Az informatikus lineáris algebra dolgozat C részének lehetséges kérdései

Az alábbi listában azok az állítások, tételek szerepelnek, melyeket a vizsgadolgozat C részében kérdezhetünk. Azok érnek 6 pontot, ahol a bizonyítás nehezebb ötletet vagy több tudást igényel. Többnyire 1 pontot lehet szerezni a tétel (vagy valamely releváns fogalom, segédállítás) precíz kimondásával. Ezeket az 1 pontos válaszokat dőlt betűvel szedtük.

Könnyű (4 pontos) és nehezebb (6 pontos) kérdések

1. Mondjuk ki a $\mathbf{b}_1, \dots, \mathbf{b}_k$ vektorok lineáris függetlenségének definícióját, majd bizonyítsuk be, hogy ha $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ lineárisan független vektorrendszer, akkor minden lineáris kombinációjukként felírható vektor **egyértelműen** írható föl \mathcal{B} -beli vektorok lineáris kombinációjaként. (4 **pont**)

A $\mathbf{v}_1, \ldots, \mathbf{v}_k$ vektorrendszer akkor és csak akkor lineárisan független, ha csak a triviális lineáris kombinációja adja a nullvektort. Képletben: tetszőleges $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$ esetén, ha $\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdots + \lambda_k \mathbf{v}_k = \mathbf{0}$, akkor minden i-re $\lambda_i = 0$.

Ha lenne egy vektor, melynek kétféle fölírása is létezne: $\mathbf{u} = \sum_{i=1}^k \lambda_i \mathbf{b}_i = \sum_{i=1}^k \mu_i \mathbf{b}_i$, akkor a kétféle előállítást egymásból kivonva azt kapjuk, hogy $\mathbf{0} = \sum_{i=1}^k (\lambda_i - \mu_i) \mathbf{b}_i$. Ha a két előállítás különbözik, akkor valamelyik $(\lambda_i - \mu_i)$ együttható nem nulla, s ez ellentmond a \mathcal{B} lineáris függetlenségének.

2. Tekintsük az alábbi két fogalmat: a) egy vektorrendszer lineárisan összefüggő; b) egy vektor lineárisan függ egy vektorrendszertől. Mondjuk ki azt az állítást, mely ezeket a fogalmakat összekapcsolja, és bizonyítsuk is be az állítást. (4 pont)

Ha $k \geq 2$, akkor a $\mathbf{v}_1, \ldots, \mathbf{v}_k$ vektorrendszer akkor és csak akkor lineárisan összefüggő, ha létezik olyan i, hogy \mathbf{v}_i lineárisan függ a többi \mathbf{v}_j vektortól (azaz előáll mint a $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_k$ vektorok lineáris kombinációja).

Tegyük föl először, hogy a megadott vektorrendszer lineárisan összefüggő. Ez azt jelenti, hogy a nullvektornak van egy olyan $\sum_{i=1}^k \lambda_i \mathbf{v}_i = \mathbf{0}$ előállítása, melynél valamelyik λ_i együttható (pl. a λ_{i_0}) nem 0. Ekkor a \mathbf{v}_{i_0} kifejezhető a többi vektor lineáris kombinációjaként, hiszen $\mathbf{v}_{i_0} = -(1/\lambda_{i_0}) \sum_{j \neq i_o} \lambda_j \mathbf{v}_j$. – A fordított irányhoz tegyük föl, hogy \mathbf{v}_{i_0} lineárisan függ a többi \mathbf{v}_j vektortól, azaz $\mathbf{v}_{i_0} = \sum_{j \neq i_0} \mu_j \mathbf{v}_j$ valamilyen μ_j együtthatókra. De ekkor átrendezhetjük a fönti egyenlőséget úgy, hogy minden vektor az egyenlőség azonos oldalára kerüljön, s ekkor azt kapjuk, hogy a $\mu_{i_0} = -1$ választással: $\sum_{i=1}^k \mu_i \mathbf{v}_i = \mathbf{0}$. Ez nem triviális lineáris kombinációja a \mathbf{v}_i vektoroknak, mert $\mu_{i_0} = -1 \neq 0$, tehát a vektorrendszer lineárisan összefüggő.

Informatikus lineáris algebra: a C rész kérdései

3. Mondjuk ki és igazoljuk azt az állítást, mely arról szól, mi történik, ha egy lineárisan független $\mathbf{a}_1, \dots, \mathbf{a}_k$ vektorrendszerhez hozzávéve a **b** vektort, az új, bővebb $\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{b}$ vektorrendszer már összefüggővé válik. (4 pont)

Ha egy lineárisan független $\mathbf{a}_1, \dots, \mathbf{a}_k$ vektorrendszerhez hozzávéve a \mathbf{b} vektort, a kapott $\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{b}$ vektorrendszer már összefüggő, akkor \mathbf{b} lineárisan függ az $\mathbf{a}_1, \dots, \mathbf{a}_k$ vektoroktól (azaz előállítható lineáris kombinációjukként).

