VISUALIZING THE MANHATTAN CURVE — DRAFT

WILLIAM CLAMPITT AND GIUSEPPE MARTONE

Contents

1.	Introduction	1
2.	(Topology) Surfaces with punctures	1
2.1.	Orientable Surfaces	3
2.2.	Fundamental Group $S_{0,3}$	3
3.	The hyperbolic structure on $S_{0,3}$	3
4.	(Geometry) (G, X) structures and convex real projective	
	structures	4
5.	Hilbert length and topological entropy	5
5.1.	Hilbert Length in \mathbb{H}^2	5
5.2.	Hilbert Length in \mathbb{RP}^2	6
6.	The case of ideal pants groups	6
7.	Manhattan curve	7
8.	Results	7
8.1.	Main idea of the code	7
9.	Supporting materials: code	7

1. Introduction

2. (Topology) Surfaces with punctures

A d-manifold is a topological space that is second countable, Hausdorff, and locally Euclidean of dimension 2. Recall the a topological space X is a set paired with a collection $\mathcal T$ of open subsets of X (where $\mathcal T$ is closed under finite intersections and arbitrary unions), X is second countable if every open cover of X has a finite sub-cover, and X is Hausdorff if any two distinct points $p,q\in X$ can be separated from eachother into two disjoint neighborhoods in X.

Date: November 2024.

Quickly recall topological space, second countable and Hausdorff (without definition environment)

Example, the sphere is locally Euclidean of dimension 2

In definition environment, define surfaces

In an example environment, talk about $S_{0.3}$

In an example environment, discuss \mathbb{RP}^2 .

- What's a 2-dimensional manifold.
- Examples: \mathbb{RP}^2 , affine chart
- Classification of orientable surfaces.
- Fundamental group of $S_{0,3}$.

Definition 2.1. A topological space M is locally Euclidean of dimension d if every point of M has a neighborhood in M that is homeomorphic to an open subset of \mathbb{R}^d .

Example 2.1. The sphere is locally Euclidean of dimension 2.

- Define what $\mathbb{P}(P)$ is (or $\pi(P)$).
- Add a short proof of Lemma.

An example of such a 2-manifold (which will be discussed throughout this work) is the space of lines passing though the origin in \mathbb{R}^3 . This space is called the real projective plane and is denoted \mathbb{RP}^2 .

Definition 2.2. A plane in \mathbb{R}^3 is a 2-dimensional vector subspace of \mathbb{R}^3 . An affine plane A is a translate of a plane P by a nonzero vector v not in P.

$$A = \left\{ x \in \mathbb{R}^3 \colon x = v + w \text{ for some } w \in P \right\}.$$

It is often convenient to think of \mathbb{RP}^2 as the disjoint union of the lines passing through the origin of the projection of a plane $\pi(P)$ passing though the origin in \mathbb{R}^3 and an affine plane that is a translate of P.

Lemma 2.1. Let P be a plane, and let A be an affine plane which is a translate of P by a nonzero vector v not in P. Then,

$$\mathbb{RP}^2 \cong A \sqcup \pi(P)$$
.

Proof.

I will add the proof here later. I just want to try and get the bulk of the other stuff done first.

2.1. Orientable Surfaces. In topology, surfaces can be classified into two categories: orientable and non-orientable. A (n-1)-dimensional submanifold of \mathbb{R}^n is *orientable* if and only if it has a unit normal vector field.

2.2. Fundamental Group $S_{0,3}$.

General idea of fundamental group and then specialize to $S_{0,3}$.

Definition 2.3. Let X be a topological space, and $p \in X$. Then, the fundamental group of X based at p is the set of homotopy classes of loops in X based at p under the operation of concatenation. The fundamental group on a 2-manifold X based at a point p is denoted $\pi_1(X, p)$.

In the fundamental group on the surface $S_{0,3}$, since it is path-connected, for any points $p, q \in S_{0,3}$, there is a group isomorphism between the fundamental group based at p and the fundamental group based at q. For this reason, the choice of base point is often disregarded when discussing the fundamental group.

Lemma 2.2. The fundamental group of $S_{0,3}$ is a free group on two generators.

Proof.

Seifert-Van Kampen

3. The hyperbolic structure on $S_{0.3}$

- This thesis is motivated by the study of geometric structures on surfaces. In this section we discuss the classical example of hyperbolic structures.
- Define \mathbb{H}^2 and its metric (using definition environments)
- Define $\mathsf{PSL}_2(\mathbb{R})$ as the group as a group of matrices.

Should I include examples of orientable and nonorientable manifolds?

- Show that an element of $\mathsf{PSL}_2(\mathbb{R})$ defines an isometry via Mobius transformations.
- Define hyperbolic structure $=(\mathsf{PSL}_2(\mathbb{R}), \mathbb{H}^2)$ -structure on a surface S.
- Theorem: whenever the Euler characteristic of S is negative, then it admits at least one hyperbolic structure.
- Recall: $\chi(S) = 2 2g n$ where g is the genus and n is the number of punctures.
- Example: Explain on Friday.

The classical example of a hyperbolic structure is the standard model of the hyperbolic plane \mathbb{H}^2 .

Definition 3.1. The hyperbolic plane \mathbb{H}^2 is defined as

$$\mathbb{H}^2 = \{(x, y) \in \mathbb{R}^2 \colon y > 0\}$$

Definition 3.2. The metric d: $\mathbb{H}^2 \times \mathbb{H}^2 \to \mathbb{R}$ is defined as

$$d = \frac{\sqrt{dx^2 + dy^2}}{y}.$$

Definition 3.3. The group $PSL_2(\mathbb{R})$ is the group of 2×2 matrices

We have in our outline of this section to define the hyperbolic structure $(\mathsf{PSL}(\mathbb{R}), \mathbb{H}^2)$ -structure on a surface S, but we don't define what a geometric structure is until the next section.

