

LECTURE 03

Language & Power of Alphabet

Course Code: CSE 3103

Course Title: Theory of Computation

Md. Sozib Hossain

Lecturer, CSE, RUET sozib.hossain@cse.ruet.ac.bd

EXAMPLE OF LANGUAGES

- 1. All binary number that contain n number of 0's followed by n number of 1's for some $n \ge 0$.
- 2. All binary number that contain equal number of 0's and 1's.
- 3. All prime binary number.
- 4. All string that contains "aba" as sub string over the alphabet $\Sigma = \{a, b, c, d\}$.
- 5. All identifier(variable name & function name) in C programming Language.
- 6. All Comment(Single line or Multi-line) in C programming Language.
- 7. All integer number in C programming Language.
- 8. All float number in C programming Language.

TYPES OF LANGUAGES

Language is a set of strings that is accepted by a **model** of computation.

There are several types of language that's are accepted by different model of computation.

- 1. Regular Language accepted by Finite Automata.
- 2. Context Free Language accepted by Push Down Automata.
- 3. Context Sensitive Language accepted by Linear Bounded Automata.
- 4. Recursively Enumerable Language accepted by Turing Machine.

POWER OF ALPHABET

It is expressed by Σ^k which represent the set of strings of length k each of those symbols are of Σ .

```
Example- If \Sigma = \{0,1\}, Then \Sigma^0 = \{\epsilon\} which means a empty set. \Sigma^1 = \{0,1\} \Sigma^2 = \{00,01,10,11\} \Sigma^3 = \{000,001,010,011,100,101,110,111\} \Sigma^* = \Sigma^+ + \epsilon
```

POWER OF ALPHABET

KLEEN CLOSURE

Strings of all possible lengths over Σ including ϵ .

$$\Sigma^* = \Sigma^0 + \Sigma^1 + \Sigma^2 + \Sigma^3 + \dots$$

If
$$\Sigma = \{0,1\}$$

Then $\Sigma^* = \{ \varepsilon, 0, 1, 00, 01, 10, 11, \ldots \}$

POSITIVE CLOSURE

Strings of all possible lengths over \sum excluding ϵ .

$$\Sigma^+ = \Sigma^1 + \Sigma^2 + \Sigma^3 + \Sigma^4 + \dots$$

If
$$\Sigma = \{0, 1\}$$

Then Σ^+ = {0, 1, 00, 01, 10, 11, ...}

POWER OF ALPHABET

- If $\Sigma = \{0,1\}$ then $\Sigma^{+-} (\Sigma^4 + \Sigma^5 + \Sigma^6 \dots + \Sigma^{\infty}) = ?$
- If $\Sigma = \{a,b\}$ then $\Sigma^* (\Sigma^1 + \Sigma^2 + \Sigma^4 + \Sigma^5 + \Sigma^6 \dots + \Sigma^{\infty}) = ?$
- If Σ = {a,b,c} then Σ^* $(\Sigma^0 + \Sigma^1 + \Sigma^3 + \Sigma^4 + \Sigma^5 + \Sigma^6 \dots + \Sigma^{\infty}) = ?$
- If $\Sigma = \{a,b,c\}$ then $\Sigma^* \Sigma^+ = ?$