FEB 2 3 2004 Appl

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Heinz Lambrecht

Examiner:

To be assigned

Serial No.:

10/765319

Group Art Unit:

3723

Filed:

January 27, 2004

Docket No.:

00635.0369-US-01

Title:

DEVICE AND METHOD FOR PERFORMING MELTING AND CASTING

CERTIFICATE UNDER 37 C.F.R. 1.8: The undersigned hereby certifies that this Transmittal Letter and the paper, as described herein, are being deposited in the United States Postal Service, as first class mail, with sufficient postage, in an envelope addressed to: Commissioner for Potents, Alexandria, VIX 22313-1450 on

Michael B. Lasky

Name

Signature

Mail Stop Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

- Certified copy of German application, Serial Number 103 03 124.3, filed 27 January 2003; Submission of Priority Document
- Return postcard

Authorization is hereby given to charge any additional fees or credit any overpayments that may be deemed necessary to Deposit Account Number 50-1038.

Respectfully submitted,

Altera Law Group, LLC

Customer No. 22865/

Date: 19 Feb 2004 By:

Michael B. Lasky

Reg. No. 29,555

MBL/blj

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Heinz Lambrecht

Docket No.:

00635.0369-US-01

Serial No.:

10/765319

Filed:

January 27, 2004

Title:

DEVICE AND METHOD FOR PERFORMING MELTING AND CASTING

CERTIFICATE UNDER 37 C.F.R. 1.8: The undersigned hereby certifies that this Transmittal Letter and the paper, as described herein, are being deposited in the United States Postal Service, as first class mail, with sufficient postage, in an envelope addressed to: Commissioner for Patents, Alexandria, VA 22313-1450 on

Michael B. Lasky

Name

Signature

SUBMISSION OF PRIORITY DOCUMENT

Mail Stop Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

Enclosed is a certified copy of German application, Serial Number 103 03 124.3, filed 27 January 2003, the priority of which is claimed under 35 U.S.C. §119.

Respectfully submitted,

Altera Law Group, LLC Customer No. 22865

Date: 19 Feb 2004

By:

Michael B. Lasky Reg. No. 29,555

MBL/blj

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 03 124.3

Anmeldetag:

27. Januar 2003

Anmelder/Inhaber:

BEGO Bremer Goldschlägerei Wilh. Herbst

GmbH & Co, 28359 Bremen/DE

Bezeichnung:

Vorrichtung und Verfahren zur Durchführung

eines Schmelz- und Gießvorgangs

IPC:

B 22 D 46/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. Januar 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Hintermeier

Eisenführ, Speiser & Partner

Bremen
Patentanwälte
European Patent Attorneys
Dipl.-Ing. Günther Eisenführ
Dipl.-Ing. Dieter K. Speiser
Dr.-Ing. Werner W. Rabus
Dipl.-Ing. Jürgen Brügge
Dipl.-Ing. Jürgen Klinghardt
Dipl.-Ing. Klaus G. Göken
Jochen Ehlers
Dipl.-Ing. Mark Andres
Dipl.-Ing. Dr. Uwe Stilkenböhmer
Dipl.-Ing. Stephan Keck

Dipl.-Ing. Johannes M. B. Wasiljeff

Dipl.-biotechnol. Heiko Sendrowski

Rechtsanwälte Ulrich H. Sander Christian Spintig Sabine Richter Harald A. Förster

Patentanwalt

Postfach 10 60 78 D-28060 Bremen Martinistrasse 24 D-28195 Bremen Tel. +49-(0)421-3635 0 Fax +49-(0)421-3378 788 (G3) Fax +49-(0)421-3288 631 (G4) mail@eisenfuhr.com http://www.eisenfuhr.com Hamburg
Patentanwalt
European Patent Attorney
Dipl.-Phys. Frank Meier

Rechtsanwälte Rainer Böhm Nicol Ehlers, LL. M.

München Patentanwälte

Dipl.-Phys. Heinz Nöth

European Patent Attorneys

Dipl.-Wirt.-Ing. Rainer Fritsche Lbm.-Chem. Gabriele Leißler-Gerstl Dipl.-Ing. Olaf Ungerer Patentanwalt

Dipl.-Chem. Dr. Peter Schuler

Berlin Patentanwälte European Patent Attorneys Dipl.-Ing. Henning Christiansen Dipl.-Ing. Joachim von Oppen Dipl.-Ing. Jutta Kaden Dipl.-Phys. Dr. Ludger Eckey

Alicante
European Trademark Attorney
Dipl.-Ing, Jürgen Klinghardt

Bremen,

27. Januar 2003

Unser Zeichen:

BA 2720-01DE WAS/bro

Durchwahl:

0421/36 35 342

Anmelder/Inhaber:

BEGO BREMER GOLD. ...

Amtsaktenzeichen:

Neuanmeldung

BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. Technologiepark Universität Wilhelm-Herbst-Straße 1, 28359 Bremen

Vorrichtung und Verfahren zur Durchführung eines Schmelz- und Gießvorgangs

5

Beschreibung

Die Erfindung betrifft eine Vorrichtung zur Durchführung eines Schmelzund Gießvorgangs der Feingießtechnik, insbesondere der Dentaltechnik, mit einem Schmelztiegel zur Aufnahme von Schmelzgut, einer Heizeinrichtung zum Erhitzen des sich im Schmelztiegel befindenden Schmelzguts und einem Pyrometer zum Ermitteln der Temperatur des Schmelzguts.

Ferner betrifft die Erfindung ein Verfahren zur Durchführung eines Schmelz- und Gießvorgangs der Feingießtechnik, insbesondere der Dentaltechnik, insbesondere mit einer Gießvorrichtung der oben ge-

nannten Art, mit folgenden Schritten: Einbringen von Schmelzgut in einen Schmelztiegel, Erhitzen des Schmelzguts mittels einer Heizeinrichtung und Ermitteln der Temperatur des Schmelzguts mittels eines Pyrometers.

5

15

20

25

Bekannt sind Gießvorrichtungen der Feingießtechnik der eingangs genannten Art, bei denen die Temperatur des Schmelzguts anhand eines Pyrometers gemessen wird und bei Erreichen eines bestimmten Temperaturwertes ein optisches bzw. akustisches Signal ausgegeben wird. Der Bediener der Gießvorrichtung erkennt dann anhand dieses Signals, dass er den anstehenden Gießvorgang manuell durchzuführen hat.

9

In der Feingießtechnik, insbesondere der Dentaltechnik werden Produkte, bspw. Zahnbrücken, Zahnkronen etc, hergestellt, bei denen es entscheidend auf die Genauigkeit und zwar innerhalb von Toleranzen von weniger als 0,1mm ankommt. Zur Herstellung derartiger Produkte wird eine flüssige Metalllegierung in eine Gießform gegossen. Aufgrund der hohen Gießtemperatur von bis zu 2000°C sowie den bei Zimmertemperatur angefertigten Abdrücken von Zähnen, den daraus anzufertigenden Modellen und Gießformen bestehen im Laufe des Herstellungsprozesses derartiger Produkte erhebliche Temperaturunterschiede. Da zudem die bei der Herstellung verwendete Materialien, bspw. der Abdruckmassen, Wachsmodellen, Gießformen und des herzustellenden Produkts, sehr unterschiedliche Eigenschaften aufweisen, können die daraus resultierenden unterschiedlichen Wärmeausdehnungskoeffizienten unter Unständen zu Überschreitungen der o.g. Teleranzen führen. Es werden daher ganz spezielle Materialien ausgewählt, deren unterschiedliche Ausdehnungskoeffizienten sich weitgehend kompensieren.

Einen wesentlichen Einfluss auf die Genauigkeit und damit die Einhaltung der o.g. Toleranzen hat jedoch auch die Temperatur während des Schmelz- und Gießvorgangs. Es ist daher wichtig, dass derartige Pro-

dukte unter vordefinierten, reproduzierbaren Bedingungen gegossen werden.

Der Temperaturermittlung während des Schmelz- und Gießvorgangs kommt daher eine wesentliche Bedeutung zu. Die Temperatur muss hierzu ebenfalls in einem sehr weiten Bereich von mehreren 100 bis ca. 2000°C exakt bestimmt werden können. Wie zuvor erläutert, werden hierzu sog. Pyrometer verwendet. Hierbei handelt es sich um berührungslos messende Temperaturmesssysteme, die von der Schmelze bzw. dem Schmelzgut abgestrahlte Infrarotstrahlung erfassen und die Strahlungsleistung messen. Die gemessene Strahlungsleistung ist jedoch im hohen Maße abhängig von dem sog. Emissionsgrad, der das Verhältnis aus dem realen Abstrahlwert eines Materials und dem Abstrahlwert des sog. (idealen) schwarzen Strahlers angibt. Der Emissionsgrad kann daher maximal 1 betragen, das heißt das betreffende Material entspricht dem idealen schwarzen Strahler. Der minimale Emissionsgrad beträgt demgegenüber 0. Körper, deren Emissionsgrad kleiner als 1 ist, werden graue Strahler genannt. Körper, deren Emissionsgrad zusätzlich temperatur- und wellenlängenabhängig ist, nennt man nichtgraue Strahler. Die in der Feingießtechnik verwendeten Materialien sind in der Regel derartige nicht-graue Strahler. Hinzu kommt, dass beim Erhitzen und Schmelzen von Metallen bzw. Metalllegierungen sich der Oberflächenzustand des Materials ändert. Selbst wenn die Oberfläche zunächst hochglänzend oder poliert war, wird sie sich während des Erhitzens und Aufschmelzens wesentlich verändern, insbesondere durch Oxidation oder Verzunderung. Hierdurch ändert sich der Emissionsgrad in erheblichem Maße.

Der Emissionsgrad von Metallen und Metalllegierungen, wie sie häufig in der Feingießtechnik eingesetzt werden, ist daher insbesondere von der Wellenlänge, der Temperatur und vom Material selbst abhängig. Diese Abhängigkeiten werden bei bekannten Vorrichtungen bzw. Verfahren zur Durchführung von Schmelz- und Gießvorgängen in der Feingießtechnik

15

20

25

nicht oder nur unzureichend berücksichtigt. Dies führt zu einer Reduzierung der Präzision der herzustellenden Produkte.

Der Erfindung liegt daher das Problem zugrunde, die Qualität von bei einem Schmelz- und Gießvorgang hergestellten Produkten zu verbessern.

Die Erfindung löst dieses Problem bei einer Vorrichtung der eingangs genannten Art dadurch, dass die Vorrichtung zusätzlich eine Steuerungseinrichtung zur Steuerung des Schmelz- und Gießvorgangs in Abhängigkeit der ermittelten Schmelzguttemperatur aufweist, wobei die Steuerungseinrichtung eine Datenbank mit mehreren auswählbaren, jeweils schmelzgutmaterialsspezifischen Parametersätzen mit jeweils einem oder mehreren Parametern zum Konfigurieren des Pyrometers aufweist.

Entsprechend löst die Erfindung dieses Problem bei einem Verfahren der eingangs genannten Art dadurch, dass das Verfahren einen Schmelz- und Gießvorgang in Abhängigkeit der ermittelten Schmelzguttemperatur steuert, wobei aus einer Datenbank einer von mehreren schmelzgutmaterialspezifischen Parametersätzen in Abhängigkeit des eingebrachten Schmelzguts ausgewählt und das Pyrometer mittels eines oder mehrerer Parameter des ausgewählten Parametersatzes konfiguriert wird.

25

30

5

15

20

Die Erfindung stimmt daher das verwendete Pyrometer auf die Eigenschaften des jeweils verwendeten Schmelzguts automatisch ab, indem aus einer Datenbank für jedes Material bzw. bei jedem Materialwechsel die entsprechenden Konfigurationsdaten für das Pyrometer ausgelesen und das Pyrometer entsprechend eingestellt wird. Das Pyrometer wird auf diese Weise jeweils auf die unterschiedlichen, zum Einsatz kommenden Materialien abgeglichen. Die mittels des Pyrometers ermittelte

Temperatur kann daher sehr exakt bestimmt und somit der Schmelzund Gießvorgang unter optimalen Bedingungen durchgeführt werden.

Ferner wird der Schmelz- und Gießvorgang in Abhängigkeit der ermittelten Schmelzguttemperatur, das heißt automatisch und nicht manuell gesteuert. Somit kann der komplette Schmelz- und Gießvorgang ohne Zugriff durch den Bediener und somit personenunabhängig durchgeführt werden. Die in der Datenbank gespeicherten Parametersätze gewährleisten auf diese Weise einen optimalen Gießprozess, bei dem die Temperatur der Schmelze jederzeit exakt erfasst werden kann. Der auf diese Weise ausgeführte Gießvorgang ist somit immer wieder reproduzierbar.

5

10

15

20

25

30

Bei einer bevorzugten Ausführungsform ist das Pyrometer ein Quotientenpyrometer. Ein Quotientenpyrometer weist zwei optische und elektrische Messkanäle auf. Man spricht daher auch von einem Zweikanalpyrometer. Jeder der beiden Kanäle misst in unterschiedlichen, jedoch möglichst dicht beieinanderliegenden Wellenlängenbereichen, die zudem schmalbandig ausgelegt sind. Damit sind die Auswirkungen materialspezifischer Besonderheiten, wie Reflektion oder Emission des Schmelzguts bei beiden Wellenlängen annähernd gleich. Durch eine Quotientenbildung der von den beiden Kanälen gemessenen Strahlungsintensitäten werden bestimmte Messeinflüsse, insbesondere der Emissionsgrad eliminiert. Daher kann bei Einsatz eines Zweikanalpyrometers der negative Einfluss des sich änderndes Emissionsgrades weitgehend vermieden werden. Der Einsatz eines Quotientenpyrometers ist daher besonders vorteilhaft.

Bei einer weiteren bevorzugten Ausführungsform weist jeder Parametersatz einen oder mehrere Parameter zur Steuerung des Schmelz- und Gießvorganges in Abhängigkeit des Schmelzgutmaterials auf. Somit wird zusätzlich auch der komplette Schmelz- und Gießvorgang von schmelzgutmaterialspezifischen Parametern, das heißt in Abhängigkeit des jeweils verwendeten Schmelzguts, gesteuert. Der Schmelz- und

Gießprozess ist somit - ebenso wie die Pyrometerkonfiguration - auf das verwendete Schmelzgutmaterial abgeglichen.

Weitere vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen sowie aus den in der Zeichnung dargestellten Ausführungsbeispielen. In der Zeichnung zeigen:

- Fig. 1 eine Schnittansicht einer Gießvorrichtung mit einer Steuerungseinrichtung und einem Pyrometer gemäß einem Ausführungsbeispiel der Erfindung in vereinfachter Darstellung; und
- Fig. 2 eine schematische Darstellung des Inhalts einer Datenbank der Steuerungseinrichtung aus Fig. 1.
- Fig. 1 zeigt eine Vorrichtung 1 zum Durchführen eines Schmelz- und Gießvorgangs der Feingießtechnik, wie sie insbesondere in der Dentaltechnik von Dentallabors verwendet wird. Die Vorrichtung weist einen Schmelztiegel 2 zur Aufnahme von Schmelzgut (nicht dargestellt) sowie eine Heizeinrichtung 3 zum Erhitzen des sich im Schmelztiegel 2 befindenden Schmelzguts auf.

Die Heizeinrichtung 3 ist im dargestellten Ausführungsbeispiel ein Induktionsofen, mittels dessen insbesondere metallische Stoffe durch Induktion erhitzt werden können. Die Erfindung ist jedoch nicht auf derartige Induktionsöfen beschränkt. Alternativ ist beispielsweise eine widerstandsbeheizte Heizeinrichtungen vorgesehen. Die Heizeinrichtung 3 wird von einem Generator (nicht dargestellt) mit elektrischer Energie gespeist. Der Generator, das heißt die Generatorleistung und damit auch die Heizleistung wird von einer Steuerungseinrichtung 4 gesteuert.

25

30

Unterhalb des Schmelztiegels 2 und unterhalb der Heizeinrichtung 3 befindet sich eine Kammer 5 zur Aufnahme einer Gießform 6, in welche flüssiges Schmelzgut aus dem Schmelztiegel 2 hineingegossen werden

kann, um bspw. Zahnbrücken, Zahnkronen oder andere Produkte der Feingießtechnik herzustellen.

Um das Schmelzgut aus dem Schmelztiegel 2 in die Gießform 6 geben zu können, ist der Schmelztiegel in der dargestellten Ausführungsform zweigeteilt. Eine Hälfte, nämlich in Fig. 1 die rechte Hälfte, ist höhenverstellbar. Aufgrund der vertikalen Zweiteilung des Schmelztiegels entsteht durch ein Anheben der rechten Hälfte des Schmelztiegels 2 im unteren Bereich des Schmelztiegels eine Öffnung, so dass sich das Schmelzgut in die Gießform 6 ergießen kann.

Die rechte Hälfte des Schmelztiegels 2 ist zu diesem Zweck mit einer Betätigungseinrichtung 7 mechanisch gekoppelt, die in der Lage ist, die rechte Hälfte des Schmelztiegels 2 anzuheben und abzusenken. Die Betätigungseinrichtung 7 steht ebenfalls in Verbindung mit der Steuerungseinrichtung 4, so dass die Steuerungseinrichtung 4 automatisch das Öffnen des Schmelztiegels und damit den Gießvorgang einleiten kann.

15

20

25

30

Die Erfindung ist jedoch nicht auf derartige zweigeteilte Tiegel beschränkt. Alternativ kann der Gießvorgang auch durch ein Kippen eines einteilig ausgebildeten Schmelztiegels herbeigefügt werden. Jedoch ist ein zweigeteilter Schmelztiegel 2 vorzuziehen, da das Schmelzgut bei einer derartigen Ausbildung des Tiegels nicht über die vergleichsweise kalte Tiegelwand läuft, bevor es in die Gießform 6 hineintritt.

Die Kammer 5 ist als Druckkammer ausgebildet. Vor und während eines Gießvorgangs wird diese Druckkammer 5 evakuiert, so dass ein Vakuum innerhalb der Druckkammer 5 entsteht. Ein derartiges Vakuum während des Gießvorgangs ist vorteilhaft, da es verhindert, dass sich Einschlüsse oder Luftblasen innerhalb des herzustellenden Produktes bilden. Nachdem das Schmelzgut in die Gießform 6 gegeben worden ist, wird jedoch innerhalb der Kammer 5 ein Überdruck erzeugt, um das

Schmelzgut in alle Bereiche der Gießform 6 hineinzupressen. Die Kammer 5 ist hierzu mit einer Unter-/Überdruckpumpe (nicht dargestellt) verbunden, die ebenfalls mit der Steuerungseinrichtung 4 elektrisch verbunden ist, damit die Steuerungseinrichtung 4 den Unter- oder Überdruck in der Kammer 5 einstellen kann.

Während des gesamten Gießprozesses ist die jeweils aktuelle Temperatur des Schmelzguts von besonderem Interesse. Diese Temperatur wird berührungslos mittels eines Pyrometers 8 gemessen. Das Pyrometer weist einen im Infrarotbereich arbeitenden Sensor 9 auf, der über einen Lichtwellenleiter 10 mit einer Optik 11 verbunden ist. Der Sensor 9 ist über optoelektronische Bauelemente mit einer Elektronik 12 des Pyrometers 8 gekoppelt, die optische Signale bzw. Lichtsignale in elektrische Signale umwandeln, aus denen dann die vom Sensor 9 erfasste Strahlungsleistung in einen Temperaturwert umgerechnet werden kann. Auf diese Weise ist es möglich, den empfindlichen Sensor 9 sowie die empfindliche Elektronik 12 weit außerhalb des Bereichs des Induktionsofens 3 anzuordnen, so dass elektromagnetische Unverträglichkeiten auf diese Weise wirksam vermieden werden können.

