Université de Rennes 1-Année 2020/2021 L3-PSIN/PRB-Feuille de TD 9

Exercice 1. Soit X une v.a.r. continue sur $(\Omega, \mathcal{F}, \mathbf{P})$ et f sa densité.

(i) Montrer que e^X est une v.a.r. continue et calculer sa densité. Expliciter cette densité dans le cas où $X \sim \mathcal{N}(0,1)$.

Solution: Posons $Y = e^X$. Soit $y \in \mathbf{R}$. Si $y \le 0$, alors $F_Y(y) = \mathbf{P}(e^X \le y) = 0$, car $e^X > 0$. Soit y > 0; alors, comme $\log : \mathbf{R}_{>0} \to \mathbf{R}$ est croissante, on a

$$F_Y(y) = \mathbf{P}(e^X \le y) = \mathbf{P}(X \le \log y) = \int_{-\infty}^{\log y} f(t)dt;$$

avec le changement de variable $t = \log s$, on a $F_Y(y) = \int_{-\infty}^y \frac{f(\log s)}{s} ds$. On obtient la densité g de Y en dérivant F_Y :

$$g(y) = \begin{cases} 0 & \text{si } y \le 0\\ \frac{f(\log y)}{y} & \text{si } y > 0 \end{cases}$$

Dans le cas $X \sim \mathcal{N}(0,1)$, on a $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ et donc $g(y) = \frac{1}{\sqrt{2\pi}y}e^{-(\log y)^2/2}$ pour y > 0 et g(y) = 0 sinon.

(ii) On suppose que X>0. Montrer que 1/X est une v.a.r. continue et calculer sa densité.

Solution: Posons Y = 1/X. Soit $y \in \mathbb{R}$. Si $y \leq 0$, alors $F_Y(y) = \mathbb{P}(1/X \leq y) = 0$, car 1/X > 0. Soit y > 0; alors,

$$F_Y(y) = \mathbf{P}(1/X \le y) = \mathbf{P}(X \ge 1/y) = \int_{1/y}^{+\infty} f(t)dt;$$

avec le changement de variable t = 1/s, on a

$$F_Y(y) = -\int_y^0 \frac{f(1/s)}{s^2} ds = \int_0^y \frac{f(1/s)}{s^2} ds.$$

On obtient la densité g de Y en dérivant F_Y :

$$g(y) = \begin{cases} 0 \text{ si } y \le 0\\ \frac{f(1/y)}{y^2} \text{ si } y > 0 \end{cases}$$

(iii) Montrer que |X| est une v.a.r. continue et calculer sa densité.

Solution: Posons Y = |X|. Soit $y \in \mathbb{R}$. Si y < 0, alors $F_Y(y) = \mathbb{P}(|X| \le y) = 0$, car $|X| \ge 0$. Soit $y \ge 0$; alors

$$F_Y(y) = \mathbf{P}(|X| \le y) = \mathbf{P}(-y \le X \le y) = \int_{-y}^{y} f(t)dt = \int_{0}^{y} f(t)dt - \int_{0}^{-y} f(t)dt.$$

On obtient la densité g de Y en dérivant F_Y :

$$g(y) = \begin{cases} 0 \text{ si } y < 0\\ f(y) + f(-y) \text{ si } y > 0 \end{cases}$$

Exercice 2. Une compagnie aérienne assure une liaison aérienne entre deux villes par un avion de 150 places. Des estimations ont montré que la probabilité pour qu'une personne confirme sa réservation est p=0.7. La compagnie vend n billets avec n>150 ("surbooking"). Soit X le nombre de personnes parmi les n possibles qui confirment leur réservation.

(i) Quelle est la loi exacte de X.

Solution: X suit une loi binomiale $\mathcal{B}(n,p)$ avec p=0.7.

(ii) Quel est le nombre maximum de places que la compagnie peut vendre pour que, au risque de 5%, elle soit sûre que tout le monde puisse monter dans l'avion. (Indication : On considérera que $Z=(X-\mathbb{E}(X))/\sqrt{\mathrm{Var}(X)}$ suit une loi normale $\mathcal{N}(0,1)$ et on utilisera le fait (voir table numérique) que $\Phi(1.645)=0.95$.)

