T320 - Introdução ao Aprendizado de Máquina II:

Redes Neurais Artificiais (Parte IV)

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Na última aula, aprendemos como as redes neurais aprendem.
- Vimos que isso é feito através da minimização de uma função de custo.
- Aprendemos que a minimização é realizada iterativamente com a retropropagação do erro.
- Analisamos como a retropropagação funciona através de um exemplo.
- Nesta aula, iremos discutir algumas visões práticas para o treinamento de redes neurais.

- Podemos dizer que os *elementos básicos do aprendizado de máquina* através de *redes neurais* foram apresentados até aqui.
- Porém, existem importantes aspectos práticos que devem ser comentados de modo que vocês fiquem mais familiarizados com as práticas atuais.
- Portanto, começamos relembrando sobre a questão do cálculo do *vetor gradiente*.

- Conforme vimos anteriormente, a base para o aprendizado em redes MLP é a obtenção do *vetor gradiente* e o estabelecimento de um processo iterativo de busca dos *pesos sinápticos* que minimizem a *função de custo*.
- Vimos que a obtenção do *vetor gradiente* se dá através do processo de *retropropagação do erro*, o qual é dividido em duas etapas:
 - Etapa direta (*forward*) onde se apresenta um exemplo de entrada, x, e obtém-se a resposta da rede, ou seja, o *erro de saída*.
 - Etapa reversa (*retropropagação/backpropagation*) em que se calculam as derivadas parciais necessárias ao longo das camadas da rede.

Versões Online, Batch e Minibatch

• Vimos também que se calcula o gradiente associado a cada exemplo de entrada e saída da rede e que a combinação de todos esses *gradientes locais* leva ao gradiente estimado para o conjunto total de exemplos.

$$\frac{\partial J(\boldsymbol{w})}{\partial w_{i,j}^m} = \frac{1}{N_{\rm dados}N_M} \sum_{n=1}^{N_{\rm dados}} \frac{\sum_{j=1}^{N_M} \partial e_j^2(n)}{\partial w_{i,j}^m}$$
Gradiente local é calculado para cada exemplo e saída da rede neural.

 No entanto, surge aqui um questionamento interessante: o que é melhor, usar o gradiente local e já dar um passo de otimização, ou seja, atualizar os pesos, ou reunir o gradiente completo e então dar um passo único e mais preciso?

- Nesse questionamento, existem duas abordagens opostas: o cálculo online do gradiente (ou seja, exemplo-a-exemplo) e o cálculo em batelada (batch) do gradiente.
- Vejamos inicialmente a noção geral de adaptação dos pesos sinápticos com o cálculo online do gradiente, como expressa o algoritmo abaixo com um método clássico de primeira ordem.
 - \triangleright Defina valores iniciais para o vetor de pesos w e um passo de aprendizagem α pequeno.
 - Faça k = 0 (épocas), t = 0 (iterações) e calcule $J(\mathbf{w}(k))$.
 - > Enquanto o critério de parada não for atendido, faça:
 - Ordene aleatoriamente os exemplos de entrada/saída.
 - Para *l* variando de 1 até *N*, faça:
 - Apresente o exemplo l de entrada à rede.
 - Calcule $J_l(w(t))$ e $\nabla J_l(w(t))$.
 - $w(t+1) = w(t) \alpha \nabla J_l(w(t)); t = t+1.$
 - \circ k = k + 1.
 - \circ Calcule $J(\mathbf{w}(k))$.

- O outro extremo seria utilizar todo o conjunto de dados para estimar o gradiente antes de atualizar os pesos sinápticos.
- Essa é a ideia por trás da abordagem em **batelada** (**batch**). O algoritmo abaixo ilustra a operação correspondente (novamente considerando um método de **primeira ordem**).
 - ightharpoonup Defina valores iniciais para o vetor de pesos w e um passo de aprendizagem α pequeno.
 - Faça k = 0 (épocas) e calcule J(w(k)).
 - > Enquanto o critério de parada não for atendido, faça:
 - Para *l* variando de 1 até *N*, faça:
 - Apresente o exemplo l de entrada à rede.
 - Calcule $J_l(\mathbf{w}(k))$ e $\nabla J_l(\mathbf{w}(k))$.
 - $\circ \mathbf{w}(k+1) = \mathbf{w}(k) \frac{\alpha}{N} \sum_{l=1}^{N} \nabla J_{l}(\mathbf{w}(k)).$
 - o k = k + 1.
 - \circ Calcule $J(\mathbf{w}(k))$.

