CCP 2004. Filière MP. MATHÉMATIQUES 2.

Corrigé de JL. Lamard (jean-louis.lamard@prepas.org)

Préliminaires.

1. En notant Y = MX, il vient:

$$|y_i| = \left|\sum_{j=1}^n m_{i,j} x_j\right| \leqslant \sum_{j=1}^n |m_{i,j}| \cdot |x_j| \leqslant ||X||_{\infty} \sum_{j=1}^n |m_{i,j}| \leqslant ||X||_{\infty} ||M||$$
 pour tout i de 1 à n .

Donc, par définition même du sup, $||MX||_{\infty} \leq ||M|| ||X||_{\infty}$.

- **2.** a. L'application φ de \mathcal{M} dans \mathbb{R}^d définie par $\varphi(M) = \sum_{k=1}^d x_k e_k$ en notant (x_1, \ldots, x_k) les composantes de M sur la base \mathcal{B} et (e_1,\ldots,e_k) la base canonique de \mathbb{R}^d est clairement un isomorphisme d'espace vectoriel. Il en découle que \mathcal{N} est bien une norme sur \mathcal{M} "transférée" par φ^{-1} de la norme infinie de \mathbb{R}^d . \square
- **2.** b. La restriction à \mathcal{M} de la norme $\| \|$ de $M_n(\mathbb{R})$ est bien sûr une norme sur \mathcal{M} . Comme \mathcal{M} est de dimension finie, cette norme est équivalente à la norme $\mathcal N$ de la question précédente d'où l'existence demandée. \square
- **2.** c. Comme toutes les normes sur \mathcal{M} sont équivalentes, dire que la suite (M_p) converge vers 0 c'est en particulier dire qu'elle converge vers 0 pour la norme \mathcal{N} d'où le résultat demandé. \square

Une relation d'équivalence sur \mathcal{C}_I^{∞} .

- 3. a. La formule de Taylor avec reste intégral à l'ordre $\ell-1$ appliquée à f de λ vers x (ce qui est bien licite puisque f est de classe \mathcal{C}^{∞} donc a fortiori de classe \mathcal{C}^{ℓ} sur I donc sur $[\lambda, x]$ ou $[x, \lambda]$) donne immédiatement le résultat demandé.
- 3. b. De manière à ramener l'intervalle d'intégration au segment fixe [0, 1] on effectue le changement de variable (bien admissible car affine) $u = \lambda + t(x - \lambda)$ ce qui fournit $f(x) = (x - \lambda)^{\ell} h(x)$ avec :

$$(\ell - 1)!h(x) = \int_0^1 \underbrace{(1+t)^{\ell-1} f^{(\ell)} (\lambda + (x-\lambda)t)}_{g(x,t)} dt.$$

On a là une intégrale sur un segment dépendant d'un paramètre et comme g est par théorèmes opératoires de classe \mathcal{C}^{∞} sur $I \times [0,1]$, l'application itérée du théorème de dérivation sous le signe intégral (dans le cas d'un segment) prouve bien que h est de classe C^{∞} sur I. \square

4. a. Pour j de 1 à r et k de 0 à m_j-1 , remarquons qu'on a $\Pi_A^{(k)}(\lambda_j)=0$ par caractérisation de l'ordre de multiplicité d'une racine d'un polynôme. Par ailleurs la formule de dérivation de Leibniz fournit :

d'une racine d'un polynome. Par ailleurs la form
$$(h\Pi_A)^{(k)}(\lambda_j) = \sum_{p=0}^k \mathrm{C}_k^p \, h^{(k-p)}(\lambda_j) \, \underbrace{\Pi_A^{(p)}(\lambda_j)}_{=0 \text{ car } p \leqslant k} = 0.$$

Ainsi $f^{(k)}(\lambda_j) = g^{(k)}(\lambda_j)$ pour tout j de 1 à r et tout k de 0 à $m_j - 1$ i.e. $f \equiv g$. \square

4. b. Supposons $f \equiv g$. Alors $f(x) - g(x) = (x - \lambda_1)^{m_1} h_1(x)$ avec $h_1 \in \mathcal{C}^{\infty}(I)$ d'après la question 3.

