EECS 376: Foundations of Computer Science

Chris Peikert 3 April 2023

Today's Agenda

- * Chernoff-Hoeffding and union bounds
- * Polling
- * Distinguishing biased coins

90%+ (??) of randomized algorithms analyses use Chernoff bound + Union bound **EECS 572: Randomness and Computation** for many applications

How Many Heads?

- * We want to determine if a coin is fair or not.
- * Q: How " $\underline{suspicious}$ " should we be if we flip it n times and see k heads, for the following values of n and k?
 - * n = 100, k = 51
 - * n = 10,000, k = 5,100
 - * n = 1,000,000, k = 510,000
- * Want to estimate $\Pr[X \ge k]$, where X is the number of heads after flipping a fair coin n times.

Normal Distribution

- * A **normal distribution** has a "bell-curve" shape and is characterized by two parameters: mean and standard deviation.
 - * Examples: Height, exam scores, measurement errors are "normal-like"...
- * 66-95-99.7 rule: \approx 66, 95, 99.7% of the area under the curve (i.e., probability) is within 1, 2, 3 SD of the mean, respectively.

Note: Distribution is from $-\infty$ to ∞ ; nothing's 0 here.

Central Limit Theorem

- * (Informal) For large n, the sum $X = X_1 + ... + X_n$ of n i.i.d. RVs approaches a normal with mean $\mathbb{E}[X] = n\mathbb{E}[X_i]$ and $SD = \sqrt{n}SD(X_i)$.
- * Example: The number of heads after flipping a fair coin n times approaches a normal distribution with mean n/2 and SD $\sqrt{n}/2$.
- * Normalize: use X/n: mean $\mathbb{E}[X/n] = \mathbb{E}[X_i]$ and $SD=SD(X_i)/\sqrt{n}$.

Chernoff-Hoeffding Bounds

* If $X = X_1 + X_2 + ... + X_n$ is the sum of n *i.i.d.* RVs with each $X_i \in [0,1]$, then, for any $\varepsilon > 0$:

Example: flip a fair coin n = 1,000,000 times. Probability we see $\geq (50+1)\%$ heads is at most $e^{-2(0.01)^2 \cdot 1,000,000} = e^{-200}$.

• For n flips, we get $\geq k$ SD $(X) = k \cdot \frac{1}{2} \sqrt{n}$ more (similarly, fewer) heads than mean (= n/2) with probability $\leq e^{-k^2/2}$.

Polling

- * There are *m* candidates for president. How can we estimate their rates of support <u>without</u> asking the entire population?
- * A: Sample people at random and compute the relative frequencies.
- * Two types of "accuracy":
 - 1. How close our estimate could be to the "true" rate
 - 2. The probability that our estimate is that close
- * Fine print: "This poll has been conducted with a confidence level of 95% and margin of error ±2%"

Polling

- * Algorithm for one candidate (approval rating):
 - * Sample a random person, *n* times ("Do you support Smith?" Yes/No)
 - * Let X be the number of supporters
 - * Return X/n as the estimate
- * Let $0 \le p \le 1$ be the true level of support. What should n be to get good "accuracy" with high "confidence"?
- * Fine print: "This poll has been conducted with a confidence level of 95% and statistical error of ±2%"

* Thus, we want
$$\Pr\left[\left|\frac{1}{n}X-p\right| \le 0.02\right] \ge 0.95$$
.

Combined Chernoff-Hoeffding

$$\Pr\left[\frac{1}{n}X \le \mathbb{E}\left[X_i\right] - \epsilon\right] \le e^{-2\epsilon^2 n}$$
(lower tail bound)

$$\Pr\left[\frac{1}{n}X \ge \mathbb{E}\left[X_i\right] + \epsilon\right] \le e^{-2\varepsilon^2 n}$$
(upper tail bound)

* We want
$$\Pr\left[\left|\frac{1}{n}X - p\right| \le 0.02\right] \ge 0.95$$
.

- * Define indicators for i = 1..n:
 - $X_i = \begin{cases} 1, & \text{person } i \text{ supports the candidate} \\ 0, & \text{otherwise} \end{cases}$
- * Then $\mathbb{E}[X_i] = \Pr[X_i = 1] = p$ and $X = X_1 + X_2 + ... + X_n$.
- * Q: What should the value of n be to satisfy the fine print?