- Nas redes neurais profundas (ou deep learning), usadas com muita frequência em problemas com enormes conjuntos de dados, a regra é adotar o caminho do meio, usando a abordagem com mini-batches.
- Nesse caso, a adaptação dos *pesos* é realizada com um gradiente calculado a partir de um meio-termo entre um exemplo e o número total de exemplos (em geral, este é um valor relativamente pequeno em métodos de *primeira ordem*).
- As amostras que devem compor o *mini-batch* são *aleatoriamente* tomadas do conjunto de dados. O algoritmo abaixo ilustra isso.
 - \triangleright Defina valores iniciais para o vetor de pesos w e um passo de aprendizagem α pequeno.
 - \triangleright Faça k=0 e calcule J(w(k)).
 - > Enquanto o critério de parada não for atendido, faça:
 - Para *l* variando de 1 até *m*, faça:
 - Apresente o exemplo l de entrada, amostrado aleatóriamente sem reposição para compor um **minibatch**, à rede.
 - Calcule $J_l(\mathbf{w}(k))$ e $\nabla J_l(\mathbf{w}(k))$.
 - $o w(k+1) = w(k) \frac{\alpha}{m} \sum_{l=1}^{m} \nabla J_l(w(k)).$
 - o k = k + 1.
 - o Calcule J(w(k)).

- Existem vários algoritmos baseados no *gradiente* que podem ser empregados para otimizar os *pesos sinápticos* de uma rede neural.
- Aqui, vamos nos ater aos métodos mais usuais na literatura moderna, que se encontra bastante focada no apredizado profundo.
- ➤ Método do Gradiente Estocástico (Stochastic Gradient Descent, SGD)
 - Nos slides anteriores, nós vimos que o método online utiliza um único exemplo (que deve ser tomado aleatóriamente) para estimar o gradiente da função custo.
 - Este tipo de estimador é o que gera a noção de gradiente estocástico. Caso utilizemos mini-batches, também teremos uma estimativa do gradiente, o qual, a rigor, seria determinístico apenas se usássemos todos os dados (no caso do batch).
 - Por esse motivo, esses métodos de *primeira ordem*, como o *online*, são conhecidos como métodos de *gradiente descendente estocástico*.

- A escolha do passo de aprendizagem é complicada e nos remete ao conhecido compromisso entre velocidade de convergência e estabilidade/precisão.
- Pode-se usar um valor fixo, mas geralmente, se adota uma variação decrescente de um valor α_0 a um valor α_{τ} (i.e., da iteração 0 à iteração τ):

$$\alpha_j = \left(1 - \frac{j}{\tau}\right)\alpha_0 + \frac{j}{\tau}\alpha_\tau,$$

onde j é o número da iteração de treinamento.

- Após a τ -ésima iteração, pode-se deixar o valor do passo de aprendizagem fixo, como mostrado na figura ao lado.
- Naturalmente, a definição dos hiperparâmetros necessários, α_0 e α_τ , é mais um problema *a ser tratado caso-a-caso*.

Momentum

- O termo momento é adicionado à equação de atualização dos pesos para trazer informação de gradientes anteriores acumulados ao seu ajuste.
- Esse termo tem o potencial de melhorar a convergência das versões online e em mini-lotes do gradiente descendente.
- A *atualização dos pesos* com o *termo momento* é dada por

$$w \leftarrow w + v$$

onde $oldsymbol{v}$ é a $oldsymbol{velocidade}$, a qual é atualizada da seguinte forma

$$\boldsymbol{v} \leftarrow \mu \boldsymbol{v} - \alpha \boldsymbol{q}$$

g é o vetor gradiente, α é o passo de aprendizagem e $\mu \in [0,1)$ é o coeficiente de momento e determina com que rapidez as contribuições de gradientes anteriores decaem (ou seja, μ é um termo de memória).

- Quanto maior for μ , maior será a influência de gradientes anteriores na direção atual.
- lacktriangledown v dá a direção e a velocidade na qual os pesos se movem pelo espaço de pesos.

Momentum

- *Momento* em física é igual a *massa de uma partícula vezes* sua velocidade. No algoritmo do momento, assumimos que a massa é unitária, então o vetor velocidade v também pode ser considerado como o momento da partícula.
- O termo momento adiciona uma fração μ de atualizações anteriores dos pesos à atualização corrente.
 - Quando o gradiente aponta na mesma direção por várias iterações, o termo aumenta o tamanho dos passos dados em direção ao mínimo.
 - Quando o gradiente muda de direção a cada nova iteração, o termo momento suaviza as variações.
 - o Como resultado, temos convergência mais rápida e oscilação reduzida.
- O efeito do algoritmo do momentum no GDE é ilustrado na figura ao lado.

➤ Momento de Nesterov

- O método do *momento de Nesterov* pode ser visto, essencialmente, como uma variação do *método do momento* em que o cálculo do *vetor gradiente* não é feito sobre o vetor de pesos w, mas sim sobre $w + \mu v$.
- Esse termo adicional funciona como um fator de correção que pode aumentar, em alguns casos, a velocidade de convergência do algoritmo.

