Tema A.2

3 puncte. Predare: săptămâna a 4-a inclusiv (20 octombrie - 24 octombrie)

Probleme propuse pentru rezolvare la laborator. Algoritmul simplex.

$$\begin{cases} \max & 10x_1 - 57x_2 - 9x_3 - 24x_4 + 2\\ & 0.5x_1 - 5.5x_2 - 2.5x_3 + 9x_4 \le 0\\ & 0.5x_1 - 1.5x_2 - 0.5x_3 + x_4 \le 0\\ & x_1 \le 1\\ & x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

$$\begin{cases} \max & (z =) 10x_1 - 57x_2 - 9x_3 - 24x_4 + 2 \\ & 0.5x_1 - 5.5x_2 - 2.5x_3 + 9x_4 + x_5 = 0 \\ & 0.5x_1 - 1.5x_2 - 0.5x_3 + x_4 + x_6 = 0 \\ & x_1 + x_7 = 1 \\ & x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

Tabloul simplex 1:

	$ x_1 $	x_2	x_3	x_4	RHS		
$\overline{x_5}$.5	-5.5	-2.5	9	0	0/.5	$\leftarrow \min$
x_6	.5	-1.5	5	1	0	0/.5	
x_7	1	0	0	0	-1	1/1	
\overline{z}	-10	57	9	24	2		

Tabloul simplex 2:

Tabloul simplex 3:

Tabloul simplex 4:

		x_5	x_6	x_1	$\underline{x_4}$	RHS		
Ī	x_3	-1.5	5.5	2	-8	0		
	x_2	.5	-2.5	-1	2	0	0/2	\leftarrow min
	x_7	0	0	1	0	1		
	\overline{z}	-15	93	29	-18	2		

Tabloul simplex 5:

	$\underline{x_5}$	x_6	x_1	x_2	RHS		
$\overline{x_3}$.5	-4.5	-2	4	0	0/.5	\leftarrow min
x_4	.25	-1.25	5	.5	0	0/.25	
x_7	0	0	1	0	1		
\overline{z}	-10.5	70.5	20	9	2		

Tabloul simplex 6:

	x_3	$\underline{x_6}$	x_1	x_2	RHS		
$\overline{x_5}$	2	-9	-4	8	0		
x_4	5	1	.5	-1.5	0	0/1	← min
x_7	0	0	1	0	1		
\overline{z}	-21	-24	-22	93	2		

Tabloul simplex 7:

Probleme propuse pentru acasă.

Să se implementeze (C, C++, C#, Java) algoritmul simplex al cărui pseudocod este schițat mai jos (presupunem că avem un tabel simplex de dimensiuni $(m+1) \times (n+1)$):

```
\begin{tabular}{ll} \beg
```

Algoritmul simplex va conține *regula lui Bland* de evitare a ciclurilor:

- dintre variabilele care ar putea intra în bază, se alege ca variabilă de intrare aceea cu indice mai mic;
- dacă mai multe variabile ar putea ieși din bază, i. e. $\min \left\{ \frac{t_{h,n+1}}{t_{h,l}} : t_{h,l} > 0 \right\}$ se atinge pentru mai multe linii h, se alege ca variabilă de ieșire aceea cu indice mai mic.

Tabloul simplex 6':

	x_3	x_6	\underline{x}_1	x_2	RHS		
$\overline{x_5}$	2	-9	-4	8	0		
x_4	5	1	.5	-1.5	0	0/.5	\leftarrow min
x_7	0	0	1	0	1	1/1	
\overline{z}	21	-24	-22	93	2		

Tabloul simplex 7':

Tabloul simplex 8':

Soluția de bază curentă este optimă: $x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 2, x_6 = x_7 = 0$; valoarea optimă a funcției obiectiv este 3^1 .

Algoritmul simplex astfel implementat va fi rulat pentru verificare pe problemele 2 și 4 din **Tema A.1** și pe următoarele două probleme:

1.
$$\begin{cases} \max & x_1 + 2x_2 + x_3 \\ x_1 - x_2 + 2x_3 & \leq 2 \\ 2x_1 + x_2 + x_3 & \leq 4 \\ 2x_1 + 3x_2 & \leq 6 \\ x_1, x_2, x_3 & \geq 0 \end{cases}$$

Comparați rezultatele cu cele obținute utilizând unul din pachetele soft recomandate (vezi **Tema A.1**).

 $^{^{1}}$ Valoarea funcției obiectiv pentru soluția de bază curentă se găsește in colțul din dreapta jos.