SMITHSONIAN ASTROPHYSICAL OBSERVATORY CAMBRIDGE MASS F/6 4/1 CALCULATIONS PERTAINING TO THE ENERGY BALANCE AND PLASMA MOTION--ETC(U) AD-A083 010 NOV 79 A DALGARNO, E CONSTANTINIDES F19628-78-C-0047 AF6L-TR-79-0270 UNCLASSIFIED NL 1002 AD 30 0

AFGL-TR-79-0270

CALCULATIONS PERTAINING TO THE ENERGY BALANCE AND PLASMA MOTIONS IN THE IONOSPHERE

Alexander Dalgarno Eustratios Constantinides

Smithsonian Astrophysical Observatory 60 Garden Street Cambridge, Massachusetts 02138

November 1979

Final Report

1 January 1978 - 30 September 1978

Approved for public release; distribution unlimited

THIS DOCUMENT IS BEST QUALITY FRACTICATION.
THE COPY FURNISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WATER IN
REPRODUCE LEGIBLY.

AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731

E

80 4 14 011

ADA 08301

FILE COPY,

E IA

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

	
SECURITY CLASSIFICATION OF	THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER (1) AFGL-TR-79-9270 2 GOVT ACCESSION NO.	PE PT.	
CALCULATIONS PERTAINING TO THE ENERGY BALANCE AND PLASMA MOTIONS IN THE TONOSPHERE	Final 1 Jan 78, 6 PERFORMED PRO REPORT NUMBER	
Alexander/Dalgarno Eustratios Constantinides	F19628-78-C-0047	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Smithsonian Astrophysical Observatory 60 Garden Street Cambridge, Massachusetts 02138	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 62311G2 AP	
Air Force Geophysics Laboratory Hanscom AFB, Massachusetts 01731 Monitor: Rita Sagalyn/PHG	NOVE 79 13. NUMBER OF PAGES 148	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	Unclassified 15. DECLASSIFICATION DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)		
Approved Approved for public release Distribution Unlimited		
Approved for public release; distribution unlimited		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessar) and identify by block number) Ionosphere, Plasma Motions, Electric Fields, Transport Properties		
Plasma motions in the upper atmosphere have been investigated with the aid of satellite data. It is shown that the major ion, 0 th , moves in response to the sum of the forces on itself and on electrons. Minor ions follow the motion of the major ion. The observed plasma velocity in the vertical direction is in harmony with the assumption of an eastward electric field of between 3 and 5 millivolts per meter. The		

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

044850 A

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(block 20, cont.)

present investigation demonstrates clearly the need for measurements of electric fields and plasma drifts.

Acces	ssion For	
NTIS	GRA&I	13
DDC 1		 - -
	ounced	
Justification		
Ву		
Distribution		
Frai cy Codes		
Dist	Availand, special	or/
A	20	

1. INTRODUCTION AND SUMMARY

Knowledge of the energy balance and plasma motions in the atmosphere is essential for the accurate prediction of atmospheric effects on radio communications under both normal and disturbed conditions. A substantial portion of the variable content of atmospheric energy is stored in charged particles. Previous investigations have demonstrated that the concentrations of atomic ions are controlled by transport. Electric fields play an important part in determining transport properties. Section 2 reviews some aspects of the photochemistry of atmospheric ions and assesses the magnitude of transport effects on atomic ions.

The effort undertaken under the present investigation has focused on formulating procedures to utilize satellite measurements in order to obtain a self-consistent model of charged particle motions. Such a formulation is presented in Section 3. Section 4 deals with the simpler situation of one ionic species in addition to electrons for the purpose of illustrating several features of the general theory. Results utilizing satellite data are presented in Section 5. It is shown, generally, that the majorion moves in response to the sum of the forces on itself and on electrons, and that minor ions follow the motion of the major ion. It is further shown that the observed vertical plasma drift velocity can be accounted

for by an eastward electric field of between 3 and 5 millivolts per meter. Calculations based on the assumption that horizontal variations are negligible cannot account for the transport term in the equation of continuity, probably because the data pertains to the (magnetically) equatorial region. Application of the present approach to midlatitude data is suggested.

Appendix A lists the data used in the calculations.

Appendix B reviews the definition of momentum transfer collision frequencies, and presents collision frequencies for electrons and 0⁺ ions. An updated version of atomic and molecular cross sections is presented in Appendix F. A procedure for the calculation of the spectrum of secondary electrons produced by energetic precipitating particles is given in Section 6, and Appendices C, D, and E.

2. ION CONCENTRATIONS IN THE DAYTIME IONOSPHERE

The altitude profiles of ionic species in the upper atmosphere are determined by photochemical processes and by transport. In order to assess the effects of transport, it is necessary to have knowledge of the relative importance of the photochemical effects. Using data from an Atmosphere Explorer orbit (see Appendix A for details) we show that the altitude profiles of molecular ions are determined by photochemical processes under the assumption of local equilibrium, i.e. that transport effects are negligible for molecular ions. For atomic ions, on the other hand, transport processes play the dominant part in determining altitude profiles, particularly at the upper altitudes.

Fig. 1 is a plot of the concentration of the molecular ions (O_2^+, NO^+, N_2^+) versus altitude. The observed concentrations are in harmony with theoretical values calculated under the assumption of local photochemical equilibrium. The agreement between theory and observations is due to the short chemical lifetimes of the molecular ions. Fig. 2 is a plot of the chemical lifetime of each ion vs. altitude. The primary sink for molecular ions is dissociative recombination. Accordingly chemical lifetimes for these ions tend to decrease with increasing altitude, following the increase with altitude of the electron concentration. Under daytime conditions, the

sources are balanced by the sink from dissociative recombination in the equation of continuity. At night, both of these terms are reduced significantly, and transport terms become of comparable magnitude.

Fig. 2 further shows that chemical lifetimes increase rapidly with altitude for the atomic ions. The increase is particularly rapid for He^+ , for which the only significant sink is the reaction with molecular nitrogen. Thus the chemical lifetime of He^+ is inversely proportional to the N_2 concentration, and therefore transport effects dominate the He^+ profile at the upper altitudes. This is apparent in Fig. 3, which shows the observed and calculated altitude profiles for the atomic ions.

Fig. 3 contains three profiles for each of the other atomic ions (0⁺, H⁺, and N⁺). At the upper altitudes, the significant sources for these ions are photoionization and charge transfer from other atomic ions. The solid line profile for each ion is a purely theoretical calculation under the assumption of local photochemical equilibrium (i.e. no transport effects are included) and the concentrations of the ions are determined by solving the coupled equations of continuity. Fig. 3 shows that these purely theoretical profiles are increasingly at variance with the observed concentrations above 250 km, reflecting the neglect of transport on all the coupled species. Fig. 3 also displays a second theoretical

profile, calculated under the assumption of photochemical equilibrium but utilizing observed concentrations for all ions except the ion of interest. In this instance the agreement between calculated and observed values is very good. This latter result indicates that the model of photochemical reactions utilized is an accurate one. It does not follow, however, that the atomic ions are in local photochemical equilibrium. In what follows we indicate why the agreement between observed ion concentrations and those calculated by the photochemical model (without transport) improves if, in computing the concentration of a particular ion, the observed concentrations of all other ions are used. The improvement is very substantial in the case of 0⁺, H⁺ and N⁺. The improvement results from the fact that the observed concentrations implicitly contain the effects of transport. We demonstrate this idea by considering two ions whose photochemistry is coupled.

The equation of continuity states that the rate of production minus the rate of loss equals the divergence of the flux:

$$P - L = \nabla \cdot \overrightarrow{F}$$
.

For the example under consideration, we have

$$P_1 = Q_1 + k_2 X_2$$
 $L_1 = (\ell_1 + k_1) X_1$ $\nabla \cdot \vec{F}_1 = t_1 X_1$

$$P_2 = Q_2 + k_1 X_1 \qquad L_2 = (\ell_2 + k_2) X_2 \qquad \nabla \cdot \vec{F}_2 = t_2 X_2$$

where the Q's represent production rates not involving the ions of interest, the L's represent loss rates not involving the ions of interest, the X's represent the ion concentrations, and the t's are defined by the equations. The equations of continuity may then be written as

$$Q_1 + k_2 X_2 - (\ell_1 + k_1) X_1 = t_1 X_1$$

$$Q_2 + k_1 X_1 - (\ell_2 + k_2) X_2 = t_2 X_2$$
.

The solution is

$$x_1 = [(\ell_2 + k_2 + t_2) \ Q_1 + k_2 Q_2] / [(\ell_2 + k_2 t_2) (\ell_1 + k_1 + t_1) - k_1 k_2]$$

with an analogous expression for X_2 . This is the exact solution and therefore represents the observed value of X_1 . If we neglect transport ($t_1 = t_2 = 0$) the solution is

$$Y_1 = [(\ell_2 + k_2) \ Q_1 + k_2 Q_2] / [(\ell_2 + k_2) (\ell_1 + k_1) - k_1 k_2]$$

where a different symbol (Y) has been used to indicate that this is an approximate value. We compare this with the exact (observed) value X_1 :

$$Y_1 = X_1 \{ 1 + [(\ell_2 + k_2)t_1 + k_2t_2(X_2/X_1)] / (\ell_1\ell_2 + \ell_1k_2 + \ell_2k_1) \}$$

We note first that the difference is of order t/ℓ . This is a ratio that increases rapidly with altitude, since transport effects increase with altitude whereas ℓ decreases in proportion to the neutral density. Secondly, the difference involves,

in general, the transport of both ions. Thirdly, the difference can be of either sign, since the t's can be of either sign. Finally, if the ratio of concentrations (x_2/x_1) is very large, the inaccuracy in the concentration of the minor ion depends on the transport characteristics of the major ion. This observation indicates that the use of observed concentrations is particularly beneficial to the calculation of minor ion concentrations.

Using observed concentrations in a pure photochemical calculation (without transport) yields the solutions

$$z_1 = x_1 [1 + t_1/(\ell_1+k_1)]$$

We have used a different symbol (Z) for the computation that neglects transport but uses observed concentrations for ions other than the ion of interest. The error, in this instance, involves only the transport properties of the ion of interest. Further, the error is proportional to $t/(\ell+k)$. This is of practical interest forthe concentrations of 0^+ , H^+ , and N^+ because ℓ is proportional to the molecular densities, whereas k is proportional to atomic densities. Thus the error in Z_1 is of order (ℓ/k) compared to the error in Y_1 , i.e. in the ratio of molecular to atomic densities. Since this ratio decreases rapidly with altitude, the ratio of the error in Z_1 compared to the error in Y_1 decreases rapidly with altitude. Finally, it should be noted that transport effects are needed to reconcile the difference between the observed value (X_1)

and z_1 , not the difference between x_1 and y_1 .

It is useful to discuss the definition of chemical lifetimes. If the equation of continuity does not involve coupling to other ions, the chemical lifetime is uniquely defined as the reciprocal of the factor multiplying the ion concentration in the loss term. When ions are coupled in the equation of continuity, there are two lifetimes that can be defined. In the conventional definition, $1/(\ell_1+k_1)$ in the equation for x_1 is the lifetime for an individual ion. To discuss the second definition, we write the equation for x_1 in the form

$$Q_1 + Q_2/(\ell_2 + k_2 + t_2) - [(\ell_1 + k_1) - k_1 k_2 / (\ell_2 + k_2 + t_2)] X_1 = V \cdot \dot{F}_1$$
.

It can be argued that the reciprocal of the factor multiplying \mathbf{X}_1 in this expression is the physically meaningful lifetime. In the absence of transport, and if $\mathbf{k}_2 \gg \ell_2$, the lifetime then becomes $1/\ell_1$, which is much larger than $1/(\ell_1+\mathbf{k}_1)$ in the upper atmosphere for the species of interest $(\mathbf{H}^+, \mathbf{O}^+, \ \mathbf{H}^+)$.

GENERAL THEORY OF IONOSPHERIC MOTIONS

A. Determination of Particle Velocities

The drift velocity for each species in a gas mixture is determined by the momentum transfer equations which may be written as (cf. Schunk 1977)

$$\nabla p_{s} - n_{s} m_{s} \dot{\vec{q}} - n_{s} e_{s} (\dot{\vec{E}} + \frac{1}{c} \dot{\vec{v}}_{s} \times \dot{\vec{B}}) = -\sum_{t} n_{s} m_{s} v_{st} (\dot{\vec{v}}_{s} - \dot{\vec{v}}_{t})$$

where \vec{E} and \vec{B} are the electric and magnetic fields, respectively, p_s , n_s , m_s , e_s are the partial pressure, concentration, mass, and charge, respectively, \vec{g} is the gravitational acceleration, and v_{st} is the collision frequency of species s with species t. For the charged species it is convenient to deal with drift velocities relative to the neutral medium:

$$\vec{u}_i = \vec{v}_i - \vec{\nabla}$$

where \vec{V} is a suitably defined velocity for the neutrals. Let .

$$\vec{F}_{i} = m_{i}\vec{g} + e_{i}(\vec{E} + \frac{1}{c}\vec{v} \times \vec{B}) - \nabla p_{i}/n_{i} + m_{i} \sum_{n} v_{in}(\vec{v}_{n} - \vec{v})$$

where the sum over n indicates that the summation extends over neutral species only. Then

$$\sum_{i} m_{i} v_{ij} (\vec{u}_{i} - \vec{u}_{j}) + \sum_{n} m_{i} v_{in} \vec{u}_{i} - e_{i} \vec{u}_{i} \times \vec{B}/c = \vec{F}_{i}$$

where the sum over j extends over charged species only. Finally, let

$$\bar{v}_i = \sum_{j} v_{ij} + \sum_{n} v_{in}$$

$$\omega_{i} = e_{i}B/m_{i}C$$

$$\hat{b} = \vec{B}/B$$

where B is the magnitude of the magnetic field, and $\boldsymbol{\omega}_{\dot{1}}$ is the gyrofrequency. Then

$$\mathbf{m}_{i} \vec{v}_{i} \vec{u}_{i} - \mathbf{m}_{i} \sum_{j \neq i} \mathbf{v}_{ij} \vec{u}_{j} + \mathbf{m}_{i} \omega_{i} (\hat{\mathbf{b}} \times \vec{u}_{i}) = \vec{\mathbf{F}}_{i}$$

To solve this system of coupled vector equations, define the matrix D as follows:

$$D_{ii}^{-1} = m_i \bar{\nu}_i$$
, $D_{ij}^{-1} = -m_i \nu_{ij}$ ($j \neq i$)

Then

$$\sum_{j} D_{ij}^{-1} \vec{u}_{j} + m_{i} \omega_{i} (\hat{b} \times \hat{u}_{i}) = \vec{F}_{i}$$

The solution for the parallel (to \vec{B}) components) follows immediately:

$$\hat{\mathbf{b}} \cdot \hat{\mathbf{u}}_{\mathbf{i}} = \sum_{\mathbf{j}} D_{\mathbf{i}\mathbf{j}} \hat{\mathbf{b}} \cdot \hat{\mathbf{f}}_{\mathbf{j}}$$

To obtain a solution for the transverse components, let \hat{i}_2 be an arbitrary unit vector normal to \hat{b} , and $\hat{i}_3 = \hat{b} \times \hat{i}_2$. Equating the coefficients of \hat{i}_2 , \hat{i}_3 in the equation of motions.

$$\sum_{j} D_{ij}^{-1} u_{j2} - m_{i}\omega_{i}u_{i3} = F_{i2}$$

$$\sum_{j} D_{ij}^{-1} u_{j3} + m_{i}\omega_{i}u_{i2} = F_{i3}$$

These equations can be combined to give

$$\sum_{j \in K} (\sum_{i \in K} D_{ik}^{-1} \frac{1}{m_k \omega_k} D_{kj}^{-1}) u_{j2} + m_i \omega_i u_{i2} = F_{i3} + \sum_{k} D_{ik}^{-1} \frac{1}{m_k \omega_k} F_{k2}$$

$$\sum_{j k} (\sum_{i k}^{-1} \frac{1}{m_{k} \omega_{k}} D_{k j}^{-1}) u_{j 3} + m_{j} \omega_{i} u_{i 3} = -F_{i 2} + \sum_{k}^{\infty} D_{i k}^{-1} \frac{1}{m_{k} \omega_{k}} F_{k 3}$$

Let
$$H_{ij}^{-1} = \sum_{k} D_{ik}^{-1} \frac{1}{m_{k}\omega_{k}} D_{kj}^{-1} + \delta_{ij} m_{i}\omega_{i}$$

Then

$$u_{i2} = \sum_{j} H_{ij}F_{i3} + \sum_{j} P_{ij}F_{j2}$$

$$u_{i3} = \sum_{j} H_{ij} F_{j2} + \sum_{j} P_{ij} F_{j3}$$

where
$$P_{ij} = (\sum_{k} H_{ik} D_{kj}^{-1})/m_{j}\omega_{j}$$

The total transverse component is

$$\hat{i}_2 u_{i2} + \hat{i}_3 u_{i3} = \sum_j H_{ij} (\hat{i}_2 F_{j3} - \hat{i}_3 F_{j2}) + \sum_j P_{ij} (\hat{i}_2 F_{j2} + \hat{i}_3 F_{j3})$$

or

$$\hat{\mathbf{b}} \times (\hat{\mathbf{u}}_{\mathbf{i}} \times \hat{\mathbf{b}}) = \sum_{\mathbf{j}} \mathbf{H}_{\mathbf{i}\mathbf{j}} (\hat{\mathbf{f}}_{\mathbf{j}} \times \hat{\mathbf{b}}) + \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{i}\mathbf{j}} \hat{\mathbf{b}} \times (\hat{\mathbf{f}}_{\mathbf{j}} \times \hat{\mathbf{b}})$$

$$= (\sum_{\mathbf{j}} \mathbf{H}_{\mathbf{i}\mathbf{j}} \hat{\mathbf{f}}_{\mathbf{j}}) \times \hat{\mathbf{b}} + \hat{\mathbf{b}} \times [(\sum_{\mathbf{j}} \mathbf{P}_{\mathbf{i}\mathbf{j}} \hat{\mathbf{f}}_{\mathbf{j}}) \times \hat{\mathbf{b}}]$$

which is a form that makes no efference to any particular coordinate system.

The definition of \vec{F}_i ,

$$\vec{\mathbf{r}}_{i} = \mathbf{m}_{i}\vec{\mathbf{g}} + \mathbf{e}_{i}\vec{\mathbf{c}} - \nabla \mathbf{p}_{i}/\mathbf{n}_{i} + \mathbf{m}_{i}\sum_{n} \mathbf{v}_{in}(\vec{\mathbf{v}}_{n} - \vec{\mathbf{v}})$$

indicates that contributions to the drift velocity come from the gravitational acceleration g, the total electric field $\vec{\epsilon} = \vec{E} + \frac{1}{2} \; \vec{V} \; x \; \vec{B} \; ,$

gradients in the partial pressures, and contributions arising from differences in the velocities of the neutral species. The last-named contributions are small and will be neglected hereinafter. It is useful to distinguish the different contributions to the velocity \vec{u}_i by writing

$$\vec{u}_{i} = \vec{u}_{i}(g) + \vec{u}_{i}(\epsilon) + \vec{U}_{i}(\nabla)$$

For the parallel components:

$$\hat{\mathbf{b}} \cdot \vec{\mathbf{u}}_{\mathbf{i}}(\mathbf{g}) = (\hat{\mathbf{b}} \cdot \vec{\mathbf{g}}) \sum_{\mathbf{j}} \mathbf{D}_{\mathbf{i}\mathbf{j}}^{\mathbf{m}} \mathbf{j}
\hat{\mathbf{b}} \cdot \vec{\mathbf{u}}_{\mathbf{i}}(\epsilon) = (\hat{\mathbf{b}} \cdot \vec{\epsilon}) \sum_{\mathbf{j}} \mathbf{D}_{\mathbf{i}\mathbf{j}}^{\mathbf{e}} \mathbf{j}
\hat{\mathbf{b}} \cdot \vec{\mathbf{u}}_{\mathbf{i}}(\vec{\mathbf{v}}) = -\sum_{\mathbf{j}} \mathbf{D}_{\mathbf{i}\mathbf{j}} (\nabla \mathbf{p}_{\mathbf{j}}/\mathbf{n}_{\mathbf{j}}) \cdot \hat{\mathbf{b}}$$

For the transverse components:

$$\hat{\mathbf{b}} \times [\vec{\mathbf{u}}_{\mathbf{i}}(\mathbf{g}) \times \hat{\mathbf{b}}] = (\vec{\mathbf{g}} \times \hat{\mathbf{b}}) \sum_{\mathbf{j}} \mathbf{H}_{\mathbf{i}\mathbf{j}}^{\mathbf{m}}_{\mathbf{j}} + \hat{\mathbf{b}} \times (\vec{\mathbf{g}} \times \hat{\mathbf{b}}) \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{i}\mathbf{j}}^{\mathbf{m}}_{\mathbf{j}}$$

$$\hat{\mathbf{b}} \times [\vec{\mathbf{u}}_{\mathbf{i}}(\varepsilon) \times \hat{\mathbf{b}}] = (\vec{\varepsilon} \times \hat{\mathbf{b}}) \sum_{\mathbf{j}} \mathbf{H}_{\mathbf{i}\mathbf{j}}^{\mathbf{e}}_{\mathbf{j}} + \hat{\mathbf{b}} \times (\vec{\varepsilon} \times \hat{\mathbf{b}}) \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{i}\mathbf{j}}^{\mathbf{e}}_{\mathbf{j}}$$

$$\hat{\mathbf{b}} \times [\vec{\mathbf{u}}_{\mathbf{i}}(\nabla) \times \hat{\mathbf{b}}] = -\sum_{\mathbf{j}} \mathbf{H}_{\mathbf{i}\mathbf{j}} (\nabla \mathbf{p}_{\mathbf{j}}/n_{\mathbf{j}}) \times \hat{\mathbf{b}} - \hat{\mathbf{b}} \times [\sum_{\mathbf{j}} \mathbf{P}_{\mathbf{i}\mathbf{j}} (\nabla \mathbf{p}_{\mathbf{j}}/n_{\mathbf{j}}) \times \hat{\mathbf{b}}]$$

B. Current Density

The current density \vec{J} is given by

$$\vec{J} = \frac{1}{c} \sum_{i} n_{i} e_{i} \vec{v}_{i} = \frac{1}{c} \sum_{i} n_{i} e_{i} \vec{u}_{i} + \frac{1}{c} \sum_{i} n_{i} e_{i} \vec{v}$$

It is useful to write

$$\dot{\mathfrak{F}} = \dot{\mathfrak{F}}(\mathsf{v}) + \dot{\mathfrak{F}}(\mathsf{g}) + \dot{\mathfrak{F}}(\varepsilon) + \dot{\mathfrak{F}}(\nabla)$$

where, owing to the condition of local neutrality,

$$\vec{J}(V) = \vec{V} \frac{1}{c} \sum_{i} n_{i} e_{i} = 0$$

The other contributions may again be split into parallel and transverse components. For the parallel components:

$$\hat{\mathbf{b}} \cdot \hat{\mathbf{J}}(\mathbf{g}) = (\hat{\mathbf{b}} \cdot \hat{\mathbf{g}}) \frac{1}{\mathbf{c}} \sum_{\mathbf{i}} \mathbf{n_i} \mathbf{e_i} \sum_{\mathbf{j}} \mathbf{D_{ij}} \mathbf{m_j}$$

$$\hat{\mathbf{b}} \cdot \hat{\mathbf{J}}(\varepsilon) = (\hat{\mathbf{b}} \cdot \hat{\varepsilon}) \frac{1}{\mathbf{c}} \sum_{\mathbf{i}} \mathbf{n_i} \mathbf{e_i} \sum_{\mathbf{j}} \mathbf{D_{ij}} \mathbf{e_j}$$

$$\hat{\mathbf{b}} \cdot \hat{\mathbf{J}}(\bar{\mathbf{v}}) = -\frac{1}{\mathbf{c}} \sum_{\mathbf{i}} \mathbf{n_i} \mathbf{e_i} \sum_{\mathbf{j}} \mathbf{D_{ij}} (\nabla \mathbf{p_j} / \mathbf{n_j}) \cdot \hat{\mathbf{b}}$$

For the transverse components

$$\hat{\mathbf{b}} \times [\vec{\mathbf{J}}(g) \times \hat{\mathbf{b}}] = (\vec{\mathbf{g}} \times \hat{\mathbf{b}}) \frac{1}{\mathbf{c}} \sum_{\mathbf{i}} n_{\mathbf{i}} \mathbf{e}_{\mathbf{i}} \sum_{\mathbf{j}} \mathbf{H}_{\mathbf{i}} \mathbf{j}^{\mathbf{m}} \mathbf{j}$$

$$+ \hat{\mathbf{b}} \times (\vec{\mathbf{g}} \times \hat{\mathbf{b}}) \frac{1}{\mathbf{c}} \sum_{\mathbf{i}} n_{\mathbf{i}} \mathbf{e}_{\mathbf{i}} \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{i}} \mathbf{j}^{\mathbf{m}} \mathbf{j}$$

$$\hat{\mathbf{b}} \times [\vec{\mathbf{J}}(\varepsilon) \times \hat{\mathbf{b}}] = (\vec{\varepsilon} \times \hat{\mathbf{b}}) \frac{1}{\mathbf{c}} \sum_{\mathbf{i}} n_{\mathbf{i}} \mathbf{e}_{\mathbf{i}} \sum_{\mathbf{j}} \mathbf{H}_{\mathbf{i}} \mathbf{j} \mathbf{e}_{\mathbf{j}}$$

$$+ \hat{\mathbf{b}} \times (\vec{\varepsilon} \times \hat{\mathbf{b}}) \frac{1}{\mathbf{c}} \sum_{\mathbf{i}} n_{\mathbf{i}} \mathbf{e}_{\mathbf{i}} \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{i}} \mathbf{j} \mathbf{e}_{\mathbf{j}}$$

$$\hat{\mathbf{b}} \times [\vec{\mathbf{J}}(\nabla) \times \hat{\mathbf{b}}] = \frac{1}{\mathbf{c}} \sum_{\mathbf{i}} n_{\mathbf{i}} \mathbf{e}_{\mathbf{i}} \sum_{\mathbf{j}} \mathbf{H}_{\mathbf{i}} \mathbf{j} (\nabla \mathbf{p}_{\mathbf{j}} / n_{\mathbf{j}}) \times \hat{\mathbf{b}}$$

$$+ \hat{\mathbf{b}} \times [\frac{1}{\mathbf{c}} \sum_{\mathbf{i}} n_{\mathbf{i}} \mathbf{e}_{\mathbf{i}} \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{i}} \mathbf{j} (\nabla \mathbf{p}_{\mathbf{j}} / n_{\mathbf{j}}) \times \hat{\mathbf{b}}]$$

The conventional electrical conductivities, which determine the contribution to the current density from electric fields, are seen to be

Parallel:
$$\sigma_{D} = \frac{1}{c} \sum_{i} n_{i} e_{i} \sum_{j} p_{ij} e_{j}$$

Hall:
$$\sigma_{\mathbf{H}} = \frac{1}{c} \sum_{\mathbf{i}} n_{\mathbf{i}} e_{\mathbf{i}} \sum_{\mathbf{j}} H_{\mathbf{i}\mathbf{j}} e_{\mathbf{j}}$$

Petersen:
$$\sigma_{p} = \frac{1}{c} \sum_{i}^{c} n_{i} e_{i} \sum_{j}^{c} P_{ij} e_{j}$$

In terms of the electrical conductivities, we may write

$$\vec{\mathbf{J}}(\boldsymbol{\varepsilon}) = \boldsymbol{\sigma}_{\mathbf{D}}(\vec{\boldsymbol{\varepsilon}} \cdot \hat{\mathbf{b}}) \hat{\mathbf{b}} + \boldsymbol{\sigma}_{\mathbf{H}}(\vec{\boldsymbol{\varepsilon}} \times \hat{\mathbf{b}}) + \boldsymbol{\sigma}_{\mathbf{p}} \hat{\mathbf{b}} \times (\vec{\boldsymbol{\varepsilon}} \times \hat{\mathbf{b}}) \ .$$

C. Ion Drag

The force exerted on the neutral constituents by charged particles is commonly called ion drag. Neglecting differences in the neutral particle velocities, we may write the force (per unit volume) exerted on neutral species n by the charged species i as

$$\vec{f}_{ni} = -m_n n_n v_{ni} (\vec{v} - \vec{v}_i)$$

$$= + m_n n_n v_{ni} \vec{u}_i$$

$$= m_i n_i v_i \vec{u}_i$$

by the symmetry property of collision frequencies.

The force exerted by all charged particles on neutral species n is

$$\vec{f}_n = \sum_i \vec{f}_{ni} = \sum_i m_i n_i v_{in} \vec{u}_i$$

Finally, the total force exerted on all neutral species by all charged species is

$$\vec{f} = \sum_{n} \vec{f}_{n} = \sum_{i} n_{i} m_{i} (\sum_{n} v_{in}) \vec{u}_{i}$$

$$\vec{f} = \vec{f}(g) + \vec{f}(\varepsilon) + \vec{f}(\nabla)$$

For the parallel components:

Let

$$\hat{\mathbf{b}} \cdot \hat{\mathbf{f}}(g) = (\hat{\mathbf{b}} \cdot \hat{\mathbf{g}}) \sum_{\mathbf{i}} n_{\mathbf{i}} m_{\mathbf{i}} (\Sigma v_{\mathbf{i}n}) \sum_{\mathbf{j}} D_{\mathbf{i}\mathbf{j}} m_{\mathbf{j}}
\hat{\mathbf{b}} \cdot \hat{\mathbf{f}}(\varepsilon) = (\hat{\mathbf{b}} \cdot \hat{\mathbf{\varepsilon}}) \sum_{\mathbf{n}} n_{\mathbf{i}} m_{\mathbf{i}} (\Sigma v_{\mathbf{i}n}) \sum_{\mathbf{j}} D_{\mathbf{i}\mathbf{j}} e_{\mathbf{j}}
\hat{\mathbf{b}} \cdot \hat{\mathbf{f}}(\nabla) = \sum_{\mathbf{i}} n_{\mathbf{i}} m_{\mathbf{i}} (\Sigma v_{\mathbf{i}n}) \sum_{\mathbf{j}} D_{\mathbf{i}\mathbf{j}} (\nabla p_{\mathbf{j}} / n_{\mathbf{j}}) \cdot \hat{\mathbf{b}}$$

For the transverse components:

$$\hat{\mathbf{b}} \times [\hat{\mathbf{f}}(g) \times \hat{\mathbf{b}}] = (\hat{\mathbf{b}} \times \hat{\mathbf{g}}) \sum_{\mathbf{i}} n_{\mathbf{i}} m_{\mathbf{i}} (\Sigma \vee_{\mathbf{i}n}) \sum_{\mathbf{j}} H_{\mathbf{i}\mathbf{j}} m_{\mathbf{j}}$$

$$+ \hat{\mathbf{b}} \times (\hat{\mathbf{g}} \times \hat{\mathbf{b}}) \sum_{\mathbf{i}} n_{\mathbf{i}} m_{\mathbf{i}} (\Sigma \vee_{\mathbf{i}n}) \sum_{\mathbf{j}} P_{\mathbf{i}\mathbf{j}} m_{\mathbf{j}}$$

$$\hat{\mathbf{b}} \times [\hat{\mathbf{f}}(\varepsilon) \times \hat{\mathbf{b}}] = (\hat{\mathbf{b}} \times \hat{\mathbf{c}}) \sum_{\mathbf{i}} n_{\mathbf{i}} m_{\mathbf{i}} (\Sigma \vee_{\mathbf{i}n}) \sum_{\mathbf{j}} H_{\mathbf{i}\mathbf{j}} e_{\mathbf{j}}$$

$$+ \hat{\mathbf{b}} \times (\hat{\mathbf{c}} \times \hat{\mathbf{b}}) \sum_{\mathbf{i}} n_{\mathbf{i}} m_{\mathbf{i}} (\Sigma \vee_{\mathbf{i}n}) \sum_{\mathbf{j}} P_{\mathbf{i}\mathbf{j}} e_{\mathbf{j}}$$

$$\hat{\mathbf{b}} \times [\hat{\mathbf{f}}(\nabla) \times \hat{\mathbf{b}}] = \sum_{\mathbf{i}} n_{\mathbf{i}} m_{\mathbf{i}} (\Sigma \vee_{\mathbf{i}n}) \sum_{\mathbf{j}} H_{\mathbf{i}\mathbf{j}} (\nabla P_{\mathbf{j}} / n_{\mathbf{j}}) \times \hat{\mathbf{b}}$$

$$+ \sum_{\mathbf{i}} n_{\mathbf{i}} m_{\mathbf{i}} (\Sigma \vee_{\mathbf{i}n}) \sum_{\mathbf{j}} P_{\mathbf{i}\mathbf{j}} \hat{\mathbf{b}} \times [(\nabla P_{\mathbf{j}} / n_{\mathbf{j}}) \times \hat{\mathbf{b}}]$$

D. Electric Fields

The expression relating the drift velocity of a charged species to the electric field may be inverted to yield an expression for the electric field. For the parallel component:

$$\hat{\mathbf{b}} \cdot \hat{\boldsymbol{\varepsilon}} = \hat{\mathbf{b}} \cdot \hat{\mathbf{u}}_{\mathbf{i}} (\boldsymbol{\varepsilon}) / (\boldsymbol{\Sigma} \quad \mathbf{D}_{\mathbf{i} \mathbf{j}} \mathbf{e}_{\mathbf{j}})$$

For the transverse components:

$$[(\Sigma H_{ij}e_{j})^{2} + (\Sigma P_{ij}e_{j})^{2}] \hat{b} \times (\varepsilon \times \hat{b}) =$$

$$= -(\Sigma H_{ij}e_{j})[\vec{u}_{i}(\varepsilon) \times \hat{b}] + (\Sigma P_{ij}e_{j}) \hat{b} \times [\vec{u}_{i}(\varepsilon) \times \hat{b}]$$

A vector measurement of the drift velocity \vec{u}_i , together with measurements required for the calculation of \vec{u}_i (g) and \vec{u}_i (∇), is required for the calculation of

$$\vec{u}_{i}(\varepsilon) = \vec{u}_{i} - \vec{u}_{i}(g) - \vec{u}_{i}(V)$$
,

from which the electric field can be computed. This procedure appears to be feasible in regions of the atmosphere where one ionic species dominates.

4. THEORY: ONE IONIC SPECIES

Even though it is applicable only to a portion of the ionosphere, the theory for the case when only one ionic species and electrons are present helps illustrate several features of the general theory. The equations of motion are

$$m_{i}(v_{in} + v_{ie}) \vec{u}_{i} - m_{i}v_{ie}\vec{u}_{e} + m_{i}\omega_{i}(\hat{b} \times \vec{u}_{i}) = \vec{F}_{i}$$

$$m_{e}(v_{en} + v_{ei}) \vec{u}_{e} - m_{e}v_{ei}\vec{u}_{i} + m_{e}\omega_{e}(\hat{b} \times \vec{u}_{e}) = \vec{F}_{e}$$

where the forces \vec{F}_i , \vec{F}_e are defined by

$$\vec{F}_{s} = -\nabla p_{s}/n_{s} + m_{s}\vec{g} + e_{s}\vec{\epsilon} , \qquad s = i, e$$

and where the subscripts i, e, and n denote ions, electrons, and neutrals respectively. We note first that if collisions with neutrals are neglected ($v_{in} = v_{en} = 0$), then the equations of motion can only determine the velocity difference ($\vec{u}_i - \vec{u}_e$) and not the velocities of each species. This remains true when several ionic species are present.

Parallel Components

It is useful to examine the solution for the "uncoupled" case, i.e. when ion-electron collisions are neglected ($v_{ie} = v_{ei} = 0$):

$$\hat{\mathbf{b}} \cdot \hat{\mathbf{u}}_{i} \rightarrow (\hat{\mathbf{b}} \cdot \hat{\mathbf{f}}_{i}) / (\mathbf{m}_{i} \mathbf{v}_{in}) = \mathbf{V}_{i}$$

$$\hat{\mathbf{b}} \cdot \hat{\mathbf{u}}_{e} \rightarrow (\hat{\mathbf{b}} \cdot \hat{\mathbf{f}}_{e}) / (\mathbf{m}_{e} \mathbf{v}_{en}) = \mathbf{V}_{e}$$

Inasmuch as the forces $\mathbf{F}_{\mathbf{i}}$ and $\mathbf{F}_{\mathbf{e}}$ are of the same order of magnitude, it follows that

$$v_i/v_e \sim \alpha = (m_e v_{en})/(m_i v_{in})$$
.

The "uncoupled" case also serves to define the "uncoupled" diffusion coefficient

$$D_S = kT_S/m_S v_{sn}$$
.

In the presence of collisions, the solutions are

$$\hat{\mathbf{b}} \cdot \vec{\mathbf{u}}_{i} = [(\mathbf{m}_{e} \mathbf{v}_{en} + \mathbf{m}_{e} \mathbf{v}_{ei}) (\hat{\mathbf{b}} \cdot \vec{\mathbf{f}}_{i}) + (\mathbf{m}_{i} \mathbf{v}_{ie}) (\hat{\mathbf{b}} \cdot \vec{\mathbf{f}}_{e})]/D$$

$$\hat{\mathbf{b}} \cdot \mathbf{u}_{\mathbf{e}} = [(\mathbf{m}_{\mathbf{e}} \mathbf{v}_{\mathbf{e}i}) (\hat{\mathbf{b}} \cdot \mathbf{f}_{i}) + (\mathbf{m}_{i} \mathbf{v}_{in} + \mathbf{m}_{i} \mathbf{v}_{ie}) (\hat{\mathbf{b}} \cdot \mathbf{f}_{e})]/D$$

where

$$D = (m_i v_{in}) (m_e v_{en}) + (m_i v_{in}) (m_e v_{ei}) + (m_e v_{en}) (m_i v_{ie})$$

Since $n_i = n_e$ in the present case, it follows from the symmetry property of collision frequencies that

$$m_i v_{ie} = m_e v_{ei}$$
.

Accordingly

$$D = (m_{i}v_{in}) (m_{e}v_{en}) + (m_{e}v_{ei}) [(m_{i}v_{in}) + (m_{e}v_{en})]$$
$$= (m_{i}v_{in}) [(m_{e}v_{en}) + (m_{e}v_{ei}) (1 + \alpha)]$$

and

These expressions show that collisions between ions and electrons give rise to a velocity component that is common to both. It should be noted also that the electric field does not enter this component because it appears with opposite signs in \vec{F}_i and \vec{F}_e . The "uncoupled" velocities V_i , V_e are still present, but they are divided by the factor

$$D/[(m_i v_{in}) (m_e v_{en})] = 1 + (v_{ei}/v_{en}) (1+\alpha).$$

It is useful to note that

$$\alpha \equiv (m_e v_{en})/(m_i v_{in}) < 10^{-2}$$

at all altitudes. The parameter α is a measure of the strength of electron-neutral coupling compared to ion-neutral coupling. A second useful parameter is

$$x = v_{ei}/[v_{en} + (1+\alpha)v_{ei}]$$
.