➤ Modelos com Passo de Aprendizagem Adaptativo

- O passo de aprendizagem é um hiperparâmetro difícil de se ajustar otimamente e bastante relevante para o sucesso do treinamento de uma rede neural.
- Isso motivou o surgimento de um conjunto de métodos com mecanismos capazes de modificá-lo dinamicamente.
- O passo é ajustado de acordo com o desempenho da rede e, além disso, pode-se ter passos diferentes para cada peso do modelo, os quais são atualizados de forma independente.
- Dentre as técnicas mais populares dessa classe estão AdaGrad, RMSProp e Adam.

Inicialização dos Pesos

- Uma vez que os métodos de treinamento de *redes neurais MLP* são iterativos, eles dependem de uma *inicialização dos pesos*.
- Como os métodos são de **busca local**, a inicialização pode afetar drasticamente a qualidade da solução obtida.
- O ponto de inicialização pode determinar se o algoritmo converge, sendo alguns pontos iniciais tão instáveis que o algoritmo encontra dificuldades numéricas e falha completamente em convergir (e.g., desaparecimento e explosão dos gradientes).
- Também pode haver variações expressivas na velocidade de convergência (e.g., platôs, pontos de sela).
- Um ponto importante da inicialização é "quebrar a simetria" entre os nós, ou seja, nós com a mesma função de ativação e conectados às mesmas entradas, devem ter pesos iniciais diferentes.
- Isso, portanto, sugere uma abordagem aleatória.

Inicialização dos Pesos

- Os pesos iniciais são tipicamente obtidos a partir de *distribuições gaussianas* ou *uniformes*.
- A ordem de grandeza desses pesos levanta algumas discussões:
 - Pesos de maior magnitude criam maior distinção entre nós (i.e., a quebra de simetria). Por outro lado, isso pode causar problemas de instabilidade.
 - Pesos de maior magnitude favorecem a propagação de informação, porém, por outro lado, causam preocupações do ponto de vista de regularização.
 - Pesos de magnitude elevada podem levar os nós (no caso de funções de ativação do tipo sigmóide como a tangente hiperbólica e a função logística) a operarem numa região de saturação, comprometendo a convergência do algoritmo.
 - Por outro lado, pesos de magnitude muita reduzida podem reduzir drasticamente o aprendizado das redes neurais.
- Portanto, na sequência listamos algumas heurísticas para inicialização dos pesos.

Inicialização dos Pesos

• Considerando uma camada com m entradas e n saídas, temos as seguintes heurísticas para inicializar os **pesos sinápticos** de seus nós.

Inicialização	Funções de ativação	Distribuição Uniforme $U(-r,r)$	Distribuição Normal $N(0,\sigma^2)$
Xavier/Glorot	Nenhuma, Tanh, Logística, Softmax	$r = \sqrt{\frac{6}{m+n}}$	$\sigma^2 = \frac{2}{m+n}$
He	ReLU e variantes	$r = \sqrt{\frac{6}{m}}$	$\sigma^2 = \frac{2}{m}$
LeCun	SELU	$r = \sqrt{\frac{3}{m}}$	$\sigma^2 = \frac{1}{m}$

 Uma heurística para a inicialização dos termos de bias é inicializá-los com valores nulos. Esta heurística se mostra bastante eficiente na maioria dos casos.

Redes Neurais MLP com SciKit-Learn

- A biblioteca SciKit-Learn disponibiliza algumas classes para o treinamento de redes neurais multi-layer perceptron.
- Entretanto, suas implementações não se destinam a aplicações de larga escala.
- Em particular, a biblioteca SciKit-Learn não oferece suporte a GPUs.
- Para implementações muito mais rápidas, baseadas em GPU, escaláveis, bem como estruturas que oferecem muito mais flexibilidade para criar arquiteturas de aprendizado profundo, por exemplo, devemos utilizar outras bibliotecas como:
 - *Tensorflow*: biblioteca para desenvolvimento de aplicações eficientes e escaláveis de machine learning.
 - *keras*: biblioteca de alto-nível para desenvolvimento de aplicações Deep Learning de forma simples. É capaz de rodar sobre TensorFlow, Theano ou Apache MXNet.
 - **skorch**: biblioteca para a criação de redes neurais compatíveis com o SciKit-Learn que encapsula a biblioteca PyTorch.
 - Entre outras: https://scikit-learn.org/stable/related projects.html#related-projects

Tarefas

- Quiz: "T320 Quiz Redes Neurais Artificiais (Parte VII)" que se encontra no MS Teams.
- Projeto: Projeto #2.
 - Pode ser feito em grupos de no máximo 3 alunos.
 - Entrega: 12/12/2021.
 - Vídeo com a explicação sobre o projeto se encontra na pasta "Projeto #2" em "Arquivos".
 - Leiam os enunciados atentamente.
 - Não se esqueçam de colocar os nomes dos integrantes do grupo.
 - Apenas um integrante do grupo precisa fazer a entrega.

Obrigado!

People with no idea about AI, telling me my AI will destroy the world Me wondering why my neural network is classifying a cat as a dog..

Figuras

