Priorities to Pairwise

Bill Adams

Aug 2017

Abstract

Given a priority vector \vec{p} there is a method to create a pairwise comparison matrix $M_{\vec{p}}$ that has \vec{p} as its priority vector. In this paper we provide context for why this calculation could be useful, the definition of the calculation itself, and a few example calculations.

1 Introduction

Given n items whose $n \times n$ pairwise comparison matrix is M, standard AHP theory uses the largest eigenvector calculation to find the priority vector \vec{p}_M for those n items. In addition, standard AHP theory provides a way to work in reverse; i.e. given a priority vector \vec{p} we can create a pairwise comparison matrix $M_{\vec{p}}$ whose largest eigenvector is \vec{p} .

This method of working in reverse can be useful in the following circumstance. If one knows the priority vector for a group of users, but the software that gives that priority does not provide the group pairwise comparison matrix, one can reconstruct a pairwise comparison matrix for the group that results in the given priority vector. This circumstance is what prompted the writing of this paper.

2 Calculation and proof

Given a priority vector $\vec{p} = (p_1, \dots, p_n)$, we construct the matrix M whose priority vector is \vec{p} by taking the matrix made of the ratios of the p_i 's. We state this result as the following lemma.

Note 1. The reason we use the ratio matrix can be easily seen with an example. If the priority vector is alt1=0.1, alt2=0.3, and alt3=0.6 we can easily see that alt3 is 6 times better than alt1, because alt3 has a score of 0.6 and alt1 has a score of 0.1 and the value of 6 is simply 0.6/0.1 the ratio of alt3's score to that of alt1's score.

Lemma 1. Let $\vec{p} = (p_1, \dots, p_n)$ be the priority vector of n items. If we define the $n \times n$ matrix $M_{\vec{p}} = (m_{ij})$ by the formula

$$m_{ij} = \frac{p_i}{p_j}$$

then the priority vector for $M_{\vec{p}}$ is \vec{p} .

Proof. Let largest eigenvector of $M_{\vec{p}}$ can be calculated from the following formula

$$\lim_{n \to \infty} \frac{b^n}{\sum_{i=1}^n b_i^n}$$

where b^i is an n dimensional vector defined using the following recursive formula:

$$b^0 = (1, \dots, 1)$$
$$b^{i+1} = M_{\vec{p}} \cdot b^i$$

Thus we need only understand b^i . Let us begin by calculating b^1 .

$$b^{1} = M_{\vec{p}} \cdot b^{0}$$

$$= \begin{bmatrix} 1 & p_{1}/p_{2} & \dots & p_{1}/p_{n} \\ p_{2}/p_{1} & 1 & \dots & p_{2}/p_{n} \\ \vdots & vdots & \ddots & \vdots \\ p_{n}/p_{1} & p_{n}/p_{2} & \dots & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{i=1}^{n} p_{1}/p_{i} \\ \sum_{i=1}^{n} p_{2}/p_{i} \\ \dots \\ \sum_{i=1}^{n} p_{n}/p_{i} \end{bmatrix}$$

$$= \begin{bmatrix} p_{1} \sum_{i=1}^{n} 1/p_{i} \\ p_{2} \sum_{i=1}^{n} 1/p_{i} \\ \vdots \\ p_{n} \sum_{i=1}^{n} 1/p_{i} \end{bmatrix}$$

$$= \sum_{i=1}^{n} 1/p_{i} \begin{bmatrix} p_{1} \\ p_{2} \\ \dots \\ p_{n} \end{bmatrix}$$

Since we are dividing by the sum of the elements of b^i in the limit, we can multiply or divide b^i by any constant and not change the limit. Thus effectively $b^1 = (p_1, \ldots, p_n)$.

Next we claim that $b^2=(p_1,\ldots p_n)$. If that is the case, then we know that all of the b^i 's for $i\geq 1$ are that as well, and we will have shown that the largest eigenvector of $M_{\vec{p}}$ is \vec{p} . Let us calculate the value of b^2 to complete the proof.

Aug 2017 3

$$\begin{array}{rclcrcl} b^2 & = & M_{\vec{p}} \cdot b^1 \\ & = & \begin{bmatrix} 1 & p_1/p_2 & \dots & p_1/p_n \\ p_2/p_1 & 1 & \dots & p_2/p_n \\ \vdots & vdots & \ddots & \vdots \\ p_n/p_1 & p_n/p_2 & \dots & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix} \\ & = & \begin{bmatrix} np_1 \\ np_2 \\ \vdots \\ np_n \end{bmatrix} \end{array}$$

Again, since we are dividing by the sum of the elements of b^2 in the limit, we can multiply or divide by any constant and not effect the limit calculation. Thus, effectively, b^2 is effectively (p_1, \ldots, p_n) .

3 Examples

We calculate the matrix $M_{\vec{p}}$ for several priority vectors \vec{p} below.

1. If $\vec{p} = (1/2, 1/3, 1/6)$, the ratio matrix $M_{\vec{p}}$ is:

$$M_{\vec{p}} = \begin{bmatrix} 1 & \frac{1/2}{1/3} & \frac{1/2}{1/6} \\ \frac{1/3}{1/2} & 1 & \frac{1/3}{1/6} \\ \frac{1/6}{1/2} & \frac{1/6}{1/3} & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 3/2 & 3 \\ 2/3 & 1 & 2 \\ 1/3 & 1/2 & 1 \end{bmatrix}$$

2. If $\vec{p} = (3, 2, 1, 4)$ we can calculate the ratio matrix as below. Notice that the priority vector need not be normalized (i.e. its components need not sum to 1).

$$M_{\vec{p}} = \begin{bmatrix} 1 & \frac{3}{2} & \frac{3}{1} & \frac{3}{4} \\ \frac{2}{3} & 1 & \frac{1}{2} & \frac{2}{1} & \frac{2}{4} \\ \frac{1}{3} & \frac{1}{2} & 1 & \frac{1}{4} & \frac{1}{4} \\ \frac{4}{3} & \frac{4}{2} & \frac{4}{1} & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \frac{3}{2} & 3 & \frac{3}{4} \\ \frac{2}{3} & 1 & 2 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 1 & \frac{1}{4} \\ \frac{4}{3} & 2 & 4 & 1 \end{bmatrix}$$