

HEART DISEASE STATISTICAL ANALYSIS

By: Kristine Dinh

INTRODUCTION

- Retrieved data from Kaggle
- Use logistic regression for model development
- Use bootstrapping method for model selection and validation
- Introduce simple R syntax for statistical modeling

- Logistic Regression
- Data Cleaning
- Data Exploratory Analysis
- Modeling Bootstrap
- Limitation/Future Research

INTRODUCTORY TO LOGISTIC REGRESSION

I) General form of simple logistic regression model

$$\pi(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

- E(Y|x) Conditional mean of Y given x
- $\pi(x)$ average probability of the occurrence of an event

$$0 \le \pi(x) \le 1$$

2) Transformation to linear regression model:

$$g(x) = log\left[\frac{\pi(x)}{1 - \pi(x)}\right] = \beta_0 + \beta_1 x$$

- g(x) continuous linear function
- x Independent variable
- β_0 Intercept
- β_1 Slope

3) Fitting the model:

Logistic Likelihood function

$$L(\beta) = \log(l(\beta)) = \sum_{i=1}^{n} \{y_i \log[\pi(x_i)] + (1 - y_i) \log[1 - \pi(x_i)]\}$$

4) Testing for Significant:

i. Deviance (D statistics) ~ Sum of squares residual

$$D = -2\sum_{i=1}^{n} \left[y_i log\left(\frac{\widehat{\pi}_i}{y_i}\right) + (1 - y_i) log\left(\frac{1 - \widehat{\pi}_i}{1 - y_i}\right) \right], \text{ where } \widehat{\pi}_i = \widehat{\pi}(x_i)$$

ii. G statistics

$$G = 2\left\{\sum_{i=1}^{n} \left[y_i \log(\hat{\pi}_i) + (1 - y_i) \log(1 - \hat{\pi}_i)\right] - \left[n_1 \log(n_1) + n_0 \log(n_0) - n\log(n)\right]\right\} \sim \chi_1^2$$

5) Confident Interval

- Wald-based CI
 - Positive square root of the variance estimator
- Venzon and Moolgavkar method
 - Plot log-likelihood function vs coefficient values
 - Maximizing log-likelihood

DATA CLEANING

data.frame 303 obs. of 14 variables

DATA EXPLORATORY ANALYSIS

Gender

Reference level: male

distribution table

xvar	count	prop		
male	207	0.4493		
female	96	0.7500		

summary statistics

term	estimate	std.error	statistic	p.value	2.5 %	97.5 %
(Intercept)	-0.204	0.140	-1.457	0.145	-0.479	0.069
xvarfemale	1.302	0.274	4.752	0.000	0.777	1.855

Distribution plot of gender

Age

summary statistics

term	estimate	std.error	statistic	p.value	2.5 %	97.5 %
(Intercept)	3.036	0.756	4.014	0	1.585	4.557
xvar	-0.052	0.014	-3.841	0	-0.080	-0.026

Distribution plot of age

Resting Blood Pressure

summary statistics

term	estimate	std.error	statistic	p.value	2.5 %	97.5 %
(Intercept)	2.409	0.904	2.665	0.008	0.663	4.219
xvar	-0.017	0.007	-2.489	0.013	-0.031	-0.004

Distribution plot of rest_bp_bins

Chest Pain Type

summary statistics

term	estimate	std.error	statistic	p.value	2.5 %	97.5 %
(Intercept)	-0.695	0.169	-4.122	0	-1.031	-0.369
xvar	0.984	0.139	7.079	0	0.720	1.266

Distribution plot of chest_pain_type

Fasting Blood Sugar > 120 mg/dl

summary statistics

term	estimate	std.error	statistic	p.value	2.5 %	97.5 %
(Intercept)	0.202	0.125	1.616	0.106	-0.042	0.449
xvartrue	-0.158	0.323	-0.488	0.626	-0.794	0.480

Distribution plot of fbs

Distribution plot of exercise_angina

With Average proportion of getting diagnosed with heart disease

Distribution plot of slope

With Average proportion of getting diagnosed with heart disease

Distribution plot of oldpeak_bins

With Average proportion of getting diagnosed with heart disease

Distribution plot of max_heart_rate_bins

Distribution plot of chol bins

Distribution plot of vessels

Distribution plot of rest_ecg

Distribution plot of thal

BOOTSTRAPPING

```
fit <- glm(y ~ x, data = train, family = "binomial")
    y - response variable
    x - one or more explain variables
    data - training data
    family - distribution</pre>
```

- Random partition: 0.60, 0.70, 0.80, 0.90, and 0.99
- Repeated: 10 times
- Features selection: from 1 to all variables
- Validation metric: AIC and AUC

```
for (i in xvars){
  for (j in nrounds){
    for (k in rp){
      modeling functions
    }
  }
}
```

FEATURES SELECTION

random_partition ‡	nrow_train [‡]	nrow_test ‡	nrounds ‡	target [‡]	n_features ‡	features	AIC ‡	auc
0.99	299	4	10	dx_heart	4	chest_pain_type,oldpeak,vessels,thal	211.0654	0.8981895
0.90	272	31	10	dx_heart	4	chest_pain_type,oldpeak,vessels,thal	198.3173	0.8789868
0.60	181	122	10	dx_heart	4	gender, max_heart_rate, exercise_angina, vessels	177.1497	0.8771337
0.90	272	31	10	dx_heart	4	gender, max_heart_rate, exercise_angina, vessels	216.3574	0.8759481
0.99	299	4	10	dx_heart	4	age,gender,chest_pain_type,oldpeak	222.8361	0.8753062
0.70	212	91	10	dx_heart	4	gender, max_heart_rate, exercise_angina, vessels	189.4515	0.8744709
0.99	299	4	10	dx_heart	4	chest_pain_type,exercise_angina,vessels,thal	225.5231	0.8743765
08.0	242	61	10	dx_heart	4	chest_pain_type,oldpeak,vessels,thal	184.4960	0.8737395
0.70	212	91	10	dx_heart	4	chest_pain_type,oldpeak,vessels,thal	171.1942	0.8734447
0.99	299	4	10	dx_heart	4	chest_pain_type,rest_bp,max_heart_rate,oldpeak	233.8244	0.8734262
0.70	212	91	10	dx_heart	4	age,chest_pain_type,oldpeak,vessels	184.8035	0.8732091
0.80	242	61	10	dx_heart	4	age,chest_pain_type,oldpeak,vessels	198.1735	0.8729822
0.99	299	4	10	dx_heart	4	gender, exercise_angina, slope, vessels	227.7914	0.8726583
0.90	272	31	10	dx_heart	4	age,chest_pain_type,oldpeak,vessels	211.2985	0.8718788
0.99	299	4	10	dx_heart	4	age,gender,chest_pain_type,vessels	239.0499	0.8716321
0.90	272	31	10	dx_heart	4	chest_pain_type, max_heart_rate, oldpeak, vessels	201.9927	0.8716053
0.70	212	01	10	dy boart	A	age gender chest hain type oldneak	104.0670	A 0712101

FEATURES SELECTION

random_partition +	nrow_train ‡	nrow_test [‡]	nrounds [‡]	target [‡]	n_features ‡	features	AIC ‡	auc
0.99	299	4	10	dx_heart	4	chest_pain_type,oldpeak,vessels,thal	211.0654	0.8981895
0.90	272	31	10	dx_heart	4	chest_pain_type,oldpeak,vessels,thal	198.3173	0.8789868
0.60	181	122	10	dx_heart	4	gender, max_heart_rate, exercise_angina, vessels	177.1497	0.8771337
0.90	272	31	10	dx_heart	4	gender, max_heart_rate, exercise_angina, vessels	216.3574	0.8759481
0.99	299	4	10	dx_heart	4	age, gender, chest_pain_type, oldpeak	222.8361	0.8753062
0.70	212	91	10	dx_heart	4	gender, max_heart_rate, exercise_angina, vessels	189.4515	0.8744709
0.99	299	4	10	dx_heart	4	chest_pain_type,exercise_angina,vessels,thal	225.5231	0.8743765
08.0	242	61	10	dx_heart	4	chest_pain_type,oldpeak,vessels,thal	184.4960	0.8737395
0.70	212	91	10	dx_heart	4	chest_pain_type,oldpeak,vessels,thal	171.1942	0.8734447
0.99	299	4	10	dx_heart	4	chest_pain_type,rest_bp,max_heart_rate,oldpeak	233.8244	0.8734262
0.70	212	91	10	dx_heart	4	age,chest_pain_type,oldpeak,vessels	184.8035	0.8732091
0.80	242	61	10	dx_heart	4	age,chest_pain_type,oldpeak,vessels	198.1735	0.8729822
0.99	299	4	10	dx_heart	4	gender, exercise_angina, slope, vessels	227.7914	0.8726583
0.90	272	31	10	dx_heart	4	age,chest_pain_type,oldpeak,vessels	211.2985	0.8718788
0.99	299	4	10	dx_heart	4	age,gender,chest_pain_type,vessels	239.0499	0.8716321
0.90	272	31	10	dx_heart	4	chest_pain_type, max_heart_rate, oldpeak, vessels	201.9927	0.8716053
0.70	212	01	10	dy boart	A	ane gender chest hain type oldneak	104.0670	A 0712101

FINAL MODEL

- gender sex (I = male; 0 = female)
- max_heart_rate maximum heart rate achieved
- exercise_angina exercise induced angina (I = yes; 0 = no)
- vessels number of major vessels (0-3) colored by fluoroscopy

• $dx_{heart} = \begin{cases} 1 & has heart disease \\ 0 & doesn't have heart disease \end{cases}$

Summary Statistics

term	estimate	std.error	statistic	p.value	2.5 %	97.5 %
(Intercept)	-4.105	1.198	-3.426	0.001	-6.533	-1.819
genderfemale	1.363	0.336	4.060	0.000	0.721	2.042
max_heart_rate	0.033	0.008	4.396	0.000	0.019	0.049
exercise_anginayes	-1.687	0.335	-5.037	0.000	-2.360	-1.042
vessels	-0.828	0.161	-5.137	0.000	-1.159	-0.525

LIMITATION & FUTURE RESEARCH

- AUC is too high, need more data
- Explore more variables from different dataset
 - Other diseases the patient have
 - What type of work does the patient do
- Explore different types of model to compare
 - XGboost
 - Ridge regression
 - Random forest

MORE INFORMATION

- Data Set Information: https://archive.ics.uci.edu/ml/datasets/Heart+Disease
- Data Set Download: https://www.kaggle.com/ronitf/heart-disease-uci
- Applied Logistic Regression Textbook:
 https://www.google.com/books/edition/Applied_Logistic_Regression/bRoxQBIZRd4C?hl=en&gbpv=I&printsec=fr
 ontcover
- GLM R function: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
- Bootstrapping Method: https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

EMAIL: KDINH@SDSU.EDU