Operations Research: Homework 01

PB20511882

CONVEX SET

Question 1

Exercise 1.3 extreme points ⇔ feasible base solutions.

Theorem: vector set V in field R,rank(V)=n: S= $\{\vec{\alpha_1},\vec{\alpha_2},\dots,\vec{\alpha_r}\}$ is linearly independent. $\exists \vec{\alpha_{r+1}},\dots,\vec{\alpha_n} \in V$ subject to rank $\{\vec{\alpha_1},\vec{\alpha_2},\dots,\vec{\alpha_n}\}$ =rank(V)=n. Solution space $V_A=\{\vec{x}|A\vec{x}=\vec{0}\}$ is a linear space in R. And, W= $\{\vec{x}|A\vec{x}=\vec{b}\}$ is a congruence class mod V_A .

Statement: \vec{x} is a feasible base solution \Leftrightarrow the positive components of \vec{x} : $\{x_{j_1}, x_{j_2}, \dots, x_{j_k}\}$ such that rank $\{\vec{\alpha_{j_1}}, \vec{\alpha_{j_2}}, \dots, \vec{\alpha_{j_k}}\}$ =k.

Proof: sufficiency is obvious. **necessity**:

- (1). The row rank and column rank of a matrix is equal. rank(A)=m \Leftrightarrow rank{ $\alpha_{j_1}^{\vec{i}}, \alpha_{j_2}^{\vec{i}}, \dots, \alpha_{j_k}^{\vec{i}}$ } = $k \leq m$
- (2). If k=m, rank $\{\vec{\alpha_{j_1}},\vec{\alpha_{j_2}},\ldots,\vec{\alpha_{j_k}}\}=m$. Hence,B= $(\vec{\alpha_{j_1}},\vec{\alpha_{j_2}},\ldots,\vec{\alpha_{j_k}})$ and $\vec{x_B}=(x_{j_1},x_{j_2},\ldots,x_{j_m})$. \vec{x} is a feasible base solution.
- (3). If k<m, rank(A)=m. There are other vectors of A: $\{\alpha_{j_{k+1}},\alpha_{j_{k+2}},\ldots,\alpha_{j_m}\}$ such that $x_{j_i}=0,\ i=k+1,k+2,\ldots,m$ and rank $\{\alpha_{j_1},\alpha_{j_2},\ldots,\alpha_{j_m}\}=m$. Hence,B= $(\alpha_{j_1},\alpha_{j_2},\ldots,\alpha_{j_k})$ and $\vec{x_B}=(x_{j_1},x_{j_2},\ldots,x_{j_m})$. \vec{x} is a feasible base solution.

Proof:

sufficiency: extreme points \Rightarrow feasible base solutions.

 \vec{x} is an extreme points $\Leftrightarrow \vec{x} : \forall \vec{x_1}, \vec{x_2} \in S, \lambda \in (0,1), \vec{x} = \lambda \vec{x_1} + (1-\lambda)\vec{x_2} \Rightarrow \vec{x} = \vec{x_1} = \vec{x_2}$.

the positive components of \vec{x} are $\vec{x_B} = (x_{j_1}, x_{j_2}, \dots, x_{j_k})$.

 $\mathsf{B} = (\vec{\alpha_{j_1}}, \vec{\alpha_{j_2}}, \dots, \vec{\alpha_{j_k}})$ such that $\mathsf{B} \vec{x_B} = \vec{b}$. rank(B)=k:

If rank(B)<k, $B\vec{x_B} = \vec{0}$ have a non-zero solution $\vec{y_B}$ expending to a n-dim vector \vec{y} .

 \vec{y} is a solution of $A\vec{x} = \vec{0}$.

 $\exists \lambda_1 > 0$, subject to $\vec{x_1} = \vec{x} + \lambda_1 \vec{y} > \vec{0}$ and $\exists \lambda_2 > 0$, subject to $\vec{x_2} = \vec{x} - \lambda_2 \vec{y} > \vec{0}$.

Thus, $\vec{x_1}, \vec{x_2} \in S, \vec{x_1} \neq \vec{x_2}$ subject to $\vec{x} = \frac{\lambda_2}{\lambda_1 + \lambda_2} \vec{x_1} + \frac{\lambda_1}{\lambda_1 + \lambda_2} \vec{x_2}$ which is contradictory to the definition of extreme point.

