DIODE

p-type (N_A) n-type (N_D)

N_A: Acceptor Doping N_D: Donor Doping

Before Joining

- *p-side*:
 - > Holes majority carriers
 - > Electrons minority carriers
- *n-side*:
 - > Electrons majority carriers
 - > Holes minority carriers
- Holes: Anti-particles of electrons

• Dissociation Relations:

$$N_A \leftrightarrow N_A^- + \text{hole}$$

 $N_D \leftrightarrow N_D^+ + \text{electron}$

Establishment of Equilibrium

- Holes diffuse from p to n
 - > Negatively charged acceptor ions uncovered near M.J
- Electrons diffuse from n to p
 - ➤ Positively charged donor ions uncovered near M.I
- Establishment of a charge dipole around MJ
 - ➤ Generation of an electric field & around MJ
 - \triangleright Creation of built-in potential V_0

- Ecreates drift components of carriers
 - ➤ Holes pushed back to p
 - > Electrons pushed back to n
- When these two motions (*drift and diffusion*) completely *balance out*
 - > Equilibrium is reached
- Under this condition, the *net fluxes* of *both electrons and holes* across MJ are *zero*
 - > No net current flows through the device

Diode Under Bias

Forward Bias: p-side positive w.r.t. n-side

Reverse Bias: n-side positive w.r.t. p-side

Symbol and current-voltage convention

Voltage and Current Conventions:

V_D: 0 (Equilibrium), Positive (Forward Bias), Negative (Reverse Bias)
I_D: p to n (Positive), n to p (Negative)

- Forward Bias $(V_D positive)$:
 - > p positive w.r.t. n
 - ➤ Depletion region width ✓
 - ➤ Electric field across MJ ↓
 - Barrier height $(V_0 V_D) \checkmark$
 - ➤ Injection of holes from p to n and electrons from n to p ?? (thermionic emission)
 - Diffusion component ↑↑ while drift current remains more or less same
 - > Net current from p to n (can be large)
 - Known as *forward current* (I_D *positive*)

- Reverse Bias (V_D negative):
 - > p negative w.r.t. n
 - > Depletion region width ?
 - > Electric field across MJ ?
 - Barrier height $(V_0 + |V_D|)$?
 - ➤ Injection of holes from p to n and electrons from n to $p \checkmark \checkmark$ (known as carrier extraction)
 - Diffusion component ↓↓ while drift current remains more or less same
 - > Net current from n to p (miniscule!)
 - Known as reverse current $(I_D negative)$

More on Forward & Reverse Currents

- Injection of carriers: Inj $\propto \exp[-BH/V_T]$
 - > BH: Barrier Height
 - $ightharpoonup V_T (= kT/q)$: *Thermal Voltage* [26 mV at room temperature (300 K)]
- Under equilibrium:
 - $ightharpoonup Inj \propto exp(-V_0/V_T)$
 - \triangleright Exactly balanced by the opposing drift component \Rightarrow net current = 0

• Under forward bias:

- $\gt BH \ reduces \ to \ (V_0 V_D)$
- \succ Inj that creates current flow $\propto \exp(V_D/V_T)$
- ➤ Note the *exponential dependence*
 - $lacktrianglequip Possibility of large injection for large <math>V_D$
- > Drift component remains more or less same, since it is dependent on the minority carriers
- \succ Current increases exponentially with V_D
- $\succ V_D$ can never equal or exceed V_0
 - Thermodynamically untenable situation

- Under reverse bias:
 - ightharpoonup Inj $ightharpoonup due to negative <math>V_D$
 - > Drift component remains same
 - Function of *minority carriers* available on the two sides, which is a *constant* (*function only of temperature*)
 - > Current becomes small and independent of bias
- In *forward bias*, both injection components create current from p to n
- In reverse bias, both minority carrier drift components create current from n to p

Current-Voltage Characteristic

- I_D = I₀[exp(V_D/V_T) 1]

 ➤ I₀: *Reverse Saturation Current* (~ nA-fA)
- In *equilibrium*: $V_D = 0 \Rightarrow I_D = 0$
- Under forward bias: V_D positive
 - $ightharpoonup I_D$ positive (flows from p to n) (\sim mA)
 - \triangleright For $V_D > 4V_T$ (~ 100 mV at 300 K):
 - $I_D \approx I_0[\exp(V_D/V_T)]$ (A True Exponent)

