Devoir maison: notion de topologie

Exercice 1

Soit $X = \{a, b, c, d\}$. Lesquelles parmi les collections de sous-ensembles suivants déterminent une topologie sur X? Justifier.

- 1. \emptyset , X, $\{a\}$, $\{b\}$, $\{a,c\}$, $\{a,b,c\}$, $\{a,b\}$;
- 2. \emptyset , X, $\{a\}$, $\{b\}$, $\{a,b\}$, $\{b,d\}$;
- 3. \emptyset , X, $\{a,c,d\}$, $\{b,c,d\}$.

Correction ▼ [002418]

Exercice 2

Soit \mathbb{R} et soit \mathscr{T} une collection de sous-ensembles de \mathbb{R} contenant \emptyset , \mathbb{R} et tous les complementaires d'ensembles finis. Est-ce une topologie sur \mathbb{R} ? Est-ce une topologie séparée ?

Correction ▼ [002419]

Exercice 3

On appelle *base* d'une topologie $\mathscr T$ un sous-ensemble $\mathscr B$ de $\mathscr T$ tel que tout ouvert $\mathscr O \in \mathscr T$ s'écrit comme $\mathscr O = \bigcup_{i \in I} B_i$, où $B_i \in \mathscr B$ pour tout $i \in I$.

- 1. Montrer que \mathscr{B} est une base de \mathscr{T} si et seulement si pour tout ouvert \mathscr{O} et tout point $x \in \mathscr{O}$ il existe un $B \in \mathscr{B}$ tel que $x \in B \subset \mathscr{O}$.
- 2. Soit \mathcal{T}_n la topologie sur \mathbb{R}^n induite par la métrique euclidienne

$$\operatorname{dist}(\bar{x}, \bar{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

Montrer que l'ensemble \mathscr{B} de boules ouvertes ayant leur centre dans \mathbb{Q}^n et leur rayon dans \mathbb{Q} est une base de \mathscr{T}_n .

- 3. Soit \mathscr{B}' l'ensemble de parallelipipèdes ouverts dans \mathbb{R}^n dont les arêtes sont parallèles aux axes de coordonnées. Est-ce que \mathscr{B}' est une base de \mathscr{T}_n ?
- 4. Est-ce que $\{]-\infty, a[; a \in \mathbb{R}\} \cup \{]b, +\infty[; b \in \mathbb{R}\}$ est une base pour \mathcal{T}_1 ?
- 5. Pour tout $a \in \mathbb{Q}$ on note par δ_a la droite d'équation y = ax dans \mathbb{R}^2 , et on note par Y la réunion des droites δ_a . Soit \mathscr{T} la topologie sur Y induite par la topologie sur \mathbb{R}^2 et soit \mathscr{T}' la topologie de base \mathscr{B}' composée par tous les segments ouverts $]M,N[\subset \delta_a,O\not\in]M,N[$, et par toutes les reunions $\bigcup_{a\in\mathbb{Q},O\in]M_a,N_a[}]M_a,N_a[$. Les deux topologies \mathscr{T} et \mathscr{T}' sont-elles équivalentes ?

Correction ▼ [002420]

Exercice 4

Soit *X* un espace muni d'une métrique dist : $X \times X \to \mathbb{R}_+$.

- 1. Montrer que si $f: \mathbb{R}_+ \to R_+$ est une fonction croissante telle que f(0) = 0 et $f(x+y) \le f(x) + f(y)$ alors $\operatorname{dist}_f(x,y) = f(\operatorname{dist}(x,y))$ est une métrique sur X.
- 2. Montrer que

$$\operatorname{dist}'(x,y) = \frac{\operatorname{dist}(x,y)}{1 + \operatorname{dist}(x,y)}, \ \forall x, y,$$

est une métrique sur X.

3. Montrer que les métriques dist et dist' sont topologiquement équivalentes.

Correction ▼ [002421]

Correction de l'exercice 1

- 1. définit une topologie.
- 2. ne définit pas une topologie, car $\{a\} \cup \{b,d\} = \{a,b,d\}$ n'est pas dans la collection.
- 3. ne définit pas une topologie, car $\{a,c,d\} \cap \{b,c,d\} = \{c,d\}$ n'est pas dans la collection.

