МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №4

по дисциплине: «Вычислительная математика» тема: Численные методы решения задачи Коши

Выполнил: ст. группы ПВ-211

Чувилко Илья Романович

Проверил:

Бондаренко Татьяна Владимировна

Вариант 23

Цель работы: изучить численные методы решения задачи Коши; получить практические навыки приближенного решения дифференциальных уравнений с помощью ЭВМ.

Ход работы:

23
$$y' - \frac{2}{x+1}y = e^x(1+x)^2$$
, $y|_{x=0} = 1, 0 \le x \le 2$ $\varphi(x) = e^x(x+1)^2$

1. В ы

ислить «вручную» приближенное решение у(x) задачи Коши методом последовательного дифференцирования.

Замечание. Ряд Тейлора ограничить значением производной третьего порядка.

- 2. Вычислить значение функции $\varphi(x)$, которая является точным решением задачи Коши и функции y(x), которая является приближенным решением задачи Коши по методу последовательного дифференцирования, в точке x = b. Замечание. x = b npaвый конец указанного в задании отрезка, которому принадлежит значение x, $a \le x \le b$, x = b = x0 + ih, h > 0— шаг сетки, x0 = a
- 3. Определить относительную и абсолютную погрешности вычисления приближенного решения задачи Коши методом последовательного дифференцирования. Значения погрешностей внести в соответствующие ячейки таблицы 4.
- Метод последовательного дифференцирования:

Формула для ячейки C2: =1+3*B2+(7/2)*СТЕПЕНЬ(B2; 2) + (13/6)*СТЕПЕНЬ(B2; 3)

	-	-			
į	<u>xi</u>	yi	φį	Абс. Погрешность	Отн. Погрешность
0	0	1	1	0	0
1	0,2	1,75733	1,75882	0,001486638417	0,000845247633
2	0,4	2,89867	2,92398	0,02530974071	0,008655931917
3	0,6	4,528	4,66462	0,136624129	0,029289418659
4	0,8	6,74933	7,21075	0,461419274982	0,063990445942
5	1	9,66667	10,8731	1,20646064717	0,110958017169
6	1,2	13,384	16,0694	2,685365906045	0,16711088177
7	1,4	18,0053	23,358	5,352618475692	0,22915615716
8	1,6	23,6347	33,4825	9,847832522244	0,294118801189
9	1,8	30,376	47,4292	17,053236121	0,359551144309
10	2	38,3333	66,5015	28,16817155704	0,42357194177
0	0	1	1	0	0
1	0,4	2,89867	2,92398	0,02530974071	0,008655931917
2	0,8	6,74933	7,21075	0,461419274982	0,063990445942
3	1,2	13,384	16,0694	2,685365906045	0,16711088177
4	1,6	23,6347	33,4825	9,847832522244	0,294118801189
5	2	38,3333	66,5015	28,16817155704	0,42357194177

- 4. Вычислить «вручную» приближенное решение у(х) задачи Коши четырьмя численными методами решения:
 - **Ф** методом Эйлера;

$$f(x_i, y_i) = e^x (1+x)^2 + \frac{2y}{(x+1)^2}$$

Формула для ячейки C3: =C2 + (2/10) * (EXP(B2)*СТЕПЕНЬ(1+ B2; 2) + (2*C2)/СТЕПЕНЬ(B2+1;2))

į	χi	yi	φį	A	бс. Погрешность	Отн. Погрешность
0	0	1	1		0	0
1	0,2	1,6	1,75882	0	0,15881997175065	0,09029916324669
2	0,4	2,396208	2,9239764	0	0,52776796858232	0,18049665765114
3	0,6	3,470026	4,6646241	1	1,19459827836351	0,25609743579054
4	0,8	4,945142	7,2107526	2	2,26561039271756	0,3141988798929
5	1	6,997804	10,873127	3	3,87532319193329	0,35641293255179
6	1,2	9,87221	16,069366	6	5,19715590918448	0,3856503078851
7	1,4	13,90197	23,357952	9	9,45598350724846	0,40482930971691
8	1,6	19,53897	33,482499	1	13,9435260599279	0,41644221302769
9	1,8	27,39163	47,429236	2	20,0376108980793	0,42247382704965
10	2	38,275	66,501505	2	28,2265005441297	0,42444904954647
0	0	1	1		0	0
1	0,4	1,6	2,9239764	1	1,32397640737689	0,45279996241989
2	0,8	2,511326	7,2107526	4	4,69942671459532	0,65172485728825
3	1,2	4,263517	16,069366	1	11,8058492568689	0,73468046753655
4	1,6	7,829747	33,482499	2	25,6527526106602	0,76615405755482
5	2	14,98955	66,501505	5	51,5119598602452	0,77459840863992

