Multi-Layer Perceptron: History and Foundations

Paper presentation session
Principles of Machine Learning course

Instructor: SA Emami

Presented by: M Narimani

February 22, 2025

Part I: History

History of Neural Networks

- Frank Rosenblatt introduced the Perceptron
- First learning algorithm for supervised learning
- Could only solve linearly separable problems
- Rosenblatt envisioned multilayer networks but couldn't train them

- Learning Rule:
 - a procedure for modifying the weights and biases of a network
- Supervised Learning:
 - the learning rule is provided with a set of examples

Training Set
$$\{\mathbf{p}_1, \mathbf{t}_1\}$$
, $\{\mathbf{p}_2, \mathbf{t}_2\}$, ..., $\{\mathbf{p}_Q, \mathbf{t}_Q\}$,

Target

Perceptron Architecture:

$$a = hardlim(Wp + b)$$
.

$$\mathbf{W} = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,R} \\ w_{2,1} & w_{2,2} & \dots & w_{2,R} \\ \vdots & \vdots & & \vdots \\ w_{S,1} & w_{S,2} & \dots & w_{S,R} \end{bmatrix}.$$

• Single-Neuron Perceptron:

$$a = hardlim(n) = hardlim(\mathbf{Wp} + b)$$

=
$$hardlim(_{1}\mathbf{w}^{T}\mathbf{p} + b) = hardlim(w_{1,1}p_{1} + w_{1,2}p_{2} + b)$$

- Single-Neuron Perceptron:
 - Decision Boundary:
 - NN input is zero
 - e.g., $w_{1,1} = 1$, $w_{1,2} = 1$, b = -1.

$$n = {}_{1}\mathbf{w}^{T}\mathbf{p} + b = w_{1,1}p_{1} + w_{1,2}p_{2} + b = p_{1} + p_{2} - 1 = 0.$$

- Single-Neuron Perceptron:
 - AND gate:

• Limitation: Linear Separability

Perceptron Learning Rule:

$$\mathbf{W}^{new} = \mathbf{W}^{old} + \mathbf{ep}^T$$

$$\mathbf{b}^{new} = \mathbf{b}^{old} + \mathbf{e}$$

where
$$e = t - a$$
.

 $a = hardlim(\mathbf{Wp} + b)$

Widrow-Hoff Learning (1960)

- Known as ADALINE
 - ADAptive LInear Neuron
- An approximate steepest descent algorithm

Widrow-Hoff Learning (1960)

- LMS Algorithm:
 - (Least Mean Square)
 - Supervised learning
 - Adjusts the weights and biases of the ADALINE
 - Minimizes mean square error
 - MSE: Difference between the target output and the network output
 - Algorithm:

Widrow-Hoff Learning (1960)

• Discussion:

- More robust decision boundaries than Perceptron
- Limited to linear separation (like the Perceptron)
- Key difference: Uses continuous activation function

The XOR Problem (1969)

- Minsky and Papert's critique (1969)
- Showed that Perceptrons could not learn the XOR Function

Х	Y	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

XOR: simplest non-linearly separable problem

Part II: MLP

MLP Structure

- Multiple layers of neurons
- Non-linear activation functions
- Universal function approximator
- Can solve XOR and other non-linear problems
- **Key challenge**: How to train multiple layers?

Pattern Classification with MLPs

- Can create complex decision boundaries
- Hidden layers learn feature representations
- Output layer performs final classification
- Capable of both binary and multi-class classification

Function Approximation with MLP

$$f^{1}(n) = \frac{1}{1 + e^{-n}}$$
 and $f^{2}(n) = n$.

- Universal approximation theorem
- Can approximate any continuous function
- Trade-off between network size and accuracy
- Applications in regression problems

The Learning Problem

- How to compute gradients for multiple layers?
- Manual derivation is impractical
- Need efficient algorithm for gradient computation
- Solution: Reverse-mode automatic differentiation

DIFFERENTIATION

Part III: Backpropagation

History of Backpropagation

- 1970: Linnainmaa introduces reverse-mode autodiff
- 1974: Werbos describes training multilayer networks
- 1985: Rumelhart, Hinton, Williams popularize backpropagation
 - Showed how networks learn internal representations

LMS vs Backpropagation

LMS

- Used for single-layer linear networks
- Error is an explicit linear function of weights
- Derivatives wrt weights are easily computed

Backprop

- Generalization of the LMS algorithm
- Used for training multilayer networks with nonlinear transfer functions
- Error function is more complex; requires chain rule of calculus for derivatives.

Key Difference:

LMS: Linear relationship between error and weights.

Backprop: Nonlinear relationship requiring advanced calculus.

Backpropagation Algorithm

Performance Index

$$F(\mathbf{x}) = E[\mathbf{e}^T \mathbf{e}] = E[(\mathbf{t} - \mathbf{a})^T (\mathbf{t} - \mathbf{a})]$$

Weight update

$$\mathbf{W}^{m}(k+1) = \mathbf{W}^{m}(k) - \alpha \mathbf{s}^{m}(\mathbf{a}^{m-1})^{T},$$

$$\mathbf{b}^{m}(k+1) = \mathbf{b}^{m}(k) - \alpha \mathbf{s}^{m}.$$

• Where:

$$\mathbf{a}^3 = \mathbf{f}^3 (\mathbf{W}^3 \mathbf{f}^2 (\mathbf{W}^2 \mathbf{f}^1 (\mathbf{W}^1 \mathbf{p} + \mathbf{b}^1) + \mathbf{b}^2) + \mathbf{b}^3)$$

Computational Graphs

- Represent computation as directed graph
 - Nodes: Operations
 - Edges: Flow of data
 - Forward pass: Compute output
 - Backward pass: Compute gradients

Backpropagation Example

• Consider a simple network:

$$f(x,y,z) = (x+y)z$$

Backpropagation Example

• Consider a simple network:

$$f(x, y, z) = (x + y)z$$

e.g., $x = -2$, $y = 5$, $z = -4$

• Forward pass:

$$egin{align} q = x + y & rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1 \ f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \ \end{pmatrix}$$

Backpropagation Example

Consider a simple network:

$$f(x, y, z) = (x + y)z$$

e.g., $x = -2$, $y = 5$, $z = -4$

• Forward pass:

$$egin{align} q = x + y & rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1 \ f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \ \end{pmatrix}$$

Backward pass:

Chain rule:

$$rac{\partial f}{\partial x} = rac{\partial f}{\partial q} rac{\partial q}{\partial x}$$
Upstream Local gradient gradient

Patterns in gradient flow

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Backprop Implementation

Forward pass: Compute output

Backward pass: Compute grads

```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```