

TECHNISCHE UNIVERSITÄT BERLIN

Fakultät IV - Institut für Energie- und Automatisierungstechnik Fachgebiet Energieversorgungsnetze und Integration Erneuerbarer Energien

LABORVERSUCH FREQUENZVERHALTEN, BODEDIAGRAMM 5. Labortermin

Protokoll zum Praktikum "elektrische Netzwerke"

vorgelegt von: Robert Focke

Matrikelnummer: 369264

Betreuer: Michael Smirnov

Labortermin: Mittwoch 14:00-16:00

eingereicht am: 13. Juli 2016

Eidesstattliche Erklärung

Ich, Robert Focke, versichere hiermit an Eides statt, dass ich mein Protokoll zum Praktikum "elektrische Netzwerke" mit dem Thema

LABORVERSUCH FREQUENZVERHALTEN, BODEDIAGRAMM - 5. Labortermin selbständig und eigenhändig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Berlin,	den	13.	Juli	2016	
Rober	т Бо	OCK	E		

Inhaltsverzeichnis

1	Theorie	1					
	1.1 Bodediagramm	1					
	1.2 Potentiometer	1					
	1.3 Verhalten der Schaltung	1					
2	Durchführung	2					
3	Mess- und Rechenergebnisse						
4	Simulationsergebnisse						
5	Interpretation	5					
Lit	eratur	8					

1 Theorie

1.1 Bodediagramm

Ein vollständiges Bodediagramm besteht aus 2 Graphen: Betrag und Argument in Abhängigkeit der Kreisfrequenz dargestellt.

Auf den jeweiligen x-Achsen wird die Kreisfrequenz logarithmisch dargestellt. Auf der y-Achse des ersten Graphen wird die Verstärkung logarithmisch und auf der y-Achse des zweiten Graphen die Phasenvershiebung linear aufgetragen.

Wichtige Formeln:

- $H = \frac{U_A}{U_E}$
- $|H|_{db} = 20log_{10}(|H|)$
- $arg(H) = arctan(\frac{Im(H)}{Re(H)})$

1.2 Potentiometer

Ein Potentiometer ist ein Widerstandsbauelement dessen Widerstandswerte mechanisch veränderbar sind.

$$\alpha \in [0, 1]$$

$$R_{ges} = R_1 + R_2$$

$$R_1 = \alpha * R$$

$$R_2 = (1 - \alpha) * R$$

$$(1)$$

1.3 Verhalten der Schaltung

Verhalten des Netzwerks: Hochpass, Tiefe Frequenzen werden blockiert und hohe Frequenzen werden durchgelassen.

Rechnerische Beweis:

$$\omega \to 0:$$

$$|H| = \frac{C_1}{C_1 + C_2}$$

$$arg(H) = 0$$

$$\omega \to \infty:$$

$$|H| = 1$$

$$arg(H) = 0$$
(2)

2 Durchführung

Die in Abbildung 1 dargestellte Schaltung würde im Labor untersucht. Die Frequenz würde im Bereich $10\,\mathrm{Hz} \le f \le 100\,\mathrm{kHz}$ variiert, mit 9 äquidistante Messpunkte pro Dekade. Eine sinusförmige Eingangsspannung von $U_{E,PP}=10\,\mathrm{V}$ würde benutzt.

Abbildung 1: Die im Labor gebaute Schaltung [1]

Danach würde die in Abbildung 2 dargestellte Schaltung in LTSpice simuliert. Die Schaltung würde für $\alpha = \{0, 0.5, 1\}$ simuliert, mit zwei verschiedenen Werte für R, nähmlich $1 \text{ M}\Omega$ und $100 \text{ M}\Omega$.

Abbildung 2: Die im Labor simulierte Schaltung [1]

3 Mess- und Rechenergebnisse

Die Mess- und Rechenergebnisse aus dem Labor werden in Tabelle 1 und in Abbildungen 3 und 4 dargestellt.

Die folgende formeln würden benutzt:

- $|H| = \frac{U_A}{U_E}$
- H(dB) = 20log(|H|)
- $\bullet \ \varphi = 360^{\circ} * f * \triangle t$

Abbildung 3: Phasenwinkel für die im Labor gebaute Schaltung

4 Simulationsergebnisse

Die Simulationsergebnisse werden in Abbildungen 5,6,7 und 8 dargestellt.