* Combined CH bound:
$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$$

(since
$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}[X_i]\right| \ge \varepsilon\right] = \Pr\left[\left(\frac{1}{n}X \le \mathbb{E}[X_i] - \varepsilon\right) \cup \left(\frac{1}{n}X \ge \mathbb{E}[X_i] + \varepsilon\right)\right]$$
, and the *union bound*: $\Pr[A \cup B] \le \Pr[A] + \Pr[B]$)

Polling Analysis

$$\Pr\left[\left|\frac{1}{n}X - \mathbb{E}\left[X_i\right]\right| \ge \varepsilon\right] \le 2e^{-2\varepsilon^2 n}$$
(combined bound)

* We want
$$\Pr\left[\left|\frac{1}{n}X - p\right| \le 0.02\right] \ge 0.95$$
.

- * Equivalently: We want $\Pr\left[\left|\frac{1}{n}X-p\right|>0.02\right]\leq 0.05$.
- * By the combined CH bound:

$$\Pr\left[\left|\frac{1}{n}X - p\right| > 0.02\right] \le \Pr\left[\left|\frac{1}{n}X - p\right| \ge 0.02\right] \le 2e^{-2 \cdot 0.02^2 n}$$

So, we want $2e^{-2\cdot 0.02^2n} \le 0.05$

$$\iff 40 \le e^{2 \cdot 0.02^2 n} \iff \ln(40) \le 0.0008n \iff 4612 \le n.$$

* Observe: n does not depend on the population size!

Polling Multiple Candidates

- * Algorithm for *m* candidates:
 - * Sample a random person, *n* times (ask: "Whom do you support?")
 - * Let $X^{(j)}$ be the number of supporters of candidate j
 - * For each j, return $X^{(j)}/n$
- * Fine print: "This poll has been conducted with a *confidence* level of 1δ and statistical error of $\pm \varepsilon$ "
- * Formally: Let $p_1, ..., p_m$ be the support levels of the candidates.

* We want:
$$\Pr\left[\forall j: \left|\frac{X^{(j)}}{n} - p_j\right| \le \varepsilon\right] \ge 1 - \delta.$$

Polling Multiple Candidates

```
* We want: \Pr\left[\forall j: \left|\frac{X^{(j)}}{n} - p_j\right| \le \varepsilon\right] \ge 1 - \delta.
```

- * For m = 1, we took $n \ge \ln(2/\delta)/(2\varepsilon^2)$.
- * How many samples should we take now?
- * Wrong answer: for m candidates we need $n \ge m \cdot \ln(2/\delta)/(2\varepsilon^2)$.
- * Right answer: $n \ge \ln(2m/\delta)/(2\varepsilon^2)$ suffices! (*Log* dep on m.)
- * Proof: for each j = 1, ..., m, $\Pr[X^{(j)} \text{ bad}] \leq \delta/m$.

By union bound,
$$\Pr[\exists j: X^{(j)} \text{ bad}] \leq \sum_{j} \Pr[X^{(j)} \text{ bad}] \leq \delta$$
.

Distinguishing Biased Coins

* You're given a coin that is ε -biased to either heads or tails.

* i.e.,
$$Pr[H] = \frac{1}{2} + \varepsilon \text{ or } Pr[H] = \frac{1}{2} - \varepsilon$$

- * To determine which way it's biased, you flip the coin n times.
 - * If you see at least $\frac{1}{2}n$ heads, you guess "H"
 - * Otherwise, you guess "T".

Note: We have two-sided error; false positives and false negatives!

Q: How large should n be to guarantee an error probability $\leq \delta$?

Probability of False Negatives

If $X = X_1 + X_2 + ... + X_n$ is the sum of n *i.i.d*. RVs with **each** $X_i \in [0,1]$, then, for any $\varepsilon > 0$:

$$\Pr\left[\frac{1}{n}X \le \mathbb{E}\left[X_i\right] - \varepsilon\right] \le e^{-2\varepsilon^2 n}$$
(lower tail bound)

- * Let X_i be the indicator RV for whether i'th coin flip was H.
- * Suppose the coin is ε -biased towards heads.

* Then
$$\mathbb{E}[X_i] = \frac{1}{2} + \varepsilon$$
.

- * Q: When do we get an error (false negative) in this case?
- * A: When $\frac{1}{n}X < \frac{1}{2} = \mathbb{E}[X_i] \varepsilon$
- * Therefore: Pr[error | *H* bias]

$$= \Pr\left[\frac{1}{n}X < \mathbb{E}\left[X_i\right] - \varepsilon\right] \le e^{-2\varepsilon^2 n}$$

Probability of False Positives

If $X = X_1 + X_2 + ... + X_n$ is the sum of n *i.i.d*. RVs with **each** $X_i \in [0,1]$, then, for any $\varepsilon > 0$:

$$\Pr\left[\frac{1}{n}X \ge \mathbb{E}\left[X_i\right] + \varepsilon\right] \le e^{-2\varepsilon^2 n}$$
(lower tail bound)

- * Let X_i be the indicator RV for whether i'th coin flip was H.
- * Suppose the coin is ε -biased towards tails.

* Then
$$\mathbb{E}[X_i] = \frac{1}{2} - \varepsilon$$
.

* Q: When do we get an error (false positive) in this case?

* A: When
$$\frac{1}{n}X \ge \frac{1}{2} = \mathbb{E}[X_i] + \varepsilon$$

* Therefore: Pr[error | T bias]

$$= \Pr\left[\frac{1}{n}X \ge \mathbb{E}[X_i] + \varepsilon\right] \le e^{-2\varepsilon^2 n}$$

What Should *n* Be?

- * By previous analysis, in either case, $Pr[error] \le e^{-2\varepsilon^2 n}$.
- * What should n be if we want error to be $\leq \delta$?

*
$$e^{-2\varepsilon^2 n} \le \delta \Leftrightarrow n \ge \frac{\ln(1/\delta)}{2\varepsilon^2}$$
.

- * Example: If $\varepsilon = 0.01$ and $\delta = 0.0001$ (correct 99.99%), then $n \ge \frac{\ln(0.0001^{-1})}{2 \cdot 0.01^2} \approx 46,052$ flips suffices.
- * Q: What if we had a fair coin vs 0.01-biased coin (H or T)?
 - * Set threshold for guessing fair vs. biased to 0.505n. Only distance between the means matters for the analysis!
 - * Distance halved; *n* quadruples: $\approx 184,206$

Extra

Decreasing Error

- * A low-quality COVID test has two-sided error:
 - * If a person has COVID, it says "yes" w.p. 2/3.
 - * Otherwise, it says "no" w.p. 2/3.
 - * Different runs are independent.
- * You decide to buy and run the test *n* times and take the *majority* answer you get.
- * Q: How large should n be to guarantee that the answer is correct w.p. 1δ ?
 - * Same as distinguishing ε -biased coins with $\varepsilon = 1/6!$

Note: false positives and false negatives are possible!

Estimating π

- * Suppose there is a 2x2 square with a unit circle inside
- * Q: If we toss a dart *uniformly at random* towards the square, what's the probability that we hit the circle?
 - * (area of circle)/(area of board) = $\pi/4$
- * We toss *n* darts uniformly at random towards the square
 - * X_i = indicator 0/1 RVs for whether we hit circle on i'th toss

* **Q:** What is
$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]$$
?

- * Q: How might we estimate π by tossing darts?
 - * It's roughly 4*fraction of times we hit circle; CH to bound error.

Math

We toss n darts uniformly at random towards the square Let X_i = indicator RV (0/1) for whether we hit circle on i'th toss

(to show that this is fairly inefficient)

* Let $X = X_1 + ... + X_n$ be the number of times we hit the circle.

*
$$\mathbb{E}[X_i] = \frac{\pi}{4} \text{ so } \left| \frac{1}{n} X - \frac{\pi}{4} \right| < \varepsilon \text{ with probability } \ge 1 - 2e^{-2\varepsilon^2 n}$$

* To estimate π within γ , i.e. $\left| \frac{4}{n} X - \pi \right| < \gamma$, set $\varepsilon = \frac{\gamma}{4}$.

*
$$\left| \frac{4}{n} X - \pi \right| < \gamma \Leftrightarrow \left| \frac{1}{n} X - \frac{\pi}{4} \right| < \frac{\gamma}{4} = \varepsilon$$
(with probability $\geq 1 - 2e^{-2\varepsilon^2 n} = 1 - 2e^{-\gamma^2 n/8}$)

* For probability $\geq 1 - \delta$, set $n = 8\ln(2/\delta)/\gamma^2$.

*
$$1-2e$$
 Example: To get our estimate between 3.140 and 3.142 ($\gamma=0.001$) 99.99% of the time ($\delta=0.0001$), we should toss $n\approx79,227,901$ darts

