UNCLASSIFIED

AD 268 379

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

STORAGE OF 90% AND 98% BY WEIGHT HYDROGEN PEROXIDE IN SEALED CONTAINERS FOR EXTENDED PERIODS

J. C. McCORMICK et al

FMC CORPORATION
STATION B
BUFFALO 7, NEW YORK

PROPULSION DEPARTMENT REPORT #3504-7

CONTRACT AF 04(611)6342

Project Number 3148 Task Number 30196 NOVEMBER 1961

ROCKET TEST ANNEX
SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
EDWARDS AFB, CALIFORNIA

I. FORWARD

This contract has been monitored by the Rocket Development Laboratory of Edwards Air Force Base Flight Test Center with Mr. Forrest S. Forbes as Project Engineer. The work upon which this document is based was accomplished by Becco Chemical Division, FMC Corporation, at Buffalo, New York, under Air Force Contract AF-04(611) 6342, and also includes experimental test data generated by Becco at Corporate expense. Technical personnel contributing to the above contract work include:

- A. Lijewski
- G. Carnine
- J. McCormick

This is the final report, submitted per Part III, Item B., of the contract. This report discusses all work accomplished from 15 December 1960 to 15 July 1961.

Work carried out under Air Force Contract AF-33(616)6732 is also listed in this report where advantageous, to make this a complete document.

II. ABSTRACT

2 :

1

This document describes work performed under Contract AF-04(611)6342, pertaining to the storage of Hydrogen Peroxide in sealed storage containers.

Four grades of Becco Hydrogen Peroxide were evaluated: Commercial 90% by weight H₂O₂, Propulsion 90% by weight H₂O₂, Commercial 98% by weight H₂O₂, and Propulsion 98% by weight H₂O₂, in 1 gallon capacity TFE Teflon bladders contained in mild steel test tanks at 70-72°F for five months, 120°F for seven days, and 165°F for 72 hours. The bladders were not as compatible as desired due to bleaching and crack development experienced with this dispersion-type Teflon.

These tests showed the oxygen loss from the H_2O_2 during the storage period can be decreased by utilizing improved passivation techniques, surface pre-treatment techniques and improved stabilizers for the H_2O_2 .

The use of an oxygen absorbant bag in the $\rm H_2O_2$ tank proved non rewarding due to breakdown of the absorbant solution. However, the use of a more suitable oxygen absorbant should prove satisfactory.

The most promising test results were obtained with the 98% Propulsion H₂O₂ containing stabilizer P.

Brief screening tests showed other bladder materials such as N.A.A. Vicone 185, 3M Fluorel #2141 and Dupont Viton B cure 805 to give comparable or superior compatibility in contact with the $\rm H_2O_2$ when compared to the dispersion-type Teflon material.

TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION	1
2.0	PROGRAM OBJECTIVES	2
3.0	PROGRAM OUTLINE	2
4.0	TEST EQUIPMENT	4
4.1 4.2 4.3 4.4 4.5	Test Equipment Used	4 5666
5.0	TEST RESULTS and DISCUSSION OF THE TEST RESULTS	8
5.1 5.2 5.3 5.4	Room Temperature Tests	8 10 11
5.5	Treated TFE Teflon Bladders	12
5.6	Employing Used TFE Teflon Bladders	12
	New and Used TFE Teflon Bladders	13
5.7	Bladder materials and Kanigen Coating Mild Steel	13
5.8	Results of Sealed-Storage Tests with a Becco Experimental Low-Freezing High-Energy Monopropellant	14
6.0	CONCLUSIONS	15
6.1 6.2 6.3	Room Temperature Tests Tests with Absorbent Bags Elevated Temperature Tests Mosts with Konigan Plated and Min Conted	15 16 16
6.4 6.5	Tests with Kanigen-Plated and Tin-Coated- Kanigen- Plated Samples	17
6.6	Tests with a Hydrogen Peroxide-Based Low- Freezing Monopropellant	17 17
7.0	ADDITIONAL OBSERVATIONS	17
8.0	RECOMMENDATIONS FOR FUTURE WORK	18
8.1	Laboratory Studies	18

TABLE OF CONTENTS (continued)

	Page
REFERENCES	20
APPENDIX A Passivation Procedures	21
ILLUSTRATIONS Figures 1 - 24	22-46
TABLES Tables I - XIX	47-71

LIST OF ILLUSTRATIONS

Figure		Page
1	Results of a 3-Month Storage Test of 90% H ₂ O ₂ in a FEP Teflon Bladder at 72-75°F	22
2.	Complete Test Tank Assembly	23
3	Cut-away View of the Test Tank Assembly	24
4	Test Tanks as Setup for Room Temperature Tests	25
5	Test Tanks as Setup for the Elevated Temperature Tests	26
6	Test Tank as Submerged in Water Bath for Leak Checking	27
7	Test Tank Showing an Absorbent Bag Installed for Test	28
8	Test Tank as Connected to Obtain the Required Air-chamber Volume Prior to Start of a Test	29
9	Results of 20°C (68°F) Long-Term Sealed-Storage Tests with Hydrogen Peroxide Solutions in TFE Teflon Bladders - S.V. Ratic 0.69 in. 2/in. 3, 10.4% Ullage	
10	Results of 20°C (68°F) Long-Term Sealed Storage Tests with Hydrogen Peroxide Solutions in TFE Teflon Bladder. Each Bladder Contained an Absorbent Bag. S.V. Ratio 0.69 in.2/in.3, 9.1% Ullage	. 31
11	TFE Teflon Bladder Sections Before and After H ₂ O ₂ Exposure. Note the Bleached Condition of the Used Bladder on the Right	32
12	Results of 49°C (120°F) Sealed-Storage Tests with H ₂ O ₂ Solutions in TFE Teflon Bladders. S.V. Ratio 0.69 in.2/in. ³ , 10.4% Ullage	33
13	Typical Absorbent Bags Before and After Sealed- Storage Tests in Contact with Hydrogen Peroxide. Note the Bloated Condition of the Exposed Bags	34
14	TFE Teflon Bladder Failure During the 120°F Tests	35

LIST OF ILLUSTRATIONS (continued)

1

Figure		Page
15	Results of 49° C (120°F) Sealed-Storage Tests with H_2O_2 Solutions in TFE Teflon Bladders. Each Bladder Contained an Absorbent Bag. S.V. Ratio 0.69 in. $^2/\text{in.}^3$	36
16	Results of 74°C (165°F) Sealed-Storage Tests with H ₂ O ₂ Solutions in TFE Bladders. S.V. Ratio 0.69 in.2/in.3, 10.4% Ullage	37
17	Results of 74°C (165°F) Sealed Storage Tests with Hydrogen Peroxide Solutions in TFE Teflon Bladders. Each Bladder Contained an Absorbent Bag. S.V. Ratio 0.69 in.2/in.3, 9.1% Ullage	38
18	Results of 20°C (68°F) Long-Term Sealed-Storage Test with 98% Commercial H ₂ O ₂ Solutions in "Farrelok" Treated TFE Teflon Bladders. S.V. Ratio 0.69 in.2/in.3, 10.4% Ullage	39
19	Results of 49°C (120°F) Sealed-Storage Tests with a Becco Experimental Monopropellant BMP-DEG-1800-20°F. in TFE Teflon Bladder. S.V. Ratio 0.69 in.2/in.3, 10.4% Ullage	40
20	Results of 20°C (68°F) Sealed-Storage Tests with a Becco Experimental Monopropellant BMP-DEG-1800-20°F. in TFE Teflon Bladders. S.V. Ratio 0.69 in.2/in.3, 10.4% Ullage	41
21	Plot of the 20°C (68°F) 3 to 5 Months Storage Tests with H ₂ O ₂ in TFE Teflon Bladders Extended to a One-Year Storage Period. S.V. Ratio 0.69 in. ² /in. ³ , 10.4% Ullage	42
2,2	H ₂ O ₂ Feed System Incorporating an Absorbent Bag and Tin-Plated Feed Lines	43
23	Kanigen-Plated Plus Tin-Plated Missile Feed Tank Incorporating a Vent Valve	44
24	H ₂ O ₂ Feed System Incorporating a Relief Valve and Teflon Reinforced Feed Lines	45
?5	Effect of Surface to Volume Ratio on the Stability of Pure Hydrogen Peroxide	46

LIST OF TABLES

Table		Page
I	Physical, Thermal, and Heat Transfer Properties of Becco 90% and 98% H ₂ O ₂	4.7
II	Oxygen Loss (milligrams) from Becco Commercial and Stabilized-Commercial H ₂ O ₂ While at 100°C for 24 hours in Pyrex Glass (standard Laboratory stability test) - Typical Results	52
III	Compatibility Tests: Plastic Materials with H ₂ O ₂ , 7 days at Elevated Temperature	53
IV	Results of Gas Evolution Tests: With Becco 90% H_2O_2 in TFE Teflon Film Bags - S/V 3.5:1	54
v	Results of Screening Tests with Two Oxygen Absorbent Solutions	55
VI	Physical and Thermal Properties of BMP-DEG-1800 Solutions	56
VII	Results of Tests with BMP-DEG-1800 Solutions Stored in 99.6 Aluminum Shipment Drums for Six Months	59
VIII	Results of Room Temperature (20°C) Sealed-Storage Tests with Becco H ₂ O ₂ in 1-gallon Capacity TFE Teflon Bladders. S/V ratio .69 in. ² /in. ³	60
IX	Results of Room Temperature (20°C) Sealed-Storage Tests with Becco H ₂ O ₂ in 1-gallon Capacity TFE Bladders. S/V ratio .69 in. ² /in. ³ - Each Bladder Contained One Absorbent Bag	61
X	Results of 49°C (120°F) Sealed-Storage Tests with Becco H ₂ O ₂ in 1-gallon Capacity TFE Teflon Bladders. S/V .69 in. ² /in. ³	62
XI	Results of 49°C (120°F) Sealed-Storage Tests with Becco H ₂ O ₂ in 1-gallon Capacity TFE Teflon Bladders. S/V. ratio 0.69 in. ² /in. ³ Each.Bladder Contained One Absorbent Bag	63
XII	Results of 74°C (165°F) Sealed-Storage Tests with Becco H ₂ O ₂ in 1-gallon Capacity TFE Teflon Bladders S/V ratio .69 in. ² /in ³	64
XIII	Results of 74°C (165°F) Sealed Storage Tests with Becco H ₂ O ₂ in 1-gallon Capacity TFE Teflon Bladders S/V 0.69 in. ² /in. ³ Each Bladder Contained One Absorbent Bag	65
XIV	Results of Sealed Storage Tests at 20°C in TFE Teflon Bladders Treated with Farrellok Solution. S/V ratio 0.69 in.2/in.3	66

LIST OF TABLES (continued)

Table		Page
xv	Results of 20°C (68°F) Sealed-Storage Tests with Becco H ₂ O ₂ in 1-gallon Capacity Used TFE Teflon Bladders. S/V ratio 0.69 in. ² /in. ³	66
IVX	Results of Laboratory Tests with New and Used TFE Bladders	67
XVII	Results of Screening Tests with Various Bladder Materials Including Kanigen-Plated and Tin- Plated-Kanigen-Plated Mild Steel	68
XVIII	Results of 49°C (120°F) Sealed-Storage Tests with One of Becco's Experimental Low-Freezing High-Energy Monopropellants in 1-gallon Capacity TFE Teflon Bladders - S/V ratio .69 in.2/in.3	71
XIX	Results of Room Temperature (20°C) Sealed-Storage Tests with One of Becco's Experimental Low-Freezing High-Energy Monopropellants in 1-gallon Capacity TFE Teflon Bladders - S/V ratio .69 in.2/in.3	71

1.0 INTRODUCTION

Concentrated Hydrogen Peroxide and especially 98% by weight $\rm H_2O_2$ has proved to be a high-energy oxidant and monopropellant suitable for use in propulsion systems. Examples are the high-energy $\rm H_2O_2$ -Aluminum enriched Polyethylene hybrid rocket and the 98% $\rm H_2O_2$ -Pentaborane propellant combinations(1-4). Ninety Percent Hydrogen Peroxide is used in the X-15, Scout missile, Mercury capsule, and the Centaur missile as a monopropellant for attitude controls (5).

Hydrogen Peroxide storage vessels are normally vented to relieve oxygen gas formed by the very slow decomposition of the $\rm H_2O_2$. Normal concentration loss is less than 1% per year in 30 gallon capacity storage drums and less than this amount in larger storage tanks. The rate of $\rm H_2O_2$ decomposition is controlled by the surface of the vessel (heterogeneous decomposition), the surface-to-volume ratio, and the purity of the solution (homogeneous decomposition). The heterogeneous reaction can be decreased by the selection of proper materials, decreasing the surface area contacting the $\rm H_2O_2$, and passivation (6). The heterogeneous and homogeneous reaction can be decreased by the use of stabilizers. The original $\rm H_2O_2$ solution is 99%-plus stable, therefore, little has been done in reducing the homogeneous effect. Table I lists the physical, thermal, and heat transfer properties of Becco 90% and 98% $\rm H_2O_2$.

"It has been well established by the work of various investigators that pure hydrogen peroxide of any concentration, in the absence of contaminating catalyst and a thoroughly clean container of non-catalytic material, is a very stable substance. Although the rate of decomposition of the most highly purified hydrogen peroxide is known to be very low, the attainment of such ideal conditions as perfect purity and the absence of all catalytic effects from the walls of the containing vessel or from dissolved or suspended impurities, is of course practically impossible and the best available data on the intrinsic stability of hydrogen peroxide must be considered on one hand only as approximations to that ideally attainable, and on the other hand as a goal for which to strive in practical manufacturing, storage, and handling procedures." (7)

"In practice, decomposition is minimized during storage or use by three measures: (1)-The initial production of hydrogen peroxide in a state of high purity, (2)-The addition of certain substances, termed stabilizers, which counteract the effect of catalytic impurities or container surfaces, (3)-Control of the environment to which hydrogen peroxide is exposed. Hydrogen peroxide is not an inherently unstable material and the development of the electrolytic manufacturing processes, which permitted the production of much purer hydrogen peroxide," (7) than that produced earlier by other production methods showed that high-purity hydrogen peroxide could be produced for propulsion uses.

The Navy has successfully employed a heavy-stabilized grade of 70% H₂O₂ for torpedo power plants. The stabilizer is used as protection against minor contamination.

Becco has developed MS grade 90% H₂O₂ for specific military applications where storage in stainless steel tanks or systems is required.

One specially-stabilized grade of hydrogen peroxide, tailored for sealed-storage was evaluated in this test program.

The $\rm H_2O_2$ producers can tailor hydrogen peroxide for almost any application, from freezing depressants to high-energy monopropellants.

2.0 PROGRAM OBJECTIVES

The object of this work was to determine the limit of hydrogen peroxide storage time in sealed containers without excessive pressure buildup during periods to six months, and this data extrapolated to one year.

This sealed storage is required in many applications where the propulsion system must be ready for instant use after various storage periods.

"Hydrogen peroxide has the advantage over other well-known oxidizers that properly handled, it is extremely stable at room temperature (while ready for instant use). It poses few of the problems characteristic of cryogenic oxidizers like lox and fluorine, nor is it as corrosive as are the more exotic oxidizers." (8)

The future long-period space flights will require oxygenbearing chemicals such as hydrogen peroxide to maintain a proper atmosphere for life support, provide attitude controls, and refrigeration.

Hydrogen peroxide also offers much in stand-by ICBM system as a main oxidant, turbo pump drives, and attitude control.

To simulate the various temperatures and ullages that could be expected in actual applications, the test program as shown in the next section was adopted.

3.0 PROGRAM OUTLINE

The origin approach as called out in the final report under contract AF-33(616)6732, and the proposal prior to contract AF-04(611) 6342, listed the test propellants to be commercial grades 90% and 98% by weight hydrogen peroxide and 90% and 98% by weight hydrogen peroxide containing 10 ppm PO4. Tests carried out at 212°F for 24 hours prior to the start of this contract showed that Becco stabilizer P was superior to the 10 ppm PO4 stabilizer in reducing the homogeneous decomposition of 90% and 98% hydrogen peroxide. The results of these tests are shown in Table II. The encouraging test results showed that if this stabilizer were employed in place of the 10 ppm PO4, more favorable storage would result due to a decrease in the homogeneous decomposition of the $\rm H_2O_2$. The new stabilized grades of $\rm H_2O_2$ were hereafter referred to as Propulsion Grades (experimental).

The selection of a bladder material was carried out under the previous contract AF-33(616)6732. Table III shows the results of the laboratory screening tests. TFE (tetrafluoroethylene) proved to give the best and most consistent results with 90% and 98% $\rm H_2O_2$. Table IV shows the results of small-scale sealed TFE bag tests at various temperatures using 90% $\rm H_2O_2$. Figure 1 shows the results of a 3-month storage test with 90% $\rm H_2O_2$ in a Teflon FEP bladder.

In view of these test results, TFE Teflon was selected as the test bladder material. The bladders were to be passivated and conditioned using the techniques proven most rewarding in the laboratory tests and shown by Table III.

Another approach to the storage problem is the use of an oxygen absorbent to pickup the oxygen gas liberated during the slow $\rm H_2O_2$ decomposition. Table V shows the results of screening tests with two absorbent solutions. The most suitable absorbent solution was made up in molar ratios of 1:3:10 alkaline pyrogallic acid-potassium hydroxide and water respectively.

The absorbent was found to have no detrimental effect upon a vinyl sponge material. The absorbent solution contained in a vinyl sponge and enclosed in a 1 to 2 mil. TFE Teflon film bag was developed under AF contract AF-33(616)6732, and planned for test evaluation under this contract.

The contract work program outline is as follows:

	Comm	. 90%	H ₂ O ₂	Prop	ulsion	1 90%	Comm	. 98%	H ₂ O ₂	Prop	ulsio	n 98%
Absorbent	R.T.	120°	165°	R.T.	120°	165°	R.T.	120°	165	R,T.	120°	165°
No	2			2			2			2		
Yes	5			2			2			2		
No		2			3			2		ļ	3	
Yes		2			2			2			2	
No			2			2			2			2
Yes			2			2			2			2

4.0 TEST EQUIPMENT AND PROCEDURES

The following sections list the various pieces of equipment, passivation procedures, and the test procedures employed.

4.1 Test Equipment Used

The test equipment consisted of a bladder, pressure vessel, pressure gage, hand vent valve, and connecting tubing and fittings, as shown by Figure 2.

The bladder capacity was 1.08 gallon. The shape of the bladder was set to give a minimum surface-to-volume ratio for the volume employed and standard available components, to enclose the bladder. The surface-to-volume ratio was 0.69 sq.in./cu.in. The bladder was fabricated of TFE Teflon, having a wall thickness of .015 inches. A two-section bladder was fabricated to facilitate installation of the absorbent bags and the use of a minimum diameter plastic rupture disc. The bladder was constructed in such a way to insure the $\rm H_2O_2$ would contact only the TFE Teflon during the test. Figure 3.

When received, the bladders were dark brown, instead of white. A room-temperature check with 90% H₂O₂ showed the bladder material to be compatible: thus, no further checks were made prior to the testing. The bladders were fabricated by Chemgineers, Inc., Los Angeles, California.

4.1.1. Test Vessel

The pressure vessel used to confine the bladder consisted of two 6-inch schedule-40 mild steel welding caps welded to two 6-inch schedule-40 modified mild steel stub ends. The lower tank half was equipped with a rupture disc holder assembly. A 1/4-inch tube fitting was welded to the upper tank section to facilitate connecting a pressure gage to show the pressure buildup in the upper tank half during test and a hand vent valve.

The bladder sections were sealed at the vessel girth and at the rupture disc section by the use of a single-groove clamping arrangement held in place with bolts as shown by Figure 2. The pressure vessel was painted inside and out with metallic aluminum paint prior to test use.

4.1.2. Test Tank Attachments

The test tank also included such attachments as a 0-500 psi Murphy & Morse Style AAO pressure gage and a 1/4-inch size #62 316-stainless steel Alloy Steel Products Company hand vent valve. Polyethylene rupture discswere also employed. Figure 3.

The test tanks were mounted as shown by Figure 4 for the room-temperature tests and as shown by Figure 5 for the elevated-temperature tests. The rupture disc was mounted at the low

point of the tank to facilitate draining of the propellant if it became contaminated. Polyethylene rupture discs were employed due to its readily available supply in various thicknesses. Also, there is little to no difference in compatibility between Teflon and Polyethylene in contact with either 90% or 98% $\rm H_2O_2$ (9). We do not recommend the use of Polyethylene as a storage material in contact with concentrated $\rm H_2O_2$ as it will ignite at a fairly low temperature when in contact with $\rm H_2O_2$ (10). The rupture discs were submerged in water during the high temperature tests. Thus, there was no possibility of ignition.

4.2 Passivating and Conditioning the Test Bladders

The bladders were inspected for cracks, thin spots, noticable color variations and other non-satisfactory conditions prior to use. They were then mounted in the test tanks and the bolt clearance holes cut. The bladders were cleaned with a solvent (trichlorethylene), flushed with distilled water, washed with a .2% Nacconal (detergent)-water solution, flushed with distilled water and then mounted in the test tanks. After installation of the bladder halves, the girth flange bolts were torqued to 70 inch-pounds. The bladder was filled with distilled water, the rupture disc installed and bolted in place. The tank was pressurized to 200 psi.

The complete assembly was then submerged in a water bath, as shown by Figure 6, for 30 to 45 minutes. If no leaks were observed and the tank pressure did not decrease, the tank was removed and readied for test.

The test bladders were passivated and conditioned with H₂O₂ prior to use as follows:

- (1)-Degreased with trichlorethylene solvent.
- (2)-Flushed with distilled water.
- (3)-Scrubbed using .2% Nacconal-water solution.
- (4)-Flushed with distilled water
- (5)-Filled with 20% HNOs and exposed for 1 hour at room temperature.
- (6)-Flushed with distilled water.
- (7)-Filled with Becco commercial 35% H₂O₂, left for 24 hours, emptied.
- (8)-Filled with Becco commercial 90% H₂O₂, left for 24 hours, emptied.

If there was no abnormal H_2O_2 decomposition, the tank was considered suitable for use.

A portion of the test tanks were to contain the absorbent bags (vinyl sponges saturated with Pyrogallol solution and contained in 1-ml. TFE Teflon bags). The bag-units were passivated similarly to the bladders to insure compatibility. They were put into the tanks during initial assembly and therefore, received an additional complete

SSD-TR-61-29

ì

passivation and conditioning cycle when the bladders were passivated and conditioned. The absorbent bag volume was quite small (40 to 60 ml.) therefore it had little effect upon tank ullage, reducing it from 10.4% to 9.1%. Figure 7.

4.3. Filling the Test Tanks

An air-chamber-volume was provided between the Teflon bladder and inner head of the upper tank section. To achieve this free volume, 3730 ml. of 90% H_2O_2 or 98% H_2O_2 was put into the bladder through the rupture disc port. Figure 8. This left a void of 390 ml. The gas pressurizing line was then connected to the outlet fitting on the hand vent valve. The gas regulator was opened and 1 to 2 psi N2 gas passed through the hand vent valve and into the tank between the bladder and the tank wall. The gas pressure pushed the bladder away from the tank wall. When the H_2O_2 in the bladder rose and filled the bladder neck at the rupture disc port, the hand vent valve was closed and the rupture disc installed and locked in place by a seal ring held firmly by four \(\frac{1}{4}\)-inch 20 cap screws torqued to 30 inch-pounds. After the rupture disc was bolted in place, the gas regulator was turned off, the line hand vent valve and the hand vent valve on the tank were opened, venting off any pressure in the air chamber. The hand valve was then closed, the gas pressurizing line removed, the tank set upright, and put on test.

The air chamber served as an accumulator to transmit the decrease in chamber volume and increased pressure due to $\rm H_2O_2$ decomposition during storage to the pressure gage, thus, giving a working media. Calculations showed a safe room temperature pressure buildup before bladder bottoming was 220 psi and 300-350 psi in the room-temperature and elevated-temperature tests, respectively.

4.4. Testing Procedures

The tests fell under two types: room temperature, 70°F. to 72°F.; and elevated temperature, 120°F. and 165°F.

The room-temperature tests were set up in steel racks. Pressures were recorded weekly, Figure 4.

The elevated-temperature tests were carried out in automatic temperature-controlled water baths. Pressures were recorded daily. Figure 5.

4.5. Special Tests Carried Out

4.5.1. Sealed Storage Tests with Specially-Treated Teflon Bladders (Farrellok-Solution Conditioned) (*)

When it was found the TFE bladders bleached and increased the heterogeneous decomposition rate, other bladder-conditioning techniques were considered. One treating solution, Farrellok

(*) Farrellok -- A product of Farrelloy Corporation, Philadelphia, Pa. SSD-TR-61-29

(a phosphoric-acid based metal treating solution) has proved quite effective in conditioning stainless steel components for high-pressure test systems. This treating solution has proved rewarding in treating cast stainless steel surfaces in flow meters and valves.

Two test tanks were passivated and $\rm H_2O_2$ -conditioned as described in Section 4.2. of this report. In addition, the bladders were conditioned with Farrellok solution (full-strength) for one hour at room temperature (20°C.) following the acid treatment. Thirty=seven hundred milliliters of Becco commercial grade 98% by weight $\rm H_2O_2$ were put into each tank bladder.

4.5.2. Evaluation of Used TFE Teflon Bladders in Sealed-Storage Tests

These tests were carried out to determine if the bladders were more compatible after the bleaching experienced in the initial exposure. The bladders selected each had experienced a minimum of 300 hours exposure to 90% or 98% $\rm H_2O_2$. The bladder surfaces were light tan to a dull white in appearance at the start of the test. Two tanks each of 90% $\rm H_2O_2$ and 98% $\rm H_2O_2$ were put on test. Each tank contained 3730 ml. of $\rm H_2O_2$.

4.5.3. Special Tests Conducted on Samples of New and Used TFE Bladders

One new bladder and one used bladder (100 hrs. exposure) were cut up for laboratory evaluation. The tests consisted of 7 days exposure to 90% H₂O₂ at 66°C (151°F.) following standard passivation, including a 1-hour conditioning period in 20% HNO₃. One set of used samples was not acid treated as a control to see what effect the acid would have on the used bladder samples.

4.5.4. Comparison of TFE Teflon Bladders with Other Bladder Materials and Kanigen-coated Mild Steel

The TFE Teflon bladder is not the most desirable bladder material due to its poor physical properties, thus more suitable bladder materials are required. Laboratory tests were carried out to determine the compatibility of Fluorel (3-M), Viton-B (DuPont), Silicone compound #TH-1131 (Stillman), and Kanigen-plated mild steel (Keystone Chromium Company). The Kanigen plating with a tin coating has proved an effective covering for mild steel poppets in solenoid valves now used in at least one major space program, in contact with 90% H_2O_2 . As high-stress steel alloys are not suitable for use with H_2O_2 , the use of Kanigen plating may prove useful in some applications. The use of the tin-plated Kanigen should further reduce the H_2O_2 decomposition.

4.5.5. Sealed-Storage Tests with one Becco High-Energy Low-Freezing Monopropellant: BMP-DEG-1800 -20 F.

BMP = Becco Monopropellant, DEG = Fuel component (diethylene glycol), 1800 = 1800°F flame temperature, and -20°F. = freezing point.

The use of high-energy propellants for space projects is increasing at a rapid rate. The BMP solution tested shows a relatively high Isp at altitude, 200 secs. and higher, and can be decomposed similarly to 90% H₂O₂ or 98% H₂O₂, thus, shows promise as a monopropellant. Taple VI lists the physical properties of this propellant. Table VII lists the results of performance tests at room and depressed temperature with this type propellant after 6-months storage in aluminum drums at 70-72°F, showing satisfactory performance.

The BMP solution was evaluated in the sealed storage tanks for 7 days at 49°C. and 10 weeks at 20°C. Figs. 19 & 20.

5.0 TEST RESULTS and DISCUSSION OF THE TEST RESULTS

5.1 Room Temperature Tests

5.1.1. Without Absorbent Bags

A total of eight tests were carried out, two with 90% commercial H_2O_2 , two with 98% commercial H_2O_2 , two with 90% propulsion H_2O_2 , and two with 98% propulsion H_2O_2 . Each tank contained 3730 ml. of propellant.

The pressure buildup was most rapid in tanks containing 98% commercial $\rm H_2O_2$. This is not surprising as the greater oxygen content of the 98% $\rm H_2O_2$ will result in an effect upon the plastic liner. One tank was removed after 9 weeks with a pressure buildup of 196 psi, while the other tank was removed after 16 weeks with a pressure buildup of 184 psi. The oxygen weight loss was 0.2% in four months. The bladders were bleached from the dark brown color to a light tan color and considerable porosity was noted by the presence of $\rm H_2O_2$ between the bladder and the tank wall in a few locations.

Tests with commercial 90% H₂O₂ did not show as rapid a pressure buildup. One tank was removed after 15 weeks with a pressure buildup of 144 psi. The other tank was removed after 20 weeks with a pressure of 31 psi. The oxygen weight loss was 0.25% in 5 months storage. Examination of the first tank bladder showed porosity and severe bleaching. The second tank bladder did not bleach as severely and there was no sign of porosity. This definitely had an effect upon the pressure buildup.

The tests with 90% propulsion H₂O₂ proved encouraging in the early period of testing, as there was no pressure buildup during the first four weeks. The pressure in one tank rose slowly from the 5th through the 8th week and then rose sharply to 184 psi at 13 weeks. The pressure buildup in the second tank was more rapid, as it reached 196 psi at the 9th week. The bladders in both tanks were bleached and porous. The oxygen weight loss was 0.19% over a 13-week storage period.

SSD-TR-61-29

1

The most successful room temperature sealed storage tests were those with 98% propulsion $\rm H_2O_2$. Both test tanks completed 20 weeks of tests. One tank showed a final pressure of 144 psi and the other tank showed a final pressure of 49 psi. The oxygen weight loss was 0.11% in 5 months' storage. Calculated pressure buildup based on oxygen loss determined from $\rm H_2O_2$ concentration change checked fairly closely with the measured pressures; Table VIII shows the test results and Figure 9 shows optimum pressure curves of the various propellants taken from the test data.

5.1.2. With Absorbent Bags

A total of eight tests were carried out; two with 90% Commercial $\rm H_2\,O_2$, two with 98% Commercial $\rm H_2\,O_2$, two with 90% Propulsion $\rm H_2\,O_2$ and two with 98% Propulsion $\rm H_2\,O_2$. Each tank contained one absorbent bag and 3730 ml. of propellant.

The pressure buildup was most rapid in tanks containing 90% Propulsion $\rm H_2O_2$. One tank showed a normal pressure rise for six weeks and then a sharp pressure rise to 180 psi at 7-1/2 weeks at which time it was removed. The second tank showed a normal pressure rise for 7 weeks and then a sharp rise to 190 psi at the end of 11 weeks when it was removed. The oxygen weight loss was 0.23% in 11 weeks storage. The bladders showed considerable bleaching and porosity; the absorbent bags were bloated. Tests with Commercial Grade 90% $\rm H_2O_2$ did not show as rapid a pressure rise. Both tanks maintained nearly uniform pressures along a uniform curve. Both tanks were removed after 17 weeks storage with pressures of 150 to 160 psi. The oxygen weight loss was 0.13% in 19 weeks storage. The bladders were bleached, slight porosity was noted and the absorbent bags had bloated.

Tests with 98% Commercial $\rm H_2\,O_2$ showed low pressure buildup in the first three weeks of storage. One tank showed no pressure buildup for three weeks, while the other tank showed 2 psi at the end of the second week. One tank completed 5 months' storage and was removed with 102 psi pressure. The oxygen weight loss was 0.28% in 5 months' storage. The other tank showed a low pressure rise to 9 weeks and then a more rapid rise to 158 psi at 16 weeks when it was removed. The bladders in both tanks bleached, the latter tank showed greater bleaching and more porosity than the other tank. Both absorbent bags were bloated.

The most favorable storage was noted with 98% Propulsion H_2O_2 . One tank showed no pressure buildup for 3 weeks, while the other showed 4 psi after 3 weeks. Both tanks showed a uniform pressure buildup for 4 to 5 months. However, one tank was removed after 19 weeks when the pressure rose to 114 psi. Both bladders were bleached, slight porosity was noted and the absorbent bags were bloated. The oxygen weight loss was 0.19% in 5 months' storage.

The bloated bags were checked and found to contain CO2 gas which had formed when the pyrogallic acid broke down in the heavy oxygen atmosphere. Table IX lists the test results. Figure 10 shows the most optimum pressure curves from the test data.

5.2. 49°C (120°F) Storage Tests

5.2.1. No Absorbent Bags

A total of ten tests were carried out; two with 90% Commercial H₂O₂, two with 98% Commercial H₂O₂, three with 90% Propulsion H2O2 and three with 98% Propulsion H2O2. Each tank contained 3730 ml. of propellant.

Due to a tie-up of test facilities (heated water baths), the filled tanks were stored in a 13 to 15°C available non-heated water bath for 4 weeks prior to starting the 120°F tests, as no steel storage racks were available.

There was no pressure buildup in the tanks containing the propulsion (stabilized) H2O2 during the 4 week storage period. One tank containing 90% Commercial H2O2 also showed no pressure buildup through 4 weeks of storage. The pressure buildup was most rapid in tanks containing 98% Commercial H_2O_2 .

