Giochi di Banach-Mazur

Davide Peccioli

4 giugno 2025

Indice

1		ochi Logici	2
	1.1	Giochi di Gale-Stewart	3
		1.1.1 Strategia per un gioco di Gale-Stewart	3
		1.1.2 Gioco di Gale-Stewart con posizioni ammissibili	
	1.2	Teorema di Gale-Stewart	4
2	Insi	iemi analitici e BP	4
	2.1	Gioco di Choquet	4
	2.2	Gioco di Banach-Mazur	5
	2.3	Gioco di Banach-Mazur unfolded	C
	2.0	Gloco di Danach-Mazur umorded	·

1 Giochi Logici

Le definizioni di questa prima parte sono tratte da [2].

Definizione 1.1. Un gioco logico è una quadrupla $\mathcal{G} := (\Omega, f, W_I, W_{II})$ dove:

- Ω è un insieme, chiamato il dominio del gioco;
- $f: \Omega^{<\omega} \to \{I, II\}$ è una funzione, chiamata funzione di turno o funzione del giocatore;
- $W_I, W_{II} \subseteq \Omega^{<\omega} \cup \Omega^{\omega}$ sono tali che
 - 1. $W_I \cap W_{II} = \emptyset$;
 - 2. per ogni $\mathbf{a} \in W_{\bullet}$ e per ogni $\mathbf{b} \in \Omega^{<\omega} \cup \Omega^{\omega}$:

$$a \subseteq b \implies b \in W_{\bullet}$$

Gli elementi di $\Omega^{<\omega}$ sono chiamati <u>posizioni del gioco</u> \mathcal{G} , mentre un elemento di Ω^{ω} è detto <u>giocata</u> di \mathcal{G} .

I giocatori I e II giocano scegliendo a turno elementi di Ω . La funzione di turno f associa a ciascuna posizione uno dei due giocatori: se

$$f(a_0, a_1, \ldots, a_n) = I$$

allora l'elemento a_{n+1} sarà scelto dal giocatore I.

Si dirà che il giocatore I <u>vince la giocata a</u> se $a \in W_{\rm I}$; si dirà che il giocatore II <u>vince la giocata b</u> se $b \in W_{\rm II}$.

Definizione 1.2. Un gioco è detto totale se $\Omega^{\omega} \subseteq W_I \cup W_{II}$.

Si definiscano i seguenti insiemi:

$$\begin{split} &\Omega_{\mathrm{I}}^{<\omega} \coloneqq \left\{ s \in \Omega^{<\omega} \mid f(s) = \mathrm{I} \right\} \\ &\Omega_{\mathrm{II}}^{<\omega} \coloneqq \left\{ s \in \Omega^{<\omega} \mid f(s) = \mathrm{II} \right\} \end{split}$$

Una strategia per un giocatore è un insieme di regole che descrivono esattamente come quel giocatore dovrebbe scegliere la sua mossa, in base a tutte le mosse precedenti.

Definizione 1.3. Una strategia per il giocatore j (con j = I, II) è una funzione

$$\varphi: \Omega_i^{<\omega} \to \Omega$$

Una strategia è detta $\underline{\text{vincente}}$ se quel giocatore vince ogni giocata in cui viene utilizzata, a prescindere da cosa gioca l'altro.

Definizione 1.4. Un gioco si dice determinato se esiste una strategia vincente per I o per II.

Definizione 1.5. Due giochi logici \mathcal{G} e \mathcal{G}' con giocatori I e II sono detti <u>equivalenti</u> se sono soddisfate entrambe le seguenti ipotsi:

- 1. esiste una strategia vincente per I in $\mathcal G$ sse esiste una strategia vincente per I in $\mathcal G'$
- 2. esiste una strategia vincente per II in \mathcal{G} sse esiste una strategia vincente per II in \mathcal{G}'

1.1 Giochi di Gale-Stewart

Sia A un insieme non vuoto, e sia $C \subseteq A^{\omega}$.

Definizione 1.6. Si definisce il gioco di Gale-Stewart associato ad C come il gioco logico seguente:

$$G(A,C) = G(A) := (A, \psi, C, A^{\omega} \setminus C)$$

dove la funzione $\psi: A^{<\omega} \to \{I, II\}$ è così definita

$$\psi(s) \coloneqq \begin{cases} I & \text{lh}(s) \ \grave{e} \ pari \\ II & \text{lh}(s) \ \grave{e} \ dispari \end{cases}$$

Pertanto il gioco può essere codificato come segue:

I
$$a_0$$
 a_2 a_4 ...

II a_1 a_3 ...

e il giocatore I vince se e solo se $(a_n)_{n\in\omega}\in C$.

1.1.1 Strategia per un gioco di Gale-Stewart

Nel caso di un gioco di Gale-Stewart, è possibile vedere una strategia φ per il giocatore I in tre modi diversi, del tutto equivalenti.

