W07-06

Slide 01: In this unit, we will introduce a method to find all the eigenvalues of a square matrix.

Slide 02: Recall the definition of eigenvectors and eigenvalues of a matrix A. A non zero column vector u is said to be an eigenvector of A if $Au = \lambda u$ for some scalar λ . In this case, we say that λ is an eigenvalue of A and u is an eigenvector of A associated with λ .

Slide 03: Consider the matrix A, which is precisely the matrix we had in the population movement example discussed in a previous unit. Let x and y be the two vectors in \mathbb{R}^2 as shown.

(#)

When A is premultiplied to x, the result is still the same vector x,

(#)

which is 1 times x.

(#)

Thus, we see that 1 is an eigenvalue of \boldsymbol{A} and \boldsymbol{x} is an eigenvector of \boldsymbol{A} associated with the eigenvalue 1.

(#)

Premultiplying \mathbf{A} to \mathbf{y} results in the vector (0.95, -0.95)

(#)

which is 0.95 times y.

(#)

Thus 0.95 is an eigenvalue of \boldsymbol{A} and \boldsymbol{y} is an eigenvector of \boldsymbol{A} associated with the eigenvalue 0.95. Before we move on to the next example, note that at this point, we are not sure if \boldsymbol{A} has other eigenvalues other than 1 and 0.95.

Slide 04: Consider the 3×3 matrix as shown, together with the three vectors from \mathbb{R}^3 , \boldsymbol{x} , \boldsymbol{y} and \boldsymbol{z} . Premultiplying \boldsymbol{B} to \boldsymbol{x}

(#)

results in 3x.

(#)

So 3 is an eigenvalue of \boldsymbol{B} and \boldsymbol{x} is an eigenvector of \boldsymbol{B} associated with the eigenvalue 3.

Slide 05: Let's do the same for y. Premultiply B to y

(#)

gives the zero vector, which can be written as 0 times y.

(#)

Thus, 0 is an eigenvalue of \boldsymbol{B} and \boldsymbol{y} is an eigenvector of \boldsymbol{B} associated with the eigenvalue 0.

(#)

Computing Bz,

(#)

we also have the zero vector as a result

(#) and thus z is also an eigenvector of B associated with the eigenvalue 0.

Slide 06: We have now found that x, y and z are all eigenvectors of B where x is associated with 3 and both y and z are associated with 0. Note that we have already seen that if a non zero vector u is an eigenvector of a matrix associated with an eigenvalue λ , then all scalar multiples of u will also be an eigenvector of the matrix associated with the same eigenvalue. However, notice that although both y and z are eigenvectors of B associated with the eigenvalue 0, they are not multiples of each other.

(#)

Now let us compute the product of these three matrices, where the matrix in the middle is in fact our matrix B.

(#)

The outcome of the product is actually a diagonal matrix as shown and interestingly, (#)

you will notice that the second and third columns of the highlighted matrix are the two eigenvectors \boldsymbol{y} and \boldsymbol{z}

(#)

while the first column of the matrix is the eigenvector \boldsymbol{x} . The position of the 3 eigenvectors in forming the matrix corresponds very nicely with the position of the 3 diagonal entries in the diagonal matrix. These three diagonal entries are precisely the eigenvalues that the eigenvectors are associated with.

Slide 07: We are now ready to derive a method that will allow us to find all the eigenvalues of a matrix. Let A be a square matrix of order n. By definition λ is an eigenvalue of A if and only if there is some non zero column vector u in \mathbb{R}^n such that $Au = \lambda u$.

(#)

Arrange the term as follows,

(#)

this allows us to factorise the left hand side as the square matrix $(\lambda I - A)$ premultiplied to u equals to 0 on the right hand side. The key observation here is that this equation is satisfied for some non zero vector u in \mathbb{R}^n .

(#)

Now if we view the equation as a linear system, this would mean that the linear system $(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = \mathbf{0}$ has non trivial solutions since \mathbf{u} is one such solution.

(#)

By our list of equivalent statements to the invertibility of \boldsymbol{A} , we see that this is equivalent to the statement that the determinant of $\lambda \boldsymbol{I} - \boldsymbol{A}$ is zero, or in other words, $\lambda \boldsymbol{I} - \boldsymbol{A}$ is singular.

