MPEI 2021-2022

Variáveis Aleatórias

Motivação

- A probabilidade é uma função sobre eventos (conjuntos)
- Utilização das ferramentas da análise matemática (ex: derivação) não é imediata
 - Especialmente se os resultados da experiência não forem números
- Se conseguirmos mapear o espaço de amostragem (S)
 para a reta real facilita o uso das ferramentas de
 análise e aritmética
- Na maioria dos casos o mapeamento não é artificial
 - Muitas vezes não nos interessa os eventos mas uma grandeza numérica relacionada
 - Exemplo: número de caras em N lançamentos de uma moeda

Conceito de variável aleatória

 Uma função que mapeia o espaço de amostragem na recta real é designada de VARIÁVEL ALFATÓRIA

- Random Variable em Inglês

- Numa definição "informal":
- uma Variável Aleatória é o resultado numérico das nossas experiências (aleatórias)

Variável Aleatória - Definição

• Uma variável aleatória escalar X é formalmente definida como sendo um mapeamento de um espaço amostral S para a

recta real

– A qualquer elemento ω de S associa-se uma imagem $X(\omega)$ na recta real

Caso contínuo

 Se os conjuntos que representam os eventos forem contínuos, o mapeamento é para um segmento da recta real

A e B são acontecimentos equivalentes

Tipos de Variáveis aleatórias

- Discreta: se os valores que a variável aleatória pode assumir forem finitos
 - ou infinitos mas contáveis
 - Exemplo: número de acessos por minuto a uma página web
- Contínua : se os valores que pode assumir formarem um ou vários intervalos disjuntos
 - Exemplo: Duração de uma aula no Zoom
- Mista: onde se verificam os atributos que definem os 2 tipos anteriores

Tipos

• Discreta/contínua ou mista?

VA	Tipo ? (D,/C,/M)
Número de palavras com erro numa página	
Atraso com que chega às aulas TP	
Número de caixas abertas no supermercado	
Tempo de espera numa caixa de supermercado	
Número de páginas relevantes para uma procura num motor de pesquisa (ex: Google)	
Número de "bugs" num módulo de código	

Caracterização das variáveis aleatórias Parte 1

Distribuição de probabilidades

 As variáveis aleatórias são caracterizáveis pelo conjunto de valores que podem assumir e as probabilidades associadas

Ou seja pela "distribuição de probabilidades"

Função (massa) de probabilidade

- Uma variável aleatória discreta escalar X é especificada por:
- 1. Conjunto de valores que pode assumir: x_i , i = 1,2,...
- 2. Probabilidade associada a cada um desses valores: $p_X(x_i)$
 - Denominada de função massa de probabilidade
 - Probability Mass Function em Inglês
 - ou mais simplesmente função de probabilidade

$$p_X(x_i) = P(X = x_i)$$

Onde
$$P(X = x_i) = P(w: X(w) = x_i)$$

i.e. A probabilidade do evento cujos resultados w satisfazem $X(w) = x_i$

Função de probabilidade

Os axiomas da probabilidade implicam:

•
$$p_X(x_i) \geq 0$$

•
$$\sum_{i} p_X(x_i) = 1$$

Exemplo de função de probabilidade

- Lançamento de dado equilibrado e X igual ao número que sai
- X :Variável aleatória discreta
- Função de probabilidade $x_i = \{1,2,3,4,5,6\}$ $p_X(x_i) = 1/6$

%% Matlab
 xi = 1:6; p=ones(1,6)/6;
 stem(xi,p), xlabel('x'), ylabel('px(x)');

Outro exemplo

Função massa de probabilidade para a variável aleatória representando o número de "caras" em 4 lançamentos de uma moeda

Função distribuição acumulada (discreta)

 Uma variável aleatória (discreta) pode ser também especificada pela sua função distribuição acumulada (fda), definida como

•
$$F_X(x) = p_X(X \le x) = \sum_{i:x_i \le x} p_X(x_i)$$

Dos axiomas e corolários:
 É uma função não decrescente

$$\lim_{x\to-\infty}F_X(x)=0$$

$$\lim_{x\to\infty}F_X(x)=1$$

Exemplo de função de distribuição

 Para uma variável aleatória discreta a função distribuição acumulada é uma função em

escada

Outro exemplo

• Cada símbolo transmitido num sistema de transmissão pode ser interpretado como uma variável aleatória que toma os valores $x_1=0$ com probabilidade 1-p e $x_2=1$ com probabilidade p