 $k=rank(B) \leq m, rank\{\vec{\alpha_{j_1}}, \vec{\alpha_{j_2}}, \dots, \vec{\alpha_{j_k}}\} = k \leq m.$

According to the statement, \vec{x} is a feasible base solution.

necessity: extreme points ← feasible base solutions.

 \vec{x} is a feasible base solution \Leftrightarrow the positive components $\vec{x_B}$ $\{x_{j_1}, x_{j_2}, \dots, x_{j_k}\}$

such that $\operatorname{rank}(B = (\vec{\alpha_{i_1}}, \vec{\alpha_{i_2}}, \dots, \vec{\alpha_{i_k}})) = k$.

 $\vec{B}\vec{x_B} = \vec{0}$ have only zero solution.

$$\forall \vec{x_1}, \vec{x_2} \in S, \lambda \in (0,1)$$
, subject to $\vec{x} = \lambda \vec{x_1} + (1-\lambda)\vec{x_2} \Rightarrow \vec{x_B} = \lambda \vec{x_{1,B}} + (1-\lambda)\vec{x_{2,B}}$

$$\vec{x}, \vec{x_1}, \vec{x_2} \in S \Rightarrow A(\vec{x} - \vec{x_1}) = A(\vec{x} - \vec{x_2}) = \vec{0} \Rightarrow B(\vec{x_B} - \vec{x_{1.B}}) = B(\vec{x_B} - \vec{x_{2.B}}) = \vec{0}$$

Thus,
$$\vec{x_B} = \vec{x_{1.B}} = \vec{x_{1.B}}$$

$$\vec{x_N}$$
 is $\vec{x} \setminus \vec{x_B}$: $\vec{x_N} = \lambda \vec{x_{1,N}} + (1 - \lambda)\vec{x_{2,N}} = \vec{0} \Rightarrow \vec{x_N} = \vec{x_{1,N}} = \vec{x_{2,N}} = \vec{0}$.

Hence, $\vec{x} = \vec{x_1} = \vec{x_2} \Rightarrow \vec{x}$ is a extreme point.

Question 2

Exercise 1.2 Display the extreme points and the feasible base solutions of the Linear Programming as follow.

$$\begin{aligned} \min & -x_1 + 3x_2 \\ \text{s.t. } & x_1 + 3x_2 \leq 8 \\ & x_2 \leq 2 \\ & x_1 \geq 0, \ x_2 \geq 0 \end{aligned}$$

The extreme points

extreme point \Leftrightarrow vertex .

The vertexs of inequations as follows:

$$x_1 + 3x_2 \le 8$$

 $x_2 \le 2$
 $x_1 \ge 0, x_2 \ge 0$

are (0,0), (8,0), (0,2), (2,2).

The feasible base solutions.

The normalized form of the LP:

$$min - x_1 + 3x_2$$
s.t. $x_1 + 3x_2 + x_3 = 8$

$$x_2 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$A\vec{x} = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \vec{b} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$$

(1). $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$

Thus,

$$\vec{x}^T = \begin{pmatrix} 2 & 2 & 0 & 0 \end{pmatrix}$$

corresponding to the vertex (2,2).

(2). $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$

Thus,

$$\vec{x}^T = \begin{pmatrix} 8 & 0 & 0 & 2 \end{pmatrix}$$

corresponding to the vertex (8,0).

Thus,

$$\vec{x}^T = \begin{pmatrix} 0 & 2 & 2 & 0 \end{pmatrix}$$

corresponding to the vertex (0,2).

(4). $\begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$ Thus,

 $\vec{x}^T = \begin{pmatrix} 0 & \frac{8}{3} & 0 & -\frac{1}{3} \end{pmatrix}$

is not a feasible solution.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$$

Thus,

$$\vec{x}^T = \begin{pmatrix} 0 & 0 & 8 & 2 \end{pmatrix}$$

corresponding to the vertex (0,0).

Question 3

Exercise 1.1(1) The extreme point set P is non-empty and finite $\{p^{(\vec{1})},p^{(\vec{2})},\dots,p^{(\vec{k})}\}$.

