Welcome to CS 55 Discrete Mathematics

Introduction and Propositional Logic

CS 55 - Spring 2016 - Pomona College Jenny Lam www.jennylam.cc/courses/55

Course Webpage

See course webpage for important information! Please ask questions whenever the information is confusing or ambiguous! Propositional Logic

A **proposition** is a statement that is either true or false, but not both. The **truth value** of a proposition is true (denoted **T**) if the proposition is true, and false (denoted **F**) otherwise

Common Logical Operators

$$\begin{array}{c|cccc} p & \neg p & & & p & q & p \wedge q \\ \hline T & T & T & T & T \\ T & F & & T & F & F \\ F & T & & F & T & F \\ & & & F & F & F \end{array}$$
 negation

	p	q	$p \lor q$	p	q	$p\oplus q$
	Τ	Τ	Т	\overline{T}	Т	F
	\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}	Γ
	\mathbf{F}	\mathbf{T}	${ m T}$	\mathbf{F}	\mathbf{T}	Γ
	F	\mathbf{F}	F	F	\mathbf{F}	F
Or			exclusive or			

Conditionals Operators

The proposition $q \to p$ is called the **converse** of $p \to q$.

The proposition $\neg q \rightarrow \neg p$ is called the **contrapositive** of $p \rightarrow q$.

The proposition $\neg p \lor q$ is equivalent to the conditional $p \to q$.

p	q	$p \rightarrow q$
Τ	Τ	Т
Τ	\mathbf{F}	F
\mathbf{F}	\mathbf{T}	T
F	F	T

Conditional

$$\begin{array}{c|ccc} p & q & p \leftrightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \\ \end{array}$$

Translating From English

- 1. You can use the quantum computer on campus only if you are a computer science major or you are not a freshman.
- 2. You cannot use the secret tunnels if you are taller than six foot unless you can crawl long distances.

Propositional Equivalences

Tautology and Contradiction

A propositional expression that is always true is called a **tautology**.

A propositional expression that is always false is called **contradiction**.

Logical Equivalence

The propositions p and q are called **logically equivalent** if $p \leftrightarrow q$ is a tautology. The notation $p \Leftrightarrow q$ denoted that p and q are logically equivalent.

Example: $\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$

Common Logical Equivalences 1

$$\begin{array}{lll} p \wedge \mathbf{T} \Leftrightarrow p & & p \vee \mathbf{T} \Leftrightarrow \mathbf{T} & & p \vee p \Leftrightarrow p \\ p \vee \mathbf{F} \Leftrightarrow p & & p \wedge \mathbf{F} \Leftrightarrow \mathbf{F} & & p \wedge p \Leftrightarrow p \end{array}$$

$$\neg(\neg p) \Leftrightarrow p$$

Common Logical Equivalences 2

$$p \lor q \Leftrightarrow q \lor p \qquad (p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$$
$$p \land q \Leftrightarrow q \land p \qquad (p \land q) \land r \Leftrightarrow p \land (q \land r)$$

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

De Morgan's Laws

$$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$$
$$\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$$

Additional Examples