Tabelle 1: Mess- und Rechenergebnisse

					O		
$U_E(V)$	f (Hz)	$U_A(\mathrm{mV})$	$U_A(V)$	$\triangle t (\mathrm{ms})$	H	H (dB)	$\varphi(s)$
6.68	10	430	0.43	16	0.0643712575	-23.8261601379	57.6
6.92	20	584	0.584	6.2	0.0843930636	-21.4738649469	44.64
6.96	30	640	0.64	3.5	0.091954023	-20.7285853125	37.8
7	40	664	0.664	2.3	0.0948571429	-20.4585992129	33.12
7.04	50	672	0.672	1.6	0.0954545455	-20.4040677218	28.8
7.2	60	696	0.696	1.4	0.0966666667	-20.2944651364	30.24
7.2	70	720	0.72	1.2	0.1	-20	30.24
7.2	80	736	0.736	1.2	0.1022222222	-19.8090936419	34.56
7.36	90	768	0.768	1.1	0.1043478261	-19.6303318861	35.64
7.36	100	784	0.784	1	0.1065217391	-19.4512350331	36
7.6	200	980	0.98	0.7	0.1289473684	-17.7917503318	50.4
7.4	300	1260	1.26	0.495	0.1702702703	-15.3772234923	53.46
7.4	400	1540	1.54	0.389	0.2081081081	-13.6342199779	56.016
7.2	500	1861	1.861	0.32	0.2584722222	-11.751722466	57.6
7.2	600	2101	2.101	0.29	0.2918055556	-10.6981288805	62.64
7.2	700	2421	2.421	0.23	0.33625	-9.4667541398	57.96
7.2	800	2681	2.681	0.19	0.3723611111	-8.580713649	54.72
7.2	900	2961	2.961	0.18	0.41125	-7.7178817808	58.32
7.2	1000	3161	3.161	0.16	0.4390277778	-7.1501600118	57.6
7.2	2000	4881	4.881	0.056	0.6779166667	-3.3764737755	40.32
7.2	3000	5841	5.841	0.029	0.81125	-1.8169058038	31.32
7.2	4000	6241	6.241	0.017	0.8668055556	-1.241566277	24.48
7.2	5000	6481	6.481	0.011	0.9001388889	-0.9138094996	19.8
7.2	6000	6641	6.641	0.008	0.9223611111	-0.7019803238	17.28
7.2	7000	6721	6.721	0.006	0.9334722222	-0.5979720206	15.12
7.2	8000	6801	6.801	0.0046	0.9445833333	-0.4951944317	13.248
7.2	9000	6801	6.801	0.0038	0.9445833333	-0.4951944317	12.312
7.2	10000	6801	6.801	0.0028	0.9445833333	-0.4951944317	10.08
7.2	20000	6881	6.881	0.00065	0.9556944444	-0.3936187717	4.68
7.2	30000	6961	6.961	0.00026	0.9668055556	-0.2932172534	2.808
6.96	40000	6561	6.561	0.00024	0.9426724138	-0.5127840371	3.456
7.2	50000	6721	6.721	0.0002	0.9334722222	-0.5979720206	3.6
7.2	60000	6721	6.721	0.0002	0.9334722222	-0.5979720206	4.32
7.04	70000	6761	6.761	0.0002	0.9603693182	-0.3512344641	5.04
7.04	80000	6721	6.721	0.0002	0.9546875	-0.4027752748	5.76
7.12	90000	6681	6.681	0.0002	0.9383426966	-0.5527704377	6.48
7.04	100000	6681	6.681	0.0002	0.9490056818	-0.4546237478	7.2

Abbildung 4: Verstärkung für die im Labor gebaute Schaltung

5 Interpretation

Die simulierte und gemessene Werte weichen ziemlich stark voneinander ab. Die Phasenverschiebung ist besonders abweichend. Diese Abweichung ist wahrscheinlich durch den Innenwiderstand des Oszilloskops verursacht. Bei den Simulationsergebnisse sehen wir (besonders bei den Verstärkundsgraphen Abbildungen 7 und 8), dass die Schaltungen mit $\alpha=0$ und $\alpha=0.5$ für $1\,\mathrm{M}\Omega$ als auch für $100\,\mathrm{M}\Omega$ sehr ähnlich sind und diese beiden verhalten sich als Hochpass, da die Verstärkung sich mit höheren Frequenzen auch erhöht. Für $\alpha=1$ sehen die Ergebnisse anders aus. Für $\alpha=1$ sind beide die $1\,\mathrm{M}\Omega$ und die $100\,\mathrm{M}\Omega$ Schaltungen Tiefpässe, da die Verstärkung mit steigenden Frequenzen abnimmt.

Abbildung 5: Phasenwinkel für $1\,\mathrm{M}\Omega$ Schaltung

Abbildung 6: Phasenwinkel für $100\,\mathrm{M}\Omega$ Schaltung

Abbildung 7: Verstärkung für $1\,\mathrm{M}\Omega$ Schaltung

Abbildung 8: Verstärkung für $100\,\mathrm{M}\Omega$ Schaltung

Literatur

- [1] Abbildung 1: Peter Teske, Christian Gornig, Laborpraktikum 5: Frequenzverhalten, Bodediagramm, TU Berlin, 2016.
- [2] Normenausschuss Technische Grundlagen (NATG) im DIN, DIN 1338:2011-03, Formelschreibweise und Formelsatz, DIN Deutsches Institut für Normung e. V., Berlin, 2011-03.