Homework 13

Tauqeer Kasam Rumaney

February 4, 2023

Download this R Markdown file, save it on your computer, and perform all the below tasks by inserting your answer in text or by inserting R chunks below. After you are done, upload this file with your solutions on Moodle.

Exercise 1: Survival analysis

Choose one other provided dataset in the survival package (or any other suitable dataset) which contains time-to-event data. Use the survfit function to compute the Kaplan-Meier estimate of the survival function and plot it. Then choose a variable with 2 or more categories in the dataset and perform a log-rank test. Interpret the results: is there are difference in survival between the groups?

Load the dataaset

```
library(survival)
```

Survival analysis with the colon dataaset

```
data <- diabetic
head(data)
     id laser age
                    eye trt risk time status
                                9 46.23
## 1 5 argon 28 left
                          0
## 2 5 argon 28 right
                           1
                                9 46.23
## 3 14 xenon 12 left
                          1
                                8 42.50
                                             0
                                6 31.30
                                             1
## 4 14 xenon 12 right
                          0
## 5 16 xenon
                9 left
                          1
                               11 42.27
                                             0
## 6 16 xenon
                               11 42.27
                                             0
                9 right
?diabetic
# compute the Kaplan Meier estimate of the survival function
KM <- survfit(Surv(time, status) ~ 1, data = data)</pre>
# Look at the results (in table form)
summary(KM)
## Call: survfit(formula = Surv(time, status) ~ 1, data = data)
##
##
     time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
     0.30
             394
                       1
                            0.997 0.00253
                                                  0.993
                                                                1.000
##
     0.60
             393
                       1
                            0.995 0.00358
                                                  0.988
                                                                1.000
##
     0.83
             392
                       1
                            0.992 0.00438
                                                  0.984
                                                                1.000
```

##	1.33	391	1	0.990	0.00505	0.9	80 1.000
##	1.43	390	1	0.987	0.00564	0.9	76 0.998
##	1.50	385	2	0.982	0.00667	0.9	69 0.995
##	1.57	383	1	0.980	0.00713	0.9	0.994
##	1.63	382	2	0.974	0.00796	0.9	59 0.990
##	1.70	380	3	0.967	0.00906	0.9	49 0.985
##	1.73	377	1	0.964	0.00939	0.9	46 0.983
##	1.77	376	1	0.962	0.00971	0.9	43 0.981
##	1.80	375	1	0.959	0.01001	0.9	40 0.979
##	1.90	374	1	0.957	0.01031	0.9	37 0.977
##	1.97	373	1	0.954	0.01060	0.9	33 0.975
##	2.10	372	1	0.951	0.01087	0.9	30 0.973
##	2.17	371	1	0.949	0.01114	0.9	27 0.971
##	2.67	370	1		0.01140	0.9	
##	2.70	369	1	0.944	0.01166	0.9	
##	2.83	367	1		0.01191	0.9	
##	2.90	366	1		0.01215	0.9	
##	3.67	365	1	0.936	0.01238	0.9	
##	4.10	363	1		0.01262	0.9	
##	4.27	362	1		0.01284	0.9	
##	4.30	361	1		0.01306	0.9	
##	4.97	360	1		0.01328	0.9	
##	5.33	359	1		0.01349	0.8	
##	5.43	358	1		0.01370	0.8	
##	5.67	357	1		0.01390	0.8	
##	5.73	356	1		0.01410	0.8	
##	5.77	355	1		0.01429	0.8	
##	5.83	354	1		0.01448	0.8	
##	5.90	353	1		0.01467	0.8	
##	6.10	350	1		0.01485	0.8	
##	6.13	349	1		0.01504	0.8	
##	6.20	348	1		0.01521	0.8	
##	6.30	347	1		0.01539	0.8	
##	6.53	346	1		0.01556	0.8	
##	6.57	345	2		0.01590	0.8	
##	6.90	343	1		0.01606	0.8	
##	7.07	342	1		0.01622	0.8	
##	7.10	341	1		0.01638	0.8	
##	7.60	339	1		0.01654	0.8	
##	7.90	338	1		0.01669	0.8	
##	8.30	335	2		0.01700	0.8	
##	8.83	333	1		0.01715	0.8	
##	9.40	332	1		0.01729	0.8	
##	9.60	331	1		0.01744	0.8	
##	9.63	330	1		0.01758	0.8	
##	9.87	328	1		0.01772	0.8	
##	9.90	326	3		0.01814	0.8	
##	10.27	323	1		0.01827	0.8	
##	10.33	322	1		0.01840	0.8	
##	10.80	316	1		0.01854	0.8	
##	10.97	315	1		0.01867	0.8	
##	11.07	314	1		0.01880	0.8	
##	11.30	313	1		0.01893	0.7	
##	12.20	312	1		0.01906	0.7	
11	12.20	012	_	0.002	3.01300	0.1	0.070

