Exercícios - Cap I

- 1.1, 1.2, 1.3 (somente letras (a), (b) e (c))
- 1.5 1.7, 1.8 e 1.12

Sistemas Operacionais

Visão geral e evolução dos SOs

Sistema Operacional?

- Um programa que controla a execução dos programas de aplicação
- Uma interface entre o usuário e o h/w
- Um programa que mascara os detalhes do h/w

Duas visões: gerenciador de recursos e máquina virtual

SO como máquina virtual

- Criação de programas
- Execução de programas
- Acesso a dispositivos de E/S
- Acesso controlado a arquivos
- Acesso ao sistema
- Detecção e correção de erros
- Contabilidade

- Criação de programas
 - 50 oferece facilidades: editores e depuradores
 - tipicamente estes serviços não são parte do 50 e sim dos utilitários
 - contudo, são acessíveis através do 50

- Execução de programas
 - carregamento do programa em memória
 - arquivos e dispositivos de E/S devem ser iniciados
 - outros recursos devem ser preparados
 - 50 gerencia estas ações para o usuário

- Acesso a dispositivos de E/S
 - cada dispositivo tem seu próprio conjunto de instruções ou sinais de controle
 - SO esconde estas ações e usuário só executa leituras e escritas

- Acesso controlado a arquivos
 - usuário não se preocupa coma natureza do dispositivo de E/S (disco, fita, ...)
 - usuário não se preocupa com formato do arquivo no dispositivo
 - mecanismos de proteção em caso de múltiplos usuários

- Acesso ao sistema (recursos)
 - SO controla acesso ao sistema como um todo e a recursos específicos em particular
 - proteção contra acesso não autorizado
 - resolução de conflitos em caso de disputa

- Detecção e correção de erros
 - erros de h/w: memória, dispositivos, ...
 - erros de s/w: estouro aritmético, acesso proibido a certas posições de memória
 - correção da situação com mínimo de impacto no sistema

- Contabilidade
 - coleta de estatísticas
 - monitoramento de desempenho
 - uso: melhoria de desempenho, melhorias futuras
 - tarifação em um sistema multiusuário

50: gerenciador de recursos

Sistema computacional

Dispositivos de E/S

Sistema operacional

- É um programa!
- Direciona o processador no uso dos recursos do sistema e sobre o momento de executar outros programas
- SO libera o processador para que outros programas possam executar

Evolução de um 50

- Um 50 deve evoluir ao longo do tempo para (novas versões):
 - receber novos tipos de hardware (e.g., novo terminal gráfico)
 - atender novos serviços (e.g., sistema de janelas)
 - reparar defeitos

Inicialmente:

- Usuário fazia tudo processamento serial!
- Ociosidade da máquina

Monitores

- Software que controla a execução de outros programas
- SO de lote (batch): jobs (tarefas) são carregados juntos
- Monitor é residente em memória principal
- Utilitários são carregados à medida da necessidade
- Usuário submete seu job e provê entrada
- Grau de ociosidade menor, mas execução seqüencial dos diferentes jobs

Monitor: mapa de memória

processamento de interrupção

controladores de dispositivos

sequenciamento de tarefas

interpretador de linguagem de controle

programas do usuário

Monitor (residente)

JCL: job control language

- Tipo especial de linguagem de programação
- Direciona o monitor:
 - que compilador usar
 - que dados usar
 - que dispositivos montar

Características de h/w desejáveis

- Proteção de memória
 - não permitir que a área ocupada pelo monitor seja alterada
- Temporização (inicio de multiprogramação)
 - prevenir um job de monopolizar o sistema
 - ocorrência de interrupção quando o tempo termina

Características de h/w desejáveis

- Instruções privilegiadas
 - executadas somente pelo monitor
 - e.g., instruções de E/S
 - ocorrência de interrupção caso o programa do usuário tente uma dessas instruções
- Interrupções
 - flexibilidade para controlar programas do usuário

Monitores

Vantagens:

- Proteção
- Independência
- Organização

Desvantagens

- Monitor na Memória
- Sequenciamento de processos
- Ainda: sobrecarga de troca entre monitor e processos

Multiprogramação

 Permite que o processador execute outro programa enquanto um espera por E/S

Contudo ...

- Necessidade de hardware extra, como:
 - E/S por interrupção
 - gerenciamento de memória
- Necessidade de software extra, como:
 - escalonamento de processos
 - proteção de arquivos
 - sincronização entre processos

Time-sharing

- Uso de multiprogramação para atendimento de tarefas interativas
- UCP é compartilhada
- Acesso via terminais
- SO deve atender a um objetivo: minimizar o tempo de espera de cada usuário
 - Time slice para cada usuário → vantajoso pois usuários são "lentos"

Funções Principais em um 50

- Processos
- Concorrência
- Escalonamento de Processos
- Gerenciamento de Memória
- Memória Virtual
- Segurança e Proteção

Processos

- Mais geral que programa
- Consiste em um código executável e seus dados associados, além de um contexto de execução
- Linhas principais de desenvolvimento de sistemas de computadores que levaram a especificação de processos:
 - Multiprogramação em batch: maximizar utilização devido E/S
 - Time sharing: utilização assíncrona do sistema por usuários
 - Sistemas de tempo real: múltiplos acessos a base de dados

Concorrência

- Principais problemas:
 - sincronização (e.g., perda de sinais)

$$P_1$$
 leitura $\frac{s_{incronismo}}{p_1}$ P_1 lê do buffer

exclusão mútua (e.g., bases de dados)

bloqueios (espera infinita): deadlocks

Escalonamento de processos

- Como escolher qual processo ocupará o processador?
- Alguns critérios:
 - justeza (fairness)
 - mas prioridades diferentes
 - diferenciação entre classes
 - tempos de resposta diferentes
 - eficiência
 - vazão máxima
 - minimizar tempo de resposta
- Níveis de escalonamento

Gerenciamento de memória

- Devido ao compartilhamento da MP
- Requisitos:
 - Gerenciar de acordo com hierarquia de memória
 - Isolação/proteção da área de MP entre processos
 - Demandas dinâmicas: módulos, procedimentos e área de dados
 - Ex.: pilha de memória
 - Proteção e controle de acesso
 - Ex.: áreas compartilhadas entre processos
 - Armazenamento permanente
- Solução: memória virtual + sistema de arquivos

Memória virtual?

Segurança e proteção

- Uma grande preocupação hoje em dia. O que está envolvido?
 - controle de acesso: quem pode acessar sistema e dados?
 - controle de fluxo de informação: quem pode receber o que
 - certificação: como saber quem é quem?

 SOs cada vez mais complexos. Para estruturar, só a programação modular não é suficiente

- estruturação em níveis
- arquitetura em micro-núcleo
- threads e multithreads

- Em sistemas grandes
 - Camadas hierárquicas
 - abstração de informações
 - Cada camada contém funções de mesma complexidade, dimensão e abstração
 - Um nível maior utiliza funções de um nível abaixo
 - Os níveis de funcionalidade coincidem com os níveis de um sistema computacional

- Nível 1 componentes
 - 50 limpa registradores, acessa célula de memória
- Nível 2 instruções da máquina
 - SO executa instruções L2 para executar serviços
- Nível 3 lida com procedimentos e subrotinas
- Nível 4 tratamento de interrupções
 - Parte por software para salvar contexto

- Nível 5 manipulação de processos
 - Rotinas de suspensão, escalonamento, sincronização, semáforos, ...
- Nível 6 manipulação de dispositivos de memória secundária
 - Leitura e gravação, manipulação de cabeçote
- Nível 7 manipulação de memória virtual
 - Transferência entre MP e MS
 - Por ex., utiliza nível 6
- Nível 8 gerenciamento de compartilhamento de informação e troca de msg´s entre processos

- Nível 9 manipulação de armazenamento secundário
 - Mais alto nível que 6
- Nível 10 interfaces para acesso a dispositivos externos
- Nível 11 rotinas de associação de identificadores de processos externos (usuários) e internos (endereços)

Outras formas

- Multiprocessamento simétrico
 - cada processador executa cópia do SO
- SOs distribuídos
 - fornece a ilusão de uma única memória principal
- Sistemas móveis

Outros requisitos

- Sistemas de tempo real (TR)
 - normalmente usados em aplicações dedicadas
 - requisitos temporais bem definidos
 - sistemas TR críticos
 - vale a pena usar memória virtual?
 - sistemas TR não-críticos
- Consumo de energia

Caracteristicas Atuais

- Melhor tecnogia → melhor h/w → melhor s/w
 - SO mais elaborado: lida com redes, maior MP, multimídia, web, computação cliente-servidor
- Microkernel mínimo de funções essenciais
 - Gerenciador de espaço de gerenciamento
 - Comunicação entre processos
 - Escalonamento
- Multithread aplicação composta de vários threads

Threads	Processos
ounidade de um processo	 Visão somente de suas variáveis
 Compartilha informações 	Comunicação troca msg

Exercícios - Cap II

- 2.1 até 2.5

- 2.1) Suponha um computador multiprogramado, em que os processos têm características semelhantes. Em um dado período de computação, T, considerando cada processo, metade do tempo é gasto em E/S e outra metade em processamento. Cada processo ainda precisa de N períodos para ser executado. Assuma uma prioridade round-robin e que as operações de E/S possam ser sobrepostas com operações de processamento. Defina:
 - a) turnaround de cada processo = tempo total para completar o processo
 - b) Vazão/Throughput = média de processos finalizados por período T
 - c) Utilização de processador = % de tempo que cada processador está ativo (não está esperando)
- Calcule (a), (b) e (c) para 1, 2 e 4 processos simultâneos, assumindo que o período de tempo T é distribuído da seguinte maneira:
 - a) Primeira metade = E/S e segunda metade processamento
 - b) E/S durante o 1° e 4° quartos de tempo, e processamento, 2° e 3° quartos de tempo