Programme n°25

MECANIQUE

M9 Mouvement dans un champ de force centrale

Cours et exercices

THERMODYNAMIQUE

TH1. Introduction à la thermodynamique

Cours et exercices

TH2. Le premier principe de la thermodynamique (Cours uniquement)

- Transformation d'un système Définition
 - Transformations particulières
 - Notion qualitative de vitesse d'évolution
 - Echange d'énergie
- Le travail des forces de pression
- Le travail des forces de pression au cours d'une transformation élémentaire
- Le travail au cours d'une transformation finie
- Représentation graphique du travail des forces de pression
- Exemples
- Cas particulier d'un fluide en mouvement
- Transfert thermique Définition
 - Trois modes de transfert de chaleur
 - Transformation adiabatique
 - Notion de thermostat
 - Chois du modèle : adiabatique ou isotherme ?
- Le premier principe de la thermodynamique
- Rappels sur l'énergie interne
 - Le premier principe
 - Exemples d'utilisation → Echauffement isochore d'un gaz
 - \rightarrow Echauffement monobare d'un gaz
 - → Transformation isotherme d'un gaz
 - → Echauffement d'un gaz par compression

- La fonction enthalpie Définition
 - Capacité thermique à pression constante
 - Transformation monobare avec équilibre mécanique dans l'état initial et final
 - Cas d'un gaz parfait
 - Cas d'une phase condensée incompressible et indilatable

2. Énergie échangée par un système au cours d'une transformation	
Transformation thermodynamique subie par un	Définir le système.
système.	
	Exploiter les conditions imposées par le milieu
	extérieur pour déterminer l'état d'équilibre final.
	Utiliser le vocabulaire usuel : évolutions isochore,
	isotherme, isobare, monobare, monotherme.
Travail des forces de pression. Transformations	Calculer le travail par découpage en travaux
isochore, monobare.	élémentaires et sommation sur un chemin donné
	dans le cas d'une seule variable.
	Interpréter géométriquement le travail des forces
	de pression dans un diagramme de Clapeyron.
Transfert thermique.	Identifier dans une situation expérimentale le ou
Transformation adiabatique.	les systèmes modélisables par un thermostat.
Thermostat, transformations monotherme et	
isotherme.	Proposer de manière argumentée le modèle limite
	le mieux adapté à une situation réelle entre une
	transformation adiabatique et une transformation isotherme.

3. Premier principe. Bilans d'énergie	
Premier principe de la thermodynamique : Δ U + Δ Ec = Q + W.	Définir un système fermé et établir pour ce système un bilan énergétique faisant intervenir travail W et transfert thermique Q. Exploiter l'extensivité de l'énergie interne. Distinguer le statut de la variation de l'énergie
	interne du statut des termes d'échange. Calculer le transfert thermique Q sur un chemin donné connaissant le travail W et la variation de l'énergie interne Δ U.
	Mettre en œuvre un protocole expérimental de mesure d'une grandeur thermodynamique énergétique (capacité thermique, enthalpie de fusion).
Enthalpie d'un système. Capacité thermique à pression constante dans le cas du gaz parfait et d'une phase condensée incompressible et	Exprimer l'enthalpie $H_m(T)$ du gaz parfait à partir de l'énergie interne.
indilatable	Comprendre pourquoi l'enthalpie H., d'une phase

SOLUTIONS AQUEUSES AQ3 L'oxydoréduction

Cours et exercices

Oxvdants et réducteurs

Oxydants et reducteurs	
Nombre d'oxydation.	Prévoir les nombres d'oxydation extrêmes d'un
Exemples usuels : nom, nature et formule des ions	élément à partir de sa position dans le tableau
thiosulfate, permanganate, dichromate,	périodique.
hypochlorite, du peroxyde d'hydrogène.	Identifier l'oxydant et le réducteur d'un couple.
	Décrire le fonctionnement d'une pile à partir d'une
Potentiel d'électrode, formule de Nernst, électrodes	mesure de tension à vide ou à partir des potentiels
de référence.	d'électrodes.
Diagrammes de prédominance ou d'existence.	Utiliser les diagrammes de prédominance ou
	d'existence pour prévoir les espèces incompatibles
	ou la nature des espèces majoritaires.
Réactions d'oxydo-réduction	
Aspect thermodynamique.	Prévoir qualitativement ou quantitativement le
Dismutation et médiamutation.	caractère thermodynamiquement favorisé ou
	défavorisé d'une réaction d'oxydo-réduction.