

CURSO: ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

DISCIPLINA: ARQUITETURA DE COMPUTADORES

TRABALHO DE LABORATÓRIO II

CONCEÇÃO E ANÁLISE DE UM PROCESSADOR

Trabalho Realizado por: Xavier Abreu Dias Nº 87136

Diogo Martins Alves Nº 86980

Data: 23/04/2017

2016-2017, MEEC

Objetivo:

Compreender a metodologia usada na síntese, implementação e programação de um processador básico, constituído pelos 5 estágios convencionais de um MIPS: Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory (MEM) e Write-Back (WB).

Descrição breve do processador:

Este processador é um processador de 32 bits constituído por 5 estágios:

- IF (Instruction Fetch) Leitura da instrução indicada pelo PC (Program Counter) da memória de instruções;
- ID (Instruction Decode) Descodificação da instrução e leitura dos operandos;
- EX (Execute) Execução da instrução, i.e., cálculo do resultado (Unidade Funcional) ou alteração do fluxo de instruções (teste de condição e realização de um salto na Unidade de Controlo de Salto);
- MEM (Memory) Leitura ou escrita de um valor na memória de dados;
- WB (Write-Back) Escrita do resultado da instrução na Unidade de Armazenamento (Register File).

4.1.

a)

No estágio de ID, o bloco InstructionDecoder recebe o sinal Instruction(31:0) do componente InstructionFetch e gera todos os sinais de dados e de controlo.

Dentro do InstructionDecoder, existe uma memória (decode_memory) cujo objetivo é descodificar o sinal correspondente ao Opcode (Instruction(31:26)).

```
-- Assign memory outputs

PL <= mem_out(30);

dDA <= mem_out(21 downto 18);

dAA <= mem_out(29 downto 26);

dBA <= mem_out(25 downto 22);

MASel <= mem_out(10 downto 9);

MBSel <= mem_out(8 downto 7);

FS <= mem_out(17 downto 14);

KNSSel<= mem_out(13 downto 11);

MMA <= mem_out(6 downto 5);

MMB <= mem_out(4 downto 3);

MW <= mem_out(2);

MDSel <= mem_out(1 downto 0);
```

As saídas do decode_memory e as respetivas funções estão apresentadas na tabela seguinte:

Saída	Função
PL	Indica se a instrução a ser executada é de controlo (PL=1) ou de dados (PL=0).
FS(3:0)	Seleciona a operação a ser executada pelo bloco Execute
MMA(1:0)	Seleciona um de quatro sinais para endreçar a memória (bloco Memory)
MMB(1:0)	Seleciona um de quatro sinais a ser escrito na memória (bloco Memory)

2016-2017, MEEC

MW	Ativa a escrita na memória (bloco Memory)
MDSel(1)	Seleciona o sinal que irá corresponder à saida DA - DR (= Instruction(25:22)) quando MDSel(1) = '0'
	ou dDA (gerado a partir do opcode pelo bloco decode_memory) quando MDSel(1) = '1'. A saída DA
	terá a função de selecionar o registo de destino no RegisterFile
MDSel(0)	correponde à saída MD do InstructionDecode
MASel(1)	Seleciona o sinal que irá corresponder à saida AA - SA (= Instruction(21:18)) quando MASel(1) ='0'
	ou dAA (gerado a partir do opcode pelo bloco decode_memory) quando MASel(1) = '1'. A saída AA
	terá a função de selecionar o registo de onde será retirado o operando A no RegisterFile.
MASel(0)	Correponde à saída MA, que escolhe entre o operando A (quando MASel(0) = '0') e o sinal da
	constante KNS (quando MASel(0) = '1') para entrar na FunctionalUnit do bloco Execute
MBSel(1)	Seleciona o sinal que irá corresponder à saida BA - SB (= Instruction(17:14)) quando MBSel(1) ='0'
	ou dBA (gerado a partir do opcode pelo bloco decode_memory) quando MBSel(1) = '1'. A saída BA
	terá a função de selecionar o registo de onde será retirado o operando B no RegisterFile.
MBSel(0)	Correponde à saída MB, que escolhe entre o operando B (quando MBSel(0) = '0') e o sinal da
	constante KNS (quando MBSel(0) = '1') para entrar na FunctionalUnit do bloco Execute
KNSSel	Decide qual será o valor do sinal KNS conforme o seguinte código:
	Constant value (KNS) is always extended to 32 bits, depending on KNSSel
	with KNSSel select KNS <= (31 downto 18=>'0') & Instruction(17 downto 0) when "000",
	(31 downto 18=>Instruction(17 downto 0) when "000",
	(31 downto 18=>Instruction(25)) & Instruction(25 downto 22) & Instruction(13 downto 0) when "010",
	(31 downto 14=>Instruction(13)) & Instruction(13 downto 0) when "011",
	(31 downto 16=>'0') & Instruction(15 downto 0) when "100",
	(31 downto 16=>'1') & Instruction(15 downto 0) when "101",
	Instruction(15 downto 0) & (31 downto 16=>'0') when "110",
	Instruction(15 downto 0) & (31 downto 16=>'1') when others;

