ASSIGNMENT

Designs of Experiment–I (ELECTIVE) **REGRESSION ANALYSIS**

TYBSC - SEM V 2021-22

TOPIC: Analyzing if profit earned by a startup depends upon the revenue spend on the start up for Research & development, administration and marketing.

Assignment By Aanchal Yadav 2015228 TYBSC STATISTICS Hrutuja Patkar 2115205 TYBSC STATISTICS

Estimated Regression Equation

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

FOUR Variable Model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$$

Where

Y = Dependent Variable (Profit)

 $X_1 = 1^{st}$ independent variable (R&D spend)

 $X_2 = 2^{\text{nd}}$ independent variable (Administration)

 $X_3 = 3^{\text{rd}}$ independent variable (Marketing Speed)

	X_1	X_2	X_3	$oldsymbol{Y}$
Observation	R&D Spend	Administration	Marketing Spend	Profit
1	165349.2	136897.8	471784.1	192261.8
2	162597.7	151377.6	443898.5	191792.1
3	153441.5	101145.6	407934.5	191050.4
4	144372.4	118671.9	383199.6	182902
5	142107.3	91391.77	366168.4	166187.9
6	131876.9	99814.71	362861.4	156991.1
7	134615.5	147198.9	127716.8	156122.5
8	130298.1	145530.1	323876.7	155752.6
9	120542.5	148719	311613.3	152211.8
10	123334.9	108679.2	304981.6	149760
11	101913.1	110594.1	229161	146122
12	100672	91790.61	249744.6	144259.4
13	93863.75	127320.4	249839.4	141585.5
14	91992.39	135495.1	252664.9	134307.4
15	119943.2	156547.4	256512.9	132602.7
16	114523.6	122616.8	261776.2	129917
17	78013.11	121597.6	264346.1	126992.9
18	94657.16	145077.6	282574.3	125370.4
19	91749.16	114175.8	294919.6	124266.9
20	86419.7	153514.1	0	122776.9
21	76253.86	113867.3	298664.5	118474
22	78389.47	153773.4	299737.3	111313
23	73994.56	122782.8	303319.3	110352.3
24	67532.53	105751	304768.7	108734
25	77044.01	99281.34	140574.8	108552
26	64664.71	139553.2	137962.6	107404.3
27	75328.87	144136	134050.1	105733.5
28	72107.6	127864.6	353183.8	105008.3
29	66051.52	182645.6	118148.2	103282.4
30	65605.48	153032.1	107138.4	101004.6
31	61994.48	115641.3	91131.24	99937.59
32	61136.38	152701.9	88218.23	97483.56
33	63408.86	129219.6	46085.25	97427.84
34	55493.95	103057.5	214634.8	96778.92
35	46426.07	157693.9	210797.7	96712.8
36	46014.02	85047.44	205517.6	96479.51
37	28663.76	127056.2	201126.8	90708.19
38	44069.95	51283.14	197029.4	89949.14
39	20229.59	65947.93	185265.1	81229.06
40	38558.51	82982.09	174999.3	81005.76
41	28754.33	118546.1	172795.7	78239.91
42	27892.92	84710.77	164470.7	77798.83
43	23640.93	96189.63	148001.1	71498.49
44	15505.73	127382.3	35534.17	69758.98
45	22177.74	154806.1	28334.72	65200.33
46	1000.23	124153	1903.93	64926.08
47	1315.46	115816.2	297114.5	49490.75
48	0	135426.9	0	42559.73
2 49	542.05	51743.15	0	35673.41
Z 50	0	116983.8	45173.06	14681.4

MULTIPLE REGRESSION OUTPUT

ANOVA Table at 5% Loss

ANOVA					
	df	SS	MS	F	Significance F
Regression	3	75683964196	2.5228E+10	295.9781	0.00
Residual	46	3920856301	85236006.5		
Total	49	79604820497			

First, we perform F test. F statistic is a test of significance for the entire regression. At $\alpha = 0.05$, this regression is statistically significant because p-value < 0.05.

