

WO 01/21189

PTO/PCT R 18 JAN 2002
PCT/US00/19774
10/031345

**INDUCING CELLULAR IMMUNE RESPONSES TO HEPATITIS C VIRUS
USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS**

5

FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

10 This invention was funded, in part, by the United States government under grants with the National Institutes of Health. The U.S. government has certain rights in this invention.

*Jan Q17***INDEX**

- 15 I. Background of the Invention
- II. Summary of the Invention
- III. Brief Description of the Figures
- IV. Detailed Description of the Invention
 - A. Definitions
 - B. Stimulation of CTL and HTL responses
 - C. Binding Affinity of Peptide Epitopes for HLA Molecules
 - D. Peptide Epitope Binding Motifs and Supermotifs
 - 1. HLA-A1 supermotif
 - 2. HLA-A2 supermotif
 - 3. HLA-A3 supermotif
 - 4. HLA-A24 supermotif
 - 5. HLA-B7 supermotif
 - 6. HLA-B27 supermotif
 - 7. HLA-B44 supermotif
 - 8. HLA-B58 supermotif
 - 9. HLA-B62 supermotif
 - 10. HLA-A1 motif

11. HLA-A2.1 motif
 12. HLA-A3 motif
 13. HLA-A11 motif
 14. HLA-A24 motif
 - 5 15. HLA-DR-1-4-7 supermotif
 16. HLA-DR3 motifs
- E. Enhancing Population Coverage of the Vaccine
- F. Immune Response-Stimulating Peptide Epitope Analogs
- G. Computer Screening of Protein Sequences from Disease-Related Antigens
- 10 H. for Supermotif- or Motif-Containing Epitopes
- I. Preparation of Peptide Epitopes
- J. Assays to Detect T-Cell Responses
- K. Use of Peptide Epitopes for Evaluating Immune Responses
- K. Vaccine Compositions
- 15 1. Minigene Vaccines
2. Combinations of CTL Peptides with Helper Peptides
- L. Administration of Vaccines for Therapeutic or Prophylactic Purposes
- M. Kits
- V. Examples
- 20 VI. Claims
- VII. Abstract

I. BACKGROUND OF THE INVENTION

Hepatitis C virus (HCV) infection is a global human health problem with approximately 150,000 new reported cases each year in the U.S. alone. HCV is a single stranded RNA virus, and is the etiological agent identified in most cases of non-A, non-B post-transfusion and post-transplant hepatitis, and is a common cause of acute sporadic hepatitis (Choo *et al.*, *Science* 244:359, 1989; Kuo *et al.*, *Science* 244:362, 1989; and Alter *et al.*, in: *Current Perspective in Hepatology*, p. 83, 1989). It is estimated that more than 50% of patients infected with HCV become chronically infected and, of those, 20% develop cirrhosis of the liver within 20 years (Davis *et al.*, *New Engl. J. Med.* 321:1501,

1989; Alter *et al.*, in: *Current Perspective in Hepatology*, p. 83, 1989; Alter *et al.*, *New Engl. J. Med.* 327:1899, 1992; and Dienstag, J. L. *Gastroenterology* 85:430, 1983).

Moreover, the only therapy available for treatment of HCV infection is interferon- α .

Most patients are unresponsive, however, and among the responders, there is a high

5 recurrence rate within 6-12 months of cessation of treatment (Liang *et al.*, *J. Med. Virol.* 40:69, 1993). Ribaviron, a guanosine analog with a broad spectrum activity against many RNA and DNA viruses, has been shown in clinical trials to be effective against chronic HCV infection when used in combination with interferon- α (see, e.g., Poynard *et al.*, *Lancet* 352:1426-1432, 1998; Reichard *et al.*, *Lancet* 351:83-87, 1998) However, the 10 response rate is still well below 50%.

Virus-specific, human leukocyte antigen (HLA) class I-restricted cytotoxic T lymphocytes (CTL) are known to play a major role in the prevention and clearance of virus infections *in vivo* (Oldstone *et al.*, *Nature* 321:239, 1989; Jamieson *et al.*, *J. Virol.* 61:3930, 1987; Yap *et al.*, *Nature* 273:238, 1978; Lukacher *et al.*, *J. Exp. Med.* 160:814, 15 1994; McMichael *et al.*, *N. Engl. J. Med.* 309:13, 1983; Sethi *et al.*, *J. Gen. Virol.* 64:443, 1983; Watari *et al.*, *J. Exp. Med.* 165:459, 1987; Yasukawa *et al.*, *J. Immunol.* 143:2051, 1989; Tigges *et al.*, *J. Virol.* 66:1622, 1993; Reddenhase *et al.*, *J. Virol.* 55:263, 1985; Quinnan *et al.*, *N. Engl. J. Med.* 307:6, 1982). HLA class I molecules are expressed on the surface of almost all nucleated cells. Following intracellular processing of antigens, 20 epitopes from the antigens are presented as a complex with the HLA class I molecules on the surface of such cells. CTL recognize the peptide-HLA class I complex, which then results in the destruction of the cell bearing the HLA-peptide complex directly by the CTL and/or via the activation of non-destructive mechanisms e.g., the production of interferon, that inhibit viral replication.

25 In view of the heterogeneous immune response observed with HCV infection, induction of a multi-specific cellular immune response directed simultaneously against multiple HCV epitopes appears to be important for the development of an efficacious vaccine against HCV. There is a need, however, to establish vaccine embodiments that elicit immune responses that correspond to responses seen in patients that clear HCV 30 infection.

The information provided in this section is intended to disclose the presently understood state of the art as of the filing date of the present application. Information is included in this section which was generated subsequent to the priority date of this

application. Accordingly, information in this section is not intended, in any way, to delineate the priority date for the invention.

II. SUMMARY OF THE INVENTION

5 This invention applies our knowledge of the mechanisms by which antigen is recognized by T cells, for example, to develop epitope-based vaccines directed towards HCV. More specifically, this application communicates our discovery of specific epitope pharmaceutical compositions and methods of use in the prevention and treatment of HCV infection.

10 Upon development of appropriate technology, the use of epitope-based vaccines has several advantages over current vaccines, particularly when compared to the use of whole antigens in vaccine compositions. There is evidence that the immune response to whole antigens is directed largely toward variable regions of the antigen, allowing for immune escape due to mutations. The epitopes for inclusion in an epitope-based vaccine
15 are selected from conserved regions of viral or tumor-associated antigens, which thereby reduces the likelihood of escape mutants. Furthermore, immunosuppressive epitopes that may be present in whole antigens can be avoided with the use of epitope-based vaccines.

An additional advantage of an epitope-based vaccine approach is the ability to combine selected epitopes (CTL and HTL), and further, to modify the composition of the
20 epitopes, achieving, for example, enhanced immunogenicity. Accordingly, the immune response can be modulated, as appropriate, for the target disease. Similar engineering of the response is not possible with traditional approaches.

Another major benefit of epitope-based immune-stimulating vaccines is their safety. The possible pathological side effects caused by infectious agents or whole
25 protein antigens, which might have their own intrinsic biological activity, is eliminated.

An epitope-based vaccine also provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Thus, patient-by-patient variability in the immune response to a particular pathogen may be alleviated by inclusion of epitopes from multiple antigens from that pathogen in a vaccine composition. A
30 “pathogen” may be an infectious agent or a tumor associated molecule.

One of the most formidable obstacles to the development of broadly efficacious epitope-based immunotherapeutics, however, has been the extreme polymorphism of HLA molecules. To date, effective non-genetically biased coverage of a population has been a task of considerable complexity; such coverage has required that epitopes be used

that are specific for HLA molecules corresponding to each individual HLA allele, therefore, impractically large numbers of epitopes would have to be used in order to cover ethnically diverse populations. Thus, there has existed a need for peptide epitopes that are bound by multiple HLA antigen molecules for use in epitope-based vaccines. The 5 greater the number of HLA antigen molecules bound, the greater the breadth of population coverage by the vaccine.

Furthermore, as described herein in greater detail, a need has existed to modulate peptide binding properties, for example, so that peptides that are able to bind to multiple HLA antigens do so with an affinity that will stimulate an immune response. 10 Identification of epitopes restricted by more than one HLA allele at an affinity that correlates with immunogenicity is important to provide thorough population coverage, and to allow the elicitation of responses of sufficient vigor to prevent or clear an infection in a diverse segment of the population. Such a response can also target a broad array of epitopes. The technology disclosed herein provides for such favored immune responses.

15 In a preferred embodiment, epitopes for inclusion in vaccine compositions of the invention are selected by a process whereby protein sequences of known antigens are evaluated for the presence of motif or supermotif-bearing epitopes. Peptides corresponding to a motif- or supermotif-bearing epitope are then synthesized and tested for the ability to bind to the HLA molecule that recognizes the selected motif. Those 20 peptides that bind at an intermediate or high affinity *i.e.*, an IC₅₀ (or a K_D value) of 500 nM or less for HLA class I molecules or 1000 nM or less for HLA class II molecules, are further evaluated for their ability to induce a CTL or HTL response. Immunogenic peptide epitopes are selected for inclusion in vaccine compositions.

25 Supermotif-bearing peptides may additionally be tested for the ability to bind to multiple alleles within the HLA supertype family. Moreover, peptide epitopes may be analogued to modify binding affinity and/or the ability to bind to multiple alleles within an HLA supertype.

The invention also includes an embodiment comprising a method for monitoring or evaluating an immune response to HCV in a patient having a known HLA-type, the 30 method comprising incubating a T lymphocyte sample from the patient with a peptide composition comprising an HCV epitope consisting essentially of an amino acid sequence described in Tables VII to Table XX or Table XXII which binds the product of at least one HLA allele present in said patient, and detecting for the presence of a T lymphocyte

that binds to the peptide. A CTL peptide epitope may, for example, comprise a tetrameric complex.

An alternative modality for defining the peptide epitopes in accordance with the invention is to recite the physical properties, such as length; primary structure; or charge, which are correlated with binding to a particular allele-specific HLA molecule or group of allele-specific HLA molecules. A further modality for defining peptide epitopes is to recite the physical properties of an HLA binding pocket, or properties shared by several allele-specific HLA binding pockets (e.g. pocket configuration and charge distribution) and reciting that the peptide epitope fits and binds to said pocket or pockets.

As will be apparent from the discussion below, other methods and embodiments are also contemplated. Further, novel synthetic peptides produced by any of the methods described herein are also part of the invention.

III. BRIEF DESCRIPTION OF THE FIGURES

Figure 1: Figure 1 provides a graph of total frequency of genotypes as a function of the number of HCV candidate epitopes bound by HLA-A and B molecules, in an average population.

Figure 2: Figure 2 illustrates the position of peptide epitopes in an experimental model minigene construct.

20

IV. DETAILED DESCRIPTION OF THE INVENTION

The peptide epitopes and corresponding nucleic acid compositions of the present invention are useful for stimulating an immune response to HCV by stimulating the production of CTL or HTL responses. The peptide epitopes, which are derived directly or indirectly from native HCV amino acid sequences, are able to bind to HLA molecules and stimulate an immune response to HCV. The complete polyprotein sequence from HCV and its variants can be obtained from Genbank. Peptide epitopes and analogs thereof can also be readily determined from sequence information that may subsequently be discovered for heretofore unknown variants of HCV, as will be clear from the disclosure provided below.

The peptide epitopes of the invention have been identified in a number of ways, as will be discussed below. Also discussed in greater detail is that analog peptides have been derived and the binding activity for HLA molecules modulated by modifying specific amino acid residues to create peptide analogs exhibiting altered immunogenicity.

Further, the present invention provides compositions and combinations of compositions that enable epitope-based vaccines that are capable of interacting with HLA molecules encoded by various genetic alleles to provide broader population coverage than prior vaccines.

5

IV.A. Definitions

The invention can be better understood with reference to the following definitions, which are listed alphabetically:

A "computer" or "computer system" generally includes: a processor; at least one information storage/retrieval apparatus such as, for example, a hard drive, a disk drive or a tape drive; at least one input apparatus such as, for example, a keyboard, a mouse, a touch screen, or a microphone; and display structure. Additionally, the computer may include a communication channel in communication with a network. Such a computer may include more or less than what is listed above.

"Cross-reactive binding" indicates that a peptide is bound by more than one HLA molecule; a synonym is degenerate binding.

A "cryptic epitope" elicits a response by immunization with an isolated peptide, but the response is not cross-reactive *in vitro* when intact whole protein which comprises the epitope is used as an antigen.

A "dominant epitope" is an epitope that induces an immune response upon immunization with a whole native antigen (see, *e.g.*, Sercarz, *et al.*, *Annu. Rev. Immunol.* 11:729-766, 1993). Such a response is cross-reactive *in vitro* with an isolated peptide epitope.

With regard to a particular amino acid sequence, an "epitope" is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) receptors. In an immune system setting, *in vivo* or *in vitro*, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site recognized by an immunoglobulin, T cell receptor or HLA molecule. Throughout this disclosure epitope and peptide are often used interchangeably.

It is to be appreciated that protein or peptide molecules that comprise an epitope of the invention as well as additional amino acid(s) are still within the bounds of the invention. In certain embodiments, there is a limitation on the length of a peptide of the

invention which is not otherwise a construct. An embodiment that is length-limited occurs when the protein/peptide comprising an epitope of the invention comprises a region (i.e., a contiguous series of amino acids) having 100% identity with a native sequence. In order to avoid the definition of epitope from reading, e.g., on whole natural molecules, there is a limitation on the length of any region that has 100% identity with a native peptide sequence. Thus, for a peptide comprising an epitope of the invention and a region with 100% identity with a native peptide sequence (and is not otherwise a construct), the region with 100% identity to a native sequence generally has a length of: less than or equal to 600 amino acids, often less than or equal to 500 amino acids, often less than or equal to 400 amino acids, often less than or equal to 250 amino acids, often less than or equal to 100 amino acids, often less than or equal to 85 amino acids, often less than or equal to 75 amino acids, often less than or equal to 65 amino acids, and often less than or equal to 50 amino acids. In certain embodiments, an "epitope" of the invention is comprised by a peptide having a region with less than 51 amino acids that has 100% identity to a native peptide sequence, in any increment of (49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5) down to 5 amino acids.

Accordingly, peptide or protein sequences longer than 600 amino acids are within the scope of the invention, so long as they do not comprise any contiguous sequence of more than 600 amino acids that have 100% identity with a native peptide sequence, if they are not otherwise a construct. For any peptide that has five contiguous residues or less that correspond to a native sequence, there is no limitation on the maximal length of that peptide in order to fall within the scope of the invention. It is presently preferred that a CTL epitope be less than 600 residues long in any increment down to eight amino acid residues.

"Human Leukocyte Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (*see, e.g., Stites, et al., IMMUNOLOGY, 8TH ED., Lange Publishing, Los Altos, CA (1994).*

An "HLA supertype or family", as used herein, describes sets of HLA molecules grouped on the basis of shared peptide-binding specificities. HLA class I molecules that share somewhat similar binding affinity for peptides bearing certain amino acid motifs are grouped into HLA supertypes. The terms HLA superfamily, HLA supertype family, HLA family, and HLA xx-like supertype molecules (where xx denotes a particular HLA type), are synonyms.

Throughout this disclosure, results are expressed in terms of "IC₅₀'s." IC₅₀ is the concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Given the conditions in which the assays are run (*i.e.*, limiting HLA proteins and labeled peptide concentrations), these values approximate K_D values. Assays for determining binding are described in detail, *e.g.*, in PCT publications WO 94/20127 and WO 94/03205. It should be noted that IC₅₀ values can change, often dramatically, if the assay conditions are varied, and depending on the particular reagents used (*e.g.*, HLA preparation, *etc.*). For example, excessive concentrations of HLA molecules will increase the apparent measured IC₅₀ of a given ligand.

Alternatively, binding is expressed relative to a reference peptide. Although as a particular assay becomes more, or less, sensitive, the IC₅₀'s of the peptides tested may change somewhat, the binding relative to the reference peptide will not significantly change. For example, in an assay run under conditions such that the IC₅₀ of the reference peptide increases 10-fold, the IC₅₀ values of the test peptides will also shift approximately 10-fold. Therefore, to avoid ambiguities, the assessment of whether a peptide is a good, intermediate, weak, or negative binder is generally based on its IC₅₀, relative to the IC₅₀ of a standard peptide.

Binding may also be determined using other assay systems including those using: live cells (*e.g.*, Ceppellini *et al.*, *Nature* 339:392, 1989; Christnick *et al.*, *Nature* 352:67, 20 1991; Busch *et al.*, *Int. Immunol.* 2:443, 1990; Hill *et al.*, *J. Immunol.* 147:189, 1991; del Guercio *et al.*, *J. Immunol.* 154:685, 1995), cell free systems using detergent lysates (*e.g.*, Cerundolo *et al.*, *J. Immunol.* 21:2069, 1991), immobilized purified MHC (*e.g.*, Hill *et al.*, *J. Immunol.* 152, 2890, 1994; Marshall *et al.*, *J. Immunol.* 152:4946, 1994), ELISA systems (*e.g.*, Reay *et al.*, *EMBO J.* 11:2829, 1992), surface plasmon resonance (*e.g.*, Khilko *et al.*, *J. Biol. Chem.* 268:15425, 1993); high flux soluble phase assays (Hammer *et al.*, *J. Exp. Med.* 180:2353, 1994), and measurement of class I MHC stabilization or assembly (*e.g.*, Ljunggren *et al.*, *Nature* 346:476, 1990; Schumacher *et al.*, *Cell* 62:563, 25 1990; Townsend *et al.*, *Cell* 62:285, 1990; Parker *et al.*, *J. Immunol.* 149:1896, 1992).

As used herein, "high affinity" with respect to HLA class I molecules is defined as binding with an IC₅₀, or K_D value, of 50 nM or less; "intermediate affinity" is binding with an IC₅₀ or K_D value of between about 50 and about 500 nM. "High affinity" with respect to binding to HLA class II molecules is defined as binding with an IC₅₀ or K_D value of 100 nM or less; "intermediate affinity" is binding with an IC₅₀ or K_D value of between about 100 and about 1000 nM.

The terms "identical" or percent "identity," in the context of two or more peptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using a sequence comparison algorithm or by manual alignment and visual inspection.

An "immunogenic peptide" or "peptide epitope" is a peptide that comprises an allele-specific motif or supermotif such that the peptide will bind an HLA molecule and induce a CTL and/or HTL response. Thus, immunogenic peptides of the invention are capable of binding to an appropriate HLA molecule and thereafter inducing an HLA-restricted cytotoxic or helper T cell response to the antigen from which the immunogenic peptide is derived.

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their *in situ* environment. An "isolated" epitope refers to an epitope that does not include the whole sequence of the antigen or polypeptide from which the epitope was derived. Typically the "isolated" epitope does not have attached thereto additional amino acids that result in a sequence that has 100% identity with a native sequence. The native sequence can be a sequence such as a tumor-associated antigen from which the epitope is derived.

"Major Histocompatibility Complex" or "MHC" is a cluster of genes that plays a role in control of the cellular interactions responsible for physiologic immune responses. In humans, the MHC complex is also known as the HLA complex. For a detailed description of the MHC and HLA complexes, see, Paul, FUNDAMENTAL IMMUNOLOGY, 25 3RD ED., Raven Press, New York, 1993.

The term "motif" refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.

A "negative binding residue" is an amino acid which, if present at certain positions (typically not primary anchor positions) in a peptide epitope, results in decreased binding affinity of the peptide for the peptide's corresponding HLA molecule.

A "non-native" sequence or "construct" refers to a sequence that is not found in nature ("non-naturally occurring"). Such sequences include, e.g., peptides that are lipidated or otherwise modified and polyepitopic compositions that contain epitopes that are non contiguous in a native protein sequence.

5 The term "peptide" is used interchangeably with "oligopeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to the other, typically by peptide bonds between the α -amino and carboxyl groups of adjacent amino acids. The preferred CTL-inducing peptides of the invention are 13 residues or less in length and usually consist of between about 8 and about 11 residues,
10 preferably 9 or 10 residues. The preferred HTL-inducing oligopeptides are less than about 50 residues in length and usually consist of between about 6 and about 30 residues, more usually between about 12 and 25, and often between about 15 and 20 residues.

"Pharmaceutically acceptable" refers to a generally non-toxic, inert, and/or physiologically compatible composition.

15 A "pharmaceutical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.

20 A "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a "motif" for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding grooves of an HLA molecule, with their side chains buried in specific pockets of the binding grooves themselves. In one embodiment, the primary anchor residues are located
25 at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 9-residue peptide epitope in accordance with the invention. The primary anchor positions for each motif and supermotif are set forth in Table 1. For example, analog peptides can be created by altering the presence or absence of particular residues in these primary anchor positions. Such analogs are used to modulate the binding affinity of a peptide
30 comprising a particular motif or supermotif.

"Promiscuous recognition" is where a distinct peptide is recognized by the same T cell clone in the context of various HLA molecules. Promiscuous recognition or binding is synonymous with cross-reactive binding.

A "protective immune response" or "therapeutic immune response" refers to a CTL and/or an HTL response to an antigen derived from an infectious agent or a tumor antigen, which prevents or at least partially arrests disease symptoms or progression. The immune response may also include an antibody response which has been facilitated by 5 the stimulation of helper T cells.

The term "residue" refers to an amino acid or amino acid mimetic incorporated into an oligopeptide by an amide bond or amide bond mimetic.

A "secondary anchor residue" is an amino acid at a position other than a primary anchor position in a peptide which may influence peptide binding. A secondary anchor residue occurs at a significantly higher frequency amongst bound peptides than would be expected by random distribution of amino acids at one position. The secondary anchor residues are said to occur at "secondary anchor positions." A secondary anchor residue can be identified as a residue which is present at a higher frequency among high or intermediate affinity binding peptides, or a residue otherwise associated with high or 10 intermediate affinity binding. For example, analog peptides can be created by altering the presence or absence of particular residues in these secondary anchor positions. Such 15 analogs are used to finely modulate the binding affinity of a peptide comprising a particular motif or supermotif.

A "subdominant epitope" is an epitope which evokes little or no response upon 20 immunization with whole antigens which comprise the epitope, but for which a response can be obtained by immunization with an isolated peptide, and this response (unlike the case of cryptic epitopes) is detected when whole protein is used to recall the response *in vitro* or *in vivo*.

A "supermotif" is a peptide binding specificity shared by HLA molecules encoded 25 by two or more HLA alleles. Preferably, a supermotif-bearing peptide is recognized with high or intermediate affinity (as defined herein) by two or more HLA antigens.

"Synthetic peptide" refers to a peptide that is man-made using such methods as chemical synthesis or recombinant DNA technology.

As used herein, a "vaccine" is a composition that contains one or more peptides of 30 the invention. There are numerous embodiments of vaccines in accordance with the invention, such as by a cocktail of one or more peptides; one or more epitopes of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The "one or more peptides" can include, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50,
55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 or more peptides of the invention. The peptides
or polypeptides can optionally be modified, such as by lipidation, addition of targeting or
other sequences. HLA class I-binding peptides of the invention can be admixed with, or
5 linked to, HLA class II-binding peptides, to facilitate activation of both cytotoxic T
lymphocytes and helper T lymphocytes. Vaccines can also comprise peptide-pulsed
antigen presenting cells, e.g., dendritic cells.

The nomenclature used to describe peptide compounds follows the conventional
practice wherein the amino group is presented to the left (the N-terminus) and the
10 carboxyl group to the right (the C-terminus) of each amino acid residue. When amino
acid residue positions are referred to in a peptide epitope they are numbered in an amino
to carboxyl direction with position one being the position closest to the amino terminal
end of the epitope, or the peptide or protein of which it may be a part. In the formulae
representing selected specific embodiments of the present invention, the amino- and
15 carboxyl-terminal groups, although not specifically shown, are in the form they would
assume at physiologic pH values, unless otherwise specified. In the amino acid structure
formulae, each residue is generally represented by standard three letter or single letter
designations. The L-form of an amino acid residue is represented by a capital single letter
or a capital first letter of a three-letter symbol, and the D-form for those amino acids
20 having D-forms is represented by a lower case single letter or a lower case three letter
symbol. Glycine has no asymmetric carbon atom and is simply referred to as "Gly" or G.
Symbols for the amino acids are shown below.

Single Letter Symbol	Three Letter Symbol	Amino Acids
A	Ala	Alanine
C	Cys	Cysteine
D	Asp	Aspartic Acid
E	Glu	Glutamic Acid
F	Phe	Phenylalanine
G	Gly	Glycine
H	His	Histidine
I	Ile	Isoleucine
K	Lys	Lysine
L	Leu	Leucine
M	Met	Methionine
N	Asn	Asparagine
P	Pro	Proline
Q	Gln	Glutamine
R	Arg	Arginine
S	Ser	Serine
T	Thr	Threonine
V	Val	Valine
W	Trp	Tryptophan
Y	Tyr	Tyrosine

IV.B. Stimulation of CTL and HTL responses

The mechanism by which T cells recognize antigens has been delineated during
5 the past ten years. Based on our understanding of the immune system we have developed efficacious peptide epitope vaccine compositions that can induce a therapeutic or prophylactic immune response to HCV in a broad population. For an understanding of the value and efficacy of the claimed compositions, a brief review of immunology-related technology is provided.

10 A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. *et al.*, *Cell* 47:1071, 1986; Babbitt, B. P. *et al.*, *Nature* 317:359, 1985; Townsend, A. and Bodmer, H., *Annu. Rev. Immunol.* 7:601,

1989; Germain, R. N., *Annu. Rev. Immunol.* 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are described herein
5 and are set forth in Tables I, II, and III (see also, e.g., Southwood, *et al.*, *J. Immunol.* 160:3363, 1998; Rammensee, *et al.*, *Immunogenetics* 41:178, 1995; Rammensee *et al.*, SYFPEITHI, access via web at : <http://134.2.96.221/scripts.hlaserver.dll/home.htm>; Sette, A. and Sidney, J. *Curr. Opin. Immunol.* 10:478, 1998; Engelhard, V. H., *Curr. Opin. Immunol.* 6:13, 1994; Sette, A. and Grey, H. M., *Curr. Opin. Immunol.* 4:79, 1992;
10 Sinigaglia, F. and Hammer, J. *Curr. Biol.* 6:52, 1994; Ruppert *et al.*, *Cell* 74:929-937, 1993; Kondo *et al.*, *J. Immunol.* 155:4307-4312, 1995; Sidney *et al.*, *J. Immunol.* 157:3480-3490, 1996; Sidney *et al.*, *Human Immunol.* 45:79-93, 1996; Sette, A. and Sidney, J. *Immunogenetics*, in press, 1999).

Furthermore, x-ray crystallographic analysis of HLA-peptide complexes has
15 revealed pockets within the peptide binding cleft of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D.R. *Annu. Rev. Immunol.* 13:587, 1995; Smith, *et al.*, *Immunity* 4:203, 1996; Fremont *et al.*, *Immunity* 8:305, 1998; Stern *et al.*, *Structure* 2:245, 1994; Jones, E.Y.
20 *Curr. Opin. Immunol.* 9:75, 1997; Brown, J. H. *et al.*, *Nature* 364:33, 1993; Guo, H. C. *et al.*, *Proc. Natl. Acad. Sci. USA* 90:8053, 1993; Guo, H. C. *et al.*, *Nature* 360:364, 1992; Silver, M. L. *et al.*, *Nature* 360:367, 1992; Matsumura, M. *et al.*, *Science* 257:927, 1992; Madden *et al.*, *Cell* 70:1035, 1992; Fremont, D. H. *et al.*, *Science* 257:919, 1992; Saper, M. A. , Bjorkman, P. J. and Wiley, D. C., *J. Mol. Biol.* 219:277, 1991.)

25 Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that have the potential of binding particular HLA antigen(s).

The present inventors have found that the correlation of binding affinity with immunogenicity, which is disclosed herein, is an important factor to be considered when
30 evaluating candidate peptides. Thus, by a combination of motif searches and HLA-peptide binding assays, candidates for epitope-based vaccines have been identified. After determining their binding affinity, additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, antigenicity, and immunogenicity.

Various strategies can be utilized to evaluate immunogenicity, including:

1) Evaluation of primary T cell cultures from normal individuals (*see, e.g.,*

Wentworth, P. A. *et al.*, *Mol. Immunol.* 32:603, 1995; Celis, E. *et al.*, *Proc. Natl. Acad. Sci. USA* 91:2105, 1994; Tsai, V. *et al.*, *J. Immunol.* 158:1796, 1997; Kawashima, I. *et al.*, *Human Immunol.* 59:1, 1998); This procedure involves the stimulation of peripheral

5 blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells *in vitro* over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, *e.g.*, a ^{51}Cr -release assay involving peptide sensitized target cells.

10 2) Immunization of HLA transgenic mice (*see, e.g.,* Wentworth, P. A. *et al.*, *J. Immunol.* 26:97, 1996; Wentworth, P. A. *et al.*, *Int. Immunol.* 8:651, 1996; Alexander, J. *et al.*, *J. Immunol.* 159:4753, 1997); In this method, peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured *in vitro* in the presence of 15 test peptide for approximately one week. Peptide-specific T cells are detected using, *e.g.*, a ^{51}Cr -release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.

20 3) Demonstration of recall T cell responses from immune individuals who have effectively been vaccinated, recovered from infection, and/or from chronically infected patients (*see, e.g.,* Rehermann, B. *et al.*, *J. Exp. Med.* 181:1047, 1995; Doolan, D. L. *et al.*, *Immunity* 7:97, 1997; Bertoni, R. *et al.*, *J. Clin. Invest.* 100:503, 1997; Threlkeld, S. C. *et al.*, *J. Immunol.* 159:1648, 1997; Diepolder, H. M. *et al.*, *J. Virol.* 71:6011, 1997). In applying this strategy, recall responses are detected by culturing PBL from subjects that have been naturally exposed to the antigen, for instance through infection, and thus 25 have generated an immune response "naturally", or from patients who were vaccinated against the infection. PBL from subjects are cultured *in vitro* for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays for T cell activity including ^{51}Cr release involving 30 peptide-sensitized targets, T cell proliferation, or lymphokine release.

The following describes the peptide epitopes and corresponding nucleic acids of the invention.

IV.C. Binding Affinity of Peptide Epitopes for HLA Molecules

The large degree of HLA polymorphism is an important factor to consider with the epitope-based approach to vaccine development. To address this factor, epitope selection including identification of peptides capable of binding at high or intermediate affinity to multiple HLA molecules is often utilized, most preferably these epitopes bind at high or intermediate affinity to two or more allele specific HLA molecules.

CTL-inducing peptides of interest for vaccine compositions preferably include those that have an IC₅₀ or binding affinity value for class I HLA molecules of 500 nM or better (*i.e.*, the value is ≤ 500 nM). HTL-inducing peptides preferably include those that have an IC₅₀ or binding affinity value for class II HLA molecules of 1000 nM or better, (*i.e.*, the value is ≤ 1,000 nM). For example, peptide binding is assessed by testing the capacity of a candidate peptide to bind to a purified HLA molecule *in vitro*. Peptides exhibiting high or intermediate affinity are then considered for further analysis. Selected peptides are tested on other members of the supertype family. In preferred embodiments, peptides that exhibit cross-reactive binding are then used in vaccines or in cellular screening analyses.

Higher HLA binding affinity is typically correlated with greater immunogenicity. Greater immunogenicity can be manifested in several different ways. Immunogenicity corresponds to whether an immune response is elicited at all, and to the vigor of any particular response, as well as to the extent of a population in which a response is elicited. For example, a peptide might elicit an immune response in a diverse array of the population, yet in no instance produce a vigorous response. In accordance with these principles, close to 90% of high binding peptides have been found to be immunogenic, as contrasted with about 50% of the peptides which bind with intermediate affinity. Moreover, higher binding affinity peptides leads to more vigorous immunogenic responses. As a result, less peptide is required to elicit a similar biological effect if a high affinity binding peptide is used. Thus, in preferred embodiments of the invention, high affinity binding epitopes are particularly useful.

The relationship between binding affinity for HLA class I molecules and immunogenicity of discrete peptide epitopes on bound antigens has been determined for the first time in the art by the present inventors. The correlation between binding affinity and immunogenicity was analyzed in two different experimental approaches (*see, e.g., Sette, et al., J. Immunol. 153:5586-5592, 1994*). In the first approach, the

immunogenicity of potential epitopes ranging in HLA binding affinity over a 10,000-fold range was analyzed in HLA-A*0201 transgenic mice. In the second approach, the antigenicity of approximately 100 different hepatitis B virus (HBV)-derived potential epitopes, all carrying A*0201 binding motifs, was assessed by using PBL from acute hepatitis patients. Pursuant to these approaches, it was determined that an affinity threshold value of approximately 500 nM (preferably 50 nM or less) determines the capacity of a peptide epitope to elicit a CTL response. These data are true for class I binding affinity measurements for naturally processed peptides and for synthesized T cell epitopes. These data also indicate the important role of determinant selection in the shaping of T cell responses (see, e.g., Schaeffer *et al.* *Proc. Natl. Acad. Sci. USA* 86:4649-4653, 1989).

An affinity threshold associated with immunogenicity in the context of HLA class II DR molecules has also been delineated (see, e.g., Southwood *et al.* *J. Immunology* 160:3363-3373, 1998). In order to define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element (*i.e.*, the HLA molecule that binds the motif) was compiled. In approximately half of the cases (15 of 32 epitopes), DR restriction was associated with high binding affinities, *i.e.* binding affinity values of 100 nM or less. In the other half of the cases (16 of 32), DR restriction was associated with intermediate affinity (binding affinity values in the 100-1000 nM range). In only one of 32 cases was DR restriction associated with an IC₅₀ of 1000 nM or greater. Thus, 1000 nM can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.

The binding affinity of peptides for HLA molecules can be determined as described in Example 1, below.

25

IV.D. Peptide Epitope Binding Motifs and Supermotifs

In the past few years evidence has accumulated to demonstrate that a large fraction of HLA class I and class II molecules can be classified into a relatively few supertypes, each characterized by largely overlapping peptide binding repertoires, and 30 consensus structures of the main peptide binding pockets.

For HLA molecule pocket analyses, the residues comprising the B and F pockets of HLA class I molecules as described in crystallographic studies were analyzed (see, e.g., Guo, H. C. *et al.*, *Nature* 360:364, 1992; Saper, M. A. , Bjorkman, P. J. and Wiley, D. C., *J. Mol. Biol.* 219:277, 1991; Madden, D. R., Garboczi, D. N. and Wiley, D. C.,

Cell 75:693, 1993; Parham, P., Adams, E. J., and Arnett, K. L., *Immunol. Rev.* 143:141, 1995). In these analyses, residues 9, 45, 63, 66, 67, 70, and 99 were considered to make up the B pocket; and the B pocket was deemed to determine the specificity for the amino acid residue in the second position of peptide ligands. Similarly, residues 77, 80, 81, and 5 116 were considered to determine the specificity of the F pocket; the F pocket was deemed to determine the specificity for the C-terminal residue of a peptide ligand bound by the HLA class I molecule.

Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues 10 required for allele-specific binding to HLA molecules have been identified. The presence of these residues correlates with binding affinity for HLA molecules. The identification of motifs and/or supermotifs that correlate with high and intermediate affinity binding is an important issue with respect to the identification of immunogenic peptide epitopes for the inclusion in a vaccine. Kast *et al.* (*J. Immunol.* 152:3904-3912, 1994) have shown 15 that motif-bearing peptides account for 90% of the epitopes that bind to allele-specific HLA class I molecules. In this study all possible peptides of 9 amino acids in length and overlapping by eight amino acids (240 peptides), which cover the entire sequence of the E6 and E7 proteins of human papillomavirus type 16, were evaluated for binding to five 20 allele-specific HLA molecules that are expressed at high frequency among different ethnic groups. This unbiased set of peptides allowed an evaluation of the predictive value 25 of HLA class I motifs. From the set of 240 peptides, 22 peptides were identified that bound to an allele-specific HLA molecule with high or intermediate affinity. Of these 22 peptides, 20 (*i.e.* 91%) were motif-bearing. Thus, this study demonstrates the value of motifs for the identification of peptide epitopes for inclusion in a vaccine: application of motif-based identification techniques eliminates screening of 90% of the potential epitopes in a target antigen protein sequence.

Such peptide epitopes are identified in the Tables described below.

Peptides of the present invention may also comprise epitopes that bind to MHC 30 class II DR molecules. A greater degree of heterogeneity in both size and binding frame position of the motif, relative to the N and C termini of the peptide, exists for class II peptide ligands. This increased heterogeneity of HLA class II peptide ligands is due to the structure of the binding groove of the HLA class II molecule which, unlike its class I counterpart, is open at both ends. Crystallographic analysis of HLA class II DRB*0101-peptide complexes showed that the major energy of binding is contributed by peptide

residues complexed with complementary pockets on the DRB*0101 molecules. An important anchor residue engages the deepest hydrophobic pocket (*see, e.g.*, Madden, D.R. *Ann. Rev. Immunol.* 13:587, 1995) and is referred to as position 1 (P1). P1 may represent the N-terminal residue of a class II binding peptide epitope, but more typically 5 is flanked towards the N-terminus by one or more residues. Other studies have also pointed to an important role for the peptide residue in the 6th position towards the C-terminus, relative to P1, for binding to various DR molecules.

Thus, peptides of the present invention are identified by any one of several HLA-specific amino acid motifs (*see, e.g.*, Tables I-III). If the presence of the motif 10 corresponds to the ability to bind several allele-specific HLA antigens, it is referred to as a supermotif. The HLA molecules that bind to peptides that possess a particular amino acid supermotif are collectively referred to as an HLA "supertype."

The peptide motifs and supermotifs described below, and summarized in Tables I-III, provide guidance for the identification and use of peptide epitopes in accordance with 15 the invention.

Examples of peptide epitopes bearing a respective supermotif or motif are included in Tables as designated in the description of each motif or supermotif below. The Tables include a binding affinity ratio listing for some of the peptide epitopes. The ratio may be converted to IC₅₀ by using the following formula: IC₅₀ of the standard 20 peptide/ratio = IC₅₀ of the test peptide (*i.e.*, the peptide epitope). The IC₅₀ values of standard peptides used to determine binding affinities for Class I peptides are shown in Table IV. The IC₅₀ values of standard peptides used to determine binding affinities for Class II peptides are shown in Table V. The peptides used as standards for the binding assays described herein are examples of standards; alternative standard peptides can also 25 be used when performing such an analysis.

To obtain the peptide epitope sequences listed in each Table, protein sequence data from fourteen HCV isolates were evaluated for the presence of the designated supermotif or motif. The fourteen strains include HPCCGAA, HPCPLYPRE, HCV-H-CMR, HCV-J1, HPCGENANTI, HPCGENOM, HPCHUMR, HPCJCG, HPCJTA, HCV-30 J483, HCV-JK1, HCV-N, HPCPOLP, and HCV-J8. Peptide epitopes were additionally evaluated on the basis of their conservancy among these fourteen strains. A criterion for conservancy requires that the entire sequence of an HLA class I binding peptide be totally conserved in 79% of the sequences available for a specific protein. Similarly, a criterion for conservancy requires that the entire 9-mer core region of an HLA class II binding

peptide be totally conserved in 79% of the sequences available for a specific protein. The percent conservancy of the selected peptide epitopes is indicated on the Tables. The frequency, *i.e.* the number of strains of the fourteen strains in which the totally conserved peptide sequence was identified, is also shown. The "position" column in the Tables 5 designates the amino acid position of the HCV polyprotein that corresponds to the first amino acid residue of the epitope. The "number of amino acids" indicates the number of residues in the epitope sequence.

HLA Class I Motifs Indicative of CTL Inducing Peptide Epitopes:

10 The primary anchor residues of the HLA class I peptide epitope supermotifs and motifs delineated below are summarized in Table I. The HLA class I motifs set out in Table I(a) are those most particularly relevant to the invention claimed here. Primary and secondary anchor positions are summarized in Table II. Allele-specific HLA molecules that comprise HLA class I supertype families are listed in Table VI.

15

IV.D.1. HLA-A1 supermotif

The HLA-A1 supermotif is characterized by the presence in peptide ligands of a small (T or S) or hydrophobic (L, I, V, or M) primary anchor residue in position 2, and an aromatic (Y, F, or W) primary anchor residue at the C-terminal position of the epitope.

20 The corresponding family of HLA molecules that bind to the A1 supermotif (*i.e.*, the HLA-A1 supertype) includes at least A*0101, A*2601, A*2602, A*2501, and A*3201 (*see, e.g.*, DiBrino, M. *et al.*, *J. Immunol.* 151:5930, 1993; DiBrino, M. *et al.*, *J. Immunol.* 152:620, 1994; Kondo, A. *et al.*, *Immunogenetics* 45:249, 1997). Other allele-specific HLA molecules predicted to be members of the A1 superfamily are shown in 25 Table VI. Peptides binding to each of the individual HLA proteins can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Peptide epitopes that comprise the A1 supermotif are set forth in Table VII.

30 **IV.D.2. HLA-A2 supermotif**

Primary anchor specificities for allele-specific HLA-A2.1 molecules (Falk *et al.*, *Nature* 351:290-296, 1991; Hunt *et al.*, *Science* 255:1261-1263, 1992; Parker *et al.*, *J. Immunol.* 149:3580-3587, 1992) and cross-reactive binding within the HLA A2 family (Fruci *et al.*, *Human Immunol.* 38:187-192, 1993; Tanigaki *et al.*, *Human Immunol.*

39:155-162, 1994) have been described. The present inventors have defined additional primary anchor residues that determine cross-reactive binding to multiple allele-specific HLA A2 molecules (Ruppert *et al.*, *Cell* 74:929-937, 1993; Del Guercio *et al.*, *J. Immunol.* 154:685-693, 1995; Kast *et al.*, *J. Immunol.* 152:3904-3912, 1994). The HLA-A2 supermotif comprises peptide ligands with L, I, V, M, A, T, or Q as a primary anchor residue at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope.

The corresponding family of HLA molecules (*i.e.*, the HLA-A2 supertype that binds these peptides) is comprised of at least: A*0201, A*0202, A*0203, A*0204, 10 A*0205, A*0206, A*0207, A*0209, A*0214, A*6802, and A*6901. Other allele-specific HLA molecules predicted to be members of the A2 superfamily are shown in Table VI. As explained in detail below, binding to each of the individual allele-specific HLA molecules can be modulated by substitutions at the primary anchor and/or secondary anchor positions, preferably choosing respective residues specified for the 15 supermotif.

Peptide epitopes that comprise an A2 supermotif are set forth in Table VIII. The motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

20

IV.D.3. HLA-A3 supermotif

The HLA-A3 supermotif is characterized by the presence in peptide ligands of A, L, I, V, M, S, or, T as a primary anchor at position 2, and a positively charged residue, R or K, at the C-terminal position of the epitope (*e.g.*, in position 9 of 9-mers). Exemplary 25 members of the corresponding family of HLA molecules (the HLA-A3 supertype) that bind the A3 supermotif include at least A*0301, A*1101, A*3101, A*3301, and A*6801. Other allele-specific HLA molecules predicted to be members of the A3 superfamily are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions of amino acids 30 at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Peptide epitopes that comprise the A3 supermotif are set forth in Table IX.

IV.D.4. HLA-A24 supermotif

The HLA-A24 supermotif is characterized by the presence in peptide ligands of an aromatic (F, W, or Y) or hydrophobic aliphatic (L, I, V, M, or T) residue as a primary anchor in position 2, and Y, F, W, L, I, or M as primary anchor at the C-terminal position 5 of the epitope. The corresponding family of HLA molecules that bind to the A24 supermotif (*i.e.*, the A24 supertype) includes at least A*2402, A*3001, and A*2301. Other allele-specific HLA molecules predicted to be members of the A24 superfamily are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably 10 choosing respective residues specified for the supermotif.

Peptide epitopes that comprise the A24 supermotif are set forth in Table X.

IV.D.5. HLA-B7 supermotif

The HLA-B7 supermotif is characterized by peptides bearing proline in position 2 15 as a primary anchor, and a hydrophobic or aliphatic amino acid (L, I, V, M, A, F, W, or Y) as the primary anchor at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind the B7 supermotif (*i.e.*, the HLA-B7 supertype) is comprised of at least twenty six HLA-B proteins including: B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503, B*3504, B*3505, B*3506, B*3507, 20 B*3508, B*5101, B*5102, B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601, B*5602, B*6701, and B*7801 (*see, e.g.*, Sidney, *et al.*, *J. Immunol.* 154:247, 1995; Barber, *et al.*, *Curr. Biol.* 5:179, 1995; Hill, *et al.*, *Nature* 360:434, 1992; Rammensee, *et al.*, *Immunogenetics* 41:178, 1995). Other allele-specific HLA molecules predicted to be members of the B7 superfamily are shown in Table VI. As explained in 25 detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Peptide epitopes that comprise the B7 supermotif are set forth in Table XI.

30 IV.D.6. HLA-B27 supermotif

The HLA-B27 supermotif is characterized by the presence in peptide ligands of a positively charged (R, H, or K) residue as a primary anchor at position 2, and a hydrophobic (F, Y, L, W, M, I, A, or V) residue as a primary anchor at the C-terminal position of the epitope. Exemplary members of the corresponding family of HLA

molecules that bind to the B27 supermotif (*i.e.*, the B27 supertype) include at least B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706, B*3801, B*3901, B*3902, and B*7301. Other allele-specific HLA molecules predicted to be members of the B27 superfamily are shown in Table VI. Peptide binding to each of the 5 allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Peptide epitopes that comprise the B27 supermotif are set forth in Table XII.

10 **IV.D.7. HLA-B44 supermotif**

The HLA-B44 supermotif is characterized by the presence in peptide ligands of negatively charged (D or E) residues as a primary anchor in position 2, and hydrophobic residues (F, W, Y, L, I, M, V, or A) as a primary anchor at the C-terminal position of the epitope. Exemplary members of the corresponding family of HLA molecules that bind to 15 the B44 supermotif (*i.e.*, the B44 supertype) include at least: B*1801, B*1802, B*3701, B*4001, B*4002, B*4006, B*4402, B*4403, and B*4006. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the supermotif.

20

IV.D.8. HLA-B58 supermotif

The HLA-B58 supermotif is characterized by the presence in peptide ligands of a small aliphatic residue (A, S, or T) as a primary anchor residue at position 2, and an aromatic or hydrophobic residue (F, W, Y, L, I, V, M, or A) as a primary anchor residue 25 at the C-terminal position of the epitope. Exemplary members of the corresponding family of HLA molecules that bind to the B58 supermotif (*i.e.*, the B58 supertype) include at least: B*1516, B*1517, B*5701, B*5702, and B*5801. Other allele-specific HLA molecules predicted to be members of the B58 superfamily are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by 30 substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Peptide epitopes that comprise the B58 supermotif are set forth in Table XIII.

