Solarthermie

Felix Kurtz

7. Februar 2016

1 Aluminium

Die Aluminiumplatten haben eine Größe von $5.5\,\mathrm{cm} \cdot 6.9\,\mathrm{cm} = 3.8\,\cdot 10^{-3}\mathrm{m}^2$. Die dunkle Platte wiegt $50.6\,\mathrm{g}$ und die helle $51.5\,\mathrm{g}$ Aluminium hat eine spezifische Wärmekapazität von $c = 896\,\mathrm{J\,K^{-1}\,kg^{-1}}$. Mit dem gemessenen Anstieg der Temperatur

$$\left(\frac{\Delta T}{\Delta t}\right)_{\rm D} = (0.536 \pm 0.021) \,\mathrm{K \, s^{-1}} \quad \text{sowie}$$

$$\left(\frac{\Delta T}{\Delta t}\right)_{\rm H} = (0.330 \pm 0.006) \,\mathrm{K \, s^{-1}}$$

ergibt sich eine Leistung pro Fläche

$$\frac{P}{A} = \frac{c \cdot m \cdot \Delta T}{\Delta t}$$

für die dunkle Platte von $(6400\pm250)\,\mathrm{W/m^2}$ sowie für die helle von $(4010\pm80)\,\mathrm{W/m^2}$. Geht man davon aus, dass die dunkle Platte 90% der eingestrahlten Leistung absorbiert, beträgt die Strahlungsleistung pro Fläche $(7110\pm280)\,\mathrm{W/m^2}$. Dies bedeutet auch, dass die helle Platte nur etwa 56% absorbiert.

2 Wasser vs. Sand

Von beiden Stoffen ist die gleiche Menge (Masse) mit der der gleichen Leistung beschienen worden, sodass die Temperaturerhöhung pro Zeit

$$\left(\frac{\Delta T}{\Delta t}\right)_{\text{Wasser}} = (0.0566 \pm 0.0024) \,\text{K s}^{-1} \quad \text{und}$$
$$\left(\frac{\Delta T}{\Delta t}\right)_{\text{Sand}} = (0.180 \pm 0.006) \,\text{K s}^{-1}$$

Abbildung 1: Erhitzen der beiden Aluminium-Platten.

invers zur spezifischen Wärmekapazität ist: $c_{\text{Wasser}}=3.18\cdot c_{\text{Sand}}$. Wasser hat eine spezifische Wärmekapazität von $4.182\,\mathrm{kJ\,kg^{-1}\,m^{-1}}$ und somit Sand eine von $1.32\,\mathrm{kJ\,kg^{-1}\,m^{-1}}$

Abbildung 2: Erhitzen von Wasser und Sand im Vergleich.

 $^{^{1}} https://de.wikipedia.org/w/index.php?title=Spezifische_W\%C3\%A4rmekapazit\%C3\%A4toldid=150986265$