R. Alam

2023

Stability of algorithms and pivot growth

- 1. For each of the following problems state with justification whether the given algorithm is backward stable or not.
 - (a) Data: $d \in F(\beta, t, L, U)$, Solution: f(d) = 1 + d, ALG(d) = round(1 + d).
 - (b) Data: $d \in F(\beta, t, L, U)$, Solution: f(d) = 2d, ALG(d) = round(d + d).
 - (c) Data: $d \in F(\beta, t, L, U)$, Solution: $f(d) = d^2$, ALG(d) = round(d * d).
 - (d) Data: $d_1, \ldots, d_m \in F(\beta, t, L, U)$, Solution: $f(d) = \sum_{j=1}^m d_j$ and $ALG(d_1, \ldots, d_m)$ is given by

$$\begin{aligned} s &= d_1 \\ \text{for } j &= 2 \text{:} \, m \\ s &= \text{round}(s + d_j) \\ \text{end} \end{aligned}$$

- 2. Let x and y be nonzero vectors in \mathbb{R}^n . Consider the rank-1 matrix $A := xy^{\top}$ also referred to as the outer product of x and y. Show that the computation of A in finite precision arithmetic is NOT backward stable.
- 3. Let A = LU be the LU factorization of a matrix $A \in \mathbb{C}^{n \times n}$ with $L(i,j)| \leq 1$. Let A_i and U_i denote the *i*-th row of A and U, respectively. Show that $U_i = A_i \sum_{j=1}^{i-1} L(i,j)U_j$ and use it to show that $||U||_{\infty} \leq 2^{n-1}||A||_{\infty}$. Define $PG(A) := ||L||_{\infty}||U||_{\infty}/||A||_{\infty}$ and show that $PG(A) \leq n2^{n-1}$.
- 4. Suppose that $A \in \mathbb{R}^{n \times n}$ is SPD and that $A = GG^T$. Show that $\|G\|_2 \|G^T\|_2 = \|A\|_2$ and that $\|G\|_{\infty} \|G^T\|_{\infty} \leq n^{3/2} \|A\|_{\infty}$. [Hint: Use relation between $\|x\|_{\infty}$ and $\|x\|_2$ for $x \in \mathbb{R}^n$.] Conclude that the spectral norm pivot growth $PG_2(A) := \frac{\|G\|_2 \|G^T\|_2}{\|A\|_2} = 1$ and the ∞ -norm pivot growth $PG_{\infty}(A) := \frac{\|G\|_{\infty} \|G^T\|_{\infty}}{\|A\|_{\infty}} \leq n^{3/2}$.
- 5. Let **u** be the unit roundoff of a floating-point system. Assume that the entries of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ are floating-point number. Show that barring overflow/underflow

$$|\operatorname{round}(AB) - AB| \le n\mathbf{u}|A| \cdot |B| + \mathcal{O}(\mathbf{u}^2).$$

Here |X| denotes the matrix obtained by taking absolute values of the entries of X. The product $|A| \cdot |B|$ is the usual matrix multiplication.

Further, deduce that round(AB) = $\hat{A}B = A\hat{B}$ for some matrices \hat{A} and \hat{B} such that $|A - \hat{A}| \leq n\mathbf{u}|A| + \mathcal{O}(\mathbf{u}^2)$ and $|B - \hat{B}| \leq n\mathbf{u}|B| + \mathcal{O}(\mathbf{u}^2)$, where the inequality $|A| \leq |B|$ holds componentwise, that is, $|A(i,j)| \leq |B(i,j)|$ for all i,j.

[Hint: Use the fact that if x_1, \ldots, x_n and y_1, \ldots, y_n are floating-point numbers then

round(
$$\sum_{j=1}^{n} x_j y_j) = \sum_{j=1}^{n} x_j y_j (1 + \delta_j)$$

where $|\delta_j| \leq n\mathbf{u} + \mathcal{O}(\mathbf{u}^2)$ and $n\mathbf{u} < 1$.]
