

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD A 1 2 9 2 1 6

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PA	GE	BEFORE COMPLETING FORM
	OVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	5-A139216	
4. TITLE(<i>and Substite</i>) Mobility and Transportability Assessm	ent of a	5. TYPE OF REPORT & PERIOD COVERED
Generic High Mobility Multipurpose Wh		Technical Report
Vehicle (HMMWV)	[6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(#)
W. Ferguson; L. Martin; J. Rouse; E.	Kusterer	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Mobility Analysis Branch		
US AMS AA		·
APG, MD 21005 11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Commander US Army Materiel Dev & Readiness Comm	and	FEBRUARY 1983
5001 Eisenhower Ave	-	19. NUMBER OF PAGES 154
Alexandria VA 22333 14. MONITORING AGENCY NAME & ADDRESS(II dillorent fro	m Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for Public Release; Distribu	tion Unlimited	•
Approved for rubite Release, bistribu	cion uniimirced	
17. DISTRIBUTION STATEMENT (of the abstract entered in B	lock 20, If different from	m Report)
•	·	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and id Speed Profiles; Terrain Unit; Soil St	,,	
Acceleration; Lateral Stability; Turn		
26. ABSTRACT (Continue on reverse olds If recessary and Ide	atily by block mamber)	
The performance of the HMMWV is analy.	zed and compar	
will replace. A generic HMMWV is pos off-road and on-road performance in E		
criteria are: Speed profiles, percen		
the vehicles were immobilized, factor	s causing immo	bilization, factors limiting
speed, vehicle acceleration, speed on side slopes. Additionally air transp		
side slopes. Additionally air transp	UT LADITITY OF	the venicles was evaluated.

DO 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

ACKNOWLEDGEMENT

The US Army Materiel Systems Analysis Activity (AMSAA) recognizes the following individual for contributing to this report:

PEER REVIEWER: Herbert Gage

Acces	gion For
BTIS	GRA&I
DIIC	TAB 📋
,	ounced 🔲
Justi	fication
Bv	
	ibution/
Avai	lability Codes
	Avail and/or
Dist	Special
A	

CONTENTS

		PAGE
١.	INTRODUCTION	1
s •	MOBILITY EVALUATION	3
	2.1 Off-Road Performance	3
	2.2 On-Road Performance	8
	2.3 Tactical Mobility Levels	13
	2.4 Acceleration and Speed on Slopes	21
	2.5 Lateral Stability	21
3.	AIR TRANSPORTABILITY	26
	3.1 Fixed Wing Transport	26
	3.2 Rotary Wing Transport	30
4.	CONCLUSIONS	30
	APPENDIX A	35
	APPENDIX B	148
	DISTRIBUTION LIST	153

MOBILITY AND TRANSPORTABILITY ASSESSMENT OF A GENERIC HIGH MOBILITY MULTIPURPOSE WHEELED VEHICLE (HMMWV)

1. INTRODUCTION

The US Army Infantry School (USAIS) is currently carrying out a Performance and Cost Analysis (P&CA) of the High Mobility Multipurpose Wheeled Vehicle (HMMWV). AMSAA was requested to support this effort by conducting performance analyses of the HMMWV and those vehicles which the HMMWV will supplant in its various roles. The vehicles or combinations of vehicles considered in this study are:

HMMWV Utility Truck
HMMWV Utility Truck Mounting the S250 Shelter @ 3600 pounds
HMMWV Utility Truck Towing the M101 3/4-ton Trailer
M151 1/4-ton Truck
M151 1/4-ton Truck Towing the M416 1/4-ton Trailer
M561 1-1/4 ton Truck
M561 1-1/4 ton Truck Towing M101 3/4-ton Trailer

Since the HMMWV vehicles are still undergoing competitive evaluation, it was decided, for analysis purposes, to use a generic form of the HMMWV having attributes representative of all of the candidate vehicles, but peculiar to none. In addition, it was felt that the performance of the cargo loaded HMMWV truck and the HMMWV weapons carrier mounting the TOW launcher would be similar and therefore the TOW vehicle was not evaluated as such.

The mobility assessment encompassed vehicle performance off-road and on-road in Europe and the Mid-East. The European terrain over which the vehicles were exercised is located in West Germany and the Mid-East terrain in Jordan. Conditions considered were dry, wet and snow covered surfaces in West Germany and dry and wet surfaces in Jordan.

Results of the assessment are presented in the form of speed profiles and a listing of the percentages of the total area in which the vehicles were immobilized. The factors which caused immobilization as well as those which limited speed are also indicated.

On-road performance is shown as average speeds over primary and secondary roads and trails. The road networks over which the speeds were computed are located in West Germany and Yuma, Arizona. The Yuma network was selected because it resembles Jordan roads and because no Jordan network is available. Both off-road and on-road vehicle performance were obtained by exercising the vehicles in the Army Mobility Model. Finally, both off-road and on-road performance were employed to determine tactical high, tactical standard and tactical support mobility levels.

Additional measures of performance which are not provided as specific outputs of the Army Mobility Model are also furnished. These are vehicle acceleration and maximum speed on slopes. Stability during turns on side slopes was also investigated for the M151, M561 and the HMMWV when carrying the S250 shelter.

During the course of the mobility analysis a request was received from USAIS for additional HMMWV P&CA analysis support in the form of a transportability evaluation of the HMMWV and certain base case vehicles. Only air transport was to be considered. The vehicles, aircraft and operational areas are listed below:

HMMWV, TOW TOW System:

a. Vehicles evaluated:

Base Case HMMWV

M561, 5/4-ton, truck

M151, 1/4-ton, truck

0.0

M151, 1/4-ton, TOW Carrier

M151, 1/4-ton, Missile Carrier

M416, 1/4-ton, Trailer

- b. Aircraft to be considered:
 - (1) Internal Loads Cl30, Cl41B, C5A, CH-47D
 - (2) External Loads CH-47D, UH-60, UH-60 (BI)*
- c. Scenarios to be considered:
 - (1) Europe
 - (2) Mid-East

*Block Improvement

The objectives of the transportability assessment were to determine:

- a. Based on loading only one type of vehicle system, the number of each type that can be loaded on the Cl30, Cl41B, C5A and the CH-47D aircraft.
- b. Whether the CH-47D, UH-60 and UH-60 (BI) can sling load each of the vehicle systems in the Europe and Mid-East areas taking into consideration pressure altitude, temperature and round trip distance. Conditions under which sling loading cannot be effected should be noted.

Section II contains a discussion of the various aspects of the mobility assessment. In Section III, air transport of the various vehicles in the designated aircraft in the Mid-East and Europe is evaluated. Characteristics of the generic HMMWV and speed profiles of actual and cumulative average speeds of

the various vehicles are presented in Appendix A and payload range curves for the helicopters considered in Appendix B.

MOBILITY EVALUATION

2.1 Off-Road Performance.

The Army Mobility Model off-road module was used to assess performance of the various vehicles in the West Germany and Jordan terrains. The Army Mobility Model is composed of two modules, the aforementioned off-road module and an on-road module. The off-road module computes the maximum feasible first-pass speed for a single vehicle in a single areal patch or terrain unit. Terrain units are areas in which certain attributes of the terrain such as soil strength, slope, roughness, obstacles and vegetation fall within certain rather narrow ranges and thereby can be characterized by a single representative value for each feature. These attributes are then considered to be homogeneous throughout the unit.

The vehicle is specified in terms of mechanical, geometric and inertial characteristics that determine its interaction with the terrain. These include such factors as weight distribution, track or wheel size, approach and departure angles, tractive force as a function of speed, and ride and obstacle performance curves. Driver inputs are considered in terms of his ability to stand shock and vibration and his reaction to certain situations affecting his driving behavior.

With this information at hand, the off-road module computes the maximum vehicle speed in each terrain unit. The terrain unit speeds are cumulated in a speed profile. In these profiles, the terrain units are ordered so that they progress from the essiest to the most difficult to negotiate. The profiles show both the actual and cumulative average speeds as a function of the percentage of terrain traversed. Cumulative average speed is the average speed a vehicle can sustain as a function of the total area it avoids, under the assumption that it avoids the areas posing the greatest impediment to its motion.

