Con el algoritmo de Metropolis-Hastings (MH), simular lo siguiente:

Ejercicio 1

Sean $x_i \sim Ga(\alpha, \beta)$ $i = 1, 2, \dots, n$. Simular datos x_i con $\alpha = 3$ y $\beta = 100$ considerando los casos n = 4 y 30.

Con $\alpha \sim U(1,4)$, $\beta \sim exp(1)$ distribuciones a priori, se tiene la posterior

$$f(\alpha,\beta|\bar{x}) \propto \frac{\beta^{n\alpha}}{\Gamma(\alpha)}^n r_1^{\alpha-1} e^{-\beta(r_2+1)} \mathbb{1}_{1 \leq \alpha \leq 4} \mathbb{1}_{b>1}$$

con $r_2 = \sum_{i=1}^n x_i$ y $r_1 = \prod_{i=1}^n x_i$. En ambos casos, grafica los contornos para visualizar dónde está concentrada la posterior. Utilizar la propuesta

$$q\left(\binom{\alpha_p}{\beta_p}\middle|\binom{\alpha}{\beta}\right) = \binom{\alpha}{\beta} + \binom{\varepsilon_1}{\varepsilon_2}$$

donde

$$\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix} \right)$$

Solución:

Se implementa el algoritmo de Metropolis- Hastings con caminatas aleatorias para la posterior mostrada en el enunciado para cada caso, es decir, n = 4 y n = 30

Se procede definiendo una función que calcule la distribución posterior según ciertos valores de α , β . Como es una función bivariada, y con objetivo de visualizar la distribución posterior, es que se grafican las curvas de nivel. Notemos que el soporte está en $1 \le \alpha \le 4$ y $\beta > 0$. Tenemos las siguientes gráficas

Figura 1: Grafica de contornos para n = 4

Figura 2: Grafica de contornos para n = 30

Notemos que tenemos una concentración para α pegados al extremos izquierdo del soporte, mientras que para β se aglomeran por 5 o 15 dependiendo de n.

Aplicando el método de Metropolis-Hastings con caminata aleatoria y punto inicial en $\alpha=3,\beta=40$ y propuesta como es indicada en el enunciado

$$\varepsilon_1 \sim N(0, \sigma_1^2)$$
 $\varepsilon_2 \sim N(0, \sigma_2^2)$

con $\sigma_1 = 0.05 \text{ y } \sigma_2^2 = 0.5$

Ejercicio 2

Simular de la distribución Gamma(α ,1) con la propuesta Gamma($[\alpha]$,1), donde [a] denota la parte entera de [a].

Además, realizar el siguiente experimento: poner como punto inicial $x_0 = 900$ y graficar la evolución de la cadena, es decir, $f(X_t)$ vs t.

Solución:

Ejercicio 3

Implementar Random Walk Metropolis Hasting (RWMH) donde la distribución objetivo es \mathcal{N}_2 (μ , Σ), con

$$\mu = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}.$$

Utilizar como propuesta $\varepsilon_i \sim \mathcal{N}_2(0,\sigma^2 I)$ ¿ Cómo elegir σ para que la cadena sea eficiente ? ¿ Qué consecuencias tiene la elección de σ ?

Como experimento, elige como punto inicial $x_0 = \binom{1000}{1}$ y comenta los resultados.

Para todos los incisos del ejercicio anterior:

- 1. Establece cual es tu distribución inicial.
- 2. Grafica la evolución de la cadena.
- 3. Indica cuál es el Burn-in.
- 4. Comenta qué tan eficiente es la cadena.
- 5. Implementa el algoritmo MH considerando una propuesta diferente.

Solución:

Referencias

- [1] Robert, C. P., Casella, G., and Casella, G. (1999). Monte Carlo statistical methods (Vol. 2). New York: Springer.
- [2] Wasserman, L. (2004). All of statistics: a concise course in statistical inference (p. 413). New York: Springer.