1-2-1.이항정리_천재(이준열)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2020-03-10
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[이항정리]

• **이항정리** : n이 자연수일 때,

$$(a+b)^n = {}_{n}C_0a^n + {}_{n}C_1a^{n-1}b + \cdots + {}_{n}C_na^{n-r}b^r + \cdots + {}_{n}C_nb^n$$

- •이항계수 : n이 자연수일 때, $(a+b)^n$ 의 전개식에서 각 항의 계수 ${}_nC_0$, ${}_nC_1$, ${}_nC_2$, …, ${}_nC_r$, …, ${}_nC_n$ 을 이항계수라 한다.
- ullet $(a+b)^n$ 의 전개식의 일반항 : ${}_n\mathsf{C}_ra^{n-r}b^r$

[이항정리의 활용]

n이 자연수일 때,

$$(1+x)^n = {}_{n}C_0 + {}_{n}C_1x + {}_{n}C_2x^2 + \cdots + {}_{n}C_nx^n$$
 에서

$$\cdot {}_{n}C_{0} + {}_{n}C_{1} + {}_{n}C_{2} + \cdots + {}_{n}C_{n} = 2^{n}$$

$$\cdot {}_{n}C_{0} - {}_{n}C_{1} + {}_{n}C_{2} - {}_{n}C_{3} + \cdots + (-1)^{n} {}_{n}C_{n} = 0$$

• 파스칼의 삼각형

n이 자연수일 때, $(a+b)^n$ 의 전개식에서 이항계수 ${}_n\mathbf{C}_0$, ${}_n\mathbf{C}_1$, ${}_n\mathbf{C}_2$, \cdots , ${}_n\mathbf{C}_r$, \cdots , ${}_n\mathbf{C}_n$ 을 다음과 같이 배열한 것

(1) 각 단계의 양 끝에 있는 수는 모두 1이므로

$$_{n}C_{0} = _{n}C_{n} = 1$$
 (단, n 은 자연수)

(2) 각 단계의 수의 배열이 좌우 대칭이므로

$$_{n}$$
C $_{r} = _{n}$ C $_{n-r}$ (단, n 은 자연수)

(3) 각 단계의 수는 그 위 단계의 이웃하는 두 수의 합과 같으므로

$$_{n}$$
C $_{r}=_{n-1}$ C $_{r-1}+_{n-1}$ C $_{r}$ (단, $1\leq r\leq n-1$, n 은 자연수)

기본문제

[예제]

1. $(x-3y)^3$ 을 올바르게 전개한 것은?

①
$$x^3 - 9x^2y + 27xy^2 - 27y^3$$

$$\bigcirc -x^3 + 9x^2y - 27xy^2 + 27y^3$$

$$3x^3-9x^2y+27xy^2-9y^3$$

$$\bigcirc -x^3 + 9x^2y - 81xy^2 + 27y^3$$

(5)
$$x^3 - 9x^2y + 81xy^2 - 27y^3$$

2. $(2a+b)^4$ 을 올바르게 전개한 것은?

① $8a^4 + 32a^3b + 24a^2b^2 + 8ab^3 + b^4$

②
$$8a^4 + 32a^3b + 24a^2b^2 + 16ab^3 + b^4$$

$$3 16a^4 + 8a^3b + 24a^2b^2 + 16ab^3 + b^4$$

$$\textcircled{4} 16a^4 + 32a^3b + 24a^2b^2 + 8ab^3 + b^4$$

(5)
$$16a^4 + 32a^3b + 24a^2b^2 + 16ab^3 + b^4$$

[예제]

[문제]

3. $\left(3x - \frac{1}{x}\right)^{6}$ 의 전개식에서 x^{4} 의 계수는?

① 1458

 $\bigcirc -1458$

3 2916

(4) - 2916

⑤ 4374

[문제]

4. $\left(x-\frac{3}{x}\right)^4$ 의 전개식에서 상수항은?

