HW3 李松松 杜治兴批改

习题 4.1

在基本的单周期实现中不同的指令使用不同的硬件单元。根据如下指令回答下列3个问题。

指令		解释
a.	add Rd, Rs, Rt	Reg[Rd] = Reg[Rs] + Reg[Rt]
b.	lw Rt, Offs (Rs)	Reg[Rt] = Mem[Reg[Rs] + Offs]

- 4.1.1 [5] <4.1 > 对上述指令而言,图 4-2 中的控制单元将产生哪些控制信号?
- 4.1.2 [5] < 4.1 > 对上述指令而言,将用到哪些功能单元?
- 4.1.3 [10] <4.1 > 哪些功能单元会产生输出,但输出不会被以上指令用到?对以上指令而言,哪些功能单元不产生任何输出?

不同单元有不同的延迟时间。在图 4-2 中有七种主要单元。对一条指令而言,关键路径(产生最长延迟的那条路径)上各单元的延迟时间决定了该指令的最小延迟。假设各单元的延迟时间如下表所示,回答下列 3 个问题。

	指令存储器	ut	多选器	ALU	寄存器堆	数据存储器	控制
a.	400 ps	100 ps	30 ps	120 ps	200 ps	350 ps	100 ps
b.	500 ps	150 ps	100 ps	180 ps	220 ps	1000 ps	65 ps

- 4.1.4 [5] <4.1 > 对一条 MIPS 的与指令 (AND) 而言,关键路径是什么?
- 4.1.5 [5] <4.1 > 对一条 MIPS 的装载指令 (LD) 而言,关键路径是什么?
- 4.1.6 [10] < 4.1 > 对一条 MIPS 的相等则分支指令 (BEQ) 而言,关键路径是什么?

4.1.1

指令	RegDst	RegWrite	ALUSrc	ALUop	MemRead	MemWrite	MemtoReg	Branch
а	1	1	1	add	0	0	1	0
b	0	1	1	add	1	0	0	0

□ op域(6位)译码产生的控制信号:8个

✓ RegDst: 选择rt或rd作为写操作的目的寄存器

• R-type指令(1)与 I-type指令二选一(0)

✓ RegWrite: 寄存器写操作控制

✓ ALUSrc: ALU的第二个操作数来源

 R-type指令(0)与 l-type指令(1) (含branch指令)二选一

✓ ALUOp: R-type指令 (2位)

✓ MemRead: 存储器读控制, load指令

✓ MemWrite: 存储器写控制, store指令 _{Hype}

✓ MemtoReg: 目的寄存器数据来源 R-type

• R-type(I类ALU)指令与load指令二选一

✓ Branch: 是否分支指令(产生PCSrc)

4.1.2

a. 除 D-Mem 和 branch add 以外的所有功能部件

b. 除 branch add 以外的所有功能部件

4.1.3

指令	产生输出,但输出不被利用的部件	不产生输出的部件
a	Branch add	D-Mem
b	Branch add	无

4.1.4

不同实现	关键路径	
a	$\text{I-Mem} \rightarrow \text{Regs} \rightarrow \text{Mux} \rightarrow \text{ALU} \rightarrow \text{Mux} \rightarrow \text{Regs}$	
b	$\text{I-Mem} \rightarrow \text{Regs} \rightarrow \text{Mux} \rightarrow \text{ALU} \rightarrow \text{Mux} \rightarrow \text{Regs}$	

4.1.5

不同实现	关键路径
a	$\text{I-Mem} \rightarrow \text{Regs} \rightarrow \text{Mux} \rightarrow \text{ALU} \rightarrow \text{Mux} \rightarrow \text{D-Mem} \rightarrow \text{Regs}$
b	$\text{I-Mem} \rightarrow \text{Regs} \rightarrow \text{Mux} \rightarrow \text{ALU} \rightarrow \text{Mux} \rightarrow \text{D-Mem} \rightarrow \text{Regs}$

4.1.6

不同实现	关键路径	
a	$\text{I-Mem} \to \text{Regs} \to \text{Mux} \to \text{ALU} \to \text{Mux}$	
b	$\text{I-Mem} \rightarrow \text{Regs} \rightarrow \text{Mux} \rightarrow \text{ALU} \rightarrow \text{Mux}$	

op(6 bits) rs(5 bits) rt(5 bits) rd(5 bits) shamt(5 bits) funct(6 bits)

addr (16 bits)

op(6 bits) rs(5 bits) rt(5 bits)

本习题讨论特定指令在单周期数据通路中的操作。根据下表中的 MIPS 指令分别回答下列问题。

	指令	
a.	lw \$1,40(\$6)	
b.	Label: bne \$1,\$2,Label	

- 4.9.1 [10] < 4.4 > 该指令字的值是多少?
- 4.9.2 [10] <4.4 > 提供给寄存器堆"读寄存器 1"端口的寄存器号是多少?该寄存器真的被读了吗?对于"读寄存器 2"呢?
- 4.9.3 [10] <4.4>提供給寄存器堆 "写寄存器" 端口的寄存器号是多少? 该寄存器真的被写了吗? 不同的指令需要设置数据通路上不同的控制信号。根据下表的两种控制信号情况分别回答下列问题 (参考图 4-24)。

	控制信号1	控制信号2	
a.	RegDst	MemRead	
b.	RegWrite	MemRead	

- 4.9.4 [20] <4.4 > 对该指令而言,这两个控制信号的值应该是多少?
- 4.9.5 [20] <4.4 > 对图 4-24 中的数据通路而言,画出控制单元中实现第一个信号的部分电路图。假设我们仅需支持 lw、sw、beq、add 和 j (jump) 指令。
- 4.9.6 [20] <4.4>重做习题4.9.5,这次两个信号都要实现。

4.9.1

指令	指令值	
lw	(100011)(00110)(00001)(000000000101000)	
bne (000101)(00001)(11111111111111111111111		

4.9.2

指令	寄存器号1	是否读了	寄存器号 2	是否读了
lw	00110	√	/	/
bne	00001	\checkmark	00010	×

4.9.3

指令	写寄存器号1	是否写了
lw	00001	√
bne	/	/

4.9.4

指令	RegDst	MemRead		
lw	0	1		
指令	RegWrite	MemRead		
bne	0	0		

4.9.5&4.9.6

(1) 真值表

指令	Op5	Op4	Op3	Op2	Op1	Op0	RegDst	RegWrite	MemRead
lw	1	0	0	0	1	1	0	1	1
SW	1	0	1	0	1	1	0	0	0
beq	0	0	0	1	0	0	0	0	0
add	0	0	0	0	0	0	1	1	0
j	0	0	0	0	1	0	/	/	0

- (2) 化简得到真知表达式
- (3) 画出电路图

具体过程略

分析 MIPS 三种类型指令的多周期设计方案中每个周期所用到的功能部件。

74 // Mara = 11 70 = 31								
阶段\指令类型	R	I	Beq	J				
取指	PC, Add, Control, Mem, IR							
译码	IR, Control, regs	IR, Contr	Control, PC					
		Sign e						
执行	ALU, Control	ALU, Control	ALU, Control,					
			Branch, PC					
访存	Control	Mem, MDR, Control						
回写	Control, regs	Control, regs						