As the fractional ionization (n_i/n_n) increases, the ratio (ν_{ei}/ν_{en}) increases and so does x. It is convenient to refer to x as the (collisional) coupling parameter. The reason for this choice becomes apparent when the velocities are expressed as

$$(b \cdot \dot{u}_{i}) = (1-\alpha x) V_{i} + \alpha x V_{e} = V_{i} + \alpha x (V_{e} - V_{i})$$

 $(b \cdot \dot{u}_{e}) = (1-x) V_{e} + x V_{i} = V_{e} - x (V_{e} - V_{i})$

where V_i and V_e are the uncoupled velocities previously defined. The collisional coupling changes both velocities, the change being proportional to the coupling parameter x and to the difference $(V_e^-V_i^-)$ of the uncoupled velocities. The change in the ion velocity, however, is smaller than the change in the electron velocity by a factor of $\alpha(<10^{-2})$. This, of course, is the result of the fact that the coupling of the electrons to neutrals is weaker (by a factor of α) than the coupling of ions to neutrals. In fact, as the coupling parameter approaches unity, the electron velocity tends to a value unrelated to its "uncoupled" value.

Since collisions between particles do not constitute external forces, the total force per unit volume remains unchanged by collisions. In the present case, this force is

$$n_{i}(\hat{b} \cdot \vec{F}_{i}) + n_{e}(\hat{b} \cdot \vec{F}_{e}) = n_{i}m_{i}v_{in}(\hat{b} \cdot \vec{u}_{i}) + n_{e}m_{e}v_{en}(\hat{b} \cdot \vec{u}_{e})$$

$$= n_{i}m_{i}v_{in}[(\hat{b} \cdot \vec{u}_{i}) + \alpha(\hat{b} \cdot \vec{u}_{e})]$$

$$= n_{i}m_{i}v_{in}(v_{i} + \alpha v_{e})$$

$$= n_{i}m_{i}v_{in}v_{i} + n_{e}m_{e}v_{en}v_{e}$$

Thus, irrespective of the magnitude and nature of the collision frequencies,

$$(\hat{\mathbf{b}} \cdot \hat{\mathbf{u}}_{\mathbf{i}}) + \alpha (\hat{\mathbf{b}} \cdot \hat{\mathbf{u}}_{\mathbf{e}}) = V_{\mathbf{i}} + \alpha V_{\mathbf{e}}$$
.

In some theoretical formulations (see for example Schunk and Walker 1970) it is assumed that $(m_e v_{en} \overrightarrow{u}_e)$ is

of order (m_e/m_i) compared to $(m_i v_{in} \vec{u}_i)$, and therefore negligible. This assumption is not correct in general. The ratio in question is in fact

$$|\alpha V_{e}^{-\alpha x}(V_{e}^{-V_{i}})|/|V_{i}^{+\alpha x}(V_{e}^{-V_{i}})| \xrightarrow[x \to 0]{} |\alpha V_{e}^{-|V_{i}^{+}|}$$

$$\xrightarrow[x \to 1]{} |\alpha V_{i}^{-|V_{i}^{+}|} |v_{i}^{+\alpha V_{e}^{-|V_{i}^{+}|}}$$

Since $|\alpha V_{\bf e}|/|V_{\bf i}| \sim 1$, as shown previously, the assumption is incorrect unless the collisional coupling parameter x is near unity. Data from daytime observations (listed in this report), indicates that x > 0.95 above 270 kilometers and x > 0.99 above 330 kilometers. At night, the fractional ionization is lower, and these values of the coupling parameter are reached above altitude limits which are ~ 100 kilometers higher than in the daytime.

It is interesting to consider the effects of ion-electron collisions on the parallel component of the current. This is proportional to

$$\hat{\mathbf{b}} \cdot (\hat{\mathbf{u}}_{i} - \hat{\mathbf{u}}_{e}) = (\mathbf{v}_{i} - \mathbf{v}_{e}) (1 - \mathbf{x} - \alpha \mathbf{x})$$

$$= (\mathbf{v}_{i} - \mathbf{v}_{e}) \mathbf{x} \{ \mathbf{v}_{en} / [\mathbf{v}_{en} + \mathbf{v}_{ei} (1 + \alpha)] \}$$

As x approaches unity (which is equivalent to saying as electronion collisions dominate electron-neutral collisions) the effect of electron-ion collisions is to reduce the parallel conductivity by a factor of $(v_{\rm en}/v_{\rm ei})$ compared to the "uncoupled" case. This result further shows that as $(v_{\rm en}/v_{\rm ei})$ tends to zero, ions and electrons tend to move with the same velocity.

Transverse Components

By combining the equations for \mathbf{u}_i and \mathbf{u}_e we obtain uncoupled equations of the form

$$A_0 \hat{u}_s + A_1 (\hat{b} x \hat{u}_s) + A_2 \hat{b} x (\hat{b} x \hat{u}_s) = \hat{c}_s$$
, s=i,e

where

$$A_{0} = \alpha r^{2} (1 + f + \alpha f), A_{1} = -r(1-\alpha), A_{2} = -1$$

$$\dot{C}_{i} = [\alpha r(1+f) \dot{f}_{i} + \alpha r f \dot{f}_{e} + \dot{f}_{i} \times \hat{b}]/(m_{i}\omega_{i})$$

$$\dot{C}_{e} = [r(1+\alpha f) \dot{f}_{e} + \alpha r f \dot{f}_{i} - \dot{f}_{e} \times \hat{b}]/(m_{i}\omega_{i})$$

and

$$\alpha = (m_e v_{en}/m_i v_{in}), r = (v_{in}/\omega_i), f = (v_{ei}/v_{en}).$$

The parameter α has been discussed before. It ranges from 3.3×10^{-3} at 650 km to 1.2×10^{-3} at 160 km in the data used in this report. The ratio r of the ion-neutral collision frequency to the ion gyrofrequency has the value 0.06 at 160 km and decreases with altitude essentially in proportion to the atmospheric density. Like α , r is insensitive to atmospheric conditions where its value is significant. The parameter f is a measure of the fractional ionization and ranges from 0.5 at 160 km to 4 x 10^3 at 657 km in our data. It is, of course, highly variable, and substantially lower at night than in the daytime. Inasmuch as f appears in a product with r, and rf is always a small number (<0.03), knowledge of the actual value of f is not needed. Taking into account the numerical

characteristics of the parameters, we may write the solutions in a simple form that is highly accurate at all altitudes:

$$(1+r^2) \left(\mathbf{m_i} \mathbf{\omega_i}\right) \hat{\mathbf{b}} \mathbf{x} (\hat{\mathbf{u}_i} \mathbf{x} \hat{\mathbf{b}}) = [\vec{\mathbf{f}_i} - \alpha r^2 f \vec{\mathbf{f}_e}] \mathbf{x} \hat{\mathbf{b}} + r \hat{\mathbf{b}} \mathbf{x} (\vec{\mathbf{f}_i} \mathbf{x} \hat{\mathbf{b}}) + \alpha r f \hat{\mathbf{b}} \mathbf{x} [(\vec{\mathbf{f}_i} + \vec{\mathbf{f}_e}) \mathbf{x} \hat{\mathbf{b}}]$$

It should be noted that the "Hall" components (i.e. the components which involve a single vector product with \hat{b}) are are essentially diagonal, the off-diagonal elements being smaller by a factor $\alpha r^2 f(<10^{-4})$. The diagonal elements are essentially equal to $1/(m_i \omega_i) = c/eB$. The Hall components remain diagonal even when several ionic species are present.

On the other hand the "Pedersen" off-diagonal components are of order $\alpha f(=v_{ie}/v_{in})$ compared to diagonal components, and this product may be small or large. Finally, the magnitude of the Pedersen components is of order $r = (=v_{in}/w_i)$ compared to the Hall components.

It is useful to examine the velocity difference, which is proportional to the current

$$(1+r^{2}) (m_{i}\omega_{i}) \hat{b} \times [(\vec{u}_{i}-\vec{u}_{e}) \times \hat{b}] =$$

$$(1+\alpha r^{2}f) (\vec{f}_{i}+\vec{f}_{e}) \times \hat{b} + r^{2} (\vec{f}_{e}\times\hat{b}) + r \hat{b} \times [(\vec{f}_{i}-\alpha\vec{f}_{e}) \times \hat{b}]$$

The leading "Hall" component is independent of the electric field, since \vec{F}_i and \vec{F}_e contain the electric field with opposite signs. Thus the Hall electrical conductivity is proportional to $r^2/(1+r^2)$, and decreases very rapidly with increasing

altitude. On the other hand, the Pedersen electrical conductivity is linearly proportional to r, and decreases less rapidly with altitude. Finally, we note for convenience that

$$\alpha rf = (v_{ie}/\omega_i), \quad \alpha^2 r^2 f = (v_{ie}v_{in}/\omega_i^2).$$

5. RESULTS AND DISCUSSION

In this section we present some results using the formalism of Section 3 and the data given in Appendix A.

A. General

It was shown in Section 3 that, when collisions between charged particles are taken into account, the velocity of a given charged particle species depends on the forces acting on all the charged species. Figures 4, 5, and 6 demonstrate this for the parallel component of the velocity of 0^+ ions, electrons, and N^+ ions, respectively. More specifically, the various curves in each figure represent the velocity generated in the species of interest by a force on another species. Before discussing each figure separately, we note that these figures give the velocity (in cm/sec) generated by a force of 1.66×10^{-24} dyne.

Fig. 4 pertains to 0⁺, which is the major ion through most of the altitude region considered. The curve labeled "uncoupled" represents the response of 0⁺ ions to the force exerted on them in the absence of collisions with other charged particles. It is defined explicitly in Section A. The curve labeled 0⁺ represents the response of 0⁺ ions to the force exerted on them in the presence of collisions with other charged particles. We note, as in Section 4, that the introduction of collisions has a very small effect on this response

function, owing to the much higher mobility of the electrons. The curve labeled "electrons" represents the response of 0^+ ions to the force exerted on electrons. Because 0^+ is the major ion, this response function is nearly identical to the response function to the force exerted on 0^+ . Thus, as far as 0^+ is concerned, the presence of collisions has the effect of subjecting 0^+ to the sum of the forces on 0^+ and electrons. The effect of the forces on the other (minor) ions is an order of magnitude smaller in the altitude range considered. This result remains valid even below 220 km, where 0^+_2 and 0^+_2 have higher concentrations than 0^+ , because at these altitudes collisions with neutral particles play a major part, and the ions are not strongly coupled.

Fig. 5 shows the response of electrons to forces exerted on each charged species. As pointed out in Section 4, the introduction of collisions reduces drastically the response of electrons to the force exerted on them. This is evident in Fig. 5 from a comparison of the curves labeled "electrons" and "uncoupled" (no collisions). With increasing altitude, collisions with 0⁺ predominate over collisions with neutrals, and the motion of electrons is effectively governed by the sum of the forces on 0⁺ and on electrons. The effect of minor ions is an order of magnitude smaller.

Fig. 6 represents the respone of N^+ ions to forces exerted on each charged species. N^+ is a minor ion throughout the altitude range considered. Fig. 6 shows that the motion of N^+

ions is controlled by the sum of the forces on O^+ (the major ion) and electrons. The response to the force on N^+ is negligible compared to its value in the absence of collisions (as depicted by the curve labeled "uncoupled"), except at the lowest altitudes, where collisions with neutrals dominate. At the upper altitudes, where collisions with O^+ are dominant, the response functions of N^+ are identical to the response functions of O^+ , which means that the motion of N^+ ions is identical to the motion of O^+ ions. This result is valid for all the minor ions.

We can summarize the results for the parallel components as follows:

- Where charged particle collisions dominate ion-neutral collisions, minor ions move with the same velocity as the major ion;
- Except as noted below, the velocity of the major ion and of electrons is proportional to the sum of the forces exerted on the major ion and on electrons;
- In the presence of parallel electric fields, the velocity of electrons may be substantially different from the velocity of the ions. The effect of electric fields on ions is of order $\alpha (=m_e \nu_{en}/m_i \nu_{in} < 10^{-2})$ compared to the effect of electric fields on electrons.

For the transverse velocity components we note that the "Hall" contribution is negligible except for a force due to a transverse electric field, and that the "Pedersen" contribution is negligible in the altitude range considered.

B. Calculation of O Drift Velocity.

We have calculated the drift velocity of $\mathbf{0}^+$ ions using the equations of Section 3. In the expression for the force on species s

$$\vec{F}_s = m_s \vec{g} + e_s \vec{E} - \nabla p_s / n_s$$

we have assumed that the gradient of the partial pressure has a vertical component only. Further, in the absence of any data on electric fields, we have calculated separately the contribution from parallel (to the magnetic field) and eastward electric fields. The results are shown in Figures 7, 8, and 9.

Figure 7 shows the effect of the gravitational force on charged particles, and demonstrates that, in the region where collisions between charged particles dominate collisions with neutrals, the gravitational force affects all species equally.

Figure 8 shows the contribution to the velocity of 0⁺ from various terms. The vertical component of the velocity is given by sin²I times the value shown in the figure (where I is the magnetic inclination). Inasmuch as the magnitude of the velocity varies by 10⁴ over the altitude range, a logarithmic plot has been used, and a dashed curve indicates negative contributions. The curve labeled -G represents the contribution from the gravitational force, as in Fig. 7. The curve labeled N (or -N) represents the contributions from gradients of the concentrations of charged particles. The curve labeled T (or -T) represents contributions from the gradients of electron and

ion temperatures. All ions were assumed to be at the same temperature. The curve labeled S represents the sum of the aforementioned contributions. Figure 8 indicates that the contribution from temperature gradients is relatively small, that the contribution from the gravitational force is the largest contribution over most of the altitude ranges and that the sum of the contributions is negative below about 590 km.

Fig. 9 displays various contributions to the vertical component of the O⁺ drift velocity. As in Fig. 8, a logarithmic plot has been used, and dashedlines indicate negative values. The curve marked u represents the contributions to the vertical velocity from the gravitational force and from the gradients of partial pressures. u_s is proportional to sin²I, where I is the magnetic inclination, and thus tends to zero at about 375 km, which occurs above the magnetic equator. Also shown in Fig. 9 by the curve labeled E_{11} is the contribution to the vertical velocity of a (constant) parallel electric field of 1 millivolt per meter. This contribution is proportional to sinI, and also vanishes at the magnetic equator. The curve labeled E_{h} represents the "Hall" contribution to the vertical velocity of a geomagnetically eastward electric field of 3 millivolts per meter. It should be noted that, insofar as the calculation of drift velocities is concerned, this contribution is the same for all charged particles, including electrons. Finally, the filled circles represent the

vertical component of plasma drift, as measured by the RPA experiment on the AE-C satellite (Hanson, 1973). A comparison of the measurements with the various curves indicates that an eastward electric field of between 3 and 5 millivolts per meter is sufficient by itself to explain the observations. Further, it appears that if a parallel electric field is present, it must be less than ~0.01 millivolts per meter over most of the altitude range. Up to about 500 km, the contribution from E, dominates u_{c} , and the calculated drift velocity can be said to be in harmony with observations. Above that altitude, however, the values of u dominate. It should be remembered that, in calculating gradients, it was assumed of necessity that variations occur only in the vertical direction, and that no (geomagnetically) north-south variations are present. It may very well be that this is not a valid assumption in the equatorial region.

C. The Equation of Continuity for 0

To provide a satisfactory explanation of the observed altitude profile of 0^+ ions, we must be able to calculate the divergence of the flux in the equation of continuity

$$P - L = V \cdot (n\overrightarrow{u})$$
,

in regions where transport is significant. This task requires knowledge of the variation of the concentration, and of the drift velocity, in a three-dimensional frame. Unfortunately, the data do not allow the calculation of horizontal derivatives,

and the assumption that only vertical variations are present is not consistent with the equation of continuity.

D. Conclusions

The motion of charged particles in the upper atmosphere has been investigated with the aid of satellite data. It has been shown that the major ion, 0⁺, determines the motion of all minor ions. The observed plasma drift velocity in the vertical direction is in harmony with the assumption of an eastward electric field of between 3 and 5 millivolts per meter. It appears that the assumption that horizontal variations are negligible is not valid in the present instance, owing probably to the fact that the altitude region where transport is important lies within 15° of the magnetic equator. The present investigation clearly demonstrates the need for electric field measurements and measurements of plasma drifts. The approach outlined in this investigation will be applied to midlatitude data, where the assumption that horizontal variations are negligible is valid.

6. ELECTRON VELOCITY DISTRIBUTION

Photoelectrons and secondary auroral electrons play an important role in the coupling of the solar ionizing ultraviolet flux and the fast primary particles to the upper atmosphere. Theoretical studies of the transport and thermalization of the photoelectrons and secondary auroral electrons are necessary to determine how the incident energy gets partitioned among heat, ionization, dissociation, luminosity and other modes in the atmosphere. The presence of a parallel electric field may influence the partitioning of the energy and therefore provide the possibility of developing diagnostics. Our preliminary effort to study the effects of electric fields on the electron velocity distribution has been to modify and generalize an accurate electron deposition code (Victor, Kirby-Docken and Dalgarno 1976). With these modifications we had hoped to develop a perturbation-iterative method to introduce the effects of weak electronic fields. Limits of time and funding have limited progress. The code takes explicit account of the discrete nature of the electron energy loss process and employs cross section data based on a recent critical reivew. Local deposition is assumed so that accurate results can be obtained only for altitudes below about 300 km.

The latest original version of the code was operational on a $\Sigma 9$ computer system at NASA Goddard Space Flight Center. Minor modifications were made so that the code would run efficiently on CDC 6600 series computers such as those at AFGL.

The code was then generalized so that it would calculate the steady state velocity distribution for arbitrary initial velocity (E < 200 eV) distributions obtained from a file (TAPE4) read by subroutine SETPRO. A card copy of the source deck and the cross section data was supplied to AFGL. A listing of this deck is given in Appendix C. A listing of a typical production file (TAPE4) is given in Appendix D. A small code to produce an input file appropriate to an auroral secondary electron production distribution (using the energy distribution given by Opal, Peterson and Beaty 1971) has been written. A listing of the source code and sample output is shown in Appendix E.

REFERENCES

- Banks, P. M., and G. Kockarts (1973), Aeronomy, vol. A, Academic Press (New York).
- Barth, C. A., D. W. Rusch, and A. I. Stewart (1973), Radio Science 8, 379.
- Brace, L. H., R. F. Theis, and A. Dalgarno (1973), Radio Science 8, 341.
- Dalgarno, A., W. B. Hanson, N. W. Spencer, and E. R. Schwerling (1973), Radio Science 8, 263.
- Hanson, W. B., D. R. Zuccaro, C. R. Lippincott, and S. Sanatani (1973), Radio Science 8, 333.
- Hayes, P. B., G. Carignan, B. C. Kennedy, G. G. Sherpard, and J. C. G. Walker (1973), Radio Science 8, 369.
- Hedin, A. E., C. A. Reber, G. P. Newton,
 H. G. Mayr, and W. E. Potter (1977), J. Geophys. Res. 82, 2148.
- Nier, A. O., W. E. Potter, D. R. Hickman, and K. Mausberger (1973)
 Radio Science 8, 271.
- Opal, C. B., W. K. Peterson and E. C. Beaty (1971), J. Chem. Phys. 55, 4100.
- Oppenheimer, M., E. R. Constantinides, K. Kirby-Docken, G. A. Victor and A. Dalgarno (1977), J. Geophys. Res. 82, 5485.
- Schunk, R. W. (1977), Rev. Geophys. and Space Phys. 15, 429.
- Schunk, R. W., and J. C. G. Walker (1970), Planet. Space Sci. <u>18</u>, 535.
- Victor, G. A., K. Kirby-Docken, and A. Dalgarno, "Calculations

of the equilibrium photoelectron flux in the thermosphere," (1976) Planet. Space Science 24, 679.

Walker, J. C. G. (1965), J. Atmos. Sci. 22, 462.

Fig. 1. The concentration of molecular ions plotted against altitude. Dots indicate measurements by the MIMS experiment (Hoffman 1973) on orbit 594 (uplet) of the AE-C satellite. Pluses indicate theoretical values.

Figure 2.

AE-C satellite. Open circles indicate local photochemical equilibrium calculations but using observed ion concentrations for ions other than the ion of interest. Solid lines indicate local photochemical equilibrium theory. The concentrations of atomic ions plotted against altitude. Pluses indicate measurements by the MIMS experiment (Hoffman 1973) on orbit 594 (upleg) of the AE-C satellite. Open circles indicate local photochemical equilibrium calculat

Response of O⁺ ions to forces on charged particles plotted against altitude (see text for units). Data from AE-C orbit 594 (upleg) has been used in the calculations. The curve labeled "uncoupled" refers to the response of O⁺ ions to the force exerted on them by the absence of collisions. Fig. 4.

The curve labeled "uncoupled" refers to the response of Response of electrons to forces on charged particles plotted against altitude electrons to the forces exerted on them in the absence of collisions. (see text for units). Fig. 5.

text for units). The curve labeled "uncoupled" refers to the response of N^+ ions Response of N^{\perp} ions to forces on charged particles plotted against altitude (see to the force exerted on them in the absence of collisions. Fig. 6.

Contribution to the drift velocity of ions and electrons from the gravitational Fig. 7.

forms of otton andingt altitude

labeled G), concentration gradients (curve labled N), temperature gradients (curve labeled T), as well as the sum of these contributions (labled S) plotted against Contributions to the drift velocity of O ions from gravitational forces (curve Dashed lines are used to indicate negative contributions. altitude. Fig. 8.

Fig. 9. The vertical component of the O $^+$ drift velocity. u_s represents contributions from the gravitational force and gradients of partial pressures. Ell and E_{φ} represent contributions from a parallel and eastward electric field of 1 and 3 mV/meter, respectively. The filled circles represent the observed vertical component of plasma drifts.

APPENDIX A
DATA

APPENDIX A

DATA

The data utilized in this report pertain to the upleg of orbit 594 of the Atmosphere Explorer C satellite (Dalgarno et al., 1973). The measurements made on this occasion (February 8, 1974) are representative of an undisturbed daytime atmosphere in the mid-latitude and equatorial region. The data are summarized in three tables.

Table A-1 lists ion concentrations as a function of altitude Z (in km) as measured by the MIMS instrument (Johnson, 1973). Concentrations are in units of cm⁻³ and listed in logarithmic (base 10) form. The electron concentration is the sum of the ion concentrations. An entry of -5 signifies that no measurement of the concentration was made at that altitude.

Table A-2 lists neutral concentrations (in cm $^{-3}$) in logarithmic form. For N $_2$, He, O, and N(4 S) the measurements by the OSS instrument (Nier, 1973) were used to establish a Bates-Walker (Walker, 1965) profile from which values were obtained at all altitudes. The photochemical model of Oppenheimer et al. (1977) was used in conjunction with a Bates-Walker profile to establish the O $_2$ concentration. The H concentration represents a model calculation (Hedin et al., 1977). The NO concentration was measured by the UVNO experiment (Barth et al., 1973) and was extrapolated to altitudes above 260 km. The N(2 D) concentration was measured by the VAE experiment (Hayes et al., 1973) and was extrapolated above 300 km.

Table A-3 lists the electron temperature (TE) measured by the CEP experiment (Hanson et al., 1973); the ion temperature (TI) measured by the RPA experiment (Brace et al., 1973), the neutral temperature (TBW) inferred from the O and N_2 concentration profiles, the zenith angle (SZA), magnetic latitude (MLAT), latitude (LAT), and local solar time (LST). No measurement of the neutral temperature (TN) was available on this occation. Temperatures are given in degrees Kelvin, angles in degrees, and time in hours.

TABLE A-1. Logarithmic Concentrations of Ions and Electrons (cm^{-3})

	0+	12+	NO+	٧+	N2+	H+	4 <u>C</u> +	eren
656.7	5.09	-5.000	-5.000	3.545	-5.000	4.533	0.880	5 0 1 3 7
037 00	5.0474	7000	-5.000	3.580	-5.000	4.295	2.892	5.452
618.6	5 0 2 44	-5 · COO	-5.000	3.664	-5.000	4 . 74	2.913	F 0311
(100.	5 0 3 14	-F . COO	-5 • 0 0 0	3.722	-5.000	4.355	2.887	5 6371
: ³	50376	-5 .000	-5 .000	3.753	-e • 0 0 n	4 . 2 0 3	2.862	5.427
15400	5.432	-5 0 CO O	-5 • 0 0 0	3 • e n n	-5.000	4 . 2 6 6	2 6 7 4 7	F = 471
54604	5.0433	-: •000	-5 •000	3.859	-5.000	4 • 1 9 6	2.795	5 05 15
5.7900	E o . 24	-E •000	-5 • 0 0 0	3 . 8 7 5	-5.000	4 - 1 3 9	2 07 31	5.551
112.0	5.659	-5 .000	-5 • 0 0 0	3 . 9 15	000	4 • 054	2.649	5.582
405.3	5 0 5 9 4	-5.000	-5.000	2 .959	-5 • 000	3 • 5 6 7	2 -544	5 6 1 4
47805	5 • 6 0 8 5 • 6 2 2	-5 • 000 -5 • 000	-5 • 0 0 0 -5 • 0 0 0	3.984 3.965	1.427 -5.000	3.P64 7.757	2 • 454 2 • 331	5 06 26 5 06 27
447.2	5.642	~5.000	-5.000	3 69 63	-5 •000	3 . 6 5 6	2 • 253	5 06 F.A
43100	5.671	-5.000	-5 • 00 u	4.008	1.579	3 05 67	2.116	5 6 8 4
416.8	50685	~ 5 • 000	-5.000	4.013	1.689	3.440	2.015	5 06 97
402.2	5.705	-5 .000	-5.000	4.029	1.825	3.354	1 . 847	5.716
38860	F . 7 1 ?	1:0493	1.398	4.009	1.813	3.256	1.725	5.723
274.1	5.747	1 . 729	1.657	4.016	1.926	3.141	1.588	5.756
3600€	507.47	1 .829	1 . 659	3.981	2.058	3 - 0 49	1 - 414	5 07 55
24765	5.747	2 .004	2.045	3 . 9 46	2.238	2 0 9 5 7	1 • 23 =	F . 75 F
C3467	5.770	2 0182	2.159	3.974	2.287	2 • P85	1 0150	5 o 7 7 E
. ?2 . 4	5.799	2.380	2 . 4 4 0	3.954	2.444	2.814	₀ ⊊03	5.796
310.5	· F•777	2 6544	?•600	3 .923	2.594	2.728	.R33	5.780
290.0	50785	2 0814	2 • 8 0 6	3.877	2.685	20668	-5 • 00 n	5 0796
287.5	50735	2 0 9 3 6	3.030	3 -8 48	2.867	2.575	-5.000	60796
27702	5.798 5.640	3 .138 2 .313	3.176	3 68 17	2.923	2 4 4 9 9	-5 (0)0 -5 (0)0	5 8 35
257 0 2	5 of 26		3.339	3 • 7 6 2 3 • 7 4 2	2 • 9 9 3 3 • 0 9 7	2.409	-5 anno	5.818 5.934
27/02	5.832	3 • 475 3 • 621	3.496 3.636	3.691	3.197	2 • ₹ 42 2 • 27 €	-5 • 00 C	5.842
4 7 / 0 7 . 3 % a ()	5 6 7 3 3	3 .743	3.743	3 6 6 7 7	3.240	2.000	-5 • 000	5.844
2 7005	5.008	2 . 835	3 • 9 05	3.588	3.256	20118	-5.000	F 0 8 ? ?
د ؟2°5	5.718	4 . 033	4.091	3.520	3.300	1.972	-5 • 0 0 C	F . 7 41
215.0	50 - 95	4 • 18 3	4.313	3.374	3.336	1.811	-5 .000	5 06 37
≥07 05	5 . 4 35	4 .330	4.520	3.297	3.387	1.586	-5 000	5.0520
201 02	5.3.52	4.421	4 . 6 3 3	3.242	3.402	1 0 47 0	-5 • 0 0 0	E .475
195.0	5.281	4 . 492	4 .7 25	₹ • 2 9₹	3.403	1.303	-5 0000	* 044K
195.3	5.211	4 .561	4.795	3 - 1 38	3.409	1.149	-5 •00n	E 0 4 2 A
134.0	5 . 1 4 ?	4 .597	4.830	3 • 1 0 5	3.374	1.086	−£ •000	5 04 01
179.2	5-093	4.653	4 -8 65	3.025	3.353	1.037	-5 • 000	6.390
174.9	50043	4 0 6 8 7	4.900	2 • 9 7 7	3.322	• ⁶ 6 6	-5 • 00 n	5.333
17101	4.951	4.673	4.921	2.928	3.286	•795 •712	-5.000 -5.000	5.0347
167 o u 164 o b	4•881 4•796	4 • 7 3 8 4 • 7 3 9	4.929 4.921	2 • 5 6 7 2 • 7 9 0	2 • 2 4 ₹ 3 • 1 8 °	₀712 ₀582	-5 •000 -5 •000	5 • 3 3 1 5 • 2 9 c
152.6	4.754	4 •715	4.921	20750	3.138	• 51	-5.000	. 0 & 2° 5
160.7	4.711	4 .738	4.921	2 699	3.125	• F 1 0	-5 • 000 -5 • 00 °	1 277
155.0	40636	4.705	4.900	2.709	3.010	.432	-5 .000	5 0240
15004	4.635	4 . 729	4.900	2,588	3.023	-398	-50000	5.250
150.0	4 . 60	4 .716	4.893	2.630	2.995	~5 • 0 n n	-5.000	F 0 2 97

TABLE A-2. Logarithmic Concentrations of Neutrals (cm⁻³)

1+								
	2 0	N2	02	HE	н	M(4S)	N (20)	۸۰
656.	7 5.635	2 .542	•730	5 067 0	F-189	4.207	1.838	-5 05 45
6370		2 .806	987	5.710	5.200	4 . 348	2.000	-50116
6190		3'0067	1.271	5.760	5.210	4 .438	2.161	-40656
600.		3 • 326	1 05 53	5 .819	5.220	4.627	20331	-60198
. 32 ·		3 0582	1.830	5 .85 C	F . 233	4.767	20075	-20731
564.	€ •₹74	3 .835	2.106	5 • 9 0 0	5.240	4 . 8 5 5	20634	-10274
5460	4 60517	4 .035	2.377	5 • 9 4 0	5.250	F . 1 37	2 6789	-20745
2300	0 60655	4 . 3 3 3	2 • 6 47	5 . 980	F. 260	50155	20941	ーク。こうご
5120	6.798	4 0576	2.912	6.030	5.269	5.0296	30091	-10754
495 .		4 .817	3 . 1 7 3	6.070	5.275	E 0 11 5 4	3 . 23 4	-1.280
478.	ን ፣ ፣ ፣ ፣ ፣	5 0 0 5 4	3.431	6.110	5.298	5.551	3 4 3 9 5	-0801
4520	ي ر ٿو <u>ي مي</u>	5 • 286	3.683	6.150	5 0297	5 675	3 0528	-0234
4470		5 0515	3.932	6.190	5.306	= 079º	3 0 6 6 9	0123
4330		5 .741	4.178	6.230	5.315	5 0 5 1 5	3.808	05 45
4140		5 . 962	4.418	6.267	5.324	€ •037	3 6 9 4 4	20000
4330		6 . 178	4.653	6.304	5.333	6.153	4 • 077	10413
3880		6 • 785	4.862	6.339	F 0 2 4 1	5.266	4 0 2 0 7	10409
:74.		6 0597	F .108	6.377	5.350	6.777	40235	20199
5 6 0 o		€ 0799	5 6 3 28	6.407	5.358	6.485	4 , 460	2 - 5 30
3 47 0		6 0997	5 . 5 4 2	6.433	5.365	6 • 5 9 1	4 -581	20405
; ₹4°	-	7 0190	F .753	6 • 458	5.375	60694	4.700	2.217
⇒22 •		7 0277	5 • 9 5 6	6 0 4 9 0	5.383	60795	40016	3 0 5 2 0
310.	-	7 • 55	6.154	6 • 5 27	F . 391	6.892	4.528	3.300
. 2950		7 • 736	6 63 46	6 0 5 5 8	5.390	6 6 9 3 7	F . 036	40055
1970 2770		7 6507	6.532	6.585	5.408	7 • 67 •	F a142	4 63 16
		8'6074	6.713	6 o 6 1 2 6 o 6 4 n	5.416	7 • 1 68	5 0 2 4 5	11 0 1 1 1
. ⁴³ a . 57 a	•	8 a 2 3 3 8 a 2 3 8	6.887		5.424 5.432	7 . 2 5 4	5 6 7 4 7 5 6 4 3 9	40754
_ 47 a		6 0536	7 • 0 5 5 7 • 2 1 5	6 o 6 o 7 6 o 6 9 3	50445	7 m237 7 m417	E 9 E S U	5,074 5,266
. 300		8 .679	7.371	6.730	2. Atte	7.494	5 0618	5.421
2300		8 . 917	7.521	6.757	5.458	7 0 5 6 5	5,680	50542
2360		8 . 545	7 .665	6.735	5.467	70641	5.760	50092
. 1 = 0		9'0075	7 • 8 9 1	6.822	5.476	7.709	5.320	F 07 34
º7 o		9 0 196	7 9 3 2	6.342	5.485	7 . 7 7 5	5 .860	5.904
2010		9 0712	6.055	6 .879	£ 49E	7 .835	5 870	60379
و عدي		5 .422	F . 178	6.907	5.505	7 09 00	2 e 6 5 u	(.032
390		5 .525	8.291	6.945	5 . 5 1 4	7.55	5.910	1.171
1340		5 0424	8.398	6.475	5.524	8 0 1 7	5 9 9 0 0	6.2220
175 •	2 50756	9 .715	8.478	7.037	5 0 5 3 0	F . C 5 4	5 6875	f o3 T f
1740	5 9 mp.0 /	5 •800	8.539	7 .043	£ ° £ 44	8.112	5 , 240	60281
1710		90076	8 0 6 7 3	7 • 7 7 0	50553	8.155	5 - 80 0	50433
1670		5 0 9 4 5	8.747	7 3 1 0 7	5.563	8 • 195	5 • 732	40000
1540		10 .006	8 .814	7.125	5.571	8.230	5.670	60516
1570		10.056	8 - 8 6 8	7.170	5.579	8 . 255	5 • 62 n	60541
1400		10.098	8 0 9 1 4	7 • 1 8 8	5 . 5 . 8 7	8 - 283	5 . 579	6.545
1500		10.130	6.949	7 • 1 9 2	5.593	8.391	5 • 550	6.566
1510		10.150	8.571	7.210	50599	8.717	5 • 5 2 8	5.555
, ^{(2,0} a	0 10 on 30	10 .159	8 . 9 8 1	7 • 232	5 • 60?	8.219	5 0519	6 5 5 3 4

TABLE A-3. Temperatures and Orbital Parameters

1 +									
		71	11	11	TBV	SZA	MLAT	LAT	LST
	cira,	134760	145500	• 0	856.0	35.10	-15.78	-4 off	14027
	. * .* o c	1742.0	13 93 60	• 0	856.0	35.07	-14.60	-3.97	14 . 25
	61346	1342.0	1- 14-0	o 0	856.0	35.06	-13.78	-3.00	14.23
	. 20.00	12420	1. 32.0	o 0	256.0	35.12	-13.07	-2.07	14.20
	9000	120000	1242.0	• 0	856.0	35.13	-12.16	-1014	14.18
	1 (4 a (1044.00	1237.0	• 0	856 · 0	35.19	-110?5	- • ? tr	14.15
	14104	1276 00	11 60 00	• 0	856.0	35.29	-10.32	07 F	14013
	1 77 66	121000	1:35.0	• 0	856.0	35.41	-9.40	1.70	14010
	1 ^{4 7} o C	1275 00	1104.0	• 0	628°C	35.56	-9.47	2.65	14078
	47	1156 60	1680.0	• ()	856.0	35.73	-7.53	3.61	14075
	10 " N . 4	116000	100200	• 0	856.0	35.93	-6-59	4.58	14.03
	46707	1176.0	1(47.0	• 0	85509	36.15	~ = o 54	5 • 5 4	14.00
	O.	1178 00	103900	• U	855.9	36.40	-4.65	6.50	13.97
	100	1145 011	10 21 00	• 0	855.9	35.67	-3.73	7.49	13.95
	44400	116400	100300	• 0	8 5 5 • 8	36.97	-2.78	8.47	13097
	5 12 oz	1174 . 0	5.7500	• 0	8 75 • A	37.30	-1081	9.45	13.89
	3000	1105 00	5 55 06	• 0	855.7	37.65	84	10.44	13.96
	77.01	1140 00	4203	٥٥	F 5 # • 5	39.02	• 13	11.47	13.94
	34006	1101 06	6 3 3 <u>6</u> 5	• C	855 • 3	38042	1.10	12.43	130P1
	24762	12 70 01	5 22 6 3	• 0	855.0	38.94	2.08	13.47	13078
	- "B + F	170000	5 24 o z	• 0	854.6	39.28	3.06	14043	13.75
	2.77 0.4	10-60	200 li	• 0	854.0	39.75	4.05	15.43	13.77
	1. 1. 0. L	1250 3	5 20 0 -	• 0	853.3	40.23	5.03	16.44	13.70
	. 1005	1446.06	43608	• 0	952 • 3	43.74	6.03	17.45	13007
	, 0,7 e.y	11 77 60	5 26 o 3	• V	851.1	41.27	7.0?	19.47	13.54
	. 7702	154606	9 27 • 3	• 0	649•4 847•4	41.8 <i>2</i> 42.38	8•02 9•01	19047 20048	13.41 13.7
	, 37 e u , 57 e z	151700	92205 43408	• U	644.07	42.97	10.01	21.50	13057
	0.764	1:4:36	5 94 ob	• 0 • 0	841.5	43.57	11.02	22050	13051
	30 OU	150.00	19705	• 0	A 37 • 6	44.19	12.02	23.54	13048
	3.0	1:4:0	£ ₹. o ⊃	• 0	832.7	44.83	13.03	24056	13.45
		1551 60	580	• 0	827.0	45.48	14.03	25458	13.41
	, 1 ° 0 °	157.01	1:43. 65	• 0	820.4	45015	15.04	26.60	13.34
	. 770,	1500 00	: 41.05	• 0	812.8	46.84	16.05	27.63	13.34
	. 140:	146100	5 24 6 5	• 0	804.0	47.54	17.06	28.65	13.31
		1510 00	(3205	• U	74403	49.25	18.07	29.67	13.27
	: '6 0.	144500	791.0	• 0	79208	49.97	19.08	30.65	13.23
	13000	1075.0	7 34 0 4	• 0	772.4	49.71	20.08	31.71	13.19
	1 0	1350 0	775.3	• 0	760.5	53.46	21.09	32.73	13.15
	- " L o ,	1307.0	7 5100	0 0	748.0	F1.22	22.1 n	33.75	13.11
	17101	4250.9	75600	• 0	736 . 4	52.00	23.11	34676	13.07
	170	1201 00	, 450.	• 0	724.9	52.78	74.11	35.78	13.03
	15405	120860	2 • 0 د 7	• G	713.9	53.57	25.11	36.74	12000
	15000	116000	12300	• 0	70405	54.37	26.11	37.80	12.094
	15702	1134.00	7.26.0	• 0	696.2	55.18	27.11	3 4 • 9 0	12.40
	14600	167600	7240	• 0	639 . 6	55.00	28.11	39,80	12095
		4074 00	7.1700	• 0	635.06	56.82	29.10	40.30	12.30
		105000	7 11400	• 0	633.7	57.66	₹ 9 • 9 9	41.79	12.75

APPENDIX B

COLLISION FREQUENCIES

PRECEDING PAGE BLANK - NOT FILMED

APPENDIX B

COLLISION FREQUENCIES

This appendix contains expressions for the calculation of various types of momentum transfer collision frequencies. These are defined in such a way that

$$-n_s m_s v_{st} (\vec{u}_s - \vec{u}_t)$$

represents the force per unit volume exerted by species t on species s. n_s , m_s , and u_s are the concentration, mass, and velocity, respectively, for species s, and v_{st} is the momentum transfer collision frequency of species s with species t. As defined, the collision frequencies satisfy the symmetry property

$$n_s m_s v_{st} = n_t m_t v_{ts}$$
.

The preceding definition is the most frequently used (cf. Schunk, 1977). It should be noted, however, that other definitions are in use as well. For example, Banks and Kockarts (1973), who have given a comprehensive review of collision frequencies, define them in such a way that

$$v_{st}$$
 (Banks) = $(m_s/\mu_{st})v_{st}$ (Schunk).

where $\mu_{st} = m_s m_t / (m_s + m_t)$ is the reduced mass.

Electron-Neutral Momentum Transfer Collision Frequencies

$$v(e-0) = 8.2 \times 10^{-10} \text{ n(0) } \text{T}_e^{1/2}$$

 $v(e-N_2) = 2.33 \times 10^{-11} \text{ n(N}_2) (1-1.21 \times 10^{-4} \text{T}_e) \text{ T}_e$

$$v(e-O_2) = 1.82 \times 10^{-10} \text{ n}(O_2) (1 + 3.6 \times 10^{-2} \text{ T}_e^{1/2}) \text{ T}_e^{1/2}$$
 $v(e-He) = 4.6 \times 10^{-10} \text{ n}(He) \text{ T}_e^{1/2}$
 $v(e-H) = 4.5 \times 10^{-9} \text{ n}(H) (1-1.35 \times 10^{-4} \text{ T}_e) \text{ T}_e^{1/2}$
 $v(e-N) = 6.0 \times 10^{-10} \text{ n}(N) \text{ T}_e^{1/2}$

where T_e is the electron temperature, n(x) is the concentration of species x in units of cm⁻³, and the collision frequencies are in \sec^{-1} . Except for the collision frequency with N, which is an interpolation based on the values for He and O, these expressions are given by Banks and Kockarts (1973) and they pertain to elastic collisions. These authors estimate that the accuracy for N_2 and O_2 is about 20%, for H 25%, for He 10%, and state that the result for O is uncertain both as to magnitude and as to the dependence on T_e .

Ion-Neutral Momentum Transfer Collision Frequencies

At low temperatures the ion-neutral interaction arises from the induced dipole polarization of the neutral by the ion. The corresponding polarization collision frequency is

$$v_{in} = 2.6 \times 10^{-9} n(n) (A_{in}^{\alpha})^{1/2}/A_{i}$$

where n(n) is the neutral concentration in cm⁻³, $A_{in} = A_i A_n / (A_i + A_n)$ is the reduced mass, A_i and A_n are the ion and neutral masses in atomic units, α_n is the neutral polarizability in units of 10^{-24} cm³ and v_{in} is in sec⁻¹. Except for the adjustment required by the different definitions, these expressions, as well as the polarizabilities listed below, are given by Banks and Kockarts (1973).

Polarizabilities of Neutral Gases

Neutral Gas	$\alpha(10^{-24} \text{ cm}^3)$
Н	0.667
Не	0.82
N	1.1
0	0.79
02	1.59
NO	1.74
N ₂	1.76

At higher temperatures, a repulsive force counters the polarization force. The resulting collision frequencies depend on the details of the particular ion-neutral pair, but there is no data for collisions at high temperatures. This lack of data is compensated to some extent by the fact that in the high-temperature regions of the atmosphere the most important collisions are resonant charge transfer collisions, i.e. collisions between an ion and its parent neutral. The values given by Banks and Kockarts (1973), adjusted by the factor μ_{in}/m_{in} , are

$$v(O^{+}-O) = 2.4 \times 10^{-13} \text{ T}^{1/2} (10.6-0.67 \log_{10} \text{ T})^{2} \text{ n(0)} \qquad \text{T>470}$$

$$v(O_{2}^{+}-O_{2}) = 1.7 \times 10^{-13} \text{ T}^{1/2} (10.6-0.76 \log_{10} \text{ T})^{2} \text{ n(O}_{2}) \qquad \text{T>1600}$$

$$v(N_{2}^{+}-H_{2}) = 1.85 \times 10^{-13} \text{ T}^{1/2} (14.3-0.96 \log_{10} \text{ T})^{2} \text{ n(N}_{2}) \qquad \text{T>340}$$

$$v(H^{+}-H) = 9.5 \times 10^{-13} \text{ T}^{1/2} (14.4-1.17 \log_{10} \text{ T})^{2} \text{ n(H)} \qquad \text{T>100}$$

$$v(N^{+}-N) = 2.6 \times 10^{-13} \text{ T}^{1/2} (10.4-0.64 \log_{10} \text{ T})^{2} \text{ n(N)} \qquad \text{T>550}$$

$$v(H^{+}-N) = 4.85 \times 10^{-13} \text{ T}^{1/2} (11.6-1.05 \log_{10} \text{ T})^{2} \text{ n(He)} \qquad \text{T>100}$$

where $T = T_1 + T_n$ is the sum of the ion and neutral temperatures. These expressions are valid for temperatures above the limit indicated for each reaction.

Coulomb Collision Frequencies

For charged particles the collision frequency arising from the Coulomb interaction is

$$v_{st} = 8.47 \times 10^{-2} \, ln \, \Lambda \, z_{s}^{2} z_{t}^{2} A_{st}^{1/2} n_{t}^{A} s_{st}^{3/2}$$

$$= 1.27 \, z_{s}^{2} z_{t}^{2} A_{st}^{1/2} n_{t}^{A} s_{st}^{3/2}$$

with $\ell n \Lambda = 15$ (cf. Banks & Kockarts, 1973). n_t is the concentration of species t, A_s , T_s , and z_s are the mass (in atomic units), temperature (in ${}^{O}K$) and charge (in atomic units) of species s, and

$$A_{st} = A_s A_t / (A_s + A_t)$$

$$T_{st} = (A_s T_t + A_t T_s) / (A_s + A_T)$$

If electrons are one of the species, the expression simplifies to

$$v_{ei} = 54.5 n_i z_i^2 / T_e^{3/2}$$

$$v_{ie} = 2.98 \times 10^{-2} n_e z_i^2 / A_i T_e^{3/2}$$

Collision frequencies for electrons and for 0^+ are shown in Figure B-1, and Figure B-2, respectively, based on the data given in Appendix A.

Fig. B-1. Collison frequencies of electrons with ions and neutrals $(in\ sec^{-1})$. Also shown is the sum of the collision frequency with all ions.

Fig. B-2. Collision frequences of 0[†] with ions, electrons and neutrals in (sec⁻¹). The curved marked E pertains to electrons. Also shown is the sum of the collision frequencies with all other ions.

APPENDIX C

LISTING OF THE ELECTRON ENERGY DEPOSITION
CODE AND THE CROSS SECTION DATA FILE

```
PROGRAM RCTEMPR (INPUT, OUTPUT, TAPE1, TAPE2=CUTFUT, TAPE3=INPUT,
              TAPE4, TAPE5, TAPE6, TAPE7)
     1
C
      **** RCTEMPH ****
                              770912
       THIS IS THE DRIVER THAT IS WRITTEN TO INTERFACE WITH THE
       PRIMARY PRODUCTION FILES
      COMMON/XSXS/ NOSPEC, NOEXC(4), NGRID(4,20),
     1EGRID(4,20,25), SPLC0(4,20,25), SPLC1(4,20,25), SPLC2(4,20,25),
     28PLC3(4,20,25), THKESH(4,20), NIONFS(4), NIONGD(4), E10NGD(4,25),
     3DIFCON(4),TIXSO(4,25),TIXS1(4,25),TIXS2(4,25),TIXS3(4,25),DIXSO(4,
     425),DIXS1(4,25),DIXS2(4,25),DIXS3(4,25), THRICZ(4,6),
     5fkACT(4,6,25)
      COMMON/DENS/TE, NOALT, IALT(10), XDENS(4), XEDEN
      COMMON/GRID/INTGRID, XGFID(400), VGRID(400), FROGRID(400)
      COMMON /POINT/IPCINT(4,20), IIPONT(4), IDPONT(4)
      COMMON/ALPHA/NAME(4),STATE(4,20),[STATE(4,6)
       COMMON IBGN, 101FL, IAVGF, FLXMULT
        BEWARE, THE ORDER OF SPECIES IN RECXSN MUST MATCH WITH
C
C
        THOSE IN THE PRODUCTION FILE
      CALL SETGRID
C
        SETGRID SETS UP THE INTEGRATION GRID
      WHITE(2,4)
    4 FORMAT(* ENTER NUMBER OF ALTITUDE VALUES(12)*)
      REAU(3,1) NOALT
          NOALT IS THE RUMBER OF ALTITUDE VALUES TO BE DONE
C
    1 FURNAT(12)
       wRITE(2,5)
    5 FORMAT(* ENTER NUMBERS FOR ALTITUDE RECORDS(2014)*)
      READ(3,2) (IALTLI),1=1,NOALT)
      wRITE(2,6)
      FORMAT(* ENTER NUMBER OF INTERVALS FOR AVG.(12)*)
        READ(3,1) IAVGF
      N.B. IAVGF.LT.2 IMPLIES AVERAGED FLUX AND FLUX*4PI NOT COMPUTED
      wRITE(2,10)
   10 FORMAT(* ENTER FLUX MULTIPLICATION FACTOR(F3.1)*)
       READ(3,11) FEXMULT
   11 FURMAT(F3.1)
    2 FORMAT(2014)
       CALL REDXSA
      CALL SETPRC (-1)
      DC 3 I=1,NCALT
      CALL SETPHC(IALT(I))
      CALL WORK
    3 CONTINUE
      END
      SUBROUTINE SETPRO(KEY)
      COMMON IBGN, TUTET, IAVGF, FLXMULT
      COMMON/GRID/INTGRID,XGRID(400),VGRID(400),PRCGRID(400)
      DIMENSION XPRG(400), YPRG(400), C(400)
       DIMENSION #ORDS(19)
      COMMON/DENS/TE, NGALT, IALT(10), XDENS(4), XEDEN
         THIS ROUTINE SETS UP THE PRIMARY ELECTRON PRODUCTION DATA
C
       KEY== 1 TO READ PRODUCTION GRID DATA, KEY&O READS THE PRODUCTION
C
C
       DATA FOR THE KEY"TH ALTITUDE ON THE FILE
      IF(KEY.NE.-1) GO TO 1
      READ (4,52) WORDS
   52 FORMAT (19A4)
      WRITE(2,2) WGRDS
    2 FURMAT (1H1,19A4)
      READ (4,52) HORDS
      READ(4,3) NPISPHC
      WRITE(2,23) NPTSPRC
```

```
23 FORMAT(14,* * NPTSPRO*)
    3 FORMAT(15)
      READ(4,4) (XPHO(1),1=1,NPTSPRO)
      WRITE(2,21)
   21 FORMAT(* ELECTRON PRODUCTION GRID *)
      wRIIE(2,22) (XPRC(I), I=1, NPISPRO)
   22 FORMAT (10E12.3)
      NMAX=NPTSPRO-1
      DO 17 I=1, NPTSPRC
   17 XGRID(I)=XPRC(I)
      DO 117 I=1,NMAX
  117 VGRID(1)=5.93E+7*SQRT(0.5*(XGRID(1)+XGRID(1+1)))
    4 FORMAT(5E15.5)
      REWIND 4
      RETURN
    1 CONTINUE
      I=NPISPRO/5
      F = I
      F1=FLOAT(NPTSPRO)/5.0
      IF(F.EQ.F1) GO TO 5
      I = 1 + 1
    5 CONTINUE
      1=1+3
      I,1=L 6 03
      READ(4,3)
    6 CONTINUE
      IF(KEY.EQ.1) GD TO 7
      I=NPTSPRO/6
      F = 1
      f1=FLOAT(NFTSPRU)/6.0
      IF(F.FG.F1) GO TC 8
      I=I+1
    8 CONTINUE
C
       STATEMENT 1=1+10 REPLACED BY J=1+11 (RC,10/17/75)
      1=1+11
      IL=KEY-1
      CO 9 J=1,1L
      D0 9 k=1,I
      READ(4,3)
    9 CONTINUE
    7 CONTINUE
      READ(4,10)ZA
   10 FORMAT(25X,F12.6)
      READ(4,10) ALT
   13 FORMAT(* ALTITUDE 15*, F12.6)
      READ(4,10) T
      WRITE (5,13) ALT
      WHITE (2,11) ALT, ZA, T
   11 FORMAT (1X,119(1H-)/24H
                                    ALT
                                            SZA
                                                   TEMP/3F8.2)
      READ(4,14) XCENS(4)
      READ(4,14) ACENS(2)
      READ(4,14) XCENS(3)
      READ(4,14) XUENS(1)
   14 FORMA1(25X,E16.6)
      READ(4,15) TE
   15 FORMAT (26X, E16.6)
      READ(4,20) XEDEN
   20 FORMAT (22X, E16.6)
      READ(4.3)
      ANOTHER DUMMY READ FOR "TOTAL ION DENSITY" (RC, 10/17/75)
C
      READ (4,3)
```

```
READ(4,16)(YPRO(K),K=1,NPTSPRO)
 16 FORMAT (6112.4)
     TOTEL=0.0
    DO 32 K=1, NMAX
     YPRO(K)=YPRC(K)+FLXMULT
     TOTEL=TOTEL+YPRO(K)
    PROGRID(K) * YPRD(K) / (XGRID(K+1) - XGRID(K))
    C(K)=PROGRID(K)+VGRID(K)
    C(K)=C(K)/12.568
 32 CONTINUE
    WRJTE(2,400)
400 FORMAT(* INITIAL FLUX *)
    WRITE(2,22) (C(K),K≈1,NMAX)
    REWIND 4
     FIND END OF PRODUCTION SPECTRUM
    K=NPTSPRO-1
 18 IF(ABS(YPRC(K)=0.0),GT.1.0E=6) GO TG 19
    K=K-1
    GO TO 18
 19 CONTINUE
    IBGN=K
    WRITE(2,31) IBGN
 31 FORMAT(14,* = 1BGN*)
    wRITE(7,200) ALT, T, XDENS, TE, XEDEN
200 FURMAT(8E10.4)
   WRITE (6,201) ALT
   RETURN
201 FORMAT (F7.1)
    F. N D
     SUBROUTINE ACKK
   DIMENSION DEPROS(10), CFE(4,20), CFI(4,6), IIJ(4), PRDFA(400), PRDFAS(1
   10),FELS(10),FEL(400),PROBE(4,20),PROBI(4,6),EEF(400),FELWP(400),PK
   2C(400), DUMMY(6), G(13), GE(20)
   COMMON IRGN, TUTEL, IAVGF
   COMMON/XSXS/ NUSPEC, NCEXC(4), NGF1D(4,20),
   1FGRID(4,20,25),SPLC0(4,20,25),SPLC1(4,20,25),SPLC2(4,20,25),
   2SPLC3(4,20,25),THKESH(4,20),NIONFS(4),NIONGD(4),EIONGD(4,25),
   3DIFCON(4),TIXS0(4,25),TIXS1(4,25),TIXS2(4,25),TIXS3(4,25),DIXS0(4,
   425), CIXS1(4,25), CIXS2(4,25), DIXS3(4,25), THRICZ(4,6),
   5FRACT(4,6,25)
   CUMMON/DFNS/TE, NOALT, IALT(10), XUENS(4), XEDEN
   COMMON/GRID/JNTGRID, XGFID(400), VGRID(400), PRCGRID(400)
   COPMON /POINT/IPCINT(4,20), IIPONT(4), IDPONT(4)
   COMMON/ALPHA/NAME(4),STATE(4,20),ISTATE(4,6)
    WRITE(2,70)
 70 FORMAT (/6H1+++++, + THE PROBLEM CONDITIONS ARE_+/)
   WRI1E(2,71) TE
71 FORMAT(F10.2, * = ELECTRON TEMPERATURE *)
    WRITE(2,72) XEDEN
72 FURMAT (E10.2, + = ELECTRUN DENSITY (CM=3) +)
   wRITE(2,62)(D1FCCh(1Ct),NAME(1CE),ICE=1,NOSPEC)
62 FORMAT (F10.2,* = BEATY S IGNIZATION EQUATION CONSTANT FCR *,A10)
    WRITE (2.73)
73 FORMAT (/* THE HEAVY BODY NUMBER DENSITIES ARE_*)
   mRITE(2,74) (NAME(KK),KK=1,NOSPEC)
74 FCRMAT (10(2x,A10))
   WRITE(2,75)(XDENS(KK),KK=1,NOSPEC)
75 FORMAT (10F12.3)
   NINT=INTGRID-1
   1=18GN
   CO 371 J=1.I
```

```
PRDFA(J)=PROGRID(J)
  371 CONTINUE
      IFLAG=0
      IUNFG=0
      CFPROSPRDFA(I)
      DES=(XGRID(1+1)-XGRID(1))/10.0
      ELESC=0.0
      DFPROS(1)=0.2*DFPRO
      CFPROS(10)=DFPROS(1)
      DFPROS(2)=0.4*DFPRC
      DFPROS(9) = DFPROS(2)
      DFPROS(3)=0.8*DFPRU
      DFPROS(8)=DFPROS(3)
      DFPROS(4)=1.6*DFPRC
      DFPROS(7)=CFFROS(4)
      DFPROS(5)=2.0+DFPRO
      DFPROS(6)=CFPHOS(5)
      DO 15 J=1, NOSPEC
      KKMAX=NDEXC(J)
      CO 16 K=1,KKMAX
      PROBE(J,K)=0.0
   16 CONTINUE
      KKMAX=NIONFS(J)
      DO 17 K=1,KKMAX
      PROBI(J,K)=0,0
   17 CONTINUE
   15 CONTINUE
      DO 14 J=1,10
      PRDFAS(J)=0.0
   14 CONTINUE
      DO 2 J=1,10
C
       CLEAR COLLISION PREQUENCY ARRAYS
      DO 3 K=1, NCSPEC
      KKMA=NIQNFS(K)
      CO 4 KK=1,KKMA
      CFI(K,KK)=0.0
    4 CUNTINUE
      RKWAX=NDEXC(K)
      DO 5
            KK=1,KKMAX
      CFF(K,KK)=0.0
    5 CONTINUE
    3 CONTINUE
    INITIALIZE PCINTERS FOR EXCITATION AND IONIZATION GRIDS
      DO 1000 K=1, NUSPEC
      KKMAX=NOEXC(K)
      IIPONT(K)=1
      IDPONT(K)=1
      CO 1001 JJJ=1,KKMAX
      I=01N1(K,JJJ)=1
 1001 CONTINUE
1000 CUNTINUE
       CALCULATE THE ENERGY FOR THE BIN, ALSO THE VELOCITY
      E=XGRID(I+1)+U.5*UES=FLOAT(J)*DES
      V=5.93E+7*SORT(E)
      CALL DEDT(E,TL,XEUEN,DET,XL)
      ELCF=-CET/CES
      SUMEX#0.0
C
       CALCULATE THE EXCITATION CULLISION FREQUENCIES
      DO 6 K=1, NOSPEC
      KKMAX#NUEXC(K)
      DO 7 KK=1,KKMAX
```

```
IF(E.LT.THRESH(K,KK)) GO TO 7
      IF(J.NE.1) GG TO 26
   25 LI=-1
      GO TO 27
   26 LI=0
   27 CFE(K,KK)=QEX(K,KK,E,LI)*V*XDENS(K)
      SUMEX=SUMEX+CFE(K,KK)
      IFLAG=1
    7 CONTINUE
    6 CONTINUE
C
       CALCULATE THE IGNIZATION COLLISION FREQUENCIES
       LOCATE ENERGY INDICIES FOR FRACTION
      CO 8 K=1, NOSPEC
      IF(E.LE.EICNGD(K,1)) GO TO 8
      III=1
   10 IF(E,GT,EICNGD(K,III).AND.E,LE,EICNGD(K,III+1)) GO TC 9
      III=III+1
      GO TO 10
    9 IIJ(K)=III
    8 CONTINUE
      SUMIGN=0.0
      CO 11 K=1, NOSPEC
      G1=GION(K,E,LI)
      KKMAX=NIONFS(K)
      CO 12 KK=1,KKMAX
      IF(E.LT.THRICZ(K, KK)) GO TO 12
      IIJKK=IIJ(K)
      CFI(K, KK) = GICh(K, L, LI) + V + XDENS(K) + FRACT(K, KK, IIJKK)
      SUMION=SUMION+CFI(K,KK)
      IONFG=1
   12 CUNTINUE
   11 CONTINUE
      SCF=SOMION+SUMEX+ELCF
      PROBION=SUMION/SCF
      PROBEX=SUMEX/SCF
      PROBEL=ELCF/SCF
      PROD=DFPROS(J)+PROFAS(J)
      XNNX=PROO+DES/SCF
      XNEE = PROQ/SCF
      FLLS(J)=V*PHCU/SCF
      IF(J.EG.10) GG TC 107
      FROFAS(J+1)=ELCF*(PROG/SCF)
  107 CONTINUE
C
       ACCUMILATE PROBABILITIES
       ELESC IS THE ENERGY LCSS TO ELASTIC SCATTERING PER ELECTRON
C
      FLESC=ELESC+(LLCF+DES+XNNX)
      DO 18 K=1, NUSPEC
      KKMAX=NOFXC(K)
      CC 19 KK=1,KKMAX
      PHOBE(K,KK)=PROBE(K,KK)+CFE(K,KK)+XNNX
   19 CONTINUE
      KKMAX=NIONFS(K)
      DO 20 KK=1,KKMAX
      PROBI(K,KK)=PROBI(K,KK)+CFJ(K,KK)*XNNX
   20 CONTINUE
   18 CONTINUE
       LOUK AFTER DEGRAVED ELECTRONS FROM EXCITATION
C
      XX=XNEF
      CO 21 K=1, NOSPEC
      KKMAX=NOEXC(K)
      DO 22 KK=1,KKMAX
```

```
IF(E.LT.THRESH(K, KK)) GO TC 22
   FEEE-THRESH(A,KA)
   KKK#1
24 IF(EE.GT.XGRID(KKK).AND.FE.LT.XGRID(KKK+1)) GO TO 23
   KKKEKKK+1
   GO TO 24
23 PRDFA(KKK)=PRDFA(KKK)+XX+CFE(K,KK)+(DES/(XGRID(KKK+1)-XGRID(KKK)))
22 CONTINUE
21 CONTINUE
    LOCK AFTER DEGRADED FLECTRONS FROM IGNIZATION
   DU127 N#1, NUSPEC
   KAMAX=NIONES(K)
   CC 28 KK=1,KKMAX
   IF(E.LT.THRICZ(K,KK)) GU TC 28
   IIJKK=IIJ(K)
   TEMPEXX # XDFNS(K) # FRACT(K, AK, 11JKK) # V
   +SFAX=F-THRICZ(K,KK)
   KKKEI
36 IF (FSMAX.GF.XGRIC(KNK).AND.ESMAX.LT.XGRID(KKK+1)) GU TC 29
   KKK=KKK+1
   GO TU 30
J9 FSMAX=0.5+FSMAX
   KAC=1
42 IF (FSMAX_GF.XGRID(KNG).AND.ESMAX.LT.XGRID(KKG+1)) GO TO 31
   KKQ=KKG+1
   GG TC 32
31 IF(KKK.GT.1) GC TO 33
   FUL=2.UFFSMAX
   PROFA(1)=PROFA(1)+2.0+TEMP+DIFION(K,F,11,U.O,EUL,DUMMY)
                                                                 *(DES/(
  1XGEID(2)=XGEID(1)))
   GO 10 28
33 KOMIZKKU-1
   DU 34 KK1=1.KUM1
    TE OT UD (1.04. DAX) II
   ERPFA(RK1)=PRDFA(RK1)+TEMP+DIFION(K,E,L1,XGRID(KK1),XGRID(KK1+1),D
             *(DES/(XGRID(NK1+1)-XGRID(NK1)))
  1 UMMY)
34 CONTINUE
    IF(KKO.EG.1) GO TO 103
   PROFACENCE )=PROFACENCE )+TEMP#DIFICNCE,E,L1,XGRID(ENG ),ESMAX,DU
            *(PES/(XGHIP(KKU+1)=XGRID(KKG)))
   LANYI
103 CONTINUE
   FSMAX=2.0#ESMAX
   UPPL=FSMAX=XGHID(KKK)
   FRDFA(RKR) #PRDFA(KKR)+1EMP+D1FIUN(K, E, LI, U, U, UPPL
   1,[UMMY] + (DES/(XGF1C(NNN+1) - XGRIC(NNK)))
                  a 11 104
    TE(KKG.EG.1)
   ULL=FSMAX=XGHIL(KKG+1)
   UFPL=0.5+ESMAX
   PROFA(RRG)=PROFA(RRG)+TEMP+DIFION(R,E,E1,ULL,UPPL
                    , DUMMY)
                              *(UES/(XGRID(KKG+1)*XGKIU(KKG)))
  1
104 CCNIINUE
   KNGMX=KKK-1
   FRGMN#RFG+1
   TO 35 KK1#KKG#6,KKGMX
    THINKOMN GERKKUMX J GC 10 35
    ULL=ESMAX=XGHIL(RR1+1)
   LPFL=ESMAX=AGHIL(NKI)
   PROFA(RRI)=PROFA(RRI)+1EMP*(IFION(R, E, LI, ULL, GEPL
                                                                       . C
             +(DES/(XGRID(NK1+1)+XGRIL(NK1)))
  1UMMY)
 35 CONTINUE
 28 CUNIINUE
```

```
127 CONTINUE
    2 CONTINUE
      SUM=0.0
      DO 36 J#1,10
      SUM=SUM+FELS(J)
   36 CONTINUE
      FEL(I)=SUM/10.
      IF(I.EO.1) GG 1G 37
      PHDFA(I-1) = PFDFA(I-1) + ELCF + (PKDD/SCF) + (DES/(XGPID(I) - XGRID(I-1)))
      INN=I-1
      CC 38 IP=1,1NN
      IRV=I-IP
       IRV= BIN NUMBER
       CLEAR COLLISION FREQUENCY ARRAYS
      DC 39 K=1, NUSPEC
      CO 4" KK=1,6
      CFI(K, KK)=0.0
   40 CONTINUE
      KKMAX#NUFXC(K)
      DO 41 KK=1,KKMAX
      (+E(K,KK)=0.0
   41 CONTINUE
   39 CUNTINUE
      CF=XGRID(IRV+1)=XGRID(IRV)
      E=XGRID(IRV)+0.5*DE
      V=5,93E+7*SQRT(L)
      CALL DEDT(F, TE, XEDEN, DET, XL)
      ELCF=-DET/DE
C
       CALCULATE THE EXCITATION CULLISTON FREQUENCIES
      SUMEX=0.0
      DO 42 K=1, NUSPEC
      KKMAX=NOEXC(K)
      DO 43 KK=1,KKMAX
      IF (E.LT. THRESH(K, KK)) GC TC 43
      CFF(K, KK) #GEX(K, KK, E, E E) *V*XDENS(K)
      SUMEX#SUMEX+CFE(K,KK)
   43 CONTINUE
   42 CONTINUE
C
       CALCULATE THE IGNIZATION COLLISION FREQUENCIES
C
       LOCATE THE ENERGY INDICIES FOR FRACTION
      CU 44 K=1, NUSPEC
      IF(E.LF.FICNGU(K,1)) GC TO 44
      111=1
   45 IF (F.GT.EICHGD(K, III). AND.E.LE.EIONGD(K, III+1)) GO TO 46
      111=111+1
      GC 10 45
   46 IIJ(K)=IT1
   44 CONTINUE
      SUMICHEO. 0
      DU 47 K=1, NUSPEC
      *KMAX=N1CNFS(K)
      CG 48 KKE1, KK AX
      IF(E.LT.THRICZ(K,KK)) GO TO 48
      IIJKK=IIJ(K)
      CFJ(K,KK)=Q1Ch(k,E,L1)*V*XDENS(k)*FHACT(K,KK,IIJKK)
      SUMION=SUMION+CFI(K,KK)
   48 CUNTINUE
   47 CONTINUE
      SCF=ELCF+SUMEX+SUMTON
      PROBIDN#SUMICA/SCF
      PRCBFX=SUMEX/SCE
```

```
PROBEL=ELCF/SCF
      GRO=PRDFA(IRV)
      XNNX=GRO+DE/SCF
      FEL(IRV)=V*GRO/SCF
      XNEE = GRO/SCF
      IF(IRV,EQ.1) GO TO 38
                                                   *(DE/(XGRID(IRV)-XGRID(
      PRDFA(IRV=1) *PRDFA(IRV=1) + ELCF * (GRC/SCF)
     11RV-1)))
       ACCUMILATE PROBABILITIES
C
      FLESC=ELESC+(LLCF+DE+XNNX)
      DU 49 K=1, NOSPEC
      KKMAX=NOEXC(K)
      DO 50 KK=1,KKMAX
      PROBE(K,KK)=PROBE(K,KK)+CFE(K,KK)*XNNX
   50 CONTINUE
      KKMAX=NIONFS(K)
      DO 51 KK=1,KKMAX
      PROBI(K, KK) = PROBI(K, KK) + CFI(K, KK) + XNNX
   51 CONTINUE
   49 CONTINUE
       LOOK AFTER DEGRADED ELECTRONS FROM EXCITATION
C
       XX=XNFE
      DU 52 K=1,NGSPEC
      KKMAX=NOFXC(K)
      DO 53 KK=1,KKMAX
      IF(E.LT.THRESH(K, KK)) GO TG 53
      EE=E-THRESH(K,KK)
      KKK=1
   55 IF (FE.GE.XGRID(KKK).AND.EE.LT.XGRID(KKK+1)) GC TO 54
      KKK=KKK+1
      GO TO 55
   54 PRDFA(KKK)=PRDFA(KKK)+XX*CFE(K,KK)*(DE/(XGRID(KKK+1)-XGRID(KKK)))
   53 CONTINUE
   52 CONTINUE
       LOCK AFTER DEGRADED ELECTRONS FROM IONIZATION
C
      DO 56 K=1, NOSPEC
      kkmax=nionfs(k)
      DO 57 KK=1,KKMAX
      IF(E.LT.THR102(K,KK)) GU TC 57
      ESMAX=F-THR102(K,KK)
      IIJKK=IIJ(K)
      TEMPEXX*XDENS(K) *V*FHACT(K,KK,IIJKK)
      KKK=1
   59 IF(ESMAX.GE.XGRID(KKK).AND.ESMAX.LT.XGRID(KKK+1)) GO TC 50
      KKK=KKK+1
      GO TC 59
   58 ESMAX=11.5#FSMAX
      KKQ=1
   60 IF(ESMAX.GE.XGRID(KKQ).AND.ESMAX.LT.XGFID(KKG+1)) GO TO 61
      KKG=KKG+1
      GU TC 60
   61 1F(KKK,GT.1) GO TO 66
      LUL=2.0*F5MAX
      PRDFA(1)=PRDFA(1)+2.0*TEMP*DIFION(K, E, II, U.O, EUL, DUMMY)
                                                                   *(DE/(XG
     1RID(2)-XGRID(1)))
      GU TO 57
   66 KUM1=KKU-1
      CU 67 KK1=1,KQM1
      IF(KKQ .EQ.1) GU TO 67
      PRDFA(KK1)=PRDFA(KK1)+TEMP+DIFION(K,E,LI,XGRID(KK1),XGRID(KK1+1),D
              *(DE/(XGHID(KK1+1)=XGRID(KK1)))
     1UMMY)
```

```
67 CONTINUE
    IF(KKQ,EQ.1)
                  GU TO 105
    FRDFA(KKQ )=PRDFA(KKQ )+TEMP+DIFION(K,E,LI,XGRID(KKQ ),ESMAX,DU
            *(DE /(XGRID(KKQ+1)=XGRID(KKG)))
   1MMY)
105 CUNTINUE
    ESMAX=2.0*ESMAX
    UPPL=ESMAX=XGRID(KKK)
    PRDFA(KKK)=PRDFA(KKK)+TEMP+DIFION(K,E,LI,O.O,UPPL
   1,DUMMY)*(DE /(XGRID(KKK+1)-XGRID(KKK)))
    IF(KKO.EQ.1)
                   GO TO 106
    ULL=ESMAX=XGRID(KKG+1)
    UPPL=0.5*ESMAX
    PRDFA(KKQ)=PRDFA(KKQ)+TEMP*DIFION(K,E,LI,ULL,UPPL
                    ,DUMMY) +(DE /(XGRID(KKG+1)+XGRID(KKQ)))
   1
106 CONTINUE
    KKQMX=KKK-1
    KKQMN=KKQ+1
    DG 68 KK1=KKGMN,KKGMX
    IF(KKOMN.GE.KKOMX) GO TO 68
    ULL=ESMAX-XGPID(KK1+1)
    UPPL=ESMAX+XGRID(KK1)
    PRDFA(KK1) = PRDFA(KK1) + 1 EMP + DIFION(K, E, LI, ULL, UPPL
                                                                      , C
           *(DE/(XGRID(KK1+1)=XGRID(KK1)))
   1UKMY)
 68 CONTINUE
57 CONTINUE
 56 CUNTINUE
 38 CONTINUE
 37 CONTINUE
    E=(XGRID(I+1)+XGRID(I))*0.5
    V=5.93E+7*SURT(£)
    WRITE(2,76)
 76 FORMAT (/6H *****, * SUMMARY OF EXCITATIONS PRODUCED_*)
    IF(IFLAG.EG.O) GO TO 77
    SUM1=0.0
    DO 78 K=1, NOSPEC
    WRITE (2,75)
    WRITE(2,74) NAME(K)
    WRITE(2,75)
    KKMAX=NOEXC(K)
    wRITE(2,74)(STATE(K,KK),KK=1,KKMAX)
    WRITE(2,75) (PROPE(K,KK),KK=1,KKMAX)
    SUM=0.0
    DO 86 KKE1, KKMAX
    SUM#SUM+PROBF(K,KK)
 86 CONTINUE
    WRITE(2,87) SUM, NAME(K)
    SUM1=SUM1+SUM
 78 CONTINUE
    WRITE(2,88) SUM1
    GO 10 79
 77 WRITE(2,80)
                   ENERGY IS BELOW ALL EXCITATION THRESHOLDS, LOSS TO
 80 FURMAT(//,69H
   1 ELECTRUNS UNLY ,//)
 79 CONTINUE
    WRITE(2,81)
 81 FORMAT (/6H ****, * SUMMARY OF IONIZATIONS PRODUCED. *)
    IF(ICNFG.EG.O) GC TC 82
    SUM1=0.0
    DO 83 K=1, NOSPEC
    WRITE(2,75)
    WRITE(2,74) NAME(K)
```

```
WRITE(2,75)
     KKMAX#NIONES(K)
     wRITE(2,74) (ISTATE(K,KK),KK=1,KKMAX)
     WRITE(2,75) (PPOBI(K,KK),KK=1,KKMAX)
     SUMEO.0
     DO 89 KK#1,KKMAX
     SUM=SUM+PROBI(K,KK)
  89 CONTINUE
     WRITE(2,90) SUM, NAMF(K)
     SUM1=SUM1+SUM
  83 CONTINUE
     SPACE=0.0
     AC202=PROBI(1,1)+PROBI(1,3)+PROBI(1,5)
     AC402=PROBI(1,2)+PROBI(1,4)
     ACN2=PROBI(2,1)+PROPI(2,2)+PROBI(2,3)+PROBI(2,4)
     ACMP=PROBI(2,5)
     hRITE(6,926) ACN2, AC202, AC402, SPACE, PROBI(3,1), PROBI(3,2),
     1PROBI(3,3),ACNP
 926 FORMAT (7X,8E10.3)
       ELESC=ELESC+(SUM1+TOTEL)*(XGRID(2)-XGRID(1))
     WRITE(7,927) ELESC
 927 FORMAT (8L10.4)
     WRITE(2,91) SUM1
     WRITE(2,110) ELESC
 110 FORMAT (//F10.2, * = ENERGY LOST TO THERMAL ELECTRONS (EV CM-3*
               , * SEC-1) *)
  87 FORMAT (/
                Elu.3, = TCTAL EXCITATIONS OF *, A10)
  88 FORMAT(// £10.3,* = TOTAL EXCITATIONS*)
                £10.3,* = TCTAL IONIZATIONS OF *,A10)
  90 FORMAT (/
  91 FURMAT(// E10.3,* = TCTAL IONIZATIONS*)
     GD TO 84
  82 WRITE(2,85)
                     ENERGY IS BELOW ALL IUNIZATION THRESHOLDS, LOSS TO
  85 FORMAT(//,81H
    1 EXCITATIONS ( 1F POSSIBLE )//,17h
                                             AND ELECTRONS )
  84 CUNTINUE
     WRITE(2,93)
  93 FORMAT(//* EQUILIBRIUM FLUX DISTRIBUTION (CM3 SEC STER EV)=1*)
     CG 94 KK=1,1
     FEE(KK)=(XGRID(KK)+XGRID(KK+1))*0.5
  94 CONTINUE
     wRITE(2,96)
  96 FORMAT (/6(9X,1HE,9X,1HF)/)
 653 FORMAT(8E10.3)
     DO 945 KK=1,I
     FEL(KK)=FEL(KK)/12,566
 945 CONTINUE
     white(2,97) ((EEE(KK),FEL(KK)),KK=1,I)
      WRITE (2,2234) IAVGE, IAVGE
      1F (1AVGF,1T,2) GO TO 6314
       DO 2227 KK=1,1
       PROFA(NK)=0.0
2227
       CONTINUE
       IAVBB=IAVGF/2+1
       DC 2228 KK=1, IAVGF
       PRDFA(1)=FRCEA(1)+FEL(KK)
2228
       CONTINUE
       PRUFA(1)=PRCFA(1)/FLOAT(1AVGF)
       DO 2229 KK=2,1AVBH
       PRDFA(KK)=PRDFA(1)
2229
       CONTINUE
       IAVCC=I-IAVER
```

```
IAVAA=IAVBH+1
       DO 2230 KF=IAVAA, IAVCC
       ILLT=KK-IAVGF/2
       IVLT=KK+IAVGF/2
       DO 2231 IJAV=ILLT, IVLT
       PRDFA(KK) = PRDFA(KK) + FEL(IJAV)
2231
       CONTINUE
       PRDFA(KK)=PRDFA(KK)/FLOAT(IAVGF)
2230
       CONTINUE
       IAVCC=IAVCC+1
       DO 2232 KK=IAVCC,I
       PRDFA(lavcc)=PRDFA(lavcc)+FEL(KK)
2232
       CONTINUE
       PRDFA(IAVCC)=PRDFA(IAVCC)/FLOAT(IAVGF)
       IAVCC=IAVCC+1
       DO 2233 KK=IAVCC,I
       PRDFA(KK)=PRDFA(IAVCC+1)
2233
       CONTINUE
 2234 FORMAT (//13,* FLUX PEP STERADIAN AVERAGED OVER*,13,* INTERVALS*)
      wRITE(2,96)
      WRITE(2,97)((LEE(KK),PRDFA(KK)),KK#1,I)
 6314 *PITE(5,946)
  946 FORMAT(15)
      wRITE(5,947) (FEL(KK),KK=1,I)
       wRITE(5,947) (EEE(KK),KK=1,I)
  947 FORMAT(6E12.4)
   97 FURMAT(6(F10.3, L10.3))
      IF (1AVGF.LT.2) GU 10 6315
      DG 900 KK=1,I
       FEL(KK)=12.568*FLL(KK)
  900 CONTINUE
      wRITE(2,300)
  300 FURMAT (// *EQUILIBRIUM FLUX, NOT PER STERADIAN*)
      \RITE(2,97)((EEE(KK), EEL(KK)), KK=1,1)
 6315 HETURN
      END
       SUBROUTINE REDXSN
        THIS ROUTINE READS THE CRUSS SECTION DATA
C
      COMMON/XSXS/ NOSPEC, NCEXC(4), NGHID(4,20),
     1EGR1D(4,20,25),SPLC0(4,20,25),SPLC1(4,20,25),SPLC2(4,20,25),
     2SPLC3(4,20,25),THRESH(4,20),NIONFS(4),NIONGD(4),EICNGD(4,25),
     3DIFCGN(4),TIXSO(4,25),TIXS1(4,25),TIXS2(4,25),TIXS3(4,25),DIXSO(4,
     425),D1XS1(4,25),D1XS2(4,25),D1XS3(4,25), THR1CZ(4,6),
     5FRACT(4,6,25)
      CUMMON/ALPHA/NAME(4),STATE(4,20),ISTATE(4,6)
      DIMENSION IFCHM(8)
      READ(1,20)(1FUFM(1), I=1,8)
   20 FORMAT(10A8)
      READ(1,1) NUSPEC
    1 FORMAT(2014)
       NOSPEC IS THE NUMBER OF SPECIES PRESENT, LIMIT 4
C
      DU 2 I=1, NCSPEC
      READ(1,3) NAME(1),NUEXC(3)
    3 FORMAT(A10,15,F6.2)
       NAME(I) IS THE NAME OF THE SPECIE I
       NGEXC(1) IS THE NUMBER OF EXCITATION CROSS SECTIONS FOR SPECI I
      N=NCEXC(I)
      CO 4 J=1,N
      #EAL(1,3) STATE(I,J),NGRID(I,J),THRESH(I,J)
       STATE (I,J) IS THE STATE CESIGNATION
       NGRID (I, J) IS THE NUMBER OF POINTS IN THE GRID
```

```
C
       THRESH(I,J) IS THE THRESHOLD ENERGY
      N1=NGRID(I,J)
      READ(1,1) LFORM
      IF(LFORM.EQ.0) GO TO 21
      READ(1, IFURM) (EGRID(I, J, K), K=1, N1)
      GO TO 22
   21 READ(1,5)(EGRID(I,J,K),K=1,N1)
   22 N1=N1-1
      REAU(1,6)(SPLCO(I,J,K),K=1,N1)
      READ(1,6)(SPLC1(I,J,K),K=1,N1)
      READ(1,6)(SPLC2(I,J,K),K=1,N1)
      READ(1,6)(SPLC3(I,J,K),K=1,N1)
      READ(1,1) KYY
      IF(KYY.EQ.0) GO 16 4
      READ(1,6) CURCT
      CO 9 K=1,N1
      SPLCU(I,J,K)=SPLCU(I,J,K)+CORCT
      SPLC1(I,J,K)=SPLC1(I,J,K)+CORCT
      SPLC2(I,J,K)=SPLC2(I,J,K)+CORCT
      SPLC3(I,J,K) = SPLC3(I,J,K) + CORCT
    9 CONTINUE
    5 FORMAT(10(1X, F6, 2))
    6 FORMAT(7(1X,E10.3))
       EGRID IS THE ENERGY GRID FOR THE SPLINE FITS
                                ARE THE SPLINE COEFFICIENTS
C
       SPLCO, SPLC1, SPLC2, SPLC3
    4 CONTINUE
      READ(1,1) NIONFS(I), NICHGD(I)
      REAU(1,5) DIFCON(1)
       NIGHTS(I) IS THE NUMBER OF IGN FINAL STATES, LIMIT 6 FOR EACH SPECIE
       NIGNGO(1) IS THE NUMBER OF GRID PCINIS FOR IONIZATION CROSS
C
C
         SECTION DATA
        D1FCON(I)
                   IS THE CUNSTANT IN REATY S IONIZATION EQUATION
      N2=NIONES(1)
      N3=NIONGD(I)
      READ(1,1) LEFORM
      IF (LEFURM.EQ.0) GO TO 23
      READ(1, IFORM)(EICNGD(I, J), J=1, N3)
      GO TO 24
   23 READ(1,5)(EICNGO(I,J),J=1,N3)
   24 N3=N3-1
      KEAU(1,6)(T1XSO(I,J),J=1,N3)
      READ(1,6)(TIXS1(I,J),J=1,N3)
      READ(1,6)(TIXS2(I,J),J=1,N3)
      READ(1,6)(TIXS3(T,J),J=1,N3)
      FEAD(1,6)(CIXSO(I,J),J=1,N3)
      REAU(1,6)(CIXS1(I,J),J=1,N3)
      READ(1,6)(DIXS2(I,J),J=1,N3)
      READ(1,6)(CIXS3(I,J),J=1,N3)
      REAC(1,1) KYY
      IF(KYY.EQ.0) GO TO 10
      READ(1.6) CURCT
      CO 11 J=1,N3
      TIXSO(1,J)=TIXSO(1,J)+CURCT
      TIXS1(I,J)=TIXS1(1,J)+CORCT
      TIX52(I,d)=TIX52(I,J)+CORC1
      T1X53(1,J)=11X53(1,J) +CORCT
      DIXSO(I,J)=DIXSU(1,J)+CORCT
      CIXS1(I,J)=DIXS1(1,J)*CORCT
      LIXS2(1,J)=DIXS2(I,J)+CORCT
      DIAS3(I,J)=DIXS3(I,J)#CORCT
   11 CUNTINUE
```

```
10 CONTINUE
C
       EIONGO IS THE IUNIZATION CRUSS SECTION ENERGY GRID
C
       TIXSO TO TIXS3 ARE THE TOTAL IONIZATION CSOSS SECTION SPLINE
C
        COEFFICIENTS
C
       DIXSO TO DIXS3 ARE THE DIFFERENTIAL CROSS SECTION SPLINE COEFFICIENTS
C
      FOR THE NUMERATOR IN BEATY (S EQUATION
     DO 7 J=1,N2
     READ(1,0) ISTATE(1,J), THR10Z(I,J)
    8 FORMAT(A8, F6.2)
       ISTATE IS THE FINAL ION STATE DESIGNATION
      THRIOZ IS THE THRESHOLD
     READ(1,5)(FRACT(I,J,K),K=1,N3)
   7 CONTINUE
    2 CONTINUE
      FRACT ARE THE BRANCHING RATIOS
C
     RETURN
     END
     FUNCTION QION(I,E,KEY)
     COMMON/XSXS/ NOSPEC, NCEXC(4), NGRID(4,20),
     1EGRID(4,20,25), SPLC0(4,20,25), SPLC1(4,20,25), SPLC2(4,20,25),
     2SLLC3(4,20,25),THRESH(4,20),NIONFS(4),NIONGD(4),ElONGD(4,25),
     3DIFCON(4),TIXSO(4,25),TIXS1(4,25),TIXS2(4,25),TIXS3(4,25),CIXSO(4,
     425),DIXS1(4,25),CIXS2(4,25),DIXS3(4,25), THRTOZ(4,6),
    5FRACT(4,6,25)
     COMMON /POINT/1PCINT(4,20), I1PONT(4), IDPONT(4)
     COMMON/ALPHA/NAME(4), STATE(4,20), ISTATE(4,6)
      THIS FUNCTION CALCULATES THE TOTAL ELECTRON INPACT IONIZATION
      CROSS SECTION FOR THE SPECIE I AT FNERGY E. KEY AND LIPCHT ARE
C
     USED TO SAVE 11ME IN THE ENERGY GRD SEARCH. IF KEY==1, WE START
       AT THE BEGINNING OF THE ARRAY IN THE SEARCH AND SET IIPCNT BEFORE
      EXIT.
              IF KEY = 0, WE START AT LIPCHT AND RESET LIPCHT IF NECESSARY.
      IF KEY IS POSITIVE, WE START AT KEY AND RESET TIPORT IF NECESSARY
 120 FORMAT(4H I =, 14, 6H KFY =, 14)
  110 FORMAT(4H E =, E9.2,14H EIONGD(I,1) =, E9.2)
     IF(E.GE.EICNGD(1,1)) GG TO 2
    1 GION=0.U
     RETURN
    2 NN=NIONGD(J)
     IF(E.GT.FICNGU(I,NN))
                            GO TO 1
  100 FORMAT(5H NN =, 14, 4H I =, 14, 4H E =, E9, 2,
    16H KEY =, 14)
    3 CONTINUE
     1F(KEY) 4,5,6
    4 TP=1
                                                     GO TC 7
    9 If (E.GE.FICNGU(1, IP).AND.L.LT.E1ONGD(I, IP+1))
    0 1P=1P+1
     GO TO 9
    7 IIPUN1(1)=IP
   10 X=E-EIONGD(1,1P)
     Y=EIGNGU(I, IP+1)-E
     1**2)
     RETURN
    5 IP=IIPCMT(I)
   12 CONTINUE
     IF(E.GE.EICNGD(I,1P).AND.L.LT.FIONGC(I,1P+1)) GO TO 10
   11 IF(E.GE.FICNGU(1,1F)) GO TO 8
   13 IP=IP-1
      IF(E.GE.EICHGU(1,IP),AND.L.LT.EICHGD(1,IP+1)) GO TO 7
       GG TO 13
    6 IPEKEY
```

```
IIPONT(I)=IP
      GO TO 12
      END
      FUNCTION DIFION(I, E, KEY, EO, E1, F)
      COMMON/XSXS/ NOSPEC, NCEXC(4), NGRID(4,20),
     1EGRID(4,20,25),SPLC0(4,20,25),SPLC1(4,20,25),8PLC2(4,20,25),
     2SPLC3(4,20,25),THRESH(4,20),NIONFS(4),NIONGD(4),EIONGD(4,25),
     3DIFCON(4),TIXSU(4,25),TIXS1(4,25),TIXS2(4,25),TIXS3(4,25),DIXSO(4,
     425),DIXS1(4,25),DIXS2(4,25),DIXS3(4,25), THRIOZ(4,6),
     5FRACT(4,6,25)
      CCMMON /POINT/IPCINT(4,20), IIPONT(4), IDPONT(4)
      COMMON/ALPHA/NAME(4), STATE(4,20), ISTATE(4,6)
      DIMENSION F(6)
    THIS FUNCTION CALCULATES THE ELECTRON IMPACT IGNIZATION DIFFERENTIAL
C
C
       CROSS SECTION FOR THE SPECIE I AT ENERGY E. KEY AND LIFONT ARE
C
      USED TO SAVE TIME IN THE ENERGY GRD SEARCH. IF KEY == 1. WE START
Ç
       AT THE BEGINNING OF THE ARRAY IN THE SEARCH AND SET IDPONT BEFORE
C
               IF KEY = 0, WE START AT IDPONT AND RESET IDPONT IF NECESSARY.
       EXIT.
C
       IF KEY IS POSITIVE, WE START AT KEY AND RESET IDPONT IF NECESSARY
C
       WE INTEGRATE BEATYJS EQUATION FROM EO TO E1 USING A CUBIC FIT
       WHICH IMPLIES SMALL STEP SIZES. THE FRACTIONAL YEALD TO
C
       DIFFERENT ICH STATES ARE RETURNED IN THE ARRAY F.
      IF(E.GE.EIONGD(1,1)) GC TU 2
    1 GIONEU.U
      RETURN
    2 NN=NIONGD(1)
      IF(E.GT.FICNGU(I,NN))
                              GO TO 1
    3 CUNTINUE
      IF(KEY) 4,5,6
    4 IP=1
    9 IF(E.GE.EICNGD(I, IP).AND.E.LT.EIONGD(I, IP+1))
                                                        GO TO 7
    8 IP=IP+1
      GO TO 9
    7 IUPONT(I)=IP
   10 X=E-FIONGD(1,1P)
      Y=E1ONGD(I, IP+1)=L
      CONO=x*(D1XS3(1,1P)+D1XS1(1,1P)*X**2)+Y*(D1XS2(1,1P)+D1XS0(1,1P)*Y
     1 * * 2 )
      ND=NIONES(I)
      CO 14 J=1,ND
      F(J) = FRACT(1,J,1P)
   14 CONTINUE
      EMID=0.5+(E1+E0)
      DE=0.5*(E1-E0)
      EXX=1.0/(1.0+(E0/DIFCUN(1))++2.1)+4.0/(1.0+(EMID/DIFCON(I))++2.1)
     1+1.0/(1.0+(E1/DIFCON(1))**2.1)
      CIFION=CONG*EXX*DE/3.0
      RETURN
    5 IP=IDPONT(I)
   12 CONTINUE
      IF(L.GE,FICAGD(1,1P).AND.L.LT.EIONGD(1,1P+1))
                                                        GO 1C 10
   11 IF(F.GE.FICNGU(1,IP)) GO TU 8
   13 JP=1P-1
      IF(E.GE.EICNGD(I, IP).AND.E.LT.EIUNGD(I, IP+1))
                                                        GO TG 7
       GG 10 13
    6 IP=KEY
      IDPUNT(1)=1P
      GO TO 12
      END
      FUNCTION GEX(I,J,E,KFY)
      COMMON/XSXS/ NOSPEC, NOEXC(4), NGRID(4,20),
```

```
1EGRID(4,20,25),SPLCO(4,20,25),SPLC1(4,20,25),SPLC2(4,20,25),
     28PLC3(4,20,25), THRESH(4,20), NIONFS(4), NIONGD(4), EICNGD(4,25),
     3DIFCON(4),TIXSU(4,25),TIXSI(4,25),TIXS2(4,25),TIXS3(4,25),DIXSU(4,
     425),DIXS1(4,25),DIXS2(4,25),DIXS3(4,25), THRIOZ(4,6),
     5FRACT(4,6,25)
      COMMON /POINT/IPCINT(4,20), IIPONT(4), IDPONT(4)
      COMMON/ALPHA/NAME(4), STATE(4,20), IS1ATE(4,6)
       THIS FUNCTION CALCULATES THE ELECTRON IMPACT EXCITATION CROSS
        SECTION FOR THE PROCESS J IN SPECIE I AT THE ENERGY E. KEY
C
       AND IPOINT ARE USED TO SAVE TIME IN THE ENERGY GRID SEARCH) IF
C
     KFY =-1, WE START AT THE BEGINNING OF THE AFRAY IN THE SEARCH AND
C
       SET IPOINT BEFORE EXIT. IF KEY =0, WE START AT IPOINT AND RESET IPOINT
C
      IF NECESSARY( IF KEY IS POSITIVE, WE START AT KEY AND RESET IPOINT
       IF NECESSARY)
      IF(E.GT.EGRID(T,J,1)) GO TO 2
    1 GEX=0.0
     RETURN
    2 J1=NGRID(I,J)
      IF(E.GE.EGRID(I,J,J1))
                               GC TO 1
    3 CUNTINUE
      IF(KEY) 4,5,6
    4 IP=1
    9 IF(E.GE.FGRID(1,J,IP).AND.E.LT.LGRID(I,J,IP+1))
                                                         GO 1C 7
    8 IP=IP+1
      GG TO 9
    7 IPGINT(1,J)=IP
   10 X=E=EGRID(I,J,TP)
      Y=EGRID(I,J,IP+1)-E
      QEX=X*(SPLC3(1,J,1P)+SPLC1(1,J,1P)*X**2)+Y*(SPLC2(I,J,1P)+SPLC0(I,
     1J, 1P) *Y**2)
      RETURN
    5 IP=IPOINT(I,J)
   12 CONTINUE
      IF(E,GE,FGRID(I,J,IF),AND,E,LT,EGRID(I,J,IF+1)) GC TO 10
   11 lf(E.GE.FGRID(I.J,IP)) GD TO 8
   13 IP=IP-1
      JF(IP.EQ.0) GO TO 1
      IF(E.GE.EGRID(I,J,1F).AND.E.LT.EGRID(I,J,1F+1)) GC TO 7
      GU TO 13
    6 IPSKEY
      IPCINT(1,J)=IP
      GO TO 12
      END
      SUBROUTINE SETCHID
C
       SETGRID SETS UP THE GRID FOR INTEGRATION
      CGMMON/GRID/INTGRID.XGRID(400).VGHID(400).FRCGRID(400)
      CIMENSION EU(10), EF(10), NPTS(10), DFE(10)
      READ(1,1) ITYPE
       ITYPE SPECIFIES THE TYPE OF GRID DATA . IF ITYPE #1, READS
       INTERID PCINIS FOR XGRID) IF ITYPE =2, READS NRANGE SETS OF
C
C
       INITIAL VALUES(FINAL VALUES( AND NUMBER OF POINTS
C
       IF ITYPE =3, READS INITIAL VALUE AND NRANGE SETS OF INTERVALS
       AND NUMBER OF PCINTS
C
       ITYPE=4, XGRID IS SET IN PRODUCTION SUBROUTINE
C
    1 FORMAT(14)
      GO TO (2,3,4,341), ITYPE
  341 RETURN
    2 READ(1,1) INTGRID
      READ(1,5) (XGRID(1), I=1, INTGRID)
    5 FORMAT(10(1X,F6.2))
```