🖆 методом Эйлера-Коши;

Формула ячейки C3: =C2+(1/2)*(B3-B2)*((EXP(B2)*СТЕПЕНЬ(1+B2;2)+(2*C2)/(B2+1))+ (EXP(B3)*СТЕПЕНЬ(1+B3; 2)+(2*(EXP(B2)*СТЕПЕНЬ(1+B2;2)+(2*C2)/(B2+1)))/(B3+1)))

į	<u>xi</u>	yį	φi	Абс. Погрешность	Отн. Погрешность
0	0	1	1	0	0
1	0,2	1,9758819972	1,7588199718	0,21706202542442	0,12341344134748
2	0,4	3,4951833918	2,9239764074	0,57120698443664	0,1953528020936
3	0,6	5,7429923009	4,664624129	1,07836817188509	0,23118007840781
4	0,8	8,9643334017	7,2107526083	1,75358079336752	0,24318970412953
5	1	13,485870744	10,873127314	2,61274343015658	0,24029364825259
6	1,2	19,743161509	16,069365906	3,67379560322879	0,22862106847955
7	1,4	28,315534024	23,357951809	•	0,21224387549065
8	1,6	39,971070818	33,482499189	6,48857162942893	0,19378994360068
9	1,8	55,724761872	47,429236121	8,29552575083874	0,17490321222286
10	2	76,913685271	66,50150489	10,4121803801685	0,15657059787342
0	0	0	1	1	1
1	0,4	1,0705095672	2,9239764074	1,85346684018723	0,63388570287747
2	0,8	4,3929320887	7,2107526083	2,81782051963055	0,39078036270181
3	1,2	12,223669879	16,069365906	3,84569602686702	0,23931846778225
4	1,6	28,538342649	33,482499189	4,94415653986662	0,14766390381946
5	2	60,317000446	66,50150489	6,18450444412079	0,09299796229146

Формула ячейки Е3: =E2+(B3-B2)*(EXP(C2)*СТЕПЕНЬ(1+С2; 2) + (2*(E2+((В3-В2)/2)*D2))/С2)

į	χi	į į	x(j+1/2)	f(xi, yi)	<u>yi</u>	φi	Абс. Погрешность Отн. Погр	решность
	0	0	0,1	3	1	1	L 0	0
	1	0,2	0,3	4,69027	1,7588685466	1,758819971751	4,857484957549E-05 2,761786	3315E-05
	2	0,4	0,5	7,10122	2,9240727072	2,923976407377	9,629984382398E-05 3,29345	4885E-05
	3	0,6	0,7	10,4956	4,664767296	4,664624129	0,0001431670255406 3,069208	1844E-05
	4	0,8	0,9	15,2229	7,2109417293	7,210752608316	0,0001891209661588 2,622763	2042E-05
	5	1	1,1	21,7465	10,873361381	10,87312731384	0,0002340676021651 2,15271	.6467E-05
	6	1,2	1,3	30,6781	16,069643788	16,06936590604	0,0002778816586332 1,729263	3714E-05
	7	1,4	1,5	42,8232	23,358272222	23,35795180903	0,000320413011702 1,371751	.3176E-05
	8	1,6	1,7	59,2385	33,482860681	33,48249918891	0,0003614922477166 1,079645	3565E-05
	9	1,8	1,9	81,3075	47,429637057	47,429236121	0,0004009356076156 8,453343	1361E-06
1	.0	2	1	110,836	66,50194344	66,50150489038	0,0004385494539526 6,59457	9396E-06
	0	0	0,2	3	1	1	L 0'	0
	1	0,4	0,6	7,10165	2,9243704674	2,923976407377	0,0003940600191924 0,000134	76853582
	2	0,8	1	15,2236	7,2115273432	7,210752608316	0,0007747348520552 0,000107	44160757
	3	1,2	1,4	30,6789	16,07050539	16,06936590604	0,0011394843444066 7,091034	8988E-05
	4	1,6	1,8	59,2394	33,483982876	33,48249918891	0,0014836867042161 4,431230	4641E-05
	5	2	1	110,837	66,503306336	66,50150489038	0,0018014455330507 2,708879	3495E-05

🖆 методом Рунге-Кутты.

į	xi	m1	m2	m3	m4	yi	φi	Абс. Погрешность	Отн. Погрешность
	0	0	3 3,700893174	5 3,8283282971	4,7015960708	1	1	0	0
	1	0,2 4,6899332	2503 5,708432603	5 5,8651248117	7,1121091638	1,7586679671	1,7588199718	0,00015200461376	8,6424202708E-05
	2	0,4 7,1006048	8006 8,554556666	2 8,748416915	10,506278202	2,9236398753	2,9239764074	0,00033653208819	0,00011509398207
	3	0,6 10,494708	8563 12,54155521	1 12,782360699	15,233574483	4,6640675474	4,664624129	0,00055658154992	0,00011931969962
	4	0,8 15,221794	4878 18,07086989	5 18,370772529	21,757219863	7,2099380431	7,2107526083	0,00081456526514	0,00011296536012
	5	1 21,74514	4201 25,67363778	26,047780236	30,688975673	10,872014696	10,873127314	0,00111261781182	0,00010232730471
	6	1,2 30,676559	9682 36,05020469	5 36,517478174	42,834125799	16,067913153	16,069365906	0,00145275273115	9,040510619E-05
	7	1,4 42,82138	8086 50,12115904	7 50,705141302	59,249532359	23,356114861	23,357951809	0,00183694842252	7,8643386096E-05
	8	1,6 59,236523	3797 69,09313898	3 69,823258626	81,318438776	33,480231991	33,482499189	0,00226719778087	6,7712919758E-05
	9	1,8 81,305300	0824 94,54355892	6 95,456542244	110,84670425	47,426490584	47,429236121	0,00274553685971	5,7887014092E-05
	10	2 110,83365	5878 128,529535	9 129,67120539	150,18643318	66,498230831	66,50150489	0,00327405927419	4,9232859912E-05
		0,2					1		
							!		
į	χi	m1	m2	m3	m4	χį	φį	Абс. Погрешность	Отн. Погрешность
	0	0	3 4,425486638	4 4,9006488512	7,1529186081	. 1	1	0	0
	1	0,4 5,7242235	5306 8,545896244	5 9,2513144229	13,500417892	1,9601729862	2,9239764074	0,96380342113167	0,32962079266443
	2	0,8 11,419058	8251 16,94441404	2 18,0494852	26,075974232	3,7874750782	2,7,2107526083	3,42327753015587	0,47474621805886
	3	1,2 22,769580	0552 33,29474532	6 35,048939455	49,936200645	7,3702361104	l¦16,069365906	8,69912979563052	0,54134866593324
	4	1,6 44,520966	5729 64,03937979	8 66,827724522	93,888903298	14,350007802	33,482499189	19,1324913864906	0,57141766146379
	5	2 84,960267	7396 120,3412615	1 124,76388577	173,07127076	27,688143758	66,50150489	38,8133611323268	0,58364635802315
		0,4							

- 5. Сравнить полученные в пункте 4 значения приближенного решения дифференциального уравнения y(x) с точным значением решения дифференциального уравнения $\phi(x)$ в точке x=b.
- 6. Определить относительную и абсолютную погрешности вычисления приближенного решения задачи Коши заданными численными методами. Значения погрешностей внести в соответствующие ячейки табл. 4.1.

	Вычислительный метод									
dогрешност▶	послед. Дифференц• ирования	Эйлера	Эйлера- Коши	мод. Эйлера	Рунге-Кутты					
		H=	0,4							
Δ	28,1681716	51,5119599	6,18450444	0,00180145	0,00388134					
δ	0,42357194	0,77459841	0,09299796	2,7089E-05	0,00583646					
	H=0,2									
Δ	28,1681716	28,2265005	10,4121804	0,00043855	0,00327406					
δ	0,42357194	0,42444905	0,1565706	0,00243683	4,9233E-05					

7. Описать в модуле функции, каждая из которых возвращает приближенное значение решения задачи Коши в точке x = b с точностью , реализующие метод Эйлера, метод Эйлера-Коши, модифицированный метод Эйлера и метод РунгеКутты. Оценка точности вычисления должна осуществляться по принципу Рунге.

Код программы:

```
<mark>#include</mark> <iostream>
include "cmath"
using namespace std;
cypedef double diff_equation(double x, double y);
sypedef double methodOfSolution(diff_equation func, double x0, double y0, double target, double step);
class KoshiSolver {
 static double euler(diff_equation func, double x0, double y0, double target, double step) {
    vector<vector<double>> table{{x0, y0}};
    while (table[table.size() - 1][0] < target) {</pre>
      vector<double> previous_row = table[table.size() - 1];
      double next_x = previous_row[0] + step;
      double next_y = previous_row[1] + step * func(previous_row[0], previous_row[1]);
      table.push_back({next_x, next_y});
   return table[table.size() - 1][1];
 static double eulerKoshi(diff_equation func, double x0, double y0, double target, double step) {
    vector<vector<double>> table { {x0, y0} };
    while (table[table.size() - 1][0] < target) {</pre>
      vector<double> previous row = table[table.size() - 1];
      double next_x = previous_row[0] + step;
      double intermediate_value = func(previous_row[0], previous_row[1]);
      double next_y = previous_row[1] + step / 2 *
           (intermediate_value + func(next_x, previous_row[1] + step * intermediate_value));
      table.push back({next x, next y});
   return table[table.size() - 1][1];
 static double modifiedEuler(diff_equation func, double x0, double y0, double target, double step) {
    vector<vector<double>> table{{x0, y0}};
    while (table[table.size() - 1][0] < target) {</pre>
      vector<double> previous_row = table[table.size() - 1];
      double next x = previous row[0] + step;
```

```
double intermediate_value = func(previous_row[0], previous_row[1]);
    double next_y = previous_row[1] + step * func(previous_row[0] + step / 2,
                                 previous_row[1] + step / 2 * intermediate_value);
    table.push_back({next_x, next_y});
  return table[table.size() - 1][1];
static double rungeKutta(diff_equation func, double x0, double y0, double target, double step) {
  vector<vector<double>> table{{x0, y0}};
  while (table[table.size() - 1][0] < target) {</pre>
    vector<double> previous_row = table[table.size() - 1];
    double next_x = previous_row[0] + step;
    double m1 = func(previous_row[0], previous_row[1]);
    double m2 = func(previous_row[0] + step / 2, previous_row[1] + step / 2 * m1);
    double m3 = func(previous_row[0] + step / 2, previous_row[1] + step / 2 * m2);
    double m4 = func(previous_row[0] + step, previous_row[1] + step * m3);
    double next_y = previous_row[1] + step / 6 * (m1 + 2 * m2 + 2 * m3 + m4);
    table.push_back({next_x, next_y});
static double findError(diff_equation func, double x0, double y0, double target, double step,
          methodOfSolution method, double method_p) {
  double valueStep = method(func, x0, y0, target, step);
  double valueStepDividedBy2 = method(func, x0, y0, target, step / 2);
  return (valueStepDividedBy2 - valueStep) / (std::pow(2, method_p) - 1);
double solveKoshiWithPrecision(diff equation func, double x0, double y0, double target, double step,
                  const string& method, double precision) {
  if (method == "Euler") {
    double currentError = findError(func, x0, y0, target, step, euler, 1);
    while (currentError > precision) {
       step /= 2:
       currentError = findError(func, x0, y0, target, step, euler, 1);
    return euler(func, x0, y0, target, step);
  } else if (method == "Euler Koshi") {
    double currentError = findError(func, x0, y0, target, step, eulerKoshi, 2);
     while (currentError > precision) {
       currentError = findError(func, x0, y0, target, step, eulerKoshi, 2);
     return eulerKoshi(func, x0, y0, target, step);
  } else if (method == "Modified Euler") {
    double currentError = findError(func, x0, y0, target, step, modifiedEuler, 2);
     while (currentError > precision) {
```

```
currentError = findError(func, x0, y0, target, step, modifiedEuler, 2);
      return modifiedEuler(func, x0, y0, target, step);
    } else if (method == "Runge Kutta") {
      double currentError = findError(func, x0, y0, target, step, rungeKutta, 4);
      while (currentError > precision) {
        currentError = findError(func, x0, y0, target, step, rungeKutta, 4);
      return rungeKutta(func, x0, y0, target, step);
    } else {
louble target_function(double x, double y) {
 return std::pow(M_E, x) * std::pow(x + 1, 2) + (2*y)/(x+1);
nt main() {
 system("chcp 65001");
 KoshiSolver solver;
 double x0 = 0;
 double y0 = 1;
 << "\nМетод Эйлера: " << solver.solveKoshiWithPrecision(target_function, x0, y0, 2, 1, "Euler", 0.0001)
 << "\nМетод Эйлера Коши: " << solver.solveKoshiWithPrecision(target_function, x0, y0, 2, 1, "Euler Koshi",
 << "\nMeтод модифицированный Эйлера: " << solver.solveKoshiWithPrecision(target_function, x0, y0, 2, 1,
 << "\nMетод Рунге Кутта: " << solver.solveKoshiWithPrecision(target_function, x0, y0, 2, 1, "Runge Kutta",
```

Результат работы программы:

```
C:\BGTU\BGTU\VicMat\Lab4\Example\ccc\cmake-build-debug\ccc.exe
Active code page: 65001
Точность для пятого знака
Метод Эйлера: 66.5013
Метод Эйлера Коши: 66.5012
Метод модифицированный Эйлера: 66.5014
Метод Рунге Кутта: 66.5015
Process finished with exit code 0
```

Вывод: Изучил численные методы решения задачи Коши и получил практические навыки приближенного решения дифференциальных уравнений с помощью ЭВМ.