Using Bayesian networks to predict changes

Sarah Nadi

University of Waterloo, Waterloo, ON, Canada

SNADI@UWATERLOO.CA

Table 1. Classification	accuracies	for naive	Bayes	and flex	-
ible Bayes on various	data sets.				

DATA SET NAIVE FLEXIBLE BETTER? BREAST 95.9 ± 0.2 96.7 ± 0.2 $$ CLEVELAND 83.3 ± 0.6 80.0 ± 0.6 \times GLASS2 61.9 ± 1.4 83.8 ± 0.7 $$ CREDIT 74.8 ± 0.5 78.3 ± 0.6 HORSE 73.3 ± 0.9 69.7 ± 1.0 \times META 67.1 ± 0.6 76.5 ± 0.5 $$ PIMA 75.1 ± 0.6 73.9 ± 0.5 $$				
	Data set	NAIVE	FLEXIBLE	Better?
VEHICLE 44.9± 0.0 01.5± 0.4 1/	CLEVELAND GLASS2 CREDIT HORSE META	83.3 ± 0.6 61.9 ± 1.4 74.8 ± 0.5 73.3 ± 0.9 67.1 ± 0.6	80.0 ± 0.6 83.8 ± 0.7 78.3 ± 0.6 69.7 ± 1.0 76.5 ± 0.5	\checkmark

Abstract

STILLLL

1. Introduction

Changes

2. Related Work

Mirarab et al. (Mirarab et al., 2007) investigate the same problem as our work. However, their work is on the level of source code changes. They build three different Bayesian Networks, one that is based on package and class dependency information (static relationships), one which is dependent on historical cochanges, and one which uses both. For the first graph, the initial structure is essentially "given" according to the static dependencies, and then the CPTs are learnt using the importance sampling algorithm proposed by Changhe and Marek (Yuan & Druzdzel, 2003). The way static dependencies are defined in their case is specific to Java. The third one is essentially the first graph, but updated using the historic change information according to the Expectation Maximization (EM)

Appearing in *Proceedings of the 27th International Conference on Machine Learning*, Haifa, Israel, 2010. Copyright 2010 by the author(s)/owner(s).

```
Algorithm 1 Bubble Sort

Input: data x_i, size m
repeat

Initialize noChange = true.

for i = 1 to m - 1 do

if x_i > x_{i+1} then

Swap x_i and x_{i+1}

noChange = false
end if
end for
until noChange is true
```

algorithm (Dempster et al., 1977). The second was solely based on historic information where the network is build using a greedy structure learning algorithm (Friedman & Goldzsmidt, 1996). They did some preprocessing to their data such as filtering out large changes (with more than 30 elements changed at once) since this was probably an insignificant change.

Zhou

3. Building the model

4. Experimental Work

5. Conclusion

References

Dempster, A.P., Laird, N.M., Rubin, D.B., et al. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society.* Series B (Methodological), 39(1):1–38, 1977. ISSN 0035-9246.

Friedman, N. and Goldzsmidt, M. Learning Bayesian Networks with Local Structure. 1996.

Mirarab, S., Hassouna, A., and Tahvildari, L. Using bayesian belief networks to predict change propagation in software systems. pp. 177–188, jun. 2007.

Yuan, C. and Druzdzel, M.J. An importance sampling algorithm based on evidence pre-propagation.

In Proceedings of the 19th Annual Conference on Uncertainty on Artificial Intelligence, pp. 624–631. Citeseer, 2003.