CC 12 K=1, INIGRIO

```
VGRID(K)=5.93E+7+SQRT(XGRID(K))
   12 CONTINUE
     RETURN
    3 REAU(1,1) NRANGE
     DO 6 I=1, NRANGE
      READ(1,7) EO(1), NPTS(1), EF(1)
    7 FORMAT(1x, F6.2, 2x, [4,2x, F6.2)
    6 CONTINUE
      INDEX=1
      DO 8 1=1, NRANGE
     XGRID(INDEX)=EU(I)
      DE=(EF(I)-EO(I))/FLOAT(NPTS(I)-1)
      NMAX=MPTS(I)
     DO 9 J=2, NMAX
      INDEX=INDEX+1
     XGRID(INDEX) = XGRID(INDEX=1)+DE
    9 CONTINUE
    8 CONTINUE
      INTGRID=INDEX
      DO 13 K=1, INTGKID
      VGRID(K)=5.93E+7*SQRT(XGRID(K))
   13 CUNTINUE
      RETURN
    4 READ(1,5) FUG
     READ(1,1) NRANGE
      DG 10 I=1, NRANGE
      READ(1,7) CEF(I), NPTS(L)
   10 CONTINUE
      INDEX=1
      XGRID(1)=ECG
      CO 11 I=1, NRANGE
      NMAX=NPTS(I)
     DO 11 J=1, NMAX
      INDEX=INDEX+1
      XGRID(INDEX)=XGRID(INDEX=1)+DEE(I)
   11 CONTINUE
      INTGRID=INCEX
     DO 14 K=1,INTGRID
      VGRID(K)=5.936+7*SGRT(XGRID(K))
   14 CONTINUE
     RETURG
      END
      SUBROUTINE DEDT(E, TE, RHOE, DET, XL)
       THIS ROUTINE CALCULATES ENERGY LOSS TO THE THERMAL ELECTRONS
       USING FITS BY SCHWARTZ, NISBET, AND GREEN JGR 76,8425 (1971)
       WHERE E IS THE PHOTOFLECTRON ENERGY, TE THE THERMAL ELECTRON
       TEMPERATURE, RHOE IS THE ELECTRON DENSITY, DE/DT IS RETURNED
       VIA DET, L VIA XL.
      EL=8.618E-5+TL
      X=(E-EE)/(E-0.53*EF)
      DET=U.0
      XL=0.0
      IF (X.LE.O.U) GU TO 1
      X=X++2.36
      DET==2.E=4*(RHCE**0.97)*X/(E**0.44)
      XL=3.37E-12*X/((RHOE**.03)*(E**0.94))
    1 RETURN
      END
0004
(8(1X,F9.2))
```

