Problem Set 2

Problems marked (T) are for discussions in Tutorial sessions.

- 1. **(T)** Are the matrices $\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ row-equivalent?
- 2. Supply two examples each and explain their geometrical meaning.
 - (a) Two linear equations in two variables with exactly one solution.
 - (b) Two linear equations in two variables with infinitely many solutions.
 - (c) Two linear equations in two variables with no solutions.
 - (d) Three linear equations in two variables with exactly one solution.
 - (e) Three linear equations in two variables with no solutions.
- 3. Suppose that \mathbf{x} and \mathbf{y} are two distinct solutions of the system $A\mathbf{x} = \mathbf{b}$. Prove that there are infinitely many solutions to this system, by showing that $\lambda \mathbf{x} + (1 \lambda)\mathbf{y}$ is also a solution, for each $\lambda \in \mathbb{R}$. Do you have a geometric interpretation?
- 4. Let B be a square invertible matrix. Then, prove that the system $A\mathbf{x} = \mathbf{b}$ and $BA\mathbf{x} = B\mathbf{b}$ are row-equivalent.
- **5.** [T] Suppose $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{b}$ have same solutions for every \mathbf{b} . Is it true that A = C?
- **6.** [T] Find matrices A and B with the given property or explain why you can not:
 - (a) The only solution to $A\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is $\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
 - (b) The only solution to $B\mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
- 7. Using Gauss Jordan method, find the inverse of $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}.$
- **8.** (T) Let $B \in \mathbb{M}_n(\mathbb{R})$ be a real skew-symmetric matrix. Show that I B is non singular.
- 9. Let A be an $n \times n$ matrix. Prove that
 - (a) If $A^2 = \mathbf{0}$ then A is singular.
 - (b) If $A^2 = A, A \neq I$ then A is singular.

10. Can
$$RREF([A|\mathbf{b}]) = \begin{bmatrix} 1 & * & * & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & * & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
? Explain.

Now, recall the matrices A_j 's, for $1 \le j \le 3$ (defined to state the Cramer's rule for solving the linear system $A\mathbf{x} = \mathbf{b}$), that are obtained by replacing the j-th column of A by \mathbf{b} . Then, we see that the above system has **NO** solution even though $\det(A) = 0 = \det(A_j)$, for $1 \le j \le 3$.

- 11. Let A be an $n \times n$ matrix. Prove that the following statements are equivalent:
 - (a) $det(A) \neq 0$.
 - (b) A is invertible.
 - (c) The homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
 - (d) The row-reduced echelon form of A is I_n .
 - (e) A is a product of elementary matrices.
 - (f) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $\underline{\ }$
 - (g) The system $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} .
- 12. $A \in \mathbb{M}_n(\mathbb{C})$. Then $\det(A) = 0$ if and only if the system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.
- 13. (T) Let A be an $n \times n$ matrix. Then, the two statements given below cannot hold together.
 - (a) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} .
 - (b) The system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.
- 14. Suppose the 4×4 matrix M has 4 equal rows all containing a, b, c, d. We know that det(M) = 0. The problem is to find by any method

$$det(I+M) = \begin{vmatrix} 1+a & b & c & d \\ a & 1+b & c & d \\ a & b & 1+c & d \\ a & b & c & 1+d \end{vmatrix}.$$

- **15.** (T) If $A \in \mathbb{M}_n(\mathbb{C})$ then $\overline{\det(A)} = \det(A^*)$. Therefore if A is Hermitian, *i.e.*, $A^* = A$) then $\det(A)$ is a real number.
- 16. The numbers 1375, 1287, 4191 and 5731 are all divisible by 11. Prove that 11 also divides the determinant of the matrix

$$\left[\begin{array}{cccc}
1 & 1 & 4 & 5 \\
3 & 2 & 1 & 7 \\
7 & 8 & 9 & 3 \\
5 & 7 & 1 & 1
\end{array}\right].$$

17. Compute determinant of $\begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 & x_1^4 \\ 1 & x_2 & x_2^2 & x_2^3 & x_2^4 \\ 1 & x_3 & x_3^2 & x_3^3 & x_3^4 \\ 1 & x_4 & x_4^2 & x_4^3 & x_4^4 \\ 1 & x_5 & x_5^2 & x_5^3 & x_5^4 \end{bmatrix}.$