



# Experiences in Developing An Intelligent Ground Vehicle (IGV) Ontology In Protégé

Craig Schlenoff, NIST
Randy Washington, DCS Corporation
Tony Barbera, NIST

July 8, 2004



### Agenda



- Background:
  - What is an Intelligent Ground Vehicle (IGV)?
  - NIST 4D/RCS Methodology and Architecture
- Ontology Development:
  - 4D/RCS to Ontology Mapping
  - Interchange Formats and Upper Ontologies
  - IGV Military Equipment
  - IGV Behaviors
  - IGV Conditions
- Current Status
- Issues and Lessons Learned



# What is an Intelligent Ground Vehicle?









# Interchange Formats and Upper Ontologies



#### OWL

- Neutral (W3C) interchange format
- XML base enables use XSLT transforms
- Provides access to emerging semantic web technologies

#### OWL-S

- Rich semantics for describing complex processes (without being too complicated)
- Well suited to agent architectures

#### Pieces of SUMO (Suggested Upper Merged Ontology)

- Class structure and properties provide a good starting point for developing domain specific ontology
- Native KIF format too complex for target community and not necessary for requirements capture

#### Namespaces

Used quite a bit to make ontology more manageable





## IGV Conceptual Model





# Representing an IGV (cont.)







# Tactical Behaviors Plan State-Table Selection



| <mark></mark> |                              |                              |
|---------------|------------------------------|------------------------------|
|               | New StartupAndOperateCommand | S1 proc_StartEngine          |
|               | S1 EngineStarted             | S2                           |
|               | S2 GearChangeRequired        | S3 proc_ChangeGear           |
|               | S3 GearChanged               | S2                           |
|               | S2 NewCommandedVelocity      | S4 proc_AdjustEngineThrottle |
|               | S4 EngineThrottleAdjusted    | S2                           |
|               | S2 ShutDownRequested         | S5 proc_SetGearToPark        |

S0 Done

**S6 ShutDownEngine** 

**StartUpAndOperate** 

ommanded Vel (AND) Gears In Forwa

**Input Conditions** 

S5 GearInPark

**S6 EngineShutDown** 

**Output Commands** 



#### Representing a Propulsion Service







## Propulsion Service Graph







#### More Visualization Features









#### **Conditions**





#### **IGV Condition Example**









# Model Development Status

- OWL entities defined
  - Classes 175
  - Properties 130
  - Instances 700



# Issues and Lessons Learned



- Developing an ontology is a slow iterative process
  - It difficult to evaluate a model construct without inputting detail.
  - It is very difficult to change the model once you have entered any level of detail.
- Difficult to develop consistent rules for when to use a Classes vs. an Instance in a large domain
  - Is knowledge in class restrictions or instances?
- Difficult to present large models to domain experts
- Experiences with OWL-S shows that it has applications outside of the semantic web.
  - Would like to get involved in its development