1.	The preucode for the Monte Carlo similar to quien in Mafter 2.4 is
	$Q_{t}(S_{t}, A_{t}) = 1 \underset{i=1}{\overset{t \circ}{\underset{i=1}{\overset{\bullet}{\underset{\bullet}{\bullet}}}}} R_{ii}(S_{t}, A_{t})$
	$= \frac{1}{t} \left[\sum_{i=1}^{t-1} R_{0i}(S_{t}, A_{t}) + R_{t}(S_{t}, A_{t}) \right]$
	$= \frac{1}{t} \left[(t-1) Q_{t-1} (S_t, A_t) + R_t (S_t, A_t) \right]$
	$= Q_{t-1} \left(S_t, A_t \right) + \frac{1}{t} \left(R_t \left(S_t, A_t \right) - Q_{t-1} \left(S_t, A_t \right) \right)$
→	Complete Monte Carlo ES [Exploring Starts] pseucode for finding optimal policy:
(i)	Inilization Step π(S) ε A(S) , for S ε S { Possible States} Set R(S,A) = [] for all Sε S, a ε A(S)
	SES, a E A(S) O (S, a) E O or R [for all SES, a E A(S)] C(S, a) E = O [Count of occurance of (S, a)]
	Algorithmic Steps
\rightarrow	for each episcode:
	→ Chaose Randomly So E S
	\rightarrow Set $A_{\circ} = V \pi (S_{\circ})$
16	for lack episcode: → Choose Randomly So E S → Set Ao = TT (So) → Gunerate the episcode from policy T as: So, Ao, RI, SI, A, R2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
i (\rightarrow $GH \leftarrow YGH + R_{++}H$
	2 Lappendt St, At
	y if St. At not in L:
	J → L. append (St, At)
	$\Rightarrow ((S_t, A_t) = ((S_t, A_t) + 1)$
L. Jank	$\Rightarrow O(St,At) = O(St,At) +$
ي ال	1 G-OUST, At)
3) :	$((St, At)^{L})$
7.11	
,	→ Return T, Q(St, At)


```
4.
5.1.
Code:
np.random.seed(42)
class BlackJack():
  def init (self):
    self.play = []
    self.deal = []
    self.decklist = list(np.arange(1,11)) + [10,10,10]
    self.start()
  def playcard(self):
    return np.random.choice(self.decklist)
  def playhand(self):
      return [self.playcard(), self.playcard()]
  def currentusability(self,draw):
    total sum = sum(draw)
    if 1 in draw:
      if total sum + 10<=21:
        return True
      else :
        return False
    else :
      return False
  def currentsum(self,draw):
    if self.currentusability(draw) == True:
      total sum = sum(draw) + 10
    else :
      total sum = sum(draw)
    return total sum
  def currentbust(self,draw):
    total sum = sum(draw)
    if total sum>21:
      return True
    else :
      return False
  def score(self, draw):
    if self.currentbust(draw) == True:
      return 0
      return self.currentsum(draw)
  def step(self, action):
    end = True
    # Hit : Player turn
```

```
if action==1:
        self.play.append(self.playcard())
        if self.currentbust(self.play):
            reward = -1
        else:
            end = False
            reward = 0
    # Stick: Dealers turn
    else:
        while self.currentsum(self.deal) < 17:</pre>
            self.deal.append(self.playcard())
        playsc = self.score(self.play)
        dealsc = self.score(self.deal)
        if playsc == dealsc:
          reward = 0
        elif playsc > dealsc:
          reward = 1
        else :
          reward = 0
    observation = [self.currentsum(self.play), self.deal[0], self.currentusability(
self.play) ]
    step results = [observation , reward , end , {}]
    return step results
  def start(self):
      self.deal = self.playhand()
      self.play = self.playhand()
      while self.currentsum(self.play) < 12:</pre>
          self.play.append(self.playcard())
      observation = [self.currentsum(self.play), self.deal[0], self.currentusabilit
y(self.play)]
      return observation
def Monte Carlo Prediction (Episode Lenght, Policy, Black Jact Env, Alpha):
    Return St = defaultdict(float)
    Count St = defaultdict(float)
    Value St = defaultdict(float)
    for i in range(Episode Lenght):
      # Generating Episode (S,A,R)
      Episode = []
      States = []
      S0 = BlackJact Env.start()
      for in range (1000):
          A0 = Policy(S0)
          observation = BlackJact Env.step(A0) # (State, Reward, End)
          Episode.append([observation[0],observation[1],observation[2]])
          States.append(tuple(observation[0]))
          if observation[2] == True:
              break
          S0 = observation[0]
```

```
G = 0
      States Visited = []
      for i in range (len (Episode) -1, -1, -1):
        G = Alpha*G + Episode[i][1]
        if States[i] in States Visited:
          continue
        else :
          Return St[States[i]] = Return St[States[i]] + G
          Count_St[States[i]] = Count_St[States[i]] + 1
          Value St[States[i]] = Return St[States[i]]/Count St[States[i]]
          States Visited.append(States[i])
    return Value St
def Policy(State):
    Player Score, , = State
    if Player Score>=20:
      return 0
    else :
      return 1
def Plotting Value Function (Value St, count):
  Play show = [i[0] for i in Value St.keys()]
  Deal_show = [i[1] for i in Value_St.keys()]
  Play range = np.arange(min(Play show)-1, max(Play show)+1)
  Deal range = np.arange(min(Deal show)-1, max(Deal show)+1)
  P, D = np.meshgrid(Play range, Deal range)
  T = np.dstack([P, D])
  # Usable and usable ace
  usevalues = lambda _: Value_St[(_[0], _[1], True)]
  unusevalues = lambda _: Value_St[(_[0], _[1], False)]
  P1 = np.apply along axis (usevalues, 2, T)
  P2 = np.apply along axis (unusevalues, 2, T)
  fig = plt.figure(figsize=(15, 7))
  ax = fig.add subplot(111, projection='3d')
  ax.plot surface(D,P,P1,color = 'aliceblue')
  ax.set xlabel('Player Sum')
  ax.set ylabel('Dealer Showing')
  ax.set zlabel('Value')
  plt.title("After "+str(count)+" episodes , Usable ace")
  plt.show()
  fig = plt.figure(figsize=(15, 7))
  ax = fig.add subplot(111, projection='3d')
  ax.plot surface(D,P,P2,color = 'aliceblue')
  ax.set xlabel('Player Sum')
  ax.set ylabel('Dealer Showing')
  ax.set zlabel('Value')
  plt.title("After "+str(count)+" episodes , no usable ace")
```

```
plt.show()

def RemoveDict(V):
    for i in list(V.keys()):
        if i[0]>21:
            del V[i]

bj = BlackJack()

V1 = Monte_Carlo_Prediction(10000, Policy, bj, 1)
RemoveDict(V1)
Plotting_Value_Function(V1, count=10000)

V2 = Monte_Carlo_Prediction(500000, Policy, bj, 1)
RemoveDict(V2)
Plotting_Value_Function(V2, count=500000)
```



```
5.2
```

