Sequence Listing

Sequence Listing

<110> Chen, Jian
5 Filvaroff, Ellen
Goddard, Audrey
Gurney, Austin
Li, Hanzhong
Wood, William I.

10

 ${<}120{>}$ IL-17 HOMOLOGOUS POLYPEPTIDES AND THERAPEUTIC USES THEREOF

<130> P1381-R1

15

<141> 1999-05-14

<150> US 60/085,579

<151> 1998-05-15

20

<150> US 60/113,621

<151> 1998-12-23

<160> 26

25

<210> 1

<211> 180

<212> PRT

<213> Homo sapiens

30

40

45

<400> 1

Met Asp Trp Pro His Asn Leu Leu Phe Leu Leu Thr Ile Ser Ile 1 5 10 15

Phe Leu Gly Leu Gly Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys 20 25 30

Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val 35 40 45

Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu 50 55 60

Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn
65 70 75

Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu 80 85 90

Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile 105 Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg 5 115 120 110 Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp 135 130 125 10 Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg 145 140 Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln 165 160 155 15 Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe

170

175

20 <210> 2 <211> 687 <212> DNA <213> Homo sapiens

<400> 2 25 aggegggeag cagetgeagg etgacettge agettggegg aatggaetgg 50 cctcacaacc tgctgtttct tcttaccatt tccatcttcc tggggctggg 100 ccaqcccagg agccccaaaa gcaagaggaa ggggcaaggg cggcctgggc 150 30 ccctggcccc tggccctcac caggtgccac tggacctggt gtcacggatg 200 aaaccgtatg cccgcatgga ggagtatgag aggaacatcg aggagatggt 250 35 ggcccagctg aggaacagct cagagctggc ccagagaaag tgtgaggtca 300 acttgcagct gtggatgtcc aacaagagga gcctgtctcc ctggggctac 350 agcatcaacc acgaccccag ccgtatcccc gtggacctgc cggaggcacg 400 40 gtgcctgtgt ctgggctgtg tgaacccctt caccatgcag gaggaccgca 450 gcatggtgag cgtgccggtg ttcagccagg ttcctgtgcg ccgccgcctc 500 45 tgcccgccac cgccccgcac agggccttgc cgccagcgcg cagtcatgga 550 gaccatcgct gtgggctgca cctgcatctt ctgaatcacc tggcccagaa 600

25

35

40

gccaggccag cagcccgaga ccatcctcct tgcacctttg tgccaagaaa 650 ggcctatgaa aagtaaacac tgacttttga aagcaag 687

5

<210> 3

<211> 197

<212> PRT

<213> Homo sapiens

10

<400> 3

Mat. The Low Low P

Met Thr Leu Leu Pro Gly Leu Leu Phe Leu Thr Trp Leu His Thr
1 5 10 15

Cys Leu Ala His His Asp Pro Ser Leu Arg Gly His Pro His Ser 20 25 30

His Gly Thr Pro His Cys Tyr Ser Ala Glu Glu Leu Pro Leu Gly 35 40 45

Gln Ala Pro Pro His Leu Leu Ala Arg Gly Ala Lys Trp Gly Gln 50 55 60

Ala Leu Pro Val Ala Leu Val Ser Ser Leu Glu Ala Ala Ser His 65 70 75

Arg Gly Arg His Glu Arg Pro Ser Ala Thr Thr Gln Cys Pro Val 80 85 90

30 Leu Arg Pro Glu Glu Val Leu Glu Ala Asp Thr His Gln Arg Ser 95 100 105

Ile Ser Pro Trp Arg Tyr Arg Val Asp Thr Asp Glu Asp Arg Tyr 110 115 120

Pro Gln Lys Leu Ala Phe Ala Glu Cys Leu Cys Arg Gly Cys Ile 125 130 135

Asp Ala Arg Thr Gly Arg Glu Thr Ala Ala Leu Asn Ser Val Arg

Leu Leu Gln Ser Leu Leu Val Leu Arg Arg Pro Cys Ser Arg 155 160 165

45 Asp Gly Ser Gly Leu Pro Thr Pro Gly Ala Phe Ala Phe His Thr 170 175 180 Glu Phe Ile His Val Pro Val Gly Cys Thr Cys Val Leu Pro Arg 185 190 195

Ser Val 5 197

15

20

25

30

35

40

45

<210> 4

<211> 1047

<212> DNA

10 <213> Homo sapiens

<400> 4 gccaggtgtg caggccgctc caagcccagc ctgccccgct gccgccacca 50 tgacgctcct ccccggcctc ctgtttctga cctggctgca cacatgcctg 100 gcccaccatg acccctcct cagggggcac ccccacagtc acggtacccc 150 acactgctac teggetgagg aactgeeest eggeeaggee eecceacace 200 tgctggctcg aggtgccaag tgggggcagg ctttgcctgt agccctggtg 250 tccagcctgg aggcagcaag ccacaggggg aggcacgaga ggccctcagc 300 tacgacccag tgcccggtgc tgcggccgga ggaggtgttg gaggcagaca 350 cccaccagcg ctccatctca ccctggagat accgtgtgga cacggatgag 400 gaccgctatc cacagaagct ggccttcgcc gagtgcctgt gcagaggctg 450 tatcgatgca cggacggcc gcgagacagc tgcgctcaac tccgtgcggc 500 tgctccagag cctgctggtg ctgcgccgcc ggccctgctc ccgcgacggc 550 teggggetee ceacacetgg ggeetttgee ttecacaceg agtteateca 600 cgtccccgtc ggctgcacct gcgtgctgcc ccgttcagtg tgaccgccga 650 qqccqtgggg cccctagact ggacacgtgt gctccccaga gggcaccccc 700 tatttatgtg tatttattgt tatttatatg cctccccaa cactaccctt 750 ggggtctggg cattccccgt gtctggagga cagccccca ctgttctcct 800 catctccagc ctcagtagtt gggggtagaa ggagctcagc acctcttcca 850 gcccttaaag ctgcagaaaa ggtgtcacac ggctgcctgt accttggctc 900

25

30

35

40

45

cetgteetge teeeggette cettacecta teaetggeet caggeecege 950 aggetgeete tteeeaacet cettggaagt acceetgtt cettaaacaat 1000

- tatttaagtg tacgtgtatt attaaactga tgaacacatc cccaaaa 1047
 - <210> 5
 - <211> 830
 - <212> DNA
- 10 <213> Homo sapiens
 - <220>
 - <221> unknown
 - <222> 105-115
- 15 <223> unknown base
 - <400> 5 ggcagcaggg accaagagag gcacgcttgc ccttttatga catcagagct 50 cctggttctt gctccttggg actctgggac ttacaccagt ggcacccctg 100 gctcnnnnn nnnnaattc ggtacgaggc tggggttcag gcgggcagca 150 gctgcaggct gaccttgcag cttggcggaa tggactggcc tcacaacctg 200 ctgtttcttc ttaccatttc catcttcctg gggctgggcc agcccaggag 250 ccccaaaagc aagaggaagg ggcaagggcg gcctgggccc ctggtccctg 300 gccctcacca ggtgccactg gacctggtgt cacggatgaa accgtatgcc 350 cgcatggagg agtatgagag gaacatcgag gagatgttgg cccagctgag 400 gaacagttca gagctggccc agagaaagtg tgaggtcaac ttgcagctgt 450 ggatgtccaa caagaggagc ctgtctccct ggggctacag catcaaccac 500 gaccccagcc gtatccccgt ggacctccgg aggcacggtg cctgtgtctg 550 ggcttgtgtg aaccccttca ccatgcagga ggaccgcagc atggtgagcg 600 tgccggtgtt cagccaggtt cctgtgcgcc gccgcctctg cccgccaccg 650 ccccgcacag ggccttgccg ccagcgcgca gtcatggaga ccatcgctgt 700 gggctgcacc tgcatcttct gaatcgacct ggcccagaag ccaggccagc 750 agcccgagac catcctcctt gcacctttgt gccaagaaag gcctatgaaa 800

agtaaacact gacttttgaa agcaaaaaaa 830

<210> 6

5

<211> 397

<212> DNA

<213> Artificial

<220>

10 <221> unknown

<222> 10, 150, 267

<223> unknown base

<400> 6

aggegggean agetgeagge tgaeettgea gettggegga atggaetgge 50

ctcacaacct gctgtttctt cttaccattt ccatcttcct ggggctgggc 100

agccaggagc cccaaaagca agaggaaggg gcaagggcgg cctgggcccn 150

tggcctggcc tcaccaggtg ccactggacc tggtgtcacg gatgaaaccg 200

tatgcccgca tggaggagta tgagaggaac atcgaggaga tggtggccca 250

25 gctgaggaac agctcanaag ctggcccaga gaaagtgtga ggtcaacttg 300

cagctgtgga tgtccaacaa gaaggagcct gtctcccttg gggctacaag 350

catcaaccac cgaccccagc cgtatccccg tgggaccttg ccgggac 397

30

20

<210> 7

<211> 230

<212> DNA

<213> Artificial

35

40

<400> 7

cacggatgag gaccgctatc cacagaagct ggccttcgcc gagtgcctgt 50

gcagaggctg tatcgatgca cggacgggcc gcgagacagc tgcgctcaac 100

teegtgegge tgeteeagag eetgetggtg etgegeegee ggeeetgete 150

ccgcgacggc tcggggctcc ccacacctgg ggcctttgcc ttccacaccg 200

45 agttcatcca cgtccccgtc ggctgcacct 230

<210> 8

<211> 24

```
<212> DNA
   <213> Artificial sequence
   <400> 8
    atccacagaa gctggccttc gccg 24
5
   <210> 9
   <211> 24
   <212> DNA
   <213> Artificial sequence
10
   <400> 9
    gggacgtgga tgaactcggt gtgg 24
    <210> 10
15
    <211> 40
    <212> DNA
    <213> Artificial sequence
    <400> 10
20
     tatccacaga agctggcctt cgccgagtgc ctgtgcagag 40
    <210> 11
    <211> 155
    <212> PRT
25
    <213> Human
    <400> 11
     Met Thr Pro Gly Lys Thr Ser Leu Val Ser Leu Leu Leu Leu
                                            10
30
     Ser Leu Glu Ala Ile Val Lys Ala Gly Ile Thr Ile Pro Arg Asn
     Pro Gly Cys Pro Asn Ser Glu Asp Lys Asn Phe Pro Arg Thr Val
35
                                                                 45
     Met Val Asn Leu Asn Ile His Asn Arg Asn Thr Asn Thr Asn Pro
                                                                 60
                                            55
                       50
40
     Lys Arg Ser Ser Asp Tyr Tyr Asn Arg Ser Thr Ser Pro Trp Asn
                                                                 75
                                            70
                       65
     Leu His Arg Asn Glu Asp Pro Glu Arg Tyr Pro Ser Val Ile Trp
                                            85
                       80
45
```