20

25

15

Die Optik 11 ist innerhalb eines Schaufensters 13 untergebracht, das einen Einblick in den Schmelztiegel 2 ermöglicht. Das Schaufenster 13 ist aufklappbar ausgebildet, so dass es ohne weiteres geöffnet werden kann. Die Optik 11 ist jedoch derart an dem Schaufenster 13 angeordnet, dass sie bei geschlossenem Schaufenster 13 durch das Kammerfenster 13A wenigstens auf einen Teilbereich des Schmelztiegels ausgerichtet ist.

Bei alternativen Ausführungsformen ist die Optik innerhalb eines das Innere der Vorrichtung 1 fest umschließenden Gehäuses untergebracht, bei dem kein Schaufenster 13 vorhanden ist.

Alternativ kann der Sensor 9 direkt ohne Zwischenschaltung eines Lichtwellenleiters 10 in unmittelbarer Nähe des Schmelztiegels, beispielsweise im Bereich des Schaufensters 13 angeordnet sein, insbesondere wenn die Heizeinrichtung kein - eine hohe elektromagnetische Strahlung aussendender - Induktionsofen, sondern beispielsweise ein widerstandbeheizter Ofen ist.

Bei dem Pyrometer handelt es sich vorzugsweise um ein sogenanntes Quotientenpyrometer (auch Zweikanal-, Zweifarben- oder Verhältnispyrometer genannt). Dieses Quotientenpyrometer verfügt über zwei im wesentlichen baugleiche optische und elektrische Messkanäle. Beide Messkanäle arbeiten in zwei unterschiedlichen Wellenlängenbereichen, die jedoch sehr schmalbandig und nahe beieinanderliegend ausgelegt sind. Hierdurch sind die Folgen materialspezifischer Eigenschaften, wie Reflektion und Emission am Schmelzgut bei beiden Wellenlängen im wesentlichen gleich. Durch eine mathematische Quotientenbildung lassen sich auf diese Weise verschiedene Messeinflüsse, wie bspw. der Emissionsgrad eliminieren, so dass die Messung weitgehend unabhängig vom tatsächlichen Emissionsgrad erfolgen kann.

10

15

20

25

30

Das Quotientenpyrometer kann auf verschiedene Weisen ausgebildet sein:

Bei einer ersten Variante erfolgt die Aufteilung der vom Pyrometer erfassten Messstrahlung mit Hilfe zweier Filter, welche vor dem Sensor rotierend angebracht sind. Die Messung der erfassten Strahlung erfolgt dann in beiden Kanälen zeitlich nacheinander.

Bei einer zweiten Variante erfolgt die Aufteilung der erfassten Messstrahlung mittels eines Strahlteilers, der die Messstrahlung auf zwei mit unterschiedlichen Filtern versehene Strahlungsdetektoren leitet. Auf diese Weise werden ebenfalls zwei Kanäle erfasst.

Bei einer dritten Variante gelangt die erfasste Strahlung ohne einen Strahlteiler auf einen einen Filter aufweisenden Doppelsensor, bei dem ein vorderer Sensor gleichzeitig den Filter für einen zweiter dahinterliegenden Sensor darstellt.

Die mittels des Pyrometers 8 ermittelte Temperatur wird der Steuerungseinrichtung 4 zugeleitet, die den Schmelz- und Gießvorgang in Abhängigkeit der ermittelten Temperatur steuert bzw. regelt. Die Steuerungseinheit weist eine Eingabeeinheit 14 zur Eingabe einer Schmelzgutidentifikation oder anderer Eingangsgrößen und Prozessgrößen auf.

Die Steuerungseinrichtung 4 weist ferner eine Anzeige 15 auf, um dem Benutzer eingegebene Daten oder Prozessdaten anzuzeigen.

Ferner weist die Steuerungseinrichtung 4 eine Kommunikationsschnitt-15

stelle (nicht dargestellt) zur Eingabe und Ausgabe von Daten auf, insbesondere zur Ergänzung und/oder Aktualisierung der Daten einer der Steuerungseinrichtung 4 zugeordneten Datenbank, von Parametersätzen, einzelnen Parametern und/oder von komplexen Steuerungsprogrammen und/oder zum Auslesen von Protokollen und/oder Parametern eines durchgeführten Schmelz- und Gießvorgangs auf.

25

30

Fig. 2 zeigt den Aufbau einer derartigen, der Steuerungseinrichtung 4 zugeordneten Datenbank 16. Die Datenbank enthält mehrere einzeln auswählbare schmelzgutmaterialspezifische Parametersätze PS1, PS2, PS3, die jeweils eine Reihe von Parametern P11, P12, P13, ... P21, P22, P23, ... P31, P32, P33, ... aufweisen. Jeder Parametersatz enthält ein oder mehrere Parameter P1.., P2.., P3.. zur Konfiguration des Pyrometers 8. Ferner weist jeder Parametersatz einen oder mehrere Parameter P7..., P8..., P9.. zur Steuerung des Schmelz- und Gießvorgangs in Abhängigkeit des verwendeten Schmelzgutmaterials auf.

Auf diese Weise wird einem bestimmten Schmelzgutmaterial ein bestimmter Parametersatz zugeordnet, der einerseits das Pyrometer in Abhängigkeit der Schmelzgut-Materialeigenschaften konfiguriert und andererseits Parameter enthält, mittels derer ein Schmelz- und Gießvorgang optimal und insbesondere reproduzierbar durchführbar ist.

Bei einer besonderen Variante werden zur genauen Konfiguration des Pyrometers und des Schmelz- und Gießvorgangs materialspezifische Informationen in Materialfamilien bzw. Legierungsfamilien mit im wesentlichen gleichartigen Parametersätzen eingeteilt.

10

20

25

30

Bei den vorstehend genannten Parametern handelt es sich zum einen um die folgenden Parameter, die insbesondere zur Konfiguration des Pyrometers, jedoch auch zur Steuerung des Schmelz- und Gießvorgangs verwendet werden: Solidustemperatur; Liquidustemperatur; Emissionsgradverhältnis; Angabe über das Vorhandensein bzw. Fehlen von Hilfseinrichtungen im Bereich des Schmelztiegels, wie bspw. Graphiteinsätzen, welche die Pyrometermessung beeinflussen können.

