Obs. Una matriz cuadrada diagonal es más fácil de interpretar (geométricamente) y de aplicar (algebráicamente) que una no diagonal.

Ejemplo:

Comparar $\frac{1}{13}$ $\begin{pmatrix} 19 & 48 & 48 \\ 28 & 29 & -42 \\ 32 & 48 & -61 \end{pmatrix}$ con $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Como sabemos, cualquier representación matricial $A \notin M_{nxn}(K)$ en una base ordenada β específica representa a un operador $T:V \to V$ donde $\dim(V)=n$. Si existe una base ordenada σ de V tal que $[T]\sigma$ sea una matriz diagonal, decimos que T es un operador diagonalizable.

El problema que guiará este módulo será el de determinar cuándo un operador es diagonal; zable.

Supongamos que $T: \mathbb{R}^3 \to \mathbb{R}^3$ y $\mathscr{T} = (\vec{g}_1, \vec{g}_2, \vec{g}_3)$ es una bose ordenada de \mathbb{R}^3 tal que $[T]_{\mathscr{T}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Recordando que $[\vec{3}_1]_{\gamma} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $[\vec{3}_2]_{\gamma} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ y $[\vec{3}_3]_{\gamma} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ y que $[T]_{\gamma} = \begin{pmatrix} [T(\vec{3}_1)]_1 \\ [T(\vec{3}_2)]_2 \\ [T(\vec{3}_2)]_2 \end{bmatrix}$ entonces tenemos que

 $[T(\vec{g}_1)]_{y} = -1[\vec{g}_1]_{y}, [T(\vec{g}_2)]_{y} = -1[\vec{g}_2]_{y}, [T(\vec{g}_3)]_{y} = 1[\vec{g}_3]_{y}.$

Como sabemos, por isomorfismos, esto implica que

 $T(\vec{g}_1)=-1\vec{g}_1$, $T(\vec{g}_2)=-1\vec{g}_2$, $T(\vec{g}_3)=1\vec{g}_3$.

Generalizando el ejemplo anterior, sea V un espacio vectorial de dimensión n, T:V>V un operador lineal y supongamos que existe una base ordenada 7 = (31, 52, ..., gn) de V fal que

entonces $T(\vec{g}_i) = d_i \vec{g}_i + i \in \S_{1,2,...,n}$

$$[T]_{\gamma} = \begin{pmatrix} \lambda_1 & O \\ O & \lambda_n \end{pmatrix}$$

es decir, habremos demostrado que Tes diagonalizable.

Claramente, los vectores \overrightarrow{V} y escalares λ tales que $T(\overrightarrow{V})=\lambda\overrightarrow{V}$ son importantes para determinar si Tes diagonalizable. Si $\overrightarrow{V} \neq \overrightarrow{D}$, decimos que \overrightarrow{V} es un eigenvector (o vector propio) de T y que λ es el eigenvalor (o valor propio) de T correspondiente al eigenvector \overrightarrow{V} .

Si β es una base ordenada tal que $[T]_{\beta}[V]_{\beta} = \lambda[V]_{\beta}$ para alguna $\lambda \neq K$ con $[V]_{\beta} \neq [\overline{O}V]_{\beta}$, decimos que $[V]_{\beta}$ es un eigenvector de la matriz $[T]_{\beta}$ y que λ es un eigenvalor de $[T]_{\beta}$ correspondiente al eigenvector $[V]_{\beta}$.

Naturalmente, ahora nos surge la pregunta, è cómo encontramos a los eigenvectores y eigenvalores de un operador Tarbitrario? Para esto, nos ayudan las representaciones (i.e., los isomorpismos). Partimos de la ecuación

$$T(\forall) = \lambda \vec{\nabla}, \quad \vec{\nabla} \neq \vec{\delta}.$$

Representamos en una base ordenada B de V

$$[T(\vec{r})]_{\beta} = \lambda [\vec{r}]_{\beta}$$

Reescribimos ambos lados de la ecuación como el producto de un vector por una matriz

Despejamos para obtener -lInxn[√]B

$$([T]_{\beta} - \chi I_{n\times n})[\nabla]_{\beta} = [\nabla i]_{\beta}. \quad (*)$$