Prior to putting the tanks on test at 120°F, each tank was vented to insure there would be no trapped gas that could expand and give an unwarranted pressure rise.

The tanks were placed in the controll d 120°F water baths and left for 7 days. Only one tank failed to complete the seven day test -- this was one containing 98% Commercial H_2O_2 . The 98% Propulsion H_2O_2 showed the least pressure buildup, followed by 90% Propulsion H_2O_2 , 90% Commercial H_2O_2 and 98% Commercial H_2O_2 in that order. The oxygen weight loss was 0.13%, 0.21%, 0.27% and 0.23% respectively in these tests (30 days 20°C and 7 days 120°F).

Examination of the bladders revealed severe bleaching with very slight porosity. Figure 11 shows the before and after a 120°F test condition of the test bladders. Note the severe bleaching. This severe bleaching was believed to be the removal of an organic material from the plastic. Laboratory tests with one of these bladders and a new one are covered in Section 5.6 of this report.

Table X lists the test results. Figure 12 shows the most optimum test curves.

5.2.2. Tests With Absorbent Bags

A total of eight tests were carried out; two with 90% Commercial H_2O_2 , two with 90% Propulsion H_2O_2 , two with 98% Commercial H₂O₂ and two with 98% Propulsion H₂O₂. All tanks contained 3730 ml. of propellant except one tank that contained only 3675 ml. of 98% Commercial $\rm H_2\,O_2$. Each tank contained one absorbent bag. SSD-TR-61-29

10

The tanks were placed in the controlled $120^{\circ}F$ water baths and left for 7 days. One tank containing 98% Commercial H_2O_2 was removed at the end of the 5th day with a pressure of 170 psig. The oxygen weight loss was 0.35% in 5 days'storage at $120^{\circ}F$. The bladder showed severe bleaching and porosity and the absorbent bag was bloated.

Examination of the bladders revealed severe bleaching with minor porosity. The absorbent bags were bloated and had lost weight. Figure 13 shows the absorbent bags before and after test. Figure 14 shows one of the bladders that was found to have failed sometime during the test. The bladder failure did not have an adverse effect upon the $\rm H_2\,O_2$ it contained. Table XI shows the test data. Figure 15 shows the optimum test curves.

5.3. Results of 74°C (165°F) Tests

5.3.1. Tests Without Absorbent Bags

A total of eight tests were carried out; two with 90% Commercial $\rm H_2\,O_2$, two with 90% Propulsion $\rm H_2\,O_2$, two with 98% Commercial $\rm H_2\,O_2$, two with 98% Propulsion $\rm H_2\,O_2$. Each tank contained 3730 ml. of propellant.

The tanks were placed in controlled 165°F water baths and left for 3 days or when the tank pressure exceeded 200 psi.

One tank containing 90% Commercial $\rm H_2\,O_2$ and one containing 98% Commercial $\rm H_2\,O_2$ were removed after 24 hours when the pressures reached 239 and 183 psi. The oxygen weight loss in these tests was 0.11% and 0.15% respectively. Two tanks containing 90% Propulsion $\rm H_2\,O_2$ and one containing 98% Propulsion $\rm H_2\,O_2$ completed 72 hours of test. The oxygen weight loss was 0.29% and .15% in these tests.

The bladders were found to be bleached severely. Porosity was most noticeable in the first two bladders removed. Table XII lists the test results while Figure 16 shows the optimum curves from the data.

5.3.2. Tests With Absorbent Bags

A total of eight tests were carried out; two with 90% Commercial $\rm H_2\,O_2$, two with 90% Propulsion $\rm H_2\,O_2$, two with 98% Commercial $\rm H_2\,O_2$ and two with 98% Propulsion $\rm H_2\,O_2$.

Each tank contained one absorbent bladder and 3730 ml. of propellant.

The tanks were placed in the controlled 165°F water baths and left for 72 hours or shorter periods depending upon the rate of pressure buildup.

The tanks containing 90% Commercial $\rm H_2O_2$ were removed after 24 hours. The tanks containing 90% Propulsion $\rm H_2O_2$ and 98% Commercial $\rm H_2O_2$ were removed after 48 hours and the 98% Propulsion $\rm H_2O_2$ removed after 72 hours. The oxygen weight loss was 0.18%, 0.16%, 0.13% and 0.02% respectively in these tests. Slight leaks were noticed at the girth flange of three of the tanks.

Examination of the bladders revealed severe bleaching and noticeable porosity. The absorbent bags were bloated and had lost weight.

Table XIII lists the test results. Figure 17 shows the optimum test curves.

5.4. Results of Sealed Storage Tests With Specially Treated TFE Teflon Bladders

These tests were carried out to determine if Farrellok treated TFE Teflon bladders would be more passive than standard treated bladders when in contact with 98% Commercial $\rm H_2\,O_2$. Two test tanks each containing 3730 ml. of 98% Commercial $\rm H_2\,O_2$ were placed on test at 20°C.

The pressure buildup in these tanks was uniform and although it did not show lower pressure buildup until 3 to 4 months' storage when compared with similar tests without the use of Farrellok, it does show promise. The oxygen weight loss averaged 0.2% in 4 months' storage. The bladders did not appear to bleach as severely as that noted in other 20°C tests. Table XIV lists the test data. Figure 18 shows the pressure versus time curve obtained with these tests.

5.5. Results of Sealed Storage Tests When Employing Used TFE Teflon Bladders

The bladders were reused in the elevated temperature tests with total exposure reaching 200 plus hours. These tests were to determine if bladders having 300 and greater hours $\rm H_2O_2$ exposure would be adversely affected.

Two tanks contained 3730 ml. of 90% Commercial $\rm H_2O_2$ and two tanks contained a similar amount of 98% Commercial $\rm H_2O_2$. The oxygen weight loss was 0.1% with 90% $\rm H_2O_2$ and 0.21% with 98% $\rm H_2O_2$ in 6 weeks' storage at 20°C.

The pressure buildup rate was greater than that experienced with new bladders.

The test results are listed in Table XV.

5.6. Results of Laboratory Tests on Samples of New and Used TFE Teflon Bladders

These tests were carried out to determine if there was a degrading of the passivity of the TFE Teflon bladder with use.

The original bladder samples bleached to a white color from the dark brown. The used samples bleached slightly, but not as severe as the original sample. The used samples that were not acid treated were not as compatible as the new or treated bladders. The acid treated used sample was not as compatible as the original sample. There was no detrimental effect upon the samples or the $\rm H_2O_2$.

The test results are listed in Table XVI. The test data shows there to be little difference in compatibility of the new and used bladders if they are acid treated; however, if the used bladder was not acid treated, the active oxygen loss was nearly double that of the original sample in these tests.

5.7. Comparison of TFE Teflon Bladders With Other Bladder Materials and Kanigen Coating Mild Steel

Various laboratory tests to evaluate various bladder materials were carried out. The results of these tests are shown by Table XVII.

The 9711 Silicone rubber tests showed this plastic was attacked by $98\%~H_2\,O_2$. The samples also bleached slightly in all tests.

The N.A.A. "Vicone" (Viton and Silicone Rubber) material was evaluated and showed slight bleaching. There was little to no difference between the test sample lot and the bladder section piece tested. The active oxygen loss in tests with $98\%~H_2O_2$ was greater than that with $90\%~H_2O_2$. All the samples bleached slightly.

Tests with Dielectrix Corporation TFE Teflon bladder samples in the four types of propellants for one week at 120°F showed slight bleaching and low active oxygen loss, especially with the stabilized 90% and 98% $\rm H_2O_2$. Tests with the same materials at 165°F for 3 days showed slightly higher active oxygen loss. The active oxygen loss in tests with the stabilized $\rm H_2O_2$ grades was 75% to 33% of that with the regular propellants.

Another bladder material briefly evaluated was Stillman Rubber Company Compound #TH1131 (no iron oxide). The samples were evaluated in 90% and 98% Commercial $\rm H_2\,O_2$ at 66°C (151°F) for one week. The active oxygen loss was fairly uniform with 90% and 98% $\rm H_2\,O_2$. The samples bleached lightly during the test.

Tests with Dupont Viton B (Compound #805) in 90% $\rm H_2O_2$ at 66°C (151°F) for 1 week showed swelling and blistering; however, when similar samples were placed on test for 3 days under the same test conditions, there was no effect upon the sample. Following 1 week tests in 90% and 98% Commercial $\rm H_2O_2$ at 120°F, the test samples were found to be very slightly blistered.

One test carried out for 30 days at 30° C (86° F) in 90% $H_{2}O_{2}$ showed a 1% active oxygen loss.

Viton "A" materials have been used for "0" rings, diaphragms and other plastic members in $\rm H_2O_2$ systems.

Fluorel 2141 from Minnesota Mining and Manufacturing Company blistered in tests with 90% $\rm H_2O_2$ at 66°C (151°F) for 1 week. In similar tests for 24 hours, the samples were not affected. Following one week in 90% and 98% Commercial $\rm H_2O_2$ at 120°F, the samples showed signs of possible slight blisters. A five month storage test at 70-72°F was also carried out using 90% and 98% $\rm H_2O_2$ as the propellants. The active oxygen loss at the end of five months was 1% with 90% $\rm H_2O_2$ and 0.9% with 98% $\rm H_2O_2$. The samples were not affected.

Tests with "Kanigen," electroless nickel, coated 1020 mild steel in 90% $\rm H_2O_2$ at $66^{\circ}\rm C$ ($151^{\circ}\rm F$) for 1 week showed the active oxygen loss to be equal to that of many of the stainless steels. The sample stained slightly and there was no breaking of the coating even though the sample edges were knife sharp at some points. To improve the compatibility of the Kanigen coating, a few tin plated Kanigen plated samples were received from Keystone Chromium Corporation, Buffalo 13, New York, and placed on test. The active oxygen loss from the $\rm H_2O_2$ after a one week test was 11% to 14% which compares favorably with some of the plastic bladder materials. The samples stained slightly during the tests.

5.8 Results of Sealed Storage Tests with a Becco Experimental Low Freezing High Energy Monopropellant

Two series of tests were carried out using the monopropellant BMP-DEG-1800-72.5. The first tests were carried out in duplicate at 120°F for 1 week. The pressure buildup averaged 115 psi which compares very well with 90% Commercial $\rm H_2O_2$ (Table X). The results of these tests are listed in Table XVIII.

The results of the room temperature tests are listed in Table XIX. The pressure rise during the room temperature storage test was more rapid than was expected based on the results of the $120^{\circ}F$ tests. This was possibly due to the use of bladders having excess H_2O_2 exposure. Figure 19 shows the average pressure rise versus storage period in the $120^{\circ}F$ tests. Figure 20 shows the pressure buildup in $20^{\circ}C$ tests.

6.0. CONCLUSIONS

6.1. Room Temperature Tests

The room temperature sealed storage tests show that Becco 90% and 98% Commercial $\rm H_2O_2$ can be sealed up in suitable containers for extended periods to one year when employing a 10% ullage. Using a greater ullage will increase the allowable storage period. The use of the Propulsion (stabilized) grades of Becco 90% and 98% $\rm H_2O_2$ will allow for longer sealed storage periods, and the use of a bladder that does not leach organics into the $\rm H_2O_2$ would also decrease the $\rm H_2O_2$ decomposition rate, thus a slower rate of pressure buildup would be experienced. The TFE Teflon bladders used in these tests bleached severely and developed considerable porosity in some tests resulting in increased pressure buildup. The use of a 20% by weight Nitric Acid 1 hour room temperature bladder treatment was effective in reducing $\rm H_2O_2$ decomposition by stripping metallic impurities from the bladder wall.

