Analysis of Algorithms

- observations
- mathematical models
- amortized analysis
- order-of-growth classifications
- dependencies on inputs

Cast of characters

Programmer needs to develop a working solution.

Client wants to solve problem efficiently.

Student might play any or all of these roles someday.

Theoretician wants to understand.

Basic blocking and tackling is sometimes necessary. [this lecture]

Reasons to analyze algorithms

Predict performance.

Compare algorithms.

this course (CS 251)

Provide guarantees.

Understand theoretical basis.

Primary practical reason: avoid performance bugs.

client gets poor performance because programmer did not understand performance characteristics

Some algorithmic successes

Discrete Fourier transform.

- ullet Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N^2 steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

Friedrich Gauss 1805

Some algorithmic successes

N-body simulation.

- ullet Simulate gravitational interactions among N bodies.
- Brute force: N^2 steps.
- Barnes-Hut algorithm: $N \log N$ steps, enables new research.

Andrew Appel Princeton '81

The challenge

Q. Will my program be able to solve a large practical input?

Why is my program so slow?

Why does it run out of memory?

Key insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Feature of the natural world = computer itself.

Analysis of Algorithms

- observations
- mathematical models
- amortized analysis
- order-of-growth classifications
- dependencies on inputs

Example: 3-sum

3-sum. Given N distinct integers, how many triples sum to exactly zero?

```
% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5
% java ThreeSum < 8ints.txt
4</pre>
```

	a[i]	a[j]	a[k]	sum
1	30	-40	10	0
2	30	-20	-10	0
3	-40	40	0	0
4	-10	0	10	0

Context. Deeply related to problems in computational geometry.

3-sum: brute-force algorithm

```
public class ThreeSum
   public static int count(int[] a)
      int N = a.length;
      int count = 0;
      for (int i = 0; i < N; i++)
         for (int j = i+1; j < N; j++)
            for (int k = j+1; k < N; k++)
               if (a[i] + a[j] + a[k] == 0)
                  count++;
      return count;
   public static void main(String[] args)
      int[] a = StdArrayIO.readInt1D();
      StdOut.println(count(a));
```

check each triple we ignore any integer overflow

Measuring the running time

- Q. How to time a program?
- A. Manual.

% java ThreeSum < 1Kints.txt</pre>

70

% java ThreeSum < 2Kints.txt</pre>

tick tick

tick tick tick tick tick tick tick

528

% java ThreeSum < 4Kints.txt</pre>

tick tick

4039

Measuring the running time

- Q. How to time a program?
- A. Automatic.

```
public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)
```

```
public static void main(String[] args)
{
  int[] a = StdArrayIO.readInt1D();
  Stopwatch stopwatch = new Stopwatch();
  StdOut.println(ThreeSum.count(a));
  double time = stopwatch.elapsedTime();
}
```

Measuring the running time

- Q. How to time a program?
- A. Automatic.

```
public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)
```

```
public class Stopwatch
{
    private final long start =
        System.currentTimeMillis();

    public double elapsedTime()
    {
        long now = System.currentTimeMillis();
        return (now - start) / 1000.0;
    }
}
```

Empirical analysis

Run the program for various input sizes and measure running time.

N	time (seconds) †		
250	0.0		
500	0.0		
1,000	0.1		
2,000	0.8		
4,000	6.4		
8,000	51.1		
16,000	?		

Data analysis

Standard plot. Plot running time T(N) vs. input size N.

Data analysis

Log-log plot. Plot running time vs. input size N using log-log scale.

•
$$\lg(T(N)) = b \lg N + c$$

• $b = 2.999$

$$\cdot c = -33.2103$$

•
$$T(N) = a N^b$$
, where $a = 2^c$

Regression. Fit straight line through data points: $a N^b$. Slope Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Predictions.

- 51.0 seconds for N = 8,000.
- 408.1 seconds for N = 16,000.

Observations.

N	time (seconds) †	
8,000	51.1	
8,000	51.0	
8,000	51.1	
16,000	410.8	

validates hypothesis!

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

N	time (seconds) †	ratio	lg ratio
250	0.0		-
500	0.0	4.8	2.3
1,000	0.1	6.9	2.8
2,000	0.8	7.7	2.9
4,000	6.4	8.0	3.0
8,000	51.1	8.0	3.0

seems to converge to a constant b \approx 3

Hypothesis. Running time is about $a N^b$ with $b = \lg ratio$.

Caveat. Cannot identify logarithmic factors with doubling hypothesis.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law hypothesis.

 \bigcirc . How to estimate a?

A. Run the program!

N	time (seconds) †	
8,000	51.1	
8,000	51.0	
8,000	51.1	

$$51.1 = a \times 8000^{3}$$

 $\Rightarrow a = 9.98 \times 10^{-11}$

Hypothesis. Running time is about $9.98 \times 10^{-11} \times N^3$ seconds.

almost identical hypothesis

to one obtained via linear regression

Experimental algorithmics

System independent effects.

Algorithm.
 Input data.
 determines exponent b in power law

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other applications, ...

helps determines constant a in power law

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

Example

Q. How long does this program take as a function of N?

```
String s = StdIn.readString();
int N = s.length();
...
for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
        distance[i][j] = ...
...</pre>
```

N	time	
1,000	0.11	
2,000	0.35	
4,000	1.6	
8,000	6.5	

Jenny $\sim c_1 N^2$ seconds

N	time
250	0.5
500	1.1
1,000	1.9
2,000	3.9

Kenny $\sim c_2 N$ seconds

Analysis of Algorithms

- observations
- mathematical models
- amortized analysis
- order-of-growth classifications
- dependencies on inputs

Mathematical models for running time

Total running time: sum of cost x frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

Donald Knuth
1974 Turing Award

In principle, accurate mathematical models are available.

Cost of basic operations

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating-point add	a + b	4.6
floating-point multiply	a * b	4.2
floating-point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

[†] Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Cost of basic operations

operation	example	nanoseconds †
variable declaration	int a	C 1
assignment statement	a = b	C 2
integer compare	a < b	C 3
array element access	a[i]	C 4
array length	a.length	C 5
1D array allocation	new int[N]	c ₆ N
2D array allocation	new int[N][N]	c ₇ N ²
string length	s.length()	C 8
substring extraction	s.substring(N/2, N)	C 9
string concatenation	s + t	c ₁₀ N

Novice mistake. Abusive string concatenation.

Example: I-sum

Q. How many instructions as a function of input size N?

```
int count = 0;
for (int i = 0; i < N; i++)
  if (a[i] == 0)
    count++;</pre>
```

operation	frequency	
variable declaration	2	
assignment statement	2	
less than compare	N + 1	
equal to compare	N	
array access	N	
increment	N to 2 N	

Example: 2-sum

Q. How many instructions as a function of input size N?

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
   if (a[i] + a[j] == 0)
      count++;</pre>
```

$0+1+2+\ldots+(N-1)$	=	$\frac{1}{2}N\left(N-1\right)$
	=	$\binom{N}{2}$

operation	frequency	
variable declaration	N + 2	
assignment statement	N + 2	
less than compare	½ (N + 1) (N + 2)	
equal to compare	½ N (N – 1)	
array access	N (N - 1)	
increment	N to 2 N	

tedious to count exactly

Simplification I: cost model

Cost model. Use some basic operation as a proxy for running time.

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
   if (a[i] + a[j] == 0)
      count++;</pre>
```

$0+1+2+\ldots+(N-1)$	=	$\frac{1}{2}N\left(N-1\right)$
	=	$\binom{N}{2}$

operation	frequency		
variable declaration	N + 2		
assignment statement	N + 2		
less than compare	½ (N + 1) (N + 2)		
equal to compare	½ N (N – 1)		
array access	N (N − 1) ←		
increment	N to 2 N		

cost model = array accesses

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don't care

Ex 1.
$$\frac{1}{6}N^3 + 20N + 16$$
 ~ $\frac{1}{6}N^3$
Ex 2. $\frac{1}{6}N^3 + 100N^{4/3} + 56$ ~ $\frac{1}{6}N^3$
Ex 3. $\frac{1}{2}N^2 + \frac{1}{3}N$ ~ $\frac{1}{6}N^3$
discard lower-order terms

(e.g., N = 1000: 500 thousand vs. 166 million)

Leading-term approximation

Technical definition.
$$f(N) \sim g(N)$$
 means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don't care

operation	frequency	tilde notation	
variable declaration	N + 2	~ N	
assignment statement	N + 2	~ N	
less than compare	½ (N + 1) (N + 2)	~ ½ N ²	
equal to compare	½ N (N − 1)	~ ½ N ²	
array access	N (N - 1)	~ N ²	
increment	N to 2 N	~ N to ~ 2 N	

Example: 2-sum

Q. Approximately how many array accesses as a function of input size N?

Bottom line. Use cost model and tilde notation to simplify frequency counts.

