Vizualization of FrED Run Conditions.

Various methods to vizualize FrED Run Conditions (time-invariant) in preparation for regression analysis.

Uses auto porcessed run condition data - "Run Condition Data Summary.csv"

J. Cuiffi, - Penn State New Kensington

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sn
    from mpl_toolkits.mplot3d import Axes3D
In [2]: # load run condition data into dataframe
    # current file - 050820 11:06pm
    path_local = 'C:/Users/cuiff/Dropbox/Python Common Library/python-fred/data/Reports/'
    data = pd.read_csv(path_local + 'Run Condition Data Summary.csv')
    data
```

Out[2]:

:	Run File	Feed Rate Ave (RPS)	Spool Wind Rate Set (RPS)	Spool Rate Ave (RPS)	Wind BF Rate Ave (PPS)		Heater Temp Ave (C)	Filament Diamter Ave (mm)	Filament Std Dev (mm)	System Power Ave (W)	System Power Std Dev (W)	Heater Current Ave (mA)	Heater Current Std Dev (mA)	Spool DC Motor Current Ave (mA)	Spool Mo Cur Std (I
(log_Manual Control2020- 04-12_12-13- 50.csv	0.001000	1.00	1.000132	127.730719	90.0	90.009313	0.213487	0.016746	29.041052	1.000198	1778.186258	79.322377	134.912897	4.725
	log_Manual Control2020- 04-12_17-26- 48.csv	0.000312	0.25	0.250982	20.426288	90.0	90.068162	0.228383	0.044286	30.064674	1.123981	1956.170717	89.196351	48.890935	2.843
2	log_Manual Control2020- 04-12_17-26- 48.csv	0.000312	0.50	0.499899	28.561457	90.0	90.080434	0.172805	0.012332	29.126951	1.001411	1849.457701	83.001875	76.481605	2.496
;	log_Manual Control2020- 04-12_17-49- 04.csv	0.000500	0.25	0.254232	45.159629	90.0	89.850642	0.302968	0.022932	28.685025	1.093912	1836.095309	89.052970	48.176519	4.276
4	log_Manual Control2020- 04-12_17-49- 04.csv	0.000500	0.50	0.499777	63.865360	90.0	90.043857	0.217002	0.014405	28.366543	0.931641	1785.295597	76.500593	75.523040	2.469
				•••											
56	log_Manual Control2020- 05-26_10-47- 57.csv	0.004000	0.75	0.749697	221.236095	80.0	79.951250	0.450721	0.029310	25.648463	2.279616	1483.039423	530.116817	83.442500	76.902
57	log_Manual , Control2020- 05-26_10-47- 57.csv	0.004000	0.50	0.499585	180.638516	80.0	79.994511	0.549398	0.042787	24.219703	9.242227	1496.053383	252.112897	47.506090	126.437
58	log_Manual Control2020- 05-26_10-47- 57.csv	0.005000	1.00	0.998329	285.614571	80.0	80.010143	0.412343	0.052719	24.840470	9.815740	1494.695714	143.295658	122.041786	44.229
59	log_Manual Control2020- 05-26_10-47- 57.csv	0.005000	0.75	0.749777	247.349474	80.0	79.871364	0.484278	0.036691	25.306375	1.619509	1464.442045	549.825712	83.640000	67.426
60	log_Manual Control2020- 05-2610-47- 57.csv	0.005000	0.50	0.499643	201.960000	80.0	79.916287	0.593511	0.051736	24.807645	5.906214	1465.633755	482.090256	55.451857	75.449

61 rows × 17 columns

Fiber Diameter - Key Parameters

Start by exploring the key paramters that determine fiber diameter: Feed Speed, Spool Speed, Heater Temperature.

Out[3]:

	Feed Rate Ave (RPS)	Spool Rate Ave (RPS)	Heater Temp Ave (C)	Filament Diamter Ave (mm)
Feed Rate Ave (RPS)	1.000000	0.325072	-0.338853	0.689340
Spool Rate Ave (RPS)	0.325072	1.000000	-0.114830	-0.352166
Heater Temp Ave (C)	-0.338853	-0.114830	1.000000	-0.282535
Filament Diamter Ave (mm)	0.689340	-0.352166	-0.282535	1.000000

In [4]: # add a dataframe column that includes sqrt(feed speed / spool speed) as shown in our basic model
data['Sqrt Feed/Spool'] = np.sqrt(data['Feed Rate Ave (RPS)'] / data['Spool Rate Ave (RPS)'])
data.head()

Out[4]:

	Run File	Feed Rate Ave (RPS)	Spool Wind Rate Set (RPS)	Spool Rate Ave (RPS)	Wind BF Rate Ave (PPS)	Heater Set (C)	Heater Temp Ave (C)	Filament Diamter Ave (mm)	Filament Std Dev (mm)	System Power Ave (W)	System Power Std Dev (W)	Heater Current Ave (mA)	Heater Current Std Dev (mA)	Spool DC Motor Current Ave (mA)	Spool DC Motor Current Std Dev (mA)
0	log_Manual Control2020- 04-12_12-13- 50.csv	0.001000	1.00	1.000132	127.730719	90.0	90.009313	0.213487	0.016746	29.041052	1.000198	1778.186258	79.322377	134.912897	4.725082
1	log_Manual Control2020- 04-12_17-26- 48.csv	0.000312	0.25	0.250982	20.426288	90.0	90.068162	0.228383	0.044286	30.064674	1.123981	1956.170717	89.196351	48.890935	2.843820
2	log_Manual Control2020- 04-12_17-26- 48.csv	0.000312	0.50	0.499899	28.561457	90.0	90.080434	0.172805	0.012332	29.126951	1.001411	1849.457701	83.001875	76.481605	2.496682
3	log_Manual Control2020- 04-12_17-49- 04.csv	0.000500	0.25	0.254232	45.159629	90.0	89.850642	0.302968	0.022932	28.685025	1.093912	1836.095309	89.052970	48.176519	4.276480
4	log_Manual Control2020- 04-12_17-49- 04.csv	0.000500	0.50	0.499777	63.865360	90.0	90.043857	0.217002	0.014405	28.366543	0.931641	1785.295597	76.500593	75.523040	2.469729

Out[5]:

df.corr()

	Feed Rate Ave (RPS)	Spool Rate Ave (RPS)	Heater Temp Ave (C)	Filament Diamter Ave (mm)	Sqrt Feed/Spool
Feed Rate Ave (RPS)	1.000000	0.325072	-0.338853	0.689340	0.733815
Spool Rate Ave (RPS)	0.325072	1.000000	-0.114830	-0.352166	-0.314407
Heater Temp Ave (C)	-0.338853	-0.114830	1.000000	-0.282535	-0.298767
Filament Diamter Ave (mm)	0.689340	-0.352166	-0.282535	1.000000	0.995249
Sgrt Feed/Spool	0.733815	-0.314407	-0.298767	0.995249	1.000000