A feltétel szerint ugyanis léteznek olyan $\lambda_1, \ldots, \lambda_k, \mu$ együtthatók, melyek közül legalább az egyik nem nulla, és melyekre $(\sum_{i=1}^k \lambda_i \mathbf{a}_i) + \mu \mathbf{b} = \mathbf{0}$. Itt azonban μ nem lehet nulla, ellenkező esetben az \mathbf{a}_i vektorok már önmagukban is előálítanák a nullvektort nem triviális módon, ez pedig ellentmond a lineáris függetlenségüknek. Ha átrendezzük az előbbi egyenlőséget úgy, hogy a \mathbf{b} vektort hagyjuk az egyik oldalon, akkor μ -vel osztva $\mathbf{b} = \sum_{i=1}^k (-\lambda_i/\mu) \mathbf{a}_i$, ami azt mutatja, hogy \mathbf{b} lineárisan függ az \mathbf{a}_i vektoroktól.

4. Mondjuk ki az \mathbb{R}^n -beli alterek fogalmának a műveletekre való zártsággal való definícióját, majd bizonyítsuk be, hogy \mathbb{R}^n két alterének metszete is altér. (4 pont)

 $W \subseteq \mathbb{R}^n$ pontosan akkor altér, ha nem üres (ekvivalens módon itt azt is megkövetelhetjük, hogy a nullvektor benne van W-ben), továbbá $\mathbf{w}_1, \mathbf{w}_2 \in W$ esetén $\mathbf{w}_1 + \mathbf{w}_2 \in W$, valamint $\mathbf{w} \in W$ és $\lambda \in \mathbb{R}$ esetén $\lambda \mathbf{w} \in W$.

Tegyük föl, hogy W_1, W_2 altér \mathbb{R}^n -ben. Ekkor a nullvektor mindkét altérnek eleme, így $W_1 \cap W_2$ nem üres. Ha $\mathbf{w}_1, \mathbf{w}_2 \in W_1 \cap W_2$, akkor mindkét i indexre $\mathbf{w}_1 + \mathbf{w}_2 \in W_i$ (hiszen W_i altér), s ezért az összegvektor benne van a metszetben. Hasonlóan, ha $\mathbf{w} \in W_1 \cap W_2$ és $\lambda \in \mathbb{R}$, akkor W_i altér volta miatt $\lambda \mathbf{w} \in W_i$ mindkét lehetséges i indexre, így $\lambda \mathbf{w}$ benne van a metszetükben is.

5. Mondjuk ki és igazoljuk a véges generátorrendszer és a bázis létezésének kapcsolatáról szóló tételt. (6 pont)

Ha egy $\{\mathbf{0}\} \neq U \leq \mathbb{R}^n$ altérben létezik véges generátorrendszer, akkor van U-ban bázis. Sőt: minden véges generátorrendszerből kiválasztható bázis.

Legyen $\mathcal{G} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ generátorrendszer. Ekkor ha \mathcal{G} független, akkor készen vagyunk: \mathcal{G} bázis is U-ban. Speciálisan ha k = 1, akkor $\{\mathbf{0}\} \neq U$ miatt $\mathbf{v}_1 \neq \mathbf{0}$, tehát \mathcal{G} független. Ha \mathcal{G} legalább kételemű és lineárisan összefüggő, akkor van olyan \mathbf{v}_i , amely függ a többi vektortól, azaz előáll a többiek lineáris kombinációjaként. Ekkor azonban $\mathcal{G} \setminus \{\mathbf{v}_i\}$ is generátorrendszer, hiszen minden lineáris kombinációban, ahol \mathbf{v}_i is szerepel, helyette beírhatjuk az őt előállító kombinációt. Ez azt jelenti, hogy a generátorrendszer elemszáma eggyel csökkent. Az eljárást szükség esetén többször is megismételhetjük, amíg független rendszert nem kapunk: ekkor épp egy bázishoz jutottunk. (Megjegyzés: \mathbb{R}^n bármely alterében létezik véges generátorrendszer.)

6. Mi a kapcsolat \mathbb{R}^n egy alterében a lineárisan független vektorrendszerek és az altér bázisai között? Mondjuk ki és igazoljuk az ezzel kapcsolatos állítást. (6 pont)

 $Ha \{0\} \neq U \leq \mathbb{R}^n$, akkor létezik benne bázis, sőt, minden lineárisan független vektorrendszer kiegészíthető bázissá.

