The effectiveness of the short-run smog alert policy of Budapest - Online Appendix

Máté Kormos[¶] CEU Economics MA

Econometrics 2 Term Paper for Prof. Lychagin, Prof. Rooney

A. More on Methodology

Let us introduce the following expressions for further notation in this section: y_{st} – PM_{10} level at station s at time t (μgm^{-3}); x_{kt} – explanatory variable k at time t.

A.1. Imputation of missing data

Let \bar{s} be the index of a station such that $y_{\bar{s}t}$ is missing. Then the imputed value, $\tilde{y}_{\bar{s}t}$, is given by $\tilde{y}_{\bar{s}t} := \sum_{s:\exists y_{jt}} \omega_s y_{st}$, with $\omega_s = \frac{r_{\bar{s}s}}{\sum_{j:\exists y_{st}} r_{\bar{s}j}}$, where $r_{\bar{s}s}$ is the Pearson correlation coefficient between PM₁₀ levels at station \bar{s} and s measured in the training period, neglecting missing observations. For values of r see Appendix Figure 3.

A.2. Neural Network

Variables The variables included in x_t : minimum, maximum, average temperatures; wind blow; their lags up to 4; their dynamic variance, which for variable k at time t is given as $\mathbf{Var}_{kt} := 8^{-1} \sum_{\tau=0}^{7} (x_{kt-\tau} - \bar{x}_{kt})^2$, where $\bar{x}_{kt} = 8^{-1} \sum_{\tau=0}^{7} x_{kt-\tau}$. Neural Network Networks for each station consist of the input, a hidden, and the output

Neural Network Networks for each station consist of the input, a hidden, and the output layer, with 4 units in the hidden one. Minimisation of $L = 2^{-1} \sum_{t=1}^{T} (\hat{y}_t - y_t)^2$ was done with stochastic mini-batch gradient descent using a learning rate of 0.5 and a batch size of 241. Relatively quick convergence was witnessed.

[¶]E-mail: mate.kormos33@gmail.com.

B. Tables

B.1. Information on PM_{10} stations

Table 1: Station types and intervals of systematically missing observations

Station ^a	Represented air-quality cluster ^b	Intervals of missing observations ^c
Csepel	suburb industry	 2013: [06-18, 07-16] 2014: lot of one-offs
Erzsébet	city traffic	• 2016: [08-29, 09-22]
Gergely	city industry	 2013: [09-17, 12-05] 2015: [01-01, 04-10] 2016: [08-02, 10-03]
Gilice	suburb background	• 2014: [04-29, 06-26]
Honvéd	city background	 2013: [04-23, 07-28] 2014: [02-04, 04-15]; [05-15, 09-04] 2015: [05-06, 05-20]; [06-01, 06-11]; [07-21, 08-04]; [09-27, 11-04] 2016: lot of one-offs: [07], [09], [10], [11] 2017: [01-04, 01-31]
Káposztás	city background	 2014: [01-22, 07-23] 2017: [01-07, 02-08]
Kőrakas	city background	none
Kosztolányi	city traffic	 2013: [06-30, 10-03] 2015: some in: [04], [07] 2016: [07-24, 10-03]
Pesthidegkút	city background	none
Széna	city traffic	none
Teleki	city traffic	 2014: [04-04, 07-08]; [08-07, 11-04] 2016: [06-13, 07-15]; [07-28, 09-06]
${ m T\'et\'eny}$	suburb industry	 2014: [09-12, 10-31]; [11-28, 12-31] 2015: [01-01, 01-31]; lot of one-offs 2016: [09-21, 10-05]

^a Proper names of stations are: Csepel, Csillaghegy, Erzsébet tér, Gergely utca, Gilice tér, Hondvédtelep, Káposztásmegyer, Kőrakás park, Kosztolányi D. tér, Pesthidegút, Széna tér, Teleki/Baross tér, Budatétény. Highlighted bold names indicate kept stations.

^b Taxonomy of air-quality clusters are given at the OLM website. Link to the website.

^c The notation $[m_1m_1 - d_1d_1, m_2m_2 - d_2d_2]$ stands for inclusive time interval from $year - m_1m_1 - d_1d_1$ to $year - m_2m_2 - d_2d_2$; while [m] indicates whole month, m, of the given year.

Table 2: Locations of PM_{10} stations, coordinates

Station ^a	$\operatorname{Latitude}$	$\operatorname{Longitude}$
Csepel	47.404735	19.091183
Erzsébet	47.497526	19.052748
Gergely	47.467413	19.155894
Gilice	47.430904	19.181157
Honvéd	47.521723	19.068420
Káposztás	47.585304	19.114766
Kőrakás	47.543335	19.146578
Kosztolányi	47.475968	19.040069
Pesthidegkút	47.562097	18.961434
Szé na	47.507872	19.026794
Teleki	47.493421	19.084785
$\operatorname{T\acute{e}t\acute{e}ny}$	47.406124	19.009180

^a Highlighted bold names indicate kept stations. Coordinates are represented in decimal degrees. Conversion from addresses on OLM site to coordinates is done by MapsEasy.com (2017).

B.2. Descriptive statistics

Table 3: Descriptive statistics of the PM_{10} concentration at the kept stations in the training period

	Csepel	Erzsébet	Gergely	Gilice	Kőrakas	Kosztolányi	Csepel Erzsébet Gergely Gilice Kőrakas Kosztolányi Pesthidegkút Széna Overall	Széna	Overall
Mean	27.8272	27.8272 36.0347 24.6619 30.7384 28.0043	24.6619	30.7384	28.0043	34.7470	26.3957	26.3957 33.0029 30.2130	30.2130
Median	24.0000	34.0000	34.0000 22.0000 27.0000	27.0000	25.0000	30.0000	22.5000	22.5000 30.0000 27.0000	27.0000
Mode	16	32	15	19	25	25	14	22	22
Maximum	102	95	87	126	93	107	104	91	126
Minimum	3	6	3	9	4	4	4	∞	3
Standard deviation	15.9433		15.5716 12.4006 15.9410 12.9959	15.9410	12.9959	18.5286	14.9971	4.9971 14.1606 15.6033	15.6033
No. of observations	625	721	624	699	869	589	069	685	5301
No. of days in the period	730	730	730	730	730	730	730	730	5840

Period: from 2013-01-01 to 2014-12-31. Measurement unit: $\mu gm^{-3}.$

Table 4: Descriptive statistics of the PM_{10} concentration at the kept stations in the test period

	Csepel	Erzsébet	Gergely	Gilice	Kőrakas	Kosztolányi	Csepel Erzsébet Gergely Gilice Kőrakas Kosztolányi Pesthidegkút Széna Overal	Széna	Overall
Mean	33.2071	37.5242	26.8571	37.5242 26.8571 26.4756 27.9375	27.9375	19.3624	21.5974	21.5974 35.0815 28.4813	28.4813
Median	31.0000	34.0000	23.0000	34.0000 23.0000 22.0000 24.0000	24.0000	11.0000	18.0000	18.0000 30.0000 25.0000	25.0000
Mode	31	30	16	13	16	∞	12	27	16
Maximum	90	119	98	101	93	93	85	115	119
Minimum	7	13	∞	9	5	3	S	6	လ
Standard deviation	15.1105	16.5208	14.8517	16.0657	$16.5208 \ 14.8517 \ 16.0657 \ 16.7347$	18.2491	14.0939	4.0939 17.5670 17.2720	17.2720
No. of observations	198	227	231	225	224	218	231	233	1787
No. of days in the period	235	235	235	235	235	235	235	235	1880

Period: from 2015-12-01 to 2016-07-22. Measurement unit: μgm^{-3} .

Table 5: Descriptive statistics of the PM_{10} concentration at the kept stations in the Evaluation 1 period

	Csepel	Erzsébet	Gergely	Gilice	Kőrakas	Kosztolányi	Csepel Erzsébet Gergely Gilice Kőrakas Kosztolányi Pesthidegkút Széna Overall	Széna	Overall
Mean	78	80	06	77	57	68	33	77	77 71.8750
Median	78	80	90	Z	57	89	33	77	77 77.5000
Mode	78	80	90	Z	57	89	33	77	33.0000
Maximum	78	80	90	7	57	89	33	22	06
Minimum	78	80	90	7	57	89	33	77	33
Standard deviation	0	0	0	0	0	0	0	0	17.6241
No. of observations	\vdash	\vdash	1	\vdash	Π		1	Τ	∞
No. of days in the period	1	1	1	1	1	1	1	1	8

Period: 2015-11-08. Measurement unit: μgm^{-3} .

Table 6: Descriptive statistics of the PM_{10} concentration at the kept stations in the Evaluation 2 period

	Csepel	Erzsébet	Gergely	Gilice	Kőrakas	Kosztolányi	Csepel Erzsébet Gergely Gilice Kőrakas Kosztolányi Pesthidegkút Széna Overall	Széna	Overall
Mean	128.7500	128.7500 70.7500 91.5000 71.5000 80.2500	91.5000	71.5000	80.2500	82.7500	75.5000	75.5000 88.0000 86.1250	86.1250
Median	131.5000	131.5000 67.5000 90.5000 70.5000 81.5000	90.5000	70.5000	81.5000	76.0000	69.5000	69.5000 85.5000 79.0000	79.0000
Mode	75	53	57	44	53	09	61	99	22
Maximum	177	95	128	101	105	119	102	115	177
Minimum	75	53	22	44	53	09	61	99	44
Standard deviation	37.0700		15.5302 25.4214 20.6942	20.6942	18.9918	22.2078	16.1632	16.1632 17.5926 28.6637	28.6637
No. of observations	4	4	4	4	4	4	4	4	32
No. of days in the period	4	4	4	4	4	4	4	4	32

Period: from 2017-01-23 to 2017-01-26. Measurement unit: μgm^{-3}

Table 7: Descriptive statistics of the imputed meteorological data.

