hw10-roni-shen

Roni Shen 11/20/2018

Problem 10A: part a)

chicks <- read.table("chicks.txt", header = TRUE)</pre>

standard regression model: $cwi = \beta 0 + \beta 1 * eli + \epsilon i$, where cwi is the weight of the ith chick, eli the length of the egg from which it hatched, and ϵi the normal error.

plot(chicks\$el, chicks\$cw) # plot looks relatively linear and homoscedastic


```
# mean chick weight
mean(chicks$cw)
```

```
## [1] 6.145455
```

```
# standard deviation of chick weight
sd(chicks$cw)
```

```
## [1] 0.4105892
```

```
# mean egg length
mean(chicks$el)
```

```
## [1] 31.38955
```

```
# standard deviation of egg length
sd(chicks$el)
```

```
## [1] 1.100892
```

correlation between egg length and chick weight
cor(chicks\$el, chicks\$cw)

```
## [1] 0.6761419
```

```
# slope of regression line
chicks_slope <- cor(chicks$el, chicks$cw) * sd(chicks$cw) / sd(chicks$el)

# intercept of regression line
chicks_inter <- mean(chicks$cw) - chicks_slope * mean(chicks$el)

# equation of the regression line: estimated chick weight = 0.2522 * egg length - 1.7
702</pre>
```

Problem 10A: part b)

```
lm(chicks$cw ~ chicks$el) # same as in part a)
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el)
##
## Coefficients:
## (Intercept) chicks$el
## -1.7702 0.2522
```

```
summary(lm(chicks$cw ~ chicks$el))
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el)
##
## Residuals:
##
                 10
                      Median
                                   30
                                           Max
## -0.53470 -0.19461 0.01778 0.18613 0.80565
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.7702
                           1.3317 -1.329
                                            0.191
## chicks$el
                           0.0424
                                  5.947 4.73e-07 ***
                0.2522
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3061 on 42 degrees of freedom
## Multiple R-squared: 0.4572, Adjusted R-squared: 0.4442
## F-statistic: 35.37 on 1 and 42 DF, p-value: 4.727e-07
```

```
# t-test for intercept
# Null: intercept is 0
# Alternate: intercept is not 0
# Conclusion: p-value = .19, fail to reject that the null of the intercept is 0
# t-test for slope
# Null: Slope is 0
# Alternate: Slope is not 0
# Conclusion: t = 5.947, p-value is close to 0, slope is not 0
# F-test for slope
# Null: Slope is 0
# Alternate: Slope is not 0
# Conclusion: F - 35.37, p-value is close to 0, slope is not 0
```

Problem 10A: part c)

finding the best predictor
cor(chicks\$el, chicks\$cw)

[1] 0.6761419

cor(chicks\$eb, chicks\$cw)

[1] 0.7336866

cor(chicks\$ew, chicks\$cw)

[1] 0.8472275

scatterplot with linear regression line
plot(chicks\(\)ew, chicks\(\)cw\(\)
abline(lm(chicks\(\)cw\(\)chicks\(\)ew))

residual plot
plot(chicks\$ew, resid(lm(chicks\$cw~chicks\$ew))) # The plot is relatively linear, hete
roscedasticity is more noticable in the middle values.

Problem 10A: part d)

```
a_d_mean <- (lm(chicks$cw~chicks$ew)[[1]][2] * 8.5 + lm(chicks$cw~chicks$ew)[[1]][1])
[[1]]
a_d_se <- 0.2207 * sqrt((1 / 44) + (8.5 - mean(chicks$ew)) ^ 2 / (43 * var(chicks$ew)))

qt(.975, df = 42)</pre>
```

```
## [1] 2.018082
```

```
# 95% CI: (5.98, 6.12)
```

Problem 10A: part e)

```
a_e_se <- 0.2207 * sqrt((1 / 44) + (8.5 - mean(chicks$ew)) ^ 2 / (43 * var(chicks$ew)
) + 1)
# 95% PI: (6.00, 6.50)</pre>
```