Pour $x \neq \lambda_1$ on a $h_1(x) = \frac{1}{(x-\lambda_1)^{m_1}} \times (f-g)(x)$ et la formule de Leibniz prouve que $h^{(k)}(\lambda_2) = 0$ pour k de 1 à

 $m_2 - 1$ puisque $(f - g)^{(p)}(\lambda_2) = 0$ pour $p \leqslant m_2 - 1$. La question 3 prouve alors que $h_1(x) = (x - \lambda_2)^{m_2} h_2(x)$ avec $h_2 \in \mathcal{C}^{\infty}(I)$ donc que $f(x) - g(x) = (x - \lambda_1)^{m_1}(x - \lambda_2)^{m_2} h_2(x)$. En écrivant que $h_2(x) = \frac{1}{(x - \lambda_1)^{m_1}(x - \lambda_2)^{m_2}} \times (f - g)(x)$ pour $x \in I \setminus \{\lambda_1, \lambda_2\}$, on prouve de même que $h_2(x) = (x - \lambda_3)^{m_3} h_3(x)$ avec $h_3 \in \mathcal{C}^{\infty}(I)$...

L'itération est claire et ainsi il existe bien $h = h_r \in \mathcal{C}^{\infty}(I)$ vérifiant $f = g + h\Pi_A$. \square

En conclusion deux fonctions de $\mathcal{C}^{\infty}(I)$ coïncident sur le spectre de A si et seulement si il existe une fonction $h \in \mathcal{C}^{\infty}(I)$ telle que $f = g + h\Pi_A$.

5. (2) implique (1) d'après la question 4.a. Réciproquement si P et Q coïncident sur le spectre de A alors P-Q est divisible par $(X - \lambda_i)^{m_i}$ (caractérisation de l'ordre de multiplicité d'une racine) donc par Π_A d'après le théorème de Gauss puisque les polynômes $(X - \lambda_i)^{m_i}$ sont premiers entre eux deux à deux. \square

Définition de la matrice f(A).

6. L'application φ est linéaire entre deux espaces vectoriels de même dimension finie m. Pour prouver qu'elle est bijective, il suffit donc de prouver qu'elle est injective. Or si P est un élément de son noyau, alors P est un polynôme de degré au plus m-1 admettant au moins m racines comptées avec leur ordre de multiplicité. Il en découle que P est le polynôme nul. \square

7. P_f répond à la question si et seulement si $\varphi(P) = \left(\left(f^{(k_1)}(\lambda_1) \right)_{0 \leqslant k_1 \leqslant m_1 - 1}, \dots, \left(f^{(k_r)}(\lambda_r) \right)_{0 \leqslant k_r \leqslant m_r - 1} \right) = X_{A,f}$. D'où l'existence et l'unicité de P_f d'après la question précédente à savoir $\varphi^{-1}(X_{A,f})$. \square
8. Supposons que f soit la fonction polynôme associée au polynôme P . Effectuons la division euclidienne de P pa $\Pi_A: P=Q\Pi_A+R$. Alors d'après la question 4 (ou 5) on a $P \equiv R$ i.e. $f \equiv R$ et comme le degré de $R \in \mathbb{R}_{m-1}[X]$
on a par la définition de la question 7 que $f(A) = R(A)$.
Or par le morphisme classique de l'algèbre des polynômes sur l'algèbre des matrices carrées, on a :
$P(A) = Q(A) \Pi_A(A) + R(A) = R(A).$

