

RBF Quadrature for Neural Fields

Sage B. Shaw¹, Zack P. Kilpatrick¹, and Daniele Avitable²
1: University of Colorado Boulder 2: Vrije Universiteit Amsterdam

Summary

Goal: To create and test a neural field solver using radial basis function quadrature. The method should be

- High-order accurate
- Stable
- Geometrically flexible
- Fast (low complexity)

In the future, we will extend this to realistic curved 2D spatial domains.

Neural Field Models

- Tissue level models
- Integro-differential equation(s)
- Integral kernel represents neural network connectivity
- Non-linear firing rate function captures non-linear neural dynamics

Image by Heather Cihak.

 $\partial_t u(t, \mathbf{x}) = -u + \iint_{\Omega} w(\mathbf{x}, \mathbf{y}) f[u(t, \mathbf{y})] d\mathbf{y}$

- $u(t, \mathbf{x})$ Neural activity
- $w(\mathbf{x}, \mathbf{y})$ Connectivity kernel
- $f(\cdot)$ Non-linear firing rate function
- $\Omega = [0, 1]^2$ for now.

Radial Basis Function Quadrature Formuale

- Place N nodes in Ω
- Partition Ω into elements
- For each element
 - select the k nearest nodes
 (the stencil),
 - interpolate Lagrange functions,
 - integrate over the element,
 - sum over interpolants
- sum over elements

The local interpolants have the form

$$s(\mathbf{x}) = \sum_{i=1}^{k} c_i \phi(\|\mathbf{x} - \mathbf{x}_i\|) + \sum_{j=1}^{m} \gamma_i \pi_j(\mathbf{x})$$

- ϕ radial basis function (eg. $\phi(r) = r^3$)
- $\{\pi_j\}_{j=1}^m$ polynomial basis

• k interpolation conditions

• m moment conditions

Quadrature Convergence

- No proven convergence rate.
- We expect at least $\mathcal{O}(d+1)$, where d is the degree of polynomial basis. (Think trapezoidal rule.)
- We test this on a product of Chebyshev polynomials.

• Rates better than expected.

Projection Method

• Scientific Question

This work is supported by GRANT INFOR-MATION

(1) AUTHORS (YEAR) JOURNAL

Neural Field IVP

• Scientific Question

This work is supported by GRANT INFOR-MATION

(1) AUTHORS (YEAR) JOURNAL

References and Funding

- Tsodyks, et al. (1998) Neural Computation
- Kilpatrick & Bressloff (2010) Physica D
- Kilpatrick & Ermentrout (2012) Phys. Rev. E This work was supported by NSF DMS-2207700.

This work is supported by GRANT INFOR-MATION

(1) AUTHORS (YEAR) JOURNAL