Design and Implementation of Anglican Probabilistic Programming Language

David Tolpin Jan Willem van de Meent Hongseok Yang Frank Wood

September 1, 2016

https://bitbucket.org/probprog/anglican-white-paper https://bitbucket.org/probprog/anglican http://www.robots.ox.ac.uk/~fwood/anglican/index.html

Outline

Motivation

Design Outline

Inference Algorithms

Definitions and Runtime Library

Intuition

Probabilistic program:

- A program with random computations.
- Distributions are conditioned by 'observations'.
- Values of certain expressions are 'predicted' the output.

Can be written in any language (extended by sample and observe).

Example: Model Selection

```
(let [;; Guessing a distribution
1
          dist (sample (categorical
2
                           [[normal 1] [gamma 1]
3
                            [uniform-continuous 1]
4
                            [uniform-discrete 1]]))
5
          a (sample (gamma 1 1))
6
          b (sample (gamma 1 1))
7
          d (dist a b)]
8
      ;; Observing samples from the distribution
9
      (loop [data data]
10
        (when (seq data)
11
          (let [[x & data] data]
12
            (observe d x))
13
          (recur data)))
14
      ;; Predicting a, b and the distribution
15
      (predict :a a)
16
      (predict :b b)
17
      (predict :d d))
18
```

More examples

▶ Intruder detection — given a log of **times** and **amounts** of payments in a bank account, how likely that the baccount was compromised?

More examples

- Intruder detection given a log of times and amounts of payments in a bank account, how likely that the baccount was compromised?
- ➤ Counterfactual reasoning There are **two routes** from Jerusalem to Tel Aviv: 1 and 443. Based on traffic reports, I chose route 1 and was late. Would I arrive on time If I chose 443 instead?

More examples

- Intruder detection given a log of times and amounts of payments in a bank account, how likely that the baccount was compromised?
- Counterfactual reasoning There are two routes from Jerusalem to Tel Aviv: 1 and 443. Based on traffic reports, I chose route 1 and was late. Would I arrive on time If I chose 443 instead?
- ► (Due to Stuart Russell) If you observe that a student GPA is exactly 4.0 in a model of transcripts of students from the USA (GPA's from 0.0 to 4.0) and India (GPA's from 0.0 to 10.0) what is the probability that the student is from India?

Inference Objective

► Suggest most probable explanation (MPE) - most likely assignment for all non-evidence variable given evidence.

Inference Objective

- Suggest most probable explanation (MPE) most likely assignment for all non-evidence variable given evidence.
- Approximately compute integral of the form

$$\Phi = \int_{-\infty}^{\infty} \varphi(x) p(x) dx$$

Inference Objective

- Suggest most probable explanation (MPE) most likely assignment for all non-evidence variable given evidence.
- Approximately compute integral of the form

$$\Phi = \int_{-\infty}^{\infty} \varphi(x) p(x) dx$$

 Continuously and infinitely generate a sequence of samples drawn from the distribution of the output expression
 — so that someone else puts it in good use (vague but common). ✓

Example: Inference Results

Importance Sampling

loop

Run program, computing weight based on observations. Output result and weight.

end loop

- ► Simple good.
- ▶ Slow convergence (unless one knows the answer) bad.

Can we do better?

Lightweight Metropolis-Hastings (LMH)

Run program once, remembering random choices.

loop

Uniformly select one random choice.

Propose a new value for the choice.

Re-run the program.

Accept or reject with MH probability.

Output result.

end loop

Can we do better?

- Particle methods
- Variational inference
- **.**..

Why functional?

We want a functional language because an inference algorithm controls the execution:

- ▶ A program is run many (often many hundreds of thousands) of times (with almost any algorithm).
- ▶ A program must be partially re-executed multiple times from different positions (particle methods).
- We want to reason about the distribution defined by the program.

▶ Runs on JVM — easy deployment and access to libraries.

- ▶ Runs on JVM easy deployment and access to libraries.
- ▶ A Lisp we (ab)use the macro facility.

- ▶ Runs on JVM easy deployment and access to libraries.
- ▶ A Lisp we (ab)use the macro facility.
- Church (https://en.wikipedia.org/wiki/Church_ (programming_language)) is derived from Scheme.

- ▶ Runs on JVM easy deployment and access to libraries.
- A Lisp we (ab)use the macro facility.
- Church (https://en.wikipedia.org/wiki/Church_ (programming_language)) is derived from Scheme.

Others use:

- Scheme (Church, Venture).
- Scala Figaro.
- Haskell Hakaru, Model-Bayes.
- **.**..

- ▶ Runs on JVM easy deployment and access to libraries.
- A Lisp we (ab)use the macro facility.
- Church (https://en.wikipedia.org/wiki/Church_ (programming_language)) is derived from Scheme.

Others use:

- Scheme (Church, Venture).
- Scala Figaro.
- Haskell Hakaru, Model-Bayes.
- **.**..

As well as Python, C#, and other languages.

Outline

Motivation

Design Outline

Inference Algorithms

Definitions and Runtime Library

Language

Macro-based compilation

Outline

Motivation

Design Outline

Inference Algorithms

Definitions and Runtime Library

Managing stack size

Probabilistic forms

Memoization

Outline

Motivation

Design Outline

Inference Algorithms

Definitions and Runtime Library

Outline

Motivation

Design Outline

Inference Algorithms

Definitions and Runtime Library

Thank you! Questions?