Sharper Exponential Convergence Rates for Sinkhorn's Algorithm in Continuous Settings

Alex Delalande

Joint work with Lénaïc Chizat and Tomas Vaškevičius

EPFI

November 2024

Optimal Transport problem

Optimal Transport problem (Monge, 1781; Kantorovich, 1942):

▶ Given $\mu, \nu \in \mathcal{P}(\Omega)$ and $c : \Omega \times \Omega \to \mathbb{R}$, solve

$$\left|\inf_{\gamma\in\Gamma(\mu,\nu)}\int_{\Omega\times\Omega}c(x,y)\mathrm{d}\gamma(x,y),\right|$$

where $\Gamma(\mu, \textcolor{red}{\nu}) = \{ \gamma \in \mathcal{P}(\Omega \times \Omega) \mid \forall A \subset \Omega, \gamma(A \times \Omega) = \textcolor{red}{\mu}(A), \gamma(\Omega \times A) = \textcolor{red}{\nu}(A) \}.$

Optimal Transport problem

P-Wasserstein distance between μ and ν when $\Omega \subset \mathbb{R}^d$:

$$W_{p}(\mu,\nu) := \left(\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\Omega \times \Omega} \|x - y\|^{p} d\gamma(x,y)\right)^{1/p}.$$

▶ Geodesic distance, interpolations, barycenters, gradient flows, Riemannian interpretation of the 2-*Wasserstein space* $(\mathcal{P}_2(\mathbb{R}^d), W_2)$... (Otto, 2001; Ambrosio, Gigli, Savaré, 2004)

Optimal Transport applications

► Euler equations: (de Goes et al., 2015)

► Computer graphics: (Salomon et al., 2015)

 Trajectory inference for single cell RNA-sequencing data: (Forrow et al., 2021; Chizat et al., 2022)

Cosmology, quantum chemistry, meteorology, economics, image processing, machine learning...

"Entropy-regularized" Optimal Transport problem

$$\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\Omega \times \Omega} c(x,y) d\gamma(x,y).$$

- ▶ In practice, optimal transport value can be:
 - ▶ Difficult to compute numerically: $\tilde{O}(n^3)$ numerical complexity when μ, ν have n support points.
 - Difficult to estimate statistically: $O(n^{-1/d})$ sample complexity when μ, ν are supported over \mathbb{R}^d .

"Entropy-regularized" Optimal Transport problem

$$\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\Omega \times \Omega} c(x,y) d\gamma(x,y).$$

- In practice, optimal transport value can be:
 - ▶ Difficult to compute numerically: $\tilde{O}(n^3)$ numerical complexity when μ, ν have n support points.
 - Difficult to estimate statistically: $O(n^{-1/d})$ sample complexity when μ, ν are supported over \mathbb{R}^d .

"Entropy-regularized" Optimal Transport problem:

• Given $\mu, \nu \in \mathcal{P}(\Omega)$, $c : \Omega \times \Omega \to \mathbb{R}$ and $\lambda > 0$, solve

$$\left|\inf_{\gamma\in\Gamma(\mu,\nu)}\int_{\Omega\times\Omega}c(x,y)\mathrm{d}\gamma(x,y)+\lambda\mathrm{KL}(\gamma|\mu\otimes\nu).\right|$$

Equivalent to the static Schrödinger problem (Schrödinger, 1931; Léonard, 2014).

"Entropy-regularized" Optimal Transport problem

$$\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\Omega \times \Omega} c(x,y) \mathrm{d}\gamma(x,y) + \lambda \mathrm{KL}(\gamma | \mu \otimes \nu).$$

"Entropy-regularized" Optimal Transport problem

$$\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\Omega \times \Omega} c(x,y) d\gamma(x,y) + \lambda KL(\gamma | \mu \otimes \nu).$$

Dual problem:

$$\sup_{\phi \in L^1(\mu), \psi \in L^1(\nu)} \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu + \lambda \left(1 - \int \int \exp\left(\frac{\phi \oplus \psi - c}{\lambda}\right) \mathrm{d}\mu \mathrm{d}\nu\right).$$

"Entropy-regularized" Optimal Transport problem

$$\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\Omega \times \Omega} c(x,y) d\gamma(x,y) + \lambda KL(\gamma | \mu \otimes \nu).$$

Dual problem:

$$\sup_{\phi \in L^1(\mu), \psi \in L^1(\nu)} \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu + \lambda \left(1 - \int \int \exp\left(\frac{\phi \oplus \psi - c}{\lambda}\right) \mathrm{d}\mu \mathrm{d}\nu\right).$$

Primal-dual relation:

$$\gamma^* = \exp\left(rac{\phi^* \oplus \psi^* - c}{\lambda}
ight).$$

"Entropy-regularized" Optimal Transport problem

$$\sup_{\phi \in L^1(\mu), \psi \in L^1(\nu)} \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu + \lambda \left(1 - \int \int \exp\left(\frac{\phi \oplus \psi - c}{\lambda}\right) \mathrm{d}\mu \mathrm{d}\nu\right).$$

"Entropy-regularized" Optimal Transport problem

$$\sup_{\phi \in \mathcal{L}^1(\mu), \psi \in \mathcal{L}^1(\nu)} \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu + \lambda \left(1 - \int \int \exp\left(\frac{\phi \oplus \psi - c}{\lambda}\right) \mathrm{d}\mu \mathrm{d}\nu \right).$$