Example: 3-sum

Q. Approximately how many array accesses as a function of input size N?

Bottom line. Use cost model and tilde notation to simplify frequency counts.

Estimating a discrete sum

- Q. How to estimate a discrete sum?
- A. Replace the sum with an integral, and use calculus!

$$E \times 1. 1 + 2 + ... + N.$$

$$\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2$$

$$E \times 2$$
. $1 + 1/2 + 1/3 + ... + 1/N$.

$$\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} dx = \ln N$$

Ex 3. 3-sum triple loop.
$$\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=j}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^3$$

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.

costs (depend on machine, compiler)

$$T_N = c_1 A + c_2 B + c_3 C + c_4 D + c_5 E$$
 $A = \text{array access}$
 $B = \text{integer add}$
 $C = \text{integer compare}$
 $D = \text{increment}$
 $E = \text{variable assignment}$
(depend on algorithm, input)

Bottom line. We use approximate models in this course: $T(N) \sim c N^3$.

Analysis of Algorithms

- observations
- mathematical models
- amortized analysis
- order-of-growth classifications
- dependencies on inputs

Recall: Stack dynamic-array implementation

Amortized analysis. Average running time per operation over a worst-case sequence of operations. [stay tuned]

Proposition. Starting from empty stack (with dynamic resizing), any sequence of M push and pop operations takes time proportional to M.

	best	worst	amortized	
construct	1	1	1	
push	1	N 🔨	1	
рор	1	N ←	1	doubling ar
size	1	1	1	shrinking

running time for doubling stack with N items

Amortized analysis

Often useful to compute average cost per operation over a sequence of ops.

```
public class VisualAccumulator
    private double total;
    private int N;
    public VisualAccumulator(int maxN, double max)
        StdDraw.setXscale(0, maxN);
        StdDraw.setYscale(0, max);
        StdDraw.setPenRadius(.005);
    public void addDataValue(double val)
        N++;
        total += val;
        StdDraw.setPenColor(StdDraw.DARK GRAY);
        StdDraw.point(N, val);
        StdDraw.setPenColor(StdDraw.RED);
        StdDraw.point(N, total/N);
```


Visual accumulator plot

Random data values


```
VisualAccumulator a;
a = new VisualAccumulator(2000, 1.0);
for (int i = 0; i < 2000; i++)
    a.addDataValue(Math.random());</pre>
```

Doubling stack (N pushes followed by N pops)

Doubling stack (N pushes followed by N pops, three times)

Stack array implementation alternatives

Analysis of Algorithms

- observations
- mathematical models
- amortized analysis
- order-of-growth classifications
- dependencies on inputs

Common order-of-growth classifications

Good news. the small set of functions

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N suffices to describe order-of-growth of typical algorithms.

Common order-of-growth classifications

growth rate	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }</pre>	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Practical implications of order-of-growth

growth	problem size solvable in minutes				
rate	1970s	1980s	1990s	2000s	
1	any	any	any	any	
log N	any	any	any	any	
N	millions	tens of millions	hundreds of millions	billions	
N log N	hundreds of thousands	millions	millions	hundreds of millions	
N ²	hundreds	thousand	thousands	tens of thousands	
N^3	hundred	hundreds	thousand	thousands	
Bc 2 ^N	20	20s	20s	30	

Practical implications of order-of-growth

growth	problem size solvable in minutes			time to process millions of inputs				
rate	1970s	1980s	1990s	2000s	1970s	1980s	1990s	2000s
1	any	any	any	any	instant	instant	instant	instant
log N	any	any	any	any	instant	instant	instant	instant
N	millions	tens of millions	hundreds of millions	billions	minutes	seconds	second	instant
N log N	hundreds of thousands	millions	millions	hundreds of millions	hour	minutes	tens of seconds	seconds
N ²	hundreds	thousand	thousands	tens of thousands	decades	years	months	weeks
N ³	hundred	hundreds	thousand	thousands	never	never	never	millennia

Practical implications of order-of-growth

growth	name	description	effect on a program that runs for a few seconds		
rate		uescription	time for 100x more data	size for 100x faster computer	
1	constant	independent of input size	_	-	
log N	logarithmic	nearly independent of input size	_	-	
N	linear	optimal for N inputs	a few minutes	100x	
N log N	linearithmic	nearly optimal for N inputs	a few minutes	100x	
N^2	quadratic	not practical for large problems	several hours	10x	
N^3	cubic	not practical for medium problems	several weeks	4-5x	
2 ^N	exponential	useful only for tiny problems	forever	1x	

Goal. Given a sorted array and a key, find index of the key in the array?

Goal. Given a sorted array and a key, find index of the key in the array?

Goal. Given a sorted array and a key, find index of the key in the array?

Goal. Given a sorted array and a key, find index of the key in the array?

Goal. Given a sorted array and a key, find index of the key in the array?

Goal. Given a sorted array and a key, find index of the key in the array?

Goal. Given a sorted array and a key, find index of the key in the array?

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search: Java implementation

Trivial to implement?

- First binary search published in 1946; first bug-free one published in 1962.
- Java bug in Arrays.binarySearch() not fixed until 2006.

```
public static int binarySearch(int[] a, int key)
{
   int lo = 0, hi = a.length-1;
   while (lo <= hi)
   {
      int mid = lo + (hi - lo) / 2;
      if (key < a[mid]) hi = mid - 1;
      else if (key > a[mid]) lo = mid + 1;
      else return mid;
   }
   return -1;
}
```

nvariant. If key appears in the array a[], then a[lo] $\leq key \leq a[hi]$.

Trace of binary search

```
a[]
                               3
                     1
                                    4
                                          5
                                               6
                                                    7
                                                          8
                                                               9
                                                                   10
                                                                        11
                                                                             12
                                                                                  13
                                                                                       14
                                                                                               entries in black
                                                                                               are a [lo..hi]
lo hi mid
   14
                   13
                                   33
                                                              72
                                                                   84
                                                                        93
                                                                             95
                                                                                   96
                                                                                        97
                   13
                        14
                              25
                                   33
                                        43
                                              51
                                                   53
                                                                             95
                                                                                   96
                                                                                        97
                        14
                              25
                                   33
                                        43
                                                   53
                                              51
                                                                        93
                                                                             95
                                                                                        97
                                   33
                        14
                              25
                                        43
                                                                        93
                                                                             95
                                                                                        97
                                                      entry in red is a [mid]
                                          loop exits with a [mid] = 33: return 4
                                  Trace of successful binary search for 33
```

```
a[]
                    1
                              3
                                    4
                                         5
                                              6
                                                   7
                                                        8
                                                             9
                                                                 10
                                                                      11
                                                                           12
                                                                                13
                                                                                      14
lo hi mid
 0 14
                                                            72
                                                                                      97
                                                            72
                                                                 84
                                                                                 96
                                                                                      97
   14
       11
                             25
                                  33
                                       43
                                             51
                                                  53
                                                       64
                                                                      93
                                                                           95
   10
                             25
                                  33
                                       43
                                             51
                                                  53
                                                       64
                                                            72
                                                                 84
                                                                      93
                                                                           95
                                                                                      97
     8
                                                                      93
                                                                                      97
       loop exits with lo > hi: return -1
                               Trace of unsuccessful binary search for 65
```

Binary search: mathematical analysis

Proposition. Binary search uses at most $1 + \lg N$ compares to search in a sorted array of size N.

Def. T(N) = # compares to binary search in a sorted subarray of size N.

Binary search recurrence.
$$T(N) \le T(N/2) + 1$$
 for $N > 1$, with $T(1) = 1$. left or right half

Pf sketch.

$$T(N) \le T(N/2) + 1$$

 $\le T(N/4) + 1 + 1$
 $\le T(N/8) + 1 + 1 + 1$
...
 $\le T(N/N) + 1 + 1 + ... + 1$
 $= 1 + \lg N$

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(1) = 1

Binary search: mathematical analysis

Proposition. Binary search uses at most $1 + \lg N$ compares to search in a sorted array of size N.

Def. T(N) = # compares to binary search in a sorted subarray of size at most N.

Binary search recurrence. $T(N) \le T(\lfloor N/2 \rfloor) + 1$ for N > 1, with T(0) = 0.

For simplicity, we prove when $N=2^n-1$ for some n, so $\lfloor N/2\rfloor=2^{n-1}-1$.

$$T(2^{n}-1) \leq T(2^{n-1}-1) + 1$$

$$\leq T(2^{n-2}-1) + 1 + 1$$

$$\leq T(2^{n-3}-1) + 1 + 1 + 1$$

$$\cdots$$

$$\leq T(2^{0}-1) + 1 + 1 + \cdots + 1$$

$$= n$$

given

apply recurrence to first term

apply recurrence to first term

stop applying, T(0) = 1

An N² log N algorithm for 3-sum

Step 1. Sort the *N* numbers.

Step 2. For each pair of numbers a[i] and a[j], binary search for - (a[i] + a[j]).

Analysis. Order of growth is $N^2 \log N$.

- Step I: N^2 with insertion sort.
- Step 2: $N^2 \log N$ with binary search.

```
input
  30 -40 -20 -10 40 0 10 5
sort
 binary search
(-40, -20)
              60
(-40, -10)
              30
(-40, 0)
              40
(-40, 5)
              35
(-40, 10)
              30
(-40, 40)
(-10,
       0)
              10
                       only count if
                      a[i] < a[j] < a[k]
(-20,
       10)
              10
                        to avoid
                     double counting
             -40
(10,
       30)
       40)
(10,
(30,
       40)
             -70
```

Comparing programs

Hypothesis. The $N^2 \log N$ three-sum algorithm is significantly faster in practice than the brute-force N^3 one.

N	time (seconds)
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1

ThreeSum.java

N	time (seconds)
1,000	0.14
2,000	0.18
4,000	0.34
8,000	0.96
16,000	3.67
32,000	14.88
64,000	59.16

ThreeSumDeluxe.java

Bottom line. Typically, better order of growth \Rightarrow faster in practice.

Types of analyses

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3 sum.

Best: $\sim \frac{1}{2} N^3$

Average: $\sim \frac{1}{2} N^3$

Worst: $\sim \frac{1}{2} N^3$

Ex 2. Compares for binary search.

Best: ~

Average: $\sim \lg N$

Types of analyses

Best case. Lower bound on cost.

Worst case. Upper bound on cost.

Average case. "Expected" cost.

Actual data might not match input model?

- Need to understand input to effectively process it.
- Approach I: design for the worst case.
- Approach 2: randomize, depend on probabilistic guarantee.

Commonly-used notations

notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 N ²	$10 N^{2}$ $10 N^{2} + 22 N \log N$ $10 N^{2} + 2 N + 37$	provide approximate model
Big Theta	asymptotic growth rate	$\Theta(N^2)$	$\frac{1}{2} N^2$ 10 N ² 5 N ² + 22 N log N + 3N	classify algorithms
Big Oh	Θ(N²) and smaller	O(N ²)	10 N ² 100 N 22 N log N + 3 N	develop upper bounds
Big Omega	Θ(N²) and larger	$\Omega(N^2)$	$\frac{1}{2} N^{2}$ N^{5} $N^{3} + 22 N log N + 3 N$	develop lower bounds

Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.

- Big-Oh notation suppresses leading constant.
- Big-Oh notation only provides upper bound (not lower bound).

Analysis of Algorithms

- observations
- mathematical models
- amortized analysis
- order-of-growth classifications
- dependencies on inputs

Typical memory requirements for primitive types in Java

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). I million bytes.

Gigabyte (GB). I billion bytes.

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

for primitive types

Typical memory requirements for arrays in Java

Array overhead. 16 bytes.

type	bytes
char[]	2N + 16
int[]	4N + 16
double[]	8N + 16

type	bytes
char[][]	~ 2 M N
int[][]	~ 4 M N
double[][]	~ 8 M N

for one-dimensional arrays

for two-dimensional arrays

Ex. An N-by-N array of doubles consumes $\sim 8N^2$ bytes of memory.

Typical memory requirements for objects in Java

Object overhead. 8 bytes.

Reference. 4 bytes.

EX | . A Complex object consumes 24 bytes of memory.

24 bytes

Typical memory requirements for objects in Java

Object overhead. 8 bytes.

hash

Reference. 4 bytes.

 $E \times 2$. A virgin **String** of length N consumes $\sim 2N$ bytes of memory.

```
public class String
                                                       8 bytes (object overhead)
    private int offset;
                                                       4 bytes (int)
    private int count;
                                                       4 bytes (int)
    private int hash;
                                                       4 bytes (int)
    private char[] value; <--</pre>
                                                       4 bytes (reference to array)
                                                       2N + 16 bytes (char[] array)
                                                       2N + 40 bytes
           object
          overhead
                  ← reference
          value
          offset
                       int
          count
                       values
```

Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to explain behavior.

Scientific method.

- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.

