Practice Midterm

Exercise 1 [11 points]

Let X_1, \ldots, X_n be iid with pdf

$$f(x;\theta) = \frac{1}{\sqrt{2\pi x^3}} e^{-\frac{x}{2\theta^2} + \frac{1}{\theta} - \frac{1}{2x}}, \qquad x > 0,$$

where $\theta > 0$ is an unknown parameter.

- (a) Find the MLE of θ .
- (b) Show that $T(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^n X_i$ is an MVUE of θ . You may use without proof that $\mathbb{E}[X_1] = \theta$ and $\text{Var}(X_1) = \theta^3$.

Exercise 2 [14 points]

Let X_1, \ldots, X_n be iid with pdf

$$f(x;\theta) = 3\theta^3 x^{-4} I_{[\theta,\infty)}(x), \qquad x > 0,$$

where $\theta > 0$ is an unknown parameter.

- (a) Find the MLE of θ . Include a sketch of the likelihood function in your argument.
- (b) Find an MOM estimator of θ .
- (c) Find a sufficient statistic for θ and discuss its implications on the MOM estimator you found in b).

Note: You won't get points if you suggest something trivial like $T(X_1, \ldots, X_n) = (X_1, \ldots, X_n)$ as a sufficient statistic.

Exercise 3 [8 points]

Let X_1, \ldots, X_n be iid Gamma $(2, \beta)$ -distributed for some unknown $\beta > 0$.

- (a) For $\alpha \in (0,1)$, construct a one-sided $(1-\alpha)$ -confidence interval for β of the form (A,∞) , where A is some statistic of X_1,\ldots,X_n .
- (b) For n = 10, $\overline{x}_n = 4.2$ and $\alpha = 0.05$, compute the endpoint A.

Exercise 4 [8 points]

Let X_1, \ldots, X_n be iid and Uniform([1, 1 + θ])-distributed, where $\theta > 0$ is an unknown parameter. The variance of this distribution is $\frac{\theta^2}{12}$.

- (a) How do we have to choose $g(\theta)$ such that $T(X_1, \ldots, X_n) = \log(\overline{X}_n)$ is a consistent estimator for $g(\theta)$?
- (b) Determine the asymptotic distribution of $T(X_1, \ldots, X_n) = \log(\overline{X}_n)$.

Sampling distributions

Definition: The gamma distribution $Gamma(\alpha, \lambda)$ with shape parameter $\alpha > 0$ and scale parameter $\lambda > 0$ has density

$$f(x; \alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha - 1} I_{(0, \infty)}(x).$$

Properties:

- $Gamma(1, \lambda) = Exp(\lambda)$
- $X \sim \text{Gamma}(\alpha, \lambda) \implies cX \sim \text{Gamma}(\alpha, \frac{\lambda}{c})$
- $X_i \sim \text{Gamma}(\alpha_i, \lambda)$ independent $\implies \sum_{i=1}^n X_i \sim \text{Gamma}(\sum_{i=1}^n \alpha_i, \lambda)$
- If $X \sim \text{Gamma}(\alpha, \lambda)$, then

$$\mathbb{E}[X] = \frac{\alpha}{\lambda}, \quad \text{Var}(X) = \frac{\alpha}{\lambda^2}, \quad \mathbb{E}[X^k] = \frac{\prod_{i=1}^k (\alpha + i - 1)}{\lambda^k}.$$

Definition: If $Z_i \stackrel{\text{iid}}{\sim} N(0,1)$, the distribution of $W_m := \sum_{i=1}^m Z_i^2$ is called the χ^2 -distribution with m degrees of freedom. We write

$$W_m \sim \chi_m^2$$
.

