Proyecto : Árboles de clasificación Bayesiana.

Simulación estocástica : Teoría y Laboratorio

Gary Vidal Jorge Sossa December 22, 2022

Universidad de Chile

Profesor: Joaquin Fontbona

Auxiliares: Arie Wortsman, Camilo Carvajal, Pablo Zúñiga

ÍNDICE

- 1. Árbol de decisión
- 2. Prior $\mathbb{P}(T)$ y Posterior $\mathbb{P}(T|Y,X)$
- 3. Búsqueda de la Posteriori
- 4. Resultados
- 5. Conclusión

Búsqueda de la Posteriori

¿QUE ES UN ÁRBOL?

Un Árbol de decisión corresponde a una estructura abstracta, la cual a partir de preguntas del tipo binarias, es capaz de clasificar los elementos de un conjunto.

Elementos de un Árbol:

- Raíz
- Nodo de Decisión
- Nodo Terminal

OBJETIVO

Se busca ajustar un árbol de decisión T que permita clasificar/predecir datos.

- Método usual : Utilizar un algoritmo glotón que expande el árbol y luego lo corta.
- Método Bayesiano: Se especifica una distribución a priori para los árboles y se utiliza una búsqueda estocástica para buscar la distribución a posteriori.

Notación:

X =conjunto de predictores.

Y =conjunto de targets.

 y_{ii} = Observación del dato j en la hoja i

Prior $\mathbb{P}(T)$ y Posterior $\mathbb{P}(T|Y,X)$

Se define $\mathbb{P}(T)$ implícitamente con dos funciones: $p_{split}(\eta,T)$ como la probabilidad de dividir la hoja η y $p_{rule}(\rho|\eta,T)$ como la probabilidad de asignar la regla ρ al nodo dividido.

Generamos el Prior del árbol recursivamente de este modo:

PRIOR $\mathbb{P}(T)$

- 1.- Definimos T como una hoja η
- **2.-** Dividimos el nodo terminal η con probabilidad $p_{split}(\eta, T)$.
- 3.- Si el nodo se divide, se le asigna una regla ρ según $p_{rule}(\rho|\eta,T)$. Se crea una hoja a la izquierda y a la derecha de η . T se actualiza y se vuelve a la etapa 2.

ESPECIFICACIÓN p_{split} Y p_{rule}

Árbol de decisión

Si ignoramos el p_{rule} , y tomamos $p_{split} = \alpha$. Para un árbol binario con bhojas, $\mathbb{P}(T) = \alpha^{b-1}(1-\alpha)^b$.

Búsqueda de la Posteriori

Buscamos definir p_{split} de tal manera que tengamos control sobre este.

DEFINICIÓN $p_{snlit}(\eta, T)$

• $p_{snlit} = \alpha (1 + d_n)^{-\beta}$, donde d_n es la profundidad del nodo η y $\beta > 0$

Esto permite tener control sobre cuales nodos se dividen, dependiendo de α y β .

ESPECIFICACIÓN psplit Y prule

Definimos p_{rule} sobre el conjunto de predictores (características de los datos) de la siguiente manera :

DEFINICIÓN $p_{rule}(\rho|\eta,T)$

- Tomamos x_i al azar entre los predictores.
- Tomar s al azar entre las observaciones de x_i si este es cuantitativo.

Tomar S al azar entre los subconjuntos posibles de x_i si este es cualitativo.

Este p_{rule} no debe generar nodos vacíos.

Cálculo de $\mathbb{P}(T|Y,X)$

Tenemos la relación entre prior y posterior :

$$\mathbb{P}(T|Y,X) \propto \mathbb{P}(Y|T,X)\mathbb{P}(T)$$

Para un árbol de clasificación con K categorías, definimos $\mathbb{P}(Y|T,X)$ como :

DEFINICIÓN $\mathbb{P}(Y|T,X)$ [Posterior conjugada de Dirichlet]

$$\mathbb{P}(Y|T,X) = \left(\frac{\Gamma(\sum_{k} \alpha_{k}^{p})}{\prod_{k} (\Gamma(\alpha_{k}^{p}))}\right)^{b} \prod_{i=1}^{b} \frac{\prod_{k} \Gamma(n_{ik} + \alpha_{k}^{p})}{\Gamma(n_{i} + \sum_{k} \alpha_{k}^{p})}$$

- b = número de hojas.
- $\alpha^p = [\alpha_1^p, ..., \alpha_K^p]$ vector de peso de las clases.
- $n_{ik} = \sum_{i} 1(y_{ij} \in C_k)$
- $n_i = \sum_k n_{ik}$

Búsqueda de la Posteriori

Usaremos Metropolis-Hastings, para generar una cadena de árboles $T^0, T^1, T^2, ...$, que converga a $\mathbb{P}(T|Y, X)$:

