

COLLEGE OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT MCE226L CMP I

S20 Project

Problem

A projectile is fired with an initial velocity of v_0 m/s at an angle of θ relative to the ground. The projectile is aimed directly north. In case of a strong wind blowing to the west or east, the projectile also moves in this direction at a constant speed of A [So,

$$v_x = -A \text{ or } v_x = A$$
].

Determine and plot the trajectory of the projectile until it hits the ground.

Solution

Since the projectile is fired directly north, the initial velocity V_0 can be resolved into a horizontal y component and a vertical z component:

$$v_{0y} = v_0 \cos(\theta)$$
 and $v_{0z} = v_0 \sin(\theta)$

In addition, due to the wind the projectile has a constant velocity in the x direction,

$$\upsilon_x =$$
 -A or A , depends on the direction

The initial position of the projectile is at point (x_0, y_0, z_0) . In the vertical direction the velocity and position of the projectile are given by:

$$v_z = v_{0z} - gt$$
 and $z = z_0 + v_{0z}t - \frac{1}{2}gt^2$

The time it takes the projectile to reach the highest point:

$$t_{hmax} = \frac{v_{0z}}{g}$$

The total flying time is twice this time

$$t_{tot} = 2t_{hmax}$$

COLLEGE OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT

MCE236L Solid Modelling

S20 Project

In the horizontal direction the velocity is constant (both in the x and y directions), and the position of the projectile is given by:

$$x = x_0 + v_x t$$
 and $y = y_0 + v_{0y} t$

Inputs are: v_0 , θ , x_0 , y_0 , z_0 A and its direction

• The outputs are:

Maximum height [z at t_{hmax}] Maximum traveled distance in x direction Maximum traveled distance in y direction

Program:

- ✓ Using arrays, write a C program that calculates and plots the trajectory of a projectile that is fired at a velocity's, angle, and a position entered by user.
- ✓ Program should show a list of options to let user to select one of the following:
 - Plot the trajectory (x,y,z) that the projectile would have had if there was wind, given a value of A.
 - Plot the trajectory (x,y,z) that the projectile would have had if there was no wind (A=0).

Hint: for 3D plots, use the function plotxyz https://www.softintegration.com/docs/ch/plot/

- ✓ Program should print out the following:
 - Maximum height [z at t_{hmax}]
 - Maximum traveled distance in x direction [x at 2t_{hmax}]
 - Maximum traveled distance in y direction [z at 2t_{hmax}]