Code:

```
np.random.seed(42)
class BlackJack():
  def init (self):
    self.play = []
    self.deal = []
    self.decklist = list(np.arange(1,11)) + [10,10,10]
    self.start()
  def playcard(self):
    return np.random.choice(self.decklist)
  def playhand(self):
      return [self.playcard(), self.playcard()]
  def currentusability(self,draw):
    total_sum = sum(draw)
    if 1 in draw:
      if total sum + 10<=21:</pre>
        return True
      else :
        return False
    else :
      return False
  def currentsum(self, draw):
    if self.currentusability(draw) == True:
      total_sum = sum(draw) + 10
    else :
      total sum = sum(draw)
    return total_sum
  def currentbust(self, draw):
    total_sum = sum(draw)
    if total sum>21:
      return True
    else :
      return False
  def score(self, draw):
    if self.currentbust(draw) == True:
      return 0
    else :
      return self.currentsum(draw)
  def step(self, action):
    end = True
    # Hit : Player turn
    if action==1:
```

```
self.play.append(self.playcard())
        if self.currentbust(self.play):
            reward = -1
        else:
            end = False
            reward = 0
    # Stick: Dealers turn
    else:
        while self.currentsum(self.deal) < 17:</pre>
            self.deal.append(self.playcard())
        playsc = self.score(self.play)
        dealsc = self.score(self.deal)
        if playsc == dealsc:
          reward = 0
        elif playsc > dealsc:
          reward = 1
        else :
          reward = 0
    observation = [self.currentsum(self.play), self.deal[0], self.currentusability(
self.play)]
    step results = [observation , reward , end , {}]
    return step results
  def start(self):
      self.deal = self.playhand()
      self.play = self.playhand()
      while self.currentsum(self.play) < 12:</pre>
          self.play.append(self.playcard())
      observation = [self.currentsum(self.play), self.deal[0], self.currentusabilit
y(self.play)]
      return observation
def Monte Carlo Control (Episode Lenght, Policy, BlackJact Env, Alpha, Epislon):
    Return St = defaultdict(float)
    Count St = defaultdict(float)
    Q St = defaultdict(float)
    for i in range(Episode Lenght):
      # Generating Episode (S,A,R)
      Episode = []
      State Action = []
      S0 = BlackJact Env.start()
      for in range(1000):
          ActionProb = Policy(S0,Q St,Epislon)
          A0 = np.random.choice(2,p = ActionProb)
          observation = BlackJact Env.step(A0) # (State, Reward, End)
          Episode.append([observation[0],observation[1],observation[2]])
          State Action.append((tuple(observation[0]),A0))
          if observation[2] == True:
              break
          S0 = observation[0]
```

```
G = 0
      States Action Visited = []
      for i in range (len (Episode) -1, -1, -1):
        s = State Action[i][0]
        a = State Action[i][1]
        G = Alpha*G + Episode[i][1]
        if State Action[i] in States Action Visited:
          continue
        else :
          Return_St[(s,a)] = Return_St[(s,a)] + G
          Count St[(s,a)] = Count St[(s,a)] + 1
          Q St[(s,a)] = Return St[(s,a)]/Count St[(s,a)]
          States Action Visited.append((s,a))
    return Q St
def NewPolicy(State, Q St, Epislon):
    keys = list(Q_St.keys())
    Q value_0 = Q_value_1 = 0
    if len(Q St):
      Pi = np.array([0.5, 0.5])
    else:
      if (State, 0) in keys:
        Q value 0 = Q[(State, 0)]
      if (State, 1) in keys:
        Q value 1 = Q[(State, 1)]
      Q_value = np.array([Q_value_0,Q_value_1])
      Optimal Act = np.argmax(Q value)
      Pi = np.zeros(2)
      Pi[Optimal Act] = (1-Epislon) + (Epislon/2)
      Pi[1-Optimal Act] = (Epislon/2)
    return Pi
def Plotting_Value_Function(Value_St,count):
  Play show = [i[0] for i in Value St.keys()]
  Deal show = [i[1] for i in Value St.keys()]
  Play range = np.arange(min(Play show)-1, max(Play show)+1)
  Deal range = np.arange(min(Deal show)-1, max(Deal show)+1)
  P, D = np.meshgrid(Play range, Deal range)
  T = np.dstack([P, D])
  # Usable and usable ace
  usevalues = lambda _: Value_St[(_[0], _[1], True)]
  unusevalues = lambda _: Value_St[(_[0], _[1], False)]
  P1 = np.apply_along_axis(usevalues,2,T)
  P2 = np.apply along axis (unusevalues, 2, T)
  fig = plt.figure(figsize=(15, 7))
  ax = fig.add_subplot(111, projection='3d')
  ax.plot surface(D, P, P1, color = 'aliceblue')
  ax.set xlabel('Player Sum')
```

```
ax.set ylabel('Dealer Showing')
  ax.set zlabel('Value')
  plt.title("After "+str(count)+" episodes , Usable ace")
  plt.show()
  fig = plt.figure(figsize=(15, 7))
  ax = fig.add subplot(111, projection='3d')
  ax.plot surface(D,P,P2,color = 'aliceblue')
  ax.set xlabel('Player Sum')
  ax.set ylabel('Dealer Showing')
  ax.set zlabel('Value')
  plt.title("After "+str(count)+" episodes , no usable ace")
  plt.show()
def GetValueFromStateValue(Q St):
  Q df = pd.DataFrame()
  state = []
  action = []
  value = []
  for i in list(Q1.keys()):
   key = i
    state.append(key[0])
    action.append(key[1])
    value.append(Q1[i])
  Q df['State'] = state
  Q df['Action'] = action
  Q df['Value'] = value
  Q df.sort values(by=['State', 'Action'],inplace =True)
  i = 0
  V1 = defaultdict(float)
  while i < len(Q df) - 1:
    if Q_df.iloc[i]['State'] == Q_df.iloc[i+1]['State']:
      V1[Q_df.iloc[i]['State']] = max(Q_df.iloc[i]['Value'],Q_df.iloc[i]['Value'])
      i = i + 2
    else :
      V1[Q_df.iloc[i]['State']] = Q_df.iloc[i]['Value']
      i = i + 1
  return V1
def RemoveDict(V):
  for i in list(V.keys()):
    if i[0]>21:
      del V[i]
```


5. In Monte Carlo method, the algorithm needs whole Episode walk. The episode is based on the random & saft policy completely different the Temporal difference method uses the other estimates without waiting for outcome to update the estimate In cale of driving home example, the monte update the estimates only once when the care arrived at home. while in rase of temporal difference learning the algorithm updates the estimate after the can interes the highway. The methode To chosen here it guides the update Herre, the TO updates are better than thing will happen The same sort of thing will he the original task as well provided Vaccurate state information accurate initilization of state values.

I	
	V(A) = 0.5 + 0.1[0 + 1x0 - 0.5]
1	= 0.45
	Value change in V(A)= 0.5 - 0.45
	= 0.05.
	VIA) is lowered by 0.05.
4 1	and the state of the same of t
→	Consider the simple episode walk starting
	Juan O as
	D, O, C, O, B, O, A, O, Left Terminal State]
Hall 10	$V(G) = V(0) + 600 \left[(10)(R + 1)(C) - V(0) \right] \times 0.1$
	$= 0.5 + 0.1 \left[0 + 0.5 - 0.5 \right]$
	= 0.5 + 0.1[0]
	= 0.5
	1 - E Co (A Co) () For the Co Co
	$V(C) = V(C) + O \cdot I \left[R + V(B) - V(C) \right]$
Later V	= 0.5
	$V(B) = V(B) + O \cdot I[R + V(A) - V(B)]$
	= 0.5
	From above & calculations, it is clear that
	only V(A) is change and lowered by 0.05
	while other remained same during
	first episode.
	V - War. I - I - I - I - I - I - I - I - I - I
\mathcal{I}	n general
	(V(s) = V(c) + & [R + y V(s') - V(s)]
1/1/1	$= 0.5 + 0.160 + 1\times0.5 - 0.5$
	= 0.5 for all SE [B, C, D, E]

on the basis of given graph of nerdom walk, the performance of algorithm change in value of step size. Both the algorithms performs bad if the value of ∞ is two high or very low. But the wider values of $\infty \in [0,1]$ will not affects the plots much. When the & value is high then

It perform good in the beginning.

of the episode.

The RMSE error will invease after some episodes. you the fixed value of or, the TD algorithm beganithm step dynamic.

I only need the one advance next state

for computation + Updates the value function as one This gives importance to older values. In the given random walk, the value of states is taken to be 0.5 initially. Thes its This value is more close to actual value of the state. When the episcodes starts,

the RMSE ages down because the musi in actual and predicted values is less. on the episcodes parses, the TO also algor--ithm updates the values of state. This will lead to the A change in RMSE value i.e. it will increase. No, I don't think that this will always are not close to the actual values of state. If the initialization is more random , then the RMSE rune will go from high values to low value and -ithm will converge.

```
Code:
class Random Walk:
 def init__(self):
    self.V Est = np.array([0.5]*7)
    self.V_True = np.array([0,1/6,2/6,3/6,4/6,5/6,1])
    self.Action = [0,1]
 def TD(self,initial_state,step_size,discounting):
      episode = [initial state]
      received rewards = []
      state = initial state
      while True:
        a = np.random.binomial(1,0.5)
        if a == self.Action[1]:
         new state = state + 1
          if state ==6:
            reward = 1
          else :
           reward = 0
        else:
         new state = state -1
         reward = 0
        episode.append(new state)
        received rewards.append(reward)
        self.V Est[state] = self.V Est[state] + step size*(reward + discounting*sel
f.V_Est[new_state] - self.V Est[state])
        state = new state
        if state in [0,6]:
           break
      return [episode, received rewards]
 def MC(self,initial state,step size , discounting):
   episode = [initial state]
   received rewards = []
    state = initial state
   while True:
      a = np.random.binomial(1, 0.5)
      if a == self.Action[1]:
       new state = state + 1
       if state ==6:
         reward = 1
        else :
         reward = 0
      else:
       new state = state -1
       reward = 0
      episode.append(new state)
      received rewards.append(reward)
```

```
state = new state
      if state in [0,6]:
        break
    G = 0
    for i in range(len(received rewards)-1,-1,-1):
      G = G + discounting*received rewards[i]
      self.V Est[episode[i]] = (1-step size)*self.V Est[episode[i]] + step size*G
      return [episode, received rewards]
def TD Epsiode (Number Episodes, step size, discouting):
 V Est Epi mean TD Res = []
  for i in Number Episodes:
    V Est Epi = []
    RMC = Random Walk()
    for in range(i):
      RMC.TD(3, step_size=step_size, discounting=discouting)
      V_Est_Epi.append(RMC.V_Est)
    V Est Epi = np.array(V Est Epi)
    V Est Epi mean TD = np.mean(V Est Epi,axis=0)
    V_Est_Epi_mean_TD_Res.append(V_Est_Epi_mean_TD)
  return V Est Epi mean TD Res
def MC Epsiode (Number Episodes, step size, discouting):
  V Est Epi mean MC Res = []
  for i in Number Episodes:
    V Est Epi = []
    RMC = Random Walk()
    for in range(i):
      RMC.MC(3, step_size=step_size, discounting=discouting)
      V Est Epi.append(RMC.V Est)
    V_Est_Epi = np.array(V_Est_Epi)
    V_Est_Epi_mean_MC = np.mean(V_Est_Epi,axis=0)
    V Est Epi mean MC Res.append(V Est Epi mean MC)
  return V_Est_Epi_mean_MC_Res
def TD Plot(V Est , V True, V Est Epi mean TD Res, Number Episodes):
  for i in range(len(Number Episodes)):
    if Number Episodes[i] == 0:
      plt.plot(V Est[1:6],label=str(Number Episodes[i])+' Episodes')
      plt.plot(V Est Epi mean TD Res[i][1:6],label=str(Number Episodes[i])+' Episod
es')
  plt.plot(V_True[1:6],label='True Value')
  plt.xlabel('States')
  plt.ylabel('Estimated Value')
  plt.xticks(np.arange(5), ['A', 'B', 'C', 'D', 'E'])
  plt.legend()
  plt.show()
```

```
def RMSE Calculation(Step_MC, Step_TD, Episodes, V_True):
 MC RMSE = {}
  for i in Step MC:
    error per step = []
    step size = i
    for j in range(1, Episodes):
      V = MC Epsiode([j],step size,discouting=0.9)
      error = math.sqrt(mean squared error(V True[1:6],V[0][1:6]))
      error per step.append(error)
    error per step.reverse()
    MC RMSE[i] = error per step
  TD RMSE = {}
  for i in Step TD:
    error per step = []
    step size = i
    for j in range (1, Episodes):
      V = TD_Epsiode([j],step_size,discouting=0.9)
      error = math.sqrt(mean_squared_error(V_True[1:6],V[0][1:6]))
      error per step.append(error)
    error_per_step.reverse()
    TD_RMSE[i] = error_per_step
  return (MC RMSE , TD RMSE)
def RMSE Plot(MC RMSE, TD RMSE):
  for i in list(MC RMSE.keys()):
    plt.plot(MC RMSE[i], label='MC , step size = '+str(i))
  for i in list(TD RMSE.keys()):
    plt.plot(TD_RMSE[i], label='TD , step size = '+str(i))
  plt.xlabel('Walks / Episodes')
  plt.ylabel('RMSE')
  plt.title('Empirical RMS error, averaged over states')
 plt.legend()
 plt.show()
Number Episodes = [0,1,10,100]
step size = 0.1
discouting = 0.9
V Est Epi mean TD Res = TD Epsiode (Number Episodes, step size, discouting)
V True = np.array([0,1.6,2/6,3/6,4/6,5/6,1])
V Est = np.array([0.5]*7)
TD_Plot(V_Est , V_True, V_Est_Epi_mean_TD_Res, Number_Episodes)
Step MC = [0.01, 0.02, 0.03, 0.04]
Step TD = [0.1, 0.05, 0.15]
(MC RMSE , TD RMSE) = RMSE Calculation(Step MC, Step TD, 100, V True)
RMSE Plot(MC RMSE, TD RMSE)
```



```
7.
```

Code:

```
np.random.seed(40)
class CliffWalking:
  def init (self, gridsize, stepsize, epislon, gamma, action, startstate, goalstate):
    self.gridsize = gridsize
    self.stepsize = stepsize
    self.epislon = epislon
    self.gamma = gamma
    self.action = action
    self.startstate = startstate
    self.goalstate = goalstate
    self.Q St = np.zeros((gridsize[0],gridsize[1],4))
    self.Q St[startstate[0], startstate[1]] = 0
    self.Q St[goalstate[0], goalstate[1]] = 0
  def NextStateReward(self, State, Action):
    h = self.gridsize[0]
    w = self.gridsize[1]
    if Action==0: # UP
      i = State[0]-1
      j = State[1]
      r = -1
    elif Action==1: # DOWN
      i = State[0]+1
      j = State[1]
      r = -1
    elif Action==2: # LEFT
      i = State[0]
      j = State[1]-1
      r = -1
    elif Action==3: # DOWN
     i = State[0]
      j = State[1]+1
     r = -1
    if i<0:
      i = 0
    elif i>=h:
      i = h-1
    if j<0:
      j = 0
    elif j>=w:
      j = w-1
    cliff = [k \text{ for } k \text{ in range}(1,11)]
    if i==3 and j in cliff:
      NextState = self.startstate
      Reward = -100
    else :
```

```
NextState = [i,j]
               Reward = r
          return (NextState, Reward)
     def Policy(self, State):
          p = np.random.random()
          if p<self.epislon:
               Action = np.random.choice(self.action)
                Q Values = self.Q St[State[0],State[1]]
               Action = np.argmax(Q Values)
          return Action
     def Sarsa(self,InitialState): # One episode
               S = InitialState
               A = self.Policy(S)
               Total reward = 0
               c = 0
               while S!=self.goalstate:
                     c = c + 1
                     if c == 100:
                        break
                      (S dash, R) = self.NextStateReward(S, A)
                     A_dash = self.Policy(S_dash)
                     for i in range(4):
                           self.Q St[S[0],S[1],i] = self.Q St[S[0],S[1],i] + self.stepsize*(R + self.stepsize)
. \texttt{gamma*self.Q\_St[S\_dash[0],S\_dash[1],i] - self.Q\_St[S[0],S[1],i])}
                     S = S_dash
                     A = A dash
                     Total_reward = Total_reward + R
               return Total reward
     def Q Learning(self, InitialState): # One episode
                S = InitialState
               A = self.Policy(S)
               Total reward = 0
               c = 0
               while S!=self.goalstate:
                     c = c + 1
                     if c == 100:
                         break
                      (S dash, R) = self.NextStateReward(S, A)
                     A_dash = self.Policy(S_dash)
                    Max_Q_Values_NextState = max([self.Q_St[S_dash[0],S_dash[1],i] for i in ran
qe(4)])
                     for i in range(4):
                          self.Q_St[S[0],S[1],i] = self.Q_St[S[0],S[1],i] + self.stepsize*(R +
.gamma*Max Q Values NextState - self.Q St[S[0],S[1],i])
                     S = S dash
                     A = A dash
                     Total_reward = Total_reward + R
                return Total reward
```

```
def Plot Sarsa Q Learning Curve (gridsize, stepsize, epislon, gamma, action, startstate, g
oalstate, numberepisodes):
  sarsa reward = np.zeros(numberepisodes)
  qlearning reward = np.zeros(numberepisodes)
  sar = CliffWalking(gridsize, stepsize, epislon, gamma, action, startstate, goalstate)
  ql = CliffWalking(gridsize, stepsize, epislon, gamma, action, startstate, goalstate)
  InitialState = startstate
  for i in range(numberepisodes):
    sarsa reward[i] = sarsa reward[i] + sar.Sarsa(InitialState)
    qlearning reward[i] = qlearning reward[i] + ql.Q Learning(InitialState)
  plt.plot(sarsa reward, label='Sarsa')
  plt.plot(qlearning reward, label='Q-Learning')
  plt.xlabel('Episodes')
  plt.ylabel('Sum of rewards during episode')
  plt.legend()
 plt.show()
  return sarsa_reward , qlearning_reward
gridsize = [4, 12]
stepsize = 0.5
epislon = 0.1
gamma = 1
action = np.arange(4)
startstate = [3, 0]
goalstate = [3, 11]
numberepisodes = 500
sarsa reward , qlearning reward = Plot Sarsa Q Learning Curve(gridsize, stepsize, epi
slon,gamma,action,startstate,goalstate,numberepisodes)
```

