

EncoderMI: Membership Inference against Pretrained Encoders in Contrastive Learning

Hongbin Liu*, Jinyuan Jia*, Wenjie Qu†, Neil Zhenqiang Gong*

Duke University*, Huazhong University of Science and Technology†

similar or different.

• Learn the general features of a dataset without labels

Similar Sample Stay Close to Each Other and Dissimilar Ones are Far Apart.

Data Augmentation

Random Transformation

Create random input (called augmented input) by a sequence of random operations

Learning Goal

Contrastive Learning Inference

Observation

Structure of Inference

Training a Shadow Encoder

Extracting Membership Features

$$\mathcal{M}(\mathbf{x}, \tilde{h}) = \{ S(\tilde{h}(\mathbf{x}^i), \tilde{h}(\mathbf{x}^j)) | i \in [1, n], j \in [1, n], j > i \}$$

• Constructing an Inference Training Dataset

Building Inference Classifiers

Building Inference Classifiers

Building Inference Classifiers

Structure of Inference

Evaluation

Experimental Setup

Datasets:

CIFAR10, STL10, and Tiny-ImageNet

Training target encoders:

ResNet18 Architecture, MoCo v₁ algorithm

Training shadow encoders

Data distribution: 20,000 images from same or different dataset.

Architecture: ResNet18 or VGG-11

Algorithm: MoCo v1 or SimCLR

Evaluation

Experimental Setup

Building inference classifiers:

EncoderMI-V: a fully connected network with two hidden layers.

EncoderMI-S: DeepSets

EncoderMI-T: A pre-determined threshold

Evaluation metrics:

Accuracy, precision, and recall

Compared methods:

5 methods aim to infer members of a classifier or embedding model.

• Existing Membership Inference Methods are Insufficient

(a) Baseline-A

Pre-training dataset	Accuracy	Precision	Recall
CIFAR10	55.1	53.4	73.1
STL10	54.3	53.7	62.2
Tiny-ImageNet	47.3	48.2	68.3

(b) Baseline-B

Pre-training dataset	Accuracy	Precision	Recall
CIFAR10	54.6	63.1	58.2
STL10	, -	, —	y ₀ —22
Tiny-ImageNet	51.8	53.7	47.6

(c) Baseline-C

Pre-training dataset	Accuracy	Precision	Recall
CIFAR10	52.8	54.1	43.1
STL10	50.5	50.1	57.9
Tiny-ImageNet	50.2	52.1	42.3

(d) Baseline-D

Pre-training dataset	Accuracy	Precision	Recall
CIFAR10	50.7	50.6	51.0
STL10	50.1	49.9	50.3
Tiny-ImageNet	49.5	49.3	49.2

(e) Baseline-E

Pre-training dataset	Accuracy	Precision	Recall
CIFAR10	64.5	63.8	67.2
STL10	67.0	65.7	71.3
Tiny-ImageNet	68.6	67.8	70.8

• The Proposed Methods are Effective

Pre-training	Encoder	Training		Accuracy			Precision	
data distribution	architecture		Encod-	Encod-	Encod-	Encod-	Encod-	Encod-
data distribution	architecture	aigoriumi	erMI-V	erMI-S	erMI-T	erMI-V	erMI-S	erMI-T
×	×	×	88.7 (1.81)	84.9 (1.73)	85.3 (1.67)	86.0 (1.98)	81.5 (2.03)	81.8 (1.74)
√	×	×	93.0 (1.74)	88.2 (1.68)	90.0 (1.44)	90.1 (1.39)	85.4 (1.45)	86.8 (1.23)
×	√	×	89.1 (1.63)	86.4 (1.64)	85.7 (1.29)	83.3 (1.88)	84.0 (1.84)	80.1 (1.63)
×	×	√	94.1 (1.07)	91.3 (1.03)	94.1 (0.91)	90.7 (0.88)	90.3 (0.87)	93.5 (0.79)
\checkmark	√	×	94.4 (1.38)	90.4 (1.33)	91.5 (1.26)	97.4 (0.96)	94.1 (0.91)	93.8 (0.91)
\checkmark	×	√	96.1 (0.67)	91.6 (0.69)	94.1 (0.54)	93.8 (0.73)	90.4 (0.68)	94.2 (0.62)
×	V	√	94.5 (0.59)	91.8 (0.56)	92.0 (0.53)	92.3 (0.93)	94.4 (0.91)	94.1 (0.86)
V	V	√	96.5 (0.51)	92.0 (0.47)	94.3 (0.43)	96.6 (0.72)	92.9 (0.59)	94.9 (0.57)

Recall					
Encod-	Encod-	Encod-			
erMI-V	erMI-S	erMI-T			
90.1 (1.96)	95.3 (1.67)	95.9 (1.44)			
97.8 (1.26)	93.2 (1.22)	97.1 (1.11)			
96.3 (1.22)	91.1 (1.29)	96.1 (1.08)			
97.4 (0.92)	91.3 (1.22)	95.6 (0.93)			
90.8 (1.46)	87.1 (1.37)	89.4 (1.22)			
97.6 (0.99)	92.3 (1.02)	95.7 (0.88)			
96.7 (0.92)	90.6 (0.79)	92.7 (0.77)			
97.0 (0.93)	92.4 (0.89)	93.2 (0.91)			

• Impact of Augmentation and Similarity Metric

• Impact of Augmentation and Similarity Metric

Impact of the size of the pre-training and shadow datasets

(a) EncoderMI-V

(b) EncoderMI-S

pre-training dataset (x-axis) and the shadow dataset (y-axis)

COUNTERMEASURES

Preventing Overfitting via Early Stopping

(a) Overfitting of the target encoder

(b) Inferability-utility tradeoff