Line fitting

Least square fit & RANSAC

Line fitting

Least Squares fit (over constraint)

RANSAC (constraint)

Hough Transform (under constraint)

Least Squares fit

$$y = mx + c = f(x, m, c)$$

Minimize
$$E = \sum_{i} [y_i - f(x_i, m, c)]^2$$

Take derivatives wrt m & c and set them to zero

Least Squares fit || pseudo inverse

Challenges

Vertical line Multiple lines

RANSAC: Random Sample Consensus

- 1. Randomly select two points to fit a line
- 2. Find the error between the estimated solution and all other points. If the error is less than tolerance, then quit, else go to step 1.

Comparison

Image Stitching (Panorama)

Image Stitching: SIFT detector

Image Stitching: Geometric relationship

Image Stitching: Warping

Image Stitching

Image Stitching: Blending

Image Stitching

- 1. Perform Transformations (Projective)
- 2. Computing Homography
- 3. Dealing with Outliers (RANSAC)
- 4. Warping and Blending images