- 9. a. Un calcul immédiat montre que le polynôme caractéristique est $\chi_A(X) = (X-1)^2$. Donc le polynôme minimal qui le divise d'après le théorème de Cayley-Hamilton est X-1 ou $(X-1)^2$. Or X-1 n'annule pas A puisque $A \neq I$. Ainsi $\Pi_A(X) = \chi_A(X) = (X-1)^2$. \square
- 9. b.• Lorsque f(x) = ax + b on a d'après la question 8 que f(A) = aA + bI et on ne peut "faire mieux" puisque le polynôme aX + b est de degré inférieur à 2. \square
 - Lorsque $f(x) = \sin(\pi x)$ on a f(1) = 0 et $f'(1) = -\pi$ donc immédiatement $P_f(X) = -\pi(X-1)$ de sorte que $f(A) = -\pi(A - I)$. \square
 - Lorsque $f(x) = (x-1)^2 g(x)$ alors f(1) = f'(1) = 0 de sorte que $P_f(X) = 0$ et donc f(A) = 0. \square

Ainsi on a bien f(A) = P(A), ce qui est effectivement "naturel"!. \square

Le calcul systématique de f(A).

- **10.** Avec les notations précédentes nous avons, pour toute fonction $f \in \mathcal{C}^{\infty}(I)$, $X_{A,f} = \sum_{j=1}^{r} \sum_{k=0}^{m_j-1} f^{(k)}(\lambda_j) E_{j,k}$ où $E_{j,k}$ est le vecteur de \mathbb{R}^m dont toutes les composantes sont nulles sauf celle d'indices j,k i.e. en d'autres termes $E_{j,k}$ est l'image par φ d'une fonction $f_{j,k}$ (par exemple un polynôme) telle que $f_{j,k}^{(k)}(\lambda_j) = 1$ et $f_{j,k}^{(p)}(\lambda_i) = 0$ pour tout couple (i, p) tel que $1 \le i \le r$ et $0 \le p \le m_i - 1$ et $(i, p) \ne (j, k)$. Il en découle immédiatement l'existence et l'unicité des polynômes $Q_{j,k}$ répondant à la question à savoir :
- $Q_{j,k} = \varphi^{-1}(E_{j,k}). \quad \Box$
- 11. En tant qu'image réciproque de la base canonique de \mathbb{R}^m , la famille $(Q_{j,k})$ est une base de $\mathbb{R}_{m-1}[X]$.

Soit désormais une famille $(\alpha_{j,k})$ de réels telle que $\sum_{j=1}^r \sum_{k=0}^{m_j-1} \alpha_{j,k} Z_{j,k} = 0$. Cette realtion s'écrit :

$$\sum_{j=1}^{r} \sum_{k=0}^{m_{j}-1} \alpha_{j,k} Q_{j,k}(A) = \sum_{j=1}^{r} \sum_{k=0}^{m_{j}-1} \left(\alpha_{j,k} Q_{j,k} \right) (A) = 0.$$

Ainsi le polynôme $\sum_{j=1}^{r} \sum_{k=0}^{m_j-1} \alpha_{j,k} Q_{j,k}$ annule A. Comme il est de degré au plus m-1 donc strictement inférieur au degré du polynôme minimal, il est nul. Il en résulte, puisque comme noté ci-dessus la famille des polynômes $(Q_{j,k})$ est libre, que tous les coefficients $\alpha_{i,k}$ sont nuls.

En conclusion la famille de matrices $(Z_{i,k})$ est libre. \square

Quant à la relation $f(A) = \sum_{j=1}^r \sum_{k=0}^{m_j-1} f^{(k)}(\lambda_j) Z_{j,k}$ pour toute fonction $f \in \mathcal{C}^{\infty}(I)$, c'est bien sûr une immédiate conséquence de la question 10.