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	50122.193	6572.3526	7.6262	0	36892.7333	63351.65	36892.73	63351.65
R&D Spend	0.8057	0.0451	17.8464	0	0.7148	0.8966	0.7148	0.8966
Administration	-0.0268	0.051	-0.5255	0.6018	-0.1295	0.0759	-0.1295	0.0759
Marketing Spend	0.0272	0.0165	1.6551	0.1047	-0.0059	0.0603	-0.0059	0.0603

Linear Regression Model = \hat{Y} = 50122.193 +0.8057 X_1 -0.0268 X_2 + 0.0272 X_3

Descriptive statistics from the regression output

Regressi	on Statistics	
Multiple R	0.975062046	
		K
R Square	<mark>0.950745994</mark>	
Adjusted R Square	0.947533776	
Standard Error	9232.334837	4
Observations	50	

Coefficient of Determination

A measure of "explained variation." Result shows that about 95% of the total variation in Profit Gained (Y) is explained by the regression. $r^2 = SSR/SST$

Standard Error of Estimate

A measure of "unexplained variation." Std. Error = SQRT(MSE) = SQRT(9232.3348)

95.07% variability in Y is explained by $X_1 X_2 \& X_3$

Checking for assumptions of the regression

- 1. Multicollinearity
- 2. Homoscedasticity test:
- 3. Autocorrelation

1. Multicollinearity

Multicollinearity may be checked by correlation matrix:

	R&D Spend	Administration	Marketing Spend	Profit
R&D Spend	1			
Administration	0.241955	1		
Marketing Spend	0.724248	-0.03215	1	
Profit	0.9729	0.200717	0.747766	1

When computing a matrix of Pearson's bivariate correlations among all independent variables, the magnitude of the correlation coefficients should be less than .80

As there are no correlation coefficients above than .80, there is no multicollinearity in the data

2. Homoscedasticity test:

A scatterplot of residuals versus predicted values is good way to check for homoscedasticity. There should be no clear pattern in the distribution; if there appears a cone-shaped or any other shaped the data is *heteroscedastic*.

A data transformation scale is applied to see if we get any other results.

We applied log-transformation, residual square, residual square root and standardized residual transformation.

From all the plots, we found that the data follows **Homoscedasticity.**

3. Autocorrelation

One of the assumptions of linear regression is that there is no **autocorrelation** between the residuals.

For testing the assumption we perform $Durbin\ Watson\ Test$ in which we test the autocorrelation existence within independent variable by observing d value after testing the data.

Step 1

SUMMARY OUTPUT								
Regression St	atistics							
Multiple R	0.975062							
R Square	0.950746							
Adjusted R Square	0.947534							
Standard Error	9232.335							
Observations	50							
ANOVA								
	df	SS	MS	F	Signif	icance F		
Regression	3	7.57E+10	2.52E+10	295.9781	4.53E-30			
Residual	46	3.92E+09	85236007					
Total	49	7.96E+10						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	50122.19	6572.353	7.626218	1.06E-09	36892.73	63351.65	36892.73332	63351.65
R&D Spend	0.805715	0.045147	17.84637	2.63E-22	0.714838	0.896592	0.714838309	0.896592
Administration	-0.02682	0.051029	-0.52551	0.601755	-0.12953	0.0759	-0.129531575	0.0759
Marketing Spend	0.027228	0.016451	1.655077	0.104717	-0.00589	0.060343	-0.005886553	0.060343

Test statistic for Durbin Watson test:

$$d = \sum_{t=2}^{T} (e_t - e_{t-1})^2 / \sum_{t=1}^{T} e_t^2$$

$$d = 0.286785$$

n = 50

K = 50

By following the multiple regression table, we get

The lower critical value: 1.245

The upper critical value: 1.491

Since,

our test statistic (d = 0.286785) does not lie in the range of 1.245- 1.491 we conclude that the data is **Autocorrelated**.

