ИНСТИТУТ ТОЧНОЙ МЕХАНИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ им. С.А. Лебедева

Отдел автономных беспроводных систем

Спецификация прикладного протокола «ZigSwarm»

Гекк Максим

Пыптев Сергей

Москва

2007 год

Оглавление

1	Вве	едение	3
2	Атр	рибуты прикладных объектов	4
	2.1	Запрос значения атрибута	5
	2.2	Установка значения атрибута	6
	2.3	Возврат атрибута	8
	2.4	Общие атрибуты объектов	9
3	Изн	вещение о событии	10
	3.1	Ошибки доступа к атрибуту	13
4	Дио	спетчер узла	14
	4.1	Дополнительные атрибуты диспетчера	14
	4.2	События, генерируемых диспетчером узла	16
	4.3	Сброс узла	16
	4.4	Присоединение дочернего узла	17
	4.5	Отсоединение дочернего узла	18
	4.6	Доступ к хранилищу	19
		4.6.1 Запрос данных о событии	20
		4.6.2 Возврат данных о событии	21
		4.6.3 Удаление данных о событии	22
		4.6.4 Извещение об удалении события	22
	4.7	Запрос информации об объектах узла	23
	4.8	Информация об объектах узлах	24
Бі	ибли	ография	25

Перечень схем

1	Общая структура сообщения	4
2	Сообщение запрос значения атрибута	5
3	Сообщение запрос значений атрибутов	6
4	Сообщение установки значения атрибута	7
5	Сообщение установки значений атрибутов	8
6	Сообщение с атрибутом	8
7	Сообщение с атрибутами	9
8	Сообщение о несохраняемом событии	11
9	Сообщение о сохраняемом событии	12
10	Сообщение об ошибке доступа к атрибуту	13
11	Сообщение для сброса узла	17
12	Сообщение о присоединении узла	18
13	Сообщение об отсоединении узла	19
14	Сообщение-запрос данных о событии	20
15	Сообщение с данными о событии.	21
16	Сообщение об удалении данных о событии	22
17	Сообщение-извещение об удалении события	23
18	Сообщение-запрос информации об объектах	24
19	Информация об объектах узла	24

1 Введение

Сенсорная сеть представляет собой связанное множество узлов. Каждый узел обладает уникальным идентификатором. Один из узлов сети поддерживает постоянную связь с внешней системой. Такой узел называется базовым. В общем случае, узел сенсорной сети имеет более одного датчика или актуатора. Предполагается, что внешней системе заранее известны идентификаторы всех узлов сети, а также набор датчиков/актуаторов на каждом узле.

Для того, чтобы внешняя система могла адресовать свои сообщения определённым датчикам/актуаторам на узле, в данном протоколе используется концепция портов. Допустимый диапазон номеров портов от 0 до 255. Порт № 0 зарезервирован за диспетчером узла. Порт № 255 предназначен для широковещательных сообщений. Остальные порты распределяются между драйверами датчиков/актуаторов и другими прикладными объектами узла. Информация о том, что порт прослушивается определённым прикладным объектом, должна быть известна внешней системе.

Все поля сообщений, описанные в этом документе, передаются в том порядке в котором они представлены на соответствующих рисунках слева на право. В многобайтовых полях первым передаётся менее значимый байт (LSB - least significant byte first).

Общая структура сообщения прикладного протокола представлена на рис. 1.

Описание полей сообщения:

1). Порт назначения. Данное поле содержит номер порта того прикладного объекта, которому адресовано данное сообщение. Если поле содержит значение 255, то данное сообщение получат все при-

Октеты:1	1	1	1	÷
Порт	Порт	Тип	Длина	Тело сообщения
назначения	источника	сообщения	сообщения	

Рис. 1. Общая структура сообщения

кладные объекты узла.

- 2). Порт источника. Поле содержит номер порта отправителя данного сообщения.
- 3). Тип сообщения. Тип сообщения определяет структуру и семантику тела сообщения. Прикладные объекты могут использовать номера типов сообщений из диапазона от 32 до 255.
- 4). Длина сообщения. Длина тела сообщения в байтах.
- 5). Тело сообщения. Данная часть сообщения содержит информацию, передаваемую от источника к объекту назначения. Размер тела сообщения определяется типом сообщения, либо одним из полей тела сообщения.

Сообщение не может фрагментироваться в процессе передачи внутри сенсорной сети, но сетевой пакет может содержать более одного прикладного сообщения.

2 Атрибуты прикладных объектов

Любой прикладной объект может иметь набор атрибутов. Атрибут - это значение, которое характизует объект в своём классе. Каждый атрибут имеет номер из диапазона от 0до 255, уникальный для класса данно-

го прикладного объекта. Внешняя система должна заранее знать номера атрибутов прикладного объекта.

Ниже описываются сообщения, используемые для запроса (раздел 2.1), установки (раздел 2.2) и возврата (раздел 2.3) атрибута. В разделе 3.1 описано сообщение об ошибке доступа к атрибуту.

Есть атрибуты, которые присутствуют у всех объектов. Такие атрибуты описаны в разделе 2.4.

2.1 Запрос значения атрибута

Значение атрибута прикладного объекта может быть запрошено внешней системой, прикладным объектом данного узла, либо любого другого узла сенсорной сети. На рис. 2 представлена структура сообщения запроса атрибута.

Октеты:1	1	1	1	1
Порт назначения	Порт источника	Тип сообщения (0x00)	Длина сообщения	Номер атрибута

Рис. 2. Сообщение запрос значения атрибута.

- 1). Порт назначения. Значение данного поля должно быть равно номеру порта прикладного объекта, которому предназначено данное сообщение, или быть равным 255, если оно адресовано всем прикладным объектам данного узла.
- 2). Порт источника. Номер порта прикладного объекта, инициировавшего данный запрос.
- 3). Тип сообщения. Поле должно быть равно 0х00.

4). Номер атрибута. Поле должно содержать номер атрибута, поддерживаемого прикладным объектом.

Одно сообщение может содержать запрос нескольких атрибутов. В этом случае тело сообщения содержит последовательность номеров запрашиваемых атрибутов. Структура такого сообщения представлена на рис. 3.

Октеты:1	1	1	1	1	Число атрибутов
Порт назначения	Порт источника	Тип сообщения (0x10)	Длина сообщения	Число атрибутов	Номера атрибутов

Рис. 3. Сообщение запрос значений атрибутов.

Описание полей сообщения:

- 1). Тип сообщения. Поле должно быть равно 0х10.
- 2). Число атрибутов. Количество атрибутов, значения которых запрашивается в сообщении.
- 3). Номера атрибутов. Последовательность номеров запрашиваемых атрибутов.

2.2 Установка значения атрибута

Новое значение атрибута может быть установлено внешней системой, прикладным объектом данного узла, либо любого другого узла сенсорной сети. На рис. 4 представлена структура сообщения установки значения атрибута.

Октеты:1	1	1	1	1	÷
Порт назначения	Порт источника	Тип сообщения (0x01)	Длина сообщения	Номер атрибута	Значение атрибута

Рис. 4. Сообщение установки значения атрибута.

- 1). Порт назначения. Значение данного поля должно быть равно номеру порта прикладного объекта, которому предназначено данное сообщение, или быть равным 255, если оно адресовано всем прикладным объектам данного узла.
- 2). Порт источника. Номер порта прикладного объекта, инициировавшего данный запрос.
- 3). Тип сообщения. Поле должно быть равно 0х01.
- 4). Номер атрибута. Поле должно содержать номер устанавливаемого атрибута.
- 5). Значение атрибута. Данное поле содержит новое значение атрибута. Размер атрибута определяется номером атрибута и классом прикладного объекта.

С помощью одного сообщения может быть установлено несколько атрибутов. В этом случае тело сообщения содержит последовательность пар номер атрибута и значение атрибута. Структура сообщения представлена на рис. 5.

- 1). Тип сообщения. Поле должно быть равно 0х11.
- 2). Число атрибутов. Количество атрибутов, значения которых устанавливается.

Октеты:1	1	1	1	1	÷
Порт назначения	Порт источника	Тип сообщения (0х11)	Длина сообщения	Число атрибутов	Номера и значения атрибутов

Рис. 5. Сообщение установки значений атрибутов.

3). Номера и значения атрибутов. Последовательность пар номер атрибута и значение атрибута.

