

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

CAMPUS TIMÓTEO

Lista de Exercícios 2

Alg. e Estruturas de Dados I

Observação

Para os exercícios 27 a 32 implemente o tipo abstrato de dados lista com as seguintes operações:

- Criar lista vazia;
- Inserir no fim; (add)
- Inserir no início; (insert)
- Inserir na i-ésima posição (posição e item são passados por parâmetro);
- Excluir na i-ésima posição;
- Excluir um item pela chave; (remove)
- Localizar/Pesquisar um elemento (search)

EXERCÍCIO 27

Implemente uma lista estática (array).

EXERCÍCIO 28

Implemente uma lista simplesmente encadeada estática (array).

EXERCÍCIO 29

Implemente uma lista simplesmente encadeada com tail. Além das operações solicitadas, implementar:

- método para fazer uma cópia da lista;

OBS: Implemente os exercícios 30, 31 e 32 usando programação genérica.

EXERCÍCIO 30

Implemente uma lista simplesmente encadeada com sentinela. Além das operações solicitadas, implementar:

- método para concatenar (Merge)
- método para ordenar os itens da lista em ordem ascendente.

EXERCÍCIO 31

Implemente uma lista duplamente encadeada com sentinelas. Além das operações solicitadas, implementar:

- método para concatenar (Merge)
- método para dividir uma lista em várias
- método para ordenar os itens da lista em ordem ascendente.

EXERCÍCIO 32

Implemente uma lista circular duplamente encadeada

EXERCÍCIO 33

Considerando listas simplesmente encadeadas (exercício 29), implemente:

- a) um método ao receber uma lista por parâmetro, retorne uma lista que é a união sem repetição das duas outras listas.
- b) um método ao receber uma lista por parâmetro, retorne uma lista que é a interseção das duas outras listas.

EXERCÍCIO 34

Desejamos manipular polinômios do tipo $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$. Tais polinômios podem ser representados por listas duplamente encadeadas onde cada elemento da lista possui dois campos: um para o coeficiente que é um número real, um para o expoente que é um número inteiro. Implemente uma classe que represente um polinômio e que tenha métodos para somar dois polinômios e derivar um polinômio.

EXERCÍCIO 35

Construa um procedimento para inverter a ordem de uma lista simplesmente encadeada utilizando apenas duas variáveis auxiliares (não é permitido o uso de listas auxiliares). É possível construir o procedimento utilizando apenas uma variável auxiliar? Se sim, como?

EXERCÍCIO 36

Mostre como implementar uma pilha utilizando-se de duas filas.

EXERCÍCIO 37

DEQUE é uma fila de duas pontas, cuja estrutura de dados consiste de uma lista na qual as seguintes operações são permitidas:

- a) Push(A) Insere o elemento A no início da deque.
- b) Pop() Remove o elemento que está no início da deque.
- c) Inject(A) Insere o elemento A no final da deque.
- d) Eject() Remove o elemento que está no final da deque.

A fim de implementar as operações acima em tempo constante, qual a melhor opção: lista sequencial, lista simplesmente encadeada ou lista duplamente encadeada? A partir de sua decisão, crie uma classe que represente a estrutura de dados e as operações acima.

EXERCÍCIO 38

Duas pilhas podem ser implementadas em um único array A da seguinte forma: A primeira pilha cresce a partir do início do array para direita e a segunda cresce a partir do final do array para a esquerda, ou seja, as pilhas crescem uma em direção a outra. Escreva os seguintes procedimentos:

- a) Push(A.i), onde A é o novo elemento a ser inserido na pilha i = 1.2.
- Pop(i) que retorna o elemento que está no topo da pilha i = 1,2.

EXERCÍCIO 39

Utilizando a implementação de listas através de arranjos (Lista sequencial), implemente um procedimento para inserir um item em uma determinada posição da lista.

EXERCÍCIO 40

Implemente um procedimento RemovePar que, dada uma lista autorreferenciadas remove todos elementos cuja chave é par.

EXERCÍCIO 41

Implemente um procedimento FuraFila que, dada uma fila implementada com apontadores insere um elemento na primeira posicão da fila.

EXERCÍCIO 42

Utilizando as operações de manipulação de pilhas vistas em sala, uma pilha auxiliar e uma variável do tipo Tipoltem, escreva um procedimento que remove um item com chave c de uma posição qualquer de uma pilha. Note que você não tem acesso à estrutura interna da pilha (topo, item, etc), apenas às operações de manipulação.

EXERCÍCIO 43

Agora escreva uma função para trocar os elementos m e n de uma lista duplamente encadeada (m e n podem ser chaves ou mesmo ponteiros para os elementos).

BOM ESTUDO!