Report for exercise 2 from group H

Tasks addressed: 5

Authors: Ahmad Bin Qasim (03693345)

Kaan Atukalp (03709123)

Martin Meinel (03710370)

Last compiled: 2019-11-25

Source code: https://gitlab.lrz.de/ga53rog/praktikum-ml-crowd

The work on tasks was divided in the following way:

Ahmad Bin Qasim (03693345)	Task 1	33%
Timiad Dir Qasin (0005040)	Task 2	33%
	Task 3	33%
	Task 4	33%
	Task 5	33%
Kaan Atukalp (03709123)	Task 1	33%
	Task 2	33%
	Task 3	33%
	Task 4	33%
	Task 5	33%
Martin Meinel (03710370)	Task 1	33%
	Task 2	33%
	Task 3	33%
	Task 4	33%
	Task 5	33%

Report on task 1, Vector fields, orbits, and visualization

Report on task 2, Common bifurcations in nonlinear systems

Figure 1: The bifurcation diagram for equation 6 with α in (-1,1)

Figure 2: The bifurcation diagram for equation 7 with α in (-1,1)

We know that, for two dynamical systems to be topologically equivalent, there should exist homeomorphism of the parameter space and a parameter-dependent homeomorphism of the phase space.

- 1. The bifurcation that occurs at $\alpha = 0$ is, saddle node bifurcation.
- 2. The dynamical systems explained by equation 6 and 7 are not topologically equivalent for $\alpha=1$ because, although they have the same normal form. The dynamical system explained by equation 7 has no steady state for $\alpha=1$, instead the steady state of the dynamical system in question exists at $x0=\pm\sqrt{\frac{\alpha-2}{2}}$ only for $\alpha>2$ as shown by figure 3. According to the definition of topological equivalence mentioned before, for $\alpha=1$ the parameter-dependent homeomorphism of the phase space does not exist.
- 3. The dynamical systems explained by equation 6 and 7 are not topologically equivalent for $\alpha = -1$ as well, because at $\alpha = -1$ neither of the dynamical systems have any steady states.

Figure 3: The bifurcation diagram for equation 7 with α in (-4,4)

Report on task 3, Bifurcations in higher dimensions

Report on task 4, Chaotic dynamics

Report on task 5, Bifurcations in crowd dynamics