TRƯỜNG ĐẠI HỌC SPKT TP. HỒ CHÍ MINH BỘ MÔN TOÁN-KHOA KHOA HỌC ỨNG DỤNG ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN-HK1.2018-2019

Môn: Đại số tuyến tính & Cấu trúc đại số Thời gian: 90 phút (không tính thời gian phát đề).

Câu		Nội dung đáp án (tóm tắt)		Ghi chú	
1	a	Với mọi $A, B \in GL_n(\mathbb{R})$, ta có $A.B \in M_n(\mathbb{R})$ và $\det A \neq 0$, $\det B \neq 0$. Do đó	0.5		
(2 đ)		$\det(A.B) = \det A. \det B \neq 0$. Từ đó suy ra $A.B \in GL_n(\mathbb{R})$.			
	b	Theo tính chất của các phép toán trên $M_n(\mathbb{R})$, ta thấy rằng:	0.25		
		 Phép nhân ma trận có tính chất kết hợp, tức là: với mọi 			
		$A, B, C \in GL_n(\mathbb{R})$, ta có $(A.B).C = A.(B.C)$			
		• Tồn tại phần tử đơn vị $e = I_n \in GL_n(\mathbb{R})$ thỏa $A.I_n = I_n.A = A$, với mọi	0.25		
		$A\in GL_{n}ig(\mathbb{R}ig).$			
		• Với mọi $A \in GL_n(\mathbb{R})$, tồn tại phần tử nghịch đảo	0.25		
		$N = A^{-1} \in GL_n(\mathbb{R})$: $A. N = N.A = I_n \text{ (do det } A \neq 0)$			
		• Phép nhân ma trận không có tính chất giao hoán $(A.B \neq B.A)$	0.25		
		Vậy $\left(GL_{_{n}}ig(\mathbb{R}ig),\cdot ight)$ là một nhóm không giao hoán			
	c	Ta có $\emptyset \neq SL_n(\mathbb{R}) \subseteq GL_n(\mathbb{R})$, (dễ thấy $I_n \in SL_n(\mathbb{R})$)	0.5		
		Với mọi $A, B \in SL_n(\mathbb{R})$, ta có $A.B^{-1} \in SL_n(\mathbb{R})$,			
		(vì det $A = \det B = 1 \Longrightarrow \det B^{-1} = 1$ và det $(A.B^{-1}) = 1$).			
2	a	$f(x_1, x_2, x_3) = X^T A X = 5x_1^2 + 5x_2^2 + 2x_3^2 - 6x_1 x_2$			
(4đ)		Trị riêng: $\lambda = 8 \lor \lambda = 2$ (bội 2)			
()		Giải hệ $(A - \lambda I_3)X = 0$ ta được	0.5		
		$\bullet V_{\lambda=8} = Span \left\{ X_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\} \text{ . Chọn } \left\{ X_1 \right\} \text{ là hệ VTR cơ sở của } V_{\lambda=8} \text{ .}$			

Số hiệu: BM1/QT-PĐBCL-RĐTV Trang ¹/2

		• $V_{\lambda=2} = Span \left\{ X_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, X_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$. Chọn $\left\{ X_2, X_3 \right\}$ là hệ VTR cơ sở	0.5	
		của $V_{\lambda=2}$. (Lưu ý: $\{X_2,X_3\}$ là hệ trực giao.)		
		$P = (Y_1 Y_2 Y_3)$ là ma trận trực giao và $P^{-1}AP = D = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.	0.5	
		Vậy, phép đổi biến $X = PY = P.$ $ \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} $ đưa $f(x_1, x_2, x_3)$ về dạng chính tắc $ f_{CT}(y_1, y_2, y_3) = 8y_1^2 + 2y_2^2 + 2y_3^2. $		
	b	Theo câu a) ta có $P^{-1}AP = D$ suy ra $A^{2018} = PD^{2018}P^{-1}$. Hay	0.5	
		$P^{-1}A^{2018}P = D^{2018} = \begin{pmatrix} 8^{2018} & 0 & 0 \\ 0 & 2^{2018} & 0 \\ 0 & 0 & 2^{2018} \end{pmatrix}. \text{ Chứng tỏ } A^{2018} \text{ được chéo hóa trực}$ giao bởi P. Vậy phép đổi biến $X = PZ = P.\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$ đưa $F(x_1, x_2, x_3)$ về dạng		
	chính tắc $F_{CT}(z_1, z_2, z_3) = 8^{2018} z_1^2 + 2^{2018} z_2^2 + 2^{2018} z_3^2$.			
	c	$\det\left(A^{2018}\right) = \left(\det A\right)^{2018} = 32^{2018}$	0.5	
	d	$\dim RowA = 3$ và hệ $\{row_1A; row_2A; row_3A\}$ là một cơ sở của RowA (vì	0.5	
		$\det A \neq 0$).	0.7	
3 (4đ)	a	• C/m: F là tập ĐLTT trên $P_2[x]$ (vì $\begin{vmatrix} 1 & 1 & 0 \\ 3 & -1 & 2 \\ -1 & 3 & 1 \end{vmatrix} = -12 \neq 0$)	0.5	
		• dim $P_2[x] = 3 = F $ (Hoặc chứng minh F là một tập sinh của $P_2[x]$)	0.5	
		$\bullet \left[u_4\right]_F = \begin{pmatrix} -1/4 \\ 5/4 \\ 5/4 \\ 3/2 \end{pmatrix}$	0.5	
	b	$\bullet \qquad \varnothing \neq P_1[x] \subseteq P_2[x]$	0.5	
		• $P_1[x]$ là một không gian véc tơ trên \mathbb{R} (Hoặc kiểm tra 2 tiên đề về kgvt con)	0.5	
	С	• $Ker \varphi = \left\{ u = a + bx \in P_1[x] / \varphi(u) = 0_{\mathbb{R}^2} \right\} = \left\{ 0_{P_1[x]} \right\}$ và dim $Ker \varphi = 0$.	1.0	

Số hiệu: BM1/QT-PĐBCL-RĐTV

	•	$v = a + bx \in P_1[x], \ [\varphi(v)]_B = {7 \choose 3} \Leftrightarrow \varphi(v) = 7b_1 + 3b_2 \Leftrightarrow {b \choose b}$	$a = \frac{103}{7}$ $b = \frac{3}{7}$	0.5
		$v = u + bx \in I_1[x], [\varphi(v)]_B = (3) \Leftrightarrow \varphi(v) = vb_1 + 3b_2 \Leftrightarrow b$	$p = \frac{3}{7}$	

Số hiệu: BM1/QT-PĐBCL-RĐTV