Problem 10A: part f)

```
a_f_mean <- (lm(chicks$cw~chicks$ew)[[1]][2] * 12 + lm(chicks$cw~chicks$ew)[[1]][1])[
[1]]
a_f_se <- 0.2207 * sqrt((1 / 44) + (12 - mean(chicks$ew)) ^ 2 / (43 * var(chicks$ew))
)

# 95% CI: (8.09, 9.04)

a_f_se2 <- 0.2207 * sqrt((1 / 44) + (12 - mean(chicks$ew)) ^ 2 / (43 * var(chicks$ew))
) + 1)

# 95% PI: (7.91, 9.22)

# Warning: Due to extrapolation, making estimates outside the range of data can lead to inaccurate estimates.</pre>
```

Problem 10B: part a)

```
# regression with weight of chicks and length of egg
lm(chicks$cw ~ chicks$el)
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el)
##
## Coefficients:
## (Intercept) chicks$el
## -1.7702 0.2522
```

```
summary(lm(chicks$cw ~ chicks$el))
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                          Max
## -0.53470 -0.19461 0.01778 0.18613 0.80565
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.7702
                          1.3317 -1.329
## chicks$el
                0.2522
                           0.0424 5.947 4.73e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3061 on 42 degrees of freedom
## Multiple R-squared: 0.4572, Adjusted R-squared: 0.4442
## F-statistic: 35.37 on 1 and 42 DF, p-value: 4.727e-07
```

```
plot(chicks$el, chicks$cw)
abline(lm(chicks$cw~chicks$el))
```


plot(chicks\$el, resid(lm(chicks\$cw~chicks\$el)))


```
# regression with weight of chicks and breadth of egg
lm(chicks$cw ~ chicks$eb)
```

```
summary(lm(chicks$eb ~ chicks$cw))
```

```
##
## Call:
## lm(formula = chicks$eb ~ chicks$cw)
##
## Residuals:
##
       Min
                 10
                      Median
                                   3Q
                                          Max
## -0.48582 -0.23754 -0.03009 0.16000 0.94486
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.9609
                          0.7033 25.540 < 2e-16 ***
## chicks$cw
                0.7990
                           0.1142
                                  6.998 1.46e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3074 on 42 degrees of freedom
## Multiple R-squared: 0.5383, Adjusted R-squared: 0.5273
## F-statistic: 48.97 on 1 and 42 DF, p-value: 1.465e-08
```

```
plot(chicks$eb, chicks$cw)
abline(lm(chicks$cw~chicks$eb))
```


plot(chicks\$eb, resid(lm(chicks\$cw~chicks\$eb)))

Both regressions are similar, and both have slight problems with the homoscedasticity assumptions. One is not noticably better than the other.

Problem 10B: part b)

```
lm(chicks$ew ~ chicks$el + chicks$eb)
```

```
##
## Call:
## lm(formula = chicks$ew ~ chicks$el + chicks$eb)
##
## Coefficients:
## (Intercept) chicks$el chicks$eb
## -14.2220 0.2386 0.6719
```

```
summary(lm(chicks$ew ~ chicks$el + chicks$eb))
```

```
##
## Call:
## lm(formula = chicks$ew ~ chicks$el + chicks$eb)
##
## Residuals:
##
         Min
                    1Q
                          Median
                                        3Q
                                                Max
## -0.231315 -0.076288 -0.004403 0.054513
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.22199
                           0.87175 -16.31
                                             <2e-16 ***
## chicks$el
                 0.23858
                            0.01667
                                      14.31
                                             <2e-16 ***
                 0.67190
## chicks$eb
                           0.04105
                                      16.37
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1102 on 41 degrees of freedom
## Multiple R-squared: 0.9506, Adjusted R-squared: 0.9482
## F-statistic: 394.6 on 2 and 41 DF, p-value: < 2.2e-16
```

The R-squared value is 0.95, showing an almost perfectly linear relationship between egg length and egg breadth, which explains why the two regressions in part a are very similar.

