

Colour

•

Colour ~ **electromagnetic spectrum**

- We perceive electromagnetic energy having wavelengths in the range 400-700 nm as visible light.
- The perceived color of visible light is as much psychological as it is physical.

The Eye

- The photosensitive part of the eye, the retina, is composed of two types of cells, called rods and cones
- Only the cones are responsible for color perception.
- Cones are most densely packed within a region of the eye called the fovea.

Cone types

- There are three types of cones, referred to either as S, M, and L, which are roughly (very roughly) equivalent to blue, green, and red sensors.
- Their peak sensitivities are located at approximately 430nm, 560nm, and 610nm for the "average" observer.
- Colorblindness results from a deficiency of one cone type.

Color Perception

- Different spectra can result in perceptually identical sensation called metamers
- Color perception results from the simultaneous stimulation of the 3 cone types
- Our perception of color is also affected by surround effects and adaptation

Chromaticity

• hue: f_D = dominant frequency ~ colour

• saturation: purity $\sim E_D - E_W$

 E_D : energy of dominant frequency

 E_W : energy of background frequency

- luminance: intensity (area under spectral curve)
- humans have a logarithmic perception of lightness (colour that is 18% as light will only appear half as bright)

Colour models

- Start with 2 or 3 primary colours
- linear combinations give a colour gamut
- colour gamut, i.e. set of achievable colours, depends on device (monitor, printer, etc.)
- No finite set of primary colours generates the complete visible spectrum

Colour matching functions

• To define a standard perceptual 3D space, experiments have been performed in which observers match the color of a given wavelength by mixing three other pure wavelengths, such as R=700nm, G=546nm, and B=436nm.

 Sometimes red light needs to be added to the target before a match can be achieved. In the graph of primaries R takes on a negative value.

CIE (Commission Internationale de L'Éclairage) space (1931): Define 3 primary colours X, Y, Z, with associated hypothetical energy distributions $x_{\lambda}, y_{\lambda}, z_{\lambda}$, such that colour C with distribution $P(\lambda)$ is a linear combination with positive weights

$$\mathbf{C} = X\mathbf{X} + Y\mathbf{Y} + Z\mathbf{Z}$$

with $X = k \int P(\lambda) x_{\lambda}$, etc. Here k is a calibration constant.

X, *Y*, *Z* are called tristimulus values.

CIE colour matching functions

CIE space

Chromaticity diagram

- Disregard intensity information: take cross section with plane X+Y+Z=1
- Colour is specified by its trichromatic coefficients:

$$x = \frac{X}{X+Y+Z}, y = \frac{Y}{X+Y+Z}, z = \frac{Z}{X+Y+Z}$$

Uniform Colour Space

- A colour space in which equal distances approximately represent equal perceived colour differences (e.g. CIE LUV space).
- A colour-difference formula is designed to give a quantitative representation of the perceived colour difference between a pair of coloured samples.

Chromaticity diagram

Chromaticity diagram

purity, dominant wavelength

color gamuts

RGB colour model

RGB colour model

 any color is written as a sum of the primary colors R(ed), G(reen) and B(lue):

$$Color = rR + gG + bB, \quad r, g, b \in [0, 1] \quad (1)$$

RGB colour model

additive model, applies to RGB monitor.

Linear transformation:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

• The coefficients X_i, Y_i, Z_i are monitor-dependent.

CMY model

21

 any color is written as a sum of the primary colors C(yan), M(agenta) and Y(ellow):

$$Color = c C + m M + y Y, \tag{2}$$

• subtractive model (applies to light reflection from surfaces, e.g. graphics hardcopy devices)

Linear transformation:

$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

(interchanging colors across the main diagonals)

 CMY to CIE: apply CMY to RGB followed by RGB to CIE.

HSV model

- start from a pure color = hue, then add black to obtain shades, or white to obtain tones of that color
- Parameters: Hue (a pure color), Saturation (purity of the color), and Value (intensity of a color).
- HSV coordinates can be converted to RGB coordinates, and vice versa, but not by a simple linear transformation.

HSV model

 represented by the HSV hexcone: V along vertical axis, H an angle around this axis, S radial distance from it

HSV model