1. Una mappa $\psi: A^{<\omega} \to A^{<\omega}$ tale che, per ogni $s \in A^{<\omega}$ valga che lunghezza sia

$$lh\,\varphi(s) = lh(s) + 1$$

Intuitivamente, questa funzione associa alla sequenza degli (a_{2i+1}) giocati dal giocatore II una sequenza degli (a_{2i}) per il giocatore I:

$$\varphi(\emptyset) = \langle a_0 \rangle, \quad \varphi(\langle a_1 \rangle) = \langle a_0, a_2 \rangle, \quad \varphi(\langle a_1, a_3 \rangle) = \langle a_0, a_2, a_4 \rangle.$$

2. Una mappa $\psi: A^{<\omega} \to A$.

Intuitivamente, questa funzione associa alla sequenza degli (a_{2i+1}) giocati dal giocatore II l'elemento $a_i \in A$ che deve giocare il giocatore I:

$$\varphi(\emptyset) = a_0, \quad \varphi(\langle a_1 \rangle) = a_2, \quad \varphi(\langle a_1, a_3 \rangle) = a_4.$$

- 3. Una albero $\sigma \subseteq A^{<\omega}$ tale che:
 - (a) σ sia potato e non vuoto;
 - (b) se $\langle a_0,\dots,a_{2j}\rangle\in\sigma$ allora per ogni $a_{2j+1}\in A\colon \langle a_0,\dots,a_{2j+1}\rangle\in\sigma;$
 - (c) se $\langle a_0, \ldots, a_{2j-1} \rangle \in \sigma$ allora esiste un unico $a_{2j} \in A$ tale che $\langle a_0, \ldots, a_{2j} \rangle \in \sigma$.

Una strategia è detta <u>vincente</u> se il suo corpo $[\sigma] \in A$.

1.1.2 Gioco di Gale-Stewart con posizioni ammissibili

Spesso è comodo considerare giochi in cui I e II non possano giocare ogni elemento di A, ma debbano seguire delle <u>regole</u>. Quindi, è necessario dare un alberto potato non vuoto $T \subseteq A^{<\omega}$, che determina le posizioni ammissibili.

In questa situazione I e II si alternano giocando $\langle a_0, \dots, a_n, \dots, \rangle$ in maniera tale che, ad ogni passo $n \in \omega$

$$\langle a_0, \dots, a_n \rangle \in T$$

Si scriverà, in questo caso, G(T,C).

Si noti che questo non modifica il formalismo, in quanto è sufficiente cambiare gli insiemi di vittoria C e $A^{\omega} \setminus C$ in maniera da far perdere automaticamente il giocatore che effettua una mossa illegale.

Inoltre, il gioco definito sopra G(T,C) è equivalente al gioco G(A,C'), dove

$$C' \coloneqq \left\{ x \in A^\omega \mid \left[\exists \, n(x \upharpoonright n \notin T) \, \wedge \, \text{il minore } n \, \, \text{tale che} \, \, x \upharpoonright n \notin T \, \, \text{è pari} \right] \, \vee \, (x \in [T] \, \wedge \, x \in C) \right\}.$$

1.2 Teorema di Gale-Stewart

Sia A uno spazio topologico discreto e sia A^{ω} dotato della topologia prodotto.

Teorema di Gale-Stewart 1.7. Sia T un albero potato non vuoto su A. Se $C \subseteq [T]$ è aperto o chiuso in [T], allora il gioco G(T, C) è determinato.

2 Insiemi analitici e BP

Lo scopo di questa sezione è dimostrare il fatto che, in uno spazio Polacco, ogni sottoinsieme analitico ha la Baire Property. Per farlo si sfruttano i giochi di Banach-Mazur. Le dimostrazioni sono tratte da [3] salvo diversamente indicato.

2.1 Gioco di Choquet

Definizione 2.1. Sia (X, τ) uno spazio topologico non vuoto. Il gioco di Choquet G_X è un gioco di Gale-Stewart codificato come segue: i giocatori I e II si alternano scegliendo sottoinsiemi aperti non vuoti di X:

$$I \quad U_0 \qquad \qquad U_1 \qquad \qquad U_2 \qquad \qquad \cdots$$
 $II \qquad \qquad V_0 \qquad \qquad V_1 \qquad \qquad \cdots$

tali che $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \dots$

Il giocatore II vince se

$$\bigcap_{n \in \omega} V_n = \bigcap_{n \in \omega} U_n \neq \emptyset$$

e, poiché il gioco è totale, il giocatore II vince se

$$\bigcap_{n \in \omega} V_n = \bigcap_{n \in \omega} U_n = \emptyset.$$

Teorema 2.2. Uno spazio topologico X è uno spazio topologico di Baire se e solo se il giocatore I non ha una strategia vincente nel gioco di Choquet G_X .

Definizione 2.3. Uno spazio topologico X è detto <u>spazio di Choquet</u> se il giocatore II ha una strategia vincente in G_X .

Osservazione. Se il giocatore I non ha una strategia vincente, non è detto che il giocatore II ne abbia una.

Viceversa, però, se II ha una strategia vincente, allora necessariamente I non ne ha una. Quindi ogni spazio di Choquet è uno spazio topologico di Baire.

Inoltre, dal Teorema 8.17 di [3], ogni spazio Polacco è uno spazio di Choquet.

Proposizione 2.4. I sottospazi aperti non vuoti di uno spazio di Choquet sono spazi di Choquet. Il prodotto finito di Spazi di Choquet sono spazi di Choquet.

2.2 Gioco di Banach-Mazur

Sia X uno spazio topologico non vuoto, e sia $A \subseteq X$.

Definizione 2.5. Il gioco di Banach-Mazur (detto anche **-gioco) di A, denotato con $G^{**}(A)$ oppure con $G^{**}(A, X)$ è un gioco di Gale-Stewart codificato come segue: i giocatori I e II si alternano scegliendo sottoinsiemi aperti non vuoti di X

$$I \quad U_0 \qquad \qquad U_1 \qquad \qquad U_2 \qquad \qquad \cdots$$
 $II \qquad \qquad V_0 \qquad \qquad V_1 \qquad \qquad \cdots$

tali che $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \dots$

Il giocatore II vince se

$$\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n \subseteq A.$$

Teorema 2.6. Sia X uno spazio topologico non vuoto, e sia $A \subseteq X$ un sottoinsieme qualsiasi. Allora A è comagro se e solo se il giocatore II ha una strategia vincente nel gioco di Banach-Mazur $G^{**}(A)$.

Dimostrazione. (\Rightarrow) : Se A è comagno, allora esistono $(W_n)_{n\in\omega}$ aperti densi di X tali che

$$\bigcap_{n\in\omega}W_n\supseteq A.$$

Il giocatore II gioca $V_n := W_n \cap U_n$; questo è aperto, e inoltre è non vuoto poiché W_n è denso in X. (\Leftarrow): Sia σ una strategia vincente di II. Si costruisce $\sigma' \subseteq \sigma$ albero potato e non vuoto per induzione sulla lunghezza delle stringhe.

- $\emptyset \in \sigma'$.
- Sia $s = \langle U_0, V_0, \dots, U_n \rangle$. Allora esiste un unico $V_n \subseteq U_n$ tale che $s \cap V_n \in \sigma$. Si pone $s \cap V_n \in \sigma'$.

• Sia $s = \langle U_0, V_0, \dots, U_n, V_n \rangle \in \sigma'$. Per ogni sottoinsieme aperto $U \subseteq V_n$ si definisce U^* l'unico sottoinsieme di U tale che

$$s^{\frown}\langle U, U^* \rangle \in \sigma$$

È possibile, tramite un'applicazione del Lemma di Zorn, garantire l'esistenza di una collezione massimale \mathcal{U}_s di aperti non vuoti $U \subseteq V_n$ tale che la collezione $\mathcal{V}_s := \{U^* \mid U \in \mathcal{U}_s\}$ sia composta da insiemi a due a due disgiunti.

Infatti, data una catena di collezioni di aperti che soddisfino la proprietà richiesta $(\mathcal{U}_{\alpha})_{\alpha}$ ordinata dall'inclusione, allora

$$\mathcal{U}^{\star} \coloneqq \bigcup_{\alpha} \mathcal{U}_{\alpha}$$

è un maggiorante della catena, in quanto detto

$$\mathcal{V}^{\star} \coloneqq \{ U^* \mid U \in \mathcal{U}^{\star} \}$$

dati $V, V' \in \mathcal{V}^*$ allora esiste \mathcal{U}_{α_0} ed esistono $U_0, U_1 \in \mathcal{U}_{\alpha_0}$ tali che

$$U_0^* = V, \quad U_1^* = V'$$

e pertanto $V \cap V' = \emptyset$.

Dunque, per ogni $U \in \mathcal{U}_s$, $s \cap U \in \sigma'$.

Inoltre $\bigcup \mathcal{V}_s$ è denso in V_n . Infatti, se per assurdo esistesse $B \subseteq V_n$ aperto tale che $B \cap \bigcup \mathcal{V}_s = \emptyset$, allora $\mathcal{U}_s \cup \{B\}$ viola la massimalità di \mathcal{U}_s .

Sia ora, per ogni $n \in \omega$:

$$W_{n+1} := \bigcup_{\substack{s \in \sigma' \\ \text{lh}(s) = 2n}} \bigcup \mathcal{V}_s = \bigcup_{\langle U_0, V_0, \dots, U_{n+1}, V_{n+1} \rangle \in \sigma'} V_{n+1}$$

Per ogni $n \in \omega$, $W_{n+1} \subseteq X$ è denso.

- W_1 è denso, poiché \mathcal{U}_{\emptyset} è una collezione di aperti di X tali che \mathcal{V}_{\emptyset} sia composta da insiemi a due a due disgiunti, e pertanto, se vi fosse $B \subseteq X$ aperto tale che $B \cap W_1 = \emptyset$, allora $\mathcal{U}_{\emptyset} \cup \{B\}$ viola la massimalità di \mathcal{U}_{\emptyset} .
- Se W_{n+1} è denso, allora lo è anche W_{n+2} . Sia $B \subseteq X$ aperto.

Siccome W_{n+1} è denso allora $W_{n+1} \cap B \neq \emptyset$, ed esiste $\widetilde{s} = \langle U_0, V_0, \dots, U_n, V_n \rangle \in \sigma'$ tale che $B \cap \bigcup \mathcal{V}_{\widetilde{s}} \neq \emptyset$.

Quindi esistono $V_n \supseteq U \supseteq V$ tali che $\widetilde{s} \cap \langle U, V \rangle \in \sigma'$, con $V \cap B \neq \emptyset$. Infatti, se così non fosse, allora $\mathcal{U}_{\widetilde{s}} \cup \{V_n \cap B\}$ contraddice la massimalità di $\mathcal{U}_{\widetilde{s}}$.

Poiché $\bigcup \mathcal{V}_{s^{\frown}\langle U,V \rangle}$ è denso in V, allora $\bigcup \mathcal{V}_{s^{\frown}\langle U,V \rangle} \cap B \neq \emptyset$, ed inoltre

$$\bigcup \mathcal{V}_{\widetilde{s}^{\frown}\langle U, V \rangle} \subseteq W_{n+2}$$

e pertanto $W_{n+2} \cap B \neq \emptyset$.

Per finire, si dimostra che $\bigcap_{n\in\omega}W_{n+1}\subseteq A$. Sia $x\in\bigcap_{n\in\omega}W_{n+1}$.

Allora esiste $(U_i, V_i)_{i \in \omega} \in [\sigma']$ tale che $x \in V_n$ per ogni n. Questa si costruisce per induzione.

- Poiché $x \in W_1$, allora esiste $\langle U_0, V_0, U_1, V_1 \rangle \in \sigma'$ tale che $x \in V_1$.
- Sia ora $p = \langle U_0, V_0, \dots, U_n, V_n \rangle \in \sigma'$ tale che $x \in V_n$.

Siccome $x \in W_{n+1}$ allora esiste $p' \in \sigma'$,

$$p' := \langle U_0', V_0', \dots, U_{n+1}', V_{n+1}' \rangle$$

tale che $x \in V_{n+1}$. Necessariamente p' estende p.

Infatti, si supponga per assurdo che $p \neq \langle U'_0, V'_0, \dots, U'_n, V'_n \rangle$, e sia $j \leq n$ il primo indice tale che

$$\langle U_i, V_i \rangle \neq \langle U'_i, V'_i \rangle$$
.

Necessariamente allora $U_j \neq U'_j$, poiché V_j e V'_j sono univocamente determinati dall'insieme precedente. In particolare, però:

$$U_j, U_j' \in \mathcal{U}_{\langle U_0, V_0, \dots, U_{j-1}, V_{j-1} \rangle} = \mathcal{U}_{\langle U_0', V_0', \dots, U_{j-1}', V_{j-1}' \rangle}$$

e pertanto, per definizione, $V_j \cap V_{j'} = \emptyset$. Assurdo, poiché $x \in V_j \cap V'_j$.

Dunque $\langle U_0, V_0, \dots, U_n, V_n, U'_{n+1}, V'_{n+1} \rangle$ estende la sequenza iniziale.

In particolare, quindi $x \in \bigcap_{n \in \omega} V_n$.

Poiché σ è una strategia vincente per il giocatore II, allora per ogni $(U_i, V_i)_{i \in \omega} \in [\sigma'] \subseteq [\sigma]$,

$$\bigcap_{i \in \omega} U_i = \bigcap_{i \in \omega} V_i \subseteq A$$

e dunque $x \in A$.

Teorema 2.7. Se X è uno spazio topologico di Choquet non vuoto ed esiste una distanza d su X le cui palle aperte sono aperti di X, allora:

A è magro in un aperto non vuoto se e solo se il giocatore I ha una strategia vincente nel gioco di Banach-Mazur $G^{**}(A)$.