b)

OpCode	Mnem	PL	dAA	dBA	dDA	FS	KNSSel	MASel	MBSel	MMA	MMB	MW	MDSEL
000010	SUB	0	Χ	Χ	Χ	0011	Χ	00	00	Χ	Χ	0	00
000011	SUBI	0	Χ	Χ	Χ	0011	001	00	X1	Х	Х	0	00
000000	ADD	0	Χ	Χ	Χ	0000	Х	00	00	Х	Х	0	00
010000	ROL	0	Χ	Χ	Χ	1110	Х	XX	00	Х	Х	0	00
010111	В	1	Χ	Χ	0000	0011	011	00	00	Х	Х	0	10
010111	B.EQ	1	Χ	Χ	0000	0011	011	00	00	Χ	Χ	0	10
010111	B.NEQ	1	Χ	Χ	0000	0011	011	00	00	Х	Х	0	10

Justificações:

As três ultimas operações (B, B.EQ e B.NEQ) partilham o mesmo Opcode, logo, todos os sinais de controlo gerados pelo decode_memory têm necessariamente de ser iguais para os três.

2016-2017, MEEC

O sinal PL é zero nas cinco primeiras operações, pois são instruções de dados e o PC apenas deve ser incrementado e é 1 nas três ultimas operações, que são operações de salto. Os sinais dAA e dBB são insignificantes, pois estes nunca serão tidos em conta, uma vez que em todas as as operações os sinais MASel(1) e MBSel(1) irão estar a 0 (excepto na operação ROL, que não necessita de operando A e a operação SUBI, cujo operando B corresponde a uma constante). O sinal dDA também é irrelevante nas cinco primeiras operações porque MDSel(1) é zero, mas nas operações de salto tem importância porque não queremos que o resultado da operação seja escrito num registo, logo forçamos a escrita no registo 0, cujo valor não pode ser alterado. Nas cinco primeiras operações, FS corresponde à operação efetuada e nas operações de salto é 0011 (subtração) porque desta forma podemos saber se um operando é maior, igual ou menor que outro. Os valores de KNSSel foram atribuídos consultado a tabela acima. MASel(0) e MBSel(0) são sempre 0 pois as saídas A e B do RegisterFile são sempre escolhidas como operandos para a FuncionalUnit, excepto no ROL que não precisa de operando A e do SUBI que utiliza o sinal KNS como operando A. Os valores de MMA e MMB são insignificantes e o valor de MW está sempre a 0 porque em nenhuma operação é efetuada a escrita na memória. O sinal MDSel é sempre "00", porque o resultado é sempre guardado no registo de destino DR, excepto nas operações de salto, em que o resultado não é guardado.

4.2.

Para construirmos a lógica necessária à implementação da unidade de controlo de salto, começámos por analisar o schematic e chegámos à conclusão de que no bloco InstructionFetch existe um multiplexer cuja entrada de seleção é a saída **PC_Load** da UCS e a saída deste tomava os valores de **PCValue** quando PC_Load = '1' ou PC + 1 quando PC_Load = '0'. Como isto acontece, só temos que nos preocupar em construir a lógica para o sinal **PC_Load**, em função dos sinais BC, PL e das flags, garantindo que este toma o valor '1' quando é suposto existir salto e o valor '0' quando isto não acontece.

Como BC(3) é sempre '0' quando existe salto e PL é sempre '1', chegámos à conclusão que o sinal PC_Load seria dado pela seguinte expressão:

$$PC_Load = \overline{BC(3)} . PL . BCout$$

em que o sinal BCout toma os valores indicados na tabela seguinte, em função de BC(2:0):

Tipo de salto	PL	ВС	BCout ⁽¹⁾	PC_Load
Não há salto	0	Χ	X	0
В	1	000X	1	1
B.EQ / BI.EQ	1	0010	Z	1
B.NE / BI.NE	1	0011	Z	1
B.GT / BI.GT	1	0100	$\overline{N} \cdot \overline{Z} = P$	1
B.GE / BI.GE	1	0101	\overline{N}	1
B.LT / BI.LT	1	0110	N	1
B.LE / BI.LE	1	0111	$N + Z = \overline{P}$	1

⁽¹⁾ Não existe salto se BCout ≠ '1'

2016-2017, MEEC

Uma vez que a operação aritmética analisada nas operações de salto é A – B, então foi bastante fácil chegar à conclusão de quais seriam as flags (ou complementos) a serem analisadas em cada situação: por exemplo, para o salto B.GE, existe salto se o operando A for maior ou igual que o operando B, isto é, se A-B for um número negativo, logo a flag a analisar será N.

De seguida apresentam-se as alterações feitas ao branchcontrol.vhd e o respetivo schematic:

```
With BC(2 downto 0) select

BCout<= '1' when "000" | "001",

Z when "010",

not(Z) when "011",

P when "100",

not(N) when "110",

not(P) when "111",

'X' when others;

PCLoad<= PL and BCout and not(BC(3));

PCValue(3:0)

RET_MN

REQUISION

REQUISION

RET_NN

REQUISION

REQUISION

RET_NN

REQUISION

RET_NN

REQUISION

RET_NN

REQUISION

RET_NN

REQUISION

RET_NN

REQUISION

RET_NN

RET_NN

REQUISION

RET_NN

RET_NN

RET_NN

REQUISION

RET_NN

RET_NN
```

Na imagem seguinte encontram-se oito simulações deste circuito, com as flags escolhidas aleatoriamente: na primeira, como PL='1', PCLoad será '0'; na segunda BC = "0001" é um salto incondicional, logo PCLoad será '1'; na terceira BC = "0010" é um B.EQ e Z = 1, logo existirá salto; na quarta BC = "0011" é um B.NE e Z = 1, logo não existe salto; na quinta BC = "0100" é um B.GT e P = 0, logo não existe salto; na sexta BC = "0101" é um B.GE e N = 0, logo existe salto; na sétima BC = "0110" é um B.LT e N = 0, logo não existe salto e na oitava BC = "0111" é um B.LE e P = 0, logo existe salto.

	0.000 ns							
Value	0 ns	5 ns	10 ns	15 ns	20 ns	25 ns	30 ns	35 ns
00000001				0000	0001			
0000007				0000	0007			
3000000				0000	0008			
1111	11	11	1010	1011	0110	0000	1010	0100
0								
1								
1								
D								
1111	1111	0001	0010	0011	0100	0101	0110	0111
0								
0 0 1 1 0	Value 0000000: 00000007 00000008 111	Value 0 ns 0000001	Value 0 ns 5 ns 0000000 00000000 00000000 1111	Value 0 ns 5 ns 10 ns 0000000 0000000 0000000 111 111 1010 0000000 0000000 0000000 000000	Value 0 ns 5 ns 10 ns 15 ns 00000000000000000000000000000000000	Value 0 ns 5 ns 10 ns 15 ns 20 ns 0000001 00000001 000000000000000000	Value 0 ns 5 ns 10 ns 15 ns 20 ns 25 ns 20000001 00000001 00000000000000000000	Value 0 ns 5 ns 10 ns 15 ns 20 ns 25 ns 30 ns 0000000 0000000000000000000000

Concluímos então que o circuito foi bem concebido, uma vez que a simulação deu os resultados esperados.

2016-2017, MEEC

4.3.

A simulação obtida foi a seguinte:

Name	Value	0 ns					50 ns					100 ns					150 ns					200 ns									
Uk CLK	1																														
■ PC[31:0]	12		1	2	3	4	5	(6	7	8	9	10	5	6	7	8	9	10	5	(6)	7	8	9	10	11	12					
■ N I[31:0]	5c000000	0cc0	0480	0840	0400	5c90	0880	08c0	0980	0410	0040	5edD	0880	08cD	0980	0410	0040	5ed□	0880	08c0	0980	0410	0040	5cdD	0880	5e00					
Data[31:0]	0			<u>-2</u>	=	3	-2		2	-2	-4	-2	(-3	-2	3	(-1	-7	-1	-5	X -3	5		-12		12						
Un CountCycles	26	1	2	3	4	5	6	7	(8)	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25					
■ Q0[31:0]	0	0 \										0																			
■ 🍕 Q1[31:0]	-12					-2				k —		_	4			<u> </u>		-	7			X	-12								
■ N Q2[31:0]	12						х			-2						3			X			5			12						
■ ■ Q3[31:0]	-3						_	1								_	2			_		_	3								
■ N Q4[31:0]	0	• X						-3			Х			2						-1			× 0)	=					
■ ■ Q5[31:0]	0												0																		
■ ■ Q6[31:0]	5	0 X								2			X			3			<u> </u>		5										

Os resultados da simulação foram confirmados e são iguais aos resultados esperados, o que significa que o circuito executou as operações corretamente.

O número de ciclos necessários à correta execução do troço de código indicado até à execução (inclusive) da instrução "B #0" é 25.

Ciclo	PC	Instrução	Operação
1	0	SUBI R3,R0,#1	R3 = R0 - 1 = 0 - 1 = -1
2	1	SUBI R6,R0,#-1	R6 = R0 - (-1) = 0 + 1 = 1
3	2	SUB R1,R3,R6	R1 = R3 – R6 = -1 – 1 = -2
4	3	SUBI R4,R0,#3	R4 = R0 - 3 = 0 - 3 = -3
5	4	B.EQ R4,R0,#7	PC ← PC+7 se R4=R0; R4=-3≠0=R0, logo PC ← PC+1
6	5	SUB R2,R3,R6	R2 = R3 - R6 = -1 - 1= -2
7	6	SUB R3,R0,R6	R3 = R0 - R6 = 0 - 1 = -1
8	7	SUB R6,R0,R2	R6 = R0 - R2 = 0 - (-2) = 2
9	8	SUBI R4,R4,#-1	R4 = R4 - (-1) = -3 - (-1) = -2
10	9	ADD R1,R1,R2	R1 = R1 + R2 = -2 + (-2) = -4
11	10	B.NE R4,R0,#-5	PC ← PC-5 se R4≠R0; R4=-2≠0=R0, logo PC ← PC-5
12	5	SUB R2,R3,R6	R2 = R3 - R6 = -1 - 2= -3
13	6	SUB R3,R0,R6	R3 = R0 - R6 = 0 - 2 = -2
14	7	SUB R6,R0,R2	R6 = R0 - R2 = 0 - (-3) = 3
15	8	SUBI R4,R4,#-1	R4 = R4 - (-1) = -2 - (-1) = -1
16	9	ADD R1,R1,R2	R1 = R1 + R2 = -4 + (-3) = -7
17	10	B.NE R4,R0,#-5	PC ← PC-5 se R4≠R0; R4=-1≠0=R0, logo PC ← PC-5
18	5	SUB R2,R3,R6	R2 = R3 – R6 = -2 – 3 = -5
19	6	SUB R3,R0,R6	R3 = R0 - R6 = 0 - 3 = -3
20	7	SUB R6,R0,R2	R6 = R0 - R2 = 0 - (-5) = 5
21	8	SUBI R4,R4,#-1	R4 = R4 - (-1) = -1 - (-1) = 0
22	9	ADD R1,R1,R2	R1 = R1 + R2 = -7 + (-5) = -12
23	10	B.NE R4,R0,#-5	PC ← PC-5 se R4≠R0; R4=0=R0, logo PC ← PC+1
24	11	SUB R2,R0,R1	R2 = R0 - R1 = 0 - (-12) = 12
25	12	B #0	PC ← PC + 0

2016-2017, MEEC

5.1.

A frequência máxima de um circuito é calculada da seguinte forma:

 $f_{max}=rac{1}{T_{min}}$, em que T_{min} é igual ao tempo de propagação mínimo do circuito, tendo em conta que todas as operações devem funcionar corretamente. Deste modo:

$$T_{min} = máx\{ IF(PC \rightarrow Adder \rightarrow MUX \rightarrow Write on PC Register) ;$$

IF(Read PC from register \rightarrow Memory \rightarrow Instruction) + ID(Instruction \rightarrow Decoder \rightarrow RF \rightarrow A,B) + EX(A,B \rightarrow UF \rightarrow Data) + WB(Data \rightarrow Write to register file) ;

IF(Read PC from register \rightarrow Memory \rightarrow Instruction) + ID(Instruction \rightarrow Decoder \rightarrow RF \rightarrow A,B) + EX(A,B \rightarrow UF \rightarrow Data) + MEM(A,B,D \rightarrow Read from Memory) + WB(Data \rightarrow Write to register file);

IF(Read PC from register \rightarrow Memory \rightarrow Instruction) + ID(Instruction \rightarrow Decoder \rightarrow RF \rightarrow A,B) + EX(A,B \rightarrow UF \rightarrow Data) + MEM(A,B,D \rightarrow Write to Memory) ;

 $IF(Read\ PC\ from\ register \rightarrow Memory \rightarrow Instruction) + ID(Instruction \rightarrow Decoder \rightarrow RF \rightarrow A,B) + ID(Instruction \rightarrow Decoder \rightarrow$

 $EX(A,B \rightarrow UF \rightarrow Branch\ Control \rightarrow PCLoadEnable, PCLoadValue \rightarrow MUX \rightarrow Write\ on\ PC\ Register)$ }

 $= máx{15; 35 + 30 + 30 + 15; 35 + 30 + 30 + 40 + 15; 35 + 30 + 30 + 30; 35 + 30 + 40} = 150ns$

Logo,
$$f_{\text{máx}} = 1/(150*10^{-9}) = 6.6 \text{ MHz}$$

5.2.

Neste caso, o T_{min} será igual ao tempo de propagação do estágio com maior tempo de propagação mais os tempos de setup e propagação dos flip-flops dos registos pipeline:

 $T_{min} = T_{Propagação}(FF) + T_{Propagação}(Estágio mais demorado) + T_{Setup}(FF) = T_{Propagação}(FF) + T_{Propagação}(MEM(A,B,D \rightarrow Read from Memory)) + T_{Setup}(FF) = 1 + 40 + 1 = 42 ns$

Logo,
$$f_{\text{máx}} = 1/(42*10^{-9}) = 23.8 \text{ MHz}$$

O aumento teórico de desempenho é então dado por:

Speedup = $T_{Ciclo\ Unico}$ / $T_{Pipelined}$ = 150/42 = 3,6

2016-2017, MEEC

5.3.1.

Na imagem seguinte encontra-se a simulação do troço de código da alínea 4.3 mas desta vez executado na arquitetura pipeline:

		0.000 ns							
Name	Value	0 ns	20 ns	40 ns	60 ns	80 ns	100 ns	120 ns	140 ns 160 ns
Un CLK	1								
■ PC[31:0]	0	0	1 (2	3 (4	5 (6	11 12	13 14	12 13	14 12 13
■ ■ I[31:0]	00000000	0000000 0000110	0000110 0000100	0000110 0101110	0000100 0000100	0000100 (0101110	00000000000000000	0101110 00000000	00000000 (0101110 0000000
■ ■ Data[31:0]	0		0	-1 \ 1	0 / -3	0 \ -2	-1		
U CountCycles	1	1 / 2	3 / 4	5 / 6	7 (8	9 (10	11 / 12	13 14	15 16 17
₩ ₩ Q0[31:0]	0					0			
₩ Q1[31:0]	0					0			
■ ■ Q2[31:0]	0			0			-2	X	0
⊞ - ₹ Q3[31:0]	0		0	X			-1		
■ • Q4[31:0]	0			0		X		-3	
■ Q5[31:0]	0					0			
₩ ₩ Q6[31:0]	0		0		*		1		

No seguinte esquema encontram-se os erros de execução que detetámos:

0. SUBI R3,R0,#1 1. SUBI R6,R0,#-1 2. SUB R1,R3,R6 Data Hazard (1), Data Hazard (2) 3. SUBI R4,R0,#3 4. B.EQ R4,R0,#7 Data Hazard (3), Control Hazard (1) 5. SUB R2,R3,R6 6. SUB R3,R0,R6 7. SUB R6,R0,R2 Data Hazard (4) 8. SUBI R4,R4,#-1 9. ADD R1,R1,R2 Data Hazard (5), Control Hazard (2) 10. B.NE R4,R0,#-5 11. SUB R2,R0,R1 12. B #0

IF	ID	EX	MEM	WB	Valor disponível
	IF	ID	EX	MEM	WB
		IF	ID	EX	MEM
			IF	ID	EX
				IF	ID

Como existem 5 estágios nesta arquitetura em *pipeline*, IF, ID, EX, MEM e WB e o valor de escrita nos registos em cada instrução só vai estar disponível a seguir ao último estágio, *Write Back* e os registos são lidos no segundo estágio, *Instruction Decode*, são necessários 3 ciclos de relógio de intervalo entre uma instrução que escreve num registo e uma instrução que lê esse mesmo registo, como mostra a tabela acima. Portanto os erros na execução provêm da falta deste requerimento.

Ao analisar as instruções do troço de código, reparámos na existência de cinco *Data Hazards (DH)* e de dois *Control Hazards (CH)*. Na instrução 2, o valor de R3 que será utilizado

2016-2017, MEEC

para realizar a operação não é o mesmo que foi escrito na instrução 0, há um *DH*. Ainda na instrução 2, vai precisar-se também do valor de R6 calculado na anterior, portanto temos mais um *DH*. Na instrução 4 será necessário ler o valor de R4 da instrução anterior, portanto estamos na presença de outro *DH*. Ainda na instrução 4, se houver salto, que é avaliado no estágio *EX*, haverá já duas instruções a serem executadas, neste caso as instruções 5 e 6, o que não é pretendido. Estamos então na presença de um *CH*. Caso não haja salto, encontramos mais dois *DH*: na instrução 7, vai ser lido o registo R2 cujo valor teria sido escrito na instrução 5 e na instrução 10 irá ser lido o registo R4, cujo valor foi escrito na instrução 8. Por fim, como existe um salto condicional na instrução 10, estamos perante outro *CH*.

5.3.2.

Para garantirmos a correta execução do troço de código, decidimos resolver o problema por software, adicionando instruções NOP e trocando a ordem de instruções de modo a que não existissem mais conflitos de dados nem de controlo.

0. SUBI R4,R0,#3 11. SUB R6,R0,R2 1. SUBI R3,R0,#1 12. ADD R1,R1,R2 2. SUBI R6,R0,#-1 13. B.NE R4,R0,#-6 3. NOP **14.** NOP 4. B.EQ R4,R0,#12 **15.** NOP 5. NOP 16. SUB R2,R0,R1 6. SUB R1,R3,R6 17. B #0 7. SUB R2,R3,R6 **18.** NOP 8. SUBI R4,R4,#-1 **19.** NOP 9. SUB R3,R0,R6 **10.** NOP

Quanto aos conflitos de controlo, uma vez que o processador pipeline apenas sabe se existe ou não salto quando as instruções de salto chegam ao estágio EXE (que corresponde ao 3º estágio), então as duas instruções subsequentes à instrução de salto irão ser executadas de qualquer forma. Para evitar que sejam executadas instruções que não são suposto serem executadas, a solução é inserir instruções NOP imediatamente a seguir a cada instrução de salto ou mover instruções que seriam executadas antes do salto para uma das duas posições a seguir ao salto. Deste modo, para resolver o conflito de dados (1), adicionámos o NOP 5 e movemos a instrução SUB R1,R3,R6 para depois do salto e para resolver o conflito de dados (2) adicionámos os NOP 14 e 15. Por fim, resolvemos também adicionar dois NOP ao fim do código, pois, na prática, existiriam outras instruções que não deveriam ser executadas caso o último salto seja tomado.

Quanto aos conflitos de dados, uma vez que o processador pipeline tem 5 estágios e os dados são escritos nos registos no 5º estágio (Write Back) e lidos no 2º estágio (Instruction Decode), para que não existam conflitos de dados, entre uma instrução que escreva num registo e uma instrução que leia esse mesmo registo têm que existir pelo menos 3 instruções de intervalo.

Por esta razão, os Data Hazards (1) e (2), ficaram resolvidos quando movemos a instrução SUB R1,R3,R6; para resolvermos o conflito de dados (3) movemos a instrução SUBI

2016-2017, MEEC

R4,R0,#3 para o início do programa; para o (5), recuámos a instrução SUBI R4,R4,#-1 duas posições e, por isso, para resolver o (4) foi apenas necessário introduzir o NOP 10.

