## graph theory o *network science*

introduction to network science in Python (NetPy)

Lovro Šubelj University of Ljubljana 14th Dec 2021

## history graph theory

1736 seven *bridges of Königsberg* [Eul36] (Leonhard Euler)

1800s travelling salesman problem (William Hamilton)



1845 electrical circuit laws (Gustav Kirchhoff)

1857 chemical structure theory (August Kekulé)



## history operations research

```
1956 shortest paths (Edsger Dijkstra)
1956 minimum spanning tree (Joseph Kruskal)
1956 maximum flow/minimum cut (Ford & Fulkerson)
1956 signed graph theory [CH56] (Cartwright & Harary)
1959 random graph theory [ER59] (Erdős & Rényi)
```

## history sociometry

1934 children sociograms [Mor34] (Jacob Moreno)



1967 *small-world* experiment [Mil67] (Stanley Milgram) 1970 university *karate club* [Zac77] (Wayne Zachary)





1973 strength of *weak ties* [Gra73] (Mark Granovetter) 1977 measures of *centrality* [Fre77] (Linton Freeman)

#### revolution data

```
< 2000 small graphs 10^2-10^3 nodes
```

pprox 2000 communication networks  $10^5$ - $10^8$  nodes

 $\approx$  2005 online social networks 10<sup>8</sup> nodes

today  $Facebook\ graph > 10^9\ users$ 

today  $Web graph > 10^{12}$  pages



#### revolution models

- 1959 random graph models [ER59]
- 1973 valued graphs models [Gra73]
- 1998 *small-world network* structure [WS98]
- 1999 scale-free network structure [BA99]





## revolution language

"A key discovery of network science is that the architecture of networks emerging in various domains of science, nature, and technology are similar to each other, a consequence of being governed by the same organizing principles. Consequently we can use a common set of tools to explore these systems."

Albert-László Barabási

"Networks are ideal structures to describe problems of organized complexity."

César A. Hidalgo

"I think the 21st century will be the century of complexity."

Stephen Hawking

#### network *science*

# problem understanding real networks

#### means

study of network properties design of mathematical models implementation of efficient algorithms

## goals

network structure and evolution nodes, links, fragments, clusters, layers, network network dynamics and processes spreading, diffusion, epidemics

## network analysis





text mining



computer vision



network analysis

### history references



A.-L. Barabási and R. Albert.

Emergence of scaling in random networks. *Science*, 286(5439):509–512, 1999.



A.-L. Barabási.

Network Science.

Cambridge University Press, Cambridge, 2016.



Dorwin Cartwright and Frank Harary.

Structural balance: A generalization of Heider's theory.

Psychological Review, 63(5):277–293, 1956.



David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, 2010.



P. Erdős and A. Rényi.

On random graphs I.

Publ. Math. Debrecen, 6:290-297, 1959.



Leonhard Euler.

Solutio problematis ad geometriam situs pertinentis.

Comment. Academiae Sci. I. Petropolitanae, 8:128-140, 1736.



L. Freeman.

A set of measures of centrality based on betweenness. *Sociometry*, 40(1):35–41, 1977.



Mark S. Granovetter.

The strength of weak ties.

Am. J. Sociol., 78(6):1360-1380, 1973.

## history references



César A. Hidalgo.

Disconnected, fragmented, or united? A trans-disciplinary review of network science. *Appl. Netw. Sci.*, 1:6, 2016.



Stanley Milgram.

The small world problem. Psychol. Today, 1(1):60–67, 1967.



J. L. Moreno.

Who Shall Survive? Beacon House, Beacon, 1934.



Mark E. J. Newman.

Networks: An Introduction.
Oxford University Press, Oxford, 2010.



D. J. Watts and S. H. Strogatz.

Collective dynamics of 'small-world' networks.

Nature, 393(6684):440-442, 1998.



Wayne W. Zachary.

An information flow model for conflict and fission in small groups.

J. Anthropol. Res., 33(4):452-473, 1977.