Step 2

	Residual output	
Observation	Predicted Profit	Residuals
1	192521.3	-259.423
2	189156.8	2635.292
3	182147.3	8903.111
4	173696.7	9205.29
5	172139.5	-5951.57
6	163580.8	-6589.66
7	158114.1	-1991.59
8	160021.4	-4268.76
9	151741.7	470.0703
10	154884.7	-5124.72
11	135509	10612.93
12	135573.7	8685.687
13	129138.1	12447.47
14	127488	6819.358
15	149548.6	-16946
16	146235.2	-16318.1
17	116915.4	10077.52
18	130192.4	-4822.08
19	129014.2	-4747.33
20	115635.2	7141.644
21	116639.7	1834.361
22	117319.5	-6006.43
23	114707	-4354.73
24	109996.6	-1262.63
25	113363	-4810.93
26	102237.7	5166.615
27	110600.6	-4867.04
28	114408.1	-9399.76
29	101660	1622.354
30	101795	-790.343
31	99452.37	485.2171
32	97687.86	-204.296
33	99001.33	-1573.49
34	97915.01	-1136.09
35	89039.27	7673.526
36	90511.6	5967.91
37	75286.17	15422.02
38	89619.54	329.6023
39	69697.43	11531.63
40	83729.01	-2723.25
41	74815.95	3423.956
42	74802.56	2996.274
43	70620.41	878.0782
44	60167.04	9591.94
45	64611.35	588.9751
46	47650.65	17275.43
47	56166.21	-6675.46
48	46490.59	-3930.86
49	49171.39	-13498
50	48215.13	-33533.7

Fitting a linear regression model to the selected data using **Backward Elimination Method**.

Step 1: Fit all 4-variable model: $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$

SUMMARY	SUMMARY OUTPUT				
Regression	Statistics				
Multiple R	0.975062046				
R Square	0.950745994				
Adjusted R Square	0.947533776				
Standard Error	9232.334837				
Observations	50				
ANOVA					
	df	SS	MS	F	Significance F
Regression	3	75683964196	2.5228E+1 0	295.9781	0.0000
Residual	46	3920856301	85236006.5		
Total	49	79604820497			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	50122.193	6572.3526	7.6262	0	
R&D Spend	0.8057	0.0451	17.8464	0	
Administration	-0.0268	0.051	-0.5255	0.6018	
Marketing Spend	0.0272	0.0165	1.6551	0.1047	

We eliminate X₂ (Administration) variable as it has the highest p value greater than 0.05(5% level of significance)

Step 2:

Eliminating X₂ variable,

We fit rest 3-variable model: $\beta_0 + \beta_1 X_1 + \beta_3 X_3$

SUMMARY OUTPUT					
Regression	Statistics				
Multiple R	0.9749104				
R Square	0.9504503				
Adjusted R Square	0.9483418				
Standard Error	9160.9658				
Observations	50				
ANOVA					
	df	SS	MS	F	Significance F
Regression	2	7.57E+10	3.78E+10	450.7713	0.0000
Residual	47	3.94E+09	83923295		
Total	49	7.96E+10			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	46975.8642	2689.9329	17.4636	0.0000	
R&D Spend	0.7966	0.0413	19.2656	0.0000	
Marketing Spend	0.0299	0.0155	1.9271	0.0600	

We eliminate X_3 (Marketing Spend) variable as it has p-value greater than 0.05(5% level of significance)

Step 3: Eliminating X_3 variable, We fit rest 2-variable model: $\beta_0 + \beta_1 X_1$

SUMMARY OUTPUT					
Regression S	tatistics				
Multiple R	0.9729				
R Square	0.946535				
Adjusted R Square	0.945421				
Standard Error	9416.349				
Observations	50				
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	7.53E+10	7.53E+10	849.7889	0
Residual	48	4.26E+09	88667637		
Total	49	7.96E+10			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
Intercept	49032.9	2537.897	19.3203	0	43930.12
R&D Spend	0.8543	0.0293	29.1511	0	0.7954

The given model is significant as all the variables have p-value lesser than 0.05 (5% level of significance).

Fitting a linear regression model to the selected data using **Forward Selection Method**.