```
In [6]: # plot filament diameter versus sqrt(feed/spool)
fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
ax1.scatter(data['Sqrt Feed/Spool'],data['Filament Diamter Ave (mm)'])
ax1.set_xlabel('Square Root of (Feed Rate (RPS)/Spool Rate (RPS))')
ax1.set_ylabel('Fiber Diameter (mm)')
print('Fiber Diameter versus Sqrt(Feed/Spool)')
```

Fiber Diameter versus Sqrt(Feed/Spool)


```
In [20]: # plot filament diameter versus sqrt(feed/spool) with added line fit - teaser for machine learning
    # line fit using numpy polyfit
    m, b = np.polyfit(data['Sqrt Feed/Spool'],data['Filament Diamter Ave (mm)'],1)
    print('Line Fit: y = {0}x + {1}'.format(m,b))
    dia_pred = (m * data['Sqrt Feed/Spool']) + b

fig, ax1 = plt.subplots()
    fig.set_size_inches(10,5)
    ax1.scatter(data['Sqrt Feed/Spool'],data['Filament Diamter Ave (mm)'])
    ax1.plot(data['Sqrt Feed/Spool'],dia_pred,c='r')
    ax1.set_xlabel('Square Root of (Feed Rate (RPS)/Spool Rate (RPS))')
    ax1.set_ylabel('Fiber Diameter (mm)')
    print('Fiber Diameter versus Sqrt(Feed/Spool)')
```

Line Fit: y = 5.802830190291019x + 0.03145952131840188 Fiber Diameter versus Sqrt(Feed/Spool)


