NAIL062 P&P Logic: Worksheet 8 - The tableau method in predicate logic

Teaching goals: After completing, the student

- understands how the tableau method in predicate logic differs from propositional logic, can formally define all necessary concepts
- knows atomic tableaux for quantifiers, understands their use
- can construct a finished tableau for a given formula from a given (even infinite) theory
- can describe the canonical model for a given finished noncontradictory branch
- understands the axioms of equality, their relation to congruences, quotient structures
- can apply the tableau method to solve a given problem (word problem, etc.)
- understands tableau method for languages with equality, can apply to simple examples
- knows the compactness theorem of predicate logic, can apply it

IN-CLASS PROBLEMS

Problem 1. Assume that:

- All guilty people are liars.
- At least one of the accused is also a witness.
- No witness lies.

Prove by the tableau method that: Not all of the accused are guilty. Specifically:

- (a) Choose a suitable language \mathcal{L} . Will it be with equality, or without equality?
- (b) Formalize our knowledge and the statement to be proved as sentences $\alpha_1, \alpha_2, \alpha_3, \varphi$ in \mathcal{L} .
- (c) Construct a tableau proof of the sentence φ from the theory $T = \{\alpha_1, \alpha_2, \alpha_3\}$.

Problem 2. Consider the following statements:

- (i) Zero is a small number. (iii) The sum of two small numbers is small.
- (ii) A number is small iff it is close to zero. (iv) If x is close to y, so is f(x) to f(y).

We want to prove that: (v) If x and y are small numbers, then f(x+y) is close to f(0).

- (a) Formalize the statements as sentences $\varphi_1, \ldots, \varphi_5$ in $L = \langle S, C, f, +, 0 \rangle$ without equality.
- (b) Construct a finished tableau from the theory $T = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ with the item $F\varphi_5$ at the root. Decide whether $T \models \varphi_5$.
- (c) If they exist, give at least two complete simple extensions of the theory T.

Problem 3. Consider the language $L = \langle c \rangle$ with equality, where c is a constant symbol. Using the tableau method prove that the formula x = c is valid in $T = \{(\exists x)(\forall y)x = y\}$.

Problem 4. Let L be a language with equality containing a binary relational symbol \leq and let T be an L-theory such that T has an infinite model and the axioms of linear order are valid in T. Using the compactness theorem show that T has a model A with an infinite descending chain; that is, in A there exist elements c_i for every $i \in \mathbb{N}$ such that: $\cdots < c_{n+1} < c_n < \cdots < c_0$. (This implies that the notion of a well-ordering is not definable in first-order logic.)

EXTRA PRACTICE

Problem 5. Consider the following statements:

- (i) Every professor has written at least one textbook.
- (ii) Every textbook was written by some professor.
- (iii) Every professor has someone studying with them.
- (iv) Everyone who studies with some professor has read all textbooks by that professor.

- (v) Every textbook has been read by someone.
- (a) Formalize (i)–(v) as sentences $\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5$ in $L = \langle W, S, R, P, T \rangle$ without equality, where W, S, R are binary relation symbols ("x wrote y", "x studies with y", "x read y") and P, T are unary relation symbols ("being a professor", "being a textbook").
- (b) Construct a finished tableau from $T = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ with entry $F\varphi_5$ at the root.
- (c) Is the sentence φ_5 valid in T? Is it contradictory in T? Is it independent in T? Justify.
- (d) Does the theory T have a complete conservative extension? Justify.

Problem 6. Using the tableau method, prove the following rules for 'pulling out' quantifiers, where $\varphi(x)$ is a formula with a single free variable x, and ψ is a sentence.

(a)
$$\neg(\exists x)\varphi(x) \to (\forall x)\neg\varphi(x)$$

(c)
$$((\exists x)\varphi(x) \to \psi) \to (\forall x)(\varphi(x) \to \psi)$$

(b)
$$(\forall x) \neg \varphi(x) \rightarrow \neg (\exists x) \varphi(x)$$

(d)
$$(\forall x)(\varphi(x) \to \psi) \to ((\exists x)\varphi(x) \to \psi)$$

Problem 7. Let F(x, y) represent "there is a flight from x to y" and C(x, y) represent "there is a connection from x to y". Assume that from Prague one can fly to Bratislava, London, and New York, and from New York to Paris, and that

- $(\forall x)(\forall y)(F(x,y) \to F(y,x)),$
- $(\forall x)(\forall y)(F(x,y) \to C(x,y)),$
- $(\forall x)(\forall y)(\forall z)(C(x,y) \land F(y,z) \rightarrow C(x,z)).$

Prove using the tableau method that there is a connection from Bratislava to Paris.

Problem 8. Let T be the following theory in the language $L = \langle R, f, c, d \rangle$ with equality, where R is a binary relation symbol, f a unary function symbol, and c, d constant symbols:

$$T = \{ R(x, x), R(x, y) \land R(y, z) \to R(x, z), R(x, y) \land R(y, x) \to x = y, R(f(x), x) \}$$

Denote by T' the general closure of T. Let φ and ψ be the following formulas:

$$\varphi = R(c, d) \wedge (\forall x)(x = c \vee x = d)$$
 $\psi = (\exists x)R(x, f(x))$

- (a) Construct a tableau proof of ψ from $T' \cup \{\varphi\}$. (For simplicity, in the tableau you may directly use the axiom $(\forall x)(\forall y)(x=y\to y=x)$, a consequence of the axioms of equality.)
- (b) Show that ψ is not a consequence of T by finding a model of T in which ψ is not valid.
- (c) How many complete simple extensions (up to \sim) does $T \cup \{\varphi\}$ have? Provide two examples.
- (d) Is the following theory S in $L' = \langle R \rangle$ with equality a conservative extension of T?

$$S = \{R(x, x), R(x, y) \land R(y, z) \rightarrow R(x, z), R(x, y) \land R(y, x) \rightarrow x = y\}$$

FOR FURTHER THOUGHT

Problem 9. Prove syntactically, by transforming tableaux:

- (a) Theorem on Constants: Let φ be a formula in the language L with free variables x_1, \ldots, x_n and T a theory in L. Let L' be the extension of L with new constant symbols c_1, \ldots, c_n and T' the theory T in L'. Then: $T \vdash (\forall x_1) \ldots (\forall x_n) \varphi$ if and only if $T' \vdash \varphi(x_1/c_1, \ldots, x_n/c_n)$
- (b) Deduction Theorem: For any theory T (in closed form) and sentences φ , ψ , we have: $T \vdash \varphi \rightarrow \psi$ if and only if $T, \varphi \vdash \psi$

Problem 10. Let T^* be a theory with axioms of equality. Show using the tableau method:

(a)
$$T^* \models x = y \rightarrow y = x$$
 (symmetry)

(b)
$$T^* \models (x = y \land y = z) \rightarrow x = z$$
 (transitivity)

Hint: For (a) use the axiom of equality (iii) for $x_1 = x$, $x_2 = x$, $y_1 = y$ and $y_2 = x$, for (b) use (iii) for $x_1 = x$, $x_2 = y$, $y_1 = x$ and $y_2 = z$.