Correction de l'exercice 2

Il faut donc démontrer que la collection de sous-ensembles de $\mathbb R$ contenant \emptyset , $\mathbb R$ et tous les ensembles finis vérifie les propriétés d'une collection d'ensembles fermés :

- toute intérsection d'ensembles fermés est fermé;
- toute réunion finie d'ensembles fermés est fermé;
- − Ø et tout l'espace sont des fermés.

Les trois propriétés sont évidemment vérifiées dans ce cas.

La topologie ainsi définie sur \mathbb{R} n'est pas séparée. En effet deux ouverts non-vides Ω et Ω' sont sous la forme $\Omega = \mathbb{R} \setminus F$ et $\Omega' = \mathbb{R} \setminus F'$, où F, F' sont ou bien finis ou bien vides. Alors $\Omega \cap \Omega' = \mathbb{R} \setminus (F \cup F')$ n'est pas vide, car sinon ceci impliquerait que $\mathbb{R} = F \cup F'$ est finie ou vide, ce qui est faux.

Correction de l'exercice 3

- 1. Supposons que \mathscr{B} est une base de \mathscr{T} , et soit \mathscr{O} un ouvert arbitraire dans \mathscr{T} et x un point de \mathscr{O} . L'ouvert \mathscr{O} s'écrit comme $\mathscr{O} = \bigcup_{i \in I} B_i$, où $B_i \in \mathscr{B}$ pour tout $i \in I$. En particulier il existe un $i_0 \in I$ tel que $x \in B_{i_0}$.
- 2. Réciproquement, si \mathscr{O} est un ouvert arbitraire, pour tout point $x \in \mathscr{O}$ il existe un $B_x \in \mathscr{B}$ tel que $x \in B_x \subset \mathscr{O}$. Par conséquent $\mathscr{O} = \bigcup_{x \in \mathscr{O}} B_x$.
- 3. Il suffit de montrer la propriété énoncée dans (1). Soit $\mathscr{O} \in \mathscr{T}_n$ et soit x un point arbitraire de \mathscr{O} . D'après le cours, il existe un r > 0 tel que $B(x,r) \subset \mathscr{O}$. Remarque. Une autre mannière de formuler ceci est de dire que l'ensemble des boules ouvertes euclidiennes forme une base de la topologie \mathscr{T}_n .

Puisque l'ensemble \mathbb{Q}^n est dense dans \mathbb{R}^n , il s'ensuit que $B\left(x,\frac{r}{2}\right)$ contient un vecteur $q\in\mathbb{Q}^n$. En particulier $\mathrm{dist}(x,q)<\frac{r}{2}$, d'où $B\left(q,\frac{r}{2}\right)\subset B\left(x,r\right)\subset \mathscr{O}$.

L'intervalle $]\operatorname{dist}(x,q), \frac{r}{2}[$ est non-vide, donc il contient un nombre rationnel R. Ainsi $x \in B(q,R) \subset B\left(q,\frac{r}{2}\right) \subset \mathscr{O}$.

4. Puisque $\mathscr{B}' \subset \mathscr{T}_n$, ce qu'il reste à démontrer est à nouveau la propriété énoncée dans (1). Soit \mathscr{O} un ouvert et $x \in \mathscr{O}$. Il existe un r > 0 tel que $B(x,r) \subset \mathscr{O}$.

D'après le cours

$$dist(y,x) = ||y-x||_2 \le \sqrt{n} ||y-x||_{\infty}.$$

Il s'ensuit que

$$B_{\infty}\left(x, \frac{r}{\sqrt{n}}\right) = \left\{y \; ; \; \|y - x\|_{\infty} < \frac{r}{\sqrt{n}}\right\} \subset B(x, r) \subset \mathscr{O}. \tag{1}$$

Or $B_{\infty}\left(x,\frac{r}{\sqrt{n}}\right)$ n'est rien d'autre que le cube de centre de symétrie x et de longueur des arêtes $\frac{2r}{\sqrt{n}}$. En particulier $B_{\infty}\left(x,\frac{r}{\sqrt{n}}\right)\in\mathscr{B}'$.

