Mathematics: analysis and approaches Higher level

Paper 3

1	ho	urs
---	----	-----

Candidate session number								

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [55 marks].

Answer **all** questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you could sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 31]

This question asks you to explore the behaviour and some key features of the function $f_n(x) = x^n(a-x)^n$, where $a \in \mathbb{R}^+$ and $n \in \mathbb{Z}^+$.

In parts (a) and (b), **only** consider the case where a = 2.

Consider $f_1(x) = x(2-x)$.

(a) Sketch the graph of $y = f_1(x)$, stating the values of any axes intercepts and the coordinates of any local maximum or minimum points.

[3]

[6]

Consider $f_n(x) = x^n(2-x)^n$, where $n \in \mathbb{Z}^+$, n > 1.

- (b) Use your graphic display calculator to explore the graph of $y = f_n(x)$ for
 - the odd values n = 3 and n = 5
 - the even values n = 2 and n = 4

Hence, copy and complete the following table.

	Number of local maximum points	Number of local minimum points	Number of points of inflexion with zero gradient
n=3 and $n=5$			
n=2 and $n=4$			

Now consider $f_n(x) = x^n(a-x)^n$ where $a \in \mathbb{R}^+$ and $n \in \mathbb{Z}^+$, n > 1.

(c) Show that
$$f_n'(x) = nx^{n-1}(a-2x)(a-x)^{n-1}$$
. [5]

- (d) State the three solutions to the equation $f'_n(x) = 0$. [2]
- (e) Show that the point $\left(\frac{a}{2}, f_n\left(\frac{a}{2}\right)\right)$ on the graph of $y = f_n(x)$ is always above the horizontal axis. [3]
- (f) Hence, or otherwise, show that $f_n'\left(\frac{a}{4}\right) > 0$, for $n \in \mathbb{Z}^+$. [2]
- (g) By using the result from part (f) and considering the sign of $f_n'(-1)$, show that the point (0,0) on the graph of $y=f_n(x)$ is
 - (i) a local minimum point for even values of n, where n > 1 and $a \in \mathbb{R}^+$ [3]
 - (ii) a point of inflexion with zero gradient for odd values of n, where n > 1 and $a \in \mathbb{R}^+$ [2]

Consider the graph of $y = x^n(a-x)^n - k$, where $n \in \mathbb{Z}^+$, $a \in \mathbb{R}^+$ and $k \in \mathbb{R}$.

(h) State the conditions on n and k such that the equation $x^n(a-x)^n=k$ has four solutions for x. [5]

a)
$$f_1(\infty) = \infty(2-\infty)$$

Ar: Shape

A1: local

A: x-intercept

b)
$$+ \delta(x) = x^3 (a-x)^3$$

	Number of local maximum points	Number of local minimum points	Number of points of inflexion with zero gradient
n=3 and $n=5$	s A	O-A1	2-11
n=2 and $n=4$	1 -A1	2-4,	0-41

c)
$$f_{n}(x) = x^{n}(a-x)^{n} a \in \mathbb{R}^{+}, n \in \mathbb{R}^{+}$$

 $u = x^{n} + M_{1} \quad u = (a-x)^{n} + M_{1}$
 $u' = n \times n^{-1} \quad v' = -n (a-x)^{n-1}$

$$f'(oc) = u'v + v'u$$

$$= n x^{n-1} (a-x)^n - n x^n (a-x)^{n-1} M_1$$

$$= n x^{n-1} (a-x)^{n-1} (a-x-x) M_1$$

$$= n x^{n-1} (a-x)^{n-1} (a-2x) M_1$$

d)
$$f'_{n}(x)=0=nx^{n-1}(a-x)^{n-1}(a-x)$$
 $x=0$
 $x=0$

8) 1) a local min for even values of n.

$$f_{n}^{2}(-1) = n(-1)^{n-1} (a+2)(a+1)^{n-1} (n71, a \in IR^{2})$$

If n is even: $n-1$ is odd \Rightarrow $(-1)^{n-1} < 0$

but $(a+1)^{n-1} > 0$ as at IR^{2}
 $f_{n}^{2}(-1) < 0$
 $f_{n}^{2}(0) = n \circ n^{-1} (a-2x0) (a^{-0})^{n-1}$
 $f_{n}^{2}(0) = n \circ n^{-1} (a^{-2}x0) (a^{-0})^{n-1}$
 $f_{n}^{2}(0) = n$

