	1A	2A	3A	4A	5A	6A	Оценка		1 зад.	2 зад.	Σ
ФИО											
группа							Подпись	пре	еп		

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

4 июня 2021 г.

Вариант А

- 1А. (1,5) Теплоизолированный сосуд разделён перегородкой на две части равного объема V. В одной части находится 1 моль двухатомного газа Ван-дер-Ваальса с константой a, а в другой 2 моля идеального одноатомного газа. Температуры газов одинаковы. Перегородку убирают. Определите изменение температуры в сосуде к моменту установления равновесия.
- **2А.** (1,5) Определите равновесное давление газа при вершине бесконечно высокой конусообразной воронки, стоящей вертикально в однородном поле силы тяжести. Полное число молекул в воронке равно N, масса молекулы m, температура T, угол раствора конуса 2α , ускорение свободного падения g.

- **3А.** (2,0) Тонкостенный сосуд заполнен молекулярным водородом при температуре $T=300~{\rm K}.$ Какая доля молекул, покидающих сосуд через микроскопическое отверстие в стенке сосуда, имеет скорость, превышающую первую космическую $v_{\rm k}=7.9~{\rm km/c}?$ Считать, что длина свободного пробега молекул газа в сосуде существенно превышает размер отверстия и толщину стенки.
- **4А.** (2,0) Воздушный шарик, надутый чистым гелием, со временем сдувается, что связано с эффузией газов (гелия и воздуха) через микроскопические поры в его латексной оболочке. Оцените относительную концентрацию примеси воздуха $c_{\rm B}$ в шаре к тому моменту, когда его объём уменьшится на 10% от первоначального. Считать, что давление газа в шаре практически не отличается от атмосферного.
- **5А.** (2,5) Вертикальный цилиндр с теплопроводящими стенками, разделённый подвижным поршнем на две части, помещён в термостат с температурой $T_0=373$ К. Объём над поршнем $V_1=1,25$ л заполнен насыщенным водяным паром, а объём $V_2=1,0$ л под \vec{g} поршнем сухим воздухом. Поршень своим весом создаёт дополнительное давление $P_{\pi}=20$ кПа. Находящийся исходно в состоянии равновесия цилиндр переворачивают «вверх дном». Найдите изменение энтропии S и внутренней энергии U его содержимого к моменту уста-

новления равновесия. Теплота парообразования воды $\lambda = 2.26 \text{ кДж/г}$.

6А. (2,5) Плотность воды имеет максимальное значение $\rho_0 = 1$ г/см³ при $t_0 = 4$ °C, т.е. в малой окрестности t_0 она зависит от температуры по закону $\rho(t) = \rho_0 - A(t-t_0)^2$, где A — положительная константа. Вода, имеющая температуру $t_1 = 3$ °C, адиабатически сжимается прессом так, что ее температура уменьшается на $\Delta t = 0.01$ °C. Как изменится температура воды, взятой при $t_2 = 7$ °C, если ее сжать вдвое большим давлением?

ФИО _		
группа.		

1Б	2Б	3Б	4Б	5Б	6Б	Оценка

1 зад.	2 зад.	Σ

Подпись преп. ____

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ТЕРМОДИНАМИКЕ И МОЛЕКУЛЯРНОЙ ФИЗИКЕ

4 июня 2021 г.

Вариант Б

- **1Б.** (1,5) Теплоизолированный сосуд разделён перегородкой на две части равного объема V. В одной части находится 1 моль одноатомного газа Ван-дер-Ваальса, а в другой 3 моля идеального двухатомного газа. Температуры газов одинаковы. Перегородку убирают. После установления равновесия температура газов отличается от первоначальной на ΔT . Определите константу a газа Ван-дер-Ваальса.
- **2Б.** (1,5) Сколько молей идеального газа содержится в бесконечно высокой конусообразной воронке, стоящей вертикально в однородном поле силы тяжести, если давление при её вершине равно P_0 ? Молярная масса газа равна μ , температура T, угол раствора конуса 2α , ускорение свободного падения g.