C

C

C C

```
MOL. 0
             14
A 351G+U
             12
                 4.50
                                     8.00
                                               9.00
                6.00
                          7.00
      4.50
                                                         10.00
                                                                   20.00
                                                                              30.00
                                   200.00
     40.00
               50.00
                        100.00
             6.549E-20 -1.025E-18 -2.756E-19 -2.275E-20 -1.341E-21 1.079E-21
 -2.183E-20
                                   6.6486-25
 -1.350E-23
            1.053E-22 1.009E-23
  4.366E-20 -1.025E-18 -2.756E-19 -2.275E-20 -1.341E-20 1.079E-21 -1.350E-23
  1,0532-22
             5.044E-23
                        1.330E-24 -3.324E-25
                        1.829E-17
                                               1.944E-17
                                                           2.038E-18 1.206E-18
  4.911E-20
             1.074E-17
                                    1.970E-17
  1.021E-18
             8,285E=19
                        1.155E-19
                                   3.3326-20
             1.829E-17
                                   1.944E-17
                        1.970E-17
  7.108E-18
                                               1.905E-17 1.206E-18 1.021E-18
                        7,662E-20 2,431E-20
  8.285E-19
             6.988E-19
B 151G+G
             20 1.62
1
      1.62
                2,94
                          5.00
                                     6.47
                                               7.94
                                                         10,00
                                                                   12.06
                                                                             15.00
               25.00
                         30,00
                                    35.00
                                              40.00
                                                         45.00
                                                                   50.00
                                                                             60.00
     20.00
     70.00
               80.00
                         90.00
                                   100.00
                        1.494E-20 -4.107E-20
                                               1.020E-20 -7.464E-21
                                                                      2,393E-21
  3.381E-20 -4.333E-20
                                                                     4.321E-23
                                               1.617E-22 -5.104E-23
  1.626E-22
            2.603E=22 -5.889E=23 -2.551E=23
                                   1.331E-24
                                               1.160E-24
             4.588E-24 2.245E-24
  7.503E-24
 -6,762E-20
             1.066E-20 -4.107E-20
                                   1.429E-20 -7.464E-21
                                                           3.415E-21
                                                                      2.765E-22
  2,603E-22 -5,889E-23 -2,551E-23
                                   1.617E-22 -5.104E-23
                                                          4.321E-23
                                                                      1,501E=23
                                   1.160E-24 -5.798E-25
             2,245E-24
  4.588E-24
                        1.3316-24
             7.038E-19
                                   1.449E-18
 -5.891E-20
                        1.134E-18
                                               8.582E-19
                                                           0.637E-19
                                                                      4.654E-19
             1.649E-19
 2,245E-19
                                    1.149E-19
                                                           7.270E-20
                        1.443E-19
                                               8.168E-20
                                                                      5.606E=20
             1.561E-20
                        1.159E-20
                                    8.907E-21
                                               7.027E-21
  2.239E-20
                                                           6.792E-19
                                               8.637E-19
                                                                      3,864E-19
  9,292E-19
             7,868E-19
                        1.449E-18
                                   1.2326-18
                        1,149E-19
                                   8.168E-20
             1.443E-19
                                               7.270E-20
                                                          5.606E-20
                                                                     4.590E-20
 1,649E-19
 1.561E-20
             1.159E-20
                        8.907E-21
                                   7.0278-21
                                               5.843E-21
A 1DELT G
             20
                  .89
1
       .88
                                               7.94
                2.94
                          5,00
                                     6.47
                                                         10.00
                                                                   12,06
                                                                             15.00
     20.00
               25.00
                         30.00
                                    35,00
                                              40.00
                                                         45.00
                                                                   50.00
                                                                             60.00
     70.00
               80.00
                         90,00
                                   100.00
                        1,073E-20 -1.642E-19 -2,045E-20
                                                           3.454E-21 1.611E-20
  1.043E-20 -2.085F-20
                        4,948E-22
                                   1.433E-22
             7.413E-22
                                              7.596E-23
                                                          1.289E-22 -3.138E-23
 -1,188E-21
            1,264E-23
                                   4.887E-24
                        9.792E-24
                                               4.861E-24
  4.233E-23
                                               3,454E-21
 -2.085E-20
             7.658E-21 -1.642E-19 -2.865E-20
                                                          2,299E-20 -2,021E-21
 7,413E-22
             4.948E-22
                        1,433E-22
                                   7.596E-23
                                              1.289E-22 -3.138E-23 8.467E-23
                        4.887E-24
             9.792E-24
                                   4,861E-24 -2,430E-24
 1,264E-23
             1.961E-18
 -4.424E-20
                        4.836E-18
                                    6.477E-18
                                               4.317E-18
                                                           3.383E-18
                                                                      1.707E-18
             6.673E-19
                                                           2.826E-19
                                                                      2.436E-19
                                               3,409E-19
  9.439E-19
                        5,018E-19
                                    4.106E-19
  9.677E-20
             7.212F-20
                        5,505E-20
                                    4.386E-20
                                               3.560E-20
                                    5.990E-18
                                                          2.538E-18
                        6.477E-18
                                               3.383E-18
  1.961E-18
             3.435E-18
                                                                      1.572E-18
             5.0186-19
                                    3.409E-19
 6.673E-19
                        4.106E-19
                                               2.826E-19
                                                           2.436E-19 1.999E-19
                                               3.026E-20
             5.505E-20
                        4.386E-20
                                    3.560E-20
  7.212E-20
A4P1U RY3
             20 12,70
1
               17.69
                                                                   42.64
     12.70
                         22,68
                                    27.67
                                              32.66
                                                         37.65
                                                                             47.62
                         59.25
                                              62.03
                                                         64.87
                                                                   69.54
                                                                             77.20
     52,61
               57.60
                                    60.30
     89.77
              110.42
                        144.33
                                   200.00
             6.915E-21 -4.637E-21 -1.902E-21 -1.781E-21 -1.066E-21 -7.396E-22
 -3.458E-21
 -4.850E-22 -3.283E-22 -6.729E-22 -9.355E-22 -5.221E-22 -2.773E-22 -1.343E-22
 -5.541E-23 -1.691F-23 -1.708E-24
                                   1.239E-24 1.668E-24
  6.915E-21 -4.637E-21 -1.902E-21 -1.781E-21 -1.066E-21 -7.396E-22 -4.850E-22
 -3.283E-22 -2.215E-22 -6.005E-22 -8.573E-22 -4.553E-22 -2.205E-22 -9.098E-23
 -2.777E-23 -2.804E-24 2.034E-24 2.738E-24 -8.338E-25
```

```
4,659E-18
                        2.360E-18
                                   3,321E-18
                                              3,997E-18
                                                          4.408E-18
 8.607E-20
            7.065E-19
             4.869E-18
                        1.484E-17
  4.800E-18
                                   2,311E-17
                                              1.407E-17
                                                          8.560E-18
                                                                     5.198E-18
  3.142E-18
                        1.102E-18
                                               3.355E-19
             1.879E-18
                                   6.243E-19
             2.36UE-18
                        3.321E-18
                                                          4.659E-18
                                                                     4.800E-18
 7.065E-19
                                   3.997E-18
                                               4,408E-18
                                   2.310E-17
                                               1,405E-17
                                                          8.531E-18 5.155E-18
                        1.484E-17
  4,869E-18
             4.888E-18
                                   5.561E-19
             1.808E-18
                       1.026E-18
                                              2,922E-19
  3.083E-18
             20 14.60
A4PIU RY4
                                   31.81
                                              37.54
                                                        43,28
                                                                  49,01
                                                                             54.75
     14.60
               20.34
                         26.07
                                   68.88
                         67.85
                                              70.57
                                                                  77.79
                                                                             85.09
     60.49
               66.22
                                                        73,31
     97.02
              116.47
                        148.21
                                  200.00
 -4.587E-22 9.174E-22 -6.151E-22 -2.523E-22 -2.363E-22 -1.414E-22 -9.810E-23
 -6.434E-23 -4.355E-23 -1.032E-22 -1.485E-22 -8.443E-23 -4.611E-23 -2.333E-23
 -1.038E-23 -3.678F-24 -7.129E-25 7.987E-26 2.923E-25
 9.174E-22 -6.151E-22 -2.523E-22 -2.363E-22 -1.414E-22 -9.810E-23 -6.434E-23
 -4.355E-23 -2.937E-23 -9.382E-23 -1.378E-22 -7.523E-23 -3.807E-23 -1.694E-23
 -6.001E-24 -1.163E-24
                       1,303E-25
                                  4.769E-25 -1.461E-25
                                                          7.728E-19
                        4.137E-19
                                   5.822E-19
                                              7.008E-19
 1.509E-20
            1.239E-19
                                                                     8,169E-19
                        3.009E-18
                                   4.763E-18
                                              2.918E-18
                                                          1.787E-18
                                                                    1.093E-18
             8.536E-19
 8.416E-19
 6.661E-19
             4.028E-19
                        2.398E=19
                                   1.389E-19
                                              7.679E-20
             4.137E-19
                        5.822E-19
                                   7.008E-19
                                              7.728E-19
                                                          8.169E-19
                                                                     8.416E-19
 1,239E-19
                                              2.916E-18
             8.570E-19
                        3.009E-18
 8.536E-19
                                   4.762E-18
                                                          1.783E-18
                                                                    1.086E-18
                                   1.261E-19
                                              6.783E-20
             3.910E-19
 6.568E-19
                        2.267E-19
             20 15.60
A4PIU SUM
                         27.86
                                   33,99
                                              40.11
                                                                  52,37
                                                                            58.50
     15,60
               21.73
                                                        46,24
                         72.38
               70.76
                                   73.40
                                              75,06
                                                        77.75
                                                                            89,24
     64,63
                                                                  82,13
    100,82
              119.64
                        150.24
                                  200.00
 -3.492E-22 6.984E-22 -4.683E-22 -1.921E-22 -1.799E-22 -1.076E-22 -7.469E-23
 -4.898E-23 -3.316E-23 -8.425E-23 -1.233E-22 -7.068E-23 -3.910E-23 -2.018E-23
 -9.269E-24 -3.487E-24 -8.067E-25 -2.511E-27 2.461E-25
 6.984E-22 -4.683E-22 -1.921E-22 -1.799E-22 -1.076E-22 -7.469E-23 -4.898E-23
 -3.316E-23 -2.235E-23 -7.717E-23 -1.149E-22 -6.357E-23 -3.281E-23 -1.507E-23
 -5.670E-24 -1.312E-24 -4.083E-27
                                  4.002E-25 -1.230E-25
           1.077F-19
                       3,596E-19
                                             6.091E-19
                                                          6.717E-19
                                                                     7,100E-19
                                   5.06UE-19
 1.312E-20
            7.419E-19
                        2.804E-18
                                   4.479E-18
                                              2.754E-18
                                                         1.692E-18
                                                                    1,039E-18
 7,315E-19
                        2.316E-19
                                   1.356E-19
             3.866F-19
 6.358E-19
                                              7.605E-20
             3.596E-19
                        5.060E-19
                                   6.091E-19
  1.077E-19
                                              6.717E-19
                                                          7.100E-19
                                                                     7.315E-19
             7.449E-19
                        2.804E-18
                                   4.478E-18 2.752E-18 1.689E-18 1.033E-18
 7.419E-19
             3.767F-19 2.205E-19 1.243E-19 6.767E-20
 6.282E-19
A2PIU RY3
             20 13.20
1
                                              33,94
                                                                             49,50
               18.39
     13.20
                         23.57
                                   28.76
                                                        39.13
                                                                  44,31
     54.69
               59.87
                         61,51
                                   62.56
                                              64.28
                                                        67.09
                                                                  71.71
                                                                            79,28
                        145,35
                                  200.00
     91.68
              112.02
 -2.851E-21 5.701E-21 -3.823E-21 -1.568E-21 -1.469E-21 -8.787E-22 -6.097E-22
 -3.999E-22 -2.706E-22 -5.775E-22 -8.104E-22 -4.547E-22 -2.434E-22 -1.194E-22
 -5.034E-23 -1.607E-23 -2.076E-24 9.338E-25 1.496E-24
  5,701E=21 =3,823E=21 =1,568E=21 =1,469E=21 =8,787E=22 =6,097E=22 =3,999E=22
 -2.706L-22 -1.626E-22 -5.181E-22 -7.453E-22 -3.989E-22 -1.957E-22 -8.252E-23
                                  2.452E-24 -7.478E-25
 -2.635E-23 -3.404E-24 1.531E-24
  7.666E-20
            6,293E=19
                        2.102E-18
                                   2.957E-18
                                             3,560E-18
                                                          3.926E-18
                                                                     4.150E-18
  4.275E-18
             4.336t-18
                        1.376E-17
                                   2.152E-17
                                              1.312E-17
                                                          7.996E-18
                                                                     4.864E-18
             1.766E-18
  2.947E-18
                        1.041E-18
                                   5.934E-19
                                               3.214E-19
  6.293F-19
             2.102F-18
                                                          4.150E-18
                        2.957E=18
                                   3.560E-18
                                              3.9261-18
                                                                     4,275E-18
  4.336E-18
             4.354F-18
                        1,376E-17
                                   2.151E-17
                                              1.311E-17
                                                          7.972E-18
                                                                     4.828E-18
  2.896E=18
            1.705E=18 9.738E=19
                                   5.314E-19
                                              2.810E-19
```

```
A2PIU RY4
            20 15,30
1
                        27.32
                                            39,34
     15,30
                                  33,33
                                                       45,35
                                                                           57,37
              21.31
                                                                51,36
     63,39
              69.40
                        71.02
                                  72.05
                                            73.71
                                                      76.42
                                                                80.82
                                                                           88.00
     99,68
             118,69
                       149,63
                                 200.00
 -3.882E-22 7.763E-22 -5.205E-22 -2.135E-22 -2.000E-22 -1.197E-22 -8.302E-23
 -5.445E-23 -3.666E-23 -9.176E-23 -1.336E-22 -7.640E-23 -4.210E-23 -2.161E-23
 -9.835E-24 -3.638E-24 -8.027E-25 2.104E-26 2.663E-25
 7.763E-22 -5.205E-22 -2.135E-22 -2.000E-22 -1.197E-22 -9.302E-23 -5.445E-23
 -3.686E-23 -2.485E-23 -8.386E-23 -1.244E-22 -6.854E-23 -3.517E-23 -1.601E-23
 -5.921E-24 -1.307E-24 3.424E-26 4.335E-25 -1.332E-25
                                                        7.182E-19
                       3.845E-19 5.410E-19 6.513E-19
            1.151E-19
                                                                   7.591E-19
  1.402E-20
                                  4.679E-18 2.874E-18
 7.821E-19
            7.933E=19
                       2,938E-18
                                                        1.764E-18 1.082E-18
 6.613F-19
                                  1.401E-19 7.824E-20
            4.014E-19
                       2,402E-19
            3.845E-19
                       5.41UE-19 6.513E-19 7.182E-19
                                                        7.591E-19
                                                                   7.821E-19
  1,151E-19
 7.933k-19
            7.964E-19
                       2.938E-18 4.678E-18 2.872E-18
                                                        1.760E-18 1.076E-18
            3.907E-19
                       2.280E-19 1.280E-19 6.947E-20
  6.529E-19
AZFIU SUM
            20 16.20
                        28,93
                                  35,29
                                             41.66
                                                      48,02
                                                                54,39
                                                                          60.75
     16.20
              22.56
              73.48
                                            77.75
                                                                84.73
                                                      80.41
                                                                          91.73
    67.11
                        75.10
                                  76,11
                       151.45
   103.09
             121.53
                                 200.00
 -3.628E-22 7,255E-22 -4.865E-22 -1.996E-22 -1.869E-22 -1.118E-22 -7.759E-23
 -5.089E-23 -3.445E-23 -9.108E-23 -1.346E-22 -7.754E-23 -4.320E-23 -2.254E-23
 -1.054E-23 -4.092F-24 -1.029E-24 -5.420E-26 2.672E-25
 7.255E-22 -4.865E-22 -1.996E-22 -1.869E-22 -1.118E-22 -7.759E-23 -5.089E-23
 -3.445E-23 -2.322E-23 -8.378E-23 -1.258E-22 -7.010E-23 -3.657E-23 -1.710E-23
 -6.639E-24 -1.670E-24 -8.794E-26 4.336E-25 -1.336E-25
  1.469E-20 1.306E-19 4.029E-19 5.669E-19 6.824E-19
                                                        7.525E-19
                                                                   7.954E-19
  8.195E=19 %,312E=19 3.270E=18 5.251E=18 3.235E=18 1.993E=18 1.226E=18
             4.508E-19 2.763E-19 1.625E-19
  7.523E-19
                                             9.189E-20
                                  6.824E-19 7.525E-19
             4.029E-19 5.669E-19
                                                        7.954E-19 8.195E-19
  1.206£-19
            8.345E-19 3.269E-18 5.250E-18 3.233E-18 1.989E-18 1.220E-18
  8.312E-19
  7.440E-19 4.480E-19 2.637E-19 1.497E-19 8.213E-20
B45-G RY3
             20 15.70
                        28.04
                                  34.20
                                            40.37
                                                      46.54
                                                                52,71
                                                                          58,87
     15.70
              21.87
                                                                          89.66
                        72.84
                                  73.85
                                            75.51
                                                      78.19
                                                                82,56
     65.04
              71.21
             119.95
                       150.44
                                 200.00
    101,20
 -5.352E-22 1.070E-21 -7.177E-22 -2.945E-22 -2.757E-22 -1.650E-22 -1.145E-22
 -7.508E-23 -5.082E-23 -1.300E-22 -1.905F-22 -1.093F-22 -6.055E-23 -3.131E-23
 -1,443E-23 -5,457E-24 -1,281E-24 -1,555E-26 3,803E-25
 1.070E-21 -7.177E-22 -2.945E-22 -2.757E-22 -1.650E-22 -1.145E-22 -7.508E-23
 -5.082E-23 -3.426F-23 -1.192E-22 -1.777E-22 -9.843E-23 -5.089E-23 -2.345E-23
 -8.870E-24 -2.083E-24 -2.528E-26 6.182E-25 -1.902E-25
            1.671F-19 5.582E-19
                                                        1.043E-18 1.102E-18
                                  7.855E-19 9.456E-19
  2,036E-20
                       4.383E-18
                                  7.007E-18 4.309E-18
                                                       2.649E-18 1.627E-18
  1.136E-18
            1.152E-18
            6.060E-19
                                            1,196E-19
                                  2.1296-19
  9.962E-19
                       3,636E-19
            5.562E-19 7.855E-19
                                  9.456E-19 1.C43E-18
                                                        1.102E=18 1.136E=18
  1.671E-19
            1.156E-18 4.383E-18
                                  7.005E-18
                                             4.306E-18 2.644E-18 1.619E-18
  1.152E-18
            5,907E-19
                       3,461E-19
  9.844E-19
                                  1.953E-19 1.065E-19
B COM RY3
             20 19.60
     19.60
              27.30
                        35.00
                                  42.70
                                            50,40
                                                      58,10
                                                                65,80
                                                                          73,50
                                  91.47
                                                                99,44
                        90.50
                                            93.01
                                                      95.48
     81.20
              88.90
                                                                         105.78
                                 200.00
                       158.27
    115.94
             132,21
 -1.180E-22 2.360F-22 -1.582E-22 -6.491E-23 -6.078E-23 -3.637E-23 -2.524E-23
 -1.655E-23 -1.120E-23 -3.630E-23 -5.657E-23 -3.345E-23 -1.932E-23 -1.062E-23
```

```
-5.390F-24 -2.406F-24 -H.284F-25 -1.836F-25 7.973E-26
 2.360F-22 -1.582F-22 -6.491F-23 -6.078F-23 -3.637E-23 -2.524F-23 -1.655E-23
 -1.120t-23 -7.550t-24 -3.403f-23 -5.358f-23 -3.094t-23 -1.701f-23 -8.634f-24
 -3.853E-24 -1.327E-24 -2.940E-25
                                   1.2778-25 -3.9868-26
                        1.918E-19
                                    2.699E-19
                                               3.249E-19
  6.996E-21
             5.743E-20
                                                           3,5831-19
                                                                       3.787E-19
                         1,908E-18
                                    3.171E-18
                                                                       7.706E-19
  3.902t-19
             3.9578-19
                                               1.980F-18
                                                           1,2368-18
  4.799E-19
             2.9771-19
                         1.832E-19
                                    1.1108-19
                                                6.535E-20
                                                           3.7878-19
                                                                       3.902E-19
  5.7438-20
             1.918E-19
                         2.699F-19
                                    3.249E-19
                                                3.583E-19
                         1,908E-18
                                               1.979t-18
             3.9731-19
  3.957E-19
                                    3,1716-18
                                                           1.234E-18
                                                                      7.684E-19
  4.700E-19
             2.9328-19
                         1.776E-19
                                    1.048E-19
                                                5.9858-20
SCH. RUN.
             13 6.40
1
                                               30,00
      8.40
               10.00
                          15.09
                                    20.00
                                                         40.00
                                                                    50.00
                                                                              60.00
     10.00
               80.00
                          90.00
                                   100.00
                                              200.00
                         1.733E-19 -4.417E-20 9.057E-21 -3.297E-21
  1.652E-19 -1.668E-19
                                                                       1.102F-22
  3.16Ct-22
             5.587F-23 -4.395F-22
                                    7.0208-22 -H.8598-24
             1.6711-19 -8.9961-20
                                    9.057F-21 -3.297E-21
                                                           1.1021-22
                                                                       3.160F=22
 -5. 1051-19
                        7.020E-22
                                               4.429E-24
 5.5871-23 -4.3451-22
                                   -8.859E-23
             5.987F-18 -3.533E-18
 -6.79CF-19
                                    9.3881-18
                                                5.450E-18
                                                           6.459E-18
                                                                       6.4831-18
                                                6.065t-19
             5.8536-18
                         5.007E-18
                                    5,2176-18
 6.0731-18
                         1.229t-17
                                                6.9596-18
  0.6601-18
            -3.709E-18
                                    5.456F-18
                                                           6.4838-18
                                                                      6.0/3F=1H
                        5.217F-18
  5.8531-18
             5.6671-16
                                    5.18HF-18
                                                2.8521-19
OF ALL 9.9
             12 9.90
                          20.00
                                                                    60.00
                                                                              70.00
      4.40
               15.09
                                    30.00
                                               40,00
                                                         50.00
     80.00
                         100.00
                                   200,00
               40.00
  3.2006-22 -6.7656-22 -6.7666-22 -2.1318-22 -4.6506-23 -1.1306-23 -3.7316-23
  4.3526-23
            6.2121-24 -5.8371-23
                                   1.9288-24
 -6.40Ct-22 -1.37HF-21 *2.137t-22 -4.H50E-23 -1.130E-23 -3.791E-23 4.352E-23
  6.2126-24 -5.8376-23
                        1.9281-23 -9.6401-25
                                                           6.777t-19
 -6.6201-21
             5.6271-19
                         5.448t-14
                                    0.843F-19
                                                6.9558-19
                                                                       6.5311-19
 0.0011-14
             5.8536-19
                         5.0816-19
                                    3.2516-20
                        6.8431-19
                                    6.955F-19
  5.4421-14
             1.0051-18
                                               6.7776-19 6.531E-19
                                                                      6.061t-19
             5.6811-19
                        5.1601-19
  4. H431-14
                                    4.3971-20
LUPP VIR
                  .14
       .14
                 . JH
                            .50
                                                 . 44
                                                          1.00
                                                                     1.25
                                                                               1.50
                                      .00
      2,00
                2.50
                           2.81
 -1.240t-17
             3.7111-17 -8.5545-17 -1.3008-17 -1.6476-17 -1.1658-17 -2.0156-17
 1.1411-18
             1.6091-14 -1.2871-19
  2.481E-17
            -1.06Ht-16 -2.749t-17 -3.620t-16 -4.697t-17 -2.015t-17
                                                                       2.2011-18
 1.0091-18
            -7.981F-20
                        6.4366-20
  4.1171-14
             2.4426-17
                         1.0141-17
                                    2.5411-17
                                                1,3111-16
                                                           3.3858-17
                                                                       3.3761-17
  1.2846-17
             6.4746-18
                         4.0456-18
  1.5646-17
             4.417E-17
                         4.404F-17
                                    2.910F-17
                                               1.3376-16
                                                           3.376E-17
                                                                       2.611E-17
  0.474t-1H
             2.5201-16 -6.1851-21
   5 20
  17.40
     12.20
               11.00
                          15,00
                                    17,00
                                               22.00
                                                         24.00
                                                                   30.00
                                                                              40.00
     50,00
               60.00
                          70,00
                                    80.00
                                               90.CO
                                                        100,00
                                                                  110.00
                                                                             120.00
    125,00
              140.00
                         150.00
                                   200.00
                                   2,1631-04
                         1.8551-04
                                                          7.0231-06
 -2.7141-04
            2.1711-04
                                               1.2171-04
                                                                      9.275E-08
                                  -1,9861-05
 -1.949t-05 -2.213t-05 -1.200t-05
                                               1.4316-06 -1.5876-05
                                                                      2.041F-06
 -H. 7941-10 -1. 17H1-06 -1. 4H01-06 -H. 7971-07 -1. 1H31-07
 5.4276-04 1.8556-04
                        5.4071-04
                                   4.8698-05
                                               2.1076-05
                                                           1.5461-07 -3.9496-05
 -2.2136-05 -1.3006-05 -1.9866-05
                                    1.4316-06 -1.5876-05
                                                           2.0412-06 -8.294E-06
```

```
-8.638E-07 -4.458E-06 -5.865E-07 -1.592E-06
                                              1.592E-07
           1,213E-02
                                  3.059E-02
  1.737E-04
                       4.776E-02
                                              2.360E-01
                                                         1.011E-01
                                                                    1.020E-01
                                              2.859E-01
  1.709E-01
            2.162E=01
                       2.482E-01
                                   2.730E-01
                                                         2.996E-01
                                                                    3,038E-01
            6,192F=01
                                   3.081E-01
                                              6.200E-02
  3.092E=01
                       2.067E-U1
            4.776E-02 8.764E-02 9.338E-02 3.039E-01
                                                         1.700E-01
                                                                    1.709E-01
  3.215E-02
  2.162E-01 2.482E-01
                       2.730E-01 2.859E-01
                                              2.996E-01
                                                         3.038E-01
                                                                    3.092E-01
  3.097E-01 6.193E-01 2.055E-01 3.062E-01 5.720E-02
 1.058E-02 -8.463E-03 2.238E-03 -1.156E-04 9.083E-05 -1.417E-05 -6.435E-07
 -2.647E-06 -3.476E-07 -9.252E-08 -6.024E-07
                                             4.120E-07 -5.656E-07 2.805E-07
 -2.662E-07 1.290E-07 -9.669E-09 1.718E-08 -8.248E-10
 -2.116E-02
            2,238E-03 -2.889E-04 3.233E-05 -4.250E-05 -1.073E-06 -2.647E-06
 -3.476E-07 -9.252E-08 -6.024E-07 4.120E-07 -5.656E-07
                                                         2.805E-07 -2.662E-07
  6.450E-08 -2.901E-05
                       1.145E-08 -4.124E-09
                                             4.124E=10
 -6.770E-03
            6.636E-02
                                 1.796E-02
                       2.575E-02
                                              4.901E=02
                                                        1.824E-02 1.238E-02
                                              1.496E-02
                                  1.516E-02
  1.438E-02
            1.48UE-02
                       1.501E-02
                                                         1.500E-02 1.470E-02
                                             2.700E-U3
                                  1.375E-02
            2.856F-02
                       9.434E-03
  1.456E-02
                                  1.892E-02
                       3.884E-02
                                              5.337E-02
                                                         2.056E-02 1.438E-02
  9.480E-02 2.575E-02
                                              1.500E-02
  1.480E=02 1.501E=02
                       1.516E-02 1.496E-02
                                                         1.470E-02 1.456E-02
  1.427E-02 2.829E-02
                       9.163E-03 1.349E-02 2.434E-03
 8.7970E-17
        12,20
X2FI G
         1.00
                       0.27
                                             0.17
                                                    0,17
                                                           0.17
                                                                  0.17
                                                                         0.17
  1.00
                0.50
                              0.26
                                      0.17
  0.17
         0.17
                0.17
                       0.17
                              0.17
                                      0.17
                                             0.17
                                                    0.17
                                                           0.17
                                                                  0.17
                                                                         0.17
A4FI U
         16.10
         0 \bullet 0 0
                0.50
                       0.41
                              0.40
                                             0.37
                                                    0.37
                                                           0.37
                                                                  0.37
                                      0.37
  0.00
  0.37
         0.37
                0.37
                       0.37
                              0.37
                                      0.37
                                             0.37
                                                    U.37
                                                           0.37
                                                                  0.37
         16.90
A2PI U
                                                           0.22
                0.00
                       0.24
                              0.23
                                      0.22
                                             0.22
                                                    0.22
                                                                  0.22
   0.00
         0.00
                                             0.22
                                                    0.22
                                                           0.22
   0.22
         0.22
                0,22
                       0,22
                              0.22
                                      0.22
                                                                  0.22
B4SIG -G 18.20
                                             0.15
                                                    0.15
                                                           0.15
  0.00
         0.00
                 0.00
                        0.08
                               0,07
                                      0.15
                                                                  0.15
                                                                         0,15
                                             0.15
                               0.15
                                                    0,15
                                                           0.15
   0.15
         0.15
                 0.15
                       0.15
                                      0,15
         23,00
  В
                       0.00
                              0.04
  0.00
         0.00
                 0.00
                                      0.09
                                             0.09
                                                    0.09
                                                           0.09
                                                                  0.09
                       0.09
                              0.09
                                      0.09
                                             0.09
                                                    0.09
                                                           0.09
   0.09
          0.09
                 0.09
             Q
MOL. N
                8.40
Alfi
             15
         8.5U
                9.00 10.00 11.00 12.00 13.00 16.00 20.50 25.00
   8.40
  35.00 50.00 70.00 100.00 200.00
  4.619E-19 -1.848E-19 2.125E-19 4.088E-19 1.152E-18 -2.019E-18 -2.593E-20
                                  7.931E-22 6.327E-23 2.717E-23 3.280E-24
 -2.660L-20 -4.062E-21 -4.714E-22
                                  1.152E-18 -2.019E-18 -7.778E-20 -3.990E-20
 -9.238E-19 4.250F-19
                       4.08HE-19
 -4.062E-21 -1.048E-21
                       1.190E=21
                                   8.436E-23
                                             4.076E-23
                                                        1.093E-23 -1.640E-24
                                              1.6851-17
 -4.619E-21
            1.046F-18
                       2.788E-18
                                   8.591E=18
                                                         3.202E-17
                                                                   1.190E-17
                                              8.247E-19
                                                        3.755E-19
                                                                    4.720E-20
                       3.647E-18
            9.082E-16
                                   1.488E-18
  9,650E=18
             5.894E-18
                                  1.685E-17
                                              3,202E-17
                                                         3.508E-17
  5.009E-18
                       9.591E=18
                                                                    1.403E-17
  9.082E-18 8.021E-18 2.381E-18
                                 1.114E-18 5.837E-19
                                                         2.568E-19 5.640E-20
WBDEL
             10 7.20
                8.00 15.00 20.00 25.00 30.00 40.00 75.00 90.00
   7.20
         7.50
  2.162E-20 -2.594E-20 5.373E-21 -6.505E-21 -1.705E-21 -1.074E-21 -2.002E-22
  7.687E-23 -6.770E-23
 -4.323E-20 7.522E-20 -4.647E-21 -1.705E-21 -1.074E-21 -4.004E-22 2.690E-22
             3,385E-23
 -2,901E-23
             3.365E-19 -2.004E-19 1.483E-18 1.683E-18 1.627E-18 7.200E-19
 -1.945E-21
  3.155E-20
            1.372E-19
             8.612E-19 1.171E-18 1.683E-18 1.627E-18 1.410E-18 4.131E-19
  5.539E-19
  8.783E-20 4.118F-20
```

```
0
A3SIG
             14 6.14
                 7.00
                        7.50
                                8.00
                                       9.00 10.00 12.00 13.00 20.00
   6.14
          6.50
  35.00 50.00 70.00 90.00
 -1.441E-18 2.076E-18 -4.746E-19 -1.374E-19
                                               4.760E-19 -1.274E-18 -6.904E-19
            1,219t-20 -1,593E-23
                                   1.662E-23
                                              1.176E-22 -8.614E-24
  7.794E-19
                                                                      3.897E-19
  2.883E-18 -4.746E-19 -1.374E-19
                                   9.521E-19 -1.274E-18 -1.381E-18
                                   1.569E-22 -8.614E-24
  8.532E-20 -3.413E-23
                       1,662E-23
                                                          4.307E-24
                        1.434E-17
                                    2.315E-17
  1.868E-19
                                                           2.627E-17
            4.815E-18
                                               1.552E-17
                                                                      1.676E-17
             1.546F-18
                                               3.794E-20
  1.722E-17
                        6.036E-19
                                    3.296E-19
                                                           3.345E-20
             1.434E-17
  7.035E-18
                        2.315E-17
                                    3.176E-17
                                               2.627E-17
                                                           2.938E-17
                                                                      7,441E-18
  1.491E-17 1.287E-18 3.296E-19
                                    7,804E-20 3,345E-20
                                                           8.277E-21
   0
B3PI
             14 7.40
         7.50
                9,00 10,50 11,50 12,00 13,00 16,00 20,00 25,00
  7,40
  35.00 50.00 70.00 90.00
 -6.842E-18 9.122E-19 -1.916E-18 -4.541E-18
                                               3.221E-20
                                                          2.986E-18 3.449E-19
 -4.973E-20
            1.320E-20 -8.447E-22
                                   1.562E-22
                                               9.099E-23
                                                           6.145E-24 -4.503+115
  1.368E-17 -1.916E-18 -3.027E-18
                                   1.610E-20
                                               5.971E-18
                                                          1.035E-18 -6.630E-20
  1.650E-20 -1.689E-21 2.343E-22
                                               6,145E-24 -3,072E-24
                                                                     4,940-223
                                   1.213F-22
                                    6.454E-17
                                                          2.701E-17
  6.842£-20 -5.246E-20
                        3.631E-17
                                               8,199E-17
                                                                      2.896E-18
                                   3.648E-19
                                              8.360E-20
  4,296E-18
            1.870E-18
                        9.845E-19
                                                           4.254E-20
                                                                     4,940=223
                                                           1.697£-17
  2.986E-17
            3.631E-17
                        4.681E-17
                                    4.098E-17
                                              5.851E-17
                                                                     5,263E-18
            1.842E-18
  2.486E-18
                       5.766E-19
                                   1.327E-19
                                              4,254E-20
                                                          1.623E=20 3.730E=23
   0
C3P1
             15 10,80
        11.50 12.00 12.50 13.00 14.00 15.00 16.00 18.00 20.00
  10.80
  25.00 35.00 50.00 70.00 90.00
 -2.090E-19 5.851E-19 1.189E-17 -5.132F-18 4.321E-18 -8.680E-18
                                                                     2.400E-18
  3.949E-20
            3.145E-20 3.388E-20 -1.948E-21 2.498E-22 9.146E-23
                                                                      1.434E-23
  4.179E-19
            1.189E+17 -5.132E+18 8.642E-18 -8.680E-18
                                                          2.400E-18
                                                                     7,897E-20
            8.470E-20 -3.897E-21
                                              1.219E-22
                                    3.748E-22
                                                          1.434E-23 -7.172E-24
  3.145E-20
                                                                     3.160E-17
  1.024E-19
             3.604E-18
                        7.028E-18
                                    2.828E-17
                                               1.768E-17
                                                           5.068E-17
  1.334E-17
             9.374E-18
                        1.753E-18
                                   1.195E-18
                                               4.105E-19
                                                           1.034E-19
                                                                      4.426E-20
             7.028E-18
                                    4.184E-17
                                               5.068E-17
  2.474E-18
                        2.828E-17
                                                           3.160E-17
                                                                      2.692E-17
  9.374E-18
             6.161E-18
                        2.097E-18
                                   6.625E-19
                                              1.592E-19
                                                          4.426E-20
                                                                     1,953E-20
112.4
              9 12,40
 12.40 12.50 15.00 20.00 30.00 50.00 70.00 110.00 200.00
  3.004E-19 -2.404E-20 2.476E-20 -2.130E-21 -3.996E-22 -1.019E-21 -1.377E-22
  1,699E-24
 -6,009E-19
             4.951E-20 -4.260E-21 -7.992E-22 -1.019E-21 -2.755E-22 3.823E-24
 -8.495E-25
 -3.004E-21
            2.502F-19 6.811E-19 2.913E-18 3.510E-18 6.657E-18 3.845E-18
  1.570E-18
  2.506E-18
             2.291E-18 5.506E-18 6.780E-18 6.657E-18 7.360E-18 3.556E-18
  1.340E-18
   1
    . 33
T16.4
              8 13.50
  13.50 14.00 17.00 22.00 30.00 50.00 100.00 200.00
 +2.332E-19 7.774E-20 2.496E-20 +1.520E-21 +8.307E-22 -4.473E-22 1.273E-23
  4,664E-19 4,160E-20 -2,432E-21 -2,077E-21 -1,118E-21 2,547E-23 -6,367E-24 5,831E-20 -5,971F-19 9,759E-19 4,347E-18 4,162E-18 4,218E-18 1,673E-18 4,988E-19 2,292E-18 6,861E-18 9,758E-18 0,197E-18 3,536E-18 1,564E-18
   1
```

```
.33
N2(VIB)
            12
                  .43
          .50
   0.00
                1.00
                       1.25 1.50 1.75
                                            2.00
                                                  2.50
                                                           3.00
                                                                 3.50
   4,50
         5.00
 -1.156E-19 2.311E-19 -3.218E-18 1.320E-16 -4.591E-16 7.570E-15 -1.937E-15 -1.682E-15 1.197E-15 5.343E-17 -3.886E-17
  2.311E-19 -1.609E-10 1.320E-16 -4.591E-16 7.570E-15 -3.874E-15 -1.682E-15
  1.197E-15 1.069E-16 -1.943E-17 1.943E-17
           6.422F-19 2.601E-18
                                 1.751E-18 5.039E-17 -7.313E-17 1.684E-15
  2.889E-20
           2.342E-10 -1.843E-17
                                 3.306E-17
  2.220E-15
  6.422E-19 1.602E-18 1.751E-18 5.039E-17 -7.313E-17 2.642E-15 2.220E-15
  2.342E-16 4.329E-17 3.110E-17 -4.858E-18
    .33
N2(DIS)
            12 12.00
 12.00 16.00 20.00 25.00 30.00 35.00 55.00 80.00 90.00 120.00
 150,00 200,00
 -8.237E-20 1.647E-19 -8.624E-20 -2.495E-20 -1.397E-20 2.078E-22 -3.170E-22
  4,080E-23 -3,681E-22 2.362E-22 -1.273E-23
 1.647E-19 -1.078E-19 -2.495E-20 -1.397E-20
                                             8.312E-22 -3.963E-22 1.632E-23
 -1.104E-21 2.362E-22 -2.121E-23 6.364E-24
                                            2.735E-17 6.917E-18 6.358E-18
           3.614E-18 1.816E-17
 1.318E-18
                                 2.462E-17
                                 2.372E-18
            5,465E-18
                      4.054E-18
2.462E-17
 1.560E-17
            2.172E-17
                                            2,798E=17 7,859E=18 6,230E=18
  3.614E-18
                                  2.735E-17
  1.551E-17 4.054E-18 3.919E-18 2.084E-18
   .33
   5 17
  12.70
 15.50 16.00 19.00 21.00 25.00 35.00 40.00 45.00 50.00 55.00 60.00 70.00 80.00 90.00 100.00 140.00 200.00
 -1.945E-19 6.484E-20 -6.342E-21 7.283E-21 4.894E-21 -2.974E-20 6.859E-21
 2.305E-21 -1.608E-20 3.609E-21 1.221E-21 -4.665E-21 1.240E-21 -1.946E-22
 -1.404E-22 -2.047E-23
 3.891E-19 -4.228E-21 1.457E-20 1.224E-20 -1.497E-20 6.859E-21 2.305E-21
 -1,608E-20 3,609E-21 2,442E-21 -4,665E-21 1,240E-21 -1,946E-22 -5,614E-22
 -3.070L-23 1.023E-23
  4.863E-20 2.648E-19 1.085E-17 8.733E-18 6.011E-18 2.854E-17 3.123E-17
 3.494E-17 3.900E-17 4.065E-17 2.133E-17 2.407E-17 2.401E-17 2.469E-17
            4.207E-18
  6.525E=18
            7.251E-18 1.764E-17 1.605E-17 1.539E-17 3.123E-17
  4.993E-18
                                                                   3.494E-17
            4.065E-17
                       4.284E-17 2.407E-17 2.401E-17 2.469E-17
                                                                  2.526E-17
  3.900E-17
  6.249E=18 3.563E=18
 2.538E-20 -8.460E-21 1.522E-20 -1.032E-21 4.045E-22 -2.885E-21 1.690E-21
 4.431E-22 -9.827E-22 5.277E-22 1.560E-22 -2.698E-22 1.232E-22 6.845E-24
 -5.1556-24 -1.309E-25
 -5.076E-20 1.015E-20 -2.065E-21 1.011E-21 -1.442E-21 1.690E-21 4.431E-22
 -9.827E-22 5.277E-22 3.119E-22 -2.098F-22 1.232E-22 6.845E-24 -2.062E-23
 -1.963E-25
            6.545E=2n
                       6.334E-18 3.334E-18 1.394E-18
                                                       3.300E-18
                                                                  3.136E-18
  2.535E-17
            4.319E=10
            3.221E-18
                      3,149E-18 1,566E-18 1,644E-18 1,560E-18 1,549E-18
  3.145E-18
  3.935E-19
            2.376E-19
            4.172E-18 6.643E-18 3.569E-18 1.798E-18
                                                       3.136E-10 3.145E-10
  2.547E-17
            3.149E-18
  3.221E-18
                       3.156E-18 1.644E-18 1.560E-18 1.549E-18 1.543E-18
  3.563E-19 1.983E-19
  0
X2SIG+G 15.58
         .89
  1.00
                        .75
                                       .54
                                             .54
                                                    .54
                                                           .54
                  .80
                               .63
                                                                  .54
```

```
,54
                  .54
                          .54
                                 .54
                                        .54
           .54
A2PI U
         16.73
           .10
                  .15
                          .15
                                 .13
                                        .12
                                                .12
                                                       .12
   0.00
                                                              .12
                                                                      .12
           .12
                  .12
                                 .12
    .12
                          .12
                                        .12
B2SIG+G
         18,75
                          .05
                                        .04
                  .05
                                 .05
           .01
                                                                      .04
   0.00
                                                .04
                                                       .04
                                                              .04
           .04
                  .04
    .04
                          .04
                                        .04
                                 .04
LUMPED
         22.80
                                        .07
   0.00
                                                .07
                 0.00
                          .05
                                .09
                                                              .07
                                                                      .07
          0.00
                                                       .07
    .07
           .07
                          .07
                  .07
                                .07
                                        .07
DISC. 1,
          25.0
    .00
           .00
                  .00
                          .00
                                 .10
                                                                      .23
                                        .23
                                                       .23
                                                              .23
                                                .23
    .23
           .23
                  .23
                          .23
                                 .23
                                        .23
ATCM B
             18
                 1,96
2P4 1D
             11
  1.96
          2.96
                 3.96
                        5.96
                                9,46 16,96 31,96 51,96 100,00 150,00
 200.00
  5.315E-19 -1.063E-18 -6.396E-19 -1.593E-21 3.208E-21 1.409E-22 1.036E-22
 1.724E-23 4.640E-24 -4.660E-25
 -1.063E-18 -1.279E-18 -2.788E-21
                                    6.875E-21
                                               2.818E-22 1.382E-22
                                                                     4.141E-23
 4.830E-24 -4.660E-25
                       4.558E-25
                                   7.877E-18
                                               2.886E-18
                                                          1.122E-18
 -5.315k-19
            1.606E=17
                        1,506E-17
            3,399E-21
 7.054L-20
                        5,565E-21
                                    6.487E-18 2.291E-18 6.689E-19 2.484E-19
  1,606E-17
             2.628E-17
                        1.376E-17
            5.565E-21
  4.466E-21
                        7.406E-22
   0
2P4 1S
             13 4.18
                 9.18
                       11,68 14,18 19,18 24,18 34,18 44,18 54,18
   4,18
          6,68
 100.00 150.00 200.00
 1,297E-20 -2,594F-20 -5,195E-21
                                   1.925F-21
                                               2.763E-23
                                                          7.587E-23 -5.552E-24
 -2.311E-24 1.480E-23
                       3.956E-24
                                   8.712E-26
                                               7,389E-26
                        1.925E-21
                                    5.526E-23
 -2.594E-20 -5.195F-21
                                               7,587E-23 -1,110E-23 -2,311E-24
            1.8136-23
 1.480E-23
                        9.507E-26
                                    7.389E-26 -6.696E-27
             9.622E-19
                        1.0326-18
                                    9.080E-19
                                               4.273E-19
                                                           3.781E-19 1.706E-19
 -8.108E-20
 1.302E-19
             8.852E-20
                        4.244E-21
                                    1.582E-21
                                               3.553E-22
  9.622E-19
             1.032E-18
                        9.080E-19
                                    8.557E-19
                                               3,781E-19
                                                           3.403E-19 1.302E-19
  8.852E=20
             5.569E-20
                        1.765E-21
                                   3.553E-22
                                               2.367E-22
   0
3555(25)
             10 9.15
   9.15
         9,60 11,62 14,06 17,01 20,59 24,91 33,15 48,54 53,39
 -6.642E-19 2.959E-19 -8.502E-21 -2.054E-19 4.269E-20 4.266E-21 2.478E-21
 -1,104E-22
            6.253E-22
  1.328E-18 -1.027E-20 -2.464E-19 5.180E-20 5.147E-21 4.726E-21 -2.061E-22
 1.971E-22 -3.127E-22
  1.345t-19 -8.115E-19
                        4.149E-18
                                   8,567F-18
                                               3,364E=18 1,703E=18
                                                                     3,293E-19
            1.622E-20
  1.561E=19
  1.509E-18
             4.992E-18
                        9,675E-18 4.295E-18 2,085E-18 8,609E-19 2,567E-19
 -3,693E-20
            7.355E-21
0 453535
             19 9.50
   9.50 12.00 14.50 17.00 19.50 22.00 24.50 29.50 37.00 44.50
  54.50 62.00 74.50 82.00 102.00 127.00 152.00 172.00 199.50
 1.232L-20 1.225L-20 -3.03bE-21 -3.348E-21 -3.603E-21 -2.846E-21 -1.114E-21
 -4.177E-22 -1.80EE-22 -6.180E-23 -2.623E-23 -6.754E-24 2.269E-24 1.431E-24
 1.797F-24 1.448E-24 1.396E-24 7.672E-25
 1.225E-20 -3.036F-21 -3.348E-21 -3.603E-21 -2.846E-21 -2.228E-21 -6.265E-22 -1.808E-22 -6.241E-23 -1.968E-23 -1.126E-23 1.301E-24 3.816E-24 2.246E-24
```

```
1.448E-24
            1.117E-24 1.055E-24 8.185E-25
 -7.699E-20
            2.584E-19 1.053E-18
                                  1,734E-18
                                              2,289E-18 2,709E-18 1,532E-18
            1.230E-18
                                              7.078E-19 1.116E-18 4.040E-19
  1.160E-18
                       9.326E-19
                                   1,212E-18
  2,949E-19
            2.660E-19
                        3.035E-19
                                   2.062E-19
            1.053E-18
  2.584E-19
                        1.734E-18
                                   2.289E-18
                                              2.709E-18
                                                          3.023E-18
                                                                    1.720E-18
  1.230E-18
             1.240E-18
                                   1.178E-18
                        9.097E-19
                                              6.695E-19 1.079E-18 3.691E-19
                       2,839E-19
  2,660E-19
            2.426E-19
                                  1.895E-19
0 4S3P5P
             24 10.70
  10,70 13,20 15,70 18,20 20,70 23,20 25,70 28,20 30,70 33,20
  35,70 38,20 40,70 43,20 48,20 53,20 63,20 73,20 85,70 100,70
 125.70 150.70 175.70 198.20
 -1.616E-20 -1.433E-20 -1.523E-21 -1.081E-21
                                              2.244E-23
                                                         1.590E-22
                                                                     1.734E-22
           1.647£-22 1.616E-22
                                                                     3,689E-23
                                  1.297E-22
                                              1,069E-22
                                                          9.564E-23
  2.355E-22
            9.533E-24 5.347E-24 2.542E-24
                                                         3,866E-25 1,620E-25
  2,781E-23
                                              1,192E-24
  8.669E-26 5.057F-26
                                                         1.734E-22
                                              1.590E-22
                                                                    2,355E-22
 -1.433E-20 -1.523E-21 -1.081E-21
                                   2.244E-23
                                              9,564E-23
                                                         7,379E-23
  1.647E-22 1.616E-22 1.297E-22 1.069E-22
                                                                    2.781E-23
  1.907E-23 5.347E-24 3.177E-24 1.430E-24 6.444E-25
                                                         1.620E-25
                                                                    8,669E-26
            4.012E=26
  4.551E-26
                                              5,9878-19
            6.672E-19 6.959E-19 6.676E-19
                                                         5.306E-19
  1.010E-19
                                                                    4,685E-19
                                   2,911E-19
                                                         2.358E-19
                       3.256E-19
                                              2,614E-19
                                                                    1,062E-19
  4,129E-19
            3.662E-19
            3.654E-20
                                              1.028E-20
                                                         4.438E-21
                                                                    2.975E-21
  8.824E-20
                       2.709E-20
                                   1.653E-20
  2.119E-21
            1.770E-21
                       6,676E-19
                                   5.987E-19
                                              5,306E-19
                                                         4.685E-19
                                                                    4,129E-19
  6.672E-19
             6.959E-19
                                              2.358E-19
                                                         2.137E-19
                                   2.614E-19
                       2.911E-19
                                                                    8.824E-20
  3.662F-19
             3.256E-19
            2.709F-20
                       2.084E-20 1.243E-20 7.655E-21 2.975E-21 2.119E-21
  7.450E-20
  1.588E-21
            1.401E-21
C 453P3P
             22 11.00
  11.00 13.50 16.00 18.50 21.00 23.50 26.00 28.50 31.00 33.50 36.00 38.50 43.50 53.50 66.00 78.50 88.50 101.00 126.00 151.00
 176.00 198.50
 -2.291E-20 -4.488E-21 -2.226E-22 -4.459E-22 -8.661E-23 -5.888E-23 -1.069E-23
 -7.703E-25 1.377E-23 9.692E-24 1.786E-23 7.430E-24 3.422E-24 2.062E-24
 1,307E-24 1,193E-24 6,781E-25 2,599E-25 1,451E-25 9,425E-26 7,417E-26
 -4.488t-21 -2.226E-22 -4.459E-22 -8.661E-23 -5.888E-23 -1.069E-23 -7.703E-25
  1,377E-23 9,092E-24 1,786E-23 1,486E-23 6.844E-24 2,577E-24 1,307E-24
            8.476E-25
                                  1,451E-25
                                              9.425E+26
                                                         6.675E-26
 9,548E-25
                       5.199E-25
                                                                    5,071E-26
  1.432E-19
             3,314F-19
                                   3.627E-19
                       3.512E-19
                                              3.575E-19
                                                         3.491E-19
                                                                    3.384E-19
  3,274E-19
            3,163E-19
                        3.057E-19
                                   2.955E-19
                                              1,428E-19
                                                         6.681E-20
                                                                     4.760E=20
  4.217E-20
             4.753E-20
                       3.527E-20
                                   1.610E-20
                                              1.401E-20
                                                         1.246E-20
                                                                    1,253E-20
                                              3.491E-19
                                   3.5752-19
                                                         3.384E-19
                                                                    3.274E-19
  3.314E-19
            3,512E-19
                       3.627E-19
  3,163E-19
            3.057E-19
                                  2.859E-19
                       2.955E-19
                                              1.341E-19
                                                         5.964E-20
                                                                    4.217E-20
  3.797E-20
            4.414E-20
                       3.245E-20 1.401E-20 1.246E-20 1.127E-20
                                                                    1.157E-20
0 3030
             19 12.10
  12.10 14.60 17.10 19.60 22.10 24.60 27.10 29.60 32.10 39.60 47.10 54.60 64.60 74.60 102.10 127.10 149.60 174.60 199.60
```

