Lenus Case Study

- Pallavi Ravikiran Bhat

Objective: To analyze the dataset and determine the most important features to predict conversion

Approach: Utilize heuristic methods, visualizations, statistical-tests, and feature selection methods (filter and embedded selection methods) to assess and conclude the importance of each feature

Initial Exploration and Pre-processing

Data Overview

- Raw data: 891 rows x 10 columns
- Primary key: Data is unique at customer ID granularity with no duplicity
- Only 204 of the customers have a credit account ID and 46 of these account IDs are one-to-many mapped to customer ID, this key is discarded from analysis
- Credit account ID has only 2'Unnamed: 0' and 'id' dropped since they are not required for analysis

Types of Features

- Continuous: age, initial fee level
- Nominal Categorical: customer segment, gender, branch
- Ordinal Categorical: related customers, family size (these are treated as continuous for analysis)
- Dependent binary variable: converted

Outliers / Noise

 Age values start from 0, in the absence of business context, age 1 and above are considered valid and the values between 0 and 1 are rounded up to 1.

Missing Values

- Age has 19.9% missing values (177 rows). Distributions of all features were compared for Age=null and Age=not null, there was no pattern found to the missingness, so it is assumed that the feature is Missing is at Random (MAR).
- These rows are not dropped although they are above the usual threshold for imputation (5-10% of the total records) since the volume of the data is already a sample. Imputation methods tried:
 - Mean Imputation: This maintains the sample mean, but it reduces variance of the distribution and introduces some bias
 - o **Ffil Imputation**: This uses the last valid observation to fill the null values. Although this seemed to reduce concentration of datapoints to one value, it still causes distortion
 - Median Imputation: Performs best in terms of minimizing the variance distortion of the right skewed age, standard deviation drops from 14.53 to 13.02 after imputation
 - Branch has only 2 rows with missing values which are imputed using the mode 'Helsinki'

Assumptions

- 1. Ages 1 or above are considered valid, only age <1 treated as noise
- 2. Imputation of the 20% missing records of Age does not cause significant distortion

Exploratory Data Analysis

Univariate Analysis - Numerical

- Age is roughly right skewed with normal distribution
- Dependent variable 'converted' does not have significant class imbalance, can be resolved by stratification in train-test split
- Some features (related customers, family size, initial fee level) have exponential decay distributions, these are not treated through log transformation since:
 - 1. They are not continuous, but discrete
 - 2. Log transformation is applied only when the feature is to be normalized. However, in this analysis, only tree-based algorithms are considered for embedded methods of feature selection which do not require normalized features.
- Age has fairly symmetrical distribution and only slightly thicker tail than normal distribution, Skewness and Kurtosis shown below fall under acceptable ranges for normality assumption

skew	0.389108
kurtosis	0.178274

Univariate Analysis - Categorical

- Segment 11 leads have very high propensity for conversion while segment 13 leads have low conversion rate, segment 12 might not be useful in discriminating between the classes of y
- product / service seems to be targeted at females who are converting 3 out of 4 times
- Helsinki: most rejects, Turku: worst conversion rate, Tampere: best conversion rate

Bivariate Analysis - Numerical

- Leads are most likely to convert if they have 1 related customer
- Under 25 leads with 3 or more related customers are most likely to not convert
- Family size and related customers seem somewhat correlated, with dense non-conversions for higher values (tails), relationship to be further tested statistically
- Leads with initial fee level higher than the inter-quartile range are most likely to not convert, initial fee level of ~1000 could be potential outlier

Pearson's Correlation

		age	related_customers	family_size	initial_fee_level
Ī	age	1.000000	-0.233328	-0.172394	0.096688
	related_customers	-0.233328	1.000000	0.414838	0.159651
	family_size	-0.172394	0.414838	1.000000	0.216225
	initial_fee_level	0.096688	0.159651	0.216225	1.000000

