Summary of symmetry calculations

November 4, 2021

Contents

1 Lotka_Volterra 5

4 CONTENTS

Chapter 1

Lotka_Volterra

Run 11_54 PM $_03_N$ ovember-2021

Degree in tangential ansätze: 2. The system of ODEs is given by:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = N\left(-Pb + a\right),$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = P\left(Nc - d\right).$$

The calculated generators are:

$$X_1 = (1) \partial t$$
,

$$X_{2} = \left(-1 + \frac{1}{a}\right)\partial t$$

$$X_{3} = \left(\frac{1}{c} + \mathbf{f}_{1}\left(t\right)\right)\partial t + \left(\frac{Na\,\mathbf{f}_{1}\left(t\right)}{c} - \frac{NPb\,\mathbf{f}_{1}\left(t\right)}{c}\right)\partial N + \left(NP\,\mathbf{f}_{1}\left(t\right) - \frac{Pd\,\mathbf{f}_{1}\left(t\right)}{c}\right)\partial P$$

Some of the generators might contain the following arbitrary functions:

 f_1

WARNING:

Some of the calculated generators did not satisfy the linearised symmetry conditions. Thus, the presented list here is not complete and consists exclusively of the calculated generators that satisfy the linearised symmetry conditions.

Equation:
$$-C_3 + \frac{C_6b^2e^{-2at}}{c^2} - \frac{C_6b^2d}{ac^2} + \frac{C_6b^2de^{-2at}}{ac^2} = 0$$
 Basis functions: [1.0, e^{-2at}]

Solutions before processing:

$$C_6 = 0$$

$$C_3 = -\frac{C_6 b^2 d}{ac^2}$$

Solutions after processing:

$$C_3 = 0$$
$$C_6 = 0$$

$$\begin{aligned} & \text{Equation:} - \frac{C_{15}ace^{2dt}}{2ad^2 + 4d^3} - \frac{C_{15}cde^{2dt}}{2ad^2 + 4d^3} + \frac{C_{15}c}{a^2e^{at} + 2ade^{at}} + \frac{C_{15}ce^{dt}}{d^2} - \frac{C_{15}c}{2d^2} - \frac{C_{15}c}{2a^2} + \frac{C_{25}ce^{dt}}{d} - \frac{C_{2}c}{d} - \frac{C_{4}b}{a} + \frac{C_{4}be^{-at}}{a} - C_{5} + \frac{C_{7}abc^2e^{2dt}}{2a^3d^2 - 2a^2d^3 - 8ad^4 + 8d^5} - \frac{C_{7}bc^2e^{at}}{2a^4d - 6a^3d^2 + 4a^2d^3} + \frac{C_{7}bc^2e^{at}}{2a^3d^2 - 2a^2d^3 - 8ad^4 + 8d^5} - \frac{C_{7}bc^2de^{at}}{2a^4d - 6a^3d^2 + 4a^2d^3} - \frac{C_{7}bc^2e^{at}}{4a^4e^{at} + 10a^3de^{at} + 4a^2d^2e^{at}} + \frac{C_{7}bc^2e^{at}e^{at}}{2a^3d - a^2d^2 - ad^3} - \frac{C_{7}bc^2e^{at}}{2a^2d^2 - ad^3} + \frac{C_{7}bc^2}{2a^2d^2} + \frac{C_{8}ac^2e^{2dt}}{2a^2d^2 + 2ad^3 - 4d^4} + \frac{C_{8}c^2de^{2dt}}{2a^2d^2 + 2ad^3 - 4d^4} - \frac{C_{8}c^2e^{at}e^{at}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_{8}c^2e^{at}e^{dt}}{2a^3 - a^2d - ad^2} - \frac{C_{8}c^2e^{at}e^{at}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_{8}c^2e^{at}e^{at}}{2a^3 - a^2d - ad^2} - \frac{C_{8}c^2e^{at}e^{at}}{2a^3e^{at} + 5a^2de^{at} + 2ad^2e^{at}} - \frac{C_{8}c^2e^{at}e^{at}}{2a^3e^{at} + 2ad^$$

$$[1.0, e^{-at}, e^{2dt}, e^{dt}, e^{at}e^{dt}, e^{at}]$$

Solutions before processing:

$$C_{4} = 0$$

$$C_{7} = \frac{C_{15}a^{2}}{bc} - \frac{3C_{15}ad}{bc} + \frac{2C_{15}d^{2}}{bc} - \frac{C_{8}a}{b} + \frac{2C_{8}d}{b}$$

$$C_{2} = -\frac{2C_{15}a^{3}}{2a^{3}d - a^{2}d^{2} - ad^{3}} + \frac{C_{15}a^{2}d}{2a^{3}d - a^{2}d^{2} - ad^{3}} + \frac{C_{15}ad^{2}}{2a^{3}d - a^{2}d^{2} - ad^{3}} + \frac{2C_{7}abc}{2a^{3}d - a^{2}d^{2} - ad^{3}} - \frac{C_{7}bcde^{at}}{2a^{3}d - a^{2}d^{2} - ad^{3}} + \frac{C_{7}dce^{at}}{2a^{3}d - a$$

Solutions after processing:

$$C_4 = 0$$

$$C_2 = 0$$

$$C_5 = 0$$

$$C_8 = 0$$

$$C_7 = 0$$

$$C_{15} = 0$$

Equation: $-C_9 = 0$ Basis functions:

Solutions before processing:

$$C_9 = 0$$

Solutions after processing:

$$C_9 = 0$$

$$\begin{array}{c} \text{Equation:} \frac{C_{10}bdt}{a} - \frac{C_{10}b}{a} + \frac{C_{10}be^{-at}}{a} - \frac{C_{10}bd}{a^2} + \frac{C_{10}bde^{-at}}{a^2} - C_{11} + \frac{C_{13}a^2b^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{2C_{13}a^2b^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{2C_{13}a^b^2c^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{2C_{13}a^b^2c^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{2C_{13}a^b^2c^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{2C_{13}a^b^2d^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{2C_{13}b^2d^2}{a^3de^{at} - a^2d^2e^{at}} + \frac{2C_{13}b^2d^2}{a^3d$$

$$[1.0, e^{-at}, e^{-dt}, e^{-at}e^{-dt}, t]$$

Solutions before processing:

$$\begin{split} C_{10} &= \frac{C_{16}ab}{cd} + \frac{C_{18}a}{c} \\ C_{10} &= \frac{C_{13}b}{d} - \frac{C_{14}a}{d} \\ C_{10} &= -\frac{C_{11}a^4cd}{a^3bcd + a^2bcd^2 - abcd^3 - bcd^4} + \frac{C_{11}a^2cd^3}{a^3bcd + a^2bcd^2 - abcd^3 - bcd^4} - \frac{C_{13}a^3b^2c}{a^3bcde^{at}e^{dt} + a^2bcd^2e^{at}e^{dt} - abcd^3e^{at}e^{dt} - bcd^4e^{at}e^{dt}} \end{split}$$

Solutions after processing:

$$\begin{split} C_{14} &= -\frac{C_{10}d}{a} + \frac{C_{13}b}{a} \\ C_{18} &= \frac{C_{10}c}{a} - \frac{C_{16}b}{d} \\ C_{11} &= -\frac{C_{10}b}{a} + \frac{C_{13}\left(2a^3b^2e^{at}e^{dt} - 2a^3b^2e^{at} + a^3b^2e^{dt} - a^3b^2 + 2a^2b^2de^{at}e^{dt} - 4a^2b^2de^{at} + 3a^2b^2de^{dt} - a^2b^2d - 3ab^2d^2e^{at}e^{dt} - a^2d^3e^{at}e^{dt} - a^2d$$

Equation:
$$-C_{12} + \frac{C_{13}bc}{a^2e^{at}e^{dt} + ade^{at}e^{dt}} + \frac{C_{13}bc}{ad + d^2} - \frac{C_{13}bce^{-dt}}{ad} - \frac{C_{16}b}{ae^{at}e^{dt} + de^{at}e^{dt}} + \frac{C_{16}b}{a + d} = 0$$
 Basis functions:
$$[1.0, e^{-dt}, e^{-at}e^{-dt}]$$

Solutions before processing:

$$C_{13} = 0$$

$$C_{12} = \frac{C_{13}abc}{a^{2}d + ad^{2}} + \frac{C_{13}bcd}{a^{2}de^{at}e^{dt} + ad^{2}e^{at}e^{dt}} - \frac{C_{16}abd}{a^{2}de^{at}e^{dt} + ad^{2}e^{at}e^{dt}} + \frac{C_{16}abd}{a^{2}d + ad^{2}}$$

Solutions after processing:

$$C_{12} = \frac{C_{16} \left(b e^{at} e^{dt} - b \right)}{a e^{at} e^{dt} + d e^{at} e^{dt}}$$
$$C_{13} = 0$$

Equation:
$$-\frac{C_{13}c^{2}}{a^{2}e^{at}e^{dt}+ade^{at}e^{dt}} - \frac{C_{13}c^{2}}{ad+d^{2}} + \frac{C_{13}c^{2}e^{-dt}}{ad} + \frac{C_{16}c}{ae^{at}e^{dt}+de^{at}e^{dt}} - \frac{C_{16}c}{a+d} - C_{17} = 0 \text{ Basis functions:}$$

$$\left[1.0, \ e^{-dt}, \ e^{-at}e^{-dt}\right]$$

Solutions before processing:

$$C_{13} = 0$$

$$C_{13} = -\frac{C_{16}acde^{at}e^{dt}}{ac^{2}e^{at}e^{dt} + c^{2}d} + \frac{C_{16}acd}{ac^{2}e^{at}e^{dt} + c^{2}d} - \frac{C_{17}a^{2}de^{at}e^{dt}}{ac^{2}e^{at}e^{dt} + c^{2}d} - \frac{C_{17}ad^{2}e^{at}e^{dt}}{ac^{2}e^{at}e^{dt} + c^{2}d} - \frac{C_{17}ad^{2}e^{at}e^{dt}}{ac^{2}e^{at}e^{dt} + c^{2}d}$$

Solutions after processing:

$$C_{17} = \frac{C_{16} \left(-ace^{2at}e^{2dt} + ace^{at}e^{dt} - cde^{at}e^{dt} + cd \right)}{a^2e^{2at}e^{2dt} + ade^{2at}e^{2dt} + ade^{at}e^{dt} + d^2e^{at}e^{dt}}$$

$$C_{13} = 0$$

Solutions after all is done:

Tangents before any manipulation:

$$\eta_0 = C_1 - \frac{C_{10}}{a} + \frac{C_{16}ab}{acde^{at}e^{dt} + cd^2e^{at}e^{dt}} + \frac{C_{16}bd}{acde^{at}e^{dt} + cd^2e^{at}e^{dt}} + \frac{c_{22}\left(t\right)}{c}$$

$$\eta_1 = \frac{C_{16}a^2bN}{acde^{at}e^{dt} + cd^2e^{at}e^{dt}} + \frac{C_{16}abdN}{acde^{at}e^{dt} + cd^2e^{at}e^{dt}} - \frac{C_{16}b^2dNPe^{at}e^{dt}}{acde^{at}e^{dt} + cd^2e^{at}e^{dt}} - \frac{C_{16}b^2dNP}{a^2c + acd} + \frac{C_{16}bN^2e^{at}e^{dt}}{ae^{at}e^{dt} + de^{at}e^{dt}} - \frac{C_{16}bN^2}{a + d} + \frac{C_{16}bN^2e^{at}e^{dt}}{ae^{at}e^{dt} + de^{at}e^{dt}} - \frac{C_{16}acN^2e^{at}e^{dt}}{a^2e^{at}e^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{dt}}{a^2e^{at}e^{at}e^{dt} + ade^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{dt}}{a^2e^{at}e^{at}e^{dt} + ade^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{dt}}{a^2e^{at}e^{at}e^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{dt}}{a^2e^{at}e^{at}e^{dt} + ade^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{dt}}{a^2e^{at}e^{at}e^{dt} + ade^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{dt}}{a^2e^{at}e^{at}e^{dt} + ade^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{dt}}{a^2e^{at}e^{at}e^{dt} + ade^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{dt}}{a^2e^{at}e^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{at}e^{dt}}{a^2e^{at}e^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{at}e^{dt}}{a^2e^{at}e^{at}e^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{at}e^{dt}}{a^2e^{at}e^{at}e^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e^{at}e^{at}e^{dt}}{a^2e^{at}e^{at}e^{at}e^{at}e^{dt}} + \frac{C_{16}acN^2e^{at}e$$

Generators before some are removed:

$$\begin{bmatrix} 1, & 0, & 0 \end{bmatrix}$$
$$\begin{bmatrix} -\frac{1}{a}, & 0, & 0 \end{bmatrix}$$

$$\left[\frac{ab}{acde^{at}e^{dt}+cd^{2}e^{at}e^{dt}}+\frac{bd}{acde^{at}e^{dt}+cd^{2}e^{at}e^{dt}},\frac{a^{2}bN}{acde^{at}e^{dt}+cd^{2}e^{at}e^{dt}}+\frac{abdN}{acde^{at}e^{dt}+cd^{2}e^{at}e^{dt}}-\frac{b^{2}dNPe^{at}e^{dt}}-\frac{b^{2}dNPe^{at}e^{dt}}{acde^{at}e^{dt}+cd^$$

Generators after some were removed:

$$\begin{bmatrix} 1, \ 0, \ 0 \end{bmatrix} \\ \begin{bmatrix} -\frac{1}{a}, \ 0, \ 0 \end{bmatrix} \\ \begin{bmatrix} \frac{\mathbf{c}_{22}\left(t\right)}{c}, \ \frac{aN\,\mathbf{c}_{22}\left(t\right)}{c} - \frac{bNP\,\mathbf{c}_{22}\left(t\right)}{c}, \ NP\,\mathbf{c}_{22}\left(t\right) - \frac{dP\,\mathbf{c}_{22}\left(t\right)}{c} \end{bmatrix}$$

The execution time of the script was:

0 hours 1 minutes 7 seconds.