100

Glu Ala Lys Cys Arg His Leu Gly Cys Ile Asn Ala Asp Gly Asn

95

	Val A	sp	Tyr	His	Met 110	Asn	Ser	Val	Pro	Ile 115	Gln (Gln (Glu I	Ile I	Leu 120
5	Val I	ıeu	Arg	Arg	Glu 125	Pro	Pro	His	Cys	Pro 130	Asn .	Ser	Phe I	Arg :	Leu 135
	Glu I	лув	Ile	Leu	Val 140	Ser	Val	Gly	Cys	Thr 145	Cys	Val	Thr	Pro	Ile 150
10	Val H	His	His	Val	Ala 155										
15	<210><211><212><212><213>	408 PRT	C	cial											
20	<220> <223>	Art	tifi	cial	Seq	uenc	e 1-	408							
	<400> Met	12 Asp	Trp	Pro	His 5		. Leu	. Leu	Phe	Leu 10	Leu	Thr	Ile	Ser	Ile 15
25	Phe	Leu	Gly	Leu	Gly 20		Pro	Arg	Ser	Pro 25	Lys	Ser	Lys	Arg	Lys
30	Gly	Gln	Gly	Arg	Pro 35		7 Pro	Leu	Alā	a Pro 40	Gly	Pro	His	Gln	Val 45
	Pro	Leu	Asp) Lev	ı Val		c Arg	g Met	Lys	Pro 55	Tyr	Ala	Arg	Met	Glu 60
35	Glu	Tyr	Glu	ı Arg	g Ası 69		e Glı	ı Glu	ı Met	70	Ala	Gln	. Leu	Arg	Asn 75
	Ser	Ser	Glı	ı Lei	ı Ala 80		n Ar	g Ly:	в Суя	s Glu 85		Asn	Leu	Gln	Leu 90
40	Trp	Met	. Se:	r As	n Ly:		g Se	r Le	ı Se	r Pro		Gly	y Tyr	Ser	105
45	Asn	His	s As	p Pr	o Se 11		g Il	e Pr	o Va	1 As ₁		ı Pro	o Glu	ı Ala	Arg 120
	Cys	Le	u Cy	s Le	u Gl 12		s Va	l As	n Pr	o Ph	e Thi	c Met	: Glr	ı Glu	135

	Arg	Ser	Met		Ser 140	Val	Pro	Val	Phe	Ser 145	Gln	Val	Pro	Val	Arg 150
5	Arg	Arg	Leu	Cys	Pro 155	Pro	Pro	Pro	Arg	Thr 160	Gly	Pro	Cys	Arg	Gln 165
	Arg	Ala	Val	Met	Glu 170	Thr	Ile	Ala	Val	Gly 175	Cys	Thr	Cys	Ile	Phe 180
10	Pro	Asp	Lys	Thr	His 185	Thr	Cys	Pro	Pro	Cys 190	Pro	Ala	Pro	Glu	Leu 195
15	Leu	Gly	Gly	Pro	Ser 200	Val	Phe	Leu	Phe	Pro 205	Pro	Lys	Pro	Lys	Asp 210
	Thr	Leu	Met	Ile	Ser 215	Arg	Thr	Pro	Glu	Val 220	Thr	Cys	Val	Val	Val 225
20	Asp	Val	Ser	His	Glu 230	Asp	Pro	Glu	Val	Lys 235	Phe	Asn	Trp	Tyr	Val 240
	Asp	Gly	Val	Glu	Val 245	His	Asn	Ala	Lys	Thr 250	Lys	Pro	Arg	Glu	Glu 255
25	Gln	Tyr	Asn	Ser	Thr 260	Tyr	Arg	Val	Val	Ser 265		Leu	Thr	Val	Leu 270
30	His	Gln	Asp	Trp	Leu 275	Asn	Gly	Lys	Glu	Тут 280		Cys	Lys	Val	Ser 285
	Asn	Lys	a Ala	Leu	Pro 290	Ala	Prc	Ile	e Glu	Lys 295		lle	Ser	. Lys	Ala 300
35	Lys	Gly	gln	Pro	Arg 305		ı Pro	Glr	n Val	1 Tyr 310		Leu	Pro) Pro	Ser 315
	Arg	Glu	ı Glu	Met	Thr 320		s Asr	n Glr	n Val	L Ser 325		ı Thr	Сув	s Lev	Val. 330
40	Lys	Gly	y Phe	туг	9rc 335		c Asp	o Ile	e Ala	a Val 340		ı Trp	Glu	ı Ser	Asn 345
45	Gly	glı Glı	n Pro	o Glu	1 A sr 350		а Туз	c Ly:	s Th	r Thi		o Pro	o Val	L Leı	1 Asp 360
	Ser	. Asj	o Gly	y Sei	2 Phe		e Lei	л Ту:	r Se	r Ly:		u Thi	c Vai	l Asp	2 Lys 375

	Ser A	Arg	Trp		Gln (Gly	Asn	Val	Phe	Ser 385	Cys	Ser	Val 1	Met	His 390
5	Glu i	Ala	Leu		Asn :	His	Tyr	Thr	Gln	Lys 400	Ser	Leu	Ser	Leu	Ser 405
	Pro	Gly	Lys 408												
10	<210><211><211><212><213>	425 PR	Г	cial											
15	<220> <223>		tific	cial	Sequ	ience	· 1-4	125							
20	<400> Met 1	· 13 Thr	Leu	Leu	Pro 5	Gly	Leu	Leu	Phe	Leu 10	Thr	Trp	Leu	His	Thr 15
	Cys	Leu	Ala	His	His 20	Asp	Pro	Ser	Leu	Arg 25	Gly	His	Pro	His	Ser 30
25	His	Gly	Thr	Pro	His 35	Cys	Tyr	Ser	Ala	Glu 40	Glu	Leu	Pro	Leu	Gly 45
30	Gln	Ala	Pro	Pro	His 50	Leu	Leu	Ala	Arg	Gly 55	Ala	Lys	Trp	Gly	Gln 60
	Ala	Leu	Pro	Val	Ala 65	Leu	Val	Ser	Ser	Leu 70		Ala	Ala	Ser	His 75
35	Arg	Gly	' Arg	His	Glu 80	Arg	Pro	Ser	Ala	a Thr 85		Gln	Cys	Pro	Val 90
	Leu	Arg	J Pro	Glu	Glu 95	Val	Leu	Glu	ı Ala	a Asp		His	Gln	Arg	Ser 105
40	Ile	Ser	r Pro	Trp	Arg 110		Arg	[Va]	. Ası	o Thr 115		Glu	Asp	Arg	Tyr 120
45	Pro	Glr	n Lys	: Leu	125		e Ala	ı Glı	і Су	s Lei 130		s Arg	g Gly	Cys	135
	Asp	Ala	a Arç	J Thr	Gly		g Glu	ı Thi	c Al	a Ala 149		ı Asr	n Ser	. Val	. Arg 150

	Leu	Leu	Gln	Ser	Leu 155	Leu	Val	Leu	Arg	Arg 160	Arg	Pro	Cys	Ser	Arg 165
5	Asp	Gly	Ser	Gly	Leu 170	Pro	Thr	Pro	Gly	Ala 175	Phe	Ala	Phe	His	Thr 180
10	Glu	Phe	Ile	His	Val 185	Pro	Val	Gly	Cys	Thr 190	Cys	Val	Leu	Pro	Arg 195
10	Ser	Val	Pro	Asp	Lys 200	Thr	His	Thr	Cys	Pro 205	Pro	Cys	Pro	Ala	Pro 210
15	Glu	Leu	Leu	Gly	Gly 215	Pro	Ser	Val	Phe	Leu 220	Phe	Pro	Pro	Lys	Pro 225
	Lys	Asp	Thr	Leu	Met 230	Ile	Ser	Arg	Thr	Pro 235	Glu	Val	Thr	Cys	Val 240
20	Val	Val	Asp	Val	Ser 245	His	Glu	Asp	Pro	Glu 250	Val	Lys	Phe	Asn	Trp 255
	Tyr	Val	Asp	Gly	Val 260	Glu	Val	His	Asn	Ala 265	Lys	Thr	Lys	Pro	Arg 270
25	Glu	Glu	Gln	Tyr	Asn 275	Ser	Thr	Tyr	Arg	Val 280	Val	Ser	Val	Leu	Thr 285
30	Val	Leu	His	Gln	Asp 290	Trp	Leu	Asn	Gly	Lys 295		Tyr	Lys	Cys	Lys 300
	Val	Ser	Asn	Lys	Ala 305	Leu	. Pro	Ala	. Pro	Ile 310		Lys	Thr	Ile	Ser 315
35	Lys	Ala	Lys	Gly	Gln 320	Pro	Arg	g Glu	Pro	Gln 325		Tyr	Thr	Leu	Pro 330
	Pro	Ser	· Arg	Glu	Glu 335		Thr	Lys	a Asn	340		Ser	Leu	Thr	Cys 345
40	Leu	Val	Lys	Gly	Phe 350		Pro	Sei	Asp	355		. Val	Glu	Trp	Glu 360
45	Ser	Asr	ı Gly	glr.	Pro 365		ı Asr	n Asr	туг	1 Lys		Thr	Pro) Pro	Val 375
	Leu	ı Asp	Ser	Asp	380		c Phe	e Phe	e Lei	ı Tyr 385		. Lys	Lei	ı Thi	7 Val 390

	Asp I	ŢÀ2	Ser .		Trp 395	GIn ,	GIn	GIY	Asn	400	Pne	ser	Cys	ser	405
5	Met I	His	Glu		Leu 410	His	Asn	His	Tyr	Thr 415	Gln	Lys	Ser	Leu	Ser 420
10	Leu :	Ser	Pro	Gly	Lys 425										
10	<210><211><212><212><213>	212 PR7		apien	ıs										
15	<400> Met		Ser	Phe	Ser 5	Thr	Ser	Ala	Phe	Gly 10	Pro	Val	Ala	Phe	Ser 15
20	Leu	Gly	Leu	Leu	Leu 20	Val	Leu	Pro	Ala	Ala 25	Phe	Pro	Ala	Pro	Val 30
	Pro	Pro	Gly	Glu	Asp 35	Ser	Lys	Asp	Val	Ala 40	Ala	Pro	His	Arg	Gln 45
25	Pro	Leu	Thr	Ser	Ser 50	Glu	Arg	Ile	Asp	Lys 55	Gln	Ile	Arg	Tyr	Ile 60
30	Leu	Asp	Gly	Ile	Ser 65	Ala	Leu	Arg	Lys	Glu 70		· Cys	Asn	Lys	Ser 75
	Asn	Met	Cys	Glu	Ser 80	Ser	Lys	Glu	Ala	Leu 85		ı Glu	ı Asn	Asn	Leu 90
35	Asn	Leu	Pro	Lys	Met 95		Glu	Lys	a Asp	Gly 100		s Ph∈	e Glr	ser	Gly 105
	Phe	Asn	Glu	Glu	Thr 110		Leu	ı Val	. Lys	115		e Thi	Gly	/ Lev	Leu 120
40	Glu	Phe	: Glu	Val	Tyr 125		Glu	ι Туг	. Lei	130		n Arg	g Phe	e Glu	ser 135
45	Ser	Glu	ı Glu	. Gln	Ala 140		, Ala	a Val	l Glr	n Met 145		r Thi	r Lys	s Val	L Leu 150
	Ile	Glr	n Phe	e Leu	Glr		s Lys	s Ala	a Lys	s Ası		u Asj	o Ala	a Ile	e Thr 165

	Thr I	?ro	Asp		Thr 1	Chr .	Asn	Ala	Ser	Leu 175	Leu	Thr	Lys :	Leu (Gln 180
5	Ala(Gln	Asn		Trp 1 185	Leu	Gln	Asp	Met	Thr 190	Thr	His	Leu	Ile :	Leu 195
	Arg S	Ser	Phe		Glu :	Phe	Leu	Gln	Ser	Ser 205	Leu	Arg	Ala	Leu	Arg 210
10	Gln l	Met 212													
15	<210><211><212><212><213>	320 PR:	Γ	apien	ıs										
20	<400> Met 1	15 Gly	Ala	Ala	Arg 5	Ser	Pro	Pro	Ser	Ala 10	Val	Pro	Gly	Pro	Leu 15
	Leu	Gly	Leu	Leu	Leu 20	Leu	Leu	Leu	Gly	Val 25	Leu	Ala	Pro	Gly	Gly 30
25	Ala	Ser	Leu	Arg	Leu 35	Leu	Asp	His	Arg	Ala 40	Leu	Val	Cys	Ser	Gln 45
30	Pro	Gly	Leu	Asn	Cys 50	Thr	Val	Lys	s Asr	ı Ser 55	Thr	Cys	Leu	Asp	Asp 60
	Ser	Trp	lle	His	Pro 65	Arg	Asn	. Lei	ı Thi	r Pro		Ser	Pro	Lys	Asp 75
35	Leu	Gln	ılle	Gln	Leu 80	His	Phe	e Ala	a His	s Thr 85		ı Gln	Gly	Asp	Leu 90
	Phe	Pro	o Val	Ala	His 95	Ile	e Glu	ı Trj	o Th	r Lei 100		n Thr	asp	Ala	Ser 105
40	Ile	Leı	ı Tyr	Leu	Glu 110		/ Ala	a Gl	u Le	u Sei 11!		L Leu	ı Gln	Leu	Asn 120
45	Thr	Ası	n Glu	a Arg	Leu 125		s Val	l Ar	g Ph	e Gl	u Phe O	e Lei	ı Ser	Lys	: Leu 135
	Arg	Hi	s His	s His	Arg		g Trj	p Ar	g Ph	e Th		e Sei	r His	s Phe	val 150

	Val	Asp	Pro	Asp	Gln 155	Glu	Tyr	Glu	Val	Thr 160	Val	His	His	Leu	Pro 165
5	Lys	Pro	Ile	Pro	Asp 170	Gly	Asp	Pro	Asn	His 175	Gln	Ser	Lys	Asn	Phe 180
	Leu	Val	Pro	Asp	Cys 185	Glu	His	Ala	Arg	Met 190	Lys	Val	Thr	Thr	Pro 195
10	Cys	Met	Ser	Ser	Gly 200	Ser	Leu	Trp	Asp	Pro 205	Asn	Ile	Thr	Val	Glu 210
15	Thr	Leu	Glu	Ala	His 215	Gln	Leu	Arg	Val	Ser 220	Phe	Thr	Leu	Trp	Asn 225
	Glu	Ser	Thr	His	Tyr 230	Gln	Ile	Leu	Leu	Thr 235	Ser	Phe	Pro	His	Met 240
20	Glu	Asn	His	Ser	Cys 245	Phe	Glu	His	Met	His 250	His	Ile	Pro	Ala	Pro 255
	Arg	Pro	Glu	Glu	Phe 260	His	Gln	Arg	Ser	Asn 265	Val	Thr	Leu	Thr	Leu 270
25	Arg	Asn	Leu	Lys	Gly 275	Cys	Cys	Arg	His	Gln 280	Val	Gln	Ile	Gln	Pro 285
30	Phe	Phe	Ser	Ser	Cys 290	Leu	Asn	Asp	Cys	Leu 295		His	Ser	Ala	Thr 300
	Val	Ser	. Cys	Pro	Glu 305		Pro	Asp	Thr	Pro 310		Pro	Ile	Pro	Asp 315
35	Tyr	Met	Pro	Leu	Trp 320										
40	<211 <212)> 16 -> 54 2> DN 3> Ho	.3	apie	ns										
45)> 16 ggact	ggc	ctca	caac	:ct <u>c</u>	ıctgt	ttct	t ct	taco	attt	. cca	ıtctt	cct	50

ggggctgggc cagcccagga gccccaaaag caagaggaag gggcaagggc 100

ggcctgggcc cctggccctt ggccctcacc aggtgccact ggacctggtg 150

30

35

40

45

tcacggatga aaccgtatgc ccgcatggag gagtatgaga ggaacatcga 200
ggagatggtg gcccagctga ggaacagctc agagctggcc cagagaaagt 250
gtgaggtcaa cttgcagctg tggatgtcaa acaagaggag cctgtctccc 300
tggggctaca gcatcaacca cgaccccagc cgtatccccg tggacctgcc 350
ggaggcacgg tgcctgtgtc tgggctgtgt gaaccccttc accatgcagg 400
aggaccgcag catggtgagc gtgccggtgt tcagccaggt tcctgtgcg 450
cgccgctct gcccgcacc gccccgcaca gggccttgcc gccagcgcgc 500
agtcatggag accatcgctg tgggctgcac ctgcatcttc tga 543

<210> 17
<211> 594
20 <212> DNA
<213> Homo sapiens

atgacgetec teceeggeet cetgtttetg acetggetge acacatgeet 50
ggeccaccat gaccectece teagggggea ececcacagt caeggtacce 100
cacactgeta eteggetgag gaactgeee teggecagge ececcacace 150
ctgetggete gaggtgecaa gtgggggeag getttgeetg tagecetggt 200
gtecageetg gaggeageaa gecacagggg gaggeaegag aggeeeteag 250
ctacgaccca gtgeeeggtg etgeggeegg aggaggtgtt ggaggeagae 300
acceaccage getecatete accetggaga tacegtgtgg acacggatga 350
ggacegetat ecacagaage tggeettege egagtgeetg tgeagagget 400
gtategatge aeggaegge egegagaeag etgegeteaa eteegtgegg 450
ctgetecaga geetgetggt getgegeege eggeeetget eeeggaegg 500
eteggggete eceacacetg gggeetttge ettecacace gagtteatee 550
acgteecegt eggetgeace tgegtgetge ecegtteagt gtga 594

<210> 18

```
<211> 9
   <212> PRT
   <213> Artificial
   <220>
   <223> Artificial sequence 1-9
   <400> 18
    Gly His His His His His His His
10
                       5
   <210> 19
   <211> 157
    <212> PRT
    <213> Homo sapiens
15
    <400> 19
     Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His
                       5
                                           10
20
     Val Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn
                                           25
                                                                30
                       20
     Arg Arg Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp
                                            40
                       35
25
     Asn Gln Leu Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser
     Gln Val Leu Phe Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu
30
     Leu Thr His Thr Ile Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys
                                                                 90
                       80
35
     Val Asn Leu Leu Ser Ala Ile Lys Ser Pro Cys Gln Arg Glu Thr
                                           100
                                                                105
                       95
     Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu Pro Ile Tyr Leu
40
                      110
                                           115
     Gly Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu Ser Ala Glu
                      125
                                           130
     Ile Asn Arg Pro Asp Tyr Leu Asp Phe Ala Glu Ser Gly Gln Val
45
                                                                150
                      140
                                           145
```

Tyr Phe Gly Ile Ile Ala Leu

45

155 157

```
<210> 20
   <211> 21
   <212> DNA
   <213> Artificial
   <220>
    <223> Artificial sequence 1-21
10
    <400> 20
    ctqtacctcg agggtgcaga g 21
    <210> 21
    <211> 58
15
    <212> DNA
    <213> Artificial
    <220>
    <223> Artificial sequence 1-58
20
    <400> 21
     cccaagcttg ggtcaatgat gatgatgatg atgatgatgc cacaggggca 50
    tqtaqtcc 58
25
    <210> 22
    <211> 328
    <212> PRT
    <213> Homo sapiens
30
    <400> 22
     Met Gly Ala Ala Arg Ser Pro Pro Ser Ala Val Pro Gly Pro Leu
                                                                 15
                                            10
       1
                        5
35
     Leu Gly Leu Leu Leu Leu Leu Gly Val Leu Ala Pro Gly Gly
                                            25
                       20
     Ala Ser Leu Arg Leu Leu Asp His Arg Ala Leu Val Cys Ser Gln
                       35
40
     Pro Gly Leu Asn Cys Thr Val Lys Asn Ser Thr Cys Leu Asp Asp
                                            55
```

70

Ser Trp Ile His Pro Arg Asn Leu Thr Pro Ser Ser Pro Lys Asp

65

	Leu	Gln	Ile	Gln	Leu 80	His	Phe	Ala	His	Thr 85	Gln	Gln	Gly	Asp	Leu 90
5	Phe	Pro	Val	Ala	His 95	Ile	Glu	Trp	Thr	Leu 100	Gln	Thr	Asp	Ala	Ser 105
	Ile	Leu	Tyr	Leu	Glu 110	Gly	Ala	Glu	Leu	Ser 115	Val	Leu	Gln	Leu	Asn 120
10	Thr	Asn	Glu	Arg	Leu 125	Cys	Val	Arg	Phe	Glu 130	Phe	Leu	Ser	Lys	Leu 135
15	Arg	His	His	His	Arg 140	Arg	Trp	Arg	Phe	Thr 145	Phe	Ser	His	Phe	Val 150
15	Val	Asp	Pro	Asp	Gln 155	Glu	Tyr	Glu	Val	Thr 160	Val	His	His	Leu	Pro 165
20	Lys	Pro	Ile	Pro	Asp 170	Gly	Asp	Pro	Asn	His 175	Gln	Ser	Lys	Asn	Phe 180
	Leu	Val	Pro	Asp	Cys 185	Glu	His	Ala	Arg	Met 190	Lys	Val	Thr	Thr	Pro 195
25	Cys	Met	Ser	Ser	Gly 200	Ser	Leu	Trp	Asp	Pro 205	Asn	Ile	Thr	Val	Glu 210
30	Thr	Leu	Glu	Ala	His 215	Gln	Leu	Arg	Val	Ser 220	Phe	Thr	Leu	Trp	Asn 225
30	Glu	Ser	Thr	His	Tyr 230	Gln	Ile	Leu	Leu	Thr 235	Ser	Phe	Pro	His	Met 240
35	Glu	Asn	His	Ser	Cys 245	Phe	Glu	His	Met	His 250	His	Ile	Pro	Ala	Pro 255
	Arg	Pro	Glu	Glu	Phe 260	His	Gln	Arg	Ser	Asn 265		Thr	Leu	Thr	Leu 270
40	Arg	Asn	Leu	Lys	Gly 275	Cys	Cys	Arg	His	Gln 280		Gln	Ile	Gln	Pro 285
15	Phe	Phe	Ser	Ser	Cys 290		Asn	Asp	Cys	Leu 295		His	Ser	Ala	Thr 300
45	Val	Ser	. Cys	Pro	Glu 305		Pro	Asp	Thr	Pro 310		Pro	Ile	Pro	Asp 315

Tyr Met Pro Leu Trp His His His His His His His His 320 325 328

<210> 23
5 <211> 175
 <212> PRT
 <213> Artificial

<220>

15

30

45

10 <223> Artificial sequence 1-175

<400> 23

Ile Phe Leu Gly Leu Gly Gln Pro Arg Ser Pro Lys Ser Lys Arg
1 5 10 15

Lys Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln
20 25 30

Val Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met 20 35 40 45

Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg
50 55 60

25 Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln 65 70 75

Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser 80 85 90

Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala 95 100 105

Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu
110 115 120

Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val 125 130 135

40 Arg Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 140 145 150

Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile 155 160 165

Phe Gly His His His His His His His 170 175

5	<210><211><211><212><213>	206 PRT	C	cial											
	<220> <223>		cific	cial	sequ	ience	e 1-2	206							
10	<400> Met 1		Leu	Leu	Pro 5	Gly	Leu	Leu	Phe	Leu 10	Thr	Trp	Leu	His	Thr 15
1.5	Cys	Leu	Ala	His	His 20	Asp	Pro	Ser	Leu	Arg 25	Gly	His	Pro	His	Ser 30
15	His	Gly	Thr	Pro	His 35	Cys	Tyr	Ser	Ala	Glu 40	Glu	Leu	Pro	Leu	Gly 45
20	Gln	Ala	Pro	Pro	His 50	Leu	Leu	Ala	Arg	Gly 55	Ala	Lys	Trp	Gly	Gln 60
	Ala	Leu	Pro	Val	Ala 65	Leu	Val	Ser	Ser	Leu 70	Glu	Ala	Ala	Ser	His 75
25	Arg	Gly	Arg	His	Glu 80	Arg	Pro	Ser	Ala	Thr 85	Thr	Gln	Cys	Pro	Val 90
20	Leu	Arg	Pro	Glu	Glu 95	Val	Leu	Glu	Ala	Asp 100	Thr	His	Gln	Arg	Ser 105
30	Ile	Ser	Pro	Trp	Arg 110	Tyr	Arg	Val	Asp	Thr 115	Asp	Glu	Asp	Arg	Tyr 120
35	Pro	Gln	Lys	Leu	Ala 125	Phe	Ala	Glu	Cys	Leu 130	Cys	Arg	Gly	Cys	Ile 135
	Asp	Ala	Arg	Thr	Gly 140	Arg	Glu	Thr	Ala	Ala 145	Leu	Asn	Ser	Val	Arg 150
40	Leu	Leu	Gln	Ser	Leu 155	Leu	Val	Leu	Arg	Arg 160	Arg	Pro	Cys	Ser	Arg 165
45	Asp	Gly	Ser	Gly	Leu 170	Pro	Thr	Pro	Gly	Ala 175	Phe	Ala	Phe	His	Thr 180
45	Glu	Phe	Ile	His	Val 185	Pro	Val	Gly	Cys	Thr 190	Cys	Val	Leu	Pro	Arg 195

