EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Phase-Shift Oscillator

Feedback circuit = phase-shift oscillator.

Requirements for oscillation \rightarrow

loop gain $\beta A > 1$

phase shift around feedback network is 180°.

Using classical network analysis →

$$f = \frac{1}{2\pi RC\sqrt{6}}$$

$$\beta = \frac{1}{29} \rightarrow A > 29$$
Phase shift = 1800

Phase-shift = 180° .

Transistor phase-shift oscillator:

Resulting oscillator frequency:

$$f = \frac{1}{2\pi RC} \frac{1}{\sqrt{6 + 4(R_C/R)}}$$

To $\beta A > 1$, current gain of transistor:

$$h_{fe} > 23 + 29 \frac{R}{R_C} + 4 \frac{R_C}{R}$$

Feedback network

Phase-Shift Oscillator

IC (op-amp) phase-shift oscillator:

Output of op-amp is fed to 3-stage *RC* network.

RC network provides \rightarrow 180° phase shift. attenuation factor = 1/29.

Op-amp provides \rightarrow gain > 29 (- R_f/R_i > 29).

Wien Bridge Oscillator

IC (op-amp) phase-shift oscillator:

Oscillator circuit = op-amp + RC bridge circuit.

Oscillator frequency \rightarrow *R* and *C* components.

 R_1 , R_2 and C_1 , $C_2 \rightarrow$ frequency-adjustment elements,

 R_3 and $R_4 \rightarrow$ part of feedback path.

Op-amp output \rightarrow points a and c.

Op-amp input \rightarrow points b and d.

Analysis of bridge circuit →

$$\frac{R_3}{R_4} = \frac{R_1}{R_2} + \frac{C_2}{C_1} = 2 \quad [R_1 = R_2 = R]$$

$$[C_1 = C_2 = C]$$

$$f_0 = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}} = \frac{1}{2\pi RC}$$

Wien Bridge Oscillator

Problem-50:

Calculate the resonant frequency of the Wien bridge oscillator of Fig. 50. Also, design the RC elements of a Wien bridge oscillator as in Fig. 50 for operation at $f_o = 10$ kHz.

$$f_o = \frac{1}{2\pi RC}$$

= $\frac{1}{2\pi (51 \times 10^3)(0.001 \times 10^{-6})} = 3120.7 \text{ Hz}$

Using equal values of R and C, select $R = 100 \text{ k}\Omega$

$$C = \frac{1}{2\pi f_0 R} = \frac{1}{2\pi (10 \times 10^3)(100 \times 10^3)} = 159 \text{ pF}$$

Let, R_3 = 300 k Ω and R_4 = 100 k Ω to provide $R_3/R_4 > 2$.

Tuned-input, tuned-output oscillator circuits \rightarrow

Oscillator Type	Reactance Element		
	X_1	X_2	X_3
Colpitts oscillator	С	C	L
Hartley oscillator	L	L	\boldsymbol{C}
Tuned input, tuned output	LC	LC	_

Colpitts oscillator \rightarrow

CE amplifier + *LC* oscillator

feedback \rightarrow voltage divider made of C_1 and C_2 in series across L.

Power supply is switched ON \rightarrow

transistor starts to conduct, I_C increases.

 C_1 and C_2 get charged to maximum \rightarrow

start to discharge via L.

Electrostatic energy stored in $C \rightarrow$ magnetic flux.

Magnetic flux is stored within L as electromagnetic energy.

L starts to discharge, which charges C again.

Cycle continues \rightarrow oscillations in tank circuit.

 V_{out} appears across C_1 and in-phase with tank circuit's voltage \rightarrow makes-up for energy lost by re-supplying it.

Colpitts oscillator →

 V_{fb} to transistor is obtained across C_2 , out-of-phase with voltage at transistor by 180°.

Point where C_1 and C_2 join is grounded \rightarrow

 V_{C_1} and V_{C_2} are opposite in polarity.

 V_{fb} is provided with 180° phase-shift by transistor.

Net phase-shift around loop = 360° → phase-shift criterion of Barkhausen principle.

Frequency of Colpitts oscillator depends on tank circuit.

$$f_o = \frac{1}{2\pi\sqrt{LC_{eq}}}$$

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

Hartley oscillator \rightarrow

Gain = transistor amplifier.

Feedback = tuned *LC* circuit.

Phase change \rightarrow

180° phase change V_B and V_C +

180° phase shift in feedback loop =

360° phase shift between V_{in} and V_{out} .

Frequency determining network →

parallel resonant circuit = L_1 and L_2 along with C.

 L_1 and L_2 are inductively coupled.

 L_1 is in output circuit and L_2 provides V_{fb} .

 V_{CC} produces transient current in tank circuit \rightarrow oscillatory current produces ac V_{L_1} .

Frequency of Hartley oscillator depends on tank circuit.

$$f_{o} = \frac{1}{2\pi\sqrt{L_{eq}C}}, L_{eq} = L_{1} + L_{2}$$

Integrated Circuits

Integrated circuit (IC) →
several components
interconnected in one small package
external connecting terminals →
input, output, supply voltage.

Classification (function) \rightarrow

- 1) Analog amplifiers, voltage regulators
- 2) Digital logic gates, counting circuits

Classification (manufacturing) →

- 1) Monolithic
- 2) Hybrid
- 3) Thin film
- 4) Thick film

Integrated Circuits

Monolithic IC \rightarrow

all components are fabricated on single chip of Si. uses diffusion process – most economical for mass production. interconnections are provided on surface of structure. external connecting wires are taken out to terminals.

Thin film \rightarrow

inductors \rightarrow

surface – glass or ceramic base.

depositing films of conducting material on surface.

resistors and conductors → different materials are selected

controls width and thickness of films.

capacitors → sandwiching film of insulating oxide

between two conducting films. depositing metal film in spiral formation.

transistors and diodes → tiny discrete components are connected in circuit.

Integrated Circuits

Thick film \rightarrow

printed thin-film circuits. ceramic substrate – desired circuit pattern.

silk-screen printing techniques →

- 1) printing: conductive, resistive or dielectric pastes.
- 2) fuse films to substrate: circuits are fired at high temperature in furnace. passive components same way as thin film circuits.

active components – added as separate devices.

Hybrid or multichip IC→

interconnect number of individual chips.

active components – diffused transistors or diodes.

passive components – group of diffused resistors or capacitors on single chip.

thin film components.

connections between chips – fine wire or metal film.

expensive for mass production; economical for small quantities.

better performance than monolithic circuits.