If n is odd:
$$f_n(-1) = n(-1)^{n-1}(a+2)(a+1)^{n-1}$$

 $= n-1$ is even = $(-1)^{n-1}$ is positive.
 $f_n'(-1) \mid f_n'(0) \mid f_n'(\frac{a}{4}) \mid f_n'(-1) \mid f_n'(\frac{a}{4}) \mid f_n'(-1) \mid f_n'(\frac{a}{4}) \mid f_n'(-1) \mid f_n'(\frac{a}{4}) \mid f_n'(-1) \mid f$

f'(x) does not change signs at x=0 \$1 .: (0,0) must be an injection point with zero gradient h) $y = x^{n}(a-x)^{n} - k$ $n \in \mathbb{Z}^{+}$, $a \in \mathbb{Z}^{+}$, $k \in \mathbb{Z}$ Then y = 0 .: $k = x^{n}(a-x)^{n} \Rightarrow \text{ read 4 intersection}$ $\Rightarrow \text{ can only happen if } \text{ points.}$ $\Rightarrow \text{ is even } \text{ From(d)} \Rightarrow \text{ is even } \text{ and}$ $\Rightarrow \text{ (a. 2)} \xrightarrow{a. 2} \text{ From(d)} \Rightarrow \text{ even } \text{ and}$ $\Rightarrow \text{ (a. 2)} \xrightarrow{a. 2} \text{ (a. 2)} \Rightarrow \text{ A. 1}$ $\Rightarrow \text{ 2 marks}$ $\Rightarrow \text{ 2 marks}$ $\Rightarrow \text{ 3 marks}$ $\Rightarrow \text{ 4 marks}$ $\Rightarrow \text{ 4 marks}$

2. [Maximum mark: 24]

This question asks you to investigate and prove a geometric property involving the roots of the equation $z^n=1$ where $z\in\mathbb{C}$ for integers n, where $n\geq 2$.

The roots of the equation $z^n=1$ where $z\in\mathbb{C}$ are 1 and ω . On an Argand diagram, the root 1 can be represented by a point P_0 , P_1 , P_2 , ..., P_{n-1} , respectively, on an Argand diagram.

For example, the roots of the equation $z^n=1$ where $z\in\mathbb{C}$ are 1 and ω . On an Argand diagram, the root 1 can be represented by a point P_0 and the root ω can be represented by a point P_1 .

Consider the case where n=3.

The roots of the equation $z^3=1$ where $z\in\mathbb{C}$ are 1, ω and ω^2 . On the following Argand diagram, the points P_0 , P_1 and P_2 lie on a circle of radius 1 unit with centre O (0,0).

(a) (i) Show the
$$(\omega - 1)(\omega^2 + \omega + 1) = \omega^3 - 1$$
. [2]

(ii) Hence, deduce that
$$\omega^2 + \omega + 1 = 0$$
. [2]

(This question continues on the following page)

a)
$$(w-1)(w^2 + w+1)$$
 $H_1 A_1$
= $w^3 + w^2 + w - w^2 - w - 1 = w^3 - 1$
ii) w is a root of the equation $z^3 = 1$
 $z + w^3 = 1$
 $w^3 = 1 = 0$
 $(w-1)(w^2 + w+1) = 0$ but $w \neq 1$ as $y = 1$
 $y = 1$, $y = 1$ and $y = 2$ are distinct roots $y = 1$

(Question 2 continued)

Line segments $[P_0P_1]$ and $[P_0P_2]$ are added to the Argand diagram in part (a) and are shown on the following Argand diagram.

 P_0P_1 is the length of $[P_0P_1]$ and P_0P_2 is the length of $[P_0P_2]$.

(b) Show that
$$P_0P_1 \times P_0P_2 = 3$$
. [3]

Consider the case where n=4.

The roots of the equation $z^4=1$ where $z\in\mathbb{C}$ are 1 , ω , ω^2 and ω^3 .

