique approach with Bron-Kerbosch
- getLargestSubstructure(S):
 Return largest substructure from S with respect to its number of atoms

Maximum Common Substructure Multiple Molecule Case: Algorithm

In : Molecular Graphs $M = \{m_1, ..., m_n\}$

Out: MCS, the maximum common substructure of molecules in M begin

check for included subs if included for each element in the list of subs: if overlap then add to intersection list

```
MCS = \emptyset;
     m_P = \mathtt{selectPivotMolecule}(M);
     M = M \setminus \{m_P\};
      S = \mathtt{getMaximalCS}(m_1, m_P);
     foreach m_i \in M with 2 < i < n-1 do
            if S == \emptyset then
                  return;
            S_{new} = \mathtt{getMaximalCS}(m_i, m_P);
            S_{tmp} = \emptyset;
            foreach s \in S_{new} do
                  foreach t \in S do
                        S_{tmn} = S_{tmn} \cup (s \cap t);
                  end
            end
            S = S_{tmp}
      end
      MCS = getLargestSubstructure(S);
end
```


Maximum Common Substructure *MultiMCS*

pivot molecule compares against every other molecule: smallest molecule

- How to select the pivot molecule?
- Obvious choice: smallest molecule
 - Reduction of compatibility graph size
 - Speeding up mCS calculations
- This is still pretty time consuming
 - Figure shows benchmarks for 3-molecule instances

1. Hariharan R. et al. (2011) J. Chem. Inf. Model., 51, 788-806

Maximum Common Substructure *MultiMCS*

- Hariharan et al. presented an efficient approach ¹: MultiMCS
- Divide-and-conquer strategy

Key ideas:

- Split pivot molecule m_P into small fragments $\{m_{P1}, ..., m_{Pn}\}$
 - Splitting by removal of chain bonds
- Solve mCS task for all fragments against all other molecules
- Restore original mCS set for complete molecule pairs
- Choice of pivot molecule:

Molecule that can best be decomposed into small fragments

1. Hariharan R. et al. (2011) J. Chem. Inf. Model., 51, 788-806

Maximum Common Substructure *MultiMCS*

- Hariharan et al. presented an efficient approach ¹: MultiMCS
- Significant speedup over naive approach

1. Hariharan R. et al. (2011) J. Chem. Inf. Model., 51, 788-806

Summary

- Maximum Common Substructure (MCS)
- Variant of Maximum Common Subgraph Isomorphism
- Reaction mapping of educts and products: pairwise MCS
- MCS problem reduced to into search for maximum clique
- Bron-Kerbosch algorithm calculates all maximal cliques
- Common structural property of active compounds: multiple MCS
- MCS for multiple molecules not trivial
- Select pivot molecule and pairwise mCS problem
- Intersecting the mCS lists yields MCS
- MultiMCS employs a very efficient divide-and-conquer approach

Text Books:

• GJ Garey M. and Johnson D.S., W. H. Freeman & Co., New York, 1979

Computers and Intractability: A Guide to the Theory of NP-Completeness

GE Gasteiger J. and Engel T. (Eds.), 1st Ed., Wiley-VCH, 2003

Chemoinformatics - A Textbook

KA Kerber A. et al.

Mathematical Chemistry and Chemoinformatics, De Gruyter, 2014

Acknowledgments:

2D structure drawings were generated with ChemAxon MarvinSketch

- https://www.chemaxon.com/products/marvin/marvinsketch

3D structures were generated with BALLView

http://www.ball-project.org

- Hildebrandt A. et al. (2010) BMC Bioinformatics, 11, 531

- Moll A. et al. (2006) Bioinformatics, 22, 365-6