Como $\nabla \neq \vec{0}$, entonces $[\nabla]_{\vec{p}} \neq [\vec{0}v]_{\vec{p}}$, y la ecuación anterior implica que la matriz $([T]_{\vec{p}} - \lambda I_{num}) : K^n \rightarrow K^n$ no es inyectiva; por ende, tampoco es biyectiva, de don de se signe que

Como les una incógnita en esta ecuación, por la naturaleza del determinan te, det ([t] -] Inxn) es un polinomio en 2 y sus raíces son los eigenvalores de [T] By, por ende, de T. Dicho polinomio es independiente de la base ordenada B de V con la que representamos a l (ejercicio) y es conocido como el polinomio característico de T.

El conjunto de eigenvalores $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_K\}$ de un operador lineal T se conoce como el espectro de T. Uhavez que conocemos el espectro Λ de T, podemos sustituir la variable λ en (*) con $\lambda_i \in \Lambda$ y solucionar el sistema de ecuaciones para $[V]_R$ para encontrar los eigenvectores de T con eigenvalor λ_i .

Obs. Si T:V>V es un operador lineal y TEV es tal que $T(\vec{r})$: $\lambda \vec{v}$ con $\lambda \in K$ y $\vec{v} \neq \vec{o}$, entonces $T(c\vec{v})$: $cT(\vec{v})$: $c(\lambda \vec{v})$:

Similarmente, podemos dar una definición de eigenvector, eigenvalor y polinomio característico de una matriz A e Muxu (K), sin pensarla como la representación matricial de algún operador líneal en un espacio de dimensión n.

Ejemplo: Sea T:1R²→1R² tal que T(ē1)=2€1 y T(€2)=-15€1-3€2.

 $T(c_1\vec{e}_1+c_2\vec{e}_2) = c_1(2\vec{e}_1)+c_2(-15\vec{e}_1-3\vec{e}_2) = (2(1-15c_1)\vec{e}_1-3(2\vec{e}_2)$

 $[T]_{\eta} = ([T(\tilde{z}_{1})]_{\eta}) = (2 - 15)$. No es claro cómo actúa T en \mathbb{R}^{2} .

Calculemos los eigenvalores de T: de+([+],- \Imm)=0 =>

 $\det\left(\begin{pmatrix} 2 - 15 \\ 0 - 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) = 0 \Rightarrow \begin{pmatrix} 2 - \lambda & -15 \\ 0 & -3 - \lambda \end{pmatrix} = (2 - \lambda)(-3 - \lambda) - (-15)(0) = (2 - \lambda)(-3 - \lambda) = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -3$

 $\rightarrow \Lambda = \{2, -3\}$. Ahora, calculemos los eigenvectores $[\bar{g}_1]_{\bar{i}} \begin{pmatrix} u_i \\ u_2 \end{pmatrix}_{\bar{j}} [\bar{g}_2]_{\bar{i}} \begin{pmatrix} v_i \\ v_i \end{pmatrix}_{\bar{j}}$

 $\frac{\binom{0-15}{0-5}\binom{U_1}{U_2}}{\binom{0}{0}} = \frac{-15}{5} \frac{U_2}{U_2} = 0 \Rightarrow U_2 = 0 \quad U_1 \in \mathbb{R}^{\binom{5}{0}} \underbrace{Sea}_{1} = \underbrace{(\frac{1}{0})}_{1} = \underbrace{(\frac{1}{0})}_{$

 $\frac{\lambda_{2}=3}{\binom{5-15}{00}}\binom{V_{1}}{V_{2}}=\binom{0}{0}\Rightarrow5V_{1}=5V_{2}=0\RightarrowV_{1}=3V_{2}\quad V_{1},V_{2}\in\mathbb{R}^{\frac{13-03}{30}},\\ Sea\quad V_{2}=9\Rightarrow\boxed{3}_{2}\boxed{1}=\binom{3}{1}.\qquad \left(\Rightarrow\overrightarrow{3}_{2}=3\overrightarrow{e}_{1}+\overrightarrow{e}_{2}\right)$

P.D. S. 7= (3.32), enforces [T]= (203).