- 12.a. Comme $\Pi_A(X)=(X-1)^2$ la question précédente prouve l'existence de deux matrices $Z_1 = Z_{1,0}$ et $Z_2 = Z_{1,1}$ et $Z_2 = Z_{1,1}$ et $Z_3 = Z_{1,1}$ et $Z_4 = Z_{1,1}$ et $Z_5 = Z_5$ et $Z_5 = Z_5$ telles que $f(A) = f(1)Z_1 + f'(1)Z_2$ pour toute fonction de classe \mathcal{C}^{∞} sur I où I est un intervalle quelconque non réduit à un point contenant 1. \square
- **12.b.** En choisissant en particulier pour f la fonction constante égale à 1, il vient que $Z_1 = I_2$. Puis le choix $f: x \longmapsto x$ montre que $Z_2 = A - I_2$. Ainsi $f(A) = f(1)I_2 + f'(1)(A - I_2)$ pour toute fonction $f \in \mathcal{C}^{\infty}(I)$. \square
- **12.c.** D'après la question 8, on a A^{2004} (au sens polynomial) qui est bien égal à f(A) avec f la fonction $x \longmapsto x^{2004}$. Donc $A^{2004} = \hat{f}(A) = I_2 + 2004(A - I_2) = 2004A - 2003I_2$. De même la fonction $x \longmapsto x^{\alpha}$ étant de classe \mathcal{C}^{∞} sur I pour $\alpha > 0$ on a $A^{\alpha} = I_2 + \alpha(A - I_2) = \alpha A + (1 - \alpha)I_2$.
- 13.a. En remplaçant la première colonne du polynôme caractéristique de A par elle-même plus la seconde on peut mettre X en facteur dans le polynôme caractéristique.

Ainsi
$$\chi_A(X) = X \begin{vmatrix} 1 & 1 & -1 \\ 1 & X+2 & -1 \\ 0 & 1 & X \end{vmatrix} = X \begin{vmatrix} 1 & 1 & -1 \\ 0 & X+1 & 0 \\ 0 & 1 & X \end{vmatrix} = X^2(X+1).$$

Il en découle que le polynôme minimal (qui le divise et a les mêmes racines) est soit X(X+1) soit $X^2(X+1)$.

