Logic in Computer Science(Homework 4)

10175101148 Junjie Chen

November 14, 2019

1 Prove the following theroems with deduction rules.

$$\mathbf{1.1} \quad \forall x (P(x) \rightarrow \neg Q(x)) \vdash \neg (\exists x (P(x) \land Q(x)))$$

Proof:

	1	$\forall x (P(x) \to \neg Q(x))$	premise
	2	$\exists x (P(x) \land Q(x))$	assumption
x_0	3	$P(x_0) \wedge Q(x_0)$	assumption
	4	$P(x_0)$	$\wedge e_1 \ 3$
	5	$Q(x_0)$	∧e ₂ 3
	6	$P(x_0) \to \neg Q(x_0)$	$\forall x \in 1$
	7	$\neg Q(x_0)$	\rightarrow e 4,6
	8	1	¬e 5, 7
	9	Τ	$\exists x \ e \ 2, 3 - 8$
	10	$\neg(\exists(P(x)\land Q(x)))$	$\neg i \ 2-9$

$\textbf{1.2} \quad \forall x (P(x) \leftrightarrow x = b) \vdash P(b) \land \forall x \forall y (P(x) \land P(y) \rightarrow x = y)$

Proof:

	1	$\forall x (P(x) \leftrightarrow x = b)$	premise
	2	b = b	=i
	3	$b = b \to P(b)$	$\forall x \in 1$
	4	P(b)	\rightarrow e 2,3
x_0	5	$P(x_0) \to x_0 = b$	$\forall x \in 1$
y_0	6	$P(y_0) \to y_0 = b$	$\forall x \in 1$
	7	$P(x_0) \wedge P(y_0)$	assumption
	8	$P(x_0)$	∧e ₁ 7
	9	$P(y_0)$	∧e ₂ 7
	10	$x_0 = b$	\rightarrow e 5,8
	11	$y_0 = b$	\rightarrow e 6, 9
	12	$x_0 = y_0$	= e 10, 11
	13	$P(x_0) \wedge P(y_0) \to x_0 = y_0$	\rightarrow i $7-12$
	14	$\forall y (P(x_0) \land P(y) \to x_0 = y)$	$\forall y$ i $6-13$
	15	$\forall x \forall y (P(x) \land P(y) \to x = y)$	$\forall x \text{ i } 5-14$
	16	$P(b) \land \forall x \forall y (P(x) \land P(y) \rightarrow x = y)$	$\wedge i 4, 15$