Mivel \mathbb{R}^n -ben létezik n elemű generátorrendszer, és tudjuk, hogy minden független rendszer elemszáma legfeljebb akkora, mint bármelyik generátorrendszeré, ezért \mathbb{R}^n -ben (és így U-ban is) egy lineárisan független vektorrendszer elemszáma legföljebb n lehet. Legyen most $\mathcal{F} = \{\mathbf{a}_1, \dots, \mathbf{a}_k\} \subseteq U$ tetszőleges lineárisan független vektorrendszer (ilyen van, mert $U \neq \{\mathbf{0}\}$). Nyilván $k \leq n$. Ha van olyan $\mathbf{b} \in U$ vektor, amellyel az $\mathcal{F} \cup \{\mathbf{b}\}$ rendszer továbbra is lineárisan független lesz, akkor egészítsük ki a rendszert ezzel a vektorral. Így eggyel megnő a rendszer elemeinek a száma. Mivel ez a szám nem nőhet n fölé, a folyamat valamikor megakad, azaz van olyan $\mathcal{F}' \supset \mathcal{F}$ független vektorrendszer U-ban, melyet nem tudunk tovább bővíteni úgy, hogy független maradjon. Ez azt jelenti, hogy bármely $\mathbf{b} \in U$ vektorra a \mathbf{b} már lineárisan függ \mathcal{F}' -től, és így \mathcal{F}' generátorrendszer is U-ban, azaz bázis.

7. Definiáljuk az $n \times n$ -es egységmátrix fogalmát, és mondjuk meg, mi lesz az eredménye az egységmátrixszal való szorzásnak. Igazoljuk az egységmátrixszal jobbról való szorzásra vonatkozó összefüggést. (4 pont)

 $Az\ I_n \in \mathbb{R}^{n \times n}$ egységmátrix i-edik sorának j-edik eleme 1, ha i=j, és 0 egyébként (azaz a főátlóban 1-esek, a főátlón kívül 0-k szerepelnek). Úgy is írhatjuk, hogy a mátrix általános eleme δ_{ij} , ahol δ_{ij} a szokásos Kronecker-szimbólum. Tetszőleges $A \in \mathbb{R}^{k \times n}$ és $B \in \mathbb{R}^{n \times m}$ mátrixokra $AI_n = A$ és $I_n B = B$.

Az $AI_n = A$ igazolásához jelölje a_{pq} az A mátrix általános elemét. A szorzatmátrixban az i-edik sor j-edik eleme a szorzás definíciója szerint $_i[AI_n]_j = \sum_{t=1}^n (a_{it}\delta_{tj})$. Ebben az összegben $\delta_{tj} = 0$ ha $t \neq j$, ezért csak az egyetlen $a_{ij}\delta_{jj} = a_{ij}$ tag marad meg.

8. Mondjuk ki és bizonyítsuk be a mátrixok szorzatának transzponáltjára kimondott összefüggést. (4 pont)

```
\begin{split} &Ha\ A \in \mathbb{R}^{k \times \ell}\ \textit{\'es}\ B \in \mathbb{R}^{\ell \times n},\ akkor\ (AB)^T = B^TA^T. \\ &\text{A szorzat transzponáltjának általános eleme ugyanis:} \\ &_i[(AB)^T]_j = {}_j[AB]_i = \sum_{t=1}^\ell {}_j[A]_t \cdot {}_t[B]_i = \sum_{t=1}^\ell {}_i[B^T]_t \cdot {}_t[A^T]_j = {}_i[B^TA^T]_j. \end{split}
```

9. Mondjuk ki és igazoljuk a mátrixok szorzatának oszloprangjára vonatkozó becslést. (6 pont)

```
Ha \ A \in \mathbb{R}^{k \times \ell} \ \acute{e}s \ B \in \mathbb{R}^{\ell \times n}, akkor \ \rho_{\mathcal{O}}(AB) \leq \rho_{\mathcal{O}}(A). (Igaz \ a \ \rho_{\mathcal{O}}(AB) \leq \rho_{\mathcal{O}}(B) becslés is.) Az AB mátrix oszlopai fölírhatók az A oszlopainak lineáris kombinációiként. Ha ugyanis A = [\mathbf{a}_1, \dots, \mathbf{a}_\ell], a B mátrix általános eleme pedig b_{pq}, akkor az AB szorzatmátrix j-edik oszlopa az alábbi módon is írható: b_{1j}\mathbf{a}_1 + b_{2j}\mathbf{a}_2 + \dots + b_{\ell j}\mathbf{a}_j. Ez azt jelenti, hogy az AB oszlopai mind benne vannak egy \rho_{\mathcal{O}}(A) dimenziós altérben, így az általuk kifeszített altér dimenziója sem lehet ennél nagyobb.
```