APPENDIX D

PARTIAL LISTING OF A TYPICAL PHOTOELECTRON PRODUCTION INPUT FILE FROM ATMOSPHERIC EXPLORER C SATELLITE ORBIT 284 UPLEG

PRECEDING PAGE BLANK - NOT FILLED

```
HINTEREGGER FLUX, FITTED ATMOSPHERE
 1.00 / 1.90
                                                              KE 0284U . 7
 PHOTOELECTRON ENERGY GRID IN EV - 5F15.5
 100=NPTSPRO
    .000000E 00
                     •10000E 01
                                      .20000F 01
                                                       .30000E 01
                                                                       . 4000 DE 01
    .50000F 01
                     .60000E 01
                                      •70000E 01
                                                       .80000E 01
                                                                       . 90000E 01
    -1000 OF 02
                     •11000F 02
                                      .12000E 02
                                                       •13000E 02
                                                                       .14000E 02
    .1500 DE 02
                     • 16000E 02
                                      •17000E 02
                                                      •18000E 02
                                                                       . 19000E 02
    .2000 OF 02
                     .21000E 02
                                      • 32000E 02
                                                      .2300CE 02
                                                                       . 2400 OF 02
                                      .27000E 02
    . 25 00 DE
            02
                     . 26000E 02
                                                       •2800CE 02
                                                                       . 29000E 02
    .3600 OF 02
                     .31000E 02
                                                      .33000E 02
                                                                       .34000E 02
                                      .37000E 02
    .3500 OF 02
                     .36000E 02
                                                      .38000E 02
                                                                       .39000E 02
    .40000E 02
                     .41000E 02
                                      • 42000E 02
                                                      .43000E 02
                                                                       • 44000E 02
    .45000E 02
                     .46000F 02
                                      .47000E 02
                                                      .4800CE 02
                                                                       .45000E 02
    .50000E n2
                     •51000E 02
                                      .52000E 02
                                                      .5300CE 02
                                                                       .54000E 02
    .5590 GE 02
                     .56000E 02
                                      .57000E 02
                                                      .58000E 02
                                                                       .59000E 02
    .60000E 12
                     .61000F 02
                                     • 52000F 02
                                                      .63000E 02
                                                                       .64000F 02
    .65000F n2
                     66600E 02
                                     .67000F 02
                                                      .68000F 02
                                                                       .69000E 02
    •70000E 02
                     •71000E 02
                                      •72000E 02
                                                      .73000E 02
                                                                       • 74000E 02
    .7500 BE 02
                     .. 76000E 02
                                     •77000E 02
                                                      ●78000E 02
                                                                       • 79000E 02
    .8000 0E 12
                     .81000E 02
                                     .92000E 02
                                                      .83000E 02
                                                                       .84000E 02
    .8500 OF 02
                     .86000F 02
                                      .87000E 02
                                                      .8800CE 02
                                                                       .89000F 02
    .9000 OF 02
                     .91300E 02
                                                      .93000F 02
                                     • 92000E 02
                                                                       • 94000E 02
    -9500 0F 02
                     •96000E 02
                                     .97000E 02
                                                      •98000E 02
                                                                       • 95 00 0F 02
SOLAR ZENITH
                             53.649994
ALTITUDE
                            409.000000
TEMPERATURE
                            714.856934
DENSITIES
               HE
                                •523700E 07
               N2
                                .380203F 06
                                •213252E 08
               G
               02
                                .241455F 04
                                               25 X , E 1 6 . 6
 ELECTRON TEMPERATURE
                                 •122000F 04
 ELECTRON DENSITY
                             .241300E 06
 TUTAL ION DENSITY
                            .000000E 00
 PHOTOLLEICTRON SPECTRUM
                            6E12.4
  .9140E '00
             - .6662E 00
                            .4517E 80
                                          .1650E OF
                                                       +2497E 00
                                                                    -1481E 90
  .2921E 00
              . .1839 E DC
                            .1088E 00
                                          •1130E 00
                                                       .3006E-01
                                                                    .4289E-01
· •17345 00
               •3197 E-01
                            .9165E-02
                                          .7310E-01
                                                       .2082E 00
                                                                    .5949E-01
  ·2379E-01
               .2114 E-01
                            .9690E-01
                                        · •9782E-02
                                                       .3993E 00
                                                                    .63 01E 00
  .3443E-01
              - a2723F-01
                            .5330E-01
                                        · •4286E 00
                                                       ·71995-01
                                                                    .6878E-01
  .43115-01
               .9951E-01
                            ·4250E-01
                                          .3647E-01
                                                       •7218F-01
                                                                    .3098E-01
              - -3069 E-01
  ·20465-01
                            .1934E-01
                                        · •1667E-01
                                                       .2093F-01
                                                                    -1444E-01
 ·16215-01
              . .2078 E-01
                            •1959E-01
                                          •1778E-01
                                                       .1607F-01
                                                                    •3110E-01
· •2164E-01
              . .1697 E-01
                            ·2887E-01
                                          .2848E-01
                                                       -2541F-01
                                                                    .2936E-01
· -2324E-01
              . .3358 E-01
                            •1205E-01
                                          •1673E-01
                                                       •1699F-01
                                                                    .2632E-02
  -2394E-02
               -2966 E-02
                            -1234E-02
                                          •1767E-Q2
                                                       .4726E-02
                                                                    •6976E-03
               -1844 F-02
  ·36375-02
                            •9774E-03
                                          .2444E-02
                                                       -4343F-04
                                                                    .3562E-13
  .3278F-03
               .2844E-04
                            .6999E-05
                                          .1620E-03
                                                       .7693E-04
                                                                    ·2860E-03
  ·21778-03
               -2343 E-04
                            .2250E-03
                                          -2571E-03
                                                       .1059E-03
                                                                    .1757E-03
  -1317E-03
               .5568E-04
                            . 3834E-04
                                          •1798E-03
                                                       •1458E-03
                                                                    -1219E-03
  •1549E-03
               -1146 E-03
                            · 22 27 E - 03
                                          .9297E-04
                                                       •1897E-03
                                                                    .15 60E-03
  .7661E-04
               .2058 E-03
                            .9358E-04
                                          •1153E-01
SULAR ZENITH
                             54.809993
ALTITUDE
                            384.300047
TEMPERATURE
                            714.728271
               HE
GENSITIFS
                               •5568CDE 07
               N 2
                                •102303F 07
               n
                               .358147E 08
                                                                  PRECEDING PAGE BLANK - NOT FILLE
               02
                                .76710 JE 04
                                               25 X J E 16 . 6
 ELECTRON TEMPERATURE
                                 •12?370E 04
 ELECTRON DENSITY
                            •306300E 06
 TUTAL ICH DENSITY
                            • 00 00 00 F 30
 PHOTOELECTRON SPECTRUM
                            6E12.4
  .13825 01
               .1118E 01
                            .5205E 00
                                         •2987E 00
                                                       .4309E 00
                                                                    .2570E 00
  .4936E 00
               .3119 E 30
                                          •1757E 00
                            •1853E 00
                                                                    .76112-Ni
                                                       •5211E-01
  .2895F '0C
             - 05414F-91
                            .1577F-01
                                         -1232F 90
                                                       . 2F17F 10
                                                                    .1001F 00
```

```
· •4043E-01
                · •3376E-01
                                -1589E 00
                                           - -15915-01
     •6266E-01
                                                           .6687E 00
                . .4777 E-01
                                                                      · •1051E 01
                                .8796E-91
                                             ·71925 00
     ●7184F-01
                                                           •1210E 00
                 - 1678E 00
                                                                        •1156E 90
                                •7152E-01
                                           . .6136E-01
     ·33969-01
                  •5118 E-01
                                                           •1711E 00
                                .3179E-01
                                                                        .5212E-D1
                                             .2733E-01
     • 2680E-01
                 - -3473E-01
                                                           .3509E-01
                                                                        .2348E-01
                                .3192E-01
                                           . .2935E-01
     .3643F-01
                                                           ·25945-01
                - -2852E-01
                               .4851E-01
                                                                        .5090E-01
                                             •4790E-01
   · •3914E-'01
                                                          .4281E-01
                ●5651E-01
                                                                        -4945E-01
                               .2021E-01
                                             .2808E-01
   · •3696E-05
                4970 E-02
                                                          ·2837E-01
                               .2065E-02
                                                                        .4445E-02
                                             •2978E-02
                                                          •7954E-02
   · •61235-02
                  .3109E-02
                                                                        .1184E-02
                               +1644E-02
                                             •41 30 E-02
     ●5451F-03
                                                          .6107E-04
                  •4825 E-04
                                                                        • 60 02E-03
                               • 1243E- ŋ4
                                             • 26 90 E-03
    •3675E-03
                                                          +1255E-03
                  •4207 E-04
                               •3791E-03
                                                                        ·4802E-03
                                             •4261E-03
   •2171E-03
                                                          •1767E-03
                  09440E-04
                                                                        •29.62E-03
                               •1453E~03
                                             •3018E-03
    +2604E-03
                                                          •2439E-03
                  •1914 E-J3
                               •3735E-03
                                                                        • 2 0.5 2E - 03
                                            .1506E-03
    •1264E-03
                                                          •3142E-03
                 .3465 E-03
                                                                       •2528E-03
                               •1507E-03
  SOLAR ZENITH
                                            ●1915E-01
                                55.990005
  ALTITULE
                               360.699951
  TEMPERATURE
                               714 - 496094
  DENSITIES
                 HE
                                  ●695800E 07
                 N2
                                  •269103E 07
                 n
                                  ●594733E 08
                 02
                                  •233425E 05
  ELECTRON TEMPERATURE
                                                 25X, E16.6
  ELECTRON DENSITY
                                   .130000E 04
                              .38 09 00F 16
  TUTAL ION DENSITY
                              • 000000E 00
  PHOTOLLECTRON SPECTRUM
                              6E12.4
   •2274E 01 · •1847 € 01
                              •1358E 01
                                           •5112E 30
  •8293F 00
              · •5254 € 30
                                                         .7461E 00
                                                                      .45 10E 00
                              ●3143E 00
   ·47955 00
                                           -2842E 00
                                                         •9141E-01
              . •9106 E-01
                                                                      •1375E 00
                              •2795E-01
   .7011E-01
                                           .2056E 00
                                                        ·42995 00
              · •5598E-01
                              .2620E 00
                                                                      •1702E 00
 . .11975 00
                                           -2713E-01
              · #8741E-01
                                                         •1111E 01
                                                                      •1739E 01
                              •1462E 00
                                           .1193E 01
   ·12002 '00
                                                        .5058E 00
                .2810E 00
                                                                      •1928E 00
                              •1205€ 30
   ·56545-01
                                           ·1026E 20
              · •8498 E-01
                                                        · 2017 € 00
                             •5269E-01
                                                                      .8704E-01
                                           .4554E-01
   • 4450 E-'01
                                                        .5856E-01
              · •5787E-01
                                                                     ●3896E-01
                             .5280E-01
                                           .4874E-01
  •6102E-01
                                                        ·42875-01
              · •4773E-01
                                                                      .8387E-01
                             .9074E-01
   ●6541E-01
                                           •7972E-01
                •9428E-01
                                                        .7150E-01
                             . 3373E-01
                                                                      ·8251E-01
                                           .466.E-01
  •6621E-02
                                                        .4699E-01
                ●8565E-05
                                                                      .7442E-02
                             .3493E-02
  •1020E-01
                                           •4975E-02
                ●5191E-02
                                                        +1325E-01
                             •2735E-02
                                                                     ·1998E-02
                                           .6807E-02
  •9025E-03
                                                        .9814E-04
                .8139 E-04
                                                                     -1002E-02
                             • 2238€-04
 · •6152E-03
                                           -44525-03
                                                        •2096E-03
                ●7687E-04
                             • 5331E - 73
                                                                     ·8001E-03
                                          .7063E-03
  .3610E-03
                                                        •2954E-03
               -1590E-03
                                                                     •4947E-03
                             .2424E-03
                                          ·5039E-03
  -4366E-03
                -3199 E-03
                                                        .4063E-03
                                                                     ·3457E-03
                             .6226E-03
                                          •2485E-03
  .2104E-03
                                                        •5222E-03
               ●5781 E-03
                                                                     •4177E-03
                             -2484E-03
SOLAR ZENITH
                                          .3182E-01
                              57 . 229 99 6
ALTITUDE
                            338.100098
TEMPERATURE
                            714.085693
DENSITIES
               HE
                                ●713200E 07
               N2
                                ●647503E 07
               0
                                4954134E 03
               02
                                .683961E 05
ELECTRON TEMPERATURE
                                               25X, E16.5
                                 •136570E 04
ELECTRON DENSITY
                            .434900E 06
TOTAL ION DENSITY
                            • 000000E 30
PHOTOELECTRON SPECTRUM
                            6E12.4
 • 3889E '01
             · •2589E 01
                            ·21855 01
 •1350E 01
                                         ● 9900 7 00
                                                       •1263F 01
              .8580E 00
                                                                    .7755E 00
                            •5182E 00
                                         -4439E 00
 ●7680E 00
                                                       •1573E 00
              ●1485 E 00
                                                                    .2448E 01
                            .4878E-01
 •1191E 00
                                         .3319E 70
                                                       .6326€ 00
              ●9027 E-01
                                                                    •2823E 0n
                           •4175E 00
                                         .4538E-01
 .2263E 00
                                                      .1784E 01
              •1581 E 00
                                                                    .2775E 01
                           •2353E 00
•1974E 00
                                         •1910€ 01
                                                      •3295E 00
•3246E 00
              •4556 € 00
                                                                    •3111E no
                                         ·16605 00
 •9115E-01
              •1364E 00
                                                                    •14 07E 00
                           .8454E-01
                                         .7366E-91
 07152F-01
              .9331 E-01
                                                      .9442E-01
                           .8461E-01
                                                                   .6271E-01
                                         +7836E-11
•9902E-01
              •774 € E-01
                                                      ■5871E-01
                           •1299E 20
                                                                   •1335E 00
-1058E '00
                                         ·1282E 30
              .1522F 00
                                                      .1156E 00
                           .5450E-01
                                                                    •1332E 00
                                        .7488F-01
• 1060E-01
                                                      .75165-01
              -1328 E-01
                                                                   .1207E-01
                           .5670E~02
                                        .8044E-02
 •1644E-01
              .9389 E-02
                                                      ·?1345-01
                           • 44 00 € - 12
                                                                   .3275E-02
                                        ·10925-01
 - 14445-00
                                                      .1547E-03
              -1334F-18
                                                                   .1617E-02
                           ~ 40 KOF ~ 14
                                        -711AE-13
                                                      * 34 UKE - 71
                                                                   +1289F-12
```

```
· •9975E-03
            · •1386 E-03
                            .1023E-02
                                                                  - .79'98E-03
                                        •1133E-02
                                                       .4791E-03
 •5817E-03 • •2602E-03
                            •3927E-03
                                         •8150E-03
                                                       •6553E-03
                                                                  •5658E-03
 €7098E-03
            •5185E-03
                            -1004E-02
                                         •3971E-03
                                                       •9405E-03
                                                                    .6686E-03
 •3396E-03 · •9341E-03
                            •3966E-03 ·
                                         •5117E-01
SOLAR ZENITH
                             57 .869 995
ALTITUDE
                            327.300049
TEMPERATURE
                            713.782959
DENSITIES
             : HE
                               .791900€ 07
               N2
                               ●944800E 07
               C
                               •126071E 09
               02
                               .114444E 06
                                               25X, E16.6
ELECTRON TEMPERATURE
                                •140030E 04
ELECTRON DENSITY
                            .471900E 36
TOTAL ION DENSITY
                            • 300000E 00
PHOTOELECTRON SPECTRUM
                            6E12.4
                                       • 1203E 01
• 5813E 00
 •5182E 01
•1785E 01
                                                       .1694E 01
                                                                    -1045E 01
             - .3947E 01
                            -2884E 01
               .1138E 01
                            .6893E '00
                                                     - .2119E 00
                                                                  - .3329E 00
 •1013E 01
             - 1969 E 00
                            .6605E-01
                                         .4387E 00
                                                       .8127E 00
                                                                  - .3763E 00
                                         .6070E-01
                                                                    .3656E 01
 .1600E '00
             - .1194 E 00
                            .5497E 00
                                                       •2355E
                                                              01
. .3129E '00
                            .3109E '00
             - .2161E 00
                                        · .2518E 01
                                                      .4367E 00
                                                                  . .4113E 30
· •2573E '00
             · .6034E 00
                            .2622E 00
                                        · #2197E 00
                                                       .4289E 00
                                                                    .1861E 00
- .1206E 00
                            .1116E 00
                                         .9750E-01
                                                       .1252E 00
             . .1801E 00
                                                                  - 8289E-01
 .9449E-'01
                            .1117E 00
                                        - .1035E 00
               -1234E 00
                                                       .9071E-01
                                                                    •1759E 00
                                                       •1530E 00
- .1312E 00
             - .1025 E 00
                            •1716E 00
                                        · 16955 00
                                                                    •17.62E 00
                                                                    .1599E-01
- .1401E '00
            · •2013 E 00
                            .72125-01
                                        · •98885-01
                                                       .9915E-01
             - 1755E-01
                            .7516E-02
                                        - .1065E-01
                                                       .28225-01
                                                                    -4354E-02
.1399E-01
             . .1110E-01
                            .5815E-02
                                        · •1442E-01
                                                       ·2036E-03
                                                                    -2141E-02
 •2175E-01
                                        - •9393E-03
                                                       .4521E-03
· .1905E-02
               •1776E-03
                            .5401E-04
                                                                    •17 05E-02
· •1322E-02
               -1894E-03
                            .1354E-02
                                         -1496E-02
                                                      .6351E-03
                                                                    .1059E-02
                                                       .8672E-03
                                                                    .75 21E-03
· •7694F-03
               -3458 E-03
                            .5203E-03
                                         -1079E-02
             · •6871 E-03
                            .1329E-02
                                         •5242E-03
                                                       •1112E-02
                                                                    .8829E-03
. •9416E-03
. .44965-03
                                         .6760E-01
            · •1237 E-02
                            •5233E-03
                             58 • 509995
SOLAR ZENITH
                            316 - 699951
ALTITUDE
TEMPFRATURE
                            713.386963
DENSITIES
               HE
                               •83600JE 07
                               .143303E 08
               N3
                               •150019F 09
               0
               02
                               ●190304F 06
                                               25 X J E 16 . 6
ELECTRON TEMPFRATURE
                                .143000E 04
ELECTRON DENSITY
                            •520300E 06
TOTAL ION DENSITY
                            • 303000E 30
PHOTOELECTRON SPECTRUM
                            6E12.4
                                          .1597E 01
  .6295E '01
            - •4942E 01
                            .3641E 71
                                                       .2218E 01
                                                                    •1382E 91
                                         .7379E 00
                                                       .2804E 00
                                                                    .4483E 00
  .2290E 01
             - .1458E 01
                            .8888E 00
               .2523 F 00
                                         •5585E 00
                                                       .1034E 01
                                                                    •4887E 00
 -1284F 01
                            .9840E-01
                                         .7995E-01
                                                       .2991E 01
 -2108E 00
               .1539 E 00
                            .6977E 00
                                                                    .4627E 01
                                                       •5590E 00
43525 00
                            .3971E 10
               -2945 E 00
                                         •3189E 01
                                                                    •5238E 00
                                         .2803E NO
                                                       .5454E 00
                                                                    .2373E 00
 -3294E 00
               •7708E 00
                            .3375E 00
                                         .1252E 00
                                                       .1597E 00
                                                                    -1063E 00
· •15405 00
             · .2289 E 00
                            .1424E 00
· •1205F 00
             · •1573E 90
                            .1426E 00
                                         •1321E 00
                                                       •1162E 00
                                                                    .2234E 00
                                                                    .2244E 00
- .1676F '00
             · •1311E 00
                            .2182E 00
                                        - .2153E 00
                                                       .1950E 00
•1787 F 00 •
```

APPENDIX E

LISTING AND SAMPLE OUTPUT OF A CODE WHICH
CALCULATES THE PRODUCTION OF SECONDARY AURORAL ELECTRONS

PRECEDING PACE BLANK - NOT FILMED

```
1.000 C
              *** FCS16 WWW
 2.030 C
              CALCULATES PRODUCTION SPECTRUM OF SECONDARY ELECTRONS
             DIMENSION NAMES(4), AEP(4), SIG(4), WP(4), RHO(4), P(4), AR(4)
 3.000
             DIMENSION NORBIT(5), PES(200)
 4.000
 5.000
             CATA NAMES/16H HE Nº 01 02/
              DATA AFP/1.443E-18, 1.134E-17, 4.750E-18, 9.692E-18/
 6.100
             CATA SIG/3.48 0E-17, 2.160E-16, 1.24 0E-16, 2.530E-16/
 7 . 0 00
             CATA RHO/5.370E+06, 3.199E+08, 6.486E+08, 1.698E+07/
 8.000
                               12.70
                                            17.40
                                                       , 17.40
 5.000
             DATA &P/15.80
10.000 C
11.000
             PRINT 100
12.00 C
         190 FORMAT ( ENTER PFLUX, NORBIT (F10.3,5X,5A4))
             READ (1,110) PFLUX, NORBIT
13.000
14.000
         110 FORMAT (E10.3,5X,5A4)
             DO 120 K=1,4
15.000
16.000
             P(K)=:RHO(K)*SIG(K)*PFLUX
17.900
         120 AR(K)-RHG(K)*AFP(K)*PFLUX
18.000 C
19.000
             DO 210 N=1,200
20.000
             ES=N-0.5
21.000
             CC=0 • 0
22.000
             00 200 K=1,4
         210 CC=CC+AR(K)/(1.0+(ES/MP(K))**2.1)
23.000
24.000
         210 PFS(N)=CC
25.000 C
26.000
             ARITE (2,300) NORBIT, PFLUX
         300 FORMAT (5A4,5X,E10.3, = ASSUMED PRIMARY FLUX!/)
27.000
             WRITE (2,310) NAMES
26 aC 00
29.000
         310 FORMAT (4(8X,A4),2X, CONSTITUENT')
30.000
             WRITE (2,320) WP
         320 FORMAT (4F12.2,2X, W(EP)=BEATY IONIZATION PARAMETER!)
31.000
         WRITE (2,330) AEP
330 FORMAT (4(1PE12.3),2X, A(EP)=DIFFERENTIAL CROSS SECTION!)
32.000
300.55
34.000
             WRITE (2,340) SIG
35.000
         EUP FORMAT (4(1PE12.3),2x, TOTAL IONIZATION CROSS SECTION!)
36.000
             WRITE (2,350) PHO
37.000
         350 FORMAT (4(1PE12.3), 2X, NUMBER DENSITY))
36.000
             WRITE (2,360) P
         360 FORMAT (4(1PE12.3),2x, TOTAL ION PRODUCTION RATE')
39.000
40.000
             WRITE (2,370) PES
         370 FORMAT (5512.4)
41.000
             END
42-000
```

.15 OE 08=ASSUMED PPIMARY FLUX C-1145UA RC 4-23-76 02 CONSTITUENT N2 15.80 17.40 W(EP)=AFATY IONIZATION PAPAMETER 1.2.70 17.40 1 -443 F-18 1 . 134 E-17 4.750E-18 5.6925-18 A(FP)=DIFFERENTIAL CROSS SUCTION 3.480E-17 1.240E-16 2.5305-16 TOTAL IONITATION CROSS SECTION 2.160E-16 5.370E '06 1.698E 07 NUMBER DENSITY 3.199 E 08 6.486E 08 208035-03 1.036 E 00 1.206E 00 6.444E-02 TOTAL ION PRODUCTION FATE .9499E-01 .9122E-01 .1031F '00 -1023F 00 .1007E 00 - .9818E-01 ·97025-01 •7797E-01 .7335E-01 .6981E-01 .6441E-01 .8256E-01 .40205-01 .79815-01 - -4894E-01 .4566E-01 -4263E-01 .5245E-01 •5621 E-01 .3481E-01 -3721 F-01 .3259E-01 .2866E-01 -3055E-01 .2692F-01 .2532E-01 ·2384E-01 -2247E-01 • 2120E-01 .20.02E-01 •1793 F-01 .1531E-01 418945-01 .1699E-01 ·16125-01 .1455E-01 ·1385E-01 01719 F-01 .1257E-01 .1200E-01 •1146F-01 .1095E-01 •1047 F-'01 .1003E-01 .9607E-02 .9212E-02 .A839E-02 .9487E-02 .91555-02 .55065-02 - .7264E-02 .4998E-02 .6745E-02 · 078425-32 .7545E-02 65278F-J2 .5062E-32 ·5856E-02 •5660F-02 .5474F-02 452965-02 .3127 E-02 .4965E-02 .4811E-02 .46635-02 ·4522E-02 .4387F-02 .4258 F-02 .4134E-02 ·4015E-02 .3901E-02 .37922-02 €36885-'02 .3587 E-02 .3490E-02 -3397E-02 .3308E-02 .3222E-02 .3139E-02 .3060 E-02 ·2983E-02 - •2909E-02 .2838E-02 .2769E-02 • ?703 E - 02 .2638 E-02 .2577E-02 .25175-02 -2455E-02 -24 03E - 32 ·?3495-02 -21975-02 •2297 E-J2 .2246E-02 • 2150 E - 02 .21 04E-02 . .20555-02 .2016 E-02 -1974E-92 ·1934=-02 -189UF-02 .1856E-02 .1714F-02 .1815F-02 ·1783 5 - 02 .1748E-02 -1631E-02 .1649E-02 •15 29 5- 02 -1F01F-02 ■1618 F-'02 •1587 E-02 •1558€-12 .1474E-02 - -1448F-02 -1422E-02 -1397E-02 ·13725-02 -1348E-02 .13 25E-02 -1302E-02 · .1280E-02 .1259E-02 .12385-02 .1217E-02 ·11976-02 ·11785-02 - 11 40 E- 92 •1122E-02 •1159E-02 .1104E-02 -1087E-02 .1070 F-02 •1053 E-02 •1037E-02 ·10215-02 •1006E-02 .99 04E-03 •9756E-03 .9612E-03 •9470E-03 .9331E-03 •9196E-03 .9067E-03 .8559F-03 .9933E-03 ·8440E-03 ·8806 E-33 .8681E-03 .8323E-03 e92085-103 .8396E-03 .7985E-03 .7877E-03 •7772E-03 -7668E-03 .7º66E-℃3 •7466E-03 •7369E-03 •7273E-03 ·71795-03 •7086E-03 .6996E-03 •6907 E-03 . 5820E-03 .6734E-03 .64505-03 .6567E-03 .6252E-03 . 446 t E-103 •6329E-03 •6497 E-03 .6177E-03 .61 03E-03 .6030F-03 •5958 E-13 •5888E-03 .5819E-03 .5751E-03 .5685E-03 .5415 E-03 •5555 E-03 ·5429E-03 .5368E-03 ·5491E-03 •53 D8E-03 •5?485-'0₹ · 051905-03 .5133E-03 - .5076E-03 .5021F-03 .49 66E-03 -4912E-03 - .4860E-03 .4807E-03 .4756E-03 -4706E-03 .4656E-03 .4K07F-'03 .4559 F-33

APPENDIX F

PHOTOIONIZATION AND PHOTOABSORPTION CROSS SECTIONS

OF He, O, N₂ AND O₂ FOR AERONOMIC CALCULATIONS

K. KIRBY, E.R. CONSTANTINIDES, S. BABEU,

M. OPPENHEIMER, AND G.A. VICTOR

Harvard-Smithsonian Center for Astrophysics

60 Garden Street

Cambridge, Mass. 02138

Photoionization and Photoabsorption Cross Sections of He, O, N_2 and O_2 for Aeronomic Calculations

K. Kirby, E.R. Constantinides, S. Babeu, M. Oppenheimer*, and G.A. Victor

Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge, Mass. 02138

Abstract

A compilation of photoionization and photoabsorption cross sections is presented for He, O, N_2 , and O_2 for use in studies of ion and photoelectron production in the terrestrial ionosphere. In wavelength regions where rapid variations occur in the cross sections, averaged cross sections are calculated. When necessary the cross sections have been extrapolated to shorter wavelengths. The cross sections are tabulated at the wavelengths of the solar lines and continua given in the solar reference spectrum of Hinteregger from $^{\circ}1030$ Å to $^{\circ}34$ Å. For molecules, N_2 and O_2 , branching , ratios are given for ionization into the ground and electronic states of the molecular ions and for dissociative ionization.

^{*}John Simon Guggenheim Memorial Foundation Fellow '78-'79.

I. Introduction

Any detailed theoretical study of the earth's upper atmosphere must begin with a calculation of the production rates for major ions and photoelectrons due to solar radiation. We have constructed a program to compute these rates using a model atmosphere or measured neutral particle densities^{1,2}, the solar flux tabulated on a 1 A grid and observed by Hinteregger³, and Heroux and Hinteregger⁴, and a compilation of experimental and theoretical photoionization and photoabsorption cross sections which we report here. This program was undertaken in conjunction with the series of Atmosphere Explorer satellites (AE-C,D,E) which carried instruments to measure simultaneously many geophysical parameters of the terrestrial ionosphere. These experiments have been described in volume 8 of Radio Science (1973). The neutral species of interest in the altitude range above 120 km are He, O, N₂, and O₂, with photoionization thresholds at 504 Å, 910 Å, 796 Å and 1027 Å, respectively. The minor constituents, N and NO, are not included in this compilation.

We have been guided in our tabulation by the intended atmospheric applications of the cross sections, for which a detailed presentation of the variation of the cross sections is neither necessary nor desirable. In wavelength regions in which the cross sections are highly structured we have

frequently computed and tabulated averaged values. The accuracy of the atmosphere calculations is limited here by uncertainties in the intensities of the incident solar radiation and in the densities of the neutral constituents. Many of the measured cross sections have been obtained at low spectral resolution and at room temperature. We adopt these nevertheless but the possibility of important errors should be noted⁵.

Total photoabsorption cross sections for the atomic constituents He and O refer only to photoionization. For the molecular constituents N_2 and O_2 they include photoionization, photodissociation and discrete band absorption to excited electronic states. In photoionization events, different final electronic atomic and molecular states of the ionic products may be populated and dissociative ionization of the molecular species may occur.

All the photoionization and photoabsorption cross sections presented here have been tabulated, using interpolation and extrapolation where necessary, at the solar line and continuum wavelengths of the Hinteregger reference solar flux 3 which is based on measurements by the Extreme Ultraviolet Spectrophotometer (EUVS) on board AE-C 6 and on rocket data 7,8 . We restrict the tabulation to the wavelength region from the photoionization threshold of 0 0 at 1027 0 1

to 33.74 Å which is the shortest wavelength in Hinteregger's compilation before the nitrogen K-shell ionization edge at 31 Å. The intensity of the solar flux decreases rapidly for wavelengths below about 170 Å, so that the solar flux and the cross section data at short wavelengths are not required with high accuracy for most aeronomy applications.

Specific cross sections for multiple ionization, are not included in our tabulation except that the total photoabsorption cross sections include them. At 260 Å double ionization of N_2 contributes only about 2% of the total oscillator strength⁹, and although the multiple ionization fraction becomes slightly larger at shorter wavelengths, the solar flux is decreasing rapidly in this region and the overall effect on the ion abundance is negligible.

Because the cross section data have been obtained from many different experimental and theoretical sources and have involved interpolation and extrapolation, the accuracy is not uniform. Although we are concerned primarily with valence shell rather than inner shell processes, the total cross sections of the molecular species at short wavelengths (<150 Å) where extrapolation has been carried out include the cross sections for inner-shell processes. The branching ratios for production of excited electronic states of N_2^+ and O_2^+ are unknown in the wavelength region below 304 Å,

and lacking any data we have used the 304 A values down to 34 A. In practice the branching ratios for inner shell absorption presumably increase compared to the valence shell cross sections as the wavelength decreases. At wavelengths longer than ∿650 A there are several regions in the molecular cross sections which are densely structured. Because the solar flux used in the calculations is not tabulated on as fine a wavelength scale as the oscillations in the cross sections, we fitted a straight line through the peaks at half height. In other regions, in which the structure was less dense we replaced the peaks by square waves such that in integrating over the full width of the lines, using the grid of solar wavelengths given by Hinteregger, the effective cross section is equivalent to the integrated cross section at finer resolution. Thus we have distorted the shapes and magnitudes of the cross section data in order to obtain equivalent integrated cross sections using our solar wavelength scale. At particular wavelengths then, individual cross sections may be incorrect. In addition, there is some ambiguity in the cross sections adopted at the solar lines due to the limited spacecraft spectrometer resolution, to the pressure dependence of the laboratory data, and to the uncertain widths of the solar lines compared to the laboratory line sources. Thus, errors in the production rates could occur

if there exists a coincidence, not properly included, between a resonance for an absorbing species and a solar line. Where we have discovered inconsistencies between several sets of data we have generally favored the recent values. The following section discusses the details of and the various sources for the cross sections which are presented in Table 1. Because cross sections for each species are treated differently in the tables due to the diverse nature of the sources for the data, it is desirable to consult Section II before using any of the data in the tables.

We have incorporated the data presented here and the tabulation of the EUV flux given by Hinteregger³ into a program which calculates the ionization rates for thermospheric constituents. Table A shows the production rate in s⁻¹ for the various ion states in an atmosphere with zero opacity. These production rates are valid at altiutudes above 400 kilometers for daytime solar zenith angles.

II. Discussion of Cross Section Data

He: For He, with photoionization threshold at 504 Å, there are accurate theoretical 10,11 and experimental 12,13 cross sections available which generally agree with each other to within about 5%. The cross sections near threshold (504 Å $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 454 Å) were taken from Doyle, Oppenheimer, and Dalgarno 14 . The close-coupling calculation of Jacobs 10 for

a simple system like He is probably accurate to about 2%, except in the neighborhood of narrow resonances. We converted Jacobs' values 10 of the continuum oscillator strength to cross sections and did a least squares fit to the values from 454 Å to 130 Å. As the cross section curve is entirely smooth in this region, little error should result from this procedure. For wavelengths shorter than 130 Å we used the fit to extrapolate the cross sections.

O: Photoionization of the 2p valence shell electron of atomic oxygen leads to 0⁺(⁴s^o), 0⁺(²D^o), and 0⁺(²P^o) with thresholds at 910.4 Å, 732 Å, and 665 Å, respectively. We used the empirical fits to the partial cross sections for these three channels given by Henry¹⁵, normalized to the calculated total ionization cross sections of Taylor and Burke¹⁶. Recent measurements near threshold by Kohl et al.¹⁷ tend to confirm the values of Taylor and Burke as well as those of Pradhan and Saraph¹⁸, which are 15-20% higher overall than those of Henry¹⁵. Several resonances identified by Taylor and Burke¹⁶ were included, from 706-608 Å, below the ²D^o limit.

Removing the 2s inner shell electron of atomic oxygen gives rise to $0^+(^4p^e)$ and $0^+(^2p^e)$ with thresholds at 435 Å and 315 Å respectively. The partial cross sections for this process were obtained from calculations of Dalgarno, Henry and Stewart 19 as modified by Henry 20 . The branching ratios of Henry 20 at 304 Å have been confirmed by Dehmer and Dehmer 21 .

Total ionization cross sections for wavelengths shorter than $^{\rm O}$ 435 Å were obtained by adding these partial cross sections for inner shell ionization to the total ionization cross sections of Taylor and Burke 16 .

 N_2 : For wavelengths shorter than 660 Å, the ionization efficiency has been found to be unity²², and the photoionization and photoabsorption cross sections are equal. In the region $^{\circ}$ $^{\circ}$ $^{\circ}$ A we interpolated the total absorption cross section data of Lee, Carlson, Judge and Ogawa²² to obtain cross sections at each wavelength in the Hinteregger reference flux. These authors conservatively estimated the error in the cross sections to be ±20%, and as there is almost no structure in this region the interpolated cross sections should be of the same accuracy. We found good agreement of the cross sections with more recent data of Hamnet, Stoll and Brion 23 as well as those of Gurtler, Saile and Koch^{24} . We have not included the peaks attributed to the Rydberg series leading to the $C^2\Sigma_{11}^+$ state of N_2^+ between 500 and 550 ${\overset{
m O24}{
m A}}$ and they are probably not significant for our studies. From 180 A to 34 A the data were extrapolated so that consistency was obtained with the absorption cross sections given at 100 Å, 68 Å, ard 44.6 Å by Huffman 25. From 650 to 668 A a smooth curve was drawn joining the absorption data of Lee et al. 22 and the data of Huffman 25, passing through two points measured by Samson, Haddad and Gardner 26. As the

ionization decreases from 100% starting at 660 Å, we will now discuss absorption and ionization cross sections separately.

Where considerable structure in the cross section is evident, from 668 A to 734 A, the total absorption cross sections were obtained from Huffman²⁵. We estimated a background cross section σ_h by drawing in a base-line on the graphs of his data; superimposed on $\sigma_{\mathbf{h}}$ was the peak cross section, op. Each peak area was approximated as a square wave over the same wavelength interval as the actual triangular line-shape. Any dips in the cross sections were approximated in similar fashion. The total cross section at each wavelength was therefore the sum (or difference) of σ_b and σ_p . From 734 Å to 986 Å Carter ²⁷ has tabulated oscillator strengths for N2 between adjacent pairs of wavelengths and again a square shape to the absorption cross section between these wavelengths was assumed. Longward of 986 A, conflicting measurements for the N_2 cross section have been reported, and above 1000 A no detectable absorption was observed by Huffman, Tanaka and Larrabee 28. Thus from 986 A to 1030 A we have set the $\rm N_2$ absorption cross sections to zero.

Photoionization cross sections in the region from 660 Å to threshold at 796 Å were explicitly calculated using a least squares fit to the ionization data of Cook and

Metzger²⁹ and the absorption cross sections previously described. Our values for both photoabsorption and photoionization cross sections in the wavelength range 100 Å to 796 Å appear to be reasonably consistent with the recent discrete line source measurements of Samson, Haddad and Gardner²⁶ and the work of Cole and Dexter⁹ from 50 Å to 340 Å.

Photoionization and absorption cross sections of N_2 at a number of solar lines listed in Huffman's 25 Table I were included explicitly. The majority of these values are from earlier work of Samson and Cairns 30 . Not all the solar lines listed in Huffman 25 were identical with those given in the Hinteregger reference spectrum, and several lines were combined and the cross sections averaged.

The dissociative ionization of N₂, producing N⁺ ions, was treated as arising from a single state with threshold at 0509 Å. The partial cross sections for this process were obtained by multiplying the total ionization cross sections by the fractional yield for dissociative ionization obtained from Table B. Values for this yield were derived from the data of Wight, Van der Wiel and Brion 31 and of Fryar and Browning 32. The dissociative ionization yield, Y, can be obtained from Table B by linear interpolation between the listed values, with the exception of the region from 387 Å to 477 Å where the following form should be:

$Y=0.0329+8.13\times10^{-6}\times(\lambda-442)^{2}$

The remaining part of the total ionization cross section, $\sigma_{ion}(1-Y)$, is apportioned among five electronic states of N_2^+ according to the branching ratios listed in Table C. At each wavelength, the branching ratios sum to 1 and at wavelengths not listed in Table C the ratios can be obtained by linear interpolation between adjacent values. Partial photoionization cross sections are obtained by multiplying the total cross section (minus the dissociative ionization cross section) by the relevant branching ratio. Branching ratios for N2 photoionization have been given by a number of workers 26,23,33,34 and the agreement among the published results is generally within 10%. There appears to be some structure present in the published branching ratios between 670 Å and 720 Å, but this we have not included because the measurements differ the most here and no strong solar lines appear in this region. Since no measurements have been reported for wavelengths shorter than 210 A, we assumed constant branching ratios from 210 A to 34 A. For most aeronomic calculations this assumption is of minor importance.

 $\rm O_2$: The photoabsorption and photoionization cross sections of for $\rm O_2$ in wavelength range 612-34 A were obtained in an analogous fashion to the $\rm N_2$ cross sections in this region, from the data

of Lee, Carlson, Judge and Ogawa²² and from the short wavelength values of Huffman²⁵. The ionization yield is equal to unity for wavelengths shorter than $^{\circ}$ 670 Å. For wavelengths longer than 670 Å, a great deal of structure is present in both the ionization and absorption cross sections.

From 612 $\stackrel{\circ}{\rm A}$ to 742 $\stackrel{\circ}{\rm A}$ <u>absorption</u> cross sections were obtained by graphically interpolating the points of Samson, Gardner and Haddad 35 . Such a fit passes roughly through the highly structured region of Cook and Metzger 29 and is in general agreement with the overall contour of their data. From 742 $\stackrel{\circ}{\rm A}$ to 870 $\stackrel{\circ}{\rm A}$ the cross sections are densely structured and we used a least squares fit to the absorption data, region by region, to give a smooth overall profile which joins Samson's 35 data at 742 $\stackrel{\circ}{\rm A}$. The absorption profile in the 870-1030 $\stackrel{\circ}{\rm A}$ region is marked by wider, well-separated peaks and we used Huffman's 25 data to fit a superposition of background and peak cross sections, $\sigma_{\rm b}$ and $\sigma_{\rm p}$ as described for N₂. Our photoabsorption cross sections for O₂ trom 50-350 $\stackrel{\circ}{\rm A}$ are consistent with the recent measurements of Mehlman, Ederer and Saloman 36 , Cole and Dexter 9 , and of Samson et al. 35

Photoionization cross sections from 670 Å to 745 Å were obtained by a smooth fit to the ionization measurements of Samson et al. 35 which gives a curve similar in shape to

the overall profile of the earlier Cook and Metzger 29 results. The Samson measurements are 50%-60% higher than the Cook and Metzger data over much of this region; from 745 $^{\circ}$ longward the two sets of data are in harmony. From 745 $^{\circ}$ to 870 $^{\circ}$ we used a least squares fit to the highly structured data of Cook and Metzger and in the region 870-1030 $^{\circ}$ we used Cook and Metzger 29 ionization data and total absorption cross sections to obtain ionization cross sections as described for N₂. At the solar lines listed in the reference spectrum we adopted the ionization and absorption cross sections listed in Huffman 25 , as discussed for N₂.

From the photionization threshold at 1027 $^{\circ}$ to the dissociative ionization threshold at 662 $^{\circ}$ we have used the branching ratios for production of $^{\circ}$ electronic states given by Samson, Gardner and Haddad and listed in Table D. In the region 304 $^{\circ}$ A-662 $^{\circ}$ Fryar and Browning have measured the total cross section for dissociative ionization and obtained values which exceed the sum of the partial cross sections of five predissociating $^{\circ}$ states (labeled 4-8 in Table D) measured by Samson et al. To reconcile this difference we include an additional predissociating branch (labeled 9 in Table D) with threshold at 662 $^{\circ}$ The addition of the branch made renormalization of the other branching ratios necessary. As no measurements have been reported for

wavelengths shorter than 304 Å we assumed constant branching ratios from 304 Å to 34 Å. Branching ratios at any wavelength from 34 Å to 1027 Å can be obtained by linear interpolation of the values in Table D. At each wavelength branching ratios sum to unity and the partial cross sections are obtained by multiplying the total cross section by the relevant branching ratio.

Acknowledgement

We thank Professor A. Dalgarno for a critical reading of the manuscript. This work was partly supported by NASA and partly by the Air Force Geophysics Laboratory.

REFERENCES

- A.O. Nier, W.E. Potter, D.R. Hickman, and K. Mauersberger,
 Radio Sci. 8, 271 (1973).
- D.T. Pelz, C.A. Reber, A.E. Hedin, and G.R. Carignan, Radio
 Sci. 8, 277 (1973).
- 3. H. Hinteregger, J. Atmos. Terr. Phys. 38, 791 (1976).
- 4. L. Heroux and H.E. Hinteregger, J. Geophys. Res. <u>83</u>, 5305, (1978).
- 5. R.D. Hudson and V.L. Carter, Can. J. Chem. 47, 1840 (1969).
- H.E. Hinteregger, D.E. Bedo, and J.E. Manson, Radio Sci.
 8, 349 (1973).
- 7. L. Heroux and J.E. Higgins, J. Geophys. Res. 82, 3307 (1977).
- 8. J.E. Manson, J. Geophys. Res. 81, 1629 (1976).
- 9. B.E. Cole and R.N. Dexter, J. Phys. B. 11, 1011 (1978).
- 10. V. Jacobs, Phys. Rev. A3, 289 (1971).
- 11. A.L. Stewart, J. Phys. B 11, 2449 (1978).
- 12. J.A.R. Samson, Phys. Rep. 28C, 303 (1976).
- 13. J.B. West and G.V. Marr, Proc. Roy. Soc. A349, 397 (1976).
- 14. H. Doyle, M. Oppenheimer, and A. Dalgarno, Phys. Rev. A 11, 909 (1975).
- 15. R.J.W. Henry, Ap. J. 161, 1153 (1970).
- 16. K.T. Taylor and P.G. Burke, J. Phys. B. 9, L353 (1976).
- 17. J.L. Kohl, G.P. Lafyatis, H.P. Palenius, and W.H. Parkinson, Phys. Rev. A18, 571, 1978.
- 18. A.K. Pradhan and H.E. Saraph, J. Phys. B 10, 3365 (1977).
- 19. A. Dalgarno, R.J.W. Henry, and A.L. Stewart, Plan. Sp. Sci.
 12, 235 (1964).

