

MEGATRON-LM

TRAINING MULTI-BILLION PARAMETER
LANGUAGE MODELS USING MODEL PARALLELISM

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro

Large Models Require Large Memory

- Training >> Inference
- Adam > SGD
- Larger minibatch
- More parameters
- ...
- More devices are needed to:
 - Speed up training
 - Simply enable training

GPU VRAM Usage Estimation for training different models

Data Parallelism

- Partitions a training minibatch across multiple devices
- Linearly scalable
- Slicing activation only
- Does not help with excessive model size

Pipeline Parallelism

- Layer-wise model parallelism
- Bubbles reduce efficiency
- Requires additional logic to handle pipelining

Pipeline schedule of Gpipe*

^{*} Image from https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/

Pipeline Parallelism

- Bubbles reduce efficiency
 - Larger batch sizes for relatively small bubbles are impractical
 - Low scaling efficiency

bubble time fraction =
$$\frac{p-1}{m}$$

p: pipeline parallelism = 4m: micro batch size = 8

Pipeline schedule of Gpipe*

^{*} Image from https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/

Tensor Parallelism

- Intra-layer model-parallelism
- Good scaling efficiency inside one node
- Orthogonal to DP and PP: combine to get best strategy

Tensor Parallelism

- Tailored for transformer networks
- Transformer Layer
 - Self-attention block
 - Two-layer MLP
- Targets:
 - Exploit parallelism wherever possible
 - Reduce synchronization cost

Tensor Parallelism: MLP

- Two layers: Y = GeLU(XA), Z = Dropout(YB)
- ullet Option 1: Split A and B along their rows

•
$$X = [X_1, X_2], A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

- $Y = \text{GeLU}(X_1A_1 + X_2A_2) \neq \text{GeLU}(X_1A_1) + \text{GeLU}(X_2A_2)$
- Synchronizations before GeLU and Dropout

f: SPLIT (forward)
 ALL_GATHER (backward)

g: ALL_REDUCE (forward)
IDENTITY (backward)

Tensor Parallelism: MLP

- Two layers: Y = GeLU(XA), Z = Dropout(YB)
- Option 2: Split A along its columns
 - $A = [A_1, A_2]$
 - $Y = [Y_1, Y_2] = GeLU([XA_1, XA_2]) = [GeLU(XA_1), GeLU(XA_2)]$
 - Split *B* along its rows
 - Only one sync needed before Dropout

f: IDENTITY (forward)
 ALL_REDUCE (backward)

g: ALL_REDUCE (forward)
IDENTITY (backward)

Tensor Parallelism: Self-Attention

- Attention block: Self-attention followed by a linear layer
 - Partition K, Q, V along their columns
 - Slice the subsequent MM weight along its rows
 - Only one sync required

f: IDENTITY (forward)
 ALL_REDUCE (backward)

g: ALL_REDUCE (forward)
IDENTITY (backward)

Tensor Parallelism: Communication cost

• 4 Total communication operations in 1 forward + backward pass

Tensor Parallelism: I/O embedding

- Embedding matrix $E_{H\times v}: H$ idden-size $\times v$ ocab-size*
 - Weights shared between input and output embeddings
- Parallelized along columns (vocab dimension)
- Input embedding: acquired using ALL_REDUCE

Tensor Parallelism: I/O embedding

- Output embedding: acquired using ALL_GATHER
 - Costly: This will communicate $b \times s \times v$ elements
 - b: batch size
 - s: sequence length

$$H \hspace{1cm} E \hspace{1cm} = \hspace{1cm} \underbrace{ \begin{array}{c} v/2 & v/2 \\ E_1 & E_2 \end{array} } \hspace{1cm} f : \hspace{1cm} \text{IDENTITY (forward)} \\ \hspace{1cm} \text{ALL_REDUCE (backward)} \\ \hspace{1cm} g : \hspace{1cm} \text{ALL_GATHER (forward)} \\ \hspace{1cm} \text{SPLIT (backward)} \end{array}$$

$$\frac{v}{S} = \frac{H}{X} \cdot E = ALL_GATHER \left(\frac{v/2}{XE_1}, \frac{v/2}{XE_2} \right)$$
Logits

Tensor Parallelism: I/O embedding

- Output embedding: acquired using ALL_GATHER
 - Fuse the output $[Y_1, Y_2]$ with the cross-entropy loss
 - Communication reduced to $b \times s$

$$H = \begin{bmatrix} v/2 & v/2 \\ E_1 & E_2 \end{bmatrix} \qquad f: \text{IDENTITY (forward)} \\ \text{ALL_REDUCE (backward)} \\ X \Rightarrow XE_1 \Rightarrow XE_1 \Rightarrow XE_1 \Rightarrow XE_2 \Rightarrow X$$

Experiments

- 32 DGX-2H servers
 - 512 V100 SXM3 32GB GPUs
- Intra-server connection
 - 300 GB/s NVSwitch
- Inter-server connection
 - 100 GB/s InfiniBand (8 per server)

- GPT-2 & BERT Models
- TP (+ DP)
- Mixture of datasets

Experiments: Scalability

• GPT-2: 1B - 8B

• Hidden size: 96

Parameters/GPU: ~1B

• Weak Scaling @ 512 GPUs: 74%

-			Number	Number	Model	Model
	Hidden	Attention	of	of	parallel	+data
	Size	heads	layers	parameters	GPUs	parallel
				(billions)		GPUs
_	1536	16	40	1.2	1	64
	1920	20	54	2.5	2	128
	2304	24	64	4.2	4	256
_	3072	32	72	8.3	8	512

Experiments: GPT-2

• 0.4B, 2.5B, 8.3B

4			
Model	Wikitext103	LAMBADA	
	Perplexity ↓	Accuracy ↑	
355M	19.31	45.18%	
2.5B	12.76	61.73%	
8.3B	10.81	66.51%	
Previous SOTA	15.79	63.24%	

				Hidden		Time
Parameter	Layers	Hidden	Attn	Size	Total	per
Count		Size	Heads	per	GPUs	Epoch
				Head		(days)
355M	24	1024	16	64	64	0.86
2.5B	54	1920	20	96	128	2.27
8.3B	72	3072	24	128	512	2.10

Experiments: BERT

- 0.3B, 1.3B, 3.9B
- Modified architecture from (a) to (b) to allow for larger models

	trained tokens	MNLI m/mm	QQP	SQuAD 1.1	SQuAD 2.0	RACE m/h
Model	ratio	accuracy	accuracy	F1 / EM	F1/EM	accuracy
		(dev set)	(dev set)	(dev set)	(dev set)	(test set)
RoBERTa (Liu et al., 2019b)	2	90.2 / 90.2	92.2	94.6 / 88.9	89.4 / 86.5	83.2 (86.5 / 81.8)
ALBERT (Lan et al., 2019)	3	90.8	92.2	94.8 / 89.3	90.2 / 87.4	86.5 (89.0 / 85.5)
XLNet (Yang et al., 2019)	2	90.8 / 90.8	92.3	95.1 / 89.7	90.6 / 87.9	85.4 (88.6 / 84.0)
Megatron-336M	1	89.7 / 90.0	92.3	94.2 / 88.0	88.1 / 84.8	83.0 (86.9 / 81.5)
Megatron-1.3B	1	90.9 / 91.0	92.6	94.9 / 89.1	90.2 / 87.1	87.3 (90.4 / 86.1)
Megatron-3.9B	1	91.4 / 91.4	92.7	95.5 / 90.0	91.2 / 88.5	89.5 (91.8 / 88.6)
ALBERT ensemble (Lan et al., 2019)				95.5 / 90.1	91.4 / 88.9	89.4 (91.2 / 88.6)
Megatron-3.9B ensemble				95.8 / 90.5	91.7 / 89.0	90.9 (93.1 / 90.0)

Model_Parallelism = Tensor_Parallelism × Pipeline_Parallelism

• Best practice can be chosen from multiple combinations

Figure 9. Throughput per GPU of various parallel configurations that combine pipeline and tensor model parallelism using a GPT model with 162.2 billion parameters, two different batch sizes, and 64 A 100 GPUs.

^{*} Image from https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/ Megatron-LM: Training Multi-billion Parameter Language Models Using Model Parallelism

• Further reduce communication cost between parallel layers

(a) W/o scatter/gather optimization.

⁽b) W/ scatter/gather optimization.*

^{*} Image from https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/ Megatron-LM: Training Multi-billion Parameter Language Models Using Model Parallelism

Figure 10. Throughput per GPU with and without the scatter/gather optimization for a GPT model with 175 billion parameters using 96 A100 GPUs and the interleaved schedule.

^{*} Image from https://developer.nvidia.com/blog/scaling-language-model-training-to-a-trillion-parameters-using-megatron/ Megatron-LM: Training Multi-billion Parameter Language Models Using Model Parallelism

• (MP=TP×PP) GPUs = 1 Virtual GPU

Tensor and Pipeline Ranks

Tensor Parallel + Pipeline Parallel Ranks with TP=2, PP=2

Node 0

Node 1

Tensor and Pipeline Ranks

Tensor Parallel + Pipeline Parallel Ranks with TP=2, PP=2

^{*} Images from https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/nemo_megatron/parallelisms.html

Megatron-LM: Training Multi-billion Parameter Language Models Using Model Parallelism

DP_max = (# of GPUs) / (# of Virtual GPUs)

Data Parallel Ranks

Data Parallel Ranks with Model Parallel Size 4

^{*} Image modified from https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/nlp/nemo_megatron/parallelisms.html

Megatron-LM: Training Multi-billion Parameter Language Models Using Model Parallelism

Discussion

- Efficient model parallelism with good scalability
- Compatible with other parallelism methods
- Very useful codebase (https://github.com/NVIDIA/Megatron-LM)

- TP brings large communication cost
 - The limit of efficient TP depends largely on # of GPUs on a single node
 - Speed will be significantly affected if intra-node connection is bad
 - One slow GPU will make the entire system much slower
 - Dependencies prevent interleaving of communication and computation[1]

Presented by Yufeng Du