

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import ttest_ind

Load the dataset
df = pd.read_excel('FEV-data-Excel.xlsx')
df.head()

Out[2]:

	Car full name	Make	Model	Minimal price (gross) [PLN]	Engine power [KM]	Maximum torque [Nm]	Type of brakes	Drive type	Batto capac [kV
C	Audi e- tron 55 quattro	Audi	e-tron 55 quattro	345700.0	360.0	664.0	disc (front + rear)	4WD	9
1	Audi e- tron 50 quattro	Audi	e-tron 50 quattro	308400.0	313.0	540.0	disc (front + rear)	4WD	7
2	Audi e- tron S quattro	Audi	e-tron S quattro	414900.0	503.0	973.0	disc (front + rear)	4WD	9
3	Audi e- tron Sportback 50 quattro	Audi	e-tron Sportback 50 quattro	319700.0	313.0	540.0	disc (front + rear)	4WD	7
4	Audi e- tron Sportback 55 quattro	Audi	e-tron Sportback 55 quattro	357000.0	360.0	664.0	disc (front + rear)	4WD	9

5 rows × 25 columns

In [15]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53 entries, 0 to 52
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	Car full name	53 non-null	object
1	Make	53 non-null	object
2	Model	53 non-null	object
3	Minimal price (gross) [PLN]	53 non-null	float64
4	Engine power [KM]	53 non-null	float64
5	Maximum torque [Nm]	53 non-null	float64
6	Type of brakes	52 non-null	object
7	Drive type	53 non-null	object
8	Battery capacity [kWh]	53 non-null	float64
9	Range (WLTP) [km]	53 non-null	float64
10	Wheelbase [cm]	53 non-null	float64
11	Length [cm]	53 non-null	float64
12	Width [cm]	53 non-null	float64
13	Height [cm]	53 non-null	float64
14	Minimal empty weight [kg]	53 non-null	float64
15	Permissable gross weight [kg]	45 non-null	float64
16	Maximum load capacity [kg]	45 non-null	float64
17	Number of seats	53 non-null	float64
18	Number of doors	53 non-null	float64
19	Tire size [in]	53 non-null	float64
20	Maximum speed [kph]	53 non-null	float64
21	Boot capacity (VDA) [l]	52 non-null	float64
22	Acceleration 0-100 kph [s]	50 non-null	float64
23	Maximum DC charging power [kW]	53 non-null	float64
24	mean - Energy consumption [kWh/100 km]	44 non-null	float64
dtvp	es: float64(20), object(5)		

dtypes: float64(20), object(5)

memory usage: 10.5+ KB

In [16]: df.describe()

Out[16]:

		Minimal price (gross) [PLN]	Engine power [KM]	Maximum torque [Nm]	Battery capacity [kWh]	Range (WLTP) [km]	Wheelba [c
•	ount	53.000000	53.000000	53.000000	53.000000	53.000000	53.0000
	mean	246158.509434	269.773585	460.037736	62.366038	376.905660	273.5811
	std	149187.485190	181.298589	261.647000	24.170913	118.817938	22.7405
	min	82050.000000	82.000000	160.000000	17.600000	148.000000	187.3000
	25%	142900.000000	136.000000	260.000000	40.000000	289.000000	258.8000
	50%	178400.000000	204.000000	362.000000	58.000000	364.000000	270.0000
	75 %	339480.000000	372.000000	640.000000	80.000000	450.000000	290.0000
	max	794000.000000	772.000000	1140.000000	100.000000	652.000000	327.5000

Task 1: Filter EVs with budget ≤ 350,000 PLN and range ≥ 400 km, group by manufacturer, calculate avg battery capacity

```
In [4]:
       filtered df = df[(df['Minimal price (gross) [PLN]'] <= 350000) & (df['Range (W
        grouped = filtered df.groupby('Make').agg({'Battery capacity [kWh]': 'mean'}).
        print(grouped)
                   Make Battery capacity [kWh]
      0
                   Audi
                                      95.000000
                   BMW
                                      80.000000
      1
      2
               Hyundai
                                      64.000000
      3
                                      64.000000
                   Kia
      4 Mercedes-Benz
                                      80.000000
                                      68.000000
      5
                 Tesla
            Volkswagen
                                      70.666667
```