IV.D.9. HLA-B62 supermotif

The HLA-B62 supermotif is characterized by the presence in peptide ligands of the polar aliphatic residue Q or a hydrophobic aliphatic residue (L, V, M, I, or P) as a primary anchor in position 2, and a hydrophobic residue (F, W, Y, M, I, V, L, or A) as a 5 primary anchor at the C-terminal position of the epitope. Exemplary members of the corresponding family of HLA molecules that bind to the B62 supermotif (*i.e.*, the B62 supertype) include at least: B*1501, B*1502, B*1513, and B5201. Other allele-specific HLA molecules predicted to be members of the B62 superfamily are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by 10 substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Peptide epitopes that comprise the B62 supermotif are set forth in Table XIV.

IV.D.10. HLA-A1 motif

15 The HLA-A1 motif is characterized by the presence in peptide ligands of T, S, or M as a primary anchor residue at position 2 and the presence of Y as a primary anchor residue at the C-terminal position of the epitope. An alternative allele-specific A1 motif is characterized by a primary anchor residue at position 3 rather than position 2. This motif is characterized by the presence of D, E, A, or S as a primary anchor residue in 20 position 3, and a Y as a primary anchor residue at the C-terminal position of the epitope. Peptide binding to HLA A1 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Peptide epitopes that comprise either A1 motif are set forth in Table XV. The 25 epitopes comprising T, S, or M at position 2 and Y at the C-terminal position are also included in the listing of HLA-A1 supermotif-bearing peptide epitopes listed in Table VII.

IV.D.11. HLA-A*0201 motif

30 An HLA-A2*0201 motif was first determined to be characterized by the presence in peptide ligands of L or M as a primary anchor residue in position 2, and L or V as a primary anchor residue at the C-terminal position of a 9-residue peptide (Falk *et al.*, *Nature* 351:290-296, 1991). The A*0201 motif was also determined to further comprise an I at position 2 and I or A at the C-terminal position of a nine amino acid peptide (Hunt

et al., Science 255:1261-1263, March 6, 1992; Parker *et al.*, *J. Immunol.* 149:3580-3587, 1992). Subsequently, the A*0201 allele-specific motif has been defined by the present inventors to additionally comprise V, A, T, or Q as a primary anchor residue at position 2, and M as a primary anchor residue at the C-terminal position of the epitope.

- 5 Additionally, the A*0201 allele-specific motif has been found to comprise a T at the C-terminal position (Kast *et al.*, *J. Immunol.* 152:3904-3912, 1994). Thus, the HLA-A*0201 motif comprises peptide ligands with L, I, V, M, A, T, or Q as primary anchor residues at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope. The preferred and tolerated residues that characterize the
10 primary anchor positions of the HLA-A*0201 motif are identical to the residues describing the A2 supermotif. (For reviews of relevant data, see, e.g., Del Guercio *et al.*, *J. Immunol.* 154:685-693, 1995; Ruppert *et al.*, *Cell* 74:929-937, 1993; Sidney *et al.*, *Immunol. Today* 17:261-266, 1996; Sette and Sidney, *Curr. Opin. in Immunol.* 10:478-482, 1998). Secondary anchor residues that characterize the A*0201 motif have
15 additionally been defined as disclosed herein. These are disclosed in Table II. Peptide binding to HLA-A*0201 molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Peptide epitopes that comprise an A*0201 motif are set forth in Table VIII. The
20 A*0201 motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

IV.D.12. HLA-A3 motif

- 25 The HLA-A3 motif is characterized by the presence in peptide ligands of L, M, V, I, S, A, T, F, C, G, or D as a primary anchor residue at position 2, and the presence of K, Y, R, H, F, or A as a primary anchor residue at the C-terminal position of the epitope. Peptide binding to HLA-A3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the
30 motif.

The A3 supermotif primary anchor residues comprise a subset of the A3- and A11-allele specific motif primary anchor residues. Peptide epitopes that comprise the A3 motif are set forth in Table XVI. Those peptide epitopes that also comprise the A3 supermotif are also listed in Table IX.

IV.D.13. HLA-A11 m tif

The HLA-A11 motif is characterized by the presence in peptide ligands of V, T, M, L, I, S, A, G, N, C, D, or F as a primary anchor residue in position 2, and K, R, Y, or H as a primary anchor residue at the C-terminal position of the epitope. Peptide binding to HLA-A11 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Peptide epitopes that comprise the A11 motif are set forth in Table XVII; peptide epitopes comprising the A3 allele-specific motif are also present in this Table because of the overlap between the A3 and A11 motif primary anchor specificities. Further, those peptide epitopes that comprise the A3 supermotif are also listed in Table IX.

IV.D.14. HLA-A24 motif

The HLA-A24 motif is characterized by the presence in peptide ligands of Y, F, W, or M as a primary anchor residue in position 2, and F, L, I, or W as a primary anchor residue at the C-terminal position of the epitope. Peptide binding to HLA-A24 molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the motif.

Peptide epitopes that comprise the A24 motif are set forth in Table XVIII. These epitopes are also listed in Table X, which sets forth HLA-A24-supermotif-bearing peptide epitopes, as the primary anchor residues characterizing the A24 allele-specific motif comprise a subset of the A24 supermotif primary anchor residues.

HLA Class II Binding Motifs

The primary and secondary anchor residues of the HLA class II peptide epitope supermotifs and motifs delineated below are summarized in Table III.

IV.D.15. HLA DR-1-4-7 supermotif

Motifs have also been identified for peptides that bind to three common HLA class II allele-specific HLA molecules: HLA DRB1*0401, DRB1*0101, and DRB1*0701. Collectively, the common residues from these motifs delineate the HLA DR-1-4-7 supermotif. Peptides that bind to these DR molecules carry a supermotif characterized by a large aromatic or hydrophobic residue (Y, F, W, L, I, V, or M) as a primary anchor residue in position 1, and a small, non-charged residue (S, T, C, A, P, V,

I, L, or M) as a primary anchor residue in position 6 of a 9-mer core region. Allele-specific secondary effects and secondary anchors for each of these HLA types have also been identified. These are set forth in Table III. Peptide binding to HLA- DRB1*0401, DRB1*0101, and/or DRB1*0701 can be modulated by substitutions at primary and/or 5 secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Conserved peptide epitopes *i.e.*, conserved in $\geq 79\%$ ($\geq 11/14$) of the HCV strains used for the present analysis, may be described as corresponding to epitopes containing a nine residue core comprising the DR-1-4-7 supermotif, and in which the 9 residue core is 10 conserved in $\geq 79\%$ (wherein position 1 of the motif is at position 1 of the nine residue core). Conserved 9-mer core regions are set forth in Table XIXa. Respective exemplary peptide epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also shown in section "a" of the Table. Cross-reactive binding data for exemplary 15-residue supermotif-bearing peptides are shown in Table XIXb.

15

IV.D.16. HLA DR3 motifs

Two alternative motifs (*i.e.*, submotifs) characterize peptide epitopes that bind to HLA-DR3 molecules. In the first motif (submotif DR3A) a large, hydrophobic residue (L, I, V, M, F, or Y) is present in anchor position 1 of a 9-mer core, and D is present as an 20 anchor at position 4, towards the carboxyl terminus of the epitope. As in other class II motifs, core position 1 may or may not occupy the peptide N-terminal position.

The alternative DR3 submotif provides for lack of the large, hydrophobic residue at anchor position 1, and/or lack of the negatively charged or amide-like anchor residue at position 4, by the presence of a positive charge at position 6 towards the carboxyl 25 terminus of the epitope. Thus, for the alternative allele-specific DR3 motif (submotif DR3B): L, I, V, M, F, Y, A, or Y is present at anchor position 1; D, N, Q, E, S, or T is present at anchor position 4; and K, R, or H is present at anchor position 6. Peptide binding to HLA-DR3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

30

Conserved 9-mer core regions (*i.e.*, those sequences that are conserved in at least 79% of the 14 HCV strains used for the analysis) corresponding to a nine residue sequence comprising the DR3A submotif (wherein position 1 of the motif is at position 1 of the nine residue core) are set forth in Table XXa. Respective exemplary peptide

epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also shown in Table XXa. Table XXb shows binding data of exemplary DR3 submotif A-bearing peptides.

Conserved 9-mer core regions (*i.e.*, those that are at least 79% conserved in the 14
5 HCV strains used for the analysis) comprising the DR3B submotif and respective exemplary 15-mer peptides comprising the DR3 submotif-B epitope are set forth in Table XXc. Table XXd shows binding data of exemplary DR3 submotif B-bearing peptides.

Each of the HLA class I or class II peptide epitopes set out in the Tables herein
are deemed singly to be an inventive aspect of this application. Further, it is also an
10 inventive aspect of this application that each peptide epitope may be used in combination
with any other peptide epitope.

IV.E. Enhancing Population Coverage of the Vaccine

Vaccines that have broad population coverage are preferred because they are more
15 commercially viable and generally applicable to the most people. Broad population
coverage can be obtained using the peptides of the invention (and nucleic acid
compositions that encode such peptides) through selecting peptide epitopes that bind to
HLA alleles which, when considered in total, are present in most of the population. Table
XXI lists the overall frequencies of the HLA class I supertypes in various ethnicities
20 (Table XXIa) and the combined population coverage achieved by the A2-, A3-, and B7-
supertypes (Table XXIb). The A2-, A3-, and B7 supertypes are each present on the
average of over 40% in each of these five major ethnic groups. Coverage in excess of
80% is achieved with a combination of these supermotifs. These results suggest that
25 effective and non-ethnically biased population coverage is achieved upon use of a limited
number of cross-reactive peptides. Although the population coverage reached with these
three main peptide specificities is high, coverage can be expanded to reach 95%
population coverage and above, and more easily achieve truly multispecific responses
upon use of additional supermotif or allele-specific motif bearing peptides.

The B44-, A1-, and A24-supertypes are present, on average, in a range from 25%
30 to 40% in these major ethnic populations (Table XXIa). While less prevalent overall, the
B27-, B58-, and B62 supertypes are each present with a frequency >25% in at least one
major ethnic group (Table XXIa). Table XXIb summarizes the estimated prevalence of
combinations of HLA supertypes that have been identified in five major ethnic groups.

The incremental coverage obtained by the inclusion of A1-, A24-, and B44-supertypes to the A2, A3, and B7 coverage, or all of the supertypes described herein, is shown.

The data presented herein, together with the previous definition of the A2-, A3-, and B7-supertypes, indicates that all antigens, with the possible exception of A29, B8, 5 and B46, can be classified into a total of nine HLA supertypes. By including epitopes from the six most frequent supertypes, an average population coverage of 99% is obtained for five major ethnic groups..

IV.F. Immune Response-Stimulating Peptide Analogs

In general, CTL and HTL responses are not directed against all possible epitopes. 10 Rather, they are restricted to a few "immunodominant" determinants (Zinkernagel, *et al.*, *Adv. Immunol.* 27:5159, 1979; Bennink, *et al.*, *J. Exp. Med.* 168:19351939, 1988; Rawle, *et al.*, *J. Immunol.* 146:3977-3984, 1991). It has been recognized that immunodominance (Benacerraf, *et al.*, *Science* 175:273-279, 1972) could be explained by either the ability of 15 a given epitope to selectively bind a particular HLA protein (determinant selection theory) (Vitiello, *et al.*, *J. Immunol.* 131:1635, 1983); Rosenthal, *et al.*, *Nature* 267:156-158, 1977), or to be selectively recognized by the existing TCR (T cell receptor) specificities (repertoire theory) (Klein, J., IMMUNOLOGY, THE SCIENCE OF SELF/NONSELF DISCRIMINATION, John Wiley & Sons, New York, pp. 270-310, 1982). It has been 20 demonstrated that additional factors, mostly linked to processing events, can also play a key role in dictating, beyond strict immunogenicity, which of the many potential determinants will be presented as immunodominant (Sercarz, *et al.*, *Annu. Rev. Immunol.* 11:729-766, 1993).

The concept of dominance and subdominance is relevant to immunotherapy of 25 both infectious diseases and cancer. For example, in the course of chronic viral disease, recruitment of subdominant epitopes can be important for successful clearance of the infection, especially if dominant CTL or HTL specificities have been inactivated by functional tolerance, suppression, mutation of viruses and other mechanisms (Franco, *et al.*, *Curr. Opin. Immunol.* 7:524-531, 1995). In the case of cancer and tumor antigens, 30 CTLs recognizing at least some of the highest binding affinity peptides might be functionally inactivated. Lower binding affinity peptides are preferentially recognized at these times, and may therefore be preferred in therapeutic or prophylactic anti-cancer vaccines.

In particular, it has been noted that a significant number of epitopes derived from known non-viral tumor associated antigens (TAA) bind HLA class I with intermediate affinity (IC_{50} in the 50-500 nM range). For example, it has been found that 8 of 15 known TAA peptides recognized by tumor infiltrating lymphocytes (TIL) or CTL bound 5 in the 50-500 nM range. (These data are in contrast with estimates that 90% of known viral antigens were bound by HLA class I molecules with IC_{50} of 50 nM or less, while only approximately 10% bound in the 50-500 nM range (Sette, *et al.*, *J. Immunol.*, 153:558-5592, 1994). In the cancer setting this phenomenon is probably due to 10 elimination or functional inhibition of the CTL recognizing several of the highest binding peptides, presumably because of T cell tolerization events.

Without intending to be bound by theory, it is believed that because T cells to dominant epitopes may have been clonally deleted, selecting subdominant epitopes may allow existing T cells to be recruited, which will then lead to a therapeutic or prophylactic response. However, the binding of HLA molecules to subdominant epitopes is often less 15 vigorous than to dominant ones. Accordingly, there is a need to be able to modulate the binding affinity of particular immunogenic epitopes for one or more HLA molecules, and thereby to modulate the immune response elicited by the peptide, for example to prepare analog peptides which elicit a more vigorous response. This ability would greatly enhance the usefulness of peptide-based vaccines and therapeutic agents.

20 Although peptides with suitable cross-reactivity among all alleles of a superfamily are identified by the screening procedures described above, cross-reactivity is not always as complete as possible, and in certain cases procedures to increase cross-reactivity of peptides can be useful; moreover, such procedures can also be used to modify other properties of the peptides such as binding affinity or peptide stability. Having established 25 the general rules that govern cross-reactivity of peptides for HLA alleles within a given motif or supermotif, modification (*i.e.*, analoging) of the structure of peptides of particular interest in order to achieve broader (or otherwise modified) HLA binding capacity can be performed. More specifically, peptides which exhibit the broadest cross-reactivity patterns, can be produced in accordance with the teachings herein. The present 30 concepts related to analog generation are set forth in greater detail in co-pending U.S.S.N. 09/226,775 filed 1/6/99.

In brief, the strategy employed utilizes the motifs or supermotifs which correlate with binding to certain HLA molecules. The motifs or supermotifs are defined by having primary anchors, and in many cases secondary anchors. Analog peptides can be created

by substituting amino acid residues at primary anchor, secondary anchor, or at primary and secondary anchor positions. Generally, analogs are made for peptides that already bear a motif or supermotif. Preferred secondary anchor residues of supermotifs and motifs that have been defined for HLA class I and class II binding peptides are shown in

5 Tables II and III, respectively.

For a number of the motifs or supermotifs in accordance with the invention, residues are defined which are deleterious to binding to allele-specific HLA molecules or members of HLA supertypes that bind the respective motif or supermotif (Tables II and III). Accordingly, removal of such residues that are detrimental to binding can be
10 performed in accordance with the present invention. For example, in the case of the A3 supertype, when all peptides that have such deleterious residues are removed from the population of analyzed peptides, the incidence of cross-reactivity increases from 22% to 37% (see, e.g., Sidney, J. et al., *Hu. Immunol.* 45:79, 1996). Thus, one strategy to improve the cross-reactivity of peptides within a given supermotif is simply to delete one
15 or more of the deleterious residues present within a peptide and substitute a small “neutral” residue such as Ala (that may not influence T cell recognition of the peptide). An enhanced likelihood of cross-reactivity is expected if, together with elimination of detrimental residues within a peptide, “preferred” residues associated with high affinity binding to an allele-specific HLA molecule or to multiple HLA molecules within a
20 superfamily are inserted.

To ensure that an analog peptide, when used as a vaccine, actually elicits a CTL response to the native epitope *in vivo* (or, in the case of class II epitopes, elicits helper T cells that cross-react with the wild type peptides), the analog peptide may be used to immunize T cells *in vitro* from individuals of the appropriate HLA allele. Thereafter, the
25 immunized cells' capacity to induce lysis of wild type peptide sensitized target cells is evaluated. It will be desirable to use as antigen presenting cells, cells that have been either infected, or transfected with the appropriate genes, or, in the case of class II epitopes only, cells that have been pulsed with whole protein antigens, to establish whether endogenously produced antigen is also recognized by the relevant T cells.

30 Another embodiment of the invention is to create analogs of weak binding peptides, to thereby ensure adequate numbers of cross-reactive cellular binders. Class I binding peptides exhibiting binding affinities of 500-5000 nM, and carrying an acceptable but suboptimal primary anchor residue at one or both positions can be “fixed” by

substituting preferred anchor residues in accordance with the respective supertype. The analog peptides can then be tested for crossbinding activity.

Another embodiment for generating effective peptide analogs involves the substitution of residues that have an adverse impact on peptide stability or solubility in, 5 e.g., a liquid environment. This substitution may occur at any position of the peptide epitope. For example, a cysteine (C) can be substituted out in favor of α -amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substituting α -amino butyric acid for C not only alleviates this problem, but actually improves binding 10 and crossbinding capability in certain instances (see, e.g., the review by Sette *et al.*, In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999). Substitution of cysteine with α -amino butyric acid may occur at any residue of a peptide epitope, i.e. at either anchor or non-anchor positions.

Representative analog peptides are set forth in Table XXII. The Table indicates 15 the length and sequence of the analog peptide as well as the motif or supermotif, if appropriate. The information in the "Fixed Nomenclature" column indicates the residues substituted at the indicated position numbers for the respective analog.

IV.G. Computer Screening of Protein Sequences from Disease-Related Antigens for 20 Supermotif- or Motif-Bearing Peptides

In order to identify supermotif- or motif-bearing epitopes in a target antigen, a native protein sequence, e.g., a tumor-associated antigen, or sequences from an infectious organism, or a donor tissue for transplantation, is screened using a means for computing, such as an intellectual calculation or a computer, to determine the presence of a 25 supermotif or motif within the sequence. The information obtained from the analysis of native peptide can be used directly to evaluate the status of the native peptide or may be utilized subsequently to generate the peptide epitope.

Computer programs that allow the rapid screening of protein sequences for the occurrence of the subject supermotifs or motifs are encompassed by the present 30 invention; as are programs that permit the generation of analog peptides. These programs are implemented to analyze any identified amino acid sequence or operate on an unknown sequence and simultaneously determine the sequence and identify motif-bearing epitopes thereof; analogs can be simultaneously determined as well. Generally, the identified sequences will be from a pathogenic organism or a tumor-associated peptide. For

example, the target molecules considered herein include, without limitation, the core, S, E1, NS1/E2, NS2, NS3, NS4, and NS5 regions of HCV.

In cases where the sequence of multiple variants of the same target protein are available, peptides may also be selected on the basis of their conservancy. A presently preferred criterion for conservancy defines that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding peptide, be totally (*i.e.*, 100%) conserved in at least 79% of the sequences evaluated for a specific protein. This definition of conservancy has been employed herein; although, as appreciated by those in the art, lower or higher degrees of conservancy can be employed as appropriate for a given antigenic target.

It is important that the selection criteria utilized for prediction of peptide binding are as accurate as possible, to correlate most efficiently with actual binding. Prediction of peptides that bind, for example, to HLA-A*0201, on the basis of the presence of the appropriate primary anchors, is positive at about a 30% rate (see, *e.g.*, Ruppert, J. *et al.* *Cell* 74:929, 1993). However, by extensively analyzing peptide-HLA binding data disclosed herein, data in related patent applications, and data in the art, the present inventors have developed a number of allele-specific polynomial algorithms that dramatically increase the predictive value over identification on the basis of the presence of primary anchor residues alone. These algorithms take into account not only the presence or absence of primary anchors, but also consider the positive or deleterious presence of secondary anchor residues (to account for the impact of different amino acids at different positions). The algorithms are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA interactions can be approximated as a linear polynomial function of the type:

$$\Delta G = a_{1i} \times a_{2i} \times a_{3i} \dots \times a_{ni}$$

where a_{ji} is a coefficient that represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. An important assumption of this method is that the effects at each position are essentially independent of each other. This assumption is justified by studies that demonstrated that peptides are bound to HLA molecules and recognized by T cells in essentially an extended conformation. Derivation of specific algorithm coefficients has been described, for example, in Gulukota, K. *et al.*, *J. Mol. Biol.* 267:1258, 1997.

Additional methods to identify preferred peptide sequences, which also make use of specific motifs, include the use of neural networks and molecular modeling programs (see, e.g., Milik *et al.*, *Nature Biotechnology* 16:753, 1998; Altuvia *et al.*, *Hum. Immunol.* 58:1, 1997; Altuvia *et al.*, *J. Mol. Biol.* 249:244, 1995; Buus, S. *Curr. Opin. Immunol.* 11:209-213, 1999; Brusic, V. *et al.*, *Bioinformatics* 14:121-130, 1998; Parker *et al.*, *J. Immunol.* 152:163, 1993; Meister *et al.*, *Vaccine* 13:581, 1995; Hammer *et al.*, *J. Exp. Med.* 180:2353, 1994; Sturniolo *et al.*, *Nature Biotechnol.* 17:555 1999).

For example, it has been shown that in sets of A*0201 motif-bearing peptides containing at least one preferred secondary anchor residue while avoiding the presence of any deleterious secondary anchor residues, 69% of the peptides will bind A*0201 with an IC₅₀ less than 500 nM (Ruppert, J. *et al.* *Cell* 74:929, 1993). These algorithms are also flexible in that cut-off scores may be adjusted to select sets of peptides with greater or lower predicted binding properties, as desired.

In utilizing computer screening to identify peptide epitopes, a protein sequence or translated sequence may be analyzed using software developed to search for motifs, for example the "FINDPATTERNS" program (Devereux, *et al.* *Nucl. Acids Res.* 12:387-395, 1984) or MotifSearch 1.4 software program (D. Brown, San Diego, CA) to identify potential peptide sequences containing appropriate HLA binding motifs. The identified peptides can be scored using customized polynomial algorithms to predict their capacity to bind specific HLA class I or class II alleles. As appreciated by one of ordinary skill in the art, a large array of computer programming software and hardware options are available in the relevant art which can be employed to implement the motifs of the invention in order to evaluate (e.g., without limitation, to identify epitopes, identify epitope concentration per peptide length, or to generate analogs) known or unknown peptide sequences.

In accordance with the procedures described above, HCV peptide epitopes and analogs thereof that are able to bind HLA supertype groups or allele-specific HLA molecules have been identified (Tables VII-XX; Table XXII).

30 IV.H. Preparation of Peptide Epitopes

Peptides in accordance with the invention can be prepared synthetically, by recombinant DNA technology or chemical synthesis, or from natural sources such as native tumors or pathogenic organisms. Peptide epitopes may be synthesized individually or as polyepitopic peptides. Although the peptide will preferably be substantially free of

other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides may be synthetically conjugated to native fragments or particles.

The peptides in accordance with the invention can be a variety of lengths, and either in their neutral (uncharged) forms or in forms which are salts. The peptides in 5 accordance with the invention are either free of modifications such as glycosylation, side chain oxidation, or phosphorylation; or they contain these modifications, subject to the condition that modifications do not destroy the biological activity of the peptides as described herein.

The peptides of the invention can be prepared in a wide variety of ways. For the 10 preferred relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. (See, for example, Stewart & Young, SOLID PHASE PEPTIDE SYNTHESIS, 2D. ED., Pierce Chemical Co., 1984). Further, individual peptide epitopes can be joined using chemical ligation to 15 produce larger peptides that are still within the bounds of the invention.

Alternatively, recombinant DNA technology can be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the 20 art, as described generally in Sambrook *et al.*, MOLECULAR CLONING, A LABORATORY MANUAL, Cold Spring Harbor Press, Cold Spring Harbor, New York (1989). Thus, recombinant polypeptides which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.

The nucleotide coding sequence for peptide epitopes of the preferred lengths 25 contemplated herein can be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci, *et al.*, *J. Am. Chem. Soc.* 103:3185 (1981). Peptide analogs can be made simply by substituting the appropriate and desired nucleic acid base(s) for those that encode the native peptide sequence; exemplary nucleic acid substitutions are those that encode an amino acid defined by the motifs/supermotifs 30 herein. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and

terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are 5 transformed into suitable bacterial hosts. Of course, yeast, insect or mammalian cell hosts may also be used, employing suitable vectors and control sequences.

It is often preferable that the peptide epitope be as small as possible while still maintaining substantially all of the immunologic activity of the native protein. When possible, it may be desirable to optimize HLA class I binding peptide epitopes of the 10 invention to a length of about 8 to about 13 amino acid residues, preferably 9 to 10. HLA class II binding peptide epitopes may be optimized to a length of about 6 to about 30 amino acids in length, preferably to between about 13 and about 20 residues. Preferably, the peptide epitopes are commensurate in size with endogenously processed pathogen-derived peptides or tumor cell peptides that are bound to the relevant HLA molecules, 15 however, the identification and preparation of peptides of other lengths can also be carried out using the techniques described herein.

In alternative embodiments, peptides of the invention can be linked as a polyepitopic peptide, or as a minigene that encodes a polyepitopic peptide.

In another embodiment, it is preferred to identify native peptide regions that 20 contain a high concentration of class I and/or class II epitopes. Such a sequence is generally selected on the basis that it contains the greatest number of epitopes per amino acid length. It is to be appreciated that epitopes can be present in a frame-shifted manner, e.g. a 10 amino acid long peptide could contain two 9 amino acid long epitopes and one 10 amino acid long epitope; upon intracellular processing, each epitope can be exposed 25 and bound by an HLA molecule upon administration of such a peptide. This larger, preferably multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source.

IV.I. Assays to Detect T-Cell Responses

Once HLA binding peptides are identified, they can be tested for the ability to 30 elicit a T-cell response. The preparation and evaluation of motif-bearing peptides are described in PCT publications WO 94/20127 and WO 94/03205. Briefly, peptides comprising epitopes from a particular antigen are synthesized and tested for their ability to bind to the appropriate HLA proteins. These assays may involve evaluating the

binding of a peptide of the invention to purified HLA class I molecules in relation to the binding of a radioiodinated reference peptide. Alternatively, cells expressing empty class I molecules (*i.e.* lacking peptide therein) may be evaluated for peptide binding by immunofluorescent staining and flow microfluorimetry. Other assays that may be used to evaluate peptide binding include peptide-dependent class I assembly assays and/or the inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule, typically with an affinity of 500 nM or less, are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary *in vitro* or *in vivo* CTL responses that can give rise to CTL populations capable of reacting with selected target cells associated with a disease. Corresponding assays are used for evaluation of HLA class II binding peptides. HLA class II motif-bearing peptides that are shown to bind, typically at an affinity of 1000 nM or less, are further evaluated for the ability to stimulate HTL responses.

Conventional assays utilized to detect T cell responses include proliferation assays, lymphokine secretion assays, direct cytotoxicity assays, and limiting dilution assays. For example, antigen-presenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells. Alternatively, mutant non-human mammalian cell lines that are deficient in their ability to load class I molecules with internally processed peptides and that have been transfected with the appropriate human class I gene, may be used to test for the capacity of the peptide to induce *in vitro* primary CTL responses.

Peripheral blood mononuclear cells (PBMCs) may be used as the responder cell source of CTL precursors. The appropriate antigen-presenting cells are incubated with peptide, after which the peptide-loaded antigen-presenting cells are then incubated with the responder cell population under optimized culture conditions. Positive CTL activation can be determined by assaying the culture for the presence of CTLs that kill radio-labeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed forms of the antigen from which the peptide sequence was derived.

More recently, a method has been devised which allows direct quantification of antigen-specific T cells by staining with Fluorescein-labelled HLA tetrameric complexes (Altman, J. D. *et al.*, *Proc. Natl. Acad. Sci. USA* 90:10330, 1993; Altman, J. D. *et al.*, *Science* 274:94, 1996). Other relatively recent technical developments include staining

for intracellular lymphokines, and interferon release assays or ELISPOT assays.

Tetramer staining, intracellular lymphokine staining and ELISPOT assays all appear to be at least 10-fold more sensitive than more conventional assays (Lalvani, A. *et al.*, *J. Exp. Med.* 186:859, 1997; Dunbar, P. R. *et al.*, *Curr. Biol.* 8:413, 1998; Murali-Krishna, K. *et al.*, *Immunity* 8:177, 1998).

HTL activation may also be assessed using such techniques known to those in the art such as T cell proliferation and secretion of lymphokines, e.g. IL-2 (see, e.g. Alexander *et al.*, *Immunity* 1:751-761, 1994).

Alternatively, immunization of HLA transgenic mice can be used to determine 10 immunogenicity of peptide epitopes. Several transgenic mouse models including mice with human A2.1, A11 (which can additionally be used to analyze HLA-A3 epitopes), and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed. Additional transgenic mouse models with other HLA alleles may be 15 generated as necessary. Mice may be immunized with peptides emulsified in Incomplete Freund's Adjuvant and the resulting T cells tested for their capacity to recognize peptide-pulsed target cells and target cells transfected with appropriate genes. CTL responses may be analyzed using cytotoxicity assays described above. Similarly, HTL responses may be analyzed using such assays as T cell proliferation or secretion of lymphokines.

20 Exemplary immunogenic peptide epitopes are set out in Table XXIII.

IV.J. Use of Peptide Epitopes as Diagnostic Agents and for Evaluating Immune Responses

In one embodiment of the invention, HLA class I and class II binding peptides as 25 described herein can be used as reagents to evaluate an immune response. The immune response to be evaluated can be induced by using as an immunogen any agent that may result in the production of antigen-specific CTLs or HTLs that recognize and bind to the peptide epitope(s) to be employed as the reagent. The peptide reagent need not be used as the immunogen. Assay systems that can be used for such an analysis include relatively 30 recent technical developments such as tetramers, staining for intracellular lymphokines and interferon release assays, or ELISPOT assays.

For example, a peptide of the invention may be used in a tetramer staining assay to assess peripheral blood mononuclear cells for the presence of antigen-specific CTLs following exposure to a tumor cell antigen or an immunogen. The HLA-tetrameric

complex is used to directly visualize antigen-specific CTLs (see, e.g., Ogg *et al.*, *Science* 279:2103-2106, 1998; and Altman *et al.*, *Science* 174:94-96, 1996) and determine the frequency of the antigen-specific CTL population in a sample of peripheral blood mononuclear cells. A tetramer reagent using a peptide of the invention may be generated 5 as follows: A peptide that binds to an HLA molecule is refolded in the presence of the corresponding HLA heavy chain and β_2 -microglobulin to generate a trimolecular complex. The complex is biotinylated at the carboxyl terminal end of the heavy chain at a site that was previously engineered into the protein. Tetramer formation is then induced by the addition of streptavidin. By means of fluorescently labeled streptavidin, the 10 tetramer can be used to stain antigen-specific cells. The cells may then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes. Cells identified by the procedure can also be used for therapeutic purposes.

Peptides of the invention may also be used as reagents to evaluate immune recall responses. (see, e.g., Bertoni *et al.*, *J. Clin. Invest.* 100:503-513, 1997 and Penna *et al.*, *J. 15 Exp. Med.* 174:1565-1570, 1991.) For example, patient PBMC samples from individuals with HCV infection may be analyzed for the presence of antigen-specific CTLs or HTLs using specific peptides. A blood sample containing mononuclear cells may be evaluated by cultivating the PBMCs and stimulating the cells with a peptide of the invention. After an appropriate cultivation period, the expanded cell population may be analyzed, for 20 example, for cytotoxic activity (CTL) or for HTL activity.

The peptides may also be used as reagents to evaluate the efficacy of a vaccine. PBMCs obtained from a patient vaccinated with an immunogen may be analyzed using, for example, either of the methods described above. The patient is HLA typed, and peptide epitope reagents that recognize the allele-specific molecules present in that 25 patient are selected for the analysis. The immunogenicity of the vaccine is indicated by the presence of epitope-specific CTLs and/or HTLs in the PBMC sample.

The peptides of the invention may also be used to make antibodies, using techniques well known in the art (see, e.g. *CURRENT PROTOCOLS IN IMMUNOLOGY*, Wiley/Greene, NY; and *Antibodies A Laboratory Manual*, Harlow and Lane, Cold Spring 30 Harbor Laboratory Press, 1989), which may be useful as reagents to diagnose or monitor cancer. Such antibodies include those that recognize a peptide in the context of an HLA molecule, i.e., antibodies that bind to a peptide-MHC complex.

IV.K. Vaccine Compositions

Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more peptides as described herein are further embodiments of the invention. Once appropriately immunogenic epitopes have been defined, they can be 5 sorted and delivered by various means, herein referred to as "vaccine" compositions. Such vaccine compositions can include, for example, lipopeptides (e.g., Vitiello, A. *et al.*, *J. Clin. Invest.* 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (*see, e.g.*, Eldridge, *et al.*, *Molec. Immunol.* 28:287-294, 1991; Alonso *et al.*, *Vaccine* 12:299-306, 1994; Jones *et al.*, *Vaccine* 13:675-681, 1995), 10 peptide compositions contained in immune stimulating complexes (ISCOMS) (*see, e.g.*, Takahashi *et al.*, *Nature* 344:873-875, 1990; Hu *et al.*, *Clin Exp Immunol.* 113:235-243, 1998), multiple antigen peptide systems (MAPs) (*see e.g.*, Tam, J. P., *Proc. Natl. Acad. Sci. U.S.A.* 85:5409-5413, 1988; Tam, J.P., *J. Immunol. Methods* 196:17-32, 1996), viral delivery vectors (Perkus, M. E. *et al.*, In: *Concepts in vaccine development*, Kaufmann, S. 15 H. E., ed., p. 379, 1996; Chakrabarti, S. *et al.*, *Nature* 320:535, 1986; Hu, S. L. *et al.*, *Nature* 320:537, 1986; Kieny, M.-P. *et al.*, *AIDS Bio/Technology* 4:790, 1986; Top, F. H. *et al.*, *J. Infect. Dis.* 124:148, 1971; Chanda, P. K. *et al.*, *Virology* 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. *et al.*, *J. Immunol. Methods*. 192:25, 1996; Eldridge, J. H. *et al.*, *Sem. Hematol.* 30:16, 1993; Falo, L. D., Jr. *et al.*, *Nature Med.* 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. *Annu. Rev. Immunol.* 4:369, 1986; Gupta, R. K. *et al.*, *Vaccine* 11:293, 1993), liposomes (Reddy, R. *et al.*, *J. Immunol.* 148:1585, 1992; Rock, K. L., *Immunol. Today* 17:131, 1996), or, 20 naked or particle absorbed cDNA (Ulmer, J. B. *et al.*, *Science* 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., *Vaccine* 11:957, 1993; Shiver, J. W. *et al.*, In: *Med. 7:649, 1995*, *Concepts in vaccine development*, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., *Annu. Rev. Immunol.* 12:923, 1994 and Eldridge, J. H. *et al.*, *Sem. Hematol.* 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor 25 mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

30 Vaccines of the invention include nucleic acid-mediated modalities. DNA or RNA encoding one or more of the peptides of the invention can also be administered to a patient. This approach is described, for instance, in Wolff *et. al.*, *Science* 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based

delivery technologies include "naked DNA", facilitated (bupivacaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (*see, e.g.*, U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can also be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. As an example of this approach, vaccinea virus is used as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host bearing a tumor, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL and/or HTL response. Vaccinia vectors and methods useful in immunization protocols are described in, *e.g.*, U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover *et al.*, *Nature* 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, *e.g.* adeno and adeno-associated virus vectors, retroviral vectors, *Salmonella typhi* vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.

Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptide(s). A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, *e.g.*, recombinantly or by chemical synthesis.

Carriers that can be used with vaccines of the invention are well known in the art, and include, *e.g.*, thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (*i.e.*, acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by

conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinylseryl-serine (P₃CSS).

Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later infection, or at least partially resistant to developing an ongoing chronic infection, or derives at least some therapeutic benefit when the antigen was tumor-associated.

In some embodiments it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody responses to the target antigen of interest, particularly to viral envelope antigens. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a PADRE™ (Epimmune, San Diego, CA) molecule (described, for example, in U.S. Patent Number 5,736,142).

A vaccine of the invention can also include antigen-presenting cells, such as dendritic cells, as a vehicle to present peptides of the invention. Vaccine compositions can be created *in vitro*, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs *in vitro*. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention. The dendritic cell can then be administered to a patient to elicit immune responses *in vivo*.

Antigenic peptides are used to elicit a CTL and/or HTL response *ex vivo*, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. *Ex vivo* CTL or HTL responses to a particular tumor-associated antigen are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction

(HTL) of their specific target cell (an infected cell or a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells.

The vaccine compositions of the invention can also be used in combination with antiviral drugs such as interferon- α , or other treatments for viral infection.

5 Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles are balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine
10 composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.

15 Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. Exemplary epitopes that may be utilized in a vaccine to treat or prevent HCV infection are set out in Tables XXVI-XXIX, and Table XXXII. It is preferred that each of the following principles are balanced in order to make the selection.

20 1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with HCV clearance. For HLA Class I this includes 3-4 epitopes that come from at least one antigen of HCV. For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one HCV antigen (*see e.g.*, Rosenberg *et al.*, *Science* 278:1447-1450).

25 2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC₅₀ of 500 nM or less, or for Class II an IC₅₀ of 1000 nM or less.

30 3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.

4.) When selecting epitopes from cancer-related antigens it is often preferred to select analogs because the patient may have developed tolerance to the native epitope.

When selecting epitopes for infectious disease-related antigens it is preferable to select either native or analoged epitopes.

5.) Of particular relevance are epitopes referred to as "nested epitopes."

Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A

5 nested peptide sequence can comprise both HLA class I and HLA class II epitopes.

When providing nested epitopes, it is preferable to provide a sequence that has the greatest number of epitopes per provided sequence. Preferably, one avoids providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a

10 longer peptide sequence, such as a sequence comprising nested epitopes, it is important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.

6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest.

15 This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not 20 present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a "dominant epitope." A dominant epitope may lead to such a 25 zealous response that immune responses to other epitopes are diminished or suppressed.

Examples of polyepitopic vaccine compositions designed based on the above criteria can include epitopes from the core, S, E1, NS1/E2, NS2, NS3, NS4, and NS5 domains of the HCV polyprotein. These regions encompass the following amino acid sequences using numbering relative to the prototype HCV-1 strain (Genbank accession 30 number M62321; *see, e.g.*, US Patent Nos. 5,683,864 and 5,670,153): C domain (amino acids 1-120); S (amino acids 120-400); NS3 (amino acids 1050-1640); NS4 (amino acids 1640-2000); NS5 (amino acids 2000-3011); and envelop proteins, E1 and E2/NS1, encompassing amino acids 192-750. Amino acids 750 to 1050 are designated as domain X as applied to the present invention. As appreciated by one of ordinary skill in the art,

the designation of the amino acid range for each domain may diverge to some extent from that of HCV-1 depending on the strain of HCV. One of ordinary skill in the art, when looking at an HCV polyprotein sequence, would readily be able to determine the domain boundaries.

- 5 Specific embodiments of the polyepitopic compositions of the present invention include a pharmaceutical composition comprising a pharmaceutically acceptable carrier and combination of motif-bearing peptides that are immunologically cross-reactive with peptides of HCV-1, wherein at least one of the peptides bears a motif of Table Ia, and further wherein the combination of motif-bearing peptides consists of: a) one or more
10 peptides comprising at least 8 amino acids from an HCV C domain; b) one or more peptides comprising at least 8 amino acids of a further domain selected from the group consisting of: an S domain, an NS3 domain, an NS4 domain, or an NS5 domain, and; c) optionally, one or more motif-bearing peptides from one or more additional HCV domains with a *proviso* that an additional domain is not a further domain listed in "b".
15 Preferably, such a pharmaceutical composition may additionally comprise one or more distinct HCV motif-bearing peptide(s) comprising at least 8 amino acids of an X domain or, alternatively, the composition may further comprise additional HCV motif-bearing peptide(s) that are from an envelope domain, the envelope domain peptide(s) consisting of one or more copies of a single HCV peptide comprising at least 8 amino acids of an
20 envelope domain.

In another embodiment, the polyepitopic pharmaceutical composition may comprise a pharmaceutically acceptable carrier and combination of motif-bearing peptides that are immunologically cross-reactive with HCV-1 peptides, the peptides from multiple domains of HCV, wherein at least one of the peptides bears a motif of Table Ia,
25 and wherein the combination of motif-bearing peptides consists essentially of: a) one or more peptides comprising at least 8 amino acids from a C domain; and, b) one or more peptides comprising at least 8 amino acids from an S, NS3, NS4, or NS5 domain, and, one HCV peptide comprising at least 8 amino acids of an envelope domain. Such a composition may further comprise one or more HCV motif-bearing peptides comprising
30 at least 8 amino acids of an X domain.

Alternatively, a pharmaceutical composition of the invention may comprise: a) a pharmaceutically acceptable carrier; and, b) a combination of one or more motif-bearing peptides of at least 8 amino acids derived from one or more hepatitis C virus (HCV) domains, wherein said peptides are cross-reactive with peptides of HCV-1, with a *proviso*

that the combination does not include a peptide of at least 8 amino acids from an HCV C domain, and wherein at least one of the peptides bears a motif of Table Ia, said domains selected from the group consisting of: an S domain; an NS3 domain; an NS4 domain; an NS5 domain; and, an X domain. Such a composition may additionally comprise motif-bearing HCV envelope peptide(s) consisting of one or more copies of a single HCV peptide comprising at least 8 amino acids of an envelope domain.

Lastly, an embodiment of the invention may comprise a pharmaceutical composition comprising a pharmaceutically acceptable carrier and combination of two or more motif-bearing peptides from a single domain of an HCV-1 strain, said peptides 10 immunologically cross-reactive with peptides of an HCV-1 antigen, wherein at least one of the peptides bears a motif of Table Ia, and the peptides are derived from HCV, and the HCV domain is selected from the group consisting of: a C domain; an S domain; an NS3 domain; an NS4 domain; an NS5 domain; an X domain; or, an envelope domain from a single HCV strain, with a *proviso* that the envelope domain is other than a variable 15 envelope domain.

In the embodiments set forth, "peptides immunologically cross-reactive with HCV-1" refers to peptides that are bound by the same antibody; "derived from" refers to a fragment or subsequence and conservatively modified variants thereof.

20 IV.K.1. Minigene Vaccines

A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A 25 preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention.

The use of multi-epitope minigenes is described below and in, e.g., co-pending application U.S.S.N. 09/311,784; An, L. and Whitton, J. L., *J. Virol.* 71:2292, 1997; 30 Thomson, S. A. *et al.*, *J. Immunol.* 157:822, 1996; Whitton, J. L. *et al.*, *J. Virol.* 67:348, 1993; Hanke, R. *et al.*, *Vaccine* 16:426, 1998. For example, a multi-epitope DNA plasmid encoding supermotif- and/or motif-bearing HCV epitopes derived from multiple regions of the HCV polyprotein sequence, the PADRE™ universal helper T cell epitope (or

multiple HTL epitopes from HCV), and an endoplasmic reticulum-translocating signal sequence can be engineered.

The immunogenicity of a multi-epitopic minigene can be tested in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested.

5 Further, the immunogenicity of DNA-encoded epitopes *in vivo* can be correlated with the *in vitro* responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.

10 For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression
15 and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including
20 synthetic (*e.g.* poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.

The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides
25 (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are
30 preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an *E. coli* origin of replication; and an *E. coli* selectable marker (*e.g.* ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, *e.g.*, the human cytomegalovirus

(hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, 5 and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.

Once an expression vector is selected, the minigene is cloned into the polylinker 10 region downstream of the promoter. This plasmid is transformed into an appropriate *E. coli* strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

15 In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.

In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or 20 decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE™, Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed 25 separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF- β) may be 30 beneficial in certain diseases.

Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in *E. coli*, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor

according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

5 Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for
10 formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, *BioTechniques* 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, et al., *Proc. Nat'l Acad. Sci. USA* 84:7413 (1987). In addition, glycolipids, fusogenic
15 liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a functional assay for expression and HLA
20 class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct *in vitro* transfection. A plasmid expressing green fluorescent protein (GFP) can be
25 co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (^{51}Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by ^{51}Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of
30 HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (IP) for lipid-complexed DNA).

Twenty-one days after immunization, splenocytes are harvested and restimulated for 1 week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, ⁵¹Cr-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded 5 with peptide epitopes, corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for *in vivo* induction of CTLs. Immunogenicity of HTL epitopes is evaluated in transgenic mice in an analogous manner.

Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Using this technique, particles 10 comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.

IV.K.2. Combinations of CTL Peptides with Helper Peptides

Vaccine compositions comprising the peptides of the present invention, or analogs 15 thereof, which have immunostimulatory activity may be modified to provide desired attributes, such as improved serum half life, or to enhance immunogenicity.

For instance, the ability of the peptides to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. The use of T helper epitopes in conjunction with CTL 20 epitopes to enhance immunogenicity is illustrated, for example, in co-pending U.S.S.N. 08/820360, U.S.S.N. 08/197,484, and U.S.S.N. 08/464,234.

Particularly preferred CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under 25 physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues. Alternatively, the CTL 30 peptide may be linked to the T helper peptide without a spacer.

Although the CTL peptide epitope can be linked directly to the T helper peptide epitope, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological

conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.

HTL peptide epitopes can also be modified to alter their biological properties. For example, peptides comprising HTL epitopes can contain D-amino acids to increase their resistance to proteases and thus extend their serum half-life. Also, the epitope peptides of the invention can be conjugated to other molecules such as lipids, proteins or sugars, or any other synthetic compounds, to increase their biological activity. Specifically, the T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.

In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in the majority of the population. This can be accomplished by selecting amino acid sequences that bind to many, most, or all of the HLA class II molecules. These are known as "loosely HLA-restricted" or "promiscuous" T helper sequences.

Examples of amino acid sequences that are promiscuous include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE), *Plasmodium falciparum* CS protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS), and Streptococcus 18kD protein at positions 116 (GAVDSILGGVATYGAA). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.

Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRETM, Epimmune, Inc., San Diego, CA) are designed to most preferably bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: aKXVWANTLKA_n, where "X" is either cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HLA type.

An alternative of a pan-DR binding epitope comprises all "L" natural amino acids and can be provided in the form of nucleic acids that encode the epitope.

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes cytotoxic T lymphocytes. Lipids have been identified as agents capable of priming CTL *in vivo* against viral antigens. For example, palmitic acid residues can be attached to the ε-and α-amino groups of a lysine residue and then linked, *e.g.*, via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, *e.g.*, incomplete Freund's adjuvant. In a preferred embodiment, a particularly effective immunogenic comprises palmitic acid attached to ε- and α- amino groups of Lys, which is attached via linkage, *e.g.*, Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CTL responses, *E. coli* lipoproteins, such as tripalmitoyl-S-glycerylcysteinylserine (P₃CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide. (*See, e.g.*, Deres, *et al.*, *Nature* 342:561, 1989). Peptides of the invention can be coupled to P₃CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P₃CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses to infection.

As noted herein, additional amino acids can be added to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide, particularly class I peptides. However, it is to be noted that modification at the carboxyl terminus of a CTL epitope may, in some cases, alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural sequence by being modified by terminal-NH₂ acylation, *e.g.*, by alkanoyl (C₁-C₂₀) or thioglycolyl acetylation, terminal-carboxyl amidation, *e.g.*, ammonia, methylamine, etc. In some instances these modifications may provide sites for linking to a support or other molecule.

Vaccine Compositions Comprising Dendritic Cells Pulsed with CTL and/or HTL Peptides

An embodiment of a vaccine composition in accordance with the invention comprises *ex vivo* administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces. The vaccine is then administered to the patient.

IV.L. Administration of Vaccines for Therapeutic or Prophylactic Purposes

The peptides of the present invention and pharmaceutical and vaccine compositions of the invention are useful for administration to mammals, particularly humans, to treat and/or prevent HCV infection. Vaccine compositions containing the peptides of the invention are administered to a patient infected with HCV or to an individual susceptible to, or otherwise at risk for, HCV infection to elicit an immune response against HCV antigens and thus enhance the patient's own immune response capabilities. In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective CTL and/or HTL response to the virus antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.

The vaccine compositions of the invention may also be used purely as prophylactic agents. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg. Dosage values for a human typically range from about 500 µg to about 50,000 µg per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 µg to about 50,000 µg of peptide administered at defined intervals from about four weeks to six months after the

initial administration of vaccine. The immunogenicity of the vaccine may be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.

As noted above, peptides comprising CTL and/or HTL epitopes of the invention
5 induce immune responses when presented by HLA molecules and contacted with a CTL or HTL specific for an epitope comprised by the peptide. The manner in which the peptide is contacted with the CTL or HTL is not critical to the invention. For instance, the peptide can be contacted with the CTL or HTL either *in vivo* or *in vitro*. If the contacting occurs *in vivo*, the peptide itself can be administered to the patient, or other
10 vehicles, *e.g.*, DNA vectors encoding one or more peptides, viral vectors encoding the peptide(s), liposomes and the like, can be used, as described herein. When the peptide is contacted *in vitro*, the vaccinating agent can comprise a population of cells, *e.g.*, peptide-pulsed dendritic cells, or TAA-specific CTLs, which have been induced by pulsing antigen-presenting cells *in vitro* with the peptide. Such a cell population is subsequently
15 administered to a patient in a therapeutically effective dose.

The peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences.

For pharmaceutical compositions, the immunogenic peptides of the invention, or DNA encoding them, are generally administered to an individual already infected with
20 HCV. The peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences. Those in the incubation phase or the acute phase of infection can be treated with the immunogenic peptides separately or in conjunction with other treatments, as appropriate.

For therapeutic use, administration should generally begin at the first diagnosis of
25 HCV infection. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. In chronic infection, loading doses followed by boosting doses may be required.

Treatment of an infected individual with the compositions of the invention may hasten resolution of the infection in acutely infected individuals. For those individuals
30 susceptible (or predisposed) to developing chronic infection, the compositions are particularly useful in methods for preventing the evolution from acute to chronic infection. Where susceptible individuals are identified prior to or during infection, the composition can be targeted to them, thus minimizing the need for administration to a larger population.

The peptide or other compositions used for the treatment or prophylaxis of HCV infection can be used, *e.g.*, in persons who have not manifested symptoms of disease but who act as a disease vector. In this context, it is generally important to provide an amount of the peptide epitope delivered by a mode of administration sufficient to 5 effectively stimulate a cytotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention.

The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg. Dosage values for a human 10 typically range from about 500 µg to about 50,000 µg per 70 kilogram patient. Boosting dosages of between about 1.0 µg to about 5000 µg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood. The peptides and compositions of the present 15 invention may be employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to 20 these stated dosage amounts.

Thus, for treatment of chronic infection, a representative dose is in the range disclosed above, namely where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg, preferably from about 500 µg to about 50,000 µg per 70 kilogram patient. Initial doses followed by boosting doses at 25 established intervals, *e.g.*, from four weeks to six months, may be required, possibly for a prolonged period of time to effectively immunize an individual. In the case of chronic infection, administration should continue until at least clinical symptoms or laboratory tests indicate that the viral infection has been eliminated or substantially abated and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted 30 in accordance with methodologies known in the art.

The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, intrathecal, or local administration. Preferably, the pharmaceutical compositions are administered parentally, *e.g.*, intravenously,

subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, *e.g.*, water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, *etc.*

The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, *i.e.*, from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, *etc.*, in accordance with the particular mode of administration selected.

A human unit dose form of the peptide composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, preferably an aqueous carrier, and is administered in a volume of fluid that is known by those of skill in the art to be used for administration of such compositions to humans (*see, e.g., Remington's Pharmaceutical Sciences*, 17th Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pennsylvania, 1985).

The peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or to target selectively to infected cells, as well as to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed

from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, *e.g.*, liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing 5 liposomes, as described in, *e.g.*, Szoka, *et al.*, *Ann. Rev. Biophys. Bioeng.* 9:467 (1980), and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.

For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, *e.g.*, antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a 10 peptide may be administered intravenously, locally, topically, *etc.* in a dose which varies according to, *inter alia*, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium 15 stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.

20 For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as 25 caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, *e.g.*, lecithin for intranasal 30 delivery.

IV.M. Kits

The peptide and nucleic acid compositions of this invention can be provided in kit form together with instructions for vaccine administration. Typically the kit would

include desired peptide compositions in a container, preferably in unit dosage form and instructions for administration. An alternative kit would include a minigene construct with desired nucleic acids of the invention in a container, preferably in unit dosage form together with instructions for administration. Lymphokines such as IL-2 or IL-12 may 5 also be included in the kit. Other kit components that may also be desirable include, for example, a sterile syringe, booster dosages, and other desired excipients.

The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit 10 the invention in any manner. Those of skill in the art will readily recognize a variety of non-critical parameters that can be changed or modified to yield alternative embodiments in accordance with the invention.

V. EXAMPLES

As in many viral diseases, there is evidence that clearance of HCV is mediated by 15 CTL. In a study of primary HCV infection in six chimpanzees, four progressed to chronic infection (Cooper *et al.*, abstract, 19th US-Japan Hepatitis Joint Panel Meeting, January 27-29, 1998). It was found that these four animals showed either no CTL response or a very narrowly focused response during early infection. In contrast, in the remaining two animals that resolved the infection, a broad CTL response was observed 20 against multiple HCV proteins, some of which were conserved. Weiner *et al.* (*Proc. Natl. Acad. Sci. USA* 92:2755-2759, 1995) demonstrated that viral escape, in which the epitopes presented to PATR class I molecules mutated, was linked with a progression 25 toward chronic infection. These data show a role for the CTL in directing the course of HCV disease, and in shaping the genetic composition of HCV species in the persistently infected host.

In work in humans, Koziel and co-workers have established the presence of HCV-specific CTL in liver infiltrates from patients with chronic HCV infection (Koziel *et al.*, *J. Immunol.* 149:3339, 1992; and Koziel *et al.*, *J. Virol.* 67:7522, 1993), and have also identified a number of CTL epitopes recognized in the context of several different HLA 30 class I molecules. Other investigators have shown that HCV-specific CTL can be detected in the peripheral blood of patients with chronic hepatitis C (Cerny *et al.*, *J. Clin. Invest.* 95:521, 1995; Cerny *et al.*, *Curr. Topics in Micro. and Immunol.* 189:169, 1994; Cerny *et al.*, Abst. 2nd International Meeting on Hepatitis C and Related Viruses; La Jolla, CA, 1994; Battegay *et al.*, Abst. 2nd International Meeting on Hepatitis C and Related

Viruses; La Jolla, CA, 1994; Shirai *et al.*, *J. Virol.* 68:3334, 1994; Shirai *et al.*, *J. Immunol.* 154:2733, 1995; Battegay *et al.*, *J. Virol.* 69:2462, 1995). In addition, escape variants have been demonstrated in patients chronically infected with HCV (Chang *et al.*, *J. Clin. Invest.* 100:2376-2385, 1997; Tsai *et al.*, *Gastroenterology* 115:954-966, 1998).

- 5 The magnitude of the CTL responses observed in HCV-infected patients is, in general, higher than those observed in the case of chronic hepatitis B infection, suggesting that there is less impairment of specific T cell immunity than with HBV infection. The magnitude of CTL responses in HCV patients is, however, lower than those observed in HBV infected individuals who successfully cleared HBV infection.
- 10 These results support the understanding that HCV infected patients are capable of responding to active immunotherapy, and suggest that potentiation and increasing of T cell responses to HCV may be of use in therapy and prevention of chronic HCV infection (Prince, A. M. *FEMS Micro. Rev.* 14:273, 1994).

15 Several groups have analyzed the potential role of HCV-specific CTL responses in disease resistance and pathogenesis. In some studies no correlation was found between CTL viremia and CTL precursor frequency for individual HCV epitopes (Rehermann *et al.*, *J. Clin. Invest.* 98:1432-1440, 1996; Wong *et al.*, *J. Immunol.* 160:1479-1488, 1998). In other studies, however, it was shown that a clear correlation existed between levels of HCV infection and CTL responses, provided that the global response against multiple 20 CTL epitopes was considered (Rehermann *et al.*, *J. Virol.* 70:7092-7102, 1996). These data represent a strong rationale for development of vaccine constructs capable of inducing vigorous CTL responses directed against a multiplicity of conserved HCV-derived epitopes.

25 Koziel and colleagues have demonstrated the presence of HCV-specific CTLs, as well as T helper cell responses, in exposed but seronegative individuals (Koziel *et al.*, *J. Infect. Diseases* 176:859-866, 1997). In addition, HCV-specific CTLs have been detected in healthy, seronegative family members of chronically HCV-infected patients, indicating that a protective immunity is established in absence of a detectable infection (Bronowicki *et al.*, *J. Infect. Dis.* 176:518-522, 1997; Scognamiglio *et al.*, in preparation).

30 Experimental evidence also indicates that HTL epitopes play an important role in immune reactivity and defenses against HCV infection (Missale *et al.*, *J. Clin. Invest.* 98:706-714, 1996). Diepolder *et al.* (in *Lancet* 346:1006, 1995) have shown that a region of the NS3 gene (NS3 1007-1534) is recognized by patients who clear acute HCV infection, but is not seen by patients who develop chronic infection. Subsequent studies

showed that this particular region contain a highly cross-reactive HTL epitope (NS3 1248-1261), which binds with good affinity to 10 of 13 DR molecules tested, and is highly conserved in 30/33 different HCV isolates considered (Diepolder *et al.*, *J. Virol.* 71:6011-6019, 1997). These data suggested that directing HTL responses to this type of epitope (rather than to less cross-reactive and/or highly variable ones) will be of therapeutic and prophylactic benefit and strongly argue for inclusion of this and other epitopes with similar characteristics in HCV vaccine constructs.

The following examples illustrate identification, selection, and use of immunogenic Class I and Class II peptide epitopes for inclusion in vaccine compositions.

10

Example 1: HLA Class I and Class II Binding Assays

The following example of peptide binding to HLA molecules demonstrates quantification of binding affinities of HLA class I and class II peptides. Binding assays can be performed with peptides that are either motif-bearing or not motif-bearing.

15

Epstein-Barr virus (EBV)-transformed homozygous cell lines, fibroblasts, CIR, or 721.22 transfectants were used as sources of HLA class I molecules. The specific cell lines routinely used for purification of MHC class I and class II molecules are listed in Table XXIV. Cell lysates were prepared and HLA molecules purified in accordance with disclosed protocols (Sidney *et al.*, *Current Protocols in Immunology* 18.3.1 (1998); Sidney, *et al.*, *J. Immunol.* 154:247 (1995); Sette, *et al.*, *Mol. Immunol.* 31:813 (1994)). HLA molecules were purified from lysates by affinity chromatography. The lysate was passed over a column of Sepharose CL-4B beads coupled to an appropriate antibody. The antibodies used for the extraction of HLA from cell lysates are listed in Table XXV. The anti-HLA column was then washed with 10mM Tris-HCL, pH 8.0, in 1% NP-40, PBS, and PBS containing 0.4% n-octylglucoside and HLA molecules were eluted with 50mM diethylamine in 0.15M NaCl containing 0.4% n-octylglucoside, pH 11.5. A 1/25 volume of 2.0M Tris, pH 6.8, was added to the eluate to reduce the pH to ~8.0. Eluates were then be concentrated by centrifugation in Centriprep 30 concentrators (Amicon, Beverly, MA). Protein content was evaluated by a BCA protein assay (Pierce Chemical Co., Rockford, IL) and confirmed by SDS-PAGE.

A detailed description of the protocol utilized to measure the binding of peptides to Class I and Class II MHC has been published (Sette *et al.*, *Mol. Immunol.* 31:813, 1994; Sidney *et al.*, in *Current Protocols in Immunology*, Margulies, Ed., John Wiley & Sons, New York, Section 18.3, 1998). Briefly, purified MHC molecules (5 to 500nM)

were incubated with various unlabeled peptide inhibitors and 1-10nM ^{125}I -radiolabeled probe peptides for 48h in PBS containing 0.05% Nonidet P-40 (NP40) (or 20% w/v digitonin for H-2 IA assays) in the presence of a protease inhibitor cocktail. All assays were at pH 7.0 with the exception of DRB1*0301, which was performed at pH 4.5, and 5 DRB1*1601 (DR2w21 β_1) and DRB4*0101 (DRw53), which were performed at pH 5.0.

Following incubation, MHC-peptide complexes were separated from free peptide by gel filtration on 7.8 mm x 15 cm TSK200 columns (TosoHaas 16215, Montgomeryville, PA). Because the large size of the radiolabeled peptide used for the DRB1*1501 (DR2w2 β_1) assay makes separation of bound from unbound peaks more 10 difficult under these conditions, all DRB1*1501 (DR2w2 β_1) assays were performed using a 7.8mm x 30cm TSK2000 column eluted at 0.6 mls/min. The eluate from the TSK columns was passed through a Beckman 170 radioisotope detector, and radioactivity was plotted and integrated using a Hewlett-Packard 3396A integrator, and the fraction of peptide bound was determined.

15 Radiolabeled peptides were iodinated using the chloramine-T method. Representative radiolabeled probe peptides utilized in each assay, and its assay specific IC₅₀ nM, are summarized in Tables IV and V. Typically, in preliminary experiments, each MHC preparation was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of 20 the total radioactivity. All subsequent inhibition and direct binding assays were performed using these HLA concentrations.

Since under these conditions [label]<[HLA] and IC₅₀ \geq [HLA], the measured IC₅₀ values are reasonable approximations of the true K_D values. Peptide inhibitors are typically tested at concentrations ranging from 120 $\mu\text{g}/\text{ml}$ to 1.2 ng/ml, and are tested in 25 two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC₅₀ of a positive control for inhibition by the IC₅₀ for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values 30 can subsequently be converted back into IC₅₀ nM values by dividing the IC₅₀ nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation has proven to be the most accurate and consistent for

comparing peptides that have been tested on different days, or with different lots of purified MHC.

Because the antibody used for HLA-DR purification (LB3.1) is α -chain specific, β_1 molecules are not separated from β_3 (and/or β_4 and β_5) molecules. The β_1 specificity of the binding assay is obvious in the cases of DRB1*0101 (DR1), DRB1*0802 (DR8w2), and DRB1*0803 (DR8w3), where no β_3 is expressed. It has also been demonstrated for DRB1*0301 (DR3) and DRB3*0101 (DR52a), DRB1*0401 (DR4w4), DRB1*0404 (DR4w14), DRB1*0405 (DR4w15), DRB1*1101 (DR5), DRB1*1201 (DR5w12), DRB1*1302 (DR6w19) and DRB1*0701 (DR7). The problem of β chain specificity for DRB1*1501 (DR2w2 β_1), DRB5*0101 (DR2w2 β_2), DRB1*1601 (DR2w21 β_1), DRB5*0201 (DR51Dw21), and DRB4*0101 (DRw53) assays is circumvented by the use of fibroblasts. Development and validation of assays with regard to DR β molecule specificity have been described previously (*see, e.g., Southwood et al., J. Immunol.* 160:3363-3373, 1998).

Binding assays as outlined above may be used to analyze supermotif and/or motif-bearing epitopes as, for example, described in Example 2.

Example 2. Identification of Conserved HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes

Vaccine compositions of the invention may include multiple epitopes that comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage was performed using the strategy described below.

Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes

Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs were performed as follows. All translated HCV isolate sequences were analyzed using a text string search software program, *e.g.*, MotifSearch 1.4 (D. Brown, San Diego) to identify potential peptide sequences containing appropriate HLA binding motifs; alternative programs are readily produced in accordance with information in the art in view of the motif/supermotif disclosure herein. Furthermore, such calculations can be

made mentally. Identified A2-, A3-, and DR-supermotif sequences were scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms take into account both extended and refined motifs (that is, to account for the impact of different amino acids at different positions), 5 and are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:

$$\text{"}\Delta G\text{"} = a_{1i} \times a_{2i} \times a_{3i} \dots \times a_{ni}$$

where a_{ji} is a coefficient which represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. The crucial 10 assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue j occurs at position i in the peptide, it is assumed to contribute a constant amount j_i to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide. This assumption is justified by studies from our laboratories that demonstrated that 15 peptides are bound to MHC and recognized by T cells in essentially an extended conformation (data omitted herein).

The method of derivation of specific algorithm coefficients has been described in Gulukota *et al.*, *J. Mol. Biol.* 267:1258-126, 1997; (see also Sidney *et al.*, *Human Immunol.* 45:79-93, 1996; and Southwood *et al.*, *J. Immunol.* 160:3363-3373, 1998). 20 Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying j is calculated relative to the remainder of the group, and used as the estimate of j_i . For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the 25 ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.

Selection of HLA-A2 supertype cross-reactive peptides

30 Complete polyprotein sequences from fourteen HCV isolates were aligned, then scanned, utilizing motif identification software, to identify conserved 9- and 10-mer sequences containing the HLA-A2-supermotif main anchor specificity.

A total of 231 conserved, HLA-A2 supermotif-positive sequences were identified. These peptides were then evaluated for the presence of A*0201 preferred secondary anchor residues using A*0201-specific polynomial algorithms. A total of 67 conserved, motif-bearing and algorithm-positive sequences were identified.

5 Fifty of these conserved, motif-containing 9- and 10-mer peptides were tested for their capacity to bind to purified HLA-A*0201 molecules *in vitro* (HLA-A*0201 is considered a prototype A2 supertype molecule). Sixteen peptides bound A*0201 with IC₅₀ values ≤500 nM; 4 with high binding affinities (IC₅₀ values ≤50 nM) and 12 with intermediate binding affinities, in the 50-500 nM range (Table XXVI).

10 These 16 peptides were then tested for binding to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). As shown in Table XXVI, most of these peptides were found to be A2-supertype cross-reactive binders. More specifically, 12/16 (75%) peptides bound at least three of the five A2-supertype molecules tested.

15 *Selection of HLA-A3 supermotif-bearing epitopes*

The sequences from the same fourteen known HCV isolates scanned above were also examined for the presence of conserved peptides with the HLA-A3-supermotif primary anchors. A total of 71 conserved 9- or 10-mer motif containing sequences were identified. Further analysis using the A03 and A11 algorithms (see, e.g., Gulukota et al, 20 *J. Mol. Biol.* 267:1258-1267, 1997 and Sidney et al, *Human Immunol.* 45:79-93, 1996) identified 39 sequences that scored high in either or both algorithms. Twenty seven of the 39 peptides were synthesized and tested for binding to HLA-A*03 and HLA-A*11, the two most prevalent A3-supertype molecules. Fifteen peptides were identified which bound A3 and/or A11 with binding affinities of ≤500 nM (Table XXVII). These peptides 25 were then tested for binding cross-reactivity to the other common A3-supertype alleles (A*3101, A*3301, and A*6801). Seven of the 15 peptides bound at least three of the five HLA-A3-supertype molecules tested.

In the course of an independent series of experiments (Kubo et al., *J. Immunol.* 152:3913-3924, 1994), one peptide, HCV NS3 1262, not identified by the selection 30 criteria utilized above because it does not have the A3-supermotif main anchor specificity, was determined to be cross-reactive in the A3-supertype, binding A*03, A*11, and A*6801. It is also shown in Table XXVII. Interestingly, this peptide

represents a single residue N-terminal truncation of peptide 1073.14, which is also shown in Table XXVII.

In summary, 8 peptides that bind 3 or more A3-supertype molecules derived from conserved regions of the HCV genome were identified.

5

Selection of HLA-B7 supermotif bearing epitopes

When the same fourteen HCV isolates were also analyzed for the presence of conserved 9- or 10-mer peptides with the HLA-B7-supermotif, 35 sequences were identified. The corresponding peptides were synthesized and tested for binding to HLA-

10 B*0702, the most common B7-supertype allele (*i.e.*, the prototype B7 supertype allele).

Thirteen peptides bound B*0702 with IC₅₀ of ≤500 nM (Table XXVIIIa). These 13 peptides were then tested for binding to other common B7-supertype molecules (B*3501, B*51, B*5301, and B*5401). As shown in Table XXVIIIa, only 1 peptide (Core 169) was capable of binding to three or more of the five B7-supertype alleles tested.

15 To identify additional B7-supertype epitopes, further studies were undertaken. The protein sequences from the fourteen HCV isolates utilized above were again examined to identify conserved, motif-containing 8- and 11-mers. The isolates were also examined for 9- and 10-mer sequences allowing for lower conservancy (51%-78%). Twenty-five 8-mers, sixteen 11-mers, and thirty-five 9- and 10-mers were identified,

20 synthesized, and tested for binding to B*0702. Thirteen peptides bound with high or intermediate affinity (IC₅₀ ≤500 nM) (Table XXVIIIb). These peptides were additionally screened for binding to other B7-supertype molecules. Only one cross-reactive binder, the NS3 1378 8-mer (peptide 29.0035/1260.04), was identified (Table XXVIIIb).

25 In summary, a total of two cross-reactive B7-supertype binders were identified (Core 169 and NS3 1378).

Selection of A1 and A24 motif-bearing epitopes

To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into potential vaccine constructs.

30 In a previous analysis, two A1 and three A24 binders, 100% conserved among four strains of HCV, were identified (Wentworth *et al.*, *Int. Immunol.* 8:651-659, 1996). An analysis of the protein sequence data from the fourteen HCV strains utilized above demonstrated that these peptides were >79% conserved, and also identified an additional

eleven A1- and twenty five A24-motif-containing conserved sequences (see Table XXIXA and B). Eight of the additional eleven A1 peptides and seven of the additional twenty five A24 peptides were tested for binding to the appropriate HLA molecule (*i.e.*, A1 or A24). Overall, as shown in Table XXIX, four A1-motif peptides (A) and three 5 A24-motif peptides (B) have been found with binding capacities of 500 nM or less for the appropriate allele-specific HLA molecule.

Analysis of the HLA-A2 and A3 supermotif-bearing epitopes identified above revealed that in 13/14 cases, peptides binding the supertype prototype HLA molecule (*i.e.* A*0201 for the A2 supertype, and A*0301 for the A3 supertype) with an IC₅₀ of less than 10 100nM were cross-reactive and recognized by HCV-infected patients as described in Example 3, which follows. Based on these observations, two A1 peptides and one A24 peptide epitopes were also selected as candidates for inclusion in vaccine compositions; these peptides bind the appropriate HLA molecule with an IC₅₀ of less than 100nM.

15 **Example 3: Confirmation of Immunogenicity**

*Evaluation of A*0201 immunogenicity*

It has been shown that CTL induced in A*0201/K^b transgenic mice exhibit specificity similar to CTL induced in the human system (*see, e.g.*, Vitiello *et al.*, *J. Exp. Med.* 173:1007-1015, 1991; Wentworth *et al.*, *Eur. J. Immunol.* 26:97-101, 1996).

20 Accordingly, these mice were used to evaluate the immunogenicity of the twelve conserved A2-supertype cross-reactive peptides identified in Example 2 above.

CTL induction in transgenic mice following peptide immunmunization has been described (Vitiello *et al.*, *J. Exp. Med.* 173:1007-1015, 1991; Alexander *et al.*; *J. Immunol.* 159:4753-4761, 1997). In these studies, mice were injected subcutaneously at 25 the base of the tail with each peptide (50 µg/mouse) emulsified in IFA in the presence of an excess of an IA^b-restricted helper peptide (140 µg/mouse) (HBV core 128-140, Sette *et al.*, *J. Immunol.* 153:5586-5592, 1994). Eleven days after injection, splenocytes were incubated in the presence of peptide-loaded syngenic LPS blasts. After six days, cultures were assayed for cytotoxic activity using peptide-pulsed targets. The data, summarized in 30 Table XXX, indicate that 7 of the 12 peptides (58%) were capable of inducing primary CTL responses in A*0201/K^b transgenic mice. (For these studies, a peptide was considered positive if it induced CTL (L.U. 30/10⁶ cells ≥2 in at least two transgenic animals (Wentworth *et al.*, *Eur. J. Immunol.* 26:97-101, 1996).

The conserved, cross reactive candidate CTL epitopes were also tested for recognition *in vitro* by PBMCs obtained from HCV-infected patients. Briefly, PBMC from patients infected with HCV were cultured in the presence of 10 µg/ml of synthetic peptide. After 7 and 14 days, the cultures were restimulated with peptide. The cultures 5 were assayed for cytolytic activity on day 21 using target cells pulsed with the specific peptide in a standard four hour ⁵¹Cr release assay. The data are summarized in Table XXX. As shown, all 12 peptides are CTL epitopes recognized by PBMC from HCV-infected patients. From the data in Table XXX, it is interesting to note that HLA transgenics did not fully reveal the immunogenicity of some peptides that were positive in 10 recall responses. This apparent discrepancy may reflect differences in the route of immunization utilized (*e.g.*, natural infection versus peptide immunization), or CTL repertoire.

*Evaluation of A*03/A11 immunogenicity*

15 The immunogenicity of six of the eight A3-supertype cross-reactive peptides identified in Example 2 above was evaluated in HLA-A11/K^b transgenic mice, using the protocol described above for HLA-A2 transgenic mice (Alexander *et al.*, *J. Immunol.* 159:4753-4761, 1997). Five of these six peptides were able to induce primary CTL responses (Table XXXI).

20 All eight peptides were also studied by collaborators using PBMC cultures from HCV infected patients and contacts of such patients. This data is also summarized in Table XXXI. Briefly, all eight peptides were recognized by HCV infected individuals.

Evaluation of B7 immunogenicity

25 One of the two B7-supertype cross-reactive peptides (1145.12, Core 169) has been evaluated for immunogenicity in HCV-infected patients. Two independent collaborators have shown that this peptide is indeed immunogenic, and is recognized by T cells from HCV-infected patients (Chang *et al.*, *J. Immunol.* 162:1156-1164, 1999)

30 **Example 4: Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs**

HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also

allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analogued, or "fixed" to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analog peptides that exhibit modulated binding affinity are set forth in this example.

Analoging at Primary Anchor Residues

As shown in Example 2, more than ten different HCV-derived, A2-supertype-restricted epitopes were identified. Peptide engineering strategies are implemented to further increase the cross-reactivity of the candidate epitopes identified above which bind 3/5 of the A2 supertype alleles tested. On the basis of the data disclosed, e.g., in related and co-pending U.S.S.N 09/226,775, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred L, I, V, or M at position 2, and I or V at the C-terminus.

To analyze the cross-reactivity of the analog peptides, each engineered analog is initially tested for binding to the prototype A2 supertype allele A*0201, then, if A*0201 binding capacity is maintained, for A2-supertype cross-reactivity.

Similarly, analogs of HLA-A3 supermotif-bearing epitopes may also be generated. For example, peptides binding to 3/5 of the A3-supertype molecules may be engineered at primary anchor residues to possess a preferred residue (V, S, M, or A) at position 2.

The analog peptides are then tested for the ability to bind A*03 and A*11 (prototype A3 supertype alleles). Those peptides that demonstrate \leq 500 nM binding capacity are then tested for A3-supertype cross-reactivity.

Similarly to the A2- and A3- motif bearing peptides, peptides binding 3 or more B7-supertype alleles may be improved, where possible, to achieve increased cross-reactive binding. B7 supermotif-bearing peptides may, for example, be engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney *et al.* (*J. Immunol.* 157:3480-3490, 1996).

Analoging at Secondary Anchor Residues

Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased affinity by identifying

particular residues at secondary anchor positions that are associated with such properties. Demonstrating this, the binding capacity of a peptide representing a discreet single amino acid substitution at position one was analyzed. Peptide 1145.13 (Table XXVIIc), which represents the substitution of L to F at position 1 of the core 169 sequence, binds all five 5 B7-supertype molecules with a good affinity (all IC₅₀ values ≤ 132 nM), and in 3 instances has higher affinity over that of the parent peptide by >35-fold.

Because so few B7-supertype cross-reactive epitopes were identified, our results from previous binding evaluations were analyzed to identify conserved (8-, 9-, 10-, or 11-mer) peptides which bind, minimally, 3/5 B7 supertype molecules with weak affinity 10 (IC₅₀ of 500nM-5μM). This analysis identified 9 peptides, 6 of which are analogued (including core 169 which had been previously analogued). These peptides are tested for enhanced binding affinity and B7-supertype cross-reactivity.

Engineered analogs with sufficiently improved binding capacity or cross-reactivity are tested for immunogenicity in HLA-B7-transgenic mice, following for 15 example, IFA immunization or lipopeptide immunization.

In conclusion, these data demonstrate that by the use of even single amino acid substitutions, it is possible to increase the binding affinity and/or cross-reactivity of peptide ligands for HLA supertype molecules.

20 Example 5: Identification of conserved HCV-derived sequences with HLA-DR binding motifs

Peptide epitopes bearing an HLA class II supermotif or motif may also be identified as outlined below using methodology similar to that described in Examples 1-3.

25 *Selection of HLA-DR-supermotif-bearing epitopes*

To identify HCV-derived, HLA class II HTL epitopes, the same fourteen HCV polyprotein sequences used for the identification of HLA Class I supermotif/motif sequences were analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences were selected comprising a DR-supermotif, 30 further comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total). It was also required that the 15-mer sequence be conserved in at least 79% (11/14) of the HCV strains analyzed. These criteria identified a total of 49 non-redundant sequences, which are shown in Table XXXIIA. (In the context of Class II

epitopes, a sequence is considered operationally redundant if more than 80% of it's sequence overlaps with another peptide.)

Protocols for predicting peptide binding to DR molecules have been developed (Southwood *et al.*, *J. Immunol.* 160:3363-3373, 1998). These protocols, specific for 5 individual DR molecules, allow the scoring, and ranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors (i.e., at position 1 and position 6) within a 9-mer core, but additionally evaluates sequences for the presence of secondary anchors. Using allele specific selection tables (see, e.g., Southwood *et al.*, *ibid.*), it has been found that these protocols efficiently select 10 peptide sequences with a high probability of binding a particular DR molecule.

Additionally, it has been found that performing these protocols in tandem, specifically those for DR1, DR4w4, and DR7, can efficiently select DR cross-reactive peptides.

To see if these protocols serve to identify additional epitopes, the same HCV polyproteins used above were re-scanned for the presence of 15-mer peptides with 9-mer 15 core regions that were $\geq 79\%$ (11/14 strains) conserved. This identified 152 sequences; 49 of which were identified previously, as described above. Next, the 9-mer core region of each of these peptides was scored using the DR1, DR4w4, and DR7 algorithms. Twenty-two peptides, including 12 new sequences (10 peptides were from the original set of 49) were found to have 9-mer cores with protocol-derived scores predictive of cross-reactive 20 DR binders. The 12 additional sequences are shown in Table XXXIIB.

The conserved, HCV-derived peptides identified above were tested for their binding capacity for various common HLA-DR molecules. All peptides were initially tested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least 2 of these 3 DR molecules were then tested for binding to 25 DR2w2 β 1, DR2w2 β 2, DR6w19, and DR9 molecules in secondary assays. Finally, peptides binding at least 2 of the 4 secondary panel DR molecules, and thus cumulatively at least 4 of 7 different DR molecules, were screened for binding to DR4w15, DR5w11, and DR8w2 molecules in tertiary assays. Peptides binding at least 7 of the 10 DR molecules comprising the primary, secondary, and tertiary screening assays were 30 considered cross-reactive DR binders. The composition of these screening panels, and the phenotypic frequency of associated antigens, are shown in Table XXXIII.

Upon testing, it was found that 29 of the original 75 peptides (39%) bound two or more of the primary HLA molecules. Twenty-six of these cross-reactive binders were

then tested in the secondary assays, and nineteen were found to bind at least four of the seven HLA DR molecules in the primary and secondary panels. Finally, the nineteen peptides passing the secondary screening phase were tested for binding in the tertiary assays. As a result, nine peptides were identified which bound at least seven of ten common HLA-DR molecules. Table XXXIV shows these nine peptides and their binding capacity for each allele-specific HLA-DR molecule in the primary through tertiary panels. Also shown in Table XXXIV are two peptides (F134.05 and F134.08) for which a complete binding analysis was not performed. However, both of these peptides bound six of the seven HLA DR molecules tested. F134.08 nests peptide 1283.44, which bound eight of 10 allele-specific HLA molecules.

In conclusion, eleven cross-reactive DR-binding peptides, derived from six discrete (*i.e.* non-redundant) regions of the HCV genome, have been identified. Two of the six regions from which these epitopes were derived are covered by multiple, overlapping epitopes.

15

Selection of conserved DR3 motif peptides

Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is an important criterion in the selection of HTL epitopes. However, data generated previously indicated that DR3 only rarely cross-reacts with other DR alleles (Sidney *et al.*, *J. Immunol.* 149:2634-2640, 1992; Geluk *et al.*, *J. Immunol.* 152:5742-5748, 1994; Southwood *et al.*, *J. Immunol.* 160:3363-3373, 1998). This is not entirely surprising in that the DR3 peptide-binding motif appears to be distinct from the specificity of most other DR alleles.

To efficiently identify peptides that bind DR3, target proteins were analyzed for conserved sequences carrying one of the two DR3 specific binding motifs reported by Geluk *et al.* (*J. Immunol.* 152:5742-5748, 1994). Fifteen sequences, including a peptide nested within a DR-supermotif sequence identified above (peptide Pape 22), were identified (Table XXXId). Preferably, DR3 motifs will be found clustered in proximity with DR supermotif regions.

30 Fourteen of the fifteen peptides containing a DR3 motif were tested for their DR3 binding capacity. Two peptides (CH35.0106 and CH35.0107) were found to bind DR3 with an affinity of 1 μ M or less (Table XXXV), and thereby qualify as HLA class II high affinity binders.

DR3 binding epitopes identified in this manner may then be included in vaccine compositions with DR supermotif-bearing peptide epitopes.

Example 6: Immunogenicity of candidate HCV-derived HTL epitopes and known

dominant HCV HTL epitope

In the course of collaborative studies with G. Pape and C. Ferrari, eight conserved, HCV-derived peptides have been identified which are recognized by HCV-infected individuals.

One of these studies (Diepolder *et al.*, *J. Virol.* 71:6011-6019, 1997), identified peptide F98.05, which spans residues 1248-1261 of the NS3 protein, as an immunodominant CD4+ T-cell epitope that was recognized by 14/23 NS3-specific CD4+ T-cell clones from 4/5 patients with acute hepatitis C infection. This epitope, shown above to be an HLA-DR cross-reactive binder (see Table XXXIV), was capable of being presented to helper CD4+ T cells by multiple HLA molecules (DR4, DR11, DR12, DR13, and DR16). Two other peptides, Pape 22 and Pape 29, were also recognized by CD4+ T cell clones, although, in a more limited context; correspondingly, neither of these peptides are DR-cross-reactive binders.

By direct peripheral blood T cell stimulation and by fine specificity analysis of HCV-specific T-cell lines and clones, studies done in collaboration with Ferrari's group identified 6 immunodominant epitopes, including one also identified in the Pape collaboration, that are derived from conserved regions of the core, NS3, and NS4 proteins. These epitopes were also found to be cross-reactive, being presented to T cells in the context of different Class II molecules. Three of the 6 epitopes, F98.04 (F134.03), F134.05 and F134.08, are cross-reactive HLA-DR binders (see Table XXXIV).

In conclusion, the immunogenicity of 8 epitopes derived from conserved regions of the HCV genome has been demonstrated. Three of these epitopes (F98.05, F134.05, and F134.08; see Table XXXIV) are broadly cross-reactive HLA-DR binding peptides.

Example 7. Calculation of phenotypic frequencies of HLA-supertypes in various ethnic

backgrounds to determine breadth of population coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.

In order to analyze population coverage, gene frequencies of HLA alleles were determined. Gene frequencies for each HLA allele were calculated from antigen or allele frequencies utilizing the binomial distribution formulae $gf=1-(\text{SQRT}(1-af))$ (see, e.g., Sidney *et al.*, *Human Immunol.* 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies were calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [$af=1-(1-Cgf)^2$].

Where frequency data was not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies was assumed. To obtain total potential supertype population coverage no linkage disequilibrium was assumed, and only alleles confirmed to belong to each of the supertypes were included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations were made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1-A)). Confirmed members of the A3-like supertype are A3, A11, A31, A*3301, and A*6801. Although the A3-like supertype may also include A34, A66, and A*7401, these alleles were not included in overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially also B*1401, B*3504-06, B*4201, and B*5602).

Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups (see Table XXI). Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%. An analogous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes.

Summary of candidate HLA class I and class II epitopes

In summary, on the basis of the data presented in the above examples, 26 CTL candidate peptide epitopes derived from conserved regions of the HCV virus have been

identified (Table XXXVIa). These include twelve HLA-A2 supermotif-bearing epitopes, eight HLA-A3 supermotif-bearing epitopes, and one HLA-B7 supermotif-bearing epitope, each capable of binding to multiple A2-, A3-, or B7-supertype molecules, and immunogenic in HLA transgenic mice or antigenic for human PBL (with the exception of peptide 29.0035/1260.04). Additional epitopes not evaluated for immunogenicity are also included. They are an additional B7-supermotif-bearing epitope and two HLA-A1 and one HLA-A24 high-affinity binding peptides. A known HLA-A31 restricted epitope (VGIYLLPNR), which also binds HLA-A33, is also set out in Table XXXVIa and is useful in combination with other Class I or Class II epitopes.

With these 26 CTL epitopes (as disclosed herein and from the art), average population coverage, (*i.e.*, recognition of at least one HCV epitope), is predicted to be greater than 95% in each of five major ethnic populations. The potential redundancy of coverage afforded by 25 of these epitopes (the peptide 24.0086 was not included) was estimated using the game theory Monte Carlo simulation analysis, which is known in the art (see *e.g.*, Osborne, M.J. and Rubinstein, A. "A course in game theory" MIT Press, 1994). As shown in Figure 1, it is estimated that 90% of the individuals in a population comprised of the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize 2 or more of the candidate epitopes described herein.

A list of HCV-derived HTL epitopes that would be preferred for use in the design of minigene constructs or other vaccine formulations is summarized in Table XXXVIb. As shown, 9 different peptide-binding regions have been identified which bind multiple HLA-DR molecules or bind HLA-DR3. (In the case of the NS4 1914-1935 region, the longer peptide, F134.08, recognized by patients, was chosen over the shorter peptide, 1283.44. The longer peptide essentially incorporates the shorter peptide, and also binds additional DR molecules that the shorter peptide does not bind.) Three of these peptides have been recognized as dominant epitopes in HCV infected patients.

It is estimated that each of 10 common DR molecules recognizing the DR supermotif, and DR3, are covered by a minimum of 2 epitopes. Correspondingly, the total estimated population coverage represented by this panel of epitopes is in excess of 91% in each of the 5 major ethnic populations (Table XXXVII).

Example 8: Recognition Of Generation Of Endogenous Processed Antigens After Priming

This example determines that CTL induced by native or analogued peptide epitopes identified and selected as described in Examples 1-6 recognize endogenously synthesized, *i.e.*, native antigens.

Effector cells isolated from transgenic mice that are immunized with peptide epitopes as in Example 3, for example HLA-A2 supermotif-bearing epitopes, are re-stimulated *in vitro* using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on ⁵¹Cr labeled Jurkat-A2.1/K^b target cells in the absence or presence of peptide, and also tested on ⁵¹Cr labeled target cells bearing the endogenously synthesized antigen, *i.e.* cells that are stably transfected with HCV expression vectors.

The result will demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized HCV antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that is being evaluated. In addition to HLA-A*0201/K^b transgenic mice, several other transgenic mouse models including mice with human A11, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (*e.g.*, transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.

Example 9: Activity Of CTL-HTL Conjugated Epitopes In Transgenic Mice

This example illustrates the induction of CTLs and HTLs in transgenic mice by use of an HCV CTL/HTL peptide conjugate whereby the vaccine composition comprises peptides administered to an HCV-infected patient or an individual at risk for HCV. The peptide composition can comprise multiple CTL and/or HTL epitopes. This analysis demonstrates enhanced immunogenicity that can be achieved by inclusion of one or more HTL epitopes in a vaccine composition. Such a peptide composition can comprise a lipidated HTL epitope conjugated to a preferred CTL epitope containing, for example, at least one CTL epitope selected from Table XXVI-XXIX, or an analog of that epitope. The HTL epitope is, for example, selected from Table XXXII.

Lipopeptide preparation: Lipopeptides are prepared by coupling the appropriate fatty acid to the amino terminus of the resin bound peptide. A typical procedure is as

follows: A dichloromethane solution of a four-fold excess of a pre-formed symmetrical anhydride of the appropriate fatty acid is added to the resin and the mixture is allowed to react for two hours. The resin is washed with dichloromethane and dried. The resin is then treated with trifluoroacetic acid in the presence of appropriate scavengers [e.g. 5%
5 (v/v) water] for 60 minutes at 20°C. After evaporation of excess trifluoroacetic acid, the crude peptide is washed with diethyl ether, dissolved in methanol and precipitated by the addition of water. The peptide is collected by filtration and dried.

Immunization procedures: Immunization of transgenic mice is performed as described (Alexander *et al.*, *J. Immunol.* 159:4753-4761, 1997). For example, A2/K^b
10 mice, which are transgenic for the human HLA A2.1 allele and are useful for the assessment of the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, are primed subcutaneously (base of the tail) with 0.1 ml of peptide conjugate formulated in saline, or DMSO/saline. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS-activated
15 lymphoblasts coated with peptide.

Cell lines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/K^b chimeric gene (e.g., Vitiello *et al.*, *J. Exp. Med.* 173:1007, 1991)

In vitro CTL activation: One week after priming, spleen cells (30x10⁶ cells/flask)
20 are co-cultured at 37°C with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10x10⁶ cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.

Assay for cytotoxic activity: Target cells (1.0 to 1.5x10⁶) are incubated at 37°C in the presence of 200 µl of ⁵¹Cr. After 60 minutes, cells are washed three times and
25 resuspended in R10 medium. Peptide is added where required at a concentration of 1 µg/ml. For the assay, 10⁴ ⁵¹Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 µl) in U-bottom 96-well plates. After a 6 hour incubation period at 37°C, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent
30 specific lysis is determined by the formula: percent specific release = 100 x (experimental release - spontaneous release)/(maximum release - spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % ⁵¹Cr release data is expressed as lytic units/10⁶ cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a 6

hour ^{51}Cr release assay. To obtain specific lytic units/ 10^6 , the lytic units/ 10^6 obtained in the absence of peptide is subtracted from the lytic units/ 10^6 obtained in the presence of peptide. For example, if 30% ^{51}Cr release is obtained at the effector (E): target (T) ratio of 50:1 (i.e., 5×10^5 effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5×10^4 effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: $[(1/50,000)-(1/500,000)] \times 10^6 = 18 \text{ LU}$.

The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTL/HTL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using the CTL epitope as outlined in Example 3. Analyses similar to this may be performed to evaluate the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures it is found that a CTL response is induced, and concomitantly that an HTL response is induced upon administration of such compositions.

15

Example 10. Selection of CTL and HTL epitopes for inclusion in an HCV-specific vaccine.

This example illustrates the procedure for the selection of peptide epitopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or may be single and/or polyepitopic peptides.

Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For example, vaccine can include 3-4 epitopes that come from at least one HCV antigen region. Epitopes from one region can be used in combination with epitopes from one or more additional HCV antigen regions. Analogs of epitopes can also be selected for inclusion in the vaccine.

Epitopes are often selected that have a binding affinity of an IC_{50} of 500 nM or less for an HLA class I molecule, or for class II, an IC_{50} of 1000 nM or less.

Sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. For example, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage.

When creating a polyepitopic compositions, *e.g.* a minigene, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same, as those employed when selecting a peptide comprising nested epitopes. Additionally, however, upon

5 determination of the nucleic acid sequence to be provided as a minigene, the peptide sequence encoded thereby is analyzed to determine whether any "junctional epitopes" have been created. A junctional epitope is a potential HLA binding epitope, as predicted, *e.g.*, by motif analysis. Junctional epitopes are generally to be avoided because the recipient may bind to an HLA molecule and generate an immune response to that epitope,

10 which is not present in a native protein sequence.

Peptide epitopes for inclusion in vaccine compositions are, for example, selected from those listed in Tables XXVI-XXIX and Table XXXII. A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude of an immune response that clears an acute HCV infection.

Example 11: Construction of Minigene Multi-Epitope DNA Plasmids

This example provides guidance for the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of CTL and/or HTL epitopes or epitope analogs as described herein. Examples of the construction and evaluation of expression plasmids are described, for example, in co-pending U.S.S.N. 09/311,784 filed 5/13/99. An example of such a plasmid for the expression of HCV epitopes is shown in Figure 2, which illustrates the orientation of HCV peptide epitopes in a minigene construct.

25 A minigene expression plasmid may include multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes (Figure 2). Preferred epitopes are identified, for example, in Tables XXVI-XXIX and XXXII. HLA class I supermotif or
30 motif-bearing peptide epitopes derived from multiple HCV antigens, *e.g.*, the core, NS4, NS3, NS5, NS1/E2, are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from multiple HCV antigens to provide broad population coverage, *i.e.* both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for

inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.

This example illustrates the methods to be used for construction of such a minigene-bearing expression plasmid. Other expression vectors that may be used for 5 minigene compositions are available and known to those of skill in the art.

The minigene DNA plasmid contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the 10 pcDNA 3.1 Myc-His vector.

