Exploratory data analysis

Dominik Klepl 11/26/2019

```
pacman::p_load(ggplot2, ggthemes, tidyr, gridExtra, extrafont, patchwork)
```

Load the dataset

```
data = read.csv("data/x_y.csv", header = F)
```

Rename the column names to x and y

```
colnames(data) = c("x", "y")
```

Add time variable to preserve the time-series structure

Relationship between x and y

We start with inspecting the input/output variables by plotting them. First on the same axis simply as two time-series signals.

Now we also plot the signals each other.

One point seems to be an **outlier**.

It might be a good idea to to remove the outlier now for plotting so that we have a more detailed (zoomed-in) look at the rest of the datapoints.

The x^2 component is ever clearer in the zoomed-in view.

Plot p1 and x_y_plot together in one beautiful plot.

From the scatterplot of the x and y variables we can assume that the a x^2 might be a good parameter for the model.

Correlation test

We can formally test whether there is correlation between x and y. Although we can already tell from the scatterplot that there must be some correlation. We can use **pearson's correlation coefficient**, testing hypothesis that true correlation differs from 0.

```
##
## Pearson's product-moment correlation
##
## data: data$x and data$y
## t = 3.5408, df = 248, p-value = 0.0004763
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.09796534 0.33433385
## sample estimates:
## cor
## 0.2193661
```

There is small positive correlation between the two variables. Null hypothesis was rejected.

Distributions

Now we inspect the distribution of both x and y

X seems to be approximately **normal** slightly skewed with heavy left tail. Y seems to be **exponentially distributed**. A hypothesis that y is **log-normal** might be worth testing.

Boxplots and violin plots

Let's continue with other tests about properties of the signals. First use boxplot and violin plots.

violins

Fit linear model

Try to fit a linear model with just one parameter: y $\sim \beta 1^* x$

MSE of the fitted model is: 886.242

A bit of cheating

Just for fun, ggplot has function for fitting a simple linear model. There's also function for fitting a local polynomial surface/line which basically tries to find the best polynomial model (yes exactly what is our task in the

coursework).