On conclut que \mathscr{B}' est une base de \mathscr{T}_n .

- 5. Soit $]0,1[\in \mathcal{T}_1$. Il n'existe pas d'intervalle de la forme $]-\infty,a[\,,\,a\in\mathbb{R}\,,\,$ ou $]b,+\infty[\,,\,b\in\mathbb{R}\,,\,$ contenu dans]0,1[. Donc \mathscr{B}'' n'est pas une base pour \mathcal{T}_1 .
- 6. Supposons que $\mathscr{T}' \subset \mathscr{T}$. En particulier $\mathscr{B}' \subset \mathscr{T}$.

Pour tout $a = \frac{m}{n} \in \mathbb{Q}$, où $m \in \mathbb{Z}^*$, $n \in \mathbb{N}^*$, p.g.c.d. (m,n) = 1, on choisit M_a, N_a deux points sur la droite δ_a tels que $O \in]M_a, N_a[$ et $\operatorname{dist}(O, M_a) = \operatorname{dist}(O, N_a) = \frac{1}{n}$. Pour a = 0 on choisit $M_0 = (1,0)$, $N_0 = (-1,0)$.

$$\mathscr{C} = \bigcup_{a \in \mathbb{Q}}]M_a, N_a[.$$

Par hypothèse $\mathscr{C} \in \mathscr{B}' \subset \mathscr{T}$. En particulier, puisque O est un point de \mathscr{C} , il existe r > 0 tel que $Y \cap B(O,r) \subset \mathscr{C}$. Pour tout $a \in \mathbb{Q}$ on a donc $\delta_a \cap B(O,r) \subset M_a$, $M_a[$, d'où $r < \operatorname{dist}(O,M_a) = \frac{1}{n}$. Comme ceci est vérifié pour tout $n \in \mathbb{N}^*$, il s'ensuit que $r \leq 0$, ce qui contredit le choix de r.

On a obtenu une contradiction. Donc on ne peut pas avoir $\mathcal{T}' \subset \mathcal{T}$.

Correction de l'exercice 4 A

- 1. On vérifie facilement les trois propriétés de métrique.
- 2. Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$, $f(x) = \frac{x}{x+1} = 1 \frac{1}{x+1}$. On a que f(0) = 0 et $f'(x) = \frac{1}{(x+1)^2}$, donc la fonction f est croissante sur \mathbb{R}_+ . L'inégalité $f(x+y) \le f(x) + f(y)$ pour $x,y \in \mathbb{R}_+$ est équivalente à

$$\frac{1}{x+y+1} \ge \frac{1}{x+1} + \frac{1}{y+1} - 1 \Leftrightarrow \frac{1}{x+y+1} + 1 \ge \frac{1}{x+1} + \frac{1}{y+1} \Leftrightarrow 1 + x + y \le (1+x)(1+y).$$

La dernière égalité est évidemment vérifiée pour $x \ge 0$, $y \ge 0$.

3. D'après le cours, la métrique dist et la métrique dist₂ = min(dist, 1) sont topologiquement équivalentes. Ainsi il suffit de montrer que dist₁ et dist₂ sont topologiquement équivalentes.

Puisque $1 + \text{dist} \ge 1$, on a que $\text{dist}_1 \le \text{dist}$. Aussi $\text{dist}_1 \le 1$, d'où $\text{dist}_1 \le \text{dist}_2$.

La fonction f étant croissante, pour tout x,y on a que $\operatorname{dist}_1(x,y) = f(\operatorname{dist}_2(x,y)) \geq f(\operatorname{dist}_2(x,y))$. D'autre part, $\operatorname{dist}_2(x,y) \leq 1$ implique $f(\operatorname{dist}_2(x,y)) = \frac{\operatorname{dist}_2(x,y)}{1+\operatorname{dist}_2(x,y)} \geq \frac{\operatorname{dist}_2(x,y)}{2}$.

On a obtenu que pour tout x, y,

$$\frac{\operatorname{dist}_2(x,y)}{2} \le \operatorname{dist}_1(x,y) \le \operatorname{dist}_2(x,y).$$

Ainsi, les métriques dist₁ et dist₂ sont équivalentes.