

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

CoolMOS™ CFD2 650V

650V CoolMOS™ CFD2 Power Transistor IPW65R080CFD

Data Sheet

Rev. 2.4 Final

IPW65R080CFD

1 Description

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. 650V CoolMOS™ CFD2 series combines the experience of the leading SJ MOSFET supplier with high class innovation. The resulting devices provide all benefits of a fast switching SJ MOSFET while offering an extremely fast and robust body diode. This combination of extremely low switching, commutation and conduction losses together with highest robustness make especially resonant switching applications more reliable, more efficient, lighter and cooler.

Features

- · Ultra-fast body diode
- · Very high commutation ruggedness
- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- · Easy to use/drive
- Pb-free plating, Halogen free mold compound
- Qualified for industrial grade applications according to JEDEC (J-STD20 and JESD22)

Applications

650V CoolMOS™ CFD2 is especially suitable for resonant switching PWM stages for e.g. PC Silverbox, LCD TV, Lighting, Server, Telecom and Solar.

Table 1 Key Performance Parameters

Parameter	Value	Unit
V _{DS} @ T _{j max}	700	V
RDS(on),max	0.08	Ω
Qg,typ	167	nC
ID,pulse	137	A
Eoss @ 400V	12.5	μJ
Body diode di/dt	900	A/µs
Qrr	1	μC
trr	180	ns
Irrm	10	A

Type / Ordering Code	Package	Marking	Related Links
IPW65R080CFD	PG-TO 247	65F6080	see Appendix A

IPW65R080CFD

Table of Contents

Description
Table of Contents
Maximum ratings
Thermal characteristics 5
Electrical characteristics
Electrical characteristics diagrams 8
Test Circuits
Package Outlines
Appendix A
Revision History
Disclaimer

IPW65R080CFD

2 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 **Maximum ratings**

Parameter	C: mah al	Values				Note (Tool Occulture	
Faranietei	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current1)	/ _D			43.3	Α	<i>T</i> _C = 25°C	
				27.4		T _C = 100°C	
Pulsed drain current ²⁾	/ _{D,pulse}			137	Α	<i>T</i> _C = 25°C	
Avalanche energy, single pulse	Eas			1160	mJ	<i>l</i> _D = 8.7A, <i>V</i> _{DD} = 50V	
Avalanche energy, repetitive	<i>E</i> _{AR}			1.76	mJ	<i>l</i> _D = 8.7A, <i>V</i> _{DD} = 50V	
Avalanche current, repetitive	/ _{AR}			8.7	Α		
MOSFET dv/dt ruggedness	dv/dt			50	V/ns	V _{DS} = 0 400V	
Gate source voltage	V∕GS	-20		20	V	static	
		-30		30		AC (f > 1 Hz)	
Power dissipation (non FullPAK) TO-247	P _{tot}			391.0	w	<i>T</i> _C = 25°C	
Operating and storage temperature	$T_{\rm j}, T_{\rm stg}$	-55		150	°C		
Mounting torque (non FullPAK) TO-247				60	Ncm	M3 and M3.5 screws	
Continuous diode forward current	/s			43.3	Α	<i>T</i> _C = 25°C	
Diode pulse current	/S,pulse			140	Α	<i>T</i> _C = 25°C	
Reverse diode dv/dt ³⁾ dv/dt				50	V/ns	$V_{DS} = 0 \dots 400 \text{V}, \ I_{SD} \le I_{D},$	
Maximum diode commutation speed	di _f /dt			900	A/µs	$T_{\rm j}$ = 25°C	

 $^{^{1)}}$ Limited by T $_{j\ max}$. $^{2)}$ Pulse width t $_{p}$ limited by T $_{j\ max}$ $^{3)}$ V $_{peak}$ <V(BR)DSS, T $_{j}$ <T $_{j\ max}$, identical low and high side switch with same Rg

3 Thermal characteristics

Table 3 Thermal characteristics TO-247

Parameter	Symbol	Values			Unit	Note / Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Ullit	Note / Test Condition	
Thermal resistance, junction - case	<i>R</i> _{th} JC			0.32	°C/W		
Thermal resistance, junction - ambient	R _{thJA}			62	°C/W	leaded	
Soldering temperature, wavesoldering only allowed at leads	\mathcal{T}_{sold}			260	°C	1.6 mm (0.063 in.) from case for 10s	