120

2 60

③ 54

48

(5) 36

[문제]

5. $(x-y)^6$ 을 올바르게 전개한 것은?

$$\textcircled{1} \ \ x^6 - 6x^5y + 15x^4y^2 - 20x^3y^3 + 15x^2y^4 - 6xy^5 + y^6$$

②
$$x^6 - 6x^5y + 15x^4y^2 - 15x^3y^3 + 15x^2y^4 - 6xy^5 + y^6$$

$$3 x^6 - 6x^5y + 20x^4y^2 - 15x^3y^3 + 20x^2y^4 - 6xy^5 + y^6$$

$$\textcircled{4} - x^6 + 6x^5y - 15x^4y^2 + 20x^3y^3 - 15x^2y^4 + 6xy^5 - y^6$$

$$(5)$$
 $-x^6+6x^5y-20x^4y^2+15x^3y^3-20x^2y^4+6xy^5-y^6$

[예제]

- **6.** ₁₁C₀+₁₁C₁+₁₁C₂+···+₁₁C₁의 값은?
 - ① 128
- ② 256
- ③ 512
- (4) 1024
- **⑤** 2048

[문제]

- **7.** 10C1+10C2+···+10C1의 값은?
 - ① 511
- ② 512
- ③ 1023
- **4** 1024
- **⑤** 1025

[문제]

- **8.** ₇C₀-₇C₁+₇C₂-₇C₃+ ··· -₇C위 값은?
 - $\bigcirc -1$
- $\bigcirc 0$
- 3 1
- 4 64
- ⑤ 128

평가문제

[소단원 확인 문제]

- **9.** $(3a+b)^4$ 의 전개식에서 a^3b 의 계수는?
 - ① 54
- ② 81
- 3 108
- ④ 135
- (5) 162

- [소단원 확인 문제]
- **10.** ${}_{n}C_{r} + {}_{n}C_{r+1} = {}_{7}C$ 를 만족시키는 자연수 n, r에 대하여 n+r의 값은?
 - 1
- ② 3
- 3 5

4 7

⑤ 9

- [소단원 확인 문제]
- **11.** $2000 < {}_{n}C_{0} + {}_{n}C_{1} + {}_{n}C_{2} + \cdots + {}_{n}C_{n} < 3000$ 을 만족시키는 자연수 n의 값은?
 - 10
- 2 11
- ③ 12
- (4) 13
- ⑤ 14

- [소단원 확인 문제]
- **12.** $\left(x^2 + \frac{1}{x}\right)^7$ 의 전개식에서 $\frac{1}{x^4}$ 의 계수는?
 - 1

- 2 7
- 3 14
- (4) 21
- **⑤** 35

- [소단원 확인 문제]
- 13. 회장을 포함하여 10명으로 이루어진 동아리에서 동아리 발표 대회에 참여할 5명의 대표를 뽑는 경 우의 수를 회장을 포함하는 경우와 회장을 포함하지 않는 경우로 나타낸 식은?
 - ① ${}_{9}C_{4} + {}_{9}C_{5}$
- ② $_{10}C_4 + _{10}C_5$
- $3 _{9}C_{3} + _{9}C_{4}$
- (4) $_{10}C_4 + _{9}C_5$
- $\bigcirc 9C_4 + {}_{10}C_4$

- [중단원 연습 문제]
- **14.** $(x+3)^7$ 의 전개식에서 x^4 의 계수는?
 - ① 935
- ② 940
- 3 945
- **4** 950
- ⑤ 955

- [중단원 연습 문제]
- **15.** ₁₃C₁ + ₁₃C₃ + ₁₃C₅ + ··· + ₁₃C₁의 값은?
 - ① 2^{11}
- $\bigcirc 2^{12}$
- $3 2^{13}$
- $\textcircled{4} 2^{14}$
- ⑤ 2^{15}

[중단원 연습 문제]

- **16.** $\left(x \frac{a}{x}\right)^6$ 의 전개식에서 상수항이 -160가 되도록 하는 양수 a의 값은?
 - 1 1