Ser Val Gly His His His His His His His Evaluation 200 205 206

5	<210 × <211 × <212 × <213 ×	271 PR	ľ	apien	ıs										
10	<400: Met 1		Lys	Val	Pro 5	Asp	Met	Phe	Glu	Asp 10	Leu	Lys	Asn	Cys	Tyr 15
1.5	Ser	Glu	Asn	Glu	Glu 20	Asp	Ser	Ser	Ser	Ile 25	Asp	His	Leu	Ser	Leu 30
15	Asn	Gln	Lys	Ser	Phe 35	Tyr	His	Val	Ser	Tyr 40	Gly	Pro	Leu	His	Glu 45
20	Gly	Cys	Met	Asp	Gln 50	Ser	Val	Ser	Leu	Ser 55	Ile	Ser	Glu	Thr	Ser 60
	Lys	Thr	Ser	Lys	Leu 65	Thr	Phe	Lys	Glu	Ser 70	Met	Val	Val	Val	Ala 75
25	Thr	Asn	Gly	Lys	Val 80	Leu	Lys	Lys	Arg	Arg 85	Leu	Ser	Leu	Ser	Gln 90
	Ser	Ile	Thr	Asp	Asp 95	Asp	Leu	Glu	Ala	Ile 100	Ala	Asn	Asp	Ser	Glu 105
30	Glu	Glu	Ile	Ile	Lys 110	Pro	Arg	Ser	Ala	Pro 115	Phe	Ser	Phe	Leu	Ser 120
35	Asn	Val	Lys	Tyr	Asn 125	Phe	Met	Arg	Ile	Ile 130	Lys	Tyr	Glu	Phe	Ile 135
	Leu	Asn	Asp	Ala	Leu 140	Asn	Gln	Ser	Ile	Ile 145	Arg	Ala	Asn	Asp	Gln 150
40	Tyr	Leu	Thr	Ala	Ala	Ala	Leu	His	Asn	Leu	Asp	Glu	Ala	Val	Lys

Phe Asp Met Gly Ala Tyr Lys Ser Ser Lys Asp Asp Ala Lys Ile

Thr Val Ile Leu Arg Ile Ser Lys Thr Gln Leu Tyr Val Thr Ala

	Gln	Asp	Glu	Asp	Gln 200	Pro	Val	Leu	Leu	Lys 205	Glu	Met	Pro	Glu	Ile 210
5	Pro	Lys	Thr	Ile	Thr 215	Gly	Ser	Glu	Thr	Asn 220	Leu	Leu	Phe	Phe	Trp 225
	Glu	Thr	His	Gly	Thr 230	Lys	Asn	Tyr	Phe	Thr 235	Ser	Val	Ala	His	Pro 240
10	Asn	Leu	Phe	Ile	Ala 245	Thr	Lys	Gln	Asp	Tyr 250	Trp	Val	Cys	Leu	Ala 255
15	Gly	Gly	Pro	Pro	Ser 260	Ile	Thr	Asp	Phe	Gln 265	Ile	Leu	Glu	Asn	Gln 270
13	Ala 271														
20	<210 > <211 > <212 > <213 > <	> 17' > PR	Γ	apie	ns										
25	<400 Met 1		Ile	Cys	Arg 5	Gly	Leu	Arg	Ser	His 10	Leu	Ile	Thr	Leu	Leu 15
30	Leu	Phe	Leu	Phe	His 20	Ser	Glu	Thr	Ile	Cys 25	Arg	Pro	Ser	Gly	Arg 30
30	Lys	Ser	Ser	Lys	Met 35	Gln	Ala	Phe	Arg	Ile 40	Trp	Asp	Val	Asn	Gln 45
35	Lys	Thr	Phe	Tyr	Leu 50	Arg	Asn	Asn	Gln	Leu 55	Val	Ala	Gly	Tyr	Leu 60
	Gln	Gly	Pro	Asn	Val 65	Asn	Leu	Glu	Glu	Lys 70	Ile	Asp	Val	Val	Pro 75
40	Ile	Glu	Pro	His	Ala 80	Leu	Phe	Leu	Gly	Ile 85	His	Gly	Gly	Lys	Met 90
45	Cys	Leu	Ser	Cys	Val 95	Lys	Ser	Gly	Asp	Glu 100	Thr	Arg	Leu	Gln	Leu 105

PATENT DOCKET NO. P1381R1

	Lys	Arg	Phe	Ala	Phe 125	Ile	Arg	Ser	Asp	Ser 130	Gly	Pro	Thr	Thr	Ser 135
5	Phe	Glu	Ser	Ala	Ala 140	Cys	Pro	Gly	Trp	Phe 145	Leu	Cys	Thr	Ala	Met 150
	Glu	Ala	Asp	Gln	Pro 155	Val	Ser	Leu	Thr	Asn 160	Met	Pro	Asp	Glu	Gly 165
10	Val	Met	Val	Thr	Leu 170	Phe	Tyr	Phe	Gln	Glu 175	Asp	Glu 177			