TD statistique: Estimation

1) Estimation de la moyenne

Exercice 1.1.

- 1) Dans un échantillon de 25 étudiants de même classe d'âge et de même sexe, la taille moyenne observée est de 1,73m et l'écart-type observé de 10 cm. Estimer par intervalle de confiance la taille moyenne de l'ensemble des étudiants de l'université.
- 2) Même chose si l'échantillon est composé de 100 étudiants en conservant les valeurs mesurées de la moyenne et de l'écart-type

Exercice 1.2.

On admet qu'avec l'impédance-mètre utilisé, le résultat de la mesure est une variable aléatoire ayant une distribution normale.

- 1) Sur une chaine de fabrication de câble 50Ω , on effectue le contrôle de 10 câbles prélevés au hasard. Sur ces mesures on obtient une moyenne de $49,2\Omega$ et une variance des mesures de $(0,5\Omega)^2$. Donner l'intervalle de confiance à 95% de la moyenne de l'impédance des câbles fabriqués.
- 2) La fabrication est correcte si la valeur nominale 50Ω est dans l'intervalle de confiance à 80% de la moyenne de l'impédance des câbles fabriqués. Est-ce le cas ici ?

Exercice 1.3.

Le temps de déclenchement, avant le début de l'incendie, d'un certain type de détecteurs de fumée suit une loi normale de variance égale à 4 et un échantillon de 16 appareils a une moyenne arithmétique de 2.3 secondes.

- 1) Trouver l'intervalle de confiance à 95% pour la moyenne inconnue de l'ensemble des appareils.
- 2) Quelle devrait être la taille de l'échantillon pour pouvoir estimer la moyenne à 10% près avec un coefficient de confiance égal à 0.95 ?

Exercice 1.4.

Le courant d'offset d'un amplificateur opérationnel a été mesuré sur N=20 circuits intégrés sortant de la chaîne de fabrication. Les mesures ont pour valeur moyenne 10nA avec un écart type de 2nA.

- 1) Sous l'hypothèse de normalité de la variable X="courant d'offset", quelle est l'intervalle de confiance à 95% de la moyenne du courant d'offset.
- 2) Si on considère l'estimation de la moyenne et de l'écart type comme constante, combien de mesures dois-je effectuer pour que ce même intervalle de confiance soit à 99%. L'hypothèse de normalité est-elle nécessaire dans ce cas?

Exercice 1.5.

Pour une fabrication correcte, la valeur de la résistance R_{on} d'une porte analogique suit une loi normale de moyenne 0.3Ω . On mesure en sortie d'une chaîne de fabrication, la résistance R_{on} d'un échantillon de 40 portes. On obtient sur cet échantillon une moyenne de 0.45Ω avec une variance de $0.4\Omega^2$.

- 1) Donner l'intervalle de confiance à 95% de la moyenne des résistances R_{on} de l'échantillon.
- 2) Au risque de 5%, peut-on dire que la chaîne de fabrication où a été effectué le prélèvement a un fonctionnement correct.
- 3) En conservant la même valeur de la moyenne quelle devrait être la taille de l'échantillon mesuré pour conclure sur un fonctionnement incorrect de la chaîne de fabrication.

2) Estimation de proportion

Exercice 2.1.

Pour une étude marketing, après un sondage sur 142 personnes, 48 sont prêtes à utiliser Linux ou Android, 82 n'envisage pas de quitter Windows et 12 n'ont pas répondu. Donner les proportions avec leur intervalle de confiance de chaque réponse.

Exercice 2.2.

En testant de manière systématique 3000 CI en sortie de production, on détecte 15 CI défectueux.

- 1) Donner un intervalle de confiance à 95% de la proportion de CI défectueux.
- 2) Combien de CI doit-on tester pour que cet intervalle de confiance soit à 98%

Exercice 2.3.

On a choisi un échantillon de 250 personnes et 28 d'entre elles votent pour le partie A.

- 1) Donner un intervalle de confiance à 90% la proportion de personnes votant pour le parti A
- 2) En supposant que la proportion est identique, combien de personnes aurait-il fallu interroger pour avoir un intervalle de confiance à 90% de largeur ± 0.02 .

3) Estimation de variance, écart-type

Exercice 3.1.

Après avoir fait passer un test noté sur 100, on choisit un échantillon de 20 personnes. On suppose que les notes suivent une loi normale $\mathcal{N}(m,\sigma)$. La variance de l'échantillon est mesurée à 182, calculer un intervalle de confiance I pour σ^2 au niveau de confiance de 95%.

Résumé de l'estimation

Notation:

Caractéristique	Echantillon	Population totale
Taille	n	N
Moyenne	$\overline{\mathbf{x}}$	μ
Variance	s ²	σ^2
Ecart-type	S	σ
Proportion	p _e	р

I ESTIMATION PONCTUELLE

$$\hat{\mu} = \overline{x} = \frac{\sum x_i}{n}$$

$$\hat{p} = p_e$$

$$\hat{\sigma}^2 = \frac{n}{n-1} s^2 \text{ avec } s^2 = \frac{\sum (x_i - \overline{x})^2}{n} = \frac{\sum x_i^2}{n} - \overline{x}^2$$

$$\hat{\sigma} = \sqrt{\frac{n}{n-1}} s$$

II INTERVALLES DE CONFIANCE

A Moyenne d'une loi X

Hypothèses: X suit une loi Normale ou la taille de l'échantillon est supérieure à 30.

$$I = \left[\overline{x} - t \frac{\sigma}{\sqrt{n}}; \overline{x} + t \frac{\sigma}{\sqrt{n}} \right]$$

Obtention de t:

- si la variance de la population mère est connue, t est obtenu dans la table de la loi Normale $\mathcal{N}(0,1)$ pour 1- $\frac{\alpha}{2}$
- si la variance est inconnue mais estimée par $\hat{\sigma}$, t est obtenu à partir de la loi de **Student** bilatérale à (n-1) degrés de liberté pour p = $(1-\alpha)$ et l'intervalle I devient :

$$I = \left[\overline{x} - t \frac{\hat{\sigma}}{\sqrt{n}}; \overline{x} + t \frac{\hat{\sigma}}{\sqrt{n}} \right]$$

remarque : si n est supérieur à 30, on remplace la loi de Student par la loi Normale.

B Fréquence

Hypothèses: les conditions d'approximation de la loi Binomiale par la loi Normale s'appliquent.

$$I = \left[p_{e} - t \sqrt{\frac{p_{e}(1-p_{e})}{n}}; p_{e} + t \sqrt{\frac{p_{e}(1-p_{e})}{n}} \right]$$

t est déterminé à l'aide de la table $\mathcal{N}(0,1)$ pour la valeur $1-\frac{\alpha}{2}$.

B Variance

Hypothèses: X suit une loi Normale $\mathcal{N}(\mu, \sigma^2)$ ou la taille de l'échantillon est supérieure à

- Si μ est connu : $I = \left[\frac{n \, v}{\chi_{1-\frac{\alpha}{2}}^2(n)}; \frac{n \, v}{\chi_{\frac{\alpha}{2}}^2(n)}\right]$ avec $v = \frac{1}{n} \sum (x_i \mu)^2$, $\chi_{1-\frac{\alpha}{2}}^2(n)$ est la valeur x telle que $P(\chi^2(n) < x) = 1 \frac{\alpha}{2}$ et $\chi_{\frac{\alpha}{2}}^2(n)$ est la valeur x telle que $P(\chi^2(n) < x) = \frac{\alpha}{2}$ pour la loi χ^2 à n degrés de liberté.
- Si μ est inconnu : $I = \left[\frac{n\,s^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}; \frac{n\,s^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}\right]$ avec $s^2 = \frac{1}{n}\sum(x_i-\overline{x})^2$ variance de l'échantillon et $\chi_{1-\frac{\alpha}{2}}^2(n-1)$ est la valeur x telle que $P(\chi^2(n-1) < x) = 1 \frac{\alpha}{2}$ et $\chi_{\frac{\alpha}{2}}^2(n-1)$ est la valeur x telle que $P(\chi^2(n-1) < x) = \frac{\alpha}{2}$ pour la loi χ^2 à (n-1) degrés de liberté.

Loi de Student bilatérale à υ degrés de liberté, détermination de t_p pour p=P(|St| $\leq t_p$) connue

Risque bilatéral α	80%	60%	40%	20%	10%	5%	2%	1%	0,5%	0,1%
Probabilité p=1-α	0,2	0,4	0,6	0,8	0,9	0,95	0,98	0,99	0,995	0,999
υ =1	0,325	0,727	1,376	3,078	6,314	12,706	31,821	63,656	318,289	636,578
v =2	0,289	0,617	1,061	1,886	2,920	4,303	6,965	9,925	22,328	31,600
v =3	0,277	0,584	0,978	1,638	2,353	3,182	4,541	5,841	10,214	12,924
v =4	0,271	0,569	0,941	1,533	2,132	2,776	3,747	4,604	7,173	8,610
v =5	0,267	0,559	0,920	1,476	2,015	2,571	3,365	4,032	5,894	6,869
v =6	0,265	0,553	0,906	1,440	1,943	2,447	3,143	3,707	5,208	5,959
υ =7	0,263	0,549	0,896	1,415	1,895	2,365	2,998	3,499	4,785	5,408
v =8	0,262	0,546	0,889	1,397	1,860	2,306	2,896	3,355	4,501	5,041
v =9	0,261	0,543	0,883	1,383	1,833	2,262	2,821	3,250	4,297	4,781
v =10	0,260	0,542	0,879	1,372	1,812	2,228	2,764	3,169	4,144	4,587
v =11	0,260	0,540	0,876	1,363	1,796	2,201	2,718	3,106	4,025	4,437
v =12	0,259	0,539	0,873	1,356	1,782	2,179	2,681	3,055	3,930	4,318
v =13	0,259	0,538	0,870	1,350	1,771	2,160	2,650	3,012	3,852	4,221
υ =14	0,258	0,537	0,868	1,345	1,761	2,145	2,624	2,977	3,787	4,140
v =15	0,258	0,536	0,866	1,341	1,753	2,131	2,602	2,947	3,733	4,073
v =16	0,258	0,535	0,865	1,337	1,746	2,120	2,583	2,921	3,686	4,015
υ =17	0,257	0,534	0,863	1,333	1,740	2,110	2,567	2,898	3,646	3,965
v =18	0,257	0,534	0,862	1,330	1,734	2,101	2,552	2,878	3,610	3,922
v =19	0,257	0,533	0,861	1,328	1,729	2,093	2,539	2,861	3,579	3,883
v =20	0,257	0,533	0,860	1,325	1,725	2,086	2,528	2,845	3,552	3,850
υ =21	0,257	0,532	0,859	1,323	1,721	2,080	2,518	2,831	3,527	3,819
v =22	0,256	0,532	0,858	1,321	1,717	2,074	2,508	2,819	3,505	3,792
υ =23	0,256	0,532	0,858	1,319	1,714	2,069	2,500	2,807	3,485	3,768
υ =24	0,256	0,531	0,857	1,318	1,711	2,064	2,492	2,797	3,467	3,745
v =25	0,256	0,531	0,856	1,316	1,708	2,060	2,485	2,787	3,450	3,725
v =26	0,256	0,531	0,856	1,315	1,706	2,056	2,479	2,779	3,435	3,707
v =27	0,256	0,531	0,855	1,314	1,703	2,052	2,473	2,771	3,421	3,689
v =28	0,256	0,530	0,855	1,313	1,701	2,048	2,467	2,763	3,408	3,674
v =29	0,256	0,530	0,854	1,311	1,699	2,045	2,462	2,756	3,396	3,660
v =30	0,256	0,530	0,854	1,310	1,697	2,042	2,457	2,750	3,385	3,646
v =∞	0,253	0,524	0,842	1,282	1,645	1,960	2,326	2,576	3,090	3,291

Loi du χ^2 à υ degrés de liberté, détermination de X^2 pour p= P(X $\le X^2$) connue

