f(t) = \(\frac{2\pi_1 \tau}{\tau_1 \tau_2 \tau_1 \tau_2 \tau_2 \tau_1 \tau_2 \tau_2 \tau_1 \tau_2 \

For
$$f(t) = f(-t)$$
,

$$\tilde{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} f(t) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} f(t) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} f(t) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega) (\cos(-\omega t) + i\sin(-\omega t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(\omega$$

= 2 for f(w) (oswada) (osut dw

FOURIER'S INVERSION
THEOREM

