NRSF2 Design Document Appendix

July 10, 2018

Construct 2 orthogonal q vectors from y-direction and x-direction respectively with rotation by θ along z-axis

$$\vec{q}_1 = R_z(-\frac{2\theta}{2})(010)$$

 $\vec{q}_2 = R_z(-\frac{2\theta}{2})(100)$

where

• $2\theta_{peak}$ = position of peak (which is in plane)

In order to convert \vec{q} from instrument coordinate to sample coordinate, the ration will be done on ω , χ and ϕ respectively.

The rotation matrix R_p is defined as

$$R_p = R_x(\phi + 90^\circ) \times R_y(\chi) \times R_z(-\omega)$$

where

- $\omega = \text{incident angle}$
- $\chi = \chi$ rotation about (100) of sample
- $\phi = \phi$ rotation about sample normal

Thus, \vec{q}_1 and \vec{q}_2 are rotated by R_p such as

$$\vec{q'}_1 = R_p \times \vec{q}_1$$

$$\vec{q'}_2 = R_p \times \vec{q}_2$$

Finally angle α and β are between $\vec{q_1}$, $\vec{q'_1}$, $\vec{q_2}$ and $\vec{q'_2}$. Such that

$$\alpha = \cos^{-1}(\vec{q'_2} \cdot \vec{q_2})$$

It is a little complicated for β :

- If $(\vec{q}_1)_z >= 0$: $beta = 360^o \cos^{-1}(\vec{q'}_1 \cdot \vec{q}_1)$;
- if $(\vec{q_1})_z < 0$: $beta = \cos^{-1}(\vec{q_1} \cdot \vec{q_1})$

Then

- If $\beta \le 90^o$: $beta = 360^o + (\beta 90^o)$;
- if $\beta > 90^{\circ}$: $beta = (\beta 90^{\circ})$

Such that β is between 0° and 360° .