

Dodatna nastava iz programiranja 2008/2009 Prirodno Matematički Fakultet, Niš datum: 22. novembar 2008. godine predavač: Nikola Milosavljević e-mail: nikola5000@gmail.com

Osnovni geometrijski algoritmi - teorija

1 Osnovni geometrijski objekti

Rastojanje između tačaka $A(x_A, y_A)$ i $B(x_B, y_B)$ u koordinatnoj ravni jednako je

$$Dist(A,B) = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$
 (1)

Jednačina kružnice: Tačka M(x,y) pripada kružnici sa centrom u tački $C(x_C,y_C)$ i poluprečnikom r>0 ako i samo ako važi

$$(x - x_C)^2 + (y - y_C)^2 = r^2$$
(2)

Tačka M(x,y) se nalazi unutar (van) kružnice ako u gornjoj jednakosti umesto znaka " = " stoji znak " < " (" > "). Jednačina (2) predstavlja jednačinu kružnice sa centrom u tački $C(x_C, y_C)$ i poluprečnikom r > 0.

Jednačina prave: Tačka M(x,y) pripada pravoj p određenom (različitim) tačkama $M_1(x_1,y_1)$ i $M_2(x_2,y_2)$, u oznaci $p(M_1M_2)$, ako i samo ako važi

$$(x - x_1)(y_2 - y_1) - (x_2 - x_1)(y - y_1) = 0$$
(3)

Ako označimo sa f(x,y) levu stranu jednačine (3) onda je za f(x,y) > 0 položaj tačke M(x,y) sa jedne strane prave p, dok je za f(x,y) < 0 tačka M(x,y) sa suprotne strane prave p.

Sređivanjem jednačine (3) i uvodeći smene $a = y_2 - y_1$, $b = -(x_2 - x_1)$ i $c = y_1x_2 - x_1y_2$ dobijamo njoj ekvivalentnu jednačinu (**implicitni oblik prave**):

$$ax + by + c = 0 (4)$$

Jednačina (3), tj. (4), predstavljaja jednačinu prave p određenu tačkama $M_1(x_1, y_1)$ i $M_2(x_2, y_2)$.

Pripadnost duži: Tačka M(x, y) pripada duži čije su krajnje tačke $M_1(x_1, y_1)$ i $M_2(x_2, y_2)$, u oznaci $d[M_1M_2]$, ako i samo ako važi jednačina (3) i važi

$$min(x_1, x_2) \le x \le max(x_1, x_2), \qquad min(y_1, y_2) \le y \le max(y_1, y_2)$$
 (5)

tj. tačka M mora da pripada odgovarajućoj pravoj i da se nalazi između tačaka M_1 i M_2 .

2 Osobine i odnosi između geometrijskih objekta

Rastojanje između tačke M(x,y) i prave $p(M_1M_2)$ jednako je

$$Dist(M,p) = \frac{|ax + by + c|}{\sqrt{a^2 + b^2}} \tag{6}$$

gde su a, b i c odgovarajući koeficijenti iz jednačine (4).

Eksplicitni oblik prave: Svaka prava p, određena tačkama $M_1(x_1, y_1)$ i $M_2(x_2, y_2)$, koja nije normalna na x-osu, može se na jedinstven način predstaviti u obliku y = kx + n, gde je k koeficijent pravca a n presek prave p sa y-osom i važi

$$k = \frac{y_2 - y_1}{x_2 - x_1}, \qquad n = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1} \tag{7}$$

Paralelnost pravih: Prave $p_1(A, B)$ i $p_2(C, D)$ su paralelne ako i samo ako važi

$$(y_B - y_A)(x_D - x_C) - (y_D - y_C)(x_B - x_A) = 0$$
(8)

Za koeficijente pravca paralelnih pravih p_1 i p_2 važi $k_1 = k_2$.

Normalnost pravih: Prave $p_1(A, B)$ i $p_2(C, D)$ su normalne ako i samo ako važi

$$(y_B - y_A)(y_D - y_C) + (x_B - x_A)(x_C - x_D) = 0 (9)$$

Za koeficijente pravca normalnih pravih p_1 i p_2 važi $k_1k_2 = -1$.

Presek dve duži: Duži d[AB] i d[CD] mogu da imaju zajedničkih unutrašnjih tačaka, da jedna od krajnjih tačaka jedne duži pripada drugoj duži ili da nemaju zajedničkih tačaka. Ako označimo sa $f(M, M_1M_2)$ levu stranu jednačine (3) (provera da li tačka M pripada pravoj $p(M_1M_2)$) onda važi:

Duži d[AB] i d[CD] imaju zajedničkih tačaka ako i samo ako jedna od krajnjih tačaka jedne duži pripada drugoj duži (provera na osnovu jednačina (3) i (5)) ili ako važi:

$$f(A, CD)f(B, CD) < 0 \quad i \quad f(C, AB)f(D, AB) < 0$$
 (10)