0		X^2												
probabilité	0,001	0,005	0,01	0,025	0,05	0,1	0,5	0,9	0,95	0,975	0,99	0,995	0,999	0,9995
υ =1				0,001	0,004	0,02	0,45	2,71	3,84	5,02	6,63	7,88	10,83	12,12
v =2	0,00	0,01	0,02	0,05	0,10	0,21	1,39	4,61	5,99	7,38	9,21	10,60	13,82	15,20
v =3	0,02	0,07	0,11	0,22	0,35	0,58	2,37	6,25	7,81	9,35	11,34	12,84	16,27	17,73
v =4	0,09	0,21	0,30	0,48	0,71	1,06	3,36	7,78	9,49	11,14	13,28	14,86	18,47	20,00
v =5	0,21	0,41	0,55	0,83	1,15	1,61	4,35	9,24	11,07	12,83	15,09	16,75	20,51	22,11
v =6	0,38	0,68	0,87	1,24	1,64	2,20	5,35	10,64	12,59	14,45	16,81	18,55	22,46	24,10
v =7	0,60	0,99	1,24	1,69	2,17	2,83	6,35	12,02	14,07	16,01	18,48	20,28	24,32	26,02
v =8	0,86	1,34	1,65	2,18	2,73	3,49	7,34	13,36	15,51	17,53	20,09	21,95	26,12	27,87
v =9	1,15	1,73	2,09	2,70	3,33	4,17	8,34	14,68	16,92	19,02	21,67	23,59	27,88	29,67
v =10	1,48	2,16	2,56	3,25	3,94	4,87	9,34	15,99	18,31	20,48	23,21	25,19	29,59	31,42
υ =11	1,83	2,60	3,05	3,82	4,57	5,58	10,34	17,28	19,68	21,92	24,73	26,76	31,26	33,14
v =12	2,21	3,07	3,57	4,40	5,23	6,30	11,34	18,55	21,03	23,34	26,22	28,30	32,91	34,82
v =13	2,62	3,57	4,11	5,01	5,89	7,04	12,34	19,81	22,36	24,74	27,69	29,82	34,53	36,48
v =14	3,04	4,07	4,66	5,63	6,57	7,79	13,34	21,06	23,68	26,12	29,14	31,32	36,12	38,11
v =15	3,48	4,60	5,23	6,26	7,26	8,55	14,34	22,31	25,00	27,49	30,58	32,80	37,70	39,72
v =16	3,94	5,14	5,81	6,91	7,96	9,31	15,34	23,54	26,30	28,85	32,00	34,27	39,25	41,31
v =17	4,42	5,70	6,41	7,56	8,67	10,09	16,34	24,77	27,59	30,19	33,41	35,72	40,79	42,88
v =18	4,90	6,26	7,01	8,23	9,39	10,86	17,34	25,99	28,87	31,53	34,81	37,16	42,31	44,43
v =19	5,41	6,84	7,63	8,91	10,12	11,65	18,34	27,20	30,14	32,85	36,19	38,58	43,82	45,97
v =20	5,92	7,43	8,26	9,59	10,85	12,44	19,34	28,41	31,41	34,17	37,57	40,00	45,31	47,50
v =21	6,45	8,03	8,90	10,28	11,59	13,24	20,34	29,62	32,67	35,48	38,93	41,40	46,80	49,01
υ =22	6,98	8,64	9,54	10,98	12,34	14,04	21,34	30,81	33,92	36,78	40,29	42,80	48,27	50,51
v =23	7,53	9,26	10,20	11,69	13,09	14,85	22,34	32,01	35,17	38,08	41,64	44,18	49,73	52,00
v =24	8,08	9,89	10,86	12,40	13,85	15,66	23,34	33,20	36,42	39,36	42,98	45,56	51,18	53,48
v =25	8,65	10,52	11,52	13,12	14,61	16,47	24,34	34,38	37,65	40,65	44,31	46,93	52,62	54,95
v =26	9,22	11,16	12,20	13,84	15,38	17,29	25,34	35,56	38,89	41,92	45,64	48,29	54,05	56,41
v =27	9,80	11,81	12,88	14,57	16,15	18,11	26,34	36,74	40,11	43,19	46,96	49,65	55,48	57,86
v =28	10,39	12,46	13,56	15,31	16,93	18,94	27,34	37,92	41,34	44,46	48,28	50,99	56,89	59,30
v =29	10,99	13,12	14,26	16,05	17,71	19,77	28,34	39,09	42,56	45,72	49,59	52,34	58,30	60,73
v =30	11,59	13,79	14,95	16,79	18,49	20,60	29,34	40,26	43,77	46,98	50,89	53,67	59,70	62,16