Praca domowa IV - Analiza Matematyczna I.1

Zadanie 1. Udowodnij, że dla $n\geqslant 2$ prawdziwa jest nierówność $(1+\sqrt{\frac{2}{n-1}})^n\geqslant n$ i wywnioskuj, że $\lim_{n\to\infty}\sqrt[n]{n}=1$.

Zadanie 2. Oblicz granicę: $\lim_{n\to\infty} n^{\frac{2}{3}} \left(\sqrt[3]{n+1} - \sqrt[3]{n} \right)$.

Zadanie 3. Zbadaj zbieżność ciągu zadanego rekurencyjnie $x_{n+1}=x_n(1-x_n),\,x_0\in(0,1).$

Zadanie 1*. Niech R_1 będzie zbiorem trójkątów o obwodzie 1. Zdefiniujmy zbiór $P_1 = \{\text{pole trójkąta } t \mid t \in R_1\}$. Wyznacz kresy zbioru P_1 .

Zadanie 2*. Niech a, b, c będą bokami trójkąta. Znajdź kres górny i dolny wyrażenia:

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b}.$$

Zadanie 3*. Niech $f:[0,1] \to [0,1]$ będzie funkcją niemalejącą i niech $a_0 \in [0,1]$. Definiujemy ciąg $(a_n)_{n\geqslant 0}$ rekurencyjnie: $a_{n+1}=f(a_n)$. Udowodnij, że ciąg (a_n) jest zbieżny.