

UESTC3001 Dynamics & Control Lecture 2

Basics of Control System Analysis

Dr Kelum Gamage <u>kelum.gamage@glasgow.ac.uk</u>

Associate Professor (Senior Lecturer)
School of Engineering, University of Glasgow, UK

Outline

- Introduction to Control Systems
- Block Diagram Representation

Introduction to Control System

Advantages of Control Systems

- Power amplification
- Remote control
- Convenience of input form
- Compensation for disturbances

Open-loop Control

Closed-loop Control

Example Control of the speed of rotation of a motor shaft

Introduction to Block Diagrams

- Use for frequency-domain analysis and design
- Graphical representation of the interconnections between the components of the system and the flow of signals

Diagram is composed of functional blocks

R(S)

Example:

Block Diagram Representation of Control Systems

1: Cascaded Blocks

2: Summing Two Signals

$$x^{3}(2) = 7x^{1}(2) \oplus x^{5}(2)$$

 $x^{5}(2) = x^{1}(2) \oplus (2)$

$$x^{3}(2) = x^{1}(2) \left\{ e(2) \mp 1 \right\}$$

$$x^{3}(2) = \mp x^{1}(2) + x^{1}(2) e(2)$$

3: Moving a Summing Point Behind a Block 🚜 🕳

4: Moving a Summing Point Ahead of a Block

5: Moving a Branch Point Ahead of a Block

6: Moving a Branch Point Behind a Block

7: Eliminating a Feedback Loop

Summary

- Overview to Control Systems
- Block Diagram Representation of Control Systems
- Block Diagram Reduction
- Block Diagram Reduction Rules

Reference:

-Control Systems Engineering, 7th Edition, N.S. Nise

-UESTC3001 2019/20 Notes, J. Le Kernec