Chapter 2: Four Important Linear PDE

Author: Meng-Gen Tsai Email: plover@gmail.com

Notes.

(1) (Equation (7) in Section 2.2)

$$|D\Phi(x)| \le \frac{C}{|x|^{n-1}}, \qquad |D^2\Phi(x)| \le \frac{C}{|x|^n} \qquad (x \ne 0)$$

for some constant C > 0. In fact,

$$\frac{\partial}{\partial x_i} \Phi(x) = -\frac{1}{n\alpha(n)} x_i |x|^{-n},$$

$$\frac{\partial^2}{\partial x_i \partial x_j} \Phi(x) = \frac{1}{n\alpha(n)} (nx_i x_j - |x|^2 \delta_{ij}) |x|^{-n-2}.$$

- (2) (Equation (12) in Section 2.2) The constant C is rescaled. It is just a constant.
- (3) (Equation (13) in Section 2.2) Take $U \mapsto B(0, \varepsilon)$, $u(y) \mapsto \Phi(y)$ and $v(y) \mapsto f(x-y)$ in the integration by parts (Green's first identity):

$$\int_{U} Dv \cdot Du \, dx = -\int_{U} u \Delta v \, dx + \int_{\partial U} \frac{\partial v}{\partial \nu} u \, dS.$$

Problem 2.1. Write down an explicit formula for a function u solving the initial-value problem

$$\begin{cases} u_t + b \cdot Du + cu = 0 & in \mathbb{R}^n \times (0, \infty) \\ u = g & on \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

Here $c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ are constants.

Proof (Transport equation). Define

$$z(s) = u(x + sb, t + s)$$
 $(s \in \mathbb{R}).$

So

$$\begin{split} \dot{z}(s) &= Du(x+sb,t+s) \cdot b + u_t(x+sb,t+s) \\ &= -cu(x+sb,t+s) \\ &= -cz(s). \end{split}$$

Solve this ODE to get

$$z(s) = z(0)e^{-cs} \Longrightarrow u(x+sb,t+s) = u(x,t)e^{-cs}$$

$$\Longrightarrow u(x-tb,0) = u(x,t)e^{ct} \qquad \text{(Let } s = -t)$$

$$\Longrightarrow g(x-tb) = u(x,t)e^{ct}$$

$$\Longrightarrow u(x,t) = g(x-tb)e^{-ct}.$$

Problem 2.2. Prove that Laplace's equation $\Delta u = 0$ is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define

$$v(x) := u(Ox) \qquad (x \in \mathbb{R}^n),$$

then $\Delta v = 0$.

Proof.

(1) Let $O = [O_{ij}]$. O is orthogonal if $OO^T = O^TO = I$, or

$$\sum_{i=1}^{n} O_{pi} O_{qi} = \delta_{pq}$$

where δ_{pq} is the Kronecker delta.

(2) Let y = Ox. So that

$$D_{i}v(x) = \sum_{p=1}^{n} D_{p}u(y)O_{pi},$$

$$D_{ij}v(x) = \sum_{q=1}^{n} \sum_{p=1}^{n} D_{pq}u(y)O_{pi}O_{qj},$$

$$\Delta v(x) = \sum_{i=1}^{n} D_{ii}v(x)$$

$$= \sum_{i=1}^{n} \sum_{q=1}^{n} \sum_{p=1}^{n} D_{pq}u(y)O_{pi}O_{qi}$$

$$= \sum_{q=1}^{n} \sum_{p=1}^{n} D_{pq}u(y) \left(\sum_{i=1}^{n} O_{pi}O_{qi}\right)$$

$$= \sum_{q=1}^{n} \sum_{p=1}^{n} D_{pq}\delta_{pq}$$

$$= \sum_{q=1}^{n} D_{qq}u(y)$$

$$= \Delta u(y).$$

(3) As
$$\Delta u(y) = 0$$
, $\Delta v(x) = 0$.

Problem 2.3. Modify the proof of the mean value formulas to show for $n \geq 3$ that

$$u(0) = \int_{\partial B(0,r)} g dS + \frac{1}{n(n-2)\alpha(n)} \int_{B(0,r)} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}} \right) f dx,$$

provided

$$\begin{cases} -\Delta u = f & \text{ in } B^0(0,r) = \operatorname{int}(B(0,r)) \\ u = g & \text{ on } \partial B(0,r). \end{cases}$$

Proof.

- (1) ...
- (2) ...

Problem 2.4. We say $v \in C^2(\overline{U})$ is subharmonic if

$$-\Delta v \le 0$$
 in U .

(a) Prove for subharmonic v that

$$v(x) \le \int_{B(x,r)} v dy$$
 for all $B(x,r) \subseteq U$.

- (b) Prove that therefore $\max_{\overline{U}} v = \max_{\partial U} v$.
- (c) Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume u is harmonic and $v := \phi(u)$. Prove that v is subharmonic.
- (d) Prove $v := |Du|^2$ is subharmonic, whenever u is harmonic.

Proof of (a). It is exactly the same as the proof of Theorem 2 (Mean-value theorem for Laplace's equation).

(1) Set

$$\phi(r) := \int_{\partial B(x,r)} v(y)dS(y) = \int_{\partial B(0,1)} v(x+rz)dS(z)$$

(r > 0). Then

$$\phi'(r) = \int_{\partial B(0,1)} Dv(\underbrace{x + rz}) \cdot z dS(z)$$

$$= \int_{\partial B(x,y)} Dv(y) \cdot \underbrace{\frac{y - x}{r}}_{=\nu} dS(y)$$

$$= \int_{\partial B(x,y)} \frac{\partial v}{\partial \nu} dS(y)$$

$$= \frac{r}{n} \int_{B(x,y)} \Delta u(y) dy \qquad \text{(Green's first identity)}$$

$$\geq 0 \qquad \text{(By assumption)}$$

or $\phi(r)$ is increasing

(2) Note that

$$\lim_{t \to 0} \phi(t) = \lim_{t \to 0} \int_{\partial B(x,t)} v(y) dS(y) = v(x).$$

So that

$$v(x) = \lim_{t \to 0} \phi(t) \le \phi(r) = \int_{\partial B(x,r)} v(y) dS(y).$$

(3) Hence, for all $B(x,r) \subseteq U$ we have

$$\begin{split} & \oint_{B(x,r)} v dy = \frac{1}{\alpha(n)r^n} \int_{B(x,r)} v dy \\ & = \frac{1}{\alpha(n)r^n} \int_0^r \int_{\partial B(x,\rho)} v(y) dS(y) d\rho \quad \text{(Polar coordinates)} \\ & \geq \frac{1}{\alpha(n)r^n} \int_0^r n\alpha(n)\rho^{n-1} v(x) d\rho \\ & = v(x) \frac{1}{r^n} \underbrace{\int_0^r n\rho^{n-1} d\rho}_{=r^n} \\ & = v(x). \end{split}$$

Proof of (b). Similar to the proof of Theorem 4 (Strong maximum principle).

(1) Suppose there exists a point $x_0 \in U$ with $v(x_0) = M := \max_{\overline{U}} v$. Then for $0 < r < \operatorname{dist}(x_0, \partial U)$, the mean-value property (in (a)) asserts

$$M = v(x_0) \le \int_{B(x_0, r)} v dy \le M.$$

As equality holds only if $v \equiv M$ within $B(x_0, r)$, we see v = M for all $y \in B(x, r)$. Hence the set $\{x \in U : v(x) = M\}$ is both open and closed in U (since $v \in C(\overline{U})$), and thus equals to one connected component U_{α} of U. By the definition of $\partial U_{\alpha} \subseteq \overline{U_{\alpha}}$ and continuity of $v, v|_{\partial U_{\alpha}} \equiv M$. As $\partial U_{\alpha} \subseteq \partial U$, the result is established.

(2) If no such point $x_0 \in U$ with $v(x_0) = \max_{\overline{U}} v$, then $\max_{\overline{U}} v = \max_{\partial U} v$ is trivial.

Proof of (c).

(1)

$$\Delta v = \sum_{i=1}^{n} v_{x_i x_i}$$

$$= \sum_{i=1}^{n} (\phi'(u) u_{x_i})_{x_i}$$

$$= \sum_{i=1}^{n} \phi''(u) u_{x_i}^2 + \phi'(u) u_{x_i x_i}$$

$$= \phi''(u) |Du|^2 + \phi'(u) \Delta u.$$

(2) As u is harmonic ($\Delta u = 0$) and ϕ is convex ($\phi''(u) \geq 0$ by Exercise 5.14 in the textbook: Rudin, Principles of Mathematical Analysis, 3rd edition), $\Delta v \geq 0$ (by (1)).

Proof of (d).

(1) Since u is smooth, u is harmonic implies that u_{x_j} is harmonic for all x_j . In fact,

$$\Delta(u_{x_j}) = \sum_{i=1}^n (u_{x_j})_{x_i x_i}$$

$$= \sum_{i=1}^n u_{x_i x_i x_j}$$

$$= \left(\sum_{i=1}^n u_{x_i x_i}\right)_{x_j}$$

$$= (\Delta u)_{x_j}$$

$$= 0.$$
(Smoothness of u)

(2) Since $x \mapsto x^2$ is convex and u_{x_i} is harmonic (by (1)),

$$v := |Du|^2 = \sum_{i=1}^n (u_{x_i})^2$$

is a finite sum of subharmonic functions by (3), which is also subharmonic.

Problem 2.5. ...

Proof.

- (1) ...
- (2) ...

Problem 2.6. ...

Proof.

- (1) ...
- (2) ...

Problem 2.7. ...

Proof.

- (1) ...
- (2) ...

Problem 2.8. ...

Proof.

- (1) ...
- (2) ...

Problem 2.9
Proof.
(1)
(2)
Problem 2.10
Proof.
(1)
(2)
Problem 2.11
Proof.
(1)
(2)
Problem 2.12
Proof.
(1)
(2)
Problem 2.13

Proof.

Problem 2.14
Proof.
(1)
(2)
Problem 2.15
Proof.
(1)
(2)
Problem 2.16
Proof.
(1)
(2)
Problem 2.17
Proof.
(1)
(2)

(1) ... (2) ...

Problem 2.18. ...

 ${\it Proof.}$

- (1) ...
- (2) ...