```
In [21]: # plot filament diameter versus sqrt(feed/spool) and temperature
fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
pl = ax1.scatter(data['Sqrt Feed/Spool'],data['Filament Diamter Ave (mm)'],c=data['Heater Temp Ave (C)'])
plt.colorbar(pl, label='Heater Temperature (C)')
ax1.set_xlabel('Square Root of (Feed Rate (RPS)/Spool Rate (RPS))')
ax1.set_ylabel('Fiber Diameter (mm)')
print('Fiber Diameter versus Sqrt(Feed/Spool)')
```

Fiber Diameter versus Sqrt(Feed/Spool)


```
In [22]: # plot filament diameter versus sqrt(feed/spool) and temperature (both size and color)
fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
pl = ax1.scatter(data['Sqrt Feed/Spool'],data['Filament Diamter Ave (mm)'],c=data['Heater Temp Ave (C)'],s=((data['Heater Temp Ave (C)']-75)*8 ),alpha=.5)
plt.colorbar(pl, label='Heater Temperature (C)')
ax1.set_xlabel('Square Root of (Feed Rate (RPS)/Spool Rate (RPS))')
ax1.set_ylabel('Fiber Diameter (mm)')
print('Fiber Diameter versus Sqrt(Feed/Spool)')
```

Fiber Diameter versus Sqrt(Feed/Spool)

Fiber Diameter versus Feed and Spool Speed

```
In [24]: # 3D plot - sqrt(feed/spool), temp, diameter
fig = plt.figure()
ax1 = Axes3D(fig)
ax1.scatter(data['Sqrt Feed/Spool'],data['Heater Temp Ave (C)'],data['Filament Diamter Ave (mm)'],c=data['Filament Diamter Ave (mm)'])
ax1.set_xlabel('Sqrt (Feed/Spool)')
ax1.set_ylabel('Heater Temp (C)')
ax1.set_zlabel('Filament Diamter Ave (mm)')
print('Fiber Diameter versus Feed and Spool Speed')
```


Fiber Diameter versus Feed and Spool Speed

Fiber Diameter - Standard Deviation

Explore the factors that influence the standard deviation of fiber diameter, a measure of quality.

In [25]: # add a dataframe column that includes % std dev of fiber diameter
data['Filament Std Dev (%)'] = 100 * data['Filament Std Dev (mm)'] / data['Filament Diamter Ave (mm)']
data

Out[25]:

	Run File	Feed Rate Ave (RPS)	Spool Wind Rate Set (RPS)	Spool Rate Ave (RPS)	Wind BF Rate Ave (PPS)		Heater Temp Ave (C)	Filament Diamter Ave (mm)	Filament Std Dev (mm)	System Power Ave (W)	System Power Std Dev (W)	Heater Current Ave (mA)	Heater Current Std Dev (mA)	Spool DC Motor Current Ave (mA)	Spool Mı Curı Std (ı
C	log_Manual Control2020- 04-12_12-13- 50.csv	0.001000	1.00	1.000132	127.730719	90.0	90.009313	0.213487	0.016746	29.041052	1.000198	1778.186258	79.322377	134.912897	4.725
1	log_Manual Control2020- 04-12_17-26- 48.csv	0.000312	0.25	0.250982	20.426288	90.0	90.068162	0.228383	0.044286	30.064674	1.123981	1956.170717	89.196351	48.890935	2.843
2	log_Manual Control2020- 04-12_17-26- 48.csv	0.000312	0.50	0.499899	28.561457	90.0	90.080434	0.172805	0.012332	29.126951	1.001411	1849.457701	83.001875	76.481605	2.496
3	log_Manual Control2020- 04-12_17-49- 04.csv	0.000500	0.25	0.254232	45.159629	90.0	89.850642	0.302968	0.022932	28.685025	1.093912	1836.095309	89.052970	48.176519	4.276
4	log_Manual Control2020- 04-12_17-49- 04.csv	0.000500	0.50	0.499777	63.865360	90.0	90.043857	0.217002	0.014405	28.366543	0.931641	1785.295597	76.500593	75.523040	2.469
												•••			
56	log_Manual Control2020- 05-26_10-47- 57.csv	0.004000	0.75	0.749697	221.236095	80.0	79.951250	0.450721	0.029310	25.648463	2.279616	1483.039423	530.116817	83.442500	76.902
57	log_Manual Control2020- 05-26_10-47- 57.csv	0.004000	0.50	0.499585	180.638516	80.0	79.994511	0.549398	0.042787	24.219703	9.242227	1496.053383	252.112897	47.506090	126.437
58	log_Manual Control2020- 05-26_10-47- 57.csv	0.005000	1.00	0.998329	285.614571	80.0	80.010143	0.412343	0.052719	24.840470	9.815740	1494.695714	143.295658	122.041786	44.229
59	log_Manual Control2020- 05-26_10-47- 57.csv	0.005000	0.75	0.749777	247.349474	80.0	79.871364	0.484278	0.036691	25.306375	1.619509	1464.442045	549.825712	83.640000	67.426
60	log_Manual Control2020- 05-26_10-47- 57.csv	0.005000	0.50	0.499643	201.960000	80.0	79.916287	0.593511	0.051736	24.807645	5.906214	1465.633755	482.090256	55.451857	75.449

61 rows × 19 columns

Out[26]:

	Filament Std Dev (%)	Spool Rate Ave (RPS)	Heater Temp Ave (C)	Filament Diamter Ave (mm)	Sqrt Feed/Spool	Feed Rate Ave (RPS)
Filament Std Dev (%)	1.000000	-0.008717	0.291560	0.049799	0.096607	0.160502
Spool Rate Ave (RPS)	-0.008717	1.000000	-0.114830	-0.352166	-0.314407	0.325072
Heater Temp Ave (C)	0.291560	-0.114830	1.000000	-0.282535	-0.298767	-0.338853
Filament Diamter Ave (mm)	0.049799	-0.352166	-0.282535	1.000000	0.995249	0.689340
Sqrt Feed/Spool	0.096607	-0.314407	-0.298767	0.995249	1.000000	0.733815
Feed Rate Ave (RPS)	0.160502	0.325072	-0.338853	0.689340	0.733815	1.000000

```
In [27]: # plot std dev versus filament diameter
%matplotlib inline
fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
ax2 = ax1.twinx()
ax1.scatter(data['Filament Diamter Ave (mm)'],data['Filament Std Dev (mm)'], c='red')
ax1.set_xlabel('Filament Diamter (mm)')
ax1.set_ylabel('Filament Std Dev (mm)')
ax2.scatter(data['Filament Diamter Ave (mm)'],data['Filament Std Dev (%)'], c='blue')
ax2.scatter(data['Filament Std Dev (%)')
fig.legend(bbox_to_anchor=(.8,.8))
print('Standard Deviation veruses Fiber Diameter')
```

Standard Deviation veruses Fiber Diameter


```
In [28]: # use std dev % and add color for feed speed
fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
pl = ax1.scatter(data['Filament Diamter Ave (mm)'],data['Filament Std Dev (%)'],c=data['Feed Rate Ave (RPS)'])
plt.colorbar(pl, label='Feed Rate Ave (RPS)')
ax1.set_xlabel('Filament Diamter Ave (mm))')
ax1.set_ylabel('Filament Std Dev (%)')
print('Standard Deviation veruses Fiber Diameter and Feed Speed')
```

Standard Deviation veruses Fiber Diameter and Feed Speed


```
In [29]: # use std dev % and add color for temperature
fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
pl = ax1.scatter(data['Filament Diamter Ave (mm)'],data['Filament Std Dev (%)'],c=data['Heater Temp Ave (C)'])
plt.colorbar(pl, label='Heater Temp Ave (C))')
ax1.set_xlabel('Filament Diamter Ave (mm))')
ax1.set_ylabel('Filament Std Dev (%)')
print('Standard Deviation veruses Fiber Diameter and Heater Temp')
```

Standard Deviation veruses Fiber Diameter and Heater Temp


