

Podemos representar o estado $\frac{1}{2}$ 1-7 como o seguinte vetor: $\left(\frac{1}{2}\right)$. Como temos que achar um estado ortagonal a me

estado, pegando sem complexo conjugado, Jemas: $(1/2, +i\sqrt{3}/2)$. Logo, descobrindo $\propto e B$: $(1/2, +i\sqrt{3}/2)(\alpha)$. $\alpha = -i\sqrt{3}\beta$

Seguindo a propriedade para esse votor ser unidário, demos:

$$\left| \left| \left| \left| \right|^2 + \left| \right| \right|^2 = 1 \right|$$

$$|-j\sqrt{3}\beta|^{2} + |\beta|^{2} = 1$$

 $3\beta^{2} + \beta^{2} = 1$
 $\beta^{2} = \frac{1}{4}$
 $|\beta| = \frac{1}{2}$, $|\alpha| = -j\sqrt{3}$

Logo, pademos escrever re estado 10 > como:

Que é ortogrand a 1/17 - i/3 1-7.

Logo abase ortonormal é formada peles estados: