

Low Noise, Precision 16 V CMOS, Rail-to-Rail Operational Amplifiers

Data Sheet

AD8661/AD8662/AD8664

FEATURES

Low offset voltage: 100 μV maximum at $V_s = 5~V$

Low input bias current: 1 pA maximum Single-supply operation: 5 V to 16 V

Low noise: 10 nV/√Hz Wide bandwidth: 4 MHz Unity-gain stable Small package options

3 mm × 3 mm 8-lead LFCSP 8-lead MSOP and narrow SOIC 14-lead TSSOP and narrow SOIC

APPLICATIONS

Sensors
Medical equipment
Consumer audio
Photodiode amplification
ADC drivers

GENERAL DESCRIPTION

The AD8661/AD8662/AD8664¹ are rail-to-rail output, single-supply amplifiers that use the Analog Devices, Inc., patented DigiTrim® trimming technique to achieve low offset voltage. The AD8661/AD8662/AD8664 series features extended operating ranges, with supply voltages up to 16 V. It also features low input bias current, wide signal bandwidth, and low input voltage and current noise.

The combination of low offset, very low input bias current, and a wide supply range makes these amplifiers useful in a wide variety of applications usually associated with higher priced JFET amplifiers. Systems using high impedance sensors, such as photodiodes, benefit from the combination of low input bias current, low noise, low offset, and wide bandwidth. The wide operating voltage range meets the demands of high performance analog-to-digital converters (ADCs) and digital-to-analog

Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

PIN CONFIGURATIONS

Figure 5. AD8664, 14-Lead SOIC (R-14)

Figure 6. AD8664, 14-Lead TSSOP (RU-14)

converters (DACs). Audio applications and medical monitoring equipment can take advantage of the high input impedance, low voltage, low current noise, and wide bandwidth.

The single AD8661 is available in a narrow 8-lead SOIC package and a very thin, dual lead, 8-lead LFCSP. The AD8661 SOIC package is specified over the extended industrial temperature range of -40° C to $+125^{\circ}$ C. The AD8661 LFCSP is specified over the industrial temperature range of -40° C to $+85^{\circ}$ C. The AD8662 is available in a narrow 8-lead SOIC package and an 8-lead MSOP, both specified over the extended industrial temperature range of -40° C to $+125^{\circ}$ C. The AD8664 is available in a narrow 14-lead SOIC package and a 14-lead TSSOP, both with an extended industrial temperature range of -40° C to $+125^{\circ}$ C.

¹ Protected by U.S. Patents 6,194,962 and 6,696,894.

TABLE OF CONTENTS

Features	AD8661 Electrical Characteristics—LFCSP Only5
Applications1	AD8661 Electrical Characteristics—LFCSP Only6
Pin Configurations	Absolute Maximum Ratings7
General Description	Thermal Resistance
Revision History	Typical Performance Characteristics8
Specifications	Outline Dimensions
AD8661/AD8662/AD8664 Electrical Characteristics—SOIC, MSOP, and TSSOP	Ordering Guide
AD8661/AD8662/AD8664 Electrical Characteristics—SOIC, MSOP, and TSSOP4	
REVISION HISTORY	
7/2016—Rev. D to Rev. E Changed CP-8-2 to CP-8-13	3/2006—Rev. A to Rev. B Added AD8662 Universal Added MSOP Universal Changes to Table 1 3 Changes to Table 2 4 Changes to Table 3 5 Changes to Table 4 6 Changes to Table 5 7 Updated Outline Dimensions 13
Added 14-Lead SOIC_N and 14-Lead TSSOP Universal Changes to Features 1 Changes to Table 1 3 Changes to Table 2 4 Changes to Table 3 5 Changes to Table 4 6 Changes to Table 5 and Table 6 7 Changes to Figure 29 11 Updated Outline Dimensions 13 Changes to Ordering Guide 15	Changes to Ordering Guide 13 1/2006—Rev. 0 to Rev. A 4 Added LFCSP_VD Universal Changes to Table 1 3 Changes to Table 2 4 Changes to Ordering Guide 13 9/2005—Revision 0: Initial Version
5/2006—Rev. B to Rev. C Changes to Ordering Guide	