Dimostrazione. (\Rightarrow) : Se A è magro in $Y \subseteq X$, sia per ogni $n \in \omega$: $W_n \subseteq Y$ aperti densi di Y, con

$$\bigcap_{n\in\omega}W_n\subseteq Y\setminus A.$$

Poiché Y è uno spazio di Choquet, allora nel gioco:

I
$$B_1$$
 B_2 ...
II A_0 A_1 ...

con gli aperti non vuoti $Y \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \ldots$ in cui I vince sse $\bigcap_{n \in \omega} B_n \neq \emptyset$, I ha una strategia vincente. Questo infatti è un gioco di Choquet a giocatori invertiti.

Sia quindi σ la strategia vincente di I in questo gioco di Choquet.

Nel gioco $G^{**}(A)$, il giocatore I pone $U_0 := Y$. Si costruisce per induzione la strategia vincente per I.

Al passo n+1-esimo, sia (U_0,V_0,\ldots,U_n,V_n) la sequenza di insiemi giocati. Si pone, per ogni $i \leq n$: $V_i' := V_i \cap W_i$, e si sceglie U_{n+1} come l'unico sottoinsieme aperto non vuoto di V_n tale che

$$(V_0', U_1, V_1', U_2, \dots, V_n', U_{n+1}) \in \sigma.$$

Allora $\bigcap_{n \in \omega} U_n \neq \emptyset$ e inoltre

$$\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n' \subseteq \bigcap_{n \in \omega} W_n \subseteq Y \setminus A$$

e dunque $\bigcap_{n\in\omega}U_n\not\subseteq A$.

 (\Leftarrow) : Sia σ una strategia vincente per I in $G^{**}(A)$, e sia U_0 l'elemento di partenza per σ .

Si costruisce una strategia σ' per I, vincente, e tale che l'insieme giocato al passo n-esimo U_n abbia diametro (rispetto alla metrica d):

$$diam(U_n) < 2^{-n}.$$

Al passo n+1, sia (U_0,V_0,\ldots,U_n,V_n) la sequenza di insiemi giocati, e sia $v_n\in V_n$. Si definisce

$$V_n' := V_n \cap B_d(v_n, 2^{-n-1}), \quad \operatorname{diam}(V_n) \le 2^{-n}$$

che è un aperto non vuoto. Si pone infine U_{n+1} come l'unico sottoinsieme aperto di V'_n tale che

$$(U_0, V_0, \dots, U_n, V'_n, U_{n+1}) \in \sigma.$$

Questo U_{n+1} è la risposta secondo la strategia σ' , in quanto $\operatorname{diam}(U_n) \leq \operatorname{diam}(V'_n) \leq 2^{-n}$.

Siccome σ' è una strategia vincente per I, allora

$$\emptyset \neq \bigcap_{n \in \omega} U_n$$

e inoltre

$$\operatorname{diam}\left(\bigcap_{n\in\omega}U_n\right)=0$$

Segue che $\bigcap_{n \in \omega} U_n = \{x\}$, con $x \in U_0 \setminus A$.

Si definisce l'aperto

$$W_n := \bigcup_{\langle U_0, V_0, \dots, U_n \rangle \in \sigma'} U_n.$$

Questo è denso in U_0 : se $B \subseteq U_0$ è aperto, allora sicuramente $\langle U_0, B \rangle \in \sigma'$. Si costruisce $\langle U_0, B, U_1, V_1, \dots, U_n \rangle \in \sigma'$, e in particolare $U_n \subseteq B$ e pertanto $W_n \cap B \supseteq U_n \neq \emptyset$.

Inoltre $\bigcap_{n\in\omega}W_n\subseteq U_0\setminus A$, dunque la tesi.

Lemma 2.8. Sia X uno spazio topologico di Choquet non vuoto tale che esista una distanza d su X le cui palle aperte sono aperti di X. Sia $A \subseteq X$.

Se per ogni aperto $U \subseteq X$ il gioco $G^{**}((X \setminus A) \cup U)$ è determinato allora $A \subseteq X$ ha BP.

L'idea per questa dimostrazione è stata tratta da [1].

Dimostrazione. Sia $A \subseteq X$. Si definisce l'aperto

$$U(A) := \bigcup \{ U \subseteq X \text{ aperto } | U \setminus A \text{ è magro} \}.$$

Allora $U(A) \setminus A$ è magro e inoltre, se A ha la BP, allora A = U(A). Questo segue direttamente dal Teorema 8.29 di [3].

In particolare quindi il gioco è determinato per

$$G^{**}((X \setminus A) \cup U(A))$$
.

Necessariamente è il giocatore II a vincere questo gioco. Infatti, si supponga per assurdo che I abbia una strategia vincente. Allora, per il Teorema 2.7 $(X \setminus A) \cup U(A)$ è magro in un aperto non vuoto B. In particolare, quindi U(A) è magro in B, ovvero $U(A) \cap B$ è magro in B.