Solution: On a $\mathbb{E}(X) = np$ et Var(X) = np(1-p). Comme n est suffisamment grand, on peut considerer (avec q = 1 - p) que

$$Z = (X - \mathbb{E}(X)) / \sqrt{\operatorname{Var}(X)} = (X - np) / \sqrt{npq} \sim \mathcal{N}(0, 1).$$

On a

$$X > 150 \Leftrightarrow Z = (X - np)/\sqrt{npq} > (150 - np)/\sqrt{np(1-p)}$$

 $et \ donc$

$$\mathbf{P}(X > 150) \le 0.05 \Leftrightarrow \mathbf{P}(Z \le (150 - np) / \sqrt{npq}) \le 0.95$$

. Comme $\mathbf{P}(Z \le 1.645) = \Phi(1.645) = 0.95$, il faut trouver n tel que

$$(150 - np)/\sqrt{npq} \ge 1.645,$$

c-à-d

$$(150 - 3n/4)/\sqrt{3n/16} \ge 1.645,$$

ou encore

$$(600 - 3n)/\sqrt{3n} \ge 1.645.$$

En posant a=1.645, ceci équivaut à $3n+a\sqrt{3n}-600 \le 0$ ou encore $n+a\sqrt{n/3}-200 \le 0$, c-à-d $\left(\sqrt{n}+\frac{a}{2\sqrt{3}}\right)^2-\frac{a^2}{12}-200 \le 0$ et donc

$$\left(\sqrt{n} + \frac{a}{2\sqrt{3}}\right)^2 \le \frac{a^2}{12} + 200$$

 $D'où \sqrt{n} \le \sqrt{\frac{a^2}{12} + 200} - \frac{a}{2\sqrt{3}} = 13.68 \text{ et donc } n \le (13.68)^2 = 187.14 \text{ Le}$

nombre maximum de places que la compagnie peut vendre est donc $n \le 187$.

Exercice 3. Une équipe de surveillance cherche à savoir si les huîtres d'un certain bassin ont été contaminées. Sur un échantillon de 200 huîtres, elle dénombre 32 huîtres atteintes. Déterminer un intervalle de confiance, au risque de 5%, pour la proportion d'huîtres contaminées dans le bassin.

Solution : Soit p_0 la proportion réelle d'huîtres contaminées ; la proportion observée sur l'échantillon est p=32/200=0.16. Comme $\mathbf{P}(-1.96 \leq Z \leq 1.96)=0.95$, l'intervalle de confiance pour p_0 au risque de 5% (voir cours) est donné par $[p-1.96\frac{1}{2\sqrt{200}}, \overline{x}+1.96\frac{1}{2\sqrt{200}}]$, c-à-d [0.109,0.211].

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}^+$ définie par

$$\begin{cases} \frac{e^{-x/y}e^{-y}}{y} & \text{si } 0 < x, 0 < y \\ 0 & \text{sinon} \end{cases}$$

(i) Vérifier que f est bien une densité.

Soit (X,Y) un couple aléatoire de densité f.

Solution: On a bien $f(x,y) \ge 0$ pour tout $(x,y) \in \mathbf{R}^2$; de plus,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-x/y} e^{-y}}{y} dx dy$$

$$= \int_{0}^{\infty} \left(\int_{0}^{\infty} e^{-x/y} dx \right) \frac{e^{-y}}{y} dy$$

$$= \int_{0}^{\infty} \left[-e^{-x/y} \right]_{x=0}^{x=+\infty} e^{-y} dy = \int_{0}^{\infty} e^{-y} dy$$

$$= \left[-e^{-y} \right]_{0}^{+\infty} = 1.$$

(ii) Déterminer la densité f_Y de Y.

Solution: On a (voir Cours), pour $y \in \mathbf{R}$,

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

et donc $f_Y(y) = 0$ pour $y \le 0$; pour y > 0, on a

$$f_Y(x) = \int_0^\infty \frac{e^{-x/y}e^{-y}}{y} dx =$$

$$= \frac{e^{-y}}{y} \int_0^\infty e^{-x/y} dx$$

$$= \int_0^\infty e^{-x/y} dx dx dx$$

On voit donc que Y suit une loi exponentielle $\mathcal{E}(1)$.

(iii) X et Y sont-elles indépendantes?

Solution: Si X et Y étaient indépendantes, on aurait (voir Cours) $f(x,y) = f_X(x)f_Y(y)$ pour tous $(x,y) \in \mathbf{R}^2$. On aurait alors $\frac{e^{-x/y}e^{-y}}{y} = f_X(x)e^{-y}$ et donc $\frac{e^{-x/y}}{y} = f_X(x)$ pour tous x > 0, y > 0. La fonction $y \mapsto \frac{e^{-1/y}}{y}$ serait alors constante (égale à $f_X(1)$). Ceci est absurde et il s'ensuit que X et Y ne sont pas indépendantes, (iv) Calculer la covariance $\mathbf{Cov}(X,Y)$.