SPECIFICATIONS

AD8661/AD8662/AD8664 ELECTRICAL CHARACTERISTICS—SOIC, MSOP, AND TSSOP

 V_S = 5.0 V, V_{CM} = $V_S/2$, T_A = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V_{os}	$V_{CM} = V_s/2$		30	100	μV
AD8661		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			1000	μV
AD8661		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			1400	μV
AD8662		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			1000	μV
AD8664		-40°C < T _A < +125°C			1200	μV
Input Bias Current	I _B			0.3	1	рА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			50	pА
		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$			300	pA
Input Offset Current	I _{os}			0.2	0.5	pA
·		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			20	pA
		-40°C < T _A < +125°C			75	рA
Input Voltage Range			-0.1		+3.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1 \text{ V to } +3.0 \text{ V}$	85	100		dB
·		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$	80	100		dB
Large Signal Voltage Gain	A _{vo}	$R_L = 2 k\Omega, V_O = 0.5 V \text{ to } 4.5 V$	100	220		V/mV
Offset Voltage Drift	TCV _{os}					
AD8661	03	-40°C < T _A < +125°C		3	10	μV/°C
AD8662, AD8664		-40°C < T _A < +125°C		2	9	μV/°C
OUTPUT CHARACTERISTICS		- A				
Output Voltage High	V _{OH}	$I_1 = 1 \text{ mA}$	4.85	4.93		V
, 3 3	On	-40°C < T _A < +125°C	4.80			V
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}^{\circ}$		50	100	mV
. 3	02	-40°C < T _A < +125°C			110	mV
Short-Circuit Current	I _{SC}			±19		mA
Closed-Loop Output Impedance	Z _{out}	$f = 1 \text{ MHz}, A_v = 1$		50		Ω
POWER SUPPLY	001					
Supply Current per Amplifier	I _{SY}	$V_0 = V_s/2$		1.15	1.40	mA
	31	-40°C < T _A < +125°C			2.0	mA
DYNAMIC PERFORMANCE		A				
Slew Rate	SR	$R_L = 2 k\Omega$		3.5		V/µs
Gain Bandwidth Product	GBP			4		MHz
Phase Margin	Φ_{o}			65		Degrees
NOISE PERFORMANCE	- 0					5. 503
Peak-to-Peak Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.5		μV p-p
Voltage Noise Density	$e_n P^- P$	f = 1 kHz		12		nV/√Hz
voltage Holde Delibity	C _n	f = 10 kHz		10		nV/√Hz
	1		1	10		I IIV/VIIZ

AD8661/AD8662/AD8664 ELECTRICAL CHARACTERISTICS—SOIC, MSOP, AND TSSOP

 $V_S = 16.0$ V, $V_{CM} = V_S/2$, $T_A = 25$ °C, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V _{os}	$V_{CM} = V_s/2$		50	160	μV
AD8661		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			1000	μV
AD8661		-40°C < T _A < +125°C			1400	μV
AD8662		-40°C < T _A < +125°C			1000	μV
AD8664		-40°C < T _A < +125°C			1200	μV
Input Bias Current	I _B			0.3	1	рА
		-40°C < T _A < +85°C			50	рА
		-40°C < T _A < +125°C			300	pА
Input Offset Current	I _{OS}			0.2	0.5	pA
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			20	pA
		-40°C < T _A < +125°C			75	рA
Input Voltage Range		, and the second	-0.1		+14.0	v
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1 \text{ V to } +14.0 \text{ V}$	90	110		dB
•		-40°C < T _A < +125°C	90	110		dB
Large Signal Voltage Gain	A _{vo}	$R_L = 2 k\Omega, V_O = 0.5 V \text{ to } 15.5 V$	200	360		V/mV
Offset Voltage Drift	TCV _{os}					
AD8661	- 03	-40°C < T _A < +125°C		3	10	μV/°C
AD8662, AD8664		-40°C < T _A < +125°C		2	9	μV/°C
OUTPUT CHARACTERISTICS		^				'
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	15.93	15.97		V
	- On	I _L = 10 mA	15.60	15.70		V
		-40°C < T _A < +125°C	15.50			V
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		24	50	mV
о и. р и и и и и у и дене	100	I _L = 10 mA		190	300	mV
		-40°C < T _A < +125°C			350	mV
Short-Circuit Current	I _{sc}	A COLUMN		±140		mA
Closed-Loop Output Impedance	Z _{OUT}	$f = 1 \text{ MHz}, A_v = 1$		45		Ω
POWER SUPPLY	-001	· · · · · · · · · · · · · · · · · · ·		· ··		
Power Supply Rejection Ratio	PSRR	$V_{s} = 5 \text{ V to } 16 \text{ V}$	95	110		dB
i ower supply nejection natio	1 31	-40°C < T _A < +125°C	95	115		dB
Supply Current per Amplifier	I _{sy}	$V_{O} = V_{S}/2$		1.25	1.55	mA
supply current per / impliner	.21	$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$		1.23	2.1	mA
DYNAMIC PERFORMANCE		13 C \ 1 _A \ 1123 C			۷۰۱	111/1
Slew Rate	SR	$R_1 = 2 k\Omega$		3.5		V/µs
Gain Bandwidth Product	GBP	11 - 2 1/22		3.3 4		MHz
Phase Margin	Φ_{o}			4 65		Degrees
NOISE PERFORMANCE	Ψ ₀	+		03		Degrees
Peak-to-Peak Noise	0.55	f = 0.1 Hz to 10 Hz		2.5		11/12 5
	e _n p-p	f = 1 kHz				μV p-p
Voltage Noise Density	e _n			12		nV/√Hz
Commont Naisa Day site		f = 10 kHz		10		nV/√Hz
Current Noise Density	i _n	f = 1 kHz		0.1		pA/√Hz

AD8661 ELECTRICAL CHARACTERISTICS—LFCSP ONLY

 $V_S = 5.0 \text{ V}$, $V_{CM} = V_S/2$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V _{os}	$V_{CM} = V_s/2$		50	300	μV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			2000	μV
Input Bias Current	I _B			0.3	1	pА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			50	pА
Input Offset Current	I _{os}			0.2	0.5	рА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			20	рА
Input Voltage Range			-0.1		+3.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1 \text{ V to } +3.0 \text{ V}$	85	100		dB
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	80	100		dB
Large Signal Voltage Gain	A _{vo}	$R_L = 2 k\Omega, V_O = 0.5 V to 4.5 V$	100	240		V/mV
Offset Voltage Drift	TCV _{os}	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$		4	17	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	4.85	4.93		V
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	4.80			V
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		50	100	mV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			120	mV
Short-Circuit Current	I _{sc}			±19		mA
Closed-Loop Output Impedance	Z _{OUT}	$f = 1 \text{ MHz, } A_{V} = 1$		65		Ω
POWER SUPPLY						
Supply Current per Amplifier	I _{SY}	$V_0 = V_s/2$		1.15	1.40	mA
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			1.8	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_1 = 2 k\Omega$		3.5		V/µs
Gain Bandwidth Product	GBP			4		MHz
Phase Margin	Φο			65		Degrees
NOISE PERFORMANCE	<u> </u>					
Peak-to-Peak Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.5		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		12		nV/√Hz
- ,		f = 10 kHz		10		nV/√Hz
Current Noise Density	i _n	f = 1 kHz		0.1		pA/√Hz

AD8661 ELECTRICAL CHARACTERISTICS—LFCSP ONLY

 $\rm V_{S}$ = 16.0 V, $\rm V_{CM}$ = V $_{S}/2$, $\rm T_{A}$ = 25 ^{o}C , unless otherwise noted.

Table 4.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V _{os}	$V_{CM} = V_s/2$		50	300	μV
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			2000	μV
Input Bias Current	I _B			0.3	1	pА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			50	pА
Input Offset Current	I _{os}			0.2	0.5	pА
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			20	pА
Input Voltage Range			-0.1		+14.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1 \text{ V to } +14.0 \text{ V}$	90	110		dB
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	90	110		dB
Large Signal Voltage Gain	A _{vo}	$R_L = 2 k\Omega, V_O = 0.5 V \text{ to } 15.5 V$	200	420		V/mV
Offset Voltage Drift	TCV _{os}	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$		4	17	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	15.95	15.97		V
		$I_L = 10 \text{ mA}$	15.60	15.70		V
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	15.50			V
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$		24	50	mV
		$I_L = 10 \text{ mA}$		210	350	mV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			400	mV
Short-Circuit Current	I _{sc}			±140		mA
Closed-Loop Output Impedance	Z _{OUT}	$f = 1 \text{ MHz}, A_v = 1$		45		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 5 V \text{ to } 16 V$	95	110		dB
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$	95	115		dB
Supply Current per Amplifier	I _{SY}	$V_O = V_S/2$		1.25	1.55	mA
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C}$			1.9	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		3.5		V/µs
Gain Bandwidth Product	GBP			4		MHz
Phase Margin	$\Phi_{\rm o}$			65		Degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _n p-p	f = 0.1 Hz to 10 Hz		2.5		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		12		nV/√Hz
		f = 10 kHz		10		nV/√Hz
Current Noise Density	i _n	f = 1 kHz		0.1		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
Supply Voltage	18 V
Input Voltage	$-0.1 \mathrm{V}$ to V_S
Differential Input Voltage	18 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	−60°C to +150°C
Operating Temperature Range	
R-8, RM-8, R-14, and RU-14	−40°C to +125°C
CP-8-13	-40°C to +85°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature, Soldering (60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 6. Thermal Resistance

Package Type	θ_{JA}	θ _{JC}	Unit
8-Lead SOIC	121	43	°C/W
8-Lead LFCSP	75 ¹	18 ¹	°C/W
8-Lead MSOP	142	44	°C/W
14-Lead SOIC	88.2	56.3	°C/W
14-Lead TSSOP	114	23.3	°C/W

¹ Exposed pad soldered to application board.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. Input Offset Voltage Distribution

Figure 8. Offset Voltage Drift Distribution

Figure 9. Input Offset Voltage vs. Common-Mode Voltage

Figure 10. Input Bias Current vs. Temperature

Figure 11. Output Swing Saturation Voltage vs. Load Current

Figure 12. Output Swing Saturation Voltage vs. Temperature, $I_L = 1 \text{ mA}$

Figure 13. Output Swing Saturation Voltage vs. Temperature, $I_L = 10 \text{ mA}$

Figure 14. Open-Loop Gain and Phase Shift vs. Frequency

Figure 15. Closed-Loop Output Impedance vs. Frequency

Figure 16. CMRR vs. Frequency

Figure 17. PSRR vs. Frequency

Figure 18. Small Signal Overshoot vs. Load Capacitance

Figure 19. Supply Current vs. Temperature

Figure 20. Supply Current vs. Supply Voltage (Dual-Supply Configuration), $T_A = 25^{\circ}\text{C}$

Figure 21. 0.1 Hz to 10 Hz Input Voltage Noise

Figure 22. Small Signal Transient Response

Figure 23. Large Signal Transient Response

Figure 24. Positive Overload Recovery

Figure 25. Negative Overload Recovery

Figure 26. Voltage Noise Density vs. Frequency

Figure 27. Input Offset Voltage Distribution

Figure 28. Offset Voltage Drift Distribution

Figure 29. Input Offset Voltage vs. Common-Mode Voltage

Figure 30. Output Swing Saturation Voltage vs. Load Current

Figure 31. Closed-Loop Output Impedance vs. Frequency

Figure 32. Large Signal Transient Response

Figure 33. No Phase Reversal

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-A A

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 34. 8-Lead Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MO-229-WEED-4

Figure 35. 8-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-8-13) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-187-AA

Figure 36. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 37. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MO-153-AB-1

Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
AD8661ARZ	-40°C to +125°C	8-Lead Small Outline Package [SOIC_N]	R-8	
AD8661ARZ-REEL	-40°C to +125°C	8-Lead Small Outline Package [SOIC_N]	R-8	
AD8661ARZ-REEL7	-40°C to +125°C	8-Lead Small Outline Package [SOIC_N]	R-8	
AD8661ACPZ-R2	-40°C to +85°C	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-13	AOM
AD8661ACPZ-REEL7	-40°C to +85°C	8-Lead Lead Frame Chip Scale Package [LFCSP]	CP-8-13	AOM
AD8662ARZ	−40°C to +125°C	8-Lead Small Outline Package [SOIC_N]	R-8	
AD8662ARZ-REEL	-40°C to +125°C	8-Lead Small Outline Package [SOIC_N]	R-8	
AD8662ARZ-REEL7	-40°C to +125°C	8-Lead Small Outline Package [SOIC_N]	R-8	
AD8662ARMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A10
AD8662ARMZ-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A10
AD8664ARZ	-40°C to +125°C	14-Lead Standard Small Outline Package [SOIC_N]	R-14	
AD8664ARZ-REEL	-40°C to +125°C	14-Lead Standard Small Outline Package [SOIC_N]	R-14	
AD8664ARZ-REEL7	-40°C to +125°C	14-Lead Standard Small Outline Package [SOIC_N]	R-14	
AD8664ARUZ	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14	
AD8664ARUZ-REEL	−40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14	

 $^{^{1}}$ Z = RoHS Compliant Part.

NOTES