Homework 5

ALECK ZHAO

March 13, 2017

1. Let X_1, X_2, X_3, \cdots be iid random variables. Let $M(t) = E\left[e^{tX_1}\right]$ be the MGF of X_1 (and thus of each X_i). Fix t and assume that $M(t) < \infty$. Define the partial sum process by letting $S_0 = 0$ and for n > 0,

$$S_n = X_1 + \dots + X_n.$$

Let

$$Z_n = \frac{e^{tS_n}}{M(t)^n}$$

Show that $\{Z_n\}_{n=0}^{\infty}$ is a martingale with respect to $\{X_n\}_{n=0}^{\infty}$.

Proof. We have

$$E[|Z_n|] = E\left[\left|\frac{e^{tS_n}}{M(t)^n}\right|\right] = \frac{1}{M(t)^n} E[e^{t(X_1 + \dots + X_n)}] = \frac{1}{M(t)^n} \prod_{i=1}^n E[e^{tX_i}]$$
$$= \frac{1}{M(t)^n} \prod_{i=1}^n M(t) = 1 < \infty$$

and

$$E[Z_{n+1} \mid Z_1, \dots, Z_n] = E[Z_{n+1} \mid X_1, \dots, X_n]$$

$$= E\left[\frac{e^{tS_{n+1}}}{M(t)^{n+1}} \mid X_1, \dots, X_n\right]$$

$$= \frac{1}{M(t)^{n+1}} E\left[e^{tS_n} \cdot e^{tX_{n+1}} \mid X_1, \dots, X_n\right]$$

$$= \frac{1}{M(t)^{n+1}} E[e^{tS_n} \mid X_1, \dots, X_n] E[e^{tX_{n+1}} \mid X_1, \dots, X_n]$$

$$= \frac{1}{M(t)^{n+1}} \cdot e^{tS_n} E[e^{tX_{n+1}}]$$

$$= \frac{1}{M(t)^{n+1}} e^{tS_n} M(t) = \frac{e^{tS_n}}{M(t)^n} = Z_n$$

so this is indeed a martingale.

2. Consider a Markov chain $\{X_n, n \geq 0\}$ with state space consisting of N+1 states which are real numbers $x_0 < x_1 < x_2 < \cdots < x_N$, and with transition matrix $P(i,j) = P[X_{n+1} = x_j \mid X_n = x_i]$ for $0 \leq i, j \leq N$. Suppose that $\{X_n, n \geq 0\}$ is also a martingale. Show that the states x_0 and x_N are absorbing states.

Proof. Since this is a martingale, we have $E[X_{n+1} \mid X_n = x_0] = x_0$. This expectation is also

$$E[X_{n+1} \mid X_n = x_0] = \sum_{j=0}^{N} x_j P(0, j)$$
$$= x_0 P(0, 0) + \sum_{j=1}^{N} x_j P(0, j)$$

If $\exists j > 0$ such that P(0,j) > 0, then since $x_j > x_0$ for all j > 0, we have the strict inequality

$$x_0 P(0,0) + \sum_{j=1}^{N} x_j P(0,j) > x_0 P(0,0) + \sum_{j=1}^{N} x_0 P(0,j) = x_0 \left(P(0,0) + \sum_{j=1}^{N} P(0,j) \right) = x_0$$

This is a contradiction, since the expectation is exactly equal to x_0 , so it follows that P(0, j) = 0 for all j > 0, so x_0 is an absorbing state.

Similarly, we have

$$x_N = E[X_{n+1} \mid X_n = x_N] = \sum_{j=0}^{N} x_j P(0, j)$$
$$= x_N P(0, N) + \sum_{j=0}^{N-1} x_j P(0, j)$$

and if $\exists j < N$ such that P(0,j) > 0, then we have the strict inequality

$$x_N P(0,N) + \sum_{j=0}^{N-1} x_j P(0,j) < x_N P(0,N) + \sum_{j=0}^{N-1} x_N P(0,j) = x_N \left(P(0,N) + \sum_{j=0}^{N-1} P(0,j) \right) = x_N \left(P(0,N) + \sum_{j=0}^{N-1} P(0,j) + \sum_{j=0}^{N-1} P(0,j) \right) = x_N \left(P(0,N) + \sum_{j=0}^{N-1} P(0,j) + \sum_{j=0}^{N-1} P(0,j) \right) = x_N \left(P(0,N) + \sum_{j=0}^{N-1} P(0,j) + \sum_{j=$$

which is a contradiction, so P(0,j) = 0 for all j < N, so x_N is absorbing, as desired.

