0.1 互素多项式的应用

命题 0.1

设 f(x), g(x) 是数域 \mathbb{K} 上的互素多项式, A 是 \mathbb{K} 上的 n 阶方阵, 满足 f(A) = O, 证明: g(A) 是可逆矩阵.

证明 根据假设,存在 \mathbb{K} 上的多项式 u(x), v(x), 使得

$$f(x)u(x) + g(x)v(x) = 1.$$

在上述式中代入x = A,可得恒等式

$$f(A)u(A) + g(A)v(A) = I_n$$
.

因为 f(A) = O, 故有 $g(A)v(A) = I_n$, 从而 g(A) 是非零矩阵且 $g(A)^{-1} = v(A)$.

命题 0.2

设 f(x), g(x) 是数域 \mathbb{K} 上的互素多项式,A 是 \mathbb{K} 上的 n 阶方阵, 证明: f(A)g(A) = O 的充要条件是 r(f(A)) + r(g(A)) = n.

证明 根据假设,存在 \mathbb{K} 上的多项式 u(x), v(x), 使得

$$f(x)u(x) + g(x)v(x) = 1.$$

在上述式中代入x = A,可得恒等式

$$f(A)u(A) + g(A)v(A) = I_n$$
.

考虑如下分块矩阵的初等变换:

$$\begin{pmatrix} f(A) & O \\ O & g(A) \end{pmatrix} \rightarrow \begin{pmatrix} f(A) & f(A)u(A) \\ O & g(A) \end{pmatrix} \rightarrow \begin{pmatrix} f(A) & I_n \\ O & g(A) \end{pmatrix} \rightarrow \begin{pmatrix} f(A) & I_n \\ -f(A)g(A) & O \end{pmatrix} \rightarrow \begin{pmatrix} O & I_n \\ -f(A)g(A) & O \end{pmatrix},$$

故有 r(f(A)) + r(g(A)) = r(f(A)g(A)) + n, 从而结论得证.

命题 0.3

设 f(x), g(x) 是数域 \mathbb{K} 上的互素多项式, φ 是 \mathbb{K} 上 n 维线性空间 V 上的线性变换,满足 $f(\varphi)g(\varphi)=0$,证明: $V=V_1\oplus V_2$,其中 $V_1=\mathrm{Ker}f(\varphi)$, $V_2=\mathrm{Ker}g(\varphi)$.

笔记 这个命题告诉我们:多项式的互素因式分解可以诱导出空间的直和分解,从几何层面上看,这就是相似标准型理论原始的出发点。

证明 根据假设,存在 \mathbb{K} 上的多项式 u(x), v(x), 使得

$$f(x)u(x) + g(x)v(x) = 1.$$

在上述式中代入 $x = \varphi$,可得恒等式

$$f(\varphi)u(\varphi) + g(\varphi)v(\varphi) = I_V.$$

对任意的 $\alpha \in V$, 由上述可得

$$\alpha = f(\varphi)u(\varphi)(\alpha) + g(\varphi)v(\varphi)(\alpha),$$

注意到

$$g(\varphi)(f(\varphi)u(\varphi)(\alpha)) = g(\varphi)f(\varphi)u(\varphi)(\alpha) = u(\varphi)f(\varphi)g(\varphi)(\alpha) = 0,$$

$$f(\varphi)(g(\varphi)u(\varphi)(\alpha)) = f(\varphi)g(\varphi)u(\varphi)(\alpha) = u(\varphi)f(\varphi)g(\varphi)(\alpha) = 0.$$

于是 $f(\varphi)u(\varphi)(\alpha) \in \text{Ker}g(\varphi), g(\varphi)v(\varphi)(\alpha) \in \text{Ker}f(\varphi)$, 故有 $V = V_1 + V_2$. 任取 $\beta \in V_1 \cap V_2$, 由上述可得

$$\beta = u(\varphi)f(\varphi)(\beta) + v(\varphi)g(\varphi)(\beta) = 0,$$

故有 $V_1 \cap V_2 = 0$, 因此 $V = V_1 \oplus V_2$.

例题 0.1 设 $\mathbb{Q}(\sqrt[q]{2}) = \{a_0 + a_1 \sqrt[q]{2} + a_2 \sqrt[q]{4} + \dots + a_{n-1} \sqrt[n]{2^{n-1}} \mid a_i \in \mathbb{Q}, 0 \leqslant i \leqslant n-1\}$, 证明: $\mathbb{Q}(\sqrt[q]{2})$ 是一个数域, 并求 $\mathbb{Q}(\sqrt[q]{2})$ 作为 \mathbb{Q} 上线性空间的一组基.

证明 设 $f(x) = x^n - 2$, 由 Eisenstein 判别法可知 f(x) 在 Q 上不可约, 从而 f(x) 是 $\sqrt[q]{2}$ 的极小多项式. 我们先证明: $a_0 + a_1 \sqrt[q]{2} + \cdots + a_{n-1} \sqrt[n]{2^{n-1}} = 0$ 的充要条件是 $a_0 = a_1 = \cdots = a_{n-1} = 0$. 充分性是显然的, 现证必要性: 令 $g(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$, 则 $g(\sqrt[q]{2}) = 0$, 由极小多项式的基本性质可得 $f(x) \mid g(x)$. 因为 g(x) 的次数小于 n, 故只能是 g(x) = 0, 即 $a_0 = a_1 = \cdots = a_{n-1} = 0$.

利用 $\sqrt[4]{2} = 2$ 容易验证, $\mathbb{Q}(\sqrt[4]{2})$ 中任意两个数的加法、减法和乘法都是封闭的. 要证明 $\mathbb{Q}(\sqrt[4]{2})$ 是数域, 只要证明除法或者取倒数封闭即可. 任取 $\mathbb{Q}(\sqrt[4]{2})$ 中的非零数 $\alpha = a_0 + a_1\sqrt[4]{2} + \cdots + a_{n-1}\sqrt[n]{2^{n-1}} \neq 0$, 由上面的讨论可知 $a_0, a_1, \cdots, a_{n-1}$ 不全为零. 令 $g(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, 则 $g(\sqrt[4]{2}) \neq 0$. 因为 f(x) 不可约且 $g(x) \neq 0$ 的次数小于 n, 故 f(x) 与 g(x) 互素,由多项式互素的充要条件可知,存在有理系数多项式 u(x), v(x),使得

$$f(x)u(x) + g(x)v(x) = 1,$$

在上述中代入 $x = \sqrt[q]{2}$, 可得 $\sqrt[q]{2}v(\sqrt[q]{2}) = 1$, 于是 $\alpha^{-1} = v(\sqrt[q]{2}) \in \mathbb{Q}(\sqrt[q]{2})$. 因此, $\mathbb{Q}(\sqrt[q]{2})$ 是数域.

由 $\mathbb{Q}(\sqrt[q]{2})$ 的定义可知, $\mathbb{Q}(\sqrt[q]{2})$ 中任一元都是 $1,\sqrt[q]{2},\cdots,\sqrt[q]{2^{n-1}}$ 的 \mathbb{Q} -线性组合;又由开始的讨论可知, $1,\sqrt[q]{2},\cdots,\sqrt[q]{2^{n-1}}$ 是 \mathbb{Q} -线性无关的,因此它们构成了 $\mathbb{Q}(\sqrt[q]{2})$ 作为 \mathbb{Q} 上线性空间的一组基.特别地, $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt[q]{2})=n$.

命题 0.4

设 $f(x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ 是数域 \mathbb{K} 上的不可约多项式, φ 是 \mathbb{K} 上 n 维线性空间 V 上的线性变换, $\alpha_1 \neq 0, \alpha_2, \cdots, \alpha_n$ 是 V 中的向量,满足

$$\varphi(\alpha_1) = \alpha_2, \varphi(\alpha_2) = \alpha_3, \cdots, \varphi(\alpha_{n-1}) = \alpha_n, \varphi(\alpha_n) = -a_n\alpha_1 - a_{n-1}\alpha_2 - \cdots - a_1\alpha_n.$$

证明: $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 是 V 的一组基.

证明 我们只要证明 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关即可. 用反证法, 设存在不全为零的 n 个数 c_1,c_2,\cdots,c_n , 使得

$$c_1\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n = 0,$$

则有

$$(c_1I_V + c_2\varphi + \dots + c_n\varphi^{n-1})(\alpha_1) = 0.$$

令 $g(x) = c_1 + c_2 x + \dots + c_n x^{n-1}$, 则 $g(x) \neq 0$ 且 $g(\varphi)(\alpha_1) = 0$. 另一方面, 由假设容易验证 $f(\varphi)(\alpha_1) = 0$. 因为 f(x) 不可约且 g(x) 的次数小于 n, 故 f(x) 与 g(x) 互素, 从而存在 \mathbb{K} 上的多项式 u(x), v(x), 使得

$$f(x)u(x) + g(x)v(x) = 1.$$

在上述中代入 $x = \varphi$,可得恒等式

$$f(\varphi)u(\varphi) + g(\varphi)v(\varphi) = I_V.$$

上式两边同时作用 α_1 可得

$$\alpha_1 = u(\varphi)f(\varphi)(\alpha_1) + v(\varphi)g(\varphi)(\alpha_1) = 0,$$

例题 **0.2** 设 $\alpha, \beta, \gamma \in \mathbb{Q}^3$ 且 $\alpha \neq 0$. 若 $A \in \mathbb{Q}^{3\times 3}$ 满足

$$A\alpha = \beta, A\beta = -\gamma, A\gamma = \alpha - \beta \iff A\alpha = \beta, A\beta = \gamma, A\gamma = \alpha + \beta.$$

证明: α , β , γ 在 \mathbb{Q} 上线性无关.

💡 笔记 由命题??可立得.

证明 若 α, β 在 \mathbb{Q} 上线性相关,则存在 $k \in \mathbb{Q}$,使得 $\beta = k\alpha$.从而由条件可得

$$A\alpha = \beta = k\alpha \Longrightarrow A\beta = kA\alpha = k^2\alpha = -\gamma \Longrightarrow A\gamma = \alpha - \beta = (1 - k)\alpha = -k^2A\alpha = -k^3\alpha.$$

于是就有 $(k^3 - k + 1) \alpha = 0$. 又 $\alpha \neq 0$, 故 $k^3 - k + 1 = 0$. 但这个方程没有有理根, 矛盾! 故 α, β 在 \mathbb{Q} 上线性无关. 若 α, β, γ 在 \mathbb{Q} 上线性相关,则存在 $a, b \in \mathbb{Q}$, 使得 $\gamma = a\alpha + b\beta$. 由条件可得

$$A\gamma = \alpha - \beta = aA\alpha + bA\beta = a\beta - b\gamma = a\beta - b(a\alpha + b\beta) = -ab\alpha + (a + b^2)\beta.$$

因此

$$ab = 1$$
, $a + b^2 = -1 \Longrightarrow a + \frac{1}{a^2} = -1 \Longrightarrow a^3 - a^2 + 1 = 0$,

而上式无有理根, 矛盾! 故 α, β, γ 在 \mathbb{Q} 上线性无关.

例题 0.3 设 V 是 \mathbb{Q} 上 4 维空间, φ 是 V 上的线性变换. 若

$$\alpha_i \in V, i = 1, 2, 3, 4, 5.$$

且满足

$$\alpha_1 \neq 0$$
, $\alpha_4 \neq \alpha_1 + \alpha_2$, $\varphi \alpha_1 = \alpha_2$, $\varphi \alpha_2 = \alpha_3$,
 $\varphi \alpha_3 = \alpha_1 + \alpha_2$, $\varphi \alpha_4 = \alpha_5$, $\varphi \alpha_5 = \alpha_3 + \alpha_4$.

求 $\det \varphi$.

证明 由例题??或命题??可知 $\alpha_1, \alpha_2, \alpha_3$ 线性无关. 若 $\alpha_4 \in \text{span}\{\alpha_1, \alpha_2, \alpha_3\}$, 设 $\alpha_4 = a\alpha_1 + b\alpha_2 + c\alpha_3$, $a, b, c \in \mathbb{Q}$. 由条件可得

$$\varphi \alpha_4 = \alpha_5 \Longrightarrow \varphi^2 \alpha_4 = \varphi \alpha_5 = \alpha_3 + \alpha_4 = a\alpha_1 + b\alpha_2 + (c+1)\alpha_3$$

$$\varphi^{2}\alpha_{4} = \varphi^{2}(a\alpha_{1} + b\alpha_{2} + c\alpha_{3}) = \varphi(c\alpha_{1} + (a+c)\alpha_{2} + b\alpha_{3}) = b\alpha_{1} + (b+c)\alpha_{2} + (a+c)\alpha_{3}.$$

从而

$$a=b$$
 , $b=b+c$, $c+1=a+c \Longrightarrow a=b=1$, $c=0$.

故 $\alpha_4 = \alpha_1 + \alpha_2$ 与条件矛盾! 因此 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关. 又因为 V 是 \mathbb{Q} 上 4 维空间, 所以 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 就是 V 的一组基. 从而

$$\varphi(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \begin{pmatrix} 0 & 0 & 1 & x \\ 1 & 0 & 1 & y \\ 0 & 1 & 0 & z \\ 0 & 0 & 0 & m \end{pmatrix},$$

其中 $x, y, z, m \in \mathbb{Q}$. 由条件可知

$$\varphi^2\alpha_4 = \varphi\alpha_5 = \alpha_3 + \alpha_4.$$

于是 $\varphi^2\alpha_4$ 的在基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的坐标就是

$$\begin{pmatrix} 0 & 0 & 1 & x \\ 1 & 0 & 1 & y \\ 0 & 1 & 0 & z \\ 0 & 0 & 0 & m \end{pmatrix}^{2} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} z + xm \\ x + z + ym \\ y + zm \\ m^{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}.$$

解得 $(x, y, z, m)^T = (-1, 0, 1, 1)^T$ 或 $(1, 2, 1, -1)^T$. 故

这与条件 $\alpha_1 \neq 0$ 矛盾, 从而结论得证.