Variáveis aleatórias contínuas

- Também pode ser especificada pela sua <u>função distribuição</u> acumulada
- A definição é idêntica para o caso contínuo e discreto

$$F_X(x) = Prob(X \le x)$$

- $F_X(x)$ é agora contínua
- Propriedades:

$$0 \le F_X(x) \le 1$$

$$\lim_{x \to \infty} F_X(x) = 1$$

$$\lim_{x \to -\infty} F_X(x) = 0$$

$$a < b \Rightarrow F_X(a) \le F_X(b)$$

$$P[a < X \leq b] = F_X(b) - F_X(a)$$

Variáveis aleatórias contínuas

• Podem ser especificada pela sua função de densidade de probabilidade $f_X(x)$

Probability density function (pdf) em Inglês

• Obtém-se derivando a função de distribuição

Função de, DENSIDADE de probabilidade

- $f_X(x)$ não é uma probabilidade ...
 - Apenas define os valores de probabilidade quando integrada num intervalo

•
$$p(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx$$

• $f_X(x)dx$ é a probabilidade da variável X pertencer ao intervalo (x, x + dx), sendo dx um acréscimo infinitesimal

•
$$f_X(x) \equiv \frac{prob}{dx}$$
 \rightarrow daí o nome "densidade"

Relações entre funções de densidade e de distribuição (caso contínuo)

•
$$F_X(x) = \int_{-\infty}^x f_X(x) dx$$

 Exemplo de par de funções de densidade e de distribuição

MPEI 2021-2022 MIECT/LEI/LECI

Probabilidades e função de densidade

•
$$P(a < X \le b) = \int_a^b f_X(x) dx$$

- A probabilidade é a área debaixo da curva
- Área total da curva =1

Caracterização das variáveis aleatórias Parte 2

Motivação

 As funções apresentadas anteriormente fornecem uma descrição completa de uma variável aleatória

- Mas em muitos casos não necessitamos de toda a informação
 - Exemplo:
 - no caso dos "bugs" em módulos de código saber o valor médio pode ser suficiente

Média ou Valor esperado

• Consideremos N lançamentos de um dado

Ex: 4 1 6 6 5 5 5 3 4 2 ...

Assumindo que N tende para infinito = $p(1) \times 1 + p(2) \times 2 + p(3) \times 3 \dots + p(6) \times 6$

$$= \sum_{i} p(x_i) x_i$$
 com $x_i = 1, 2, ... 6$

Valor esperado

- Consideremos as experiências na origem da variável aleatória X:
- Dizemos que o valor esperado de X é o valor médio de X ao repetirmos as experiências indefinidamente
- Representando por X_i o valor de \boldsymbol{X} na experiência i, este valor é:

$$\lim_{n\to\infty} \frac{X_1 + X_2 + \dots + X_n}{n}$$

Valor esperado (continuação)

- Só existe valor esperado se existir o limite
 - O limite existe se X_i tiver limite inferior e superior finitos, o que é verdade no mundo real
 - Ex: o peso de uma pessoa nunca é negativo
- Representando por x_i os m diferentes valores que X_i pode assumir e por $K_{i,n}$ o número de vezes que ocorre cada x_i , o nosso limite passa a:

$$\lim_{n \to \infty} \frac{x_1 K_{1,n} + x_2 K_{2,n} + \dots + x_m K_{m,n}}{n}$$

$$\sum_{i=1}^{m} x_i \lim_{n \to \infty} \frac{K_{i,n}}{n} = \sum_{i=1}^{m} x_i P(X = x_i)$$

Valor esperado

- O termo "valor esperado" é algo enganador...
- Não é na realidade algo que devemos esperar que ocorra
 - Pelo contrário, muitas vezes é muito pouco provável ou mesmo impossível de ocorrer
 - Exemplo: valor médio do lançamento do dado (=3,5)
- Apesar desta dificuldade com o seu nome, o valor esperado desempenha um papel central em Probabilidades e Estatística

Valor esperado : E[X]

 O valor esperado de uma variável designa-se por E[X]

