Artificial Intelligence for resilient urban planning

Day 2 (Mon 29th)

<u>Aa</u> Name	Room	Time (GMT)	■ Description
Talk: Intro	Webinar	10:00 - 10:05	Recap + today's schedule
Talk: Intro to Computer Vision	Webinar	10:05 - 10:20	How do computers make sense out of images using convolutional neural networks?
Demo: Semantic Segmentation	Webinar	10:20 - 10:35	Introduction to semantic segmentation in Colab and how to use it on your own images
Demo: Style Transfer	Webinar	10:35 - 10:50	Introduction to style transfer in Colab and how to use it on your own images
Demo: pix2pix in GH	Webinar	10;50 - 11:20	Introduction of the pix2pix model and demo on how to integrate it into GH workflow
Demo: DQL in GH	Webinar	11:20 - 11:50	Introduction of the DQL model and demo on how to integrate it into GH workflow
Talk: Summary	Webinar	11:50 - 12:00	Overview and summary of models
Break	break	12:00 - 12:15	
Exercise: Project Work	Meeting	12:15 - 13:30	In breakout rooms with advisory supervision
Presentation: Refined Pitches	Webinar	13:30 - 14:00	Update presentation from groups

Convolutional Neural Networks and how computers see images

Convolutional Neural Networks and how computers see images

Generative Adversarial Networks (GAN)
Pix2pix

Generates new images based on an input image

Reinforcement learning (RL)

Deep-Q-learning

Trains a decision making and strategy developing agent

Convolutional Neural Networks (CNN)

Mask R-CNN model

Finds and labels objects in images

Generative Adversarial Networks (GAN)

Style Transfer

Changes the look of images based on a reference image

Convolutional Neural Networks and how computers see images


```
{157, 153, 174, 168, 150, 152, 129, 151, 172, 161, 155, 156,
155, 182, 163, 74, 75, 62, 33, 17, 110, 210, 180, 154,
180, 180, 50, 14, 34, 6, 10, 33, 48, 106, 159, 181,
206, 109, 5, 124, 131, 111, 120, 204, 166, 15, 56, 180,
194, 68, 137, 251, 237, 239, 239, 228, 227, 87, 71, 201,
172, 105, 207, 233, 233, 214, 220, 239, 228, 98, 74, 206,
188, 88, 179, 209, 185, 215, 211, 158, 139, 75, 20, 169,
189, 97, 165, 84, 10, 168, 134, 11, 31, 62, 22, 148,
199, 168, 191, 193, 158, 227, 178, 143, 182, 106, 36, 190,
205, 174, 155, 252, 236, 231, 149, 178, 228, 43, 95, 234,
190, 216, 116, 149, 236, 187, 86, 150, 79, 38, 218, 241,
190, 224, 147, 108, 227, 210, 127, 102, 36, 101, 255, 224,
190, 214, 173, 66, 103, 143, 96, 50, 2, 109, 249, 215,
187, 196, 235, 75, 1, 81, 47, 0, 6, 217, 255, 211,
183, 202, 237, 145, 0, 0, 12, 108, 200, 138, 243, 236,
195, 206, 123, 207, 177, 121, 123, 200, 175, 13, 96, 218};
```


147	153	174	168	158	152	129	161	122	161	166	196
196	182	163	74	75	62	11	17	110	210	180	154
180	180	10	14	34		10	29		106	109	181
204	109		124	131	111	129	204	165	15	56	180
194	68	197	267	237	239	239	228	227	87	n	201
172	106	207	213	299	214	220	239	228	*	74	204
188	**	179	219	185	215	211	158	139	75	20	169
189	97.	166	84	10	168	134	11	31	62	22	148
199	168	191	198	158	227	176	143	182	106	36	190
204	174	195	545	236	211	148	178	228	43	96	234
190	216	116	149	296	187	*	190	29	38	218	241
190	224	147	108	227	210	127	102	26	101	255	224
190	214	179	44	108	143	16	50	2	109	249	275
187	196	236	76	1	*	47	0		21.7	296	275
183	202	217	146			12	108	200	138	243	236
196	206	129	207	177	125	129	200	125	18	96	218

