Mathematical Preliminaries

Linear Algebra

Linear algebra

 In Data Mining, we will represent data points using vectors ordered sets of coordinates (corresponding to various attributes/ features)

• The branch of mathematics that concerns with such coordinated representations is called **linear algebra**

Reference: Chapter 02 of the MML book
 [https://mml-book.github.io/book/mml-book.pdf]

Vectors

• We will denote a vectors by \overline{X} , \overline{Y} , \overline{W} , . . . (uppercase letters with a bar)

 We will use column vectors throughout this module (transposed by T when written as row vectors) e.g.

$$\overline{X} = (3.2, -9.1, 0.1)^T$$

• $\overline{X} \in \mathbb{R}^d$ means that \overline{X} is a d-dimensional vector with real coordinates

Matrices

- We obtain matrices by arranging a collection of vectors by columns or rows.
- Similarly to the vectors, we use uppercase letters with a bar to denote matrices such as \overline{M}
- $\overline{M} \in \mathbb{R}^{n \times m}$ means that \overline{M} is a matrix with n rows and m columns
- When n = m we say M is square
- We denote the (i,j) element of \overline{M} by $\overline{M}_{i,j}$
- If $\overline{M}_{i,j}=\overline{M}_{j,i}$ for all i and j, we say \overline{M} is symmetric. Otherwise, \overline{M} is asymmetric

Vector arithmetic

- Given two vectors \overline{X} , $\overline{Y} \in \mathbb{R}^d$, where $\overline{X} = (x_1, ..., x_d)^T$ and $\overline{Y} = (y_1, ..., y_d)^T$
- Their addition is given by the vector $\overline{Z} = (z_1, ..., z_d)^T$ where the i-th element z_i is given by $z_i = x_i + y_i$
- Their inner-product (also known as dot product) is defined as

$$\overline{X}^T \overline{Y} = \sum_{i=1}^d x_i y_i$$

• Their outer-product $\overline{X}\overline{Y}^T$ is defined as the matrix $\overline{M} \in \mathbb{R}^{d \times d}$, where $\overline{M}_{i,j} = x_i \cdot y_j$

Matrix arithmetic

 Matrices of the same shape (number of rows and columns) can be added element-wise

$$\overline{A}+\overline{B}=\overline{C}$$
 , where $\overline{C}_{i,j}=\overline{A}_{i,j}+\overline{B}_{i,j}$

• Matrices can be **multiplied** if the number of columns of the first matrix is equal to the number of rows of the second matrix. Let $\overline{A} \in \mathbb{R}^{n \times m}$ and $\overline{B} = \mathbb{R}^{m \times d}$, then the matrix $\overline{C} = \overline{A}\overline{B}$ has n rows and d columns,

$$\overline{C}_{i,j} = \sum_{k=1}^{m} \overline{A}_{i,k} \overline{B}_{k,j}$$

Transpose and Inverse

• The **transpose** of a matrix $\overline{A} \in \mathbb{R}^{n \times d}$ is denoted by \overline{A}^T and is a matrix from $\mathbb{R}^{d \times n}$, where $\overline{A}_{i,k}^T = \overline{A}_{k,i}$

$$\bullet \quad (\overline{A}\overline{B})^T = \overline{B}^T \overline{A}^T$$

• The **inverse** of a square matrix $\overline{A} \in \mathbb{R}^{n \times n}$ is denoted by \overline{A}^{-1} and satisfies $\overline{AA}^{-1} = \overline{A}^{-1}\overline{A} = I$, where $I \in \mathbb{R}^{n \times n}$ is the **unit matrix** (all diagonal elements are set to 1 and non-diagonal elements are set to 0)

Linear independence

• Let us consider a vector V formed as the linearly-weighted sum of a set of vectors $\{\overline{X}_1,\ldots,\overline{X}_k\}$ with respective coefficients $\lambda_1,\ldots,\lambda_k$ as follows:

$$\overline{V} = \lambda_1 \overline{X}_1 + \ldots + \lambda_k \overline{X}_k = \sum_{i=1}^k \lambda_i \overline{X}_i$$

- \overline{V} is called a **linear combination** of $\overline{X}_1, \ldots, \overline{X}_k$
- Vectors $\overline{X}_1, ..., \overline{X}_k$ are called **linearly dependent** if there exists $\lambda_1, ..., \lambda_k$, not all zero, such that $\overline{0} = \lambda_1 \overline{X}_1 + ... + \lambda_k \overline{X}_k$
- Otherwise $\overline{X}_1, ..., \overline{X}_k$ are called **linearly independent**

Rank

• The number of linear independent columns of a matrix $\overline{A} \in \mathbb{R}^{m \times n}$ ($m \leq n$) equals the number of linearly independent rows and is called the **rank** of \overline{A} is denoted by $\operatorname{rank}(\overline{A})$

• $\operatorname{rank}(\overline{A}) \leq \min\{m, n\} = m$

• If $rank(\overline{A}) = m$, then \overline{A} is said to be full-rank, otherwise rank-deficient.

Only full-rank square matrices are invertible.

Matrix trace

The sum of diagonal elements is called the trace of the matrix. Specifically,

$$tr(\overline{A}) = \sum_{i} \overline{A}_{i,i}$$

Example

$$\overline{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \operatorname{tr}(\overline{A}) = 2$$

Eigenvalues and eigenvectors

Let $\overline{A} \in \mathbb{R}^{n \times n}$ be a square matrix.

A non-zero vector $\overline{X} \in \mathbb{R}^n$ is an eigenvector of \overline{A} if

$$\overline{A}\overline{X} = \lambda \overline{X}$$

for some $\lambda \in \mathbb{R}$, which is called **eigenvalue** of \overline{A} corresponding to \overline{X} .

Mathematical Preliminaries

Differential Calculas

Derivatives of basic functions

$$\frac{d}{dx}a = 0$$
, where a is a constant (i.e., does not depend on x)

$$\frac{d}{dx}x^a = a \cdot x^{a-1}$$

$$\frac{d}{dx}e^{x}=e^{x}$$
, where $e\approx 2.71$ is Euler's number

$$\frac{d}{dx}\log(x) = \frac{1}{x}, \text{ where } x > 0$$

$$\frac{d}{dx}\sin(x) = \cos(x) \qquad \frac{d}{dx}\cos(x) = -\sin(x)$$

Note: $\frac{d}{dx}f(x)$ is the same as f'(x)

Differentiation rules

Sum rule: $(\alpha f + \beta g)' = \alpha f' + \beta g'$

Product rule: (fg)' = f'g + fg'

Quotient rule:
$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Chain rule: If f(x) = h(g(x)), then $f'(x) = h'(g(x)) \cdot g'(x) = \frac{d}{dg(x)} h \cdot \frac{d}{dx} g$

Partial derivative

A **partial derivative** of a function of several variables is its derivative with respect to one of those variables, with the others held constant.

Example

$$f(x,y) = 5x + y^{2}$$

$$\frac{\partial f}{\partial x} = 5 \qquad \frac{\partial f}{\partial y} = 2y \qquad \nabla_{(x,y)} f = (5, 2y)^{T}$$

Reference

Chapter 6 of the MML book [https://mml-book.github.io/book/mml-book.pdf]

Mathematical Preliminaries

Optimisation

Continuous optimisation

- Unconstrained optimisation
- Constrained optimisation

 Reference: Chapter 7 of the MML book [https://mml-book.github.io/book/mml-book.pdf]

Problem formulation

find
$$\min_{\overline{X}} f(\overline{X})$$

where

1)
$$\overline{X} = (x_1, x_2, ..., x_d)$$
 and

2)
$$f: \mathbb{R}^d \to \mathbb{R}$$

3) f is differentiable and we are unable to analytically find a solution in closed form

Let $f(\overline{X}) = f(x_1, ..., x_d)$ be a function depending on d variables.

The gradient of $f(\overline{X})$ is the vector consisting of the partial derivatives of f

$$\nabla_{\overline{X}} f = \frac{\partial f}{\partial \overline{X}} = \left(\frac{\partial f(\overline{X})}{\partial x_1} - \frac{\partial f(\overline{X})}{\partial x_2} - \cdots - \frac{\partial f(\overline{X})}{\partial x_d} \right)^T$$

The gradient $\nabla_{\overline{X}} f$ evaluated in a point \overline{X}_0 gives a vector that points in the direction of the steepest ascent.

Starting from point \overline{X}_0 the function f decreases faster if one moves from X_0 in the direction of the negative gradient of f at \overline{X}_0 , i.e. in the direction of the vector $-(\nabla_{\overline{X}}f)(\overline{X}_0)$

This means that for a small step-size $\gamma \geq 0$ the value of the function in point

$$\overline{X}_1 = \overline{X}_0 - \gamma \cdot (\nabla_{\overline{X}} f)(\overline{X}_0)$$

is smaller than in the initial point \overline{X}_0 , i.e.,

$$f(\overline{X}_1) \le f(\overline{X}_0)$$

Algorithm for finding local minimum of $f(\overline{X}) = f(x_1, ..., x_d)$

- 1. Pick an initial point \overline{X}_0
- 2. Iterate according to

$$\overline{X}_{i+1} = \overline{X}_i - \gamma_i \cdot \left((\nabla_{\overline{X}} f)(\overline{X}_i) \right)$$

For a suitable step-sizes $\gamma_1, \gamma_2, \ldots$, the sequence $f(\overline{X}_0) \ge f(\overline{X}_1) \ge \ldots$ converges to a local minimum.

Moral: gradient of a function is a useful tool for finding local optimal points of a function and is widely used in data mining and machine learning.

Constrained optimisation: method of Lagrange multipliers

Problem formulation

find
$$\min_{\overline{X}} f(\overline{X})$$

Subject to
$$g(\overline{X}) = 0$$

where

1)
$$\overline{X} = (x_1, x_2, ..., x_d)$$
 and

2)
$$f: \mathbb{R}^d \to \mathbb{R}$$

3)
$$g: \mathbb{R}^d \to \mathbb{R}$$

4) f is differentiable and we are unable to analytically find a solution in closed form

Constrained optimisation: method of Lagrange multipliers

Problem formulation

find
$$\min_{\overline{X}} f(\overline{X})$$
Subject to $g(\overline{X}) = 0$

In order to solve this problem:

- 1. Form the Lagrangian function $\mathscr{L}(\overline{X},\lambda)=f(\overline{X})-\lambda\cdot g(\overline{X})$
- 2. Find all stationary points $(\overline{X}_0, \lambda_0)$ of $\mathcal{L}(\overline{X}, \lambda)$, i.e. those points for which all partial derivatives of $\mathcal{L}(\overline{X}, \lambda)$ are equal to 0, or equivalently $\nabla_{(\overline{X}, \lambda)}\mathcal{L} = \overline{0}$
- 3. Examine stationary points to find among them a solution to the problem

Mathematical Preliminaries

Probability

Common discrete probability distributions

• Bernoulli distribution: models binary outcomes (coin flip).

$$P(X = \text{head}) = p \text{ and } P(X = \text{tail}) = 1 - p$$

• Generalised Bernoulli distribution: models k>2 outcomes (rolls of a k -sided die)

$$P(X = 1) = p_1, P(X = 2) = p_2, ..., P(X = k) = p_k$$
 such that $\sum_{i=1}^{k} p_i = 1$

Common discrete probability distributions

• Binomial distribution: models a sequence of multiple flips of a coin

$$P(\text{in } n \text{ flips there are exactly } k \text{ heads}) = \binom{n}{k} p^k (1-p)^{n-k}$$

• Multinomial distribution: models a sequence of multiple rolls of a k-sided die for k > 2

If there are n rolls and n_i is the number of times the die came up on side i, then the probability of this event is

$$\frac{n!}{\prod_{i=1}^{k} n_i!} \cdot \prod_{i=1}^{k} p_i^{n_i}$$