- **3Б.** (2,0) Тонкостенный сосуд заполнен гелием при температуре $T=1200~{\rm K}$ и атмосферном давлении. Какая доля атомов гелия, покидающих сосуд через микроскопическое отверстие в стенке сосуда, имеет энергию, достаточную для преодоления поля тяготения Земли? Считать, что длина свободного пробега молекул газа в сосуде существенно превышает размер отверстия и толщину стенки. Cnpagka: вторая космическая скорость $v_2=11,2~{\rm km/c}$.
- 4Б. (2,0) Показания весов с грузом, привязанным к надутому гелием воздушному шарику, с течением времени увеличиваются по линейному закону $m=m_0+\beta t$, где $\beta=7$ мг/мин. Считая, что изменение показаний связано с диффузией гелия через резиновую оболочку шара, оцените коэффициент диффузии гелия в резине. Площадь поверхности надутого шара $S=1600~{\rm cm}^2$, толщина резиновой оболочки $\delta=15~{\rm mkm}$. Считать, что оболочка шара проницаема только для гелия, размер шара за время опыта изменяется незначительно, а давление газа в нём практически равно атмосферному $P_0=10^5~{\rm Ha}$. Температура комнатная.
- **5Б.** (2,5) Вертикальный цилиндр с теплопроводящими стенками, разделённый подвижным поршнем на две части, помещён в термостат с температурой $T_0=373~{\rm K}.$ Объём $V_1=1,25~{\rm n}$ над поршнем заполнен сухим воздухом, а объём $V_2=0,75~{\rm n}$ под поршнем \vec{g} содержит водяной пар и небольшое количество воды. Поршень своим весом создаёт дополнительное давление $P_{\rm n}=16,7~{\rm k}\Pi{\rm a}.$ Находящийся исходно в состоянии равновесия цилиндр перево-

- рачивают «вверх дном». Найдите изменение энтропии S и внутренней энергии U его содержимого к моменту установления равновесия. Известно, что водяной пар в итоге остался насыщенным. Теплота парообразования воды $\lambda=2,26$ кДж/г.
- **6Б.** (2,5) Плотность воды имеет максимальное значение $\rho_0 = 1 \text{ г/см}^3$ при $t_0 = 4 \text{ °C}$, т.е. в малой окрестности t_0 она зависит от температуры по закону $\rho(t) = \rho_0 A(t-t_0)^2$, где A положительная константа. Вода в количестве 2 г, имеющая температуру $t_1 = 5 \text{ °C}$, адиабатически сжимается прессом до некоторого давления P так, что ее температура увеличивается на $\Delta t = 0.01 \text{ °C}$. Какую теплоту необходимо подвести к тому же количеству воды, чтобы изотермически сжать её до втрое большего давления при температуре $t_2 = 2 \text{ °C}$? Удельная теплоёмкость воды $c = 4200 \text{ Дж/(кг} \cdot \text{K})$

РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНОЙ РАБОТЫ 4 июня 2021 г.