- Se $U(A) \cap B \neq \emptyset$, siccome $B \subseteq X$ è un aperto di uno spazio di Baire, allora è uno spazio di Baire; inoltre $U(A) \cap B$ è un aperto non vuoto di B, quindi è non magro. Assurdo.
- Se invece $U(A) \cap B = \emptyset$, si consideri il seguente insieme, magro per definizione:

$$\big((X\setminus A)\cup U(A)\big)\cap B=\big((X\setminus A)\cap B\big)\cup \big(U(A)\cap B\big)=(X\setminus A)\cap B=B\setminus A$$

Allora, per definizione di U(A), $B \subseteq U(A)$. Assurdo.

Pertanto, per il Teorema 2.6, $(X \setminus A) \cup U(A)$ è comagno. Ma

$$(X \setminus A) \cup U(A) = X \setminus (A \setminus U(A))$$

e pertanto $A \setminus U(A)$ è magro. Per il risultato precedente $U(A) \setminus A$ è magro, e dunque

$$A \triangle U(A)$$

è magro, ovvero A ha la BP.

2.3 Gioco di Banach-Mazur unfolded

Definizione 2.9. Una <u>base debole</u> per uno spazio topologico (X, τ) è una collezione di aperti $\{A_{\alpha}\}_{\alpha \in \Omega} \subseteq \tau$ tali che, per ogni aperto non vuoto di X, $\emptyset \neq U \subseteq X$ esista $\alpha_0 \in \Omega$ tale che

$$A_{\alpha_0} \subseteq U$$
.

Definizione 2.10. Sia X uno spazio Polacco non vuoto con una metrica fissata e sia W una base debole numerabile di X.

Dato $F \subseteq X \times \omega^{\omega}$, il gioco di Banach-Mazur unfolded $G_u^{**}(F)$ è il gioco di Gale-Stewart codificato come segue:

$$I \quad U_0 \qquad \qquad U_1 \qquad \qquad \dots$$
 $II \qquad \qquad y_0, V_0 \qquad \qquad y_1, V_1 \quad \dots$

tali che:

- per ogni $i \in \omega$: $U_i, V_i \in \mathcal{W}, y_n \in \omega$;
- diam (U_n) , diam $(V_n) < 2^{-n}$;
- $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \dots$

posto

$$\{x\} := \bigcap_{i \in \omega} \operatorname{Cl}_X(U_n) = \bigcap_{i \in \omega} \operatorname{Cl}_X(V_n)$$

 $e \ y := (y_i)_{i \in \omega} \in \omega^{\omega}, \ il \ giocatore \ II \ vince \ sse$

$$(x,y) \in F \subseteq X \times \omega^{\omega}$$
.

Lemma 2.11. Se F è aperto o chiuso di $X \times \omega^{\omega}$, allora $G_{\mathbf{u}}^{**}(F)$ è determinato.

Dimostrazione. Si costruisce un A-schema su X.

• Per ogni $\langle (A_0, a_0), \dots, (A_k, a_k) \rangle \in \mathcal{A}^{<\omega}$, si definisce

$$B_{\langle (A_0,a_0),\dots,(A_k,a_k)\rangle} \coloneqq \begin{cases} \bigcap_{i \leq k} \operatorname{Cl}_X(A_i) & \forall \, i \leq k : \, \operatorname{diam}(A_i) < 2^{-i} \\ & A_0 \supseteq A_1 \supseteq \dots \supseteq A_k \\ \emptyset & \text{altrimenti} \end{cases}$$

Ovviamente, per ogni $s \in \mathcal{A}^{<\omega}$ e per ogni $a \in \mathcal{A}$:

$$B_{s \frown a} \subseteq B_s$$

ed inoltre per ogni $x \in \mathcal{A}^{\omega}$: diam $(B_{x \upharpoonright n}) \to 0$.

Inoltre ciascun B_s è chiuso (poiché intersezione finita di chiusi oppure il vuoto) e pertanto, per il Lemma 1.3.6, questo schema induce una funzione continua

$$f: [T] \to X, \quad T := \{ s \in \mathcal{A}^{<\omega} \mid B_s \neq \emptyset \}.$$

- Si osserva che $T = \{ \langle (A_i, a_i) \rangle_{i \leq k} : A_0 \supseteq A_1 \supseteq \dots A_k \land \forall i \leq k : \operatorname{diam} A_i < 2^{-i} \}$, ovvero è esattamente l'albero delle posizioni ammissibili di $G_{\mathrm{u}}^{**}(F)$, ed inoltre T è un albero potato non vuoto.
- La funzione

$$g: \mathcal{A}^{\omega} \longrightarrow \omega^{\omega}$$
$$((A_i, a_i))_{i \in \omega} \longmapsto (a_{2i+1})_{i \in \omega}$$

è continua.

