

1	Cu	OU	dom	ne m	k	Q :	ad	iom	^0	9	Colle	eu'	omol	e M	seg	wer	nle	106	elle	2 :
							AB		Be	<u> </u>	B	0								
					N		3 pl		0			0								
					T		pe		- p3-	tpl		3 p								
					Н	1	Uz.	-19	r-ph	- 5 pl	-24	pls4	S pla							
			•																	

$$\varphi_{V}^{e} = 0 \cdot \varphi_{A}^{elt}$$

obre in virté della volidité del principie della sourapposizione degli

oblemende vai l'integrale estero also strutturo del fipo:

$$= \int \frac{h_0}{8\pi} + \chi \int \frac{h_1}{8\pi}$$
Show

pertonts andondolo a specializare melle parti di Anulturo real quale
Ai qua calcolore:

$$\begin{array}{c} = \frac{1}{ET} \int_{0}^{E} PRe^{\frac{1}{2}} dx + \frac{1}{ET} \int_{0}^{E} \left(-\frac{1}{E} x + x \right) \left(-\frac{3}{2} PRe + \frac{3}{2} PR^{2} \right) dx + \frac{1}{ET} \int_{0}^{E} dx + \int_{0}^{E} \left(-\frac{1}{E} x + x \right)^{2} dx \right] ; \\ = \frac{1}{2} \frac{PL^{2}}{ET} + \frac{1}{ET} \int_{0}^{E} PRe^{2} - \frac{9}{2} PRe^{2} - \frac{3}{2} PRe^{2} + \frac{3}{2} PR^{2} \right) dx + \frac{1}{ET} \left[2 + \int_{0}^{E} \left(-\frac{3}{E} x + 1 - \frac{2}{E} x \right) dx \right] = \\ = \frac{1}{2} \frac{PL^{2}}{ET} + \frac{1}{ET} \left[\frac{1}{2} PRe^{2} - \frac{3}{2} PRe^{2} + \frac{3}{2} PRe^{2} \right] + \frac{1}{2} \frac{1}{ET} \left[2 + \frac{1}{3} 2 + 4 - 4 \right] \\ = \frac{1}{2} \frac{PL^{2}}{ET} + \frac{1}{2} \frac{1}{ET} \frac{1}{ET} + \frac{1}{2} \frac{1}{ET} \frac{1$$

