Subjectul D. OPTICA

Nr. item	Soluţie/Rezolvare
II.a.	
	$\beta - \frac{x_2}{x_2}$
	$p - x_1$
	$\beta = \frac{x_2}{x_1}$ $d = x_1 + x_2$
	Rezultat final: $x_1 = -20cm$
b.	
	$C_4 = \frac{1}{-}$
	t_1
	$C_1 = \frac{1}{t_1}$ $t_1 = \frac{x_1 x_2}{x_1 - x_2}$
	$x_1 - x_2$
	Rezultat final: $C_1 = 10m^{-1}$
C.	
	$F = \frac{f_1 f_2}{f_1 + f_2}$
	1 Z
	Rezultat final: $F = 30cm$
d.	
	$\frac{1}{1} - \frac{1}{1} = \frac{1}{2}$
	x_2 x_1 F
	$g' = X_2'$
	$\rho - \frac{1}{x_1}$
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{F}$ $\beta' = \frac{x_2}{x_1}$ $x_2' = F(1 - \beta')$
	Rezultat final: $x_2' = 45cm$