(c) By factorising
$$z^4 - 1$$
, or otherwise, deduce that $\omega^3 + \omega^2 + \omega + 1 = 0$. [2]

(This question continues on the following page)

(b)
$$P_0P_1 = P_0O + OP_1$$
 $P_0P_2 = P_0O + OP_2$

$$= -1 + \omega \ni P_0P_1 = |-1+\omega| M_1 = -1 + \omega^2$$

$$= |P_0P_1| |P_0P_2| = |-1+\omega| |M_1 = -1 + \omega^2|$$

$$= |(\omega - 1)| |(\omega^2 - 1)|$$

$$= |(\omega - 1)| |(\omega - 1)|$$

$$= |(\omega - 1)| |($$

c)
$$z^{4}-1=(z^{2}-1)(z^{2}+1)$$
 H_{1}

$$=(z+1)(z+1)(z^{2}+1)$$

$$=(z+1)(z^{3}+z^{2}+z+1)$$

$$=(z+1)(z+1)(z^{2}+1)$$

$$=(z+1)(z+1)(z+1)$$

$$=(z+1)(z+1)$$

(Question 2 continued)

On the following Argand diagram, the points P_0 , P_1 , P_2 and P_3 lie on a circle of radius 1 unit with centre O (0,0). $[P_0P_1]$, $[P_0P_2]$ and $[P_0P_3]$ are line segments.

(d) Show that
$$P_0P_1 \times P_0P_2 \times P_0P_3 = 4$$
. [4]

For the case where n=5 , the equation $z^5=1$ where $z\in\mathbb{C}$ has roots 1 , ω , ω^2 , ω^3 and ω^4 .

It can be shown that $P_0P_1 \times P_0P_2 \times P_0P_3 \times P_0P_4 = 5$.

Now consider the general case for integer values of n, where $n \ge 2$.

The roots of the equation $z^n=1$ where $z\in\mathbb{C}$ are 1, ω , ω^2 , ..., ω^{n-1} . On an Argand diagram, these roots can be represented by the points P_0 , P_1 , P_2 , ..., P_{n-1} respectively where $[P_0P_1]$, $[P_0P_2]$, ..., $[P_0P_{n-1}]$ are line segments. The roots lie on a circle of radius 1 unit with centre O (0,0).

(e) Suggest a value for
$$P_0P_1 \times P_0P_2 \times ... \times P_0P_{n-1}$$
. [1]

 P_0P_1 can be expressed as $|1 - \omega|$.

- (f) (i) Write down expressions for P_0P_2 and P_0P_3 in terms of ω . [2]
 - (ii) Hence, write down an expression for P_0P_{n-1} in terms of n and ω . [1]

Consider $z^n - 1 = (z - 1)(z^{n-1} + z^{n-2} + \dots + z + 1)$ where $z \in \mathbb{C}$.

- (g) (i) Express $z^{n-1} + z^{n-2} + \dots + z + 1$ as a product of linear factors over the set \mathbb{C} . [3]
 - (ii) Hence, using the part (g)(i) and part (f) results, or otherwise, prove your suggested result to part (e). [4]

PoP₁=
$$\sqrt{1^2+1^2}$$
 = $\sqrt{2}$ (Pythagoras

PoP₂ = 2 M₁

PoP₃ = $\sqrt{1^2+1^2}$ = $\sqrt{2}$ (Pythagoras

PoP₃ = $\sqrt{1^2+1^2}$ = $\sqrt{2}$ (Pythagoras

offeorem)

Porx Porx Pors= 12x2x12 = 4 A1

in general case n 7/2 = 2 = 1 Roots: 1, w, w2 - ... on-1 = Popix Popi ... Popn-1 = n A1,

+) i) $P_0P_1 = |1 - \omega| = |P_0P_1| = |P_1P_0|$ $P_0P_2 = |1 - \omega^2|^{A_1} P_0P_3 = |1 - \omega^3|^{A_2}$ ii) $P_0P_{n-1} = |1 - \omega^{n-1}| A_1$

8)
$$i_{1}$$
 n_{-1} : (z_{-1}) $(z_{-1}^{n-1} + z_{-1}^{n-2} + ... + z_{+1})$
 z_{-1} : (z_{-1}) $(z_{-1}^{n-1} + z_{-1}^{n-2} + ... + z_{+1})$
 z_{-1} : (z_{-1}) $(z_{-1}^{n-1} + z_{-1}^{n-2} + ... + z_{+1})$
 z_{-1} : (z_{-1}) $(z_{-1}^{n-1} + z_{-1}^{n-2} + ... + z_{+1})$
 z_{-1} : z_{-1}