Rank-65665 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(2)$ is 65665

General information

Number of lines	4
Number of points	9
Number of singular points	2
Number of Eckardt points	0
Number of double points	4
Number of single points	4
Number of points off lines	1
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{4}
Type of lines on points	$2^4, 1^4, 0$

Singular Points

The surface has 2 singular points:

$$0: P_{11} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1)$$
$$1: P_{13} = \mathbf{P}(1, 0, 1, 1) = \mathbf{P}(1, 0, 1, 1)$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_8 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_8 = \mathbf{Pl}(1, 0, 1, 0, 0, 1)_{23}$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{2} = \mathbf{Pl}(1,0,0,0,1,0)_{10}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{5} = \mathbf{Pl}(0,0,1,0,1,0)_{12}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1,1,1,0,1)_{28}$$

Rank of lines: (8, 2, 5, 22)

Rank of points on Klein quadric: (23, 10, 12, 28)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 4 Double points: The double points on the surface are:

$$P_7 = (0, 1, 1, 0) = \ell_0 \cap \ell_3$$

$$P_0 = (1, 0, 0, 0) = \ell_1 \cap \ell_2$$

$$P_{11} = (1, 1, 0, 1) = \ell_1 \cap \ell_3$$

$$P_{13} = (1, 0, 1, 1) = \ell_2 \cap \ell_3$$

Single Points

The surface has 4 single points: The single points on the surface are:

0:
$$P_5 = (1, 1, 0, 0)$$
 lies on line ℓ_0
1: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_0

2: $P_{10} = (0, 1, 0, 1)$ lies on line ℓ_1

The single points on the surface are:

3: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_2

Points on surface but on no line

The surface has 1 points not on any line: The points on the surface but not on lines are:

$$0: P_9 = (1, 0, 0, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} & 0 \ 1 \ 2 \ 3 \\ \hline 0 & 0 \ 0 \ 0 \ 1 \\ 1 & 0 \ 0 \ 1 \ 1 \\ 2 & 0 \ 1 \ 0 \ 1 \\ 3 & 1 \ 1 \ 1 \ 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_3
in point	P_7

Line 1 intersects

Line	ℓ_2	ℓ_3
in point	P_0	P_{11}

 ${\bf Line~2~intersects}$

Line	ℓ_1	ℓ_3
in point	P_0	P_{13}

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2
in point	P_7	P_{11}	P_{13}

The surface has 9 points:

The points on the surface are:

 $8: P_{13} = (1, 0, 1, 1)$

 $0: P_0 = (1,0,0,0)$ $1: P_5 = (1,1,0,0)$ $2: P_6 = (1,0,1,0)$ $3: P_7 = (0,1,1,0)$ $4: P_9 = (1,0,0,1)$ $5: P_{10} = (0,1,0,1)$ $6: P_{11} = (1,1,0,1)$ $7: P_{12} = (0,0,1,1)$