Or $A(A+I) \neq 0$ donc $\Pi_A(X) = X^2(X+1)$ et la matrice A n'est pas diagonalisable (ni sur \mathbb{R} ni sur \mathbb{C}) puisque son polynôme minimal n'est pas à racines simples. \square				
13.b. Pour toute fonction f de classe C^{∞} sur I intervalle quelconque contenant $\lambda_1 = -1$ et $\lambda_2 = 0$, nous avons $f(A) = f(-1)Z_{1,0} + f(0)Z_{2,0} + f'(0)Z_{2,1}$. La considération de $f(x) = x^2$ fournit $Z_{1,0} = A^2$. En envisageant ensuite $f(x) = 1$ il vient $Z_{2,0} = I_3 - A^2$ et enfin				
$f(x) = x$ fournit $Z_{2,1} = A + A^2$. \square				
Un calcul fonctionnel sur la matrice A .				
14.a. L'application ψ de $\mathcal{C}^{\infty}(I)$ dans \mathbb{R}^m qui à f associe $X_{A,f}$ (défini à la question 7) est linéaire. Or $P_f = \varphi^{-1}(X_{A,f}) = \varphi^{-1}o\psi(f)$ donc l'application de $\mathcal{C}^{\infty}(I)$ dans $\mathbb{R}_{m-1}[X]$ qui à f associe P_f est linéaire. On peut également remarquer que cette application est linéaire d'après la formule de la question 10! Ainsi $P_{\alpha f} = \alpha P_f$ et $P_{f+g} = P_f + P_g$. \square				
14.b. D'après la question 4.b, il existe deux fonctions h_f et h_g de $\mathcal{C}^{\infty}(I)$ telles que $f = P_f + h_f \Pi_A$ et $g = P_g + h_g \Pi_A$. Donc $fg = P_f P_g + h \Pi_A$ avec $h = P_f h_g + P_g h_f + h_f h_g \Pi_A \in \mathcal{C}^{\infty}(I)$. Ce qui prouve, d'après la question 4.a, que $fg \equiv P_f P_g$.				
Or $fg \equiv P_{fg}$ et comme la relation \equiv est clairement une relation d'équivalence, nous avons $P_{fg} \equiv P_f P_g$ ce qui prouve, d'après la question 5, l'existence d'un polynôme H tel que $P_{fg} = P_f P_g + H\Pi_A$. \square				
15.a. D'après la question 14.a, nous avons $S(\alpha f) = P_{\alpha f}(A) = (\alpha P_f)(A) = \alpha P_f(A) = \alpha S(f)$.				
De même $S(f+g)=S(f)+S(g)$. En outre par la question 14.b et le morphisme classique de l'algèbre des polynômes sur celui des matrices carrées : $S(fg) \underset{\text{DEF}}{=} P_{fg}(A) = (P_f P_g + H\Pi_A)(A) = P_f(A)P_g(A) + H(A)\underbrace{\Pi_A(A)}_{=0} = P_f(A)P_g(A) = S(f)S(g)$.				
Ainsi l'application S est bien un morphisme d'algèbres. \square				
15.b. $f(A)=0$ si et seulement si $P_f(A)=0$. Or P_f étant de degré au plus $m-1$ donc strictement inférieur au degré du polynôme minimal, ceci n'est réalisé que si $P_f=0$ donc si et seulement si f coïncide avec la fonction nulle sur le spectre de A . Le noyau de S est donc la sous-algèbre des fonctions de la forme $h\Pi_A$ où est une fonction quelconque de $\mathcal{C}^{\infty}(I)$. \square				
16.a. Compte-tenu du morphisme précédent, on peut écrire : $\cos^2(A) + \sin^2(A) = S(\cos^2 + S(\sin^2) = S(\cos^2 + \sin^2) = S(1) = I_n$. \square				
16.b. En supposant les $\lambda_j > 0$ de sorte que \sqrt{A} ait un sens : $(\sqrt{A})^2 = S(f_1)^2 = S(f_1^2) = S(x \longmapsto x) = A$. \square				
En supposant les $\lambda_j \neq 0$ de sorte que $\frac{1}{A}$ ait un sens :				
$\frac{1}{A}A = f_2(A)A = S(f_2)S(x \longmapsto x) = S(x \longmapsto 1) = I_n \text{ de sorte que } \frac{1}{A} = A^{-1}. \Box$				
17. En tant qu'image de l'algèbre commutative $\mathcal{C}^{\infty}(I)$ par le morphisme d'algèbres S, \mathcal{M}_A est bien une sous-algèbres S				
commutative de $M_n(\mathbb{R})$. Tout élément $f(A)$ de \mathcal{M}_A s'écrivant (par définition) sous la forme $P_f(A)$ où P_f est de degré au plus $m-1$, la famille $(I_n, A, \ldots, A^{m-1})$ est génératrice. En outre cette famille st libre car si $\alpha_0 I_n + \alpha_1 A + \cdots + \alpha_{m-1} A^{m-1} = 0$ alors le polynôme $\alpha_0 + \alpha_1 X + \cdots + \alpha_{m-1} X^{m-1}$ annule A donc est nul car de degré strictement inférieur à m , le degré du polynôme minimal.				
En conclusion \mathcal{M}_A est une sous-algèbre commutative de $M_n(\mathbb{R})$ de dimension m . \square REMARQUE: on peut aussi déduire directement la dimension de la question 11!				
18. Première démonstration : Soit $B=f(A)=P_f(A)$ inversible. On sait (conséquence classique du théorème de Cayley-Hamilton) que B^{-1} est un polynôme $Q(B)$. Il en découle que $B^{-1}=Q\big(P_f(A)\big)=(QoP_f)(A)$ donc B^{-1} appartient bien encore à \mathcal{M}_A . \square				
Seconde démonstration : Soit B un élément inversible de \mathcal{M}_A . Alors l'application ψ de l'algèbre \mathcal{M}_A dans elle-même définie par $\psi(M) = BM$ est clairement linéaire et injective puisque B est inversible. Donc elle est bijective puisque l'algèbre \mathcal{M}_A est de dimension finie. Comme $I_n = 1(A) \in \mathcal{M}_A$, il existe une matrice $B' \in \mathcal{M}_A$ telle que $BB' = I_n$. Ainsi $B^{-1} = B'$ appartient bien à \mathcal{M}_A . \square				
19. Nous avons $f(A) = P_f(A)$. Il en découle que l'ensemble des valeurs propres de $f(A)$ est l'ensemble des $P_f(\lambda_j)$ (classique résultat sur les valeurs propres d'un polynôme d'une matrice, qu'on obtient immédiatement en trigonalisant la matrice quitte à passer sur \mathbb{C}). Or $P_f(\lambda_j) = f(\lambda_j)$. Donc $f(A)$ est inversible si et seulement si $f(\lambda_j) \neq 0$ pour j de 1 à r . \square				
20. Nous avons montré dans la question précédente que $\Lambda_{f(A)} = f(\Lambda_A)$. \square				
\sim CCP-2004-maths2.T _E X page 3 \sim				

