Lecture Notes of Mathematics-I for Integral Calculus, Improper Integrals, Beta and Gamma functions

 $\mathbf{b}\mathbf{y}$

Prof Shiv Datt Kumar

Department of Mathematics

Motilal Nehru National Institute of Technology

Allahabad (UP), India

Pin - 211004

E-mail: sdt@mnnit.ac.in

Contents

1	$Int\epsilon$	egral Calculus	\mathbf{v}
	1.1	Jacobian Matrix	. v
		1.1.1 Change of variables	. vi
	1.2	Volume of solid of revolution	. viii
	1.3	Double Integral	. ix
		1.3.1 Change of variables in double and triple integral $\ .\ .\ .$.	. xi
	1.4	Triple Integral	. xii
2	Imp	proper Integrals, Beta and Gamma Functions	xvii
	2.1	Improper Integral	. xvii
	2.2	Beta Function	. xx
		2.2.1 Gamma Functions	. xxi
	2.3	Dirichlet Integral	. xxiii
Bibliography xx			

Chapter 1

Integral Calculus

1.1 Jacobian Matrix

Let $F: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a vector valued function given by $F(x_1, \ldots, x_n) = (F_1(x_1, \ldots, x_n), \ldots, F_m(x_1, \ldots, x_n))$. Then Jacobian matrix is the matrix of all first order partial derivatives defined as

$$J(F) = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{pmatrix}$$

Jacobian matrix is important because if the function F is differentiable at point $p = (x_1, \ldots, x_n)$, the Jacobian matrix defines a linear map $\mathbb{R}^n \longrightarrow \mathbb{R}^m$, which is the best linear approximation of the function F near point p. The Jacobian generalizes the gradient of a scalar valued function of several variables, which is generalization of derivative of a scalar valued function of single variable. Jacobian can be thought of as describing the amount of stretching, rotating or transforming and that transformation imposes locally.

Definition 1.1.1. If F_1, F_2, \ldots, F_n are functions of x_1, x_2, \ldots, x_n , then the de-

terminant

$$J = \begin{vmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_n} \end{vmatrix}$$

is called Jacobian of F_1, F_2, \ldots, F_n with respect to x_1, x_2, \ldots, x_n , In short it is written as $\frac{\partial (F_1, \ldots, F_n)}{\partial (x_1, \ldots, x_n)}$.

Remark: Determinant of square Jacobian matrix (called as Jacobian) gives important information about the behaviour of F near that point. If the Jacobian determinant at p is non-zero, then the continuously differentiable function F is invertible near a point $p \in \mathbb{R}^n$. This is the inverse function theorem. Further if Det(J) > 0, then F preserves orientation near p. If Det(J) < 0, then F reverses orientation. Absolute value of the Jacobian determinant gives the factor by which the function F expands or shrinks volumes near p.

Properties of Jacobian:

- 1. If f and g are functions of u and v and u, v are functions of x and y, then $\frac{\partial(f,g)}{\partial(x,y)} = \frac{\partial(f,g)}{\partial(u,v)} \frac{\partial(u,v)}{\partial(x,y)}$
- 2. If J is the Jacobian of the system u, v with respect to x, y and $J^{'}$ is the Jacobian of x, y with respect to u and v, then $JJ^{'}=1$.

Example 1.1.2. If
$$x = rcos \ \theta$$
 and $y = r \ sin \ \theta$, then (i) $\frac{\partial(x,y)}{\partial(r,\theta)} = r$ and (ii) $\frac{\partial(r,\theta)}{\partial(x,y)} = \frac{1}{r}$.

1.1.1 Change of variables

Suppose z = f(x, y) and $x = \phi(u, v)$, $y = \psi(u, v)$. Then by chain rule $\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$ and $\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$. Solving the system of equations by Crammer rule

$$\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial f}{\partial v}\frac{\partial y}{\partial u}} = \frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial v}\frac{\partial x}{\partial u} - \frac{\partial f}{\partial u}\frac{\partial x}{\partial v}} = \frac{1}{\frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v}\frac{\partial y}{\partial u}}$$
$$\frac{\frac{\partial f}{\partial x}}{\frac{\partial (f,y)}{\partial (u,v)}} = \frac{\frac{\partial f}{\partial y}}{\frac{\partial (f,x)}{\partial (u,v)}} = \frac{1}{\frac{\partial (x,y)}{\partial (u,v)}}$$

$$Determinant J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial(x, y)}{\partial(u, v)}$$

is called the Jacobian of variables of transformation. Therefore $\frac{\partial f}{\partial x} = \frac{1}{J} \frac{\partial (f,y)}{\partial (u,v)}$ and $\frac{\partial f}{\partial y} = -\frac{1}{J} \frac{\partial (f,x)}{\partial (u,v)}$.

In case of three variables, let S = f(x, y, z) and x = F(u, v, w), y = G(u, v, w)

&
$$z = H(u, v, w)$$
. Then

$$\begin{split} \frac{\partial f}{\partial u} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u}. \\ \frac{\partial f}{\partial v} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial v}. \\ \frac{\partial f}{\partial w} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial w} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial w} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial w}. \\ \frac{\partial f}{\partial x} &= \frac{1}{J} \left[\frac{\partial (f, y, z)}{\partial (u, v, w)} \right], \frac{\partial f}{\partial y} &= -\frac{1}{J} \left[\frac{\partial (f, x, z)}{\partial (u, v, w)} \right] \text{ and } \frac{\partial f}{\partial z} &= \frac{1}{J} \left[\frac{\partial (f, x, y)}{\partial (u, v, w)} \right], \text{ where} \end{split}$$

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Example 1.1.3. Let z = f(x, y), $x = rcos \theta$, $y = rsin \theta$. Then

$$\begin{split} &(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2 = (\frac{\partial f}{\partial r})^2 + \frac{1}{r^2}(\frac{\partial f}{\partial \theta})^2.\\ &Here\ J = \frac{\partial (x,y)}{\partial (r,\theta)} = r,\\ &\frac{\partial f}{\partial x} = \frac{1}{J}\frac{\partial (f,y)}{\partial (r,\theta)}.....(1)\ and \end{split}$$

$$\frac{\partial f}{\partial y} = -\frac{1}{J} \frac{\partial (f, x)}{\partial (r, \theta)} \dots (2).$$

$$Also \frac{\partial (f, y)}{\partial (r, \theta)} = rcos \theta \frac{\partial f}{\partial r} - sin \theta \frac{\partial f}{\partial \theta} \dots (3) and$$

$$\frac{\partial (f, x)}{\partial (r, \theta)} = -rsin \theta \frac{\partial f}{\partial r} - cos \theta \frac{\partial f}{\partial \theta} \dots (4)$$

Squaring and adding (1) & (2) and using (3) & (4) we get the required.

