Guia de Submissão para BioProject, BioSample, SRA e GEO

Este documento explica como preparar os metadados necessários para submissão de experimentos de RNA-seq ao NCBI. Ele inclui exemplos práticos e instruções claras para compilar cada tabela.

Você pode montar os metadados usando Excel, Google Sheets, LibreOffice Calc ou até um script em R/Python

Por que metadados organizados são essenciais?

- Reprodutibilidade: outros pesquisadores podem validar e reutilizar seus dados com segurança.
- Interoperabilidade: ao seguir padrões internacionais, seus dados ficam visíveis em portais como GEO, SRA e ENA.
- · Buscabilidade: bons metadados permitem que seus dados sejam facilmente encontrados por palavras-chave.
- Contextualização: descrevem o experimento, condições, grupos e protocolos com riqueza de detalhes.
- Compliance: repositórios públicos exigem certas informações obrigatórias.

1. Worflow

```
[ BioProject ]

L

BioSample ] [ Experiment metadata ]

SRA ] [ GEO ]
```

- 1. Organize todos os metadados em .tsv para BioSample, SRA e GEO
- 2. Crie seu BioProject primeiro
- 3. Submeta os BioSamples individualmente ou via planilha
- 4. Envie os arquivos brutos (FASTQ) pelo SRA
- 5. Envie os arquivos processados (matriz de contagem) pelo GEO
- 6. Vincule todos os IDs entre si (BioProject → BioSample → SRA/GEO)
- 7. Finalize o envio e aguarde os validadores do NCBI

O que é um arquivo .tsv?

TSV significa Tab-Separated Values — ou seja, um arquivo de texto onde cada coluna é separada por tabulação (TAB), e cada linha representa uma entrada (como uma amostra ou arquivo).

É muito parecido com um .csv (Comma-Separated Values), mas:

.csv	.tsv				
Usa vírgulas entre os campos	Usa tabulação (TAB)				
Pode causar conflitos com vírgulas no texto	Mais seguro para metadados textua				
Extensão: .csv	Extensão: .tsv				

Se estiver no Excel:

- 1. Clique em Arquivo > Salvar como
- 2. Escolha o tipo "Texto (separado por tabulação) (.txt)"*
- 3. Renomeie a extensão de .txt para .tsv (se necessário)

No Google Sheets:

1. Vá em Arquivo > Fazer download > Valores separados por tabulação (.tsv)

2. BioProject

O BioProject agrupa todas as amostras e dados de um estudo. Crie apenas um BioProject por estudo.

É necessário criar um login no NCBI para isso.

- Exemplo:
 - o project_title: Transcriptomic profiling of PBMCs during CHIKV infection
 - o description: RNA-seq of CHIKV-infected PBMCs to study differential gene expression across timepoints.
 - o organism: Homo sapiens
 - o data_type: Transcriptome data
- Crie pelo site: https://submit.ncbi.nlm.nih.gov/subs/bioproject
- Quando enviado, ele gera um código PRJNAxxxxx (ex: PRJNA123456)

3. BioSample

Cada amostra biológica recebe uma entrada única. Os metadados aqui descrevem o material de onde vieram os dados.

• Campos principais:

sample_name	organism	tissue collection_date		disease	geo_loc_name	bioproject_accession	
CHIKV_01	Homo sapiens	РВМС	2023-03-05	Chikungunya fever	Brazil: Bahia	PRJNA123456	

• Crie BioSamples vinculados ao seu BioProject pelo mesmo portal (https://submit.ncbi.nlm.nih.gov/subs/bioproject), ou prepare o upload em lote com .tsv.

Dê preferência a tabelas mais completas, como:

sample_name	organism	isolate	sex	age	tissue	cell_type	disease	treatment	time_point	geo_loc_name	collection_date	d
CHIKV_01	Homo sapiens	CHIKV_Ba01	F	35	Peripheral blood	РВМС	Chikungunya fever	CHIKV infection	3 dpi	Brazil: Bahia	2023-03-05	P is d C ir
CHIKV_02	Homo sapiens	CHIKV_Ba02	М	42	Peripheral blood	РВМС	Chikungunya fever	CHIKV	5 dpi	Brazil: Bahia	2023-03-07	P is d C ir

Essa tabela pode ser salva como biosample_metadata.tsv

Após o envio, o sistema retorna accessions para cada amostra como:

SAMN45678901 SAMN45678902

4. Metadados SRA

Aqui você descreve os arquivos .fastq.gz, tipo de biblioteca, plataforma usada, etc.

O SRA aceita:

- Arquivos .fastq (brutos) ou .bam (alinhados)
- Metadados completos da biblioteca:

sample_name	mple_name biosample_accession		library_layout	filename			
CHIKV_01	SAMN45678901	RNA-Seq	PAIRED	CHIKV_01_R1.fastq.gz;CHIKV_01_R2.fastq.gz			

Atenção: os arquivos .fastq.gz devem estar nomeados de forma consistente com este campo.

