WHAT IS CLAIMED IS:

1	 A biopsy localization device comprising: 		
2	a bioabsorbable element in a pre-delivery state prior to its delivery to a soft		
3	tissue biopsy site of a patient; and		
4	said bioabsorbable element being of a material which is in a post-delivery		
5	state at the biopsy site, the bioabsorbable element being palpably harder than the		
6	surrounding soft tissue at the biopsy site when in the post-delivery state.		
1	2. The device according to claim 1 further comprising a delivery		
2	device for delivering the bioabsorable element in the predelivery state to a soft tissue		
3	biopsy site.		
1	3. The device according to claim 1 wherein the bioabsorbable element		
2	is of a different hardness in the post-delivery state as in the pre-delivery state.		
1	4. The device according to claim 1 wherein the bioabsorbable element		
2	has a hardness of at least about 1.5 times as hard as breast tissue in the post-delivery state.		
1	5. The device according to claim 1 wherein the bioabsorbable element		
2	swells about 50 to 1500 percent from the pre-delivery state to the post-delivery state when		
3	placed in contact with an aqueous liquid.		
1	6. The device according to claim 1 wherein the bioabsorbable element		
2	has a first shape in the pre-delivery state and a second shape in the post-delivery state.		
1	7. The device according to claim 1 wherein the bioabsorbable element		
1	has one consistency in the pre-delivery state and a different consistency in the post-		
2			
3	delivery state.		
1	8. The device according to claim 1 wherein the bioabsorbable element		
2	has a longest dimension of at least about 0.5cm when in the post-delivery state.		
	a grant to the live to the highest shall element		
1	9. The device according to claim 1 wherein the bioabsorbable element		
2	made of collagen.		
1	10. The device according to claim 1 wherein the bioabsorbable element		
2	comprises a therapeutic agent.		

1	11. The device according to claim 10 wherein the therapeutic agent			
2	comprises at least a chosen one of a chemotherapeutic agent, a radiation agent and a gene			
3	therapy agent.			
1	12. The device according to claim 1 wherein the bioabsorbable element			
2	comprises reservoir means for subsequently receiving a therapeutic agent.			
1	13. The device according to claim 12 wherein the reservoir means			
2	comprises reservoir means for receiving a chemotherapy agent.			
1	14. The device according to claim 1 wherein the bioabsorbable element			
2	comprises a hemostatic agent.			
1	15. The device according to claim 1 wherein the bioabsorbable element			
2	comprises at least one of the following materials: polyactic and polyglycolic acids,			
3	polyorthoesters, resorbable silicones and urethanes, lipids, collagens, polysaccharides,			
4	starches, ceramics, polyamino acids, proteins, hydrogels and other gels, gelatins,			
5				
1	16. The device according to claim 1 wherein the bioabsorbable element			
2	changes from the pre-delivery state to the post-delivery state upon contact with an			
3	aqueous environment.			
1	17. The device according to claim 1 wherein the bioabsorbable element			
2	1.12 and the property state			
1	18. The device according to claim 1 wherein the bioabsorable element			
2	comprises a bioabsorable filament.			
	to the standard to aloim 1 further comprising a marker			
1	19. The device according to claim 1 further comprising a marker			
2	element located generally centrally within the bioabsorable element.			
1	20. The device according to claim 19 wherein the marker element is a			
2	radiopaque marker element.			
1	21. The device according to claim 19 wherein said marker element			
2	comprises a chosen one of a permanent marker element and a temporary marker elemen			

1	22. A biopsy localization method comprising:		
2	taking a tissue sample from a biopsy site within a patient;		
3	positioning a bioabsorbable element at the biopsy site at the time of the		
4	taking of the tissue sample;		
5	testing the tissue sample; and		
6	if the testing indicates a need to do so relocating the biopsy site by findi		
7	the bioabsorbable element.		
1	23. The method according to claim 22 wherein the positioning step is		
2	carried out using said bioabsorable element and a radiopaque marker.		
1	24. The method according to claim 23 wherein the relocating step is		
2	carried out using a radiographic technique.		
1	25. The method according to claim 23 wherein the positioning step is		
2	carried out using a chosen one of a permanent radiopaque marker and a temporary		
3	radiopaque marker.		
1	26. The method according to claim 22 wherein the relocating step is		
2	carried out by at least one of:		
3	palpation of the patient to feel the bioabsorbable element;		
4	locating inflammation at the biopsy site caused by the bioabsorbable		
5 .	element;		
6	following a bioabsorbable thread, the thread extending from the patient's		
7	skin to the bioabsorbable element; and		
8	remotely visualizing the bioabsorbable element.		
1	27. The method according to claim 26 wherein the remotely		
2	visualizing step is carried out by at least a chosen one of ultrasound, MRI and		
3			
1	28. The method according to claim 22 wherein the tissue sample takin		
2	step is carried out using a needle biopsy technique.		
1	29. The method according to claim 22 wherein the tissue sample takin		
2	step is carried out using a surgical excisional biopsy technique.		