Por fim, bastou-nos apenas ajustar os offsets dos saltos para que as instruções de salto vão para os sítios corretos.

Deste modo, corrigimos todos os conflitos e, ao analisar o código verificamos que não são criados nenhuns outros conflitos.

5.3.3.

Ao alterarmos o conteúdo da memória para o troço de código modificado como mostrado na questão 5.3.2, obtemos a seguinte simulação:

Name	Value	0 n:	s				50	ns					100	ns				15	50 n	ıs				200	ns				28	50 n	s				300	ns				1	350	ns				40
₩ CLK	1		П				П	т	Ť	П	T			П		$\overline{\Box}$		+	T	T	T			П			П	$\overline{}$		T	T	T			П			Ť	П	T				П	$\overline{\Box}$	
⊞ PC[31:0]	19	Ċ	0	Χī	χz	Х з	4	X	Ξx	6 X	7	8	9	(10	X11	X 12	XΙ	okα	ŧχ	15 X	7	(8)	9	10	X11	<u>X 12</u>	X 13	XΤ	οlα	5 X	\overline{z}	*	9	10	11	X 12	X 13	χī	4 X	15	16	17	X 18	X 19	X17	Þσ
Ⅲ 🥌 I[31:0]	00000000	o	χ =	χ -	χ 🗖	χ 🗖	ķσ	χī	īχ	□ (<u> </u>	00	χ -	χ 🗖	χп	χī	Ж	0000) X		靣	<u> </u>	00	χ.	χo	χп	χo	0000	т X	σX		_	(-	00	χo	χō	X	0000	00	_	(<u> </u>	X 00	000	χo	Жc
🔣 📲 Data[31:0]	0			0) (-3	Х -1	Х	$\exists x$	o (-3)	0		-2)(-1	χο	×	ZΧ	-4 X	-2)	-3	<u> </u>	<u> </u>	χo	Х 3	X	7 X	-1 X	0		-5	0	X-3	χο	X	5 X			0		<u> 12</u>	χ	ф
Un CountCycles	42	1	<u>/</u> 2	(3	X 4	5	6	Х	ΞX	8 X	9	10	11	12	X 13	X 14	χı	5 1	6 X	17 X	18	19	20	21	<u>X</u> 22	X 23	X 24)(z	5 2	6 X	27 X	28	29	30	31	X 32) (за	X	4 X	35	36	(37	(38	(39	X 40	5)(4
	0	C																						0																						
≝ 🍇 Q1[31:0]	-12						0							X			-2			X					-4										-7					=				-12		
■ • • Q2[31:0]	12							0							X					-2					X				-	.3					\mathbb{Z}					-5					χ	12
🛚 💐 Q3[31:0]	-3				0			\mathbf{x}									-	1									X					-2					X					-3				
■ • Q4[31:0]	0			0			X				-	3				X					-2					X					-1					X						0				
₩ 🤻 Q5[31:0]	0																	T						0																						
■ 🍕 Q6[31:0]	5				0				\supset C					1					$\equiv \chi$					2					X					3					$\equiv \chi$				5			

Analisando a simulação, verificámos que a instrução B #0 (PC = 17) entra no pipeline no 37º ciclo, logo, como o pipeline tem 5 estágios, só irá sair no 41º ciclo. Por esta razão, o número total de ciclos de relógio que o programa demora a ser executado na arquitetura pipeline é 41. Para determinarmos o aumento real de desempenho basta aplicarmos a seguinte fórmula (C – número de ciclos para processar a sequencia de operações):

$$Speedup \ real = \frac{C_{Ciclo \ \acute{U}nico} \times (T_{CLK})_{Ciclo \ \acute{U}nico}}{C_{Pipeline} \times (T_{CLK})_{Pipeline}} = \frac{25 \times 150}{41 \times 42} = 2,18$$

Conclusões:

Comparando os valores do Speedup teórico (3,6) e do Speedup real (2,18) verificamos que, como seria de esperar, o speedup real é menor que o teórico, uma vez que o speedup teórico admite que o número de instruções a executar na arquitetura de ciclo único e na arquitetura pipeline é igual. Ora, na prática, isto não é verdade, uma vez que foi necessário adicionar instruções NOP para resolver os conflitos de dados e de controlo, o que explica a razão de o speedup real ser mais baixo que o teórico