Electrical characteristics

at $T_j = 25$ °C, unless otherwise specified

Table 4 Static characteristics

Parameter	Combal	Values				Nata (Tant On alliting
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	V(BR)DSS	650			V	V _{GS} = 0V, I _D = 1mA
Gate threshold voltage	V _{GS(th)}	3.5	4	4.5	V	$V_{DS} = V_{GS}$, $I_D = 1.8 \text{mA}$
Zero gate voltage drain current	/ _{DSS}			2	μA	$V_{DS} = 650 \text{V}, \ V_{GS} = 0 \text{V}, \ T_j = 25 ^{\circ}\text{C}$
			500			$V_{DS} = 650V, V_{GS} = 0V, T_j = 150°C$
Gate-source leakage current	/ _{GSS}			100	nA	V _{GS} = 20V, V _{DS} = 0V
Drain-source on-state resistance	RDS(on)		0.072	0.08	Ω	$V_{GS} = 10V$, $I_D = 17.6A$, $T_j = 25^{\circ}C$
			0.187			$V_{GS} = 10V$, $I_D = 17.6A$, $T_j = 150$ °C
Gate resistance	<i>R</i> _G		0.7		Ω	f= 1MHz, open drain

Table 5 **Dynamic characteristics**

Parameter	Complete	Values			l ladit	Note / Teet Oandition	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance	Ciss		5030		pF	$V_{GS} = 0V$, $V_{DS} = 100V$, $f = 1MHz$	
Output capacitance	Coss		215		pF		
Effective output capacitance, energy related ¹⁾	$C_{ m o(er)}$		158		pF	V _{GS} = 0V, V _{DS} = 0 400V	
Effective output capacitance, time related ²⁾	$C_{o(tr)}$		794		pF	I_D = constant, V_{GS} = 0V, V_{DS} = 0 400V	
Turn-on delay time	<i>t</i> d(on)		20		ns	V _{DD} = 400V, V _{GS} = 13V,	
Rise time	<i>t</i> r		18		ns	$h_0 = 26.3 \text{A}, R_0 = 1.8 \Omega$	
Turn-off delay time	<i>t</i> d(off)		85		ns		
Fall time	<i>t</i> f		6		ns		

Gate charge characteristics Table 6

Parameter	Comple of	Values				
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q_{gs}		32		nC	$V_{DD} = 480V$, $I_D = 26.3A$,
Gate to drain charge	$Q_{ m gd}$		87		nC	$V_{GS} = 0$ to 10V
Gate charge total	Q_{g}		167		nC	
Gate plateau voltage	V _{plateau}		6.4		V	

 $^{^{1)}}$ $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{2)}$ $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

650V CoolMOS™ CFD2 Power Transistor

IPW65R080CFD

Table 7 Reverse diode characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
	Symbol	Min.	Тур.	Max.	Ollit	Note / Test Condition
Diode forward voltage	V SD		0.9		V	$V_{GS} = 0V$, $I_F = 26.3A$, $T_j = 25$ °C
Reverse recovery time	<i>t</i> rr		180		ns	V _R = 400V, I _F = 26.3A,
Reverse recovery charge	Q _{rr}		1		μC	d <i>i</i> ϝ/d <i>t</i> = 100A/μs
Peak reverse recovery current	/ _{rrm}		10		А	

5 Electrical characteristics diagrams

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

6 Test Circuits

Table 16 Diode_characteristics

Table 17 Switching_times

Table 18 Unclamped_inductive

7 Package Outlines

Figure 1 Outline PG-TO 247, dimensions in mm/inches

8 Appendix A

Table 19 Related Links

- IFX Design Tools: http://www.infineon.com/cms/en/product/promopages/designtools/index.html
- IFX CoolMOS Webpage: http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6a628704d8

650V CoolMOS™ CFD2 Power Transistor

IPW65R080CFD

Revision History

IPW65R080CFD

Revision: 2011-09-27, Rev. 2.4

Previous F	Previous Revision						
Revision	Date Subjects (major changes since last revision)						
2.1	2011-08-29	update to CFD2 standard					
2.2	2011-09-15	update pin naming					
2.3	2011-09-16	release of new pin naming					
2.4	2011-09-27	update the Igss test condition					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: **erratum@infineon.com**

Edition 2011-08-01 Published by Infineon Technologies AG 81726 München, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.