

Parcours en profondeur

CM nº3 — Algorithmique (AL5)

Matěj Stehlík 6/10/2023

Exploration d'un labyrinthe

Pour explorer un labyrinthe, il suffit d'une pelote de ficelle et d'un morceau de craie :

- marquer les carrefours que vous avez déjà visitées avec la craie pour empêcher de boucler
- utiliser une ficelle pour pouvoir revenir au point de départ.

On peut utiliser le même principle pour explorer un graphe.

Rappel: piles (Stack)

- Une *pile* est une structure de données linéaire dans laquelle les éléments ne peuvent être insérés et supprimés qu'en haut de la liste.
- Une pile suit le principe *LIFO* (last in, first out, soit dernier entré, premier sorti), c'est-à-dire que l'élément inséré en dernier dans la liste est le premier élément à être supprimé de la liste.
- Empiler = ajouter un élément sur la pile (en anglais : push).
- Dépiler = enlever un élément de la pile et le renvoyer (en anglais : pop).
- · Vérifier si la pile est vide

Parcours en profondeur (DFS) pour les graphes connexes

```
Entrées : graphe G = (V, E) et sommet r \in V
début
   créer pile(S)
   pour tous les u \in V faire
    | marqué[u] \leftarrow False
   empiler(S, r)
   tant que S \neq \emptyset faire
       u \leftarrow \text{dépiler}(S)
       si marqué[u] = Faux alors
           marqué[u] \leftarrow Vrai
           pour tous les uv \in E faire
            \mid empiler(S, v)
```


$$S = [a]$$

$$S = []$$
$$u = a$$

$$S = [b, c]$$

$$S = [b]$$
$$u = c$$

$$S = [b, a, f]$$

$$S = [b, a]$$
$$u = f$$

$$S = [b, a, c, d, g]$$

$$S = \begin{bmatrix} b, a, c, d \end{bmatrix}$$
$$u = g$$

$$S = [b, a, c, d, e, f, h]$$

$$S = [b, a, c, d, e, f]$$
$$u = h$$

$$S = [b, a, c, d, e, f, e, g]$$

$$S = [b, a, c, d, e]$$

$$S = \begin{bmatrix} b, a, c, d \end{bmatrix}$$
$$u = e$$

$$S = [b, a, c, d, d, g, h]$$

$$S = [b, a, c, d, d, g]$$

$$S = [b, a, c, d, d]$$

$$S = [b, a, c, d, d]$$
$$u = d$$

$$S = [b, a, c, d, e, f]$$

$$S = [b, a, c, d, e]$$

$$S = [b, a, c, d]$$

$$S = [b, a, c]$$

$$S = [b, a]$$

$$S = [b]$$

$$S = []$$
$$u = b$$

$$S = [a]$$

$$S = []$$

Version recursive de DFS pour les graphes connexes

```
Procédure explorer(G, u):

marqué[u] \leftarrow Vrai

pour tous les (u, v) \in E(G) faire

si marqué[v] = Faux alors

explorer(G, v)
```

Correction de la procédure explorer(G, u)

- Il faut montrer que la procédure $\explorer(G, u)$ visite tous les sommets de G atteignables à partir de u. (dans la unique composition que u
- Supposons par l'absurde que, à la fin d'exécution de explorer(G, u), il existe un sommet v non marqué. dens la même comp connexe.
- Soit P une chaîne de u à v.
- Soit w le dernier sommet de P (le plus lointain de u) qui est marqué.
- Soit x le successeur de w dans P.
- Contradiction : la procédure $\exp lorer(G, w)$ aurait marqué le sommet x.

Classification des arêtes

- Voici le résultat de l'exécution de explorer(G, a) sur un graphe G (en parcourant les arêtes par ordre alphabétique).
- Chaque fois qu'un nouveau sommet v est marqué, soit u le voisin de v
- Il y a une flèche rouge de u vers v si explorer(G, v) est appelé lorsque l'algorithme traitait le sommet u.
- Ces arêtes forment un arbre.
- Les autres arêtes sont appelés les arêtes *retour*.

Classification des arêtes

- Voici le résultat de l'exécution de explorer(G, a) sur un graphe G (en parcourant les arêtes par ordre alphabétique).
- Chaque fois qu'un nouveau sommet v est marqué, soit u le voisin de v
- Il y a une flèche rouge de u vers v si explorer(G, v) est appelé lorsque l'algorithme traitait le sommet u.
- Ces arêtes forment un arbre. (l'arbre du DFS)
- Les autres arêtes sont appelés les arêtes *retour*.

... et si le graphe n'est pas connexe?


```
Procédure explorer (G, u):
```

```
\begin{aligned} & \mathrm{marqu\acute{e}}[u] \leftarrow \mathrm{Vrai} \\ & \mathbf{pour} \ \mathbf{tous} \ \mathbf{les} \ (u,v) \in E(G) \ \mathbf{faire} \\ & | \mathbf{si} \ \mathrm{marqu\acute{e}}[v] = \mathrm{Faux} \ \mathbf{alors} \\ & | \ \mathsf{explorer} \ (G,v) \end{aligned}
```

Procédure DFS (G):

```
\begin{array}{c} \mathbf{pour\ tous\ les}\ u \in V(G)\ \mathbf{faire} \\ \sqsubseteq \ \mathrm{marqu\'e}[u] \leftarrow \mathrm{Faux} \\ \\ \mathbf{pour\ tous\ les}\ u \in V(G)\ \mathbf{faire} \\ \\ \sqsubseteq \ \mathbf{si}\ \mathrm{marqu\'e}[u] = \mathrm{Faux\ alors} \\ \\ \sqsubseteq \ \mathrm{explorer}\ (G,u) \end{array}
```

... et si le graphe n'est pas connexe?

Procédure explorer (G, u):

Procédure DFS (G):

```
\begin{array}{c} \textbf{pour tous les} \ u \in V(G) \ \textbf{faire} \\ & \lfloor \ \operatorname{marqu\'e}[u] \leftarrow \operatorname{Faux} \\ \\ \textbf{pour tous les} \ u \in V(G) \ \textbf{faire} \\ & \lfloor \ \operatorname{explorer} (G,u) \\ \end{array}
```

Composantes connexes d'un graphe

• On peut utiliser le parcours en profondeur pour identifier les composantes connexes d'un graphe.

```
Procédure prévisite (u):
   \operatorname{ccnum}[u] = \operatorname{cc}
Procédure explorer (G, u):
   marqué[u] \leftarrow Vrai
   prévisite(u)
   pour tous les (u, v) \in E(G)
    faire
```

```
Procédure DFS (G):
   cc \leftarrow 0
   pour tous les u \in V(G) faire
    | marqué[u] \leftarrow Faux
   pour tous les u \in V(G) faire
       si marqué[u] = Faux alors
        cc \leftarrow cc + 1 explorer (G,u)
```

Graphes orientés

$$G = (V, E)$$
 t.q. $E \subseteq (V)$ - graphe non orienté $G = (V, E)$ t.q. $E \subseteq V^2$ - graphe orienté

- Un graphe orienté est un couple G=(V,E) formé par un ensemble fini V et un sous-ensemble E de V^2 .
- Comme pour les graphes non orientés, V est l'ensemble de sommets de G.
- E est l'ensemble d'arcs (arêtes orientés).
- On représente les arcs par des flèches.
- Si $(u, v) \in E$, alors on trace une flèche de u vers v; u est la $t\hat{e}te$ et v la queue de l'arc (u, v).

$$V = \{1,2,3\}$$

$$V^{2} = V \times V$$

$$= \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,3)\}$$

$$\{3,1,(3,2),(3,3)\}$$

Chemins (chaînes orientées)

Définition

Un *chemin* dans un graphe orienté G = (V, E) est une suite de la forme $(v_0, e_1, v_1, \dots, e_k, v_k)$ où

- $v_i \in V$
- $e_i \in E$
- $e_{i+1} = (v_i, v_{i+1})$ pour $i = 0, \dots, k-1$.
- L'entier k est la *longueur* du chemin.

Circuits (cycles orientés)

Définition

Un *circuit* dans un graphe orienté G=(V,E) est une suite de la forme $(v_0,e_1,v_1,\ldots,e_k,v_0)$ où

- $v_i \in V$
- $e_i \in E$
- $e_{i+1} = (v_i, v_{i+1})$ pour $i = 0, \dots, k-1$.
- L'entier k est la *longueur* du circuit.

Parcours en profondeur dans les graphes orientés

```
Entrées : graphe G = (V, E) et sommet r \in V
début
    créer pile(S)
    pour tous les u \in V faire
     | marqué[u] \leftarrow False
    empiler(S, r)
    tant que S \neq \emptyset faire
        u \leftarrow \mathsf{d\acute{e}piler}(S)
        \mathbf{si} \ \mathrm{marqu\acute{e}}[u] = \mathrm{Faux} \ \mathbf{alors}
             marqué[u] \leftarrow Vrai
             pour tous les (u, v) \in E faire
             \mid empiler(S, v)
```

Parcours en profondeur dans les graphes orientés (version récursive)


```
Procédure explorer (G, u):
```

Procédure DFS (G):

```
\begin{array}{c} \mathbf{pour\ tous\ les}\ u \in V(G)\ \mathbf{faire} \\ & \sqsubseteq \ \mathrm{marqu\'e}[u] \leftarrow \mathrm{Faux} \\ \\ \mathbf{pour\ tous\ les}\ u \in V(G)\ \mathbf{faire} \\ & \sqsubseteq \ \mathrm{marqu\'e}[u] = \mathrm{Faux\ alors} \\ & \sqsubseteq \ \mathrm{explorer}\ (G,u) \end{array}
```

Parcours en profondeur dans les graphes orientés (version récursive)


```
Procédure explorer (G, u):
```

Procédure DFS (G):

```
\begin{array}{c} \mathbf{pour\ tous\ les}\ u \in V(G)\ \mathbf{faire} \\ \sqsubseteq \ \mathrm{marqu\'e}[u] \leftarrow \mathrm{Faux} \\ \\ \mathbf{pour\ tous\ les}\ u \in V(G)\ \mathbf{faire} \\ \\ \sqsubseteq \ \mathbf{si}\ \mathrm{marqu\'e}[u] = \mathrm{Faux\ alors} \\ \\ \sqsubseteq \ \mathrm{explorer}\ (G,u) \end{array}
```

Parcours en profondeur : pré- et post-visites

Procédure prévisite (u): $pre[s] \leftarrow t$ $t \leftarrow t+1$

Procédure explorer (G, u):

```
egin{aligned} & 	ext{marqu\'e}[u] \leftarrow 	ext{Vrai} \\ & 	ext{pr\'evisite}(u) \\ & 	ext{pour tous les } (u,v) \in E(G) \\ & 	ext{faire} \\ & 	ext{ } & 	ext{si } v \text{ non marqu\'e alors} \\ & 	ext{ } & 	ext{ } & 	ext{ } & 	ext{explorer} (G,v) \\ & 	ext{postvisite}(u) \end{aligned}
```

Procédure postvisite (u):

```
\mathbf{post}[s] \leftarrow t \\ t \leftarrow t + 1
```

Procédure DFS (G):

```
t=1
pour tous les u \in V(G)
 faire
 | marqué[u] \leftarrow Faux
pour tous les u \in V(G)
 faire
    \mathbf{si} \text{ marqu\'e}[u] = \text{Faux}
     alors
     \mid explorer(G,u)
```

Intervalles imbriqués

Observation (Théorème des parenthèses)

Pour toute paire de sommets u et v dans un graphe, soit les deux intervalles $[\operatorname{pre}(u),\operatorname{post}(u)]$ et $[\operatorname{pre}(v),\operatorname{post}(v)]$ sont disjoints, soit l'un est contenu dans l'autre.

- L'intervalle [pre(u), post(u)] représente le temps pendant lequel le sommet u était sur la pile S.
- Si $[\operatorname{pre}(u), \operatorname{post}(u)] \cap [\operatorname{pre}(v), \operatorname{post}(v)] \neq \emptyset$, alors il existe un temps t auquel u et v étaient dans la pile S.
- Si u a été empilé avant v, alors u sera dépilé après v, et donc $\operatorname{pre}(u) < \operatorname{pre}(v) < \operatorname{post}(v) < \operatorname{post}(u)$.
- De même, si v a été empilé avant u, alors $\operatorname{pre}(v) < \operatorname{pre}(u) < \operatorname{post}(u) < \operatorname{post}(v)$.

Terminologie pour l'analyse du BFS

- a est la racine de l'arbre.
- Les autres sommets son des descendants de a.
- De même, f a des descendants d, e, g et h.
- Inversement, f est un ancêtre de d, e, g et h.
- Les ancêtres immédiats sont les *parents*, et les descendants immédiats sont les *enfants* : c est le parent de f, et f est l'enfant de c.

Classification des arcs (1/3)

Un parcours en profondeur dans un graphe orienté G donne lieu a 4 types d'arcs de G. On dit que l'arc (u, v) est :

- 1. un arc de l'arbre si u est un parent de v.
- 2. avant si u est un ancêtre (non parent) de v
- 3. retour si v est un ancêtre de u
- 4. transverse dans les autres cas

Classification des arcs (2/3)

- u est un ancêtre de v ssi u est marqué en premier et v est marqué pendant explore(u) ssi $[pre(u), post(u)] \supset [pre(v), post(v)]$.
- Puisque u est un descendant de v ssi v est un ancêtre de u, (u,v) est un arc retour ssi $[\operatorname{pre}(u),\operatorname{post}(u)]\subset[\operatorname{pre}(v),\operatorname{post}(v)]$.
- Finalement, (u, v) est transverse ssi $[\operatorname{pre}(u), \operatorname{post}(u)] \cap [\operatorname{pre}(v), \operatorname{post}(v)] = \emptyset$.