- 3. Calculate the PGF for a random variable X which has
 - (a) a Geometric $(\frac{1}{2})$ distribution.

Solution. We have

$$G(s) = E[s^X] = \sum_{i=1}^{\infty} P[X = i]s^i$$
$$= \sum_{i=1}^{\infty} \left(\frac{1}{2}\right)^i s^i = \sum_{i=1}^{\infty} \left(\frac{s}{2}\right)^i$$
$$= \frac{\frac{s}{2}}{1 - \frac{s}{2}} = \frac{s}{2 - s}$$

(b) a Poisson(λ) distribution.

Solution. We have

$$G(s) = E[s^X] = \sum_{i=0}^{\infty} P[X = i]s^i$$

$$= \sum_{i=0}^{\infty} \frac{\lambda^i e^{-\lambda}}{i!} \cdot s^i$$

$$= e^{-\lambda} \sum_{i=0}^{\infty} \frac{(\lambda s)^i}{i!}$$

$$= e^{-\lambda} \cdot e^{\lambda s} = e^{\lambda(s-1)}$$

4. Let $\{X_1, X_2, X_3, \dots\}$ be a sequence of iid random variables with mean μ and variance σ^2 . Let $S_n = X_1 + X_2 + \dots + X_n$ for each integer $n \geq 1$. Let N be a positive integer random variable which is independent of the $\{X_i\}_{i\geq 1}$, and has mean ν and variance τ^2 . Calculate the variance of S_N .

Solution. We have

$$Var(S_N) = E[S_N^2] - (E[S_N])^2$$

Using the law of total probability, we have

$$E[S_N] = E[E[S_N \mid N]] = \sum_{n=1}^{\infty} E[S_N \mid N = n] P[N = n]$$

$$= \sum_{n=1}^{\infty} E\left[\sum_{i=1}^{N} X_i \mid N = n\right] P[N = n] = \sum_{n=1}^{\infty} E\left[\sum_{i=1}^{n} X_i \mid N = n\right] P[N = n]$$

$$= \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} E[X_i]\right) P[N = n] = \sum_{n=1}^{\infty} (n\mu) P[N = n]$$

$$= \mu \sum_{n=1}^{\infty} n P[N = n] = \mu \nu$$

and

$$\begin{split} E[S_N^2] &= E\left[E[S_N^2 \mid N]\right] = \sum_{n=1}^{\infty} E[S_N^2 \mid N = n] P[N = n] \\ &= \sum_{n=1}^{\infty} E\left[\left(\sum_{i=1}^N X_i\right)^2 \mid N = n\right] P[N = n] = \sum_{n=1}^{\infty} E\left[\left(\sum_{i=1}^n X_i\right)^2 \mid N = n\right] P[N = n] \\ &= \sum_{n=1}^{\infty} E\left[\left(\sum_{i=1}^n X_i\right)^2\right] P[N = n] = \sum_{n=1}^{\infty} E\left[\left(\sum_{i=1}^n X_i^2\right) + \left(\sum_{j \neq k} X_j X_k\right)\right] P[N = n] \\ &= \sum_{n=1}^{\infty} \left(\sum_{i=1}^n E[X_i^2] + \sum_{j \neq k} E[X_j X_k]\right) P[N = n] \\ &= \sum_{n=1}^{\infty} \left[\sum_{i=1}^n \left(E[X_i^2] - \left(E[X_i]\right)^2 + \left(E[X_i]\right)^2\right) + \sum_{j \neq k} E[X_j] E[X_k]\right] P[N = n] \\ &= \sum_{n=1}^{\infty} \left[\sum_{i=1}^n (\sigma^2 + \mu^2) + \sum_{j \neq k} \mu^2\right] P[N = n] \\ &= \sum_{n=1}^{\infty} \left[n\sigma^2 + n\mu^2 + (n^2 - n)\mu^2\right] P[N = n] \\ &= \sum_{n=1}^{\infty} \left[n\sigma^2 + n\mu^2 + (n^2 - n)\mu^2\right] P[N = n] \\ &= \sum_{n=1}^{\infty} \left[n^2\mu^2 + n\sigma^2\right) P[N = n] = \mu^2 \sum_{n=1}^{\infty} n^2 P[N = n] + \sigma^2 \sum_{n=1}^{\infty} n P[N = n] \\ &= \mu^2 E[N^2] + \sigma^2 \nu = \mu^2 \left(E[N^2] - \left(E[N]\right)^2 + \left(E[N^2]\right)^2\right) + \sigma^2 \nu \\ &= \mu^2 (\tau^2 + \nu^2) + \sigma^2 \nu = \mu^2 \tau^2 + \mu^2 \nu^2 + \sigma^2 \nu \end{split}$$

