例 4.1 设函数 f(x)在 x=0 处可导,且 f(0)=0,则 $\lim_{x\to 0} \frac{x^2 f(x) - f(x^3)}{x^3} = ($).

(A) - 2f'(0)

(B) -f'(0) (C) f'(0) (D) 0

例 4. 2 设函数 y=f(x)在 x=0 处可导,f(0)=0, $\lim_{x\to\infty} f\left(\frac{1}{2x+3}\right)=1$,则 f'(0)=().

(A)2

(C)4

(D)5

例 4.3 设函数 f(x)在 x=0 处连续,则下列命题错误的是().

(A)若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f(0)=0

(B) 若
$$\lim_{x\to 0} \frac{f(x)+f(-x)}{x}$$
存在,则 $f(0)=0$

65 考研数学基础30讲·高等数学分册

(D)若
$$\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$$
存在,则 $f'(0)$ 存在

例 4.4 证明:(1)若 f(x)是可导的偶函数,则 f'(x)是奇函数;

(2)若 f(x)是可导的奇函数,则 f'(x)是偶函数.

例 4.6 设 f(x) 是二阶可导的以 2 为周期的奇函数,且 $f\left(\frac{1}{2}\right) > 0$, $f'\left(\frac{1}{2}\right) > 0$,记 $M = f\left(-\frac{1}{2}\right), N = f'\left(\frac{3}{2}\right), K = f''(0)$.则(). (A) M < N < K (B) M > N > K (C) M < K < N (D) M > K > N

例 4.9 设 $f(x) = \prod_{n=1}^{100} \left(\tan \frac{\pi x^n}{4} - n \right)$,则 $f'(1) = \underline{\qquad}$.

例 4.10 设 $y = \ln |x|, x \neq 0, 求 y'$.

例 4.11 设函数

$$f(x) = \begin{cases} e^{ax}, & x \leq 0, \\ b(1-x^2), & x > 0 \end{cases}$$

在 x=0 处可导,则 a 与 b 的值分别为().

(A)
$$a=0,b=0$$
 (B) $a=1,b=0$ (C) $a=0,b=1$ (D) $a=1,b=1$

(B)
$$a=1,b=0$$

$$(C)_a = 0, b = 1$$

$$(D)_{a=1,b=1}$$

例 4.12 求函数 $f(x) = 2^{|x-a|}$ 的导数.

例 4.13 设 $y = \ln(x + \sqrt{x^2 + a^2})(a \neq 0)$, 求 $y' \Big|_{x=0}$

例 4.14 设函数 $f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1, \\ 2x - 1, & x < 1, \end{cases}$ 且 y = f[f(x)], 则 $\frac{dy}{dx} \Big|_{x = \epsilon} = \underline{\qquad}$.

例 4.15 设 $y = e^{\sin(\ln x)}$,求 dy 及 $\frac{dy}{dx}$.

例 4.16 求下列函数的导数.

- $(1)y = \arcsin x, -1 < x < 1;$
- (2) $y = \arctan x$.

例 4.17 设 y=f(x)的反函数是 $x=\varphi(y)$,且 $f(x)=\int_1^{2x} e^{t^2} dt+1$,则 $\varphi''(1)=$ _____.

例 4.18 设 y=y(x) 由参数方程 $\begin{cases} x=\sin t, \\ y=t\sin t+\cos t \end{cases}$ 确定,则 $\frac{d^2y}{dx^2}\Big|_{t=\frac{\pi}{4}} = \underline{\qquad}$.

例 4. 20 设
$$y = \frac{\sqrt{x+2}(3-x)^4}{(x+1)^3}$$
,则 $y' \Big|_{x=2} = ($).

(A) $\frac{13}{36}$ (B) $\frac{11}{36}$ (C) $\frac{7}{36}$ (D) $-\frac{13}{36}$

 $(A)\frac{13}{36}$

例 4.21 求函数 $y=x^x(x>0)$ 的导数.

例 4.22 求函数 $y=x^{\frac{1}{x}}(x>0)$ 的导数.

例 4. 23 求 $y = \frac{1}{x}$ 的 n 阶导数.

例 4.24 求 $y = \sin x$ 的 n 阶导数.

例 4. 26 设
$$y = \frac{1-x}{1+x}$$
,则 $y^{(n)}(0) = ($).

(A) $(-1)^n 2 \cdot n!$ (B) $-2^n \cdot n!$ (C) $2^n \cdot (n-1)!$ (D) $-2^n \cdot (n-1)!$

$$(A)(-1)^n 2 \cdot n$$

$$(B) - 2^n \cdot n!$$

$$(C)2^{n} \cdot (n-1)!$$

(D)
$$-2^n \cdot (n-1)!$$

例 4.27 设 $y=x^3\sin x$,求 $y^{(6)}(0)$.

(习题)

4.1 设函数 f(x)在 x=0 处连续,且 $\lim_{x\to 0} \frac{f(x^2)}{x^2} = 1$,则().

(A) f(0) = 0 且 $f'_{-}(0)$ 存在

(B) f(0) = 1 且 $f'_{-}(0)$ 存在

(C) f(0) = 0 且 $f'_{+}(0)$ 存在

(D)f(0)=1且 $f'_{+}(0)$ 存在

(A)充分必要条件

(B)充分但非必要条件

(C)必要但非充分条件

(D)既非充分又非必要条件

4.3 设 $\delta > 0$, f(x)在 $[-\delta, \delta]$ 上有定义, f(0) = 1, 且满足 $\lim_{x \to 0} \frac{\ln(1-2x) + 2x f(x)}{x^2} = 0$,

证明 f(x)在 x=0 处可导,并求 f'(0).

4.4 设 $y = f(\ln^2 x)e^{f^2(x)}$,其中 f 可微,计算 $\frac{dy}{dx}$.

^{4.5} 设函数 f(x)在 x=2 的某邻域内具有任意阶导数,且 $f'(x)=e^{f(x)}$, f(2)=1, 计算 $f^{(n)}(2)$,其中 n 为正整数.

4.6 设函数 y=y(x)由方程 $y=x\ln y$ 所确定,求 $\frac{dy}{dx}$.

4.7 设函数 y=y(x)由方程 $xe^{f(y)}=e^{y}\ln 29$ 确定,其中 f 具有二阶导数,且 $f'\neq 1$,则 $\frac{d^{2}y}{dx^{2}}=$ ______.

4.8 已知 $f'(x) = Ae^x(A$ 为正常数),求 f(x)的反函数的二阶导数.

4.9 设
$$f(x) = \begin{cases} x^2 \sin \frac{\pi}{x}, & x < 0, \\ A, & x = 0, \\ ax^2 + b, & x > 0, \end{cases}$$
 的值,使 $f(x)$ 在 $x = 0$ 处可导,并求 $f'(0)$.

4.10 设函数
$$y=y(x)$$
由 $\begin{cases} x=\ln(1+t^2)+1, \\ y=2\arctan t-(t+1)^2 \end{cases}$ 确定,求 $\frac{dy}{dx}, \frac{d^2y}{dx^2}.$

4.11 设
$$f(x)$$
满足 $f(0)=0$,且 $f'(0)$ 存在,求 $\lim_{x\to 0} \frac{f(1-\sqrt{\cos x})}{\ln(1-x\sin x)}$.