Classification des arcs (3/3)

- Notons par $[u]_u$ l'intervalle [pre[u], post[u]].
- Voici un résumé des différentes possibilités pour un arc (u, v):

```
\begin{bmatrix} u & v \end{bmatrix}_v = \begin{bmatrix} u & v \end{bmatrix}_u arcs de l'arbre & arcs avant
```

```
\begin{bmatrix} v & \begin{bmatrix} u \end{bmatrix} \end{bmatrix}_u \quad \end{bmatrix}_v \quad \text{arcs retour}
```

```
\begin{bmatrix} v \end{bmatrix}_v \begin{bmatrix} u \end{bmatrix}_u arcs transverses
```

Remarque

Soit (u, v) un arc. Si post(u) < post(v), alors (u, v) est un arc retour.

Complexité du parcours en profondeur

- Chaque sommet n'est exploré qu'une seule fois, grâce au marquage.
- Pendant l'exploration d'un sommet, il y a les étapes suivantes :
 - 1. marquer le sommet (et éventuellement la pré- et la post-visite).
 - 2. parcourir les arêtes incidentes à u pour voir si elles mènent à un somment non marqué.
- Cette boucle prend un temps différent pour chaque sommet; considérons donc tous les sommets ensemble.
- Le temps total de l'étape 1 est alors O(n).
- Dans l'étape 2, chaque arête $uv \in E$ est examinée exactement deux fois une fois pendant explorer(G, u) et une fois pendant explorer(G, v).
- On conclut que la complexité du parcours en profondeur est de O(m+n) (égale à celle du parcours en largeur).

Graphes orientés acycliques (DAG)

Définition

Un graphe orienté sans circuits est dit acyclique, ou DAG (de l'anglais directed acyclic graph).

Observation

Un graphe orienté contient un circuit ssi le parcours en profondeur trouve un arc retour.

Démonstration (1/2)

- Soit G un graphe orienté et soit T l'arbre DFS, avec racine r.
- Supposons que (u, v) est un arc retour.
- v est donc un ancêtre de u; il existe un chemin P de v à u dans T.
- P et l'arc (u, v) forment un circuit.

Graphes orientés acycliques (DAG)

Démonstration (2/2)

- Inversement, si le graphe possède un circuit $C=(v_1,v_2,\ldots,v_k,v_1)$, soit v_i le premier sommet visité de C.
- Tous les autres sommets v_j de C sont atteignables à partir de v_i et seront donc ses descendants dans T.
- En particulier, l'arc (v_{i-1}, v_i) (ou (v_k, v_1) au cas où i = 1) est un arc retour.

À quoi ça sert...?

- Les DAG permettent de modéliser des relations telles que :
 - les causalités
 - les hiérarchies
 - les dépendances temporelles
- Par exemple, supposons que vous deviez effectuer de nombreuses tâches, mais que certaines d'entre elles ne puissent pas commencer avant que d'autres ne soient terminées.
- La question qui se pose alors est de savoir quel est l'ordre valide dans lequel les tâches doivent être accomplies.

Exemple

- Vous devez vous réveiller avant de vous lever.
- Vous devez être levé, mais pas encore habillé, pour prendre une douche.

L'existence d'un bon ordre

- De telles contraintes sont commodément représentées par un graphe orienté dans lequel chaque tâche est un sommet, et il existe un arc de u à v si u est une *précondition* pour v.
- En d'autres termes, avant d'exécuter une tâche, toutes les tâches qui y sont liées doivent être achevées.
- Si ce graphe orienté comporte un circuit, il n'y a pas de solution.
- Si par contre le graphe est un DAG, on aimerait trier les sommets de sorte que chaque arête aille d'un sommet antérieur à un sommet postérieur, afin que toutes les contraintes de précédence soient satisfaites.

Dans cet exemple, il existe (heureusement!) un bon ordre

L'énigme des bidons d'eau revisitée (cette fois avec DFS)

- John et Zeus ont, en leur possession, deux bidons non gradués, un pouvant contenir 5 litres, et l'autre 3 litres.
- Il y a une fontaine à proximité.
- Ils ont recours à 3 opérations :
 - 1. verser le contenu d'un bidon dans l'autre, en ne s'arrêtant que lorsque le bidon source soit vide ou que le bidon de destination soit plein;
 - 2. remplir un bidon avec de l'eau de la fontaine, jusqu'à que ce bidon soit plein;
 - 3. vider un bidon.
- Comment faire pour avoir 4 litres dans le bidon de 5 litres, sans bien sûr avoir recours à un instrument de mesure?