

AD-A053 272 CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAI--ETC F/6 13/3
FEASIBILITY OF STRUCTURAL FOAM/CONCRETE BUILDING FOR THEATER OF--ETC(U)
MAR 78 A SMITH
CERL-TR-M-231

UNCLASSIFIED

NL

| OF |
AD
A053272

END
DATE
FILED

6-78

DDC

AD A 053272

construction
engineering
research
laboratory

R
TECHNICAL REPORT M-231
March 1978

Foam Material Application in Theater
of Operations Construction

FEASIBILITY OF STRUCTURAL FOAM/CONCRETE BUILDING
FOR THEATER OF OPERATIONS USE

12

by
Alvin Smith

REF ID: A64700
DDC FILE COPY

Approved for public release; distribution unlimited.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

**DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED
DO NOT RETURN IT TO THE ORIGINATOR**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER CERL-TR-M-231	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) FEASIBILITY OF STRUCTURAL FOAM/CONCRETE BUILDING FOR THEATER OF OPERATIONS USE	5. TYPE OF REPORT & PERIOD COVERED FINAL Repts	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR Alvin Smith	8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS CONSTRUCTION ENGINEERING RESEARCH LABORATORY P.O. Box 4005 Champaign, IL 61820	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 4A762719AT41-08-002	11. REPORT DATE Mar 78
11. CONTROLLING OFFICE NAME AND ADDRESS	12. NUMBER OF PAGES 25	13. SECURITY CLASS. (If necessary) Unclassified
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	15. SECURITY CLASSIFICATION/DOWNGRADING SCHEDULE	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	
18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service Springfield, VA 22151	19. KEY WORDS (Continue on reverse side if necessary and identify by block number) polystyrene foam theater of operations Army Facilities Components System	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study was performed to assess the feasibility of using preformed polystyrene foam building blocks to construct shelters in noncombative areas of the Theater of Operations (TO). A structure in which the principal wall material was polystyrene foam blocks was designed, constructed, and evaluated on the basis of logistics requirements, manpower time, required skill levels, and costs. It was concluded that the polystyrene foam block building required less than half the man-hours and slightly lower skill levels than were necessary to erect a similar-sized Army		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block 20 continued.

→ Facilities Components System timber building. However, the foam block building has a 75 percent greater shipping volume in the expanded form, and a 300 percent greater materials cost. Based on these conclusions, it is recommended that the foam block system be used in the TO only if the expansion and molding equipment is established within the area of planned usage.

2

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

FOREWORD

This investigation was conducted for the Directorate of Facilities Engineering, Office of the Chief of Engineers (OCE), under RDT&E Program 6.27.02, Project 4A762719AT41, "Research for Base Development in the Theater of Operations"; Task 08, "Base Development Design and Construction"; Work Unit 002, "Foam Material Applications in Theater of Operations Construction." The OCE Technical Monitor is Mr. Ed McWhite.

The work was performed by the Construction Materials Branch (MSC), Materials and Science Division (MS), U.S. Army Construction Engineering Research Laboratory (CERL). Mr. Harvey Barrett's contributions to this work are gratefully acknowledged.

COL J. E. Hays is Commander and Director of CERL, and Dr. L. R. Shaffer is Technical Director. Dr. G. R. Williamson is Chief of MS, and Mr. P. A. Howdyshell is Chief of MSC.

ACCESSION for	
NTIS	White Section <input checked="" type="checkbox"/>
DDC	Buff Section <input type="checkbox"/>
UNANNOUNCED	<input type="checkbox"/>
JUSTIFICATION _____	
BY _____	
DISTRIBUTION/AVAILABILITY CODES	
Dist.	AVAIL AND / OR SPECIAL
A	

CONTENTS

DD FORM 1473	1
FOREWORD	3
LIST OF FIGURES AND TABLES	5
1 INTRODUCTION	7
Background	
Objective	
Approach	
Mode of Technology Transfer	
2 POLYSTYRENE FOAM BUILDING SYSTEM	7
Development	
Erection	
3 EVALUATION	8
Performance	
Logistics	
Man-Hours and Skill Levels	
Costs	
Problems Encountered	
4 CONCLUSIONS AND RECOMMENDATIONS	9
FIGURES	
APPENDIX: Molding of Polystyrene	22
DISTRIBUTION	

FIGURES

Number		Page
1	Plan of Model Structure	10
2	Floor and Foundation	11
3	Polystyrene Foam Block Showing Column Holes	12
4	Erection of Walls	12
5	Erection of Walls	13
6	Erection of Walls and Bracing	13
7	Completely Erected Exterior and Interior Walls Including Bracing	14
8	Door Unit in Utility Room	14
9	Door Unit, Detail	15
10	Location of Concrete Studs	15
11	Mortar Columns and Reinforced Beam	16
12	Arrangement of Reinforced Concrete and Styrene Foam Blocks	17
13	Wood Truss Roof Support System	18
14	Nailer Strips on Roof Trusses	18
15	Completed Structure with Collector Panels on South-Facing Roof	19
16	Front View of Structure Showing Collector Panels	19
17	Foam Broken by Mortar Weight	20
A1	Diagrammatic Sketch of Typical Expandable Polystyrene Molding Operation	22

TABLE

Number		Page
1	Man-Hours Required to Erect Model Structure	9

FEASIBILITY OF STRUCTURAL FOAM/CONCRETE BUILDING FOR THEATER OF OPERATIONS USE

1 INTRODUCTION

Background

The Army Facilities Components System (AFCS) is a military engineering support system for commanders and military planners to use in selecting facilities and installations for military theaters of operations (TO).¹ Foamed plastic materials show potential for augmenting the materials used in the AFCS. They offer excellent strength-to-weight relationships, possess the best thermal insulating properties available, and can be readily erected at a low cost.²

Objective

The objective of this study was to assess the feasibility of using preformed polystyrene foam building blocks for constructing shelters in noncombative areas of the TO. This study is one part of an overall program investigating the use of low-density plastic foams as construction materials in the TO.

Approach

A structure in which the principal wall construction material was polystyrene foam blocks was designed, constructed, and evaluated on the basis of logistics requirements, manpower time, required skill levels, and costs.

Mode of Technology Transfer

The information contained in this study, if adopted for use by the Army, will impact on the following technical manuals: TM 5-301-1, 2, 4, *AFCS Planning: Temperate, Tropical and Desert Regions*, TM 5-302-1, 2, *AFCS Design*, and TM 5-303, *AFCS Logistic Data and Bills of Material*.

2 POLYSTYRENE FOAM BUILDING SYSTEM

Development

Structural Foam, Inc. has developed and patented a foam building system that can be used to erect single and multistory buildings.³ Tests of building components conducted by independent testing laboratories for the company have shown a performance level in excess of the Federal Housing Administration (FHA) design codes required for residential housing.

CERL contracted with Structural Foam, Inc. to provide walls, doors, window frames, trim, and gable ends for a 624 sq ft (58 m²) structural foam building as shown on the floor plan in Figure 1.⁴

Erection

The building was erected using polystyrene foam modules (Figure 2) consisting of foam blocks 6 in. wide by 12 in. high (152 by 305 mm), with lengths ranging up to 20 ft (6.1 m). The foam was expanded and preformed into blocks in a manufacturing plant, using heavy metal equipment and presses. The blocks were formed with 3 in. (76 mm) diameter holes on 6 in. (152 mm) centers through the 12 in. (305 mm) direction (Figure 3).

At the site, the blocks were formed into modules with the holes aligned. The entire structure was built on a conventional concrete block foundation and wood joist, plywood floor system. A channel block used for the top course of the foundation was filled with concrete reinforced with two No. 3 reinforcing bars. No. 3 dowels were placed at 24 in. (610 mm) on center throughout the length of the foundation to match every fourth hole in the wall modules. A No. 3 reinforcing bar was placed in the holes where a dowel had been set and the holes were filled with sand mortar to form a reinforced concrete stud every 24 in. (610 mm) throughout the entire building exterior. The interior partitions were constructed in the same manner, except there was no concrete block foundation under them and thus no dowel to tie the stud to the foundation.

¹ AR 415-16, *Army Facilities Components System* (Department of the Army, 1 October 1975).

² *State of the Art Studies on the Development of Industrialized Housing in the United States as Related to the Role of the Civil Engineer*, Project Number 714 (Texas A&M Research Foundation, 1971).

³ U. S. Patent, 3,566,568 to Structural Foam, Inc.

⁴ Contract DACA 88-74-0054, CERL, 18 June 1974.

Figures 4 through 7 show the building in various construction stages. Door and window units were installed as the walls were erected (Figures 8 and 9). Figure 10 shows the arrangement of the mortar studs in the wall systems. A mortar beam reinforced with two No. 3 bars was cast around the entire top perimeter of the walls as indicated in Figures 11 and 12. Foam drinking cups were inserted in the tops of the holes where concrete was not desired to form studs (Figure 11). Mortar was placed manually in the model building, although a plaster pump is normally used for this purpose.

The roof system consisted of preconstructed wood trusses (Figure 13) set on 24 in. (610 mm) centers and secured to the walls by metal anchors that had been set in the beam at the top of the walls. Nailer strips were attached to the trusses at 18 in. (457 mm) intervals (Figure 14). Galvanized corrugated steel was nailed to the strip and a ridge cap secured along the ridge line. Corrugated steel roofing was used, since it is commonly used in the TO.

The underneath side of the roof was insulated by spraying it with a 2 in. (51 mm) minimum thickness of polyurethane foam. Adhesion of the foam to the metal and nailer strips was excellent. The ambient temperature ranged from 30°F (-1°C) to 40°F (4.4°C) during foam application, but presented only minor problems by retarding the foaming of the initial deposition of spray. Subsequent sprayed layers foamed normally. After the foam was applied, a 1/4 in. (6.35 mm) minimum thickness of gypsum plaster was sprayed over it to act as a fire-resistant coating. The plaster adhered well, since the foam was sufficiently rough to permit mechanical locking.

The building interior was finished by applying gypsum wallboard to the walls and ceilings of two rooms, the corridor, and the bathroom; the other two rooms were finished with paneling on the walls and lattice suspended ceilings. Nailers were installed along the top and bottom of the walls to attach the gypsum board and paneling. An adhesive compatible with the polystyrene foam was also used to adhere the sheets to the wall. Prior to application of the finish, grooves for electrical wires were routed in the foam; however, the empty 3 in. diameter holes in the walls could also be used for running utility lines.

Floor coverings consisted of linoleum tile in the rooms with gypsum wallboard, and low-pile "indoor-outdoor" carpet in the rooms with paneled walls.

The exterior walls were finished with aluminum siding.

3 EVALUATION

Performance

The building has been occupied by a solar heating and cooling facility (Figures 15 and 16) for 1 1/2 years and is performing well. The high "R" value* of the foam walls (18.5), as compared to that of conventional construction with 3 1/2 in. "batt insulation" (9.71), permitted the use of a lower capacity energy collection and storage system.

Logistics

The shipping volume of the building materials was about 750 cu ft (21.3 m³). A similar AFCS building⁺ occupies about 420 cu ft (11.76 m³). The manufacture of polystyrene involves a dual thermal process in which the material undergoes a total expansion of up to 60 times its original volume. The material is formed during the second expansion process, which requires extensive heating and molding equipment. The shipping volume of the materials required for the building in this study can be reduced by 65 percent if this process is accomplished on equipment erected in the TO. (The appendix describes the process.)

Man-Hours and Skill Levels

Erection time for the building was 248 man-hours (Table I), compared to a planned time of 540 man-hours for an AFCS building of the same size. The walls can be erected by unskilled laborers, but foundation, roofing, and finish work require the same skill levels as a typical AFCS structure.

Costs

The cost of materials for the 624 sq ft (58 m²) foam/concrete building was \$4150, compared to \$972

*"R" is the resistance to heat transfer through a material or material system. It is the reciprocal of the "K" (conductance) value which is stated in Btu/sq ft/in. thickness per hour. The metric equivalent of K would be $5.67 \frac{\text{watts}}{\text{meter}^2 \text{ }^\circ\text{K}}$ and of R $(1.76 \times 10^{-1}) \frac{\text{meter}^2 \text{ }^\circ\text{K}}{\text{watt}}$.

⁺AFCS facility number 722121, Qtrs, Female Employees, 20' x 30' Wood, was selected for comparison, since area and plan are so similar to CERL foam/concrete building.

Table 1
Man-Hours Required to Erect Model Structure

Foundation/Floor	32
Setting Wall Modules	16
Concrete Studs and Beams	52
Roof Trusses (Building and Installation)	24
Metal Roof Placement	16
Foam Spray Insulation	16
Plaster Spraying	32
Interior Finish, Including Wiring	64
TOTAL	248

for a comparable-area AFCS building. Cost per square foot of floor space for the CERL building was \$10.79, including all work except the solar heating/cooling plant. By comparison, the Texas A&M study showed a 1200 sq ft (111.5 m^2) house being completed in 400 man-hours in 8 working days from initial grading to readiness for occupancy. Cost per square foot for the building was \$8.64, including site preparation, foundation, erection, and finishing work. This difference is attributable to the labor and overhead rates being higher at CERL in 1973-74 than were common in 1970 in the construction industry.

Problems Encountered

Problems encountered in constructing the building were as follows:

1. Pouring mortar to form the studs caused buckling of the exterior finish and breaking of the unsupported interior face of some foam blocks in three areas near the bottom of the wall (Figure 17).
2. Door frames were distorted during the building process and had to be reworked before interior doors could be hung.
3. Application of nailer strips was time consuming. Nailer strips should be included in selected polystyrene

blocks so that interior finish panels could be more easily applied.

4. Use of foam for partition walls was expensive and did not provide a good backing for paneling. Conventional walls for partitions would be somewhat less expensive, and would form a better backing.

4 CONCLUSIONS AND RECOMMENDATIONS

1. The polystyrene foam block building described in this report required less than half the man-hours necessary to erect a similar-sized AFCS timber building.

2. The insulation value of the foam walls, $R = 18.5$, is far superior to that of plywood/stud/batt insulation walls, $R = 9.71$.

3. The shipping volume of the polystyrene building as presently constructed is 75 percent greater than that required for a similar AFCS structure; however, if the expansion and molding equipment is available in the TO, the shipping volume can be reduced by 65 percent.

4. Required skill levels are slightly lower than those for a comparable AFCS building.

5. The material costs for the polystyrene building are over 300 percent greater than the costs of a comparable AFCS timber building.

It is recommended that the polystyrene foam block building construction system described in this report be used in the TO only if the expansion and molding equipment is established within the area of planned usage.

Figure 1. Plan of model structure.

Figure 2. Floor and foundation.

Figure 3. Polystyrene foam block showing column holes.

Figure 4. Erection of walls.

Figure 5. Erection of walls.

Figure 6. Erection of walls and bracing.

Figure 7. Completely erected exterior and interior walls including bracing.

Figure 8. Door unit in utility room.

Figure 9. Door unit, detail.

Figure 10. Location of concrete studs.

Figure 11. Mortar columns and reinforced beam.

Figure 12. Arrangement of reinforced concrete and styrene foam blocks.

Figure 13. Wood truss roof support system.

Figure 14. Nailer strips on roof trusses.

Figure 15. Completed structure with collector panels on south-facing roof.

Figure 16. Front view of structure showing collector panels.

Figure 17. Foam broken by mortar weight.

Figure 17. (Cont'd)

APPENDIX: MOLDING OF POLYSTYRENE

Polystyrene is an inexpensive plastic, commercially available in large quantities. It is easily processed at relatively low temperatures and pressures, and its solubility characteristics permit the use of many solvents as expanding agents. Expandable polystyrene is produced in the form of free-flowing beads resembling table salt, symmetrical shapes, and strands containing an integral blowing agent such as n-pentane. When exposed to heat without restraint, these particles expand from a bulk density of 35 lb/cu ft (0.99 m^3) to as low as 0.25 lb/cu ft (0.007 m^3). When used for molding products, the particles are held to a minimum density of 1.0 lb/cu ft (0.028 m^3).

Molding expandable polystyrene beads is a two-stage process. First, the virgin beads are pre-expanded to the approximate desired density by the application of heat, usually in the form of steam. The process is a continuous one. Pre-expanded beads are allowed to age and dry before being used to mold shapes. The molding process requires a second heating of the pre-expanded beads in a confined space. Again, steam is the preferred heating agent, but other methods can be used. The total process is completely defined and the equipment readily available. Figure A1 is a diagrammatic sketch of the process and the required equipment. The complete molding operation could be transported in a standard tractor-trailer unit, with an additional facility provided for storage and aging of the pre-expanded beads.

Figure A1. Diagrammatic sketch of typical expandable polystyrene molding operation.

CERL DISTRIBUTION

Picatinny Arsenal
ATTN: SMUPA-VP3

US Army, Europe
ATTN: AEAEN

Director of Facilities Engineering
APO New York, NY 09827
APO Seattle, WA 98749

DARCOM STIT-EUR
APO New York 09710

USA Liaison Detachment
ATTN: Library
New York, NY 10007

US Military Academy
ATTN: Dept of Mechanics
ATTN: Library

Chief of Engineers
ATTN: Tech Monitor
ATTN: DAEN-ASI-L (2)
ATTN: DAEN-FEE-A
ATTN: DAEN-FEB
ATTN: DAEN-FEZ-A
ATTN: DAEN-MCZ-S (2)
ATTN: DAEN-RDL
ATTN: DAEN-ZCP
ATTN: DAEN-PMS (12)
for forwarding to
National Defense Headquarters
Director General of Construction
Ottawa, Ontario K1AOK2
Canada

Canadian Forces Liaison Officer (4)
U.S. Army Mobility Equipment
Research and Development Command
Ft Belvoir, VA 22060

Div of Bldg Research
National Research Council
Montreal Road
Ottawa, Ontario, K1A0R6

Airports and Const. Services Dir.
Technical Information Reference
Centre
KAOL, Transport Canada Building
Place de Ville, Ottawa, Ontario
Canada, K1A 0N8

British Liaison Officer (5)
U.S. Army Mobility Equipment
Research and Development Center
Ft Belvoir, VA 22060

Ft Belvoir, VA 22060
ATTN: ATSE-TD-TL (2)
ATTN: Learning Resources Center
ATTN: Kingman Bldg, Library
ATTN: FESA

US Army Foreign Science &
Tech Center
ATTN: Charlottesville, VA 22901
ATTN: Far East Office

Ft Monroe, VA 23651
ATTN: ATEN
ATTN: ATEN-FE-BG (2)

Ft McPherson, GA 30330
ATTN: AFEN-FEB

Ft Lee, VA 23801
ATTN: DRXMC-D (2)

USA-CRREL

USA-WES
ATTN: Concrete Lab
ATTN: Soils & Pavements Lab
ATTN: Library

6th US Army
ATTN: AFKC-LG-E

I Corps (ROK/US) Group
ATTN: EACI-EN
APO San Francisco 96358

US Army Engineer District
New York
ATTN: Chief, Design Br

Buffalo
ATTN: Library

Saudi Arabia
ATTN: Library

Pittsburgh
ATTN: Library
ATTN: ORPCD
ATTN: Chief, Engr Div

Philadelphia
ATTN: Library
ATTN: Chief, NAPEN-D

Baltimore
ATTN: Library
ATTN: Chief, Engr Div

Norfolk
ATTN: Library
ATTN: NAOEN-D

Huntington
ATTN: Library
ATTN: Chief, ORHED-F

Wilmington
ATTN: Chief, SAWCO-C

Charleston
ATTN: Chief, Engr Div

Savannah
ATTN: Library
ATTN: Chief, SASAS-L

Jacksonville
ATTN: Library
ATTN: Const. Div

Mobile
ATTN: Library
ATTN: Chief, SAMEN-D
ATTN: Chief, SAMEN-F

Nashville
ATTN: Chief, ORNED-F

Memphis
ATTN: Chief, Const. Div
ATTN: Chief, LMMED-D

Vicksburg
ATTN: Chief, Engr Div

Louisville
ATTN: Chief, Engr Div

Detroit
ATTN: Library
ATTN: Chief, NCEED-T

St. Paul
ATTN: Chief, ED-D
ATTN: Chief, ED-F

Chicago
ATTN: Chief, NCCCO-C
ATTN: Chief, NCED-F

Rock Island
ATTN: Library
ATTN: Chief, Engr Div
ATTN: Chief, NCRED-F

St. Louis
ATTN: Library
ATTN: Chief, ED-D

Kansas City
ATTN: Library (2)
ATTN: Chief, Engr Div

Omaha
ATTN: Chief, Engr Div

New Orleans
ATTN: Library (2)
ATTN: Chief, LMNED-DG

Little Rock
ATTN: Chief, Engr Div

Tulsa
ATTN: Library

Fort Worth
ATTN: Library
ATTN: SWFED-D
ATTN: SWFED-F

Galveston
ATTN: Chief, SWGAS-L
ATTN: Chief, SWGCO-C
ATTN: Chief, SWGED-DC

Albuquerque
ATTN: Library
ATTN: Chief, Engr Div

Los Angeles
ATTN: Library
ATTN: Chief, SPLED-F

San Francisco
ATTN: Chief, Engr Div

Sacramento
ATTN: Chief, SPKED-D
ATTN: Chief, SPKCO-C

Far East
ATTN: Chief, Engr Div

Japan
ATTN: Library

Portland
ATTN: Library
ATTN: Chief, DB-6

Seattle
ATTN: Chief, NPSCO
ATTN: Chief, NPSEN-FM
ATTN: Chief, EN-DB-ST

US Army Engineer District
Walla Walla
ATTN: Library
ATTN: Chief, Engr Div

Alaska
ATTN: Library
ATTN: NPADE-R

US Army Engineer Division
Europe
ATTN: Technical Library

New England
ATTN: Library
ATTN: Laboratory
ATTN: Chief, NEDCD

North Atlantic
ATTN: Library
ATTN: Chief, NADEN

South Atlantic
ATTN: Library
ATTN: Laboratory
ATTN: Chief, SADEN-TC

Huntsville
ATTN: Library (2)
ATTN: Chief, HNDED-CS
ATTN: Chief, HNDED-SR

Lower Mississippi
ATTN: Library
ATTN: Chief, LMVED-G

Ohio River
ATTN: Laboratory
ATTN: Chief, Engr Div

North Central
ATTN: Library

Missouri River
ATTN: Library (2)
ATTN: Chief, MRDED-G

Southwestern
ATTN: Library
ATTN: Laboratory
ATTN: Chief, SWDED-TG

South Pacific
ATTN: Laboratory

Pacific Ocean
ATTN: Chief, Engr Div
ATTN: FMRS Branch
ATTN: Chief, PODED-D

North Pacific
ATTN: Laboratory
ATTN: Chief, Engr Div

Facilities Engineer
FORSCOM
Ft Devens, MA 01433
Ft McPherson, GA 30330
Ft Sam Houston, TX 78234
Ft Carson, CO 80913
Ft Campbell, KY 42223
Ft Hood, TX 76544
Ft Lewis, WA 98333

TRADOC
Ft Dix, NJ 08640
Ft Monroe, VA 23651
Ft Lee, VA 23801
Ft Gordon, GA 30905
Ft McClellan, AL 36201
Ft Knox, KY 40121
Ft Benjamin Harrison, IN 46216
Ft Leonard Wood, MO 65473
Ft Sill, OK 73503
Ft Bliss, TX 79916
HQ, 24th Inf, Ft Stewart, GA 31313
HQ, 1st Inf, Ft Riley, KS 66442
HQ, 5th Inf, Ft Polk, LA 71459
HQ, 7th Inf, Ft Ord, CA 93941
West Point, NY 10996
ATTN: MAEN-E
Ft Benning, GA 31905
ATTN: ATZB-FE-EP
ATTN: ATZB-FE-BG

CAC&FL
ATTN: DFAE (3)
Ft Leavenworth, KS 66027

AMC
Dugway, UT 84022
USACC
Ft Huachuca, AZ 85613

AF/PREEU
Boeing AFB, DC 20332

AF Civil Engr Center/XRL
Tyndall AFB, FL 32401

Little Rock AFB
ATTN: 314/DEEE/Mr. Gillham

MSC

Naval Facilities Engr Command
ATTN: Code 04
Alexandria, VA 22332

Port Hueneme, CA 93043
ATTN: Library (Code LOBA)
ATTN: Morrell Library

Defense Documentation Center (12)

Washington, DC
ATTN: Bldg Research Advisory Board
ATTN: Library of Congress (2)
ATTN: Federal Aviation Administration
ATTN: Dept of Transportation Library
ATTN: Transportation Research Board

Engineering Societies Library
New York, NY 10017

Director
HQ, US Army Garrison, Honshu
ATTN: DFE
APO San Francisco 96343

Smith, Alvin.

Feasibility of structural foam/concrete building for theater of operations use. - Champaign, IL. : Construction Engineering Research Laboratory ; Springfield, VA. : available from National Technical Information Service , 1978.

22 p. : ill. ; 27 cm. (Technical report - Construction Engineering Research Laboratory : M-231)

1. Plastics in building. 2. U.S. Army - military construction operations. I. Title. II. Series: U.S. Construction Engineering Research Laboratory. Technical report M-231.