Examenul de bacalaureat național 2017 Proba E. c)

Matematică M_mate-info BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z + \overline{z} + z\overline{z} = 2 + i + 2 - i + (2 + i)(2 - i) =$	3p
	$=4+4-i^2=9$	2p
2.	$f(1) = m \Rightarrow 1 + 2 - 3 = m$	3 p
	m = 0	2 p
3.	$1 - \log_2 x = 0 \text{ sau } 2 - \log_2 x = 0$	3p
	x = 2 sau $x = 4$, care convin	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Mulțimea numerelor naturale de două cifre, care au cifra zecilor strict mai mică decât cifra unităților are 36 de elemente, deci sunt 36 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{36}{90} = \frac{2}{5}$	1p
5.		2
	M(3,2), unde punctul M este mijlocul segmentului AB	3 p
	CM = 3	2 p
6.	$ (1 + tg^2 x)\cos^2 x - (1 + ctg^2 x)\sin^2 x = \left(1 + \frac{\sin^2 x}{\cos^2 x}\right)\cos^2 x - \left(1 + \frac{\cos^2 x}{\sin^2 x}\right)\sin^2 x = $	3 p
	$= \cos^2 x + \sin^2 x - \left(\sin^2 x + \cos^2 x\right) = 0, \text{ pentru orice } x \in \left(0, \frac{\pi}{2}\right)$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(9) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 9 \\ -2 & -1 & 3 \end{pmatrix} \Rightarrow \det(A(9)) = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 9 \\ -2 & -1 & 3 \end{vmatrix} =$	2p
	=6+(-2)+(-18)-(-8)-(-9)-3=0	3 p
b)	$\det(A(a)) = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & a \\ -2 & -1 & 3 \end{vmatrix} = 9 - a$	3p
	Sistemul are soluție unică $\Leftrightarrow \det(A(a)) \neq 0$, deci $a \in \mathbb{R} \setminus \{9\}$	2 p
c)	Sistemul are soluția (x_0, y_0, z_0) , cu x_0 , y_0 și z_0 numere reale nenule, deci $a = 9$ și soluția sistemului este de forma $(5\alpha, -7\alpha, \alpha)$, $\alpha \in \mathbb{R}$	3p
	$-x_0 + y_0 + z_0 = -5\alpha + (-7\alpha) + \alpha = -11\alpha = 11(5\alpha + (-7\alpha) + \alpha) = 11(x_0 + y_0 + z_0)$	2p
2.a)	$x \circ y = xy + 7x + 7y + 49 - 7 =$	2p
	= x(y+7)+7(y+7)-7=(x+7)(y+7)-7, pentru orice numere reale x şi y	3 p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

b)	$x \circ x = (x+7)^2 - 7$, deci $(x+7)^2 - 7 = x$	2p
	$(x+7)(x+6) = 0 \Leftrightarrow x = -7 \text{ sau } x = -6$	3 p
c)	$(2017^{a} + 7)(-6 + 7) - 7 = 1 \Leftrightarrow 2017^{a} + 7 - 7 = 1$	3 p
	$2017^a = 1 \Leftrightarrow a = 0$	2p

SUBIECTUL al III-lea

(30 de puncte)

	(ev at pane)		
1.a)	$f'(x) = \frac{\frac{1}{x} \cdot (1 - x) - \ln x \cdot (-1)}{(1 - x)^2} =$	3 p	
	$= \frac{\frac{1-x}{x} + \ln x}{(1-x)^2} = \frac{1-x + x \ln x}{x(1-x)^2}, \ x \in (1, +\infty)$	2p	
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln x}{1 - x} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{-1} = 0$	3 p	
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p	
c)	$g:(1,+\infty) \to \mathbb{R}$, $g(x) = x \ln x - x + 1 \Rightarrow g'(x) = \ln x$, deci $g'(x) > 0$ pentru orice $x \in (1,+\infty)$	3 p	
	Funcția g este strict crescătoare pe $(1,+\infty)$ și, cum $\lim_{x\to 1} g(x) = 0$, obținem $g(x) > 0$, deci $x = x + 1$, pentru orice $x \in (1,+\infty)$	2 p	
2.a)	$\int_{0}^{1} \left(f(x) - 3x^{2} \right) dx = \int_{0}^{1} \left(e^{x} + 3x^{2} - 3x^{2} \right) dx = \int_{0}^{1} e^{x} dx =$	2p	
	$=e^{x}\begin{vmatrix}1\\0=e-1\end{vmatrix}$	3 p	
b)	$\int_{0}^{1} x f(x) dx = \int_{0}^{1} \left(x e^{x} + 3x^{3} \right) dx = (x - 1) e^{x} \left \frac{1}{0} + \frac{3x^{4}}{4} \right _{0}^{1} =$	3 p	
	$=1 \cdot e^0 + \frac{3}{4} = \frac{7}{4}$	2p	
c)	$g(x) = 3x^2 \Rightarrow \mathcal{A} = \int_0^n g(x) dx = \int_0^n 3x^2 dx = x^3 \Big _0^n = n^3$	3 p	
	$n^{3} = n^{2} - n + 1 \Leftrightarrow (n-1)(n^{2} + 1) = 0 \Leftrightarrow n = 1$	2p	