- **1А.** (Колесов Ю. И., Холин) $\nu_1 C_{V1} T \frac{a \nu_1^2}{V} + \nu_2 C_{V2} T = \nu_1 C_{V1} T_x \frac{a \nu_1^2}{2V} + \nu_2 C_{V2} T_x$, откуда $\Delta T = T_x T = -\frac{a \nu_1^2}{2V(\nu_1 C_{V1} + \nu_2 C_{V2})}$. Ответ: $-\frac{a}{11RV}$
- **2А.** (Прут Э. В.) $dN = n_0 \exp\left(-\frac{mgh}{kT}\right) dV = n_0 \exp\left(-\frac{mgh}{kT}\right) \pi (h \lg \alpha)^2 dh; N = \pi n_0 \lg^2 \alpha \int\limits_0^\infty h^2 \exp\left(-\frac{mgh}{kT}\right) dh$ $= 2\pi n_0 \lg^2 \alpha \left(\frac{kT}{mgh}\right)^3$, откуда $n_0 = \frac{N}{2\pi \lg^2 \alpha} \left(\frac{mgh}{kT}\right)^3$, $P = n_0 kT$ и получаем ответ: $\frac{N(mg)^3}{2\pi \lg^2 \alpha (kT)^2}$
- **3А.** (Попов П. В.) Частота столкновений молекул со стенками сосуда, а значит и вероятность их вылета пропорциональна скорости молекул: g(v) = Avf(v)dv, A константа, $f(v) \sim v^2 \exp(-mv^2/(2kT))$ распределение молекул по модулю скорости. Введём безразмерную скорость: $\eta = v\sqrt{m/(kT)}$ $\eta_1 = 7.9 \cdot 10^3 \cdot \sqrt{2 \cdot 10^{-3}/8.31/300} \approx 7.1$ Искомая доля среди вылетающих молекул: $\alpha = \left(\int_{\eta_1}^{\infty} \eta^3 \exp(-\eta^2/2) d\eta\right) / \left(\int_{0}^{\infty} \eta^3 \exp(-\eta^2/2) d\eta\right) = \left(\eta_1^2/2 + 1\right) \exp(-\eta_1^2/2) = 26 \exp(-25) \approx \boxed{3.6 \cdot 10^{-10}}$
- **4А.** (Холин Д. И.) Скорость эффузии обратно пропорциональна корню квадратному из массы молекулы. Концентрация воздуха в шаре мала; концентрация гелия в шаре и воздуха вне шара совпадают. В силу этого поток гелия из шара наружу и поток воздуха снаружи внутрь связаны соотношением: $j_{He} = \sqrt{m_{\rm B}/m_{He}}j_{\rm B}$. Относительное уменьшение объёма шара $dV/V = dN/N = (j_{He} j_{\rm B})dt/N$, где N полное количество частиц в шаре. Для относительной концентрации воздуха в шаре: $c_{\rm B} = dN_{\rm B}/N = (j_{\rm B}/(j_{He} j_{\rm B})) \cdot (dV/V) = (1/(\sqrt{m_{\rm B}/m_{He}} 1)) \cdot (dV/V) \approx (1/(\sqrt{7} 1)) \cdot (dV/V) = 6\%$
- **5А.** (*Шеронов А. А.*) Пусть $V_{\rm B}$ объём воздуха, $V_{\rm B}=(P_0+P_{\rm II})V_2/(P_0-P_{\rm II})=3V_2/2,\ V_{\rm II}$ объём пара, $V_{\rm II}=V_1+V_2-V_{\rm B}=3V_2/4,$ тогда сконденсировалось $\Delta m=\mu P_0(V_1-V_{\rm II})/RT_0=0.29$ г пара. Изменение энтропии пара $\Delta S_{\rm II}=-\lambda\Delta m/T_0=-(2260\cdot 0.29)/373=-1.76$ Дж/К. Изменение энтропии воздуха $\Delta S_{\rm B}=\nu R\ln(V_{\rm B}/V_2)=+0.13$ Дж/К. Тогда ответ: $\Delta S_{\rm II}+\Delta S_{\rm B}=\boxed{-1.63}$ Дж/К
- **6А.** (Аникин Ю. А.) При адиабатическом сжатии температура воды увеличивается на $\Delta T = \frac{T}{c\rho} \left(\frac{\partial P}{\partial T} \right)_V \beta \Delta V = \frac{\alpha T}{c\rho} \Delta P$, где α коэффициент изотермического сжатия. Для воды он равен: $\alpha = \frac{1}{V} \frac{dV}{dT} = \rho \frac{d}{dT} \left(\frac{1}{\rho} \right) = \frac{1}{\rho} \frac{d\rho}{dT} = \frac{2A(t-t_0)}{\rho_0}$ Отсюда при $t_2 = 7$ °C он в трое больше, чем при $t_1 = 3$ °C и противоположенного знака. Таким образом температура воды увеличится на $3 \cdot 2 \cdot 0.01$ °C = 0.06 °C.
- **1Б.** (Колесов Ю. И.) Аналогично 1А, $a = -2V\Delta T(\nu_1 C_{V1} + \nu_2 C_{V2})/\nu_1^2$, Ответ: $-18RV\Delta T$
- **2Б.** (Прут Э. В., Холин Д. И.) Аналогично 2A, $d\nu = \frac{n_0}{N_A} \exp\left(-\frac{\mu g h}{RT}\right) dV = \frac{P_0}{RT} \exp\left(-\frac{\mu g h}{RT}\right) \pi (h \operatorname{tg} \alpha)^2 dh$. $\nu = \pi \operatorname{tg}^2 \alpha \frac{P_0}{RT} \int_0^\infty h^2 \exp\left(-\frac{\mu g h}{RT}\right) dh = \pi \operatorname{tg}^2 \alpha \frac{P_0}{RT} \cdot 2 \left(\frac{RT}{\mu g}\right)^3. \text{ Ответ: } \boxed{2\pi P_0 \operatorname{tg}^2 \alpha \frac{(RT)^2}{(\mu g)^3}}$
- **3Б.** (Попов П. В.) Аналогично 3А: $\eta = v\sqrt{m/(kT)} = 11.2 \cdot 10^3 \cdot \sqrt{2 \cdot 10^{-3}/8.31/1200} \approx 5.0$, тогда доля частиц $\alpha = \left(\eta_1^2/2 + 1\right) \exp(-\eta_1^2/2) \approx 13.5 \exp(-12.5) \approx \boxed{5.0 \cdot 10^{-5}}$
- **4Б.** (*Гуденко А. В.*) Считаем концентрацию гелия вне шарика нулевой. Поток молекул в атмосферу: $dN/dt = jS = DSn/\delta = DSN/\delta V$, $V \sim N$ т.к. $P = {\rm const}$, $T = {\rm const}$, то $dV = (dN/N)V = DSdt/\delta$. Подъемная сила уменьшается на: $dF_{\rm II} = (\rho_0 \rho_{He})gdV = DS(\rho_0 \rho_{He})gdt/\delta$, решая уравнение находим $F_{\rm II}(t) = F_0 DS(\rho_0 \rho_{He})gt/\delta$, тогда показания весов $m(t) = m_{\rm I} F_0/g + DS(\rho_0 \rho_{He})t/\delta = m_0 + \beta t$, откуда $D = \beta \delta/(S(\rho_0 \rho_{He}))$. Плотность воздуха: $\rho_0 = P_0\mu_{\rm BOS}/(RT) \approx 1.18$ мг/см³, плотность гелия $\rho_{\rm II} = P_0\mu_{\rm II}/(RT) \approx 0.163$ мг/см³, угловой коэффициент: $\beta = 7 \cdot 10^{-3} \text{г/мин} \approx 1.16 \cdot 10^{-4} \text{ г/с.}$ Коэффициент диффузии гелия через резину $D = 1.16 \cdot 10^{-4} \cdot 1.5 \cdot 10^{-3}/(1.6 \cdot 10^3 \cdot (1.18 0.163) \cdot 10^{-3}) \approx 1 \cdot 10^{-7} \text{ см}^2/\text{c}$
- **5Б.** (Шеронов А. А.) Пусть $V_{\rm B}$ объём воздуха, $V_{\rm B}=(P_0-P_{\rm II})V_1/(P_0+P_{\rm II})=0.892$ л, $V_{\rm II}$ объём пара, $V_{\rm II}=V_1+V_2-V_{\rm B}=1.11$ л, тогда испарилось $\Delta m=\mu P_0(V_{\rm II}-V_2)/RT_0=0.209$ г пара. Изменение энтропии пара $\Delta S_{\rm II}=\lambda \Delta m/T_0==(2260\cdot 0.209)/373=1.27$ Дж/К. Изменение энтропии воздуха $\Delta S_{\rm B}=\nu R\ln(V_{\rm B}/V_1)=-0.07$ Дж/К. Тогда ответ: $\Delta S_{\rm II}+\Delta S_{\rm B}=\boxed{1.2\,$ Дж/К}

