Unsupervised Task Discovery in Multi-Task Acoustic Modeling Initial Findings

Josh Meyer*

* University of Arizona

Abstract

- Multi-Task Learning works (esp. in low-resource)
- However, tasks are hard to make
- ► Better to discover tasks automatically
- Experiment with k-means on MFCCs
- ► Initial results

Figure 1: Multi-Task Learning Architecture

1. Background

- Multi-Task Learning in Acoustic Modeling
 - Multilingual
 - new language == new task
 - Monolingual
 - new linguistic encoding == new task
 - Monophones vs. Triphones

Figure 2: Label Correspondance of Decision Tree / DNN

2. Alignment

- ► Feature Extraction
- ▶ 13 PLP features, 25ms Hamming windows, 10ms shift, 16 frame left-context & 12 frame right-context, CMVN
- ► GMM Alignment
 - Monophones: 1,000 Gaussians, 25 iterations EM
 // Triphones: 2,000 leaves & 5,000 Gaussians,
 25 iterations EM

Figure 3: GMM-aligned training examples

3. Clustering

- k-means Clustering
 - ▶ A set number of clusters is discovered via TensorFlow's standard k-means clustering.

Figure 4: k-means clustered training examples

4. Mapping Triphone States → **Clusters**

- ightharpoonup Mapping triphone states ightharpoonup k-means clusters
- ▶ All training examples aligned to triphone state are mapped to most common k-means cluster.

Figure 5: GMM-aligned training examples

5. DNN Training

- DNN Acoustic model training
- ▶ 11 hidden layers, ReLU activations
- ▶ 5-epochs
- ho $\alpha_{initial} = 0.0015 \rightarrow \alpha_{final} = 0.00015$
- ▶ Each task has penultimate + ultimate output layer

6. Preliminary Results Table 1: Word Error Rates (

Figure 6: Frame-level Accuracy | LOSS = (1-alpha)*MAIN + (alpha)*AUX

7. Preliminary Results

Table 2: Word Error Rates (WER%) **Weighting Scheme* (1 * main + \alpha * aux) \\ \alpha = .9 \quad \alpha = .8 \quad \alpha = .7 **Single Task Baseline** + 256 k-means cluster targets** + 1024 k-means cluster targets** 57.58 \pm 2.68 \quad 56.86 \pm 1.11 \quad 57.19 \pm 1.31 \\ + 4096 k-means cluster targets** 57.78 \pm 2.36 \quad 57.51 \pm 2.65 \quad 57.03 \pm 1.48

Figure 7: A figure with two subfigures

8. Cluster Contents: A Qualitative Discussion

- ► 1024 clusters in TF
- ► 672 leaves in Kaldi
- ▶ 185 new labels after mapping

THE UNIVERSITY OF ARIZONA

- ▶ 123 / 185 are interpretable
- ▶ 101 of new labels contain mixed phonemes
 - ▶ 39 / 101 contained either only vowels or only consonants
- ▶ 84 of new labels contain one phoneme
 - ▶ 9 / 84 contained more than one triphone of phoneme

Table 3: Discovered intelligible Phoneme Clusters

Vowels		Consonants	
a j	a u	kr	g n m
ао	a ih	kр	s sh ch
e j	e ih	r ng	tksp
e y	o u	d ch	m ng
u ih y	u ih	t k	tkh
i e y	o ih	d z	t k s
a e oe j ih	j ih	Ιz	t ch d
a ih o u y		n p	t k zh b
			tgbsshzzh

9. Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1746060). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.