▶ **Optimality conditions** yield the *Schrödinger system*:

$$\begin{cases} \phi^*(x) = -\lambda \log \int \exp\left(\frac{\psi^*(y) - c(x,y)}{\lambda}\right) \mathrm{d}\nu(y) & \text{for μ-a.e. } x, \\ \psi^*(y) = -\lambda \log \int \exp\left(\frac{\phi^*(x) - c(x,y)}{\lambda}\right) \mathrm{d}\mu(x) & \text{for ν-a.e. } y. \end{cases}$$

"Entropy-regularized" Optimal Transport problem

$$\sup_{\phi \in \mathcal{L}^1(\mu), \psi \in \mathcal{L}^1(\nu)} \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu + \lambda \left(1 - \int \int \exp\left(\frac{\phi \oplus \psi - c}{\lambda}\right) \mathrm{d}\mu \mathrm{d}\nu \right).$$

▶ **Optimality conditions** yield the *Schrödinger system*:

$$\begin{cases} \phi^*(x) = -\lambda \log \int \exp\left(\frac{\psi^*(y) - c(x, y)}{\lambda}\right) d\nu(y) & \text{for } \mu\text{-a.e. } x, \\ \psi^*(y) = -\lambda \log \int \exp\left(\frac{\phi^*(x) - c(x, y)}{\lambda}\right) d\mu(x) & \text{for } \nu\text{-a.e. } y. \end{cases}$$

Sinkhorn's algorithm: starting from arbitraty $\psi_0 \in L^1(\nu)$, set $\forall t \in \mathbb{N}$

$$\begin{cases} \phi_{t+\frac{1}{2}}(x) = -\lambda \log \int \exp\left(\frac{\psi_t(y) - c(x,y)}{\lambda}\right) \mathrm{d}\nu(y) & \text{for μ-a.e. } x, \\ \psi_{t+1}(y) = -\lambda \log \int \exp\left(\frac{\phi_{t+1/2}(x) - c(x,y)}{\lambda}\right) \mathrm{d}\mu(x) & \text{for ν-a.e. } y. \end{cases}$$

Sinkhorn's algorithm

$$\begin{cases} \phi_{t+\frac{1}{2}}(x) = -\lambda \log \int \exp\left(\frac{\psi_t(y) - c(x,y)}{\lambda}\right) \mathrm{d}\nu(y) & \text{for μ-a.e. } x, \\ \psi_{t+1}(y) = -\lambda \log \int \exp\left(\frac{\phi_{t+1/2}(x) - c(x,y)}{\lambda}\right) \mathrm{d}\mu(x) & \text{for ν-a.e. } y. \end{cases}$$

- Also known as:
 - Sinkhorn-Knopp algorithm,
 - o Iterative Proportional Fitting Procedure (IPFP),
 - RAS algorithm,
 - Fortet's iterations,
 - o Bregman alternative projection,
 - Matrix scaling algorithm...

Sinkhorn's algorithm

$$\begin{cases} \phi_{t+\frac{1}{2}}(x) = -\lambda \log \int \exp\left(\frac{\psi_t(y) - c(x,y)}{\lambda}\right) \mathrm{d}\nu(y) & \text{for μ-a.e. } x, \\ \psi_{t+1}(y) = -\lambda \log \int \exp\left(\frac{\phi_{t+1/2}(x) - c(x,y)}{\lambda}\right) \mathrm{d}\mu(x) & \text{for ν-a.e. } y. \end{cases}$$

Link with **matrix scaling**: when $\mu = \sum_{i=1}^n \mu_i \delta_{x_i}$ and $\nu = \sum_{j=1}^n \nu_j \delta_{y_j}$, set:

$$\begin{cases} \mu = (\mu_i)_{1 \leq i \leq n} \in \mathbb{R}^n, \\ \nu = (\nu_j)_{1 \leq j \leq n} \in \mathbb{R}^n, \\ u_{t+\frac{1}{2}} = (e^{\frac{\phi_{t+1/2}(x_i)}{\lambda}} \mu_i)_{1 \leq i \leq n} \in \mathbb{R}^n, \\ v_t = (e^{\frac{\psi_t(y_j)}{\lambda}} \nu_j)_{1 \leq j \leq n} \in \mathbb{R}^n, \\ \text{and } K = (e^{-c(x_i, y_j)/\lambda})_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}. \end{cases}$$
 Then:
$$\begin{cases} u_{t+\frac{1}{2}} = \mu \oslash K v_t, \\ v_{t+1} = \nu \oslash K^\top u_{t+\frac{1}{2}}. \end{cases}$$

Sinkhorn's algorithm

$$\begin{cases} \phi_{t+\frac{1}{2}}(x) = -\lambda \log \int \exp\left(\frac{\psi_t(y) - c(x,y)}{\lambda}\right) \mathrm{d}\nu(y) & \text{for μ-a.e. } x, \\ \psi_{t+1}(y) = -\lambda \log \int \exp\left(\frac{\phi_{t+1/2}(x) - c(x,y)}{\lambda}\right) \mathrm{d}\mu(x) & \text{for ν-a.e. } y. \end{cases}$$

Link with **matrix scaling**: when $\mu = \sum_{i=1}^n \mu_i \delta_{x_i}$ and $\nu = \sum_{j=1}^n \nu_j \delta_{y_j}$, set:

$$\begin{cases} \mu = (\mu_i)_{1 \leq i \leq n} \in \mathbb{R}^n, \\ \nu = (\nu_j)_{1 \leq j \leq n} \in \mathbb{R}^n, \\ u_{t+\frac{1}{2}} = (e^{\frac{\phi_{t+1/2}(x_i)}{\lambda}} \mu_i)_{1 \leq i \leq n} \in \mathbb{R}^n, \\ v_t = (e^{\frac{\psi_t(y_j)}{\lambda}} \nu_j)_{1 \leq j \leq n} \in \mathbb{R}^n, \\ \text{and } K = (e^{-c(x_i, y_j)/\lambda})_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}. \end{cases}$$
 Then:
$$\begin{cases} u_{t+\frac{1}{2}} = \mu \oslash K v_t, \\ v_{t+1} = \nu \oslash K^\top u_{t+\frac{1}{2}}. \end{cases}$$

