www.4i2i.com

A High Capacity Reversible Watermarking Technique Based On Difference Expansion

Stewart Fraser and Alastair Allen

IASTED SIP, Kailua-Kona, Hawaii, USA August 18-20, 2008

- The original image I can be recovered EXACTLY from I'
- Watermark recovery is a BLIND process
- Military and medical applications

Reversible Watermarking Methods

- Data compression schemes
- Histogram bin exchanging
- Difference expansion

- Novel method here based upon Tian's difference expansion method (with some important adaptations)
- Will overview Tian's method and then describe the adaptations and how they provide an improvement

Tian Method

- Blind watermaking scheme using difference expansion
- Watermark consists of image information and payload

W = Image Info User Payload

- Integer (Haar) transform applied to host image, [1x2] or [2x1] non-overlapping
- Fundamental property:
 - Pixels pairs either changed or expanded
 - Changed pairs provide no extra storage
 - Expanded pairs give one free bit of storage

for a neighboring pair of pixels (x,y) in a grayscale image ...

Forward Integer Transform

average (a) =
$$\frac{x + y}{2}$$

difference (h) = x - y

Inverse Integer Transform

$$x = a + \left| \frac{h+1}{2} \right|$$

$$y = a - \left| \frac{h}{2} \right|$$

... pixel pair averages and differences obtained

Watermark Insertion

 A pixel pair difference (h) can be either changed, expanded or unaltered

• An altered **h** must still result in an image in range [0,255], this can be determined mathematically: $|h| \le \min(2(255-a),2a+1)$

- Alterable h values:
 - Preferably, h values are expanded
 - If h value cannot be expanded, they are changed
- h values are left unaltered if they cannot stay in [0,255]

Altering "h" value via Changing

A pixel pair are changeable if:

$$\left| 2 \left\lfloor \frac{h}{2} \right\rfloor + b \right| \leq \min(2(255-a),2a+1)$$

New difference value (h_new) for a changed pixel pair:

$$h_new = 2 \left\lfloor \frac{h}{2} \right\rfloor + b$$

- Remove LSB and replace with the watermark bit (b)
- Removed LSB must be stored (in vector C) in order to restore original image
- This DOES NOT provide extra storage space

A pixel pair are expandable if:

$$|2h + b| \le \min(2(255-a),2a+1)$$

New difference value (h_new) for a expanded pixel pair:

$$h_new = 2h + b$$

- Left shift all values by one
- Insert watermark bit (b) into newly freed LSB
- This DOES provide one extra bit of storage space
- Note that if a pixel pair are expandable, they are by definition changeable too (used for watermark recovery)

Visual degradation

- In order control payload capacity .v. image quality, user defined threshold (th) introduced to restrict expandable pairs
- Expandable pair:
 - if (h_new ≥ th)
 - pixel pair are changed rather than expanded
- Detection problem created!
 - Example: expandable pair where th=10, h=6, b=1
 - h_new = 2h+b = 2(6)+1 = 13
 - At detection, cannot tell if this pixel has been expanded (h=6) or changed (because 13 > th)
 - Solution: Map showing location of all expanded pairs

Location Map

- Shows location of all expanded pairs
- Binary format
- Losslessly compressed JBIG compression

Binary Location Map of Lena

Watermark Recovery

- Apply integer transform to a watermarked image (get h')
- Find all changeable pairs (expandable are changeable)
 - Collect all LSB from the changeable/expandable pairs

- Identify the EOS symbol for JBIG compressed location map
 - Decompress the location map
 - Locations of expanded and changed pairs found
- Find the original differences (h_orig)
 - Expandable: h_orig = h'/2

• Changeable: h_orig = 2 | h'/2 | + c

Apply inverse integer transform using **h_orig** to restore original image

Tian Summary

- Integer transform
- Difference values changed (no gain) or expanded (1 extra bit)
- Visual degradation, threshold introduced
- Threshold causes some expanded pairs to be changed instead
 - Better visual quality, less capacity
- Threshold requires position of expanded pairs to be marked (location map)
- User payload inserted and recovery of original image possible

Novel scheme

- Integer transform
- For unaltered and changed pixel pairs, no difference
- Drastic difference for expanded pixel pairs
- Basic premise: companding technique used to increase the amount of pixel pairs that are expanded (rather than changed)
 - More expanded but no extra capacity (companding errors)
 - However ...
 - Leads to very sparse location maps
 - Easy to JBIG compress these location maps
 - More space for user payload (higher capacity)
- High capacity user payload inserted and recovery of original image possible

Companding technique

- Companding = Portmanteau of compression followed by expanding
- Compress (C) and then decompress (D) a signal (x) magnitude ≥ threshold (th)
 - $C(x) = sgn(x) \left[\left(|x| th \right) / 2 \right] + th \right]$
 - D(x) = sgn(x) [2|x|-th]
- C(x) has the effect of shrinking magnitudes towards th
- Errors (r) occur when $|x| \ge th$

•
$$r = |x| - |D(C(x))|$$
 where $r \in \{0,1\}$

Companding application

- If difference value (h) between a pixel pair $\geq th$
 - Shrink *h* towards *th* via companding compress
 - Calculate and store the companding error (r) in vector R

WM = Comp Loc Map C bits R bits Payload

- *h* can now be expanded
- MAJOR DIFFERENCE:
 - Tian: if $h \ge th$; h value changed (store LSB of changed value)
 - Novel: if $h \ge th$; h value expanded (store companding error)
- Expanding after companding compress does NOT provide higher payload capacity ...

Novel scheme improvement

• ... however, companding allows more difference values to be expanded rather than changed ... **sparse location maps**

Results for Lena 512 x 512

Sparse location map easier to compress; more space for payload

Watermark Recovery

- Apply integer transform to a watermarked image (get h')
- Find all changeable pairs (expandable are changeable)
 - Collect all LSB from the changeable/expandable pairs

- Identify the EOS symbol for JBIG compressed location map
 - Decompress the location map
 - Locations of expanded and changed pairs found
- Find the original differences (h_orig)
 - Changeable: h_orig = 2 h'/2 + č
 - Expandable: h_orig = | h'/2|

• if $h_orig \ge th$; $h_orig = sgn(h_orig)$ ((2| h_orig |-th+r) [Decompress]

Apply inverse integer transform using **h_orig** to restore original image

Results

- Lena test image
- Scanning Laser Ophthalmoscope (SLO) Eye image
- Synthetic Aperture Radar (SAR) image
- Payload capacity measured in Bits Per Pixel (bpp)
 - (just payload, not L, C, or R included)
- Visual degradation measured in PSNR (dB)
- Multiple embedding (vertical then horizontal) > 0.5bpp
- Results show that for approximately equal payload bitrates, the visual quality of the novel scheme **outperforms** the Tian scheme consistently across all images
 - Especially so at lower payload bitrates

Results: Test, Medical and Military

Tian: payload bitrate (bpp)	0.15	0.24	0.32	0.39	0.46	0.54	0.67	0.74	0.85
Tian: PSNR (dB)	44.20	42.86	41.55	40.06	37.66	36.15	34.80	33.05	32.54
novel: payload bitrate (bpp)	0.16	0.24	0.37	0.41	0.48	0.57	0.70	0.78	0.87
novel: PSNR (dB)	47.09	45.42	42.45	41.22	40.35	38.84	36.78	35.31	33.68

Results for the Lena test image; grayscale 512×512

Tian: payload bitrate (bpp)	0.23	0.29	0.34	0.47	0.53	0.66	0.79	0.86	0.94
Tian: PSNR (dB)	42.53	41.62	40.94	37.87	35.97	34.89	33.53	32.73	31.65
novel: payload bitrate (bpp)	0.24	0.29	0.36	0.43	0.60	0.66	0.81	0.89	0.94
novel: PSNR (dB)	47.09	45.27	42.93	40.54	39.61	38.48	35.71	33.77	32.06

Results for the Eye medical image; grayscale 256×256

Tian: payload bitrate (bpp)	0.18	0.25	0.33	0.47	0.52	0.64	0.76	0.85	0.90
Tian: PSNR (dB)	36.30	35.29	33.94	29.88	29.50	28.54	27.46	26.58	26.02
novel: payload bitrate (bpp)	0.19	0.25	0.33	0.45	0.54	0.66	0.77	0.85	0.90
novel: PSNR (dB)	40.71	38.74	36.32	34.40	32.87	30.81	28.99	27.41	26.32

Results for the SAR military image; grayscale 256×256

Conclusions

- Novel scheme applies companding technique to Tian scheme
 - results in sparser location maps

 more capacity for payload
- Results show that the novel scheme outperforms the Tian scheme
 - for similar PSNRs, the novel scheme returns much higher payload capacities

Sample Images

