Serie numeriche

1. Se $\{a_n\}$ è una successione e $\{S_n\}$ è la successione delle somme parziali costruite a partire da $\{a_n\}$, tra i seguenti enunciati si indichino quelli sicuramente veri.

 \square La serie numerica di termini a_n converge se e solo se la successione $\{a_n\}$ converge

 \square La serie numerica di termini a_n converge se e solo se la successione $\{a_n\}$ é infinitesima

 \square La serie numerica di termini a_n converge se e solo se la successione $\{S_n\}$ converge

 \square La serie numerica di termini a_n diverge se e solo se la successione $\{S_n\}$ diverge

2. Data una serie $\sum_{n=1}^{\infty} a_n$, tra i seguenti enunciati si indichino quelli veri.

 \square Se la serie converge allora la successione $\{a_n\}$ converge a 0

 \square Se la successione $\{a_n\}$ non converge a 0 allora la serie non converge

 \square Se la serie è divergente a $+\infty$ allora la successione $\{a_n\}$ diverge a $+\infty$

 \square Se la successione $\{a_n\}$ diverge allora la serie converge

3. Se $\{a_n\}$ è una successione di numeri reali positivi, tra i seguenti enunciati si indichino quelli sicuramente veri.

 \square La successione $\{S_n\}$ delle somme parziali costruite a partire da $\{a_n\}$ è una successione di numeri positivi

 \square La successione $\{S_n\}$ delle somme parziali costruite a partire da $\{a_n\}$ può essere illimitata superiormente

 \square La successione $\{S_n\}$ delle somme parziali costruite a partire da $\{a_n\}$ è una successione monotona crescente

 \square La successione $\{S_n\}$ delle somme parziali costruite a partire da $\{a_n\}$ è una successione limitata superiormente

4. La serie geometrica $\sum_{n=0}^{\infty} q^n$ è

 \Box convergente se q=3

 \square irregolare se q = -1

 \Box divergente se q=2

 \square convergente se $q=-\frac{1}{2}$

- 5. La serie armonica generalizzata $\sum_{n=1}^{\infty} \frac{1}{n^a}$ è
 - \square convergente se a=1
 - \Box convergente se a=2
 - \Box e' divergente se a=3
 - \Box convergente se $a = \frac{1}{2}$
- 6. Se $\{a_n\}$ è una successione tale che

$$0 \le a_n \le \frac{2}{n^3} \quad \forall n \ge 1,$$

tra i seguenti enunciati si indichino quelli sicuramente veri.

- \square La serie $\sum_{n=1}^{\infty} a_n$ è divergente a $+\infty$
- \square La serie $\sum_{n=1}^{\infty} a_n$ è convergente
- \square La serie $\sum_{n=1}^{\infty} a_n$ è irregolare
- \square La serie $\sum_{n=1}^{\infty} a_n$ non è divergente
- 7. Se $\{a_n\}$ è una successione tale che

$$\frac{1}{n} \le a_n \quad \forall n \ge 1,$$

tra i seguenti enunciati si indichino quelli sicuramente veri.

- \square La serie $\sum_{n=1}^{\infty} a_n$ è convergente
- \square La serie $\sum_{n=1}^{\infty} a_n$ è irregolare
- \square La serie $\sum_{n=1}^{\infty} a_n$ puo avere qualunque tipo di comportamento
- \Box La serie $\sum_{n=1}^{\infty} a_n$ è divergente a $+\infty$

8. Se $\{a_n\}$ e $\{b_n\}$ sono due successioni di numeri positivi tali che esista

$$\lim_{n\to+\infty}\frac{a_n}{b_n}=I,$$

tra i seguenti enunciati si indichino quelli sicuramente veri.

- \square Se I=2 allora la serie di termini a_n e quella di termini b_n hanno lo stesso comportamento
- \square Se I=0 e la serie di termini b_n diverge a $+\infty$, anche quella di termini a_n diverge a $+\infty$
- \square Se $I=+\infty$ e la serie di termini b_n diverge a $+\infty$, anche quella di termini a_n diverge a $+\infty$
- \square Se $I=+\infty$ allora la serie di termini a_n e quella di termini b_n divergono entrambe a $+\infty$
- 9. Tra i seguenti enunciati si indichino quelli veri.
 - ☐ Ogni serie assolutamente convergente è convergente
 - ☐ Una serie è assolutamente convergente se e solo se è convergente
 - ☐ Ogni serie convergente è assolutamente convergente
 - ☐ Ogni serie convergente, se è a termini positivi, è assolutamente convergente
- 10. Tra le seguenti serie numeriche si indichino quelle che verificano le ipotesi del criterio di Leibnitz.

 - $\square \sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n}$
 - $\square \sum_{n=1}^{\infty} (-1)^n e^n$
 - $\square \sum_{n=1}^{\infty} (-1)^n e^{-n}$
 - $\square \sum_{n=1}^{\infty} (-1)^n \frac{1}{n + \log n}$