	Average temp. Max. temp. Min. temp. Wind blow Wind power	Max. temp.	Min. temp.	Wind blow	Wind power
Mean	11.5184	16.7689	6.6875	22.2634	2.5003
Median	11.8000	16.9000	6.7000	20.0000	2.0000
Mode	15.1000	24.5000	10.3000	20.0000	1.0000
Maximum	29.5000	39.1000	21.8000	93.0000	19.0000
Minimum	-12.4000	-8.6000	-18.3000	0)
Standard deviation	8.3680	10.0831	7.2705	10.4151	2.4786
No. of imputed observations	11	11	11	22	53
No. of days in the period	1492	1492	1492	1492	1492

Period: from 2013-01-01 to 2017-01-31. Abbreviations: temp.=temperature; max.=maximum, min.=minimum. Measurement units: temperature $^{\circ}C$; wind: kmh^{-1}

Table 8: Distances between stations

Stationa	Csepel	Csepel Csillaghegy [†] Erzsébet Gergely	Erzsébet	Gergely	Gilice	Honvéd	Gilice Honvéd Káposztas	Kőrakas	Kosztolányi	Kőrakas Kosztolányi Pesthidegkút	Széna	Teleki	Tétény
Csepel	0.0000	21.5755	10.7150	8.5007	7.3685	7.3685 13.1205	20.1563	15.9641	8.8042	20.0309	12.4482	9.8732	6.1733
Csillaghegy	21.5755	0.0000	10.9596	16.6841	21.1464	8.4895	5.6690	9.8479	13.3200	7.0305	9.8285	11.8489	21.2193
Erzsébet	10.7150	10.9596	0.0000	8.4435	12.1679	2.9367	10.8138	8.6944	2.5796	9.9274	2.2637	2.4498	10.6783
Gergely	8.5007	16.6841	8.4435	0.0000	4.4821	8.9252	13.4677	8.4711	8.7575	18.0035	10.6930	6.0762	12.9696
Gilice	7.3685	21.1464	12.1679	4.4821	0.0000	13.1822	17.8780	12.7689	11.7322	22.0294	14.4178	10.0406 13.2295	13.2295
Honvéd	13.1205	8.4895	2.9367	8.9252	13.1822	0.0000	7.8791	6.3408	5.5155	9.2003	3.4849	3.3785	13.6035
Káposztás	20.1563	5.6690	10.8138	13.4677	17.8780	7.8791	0.0000	5.2417	13.3887	11.7883	10.8503	10.4618	21.4449
Kőrakás	15.9641	9.8479	8.6944	8.4711	12.7689	6.3408	5.2417	0.0000	10.9594	14.0502	9.8205	7.2344	18.4233
Kosztolányi	8.8042	13.3200	2.5796	8.7575	11.7322	5.5155	13.3887	10.9594	0.0000	11.2513	3.6851	3.8804	8.1062
Pesthidegkút	20.0309	7.0305	9.9274	18.0035	22.0294	9.2003	11.7883	14.0502	11.2513	0.0000	7.7737	12.0037	17.7106
Széna	12.4482	9.8285	2.2637	10.6930	10.6930 14.4178	3.4849	10.8503	9.8205	3.6851	7.7737	0.0000	4.6433	11.3911
Teleki	9.8732	11.8489	2.4498	6.0762	6.0762 10.0406	3.3785	10.4618	7.2344	3.8804	12.0037	4.6433	0.0000	11.2493
Tétény	6.1733	21.2193	10.6783	12.9696	12.9696 13.2295	13.6035	21.4449	18.4233	8.1062	17.7106	11.3911	11.2493	0.0000

^a Highlighted bold names indicate kept stations.

^b Meteorological station, source of meteorological data
Distances are measured in km. Source: own computation based on addresses to coordinates converter (MapsEasy.com, 2017) and Python implementation of spherical distance haversine formula of Dunn (2011)

C. Figures

Figure 1: Violin plots of PM_{10} level in the training period

Figure 2: Violin plots of PM_{10} level in the test period

Figure 3: Between-station correlation of PM_{10} level in the training period

Figure 4: Distances between stations

Figure 5: Temperature time series

References

Dunn, M. (2011). Haversine formula Python implementation. http://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points. Last access: March 23, 2017.

MapsEasy.com (2017). Addresses to coordinates. http://www.mapseasy.com/adress-to-gps-coordinates.php. Last access: March 22, 2017.