

AIR FORUM 2023

New Retention Insights: National Student Student Clearinghouse & Machine Learning Learning

Steven Sherrin, PhD

Wentworth Institute of Technology

What's This Presentation About?

- I will introduce a machine learning tool that allows institutions to assess retention of students of varying demographic, financial, and academic qualities comparing results to peer institutions.
- I will show how the tool can be used to assess or benchmark retention for any group of students*.
- I will demonstrate how to use data mining techniques to discover new retention insights.

What Does The Tool Do?

Data Prep

 Clean and analyze National Student Clearinghouse enrollment data

 Integrate NSC data with College Scorecard data

Machine Learning

- Prepare and run machine learning models
- Select the best machine learning models
- Ensure models are fair and accurate

Data Insights

- Use machine learning models to compare retention rates by institution and demographic groups
- Share data mining tools to discover new retention insights

Conceptual Approach

Example

Female STEM Students At AIR University

AIR University

Wentworth

AIR University

Other Institutions

Wentworth

Data & Methods

Data

Integrating Data Sources

Analytic Plan

Data

Name	Requester Return Field	College Name	Starting Term	Year At Same Institution	HS GPA	Highest Math	Race/ Ethnicity	Institution Net Price	50th SAT Math	Institution 5
Jane D	ID9384550	Air University	Fall 2015	Yes	3.7	AP Calculus	Hispanic	\$37,000	640	45%
Alex G	ID3022495	Seaside Institute	Fall 2016	No	3.3	Pre-Calculus	White	\$53,000	590	65%
Layla B	ID4568394	Air University	Fall 2016	Yes	3.9	AP Calculus	Black	\$37,000	640	45%

Algorithms

Predictions

- Simple (10 predictors)
- Complex (50+ predictors)

- Generalized additive mixed mixed models (GAMM)
- Gradient boosting (GBM) with cross-validation
 - 100s of models tested tested via hyperparameter tuning. tuning.
- Ensemble stacking of models models

- Test model performance performance
- Examine model bias
- Ensure model fairness
- Predictions

Results

Model Validation

Compare Models

2

Understand Models **Examine Model Bias**

Model Results

Example results

Question #1

"Overall, how, are we doing?"

Overall

Question #2

"How are we doing in retaining [student group]?"

Female STEM Students

Analyze predictions for only these students.

versus

Or, compare predictions between two student groups.

Or, compare predictions between two student groups at two different institutions.

Question #3

"How do we compare our results to schools with higher (or lower) academic selectivity?"

Comparing Institutions by Student Group

	Wentworth Institute of Technology	Suffolk University	Worcester Polytechnic Institute	
Retention Rate	82%	75%	95%	
SAT Math Range	550-650	500-590	N/A	
SAT Reading Range	540-630	510-613	N/A	
Acceptance Rate	94%	86%	59%	

Selecting Comparisons

Select students who share attributes in common with students from the institution(s) you want to compare to.

Example

"Our model predicts that among students with high GPAs (3.5 or above), our institution [over- or under-] performs in retention, compared to WPI and other "elite" competitor schools, by %."

Question 4

"Did your super-fancy model tell us anything we don't know/discover anything new?"

Discovering New Insights

Use **data mining** techniques to discover new insights.

Example:

- Surrogate modeling of machine learning model.
- A decision tree that predicts the biggest predicted retention differences at your institution compared to other institutions.

Summary

Summary

- This tool enables institutions to assess retention of students of varying demographic, financial, and academic qualities.
- Can be used to assess retention for *any* group of students (*with sufficient sample size).
- Exploring model can uncover previously unknown retention insights.

Wentworth

Thank You!

Steven Sherrin, Ph.D. sherrins@wit.edu

Thank You!

Statistics, Methods, & Code

Do You Want To Collaborate?

Connect With Me