Problem 10B: part c)

```
lm(chicks$cw ~ chicks$el + chicks$eb + chicks$ew)
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el + chicks$eb + chicks$ew)
##
## Coefficients:
## (Intercept) chicks$el chicks$eb chicks$ew
## -4.60567 0.06657 0.21591 0.43123
```

```
summary(lm(chicks$cw ~ chicks$el + chicks$eb + chicks$ew))
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el + chicks$eb + chicks$ew)
##
## Residuals:
##
        Min
                       Median
                  10
                                    3Q
                                            Max
## -0.52731 -0.12047 -0.00941 0.11040 0.64121
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.60567
                           4.84329 -0.951
## chicks$el
                0.06657
                           0.08286
                                    0.803
                                              0.426
## chicks$eb
                0.21591
                           0.22872
                                     0.944
                                              0.351
## chicks$ew
                0.43123
                           0.31701
                                     1.360
                                              0.181
##
## Residual standard error: 0.2236 on 40 degrees of freedom
## Multiple R-squared: 0.724, Adjusted R-squared: 0.7033
## F-statistic: 34.98 on 3 and 40 DF, p-value: 2.903e-11
```

The F-test suggests the slope is not 0, while the three t-tests suggests the slope is in fact 0. Since the predicator values are very correlated with each other, the in dividual slopes have no meaning. And also the R-squared value is a little higher, the adjusted R-squared value is a little lower. In conclusion, linear regression should n ot be computed on predictors that are highly correlated with each other.

Problem 10B: part d)

```
lm(chicks$cw ~ chicks$el + chicks$ew)
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el + chicks$ew)
##
## Coefficients:
## (Intercept) chicks$el chicks$ew
## -0.133773 0.004769 0.709922
```

```
summary(lm(chicks$cw ~ chicks$el + chicks$ew))
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el + chicks$ew)
##
## Residuals:
##
       Min
                 10
                      Median
                                  3Q
                                          Max
## -0.53781 -0.12080 -0.00854 0.12614 0.62097
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.133773 1.007462 -0.133
## chicks$el
            0.004769 0.050725
                                    0.094
                                             0.926
## chicks$ew
              0.709922
                        0.115344 6.155 2.61e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2233 on 41 degrees of freedom
## Multiple R-squared: 0.7179, Adjusted R-squared: 0.7041
## F-statistic: 52.16 on 2 and 41 DF, p-value: 5.428e-12
```

```
lm(chicks$cw ~ chicks$eb + chicks$ew)
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$eb + chicks$ew)
##
## Coefficients:
## (Intercept) chicks$eb chicks$ew
## -1.20273 0.07073 0.66370
```

```
summary(lm(chicks$eb ~ chicks$cw + chicks$ew))
```

```
##
## Call:
## lm(formula = chicks$eb ~ chicks$cw + chicks$ew)
##
## Residuals:
##
       Min
                10
                    Median
                                3Q
                                       Max
## -0.49425 -0.15734 -0.03488 0.12517 0.65217
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 16.18521
                       0.67653 23.924 < 2e-16 ***
## chicks$cw
            0.08798
                        0.17363
                               0.507
                                         0.615
## chicks$ew
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2483 on 41 degrees of freedom
## Multiple R-squared: 0.7059, Adjusted R-squared: 0.6915
## F-statistic: 49.2 on 2 and 41 DF, p-value: 1.272e-11
```

```
lm(chicks$cw ~ chicks$el + chicks$eb)
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el + chicks$eb)
##
## Coefficients:
## (Intercept) chicks$el chicks$eb
## -10.7386 0.1695 0.5057
```

```
summary(lm(chicks$cw ~ chicks$el + chicks$eb))
```

```
##
## Call:
## lm(formula = chicks$cw ~ chicks$el + chicks$eb)
##
## Residuals:
##
       Min
                      Median
                  10
                                    3Q
                                           Max
## -0.53454 -0.12055 0.01582 0.10292 0.68326
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                           1.78777 -6.007 4.23e-07 ***
## (Intercept) -10.73860
## chicks$el
                 0.16945
                           0.03420
                                     4.955 1.29e-05 ***
## chicks$eb
                0.50566
                           0.08419
                                     6.006 4.24e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.226 on 41 degrees of freedom
## Multiple R-squared: 0.7112, Adjusted R-squared: 0.6972
## F-statistic: 50.49 on 2 and 41 DF, p-value: 8.732e-12
```

Egg length and egg breadth are the best predictors. Using egg weight in combination with other variables lead to an R-squared value of around .70.

