Theorem 1.6.8.

Suppose $X_n \to X$ a.s. Let g, h be continuous functions with

- (i) $g \ge 0$ and $g(x) \to \infty$ as $|x| \to \infty$,
- (ii) $|h(x)|/g(x) \to 0$ as $|x| \to \infty$,

and (iii) Eg $(X_n) \leq K < \infty$ for all n.

Then $\mathrm{Eh}\,(X_n)\to Eh(X)$.

Proof. By subtracting a constant from h, we can suppose without loss of generality that h(0) = 0. Pick M large so that P(|X| = M) = 0 and g(x) > 0 when $|x| \geq M$. Given a random variable Y, let $\bar{Y} = Y1_{(|Y| \leq M)}$. Since $P(|X| = M) = 0, \bar{X}_n \to \bar{X}$ a.s. Since $h(\bar{X}_n)$ is bounded and h is continuous, it follows from the bounded convergence theorem that (a)

$$Eh\left(\bar{X}_n\right) \to Eh(\bar{X})$$

To control the effect of the truncation, we use the following:

(b) $|Eh(\bar{Y}) - Eh(Y)| \le E|h(\bar{Y}) - h(Y)| \le E(|h(Y)|; |Y| > M) \le \epsilon_M Eg(Y)$ where $\epsilon_M = \sup\{|h(x)|/g(x) : |x| \ge M\}$. To check the second inequality, note that when $|Y| \le M, \bar{Y} = Y$, and we have supposed h(0) = 0. The third inequality follows from the definition of ϵ_M . Taking $Y = X_n$ in (b) and using (ii), it follows that

(c)

$$\left| Eh\left(\bar{X}_{n}\right) - Eh\left(X_{n}\right) \right| \leq K\epsilon_{M}$$

To estimate $|Eh(\bar{X}) - Eh(X)|$, we observe that $g \ge 0$ and g is continuous, so Fatou's lemma implies

$$Eg(X) \le \liminf_{n \to \infty} Eg(X_n) \le K$$

Taking Y = X in (b) gives (d)

$$|Eh(\bar{X}) - Eh(X)| \le K\epsilon_M$$

The triangle inequality implies

$$|Eh(X_n) - Eh(X)| \le |Eh(X_n) - Eh(\bar{X}_n)| + |Eh(\bar{X}_n) - Eh(\bar{X})| + |Eh(\bar{X}) - Eh(X)|$$

Taking limits and using (a), (c), (d), we have

$$\limsup_{n \to \infty} |Eh(X_n) - Eh(X)| \le 2K\epsilon_M$$

which proves the desired result since $K < \infty$ and $\epsilon_M \to 0$ as $M \to \infty$.