Theorem (Sinkhorn, 1964): The sequences $(u_t)_t, (v_t)_t$ converge to the unique scalings u^*, v^* of the matrix K that satisfy $\gamma^* := \operatorname{diag}(u^*) K \operatorname{diag}(v^*) \in \Gamma(\mu, \nu).$

Sinkhorn's algorithm

$$\begin{cases} \phi_{t+\frac{1}{2}}(x) = -\lambda \log \int \exp\left(\frac{\psi_t(y) - c(x,y)}{\lambda}\right) \mathrm{d}\nu(y) & \text{for μ-a.e. } x, \\ \psi_{t+1}(y) = -\lambda \log \int \exp\left(\frac{\phi_{t+1/2}(x) - c(x,y)}{\lambda}\right) \mathrm{d}\mu(x) & \text{for ν-a.e. } y. \end{cases}$$

▶ Link with **matrix scaling**: when $\mu = \sum_{i=1}^n \mu_i \delta_{x_i}$ and $\nu = \sum_{j=1}^n \nu_j \delta_{y_j}$, set:

$$\begin{cases} \mu = (\mu_i)_{1 \leq i \leq n} \in \mathbb{R}^n, \\ \nu = (\nu_j)_{1 \leq j \leq n} \in \mathbb{R}^n, \\ u_{t+\frac{1}{2}} = (e^{\frac{\phi_{t+1/2}(x_i)}{\lambda}} \mu_i)_{1 \leq i \leq n} \in \mathbb{R}^n, \\ v_t = (e^{\frac{\psi_t(y_j)}{\lambda}} \nu_j)_{1 \leq j \leq n} \in \mathbb{R}^n, \\ \text{and } K = (e^{-c(x_i, y_j)/\lambda})_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}. \end{cases}$$
 Then:
$$\begin{cases} u_{t+\frac{1}{2}} = \mu \otimes K v_t, \\ v_{t+1} = \nu \otimes K^\top u_{t+\frac{1}{2}}. \end{cases}$$

Theorem (Sinkhorn, 1964): The sequences $(u_t)_t, (v_t)_t$ converge to the unique scalings u^*, v^* of the matrix K that satisfy

$$\gamma^* := \operatorname{diag}(\mathbf{u}^*) K \operatorname{diag}(\mathbf{v}^*) \in \Gamma(\mu, \nu).$$

→ What is the speed of this convergence?

Sinkhorn's algorithm - Known convergence rates

▶ Hilbert's projective metric on $(\mathbb{R}_+^*)^n$:

$$\forall u, \tilde{u} \in (\mathbb{R}_+^*)^n, \quad d_{\mathcal{H}}(u, \tilde{u}) = \log \max_{i,j} \frac{u_i \tilde{u}_j}{u_i \tilde{u}_i} = \|\log u - \log \tilde{u}\|_{osc}.$$

Theorem (Birkhoff, 1957; Samelson et al., 1957):

Any matrix $K \in (\mathbb{R}_+^*)^{n \times n}$ is a contraction on $(\mathbb{R}_+^*)^n$ with respect to $d_{\mathcal{H}}$:

$$\forall u, \tilde{u} \in (\mathbb{R}_+^*)^n, \quad d_{\mathcal{H}}(Ku, K\tilde{u}) \leq \kappa(K)d_{\mathcal{H}}(u, \tilde{u}).$$

Sinkhorn's algorithm - Known convergence rates

▶ Hilbert's projective metric on
$$(\mathbb{R}_+^*)^n$$
:
$$\forall u, \tilde{u} \in (\mathbb{R}_+^*)^n, \quad d_{\mathcal{H}}(u, \tilde{u}) = \log \max_{i,j} \frac{u_i \tilde{u}_j}{u_j \tilde{u}_i} = \|\log u - \log \tilde{u}\|_{osc}.$$

Theorem (Birkhoff, 1957; Samelson et al., 1957):

Any matrix $K \in (\mathbb{R}_+^*)^{n \times n}$ is a contraction on $(\mathbb{R}_+^*)^n$ with respect to $d_{\mathcal{H}}$:

$$\forall u, \tilde{u} \in (\mathbb{R}_+^*)^n, \quad d_{\mathcal{H}}(Ku, K\tilde{u}) \leq \kappa(K)d_{\mathcal{H}}(u, \tilde{u}).$$

Corollary (Franklin and Lorenz, 1989):

The Sinkhorn sequences satisfy:

$$\begin{cases} \|\phi_t - \phi_*\|_{osc} \le (1 - e^{-c_{\infty}/\lambda})^t \|\phi_0 - \phi_*\|_{osc}, \\ \|\psi_t - \psi_*\|_{osc} \le (1 - e^{-c_{\infty}/\lambda})^t \|\psi_0 - \psi_*\|_{osc}, \end{cases}$$

where $c_{\infty} = \|c\|_{\rm osc} = \sup c - \inf c$.

Sinkhorn's algorithm - Known convergence rates

▶ Hilbert's projective metric on
$$(\mathbb{R}_+^*)^n$$
:
$$\forall u, \tilde{u} \in (\mathbb{R}_+^*)^n, \quad d_{\mathcal{H}}(u, \tilde{u}) = \log \max_{i,j} \frac{u_i \tilde{u}_j}{u_j \tilde{u}_i} = \|\log u - \log \tilde{u}\|_{osc}.$$

Theorem (Birkhoff, 1957; Samelson et al., 1957):

Any matrix $K \in (\mathbb{R}_+^*)^{n \times n}$ is a contraction on $(\mathbb{R}_+^*)^n$ with respect to $d_{\mathcal{H}}$:

$$\forall u, \tilde{u} \in (\mathbb{R}_+^*)^n, \quad d_{\mathcal{H}}(Ku, K\tilde{u}) \leq \kappa(K)d_{\mathcal{H}}(u, \tilde{u}).$$

Corollary (Franklin and Lorenz, 1989):

The Sinkhorn sequences satisfy:

$$\begin{cases} \left\|\phi_t - \phi_*\right\|_{osc} \leq (1 - e^{-c_{\infty}/\lambda})^t \left\|\phi_0 - \phi_*\right\|_{osc}, \\ \left\|\psi_t - \psi_*\right\|_{osc} \leq (1 - e^{-c_{\infty}/\lambda})^t \left\|\psi_0 - \psi_*\right\|_{osc}, \end{cases}$$

where $c_{\infty} = \|c\|_{\rm osc} = \sup c - \inf c$.

Problem: The constant $e^{-c_{\infty}/\lambda}$ is very small when λ is small.

Sinkhorn's algorithm - Known convergence rates

▶ Sub-optimality gap: $\forall t$, $\delta_t = F(\phi_*, \psi_*) - F(\phi_{t+1/2}, \psi_t)$, where $F(\phi, \psi) = \langle \phi | \mu \rangle + \langle \psi | \nu \rangle + \lambda (1 - \langle e^{\frac{\phi \oplus \psi - c}{\lambda}} | \mu \otimes \nu \rangle)$.

Theorem (Dvurechensky, Gasnikov and Kroshnin, 2018):

The sub-optimality satisfies:

$$\delta_t \leq \frac{2c_\infty^2}{\lambda t}.$$

Sinkhorn's algorithm - Known convergence rates

Sub-optimality gap: $\forall t$, $\delta_t = F(\phi_*, \psi_*) - F(\phi_{t+1/2}, \psi_t)$, where $F(\phi, \psi) = \langle \phi | \mu \rangle + \langle \psi | \nu \rangle + \lambda (1 - \langle e^{\frac{\phi \oplus \psi - c}{\lambda}} | \mu \otimes \nu \rangle)$.

Theorem (Dvurechensky, Gasnikov and Kroshnin, 2018):

The sub-optimality satisfies:

$$\delta_t \leq \frac{2c_\infty^2}{\lambda t}.$$

Problem: Polynomial convergence rate instead of exponential convergence rate.

Main result

Exponential convergence rates with robust contraction constants.

► Case 1: log-concave source measure.

Theorem (Chizat, D. and Vaškevičius, 2024):

- $\blacktriangleright \text{ Let } c(x,y) = -\langle x,y \rangle.$
- ▶ Let $\mathcal{X} \subset \mathbb{R}^d$ be compact and convex, let $\mu \in \mathcal{P}_{a.c.}(\mathcal{X})$ with log-concave density.
- ▶ Let $\mathcal{Y} \subset \mathbb{R}^d$ be compact and $\nu \in \mathcal{P}(\mathcal{Y})$.

If $\lambda \leq c_{\infty}$, then

$$\forall t \geq 0, \qquad \delta_t \leq \delta_0 \left(1 - \frac{\lambda}{2^9 c_\infty}\right)^t.$$

Main result

Exponential convergence rates with robust contraction constants.

Case 2: source measure with bounded density.

Theorem (Chizat, D. and Vaškevičius, 2024):

- $\blacktriangleright \text{ Let } c(x,y) = -\langle x,y \rangle.$
- Let $\mathcal{X} \subset \mathbb{R}^d$ be compact and convex, let $\mu \in \mathcal{P}_{a.c.}(\mathcal{X})$ and assume that the density of μ satisfies

$$0 < m \le f_{\mu} \le M < +\infty.$$

▶ Let $\mathcal{Y} \subset \mathbb{R}^d$ be compact and $\nu \in \mathcal{P}(\mathcal{Y})$.

If $\lambda \leq c_{\infty}$, then

$$\forall t \geq 0, \qquad \delta_t \leq \delta_0 \left(1 - \frac{m}{2^{10} M} \frac{\lambda^2}{c_\infty^2} \right)^t.$$

Main result

Exponential convergence rates with robust contraction constants.

► Case 2: source measure with bounded density.

Theorem (Chizat, D. and Vaškevičius, 2024):

- $\blacktriangleright \text{ Let } c(x,y) = -\langle x,y \rangle.$
- ▶ Let $\mathcal{X} \subset \mathbb{R}^d$ be compact and convex, let $\mu \in \mathcal{P}_{a.c.}(\mathcal{X})$ and assume that the density of μ satisfies

$$0 < m \le f_{\mu} \le M < +\infty.$$

▶ Let $\mathcal{Y} \subset \mathbb{R}^d$ be compact and $\nu \in \mathcal{P}(\mathcal{Y})$.

If $\lambda \leq c_{\infty}$, then

$$\forall t \geq 0, \qquad \delta_t \leq \delta_0 \left(1 - \frac{m}{2^{10}M} \frac{\lambda^2}{c_{-}^2}\right)^t.$$

Remarks:

- Convexity of ${\mathcal X}$ may be relaxed.
- Cost c may be any C^2 function.
- In certain settings, $\frac{\lambda^2}{c_{\infty}^2}$ may be replaced with $\frac{\lambda}{c_{\infty}}$ for t large enough.

