Artificial Intelligence and Machine Learning 2023/2024

Week 2 Tutorial and Additional Exercises

Dr Ruchit Agrawal

School of Computer Science

January 29, 2024

Complexity of Programs

1 Mathematical Preliminaries

1.1 Laws of probability

The probability of an event A is written $\mathbb{P}(A)$. It is an element of $\{x \in \mathbb{R} \mid 0 \leqslant x \leqslant 1\}$.

The basic laws of probability are as follows:

- An impossible event has probability 0.
- A certain event has probability 1.
- For an event A, we have $\mathbb{P}(\text{not }A) = 1 \mathbb{P}(A)$. For example, suppose the probability that it's raining is $\frac{1}{3}$. Then the probability that it's not raining is $\frac{2}{3}$.
- For events A and B that are mutually exclusive, we have $\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B)$. For example, suppose the probability that it's raining is $\frac{1}{3}$ and the probability that it's sunny is $\frac{1}{5}$. If these are mutually exclusive events, then the probability that it's either raining or sunny is $\frac{8}{15}$.
- For events A and B that are independent, we have $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A) \times \mathbb{P}(B)$. For example, suppose the probability that it's raining is $\frac{1}{3}$ and the probability that John is happy is $\frac{1}{5}$. If these are independent events, then the probability that it's raining and John is happy is $\frac{1}{15}$.

1.2 Important summations

Here are some summations that come up again and again, so make sure you know them.

$$0+1+2+\cdots+(n-1) = \frac{1}{2}n(n-1)$$

$$1+2+3+\cdots+n = \frac{1}{2}n(n+1)$$

$$1+b+b^2+\cdots+b^{n-1} = \frac{b^n-1}{b-1} \quad (b \neq 1)$$

$$1+b+b^2+\cdots+b^n = \frac{b^{n+1}-1}{b-1} \quad (b \neq 1)$$

1.3 Upper and lower bounds

- It will take me at least an afternoon to clear my office. Lower bound.
- Clearing the office will take me a week at most. *Upper bound*.
- Building the new railway will cost no more than 70 billion pounds. Upper bound.
- For the café to be viable, we need at least 30 customers a day, maybe more. Lower bound.

Note that an upper bound gives a guarantee.

2 Running time of a program

2.1 Best, average and worst cases

Consider a sample problem, e.g. sorting (arranging items in order)

Figure 2.1: Best, worst, and average-case complexity

The above plot illustrates three functions:

- Worst-case complexity: It gives us an *upper bound* on the cost. It is determined by the *most difficult* input and provides a guarantee for all inputs.
- **Best-case complexity**: It gives us a *lower bound* on the cost. It is determined by the *easiest input* and provides a goal for all inputs.
- Average-case complexity: It gives us the *expected cost* for a random input. It requires a model for *random input* and provides a way to predict performance.

We will mainly focus input size and average/worst case complexity analysis.

Lets consider the following program that operates on an array of characters that are all a or b or c.

```
void f (char[] p) {
  elapse(1 second);
  for (nat i = 0; i < p.length(), i++) {
    if (p[i] == 'a') {
      elapse(1 second);
    } else {
      elapse(2 seconds);
    }
    elapse (1 second);
}</pre>
```

For an array of length 0, the running time is 1 second. For an array of length 1, assuming a, b, c are equally likely:

Array contents	Probability	Time	Probability × time
a	$\frac{1}{3}$	3s	1s
b	$\frac{1}{3}$	4s	$1\frac{1}{3}s$
С	$\frac{1}{3}$	4s	$1\frac{1}{3}s$
Worst case: b		4s	
Average case			$3\frac{2}{3}s$

For an array of length 2, assuming a, b, c are equally likely and the characters are independent:

Array contents	Probability	Time	Probability × time
aa	$\frac{1}{9}$	5s	$\frac{5}{9}S$
ab	$\frac{1}{9}$	6s	$\frac{2}{3}S$
ac	$\frac{1}{9}$	6s	$\frac{2}{3}S$
ba	$\frac{1}{9}$	6s	$\frac{2}{3}S$
bb	$\frac{1}{9}$	7s	$\frac{7}{9}S$
bc	$\frac{1}{9}$	7s	$\frac{7}{9}S$
ca	$\frac{1}{9}$	6s	$\frac{2}{3}S$
cb	$\frac{1}{9}$	7s	$\frac{7}{9}S$
CC	$\frac{1}{9}$	7s	$\frac{7}{9}S$
Worst case: bb		7s	
Average case			$6\frac{1}{3}s$

Now consider an array of length n.

- 1. When does the worst case arise? (Just give one example.) What is its running time?
- 2. Assuming a, b, c are equally likely and the characters are independent, what is the average case running time?

Formal optimisation problem

• Recall the canonical form of an optimisation problem:

maximise/minimise
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \leq 0, \qquad i = 1, \dots, m$
 $h_i(\mathbf{x}) = 0, \qquad j = 1, \dots, n$

- x is the vector of design variables.
- f is the objective function, e.g. the cost or quality of a solution.
- g_1, \ldots, g_m are the *inequality constraints* and h_1, \ldots, h_n are the *equality constraints*.
- In a multi-objective optimisation problem, there are more than one objective functions, e.g. f_1, f_2, \ldots, f_k .

Formal optimisation problem (continued)

Some more definitions:

- \bullet Each value of **x** is a *solution* to the optimisation problem.
- The search space consists of all possible solutions.
- A solution that satisfies the constraints is called *feasible*. A solution that does not satisfy the constraints is called *infeasible*.

Exercise 1

Consider the following problem:

- A company makes square boxes and triangular boxes. Square boxes take 2 minutes to make and sell for a profit of 4. Triangular boxes take 3 minutes to make and sell for a profit of 5. No two boxes can be created simultaneously. A client wants at least 25 boxes including at least 5 of each type in one hour. What is the best combination of square and triangular boxes to make so that the company makes the most profit from this client?
- Formalize this problem as a canonical optimisation problem, but consider it is ok for the objective to be a function to be maximised instead of minimised. Identify the design variables, the objective function and the constraints.

Exercise 1: Solution

• Let $x_1 \in \mathbb{N}$ be the number of square boxes and $x_2 \in \mathbb{N}$ be the number of triangular boxes. These are the design variables. Write $\mathbf{x} = (x_1, x_2)$. The formal optimisation problem is the following:

maximise
$$4x_1 + 5x_2$$

subject to $2x_1 + 3x_2 \le 60$
 $x_1 \ge 5$
 $x_2 \ge 5$
 $x_1 + x_2 > 25$

• Let us find the objective function and the constraints so that they follow the canonical formulation.

Exercise 1: Solution (continued)

• Objective function:

$$f(\mathbf{x}) = 4x_1 + 5x_2$$

Constraints:

$$g_1(\mathbf{x}) = 2x_1 + 3x_2 - 60$$

 $g_2(\mathbf{x}) = 5 - x_1$
 $g_3(\mathbf{x}) = 5 - x_2$
 $g_4(\mathbf{x}) = 25 - x_1 - x_2$

There are no equality constraints, so no h_1, h_2, \ldots functions.

With these definitions, the canonical problem can be written

maximise
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \leq 0$, $i = 1, 2, 3, 4$

Exercise 2

Consider the following problem:

- A woman makes pins and earrings. Each pin takes 1 hour to make and sells for a profit of 8. Each earring takes 2 hours to make and sells for a profit of 20. She wants to make exactly as many pins as earrings. She has 40 hours and wants to have made at least 20 items, including at least 4 of each item. How many each of pins and earrings should the woman make to maximise her profit?
- Formalize this problem as a canonical optimisation problem, but consider it is ok for the objective to be a function to be maximised instead of minimised. Identify the design variables, the objective function and the constraints.

Exercise 2: Solution

• Let $x_1 \in \mathbb{N}$ be the number of pins and $x_2 \in \mathbb{N}$ be the number of earrings. These are the design variables. Write $\mathbf{x} = (x_1, x_2)$. The formal optimisation problem is the following:

maximise
$$8x_1 + 20x_2$$

subject to $x_1 + 2x_2 \le 40$
 $x_1 + x_2 \ge 20$
 $x_1 \ge 4$
 $x_2 \ge 4$
 $x_1 = x_2$

• Let us find the objective function and the constraints so that they follow the canonical formulation.

Exercise 2: Solution (continued)

• Objective function:

$$f(\mathbf{x}) = 8x_1 + 20x_2$$

Constraints:

$$g_1(\mathbf{x}) = x_1 + 2x_2 - 40$$

 $g_2(\mathbf{x}) = 20 - x_1 - x_2$
 $g_3(\mathbf{x}) = 4 - x_1$
 $g_4(\mathbf{x}) = 4 - x_2$
 $h_1(\mathbf{x}) = x_1 - x_2$

With these definitions, the canonical problem can be written

maximise
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \leq 0, \qquad i = 1, 2, 3, 4$
 $h_j(\mathbf{x}) = 0, \qquad j = 1$

Commontation Constraints Design C Profit (maximin) 2 71 A 3x2 600 The the popular por poxis. Jan Jos - Hier Design voriable.