Assignment 4

[1] Obtain the simplified Boolean expressions for output F and G in terms of the input variables in the circuit of the Fig.

F=A'D+ABC

G=A'D'+ABC

- [2] Design a combinational circuit with three inputs and one output.
- (a) The output is 1 when the binary value of the inputs is less than 3. The output is 0 otherwise.

хух	F1
000	1
001	1
010	1
011	0
100	0
101	0
110	0
111	0

=x'z'+x'y'

(b) The output is 1 when the binary value of the inputs is an even number.

хуг	F2
000	1
001	0
010	1
011	0
100	1
101	0
110	1
111	0

[3] Design a combinational circuit with three inputs, x, y, and z, and three outputs, A, B, and C. When the binary input is 0, 1, 2, or 3, the binary output is one greater than the input. When the binary input is 4, 5, 6, or 7, the binary output is two less than the input

хуг	АВС
000	001
001	010
010	011
011	100
100	010
101	011
110	100
111	111

A=xy+yz

B=xy'+y'z+x'yz'

C=xz+x'z'

 $C = (X \oplus Z)'$ XNOR

1

[4] Design a four-bit combinational circuit 2's complementer. (The output generates the 2's complement of the input binary number.)

ABCD	wxyz	
0000	0000	M0
0001	1111	M1
0010	1110	M2
0011	1101	M3
0100	1100	M4
0101	1011	M5
0110	1010	M6
0111	1001	M7
1000	1000	M8
1001	0111	M9
1010	0110	M10
1011	0101	M11
1100	0100	M12
1101	0011	M13
1110	0010	M14
1111	0001	M15

w=A'B+A'D+A'C+AB'C'D' w= A' (B+C+D) + A (B+C+D)' w= A ⊕ (B+C+D)

x=B'D+B'C+BC'D' x= B' (C+D) + B (C+D)' x= B ⊕ (C+D)

[5] Design a combinational circuit that generates the 9's complement of a BCD digit.

BCD	9's
ABCD	WXYZ
0000	1001
0001	1000
0010	0111
0011	0110
0100	0101
0101	0100
0110	0011
0111	0010
1000	0001
1001	0000
1010	XXXX
1011	XXXX
1100	XXXX
1101	XXXX
1110	XXXX
1111	XXXX

1) D	0	1/	10	,
06			1	1	1
01	1	1			
\ \	Х	Χ	Χ	Χ	
1 -		$\Big]$	Х	Х	
\			- 		

 $X=B'C+BC'=B\oplus C$

1) D	0	1	10
0	1	1_		
01				
\ \	Χ	Χ	Χ	Χ
(=			Χ	X

W=A'B'C'

		0	1/	(-	\odot
0 6			1	1	•
01			1	1	
\ \	Х	Х	Х	Х	
(-			Х	Х	

Y=C

1	0	0	1	10	
06	1			1	
0	1			1	
\ \	Χ	Х	Χ	Х	
\ > _	1			Х	

Z=D'

- [6] Design the following circuits:
- (a) Design a half-subtractor circuit with inputs x and y and outputs Diff and Bout. The circuit subtracts the bits x y and places the difference in D and the borrow in Bout.

a)

х	у	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

$$B = x'y$$

$$D = x'y + xy'$$

$$D=x \oplus y$$

х	у	Bin	Buot	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Bout=x'y+yB+x'B

[8] Construct a 5-to-32-line decoder with enable by using 3-to-8 and 2-to-4-line decoders with enables

[9] A combinational circuit is specified by the following Boolean function:

$$F(x,y,z) = \sum (2,4,6,7)$$

Implement the circuit with a decoder and external gates.

[10] A combinational circuit is specified by the following three Boolean function:

$$F1(A,B,C) = \sum (2,4,7) F2(A,B,C) = \sum (0,3) F3(A,B,C) = \sum (0,2,3,4,7)$$

Implement the circuit with a decoder constructed with NAND gates and NAND or NOR gates connected to the decoder outp uts. Use block diagram for the decoder. Minimize the number of inputs in the external gates.

[12] Implement the following Boolean function with a multiplexer:

(a) $FA,B,C,D = \sum (0, 2, 5, 8, 10, 14)$

ABCD	F
0000	1
0001	0
0010	1
0011	0
0100	0
0101	1
0110	0
0111	0
1000	1
1001	0
1010	1
1011	0
1100	0
1101	0
1110	1
1111	0

(b) $FA,B,C,D = \prod (2, 6, 11)$

ABCD	F
0000	1
0001	1
0010	0
0011	1
0100	1
0101	1
0110	0
0111	1
1000	1
1001	1
1010	1
1011	0
1100	1
1101	1
1110	1
1111	1