10. Mondjuk ki és igazoljuk egy $A \in \mathbb{R}^{k \times n}$ mátrix jobb oldali inverzének létezéséről szóló tételt. (6 pont)

 $Egy \ A \in \mathbb{R}^{k \times n}$ mátrixnak pontosan akkor van jobb oldali inverze, ha a mátrix rangja

A-nak pontosan akkor létezik jobb oldali inverze, ha az $AX = I_k$ mátrixegyenletnek létezik megoldása. Ez viszont azzal ekvivalens, hogy az $\mathbf{e}_1, \dots, \mathbf{e}_k \in \mathbb{R}^k$ triviális bázisvektorok előállíthatók az A oszlopainak lineáris kombinációjaként. Mivel az \mathbf{e}_i vektorok bázist alkotnak \mathbb{R}^k -ban, az előbbi feltétel azzal ekvivalens, hogy A oszlopvektorai generálják az egész \mathbb{R}^k teret, azaz hogy $\rho(A) = k$ teljesül.

11. Mondjuk meg, mi történik egy négyzetes mátrix determinánsával, ha az első sorának egy skalárszorosát hozzáadjuk a második sorhoz (és az első sort változatlanul hagyjuk), majd igazoljuk az állítást. A bizonyítás során jelezzük a determináns elemi tulajdonságaira vonatkozó felhasznált állításokat, ezeket nem kell bizonyítani. (6 pont)

Ha egy $A \in \mathbb{R}^{n \times n}$ mátrix első sorának λ -szorosát hozzáadjuk a második sorhoz, a mátrix determinánsa nem változik.

Jelölje \mathbf{a}_i az A mátrix *i*-edik sorát. Ekkor:

$$\det[\mathbf{a}_1, \mathbf{a}_2 + \lambda \mathbf{a}_1, \mathbf{a}_3, \dots, \mathbf{a}_n]^T = \det[\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \dots, \mathbf{a}_n]^T + \det[\mathbf{a}_1, \lambda \mathbf{a}_1, \mathbf{a}_3, \dots, \mathbf{a}_n]^T = \det A + \lambda \det[\mathbf{a}_1, \mathbf{a}_1, \mathbf{a}_3, \dots, \mathbf{a}_n]^T = \det A + 0.$$

Itt fölhasználjuk, hogy ha a mátrix valamelyik sora két vektor összege, akkor a determináns két determináns összegeként írható föl; hogy sorvektorból kiemelhetünk egy λ skalárt; végezetül hogy egy mátrix determinánsa 0, ha van két azonos sora.

12. Definiáljuk $n \geq 2$ esetén a Vandermonde-determináns $V(a_1, \ldots, a_n)$ fogalmát, adjuk meg az értékét, majd igazoljuk az erről szóló tételt. (6 pont)

$$Ha \ n \ge 2, \ akkor \ V(a_1, \dots, a_n) = \begin{vmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (a_j - a_i).$$

Az állítást n-re vonatkozó indukcióval bizonyítjuk (n = 2-re az állítás nyilván igaz). Vonjuk ki az utolsó oszloptól visszafelé haladva mindegyik oszlopból a megelőző oszlop a_1 -szeresét. Ezután fejtsünk ki az első sor szerint, majd emeljük ki a j-1-edik sorból $a_j - a_1$ -et minden $j \ge 2$ -re. Képletben:

$$V(a_1, \dots, a_n) = \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & a_2 - a_1 & a_2(a_2 - a_1) & \dots & a_2^{n-2}(a_2 - a_1) \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 1 & a_n - a_1 & a_n(a_n - a_1) & \dots & a_n^{n-2}(a_n - a_1) \end{vmatrix} = V(a_2, \dots, a_n) \prod_{\substack{2 \leq j \leq n \\ 1 \leq j \leq n}} (a_j - a_1).$$
most már alkalmazhatjuk az indukciós hipotézist, hogy az állítást

Itt most már alkalmazhatjuk az indukciós hipotézist, hogy az állítást megkapjuk.

4

13. Mondjuk ki és igazoljuk azt a tételt, mely egy mátrix rangja, illetve a mátrix egyes részmátrixainak a determinánsa között teremt kapcsolatot. (6 pont)

 $A \in \mathbb{R}^{k \times n}$ esetén ha $\rho(A) = r \geq 1$, akkor A-nak van olyan $r \times r$ -es részmátrixa, melynek determinánsa nem nulla, de minden $(r+1) \times (r+1)$ -es részmátrix determinánsa 0.

