### Introduction

Peter Solymos

Point count data analysis workshop, AOS 2019, Anchorage AK, 25 June 2019

#### About the course

#### You'll learn

- how to analyze your point count data when it combines different methodologies/protocols/technologies,
- how to violate assumptions and get away with it.

#### About me

- Ecologist (molluscs, birds),
- pretty good at stats (modeling, detectability, data cloning, multivariate),
- R programmer (vegan, detect, ResourceSelection, pbapply),
- sometimes I teach (like today).

### Install packages

```
pkgs <- c("bookdown", "detect", "devtools", "dismo",</pre>
  "Distance", "forecast", "glmnet", "gbm", "intrval",
  "knitr", "lme4", "maptools", "mefa4", "mgcv", "MuMIn",
  "opticut", "partykit", "pscl", "raster", "sp",
  "ResourceSelection", "shiny", "unmarked", "visreg")
to_inst <- setdiff(pkgs, rownames(installed.packages()))</pre>
if (length(to_inst))
  install.packages(to inst,
    repos="https://cloud.r-project.org/")
devtools::install github("psolymos/bSims")
devtools::install_github("psolymos/QPAD")
devtools::install github("borealbirds/paired")
devtools::install github("borealbirds/lhreg")
```

#### Dowload the book



## Open project





#### qpad-book.Rproj

R Project - 277 bytes

Tags Add Tags... Created June 7, 2019 at 1:02 AM Modified Today, 7:11 PM

0

More...

#### Notes



# Apples and oranges

"A comparison of apples and oranges occurs when two items or groups of items are compared that cannot be practically compared." [Wikipedia]

How we measure things can have big impact on our results.

- You might say: I saw 5 robins (walking down the road),
- I might say: I only saw one (sitting on my porch)

## Apples to apples

#### Effort:

- area of the physical space searched,
- amount of time spent,
- number of individuals identified.

#### Experience, skill, "sensitivity":

- number of years in field work,
- eye sight, hearing ability,
- mic sensitivity.

The goal is to make our measurements comparable.

## Effects can be significant



10-min unlimited count  $\sim 300\%$  increase over 3-min 50-m count. Average across 54 species of boreal songbirds<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>Matsuoka et al. 2014, Condor 116:599-608.

# So what is a point count?

- A trained observer
- records all the birds
- seen and heard
- from a point count station
- for a set period of time
- within a defined distance radius.

## Questions we want to answer using point counts

- How many? (Abundance, density, population size)
- Is this location part of the range? (0/1)
- How is abundance changing in space? (Distribution)
- How is abundance changing in time? (Trend)
- What is the effect of a treatment on abundance?

## Standardization by design

Have a set of standards/recommendations that people will follow to

- maximize efficiency in the numbers of birds and species counted,
- minimize extraneous variability in the counts<sup>2</sup>.

But programs started to deviate from standards:

"For example, only 3% of 196,000 point counts conducted during the period 1992–2011 across Alaska and Canada followed the standards recommended for the count period and count radius."

<sup>&</sup>lt;sup>2</sup>Ralph et al. 1993, Handbook of field methods for monitoring landbirds.

<sup>&</sup>lt;sup>3</sup>Matsuoka et al. 2014, Condor 116:599-608.

# Protocols do vary



Survey methodology variation (colors) among contributed projects in the Boreal Avian Modelling (BAM) data base as of 2014<sup>4</sup>.

<sup>&</sup>lt;sup>4</sup>Barker et al. 2015, WSB 39(3):480-487.

## Pop quiz

- In what regard can protocols differ?
- What drives protocol variation among projects?
- Why have we abandoned following protocols?

## Moving away from standards

- Detection probabilities might vary even with fixed effort (we'll cover this more later),
- programs might have their own goals and constraints (access, training, etc).

## Model based approaches

Less labor intensive methods for unmarked populations has come to the forefront:

- double observer (Nichols et al. 2000),
- distance sampling (Buckland et al. 2001),
- removal sampling (Farnsworth et al. 2002),
- multiple visit occupancy (MacKenzie et al. 2002),
- multiple visit abundance (Royle 2004).

## Models come with assumptions

- Population is closed during multiple visits,
- observers are independent,
- all individuals emit cues with identical rates,
- spatial distribution of individuals is uniform,
- etc. (we will investigate this further in depth).

### Assumptions are everywhere

Although assumptions are everywhere, we are really good at ignoring them:

- Relativistic time dilation is negligible (as long as we are not on a space station),
- samples are independent.

### Pop quiz

- Can you mention some other common assumptions?
- Can you explain why we neglect/violate assumptions?

#### The hard truth

Assumptions are violated in many ways, because we seek simplicity.

The main question we have to ask: does it matter in practice?

### Our approach

- 1. We will introduce a concept,
- 2. understand how we can infer it from data,
- 3. then we recreate the situation in silico,
- 4. and see how the outcome changes as we make different assumptions.

It is guaranteed that we violate every assumption we make.

To get away with it, we need to understand **how much is too** much.

"All assumptions are violated, but some are more than others."

### The rest of the day

- 1. Introduction
- 2. Organizing and processing point count data
- 3. A primer in regression techniques

#### Short break

- 4. Behavioral complexities
- 5. The detection process

#### Lunch break

- 6. Dealing with recordings
- 7. A closer look at assumptions

#### Short break

- 8. Understanding roadside surveys
- 9. Miscellaneous topics

#### Dismissal

https://twitter.com/adamgruer/status/1122271095225118720

#### Data ...

#### It is often called:

- processing,
- munging,
- wrangling,
- cleaning.

None of these expressions capture the dread associated with the actual activity.

"All data are messy, but some are missing."

#### The four horsemen

Luckily, there are only 4 things that can get messed up:

- 1. space (e.g. wrong UTM zones),
- 2. time (ISO format please),
- 3. taxonomy (UNK, mis-ID),
- 4. something else ( $\rightarrow$  check again).

Check out source code if you are interested in data processing, we skip that for now to concentrate on the fun part.

# JOSM (Joint Oil Sands Monitoring) data



Cause-Effect Monitoring Migratory Landbirds at Regional Scales  $^{56}$ : understand how boreal songbirds are affected by human activity in the oil sands area.

<sup>&</sup>lt;sup>5</sup>Mahon et al. 2016, For. Ecol. Man..

<sup>&</sup>lt;sup>6</sup>Mahon et al. 2019, Ecol. Appl..

## Survey design



Survey area boundary (r=2.5 km circle), habitat type and human footprint mapping, and clustered point count site locations.

## Sample and replication

- We want to make inferences about a population,
- full census is out of reach,
- thus we take a sample of the population
- that is representative and random.
- Ideally, sample size should be as large as possible,
- it reduces variability and
- increases statistical power.

# How do we pick where to survey?

- Stratification.
- gradients,
- random location (control for unmeasured effects),
- take into account historical surveys (avoid, or revisit),
- access, cost (clusters).

### Dive into the JOMS data now

```
load("../_data/josm/josm.rda")
names(josm)
## [1] "surveys" "species" "counts"
```