

• It will turn out that there is a very useful fact about the powers of any given value in Z_n . To explore this, fill in this table of the various powers of $\alpha = 3$, in Z_{17} . Be sure to do this efficiently by noting that $\alpha^k = \alpha^{k-1} \cdot \alpha$ for $k \geq 1$ —do not compute α^k in Z_{17} using your calculator and then reduce the result mod 17 (this approach will, later, quickly overwhelm your calculator, even for relatively small values of n):

	k	30:1	1.3	2=9	3:27	34-81	35:243	36 721	7 z 187	386521	3 9	310
	3^k	l	3	9	10	13	5	15	11	16	14	8
Γ	k	3 ¹⁷⁷¹⁴⁷	12	13	23 478 14	1.13	Y8967 4	3646721 16	17	38742048 18	19	34867844
Г	3^k	7	4	12	7	. (ó	1	3	9	10	13

