

DESARROLLO SEGUNDO PARCIAL

Sebastian Ricardo Acevedo Baldovino

CUANTO TIEMPO SE TARDA UNA PERSONA EN CORRER 5KM

```
"""29.37,38.18,35.67,35.49 29.24,36.67,37.94,36.84 28.17,35.25,27.76,38.72 29.37,33.56,38.63,29.98, 22.04,35.67,31.04,32.06 33.56,27.88,24.19,24.27 20.12,21.34,22.91,30.08 31.61,24.84,36.84,35.49 39.79,28.88,36.67,35.67 26.92,28.25,30.08,32.06 24.84,24.19,30.08,28.25 34.93,38.72,38.63,22.04 28.45,38.18,28.17,29.37 25.91,32.06,35.67,35.67 32.77,21.82,21.69,36.41"""
```

LISTADO DE DATOS, 60 DATOS EN TOTAL.

CUANTO TIEMPO SE TARDA UNA PERSONA EN CORRER 5KM

FORMULA DE INTERPOLACIÓN

$$x = L_i + \left(rac{n - F_{i-1}}{f_i}
ight) \cdot a$$

SERÁ UTIL PARA CALCULOS DE CUARTILES, PERCENTIILES DECILES AL TENER DATOS DECIMALES HAY QUE USAR UNA INTERPOLACION PARA TOMAR UN SOLO DATO

TABLA DE FRECUENCIA

Intervalo	Frecuencia absoluta	Frecuencia acumulada	Frecuencia relativa	Frecuencia relativa acumulada
[20.00 - 22.00)	4	4	0.0667	0.0667
[22.00 - 24.00)	3	7	0.0500	0.1167
[24.00 - 26.00)	6	13	0.1000	0.2167
[26.00 - 28.00)	3	16	0.0500	0.2667
[28.00 - 30.00)	11	27	0.1833	0.4500
[30.00 - 32.00)	5	32	0.0833	0.5333
[32.00 - 34.00)	6	38	0.1000	0.6333
[34.00 - 36.00)	9	47	0.1500	0.7833
[36.00 - 38.00)	6	53	0.1000	0.8833
[38.00 - 40.00)	F7	60	0.1167	1.0000

MEDIA, MEDIANA MODA, CUARTILES

PERCENTILES Y DECILES

$$r=rac{k(n+1)}{100}$$

$$r=rac{k(n+1)}{10}$$

PERCENTILES

DECILES

CALCULOS ADICIONALES

Vorianza nevertal: $S = \frac{1}{n-1} \left[\frac{2(x_i - \bar{x})^2}{59} - \frac{1053.52}{59} \right]$	= 7 1 , 36
Desviación estador 5 -> V17.86 - 4.23	
confidence le variación: $CV = (5) \times 100 = (4,23) \times 100$	c 13.28 ⁻ /-
Vango viruaudihuas 35.67-27.85 = 7.88	
Asymptotics $g_1 = 3(x - melliona) = 3(31.33 - 30.56) = $	3(1,27) = 0,90 -> genetia positua: los debs están 4.23 sespellos a la deucida, volvies emprion la mela encima de la prediena.
$(0.105)5$; $9n - 0(0.11) = (0.10)^2 = (0.1$	
= 60[61] (3133-30.56) - 3(59)0,44 < (59(58)(57) (4,23) (53)(57)	O -> platicultar: con colos mis ligras y menos conertiale en la media.

CONCLUSION

EN CONCLUSIÓN, EL CONJUNTO DE DATOS PRESENTA UNA MEDIA DE 31.02, UNA MEDIANA DE 30.56 Y UNA MODA DE 35.67, LO QUE INDICA UNA DISTRIBUCIÓN CENTRADA LIGERAMENTE HACIA LA DERECHA. LA DESVIACIÓN ESTÁNDAR ES DE 5.48, CON UNA VARIANZA MUESTRAL DE 30.02, REFLEJANDO UNA DISPERSIÓN MODERADA. EL COEFICIENTE DE VARIACIÓN, DE APROXIMADAMENTE 17.66%, SUGIERE BAJA VARIABILIDAD RELATIVA. LA ASIMETRÍA DE -0.24 SEÑALA UNA LEVE INCLINACIÓN HACIA VALORES BAJOS, MIENTRAS QUE LA CURTOSIS DE 1.95 INDICA UNA CONCENTRACIÓN DE DATOS SIMILAR A LA DISTRIBUÇIÓN NORMAL, CON COLAS MODERADAS. EL RANGO INTERCUARTÍLICO DE 7.82 Y LA AMPLITUD TOTAL DE 19.67 MUESTRAN QUE LA MAYORÍA DE LOS VALORES ESTÁN AGRUPADOS EN UN INTERVALO RELATIVAMENTE ESTRECHO. ESTOS RESULTADOS REFLEJAN UNA DISTRIBUCIÓN ESTABLE, CON TENDENCIA CENTRAL CLARA Y DISPERSIÓN CONTROLADA.