Preamble: semi-dual functional

Recall we want to solve

$$\sup_{\phi \in L^1(\mu), \psi \in L^1(\nu)} F(\phi, \psi),$$

where
$$F(\phi,\psi) = \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu + \lambda \left(1 - \int \int \exp\left(\frac{\phi \oplus \psi - c}{\lambda}\right) \mathrm{d}\mu \mathrm{d}\nu\right)$$
.

Preamble: semi-dual functional

Recall we want to solve

$$\sup_{\phi\in L^1(\mu),\psi\in L^1(\nu)} F(\phi,\psi),$$

where
$$F(\phi,\psi) = \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu + \lambda \left(1 - \int \int \exp\left(\frac{\phi \oplus \psi - c}{\lambda}\right) \mathrm{d}\mu \mathrm{d}\nu\right)$$
.

▶ **Semi-dual functional:** for any $\psi \in L^1(\nu)$, define

$$E(\psi) = \sup_{\phi \in L^{1}(\mu)} F(\phi, \psi)$$
$$= \int \psi^{c, \lambda} d\mu + \int \psi d\nu.$$

where
$$\psi^{c,\lambda}(x) = -\lambda \log \int e^{\frac{\psi(y) - c(x,y)}{\lambda}} d\nu(y)$$
.

Preamble: semi-dual functional

Recall we want to solve

$$\sup_{\phi\in L^1(\mu),\psi\in L^1(\nu)} F(\phi,\psi),$$

where
$$F(\phi,\psi) = \int \phi \mathrm{d}\mu + \int \psi \mathrm{d}\nu + \lambda \left(1 - \int \int \exp\left(\frac{\phi \oplus \psi - c}{\lambda}\right) \mathrm{d}\mu \mathrm{d}\nu\right)$$
.

▶ Semi-dual functional: for any $\psi \in L^1(\nu)$, define

$$E(\psi) = \sup_{\phi \in L^{1}(\mu)} F(\phi, \psi)$$
$$= \int \psi^{c, \lambda} d\mu + \int \psi d\nu.$$

where
$$\psi^{c,\lambda}(x) = -\lambda \log \int e^{\frac{\psi(y) - c(x,y)}{\lambda}} d\nu(y)$$
.

New problem: solve

$$\sup_{\psi \in L^1(\nu)} E(\psi).$$

Preamble: semi-dual functional

$$\label{eq:energy_energy} E: \psi \mapsto \int \psi^{\mathsf{c},\lambda} \mathrm{d}\mu + \int \psi \mathrm{d}\nu, \quad \text{where} \quad \psi^{\mathsf{c},\lambda}(x) = -\lambda \log \int \mathrm{e}^{\frac{\psi(y) - \mathsf{c}(x,y)}{\lambda}} \mathrm{d}\nu(y).$$

Key properties:

Preamble: semi-dual functional

$$E: \psi \mapsto \int \psi^{c,\lambda} \mathrm{d}\mu + \int \psi \mathrm{d}\nu, \quad \text{where} \quad \psi^{c,\lambda}(x) = -\lambda \log \int e^{\frac{\psi(y) - c(x,y)}{\lambda}} \mathrm{d}\nu(y).$$

Key properties:

1. Sub-optimality:

$$\delta_t = \mathsf{E}(\psi_*) - \mathsf{E}(\psi_t).$$

Preamble: semi-dual functional

$$\label{eq:epsilon} E: \psi \mapsto \int \psi^{c,\lambda} \mathrm{d}\mu + \int \psi \mathrm{d}\nu, \quad \text{where} \quad \psi^{c,\lambda}(x) = -\lambda \log \int \mathrm{e}^{\frac{\psi(y) - c(x,y)}{\lambda}} \mathrm{d}\nu(y).$$

Key properties:

1. Sub-optimality:

$$\delta_t = E(\psi_*) - E(\psi_t).$$

2. One-step-improvement:

$$\boxed{ \delta_{t+1} \leq \delta_t - \lambda \mathrm{KL}(\nu | \nu[\psi_t]), }$$
 where $\nu[\psi](y) = \int e^{\frac{\psi^{\epsilon, \lambda}(x) + \psi(y) - \epsilon(x, y)}{\lambda}} \mathrm{d}\mu(x).$

Preamble: semi-dual functional

$$\label{eq:epsilon} E: \psi \mapsto \int \psi^{\mathsf{c},\lambda} \mathrm{d}\mu + \int \psi \mathrm{d}\nu, \quad \text{where} \quad \psi^{\mathsf{c},\lambda}(x) = -\lambda \log \int \mathrm{e}^{\frac{\psi(y) - c(x,y)}{\lambda}} \mathrm{d}\nu(y).$$

Key properties:

1. Sub-optimality:

$$\delta_t = E(\psi_*) - E(\psi_t).$$

2. One-step-improvement:

$$\begin{split} & \delta_{t+1} \leq \delta_t - \lambda \mathrm{KL}(\nu | \nu[\psi_t]), \\ \text{where } \nu[\psi](y) = \int e^{\frac{\psi^{c,\lambda}(x) + \psi(y) - c(x,y)}{\lambda}} \mathrm{d}\mu(x). \end{split}$$

3. E is concave and its gradient is

$$\nabla E(\psi) = \nu - \nu[\psi].$$

One-step-improvement bound

▶ By concavity of *E*,

$$\delta_t \le \langle \psi^* - \psi_t | \nu - \nu[\psi_t] \rangle.$$

One-step-improvement bound

▶ By concavity of *E*,

$$\delta_t \le \langle \psi^* - \psi_t | \nu - \nu[\psi_t] \rangle.$$

For all $\eta > 0$,

$$\begin{split} \delta_t &= \eta^{-1} \{ \eta \langle \psi^* - \psi_t | \nu - \nu[\psi_t] \rangle - \mathrm{KL}(\nu | \nu[\psi_t]) \} + \eta^{-1} \mathrm{KL}(\nu | \nu[\psi_t]) \\ &\leq \eta^{-1} \sup_{\substack{\nu' \in \mathcal{P}(\mathbb{R}^d)}} \{ \eta \langle \psi^* - \psi_t | \nu' - \nu[\psi_t] \rangle - \mathrm{KL}(\nu' | \nu[\psi_t]) \} + \eta^{-1} \mathrm{KL}(\nu | \nu[\psi_t]) \\ &= \eta^{-1} \log \mathbb{E}_{\nu[\psi_t]} \exp(\eta f) + \eta^{-1} \mathrm{KL}(\nu | \nu[\psi_t]), \end{split}$$

where
$$f = \psi^* - \psi_t - \mathbb{E}_{\nu[\psi_t]}[\psi^* - \psi_t].$$

$$\delta_t \leq \eta^{-1} \log \mathbb{E}_{\nu[\psi_t]} \exp(\eta f) + \eta^{-1} \mathrm{KL}(\nu | \nu[\psi_t]).$$

One-step-improvement bound

$$\delta_t \leq \eta^{-1} \log \mathbb{E}_{\nu[\psi_t]} \exp(\eta f) + \eta^{-1} \mathrm{KL}(\nu | \nu[\psi_t]).$$

► Recovering the polynomial rate:

One-step-improvement bound

$$\delta_t \leq \eta^{-1} \log \mathbb{E}_{\nu[\psi_t]} \exp(\eta f) + \eta^{-1} \mathrm{KL}(\nu | \nu[\psi_t]).$$

- ► Recovering the polynomial rate:
 - 1. Using $\|f\|_{osc} = \|\psi^* \psi_t\|_{osc} \le 2c_{\infty}$, Hoeffding's inequality yields $\boxed{\mathbb{E}_{\nu[\psi_t]} \exp(\eta f) \le \exp(2\eta^2 c_{\infty}^2)}.$
 - 2. Injecting and optimizing in η yields

$$\delta_t \leq c_\infty \sqrt{2\mathrm{KL}(\nu|\nu[\psi_t])}.$$

3. Combining with the one-step-improvement $\delta_{t+1} \leq \delta_t - \lambda \mathrm{KL}(\nu | \nu[\psi_t])$,

$$\delta_t \leq c_\infty \sqrt{2\lambda^{-1}(\delta_t - \delta_{t+1})}.$$

4. Re-arranging leads to $\frac{\lambda}{2c_{\infty}^2} \leq \frac{1}{\delta_{t+1}} - \frac{1}{\delta_t}$, which yields

$$\delta_t \le \frac{2c_\infty^2}{\lambda t}.$$

One-step-improvement bound

$$\delta_t \leq \eta^{-1} \log \mathbb{E}_{\nu[\psi_t]} \exp(\eta f) + \eta^{-1} \mathrm{KL}(\nu | \nu[\psi_t]).$$

▶ Using $||f||_{osc} \le 2c_{\infty}$, Bernstein's inequality yields

$$\mathbb{E}_{\nu[\psi_t]}\left[\exp\left(\eta f\right)\right] \leq \exp\left(\frac{\eta^2 \mathbb{V}\mathrm{ar}_{\nu[\psi_t]}(\psi^* - \psi_t)}{2(1 - \eta\frac{2c_\infty}{3})}\right).$$

One-step-improvement bound

$$\delta_t \leq \eta^{-1} \log \mathbb{E}_{\nu[\psi_t]} \exp(\eta f) + \eta^{-1} \mathrm{KL}(\nu | \nu[\psi_t]).$$

▶ Using $||f||_{osc} \le 2c_{\infty}$, Bernstein's inequality yields

$$\mathbb{E}_{\nu[\psi_t]}\left[\exp\left(\eta f\right)\right] \leq \exp\left(\frac{\eta^2 \mathbb{V}\mathrm{ar}_{\nu[\psi_t]}(\psi^* - \psi_t)}{2(1 - \eta\frac{2c_\infty}{3})}\right).$$

Consequence:

Proposition (Chizat, D. and Vaškevičius, 2024):

$$\delta_t \leq 2\sqrt{\lambda^{-1}} \mathbb{V}\mathrm{ar}_{\nu} (\psi^* - \psi_t) (\delta_t - \delta_{t+1}) + \frac{14c_{\infty}}{3} \lambda^{-1} (\delta_t - \delta_{t+1}).$$

One-step-improvement bound

$$\delta_t \leq \eta^{-1} \log \mathbb{E}_{\nu[\psi_t]} \exp(\eta f) + \eta^{-1} \mathrm{KL}(\nu | \nu[\psi_t]).$$

▶ Using $||f||_{osc} \le 2c_{\infty}$, Bernstein's inequality yields

$$\mathbb{E}_{\nu[\psi_t]}\left[\exp\left(\eta f\right)\right] \leq \exp\left(\frac{\eta^2 \mathbb{V}\mathrm{ar}_{\nu[\psi_t]}(\psi^* - \psi_t)}{2(1 - \eta\frac{2c_\infty}{3})}\right).$$

Consequence:

Proposition (Chizat, D. and Vaškevičius, 2024):

$$\delta_t \leq 2\sqrt{\lambda^{-1}} \mathbb{V}\mathrm{ar}_{\nu} (\psi^* - \psi_t) (\delta_t - \delta_{t+1}) + \frac{14c_{\infty}}{3} \lambda^{-1} (\delta_t - \delta_{t+1}).$$

o To conclude, need to relate $\mathbb{V}\mathrm{ar}_{\nu}(\psi^* - \psi_t)$ back to δ_t and δ_{t+1} .

Strong-concavity estimate

• With $v = \psi^* - \psi_t$, sub-optimality satisfies

$$\delta_t = E(\psi^*) - E(\psi_t) = -\int_{\varepsilon=0}^1 \int_{s-\varepsilon}^1 \frac{\mathrm{d}^2}{\mathrm{d}s^2} E(\psi_t + s\nu) \mathrm{d}s \mathrm{d}\varepsilon.$$

Strong-concavity estimate

• With $v = \psi^* - \psi_t$, sub-optimality satisfies

$$\delta_t = E(\psi^*) - E(\psi_t) = -\int_{\varepsilon=0}^1 \int_{s=\varepsilon}^1 \frac{\mathrm{d}^2}{\mathrm{d}s^2} E(\psi_t + s \nu) \mathrm{d}s \mathrm{d}\varepsilon.$$

▶ Second-order derivative of $E: \forall \psi, \nu \in L^1(\nu), \varepsilon \in \mathbb{R}$,

$$\frac{\mathrm{d}^2}{\mathrm{d}\varepsilon^2} E(\psi + \mathsf{s} \mathsf{v}) = -\frac{1}{\lambda} \int \mathbb{V} \mathrm{ar}_{\nu_\mathsf{x}[\psi + \mathsf{s} \mathsf{v}]}(\mathsf{v}) \mathrm{d}\mu(\mathsf{x}),$$

where
$$\nu_{x}[\psi](y) = e^{\frac{\psi^{c,\lambda}(x) + \psi(y) - c(x,y)}{\lambda}}$$
 is s.t. $\nu[\psi] = \int \nu_{x}[\psi] \mathrm{d}\mu(x)$.

Strong-concavity estimate

• With $v = \psi^* - \psi_t$, sub-optimality satisfies

$$\delta_t = E(\psi^*) - E(\psi_t) = -\int_{\varepsilon=0}^1 \int_{s=\varepsilon}^1 \frac{\mathrm{d}^2}{\mathrm{d}s^2} E(\psi_t + sv) \mathrm{d}s \mathrm{d}\varepsilon.$$

▶ Second-order derivative of $E: \forall \psi, v \in L^1(\nu), \varepsilon \in \mathbb{R}$,

$$\frac{\mathrm{d}^2}{\mathrm{d}\varepsilon^2} E(\psi + s \nu) = -\frac{1}{\lambda} \int \mathbb{V} \mathrm{ar}_{\nu_x[\psi + s \nu]}(\nu) \mathrm{d}\mu(x),$$

where $\nu_x[\psi](y) = e^{\frac{\psi^{c,\lambda}(x) + \psi(y) - c(x,y)}{\lambda}}$ is s.t. $\nu[\psi] = \int \nu_x[\psi] \mathrm{d}\mu(x)$.

$$\Longrightarrow \boxed{\delta_t = \frac{1}{\lambda} \int_{\varepsilon=0}^1 \int_{s=\varepsilon}^1 \int \mathbb{V} \mathrm{ar}_{\nu_x[\psi+s\nu]}(\nu) \mathrm{d}\mu(x) \mathrm{d}s \mathrm{d}\varepsilon.}$$

But $\int \mathbb{V} \operatorname{ar}_{\nu_x[\psi+s\nu]}(\nu) d\mu(x) \leq \mathbb{V} \operatorname{ar}_{\nu[\psi+s\nu]}(\nu)$, and we need a reverse inequality.

Strong-concavity estimate

▶ We need a way to upper bound $\frac{d^2}{ds^2}E(\psi + sv)$ in terms of $\mathbb{V}ar_{\nu[\psi+sv]}(v)$.

Strong-concavity estimate

- We need a way to upper bound $\frac{d^2}{ds^2}E(\psi+s\nu)$ in terms of $\mathbb{V}ar_{\nu[\psi+s\nu]}(\nu)$.
- ▶ **Log-partition function:** for any $\psi \in L^1(\nu)$, define

$$I(\psi) = \log \int \exp(\psi^{c,\lambda}) d\mu.$$

▶ I is twice-differentiable and satisfies

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2}I(\psi+sv)\geq C(\lambda)\frac{\mathrm{d}^2}{\mathrm{d}s^2}E(\psi+sv)+\tilde{C}(\lambda)\mathrm{Var}_{\nu[\psi+sv]}(v).$$

Strong-concavity estimate

Theorem (Prékopa, 1971/73; Leindler, 1972; Cordero-Erausquin et al., 2006): *Weighted Prékopa-Leindler inequality*.

Let $\xi \geq 0$ and ρ be a measure on \mathbb{R}^d of the form $d\rho = e^{-W}$ where $\nabla^2 W \succeq \xi$. Let $\alpha \in [0,1]$ and let $f,g,h:\mathbb{R}^d \to \mathbb{R}_+$ be such that for all $x,y\in\mathbb{R}^d$,

$$h((1-\alpha)x+\alpha y)\geq e^{-\xi\alpha(1-\alpha)\|x-y\|^2/2}f(x)^{1-\alpha}g(y)^{\alpha}.$$

Then,

$$\int_{\mathbb{R}^d} h \mathrm{d}
ho \geq \left(\int_{\mathbb{R}^d} f \mathrm{d}
ho
ight)^{1-s} \left(\int_{\mathbb{R}^d} g \mathrm{d}
ho
ight)^s.$$

Strong-concavity estimate

Theorem (Prékopa, 1971/73; Leindler, 1972; Cordero-Erausquin et al., 2006): *Weighted Prékopa-Leindler inequality*.