##	12.73	311	1	0.829	0.01918	0.792	0.867
##	12.93	310	1	0.826	0.01931	0.789	0.865
##	13.10	309	1	0.824	0.01943	0.786	0.863
##	13.33	308	1	0.821	0.01955	0.784	0.860
##	13.37	307	1		0.01967	0.781	0.858
##	13.57	306	1		0.01978	0.778	0.855
##	13.77	305	2		0.02001	0.772	0.850
	13.77	303	1		0.02012		0.848
##						0.769	
##	13.83	302	4		0.02056	0.758	0.838
##	13.87	298	1		0.02066	0.755	0.836
##	13.90	297	1		0.02076	0.752	0.833
##	13.97	296	1		0.02086	0.749	0.831
##	14.00	295	1		0.02096	0.746	0.828
##	14.10	294	1		0.02106	0.743	0.826
##	14.27	293	1	0.781	0.02116	0.740	0.823
##	14.30	292	1	0.778	0.02126	0.738	0.821
##	14.37	291	1	0.775	0.02135	0.735	0.818
##	14.80	289	1	0.773	0.02144	0.732	0.816
##	15.83	288	1	0.770	0.02154	0.729	0.814
##	17.73	286	1		0.02163	0.726	0.811
##	18.03	285	2		0.02181	0.720	0.806
##	18.43	283	1		0.02190	0.718	0.804
##	18.70	282	1		0.02199	0.715	0.801
##	18.93	278	1		0.02207	0.712	0.798
##	19.00	277	1		0.02216	0.709	0.796
##	19.40	276	1		0.02210	0.706	0.793
		274	1				
##	20.17				0.02233	0.703	0.791
##	21.10	271	1		0.02242	0.700	0.788
##	21.57	270	1		0.02251	0.697	0.786
##	21.90	268	1		0.02259	0.695	0.783
##	21.97	267	1		0.02267	0.692	0.781
##	22.00	266	2		0.02284	0.686	0.775
##	22.13	264	1		0.02292	0.683	0.773
##	22.20	263	1	0.724	0.02300	0.680	0.770
##	22.23	262	1	0.721	0.02307	0.677	0.768
##	24.43	259	1	0.718	0.02315	0.674	0.765
##	24.73	258	1	0.715	0.02323	0.671	0.762
##	25.30	257	1	0.713	0.02331	0.668	0.760
##	25.63	256	1	0.710	0.02338	0.665	0.757
##	25.80	255	1	0.707	0.02345	0.663	0.755
##	25.93	252	1	0.704	0.02353	0.660	0.752
##	26.17	251	1		0.02360	0.657	0.749
##	26.20	250	1		0.02367	0.654	0.747
##	26.23	249	1		0.02374	0.651	0.744
##	26.37	248	1		0.02381	0.648	0.741
##	26.47	247	1		0.02388	0.645	0.739
##	27.60	244	1		0.02395	0.642	0.736
##	29.97	241	1		0.02402	0.639	0.733
##	30.20	241	1		0.02409	0.636	0.733
			1				
##	30.40	239			0.02416	0.633	0.728
##	30.83	238	1		0.02422	0.630	0.725
##	31.30	235	1		0.02429	0.627	0.722
##	31.63	232	1		0.02436	0.624	0.720
##	33.63	225	2	0.664	0.02450	0.618	0.714

```
##
    33.90
              223
                               0.661 0.02457
                                                       0.615
                                                                     0.711
##
    34.37
              220
                               0.658 0.02464
                                                       0.612
                                                                     0.708
                         1
    34.57
                               0.655 0.02471
                                                                     0.705
##
              219
                                                       0.609
    35.53
              218
                               0.652 0.02478
                                                       0.605
                                                                     0.703
##
                         1
##
    38.40
              207
                         1
                               0.649 0.02486
                                                       0.602
                                                                     0.700
    38.47
                               0.646 0.02494
                                                       0.599
##
              206
                         1
                                                                     0.697
    38.57
                         2
                               0.640 0.02509
                                                                     0.691
##
              205
                                                       0.592
##
    38.87
              195
                         1
                               0.636 0.02518
                                                       0.589
                                                                     0.688
##
    41.40
              185
                         1
                               0.633 0.02527
                                                       0.585
                                                                     0.684
                         2
##
    42.17
              177
                               0.626 0.02549
                                                       0.578
                                                                     0.678
##
    42.33
              167
                         1
                               0.622 0.02561
                                                       0.574
                                                                     0.674
    42.43
              166
                               0.618 0.02573
                                                       0.570
                                                                     0.671
##
                         1
##
    43.03
              161
                         1
                               0.614 0.02585
                                                       0.566
                                                                     0.667
    43.33
                               0.611 0.02598
##
              158
                                                       0.562
                                                                     0.664
##
    43.70
                               0.607 0.02611
                                                       0.557
                                                                     0.660
              155
                         1
##
    46.20
              145
                               0.602 0.02626
                                                       0.553
                                                                     0.656
##
    46.27
              140
                               0.598 0.02643
                                                                     0.652
                                                       0.548
                         1
##
    46.43
              136
                               0.594 0.02660
                                                       0.544
                                                                     0.648
    46.63
                               0.589 0.02677
                                                       0.539
##
              133
                                                                     0.644
                         1
##
    48.30
              128
                               0.585 0.02695
                                                       0.534
                                                                     0.640
##
    48.43
              127
                         1
                               0.580 0.02713
                                                       0.529
                                                                     0.636
##
    48.87
              125
                               0.575 0.02731
                                                       0.524
                                                                     0.631
    54.10
                               0.570 0.02760
##
              104
                         1
                                                       0.518
                                                                     0.627
    54.27
               99
                               0.564 0.02791
                                                                     0.622
##
                         1
                                                       0.512
##
    59.80
               56
                               0.554 0.02918
                                                       0.500
                                                                     0.614
    61.83
##
               51
                         1
                               0.543 0.03056
                                                       0.486
                                                                     0.606
##
    63.33
               43
                               0.531 0.03235
                                                       0.471
                                                                     0.598
```

Look at the plot:

plot(KM, main = expression(paste("Kaplan-Meier-estimate ", hat(S)(t), " with 95% CI")), ylab = "Surviva

Kaplan-Meier-estimate $\hat{S}(t)$ with 95% CI


```
# Stratify this by eye (1=left, 2=right):
str(data$eye)

## Factor w/ 2 levels "left", "right": 1 2 1 2 1 2 1 2 1 2 ...

KM2 <- survfit(Surv(time, status) ~ eye, data = data)
plot(KM2, main = expression(paste("Kaplan-Meier-estimate ", hat(S)(t), " stratified by eye")), ylab = "legend(x="topright", col = 1:2, lwd = 2, legend=c("left", "right"))</pre>
```

Kaplan–Meier–estimate $\hat{S}(t)$ stratified by eye


```
# perform log-rank test:
logrank <- survdiff(Surv(time, status) ~ eye, data = data)
# results:
logrank

## Call:
## survdiff(formula = Surv(time, status) ~ eye, data = data)
##</pre>
```

eye=left 197 69 79.8 1.47 ## eye=right 197 86 75.2 1.56 ## ## Chisq= 3 on 1 degrees of freedom, p= 0.08

N Observed Expected (0-E)^2/E (0-E)^2/V

#Conclusion: The Chi-Squared test statistic is 3 with 1 degree of freedom and the corresponding p-value is 0.08. Since this p-value is more than 0.05, we don't reject the null hypothesis i.e. we don't have sufficient evidence to say that there is a statistically significant difference in survival between the two groups (left eye and right eye).

3.03

3.03

#We can see that the survival curves are slightly different, but the log rank test tells us that the difference is not statistically significant.