COMP9444 Neural Networks and Deep Learning Term 2, 2020

Solutions to Exercise 5: Hidden Units and Convolution

This page was last updated: 10/09/2020 11:24:04

1. Hidden Unit Geometry

Consider a fully connected feedforward neural network with 6 inputs, 2 hidden units and 3 outputs, using tanh activation at the hidden units and sigmoid at the outputs. Suppose this network is trained on the following data, and that the training is successful.

Item	Inputs	Outputs
	123456	123
1.	100000	000
2.	010000	001
3.	001000	010
4.	000100	100
5.	000010	101
6.	000001	110

Draw a diagram showing:

- a. for each input, a point in hidden unit space corresponding to that input, and
- b. for each output, a line dividing the hidden unit space into regions for which the value of that output is greater/less than one half.

2. Softmax

Recall that the formula for Softmax is

$$Prob(i) = \exp(z_i) / \sum_{j} \exp(z_j)$$

Consider a classification task with three classes 1, 2, 3. Suppose a particular input is presented, producing outputs

$$z_1$$
=1.0, z_2 =2.0, z_3 =3.0

and that the correct class for this input is Class 2. Compute the following, to two decimal places:

a. Prob(i), for i = 1, 2, 3

Prob(1) =
$$e^{1}/(e^{1} + e^{2} + e^{3})$$
 = 2.718/30.193 = 0.09
Prob(2) = $e^{2}/(e^{1} + e^{2} + e^{3})$ = 7.389/30.193 = 0.24
Prob(3) = $e^{3}/(e^{1} + e^{2} + e^{3})$ = 20.086/30.193 = 0.67

b. $d(\log \text{Prob}(2))/dz_i$, for j = 1, 2, 3

$$\begin{split} & \text{d}(\log \text{Prob}(2))/\text{d}z_1 = \text{d}(z_2 - \log \Sigma_j \exp(z_j))/\text{d}z_1 = -\exp(z_1)/\Sigma_j \exp(z_j) = \\ & -0.09 \\ & \text{d}(\log \text{Prob}(2))/\text{d}z_2 = \text{d}(z_2 - \log \Sigma_j \exp(z_j))/\text{d}z_2 = 1 - \exp(z_2)/\Sigma_j \exp(z_j) = 1 \\ & -0.24 = 0.76 \\ & \text{d}(\log \text{Prob}(2))/\text{d}z_3 = \text{d}(z_2 - \log \Sigma_j \exp(z_j))/\text{d}z_3 = -\exp(z_3)/\Sigma_j \exp(z_j) = \\ & -0.67 \end{split}$$

Note how the correct class (2) is pushed up, while the incorrect class with the highest activation (3) is pushed down the most.

3. Convolutional Network Architecture

One of the early papers on Deep Q-Learning for Atari games (Mnih et al, 2013) contains this description of its Convolutional Neural Network:

"The input to the neural network consists of an $84 \times 84 \times 4$ image. The first hidden layer convolves $16 - 8 \times 8$ filters with stride 4 with the input image and applies a rectifier nonlinearity. The second hidden layer convolves $32 - 4 \times 4$ filters with stride 2, again followed by a rectifier nonlinearity. The final hidden layer is fully-connected and consists of 256 rectifier units. The output layer is a fully-connected linear layer with a single output for each valid action. The number of valid actions varied between 4 and 18 on the games we considered."

For each layer in this network, compute the number of

- a. weights per neuron in this layer (including bias)
- b. neurons in this layer
- c. connections into the neurons in this layer
- d. independent parameters in this layer

You should assume the input images are gray-scale, there is no padding, and there are 18 valid actions (outputs).

First Convolutional Layer:

$$J = K = 84, L = 4, M = N = 8, P = 0, s = 4$$

weights per neuron: $1 + M \times N \times L = 1 + 8 \times 8 \times 4 = 257$

width and height of layer: 1+(J-M)/s = 1+(84-8)/4 = 20

neurons in layer: $20 \times 20 \times 16 = 6400$

connections: $20 \times 20 \times 16 \times 257 = 1644800$

independent parameters: $16 \times 257 = 4112$

Second Convolutional Layer:

$$J = K = 20, L = 16, M = N = 4, P = 0, s = 2$$

weights per neuron: $1 + M \times N \times L = 1 + 4 \times 4 \times 16 = 257$

width and height of layer: 1+(J-M)/s = 1+(20-4)/2 = 9

neurons in layer: $9 \times 9 \times 32 = 2592$

connections: $9 \times 9 \times 32 \times 257 = 666144$

independent parameters: $32 \times 257 = 8224$

Fully Connected Layer:

weights per neuron: 1 + 2592 = 2593

neurons in layer: 256

connections: $256 \times 2593 = 663808$

independent parameters: 663808

Output Layer:

weights per neuron: 1 + 256 = 257

neurons in layer: 18

connections: $18 \times 257 = 4626$

independent parameters: 4626