Η ΓΛΩΣΣΑ ΤΗΣ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ

KATHFOPHMATIKH AOFIKH www.psounis.gr

Παράδειγμα: Αντικαθιστώντας κάθε φορά το Ρ με τα κατηγορηματικά σύμβολα \subset , \subseteq να αποφασιστεί αν οι ακόλουθες προτάσεις είναι Α/Ψ.

Η Γλώσσα της Θεωρίας Συνόλων (συμβολιζεται με $\Gamma_1^{\theta\sigma}$) συμπεριλαμβάνει ερμηνείες που ορίζονται με τα εξής στοιχεία:

Το σύμπαν είναι το δυναμοσύνολο ενός συνόλου Χ:

• |A| = P(X)

Ορίζονται τα κατηγορηματικά σύμβολα:

Προσοχή ότι στην ερμηνεία αυτή το σύμπαν μεταβάλλεται ανάλογα με την επιλογή του βασικού συνόλου Χ.

		С	⊆
1	$\forall x P(x,x)$	$\Psi(x=\emptyset)$	A
2	$\exists x P(x,x)$	Ψ	$A(x=\emptyset)$
3	$\forall x \forall y P(x, y)$	$\Psi(x=\{1\},y=\emptyset)$	$\Psi(x = \{1\}, y = \emptyset)$
4	$\exists x \exists y P(x,y)$	$\mathrm{A}(x=\emptyset,y=\{1\})$	$A(x = \emptyset, y = \{1\})$
5	$\forall x \exists y P(x,y)$	$\Psi(x=\{1,2,3\})$	A
6	$\exists x \forall y P(x,y)$	Ψ	$A(x=\emptyset)$
7	$\forall y \forall x P(x, y)$	$\Psi(x=\{1\},y=\emptyset)$	$\Psi(x = \{1\}, y = \emptyset)$
8	$\exists y \exists x P(x,y)$	$\mathrm{A}(x=\emptyset,y=\{1\})$	$A(x = \emptyset, y = \{1\})$
9	$\exists y \forall x P(x,y)$	Ψ	$A(y = \{1,2,3\})$
10	$\forall y \exists x P(x,y)$	Ψ	$A(y = \emptyset)$

Σημαντικές Συντομογραφίες:

- $E(\mathbf{x}) \equiv \forall y [\subseteq (\mathbf{x}, \mathbf{y})]$ που αληθεύει αν το x είναι το κενό σύνολο.
- $\mathbf{I}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \equiv \subseteq (x, y) \land \subseteq (x, z) \land \forall \mathbf{w} [\subseteq (w, y) \land \subseteq (w, z) \rightarrow \subseteq (w, x)]$ που αληθεύει αν το χ είναι η τομή των συνόλων y και z
- $\mathbf{U}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \equiv \subseteq (\mathbf{y}, \mathbf{x}) \land \subseteq (\mathbf{z}, \mathbf{x}) \land \forall \mathbf{w} [\subseteq (\mathbf{y}, \mathbf{w}) \land \subseteq (\mathbf{z}, \mathbf{w}) \rightarrow \subseteq (\mathbf{x}, \mathbf{w})]$ που αληθεύει αν το χ είναι η ένωση των συνόλων y και z

