Zero-Knowledge Proofs of Knowledge

Yehuda Lindell

Bar-Ilan University

Knowledge – Motivation

- Prove that you know the shortest path from A to B
 - A shortest path exists, but who says that you know it?
- Prove identity:
 - For public key $h=g^x$ in a group where discrete log is hard, prove that I know x
 - This proves identity since it is my private key and only I know it
 - Attempt: prove in ZK that $h \in L$ for $L = \{h \mid \exists x : g^x = h\}$
 - Problem:
 - This statement is TRUE for all group elements (and so ZK is actually trivial send YES)
 - Who says that I need to know a witness to prove a true statement

What is Knowledge?

- Definition: a student knows the material if she can output it
 - We approximate this by saying that a student knows the material if she can output the answers to the questions on the test
- **Definition**: a machine knows something if it can output it
 - Let R be an NP-relation
 - A machine knows the witness to a statement x if it can output w s.t. $(x, w) \in R$
- What does it mean for a machine to be able to output it?

Formalizing Knowledge (first attempt)

- Attempt 1: a machine M knows the witness to a statement x if there exists some M' who outputs w s.t. $(x, w) \in R$
- Questions:
 - How does this relate to the machine's actions (e.g., proving a proof)?
 - How is M' related to M; if there is no connection then why does M know it?

Formalizing Knowledge (second attempt)

Attempt 2:

- We define a PPT oracle machine K, called a knowledge extractor
- We say that M knows the witness to a statement x if $K^{M(\cdot)}(x)$ outputs w s.t. $(x,w) \in R$
 - K interacts with M and can use whatever it does to obtain w
 - Since K is generic, its ability to output w means that M knows w

• Questions:

- This still doesn't relate to the machine's actions (e.g., proving a proof)?
- K could still just know w independently of M

Formalizing Knowledge (third attempt)

Definition:

- We define a PPT oracle machine K, called a knowledge extractor
- We say that a prover P^* knows the witness to a statement x if $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ whenever P^* convinces V of x

Intuition:

- K is generic and works for any x and any P^* : if P^* can convince V then K can output w and so M knows w
- Question: what does it mean: "whenever P^* convinces V of x"?
 - K should run in (expected) polynomial-time and output a witness w with the same probability that P^* convinces V of x

Formalizing Knowledge (final)

- One can always prove in ZK without knowing, with negligible prob
 - Run the zero-knowledge simulator and hope that the verifier's queries in the result match the real queries
- The definition is updated to allow a **knowledge error** κ , which takes this into account
 - If P^* convinces V of x with probability $> \kappa$, then K should run in (expected) polynomial-time and output a witness w with probability at most κ less than P^* convinces V of x
- This property is called knowledge soundness

The Definition

Definition (knowledge soundness):

• A proof system has **knowledge soundness** with error κ if there exists a PPT K s.t. for every prover P^* , if P^* convinces V of x with probability $\epsilon > \kappa$, then $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ with probability at least $\epsilon(|x|) - \kappa(|x|)$

An Alternative Formulation

- Motivation: one can trade off running time and success probability
 - Definition says: run in PPT and output w.p. ϵ
 - Alternative definition: run in **expected** time $\frac{1}{\epsilon}$ and always output
- Definition (knowledge soundness):
 - A proof system has **knowledge soundness** with error κ if there exists a K s.t. for every prover P^* , if P^* convinces V of x with probability $\epsilon > \kappa$, then

$$K^{P^*(\cdot)}(x)$$
 outputs w s.t. $(x, w) \in R$ in expected time $\frac{poly(|x|)}{\epsilon(|x|) - \kappa(|x|)}$

Equivalence of the Definitions

Original implies alternative:

- We are given K that runs in PPT and outputs a witness w.p. ϵ
- We can run K many times until a witness is output
 - Since it is an NP relation, can verify when get correct result
 - Expected number of times needed is $1/\epsilon$

Alternative implies original:

- We are given K that runs in time $1/\epsilon$ and outputs a witness
- For i = 1, ..., n, run K for 2^{i+1} steps; if finish output witness; else proceed w.p. $\frac{1}{2}$
 - Let i be smallest s.t. $2^{i+1} > 1/\epsilon$: probability of getting here is at least $2^{-(i+1)} > \epsilon$
 - Expected running time is poly(|x|)

Definition of ZKPOK

- A proof system is a zero-knowledge proof of knowledge if it has
 - Completeness: honest prover convinces honest verifier
 - Zero knowledge: ensures verifier learns nothing
 - Knowledge soundness: ensures prover knows witness
- Zero knowledge is a property of the prover
 - Prover behavior is guaranteed to reveal nothing
 - Protect against a cheating verifier
- Knowledge soundness is a property of the verifier
 - Verifier behavior guarantees that prover knows witness
 - Protect against a cheating prover

Reducing Knowledge Error

- Sequential composition reduces knowledge error exponentially
- Exponentially small error = zero error
 - Assume knowledge error $\kappa < 2^{-|x|}$ and consider alternative definition
 - Run $K^{P^*(\cdot)}(x)$ in parallel to running a brute-force search on witness
 - Assume brute force in time $2^{|x|}$
 - Let P^* be s.t. it convinces V of x with probability ϵ
 - If $\epsilon > 2 \cdot \kappa$ then $\frac{poly(|x|)}{\epsilon \kappa} < \frac{2 \cdot poly(|x|)}{\epsilon}$ and so succeed in time $\frac{poly'(|x|)}{\epsilon}$
 - If $\epsilon < 2 \cdot \kappa$ then $\frac{poly(|x|)}{\epsilon} > 2^{|x|} \cdot poly(|x|)$ and so brute force finishes

Constructing ZKPOKs

A Zero-Knowledge proof for QR_N

$$x = w^{2} \mod N$$

$$x \in QR_{N}$$

$$y = r^{2}$$

$$b \in_{R} \{0,1\}$$

$$b = 0: \quad z = r$$

$$b = 1: \quad z = wr$$

$$z^{2} \stackrel{?}{=} y$$

$$z^{2} \stackrel{?}{=} xy$$

 $x \in OR_N$

 $b \in_{R} \{0,1\}$

 $x = w^2 \mod N$

 $r \in_R \mathbb{Z}_N^*$

Knowledge Extraction Idea

- K invokes P^* and "receives" some y
- K "sends" P^* the query b=0 and receives z_0
- K rewinds and "sends" P^* the query b=1 and receives z_1
- K outputs $w = \frac{z_1}{z_0} \mod N$
- Proof:
 - If P^* convinces w.p. greater than $\kappa = \frac{1}{2}$ then $(z_0)^2 = y$ and $(z_1)^2 = xy$
 - I am assuming for deterministic P^* ; to discuss!
 - Thus $w^2 = \left(\frac{z_1}{z_0}\right)^2 = \frac{xy}{y} = x$ and so K outputs a square root

ZKPOK for NP

An interactive proof for *HAM*

Ham cycle w \mathbf{P} $G \in HAM$ \mathbf{V} $\pi \in_R S_n \qquad \qquad b \qquad \qquad b \in_R \{0,1\}$ $u=\pi(w) \qquad b=0: \quad u \in Dec(c) \quad \text{Verify that } u \text{ is a cycle } b=1: \pi, H=Dec(c) \quad \text{Verify that } H=\pi(G)$

ZKPOK for NP

- K invokes P* and receives a commitment c
- K sends P^* the query b=0 and receives a cycle w
- K rewinds and sends P^* the query b=1 and receives π , \tilde{G}

Proof:

- If P^* convinces w.p. greater than $\kappa = \frac{1}{2}$ then w is a cycle in $\tilde{G} = \pi(G)$
- Thus, $\pi^{-1}(w)$ is a Hamiltonian cycle in G

ZKPOK for NP with Negligible Error

- Run Hamiltonicity n = |x| times sequentially
- Extractor strategy:
 - Consider binary tree of execution
 - Attempt to extract in ith execution
 - If P^* answers both queries, get Hamiltonian cycle
 - If P^* answers neither query, V always rejects
 - If P* answers exactly one query, go down that edge
 - Repeat with next execution
- Extraction fails iff P^* answers **exactly one** query in each execution
- Thus, extraction works with probability 1 if $\epsilon > 2^{-n}$

Strong Proofs of Knowledge

- Definition strong knowledge soundness
 - A proof system has **strong knowledge soundness** if there exists a negligible function μ and a PPT K s.t. for every prover P^* , if P^* convinces V of x with probability $\epsilon > \mu$, then $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x, w) \in R$ with probability at least $1 \mu(|x|)$
- Theorem: sequential Hamiltonicity is a strong proof of knowledge

Using the Alternative Definition

- Definition (knowledge soundness):
 - A proof system has **knowledge soundness** with error κ if there exists a K s.t. for every prover P^* , if P^* convinces V of x with probability $\epsilon > \kappa$, then $K^{P^*(\cdot)}(x)$ outputs w s.t. $(x,w) \in R$ in expected time $\frac{poly(|x|)}{\epsilon(|x|)-\kappa(|x|)}$
- What does it help to run in time $\frac{poly(|x|)}{\epsilon(|x|)}$ when this may not be polynomial time?

