Computer Networks and Internets

《计算机网络与因特网》课件

林坤辉

PART IV Internetworking

Chapter 22(2)
IP Encapsulation,
Fragmentation, and
Reassembly
IP對裝、分段与重组

22.2 Datagram Transmission and Frames

- IP software first selects the next hop,
- Then transmits the datagram across a physical network.
- Network hardware does not understand datagram format or Internet addressing.
- Each hardware technology defines a frame format and a physical addressing scheme.

22.3 Encapsulation封装

- encapsulation.
- The hardware does not examine or change the contents of the frame data area.
- The sender and receiver must agree on the value used in the frame type field.
- The sender must supply the physical address of the next computer to which the datagram should be sent.

22.4 Transmission Across an Internet

- When a frame reaches the next hop, the receiving software extracts the IP datagram and discards the frame header.
- If the datagram must be forwarded across another network, a new frame is created.
- Frame headers do not accumulate during a trip through the internet.
- Hosts and routers store a datagram in memory with no additional header.

最大传输单元(MTU)(1)

- ■什么是最大传输单元
 - 链路层数据帧支持的最大传输字节数

最大传输单元(MTU)(2)

- ■路径上最大传输单元对IP报文大小的影响
 - 按照端到端路径上最大MTU作为IP报文长度
 - ■1500B
 - 按照端到端路径上最小MTU作为IP报文长度
 - ■600B
 - 按照当前链路上MTU作为IP报文长度
 - ■1500B
 - ■1200B
 - ■1000B
 - ■800B
 - ■600B

22.5 MTU, Datagram Size, and Encapsulation

Protocol MTU

Token ring(16Mbps)	17914
Token ring (4Mbps)	4464
FDDI	4352
Ethernet	1500
X.25	576
PPP	296

- The router divides the datagram into smaller pieces called fragments.
- Each fragment uses the IP datagram format.
- sends each fragment independently.

IP报文的分片策略(1)

- ■IP报文传输的分片策略
 - 在不超过版本本身规定大小的前提下,采用当前最合适的报文长度
 - 在当前链路帧长度小于IP数据报文的时候,将 IP报文分成较小的几个分片进行传输
 - 分片原则
 - ■各片尽可能大,但是必须能为帧所封装
 - ■片大小必须为8的整数倍

IP报文的分片策略(2)

■分片大小根据MTU、IP报文头长度(基本长度为20字节)计算

分片信息表示

- ■IP报文中的相关信息
 - IP报文中的ID
 - ■始终保持初始ID不变
 - 标志位
 - ■如果第一次分片,则修改"是否已经分片" 相应位
 - 片偏移量
 - ■表示当前分片在初始IP包中有效数据的偏移位置(IP包中以8字节为单位)

偏移量 = 0	IP头 580
偏移量= 580	IP头 580
偏移量=1160	IP头 320

表 7-4 IP 数据报首部中与分片有关的字段中的数值

总长度	标识	MF	DF	片偏移
4000	12345	0	0	0
1420	12345		0	0
1420	12345	The state of	0	175
1020	12345	0	0	350
	4000 1420 1420	4000 12345 1420 12345 1420 12345 1020 12345	4000 12345 0 1420 12345 1 1420 12345 1 1020 12345 0	4000 12345 0 0 1420 12345 1 0 1420 12345 1 0 1020 12345 0 0

•标志 MF(more fragment), MF=1 表示后面还有分片; MF=0 表示这是最后一个分片; DF(don't fragment), DF=1 表示不允许分片; DF=0 表示允许分片。

22.6 Reassembly重组

- The process of creating a copy of the original datagram from fragments is called reassembly.
- IP specifies that the ultimate destination host should reassemble fragments.

22.7 Identifying A Datagram

- A sender places a unique identification number in the IDENTIFICATION field of each outgoing datagram.
- When a router fragments the datagram, the router copies the identification number into each fragment.

IP报文的重组

- ■报文重组策略
 - -源端到目标端数据传输过程中可能有多次 分片
 - ■数据报文大小一定不会大于路径上的最小MTU
 - 所有传输的分片重组在目标端进行
 - -中间路由设备不做分片重组
 - ■减少中间节点的数据处理过程

22.8 fragment Loss

- Some fragment are delayed or lost.
- Receiver must save the fragments.
- IP specifies a maximum time to hold fragments.
- Either all fragments arrive and IP reassembles the datagram, or IP discards the complete datagram.
- There is no mechanism for a receiver to tell the sender which fragments have arrived.
- If the sender did retransmit the datagram,routes may be different.

IP报文丢失问题

- ■IP报文丢失判断
 - -目标端对IP报文分片作重组处理的时候进行丢失判断
 - -对应于源端发出的每一个报文,在收到第一个分片的时候,给出一个等待的有限时间T-out,如果T-out之后还没有收到全部分片,则为超时
 - -任何一个分片丢失或数据出错,则丢弃整 个报文

22.9 Fragmenting A fragment

■ The fragmentation scheme has been planned carefully to make it possible to further fragment a fragment.

作业

■ 从C1向C5发送一个IP报文(报文总长1200B), 给出此IP报文在N1、N2、N3、N4、N5中的每个 分片的大小及其偏移量。(IP报头20字节)

