What is claimed is:

14.

·17

18,

1. A method i	for gray level dynamic switching	g, applied
to a display with a	a pixel, comprising the followi	ng steps:
providing a	gray level sequence SG, wh	nerein SG
sequentia	ally represents two or more des	sired gray
levels Go	o(1),,Go(T) of the pixel at co	nsecutive
time fra	mes 1,,T and comprises a cur	rent gray
level Go	o(t) and a previous gray leve	l Go(t-1)
correspo	nding to time frames t	and t-1,
respecti	vely, and Go(t) corresponds to	a driving
voltage	Vo(t) to present Go(t) under	a static
condition	n; and	
determining a	an optimized driving voltag	je Vd(t),
accordin	g to an equation $Vd(t) = V_o(t - t)$	-1) + ODV ,
wherein	the ODV is a minimum voltage of	apable of
obtainin	g one gray level transition in a c	letermined
response	time;	
determining an	n dynamic gray level data $G_d(t)$	according
to an equ	uation $Vd(t) = a \times Gd(t)^3 + b \times Gd(t)^2 + c$	$\times Gd(t) + d$;
producing the	optimized driving voltage Vd(t)	according
to the d	$dynamic gray level data G_d(t);$	
driving the pi	xel with optimized driving volt	age Vd(t)
to chan	nge the forward pixel to	a state
correspo	ending to $G_o(t)$.	

2. The method as claimed in claim 1, wherein a is -0.0004, b is 0.0037, c is -0.1443, and d is 8.6992.

1

2

ġ.

1

2

5

6.

9 -

10

11

12

13

- 3. The method as claimed in claim 1, wherein, in positive frame, the polarity of the voltage ODV is positive when $G_o(n) > G_o(n-1)$ and negative when $G_o(n) < G_o(n-1)$.
 - 4. The method as claimed in claim 1, wherein, in negative frame, the polarity of the voltage ODV is negative when $G_o(n) > G_o(n-1)$ and positive when $G_o(n) < G_o(n-1)$.
 - 5. The method as claimed in claim 1, wherein the display is a liquid crystal display.
 - 6. The method as claimed in claim 1, further comprising a step of adjusting the voltage ODV according to an operating temperature.
 - 7. The method as claimed in claim 6, wherein the voltage ODV is inversely proportional to the operating temperature.
 - 8. An apparatus for gray level dynamic switching, applied to drive a display with a pixel, comprising:
 - a memory set for storing a previous gray level $G_o(t-1)$, $G_o(t-1)$ representing the desired gray level of the pixel at time frame t-1, and $G_o(t-1)$ corresponding to a driving voltage $V_o(t-1)$ to present $G_o(t-1)$ under a static condition;
 - a processor for determining an optimized driving voltage $\mbox{Vd}(t) \mbox{ according to a current gray level } G_o(t) \mbox{ and } an \mbox{ equation } Vd(t) = V_o(t-1) + ODV \mbox{ , and determining an } dynamic \mbox{ gray level data } G_d(t) \mbox{ according to an } equation \mbox{ } Vd(t) = a \times G_d(t)^3 + b \times G_d(t)^2 + c \times G_d(t) + d \mbox{ , } \\ \mbox{ wherein } Go(t) \mbox{ represents the desired level of the }$

Client's ref .: A00042

14

15

16

17

18

19

20

21

22

1

3

1

2

3.

2

3

1

3

1

Our ref: 0611-5549-USF-CIP/dennis/kevin

pixel at time frame t, the voltage ODV is a minimum voltage capable of obtaining one gray level transition in a determined response time, a is -0.0004, b is 0.0037, c is -0.1443, and d is 8.6992; and

a driving circuit for receiving G_d(t) and correspondingly generating the optimized driving voltage Vd(t) to drive the pixel to change the forward pixel to a current state corresponding to $G_o(t)$.

- The apparatus as claimed in claim 8, wherein, in positive frame, the polarity of the voltage ODV is positive when $G_o(t) > G_o(t-1)$ and negative when $G_o(t) < G_o(t-1)$.
- The apparatus as claimed in claim 8, wherein, in negative frame, the polarity of the voltage ODV is negative when $G_o(t) > G_o(t-1)$ and positive when $G_o(t) < G_o(t-1)$.
 - The apparatus as claimed in claim 8, wherein the processor further adjusts $G_d(t)$ according to an operating temperature.
 - The apparatus as claimed in claim 11, wherein the voltage ODV is inversely proportional to the operating temperature.
- 13. The apparatus as claimed in claim 8, wherein the memory set is a set of dynamic random access memories (DRAM).
- A display system, comprising:
- a display, having at least one pixel; 2
 - a memory for storing a program;

Our ref: 0611-5549-USF-CIP/dennis/kevin

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23.

24

25

26

27

28

29

30

a processor for executing, according to a program in the memory, the following steps:

receiving an original gray level sequence So consisting of two or more original gray levels $G_o(1),...,G_o(T)$, wherein a current gray level $G_o(t)$ and a previous gray level $G_o(t-1)$ correspond to time frames t and t-1, respectively, and $G_o(t-1)$ corresponds to a driving voltage $V_o(t-1)$ to present $G_o(t-1)$ under a static condition;

transforming So to an adjusted gray level sequence S_d consisting of two or more adjusted gray levels $G_d(1), ..., G_d(M)$, an adjusted gray level G_d(m) being generated according to a relevant sub-sequence comprising $G_o(t-1)$ and $G_o(t)$, wherein an optimized driving voltage Vd(t) is determined according to the $G_o(t)$ and an equation $Vd(t) = V_0(t-1) + ODV$, and the adjusted gray level Gd (m) is determined according to an equation

> $Vd(t) = a \times G_d(m)^3 + b \times G_d(m)^2 + c \times G_d(m) + d$, wherein the voltage ODV is a minimum voltage capable of obtaining one gray level transition in a determined response time, a is -0.0004, b is 0.0037, c is -0.1443, and d is 8.6992; and

sequentially driving the pixel with driving forces corresponding to $G_d(1), ..., G_d(M)$ in S_d .

Client's ref.: A00042 Our ref: 0611-5549-USF-CIP/dennis/kevin

2

3

1

2

3

1

2

1

2

- 15. The system as claimed in claim 14, wherein, in positive frame, the polarity of the voltage ODV is positive when $G_o(t) > G_o(t-1)$ and negative when $G_o(t) < G_o(t-1)$.
- 16. The system as claimed in claim 14, wherein, in negative frame, the polarity of the voltage ODV is negative when $G_o(t) > G_o(t-1)$ and positive when $G_o(t) < G_o(t-1)$.
- 17. The system as claimed in claim 14, wherein the program in the memory adjusts the $G_d\left(m\right)$ according to an operating temperature.
- 18. The system as claimed in claim 17, wherein the voltage ODV is inversely proportional to the operating temperature.