

A Generalization Theory for Zero-Shot Prediction

IFML

Ronak Mehta and Zaid Harchaoui

Zero-Shot Prediction (ZSP)

Motivation: Zero-shot prediction is a modern method that reuses foundation models to build classifiers for tasks without seeing any directly labeled training data.

Need for theoretical understanding has arisen.

Contrastive Pre-Training Image Encoder \longrightarrow Task-Agnostic → Learning Objective (CLIP, VIGReg, etc.) Text Encoder \longrightarrow

Evaluation

Research Question: How does the downstream performance of ZSP depend on the pre-training distributions, downstream task distribution, and prompting strategy?

Theoretical Framework

Fundamental limits of ZSP rely on the compatibility of three distributions.

 $P_{X,Y}$ $ho_{Y,Z}$ $Q_{X,Z}$ Pre-Training Evaluation Prompting How well can X = imageprediction through ZY = labelperform for any joint Z =caption distribution $P_{X,Y,Z}$

Direct Predictor $f_{\star}(\boldsymbol{x}) = \mathbb{E}_{P_{X,Y}}\left[Y|X=\boldsymbol{x}\right]$

Indirect Predictor (Population Version of ZSP) $ar{f}(oldsymbol{x}) = \mathbb{E}_{Q_{X,Z}} \left[\mathbb{E}_{
ho_{Y,Z}} \left[Y|Z
ight] | X = oldsymbol{x}
ight]$

that nearly agrees

with marginals?

Main Results

Error decomposition for ZSP procedures.

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \hat{f}(X))^2 \right] \le 2\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$

information-theoretic error

learning error

Interpretation: Residual dependence between image/label not explained by text. **Interpretation:** Bias of prompt distribution.

Theorem. $\mathbb{E}_{X \sim P_X} [(\bar{f}(X) - \hat{f}(X))^2] \lesssim C_N(Q_{X,Z}) + C_M(\rho_{Y,Z})$

Interpretation: Complexity of learning foundation model (e.g., CLIP) from N pre-training examples.

Interpretation: Complexity of approximating prompt distribution with M prompts.

Experiments

Synthetic Data Example: Controllable Residual Dependence and Prompt Bias

Real Data Examples: Language-Image Pre-Training and Image Classification

When P_{YZ} is observed, using held-out prompt examples outperforms templates.