```
In [34]: # 3D plot - feed, spool, diameter
%matplotlib notebook
# get rid of errant datapoint
df = data[data['Filament Std Dev (%)'] < 20.0]
fig = plt.figure()
ax1 = Axes3D(fig)
pl = ax1.scatter(df['Heater Temp Ave (C)'],df['Feed Rate Ave (RPS)'],df['Filament Diamter Ave (mm)'],c=df['Filament Std Dev (%)'])
ax1.set_xlabel('Heater Temp Ave (C)')
ax1.set_ylabel('Feed Rate Ave (RPS)')
ax1.set_zlabel('Filament Diamter Ave (mm)')
plt.colorbar(pl, label='Filament Std Dev (%)')
print('Fiber Diameter versus Feed Speed and Heater Temp (colored with % Std Dev)')</pre>
```


Fiber Diameter versus Feed Speed and Heater Temp (colored with % Std Dev)

```
In [35]: # 3D plot - feed, spool, diameter
fig = plt.figure()
ax1 = Axes3D(fig)
pl = ax1.scatter(df['Heater Temp Ave (C)'],df['Feed Rate Ave (RPS)'],df['Filament Std Dev (%)'],c=df['Filament Std Dev (%)'])
ax1.set_xlabel('Heater Temp Ave (C)')
ax1.set_ylabel('Feed Rate Ave (RPS)')
ax1.set_zlabel('Filament Std Dev (%)')
plt.colorbar(pl, label='Filament Std Dev (%)')
print('Fiber Diameter versus Feed Speed and Heater Temp (colored with % Std Dev)')
```


Fiber Diameter versus Feed Speed and Heater Temp (colored with % Std Dev)

```
In [36]: # look a two separate fiber diameters - nom. .214mm

df = data[data['Filament Diamter Ave (mm)'] < .22]

df = df[df['Filament Diamter Ave (mm)'] > .21]

#df

# 3D plot - feed, spool, diameter

fig = plt.figure()

ax1 = Axes3D(fig)

pl = ax1.scatter(df['Heater Temp Ave (C)'],df['Feed Rate Ave (RPS)'],df['Filament Std Dev (%)'],c=df['Filament Std Dev (%)'])

ax1.set_xlabel('Heater Temp Ave (C)')

ax1.set_ylabel('Feed Rate Ave (RPS)')

ax1.set_zlabel('Filament Std Dev (%)')

plt.colorbar(pl, label='Filament Std Dev (%)')

print('Filament Std Dev (%) versus Feed Speed and Heater Temp (.215mm nominal)')
```


Filament Std Dev (%) versus Feed Speed and Heater Temp (.215mm nominal)

```
In [37]: # Look a two separate fiber diameters - nom. .41mm
          df = data[data['Filament Diamter Ave (mm)'] < .42]</pre>
           df = df[df['Filament Diamter Ave (mm)'] > .4]
           #df
          # 3D plot - feed, spool, diameter
fig = plt.figure()
           ax1 = Axes3D(fig)
           pl = ax1.scatter(df['Heater Temp Ave (C)'],df['Feed Rate Ave (RPS)'],df['Filament Std Dev (%)'],c=df['Filament Std Dev (%)'])
           ax1.set_xlabel('Heater Temp Ave (C)')
           ax1.set_ylabel('Feed Rate Ave (RPS)')
          ax1.set_zlabel('Filament Std Dev (%)')
plt.colorbar(pl, label='Filament Std Dev (%)')
          print('Filament Std Dev (%) versus Feed Speed and Heater Temp (.215mm nominal)')
```


Filament Std Dev (%) versus Feed Speed and Heater Temp (.215mm nominal)

Power Consumption

Explore power consumption to optimize cost

In [38]: # explore with correlation matrix
create reduced feature dataframe
df = data[['System Power Ave (W)','Spool Rate Ave (RPS)','Heater Temp Ave (C)','Feed Rate Ave (RPS)']]
#sn.heatmap(df.corr(), annot=True)
#plt.show()
%matplotlib inline
sn.pairplot(df)
plt.show()
df.corr()

Out[38]:

	System Power Ave (W)	Spool Rate Ave (RPS)	Heater Temp Ave (C)	Feed Rate Ave (RPS)
System Power Ave (W)	1.000000	0.137786	0.879243	-0.115448
Spool Rate Ave (RPS)	0.137786	1.000000	-0.114830	0.325072
Heater Temp Ave (C)	0.879243	-0.114830	1.000000	-0.338853
Feed Rate Ave (RPS)	-0.115448	0.325072	-0.338853	1.000000

Ranges of Current Contribution


```
In [43]: # plot heater current versus temperature
fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
ax1.scatter(data['Heater Temp Ave (C)'],data['Heater Current Ave (mA)'])
ax1.set_xlabel('Heater Temperature (C)')
ax1.set_ylabel('Current (mA)')
print('Heater Current versus Temperature')
```

Heater Current versus Temperature


```
In [44]: # plot heater current versus feed rate at a given temperature
# pull out data that is nominally 80C

df = data[data['Heater Temp Ave (C)'] < 80.5]

df = df[df['Heater Temp Ave (C)'] > 79.5]

fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
ax1.scatter(df['Feed Rate Ave (RPS)'],df['Heater Current Ave (mA)'])
ax1.set_xlabel('Feed Rate (RPS)')
ax1.set_ylabel('Current (mA)')
print('Heater Current versus Feed Rate at 80C')
```

Heater Current versus Feed Rate at 80C


```
In [46]: # plot spool current versus speed
fig, ax1 = plt.subplots()
fig.set_size_inches(10,5)
ax1.scatter(data['Spool Rate Ave (RPS)'],data['Spool DC Motor Current Ave (mA)'])
ax1.set_xlabel('Spool Rate (RPS)')
ax1.set_ylabel('Current (mA)')
print('Spool Motor Current versus Spool Speed')
```

Spool Motor Current versus Spool Speed

Fiber Diameter versus Feed Speed and Heater Temp (colored with Power)

In [48]: # add a dataframe column that includes power per feed rate
 data['Power per Feed Rate (W/RPS)'] = data['System Power Ave (W)'] / data['Feed Rate Ave (RPS)']
 data

Out[48]:

	Run File	Feed Rate Ave (RPS)	Spool Wind Rate Set (RPS)	Spool Rate Ave (RPS)	Wind BF Rate Ave (PPS)		Heater Temp Ave (C)	Filament Diamter Ave (mm)	Filament Std Dev (mm)	System Power Ave (W)	System Power Std Dev (W)	Heater Current Ave (mA)	Heater Current Std Dev (mA)	Spool DC Motor Current Ave (mA)	Spool Mı Curı Std (ı
0	log_Manual Control2020- 04-12_12-13- 50.csv	0.001000	1.00	1.000132	127.730719	90.0	90.009313	0.213487	0.016746	29.041052	1.000198	1778.186258	79.322377	134.912897	4.725
1	log_Manual Control2020- 04-12_17-26- 48.csv	0.000312	0.25	0.250982	20.426288	90.0	90.068162	0.228383	0.044286	30.064674	1.123981	1956.170717	89.196351	48.890935	2.843
2	log_Manual Control2020- 04-12_17-26- 48.csv	0.000312	0.50	0.499899	28.561457	90.0	90.080434	0.172805	0.012332	29.126951	1.001411	1849.457701	83.001875	76.481605	2.496
3	log_Manual Control2020- 04-12_17-49- 04.csv	0.000500	0.25	0.254232	45.159629	90.0	89.850642	0.302968	0.022932	28.685025	1.093912	1836.095309	89.052970	48.176519	4.276
4	log_Manual Control2020- 04-12_17-49- 04.csv	0.000500	0.50	0.499777	63.865360	90.0	90.043857	0.217002	0.014405	28.366543	0.931641	1785.295597	76.500593	75.523040	2.469
56	log_Manual Control2020- 05-26_10-47- 57.csv	0.004000	0.75	0.749697	221.236095	80.0	79.951250	0.450721	0.029310	25.648463	2.279616	1483.039423	530.116817	83.442500	76.902
57	log_Manual Control2020- 05-26_10-47- 57.csv	0.004000	0.50	0.499585	180.638516	80.0	79.994511	0.549398	0.042787	24.219703	9.242227	1496.053383	252.112897	47.506090	126.437
58	log_Manual Control2020- 05-26_10-47- 57.csv	0.005000	1.00	0.998329	285.614571	80.0	80.010143	0.412343	0.052719	24.840470	9.815740	1494.695714	143.295658	122.041786	44.229
59	log_Manual Control2020- 05-26_10-47- 57.csv	0.005000	0.75	0.749777	247.349474	80.0	79.871364	0.484278	0.036691	25.306375	1.619509	1464.442045	549.825712	83.640000	67.426
60	log_Manual Control2020- 05-26_10-47- 57.csv	0.005000	0.50	0.499643	201.960000	80.0	79.916287	0.593511	0.051736	24.807645	5.906214	1465.633755	482.090256	55.451857	75.449

61 rows × 20 columns

