Academia Sabatina de Jóvenes Talento

Polinomios Corto #1

Nombre: ______ Código ASJT: _____

Problemas

Estimado estudiante, resolver los siguientes ejercicios de manera clara y ordenada.

Ejercicio 1. Dado el polinomio $S(x) = (11 - 15x^3)(17x^6 - 43) + 2^8x^6(1 - x + x^2)(1 + x)$, responda lo siguiente:

- a. $\xi S(x)$ es mónico?
- b. $\xi S(x)$ es completo?
- c. $\xi S(x)$ es simétrico? R: _____

- d. Escriba el coeficiente de x^6 . R: _____
- e. Escriba el término independiente. R: _____
- f. ¿Es $S(\sqrt[3]{x})$ un polimonio?¹ R: _____

Ejercicio 2. Si tenemos que

$$P(x) = \frac{x-1}{3}$$

$$Q(x) = 3x^2 - 2x$$

$$R(x) = (Q \circ P)(x) - (P \circ Q)(x)$$

¿Cuál es el valor de R(1)?

- a. -1
- b. 1
- c. -36
- d. 0
- e. 10

¹Justificar la respuesta.

²Escribir el procedimiento.

Academia Sabatina de Jóvenes Talento

Soluciones

Ejercicio 1.

$$S(x) = (11 - 15x^{3})(17x^{6} - 43) + 2^{8}x^{6}(1 - x + x^{2})(1 + x)$$

$$S(x) = (187x^{6} - 473 - 255x^{9} + 645x^{3}) + 256x^{6}(1 + x^{3})$$

$$S(x) = (187x^{6} - 473 - 255x^{9} + 645x^{3}) + (256x^{6} + 256x^{9})$$

$$S(x) = (256x^{9} - 255x^{9}) + (256x^{6} + 187x^{6}) + 645x^{3} - 473$$

$$S(x) = x^{9} + 543x^{6} + 645x^{3} - 473$$

- a. Sí, ya que el su coeficiente principal es 1.
- b. No, ya que faltan los términos de x^8 , x^7 , x^5 , x^4 , x^2 y x.
- c. No, ya que con sólo ver que el coeficiente principal y el término independiente no son iguales el polinomio no es simétrico.
- d. El coeficiente es 645.
- e. El término independiente es -473.
- f. Sí, ya que al evaluar el polinomio obtenemos $S(\sqrt[3]{x}) = x^3 + 543x^2 + 645x 473$.

Ejercicio 2. Primero encontremos $(Q \circ P)(x)$

$$(Q \circ P)(x) = Q(P(x)) = 3\left(\frac{x-1}{3}\right)^2 - 2\left(\frac{x-1}{3}\right)$$

$$(Q \circ P)(x) = 3\left(\frac{x^2 - 2x + 1}{9}\right) - \frac{2x - 2}{3}$$

$$(Q \circ P)(x) = \frac{x^2 - 2x + 1}{3} - \frac{2x - 2}{3} = \frac{x^2 - 2x + 1 - (2x - 2)}{3}$$

$$(Q \circ P)(x) = \frac{x^2 - 4x + 3}{3}$$

Seguidamente, $(P \circ Q)(x)$

$$(P \circ Q)(x) = P(Q(x)) = \frac{3x^2 - 2x - 1}{3}$$

Sustituimos $(Q \circ P)(x)$ y $(P \circ Q)(x)$ en R(x) y simplificamos

$$R(x) = (Q \circ P)(x) - (P \circ Q)(x) = \frac{x^2 - 4x + 3}{3} - \frac{3x^2 - 2x - 1}{3}$$
$$R(x) = \frac{x^2 - 4x + 3 - (3x^2 - 2x - 1)}{3} = \frac{-2x^2 - 2x + 4}{3}$$

Finalmente, evaluamos R(1)

$$R(1) = \frac{-2(1)^2 - 2(1) + 4}{3} = \frac{-2 - 2 + 4}{3} = 0$$

Respuesta correcta es la opción 'd'.

Fecha: 15 de abril de 2023