Solving model with simplex

Rewriting model

$$\begin{array}{rcll} \min \ z & = & -2x_1 & -x_2 \\ & \text{s.c.} & x_1 & -x_2 \ \geq & -2 \\ & & -x_1 & -x_2 \ \geq & -6 \\ & 2x_1 & & \geq & 4 \\ & x_1, & x_2 \ \geq & 0 \end{array}$$

Objective function from min to max

$$\begin{array}{rclrclcrcl} \max \ z & = & 2x_1 & +x_2 \\ & \text{s.c.} & x_1 & -x_2 & \geq & -2 \\ & & -x_1 & -x_2 & \geq & -6 \\ & & 2x_1 & & \geq & 4 \\ & & x_1, & x_2 & \geq & 0 \end{array}$$

Positive right hand sides

Add slack variables

Add artificial variables

Model to simplex table

	x_1	x_2	e_1	e_2	e_3	v_3	
c_a	0	0	0	0	0	1	0
c	2	1	0	0	0	0	0
$\overline{e_1}$	-1	1	1	0	0	0	2
e_2	1	1	0	1	0	0	6
v_3	2	0	0	0	0 0 -1	1	4

Solving

Repair simplex table

					e_3		
c_a	-2	0	0	0	1	0	-4
c	2	1	0	0	0	0	0
$\overline{e_1}$	$ \begin{array}{c c} -1 \\ 1 \\ 2 \end{array} $	1	1	0	0	0	2
e_2	1	1	0	1	0	0	6
v_3	2	0	0	0	-1	1	4

Entering variable: x_1 — Leaving variable: v_3

$$L_3 \leftarrow \frac{1}{2}L_3$$

$$L_{c_a} \leftarrow L_{c_a} + 2L_3$$

$$L_c \leftarrow L_c - 2L_3$$

$$L_1 \leftarrow L_1 + L_3$$

$$L_2 \leftarrow L_2 - L_3$$

	$ x_1 $	x_2	e_1	e_2	e_3	v_3	
c_a	0	0	0	0	0	1	0
\overline{c}	0	1	0	0	1	-1	$\overline{-4}$
$\overline{e_1}$	0	1	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	4
e_2	0	1	0	1	$\frac{1}{2}^{-}$	$-\frac{1}{2}$	4
x_1	1	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	2

Remove artificial variables

	$ x_1 $	x_2	e_1	e_2	e_3	
c	0	1	0	0	1	-4
$\overline{e_1}$	0	1	1	0	$-\frac{1}{2}$	4
e_2	0	1	0	1	$\frac{1}{2}^{-}$	4
x_1	1	0	0	0	$-\frac{1}{2}$	2

Entering variable: x_2

Multiple possible leaving variables – Uses Bland's rule.

Entering variable: x_2 – Leaving variable: e_1

$$L_c \leftarrow L_c - L_1$$

$$L_2 \leftarrow L_2 - L_1$$

$$L_3 \leftarrow L_3$$

Entering variable: e_3 — Leaving variable: e_2

$$L_c \leftarrow L_c - \frac{3}{2}L_2$$

$$L_1 \leftarrow L_1 + \frac{1}{2}L_2$$

$$L_3 \leftarrow L_3 + \frac{1}{2}L_2$$

Entering variable: e_1 — Leaving variable: x_2

$$L_1 \leftarrow 2L_1$$

$$L_c \leftarrow L_c - \frac{1}{2}L_1$$
$$L_2 \leftarrow L_2 + L_1$$
$$L_3 \leftarrow L_3 + \frac{1}{2}L_1$$

Sensitivity analysis

Computing sensitivity of c_i

Sensitivity intervals for the variables:

Variable	Reduced cost	Min	Current objective value	Max
x_1	0	_	2	_
x_2	-1	_	1	_

Compute sensitivity interval for variable x_1

$$-1 - \Delta_{x_1} \le 0$$

$$-2 - \Delta_{x_1} \le 0$$

Thus $\Delta_{x_1} \in [-1, \infty]$

Variable	Reduced cost	Min	Current objective value	Max
x_1	0	1	2	∞
x_2	-1	_	1	_

Compute sensitivity interval for variable x_2

$$-1 + \Delta_{x_2} \le 0$$

Thus $\Delta_{x_2} \in [-\infty, 1]$

Variable	Reduced cost	Min	Current objective value	Max
x_1	0	1	2	∞
x_2	-1	$-\infty$	1	2

Computing sensitivity of b_j

Sensitivity intervals for the constraints:

Constraint	Dual cost	Min	Current rhs value	Max
(1)	0	_	2	_
(2)	2	_	6	_
(3)	0	_	4	_

Compute sensitivity interval for constraint (1)

$$8 - \Delta_{(1)} \ge 0$$

Thus $\Delta_{(1)} \in [-\infty, 8]$

Constraint	Dual cost	Min	Current rhs value	Max
(1)	0	$-\infty$	2	10
(2)	2	_	6	_
(3)	0	_	4	_

Compute sensitivity interval for constraint (2)

$$\begin{split} 8 - \Delta_{(2)} &\geq 0 \\ 8 - 2\Delta_{(2)} &\geq 0 \\ 6 - \Delta_{(2)} &\geq 0 \end{split}$$

Thus $\Delta_{(2)} \in [-\infty, 4]$

Constraint	Dual cost	Min	Current rhs value	Max
(1)	0	$-\infty$	2	10
(2)	2	$-\infty$	6	10
(3)	0	_	4	_

Compute sensitivity interval for constraint (3)

$$8 - \Delta_{(3)} \ge 0$$

Thus $\Delta_{(3)} \in [-\infty, 8]$

Constraint	Dual cost	Min	Current rhs value	Max
(1)	0	$-\infty$	2	10
(2)	2	$-\infty$	6	10
(3)	0	$-\infty$	4	12