Problem 10C: part a)

```
tox <- read.table("tox.txt", header = TRUE)

# parametric test
# Null: The means are the same.
# Alternate: The means are different.
t.test(tox$month15 - tox$base) # The t value is -6.1549, and the p-value is close to
zero, so we conclude that the means are different, and since the t-value is different
, the month15 values are on average less than the base values.</pre>
```

```
##
## One Sample t-test
##
## data: tox$month15 - tox$base
## t = -6.1549, df = 21, p-value = 4.167e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -38.28457 -18.94725
## sample estimates:
## mean of x
## -28.61591
```

```
# non-parametric test
# Null: The underlying distributions are the same.
# Alternate: the underlying distributions are different.
wilcox.test(tox$base, tox$month15) # The value of the statistic is 398, and the p-val
ue is close to 0. We conclude that the underlying distributions are different, which
is consistent with the parametric test.
```

```
##
## Wilcoxon rank sum test
##
## data: tox$base and tox$month15
## W = 398, p-value = 0.0001396
## alternative hypothesis: true location shift is not equal to 0
```

Problem 10C: part b)

```
lm(tox$month15 ~ tox$height)
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$height)
##
## Coefficients:
## (Intercept) tox$height
## -88.6966 0.9963
```

```
summary(lm(tox\$month15 \sim tox\$height)) # r-squared = .15
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$height)
##
## Residuals:
##
      Min
               10 Median
                              3Q
                                     Max
## -41.697 -8.587 -0.273 11.826 49.673
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -88.6966 90.5847 -0.979
## tox$height 0.9963
                         0.5251
                                 1.897
                                           0.0723 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.3 on 20 degrees of freedom
## Multiple R-squared: 0.1525, Adjusted R-squared: 0.1101
## F-statistic: 3.599 on 1 and 20 DF, p-value: 0.07234
```

```
lm(tox$month15 ~ tox$rad)
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$rad)
##
## Coefficients:
## (Intercept) tox$rad
## 80.4083 0.0064
```

```
summary(lm(tox\$month15 \sim tox\$rad)) # r-squared = .0017
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$rad)
##
## Residuals:
##
      Min
               10 Median
                              3Q
                                     Max
## -40.509 -13.062 -1.559 8.517 50.438
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 80.40831 14.82278
                                  5.425 2.61e-05 ***
## tox$rad
              0.00640
                          0.03521
                                  0.182
                                            0.858
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.95 on 20 degrees of freedom
## Multiple R-squared: 0.00165,
                                  Adjusted R-squared:
## F-statistic: 0.03305 on 1 and 20 DF, p-value: 0.8576
```

```
lm(tox$month15 ~ tox$chemo)
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$chemo)
##
## Coefficients:
## (Intercept) tox$chemo
## 44.6182 0.2051
```

```
summary(lm(tox\$month15 \sim tox\$chemo)) # r-squared = .19
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$chemo)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -42.280 -12.953 3.406 11.773 39.697
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 44.61825 17.68205
                                  2.523
                                           0.0202 *
## tox$chemo
             0.20508 0.09208
                                  2.227
                                           0.0376 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.77 on 20 degrees of freedom
## Multiple R-squared: 0.1987, Adjusted R-squared: 0.1587
## F-statistic: 4.96 on 1 and 20 DF, p-value: 0.03758
```

```
lm(tox$month15 ~ tox$base)
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$base)
##
## Coefficients:
## (Intercept) tox$base
## 32.1721 0.4553
```

```
summary(lm(tox$month15 ~ tox$base)) # r-squared = .31
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$base)
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -28.910 -13.949 -0.343
                            9.690 42.409
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                   1.876 0.07536 .
## (Intercept) 32.1721
                          17.1511
## tox$base
                 0.4553
                           0.1501
                                   3.034 0.00656 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.35 on 20 degrees of freedom
## Multiple R-squared: 0.3151, Adjusted R-squared: 0.2809
## F-statistic: 9.203 on 1 and 20 DF, p-value: 0.006559
```

```
lm(tox$month15 ~ tox$base + tox$height + tox$chemo)
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$base + tox$height + tox$chemo)
##
## Coefficients:
## (Intercept) tox$base tox$height tox$chemo
## 22.8397 0.4515 -0.1677 0.2066
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$base + tox$height + tox$chemo)
##
## Residuals:
##
      Min
               10 Median
                              3Q
                                     Max
## -31.045 -7.907 -1.643
                           8.358 31.856
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                 0.272
## (Intercept) 22.83968 84.02626
                         0.14900 3.030
## tox$base
              0.45150
                                          0.0072 **
## tox$height -0.16765
                         0.57266 -0.293
                                          0.7731
## tox$chemo
              0.20659
                         0.09676 2.135 0.0468 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.83 on 18 degrees of freedom
## Multiple R-squared: 0.4871, Adjusted R-squared: 0.4016
## F-statistic: 5.697 on 3 and 18 DF, p-value: 0.006351
```

```
lm(tox$month15 ~ tox$base + tox$chemo)
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$base + tox$chemo)
##
## Coefficients:
## (Intercept) tox$base tox$chemo
## -0.9992 0.4345 0.1898
```

```
summary(lm(tox\$month15 \sim tox\$base + tox\$chemo)) # adjusted r-squared = .43
```

```
##
## Call:
## lm(formula = tox$month15 ~ tox$base + tox$chemo)
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                     Max
## -30.611 -7.823 -2.261
                            8.782 32.914
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.99921 20.22704 -0.049 0.96112
## tox$base
               0.43447
                        0.13383
                                  3.246 0.00425 **
## tox$chemo
              0.18975
                          0.07592
                                  2.500 0.02176 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.44 on 19 degrees of freedom
## Multiple R-squared: 0.4846, Adjusted R-squared: 0.4304
## F-statistic: 8.933 on 2 and 19 DF, p-value: 0.001842
```

The best predictors are base and chemo, and both slopes are significantly different from 0.

Problem 10D: part a)

```
baby <- read.table("baby.txt", header = TRUE)

qqnorm(baby$bw)</pre>
```


hist(baby\$bw)

Histogram of baby\$bw

Both plots show normal pattern data. The historgram shows symmetry, and the scatter plot shows linear pattern.

Problem 10D: part b)

hist(baby\$mpw)

Histogram of baby\$mpw

qqnorm(baby\$mpw)

Normal Q-Q Plot

The ditribtuion is slightly skewed to the right. If the histogram was skewed the ot her way, the shape of the qqnorm plot would be concave instead of convex.

Problem 10D: part c)

 $summary(lm(baby\$bw \sim baby\$gd)) # r-squared = .16$

```
##
## Call:
## lm(formula = baby$bw ~ baby$gd)
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -49.348 -11.065 0.218 10.101 57.704
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10.75414
                           8.53693
                                     -1.26
## baby$gd
                 0.46656
                           0.03054
                                     15.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.74 on 1172 degrees of freedom
## Multiple R-squared: 0.1661, Adjusted R-squared: 0.1654
## F-statistic: 233.4 on 1 and 1172 DF, p-value: < 2.2e-16
```

```
summary(lm(baby$bw ~ baby$ma)) # r-squared close to 0
```

```
##
## Call:
## lm(formula = baby$bw ~ baby$ma)
##
## Residuals:
      Min
               1Q Median
##
                               30
                                      Max
## -65.123 -11.172 0.387 11.472 57.237
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 117.14791
                           2.56126 45.738
                                             <2e-16 ***
## baby$ma
                0.08501
                           0.09199
                                     0.924
                                              0.356
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 18.33 on 1172 degrees of freedom
## Multiple R-squared: 0.0007281, Adjusted R-squared: -0.0001245
## F-statistic: 0.8539 on 1 and 1172 DF, p-value: 0.3556
```

```
summary(lm(baby\$bw \sim baby\$mh)) # r-squared = .04
```

```
##
## Call:
## lm(formula = baby$bw ~ baby$mh)
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -65.868 -10.433 0.654 11.436
                                   59.045
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.7963
                          13.3004
                                  1.864
                                            0.0625 .
## baby$mh
                1.4780
                           0.2075
                                    7.123 1.84e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.95 on 1172 degrees of freedom
## Multiple R-squared: 0.0415, Adjusted R-squared: 0.04068
## F-statistic: 50.74 on 1 and 1172 DF, p-value: 1.838e-12
```

```
summary(lm(baby$bw ~ baby$mpw)) # r-squared = .02
```

```
##
## Call:
## lm(formula = baby$bw ~ baby$mpw)
##
## Residuals:
      Min
               1Q Median
##
                               30
                                      Max
## -66.051 -10.916 0.328 11.026 56.084
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 101.75393
                          3.31927 30.655 < 2e-16 ***
                                     5.404 7.89e-08 ***
## baby$mpw
                0.13783
                           0.02551
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 18.11 on 1172 degrees of freedom
## Multiple R-squared: 0.02431, Adjusted R-squared: 0.02348
## F-statistic: 29.2 on 1 and 1172 DF, p-value: 7.887e-08
```

```
summary(lm(baby\$bw \sim baby\$sm)) # r-squared = .06
```

```
##
## Call:
## lm(formula = baby$bw ~ baby$sm)
##
## Residuals:
##
      Min
                10 Median