Površina prostog poligona $M_1M_2...M_n$ (ne nužno konveksnog) jednaka je

$$\frac{1}{2} \left| \sum_{i=1}^{n} (x_i - x_{i+1})(y_i + y_{i+1}) \right| \tag{11}$$

gde je $(x_{n+1}, y_{n+1}) = (x_1, y_1)$. Specijalno, za n = 3, posle sređivanja dobijamo izraz za površinu trougla:

$$P_{\triangle M_1 M_2 M_3} = \frac{1}{2} |x_1 y_2 + x_2 y_3 + x_3 y_1 - x_1 y_3 - x_2 y_1 - x_3 y_2| \tag{12}$$

3 Vektori

Ako sa O označimo koordinatni početak, onda za svaku tačku M(x,y), vektor \overrightarrow{OM} možemo predstaviti samo kao (x,y). Proizvoljni vektor $\overrightarrow{M_1M_2}$ možemo translirati do koordinatnog početka i, prema tome, možemo ga predstaviti u obliku $(x_2 - x_1, y_2 - y_1)$. Intenzitet vektora (x,y) jednak je $\sqrt{x^2 + y^2}$.

Skalarni proizvod vektora \overrightarrow{AB} i \overrightarrow{CD} , u oznaci $\overrightarrow{AB} \cdot \overrightarrow{CD}$, je realan broj $a = |\overrightarrow{AB}| |\overrightarrow{CD}| \cos \theta$ gde je θ ugao između ta dva vektora. Ako je $\overrightarrow{AB} = (x_1, y_1)$ a $\overrightarrow{CD} = (x_2, y_2)$ tada je

$$\overrightarrow{AB} \cdot \overrightarrow{CD} = x_1 x_2 + y_1 y_2 \tag{13}$$

Vektorski proizvod vektora \overrightarrow{AB} i \overrightarrow{CD} , u oznaci $\overrightarrow{AB} \times \overrightarrow{CD}$, je vektor \overrightarrow{v} koji je normalan na ravan određenu vektorima \overrightarrow{AB} i \overrightarrow{CD} , čiji je pravac određen pravilom desnog zavrtnja u odnosu na pomenute vektore i čiji je intenzitet $|\overrightarrow{v}| = |\overrightarrow{AB}||\overrightarrow{CD}||\sin\theta|$ gde je θ ugao između ta dva vektora. Ako je $\overrightarrow{AB} = (x_1, y_1)$ a $\overrightarrow{CD} = (x_2, y_2)$ tada je

$$|\overrightarrow{AB} \times \overrightarrow{CD}| = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}| = |x_1 y_2 - y_1 x_2|$$

$$(14)$$

Desna strana jednačine (14) predstavlja dvostruku površinu trougla određenog vektorima \overrightarrow{AB} i \overrightarrow{CD} dovođenjem na zajednički početak.

Od značaja nam je ne samo vrednost već i znak izraza iz jednačine (14) pa ćemo nadalje sa $VP(\overrightarrow{AB}, \overrightarrow{CD})$ označavati vrednost desene strane bez apsolutne vrednosti u jednačini (14).

Korišćenjem vektorskog i skalarnog porizvoda dobijamo:

Vektori \overrightarrow{AB} i \overrightarrow{CD} su normalni akko je $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$. Koristeći da je $\overrightarrow{AB} = (x_B - x_A, y_B - y_A)$ i $\overrightarrow{CD} = (x_D - x_C, y_D - y_C)$ i jednačinu (13) dobijamo uslov kao u jednačini (9).

Vektori \overrightarrow{AB} i \overrightarrow{CD} su paraleni akko je $\overrightarrow{AB} \times \overrightarrow{CD} = 0$. Koristeći da je $\overrightarrow{AB} = (x_B - x_A, y_B - y_A)$ i $\overrightarrow{CD} = (x_D - x_C, y_D - y_C)$ i jednačinu (14) dobijamo uslov kao u jednačini (8).

Tačke A, B i C su kolinearne akko je $\overrightarrow{AB} \times \overrightarrow{AC} = 0$. Koristeći da je $\overrightarrow{AB} = (x_B - x_A, y_B - y_A)$ i $\overrightarrow{AC} = (x_C - x_A, y_C - y_A)$ i jednačinu (14) dobijamo uslov kao u jednačini (3).

Površina trougla $\triangle ABC$ jednaka je $\frac{1}{2}|\overrightarrow{AB} \times \overrightarrow{AC}|$. Koristeći jednačinu (14) dobijamo formulu (12).

 $\textbf{Linija} \ M_0 M_1 M_2 \ \textbf{skre\acute{c}e ulevo (udesno)} \ \text{akko je} \ VP(\overrightarrow{M_0 M_1}, \overrightarrow{M_0 M_2}) > 0 \ (VP(\overrightarrow{M_0 M_1}, \overrightarrow{M_0 M_2}) < 0).$