$\mathbf{A}\mathbf{r}$	polication	n à	la	résolution	d'un	svstème	différentiel.
	P					2,7 2 2 2 2 2 2 2 2 2	

2 1	. Nous avons $f_p(A) = \sum_{j=1}^r \sum_{k=0}^{m_j-1} f_p^{(k)}(\lambda_j) Z_{j,k}$ pour tout entier p d'après la question 11. En outre les matrie	es $Z_{j,k}$
	forment une base de \mathcal{M}_A toujours d'après la question 11. En munissant \mathcal{M}_A de la norme infinie relative	à cette
	base (toutes les normes y étant équivalentes) ou en utilisant la question 2.c, on voit que la suite de matrices ($(f_p(A))$
	converge vers $f(A)$ si et seulement si la suite de fonctions (f_p) converge vers f sur le spectre de A . \square	

22.Commençons par remarquer que comme f_t est de classe \mathcal{C}^{∞} sur \mathbb{R} , on peut bien envisager $f_t(A)$ pour toute matrice $A \in M_n(\mathbb{R})$.

Fixons $t \in \mathbb{R}$ et envisageons la suite de fonctions (S_p) définie par $S_p(x) = \sum_{\ell=0}^p \frac{t^\ell}{\ell!} x^\ell$.

Il vient alors (cours sur les séries entières) que pour tout entier k la suite $(S_p^{(k)})$ converge localement normalement donc a fortiori simplement sur \mathbb{R} vers $f_t^{(k)}$. En particulier la suite (S_p) converge vers f_t sur le spectre de A. Il en découle d'après la question précédente que la suite de matrices $(S_p(A))$ converge vers la matrice $f_t(A)$.

En d'autres termes la suite $\left(\sum_{\ell=0}^{p} \frac{t^{\ell}}{\ell!} A^{\ell}\right)$ converge vers $f_t(A)$ c'est à dire encore $f_t(A) = \sum_{\ell=0}^{\infty} \frac{t^{\ell}}{\ell!} A^{\ell} = \exp(tA)$. \square

23. Avec des notations claires le système s'écrit X' = AX et (système différentiel linéaire à coefficients constants) sa solution générale est $X = \exp(tA)X_0$ avec $X_0 = X(0)$.

On remarque que la matrice A est celle de la question 13 et ainsi nous avons (d'après les questions 13 et 22) : $\exp(tA) = e^{-t}A^2 + (I_0 - A^2) + t(A + A^2)$

 $\exp(tA) = e^{-t}A^2 + (I_3 - A^2) + t(A + A^2).$ La solution générale est donc $((e^{-t} + t - 1)A^2 + tA + I_3)X_0$. \square