An additional output of the off-road module is a listing of the speed limiting and immobilizing factors and the percentage contribution of each factor.

All the vehicles were exercised in both the off-road and on-road modules of the Mobility Model. Tables 1-3 show the cumulative average speeds achieved by each vehicle for each condition over the easiest 50 percent (V_{50}) and easiest 90 percent (V_{90}) of the terrain, and indicate the fraction of the terrain that is not negotiable under each condition.

Two sets of abbreviations appear in this report. The first set appears in the body of the report and is used because of its compactness and clarity. The second, imposed by additional computer plotter constraints, appears on the speed profiles presented in the Appendices. These abbreviations are:

VEHICLE/COMBINATION	ABBREVIATION IN REPORT TEXT	PLOTTER ABBREVIATION
HMMWV Utility Truck	HMMWVG	HMMWVG
HMMWV Utility Truck Mounting S250 Shelter	HMMWV W/SHELTER	HMMWVSH
HMMWV Towing M101 Trailer	HMMWV W/M101	HMMWV W/M1
M151 1/4-ton Truck	M1 51 A2	M1 51 A2
M151 1/4-ton Truck Towing M416 Trailer (AMMO)	M151 W/AMMO TRL	M151 W/AMM
M151 1/4-ton Truck Towing M416 Trailer	M151 W/M416	M151 W/TRL
M561 1-1/4 ton Truck	M561	M561
M561 1-1/4 ton Truck Towing M101 Trailer	M561 W/M101	M561 TR

Table 1 shows that the HMMWV carrying cargo or the S250 shelter or towing the M101 has higher V_{50} speeds than the other vehicles on dry surfaces in West Germany and Jordan terrain. All vehicles are immobilized by the time 90 percent of either area is traversed, hence no V_{90} values are given. The HMMWV has a lower incidence of immobilization in the German terrain, but a higher percentage of no-go's in Jordan. The Jordan terrain is rougher and the configuration of the HMMWV is such that the obstacles encountered in Jordan immobilize it more frequently than the M151. The M151's shorter wheelbase and slightly better breakover angle probably contribute to this.

Data presented in Table 2 show the degrading effects of wet surfaces on vehicle mobility. All vehicles experience a reduction in V50 speeds and an increase in the percentage of no-go's. In particular, trailered vehicles show a marked increase in no-go's on wet surfaces in West Germany. A reduction in vehicle traction occurs due to the weakness of the soil when wet, resulting in increased immobilization. This is especially true of the West German terrain which receives considerably more rainfall in the wet season than does Jordan, and hence has greater moisture content in the soil.

Table 4 contains a listing of the Vehicle Cone Index (VCI₁) values for the various vehicles studied. The VCI₁ value is the soil strength required to support one pass of the vehicle in question. This value enters into the expression used to determine the magnitude of the reactive force exerted by the soil in opposition to the tractive or propulsive force imposed on it by the vehicle. Other things being equal, the lower the VCI₁, the smaller the reactive force the soil must develop to allow the vehicle to move. Consequently, the

TABLE 1
PREDICTED VEHICLE MOBILITY

CUMULATIVE AVERAGE SPEEDS

	*	GERMANY-	DRY		JORDAN-DR	Υ
	V ₅₀	V ₉₀	PERCENT*	V ₅₀	V ₉₀	PERCENT*
VEHICLE	MPH	MPH	NOGO	MPH	MPH	NOGO
HMMWV W/M101	18.6	NO-G0	12.3	13.7	NO-GO	17.4
M151 W/M416	16.4	NO-G0	15.4	10.7	NO-GO	13.2
M561 W/M101	15.1	NO-GO	11.5	12.5	NO-GO	16.4
M151 W/AMMO TRL	16.5	NO-GO	14.8	10.7	NO-GO	13.1
M151A2	17.9	NO-GO	11.7	10.8	NO-GO	13.1
M561	15.8	NO-GO	10.2	12.5	NO-GO	16.4
HMMWVG	20.3	NO-GO	10.0	14.0	NO-GO	16.5
HMMWV W/SHELTER	19.7	NO-GO	10.0	13.9	NO-GO	16.5

*NO-GO UNDER v_{50} OR v_{90} COLUMN INDICATES THE VEHICLE WAS IMMOBILIZED BEFORE IT REACHED THE 50% OR 90% AREA POINT AND CONSEQUENTLY HAS NO SPEED AT THAT POINT.

5

العالمة والمقاد العرفان المراجع المراج

TABLE 2
PREDICTED VEHICLE MOBILITY

CUMULATIVE AVERAGE SPEEDS

		GERMANY-	WET		JORDAN-W	ET
	V ₅₀	٧90	PERCENT*	V ₅₀	٧90	PERCENT*
VEHICLE	MPH	MPH	NOGO	MPH	MPH	NOGO
HMMWV W/M101	14.2	NO-GO	28.6	12.5	NO-G0	19.0
M151 W/M416	11.5	NO-GO	30.1	9.7	NO-G0	15.5
M561 W/M101	12.3	NO-GO	25.5	11.9	NO-GO	18.1
M151 W/AMMO Trl	11.6	NO-GO	32.3	9.6	NO-GO	19.0
M151A2	14.5	NO-G0	19.8	10.1	NO-GO	14.0
M561	13.8	NO-GO	18.4	12.2	NO-G0	16.8
HMMWVG	16.3	NO-GO	18,6	13.0	NO-GO	16.8
HMMWV W/SHELTER	16.1	NO-G0	18.3	13.0	NO-G0	16.8

TABLE 3
PREDICTED VEHICLE MOBILITY
CUMULATIVE AVERAGE SPEEDS

		GERMANY-SNOW	
	V ₅₀	V ₉₀	PERCENT*
VEHICLE	MPH	MPH	NOGO
HMMWV W/MIOI	NO-GO	NO-G0	50.3
M151 W/M416	NO-GO	NO-GO	54.9
M561 W/M101	7.8	NO-GO	38.7
M151 W/AMMO TRL	NO-GO	NO-GO	63.0
M151A2	16.8	NO-GO	26.7
M561	11.5	NO-GO	25.0
HMMWVG	18.6	NO-GO	25.2
HMMWV W/SHELTER	17.3	NO-GO	25.4

vehicles having the lower VCI_1 will be able to negotiate weaker soils with fewer incidents of immobilization than those having the higher VCI_1 values. However, as shown in Table 4, there are no significant differences among the vehicles considered here.

Vehicle performance on snow covered surfaces in West Germany is even more degraded, with all but one of the trailered vehicles showing no-go's at the v_{50} point. However, it may be noted that the HMMWV vehicles without trailers, and the M151, show higher v_{50} speeds in snow than on wet surfaces. This is caused first by an assumed attenuation of surface roughness by the snow cover, and secondly by reduced motion resistance with snow over frozen ground as compared to wet soil. However, the percentage of no-go's is higher in the snow, indicating more difficulty in traversing the more severe terrain.

In general, the HMMWV vehicles had higher v_{50} speeds than the comparison vehicles and fewer no-go's.

Tables showing factors that cause no-go's and factors that limit speeds are contained in Appendix A. Profiles of actual and cumulative average speeds are also contained in this appendix.

2.2 On-Road Performance.

Average speeds of the various vehicles on the West Germany and Yuma road networks are presented in Tables 5-7. Speeds are shown over primary and secondary roads and trails for the same surface conditions considered for off-road travel. Since the Yuma road network represents the Mid-Fast roads, performance in snow was not evaluated for this network.

The on-road module of the Army Mobility Model was used to perform this assessment. The on-road module is similar in concept to the off-road module. Factors such as road type, surface strength, curvature and surface roughness are used to characterize the road units. Vehicle data include geometric, inertial and mechanical characteristics. The model output is vehicle speed. The three classes of road mentioned are identified as:

- Class 1 Primary: surfaced all weather road, two lanes or more.
- Class 2 Secondary: the halance of all weather roads, generally unpaved but improved, plus paved roads less than two lanes wide.
- Class 3 Trails: unimproved and fair weather roads and trails of at least one vehicle width.

