What Makes a Video Game Successful?

Group 6

Analysis by Jackson Windhorst, Nicholas Clewley, Munchootsorn Wangsriviroj, Sean Murray, William Rocha

Why This Info Matters

Game Studios can align development with proven consumer preferences.

Indie developers boost their chances of breakout success

Marketers can tailor campaigns to regions with the highest sales potential

Publishers can refine release timing and platform strategy for maximum impact

Investors gain a predictive edge in a competitive market

Model Building Process

Define Problem	Data Collection	EDA	Evaluation	Validation	Maintenance
What makes a video game successful?	Online dataset	Visuals, summary statistics, and feature engineering	Train/test set split Performance metrics Cross Validation	Determining if the model will perform well in its intended environment	Pipelines and monitoring tools to keep peak model performance

Exploratory DataAnalysis

Visualizations

EDA – Sales by Platform and Over Time

Sales Trends: Platform & Year

Global Sales by Platform (pie chart)

Global Sales Over Time (line chart)

This shows which platforms sold the most — PS2 leads with over 25%. We also see sales peaked around 2008, then drop after, which might impact our model.

EDA - Critic vs User Score + Regional Sales

Scores and Regional Preferences

Critic Score vs User Score (scatter plot)

Critic and user scores show a positive trend but not perfect agreement.

Grouped bar chart: Regional Sales by Genre
 Different regions prefer different game genres.

EDA - Top 5 Genre Trends & Developers

Action and Sports games were top-selling genres over time. Nintendo leads the developer rankings by far in global sales.

Summary Statistics

	Year_of_Release	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales	Critic_Score	Critic_Count	User_Count
count	16448.0	16448.0	16448.0	16448.0	16448.0	16448.0	7983.0	7983.0	7463.0
mean	2006.489	0.264	0.146	0.078	0.048	0.536	68.994	26.441	163.015
std	5.877	0.818	0.507	0.311	0.188	1.558	13.92	19.008	563.863
min	1980.0	0.0	0.0	0.0	0.0	0.01	13.0	3.0	4.0
25%	2003.0	0.0	0.0	0.0	0.0	0.06	60.0	12.0	10.0
50%	2007.0	0.08	0.02	0.0	0.01	0.17	71.0	22.0	24.0
75%	2010.0	0.24	0.11	0.04	0.03	0.47	79.0	36.0	81.0
max	2020.0	41.36	28.96	10.22	10.57	82.53	98.0	113.0	10665.0

Data Cleaning

```
# Show number of rows before cleaning
rows_before = df.shape[0]

# cleaned version
rows_after = df_cleaned.shape[0]

# Print the result
print(f"Rows before cleaning: {rows_before}")
print(f"Rows after cleaning: {rows_after}")
print(f"Rows removed: {rows_before - rows_after}")
```

Rows before cleaning: 16719 Rows after cleaning: 16448 Rows removed: 271

- Dropped rows missing game name or release year
- Replaced 'tbd' in User Score and converted to numeric
- Filled missing Publisher and Developer with "Unknown"
- Converted Year of Release to integer
- Filled missing Rating with the most common value (mode)

Data Preprocessing

Using the label encoder library we can assign a unique integer to each value in the categorical columns. The missing values across the dataset are replaced with the mean (numerical) and mode(mode).

```
from sklearn.preprocessing import LabelEncoder # assigns ungive integer to each categorical column
# Separate numerical and categorical columns
numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns
categorical cols = df.select dtypes(include=['object']).columns
# 1. Replace missing values with the median
df[numeric cols] = df[numeric cols].fillna(df[numeric cols].median())
# 2. Replace missing values with the mode
for col in categorical cols:
    df[col] = df[col].fillna(df[col].mode()[0])
# 3. Encode categorical variables with LabelEncoder
le = LabelEncoder()
for col in categorical cols:
    df[col] = le.fit_transform(df[col].astype(str))
df.head()
```

Models

Making the models

Linear Regression: To predict game sales based on various features such as genre, platform, and critic/user ratings.

Decision Trees: To classify games into different sales performance categories based on key attributes.

K-Means Clustering: To group similar games based on sales trends, ratings, and other characteristics, which may help identify market patterns.

—

Linear Regression

Predicting (y): Global Sales

Features: (x): name, platform, year of release, genre, critic score, critic count, user score, user count, developer, and rating

We used K Fold cross-validation to improve model performance, with recursive elimination feature selection.