Des weiteren handelt es sich um folgende Parameter, die insbesondere zur Steuerung des Schmelz- und Gießvorgangs verwendet werden: Gießtemperatur; verfahrenstechnische Parameter, wie beispielsweise Höhe einer Reduzierung der Heizleistung bei Erreichen einer bestimmten Temperatur, zum Beispiel der Liquidustemperatur; die Zeitdauer des Konstanthaltens der Gießtemperatur bis zum Einleiten eines Gießvorgangs; Stützwerte vordefinierter Aufheizkurven, welche die einzustellende Heizleistung in Abhängigkeit der Temperatur angeben; Parameter zum zeitlichen Ablauf des Gießvorgangs ab Einleitung des Gießvorgangs unter Unterdruck bzw. Vakuum bis zum Erzeugen von Überdruck bzw. Pressdruck; die Werte des Vakuumdrucks sowie des Überdrucks.

Die dargestellte Gießvorrichtung 1 kann mittels der Steuerungsvorrichtung 4 in mehreren Bedienungsarten betrieben werden:

In einer ersten Bedienungsart kann ein Benutzer anhand einer einzugebenden Identifikation oder Kennziffer, mittels derer insbesondere eine bestimmte Legierung identifiziert wird, ein fest in der Steuerungseinrichtung gespeichertes oder ein von einem externen Datenträger gelesenes Schmelz- und Gießprogramm anwählen, mittels dessen der Schmelzund Gießprozess im einzelnen gesteuert wird.

Bei einer zweiten Bedienungsart kann der Benutzer selber eigene Schmelz- und Gießprogramme eingeben und in der Steuerungsvorrichtung 4 bzw. in der Datenbank 16 abspeichern. Diese Bedienungsart ist insbesondere dann relevant, wenn der Benutzer Legierungen anderer Hersteller oder selbst erzeugte Legierungen verarbeitet.

Bei einer dritten Bedienungsart gibt der Benutzer manuelle Prozessparameter, wie die Generatorleistung, das Vakuum während des Gießprozesses sowie die Gießtemperatur ein, um auf diese Weise einen individuellen Schmelz- und Gießvorgang durchzuführen.

Bei einer vierten Bedienungsart wird die Steuerung in einen sogenannten Lernmodus geschaltet, innerhalb derer sie selber die Solidus-Liquidus-Kennlinie einer bestimmten Legierung erkennt und aufnimmt.

Die verschiedenen Bedienungsarten sind über die Eingabeeinheit 14 auswählbar.

25

Im folgenden wird ein bevorzugter Ablauf des Schmelz- und Gießvorgangs beschrieben.

Ein Benutzer wählt zunächst ein zu verarbeitendes Schmelzgut aus und bringt dieses in den Schmelztiegel 2 ein. Zugleich bzw. kurz davor oder kurz danach gibt der Benutzer über die Eingabeeinheit 14 eine Kennung, bspw. eine Kennziffer, über die Eingabeeinheit 14 ein, die von der

Steuerungseinrichtung 4 verarbeitet wird. Die Steuerungseinrichtung 4 wählt anhand dieser Kennung aus einer Datenbank einen von mehreren Parametersätzen aus, und zwar denjenigen, der der entsprechenden Kennung zugeordnet ist. Anhand eines oder einiger der Parameter des ausgewählten Parametersatzes konfiguriert die Steuerungseinrichtung das Pyrometer 8 und zwar insbesondere die Pyrometerelektronik 12. Durch diesen Konfigurationsvorgang kann die Temperaturmessung mittels des Pyrometers 8 exakt an die besonderen Eigenschaften des verwendeten Schmelzguts angepasst werden.

10

15

Das Pyrometer ermittelt sodann fortlaufend die Temperatur des in den Schmelztiegel 2 eingebrachten Schmelzguts. Gleichzeitig steuert die Steuerungseinrichtung 4 die Heizeinrichtung 3, bspw. den durch eine Induktionsspule fließenden Induktionsstrom eines Induktionsofens. Hierdurch erhitzt sich das Schmelzgut, das durch die Induktion aufgeheizt wird. Der Aufheizprozess wird durch das Pyrometer fortlaufend kontrolliert. In Abhängigkeit der von dem Pyrometer 8 ermittelten Schmelzguttemperatur wird der Aufheizvorgang, insbesondere die Heizleistung der Heizeinrichtung 3, bspw. der Induktionsstrom, gesteuert und somit auch der gesamte Schmelz- und Gießvorgang.

25

30

20

Der gewählte Parametersatz enthält zudem weitere Parameter über den Schmelz- und Gießvorgang. Auf diese Weise wird der Schmelz- und Gießvorgang an die besonderen Eigenschaften des verwendeten Schmelzguts angepasst.

Während dieses Vorgangs wird die Schmelze bei Erreichen einer vorbestimmten Temperatur für eine vorbestimmte Zeitdauer im wesentlichen konstant gehalten. Bei Erreichen dieser oder einer anderen vorbestimmten Temperatur der Schmelze wird die Heizleistung der Heizeinrichtung reduziert. Auf diese Weise wird das verwendete Schmelzgut in besonders schonender Weise bis zur Gießtemperatur erwärmt.

Bei einem besonders vorteilhaften Ausführungsbeispiel ermittelt die Steuerungseinrichtung 4 anhand des während des Schmelzvorgangs ermittelten Schmelzguttemperaturverlaufs, insbesondere der ermittelten Solidustemperatur und/oder der ermittelten Liquidustemperatur, um welches Schmelzgut es sich handelt und wählt sodann automatisch, d.h. ohne Eingabe der Kennung des Schmelzgutes durch den Bediener, den diesem Schmelzgut zugeordneten Parametersatz aus. Somit können Fehlbedienungen vollständig ausgeschlossen werden, wodurch die Zuverlässigkeit der Schmelz- und Gießvorrichtung 1 erhöht wird.

10

Bei einem weiteren Ausführungsbeispiel befindet sich, wie in Fig. 1 durch eine gestrichelte Linie dargestellt, innerhalb des Schmelztiegels 2 oder im Bereich des Schmelztiegels 2 ein Hilfsmittel zur Unterstützung des Heizvorgangs, bspw. ein röhrenförmiger Graphiteinsatz 17. Der Graphiteinsatz 17 wird durch im Graphiteinsatz 17 induzierte Ströme erhitzt und dabei zum Glühen gebracht. Hierbei verbrennt innerhalb der den Schmelztiegel 2 einschließenden - Schmelzkammer vorhandener Restsauerstoff zu Kohlendioxyd. Hierdurch wird ein Oxydation der Schmelze verhindert, da ein Schutzgas entsteht.

20

25

15

Ein weiterer Vorteil des Graphiteinsatzes 17 besteht darin, dass die Schmelze schonend aufgeschmolzen wird, da das Schmelzgut primär durch von dem Graphiteinsatz 17 ausgehender Wärmestrahlung und nur noch teilweise durch direkte von der Induktionsspule des Induktionsofens verursachter Induktion erwärmt wird. Dies hat zur Folge, dass das visuelle Schmelzbild verbessert wird, da die Schmelze weniger durch Magnetfelder in Bewegung versetzt wird:

30

Der Graphiteinsatz 17 hat jedoch einen sehr hohen Emissionsgrad. Er heizt sich ferner auch schneller als das Schmelzgut auf. Daher erfasst das Pyrometer 8 auch von dem Graphiteinsatz ausgehende Wärmestrahlung und misst somit eine überlagerte Temperatur von Graphiteinsatz 17 und Schmelzgut.

Es findet jedoch nach einem Zeitraum t_V ein weitgehender Temperaturausgleich zwischen dem Graphiteinsatz 17 und der Schmelze statt. Dieser Zeitraum t_V ist um so kürzer, je höher die Temperatur des Graphiteinsatzes 17 liegt. Ursache hierfür ist eine bessere Wärmeübertragung durch Wärmestrahlung bei höheren Temperaturen, die von der vierten Potenz der Temperatur abhängt. Der Zeitraum t_V wird bei hohen Temperaturen T_o im Bereich von 1300°C bis 1600°C, beispielsweise von ca. 1400°C, im wesentlichen zu null.

10

15

20

25

Demgegenüber verbleibt bei niedrigeren Temperaturen T_u , im Bereich von 800°C bis 1100°C, beispielsweise von 1000°C, eine Temperaturdifferenz $T_0 = T_{const.}$ zwischen dem Graphiteinsatz 17 und dem Schmelzgut, wobei $T_{const.}$ im Bereich von 50°C - 250°C, insbesondere 80°C - 180°C, liegt bzw. $T_{const.}$ im wesentlichen 100°C beträgt. Diese Temperaturdifferenz T_0 wird jedoch bei den o.g. hohen Temperaturen T_0 im Bereich von 1300°C bis 1600°C, beispielsweise von ca. 1400°C ebenfalls im wesentlichen zu null.

Bei einem bevorzugten Ausführungsbeispiel erfolgt daher eine Kompensation der vorstehend beschriebenen Effekte, indem die ermittelte Schmelzguttemperatur beim Vorhandensein eines Graphiteinsatzes 17 um den Temperaturdifferenzwert T_0 reduziert wird und zwar insbesondere gemäß der folgenden Näherungsgleichung, in der T_G die Gießtemperatur, T_o ein oberer empirischer ermittelter Temperaturwert im o.g. Bereich, T_u ein unterer empirischer ermittelter Temperaturwert im o.g. Bereich und $T_{const.}$ eine ebenfalls empirisch ermittelte Temperaturkonstante im o.g. Bereich ist:

 $T_{\bar{U}} = ((T_o - T_G)/(T_o - T_u)) * T_{const.}$

30

Für ein bevorzugtes Ausführungsbeispiel gilt:

$$T_{0} = ((1400^{\circ}C - T_{G})/(1400^{\circ}C-1000^{\circ}C)) * 100^{\circ}C$$

Ferner wird ein bestimmter Zeitpunkt, bspw. der Gießzeitpunkt beim Vorhandensein eines Graphiteinsatzes 17 um die Zeitdauer t_V verschoben, das heißt es wird diese Zeitdauer t_V abgewartet, bevor der Gießvorgang eingeleitet wird. Diese Zeitdauer t_V nimmt bei den o.g. niedrigen Temperaturen T_u einen Wert t_{const.} im Bereich von 10 - 120 Sekunden an und beträgt insbesondere im wesentlichen 60 Sekunden und wird bei höheren Temperaturen T_o im wesentlichen zu null. Diese Zeitdauer t_V wird vorzugsweise gemäß der folgenden Gleichung bestimmt, wobei T_o, T_u, T_G und t_{const.} in den o.g. Wertebereichen liegen:

$$t_V = ((T_o - T_G)/(T_o - T_u)) * t_{const.}$$

Für ein bevorzugtes Ausführungsbeispiel gilt:

20

25

30

$$t_v = ((1400^{\circ}C - T_G)/(1400^{\circ}C - 1000^{\circ}C)) * 60sec$$

Da diese Formeln nur ein linear genähertes Ergebnis liefern, ist in einer weiteren Ausgestaltung der Erfindung zur genauen Berechnung der Werte für T₀ und t_v ein Polynom n-ten Grades vorgesehen.

Im einzelnen wird daher bevorzugt der Schmelz- und Gießvorgang wie folgt ablaufen:

Nachdem das Schmelzgut gemäß dem oben beschriebenen Verfahren auf die Gießtemperatur unter Berücksichtigung der vorstehend genannten Temperaturdifferenz Tü gebracht worden ist, wird eine Zeitdauer tygemäß der oben genannten Näherungsgleichung abgewartet.

Sodann wird während abgeschalteter Energiezufuhr zur Heizeinrichtung 3 eine auf ca. 700 bis 1050°C vorgeheizte Gießform 6 in die Kammer 5

eingebracht. Die Zeitdauer der Abschaltung der Energiezufuhr liegt in der Größenordnung von 10 sec.

Anschließend wird die Kammer 5 evakuiert, das heißt es wird ein Vakuum hergestellt. Nun wird die Schmelze erneut auf die beabsichtigte Gießtemperatur aufgeheizt und zwar wiederum unter Berücksichtigung der oben genannten Temperaturdifferenz T₀. Sodann wird eine Zeitdauer von etwa 1/3 t_V abgewartet und sodann der Gießvorgang eingeleitet.

Wie erläutert, beeinflusst der Graphiteinsatz 17 im erheblichen Maße die Temperaturmessung. Bei einem besonderen Ausführungsbeispiel wird daher in Abhängigkeit des Vorhandenseins bzw. des Fehlens eines derartigen Graphiteinsatzes 17 ein jeweils anderer Parametersatz ausgewählt bzw. ein Parametersatz enthält einen entsprechenden Parameter, der das Vorhandensein bzw. das Fehlen eines derartigen Graphiteinsatzes 17 angibt, um dann innerhalb der Steuerungseinrichtung 4 eine entsprechende Kompensation der oben erläuterten im Zusammenhang mit dem Graphiteinsatz 17 stehenden Effekte durchzuführen und zwar gemäß den oben genannten Gleichungen.

20

25

30

15

Das Vorhandensein bzw. Fehlen eines Graphiteinsatzes kann entweder durch manuelle Eingabe über die Eingabeeinheit 14 der Steuerungseinrichtung mitgeteilt werden. Alternativ ist ein Detektor zur Erkennung eines derartigen Hilfsmittels vorgesehen. Hierbei handelt es sich entweder um einen Kontaktsensor, oder einen mit dem Tiegel 2 in Verbindung stehenden Gewichtssensor. Das Vorhandensein eines Graphiteinsatzes kann jedoch auch aus den elektrischen Größen des Induktionsofens ermittelt werden, da diese durch das Einbringen eines Graphiteinsatzes beeinflusst werden. Jedweder dieser Detektoren ist mit der Steuerungseinrichtung 4 verbunden, damit sie automatisch die oben beschriebenen Kompensationen vornehmen kann.

Die Steuerungseinrichtung 4 weist bei einem weiteren Ausführungsbeispiel einen Pyrometerkalibrierungsmodus auf, in dem die Steuerungseinrichtung 4 Kalibrierungsparameter zum Kalibrieren des Pyrometers 8 in Abhängigkeit eines mit einem bestimmten Referenzschmelzgut ermitinsbesondere der telten Temperaturverlaufs, Solidus-Liquidus-Temperaturkennlinie, einstellt. Hierzu wird ein Referenzschmelzgut, vorzugsweise ein reines Metall, wie reines Kupfer, in den Schmelztiegel 2 gegeben und ein Schmelzvorgang durchgeführt. Das Pyrometer 8 ermittelt während des Schmelzvorgangs den Temperaturverlauf und vergleicht diesen Temperaturverlauf mit einer in der Datenbank 16 hinterlegten Referenzkennlinie. insbesondere Solidus-Liquidus-Referenzkennlinie des verwendeten Referenzschmelzguts. Anhand des Vergleichsergebnisses wird das Pyrometer 8 überprüft und ggf. kalibriert.

Dank der Erfindung kann die Temperaturmessung während eines Schmelz- und Gießvorgangs in der Feingießtechnik wesentlichen genauer durchgeführt und somit der Gießvorgang exakt und immer wieder reproduzierbar durchgeführt werden. Aufgrund der automatischen Konfigurierung des Pyrometers und des Schmelz- und Gießvorgangs werden menschliche Fehlbedienungen weitestgehend ausgeschlossen. Dank der Erfindung kann daher der Anteil fehlerhafter Produkte deutlich redu-

ziert und somit die Stückkosten vermindert werden.

15

Ansprüche

- Vorrichtung zur Durchführung eines Schmelz- und Gießvorgangs der Feingießtechnik, insbesondere der Dentaltechnik, mit
 - einem Schmelztiegel (2) zur Aufnahme von Schmelzgut,
 - einer Heizeinrichtung (3) zum Erhitzen des sich im Schmelztiegel (2) befindenden Schmelzguts und
 - einem Pyrometer (8) zum Ermitteln der Temperatur des Schmelzguts,

gekennzeichnet durch

5

15

25

- eine Steuerungseinrichtung (4) zur Steuerung des Schmelz- und Gießvorgangs in Abhängigkeit der ermittelten Schmelzguttemperatur,
- wobei die Steuerungseinrichtung (4) eine Datenbank (16) mit mehreren auswählbaren, jeweils schmelzgutmaterialspezifischen Parametersätzen (PS1, PS2, PS3) mit jeweils einem oder mehreren Parametern zum Konfigurieren des Pyrometers (8) aufweist.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass jeder Parametersatz (PS1, PS2, PS3) einen oder mehrere Parameter zur Steuerung des Schmelz- und Gießvorgangs in Abhängigkeit des Schmelzgutmaterials aufweist.
 - Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Steuerungseinrichtung (4) eine Eingabeeinheit (14) zur Eingabe einer Schmelzgutidentifikation zur Auswahl eines Parametersatzes (PS1, PS2, PS3) aufweist.
 - Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

das Pyrometer (8) ein Quotientenpyrometer ist.

- Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein bzw. mehrere Sensoren (9) des Pyrometers (8) mittels einer Optik (11) direkt auf wenigstens einen Teilbereich des Schmelztiegels (2) ausrichtbar sind.
- 6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der bzw. die Sensoren (9) des Pyrometers (8) über einen Lichtwellenleiter (10) mit der verbundenen Optik (11) ist/sind, Lichtwellenleiter (10) verbunden ist/sind, der auf wenigstens einen Teilbereich des Schmelztiegels (2) ausrichtbar ist.

15

- 7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerungseinrichtung (4) eine Kommunikationsschnittstelle zur Ergänzung und/oder Aktualisierung der Datenbank (16), Parametersätze (PS1, PS2, PS3), Parameter und/oder von Steuerungsprogrammen und/oder zum Auslesen von Protokollen eines Schmelz- und Gießvorgangs und/oder von Parametern aufweist.
- 8. Vorrichtung nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass
 jeder Schmelzgutidentifikation ein eigener Parametersatz (PS1,
 PS2, PS3) zugeordnet ist.
- Vorrichtung nach einem der Ansprüche 1 bis 7,
 dadurch gekennzeichnet, dass
 jeweils einer Gruppe von mehreren Schmelzgutidentifikationen
 einer Schmelzgutfamilie, insbesondere Legierungsfamilie, mit im

wesentlichen gleichen oder ähnlichen Schmelz- und Gießeigenschaften, ein individueller Parametersatz zugeordnet ist.

- Vorrichtung nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, dass
 die Heizeinrichtung (3) von der Steuerungseinrichtung (4) derart ausgebildet ist, dass eine vorbestimmte Temperatur der Schmelze im wesentlichen konstant gehalten wird.
 - 11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Heizeinrichtung (3) von der Steuerungseinrichtung (4) derart steuerbar ist, dass bei Erreichen einer vorbestimmten Temperatur der Schmelze die Heizleistung der Heizeinrichtung (3) reduziert wird.

15

- 12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerungseinrichtung (4) derart ausgebildet ist, dass sie in Abhängigkeit des während eines Schmelzvorgangs ermittelten Schmelzguttemperaturverlaufs, insbesondere der ermittelten Solidustempertur und/oder der ermittelten Liquidustemperatur, einen Parameter auswählt.
- Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerungseinrichtung (4) in einem Pyrometerkalibrierungsmodus betreibbar ist, in dem die Steuerung Kalibrierungsparameter zum Kalibrieren des Pyrometers in Abhängigkeit des mit einem vorbestimmten Referenzschmelzgut ermittelten Temperaturverlaufs, insbesondere der Solidus-Liquidustemperaturkernlinie, einstellt.

- 14. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerungseinrichtung (4) in einem Prüfmodus betreibbar ist, in dem die Steuerung das Pyrometer (8) anhand des mit einem vorbestimmten Referenzschmelzgut ermittelten Temperaturverlaufs, insbesondere der Solidus-Liquidustemperaturkennlinie, überprüft.
- 15. Vorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass das Referenzschmelzgut ein reines Metall, insbesondere reines Kupfer ist.
- Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerungseinrichtung (4) den Schmelz- und Gießvorgang in Abhängigkeit vom Vorhandensein bzw. der Abwesenheit eines im Bereich des Schmelztiegels anordbaren Hilfsmittels (17), insbesondere Graphiteinsatzes, zur Unterstützung des Heizvorgangs steuert.
 - 17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die ermittelte Schmelzguttemperatur beim Vorhandensein des Hilfsmittels (17) um einen Temperaturdifferenzwert T₀ reduziert wird.

25

Vorrichtung nach Anspruch 17,
 dadurch gekennzeichnet, dass
 der Temperaturdifferenzwert T₀ aus der Gießtemperatur T_G näherungsweise gemäß folgender Gleichung ermittelt wird:

 $T_{\ddot{U}} = ((T_o - T_G)/(T_o - T_u)) * T_{const.}$

wobei T_o ein oberer Temperaturwert im Bereich von 1300°C bis 1600°C, insbesondere von 1400°C, T_u ein unterer Temperaturwert im Bereich von 800°C bis 1100°C, insbesondere 1000°C und $T_{const.}$ eine Temperaturkonstante im Bereich von 50°C bis 250°C, insbesondere von 80°C bis 180°C, insbesondere 100°C ist.

- 19. Vorrichtung nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, dass ein bestimmter Zeitpunkt während des Schmelz- und Gießvorgangs beim Vorhandensein des Hilfsmittels (17) um eine Ausgleichszeitdauer t_V verschoben wird.
- 20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die Ausgleichszeitdauer t_V aus der Gießtemperatur T_G näherungsweise gemäß folgender Gleichung ermittelt wird:

15

20

25

30

$$t_V = ((T_o - T_G)/(T_o - T_u)) * t_{const.}$$

wobei T_o ein oberer Temperaturwert im Bereich von 1300°C bis 1600°C, insbesondere von 1400°C, T_u ein unterer Temperaturwert im Bereich von 800°C bis 1100°C, insbesondere 1000°C und $t_{const.}$ eine Zeitkonstante im Bereich von 10 Sekunden bis 120 Sekunden, insbesondere 60 Sekunden, ist.

21. Verfahren zur Durchführung eines Schmelz- und Gießvorgangs der Feingießtechnik, insbesondere der Dentaltechnik, insbesondere mit einer Gießvorrichtung (1) nach einem der Ansprüche 1 bis 20, mit folgenden Schritten:

- Einbringen von Schmelzgut in einen Schmelztiegel (2),
- Erhitzen des Schmelzguts mittels einer Heizeinrichtung (3) und

- Ermitteln der Temperatur des Schmelzguts mittels eines Pyrometers (8),

gekennzeichnet durch

5

- Steuern des Schmelz- und Gießvorgangs in Abhängigkeit der ermittelten Schmelzguttemperatur,
- wobei aus einer Datenbank (16) einer von mehreren schmelzgutmaterialspezifischen Parametersätzen (PS1, PS2, PS3) in Abhängigkeit des eingebrachten Schmelzguts ausgewählt und das Pyrometer (8) mittels eines oder mehrerer Parameter des ausgewählten Parametersatzes (PS1, PS2, PS3) konfiguriert wird.
- 22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass der Schmelz- und Gießvorgang mittels eines oder mehrerer materialspezifischer Parameter des ausgewählten Parametersatzes (PS1, PS2, PS3) gesteuert wird.
- Verfahren nach Anspruch 21 oder 22,
 dadurch gekennzeichnet, dass
 ein Parametersatz anhand einer mittels einer Eingabeeinheit
 eingegebenen Schmelzgutidentifikation ausgewählt wird.
- Verfahren nach einem der Ansprüche 21 bis 23,
 dadurch gekennzeichnet, dass
 die Temperatur der Schmelze für eine vorbestimmte Zeitdauer auf einer vorbestimmten Temperatur im wesentlichen konstant gehalten wird.
- Verfahren nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, dass bei Erreichen einer vorbestimmten Temperatur der Schmelze die Heizleistung der Heizeinrichtung (3) reduziert wird.

- Verfahren nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass ein Parametersatz anhand eines während eines Schmelzvorgangs ermittelten Schmelzguttemperaturverlaufs, insbesondere der ermittelten Solidustemperatur und/oder der ermittelten Liquidustemperatur, ausgewählt wird.
- 27. Verfahren nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass ein Schmelzvorgang mit einem Referenzschmelzgut durchgeführt und ein Temperaturverlauf, insbesondere die Solidus-Liquidus-Temperaturkernlinie, ermittelt und mit einer in der Datenbank (16) hinterlegten Referenzkernlinie des Referenzschmelzgutes verglichen und mittels des Vergleichsergebnisses das Pyrometer (8) kalibriert und/oder geprüft wird.

Zusammenfassung

Die Erfindung betrifft eine Vorrichtung 1 zur Durchführung eines Schmelz- und Gießvorgangs der Feingießtechnik mit einem Schmelztiegel 2 zur Aufnahme von Schmelzgut, einer Heizeinrichtung 3 zum Erhitzen des sich im Schmelztiegel 2 befindenden Schmelzguts und einem Pyrometer 8 zum Ermitteln der Temperatur des Schmelzguts. Um die Qualität der bei einem derartigen Vorgang hergestellten Produkte zu verbessern sieht die Erfindung vor, die Vorrichtung 1 mit einer Steuerungseinrichtung 4 zur Steuerung des Schmelz- und Gießvorgangs in Abhängigkeit der ermittelten Schmelzguttemperatur zu versehen, wobei die Steuerungseinrichtung 4 eine Datenbank 16 mit mehreren auswählbaren, jeweils schmelzgutmaterialspezifischen Parametersätzen PS1, PS2,PS3 mit jeweils einem oder mehreren Parametern zum Konfigurieren des Pyrometers 8 aufweist.

[Fig. 1]

Fig. 2