Course Code	PAD21302	T Course Na	e Enterprise Machine Learning		С	ours	se C	ategoi	у	С	Pi	rofes	sior	nal Co	ore (Cours	se	L	T	P	C 4	
Pre-requisite Courses Nil Co-requisite Courses Nil Course Offering Department Computer Applications Data Book / Codes/Standards Ni						272.00	ogre	ssive	e Cour	ses	Nil											
Course Learning Rationale (CLR): The purpose of learning this course is to,							arnir	ng	7			Pro	gram	Lea	arning	Out	come	es (P	LO)			
CLR-5 : Understand the Decision tree, Random Forest and Naïve Bayes Algorithm CLR-6 : Gain knowledge about Knowledge representations and Predicate logic					Le vel of Thi nki	14.7	d Att	ci in ry	a tic al n Th	obl em i Sol	lytic	R es e 1 ar a	Te i	Sci Ree e	e f- iv ec	Mu el Itio ult ir ura	Etl ica Re	v	IC T	Le ad ers	Lif e Lo ng Le	
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:				00	,,	nt (%	e g	d ng		24,000,000,000,000	kil Is	9	oni ni ng no	" ar	n ete g nc e	ng			lls	arn ing		
CLO-1: Unde	rstand and imp	lement machine le	earning AWS, Azure and	GCP plat	form	2	85	80		. H	Н	Н	Н	М -	. 1	1 1	Л Н	-	Н	3	-	-
CLO-2: Deve	op knowledge	on machine leam	ng in enterprise, and data	a complia	nce strategies	3	85	80		_ H	Н	Н	Н		۸	1 1	1 L	-	Н	-	*	-
CLO-3: Gain	experience of o	doing independent	study and research			3		80	4 I	_ H	1	Н	Н		۸	-		-	Н	-	-	-
			em using Machine Learnir		2010	3	_	80	4 ⊢	- H	35 (3.77)		Н		٠ ٨	_		-	Н	-	-	-
STATE OF THE PROPERTY.	CLO-5 : Understand the Decision tree and Random Forest and Naïve Bayes Algorithm				3	-	80	+ ⊢	. H	10000		Н		٠ ٨		1 L	-	Н	-	-	-	
CLO-6: Gain	CLO-6 : Gain knowledge about Knowledge representations and Predicate logic					3	85	80		. H	Н	Н	Н	-	۸	1 1	1 L	-	Н	- 2	-	-
Duration (hour) 12 12 12						T			12)			Ť				12					
S-1 SLO-1	Infrastructure process, Mach and Data pipe	nine learning	Cloud and Machine Learn Machine Learning Workfl Comparison	_	Azure machine Learning And capabilities, Compa Azure ML Studio and Az Service	aring		С	GCP ma apabili latform	ies,	Goog	le Clo	oud	and	de	ots,	refa Refac rm fo	ctori	ng te	chnic		

V	8	Machine learning models	AWS Machine	Creating & Configuring Azure ML	Training and job execution with	Code analysis and refactoring
S-2	SLO-1	0.57%		Service workspace	Google Cloud and Console,	Design principles, Refactoring
6				s.	BigQuery	Principles and Challenges
8	6	Machine learning visualization	Learning Tools and Capabilities	Creating & Configuring Azure ML	Training and job execution with	Code analysis and refactoring
S-3	SLO-1	50000	5446	Service workspace	Google Cloud and Console,	Design principles, Refactoring
					BigQuery	Principles and Challenges
		Machine learning frameworks	Cloud Machine Learning	Building ML pipelines with	ML features, Implementing	Principles of good code,
S-4	SLO-1	and tools, Metadata and	Implementation and Comparison	AZURE ML Service, Working	models with BigQuery ML	Refactoring python code
		Governance		With Azure ML Studio		
e:		Risk mitigation, Data	Generating Machine Learning	Using Azure ML Service Visual	ML workflow challenges and	Code optimization, Using rope to
S-5	SLO-1	compliance issues, Data	based Object detection	Interface, Working With Azure	Serverless approach	refactor, Anti-patterns in code
		regulations		Open Datasets		
0.6	SLO-1	The importance of global	Amazon Machine Learning	AZURE MLOps, AZURE ML	ML implementation with cloud	Machine Learning types
5-0	3LO-1	standards	Console	Notebooks	Datalab , Google Al platform	
S-7	SLO-1	Risk and Company standards	Amazon SageMaker Architecture	AZURE MLOps, AZURE ML	ML implementation with cloud	Machine Learning algorithm
5	SLU-1			Notebooks	Datalab , Google Al platform	design
Q	SLO-1	Myths and Facts of data	Using Amazon SageMaker, Lex,	Pipelines with AZURE data Lake	Features and Components	Impact of refactoring on Machine
S-0	3LO-1	compliance	Polly And Transcribe	And Azure ML		Learning, Algorithm design
0.0	SLO-1	Compliance training for users	Using Amazon SageMaker, Lex,	Pipelines with AZURE data Lake	Google Cloud AutoML features	Machine Learning algorithm
ာ ၁	SLU-1		Polly And Transcribe	And Azure ML		comparison
S-	SLO-1	Compliance training for	Amazon SageMaker Neo	CI /CD For Machine Learning with	Managing dataset	Refactor machine, Learning code,
10	3LO-1	management		AZURE Pipeline		
S-	SLO-1	The benefits of a data	Augmented Manifest in	CI /CD For Machine Learning with	Using AutoML tables	Managing technical debt in
11	SLU-1	compliance program	SageMaker	AZURE Pipeline		machine learning
		Elements of a good	Amazon SageMaker Model	Using Microsoft Devlabs	Training models and predicting	SonarQube and code coverage,
		compliance strategy, Building	Tuning, Amazon SageMaker	Extension	with AutoML tables, Google cloud	Automatic clone refactoring
S-	SLO-1	a compliance strategy,			AutoML natural language	
12	3LU-1	Reporting and Response				
		procedures				

Learning	1. Mastering Azure Machine Learning, By Christoph Korner and Kaijisse Waaijer, April	1. Learning Path: AWS Certified Machine Learning-Specialty ML, By
Resources		Noah Gift, April 2019.

Hands-On Machine Learning on Google Cloud Platform, By Giuseppe Ciaburro, V Kishore Ayyadevara and Alexis Perrier, April 2018.

Learning Assessment												
Level	Bloom's Level		-	Final Examination								
		CLA - 1 (10%)		CLA – 2 (10%)		CLA - 3 (20%)		CLA - 4	(10%)#	(50% weightage)		
	of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	40%	1000	40%	av:	40%	_	40%	-	40%		
Level	Understand	40 /0	-	40 /0	-	40 /0	-	40 /0			ÿ -	
Level 2	Apply	40%	% -	40%		40%	-	40%		40%	-	
LCVCI 2	Analyze	40 /0		40 /0	67	40 /0		40 /0			3.75.	
Level 3	Evaluate	20%	_	20%	_	20%	_	20%	_	20%	-	
	Create	20 /0		20 /0	-	20 /0	-	20 /0	-	20 /6	•	
	Total	100 %		100 %		100 %		100	%	100 %		

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
Mr.G.Muruganandam, Group Project Manager, HCL Technologies, Chennai	Dr.Muthu, Professor, Loyola College, Chennai	Dr. S. Albert Antony Raj								
Mr.M. Hemachandar, Tech Lead, Wipro Limited, Chennai	Dr.Vincent, Associate Professor, VIT									