Overlapping oligonucleotides, for example eight oligonucleotides, averaging approximately 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final 15 multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95°C for 15 sec, annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec, and 72°C for 1 min.

For the first PCR reaction, 5 µg of each of two oligonucleotides, *i.e.*, an amplification primer pair, are annealed and extended: Oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 µl reactions containing *Pfu* polymerase buffer (1x= 10 mM KCL, 10 mM (NH₄)₂SO₄, 20 mM Tris-chloride, pH 8.75, 2 mM MgSO₄, 0.1% Triton X-100, 100 µg/ml BSA), 0.25 mM each dNTP, and 2.5 U of *Pfu* polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product for 25 additional cycles. The full-length product is gel-purified and cloned into pCR-blunt 25 (Invitrogen) and individual clones are screened by sequencing.

Example 12. The plasmid construct and the degree to which it induces immunogenicity.

The degree to which the plasmid construct prepared using the methodology outlined in Example 11 is able to induce immunogenicity is evaluated through *in vivo*

injections into mice and subsequent *in vitro* assessment of CTL and HTL activity, which are analysed using cytotoxicity and proliferation assays, respectively, as detailed *e.g.*, in U.S.S.N. 09/311,784 filed 5/13/99 and Alexander *et al.*, *Immunity* 1:751-761, 1994. For example, to assess the capacity of a pMin minigene construct that contains HLA-A2

5 supermotif epitopes to induce CTLs *in vivo*, HLA-A2.1/K^b transgenic mice are immunized intramuscularly with 100 µg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.

10 Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a ⁵¹Cr release assay. The results indicate the magnitude of the CTL response directed against the A3-restricted epitope, thus indicating the *in vivo* immunogenicity of the minigene vaccine and
15 polyepitopic vaccine. It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or supermotif epitopes.

20 To assess the capacity of a class II epitope encoding minigene to induce HTLs *in vivo*, I-A^b restricted mice, for example, are immunized intramuscularly with 100 µg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant.

25 CD4+ T cells, *i.e.* HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a ³H-thymidine incorporation proliferation assay, (*see, e.g.*, Alexander *et al.* *Immunity* 1:751-761, 1994). the results indicate the magnitude of the HTL response , thus demonstrating the *in vivo* immunogenicity of the minigene.

30 Alternatively, plasmid constructs can be evaluated *in vitro* by testing for epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines "antigenicity" and allows the use of human APC. The assay determines the ability of the epitope to be presented by the

APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts *et al.*, *J. Immunol.* 156:683-692, 1996; Demotz *et al.*, *Nature* 342:682-684, 1989); or the number of peptide-

- 5 HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by infected or transfected target cells, and then determining the concentration of peptide necessary to obtain equivalent levels of lysis or lymphokine release (see, e.g., Kageyama *et al.*, *J. Immunol.* 154:567-576, 1995).

10 **Example 13: Peptide Composition for Prophylactic Uses**

Vaccine compositions of the present invention are used to prevent HCV infection in persons who are at risk for such infection. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in Examples 9 and/or 10, which are also selected to target 15 greater than 80% of the population, is administered to individuals at risk for HCV infection. The composition is provided as a single lipidated polypeptide that encompasses multiple epitopes. The vaccine is administered in an aqueous carrier comprised of Freunds Incomplete Adjuvant. The dose of peptide for the initial immunization is from about 1 to about 50,000 µg, generally 100-5,000 µg, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks 20 followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against HCV infection.

25 Alternatively, the polyepitopic peptide composition can be administered as a nucleic acid in accordance with methodologies known in the art and disclosed herein.

Example 14: Polyepitopic Vaccine Compositions Derived from Native HCV Sequences

A native HCV polyprotein sequence is screened, preferably using computer 30 algorithms defined for each class I and/or class II supermotif or motif, to identify “relatively short” regions of the polyprotein that comprise multiple epitopes and is preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct, even overlapping, epitopes is selected and used to generate a minigene construct. The construct is engineered to express the peptide, which

corresponds to the native protein sequence. The "relatively short" peptide is generally less than 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has
5 maximal number of epitopes contained within the sequence, *i.e.*, it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping (*i.e.*, frame shifted relative to one another). For example, with frame shifted overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic
10 purposes.

The vaccine composition will preferably include, for example, three CTL epitopes and at least one HTL epitope from an HCV antigen. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the
15 epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.

The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune
20 response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent analogs) directs the immune response to multiple peptide sequences that are actually present in native HCV antigens thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of
25 scale when producing nucleic acid vaccine compositions.

Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.

30 Example 15. Polyepitopic Vaccine Compositions Directed To Multiple Diseases

The HCV peptide epitopes of the present invention are used in conjunction with peptide epitopes from target antigens related to one or more other diseases, to create a vaccine composition that is useful for the prevention or treatment of HCV as well as the

one or more other disease(s). Examples of the other diseases include, but are not limited to, HIV, and HBV.

For example, a polyepitopic peptide composition comprising multiple CTL and HTL epitopes that target greater than 98% of the population may be created for 5 administration to individuals at risk for both HCV and HIV infection. The composition can be provided as a single polypeptide that incorporates the multiple epitopes from the various disease-associated sources, or can be administered as a composition comprising one or more discrete epitopes.

10 **Example 16. Use of peptides to evaluate an immune response**

Peptides of the invention may be used to analyze an immune response for the presence of specific CTL or HTL populations directed to a prostate cancer-associated antigen. Such an analysis may be performed using multimeric complexes as described, e.g., by Ogg *et al.*, *Science* 279:2103-2106, 1998 and Greten *et al.*, *Proc. Natl. Acad. Sci. USA* 95:7568-7573, 1998. In the following example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.

In this example, highly sensitive human leukocyte antigen tetrameric complexes (“tetramers”) are used for a cross-sectional analysis of, for example, HCV HLA-A*0201-specific CTL frequencies from HLA A*0201-positive individuals at different stages of disease or following immunization using an HCV peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey *et al.*, *N. Engl. J. Med.* 337:1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and β2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, β2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5’triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer-phycoerythrin.

For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300g for 5 minutes and resuspended in 50 µl of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated 5 with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive uninfected donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that 10 contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the HCV epitope, and thus the stage of HCV infection or exposure to a vaccine that elicits a protective or therapeutic response.

Example 17: Use of Peptide Epitopes to Evaluate Recall Responses

15 The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from infection, who are chronically infected with HCV, or who have been vaccinated with an HCV vaccine.

20 For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any HCV vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that are preferably highly conserved and, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.

25 PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, MO), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2mM), penicillin (50U/ml), streptomycin (50 µg/ml), and Hepes (10mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using 30 microculture formats. A synthetic peptide comprising an epitope of the invention is added at 10 µg/ml to each well and HBV core 128-140 epitope is added at 1 µg/ml to each well as a source of T cell help during the first week of stimulation.

In the microculture format, 4 x 10⁵ PBMC are stimulated with peptide in 8 replicate cultures in 96-well round bottom plate in 100 µl/well of complete RPMI. On

days 3 and 10, 100 ml of complete RPMI and 20 U/ml final concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rIL-2 and 10^5 irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific ^{51}Cr release, based on comparison with uninfected control subjects as previously described (Rehermann, *et al.*, *Nature Med.* 2:1104,1108, 1996; Rehermann *et al.*, *J. Clin. Invest.* 97:1655-1665, 1996; and Rehermann *et al.* *J. Clin. Invest.* 98:1432-1440, 1996).

Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, *et al.* *J. Virol.* 66:2670-2678, 1992).

Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of the invention at 10 μM , and labeled with 100 μCi of ^{51}Cr (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS.

Cytolytic activity is determined in a standard 4-h, split well ^{51}Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: $100 \times [(\text{experimental release-spontaneous release})/\text{maximum release-spontaneous release}]]$. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, MO). Spontaneous release is <25% of maximum release for all experiments.

The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to HCV or an HCV vaccine.

The class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5×10^5 cells/well and are stimulated with 10 $\mu\text{g}/\text{ml}$ synthetic peptide, whole antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing 10U/ml IL-2. Two days later, 1 μCi ^3H -thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for ^3H -thymidine

incorporation. Antigen-specific T cell proliferation is calculated as the ratio of ^3H -thymidine incorporation in the presence of antigen divided by the ^3H -thymidine incorporation in the absence of antigen.

5 Example 18: Induction Of Specific CTL Response In Humans

A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo-controlled trial. Such a trial is designed, for example, as follows:

10 A total of about 27 subjects are enrolled and divided into 3 groups:

Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 μg of peptide composition;

Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 μg peptide composition;

15 Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 μg of peptide composition.

After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage.

The endpoints measured in this study relate to the safety and tolerability of the 20 peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.

Safety: The incidence of adverse events is monitored in the placebo and drug 25 treatment group and assessed in terms of degree and reversibility.

Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

30 The vaccine is found to be both safe and efficacious.

Example 19: Phase II Trials In Patients Infected With HCV

Phase II trials are performed to study the effect of administering the CTL-HTL peptide compositions to patients having chronic HCV infection. The main objectives of

the trials are to determine an effective dose and regimen for inducing CTLs in chronically infected HCV patients, to establish the safety of inducing a CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of chronically infected CTL patients, as manifested by a transient flare in alanine

- 5 aminotransferase (ALT), normalization of ALT, and reduction in HCV DNA. Such a study is designed, for example, as follows:

The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The 10 dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded.

There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group range 15 in age from 21-65, include both males and females, and represent diverse ethnic backgrounds. All of them are infected with HCV for over five years and are HIV, HBV and delta hepatitis virus (HDV) negative, but have positive levels of HCV antigen.

The magnitude and incidence of ALT flares and the levels of HCV DNA in the blood are monitored to assess the effects of administering the peptide compositions. The 20 levels of HCV DNA in the blood are an indirect indication of the progress of treatment. The vaccine composition is found to be both safe and efficacious in the treatment of chronic HCV infection.

Example 20. Induction of CTL Responses Using a Prime Boost Protocol

25 A prime boost protocol can also be used for the administration of the vaccine to humans. Such a vaccine regimen may include an initial administration of, for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant.

For example, the initial immunization may be performed using an expression 30 vector, such as that constructed in Example 11, in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 µg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is administered. The booster can, e.g., be recombinant fowlpox virus administered at a dose of $5\text{-}10^7$ to $5\text{x}10^9$ pfu. An alternative

recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples will be obtained before immunization as well as at intervals following administration of the 5 initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

Analysis of the results will indicate that a magnitude of response sufficient to 10 achieve protective immunity or to treat HCV infection infection is generated.

Example 21. Administration of Vaccine Compositions Using Dendritic Cells

Vaccines comprising peptide epitopes of the invention may be administered using dendritic cells. In this example, the peptide-pulsed dendritic cells can be administered to 15 a patient to stimulate a CTL response *in vivo*. In this method dendritic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses *in vivo*. The induced CTL and HTL then destroy (CTL) or facilitate destruction (HTL) of the specific target HCV-infected cells that bear the proteins from which the 20 epitopes in the vaccine are derived.

Alternatively, *Ex vivo* CTL or HTL responses to a particular tumor-associated antigen can be induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells, such as dendritic cells, and the appropriate immunogenic peptides. After an 25 appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, *i.e.*, tumor cells.

30 **Example 22: Alternative Method of Identifying Motif-Bearing Peptides**

Another way of identifying motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing, have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule.

These cells can then be infected with a pathogenic organism, *e.g.*, HCV, or transfected with nucleic acids that express the antigen of interest. Thereafter, peptides produced by endogenous antigen processing of peptides produced consequent to infection (or as a result of transfection) will bind be displayed on the cell surface. The peptides are then 5 eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, *e.g.*, by mass spectral analysis (*e.g.*, Kubo *et al.*, *J. Immunol.* 152:3913, 1994). Because, as disclosed herein, the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an alternative modality for obtaining 10 the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell.

Alternatively, cell lines that do not express any endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells may then be used as described, *i.e.*, they may be infected with a pathogenic organism or transfected with nucleic acid encoding an antigen of interest to isolate peptides 15 corresponding to the pathogen or antigen of interest that have been presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell.

As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each 20 HLA allele expressed. Moreover, one of skill would also recognize that means other than infection or transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.

The above examples are provided to illustrate the invention but not to limit its scope. For example, the human terminology for the Major Histocompatibility Complex, 25 namely HLA, is used throughout this document. It is to be appreciated that these principles can be extended to other species as well. Thus, other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent application cited herein are hereby incorporated by reference for all purposes.

TABLE I

SUPERMOTIFS	POSITION 2 (Primary Anchor)	POSITION 3 (Primary Anchor)	POSITION C Terminus (Primary Anchor)
A1	T, I, L, V, M, S		F, W, Y
A2	L, I, V, M, A, T, Q		I, V, M, A, T, L
A3	V, S, M, A, T, L, I		R, K
A24	Y, F, W, I, V, L, M, T		F, I, Y, W, L, M
B7	P		V, I, L, F, M, W, Y, A
B27	R, H, K		F, Y, L, W, M, I, V, A
B44	E, D		F, W, L, I, M, V, A
B58	A, T, S		F, W, Y, L, I, V, M, A
B62	Q, L, I, V, M, P		F, W, Y, M, I, V, L, A
<hr/>			
MOTIFS			
A1	T, S, M		Y
A1		D, E, A, S	Y
A2.1	L, M, V, Q, I, A, T		V, L, I, M, A, T
A3	L, M, V, I, S, A, T, F, C, G, D		K, Y, R, H, F, A
A11	V, T, M, L, I, S, A, G, N, C, D, F		K, R, Y, H
A24	Y, F, W, M		F, L, I, W
A*3101	M, V, T, A, L, I, S		R, K
A*3301	M, V, A, L, F, I, S, T		R, K
A*6801	A, V, T, M, S, L, I		R, K
B*0702	P		L, M, F, W, Y, A, I, V
B*3501	P		L, M, F, W, Y, I, V, A
B51	P		L, I, V, F, W, Y, A, M
B*5301	P		I, M, F, W, Y, A, L, V
B*5401	P		A, T, I, V, L, M, F, W, Y

Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

TABLE II

		POSITION								
		1	2	3	4	5	6	7	8	C-terminus
MOTIFS										
A1 9-mer	preferred	G,F,Y,W		1°Anchor S,T,M	D,E,A	Y,F,W		P	D,E,Q,N	Y,F,W
	deleterious	D,E		R,H,K,L,I,V M,P	A	G	A			1°Anchor Y
A1 9-mer	preferred	G,R,H,K		A,S,T,C,L,I V,M, D,E,A,S	1°Anchor D,E,A,S	G,S,T,C		A,S,T,C	L,I,V,M	D,E
	deleterious	A		R,H,K,D,E, P,Y,F,W	D,E	P,Q,N	R,H,K	P,G	G,P	

		POSITION									
		1	2	3	4	5	6	7	8	9	C-terminus
A1 10-mer	preferred	Y,F,W	S,T,M	1°Anchor D,E,A,Q,N	A	Y,F,W,Q,N		P,A,S,T,C	G,D,E	P	or C-terminus Y
	deleterious	G,P	V,M	R,H,K,G,L,I	D,E	R,H,K	Q,N,A	R,H,K,Y,F, W	R,H,K	A	1°Anchor Y
A1 10-mer	preferred	Y,F,W	S,T,C,L,I,V M	1°Anchor D,E,A,S	A	Y,F,W		P,G	G	Y,F,W	1°Anchor Y
	deleterious	R,H,K	R,H,K,D,E, P,Y,F,W		P	G		P,R,H,K	Q,N		
A2.1 9-mer	preferred	Y,F,W	L,M,I,V,Q, A,T	1°Anchor Y,F,W	S,T,C	Y,F,W		A	P	1°Anchor V,L,I,M,A,T	
	deleterious	D,E,P		D,E,R,K,H			R,K,H	D,E,R,K,H			
A2.1 10-mer	preferred	A,Y,F,W	L,M,I,V,Q, A,T	1°Anchor L,V,I,M	G			F,Y,W, L,V,I,M		1°Anchor V,L,I,M,A,T	
	deleterious	D,E,P		D,E	R,K,H,A	P		R,K,H	D,E,R, K,H	R,K,H	

		POSITION									
		1	2	3	4	5	6	7	8	9	C-terminus
A3	preferred	R,H,K	1°Anchor L,M,V,I,S, A,T,F,C,G D	Y,F,W	P,R,H,K,Y, F,W	A	Y,F,W		P		C-terminus 1°Anchor K,Y,R,H,F,A
	deleterious	D,E,P			D,E						
A11	preferred	A	1°Anchor V,T,L,M,I, S,A,G,N,C, D,F	Y,F,W	Y,FW	A	Y,FW	Y,FW	P	1°Anchor K,Y,H	
	deleterious	D,E,P						A	G		
A24 9-mer	preferred	Y,F,W,R,H,K	1°Anchor Y,F,W,M		S,T,C			Y,F,W	Y,F,W	Y,F,W	1°Anchor F,I,W
	deleterious	D,E,G	D,E	G	Q,N,P	D,E,R,H,K	G		A,Q,N		
A24 10-mer	preferred		1°Anchor Y,F,W,M	P	Y,F,W,P			P			1°Anchor F,L,I,W
	deleterious		G,D,E	Q,N	R,H,K	D,E	A	Q,N	D,E,A		
A3101	preferred	R,H,K	1°Anchor M,V,T,A,L, I,S	Y,F,W	P		Y,F,W	Y,F,W	A,P	1°Anchor R,K	
	deleterious	D,E,P	D,E	A,D,E	D,E	D,E	D,E	D,E	D,E		

		POSITION
A3301 preferred	1	1 2 3 4 5 6 7 8
	deleterious	Y,F,W,S,T,C Y,F,W M,V,A,L,F, I,S,T G,P D,E
A6801 preferred	1	1 2 3 4 5 6 7 8
	deleterious	Y,F,W,L,I, V,M Y,F,W P R,K A
B0702 preferred	1	1 2 3 4 5 6 7 8
	deleterious	R,H,K,F,W,Y R,H,K R,H,K R,H,K R,H,K D,E D,E D,E Q,N D,E
B3501 preferred	1	1 2 3 4 5 6 7 8
	deleterious	F,W,Y,L,I,V,M F,W,Y P G G

POSITION									
	1	2	3	4	5	6	7	8	9
B51	preferred	L,I,V,M,F,W,Y P	^{1°} Anchor F,W,Y	S,T,C	F,W,Y	G	F,W,Y	C-terminus ^{1°} Anchor L,I,V,F,W, Y,A,M	C-terminus or C-terminus ^{1°} Anchor
deleterious		A,G,P,D,E,R,H,K, S,T,C		D,E	G	D,E,Q,N	G,D,E		
B5301	preferred	L,I,V,M,F,W,Y P	^{1°} Anchor F,W,Y	S,T,C	F,W,Y	G	L,I,V,M,F, W,Y	F,W,Y	^{1°} Anchor I,M,F,W,Y, A,L,V
deleterious		A,G,P,Q,N				G	R,H,K,Q,N	D,E	
B5401	preferred	F,W,Y P	^{1°} Anchor F,W,Y,L,I,V M		L,I,V,M		A,L,I,V,M	F,W,Y,A,P	^{1°} Anchor A,T,I,V,L, M,F,W,Y
deleterious		G,P,Q,N,D,E		G,D,E,S,T,C	R,H,K,D,E	D,E	Q,N,D,G,E	D,E	

Italicized residues indicate less preferred or "tolerated" residues.
 The information in Table II is specific for 9-mers unless otherwise specified.

Table III

MOTIFS	<u>1° anchor 1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6° anchor 6</u>	<u>7</u>	<u>8</u>	<u>9</u>
DR4 preferred	F, M, Y, L, I, <i>V, W</i>	M	T		I	V, S, T, C, P, A, <i>L, I, M</i>	M, H		M, H
deleterious				W,		R,			W, D, E
DR1 preferred	M, F, L, I, V, <i>W, Y</i>		C	C, H	F, D	P, A, M, Q <i>L, I, C</i>	V, M, A, T, S, P, <i>L, I, C</i>	M,	A, V, M
deleterious					A		I, V, M, S, A, C, <i>T, P, L</i>	M	I, V
DR7 preferred	M, F, L, I, V, <i>W, Y</i>	M	W				G, R, D	N	G
deleterious			C,		G,				
DR Supermotif	M, F, L, I, V, <i>W, Y</i>					V, M, S, T, A, C, <i>P, L, I</i>			
DR3 MOTIFS		<u>1° anchor 1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5° anchor 4</u>	<u>5</u>	<u>6° anchor 6</u>	
motif a preferred	I, I, V, M, F, <i>V</i>						D		
motif b preferred	L, I, V, M, F, <i>A, Y</i>					D, N, Q, E, <i>S, T</i>	K, R, H		

Italicized residues indicate less preferred or "tolerated" residues.

Table IV: HLA Class I Standard Peptide Binding Affinity.

ALLEL	STANDARD PEPTIDE	SEQUENCE (SEQ ID NO.)	STANDARD BINDING AFFINITY (nM)
A*0101	944.02	YLEPAIAKY	25
A*0201	941.01	FLPSDYFPSV	5.0
A*0202	941.01	FLPSDYFPSV	4.3
A*0203	941.01	FLPSDYFPSV	10
A*0205	941.01	FLPSDYFPSV	4.3
A*0206	941.01	FLPSDYFPSV	3.7
A*0207	941.01	FLPSDYFPSV	23
A*6802	1072.34	YVIKVSARV	8.0
A*0301	941.12	KVFPYALINK	11
A*1101	940.06	AVDLYHFLK	6.0
A*3101	941.12	KVFPYALINK	18
A*3301	1083.02	STLPETYVVRR	29
A*6801	941.12	KVFPYALINK	8.0
A*2402	979.02	AYIDNYNKF	12
B*0702	1075.23	APRTLVYLL	5.5
B*3501	1021.05	FPPKYAAAF	7.2
B51	1021.05	FPPKYAAAF	5.5
B*5301	1021.05	FPPKYAAAF	9.3
B*5401	1021.05	FPPKYAAAF	10

Table V. HLA Class II Standard Peptide Binding Affinity.

Allele	Nomenclature	Standard Peptide	Sequence (SEQ ID NO:)	Binding Affinity (nM)
DRB1*0101	DR1	515.01	PKYVKQNTLKLAT	5.0
DRB1*0301	DR3	829.02	YKTIAFDEEARR	300
DRB1*0401	DR4w4	515.01	PKYVKQNTLKLAT	45
DRB1*0404	DR4w14	717.01	YARFQSQTTLKQKT	50
DRB1*0405	DR4w15	717.01	YARFQSQTTLKQKT	38
DRB1*0701	DR7	553.01	QYIKANSKFIGITE	25
DRB1*0802	DR8w2	553.01	QYIKANSKFIGITE	49
DRB1*0803	DR8w3	553.01	QYIKANSKFIGITE	1600
DRB1*0901	DR9	553.01	QYIKANSKFIGITE	75
DRB1*1101	DR5w11	553.01	QYIKANSKFIGITE	20
DRB1*1201	DR5w12	1200.05	EALIHQLKINPYVLS	298
DRB1*1302	DR6w19	650.22	QYIKANAKFIGITE	3.5
DRB1*1501	DR2w2 β 1	507.02	GRTQDENPVVHFFKNIV TPRTPPP	9.1
DRB3*0101	DR52a	511	NGQIGNDPNRDIL	470
DRB4*0101	DRw53	717.01	YARFQSQTTLKQKT	58
DRB5*0101	DR2w2 β 2	553.01	QYIKANSKFIGITE	20

Table VI

HLA-supertype	Verified ^a	Allelle-specific HLA-supertype members	Predicted ^b
A1	A*0101, A*2501, A*2601, A*2602, A*3201		A*0102, A*2604, A*3601, A*4301, A*8001
A2	A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*0209, A*0214, A*6802, A*6901		A*0208, A*0210, A*0211, A*0212, A*0213
A3	A*0301, A*1101, A*3101, A*3301, A*6801		A*0302, A*1102, A*2603, A*3302, A*3303, A*3401, A*3402, A*6601, A*6602, A*7401
A24	A*2301, A*2402, A*3001		A*2403, A*2404, A*3002, A*5003
B7	B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503, B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*3101, B*5102, B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601, B*5602, B*6701, B*7801		B*1511, B*4201, B*5901
B27	B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706, B*3801, B*3901, B*3902, B*7301		B*2701, B*2707, B*2708, B*3802, B*3903, B*3904, B*3905, B*4801, B*4802, B*1510, B*1518, B*1503
B44	B*1801, B*1802, B*3701, B*4402, B*4403, B*4404, B*4001, B*4002, B*4006		B*4101, B*4501, B*4701, B*4901, B*5001
B58	B*5701, B*5702, B*5801, B*5802, B*1516, B*1517		
B62	B*1501, B*1502, B*1513, B*5201		B*1301, B*1302, B*1504, B*1505, B*1506, B*1507, B*1515, B*1520, B*1521, B*1512, B*1514, B*1510

- a. Verified alleles include alleles whose specificity has been determined by pool sequencing analysis, peptide binding assays, or by analysis of the sequences of CTL epitopes.
- b. Predicted alleles are alleles whose specificity is predicted on the basis of B and F pocket structure to overlap with the supertype specificity.

Table VII

HCV_A01_Super_Motif_With_Binding_Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'0101
ATGNGPQCSF	185	10	13	93	
ATLGFGRAY	1285	8	14	100	
AVQWMNRLAF	1917	11	14	100	
CTCROSSLY	1128	9	11	79	
CTRGVAKAVDF	1190	11	11	79	0.3700
CTYWNSTGF	555	9	11	79	
CYTGTIVDF	1462	8	12	88	
DLEVTSIW	1857	9	12	86	
ETTMRSPIF	1207	9	12	88	
FSYDTRCF	2870	0	11	79	
FTEAMTRY	2792	8	14	100	
FTGLTIDAHF	1567	11	13	93	
GIPGCCDLEF	1552	11	12	86	
GLSAFSLISY	2921	10	11	79	0.0028
GLTHIDAHF	1569	9	13	93	
GSSYGFQY	2841	8	11	79	
GFFPINAY	2063	8	11	78	
GVAQQLVAF	1863	9	12	86	
GVAKAVDF	1183	8	11	79	
GVLAALAY	1870	9	12	88	
GVVICEMALY	2818	11	14	100	
GYRALEDWRY	154	11	12	86	
H11KQHDDVY	696	11	11	79	
H1MAMFISQAY	1769	11	13	93	
IWGFGEGQANW	1910	11	11	79	
IMAKHEVF	2581	0	12	86	
ITYSTYGF	1296	9	12	86	
IVDVIQMLY	701	8	12	88	
KSTKVPAAY	1241	9	12	86	
KVDLTLQDF	121	10	12	86	
LIEANLLW	2235	8	12	86	
LIMTKSW	414	8	11	79	
LLAPITAY	1030	8	14	100	
LLPNLGGW	1812	9	12	86	
LLSPFGSNSPW	97	11	11	79	
LSAFSLHSY	2922	9	11	79	0.8100
LSPLGSRPSW	98	10	11	79	
LTGFGADQAY	126	11	12	86	
LTIDAHF	1570	0	13	93	
LVDLIAGY	1853	9	11	79	
MILMTHFF	2878	8	12	86	
NIVDWHY	700	9	12	86	
NLPQCSSEIF	168	10	13	93	0.0980
NTCYTOIVDF	1400	10	12	86	
NTFRRPODKF	14	11	11	78	

SUBSTITUTE SHEET (RULE 26)

HCV_A01_Super_Motif_With_Binding_Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
NYCQOLVGW	1108	0	1	79
FITSYTGKF	1295	10	1	79
PGMGSYDTRCF	2667	11	1	79
PSVATLGF	1281	9	14	100
PTLHGPTPLLY	1621	11	11	79
PVQODLEF	1954	9	12	86
PVQODLEFW	1564	10	12	86
QTVQFSCLDTF	1485	11	12	86
RHLGLSAF	2910	8	12	88
RLLAPITAY	1629	9	12	86
FMAMWDMMMNW	317	10	12	86
RMLILMTHF	2875	0	12	86
FMLMLTFF	2675	9	12	86
RVCEKMWLY	2621	9	14	100
FMLEDGMY	156	9	12	86
STKVPAAY	1242	8	12	86
SVAATLGF	1262	8	14	100
SVATLGFQAY	1262	11	14	100
TIMAKNEVF	2680	9	11	79
TUHGPTPLLY	1622	10	11	79
ILIFNLGGW	1811	10	12	86
TTIMAKNEVF	2559	10	11	79
TTMRSVPF	1208	8	12	86
TVDFLSDITF	1406	10	12	86
VDTLTQGF	122	9	12	86
VLAALAAAY	1671	8	12	86
YLEDGVNN	167	8	12	86
VLDILDAY	1052	9	11	79
WGSSYYGF	2639	8	11	79
WGSSYYGROY	2639	10	11	79
WMNRLIAF	1920	8	14	100
YSGGRQEVF	2648	9	11	79
YTMDDQDGVW	1106	11	11	79
YGQLGSWV	276	10	12	86
		2		

Table VIII

HCV A01 Super Moll with Building Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'6802
93	13	1904	MILRHHV					
86	12	1673	MLAAYCL					
79	11	1250	AQGKYKVL					
79	11	1250	AQGKYKLV					
79	11	1250	AQGKYKVL					
79	11	1250	AQGKYKVL					
79	11	147	AARALAHGV					
79	11	147	AARALAHGVY					
79	11	147	AARALAHGVY					
100	14	1264	ATLGFQGA					
93	13	1264	ATLGFQAYM					
86	12	1187	AVCTRGV					
79	11	1187	AVCTRGVA					
79	11	1187	AVCTRGVA					
93	13	1890	AVSPGAL	0.0014				
86	12	1890	AVSPGALV	0.0035				
86	12	1880	AVSPGALV					
100	14	150	ALAHGVYV					
100	14	150	ALAHGVYVL					
86	12	1737	ALQLOTA					
86	12	688	ALSTGHL					
79	11	1696	ALVGWVCA					
79	11	1696	ALVGWVCA					
79	11	1696	ALVGWVCAW					
86	12	1602	AQAPPSSWDM					
79	11	1251	AQGKYKLY					
79	11	1251	AQGKYKVL					
86	12	77	AQPQYPWTL					
93	13	1265	ATLGFQAYM					
79	11	1354	ATPPGSVT					
79	11	1596	ATVCARAQA					
100	14	1419	AVAYYRGL					
100	14	1419	AVAYYRGLD					
79	11	1188	AVCTRGVA					
79	11	1188	AVCTRGVA					
79	11	1188	AVCTRGVAKAV					
100	14	1917	AVCTRGVAKAV					
100	14	1917	AVOMMNRLI	0.0001				
100	14	1917	AVOMMNRLIA					
93	13	1903	CAGLRRHV					
79	11	1530	CAYELTPA					
86	12	2841	CLWLGVPL					
86	12	739	CLWMMLI					
79	11	1653	CMSADLEV					

ICV A02 Super Motif with Binding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'66802
	1	79	CMSADLEW					0.0067
	1	79	CMSADLEWT	1653				
	1	79	CTCGSSDL	1653				
	1	79	CTCGSSDLV	1128				
	1	79	CTCGSSDLV	1120				
	1	79	CTCGSSDLV	1128				
	1	79	CTRGVAKA	1190				
	1	79	CTRGVAKAV	1190				
	1	79	CTWNISTGFT	555				
	1	79	CYTOVNDFSL	1462				0.0006
	1	86	DAGCANTTEL	1527				
	1	79	DAHFLSOT	1574				
	1	86	DILAGYGA	1855				
	1	79	DILAGYGA	1855				0.0002
	1	79	DILAGYGA	1855				
	1	86	DILGSVFL	279				
	1	79	DILGSVFL	279				0.0007
	1	86	DLEVWTST	1857				
	1	79	DLEVWTSTW	1657				
	1	86	DLEVWTSTW	1657				
	1	86	-DGVFRGEKM-	2617				
	1	93	-DGVFRGEKM-	2617				
	1	93	DGVRYCEKMA	13				
	1	79	DLMGYIPL	132				
	1	79	DLMGYIPL	132				
	1	79	DLMGYIPLVG	132				
	1	79	DLSDGSMST	2412				
	1	79	DLSDGSMST	2412				0.0006
	1	79	DLVNLLPA	1683				
	1	79	DLVNLLPA	1683				0.0001
	1	79	DLVNLLPAIL	1883				0.0001
	1	79	DLVNLLPAIL	1883				
	1	79	DLVVICESA	2772				
	1	86	DLYLVTRHA	1134				
	1	86	DLYLVTRADV	1134				
	1	86	DMMANWSPT	321				
	1	86	DOAETAGA	1339				
	1	86	DOAETAGARL	1339				
	1	86	DTAACGCDI	994				
	1	86	DTAACGCDII	994				
	1	86	DTLGCFGA	124				
	1	86	DTLTGCFADLM	124				
	1	93	DTMCDFDST	2673				

ICV AND SuperMol with Binding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'6802
93	13	2673	DTRCFDSTV					
93	13	2673	DTRCFDSTVI					
86	12	21	DVKFPGSGQI					
85	12	21	DVKPGGGQQV					
79	11	750	EAALENLV					
100	14	2794	EAMTRYSA					
86	12	2237	EAHLWNOEM					
93	13	1377	EIPFYGKIA					
93	13	1377	EIPFYGKAI					
100	14	2814	ELITTSCSSNW					
79	11	666	ELSPILLST					
79	11	666	ELSPILLSTT					
86	12	2245	EMAGGNITIV					
86	12	1731	EOFKOKAL					
86	12	1731	EOFKOKALGI					
86	12	1731	EOFKOKALGL					
86	12	1342	ETAGARLVL					
86	12	1342	ETAGARLW					
86	12	1342	ETAGARLWL					
86	12	1342	ETAGARLWLA					
86	12	1207	ETTMRSPV					
86	12	1207	ETTMRSPT					
86	12	1659	EVVTSTWV					
86	12	1659	EVVTSTWVL					
86	12	1659	EVVTSTWLY					
93	13	130	FAOLMGYI					
79	11	130	FAOLMGYIPL					
79	11	130	FAOLMGYIPLV					
100	14	1927	FASRGNIW					
86	12	1927	FASRGNIWSP					
100	14	1773	FISGIOYL					
100	14	1773	FISGIOYLA					
100	14	1773	FISGIOYLAGL					
79	11	1304	FUDGCSSGA					
86	12	177	FLLAISLC					
86	12	177	FLLAISCL					
93	13	728	FLLADARY					
86	12	1226	FOMWILHA					
86	12	1226	FOWAHUJAPT					
79	11	2646	FOYSPGORV					
100	14	2762	FTEAMTRYSA					
93	13	1587	FTGLTHIDA					

LICV A02 Super Moll with Binding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'6802
93	13	512	FTPSPVVV					
93	13	512	FTPSPVVGT					
93	13	512	FTSPVYGT					
79	11	684	FTTUPAIST					
79	11	684	FTTUPALSTGL					
79	11	146	GAARALAHGV					
86	12	992	GADTAACGDI					
86	12	992	GADTAACGDI					
86	12	1861	GAGVAGAL					
86	12	1861	GAGVAGALY					
86	12	1861	GAGVAGALVA					
88	12	350	GAHWGVIA					
79	11	1895	GALWGVW					
79	11	1895	GALWGVCA					
79	11	1895	GALWGVCAA					
66	12	1345	GARLVVLA					
79	11	1345	GARLVVLAT					
79	11	1345	GARLVVLATAT					
100	14	1916	GAVOWMNRL					
100	14	1916	GAVOWMNRLU					
100	14	1916	GAVOWMNRLUA					
100	14	1916	GIGTVLDOA					
100	14	1333	GIGTVLDOAET					
100	14	1776	GIOYLAGL					
100	14	1776	GIOYLAGLIST					
100	14	1776	GIOYAGLSTL					
79	11	1426	GLDVSPI					
93	13	1552	GLPWOODHL					
78	11	968	GRDOLAVA					
79	11	968	GRDOLAVAV					
100	14	1782	GSTLPGNPA					
79	11	1782	GLTLDIAHFL					
93	13	1589	GCACCCM					
93	13	13	GOVGGYLL					
79	11	2063	GTFPINAYT					
79	11	2063	GTFPINAYTT					
100	14	1335	GTVDODAET					
100	14	1335	QVAGALVA					
86	12	1663	GVCVTVHGA					
79	11	1081						

HCV_A02_Super Motif with Bladder Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'8802
BB	12	1870	GVLALAA					
BB	12	1670	GVLALAYCL					
79	11	161	GIVYATGNL	0.0001				
BB	12	45	GVRATRKT					
100	14	2619	GVRCEAM					
100	14	2619	GVRCEKMA					
100	14	2019	GVRCEKML	0.0002				
93	13	154	GVRLEDGV	0.0001				
79	11	1900	GVVCAAIL					
100	14	1234	IAPTSGKST					
100	14	1572	HIDAHFLSQT					
86	12	686	HJIONNVDV					
79	11	1719	HUYIEQDM					
03	13	1769	HMMNFISGI					
79	11	69B	IOMNDVOYL					
79	11	222	HPTGCYPCV					
66	12	2855	HTPNSMQLN					
BB	12	2855	HVPGEGBA					
79	11	1910	HVPGEQAV					
79	11	1910	HVSPTHVV					
66	12	1933	IAFASTGHNV					
100	14	1925	ILAGYGAGV	0.0430	0.0300	2.0000	0.0048	0.0450
79	11	1856	ILAGYGAGVA	0.0002				
79	11	1058	ILGGWVAA					
86	12	1816	ILGGWVAAQL					
86	12	1816	ILGGWVAAQLA					
86	12	1331	ILGGTVL					
86	12	1331	ILGGTVLDQA					
93	13	1891	ILSPQALVY					
93	13	1891	ILSPQALVYV					
93	13	1891	ILSPQALVYVW					
79	11	2591	IMAKNEVFCV					
100	14	1777	ICVLAGLST					
100	14	1777	ITWESENKV					
86	12	2250	ITWESENKVW					
86	12	2250	ITSSSNVSV					
100	14	2816	ITSSSNVSV					
100	14	2816	ITVGAATA					
86	12	909	ITWGADTA					
86	12	909	ITWGADTA					

ICV A02 Super Matrix with Domine Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'6802
79	11	1296	ITYSTYGKFL					
79	11	1296	ITYSTYGKFLA					
79	11	2613	NFPDLGV					
79	11	2613	NFPDLGVAV					0.0016
93	13	30	WGGVYL					
86	12	1738	KALGILLOT					
86	12	1738	KALGILQTA					
86	12	2625	KMALYDVW					
86	12	1734	KOKALGLL					
86	12	1734	KOKALGLLOT					
86	12	1734	KOKALGLQTA					
86	12	121	KWDTLTCGFA					
86	14	1255	KVLVLPNSV					0.0048
100	14	1255	KVLVLPNSVA					
100	14	1255	KVLVLPNSVAA					
79	11	1244	KVPMLAYAA					
86	12	1672	LAALAYCL					
79	11	1305	UDGGCGSGA					
86	12	1729	LAEDFKOKA					
86	12	1729	LAEOFKOKAL					
79	11	1657	LAGYGAKV					
79	11	1657	LAGYGAQVA					
79	11	1657	LAGYGAQVAGA					
100	14	151	LAHGIVRL					
86	12	1779	LALLSCLT					
79	11	972	LAVAVEPV					
100	14	1924	LWFASRGRNNV					
100	14	2615	LTSCSSSNV					0.0004
100	14	2815	LTSCSSNNSV					
79	11	2612	LNFPLDGV					0.0002
78	11	2612	LIALSCL					
86	12	1778	LFLFLLLADA					
86	12	1778	LFLFLLLADRV					
100	14	728	LFLFLLLADRV					
93	13	726	LFNLLGGWV					
86	12	1812	LFLFLLLADRV					
86	12	1612	LFLFLLLADRV					
93	13	728	LFLFLLLADRV					
93	13	1687	LFLFLLLADRV					
93	13	1887	LFLFLLLADRV					
83	13	36	LFLFLLLADRV					0.0025
83	13	36	LFLFLLLADRV					0.0016

ICV_A02 Signer Motif with Binding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'0208
86	12	2240	LWPOEMGGN					
83	13	1629	LLYRLGAV					
79	11	133	LMGYIPLV					
79	11	133	LNGYIPLVGA					
86	12	2761	LCOCATLV					
86	12	126	LTCGFADL					
86	12	126	LTCGFADLM					
100	14	2180	LTDPHSH					
100	14	2180	LTDPHSHTA					
86	12	1052	LIGRDKNOV					
83	13	1570	LTHIDAHFL					
83	13	2176	LTSMLTDPSHII					
79	11	2738	LTTS CGNT					
79	11	2738	LTTS CGNTL					
86	12	1591	LVAQATV					
86	12	1591	LVAQATVCA					
79	11	1853	LYDLAGIGA					
86	12	1867	LYGGVIAA					
86	12	1867	LYGGVIAAL					
86	12	1867	LYGGVIAALA					
86	12	1867	LYGGVIAALAA					
100	14	1257	LVLNPSVA					
100	14	1257	LVLNPSVAA					
100	14	1257	LVLNPSVAAAT					
100	14	1257	LVLNPSVAAATL					
79	11	1864	LVNLLPAI					
79	11	1864	LVLILPAIL					
86	12	1137	LVTTHADV					
79	11	1137	LVTTHADVI					
79	11	1137	LVTTHADVIPY					
79	11	1897	LYVGWCA					
79	11	1897	LYVGWCAA					
79	11	1897	LYVGWCAAN					
79	11	1897	LYVGWCAANL					
79	11	2773	LYVICESA					
86	12	1348	LVLATAT					
86	12	2592	MAXNEYFCV					
100	14	2179	MLTDPHSHI					
100	14	2179	MLTDPHSHIT					
100	14	2179	MMMNWSPT					
93	13	322						

HCV A02 Super Motif with Binding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'6802
93	13	1418	NAVAYYRGL					
93	13	1418	NAVAYYNGLDV					
86	12	2068	NAYTTGPCT					
86	12	1815	NLGQWVA					
86	12	1815	NLGGWVAAQI					
86	12	1815	NLTGQVAT					
93	13	1282	NLTGQVAT					
79	11	1282	NNTGVNTT					
79	11	1282	NNTGVNTT					
86	12	2249	NNTVESENKV					
86	12	700	NNDDYOL					
86	12	116	NLGKVIDT					
86	12	116	NLGKVIDT					
86	12	116	NLGKVIDT					
93	13	1888	NLPAILSPQA					
86	12	2239	NLMRQEM					
93	13	168	NLPCCSFSI					
93	13	168	NLPCCSFSI					
95	12	1460	NTCYIQTV					
93	13	416	NTNGSM					
96	12	1460	NTNIVDQDY					
93	13	14	PAILS'GA					
93	13	1669	PAILS'GA					
93	13	1669	PAILS'GA					
86	12	1889	PAILS'GALY					
86	12	1889	PAILS'GALV					
86	12	688	PALSTGLI					
86	12	688	PALSTGJHL					
79	11	2609	PARIUVFPDL					
79	11	2068	PINAYTTGPCT					
79	11	1295	PITYSTYCKFL					
93	13	2403	PLEGEFGDL					
79	11	143	PLGGAA					
79	11	143	PLGGAAARAL					
79	11	143	PLGGAAARAL					
93	13	1628	PLLYRLGA					
93	13	1628	PLLYRLGA					
79	11	2667	PMGFSTOT					
79	11	2807	POPEYDEL					
79	11	2807	POPEYDEL					
79	11	7	POPEYKNT					
93	13	7	POPEYKNT					

ICV A02 Super Motif with Blending Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'66002
86	12	109	PTDPRARSRL					
79	11	1473	PTFIEITT					
79	11	1473	PTFETIETT					
100	14	1236	PTIGSOKST					
93	13	1236	PTGSOKSTKV					
86	12	1936	PTHVVPESDA					
86	12	1936	PTHVVPESDAA					
79	11	1621	PTLHGPTPL					
79	11	1621	PTLHGPTPLL					
79	11	2070	PTLYAFMIL					
79	11	2870	PTLWARMILM					
79	11	2870	PTLWARMILMT					
78	11	2870	PTPLLYRL					
100	14	1626	PTPLLYRLGA					
93	13	1826	PTPLLYRLGAV					
93	13	1826	PVNSWLGN	0.0001	0.0001			
100	14	2957	PVNSWLGNII					
86	12	2857	PVNSWLGNIM					
79	11	2318	PWAGCPL					
93	13	508	PVYCTPSIV	0.0004	0.0004			
93	13	508	PWYCFPSIVV					
86	12	1340	QAETAGARIL					
86	12	1340	QAETAGARLV					
86	12	1340	QAETAGARLV					
86	12	1603	QAPPISWDDOM					
93	13	1595	QATVCARIAV					
79	11	1595	QATVCARAQAV					
83	13	29	QIVGQVIL					
83	13	29	QIVGGYVLL					
86	12	336	QLIPIQDA					
86	12	2184	QUPCEPEPDV					
79	11	2210	QLSAPSLSKA					
79	11	2210	QLSAPSLSKAT					
84	12	1465	OTVCGCICRT					
86	12	1229	QVAHLHAPTT					
86	12	1186	RAAVCTRGV					
79	11	1186	RAAVCTRGVA					
100	14	149	RALAGVVR					
100	14	149	RALAGVVRV					
86	12	2733	RASGVVTT					
79	11	43	RIGVRAATKT					

ILCY A01 Super Model with Binding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0208	A'802
7.9	11	2916	RHQLSASFSL	0.0280	0.0055	0.0180	0.0002	0.0032
7.9	11	2611	RUNFPDL	0.0850	0.0110	1.0000	0.0100	0.0050
7.9	11	2811	RUVPPDQGV					
7.9	11	1616	RULKPHGPT					
8.6	12	1029	RLLPITA					
8.6	12	1347	RLVVLTAA					
8.6	12	1347	RLVVLTAT					
100	14	819	RWHPCT					
8.6	12	317	RMANDDMM					
9.3	13	635	RMYVGAEVFL					
8.6	12	2243	RCENCGCN					
8.8	12	2243	RCMGGGNIT					
8.6	12	2243	RCMGGGNTRAV					
7.9	11	1284	RTGVRITIT					
7.9	11	1284	RTGVRITTT					
100	14	2621	RVCEKML					
8.6	12	2621	RVCEKMLYDV					
8.6	12	2252	RVESENIRV					
8.6	12	2252	RVESENKV					
7.9	11	2100	RVGDRMV					
8.6	12	156	RVLEGDNVA					
8.8	12	156	RVLEGDNVAT					
8.6	12	2833	RVYHLRDP					
7.9	11	1655	SADLEVIT					
7.9	11	1655	SADLEVVT					
7.8	11	2212	SAPSLKAT					
7.9	11	2212	SAPSLKATCT					
9.3	13	2207	SASQSLPSL					
100	14	175	SIFLLALL					
8.6	12	175	SIFLLALLSCL					
100	14	1470	SLDPTFTI					
8.6	12	1470	SLDPTFTIET					
7.9	11	1470	SLDPTFTIETT					
7.9	11	2826	SLSYSIGEI					
8.6	12	1051	SLTGRGGSV					
100	14	2178	SMLTOPSHI					
100	14	2178	SMLTOPSHIT					
100	14	2178	SMLTOPSHITA					
8.6	12	2163	SQCEPEFDV					
9.3	13	2209	SOLSAFSL					
7.9	11	2209	SOLSAFSKA					
7.9	11	2209	SOLSAFSKAT					

UCY A02 Super Moll with Binding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'6802
93	13	56	SQFGRGROP					
86	12	1242	STKVPAAYA					
79	11	1242	STKVPAJYAA					
100	14	1784	STLPGNPA					
79	11	1784	STLPGNPAI					
79	11	2	STMPKPORT					
86	12	1663	STWLVGGV					
86	12	1663	STWLVGGVL					
86	12	1663	STWLVGGMA					
86	12	1663	STYKGELA					
86	12	1299	SVATLQFGA					
100	14	1262	SVDCNTGV					
86	12	1455	SVDCNTGV					
86	12	1455	SVDCNTGV					
86	12	1455	TAAQDII					
86	12	1343	TGARLIV					
86	12	1343	TGARLIVL					
86	12	1343	TGARLIVLA					
78	11	1343	TGARLIVLAT					
78	11	2852	TARIHPVNSML					
79	11	2590	TMAKNEV					
93	13	1268	TGFGRAYM					
96	12	1266	TIGEAYMSKA					
79	11	1622	THGPTPL					
79	11	1622	THGPTPLL					
86	12	1011	TLPMILGGW					
79	11	686	TP'ALSTGL					
79	11	686	TP'ALSTGLI					
79	11	686	TPGPNPAI					
86	12	125	TLCCGFADLM					
86	12	125	TWARMIL					
86	12	1209	TWARMILMT					
86	12	1464	TMASPVET					
86	12	1464	TGT:CF:SL					
79	11	2871	TOTDFDSLPT					
79	11	2589	TTMAKNEV					
79	11	685	TTPALST					
79	11	685	TTPALSTGL					
79	11	685	TTMRSPVFT					
86	12	1208	TTSCGNIL					
79	11	2739						

UCV_A02_Suner_Motif with Binding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'6802
79	11	2739	TTCGNTLT					
79	11	1597	TICARAOA					
86	12	1466	TWFSLOPT					
86	12	1466	TWFSLOPT					
86	12	1466	TWFSLOPT					
100	14	1336	TVDOAET					
100	14	1336	TVDOAET					
86	12	1336	TVDOAET					
100	14	1263	VATLGFQA					
93	13	1263	VATLGFQAYM					
86	12	1230	VARLHAPT					
86	12	1440	VATDALMT					
86	12	1592	VAYOATVCA					
79	11	1592	VAYOATVCA					
100	14	1420	VAYYRGGLDV					
100	14	1420	VAYYRGGLDV					
86	12	1456	VDCNTCV					
86	12	1456	VDCNTCVT					
86	12	1456	VDCNTCVT					
86	12	1456	VDCNTCVT					
86	12	1456	VDCNTCVT					
86	12	1456	VDCNTCVT					
86	12	1456	VDCNTCVT					
86	12	1456	VDCNTCVT					
93	13	1521	VCECYDA					
79	11	1521	VCECYDAAGCA					
100	14	1337	VLDQETA					
86	12	1337	VLDQETA					
86	12	157	VLEDGVNYA					
86	12	157	VLEDGVNYAT					
100	14	1258	VLNPSVA					
100	14	1258	VLNPSVAAT					
100	14	1258	VLNPSVAATL					
79	11	2737	VLITSCGNT					
79	11	2737	VLITSCGNTL					
79	11	1852	VLVDLAGYGA					
86	12	1666	VIYGGMLA					
86	12	1866	VIYCCMLAA					
86	12	1866	VLVGGVLAAL					
86	12	1866	VLVGGVLAAL					
100	14	1256	VLVNPVY					
100	14	1256	VLVNPVY					
100	14	1256	VLVNPVY					
79	11	2800	VPEKGGRKPA					

HCY_A02 Super Motif with Binding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'6802
100	14	1918	VOMMNLIL					
100	14	1918	VOMMNLILIA					
100	14	1918	VOMMNLIAFA					
86	12	1463	VTQIVDFSL					
79	11	1138	YTRHADVI					
79	11	1138	YTRHADVIPV					
86	12	1661	VTSTWVLV					
86	12	1661	VTSTWWLYGGV					
79	11	1439	YVATDALM					
79	11	1439	YVATDALMT					
79	11	1901	YVCAALURHV					
79	11	1898	YVGWVCAA					
79	11	1898	YVGWVCAAII					
78	11	1898	YVGWVCAAIL					
86	12	1660	WTSTWML					
86	12	1660	WTSTWMLV					
86	12	1766	WAHKMRNFI					
86	12	176	WQPGTYWPL					
86	12	2873	WARMILMT					
79	11	2297	WTSTWML					
79	11	1920	WAKHMRNFI					
100	14	557	WKNINSTGFT					
79	11	1665	WVLVGGVL					
86	12	1665	WLVGGWLA					
86	12	1665	WLVGGQVLA					
86	12	1665	WLVGGVLAAL					
79	11	1249	YAOQGYKV					
79	11	1249	YAOQGYKVL					
79	11	1249	YAOQGYKVLY					
79	11	1249	YAOQGYKVLV					
79	11	136	YPLVGAPL					
100	14	1779	YLAGLSTL					
86	12	1185	YLGSSGGPL					
86	12	1165	YLGSSSGPL					
93	13	35	YLGSSSGPL					
79	11	2816	YLTRDPTT					
86	12	1580	YLVAYQAT					
86	12	1590	YLVAYQATV					
86	12	1590	YLVAYQATVA					
86	12	1136	YLVTRHADV					
79	11	1136	YLVTRHADV					
93	13	1594	YQATYCARA					

ICV_A02_SuperMotif with Blinding Information

Conservancy	Freq.	Position	Sequence	A'0201	A'0202	A'0203	A'0206	A'6802
79	11	1594	YQATVCARAQAA					
79	11	1106	YTNDDQL					
79	11	1106	YTNDDQLV					
86	12	276	YVGDLGGSV					0.0018
86	12	276	YVGDLGGSVFL					
93	13	637	YVGVENTL					0.0008
86	12	1939	YFESDAA					
86	12	1939	YFESDAAA					
86	12	1939	YFESDAANRV					
			555					

Table IX
MCY AND SMCY Methyl (With Binding Information)

Conservancy	Position	Sequence	A.0301	A.1101	A.1101,A.	A.1101,A.	A.1101,A.	A.1101,A.	A.1101,A.
Freq.									
86	12	847 AACWTRGER	0.0003	0.0140	0.0450	0.0065	0.0065	0.0018	0.0001
79	11	147 AATHALAHQWV							
79	11	1187 ANCTGRVAK							
79	11	2208 ASQIAPSLSK							
86	12	1265 ATLGFTGAYMSK							
79	11	49 ATFKTSFET							
79	11	1168 AVCTGIVAK							
86	12	866 CLPLQGYPPLR	0.0260	0.0250	0.0011	0.0004	0.0004	0.0001	0.0001
79	11	565 CTWNASTGFK	0.7600	0.7500					
79	11	2599 CVOPENCGTK	0.0008	0.0005					
79	11	2599 CYOPENCGTK	0.0011	0.0008					
100	14	1574 DAHFSQTIK	0.0003	0.0003					
93	13	2617 DLGVRCCEK	0.0003	0.0002	0.0008	0.0440	0.0002	0.0002	0.0002
79	11	1143 DVPVFNRA							
86	12	2245 EMEGGMTT							
86	12	2598 EVRCVPEK	0.0000	0.0270	0.0003	0.0005	0.4500		
100	14	728 FILLADAN							
79	11	146 GAVRALAHQVA							
100	14	1918 GAVOMAANR							
79	11	7037 GLYLPNRA							
79	11	1004 GLPVSAIR							
86	12	1131 GSQDLYLVR							
86	12	1983 GVAGALVAKF							
79	11	3036 GVGMPLNN							
79	11	45 GYRATRKTSER							
79	11	1900 GVYCAAILR							
79	11	1900 QVCAAILR							
93	13	93 33 GYMLPAN							
93	13	93 33 QVYLPPFRGPR							
79	11	1141 HADVIPVA							
79	11	1141 HADVIPVN							
79	11	1141 HADVIPVN							
100	14	1234 HAPTOSEK							
93	13	1234 HAPTOSEK							
100	14	1572 HIDNIFLSQTK							
86	12	1232 I.HAPTOSEK							
100	14	1395 ILIFCISK							
100	14	1395 ILIFCISK	0.0024	0.0005	0.0006	0.0028	0.0028		
100	14	1395 ILIFCISK	0.0250	0.0006	0.0003	0.0004	0.0010		
100	14	1395 ILIFCISK	0.0260	0.0002	0.0009	0.0006	0.0001		
79	11	2920 ISYSFGDEINR							
79	11	2222 ITTPOCVPOV							
86	12	2250 ITTVESENK							
86	12	866 KLOVPPLR							
79	11	2613 KTKANTHR							
93	13	30 KTKANTNR							
93	13	30 KTKANTNR							
86	12	2844 KTKANTNR							
86	12	10 KTKANTNR							
86	12	10 KTKANTNR							
86	12	51 KTSERSOPHR							
86	12	51 KTSERSOPHR							
86	12	1729 LACRORK							

UCYAOI Suber Mollusca (Unpublished Information)

Conservancy	Freq.	Position	Sequence	A' 0000. A	A' 0001. A	A' 0002. A	A' 0003. A	A' 0004. A	A' 0005. A	A' 0006. A	A' 0007. A	A' 0008. A	
86	12	2235	LIEALWLR LIFCHSKK LIFOHSKK LWFPOGLVH LTLLADAR LIPNDRPH LLSPRGRH	0.0008	0.0005	0.0016	0.0068	0.0008	0.0008	0.0008	0.0008	0.0008	
100	14	1396											
100	14	1496											
79	11	2612											
100	14	726											
93	13	36											
86	12	97											
79	11	1591	LVAYQATYCAR MSTNPKPQH										
79	11	1	MSTNPKPQK										
79	11	2249	HITVSEENK MTNPDPQOK	0.0010	0.0062	0.0007							
86	12	2687	PITYSTYK PMGFSYOM	0.0010	0.0007								
79	11	614	PSWYDQMK PTOPRPTSH	0.0014	0.0005								
79	11	1295	109	0.0008	0.0005								
79	11	1238	PTOSKSTK PWNNTDRA	0.0002	0.0001								
93	13	616	1340	0.0006	0.0006								
93	13	1340	DAETAGAR DNGCQYLUH	0.0006	0.0006								
86	12	289	DLTFSPR OLAPSILK	0.0008	0.0008								
79	11	289	RAAVCTNOVAK RATRKTSER	0.0008	0.0008								
78	11	2210	TAUAIQAVR TILGWRATH	0.0008	0.0008								
79	11	1166	43	0.9400	0.0280								
100	14	149	43	0.9400	0.0420								
79	11	47	149	0.7200	0.0200								
79	11	79	43	0.7200	0.1600								
70	11	43	1923	0.0030	0.0030								
100	14	100	2611	0.0003	0.0044								
93	13	93	636	0.0003	0.0003								
86	12	79	55	0.0003	0.0003								
86	12	1132	SASOLSAPELK SSDLVTRH	0.0003	0.0003								
79	11	2	2	0.0003	0.0003								
79	11	2	2	0.0003	0.0003								
79	11	2	2	0.0003	0.0003								
86	12	1268	STNPKPDK TLFGQAYMSK	0.0810	0.0610	0.0005	0.0013	0.0009					
79	11	1622	TUGHTLYH TSENROPI	0.0810	0.0610	0.0005	0.0013	0.0009					
93	13	52	52	0.0003	0.0003	0.0001							
86	12	52	52	0.0003	0.0003	0.0001							
86	12	62	62	0.0003	0.0003	0.0001							
86	12	1050	TSUTGROK VAGALVAFK	0.2400	0.8900	0.0048	0.0026	0.0010					
86	12	1864	0.0005	0.0038	0.0080	0.0038	0.0020	0.0020					
79	11	1592	VAYOATVCAH VLDOAETGAA	0.0005	0.0005	0.0005	0.0005	0.0005					
79	11	1337	VTHADVIPRN WCAILRLA	0.0005	0.0005	0.0005	0.0005	0.0005					
79	11	1138	WCAILRLA WVONVCAALIA	0.0005	0.0005	0.0005	0.0005	0.0005					
79	11	1901	WVONVCAALIA WVOTTOII	0.0005	0.0005	0.0005	0.0005	0.0005					
79	11	1901	WVONVCAALIA WVOTTOII	0.0005	0.0005	0.0005	0.0005	0.0005					
79	11	1988	WVONVCAALIA WVOTTOII	0.0005	0.0005	0.0005	0.0005	0.0005					
93	13	517	WVONVCAALIA WVOTTOII	0.0005	0.0005	0.0005	0.0005	0.0005					

LICY AND Super Motif (With Binding Information)

Conservancy	Freq.	Position	Sequence	1030.A	10110.A	10131.A	10132.A	10133.A	A*8801
66	12	93	WAGWALSPR	0.0008	0.0005				
88	12	96	WMLSPRSR						
100	14	1920	WMNRLIAFASN						
79	11	557	WMNSTGFTK	0.0530	0.0010	0.0014	0.0420	0.0068	
93	13	35	YLFRGRPR	0.0054	0.0005				
79	11	2930	YSPGEINR						
100	14	637	YGGVGBFR						
86	12	1939	YPPESDAAF	0.0003	0.0001				
		112							

Table X

HCV Δ 24 Super Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A*2401
AILSPGAL	1890	8	13	93	
ALAHGVYRL	150	9	14	100	
ALSTGLIHL	689	9	12	86	
ALVNGVVCAAI	1896	11	11	79	
ATGNLDPGCSF	165	10	13	93	
ATLGFGAY	1265	6	12	100	
ATLGFGAYM	1265	9	13	93	
AVAYYRGL	1419	8	14	100	
AVCWMNRL	1917	8	14	100	
AVCWMNRLI	1917	9	14	100	
AVCWMNRLIAF	1917	11	14	100	
AVDMMMMW	319	8	12	86	
AYAAGGYYKL	1248	10	11	79	0.0009
AYYRGGLDVSIV	1421	11	14	100	
CILRKLGVPPL	2941	10	12	86	
CLWMILLI	739	8	12	86	
CTCGSSDQL	1128	8	11	79	0.0001
CTCGSSDLY	1128	9	11	79	
CTCGSSDLYL	1128	10	11	79	
CTRGVAKAVDF	1190	11	11	79	
CTVWNSTGF	555	9	11	79	
CYTOTVDF	1462	8	12	66	
CYTOTVDFL	1462	10	12	86	
CYDAGCAAW	1525	8	11	79	
CYDAGCAAWY	1525	9	11	79	
CYDAGCAWWEL	1525	11	11	79	
DFSLDPTTF	1468	8	14	100	
DLSDLPFTI	1468	10	14	100	
DLCGSVFL	279	8	12	86	
DLEVNTSTWL	1657	9	12	86	
DLEVNTSTWL	1657	11	12	86	
DLYVRYCEBOM	2617	10	13	93	
DLMGIYPL	132	8	11	79	
DVNLLPAI	1863	9	11	79	
DVNLLPAIL	1883	10	11	79	
DTAACGDI	994	8	12	86	
DTAACGDI	994	9	12	86	
DTLTCQFAQL	124	10	12	86	
DTLTCQFAQL	124	11	12	86	
DVKPGGGQI	21	10	12	86	
DYPYALWHY	615	9	14	100	
EIPFYGRKAI	1377	9	13	93	
ETAGARLVL	1342	10	12	86	
ETMRSPVF	1207	9	12	86	
EVNTSTWL	1659	9	12	86	

HCV_A24 Super Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A*2401
FISGOML	1773	8	11	14	100
FISGOMLAGL	1773	9	12	14	100
FULLSQL	177	6	11	12	86
FTEAMTRY	2792	6	11	14	100
FTGLTHIDAHF	1567	6	11	13	93
FTLPALSTGL	684	11	11	11	79
FWAHHMMWF	1765	9	12	12	86
FWAHHMMWF	1765	10	12	12	86
GFAOLMGY	129	8	9	13	93
GFAOLMGY	129	9	11	11	79
GFDUMGMYI	129	11	11	13	93
GFDUMGYPYL	2669	9	11	11	79
GFSYDTFCF	2669	10	10	12	0.00001
GIMLAGL	1776	8	8	14	100
GIOLAGLSTL	1776	11	11	14	100
GUVCQDHL	1652	9	13	13	93
GUVCQDHL	1652	11	12	12	96
GLSAFSLASY	2921	10	11	11	79
GLSTLGKPN	1782	11	11	11	79
QLNIIIDAHF	1509	9	10	13	93
GLTHIDAHFL	1569	10	11	13	93
GTFFPRKAY	2063	8	11	11	79
GVAGALVAF	1863	9	12	12	86
GVAKAVDF	1193	8	11	11	79
GVLAALAY	1670	9	11	12	86
QVLAALAAVCL	1670	11	12	12	86
QVNTATGQL	161	8	11	11	79
GVVICEROM	2619	8	14	100	100
GVVICEROM	2619	10	14	14	100
GVVICEROM	2619	11	14	14	100
GYRCEKMLY	154	11	12	12	86
GYRMEDGMY	1900	8	11	11	79
GYVCAAIL	1027	8	11	11	79
GWRLLAPTA	1027	11	11	11	79
GYGAGVAGL	1859	10	12	12	86
GYPLVGAPL	1355	10	11	11	79
GYFRCHASQNL	2728	11	12	12	86
HJHQHIVDQY	693	11	11	11	79
HLPVIECM	1719	9	11	11	79
HAMMFISGI	1768	9	13	13	93
HAMMFISGY	1769	11	13	13	93
HTPVNSM	2855	8	12	12	86
HTPVNSM	2855	11	12	12	86
HGPGEQAVW	1910	11	11	11	79
IFLLSQL	176	10	12	12	86
ILGGWAA	1816	10	12	12	86

124

ICY_A24_Super_Motif_With_Binding_Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A·2401
ILGIVTL	131	8	12	86	
MARNEV	2591	8	12	86	
ITSYTGKF	1286	9	12	86	
ITYSTGKF	0296	10	11	79	
IVDQMY	701	8	12	86	
MGAVML	30	8	13	93	
KFPGGGI	23	8	13	93	
KVIDLTCAF	121	10	12	86	
LRTLGOW	1613	8	12	86	
LIFANLW	2235	8	12	86	
LISNGESW	414	8	11	79	
LLAISCL	170	0	12	86	
LLAPITAY	1030	8	14	00	
LENLGCV	1612	8	12	86	
LLPAISPGAL	1887	11	13	93	
LLPFGFPL	16	9	13	93	
LLSPRETESPN	97	11	11	79	
LLWTCMGGN	2240	11	12	06	
LTGCFADQL	125	8	12	86	
LTGCFADJW	126	9	12	86	
LTGCFADQCY	128	11	12	86	
LTHIDMIF	1570	8	13	93	
LTHIDMFL	1570	9	13	93	
LTSMATDPSH	2176	11	13	93	
LTSGCATT	2738	9	11	79	
LVDTQGY	1853	8	11	79	
LVGVLAAL	1687	9	12	86	
LVLTIPSVATL	1257	11	14	100	
LVLNLPAI	1804	8	11	79	
LVLNLPAIL	1684	9	11	79	
LVTFHADVI	1137	9	11	79	
LVGIVCAA	1897	10	11	79	
LVGIVCAIL	1897	11	11	79	
LWARMILIM	2872	8	12	86	
LWARMILMTHF	2872	11	12	86	
LWRCMKG	2241	10	12	86	
LYLVRHADVI	1135	11	11	79	
MILMTFF	2878	8	12	86	
MILTDPSH	2179	8	14	100	
MNNFSGI	1770	8	14	100	
MNNFSSQY	1770	10	14	100	
MNNFSSQYML	1770	11	14	100	
MNYGIVFPL	836	10	13	93	
NPFSDQY	1772	8	14	100	
NPFSDQYML	1772	9	14	100	

HCV_A24 Super Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A' 2401
MIGGWWAQL	1815	1	12	86	
MINTGAVITI	1282	9	11	79	
NIVDVCNL	700	8	12	86	
NIVDVCNL	700	9	12	86	
NIVDVCNL	116	9	12	86	0.0001
NLWFRDM	2235	8	12	86	
NLPGCSFSI	168	9	13	93	
NLPGCSFSI	188	10	13	93	
NLPGCSFSI	168	11	13	93	
NLPGCSFSI	1480	10	12	86	
NTHSSMH	416	8	13	93	
NTNRPQDNF	14	11	11	79	
NMDQDGNW	1108	9	11	79	
NWFECTWM	561	8	12	86	
PITYSTYCKF	1295	10	11	79	
PITYSTYCKF	1295	11	11	79	
PLEGEFQDPL	2403	11	13	93	
PIGGAAARAL	143	9	11	79	
PNGFSYDTRCF	2687	11	11	79	
PIDPARRSAML	108	11	12	86	
PTLHGKPTPL	1621	9	11	79	
PTLHGKPTPL	1621	10	11	79	
PTLHGKPTPL	1621	11	11	79	
PTLWAHMI	2870	8	11	79	
PTLWAHMI	2870	9	11	79	
PTLWAHMI	2870	10	11	79	
PTPLVYRL	1626	8	14	100	
PVCCDFFF	1554	9	12	86	
PVCCDFFF	1564	10	12	86	
PVNSMAGNI	2867	9	14	100	
PVNSMAGNI	2857	10	14	100	
PVNSMAGNI	2857	11	12	86	
PVHGCPL	2318	8	11	79	
QFKKAKGL	1732	9	12	86	
QFKKAKGL	1732	10	12	86	
QVGSVM	29	8	13	93	
QVGSVM	29	9	13	93	
QVGSVM	1465	11	12	86	
QVGSVM	1919	9	14	100	
QVLAGLSLT	1778	9	14	100	0.0180
QVSGRQVEF	2847	10	11	79	0.0180
QVSGRQVEF	2647	11	12	86	
RHGSASF	2918	8	11	79	
RHGSASF	2918	10	11	79	0.0001
RVFPDL	2611	8	11	79	

ICV A24 Super Motif With Binding Information

Sequence	Position	Peptide No.	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'2401
FILAPITAY	1028		9	12	88	
FMWDMMMWY	317		8	12	86	
FMWDMMMWY	317		10	12	86	
FMILMTIF	2875		8	12	86	
FMILMTIF	2875		9	12	86	
FMYGGEVHQL	639		11	13	9.1	
FYCEKML	2621		8	14	100	
FYCEKML	2821		9	14	100	
FYLEDGVNY	156		9	12	86	
SFSFLAL	173		9	14	100	
SFSFLAL	173		10	14	100	0.0041
SFLLALL	173		11	14	100	
SFLLALLSCL	175		8	14	100	
SLDPTFTI	1470		6	14	100	
SLSYSPGEI	2928		10	11	79	
SMHTDFSH	2178		8	14	100	
STKVPAY	1242		8	12	86	
STLQGNPN	1784		9	11	79	
STWAVGCVL	1863		10	12	86	
SVATLGF	1282		8	14	100	
SVATLGFAY	1282		11	14	100	
SWDDMMWCL	1608		9	11	79	
SWLGWM	2860		8	12	86	
SYLKGSQGP	1164		11	12	86	
TIMAKHEVF	2590		9	11	79	
TLOFGAYM	1288		8	13	93	
TLHQPTPL	1622		8	11	79	
TLHPGPPLL	1622		9	11	79	
TUIGPTPLY	1622		10	11	79	
TULPNLGNW	1811		10	12	86	
TLPALSTGL	686		9	11	79	
TLPALSTGL	686		10	11	79	
TLPGNPAI	1786		8	11	79	
TLCFCFACL	125		9	12	86	
TLPALSTGL	125		10	12	86	
TLCFGADLM	125		12	11	79	
TLMWARMIL	2871		8	11	79	
TLWARMIL	2871		9	11	79	
TTIMAKHEV	2589		10	11	79	
TTLPALSTGL	685		10	11	79	
TTLPALSTGL	685		11	11	79	
TTMSPPVF	1208		6	12	86	
TTSGGNNL	2739		8	11	79	
TVDFSLDPRF	1468		10	12	86	
TWWASSTGF	558		6	11	79	
TWWASGM	1664		9	12	86	

HCV_A24_Super_Motif_With_Binding_Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A*2401
TYSYGKF	1287	8	13	93	
TYSYGKFL	1287	9	12	86	0.0230
VFTGLTH	1568	8	13	93	
VIDLTCGF	122	9	12	86	
VLAALAY	1671	8	12	86	
VLAALAYCL	1671	10	12	86	0.0070
VLEGQAN	167	8	12	86	
VLNPSVAAATL	1258	10	14	100	
VLTSQGNTL	2737	10	11	79	
VLVDILGY	1852	9	11	79	
VLVGQVLAAL	1868	10	12	86	
WGSSYGF	2839	0	11	79	
WMSSTGDFQY	2839	10	11	79	
VTQVQDSL	1463	9	12	86	
VTHADVI	1138	0	11	79	
WTADALM	1439	0	11	79	
WGVVICAAI	1898	9	11	79	
WAVVCAAIL	1898	10	11	79	
WTFRWNL	1880	0	12	86	
WLPFRGPFL	34	11	13	93	0.0016
WMNRLIAF	1920	8	14	100	
WMVGGVL	1665	8	12	86	
WVLGAVNAAAL	1865	11	12	86	
YPLVGAPL	136	9	11	79	
YLAGLSLT	1779	8	14	100	
YKGSSGGPL	1165	10	12	86	
YKGSSGGPL	1165	11	12	86	
YLPRGRQL	35	10	13	93	0.0001
YLVRHADVI	1136	10	11	79	
YTNDDQL	1106	0	11	79	
YTNDDQLGW	1106	11	11	79	
YVGAGLGSVVF	276	10	12	86	
YVDDGSVFL	276	11	12	86	
YVGAGBFL	637	9	13	93	
YRGLDVSNI	1422	10	14	100	

260

Table XI
ICCV_B07_Super Motif (with Building Information)

Conservancy	Freq.	Position	Sequence	B'3501	B'5101	B'5301	B'5401
88	12	1604	APPSWDDWM	0.00028	0.0002	0.0001	0.0002
79	11	1604	APPSWDDWM	0.0001	0.0002	0.0006	0.0003
93	13	1235	APTSKSTKV	0.0001	0.0012	0.0002	0.0023
79	11	2869	APTLWARM	0.4300	0.0001	0.0012	0.0001
79	11	2869	APTLWARM	0.0160	0.0002	0.0010	0.0002
79	11	2869	APTLWAMMIL	0.0000	0.0001	0.0010	0.0003
79	11	2869	APTLWAMMILM	0.0130	0.0001	0.0003	0.0033
79	11	2410	DPCSDSN	0.0001	0.0002	0.0002	0.0002
86	12	111	DPAISPL	0.0170	0.0002	0.0002	0.0002
79	11	2615	FPGAVAV	0.0001	0.0002	0.0001	0.0002
100	14	24	FPGGAVAV	0.0001	0.0002	0.0001	0.0002
100	14	12	GPGCAGAVW	0.0001	0.0002	0.0001	0.0002
88	12	1912	GPGCAGAVW	0.0001	0.0002	0.0001	0.0003
88	12	1912	GPTLGQRA	0.0001	0.0002	0.0001	0.0003
93	13	41	GPTPLYRL	0.0024	0.0002	0.0001	0.0002
100	14	1625	GPTPLYRL	0.0005	0.0003	0.0002	0.0002
83	13	1625	GPTPLYRLGQA	0.0001	0.0001	0.0002	0.0002
83	13	507	GPVYCETPSPV	0.0001	0.1200	0.0002	0.2000
83	13	1378	IPIFYQKAI	0.0120	0.0032	0.0003	0.0035
79	11	137	IPLVQAPL	0.4400	0.0032	0.0017	0.0008
88	12	2608	KPARLIVF	0.0150	0.0002	0.0002	0.0002
79	11	2608	KPAKLIVPPOL	0.0003	0.0003	0.0002	0.0002
78	11	1620	KPTLHAGPPL	1.4150	0.0001	0.0002	0.0001
79	11	1620	KPTLHQPTPL	0.0021	0.0001	0.0002	0.0003
93	13	1088	LPAILSQA	0.0001	0.0001	0.0001	0.9400
93	13	1606	LPAILSPGAL	0.0053	0.0001	0.0036	0.2100
88	12	1606	LPAILSPGALV	0.0003	0.0020	0.0002	0.0005
100	14	807	LPALSLGL	0.0350	0.0011	0.0001	0.0002
88	12	687	LPALSTGLI	0.0002	0.0001	0.0001	0.0002
88	12	887	LPALSTGLHL	0.0001	0.0002	0.0001	0.0018
88	12	2165	LPCPEPDPV	0.0001	0.0360	0.0059	0.0013
93	13	109	LPOCSFG	0.0110	0.0790	0.0550	0.0015
93	13	169	LGCCSFNF	0.1950	0.0022	0.0009	0.0140
93	13	169	LGCCSFNLF	0.0007	0.6500	0.0001	0.0020
93	13	37	LPNGAQL	0.0001	0.0001	0.0009	0.0025
93	13	37	LPNGAQLGV	0.1900	0.0001	0.0001	0.0001
93	13	1553	LPYDQDL	0.0005	0.0001	0.0002	0.0110
88	12	1553	LPYDQDLLEF	0.0001	0.0048	0.0002	0.0003
88	12	1720	LPYEGGM	0.0130	0.0001	0.0040	0.0002
100	14	1260	NPSVATL	0.0011	0.0001	0.0002	0.0003
100	14	1260	NPSVATLQF	0.0001	0.0001	0.0001	0.0001
88	12	1605	PPPSWDDWM	0.0003	0.0001	0.0001	0.0013
79	11	1605	PPPSWDDWM	0.0001	0.0002	0.0001	0.0002
79	11	1608	PPSWDDWM	0.0002	0.0001	0.0001	0.0002
78	11	1608	PPSWDDWMHC	0.0001	0.0001	0.0001	-0.0002
78	11	2317	PPVHNCPL	0.0140	0.0011	0.0002	0.0190
79	11	2601	OPGGGTRPA	0.0011	0.0001	0.0001	0.0002
78	11	2808	OPETDEL	0.0002	0.0001	0.0001	0.0002
79	11	2808	OPETDEU	0.0001	0.0002	0.0001	0.0002
88	12	76	OPGYPMR	0.0006	0.0002	0.0001	0.0002

SUBSTITUTE SHEET (RULE 26)

UCY.D07_Super_Mult (with Blueline Information)

Conservancy	Freq.	Position	Sequence	B'0702	B'0704	B'0706	B'0708	B'0710	B'0712	B'0714	B'5401
86	12	78	OPOYIPAPLY	0.0001	0.0011	0.0002	0.0001	0.0001	0.0001	0.0002	0.0002
83	13	57	OPDNGRDPN	0.2300	0.0002	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002
79	11	2298	RDYDNPPL	0.0050	0.0001	0.0002	0.0001	0.0002	0.0001	0.1200	0.0002
93	13	1893	SPGALWVGW	0.0130	0.0001	0.0002	0.0001	0.0002	0.0016	0.0001	0.0003
79	11	1893	SPGENTRV	0.0007	0.0001	0.0003	0.0001	0.0002	0.0001	0.0002	0.0037
79	11	2931	SPGENINVA	0.0003	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0037
79	11	2649	SPQCRREF	0.0027	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0002
79	11	2649	SPQRERFL	0.1200	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0002
78	11	99	SPRGSPSW	0.3600	0.0002	0.0005	0.0005	0.0005	0.0005	0.0001	0.0002
86	12	1935	SPTHYVPESDA	0.0001	0.0001	0.0028	0.0028	0.0028	0.0028	0.0001	0.0002
86	12	1975	TPCGSOWL	0.0005	0.0001	0.0002	0.0002	0.0002	0.0002	0.0001	0.0003
78	11	1128	TPCTCGSSDL	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
79	11	1126	TPCTCGSSOLY	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
86	12	223	TPGCPCV	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
93	13	1550	TPGLPVODCHL	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
93	13	1027	TPLLYRLGA	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.2300
93	13	1027	TPLLYRLGAV	0.0120	0.0001	0.0001	0.0001	0.0001	0.0001	0.0110	0.0110
86	12	2056	TPNSMGLNI	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0003	0.0003
86	12	2856	TPVNSVLGNII	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
86	12	1840	VPESDAAA	0.0022	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
86	12	1940	VPESDAAARV	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
86	12	799	WPILLLU	0.0021	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
100	14	616	YPYRLWHY	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001

78

Table XII

LICV_B27 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
AKHAWNFI	1767	8	12	86
AKNEVFCV	2593	8	12	86
ARALAHGV	148	8	14	100
DRSESPPL	663	8	11	79
EKGGRPA	2603	8	8	79
EKMLYDV	2624	8	12	86
FKOKALQL	1733	8	12	86
GHRMADM	315	8	13	93
GKSTKVPAA	1240	8	12	86
QNKPKARI	2806	8	11	79
HRMAWDM	316	8	13	93
KGGPHL	1390	8	11	79
IATGIVATT	1283	8	12	86
KKCDELAA	1403	8	11	79
KKKCDELAA	1402	8	14	100
LHGFTPLL	1623	8	14	100
LKVNNDV	697	8	11	79
LIDLAVAV	969	8	12	86
NHVSPTHY	1932	8	11	79
PFGFQH	56	8	12	86
PGGSRPSW	100	8	13	93
PIBRSERNL	112	8	11	79
RHAQDIPV	1140	8	12	86
RHTPNISW	2854	8	11	79
RKLGPPR	2943	8	12	86
RKPARLV	2607	8	12	86
RKCRASOV	2730	8	11	79
RPGFLGV	39	8	13	93
RPGCOVKF	17	8	13	93
SKRKCDEL	1401	8	12	86
SPNLGKVI	116	8	14	100
THIDAHFL	1571	8	12	86
TKKLITPI	2985	8	13	93
TKVPAAYA	1243	8	12	86
TRCFDSTV	2674	8	12	86
TRGVAKAV	1181	8	14	100
VRCEKMA	2620	8	11	79
VRMLEGV	155	8	14	100
YRGIDSVI	1423	8	13	93
ARHTPVNSW	2853	9	14	100
ARLVEPDL	2810	9	11	79
ARLVVLTAA	1346	9	11	79
ARMMLATHF	2874	9	12	86
ARPDDNNPL	2298	9	11	79
DRSESPPL	663	9	11	79

HCV B27 Super Motif

Sequence	Position	Peptide No.	No. of Amino Acids	Sequence Frequency (%)	Conservancy (%)
EKMLAYDV	2624		9	12	86
FKCKALGLL	1733		9	12	86
GHRMADMAM	315		9	13	93
GKSTKVPA	1240		9	12	86
GRKPATIV	2608		9	11	79
HRMADMAMM	316		9	12	86
IKGGRHAF	1390		9	11	79
KKKCDEAA	1402		9	14	100
LHGLSAFSL	2919		9	11	79
LHGFTPLY	1623		9	11	79
LHSYSPGEI	2927		9	11	79
LKGSSGGFL	1166		9	12	86
LRLKGAVPL	2942		9	12	86
NHVSPTHVV	1932		9	12	86
NRAPDQMF	16		9	11	79
PRGPRGLGV	38		9	13	93
RHTPNVSM	2854		9	12	86
RHYGFGEQA	1909		9	11	79
RKPARLNF	2807		9	12	86
RRCRASGM	2730		9	12	86
RRSRNLGVN	114		9	12	86
SKKKCDELA	1401		9	14	100
THYVFEDA	1937		9	12	86
TKVPAAYA	1243		9	11	79
TRIADIVY	1139		9	11	79
TRVESENRV	2251		9	12	86
VWFOOGQI	22		9	13	93
VRVCEKVAL	2620		9	14	100
WRLLAPTA	1028		9	11	79
WHOEGSGA	2242		9	12	86
YRGDLSVI	1423		8	14	100
YRERCRASGV	2729		9	13	93
ARALAHGVY	148		10	14	100
ARAOAPPSSW	1600		10	11	79
ARHTPVNSM	2853		10	11	79
ARMILMTIFF	2874		10	12	86
CHSKKCDEL	1399		10	14	100
DROPSSEL	861		10	11	79
DSELSPILL	663		10	11	79
EKGGRKPKARL	2603		10	11	79
FRAAVCTRIGV	1185		10	12	86
GHRMADMAMM	315		10	12	86
GKSTKVPA	1240		10	12	86
GRKPATIV	2606		10	11	79
KHMWNFISGI	1768		10	13	93

HCV B27 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
MKCDDELAKL	1403	10	12	86
LHONIVDQY	697	10	11	79
LKGSEGGFL	1166	10	12	86
OKALGELQTA	1735	10	12	86
RHANGCSEGAV	1809	10	11	79
FHQPLCIFPA	39	10	13	93
FRHNGPGEEA	1908	10	11	79
FRRSNALGIV	113	10	12	86
FRRSNALGKV	114	10	12	86
SFKGYGAKDV	2552	10	12	86
SKKKCDELAA	1401	10	14	100
THYPPESDAA	1917	10	12	86
TRGVAKAVOF	1191	10	11	79
TRVESENKVW	2251	10	12	86
VKPGGGQV	22	10	13	93
VVICCEKMAV	2620	10	14	100
VRMLEDGNY	155	10	12	86
WRLLAPITAY	1028	10	11	79
YKVLVNPVY	1254	10	14	100
YRRCFASGVL	2728	10	12	86
AIGVRALEGV	152	10	13	93
AKHMMNNNSGI	1767	10	12	86
ARALAHGSVRL	148	10	14	100
ARLVEFPDLGV	2810	10	11	79
CHSKKKCDELAA	1399	14	14	100
DDRSESPPL	661	11	11	79
EKGGRKPKRLU	2803	11	11	79
FRAAVCTGVA	1185	11	11	79
GKSTIKVPAYA	1240	12	12	86
GVIDTCICGF	120	12	12	86
HMAWYDMMNNNW	316	12	12	86
KKKCDELAKL	1402	12	12	86
KANTNAPPODV	12	12	12	86
LHGPTPLLYRL	1623	11	11	79
LHONIVDQYL	697	11	11	79
LKPTLHGPTPL	1619	11	11	79
LRHANGPSEGAV	1907	11	11	79
PFRSPRLVRA	28	13	93	93
PRASRAGAV	112	12	12	86
FRHNGPGEEAV	1908	11	11	79
FRRSNALGIM	113	12	12	86
SRGMNAISPRVY	1929	12	12	86
SFNLGKVDTL	116	12	12	86
THYPPESDAA	1937	12	12	86
VRMLEDGNYA	155	12	12	86

ICV R27 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency (%)	Conservancy (%)
YKLVLUPSAV	125-136	11	14	100

ICV_B5B Super Motif

Table XIII

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
AALRRHV	1804	6	6	93
AALAAAYCL	1673	8	8	88
AAGGKVVL	1250	8	8	79
AATLGFGQA	1264	8	8	100
AAVCTRGVY	1187	8	8	88
ASLUMAFTA	1783	9	9	11
ASSSASCCL	2204	8	8	14
ATLGFFGAY	1265	8	8	100
CSEFPL	172	8	8	100
CSQQGANDI	1510	8	8	12
CSSNVSVVA	2619	8	8	14
CTCASSOL	1128	8	8	100
CTREVAKA	1190	8	8	14
DTAACGDI	994	8	8	14
DTLTCGFA	124	8	8	86
EALEMVL	750	8	8	11
EAMTRYSA	2794	8	8	11
ESDAAARV	1942	8	8	79
ETAGARLV	1342	8	8	11
ETTMASPV	1207	8	8	12
FADLQGYI	130	8	8	12
FASRGNIV	1927	8	8	14
FSIRLLAL	174	8	8	14
FSYDTRCF	2670	8	8	100
FTEAMTRY	2792	8	8	11
FTPSPVW	512	8	8	13
GAGVAGAL	1861	8	8	12
GARNIGVLA	350	8	8	12
GAWVGW	1685	8	8	11
GARLVLA	1345	8	8	12
GSGKSTRV	1238	8	8	13
GSSDLMLV	1131	8	8	12
GSSCGFL	1188	8	8	12
GSSYTGROY	2841	8	8	14
GTFPINAY	2083	8	8	11
HYSPEGI	2928	8	8	11
HTPNISWL	2855	8	8	12
ISCIQYLA	1774	8	8	14
ITCSSNNV	2816	8	8	100
ITWGADTA	989	8	8	86
KSTKVPAAA	1241	8	8	86
LAGYGAGV	1857	8	8	79
LAKGVFVL	151	8	8	100
LAVANEV	972	8	8	79
LSAPSLKA	2211	8	8	79

HCV_B58 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
LSPGALW	1892	8	8	93
LSTGLNL	690	8	8	86
LTCGFADL	126	8	8	86
LTHDAHF	1570	8	8	12
MSADEVV	1654	8	8	13
NSWLGNII	2859	8	8	93
NTCVQTIV	1460	8	8	79
NTNGSWHQ	416	8	8	100
PALSPGA	1889	8	8	88
PALSTGCL	6888	8	8	88
PTLWANII	2870	8	8	11
PTPLYRL	1628	8	8	79
QATVCARA	1595	8	8	14
RARPRWM	3019	8	8	14
RSELSPU	664	8	8	100
FSPLAGKV	1115	8	8	86
SASFSLH9Y	2923	8	8	12
SSASOLSA	2206	8	8	11
STKVPAY	1242	8	8	70
STLPGNPA	1784	8	8	13
STLPOAVM	2633	8	8	14
STYGKFLA	1298	8	8	100
TAACGDI	995	9	9	86
TAGANLVV	1343	8	8	12
TTMRSPVF	1208	8	8	86
TTSGGHTL	2739	8	8	11
VAGALVAF	1864	8	8	79
VTRHADV	1138	8	8	12
VTSIWVLV	1681	8	8	86
WAHHAYNF	1768	8	8	12
WAQVIVM	368	8	8	86
WAQGPYN	78	8	8	14
YAAGQYKV	1249	8	8	100
YSEFLDL	2905	8	8	11
YSTYGKL	1298	8	8	79
YTMDCQL	1106	8	8	11
AAKLQDCTM	2758	9	9	114
AAQGQYKV	1250	9	9	11
AARALAIGV	147	9	9	79
AATLGFGAY	1264	9	9	14
AAVCTRGVA	1187	9	9	100
ASQSLAPS	2208	9	9	11
ATLQFGAYW	1265	9	9	83
ATVCAARQD	1596	9	9	26
CAALRHW	1903	9	9	79

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
CAVYELTPA	1630	9	11	79
CSFSIPLA	172	9	14	100
CGGGAYDI	1310	9	12	86
CTCGSSDLY	1128	9	11	79
CIRGVAKAV	1190	9	11	79
CTWANSTGF	555	5	11	79
DAGCAYWEL	1527	9	11	79
DTAACGDI	994	9	12	86
DTRCFSTV	2673	8	13	93
ETAGARLW	1342	9	12	86
ETMARSPIF	1207	9	12	86
FSIPLLALL	174	9	14	100
FSLOPFTI	1469	9	14	100
FIGLTHIDIA	1567	9	13	93
GAGVAGALV	1861	8	12	86
GALVAFKIM	1866	8	12	86
GALVAFRVM	1868	9	14	100
GAVOWANRL	1916	9	14	100
HSKKKCDEL	1400	9	14	100
HIFGCVPDV	222	9	11	79
ITWGADTA	989	9	12	86
ITYSTYGF	1296	9	12	88
KALGILLOTA	1736	9	12	86
KSTKVPAY	1241	9	12	86
LAALAAAYCL	1672	9	12	86
LAEOFKOKA	1729	9	12	86
LAGLAYSM	356	9	14	100
LASYGAGVA	1857	9	11	79
LSAFSLNISY	2922	9	11	79
LSLPGNPA	1783	9	14	100
LTGCFADLM	126	9	24	171
LTDFSHITA	2180	9	14	100
LTGRDKNV	1052	9	12	86
LTIDDAHL	1570	9	13	93
LTSCGNTL	2738	9	11	79
MARNEVFCV	2592	9	12	86
MAMDMAMNNW	318	9	12	86
NAVAYRGQI	1418	9	13	93
NSLRHFM	2481	9	14	100
NSWLGNMIM	2659	9	24	171
NTRPPODV	14	9	12	86
PALSPLQAL	1889	9	13	93
PSVAATLGIF	1261	9	14	100
PTLHGPTPL	1621	9	79	79
PTLWARMIL	2670	9		

ILCV IRS Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
QAETAGAHL	1340	9	12	66
RAAVICTRGV	1186	9	12	86
RALAHQVRV	149	9	14	100
RADAPPSSW	1601	9	11	79
RAYAMDREM	811	9	16	114
ASSELSPLL	664	9	11	79
RSRNLGKVI	115	9	12	86
SSSASQLSA	2205	9	14	100
STKWPAAAYA	1242	9	12	86
STLPPONPAI	1784	9	11	79
STWVLGGGV	1663	9	12	86
TAGARLWML	1343	9	12	86
TSCSSNNVSV	2817	9	14	100
TTIMAKNEV	2589	9	11	79
VAAITLGFGA	1263	9	14	100
VAGGHHYCM	933	9	14	100
VAYOATVCA	1592	9	12	86
VAYYRGGLDV	1420	9	14	100
VSTLPOQAVM	2632	9	12	86
VTQTOFSL	1463	9	12	86
WAKHAWNWF	1768	9	12	86
YAAGGYKVNL	1249	9	11	79
YAPTLWARM	2068	9	14	100
YSPGEINRYV	2930	9	11	79
YSPGGRMEF	2848	9	11	79
YSTYCKFLA	1298	9	12	86
YTNVDCOLV	1108	9	11	79
AAOGYKVVL	1250	10	11	79
ATLGFQAYM	1264	10	28	100
ASLRVTEAM	2787	10	12	86
ASSASASLSA	2204	10	14	100
ATGNPGCSF	165	10	13	93
CSFSFLLAL	172	10	14	100
CTCGSDOLYL	1128	10	11	79
DARVCACLWM	733	10	18	129
DSVIDCNCV	1454	10	10	86
DLTCGFAOL	124	10	12	86
EANLWROM	2227	10	24	171
ETAGARLWL	1342	10	12	86
FAQLGQYFL	130	10	11	79
FTEAMTRYSA	2792	10	14	100
GAAPBALNIGY	146	10	11	79
GADTHACGDI	892	10	12	86
GAGVAGALVA	1461	10	12	86
GALNGWVCA	1695	10	11	79

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
GARLVLATA	1345	10	11	79
GAVQWMNRL	1916	10	14	100
QSGKSTKPA	1238	10	12	86
GTIVLQDAETA	1335	10	14	100
HSKKKQDELA	1400	10	14	100
IAPASRGHVV	1925	10	14	100
ISGIOYLAGL	1774	10	14	100
ITRVESENVV	2250	10	12	86
ITSCESNVSV	2818	10	14	100
ITYSTYKGEL	1296	10	11	79
KSTKVPAAYA	1241	10	12	86
LADGGGSGGAA	1305	10	11	79
LAEQFRKQAL	1729	10	12	88
LALPPRAYAM	806	10	12	86
LSPGALWVG	1892	10	13	93
LSPRSRSPEN	88	10	11	79
LSRARPRWMF	3017	10	14	100
LSTLPGNPAI	1783	10	11	79
LTHPITKYM	1642	10	16	114
NTCVTOTVGF	1460	10	12	86
PALSPGALVY	1889	10	12	86
PALSTGFLRL	889	10	12	86
PARNLVPDL	2609	10	11	79
PSWQCOMMRC	1607	10	11	79
PTGSGRSTKV	1236	10	13	93
PTHYVPESDA	1936	10	12	86
PTLHGPIPLL	1621	10	11	79
PILWARMILM	2870	10	22	157
PITLLRIGLA	1628	10	13	93
QAETAGARLY	1340	10	12	86
QAPPFWQDM	1603	10	24	171
QATVCARAQAA	1595	10	11	79
RAAKLQDCTH	2757	10	16	114
RAAVCTRGA	1188	10	11	79
RALAHGVRL	140	10	14	100
SASQSLASP	2207	10	13	93
STKVPAAYAA	1242	10	11	79
STWALVGGVL	1663	10	12	86
TAGARLVLVA	1343	10	12	86
TARHTPVNSW	2852	10	11	79
TGSSSNNSVA	2817	10	14	100
TSMLTOPSHI	2177	10	13	93
TSTWALVGGV	1662	10	12	86
TTIMAKNEVF	2589	10	11	79
TTLPALSTGL	685	10	11	79

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
VAAFLGFGAY	1263	10	14	100
VTGGERPSGM	1507	10	16	114
VTRHADIVPV	1138	10	11	79
WAQPGYWPGL	76	10	12	86
WARMILMTHF	2873	10	12	86
WARPDPNPL	2297	10	11	79
YAOQGYKLV	1249	10	11	79
YSPESEHNTVA	2930	10	11	79
YSFGQCRVFL	2648	10	11	79
YARALAHGVIN	147	11	11	79
AASLRVFTTEAM	2788	11	12	86
AAVCTRGVANKA	1187	11	11	79
ASHRPHIEQGM	1717	11	14	100
ASQLSAPSLSKA	2208	11	11	79
CARAQDAPPSSW	1599	11	11	79
CSFSIFLNL1L	1172	11	14	100
CTCGSSSDLVLYV	1126	11	11	79
GTRGVAKAVDF	1190	11	11	79
DARVICACLWHM	733	11	11	79
DTLTGCFIILM	124	11	24	171
ETAGARLVLVLA	1342	11	12	86
FADLMGYVPLV	130	11	11	79
FSLHSYTSYCE	2925	11	11	79
FTGLTDIAHF	1567	11	13	93
FTTLPLSTGL	884	11	11	79
GADTAACCDII	992	11	12	86
GAGYAGALVAF	1861	11	12	86
QALVVIQVVCA	1895	11	11	79
GAVDQAMRHA	1910	11	14	100
GSGKSKTKVPA	1238	11	12	86
HSKKKCDDELA	1400	11	14	100
HYSPGEGINRV	2928	11	11	79
HTPVNSWLGR	2853	11	12	86
ITRVESENKWW	2250	11	12	86
ITSCSSANVVA	2816	11	14	100
ITYSTYIGKELA	1296	11	11	79
KSTKVPAAYA	1241	11	11	79
LADGGGSQAY	1305	11	11	79
LAGYGAIVGAA	1857	11	11	79
LSNSLLPHNM	2479	11	14	100
LSPGALLVGVW	1892	11	11	79
LTCGFADLGY	126	12	86	
LTSMLTDPSH	2178	13	93	
NAVAYYTRGLDV	1418	13	93	
NTNRPPQDWF	114	11	79	

ICV_B58 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
PALSPQALW	1889	11	12	86
PSVAATLGFGA	1261	11	14	100
PTDPRRSERNL	109	11	12	86
PTHVPFESDAI	1936	11	12	86
PTLHGPITRLLY	1821	11	11	79
PTPLVYRLGAN	1626	11	13	93
DAETAGARLWV	1340	11	12	86
DAPPPSWDDMV	1603	11	11	79
QIVDFSLDPITF	1465	11	12	86
PSOPFGAFRPA	55	11	13	93
SADOLEVVTSTWV	1655	11	11	79
SSASOLSAFLS	2208	11	13	93
SSDLVLYTAHA	1132	11	12	86
STWLVGGWLA	1663	11	12	86
TARHTPNSMIL	2852	11	11	79
TSLTGRDKK-RKV	1050	11	12	86
TSTWLVGQWL	1662	11	12	86
TTLPALSTGLI	685	11	79	100
VAAATLGFGAYM	1263	11	26	106
VAGALVAFKVM	1864	14	14	100
VAVEPVVFSOM	974	12	12	86
VAVOATYCARA	1592	11	11	79
VAYMTGLOSV	1420	14	100	100
VTSTWLVGGV	1661	11	12	86
WAQCPGPWNPFLY	76	12	12	86
WARMILMTHFF	2873	12	12	86
YAAGQYKVAL	1249	11	78	86
YTNGNIPCSF	164	12	79	11
YTNMDCOLGVN	1106	11		

299

HCV_B62_SuperMotif

Table XIV

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
AISPGAL	1880	8	8	93
ALAHQYRV	150	8	8	100
ALGLQITA	1737	8	8	88
APTLWARM	2869	8	8	79
ADAPPSSW	1602	8	8	88
AQGYKVLV	1251	8	8	79
AVAYTRQL	1419	8	8	100
AVCTRGVA	1180	8	8	79
AVQWNRRL	1917	9	14	100
CWMMMLI	739	8	8	86
CMSADLEV	1853	8	8	79
CDPHFEPW	1556	8	8	86
CYTQVDF	1462	8	8	86
DILAGYGA	1855	8	8	86
DQGSVRL	2279	8	8	86
DLMGIPL	132	9	11	79
DVNLLPA	1880	8	8	78
DOAETAGA	1328	8	8	86
EIPFGYRA	1377	8	12	93
EOPKQAL	1731	8	8	86
EWNTSTW	1659	8	12	88
FISGQYL	1773	8	14	100
FPGQIVR	2615	8	11	79
FPGGDDV	24	8	14	100
FQVAFCHA	1228	8	12	86
GIGYLAGL	1778	8	14	100
GLADLAVA	860	8	11	79
QPTLGVRM	41	13	93	93
GONGQYV	28	6	14	100
GVAGALVA	1863	8	12	86
GVAKAVDF	1193	8	11	79
GVLAALAA	1670	8	12	86
GVVICSEW	2619	8	14	100
GVYCIAIL	1900	8	8	79
HNGREGA	1910	8	8	79
HVSPTHYV	1933	8	12	86
IAGWYAA	1816	8	12	86
ILGIGTVL	1331	8	12	86
ILSPGALV	1891	8	13	93
IMAKNEVF	2591	8	12	88
IPFYGRAL	1378	8	13	93
IPVGAPL	137	11	11	79
IQVQVLY	701	12	8	86
IVPPGLV	2813	11	11	79
IVGGVIL	30	13	93	

ICV B62 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
KHAYDGV	2625	8	12	88
KPARLIVF	2608	9	12	88
KOKALGLL	1734	8	12	86
KVAYAA	1244	8	11	79
LLEANLLW	2235	8	8	86
LNTIGSW	414	2	2	79
LLALSCL	178	6	12	86
LLAPITAY	1030	8	14	100
LLADARV	729	8	13	93
LLYRLGAV	1629	8	13	93
LMGCPILV	133	8	11	79
LPASTGL	687	6	14	100
LPGCSFSI	169	8	13	93
LPRGPR	37	8	13	93
LPYCOHL	1553	8	13	93
LPYIEGM	1720	8	12	86
LODCTMVL	2761	8	12	86
LVAYQATV	1691	6	12	86
LVBDIAGY	1853	8	11	79
LVGGVLA	1667	8	12	86
LVNPVSA	1257	8	14	100
LVNLPKAI	1884	8	11	78
LYTRHADY	1137	8	12	86
LVVGAVCA	1897	8	11	79
LVVICESA	2773	8	11	79
MILMTTHFF	2878	8	12	86
MLTDFSHI	2179	8	14	100
NIGGAVAA	1815	8	12	86
NIVDQYL	700	8	12	86
NLWRCDEM	2239	8	12	86
NPSVAAATL	1260	8	14	100
PLGAARA	143	8	11	79
PILYRIGA	1628	8	13	93
PPPSWDM	1605	8	12	86
PPSWDDMW	1606	8	11	79
PWHSQPL	2318	8	11	79
QNGAVML	29	8	12	86
QLAHPQA	336	8	11	79
OPYDQEL	2808	8	12	86
OPGPWPL	78	8	12	86
PHGSAF	2918	8	12	86
PLWFPDL	2811	8	11	79
PLLAPITA	1029	8	12	86
PLVVLATA	1347	8	12	86
PMAVDMMIA	317	8	12	86

HCV 162 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
RMLILATHF	2875	8	12	86
RFDYNNPL	2299	8	11	79
PGGGGN	2243	8	12	86
AVCERQAL	2621	8	14	100
RVESENAV	2252	8	12	86
FVGDRIIV	2100	9	11	79
SIFLALL	175	8	14	100
SLOPFTI	1470	8	14	100
SPGENRV	2931	8	11	79
SPQRVEF	2649	8	11	79
SOLSAPLS	2209	8	13	93
SVAAVLGF	1262	8	14	100
TIMAKHEV	2590	8	11	79
TGFGAYM	1266	8	13	93
TLHGPTPL	1622	8	11	79
TLPGNPAI	1785	8	11	79
TLWARMIL	2871	8	11	79
TPCSQSM	1975	8	12	86
TPSCOPCV	223	8	12	86
TQIVDFSL	1464	11	12	86
TYCARAQ	1597	8	11	79
VIDCNTCV	1456	8	12	86
VLAALAAV	1871	8	12	86
VLCFCYDA	1521	8	13	93
VLDOAETA	1337	8	14	100
VLEDGANY	157	12	12	86
VINFNSVAA	1258	8	14	100
VLVQGMA	1668	8	12	86
VLVNPSPV	1256	8	14	100
VNGESSYGF	2639	8	11	79
VPESDAAA	1940	12	12	86
VQMMNLIL	1916	8	14	100
VVATDAM	1439	8	11	79
WGIVCAA	1898	8	11	79
WTSTWVL	1660	8	12	86
WMAHLJAF	1920	6	14	100
WPQLLLL	798	8	12	86
WLIGSGVL	1665	8	12	86
YLAGLSTL	1779	8	14	100
YPFLVHY	616	8	14	100
YVPESDAA	1939	8	12	86
AISPGALV	1890	9	12	86
ALAHGVRL	150	9	14	100
ALSTGLHL	689	9	12	86
ALVQDVCA	1898	9	11	79

ICY_B62_SuperMolII

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
APPPSWDDDM	1604	9	12	86
APTLWARM	2869	9	11	79
AQGYKVL	1251	9	11	79
AQGYPPHPL	77	9	12	86
AVQWMNRL	1617	9	14	100
CMSADELW	1653	9	11	79
DLCGSFLV	279	9	11	79
DLEVNSTW	1657	9	12	86
DLKQYPLV	132	9	11	79
DLNLPAL	1883	9	11	79
DLVICESA	2772	9	11	78
DLYLVRHA	1134	9	12	86
DPOSGSW	2410	9	11	79
DPRRERAM	111	9	12	86
EIPFYKAI	1377	9	13	93
EMSGGTRV	2245	9	12	86
EVTSIWL	1858	9	12	86
FISGQYLA	1773	9	14	100
FLLAISCL	177	9	12	86
FLLDADARV	728	9	13	93
FQYSPQRV	2646	9	11	79
GIGTMDOA	1393	9	14	100
GLPVOODHL	1552	9	13	93
GLRDLAVAV	968	9	11	79
GLTHDAHF	1589	9	13	93
GPSEGGMOW	1912	9	12	86
GPFLPLYRL	1625	9	14	100
GQVGAVML	28	9	13	93
GVAQALYAF	1863	9	12	86
GYLAALAY	1670	9	12	86
GYNTAGNL	161	9	11	79
GIVRCERMA	2618	9	14	100
GIVRLDEGV	154	9	13	93
HJHQNDV	696	9	12	86
HLPVIEGM	1710	9	11	79
HMWNFSGI	1765	9	13	93
HONWVQY	688	9	11	79
HVGEGAV	1910	9	11	79
ILAQYAGAV	1656	9	11	79
ILSPQALW	1881	9	13	93
KVLYNPVS	1255	9	14	100
LITSSSNW	2815	9	14	100
LIVFDLGV	2812	9	11	79
LLFLLADA	726	9	14	100
LLFNLGGW	1812	9	12	86

HCV D62 Super Motif (No binding data)

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
LPPRGPPL	28	9	13	63
LPAILSPQA	1808	9	13	93
LPALSTGLU	687	9	12	66
LFCEPERDV	2165	9	12	86
LPGCSFSF	169	9	13	93
LVAGMAAL	1687	9	12	86
LVLNPVAA	1257	9	14	100
LVLNLPAIL	1994	9	11	79
LVTIHADVI	1117	9	11	79
LWGVWCAA	1207	9	11	79
NILGGMVA	1515	9	12	86
NITGVRN	1212	9	11	79
NYDGYRLY	70	9	12	86
NLGKVDTL	118	9	12	86
NLPGCSFSI	160	9	13	93
NDQDQVGW	1108	9	11	79
PLGGARAL	143	9	11	79
PILYFLGAV	1626	9	13	93
PPPSWDDMW	1605	9	11	79
PPWVIGQL	2317	9	11	79
POPEYDLE	2807	9	11	79
PYCDHLEF	1554	9	12	86
PYNSHALQNI	2657	9	14	100
QNGAVYLL	29	9	13	93
QLSAPSUKA	2210	9	11	79
QPEDDELI	2808	9	11	79
QPGYPMPLY	78	9	12	86
QPGYQACI	57	9	13	93
RLLAPATAY	1029	9	12	86
RMLMTHIFF	2075	9	12	66
RYCERHMY	2621	9	14	100
RVESERKAV	2252	9	12	86
FMBDGNNY	156	9	12	86
SMLTDPSH	2178	9	14	100
SPGALVVG	1893	9	13	93
SPGRGRVA	2931	9	11	79
SPQRGRFL	2649	9	11	79
SPRGSRPSW	99	9	11	79
SVDCNTCV	1455	9	12	66
TIMAKNEVF	2590	9	11	79
TLMGPTPL	1622	9	11	79
TLPALSTGL	686	9	11	79
TLTGCFADL	125	9	12	66
TLWARMILM	2071	9	11	79
TPLYVRLGA	1627	9	13	93

HCV 162 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
TYDQAEAA	1336	9	1.4	100
VIOITTCGF	122	9	1.2	86
VLEDGNYA	157	9	1.2	86
VLVILLAGY	1852	9	1.1	78
VLVGGVLA	1666	24.0075	1.2	86
VLVLNPSVA	1258	24.0072	1.4	100
YOMWNRUA	1918	9	1.4	100
YGVNCAAI	1898	9	1.1	79
WTSTPAVLV	1680	1.0823	1.2	86
WMNRUJFA	1920	24.0073	1.4	100
WWVGGVLA	1665	40.0075	1.2	86
YPLVGAPI	136	8	1.1	79
YLVAYQATV	1590	1.0817	1.0127	86
YLVTHADV	1136	1.0118	1.2	86
YOTAVCARA	1584	1.0100	1.0107	86
YVDLGSSV	276	1.0100	1.0107	86
YVGQVBFL	637	9	1.3	93
YFPESDAA	1938	9	1.2	86
AISPGALV	1890	24.0101	1.0	86
ALVIGVICAA	1896	10	1.1	79
APPSSDQMV	1604	15.0233	1.0	79
APTLWARMIL	2869	15.0247	1.0	79
AQPGIPWPLY	77	10	1.2	86
AVAYRGLDV	1419	1.0486	1.0	100
AVCTRGVAKA	1188	10	1.1	79
AVOMWNRUA	1917	10	1.4	100
CIRKGVPPL	2941	1.0510	1.2	86
CYTDQDFSL	1462	1.0487	1.0	86
DILAGYGAGV	1855	1.0485	1.0	79
DLEVNTSTWV	1657	1.0490	1.0	86
DLGVRCEDM	2617	1.0489	1.0	93
DLSQDSMSTV	2412	1.0489	1.0	79
DLYNLLPAIL	1803	1.0891	1.0	79
DOAETGARL	1339	10	1.2	86
DYKPRGGQI	21	1174.01	1.0	86
ELTSQSSNV	2014	1.0506	1.0	100
EOPKOKALGL	1731	1.0506	1.0	86
EVNSTWMLV	1650	1.0491	1.0	86
QLSAFSHSY	2921	1.0509	1.0	79
GLSTIPGNPA	1782	1.0488	1.0	100
GLTHDAHFL	1569	15.0240	1.0	93
GPGEGBANQMM	1912	10	1.2	86
GQWGGYLL	29	10	1.3	93
GVCTWVYHGA	1081	10	1.1	79
GVRCVCKHAI	2619	1.0504	1.0	100

HCV_B62_Super Motif

Sequence	Position	Peptide No.	No. of Amino Acids	Sequence Frequency	Conservancy (%)
HONNDVON	681	10	11	11	79
LAGYVGAGVA	1856	10	11	11	79
ILGGWVAQOL	1818	10	12	86	86
IMARNEYFCV	2591	10	11	11	79
KYKLAGLSTL	1777	10	11	14	100
NFPDQGVVR	2813	10	10	11	79
KPTLHGFTPL	1620	10	10	11	79
KVDLTICGF	121	10	12	86	86
KVLVLPNSVA	1255	10	14	14	100
LFNLGGVV	1812	10	12	86	86
LLPAISLPGA	1887	10	13	93	93
LMGYPLVGA	133	10	11	79	79
LPNAISPGAL	1888	10	13	93	93
LPGCSFSFL	169	10	13	93	93
LPRGSPFLGV	37	10	13	93	93
LPVCDCHLEF	1553	10	12	86	86
LYVQYATVCA	1591	10	12	86	86
LVQLAGYGA	1853	10	11	79	79
LVGGVLAJA	1867	10	12	86	86
LVGVYCAAI	1897	10	11	79	79
MLTDSRHTTA	2170	10	14	100	100
NPGCGSFIF	168	10	13	93	93
NPSVAAVQF	1260	10	14	100	100
PITYSTGKF	1295	10	11	79	79
PLGGALARLA	143	10	11	79	79
POPEFDLBU	2807	10	11	79	79
PVQODHLEFW	1554	10	12	86	86
PNSVNLGMI	2857	10	14	100	100
PVYCFTPSV	508	10	13	93	93
QUPCEPEFOV	2164	10	12	86	86
QPEKGGRPA	2801	10	11	79	79
RHGSASFL	2918	10	11	79	79
RIVMPDQGV	2611	10	12	86	86
RMWDMMMNW	317	10	11	79	79
RLLEDGNTYA	158	10	12	86	86
SLSYSPGEI	2826	10	10	10	93
SLTCRKKNV	1051	10	11	79	100
SPGALVGV	1693	10	11	79	79
SOLSPSLKA	2200	10	11	79	79
SOPRGRRPQ	56	10	13	93	93
SVAATLGFGA	1262	10	14	100	100
THGTTPLLY	1622	10	11	79	79
TLFMQLGW	1811	10	12	86	86
TLPALSTGLI	686	10	11	79	79
TLCGFADLM	125	10	12	86	86

HCV_B62_Sugier Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
TPCTCOSOL	1126	10	11	79
TPLLYRQAV	1627	10	13	93
TPVNSWLGNI	2850	10	12	86
TVDLSDPITF	1466	10	10	86
VIOTLTCFA	122	10	10	86
VLAALAAAYCL	1671	10	10	86
VLDQELETAGA	1337	10	10	86
VLNPSVAATL	1258	10	10	100
VLTTSGGNTL	2737	10	11	79
VLVGGVIAAL	1666	10	12	86
VLVLMPSVAA	1256	10	14	100
VMGSSTGFDY	2638	10	12	86
VPESDIAARY	1940	10	11	79
VQWMTNLIAF	1818	10	12	86
VVAVNCAIL	1698	10	14	100
WWLVGGVIAA	1665	10	12	86
YLGSSGGPL	1165	10	12	86
YLPPRQPRPL	35	10	13	93
YLVTBHDVI	1136	10	11	79
YVGQDGSYF	276	10	12	86
ALVVGIVGAJ	1896	11	11	79
APTGSIGKSTKV	1235	11	13	93
APTLWARMILM	2869	11	11	79
AQAPPASHDOM	1602	11	12	86
AVCTRGVYAKAV	1188	11	11	79
AVYVNNRLIAF	1917	11	14	100
DLAGTGAGVA	1855	11	11	79
DLEVSTWML	1657	11	12	86
DLGIVRCEKMA	2617	11	13	93
DLMGIPLVGA	132	11	11	79
DLYLVTHADY	1134	12	12	86
DQAETAGARLV	1339	12	11	79
DVKFRGGCON	21	12	14	100
EOKRKAGLIL	1731	12	11	79
FISGIGITLAGI	1773	14	14	100
FLAGGGSSCGA	1304	12	11	79
FRGGGCGGGGV	24	14	14	100
FQYSPQRQRF	2646	11	11	79
GIOYLAGLSTL	1778	14	14	100
GLPVCOOHLEF	1552	12	86	86
GLSTLPGNPAJ	1782	11	11	79
GPTPLLYRQLA	1625	13	93	93
GPVYCFPSPV	507	12	12	86
QVLAALAAAYCL	1670	14	14	100
QVRAECKMAY	2619			

HCV 1162 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
GIVMEDEGY	154	12	B6	76
H1HQNDVQY	696	11	11	79
HMMNFSQIY	1769	13	93	93
HONNDVQY	698	11	79	79
HAGPSEGAVW	1910	11	11	79
ILGQWVAQLA	1616	12	B6	B6
ILGIGTLDQA	1331	12	B5	B5
LSPGALWGV	1691	13	93	93
KPAELVFPDL	2608	11	79	79
KPTLHCPTPL	1820	11	79	79
KOKALGLDTA	1734	12	86	86
KVDTLTCGFA	121	12	86	86
KVLYLNPSVAA	1255	14	100	100
LAFASGRGNHV	1924	14	100	100
LITSCSNSV	2815	14	100	100
LVPFDLQFV	2612	11	79	79
LLFLLLADARV	726	13	93	93
LLFNILQWVA	1612	12	86	86
LIPAISSPGAL	1687	13	93	93
LPPTRPPLGV	36	13	93	93
LSPRGSRPSW	87	11	79	79
LLWRCRGGNN	2240	12	86	86
LPAILSPGALV	1688	12	86	86
LPALSTGLHL	687	12	86	86
LPOCSFSFL	168	13	93	93
LPVCOCHLEFW	1553	12	86	86
LVGGVLAALA	1667	12	86	86
LVNPSVAAVL	1257	14	100	100
LVTRHADIVP	1137	11	79	79
LVVGVCIAIL	1697	11	79	79
NIDGWAAQL	1615	12	86	86
NTRVSEENKV	2249	12	86	86
NLIPAISSPGA	1686	13	93	93
NLGCSFSFL	180	13	93	93
PITYSTYGRFL	1285	11	79	79
PLEGEFGDPL	2403	13	93	93
PMQFSIDTMCF	2667	11	79	79
PPSMQDAMKCL	1606	11	79	79
PWSNLQHIM	2857	12	86	86
PYVCFPSPVW	508	13	93	93
RANVGGVEHFL	835	13	93	93
RCENKGMTAV	2243	12	86	86
RVCEMAYDV	2621	12	86	86
SIFLLALLSCL	175	12	86	86
SMLTDPSHTA	2176	14	100	100

ILCV B62 Super Motif

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
SPTMVPESDA	1835	1	12	86
SCQPEPERDV	2163	1	12	86
SVAATIGFGBAY	1262	1	14	100
TLGEGAYMSKA	1266	1	12	86
TLFNLUQWVY	1811	1	12	86
TPCTCGSSDLY	1126	1	11	79
TRGLPVCCDLH	1550	1	13	83
TPVNSVHLGNII	2858	1	12	86
TVLDOAETAGA	1536	1	12	86
VLCCEZYDASCA	1521	1	11	79
VLVDILAGYGA	1852	1	11	79
VLVGGVLAALA	1666	1	12	86
VOPEKGGRKPA	2000	1	11	79
VOWMNRJAFV	1918	1	100	100
WVCAANLRHV	1801	1	11	79
WWLVGGVLAAL	1665	1	12	86
YKGSSGGPLL	1165	1	12	86
YLVAYOATYCA	1590	1	12	86
YQATVCARQIA	1594	1	11	79
YVGOLGSVRL	276	1	12	86
YVPESDAARV	1939	1	12	86
	426			

Table XV
ICV_A01 Motif with Binding Information

Sequence	Position	Amino Acids	Sequence Frequency	Conservancy (%)	A'0101
		No. of Amino Acids			
ASFQSPY	166	26.0026	0	100	
DNSVMSRY	737	20.0255	10	10	0.0001
FAAPFTCGY	631	20.0254	10	19	0.0880
GFAAPFTCGY	630		11	19	
GRETLEY	140		0	15	75
GYSNFMGY	579	2.0058	9	17	85
HTLWKAGILY	149	1069.04	10	20	100
KDRAFTSPTY	653	20.0256	10	19	95
LLDTASALY	30	1069.01	9	17	85
LSDVSAFY	415	1090.07	10	19	95
LTFGRRETLEY	137		11	15	75
MWWYWWGPSLY	360	1039.01	10	17	85
MSTTDEAY	103	2.0126	9	15	75
NSVLSRKY	738	2.0123	9	18	90
PLOKIKIPY	124	1147.12	9	20	100
PLDKGKIPYY	124	1069.03	10	20	100
PTTGRTSLY	797	1090.09	9	17	85
SASFQSPY	165		9	20	100
SLDVSAFY	416	1069.02	9	19	85
STTDEAY	104		0	15	75
TTGRTSLY	798	26.0030	0	17	85
WLSLDVSAFY	414	20.0551	11	19	95
WMMHWNIGPS	359	1039.06	11	17	85
YPALMPLY	640	19.0014	0	19	95
YSLNFMGY	580	26.0032	0	17	85

Table XVI IUCY Δ 03 Moll with Blinding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency (%)	Conservancy (%)	A ⁺ 0301
AACNMTGER	647	10	12	86	
AARALAGVRA	147	10	11	79	
AATLGIGA	1204	0	14	100	
AATLGFAY	1264	9	14	100	
AAVCTRGVA	1187	9	11	79	
AAVCTRGVAK	1107	10	11	79	
AAVCTRGVAK	1107	11	11	79	
ACNMTGER	648	9	12	66	
ADGGCGGAA	1306	9	11	79	
ADGGCGGAA	1306	10	11	79	
ADVIPVAR	1142	0	12	06	
ADVIPVAR	1142	9	11	79	
AFASRGNH	1926	0	14	100	
AGALVFK	1065	0	12	66	
AGANLVLA	1344	9	12	06	
AGARLWLAIA	1344	11	11	79	
AGLSLTPGPA	1701	11	14	100	
AGVAGALVA	1062	9	12	66	
AGVAGALVAF	1062	10	12	66	
AGVAGALVAFK	1062	11	12	66	
AGWLSPR	94	0	12	66	
AGWLSPRASR	04	11	12	66	
AGYGAGVA	1050	0	12	66	
AGYGAGVAGA	1050	10	12	66	
ALGLLQTA	1737	0	12	06	
ALSTGIIH	009	0	12	06	
ALSTGIIHLI	610	10	12	66	
ALVGVVCA	1096	9	11	79	
ALVGVVCAA	1096	10	11	79	
ASLMARTA	1793	0	11	79	
ASOLSAPSLK	2208	10	11	79	
ASOLSAPSLK	2208	11	11	79	
ASRGNHNSPHT	1928	12	12	06	
ASSASASLSA	2204	10	14	100	
ATGNLPCSF	165	10	13	93	
ATLGFAY	1205	6	14	100	
ATLGFAYMSK	1265	11	12	66	
ATRKTSER	48	0	11	79	
ATVCARAQA	1596	9	11	79	
AVCTRGVA	1108	6	11	79	
AVCTRGVA	1108	9	11	79	
AVCTRGVAK	1188	10	11	79	
AVCTRGVAK	1188	10	11	79	
AVQWVANRLIAF	1917	10	14	100	
CAAILRH	1903	8	13	93	

ICV A01 Mail with Blinding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'0301
CAYWELTPA	1530	9	11	79	
CGFADLNGY	120	9	13	93	
CQMTLTCY	2742	8	11	79	
CSSDLVLRV	1130	11	11	79	
CCYRRCRA	2727	6	14	100	
CLRKGVPLR	2941	11	12	86	
CSFSIFLLA	172	9	14	100	
CSSNVSYA	2819	8	14	100	
CSSNVSYAH	2819	9	12	86	
CTCGSSDLY	1120	9	11	79	0.0001
CTRGVAKVA	1190	0	11	79	
CTRGVAKAVDF	1190	11	11	79	
CTWMASTGFK	555	9	11	79	
CTWMASTGFK	555	11	11	79	0.7600
CVDPESKGR	2509	9	11	79	0.0008
CVOPERGPK	2509	10	11	79	0.0011
CVTODIVF	1462	8	12	86	
DAIFLSQT	1574	9	14	100	
DOLVVICESA	2771	10	11	79	
DSFLDPTF	1460	0	14	100	
DGCCSGGA	1307	0	11	79	
DGGCSGGAY	1307	9	11	79	
DINCDECH	1310	9	12	86	
DILAGYGA	1055	8	12	86	
DILAGYGGVVA	1055	11	11	79	
DQGVIVCEK	2617	9	13	93	0.0003
DQGVIVCEKMA	2617	11	13	93	
DLMGYPIVGA	132	11	11	79	
DVNLLPA	1803	8	11	79	
DLVVICESA	2772	9	11	79	
DLYLVTRH	1134	8	12	86	
DLYLVTRH	1134	9	12	86	
DTLICGFA	124	8	12	86	
DVPPVIRR	1143	8	11	79	
EAMITRSA	2784	8	14	100	
ECDAGCGA	1524	0	11	79	
ECDAGCGAWY	1524	10	11	79	
EDLVNLPA	1882	9	11	79	
EGAVOMNMR	1915	9	14	100	
EIPFYGKA	1377	0	13	93	
EMGANTRA	2245	8	12	86	
ETAGARLVLWA	1342	11	12	86	
ETTMRSVPF	1207	9	12	86	
EVFGVOPEK	2506	9	12	86	0.0008
FCVOPERGCR	2598	10	11	79	

ILCY Δ03 Motif with Bindline Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	AΔ0301
FCVOPENGPK	2590	11	11	79	
FGAYMSKAH	1269	8	12	86	
FGCTWMNSTGF	1269	9	12	06	
FGYGAKDWR	553	11	11	79	
FISGIOYLA	2654	9	12	86	0.0008
FLAGGCGSGCA	1773	9	14	100	
FILLADAR	1304	11	11	79	
FSYDTRCF	728	8	14	100	
FTEAMTRYA	2670	8	11	79	
FTGLTHIDAH	2792	8	14	100	
FTGLTHIDAH	1567	10	14	100	
FTGLTHIDAH	1567	10	10	100	
GAARALAH	146	0	11	79	
GAARALAHGIVR	146	11	11	79	
GAGVAGALVA	1061	10	12	06	
GAGVAGALVAF	1061	11	12	86	
GAHWGVLA	350	8	12	86	
GALWVGIVCA	1895	10	11	79	
GALWVGIVCAA	1095	11	11	79	
GARLUVLAA	1345	8	12	06	
GARLUVLATA	1345	10	11	79	
GAVONWNRJIA	1016	0	14	100	
GAVONWNRJIA	1916	11	14	100	
GAYMSKAH	1270	0	12	06	
GCANYELTPA	1529	10	11	79	
GCSFSIFLLA	171	10	14	100	
GCTWMNSTGF	554	10	11	79	
GDLUVICESA	2770	11	11	79	
GLOGSVF	278	8	12	86	
GFDQLMGY	129	8	13	93	
GFFGAYMSK	1288	8	12	86	
GFFGAYMSKA	1288	9	12	86	
GFFGAYMSKAH	1268	10	12	06	
GFOYSFQAR	2645	9	11	79	
GFSYOTRCF	2669	9	11	79	
GGAAATLAA	145	8	11	79	
GGANIALAI	145	9	11	79	
GGCGCGAY	1300	0	11	79	
GGCGCGGW	26	10	14	100	
GGIIVQWMA	935	8	11	79	
GGCIVGCVY	27	9	14	100	
GGFL-LFQH	1392	9	14	100	
GGFL-LFQSK	1392	11	14	100	

ICY_{A91} Motif with Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'0301
GGIKPARLIVF	2005	11	11	79	
GGVLAALAA	1609	8	12	88	
GGVLAALAA	1609	9	12	86	
GGVLAALAY	1609	10	12	86	
GGYLPLPR	32	8	13	93	
GGYLPLPR	32	9	13	93	0.0003
GGWVAALQIA	1818	9	12	86	
GIGYLDQIA	1033	9	14	100	
GIKLPLRN	3037	6	11	79	
GLPVCOOH	1552	6	13	93	
GLPVCOOLFF	1552	11	12	06	
GLPVSAARR	1004	0	11	79	
GLDGLAVA	968	0	11	79	
GLSAFSLH	2921	0	11	79	0.0100
GLSFSLHSY	2021	10	11	79	
GLSTLPGNPA	1782	10	14	100	
GLTHIDAH	1569	0	13	93	
GLTHIDAHF	1569	9	13	93	
GSGKSTKVPA	1238	10	12	86	
GSGKSTKVPA	1238	11	12	86	
GSSDLYLVR	1131	10	12	86	
GSSDLYLVRH	1131	11	12	86	
GSSYCFQY	2041	0	11	79	
GTFPINAY	2003	0	11	79	
GTVLDONETA	1335	10	14	100	
GVAGALVA	1063	0	12	86	
GVAGALVAF	1063	9	12	06	0.3800
GVAGALVAFK	1003	10	12	06	
GVAKAVDF	1193	0	11	79	
GVCMWVYH	1081	8	11	79	
GVCMWVYH	1081	10	11	79	0.0014
GVGYLLPNR	3035	10	12	86	
GVLAALAA	1670	8	12	86	0.0046
GVLAALAY	1670	9	12	86	
GVFRATRKTSER	45	11	11	79	
GVRYCEKMA	2618	9	14	100	
GVVCCEMAY	2618	11	14	100	
GVRLLEDVNY	154	11	12	06	
GVVCAALRIL	1900	9	11	79	
GVVCAALRIL	1900	10	11	79	
GVVCAALRIL	1900	11	11	79	
GVYLILRA	33	8	13	93	
GVYLIPRGP	33	11	13	93	
HADVIPVR	1141	6	11	79	
HADVIPVR	1141	9	11	79	

LICV Δ Q3 Motif with Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)
		A ⁰ 301		
HADYIPYRRR	1141	11	79	
HAPTGSCK	1234	14	100	
HAPTGSKSTIK	1234	13	93	
HGLSAFSQH	2920	9	11	79
HGLSAFSLHSY	2920	9	11	79
HGPITPLLY	1824	9	11	79
HGPITPLLYA	1624	9	11	79
HIDAVIILSQTK	1572	14	100	0.5900
HILHAPTCGSK	1232	10	12	86
HJFONIVDQY	696	11	11	79
HJFCHISK	1305	9	14	100
HJFCHISKK	1395	9	14	100
HJFCHISKK	1395	10	14	100
HMMNFISQY	1769	11	13	93
HSKKKKDELAA	1400	10	14	100
HSKKKKDELAA	1400	11	14	100
HSYSPGENR	2928	10	11	79
HTPGCCYCVR	222	10	11	79
HPGPGCEGA	1810	8	11	79
IAFASHIGM	1925	9	14	100
IDAHFLSOTK	1573	10	14	100
IDTLTCGF	123	8	12	86
IFCHLSKKK	1397	9	12	86
IGTVLOOA	1334	8	14	100
IGTVLDDQAEATA	1334	8	14	100
IIICDECI	1317	6	12	86
ILAGYVGVA	1050	10	11	79
ILGGCVVVA	1016	8	12	86
ILGGWVAAGLA	1616	11	12	86
ILGIGTVLOOA	1331	11	12	86
IMAKVIEVF	2591	0	12	86
ISGIOYLA	1774	0	14	100
ITRECEENK	2250	9	12	86
ITSCSSNIVSYVA	2816	11	14	100
ITWGADTA	909	8	12	86
ITWGAOTAA	909	9	12	86
ITYSTYGK	1296	8	12	86
ITYSTYGF	1296	9	12	86
ITYSTYGEKA	1296	11	11	79
IVDQVLY	701	0	12	86
IWPFCGVRA	2613	9	11	79
NGGYVLLPRA	30	10	13	93
NGGGYVLLPRA	30	11	13	93
KALGGLQIA	1736	9	12	86

ICCV AV3 Model with Blinding Information

Position	Sequence	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'0301
1404	KCDELAAK	8	12	86	
	KFGYGAOKDR	10	12	86	
2553	KGGFRHIF	8	11	79	
1391	KGGFRHIFCH	10	11	79	
2604	KGGRKPKPAR	8	11	79	
2944	KLGVPPPLR	8	12	86	
1241	KSTKVPAAA	8	12	86	
1241	KSTKVPAAY	9	12	86	0.0009
1241	KSTKVPAAYA	10	12	86	
1241	KTKFINTNRA	9	12	86	
10	KTKFINTNRA	9	12	86	0.0110
1241	KTKFINTNRA	11	11	79	
10	KTKFINTNRA	0	12	86	0.1600
1241	KTKFINTNRA	9	12	86	
51	KTSERSOPRA	9	13	93	
51	KTSERSOPRGR	11	12	86	
121	KVIDLTGCF	10	12	86	
121	KVIDLTGFA	11	12	86	
1255	KVVLVNPSVVA	10	14	100	
1255	KVVLVNPSVVA	11	14	100	
1244	KVPAAYAA	8	11	79	
1305	LADGGCGSGA	10	11	79	
1305	LADGGCGSGAY	11	11	79	
1729	LAEOFKOK	0	12	86	
1729	LAEOFKQKA	9	12	86	
1057	LAGYGAGWA	9	11	79	
1057	LAGYGAGWAGA	11	11	79	
1522	LCECYDAGCA	10	11	79	
1330	LDOQETAGA	9	12	86	
1330	LDOQETAGAN	10	12	86	
727	LFLLLADA	0	14	100	
727	LFLLLADAR	9	14	100	
1013	LFNLGGWVA	10	12	86	
1813	LFNLGGWVA	11	12	86	
290	LFTFSPIR	8	11	79	
1287	LGFGAYASIK	9	12	86	0.0810
1287	LGFGAYMSKA	10	12	86	
1267	LGFGAYMSKA	11	12	86	
1813	LGGAARALA	9	11	79	
144	LGGAARALAH	10	11	79	
144	LGGMWNAQOLA	10	12	86	
1017	LGQTIVLDDA	10	13	93	
1332	LGQTIVLDDA	10	12	86	
44	LGVRATRK	8	12	86	
2618	LGVTVCERK	8	14	100	
2618	LGVRVCEKMA	10	14	100	
1924	LIAFASRGNH	10	14	100	
2235	LIEANLLWR	9	12	86	0.0008

MCCYΔ03 Motif with Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'0301
LIFCHSKK	1390	0	14	100	0.5400
LIFCHSKKK	1396	9	14	100	
LINTGSGWH	414	9	11	79	0.0003
LNFPIQGVRA	2612	10	11	79	
LLAPITAY	1030	8	14	100	
LLFLLLADA	726	9	14	100	0.0016
LLFLLLADAR	726	10	14	100	
LLFNIGGWA	1812	11	12	86	
LLPAISPGAA	1807	10	13	93	0.0003
LPNPGPR	30	6	13	93	
LSFRGSR	97	0	12	06	
LMGYPLVGA	133	10	11	79	
LSKFSLHISY	2922	9	11	79	0.0002
LSAPSLKA	2211	0	11	79	
LSNSLIRH	2479	0	12	06	
LSNSLRAHH	2479	9	12	06	0.0003
LSTGLIHLH	690	9	12	06	
LSTLPGNPA	1703	9	14	100	
LTCGFADOLMGY	126	11	12	06	
LTDPSSHTA	2100	9	14	100	
LTHIDAKF	1570	8	13	93	
LTSMLIDPSH	2176	10	13	93	
LVAYOKVCA	1591	10	12	86	
LVAYOKVCAAR	1591	11	11	79	
LVDILAGY	1053	0	11	79	
LVDILAGYOA	1053	10	11	79	
LVGGWIA	1667	0	12	06	
LVGGVIAALA	1607	10	12	86	
LVGGVLAALAA	1667	11	12	06	
LVLNPSSVA	1257	0	14	100	
LVLNPSSVA	1257	9	14	100	
LWGVCA	1897	0	11	79	
LWGWCA	1097	9	11	79	
LWICESAA	2773	8	11	79	
MGFSYDTRR	2668	8	11	79	
MGFSYDTRCF	2660	10	11	79	
MGSYYGFOY	2640	9	11	79	
MGYIPLYCA	134	0	11	79	
MILMTIFF	2076	0	12	86	
MLTDPSSHTA	2179	10	14	100	
MSTNPKEON	1	9	11	79	
MSTNPKEOK	1	1	11	79	
NGCYRCCR	2726	0	8	79	
NGCYRCCR	2726	9	8	79	
NCSNPGH	305	8	8	79	

IICY_A03 Motif with Blunting Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'0301
NFISGIOY	1772	6	14	100	
NFISGIOYLA	1772	10	14	100	
NGVCNTVY	1000	0	11	79	
NGVCNTVYH	1000	9	11	79	
NGVCNTVYH	1000	11	11	79	
ILIGGWWAA	1815	8	12	86	
ILIGGWWAA	1815	9	12	86	
ILIGGWWAA	2249	10	12	86	0.0010
ILIGGWWAA	700	9	12	86	0.0005
ILPPLNLSPGA	1006	11	13	93	
ILPGCSEIF	160	10	13	93	
ITCVTQIVDF	1460	10	12	86	
ITNRAPPODK	14	10	11	79	0.0010
ITNRAPPODKF	14	11	11	79	
ITPGPVODKH	1549	11	13	93	
PAILSPGA	1008	8	13	83	
PALSTGLIH	609	9	12	86	
PALSTGLIH	609	11	12	86	
PGCESMR	1976	8	11	79	
PGCGSSDLY	1127	10	11	79	
PGCGVTCER	2616	10	13	93	
PGALUVGVICIA	1094	11	11	79	
PGCSFESIF	170	8	14	100	
PGCSFSIFLA	170	11	14	100	
PGCVPCVA	224	0	12	86	
PGEAVAVWMMR	1913	11	13	93	
PGEINRVA	2932	0	11	79	
PGERIPSGMF	1509	9	12	86	
PGGGCNGCY	25	11	14	100	
PGLPVODKH	1551	9	13	93	
PGYPWRY	79	8	14	100	
PITYSTYCK	1295	9	11	79	
PITYSTYCKF	1295	10	11	79	
PLGGAAARA	143	0	10	11	
PLGGAAARA	143	10	11	79	
PLGGAAARA	143	11	11	79	
PLLYRQIA	1628	0	13	93	
PMGESYOTR	2667	9	11	79	
PMGESYOTRCF	2067	11	11	79	
PSPVWGTDR	514	11	13	93	
PSVAATLGF	1261	9	14	100	
PSVAATLGF	1261	11	14	100	
PSWDOAMK	1607	8	11	79	
PTDCFRKH	507	0	13	93	
PTDPFRSH	109	9	12	86	0.0008

LICV Δ03 Mult with Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A.0301
PTGGGKSTK	1236	9	13	93	0.0002
PTHYPPESDA	1935	10	12	86	
PTHYPPESDA	1936	11	12	86	
PTLHQPTPLY	1621	11	11	79	
PTPLYLQGA	1626	10	13	93	
PVODQLEF	1554	9	12	86	
PWVGTTDR	518	9	13	93	0.0008
QAEFLAGAR	1340	8	12	86	
QATYCARA	1595	8	13	93	
QATVCAKQKA	1595	10	11	79	
QWGGVVLLPR	29	11	13	93	
QLTIFSPN	209	9	12	86	
QLTIFSPN	209	9	11	79	0.7500
QLTRIPQA	336	6	12	86	
QLSATSLX	2210	6	11	79	
QLSATSLX;	2210	9	11	79	
QYDFFELDPTF	1465	11	12	86	
RHAACVCTGVA	1166	10	11	79	
RHAACVCTGVA	1166	11	11	79	
RALAHGYN	149	8	14	100	
RATRKTSER	47	9	11	79	
RGMHVSPTH	1930	9	12	86	
RGNRNSPHTY	1930	10	12	86	
RGPGLGVRA	40	0	13	93	
RGPGLGVRA	40	9	13	93	
RGPGLGVRA	40	11	11	79	
RGRHOPMK	59	9	13	93	0.0120
RGSLLSPR	1154	0	12	86	
RGWAKAVDF	1182	9	11	79	
RIGVYDTR	43	8	11	79	
RIGVYDTR	43	9	11	79	0.9400
RHGULSAF	2918	6	12	86	
RHGULSAFSLH	2918	11	11	79	
RUIAFASPR	1923	8	14	100	
RUIAFASRGNH	1923	11	14	100	
RUNFPDLGVR	2611	11	11	79	
RLLAPITA	1029	0	12	86	
RLLAPITA	1029	0	12	86	2.7000
RLVVLATA	1347	0	12	86	
RMILMTHF	2075	6	12	86	
RMILMTHF	2075	9	12	86	
RMYGGVNDI	635	9	14	100	
RMYGGVNDI	635	10	14	100	0.7200
RSQPHENF	55	8	13	93	
RVCEKMLY	2621	9	14	100	0.1800