Quanto mais detalhado, melhor para quem vai reutilizar seus dados ou revisar seu estudo.

sample_name	biosample_accession	library_ID	title	library_strategy	library_source	library_selection	library_layout	platform	instrum
CHIKV_01	SAMN45678901	LIB01	RNA- seq of CHIKV- infected PBMCs 3dpi	RNA-Seq	TRANSCRIPTOMIC	RANDOM	PAIRED	ILLUMINA	Illumina 6000

sample_name	biosample_accession	library_ID	title	library_strategy	library_source	library_selection	library_layout	platform	instrum
CHIKV_02	SAMN45678902	LIB02	RNA- seq of CHIKV- infected PBMCs 5dpi	RNA-Seq	TRANSCRIPTOMIC	RANDOM	PAIRED	ILLUMINA	Illumina 6000

Adicione outros campos se quiser mais detalhes (ex: basecaller, software de alinhamento). Salve como sna_metadata.tsv

5. Metadados GEO

O GEO (Gene Expression Omnibus) é um repositório público do NCBI focado em dados de expressão gênica processados, incluindo:

Tipo de arquivo	Extensão	Exemplo		
Matriz de contagem	.tsv, .csv	counts_matrix.tsv		
Contagens por amostra	.tsv, .txt	counts_CHIKV_01.tsv		
Arquivos normalizados	.tsv, .rds	normalized_counts.rds		
Scripts ou pipelines	.R, .sh, .ipynb	deseq2_analysis.R		
Metadados das amostras	.tsv	geo sample metadata.tsv		

• Você também pode incluir diagramas de fluxo experimental, fatores de batch, e até RIN e concentração do RNA.

Tabela simples:

title	biosample_accession	source_name	organism	treatment	time_point	file_type	file_name	BioProject
Expression of PBMCs	SAMN45678901	РВМС	Homo	CHIKV	3dpi	Counts	counts_CHIKV_01.tsv	PRJNA123456
CHIKV 3dpi	3AMM43070301	1 DIVIC	sapiens	CHIKV				

Prepare com base em GEO submission templates: https://www.ncbi.nlm.nih.gov/geo/info/submission.html?form=MG0AV3

Exemplo mais completo:

sample_title	biosample_accession	source_name	organism	characteristics_ch1	time_point	treatment	protocol_ch1	data_processing	file_nam
CHIKV_01	SAMN45678901	РВМС	Homo sapiens	disease: Chikungunya fever	3 dpi	CHIKV infection	rRNA depletion + TruSeq	alignment with HISAT2, counts with StringTie and prepDE	counts_C
CHIKV_02	SAMN45678902	РВМС	Homo sapiens	disease: Chikungunya fever	5 dpi	CHIKV infection	rRNA depletion + TruSeq	alignment with HISAT2, counts with StringTie and prepDE	counts_C

O campo characteristics_ch1 no GEO é extremamente flexível e poderoso — ele permite descrever várias características biológicas, clínicas ou técnicas da sua amostra, além da doença.

Outro exemplo de como pode ser mais completo:

sample_title	biosample_accession	source_name	organism	characteristics_ch1	characteristics_ch1	characteristics_ch1	characteristics_ch1	tim
CHIKV_01_3dpi	SAMN45678901	РВМС	Homo sapiens	disease: Chikungunya fever	sex: female	age: 35	RIN: 8.5	3 d

6. Ferramentas e Sites úteis

• pandoc → conversão para PDF/HTML:

```
pandoc metadados_submissao.md -o metadados_submissao.pdf
pandoc metadados_submissao.md -o metadados_submissao.html
```

• https://submit.ncbi.nlm.nih.gov/?form=MG0AV3

• https://www.ncbi.nlm.nih.gov/sra/docs/submitmeta/?form=MG0AV3

Fluxograma de como submeter

- 1. Crie seu BioProject
- Acesse: https://submit.ncbi.nlm.nih.gov/subs/bioproject
- Preencha as informações sobre o estudo (título, organismo, tipo) como foi explicado acima
- Quando enviado, ele gera um código como: PRJNA123456
- 2. Submeta seus BioSamples

Vá para: https://submit.ncbi.nlm.nih.gov/subs/biosample

Ao preencher cada linha (via formulário ou .tsv), inclua o campo:

```
bioproject_accession
PRJNA123456
```

Cada amostra recebe um código como: SAMN45678901

Cada BioSample deve ter um nome único (ex: CHIKV_01) e esse mesmo nome será usado nos metadados do SRA e GEO.

3. Submissão ao SRA (dados brutos)

Acesse: https://submit.ncbi.nlm.nih.gov/subs/sra

Faça upload dos arquivos .fastq.gz

No seu .tsv ou formulário, inclua:

O SRA usará isso para fazer o vínculo entre seu .fastq e a amostra correta

4. Submissão ao GEO

Acesse: https://submit.ncbi.nlm.nih.gov/subs/geo

No sample_metadata.tsv, inclua:

```
BioSample BioProject
SAMN45678901 PRJNA123456
```

Revise e submeta para revisão. Após o envio, você recebe um GSE ID temporário (ex: GSE123456), e o time do NCBI faz a curadoria.

Quando tudo está vinculado corretamente, qualquer pessoa (ou revisor!) poderá:

Entrar no BioProject → Ver as BioSamples → Acessar os dados no SRA → Ver os arquivos processados no GEO — como se fosse um só estudo interligado.

Para submeter arquivos processados

ex: contagens por gene

Entre em: https://submit.ncbi.nlm.nih.gov/subs/geo/

- 1. Crie uma nova submissão
- 2. Escolha: Processed Data Submission (GSE)
- 3. Faça upload
 - Dos arquivos processados (.tsv, .rds, etc.)

- o Da planilha de metadados
- o Dos scripts ou suplementares
- 4. Preencha a descrição do estudo, protocolo, objetivos, etc.