Theorem 3.1. When the Euler characteristic of a surface is negative, it admits at least one hyperbolic structure.

- 4. (Geometry) (G, X) structures and convex real projective structures
 - What definition of (G, X) structure should I use?
 - What definition of convex real projective structure should I use?

What is the dxand dy here supposed to be? I know in the definition for $l(\gamma)$, we use the derivative of x(t)and y(t), but doesn't a metric need two points in the space? If we have two points (x_1, y_1) and (x_2,y_2) , would $dx = x_2 - x_1 \text{ and }$ $dy = y_2 - y_1?$

Structure is on a d-manifold M. Locally M can be modeled on X. The change of charts is a restriction of an isometry in G.

Let X be a n-manifold that is equipped with a metric d. Since X is a manifold, we know that it is locally Euclidean. This can be thought of as picking any point in our manifold and, if we examine a very local patch around that point, this patch should resemble \mathbb{R}^n . We can express idea more explicitly by specifying an atlas $\{(\mathcal{U}_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ where \mathcal{U}_{α} is one of these local patches (or neighborhoods) in X and φ_{α} is the homeomorphism that maps \mathcal{U}_{α} to a set \mathcal{V}_{α} in \mathbb{R}^n . We will let G be be the set of isometries on X. Then, if $\alpha, \beta \in A$, where A is the index set of our atlas, then we have the homeomorphisms

$$\varphi_{\alpha} \colon \mathcal{U}_{\alpha} \to \mathcal{V}_{\alpha}$$

 $\varphi_{\beta} \colon \mathcal{U}_{\beta} \to \mathcal{V}_{\beta}.$

We can then create a map $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \colon \mathcal{V}_{\alpha} \to \mathcal{V}_{\beta}$. If we restrict this map to G, then this structure allows us to determine geometric relationships between different areas of our manifold.

One example of a (G, X) structure is $(\mathsf{SL}_3(\mathbb{R}), \mathbb{RP}^2)$. $\mathsf{SL}_3(\mathbb{R})$ is the set of 3×3 matrices with real entries and whose determinant is 1. Geometrically, $\mathsf{SL}_3(\mathbb{R})$ can be thought of as the group of linear transformations that preserve volume and orientation of vectors in \mathbb{RP}^2 . In other words, $\mathsf{SL}_3(\mathbb{R})$ is a group of isometries on \mathbb{RP}^2 .

- What is a (G, X) structure?
- The example of $(SL_3(\mathbb{R}), \mathbb{RP}^2)$ structures
- Properly convex domains

If we consider

Definition 4.1. An open set $\Omega \subseteq \mathbb{RP}^2$, Ω is *proper* if there exists a plane $P \subseteq \mathbb{R}^3$ passing through the origin such that $\overline{\Omega} \cap \pi(P) = \emptyset$. In other words, the closure of Ω , $\overline{\Omega}$ is entirely contained in the affine chart A.

Definition 4.2. A proper set $\Omega \subseteq \mathbb{RP}^2$ is *convex* if for any two points $x,y \in \Omega$, the line l_{xy} passing through x and y intersects Ω is a connected segment. A proper convex set Ω is *strictly convex* if $\partial \overline{\Omega}$ contains no line segments.

5. Hilbert length and topological entropy

5.1. Hilbert Length in \mathbb{H}^2 . In the classic model of \mathbb{H}^2 that was discussed in Section 3, a line segment γ between two points $a, b \in \mathbb{H}^2$ can be described

What is the difference between $\mathsf{PSL}_3\left(\mathbb{R}\right)$ and $\mathsf{SL}_3\left(\mathbb{R}\right)$?

parametrically as $\gamma(t) = (x(t), y(t))$ where $t \in [0, 1]$. The hyperbolic length of this parametrized line is found by

(1)
$$l(\gamma) = \int_0^1 \frac{\sqrt{x'(t)^2 + y'(t)^2}}{y(t)}.$$

The geodesic between any two points $a, b \in \mathbb{H}^2$

(2)
$$d_H = \inf \{ l(\gamma(t)) : \gamma(t) \text{ is a path from } a \text{ to } b \}.$$

Geometrically, this gives us the arc length between a and b of a semicircle that passes through a and b and who's ends are perpendicular to the x-axis. (Figure 1).

Make a drawing of \mathbb{H}^2 here.

Figure 1. Classic model of the hyperbolic plane.

5.2. Hilbert Length in \mathbb{RP}^2 . In addition to the classical model of \mathbb{H}^2 discussed earlier, an equivalent model of \mathbb{H}^2 (known as the Klein-Beltrami Model of \mathbb{H}^2) exists where \mathbb{H}^2 is viewed as a strictly convex set $\Omega \subset \mathbb{RP}^2$ (specifically a circle) and the metric d_{KB} is defined by

$$d_{KB} = \frac{1}{2} \log \operatorname{CR} \left[a, x, y, b \right]$$

where $x, y \in \Omega$ and a and b are the points in the boundary of Ω where the straight line through x and y intersects $\partial \Omega$ and $\operatorname{CR}[a, x, y, b]$.

Add drawing of Kelin-Beltrami Model here.

FIGURE 2. Klein-Beltrami Model of \mathbb{H}^2 .

- 6. The case of ideal pants groups
 - How to define ideal pants groups?

Examples: Triangle reflections groups that give you a map from the fundamental group of $S_{0,3}$ to the space of convex real projective structures.

7. Manhattan curve

- How to define Manhattan curve?
- Maybe some example of where the Manhattan curve is useful?

8. Results

8.1. Main idea of the code.

9. Supporting materials: code