```
In [49]: # 3D plot - feed, diameter, temperature, power metric
%matplotlib notebook
fig = plt.figure()
ax1 = Axes3D(fig)
pl = ax1.scatter(data['Heater Temp Ave (C)'],data['Feed Rate Ave (RPS)'],data['Filament Diamter Ave (mm)'],c=data['Power per Feed Rate (W/RPS)'])
ax1.set_xlabel('Heater Temp Ave (C)')
ax1.set_ylabel('Feed Rate Ave (RPS)')
ax1.set_zlabel('Filament Diamter Ave (mm)')
plt.colorbar(pl, label='Power per Feed Rate (W/RPS)')
print('Fiber Diameter versus Feed Speed and Heater Temp (colored with Power metric)')
```


Fiber Diameter versus Feed Speed and Heater Temp (colored with Power metric)

```
In [50]: # Look a example fiber diameter - nom. .214mm
         df = data[data['Filament Diamter Ave (mm)'] < .22]</pre>
         df = df[df['Filament Diamter Ave (mm)'] > .21]
         #df
         # 3D plot - feed, spool, diameter
         fig = plt.figure()
         ax1 = Axes3D(fig)
         pl = ax1.scatter(df['Heater Temp Ave (C)'],df['Feed Rate Ave (RPS)'],df['Power per Feed Rate (W/RPS)'],c=df['Power per Feed Rate (W/R
         PS)'])
         ax1.set_xlabel('Heater Temp Ave (C)')
         ax1.set_ylabel('Feed Rate Ave (RPS)')
         ax1.set_zlabel('Power per Feed Rate (W/RPS)')
         plt.colorbar(pl, label='Power per Feed Rate (W/RPS)')
         print('Power per Feed Rate (W/RPS) versus Feed Speed and Heater Temp (.215mm nominal)')
```


Power per Feed Rate (W/RPS) versus Feed Speed and Heater Temp (.215mm nominal)

```
In [51]: # Look at Power (current) Components - Heater
         fig = plt.figure()
         ax1 = Axes3D(fig)
         pl = ax1.scatter(data['Heater Temp Ave (C)'],data['Feed Rate Ave (RPS)'],data['Heater Current Ave (mA)'],c=data['Heater Current Ave
          (mA)'])
         ax1.set_xlabel('Heater Temp Ave (C)')
         ax1.set_ylabel('Feed Rate Ave (RPS)')
         ax1.set_zlabel('Heater Current Ave (mA)')
         plt.colorbar(pl, label='Heater Current Ave (mA)')
         print('Heater Current Ave (mA) versus Feed Speed and Heater Temp')
```


Heater Current Ave (mA) versus Feed Speed and Heater Temp

```
In [52]: # Look at Power (current) Components - Spool
fig = plt.figure()
ax1 = Axes3D(fig)
pl = ax1.scatter(data['Heater Temp Ave (C)'],data['Spool Rate Ave (RPS)'],data['Spool DC Motor Current Ave (mA)'],c=data['Spool DC Motor Current Ave (mA)'])
ax1.set_xlabel('Heater Temp Ave (C)')
ax1.set_ylabel('Spool Rate Ave (RPS)')
ax1.set_zlabel('Spool DC Motor Current Ave (mA)')
plt.colorbar(pl, label='Spool DC Motor Current Ave (mA)')
print('Spool DC Motor Current Ave (mA) versus Feed Speed and Heater Temp')
```


Spool DC Motor Current Ave (mA) versus Feed Speed and Heater Temp

Stepper and 12V Current Ave (mA) versus Feed Speed and Heater Temp

In []: