Evaluation Matrices

Classification

- Confusion Matrix
 - determine the performance of classifier, containing the info about actual and predicted classifications

		Predicted Class		
		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN+FP)}$
		$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN+FN)}$	$\frac{Accuracy}{TP + TN}$ $\frac{TP + TN}{(TP + TN + FP + FN)}$

- ullet $Sensitivity/Recall=rac{TP}{TP+FN}$, positive examples labeled as positive by classifier.
 - When it's actually yes, how often does it predict yes?
- ullet $Specificity=rac{TN}{FP+TN}$, negative examples labeled as negative by classifier.
 - When it's no, how often does it predict no?
- $Precision = \frac{TP}{TP+FP}$, shows correctness achieved in positive prediction.
 - When it predicts yes, how often is it correct?
- $Accuracy = \frac{TP+TN}{TP+FN+FP+TN}$, the proportion of the total number of predictions that are correct.
 - Overall, how often is the classifier correct?
- ullet F1 $Score = 2*rac{Precision*Recall}{Precision+Recall}$
 - a weighted average of the recall (sensitivity) and precision.
- Receiver Operating Characteristics(ROC) and AUC
 - y-axis: true positive rate(sensitivity), how many <u>correct positive results</u> occur among all positive samples available during the test; x-axis: false positive rate(1specificity), defines how many <u>incorrect positive results</u> occur among all <u>negative</u> samples available during the test.

- ROC: probability curve.
- AUC:It tells how much the model is capable of distinguishing between classes. The higher, the better. [0,1]

Log Loss

- definition: negative average of the log of corrected predicted probabilities for each instance. The more the predicted probability diverges from the actual value, the higher is the log loss value.
- Function: $-\frac{1}{N}*\sum_{i}^{N}y_{i}*log(p(y_{i}))+(1-y_{i})*log(1-p(y_{i}))$
 - $Logloss = \frac{1}{N} \sum_{i}^{N} logloss_{i}$
 - ullet N: number of observations
- Graph:

- the lower, the better.
- Sometimes, we set a baseline/threshold value of logloss, with a constant probability =xx% of data with class 1 observations.
- Higher imbalance in a dataset, lower baseline log-loss score of the dataset

• Gini Coefficient

- Function: Gini = 2 * AUC 1
- Gini>60%, the model is good enough. The range is [-1,1]
- Definiton: the ratio between area between the ROC curve and the diagnol line & the area of the above triangle.

Regression

Root Mean Squared Error(RMSE)

$$ullet$$
 $RMSE=\sqrt[2]{rac{1}{n}\sum_i^n(y_i-\hat{y})^2}$

- y_i :actual value
- \hat{y} :predicted value
- n: # of observations
- R-Squared & Adjusted R-Squared

$$ullet R^2 = 1 - rac{\sum_i (y_i - \hat{y_i})^2}{\sum_i (y_i - ar{y})^2}$$

• the higher, the better

$$ullet$$
 $Adjusted~R^2=1-rac{(1-R^2)(N-1)}{N-p-1}$

- *N*: total sample size
- ullet p: number of independent variable(feature)
- Mean Absolute Error(MAE)

•
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}|$$

• Mean Squared Error(MSE)

•
$$MSE = \frac{1}{N} \sum_{j}^{N} (y_j - \hat{y}_j)^2$$

• measures the average of the squares of the errors(differences between estimated value and actual value)

• Reference:

• https://en.wikipedia.org/wiki/Receiver operating characteristic

以上内容整理于 幕布文档