Solution: Comme $Y \sim \mathcal{E}(1)$, on a $\mathbb{E}(Y) = 1$. Comme f_X n'est pas aisé à déterminer, on calcule $\mathbb{E}(X)$ par un moyen détourné; on écrit X = g(X,Y) pour la fonction g(x,y) = x; alors, par la formule de transfert (voir Cours), on a

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy$$

 $et\ donc$

$$\mathbb{E}(X) = \int_0^\infty \int_0^\infty \frac{xe^{-x/y}e^{-y}}{y} dxdy$$

$$= \int_0^\infty \left(\int_0^\infty xe^{-x/y} dx \right) \frac{e^{-y}}{y} dy$$

$$= \int_0^\infty \left(\int_0^\infty te^{-t} dt \right) ye^{-y} dy$$

$$= \int_0^\infty ye^{-y} dt = 1.$$

On a également

$$\mathbb{E}(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy \int_{0}^{\infty} \int_{0}^{\infty} x e^{-x/y} e^{-y} dx dy$$

$$= \int_{0}^{\infty} \left(\int_{0}^{\infty} x e^{-x/y} dx \right) e^{-y} dy$$

$$= \int_{0}^{\infty} \left(\int_{0}^{\infty} t e^{-t} dt \right) y^{2} e^{-y} dy$$

$$= \int_{0}^{\infty} y^{2} e^{-y} dt = [-y^{2} e^{-y}]_{0}^{+\infty} - 2 \int_{0}^{+\infty} y e^{-y} dy = 2.$$

 $D'où \mathbf{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 2 - 1 = 1.$

Exercice 5. Soient X et Y deux v.a.r. indépendantes et suivant chacune une loi normale centrée-réduite $\mathcal{N}(0,1)$.

(i) Déterminer la densité du couple aléatoire Z = (X, Y).

Solution : Comme X et Y sont indépendantes, la densité f de Z est le produit des densités de X et Y (voir Cours), c-à-d

$$f(x,y) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} \times \frac{1}{\sqrt{2\pi}}e^{-y^2/2} = \frac{1}{2\pi}e^{-(x^2+y^2)/2}.$$

Soit T la v.a.r définie sur $\{Y \neq 0\}$ par T = X/Y et par T = 0 sur $\{Y = 0\}$.

(ii) Déterminer la fonction de répartition de T. (Indication : penser aux coordonnées polaires). Montrer que T possède une densité et la déterminer.

Solution: Remarquons que $\mathbf{P}(Y=0)=0$, car Y est une v.a.r continue. Soit $t \in \mathbf{R}$; on a alors $\{T \le t\} = \{Y \ne 0, X/Y \le t\} \cup \{Y=0\}$ si t < 0 et $\{T \le t\} = \{Y \ne 0, X/Y \le t\}$ si $t \ge 0$. Par conséquent,

$$F_T(t) = \mathbf{P}(Y \neq 0, X/Y \leq t).$$

Posons $D(t) = \{(x, y) \in \mathbf{R}^2 \mid y \neq 0, x/y \leq t\}$. On a alors (voir Cours)

$$F_T(t) = \mathbf{P}((X, Y) \in D(t)) = \frac{1}{2\pi} \int_{D(t)} e^{-(x^2 + y^2)/2} dx dy.$$

Posons (faire un dessin!)

$$D^+(t) = \{(x,y) \in \mathbf{R}^2 \mid y > 0, x \le ty\}$$
 et $D^-(t) = \{(x,y) \in \mathbf{R}^2 \mid y < 0, x \ge ty\}.$

Alors $D(t) = D^+(t) \cup D^-(t)$ et la droite $D^+(t) \cap D^-(t)$ est d'aire 0. Par parité de f, on a donc

$$\int_{D(t)} e^{-(x^2+y^2)/2} dx dy = 2 \times \int_{D(t)^+} e^{-(x^2+y^2)/2} dx dy.$$

On a

$$\int_{D(t)^+} e^{-(x^2+y^2)/2} dx dy = \int_0^{+\infty} \int_{-\infty}^{ty} e^{-(x^2+y^2)/2} dx dy.$$

On passe aux coordonnées polaires $x = r \sin \theta, y = r \cos \theta$ (plutôt qu'aux coordonnées habituelles $x = r \cos \theta, y = r \sin \theta$). On calcule

$$\begin{split} \int_{0}^{+\infty} & (\int_{-\infty}^{ty} e^{-(x^2+y^2)/2} dx) dy = \int_{0}^{+\infty} \int_{-\pi/2}^{\arctan(t)} r e^{-r^2/2} dr d\theta \\ & = \int_{-\pi/2}^{\arctan(t)} & (\int_{0}^{+\infty} r e^{-r^2/2} dr) d\theta \\ & = \int_{-\pi/2}^{\arctan(t)} & [-e^{-r^2/2} dr]_{0}^{+\infty} d\theta \\ & = \int_{-\pi/2}^{\arctan(t)} d\theta = \arctan t + \frac{\pi}{2} \end{split}$$

 $et \ donc$

$$F_T(t) = \frac{1}{2\pi} \int_{D(t)} e^{-(x^2+y^2)/2} dx dy = \frac{1}{\pi} (\arctan t + \frac{\pi}{2}).$$

On obtient la densité f_T de T en dérivant F_T :

$$\forall t \in \mathbf{R} : f_T(t) = \frac{1}{\pi(t^2 + 1)}.$$

Ceci montre (voir Feuille de TD 7, Exercice 4) que T suit une loi de Cau-chy.