Theorem: $\chi_m^2 = \operatorname{Gamma}(\frac{m}{2}, \frac{1}{2}).$

Consequences:

- $X \sim \chi_m^2 \implies \mathbb{E}[X] = m, \operatorname{Var}(X) = 2m$
- $X_i \sim \chi_{m_i}^2$ independent $\implies \sum_{i=1}^n X_i \sim \chi_{\sum_{i=1}^n m_i}^2$

Proposition: If X_1, \ldots, X_n are iid with mean μ and variance $\sigma^2 < \infty$, then

$$X_i \sim N(\mu, \sigma^2) \quad \iff \quad \text{For all } n \in \mathbb{N}, \, \overline{X}_n \text{ and } s_n^2 \text{ are independent rv's.}$$

In this case,

$$\overline{X}_n \sim N(\mu, \frac{\sigma^2}{n}), \qquad \frac{n-1}{\sigma^2} s_n^2 \sim \chi_{n-1}^2.$$

Definition: If $Z \sim N(0,1)$ and $V \sim \chi_n^2$ are independent, then

$$T:=\frac{Z}{\sqrt{V/n}}$$

is said to follow a **t-distribution with** n degrees of freedom. We write $T \sim t_n$.

Theorem: If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, then

$$\frac{\overline{X}_n - \mu}{\sqrt{s_n^2/n}} \sim t_{n-1}.$$

Table of the χ^2 Distribution

If X has a χ^2 distribution with m degrees of freedom, this table gives the value of x such that $\Pr(X \le x) = p$, the p quantile of X.

					p				
m	.005	.01	.025	.05	.10	.20	.25	.30	.40
1	.0000	.0002	.0010	.0039	.0158	.0642	.1015	.1484	.2750
2	.0100	.0201	.0506	.1026	.2107	.4463	.5754	.7133	1.022
3	.0717	.1148	.2158	.3518	.5844	1.005	1.213	1.424	1.869
4	.2070	.2971	.4844	.7107	1.064	1.649	1.923	2.195	2.753
5	.4117	.5543	.8312	1.145	1.610	2.343	2.675	3.000	3.655
6	.6757	.8721	1.237	1.635	2.204	3.070	3.455	3.828	4.570
7	.9893	1.239	1.690	2.167	2.833	3.822	4.255	4.671	5.493
8	1.344	1.647	2.180	2.732	3.490	4.594	5.071	5.527	6.423
9	1.735	2.088	2.700	3.325	4.168	5.380	5.899	6.393	7.357
10	2.156	2.558	3.247	3.940	4.865	6.179	6.737	7.267	8.295
11	2.603	3.053	3.816	4.575	5.578	6.989	7.584	8.148	9.237
12	3.074	3.571	4.404	5.226	6.304	7.807	8.438	9.034	10.18
13	3.565	4.107	5.009	5.892	7.042	8.634	9.299	9.926	11.13
14	4.075	4.660	5.629	6.571	7.790	9.467	10.17	10.82	12.08
15	4.601	5.229	6.262	7.261	8.547	10.31	11.04	11.72	13.03
16	5.142	5.812	6.908	7.962	9.312	11.15	11.91	12.62	13.98
17	5.697	6.408	7.564	8.672	10.09	12.00	12.79	13.53	14.94
18	6.265	7.015	8.231	9.390	10.86	12.86	13.68	14.43	15.89
19	6.844	7.633	8.907	10.12	11.65	13.72	14.56	15.35	16.85
20	7.434	8.260	9.591	10.85	12.44	14.58	15.45	16.27	17.81
21	8.034	8.897	10.28	11.59	13.24	15.44	16.34	17.18	18.77
22	8.643	9.542	10.98	12.34	14.04	16.31	17.24	18.10	19.73
23	9.260	10.20	11.69	13.09	14.85	17.19	18.14	19.02	20.69
24	9.886	10.86	12.40	13.85	15.66	18.06	19.04	19.94	21.65
25	10.52	11.52	13.12	14.61	16.47	18.94	19.94	20.87	22.62
30	13.79	14.95	16.79	18.49	20.60	23.36	24.48	25.51	27.44
40	20.71	22.16	24.43	26.51	29.05	32.34	33.66	34.87	36.16
50	27.99	29.71	32.36	34.76	37.69	41.45	42.94	44.31	46.86
60	35.53	37.48	40.48	43.19	46.46	50.64	52.29	53.81	56.62
70	43.27	45.44	48.76	51.74	55.33	59.90	61.70	63.35	66.40
80	51.17	53.54	57.15	60.39	64.28	69.21	71.14	72.92	76.19
90	59.20	61.75	65.65	69.13	73.29	78.56	80.62	82.51	85.99
100	67.33	70.06	74.22	77.93	82.86	87.95	90.13	92.13	95.81

[&]quot;Table of the X2 Distribution" adapted in part from "A new table of percentage points of the chi-square distribution" by H. Leon Harter. From BIOMETRIKA, vol 51(1964), pp. 231–239.

[&]quot;Table of the X2 Distribution" adapted in part from the BIOMETRIKA TABLES FOR STATISTI-CIANS, Vol. 1, 3rd ed., Cambridge University Press, © 1966, edited by E.S. Pearson and H.O. Hartley.

Table of the χ^2 Distribution (continued)

	p												
.50	.60	.70	.75	.80	.90	.95	.975	.99	.99:				
.4549	.7083	1.074	1.323	1.642	2.706	3.841	5.024	6.635	7.879				
1.386	1.833	2.408	2.773	3.219	4.605	5.991	7.378	9.210	10.60				
2.366	2.946	3.665	4.108	4.642	6.251	7.815	9.348	11.34	12.84				
3.357	4.045	4.878	5.385	5.989	7.779	9.488	11.14	13.28	14.86				
4.351	5.132	6.064	6.626	7.289	9.236	11.07	12.83	15.09	16.75				
5.348	6.211	7.231	7.841	8.558	10.64	12.59	14.45	16.81	18.55				
6.346	7.283	8.383	9.037	9.803	12.02	14.07	16.01	18.48	20.28				
7.344	8.351	9.524	10.22	11.03	13.36	15.51	17.53	20.09	21.95				
8.343	9.414	10.66	11.39	12.24	14.68	16.92	19.02	21.67	23.59				
9.342	10.47	11.78	12.55	13.44	15.99	18.31	20.48	23.21	25.19				
10.34	11.53	12.90	13.70	14.63	17.27	19.68	21.92	24.72	26.76				
11.34	12.58	14.01	14.85	15.81	18.55	21.03	23.34	26.22	28.30				
12.34	13.64	15.12	15.98	16.98	19.81	22.36	24.74	27.69	29.82				
13.34	14.69	16.22	17.12	18.15	21.06	23.68	26.12	29.14	31.32				
14.34	15.73	17.32	18.25	19.31	22.31	25.00	27.49	30.58	32.80				
15.34	16.78	18.42	19.37	20.47	23.54	26.30	28.85	32.00	34.27				
16.34	17.82	19.51	20.49	21.61	24.77	27.59	30.19	33.41	35.72				
17.34	18.87	20.60	21.60	22.76	25.99	28.87	31.53	34.81	37.16				
18.34	19.91	21.69	22.72	23.90	27.20	30.14	32.85	36.19	38.58				
19.34	20.95	22.77	23.83	25.04	28.41	31.41	34.17	37.57	40.00				
20.34	21.99	23.86	24.93	26.17	29.62	32.67	35.48	38.93	41.40				
21.34	23.03	24.94	26.04	27.30	30.81	33.92	36.78	40.29	42.80				
22.34	24.07	26.02	27.14	28.43	32.01	35.17	38.08	41.64	44.18				
23.34	25.11	27.10	28.24	29.55	33.20	36.42	39.36	42.98	45.56				
24.34	26.14	28.17	29.34	30.68	34.38	37.65	40.65	44.31	46.93				
29.34	31.32	33.53	34.80	36.25	40.26	43.77	46.98	50.89	53.67				
39.34	41.62	44.16	45.62	47.27	51.81	55.76	59.34	63.69	66.77				
49.33	51.89	54.72	56.33	58.16	63.17	67.51	71.42	76.15	79.49				
59.33	62.13	65.23	66.98	68.97	74.40	79.08	83.30	88.38	91.95				
69.33	72.36	75.69	77.58	79.71	85.53	90.53	95.02	100.4	104.2				
79.33	82.57	86.12	88.13	90.41	96.58	101.9	106.6	112.3	116.3				
89.33	92.76	96.52	98.65	101.1	107.6	113.1	118.1	124.1	128.3				
99.33	102.9	106.9	109.1	111.7	118.5	124.3	129.6	135.8	140.2				

Table of the t Distribution

If X has a t distribution with m degrees of freedom, the table gives the value of x such that $Pr(X \le x) = p$.

m	p = .55	.60	.65	.70	.75	.80	.85	.90	.95	.975	.99	.995
1	.158	.325	.510	.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657
2	.142	.289	.445	.617	.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925
3	.137	.277	.424	.584	.765	.978	1.250	1.638	2.353	3.182	4.541	5.841
4	.134	.271	.414	.569	.741	.941	1.190	1.533	2.132	2.776	3.747	4.604
5	.132	.267	.408	.559	.727	.920	1.156	1.476	2.015	2.571	3.365	4.032
6	.131	.265	.404	.553	.718	.906	1.134	1.440	1.943	2.447	3.143	3.707
7	.130	.263	.402	.549	.711	.896	1.119	1.415	1.895	2.365	2.998	3.499
8	.130	.262	.399	.546	.706	.889	1.108	1.397	1.860	2.306	2.896	3.355
9	.129	.261	.398	.543	.703	.883	1.100	1.383	1.833	2.262	2.821	3.250
10	.129	.260	.397	.542	.700	.879	1.093	1.372	1.812	2.228	2.764	3.169
11	.129	.260	.396	.540	.697	.876	1.088	1.363	1.796	2.201	2.718	3.106
12	.128	.259	.395	.539	.695	.873	1.083	1.356	1.782	2.179	2.681	3.055
13	.128	.259	.394	.538	.694	.870	1.079	1.350	1.771	2.160	2.650	3.012
14	.128	.258	.393	.537	.692	.868	1.076	1.345	1.761	2.145	2.624	2.977
15	.128	.258	.393	.536	.691	.866	1.074	1.341	1.753	2.131	2.602	2.947
16	.128	.258	.392	.535	.690	.865	1.071	1.337	1.746	2.120	2.583	2.921
17	.128	.257	.392	.534	.689	.863	1.069	1.333	1.740	2.110	2.567	2.898
18	.127	.257	.392	.534	.688	.862	1.067	1.330	1.734	2.101	2.552	2.878
19	.127	.257	.391	.533	.688	.861	1.066	1.328	1.729	2.093	2.539	2.861
20	.127	.257	.391	.533	.687	.860	1.064	1.325	1.725	2.086	2.528	2.845
21	.127	.257	.391	.532	.686	.859	1.063	1.323	1.721	2.080	2.518	2.831
22	.127	.256	.390	.532	.686	.858	1.061	1.321	1.717	2.074	2.508	2.819
23	.127	.256	.390	.532	.685	.858	1.060	1.319	1.714	2.069	2.500	2.807
24	.127	.256	.390	.531	.685	.857	1.059	1.318	1.711	2.064	2.492	2.797
25	.127	.256	.390	.531	.684	.856	1.058	1.316	1.708	2.060	2.485	2.787
26	.127	.256	.390	.531	.684	.856	1.058	1.315	1.706	2.056	2.479	2.779
27	.127	.256	.389	.531	.684	.855	1.057	1.314	1.703	2.052	2.473	2.771
28	.127	.256	.389	.530	.683	.855	1.056	1.313	1.701	2.048	2.467	2.763
29	.127	.256	.389	.530	.683	.854	1.055	1.311	1.699	2.045	2.462	2.756
30	.127	.256	.389	.530	.683	.854	1.055	1.310	1.697	2.042	2.457	2.750
40	.126	.255	.388	.529	.681	.851	1.050	1.303	1.684	2.021	2.423	2.704
60	.126	.254	.387	.527	.679	.848	1.046	1.296	1.671	2.000	2.390	2.660
120	.126	.254	.386	.526	.677	.845	1.041	1.289	1.658	1.980	2.358	2.617
∞	.126	.253	.385	.524	.674	.842	1.036	1.282	1.645	1.960	2.326	2.576

Table III, "Table of the t Distribution" from STATISTICAL TABLES FOR BIOLOGICAL, AGRICULTURAL, AND MEDICAL RESEARCH by R.A. Fisher and F. Yates. © 1963 by Pearson Education, Ltd.

Table of the Standard Normal Distribution Function

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{(2\pi)^{1/2}} \exp\left(-\frac{1}{2}u^2\right) du$$

				(=)					
x	$\Phi(x)$	x	$\Phi(x)$	х	$\Phi(x)$	x	$\Phi(x)$	х	$\Phi(x)$
0.00	0.5000	0.60	0.7257	1.20	0.8849	1.80	0.9641	2.40	0.9918
0.01	0.5040	0.61	0.7291	1.21	0.8869	1.81	0.9649	2.41	0.9920
0.02	0.5080	0.62	0.7324	1.22	0.8888	1.82	0.9656	2.42	0.9922
0.03	0.5120	0.63	0.7357	1.23	0.8907	1.83	0.9664	2.43	0.9925
0.04	0.5160	0.64	0.7389	1.24	0.8925	1.84	0.9671	2.44	0.9927
0.05	0.5199	0.65	0.7422	1.25	0.8944	1.85	0.9678	2.45	0.9929
0.06	0.5239	0.66	0.7454	1.26	0.8962	1.86	0.9686	2.46	0.9931
0.07	0.5279	0.67	0.7486	1.27	0.8980	1.87	0.9693	2.47	0.9932
0.08	0.5319	0.68	0.7517	1.28	0.8997	1.88	0.9699	2.48	0.9934
0.09	0.5359	0.69	0.7549	1.29	0.9015	1.89	0.9706	2.49	0.9936
$0.10 \\ 0.11$	0.5398 0.5438	0.70 0.71	0.7580 0.7611	1.30 1.31	0.9032 0.9049	1.90 1.91	0.9713 0.9719	2.50 2.52	0.9938 0.9941
0.11	0.5438	0.71	0.7611	1.31	0.9049	1.91	0.9719	2.54	0.9941
0.12	0.5517	0.72	0.7673	1.33	0.9082	1.92	0.9720	2.56	0.9948
0.13	0.5557	0.73	0.7704	1.34	0.9092	1.93	0.9732	2.58	0.9951
0.15	0.5596	0.75	0.7734	1.35	0.9115	1.95	0.9744	2.60	0.9953
0.16	0.5636	0.76	0.7764	1.36	0.9131	1.96	0.9750	2.62	0.9956
0.17	0.5675	0.77	0.7794	1.37	0.9147	1.97	0.9756	2.64	0.9959
0.18	0.5714	0.78	0.7823	1.38	0.9162	1.98	0.9761	2.66	0.9961
0.19	0.5753	0.79	0.7852	1.39	0.9177	1.99	0.9767	2.68	0.9963
0.20	0.5793	0.80	0.7881	1.40	0.9192	2.00	0.9773	2.70	0.9965
0.21	0.5832	0.81	0.7910	1.41	0.9207	2.01	0.9778	2.72	0.9967
0.22	0.5871	0.82	0.7939	1.42	0.9222	2.02	0.9783	2.74	0.9969
0.23	0.5910	0.83	0.7967	1.43	0.9236	2.03	0.9788	2.76	0.9971
0.24	0.5948	0.84	0.7995	1.44	0.9251	2.04	0.9793	2.78	0.9973
0.25	0.5987	0.85	0.8023	1.45	0.9265	2.05	0.9798	2.80	0.9974
0.26	0.6026	0.86	0.8051	1.46	0.9279	2.06	0.9803	2.82	0.9976
0.27	0.6064	0.87	0.8079	1.47	0.9292	2.07	0.9808	2.84	0.9977
0.28	0.6103	0.88	0.8106	1.48	0.9306	2.08	0.9812	2.86	0.9979
0.29	0.6141	0.89	0.8133 0.8159	1.49	0.9319 0.9332	2.09	0.9817	2.88	0.9980
0.30 0.31	0.6179 0.6217	0.90 0.91	0.8139	1.50 1.51	0.9332	2.10 2.11	0.9821 0.9826	2.90 2.92	0.9981 0.9983
0.31	0.6217	0.91	0.8212	1.51	0.9343	2.11	0.9820	2.92	0.9983
0.32	0.6293	0.92	0.8212	1.53	0.9370	2.12	0.9834	2.94	0.9985
0.34	0.6331	0.94	0.8264	1.54	0.9382	2.14	0.9838	2.98	0.9986
0.35	0.6368	0.95	0.8289	1.55	0.9394	2.15	0.9842	3.00	0.9987
0.36	0.6406	0.96	0.8315	1.56	0.9406	2.16	0.9846	3.05	0.9989
0.37	0.6443	0.97	0.8340	1.57	0.9418	2.17	0.9850	3.10	0.9990
0.38	0.6480	0.98	0.8365	1.58	0.9429	2.18	0.9854	3.15	0.9992
0.39	0.6517	0.99	0.8389	1.59	0.9441	2.19	0.9857	3.20	0.9993
0.40	0.6554	1.00	0.8413	1.60	0.9452	2.20	0.9861	3.25	0.9994
0.41	0.6591	1.01	0.8437	1.61	0.9463	2.21	0.9864	3.30	0.9995
0.42	0.6628	1.02	0.8461	1.62	0.9474	2.22	0.9868	3.35	0.9996
0.43	0.6664	1.03	0.8485	1.63	0.9485	2.23	0.9871	3.40	0.9997
0.44	0.6700	1.04	0.8508	1.64	0.9495	2.24	0.9875	3.45	0.9997
0.45	0.6736	1.05	0.8531	1.65	0.9505	2.25	0.9878	3.50	0.9998
0.46	0.6772	1.06	0.8554	1.66	0.9515	2.26	0.9881	3.55	0.9998
0.47	0.6808	1.07 1.08	0.8577 0.8599	1.67	0.9525 0.9535	2.27 2.28	0.9884 0.9887	3.60	0.9998 0.9999
$0.48 \\ 0.49$	0.6844 0.6879	1.08	0.8399	1.68 1.69	0.9535	2.20	0.9890	3.65 3.70	0.9999
0.49	0.6879	1.10	0.8643	1.70	0.9543	2.29	0.9893	3.75	0.9999
0.50	0.6913	1.10	0.8665	1.70	0.9564	2.30	0.9896	3.73	0.9999
0.52	0.6985	1.11	0.8686	1.72	0.9573	2.32	0.9898	3.85	0.9999
0.53	0.7019	1.13	0.8708	1.73	0.9582	2.33	0.9901	3.90	1.0000
0.54	0.7054	1.14	0.8729	1.74	0.9591	2.34	0.9904	3.95	1.0000
0.55	0.7088	1.15	0.8749	1.75	0.9599	2.35	0.9906	4.00	1.0000
0.56	0.7123	1.16	0.8770	1.76	0.9608	2.36	0.9909		
0.57	0.7157	1.17	0.8790	1.77	0.9616	2.37	0.9911		
0.58	0.7190	1.18	0.8810	1.78	0.9625	2.38	0.9913		
0.59	0.7224	1.19	0.8830	1.79	0.9633	2.39	0.9916		

 $[\]hbox{``Table of the Standard Normal Distribution Function'' from HANDBOOK\ OF\ STATISTICAL\ TABLES}$ by Donald B. Owen. @ 1962 by Addison-Wesley.