• No caso discreto: $E[X] = \sum_i x_i p(x_i)$

• No caso continuo: $E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx$

Propriedades do valor esperado

• E[X] é um operador linear

Sendo a e c constantes ($\in R$) e X e Y variáveis aleatórias:

$$E[aX] = a E[X]$$

$$E[X+Y] = E[X] + E[Y]$$

$$E[X+c] = E[X] + c$$

Exemplo de cálculo de E[X]

x_i	$p_X(x_i)$	$x_i p_X(x_i)$	
-1	.1	1	
0	.2	.0	
1	.4	.4	
2	.2	.4	
3	.1	.3	
		1.0	

E[X] = 1.0

Exemplo: lançamento de 1 dado

 Função de probabilidade para o resultado do lançamento de uma dado e respetivo valor esperado

A Média pode não ser suficiente

- Se pretendermos comparar as classificações de duas turmas práticas de MPEI é suficiente sabermos a média ?
- Posso ter a mesma média e turmas muito diferentes:
 - Uma turma com a generalidade dos alunos próximos dessa média
 - Outra turma com classificações muito mais dispersas entre 0 e 20
- Uma medida dessa "dispersão" é dada pela variância

Variância

Ideia base:

Usar a diferença dos valores da variável para a média (valor esperado) e fazer a sua média

 Para evitar o cancelamento de diferenças negativas e positivas, em vez de usar diretamente o valor da diferença utilizar o seu valor quadrático

•
$$Var(X) = E[(X - E(X))^2]$$

Variância

- Aplicando a definição de valor esperado temos:
- $\operatorname{var}(X) = \sigma^2 = \sum_{i} [x_i E(X)]^2 p(x_i)$
- Propriedade importante:

$$\sqrt{\operatorname{var}(X) = E[X^2] - E^2[X]}$$

- Demonstra-se facilmente de $E[(X E(X))^2]$ usando as propriedades de E[X]
- Facilita muitos cálculos, evitando uso direto da definição

Desvio padrão

• A raiz quadrada da variância é o desvio padrão

Muitas vezes representado por σ

Exemplo (discreto)

хi	p(xi)	(xi-μ)	$(xi-E(X))^2$	$(xi-E(X))^2$ $p(xi)$
0	.37	-1.15	1.32	.49
1	.31	-0.15	0.02	.01
2	.18	0.85	0.72	.13
3	.09	1.85	3.42	.31
4	.04	2.85	8.12	.32
5	.01	3.85	14.82	.15
				1.41

Variância - propriedades

 Sendo X uma variável aleatória e c uma constante :

• Soma de uma constante:

$$var(X+c)=var(X)$$

• Multiplicação por um factor de escala

$$var(c X) \neq C^2 var(X)$$

Média e variância - interpretação

- E[X] pode ser interpretado como:
 - Valor médio de X
 - Centro de gravidade da função massa de probabilidade (caso discreto) ou função de densidade de probabilidade
- Desvio padrão / Variância dá uma medida da dispersão da variável aleatória
 - Pequenos valores indicam var. aleatória muito concentrada em torno da média
 - Se for zero não temos var. aleatória (todos valores iguais à média)

Momentos de ordem *n*

- Os conceitos de média e variância podem ser generalizados ...
- Momento de ordem n (caso discreto):

$$m_n = E[X^n] = \sum_i x_i^n p_X(x_i)$$

Exemplo (dados)

$$E[X^{2}] = 1^{2} \times \frac{1}{6} + 2^{2} \frac{1}{6} + 3^{2} \frac{1}{6} + \dots$$
$$= \frac{1+2+4+9+16+25+36}{6} = 15,1667$$

Momentos centrados de ordem n

 A generalização da variância resulta nos momentos centrados de ordem n

•
$$E[(X - E[X])^n] = \sum_i (x_i - E[X])^n p_X(x_i)$$

A variância é o momento centrado de 2ª ordem

Exemplo de aplicação

 Qual o valor da variância dos valores obtidos no lançamento de um dado honesto ?

- var(X) ?
- $var(X) = E[X^2] E^2[X]$
- $E[X^2] = ?$
- $E^{2}[X] = ?$

Tópicos da aula (resumo)

- Variável aleatória (conceito e definição)
- Função massa de probabilidade e função densidade de probabilidade
- Função de distribuição acumulada
- Valor esperado
- Média e Variância
- Momentos

Para saber mais...

 Capítulo 4 do livro "<u>Métodos Probabilísticos</u> <u>para Engenharia Informática</u>", F. Vaz e A. Teixeira, Ed. Sílabo, set 2021.

• Link(s)

http://www.stat.berkeley.edu/~stark/SticiGui/Text/r andomVariables.htm