Distribuição de velocidades de Maxwell

$$\mathcal{L} = \sum_{i=1}^{3N} \frac{p_i}{z_{im}} + V(n_{A_i}, \dots, n_{SN})$$

$$= \sum_{i=1}^{2N} Z_{im}$$

$$= \sum_{i=1}^{N} P(\mathcal{P}) \frac{dr_1 \dots dr_{3N}}{h^{3N} N!}$$

$$= \sum_{i=1}^{N} Z_{im}$$

$$= \sum_{i=1}^{N} P(\mathcal{P}) \frac{dr_1 \dots dr_{3N}}{h^{3N} N!}$$

$$= \sum_{i=1}^{N} P(\mathcal{P}) \frac{dr_1 \dots dr_{3N}}{h^{3N} N!}$$

$$= \sum_{i=1}^{N} Z_{im}$$

$$= \sum_{i=1}^{N} P(\mathcal{P}) \frac{dr_1 \dots dr_{3N}}{h^{3N} N!}$$

$$= \sum_{i=1}^{N} Z_{im}$$

$$= \sum_{i=1}^{N} P(\mathcal{P}) \frac{dr_1 \dots dr_{3N}}{h^{3N} N!}$$

$$= \sum_{i=1}^{N} Z_{im}$$

$$= \sum_{i=1}^{N} P(\mathcal{P}) \frac{dr_1 \dots dr_{3N}}{h^{3N} N!}$$

$$= \sum_{i=1}^{N} P(\mathcal{P}) \frac{dr_1 \dots dr_{3N}}{h^{3N} N!}$$

$$= \sum_{i=1}^{N} Z_{im}$$

- $P(\{p_i\}) dp_1 \cdots dp_{3N} = \frac{1}{Z_C} \exp\left(-\beta \sum_{i=1}^{3N} \frac{p_i^2}{2m}\right) \frac{dp_1 \cdots dp_{3N}}{h^{3N}}$
- $Z_C = \int_{-\infty}^{\infty} \exp\left(-\beta \sum_{i=1}^{3N} \frac{p_i^2}{2m}\right) \frac{dp_1 \cdots dp_{3N}}{h^{3N}} = \lambda_T^{-3N}$ com $\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$ é o comprimento de onda térmico de De Broglie $\lambda = \frac{h}{m \sigma}$ $\epsilon \sim \sqrt{2\pi \frac{\epsilon_T}{2}}$
- $P(p) dp = \lambda_T \exp\left(-\beta \frac{p^2}{2m}\right) \frac{dp}{h}$, para uma coordenada p
- $P(v_x)dv_x = P(p_x)dp_x = \frac{m\lambda_T}{h} \exp(-\beta \frac{m}{2} v_x^2) dv_x$

Modelos de Spins

- Spin Ising, $s_i = \pm 1, i = 1, \dots, N$. A variável s_i toma valores em $\mathscr{X} = \{-1, 1\}$. Espaço de fases $\mathscr{D} \equiv \mathscr{X}^{\mathscr{N}}$.
- Spins independentes.

•
$$\mathcal{H}(\{s_i\}) = -H\sum_{i=1}^{N} s_i$$

- Modelo Ising Ferromagnético
 - rede cúbica, $\mathcal{L} \equiv \{1, 2, \dots, L\}^d$, dimensão, d
 - $\mathscr{X}_{\mathbf{N}} \equiv \{-1,1\}^{\mathscr{L}}$
 - $\mathcal{H}(\{s_i\}) = -\sum_{(i,j)} s_i s_j H\sum_{i=1}^N s_i$. Soma sobre pares de vizinhos, $\sum_{(i,j)} \cdots$
 - campo local, $h_i = \sum_{(i,j)} s_j$

Modelos de Spins

- Vidros de spin Modelo de Edwards-Anderson
 - rede cúbica, $\mathcal{L} \equiv \{1, 2, \dots, L\}^d$, dimensão, d
 - $\mathscr{X}_{\mathbf{N}} \equiv \{-1,1\}^{\mathscr{L}}$
 - $\mathcal{H}(\{\mathbf{s}_i\}) = -\sum_{(i,j)} \mathbf{J}_{i,j} \mathbf{s}_i \mathbf{s}_j \mathbf{H} \sum_{i=1}^N \mathbf{s}_i$.
 - $P(J_{i,j}) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{J_{i,j}^2}{2}\right); P(J_{i,j}) = \frac{1}{2} \delta_{J_{i,j},-1} + \frac{1}{2} \delta_{J_{i,j},1}$
 - $J_{i,j} > 0$ acoplamento ferromagnético, $J_{i,j} < 0$ acoplamento anti-ferromagnético
 - Estados fundamentais
- Problemas de Otimização
- Frustração. Não é possível minimizar simultaneamente a energia de todas as *ligações*.

Problema da Satisfatibilidade

- N variáveis Booleanas, $x_i = 0, 1$ com $i \in \{1, ..., N\}$
- Cláusula = expressão com operação lógica "ou" \vee que envolve duas ou mais variáveis x_i ou a sua negação \bar{x}_i Ex: $(x_1 \vee \bar{x}_2 \vee x_5)$
- Uma cláusula não é satisfeita (Falsa) apenas para um valor do conjunto das variáveis de que depende
- O problema geral envolve M cláusulas, C_a com $a \in \{1,...,M\}$ em que cada cláusula envolve K_a variáveis
- Pretende-se saber se existe uma atribuição $x_i = 0,1$ com $i \in \{1,...,N\}$ que satisfaz simultaneamente todas as cláusulas.

cadeias de Markov

- $\{X_t\}$ $t \in \mathbb{N}$ em que cada X_t toma valores em \mathscr{X}
- $p_{t+1}(x) = \sum_{y \in \mathscr{X}} p_t(y) w(y \to x) \operatorname{com} \sum_{y \in \mathscr{X}} w(x \to y) = 1$
- $p_{t+1}(x) p_t(x) = \sum_{y \in \mathcal{X}} [p_t(y)w(y \to x) p_t(x)w(x \to y)]$
- $\lim_{t\to\infty} p_{t+1}(x) p_t(x) = 0$ ou seja $\lim_{t\to\infty} p_t(x) = p_{st}(x)$ (distribuição de probabilidade em regime estacionário).
- Condição de Equilíbrio detalhado:

$$p_{st}(y)w(y \to x) = p_{st}(x)w(x \to y)$$
 $\forall x \neq y$

Algoritmo *de Metropolis*

- Objetivo é visitar estados, no regime estacionário, com probabilidade $p(\{q_i\}) = \frac{\exp(-\beta \mathscr{H}(\{q_i\}))}{Z}$.
- Metropolis e colaboradores sugeriram:
 - em cada passo escolhe-se aleatóriamente uma coordenada, i
 - perturba-se q_i aleatóriamente $q_i' = q_i + \delta q_i$ com $\delta q_i = \frac{\triangle q}{2}(2U-1)$ com U uniforme em]0,1[.
 - Com $\triangle \mathcal{H} = \mathcal{H}(\{q_i'\}) \mathcal{H}(\{q_i\})$ a perturbação é aceite com probabilidade $p_A = \min(1, \exp(-\beta \triangle \mathcal{H}))$.
 - Se a perturbação não fôr aceite o sistema permanece no mesmo estado no passo seguinte.

Algoritmo de Metropolis

- O algoritmo é uma cadeia de Markov com probabilidade de transição:
- $w\left(\{q_i\} \to \{q_i'\}\right) = \frac{1}{N \triangle q} \min\left(1, \exp(-\beta \triangle \mathscr{H})\right)$ se $q_i' = q_i$ para $i \neq k$ e $q_k' \in \left[q_k \frac{\triangle q}{2}, q_k + \frac{\triangle q}{2}\right]$
- se $\triangle \mathcal{H} \ge 0$ a condição de equilíbrio detalhado reduz-se a $p(\{q_i\}) \exp(-\beta \triangle \mathcal{H}) = p(\{q_i'\})$
- se $\triangle \mathscr{H} \leq 0$ a condição de equilíbrio detalhado reduz-se a $p(\{q_i\}) = p(\{q_i'\}) \exp(\beta \triangle \mathscr{H})$
- Então $p(\{q_i\}) = \frac{\exp(-\beta \mathscr{H}(\{q_i\}))}{Z}$ como pretendido.