HCY_A03 Motif with Blinding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'0301
RMEDGNY	156	1174.17	9	12	86
RVLEDGVNYA	156		10	12	86
SAFSLHIV	2023		0	11	79
SASQSLAPSILK	2207		11	11	79
SCSSNVSAVA	2016		9	14	100
SCSSNVSAVA	2818		10	12	86
SDLYLVTRH	1133		0	12	86
SDLYLVTRH	1133		9	12	86
SDLYLVTRH	1133		10	12	86
SFSIFLLA	173		6	14	100
SGKSTKVPA	1239		9	12	86
SGKSTKVPA	1239		10	12	86
SGKSTKVPA	1239		11	12	86
SMLIDPSI	2170		0	14	100
SMLIDPSHITA	2170		1	14	100
SSASQLSA	2206		0	14	100
SSDLYLVTR	1132		9	12	86
SSDLYLVTRH	1132		10	12	86
SSDLYLVTRH	1132		11	12	86
SSNVSVAH	2820		0	12	86
SSSASQLSA	2205		9	14	100
STGLHLH	691		8	12	86
STKVPAAV	1242		0	12	86
STKVPAAV	1242		9	12	86
STKVPAAV	1242		10	11	79
STLPQNPRA	1704		0	14	100
STNPKPDK	2		0	11	79
STNPKPDK	2		9	11	79
STPKPKRTK	1863		11	11	79
STWVLVGGLA	1299		11	12	86
STYGHFLA	1262		8	12	86
SVAATLGF	1262		0	14	100
SVAATLGFGA	1262		10	14	100
TAGARLVLVA	1343		11	14	100
TCGFADLQY	127		10	13	93
TCGSSDLY	1129		0	11	79
TCVLTQVDF	1461		9	12	86
TDPNRSR	110		0	12	86
TOPSILITA	2101		0	14	100
TGEPPFYKG	1375		9	11	79
TGEPPFYKG	1375		10	11	79
TGLTHIDIA	1560		8	13	93
TGLTHIDIAH	1568		9	13	93
TGLTHIDIAHF	1568		10	13	93

IICV Δ 01 Motif with Binding Information

Position	Sequence	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A ⁺ 0301
166	TGNPOCSF	9	17	82	
1237	TGSGKSKTK	8	13	93	
1217	TGSGKSKTKPA	11	12	06	
2530	TIMAKNEVF	9	11	79	
1268	TLGFGAYMSK	10	12	86	0.0810
1266	TLGFGAYMSKA	11	12	86	
1622	THGPTPLLY	10	11	79	0.0880
1622	THGPTPLLYA	11	11	79	
806	TLPALSTGLIH	11	11	79	
2071	TLWARMILMTH	11	11	78	
2017	TSCSSNVSAVA	10	14	100	
2017	TSCSSNVSAHA	11	12	06	
52	TSERSOPR	8	13	93	
52	TSERSOPRGN	10	12	06	
52	TSENSOPRGRN	11	12	06	
1050	TSLTGRDICK	0	12	06	
2177	TSMLIDPSH	9	13	93	0.0003
2589	TTIMAKNEVF	10	11	79	
1208	TTMRSPYIF	8	12	86	
1597	TVCARAOA	8	11	79	
1400	TVDFSLDPTF	10	12	86	
1336	TVLDOAETA	9	14	100	
1530	TVLDQNETAGA	11	12	86	
1203	VANLIGFQIA	9	14	100	
1203	VATLGIFGAY	10	14	100	
1004	VAGALVAF	0	12	06	
1064	VAGALVAFK	9	12	86	0.2400
1502	VAYOATVCA	0	12	06	
1592	VAYOATVCAI	10	11	79	
1592	VAYOATVCAH	0	11	79	
1902	VCAAILRR	0	11	79	
1902	VCAAILRH	9	11	79	
2622	VCEKMLAY	8	14	100	
505	VCGPYCF	0	13	93	
1555	VDFSLDPTF	0	12	86	
1109	VCTRGVAK	8	11	79	
1109	VCTRGVAKA	9	11	79	
1002	VCWRNYIGA	9	11	79	
1467	VDFSLDPTF	9	14	100	
1054	VDLAGYGA	9	11	79	
614	VDYPYFLWH	9	13	93	
614	VDYPYFLWHY	10	13	83	
2597	VFCVOPEK	8	12	86	
2597	VFCVOPEKGGR	11	11	79	
2614	VFPDQGVR	9	11	79	

IICYΔ03 Motif with Blinding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'0301
VFTGLTHDA	1566	10	13	93	
VFTGLTHDAH	1566	11	13	93	
VGDQCCSYF	277	9	12	86	
VGGVLAALA	1668	9	12	86	
VGGVLAALAA	1668	10	12	86	
VGGVLAALAAV	1668	11	12	86	
VGGVLLPR	31	9	13	93	0.0003
VGGVYLPR	31	10	13	93	
VGGVYLPRR	3036	9	11	79	0.0007
VGYLTLPH	1099	10	11	79	
VGVVCAMLR	1099	11	11	79	
VGVVICAMLR	1099	11	11	79	
VIDLTCGF	122	9	12	86	
VIDLTCGF	122	10	12	86	
VLDAAETAA	1671	0	0	0	
VLDAAETAA	1671	11	12	86	
VLCECYDA	1521	0	0	0	
VLCECYDAGCA	1521	11	11	79	
VLDDAETA	1337	0	0	0	
VLDDAETAGA	1337	10	12	86	
VLDDAETAGA	1337	11	12	86	
VLEDGVNY	157	0	0	0	
VLEDGVNYA	157	9	12	86	
VLNPSVAA	1260	0	0	0	
VLTSMLTDPSH	2176	11	13	93	
VLVDILAGY	1052	10	11	79	
VLVDILAGYGA	1052	11	11	79	
VLVGGVLA	1000	11	12	86	
VLVGGVLA	1066	10	12	86	
VLVGGVLA	1066	11	12	86	
VLVLTNSVA	1256	0	0	0	
VLVLTNSVA	1256	10	14	100	
VMGSSYGF	2039	0	0	0	
VMGSSYGFQY	2639	10	11	79	
VTRHADVIPVR	1130	0	0	0	
WVCAAILR	1901	8	9	79	
WVCAAILR	1901	9	9	79	
WVCAAILRH	1901	10	11	79	
WGVVCAA	1098	0	0	0	
WGVVCAAILR	1098	11	11	79	
WNGTIDR	517	0	0	0	
WAGMILSPA	93	9	12	86	
WAKIKMNIF	1766	8	12	86	
WAQGPYPAPLY	76	11	12	86	
WANMILMTH	2073	0	0	0	
WARMKTHF	2873	10	12	86	
WARMILMTHF	2873	11	12	86	

HCVΔ01 Mabs with Building Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A*0301
WGPTOPR	107	0	12	88	
WGPTOPR	107	9	12	86	
WGPTOPRNSA	107	11	12	86	
WLLSPRGSR	98	9	12	86	0.0008
WMNRLIAF	1920	8	14	100	
WMNRLIAFA	1920	9	14	100	0.0003
WMNRLIAFSA	1920	11	14	100	
WMNSTGFTK	557	9	11	79	0.0530
WLVLGGVLA	1605	9	12	86	
WLVLGGVLA	1665	10	12	86	
YATGNLPGCSF	164	11	12	86	
YDAGCAYV	1526	0	11	79	
YDIIICDECH	1315	10	12	86	
YGAGVAGA	1060	0	12	86	
YGAGVAGALVA	1060	11	12	86	
YGFQYSPQQR	2614	10	11	79	
YLPRARGPR	35	9	13	83	0.0054
YLVATOATVCA	1590	11	12	86	
YSPEINR	2930	8	11	79	
YSPEINRVA	2930	10	11	79	
YSPGQMFVF	2648	9	11	79	
YSTYOKFLA	1298	9	12	86	
YWGDLGSVF	276	10	12	86	
YGGVBFR	637	0	14	100	
YVPESDAIA	1939	0	12	86	
YVPESDAA	1938	9	12	86	
YVPESDAAI	1939	10	12	86	0.0003
	567				

Table XVII HCV All Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'1101
AACWTRGER	647	10	12	86	0.0140
AARLAHGVR	147	10	11	79	
AATLFGAY	1284	9	14	100	
AAVTRGVAK	1197	10	11	79	
ACWTRGER	648	9	12	86	
ADGCCGGAY	1308	10	11	79	
ADVIPVAR	1142	8	12	86	
ADVIPVAR	1142	9	11	79	
AFASRQNH	1926	6	14	100	
AGALVAFK	1065	0	12	86	
AGVAGALVAFK	1092	11	12	86	
AGMLSPR	94	0	12	86	
AGMLSPRGSR	94	11	12	86	
ALSTGLIH	889	0	12	86	
ALSTGLHLH	609	10	12	86	
ASQSLAPSILK	2208	10	11	79	0.0027
ASRQNVNSPTH	1928	11	12	86	
ATLFGAY	1265	0	14	100	
ATLGFAYMSK	1265	11	12	86	
ATRKTSER	48	0	11	79	
AVCTIGVAK	1180	9	11	79	
CAAILRRAH	1903	0	13	93	0.0250
CGFADQMY	128	9	11	79	
CGNLTCY	2742	0	11	79	
CQSSDLYLVTR	1130	11	11	79	
CLRLKLVPPPLR	2841	11	12	86	
CNCISYPGH	304	9	11	79	
CMTRGEN	049	0	12	86	
CSNNSVAH	2019	9	12	86	
CTCGSSDLY	1128	9	11	79	
CTWNINSTGFTK	555	11	11	79	0.0063
CVPREGGGR	2699	9	10	79	0.7500
CVOPRGGR	2599	10	11	79	0.0005
DAHFSOTK	1574	0	14	100	0.0008
DGCCSGGAY	1307	9	11	79	0.0005
DIIIQCECH	1316	9	12	86	
DLGWRVCEK	2617	9	13	93	0.0002
DLYVTRH	1134	8	12	86	
DVIFVRR	1143	8	11	79	
ECYDAGCAY	1524	10	11	79	0.0014
EQANQMANR	1915	9	14	100	
EMGQNITR	2245	8	12	86	
EYCFQPEK	2598	9	12	86	0.0270
FQVQEKGGA	2599	10	11	79	
FQVQEKGGRK	2598	11	11	79	

ICV All Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'1101
FGAYMSKAH	1269	9	12	66	
FGYGAQDVR	2554	9	12	66	0.0005
FLLAIDAR	728	9	14	100	
FTEAMTRY	2792	9	14	100	
FTGLTHIDAH	1567	10	13	93	
GAARALAH	140	8	11	79	
GAARALAHGVR	146	11	11	79	
GAVQMMNR	1916	0	14	100	
GAYMSKAH	1270	8	12	86	
GFADLGY	129	0	13	93	
GFGAYMSK	1200	0	12	66	
GFGAYMSKAH	1260	10	12	66	
GQYSPQQN	2645	9	11	79	
GGALARLAH	145	9	11	79	
GGCSGAY	1308	0	11	79	
GGGAVGAGY	26	0	14	100	
GGONGGN	27	10	14	100	
GGPHLFDH	1392	9	14	100	0.0001
GGHLFLRQSK	1392	11	14	100	
GGVLAALAY	1669	10	12	66	
GGVTLPR	32	0	13	83	0.0010
GGVLLPQR	32	9	13	83	
GYLLPNTI	3037	0	11	79	
GLPVCOOH	1552	0	13	93	
GLPVSRARR	1004	0	11	79	
GLSAFSLH	2921	0	11	79	
GLSFSLSIY	2021	10	11	79	0.0005
GLTHIDAH	1569	0	13	93	
GNHNSPTH	1931	0	12	66	
GNHVSPTHY	1931	9	12	86	
GNITFVESENK	2248	11	12	86	
GSSDLYVTR	1131	10	12	86	
GSSDLVLYTRH	1131	11	12	86	
GSSYGFQY	2641	8	11	79	
GTEFINAY	2063	8	11	79	
GVAGALVARK	1863	10	12	86	
GVCMWDMH	1081	6	11	79	
GVGMLPNA	3035	10	11	79	0.0140
GVLAALAY	1670	9	12	66	0.0110
GVTRATPSER	45	11	11	79	
GVVCCEKMY	2619	11	14	100	
GVVLEDGVNY	154	11	12	86	
GVVCAAILR	1900	8	11	79	
GVVCAILRR	1900	10	11	79	
GVVCAILRH	1900	11	11	79	

HCV All Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'1101
GVLPLPRA	33	6	13	93	
GVLPLPGRPR	33	11	13	83	
HADVIPRA	1141	8	11	79	
HADVIPRA	1141	9	11	79	
HADVIPVARR	1141	10	11	79	
HAPTSGK	1234	8	14	100	
HAPTSGKSTK	1234	11	13	93	
HGLSAFSLH	2920	9	11	79	
HGLSAFSLHSY	2920	11	11	79	
HGPPTPLY	1624	0	11	79	
HGPPTLYR	1624	9	11	79	
HIDAHFSLTK	1572	11	14	100	
HLHAPTGSGK	1232	10	12	86	
HJUNQNDVQY	696	11	11	78	
HLFCHSK	1395	0	14	100	
HLFCHSKK	1305	9	14	100	
HLFCHSKKK	1395	10	14	100	
HMWIFISGQY	1769	11	13	93	
HYSPGEGINR	2920	10	11	79	
HPGCVPFCVA	222	10	11	79	
IAFASIGCNH	1925	9	14	100	
IDAHFSLTK	1573	10	14	100	
IFCFSSKK	1397	0	14	100	
IIIICDECH	1317	8	12	86	
INTNGSMW	415	0	11	79	
ITRVESENK	2250	9	12	86	
ITYSTYKG	1206	0	12	86	
IVDVQYLY	701	0	12	86	
IVFDPLGVRA	2813	9	11	79	
IVGGVYLPPA	30	10	13	93	
IVGAVYLPPAR	30	11	13	93	
KCDELAAK	1404	8	12	86	
KFGYGARDVR	2553	10	11	86	
KGGRLFLCH	1391	10	12	86	
KGGRKPR	2804	8	11	79	
KLGVPPR	2944	8	12	86	
KNEYFVQPEK	2594	11	11	79	
KSTIVPAAY	1241	9	12	86	
KTKRNTNRA	10	8	12	86	
KTKRNTNRA	10	9	13	93	
KTSERSOPR	51	9	12	86	
KTSERSOPR	51	11	12	86	
KTSERSOPRGR	51	11	11	79	
LADGCGGGAY	1305	11	11	79	
LAEOFCK	1729	9	12	86	
LDOAETGAR	1338	10	12	86	

HCV All Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'1101
LFLLLADAR	727	14	9	100	
LFTFSPEPR	290	6	11	79	
LGFGAYMSK	1267	9	12	86	0.2800
LGGAARALAH	144	11	12	86	
LGVRATRK	44	10	11	79	
LGVRCEK	2618	8	12	86	
LIAFASRGNH	1924	8	14	100	
LEANLWR	2235	10	14	100	
LIFCHSKK	1390	9	12	66	
LIFCHSIKKK	1500	8	14	79	
LINTGSMWH	414	9	14	100	
LIVFDLGVRA	2612	10	11	79	
LLAPITAY	1030	8	14	100	
LLFLLLADAR	726	10	14	100	
LUPARGFR	36	0	13	93	
LLSPRGSR	97	8	12	86	
LSAFPSHSY	2922	9	11	79	0.0002
LSNSLFLH	2479	8	12	86	
LSNSLFLHH	2479	9	12	86	0.0001
LSTGLIHLH	680	9	12	86	
LTCGFAGLQMGY	126	11	12	86	
LTSMLTOPSH	2176	10	13	93	
LVAVOATVCAR	1591	11	11	79	
LVDLILAGY	1053	0	11	79	
MGSFSYDTA	2660	0	11	79	
MGSSYGFAY	2640	9	11	79	
MNTHLAFASR	1921	10	14	100	
MNSTGFTK	650.	0	8	79	
MSTNPKPQR	1	1	10	79	
NGCYPBCR	2726	1	11	79	
NCSIMPGH	305	8	8	79	
NFISGIOY	1772	8	14	100	
NGVCWTVY	1000	8	11	79	
NGVCVNNH	1000	9	11	79	
NTRVESENK	2249	10	12	86	0.0062
NIVDQYLY	700	9	12	86	0.0140
NTNRAPDVK	14	10	11	79	0.0007
NTPGIPVCOOH	1549	11	13	93	
PALSTGIHLH	608	9	12	86	
PALSTGIHLH	608	11	12	86	
PGSGMRL	1976	8	11	79	
PCTCGSSDLY	1127	10	11	79	
PQLGVRYCEK	2616	10	13	93	

HCY All Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'1101
PGCPGCR	224	0	12	06	
PGEAVQMAN	1913	11	13	93	
PGGDGVGCVY	25	11	14	100	
PGIVVODH	1551	13	13	93	
PGYPWFLY	79	9	14	100	
PITYSTYGK	1295	0	14	100	
PLGAARALAH	143	9	11	79	
PMGSYDTR	2667	11	11	79	
PNIRITGVR	1281	9	13	83	
PSPWVGTTDR	514	0	13	93	
PSYDQAMWK	1607	0	11	79	
PTDCFRKH	507	0	13	93	
PTDPARRSR	109	9	12	06	0.0005
PTGSGKSTK	1238	9	13	93	0.0001
PTLHGPTPLLY	1621	11	11	79	
PVVGTTDR	518	9	13	93	0.0005
QAEFAGAR	1340	6	12	86	
QNGGVYLPR	28	11	13	93	
QUFFSPR	289	0	12	86	
QLFTFSPAR	289	9	11	79	0.0330
QLSAPSLK	2210	0	11	79	
QMVMDQY	699	0	11	79	
QNIVDQVLY	699	10	11	79	
RAVUVTGIVNK	1100	11	14	100	
RALAIGVR	149	0	14	79	
RATFKTSER	47	9	12	86	0.0001
RGMWSPTH	1930	9	12	06	0.0001
RGNHNSPTHY	1930	10	12	93	
RGPFLGVR	40	8	13	93	
RGPPLGVRAIR	40	11	11	79	
RGRDPIPK	59	9	13	93	0.0017
RGSLSSPR	1154	0	12	86	
RIGVRAIR	43	8	11	79	
RIGVRAIR	43	8	11	79	0.0290
RIGSASFLH	2918	11	11	79	
RILAFASR	1923	9	14	100	
RILAFASRGNH	1923	11	14	100	
RUNFPOLGVR	2611	11	11	79	
RLLAPITAY	1028	9	12	86	0.0270
RNNGGVBH	635	9	14	100	0.0200
RMYGGVER	635	10	14	100	
RNTNRPPOVK	13	11	11	79	
RSQPGRR	55	0	13	93	
RVCEKMLY	9	14	100	0.5000	
RMLDGNY	150	12	86	0.0068	

HCV 3A1 Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A'1101
SAFSLHSY	2823	6	11	79	
SASQSLAPSILK	2207	11	11	79	
SCSSNVSYAH	2818	10	12	86	
SDLYVTRAH	1133	8	12	86	
SDLYVTRAH	1133	9	12	86	
SGKSTIVPAAY	1239	11	12	86	
SMLCDPSH	2178	0	14	100	
SNSLDRHH	2400	8	12	86	
SSDLYLVTR	1132	9	12	86	0.0044
SSDLYLVTRH	1132	10	12	86	0.0013
SSNVSYAH	2020	0	12	86	
STGJHLH	691	0	12	86	
STKVPAAY	1242	6	12	86	
STNPKPQR	2	8	11	79	
STNPKPORK	2	9	11	79	
STNPKPORKT	2	11	11	79	
SVAATLGFGAY	1262	14	14	100	
TCCFAQMRY	127	10	13	93	
TGGSQDLY	1129	6	11	79	
TOPRFRSR	110	8	12	86	
TGEIPFGIK	1375	9	11	79	
TGLTHIDAH	1568	9	13	93	
TGSKSSTK	1237	0	13	93	
TLGFQAYMSIK	1208	0	12	86	0.0610
TLHGPPTPLL	1622	10	11	79	0.0007
TLHGPPPLYH	1622	11	11	79	
TLPALSTGLIH	800	11	11	79	
TLWARMILMTI	2071	11	11	70	
TNPKPQRK	3	8	11	79	
TNPKPQRKT	3	10	11	79	
TNPKPQRKTR	3	11	11	79	
TNARPODK	15	9	11	79	
TSCSSNVSYAH	2817	11	12	86	
TSERSCPR	52	0	13	93	
TSERSCPRTR	52	10	12	86	
TSERSCPRGR	52	11	12	86	
TSLGTRK	1050	0	12	86	0.0001
TSMLTDPSH	2177	9	13	93	
VAAATLGFGAY	1263	10	14	100	
VAGALVAFK	1864	9	12	86	0.8900
VAYQATVCAR	1592	10	11	79	0.0038
VCAAILRR	1802	0	11	79	
VCAAILRH	1802	9	11	79	
VCEIMALY	2622	14	14	100	
VCTIGVAK	1189	0	11	79	

UCY ALL Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency (%)	Conservancy (%)	A'1101
VDPYPLWH	614	9	13	93	
VDPYPLWHY	614	10	13	93	
VFCMPEK	2597	0	12	06	
VECXQPEKGSR	2597	11	11	79	
VFDLGVR	2614	8	11	79	
VFTGLTHIDAH	1566	11	13	83	
VGGVLAALAAAY	1668	11	12	86	
VGGVLLPR	31	9	13	93	0.0019
VGGWLPFR	31	10	13	93	
VGINLPLNR	3030	9	11	79	0.0100
VGVVICAILR	1099	10	11	79	
VGVVICAILRR	1099	11	11	79	
VLAALAAV	1671	8	12	86	
VLDQRETAGAR	1337	11	12	88	
VLEDGINY	157	0	12	06	
VLTSMLTOPSH	2175	11	13	93	
VLVDILAGY	1052	9	11	79	
VNGSSYGFQY	2639	10	11	79	
VTRHADQIPVA	1138	11	11	79	
VVCAAILA	1901	0	11	79	
VVCAAILRA	1901	9	11	79	
VVCAAILRAH	1901	10	11	79	
VVGWCAMLRN	1090	11	11	79	
VVGTON	517	0	13	93	
WGGMWSPRN	93	0	12	06	
WAQPGYPNPL	76	11	12	86	
WARMILMTH	2073	0	12	86	
WGPTDPMR	107	0	12	06	
WGPTDPMR	107	0	9	12	
WGPTDPMRSA	107	11	12	86	
WLSPRGSR	96	9	12	86	
WMNRLIAFASR	1920	11	14	100	0.0005
WMNSTGFTK	557	9	11	79	0.0810
WNFTSGDY	1771	9	14	100	
YOLGCAWY	1526	0	11	79	
YDIIIDECH	1315	10	12	06	
YFGKXSGQR	2644	10	11	79	
YLPHRGPR	35	9	13	93	0.0005
YSPEINR	2930	0	11	79	
YGGVBR	637	0	14	100	
YVPESDAAR	1939	10	12	86	0.0001
	311				3

Table XVIII

ILCV α 24 Motif With Binding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A ⁺ 2401
AWDIMMMNNW	319	0	12	86	
AYAAQGTYKVL	1248	10	11	79	0.0008
AYYRGGLDVSVI	1421	11	14	100	
CYDAGCAW	1525	0	11	79	
CYDAGCAWYEL	1525	0	11	79	
DPSLDPPTF	1468	0	14	100	
DFSLIDPTETI	1468	10	14	100	
FVAKHMMWNF	1765	9	12	86	6.9000
FVAKHMMWNFI	1765	10	12	86	
GFAIDLGYI	129	9	13	93	
GFAIDLGYPL	129	11	11	79	
GFSYDTRCF	2069	9	11	79	
GWTLLAPI	1627	0	11	79	
GYGAGVAGAL	1059	10	12	86	0.0003
GYIPLYGAPL	135	10	11	79	0.0057
GYNRFRASGM	2720	11	12	86	
HMWNFISGI	1769	9	13	93	
IFLLALLSCL	176	10	12	86	
IMAKHNEVF	2591	8	12	86	
KPRGGCI	23	8	13	93	
LFLNLGGW	1813	8	12	86	
LWARMILLNTHF	2872	11	12	86	
LWRCDEMGAN	2241	10	12	86	
LYLVTAHADVI	1135	11	11	79	
MWNFISGI	1770	0	14	100	
MWNFISGIOYL	1770	11	14	100	
MVVGVBHRL	636	10	13	93	0.0270
NFISGIOYL	1772	9	14	100	0.0170
PMSGSYDTRCF	2667	11	11	79	
QFKCKALGL	1732	9	12	86	
QPROALGL	1732	10	12	86	
QWMANRJAF	1910	9	14	100	
OYLAGLSTL	1770	9	14	100	0.0480
OYSPOGRVRF	2647	10	11	79	0.0180
OYSPOGRVERL	2647	11	11	79	
FWIAWWMMMKW	317	10	12	86	
FMIIMLTHF	2075	0	12	86	
FMIIMLTHF	2075	9	12	86	
FRMVGCVENFL	635	11	13	93	
SFSFLALL	173	9	14	100	
SFSFLALL	173	10	14	100	0.0041
SMLDPSHL	2178	9	14	100	
SYWDQAMWCL	1600	9	11	79	
SYLKQSSGGPL	164	12	86		
TWMNSTGF	556	11	8	79	

ICV Δ 24 Motif With Blinding Information

Sequence	Position	No. of Amino Acids	Sequence Frequency	Conservancy (%)	A Δ 24.01
TWLVGGM	1664	9	12	0.6	
TYSTYGF	1297	0	13	93	
TYSTYGF	1297	9	12	86	0.0230
VFGLTHI	1566	8	13	93	
VKSSYGF	2639	8	11	79	
VLLPRGPAL	34	11	13	93	0.0016
WMNRLIAF	1920	0	14	100	
YYRGLDVSI	1422	10	14	100	
		2			
					53

Table XIX a HCY D11-Super Motif

Core Sequence	Core Freq	Core Consistency (%)	Exemplary Sequence	ICV Pd-Protein	Position In	Exemplary Sequence Frequency	Exemplary Sequence Consistency (%)
PQAYKSHL	12	80	TQDADYKSNVDO	1268	6	36	19
FQGIVWAKST	12	86	GAGFQIAKMSRIGT	550	11	19	86
FHQKAVGL	12	86	AEGIQHQLAQQLQIA	1730	12	6	43
FLALLSCL	12	86	FSEFLALLSCLVTP	174	6	6	79
FPIQIVRC	11	79	UNPDLGIVTCRVM	2612	11	6	43
FQVNLILHAP	12	86	PQFQVNLILHAPTS	1225	6	7	50
FRAVCTTO	12	86	VQHFLAVCITQVAK	1182	7	7	86
FSIELLLALL	14	100	QCSFSIPLLLASCL	171	12	11	75
FSQDFPFTT	14	100	PGDFQDFPFTT	1466	11	11	50
FTEAKMITYS	13	93	UNFTEAKMITYSPP	2769	7	7	93
FTPSPAVGD	13	93	YCCFEPSPNVDQTID	509	13	9	61
FTFLVPLAST	11	79	PGCFITFLVPLASTGIGI	681	9	3	21
FWMKUHMKF	12	86	LEVFWKUHMKF	1702	3	3	50
IDAFVLSQT	14	100	LIDMDAFLSGIKOA	1510	7	7	57
IDCNCVTO	12	86	DSDVDCNTCVTOIVD	1454	12	86	86
IDLITCQFA	12	86	GRWVDTICGFQJULM	120	12	7	86
IEANLILMHO	12	86	AUXEANLYMHO	2233	6	6	50
IFLLALSC	14	100	SFSIFLLALSLCIV	173	10	10	43
IGGNNVIAQ	12	86	LFNAGQMVIAQDAP	1813	8	8	57
ILQDGTND	12	86	STHILQDGTNDQE	1328	8	8	57
ILPANVPO	11	79	CALWHTIIMGDEDA	1903	11	11	79
ILSPQALW	12	93	LPALISPMGLAVDNVY	1088	10	8	57
INMYTGPC	12	86	IPPNATYTGCP	2084	10	10	71
IRVQVQAO	12	70	AGQVILVQVQGQAA	134	10	10	100
ITVISEENK	12	96	GQNTIVSEENK	2247	7	7	79
ITSSWSWS	14	100	LEELTSCESENKVAI	2013	11	11	79
ITSSWSWS	12	79	ATWVPPDGIVNE	2610	11	11	79
ITSSWSWS	12	86	ODWVAVLAAYCQLTQ	1659	6	6	57
LAALAYCI	12	79	CHTAAACGCCGQDAM	1302	10	10	71
LAQCESDQ	14	100	IQYQKQSIUQTKA	1277	14	10	100
LAQSLSTQD	11	79	WQILAQDQVQAOAL	1654	10	10	71
LAQYDNOVA	12	86	IWLQIAFHDPDVSIV	1346	9	9	64
LAQYDNOVA	12	86	DESCRIPTORIV	1466	6	6	38
LOPFIET	12	86	QTM.DONE.ETONLY	1335	12	6	66
LOQETAGA	13	93	EYDLEUSSCSNS	2810	13	13	93
LEUFSCSS	12	86	SADLEUTSTWVQ	1653	11	11	79
LEVSTTWV	11	100	VNLFLILLADANVCS	724	4	4	29
LELLDADAR	14	100	FRIQGGWWAWQAPP	1614	8	8	57
LGQWVAAQ	12	86	TTLGQIYQDQAEI	1329	9	9	64
LGQWVAAQ	13	93	GPQGQWAKTSEI	41	10	10	71
LGQWVAAQ	12	86	FQDQVWCEKAWY	2815	11	11	79
LGQWVAAQ	14	100	IETNUGSFUSVSY	2916	6	6	43
LGQWVAAQ	11	79	KOTUQIPTLVLG	1620	11	11	79
LGQWVAAQ	12	86	LUUHHQHDDYQY	684	10	10	71
LGQWVAAQ	13	93	NFSUJISVSPORTIV	2924	11	11	79
LGQWVAAQ	12	86	MINTUMFSPGNNNS	1921	12	7	66
LGQWVAAQ	14	100	DIAQEANLWDEM	2233	7	7	50
LGQWVAAQ	14	100	GRLFQCKKQDE	1393	14	14	100
LGQWVAAQ	14	100	DELMCSRSVSA	2612	13	93	93
LGQWVAAQ	12	86	SFLALLSCLVPA	176	5	5	36
LGQWVAAQ	14	100	YVVLFLILLADARVC	723	5	5	36
LGQWVAAQ	12	86	QHILFLNQVQWNA	1609	4	4	29
LGQWVAAQ	13	93	LFLILLADAMVACL	726	9	9	64
LGQWVAAQ	13	93	LYKLPAISPLQAV	1664	10	71	71

Core Sequence	Core Freq.	Core Consistency (%)	Exemplary Sequence	Position in HCV Polyprotein	Exemplary Sequence Consistency (%)
LNQFLPLD	11	79	FIAQAMQPLVQAPL	130	79
LNPSSAVATL	14	100	VILKLPSSAVATLQFQ	1235	100
LPAISPTA	13	93	VNLPLAISPTAQLFQ	1685	79
LPAISPTLI	12	66	FTTLPASISPTLHL	604	79
LPTGPGTLQ	13	90	WLTLPPTGPGTLQ	341	79
LNDAVAVNE	11	79	IKNQDNLAVAVNEPV	966	79
URKQVPL	12	66	ASCNQKLQVPLIWW	2939	4
LSAFSLSHY	11	79	IQLSFSLHSYTSQG	2919	29
LSAPSILKAI	11	79	ASQSLASPLQSKICIT	2208	50
LSNLIRLH	12	66	IVNLNSNLIRLHNAYV	2476	79
LSPLVLYD	13	93	PALSPQALVLYDQVC	1689	50
LSPLLSTT	11	79	PSSELSPLLSTTENQ	604	79
LSPLCETTS	11	71	QWMSLSPCETTSVAV	95	79
LSLTLIAII	12	66	LYALSLTLIAIIQH	607	71
LICFADLM	12	66	KDLICFADLMQH	123	60
LTDADFL	13	93	FIOLJIDADFLRISQI	1567	60
LTSALIDPS	12	66	VANLISALIDPSIIN	2173	60
LVAYQAVC	12	66	FPLVAYQAVCACA	1500	64
LVDLADQO	11	79	GKVLVLDLADQOYK	1050	64
LVGGVLLA	12	66	TWVLVGGLVLLA	1654	66
LVINPSSVAA	14	100	YKKVLYNPSVAAVQ	1254	100
LVLHLPML	11	79	TEQVHLHLPMLSPQ	1681	71
LVITNLAVI	11	79	DLYVLTNLAVIPVN	1134	79
LWVQVCAAA	11	79	POALWVQVCAAA	1094	79
LVLVLTATP	12	66	QAHVVLVLTATPOS	1345	79
LWVHHAUHT	12	66	ARTWVHHAUHTIEFF	2049	79
LWVZCEMDSN	12	66	ANLWVZCEMDSNIEFF	2238	69
LYLTHDN	11	79	HLYLTHDNQDVNEV	1027	64
MAKKEVCV	12	66	THIMAKKEVCVTC	2509	64
MHWQHMMW	12	66	GTFWQHMMWAMVSP	315	66
MCQCNTH	11	66	FGDAGCNTHNSEN	2243	66
MOPPLVDA	12	66	AQDQPLVDAVQDQH	131	79
MUTPSAT	14	100	LTSAUDPSIAT	2176	57
MWTRKFAKS	14	100	YQHAKMFLWAKAFK	1910	100
MWTRSFQ	14	100	TEAMWTRSFQ	2793	71
MWTRSFQO	14	100	AKWAKMFSGQDIA	1767	12
MWYCOVEHR	14	100	KWYKMGCOVEHR	603	66
YAGALVFK	12	66	GAGWONWAGKMS	1861	56
YARLHPDQ	12	66	TFDQALHPDQ	1227	56
YATDAMTA	12	66	WVWVATDAMTAQIG	1437	43
YAYDANTCA	12	66	PLVAYDANTCADA	1509	6
YCMLRHTI	11	79	WGDVCMRLRHTI	1767	11
YCERHMYD	14	100	GHDYCEKMYDVS	1099	10
YODLWVFK	12	66	GLPVCQDLEFMEV	2619	71
YODLWVFK	12	66	TFDQALHPDQ	1552	79
YCTRWAKA	11	79	FLAVCTRWAKAIVDF	1186	6
YFQYDQEQ	12	66	KAEFQYDQEQGK	2594	10
YFTQNSPP	11	79	RSFPTQNSPP	1211	71
YFTQTHIO	13	63	WESFTQTHIDNF	1563	6
YQDVLALALA	12	66	WNLVQDVLALALA	1065	43
YQDVLALALA	12	66	CONGDVQULITGP	28	66
YQDVLALALA	12	66	CHLVQDVLALALA	13	92
YQDVLALALA	12	66	ALWVQDVLALALA	2158	6
YQDVLALALA	12	66	FDSVQDVLALALA	1096	43
YQDVLALALA	12	66	FDSVQDVLALALA	1453	79
YQDVLALALA	12	66	LOWDVQDVLALALA	1453	12
YQDVLALALA	12	66	LOWDVQDVLALALA	119	11

HCV DRs-Super Motif Binding Data Not Included

Core Sequence	Core Freq	Core Conservancy (%)	Exemplary Sequence	Position in HCV Polyprotein	Exemplary Sequence Frequency	Exemplary Sequence Conservancy (%)
VIAAIAANC	12	86	VQDYLALAYCLTT	1668	8	57
VLATTPQ	13	93	RLLMLATATPPSIT	1347	9	64
VLEDGVNTVA	12	86	GIVRLDGDNVNTAN	154	12	64
VLNPSVAAAT	14	100	KVVLNPSVAAATLGF	1255	14	86
VLTSNLTOP	13	93	DVAVLTSNLTOPSH	2172	9	100
VLTSGCGNT	11	79	ASGVLTSNCGNLT	2134	10	64
VLVDOLAGY	11	79	LGKVLVDLAGYAG	1849	10	71
VLVGGVLLA	12	86	STWNLVGGVLLALA	1663	12	71
VLVLMPNSVAA	14	100	GYKVVLMPNSVAAAT	1253	14	86
VNLPLPAIS	12	86	EDVNLPLPAISFGA	1882	11	100
VPESDAAR	12	86	THVPESDAARVTO	1937	7	79
VTSTHWLIG	12	86	LEVTVSTHWLIGVIL	1658	12	50
WTADALMT	11	79	DVWVATDALMTGTY	1436	6	86
WCAALRR	11	79	WVNGCAGLRR	1898	10	43
WGWCACAI	11	79	GLVNGVCAICLRL	1895	11	71
WVLAATPP	12	86	ARLVLAATPPSVY	1346	9	79
WICFTPSV	13	93	COPYICFTPSVAG	506	13	84
WAGWLSPR	12	86	GGGWGWLSPRSF	90	5	93
WAKMLWTH	12	86	PTIWAKMLWTHFS	2870	11	36
WGADTAACG	12	86	ITIWONDTAACGDI	988	6	79
WGFTDPRER	12	86	FPWAGFTDPRERSEN	104	10	43
WHARLIFEA	14	100	AWHARLIFEAESRG	1917	14	71
WRLAPTA	11	79	SKGRWLRAPTAQ	1025	4	100
WTGALTIPC	11	79	SYWTGALTIPCQ	2456	9	29
WTGELTPTAET	12	86	GCAMMELTPTAETFH	1529	5	64
YTATNPCT	12	86	EWYATNPCTGCSFS	161	11	36
YCFTPSPMV	13	93	GPWYCFTPSPMVOT	507	13	79
YDGCWAME	11	79	CETCDACDCECF	1523	10	93
YDQDEC	12	86	GDYDQDECDF	1312	10	71
YDELTSC	13	93	OPEYDLEUTSCSN	2608	11	79
YGAVGAGL	12	86	LAGYGRGAVGALAF	1857	11	79
YGRFTSOO	11	79	CSYGTGTSPOORIE	2641	10	71
YKBLADGA	11	79	YSTYTKRADGEESQ	1298	10	71
YKLVQUNPS	14	100	AGGQKHLVUNPSWA	1251	11	79
YLGSLSLP	14	100	GLQFLGLSLPWP	1776	14	100
YNGSSCP	12	86	PSYTGKSSCP	1162	6	43
YLTFDPTIP	11	79	RYMLTFDPTIP	2833	9	64
YQATNCARA	13	93	LWATOATCWARAOAP	1591	11	79
YRSLDLSVI	14	100	VAVYFGLDVSIMPTS	1420	7	57
YTGAVONE	11	79	PULYFLGAVONEVTL	1628	9	64
YHCRASOV	13	93	NOYTYRGRASQVLT	2726	10	71
YSEPLP	11	79	QACYSERIDPUOI	2902	6	43
YSGEMARV	11	79	UHSFSGEINRMASC	2927	8	57
YUDQLOSV	12	86	SAMMNGDQGSVSYLV	273	8	57
VGILPLAR	11	79	VGILPLAR	3036		

177

Table XIXb. JICV DR/Super Multisyll. Binding Data

Core Sequence	Exemplary Sequence	DR11	DR2+2.1	DR2+2.2	DR3	DR4+4	DR4+5	DR5+5.1	DR5+5.2	DR6+6.1	DR6+6.2	DR7	DR8	DR9	DR10
FQAYNSWII	TLDQDMMKHN DWD DAMFGCTTAAGTGT AEQF KORAGLQIA	0.0150 0.0190	0.0120 0.0013		0.0200 0.0006	0.0250 0.0006	0.0210 0.0001		0.0033 0.0033	0.0033 0.0033	0.0250 0.0056	0.0270 0.0056			
FOCKMAASJ	FSFLALLSCLTVF UNPFDLDRVCEKA			0.0053											
FOVAKLHLAP	POFOVAKA HAP103 WQFFRAVCTRQVAK	0.2400													-0.0003
FRANCIIHQ	OCSE SFLLALSLQL TVDFSLQPIFNETT	0.0060 0.0001													0.0030
FSFLALLSCL	UTMTEAMMTYAPP FTPS-AWDO			0.00160	-0.0001		0.0920	0.0570	0.0556						0.0005
FSLQPIFNETT	VCETPSAWWDTD FTTLPALST				-0.0003										0.1600
FTEAMMTYS	LEVFWAN MMNFSO L11DAMFLSOKHA														
FTPS-AWDO	OCMHCNCTVOTD IDTLCGFA														
FTTLPALST	QKMDL1QDFADM ADQEAHL1HPCMO														
FWKABMNF	SFSFLALLSCLIV LFHLDQHVAQCLAP														
DAFELISOT	STTRGTTMLODE IENLHMPD			0.0001											
DOCHTCVTO	CAALITHNPGREOA LFRNGFCP														
DTLICGFA	ILSPGALW INMYTTC														
DTTLPALST	IPVQDPO ITMESEAK														
DUMCQ	HSCESSWS ATLNPOLQVCE			0.0245 0.0053	0.0200 0.0003		0.0070 0.0017	0.0250 0.0008		0.0510 0.0003					
DVWVQ	CDVWVQVCE CPLXAVCQ														
DYQDQ	IOYLAQSLURQPA VOLQDQVADQVAD														
DYQDQVADQVAD	LVLATAFPPSVIV DFSLQPIFNETT														
DYQDQVADQVAD	EYDQDQVADQVAD SADLEVNTSYHVALD														
DYQDQVADQVAD	FNHLCGWAQCLAPP TTLQDQVADQET														
DYQDQVADQVAD	GFLQDQVADQET LVRVRCNA														
DYQDQVADQVAD	IEFLQDQVADQET LQFLQDQVADQET														
DYQDQVADQVAD	KPTUHPTVLYRQ LKHQVQVQ														
DYQDQVADQVAD	LHVSPECI LAFASDHN														
DYQDQVADQVAD	MANTUASPRON NS UEANLWHR														
DYQDQVADQVAD	DAQIEANLWHRDIA CRB LIFCH ISPHRCDE														
DYQDQVADQVAD	OLEUQSSRSVSA SFLLALSLQCLVPA														
DYQDQVADQVAD	YNN, LELLAIA CHTFMLIGQWAA														
DYQDQVADQVAD	LLFLLLADARYCACL LUPNLPLSPOALV														
DYQDQVADQVAD	LAQDQVADQVAD														

SUBSTITUTE SHEET (RULE 26)

178

ପ୍ରକାଶନ କମିଶନ ଅଧୀକାରୀ ପତ୍ର ପରିଷଦ

179

HCV D1S3181 Motif With Blinding Data

Core Sequence	E-supphy Sequence	D11	D12w2 1	D12w2 2	D13	D14w4	D15w5	D15w11	D15w12	D16w19	D16w22	D17	D18	D19	D19w1
VLEDQVYAA	DIVVLEDDQVYAA	0.00017													-0.0002
VLNPSVAT	KVLVNLPSVATLOF														
VLSKLIDP	DYAVLTSALTSIFII														
WTISCGNT	ASCVTTISCGNTIC														
VLDIQLGY	LGLAVLVDLQDQ														
VLGQVLA	STWVVGVLAA														
VLYLPSVA	QYKVVVLPNSVATIL	1.0000	0.0260	0.0004	0.0300	9.5000	0.0670	0.1000	0.0320	0.6300	0.1700	0.2000	0.2000	1.4000	
VNLPAILS	EDLVNLPAILSPDVA	0.9100				0.0110						0.0015			
VPSDAAANI	THYMPESDAAANI														
VISTWVLO	LEVISITWVLO	0.0120	0.0016	-0.0003		0.0200	0.0008	0.0046		0.0140	-0.0003	0.1600	0.0120	-0.0025	
WTADLMT	DVNNVATDLM1011	0.0110	0.0110	-0.0003		0.0180	0.0072	0.0004		0.0110		0.0910			
WICAHTR	WICAHTR														
WGVVCAAN	GALVWQVCAANLITN	0.0110													
WLTATPP	ATLVLTATAPSOV														
WCFTPSV	COPWCFTPSVWVQ	0.2700	0.0025	-0.0003		0.2600	0.4000	0.0003		-0.0001	0.0011	0.2700	0.4300		
WAGHLSPV	COCHWAGHLSPVSH														
WAJMLWII	PILWHMLWIIFFS	0.0084				0.0200									
WHDNTACG	HTWHDNTACG														
WEPTDFTT	PFPSWPTDFTT														
WMANRFLA	AVOMAKRANFASTRV	2.0000	0.0130	0.0000		0.0035	2.1000	0.2500	4.2000	0.0290	-0.0001	0.8900	0.0205		
WLRLAPTA	SKWWRLLPDTAYAO	14.0000	0.0007	0.0016		0.0680	0.0220	0.0031		-0.0001	0.0130	0.0250	0.0630		
WTGAUTPC	SYTMWGAUTPCAE	0.0260										0.4900	0.0130	0.0130	
WTELTPAET	OGAWWELTPNEET														
WYDNPOC	QHMMATRGPCCFS														
YCFTPSV	DPVYCFTPSVWAT														
YDGCAYWE	CECYDAGCWYELTIP														
YUFCDFC	QVYUFCDFC1ST														
YUELTSC	OFEVQELTSESSM	0.0003													
YRAGVQAL	LADYQAGVQALSVF	0.0110													
YRGTSDQ	QESTDQDTSQME	0.1600	0.0001	0.0300		0.0007	0.1200	0.0510	0.0003	0.1800	0.0007	0.1600	0.0008	1.1000	
YTFDUDQ	YSYDUDQDQOCSSA														
YKVLUMPS	ADQYKVLVNPVSA	0.4100	0.0140	0.0004	0.0045	0.1000	0.1700	0.2100	0.0370	0.5900	0.2600	0.0300	0.2000		
YKSSDQP	PVSMVKSSDQPIC														
YLTRQPTP	NYPLTRQPTPQD														
YQATVCAA	LWAVQAVCAAQADP														
YRQDSVM	WAVYNDQDVS15														
YTGFQVONE	PLTYGFQVONEVTL														
YTQONASV	NCYQONASVQSLT														
YSEPLDQ	QACYSPEPLDQ														
YSPQENAV	UYSYSPQENAVASC														
YVBDLCSY	SAMVYVDCGSYLV														
YVFLVRA	VOTFLVRA														

HCV DIR Similar Matrix With Binding Data

Core Sequence	Exemplary Sequence	DRI	DR2w2 I	DR2w2 II	DR3	DR4w4	DR4w5	DR5w11	DR5w12	DR6w19	DR6w2	DR7	DR9
WEDQVYVA	QMVNEQVYAT	0.0006											-0.0002
VNIPSVAA	KVULNIPSVAAATOF												
VLSAIIIDP	DWAVLTSALIDPSA												
VLTSGANT	ASQVLTSGANT												
VLBLAGY	IQKAVVNLADQDAGY												
VIVQVLA	STWVLVQVLAVALAA												
VIVLIPSVV	QYKVVLVNPSSVAAIL	1.1000	0.0260	0.0004	0.0900	9.6000	0.0670	0.1400	0.0520	0.6600	0.1700	0.2600	1.4000
VNLPAIIS	EDLVNLPAIISPGIA	0.3700			0.0110							0.0015	
VFSDAAAR	THHVPFSDAAARVTO												
VISTWLVO	LEVVISVTLVVLGVVL												
VVATDALMT	DVNNVATDALMTOTI												
VVCAILRR	WRGWCALRPRVRR	0.0120	0.0078	-0.0003		0.0200	0.0072	-0.0004	0.0140	-0.0003	0.1600	0.0910	0.0120
VIVVCAAI	QALWVGWCACAUAI	0.0110	0.0110			0.0180							-0.0025
VVUATTPP	ATLVVLUATTPDSV	0.0170				0.0067							0.0013
VVCFPSV	CGPVCYCFPSVWV	0.2100	0.0025	-0.0001		0.2600	0.4000	0.0005		0.0001	0.0011	0.2700	0.1100
WAGWLSPIV	GGGWAGWLSPIVSI												
WAJWLMIII	PILWWJWLMIIIIFES	0.0064											
WGNDTACO	ITWGDJWLMACOEE												
WGPTDFPP	FPSWCPDTDFPPSN												
WANLJIAF	AVOMANLJIAFISPO	2.2000											
WHLLAPTA	SKGWALLAPTAIAO	14.0000	0.0130	0.0006		0.0035	2.1000	0.2500	4.2000	0.0290	-0.0001	0.9000	0.0205
WTOALTPC	SYTWDQAUTPCAE	0.0250	0.0007	0.0015		0.0080	0.0220	0.0631		0.0001	0.0110	0.4900	0.0150
WYELTPAET	QWYATATPAETPEN												
YATGAPOC	QWYATATPAOC	0.0011											-0.0003
YCFTPSPW	QWYATATPSWVAT												
YDQGAWYE	CECYDQACAMEYLIP												
YJLQDDEC	GAQYDQDDECIST												
YQELETSC	QPEYDQLEUTSCSSN	0.0003											
YQDQVQAL	LADYDQXQDQVQAL	0.0110											
YQDQDQ	QSSYQDQDQDQ	-0.4000	0.0001	0.0300	0.0007		0.0510	0.0010	0.0003	0.1600	0.0007	0.1600	1.1000
YQVVLNPS	ADQYKVVLNPSVAA	0.8400	0.0140	0.0004	0.0045	0.3000	0.1700	0.2100	0.0370	0.5300	0.2800	0.0300	0.2000
YUGLSTI	QGQYLGQSLGQSLI												
YUGSDDP	PNSYQGQSSDGP												
YLTADTTP	AVYLTADTTPLM												
YQATMCARA	LYVYDTCARAOAP												
YQDLOSYV	WAVYMLGQDLOSYVPS												
YTGAVONE	PLLYMLQAVONEVTL												
YTQDASOV	NGYTMQDQUSAIT												
YSIEPLDQI	QNYTSERFLDQI												
YSPOEMTV	LSYSPOEMTVASC												
YVQDQCSV	SAMVQDQCSVFLV												
YVQDQCSV	VQVQDQCSV												

Table XXb *UCY DIR JA Mail With Building Information*

SUBSTITUTE SHEET (RULE 26)

Table XXc HCV 3B Motif

Core Sequence	Core Freq.	Core Consistency (%)	Exemplary Sequence	Position In HCV Polyprotein	Exemplary Sequence Frequency	Exemplary Sequence Consistency (%)
RQISRQD	14	100	IURCKSKKQDELA	1395	14	100
FSTIDCFD	11	79	PAPSTOTFDFSTY	2667	11	79
LAEQPKKA	12	86	GKQLAEGDFKDKAQL	1726	6	57
WPTIHPPT	11	79	URFLPTLIGPTPL	1616	10	71
VRAITKTE	11	79	FLGIVNATKTKSERQ	43	10	71
YLVTHADAV	12	86	SQIXVIVHADIVV	1139	11	79
ASTNPQPR	11	79				

Table XXd HCV 1B Molt Binding Data

Core Sequence	Exemplary Sequence	dn1	DR2w21	DR2w22	DR3	DR4w4	DR5	DR5w15	DR5w11	DR5w12	DR6w18	DR6w2	DR7	DR8	DR9w3
PDSRACO PSDTRDFD LAEGFRKA LKPLKHPT VRAHKTSE YLVTR-HDV MSTNNPQR	MUSCARICOLA PMDFSTWTHDRDSTV QWQALEQPKQALG URKPLTKAHPITLL RIGVATATKTSEFSD SOLVLYTRHADVIVV														0.0190
															0.0022

TABLE XXI. Population coverage with combined HLA Supertypes

<u>HLA-SUPERTYPES</u>	PHENOTYPIC FREQUENCY					
	Caucasian	North American Black	Japanese	Chinese	Hispanic	Average
<u>a. Individual Supertypes</u>						
A2	45.8	39.0	42.4	45.9	43.0	43.2
A3	37.5	42.1	45.8	52.7	43.1	44.2
B7	38.6	52.7	48.8	35.5	47.1	44.7
A1	47.1	16.1	21.8	14.7	26.3	25.2
A24	23.9	38.9	58.6	40.1	38.3	40.0
B44	43.0	21.2	42.9	39.1	39.0	37.0
B27	28.4	26.1	13.3	13.9	35.3	23.4
B62	12.6	4.8	36.5	25.4	11.1	18.1
B58	10.0	25.1	1.6	9.0	5.9	10.3
<u>b. Combined Supertypes</u>						
A2, A3, B7	83.0	86.1	87.5	88.4	86.3	86.2
A2, A3, B7, A24, B44, A1	99.5	98.1	100.0	99.5	99.4	99.3
A2, A3, B7, A24, B44, A1, B27, B62, B58	99.9	99.6	100.0	99.8	99.9	99.8

SF 184895 v1

Table XXII

HCV ANALOGS

ILCY ANALOGS

AA	Sequence	Fixed Nomen.	A1 Molli	A2 Super Molli	A3 Super Molli	A24 Molli	B7 Super Molli	1° Anchor Fixer
g	CYNGCAGAV 40		N	Y	N	N	N	

Table XXIII. Immunogenicity of identified supermotif-bearing peptides

Supermotif	Peptide	Sequence	Protein	Position	Human ^a			Immunogenicity			Transgenic mice ^b	
					Barnaba; patients	Barnaba; contacts	Chisari	Pape	overall	Frequency	Response	
A2	1073.05	LLFNILGGWV	NS4	1812	1/6	7/17	2/21	0/6	10/50	6/6	6.4 (1.7)	
	1090.18	FILLADARV	NS1/E2	728	2/6	7/17	1/21	0/6	10/50	5/6	9.5 (3.0)	
	1013.02	YLVAYQATV	NS4	1590	1/6	4/17	1/21	0/6	6/50	5/6	8.5 (3.7)	
	1090.22	RLIVFPDLGV	NS5	2578	2/6	5/17	0/21	0/6	7/50	0/6	-	
	1013.1002	DLMGYIPLV	Core	132	2/6	7/17	1/21	1/6	11/50	5/6	8.8 (2.6)	
	24.0073	WMNRLIAFA	NS4	1920	1/6	3/17	2/21	1/6	7/50	0/6	-	
	24.0075	VLVGGVLAA	NS4	1666	1/6	6/17	3/21	1/6	11/50	0/6	-	
	1174.08	HMWNFISGI	NS4	1769	3/6	3/17	2/21	0/6	8/50	6/6	6.4 (1.7)	
	1073.06	ILAGYGAGV	NS4	1851	2/6	3/17	0/21	0/6	5/50	3/6	54.7 (3.3)	
	1073.07	YLLPRRGPRL	CORE	35	2/6	5/17	7/21	1/6	17/50	4/6	59.1 (7.2)	
A3	24.0071	LLFLULLADA	NS1/E2	726	2/6	9/17	0/21	0/6	11/50	0/6	-	
	1.0119	YLVTRHADV	NS3	1131	6/6	10/17	0/21	1/6	17/50	0/6	-	
	1.0952	KTSERSQPR	CORE	51	2/16	1/4	3/12	0/6	6/38	3/6	23.4 (1.3)	
	1073.11	RLGVVRATRK	CORE	43	4/16	1/4	7/12	1/6	13/38	3/6	42.2 (1.2)	
	1.0955	QLFTFSPPR	ENV	290	1/16	0/4	6/12	1/6	8/38	-	-	
B7	1073.13	RMYVGGVEHR	NS1/E2	632	5/16	1/4	4/12	1/6	11/38	2/6	2.8 (1.1)	
	1.0123	LIFCHSKKK	NS3	1396	6/16	1/4	4/12	2/6	13/38	3/6	4.4 (1.1)	
	1073.10	GVAGALVAFK	NS4	1863	3/16	0/4	6/12	2/6	11/38	6/6	56.5 (1.7)	
	24.0090	VAGALVAFK	NS4	1864	4/16	1/4	6/12	0/4	11/38	1/6	7.1	
	24.0086	TLGFGAYMSK	NS3	1262	6/16	2/12	2/5	10/33	-	-	-	
	1145.12	LPGCSFSIF	CORE	169	-	2	3/10	5	-	-	-	

Table XXXIV. Human and murine MHC-peptide binding assays established using purified MHC molecules and gel filtration chromatography

A. Class I binding assays						
Species	Antigen	Allele	Cell line	Radiolabeled peptide		
				Source	Sequence	Notes
Human	A1	A*0101	Steinlin	Hu J chain 102-110	YTAVPLVY	no NEN in PI cocktail
	A2	A*0201	JY	HBVc 18-27 F6->Y	FLPSDYFPSV	"
	A2	A*0202	P815 (transfected)	HBVc 18-27 F6->Y	FLPSDYFPSV	"
	A2	A*0203	FUN	HBVc 18-27 F6->Y	FLPSDYFPSV	"
	A2	A*0206	CLA	HBVc 18-27 F6->Y	FLPSDYFPSV	"
	A2	A*0207	721.221 (transfected)	HBVc 18-27 F6->Y	FLPSDYFPSV	"
	A3		GM3107	non-natural (A3CON1)	KVFPYALINK	"
	A11		BVR	non-natural (A3CON1)	KVFPYALINK	"
	A24	A*2402	KAS116	non-natural (A24CON1)	AYIDNYNKF	"
	A31	A*3101	SPACH	non-natural (A3CON1)	KVFPYALINK	"
	A33	A*3301	LWAGS	non-natural (A3CON1)	KVFPYALINK	"
	A28/68	A*6801	CIR	HBVc 141-151 T7->Y	STLPETYYVRR	"
	A28/68	A*6802	AMAI	HBV pol 646-654 C4->A	FTQAGYPAL	"
	B7	B*0702	GM3107	A2 signal seq. 5-13 (L7->Y)	APRTLVYL	"
	B8	B*0801	Steinlin	IIVgp 586-593 Y1->F, Q5->R, 60s	FLKDYQLL	"
	B27	B*2705	LG2		FRYNGLJHR	"
	B35	B*3501	CLR_BVR	non-natural (B35CON2)	FPFKYAAAF	"
	B35	B*3502	TISI	non-natural (B35CON2)	PPFKYAAAF	"
	B35	B*3503	EHM	non-natural (B35CON2)	PPFKYAAAF	"
	B44	B*4403	PITOUT	EF-1 G6->Y	AEMGKYSFY	"
	B51		KAS116	non-natural (B35CON2)	PPFKYAAAF	"
	B53	B*5301	AMAI	non-natural (B35CON2)	PPFKYAAAF	"
	B54	B*5401	KT3	non-natural (B35CON2)	PPFKYAAAF	"
	Cw4	Cw*0401	CIR	non-natural (C4CON1)	QYDDAVYKL	"
	Cw6	Cw*0602	721.221 transfected	non-natural (C6CON1)	YRHDDGNVL	"
	Cw7	Cw*0702	721.221 transfected	non-natural (C6CON1)	YRHDDGNVL	"
Mouse	D ^b	EL4	Adenovirus E1A P7->Y	SGPSNTYPEI	"	
	K ^b	EL4	VSV NP 52-59	RGYVFQGL	"	
	D ^d	P815	HIV-IIIB ENV G4->Y	RGPYRAFVTI	"	
	K ^d	P815	non-natural (KdCON1)	KFNPMKTYI	"	
	L ^d	P815	HBVs 28-39	IPQSLDSYWTSI	"	

Table XIV. Human and murine MHC-peptide binding assays established using purified MHC molecules and gel filtration chromatography

B. Class II binding assays

Species	Antigen	Allele	Cell line	Radiolabeled peptide		Notes
				Source	Sequence	
Human	DR1	DRB1*0101	LG2	HA Y307-319	YPKYYVKQNTLKLAT	
	DR2	DRB1*1501	LG66.1	MBP 88-102Y	VVHFIFKNIVTPRTPPY	
	DR2	DRB1*1601	L242.5	non-natural (760.16)	YAAFAAKTAAFAA	
	DR3	DRB1*0301	MAT	MT 65KD Y3-13	YKTIAFDEEAR	optimal assay pH is 4.5
	DR4w4	DRB1*0401	Preiss	non-natural (717.01)	YARFQSQTTLKQKT	
	DR4w10	DRB1*0402	YAR	non-natural (717.10)	YARFQRQTTLKAAA	
	DR4w14	DRB1*0404	BIN 40	non-natural (717.01)	YARFQSQTTLKQKT	
	DR4w15	DRB1*0405	KT3	non-natural (717.01)	YARFQSQTTLKQKT	
	DR7	DRB1*0701	Pilot	Tet. tox. 830-843	QYIKANSKFIGITE	
	DR8	DRB1*0802	OLL	Tet. tox. 830-843	QYIKANSKFIGITE	
	DR8	DRB1*0803	LUY	Tet. tox. 830-843	QYIKANSKFIGITE	
	DR9	DRB1*0901	HID	Tet. tox. 830-843	QYIKANSKFIGITE	
	DR11	DRB1*1101	Sweig	Tet. tox. 830-843	QYIKANSKFIGITE	
	DR12	DRB1*1201	Herluf	unknown eluted peptide	EAIHQKINPVYLS	
	DR13	DRB1*1302	H0301	Tet. tox. 830-843 S->A	QYIKANAKFIGITE	
	DR51	DRB5*0101	GM3107 or L416.3	Tet. tox. 830-843	QYIKANAKFIGITE	
	DR51	DRB5*0201	L255.1	HA 307-319	PKYYVKQNTLKLAT	
	DR52	DRB3*0101	MAT	Tet. tox. 1272-1284	NGQIGNDPNRDIL	
	DR53	DRB4*0101	L257.6	non-natural (717.01)	YARFQSQTTLKQKT	no NEM in PI mix
	DQ3.1	DQA1*0301/DQB1*0301	PF	non-natural (ROIV)	YAHAAHAAHAAHAAHAA	
Mouse	IA ^b		DB27.4	non-natural (ROIV)	YAHAAHAAHAAHAAHAA	optimal assay pH is 5.5
	IA ^d	A20		non-natural (ROIV)	YAHAAHAAHAAHAAHAA	
	IA ^k	CH-12		HEL 46-61	YNTDGSTDYGLQINSR	optimal assay pH is 5.0
	IA ^k	LS102.9		non-natural (ROIV)	YAHAAHAAHAAHAAHAA	
	IA ^v	91.7		non-natural (ROIV)	YAHAAHAAHAAHAAHAA	
	IE ^d	A20	Lambda repressor 12-26		YLEDARRKKAIYEKK	optimal assay pH is 5.0
	IE ^k	CH-12	Lambda repressor 12-26		YLEDARRKKAIYEKK	optimal assay pH is 5.0

Table XXXV. Monoclonal antibodies used in MHC purification.

Monoclonal antibody	Specificity
W6/32	HLA-class I
B123.2	HLA-B and C
IVD12	HLA-DQ
LB3.1	HLA-DR
M1/42	H-2 class I
28-14-8S	H-2 D ^b and L ^d
34-5-8S	H-2 D ^d
B8-24-3	H-2 K ^b
SF1-1.1.1	H-2 K ^d
Y-3	H-2 K ^b
10.3.6	H-2 IA ^k
14.4.4	H-2 IE ^d , IE ^K
MKD6	H-2 IA ^d
Y3JP	H-2 IA ^b , IA ^s , IA ^u

Table XXVI: HCV-derived conserved high algorithm A*0201-binding peptides

Peptide	Molecule	1st Position	Sequence	Consv.	A2-supertype binding capacity (IC50 nM)			
					A*0201	A*0202	A*0203	A*0206
1073.05	NS4	1812	LLFNILGGWV	85	4.2	113	3.2	19
1090.18	NS1/E2	728	FJJADARV	92	18	90	149	247
1013.02	NS4	1590	YLVAYQATV	85	20	39	16	82
1090.22	NSS	2611	RLIVFPDLGV	79	56	391	10	370
1013.1002	CORE	132	DLMGYIPLV	79	80	4778	204	481
24.0073	NS4	1920	WMNRLJAJFA	100	122	130	3.3	1609
24.0075	NS4	1666	VLVGGVLAA	85	185	331	32	308
1174.08	NS4	1769	HMWNFISGI	92	15	10750	77	132
1073.06	NS4	1851	ILAGYGAJV	79	116	143	5.0	755
1073.07	CORE	35	YLLPRRGPRL	92	125	6143	455	416
24.0071	NS1/E2	726	LJFLILLADA	100	217	287	455	3364
1.0119	LORF	1131	YLVTRHADV	85	455	2048	3.6	71
24.0065	NS4	1891	ILSPGALVV	92	238	10750	27	1028
1013.12	NS1/E2	686	ALSTGLIHL	85	313	7167	45	18500
939.14	NS1/E2	696	HLHQNIYDV	85	500	3071	19	1370
1090.21	NSS	2918	RLHGILSAFSL	79	179	782	625	18500
								12500

Table XXVII: HCV-derived conserved high algorithm A*03 and/or A*11 binding peptides

Peptide	Molecule	1st Position	Sequence	Conserv.	A3-supertype binding capacity (IC50 nM)				
					A*03	A*11	A*3101	A*3301	A*6801
1.0952	CORE	51	KTSERSQPR	92	69	94	67	1813	145
1073.11	CORE	43	RIGVVRATRK	79	12	207	429	-	3
1.0955	ENV1	290	QLFTFSPPR	79	15	182	621	3766	3
1073.13	NS1/E2	632	RMYVGGYEHR	100	15	300	95	9667	1778
1.0123	NS3	1396	LIFCHSKKK	100	20	32	2535	24167	333
1073.10	NS4	1863	GWAGALVAFK	85	28	4	3273	26364	118
24.0090	NS4	1864	VAGALVAFK	85	46	7	3750	11600	258
24.0086	NS3	1262	LGFGAYMSK	85	136	21	2950	22308	222
1174.16	NS1/E2	557	WMNSTGFTK	79	208	74	12857	690	1429
1073.14	NS3	1261	TLGFGAYMSK	85	136	98	-	22308	8889
1090.23	LORF	1183	AVCTRGRVAK	79	423	240	16364	-	2
1090.24	NS5	2596	EVFCVQPEK	85	13750	222	-	-	18
24.0103	NS1/E2	647	AACNWTRGER	85	36667	429	400	5273	4444
1073.16	NS3	1232	HILHAPTGSCK	85	19	2500	-	-	2857
1073.12	NS3	1395	HILIFCHSKKK	100	423	-	20000	-	1
1090.26	NS3	1395	HILIFCHSKKK	100	440	10000	-	-	8000

* A dash indicates IC50nM >30,000

Table XXVIII: HCV derived conserved B*0702 binding peptides**A. High conservancy 9- and 10-mer peptides**

Peptide	Molecule	1st Position	Sequence	Conserv.	B7-supertype binding capacity (IC50 nM)				
					B*0702	B*3501	B*51	B*5301	B*5401
1145.12	Core	169	LPGCSFSIF	92	28	90	100	114	6667
15.0048	E2	681	LPALSTGLI	85	157	-	2.8	1500	20000
15.0234	NS3	1620	KPTLHGPTPL	79	3.9	-	27500	-	1
15.0247	NS5	2835	APTLWARMIL	79	6.3	-	5500	-	1
15.0042	CORE	99	SPRGSRPSW	79	14	-	11000	-	1
15.0039	Core	57	QPRGRRQPI	92	24	-	-	-	1
15.0218	Core	37	LPRRGPRRLGV	92	29	-	6111	-	4000
15.0060	NS5	2615	SPGQRVEFL	79	46	-	27500	-	1
15.0043	Core	111	DPRRRSRNL	85	324	-	-	-	1
15.0063	NS5	2835	APTLWARMI	79	344	-	4583	-	1
1292.17	NS5	2317	PPVVGCGPL	79	393	-	-	-	1
15.0239	NS4	1893	SPGALVVGVV	79	423	-	2438	-	1
15.0235	NS3	1621	TPLLYRLGAV	92	458	-	6875	-	909

Table XXVIII: HCV derived conserved B*0702 binding peptides**B. Additional HCV derived B7 supermotif peptides.**

Peptide	Molecule	1st Position	Sequence	Consv.	B7-superotype binding capacity (IC50 nM)				
					B*0702	B*3501	B*51	B*5301	B*5401
29.0035	NS3	1378	IPFYGKAI	92	458	-	46	-	50
29.0040	Core	37	LPRRGPPRL	92	0.85	-	306	-	5000
29.0036	Core	137	IPLVGAPL	79	13	2250	79	-	2857
16.0187	NS1/E2	680	LPCSFITLPA	64	423	24000	9167	-	15
29.0039	Core	169	LPGCSFSI	92	500	200	932	620	6250
15.0219	Core	142	APLGAARAL	71	9.5	-	-	-	12500
29.0031	NS5	2869	APTLWARM	79	13	-	4583	-	4348
15.0231	NS3	1512	RPSGMFDSSV	71	153	-	-	-	-
29.0085	NS5	2474	LPINALSNSL	57	220	18000	1170	-	11111
29.0037	NS5	2608	KPARLIVF	85	367	-	3235	-	16667
15.0237	NS4	1789	NPAIASLMAF	71	393	9000	5000	-	-
29.0118	NS5	2869	APTLWARMILM	79	423	-	-	3030	1
29.0042	NS4	1720	LPYIEQGM	85	423	-	1375	-	7692

C. Engineered analogs of B7 supermotif peptides.

Peptide	Molecule	1st Position	Sequence	Consv.	B7-superotype binding capacity (IC50 nM)				
					B*0702	B*3501	B*51	B*5301	B*5401
1145.12	Core	169	LPGCSFSIF	92	28	90	100	114	6667
1292.24	Core	169	LPGCSFSII	37	4364	5.3	262	1056	3
1145.13	Core	169	FPGCSFSIF	19	1.6	132	3.2	6.7	5

* A dash indicates IC50 nM >30,000.

Table XXIX: HCV-derived A1- and A24-motif containing peptides**A. A1-motif peptides**

Peptide	Molecule	Position	Sequence	Conserv.	HLA-A*0101 binding (IC50 nM)
13.0019	NS5	2922	LSAFSLHSY	79	31
1.0509	NS5	2921	GLSAFSLHSY	79	61
1069.62	NS3	1128	CTCGSSDLY	79	68
24.0093	NS5	2129	EVDGVRLHRY	100	167
13.0016	NS3	1241	KSTKVPAAY	85	1923
1.0125	NS3	1525	CYDAGCAWY	79	4032
24.0008	E1	206	DCSNSSIVY	85	16667
24.0094	NS5	2720	TNSKGQNCGY	100	-
24.0096	NS3	1240	GKSTKVPAAY	85	-
24.0100	NS3	1292	TGAPITYSTY	85	-
	NS3	1263	VAATLGFAY	100	
	NS5	2639	VMGSSYGFQY	79	
	NS5	2640	MGSSYGFQY	79	

A dash indicates IC50 nM >25000

B. A24 -motif peptides

Peptide	Molecule	Position	Sequence	Conserv.	HLA-A*2402 binding (IC50 nM)
24.0092	NS4	1765	FWAKHMWNF	85	1.7
13.0075	NS4	1778	QYLAGLSTL	100	250
1073.18	NS1/E2	636	MYVGGVEHRL	92	444
13.0074	NS3	1297	TYSTYGKFL	85	522
13.0134	NS5	2647	QYSPGQRVEF	79	667
24.0091	NS4	1772	NFISGIQYL	100	706
13.0131	Core	135	GYIPLVGAPL	79	2105
24.0108	Core	173	SFSIFLLALL	100	2927
13.0132	NS3	1248	AYAAQGYKVL	79	13333
13.0133	NS4	1859	GYGAGVAGAL	85	-
1174.08	NS4	1769	HMWNFISGI	93	
	E1	317	RMAWDMMMNW	85	
	NS1/E2	635	RMYVGGVEHRL	93	
	NS3	1422	YYRGLDVSVI	100	
	NS3	1468	DFSLDPFTI	100	
	NS3	1608	SWDQMWKCL	79	
	NS3	1664	TWVLVGGVL	85	
	NS4	1732	QFKQKALGL	85	
	NS4	1732	QFKQKALGLL	85	
	NS4	1765	FWAKHMWNFI	85	
	NS4	1919	QWMNRLIAF	100	
	NS5	2241	LWRQEMGGNI	85	
	NS5	2669	GFSYDTRCF	79	
	NS5	2875	RMILMTHFF	85	

A dash indicates IC50 nM >25000

Table XXX: Immunogenicity of A2-supertype cross-reactive binders

Peptide	Sequence	Protein	Position	Immunogenicity				Frequency Response Transgenic mice ^b
				Human ^a		Barnaba; Barnaba; Chisari		
		Barnaba; patients	patients contacts	Pape	overall			
1073.05	LLFNILGGWV	NS4	1812	1/6	7/17	2/21	0/6	10/50 6/6 6.4 (1.7)
1090.18	FLLLADARV	NS1/E2	728	2/6	7/17	1/21	0/6	10/50 5/6 9.5 (3.0)
1013.02	YLVAYQATV	NS4	1590	1/6	4/17	1/21	0/6	6/50 5/6 8.5 (3.7)
1090.22	RLJVFPDLGV	NS5	2578	2/6	5/17	0/21	0/6	7/50 0/6 -
1013.1002	DLMGYPLV	Core	132	2/6	7/17	1/21	1/6	11/50 5/6 8.8 (2.6)
24.0073	WMNRHLAFA	NS4	1920	1/6	3/17	2/21	1/6	7/50 0/6 -
24.0075	VLVGGVLA	NS4	1666	1/6	6/17	3/21	1/6	11/50 0/6 -
1174.08	HMWNFTISGI	NS4	1769	3/6	3/17	2/21	0/6	8/50 6/6 6.4 (1.7)
1073.06	ILAGYGA	NS4	1851	2/6	3/17	0/21	0/6	5/50 3/6 54.7 (3.3)
1073.07	YLLPRRGPRL	CORE	35	2/6	5/17	7/21	1/6	17/50 4/6 59.1 (7.2)
24.0071	LLFLLLADA	NS1/E2	726	2/6	9/17	0/21	0/6	11/50 0/6 -
1.0119	YLVTTRHADV	NS3	1131	6/6	10/17	0/21	1/6	17/50 0/6 -

a. Data shown represents the number of positive responses over the total number of patients or contacts examined.

b. Frequency represents the number of positive responses over the total number of mice examined. Response indicates the average magnitude (standard deviation) of the response in positive animals, measured in lytic units.

Table XXXI: Immunogenicity of A3-supertype cross-reactive binders

Peptide	Sequence	Protein	Position	Immunogenicity			
				Human ^a		Transgenic mice ^b	
		Barnaba;	Barnaba;	Chisari	Pape	overall	Frequency
1.0952	KTSERSQPR	CORE	51	2/16	1/4	3/12	0/6
1073.11	RLGVRA TRK	CORE	43	4/16	1/4	7/12	1/6
1.0955	QLFTFSPPR	ENV	290	1/16	0/4	6/12	1/6
1073.13	RMYVGGVEHR	NS1/E2	632	5/16	1/4	4/12	2/6
1.0123	LIFCHSKKK	NS3	1396	6/16	1/4	4/12	2/6
1073.10	GVAGALVAFK	NS4	1863	3/16	0/4	6/12	2/6
24.0090	VAGALVAFK	NS4	1864	4/16	1/4	6/12	0/4
24.0086	TLGFGAYMSK	NS3	1262	6/16	2/12	2/12	1/6
						10/33	7.1

a. Data shown represents the number of positive responses over the total number of patients or contacts examined.

b. Frequency represents the number of positive responses over the total number of mice examined. Response indicates the average magnitude (standard deviation) of the response in positive animals, measured in lytic units.

Table XXXII. Candidate HCV-derived HTL epitopes

Selection criteria	Peptide	Sequence	Source	Conservancy	
				Total	Core
A. DR-supermotif conserved 15mers	1283.01	GQIVGGVYLLPRRGPR	HCV Core 28	93	93
	1283.02	VYLLPERRGPRLRGVRA	HCV Core 34	93	93
	1283.03	GWLLSPRGSRPSWGPT	HCV Core 95	79	79
	1283.04	LGKVIDTLCGFADL	HCV Core 119	79	86
	1283.05	IDTLTCGFADLMGYI	HCV Core 123	86	86
	1283.06	ADLMGYIPLVGAPLG	HCV Core 131	79	79
	1283.07	GVRVLEDGVNYATGN	HCV Core 154	86	86
	1283.08	GVNYATGNILPGCSFS	HCV Core 161	79	86
	1283.09	GCSFSIFLLALLSCL	HCV Core 171	86	100
	1283.10	GHRMAWDMMMNWSPT	HCV E1 315	86	86
	1283.11	CGPVYCFTPSPVVVG	HCV NS1/E2 506	93	93
	1283.12	VYCFTPSPVVVGTTD	HCV NS1/E2 509	93	93
	1283.13	GNWFGCTWMNSTGFT	HCV NS1/E2 550	79	86
	1283.14	FTTLPALSTGLIHLH	HCV NS1/E2 684	79	86
	1283.17	DLYLVTRHADVIPVR	HCV NS3 1134	79	79
	1283.18	RAAVCTRGVAKAVDF	HCV NS3 1186	79	79
	1283.20	AQGYKVLVLPNSVAA	HCV NS3 1251	79	100
	1283.21	GYKVLVLPNSVAAATL	HCV NS3 1253	100	100
	1283.22	VLVLPNSVAAATLGF	HCV NS3 1256	100	100
	1283.23	GTVLVDQAETAGARLV	HCV NS3 1335	86	86
	1283.24	GARLVVLAATATPPGS	HCV NS3 1345	79	86
	1283.25	GRHLIFCHSKKKCDE	HCV NS3 1393	100	100
	1283.27	DSVIDCNCVTQTVD	HCV NS3 1454	86	86
	1283.28	TVDFSLDPFTIETT	HCV NS3 1466	79	100
	1283.30	FTGLTHIDAHFLSQ	HCV NS3 1567	93	93
	1283.31	YLVAYQATVCARAQA	HCV NS3 1591	79	93
	1283.32	KPTLHGPTPLLYRLG	HCV NS4 1620	79	79
	1283.33	LEVVTSWVLLVGGVL	HCV NS4 1658	86	86
	1283.34	TWVLVGGVLAALAAAY	HCV NS4 1664	86	86
	1283.35	AEQFKQKALGLLQTA	HCV NS4 1730	86	86
	1283.40	PAILSPGALVVGVVCA	HCV NS4 1889	79	93
	1283.41	GALVVGVVCAAIRR	HCV NS4 1895	79	79
	1283.42	CAAIRRRHVGPGEGA	HCV NS4 1903	79	79
	1283.43	AVQWMNRLLAFASRG	HCV NS4 1917	100	100
	1283.44	MNRLIAFASRGHNVS	HCV NS4 1921	86	100
	1283.48	ANLLWRQEMGGNITR	HCV NS5 2238	86	86
	1283.49	RQEMGGNITRVESEN	HCV NS5 2243	86	86
	1283.52	ARLIVFPDLGVRVCE	HCV NS5 2610	79	79
	1283.53	FPDLGVRVCEKMALY	HCV NS5 2615	79	100
	1283.54	GVRVCEKMALYDVVS	HCV NS5 2619	79	100
	1283.56	QPEYDLELITSCSSN	HCV NS5 2808	79	93
	1283.57	LELITSCSSNVSAH	HCV NS5 2813	79	100
	1283.58	PTLWARMILMTHFFS	HCV NS5 2870	79	86
	1283.59	LHGLSAFSLHSYSPG	HCV NS5 2919	79	79
	1283.60	AFLSHSYSPGEINRV	HCV NS5 2924	79	79

Table XXXII. Candidate HCV-derived HTL epitopes

Selection criteria	Peptide	Sequence	Source	Conservancy	
				Total	Core
B. High algorithm conserved core	I283.15	VVLLFLLLADARVCS	HCV NS1/E2 724	29	100
	I283.16	SKGWRLLAPITAYAQ	HCV NS3 1025	29	79
	I283.19	PQTFQVAHLHAPTGS	HCV NS3 1225	43	85
	I283.26	DVVVVATDALMTGYT	HCV NS3 1436	43	79
	I283.29	WESVFTGLTHIDAHF	HCV NS3 1563	43	92
	I283.45	LTSMLTDPSHITAET	HCV NS5 2176	57	100
	I283.46	ASQLSAPSLKATCTT	HCV NS5 2208	50	79
	I283.47	DADLIEANLLWRQEM	HCV NS5 2232	50	85
	I283.50	SYTWTGALITPCAAE	HCV NS5 2456	64	79
	I283.51	TTIMAKNEVFCVQPE	HCV NS5 2589	64	85
	I283.55	GSSYGFQYSPGQRVE	HCV NS5 2641	71	79
	I283.61	ASCLRKLGVVPLRVW	HCV NS5 2939	50	85
C. Collaborator	F098.03	AAYAAQGYKVVLVLPNSVAAT	HCV NS3 1242-1261	71	100
	F098.04	GYKVLVLPNSVAATLGFGAY	HCV NS3 1248-1267	100	
	F098.05	GYKVLVLPNSVAAT	HCV NS3 1248-1261	100	
	F134.01	RRPQDVKFPGGGQIVGGVY	HCV Core 17-35	86	
	F134.02	DVKFPGGGQIVGGVYLLPRR	HCV Core 21-40	86	
	F134.03	GYKVLVLPNSVAATLGFGAY	HCV NS3 1253-1272	100	
	F134.04	TLHGPTPLLYRLGAVQNEIT	HCV NS4 1622-1641		79
	F134.05	NFISGIQYLAGLSTLPGNPA	HCV NS4 1772-1791	100	
	F134.06	LLFNILGGWVAAQLAAPGAA	HCV NS4 1812-1831		86
	F134.07	GPGEGAQWQVMNRLLIAFASRG	HCV NS4 1912-1931	86	100
	F134.08	GEGAVQWMNRLLIAFASRGNHV	HCV NS4 1914-1934	100	
D. DR3 motif	Pape 21	AIPLEVIKGGRHLIFCHSKR	HCV NS3 1379-1398	21	100
	Pape 22	GRHLIFCHSKRKCDELATKL	HCV NS3 1388-1407		100
	Pape 29	SVIDCNTCVTQTVDFSLDPT	HCV NS3 1450-1469	86	
	35.0102	GVRVLEDGVNYATGN	HCV 154	86	86
	35.0103	SAMYVGDLCGSVFLV	HCV 273	57	86
D. DR3 motif	35.0104	GHRMAWDMMMNWSPT	HCV 315	86	86
	35.0105	SDLYLVTRHADVIPV	HCV 1133	79	86
	35.0106	VVVVATDALMTGYTG	HCV 1437	42	86
	35.0107	TVDFSLDPTFTIETT	HCV 1466	79	100
	35.0108	DSSVLCECYDAGCAW	HCV 1518	71	93
	35.0109	GLPVCQDHLEFWESV	HCV 1552	42	86
	35.0110	GMQLAEQFKQKALGL	HCV 1726	57	86
	35.0111	PTHYVPESDAAARVT	HCV 1936	86	86
	35.0112	GSQLPCEPEPDVAVL	HCV 2162	64	86
	35.0113	LTSMLTDPSHITAET	HCV 2176	57	100
	35.0114	MPPLEGEPGDPDLSD	HCV 2401	79	100
	35.0115	QPEYDLELITSCSSN	HCV 2808	79	93
	1283.25	GRHLIFCHSKKKCDE	HCV NS3 1393-1407		

Table XXXIII. HLA-DR screening panels

Screening Panel	Antigen	Alleles	Representative Assay		Phenotypic Frequencies					
			Allele	Alias	Cauc.	Blk.	Jpn.	Chn.	Hisp.	Avg.
Primary	DR1	DRB1*0101-03	DRB1*0101 (DR1)	-	18.5	8.4	10.7	4.5	10.1	10.4
	DR4	DRB1*0401-12	DRB1*0401 (DR4w4)	-	23.6	6.1	40.4	21.9	29.8	24.4
	DR7	DRB1*0701-02	DRB1*0701 (DR7)	-	26.2	11.1	1.0	15.0	16.6	14.0
	Panel total				59.6	24.5	49.3	38.7	51.1	44.6
Secondary	DR2	DRB1*1501-03	DRB1*1501 (DR2w2 β1)	19.9	14.8	30.9	22.0	15.0	20.5	
	DR2	DRB5*0101	DRB5*0101 (DR2w2 β2)	-	-	-	-	-	-	
	DR9	DRB1*09011,09012	DRB1*0901 (DR9)	3.6	4.7	24.5	19.9	6.7	11.9	
	DR13	DRB1*1301-06	DRB1*1302 (DR6w19)	21.7	16.5	14.6	12.2	10.5	15.1	
Panel total				42.0	33.9	61.0	48.9	30.5	43.2	
Tertiary	DR4	DRB1*0405	DRB1*0405 (DR4w15)	-	-	-	-	-	-	
	DR8	DRB1*0801-5	DRB1*0802 (DR8w2)	5.5	10.9	25.0	10.7	23.3	15.1	
	DR11	DRB1*1101-05	DRB1*1101 (DR5w11)	17.0	18.0	4.9	19.4	18.1	15.5	
	Panel total			22.0	27.8	29.2	29.0	39.0	29.4	
Quaternary	DR3	DRB1*0301-2	DRB1*0301 (DR3w17)	17.7	19.5	0.4	7.3	14.4	11.9	
	DR12	DRB1*1201-02	DRB1*1201 (DR5w12)	2.8	5.5	13.1	17.6	5.7	8.9	
	Panel total			20.2	24.4	13.5	24.2	19.7	20.4	

Table XXXIV. HLA-DR binding capacity of target derived peptides: DR-supermotif and algorithm positive peptides.

Peptide	Sequence	Source	Binding capacity (IC50 nM)								DR alleles bound	
			DR1	DR2w2B1	DR2w2B2	DR4w4	DR4w4	DR6w11	DR6w19	DR7	DR8w2	
I283.21	AAYAAQGYKVVLNPSVAAATLGFAY	HCV NS3 1242-1267										
	GYKVLVLNPSVAAATL	HCV NS3 1253	4.5	350	5.2	567	143	5.1	89	288	54	175
I283.20	AQGYKVLVLNPSVAAAT	HCV NS3 1251	6.0	650	7.9	224	74	5.9	833	175	375	298
F98.03	AAYAAQGYKVVLNPSVAAAT	HCV NS3 1242	2.9	48	483	18	123	103	11	96	60	240
F98.05	GYKVLVLNPSVAAAT	HCV NS3 1248-1261	1.4	39	3695	7.8	141	75	3.5	126	21	266
F98.04	GYKVLVLNPSVAAATLGFAY	HCV NS3 1248-1267	3.5	42	8154	9.7	1500	240	4.1	23	80	20
	GEGAVQWWMNRLLAFASRGNHVS	HCV NS4 1914-1935										
I283.44	MNRLIAFASRGNHVS	HCV NS4 1921	66	4.8	558	16329	585	45	7.3	227	102	313
F134.08	GEGAVQWWMNRLLAFASRGNHIV	HCV NS4 1914	3.2		182	361	345			221	158	16818
I283.16	SKGWRLLAPITAYAQ	HCV NS3 1025	0.36	125	23	24	152	4.8		962	54	1190
I283.55	GSSYGFQYSPGQRYVE	HCV NS5 2641	11		667	417	745	20000	19	156	15	384
I283.61	ASCLRKLGYPPLRWW	HCV NS5 2939	5.0	16	217	1625	78	645	2500	862	671	68
F134.05	NFISGIQYLLAGLSTLPGNPA	HCV NS4 1772	10		606	84	29			70	441	571
												-

Shading indicates IC50 > 1 μM.
A dash (-) indicates IC50 > 20 μM.

Table XXXV. HLA-DR binding capacity of 3 DR3 motif-containing peptides

Peptide	Sequence	Source	DR3 binding (IC50 nM)
35.0106	VVVVATDALMTGYTG	HCV 1437	427
35.0107	TVDFSLDPTFTIETT	HCV 1466	235
1233.25	GRHLIFCHSKKKCDE	HCV NS3 1393	ND

Table XXXVIIa: HCV-derived CTL epitope candidates

Peptide	Molecule	1st Position	Sequence	i Consy.	Selection criteria
1073.05	NS4	1812	LLFNILGGWW	85	A2-superype
1090.18	NS1/E2	728	FLLIADARV	92	A2-superype
1013.02	NS4	1590	YLVAYQATV	85	A2-superype
1090.22	NS5	2611	RLIWFPDLGV	79	A2-superype
1013.1002	CORE	132	DLMGYIPLV	79	A2-superype
24.0073	NS4	1920	WMNRLIAFA	100	A2-superype
24.0075	NS4	1666	VLVGGVLA	85	A2-superype
1174.08	NS4	1769	HMWNFISGI	92	A2-superype
1073.06	NS4	1851	ILAGYGAGV	79	A2-superype
1073.07	CORE	35	YLLPQQGPRL	92	A2-superype
24.0071	NS1/E2	726	LLFLILLADA	100	A2-superype
1.0119	LORF	1131	YLVTRHADV	85	A2-superype
1.0952	CORE	51	KTSERSQPR	92	A3-superype
1073.11	CORE	43	RLGVRATRK	79	A3-superype
1.0955	ENV1	290	QLFTFSPPR	79	A3-superype
1073.13	NS1/E2	632	RMYVGGVEHR	100	A3-superype
1.0123	NS3	1396	LIFCHSKKK	100	A3-superype
1073.10	NS4	1863	GVAGALVAFK	85	A3-superype
24.0090	NS4	1864	VAGALVAFK	85	A3-superype
24.0086	NS3	1262	TLGFGAYMSK	85	A3-superype
F104.01	NS5	3003	VGIVYLLPNR	79	A31
1145.12	Core	169	LPGCSFSIF	92	B7-superype
29.0035	NS3	1378	IPFYGKAI	92	B7-superype
13.0019	NS5	2922	LSAFLHSY	79	A1
1069.62	NS3	1128	CTCGSSDLY	79	A1
24.0092	NS4	1765	FWAKHMWNF	85	A24

Table XXXVIIb: HCV-derived HTL epitope candidates

Region	Peptide	Motif ¹	Sequence
HCV NS3 1025-1039	1283.16	DR	SKGWRLLAPITAYAQ`
HCV NS3 1242-1267	F98.03	DR	AAYAAQGYKVLVNPSVAAT,
HCV NS3 1393-1407	1283.25	DR3	GRHLIFCHSKKKCDE`
HCV NS3 1437-1451	35.0106	DR3	VVVVATDALMTGYTG`
HCV NS3 1466-1480	35.0107	DR3	TVDFSLDDPTFTIETT`
HCV NS4 1772-1790	F134.05	DR	NFISGIQYLAGLSTLPGNPA`
HCV NS4 1914-1935	F134.08	DR	GEGAVQWMNRLLIAFASRGNHV`
HCV NS5 2641-2655	1283.55	DR	GSSYGFQYSPGQRVE`
HCV NS5 2939-2953	1283.61	DR	ASCLRKLGVPPPLRVW`

1. Peptides identified on the basis of either the DR P1-P6 supermotif or by use of the DR1-4-7 algorithms are indicated by 'DR'. Peptides identified using the DR3 motif are indicated by 'DR3'.

Table XXXVII. Estimated population coverage by a panel of HCV derived HTL epitopes

Antigen	Alleles	Representative assay	No. of epitopes ²	Population coverage (phenotypic frequency)					
				Cauc.	Blk.	Jpn.	Chn.	Hisp.	Avg.
DR1	DRB1*0101-03	DR1	6	18.5	8.4	10.7	4.5	10.1	10.4
DR2	DRB1*1501-03	DR2w2 β1	3	19.9	14.8	30.9	22.0	15.0	20.5
DR2	DRB5*0101	DR2w2 β2	6	-	-	-	-	-	-
DR3	DRB1*0301-2	DR3	2	17.7	19.5	0.40	7.3	14.4	11.9
DR4	DRB1*0401-12	DR4w4	5	23.6	6.1	40.4	21.9	29.8	24.4
DR4	DRB1*0401-12	DR4w15	3	-	-	-	-	-	-
DR7	DRB1*0701-02	DR7	5	26.2	11.1	1.0	15.0	16.6	14.0
DR8	DRB1*0801-5	DR8w2	5	5.5	10.9	25.0	10.7	23.3	15.1
DR9	DRB1*09011,09012	DR9	3	3.6	4.7	24.5	19.9	6.7	11.9
DR11	DRB1*1101-05	DR5w11	5	17.0	18.0	4.9	19.4	18.1	15.5
DR13	DRB1*1301-06	DR6w19	2	21.7	16.5	14.6	12.2	10.5	15.1
Total			98.5	95.1	97.1	91.3	94.3	95.1	

1. Total population coverage has been adjusted to account for the presence of DRX in many ethnic populations. It has been assumed that the range of specificities represented by DRX alleles will mirror those of previously characterized HLA-DR alleles. The proportion of DRX incorporated under each motif is representative of the frequency of the motif in the remainder of the population. Total coverage has not been adjusted to account for unknown gene types.

2. Number of epitopes represents a minimal estimate, considering only the epitopes shown in Table 6. Additional alleles possibly bound by nested epitopes have not been accounted.

TABLE Ia

SUPERMOTIFS	POSITION 2 (Primary Anchor)	POSITION 3 (Primary Anchor)	POSITION C Terminus (Primary Anchor)
A1	T, I, L, V, M, S		F, W, Y
A2	V, Q, A, T		I, V, L, M, A, T
A3	V, S, M, A, T, L, I		R, K
A24	Y, F, W, I, V, L, M, T		F, I, Y, W, L, M
B7	P		V, I, L, F, M, W, Y, A
B27	R, H, K		F, Y, L, W, M, I, V, A
B58	A, T, S		F, W, Y, L, I, V, M, A
B62	Q, L, I, V, M, P		F, W, Y, M, I, V, L, A
MOTIFS			
A1	T, S, M		Y
A1		D, E, A, S	Y
A2.1	V, Q, A, T*		V, L, I, M, A, T
A3.2	L, M, V, I, S, A, T, F, C, G, D		K, Y, R, H, F, A
A11	V, T, M, L, I, S, A, G, N, C, D, F		K, R, H, Y
A24	Y, F, W		F, L, I, W

*If 2 is V, or Q, the C-term is not L

Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.