# Introduction of data mining & machine learning algorithms

Module One

### Agenda

- Introduction to machine learning
- Overview of data mining process
- Introduction and setup of the data mining tools (Python)

- A machine-learning system is trained rather than explicitly programmed.
- It's presented with many examples relevant to a task, and it finds statistical structure in these examples that eventually allows the system to come up with rules for automating the task.
- For instance, if you wished to automate the task of tagging your vacation pictures, you could present a machine-learning system with many examples of pictures already tagged by humans, and the system would learn statistical rules for associating specific pictures to specific tags.





- machine learning discovers rules to execute a data-processing task, given examples of what's expected.
- To perform machine learning, we need three things:
- *Input data points*—For instance, if the task is speech recognition, these data points could be sound files of people speaking. If the task is image tagging, they could be pictures.
- Examples of the expected output—In a speech-recognition task, these could be human-generated transcripts of sound files. In an image task, expected outputs could be tags such as "dog," "cat," and so on.
- A way to measure whether the algorithm is doing a good job—This is necessary in order to determine the distance between the algorithm's current output and its expected output. The measurement is used as a feedback signal to adjust the way the algorithm works. This adjustment step is what we call learning.

- Let's make this concrete. Consider an x-axis, a y-axis, and some points represented by their coordinates in the (x, y) sys-tem, as shown in the figure.
- As you can see, we have a few white points and a few black points. Let's say we want to develop an algorithm that can take the coordinates (x, y) of a point and output whether that point is likely to be black or to be white. In this case:
- The inputs are the coordinates of our points.
- The expected outputs are the colours of our points.
- A way to measure whether our algorithm is doing a good job could be, for instance, the percentage of points that are being correctly classified.



Figure 1.3
Some sample data

- What we need here is a new representation of our data that cleanly separates the white points from the black points.
- One transformation we could use, among many other possibilities, would be a coordinate change, illustrated in the figure.
- All machine-learning algorithms consist of automatically finding such transformations that turn data into more useful representations for a given task.
- These operations can be coordinate changes, as you just saw, or linear projections, translations, nonlinear operations and so on



### Major types of machine learning algorithms

- Supervised learning
- Unsupervised learning

### Supervised learning

- There is label field in the training dataset
- Examples are:
  - KNN
  - Decision tree
  - Random forest
  - Regression
  - Logistic regression
  - ANN
  - Deep Neural network
  - SVM



#### Classification techniques



Regression techniques

# Example of classification: Decision tree algorithm

#### Training dataset

| Outlook  | Temp | Humidity | Windy | Play |
|----------|------|----------|-------|------|
| Sunny    | Hot  | High     | False | No   |
| Sunny    | Hot  | High     | True  | No   |
| Overcast | Hot  | High     | False | Yes  |
| Rainy    | Mild | High     | False | Yes  |
| Rainy    | Cool | Normal   | False | Yes  |
| Rainy    | Cool | Normal   | True  | No   |
| Overcast | Cool | Normal   | True  | Yes  |
| Sunny    | Mild | High     | False | No   |
| Sunny    | Cool | Normal   | False | Yes  |
| Rainy    | Mild | Normal   | False | Yes  |
| Sunny    | Mild | Normal   | True  | Yes  |
| Overcast | Mild | High     | True  | Yes  |
| Overcast | Hot  | Normal   | False | Yes  |
| Rainy    | Mild | High     | True  | No   |

#### Decision tree



### Decision tree decision boundaries







# Example of classification modeling

| Default | Income | Age | XXXX |
|---------|--------|-----|------|
| Υ       | 20000  | 44  | xxxx |
| N       | 30000  | 30  | xxx  |
| N       | 40000  | 38  | xxxx |
| XXXX    | XXXX   |     |      |



### Neural network



# Unsupervised learning-1/2

- There are no labels assigned in the training dataset. The system tries to learn within a teacher.
- Examples are:
  - Clustering techniques (e.g. KMeans/Hierarchical clustering analysis)
  - Principle components analysis(PCA)
  - Association
  - Anomaly detection



An unlabeled training dataset for unsupervised learning

### Unsupervised learning-2/2



Clustering techniques



### Example of Association

|    | Transac | tions List |         |         |
|----|---------|------------|---------|---------|
| 1  | Milk    | Egg        | Bread   | Butter  |
| 2  | Milk    | Butter     | Egg     | Ketchup |
| 3  | Bread   | Butter     | Ketchup |         |
| 4  | Milk    | Bread      | Butter  |         |
| 5  | Bread   | Butter     | Cookies |         |
| 6  | Milk    | Bread      | Butter  | Cookies |
| 7  | Milk    | Cookies    |         |         |
| 8  | Milk    | Bread      | Butter  |         |
| 9  | Bread   | Butter     | Egg     | Cookies |
| 10 | Milk    | Butter     | Bread   |         |
| 11 | Milk    | Bread      | Butter  |         |
| 12 | Milk    | Bread      | Cookies | Ketchup |

With Association algorithm it try to answer the following Question:

What could be the buying pattern of the users In the supermarket learnt from the transaction list?

### Instance based or model based learning

- One more way to categorize Machine Learning systems is by how they generalize.
- Most Machine Learning tasks are about making predictions. This
  means that given a number of training examples, the system needs to
  be able to generalize to examples it has never seen before.
- Having a good performance measure on the training data is good, but insufficient; the true goal is to perform well on new instances.
- There are two main approaches to generalization: instance-based learning and model-based learning.

### Instance based or model based learning



Instance based modeling



Model based modeling

### Main challenges of machine learning

- Data related issues
  - Insufficient quantity of data
  - Nonrepresentative training data
  - Poor quality data
    - Outliners
    - Missing values->Impute missing values
- Algorithm related issues
  - Overfitting
  - Underfitting
  - Need to evaluate the performance

### Machine learning project checklist

- This checklist can guide you through your Machine Learning projects.
- There are eight main steps:
- Frame the problem and look at the big picture.
- Get the data.
- Explore the data to gain insights.
- Prepare the data to better expose the underlying data patterns to Machine Learning algorithms.
- Explore many different models and short-list the best ones.
- Fine-tune your models and combine them into a great solution.
- Present your solution.
- Launch, monitor, and maintain your system.

# **CRISP-DM:** Overview



- Data Mining methodology
- Process Model
- For anyone
- Provides a complete blueprint
- Life cycle: 6 phases

### CRISP-DM: the six phases (1/2)

- Business/research understanding phase
  - First, clearly enunciate the project objectives and requirements in terms of the business or research unit as a whole
  - Then, translate these goals and restrictions into the formulation of a data mining problem definition
  - Example: Develop a classification model that will maximize profits for direct-mail marketing
- Data understanding phase
  - First collect the data
  - Then, use exploratory data analysis to familiarize yourself with the data and discover initial insights
  - Evaluate the quality of the data
- Data preparation phase
  - This labor intensive phase covers all aspects of preparing the final data set, which shall be used for subsequent phases, from the initial, raw and dirty data
  - Perform transformation on certain variables if needed
  - Clean the raw data so that it is ready for the modeling work

### CRISP-DM: the six phases (2/2)

#### Modeling phase

- Select and apply appropriate modeling techniques
- Calibrate model settings to optimize results
- Often, several different techniques may be applied for the same data mining problem
- May require looping back to data preparation phase, in order to bring the form of data into line with the specific requirements of a particular data mining technique

#### Evaluation phase

 The modeling phase has delivered one or more models. These models must be evaluated for quality and effectiveness, before we deploy them for use in the field

#### Deployment phase

- Need to make use of the models
- Example of a simple deployment: Generate a report

### Common use of data mining

- To describe the data pattern
- To model and generalize the criteria of the output cases
- To predict/forecast future output cases

### Evaluation of the performance of the model



# To measure the performance of the classification model Definition of true and false positives and negatives

|              |   | Predicted class |    | Total instances |
|--------------|---|-----------------|----|-----------------|
|              |   | +               | -  |                 |
| Actual Class | + | ТР              | FN | Р               |
|              | - | FP              | TN | N               |

#### **TP: True positives**

The number of positive instances that are classified as positive

#### **FP: False positives**

The number of negative instances that are classified as positive

#### **FN: False negatives**

The number of positive instances that are classified as negatives

#### **TN:** True negatives

The number of negatives instances that are classified as negatives

#### P=TP+FN

The total number of positive instances

#### N=FP+TN

The total number of negative instances

### Some performance measure for a classifier

| Name                                          | Formula       | Description                                                                                                                                                                              |
|-----------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| True positive rate (or sensitivity or Recall) | TP/P          | The proportion of positive instances that are correctly classified as positive.  It gives the probability of getting a positive classification when the true outcome is positive.        |
| False positive rate                           | FP/N          | The proportion of negative instances that are erroneously classified as positive.                                                                                                        |
| True negative rate (or specificity)           | TN/N          | The proportion of negative instances that are correctly classified as negative.  It gives the probability of getting a negative classification when the true outcome is negative.        |
| False negative rate                           | FN/P          | The proportion of positive instances that are erroneously classified as negative                                                                                                         |
| Positive predictive value (or precision)      | TP/(TP+FP)    | Proportion of instances classified as positive that are really positive. It gives the probability that an observation with a positive classification is correctly identified as positive |
| Accuracy                                      | (TP+TN)/(P+N) | Proportion of observations correctly identified                                                                                                                                          |

### Definition of Precision and True Positive Rate

Predicted positive outcomes
which are negative outcomes in actual outcomes (FP)

Predicted positive outcomes which are positive outcomes

#### Precision:

To measure the ability to generate the predicted positive outcomes which are really positive in actual outcomes =TP/(TP+FP) True positive rate(recall):

To measure how many of the actual positive outcomes can be detected by the predicted positive outcomes =TP/P

in actual outcomes (TP)

### Quiz

- What is supervised learning?
- Which of the followings are supervised learning
  - 1. Decision tree algorithms
  - 2. KNN
  - 3. Regression
  - 4. Clustering
  - 5. Neural network

### Exercise 1

- For each of the following meetings, explain which phase in the CRISP-DM process is represented:
  - Managers want to know by next week whether deployment will take place. Therefore, analysts meet to discuss how useful and accurate their model is
  - The data mining project manager meets with the data warehousing manager to discuss how the data will be collected
  - The data mining consultant meets with the vice president for marketing, who says that he would like to move forward with customer relationship management
  - The data mining project manager meets with the production line supervisor to discuss the implementation of changes and improvement

### Agenda

- Introduction to machine learning
- Overview of data mining process
- Introduction and setup of the data mining tools (Python)

# **Brief History of Python**

- Invented in the Netherlands, early 90s by Guido van Rossum
- Named after Monty Python
- Open sourced from the beginning
- Considered a scripting language, but is much more
- Scalable, object oriented and functional from the beginning
- Used by Google from the beginning
- Increasingly popular

### Python

#### **Download Python**

https://www.python.org/downloads/

IDE for Python

• Default: IDLE

 Others: Pycharm https://www.jetbrains.com/pycharm/download/#section=windows

Jupyter notebook

https://www.anaconda.com/download/

# Common Python's packages-1/2

- Pandas: Data Analysis Library
- Django: High Level Web Framework
- NumPy: Package for numerical computing
- SciPy: Routines for numerical Integration and Optimization

# Common Python's packages-2/2

- Matplotlib: 2-D plotting
- Flask: Microframework
- Mechanize: Programatic Web Browsring
- BeautifulSoup: Html Scraping
- PyQt: GUI building

### Python vs R

- Python
  - Open source with good user community
  - Support object oriented programming (OOP)
  - Speed
  - Lots of useful packages available (e.g. Pandas/NumPy/SciPy/Matplotlib etc)
  - Easy to write codes
- R
  - Open source with good user community
  - Emphases on statistical analysis
  - Lots of packages support for different purposes (e.g. ggplot2/quantmod/rpart/rvest)
- Use BOTH to leverage each other in data analytic work