• Si ottiene quindi una funzione continua

$$\psi: [T] \longrightarrow X \times \omega^{\omega}$$
$$s \longmapsto (f(s), g(s))$$

Sia ora dunque $F \subseteq X \times \omega^{\omega}$ aperto o chiuso, sia $F' := [T] \setminus \psi^{-1}(F)$ aperto o chiuso, e si consideri il gioco di Gale-Stewart con posizioni ammissibili G(T, F').

Per il Teorema 1.7, questo è determinato, poiché F' è aperto o chiuso; ovvero esattamente uno tra i giocatori I e II ha una strategia vincente.

<u>Caso 1</u>. Sia σ' una strategia vincente per il giocatore I nel gioco G(T, F'), $\sigma' \subseteq T \subseteq \mathcal{A}^{<\omega}$ con $\overline{|\sigma'| \subseteq F'}$, ovvero $\overline{|\sigma'| \cap \psi^{-1}(F)} = \emptyset$.

Si costruisce una strategia σ per il giocatore I nel gioco $G_{\rm u}^{**}(F)$:

$$\sigma := \left\{ \frac{\langle A_0, (A_1, a_1), \dots, (A_{2k-1}, a_{2k-1}), A_{2k} \rangle}{\langle A_0, (A_1, a_1), \dots, (A_{2k+1}, a_{2k+1}) \rangle} \mid \langle (A_0, a_0), (A_1, a_1), \dots, (A_k, a_k) \rangle \in \sigma' \right\}.$$

Sia quindi $(U_i,(V_i,y_i))_{i\in\omega}$ una giocata per I seguendo la strategia $\sigma,$ e siano

$$\{x\} := \bigcap_{i \in \omega} U_i = \bigcap_{i \in \omega} V_i, \quad y := (y_i)_{i \in \omega}.$$

Allora esiste $s \in [\sigma']$ tale che $(x,y) = \psi(s)$ per costruzione. Siccome $[\sigma'] \cap \psi^{-1}(F) = \emptyset$ segue che $(x,y) \notin F$.

<u>Caso 2</u>. Sia σ' una strategia vincente per il giocatore II nel gioco G(T, F'), $\sigma' \subseteq T \subseteq \mathcal{A}^{<\omega}$ con $[\sigma'] \cap F' = \emptyset$, ovvero $[\sigma'] \subseteq \psi^{-1}(F)$

Si costruisce una strategia σ per il giocatore II nel gioco $G_{n}^{**}(F)$:

$$\sigma \coloneqq \left\{ \frac{\langle A_0, (A_1, a_1), \dots, (A_{2k-1}, a_{2k-1}), A_{2k} \rangle}{\langle A_0, (A_1, a_1), \dots, (A_{2k+1}, a_{2k+1}) \rangle} \mid \langle (A_0, a_0), (A_1, a_1), \dots, (A_k, a_k) \rangle \in \sigma' \right\}.$$

Sia quindi $(U_i, (V_i, y_i))_{i \in \omega}$ una giocata per I seguendo la strategia σ , e siano

$$\{x\} \coloneqq \bigcap_{i \in \omega} U_i = \bigcap_{i \in \omega} V_i, \quad y \coloneqq (y_i)_{i \in \omega}.$$

Allora esiste $s \in [\sigma'] \subseteq \psi^{-1}(F)$ tale che $(x,y) = \psi(s)$ per costruzione, e pertanto $(x,y) \in F$.

2.4 Teorema di Lusin-Sierpiński

Si dimostra ora un risultato fondamentale, da cui il Teorema di Lusin-Sierpiński seguirà banalmente.

Teorema 2.12. Sia X uno spazio Polacco con una metrica fissata e sia \mathcal{W} una base debole di X. Dato $F \subseteq X \times \omega^{\omega}$ si consideri il **-gioco: $G_{\mathbf{u}}^{**}(F)$. Indicato con $A := \pi_X(F)$:

- 1. se I ha una strategia vincente in $G_{\rm u}^{**}(F)$, allora A è magro in un aperto non vuoto di $X \times \omega^{\omega}$;
- 2. se II ha una strategia vincente in $G_{\mathbf{u}}^{**}(F)$ allora A è comagro.

Dimostrazione.

1. Sia σ una strategia vincente per I, e sia U_0 la prima mossa. Si mostra che A è magro in U_0 . Per ogni $a \in \omega$ e per ogni $p \in \sigma$ della forma:

$$p = \langle U_0, (y_0, V_0), \dots, U_{n-1}, (y_{n-1}, V_{n-1}), U_n \rangle$$

si definisce $F_{p,a} \subseteq U_0$:

$$F_{p,a} = \{ z \in U_n \mid \text{per ogni mossa legale } (a, V_n)$$
se U_{n+1} è l'unico elemento di \mathcal{W} tale che
$$p^{\frown} \langle (a, V_n), U_{n+1} \rangle \in \sigma \text{ allora } z \notin U_{n+1} \}$$

• L'insieme $F_{p,a}$ è mai denso, poiché chiuso e con interno vuoto (Esempio 1.5.2 di [4]). Infatti, se per assurdo $\operatorname{Int}(F_{p,a}) \neq \emptyset$, allora esiste $W \in \mathcal{W}$ tale che

$$W \subseteq \operatorname{Int}(F_{p,a}), \quad \operatorname{diam}(W) < 2^{-n}$$

pertanto se II gioca $V_n := W$ allora I dovrà giocare $U_{n+1} \subseteq V_n \subseteq F_{p,a}$. Ma per definizione $U_{n+1} \cap F_{p,a} = \emptyset$. Assurdo.

Inoltre, se $\eta \in U_n \setminus F_{p,a}$, allora esiste una sequenza

$$p^{\frown}\langle (a, V_n), U_{n+1}\rangle \in \sigma$$

con $\eta \in U_{n+1}$; siccome $U_{n+1} \cap F_{p,a} = \emptyset$ segue

$$\eta \in U_{n+1} \subseteq U_n \setminus F_{p,a} \subseteq X \setminus F_{p,a}$$

ovvero $F_{p,a}$ chiuso.

 $\bullet\,$ Siccome σ e ω sono insiemi numerabili allora

$$\bigcup_{p \in \sigma', a \in \omega} F_{p,a}$$

è un insieme magro, dove $\sigma' \subseteq \sigma$ è l'insieme delle sequenze di lunghezze dispari.

Sia ora $x \in A \cap U_0$. Allora esiste $y \in \omega^{\omega}$, $y = (y_i)_{i \in \omega}$ tale che $(x, y) \in F$.

Una posizione $p \in \sigma'$:

$$p = \langle U_0, (y_0, V_0), \dots, U_{n-1}, (y_{n-1}, V_{n-1}), U_n \rangle$$

è <u>buona</u> per (x,y) se $x \in U_n$. Siccome σ è una strategia vincente per il giocatore I, allora esiste una posizione $p_{(x,y)} \in \sigma$ buona per (x,y) e massimale, ovvero ogni estensione di $p_{(x,y)}$ non è buona. Ma allora, se

$$p_{(x,y)} = \langle U_0, (y_0, V_0), \dots, U_n \rangle$$

si ha che $x \in F_{p_{(x,y)},y_n}$.

Pertanto $A \cap U_0 \subseteq \bigcup_{p \in \sigma', a \in \omega} F_{p,a}$ è magro.

2. Se II ha una strategia vincente per $G_{\rm u}^{**}(F)$, allora ha una strategia vincente in $G^{**}(A)$. Per il Teorema 2.6, A è comagro.

Teorema di Lusin-Sierpiński 2.13. Sia X uno spazio Polacco. Allora ogni insieme analitico di X ha la Baire Property.

Dimostrazione. Siccome BP(X) è una σ -algebra (per la Proposizione 1.5.9 di [4]) allora è chiusa per complementi, e pertanto se ogni insieme coanalitico ha BP allora si è dimostrata la tesi.

Sia dunque C un insieme coanalitico e sia $U \subseteq X$ un aperto. Posto $A := (X \setminus C) \cup U$, questo è un insieme analitico, e pertanto esiste un chiuso $F \subseteq X \times \omega^{\omega}$ tale che $A = \pi_X(F)$.

Per il Teorema di Gale-Stewart, allora, il **-gioco $G_{\rm u}^{**}(F)$ è determinato, ed in particolare vale una tra le condizioni a. e b. del Teorema 2.12.

Per il Teorema 2.6 e il Teorema 2.7, allora, il gioco $G^{**}(A) = G^{**}\left((X \setminus C) \cup U\right)$ è determinato: per il Lemma 2.8 quindi C ha la BP.

Riferimenti bibliografici

- [1] Pedro Sánchez Terraf (https://math.stackexchange.com/users/212120/pedro-s%c3% alnchez-terraf). Banach-Mazur game and the Baire property. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/3681151 (version: 2020-05-19). eprint: https://math.stackexchange.com/q/3681151.
- [2] Wilfrid Hodges e Jouko Väänänen. «Logic and Games». In: The Stanford Encyclopedia of Philosophy. A cura di Edward N. Zalta e Uri Nodelman. Winter 2024. Metaphysics Research Lab, Stanford University, 2024. URL: https://plato.stanford.edu/archives/win2024/entries/logic-games/ (visitato il 29/05/2025).
- [3] Alexander S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics 156. New York, NY: Springer New York, 1995. 428 pp. ISBN: 978-1-4612-4190-4. DOI: 10.1007/978-1-4612-4190-4.
- [4] Luca Motto Ros. *Notes on Descriptive Set Theory*. Lecture notes for a 48-hour course at the University of Turin. Apr. 2024. URL: https://sites.google.com/site/lucamottoros/.