Se
$$\Delta P > 0$$

$$W(9 \rightarrow 9!) = 1$$

$$V(9 \rightarrow 9!) = 1$$

$$V(9!) V(9! \rightarrow 9!) = 1$$

$$V(9!) V(9!) = 1$$

$$V(9!$$

$$\frac{\partial}{\partial t} (q_i) = \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} (q_i) - \frac{\partial}{\partial t} (q_i) \right) \\
= \frac{\partial}{\partial t} (q_i) = \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} (q_i) - \frac{\partial}{\partial t} (q_i) \right) \\
= \frac{\partial}{\partial t} (q_i) = \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} (q_i) - \frac{\partial}{\partial t} (q_i) \right)$$

Algoritmo de Metropolis genérico

- Se pretendermos construir uma cadeia de Markov que tem como distribuição estacionária, a densidade de probabilidade, p_{st}(x), então podemos usar o algoritmo:
 - perturbamos o estado x, propondo x' com probabilidade Q(x'|x). A perturbação deve ser pequena de modo a que a probabilidade média de aceitar o novo estado seja próxima de 0.5.
 - aceitamos o novo estado com probabilidade, $p_A = \min\left(1, \frac{Q(x|x')\,p_{st}(x')}{Q(x'|x)p_{st}(x)}\right)$

Algoritmo de Metropolis genérico

- se o novo estado for recusado o novo estado é igual ao anterior, caso contrário o estado é atualizado para x'.
- repetimos o procedimento um número de passos suficiente para que o sistem perca memória do estado inicial.
- A probabilidade de transição vem dada por $w\left(x \to x'\right) = Q(x'|x)\min\left(1, \frac{Q(x|x')\,p_{st}(x')}{Q(x'|x)\,p_{st}(x)}\right)$
- O equilíbrio detalhado é obedecido:
 - se $\frac{Q(x|x')p_{st}(x')}{Q(x'|x)p_{st}(x)} < 1$ então $p_{st}(x)w(x \to x') = Q(x|x')p_{st}(x') = w(x' \to x)p_{st}(x')$ • se $\frac{Q(x|x')p_{st}(x')}{Q(x')p_{st}(x')} > 1$ então $p_{st}(x)w(x \to x') = p_{st}(x)Q(x'|x')$
 - se $\frac{Q(x|x')p_{st}(x')}{Q(x'|x)p_{st}(x)} > 1$ então $p_{st}(x)w(x \to x') = p_{st}(x)Q(x'|x) = Q(x|x')\frac{Q(x'|x)p_{st}(x)}{Q(x|x')p_{st}(x')}p_{st}(x') = w(x' \to x)p_{st}(x')$
- os estado gerados em regime estacionário têm a densidade de probabilidade pretendida.

Se
$$Q(z|x')$$
 $Bt(x')$

$$Q(x'|x)$$
 $P_{tt}(x)$

$$W(x \to x') = Q(x|x)$$
 $Q(z|x')$ $Bt(x')$

$$Q(x'|x)$$
 $P_{tt}(x)$

$$= Q(z|x')$$
 $Bt(x')$

$$P_{tt}(x)$$

$$e$$

$$W(x' \to x') = Q(z|x')$$

$$Então$$

$$W(x \to x')$$
 $P_{tt}(x) = W(x' \to x')$ $P_{tt}(x')$

Se
$$Q(x|x')$$
 $P_{xt}(x')$ 1
$$Q(x'|x')$$
 $P_{xt}(x)$ 1
$$W(x \to x') = Q(x|x')$$
 $Q(x'|x')$ $P_{xt}(x)$

$$Q(x'|x')$$
 $P_{xt}(x')$ $Q(x'|x')$ $P_{xt}(x')$

$$Q(x'|x')$$
 $P_{xt}(x')$

$$Q(x'|x')$$
 $P_{xt}(x')$

$$Q(x'|x')$$
 $P_{xt}(x')$

$$Q(x'|x')$$
 $P_{xt}(x')$

$$Q(x'|x')$$
 $P_{xt}(x')$

$$Q(x'|x')$$
 $P_{xt}(x')$

32. Gás de Bosões	Exemplo: nmax=4
m ₁ 2 L (m ₂ , m _y)	Exemplo: milax=4
32. Gás de Bosóes $ \frac{1}{1} \frac$	15 15 15 14 1 2 5 0 0 2
$\frac{1}{2} + \frac{2m}{2} = \frac{2m}{L^2}$	5 6 7 8 2 3, 6, 1, 0 3
2 m L 2 m L 2	3 4,7,2,0
$\frac{1}{2m} = \frac{2m}{2m} = \frac{2m}$	4 8, 3, 0, 0 2
	6 7, 10, 5, 2 4
Ex: m = 1 m3 = 3 = (3-1)	
passamos de (nx,ny) para i = Z M + 1	
	número médio de partículas num estado k
passar de i para (nx,ny)	
n= mod (i-1, m,) +1	$m_{\vec{k}} > \frac{1}{\beta(\vec{k} - \mu)}$ $\mu = \text{Potencial químico}$
ny = foot (i = 1) + 1	
my for mex	
mad(y, 2) = y - floor (y/2) x 2	Particulas distinguivėis.
(1)c)	
Ex: 1= M (M= M-1+1=M)	$\frac{P(\langle n_2 \rangle)}{\text{of } Z} = \frac{\text{exp}(-\beta E)}{\text{of } n_1 \dots n_1 \dots}$
8: i= m (M = m - 4+1 = m mx	Z Million
Particulas indistinguiveis.	
$ \begin{array}{cccc} P(\{n_2\}) &= & & & & & & \\ P(\{n_2\}) &= & & & & \\ P(\{n_2\}) &= & & & & \\ P(\{n_2\}) &= & & & \\ P(\{n_2\}) &= & & & \\ P(\{n_2\}) &= &$	
(AE > = C kT C = <e2> - <e2< td=""><td></td></e2<></e2>	
k _a m²	

Algoritmo 1

- Começar com um estado arbitrário do sistema com N partículas. Por exemplo todas as partículas no estado fundamental.
- ② Manter uma lista de estados ocupados \vec{k} ocupados por partículas
- Atualizar o estado do sistema repetidamente deixando equilibrar
 - escolher ao acaso um estado \vec{k} da lista de ocupados e escolher ao acaso um estado vizinho $\vec{k}_{\rm v}$
 - calcular a variação de energia, dE correspondente a mover um partícula para o novo estado

continuação

• aceitar a mudança de estado de uma partícula de \vec{k} para \vec{k}_{v} com probabilidade $p_{A}=\min\left(1,\frac{nv(\vec{k})n_{O}}{nv(\vec{k}_{v})n_{Of}}\exp(-\beta dE)\right)$ onde $nv(\vec{k})$ é o número de estados \vec{k} vizinhos do estado \vec{k} , n_{O} é o numero de estados ocupados antes de mover a partícula e n_{Of} depois .

$$\begin{split} \bullet \ \, & \mathsf{Temos} \,\, w \, \big(x \to x' \big) = Q \big(x' | x \big) p_{A}, \, \, p_{A} = \mathsf{min} \, \Big(1, \frac{Q(x|x') p_{\mathsf{st}}(x')}{Q(x'|x) p_{\mathsf{st}}(x)} \Big) \\ & Q \big(n_{\vec{k}} - 1, n_{\vec{k}_{v}} + 1 | n_{\vec{k}}, n_{\vec{k}_{v}} \big) = \frac{1}{n_{O} \, \mathsf{nv}(\vec{k})} \, \, \mathsf{e} \\ & Q \big(n_{\vec{k}}, n_{\vec{k}_{v}} | n_{\vec{k}} - 1, n_{\vec{k}_{v}} + 1 \big) = \frac{1}{n_{Of} \, \mathsf{nv}(\vec{k}_{v})} \\ & P_{\mathsf{st}} = \frac{\mathsf{exp} \big(-\beta \sum_{\vec{k}} \varepsilon_{\vec{k}} \, n_{\vec{k}} \big)}{Z} \\ & \frac{P_{\mathsf{st}} \big(n_{\vec{k}} - 1, n_{\vec{k}_{v}} + 1 \big)}{P_{\mathsf{st}} \big(n_{\vec{k}}, n_{\vec{k}_{v}} \big)} = \frac{\mathsf{exp} \big(-\beta \left(\varepsilon_{\vec{k}} \, (n_{\vec{k}} - 1) + \varepsilon_{\vec{k}_{v}} \, (n_{\vec{k}_{v}} + 1) \right) \big)}{\mathsf{exp} \big(-\beta \left(\varepsilon_{\vec{k}} \, n_{\vec{k}} + \varepsilon_{\vec{k}_{v}} \, n_{\vec{k}_{v}} \right) \big)} = \mathsf{exp} \big(-\beta \, dE \big), \end{split}$$

• Então $p_A = \min\left(1, \frac{nv(\vec{k})n_O}{nv(\vec{k}_V)n_{Of}} \exp(-\beta dE)\right)$

Algoritmo 2

- Começar com um estado arbitrário do sistema com N partículas. Por exemplo todas as partículas no estado fundamental.
- ② Manter uma lista do estado ocupado por cada uma das N partículas e do número de partículas no estado \vec{k} , $n_{\vec{k}}$.
- Atualizar o estado do sistema repetidamente deixando equilibrar
 - escolher ao acaso uma partícula e mover a partícula do estado \vec{k} para acaso um estado vizinho \vec{k}_{v}
 - calcular a variação de energia, dE correspondente a mover um partícula para o novo estado
 - aceitar a mudança de estado da partícula de \vec{k} para \vec{k}_v com $\sqrt{\frac{n_V(\vec{k})(n_{i-1}+1)}{n_i}}$

probabilidade
$$p_A$$
, $p_A = \min \left(1, \frac{nv(\vec{k}) \left(n_{\vec{k}_V} + 1 \right)}{nv(\vec{k}_V) n_{\vec{k}_V}} \exp(-\beta dE) \right)$

demonstração validade do algoritmo

Algoritmo de Metropolis para gases ideais quânticos (Ensemb

$$\begin{split} \bullet \ \, \text{Temos} \, \, w \, (x \to x') &= Q(x'|x) p_{A}, \, \, p_{A} = \min \left(1, \frac{Q(x|x') \, p_{st}(x')}{Q(x'|x) \, p_{st}(x)} \right) \\ Q \, (n_{\vec{k}} - 1, n_{\vec{k}_{v}} + 1 | n_{\vec{k}}, n_{\vec{k}_{v}}) &= \frac{n_{\vec{k}}}{N \, nv(\vec{k})} \, \, \text{e} \\ Q \, (n_{\vec{k}}, n_{\vec{k}_{v}} | n_{\vec{k}} - 1, n_{\vec{k}_{v}} + 1) &= \frac{n_{\vec{k}_{v}} + 1}{N \, nv(\vec{k}_{v})} \\ \frac{P_{st} (n_{\vec{k}} - 1, n_{\vec{k}_{v}} + 1)}{P_{st} (n_{\vec{k}}, n_{\vec{k}_{v}})} &= \frac{\exp \left(-\beta \left(\varepsilon_{\vec{k}} (n_{\vec{k}} - 1) + \varepsilon_{\vec{k}_{v}} (n_{\vec{k}_{v}} + 1) \right) \right)}{\exp \left(-\beta \left(\varepsilon_{\vec{k}} \, n_{\vec{k}} + \varepsilon_{\vec{k}_{v}} \, n_{\vec{k}_{v}} \right) \right)} &= \exp \left(-\beta \, dE \right), \end{split}$$

$$\bullet \ \, \text{Então} \, , p_{A} = \min \left(1, \frac{nv(\vec{k}) \left(n_{\vec{k}_{v}} + 1 \right)}{nv(\vec{k}_{v}) n_{\vec{k}}} \exp \left(-\beta \, dE \right) \right)$$