Cartesian coordinates to cylindrical coordinates

Cylindrical coordinates (r, θ, z) are given by $x = r \cos \theta$, $y = r \sin \theta$, z = z and Jacobian of transformation is

$$J = J(\frac{(x, y, z)}{(r, \theta, z)}) = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix}$$

$$= \begin{vmatrix} \cos \theta & -r \sin \theta & z \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r$$

1.2 Volume of solid of revolution

Let AB be the portion of the curve $y=f(x), \ f(x)>0, \ x=a, \ x=b.$ Consider the area bounded by the arc AB of the curve $y=f(x), \ x$ -axis and the lines x=a and x=b. Volume of the solid generated by revolving this area about the x-axis is $V=\int_a^b \pi y^2 dx$. Similarly volume of the solid generated by revolving this area about the y-axis and lines $y=c, \ y=d$ is $V=\int_a^b \pi x^2 dy$.

Example 1.2.1. Find the volume of the solid generated by revolving the finite region bounded by the curve $y = x^2 + 1$, y = 5 about the line x = 3.

Solution:
$$V = \int_1^5 \pi (x_1^2 - x_2^2) dy = \int_1^5 \pi [(3 + \sqrt{y - 1})^2 - (3 - \sqrt{y - 1})^2] dy = \int_1^5 12\pi (\sqrt{y - 1}) dy = 64\pi.$$

Example 1.2.2. Consider the element $\delta x \delta y$ at P(x,y) of plane area A. As this elementary area revolves about x-axis, we get a ring of volume $\pi[(y + \delta y)^2 -$

 $y^2]\delta x=2\pi y\delta x\delta y.$ Total volume= $\int\int_A 2\pi y\ dxdy=\int\int_A 2\pi r\ sin\theta\ rdr\ d\theta=\int\int_A 2\pi r^2\ sin\theta\ dr\ d\theta.$

Example 1.2.3. Find the volume of the solid generated by revolving the finite region bounded by the curve $y = 3 - x^2$, y = -1 about the line y = -1.

Solution:
$$V = 2$$
[volume of solid generated about the $y = -1$]
$$= \int_0^2 \pi (1+y)^2 dx = \int_0^2 2\pi (1+y)^2 dx = \int_0^2 2\pi (1+3-x^2)^2 dx = \frac{512\pi}{15}.$$

Example 1.2.4. Find the volume of the solid generated by revolving the arc of cycloid x = a(t - sint), y = a(1 - cost), about x - axis.

Solution: $V = \int_0^{2\pi a} \pi y^2 dx = \int_0^{2\pi} \pi a^2 (1-\cos t)^2 a (1-\cos t) dt = 16\pi a^3 \int_0^{\pi} \sin^6 t dt = 5\pi^2 a^3$.

1.3 Double Integral

Notion of double integral is an extension of the notion of definite integral on the real line to the case of two dimensional space \mathbb{R}^2 . Let f(x,y) be a continuous function in a simply connected, closed bounded region R in two variables x and y. Divide the region R into subregions (rectangles) by drawing lines $x = x_k$, $y = y_k$, $k = 1, 2, \ldots, m$ parallel to coordinate axes. Let (x_i, y_i) be an arbitrary point inside the ith rectangle, whose area is $\triangle A_i$. Let $S_n = \sum_{i=1}^n f(x_i, y_i) \triangle A_i$. When $n \to \infty$, the number of subregions increase indefinitely such that the largest of areas $\triangle A_i$ approaches zero. Then $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{i=1}^n f(x_i, y_i) \triangle A_i$, if exists, is called the double integral of the function f(x,y) over the region R and is denoted by $\int \int_R f(x,y) dx dy$.

Properties of double integrals

If f(x,y) and g(x,y) are integrable functions, then

- 1. $\iint_{B} f(x,y) \pm g(x,y) dxdy = \iint_{B} f(x,y) dxdy \pm \iint_{B} g(x,y) dxdy.$
- 2. $\iint_{B} k f(x,y) dx dy = k \iint_{B} f(x,y) dx dy$.
- 3. $\left| \int \int_{\mathcal{B}} k \ f(x,y) dx dy \right| \le \int \int_{\mathcal{B}} \left| f(x,y) \right| dx dy$

- 4. Mean Value Theorem: $\int \int_R f(x,y) dx dy = f(u,v)A$, where A is the area of the region R and (u, v) is any arbitrary point in the region R. If $m \le f(x,y) \le M$ for all (x,y) in R, then $m A \le \iint_R f(x,y) dx dy \le M$ A.
- 5. If $0 < f(x,y) \le g(x,y)$ for all $(x,y) \in R$, then $\iint_R f(x,y) dx dy \le \iint_R g(x,y) dx dy$.
- 6. If $f(x,y) \geq 0$, then $\iint_{\mathcal{B}} f(x,y) dx dy \geq 0$.

Example 1.3.1. Evaluate
$$\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dydx}{1+x^2+y^2}$$
.

$$\begin{split} \textbf{Example 1.3.1.} \ Evaluate \ & \int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dy dx}{1+x^2+y^2}. \\ \textbf{Solution:} \ & \int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dy dx}{1+x^2+y^2} = \int_0^1 dx \int_0^{\sqrt{1+x^2}} \frac{dy}{1+x^2+y^2} \\ & = \int_0^1 dx [\frac{1}{\sqrt{1+x^2}} tan^{-1} \frac{y}{1+x^2}]_0^{\sqrt{1+x^2}} = \int_0^1 dx [\frac{1}{\sqrt{1+x^2}} \frac{\pi}{4}] \\ & = \frac{\pi}{4} \int_0^1 \frac{1}{\sqrt{1+x^2}} dx = \frac{\pi}{4} [log(x+\sqrt{x^2+1})]_0^1 = \frac{\pi}{4} [log(\sqrt{2}+1)]. \end{split}$$

Example 1.3.2. Evaluate $\int \int_A xy \ dx \ dy$, where A is the region bounded by the ordinate x = 2a, curve $x^2 = 4ay$.

Solution: Limit of integration for x are from 0 to 2a and for y from 0 to $\frac{x^2}{4a}$ $\iint_A xy \ dx \ dy = \int_0^{2a} \int_0^{x^2/4a} xy \ dx \ dy = \int_0^{2a} x \ dx \int_0^{x^2/4a} y \ dy = a^4/3.$

Example 1.3.3. Evaluate $\int \int_R e^{x^2} dx dy$, where $R: 2y \le x \le 2$ and $0 \le y \le 1$.

First integrate with respect to y and then with respect x.

$$\int_0^2 \left[\int_0^{\frac{x}{2}} e^{x^2} dy \right] dx = \int_0^2 \left[y e^{x^2} \right]_0^{\frac{x}{2}} dx = \frac{1}{2} \int_0^2 x e^{x^2} dx = \frac{1}{4} (e^4 - 1).$$

Applications of double integrals

- 1. If f(x,y) = 1, then $\iint_R dx dy =$ Area of the region R.
- 2. If z = f(x,y) is a surface, then $\int \int_R f(x,y) dx dy$ = Volume of the region beneath the surface z = f(x, y) and above the x - y plane.
- 3. If $f(x,y) = \rho(x,y)$ is the density function (mass per unit area), then
 - (i) $\iint_R \rho(x,y) dxdy = M$ (Total mass of the region R).
 - (ii) Centre of gravity (\bar{x}, \bar{y}) is given by

$$\bar{x} = \frac{1}{M} \iint_R x \rho(x, y) dx dy, \ \bar{y} = \frac{1}{M} \iint_R y \rho(x, y) dx dy.$$

(iii) Moment of inertia of the mass in R about x-axis, $I_x = \int \int_R y^2 \rho(x,y) dxdy$ Moment of inertia of the mass in R about y-axis, $I_y = \int \int_R x^2 \rho(x,y) dx dy$

1.3.1 Change of variables in double and triple integral

Let R be the domain of integration $\int \int_R f(x,y) \, dx dy$ in x-y plane Let $x=\phi(u,v), \ y=\psi(u,v)$ and R^* be the domain in the u-v plane. Then $\int \int_R f(x,y) \, dx dy = \int \int_{R^*} F(u,v) \, |J| \, du dv$, where

Determinant
$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial(x, y)}{\partial(u, v)}.$$

If $x=\phi(u,v,w),\ y=\psi(u,v,w), z=\eta(u,v,w),$ then $\int\int_R f(x,y,z)\ dxdydz=\int\int\int_{R^*} F(u,v,w)\ |J|\ dudvdw, \text{ where }$

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Example 1.3.4. Let R be rhombus with successive vertices at (1,0), (2,1), (1,2) and (0,1). Then find the value of the integral $\int \int_R (x-y)^2 \cos^2(x+y) dx dy$.

Solution: Equations of sides AB, BC, CD, and DA are given by x - y = 1, x + y = 3, x - y = -1 and x + y = 1 respectively. Put x - y = u, y + x = v. Then $-1 \le u \le 1$, $1 \le v \le 3$ and x = (v - u)/2, y = (u + v)/2. Jacobian of transformation is given by

$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = -1/2$$

Then
$$I = \int \int_R (x-y)^2 \cos^2(x+y) \ dxdy = \int_1^3 \int_{-1}^1 u^2 \cos^2 v |J| \ dudv$$

= $\frac{1}{2} \int_1^3 \int_{-1}^1 u^2 \cos^2 v \ dudv = \frac{1}{3} \int_1^3 \cos^2 v dv = \frac{1}{6} \int_1^3 (1+\cos 2v) dv$
= $\frac{1}{3} + \frac{\sin 6 - \sin 2}{12}$.

1.4 Triple Integral

Triple integral is an extension of the notion of double integral to three dimensional space \mathbb{R}^3 . Let f(x,y,z) be a continuous function in a simply connected, closed bounded volume V. Divide the region V into small volume elements by drawing planes $x=x_k, \ y=y_k, \ z=z_k, \ k=1,2,\ldots,n$ parallel to three coordinate planes. Let (x_i,y_i,z_i) be an arbitrary point inside the ith volume element $\delta V_i = \delta x_i \delta y_i \delta z_i$. Let $S_n = \sum_{i=1}^n f(x_i,y_i,z_i)\delta V_i$. When $n \to \infty$, the number of subregions increase indefinitely such that the largest of volumes δV_i approaches zero. Then $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \sum_{i=1}^n f(x_i,y_i,z_i)\delta V_i$, if exists, is called the triple integral of the function f(x,y,z) over the region V and is denoted by $\int \int_V f(x,y,z) dx dy dz$.

Let f(x, y, z) be a continuous function over a regular solid V defined by a < x < b, $h_1(x) < y < h_2(x)$, and $g_1(x, y) < z < g_2(x, y)$. Then the triple integral is equal to the triple iterated integral given by

$$\iint \int_{V} f(x,y,z) dx dy dz = \int_{a}^{b} \int_{h_{1}(x)}^{h_{2}(x)} \int_{g_{1}(x,y)}^{g_{2}(x,y)} f(x,y,z) dx dy dz.$$

Applications of triple integrals

- 1. If f(x,y,z) = 1, then $\iint_R dx dy dz = \text{Volume of the region } R$.
- 2. If $f(x, y, z) = \rho(x, y, z)$ is the density of mass, then
 - (i) $\iint_R \rho(x,y) dx dy dz = M$ (Total mass of the solid of region R).
 - (ii) Centre of gravity $(\bar{x}, \bar{y}, \bar{z})$ is given by

$$\begin{split} &\bar{x} = \frac{1}{M} \int \int \int_R x \ \rho(x,y,z) dx dy dz, \ \bar{y} = \frac{1}{M} \int \int_R y \ \rho(x,y,z) dx dy dz, \\ &\bar{z} = \frac{1}{M} \int \int_R z \ \rho(x,y,z) dx dy dz. \end{split}$$

(iii) Moment of inertia of the mass in R about x-axis,

$$I_x = \int \int \int_R (y^2 + z^2) \rho(x, y, z) dx dy dz$$

Moment of inertia of the solid of mass in R about y-axis,

$$I_y = \int \int \int \int_R (x^2 + z^2) \rho(x,y,z) dx dy dz$$
 and

moment of inertia of the solid of mass in R about z-axis,

$$I_z = \int \int \int \int_{\mathcal{B}} (x^2 + y^2) \rho(x, y, z) dx dy dz.$$

Example 1.4.1. Find the volume of the solid bounded by the plane x = 0, y = 0, x + y + z = a and z = 0.

Volume $V = \int_0^a \int_0^{a-x} \int_0^{a-x-y} dx \ dy \ dz = \int_0^a \int_0^{a-x} (a-x-y) dy \ dx = \frac{1}{2} \int_0^a (a-x)^2 \ dx = a^3/6.$

Example 1.4.2. Find the volume generated by the revolution of cardioid $r = a(1 - \cos \theta)$ about its axis.

Volume
$$V = \int_0^{\pi} \int_0^{a(1-\cos\theta)} 2\pi r^2 dr \sin\theta d\theta$$

= $\frac{2\pi a^3}{3} \int_0^{\pi} (1-\cos\theta)^3 \sin\theta d\theta = \frac{\pi a^3}{6}$.

Example 1.4.3. Calculate the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Using the transformation of spherical coordinates $x = arsin\theta \cos\phi$, $y = brsin\theta \sin\phi$, $z = crcos\theta$. Jacobian of transformation

$$J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{vmatrix} = abc \ r^2 sin \ \theta$$

 $dxdydz = Jdr \ d\theta \ d\phi = abc \ r^2 sin \ \theta dr \ d\theta \ d\phi$

 $V = 8 \times volume \ of \ sphere \ in \ positive \ octant$

$$= 8 \int_0^1 \int_0^{\pi/2} \int_0^{\pi/2} abc \ r^2 sin \ \theta dr d\theta \ d\phi$$
$$= 8 \int_0^1 abc \ r^2 dr \int_0^{\pi/2} sin \ \theta d\theta \int_0^{\pi/2} \ d\phi = \frac{4}{3} \pi abc.$$

Example 1.4.4. Calculate the volume of the solid surrounded by the surface $(x/a)^{2/3} + (y/b)^{2/3} + (z/c)^{2/3} = 1$.

Using the transformation of coordinates $x=aX^3$, $y=bY^3$, $z=cZ^3$. Jacobian of transformation $J=\frac{\partial(x,y,z)}{\partial(X,Y,Z)}=27abcX^2Y^2Z^2$. Required volume = $\int\int\int dx\ dy\ dz=27abc\int\int\int X^2Y^2Z^2dX\ dY\ dZ$

Now use the transformation $X = r sin \ \theta cos \ \phi, \ Y = r sin \ \theta sin \ \phi, \ Z = r cos \ \theta.$ Then Jacobian of transformation $J^{'} = \frac{\partial (X,Y,Z)}{\partial (r,\theta,\phi)} = r^2 sin \ \theta \ dr d\theta d\phi$. Thus $dXdYdZ = r^2 sin \ \theta dr d\theta d\phi \quad and \ dxdydz = 27abcX^2Y^2Z^2r^2sin \ \theta \ dr d\theta \ d\phi \ .$

Therefore

 $V = 8 \times volume in positive octant =$

$$\begin{split} &8 \int_0^1 \int_0^{\pi/2} \int_0^{\pi/2} 27 abc \; (r sin \; \theta \; cos \; \phi)^2 (r sin \; \theta \; sin \; \phi)^2 (r cos \; \theta)^2 r^2 sin \; \theta dr d\theta \; d\phi. \\ &= 216 abc \int_0^1 r^8 dr \int_0^{\pi/2} sin^5 \; \theta cos^2 \; \theta d\theta \int_0^{\pi/2} sin^2 \; \phi \; cos^2 \; \phi \; d\phi = \frac{4\pi abc}{35}. \end{split}$$

Example 1.4.5. Find total mass of the solid bounded by the surfaces $x^2 + y^2 = 16$, z = 2 and z = 4 if its density function is $\rho(x, y, z) = x^2 + y^2$.

Convert the integral $\int_{x=-4}^{4} \int_{y=-\sqrt{16-x^2}}^{\sqrt{16-x^2}} \int_{z=2}^{z=4} \rho(x,y,z) \, dx \, dy \, dz$ in cylindrical coordinates $x = r\cos\theta$, $y = r\sin\theta$, z = z, then Jacobian J = r and $\int_{r=0}^{4} \int_{\theta=0}^{2\pi} \int_{z=2}^{4} r^2 \, r \, dr \, d\theta \, dz = \int_{r=0}^{4} r^3 dr \int_{\theta=0}^{2\pi} d\theta \int_{z=2}^{4} \, dz = \{\frac{r^4}{4}\}_0^4 \times 2\pi \times 2 = 256\pi.$

Example 1.4.6. Show that in the first octant, paraboloid $z = 36 - 4x^2 - 9y^2$ has the volume 27π cubic units.

Solution: Projection of the given paraboloid in the x y plane is the first quadrant of the ellipse $4x^2 + 9y^2 = 36$. Then region R is given by $0 \le z \le 36 - (4x^2 + 9y^2)$, $0 \le y \le \frac{1}{3}\sqrt{36 - 4x^2}$, $0 \le x \le 3$. Therefore volume $V = \int_0^3 \left[\int_0^{\frac{2}{3}\sqrt{(9-x^2)}} (36 - 4x^2 - 9y^2) dy \right] dx$ $= \int_0^3 \left[4(9 - x^2)y - 3y^3 \right]_0^{\frac{2}{3}\sqrt{(9-x^2)}} dx = \frac{16}{9} \int_0^3 (9 - x^2)^{3/2} dx.$

Now put $x = 3sin \ \theta$. Then $V = 144 \int_0^{\pi/2} cos^4 \ \theta d\theta = 144 (\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}) = 27\pi \ cubic$ unit.

Example 1.4.7. Find the volume of the solid which is contained in between the cone $z^2 = 2(x^2 + y^2)$ and the hyperboloid $z^2 = x^2 + y^2 + a^2$.

Solution: Put $x = rcos \ \theta$, $y = rsin \ \theta$. Then $dxdy = rdrd\theta$ and intersection of $z^2 = 2(x^2 + y^2)$ and $z^2 = x^2 + y^2 + a^2$ is $2(x^2 + y^2) = x^2 + y^2 + a^2$ i.e. $x^2 + y^2 = a^2$.

$$V = \int_0^{2\pi} \int_0^a \int_{\sqrt{2(x^2 + y^2 + a^2)}}^{\sqrt{x^2 + y^2 + a^2}} dz \, dy \, dx = \int_0^{2\pi} \int_0^a \sqrt{(x^2 + y^2 + a^2)} - \sqrt{2(x^2 + y^2)} \, dy \, dx = \int_0^{2\pi} \int_0^a (\sqrt{(r^2 + a^2)} - \sqrt{2}r)r \, dr \, d\theta = \frac{4\pi a^3(\sqrt{2} - 1)}{3}.$$

Example 1.4.8. Find mass of a solid lying between spheres of radius 3 and 4 in the region $y \ge 0$, $z \ge 0$. Density at any point (x, y, z) is given by $\rho(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.

Solution: Convert the integral into spherical coordinates $x = r \sin \theta \cos \phi$,

 $y=r\sin\theta\sin\phi$, $z=r\cos\theta$, Region occupied by the solid is described by

$$3 \le r \le 4, \ 0 \le \theta \le \pi, \ 0 \le \phi \le \frac{\pi}{2}.$$
 Also

 $\rho(r,\theta,\phi) = \rho(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$

$$= \sqrt{(r \sin \theta \cos \phi)^2 + (r \sin \theta \sin \phi)^2 + (r \cos \theta)^2} = r.$$

Jacobian of transformation $J = r^2 \sin \phi$.

Hence mass= $\int_0^\pi \int_0^{\pi/2} \int_3^4 r \ r^2 \sin \phi \ dr \ d\phi \ d\theta = \int_0^\pi \ d\theta \ \int_0^{\pi/2} \sin \phi \ d\phi \int_3^4 r^3 \ dr = \frac{175\pi}{4}$

- Exercise 1.4.1. 1. Evaluate $\iint \int \sin(x+y+z) dx dy dz$ over portion cut off by the plane $x+y+z=\pi$.
 - 2. By a suitable change of variables calculate the integral $\int \int_R \log \frac{x-y}{x+y} dx dy$, where R is the triangular region bounded the vertices (1,0), (4,-3), (4,1). Ans: $\frac{1}{4}(49 \log 7 \frac{75}{2}\log 5 27 \log 3 + 6)$.
 - 3. Evaluate $\int \int_R (x+y)^2 \ dx \ dy$, where R is the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, using transformation of variables. Ans: $\frac{\pi ab}{4}(a^2 + b^2)$.
 - 4. Show that the area of the surface of paraboloid $\frac{x^2}{a} + \frac{y^2}{b} = 2z$ inside the cylinder $\frac{x^2}{a^2} + \frac{y^2}{b^2} = k$ is $\frac{2}{3}\pi\{(1+k)^{3/2} 1\}ab$.
 - 5. Find the area of the part of the cylinder $x^2 + y^2 = a^2$ which is cut by the cylinder $x^2 + z^2 = a^2$.
 - 6. Let $f(x,y) = \frac{xy(x^2 y^2)}{x^2 + y^2}$, $(x,y) \neq (0,0)$, f(0,0) = 0. Then show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

Chapter 2

Improper Integrals, Beta and Gamma Functions

2.1 Improper Integral

For the existence of Riemann integral (definite integral) $\int_a^b f(x)dx$, we require that the limit of integration a and b are finite and function f(x) is bounded. In case

- (i) limit of integration a or b or both become infinite (improper integral of first kind),
- (ii) integrand f(x) has singular points (discontinuity) i.e. f(x) becomes infinite at some points in the interval $a \le x \le b$ (improper integral of second kind),

then the integral $\int_a^b f(x)dx$ is called improper integral. Note that improper integral are evaluated by limiting process.

Example 2.1.1.
$$\int_{-1}^{\infty} \frac{-1}{x^2} dx$$
, $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$, $\int_{0}^{1} \frac{dx}{x(1-x)}$ are improper integrals.

Definition 2.1.2. If a is the only point of infinite discontinuity of f(x), then

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0+} \int_{a+\epsilon}^{b} f(x)dx \quad (if \ finite \ limit \ exists)$$

If b is the only point of infinite discontinuity, then

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0+} \int_{a}^{b-\epsilon} f(x)dx, \quad 0 < \epsilon < b-a$$

If end points a and b are the only points of infinite discontinuity,

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0+ \& \mu \to 0+} \int_{a-\epsilon}^{b-\mu} f(x)dx,$$

Improper integral is convergent if limit exists and is finite otherwise it is divergent.

If an interior point c, a < c < b, is the only point of infinite discontinuity, then we write

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$

Improper integral is convergent if both the limits exist and are finite otherwise it is divergent.

Example 2.1.3. Examine the convergence of $\int_a^b \frac{dx}{(x-a)^n}$

Solution: It is a proper integral if $n \leq 0$ and improper for other values of n. For $n \neq 1$,

$$\int_{a}^{b} \frac{dx}{(x-a)^{n}} = \lim_{p \to 0+} \int_{a+p}^{b} \frac{dx}{(x-a)^{n}}, \qquad 0$$

$$= \lim_{p \to 0+} \frac{1}{(1-n)} \left[\frac{1}{(b-a)^{n-1}} - \frac{1}{p^{n-1}} \right] = \begin{cases} \frac{1}{(1-n)(b-a)^{n-1}}, & \text{if } n < 1 \\ \infty & \text{if } n > 1, \end{cases}$$

For n=1

$$\int_{a}^{b} \frac{dx}{(x-a)^{n}} = \lim_{p \to 0+} \int_{a+p}^{b} \frac{dx}{(x-a)}$$
$$= \lim_{p \to 0+} \log(b-a) - \log p = \infty$$

Thus integral converges only if n < 1.

Comparison Test I

If f(x) and g(x) are two functions such that $f(x) \leq g(x)$, for all $x \in [a, b]$, then

- 1. $\int_a^b f(x) dx$ converges if $\int_a^b g(x) dx$ converges.
- 2. $\int_a^b g(x) dx$ diverges if $\int_a^b f(x) dx$ diverges.

Comparison Test II

If f(x) and g(x) are two functions such that $\lim_{x\to\infty}\frac{f(x)}{g(x)}=l$ (nonzero & finite), then $\int_a^\infty f(x)\ dx$ and $\int_a^\infty g(x)\ dx$ converge or diverge together.

Example 2.1.4. Examine the convergence of (i) $\int_0^1 \frac{dx}{\sqrt{(1-x^3)}}$

(ii)
$$\int_0^{\pi/2} \frac{\sin x \, dx}{x^n}$$
 (iii) $\int_1^{\infty} \frac{dx}{x^3 (e^{-x} + 1)}$

Solution: (i) Let $f(x) = \frac{1}{\sqrt{(1-x^3)}} = \frac{1}{\sqrt{(1-x)}\sqrt{(1+x+x^2)}}$.

Note that $\frac{1}{\sqrt{(1+x+x^2)}}$ is a bounded function and let M be its upper bound.

Then $f(x) \leq \frac{M}{(1-x)^{1/2}}$ and $\int_0^1 \frac{1}{(1-x)^{1/2}} dx$ is convergent. Therefore by comparison test $\int_0^1 \frac{dx}{\sqrt{(1-x^3)}}$ is convergent.

(ii) For $n \le 1$, it is a proper integral. For n > 1, it is an integral and 0 is the point of infinite discontinuity. Now $\frac{\sin x}{x^n} = \frac{\sin x}{x} \frac{1}{x^{n-1}}$. Function $\frac{\sin x}{x}$ is bounded and $\frac{\sin x}{x} \le 1$. Thus $\frac{\sin x}{x^n} \le \frac{1}{x^{n-1}}$ and $\int_0^{\pi/2} \frac{dx}{x^{n-1}}$ converges only if n-1 < 1 or n < 2 and diverges for $n \ge 2$.

(iii) Let
$$f(x) = \frac{1}{x^3(e^{-x}+1)}$$
 and $g(x) = \frac{1}{x^3}$. Also

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{1}{x^3 (e^{-x} + 1)} \frac{x^3}{1} = \lim_{x \to \infty} \frac{1}{e^{-x} + 1} = 1.$$

Also $\int_1^\infty \frac{1}{x^3} dx$ converges. Therefore $\int_1^\infty \frac{dx}{x^3(e^{-x}+1)}$ converges.

Example 2.1.5. Examine the convergence of (i) $\int_{-\pi/2}^{\pi/2} \tan x \, dx$ (ii) $\int_{0}^{\pi/2} \frac{\cos^n x}{x^m} \, dx$, if m < 1.

Solution:

(i)
$$\int_{-\pi/2}^{\pi/2} \tan x \, dx = \lim_{\epsilon \to 0} \int_{-\pi/2 + \epsilon}^{c} \tan x \, dx + \lim_{\eta \to 0} \int_{c}^{\pi/2 - \eta} \tan x \, dx$$

$$=\lim_{\epsilon\to 0} \ln[\cos\ (-\pi/2+\epsilon)] - \ln[\cos\ c] - \lim_{\eta\to 0} \ln[\cos\ (\pi/2-\eta)] - \ln[\cos\ c].$$

Limits do not exist. Hence improper integral diverges.

(ii) Note that $\frac{\cos^n x}{x^m} < \frac{1}{x^m}$ for $0 < x < \pi/2$. Also x = 0 is the point of infinite discontinuity and $\int_0^{\pi/2} \frac{1}{x^m} dx$ is convergent if m < 1 by comparison test.

Absolute Convergence of Improper Integrals

If the function f(x) changes sign within the interval of integration, we consider absolute convergence. The improper integral $\int_a^b f(x) \ dx$ is called absolutely convergent if $\int_a^b |f(x)| \ dx$ converges. Since $f(x) \leq |f(x)|, \ \forall \ x$, absolutely convergent improper integral is convergent.

Example 2.1.6. Examine the convergence of improper integral $\int_{-\infty}^{\infty} \frac{\sin x}{1+x^2} dx$.

Solution: Note that
$$|I| = |\int_{-\infty}^{\infty} \frac{\sin x}{1 + x^2}| dx \le \int_{-\infty}^{\infty} |\frac{\sin x}{1 + x^2}| dx$$

$$= \lim_{a \to -\infty} \int_{a}^{c} |\frac{\sin x}{1 + x^2}| dx + \lim_{b \to \infty} \int_{c}^{b} |\frac{\sin x}{1 + x^2}| dx = I_1 + I_2.$$

$$I_1 = \lim_{a \to -\infty} \int_{a}^{c} |\frac{\sin x}{1 + x^2}| dx \le \lim_{a \to -\infty} \int_{a}^{c} |\frac{1}{1 + x^2}| dx = tan^{-1}c + \frac{\pi}{2}.$$

$$I_2 = \lim_{b \to \infty} \int_{c}^{b} |\frac{\sin x}{1 + x^2}| dx \le \lim_{b \to \infty} \int_{c}^{b} |\frac{1}{1 + x^2}| dx = \frac{\pi}{2} - tan^{-1}c.$$
Thus $|I| \le |I_1| + |I_2| \le \pi$ and hence convergent.

2.2 Beta Function

The improper integral defined by

$$\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$
 for $m > 0, n > 0$ is called as beta function.

Note that

$$\int_0^1 x^{m-1} (1-x)^{n-1} dx \text{ converges if } m > 0, n > 0.$$

Properties:

1.
$$\beta(m,n) = \beta(n,m)$$

Put $x = 1 - y$. Then
$$\beta(m,n) = -\int_1^0 (1-y)^{m-1} y^{n-1} dy = \int_0^1 y^{n-1} (1-y)^{m-1} dy = \beta(n,m).$$

2.
$$\beta(m,n) = \int_0^{\pi/2} sin^{2m-1} \theta cos^{2n-1} \theta \ d\theta, \ n > 0.$$

Put $x = sin^2 \theta, \ dx = 2sin \ \theta \ cos \ \theta \ d\theta \ in \ \beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx.$

3.
$$\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$$

2.2.1 Gamma Functions

The improper integral of the form $\Gamma(n)=\int_0^\infty e^{-x}x^{n-1}dx,\, n>0$ is called gamma function.

Properties:

1.
$$\Gamma(1) = \int_0^\infty e^{-x} dx = 1$$
.

2. Reduction formula
$$\Gamma(n+1) = n\Gamma(n)$$

Proof:
$$\Gamma(n+1) = \int_0^\infty e^{-x} x^n dx = [-x^n e^{-x}]_0^\infty + n \int_0^\infty e^{-x} x^{n-1} dx$$

= $n\Gamma(n) = n!$.

3.
$$\Gamma(1/2) = \sqrt{\pi}$$
.

Proof:
$$\Gamma(1/2) = \int_0^\infty e^{-x} x^{1/2} dx = 2 \int_0^\infty e^{-y^2} dy$$
 (by putting $x = y^2$).
$$(\Gamma(1/2))^2 = 4 \int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} dx dy$$

$$= 4 \int_0^{\pi/2} \int_0^\infty e^{-r^2} r dr d\theta = \frac{4\pi}{2} \int_0^\infty e^{-r^2} r dr = \pi$$

4. Relation between β and Γ functions

$$\begin{split} \beta(m,n) &= \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} \\ \text{Proof: } \Gamma(m) &= \int_0^\infty e^{-t}t^{m-1}dt = 2\int_0^\infty e^{-x^2}x^{2m-1}dx \\ \Gamma(n) &= 2\int_0^\infty e^{-y^2}y^{2n-1}dy \\ \Gamma(m)\Gamma(n) &= 4\int_0^\infty e^{-x^2}x^{2m-1}dx \int_0^\infty e^{-y^2}y^{2n-1}dy \\ &= 4\int_0^\infty \int_0^\infty e^{-(x^2+y^2)}x^{2m-1}y^{2n-1}dxdy \\ &= 4\int_0^{\pi/2} \int_0^\infty e^{-r^2}r^{2(m+n)-1}\cos^{2m-1}\theta \, \sin^{2n-1}\theta \, drd\theta \\ &= 2\int_0^\infty e^{-r^2}r^{2(m+n)-1}dr \times 2\int_0^{\pi/2}\cos^{2m-1}\theta \, \sin^{2n-1}\theta d\theta \\ &= \Gamma(m+n)\beta(m,n). \end{split}$$

5.
$$\int_0^{\pi/2} \cos^m \theta \, \sin^n \, \theta d\theta$$

$$=\frac{1}{2}\beta(\frac{m+1}{2},\frac{n+1}{2})=\frac{\Gamma(\frac{m+1}{2})\Gamma(\frac{n+1}{2})}{2\Gamma(\frac{m+n+2}{2})}$$

Example 2.2.1. If
$$\int_0^\infty \frac{x^{m-1}}{1-x} dx = \frac{\pi}{\sin m\pi}$$
, $0 < m < 1$, then $\Gamma(m)\Gamma(1-m) = \frac{\pi}{\sin m\pi}$.

Put $\frac{x}{1+x} = y$. Then $x = \frac{y}{1-y}$ and $dx = \frac{1}{(1-y)^2} dy$. Thus
$$\int_0^\infty \frac{x^{m-1}}{1-x} dx = \int_0^1 y^{m-1} (1-y)^{m-1} dy = \beta(m, 1-m)$$

$$= \frac{\Gamma(m)\Gamma(1-m)}{\Gamma(m+1-m)} = \Gamma(m)\Gamma(1-m)$$
. Hence $\int_0^\infty \frac{x^{m-1}}{1-x} dx = \frac{\pi}{\sin m\pi}$.

Example 2.2.2. (Legendre Duplication formula)

From (2) and (3), we get,
$$\frac{\Gamma(m)^2}{\Gamma(2m)} = \frac{1}{2^{2m-1}} \frac{\Gamma(m)\Gamma(1/2)}{\Gamma(m+1/2)}.$$
 Since $\Gamma(1/2) = \sqrt{\pi}$, we have
$$\sqrt{\pi} \Gamma(2m) = 2^{2m-1}\Gamma(m)\Gamma(m+\frac{1}{2}).$$

Example 2.2.3. $\beta(m+\frac{1}{2},m+\frac{1}{2})=\frac{\pi}{m2^{4m-1}\beta(m,m)}.$ Solution: By definition $\beta(m,n)=\int_0^1 x^{m-1}(1-x)^{n-1}dx,\ m>0,\ n>0.$ By

Solution: By definition $\beta(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$, m > 0, n > 0. By substituting $x = \sin^2 \theta$, we have $\beta(m,n) = 2 \int_0^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta d\theta$.

$$\begin{array}{l} \textbf{Example 2.2.4.} \ \ (i) \ \ Let \ \phi(\alpha) = \int_{a(\alpha)}^{b(\alpha)} f(x,\alpha) dx. \ \ Then \ by \ Leibniz \ formula \\ \frac{d\phi}{d\alpha} = \int_{a(\alpha)}^{b(\alpha)} \frac{\partial f(x,\alpha)}{\partial \alpha} dx + f(b,\alpha) \frac{db}{\partial \alpha} - f(a,\alpha) \frac{da}{\partial \alpha} \ \ show \ that \ \frac{d\phi}{da} = \frac{\pi}{2(a+1)}. \end{array}$$

$$(ii) \ \phi(a) = \int_0^\infty \frac{\tan^{-1}(ax)}{x(1+x^2)} dx.$$
 Solution: Let $\phi(a) = \int_0^\infty \frac{\tan^{-1}(ax)}{x(1+x^2)} dx$. Then by Leibniz formula
$$\frac{d\phi}{da} = \int_0^\infty \frac{\partial}{\partial a} \left[\frac{\tan^{-1}(ax)}{x(1+x^2)} \right] dx = \int_0^\infty \frac{dx}{(1+x^2)(1+a^2x^2)}$$

$$= \frac{1}{a^2-1} \int_0^\infty \left[\frac{a^2}{a^2x^2+1} - \frac{1}{1+x^2} \right] dx = \frac{1}{a^2-1} \left[\{a \ \tan^{-1}(ax)\}_0^\infty - \{\tan^{-1}x\}_0^\infty \right]$$

$$= \frac{\pi}{2} \left[\frac{a-1}{a^2-1} \right], \ a > 0, \ a \neq 1$$

$$= \frac{\pi}{2(a+1)}. \ \text{Integrating with respect to a, we have}$$

$$\phi(a) = \frac{\pi}{2} ln(a+1) + c. \ \text{Since } \phi(0) = 0, \ c = 0.$$
 Therefore $\phi(a) = \int_0^\infty \frac{\tan^{-1}(ax)}{x(1+x^2)} dx = \frac{\pi}{2} ln(a+1).$

2.3 Dirichlet Integral

Theorem 2.3.1. $\iint_D x^{l-1}y^{m-1}dxdy = \frac{\Gamma(l)\Gamma(m)}{\Gamma(l+m+1)}h^{l+m}$, where D is domain $x \ge 0, y \ge 0, x+y \le h$.

$$\int \int_{D} x^{l-1} y^{m-1} dx dy = \int \int_{D} (Xh)^{l-1} (Yh)^{m-1} dX dY
= h^{l+m} \int_{0}^{1} \int_{0}^{1-X} X^{l-1} Y^{m-1} dX dY
= h^{l+m} \int_{0}^{1} X^{l-1} dX \int_{0}^{1-X} Y^{m-1} dY
Y^{m}$$

Proof. Put x = Xh, y = Yh, $dxdy = h^2dXdY$. Then

$$= h^{l+m} \int_0^1 X^{l-1} dX \left[\frac{Y^m}{m} \right]_0^{1-X}$$

$$= \frac{h^{l+m}}{m} \int_0^1 X^{l-1} (1-X)^m dX$$

$$= \frac{h^{l+m}}{m} \beta(l, m+1)$$

$$= \frac{h^{l+m}}{m} \frac{\Gamma(l)\Gamma(m+1)}{\Gamma(l+m+1)}$$

$$= h^{l+m} \frac{\Gamma(l)\Gamma(m)}{\Gamma(l+m+1)}$$

Theorem 2.3.2. $\iint \int_V x^{l-1}y^{m-1}z^{n-1}dxdydz = \frac{\Gamma(l)\Gamma(m)\Gamma(n)}{\Gamma(l+m+n+1)}$, where V is region $x \geq 0, y \geq 0, z \geq 0, x+y+z \leq 1$.

Proof. Put $x + z \le 1 - x = h$. then $z \le h - y$. $\int \int \int_V x^{l-1} y^{m-1} z^{n-1} dx dy dz = \int_0^1 x^{l-1} dx \int_0^{1-x} y^{m-1} dy \int_0^{1-x-y} z^{n-1} dz$ $= \int_0^1 x^{l-1} dx \left[\int_0^h \int_0^{h-y} y^{m-1} dy z^{n-1} dz \right]$

$$\begin{split} &=\int_0^1 x^{l-1} dx [h^{m+n} \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n+1)}] \\ &=\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n+1)} \int_0^1 x^{l-1} (1-x)^{m+n} dx \\ &=\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n+1)} \beta(l,m+n+1) \\ &=\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n+1)} \frac{\Gamma(l)\Gamma(m+n+1)}{\Gamma(l+m+n+1)} \\ &=\frac{\Gamma(l)\Gamma(m)\Gamma(n)}{\Gamma(l+m+n+1)} \end{split}$$

Corollary 2.3.3. $\int \int \int_V x^{l-1}y^{m-1}z^{n-1}dxdydz = \frac{\Gamma(l)\Gamma(m)\Gamma(n)}{\Gamma(l+m+n+1)}h^{l+m+n}, \text{ where } V \text{ is region } x \geq 0, \ y \geq 0, \ z \geq 0 \ x+y+z \leq h.$

Exercise 2.3.4. 1. Discuss the convergence of (i) $\int_1^2 \frac{\sqrt{x}}{\ln x} dx$ (ii) $\int_0^{\pi/2} \frac{\sin x}{x\sqrt{x}} dx$.

- 2. Examine the convergence of improper integrals (i) $\int_2^\infty \frac{dx}{\ln x}$ (ii) $\int_1^\infty e^{-x^2} dx$ (iii) $\int_1^\infty \frac{dx}{x^2(e^{-x}+1)}$ (iv) $\int_1^\infty \frac{dx}{x^p}$.
- 3. Show that for m, n > 0, $\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx. \text{ Hint: Put } x = \frac{t}{1-t}$
- 4. Show that $\int_0^\infty \frac{x^c}{c^x} dx = \frac{\Gamma(c+1)}{(\log c)^{c+1}}.$
- 5. Show that $\Gamma(2n) = \frac{2^{2n-1}}{\sqrt{\pi}}\Gamma(n+\frac{1}{2})\Gamma(n)$ and hence $\Gamma(1/4)\Gamma(3/4) = \pi\sqrt{2}$.
- 6. Show that $\int_0^{\pi/2} \sqrt{\tan \theta} \ d\theta = \frac{1}{2} \Gamma(\frac{1}{4}) \Gamma(\frac{3}{4}) = \pi \sqrt{2}$. (Hint: $\int_0^{\pi/2} \sqrt{\tan \theta} \ dx = \int_0^{\pi/2} \sin^{1/2} \theta \cos^{-1/2} \theta \ d\theta = \frac{1}{2} \frac{\Gamma(1/4) \Gamma(3/4)}{\Gamma(1)} = \frac{\pi \sqrt{2}}{2} = \frac{\pi}{\sqrt{2}}$.
- 7. Evaluate the improper integral $\int_0^\infty \sqrt{x}~e^{-x^2} dx.$

Bibliography

- $[1]\ R$ K Jain and S R K Iyengar, Advance Engineering Mathematics, Narosa Publishing Corporation.
- [2] Ervin Kreszig, Advance Engineering Mathematics.
- [3] S C Malik, Savita Arora, Mathematical Analysis, New Age International Publishers, Fifth edition, 2017.

Index

Change of variables, vi, xi

Gamma function, xxi

 ${\rm Jacobian},\,{\rm v},\,{\rm vi}$

Legendre Duplication formula, xxii

Volume of solid of revolution, viii