

LEI DE RESFRIAMENTO DE NEWTON

9.1 Objetivos: Comprovar a lei de resfriamento de Newton e investigar as variações de temperatura de um objeto esfriando.

9.2 Introdução

Na investigação de um homicídio, ou de uma morte acidental, é muitas vezes importante estimar o instante da morte. Vamos descrever uma forma matemática que pode ser usada para este problema. A partir de observações experimentais, sabe-se que, com uma exatidão satisfatória em muitas circunstâncias, a temperatura superficial do corpo se altera com uma taxa proporcional à diferença de temperatura entre o corpo e meio- ambiente. É o que conhece se como Lei do Resfriamento de Newton.

Da mesma forma, quando se coloca café em uma xícara, o café começa a esfriar. O processo de resfriamento é rápido no início, posteriormente fica uniforme. Após um período longo de tempo, a temperatura do café alcança a temperatura ambiente. Estas variações de temperatura para esfriamentos de objetos, foram reunidas por Newton. Ele definiu que a taxa na qual um corpo quente esfria é aproximadamente proporcional à diferença de temperatura entre a temperatura do objeto quente e a temperatura do seu entorno. Esta relação é expressa matematicamente da seguinte forma.

$$\frac{dT}{dt} = -k(T - T_a) \tag{9.1}$$

Onde dT representa a variação de temperatura do objeto durante um intervalo de tempo dt muito pequeno. T é a temperatura do corpo em um determinado instante, T_a e k é uma constante de proporcionalidade. Esta equação pode ser resolvida usando-se técnicas avançadas:

$$T - T_a = (T_0 - T_a)e^{-kt} (9.2)$$

onde T_0 é a temperatura do corpo quando t = 0. Este experimento investiga as variações de temperatura de um objeto em resfriamento, e procura confirmar o modelo matemático desenvolvido por Newton.

9.3 Materiais Utilizados

- a) Bequer com água quente;
- b) Cronômetro digital;
- c) Termômetro Digital;
- d) Papel milimetrado.

Caderno de Laboratório de Física 11

9.4 Procedimentos

a) Verificando o comportamento exponencial

a) Leia o termômetro do laboratório para determinar a temperatura ambiente em graus celsius, e registre este valor com T_a em seu caderno de notas de laboratório.

- b) Encha o bequer com água e coloque-o na chapa elétrica para aquecer a água. Quando a água começar a ferver, desligue á chapa elétrica.
- c) Coloque o sensor de temperatura dentro do béquer e meça a temperatura inicial T₀. Faça a medida da temperatura a cada 30 segundos. Faça isso durante 15 minutos e anote os dados na tabela 9-1.
- d) Em seguida construa um gráfico temperatura (°C) versus tempo (s) em papel milimetrado. O seu gráfico deverá demonstrar um comportamento exponencial.

Tabela 9.1

t(mim)	T (°C)	t(mim)	<i>T</i> (°C)	t(mim)	T(°C)
0,50		5,50		10,50	
1,00		6,00		11,00	
1,50		6,50		11,50	
2,00		7,00		12,00	
2,50		7,50		12,50	
3,00		8,00		13,00	
3,50		8,50		13,50	
4,00		9,00		14,00	
4,50		9,50		14,50	
5,00		10,00		15,00	

b) Estimando a constante de decaimento K

Note que quando t = 1/k teremos.

$$T = T_a + \frac{T_0 - T_a}{e} (9.3)$$

Substitua os dados na equação acima e encontre à temperatura *T*. A partir do valor encontrado para *T* no gráfico, estime o valor para o tempo *t*. Assim a constante de acoplamento *k* é dada pelo inverso de *t*. Anote os dados na tabela 9-2.

12 Caderno de Laboratório de Física

Tabela 9.2

T _a (°C)	T ₀ (°C)	T (°C)	t (segundos)	k (s ⁻¹)

9.5 Questões

Vamos admitir que a temperatura de um corpo (cadáver) seja 30 $^{\circ}$ C no instante em que ele foi encontrado e 23 $^{\circ}$ C duas horas depois. A temperatura ambiente é de 20 $^{\circ}$ C. Admita que no instante da morte t_m a temperatura do corpo fosse 37 $^{\circ}$ C, que é a temperatura média do corpo humano. Estime o tempo decorrido (em minutos) desde o instante do óbito.