- X-X correlation: Moderate correlation between family size and related customers, remaining features show low correlation with each other, so they can be retained for training
- X-y correlation: The correlation between X features and target is low to medium. There is no strong correlation with one particular feature that could have been isolated for evaluation, hence all features are
- Correlation is not the most suitable technique for a binary target, hence other measure explored

Variance Inflation Factor (VIF)

Variable	VIF
age	1.092125
related_customers	1.262927
family_size	1.258119
initial_fee_level	1.082116

- Correlated continuous features observed from the correlation matrix are cross-checked using Variance Inflation Factor (VIF), a threshold of 5 is set as an indicator of multicollinearity
- All features fall under the threshold, hence multicollinearity is absent

Filter Methods for Feature Selection

Chi-Square Test - Categorical Features

- This test is used to quantify feature importance of categorical features for classification models.
- A small score implies independence with respect to target, while a large score implies non-random relation to the target, and likely important.
- One class of each one-hot-encoded feature is to be dropped: Gender male, customer segment 12 and Branch Turku are removed from analysis due to lowest Chi-square scores among the other classes of the same feature

ANOVA Test - Continuous Features

- ANOVA is used to assess how well continuous features discriminate between the two classes of the binary dependent variable
- 'Related customers' is dropped from analysis since it has a very low F-test score and this information is somewhat contained in 'family size' due to their Pearson's correlation (41%)

Feature Selection Summary

(Using Visualizations, Heuristic and Statistical Methods detailed above)

Feature	Туре	Status	Reason
customer_id	ID	dropped	irrelevant
credit_account_id	ID	dropped	irrelevant
age	Continuous	retained	decent ANOVA score
	Ordinal		
family_size	(discrete)	retained	decent ANOVA score
related_customers	Ordinal (discrete)	dropped	very low ANOVA score, and correlated to family_size
initial_fee_level	Continuous	retained	highest ANOVA, good predictor
customer_segment_11	Categorical	retained	good chi-2 score
customer_segment_12	Categorical	dropped	very low chi-2 score
customer_segment_13	Categorical	retained	good chi-2 score
gender_male	Categorical	dropped	lower chi-2 score than class female, redundant class
gender_female	Categorical	retained	highest chi-2 score
branch_Helsinki	Categorical	retained	decent chi-2 score
branch_Tampere	Categorical	retained	good chi-2 score
branch_Turku	Categorical	dropped	lower chi-2 score than the other two branches, redundant class

Note: Prediction power can be quantified and analyzed among the retained features using embedded feature selection through tree-based algorithms as explained in the next section.

Embedded Methods for Feature Selection

Iteration 1: Decision Tree

Parameters: criterion=gini, max_depth=10, min_samples_split=2, min_samples_leaf=2

Iteration 2: Best Decision Tree model from GridSearchCV

Parameters: criterion=entropy, max depth=3, min samples leaf=2, min samples split=5

Iteration 3: Best XGBoost model from GridSearchCV

Parameters: gamma=3, learning rate=0.2, max depth=4, all other parameters=default

Conclusions

- Selected subset of features obtained through reduction using statistical methods are fed into tree-based classification algorithms for a second layer of selection
- Embedded methods use Gini Index / Entropy for splitting criteria in tree-based algorithms, these models are iteratively tuned to analyze and compare feature importance of each predictor
- Feature importance captures the decrease in node weighted by the probability in reaching that node.

• Best to worst ranked features based on the magnitude of their importance from the above iterations and statistical tests:

Feature	Importance	Cumulative Importance
gender_female	55%	55%
customer_segment 13	17%	72%
initial_fee_level	10%	82%
age	7%	89%
customer_segment 11	5%	94%
branch_Helsinki	3%	97%
family_size	2%	99%
branch_Tampere	1%	100%
related_customers	0%	-
customer_segment_12	0%	-
gender_male	0%	-
branch_Turku	0%	-

Note: Python notebook attached with the report for reference