Slide 08: We have thus arrived at the equivalence between the statement that λ is an eigenvalue of A and that the determinant of $\lambda I - A$ is zero.

(#)

Thus, in order to find all the eigenvalues of a square matrix A, we need to find out all the numbers λ that will make the matrix $(\lambda I - A)$ singular.

(#)

As \boldsymbol{A} is a square matrix of order n, if we compute, by cofactor expansion, the determinant of $\lambda \boldsymbol{I} - \boldsymbol{A}$, we will obtain a polynomial in λ of degree n. We can represent this polynomial as shown. Here c_0 , c_1 and so on till c_n are just some real numbers.

Slide 09: This polynomial is known as the characteristic polynomial of the matrix A.

(#)

If we set the polynomial to equal to zero, we will have an equation known as the characteristic equation of the matrix A. We now know that the values of λ that satisfies this characteristic equation will be the eigenvalues of A. In other words, the eigenvalues of A will be the roots of the characteristic equation.

Slide 10: Returning to our population movement example matrix A. We asked previously whether A had other eigenvalues other than 1 and 0.95. To answer the question, we have to find all the roots of the characteristic equation. First, write down the matrix $\lambda I - A$.

(#)

The determinant of $\lambda \mathbf{I} - \mathbf{A}$ can be found easily.

(#)

This experession involving λ can be simplified

(#)

and further factorised into the product of two factors, $(\lambda - 1)$ and $(\lambda - 0.95)$.

(#)

So now we see that the characteristic polynomial is zero if and only if λ is 1 or 0.95. (#)

Therefore, we can conclude that 1 and 0.95 are the only two eigenvalues of A.

Slide 11: What about our second matrix B? We saw earlier that 0 and 3 are both eigenvalues of B. Are there others? To answer this question, we start off by writing down the matrix $\lambda I - B$.

(#)

You would need to do some hard work here as to find the determinant of $\lambda \mathbf{I} - \mathbf{B}$, in terms of λ requires some careful cofactor expansion. You may wish to verify that the characteristic polynomial is $\lambda^3 - 3\lambda^2$.

(#)

The characteristic polynomial can be factorised into λ^2 times $(\lambda - 3)$.

(#)

Thus the characteristic polynomial is zero if and only if λ is 0 or 3.

(#)

Once again, we can now conclude that 0 and 3 are the only two eigenvalues of \boldsymbol{B} , both of which we have seen in the earlier example.

Sllde 12: Let's look at another matrix C. To find all the eigenvalues of C, we first find the characteristic polynomial by writing down the matrix $\lambda I - C$.

(#)

Again, some careful cofactor expansion is required before we obtain the following polynomial $\lambda^3 - \lambda^2 - 2\lambda + 2$.

(#)

At this point, we need to find the roots of the characteristic equation and you may wonder what are the roots in this case?

(#)

One suggestion is to try a few simple values of λ , namely -2, -1, 0, 1 or 2 and see whether when these values are substituted into the characteristic polynomial we will obtain the value of 0.

(#)

For example when we substitute $\lambda = 1$ into the polynomial,

(#)

we do obtain 0.

(#)

So this tells us that $\lambda = 1$ is a root of the characteristic equation.

Slide 13: After obtaining this first root, we can now factorise the characteristic polynomial into $(\lambda - 1)$ and $(\lambda^2 - 2)$.

(#)

The term $(\lambda^2 - 2)$ is obtained after dividing the characteristic polynomial by the factor we have found, namely $(\lambda - 1)$.

(#)

The term $(\lambda^2 - 2)$ can now be factorised further into $(\lambda - \sqrt{2})$ and $(\lambda + \sqrt{2})$.

(#)

This means the chacteristic polynomial is zero if and only if λ is equal to 1, $\sqrt{2}$ or $-\sqrt{2}$.

(#)

We have thus found all the 3 eigenvalues of C.

Slide 14: Let us summarise the main points in this unit.

(#)

We defined the characteristic polynomial and characteristic equation of a square matrix.

(#)

We then derived a method to find all the eigenvalues of a square matrix. This is done by solving for the roots of the characteristic equation.