- 20. R.J.W. Henry, Plan. Sp. Sci. 15, 1747 (1967).
- 21. J.L. Dehmer and P.M. Dehmer, J. Chem. Phys. 67, 1782 (1977).
- 22. L.C. Lee, R.W. Carlson, D.L. Judge, and M. Ogawa, J. Quant. Spectr. Rad. Tran. 13, 1023 (1973).
- 23. A. Hamnet, W. Stoll and C.E. Brion, J. El. Spectr. and Rel. Phen. 8, 367 (1976).
- 24. P. Gurtler, V. Saile, and E.E. Koch, Chem. Phys. Lett. <u>48</u>, 245 (1977).
- 25. R.E. Huffman, Can. J. Chem. 47, 1823 (1969).
- J.A.R. Samson, G.N. Haddad, and J.L. Gardner, J. Phys. B.
 10, 1749 (1977).
- 27. V. Carter, J. Chem. Phys. <u>56</u>, 4195 (1972).
- 28. R.E. Huffman, Y. Tanaka, and J.C. Larrabee, J. Chem. Phys. 39, 910 (1963).
- 29. G.R. Cook and P.H. Metzger, J. Chem. Phys. 41, 321 (1964).
- 30. J.A.R. Samson and R.B. Cairns, F. Geophys. Res. <u>69</u>, 4583 (1964).
- 31. G.R. Wight, M.J. Van der Wiel, and C.E. Brion, J. Phys. B. 9, 675 (1976).
- 32. J. Fryar and R. Browning, Flan. Sp. Sci. 21, 709 (1973).
- 33. E.W. Plummer, T. Gustafson, W. Gudat and D.E. Eastman, Phys. Rev. A 15, 2339 (1977).
- 34. L.C. Lee, J. Phys. B. 10, 3033 (1977).
- 35. J.A.R. Samson, J.L. Gardner and G.N. Haddad, J. El. Spectr. and Rel. Phen. 12, 281 (1977).

- 36. G. Mehlman, D.L. Ederer, and E.B. Saloman, J. Chem. Phys. 68, 1862 (1978).
- 37. M. Cohen and A. Dalgarno, Proc. Roy. Soc. A 280, 258 (1964).

Explanation of Table 1.

Photoionization and Photoabsorption Cross Sections for O, He, $\rm N_2$ and $\rm O_2$

All cross sections are in units of $10^{-18}~{\rm cm}^2$. Before using the table, it is advisable to read Section II.

- LAMBDA Wavelength in angstroms for which the solar flux is given by Hinteregger³.
- O+(4S) Cross sections for photoionization of a 2p valence
- O+(2D) electron of atomic oxygen giving the ground state
- O+(2P) $O^+(^4S^\circ)$ or excited states $O^+(^2D^\circ)$ or $O^+(^2P^\circ)$.
- O+(4P) Cross sections for photoionization of a 2s electron
- $O+(2P^*)$ to give $O^+(^4P^e)$ or $O^+(^2P^e)$. The * indicates $^2P^e$ rather than $^2P^o$.
- TOT.0+ Oxygen total photoionization cross section.
- N2(ABS) Total photoabsorption cross sections for N2 and O2
- O2(ABS) respectively. These are cross sections for ionization, dissociation, and transitions to excited vibrational and rotational levels.
- N2(ION) Total photoionization cross sections of N_2 and O_2
- O2(ION) respectively.

Table A

Ion production rates in s⁻¹ calculated using the tabulated cross sections and the Hinteregger solar flux from 1030 Å to 32 Å in an optically thin atmosphere

Ion	Rate
He ⁺	4.84x10 ⁻⁸
o ⁺ (⁴ s ^o)	1.23x10 ⁻⁷
o ⁺ (² D ^o)	9.29x10 ⁻⁸
0 ⁺ (² p ^o)	5.42×10^{-8}
$N_2^+ (x^2 \Sigma_q^+)$	3.08×10^{-7}
N ⁺ a	3.98×10^{-8}
$o_2^+(x^2\Pi_q)$	2.64×10^{-7}
$O_2^+(a^4\Pi_u)$	1.54×10 ⁻⁷
o ⁺ b	8.70×10^{-8}

- a) N^{+} produced by dissociative ionization of N_{2} .
- b) 0⁺ produced by dissociative ionization of 0₂.

Table A: In constructing the table it has been assumed that any excited atomic and bound molecular states produced radiate to the lowest state to which they are corrected by a dipole transition. For example, the production rates for all the doublet excited states of O_2^+ are included in the production rate of $O_2^+(x^2 II_g)$. The excited $O^+(^4P^e)$ state decays to $O^+(^4S)$, while the $O^+(^2P^e)$ state radiates to $O^+(^2D^o)$ and $O^+(^2P^o)$ according to the branching ratio 2.59:1³⁷. The ionization caused by absorption of these "secondary photons" has been neglected.

Fractional Yield for Dissociative Ionization of N_2^*

Table B

$\frac{\lambda (A)}{\lambda}$	Yield
210	0.360
240	0.346
302	0.202
387*	0.033
477*	0.041
496	0.024
509	0.000

*See text

Table B: The cross section for dissociative ionization of N_2 at any wavelength from 32 $\overset{\text{O}}{\text{A}}$ to 509 $\overset{\text{O}}{\text{A}}$ is obtained by linear interpolation of the values for the yield, except from 387 $\overset{\text{O}}{\text{A}}$ to 477 $\overset{\text{O}}{\text{A}}$ where the formula in Section II should be used, and multiplying by the total ionization cross section.

Branching Ratios for the Photoionization of N_2 See text for sources

Table C

 					
Branch	1	2	3	4	5
signation:	$x^2 \Sigma_g^+$	$A^2\Pi_u$	$B^2\Sigma_u^+$	$F^2\Sigma_u$	2 _E +
λ (Å)		Bra	anching R	atios	
210	0.271	0.275	0.110	0.064	0.278
240	0.271	0.345	0.110	0.064	0.210
280	0.271	0.470	0.095	0.040	0.124
300	0.271	0.470	0.110	0.074	0.075
332	0.300	0.520	0.120	0.060	0.000
428	0.460	0.460	0.080	0.000	
500	0.404	0.506	0.090		
600	0.308	0.589	0.103		
660	0.308	0.589	0.103		
660.01	0.308	0.692	0.000		
720	0.420	0.580			
747	1.000	0.000			
796	1.000				

Table C: From 796 $\stackrel{\text{O}}{\text{A}}$ to 509 $\stackrel{\text{O}}{\text{A}}$, partial photoionization cross sections can be obtained by multiplying the total ionization cross section by the interpolated branching ratio. For wavelengths shorter than 509 $\stackrel{\text{O}}{\text{A}}$, the cross section due to dissociative ionization must first be subtracted from the total ionization cross section.

IUNIU P

Branching Ratios for the Photoionization of ${\rm O}_2$ See text for sources

Branch	1	2	3	4	5	6	7	8	9	
Designation	х ² п _g	$a^4\Pi_u + A^2\Pi_u$	b ⁴ Σ _g	$B^2\Sigma_g^{-}$	2 _∏ u	c ⁴ Σ _u	2 _Σ	2,4 _Σ -	662 A	
λ (Å)				Bra	anching F	atios				
304	0.365	0.205	0.125	0.055	0.060	0.035	0.030	0.125	0.000	
323	0.374	0.210	0.124	0.055	0.060	0.035	0.030	0.000	0.112	,
454	0.432	0.243	0.120	0.055	0.060	0.035	0.000		0.055	
461	0.435	0.245	0.120	0.055	0.060	0.035			0.050	
504	0.384	0.270	0.126	0.079	0.026	0.000			0.115	
537	0.345	0.290	0.130	0.098	0.000				0.137	
556	0.356	0.230	0.225	0.109					0.080	
573	0.365	0.270	0.216	0.119		•			0.030	
584	0.306	0.330	0.210	0.125					0.030	
598	0.230	0.295	0.375	0.058					0.045	
610	0.235	0.385	0.305	0.000					0.075	
637	0.245	0.350	0.370						0.036	
645	0.340	0.305	0.330						0.025	
662	0.270	0.385	0.345						0.000	
634	0.482	0.518	0.000							
704	0.675	0.325								
720	0.565	0.435								
737	0.565	0.435								
774	1.000	0.000								
1026	1.000									•

Table D: For molecular oxygen, the first three columns labeled $x^2 \frac{1}{g}$, $a^4 \frac{1}{u} + A^2 \frac{1}{u'}$ and $b^4 \frac{1}{g}$ give branching ratios to bound molecular ion states, while the last six columns represent dissociating ionic states. The sum of the branching ratios for the last six columns for wavelengths less than 662 Å multiplied by the total ionization cross section.

122

a. 		95.0	0.03	60.00	6.27	0.10	6.11	0,11	0.30	0.30
۰	٠.	٥.	<u>ت</u>	٠	~	٦.	٦.	٦.	~	~
æ	٠,	c.	°.	ت	. 2	٦.	٦.	~	~	~
3 .	٦,	٥.	٥.	0	.7	7	~	٦.	٣.	~
90	0	0	·	3	. 2	Ξ.	~	٠,	~	~
	ب	Ċ,	ي	9	2		•	•	0.33	•
ာ		٥	٠,	٠,	2	7	?	~	~	~
د	٦	C	C.	· ·	~	•••	~	~	~	Ļ
	٠	ر	۲,	S	7	٦.	~	2.	~	~
00	59*0	93.0	60.0	6.62	62.2	-	0.24	0.24	4	4
ټ	_	٠	ت	ပ	~	-		~	•	4
ی	-	=	, c	C	~	7	~	~	4	4
· c	-	•			. ~		7		4	4
٠.	-	• 0		•	. ~		. 2	7		Ś
10	0.11	0.07	0°0	0.03	40.0	0,15	0.29	0.29	0.51	6,51
		ć.	0	ت •	~		۳,	~	S	
07.	~	0.07	0.03	0	6.35	0.15	0.32	0.32	0.55	
-	-	٦.	6	0	~	۳.	~	~	5	ŝ
-	٦.	0.	c.	•	~	~	٣.	~	S.	Ç
	~	٠ <u>.</u>	ပ္	•	~.	٠.	m.	~		Š
	~	ē	٥.	ت	٣,	-	٣.	~	5	•
-	٦.	ċ	•	٦.	~	-	٣.	~	•	÷
. 1 1	~	80°0	0.04	0.03	56.0	0.16	0.36	96.0	0.62	0.62
	-	5	•	Ç	~	-:	٣.	~	ę.	9
-	0.13	õ	0	•	4	-:	۳.	٣.	9.	4
	٦.	Ċ.	c	0	•	٠.		•	. 6	0.66
~	-	c.		9	4		~ ,	66.0	9	•
	-	Ċ	Ċ.	•	4	٦.	4.	4.	۲.	
••	-	Ö	٥.	٥.	4.	۳.	4.	4	۲.	۲.
-	0.15	60.0	0	0.03	۲.		₹.	4	0.72	
	Ξ.		0	÷	4	-:	•	4	•	0.73
.14	-	7	٥.	•	4.	۳.	4.	4	۲.	۲.
-	-	0.10	0.05	0.04	0.48	0.17	0.45	0.45	-	
~	-	٦.	٥.	٠.	4	٦.	₹.	•	•	•
***	-	7.	0	<u>.</u>	4	•	4.	*	-	
	•	Ξ.	C.	Ċ	•	~	•		0.76	
_	-:	٦.	င	0	5	۳.	*	4		-
15	٦.	0.10	90.0	0.04	0.50	۳.	4	0.44	~	
-	-	-	<	(u	•	•	•	•	r
		•	•	•	C	•	•	4	•	•

۲.	•	. 70		0.0		0,65	'n	•	2.	2.	0.	5	96.0	٠.	· •	0	•	0		1.06	•	BO . I	•	~	٦.	~	7	7	1,13	~	~		٦.	1.18	7	7	7		• (1.63	7	7
-	•	. #		0 B 8		•		æ	٠.	5	0	9	0	6	1.01	•	•	0	· 6	1.06		0	°	٦.	~	1.11	-	Ξ.	1,13	~	7	٦.	-	1,18	7	• 5	. 2		•	1.23	7	7
•3"	4	4	•	0.47	•		*		3	• 5	'n	•	C 23	٠,	.5	Š	'n	Š	4	0.56			ç	5	3	• 5	5	Š	0.59	S	ŝ	9	9	0.60	9	9.	9	. 4	•	n (•	•
7	4	4	4	0.47	•	•	4.	4	S	.5	3	2		•		5	5		. 5	0.56	-	0.57	5	٠,	.5	5	5	3	65.0	Š	Ŝ	9.	٠,	0.60	•	•	•	•	•	60.0	۰	9
-		-	-	. T. C			-	_	-			-	-	٦.	0.20	~	~	. 7	7	0.20		7	?	~	?		2		0.21	~	• 5	.2	~		~			, ,	• (0.22	7	7
•	٠.	•		5.0	•	•	9	٤	٥	0.68	9		•	-	6.74		-	. ~		0.78		æ	æ	30	æ	0.84	00	œ	00	8	6.91	6	6	•	6	1.00	•	•	2 9	5 0.1	.	•
ت •	=	-	: .: •	· ·		-:	٠.	÷.	0	0.05	c	, c		့ ၁	90.0	0				90.0		•	಼	=	ي.	90.0	Š	0	0.07	0	٠	<u>ي</u>	ن		0	0	0	•	•	80°0	9	0
تٍ	ء .	٠.		90	•	•	c.	C	°	•	ن		•		0.07	0		ی د	. 0	9 Ú ° O		Ç	<u>ت</u>	٥.	٥.	0.08	Ç.	°.	90.0	٥.	°.	•	•	¢	٥.	~	-	•	-	0.10	7	~
_		-	•	0.12	•	•	٦.	Ξ.	-	0.14	-		• -	-	0.16	-	-	: -	: -	0.16		0.17	7	-	-:		Ξ.	7	0.18	7	Ξ.	٠,	-	0.20	~	• 2	C		7 (0,22	?	7.
•		-	• -	0.19		-	~	7	7	0.22	7		?	~	0.24	2	. ~	. ~		0.25		7		۲,	?	0.27	17	۲.	0,28	7.	. 2	~	٣.	0.30	~	m.	~	•	•		'n	m.
-			• -	6.17	:	•	~	7	~	0.20	Š				0.22	. 2	?	. ~	. ~	0.23		~	7	۲.		4,25	Ċ	7	97.0	~		•	۲.	0.28	•	~	-	•	•	0.31	•	~
:		. `,	, ,	- 151 - 151	•	۳.	7.1	7.3	۳, بر	69.05	0			٠,	71.94	2.3	2.6	2.8	5	73.55			4.4	8.	75.0	5.2	5.4	5.7	76.01	4.4	6 · 9	ۍ ن	7.3	17.74	8.5	4.7),6		•	97.67	ن ص	0.7

LAWRCA	0+(45)	0+(25)	0+(2F)	C+(4F)	C+(2F*)	(+(101)	ω æ	N2(ABS)	N2(ICN)	02(ABS)	O2(ICN)
	~	~	C	-	0	0	C	•	4	2	2
9	. ~	. ~				-		9	9		7
	. ~	. ~						9	9		7
	~	~			0	: -		9	9	?	7
61.94	0.34	0.37	0.24	0.11	60.0	1.14	0.22	0.65	0.65	1.29	1.29
7.4	~		~	•	c			9	•	~	~
2.6	~	~	.~		9	: =	7	9		~	~
3.2	~	~			0	7	7	9	0	~	~
3.4		~		~	0	1.21	~	0.66	•		~
93.67	~	6.39	7	0.12	60.0	• 5	. 2	9.	0.67	1.34	1,34
ن و.	٣.	*	2		<u>ي</u>	. 2	•	9	9	~	~
4.2	~	4	. 2		-	7	~	9.	9	٣.	~
84.50	0,38	0.40		0.12	0.10	1.26	0.23	0.68	0.68	1.37	1.37
4.7	٣.	4	• 2	٦.	٦.	7	~	•	•	۳.	٣.
Δ.	۳.	4	7	Ξ.	~	~		•	9	~	~
5.1	'n		7	٦.	•	.2	•	9	9	~	~
95.50	0.39	0,42	0.28			1,31	0,23	69.0	0.69	1,39	1,39
5.5	٣.	4	7	~	~	٣.	~	9	9	4	4
5.5	*	4	. 2	۲.	7	٣.	?	•	•	4.	*
6.2	4.	4.	• 5	0.13		~		•	9.	4	4.
4	4	•	.2	Ξ.	-	~			٠.	4	4
6.7		4	~	~	-:	۳.	~	۲.		4	4
86.5A	0.41		0.29			1.38	~	0.10	0.10	1.43	
7.3	4.	4	~	٦.	٦,	٣.	۲.	۲.		₹.	٠.
7.0	4	4	۳.			4	~	٠.	٠.	4.	4
ť	~	4	~	-	Ξ.	•					•
96.11	6.43	0.40	\sim	•	0.11	1.43		0.71		4	4
٦. u.	٠,	4.	۳.	٦.	7	4	۲.	٠.	٠,	4.	•
£.	4	4.	٣.	₹.	-	4	?	۲.	٠,	4.	*
9 •	4	4	0,31	0.14	-	4	. 2	. 7	. 7	4	4
æ	4	•	~.	-	-	•	.2	. 7	٠.	4.	•
59.14	0.44	0.47	0.31	0.14	0.11	4	0.24	0.73	0.73	ď	1,50
6.7	4.	۲.		Ξ.	Ξ.	ų,	7			S.	'n
	*	4	~	-	7	S.	?		•	S.	S.
4	4	•	~	-	•	'n				1.53	Š
f. • 7	7.	•C	~	-	-	ŝ	•	7.	۲.	•	
٠ د		٠,	~	٦.	-:	s.	0			₹.	3
1.4	17	\$	4	٦.	۳.	•	~	۲.	۲.	S.	ŝ
3° 15	x + • • •	0.51	0.34	0.16	0.12	1.61	0.25	0.75	0.75	1.57	1.57
ع. 	4	'n	M)	- .	~	£	?	۲.		• 2	ŝ

 	0 00	• • • •	1,68	2000 2000 2000 2000 2000 2000 2000 200	1.76 1.77 1.78 1.79	2 2 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	22.5. 20.5. 20.0. 30. 80.	2.21 2.23 2.23 2.23
# # # # # # # # # # # # # # # # #	• • •	999	1.68 1.69 1.70	11. 12. 12. 12. 13. 13.	111 171 119	4 9 0 4 0	22.22 20.20 10.00 11.40 80	2.11 2.21 2.23 2.23
0.76 0.76 0.75 0.75			0000	000000000000000000000000000000000000000	000000 000000 000000000000000000000000	0.00 0.08 0.09 0.06 0.06	11111	1.11
0.76 0.76 0.77			000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000 00 888888 8444	0.87 0.89 0.93 0.96	1.00 1.00 1.00 1.06	11.11
0.25	22 2	444	0.26 0.25 0.25 0.26	00°26 00°26 00°26 00°26	0.27 7.20 0.27 7.20 0.27	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000
1.663 1.663 1.77		77.30	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		22.03 2.03 2.03 2.03 2.03	2222 2222 2122 2122 9522	00000 00000 00000	00000 00000 00000
			0000	00.00	00000 00000 00000 00000	0.16 0.16 0.16 0.16	0.17 0.17 0.17 0.17	00.17
0000			00117	00000	0.19 0.19 0.19 0.20	0.20 0.20 0.20 0.21 0.21	0.21 0.21 0.22 0.22	0.22 0.23 0.23 0.23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		w w	0000 0000	00000	0.42 0.42 0.43 0.43	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.46 0.45 0.47 0.47	0.48 0.50 0.50 0.51
0 2 0 0 • • • • • • • • • • • • • • • • • •	น์ เก๋เ	www.w	000 000 000 000 000	000000000000000000000000000000000000000	0000 6.00 8.4.4.8	0.66 0.67 0.69 0.00	0.70 0.70 0.71 0.71	0.73 0.74 0.76 0.76
0.49		~ * * * *	0 5 5 5 5 5 5 6 6 6 7 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8	0000 0000 0000 0000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0.68 0.71 0.72
982.58	4 4 6 0 0 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6	20.4 S	95.81 96.05 96.49 96.83	97.12 97.51 97.87 96.12	98.00 98.00 99.44 99.71	100.54 100.96 101.57 102.15	103.15 103.17 103.58 103.94 104.23	104.76 105.23 100.25 106.57

02(ICN)	~	•		4	2.50	ی	•	? •	•	2.54	•		~	30			•	7	~	~	3,30	~	•		•	3.96	•	. ~	~	~	۲,	7			•	?	~	~	*	ψ.	5.70
02(485)	~		4	4	2.50	•	•	•	•	Š	2.71	•			•		2.93	~	~	~		~	9		•	3.96	•		~	.2		~	r.	4.85	ė,	~	~	~	4		5.70
K2(10N)	c	. ~	. "	`~	1.43		•	•	•	4	9.	•	9	-				•	•	0	2,10		۳.	•	4	2.51	•			3.		10	~	3.29	'n	9	•	~	30	•	4.11
N2(ABS)	C	. ~	. "	. ~	1.43		•	•	4	₹.		9	9		•	1.17	•	6	°	0	2.10	Ξ.	~	S	*	2.51				30	2.80	80		3.29	÷.	£.	۲.	۲.	30	C	4.11
i I	~	. ~	. "	•	0.37	~	•	? '	•		4	4	4	4	4	•	•	4	7	4	4	'n	5	S		0.57	•	٤,	0.62	ψ.	ď.	9	۲.	0.71	۲.	·-	•	•		ن د .	O . 6
(+(101)	4	٠,			2.64	4	•	•	٥	•	2.85	30	90	5			0		٣.	~	3.40	4		۳.	×	3.86	Œ	-		-:	~	-:	Š	4.55		۲.	x	æ	٠.	٠,	5.10
C+(2F*)	-	: -			0.29	C	• (7.		0.50	• 2	~	~	~	0.23	• 2	•	~	~	.2	. 2	7	5	7		0.30	,	. ~	0.32	۳.	۳.	~	'n	0.35	~	~.	~	~	~	۳.	0.40
C+(4P)	c				0.25	r	• "	•	7	0.26		~		~	0.29	. 2	2		~	~	٣.	~	~		~	0.37	7	7	0.40	4	4	₹.	4	£ 4 4	4	٠.	۹.	~	~	~	24.
0+(2P)	4		•		0.56	4	2 4	٠,	ſ.	94.0	•	9	٦.	0		9	9	¥			0.72	~	۲.	. x	T.	0.82	· I	Œ		30	Œ	120	٠.	0.97	٠,	Ç.	<u>ن</u> •	ς.	· .)	1.10
0+(51)	۲	Œ	Ú	σ.	0.84	Ú.	•		•	0	σ	Ċ	5	٠.	36.0	6.		ပ	ن	د.	ပ္	-	7	?	~	1.24	2	~		m.	m	٣.	4	1.48	S.	Š	Ψ.	٠.	4	٠.	
0+(43)	-		, ^	. ~	0.70	-	•	•	æ.	00.0	r.	an	10	æ	60.0	•	6		6	<u>ي</u>	Ç.	ۍ •	7	-	-	1.15	-			~	. 2	.2	~	1.31	~	۲.	~	~		4	
478.41	٥	3	. 0	0	110.55	-	•		11.	111.25	13.9	4.0	14.2	15.3	115.92	16.1	17.	•	21,1	21.7	22.7	23.5	27.6	CX.	30.3	131,02	31.2	36.2	136.78	36.4	36.4	36.4	44.2	145.00	48.3	50°.	52.	52.4	3.2	57.7	54.3

a. d		2	4	6.4	4.9	8 6 8	5	1 6.7	2 6.7	2 6.8	7 6.5	5	1 7.6	0.7	8 7.	2 7.2	4 7.2	7 7.2	3 7,3	4	4 7.4	5 7.4	7.4	9 7.4	2 7.5	0 7.6	2 7.6	7.7	2 7.72	9.7 0	7 7.6	3 7	4.7	J.8 0	9	8 8.1	3 6.2	
20	42		64 6	• 66	69.	, H1 6.	8.0	.93 6.	.94	.04	.08	.10 6.	,22 7.	. 2	.38 7.	.37 7.	.38 7.	.40 7.	4	.45 7.	.52 7.	.53 7.	.55 7.	Š.	.58 7.	.64 7.	.65 7.	.71 7.	۲.	80 7.	87 7.	3 7.	95 7.	*8 66	60	æ	23 8.	
20	. 4	. 61	4 64	99.	54	8	Œ	85.	.94	40	90		,22	.27	38	.37	5,38 5	04.	4.5	.45	5	.53	.55	• 56	58	.64	5,65	.71	.74	08.	.87	5,93 5	96.	66.	60	6.18 6	.23	
Œ,	, uc	U	· O	15.0	<u>ن</u>	ŗ	6.	σ.	\$6.0	5		95.0	6	2	•	٥.		°.	0	1.01		٥.	٠,	0	c	•		c.		0	٦,	-	~	•	•	1,19	~	
-	. ~	7	5.46	4	4			c	5.65	. 7		•	Œ	OD:	5,49	6		6•	6	86.8	6.05	0	0	0	~	٦.	6,10	• 2	. 2	.2	٣.	£.36	~	4	4	6.51	3	
٧,	•		•		3	•	4	4	0.44	•	4	0.45	4	4	4	4	0.47	*	•			4	4	4	4	4	0.48	13"	4	4	4.	64.0	4	S.	\$	0.50	3	
ď	. "		ூ	•	6		•	•	0.54	i,	S	6.55	5	.5		5	15.0	S	Š		0.55	S	3.	ı.	Š	4	0.40	į.	Ÿ	9	ç	0,62	•	÷	•	0.64	9	
	• •				-	1.2	1.2	1.2	1.23	1.2	1.2	-	1.2	1.2	1.2	1,2	1,30	1.3	1.3	4.1	-	1.3	1.3	1.3	~ ·	1.3		1.3	1.3	1.3	1.3	1.40	1.4	1.4	1,4	1.44	1.4	
1.7	7		. ~	2 1.52	90		1.0	9.1	S C C	-	1.9	5.	1.9	5.1	_	1.9	5	1.9	2.0	3 2.01	<u>د</u> .	2.0	2.0	2.0	2,0	2.0	٥.	3°C	2.1	2.	2,1	٦.	2.1	2.1	2 2.19	2.2	2.2	
4 . 1	* *			1.5	1.5	150 m	1.5	1.5	1,5	1.5	1.5	1,5	1.5	1.5	3.6		1.6	1.6	4.4	1.6	9.1	1.6	1.5	1.5	1.6	1.6	1.0	1.6	1.6	1.6	1.6	1.7	1.7	1.7	1.7	1.7	1.7	
9				164.55	() () ()	71.0	2	72.9	73.1	74.5	75.2	, t	77.2	78.	73.	₹. •	0.7	F1.1	62.1	£2,3		F4.1	64.5	F. G. 9	85.2	4.03	8.9	40.2	s s	ن ت	91.2	192,38	9.5°	93.5	95.1	154.63	97.4	

02(ICN)	•	•	•	٥	•		6	0	٥.			~	9,30	٦,	s.	S.		•	8	•	6.	ò	;	•	Ö	٠ د	ت	Ö	္ပံ	ວ	10,8	ာ	_	11.1		-		_			
02(ABS)	•	٠,	•	9	~	06*8	•	9	0	-	-	•	~	~	s.	.2		۲.	œ	5	6.		ċ		•	10.3		6	0	ċ	10,6	•	-	11,1	_;	11.	-	11.	11.	12.	12.
N2(ICN)	•	4	Ś	•	6.15	9	•	•	•	0	7.09	0	7.18	?	~	4		S	•	-		30	6		٥.		•	~	~	4	• 5	•	9	8.09	۲.	•	66.9		•	•	•
N2(ABS)	•	4	•	•	۲.	6.85	80	6	6	0	7.09	0	7.18	?	~	4.	7,51	5	9			80	٠.	7.95	٥.	0.	•	~	~	4.	8.51	3	4	8.69	۲.	œ	•	2	~	٠.	9.26
II El	•	7	?	٣,	٣.	1.36	•	~	7	4	1,44	4	1,48	s.	S	S.		9	ø	÷.	•	\$	9	•	4	•		۲.				. 7	∞.	1.81	æ	œ	1.90	٥.	٠.	٠	· •
(+(1C1)		•			•	98•9	20	6	6		6.	9	7.04	٥.	7	-	7.23	7	٣.	~		•	4	4	S.	δ.	7.57	s.	٥	•	٠,		۲.	œ	æ	O.	7.55	9	ت	-	-
C+(2P*)	1	ņ	ŝ	ŝ	ť.	0.52	•	S	'n	S	S	•	Ś	Š	S	s.	•	S	S	4)	÷.	'n	s.	0.55	S.	٠,	•	ŝ	Ś	'n	• 2	5	ŝ.	0.56	·.	4	4)	ŝ	•	S	•
C+(4P)	•	ċ	Ġ	4				¥	9	9	۳.	9	0.69	9	۲.	۲.		۲.	~			.,	۲.	0.73	۲.	. 7		۲.	6.13		٠.		۲.	0.76	۲.	٠.		۲.		۲.	
0+(2P)		4	4.	٠.	5	1.52	150	'n		S	1,55	3.	1.56	3	•	•	•	٥	•	9		\$	Ŧ.	•	.5	1.08			7	-		. 7		1.76	۲.	~	•	œ.	·	·X:	1 . 15
0+(20)		7	~	٣.	٣.	2.34	~	· "	~	٣.	2,39	m	2.41	4	4	4.	4	S.	'n	S	2,55	S	s.		æ.			9	ď.	٠.	7.59		۲.	2.73	٦.	۲.	•	æ	œ.	æ	2.63
0+(45)	1		۲.	۲.	۲.	38.1	Œ	٠.	נג	30	1.83	æ	1.64	œ	20	30	70	ж •	1.90	6		6	₹.		ď.	1.94	3	<u>٠</u>		Ċ.	3.	Q.	÷.	2.00	٥.	<u>ې</u>	₹.	٠,	•		5.119
LAMBCA		61.1	92.6	F3.7	3.4	20.0.26	66,3	0.7.4	C.8.3	9.60	209.78	a 60		12.1	14.7	~	16.9	14.2	219.	20.C	221.2	21.5	23.2	23.7	24.B	225.12	27.0	27.4	28.7	30.6	231.55	32.6	33.6	234,36	35.5	37.3	30	47	43.0	2.5	246.24

222222 222222 22222 2222 2222 2222 2222 2222	20000000000000000000000000000000000000	2	4 2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	44444	44444 44444 44000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 10 40 40
12.1112.12.12.2	22222	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	40000H	44444 64444	44444 44444		មានការ មាល់ស្ល ឯសសល
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00000 40000 84000	9.78 9.78 9.85 9.94	00.00 00.00 00.00	 	011 011 010 010 010 010	20011 11000 10000	111111111111111111111111111111111111111
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ው Q ጉ ሊ Q • • • • • • ቁ ህ ን ቅ ሙ	00000 0000 0000 0000	11111111111111111111111111111111111111	100 100 100 100 100 100 100 100 100 100	011111001 0001 0001 0001	11100	111111111111111111111111111111111111111
00000	2.10 2.12 2.14 2.11 2.11	22.22 22.22 32.22 30.84	22222 64444 96444	2022 2022 2020 2020 2020 2020 2020 202	22.54	22.43	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	> \psi \psi \psi \psi \psi \psi \psi \psi	ጭ መ መ መ ካ •	3	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	ው ስ ው ሳ • • • • 4 የህ የህ ላ ው ጨ ፋ ር
0000 ••••• •••• ••• ••• ••• •••	0000 00 	00000 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.52 0.51 0.51 0.51	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000 44444 74444	000 444 244
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2222 2222 2222 2222 2222	00000 4.000 2.00.00	00000 ••••• •••• ••••	00000	00000	88330 88836 88636 88630	0000
P P 7 0 =	11111 66.00 166.00 166.00	22.000 2000 2000 2000	2222 2222 2220 2200 2200	22.10	2.112 2.12 2.12 2.13 1.13	2.22 2.22 2.22 2.22	2000 2000 2000 2000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00.8 2.00.8 2.00.8 2.00.8	W W W W W O O O O O O O O O O O O O O O	3.23 3.23 3.23 3.24 5.24	3 3 3 3 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9		W W W W W W W W W W W W W W W W W W W	W W W W W W W W W W W W W W W W W W W
2.09 2.19 2.11 2.11 2.11 2.11	2.13 2.14 2.15 2.16	2.17 2.18 2.20 2.20	2.21 2.24 2.25 2.25 7.25	22.28	22.22 22.22 22.22 22.23 24.33	22.25 22.25 23.25 25 25 25 25 25 25 25 25 25 25 25 25 2	2.38 2.40 2.40
246.91 247.18 249.23 251.10 251.96	252.17 253.80 256.37 256.69 257.48	258.40 259.50 261.08 262.99 264.27	264.50 270.50 271.99 272.70	275.35 275.76 276.15 276.17	277.27 278.40 281.41 284.15	288.36 289.17 290.72 291.63	292.83 295.57 296.17 259.50

LAPECA	0+(48)	(32)+0	0+(2P)	C+(4P)	C+(2P+)	(121)	₩	N2(ABS)	N2(ICN)	02(ABS)	02(1CN)
15.0	S.		٣.	o.	0	•	7	~	?	•	9
_	•	~	~	•		5		5		•	•
16.2	٠.		4	•	0	9	~	5	2	•	•
19.6	s.	Œ.	4	6	•		~	2	2.	•	•
335,05	7.63	•	2.54	\$6.0		10.12		14.7	4.	17.3	17.3
35.	Ě	0	5	•	•	0.1	3.70		4	17.3	17.3
45.1	ç	-	9	.0	•	.0	E.	2	2	-	~
345,74	2.09	4.13	2,61		00.0	10.36	6			~	7
47.4	Ţ.	-	9	6	3	4.0	6.	•	•	~	7
3 6		٠.	÷	6.	0	4.0	6.	•	9	17.8	7
53.8		7	•	6	0	0.5	•	9	•	17.9	7
54.0		~	\$	σ.	•	0.5		۲.	7	æ	30
360,76	2.77	4.29	2.70	6.0	00.0	10.68	4.20	17.4		· 36	16.1
64.8	۲.	m,		٠.	0	0.7	٣.	7	7.	8	60
0.39	œ	'n.		6	°	8.0	m	8	œ	œ	•
01.7	6.	9	•	•	0	11.27		0	•	9	ò
0.30	٤,	•	Φ,	œ	٥.	1.3	~	•	• •	•	5
406.00	2.94	4.64	2.89	0.82	00.0	٣.		•			
0.70	J.	÷	æ	œ.	0	1,3		ċ	•	6	6
0.80	2.	•	ဏ	Œ	C;	1.3	?	ċ	•	Ġ.	ċ
0.60	3	ب	•	œ	਼	1.	•	0	•	6	S
10.0	6.	4	Ţ.	30	°	1.3	ď.		;	6	\$
411.00	2.96	4.69	2.90	0.81	00.0	•	5,31	20.6	20.6	•	•
12.0	٥.	۲.	σ.	æ	•	1.3	٣.	ċ	ં	٠.	2
13.0	6	٠.	ς.	Œ	0	1.3	٣.	ċ	•	19,3	5
14.0	٠ ک		6	œ	0	1.3	•	•	•	6	9
415.00	2.97	4.72	2.91	97.0	00.0	•	5,39	20.8	20.8	•	19.3
10.0	Ť.		٠.		<u>-</u>	1.4	4	•	;	ċ	'n.
17.0	•		٥.	۲.	3	1.4	₹.	•	·	Ġ	Š
17.2	\$. 7	າ.		ن	1.4	4.	•	•	6	5
17.7	5.	۲.	φ.		Ξ.	-	4	-		6	Ġ
18.0	σ.	۲.	5.	۲.	ů	1.4	₹.	_:	_;	6	6
419.00	2.99	4.75	2.93	0.74	00.0	4	5.48	-:	21.0	3	19.4
20.0	٥.	۲.	٦.	۲.	<u>ي</u>	1.4	ď.	_	-	÷	ŝ
21.0	<u>ې</u>	۲.	2.	۲.	ပ္	1.4	s.	21.2	1.	19.4	\$
22.1.	ς.		σ.		3	4.	٦.	Ξ.	-	•	دى
33.0	-`	۲.	5.		c.	1.4	5	_	-	•	Š
24.	٥.	۲.	٥.	۲.	0	1.5	\$	-	-	6	6
455.00	3.01	4.79	2.95	0.70	00.0		5.61	21.5	21.5	19.5	18.5
75.0	·	æ	6	۲.	?	1.5	•	-	.	ė.	٠ <u>.</u>

W O O O O	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		00000 00000 00000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	11.000 00000 00000	7777 60000 7777 7777	30,000 0000 00000
00000 00000 00000	0 0 0 0 0 0 0 0 0 0		1001 1001 1001 1001	119.9 119.9 109.9	200.0	200.000	3000 3000 3000 3000
22222 2222 2322 2322 2322 2322 2322 23		2222	22222	222.00	222.0	00000	88800 8880 8880 8880 8880 8880 8880 88
2211 2211 2211 2211 2211 2211 2211 221	22222	2222	22222	222.0 222.0 22.0 22.0	00000	0.000 555.0 555.0 555.0	88860 8886 8886 8886 8886 8886 8886 888
ν.ν.ν. ********************************		N N N N N 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	66.00 6.10 6.10 6.10 6.10 6.10 6.10 6.10	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6666 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000 0 04440 0wrt0
11111111111111111111111111111111111111	111.59	01110011001000000000000000000000000000	100.00 100.00 100.00 100.00	11111111111111111111111111111111111111	11111111111111111111111111111111111111	11111111111111111111111111111111111111	111.37
00000	00000	00000	00000		00000	00000	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 0000 0000 0000 0000 0000 0000 0000 0000		00000		00000	00000	00000
22222 2222 2422 2402 2403 2403 2403 2403	22.22 2.22 2.29 2.42 2.68 2.68		2 m m m m 000 000 000 0000 0000 0000 00	W W W W W W W W W W W W W W W W W W W	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	400000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
4444 ••••• ET DE PO O US CA W.	4444 •••••• •••••• •••••	ቁ գ ቁ ቁ ቁ • • • • ሙ ሙ ሙ ጡ ሙ ጭ ኖ ৮ ሙ ሙ	4444 ***** ***** *****	4444 00000 040000	44440 ••••• •••• •••• •••	5.23 5.22 5.20 5.15 5.15	
0.0000 0.000 0.000	4 4 4 10 10		W W W W W COOO	# # # # # # # # # # # # # # # # # # #	3.10 3.11 3.11	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
427.00 424.00 424.00 430.00 430.00	4 W W W W W W W W W W W W W W W W W W W	486.00 486.10 487.00 488.00	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00.00000000000000000000000000000000000	4660.00 461.00 462.00 463.00

LAVHEA	0+(48)	0+(30)	0+(2P)	C+(4F)	C+(2P+)	C+(1C1)	Ŧ	N2(AHS)	N2(ION)	02(485)	02(1Ch)
9	-	c	•	C	5		¥	_	_	•	c
	•	•	•	•	•	•	•	•	: .	•	٠,
7.60	٠,	?	•	•	•	717	9	•	:	•	;
۰94	٦.	٥	੨	•	•	1,2	ŝ			•	ċ
67.6	7	٥.	٥.	٩.	•	1:1	'n	=	-	•	6
466.00	3,11	4.97	3.01	00.0	0.00	11.08	6.58	21.7	21.7	20.5	20.5
0	-	9	σ	C	C	0	•		_	c	c
	•		3	•	•		•	: -	: _	•	
0	•	•	• 0	•	•		•	: -	•	•	ۍ د
)	•		• 5	•	•			•	: -	•	
472.00	3.03	4.8	•	00.0	00.0	10.78	69.9	21.7	21.7	20.1	26.7
7 1 . 0	0	,	30	C	ō	5.5	-	-	-	ď	ď
474.00	2.40	4	2,71	0000	00.0	66.6	6,72	21.7	21.7	20.8	20.8
75.0	٥.	~	S	6	0	4.6	5	-	-		
75.0	7	-	-	Ç,	C	1.4	-	-	-	;	ۍ
77.0	. 2	2	~	0	0	1.7		~	Ξ.	•	3
78.0	0	•	S	٠.	•	3.0	•	-			ن
479.00	2.41	4.49	2.70	0.00	00.00	10.00	6.83	21.7	21.7	21.0	21,0
F(.0)	.2	۳.	٠.	c.	•	1.5	8	=	-	-	-
C . I s	4.	4	17	c.	Ç	2.1	₩.	-	_	.	=
85°0	~	4	. 2	S	3	2.0	ς.	.	:	-	=
#2.1	Ψ,	٠ ٣		C	c.	2.0	6	-	-	-	-
F3.C	~	٣.	~	ę.	•	1.9	6	-	-	=	-
484.00	3,33	5.31	3.19	00.0	00.0	11,63	6.95	21.7	21.7	21.2	21.2
F5.C	٣.	~	~	0	੨	1.7	٥.	_:	-	-:	_;
ນ•9₃	~.	7.	Ξ.	c.	0	1.7	o.	-			-
67.0	. 2	Ċ	~	Ç.	٠	9.	•	-	-	-	•
O. Ha	~	~	-	.	0	٠.	<u>ت</u>	-	-	-	-
463.00	3.28	5,23		00.0	00.0	11.64	0		21.7	21.4	
£8.2	~:	~	٠	c.	•	1.5	•	Ξ.	-	-	=
0.06		.7	•	Ç.	<u>٠</u>	1.6	C		-		
91.0	.2	. 2	٦.	0	٥.	1.t	~		-	-	-
92.0		7	~	c.	•	1.6	٣,	-	_;	_:	-
463.00	3.28	5.23	3.13	00.0	00.0	11,64	7.15	21.8	21.6	21,7	21.7
0 * + 6	7.	~	-	٥.	္	1.66	7.1	.	:	.	:
6.56	. 2	7	٦.	0	್ತ	1.68	~	-			-
a • 10		•		٠.	C	11.71			_		-
97.0	~		-	٠.	<u>د</u>	1.7	.,	-:	-	-	_
J . 45	٠,	~	٦.	•	٠	1.7	7.2		_	7	N
00.55	3.32	5.30	3.16	ن • ن •	00.0	1.7	٣,	22.0	22.0	~	.4
64.2	~	~	-	0	C.	1.7	~	2	2	22,1	22.1

1222	7 7	~ m	20 C	25.4	5.5	. s	0 0 0 0	, .	0	26.1 26.1	ŝ	26.1 26.1	9 4	•	ę,	26.0		5	5	'n.	, ,	25.9
22.2	77	200	22.2	25.4 25.4 25.6	8.0	. S	22.0	•	•	26.1 26.1	ν.	26.1 26.1	9	• •	•	26.0		ŝ	5.	٠.	, u	25.9
22.0	~ ~	~ + "	25.6 25.6 25.9	25.2 25.1	4 4	m m	23.2	•	, m	23.1 23.1	~	23.1	<u>.</u> ۳	, ~	~	23.2	; ,	~	~	۳,		23.2
22.0 22.0 22.1	5.	44	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25.2	44	٠, ٣	23.2	•	•	23.1	ë.	23.1	۳.	· ~	ω.	23.2	· ~	۳.	ω.	<u>.</u>	÷.	23.2
7.32	. d	000		000	S 0	0.0	000	•		0 0 0 0	٥.	000	0,0		0	000	. 0	•	0	0	ءَ دَ	000
11.60		en e. e.	11.96 12.01	12.05	2.1	2.1	12.16		2:2	12.23	2.5	12.23	2.5	2.2	2.2	12.23	2.2	2,2	2.2	2,5	2,5	12.23
000.0	c c	၁င	0000	000000000000000000000000000000000000000	00	0.0	000	•	• •	00	ç.	00.00	0.		°.	00.0	2	0	0	0	٠.	000
000 000		600	000	000	00	CO	0000	•	, c	0°00 0°00	٠	0°00 0°00	0,	. 0	•	000	• •	٥.	0	0	<u> </u>	000
3.17 3.17		~~~	3.17	3.16 3.16 3.16			3.11 3.10 0.10	•		a.c.s	•	3,04 9,04	0	9 0	•	3.02	•	0	•	٠.	•	2.99
5.31	m m	~~~	6.50 9.40 14.10	50 50 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	44	4.4	ุณ เก.ห 4.4 ณ 2.2 ณ	. ע	. 7.	5,51 5,51	3.	5,51 5,51		. rc	ıc:	κυ τι κυ τι κυ τι	•••	5	S	5	י י	5,51
  		~~~	2.4.6 2.4.0	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ 5	3.5	3.55 7.56 6.4	•	•	3.67	•	3,68 3,68	٠.	Ç.		3.70 07.6		٠.	. 7		`. [	3.72
507.00 501.00 502.00	0.40	67.9	521.10 525.80 537.03	542.80 550.00 554.51	58.6	68.5	080 080 040 040 041		0.60	669.65 610.00	11.0	612.00 613.00	14.0	16.0	16.6	617.00	19.0	20.0	21.0	22.0	2 4 4	625.00

LAMELA	0+(48)	6+(25)	0+(2P)	C+(4F)	C+(2P*)	C+(1C1)	E (E)	N2(ABS)	N2(10N)	02(ABS)	02(164)
35	_	ی	9	C	9	2.2	Ö	~	~	6	5
7 · · ·	•	1 4	•	•	•		Ġ		; ~		
2.5	•	'n.	•	•	•		•	•	•	•	
27.0	•	'n	•	с: •	•	2 . 2	5	,	÷	ċ	ċ
2	•	•	ĵ.	00.0	00.0	12.22	0.00	23.2	23.2	25.8	S
629.00	3.74	5.50	86.2	•	٠ •	2.2	ē	m	٠ •	S.	25.8
79.7	-	,	6	٠	0	2.2	0	~	~	5	Ś
		•		. 5	. 3	2.2	9		-	ď	
			3	9		2.2	0	,	· ~		5
			. 6	. ~	. ?	2.2	0		~		3
633.00	3.75	5,49	2.36	00.0	0.00	12.21	00.0	23.2	23,2	25.7	25.7
34	-	37	ō	c	0	2.2	ပ	~	~	5	Š
635.00	3.76	5.49	2,95	0.00	00.0	12.20	00.0	23.2	23.2	25.7	25.7
36.0		4	5	0	٥	2,1		<u>_</u>	~	Ś	ŝ
37.0	-	4	6	٥.	٥.	2.1	•	~	<u>~</u>	3.	ŝ
34.0	. 7	4	Ġ.	°.	Ç	2.1	•	3.	÷	S.	'n
30.0	,	4		٠	9	2.1	c	m	~	9	S
00.096	3.77	5.48	2.93	000	00.0	12.18	00.0		23,3	26.1	25.9
41.0		4.	5.	۶.	٥.	2.1	°	~	<u>«</u>	•	•
42.0		4	2.	Ç,	0	2.1	٥.	<u>.</u>	<u>.</u>	Ė	٠,
43.0		4.	5	c.	٠.	2.1	ن.	æ.	3.	•	•
44.0	7.	4.	2	0	•	2.1	•	J.	<u>س</u>	•	•
44.1		4	٠.	۲.	<u>٠</u>	2.1	0	۳,	~	•	÷
645.00	3.79	5.46	2.90	00.0	00.00	12.15	00.0	23.3	23,3	26.8	26.3
46.0		4.	6.	2	0	2:1	٥	۳,	٠	÷	
47.0	۲.	4.	σ.	•	ۍ.	2.1	Ü	æ.	~	è	•
د و ب	7.	4	<b>x</b> 0	0	0	2.1	Ċ.	m	~	•	•
40.0	T.	4.	ند •	ပ	ن	2.1	c.	<u>«</u>	~	•	ų.
£50.00	3.40	5,45	2.68	00.0	0 0 0	12.13	00.0	23,3	23.3	26.2	2¢.0
51.6	يد •	۲.	æ	ي.	ب	2.1	°.	<u>ش</u>	~	•	ż
52.0	X)	7.	œ.	ç.	0	2.1	0	m	~	•	'n
53.0	30	4.	T.	0	0	2.0	0	~	m.	S.	S
54.0	ı.	4.	30	٠.	ပ္	2.0	٥.	۳,	<u>~</u>	Š	Š
655,00	3.80	5.41	2.H4	0.00	00.0	12.05	00.0	23.8	23.8	25.6	25,3
50.0	٠.	٠.	<u>.</u>	င့	ت •	2.0	٥.	<u>~</u>	~	۶.	ż
57.0	Ť	4.	K.	ပ္	٥	2	c.	4.		Š	ŝ
57.3	u.	~	•	٠.	ت	7.0	٠.	4	• •	Š	Š
T.	T.	~	E.	٥.	c.	2.0	ت•	4	7	Š	4
C . O . O		. m.	2. *1	00.0	00.0	11.95	00.0	24.1	24.1	25.1	7
6.4		اس	·c	C:	٠	1.9	ن•	4	4	\$	٠,
	τ.	<b>~</b> .	•	٠.	÷	1.9	÷.	Š	~	4	24.5

40	•	-	•	•		•	,	·		4
	۳.	•	•	-		٠	ċ	~	•	•
	~.	۲.	c.	2	7.	ن	ġ.	÷.	4.	٠
	~		0°0		11.91				4	23.4
	5,33		c.	<b>.</b>	5	<u>.</u>	27.3	5	23.6	m.
	œ.	0	0	0	9	<u>ں</u>	-	Ş	4	m
	4	2	°.	ن	T.	c.	-	Š	*	۳,
		00.0	00.0	00.0	29.5	00.0	27.2	25.9	24.5	23.9
	٥	0	0	•	ē	٥.	•	•	*	4.
		•	c.	0.	•	ů.	• •	5.	4	÷.
	3	਼	c.	c	5	Ö	~	20	3.	4
	S	9	C.	0	ŝ	0	~	œ	Š	4.
	5.	00.0	00.0	00.0	85.58	00.0	33,9	28.1	21.9	21,9
	N.	ે.	c.	ت	₹.	ی	۳,	,	Ξ.	-:
_	5,55	C.	°	°.	÷.	c.	7	2.	-	-
-4	Ś	٠,	ć.	>	5	0	5.	28,3	•	•
_	47	٥.	٥.	0	\$	0	5	æ		•
_	•	00.0	00.0	00.0	9.53	0°00	•	æ	21.8	20.3
	s.	•	٥.	Ç	ŝ	٥.	Ļ	5	-	ċ
_	9.50	਼	°.	<u>ت</u>	• 5	ပ	~	2	<u>.</u>	-
	4	c	0	0	ŝ	<u>ن</u>	~	6	"	•
_	5,49	00.0	0.00	00.0	9.50	0000	23.8	19.5	22.1	20.5
	4	0	ŗ.	Ŷ.		c.	<del>ر</del>	6	5	j
	4	ଂ	ç	0	4.	٥.	<b>.</b>		2	٠
	4	0	•	•	4	•	Э	-	m	•
~	4	Ç.	°.	0			7.	•	24.1	20.5
	4.	<u>ب</u>	0	•	4	٥.	۲.	_:	4.	ċ
_	4	00.0	0 • د د	00.0	4	C	ġ	-	ŝ	<u>.</u>
-	4	٥.	٥.	9	*	°.	Š.	Š	_:	-
_	5.44	?	Ċ.	0	4	0	26,2	<b>:</b>	•	•
78	4	0	C.	Ü	~	•		21.4	27.1	20.5
70	~	੨	٥.	<u>ء</u>	1.0	•	ŝ	=	۲.	ċ
~	6.25	00.0	00.00	00.0	16.88	00.00	ŝ	-	œ	ټ
£	-	٥.	Ġ	0	0.7	Ċ.	7	30	æ	_
<b>-</b>	9	•	0	٥.	0.5	٠.	5	30	÷	_
•	8	0	3	Ö	0.3	0		90	6	-
4	80	•	•	٥.	٦.	9	ň	s.	•	2
_	5.71	0.00	00.00	00.0	86*6	00.0	43.4	35,4	30.4	23.6
_	9	9	•	0	6	٥.	m	Š	0	4
	•	•			•			•	•	•

02(ABS) 02(1CN)	31.2 26.0	2.6 28.	3.0 36.	2 3	3.6 30.	3.8 31.	5.0 23.	3.9 31.	4.0 30.	4.0 36.	33.8 36.4	3,7 29,	3,6 29,	3.0 26.	2.6 26.	32.0 27.6	2.0 27.	1.8 27.	1.2 26.	0.6 25.	30.0 25.0	9.4 24.	8.5 24.	8,3 23	8,0 23,	.3 23.	7.0 22.	6.4 22.	6.0 21.	7.0 21.		0.6 22.	1.4 23.	2.2 25.	2.6 2t.	33.0 28.0	25.
N2(ION) O	35.2	•	ċ	20.5	•	ċ	<b>≈</b>	•	-	۲.	21,4	<b>:</b>		2	7	22.4	~	2	2.	œ	18.0	.D	۳.	~	~		÷	2	2	_	41.5	-	·	• •	5	19,0	oc
N2(ABS)	4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ŝ	Š	25.7	\$	•	•	÷	•	7.	27.6		э <b>о</b>	90	•	29.4	٠ <u>.</u>	6	÷	Š	25.0	s.	1.		-		<b>.</b>	7.	•	•	56.1	Š	4	~	ė	25.5	4
7	00.00	90	•	•	•	۰.	00.0	ပ	c	٥.	00.0	0	<u>.</u>	•	٥.	00.0	٩.	٥.	٥.	9	00.0	٥.	<u>ت</u>	•	٥.	J	•	0	c.	9	ລິບ <b>•</b> 0	c.	0	•	ç	00.0	Ç
(+(101)	φ.φ. • • • • • • • • • • • • • • • • • • •	, 0	œ.	-	1.6	1.4		1.2	 	6.0	10.74	0.5	4	0	9	88°6	30	œ	. 7	9	9.62	5	4	4	4	~	?		•	٥.	8.05	٥.	6		<b>ب</b>		,
C+(2P*)	00.00	00	•	٥.	٥.	•	0.09	•	0	°	000	•	Ç.	0	0	0.00	٥.	٥.	Ç.	•	0.00	ိ	0	•	•	ر ت 0	•	•	0	਼	00.0	٠ <u>.</u>	੍ਹ	•	•	J) • 0	•
C+(4P)	0.00	, c	0.	٥.	٦.	۲	00.0	c.	0	۲.	0°0	c.	•	C.	c.	00.0	٥.	Ċ.	ů.	•	0.00	c.	c.	c.	·	٥°0	Ċ.	c.	٥	c.	0 u c	٥.	·°	ن	c.	00.0	C
0+(24)	000		G.	٥.	c.	•	ڻ <b>0 °</b> 0	°.	•	Ċ.	00.0	э.	?	٥.	٠.	00.0	٥.	਼	· c	e.	00.00	0	٠ •	•	٥.	•	٠	Ċ.	۰,	9	00.00	Ġ	0.		•	0.0	
0+(2E)	8. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	7.	3	•	Ś	٠.	4	~	.2	٦.	6.07	σ.	œ.	۲.	S.	5.5h	٠.	•	. 4	4	~	٣,	-	~	~	5.22	-	-	-	ټ		٥.	٥.	•	ı.	74.7	J
0+(48)	4.12	رد رد در	30	•	c.	6	16.4	Œ.	30		4.06	٠,	÷.	4	~	4.32	۳,	~	2	`	4.72	. 2		~		4.13	-	٥.	=	٠,	4.01	2.	<b>٠</b>	`.	٦,	3.42	,
LAMPDA	96	၁၀	00.0	c.1.	02.0	03.0	703.40	04.0	0.50	0.90	707.00	0.40	0.40	10.0	11.0	12	12.7	713.00	14.0	15.0	9	17.0	13.0	18.5	0	$\circ$	21.0	22.0	23.	24.		26.	27.	) × × <	24.0	730.06	71

6 6 8 M M M M M M M M M M M M M M M M M	33.2 30.8 30.8 28.4 27.6 25.0 25.0 25.0	25.6 2.6 3.4 3.4 11.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0	20.1 20.1 20.4 20.5 3.4 6.4 6.4		0 0 0 0 0	23.60 23.60 23.60 23.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60 60.60 60.60 60 60 60 60 60 60 60 60 60 60 60 60 6
200.0 200.4 200.0 300.0	00000 00000 00000	x 4 0 - N	86.4411 1.000 1.000		200 1100 100 100 100 100	2000 1000 1000 1000 1000 1000 1000 1000
M M C 4 0	22 2 3 3 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00000	2228 2288 2441 2441	~ ~ ~ ~ ~ ~ ~	300 300 300 300 300 300 300	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60238 00036 00602	30036 0000 0000	00000	C 3 C O O	00000	00000	00000
4 4 4 4 4 4  	4 4 4 4 4 4 • • • • • • • • • • • • • •		44444 ••••• •••• ••• ••• ••• •••		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44444 * • • • • • • • • • • • • • • • • • • •
	00000 00000 00000		00000	00000	00000	00000
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00000			0000		00000
000000000000000000000000000000000000000			00000	00000	00000	
00013	00000	00030	00000	00000	00000	00000
4444 	4444 ••••• ••• • • • • • • • • • • • • •		4 4 4 4 4 • • • • • • • • • • • • • • • • • • •		4 4 4 4 4 • • • • • • • •	4 4 4 4 4 • • • • • • • • • • • • • • • • • • •
733.00 734.00 735.00 737.00	738.00 739.00 740.00 741.00	4444 W4044	748.00 749.06 750.00 751.69	80 80 80 80 80 80 80 80 80 80 80 80 80 8	758.00 758.70 759.00 759.40 760.00	760.40 761.00 762.00 762.00 763.00

3) 02(1CN)	•	*	<b>.</b>	•	11.	2 9.7	9	ð		• 5		•	2 10.0	10	0.01	0,0	10	11	10.	· ·	6	8 6 9	•	ð			13.0	G*			• •	Š		•	Ď	σ.	<u>ب</u>	<b>5</b>	OT		<b>,</b>	<b>,</b>	الان
02 ( ABS	•	·	ċ	•	œ	25.7	S		•	•	•	•	27.2	Ļ.		æ	80	00		6	6	29.6	6	, c			24.0	0	,	• -	• •	31.9			÷	34.3	ŝ	Š	\$	,	7 6	c	Ď
N2(10N)		•	•	•		18.4	æ	3	· a	•	31.0	•	31,8	ċ	Ġ	ŝ	•	~			6	39,3	•	9	•	•			,	•	•	33.3		•		7.7	•				•	•	•
N2 (ABS)		•	•	ó	ŝ	26.9	•	4	•	•	47.1	•	47.1	۲.	۲,	4.	•	0		0	4	64.8	4	٠		ç	0.6	· ·		•		80.0		٠,	Ġ	27.0	۲.	-	2.2	•		٠	٠
ei T	•	9	c	e.	•	00.0	0	9	•	•		•	00.00	ć.	j	0	0	Ö	0	Ö	0	0.00	÷,	C		. 9	00.00		•	•	•		•	۰	Ç.	00.0	c.	0	ذ.	٠		، د	ں •
C+(1C1)	•	7	7	٦.	~	4.18	-	-	•	•	* 4	:		7		~	~	•	-	-	-	4.20	?	(	. 2		4.25	2		• (	• ~	4.34	•	~	4	4.48	÷.	Ş.	•	. 4		•	
C+(2P*)	٠	2	٥.	٥.	0	00.0	0	•	•	2 3		•		٥,		2	•	- 1		0	0	0.00	0	٠	9		0.00	0	•	ر •	•	00.0		•	۹.	0.00	ç	٥.	2	•		•	Ç,
C+(4F)	•	•	Ç	۰.	c	0.00	C		•	•		•	00.0	°.	c.	Q	Ö	•	. 0	9	0	00.0	c.	C		: =	0.0	0	•	•	•	000		9	c.	00.0	Ç	C	٠	, (		•	ن.
0+(2P)	•	•	٦.	Ö.	٠,	00.0	=	•	•	•		•	3	٥.	00.00	c.	9	C		0	9	0.00	C	Ċ	•	•	20.0	=	•	•	•	00.0	,	٥.	°.	00.0	٥.	c,	9	•		•	<u>ت</u>
(32)+0	•	9	-	٠.	٥.	00.0	۲	•	•	•	000	•	0.	٥.	0	٠.	٠	٥		0	0	00.00	0	S	. 0		00.0	2	•	•	•	0		ي	Ġ	00.0	ن	J.	ر			، د	٠.
0+(48)		-	-	~	7	4.18	-	•	•		* O	•	۳.	۳.		٦.	4.18	-		-	-	4.20	٦,				4.25	C	• (	•	•	4.34	•	٣.	4	4.48	٠,	• 5	Ş	•	2 .	•	۲.
LAMBEA		O. B.	0.69	76.0	70.4	771.96	ر د			3 4 6	00.811	•	76.0	77.0	76	79.0	· •	بم د ت		0	0.43	754.00	) V		9.4		787.71	u		) : ) :	) c	791.00	•	0.25	93.0	4	0.55	0.45	67.0		00.000	) )	ت ت ت

27000 	90000 90000 90000	1111 110.1 10.3	ტო ტ ფ ფ ფ ტ ტ დ ფ დ	0 0 m 0 L	40000 4000	0 4 4 7 6 - 1 4 5 6	• • • • • • • • • • • • • • • • • • •
44444 00446 00446	4444 6 4 4 4 8 6 4 6 6 7 6 6 6 8 7 7 8 6 8 7 8 9 9 9 9 9	444MW	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2222 2222 42128	23.5 22.9 22.9 21.9 7.7	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222 201 200.6 190.6
00000	30000	00000	00000	00000	00000	00000	00000
45.1 25.0 2.9.0 0.0 3.1.80	44V 44W00 		44 00000 00000	16.0 9.3 9.3 15.7	15.7 0.0 0.0 0.0	00.0 0.0 0.0 32.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
00000	00000	00000	00000	00000	00000	00000	00000
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	W 4 4 4 4 • • • • • • • • • • • • • • • • • • •	11.00 2.92 3.75 4.68	4444 ••••• 000 mm	44444 ••••• •••• ••• ••• ••• ••• •••	4 4 4 4 4 • • • • • • • • • • • • • • • • • • •	4444 ••••• •••• ••• ••• ••• ••• ••• •••	4 4 4 4 4 • • • • • • • • • • • • • • • • •
00000	00000	00000	00000 00000 00000	00000	00000	00000	00000
00000	00000	33399 99999 99999	00000	00000	00000	00000	00000
00000	00000 00000		00000	00000 00000	00000	00000	00000
00000	00000			00000	00000	00000	
4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	W 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11.60 2.92 3.75 3.88	4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4444   	4 4 4 4 4 • • • • • • • • • • • • • • • •	44444 ••••• • • • • • • • • • • • • • •	4444 
862.00 863.00 864.00 865.00	907.00 606.00 809.00 910.00	8132.00 813.00 813.00 815.00	817 817 819 820 820 60	822.00 823.00 824.00 825.00	927.00 828.00 829.00 830.00	632.00 833.00 834.00 835.00	8 3 3 7 . U O O O O O O O O O O O O O O O O O O

4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	(42)	(32)+9	(462)+5	(4(46)	C+(2F*)	(1)(1)	a 1	12(AES)	12(104)	C2(485)	02(10~)
	•	•		٠	•	•	د			0	
	•	•	•	•	•	•	•	•	•	•	•
42	•••	٠,	2	٠		•			•		•
43.0	•:	٠,	٠.	٠.	`.		c.		•	a.	•
44.0	٦.	٠.	•			4.16	00.0	-		•	5.4
30.438	4.18	69.69	60.0	`:	0000	~	٠	11.0	0.0	17.0	#·#
	-	•	÷	4	•	•	C				
, ,	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	• -		: ~	•	• • •	•
i d	: -	•	•	• 1.	•	•	_ ~	: ~	•	•	•
1	0 B	2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		• • •	· (1	(d) 0		. m	\$ 0 \$ 5	4	• •
•	-	•		•	`	-	•	_			
		: `	•	•	•	-	٠, د	•	•	; ,	٠
• • • •	•	•	. '		•		•	, ,	٠	; .	•
, ,	•	•	•	•		•	•	•	•	; ~	•
) () () () () () () () () () () () () ()	4.13	, (5) • (4) • (5)		) () ) () ) ()	, 0 , 0 , 0 , 0	) (E) 4 pm 6 8 7 47		36.4	00	13.4	, D
		•	•	•	•	-	•	4		~	•
	r 13	•	> 6 - 6 - 6 - 6	) () ) (		. v	3 C	# C	3 C	10	
) ( ) ( ) (	•	•	•	•	•	: -	, .	• • •	•	•	
	•	• `	•	•	• `	•	•	• 0	•	• •	) u
`	•	•	•		•	•	, ,	•	•	:,	) 4 •
	•		•		•	•	•	•	•	•	•
) • • •	•	00.0			·	-:	٠,	6	•	7	•
5.64	-:	٠.		``		~	٠,	5	•	2	
7	•	٠.	.,	00.0	0	# • <del>*</del>	00.0	5.0	.;	12.0	3.1
	•	٠,	``	٠,	٧.		۲.	ن	•	?	•
•	~		•	٠.		~	٠,	4)	•		•
41	-	0	`:	٠	٠,		ب	4	•	-	
. 7	•		`.	C	•	-	٠			-	
ij				() () ()	55.6	4 . 1 6		42.0	(A)		· •
Ŷ.			``	١.	•	•	٠,	~	•		•
Lá	(E)	C.	·, ·	.,	•	•			•	2	•
71.	٠.	,,,,	•	00°	٠,	~		4,		?	•
72.	•	. `.	٠.		`.	•					
	٠.	٠.	١.	0	•		00.	•		ς.	
76.	• •	4.1	•			4		•	• •	ur.	3 . 2
ここののたま	.t	•	`.			:			3		•
	•			•	•	•:	•		•	•	
			•			•		4.64	•	a) u	3.1
`• •••	•	•			•	•	•	r. r	•	•	•
•	: •	. `	:	•	•	•	• ,	• ,	•	•	•
•	•		•	•		:	•	•	•	•	•

មាល។ មាល • • • • • • • • • • • • • • • • • • •	ល ល ល ល ល ល ល ល ល ល	 	ഹഗഗഗന ••••• ശനനനമ	დადდაბ  ოოოცო	2 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		7 7 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
		6 0	L444L	17.6 17.6 17.6 17.6	17.6 10.6 17.9 17.7		4 4 4 4 6 6
00000	00000	20000	00000	00000	90000	00000	00000
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	176.2 176.2 9.6 9.6	44444 	10 61.9 106.1	18.1 22.8 19.2 20.4	200 9 W W W W W W W W W W W W W W W W W W		44444 0000 0000
00000	00000	0000	00000	00000	00000	00000	00000
	ap ap ap ap ap a	44444 ********************************	44444 ••••• • • • • • • • • • • • • • • • •	44444 ••••• • • • • • • • • • • • • • •	4444 ••••• •••• ••• ••• ••• •••	4000 1000 80000	00000
6 0 0 0 0 0 0 0 0 0 • • • • 6 0 0 0 0	00000	00000	00000	00000	00000	00000	00000
00000 0000 00000	00000	00000	99999 99999 99999	00000	00000 00000 0000	33000 0000 0000 0000	00000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	0 C O O O 0 C O O O 0 C O O	00000	00000	00000 0000 00000	00000	00000
	00000	00000 00000 00000	00000	00000	00000	00000	00000
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44444 ••••• •••• ••• ••• ••• •••	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 • • • • • • • • • • • • • •	44444 ••••• •••• ••• ••• ••• •••	# 30 0 C	00000
		00000000000000000000000000000000000000	00000 0000 0000 0000 0000 0000	00000000000000000000000000000000000000	00.5.00 00.00 00.00 00.00 00.00 00.00	911.00 911.00 911.00 911.00	4110 4110 4410 4410 4410 4410 4410 4410

LAVECA	0+(48)	0+(25)	0+(2P)	(+(4P)	C+(2P*)	C+(1CT)	Ŧ	N2(ABS)	N2(10N)	02(ABS)	02(10N)
7	0	Č	•	0	9	2	0	S	•	4	•
•	•	ē	•	. <	9	9	Ö			•	• (
•	•	Ċ	•		9	9	Ċ			. 4	• (
•	•	•	•	•		2	Š	: -	•	4	•
23.10	000	0000	00.0	30.0	00.0	00.0	00.0	31.9	0	•	2.9
				•		,	•				
24.0	€.	ت •	•	Ċ	•	0	Ç	<b>.</b>	•	m,	ċ
25.0	ુ.	٥.	٠ •	Ċ.	0	٥.	9	-		'n.	<u>.</u>
20.0	٠,	٥,	ε.	ç.	Ç	٥.	٥.	Ġ.		ä	ပံ
26.	00.0	00.0	0000	00.0	00.0	00.0		9	0.0	÷	
927.00	٥.	٠,	÷.	ç.	٠	°	0.	19.0	•	13.4	ů
24.0	S	ن	9	c	9	•	9	6	•	~	
0 0 0			9	٦,	Ċ	9	9	4	•	-	•
	•	•				2	•	. 4	•	; ,-	;
	•	•	. 0			2		4	•	, ,	
931.00	00.0	00.0	00.0	30.0	00.0	00.0	00.00	64.5	0	25.7	9.81
3 2 6	=	C	•	_	C	9	C			ď	CE CE
) i	•				, כ	2		•	•		
33.4	• •	0	•	•	3		0				6
4		ຸຕ	°	C.	0	0	9			Ś	, uo
935.00	00.0	00.0	00.0	0.00	00.0	00.0	00.0	3.1	0.0	25.6	14.5
9	=	Ö	0	Ç	0	9	0	•		•	•
37.0	. ?	9		9	0	0	0	•	•	, m	
-	00.0	0.0	00.0	0.00	00.0	00.0	00.00	10.0	0.0	5.0	(4
34.0	ું.	٥.	٥,	c.	Ö	9	0	Ψ,	•	٣	÷
39.0	3	· ·	C.	٠.	c.	3	0	•	•	23.5	14.1
ن <b>و</b> ن <b>و</b>	ت.	•	٠.	c.	0	0	٠.	20.	•	~	
41.0	2	٠	<u>ت</u>	ပ္	ç	•	•	0		~	4
942.00	00.0	٠	00.0	ر• ٥ د	00.0	00.0	00.0	~	0.0	$\sim$	
43.5	=	Ľ.	٠,	٥.	ې	c.	٥.	ø.	•	ä	÷
9.00	Ç.	0.00	=	٥.	<u>ي</u>	0	ပ္	•		•	~
44.5	ن• 00	<u>ت</u>	0	<i>ن</i>	3	0	0	6	•	~	~
45.0	6.00°	J	٠,	0	<u>ء</u>	0	c.	•	•	6	6
940.00	00.0	00.0	00.0	C 0 0	00.0	00.0	00.0	39.8	0.0	30.1	8.61
47.0	ن• 0 ن	Ç	Ç.	S	c.	•	ပ	•	•	ċ	ŝ
, . s &	ت. ت	<u>.</u>	٠	೦	٥	c.	0	•	•	ó	5
7.00	ر. ق	•	٠,	•	•	ت•		•		•	•
62.7	0.00	٠	۲.	٠	2	=	٠.	•	•	Ġ	,
ne ns6	ن • ن •	04.0	0.5.0	ن د • د د	0000	0).0	00.00	7.2	0	30,1	15.7
5. 1.5	3,, • 9	٠	۲.	•	<u>:</u>	•	٥.	•		•	•
£ 2 .	00°3	÷.		<u>.</u>	Ö	0	<u>.</u>	•	•		ċ

•		~	,	22.9			7		, J.	Š	15.6	Ŷ.	ŝ	Ç.	5	۶.	ς.	19.5	÷	٥	•	16.0	÷	÷	•	ä	16.0	ŝ	ď	5.	ŝ		÷	•	•	•	16.6	Ģ	•
•	•	TE	30	28.5	œ		8		27.1	,	27.0	۲.	Ļ.		•	•	•	9	22.0	2	-	21.9	Ξ.	-	•	4	21.8	_;		-	-		~	~	2	?	22.7	7	5
•	٠	•	•	o•0				0.0	•	•	0.0	•	•	•	•	•	•		0.0	•		c. 3	•	•	-	•	0.0	•	•	0.0	•	0.0		•	0.0	•		•	•
•	•	•	ŝ	15.9	٠	0	ċ	56	56.9	9	56.9	Ġ	<u>-</u>	ë.	ω.	÷.	۳,		<b>.</b>	0	89	•	8	68.1	OC.	ر• ر	Œ	4		4	4.	44.2	3	4		•	0		•
٠	٠,	c.	S	0.0	C	9	ت .	ت	•	Ç	0.00	Ç.	ů	ပ္	0	ပ္	0	00.0	0	0	9	00.0	٥.	•	٥.	ပ	00.0	c _•	ပ္	Ü	Ċ.	00.00	Ö	ؿ	•	•	00.0	0	ှ
ت	•	<u>-</u>	•	00.0	9				00.0	3	000	•	c.	0	<b>.</b>	<b>•</b>	÷.	0.00	<u>٠</u>	0	=	00.0	3	•	•	•	00.0	<b>。</b>	•	Ċ	e.	00.0	ج	9	0	•	00.0	•	•
Ξ.	٠,	۲.	ت •	00°	٠		9		00.0	9	00.0	•	c.	•	٠	•	•	00.0	٠.	0	9	0.00	•	•	0	•	0.00	•	•	ಿ	٥.	0.00	<u>-</u>	٠.	•	0	00.0	0	0
٠.	•			00.0	C	ت (	, c		•	C.	00.0	·	٥.	Ö	°.	ů.	0	00.0	ç.	٥	9	0.00	c.	0	ن	°.	ວ _ິ ດ	ت.	ç.	Ç	c.	0°0	್	Ċ	c	•	00.0	•	0
<u>.</u>		ં.	د	0.00	_	. <			00.0	ن	00.0	٠,	د.	٠.	0	ં.	0	00.0	0.	C	0	00.0	0	0	•	ಿ	0.00	٥.	C.	٠.	ç.	00.0	°.	٥.	ح.	•	00.0	٥.	<b>.</b>
•		•	•	00.0		ָר בּי	. 0		00.0	د	00.0	ن•	<u>.</u>	٥.	0	ن	°.			C	. 5	٥.	٥.	00.0	c.	٥.	00.00	್	•	Ü	٥.	00.00	٥.	٥.	0	9	00.00	٥.	C.
÷	•	٠.	٠	ລຸດ • ວ	٤	•	. =	•	0.00	c	00.0	3	٥.	0	٠	<u>.</u>	3	00.0	0	c	٠,	06.0	٥.	٥.	<u>-</u>	<b>-</b>	00.0	٥	Ċ	0	•	00.0	C.	Ē	3	•	0000	5	3
53,6	۵.4	15.00	56.0	957,00	3		60.09			63.0	964,00	65.0	66.0	67.0	ن د	69.0	70.0	571,00	72.0	72.5	73.0	574.00	75.0	76.0	77.0	0.76	578.00	79.0	ت. عدد • ت	91.	85.0	9F3.00	64.0	85.0	96°0	87.0	286,00	89°0	0.06

02(104)		•	•	٠		11.1		•	: .	:.	r •	•	•	•		•	3.4	•	•			1.3	•	•	• •	•	1.2		•	٠	•	•	1.2	•	•	•		7 • 7		•	•	٠	၁ ·	4
U2(ABS)		•	•	•	_	13.1	~	•	•	•		•	1.7	•	•	•						1:1	•	•	•	• 7	-		•	•	٠	٠	1.3	•	•			1.2		٠	•	٠	1.6	•
N2(ICN)			•	٠	•	•		• 7	•	•	9 0	•	•	0.0		•	•	•	• •	•		0.0		•	• -	• [	0		•	٠		•	0.0	•	•	•		0.0		٠	•	•	ے د د	•
N2(ABS)			•	•	•	0.0		•	•	٠	•	•	•	0.0	•	•	•	0.0	•			0.0	•	•	• •		0		•	•		•	0.0	•	•			0.0		•	٠	•	0.0	•
ચ *	•		•	•	9	•	•		•	•		•	0	00.00	0	೦	0	•	. 0	ن	Ů.	00.0	0	Ċ	٠,	Ö	00.0	•	٠,	٥.	ပ	٥.	٥. ٥	د.	0	¢	ي.	00.0	ے	•	5 0	، د	60°0	Ö
(+(1C1)	•		?	•	٩.	•	_	•	•	•		•	Ö	00.0	•	0	• •	0	0	9	•	00.0	0		•	3	00.0	•	•	•	00.0	٥	2	2	c	00.0	0	٠	3	•	•	2	ر د ۲۰۰۵ د ۲۰۰۵	?
C+(2P+)	4		?	•	9	•	=	. 5	•	•		•	0	00.0	9	Ç	္	0	0	<u>ي</u>	9	00.0	c	9	9	0	0000		?	•		۰.	0	ت •	٥.		2	0	Ç.	•	٠,	? (	ည်ပ ၁	۳
C+(4P)	٠		٠,	0	c.	Ç.	c	•	•	•		•	c.	00.00	٦,	c.	0	0	0	۶.	٥.	00.00	0	. ~	•	C	00.00	•	•	c.	0.00	٠,	Ċ.		c.	•	c.	C	c	•	•	٠. ١	3 ( 0 (	`.
0+(2P)	•		•	<u>ت</u>	ੰ	٥.	c		•	•		•	•	0.00	ပ	3	÷.	ပ		0	0	00.00	0		. 0	9	00.0	•	?	c	00.0	٥.	<b>ુ</b>	၁	0	00.0	ت •	0		•	•	٠	00.0	•
0+(35)	•	•	?	٥.	٥.	00.0	•	•	•	•		•	ວ	00.0	ڌ	0	Ö	•	۲	0	9	00.00	c,	۶,	ن	ب.	00.0	•	•	u.	ن	<u>ن</u>	0.00	ن	٠	Ξ.	۳	30°0	,_		، د	. •	0 (	٠
0+(48)	•	000	=	ુ.	٦,	٥.	5	•	•	•	2 0 2 0	<u>-</u>	0	00.0	٥.	2	0	c	, c	, ຈ	ં .	00.0	3	٠	ي د	2	00.0	(	•	<u>ٿ</u>	00.0	٠.	-	60.9	00.0	(O°)	0.00	04,*0	9 0 - 9		00°5	C	00°0	: c • :
LAVPEA		00.155	015	92.0	0.65	0		) (	) · · · · · · · · · · · · · · · · · · ·	; ·	00° 00°	ے •	0.000	1001.00	662.0	003.6	00400	0.6500	0	0.7.0	ט איני	1004.00	016.0	40.0	5110	012.0	1013.00	•	> • • · ·	012.0	1615.00	017.º	0.810	519.0	20.0	021	0.150	2.1	7.7 (7)				1925.72	C = 4 7 )

~000

300°C

1027.00 1028.00 1029.00