Task 2: Identify outliers in Mean - Energy consumption [kWh/100 km]

```
In [3]: energy = df['mean - Energy consumption [kWh/100 km]']

q1 = energy.quantile(0.25)
q3 = energy.quantile(0.75)
iqr = q3 - q1

lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr

outliers_df = df[(energy < lower_bound) | (energy > upper_bound)]

print(f"Number of outliers: {outliers_df.shape[0]}")
```

Number of outliers: 0

```
In [4]: plt.figure(figsize=(10, 6))
    sns.boxplot(x=energy, color='skyblue')
    plt.axvline(lower_bound, color='red', linestyle='--', label='Lower Bound')
    plt.axvline(upper_bound, color='red', linestyle='--', label='Upper Bound')
    plt.title('Boxplot of Energy Consumption with Outlier Bounds')
    plt.xlabel('Energy Consumption [kWh/100 km]')
    plt.legend()
    plt.tight_layout()
    plt.show()
```


Task 3: Visualize relationship between battery capacity and range

```
In [6]: plt.figure(figsize=(10,6))
    sns.scatterplot(data=df, x='Battery capacity [kWh]', y='Range (WLTP) [km]', hu
    plt.title('Battery Capacity vs Range')
    plt.xlabel('Battery capacity [kWh]')
    plt.ylabel('Range (WLTP) [km]')
    plt.grid(True)
    plt.show()
```


Insights

- Positive correlation between battery capacity and range; higher capacity generally means longer range.
- Tesla models achieve higher range for similar or slightly higher battery capacities, indicating superior efficiency.
- Volkswagen shows varied efficiency; some models have high battery capacity but only moderate range.
- Some BMW and Mercedes-Benz models offer high range with moderate battery size, suggesting efficient designs.
- Brands like Audi, Renault, Hyundai, and Peugeot show a wide spread, reflecting diverse model offerings.
- Smart and Citroën models appear with low battery and range, consistent with compact urban EVs.

Task 4: EV Recommendation Class

```
(self.df['Battery capacity [kWh]'] >= min_battery
top3 = candidates.sort_values(by=['Range (WLTP) [km]', 'Battery capaci
return top3[['Car full name', 'Minimal price (gross) [PLN]', 'Range (w

# Example usage:
ev_recommender = EVRecommendation(df)
ev_recommender.recommend(350000, 400, 50)
```

Out[4]:

	Car full name	Minimal price (gross) [PLN]	Range (WLTP) [km]	Battery capacity [kWh]
40	Tesla Model 3 Long Range	235490.0	580.0	75.0
41	Tesla Model 3 Performance	260490.0	567.0	75.0
48	Volkswagen ID.3 Pro S	179990.0	549.0	77.0

Task 5: Hypothesis Testing (Tesla vs Audi Engine Power)

```
In [9]: tesla_power = df[df['Make'] == 'Tesla']['Engine power [KM]'].dropna()
    audi_power = df[df['Make'] == 'Audi']['Engine power [KM]'].dropna()

t_stat, p_value = ttest_ind(tesla_power, audi_power, equal_var=False)

print(f'T-statistic: {t_stat:.2f}')
print(f'P-value: {p_value:.4f}')

if p_value < 0.05:
    print("Significant difference in engine power between Tesla and Audi.")
else:
    print("No significant difference in engine power between Tesla and Audi.")</pre>
```

T-statistic: 1.79 P-value: 0.1068

No significant difference in engine power between Tesla and Audi.

Insights

- The p-value (0.1068) is greater than the 0.05 threshold, indicating no statistically significant difference in engine power between Tesla and Audi models.
- While Tesla's average engine power may be **numerically higher**, the variation across models means this difference is not statistically robust.
- **Product positioning** by both brands likely results in overlapping

- performance specifications, especially in premium segments.
- For performance-focused consumers, engine power alone may not be
 a strong differentiator between Tesla and Audi; other factors like
 acceleration, torque, range, or features may carry more weight.
- Further analysis could include comparing **acceleration times**, **price-to-power ratios**, or **power-to-weight ratios** for deeper insights.

Recommendations and Conclusion

Based on the analysis:

- Customers with a budget of 350,000 PLN and minimum 400 km range have multiple options.
- EVs exhibit 0 outliers in energy consumption, needing further technical review.
- Battery capacity positively correlates with range.
- Tesla tends to have higher engine power, but statistical significance depends on updated dataset.

Project Video Link:

https://drive.google.com/file/d/1VxP9fv3lyye-md2Pkatu0H328rkBpgVb/view?usp=sharing