Ha A rangja r, akkor A-nak van r darab olyan oszlopa, amely lineárisan független. Vegyük azt az $A_1 \in \mathbb{R}^{k \times r}$ részmátrixot, mely ezekből az oszlopokból áll. Ennek a rangja is r, így az oszloprang és a sorrang egyenlősége miatt van benne r darab lineárisan fügetlen sor. Válasszuk ki ezeket a sorokat, hogy egy $A_2 \in \mathbb{R}^{r \times r}$ részmátrixot kapjunk. Mivel ennek a rangja is r, a determinánsa nem nulla. Ugyanakkor bármely $A_3 \in \mathbb{R}^{(r+1) \times (r+1)}$ részmátrix oszlopai összefüggők (hiszen az eredeti A-beli oszlopok összefüggők), így az A_3 részmátrix determinánsa 0.

14. Mondjuk ki és igazoljuk egy mátrix \mathbb{R} feletti diagonalizálhatóságának szükséges és elégséges feltételét bizonyos fajta bázis létezése segítségével. (6 pont)

Egy $A \in \mathbb{R}^{n \times n}$ mátrix pontosan akkor diagonalizálható \mathbb{R} felett – azaz pontosan akkor létezik olyan $S \in \mathbb{R}^{n \times n}$ invertálható mátrix, melyre $S^{-1}AS$ diagonális alakú –, ha létezik \mathbb{R}^n -ben az A sajátvektoraiból álló bázis.

Tegyük föl először, hogy létezik ilyen S, azaz $S^{-1}AS = D = [\lambda_1\mathbf{e}_1,\dots,\lambda_n\mathbf{e}_n]$, ahol $\lambda_1,\dots,\lambda_n\in\mathbb{R}$, és $\mathbf{e}_1,\dots,\mathbf{e}_n$ a szokásos egységvektorok. Szorozzuk mindkét oldalt balról S-sel; azt kapjuk, hogy AS = SD. Ha az S mátrix i-edik oszlopát \mathbf{s}_i -vel jelöljük, akkor az előbbi két mátrix i-edik oszlopa: $A\mathbf{s}_i = S(\lambda_i\mathbf{e}_i) = \lambda_iS\mathbf{e}_i = \lambda_i\mathbf{s}_i$. Ez azt jelenti, hogy S oszlopai sajátvektorai A-nak, s mivel S invertálható, az oszlopok bázist alkotnak \mathbb{R}^n -ben. Azt kaptuk tehát, hogy létezik sajátvektorokból álló bázis. – Megfordítva, ha létezik ilyen bázis, akkor ezeket egy S mátrix oszlopaiba berakva, egyrészt egy invertálható S mátrixot kapunk, másrészt az előző számolás azt mutatja, hogy ekkor $AS = [\lambda_1\mathbf{s}_1,\dots,\lambda_n\mathbf{s}_n] = SD$, ahol D a λ_i sajátértékeket az átlóban tartalmazó diagonális mátrix. Vagyis ilyenkor $S^{-1}AS = D$, azaz A diagonalizálható \mathbb{R} felett.

15. Definiáljuk egy $A \in \mathbb{R}^{n \times n}$ mátrix jobb oldali sajátértékének fogalmát, majd igazoljuk, hogy az A mátrix λ sajátértékű (jobb oldali) sajátvektorai a nullvektorral kiegészítve alteret alkotnak \mathbb{R}^n -ben. (4 pont)

 $\lambda \in \mathbb{R}$ jobb oldali sajátértéke A-nak, ha van olyan $\mathbf{0} \neq \mathbf{v} \in \mathbb{R}^n$ vektor, melyre $A\mathbf{v} = \lambda \mathbf{v}$. (Ilyenkor \mathbf{v} -t a λ -hoz tartozó (egyik) sajátvektornak nevezhetjük.)

Azt kell igazolnunk, hogy $W_{\lambda} = \{ \mathbf{v} \in \mathbb{R}^n \mid A\mathbf{v} = \lambda \mathbf{v} \} \leq \mathbb{R}^n$. Nyilván $\mathbf{0} \in W_{\lambda}$, így W_{λ} nem üres. Ha $\mathbf{v}_1, \mathbf{v}_2 \in W_{\lambda}$, akkor $A(\mathbf{v}_1 + \mathbf{v}_2) = A\mathbf{v}_1 + A\mathbf{v}_2 = \lambda \mathbf{v}_1 + \lambda \mathbf{v}_2 = \lambda (\mathbf{v}_1 + \mathbf{v}_2)$, azaz W_{λ} zárt az összeadásra. Végül, ha $\mathbf{v} \in W_{\lambda}$ és $\mu \in \mathbb{R}$, akkor $A(\mu \mathbf{v}) = \mu A\mathbf{v} = \mu(\lambda \mathbf{v}) = \lambda(\mu \mathbf{v})$, vagyis W_{λ} zárt a skalárral való szorzásra is.

Informatikus lineáris algebra: a C rész kérdései

16. Definiáljuk egy A mátrix karakterisztikus polinomját, majd mondjuk ki és bizonyítsuk be a karakterisztikus polinom és a mátrix jobb oldali sajátértékeinek kapcsolatáról szóló tételt. (6 pont)

Egy $A \in \mathbb{R}^{n \times n}$ mátrix karakterisztikus polinomja az $(A - I_n \lambda)$ mátrix determinánsa, azaz $k_A(\lambda) = \det(A - I_n \lambda)$. A karakterisztikus polinom valós gyökei megegyeznek a mátrix valós sajátértékeivel.

$$\lambda_0 \in \mathbb{R}$$
 jobb oldali sajátértéke az A mátrixnak \iff létezik olyan $\mathbf{0} \neq \mathbf{v} \in \mathbb{R}^n$ vektor, melyre $A\mathbf{v} = \lambda_0 \mathbf{v}$, azaz $(A - I_n \lambda_0) \mathbf{v} = \mathbf{0} \iff$ $\det(A - I_n \lambda_0) = \mathbf{0} \iff$ $k_A(\lambda_0) = \mathbf{0} \iff$ $\lambda_0 \in \mathbb{R}$ gyöke a karakterisztikus polinomnak.

17. Definiáljuk az \mathbb{R} felett hasonló mátrixok fogalmát, majd mondjuk ki és bizonyítsuk be a hasonló mátrixok karakterisztikus polinomjára vonatkozó összefüggést. (6 pont)

 $Az\ A, B \in \mathbb{R}^{n \times n}$ mátrixok hasonlók \mathbb{R} felett (ennek jele: $A \sim_{\mathbb{R}} B$), ha van olyan S invertálható mátrix, hogy $A = S^{-1}BS$. Tétel mondja ki, hogy hasonló mátrixok karakterisztikus polinomja egyenlő.

A karakterisztikus polinom, ill. a hasonlóság definíciójának, valamint a determinánsok szorzástételének fölhasználásaval azt kapjuk, hogy ha A és B hasonlók $\mathbb R$ felett, akkor:

$$k_A(\lambda) = \det(A - I_n \lambda) = \det(S^{-1}BS - I_n \lambda) = \det\left(S^{-1}(B - I_n \lambda)S\right) =$$

$$= \det S^{-1} \det(B - I_n \lambda) \det S = \det S^{-1} \det S \cdot k_B(\lambda) = \det(S^{-1}S) \cdot k_B(\lambda) =$$

$$= \det I_n \cdot k_B(\lambda) = k_B(\lambda).$$

18. Mondjuk ki valós euklideszi terekre a Cauchy-egyenlőtlenséget, beleértve azt is, hogy mikor áll egyenlőség, majd bizonyítsuk belőle a valós euklideszi terekre vonatkozó háromszögegyenlőtlenséget. (A Cauchy-egyenlőtlenséget nem kell bizonyítani.) (6 pont)

A Cauchy-egyenlőtlenség: Legyen V valós euklideszi tér. Ekkor tetszőleges $\mathbf{x}, \mathbf{y} \in V$ vektorokra $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$, és egyenlőség pontosan akkor áll fönn, ha \mathbf{x}, \mathbf{y} lineárisan összefüggő.

A háromszögegyenlőtlenség azt mondja ki, hogy tetszőleges $\mathbf{x}, \mathbf{y} \in V$ vektorokra igaz: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$. Mivel az egyenlőtlenség mindkét oldala nemnegatív, ezzel ekvivalens állítást kapunk, ha mindkét oldalt négyzetre emeljük:

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|^2 &\leq (\|\mathbf{x}\| + \|\mathbf{y}\|)^2 \iff \\ \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle &\leq \langle \mathbf{x}, \mathbf{x} \rangle + 2 \|\mathbf{x}\| \cdot \|\mathbf{y}\| + \langle \mathbf{y}, \mathbf{y} \rangle \iff \\ \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle &\leq \langle \mathbf{x}, \mathbf{x} \rangle + 2 \|\mathbf{x}\| \cdot \|\mathbf{y}\| + \langle \mathbf{y}, \mathbf{y} \rangle \iff \\ 2\langle \mathbf{x}, \mathbf{y} \rangle &\leq 2 \|\mathbf{x}\| \cdot \|\mathbf{y}\|. \end{aligned}$$

Ez utóbbi egyenlőtlenség pedig nyilvánvalóan következik a Cauchy-egyenlőtlenségből.

19. Mondjuk ki és igazoljuk a szimmetrikus mátrixok két, egymástól különböző sajátértékű sajátvektoráról szóló állítást \mathbb{R}^n -ben, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y}$ mellett. (6 pont)

Egy $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix különböző sajátértékeihez tartozó sajátvektorok merőlegesek egymásra.

Legyenek $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ nullától különböző vektorok, melyekre $A\mathbf{x} = \lambda \mathbf{x}$ és $A\mathbf{y} = \mu \mathbf{y}$ valamely $\lambda \neq \mu$ sajátértékekre. Ekkor, kihasználva, hogy $A^T = A$, azt kapjuk, hogy:

$$\lambda \langle \mathbf{x}, \mathbf{y} \rangle = \langle \lambda \mathbf{x}, \mathbf{y} \rangle = \langle A \mathbf{x}, \mathbf{y} \rangle = (A \mathbf{x})^T \mathbf{y} = \mathbf{x}^T A^T \mathbf{y} = \langle \mathbf{x}, A \mathbf{y} \rangle = \langle \mathbf{x}, \mu \mathbf{y} \rangle = \mu \langle \mathbf{x}, \mathbf{y} \rangle.$$

Mivel $\lambda \neq \mu$, ezért $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, vagyis \mathbf{x} és \mathbf{y} merőlegesek egymásra.

20. Definiáljuk egy $\varphi \in \mathcal{H}om(\mathbb{R}^n, \mathbb{R}^k)$ lineáris leképezés magterét és képterét, majd igazoljuk, hogy mindkét halmaz altér a megfelelő vektortérben. (4 pont)

$$\mathcal{K}er\,\varphi = \{\mathbf{x} \in \mathbb{R}^n \mid \varphi(\mathbf{x}) = \mathbf{0}\}, \text{ \'es } \mathcal{I}m\,\varphi = \{\mathbf{y} \in \mathbb{R}^k \mid \exists \mathbf{x} \in \mathbb{R}^n \ \varphi(\mathbf{x}) = \mathbf{y}\}.$$

$$\varphi(\mathbf{0}) = \varphi(\mathbf{0} \cdot \mathbf{0}) = 0\varphi(\mathbf{0}) = \mathbf{0} \text{ miatt } \mathcal{K}er\,\varphi \text{ nem \"ures. Ha } \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{K}er\,\varphi, \text{ akkor}$$

$$\varphi(\mathbf{x}_1 + \mathbf{x}_2) = \varphi(\mathbf{x}_1) + \varphi(\mathbf{x}_2) = \mathbf{0} + \mathbf{0} = \mathbf{0},$$

tehát $\operatorname{Ker} \varphi$ zárt a vektorok összeadására. Végezetül ha $\mathbf{x} \in \operatorname{Ker} \varphi$, akkor tetszőleges $\lambda \in \mathbb{R}$ számra $\varphi(\lambda \mathbf{x}) = \lambda \varphi(\mathbf{x}) = \lambda \cdot \mathbf{0} = \mathbf{0}$. Tehát $\operatorname{Ker} \varphi \leq \mathbb{R}^n$. – Hasonlóképpen, $\varphi(\mathbf{0}) = \mathbf{0}$ miatt $\mathbf{0} \in \operatorname{Im} \varphi$, tehát a képtér nem üres. Ha $\varphi(\mathbf{x}_1) = \mathbf{y}_1$ és $\varphi(\mathbf{x}_2) = \mathbf{y}_2$, akkor $\varphi(\mathbf{x}_1 + \mathbf{x}_2) = \mathbf{y}_1 + \mathbf{y}_2$, tehát a képtér zárt az összeadásra. Végezetül, ha $\varphi(\mathbf{x}) = \mathbf{y}$, akkor $\varphi(\lambda \mathbf{x}) = \lambda \mathbf{y}$, tehát $\operatorname{Im} \varphi \leq \mathbb{R}^k$.

21. Mondjuk ki a $\varphi \in \mathcal{H}om(\mathbb{R}^n, \mathbb{R}^n)$ lineáris transzformáció sajátértékeinek segítségével megfogalmazva annak egy elégséges feltételét, hogy φ -nek létezzen sajátvektorokból álló bázisa, majd mondjuk ki és bizonyítsuk be az idevágó tételt bizonyos sajátvektorok függetlenségéről. (6 pont)

Ha a $\varphi \in \mathcal{H}om(\mathbb{R}^n, \mathbb{R}^n)$ lineáris transzformációnak létezik n darab (tehát a tér dimenziójával megegyező számú) különböző sajátértéke, akkor létezik sajátvektorokból álló bázis.

A bizonyításhoz az alábbi tételt fogjuk felhasználni: Ha a fenti lineáris transzformációnak $\lambda_1,\ldots,\lambda_k$ különböző sajátértékei és $\mathbf{v}_1,\ldots,\mathbf{v}_k$ egy-egy, a λ_i -knek megfelelő sajátvektor, akkor a megadott sajátvektorok lineárisan függetlenek. A bizonyítást k-ra vonatkozó indukcióval végezzük. A k=1 eset igaz, mert sajátvektor nem a nullvektor. Föltehető tehát, hogy $\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}$ lineárisan független. Ha \mathbf{v}_k hozzávételével a rendszer összefüggővé válik, akkor \mathbf{v}_k függ a korábbi sajátvektoroktól, azaz $\mathbf{v}_k = \sum_{i=1}^{k-1} \alpha_i \mathbf{v}_i$. Alkalmazzuk az egyenlőség mindkét oldalára a φ -t. Azt kapjuk, hogy $\varphi(\mathbf{v}_k) = \lambda_k \mathbf{v}_k = \sum_{i=1}^{k-1} \alpha_i \varphi(\mathbf{v}_i) = \sum_{i=1}^{k-1} \alpha_i \lambda_i \mathbf{v}_i$. Ugyanakkor $\lambda_k \mathbf{v}_k$ -nak létezik egy másik előállítása is, amit úgy kapunk, hogy a \mathbf{v}_k előállítását szorozzuk λ_k -val: $\lambda_k \mathbf{v}_k = \sum_{i=1}^{k-1} \alpha_i \lambda_k \mathbf{v}_i$. A második előállításból kivonva az elsőt az adódik, hogy $\mathbf{0} = \sum_{i=1}^{k-1} \alpha_i (\lambda_k - \lambda_i) \mathbf{v}_i$, és mivel az itt szereplő vektorok az indukciós feltétel szerint lineárisan függetlenek, ezért $\alpha_i(\lambda_k - \lambda_i) = 0$ minden i-re. Mivel azonban $\lambda_k - \lambda_i \neq 0$, ha $k \neq i$, ezért $\alpha_i = 0$ minden $1 \leq i \leq k-1$ -re. Ez viszont ellentmond annak, hogy \mathbf{v}_k nem a nulvektor. – Ebből k=n-re a tétel triviálisan következik.

Informatikus lineáris algebra: a C rész kérdései

22. Mondjuk ki és igazoljuk a lineáris leképezésekre vonatkozó dimenzióösszefüggést. (6 pont)

 $Ha \varphi \in \mathcal{H}om(V_1, V_2)$ és dim V_1 véges, akkor dim $V_1 = \dim \mathcal{K}er \varphi + \dim \mathcal{I}m \varphi$.

Legyen $\mathbf{u}_1, \dots, \mathbf{u}_k$ bázisa $\mathcal{K}er \, \varphi$ -nek, s egészítsük ki ezt az $\mathbf{u}_{k+1}, \dots, \mathbf{u}_n$ vektorokkal V_1 egy bázisává. Megmutatjuk, hogy $\varphi(\mathbf{u}_{k+1}), \dots, \varphi(\mathbf{u}_n)$ bázis $\mathcal{I}m \, \varphi$ -ben. (Ebből már következik a dimenzióösszefüggés.) Legyen ugyanis $\mathbf{y} \in \mathcal{I}m \, \varphi$ tetszőleges vektor; tehát $\mathbf{y} = \varphi(\mathbf{x})$ valamilyen $\mathbf{x} \in V_1$ vektorra. Ekkor $\mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{u}_i$ valamilyen α_i együtthatókkal, és így $\mathbf{y} = \varphi(\mathbf{x}) = \sum_{i=1}^n \alpha_i \varphi(\mathbf{u}_i) = \sum_{i=k+1}^n \alpha_i \varphi(\mathbf{u}_i)$, hiszen $\varphi(\mathbf{u}_i) = \mathbf{0}$ minden $1 \leq i \leq k$ -ra. Azt kaptuk tehát, hogy $\varphi(\mathbf{u}_{k+1}), \dots, \varphi(\mathbf{u}_n)$ generátorrendszer $\mathcal{I}m \, \varphi$ -ben. Most igazoljuk a vektorok lineáris függetlenségét. Ha $\sum_{i=k+1}^n \alpha_i \varphi(\mathbf{u}_i) = \mathbf{0}$, akkor $\varphi(\sum_{i=k+1}^n \alpha_i \mathbf{u}_i) = \mathbf{0}$, azaz $\sum_{i=k+1}^n \alpha_i \mathbf{u}_i \in \mathcal{K}er \, \varphi$. De akkor ugyanez a vektor előáll az $\mathbf{u}_1, \dots, \mathbf{u}_k$ vektorok lineáris kombinációjaként is, hiszen ezek $\mathcal{K}er \, \varphi$ egy bázisát alkotják. Viszont az \mathbf{u}_i -k lineárisan függetlenek, ezért a felírás egyértelműsége miatt minden $\alpha_i = 0$.