ALGORTIMO METROPOLIS-HASTINGS

- 1 Comenzando del árbol trivial T^0 , simularemos transiciones de T^i a T^{i+1} en dos pasos.
 - 1.1 Generamos un candidato T^* con probabilidad $q(T^i, T^*)$
 - **1.2** Hacemos $T^{i+1} = T^*$ con probabilidad:

$$\alpha(T^{i}, T^{*}) = \min \left\{ \frac{q(T^{*}, T^{i}) \mathbb{P}(Y|X, T^{*}) \mathbb{P}(T^{*})}{q(T^{i}, T^{*}) \mathbb{P}(Y|X, T^{i}) \mathbb{P}(T^{i})}, 1 \right\}$$

si no ,
$$T^{i+1} = T^i$$

Transiciones $q(T^i, T^*)$

Árbol de decisión

Consideraremos $q(T^i, T^*)$ la forma de generar T^* desde T^i usando aleatoriamente una de estas 4 operaciones:

- CRECER: Aleatoriamente elegir un nodo terminal y separarlo en 2 nuevos, asignando una regla de decisión aleatoria (p_{rule}).
- PODAR: Aleatoriamente elegir un padre con con 2 nodos terminales y volverlo terminal.
- CAMBIAR: Aleatoriamente elegir un nodo interno y reasignarle una regla de decisión (p_{rule}).
- INTERCAMBIAR: Aleatoriamente elegir una pareja padre-hijo, ambos nodos internos y cambiar sus reglas de decisión.

$\overline{\mathsf{TRANSICIONES}}\ q(\overline{T^i}, T^*)$

Árbol de decisión

Llamemos: $prob = [prob_{crecer}, prob_{vodar}, prob_{cambiar}, prob_{intercambiar}]$ $N_{operación} =$ Cantidad de nodos que se puede hacer la operación $\mathbf{y} N_{op} = [N_{crecer}, N_{podar}, N_{cambiar}, N_{intercambiar}]$ Así elegiremos un operación con la probabilidad ponderada de $prob \times N_{on}$ definamos $p_{split}(\eta) = \alpha_{\eta} = y \ p_{vrune}(\eta) = 1 - p_{split}(\eta)$ Ahora al elegir:

- CRECER: Habrá que elegir el nodo η con probabilidad $\frac{\frac{\alpha_{\eta}}{\sum_{j=1}^{N_{crecer}(T^i)} \alpha_i}$
- PODAR: Habrá que elegir el nodo η con probabilidad $\frac{1-\alpha_{\eta}}{\sum_{i=1}^{N_{podar}(T^i)} 1-\alpha_i}$

Resultados

Figure 1: Precisión del modelo con $\alpha^p = [1, 1]$

RESULTADOS BREAST CANCER DATASET

Figure 2: Precisión del modelo con $\alpha^p = [1,2]$

RESULTADOS BREAST CANCER DATASET

Figure 3: Estructura del árbol con $\alpha^p = [1, 2]$

Figure 4: Árbol final $\alpha^p = [1, 1]$

Resultados 000000000000

RESULTADOS BREAST CANCER DATASET

Figure 5: Árbol final $\alpha^p = [1, 2]$

RESULTADOS BREAST CANCER DATASET

	Modelo $\alpha^p = [1, 1]$	Modelo $\alpha^p = [1, 2]$
Precisión	0.95	0.95

Búsqueda de la Posteriori

Table 1: Precisión de los árboles Bayesianos

	Reg. Log. (SKL)	Dec. Trees (SKL)
Precisión	0.94	0.93

Table 2: Precisión de la regresión logística y del módulo Decision Trees de Sk-learn

RESULTADOS IRIS DATASET

Figure 6: Precisión del modelo con $\alpha^p=[1,1,1]$. La precisión máxima de este modelo es 1.

RESULTADOS IRIS DATASET

Figure 7: Estructura del árbol con $\alpha^p = [1, 1, 1]$

RESULTADOS DIGITS DATASET

Figure 8: Precisión del modelo.

RESULTADOS DIGITS DATASET

Figure 9: Estructura del modelo.

RESULTADOS DIGITS DATASET SOLO 5 NÚMEROS

Figure 10: Precisión del modelo con 5 digitos.

RESULTADOS DIGITS DATASET SOLO 5 NÚMEROS

Figure 11: Estructura del modelo

Conclusión

Conclusión

- El algoritmo crea una cadena de árboles que se acerca en distribución al posteriori P(T | Y, X).
- El algoritmo desciende de manera rápida a un óptimo local, lo que impide obtener buenas soluciones para árboles más grandes.
- Esto implica que al aumentar las clases el algoritmo se demora mucho más en ajustar el modelo.
- Se podría controlar mejor el descenso posteriori del árbol restringiendo su cantidad de hojas (parecido a arboles de α -complejidad) .