                                3Q
                                       Max
## -68.085 -11.085 0.915 11.181
                                    52.915
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 123.0853
                          0.6645 185.221
                                           <2e-16 ***
## baby$sm
               -9.2661
                            1.0628 - 8.719
                                           <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.77 on 1172 degrees of freedom
## Multiple R-squared: 0.06091,
                                   Adjusted R-squared:
## F-statistic: 76.02 on 1 and 1172 DF, p-value: < 2.2e-16
```

```
summary(lm(baby$bw ~ baby$gd + baby$mh + baby$mpw + baby$sm)) \# r-squared = 0.25
```

```
##
## Call:
## lm(formula = baby$bw ~ baby$gd + baby$mh + baby$mpw + baby$sm)
##
## Residuals:
      Min
               10 Median
##
                               3Q
                                      Max
## -56.630 -10.387 -0.348
                          9.794 51.891
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -77.25871 14.05139 -5.498 4.71e-08 ***
## baby$qd
                          0.02909 15.028 < 2e-16 ***
                0.43718
## baby$mh
                1.09733
                           0.20463 5.363 9.88e-08 ***
## baby$mpw
                0.05981
                           0.02491 2.401 0.0165 *
                           0.95453 - 8.746 < 2e-16 ***
## baby$sm
               -8.34833
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.88 on 1169 degrees of freedom
## Multiple R-squared: 0.2519, Adjusted R-squared: 0.2493
## F-statistic: 98.39 on 4 and 1169 DF, p-value: < 2.2e-16
```

All the predictors can be used except mother's height, which has almost no correlat ion to baby's weight. The r-squared value of all the other predictors is .25.

Problem 10D: part d)

```
lm(baby$bw ~ baby$gd + baby$mh + baby$mpw + baby$sm)
```

```
##
## Call:
## lm(formula = baby$bw ~ baby$gd + baby$mh + baby$mpw + baby$sm)
##
## Coefficients:
## (Intercept)
                    baby$gd
                                  baby$mh
                                               baby$mpw
                                                              baby$sm
##
     -77.25871
                     0.43718
                                  1.09733
                                                0.05981
                                                             -8.34833
```

The coefficient of the indicator variable is -8.35. It represents the average difference in weight of a baby of a smoker and a nonsmoker. A baby born to a mother who smokes on average weigh 8.35 ounces less.

Problem 10E: part a)

```
women <- read.table("women.txt", header = TRUE)
lm(women$avew ~ women$h)</pre>
```

```
##
## Call:
## lm(formula = women$avew ~ women$h)
##
## Coefficients:
## (Intercept) women$h
## -87.52 3.45
```

```
summary(lm(women$avew ~ women$h))
```

```
##
## Call:
## lm(formula = women$avew ~ women$h)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                     Max
## -1.7333 -1.1333 -0.3833 0.7417 3.1167
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -87.51667 5.93694 -14.74 1.71e-09 ***
## women$h
                3.45000
                           0.09114 37.85 1.09e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.525 on 13 degrees of freedom
## Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
## F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
```

plot(women\$h, women\$avew)

plot(women\$h, resid(lm(women\$avew ~ women\$h)))

The r-squared = .99. The correlation is high, and the slope is significant. However, the residual plot shows a strong non-linear pattern, so a straight line is not fit for this data.

Problem 10E: part b)

Each point in the dataset women represent many women, so if the points were to be b roken into their individual women, the data would be more wide-spread instead of summ arized and condensed and so the correlation will drop.

Problem 10E: part c)

plot(lm(women\$avew ~ poly(women\$h, 2)))

plot(lm(women\$avew ~ poly(women\$h, 3)))

file:///Users/ronishen/stat135/hw10-roni-shen.html

A polynomial of degree 2 looks like a good fit, however the residual plots show that it's not, since there is a pattern. A polynomial of degree 3 is a better fit, as can be seen through the residual plot.

Problem 10F: part a)

```
bodytemp <- read.csv("bodytemp.csv")

male <- bodytemp[1:56,]
female <- bodytemp[57:130,]

plot(male$rate, male$temperature)</pre>
```


plot(female\$rate, female\$temperature)

The graphs look similar and both lack an obvious pattern of any kind. The points ap pear to be random.

Problem 10F: part b)

```
library(ggplot2)
bodytemp$gender <- as.factor(bodytemp$gender)

ggplot(bodytemp, aes(x = rate, y = temperature, group = gender)) + geom_point(aes(sha pe = gender))</pre>
```


The data points of men versus women are similar, except men's heart rate seem to ha ve less variability.

Problem 10F: part c)

```
lm(male$rate ~ male$temperature) # slope = 1.872
```

```
##
## Call:
## lm(formula = male$rate ~ male$temperature)
##
## Coefficients:
## (Intercept) male$temperature
## -110.260 1.872
```

```
summary(lm(male$rate ~ male$temperature)) # standard error = 1.305
```

```
##
## Call:
## lm(formula = male$rate ~ male$temperature)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -14.8174 -3.5674
                        0.0866
##
                                 3.4942
                                         12.2466
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -110.260
                                 127.760
                                          -0.863
## male$temperature
                        1.872
                                   1.305
                                           1.435
                                                     0.157
##
## Residual standard error: 5.741 on 54 degrees of freedom
## Multiple R-squared: 0.03673,
                                     Adjusted R-squared:
## F-statistic: 2.059 on 1 and 54 DF, p-value: 0.1571
```

```
plot(resid(lm(male$rate ~ male$temperature)))
```


The residual plot shows no obvious patterns, which is good, showing that a linear p attern can be seen.

Problem 10F: part d)

```
lm(female$rate ~ female$temperature) # slope = 2.776
```

```
##
## Call:
## lm(formula = female$rate ~ female$temperature)
##
## Coefficients:
## (Intercept) female$temperature
## -199.098 2.776
```

```
summary(lm(female$rate ~ female$temperature)) # standard error = 1.207
```

```
##
## Call:
## lm(formula = female$rate ~ female$temperature)
##
## Residuals:
##
       Min
                 1Q Median
                                   30
                                           Max
## -16.4885 -4.9183 0.1235
                              5.2908 16.0666
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     -199.098
                                 118.885 -1.675
                                                   0.0983 .
## female$temperature
                        2.776
                                   1.207
                                           2.300
                                                   0.0244 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.663 on 72 degrees of freedom
## Multiple R-squared: 0.06842, Adjusted R-squared:
## F-statistic: 5.288 on 1 and 72 DF, p-value: 0.02437
```

```
plot(resid(lm(female$rate ~ female$temperature)))
```


Similar to the male plot, he residual plot shows no obvious patterns, which is good , showing that a linear pattern can be seen.

Problem 10F: part e)

```
# difference in slope = 2.776 - 1.872 = .904
# se = sqrt(1.305 ^ 2 + 1.207 ^ 2) = 1.778
# 95%CI = (-2.58, 4.39)
# Since the CI contains 0, the slopes can be concluded to be equal at a 5% level.
```

Problem 10F: part f)

```
# difference in intercept: -110.260 - (-199.098) = 88.838
# se = sqrt(127.760 ^ 2 + 118.885 ^ 2) = 174.517
# 95%CI = (-253.215, 430.891)
# Since the CI contains 0, the intercepts can be concluded to be equal at a 5% level.
```