## Solidity and Smart Contract Development

Overview & Syllabus

### Syllabus

- Lecture 1 Blockchain Basics and Development
- Lecture 2 Web Development
- Lecture 3 Solidity Basics
- Lecture 4 Contracts and Functions
- Lecture 5 ERC20 Tokens
- Lecture 6 Decentralized Exchanges
- Lecture 7 Other DeFi Applications
- Lecture 8 NFTs and Auctions
- Lecture 9 ReFi and Social Good (Guest Lecture)
- Lecture 10 DAOs and Governance
- Lecture 11 Assembly and Gas Optimization
- Lecture 12 ZK and Rollups

### Class Tooling



https://discord.gg/yRvr4AvhjJ



https://app.gather.town/app/bOFt4 eJwDG85V9qk/Dauphine%20Soli dity%20Course



https://github.com/Dauphine-Digital-Economics

### Grading

- Homework 40%
  - > Weekly homework. Released on Sunday for the week. Submission deadline is next Sunday.
  - > Submit on your own Github account.
- **♦** Final project presentation 30%
  - > Oral presentation (80%)
  - ➤ Written submission (20%)
- ♦ In class presentation 20 %
  - ➤ Weekly on Monday
  - $\triangleright$  Graded by professor (50%) and a class DAO (50%)
- **♦** Participation 10%
  - > Github comments
  - > Gather Town chats
  - ➤ Discord Activity

### In Class Presentations

- 15 min presentation + 3 min questions
- Every team member must speak during presentation
- These are not topics covered in class. They are an extension to the previous week's discussion.
- Grading
  - > 50% graded by professor
  - > 50% voted on by your fellow classmates through a class DAO
    - To avoid problems of collusion and manipulation encountered by small DAOs, professor reserves the right to veto the class vote

### Presentation Topics

- → 6 February: Evaluate an open source community on Github
  - ◆ Intro of community, their Github stats (eg. stars/fork), interesting interactions (issues/comments/PRs). Finally, your assessment of this community.
  - ◆ No code. Week 1.
- → 13 February: Advanced Solidity data structure: Trees
  - ◆ Introduction to trees and subtypes of trees (eg. binary, merkle)
  - Code: Show how to code a Tree
- → 20 February: Stability mechanisms of stablecoins
  - ◆ Collateral, Seigniorage, etc.,
  - ◆ No code. Finance heavy.
- → 27 February: decentralized NFT storage: IPFS
  - ◆ Introduction to IPFS
  - ◆ Demo walkthrough of IPFS
- → 13 March: ReFi DAOs
  - ◆ DAOs for social good (Carbon, nature conservation, common good, etc)
  - Code optional. Free to decide on presentation style.

### Presentation Groups

| Group 1 | Remy PIGNEL<br>Yangjiawei XUE   | Solidity Trees       |
|---------|---------------------------------|----------------------|
| Group 2 | Aizhan ZHAKUPOVA<br>Cedric LION | ReFi DAO             |
| Group 3 | Yanming ZHANG<br>Laetitia ASSOR | NFT Storage: IPFS    |
| Group 4 | Margot MONGE<br>Lea VIALA       | Stability Mechanisms |
| Group 5 | Yichen CHENG<br>Valentin LOIRET | Evaluate a Community |

### Final Project

- Choose a Topic from next slide and begin working on it as soon as possible.
- Deliverables due 27 March
  - Oral Presentation 80%
  - Written Description (approx 500 words blog post) 20%

#### Oral Presentation (20 - 25min + 5min questions)

- 5min startup pitch style
  - What is the value / problem addressed by your project?
- 10min project demo
- 10min Solidity code considerations
  - How did you structure your project and why?
  - What considerations did you make while coding (eg. gas optimization)

#### **Written Blog Post**

500 words

Description of your project and key features.

Mention interesting technical aspects.

### Final Project - Topic List

All projects must be on the Celo Blockchain!!

- Mobile NFT Marketplace
- 2. Mobile web3 game
- 3. IPFS storage dApp
- 4. Voting dApp
- 5. Celo payments through QR codes
- 6. Time-Lock Wallet
- 7. Crowdfunding dApp
- 8. Propose your own

Hint: check out celo-composer!

### Final Project - Groups

Group 1

Laetitia ASSOR

Yangjiawei XUE

Cedric LION

Group 2

Yichen CHENG

Margot MONGE

Remy PIGNEL

Aizhan ZHAKUPOVA

Group 3

Valentin LOIRET

Lea VIALA

Yanming ZHANG

### Final Project - fast track your web3 career!

All groups will have their written submission edited and published on the Celo Medium Blog to boost their web3 CV.

For the winning team - marketing support and exposure to the Celo Ecosystem.

### Have a great semester and good luck!

## Lecture 1

Blockchain Basics and Development

Birth of Crypto

Rise of Ethereum

### Cryptocurrencies - Secure, Anonymous, Independent

- Many attempts to create a digital currency and break free from traditional banking
  - > eCash by David Chaum in 1983
  - ➤ HashCash, eGold, BitCash

Lacked awareness, suffered from attacks, used for dark web activities



### Turing machine / Turing Completeness



Source: https://iq.opengenus.org/general-introduction-to-turing-machine/

### Ethereum - A Turing Complete State Machine

### **Ethereum World State Merkle Patricia Trie**

EOA Smart contracts Address

To

Balances, Nonce, Variables, address pointers, gas limits

. . . . . .



### Externally Owned Accounts

- No Code, no data
- Public/private keys
- Hardware, software



#### **Smart Contracts**

- Hash of code and data storage
- Needs a sender address

### Ethereum - A Turing Complete State Machine











## A history and A comparison

Turing Machines



Human readable - "High Level"

Translation program:
Bytecode -VM
Machine Code - Binary
ASM - Instructions

Machine Language - "Low Level"

A Turing Complete, Finite State Machine



var a; a = 1+1

malloc 256; add 1 1 write a 2

01101 256 00100 0001 0001 10001 0x456 0010



Decode Instructions into opcode and data

Registers to hold **program** essentials: Data, loops state, pointers

Algorithmic Logic Unit

Ram read write, towards more permanent storage. Indexed by **Addresses** 



Source: https://hackernoon.com/ethernaut-lvl-0-walkthrough-abis-web3-and-how-to-abuse-them-d92a8842d71b



## Open Source

The principle that inspired Decentralization

### Free Software Movement





### 4 Fundamental Freedoms

### **Purpose**

Freedom to run the program as you wish, for any purpose.

### Solidarity

Freedom to distribute your creations to help others

### Knowledge

Freedom to study and modify the program.

### Community

Freedom to redistribute changes and improvements for the benefit of the community

Battle of the Copies - Left vs Right



### Open Source Licensing - The corporate strikes back

#### **Permissive**



BSD

- Do what you want
- You can copyright your version
- Don't sue me
- No marketing? (BSD3)
- Can withdraw (Apache2)

#### Copy Left

Weak



- Must show source code of the original or direct modification
- your own code can be proprietary (use original as library)

**Strong** 



- Must show source code!
- If you use this code, your code must also be show
- Known as 'viral'

### Open Source Licensing - current distribution



Source:

https://www.activestate.com/blog/the-developers-guide-open-source-software-license-comparison/

# https://github.com/Dauphine-Digital-Economics

Check out our class Github!

# How to be an open source Contributor - Ethereum Improvement Proposals



# How to be an open source Contributor - Ethereum Improvement Proposals