The average speeds of all the HMMWV vehicles, including the one towing the M101 trailer, exceed those of the other vehicles on dry and wet roads and trails in West Germany and Yuma. On snow covered roads and trails, the HMMWV carrying cargo or the TOW weapon has higher speeds than all other vehicles, but

TABLE 4
VEHICLE VCI1 VALUES

VEHICLE	vci 1
HMMWV W/M101	22.5
M151 W/M416	21.2
M561 W/M101	21.5
M151 W/AMMO TRL	21.2
M151A2	18.8
M561	19.4
HMMWVG	19.4
HMMWV W/SHELTER	20.9

TABLE 5

AVERAGE SPEED ON ROADS AND TRAILS (MPH)

	(GERMANY-DRY			YUMA-DRY	
VEHICLE	PRIMARY	SECONDARY	TRAILS	PRIMARY	SECONDARY	TRAILS
HMMWV W/MTOT	50.3	36.1	13.7	57.7	33.6	13.6
M151 W/M416	44.5	29.8	9.5	49.6	26.5	10.0
M561 W/M101	39.4	21.4	12.3	47.0	18.8	12.4
M151 W/AMMO TRL	41.7	29.5	9.6	45.0	26.1	10.0
M151A2	48.8	32.1	9.7	53.0	27.3	10.0
M561	44.0	23.7	12.9	50.9	19.8	12.4
HMMWVG	53.5	38.4	14.0	60.6	34.3	13.6
HMMWV W/SHELTER	51.7	37.2	13.9	59.2	33.9	13.6

TABLE 6

AVERAGE SPEED ON ROADS AND TRAILS (MPH)

		GERMANY-WET			YUMA-WET	
VEHICLE	PRIMARY	SECONDARY	TRAILS	PRIMARY	SECONDARY	TRAILS
HMMWV W/M101	50.3	36.1	13.6	57.7	33.6	13.6
M151 W/M416	44.5	29.8	9.5	49.6	26.5	10.0
M561 W/M101	39.4	21.4	12.1	47.0	18.8	12.4
M151 W/AMMO TRL	41.7	29.5	9.6	44.9	26.1	10.0
M151A2	48.8	32.1	9.7	53.0	27.3	10.0
M561	44.0	23.7	12.8	50.9	19.8	12.4
HMMWVG	53.5	38.4	14.0	60.6	34.3	13.6
HMMWV W/SHELTER	51.7	37.2	13.8	59.2	33.9	13.6

11

TABLE 7

AVERAGE SPEED ON ROADS AND TRAILS (MPH)

		GERMANY-SNOW	
VEHICLE	PRIMARY	SECONDARY	TRAILS
HMMWV W/M101	26.8	25.4	16.2
M151 W/M416	25.1	23.0	14.6
M561, W/M101	16.3	15.7	11.6
M151 W/AMMO TRL	27.2	25.7	15.9
M1 51 A2	30.0	29.1	18.1
M561	21.5	19.7	12.9
HMMWVG	32.9	31.1	18.3
HMMWV W/SHELTER	29.7	28.4	17.5

when the S250 shelter is added, the speed falls slightly below that of the M151. The addition of the M101 trailer to the HMMWV results in only a small reduction of speed in snow.

2.3 Tactical Mobility Levels.

One means of rating vehicle performance is to express it in terms of a "mobility level". A mobility level rating system was used in this study to evaluate the various vehicles. This system comprises five levels of mobility proposed in the HIMO † study. It is based on the mission requirements of the vehicle, including both the frequency of operation on various surface types and the degree of severity of terrain encountered for each surface type.

Table 8 lists the various mobility levels, the composition of the networks in West Germany and the Mid-East (percentages of off-road, road and trail travel) and the severity of the operation in terms of the terrain and roads challenged).

Since the HMMWV will have a very wide range of mission requirements in replacing both the MI51 and the M561, all mobility levels from "tactical support" to "tactical high" are of interest. The speeds computed for each of these levels are shown in Tables 9 through 11 2 . To summarize the results shown in those tables, the following observations are offered:

- a. The basic HMMWV tactical mobility equals or exceeds that of the M151 and the M561 in 13 of the 15 conditions examined. Only in the Mid-East wet and dry conditions at the tactical high level does a baseline vehicle have a speed advantage and even there the advantage is less than one mile per hour.
- b. The S250 shelter weight of 3600 pounds does not significantly affect the tactical mobility speeds of the HMMWV.
- c. When each is towing a trailer the M561 has a slight advantage over the HMMWV at the higher tactical mobility levels.

NOTE: Nuttall, C.J., Jr, and Randolph, D.D., "Mobility Analysis of Standardand High-Mobility Tactical Support Vehicles (HIMO Study)". Technical Report M-76-3, February 1976, US Army Engineers Waterways Experiment Station, CE, Vicksburg, MS.

²Tables 9 through 11 indicate where vehicles cannot negotiate sufficient terrain to accommodate the tactical mobility definition. In such cases a speed of 0.1 MPH is assumed for the unnegotiable area to reflect the time penalty to provide required engineering support.

TABLE 8

NETWORK COMPOSITION AND SEVERITY AT TACTICAL MORILITY LEVELS

FOR HIMM WEST GERMANY STUDY AREA

1	COMF	COMPOSITION OF NETWORK IN PERCENT	TWORK IN PEF	CENT	. 40	TERRAIN AND ROADS CHALLENGED	ADS CHALLEN)ED
14	PRIMARY	SECONDARY	1		PRIMARY	SECONDARY		
	ROADS	ROADS	TRAILS	OFF-ROAD	ROAD	ROADS	TRAILS	OFF-ROAD
MOBILITY LEVELS	(Pp)	(PS)	(P _T)	(d)	(ddn)	(VSP)	(VTP)	
HIGH-HIGH	0	0	0	100	ı		1	00 LA
TACTICAL HIGH	10	30	10	50	00 ا	00 ا۸	۷۱ 00	۸ 90
TACTICAL STANDARD	20	50	15	15	۷۱ 00	V100	۷۱ 00	۸ 80
TACTICAL SUPPORT	30	55	10	S	V100	V100	۷ 50	۸ 80
ON-ROAD	35	09	2	0	00 ا۸	V100	V 10	•
			FOR HIM	FOR HIMO MID-EAST STUDY AREA	AREA			
нтен-нтен	C	0	c	100	ľ	·	•	V100
TACTICAL HIGH	5	20	52	50	νιοο	00 اړ	V1 00	۸ 90
TACTICAL STANDARD	15	35	35	15	V100	V100	00١٨	٧ 80
TACTICAL SUPPORT	20	40	35	2	۷۱00	۷۱ 00	۷ 80	۸ 50
ON-ROAD	30	40	30	C	۷۱00	V100	٧ 50	1

TABLE 9
SPEED AT TACTICAL MOBILITY LEVELS

	<u></u>	EST GERMANY-DI	RY	1	MID-EAST DRY	
	TACTICAL	TACTICAL	TACTICAL	TACTICAL	TACTICAL	TACTICAL
VEHICLE	HIGH	STANDARD	SUPPORT	HIGH	STANDARD	SUPPOPT
HMMWV/MI OI	4.1*	18.3	30.2	3.2*	15.2	22.8
M151/M416	2.3*	15.2	26.1	2.7*	10.7	18.2
M561/M101	4.6*	14.7	21.8	4.5*	13.6	17.2
M151/AMMO TRL	2.6*	15.1	25.8	3.7*	10.6	18.0
M1 51 A2	4.5*	16.0	27.9	4.9*	10.7	18.4
M561	7.3*	15.6	22.7	4.5*	13.8	17.6
HMMWVG	9.4	19.1	32.0	4.1*	15.3	23.0
HMMWV/SHELTER	9.3	18.8	31.2	4.1*	15.3	22.9

*AREA TRAFFICABLE 90%

TABLE 10 SPEED AT TACTICAL MOBILITY LEVELS

	W	EST GERMANY-W	ET		MID-EAST-WET	
	TACTICAL	TACTICAL	TACTICAL	TACTICAL	TACTICAL	TACTICAL
VEHICLE	HIGH	STANDARD	SUPPORT	HIGH	STANDARD	SUPPORT
HMMWV/M1 01	0.9*	4.3**	29.0	1.7*	14.7	22.6
M151/M416	0.8*	3.7**	24.9	2.6*	9.9	18.0
M561/M101	0.9*	5.5**	20.2	2.7*	13.4	17.1
M151/AMMO TRL	0.8*	3.3**	24.7	1.5*	9.8	17.8
M151A2	1.4*	14.7	27.0	3.3*	10.5	18,4
M561	1.7*	14.7	22.2	4.0*	13.7	17.6
HMMWVG	1.7*	17.5	30.9	3.7*	15.1	22.9
HMMWV/SHELTER	1.7*	17.3	30.1	3.7*	15.1	22.8

*AREA TRAFFICABLE 90%

**AREA TRAFFICABLE 80%

TABLE 11
SPEED AT TACTICAL MOBILITY LEVELS

		WEST GERMANY-SNOW	
	TACTICAL	TACTICAL	TACTICAL
VEHICLE	HIGH	STANDARD	SUPPORT
HMMWV/M1 OT	0.4*	1.8**	17.9***
M151/M416	0.4*	1.2**	9.3***
M561/M101	0.6*	2.2**	14.1
M151/AMMO TRL	0.3*	1.2**	6.0***
M151A2	0.9*	5.4**	24.9
M561	1.1*	5.9**	17.7
HMMWVG	1.1*	6.2**	26.6
HMMWV/SHELTER	1.1*	6.1**	24.5

*AREA TRAFFICABLE 90%

**AREA TRAFFICABLE 80%

***AREA TRAFFICABLE 50%

TABLE 12

SPEED VERSUS ELAPSED TIME AS A FUNCTION OF SOIL STRENGTH

			MAXIMUM	TIME TO				
	SURFACE		SPEED	REACH	REACH	REACH	REACH	REACH
VEHICLE	RCI	SLOPE	OBTAINED	10 MPH	20 MPH	30 MPH	40 MPH	50 MPH
HMMMV W/MT01	290	0.0	50.8	1.5	5.0	11.8	27.5	79.0
M151 W/M416	290	0.0	41.4	4.7	10.1	17.7	55.2	1
M561 W/M101	290	0.0	31.1	5.5	14.6	32.1	ı	ı
MISI W/AMMO TRL	290	0.0	43.6	4.0	8.4	14.2	33.9	1
M151A2	290	0.0	48.3	2.8	5.7	9.2	18.5	•
M561	290	0.0	38.7	4.4	10.4	20.7	1	1
HMMM	290	0.0	58.0	1.2	3.5	7.6	15.4	29.7
HMMWV W/SHELTER	290	0.0	55.3	1,3	4.1	9.1	19.4	41.1

TABLE 13

SPEED VERSUS ELAPSED TIME AS A FUNCTION OF SOIL STRENGTH

			MAXIMUM	TIME TO				
	SURFACE		SPEED	REACH	REACH	REACH	REACH	REACH
VEHICLE	RCI	SLOPE	OBTAINED	10 MPH	20 MPH	30 MPH	40 MPH	50 MPH
HOWAY W/MIOI	120	0.0	44.4	1.5	5.4	13.5	40.0	•
M151 W/M416	120	0.0	35.2	4.9	10.8	20.0	•	•
MS61 W/M101	120	0.0	31.1	5.8	17.4	49.0	•	•
M151 W/AMMO TRL	120	0.0	38.6	4.1	8.8	15.8	ı	•
MI 51 A2	120	0.0	44.6	2.9	5.9	9.8	23.3	•
M561	120	0.0	31.1	4.5	11.4	24.9	ı	1
HENN	120	0.0	53.3	1.2	3.7	8.2	18.0	45.4
HMMN W/SHEL FER	120	0.0	49.7	1.3	4.3	10.0	24.1	•

TABLE 14

SPEED VERSUS ELAPSED TIME AS A FUNCTION OF SOIL STRENGTH

			MAXIMUM	TIME TO				
	SURFACE		SPEED	REACH	REACH	REACH	REACH	REACH
VEHICLE	RCI	SLOPE	OBTAINED	10 MPH	20 MPH	30 MPH	40 MPH	50 MPH
HAMMY W/M101	9	0.0	32.6	1.7	6.4	22.0	1	
M151 W/M416	9	0.0	32.5	5,3	12.8	32.6	ı	,
M561 W/M101	09	0.0	17.6	6.7	1	ı	,	ı
M151 W/AMMO TRL	(9)	0.0	32.4	4.5	10.1	21.7	1	•
M151A2	09	0.0	36.9	3.1	6.5	11.6	ı	1
M561	09	0.0	30.2	5.2	15.7	60.0	ı	1
HMMWV	09	0.0	42.9	1.3	4.1	10.2	34.8	,
HMMWV W/SHELTER	9	0.0	37.7	1.4	4.9	13.7	ı	1

2.4 Acceleration and Speed on Slopes

The acceleration performance of the various vehicles in soils of three different strengths, RCI 290, 120 and 60^3 , is presented in Tables 12-14. The RCI 290 soil is a strong soil, the RCI 120 has moderate strength and the RCI 60 is relatively weak. It can be seen by referring to the tables that the times to achieve a given speed increase as the soil strength decreases. In terms of highest speed achieved and times to reach a given speed, the HMMWV exhibited the best performance.

Profiles of acceleration performance over the various strength soils are presented in Appendix A.

A further measure of vehicle performance is the speeds it can attain on slopes of various grades. Tables 15-17 present the speeds attained by the various vehicles on grades ranging from 0 to 60 percent, on soil strengths of RCI 290, 120 and 60. Attention is directed to the comparative performance of the M151A2 and the HMMWV. Neither vehicle ascends the slopes at speeds consistently higher than the other. This may be explained by referring to Figure 1. In this plot, the ratio of the vehicle tractive force to vehicle weight is shown as a function of speed. It will be noted that the plots for this function cross at several points, indicating higher tractive force available to one or the other of the vehicles and consequently a greater speed on a given slope as shown in the tables.

2.5 Lateral Stability.

In the course of their operations, vehicles are often required to traverse side slopes. During this time, the vehicle may maneuver to change direction, avoid obstacles or for other reasons. When the maneuvering involves turning, centrifugal forces are developed. In addition to this there is a down hill force attributable to the inclination of the vehicle on the side slope. These two forces can act in concert to overturn the vehicle. The greatest potential to accomplish this occurs when the vehicle path on the slope is perpendicular to the maximum gradient of the slope and the radius of the turn circle lies along this gradient with its center uphill of the vehicle. Lateral instability can arise in two forms. First, if the resisting force of the soil is less than the sum of the two forces, sliding will occur. Secondly, if the overturning moments due to the forces are greater than the vehicle restoring moment, tipping or overturning will occur. All other things being equal, for a given vehicle, the overturning moments will vary directly as the vertical height of the center of gravity.

A means of determining the stability of a vehicle is to fix the side slope angle, turn radius and soil strength and then compute the speed at which

NOTE: ${}^{1}\text{RCI}$ (Rating Cone Index) is a rating of the soil strength under vehicular traffic.

TABLE 15
PREDICTED SPEED ON SLOPE PERFORMANCE (MPH)

						<u>",</u>	SLOPE							
VEHICLE	RCI	0	5	10	15	20	25	30	35	40	45	50	55	60
HMMWV W/M101	290	51.3	31.5	24.1	18.0	14.5	11.6	9.4	7.6	5.5	1.1	-	-	-
M151 W/M416	290	40.2	31.6	19.3	16.6	9.6	9.3	9.1	7.4	-	-	-	-	-
M561 W/M101	290	31.2	17.6	15.7	8.1	7.7	7.0	5.5	3.8	3.3	2.8	-	-	-
M151 W/AMMO TRL	290	43.7	32.3	19.3	18.8	14.7	9.3	8.8	8.2	3.7	-	-	-	-
M151A2	290	48.4	34.1	32.2	19.4	19.2	16.5	12.3	9.4	9.2	9.0	8.8	6.8	3.7
M561	290	42.1	28.2	17.5	14.9	8.1	7.9	7.4	6.8	5.3	3.9	3.5	3.1	2.7
HMMWV	290	58.2	40.9	29.7	24.6	19.3	16.7	14.1	11.9	10.3	8.8	7.5	5.9	4.1

290 55.5 36.3 27.1 21.7 17.5 14.6 12.1 10.3 8.7 7.2 5.8 4.7 2.3

HMMWV

W/SHELTER

TABLE 16
PREDICTED SPEED ON SLOPE PERFORMANCE (MPH)

				 		*	SLOPE							
VEHICLE	RCI	0	5	10	15	20	25	30	35	40	45	50	55	60
HMMWV W/M101	120	44.8	28.8	22.1	17.1	13.6	11.0	8.9	7.1	4.7	-	-	-	-
M151 W/M416	120	34.2	28.3	19.2	15.3	9.5	9.3	9.0	6.7	-	-	-	-	-
M561 W/M101	120	31.1	17.5	14.3	8.0	7.6	6.8	4.2	3.7	3.1	2.5	-	-	-
M151 W/AMMO TRL	120	38.6	32.2	19.2	17.7	12.9	9.1	8,6	8.0	1.1	-	-	-	-
M1 51 A2	120	44.7	32.5	30.3	19.3	18.9	15.7	10.5	9.4	9.1	8.9	8.3	6.2	2.5
M561	120	31.2	24.5	17.4	14.2	8.1	7.8	7.3	6.6	4.2	3.8	3.3	2.9	2.5
HMMWV	120	53.4	36.6	27.8	23.4	18.6	16.0	13.5	11.5	9.9	8,5	7.1	5.4	3.3
HMMWV W/SHELTER	120	50.0	32.5	25.7	19.9	16.7	13.8	11.6	9.8	8.3	6.8	5.5	4.3	1.6

TABLE 17
PREDICTED SPEED ON SLOPE PERFORMANCE (MPH)

						٥٠,	SLOPE							
VEHICLE	RCI	n	5	10	15	20	25	30	35	40	45	50	55	60
W/MMWV IO IM\W	60	32.5	24.7	18.4	14.9	11.9	9.6	7.8	5.5	-	-	-	-	-
M151 W/M416	60	32.3	19.3	17.2	10.6	9.3	9.0	7.7	4.0	-	-	-	-	-
M561 W/M101	60	17.6	16.4	8.1	7.8	7.1	5.9	3.4	2.1	0.8	-	-	-	-
M151 W/AMMO TRL	60	31.9	22.0	18.2	14.0	2.5	-	-	-	-	-	-	-	-
M151A2	60	37.0	32.3	21.2	19.1	17.2	13.5	9.4	9.2	8.9	8.7	6.9	3.3	-
M561	60	30.3	17.5	15.8	8.7	8.0	7.5	6.8	5.8	3.7	2.7	1.7	0.7	-
HMMWV	60	43.0	30.6	25.1	19.9	17.0	14.4	12.1	10.5	8.9	7.5	5,9	2.1	-
HMMWV W/SHELTER	60	37.9	27.5	22.3	17.7	14.8	12.2	10.4	8.8	7.3	5.8	4.5	2.2	-

the vehicle will slide and the speed at which it will overturn. Of course, the speeds thus derived will hold only for the set of fixed conditions imposed and will vary as the conditions vary. Table 18 presents sliding and tipping speeds for several sets of conditions. The soil strength selected was RCI 120, a medium strength soil. The turning circle radius chosen represents the minimum turn radius of each vehicle. Sliding and tipping speeds were calculated for the clopes indicated in the tables. Two versions of the M561 are shown, one mounting a 2500 pound S250 shelter and one a 3600 pound shelter of the same category. The HMMWV mounts the 3600 pound S250 shelter.

All the vehicles shown have tipping speeds that are higher than the sliding speeds, hence sliding will occur. The M561 is an articulated vehicle and speeds are presented for both sections of the vehicle. It should be noted that the tipping speeds of the two units differ. If the second unit overturns before the first, the whole vehicle will be immobilized, hence the tipping speeds of the second unit apply to the whole vehicle. Since both the HMMWV and the M561 carrying the S250 shelter at 3600 pounds have the same turning circle, we may compare their tipping speeds. On any given slope, the overturning speed of the HMMWV is higher than that of the M561, indicating a greater margin of stability.

3. AIR TRANSPORTABILITY

Although the vehicles, aircraft and scenarios to be considered are specified in Section 1, there are additional conditions which affect the evaluation. They are:

- a. The term "density altitude" as used in the study request was replaced by "pressure altitude" as agreed during a telephone conversation between USAIS and this office.
- b. There was no data base available which contained the distribution of pressure altitude/temperature conditions for either Europe or the Mid-East. Existing information on this subject indicates that $2000^{\circ}/70^{\circ}F$ is a suitable approximation for Europe while $4000^{\circ}/95^{\circ}F$ may be used for Mid-East scenarios.
- c. The round trip distances for helicopter missions are taken to be 104 miles for Europe and 198 miles for the Mid-East. These distances which were agreed to at the beginning of this study, are representative of those encountered between points of debarkation and engagement in Europe and the Mid-East.

Physical Characteristics used to determine vehicle air transportability are presented in Table 19.

3.1 Fixed Wing Transport.

Analysis of fixed wing transportability was based on homogeneously loading as many of each system type as possible into the aircraft of interest. Consideration was given to the system's total weight, total length and center of

TABLE 18

LATERAL STABILITY

VEHICLE	RCI	% SLOPE	TURNING CIRCLE RADIUS (FT)	SPEED AT SLIDE (MPH)	SPEED AT TIPPING (MPH)
HMMWV	120	n	30	16.9	22.6
2500#		20		14.6	21.1
		30		12.6	19.8
		40		10.2	18.4
HMMWV/	120	0	30	16.9	20.1
SHELTER 3600#		20		14.6	18.6
		30		12.6	17.2
		40		10.2	15.7
M561	120	0	30	16.8	24.3
1st UNIT 2500#		20		14.6	23.4
SHELTER		30		12.6	22.2
		40		10.2	20.9
M561	120	0	30	16.8	19.1
2nd UNIT 2500#		20		14.6	17.5
SHELTER		30		12.6	16.0
		40		10.2	14.3

LATERAL STABILITY

VEHICLE	RCI	% SLOPE	TURNING CIRCLE RADIUS (FT)	SPEED AT SLIDE (MPH)	SPEED AT TIPPING (MPH)
M561	120	n	30	16.8	24.3
1st UNIT 3600#		20		14.6	23.4
SHELTER		30		12.6	22.2
		40		10.2	20.9
M561	120	0	30	16.8	18.4
2nd UNIT 3600# SHELTER		20		14.6	16.6
		30		12.6	15.0
		40		10.2	13.3
M151A2	120	0	17	12.7	16.6
		20		11.0	15.8
		30		9.5	14.8
		40		7.7	13.7

TABLE 19
VEHICLE PHYSICAL CHARACTERISTICS

			VEHICLE		
CHARACTERISTIC	M1 51	M151 W/ M416	2-M151 W/M416	M561	HMMWV
WEIGHT (LB)	3600	4790	8570	10,300	7500
LENGTH (IN)	132.7	235.7	368.4	230	190
WIDTH (IN)	64.0	64.0	64.0	84.4	85
HEIGHT (IN)	52.5	52.5	52.5	67.8	72
LONGITUDINAL C.G.	58.0 in REAR	99.8 in REAR		113.0 in REAR	101 in REAR
LOCATION	OF FRONT BUMPER	OF FRONT BUMPER	N/A	OF FRONT BUMPER	OF FRONT BUMPER

gravity (c.g.) location with respect to the optimum aircraft c.g. position. Analysis results are presented in Table 20.

The limiting parameter for those systems considered was the overall length of each vehicle or vehicle combination.

It should be noted that while the C-5A aircraft was included in the analysis, its availability to carry these vehicles would be limited. In no case is that aircraft's maximum payload limit challenged by these systems. Normally, the C-5A is reserved for high priority systems such as the M-1 and M-2 which do challenge that parameter.

3.2 Rotary Wing Transport.

Complete payload vs range curves for the CH-47C and D helicopters and the UH-60 and UH-60(BI) helicopters are presented in Appendix B. Data from these curves are summarized in Table 21.

The four air vehicle systems analyzed met round trip mission distance requirements with the following exceptions:

- a. The 3-piece system consisting of the two M151 trucks and M416 trailer cannot be transported by the UH-60 helicopters because there are no provisions for slinging three vehicles, and even if there were, the system's total weight would limit the round trip flying distance to less than mission requirements for either scenario.
- b. The M561 cannot be transported by the UH-60 series because its weight exceeds the craft's maximum payload capacity.
- c. Mission requirements in either scenario were not met by the UH-60 when carrying the HMMWV. When the UH-60 (BI) transports the HMMWV, it can meet mission requirements in Europe only. It should be noted that this aircraft exists only as a concept and its performance when fielded may vary considerably from that postulated herein.

4. CONCLUSIONS

When the HMMWV is compared to the M151 and the M561 baseline vehicle in off-road travel, its performance generally exceeds that of the latter two vehicles. The HMMWV carrying a 3600 pound \$250 shelter shows little or no reduction in performance when compared to the HMMWV at its rated cargo payload of 2500 pounds. All of the vehicles exhibited a degradation in performance when trailers were towed by them.

The on-road speeds of the HMMWV generally exceeded those of the M151 and the M561, often by an appreciable amount.

TABLE 20
MAXIMUM SYSTEMS CARRIED

SYSTEM	<u>C-130</u>	C-141B	<u>C-5A</u>
M561	2	5	, 12
M1 51	4	8	20
2-M151 + M416	1	3	8
HMMWV	2	5	14

TABLE 21 HELICOPTER TRANSPORTABILITY

MAXIMUM ROUNDTRIP CAPABILITY - NAUTICAL MILES

HELICOPTER	M151	2-M151/M416	M561	HMMWV
CH-47C	240a	240c	240 ^e	240e
CH-47D	260a	280c	260 ^e	26ne
UH-60	200b	Oq	of	b,g
UH-60 (BI)	240h	Ŋď	nf	h,h

NOTES:

a Two vehicles carried internally plus one vehicle slung externally.

b One vehicle slung externally. ^c One system carried internally.

d No provisions for carrying three vehicle system.

e Can be carried internally or slung externally. f Exceeds maximum payload capacity of helicopter.

^{9 0 (4000&#}x27;, 95°F), 50 miles (2000', 70°F), 162 miles (sea level, 59°F). h 72 miles (4000', 95°F), 170 miles (2000', 70°F), 224 miles (sea level, 59°F)

Considered in the context of the various tactical mobility levels, the HMMWV displayed consistent superiority over the baseline vehicles.

The acceleration of the HMMWV was better than that of the baseline vehicles. The HMMWV generally met or exceeded the slope climbing performance of the other two vehicles.

In a comparison of the lateral stability of the HMMWV with the M561 with each carrying S250 shelter, the HMMWV was found to have the more stable configuration.

The HMMWV can be air transported by the Cl30, Cl41 and C5A in varying numbers. The UH-60 helicopter was not able to carry it over the distances required in the European and Mid-East scenarios.

APPENDIX A

	PAGE
VEHICLE CHARACTERISTICS	36
SPEED PROFILES	39
NO-GO AND SPEED LIMITING FACTORS	119
ACCELERATION PROFILES	132
SPEED ON SLOPES PROFILES	140

HMMWV Generic (HMMWVG) Vehicle Characteristics

The HMMWV vehicle data presented on pages 41 and 42 represent characteristics derived from the vehicles in the HMMWV competition. These characteristics are representative of all the competition vehicles and yet are peculiar to none. The data shown are a complete set of those required as input to the Army Mobility Model.

. INDIVIDUAL VARIABLE LISTING VD= O IF VEHICLE TRACKED, 1 IF WHEELED 1.000 VEHICLE WEIGHT(L95) W= 7750.000 ALX-.500 MAXAXLE LOAD/WT.IF WHEELS; C IF TRAX MP -7750.00 WT. ON PULLING AXLES IF WHEELED, O IF TRAX NVEH-1 VEHICLE TYPE (0=TRACKED,1=4x4,2=6x6, 3=8x8) VL= 190.000 VEHICLE LENGTH (INCHES) VEHICLE WIDTH(INCHES) WV-85.000 HP= 23.000 HEIGHT OF PUSHBAR (INCHES) HB= 21.000 FRONT END CLEARANCE(INCHES) GCX-12.000 MINIMUM GROUND CLEARANCE(INCHES) DS-IF TRAX, HORIZ. DIST. CG. TO FRONT ROAD WHEEL CL., IF WHEELE 17.000 RULLING RADIUS (INCHES) ec -16.000 GROUND CLEARANCE AT CENTER OF GREATEST SPAN; IF TRAX,=10CC TL . 132.000 DIST.FIRST TO LAST WHEEL/ROADWHEEL CL . DWX-132.000 IF TRAX=0, IF WHEELED MAX.DIST.BETWEEN ADJACENT WHEEL CENTERLINES AV-65.000 APPROACH ANGLE (DEGREES) ACG-17.800 ANGLE BETWEEN LINE // TO GROUND AND LINE BETWEEN CG. AND CENTER OF REAR RUADWHEEL OR IDLER FLEW-11625.000 MAX. FORCE LEADING EDGE WILL STAND (LBS) TIRE WIDTH(INCH) XTW= 12.500 XRDT-16.500 RIM DIAMETER (INC+) X#D= OUTSIDE DIAMETER OF THE TIRE(INCH) 37.000 RR -17.000 ROLLING RADIUS OF TIRE(INCH) XTP-17.000 TIRE PRESSURE (PSI) XNT-4.000 NUMBER OF WHEELS(DUALS AS ONE) XNTE-4.000 NUMBER OF WHEELS(DUALS AS TWO) TPR-4.000 TIRE PLY RATING XCF-0.000 O WITH NO TIRE CHAINS, I WITH TIRE CHAINS XNA-2.000 NUMBER OF AXLES RADIAL -O IF NO RADIALS, 1 IF RADIALS HORZ. DIST. CG. TO CENTER OF REAR WHE EL DRISCG-56.100 XBC-.670 VEH.BRAKING FORCE/VEH.WEIGHT TCMCGH-18.000 VERT.DIST.CG.TO ROADWHEEL CL(INCH) TCMCGF . 76.000 HORZ.DIST.CG.TO FRONT ROADWHEEL CL (ICH) TCMREC -26.000 REAR END CLEARANCE (INCH) TCHVDA = 45.000 VEH.DEPARTURE ANGLE (DEGREES) TCHRW#= 17.000 IF TRAX RADIUS OF WHEEL/SPROCKET/IDLER USED TO DETERMINE DEPARTURE ANGLE+TRACK THICKNESS.IF WHEELED, ROLL.RADIUS(IN) TVAR-0.000 1-MANUAL TRANS,-1-MANUAL/TRANSFER CASE, 0-AUTOMATIC EFF. 1.000 TRANSMISSION EFFICIENCY FDR= 1.000 FINAL DRIVE RATIO FDREF-1.000 FINAL DRIVE EFFICIENCY HPT-20.000 HORSEPOWER/TON 17.000 RR . TRAX=SPOCKET PITCH RADIUS(IN), WHEELS= TIRE ROLLING RADIUS NN-21 NUMBER OF POINTS IN TRACTIVE FORCE ARRAY

TRACTIVE FORCE ARRAY		BSTACLE HEIGHT ARRAY		RMS ARRAY	
SPEED, MPH	T. FORCE, LBS.	SMITH .TEBE	SPEED, MPH	RMS, INS	SPEED, MF-
0.000	10900.000	0.000	100.000	6.308	80.000
1.600	10500.000	4.000	100.300	. 400	86.000
2.000	9000.000	4.500	70.566	•500	55.000
3.000	7250.000	5.000	45.300	.600	45.006
4.000	6400.000	6.000	27.5CO	.700	40.000
5.000	5750.000	7.000	19.500	. 300	35.CUC
6.000	5250.000	8.000	14.500	.900	30.080
7.000	4800.000	9.000	11.000	1.000	27.000
3.000	4500.000	10.000	9.000	1.1C0	24.000
9.000	4200.000	11.000	6.000	1.200	22.000
10.000	3850.000	12.300	4.506	1.300	19.50C
13.000	3100.000	13.000	3.5CC	1.400	17.50C
15.000	2750.000	14.000	3.000	1.50C	16.000
20.000	2000.000	30.000	2.000	1.800	13.00C
24.00C	1750.000	0.000	0.000	2.000	11.500
28.000	1400.000	0.000	0.00	2.500	9.500
34.000	1100.000	0.000	0.000	3.000	8.50C
43.000	950.000	0.000	0.506	3.500	9.000
60.000	750.000	0.000	0.000	4.000	7.500
70.00C	650.000	0.000	0.000	5.000	7.000
70.100	0.000	0.000	0.000	3.560	2.000
0.000	0.000	0.000	0.300	0.000	0.600
0.000	0.000	0.000	J.500	0.003	U.JCC
0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	C.300	0.560	0.000	3.077

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

PREDICTED VEHICLE MOBILITY CUMULATIVE AVERAGE SPEEDS

		GERMANY - DRY	,		JORDAN - DRY	
VEHICLE	V ₅₀ МРН	V 90 МРН	PERCENT* HOGO	V ₅₀ мрн	у ₉₀ МРН	PERCENT* NOGO
HMMWV W/MIOI	18.6	09-00	12.3	13.7	NO-60	4.7.1
M151 W/M416	4.91	709-90	15.4	10.7	09-0H	13.2
M561 W/M101	15.1	No-60	11.5	12.5	09-00	16.4
M151 W/AMMO TRL	16.5	No-60	14.8	10.7	No-60	13.1
M151A2	17.9	No -60	11.7	10.8	75-60	13.1
M561	15.8	09.00	10.2	12.5	10-60	16.4
HMMWVG	20.3	3.07	10.0	14.0	29-00	16.5
HMMWV W/SHELTER	19.7	09-00	10.0	13.9	No-60	16,5

*DENOTES PERCENT OF AREA

AREAL OCCURRENCE OF VEHICLE NOGOS

		GERMANY - DRY	_	
		FACTORS CAUSI	FACTORS CAUSING VEHICLE NOGOS	
VEHICLE	SURFACE STRENGTII LESS TIIAN VCI 1	AVAIL TRACTION LESS THAN SOIL & SLOPE RESISTANCE	OBSTACLE Interference	AVAIL TRACTION LESS THAN TOTAL RESISTING FORCES
HMMMV W/M101	0.1	4.5	7.3	2.0
M151 W/M416	0.0	677	8.8	1.7
M561 W/M101	0.0	a.	7.4	0.0
M151 W/ AMMO TRL	0.0	5.5	8.6	0.7
M151A2	0.0	2,5	8.7	6.5
M561	0.0	2,5	7.3	4.0
HMMWVG	0.0	2,5	7.7	7.0
HMMWV W/SHELTER	0,0	2,5	12	4.0
	•			
				** ****

AREAL OCCURRENCE OF FACTORS LIMITING VEHICLE SPEEDS

		OBSTACLE INTERFERENCE	1	•	•	•	1	•	•	•				
		ACCEL & DECEL BETWEEN OBSTACLES	20.3	27.3	19.9	27.5	28.7	209	21.9	21.7				
	ICLE SPEEDS	ALL RESIST FORCES	1.7	8.1	4.3	2.1	1.4	3.9	2.7	3,1				
GERMANY - DRY	FACTORS LIMITING VEHICLE SPEEDS	MANEUVERING IN VEGETATION	22.	4.4	21.3	9,3	9.7	20.6	21.9	22./				
	FACT	VISIBILITY IN VEGETATION	22.2	21.5	10.5	22.0	22,2	7.7	22,0	22./			-	
		SOIL & SLOPE RESIST	3.4	6.2	6.5	7'5	4.9	5,7	3,5	3.5				
		RIDE	15.7	721	26.1	18.7	214	31.0	18.0	17.6				
		VEHICLE	HMMMV W/M101	M151 W/M416	M561 W/M101	M151 W/AMMO TRL	M151A2	M561	HMMMVG	HMMWV W/SHELTER				

AREAL OCCURRENCE OF VEHICLE NOGOS

LESS THAN TOTAL RESISTING FORCES AVAIL TRACTION 0.0 90 0.0 0.0 0.0 0 0 90 OBSTACLE INTERFERENCE FACTORS CAUSING VEHICLE NOGOS 16.5 16.5 13.2 16.4 16.4 13.1 JORDAN - DRY AVAIL TRACTION
LESS THAN
SOIL & SLOPE
RESISTANCE 0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 SURFACE STRENGTII LESS TIIAN 0.0 0.0 0.0 00 0 0.0 0.0 0.0 HMMW W/SHELTER MISI W/ AMMO HMMMV W/MIOI M151 W/M416 M561 W/M101 VEHICLE M151A2 HMMMVG IR M561

AREAL OCCURRENCE OF FACTORS LIMITING
VEHICLE SPEEDS

JORDAN - DRY

		OBSTACLE INTERFERENCE	1	1	1	•	1	1	1	1					
		ACCEL & DECEL BETWEEN OBSTACLES	26.6	26.0	7.92	2.92	26.1	26.7	27.6	27.6					
	ICLE SPEEDS	ALL RESIST FORCES	0.0	0'0	6.1	0.0	0.0	0.0	0,0	0					
JORDAN - URI	FACTORS LIMITING VEHICLE SPEEDS	MANEUVERING IN VEGETATION	7.8	7.8	8,6	4.8	8.6	2.6	7.9	6.7					
	LACT	VISIBILITY IN VEGETATION	11.3	7.9	2.0	8.9	8.6	0.7	5'01	11.2					
		SOIL & SLOPE RESIST	2.0	17	1.4	1.2	1.0	11	0,7	, o					
		RIDE	36.0	42.3	44.9	42.3	42.7	46.5	36.1	36.2					
		VEHICLE	HMMMV W/M101	M151 W/M416		M151 W/AMMO TRL	M151A2	M561	HMMMVG	HIMPINV W/SHELTER			1	: : :	

PREDICTED VEHICLE MOBILITY
CUMULATIVE AVERAGE SPEEDS

		T DM WANA			THE WARRE	
VEIIICLE	V ₅₀ MPII	V 90	PERCENT*	V 50 MPII	V 90	PERCENT*
HMMWV W/M101	14.2	09·0N	7.82	12.5	09-0M	19.0
M151 W/M416 M561 W/M101	11.5	No-60	30.1	6.7	09-00	15.5
M151 W/AMMO TRL	9.11	No-60	32.3	9.6	NO-60	19.0
MISTAZ	14.5	20.00	14.8	101	No-60	14,0
M561	13.7	No-60	18.4	12.2	NO-60	16.2
HMMMVG	16.3	70-00	18.6	13.0	No-60	16.8
HMMWV W/SHELTER	16.1	NO-60	12.3	13.0	70.60	2.91

*DFNOTES PERCENT OF AREA

AREAL OCCURRENCE OF VEHICLE NOGOS

AVAIL TRACTION LESS THAN TOTAL RESISTING TORCES 0.0 OBSTACLE Interference FACTORS CAUSING VEHICLE NOGOS 6.8 6.2 6.1 GERMANY - WET AVAIL TRACTION LESS THAN SOIL & SLOPE RESISTANCE 19.3 10.2 17.2 21.8 10.3 0.6 6. 4.7 SURFACE STRENGTH LESS THAN VCI 0.5 0.7 0.7 0.4 0.4 ç Ö HIMMUV W/SHELTER MISI W/ AMMO HMMAY W/M101 M151 W/M416 M561 W/M101 VEHICLE HMM11VG M151A2

AREAL OCCURRENCE OF FACTORS LIMITING
VEHICLE SPEEDS

		ACCEL & DECEL BETWEEN OBSTACLES INTERFERENCE	13.0	22.5	14.3	22./	25.5	17.2		17.8			
	ICLE SPEEDS	ALL RESIST FORCES 0	5.4	5.2	7.4	3.4	2.3	5.9	3,6	4.9			
GERMANY - WET	TACTORS LIMITING VEHICLE SPEEDS	MANEUVERING IN VEGETATION	17.9	9.7	18.1	6.5	8.4	10.1	20.8	20.7			
	LVCJ	VISIBILITY IN VEGETATION	25.3	22.6	15,3	23.4	26.9	15.7	25.1	24.2			
		SOIL & SLOPE RESIST	S.	3.1	5.8	2.4	6.3	4.0	1.2	3.			
		RIDE	4.6	9.9	13.7	99	152	8.2	12.7	12.5			
		VEHICLE	HMMWV W/M101	M151 W/M416	M561 W/M101	TRL	M151A2	M561	HMMMVG	HMMWV W/SHELTER		:	

AREAL OCCURRENCE OF VEHICLE NOGOS

AVAIL TRACTION LESS THAN TOTAL RESISTING FORCES 0.4 9.0 0.3 9.0 3.6 9.0 70 0 OBSTACLE Interference FACTORS CAUSING VEHICLE NOGOS 13.9 13.9 13.9 16.4 JORDAN - WET AVAIL TRACTION LESS THAN SOIL & SLOPE RESISTANCE 0.0 0 0.0 0 SURFACE STRENGTH LESS THAN VCI₁ 0 0 0.0 0 00 0.0 0.0 0.0 HMMWV W/SHELTER MISI W/ AMMO HMMW W/M101 M151 W/M416 M561 W/M101 VEHICLE M151A2 HMMMVG M561

AREAL OCCURRENCE OF FACTORS LIMITING VEHICLE SPEEDS

		ORSTACLE INTERFERENCE	•	1	1	1		1	•				
		ACCEL & DECEL BETWEEN OBSTACLES	25.2	25.1	26.0	23.7	26.0	76.4	5.92	26,5			
	IICLE SPEEDS	ALL RESIST FORCES	0.1	9.0	0.1	2,0	2.0	6.2	6.2	2.0			
JORDAN - WET	FACTORS LIMITING VEHICLE SPEEDS	MANEUVERING IN VEGETATION	7.3	8.5	8.1	8,3	8,5	9.6	7,7	7.7			
300	LACT	VISIBILITY IN VEGETATION	17.6	13.4	11.6	13.5	12.9	9.2	15,2	14.9			
		SOIL & SLOPE RESIST	0.0	6.3	1.0	6.5	0.1	6.8	0.0	6.1			
		RIDE	30.8	36.6	35.2	34.9	38.3	38.2	33.7	33.9			
		VEHICLE	HMMW W/MIOI	M151 W/M416	M561 W/M101	M151 W/AMMO	M151A2	M561	HMMMVG	HMMWV W/SHELTER		:	

PREDICTED VEHICLE MOBILITY
CUMULATIVE AVERAGE SPEEDS

	9	GERMANY - SNOW				
VEHICLE	V ₅₀ MPII	V 90	PERCENT*	V ₅₀ мрн	V 90 MPII	PERCENT* NOGO
HMMWV W/M101	NO-60	No-60	50.3			
M151 W/M416	NO-60	09-0N	54,9			
M561 W/M101	7.8	09.00	38,7			
M151 W/AMMO TRL	NO-60	NO-60	63,0			
M151A2	16.8	09-0 0	26.7			
M561	11.5	10.60	25.0			
HMMMVG	7'81	09-00	25.2			
HMMWV W/SHELTER	17.3	09.00	25.4			
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

*DENOTES PERCENT OF AREA

AREAL OCCURRENCE OF VEHICLE NOGOS

		GERMANY - SNOW	MON	
		FACTORS CAUS	FACTORS CAUSING VEHICLE NOGOS	
	SURFACE STRENGTII	AVAIL TRACTION LESS HIAN	T TO T TOO	AVAIL TRACTION LESS THAN
VEHICLE	VCI 1	SUIL & SLUPE RESISTANCE	OBSTACLE INTERFERENCE	FORCES
HIMMAV W/MIOT	0.0	40.4	7.7	2.6
M151 W/M416	00	4.6	8.6	1.7
M561 W/M101	0.0	767	8.7	2.5
MIST W/ AMMO	0.0	533	7.5	2.0
M151A2	0.0	13.5	8,6	4.6
M561	00	13.7	8.7	4.5
HMMAYG	0.0	13.7	2,0	4.5
HIMMAY W/SHELTER	0.0	821	7.0	7.4
		, , , , , , , , , , , , , , , , , , ,		
1				

AREAL OCCURRENCE OF TACTORS LIMITING
VEHICLE SPEEDS

GERMANY - SNOW

	OBSTACLE INTERFERENCE	1	•	1		1	3	1				
	ACCEL & DECEL DETWEEN OBSTACLES	6.9	12.8	4.8	12.0	21.6	12.0	15.4	14.8			
IICLE SPEEDS	ALL RESIST FORCES	19.9	12.1	21.0	12.0	20.0	17.3	23.5	27.4			
FACTORS LIMITING VEHICLE SPEEDS	MANEUVERING IN VEGETATION	9.9	3.7	12.4	3,	7.7	14.7	15.8	(5.3	•		
LVCI	VISIBILITY IN VEGETATION	7.7	5,5	1.9	77	11.4	2.9	12.6	10.0			
	SOIL & SLOPE RESIST	5.3	2,6	20.5	5.3	9.5	14.0	6.3	6.3			
	RIDE	0.2	6.3	7.0	2.0	3.9	4.1	1.3	6.9			
	VEHICLE	HMMWV W/MIOT	M151 W/M416	M561 W/M101	M151 W/AMMO	M151A2	M561	HMMMVG	HMMW W/SHELTER			

TIME (CEC

TIME (GEC)

GEMPD

TIME (GEC)

TIME (SEC)

LIME (CEC)

は下 日 正 口

TIME (SEC)

139

PERFORMANCE OF MISI WIR ON FINE GRAIN GOIL

PERCENT SLOPE

A CONTRACTOR OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON N

PERCENT GLOPE

146

APPENDIX B

DISTRIBUTION LIST

No. of Copies	ORGANIZATION	No. of Copies	ORGANIZATION
12	Commander Defense Technical Information Center ATTN: DDC-TC Cameron Station Alexandria, VA 22314	1	Commander US Army Electronics R&D Command ATTN: DRDEL-SA Fort Monmouth, NJ 07703
1 ea	Commander US Army Materiel Development & Readiness Command ATTN: DRCCP DRCDM-S DRCDE-F DRCRE	2	Commander US Army Electronics R&D Command ATTN: DRDEL-AP-OA 2800 Powder Mill Road Adelphi, MD 20783 Director
2	DRCDE-A DRCQA 5001 Eisenhower Avenue Alexandria, VA 22333 Commander	٤	US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL ATAA-T While Sands Missile Range, NM 88002
	US Army Armament Research & Development Command ATTN: DRDAR-SEA Technical Library Dover, NJ 07801	1	Commander US Army Missile Command ATTN: DRSMI-DS Redstone Arsenal, AL 35898
1	Commander Rock Island Arsenal ATTN: Technical Library Rock Island, IL 61299	ī	Commander US Army Troop Support & Aviation Materiel Readiness Command ATTN: DRSTS-BA
1	Commander USAERADCOM ATTN: DRDEL-CM (Mr. W. Pepper) 2800 Powder Mill Road Adelphi, MD 20783	2	4300 Goodfellow Blvd. St. Louis, MO 63120 Commander US Army Tank-Automotive
1	Commander US Army Test & Evaluation Command ATTN: STEDP-MT-L		Command ATTN: DRSTA-TSL DRSTA-V Warren, MI 48090
1	Dugway Proving Ground, UT 84022 Commander US Army Aviation R&D Command ATTN: DRDAV-BC 4300 Goodfellow Blvd St. Louis, MO 63120	ī	Commander US Army Mobility Equipment R&D Command ATTN: DRDME-0 Fort Belvoir. VA 22060

DISTRIBUTION LIST (continued)

No. of Copies	ORGANIZATION:	No. of Copies	ORGANIZATION
1	Commander	2	Chief
	US Army Natick R&D Command		Defense Logistics Studies
	ATTN: DRDNA-0		Information Exchange
	Natick. MA 01760		US Army Logistics Management Center
1	Commander		ATTN: DRXMC-D
	US Army Concepts Analysis Agency		Fort Lee, VA 23801
	8120 Woodmont Avenue	1	Reliability Analysis Center
	Bethesda, MD 20014		ATTN: Mr. I. L. Krulac Griffis AFB, NY 13441
	Pentagon Library		
	ATTN: ANR-AL-RS (Army Studies)		
	Pentagon, RM 1A518		
	Washington, DC 20310		

ABERDEEN PROVING GROUND

