RFID 模块功能及操作说明 (型号: MIFARE522)

— 、	硬件描述 ·····	. 2
_,	产品参数 ·····	. 2
三、	功能简介	. 3
四、	RFID 模块使用 PC 软件操作说明: ····································	- 4
	1、RFID 模块与 USB 转 TTL 串口连接方式 ······	- 4
	2、如何使用 RS522PC_DEMO 软件对 IC 卡进行读、写、加减值、修改密码操作 ·········	. 5
	3、单指令读、单指令写说明	. 7
五、	RFID 模块与 RS232 转 TTL 串口模块、51 单片机连线方式 ······	. 8
	注意事项 ·····	

一、硬件描述:

MIFARE522 实物图如图 1 所示。

该模块的供电电压为直流 3.3~9V, UART TTL 电平输出。接线简单,图 1 中 J2 为接线引脚, J1 为生产编程引脚(用户不需要理会)。J2 的引脚描述如表 1 所示。

表 1 J2 的引脚描述

引脚	描述	
VCC5. 0	电源正极输入,	3. 3 [~] 9V
TXD	模块数据输出,	接 MCU 的 RXD
RXD	模块数据输入,	接 MCU 的 TXD
GND	电源地	

二、产品参数:

产品型号: MIFARE522

工作电流: 13—26mA/直流 3.3V 空闲电流: 10-13mA/直流 3.3V

休眠电流: <80uA 峰值电流: <30mA 工作频率: 13.56MHz 读卡距离: 0~65mm 接口: UART TTL

数据传输速率:最大10Mbit/s

读卡速度:读 ID 每秒7次,读块数据每秒3次

物理特性: 尺寸: 50mm×50mm 环境工作温度: 摄氏-20—80 度 储存温度: 摄氏-40—85 度 湿度: 相对湿度 5%—95%

三、功能简介:

RFID 模块(型号; MIFARE522) 具有自动读取 IC 卡的 ID 号(即通电有 IC 卡靠近,就可以自动读取 16 进制的 IC 卡号,通过串口发出),及通过发送命令操作 RFID 模块读写卡(被动读写卡)功能。

本 RFID 读写模块默认情况下是通过发送命令读写卡的,若要设置成自动读卡,只要先把 J1 中间两个引脚(SWIM 和 GND)短接,然后 J2 引脚通电,连接设备,只要有 IC 卡靠近,模块就会自动读卡,通过串口发出 16 进制 IC 卡号。模块设置成自动读卡后,断开连接 J1 中间两个引脚的线,模块仍然会是自动读卡模式,若要改回被动读写卡模式,只要在 J1 中间两个引脚没被连接时,J2 引脚断电再接上就会恢复被动读写卡模式。如下图 2:

2.然后把J2的GND和VCC 引脚接电源,有IC卡靠近 即可以自动读卡,ID号通过 TXD输出

图 2.

先把 RFID 模块 J1 中间两个引脚短接,然后把 J2 引脚与 USB 转 TTL 串口模块连接,再插到电脑上,接着打开串口调试助手软件 sscom3.2,用 IC 卡靠近模块,可以看到模块自动读取 IC 卡的 ID 号,通过串口输出,在串口调试助手软件 sscom3.2 显示出来,如下图 3:

图 3

注: 模块自带指示灯,在以下种情况下指示灯会亮:

- 1、自动读卡 ID 号成功,指示灯亮。
- 2、通过发命令"读块数据、写块数据、写值、读值、加值、减值、备份、单指令读、单指令写" 成功,指示灯亮。
- 3、通过发命令读卡 ID 成功,指示灯不会亮。(由于读写块数据都包括读卡 ID 步骤,如果设置发命令读卡 ID 成功指示灯会亮,那么当读写块数据时,只要"请求"-"防碰撞"成功,即使最后"选择"-"验证"-"读卡"-"写卡"失败,指示灯仍然会亮。所以设计上选择发命令读卡 ID 成功,指示灯不亮。)

四、RFID 模块使用 PC 软件操作说明:

本 RFID 读写模块为 UART TTL 接口,如果你的设备串口也是 UART TTL 即可直接连接通信,若你的设备为其它串口,则需要相应的转串口设备连接,如连接个人电脑就需要 USB 转 TTL 串口模块连接,如果连 RS232 设备串口则需要 RS232 转 TTL 串口模块连接。下面详细介绍在个人电脑上如何操作 RFID 模块读写 IC 卡。

(一) RFID 模块与 USB 转 TTL 串口模块进行连接,必须准确连接才能通信,如下图 4

RFID 读写模块的 GND 接 USB 转 TTL 串口模块的 GND,

RFID 读写模块的 RXD 接 USB 转 TTL 串口模块的 TXD,

RFID 读写模块的 TXD 接 USB 转 TTL 串口模块的 RXD,

RFID 读写模块的 VCC5.0 接 USB 转 TTL 串口模块的 VCC5.0,

图 4

连接好后,请把 USB 转 TTL 串口模块插到电脑上,然后打开电脑的设备管理器,可以看到电脑给 USB 转 TTL 串口模块所分配的端口 2(COM2),如下图 5:

图 5

- 注: 1、使用 USB 转 TTL 串口模块前,请安装该模块的驱动程序。
 - 2、每台电脑所分配的端口都不一定相同, 所以必须到设备管理器里查看。
 - 3、若分配的端口不适合用,所以按以下方法改端口。详见下图 6:

(二)、如何使用 RC522PC_DEMO 软件,在个人电脑上操作 RFID 模块读写 IC 卡。

在电脑上打开 RC522PC_DEMO.exe , 可以看到下图 7 介面:

图 7

1、读卡方法:点击"打开串口"(若打开串口失败,说明系统分配的端口不适用,用户需要按图 3 方法改端口),打开串口后,点击"读卡 ID"即可以读到 IC卡的 ID号。用户若需要读取某块数据,先在"密匙"框输入正确的密匙,再在"块地址"框输入要读取的块号,然后点击"读块数据"即可,如下图 8 读取块 3 的数据:

串口 Prolific USB-to-S	erial Comm Port (CO	M2) ▼ 关i	一密匙一 利串口 FF FF	FF FF FF FF	o street in street
literitie osp-te-s	erial committee (CO		ajiii II	TT TT TT PF	密钥A ○ 密钥B
读出数据					
请求成功! 卡类理: 00 04 快类理: 00 04 卡类型: 07 01 a5 卡 10: 78 01 a5 3块密钥A5分证成功! 读取3块数据: 00 0	00 00 0 00 00 00 00 ££ 07	80 60 ff ff ff ff	ff ff		
	各键分隔) 66 77 88 99 aa bb	cc dd ee ff			
		cc dd ee ff 选择	验证	读卡	写卡
00 11 22 33 44 55 命令 请求	88 77 88 99 aa bb	选择			
00 11 22 33 44 55	65 77 88 99 aa bb		验证现	读卡	写卡卡片关闭
00 11 22 33 44 55 命令 请求	88 77 88 99 aa bb	选择			
00 11 22 33 44 55 命令 请求 写值	68 77 88 99 aa bb 防碰撞 读值	选择加值	減値	备份	

注:

②、点击"读块数据"功能等同于依次点击"请求"一"防碰撞"一"选择"一"验证"一"读卡"。

2、写块数据方法:在串口已打开的情况下,块地址框输入 1,点击"读块数据"可以见到 块 1 数据为 0,如下图 9。然后在"写数据"框输入 16 进制格式数据(如输入下图内容),接着点击"写块数据"写入数据,在读出数据框显示"写 1 块成功",表示已经成功写入,最后我们再读取块 1 的数据,可以看到刚才输入的 16 进制数据已经被写进了块 1,如图 10。

- 注: ①、点击"写块数据"功能等同于依次点击"请求"-"防碰撞"-"选择"-"验证"-"读卡"-"写卡"。
 - ②、M1 卡的块 0 出厂已被固化信息,是不能被写,只能读的。
- 3、写、加、减值:在串口已打开的情况下,假设要对块 1 进行写值,输入正确的密匙,在"原值块"框输入 1,在"值"框输入 5,然后依次点击"请求"-"防碰撞"-"选择"-"验证",都成功后,点击"写值",提示写入值成功,再点击"读值"可以看到读出值为 5。在"目标块"框输入 1,"值"框输入 5,然后点击"加值",加值成功再点击"读值"可以看到值已经变为 10,减值同理。

图 11

注: ①、"请求" - "防碰撞" - "选择" - "验证"任何一步失败,都需要从新开始,必须所有都成功才能进行"写值"、"读值"、"加值"、"减值"。

- ②、"写值"、"读值"都是对"原值块"进行操作。
- ③、"加值"、"减值"、"备份"是把"原值块"的值加、减、备份到"目标块"。
- ④、"原值块"、"目标块"必须处于同一扇区才能操作。不同的扇区不能进行加减值及备份。

- - ②、密码必须为已知的情况下才能修改。
 - ③、密码必须未被设定为不能修改的前提条件下才能修改。
 - ④、读出密码显示为"00 00 00 00 00"并不表示密码为此数据,密码是被加密的。
- 5、单指令读及单指令写:该两个按扭是对"原值块"进行读和写,通过一条指令就可以实现读或者写功能,对应使用说明书的块读及块写命令。

以上为通过 RC522PC DEMO 在个人电脑上操作 RFID 模块读写 IC 卡过程。

五、RFID 模块与 RS232 转 TTL 串口模块、51 单片机连线方式,如下图:

六、注意事项:

本店的模块每一块都是通过测试才发货的,所以保证一定是可用的,如果用户使用时发生通信不了,请检查以下情况:

- 1、本机操作选择的端口为 2, 不同的 PC 机端口不尽相同, 请用户根据自己的实际情况选择。若提示端口打开失败, 应该是端口选择错了。
- 2、若把 RFID 模块通过转串口接到电脑上,使用 RC522PC_DEMO 操作模块,发生软件卡死的情况,请详细检查连接线是否接错,是不是 RXD (输入)和 TXD (输出)接反了。
- **3**、建议把引脚用插针焊接好,或者把连接线直接焊到引脚上,如果引脚跟连接线接触不良,就会通信不了,发生软件卡死的现象。
- 4、若客户使用的 USB 转 TTL 串口模块不是从本店购买的,请注意你的 USB 转 TTL 串口模块不是焊了 RS232 芯片的,若是,这种是不适合用的。
- 5、使用本店的 PC 软件 RC522PC_DEMO 读写卡时,请确保 J1 中间两个引脚(SWIM 和 GND) 不被短接。因为 J1 中间两个引脚被短接时,模块处于自动读卡模式,在电脑只能用串口调试助手测试,只有模块处于发命令读写卡模式时,才能使用 RC522PC_DEMO 软件。