

Night-Time Drive Analysis using Stereo-Vision for Data Reduction in Naturalistic Driving Studies

Mark Philip Philipsen & Morten Bornø Jensen

Advisor: Professor Mohan M. Trivedi

Introduction

In order to prevent road accidents, a lot of research has been done in Advanced Driver Assistant Systems (ADAS), where the purpose is to utilize e.g. computer vision systems to assist the driver and prevent accidents while on the road. Most of these systems are, however, evaluated on daytime scenarios, which in 2010 represented 46.2 % of all accidents on motorways in 20 European countries [1]. It is essential to address the nighttime scenarios, as 36.1 % of motorway accidents happened in low light conditions.

We introduce a stereo-vision system for automatic NDS data reduction on both day and nighttime data. This enables detection and tracking of vehicles in scenarios that would be problematic for monocular detectors. The system proposed in this paper will be limited to handling | a handful of NDS events, which especially benefit from the extra dimension in stereo-vision. The NDS events considered in this paper are illustrated in Figure 1. Monocular systems usually have problems dealing with occlusions and are in some cases using classifiers based on appearance, which require a large amount of training data for dealing with detection of car from the many possible angles and light conditions.

(a) Average number of cars in front of ego-vehicle.

(d) Other vehicle entering intersection - turning onto opposite direction.

(b) Distance to rear-end

of vehicle directly in front.

(e) Other vehicle entering intersection - straight across path.

intersection - left turn across path.

(f) Other vehicle entering intersection - turning same direction.

Figure 1: Drive events that can be automatically detected by the method proposed in this paper. Green car is ego vehicle. Red cars are other vehicles.

The contributions made with this research are:

- Using stereo-vision for automatic data reduction for NDS on both day and nighttime data, with focus on intersections (Figure 1c, 1d, 1e, 1f).
- Introducing a new NDS event: Average number of vehicles in front of the ego vehicle. (Figure 1a).
- Introducing a new NDS event: Average distance to vehicles directly in front of the ego vehicle. (Figure 1b).

References

- [1] European Road Safety Observatory, "Traffic safety basic facts 2012 - motorways," 2012.
- [2] H. Hirschmuller, "Accurate and efficient stereo processing by semiglobal matching and mutual information," in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, June 2005, pp. 807-814 vol. 2.
- [3] A. Geiger, J. Ziegler, and C. Stiller, "Stereoscan: Dense 3d reconstruction in real-time," in Intelligent Vehicles Symposium (IV), 2011.

Proposed System

A Bumblebee XB3 stereo camera is used to acquire stereo image pairs with an average capture speed of 11 FPS in an resolution of 1280x960. An overview of the system is shown in Figure 2.

Figure 2: Overview of the methods used in the proposed system.

Generate Disparity Map & Noise Removal

A disparity map is generated using OpenCV's SGBM implementation. For reducing the noise, a so called LR-RL consistency check is done [2]. In case of a disparity difference in the consistency check, the lowest value is selected as the output pixel. Finally by assuming that a disparity value of a pixel between frames does not erratically change. A monocular color check is done in to remove pixels that consist of dark regions.

Road Surface Removal

The road surface is found by searching for the most significant line in the V-disparity using RANSAC. Additionally, the line parameters are filtered using a Kalman filter to smooth out faulty road surface detections. The calculated line is then used as a threshold for locating pixels belonging to objects above the road surface. In Figure 4 the input and noise and road removed disparity map are seen.

(b) Noise reduced disparity image.

Figure 3: Results after Generate Disparity Map & Noise Removal and Road Surface Removal.

Project To Point Cloud & Cloud Filtering

Using the camera's focal length f (in pixels) and it's baseline b (in meters),

along with the calculated disparity d(in pixels), the actual distance z to objects in the camera's view can be found. The remaining x and y component of the world coordinate are found using the column and row index

Segmentation & Tracking

of the disparity pixel.

The acquired point clouds are post processed using a band-bass filter to remove near and distant points, downsampled using a voxel grid, and removing outliers. Clusters are found by creating k-d tree, and for each point finding neighbors within a specified radius. The clusters center point is used for nearest neighbor tracking between frame and used to determine the distance from ego vehicle to detected vehicle.

NDS Event Detection

For compensating for the subject vehicle's ego-motion while e.g. approaching an intersection, we utilize the LIBVISO2: C++ Library for Visual Odometry 2 [3]. NDS events are detected by looking at the movement history of other vehicles with regard to the ego vehicle.

Figure 4: (a) Illustration of various movements that are detected by the system. (b) NDS detection example.

For all detected vehicles, individual frame to frame movements are categorized to form a a histogram of events for determining which NDS events have occurred. An example of such a histogram is seen in Figure

Figure 5: Example of histogram of detected movements.

Results

The proposed system is evaluated on 216 day and 367 night time frames. In Table 1 the results are seen, where GT is the ground truth of NDS events manually labeled and SO is the system output.

Table 1: Summary of drive analysis from NDS. The syntax for the results are [SO/GT]. P and R is abbreviations for precision and recall, respectively.

	•		•	
Drive Behavior Event	Daytime	Nighttime	Р	R
Right - straight across path	34/38	8/15	1	0.71
Left - straight across path	14/21	2/4	1	0.58
Left turn across path	14/12	12/6	0.75	0.69
Turn onto opposite dir.	12/7	6/6	1	0.85
Avg. number of cars	1.67/1.74	1.6/1.3	NA	NA
Avg. distance to car	8.73 m	10.98 m	NA	NA

Conclusion

The use of stereo-vision is considered beneficial, especially in scenarios with partly occluded cars, in such cases most monocular systems will fail. It is considered that providing distance information from the ego vehicle to surroundings provide useful information with regard to drive patterns before and during a crash or near crash. The system proved to work in both day and nighttime conditions with a limited drop in overall performance for the night scenarios. The proposed system have an overall precision of 0.9375 and an overall recall of 0.71, which is considered useful for data reduction in NDS. Future work may include looking at additional NDS events where stereo-vision can be utilized.

Acknowledgment

We would like to thank Ravi K. Satzoda, Mohan M. Trivedi, Andreas Møgelmose, and Thomas B. Moeslund for their guidance.