- Under reverse bias: V_D negative
 - $ightharpoonup I_D$ negative (flows from n to p)
 - \gt For $|V_D| > 4V_T$:
 - $I_D \approx -I_0$ (note the *negative sign*)
 - Extremely small, almost negligible
- Depending on V_D , the ratio of the forward current to the reverse current can range from 5 to 14 orders of magnitude!
- Primary applications:
 - > Rectification and various types of waveshaping

Complete I-V Characteristic

Note that the forward and reverse current scales are not same

Reverse Breakdown

- 2 Mechanisms:
 - > Zener
 - > Avalanche
- Zener:
 - For junctions with both sides very heavily doped
 - > Thin depletion region, through which carriers tunnel through (quantum mechanical process)
 - $\succ Typical |V_{br}| < 3 V$

• Avalanche:

- > Classical breakdown process
- > At least one side must be lightly doped
- > Carrier multiplication due to impact ionization
- ightharpoonup Typical $|V_{br}| > 5 V$
- For diodes having $|V_{br}|$ in between 3 V and 5 V, a combination of these two processes
- Breakdowns are generally destructive, unless the current is controlled by external means, e.g., by a resistor

Piece-Wise Linear (PWL) Model

Note: The forward and reverse current scales are not same

PWL Regions

- $0 \le V_D \le V_{\gamma}$: Forward Blocking
 - $\triangleright V_{\gamma}$: Cut-in Voltage ($\sim 0.6 \ V$ for Si diodes)
 - $> I_D = 0$
- $V_D \ge V_{\gamma}$: Forward Conduction
 - $\succ I_D$ increases linearly with V_D with an inverse slope of r_F
 - $ightharpoonup r_F$: Diode Forward Resistance (~ 10s of Ω) = $[dI_D/dV_D]^{-1}$

- Diodes under *forward bias* and for $V_D \ge V_{\gamma}$, offer *small resistance* (results from the *exponential* I-V characteristic)
- V_D negative and $0 \le |V_D| \le |V_{br}|$: *Reverse Blocking*

$$> I_D = 0$$

- V_D negative and $|V_D| \ge |V_{br}|$: *Reverse Breakdown*
 - > $|I_D|$ increases linearly with $|V_D|$ with an inverse slope of r_Z

- $ightharpoonup r_Z$: Zener Resistance (~ 50-200 Ω) = $[d|I_D|/d|V_D|]^{-1}$
- Diodes under *reverse bias* and for $|V_D| \ge |V_{br}|$, offer *small resistance*
 - ⇒ If current is not controlled by external means, then it may damage the device completely
- Generally, diodes, unless they are to be operated in *breakdown mode*, e.g., in a *voltage regulator*, have *very high* $|V_{br}|$, typically of the order of *100s of V*

PWL Circuit Models

Forward Bias: V_D positive: (a) 0th order model, (b) 1st order model, (c) 2nd order model, Reverse Bias: V_D negative: (d) 0th order model, Breakdown: (e) 1st order model, (f) 2nd order model

(g) Corresponding piecewise linear models

0th-Order Model: **Ideal Diode**

• Ex.: Find I_D and V_D , using: i) 0^{th} order, ii) 1^{st} order, and 2^{nd} order diode models. $[V_{\gamma} = 0.6 \text{ V}, r_F = 50 \Omega]$

i)
$$\theta^{th}$$
 order model: $I_D = 2/(1 \text{ k}\Omega) = 2 \text{ mA}$
$$V_D = 0 \text{ V}$$

$$I_D = (2-0.6)/(1 \text{ k}\Omega) = 1.4 \text{ mA} \text{ and } V_D = 0.6 \text{ V}$$

iii) 2nd order model:

$$I_D = (2-0.6)/(1 \text{ k}\Omega + 50 \Omega) = 1.33 \text{ mA}$$

 $V_D = V_{\gamma} + I_D r_F = 0.667 \text{ V}$

 $R = 1 k\Omega$

Finding the DC Operating Point

- Known as the *Q-point* (*quiescent point*)
- Defined by (I_D, V_D)
- Two solution techniques:
 - ➤ Graphical Method (Using Load Line)
 - > Iterative Method (Self-Consistent)
- Graphical Method:
 - ightharpoonup Use diode I-V relation: I_D = I₀exp(V_D/V_T)
 - $ightharpoonup Use Load Line equation: I_D = (2 V_D)/(1 \text{ k}\Omega)$
 - > Intersection point is the operating point

