Kurs wxMaxima, Teil 04:

Winkelfunktionen:

Verwendete Kursinhalte:

- Gleichungen: Gleichungen in 1 Variablen
- Funktionen: Trigonometrische Funktionen
- 2D-Graphik: Funktionen Kurven, Punkte-Strecken

Grundlegende Bemerkungen: Es ist jede Inputzeile zu dokumentieren:

- Kommentar 1: Mathematische Vorgangsweise (was soll passieren)
- Kommentar 2: Vorgangsweise in wxMaxima (Syntax, Bemerkungen,...) Zusätzlich sind die Ergebnisse der Aufgaben zu interpretieren!

1 Vereinfache so weit wie möglich:

a)
$$\sin(30^{\circ} + \alpha) \cdot \cos(60^{\circ} + \alpha)$$

b)
$$\frac{\sin(x-y) \cdot \sin(x+y)}{\sin(x)^2 - \sin(y)^2}$$

c)
$$\cos\left(\frac{\pi}{4} - x\right) - \cos\left(\frac{\pi}{4} + x\right)$$

d)
$$\frac{\sin(x-y)+\sin(x+y)}{-\cos(x-y)+\cos(x+y)}$$

2 Vergleiche durch Zeichnung in (jeweils) einen Graphen die Funktionen:

- a) $\sin(x)$, $2\sin(x)$, $0.3\sin(x)$
- **b)** $\sin(x), \sin(x) + 2$
- c) $\sin(x)$, $\sin(x + \frac{\pi}{2})$, $\sin(x \frac{\pi}{4})$
- **d)** $\sin(x)$, $\sin(2x)$, $\sin(0.4x)$

Beschreibe (jeweils) die Wirkung der Operationen.

- 3 Löse die folgenden Gleichungen algebraisch und numerisch (jeweils bitte mit Probe) und erstelle jeweils einen Graphen (Definitionsbereich $[0,2\pi]$:
 - $a) \quad \tan(x) = 3\sin(x)$
 - **b)** $4\sin(x) + 3\cos(x) = 4$
 - c) $\sin(2x) + \sin(3x) = 3\sin(x)$