② 2

- 3 3
- 4
- **⑤** 5

[중단원 연습 문제]

- **17.** ${}_{2n}\mathsf{C}_1 + {}_{2n}\mathsf{C}_3 + {}_{2n}\mathsf{C}_5 + \cdots + {}_{2n}\mathsf{C}_{2n-1} = 204$ 월 때, 자연수 n의 값은?
 - ① 2
- ② 3

- 3 4
- **(4)** 5
- (5) 6

[중단원 연습 문제]

- **18.** $(1+x)^6(1+2x^2)^n$ 의 전개식에서 x^2 의 계수가 19일 때, 자연수 n의 값은?
 - ① 5
- ② 4
- 3 3
- **(4)** 2

(5) 1

- [중단원 연습 문제]
- **19.** $(x+a)^8$ 의 전개식에서 x^5 의 계수가 x^6 의 계수의 10배일 때, 양수 a의 값은?
 - ① 1
- ② 3
- 3 5
- 4) 7

(5) 9

[대단원 종합 문제]

- **20.** $(ax-1)^7$ 의 전개식에서 x^3 의 계수가 35일 때, 실수 a의 값은?
 - ① $\frac{1}{8}$
- $2\frac{1}{4}$
- $3\frac{1}{2}$
- **4** 1

⑤ 2

- [대단원 종합 문제]
- **21.** $(x+y)^4 \left(1+\frac{1}{xy}\right)^4$ 을 전개하였을 때, xy의 계수는?
 - ① 12
- ② 24
- 3 36
- **(4)** 48
- **⑤** 60

- [대단원 종합 문제]
- **22.** 자연수 *N*에 대하여

$$N = {}_{10}C_0 + {}_{10}C_1 \times 7 + {}_{10}C_2 \times 7^2 + \cdots + {}_{10}C_{10} \times 7^{10}$$

일 때, N의 양의 약수의 개수는?

- ① 28
- ② 29
- 3 30
- ④ 31
- (5) 32

- [대단원 종합 문제]
- **23.** *x*에 대한 항등식

$$(1+x)^2 + (1+x)^3 + (1+x)^4 + \cdots + (1+x)^{11}$$

= $a_0 + a_1 x + a_2 x^2 + \cdots + a_{11} x^{11}$

에서 a_2 의 값은? (단, $a_0,\ a_1,\ a_2,\ \cdots,\ a_{11}$ 은 상수)

- 1 200
- ② 205
- ③ 210
- ② 215
- (5) 220

4

정답 및 해설

1) [정답] ①

[해설]
$$(x-3y)^3$$

= $\{x+(-3y)\}^3$
= ${}_3\mathsf{C}_0x^3+{}_3\mathsf{C}_1x^2(-3y)+{}_3\mathsf{C}_2x(-3y)^2+{}_3\mathsf{C}_3(-3y)^3$
= $x^3-9x^2y+27xy^2-27y^3$

2) [정답] ④

[해설]
$$(2a+b)^4$$

= ${}_4\mathsf{C}_0(2a)^4\!+{}_4\mathsf{C}_1(2a)^3b$
+ ${}_4\mathsf{C}_2(2a)^2b^2\!+{}_4\mathsf{C}_3(2a)b^3\!+{}_4\mathsf{C}_4b^4$
= $16a^4+32a^3b+24a^2b^2+8ab^3+b^4$

3) [정답] ②

[해설]
$$\left(3x-\frac{1}{x}\right)^6$$
의 전개식의 일반항은
$${}_6\mathsf{C}_r(3x)^{6-r}\!\!\left(-\frac{1}{x}\right)^r={}_6\mathsf{C}_r\!\times\!3^{6-r}\!\times\!(-1)^r\!\times\!x^{6-2r}$$
 $6-2r\!=\!4$ 에서 $r\!=\!1$ 따라서 x^4 의 계수는 ${}_6\mathsf{C}_1\!\times\!3^5\!\times\!(-1)=\!-1458$

4) [정답] ③

[해설]
$$\left(x-\frac{3}{x}\right)^4$$
의 전개식의 일반항은
$${}_4\mathrm{C}_r(x)^{4-r}\!\!\left(-\frac{3}{x}\right)^r\!={}_4\mathrm{C}_r(-3)^rx^{4-2r}$$
 $4-2r\!=\!0$ 에서 $r\!=\!2$ 따라서 상수항은 ${}_4\mathrm{C}_2\!\times\!(-3)^2\!=\!54$

5) [정답] ①

[해설]
$$(x-y)^6$$

= $\{x+(-y)\}^6$
= ${}_6\mathsf{C}_0x^6+{}_6\mathsf{C}_1x^5(-y)+{}_6\mathsf{C}_2x^4(-y)^2+{}_6\mathsf{C}_3x^3(-y)^3$
+ ${}_6\mathsf{C}_4x^2(-y)^4+{}_6\mathsf{C}_5x(-y)^5+{}_6\mathsf{C}_6(-y)^6$
= $x^6-6x^5y+15x^4y^2-20x^3y^3+15x^2y^4-6xy^5+y^6$

6) [정답] ⑤

[해설] 이항정리를 이용하여
$$(1+x)^{11}$$
을 전개하면
$$(1+x)^{11} = {}_{11}C_0 + {}_{11}C_1 x + {}_{11}C_2 x^2 + \cdots + {}_{11}C_{11} x^{11}$$
이 식의 양변에 $x=1$ 을 대입하면
$$2^{11} = {}_{11}C_0 + {}_{11}C_1 + {}_{11}C_2 + \cdots + {}_{11}C_{11}$$
 따라서 ${}_{11}C_0 + {}_{11}C_1 + {}_{11}C_2 + \cdots + {}_{11}C_1 = 2048$

7) [정답] ③

[해설]
$$(1+x)^{10} = {}_{10}C_0 + {}_{10}C_1x + \cdots + {}_{10}C_{10}x^{10}$$

이 식의 양변에 $x=1$ 을 대입하면
$$2^{10} = {}_{10}C_0 + {}_{10}C_1 + {}_{10}C_2 + \cdots + {}_{10}C_{10}$$

따라서 ${}_{10}C_1 + {}_{10}C_2 + \cdots + {}_{10}C_{10} = 2^{10} - 1 = 1023$

8) [정답] ②

[해설]
$$(1+x)^7 = {}_7{\rm C}_0 + {}_7{\rm C}_1 x + \cdots + {}_7{\rm C}_7 x^7$$

이 식의 양변에 $x = -1$ 을 대입하면 $0 = {}_7{\rm C}_0 - {}_7{\rm C}_1 + {}_7{\rm C}_2 - {}_7{\rm C}_3 + \cdots - {}_7{\rm C}_7$

9) [정답] ③

[해설]
$$(3a+b)^4$$
 전개식의 일반항은 ${}_4\mathrm{C}_r(3a)^{4-r}(b)^r = {}_4\mathrm{C}_r \times 3^{4-r} \times a^{4-r} \times b^r$ a^3b 인 항은 $r\!=\!1$ 인 경우이므로 따라서 a^3b 의 계수는 ${}_4\mathrm{C}_1 \times 3^3 = 108$

10) [정답] ⑤

[해설]
$${}_{n}C_{r} + {}_{n}C_{r+1} = {}_{n+1}C_{r+1} = {}_{7}C_{4}$$
에서 $n=6, r=3$ $\therefore n+r=9$

11) [정답] ②

[해설]
$${}_{n}C_{0} + {}_{n}C_{1} + {}_{n}C_{2} + \cdots + {}_{n}C_{n} = 2^{n}$$
이므로 $2000 < 2^{n} < 3000$ 을 만족시키는 n 의 값은 11 $(2^{10} = 1024, 2^{11} = 2048, 2^{12} = 4096)$

12) [정답] ②

[해설] 전개식의 일반항은

$$_7 {
m C}_r (x^2)^{7-r} igg(rac{1}{x} igg)^r = {}_7 {
m C}_r imes x^{14-2r} imes rac{1}{x^r}$$
 $= {}_7 {
m C}_r imes x^{14-3r}$ 이때 $rac{1}{x^4}$ 인 항은 $14-3r = -4$ 에서 $r=6$ 따라서 $rac{1}{x^4}$ 의 계수는 ${}_7 {
m C}_6 = 7$

13) [정답] ①

[해설] (i) 회장이 뽑히는 경우

5명의 대표 중에서 회장을 포함하려면 회장을 제외한 9명 중에서 4명을 뽑는 경우의 수이므로 $_9$ C $_4$

(ii) 회장이 뽑히지 않는 경우

5명의 대표 중에서 회장을 포함하지 않으려면 회장을 제외한 9명 중에서 5명을 뽑는 경우의 수이므로 $_{6}C_{5}$

(i)~(ii)에서 ${}_{9}C_{4} + {}_{9}C_{5} = {}_{10}C_{5}$

14) [정답] ③

[해설] 전개식의 일반항은

$$_7$$
C $_r(x)^{7-r}(3)^r=_7$ C $_r imes 3^r imes x^{7-r}$ 이때 x^4 인 항은 $r=3$ 따라서 x^4 의 계수는 $_7$ C $_3 imes 3^3=945$

15) [정답] ②

[해설]
$$_{13}$$
C $_1+_{13}$ C $_3+_{13}$ C $_5+\cdots+_{13}$ C $_{13}=2^{13-1}=2^{12}$

16) [정답] ②

[해설] 전개식의 일반항은

$$\label{eq:continuous} \begin{split} {}_6\mathbf{C}_r(x)^{6-r} & \Big(-\frac{a}{x} \Big)^r = {}_6\mathbf{C}_r \times (-a)^r \times x^{6-r} \times \frac{1}{x^r} \\ & = {}_6\mathbf{C}_r \times (-a)^r \times x^{6-2r} \end{split}$$

이때 상수항은 6-2r=0에서 r=3

따라서 상수항은 $_6$ C $_3 \times (-a^3) = -20a^3$

 $-20a^3 = -160$ 에서 $a^3 = 8$

 $\therefore a = 2$

17) [정답] ⑤

[해설]
$$_{2n}$$
C $_1+_{2n}$ C $_3+_{2n}$ C $_5+\cdots+_{2n}$ C $_{2n-1}=2^{2n-}$ b]므로 $2^{2n-1}=2048$, $2^{2n-1}=2^{11}$ $2n-1=11$ 에서 $n=6$

18) [정답] ④

[해설] $(1+x)^6$ 의 전개식의 일반항은 ${}_6\mathbf{C}_rx^r$

 $(1+2x^2)^n$ 의 전개식의 일반항은

$${}_{n}C_{s}(2x^{2})^{s} = {}_{n}C_{s}2^{s}x^{2s}$$

 $(1+x)^6(1+2x^2)^n$ 의 전개식에서 x^2 이 되는 경우

$$= x^2 \times x^0 = x \times x = x^0 \times x^2$$

$$2s = 0$$
에서 $s = 0$

2s=1을 만족시키는 정수 s는 없다.

$$2s = 2$$
에서 $s = 1$

즉, s=0일 때 r=2 : ${}_6\mathsf{C}_2\times{}_n\mathsf{C}_0\times2^0=15$

$$s=1$$
일 때 $r=0$: ${}_{6}\mathsf{C}_{0}\times{}_{n}\mathsf{C}_{1}\times2^{1}=2n$

따라서 x^2 의 계수는 15+2n=19이므로 n=2

19) [정답] ③

[해설] 전개식의 일반항은

$${}_{8}\mathsf{C}_{r}(x)^{8-r}(a)^{r} = {}_{8}\mathsf{C}_{r} \times a^{r} \times x^{8-r}$$