A string of numbers

147	153	174	168	158	162	129	161	122	141	196	196
196	182	163	74	75	62	11	17	110	210	180	154
180	180	10	14	34		10	29		106	109	181
204	109		124	131	111	129	204	165	15	56	180
194	68	197	267	237	239	239	228	227	87	n	201
172	106	207	213	299	214	220	239	228	*	74	204
188	**	179	219	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	181	198	198	227	176	143	182	106	36	190
206	174	195	545	236	211	148	178	228	43	96	234
190	216	116	149	296	187	*	190	29	38	218	241
190	224	147	108	227	210	127	102	26	101	255	224
190	214	179	44	108	143	16	50	2	109	249	275
187	196	236	76	1	*	47	0		21.7	296	211
180	202	217	146		۰	12	108	200	138	243	236
196	204	129	207	177	125	129	200	125	18	96	218

A string of numbers

147	163	174	168	158	162	129	161	122	141	166	194
196	182	163	74	75	62	23	17	110	210	180	154
180	180	10	14	34		10	29		106	109	181
204	109		124	131	111	129	254	165	15	54	180
194	68	197	267	237	239	239	228	227	87	n	201
172	106	207	213	299	214	229	239	238	*	74	204
188	**	179	219	185	215	211	158	139	75	20	168
100	97.	166	84	10	168	134	11	31	62	22	148
199	168	181	198	198	227	176	143	182	106	36	190
206	174	195	545	236	211	148	178	228	43	96	234
190	216	116	149	296	187	*	190	29	38	218	241
190	224	147	108	227	210	127	102	26	101	255	224
196	214	179	44	108	143	16	-	2	109	249	275
187	196	236	76	1		47	0		21.7	296	211
183	202	217	146			12	108	200	138	243	236
195	204	129	207	177	121	129	200	125	18	96	218

A string of numbers

This is probably a wheel

Two wheels, door handles, carrosserie, windows, lights

Simple elements _____ Complex objects

Simple elements _____ Complex objects

-1	1	1	-1		
1	7	7	1		
1	1	1	1		
1	-1	-1	1		

0	1
0	1

Image Filter

CILITY

CILITY

Input image

filter

Feature maps

Feature map activations visualized

Input image filter Feature maps Looks like a wheel!

New filter

Feature maps

Feature learning

Feature map: Wheels

Feature map: lights

Feature map: body

Feature maps

image Filter (cars)

Feature map Filter (cars)

Convolutional Neural Networks and how computers see images CLASSIFYING A CHARACTER

Deep Learning in the Built Environment

Generative models (GAN'S)

Generative Adversarial Networks (GAN)
Pix2pix

Generates new images based on an input image

Reinforcement learning (RL)

Deep-Q-learning

Trains a decision making and strategy developing agent

Convolutional Neural Networks (CNN)

Mask R-CNN model

Finds and labels objects in images

Generative Adversarial Networks (GAN)

Style Transfer

Changes the look of images based on a reference image

Deep Learning in the Built Environment Generative models (GAN'S)

Deep Learning in the Built Environment Generative models (GAN'S)

Tries to fool the discriminator into believing its generated image is true

Deep Learning in the Built Environment

Image to image translation (pix2pix,, 2017)

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory, UC Berkeley

{isola, junyanz, tinghuiz, efros}@eecs.berkeley.edu

Deep Learning in the Built Environment

Image to image translation (pix2pix,, 2017)

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory, UC Berkeley

{isola, junyanz, tinghuiz, efros}@eecs.berkeley.edu

Image to image translation Generating maps

Image to image translation Generating floor plans

Image to image translation Generating Urban Morphologies

Image to image translation Generating Urban Morphologies

Image to Image
Translation with RHINO
GRASSHOPPER

Local deployment with grasshopper

Create Training Data with Grasshopper

Train Model

Integrate with Grasshopper

Local deployment with grasshopper

Example 1: non-physical shadow prediction (or shadow removal)

Image pairs for training
 A → B

Goal: Predict the shadows of building based on a light source and obstacles

Example 2: Plots2Blocks

Goal: Train pix2pix to generate building footprints based on a plot shape. It should be able to distinct between different typologies

Image A Plots

Image B Building Blocks

Demo

