Low-Rank Matrix Completion project

Authors: Bochkarev Artem, Isachenko Roman Zharikov Ilya, Ducroucq Anne-Laure

Skolkovo Institute of Science and Technology Methods of Optimization course

December 16, 2016.

Problem Statement

Task

Given the amount of observed matrix entries to reconstruct low-rank matrix approximation.

Applications:

- recommender systems;
- image-processing;
- imputation of NAs for genomic data;
- rank estimation for SVD.

Problem Statement

Notations:

- $M n \times m$ unknown matrix;
- $\Omega \in \{1, ..., n\} \times \{1, ..., m\}$ indices of observed elements;

•

$$P_{\Omega}(M) = \begin{cases} M_{ij}, & \text{if } (i,j) \in \Omega; \\ 0, & \text{otherwise.} \end{cases}$$

Optimization Task (NP - hard)

 $_{X\in\mathbb{R}^{n imes m}}^{\mathsf{minimize}} \quad \mathsf{rank}(X)$

subject to $P_{\Omega}(X) = P_{\Omega}(M)$

Related Works

- Candes E. J., Recht B. Exact matrix completion via convex optimization. 2009.
- 2 Cai J. F., Candes E. J., Shen Z. A singular value thresholding algorithm for matrix completion. 2010.
- Mazumder R., Hastie T., Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. 2010.
- Jain P., Meka R., Dhillon I. S. Guaranteed rank minimization via singular value projection. 2010.
- Takacs G. et al. Scalable collaborative filtering approaches for large recommender systems. 2009.
- Vandereycken B. Low-rank matrix completion by Riemannian optimization. 2013.

Convex Relaxation (Candes E. J., Recht B., 2009)

Original Task

minimize $_{X\in\mathbb{R}^{n imes m}}$ rank(X) subject to $P_{\Omega}(X)=P_{\Omega}(M)$

Relaxation

 $\underset{X \in \mathbb{R}^{n \times m}}{\mathsf{minimize}} \quad \|X\|_*$

subject to $P_{\Omega}(X) = P_{\Omega}(M)$

Motivation: (analogue for l_0 and l_1 regularizations)

$$\mathsf{rank}(X) = |\{i : \sigma_i(X) \neq 0\}|$$

$$||X||_* = \sum_{i=1}^k \sigma_i(X)$$

Problems:

- expensive computations;
- only for small matrices.

SVP (Jain P., Meka R., Dhillon I. S., 2010)

Original Task

subject to $P_{\Omega}(X) = P_{\Omega}(M)$

Relaxation

 $\underset{X \in \mathbb{R}^{n \times m}}{\mathsf{minimize}} \quad \|P_{\Omega}(X) - P_{\Omega}(M)\|_F^2$

subject to $rank(X) \le k$

Steps

- gradient descent for convex function;
- SVD projection on the k-dimensional space;

Features:

- sensitive to given rank k;
- guaranteed rank minimization for RIP-matrices.

SVT (Cai J. F., Candes E. J., Shen Z., 2010)

Original Task

 $\min_{X \in \mathbb{R}^{n \times m}} \mathsf{rank}(X)$

subject to $P_{\Omega}(X) = P_{\Omega}(M)$

Relaxation

minimize $\tau ||X||_* + ||X||_F^2$ subject to $P_{\Omega}(X) = P_{\Omega}(M)$

Steps

- proximal gradient descent method;
- soft-thresholding for singular values.

Features:

- sensitive to noise;
- robust to matrix rank.

SoftImpute (Hastie T., Tibshirani R., 2010)

$\begin{array}{ll} \text{Original Task} & \text{Relaxation} \\ & \underset{X \in \mathbb{R}^{n \times m}}{\text{minimize}} & \text{rank}(X) & \underset{X \in \mathbb{R}^{n \times m}}{\text{minimize}} & \|X\|_* \\ & \text{subject to} & P_{\Omega}(X) = P_{\Omega}(M) & \text{subject to} & \|P_{\Omega}(X) - P_{\Omega}(M)\|_F \leq \delta \end{array}$

Motivation:

The method is the same as SVT with $\delta=0$. When $\delta>0$ the overfitting is less possible.

Steps:

- proximal gradient descent method;
- soft-thresholded SVD;
- warm starts.

RISMF

Original Task

Relaxation

Steps:

- incremental gradient descent;
- ullet updating U and V in rotation.

Features:

- need to choose learning rate;
- sensitive to regularization factor.

Numerical Experiments

- Synthetic data
 Low-rank matrices with random noise.
- Low-rank images
 Visual demonstration of algorithms.
- Assessment dataset
 Real dataset for collaborating filtering.

Synthetic Data

Images

Assessment data