Übungsblatt 10

Aufgabe 1 (Router, Layer-3-Switch, Gateway)

- 1. Beschreiben Sie den Zweck von **Routern** in Computernetzen. (Erklären Sie auch den Unterschied zu Layer-3-Switches.)
- 2. Beschreiben Sie den Zweck von **Layer-3-Switches** in Computernetzen. (Erklären Sie auch den Unterschied zu Routern.)
- 3. Beschreiben Sie den Zweck von Gateways in Computernetzen.
- 4. Erklären Sie warum **Gateways** in der Vermittlungsschicht von Computernetzen heutzutage selten nötig sind.

Aufgabe 2 (Adressierung mit IPv4)

- 1. Erklären Sie die Bedeutung von Unicast in der Vermittlungsschicht.
- 2. Erklären Sie die Bedeutung von **Broadcast** in der Vermittlungsschicht.
- 3. Erklären Sie die Bedeutung von Anycast in der Vermittlungsschicht.
- 4. Erklären Sie die Bedeutung von Multicast in der Vermittlungsschicht.
- Erklären Sie warum der IPv4-Adressraum nur 4.294.967.296 Adressen enthält.
- 6. Erklären Sie warum das klassenlose Routing Classless Interdomain Routing (CIDR) eingeführt wurde.
- 7. Beschreiben Sie in einfachen Worten die Funktionsweise von CIDR. Legen Sie den Schwerpunkt auf die Art und Weise, wie IP-Adressen behandelt und Subnetze erstellt werden.

Inhalt: Themen aus Foliensatz 10 Seite 1 von 7

Aufgabe 3 (Adressierung mit IPv4)

Berechnen Sie für jede Teilaufgabe die **erste und letzte Hostadresse**, die **Netzadresse** und die **Broadcast-Adresse** des Subnetzes.

<pre>IP-Adresse: Netzmaske:</pre>	151.175.31.100 255.255.254.0	10010111.10101111.00011111.01100100 11111111
Netzadresse? Erste Hostadresse? Letzte Hostadresse? Broadcast-Adresse?	···	···
IP-Adresse: Netzmaske: Netzadresse? Erste Hostadresse? Letzte Hostadresse? Broadcast-Adresse?	151.175.31.100 255.255.255.240 	10010111.10101111.00011111.01100100 11111111
IP-Adresse: Netzmaske: Netzadresse? Erste Hostadresse? Letzte Hostadresse? Broadcast-Adresse?	151.175.31.100 255.255.255.128 	10010111.10101111.00011111.01100100 11111111

binäre Darstellung	dezimale Darstellung	binäre Darstellung	dezimale Darstellung
10000000	128	11111000	248
11000000	192	11111100	252
11100000	224	11111110	254
11110000	240	11111111	255

Inhalt: Themen aus Foliensatz 10 Seite 2 von 7

Aufgabe 4 (Adressierung mit IPv4)

In jeder Teilaufgabe überträgt ein Sender ein IP-Paket an einen Empfänger. Berechnen Sie für jede Teilaufgabe die Subnetznummern von Sender und Empfänger und geben Sie an, ob das IP-Paket während der Übertragung das Subnetz verlässt oder nicht.

Sender: 11001001.00010100.11011110.00001101 201.20.222.13 Netzmaske: 11111111.11111111.11111111.11110000 255.255.255.240

Empfänger: 11001001.00010100.11011110.00010001 201.20.222.17 Netzmaske: 11111111.11111111.1111111.11110000 255.255.255.240

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Sender: 00001111.11001000.01100011.00010111 15.200.99.23 Netzmaske: 11111111.11000000.00000000.00000000 255.192.0.0

Empfänger: 00001111.11101111.00000001.00000001 15.239.1.1 Netzmaske: 11111111.11000000.00000000.00000000 255.192.0.0

Subnetznummer des Senders?

Subnetznummer des Empfängers?

Verlässt das IP-Paket das Subnetz [ja/nein]?

Aufgabe 5 (Adressierung mit IPv4)

Berechnen Sie für jede Teilaufgabe **Netzmaske** und beantworten Sie die **Fragen**.

1. Teilen Sie das Klasse C-Netz 195.1.31.0 so auf, das 30 Subnetze möglich sind.

Netzadresse: 11000011.00000001.00011111.00000000 195.1.31.0

Anzahl Bits für Subnetznummern?

Netzmaske: ____.__.__.__.__.__.

Anzahl Bits für Hostadressen? Anzahl Hostadressen pro Subnetz?

2. Teilen Sie das Klasse A-Netz 15.0.0.0 so auf, das 333 Subnetze möglich sind.

Netzadresse: 00001111.00000000.00000000.00000000 15.0.0.0

Anzahl Bits für Subnetznummern?

Netzmaske: ____.__.__.__.__.

Anzahl Bits für Hostadressen?
Anzahl Hostadressen pro Subnetz?

3. Teilen Sie das Klasse B-Netz 189.23.0.0 so auf, das 20 Subnetze möglich sind.

Netzadresse: 10111101.00010111.00000000.00000000 189.23.0.0

Anzahl Bits für Subnetznummern?

Netzmaske: ____.__.