Let $\xi \geq 0$ and ρ be a measure on \mathbb{R}^d of the form $d\rho = e^{-W}$ where $\nabla^2 W \succeq \xi$. Let $\alpha \in [0,1]$ and let $f,g,h:\mathbb{R}^d \to \mathbb{R}_+$ be such that for all $x,y\in\mathbb{R}^d$,

$$h((1-\alpha)x+\alpha y)\geq e^{-\xi\alpha(1-\alpha)\|x-y\|^2/2}f(x)^{1-\alpha}g(y)^{\alpha}.$$

Then,

$$\int_{\mathbb{R}^d} h \mathrm{d}
ho \geq \left(\int_{\mathbb{R}^d} f \mathrm{d}
ho
ight)^{1-s} \left(\int_{\mathbb{R}^d} g \mathrm{d}
ho
ight)^s.$$

$$I(\psi) = \log \int \exp(\psi^{c,\lambda}) d\mu.$$

Lemma (Chizat, D. and Vaškevičius, 2024): I is a concave functional.

Strong-concavity estimate

From the concavity of *I*:

Proposition (Chizat, D. and Vaškevičius, 2024):

$$\frac{\mathrm{d}^2}{\mathrm{d} s^2} E(\psi + s v) \leq -C(\lambda) \mathbb{V}\mathrm{ar}_{\nu[\psi + s v]}(v).$$

Strong-concavity estimate

From the concavity of *I*:

Proposition (Chizat, D. and Vaškevičius, 2024):

$$\frac{\mathrm{d}^2}{\mathrm{d}s^2} E(\psi + sv) \le -C(\lambda) \mathbb{V}\mathrm{ar}_{\nu[\psi + sv]}(v).$$

Remarks:

- Case $\lambda=0$ and $c(x,y)=-\langle x|y\rangle$ can be deduced from the Brascamp-Lieb inequality.
 - Valid for any semi-concave cost c (e.g. C^2 cost).
- In the $\lambda \to 0$ regime, yields a novel estimate of the strong-concavity of the dual Kantorovich problem in OT.

Conclusion

► The strong-concavity estimate yields

$$\delta_t = -\int_{\varepsilon=0}^1 \int_{s=\varepsilon}^1 \frac{\mathrm{d}^2}{\mathrm{d}s^2} E(\psi_t + sv) \mathrm{d}s \mathrm{d}\varepsilon \ge C(\lambda) \mathbb{V} \mathrm{ar}_{\nu} (\psi^* - \psi_t).$$

Together with the one-step-improvement bound, this entails

$$\delta_t \leq 2\sqrt{C(\lambda)\delta_t(\delta_t - \delta_{t+1})} + \frac{14c_{\infty}}{3}\lambda^{-1}(\delta_t - \delta_{t+1}).$$

Conclusion:

$$\delta_{t+1} \leq \kappa(\lambda)\delta_t$$
.

Lower bound

Tightness of the the $1 - \Theta(\frac{\lambda}{c_{\infty}})$ contraction constant.

Theorem (Chizat, D. and Vaškevičius, 2024):

- ▶ On \mathbb{R} , let $\mu = \mathcal{N}(0,1)$ and $\nu = \mathcal{N}(0,\sigma^2)$ with $\sigma > 0$.
- ▶ Let c(x,y) = -xy and $\psi_0 = 0$.

If $\lambda \leq \sigma/5$, then

$$\delta_t \geq \frac{\sigma}{20} \left(1 - \frac{5\lambda}{\sigma} \right)^t$$
.

Main result: general statement

Theorem (Chizat, D. and Vaškevičius, 2024): Assume that \mathcal{X} is convex, $\exists \xi \in \mathbb{R}_+$ s.t. $\forall y \in \mathcal{Y}, x \mapsto c(x, y)$ is ξ -semi-concave, and $\|c\|_{\operatorname{osc}} = c_{\infty} < \infty$.

Then, for any integer $t \geq 0$, the Sinkhorn iterates $(\psi_t)_{t\geq 0}$ satisfy

$$E(\psi^*) - E(\psi_{t+1}) \le (1 - \alpha^{-1})(E(\psi^*) - E(\psi_t))$$

provided either one of the following additional assumption holds:

- 1. The domain \mathcal{X} is compact and included in $\{x: \|x\| \leq R_{\mathcal{X}}\}$, the measure μ admits a density $f_{\mu}(x)$ such that $\frac{\sup_{x \in \mathcal{X}} f_{\mu}(x)}{\inf_{x' \in \mathcal{X}} f_{\mu}(x')} = \kappa < \infty$, and
 - $\alpha = 176\{1 + (c_{\infty} + \frac{\xi}{2}R_{\chi}^{2})\kappa\lambda^{-1} + c_{\infty}^{2}\lambda^{-2}\}.$
- 2. There exists a ξ -strongly convex function $V: \mathcal{X} \to \mathbb{R}$ such that the density of μ reads $f_{\mu}(x) = e^{-V(x)}$, and $\alpha = 176\{1 + c_{\infty}\lambda^{-1} + c_{\infty}^2\lambda^{-2}\}.$
- 3. There exists $\zeta \in \mathbb{R}_+$ such that for all $y \in \mathcal{Y}$, $x \mapsto c(x,y)$ is ζ -semi-convex, there exists a max $(\xi, (\xi + \zeta)/\lambda)$ -strongly convex function $V : \mathcal{X} \to \mathbb{R}$ such that the density of μ reads $f_{\mu}(x) = e^{-V(x)}$, and $\alpha = 176\{1 + c_{\infty}\lambda^{-1}\}$.

Thank you for your attention!