Step 1:We first find linear regression output of individual variable with Y

Model 1: Linear regression output of X_1 variable with Y

			\mathcal{C}	1	1			
SUMMAR	Y OUTPUT							
Regression	1 Statistics							
Regression	Diatistics							
Multiple R	0.9729	0.9729						
R Square	0.946535							
Adjusted R Square	0.945421							
Standard Error	9416.349							
Observatio								
ns	50							
ANOVA								
111,0,111	df	SS	MS	F	Signific	rance F		
	ui	ББ	MID		Signific	cance r		
Regression	1	7.53E+10	7.53E+10	849.7889	0			
Residual	48	4.26E+09	88667637	01217002	v			
Total	49	7.96E+10	00007027					
Total	٦,	7.5012110						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Unner 95%	Lower 95.0%	Upper 95.0%
	Commence	LIIVI	· Diai	1 (4140	201101 70 70	CPPCI >C /U	201101 7010 70	CPPC1 >0.10 / 0
Intercept	49032.9	2537.897	19.3203	0	43930.12	54135.68	43930.12	54135.68
R&D	., 002.,		17.0200	v	10,00012	2 1100100	10,00012	21122100
Spend	0.8543	0.0293	29.1511	0	0.7954	0.9132	0.7954	0.9132
1								

Model 2 : Linear regression output of X₂ variable with Y

SUMMAR	Y OUTPUT							
Regression	1 Statistics							
Multiple R	0.200717	0.200717						
R Square	0.040287							
Adjusted R Square	0.020293							
Standard Error	39895.12							
Observatio ns	50							
ANOVA								
ANOVA	df	SS	MS	F	Signific	cance F		
Regression	1	3.21E+09	3.21E+09	2.01496	0.162217			
Residual	48	7.64E+10	1.59E+09					
Total	49	7.96E+10						
	Coefficient s	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	76974.47	25320.18	3.040044	0.003824	26064.83	127884.1	26064.83	127884.1
Administra tion	0.288749	0.203417	1.419493	0.162217	-0.12025	0.697747	-0.12025	0.697747

Model 3: Linear regression output of X_3 variable with Y

SUMMARY (MITPHT							
SCHWART	JC 11 C 1							
Regression Statistics								
Multiple R	0.747766	0.747766						
R Square	0.559154							
Adjusted R Square	0.549969							
Standard Error	27039.13							
Observations	50							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	4.45E+10	4.45E+10	60.88145	0			
Residual	48	3.51E+10	7.31E+08					
Total	49	7.96E+10						
	Coefficients	Standard Error	t Stat	p-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	60003.55	7684.53	7.8084	0	44552.77	75454.33	44552.77	75454.33
Marketing Spend	0.2465	0.0316	7.8027	0	0.183	0.31	0.183	0.31

By considering Coefficient of determination and variables having p values (i.e < 0.05), we find Model 1 to be highly significant among all

Selecting X_1 variable, we find linear regression output of X_1 & X_2 variable with Y

Step 2:

SUMMAR	Y OUTPUT							
Regression Statistics								
Multiple R	0.973557							
R Square	0.947813							
Adjusted R Square	0.945592							
Standard Error	9401.609							
Observation s	50							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	7.55E+10	3.77E+10	426.8032	7.29E-31			
Residual Total	47 49	4.15E+09 7.96E+10	88390248					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	54886.62	6016.718	9.1224	0	42782.54	66990.7	42782.54	66990.7
R&D Spend	0.8621	0.0302	28.5889	0	0.8015	0.9228	0.8015	0.9228
Administrat ion	-0.053	0.0494	-1.0727	0.2889	-0.1524	0.0464	-0.1524	0.0464

Selecting X₁ variable, we find linear regression output of X₁ & X₃ variable with Y

Regression Statistics								
Multiple R	0.97491							
R Square	0.95045							
Adjusted R Square	0.948342							
Standard Error	9160.966							
Observations	50							
ANOVA								
	df	SS	MS	F	Signific	cance F		
Regression	2	7.57E+10	3.78E+10	450.7713	2.16E-31			
Residual	47	3.94E+09	83923295					
Total	49	7.96E+10						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	46975.86	2689.933	17.46358	3.50E-22	41564.42	52387.31	41564.42	52387.31
R&D Spend	0.796584	0.041348	19.26556	0.0000	0.713403	0.879765	0.713403	0.879765
Marketing Spend	0.029908	0.01552	1.927052	0.06003	-0.00131	0.06113	-0.00131	0.06113

By considering Coefficient of determination and variables having p values (i.e < 0.05), we find no Model to be significant

Therefore, by Forward selection and Backward Elimination method we get our significant linear regression model as:

$$\mathbf{Y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \, \mathbf{X}_1$$

Which is given as:

$$Y = 49032.9 + 0.8543 X_1$$

THANKYOU