6Б. (Холин Д. И.) Для адиабатического сжатия $\Delta t = \left(\frac{\partial T}{\partial P}\right)_S \Delta P = -\left(\frac{\partial T}{\partial S}\right)_P \left(\frac{\partial S}{\partial P}\right)_T \Delta P = \frac{T}{C_P} \left(\frac{\partial V}{\partial T}\right)_P \Delta P.$ Если dS – это изменение энтропии воды при её изотермическом сжатии, то подведенное к ней в этом процессе тепло равно $\delta Q = T dS = T \left(\frac{\partial S}{\partial P}\right)_T \Delta P = -T \left(\frac{\partial V}{\partial T}\right)_P \Delta P.$ При этом $\left(\frac{\partial V}{\partial T}\right)_P = \left(\frac{\partial (m/\rho)}{\partial T}\right)_P = -\frac{m}{\rho^2} \left(\frac{\partial \rho}{\partial T}\right)_P \approx \frac{m}{\rho_0^2} \cdot 2A(t-t_0)$ В результате получаем $\frac{\Delta Q}{\Delta t} = -C_P \frac{t_2-t_0}{t_1-t_0} \frac{\Delta P_2}{\Delta P_1}$ Подставляя для теплоёмкости 2 г воды величину 8.4Дж/К, получаем $\Delta Q = -8.4 \cdot \frac{2-4}{5-4} \cdot 3 \cdot 0.01 = \boxed{0.5}$ Дж

Инструкция для проверяющих

За каждую задачу выставляется число баллов, кратное 0.5, исходя из стоимости задачи (x):

x	+	Задача решена верно: приведено обоснованное решение и даны ответы на все вопросы
		задачи. Возможно наличие арифметических ошибок, не влияющих на ход решения и не
		приводящих к ошибке в порядке или знаке величины.
x - 0.5	土	Ход решения задачи в целом верен и получены ответы на все вопросы задачи, но реше-
		ние содержит ошибки, не касающиеся физического содержания: арифметические ошиб-
		ки, влияющие на порядок или знак величины; ошибки в размерности; вычислительные
		ошибки в выкладках.
x-1	+/2	Задача решена частично: дан ответ только на часть вопросов; выкладки не доведены до
		конца; отсутствуют необходимые промежуточные доказательства; либо решение содер-
		жит грубые ошибки (вычислительные, логические), влияющие на ход решения.
x - 1.5	Ŧ	Задача не решена, но есть некоторые подвижки в её решении: сформулированы физиче-
		ские законы, на основе которых задача может быть решена.
0	_	Задача не решена: основные физические законы применены с грубыми ошибками, пе-
		речислены не полностью или использованы законы, не имеющие отношения к задаче /
		подход к решению принципиально неверен / решение задачи не соответствует условию
		/ попытки решить задачу не было.

Оценка за письменную работу ставится по сумме баллов за все задачи с округлением в *большую* сторону, но не более 10 и не менее 1.

Mаксимальная оценка за устный экзамен: $\Sigma = [$ оценка за письм. работу] + [баллы за задания]. «отл»: +2 б./задание; «хор»: +1 б./задание; «удовл»: +0 б./задание; не сдано: -3 б./задание.

Обсуждение замечаний, критериев проверки и результатов — на форуме кафедры board.physics.mipt.ru.

Обсуждение результатов письменного и порядка проведения устного экзаменов состоится <u>8 июня в 10:00</u> по ZOOM-конференции https://zoom.us/j/96099927102