

Linguagens Formais e Autómatos

Exame (normal)

11 de janeiro de 2016

Exercício 1 [2 valores] Aplique os algoritmos dados nas aulas para obter um AFD equivalente ao AFND

Exercício 2 [4 valores] Aplique os algoritmos dados nas aulas para encontrar um AFD mínimo que reconheça a linguagem das palavras sobre $\{a,b,c\}$ da forma uv em que $u\in\{a,c\}^*$ tem exatamente dois a's e $v\in\{b,c\}^*$ tem pelo menos dois b's.

Exercício 3 Considere a GIC $G = (\{S, A\}, \{a\}, \{S \rightarrow SA \mid a, A \rightarrow aA \mid a\}, S)$.

- 1. **[0,5 valores]** Mostre que G é ambígua;
- 2. **[1,5 valores]** Apresente uma GIC não ambígua equivalente a G;

Exercício 4 Seja L a linguagem $\{a^n c(ba)^n : n \ge 0\}$.

- 1. **[1 valor]** Defina um autómato de pilha para reconhecer L;
- 2. **[1 valor]** Para a demonstração de que L não é regular, que palavra p usaria? Que decomposição (ou decomposições) de p=uvw consideraria? Como, a partir daí, concluiria que L não é regular?

Exercício 5 [3 valores] Seguindo o processo dado nas aulas, obtenha a *Forma Normal de Greibach* para a gramática

$$G = \left(\left\{ S, A, B, C \right\}, \left\{ a, b, c, d \right\}, \left\{ S \to AB \mid ScA, A \to a \mid bSb \right\}, S \right)$$

com produções

$$S \to AB$$
 $A \to a$ $B \to \lambda$ $C \to dC$
 $S \to ScA$ $A \to bSb$ $B \to BC$ $C \to d$

Exercício 6 Considere a gramática $G = (\{S, A, B\}, \{a, b, c\}, \dots, S)$ com produções

$$S \to A \mid Bc$$
 $A \to aA \mid a$ $B \to a \mid ab$

Diga, justificando, que esta gramática é ...

- [3 valores] $\mathcal{LR}(0)$;
- [3 valores] $\mathcal{LR}(1)$;
- [1 valor] $\mathcal{LALR}(1)$;