Homework 1

Due date: someday, sometime! Submit on NYU Brightspace.

Exercise 1. [50 pts] We wish to use the Buckingham π theorem to estimate the drag force on an airplane cruising at 400 km/hr in standard air (atmospheric pressure) using a scaled 1:10 down model (geometrical dimensions of the model are 0.1 of that of the prototype). Let the air speed in the wind tunnel be 400 km/hr as well. Assuming the same air temperature for the model and prototype, determine the required pressure in the tunnel, and the drag on the prototype corresponding to 1 N on the model.

Hints:

- (i) The drag force, F, is expected to depend on the following parameters: V (wind speed), μ (viscosity), ρ (density), ℓ (length of the airplane), and w (wing span of the airplane).
- (ii) Assume that the air viscosity does not depend on the air pressure.
- (iii) Use Ideal Gas Law $pMW = \rho RT$ to relate the air density to pressure. (p: pressure, R: universal gas constant, MW: molecular weight of air (constant), T: absolute temperature)

Exercise 2. [50 pts] From dimensional analysis, we know that the drag coefficient C_D of a smooth sphere moving in a fluid is a function of Reynolds number:

$$C_D = f(\text{Re}) = f\left(\frac{\rho V D}{\mu}\right),$$

where ρ and μ are the density and viscosity of the fluid (e.g., air), D is the diameter of the sphere, and V is its velocity. The drag force can then be expressed as

$$F = \frac{1}{2}C_D \rho A V^2$$

with A as the projected area. Note that you can derive the Stokes drag force formula (valid when Re ≤ 1) from the above equation by inserting $C_D = 24/\text{Re}$.

Now consider two raindrops, one with diameter 2 mm and another one with diameter 4 mm. Which one falls faster in the air and by how much?

Hints:

- (i) Assume that the drops fall at their 'terminal' velocities, which is the velocity at which the drag force and gravitational forces cancel each other: $F = \frac{1}{6}\pi D^3(\rho_s \rho)g$, where $\frac{1}{6}\pi D^3$ is the volume of the droplet, ρ_s is its density ($\approx 1000 \text{ kg/m}^3$), and $g \approx 9.8 \text{ m/s}^2$ is the gravitational acceleration. Also, for the air, use $\rho = 1 \text{ kg/m}^3$ and $\mu = 2 \times 10^{-5} \text{ Pa} \cdot \text{s}$.
- (ii) Initially assume that the drops fall in the Stokes regime (i.e., Re \lesssim 1) and use the Stokes drag formula. After finding the terminal velocity calculate the Re number to verify your initial assumption.

- (iii) In case the Stokes regime is not valid: for high Reynolds number $10^3 \lesssim \text{Re} \lesssim 10^5$, one can assume that C_D is constant and not a function of Re. Use $C_D \approx 0.4$ and redo the above process. Verify if the Reynolds number is within the range.
- Exercise 3. [10+10+10+10 pts] Heat transfer flux from a surface at temperature T_s to an environment at temperature T_∞ is given by $h(T_s T_\infty)$, where h is the heat transfer coefficient with dimensions energy/(time · area · temperature). For a sphere suspended in a still air, the heat transfer coefficient depends on the sphere diameter, D, and conductivity of the air, k, (with dimensions energy/(time · length · temperature)). Hence, one can write h = f(k, D).
 - (i) List all of the parameters and their dimensions. Hint: energy \doteq force \cdot length.
 - (ii) Find the number of reference dimensions, and subsequently, the number of dimensionless groups.
- (iii) Find the dimensionless groups using the method described in class.
- (iv) Interpret the result.