Cardio Good Fitness Case Study - Descriptive Statistics

The market research team at AdRight is assigned the task to identify the profile of the typical customer for each treadmill product offered by CardioGood Fitness. The market research team decides to investigate whether there are differences across the product lines with respect to customer characteristics. The team decides to collect data on individuals who purchased a treadmill at a CardioGoodFitness retail store during the prior three months. The data are stored in the CardioGoodFitness.csv file.

The team identifies the following customer variables to study:

```
*product purchased, TM195, TM498, or TM798;

*gender;

*age, in years;

*education, in years;

*relationship status, single or partnered;

*annual household income;

*average number of times the customer plans to use the treadmill each week;

*average number of miles the customer expects to walk/run each week;

*and self-rated fitness on an 1-to-5 scale, where 1 is poor shape and 5 is excellent shape.
```

Perform descriptive analytics to create a customer profile for each CardioGood Fitness treadmill product line.

```
In [1]: %pwd
Out[1]: 'C:\\Users\\PC'
In [2]: import os

# Get the current working directory
current_directory = os.getcwd()
print(f"Current Working Directory: {current_directory}")

# Change the current working directory to a new path
```

2

35247

47

4

```
new_directory = "C:\\Users\\PC\\Downloads\\GL_P"
os.chdir(new_directory)

# Verify the change
updated_directory = os.getcwd()
print(f"Updated Working Directory: {updated_directory}")
```

Current Working Directory: C:\Users\PC

Updated Working Directory: C:\Users\PC\Downloads\GL_P

In [4]: # Load the necessary packages

import numpy as np
import pandas as pd

In [5]: # Load the Cardio Dataset

mydata = pd.read_csv('CardioGoodFitness.csv')

In [6]: mydata.head()

Product Age Gender Education MaritalStatus Usage Fitness Income Miles Out[6]: 3 29562 0 TM195 18 Male 14 Single 112 TM195 Single 2 31836 75 1 19 Male 15 2 TM195 19 Female 14 Partnered 4 3 30699 66 3 TM195 19 Male 12 Single 3 3 32973 85

13

In [7]: mydata.describe(include="all")

20

Male

TM195

Out[7]:		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Incom
	count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.00000
	unique	3	NaN	2	NaN	2	NaN	NaN	Nal
	top	TM195	NaN	Male	NaN	Partnered	NaN	NaN	Nal
	freq	80	NaN	104	NaN	107	NaN	NaN	Nal
	mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.57777
	std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.68422
	min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.00000
	25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.75000
	50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.50000
	75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.00000
	max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.00000

Partnered

In [8]: mydata.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 180 entries, 0 to 179
        Data columns (total 9 columns):
             Column
         #
                            Non-Null Count Dtype
             ----
                            -----
         0
             Product
                            180 non-null
                                            object
                                            int64
         1
                            180 non-null
             Age
         2
             Gender
                            180 non-null
                                            object
         3
             Education
                            180 non-null
                                            int64
         4
             MaritalStatus 180 non-null
                                            object
         5
             Usage
                            180 non-null
                                            int64
         6
             Fitness
                            180 non-null
                                            int64
         7
             Income
                            180 non-null
                                            int64
         8
             Miles
                            180 non-null
                                            int64
        dtypes: int64(6), object(3)
        memory usage: 12.8+ KB
In [9]:
        import matplotlib.pyplot as plt
        %matplotlib inline
        mydata.hist(figsize=(20,30))
        array([[<Axes: title={'center': 'Age'}>,
Out[9]:
                <Axes: title={'center': 'Education'}>],
               [<Axes: title={'center': 'Usage'}>,
                <Axes: title={'center': 'Fitness'}>],
               [<Axes: title={'center': 'Income'}>,
                <Axes: title={'center': 'Miles'}>]], dtype=object)
```


In [10]: import seaborn as sns

```
sns.boxplot(x="Gender", y="Age", data=mydata)
```

```
Out[10]: <Axes: xlabel='Gender', ylabel='Age'>
```



```
In [11]: pd.crosstab(mydata['Product'], mydata['Gender'] )
```

Out[11]: Gender Female Male

Product

TM195	40	40
TM498	29	31
TM798	7	33

In [12]: pd.crosstab(mydata['Product'],mydata['MaritalStatus'])

Out[12]: MaritalStatus Partnered Single

Product

TM195	48	32
TM498	36	24
TM798	23	17

```
In [13]: sns.countplot(x="Product", hue="Gender", data=mydata)
```

Out[13]: <Axes: xlabel='Product', ylabel='count'>

Product Gender Single Partnered Single Partnered Single Partnered TM195 Female 28.333333 28.692308 14.888889 15.538462 2.851852 2.923077 46153.777778 Male 31.380952 25.631579 15.428571 14.473684 2.857143 3.263158 50028.000000 TM498 Female 30.000000 28.142857 15.200000 15.214286 2.933333 2.785714 49724.800000 TM798 Female 29.000000 24.333333 17.500000 18.333333 5.000000 4.000000 84972.250000	Out[14]:				Age		Education		Fitness	
TM195 Female 28.333333 28.692308 14.888889 15.538462 2.851852 2.923077 46153.777778 Male 31.380952 25.631579 15.428571 14.473684 2.857143 3.263158 50028.000000 TM498 Female 30.000000 28.142857 15.200000 15.214286 2.933333 2.785714 49724.800000 Male 30.380952 25.200000 15.285714 14.500000 2.904762 3.000000 49378.285714 TM798 Female 29.000000 24.333333 17.500000 18.333333 5.000000 4.000000 84972.250000			MaritalStatus	Partnered	Single	Partnered	Single	Partnered	Single	Partnered
Male 31.380952 25.631579 15.428571 14.473684 2.857143 3.263158 50028.000000 TM498 Female 30.000000 28.142857 15.200000 15.214286 2.933333 2.785714 49724.800000 Male 30.380952 25.200000 15.285714 14.500000 2.904762 3.000000 49378.285714 TM798 Female 29.000000 24.333333 17.500000 18.333333 5.000000 4.000000 84972.250000		Product	Gender							
TM498 Female 30.000000 28.142857 15.200000 15.214286 2.933333 2.785714 49724.800000 Male 30.380952 25.200000 15.285714 14.500000 2.904762 3.000000 49378.285714 TM798 Female 29.000000 24.333333 17.500000 18.333333 5.000000 4.000000 84972.250000		TM195	Female	28.333333	28.692308	14.888889	15.538462	2.851852	2.923077	46153.777778
Male 30.380952 25.200000 15.285714 14.500000 2.904762 3.000000 49378.285714 TM798 Female 29.000000 24.333333 17.500000 18.333333 5.000000 4.000000 84972.250000			Male	31.380952	25.631579	15.428571	14.473684	2.857143	3.263158	50028.000000
TM798 Female 29.000000 24.333333 17.500000 18.333333 5.000000 4.000000 84972.250000		TM498	Female	30.000000	28.142857	15.200000	15.214286	2.933333	2.785714	49724.800000
			Male	30.380952	25.200000	15.285714	14.500000	2.904762	3.000000	49378.285714
Mala 30 000000 28 928571 17 421053 16 928571 4 631579 4 642857 81431 368421		TM798	Female	29.000000	24.333333	17.500000	18.333333	5.000000	4.000000	84972.250000
Water 50.000000 20.520371 17.421055 10.520371 4.031375 4.042037 01451.500421			Male	30.000000	28.928571	17.421053	16.928571	4.631579	4.642857	81431.368421

```
In [15]: sns.pairplot(mydata)
```

C:\Users\PC\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The fig ure layout has changed to tight self._figure.tight_layout(*args, **kwargs)

Out[15]: <seaborn.axisgrid.PairGrid at 0x1a451df93d0>


```
In [16]: mydata['Age'].std()
```

Out[16]: 6.943498135399795

In [17]: mydata['Age'].mean()

In [18]: sns.distplot(mydata['Age'])

C:\Users\PC\AppData\Local\Temp\ipykernel_16464\3718817797.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(mydata['Age'])
<Axes: xlabel='Age', ylabel='Density'>

In [20]: mydata.hist(by='Gender',column = 'Miles')

120

150

175

125

```
In [29]:    numeric_columns = mydata.select_dtypes(include=['number'])
In [30]:    corr = numeric_columns.corr()
    corr
```

Out[30]:		Age	Education	Usage	Fitness	Income	Miles
	Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
	Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
	Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130
	Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702
	Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473
	Miles	0.036618	0 307284	0.759130	0 785702	0 543473	1 000000

In [31]: sns.heatmap(corr, annot=True)

Out[31]: <Axes: >

In []: