UV-Visible Spectroscopy

Prediction of λ_{max} : For Alkene

Woodward-Fieser Rules:

For an empirical prediction of the wavelength for the lowest energy $\pi \rightarrow \pi^*$ transition

A base value for λ_{max} of the chromophore:

The incremental contribution of substituents is added to this base value from the group tables:

Group	Increment
Extended conjugation	+30
Each exo-cyclic C=C	+5
Alkyl	+5
-OCOCH ₃	+0
-OR	+6
-SR	+30
-Cl, -Br	+5
-NR ₂	+60

Prediction of λ_{max} : Examples

$$CH_3$$
 $C=C$
 H
 CH_3
 H

Transoid: 214 nm
Alkyl groups:
$$3 \times 5 = \frac{15}{229 \text{ nm}}$$

Observed: 228 nm

Transoid:	214 nm
Ring residues: $3 \times 5 =$	15
Exocyclic double bond:	5
-	234 nm

Observed: 235 nm

Homoanular diene	253 nm
Extra conjugation	30 nm
one exocyclic C=C	+ 5 nm
3 alkyl subs.	<u>+15 nm</u>
	303 nm
Experimental value	306 nm

Observed:

Cisoid: 253 nm Alkyl substituent: 5 Ring residues: $3 \times 5 =$ 15 Exocyclic double bond: 5 278 nm

275 nm

Prediction of λ_{max} : Examples

Observed: 355 nm

Prediction of λ_{max} : For Unsturated Ketone

Prediction of λ_{max} : For Unsturated Ketone

Six-membered enone: 215 nm
Double-bond-extending conjugation: 30
Homocyclic diene: 39 δ -Ring residue: 18 $\overline{}$ 302 nm

Observed: 300 nm

Five-membered enone: 202 nm β -Ring residue: $2 \times 12 = 24$ Exocyclic double bond: 5 231 nm

226 nm

$$\delta$$
 CH_3
 $CH_$

Observed:

Six-membered enone: 215 nm

Double-bond-extending conjugation: 30 β -Ring residue: 12 δ -Ring residue: 18

Exocyclic double bond: 5

Exocyclic double bond: 5

280 nm

280 nm

CH₃ CH₃ O CH₃

Observed:

Woodward-Fieser Rules is not valid for conjugation with more than four double bonds

Summary and Problem

Bands of high intensity that appear above 210 nm generally represent either an unsaturated ketone, a diene, or a polyene.

Simple ketones, acids, esters, amides, and other compounds containing both p systems and unshared electron pairs show two absorptions: an \mathbf{n} to $\mathbf{\pi}^*$ transition at longer wavelengths (>300 nm, low intensity) and a $\mathbf{\pi}$ to $\mathbf{\pi}^*$ transition at shorter wavelengths (<250 nm, high intensity).

With conjugation (enones), the λ_{max} of the π to π^* band moves to longer wavelengths and can be predicted by Woodward's Rules.

A compound with the molecular formula of $C_{10}H_{14}$ has the basic skeleton as shown below. Provide the exact molecular structure of the compound, if the λ_{max} for the compound is 234 nm.

VISIBLE SPECTRA: COLOR OF COMPOUNDS

electromagnetic spectrum lying between about 400 and 750 nm is the **visible** region Light waves with wavelengths between these limits appear colored to the human eye

If a substance absorbs visible light, it appears to have a color; if not, it appears white

compounds that absorb light in the visible region of the spectrum do not possess the color corresponding to the wavelength of the absorbed light

VISIBLE SPECTRA: COLOR OF COMPOUNDS

β-carotene,
$$\lambda_{max} = 455$$
 nm (Blue region)

 $\lambda_{\text{max}} = 114 + 5(\text{# alkyl substituents}) + n(48 - 1.7n) - 16.5(\text{# endo}) - 10(\text{# exo})$

Fieser-Kuhn Rules

$$\lambda_{\text{max}} = 114 + 5(8) + 11(48 - 1.7 \cdot 11) - 0 - 0$$

= 476 nm

VISIBLE SPECTRA: COLOR OF COMPOUNDS

7-hydroxyphenoxazone

Problem

A cyclic carbonyl compound **A** with molecular formula of C_5H_6O . It shows a strong absorption at 214 nm. If a hydrogen is replaced by a CH_3 group, the λ_{max} shifted to 226 nm. Provide the exact molecular structure of the compound **A**, and the compound with λ_{max} =226.

Looking forward

IR and NMR spectroscopy

Course material will be uploaded after 17:00 h on every Friday@

http://www.iitg.ac.in/ckjana/ckjana/Teaching.html