MAE: 0.003 RMSE: 0.006 R²: 1.000

```
from sklearn.linear model import LinearRegression
from sklearn.feature selection import RFECV
from sklearn.model selection import KFold
from sklearn.metrics import r2 score, mean absolute error, mean squared error
# Create base model
lr = LinearRegression()
# Define cross-validation strategy
cv = KFold(n splits=10, shuffle=True, random state=42)
# Use RFECV for automatic feature selection
rfecv = RFECV(estimator=lr, step=1, cv=cv, scoring='r2')
rfecv.fit(X train, y train)
# Get the best feature subset
X train selected = rfecv.transform(X train)
X test selected = rfecv.transform(X test)
# Train final model on selected features
lr.fit(X train selected, y train)
v pred lr = lr.predict(X test selected)
# Evaluate
print("Linear Regression Results with RFECV:")
print(f"Selected {rfecv.n features } features: {list(X train.columns[rfecv.support ])}")
print(f"MAE: {mean absolute error(y test, y pred lr):.3f}")
print(f"RMSE: {np.sqrt(mean squared error(y test, y pred lr)):.3f}")
print(f"R2: {r2 score(y test, y pred lr):.3f}")
```

```
Linear Regression Results with RFECV:
Selected 4 features: ['NA Sales', 'EU Sales', 'JP Sales', 'Other Sales']
```

Linear Regression w/ Selected Features (Based on Lasso)

Predicting (y): Global Sales

Features: (x): na_sales, eu_sales, critic score, critic count, years since release, user count

MAE: 0.120

RMSE: 0.311

 R^2 : 0.977

-		Feature	Importance
_	1	NA Sales	1.213866
	2	EU Sales	0.743820
	5	Critic_Score	0.003199
	6	Critic_Count	0.001161
	9	Years_Since_Release	0.000585
	8	User_Count	0.000113
	4	Other_Sales	0.000000
	3	JP_Sales	0.000000
	7	User_Score	0.000000
	10	Genre_Adventure	-0.000000
	18	Genre_Simulation	0.000000
	11	Genre_Fighting	0.000000
	12	Genre_Misc	-0.000000
	13	Genre_Platform	0.000000
	14	Genre_Puzzle	0.000000
	15	Genre_Racing	-0.000000
	16	Genre_Role-Playing	0.000000
	17	Genre_Shooter	-0.000000
	22	Platform_3DS	0.000000
	19	Genre_Sports	-0.000000
	20	Genre_Strategy	-0.000000
	21	Platform_3DO	-0.000000
	24	Platform_DS	0.000000
	23	Platform_DC	0.000000
	25	Platform_GB	0.000000
	26	Platform_GBA	-0.000000
	42	Platform_SCD	-0.000000
	27	Platform_GC	-0.000000
	28	Platform_GEN	-0.000000
	29	Platform_GG	0.000000
	30	Platform_N64	-0.000000
	31	Platform_NES	0.000000
	-		

Decision Tree

Goal: Predict global sales using a tree-based model

MAE: 0.161

• **RMSE**: 0.811

• R²: 0.844

The decision tree model worked pretty well with an R² of **0.844**.

The most important feature was NA_Sales, then EU_Sales.

Other features didn't affect the results that much.

Feature importance plot

 Top feature: NA_Sales had the highest importance

– K Means Clustering (k = 3)

```
Games per cluster:
Cluster
0 14249
1 2120
2 79
Name: count, dtype: int64
```

 Grouped games into 3 clusters using Global Sales, Critic Score, and User Score

Cluster sizes:

o Cluster 0: 14,249 games

Cluster 1 : 2,120 games

o Cluster 2: 79 games

Most games had low sales and were in the same group.

Only a few games had really high sales or high scores and were in smaller groups.

Hierarchical Clustering

```
Games per cluster (Hierarchical Clustering):
Cluster_HC
2 12535
1 3575
0 338
Name: count, dtype: int64
```

 Grouped games into 3 clusters using Global Sales, Critic Score, and User Score

Final Model & Summary

- We compared Linear Regression, Linear
 Regression w/ Lasso, and Decision Tree models
- Linear Regression had the best scores (very low error and R² near 1)
- But it may be overfitting due to strong predictors
- Linear Regression w/ Lasso seems to be better with less predictors.
- Decision Tree was simpler but still did well.
- K-means & Hierarchical was used to group games but not for prediction

model summary statistics

```
from IPython.display import display
```

```
summary = summary.round(4)
display(summary)
```

	Model	MAE	RMSE	R 2
0	Linear Regression (RFECV)	0.002962	0.005219	0.999994
1	Linear Regression (Lasso)	0.120237	0.310686	0.977103
2	Decision Tree	0.160613	0.811391	0.843832

We choose these three models because they're simple and good for understanding

Future Work

- Explore more sophisticated regression models such as polynomial regression.
- Use external data integration such as marketing or social media data to measure game popularity.
- Use real-time prediction system to estimate sales based on early data and trends.

Works Cited

Dataset:

https://www.kaggle.com/datasets/ xtyscut/video-games-sales-as-at-22 -dec-2016csv

James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). *An introduction to statistical learning: With applications in Python*. Springer.

McKinney, W. (2022). Python for Data Analysis: Data wrangling with pandas, NumPy, and Jupyter. O'Reilly Media, Inc. McKinney, W. (2022). Python for Data Analysis: Data wrangling with pandas, NumPy, and Jupyter. O'Reilly Media, Inc.

Wang, W. (2025). *Principles of Machine Learning: The Three perspectives*. Springer.