1	30. The method according to claim 22 wherein the tissue sample taking			
2	step is carried out within a soft tissue.			
1	31. The method according to claim 22 further comprising the step of			
2	selecting the bioabsorbable element so that after positioning at the target site, the			
3	bioabsorbable element has a hardness of at least about 1.5 times as hard as the			
4	surrounding tissue.			
1	32. The method according to claim 22 further comprising selecting a			
2	hemostatic bioabsorbable element and providing hemostasis at the target site by the			
3	hemostatic bioabsorbable element.			
1	33. The method according to claim 32 wherein the hemostasis			
2	providing step is provided by at least one of mechanical or chemical hemostatic			
3	techniques.			
1	34. The method according to claim 32 further comprising the step of			
2	effectively preventing blood from contacting the hemostatic bioabsorbable element unt			
3	the hemostatic bioabsorbable element is positioned at the target site.			
1	35. The method according to claim 34 wherein the effectively			
2	preventing step is carried out using a hemostatic bioabsorbable element having a non-			
3	hemostatic degradable outer layer so the hemostasis providing step is a time-delayed			
4	hemostasis providing step.			
1	36. The method according to claim 34 wherein the effectively			
2	preventing step includes the step of physically isolating the hemostatic bioabsorbable			
3	element from contact with blood until it is at the biopsy site.			
1	37. The method according to claim 22 wherein the bioabsorbable			
2	element positioning step is carried out by at least one of:			
3	injecting a flowable bioabsorbable element through a hollow member;			
4	pushing a nonflowable bioabsorbable element through a hollow member			
5	and			
6	guiding a solid bioabsorbable element to the target site.			

1	1 38. The method accord	ding to claim 37 wherein the flowable			
2	bioabsorbable element injecting step is carried out using a biopsy needle.				
1	1 39. The method according	ding to claim 22 further comprising the step of			
2	changing the bioabsorbable element from	changing the bioabsorbable element from a pre-delivery state prior to the positioning sta			
3	to a post-delivery state after the position	ing step.			
1	1 40. The method accord	ding to claim 39 wherein the changing step is			
2	carried out by at least one of the followi	ng: hydration, changing temperature, electrical			
3	3 stimulation, magnetic stimulation, chem	stimulation, magnetic stimulation, chemical reaction with a first additional material,			
4	physical interaction with a second additi	physical interaction with a second additional material, ionization, absorption and			
5	5 adsorption.				
1	1 41. The method accor	rding to claim 27 further comprising the step of			
2	2 placing a marker element at a generally	placing a marker element at a generally central location within the bioabsorbable element			
3	at the target site.				
1	1 42. The method accor	ding to claim 41 wherein the placing step takes			
2		place simultaneously with the positioning step.			
1	1 43. The method accor	rding to claim 41 wherein the placing step is			
2	-	carried out using a radiopaque marker element.			
1	1 44. The method acco	rding to claim 41 wherein the biopsy site			
2					
1	1 45. A medical treatm	ent method comprising:			
2		om a biopsy site within a patient;			
3	positioning a bioabsorbable element at the biopsy site at the time of the				
4					
5	1				
6	6 if the testing indicates a	need to do so, and medically treating the biopsy			
7	_	· · · · · · · · · · · · · · · · · · ·			
•					
1		rding to claim 45 wherein the medically treating			
2	step comprises activating an agent carried by the bioabsorbable element.				

1	47. The method according to claim 46 wherein the activating step is		
2	carried out by at least one of:		
3	injecting a radiation-emitting element at the vicinity of the target site;		
4	externally irradiating the target site; and		
5	providing a triggering substance to the agent.		
1	48. The method according to claim 45 wherein the medically treating		
2	step comprises delivering a therapeutic agent to the target site.		
1	49. The method according to claim 48 wherein the delivering step is		
2	carried out using at least one of:		
3	a chemotherapy agent;		
4	a radiation-emitting element;		
5	thermal energy;		
6	ionization energy;		
7	gene therapy;		
8	vector therapy;		
9	electrical therapy;		
10	vibrational therapy; and		
11	anti-angiogenesis.		
1	50. The method according to claim 45 further comprising the step of		
2	relocating the biopsy by finding the bioabsorbable element.		
1	51. The method according to claim 50 wherein the relocating step is		
2	carried out prior to the medically treating step.		
. 1	52. The method according to claim 51 wherein the medical treating		
2	step comprises removal of tissue.		