 V_{DQ} , I_{DQ} : Quiescent values of V_D , I_D = 0.7 V, 1.3 mA (obtained from iterative method using I_0 = 3 fA)

DC Quiescent Power Dissipation = $V_{DO} \times I_{DO} = 0.9 \text{ mW}$

Graphical Method

The two end points of the load line:

1.
$$V_D = 0$$
: $I_D = 2/(1 \text{ k}) = 2 \text{ mA}$

2.
$$I_D = 0$$
: $V_D = 2 V$

• Iterative Method:

- ➤ Also known as *self-consistent analysis*
- > I-V relation and load line equation form a set of transcendental equations
 - Analytical solution not possible
 - Have to resort to *numerical* (*iterative*) analysis

> Procedure:

- Choose $V_D = 0.7 V$ and find I_D from load line equation
- Use this I_D to find V_D from I-V relation (convert to ln form first)
- Repeat till convergence is achieved (pretty quick!)

Series Resistance Effect

- The two *quasi-neutral regions* (p and n) have their own *bulk resistances*
- Denoted as r_p and r_n
- For small I_D , their effects are negligible
- However, for large I_D , the potential dropped across them reduces the actual voltage appearing across the junction of the diode
- Known as the Series Resistance Effect

• The *actual voltage* appearing across the *junction*:

$$\triangleright V_{D,eff} = V_D - I_D(r_p + r_n)$$

- ► V_D: *Diode terminal voltage*
- The *new diode I-V relation*:

$$> I_D = I_0 \exp(V_{D,eff}/V_T)$$

- Simultaneous solution of the above two equations would yield the Q-point
- In presence of r_p and r_n , V_D may exceed V_0 , but $V_{D,eff}$ would always be less than V_0

Diode Capacitances

- Two components:
 - > Depletion Capacitance C_{dep}
 - > Diffusion Capacitance C_{diff}
- Depletion Capacitance:
 - ➤ Due to *depletion charge dipole* across the *junction*
 - $ightharpoonup Expressed by: C_{dep} = C_{dep0}/(1 V_D/V_0)^{1/2}$
 - $C_{dep0} = C_{dep} \text{ for } V_D = 0$
 - > Present under both forward and reverse bias

 $\label{eq:continuous_continuous$

• Diffusion Capacitance:

- ➤ Due to *charge injection* in *both sides of the junction* (in the *quasi-neutral regions*)
- \triangleright *Expressed by*: $C_{diff} = I_D \tau / V_T$
 - τ: *Injected carrier lifetime*
- > Present only in forward bias, negligible in reverse bias
- \triangleright Much larger than C_{dep}
- Total Diode Capacitance C_D:

$$ightharpoonup C_{\text{dep}} + C_{\text{diff}}$$

Small-Signal Model

- Needed for ac analysis
- Electrical equivalent at the DC bias point
- Represented as a *network*, having various *circuit components* (*resistors*, *capacitors*, *current sources*, etc.)
- Also known as *incremental model*
- Evaluated at (I_{DQ}, V_{DQ})
- Appropriate for *small variations* of the *ac signal* around the *Q-point*

Small-Signal Model Parameters

• Diode Resistance (r_D)/Diode Conductance (g_D):

$$\mathbf{r}_{\mathrm{D}} = \left(\mathbf{g}_{\mathrm{D}}\right)^{-1} = \left(\frac{\partial \mathbf{I}_{\mathrm{D}}}{\partial \mathbf{V}_{\mathrm{D}}}\right)^{-1} \bigg|_{\mathbf{I}_{\mathrm{D}} = \mathbf{I}_{\mathrm{DO}}} = \frac{\mathbf{V}_{\mathrm{T}}}{\mathbf{I}_{\mathrm{DQ}}}$$

- \triangleright For $I_{DQ} = 1$ mA, $r_D = 26 \Omega$
- > Under forward bias, diode offers very small resistance

• *Diode Capacitance* (C_D):

- m: Grading coefficient
 (1/2 for abrupt step junction, 1/3 for linearly graded junction)
- Both r_D and C_D appear in parallel across the junction
- The two quasi-neutral resistance r_p and r_n appear in series with this combination

Small-Signal Equivalent

- In absence of r_p and r_n , it's just a parallel RC circuit, and shorts out at high frequency
 - ightharpoonup Diode time constant $\tau_D = r_D C_D = \tau$