2.3 Возврат атрибута

Данное сообщение отсылается либо в качестве ответа на запрос атрибута, либо при установке атрибута. Сообщение также может отсылаться во внешнюю систему по усмотрению самого прикладного объекта. Структура сообщения представлена на рис. 6.

Октеты:1	1	1	1	8	1	÷
Порт назначения	Порт источника	Тип сообщения (0x02)	Длина сообщения	Временная метка	Номер атрибута	Значение атрибута

Рис. 6. Сообщение с атрибутом.

- 1). Порт назначения. Если сообщение отсылается в ответ на запрос/установку атрибута, то порт назначения должен быть равен порту источника соответствующего сообщения.
- 2). Порт источника. Данное поле должно содержать номер порта объекта, атрибут которого отправляется в сообщении.
- 3). Тип сообщения. Поле должно содержать значение 0х02.

- 4). Временная метка. Момент времени вычитывания значения атрибута.
- 5). Номер атрибута, значение которого отсылается.
- 6). Значение атрибута. Значение атрибута на момент формирования сообщения.

В одном сообщении могут быть возвращены значения нескольких атрибутов. Структура такого сообщения представлена на рис. 7.

Октеты:1	1	1	1	8	1	÷
Порт назначения	Порт источника	Тип сообщения (0x12)	Длина сообщения	Временная метка	Число атрибутов	Номера и значения атрибутов

Рис. 7. Сообщение с атрибутами.

Описание полей сообщения:

- 1). Тип сообщения. Поле должно быть равно 0х12.
- 2). Временная метка. Момент времени взятия значений атрибутов.
- 3). Число атрибутов. Количество атрибутов, значения которых содержит сообщение.
- 4). Номера и значения атрибутов. Последовательность пар номер атрибута и значение атрибута.

2.4 Общие атрибуты объектов

Номера атрибутов с 0 по 31 зарезервированы. Размер и семантика этих атрибутов не зависят от номера порта и одинаковы для всех прикладных объектов. Ниже описаны атрибуты, присутствующие у всех прикладных объектов. В скобках указаны номера атрибутов.

- **Текущее состояние** (0x00). Атрибут может быть прочитан и записан. Допустимы следующие значения:
 - 0x0 пассивное состояние. Из пассивного состояния объект может перейти в активное с помощью установки данного атрибута в значение 0x1;
 - 0х1 активное состояние. Из активного состояния объект может перейти в пассивное или в состояние сброса;
 - 0x2 сброс. После переинициализации из состояния сброса объект переходит в активное состояние.

Размер атрибута 1 байт. Значение по умолчанию 0х1.

- **Код прикладного объекта** (0x01). Код определяет класс объекта, то есть набор атрибутов и функциональность. Размер атрибута 2 байта. Диспетчер узла имеет код 0.
- Короткие адреса заинтересованных в событиях сторон (0x02-0x06). Размер каждого из атрибутов 2 байта. О значениях по умолчанию см. в разделе 3.
- Номера портов заинтересованных в событиях сторон (0х07-0х0В). Размер каждого из атрибутов 1 байт. О значениях по умолчанию см. в разделе 3.

3 Извещение о событии

В процессе функционирования прикладного объекта могут возникать события, о которых необходимо сообщить заинтересованным сторонам. По умолчанию в атрибуты 0х02 и 0х07 занесены адрес и порт шлюза

во внешнюю систему, а именно адрес 0x0000 и порт 0x01 соответственно. Остальные атрибуты подписки установлены в пассивное состояние (адрес равен 0xFFFF).

События бывают двух видов - сохраняемые и несохраняемые. Сообщение о несохраняемом событии формируется и отправляется при возникновении события. После этого информация о событии удаляется. Сохраняемое событие помещается во внутреннее хранилище узла и ему присваивается дескриптор. Информация о событии отсылается заинтересованным сторонам. Позднее данные о событии могут быть запрошены из хранилища.

Каждому типу события соответствует номер из диапазона от 0 до 255. Типы событий с номерами из диапазона от 0 до 31 являются общими для всех классов прикладных объектов. Семантика остальных типов событий зависит от класса прикладного объекта.

Ниже описаны сообщения о несохраняемых и сохраняемых событиях. В разделе 3.1 представлена информация о типах событий, общих для всех прикладных объеков. В нём описаны сообщения об ошибках доступа к атрибуту.

На рис. 8 представлена структура сообщения о несохраняемом событии.

Октеты:1	1	1	1	8	1	÷
Порт назначения	Порт источника	Тип сообщения (0x04)	Длина сообщения	Временная метка	Тип события	Тело события

Рис. 8. Сообщение о несохраняемом событии.

Описание полей сообщения:

1). Порт назначения. Номер порта заинтересованной в событии сторо-

- 2). Порт источника. Данное поле должно содержать номер порта прикладного объекта, отправляющего данное сообщение о событии.
- 3). Тип сообщения. Поле должно быть равно 0х04.
- 4). Временная метка. Время возникновения события в локальных часах узла.
- 5). Тип события. Номер типа события, уникального для класса данного прикладного объекта. Получателю сообщения должно быть известно о номерах и семантике всех типов событий.
- 6). Тело события. Размер, структура и семантика тела события определяется типом события и классом прикладного объекта.

На рис. 9 представлена структура сообщения о сохраняемом событии.

Октеты:1	1	1	1	1	4	÷
Порт назначения	Порт источника	Тип сообщения (0x05)	Длина сообщения	Тип события	Дескриптор события	Метаинформация о событии

Рис. 9. Сообщение о сохраняемом событии.

- 1). Порт назначения. Номер порта заинтересованной в событии стороны.
- 2). Порт источника. Данное поле должно содержать номер порта того прикладного объекта, с которым произошло событие.
- 3). Тип сообщения. Поле должно быть равно 0х05.

- 4). Тип события. Номер типа события, о котором извещается заинтересованная сторона.
- 5). Дескриптор события. Идентификационный номер события в хранилище узла.
- 6). Метаинформация о событии. Данные описывающие событие. Размер, структура и семантика данного поля зависят от типа события.

3.1 Ошибки доступа к атрибуту

В случае возникновения ошибки доступа при установке или запросе атрибута отсылается сообщение о несохраняемом событии. Сообщение с атрибутом при этом не должно отправляться. Структура сообщения представлена на рис. 10.

Октеты:1	1	1	1	8	1	1
Порт	Порт источника	Тип сообщения (0x04)	Длина сообщения	Временная метка	Тип события (0x0-0x2)	Номер атрибута

Рис. 10. Сообщение об ошибке доступа к атрибуту.

- 1). Порт назначения. Данное поле содержит номер порта, с которого поступил запрос на доступ к атрибуту.
- 2). Порт источника. Порт, на котором произошла ошибка доступа к атрибуту.
- 3). Тип сообщения. Поле должно быть равно 0х04, так как это сообщение о несохраняемом событии.
- 4). Временная метка. Время возникновения ошибки.

- 5). Тип события. Данное поле может содержать следующие значения:
 - 0х0 атрибут с таким номером не поддерживается прикладным объектом,
 - 0х1 ошибка чтения атрибута,
 - 0х2 ошибка записи атрибута.
- 6). Номер атрибута, при доступе к которому произошла ошибка.

4 Диспетчер узла

Диспетчер узла является прикладным объектом с номером класса 0. Диспетчер предназначен для управления и наблюдения за узлом сенсорной сети. За диспетчером зарезервирован порт № 0.

Далее в этом разделе описаны дополнительные атрибуты диспетчера, а также номера событий, им генерируемых. В разделе 4.3 описано каким образом осуществлять сброс узла. В разделах 4.4 и 4.5 описаны сообщения о событиях присоединения и отсоединения дочерних узлов. А раздел 4.6 содержит информацию о хранилище событий.

4.1 Дополнительные атрибуты диспетчера

- **Роль устройства** в сети (0x20). Размер атрибута 1 байт. Допустимы следующие значения атрибута:
 - -0x0 базовый узел,
 - 0x1 маршрутизатор,
 - -0x2 конечное устройство.

Значение по умолчанию берётся из ПЗУ узла. Атрибут доступен для чтения и записи. При сбросе диспетчера атрибут не меняет своего значения.

- **Текущее время** (0x21). Размер атрибута 8 байт. Значение по умолчанию 0. Атрибут доступен для чтения и записи. При сбросе диспетчера атрибут принимает значение по умолчанию.
- Длинный адрес узла (0x22). Размер атрибута 8 байт. Значение атрибута берётся из ПЗУ узла. Атрибут доступен только на чтение.
- **Короткий адрес узла** (0х23). Размер атрибута 2 байта. Значение по умолчанию 0хffff. Атрибут доступен только на чтение. При сбросе диспетчера атрибут принимает значение по умолчанию.
- Номер канала (0х24). Размер атрибута 1 байт. Значение по умолчанию берётся из ПЗУ узла. Атрибут доступен на чтение и запись. При сбросе диспетчера атрибут не меняет своего значения.
- **Номер сети** (0x25). Размер атрибута 2 байта. Значение по умолчанию берётся из ПЗУ узла. При сбросе диспетчера атрибут не меняет своего значения. Атрибут доступен на чтение и запись.
- Максимальное число дочерних узлов (0x26). Размер атрибута 1 байт. Значение по умолчанию берётся из ПЗУ узла. Максимальное значение атрибута 16. При сбросе диспетчера атрибут принимает значение по умолчанию. Атрибут доступен на чтение.
- Максимальная глубина сети (0x27). Размер атрибута 1 байт. Значение по умолчанию берётся из ПЗУ узла. При сбросе диспетчера атрибут принимает значение по умолчанию. Атрибут доступен на чтение.

- **Число дочерних узлов** (0х28). Размер атрибута 1 байт. Значение по умолчанию 0. При сбросе диспетчера атрибут принимает значение по умолчанию. Атрибут доступен на чтение.
- Длинные адреса дочерних узлов (0х30-0х3f). Размер атрибутов 8 байт. Значение по умолчанию 0хfffffffffffff. При сбросе диспетчера атрибуты принимают значение по умолчанию. Атрибуты доступны только на чтение.
- Короткие адреса дочерних узлов (0х40-0х4f). Размер атрибутов 2 байта. Значение по умолчанию 0хffff. Короткий адрес 0х40 соответсвует длинному адресу из атрибута 0х30, короткий адрес 0х41 соответствует длинному 0х31 и т.д. При сбросе диспетчера атрибуты принимают значение по умолчанию. Атрибуты доступны только на чтение.
- Идентификатор вида устройства (0х60). Размер 2 байта, только для чтения. Устройства, принадлежащие одному виду одинаковы с точки зрения внешней системы.

4.2 События, генерируемых диспетчером узла

- 0х20 присоединение дочернего узла,
- 0х21 отсоединение дочернего узла,
- 0х22 удаление данных о событии из хранилища.

4.3 Сброс узла

Сообщение отправляется заинтересованной стороной (в частности внешней системой) диспетчеру узла для переинициализации и повтор-

ного входа в сеть. Если сообщение получено базовым узлом, то последний должен предпринять меры по расформированию существующей сети и созданию новой. Сброс осуществляется установкой атрибута «текущее состояние» диспетчера в состояние «сброс». На рис. 11 представлена структура сообщения для сброса узла.

Октеты:1	1	1	1	1	1
Порт назначения (00x0)	Порт источника	Тип сообщения (0x01)	Длина сообщения	Номер атрибута (0х00)	Значение атрибута (0х3)

Рис. 11. Сообщение для сброса узла.

Описание полей приведено в разделе 2.2. В случае успешной установки атрибута диспетчер должен отправить сообщение с атрибутом «текущее состояние». В поле «значение атрибута» должно быть значение «сброс». После этого диспетчер должен провести сброс и переинициализацию узла.

Если при установке атрибута произошла ошибка, то диспетчер должен отправить сообщение об ошибке.

4.4 Присоединение дочернего узла

При присоединении дочернего узла диспетчер обязан обновить соответствующие атрибуты и отправить сообщение о событии заинтересованной стороне. Должны быть изменены следующие атрибуты диспетчера:

- «число дочерних узлов». Значение данного атрибута должно быть увеличено на 1.
- «**длинный адрес дочернего узла**». В один из атрибутов с номером из диапазона 0х30-0х3f должен быть записан длинный адрес дочернего узла.

• «короткий адрес дочернего узла». В соответствующий атрибут с номером из диапазона 0х40-0х4f должен быть записан короткий адрес присоединившегося узла. Например, если длинный адрес был записан в атрибут с номером 0х31, то короткий адрес должен быть записан в атрибут с номером 0х41.

Структура сообщения о присоединении представлена на рис. 12.

Октеты:1	1	1	1	8	1	2	8
Порт назначения	Порт источника (0х00)	Тип сообщения (0x04)	Длина сообщения	Временная метка	Тип события (0х20)	Короткий адрес	Длинный адрес

Рис. 12. Сообщение о присоединении узла.

Описание поля «тело события» (см. рис. 8):

- 1). Короткий адрес. Короткий адрес присоединённого узла.
- 2). Длинный адрес. Длинный адрес присоединённого узла.

4.5 Отсоединение дочернего узла

При отсоединении дочернего узла диспетчер обязан обновить соответствующие атрибуты и отправить сообщение о событии заинтересованной стороне. Должны быть изменены следующие атрибуты диспетчера:

- «число дочерних узлов». Значение данного атрибута должно быть уменьшено на 1.
- «длинный адрес дочернего узла». Атрибут, который содержит длинный адрес отсоединившегося узла, должен быть сброшен в значение по умолчанию.

• «короткий адрес дочернего узла». Соответствующий атрибут с коротким адресом отсоединившегося узла должен быть сброшен в значение по умолчанию. Например, если длинный адрес отсоединившегося узла был записан в атрибут с номером 0х31, то атрибут с номером 0х41 должен быть сброшен в значение по умолчанию, поскольку в нём содержится короткий адрес этого узла.

Структура сообщения об отсоединении узла представлена на рис. 13.

Октеты:1	1	1	1	8	1	2	8
Порт назначения	Порт источника (0х00)	Тип сообщения (0x04)	Длина сообщения	Временная метка	Тип события (0x21)	Причина отсое- динения	Длинный адрес

Рис. 13. Сообщение об отсоединении узла.

Описание поля «тело события» (см. рис. 8):

- 1). Причина отсоединения. Возможны следующие значения поля:
 - 0х0 дочерний узел отсоединился по собственному желанию,
 - 0x1 пропала связь с дочерним узлом по неизвестной причине.
- 2). Длинный адрес. Длинный адрес отсоединённого узла.

4.6 Доступ к хранилищу

Хранилище предназначено для сохраняемых событий. Всем помещаемым в хранилище событиям присваиваются дескрипторы, по которым данные о событии могут быть извлечены из хранилища.

Структура и размер данных о событии, помещаемых в хранилище, определяются типом события и классом прикладного объекта, сгенерировавшего это событие.

Хранилище является общим для всех прикладных объектов узла. Доступ к хранилищу осуществляется через диспетчера узла (порт \mathbb{N}_{0} 0).

4.6.1 Запрос данных о событии

Сообщение-запрос события отправляется заинтересованной стороной (например, внешней системой) с целью получения данных о событии, ранее сохранённом в хранилище. Предполагается, что заинтересованная сторона ранее получила сообщение о событии, из которого ей стал известен дескриптор события.

Структура сообщения-запроса данных о событии представлена не рис. 14.

Октеты:1	1	1	1	4	2	2
Порт назначения (0х00)	Порт источника	Тип сообщения (0x20)	Длина сообщения	Дескриптор события	Смещение блока	Размер блока

Рис. 14. Сообщение-запрос данных о событии.

- 1). Порт назначения. Поле должно содержать номер порта диспетчера узла, то есть 0x00.
- 2). Порт источника. Номер порта, с которого было отправлено сообщение.
- 3). Тип сообщения. Поле должно быть равно 0x20.
- 4). Дескриптор события. Дескриптор, присвоенный событию при помещении данных о нём в хранилище.

- 5). Смещение блока. Данное сообщение позволяет запросить часть данных о событии из хранилища. Данное поле указывает смещение запрашиваемого блока данных в байтах относительно первого байта данных события.
- 6). Размер блока. Размер запрашиваемого блока данных в байтах.

4.6.2 Возврат данных о событии

Сообщение отсылается диспетчером узла в ответ на запрос данных о событии. Структура сообщения представлена на рис. 15.

Октеты:1	1	1	1	4	2	2	÷
Порт назначения	Порт источника (0х00)	Тип сообщения (0x21)	Длина сообщения	Дескриптор события	Смещение блока	Размер блока	Блок данных

Рис. 15. Сообщение с данными о событии.

- 1). Порт назначения. Поле должно содержать номер порта источника из сообщения-запроса.
- 2). Порт источника. Поле должно содержать номер порта диспетчера узла, то есть 0x00.
- 3). Тип сообщения. Поле должно быть равно 0х21.
- 4). Дескриптор события. Поле должно быть равно дескриптору события, блок данных которого отсылается в сообщении.
- 5). Смещение блока. Смещение блока отправляемых данных о событии в байтах относительно начала.

- 6). Размер блока. Размер передаваемого блока данных о событии.
- 7). Блок данных. Непосредственно передаваемый блок данных о событии из хранилища.

4.6.3 Удаление данных о событии

Поскольку хранилище имеет ограниченный размер, то рано или поздно потребуется удаление данных о некоторых устаревших событиях. Для этого предназначено сообщение об удалении данных о событии из хранилища узла сенсорной сети. Структура этого сообщения представлена на рис. 16.

Октеты:1	1	1	1	4
Порт назначения (00x0)	Порт источника	Тип сообщения (0x22)	Длина сообщения	Дескриптор события

Рис. 16. Сообщение об удалении данных о событии.

Описание полей сообщения:

- 1). Порт назначения. Поле должно быть равно 0х00.
- 2). Порт источника. Номер порта отправителя сообщения.
- 3). Тип сообщения. Поле должно быть равно 0х22.
- 4). Дескриптор события. Поле должно быть равно дескриптору события, сохранённого в хранилище узла.

4.6.4 Извещение об удалении события

При удалении данных о событии из хранилища диспетчером генерируется сообщение о несохраняемом событии. Тип события 0x02. Сообщение формируется и отправляется заинтересованной стороне только после

удаления всех данных о событии из хранилища. Структура сообщения представлена на рис. 17.

Октеты:1	1	1	1	8	1	4
Порт назначения	Порт источника (0х00)	Тип сообщения (0x04)	Длина сообщения	Временная метка	Тип события (0x22)	Дескриптор события

Рис. 17. Сообщение-извещение об удалении события.

Описание полей сообщения:

- 1). Порт назначения. Номер порта заинтересованной стороны. См. соответствующий атрибут из раздела 2.4.
- 2). Порт источника. Поле должно содержать значение 0х00.
- 3). Тип сообщение. Извещение о событие. Поле содержит значение 0×04 (см. рис. 8).
- 4). Временная метка. Момент времени полного удаления данных о событии из хранилища.
- 5). Тип события. Поле должно содержать значение 0х22.
- 6). Дескриптор события, которое было удалено из хранилища.

4.7 Запрос информации об объектах узла

Запрос кодов объектов и их портов выполняется с помощью сообщения с типом 0х30. Структура сообщения представлена на рис. 18.

Октеты:1	1	1	1
Порт назначения (0x00)	Порт источника	Тип сообщения (0х30)	Длина сообщения (0x00)

Рис. 18. Сообщение-запрос информации об объектах

4.8 Информация об объектах узлах

В ответ на запрос с типом 0x30 диспетчер узла отправляет сообщение с типом 0x31, тело которого содержит множество пар <номер объекта>:<номер порта>. Формат сообщения представлен на рис. 19.

Октеты:1	1	1	1	2	2	 2	2
Порт назначения	Порт источника (0х00)	Тип сообщения (0x31)	Длина сообщения (- -)	Номер объекта А	Номер порта объекта А	 Номер объекта Z	Номер порта объекта Z

Рис. 19. Информация об объектах узла

- 1). Порт назначения. Номер порта объекта, запросившего информацию об объектах данного узла.
- 2). Порт источника. Поле должно содержать значение 0x00.
- 3). Тип сообщение. Поле содержит значение 0х31.
- 4). Длина тела сообщения. Длина должна быть равна числу объектов на узле, умноженному на 4.

Библиография

- [1] IEEE 802.15.4 Standard Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) // IEEE Standard for Information Technology, IEEE-SA Standards Board, 2006.
- [2] ZigBee Alliance ZigBee specification // December, 2006.