4.2.3 二阶常系数线性齐次微分方程的解法

方程y''+py'+qy=0称为二阶常系数齐次线性微分方程,其中p、q均为常数.

如果 y_1 、 y_2 是二阶常系数齐次线性微分方程的两个线性无关解,那么 $y=C_1y_1+C_2y_2$ 就是它的通解.

首页

上页

返回

下页

结束

❖二阶常系数齐次线性微分方程

方程y''+py'+qy=0称为二阶常系数齐次线性微分方程,其中p、q均为常数.

分析:

考虑到当y''、y'、y为同类函数时,有可能使y''+py'+qy恒等于零,而函数 e^{rx} 具有这种性质,所以猜想 e^{rx} 是方程的解.

将 $y=e^{rx}$ 代入方程y''+py'+qy=0得 $(r^2+pr+q)e^{rx}=0.$

由此可见,只要r满足代数方程 $r^2+pr+q=0$,函数 $y=e^{rx}$ 就是微分方程的解.

❖二阶常系数齐次线性微分方程

方程y''+py'+qy=0称为二阶常系数齐次线性微分方程,其中p、q均为常数.

❖特征方程及其根

方程r²+pr+q=0叫做微分方程y"+py'+qy=0的特征方程. 特征方程的求根公式为

$$r_{1,2} = \frac{-p + \pm \sqrt{p^2 - 4q}}{2}$$
.

首页

上页

返回

下页

结束

方程 $r^2+pr+q=0$ 的根的情况	方程y"+py'+qy=0的通解
有两个不相等的实根: r_1 、 r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

简要证明: 这是因为

函数 e^{r_1x} 和 e^{r_2x} 都是方程的解;

$$\frac{e^{r_1x}}{e^{r_2x}} = e^{(r_1 - r_2)x}$$
 不是常数,即 e^{r_1x} 与 e^{r_2x} 线性无关.

方程 $r^2+pr+q=0$ 的根的情况	方程y"+py'+qy=0的通解
有两个不相等的实根: r_1 、 r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
有两个相等的实根: $r_1=r_2$	$y = C_1 e^{r_1 x} + C_2 x e^{r_1 x}$

简要证明: 这是因为

$$(xe^{r_1x})'' + p(xe^{r_1x})' + q(xe^{r_1x}) = (2r_1 + xr_1^2)e^{r_1x} + p(1+xr_1)e^{r_1x} + qxe^{r_1x}$$
$$= e^{r_1x}(2r_1 + p) + xe^{r_1x}(r_1^2 + pr_1 + q) = 0,$$

即xe^{rx}是方程的解;

$$\frac{xe^{r_1x}}{e^{r_1x}} = x$$
 不是常数,即 e^{r_1x} 与 e^{r_2x} 线性无关.

方程 $r^2+pr+q=0$ 的根的情况	方程y"+py'+qy=0的通解
有两个不相等的实根: r_1 、 r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
有两个相等的实根: $r_1=r_2$	$y = C_1 e^{r_1 x} + C_2 x e^{r_1 x}$
有一对共轭复根: $r_{1,2}$ = α ± $i\beta$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

简要证明: 因为函数 $y_1 = e^{(\alpha + i\beta)x}$ 和 $y_2 = e^{(\alpha - i\beta)x}$ 都是方程的解,

$$\overline{m}$$
 $e^{\alpha x} \cos \beta x = \frac{1}{2} (y_1 + y_2), \quad e^{\alpha x} \sin \beta x = \frac{1}{2i} (y_1 - y_2),$

故 $e^{\alpha x}\cos\beta x$ 和 $e^{\alpha x}\sin\beta x$ 也是方程的解;

函数 $e^{\alpha x}\cos\beta x$ 与 $e^{\alpha x}\sin\beta x$ 的比值为 $\cot\beta x$,不是常数,故 $e^{\alpha x}\cos\beta x$ 和 $e^{\alpha x}\sin\beta x$ 是方程的线性无关解.

首页

上页

返回

下页

结束

方程 $r^2+pr+q=0$ 的根的情况	方程y"+py'+qy=0的通解
有两个不相等的实根: r_1 、 r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
有两个相等的实根: $r_1=r_2$	$y = C_1 e^{r_1 x} + C_2 x e^{r_1 x}$
有一对共轭复根: $r_{1,2}$ = α ± $i\beta$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

$\bar{\mathbf{x}} y'' + py' + qy = 0$ 的通解的步骤:

•第一步 写出微分方程的特征方程

$$r^2 + pr + q = 0;$$

- •第二步 求出特征方程的两个根 r_1 、 r_2 ;
- •第三步 根据特征方程的两个根的不同情况,写出微分方程的通解.

首页

返回

方程 $r^2+pr+q=0$ 的根的情况	方程y"+py'+qy=0的通解
有两个不相等的实根: r_1 、 r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
有两个相等的实根: $r_1=r_2$	$y = C_1 e^{r_1 x} + C_2 x e^{r_1 x}$
有一对共轭复根: $r_{1,2}$ = α ± $i\beta$	$y=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x)$

例1 求微分方程y"-2y'-3y=0的通解.

解 微分方程的特征方程为

$$r^2-2r-3=0$$
, $\mathbb{P}(r+1)(r-3)=0$.

特征方程有两个不相等的实根 r_1 =-1, r_2 =3,

因此微分方程的通解为 $y=C_1e^{-x}+C_2e^{3x}$.

方程 $r^2+pr+q=0$ 的根的情况	方程y"+py'+qy=0的通解
有两个不相等的实根: r_1 、 r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
有两个相等的实根: $r_1=r_2$	$y = C_1 e^{r_1 x} + C_2 x e^{r_1 x}$
有一对共轭复根: $r_{1,2}$ = α ± $i\beta$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

例2 求方程y"+2y'+y=0的通解.

解 微分方程的特征方程为 $r^2+2r+1=0$, 即 $(r+1)^2=0$.

特征方程有两个相等的实根 $r_1=r_2=-1$,

因此微分方程的通解为 $y=C_1e^{-x}+C_2xe^{-x}$, 即 $y=(C_1+C_2x)e^{-x}$.

方程 $r^2+pr+q=0$ 的根的情况	方程y"+py'+qy=0的通解
有两个不相等的实根: r_1 、 r_2	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
有两个相等的实根: $r_1=r_2$	$y = C_1 e^{r_1 x} + C_2 x e^{r_1 x}$
有一对共轭复根: $r_{1,2}$ = α ± $i\beta$	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

例 3 求微分方程y"-2y'+5y=0的通解.

 \mathbf{m} 微分方程的特征方程为 $r^2-2r+5=0$.

特征方程的根为 r_1 =1+2i, r_2 =1-2i, 是一对共轭复根,因此微分方程的通解为y= e^x (C_1 cos2x+ C_2 sin2x).

通解形式

首页

上页

返回

下页

结束

❖n阶常系数齐次线性微分方程

方程 $y^{(n)}+p_1y^{(n-1)}+p_2y^{(n-2)}+\cdots+p_{n-1}y'+p_ny=0$ 称为n 阶常系数齐次线性微分方程, 其中 $p_1, p_2, \cdots, p_{n-1}, p_n$ 都是常数.

引入微分算子D及微分算子的n次多项式

$$L(D)=D^{n}+p_{1}D^{n-1}+p_{2}D^{n-2}+\cdots+p_{n-1}D+p_{n},$$

则n阶常系数齐次线性微分方程可记作

$$(D^n + p_1 D^{n-1} + p_2 D^{n-2} + \dots + p_{n-1} D + p_n)y = 0$$
 或 $L(D)y = 0$.

注:

 $D^0y=y$, Dy=y', $D^2y=y''$, $D^3y=y'''$, ..., $D^ny=y^{(n)}$.

首页

❖n阶常系数齐次线性微分方程

方程 $y^{(n)}+p_1y^{(n-1)}+p_2y^{(n-2)}+\cdots+p_{n-1}y'+p_ny=0$ 称为n 阶常系数齐次线性微分方程, 其中 $p_1,\ p_2,\cdots,p_{n-1},p_n$ 都是常数.

引入微分算子D,则上述微分方程可记作

$$(D^n + p_1D^{n-1} + p_2D^{n-2} + \dots + p_{n-1}D + p_n)y = 0$$
 $\overrightarrow{\mathbb{Z}}L(D)y = 0$.

分析:

$$L(D)y=L(D)e^{rx}$$

$$= (r^{n} + p_{1}r^{n-1} + p_{2}r^{n-2} + \dots + p_{n-1}r + p_{n})e^{rx}$$

$$= L(r)e^{rx}.$$

因此如果r是多项式L(r)的根,则 $y=e^{rx}$ 是微分方程L(D)y=0的解. L(r)=0称为微分方程L(D)y=0的特征方程.

首页

上页

返回

下页

结束

❖n阶常系数齐次线性微分方程

方程 $y^{(n)}+p_1y^{(n-1)}+p_2y^{(n-2)}+\cdots+p_{n-1}y'+p_ny=0$ 称为n 阶常系数齐次线性微分方程, 其中 $p_1,\ p_2,\cdots,p_{n-1},p_n$ 都是常数.

引入微分算子D,则上述微分方程可记作

$$(D^n + p_1 D^{n-1} + p_2 D^{n-2} + \dots + p_{n-1} D + p_n)y = 0$$
 或 $L(D)y = 0$.

❖特征方程的根与通解中项的对应

- •单实根r对应于一项: Ce^{rx} ;
- •一对单复根 r_1 , $_2$ = $\alpha \pm i\beta$ 对应于两项: $e^{\alpha x}(C_1\cos\beta x + C_2\sin\beta x)$;
- •k重实根r对应于k项: $e^{rx}(C_1+C_2x+\cdots+C_kx^{k-1})$;
- •一对k重复根 r_1 , $_2$ = α ± $i\beta$ 对应于2k项:

$$e^{\alpha x}[(C_1+C_2x+\cdots+C_kx^{k-1})\cos\beta x+(D_1+D_2x+\cdots+D_kx^{k-1})\sin\beta x].$$

首页

例4 求方程 $y^{(4)}$ —2y'''+5y''=0 的通解.

解 微分方程的特征方程为

$$r^4-2r^3+5r^2=0$$
, $\mathbb{R}^2(r^2-2r+5)=0$,

它的根是 $r_1=r_2=0$ 和 r_3 , $_4=1\pm 2i$. 因此微分方程的通解为 $y=C_1+C_2x+e^x(C_3\cos 2x+C_4\sin 2x)$.

例5 求方程 $y^{(4)}+\beta^4y=0$ 的通解, 其中 $\beta>0$.

解 微分方程的特征方程为r⁴+β⁴=0, 其根为

$$r_{1,2} = \frac{\beta}{\sqrt{2}}(1\pm i), \quad r_{3,4} = -\frac{\beta}{\sqrt{2}}(1\pm i).$$

因此微分方程的通解为

$$y = e^{\frac{\beta}{\sqrt{2}}x} (C_1 \cos \frac{\beta x}{\sqrt{2}} + C_2 \sin \frac{\beta x}{\sqrt{2}}) + e^{-\frac{\beta}{\sqrt{2}}x} (C_3 \cos \frac{\beta x}{\sqrt{2}} + C_4 \sin \frac{\beta x}{\sqrt{2}}).$$

首页