이때 x^5 인 항은 r=3일 때 이므로

$$x^5$$
의 계수는 ${}_8\mathrm{C}_3 \times a^3$

 x^6 인 항은 r=2일 때 이므로

$$x^6$$
의 계수는 ${}_8\mathbf{C}_2 \times a^2$

 x^{5} 의 계수가 x^{6} 의 계수의 10배이므로

$$_{8}C_{3} \times a^{3} = 10 \times _{8}C_{2} \times a^{2}$$

 $56 \times a = 280$ 에서 a = 5

20) [정답] ④

[해설] 전개식의 일반항은

$$_{7}C_{r}(ax)^{7-r}(-1)^{r} = _{7}C_{r} \times a^{7-r} \times (-1)^{r} \times x^{7-r}$$

이때 x^3 인 항은 r=4

따라서 x^3 의 계수는

 $_{7}$ C₄× a^3 × $(-1)^4$ =35 a^3 에서 35 a^3 =35이므로

a = 1

21) [정답] ②

[해설] $(x+y)^4$ 의 전개식의 일반항은 ${}_4\mathrm{C}_r x^{4-r} y^r$ $\left(1+\frac{1}{xy}\right)^4$ 의 전개식의 일반항은 ${}_4\mathrm{C}_s \left(\frac{1}{xy}\right)^s$ $(x+y)^4 \left(1+\frac{1}{xy}\right)^4$ 의 전개식에서 xy가 되는 경우는 $x^2y^2 \times \left(\frac{1}{xy}\right)^1$ 일 때이므로 r=2일 때 s=1 : ${}_4\mathrm{C}_2 \times {}_4\mathrm{C}_1 = 24$ 따라서 xy의 계수는 24

22) [정답] ④

[해설] 이항정리를 이용하여

$$(1+x)^{10} = {}_{10}\mathsf{C}_0 + {}_{10}\mathsf{C}_1x + {}_{10}\mathsf{C}_2x^2 + \cdots + {}_{10}\mathsf{C}_{10}x^{10}$$
 위의 식에 $x=7$ 을 대입하면
$$(1+7)^{10}$$

$$= {}_{10}\mathsf{C}_0 + {}_{10}\mathsf{C}_1 \times 7 + {}_{10}\mathsf{C}_2 \times 7^2 + \cdots + {}_{10}\mathsf{C}_{10} \times 7^{10}$$
 따라서 $N=8^{10}=2^{30}$ 이므로 2^{30} 의 양의 약수의 개수는 $30+1=31$

23) [정답] ⑤

[해설] a_2 는

$$(1+x)^2 + (1+x)^3 + (1+x)^4 + \cdots + (1+x)^{11}$$

전개식에서 x^2 의 계수이다.

$$(1+x)^2$$
의 전개식에서 x^2 의 계수는 ${}_{\circ}$ C₂,

$$(1+x)^3$$
의 전개식에서 x^2 의 계수는 ${}_{3}\mathrm{C}_{2}$,

:

 $(1+x)^{11}$ 의 전개식에서 x^2 의 계수는 $_{11}$ C $_2$

$$a_2 = {}_2C_2 + {}_3C_2 + {}_4C_2 + {}_5C_2 + \cdots + {}_{11}C_2$$

$$= {}_{3}C_{3} + {}_{3}C_{2} + {}_{4}C_{2} + {}_{5}C_{2} + \cdots + {}_{11}C_{2}$$

$$= {}_{4}C_{3} + {}_{4}C_{2} + {}_{5}C_{2} + \cdots + {}_{11}C_{2}$$

$$= {}_{5}C_{3} + {}_{5}C_{2} + \cdots + {}_{11}C_{2}$$

:

$$= {}_{11}C_3 + {}_{11}C_2$$

$$= {}_{12}C_3$$

따라서 구하는 값은

 $_{12}C_3 = 220$