Semantic Latent Space in Diffusion Models

Vinayak Goyal Bhavya Singh Prateek Garg Dadhichi Telwadkar

Department of Electrical Engineering

Indian Institute of Technology Bombay May 3,2023

- Problem Statement
- Preliminary Definitions DDIM CLIP as Semantic Loss LPIPS
- 3 Discovering Latent Space
- 4 Asymmetric Reverse Process

Main Idea

The *h*-space

Editing Intervals and Quality Boosting

Generative Process

Results

Limitations

- 6 Work Distribution
- 6 References

Task Description

 Controlling the generative process in diffusion models to get desirable changes.

Figure: Generate the image (b) given (a) with attribute "smiling"

- Problem Statement
- Preliminary Definitions DDIM CLIP as Semantic Loss LPIPS
- 3 Discovering Latent Space
- 4 Asymmetric Reverse Process
 Main Idea

The *h*-space

Editing Intervals and Quality Boosting

Generative Process

Results

Limitations

- **6** Work Distribution
- 6 References

Denoising Diffusion Implicit Model

DDIM conditions the original process on the original image x_0

Figure: Non-Markovian process which trains faster then DDPM.

$$X_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{X_t - \sqrt{1 - \alpha_t} \epsilon_t^{\theta}(X_t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_t^{\theta}(X_t) + \sigma_t Z_t, \quad (1)$$

Denoising Diffusion Implicit Model

- $\bullet \ \boldsymbol{P}_t(\epsilon_t^{\theta}(x_t)) := \left(\frac{x_t \sqrt{1 \alpha_t} \epsilon_t^{\theta}(x_t)}{\sqrt{\alpha_t}}\right),$ $\boldsymbol{D}_t(\epsilon_t^{\theta}(x_t)) := \sqrt{1 \alpha_{t-1} \sigma_t^2} \cdot \epsilon_t^{\theta}(x_t)$
- Now, (1) becomes

$$\mathbf{x}_{t-1} = \sqrt{\alpha_{t-1}} \mathbf{P}_t(\epsilon_t^{\theta}(\mathbf{x}_t)) + \mathbf{D}_t(\epsilon_t^{\theta}(\mathbf{x}_t)), \tag{2}$$

- Can we manipulate $\epsilon_t^{\theta}(x_t)$ to get desired changes?
 - If yes, How do we know the direction of the $\Delta\epsilon$ change?
 - Ans: Use CLIP

CLIP

 CLIP embeds images and texts, whose similarity indicates semantic similarity between them

Figure: Architecture of CLIP

• E_T : $text \to \mathbb{R}^N$, E_I : $Image \to \mathbb{R}^N$

CLIP

- Idea: Maximise cosine similarity between target description and edited image.
- Directional loss with cosine distance achieves homogeneous editing without mode collapse

$$\mathcal{L}(x^{edit}, y^{target}; x^{source}, y^{source}) := 1 - \frac{\Delta I \cdot \Delta T}{||\Delta I|| \cdot ||\Delta T||},$$
(3)

where

$$\Delta \textit{I} := \textit{E}_\textit{I}(\textit{x}^\textit{edit}) - \textit{E}_\textit{I}(\textit{x}^\textit{source}), \Delta \textit{T} := \textit{E}_\textit{T}(\textit{y}^\textit{target}) - \textit{E}_\textit{T}(\textit{y}^\textit{source})$$

• For example: Given a face image x^{source} and attribute similing y^{target} := "smiling face" y^{source} := "face", we optimise x^{edit} on 3

Learned Perceptual Image Patch Similarity

Figure: LPIPS is used to measure similarity in between images x and x_0

- LPIPS computes the similarity between the activations of two image patches for some pre-defined network.
- This measure has been shown to match human perception well.
- A low LPIPS score means that image patches are perceptually similar.

- Problem Statement
- 2 Preliminary Definitions DDIM CLIP as Semantic Loss LPIPS
- 3 Discovering Latent Space
- Asymmetric Reverse Process
 Main Idea
 - The *h*-space
 - Editing Intervals and Quality Boosting
 - **Generative Process**
 - Results
 - Limitations
- 6 Work Distribution
- 6 References

Discovering Latent Space

 Update x_T to optimize the directional CLIP loss given text prompts: leads to distortion or incorrect manipulation

DDIM Reverse Process

Figure: Comparison of DDIM and Asyrp

• Shift the noise vector ϵ_t^{θ} at each sampling step: changes in P_t and D_t cancel out similar to destructive interference

- Problem Statement
- 2 Preliminary Definitions DDIM CLIP as Semantic Loss LPIPS
- 3 Discovering Latent Space
- Asymmetric Reverse Process
 Main Idea
 The h-space
 Editing Intervals and Quality Boosting
 Generative Process
 Results
 Limitations
- 6 Work Distribution
- 6 References

Asymmetric Reverse Process

Asyrp applies change to only **P** term

$$\tilde{\mathbf{x}}_{t-1} = \sqrt{\alpha_{t-1}} \mathbf{P}_t(\tilde{\epsilon_t}^{\theta}(\mathbf{x}_t)) + \mathbf{D}_t(\epsilon_t^{\theta}(\mathbf{x}_t)), \tag{4}$$

where

$$\Delta \epsilon_t = \tilde{\epsilon_t}^{\theta} - \epsilon_t^{\theta}$$

DDIM Reverse Process

Changes are applied to bottleneck of U-net

Asymmetric Reverse Process

• Additionally, instead of optimizing Δh at every time, a neural f_t is trained on clip loss to predict Δh_t

DDIM Reverse Process

Asymmetric Reverse Process

\mathcal{H} -space

The h-space, represented by h_t , has smaller spacial resolutions and high-level semantics than ϵ_t^{θ}

$$\mathbf{x}_{t-1} = \sqrt{\alpha_{t-1}} \mathbf{P}_t(\epsilon_t^{\theta}(\mathbf{x}_t | \Delta h_t)) + \mathbf{D}_t(\epsilon_t^{\theta}(\mathbf{x}_t)) + \sigma_t \mathbf{z}_t$$
 (5)

Optimizing Δh_t requires a lot of training examples and training time and thus we define a function $f_t(h_t)$ (implemented as a neural network) which produces Δh_t for a given h_t and t. f_t converges faster then learning all Δh_t .

Editing Intervals and Quality Boosting

In a diffusion model, early time-steps generate high-level context. Later time steps generate fine details.

Editing Interval: the smallest early interval $[T, t_{edit}]$ that brings enough distinguishable changes to the images. *Editing Strength* is used to determine t_{edit} :

$$\xi_t = LPIPS(x, \mathbf{P}_T) - LPIPS(x, \mathbf{P}_t)$$
$$LPIPS(x, x_{t_{edit}}) = 0.33$$

Boost Interval: Injecting stochastic noise improves image quality but longer intervals may cause modifications to the image. *Quality Deficiency*, which measures the noise in x_t compared to original image x, is used to determine t_{boost} :

$$\begin{aligned} \lambda_t &= \textit{LPIPS}(x, x_t) \\ \lambda_t &= \textit{LPIPS}(x, P_{t_{boost}}) = 1.2 \end{aligned}$$

Generative Process

$$\rho_{\theta}^{(t)}(x_{t-1}|x_t) = \begin{cases}
\mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{P}_t(\epsilon_t^{\theta}(x_t|\boldsymbol{f}_t)) + \boldsymbol{D}_t, \sigma_t^2\boldsymbol{I}\right), \eta = 0 & [T, t_{edit}] \\
\mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{P}_t(\epsilon_t^{\theta}(x_t)) + \boldsymbol{D}_t, \sigma_t^2\boldsymbol{I}\right), \eta = 0 & (t_{edit}, t_{boost}] \\
\mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{P}_t(\epsilon_t^{\theta}(x_t)) + \boldsymbol{D}_t, \sigma_t^2\boldsymbol{I}\right), \eta = 1 & (t_{boost}, 0]
\end{cases}$$
(6)

Results

These are the results that we got by implementing changes for a h-space in a DDIM:

Figure: Top is the input. Bottom is output

- Problem Statement
- 2 Preliminary Definitions DDIM CLIP as Semantic Loss LPIPS
- 3 Discovering Latent Space
- Asymmetric Reverse Process
 Main Idea
 The h-space
 Editing Intervals and Quality Boosting
 Generative Process
 Results
- 6 Work Distribution
- 6 References

Work Distribution

- 1 Coding and Theory: Dadhichi Telwadkar and Prateek Garg
- Presentation and Report: Vinayak Goyal, Bhavya Singh

- Problem Statement
- 2 Preliminary Definitions DDIM CLIP as Semantic Loss LPIPS
- 3 Discovering Latent Space
- 4 Asymmetric Reverse Process
 Main Idea

The *h*-space

Editing Intervals and Quality Boosting

Generative Process

Results

Limitations

- Work Distribution
- 6 References

References

- Song, J., Meng, C. & Ermon, S. Denoising Diffusion Implicit Models. *International Conference On Learning Representations*. (2021), https://openreview.net/forum?id=St1giarCHLP
- Radford, A., Kim, J., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G. & Sutskever, I. Learning Transferable Visual Models From Natural Language Supervision. (2021)
- Zhang, R., Isola, P., Efros, A., Shechtman, E. & Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. (2018)

The End

Questions? Comments?