Combining these two, we have

$$Var(S_N) = (\mu^2 \tau^2 + \mu^2 \nu^2 + \sigma^2 \nu) - (\mu \nu)^2 = \mu^2 \tau^2 + \sigma^2 \nu$$

5. Consider a branching process with offspring distribution given by the frequency function f, where f(2) = a, f(1) = b, and f(0) = c, with a + b + c = 1. Assume that the probability of extinction is d, 0 < d < 1. Express d in terms of a, b, c.

Solution. The generating function for the offspring distribution is

$$G(s) = as^2 + bs + c$$

and the extinction probability satisfies d = G(d), so we have

$$d = G(d) = ad^2 + bd + c$$
$$0 = ad^2 + (b-1)d + c$$

and solving for d we have

$$d = \frac{-(b-1) \pm \sqrt{(b-1)^2 - 4ac}}{2a}$$

Since 0 < d < 1 but 1 is a root of the quadratic, we must have the greater root be 1, so thus

$$d = \frac{1 - b - \sqrt{(b-1)^2 - 4ac}}{2a}$$

6. Verify that if $\{Z_n\}$ is a branching process, then $\left\{\frac{Z_n}{\mu^n}\right\}$ is a martingale, where μ denotes the mean of the offspring distribution.

Proof. We have

$$E\left[\left|\frac{Z_n}{\mu^n}\right|\right] = \frac{1}{\mu^n} E[Z_n] = \frac{1}{\mu^n} \left(\mu^n E[Z_0]\right) = E[Z_0] < \infty$$

and

$$E\left[\frac{Z_{n+1}}{\mu^{n+1}} \mid \frac{Z_0}{\mu^0}, \frac{Z_1}{\mu}, \cdots, \frac{Z_n}{\mu^n}\right] = \frac{1}{\mu^{n+1}} E[Z_{n+1} \mid Z_0, Z_1, \cdots, Z_n]$$

$$= \frac{1}{\mu^{n+1}} E[Z_{n+1} \mid Z_n]$$

$$= \frac{1}{\mu^{n+1}} (\mu Z_n) = \frac{Z_n}{\mu^n}$$

so this is indeed a martingale.

- 7. A particle moves according to a Markov chain on $\{1, 2, \dots, c+d\}$ where c and d are positive integers. Starting from any one of the first c states, the particle jumps in one transition to a state chosen uniformly from the last d states. Starting from any of the last d states, the particle jumps in one transition to a state chosen uniformly from the first c states.
 - (a) Show that the chain is irreducible.

Proof. Let C and D are sets of the first c and last d states, respectively. Then if $i \in C$ and $j \in D$, then i and j communicate because they can directly transition between themselves. If $i, j \in C$, then if $n \in D$, we can have $i \to n \to j$, so i and j communicate. By a similar argument, if $i, j \in D$, then i and j communicate. Thus, all states communicate, so the chain is irreducible.

(b) Find the invariant distribution.

Solution. The chain is periodic, half the time we are in C and half the time we are in D. Since the individual states within C and D are indistinguishable in terms of their transition probabilities, they all have the same distribution. Thus, since there are c states in C and d states in D, the invariant distribution is $\frac{1}{2c}$ for the first c states, and $\frac{1}{2d}$ for the last d states.