Anzahl Bits für Hostadressen? Anzahl Hostadressen pro Subnetz?

4. Teilen Sie das Klasse C-Netz 195.3.128.0 in Subnetze mit je 17 Hosts auf.

Netzadresse: 11000011.00000011.10000000.00000000 195.3.128.0

Anzahl Bits für Hostadressen? Anzahl Bits für Subnetznummern?

Anzahl möglicher Subnetze?

Netzmaske: ____.__.__.__.

5. Teilen Sie das Klasse B-Netz 129.15.0.0 in Subnetze mit je 10 Hosts auf.

Netzadresse: 10000001.00001111.00000000.00000000 129.15.0.0

Anzahl Bits für Hostadressen? Anzahl Bits für Subnetznummern?

Anzahl möglicher Subnetze?

binäre Darstellung	dezimale Darstellung	binäre Darstellung	dezimale Darstellung
10000000	128	11111000	248
11000000	192	11111100	252
11100000	224	11111110	254
11110000	240	11111111	255

Aufgabe 6 (Private IP-Adressbereiche)

Nennen Sie die drei privaten IP-Adressbereiche.

Aufgabe 7 (IPv6)

- 1. Erklären Sie das Konzept der Scopes in IPv6.
- 2. Erklären, was der Host-Scope ist.
- 3. Erklären Sie, was der Link-Local Scope ist.
- 4. Erklären Sie, was der Unique-Local Scope ist.
- 5. Erklären Sie, was der Global Scope ist.
- 6. Geben Sie an, was die IPv6-Adresse ::1/128 anspricht.
- 7. Geben Sie den Namen des Bereichs der IPv6-Adresse ::1/128.
- 8. Geben Sie den Namen des Bereichs der Adressen mit dem Präfix fe80::/10.
- 9. Geben Sie den Namen des Bereichs der Adressen mit dem Präfix fc00::/7.
- 10. Geben Sie den Namen des Bereichs der Adressen mit dem Präfix 2000::/3.
- 11. IPv6 hat keine Broadcast-Adressen, aber für einige Zwecke ist eine Broadcastähnliche Funktionalität erforderlich. Erklären Sie, wie IPv6 die Broadcast-Funktionalität emuliert.
- 12. Geben Sie das Präfix von Multicast-Adressen an.
- 13. Nennen Sie drei Möglichkeiten zur Konfiguration der Schnittstellen-ID.
- 14. Erklären Sie, was Stable Privacy Addresses ist und warum es manchmal im Zusammenhang mit der Konfiguration der Interface-ID verwendet wird.
- 15. Erläutern Sie, was Privacy Extension ist und warum sie manchmal im Zusammenhang mit der Konfiguration der Interface-ID verwendet wird.
- 16. Wenn ein Knoten eine Interface-ID über SLAAC erstellt hat, muss er sicherstellen, dass kein anderer Knoten im Netz die gleiche Interface-ID hat. Erklären Sie, wie dies in der Praxis gemacht wird.
- 17. Geben Sie eine kurze Erklärung für einen konkreten Anwendungsfall der ICMPv6-Nachricht Router Advertisement (RA) in der Praxis.
- 18. Geben Sie eine kurze Erklärung für einen konkreten Anwendungsfall der ICMPv6-Nachricht Router Solicitation (RS) in der Praxis.

Inhalt: Themen aus Foliensatz 10 Seite 5 von 7

- 19. Geben Sie eine kurze Erläuterung für einen konkreten Anwendungsfall der ICMPv6-Nachricht Neighbor Solicitation (NS) in der Praxis.
- 20. Geben Sie eine kurze Erklärung für einen konkreten Anwendungsfall der ICMPv6-Nachricht Neighbor Advertisement (NA) in der Praxis.
- 21. Erklären Sie, wie ein Knoten erfährt, ob er einen DHCPv6-Server für die Anforderung einer Adresskonfiguration verwenden soll (zustandsabhängige Adresskonfiguration) oder ob er eine Interface-ID selbst erstellen darf (zustandslose Adresskonfiguration).

Aufgabe 8 (Adressierung mit IPv6)

1.	Vereinfachen Sie die folgende IPv6-Adressen:	
	• 1080:0000:0000:0000:0007:0700:0003:316b	
	Lösung:	
	• 2001:0db8:0000:0000:f065:00ff:0000:03ec	
	Lösung:	
	• 2001:0db8:3c4d:0016:0000:0000:2a3f:2a4d	
	Lösung:	
	• 2001:0c60:f0a1:0000:0000:0000:0000:0001	
	Lösung:	
	• 2111:00ab:0000:0004:0000:0000:0000:1234	
	Lögung	

2. Geben Sie alle Stellen der folgenden vereinfachten IPv6-Adressen an:

• 2001::2:0:0:1

Lösung: ___:__:__:__:__:__:__:__:__:

• 2001:db8:0:c::1c

Lösung: ___:__:__:__:__:__:__:__:__:

• 1080::9956:0:0:234

Lösung: ___:__:__:__:__:__:__:__:__:

• 2001:638:208:ef34::91ff:0:5424

Lösung: ___: __: __: __: __: __: