Métodos paramétricos de identificação de sistemas - Trabalho 3

Tassiano Neuhaus

Universidade Federal do Rio Grande do Sul - Departamento de Engenharia Elétrica Av. Osvaldo Aranha, 103 - Bairro Bom Fim CEP: 90035-190 - Porto Alegre - RS - Brasil

Resumo—Este trabalho tem o objetivo de demonstrar três diferentes métodos para identificação de um sistema.

Palavras-chave—Identificação de sistemas lineares, métodos paramétricos.

I. Introdução

II. IDENTIFICAÇÃO

O sistema em estudo é composto por uma fonte de tensão alimentado um resistor. O propósito deste trabalho é apresentar três diferentes métodos para identificação da resistência do resistor do sistema.

Para identificação do sistema foram feitos dois conjuntos de medidas de tensão e corrente sobre o resistor que são apresentados na Tabela (I).

Tabela I MEDIDAS SOBRE O SISTEMA

Medida	V1	V2	V3	I1	I2	I3
t		y(t)[V]			u(t)[mA]	
1	1.45	1.28	1.28	0.94	0.81	0.82
2	2.58	2.14	1.71	1.6	1.2	1.1
3	3.08	2.71	2.21	2.02	1.68	1.25
4	3.54	3.51	3.02	2.3	2.28	1.94
5	4.01	4.49	3.64	2.63	2.81	2.22
6	4.57	5.05	4.12	3.01	3.27	2.68
7	5.21	6.05	4.82	3.42	3.9	3.12
8	6.21	6.72	5.25	4.09	4.22	3.42
9	7.09	7.45	6.11	4.51	4.81	4
10	7.71	8.13	6.88	4.91	5.3	4.55
11	8.36	8.9	7.6	5.49	5.78	5.05
12	9.06	9.73	8.32	6	6.38	5.32
13	10	10.17	9.51	6.6	6.71	6.1
14	10.46	10.51	10.13	6.9	6.94	6,54
15	4.8	7	10.52	3.16	4.55	6.8

O primeiro método utilizado é representado na equação (1).

$$\hat{R}_1 = \frac{1}{N} \sum_{t=1}^{N} \frac{y(t)}{u(t)} \tag{1}$$

Obtém-se desta forma uma resistência estimada de 1535.3Ω . Na Figura (1) apresenta-se os valores estimados da resistência a cada medida. Este método produziu o valor médio descrito anteriormente e o desvio padrão de 28.5Ω .

Para o segundo conjunto de dados a resistência estimada foi de 1567.9Ω com um desvio padrão de 66.7Ω . Na Figura (2) apresenta-se os valores estimados da resistência a cada medida.

Figura 1. Gráfico da estimativa da resistência em cada instante para o conjunto de dados da primeira amostragem.

Figura 2. Gráfico da estimativa da resistência em cada instante para o conjunto de dados da segunda amostragem.

Alterando-se o método para a estimativa da resistência para a apresentada em (2), Obtém-se uma resistência de 1530.6Ω .

$$\hat{R}_2 = \frac{1}{N} \frac{\sum_{t=1}^{N} y(t)}{\sum_{t=1}^{N} u(t)}$$
 (2)

Para o terceiro método (3), também conhecido como método dos mínimos quadrados, chegou-se aos valores de resistência de 1527.7Ω e 1538.0Ω nos conjuntos de dados, 1 e 2 respectivamente.

$$\hat{R}_3 = \frac{1}{N} \frac{\sum_{t=1}^{N} y^2(t)}{\sum_{t=1}^{N} u(t)y(t)}$$
(3)

Observa-se que o valor estimado para a resistência utili-

zando o método dos mínimos quadrados obtém valores para a resistência dos conjuntos de dados 1 e 2 mais próximos que quando utilizamos o método 1.

A. Comparação dos resultados obtidos

Na Tabela (II) apresenta-se os valores de resistência obtidos utilizando os 3 métodos e os dois conjuntos de dados.

Tabela II
COMPARATIVO DOS RESULTADOS OBTIDOS

Dados	Método 1	Método 2	Método 3
Conjunto 1	1535.3	1530.6	1527.7
Conjunto 2	1567.9	1547.5	1538.0
Conjunto 3	1564.0	1550.2	1545.7
Média	1555.7	1542.7	1537.2
Desv Padrão	17.8	10.6	9.0

A partir da Tabela (II) é possível observar que dentro dos três métodos, o que apresentou um valor para a resistência com o menor desvio padrão entre as amostras coletadas foi o método 3 (mínimos quadrados).

III. MÉTODO DE IDENTIFICAÇÃO POR MÍNIMOS QUADRADOS

IV. CONCLUSÕES

Neste trabalho apresentou-se métodos para identificação de sistemas utilizando-se métodos não paramétricos, ou seja, métodos que identificam a característica gráfica da resposta do sistema

Foram apresentados métodos de identificação da função de transferência e também para a identificação da resposta impulsiva do sistema.

O sistema considerado era sujeito a perturbações na saída, e desta forma métodos mais simplificados para o levantamento da função de transferência não possuem confiabilidade, pois são muito susceptíveis ao ruido, podendo muitas vezes alterar toda a caracterização do sistema.

APÊNDICE

Script para estimar Resistência do resistor

```
% Identificação de sistemas
% Tassiano Neuhaus
% tassianors@gmail.com
% UFRGS
clear all: close all:
R=zeros(3,3);
% Data
I = [0.94; 1.6; 2.02; 2.3; 2.63; 3.01; 3.42;
    4.09;4.51;4.91;5.49;6;6.6;6.9;3.16];
V = [1.45; 2.58; 3.08; 3.54; 4.01; 4.57; 5.21;
    6.21;7.09;7.71;8.36;9.06;10;10.46;4.8];
I2 = [0.81; 1.2; 1.68; 2.28; 2.81; 3.27; 3.9;
    4.22;4.81;5.3;5.78;6.38;6.71;6.94;4.55];
V2 = [1.28; 2.14; 2.71; 3.51; 4.49; 5.05; 6.05;
    6.72; 7.45; 8.13; 8.9; 9.73; 10.17; 10.51; 7];
I3 = [0.82; 1.1; 1.25; 1.94; 2.22; 2.68; 3.12;
    3.42;4;4.55;5.05;5.32;6.1;6.54;6.8];
V3 = [1.28; 1.71; 2.21; 3.02; 3.64; 4.12; 4.82;
```

```
5.25:6.11:6.88:7.6:8.32:9.51:10.13:10.521:
% -----
% Method 1
Rm1=V./I;
R(1,1)=mean(Rm1);
figure (1):
stem (Rm1):
axis([0 15 1.45 1.65]);
title ('Estimativa da Resistencia a cada amostragem
    Metodo 1');
xlabel ('Medidas efetuadas');
ylabel ('ResistÃancia em cada medida');
R2m1=V2./I2;
R(1,2) = mean(R2m1);
figure (2):
stem (R2m1):
axis([0 15 1.45 1.8]);
title ('Estimativa da Resistencia a cada amostragem
    - Metodo 1');
xlabel('Medidas efetuadas');
ylabel ('ResistÃancia em cada medida');
R3m1=V3./I3;
R(1,3)=mean(R3m1)
figure (3);
stem (R3m1);
axis([0 15 1.45 1.8]);
title ('Estimativa da Resistencia a cada amostragem
    - Metodo 1');
xlabel('Medidas efetuadas');
ylabel ('ResistÃancia em cada medida');
% =====
% Method 2
Vm2=mean(V):
Im2=mean(I);
R(2,1)=Vm2/Im2;
V2m2=mean(V2):
I2m2=mean(I2):
R(2,2)=V2m2/I2m2;
V3m2=mean(V3);
I3m2=mean(I3):
R(2,3)=V3m2/I3m2;
% Method 3
Vmq=mean(V.^2);
IVmq=mean(I.*V);
R(3,1)=Vmq/IVmq;
V2mq=mean(V2.^2);
IV2mq = mean(I2.*V2):
R(3,2)=V2mq/IV2mq;
V3mq=mean(V3.^2);
IV3mq=mean(13.*V3);
R(3,3)=V3mq/IV3mq;
```

Listing 1. Descriptive Caption Text