Обработка данных:

Размеры тел

	$a_{\scriptscriptstyle \mathrm{K}}$	a	b	c	$h_{\scriptscriptstyle m II}$	$r_{\scriptscriptstyle m L\!\!\!\!L}$	$h_{\scriptscriptstyle m I\!\!I}$	$r_{\scriptscriptstyle m I\!\!I}$
значение, см	9.2	9.9	4.9	14.9	9.6	4.3	1.6	6.15
ε	0.005	0.005	0.01	0.003	0.005	0.012	0.031	0.008

Таблица 1: Размеры исследуемых тел и их погрешности

Абсолютная погрешность измерения размеров линейкой составляет 0.05 см.

Периоды колебаний

	T	T	1 z	T	1x	T	ly	T_{1d}		T_{1e}		T_{1p}		T_{1m}		T_{2x}		$T_{2\mathrm{y}}$		$T_{2\mathrm{z}}$	
$T_{\rm c}$	cp, c	3.0	53	3.058		3.061		3.06		3.064		3.063		3.064		3.8		4.102		3.255	
$\sigma_{ ext{c.j.}}$	іуч, с	0.0	01	0.0	004	0.0	0.00 0.00		007	$07 \mid 0.00$		0.005		0.007		0.026		0.009		0.01	
$\sigma_{\text{\tiny IIG}}$	олн, с	0.	13	0.	0.13		13 0.13		0.	0.13		.13 0.		13	0.133		0.13		0.13		
ε_1	$\varepsilon_{\mathrm{полн}}$		43	0.0	0.043		43	43 0.043		0.043		0.0	.042 0.0		42	$2 \mid 0.035$		0.032		0.04	
	T		T_{i}	$T_{\rm 2d}$		2e	T_{2r}		T_{ϵ}	2p	$_{\rm p}$ T		T_{3x}		T_{3y}		$T_{4\mathrm{x}}$		T_{α}	4y	
	$T_{\rm cp},{ m c}$		3.4	92	3.358		3.8	$3.878 \mid 3.878 \mid 3.87$		146 2.5		557	57 3.606		4.226		3.266		3.247		
	$\sigma_{\rm случ}, {\rm c} = 0.0$		0.0	09	0.011		0.017		0.008		0.007		0.434		0.429		0.457		0.366		
	$\sigma_{\scriptscriptstyle{\Pi O J H}}$, c	0.	13	0.13		0.1	131 0.		13 0.		13	3 0.45		3 0.449		0.475		0.388		
	$\varepsilon_{ m no}$	н	0.0	$\overline{37}$	0.0	39	0.03		0.038		0.05		0.126		0.1	.06 0.1		45	$45 \mid 0.$		

Таблица 2: Средние значения периодов колебаний $(T_{\rm cp})$ и их погрешности

Систематическая погрешность для всех измерений одинакова и складывается из погрешности секундомера и скорости реакции экспериментатора, которая определяется с помощью измерения временного промежутка между двумя нажатиями на кнопку. В моем случае скорость реакции составляет 0.13 с, а погрешность секундомера - 0.001 с, следовательно ей можно пренебречь и принять систематическую погрешность равной 0.13 с.

Проверка соотношений периодов

• Параллелепипед

$$\frac{a^2T_{2x}^2 + b^2T_{2y}^2 + c^2T_{2z}^2}{a^2 + b^2 + c^2} = T_{2d}^2, \quad \frac{a^2T_{2x}^2 + b^2T_{2y}^2 + c^2T_{2z}^2}{a^2 + b^2 + c^2} = (12.125 \pm 0.622)c^2, \quad T_{2d}^2 = (12.194 \pm 0.260)c^2$$

$$\frac{b^2T_{2y}^2 + c^2T_{2z}^2}{c^2 + b^2} = T_{2e}^2, \quad \frac{b^2T_{2y}^2 + c^2T_{2z}^2}{c^2 + b^2} = (11.203 \pm 0.771)c^2, \quad T_{2e}^2 = (11.276 \pm 0.260)c^2$$

$$\frac{a^2T_{2x}^2 + c^2T_{2z}^2}{c^2 + a^2} = T_{2p}^2, \quad \frac{a^2T_{2x}^2 + c^2T_{2z}^2}{c^2 + a^2} = (11.773 \pm 0.664)c^2, \quad T_{2p}^2 = (11.875 \pm 0.260)c^2$$

$$\frac{b^2T_{2y}^2 + a^2T_{2x}^2}{a^2 + b^2} = T_{2m}^2, \quad \frac{b^2T_{2y}^2 + a^2T_{2x}^2}{a^2 + b^2} = (14.910 \pm 0.839)c^2, \quad T_{2m}^2 = (15.039 \pm 0.262)c^2$$

Куб

В справедливости соотношения: $T_{1z} = T_{1x} = T_{1y} = T_{1d} = T_{1e} = T_{1p} = T_{1m}$ можно убедиться, исходя из таблицы 2.

1

$$\begin{split} \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{3} &= T_{1\mathrm{d}}^2, \quad \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{3} = (9.347 \pm 0.459)c^2, \quad T_{1\mathrm{d}}^2 = (9.364 \pm 0.260)c^2 \\ \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{2} &= T_{1\mathrm{e}}^2, \quad \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{2} = (9.982 \pm 0.562)c^2, \quad T_{1\mathrm{e}}^2 = (9.388 \pm 0.260)c^2 \\ \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{z}}^2}{2} &= T_{1\mathrm{p}}^2, \quad \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{z}}^2}{2} = (9.973 \pm 0.562)c^2, \quad T_{1\mathrm{p}}^2 = (9.382 \pm 0.260)c^2 \\ \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{x}}^2}{2} &= T_{1\mathrm{m}}^2, \quad \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{x}}^2}{2} = (11.905 \pm 0.562)c^2, \quad T_{1\mathrm{m}}^2 = (9.388 \pm 0.260)c^2 \end{split}$$

• Цилиндр

$$\frac{T_{3\mathrm{y}}^2}{T_{3\mathrm{x}}^2} = 1 + \frac{h_{\mathrm{II}}^2}{3r_{\mathrm{II}}^2}, \quad \frac{T_{3\mathrm{y}}^2}{T_{3\mathrm{x}}^2} = (1.652 \pm 0.525), \quad 1 + \frac{h_{\mathrm{II}}^2}{3r_{\mathrm{II}}^2} = (2.661 \pm 0.004)$$

• Диск

$$\frac{T_{4\mathrm{y}}^2}{T_{4\mathrm{x}}^2} = 1 + \frac{h_{\mathrm{\pi}}^2}{3r_{\mathrm{\pi}}^2}, \quad \frac{T_{4\mathrm{y}}^2}{T_{4\mathrm{x}}^2} = (0.988 \pm 0.372), \quad 1 + \frac{h_{\mathrm{\pi}}^2}{3r_{\mathrm{\pi}}^2} = (1.023 \pm 0.001)$$

Эллипсоиды инерции

Поскольку мы не знаем сами моменты инерции, но знаем их соотношения и пропорциональность квадратам периодов, построим сечения эллипсоидов в произвольном масштабе, согласно уравнению эллипсоида:

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1$$

• Параллелепипед

$$A = \frac{1}{\sqrt{T_{2x}^2 - T_p^2}} = 0.356, \qquad B = \frac{1}{\sqrt{T_{2y}^2 - T_p^2}} = 0.312, \qquad C = \frac{1}{\sqrt{T_{2z}^2 - T_p^2}} = 0.496$$

Сечение плоскостью хг

Сечение плоскостью ху

Сечение плоскостью ух

Куб

$$A = B = \frac{1}{\sqrt{T_{1x}^2 - T_{p}^2}} = 0.596$$

• Диск

$$A = \frac{1}{\sqrt{T_{3x}^2 - T_p^2}} = 0.393, \qquad B = \frac{1}{\sqrt{T_{3y}^2 - T_p^2}} = 0.297$$

• Цилиндр

$$A = \frac{1}{\sqrt{T_{\text{4x}}^2 - T_{\text{p}}^2}} = 0.492, \qquad B = \frac{1}{\sqrt{T_{\text{4y}}^2 - T_{\text{p}}^2}} = 0.5$$

Сечение куба плоскостью ху

Сечение диска плоскостью ху

Сечение цилиндра плоскостью ху

Вывод:

Измерены периоды крутильных колебаний тел относительно различных осей. Из них вычислены отношения моментов инерции. Показано, что соотношения, связывающие моменты инерции, верно в пределах погрешности. Построены сечения эллипсоидов инерции главными осями симметрии. Показано, что у куба эллипсоид инерции является сферой, то есть моменты инерции относительно любой оси равны.