Using the Alternative Definition

- A classic use of zero-knowledge proofs of knowledge:
 - Within a protocol, prover proves the proof
 - To prove security, a simulator (or reduction) needs the witness
 - Unless verifier would reject, in which case it doesn't matter
- Using ZKPOKs in proofs of security simulator (or reduction) plays verifier with prover:
 - If the verifier rejects, then the simulator can halt, since a real verifier would
 - If the verifier accepts, then the simulator now has to extract the witness

ZKPOK Inside a Protocol

- Recall simulator (reduction) strategy:
 - Verify, then halt if reject and extract if accept
- What is the expected running time of this simulator (reduction)?
 - Probability that prover convinces verifier is $\epsilon(|x|)$
 - Assuming that the knowledge error κ is 0:

$$E[\text{Time}] = \left(1 - \epsilon(|x|)\right) \cdot poly(|x|) + \epsilon(|x|) \cdot \frac{poly(|x|)}{\epsilon(|x|)} = poly(|x|)$$

• Assuming that the knowledge error κ is negligible:

$$E[\text{Time}] = \left(1 - \epsilon(|x|)\right) \cdot poly(|x|) + \epsilon(|x|) \cdot \frac{poly(|x|)}{\epsilon(|x|) - \kappa(|x|)} = poly(|x|) + \frac{\epsilon(|x|)}{\epsilon(|x| - \kappa(|x|))}$$

Actually not polynomial, but can be fixed...

ZKPOK in a Protocol

- The issue that arises is that need to both
 - Simulate the view of the prover in the execution, and
 - Extract a witness
- This is called "witness-extended emulation"
- A witness-extended emulator $E^{P^*(\cdot)}(x)$ outputs a VIEW and some w:
 - The view output is indistinguishable from a real execution
 - The probability that the view is accepting and yet $(x, w) \notin R$ is negligible
 - E runs in expected polynomial-time

Witness-Extended Emulation

- **Lemma**: If (P, V) is a ZKPOK, then there exists a witness extended emulator for (P, V).
 - Very useful when use ZKPOK inside proofs of security (and greatly simplifies)
- Can also formalize an ideal ZK functionality:

$$\mathcal{F}_{\mathrm{zk}}((x, w), x) = (\lambda, R(x, w))$$

• **Lemma**: If (P, V) is a ZKPOK, then it securely computes the ideal ZK functionality (in the secure computation sense).

Other Applications

- A zero-knowledge proof for NQR_N
- Non-oblivious encryption
- Prove that committed value has a property, for statistically hiding
- Identification schemes

A zero-knowledge proof for \overline{QR}_N

Interactive proof for $\overline{QR_N}$ [GMR'85]

$$x \notin QR_N$$

$$z = y^2 \qquad b = 0$$

$$z = xy^2 \qquad b = 1$$

$$b \in_{R} \{0,1\}$$
$$y \in_{R} \mathbb{Z}_{N}^{*}$$

$$b'(z) = 0 \quad z \in QR_N$$

$$b'(z) = 1 \quad z \notin QR_N$$

$$b' \stackrel{?}{=} b$$

A ZK proof for \overline{QR}_N

- Why is the proof not ZK?
 - The verifier may have some z and wants to know if is QR or not
- How can we make this proof ZK?
 - The verifier sends z and proves that it **knows** y s.t. z = xy or $z = xy^2$
- Why is ZK not enough and why is a ZKPOK needed?
 - Intuitively: for every z, there exists a y s.t. z=xy or $z=xy^2$, so statement is always true
 - Formally: simulation strategy

Interactive proof for $\overline{QR_N}$ [GMR'85]

A ZK proof for \overline{QR}_N

$\begin{array}{cccc} & P & & V \\ \hline & z = y^2 & b = 0 \\ \hline & z = xy^2 & b = 1 \end{array} \quad \begin{array}{cccc} & b \in_R \{0,1\} \\ & y \in_R \mathbb{Z}_N^* \\ \hline & b'(z) = 0 & z \in QR_N \\ \hline & b'(z) = 1 & z \notin QR_N \end{array} \quad \begin{array}{c} & b' \stackrel{?}{=} b \end{array}$

Simulation Strategy

- Simulator S runs V^* and gets Z
- Simulator doesn't know whether it should answer b=0 or b=1
- Simulator runs the **knowledge extractor** on the proof from V^* and gets y
- Simulator checks if z = xy or $z = xy^2$, and so knows if b = 0 or b = 1

Non-Oblivious Encryption

- Provide an encryption and prove that you know what's encrypted
- Motivation:
 - Prevent copying (e.g., in auction)
 - Guarantee non-malleability (did not take a previous ciphertext and maul)

Prove Property of Statistical Committed Value

- Consider a statistically-hiding commitment scheme
 - ullet A commitment value c can be a commitment to any message
- Committer wishes to prove that it committed to a value in a certain range (or any other property)
- Statement is almost always true for any given c
- The question is whether the committer knows a decommitment to a message with this property
- Rule: whenever ZK is used with statistical hiding, ZKPOK is needed

Identification Schemes

- Alice has a public key $h = g^x$
- ullet In order to authenticate, she proves that she knows the dlog of h
- This must be a ZKPOK, since ZK for the language of DLOG is trivial

Questions?

