Grafos

Algoritmo de Floyd-Warshall

Prof. Edson Alves

Faculdade UnB Gama

Robert W. Floyd (1962)

Robert W. Floyd (1962)

Stephen Warshall (1962)

Robert W. Floyd (1962)

Stephen Warshall (1962)

Bernard Roy (1959)

 \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)

- \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)
- * É capaz de processar arestas negativas

- \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)
- * É capaz de processar arestas negativas
- * Não processa, mas identifica ciclos negativos

- \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)
- * É capaz de processar arestas negativas
- * Não processa, mas identifica ciclos negativos
- * As distâncias são reduzidas por meio do uso de vértices intermediários

- \star Computa o caminho mínimo entre todos os pares de vértices de G(V,E)
- * É capaz de processar arestas negativas
- * Não processa, mas identifica ciclos negativos
- * As distâncias são reduzidas por meio do uso de vértices intermediários
- \star Complexidade: $O(V^3)$

Pseudocódigo

Entrada: um grafo G(V,E)

Saída: uma matriz d tal que d[u][v] é a distância mínima em G entre u e v

- 1. Faça:
 - (a) d[u][u] = 0, para todos $u \in V$
 - $(b) \ d[u][v] = w$, se $(u,v,w) \in E$
 - $(c) \ d[u][v] = \infty$, caso contrário
- 2. Para cada vértice k e todos os pares $(u,v)\in V^2$, faça

$$d[u][v] = \min(d[u][v], d[u][k] + d[k][v])$$

3. Retorne d

1	2	3	4	5	6
0	8	7	4	2	11
8	0	1	3	10	3
7	1	0	2	9	4
4	3	2	0	1	6
2	10	9	1	0	11
11	3	4	6	11	0

1	2	3	4	5	6
0	7	6	4	2	10
7	0	1	3	4	3
6	1	0	2	3	4
4	3	2	0	1	6
2	4	3	1	0	7
10	3	4	6	7	0

1	2	3	4	5	6
0	6	5	3	2	9
6	0	1	3	4	3
5	1	0	2	3	4
3	3	2	0	1	6
2	4	3	1	0	7
	0			1	0


```
vector<vector<int>> floyd_warshall(int N)
ł
    vector<vector<int>> dist(N + 1, vector<int>(N + 1, oo));
    for (int u = 1; u \le N; ++u)
        dist[u][u] = 0:
    for (int u = 1; u \le N; ++u)
        for (auto [v, w] : adj[u])
            dist[u][v] = w:
    for (int k = 1; k \le N; ++k)
        for (int u = 1; u \le N; ++u)
            for (int v = 1; v \le N; ++v)
                if (dist[u][k] < oo and dist[k][v] < oo)
                    dist[u][v] = min(dist[u][v], dist[u][k] + dist[k][v]);
    return dist;
```


 \star O algoritmo de Dijkstra computa as distâncias mínimas, mas não os caminhos mínimos

 \star O algoritmo de Dijkstra computa as distâncias mínimas, mas não os caminhos mínimos

 \star Para determinar um caminho mínimo, é preciso definir uma matriz auxiliar pred, onde $\mathrm{pred}[u][v]=$ antecessor de v no caminho mínimo de u a v

- \star O algoritmo de Dijkstra computa as distâncias mínimas, mas não os caminhos mínimos
- \star Para determinar um caminho mínimo, é preciso definir uma matriz auxiliar pred, onde $\mathrm{pred}[u][v]=$ antecessor de v no caminho mínimo de u a v
 - * No início do algoritmo,
 - (a) $pred[u][u] = u, \forall u \in V$
 - $(b) \operatorname{pred}[u][v] = u$, se $(u,v) \in E$
 - (c) pred[u][v] = undef, caso contrário

 \star Se k atualizar d[u][v], faça pred[u][v] = pred[k][v]

 \star Se k atualizar d[u][v], faça $\operatorname{pred}[u][v] = \operatorname{pred}[k][v]$

* A sequência

$$p = \{(u, \mathsf{pred}^{k-1}[u][v]), \dots, (\mathsf{pred}[\mathsf{pred}[u][v]], \mathsf{pred}[u][v]), (\mathsf{pred}[u][v], v)\}$$

é um caminho mínimo de u a v composto por k arestas e tamanho d[u][v]

$$m_{ij} = \mathsf{dist}[i][j]_{\mathsf{pred}[i][j]}$$

$$m_{ij} = \mathsf{dist}[i][j]_{\mathsf{pred}[i][j]}$$

```
pair<vector<vector<int>>>, vector<vector<int>>>
floyd warshall(int N)
    vector<vector<int>> dist(N + 1, vector<int>(N + 1, oo));
    vector<vector<int>> pred(N + 1, vector<int>(N + 1, oo));
    for (int u = 1: u \le N: ++u)
        dist[u][u] = 0:
        pred[u][u] = u:
    for (int u = 1; u \le N; ++u)
        for (auto [v, w] : adj[u]) {
            dist[u][v] = w;
            pred[u][v] = u;
```

```
for (int k = 1; k \le N; ++k)
    for (int u = 1; u \le N; ++u)
        for (int v = 1; v \le N; ++v)
            if (dist[u][k] < oo and dist[k][v] < oo</pre>
                and dist[u][v] > dist[u][k] + dist[k][v]) {
                     dist[u][v] = dist[u][k] + dist[k][v];
                     pred[u][v] = pred[k][v];
return { dist, pred };
```

```
vector<ii> path(int u, int v, const vector<vector<int>>& pred)
{
    vector<ii> p;
    do {
        p.push_back(ii(pred[u][v], v));
        v = pred[u][v];
    } while (v != u);
    reverse(p.begin(), p.end());
    return p;
```

* O algoritmo de Floyd-Warshall é capaz de detectar ciclos negativos

* O algoritmo de Floyd-Warshall é capaz de detectar ciclos negativos

 \star Inicialmente $\operatorname{dist}[u][u] = 0, \forall u \in V$, se G não tem autoloops

- * O algoritmo de Floyd-Warshall é capaz de detectar ciclos negativos
- \star Inicialmente dist $[u][u] = 0, \forall u \in V$, se G não tem autoloops
- \star Caso exista um ciclo negativo que passe por u , seguir este ciclo de u a u torna ${\rm dist}[u][u]<0$

- * O algoritmo de Floyd-Warshall é capaz de detectar ciclos negativos
- \star Inicialmente $\operatorname{dist}[u][u] = 0, \forall u \in V$, se G não tem *autoloops*
- \star Caso exista um ciclo negativo que passe por u , seguir este ciclo de u a u torna ${\rm dist}[u][u]<0$
- \star Assim, G terá um ciclo negativo se, ao final do algoritmo, $\mathrm{dist}[i][i]<0$ para algum $i\in V$

```
bool has_negative_cycle(int N) {
    for (int u = 1; u \le N; ++u)
        for (int v = 1; v \le N; ++v)
            dist[u][v] = u == v ? 0 : oo:
    for (int u = 1: u \le N: ++u)
        for (auto [v, w] : adj[u])
            dist[u][v] = w:
    for (int k = 1; k \le N; ++k)
        for (int u = 1; u \le N; ++u)
            for (int v = 1; v \le N; ++v)
                if (dist[u][k] < oo and dist[k][v] < oo)
                    dist[u][v] = min(dist[u][v], dist[u][k] + dist[k][v]);
    for (int i = 1; i <= N; ++i)
        if (dist[i][i] < 0) return true:</pre>
    return false:
```

Problemas sugeridos

- 1. Codeforces Round #179 (Div. 1) Problem B: Greg and Graph
- 2. LightOJ Travel Company
- 3. OJ 104 Arbitrage
- 4. OJ 10171 Meeting Prof. Miguel...

Referências

- 1. CP-Algorithms. Floyd-Warshall Algorithm, acesso em 03/08/2021.
- 2. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 3. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 4. SKIENA, Steven; REVILLA, Miguel. Programming Challenges, 2003.