Theorem: the optimal solution of LP is a basic feasible solution. **proof:**

$$\vec{c}^T \vec{x} = \vec{c_B}^T \vec{x_B} + (\vec{c_N}^T - \vec{c_B}^T B^{-1} N) \vec{x_N}$$

The optimality:

$$\vec{c_N}^T - \vec{c_B}^T B^{-1} N \ge \vec{0}$$

Thus, $\vec{x_N} \geq \vec{0} \Rightarrow \vec{c}^T \vec{x} = \vec{c_B}^T \vec{x_B} + (\vec{c_N}^T - \vec{c_B}^T B^{-1} N) \vec{x_N} \geq \vec{c_B}^T \vec{x_B}$ if \vec{x} is not a basic feasible solution, \vec{x} is not a optimal solution.

 \Leftrightarrow if \vec{x} is a optimal solution, \vec{x} is a basic feasible solution(converse-negative proposition).

The extreme point set P is non-empty.

extreme point \Leftrightarrow feasible base solution.

S is not empty.

- (1). S = $\{\vec{0}\} \Leftrightarrow \vec{0}$ is a extreme point.
- (2). Shave non-zero solutions $\Rightarrow \exists \vec{0} \leq \vec{x} \in S \Rightarrow \exists k > 0, x_k > 0$.

A auxiliary LP, $\vec{y} \in R^{m \times 1}$:

$$\begin{aligned} min & \vec{1}^T \vec{y} \\ s.t. & A\vec{x} + \vec{y} = \vec{b} \\ & \vec{x}, \vec{y} > \vec{0} \end{aligned}$$

- $\begin{pmatrix} \vec{0} \\ \vec{b} \end{pmatrix}$ is a feasible base solution of the auxiliary LP.
- $\begin{pmatrix} \vec{x} \\ \vec{0} \end{pmatrix}$ is also an optimal solution of the auxiliary LP \Rightarrow the auxiliary LP is bounded.

Use simplex method to get an optimal solution $\begin{pmatrix} \vec{x^*} \\ \vec{y^*} \end{pmatrix}$ of the auxiliary LP.

 $\Rightarrow \begin{pmatrix} \vec{x^*} \\ \vec{y^*} \end{pmatrix}$ is a basic feasible solution and $\vec{y^*} = \vec{0}$.

 $\Rightarrow \vec{x^*}$ is a basic feasible solution of S.

Thus, the extreme point set P is not empty.

The extreme point set P is finite.

There are at most $\binom{n}{m}$ distinct maximal linearly independent vectors in $\{\vec{\alpha_1}, \vec{\alpha_2}, \dots, \vec{\alpha_n}\}$.

- \Rightarrow There are at most $\binom{n}{m}$ distinct basic solutions for $A\vec{x} = \vec{b}$.
- \Rightarrow There are at most $\binom{n}{m}$ distinct feasible base solutions in S.
- \Rightarrow There are at most $\binom{n}{m}$ distinct extreme points in S.

Thus, P is finite.

Question 4

Exercise 1.1(2) The direction set D is empty \Leftrightarrow S is bounded(the point in S is bounded).

sufficency: S is unbounded \Rightarrow The direction set D is not empty.

S is unbouned $\Rightarrow \forall \vec{x} \in S, \exists k, x_k \text{ is unbouned } \Rightarrow 0 \leq x_k < +\infty.$

$$\vec{d} = \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{pmatrix}$$
 subject to $\forall \vec{x} \in S, \lambda \geq 0, \vec{x} + \lambda \vec{d} \in S.$

Thus \vec{d} is a direction of S.D is not empty. The extreme direction set E is also not empty.

necessity: S is bounded \Rightarrow The direction set D is empty.

S is bouned $\Rightarrow \forall \vec{x} \in S, \forall k, x_k \text{ is bouned } \Rightarrow 0 \leq x_k \leq N_k.$

 $\forall \vec{0} \neq \vec{d} \in R^m$:

- (1). If there is a negative component d_k in \vec{d} , $\exists N \in N^+$ subject to $\forall \lambda > N$ satisfying $x_k + \lambda d_k < 0$ Hence, \vec{d} is not a direction.
- (2). If there is a positive component d_k in $\vec{d_i} \exists N \in N^+$ s.t. $\forall \lambda > N$ satisfying $x_k + \lambda d_k > N_k$ Hence, \vec{d} is not a direction.

Thus, D is empty. The extreme direction set E is also empty.

Question 5

Exercise 1.1(3) if S is unbound \Rightarrow the extreme direction set E is finite $\{d^{(1)}, d^{(2)}, \dots, d^{(l)}\}$.

theorem: \forall m \times n matrix A \in $R^{m\times n}$, rank(A)=r, A is equivalent to the canonical form:

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

Thus, there are m-order invertible matrix P and n-order invertible matrix Q satisfying:

$$A = P \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q$$

Proof: rank(A)=m \Rightarrow $A = P(I_m \ 0) Q$

$$\forall \vec{x_0} \in S$$
, and $A\vec{x} = \vec{b} \Rightarrow A(\vec{x} - \vec{x_0}) = \vec{0} \Rightarrow P(I_m \ 0) Q(\vec{x} - \vec{x_0}) = \vec{0}$.

P is invertible \Rightarrow $\begin{pmatrix} I_m & 0 \end{pmatrix} Q(\vec{x} - \vec{x_0}) = \vec{0} \Rightarrow$ the first-m components of $Q(\vec{x} - \vec{x_0})$ is zero.

$$\vec{\varepsilon_k} = \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{pmatrix}$$

$$Q(\vec{x} - \vec{x_0}) = \sum_{k=m+1}^{n} \lambda_k \vec{\varepsilon_k}, \lambda_k \in R \Rightarrow \vec{x} = \vec{x_0} + \sum_{k=m+1}^{n} \lambda_k Q^{-1} \vec{\varepsilon_k}, \lambda_k \in R.$$

Let
$$V_A = \{\vec{x} \in R^m | \vec{x} = \vec{x_0} + \sum_{k=m+1}^n \lambda_k Q^{-1} \vec{\varepsilon_k}, \lambda_k \in R, \forall \vec{x_0} \in S\}$$

 $\operatorname{rank}(S=V_A \cap \{\vec{x} \geq \vec{0}\}) \leq \operatorname{rank}(A) = \operatorname{n-m}.$

 $\{\lambda_{m+1}Q^{-1}\vec{\varepsilon_{m+1}}, \lambda_{m+2}\vec{Q^{-1}}\vec{\varepsilon_{m+2}}, \dots, \lambda_n \vec{Q^{-1}}\vec{\varepsilon_n}\}$ is a set of bases(extreme directions) of V_A .

There are at most (n-m) extreme directions in V_A . \Rightarrow There are at most (n-m) extreme directions in S.

Thus, E is finite.

S is unbound \Rightarrow D is not empty \Rightarrow E is not empty.

Thus, E =
$$\{\vec{d^{(1)}}, \vec{d^{(2)}}, \dots, \vec{d^{(l)}}\}$$

Question 6

Exercise 1.1(4)
$$\vec{x} \in S \iff \vec{x} = \sum_{i=1}^k \lambda_i \vec{p^{(i)}} + \sum_{j=1}^l \mu_j \vec{d^{(j)}}, \ \lambda_i \ge 0, \sum_{i=1}^k \lambda_i = 1, \ \mu_j \ge 0.$$

Proof:

sufficiency:
$$\vec{x} \in S \Rightarrow \vec{x} = \sum_{i=1}^{k} \lambda_i \vec{p^{(i)}} + \sum_{j=1}^{l} \mu_j \vec{d^{(j)}}, \ \lambda_i \ge 0, \sum_{i=1}^{k} \lambda_i = 1, \ \mu_j \ge 0.$$

$$A\sum_{i=1}^{k} \lambda_i \vec{p^{(i)}} = \sum_{i=1}^{k} \lambda_i A \vec{p^{(i)}} = \sum_{i=1}^{k} \lambda_i \vec{b} = \vec{b} \Rightarrow \sum_{i=1}^{k} \lambda_i \vec{p^{(i)}} \in S.$$

$$\vec{x} - \sum_{i=1}^k \lambda_i \vec{p^{(i)}}$$
 satisfying $A(\vec{x} - \sum_{i=1}^k \lambda_i \vec{p^{(i)}}) = \vec{0}$.

Thus,
$$\vec{x} - \sum_{i=1}^k \lambda_i \vec{p^{(i)}} \in V_A = \{ \vec{x} \in R^m | A\vec{x} = \vec{0}, \vec{x} + \vec{x_0} \ge \vec{0}, \forall \vec{x_0} \in S \}.$$

 $\{d^{(1)},d^{(2)},\ldots,d^{(l)}\}$ is a set of 'bases' of V_A .

Thus,
$$\vec{x} - \sum_{i=1}^k \lambda_i \vec{p^{(i)}} = \sum_{j=1}^l \mu_j \vec{d^{(j)}}, \mu_j \ge 0.$$

$$\textbf{necessity:} \vec{x} = \textstyle \sum_{i=1}^k \lambda_i p^{\vec{(i)}} + \textstyle \sum_{j=1}^l \mu_j d^{\vec{(j)}}, \ \lambda_i \geq 0, \textstyle \sum_{i=1}^k \lambda_i = 1, \ \mu_j \geq 0 \ \Rightarrow \vec{x} \in S.$$

$$\sum_{i=1}^k \lambda_i \vec{p^{(i)}} \in S \text{ and } \sum_{j=1}^l \mu_j \vec{d^{(j)}} \in V_A.$$

$$\vec{x} = \sum_{i=1}^k \lambda_i \vec{p^{(i)}} + \sum_{j=1}^l \mu_j \vec{d^{(j)}}$$
 satisfying $\mathbf{A} \vec{x} = \vec{b}$ and $\vec{x} \geq \vec{0}$.

Thus, $\vec{x} \in S$.

SIMPLEX MODEL

Question 7

Exercise 1.4 The pivoting ensures that the solution is a feasible base solution.

proof: $\{\vec{\alpha_{j_1}},\ldots,\vec{\alpha_{j_{l-1}}},\vec{\alpha_{j_{l+1}}},\ldots,\vec{\alpha_{j_m}},\vec{\alpha_{j_{m+k}}}\}$ is linearly independent.

 $(\vec{x_B}, \vec{x_N})^T = (x_{j_1}, x_{j_2}, \dots, x_{j_m}, 0, \dots, 0)$ is a feasible base solution. $\Leftrightarrow B = \{\vec{\alpha}_{j_1}, \vec{\alpha}_{j_2}, \dots, \vec{\alpha}_{j_m}\}$ satisfies rank(B) = m.

for $c_{j_{m+k}} - \vec{c_B}B^{-1}\alpha_{j_{m+k}} < 0$, $\{\vec{\alpha}_{j_1}, \vec{\alpha}_{j_2}, \dots, \vec{\alpha}_{j_m}, \vec{\alpha}_{j_{m+k}}\}$ is linearly dependent. $\Rightarrow \vec{\alpha}_{j_{m+k}} = \sum_{i=1}^m \lambda_i \vec{\alpha}_{j_i}, \sum_{i=1}^m \lambda_i^2 \neq 0$.

$$(B \quad N) \begin{pmatrix} \vec{x_B} \\ \vec{x_N} \end{pmatrix} = \vec{b}$$

$$\vec{\Delta} \in R^{(n-m)\times 1}, \vec{\Delta} = \begin{pmatrix} 0 \\ \vdots \\ \Delta \\ \vdots \\ 0 \end{pmatrix}, \Delta > 0.$$

$$(B \quad N) \begin{pmatrix} \vec{x_B} + \vec{\delta} \\ 0 \end{pmatrix}, \vec{\lambda} = \vec{k}$$

$$(B \quad N) \begin{pmatrix} \vec{x_B} + \vec{\delta} \\ \vec{x_N} + \vec{\Delta} \end{pmatrix} = \vec{b}$$

$$\vec{\delta} = -B^{-1}N\vec{\Delta} = -\Delta B^{-1}\vec{\alpha_{j_{m+k}}} = -\Delta B^{-1}\sum_{i=1}^{m}\lambda_i\vec{\alpha}_{j_i} = -\Delta\vec{\lambda}.$$

for $\vec{x_B} - \vec{\delta} = \vec{x_B} - \Delta B^{-1} \sum_{i=1}^m \lambda_i \vec{\alpha}_{j_i} = \vec{x_B} - \Delta B^{-1} B \vec{\lambda} = \vec{x_B} - \Delta \vec{\lambda}$: B^{-1} is invertible and $\alpha_{\vec{j_{m+k}}} \neq \vec{0} \Rightarrow \vec{\lambda} = B^{-1} \alpha_{\vec{j_{m+k}}} \neq \vec{0}$.

if
$$\vec{\lambda}<\vec{0}$$
, and $c_{j_{m+k}}-\vec{c_B}B^{-1}\alpha_{j_{m+k}} <0 \Rightarrow c_{m+k}<0$

let Δ as large as possible $\Rightarrow \begin{pmatrix} \vec{x_B} + \vec{\delta} \\ \vec{x_N} + \vec{\Delta} \end{pmatrix}$ is a feasible base and $\vec{c}^T \vec{x} \to -\infty$. The LP is unbounded.

if $\exists \lambda_l > 0 \Rightarrow \vec{\alpha_{j_{m+k}}} - \sum_{i \neq j, i=1}^m \lambda_i \vec{\alpha_{j_i}} = \lambda_l \vec{\alpha_{j_l}} \neq \vec{0}$

 $\{\vec{\alpha_{j_1}},\ldots,\vec{\alpha_{j_{l-1}}},\vec{\alpha_{j_{l+1}}},\ldots,\vec{\alpha_{j_m}},\vec{\alpha_{j_{m+k}}}\}$ is linearly independent.

Then,let $\Delta = min\{\frac{x_{j_l}}{\lambda_l}|\lambda_l>0\}$ $\begin{pmatrix} \vec{x_B} + \vec{\delta} \\ \vec{x}_N + \vec{\Delta} \end{pmatrix}$ is a feasible base solution.(As the statement in Question 1)

Question 8

Exercise 1.6 pivoting⇔ **elementary base tansformation.**

proof: as the description above

$$\vec{\alpha}_{j_{m+k}} = \sum_{i=1}^{m} \lambda_i \vec{\alpha}_{j_i} = B \vec{\lambda}, \vec{\lambda} \neq 0, \lambda_l > 0 \Rightarrow \vec{\alpha}_{j_l} = \frac{1}{\lambda_l} (\alpha_{\vec{m}+k} - \sum_{l \neq i, i=1}^{m} \lambda_i \vec{\alpha}_{j_i})$$

$$B = \begin{pmatrix} \vec{\alpha}_{j_1} & \dots & \vec{\alpha}_{j_{l-1}} & \vec{\alpha}_{j_l} & \vec{\alpha}_{j_{l+1}} & \dots & \vec{\alpha}_{j_1} \end{pmatrix}$$

$$B^{new} = \begin{pmatrix} \vec{\alpha}_{j_1} & \dots & \vec{\alpha}_{j_{l-1}} & \vec{\alpha}_{j_{m+k}} & \vec{\alpha}_{j_{l+1}} & \dots & \vec{\alpha}_{j_1} \end{pmatrix}$$

$$\forall 1 \leq i \leq n, \vec{\alpha_i} = \sum_{c=1}^m \mu_{i_c} \vec{\alpha_{j_c}} = B \vec{\mu_i} = B^{new} \vec{\mu_i}^{new}.$$

$$\Rightarrow \vec{\mu_i}^{new} = \left(\mu_{i_1} - \frac{\lambda_1}{\lambda_l}\mu_{i_l} \dots \mu_{i_{l-1}} - \frac{\lambda_{l-1}}{\lambda_l}\mu_{i_l} \frac{\mu_{i_l}}{\lambda_l} \mu_{i_{l+1}} - \frac{\lambda_{l+1}}{\lambda_l}\mu_{i_l} \dots \mu_{i_m} - \frac{\lambda_m}{\lambda_l}\mu_{i_l}\right)^T$$

$$\Rightarrow \vec{\mu_i}^{new} = \vec{\mu_i} - \frac{\mu_{i_l}}{\lambda_l}(\vec{\lambda} - \begin{pmatrix} 0 & \cdots & 1 & \cdots & 0 \end{pmatrix})$$

$$\begin{aligned} c_{i} - c_{B}^{T} B^{-1} \vec{\alpha_{i}} &= c_{i} - c_{B}^{T} \vec{\mu_{i}}. \\ c_{i} - c_{B}^{\vec{n}ew}^{T} \vec{\mu_{i}}^{new} - (c_{i} - c_{B}^{T} \vec{\mu_{i}}) &= c_{B}^{\vec{n}} \vec{\mu_{i}} - c_{B}^{\vec{n}ew}^{T} \vec{\mu_{i}}^{new} \\ &= (c_{B}^{\vec{n}}^{T} - c_{B}^{\vec{n}ew}^{T}) \vec{\mu_{i}}^{new} + \frac{\mu_{i_{l}}}{\lambda_{l}} c_{B}^{T} \vec{\lambda} - \frac{\mu_{i_{l}}}{\lambda_{l}} c_{l} \\ &= \frac{\mu_{i_{l}}}{\lambda_{l}} (c_{l} - c_{m+k} - c_{l}) + \frac{\mu_{i_{l}}}{\lambda_{l}} c_{B}^{T} \vec{\lambda} \\ &= \frac{\mu_{i_{l}}}{\lambda_{l}} (c_{B}^{\vec{n}}^{T} B^{-1} \vec{\alpha_{m+k}} - c_{m+k}). \end{aligned}$$

Thus,

$$c_{i} - c_{B}^{\vec{new}^{T}} B^{new-1} \vec{\alpha_{i}} = c_{i} - \vec{c_{B}}^{T} B^{-1} \vec{\alpha_{i}} - \frac{\mu_{i_{l}}}{\lambda_{l}} (c_{m+k} - \vec{c_{B}}^{T} B^{-1} \vec{\alpha_{m+k}}).$$

$$x_B^{\vec{new}} = \begin{pmatrix} x_{j_1} - \Delta \lambda_1 & \dots & x_{j_{l-1}} - \Delta \lambda_{l-1} & \Delta & x_{j_{l+1}} - \Delta \lambda_{l+1} & \dots & x_{j_m} - \Delta \lambda_m \end{pmatrix}$$
$$= \vec{x_B} - \Delta \vec{\lambda} + \begin{pmatrix} 0 & \dots & \Delta_l & \dots & 0 \end{pmatrix}$$

$$c_{\vec{B}}^{\vec{n}\vec{e}w}^T x_{\vec{B}}^{\vec{n}\vec{e}w} - c_{\vec{B}}^T \vec{x_B} = (c_{m+k} - c_l)\Delta - \Delta c_{\vec{B}}^T \vec{\lambda} + c_l \Delta = \Delta (c_{m+k} - c_{\vec{B}}^T \vec{\lambda})$$

Thus,

$$c_{B}^{\vec{new}^{T}} x_{B}^{\vec{new}} = \vec{c_{B}}^{T} \vec{x_{B}} + \frac{x_{j_{l}}}{\lambda_{l}} (c_{m+k} - \vec{c_{B}}^{T} B^{-1} \alpha_{j_{m+k}})$$

Question 9

Exercise 1.5

The algorithm of Simplex Method

step 1: normalization

step 2: Looking for a feasible base solution as initial solution. (There are two basic ways.)

step 3: optimality:

$$B = \begin{pmatrix} \vec{\alpha_{j_1}} & \dots & \vec{\alpha_{j_{l-1}}} & \vec{\alpha_{j_l}} & \vec{\alpha_{j_{l+1}}} & \dots & \vec{\alpha_{j_1}} \end{pmatrix}$$

 $\forall \vec{\alpha_i} \; , \; \vec{\alpha_i} = B \vec{\lambda_i} \rightarrow \text{examine } c_j - \vec{c_B}^T \vec{\lambda_i}$

step 4: pivoting:

$$B^{new} = \begin{pmatrix} \vec{\alpha_{j_1}} & \dots & \vec{\alpha_{j_{l-1}}} & \vec{\alpha_{j_{m+k}}} & \vec{\alpha_{j_{l+1}}} & \dots & \vec{\alpha_{j_1}} \end{pmatrix}$$

return to step 2.

an example of Simplex Method

$$min -4x_1 - x_2$$

$$s.t. -x_1 + 2x_2 \le 4$$

$$2x_1 + 3x_2 \le 12$$

$$x_1 - x_2 \le 3$$

$$x_1, x_2 \ge 0$$

step 1: normalization

$$min -4x_1 - x_2$$

$$s.t. -x_1 + 2x_2 + x_3 = 4$$

$$2x_1 + 3x_2 + x_4 = 12$$

$$x_1 - x_2 + x_5 = 3$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

$$A = \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ 2 & 3 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{pmatrix}$$

step 2: Simplex tableau

	A	$ec{c}^T$					3.t
B		-4	-1	0	0	0	$\vec{x_B}$
	x_3	-1	2	1	0	0	4
	x_4	2	3	0	1	0	12
I	x_5	1	-1	0	0	1	3
	$\vec{c_B^T}N - \vec{c_N^T}$	4	1	0	0	0	0

A		$ec{c}^T$					<i>m</i> →	
$\mid E$	3	-4	-1	0	0	0	$\vec{x_B}$	
	x_3	0	1	1	0	1	7	
	x_4	0	5	0	1	-2	6	
I	x_1	1	-1	0	0	1	3	
	$\vec{c_B^T}N - \vec{c_N^T}$	0	5	0	0	-4	-12	

	A		<i>∞</i> →				
B		-4	-1	0	0	0	$\vec{x_B}$
	x_3	0	0	1	$-\frac{1}{5}$	$\frac{7}{5}$	$\frac{29}{5}$
	x_2	0	1	0	$\frac{1}{5}$	$-\frac{2}{5}$	$\frac{6}{5}$
	x_1	1	0	0	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{21}{5}$
	$c_B^{\vec{T}}N - c_N^{\vec{T}}$	0	0	0	-1	-2	-14

Thus, the optimal solution is $(x_1 = \frac{21}{5}, x_2 = \frac{6}{5})$

DUAL THEORY

Question 10

Exercise 1.7

LP:

 $min \ \vec{c}^T \vec{x}$

$$s.t. \quad A\vec{x} = \vec{b}$$

$$\vec{x} \ge \vec{0}$$

DP:

 $max \quad \vec{b}^T \vec{w}$

s.t.
$$A^T \vec{w} \leq \vec{c}$$

Weak duality theorem:

$$\vec{b}^T \vec{w} \le \max(\vec{b}^T \vec{w}) \le \min(\vec{c}^T \vec{x}) \le \vec{c}^T \vec{x}$$

proof: LP has optimal solution $\vec{x^*} \Rightarrow$ DP has optimal solution $\vec{w^*}$ and $\vec{c}^T \vec{x^*} = \vec{b}^T \vec{w^*}$.

LP has optimal solution $\vec{x^*} \Rightarrow \text{LP}$ has feasible solutions $\Rightarrow \text{DP}$ is bounded.

$$A\vec{x^*} = (B\ N)(\vec{x_B}^T\ \vec{x_N}^T)^T = \vec{b},\ \vec{x_N} = \vec{0}$$

 $\Rightarrow \vec{b}^T = (\vec{x_B}^T\ \vec{x_N}^T)(B\ N)^T$

Let $\vec{p} \in R^{m \times 1}$, satisfy $B^T \vec{p} = \vec{c_B}$.

$$\Rightarrow \vec{b}^T \vec{p} = (\vec{x_B}^T \ \vec{x_N}^T) (B \ N)^T \vec{p} = \vec{x_B}^T B^T \vec{p} = \vec{x_B}^T c \vec{b} = \vec{c_B}^T \vec{x_B} = \vec{c}^T \vec{x^*}$$

The optimality:

$$\vec{c_N}^T - \vec{c_B}^T B^{-1} N \ge \vec{0}$$

Thus,

$$\vec{c_N}^T N^{-1} \ge \vec{c_B}^T B^{-1} \Leftrightarrow N^{-1}^T \vec{c_N} \ge B^{-1}^T \vec{c_B} \Leftrightarrow N^{T^{-1}} \vec{c_N} \ge B^{T^{-1}} \vec{c_B} = \vec{p}$$

$$N^T \vec{p} \le \vec{c_N}, \ B^T \vec{p} \le \vec{c_B} \Rightarrow A^T \vec{p} \le \vec{c}$$

Thus, \vec{p} is a feasible solution of DP.

 $\vec{b}^T \vec{p} = \vec{c}^T \vec{x^*} \Rightarrow \vec{p}$ is the optimal solution of DP.