Treating bladders with "Farrellok" solution resulted in more uniform bladder compatibility. This solution is easily applied as it is in a liquid form, non-toxic and commercially available. The use of this solution as an additional step in the regular conditioning and treating procedure is rewarding. This can be seen by comparing Figure 9 with Figure 18. Note the decrease in pressure buildup in the sealed storage tests.

Figure 21 shows the results of the 20°C sealed storage tests extrapolated to 1 year. Note the low pressure buildup with Becco 90% and 98% Commercial $\rm H_2O_2$ and that experienced with 98% Propulsion $\rm H_2O_2$. The 98% Propulsion $\rm H_2O_2$ and one tank of 90% Commercial $\rm H_2O_2$ did not show a pressure buildup in the first 3 to 4 weeks. The oxygen weight loss with all the $\rm H_2O_2$ solutions was low in the 20°C tests, thus extrapolating this data to a one year storage period, resulting in a low oxygen weight loss as shown below:

```
90% Commercial H_2O_2 - 0.6 % by wt./yr. 90% Propulsion H_2O_2 - 0.76% by wt./yr. 98% Commercial H_2O_2 - 0.6 % by wt./yr. 98% Propulsion H_2O_2 - 0.26% by wt./yr.
```

This data was calculated from H₂O₂ concentration changes.

Three month 20°C storage tests were also carried out with 30 gallon capacity 99.6 aluminum $\rm H_2\,O_2$ shipment drums containing 98% Commercial and 98% Propulsion $\rm H_2\,O_2$. The results obtained are as follows:

```
98% Commercial H_2O_2 - 0.75% by wt./yr. 98% Propulsion H_2O_2 - 0.28% by wt./yr.
```

The use of Farrellok treated virgin teflon bladders will reduce the oxygen loss from the $\rm H_2O_2$ in sealed storage still further.

6.2. Tests With Absorbent Bags

The room temperature tests with tanks containing the oxygen absorbent bags failed to show any effect that would indicate the absorbent solution was functioning. The breakdown of the pyrogallic acid released CO gas that was rapidly converted to CO_2 by the oxygen present. The presence of the teflon bags in the tanks did not show any adverse effects. This shows that the principle of placing an oxygen absorbent in a thin TFE Teflon bag and placing it in an $\mathrm{H}_2\mathrm{O}_2$ tank is feasible to remove the oxygen gas formed during storage; however, pyrogallic acid is not suitable as the oxygen absorbent media unless it is in the alkaline form and then its use is doubtful due to the heavy oxygen atmosphere present. In no case was there an indication of liquid $\mathrm{H}_2\mathrm{O}_2$ entering the absorbent bags.

6.3. Elevated Temperature Tests

The elevated temperature storage tests resulted in rapid bleaching of the TFE Teflon bladders and greater pressure rise than would be expected. We believed the material bleached from the bladder was an organic used to stabilize the bladder material during the dispersion spray forming operation.

The heavy amount of leached material resulted in lowering the stability of some of the $\rm H_2O_2$ solutions. Reusing the same bladders in the other elevated temperature tests showed the pressure buildup was less than that experienced earlier and the $\rm H_2O_2$ stability was not affected.

The 98% Propulsion (stabilized) H_2O_2 proved very rewarding in the high temperature tests. The pressure buildup was less than that experienced with the other H_2O_2 solutions. Table XIII shows the low rate of pressure buildup with the stabilized 98% H_2O_2 at 165°F over a 3 day test period.

The laboratory tests backed up the results obtained with the test tanks. Tests with TFE bladder samples in contact with 90% and 98% Commercial $\rm H_2\,O_2$ and 90% and 98% Propulsion $\rm H_2\,O_2$ for 7 days at 120°F and 2 to 3 days at 165°F showed the $\rm H_2\,O_2$ gas evolution was at least 50% less when the plastic was in contact with the Propulsion (stabilized) $\rm H_2\,O_2$.

The 120°F sealed storage tests with the Propulsion (stabilized) $\rm H_2O_2$ were not as rewarding as first expected. By referring to Table II it can be seen that this grade of $\rm H_2O_2$ showed low oxygen loss at 212°F in pyrex glass. The bleaching of the TFE bladder as shown by Figure 11 indicated a considerable amount of impurity from the bladder was released and entered the $\rm H_2O_2$ solutions. The use of more virgin bladder materials should result in lower pressure buildup during 120°F storage.

6.4 Tests with Kanigen Plated and Tin Coated Kanigen Plated Samples

Kanigen plating proved encouraging in the laboratory tests. This coating makes possible the use of high stress steels for vehicle $\rm H_2O_2$ tankage. The tests with tin coated-Kanigen platings also proved rewarding. The tin plating decreased the $\rm H_2O_2$ decomposition rate to a low order. It was interesting to note that even though the Kanigen plating was placed over sheared samples of 1020 mild steel having sharp edges, there was no break down of the plating at these edges during test.

Upon more complete evaluation, it may be feasible to build light-weight $\rm H_2O_2$ missile propellant tanks. Figure 23 shows a Kanigen plated plus tin plate missile $\rm H_2O_2$ tank.

6.5 Tests with a Hydrogen Peroxide Based Low Freezing Monopropellant

Storage tests with the experimental low freezing H_2O_2 based EMP-DEG-1800-20°F shows this solution can be stored for limited periods in sealed containers. If this solution were stored at depressed temperature, such as in high altitude vehicle, the pressure buildup would be still lower.

6.6 Summary of Test Results

The results of the sealed storage and laboratory tests show that when employing proper materials of construction, suitable passivation procedures and minimum surface to volume ratios, hydrogen peroxide can be stored in sealed containers for extended periods. This allowable storage period can be increased by acid treating the bladders, Farrellok treatment and by other methods.

In most space vehicles, the $\rm H_2O_2$ would be partly expended prior to the orbital or space flight; thus the tank ullage would increase and the pressure buildup would proceed at a lower rate.

The use of stabilized or unstabilized 90% or 98% $\rm H_2O_2$ as the oxidant in a standby ICBM is feasible. The high performance possible with 98% $\rm H_2O_2$ and many fuel components offers highly desirable propellant combinations.

6.7 98% Propulsion H₂O₂ is an experimental grade of H₂O₂. Further tests will be carried out before it is available for field use.

7.0 ADDITIONAL OBSERVATIONS

The sealed storage tests carried out under this contract show that it is possible to store 90% or 98% hydrogen peroxide in sealed containers for extended periods. The use of an oxygen

absorbent chemical such as chromus chloride in a heat sealed thin film TFE Teflon bag could possibly decrease the pressure buildup in a sealed propellant tank. Theoretically this solution has an oxygen absorbent capability 4 to 5 times that of pyrogallic acid. Figure 22 shows an H_2O_2 feed tank incorporating an absorbent bag.

However, a completely sealed storage system is not the usual case. H₂O₂ tanks equipped with a pressure relief valve that can be blocked closed upon tank pressurizing have been used successfully. The use of a vented hydrogen peroxide missile feed tank is feasible and has been employed successfully by the British in their Sprite engine systems. Figure 23 shows a Kanigen plated and tin plated high stress steel H₂O₂ feed tank. Note how this vent would be closed off upon applying pressure to the tank. Ninety or ninety-eight percent hydrogen peroxide can be stored for long periods, 1 to 3 years, in a proper type vented tank. The H₂O₂ oxygen loss would be low, expecially with Propulsion (stabilized) 98% H₂O₂.

The oxygen loss would be approximately 1/4 percent per year, thus 1% loss in 4 years' storage.

Figure 24 shows an H_2O_2 feed tank incorporating a gas relief valve.

Analysis of ten (10) 30 gallon shipment drums of Becco 90% hydrogen peroxide following shipment back and forth across the country in a three year period showed an oxygen loss less than one (1) percent in five (5) of the ten drums. Two of these drums were stored for at least half this period in San Diego, California.

The surface to volume ratio of the test tanks used was higher than that to be experienced in tanks used in flight vehicles. In general the less surface the $\rm H_2O_2$ contacts the lower the $\rm H_2O_2$ decomposition during storage. Figure 25 shows the effect of $\rm H_2O_2$ decomposition versus the surface to volume ratio of the storage container (11). Note the sharp decrease in $\rm H_2O_2$ decomposition when the surface area contacting the $\rm H_2O_2$ is decreased.

Appendix A covers recommended procedures for the passivation of aluminum, glassware, and plastics in contact with Hydrogen Peroxide.

8.0 RECOMMENDATIONS FOR FUTURE WORK

The following work is recommended:

8.1 <u>Laboratory Studies</u>

8.1.1. Evaluate various stabilizers for use in the $\rm H_2O_2$ to reduce the gas evolution to a low level at 120°F and 140°F. The stabilizer developed for 98% Propulsion $\rm H_2O_2$ could possibly be improved to give the desired results.

- 8.1.2. Determine the compatibility of the various materials of construction with the most promising grade of stabilized H_2O_2 .
 - 8.1.3. Check the fallout property of the stabilizer.
- 8.1.4. Evaluate the use of a saturated solution of chromus chloride in acetic acid and contained in a thin film TFE Teflon bag. Other oxygen absorbent agents would also be screened.

8.2. Service Type Testing

The purpose of the proposed work is to increase the storability of 90% and 98% hydrogen peroxide for military propulsion applications.

- 8.2.1. Carry out sealed storage tests under the following conditions:
- 8.2.1.1. Sealed storage tests employing virgin TFE-FEP Teflon, Fluorel, Viton B or Vicone bladder, most promising stabilized H₂O₂, passivation procedure to include 20% HNO₃ and Farrellok treatment, 72, 120, 140°F temperature range.
- 8.2.1.2. Same as 8.2.1.1., but with an absorbent bag installed.
- 8.2.1.3. Tests with tanks containing relief valves. Tank held at 400-425 psig simulating an attitude control system.
- 8.2.1.4. Sealed storage tests in 30 gallon and 500 gallon tanks with and without absorbent bags, when employing the most promising stabilized propellant.
- 8.2.1.5. Carry out decomposition tests to determine if the stabilizer employed has a detrimental effect upon the catalyst.
- 8.2.1.6. Carry out sealed storage tests with tin plated-Kanigen plated mild steel tanks.
- 8.2.1.7. Carry out sealed storage tests with anodized aluminum tanks.

REFERENCES

- 1. "High Strength Hydrogen Peroxide Monopropellant and Bipropellant, Performance Data," Bulletin #107, Becco Chemical Division, FMC Corporation, Buffalo, New York (1959).
- 2. "A Hybrid Rocket Propellant System: 90 percent Hydrogen Peroxide Solid Fuel" by G. E. Moore, F. M. Cooper and D. H. Driscoll, November 1952. Report No. R-52A0516. Contract DA-30-115-ORD-23. General Electric Company, Schenectady, New York.

 Final Report May 51 June 53. Report No. R-53A0520, Project TU 1-2000. E. Ring, General Electric Company, Schenectady, New York.
- 3. "Study of Metal Additives for Solid Propellants" report.
 Aeronutronics Division, Ford Motor Company, Newport Beach,
 California. Thirteenth Quarterly Report. (Confidential).
- 4. "Anhydrous Hydrogen Peroxide as an Oxidizer in Hybrid Propellant Systems" FMC report. (Confidential).
- 5. "Becco 90% and 98% Hydrogen Peroxide Properties, Record, and Potential in the Propulsion Field," Brochure, Becco Chemical Division, FMC Corporation, Buffalo, New York (1961).
- 6. "Field Handling of Concentrated Hydrogen Peroxide (over 52 weight percent hydrogen peroxide)" Handbook. Air Force Technical Order 42 B-1-17)
- 7. "Hydrogen Peroxide," WAlter C. Schumb, Charles N. Satterfield, Ralph L. Wentworth. Reinhold Publishing Corporation, New York, New York, Chapter 9, pp. 515-516 (1955).
- 8. "Catalyst Design Keeps up with H₂O₂ Progress," J. G. Fisher, E. J. Zeilberger, Space and Aeronautics Magazine, Conover-Mast Publication, New York, New York, pp. 84, May 1961
- 9. "Materials of Construction for Equipment in Use with Hydrogen Peroxide," Bulletin #104, Becco Chemical Division, FMC Corporation, Buffalo, New York, Table 20, pp. 37 (1959).
- 10. Reference 9., Table 6, pp. 22.
- "Storage of Hydrogen Peroxide," E. M. Roth, Jr. and E. S. Shanley, Ind. and Eng. Chem. Magazine, pp. 2343, October 1953.

APPENDIX A

Passivation and Conditioning Procedures For Materials of Construction in Contact With 90% and 98% H₂O₂

The passivation and conditioning procedure given in Becco Bulletin #104, "Materials of Construction for Equipment in Use With Hydrogen Peroxide," and AF T.O. 42B-1-17, "Field Handling of Concentration Hydrogen Peroxide (Over 52 Weight Per-Cent Hydrogen Peroxide)" are sufficient for most cases.

However, where exceptional low gas evolution is required, the following additional treatments are suggested.

Aluminum - In specific cases, the aluminum tanks, tubing and other vehicle components are conditioned with Becco Commercial 35% H₂O₂ for 24 hours followed by 90% H₂O₂ for 24 hours. To improve the passivity of the aluminum surface, one hour exposure to Farrellok solution prior to the H₂O₂ exposure proves rewarding.

Stainless Steel - When tube fittings and other components must be stored ready for use, the 3% HF - 10% HNO₃ - water etching solution was shown to be ineffective; however, increasing the HF strength to 10% by weight proved rewarding. Exposure to Farrellok solution prior to the 2½ hour exposure to 35% and 90% H₂O₂ improves compatibility.

Plastics - All bladders, "O" rings, diaphragms and other plastic parts should be wetted with 20% by weight HNO₃ for one hour to remove metallic impurities in the plastic surface. A one hour exposure to Farrellok solution prior to the 24 hour exposure to the 35% and 90% H₂O₂ is beneficial.

Glassware - When testing plastic materials having very low gas evolution, the A.O.L. (active oxygen loss) of the glassware dwarfs the test results. To obtain super clean glassware, the use of a 35% H₂SO₄ for a minimum of 3 hours and a 24 to 48 hour conditioning in 90% or 98% H₂O₂ at 151°F (66°C) has proved rewarding.

Bladder Data: Manufactured by Joclin Manufacturing Co.

Material: 30 mil FEP Teflon

Surface to Volume ratio: 1.6 Sq. In./Cu. In.

Capacity: 3 gallons

H₂O₂ Data:

H ₂ O ₂	Initial	Final.
Concentration	90.1%	90.3%
Stability	98.9%	98.8%

RESULTS OF A 3 MONTH STORAGE TEST OF 90% H₂O₂ IN A FEP TEFLON BLADDER AT 72-75°F.

COMPLETE TEST TANK ASSEMBLY

FIGURE 2

CUT-AWAY VIEW OF TEST TANK ASSEMBLY

FIGURE 3

TEST TANKS AS SETUP FOR ROOM TEMPERATURE TESTS

FIGURE 4

TEST TANKS AS SETUP FOR THE ELEVATED TEMPERATURE TESTS

FIGURE 5

TEST TANK AS SUBMERGED IN WATER BATH FOR LEAK CHECKING

BENT BAG INSTALLED FOR TEST

RE 7

TEST TANK AS CONNECTED TO OBTAIN THE REQUIRED AIRCHAMBER VOLUME PRIOR TO START OF A TEST

FIGURE 8

RESULTS OF 20°C. (68°F.) LONG TERM SEALED STORAGE TESTS WITH HYDROGEN PEROXIDE SOLUTIONS IN TRE TEFLON BLADDERS - S.V. RATIO 0.69/1n2/1n3, 10.4% ULLAGE

RESULTS OF 20°C. (68°F.) LONG TERM SEALED STORAGE TESTS WITH HYDROGEN PEROXIDE SOLUTIONS IN TFE TRFLON BLADDER. EACH BLADDER CONTAINED AN ABSORBENT BAG. S.V. RATIO 0.69 1n2/1n3, 9.1% ULLAGE

TFE TEFLON BLADDER SECTIONS BEFORE AND AFTER H₂O₂ EXPOSURE NOTE THE BLEACHED CONDITION OF THE USED BLADDER ON THE RIGHT

SOLUTIONS IN TPE TEFLON BLADDERS. S.V. RATIO 0.69 1n2/1n3, 10.4% ULLAGE RESULTS OF 49°C. (120°F.) SEALED STORAGE TESTS WITH HYDROGEN PEROXIDE

TYPICAL ABSORBENT BAGS BEFORE AND AFTER SEALED STORAGE TESTS IN CONTACT WITH HYDROGEN PEROXIDE NOTE THE BLOATED CONDITION OF THE EXPOSED BAGS

SSD-TR-61-29

TFE TEFLON BLADDER FAILURE DURING THE 120°F. TESTS

SSD-TR-61-29

RESULTS OF 49°C. (120°F.) SEALED STORAGE TESTS WITH HYDROGEN PEROXIDE SOLUTIONS IN TFE TEFLON BLADDERS. EACH BLADDER CONTAINED AN ABSORBENT BAG. S.V. RATIO 0.69 in²/1n³

RESULTS OF 74°C. (165°F.) SEALED STORAGE TESTS WITH HYDROGEN PEROXIDE SOLUTIONS IN THE BLADDERS. S.V. RATIO 0.69 1n2/1n3, 10.4% ULLAGE

RESULTS OF 74°C.(165°F.) SEALED STORAGE TESTS WITH HYDROGEN FEROXIDE SOLUTIONS IN TFE TEFLON EACH BLADDER CONTAINED AN ABSORBENT BAG. S.V. RATIO 0.69 in2/ in3, 9.1% ULLAGE Storage Period, Hours BLADDERS.

PTGURE 17

38

RESULTS OF 20°C. (68°F.) LONG TERM SEALED STORAGE TEST WITH 98% COMMERCIAL HYDROGEN PEROXIDE SOLUTIONS IN "FARRELLOK" TREATED TFE TEFLON BLADDERS. S.V. RATIO 0.69 1n2/1n3, 10.4% ULLAGE

RESULTS OF 49°C.(120°F.) SEALED STORAGE TESTS WITH A BECCO EXPERIMENTAL MONOPROPELLANT BMP-DEG-1800-20°F. IN THE TEFLON BLADDER. S.V. RATIO 0.69 1n2/1n3, 10.4% ULLAGE

RESULTS OF 20°C. (68°F.) SEALED STORAGE TESTS WITH A BECCO EXPERIMENTAL MONOPROPELLANT BMP-DEG-1800-20°F. IN TFE TEFLON BLADDERS. S.V. RATIO 0.69 1n²/1n³, 10.4% ULLAGE

HYDROGEN PEROXIDE IN TFE TEFLON BLADDERS EXTENDED TO A ONE YEAR STORAGE PERIOD. S.V. RATIO 0.69 1n2/1n3, 10.4% ULLAGE PLOT OF THE 20°C. (68°F.) 3 TO 5 MONTHS STORAGE TESTS WITH

H₂O₂ FEED SYSTEM INCORPORATING AN ABSORBENT BAG AND TIN PLATED FEED LINES

KANIGEN PLATED PLUS TIN PLATED MISSILE FEED TANK INCORPORATING A VENT VALVE

H₂O₂ FEED SYSTEM INCORPORATING A RELIEF VALVE AND TEFLON REINFORCED FEED LINES

SSD-TR-61-29

EFFECT OF SURFACE TO VOLUME RATIO ON THE STABILITY OF PURE HYDROGEN PEROXIDE

TABLE I

PHYSICAL, THERMAL, and HEAT TRANSFER PROPERTIES of Becco 90% and 98% Hydrogen Peroxide

Hydrogen peroxide is a clear, colorless, water-like liquid with the chemical formula H_2O_2 . It can be diluted with water to any concentration. It is insensitive to mechanical shock under normal conditions and can be stored for long periods of time in containers made of the proper materials.

Ninety percent hydrogen peroxide contains 90% by weight of hydrogen peroxide and 10% by weight of water. Eighty percent hydrogen peroxide contains 80% by weight of hydrogen peroxide and 20% by weight of water and so on for other concentrations. Ninety-nine percent hydrogen peroxide is the highest strength commercially available.

Concentrated hydrogen peroxide, procured for Military use, will conform to Military Specification Mil-H-16005C, dated 1956, or such military Specification as may supersede this specification and be in effect at the time of purchase.

Hydrogen peroxide is an energy-rich material which can decompose, yielding water, oxygen gas, and heat. The decomposition reaction is represented by the following equation:

$$2 H_2 O_2 \longrightarrow 2 H_2 O + O_2 (gas) + Heat$$

A. Physical Properties of Hydrogen Peroxide

Property	Conditions	Units	Concentra 90	tion, wt.% 98
Density	77°F	lb./gal.	11.57	11.95
Boiling Point	1.0 atm.	lb./gal. °F.	286.2	299.2
Freezing Point Refractive Index	1.0 atm.	°F.	11.3	27.5
Sodium D-line	77°F.		1.3980	1.4049
Vapor Pressure	77°F.	mm.Hg	3.8	2.2
Electrical Conductivity	77°F.	10-6 ohm-1 cm1	1.9	0.8
Viscosity	77°F.	centipoise	1.153	1.155
•	32°F. 68°F.	centipoise	1.860	1.810
Surface Tension Total Heat of	68°F.	cynes/cm.	79.3	80.2
Vaporization	77 ° F	Btu/lb. sol.	700.3	662.0
Dielectric Constant	77°F 68°F		77	77

11

TABLE I (continued)

B. Chemical and Thermal Properties of Hydrogen Peroxide

Property	Conditions	Units	Concentro 90	ation, Wt.% 98
Avg. Molecular Weight	ao en		31.241	33,422
Active Oxygen		wt.%	42.3	33.422 46.9
Heat of decomposition	77°F			
	1.0 atm.	Btu/lb.sol.	1108.	1215.
Adiabatic Decomposition temperature	1.0 atm.	°F	1364	1735
Heat of Dilution to Infinite Dilution Total Heat of	77°F	Btu/lb.sol.	-31. 2	-41.0
Vaporization	77°F	Btu/lb.sol.	700.3	622.0
Mean Heat Capacity	77°F 32 - 81°F 500°F	Btu/lb.sol./°F	0.660 0.813	0.635 0.780
Critical Temperature	-	°F		
Critical Pressure		atm.		

C. Decomposition Products

Property	Initial Concent 90	ration, Wt.% H ₂ O ₂ 98
Mole Fraction H ₂ O Mole Fraction O ₂ Gas composition, wt.% H ₂ O Gas composition, wt.% O ₂ Avg. Molecular Weight Temperatare, °F Gas Volume, C.Ft. Cp/Cv of products	0.7076 0.2924 57.7 42.3 22.10 1364 60.2 1.266	0.6748 0.3252 53.1 46.9 22.57 1735 70.8 1.251

D. Heat Transfer Properties

Commercial 90% Hydrogen Peroxide has been used in the N.A.A. AR series engines as coolant. The following is a quote taken from a report covering Becco 90% $\rm H_2O_2$ heat transfer tests carried out by Pratt & Whitney Aircraft Company for Becco.

"The high values of peak heat flux which were obtained at the high velocity conditions show that 98% Hydrogen Peroxide is a potentially excellent coolant at this condition. The results were close to those which can be expected with water, which is one of the best-known coolants. At low velocities, the peak heat flux was considerably reduced. However, only a few rocket propellants have ever been reported to yield values comparable to even these lower peak heat flux values. Such propellants are diethylenetriamine, hydrazine, and unstabilized nitric acid. Data

TABLE I (continued)

reported for other propellants such as ammonia, chlorine trifluoride, nitrogen tetroxide, monomethylhydrazine, unsymmetrical dimethylhydrazine, and stabilized nitricacid, fall considerably below those measured for 98% hydrogen peroxide." Flux for H20 Peak Heat sec-ing $(Q/A)_{H_20}$ BTU 11122111122111 $(Q/A)_P/(Q/A)_{GR}$ Peak Heat Flux Data for 90% Hydrogen Peroxide Heat Flux sec-1n2 (Q/A)GR Griffith Peak BTU 12120001124124 12120001124124 Heat Flux 90% H₂0₂ sec-1n2 $(Q/A)_{P}$ Peak BITU w4 www44 w6 r6 r wwgwwgurgau48 wggwgwgurga Fluid Temp. Bulk TB Veloc Fluid fps > Fluid Press psia 000000 8888 880 1000 回.

* Runs in which burnout occurred.

	ا يون	
g g	h Heat Transf. Coefficient BTU hr-ft ² -°F	9090 7370 7370 8860 7520 7520 7320 7730 7730 8630 7300 8740 8780
Peroxide	Tb Fluid Bulk Temp.	139 139 139 139 139 139 139 139 139 139
Hydrogen	Tsat Satura- tion Temp.	625 673 673 673 673 673 673 673 673 673 673
Data for 98% Section	Ti.w. Ave. In- side Wall Temp.	116 236 247 246 247 246 247 246 247 246 247 246 247 246 247 246 247 246 247 246 247 246 247 246 247 247 247 247 247 247 247 247 247 247
Transfer Heated	To.w. Ave. Out- side Wall Temp.	250 246 246 150 151 150 151 1040 1110 1110 1110 111
Local Heat from Exit of	(Q/A) Heat Flux Bru sec-inz	11.22.22.42.601 22.42.22.42.600.60.60 22.42.22.60.60.60 20.42.60.60 20.42.60 20.60.6
Tabulation of 1½" Upstream 1	P Fluid Press.	1000 1000 1000 1000 1000 1000 1000 100
Tabul	V Fluid Veloc. fps	882004008884 4666666666666666666666666666666666
E-	Run	นดพนเพอะชอบีนีนั้น นดพนเพอะชอบี

TABLE I (continued)

Fluid Heat Transf. Coefficient hr-ft2-F 9820 9760 2700 3040 3480 4160 4740 5420 3690 5460 7520 3060 3060 3750 5750 BTU Temp. Bulk 179 189 186 tion Temp. Satura- $\mathbf{T}_{\mathtt{Sat}}$ 625 626 627 ŢŢŊŊŊŊŊ ŢŢŊŊŊŊŊŊ ĸŢŶĠĠĠĠĠ 675 675 675 675 617 617 617 617 617 side Wall T_{1.w}. Ave. In-Temp. 250 270 270 270 270 270 278 453 453 521 521 854 924 -1 268 347 436 To.w. Ave. Out-side Wall Temp. 1340 140001 367 510 669 354 525 609 676 718 Heat Flux sec-in2 BTU 1054 2065 2005 1119224 2404 25824 808 808 808 808 25.55 25.55 25.55 25.55 25.55 (Q/A) 12.8 15.8 15.4 Press. psia Fluid 388 **22222**2 222222 00001 WWWWWW WWWWWWW WWWWWW Veloc. Fluid fps 62.2 61.8 66.8 4445454 6540940 ユユオコココ エキャル Run 12 12 13 13 れるの事 1074506 **コのですで**

* Runs in which burnout occurred.

(continued)

TABLE II

OXYGEN LOSS (milligrams) from BECCO Commercial and Stabilized Commercial Hydrogen Peroxide while at 100°C for 24 Hours in Pyrex Glass (standard laboratory stability test) - Typical Results

	H ₂ O ₂ Conc	entration
Grade of H ₂ O ₂	90% H ₂ O ₂	98% H ₂ O ₂
Commercial	360	140
10 ppm PO ₄	250	
Stabilizer P (Propulsion)	70	60

All tests were carried out in a steam bath.

Ref. AF Contract - AF-33(616)6732

_[TREATMEN	5								CONDITTONT NG	TONTING	
Material bet	Detergent Wash	35% HNO ₃	Standard Passiva- tion	Saturated Citric Acid	85% 1	H4PF6	NH4PF6 NH4F, 108	Farrellok	Perma Par-W	Perma Spray-ND	90% H503 R. T.	2,99	98 70 00 00 00 00 00 00 00 00 00 00 00 00	No.of Tests	20 ² H 20 ² H 206	8 24.
Teflon TPE	×									-					1.1 ± 0.1	
===	×	16 hr.												9	1.0 ± 0.1	
-	×	16 hr.									2 hr.			9	0.0 + 6.0	
			×									24 hr.		00	2.0 + 0.0	
			×	hr.						•	7 da.			~	2.2 ± 0.3	
			×		hr.					•	7 da.			ر 	0.7 ± 0.1	
			×									48 hr.		9	0.5 ± 0.1	
, (12			ĸ							-				∞	0.5 ± 0.1	
	×					×					\			(N	3.1 ± 0.3	
	×					×					~- '	48 hr.		α	3.0 ± 0.2	
	×						×							~	2.9 ± 0.2	
r : ne d	×						ĸ					48 hr.		*	2.6 ± 0.2	
	×							×						*	2.2 ± 0.1	
	×							×				48 hr.		9	1.8 ± 0.1	
	×								×					*	0.8 ± 0.2	
	ĸ							~~~	×			48 hr.		*	0.8 ± 0.3	
	×									×	<u></u>			~	7.1 ± 0.6	
rest:	×		•			**************************************				×	.	48 hr.		Q.	2.0 ± 0.3	
			×			 			n/mare i ma		·			9		0.3 +
			×	~/~				·					24 hr.	9		

. .

TABLE III

Reference AP Contract - AP-33(616)6732

RESULTS OF GAS EVOLUTION TESTS: With Becco 906 H202 in TPE Teflon Film Bags -- S/V 3.5:1

1 1	99.1\$ 98.7\$ 98.8\$	90.2% 90.5% 90.2% 89.7% 89.7% 89.7%	91.04 91.04 90.74 90.74 90.74		77°P.
	0.0 0.0 0.0 0.0 0.0 (65 (24 (24 (24 (24 (24 (24 (24 (24 (24 (24	6 98.8% 97.1% 97.9% 98.2% 0.0 0.0 0.0 0.0 (65 (24 (24 (24 (24)) hrs.) hrs.) hrs.)	6 98.8% 97.1% 89.7% 89.7% 6 98.8% 97.1% 97.9% 98.2% 0.0 0.0 0.0 0.0 (65 (24 (24 (24 (24) hrs.) hrs.) hrs.)	\$ 91.0% 90.3% 90.3% 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 90.3% \$ 97.1% \$ 97.9% \$ 98.2% \$ 90.0 \$ 0.0	de Bag and Outside Bag H ₂ O ₂ 5 1 2 3 4 4 5 10.05 90.7
 	0.0 0.0 0.0 (65 (65 (65) hrs.) hrs.) hrs.)	99.1% 0.0 (65 hrs.)	90.2% 99.1% (65 hrs.)	90.2% 90.2% 99.1%	H202 4 4 91.08 90.28 99.18
	0.0 0.0 0.0	98.98 0.0 (65	87.9% 90.7% 90.3% \$1.5% 98.9% 99.4% \$1.5% (65) (65) (65)	91.0% 91.0% 91.0% 87.9% 90.7% 90.3% 81.5% 98.9% 99.4% 91.5% (65) (65) (65)	and Outside Bag 1 2 3 1 2 3 91.0% 91.0% 91.09 87.9% 90.7% 90.39 91.5% 98.9% 99.4% 91.5% 98.9% 99.4%

Reference AP Contract - AP-33(616)6732

Test Number: and Outside Bag	- 1	041		160	F.	180%	٠	500	
Initial H202 Concentration (90.3% 90		H ₂ O ₂ Inside and Outside Bag		H ₂ O ₂ Inside and Outside Bag	H ₂ O ₂ Inside Bag	HeOz Inside and Outside Bag	HeOz Inside Bag	H202 Inside and Outside Bag	H ₂ O ₂ Inside Bag
89.5\$ 89.4\$ 89.5\$ 89.4\$ 89.5\$ 88.8\$ 88.8\$ 88.8\$ 88.5\$ 89.1\$ 98.7\$ 98.1\$ 98.7\$ 99.0\$ 97.0\$ 97.9\$ 97.9\$ 99.0\$ 96.9\$ 98.5\$ 89.1\$ 98.7\$ 98.1\$ 98.3\$ 99.5\$ 89.4\$ 88.8\$ 88.8\$ 88.8\$ 88.5\$ 89.1\$.0035 .0035 .0075 .0055 .0050 .0190 .0210 .0215 .0190 .0075 .0195 ft.3 ft.3 ft.3 ft.3 ft.3 ft.3 ft.3 ft.3		80.3K 90.3K 90.3K	800米 800米 800米			76 06 76 06 76 06		72 00 72 00 72 00	71 CC 71 CC
98.7% 98.1% 98.3% 98.7% 99.0% 97.0% 97.9% 99.0% 96.9% 98.3% 99.0% (.0035.0035.0025.0025.0026.0190.0215.0190.0075.0195 (.0035.0035.0025.0025.0020.0215.0190.0075.0195 (.0035.0025.0025.0025.0190.0075	Final MaOz Concentration	89.5\$ 89.1\$ 89.5\$	89.4% 89.5% 89.4%		88.5% 88.5% 89.1%	87.14 88.44 87.54	37.14 88.74 87.24	86.18 84.88 86.08	34.48 85.78 86.74
(16 (16 (16 (16 (16 (16 (16 (16 (16 (16	MgOg Stability After Test	28.7≴ 98.1≴ 98.3≰	\$0.76 \$0.99 \$7.98		\$0.66 \$4.86 \$6.96	97.36 35.78 96.58	26.76 \$7.86 \$8.77	28.5% 98.7% 99.3%	\$4.96 \$6.96 \$6.96
0.0097 ft.3 0.0065 ft.3 0.0215 ft.3 (24 hrs.) 0.0037 ft.3 0.0081 ft.3 0.0058 ft.3	Gas Evolution from 75 ml. HgOg (ft. 3 at amblent press.	.0035 .0085 .0075 ft.3 ft.3 ft.3 (16 (16 (16 hrs.) hrs.) hrs.)	.0055 .0025 .0050 ft.3 ft.3 ft.3 (16 (16 (16 hrs.) hrs.) hrs.)	.0190 ft.3 (24 hrs.)	.0190 .0075 .0195 [ft.3 ft.3 ft.3 ft.3 hrs.] hrs.)	.0460 .0600 .0320 ft.3 ft.3 ft.3 ft.4 (24 (24 hrs.) hrs.) hrs.)	0540 .0360 .0430 t.3 ft.3 ft.3 24 (24 (24 (24 (24) 173.)	.0860 .1215 .0851 ft.3 ft.3 ft.3 f24 (24 (24 hrs.) hrs.)	.0830 .0630 .0750 ft.3 ft.3 ft.3 24 (24 (24)
0.0037 ft.3 0.0081 ft.3 0.0058 ft.3 0.0175 ft.3 0.0168 ft.3	Average das Evolution from 75 ml. HaO ₂ (ft.sat ambient pressure)	0.0097 ft.3 (24 hrs.)	0,0065 ft.3 (24 hrs.)	• • • • • • • • • • • • • • • • • • • •	0.0153 ft.3 (24 hrs.)	0.0460 ft.3 (24 hrs.)	0.0443 ft.3 (24 hrs.)	0.0982 ft.3 (24 hrs.)	0.0737 ft.3
	Average Gas Evolution ft.3/24 hrs/ft.2 of bladder sur-	0.0037 ft.°	0,0081.ft.³	0.0081 ft.3	0.0058 ft.3	0.0175 ft.3	0.0168 ft.3	0.037 ft.3	0.031 ft.3

TABLE IV (continued)

TABLE V Results of Screening Tests With Two Oxygen Absorbent Solutions

	Oxygen-Ge	tter	olar	Ratios		Number of	Pounds Oxygen-Getter per 300# 90% H ₂ O ₂ at
•	Pyrogallic Acid		Álka LIOH	li NaOH	H ₂ O	Tests	1% Decomp/year
		1			0	1	200
Pyrogallol	1	1	-		2	1	34
	1)			6	1	25
	1	1			30	1	25
	1	2			10	8	16
	1	3			20	7	18
	1	3			30	3	28
	1	3			60	1	34
	1	3	{		30	2	33
	1	6	1		60	1	48
	1	6			30	1	32
	1	10			60	1	50
	1	10		3	20	2	21
	1			3	30	2	22
	1	1		1	30	1	23
	1		3	1	35	4	23
	1		+-		-		
P-Benzoqui	P-Benzoquino	lo.	.5		20	1	62
r-penzoqui	1	1	L		20	1	26
	1	1	3		10	7	17
	1	}	3		20	5	19

Reference Air Force Contract AF33(616)6732

SSD-TR-61-29

1

TABLE VI
PHYSICAL AND THERMAL PROPERTIES OF BMP-DEG-1800 SOLUTIONS

PHYSICAL PROPERTIES: MONOPROPELLANT	BMP-DEG-1800-40	BMP-DEG-1800-20
Chemical Composition	$67.8\% \text{ H}_2\text{O}_2$, $6.8\% \text{ DEG}$, $25.4\% \text{ water}$	72.5% H_2O_2 , 5.8% DEG, 21.7% water
Molecular Weight, #/mole	28.9	29.5
Density at 77°F		
g/cc lb/gal.	1.309 10.9	1.330 11.1
Ib/gal.	10.9	11.1
Boiling Point (1 atm.) °F	225	approx. 225
Melting Point *F	<-4 0	∠-2 0
Wind in Country to the country	•	
Viscosity Centistokes +77°F	0.996	1.05
-15°F	3.14 (-13°F)	4.16
-38°F	5.62	
Refractive Index	1.3880	
Apparent pH by		
Glass Electrode	2.1	
Color	Colorless	Colorless
Effect on Metals	Corrosive except on 300 series stainless steel, tin, aluminum	Corrosive except on 300 series stainless steel, tin, aluminum
Effect on Most	Reaction, fire or	Reaction, fire or
Organic Materials (grease, oil, skin, etc.)	severe oxidation resulting	severe oxidation resulting
Fire Hazard	Solution is dangerous	Solution is dangerous
	if exposed to intense heat for extended period	if exposed to intense heat for extended period

TABLE VI (continued)

PHYSICAL AND THERMAL PROPERTIES OF BMP-DEG-1800 SOLUTIONS PHYSICAL PROPERTIES:

MONOPROPELLANT

BMP-DEG-1800-40

BMP-DEG-1800-20

Toxicity

Vapors are non-toxic, solution is a strong oxidizer than can cause skin blisters. (Blisters are rapid healing.)

Vapors are non-toxic, solution is a strong oxidizer that can cause skin blisters. (Blisters are rapid healing.)

TABLE VI (continued)

BMP-DEG-1800 (-20° and -40°F) SOLUTIONS

THERMAL PROPERTIES:

TERMS	BMP-DEG-1800-67.8	BMP-DEG-1800-72.5
Exhaust Products	$CO_2 - H_2O$	$CO_2 - H_2O$
Available 0 ₂ #/# Solution	0.221	0.253,
BTU/# Solution	1,472	1,465
Reaction Temp. °F Solution Temp. +68°F -20°F	1800	1800 1700-17 25
-40° F	1575-1600	
Heat Capacity BTU/#/°F	0.716	0.691
CP/CV Solution at -40°F -20°F +68°F	1.234 1.237	1.227 1.240
Molecular Weight Exhaust Product	21.44	20.67
C* (1800 pc) Solution at -40°F -20°F +68°F	3310 3500	3395 3560
Isp at 122-1 expansion ratio Solution at		
+68°F -20°F	176	179 169
-40°F	165	

TABLE VII

Run No.	BMP Temp.	Chamber Temp.	Chamber Press.	Chamber Temp.	Flow Rate Lbs./	Time To Peak	Peak Press.	Total Time	Time of Initial	Total Thru-	Catalyst and Reactor	Remarks
	Start °F.	Start °F.			Min.	Press. Sec.		Bed- Min.	Flow-	Lbs.		
822	25	80	1300	1880	8.8	0.80	1175	5.97	0	54	c-XIII- 26	Satisfactory Performance
Unstab.		BMP-DEG-1800-72.5 stored for 6 months.	stored for	6 months.								
823	75	85	1300	1875	8.8	0.48	1160	7.85	•	72	z	:
Unstab.		BMP-DEG-1800-72.5 stored for 6 months	stored for	6 months.								
824	75	85	1320	1890	8.6	:	;	9.85	0	96	z	
Unstab.	. BMP-DI	BMP-DEG-1800-72.5 stored for 6 months	stored for	6 months.								
838	-20	-30	1375	1740	8.3	1.40	1275	11.76	Manual Stant	108	E	
Unstab.		BMP-DEG-1800-72.5 stored for 6 months	stored for	6 months.					2 10 2			
839	-20	04-	1350	1760	8.3	1.32	1325	13.72	1.0	126	r	±
Unstab.	. BMP-DI	BMP-DEG-1800-72.5 stored for 6 months	stored for	6 months.								
840	-17	-30	1400	1750	8.5	1.32	1375	15.89	1.0	144	=	E
Instal		BMP_DEG_1800_72 5 stored for		· 6 months.								

TABLE VIII

RESULTS OF ROOM TEMPERATURE (20°C)
SEALED-STORAGE TESTS WITH BECCO HYDROGEN PEROXIDE IN 1-GALLON CAPACITY TRE TEPLON BLADDERS
S/V ratio .69 in.²/in.³

			-					1												_	
					drogen	Hydrogen Peroxide	4 3					ļ	Pres	Pressure Bulldur Cat	111dur	183					
1	Tank		Bet re		After	į	Loss	8													
		Type	cone.	Stat.	conc.	Stab. Conc.	cone.	ď	T-WK	2-WK >-WK		, -W.K)-wk	O⊞-(O⊩-> ½M-) XM-O		OF-2	, OE-0	ر 0⊞÷+	-mo calc.	1c.	Kena rks
-	-	90% comm. 89.53 98.9	. 89.53	98.9	88.89 98.1		.70	.3	3	7	n 1	. 91	21 2	27 3	34	0+	96	' 	'	-	Removed at 15-wK, Press. 144
~	91	90% comm. 89.53 98.9	39.53	98.9	89.00 99.0	0.66	65.	85	0	α	.	Ç	6	11 1	14	17 ,	٠,	ro #	і д1		Removed at 5 months
^	6	90% prop. 90.4	4.06	6.80	90.05 95.6	9.56	8 X	.16	0	0	0	0		6	30 8	. 35	;	:	; 112		Removed at 9-wk, Press. 196
#	17	90% prop. 90.4		98.9	89.98 95.9	95.9	ŧ	-19	0	c	0	'n	٤	9.	ο· •	i zi	- C÷i	' ¦	130		Removed at 13-wk, Press.184
2	9	98% comm. 99.26 99.8	93.26	99.8	;	;	:		10	13	ž 21	: 1∂	27	35 4	, L#	, ç	- 0.4	:	:	<u>3</u>	Lost test sample
٥	12	98% comm. 98.26 99.8	8.%	8.66	4.86 97.79	4.86	Ĺħ.	. 2.	10 1	12 1	16	Sc	23 6	27 3	31 3	30 B	34 1	163 -	: 154		Removed at 16-wK.
-	î	98% prop. 98.26 99.8	98.26	8.66	1.97 76.1	76.1	8X.	- 81	c	0	Q.	a	10 1	13 1	16 1	17 4	6 87	90 1,	144 139		Removed at 5-mo.
80	~	90% prop. 98.26 99.8 98.01 61.0	98.26	8.66	98.01		ĸ.	7	0	c	c	Q.	æ	5	9	8 1	16 2	58 +	92 6+		Removed at 5-mo.

NOTES:

Hydrogen Peroxide Hydrogen Peroxide Hydrogen Peroxide Hydrogen Peroxide weight Height He Rach bladder contained 3730 ml, of Hydrogen Peroxide 90% comm. = Becco commercial grade 90% by 90% comm. = Becco propulsion grade 90% by 90% comm. = Becco commercial grade 99% by 90% prop. = Becco propulsion grade 99% by

All bladders bleached during test use All pressures corrected to 20°C (68°P) Tank Ullage - 10.4%

Calculated pressure buildup based on HgO2 concentration change. €

TABLE IX

RESULTS OF ROOM TEMPERATURE (20°C.) SEALED-STORAGE TESTS WITH BECCO HYDROGEN PEROXIDE IN 1-GALLON CAPACITY TRE BLADDERS S/V ratio .69 in.2/in.3 Each bladder contained one absorbent bage

	_	-										Pressi	Pressure [ull luc	11 11			!		
Teat	-		H.7.11	Hyirogen Feroxide	roxida	000	١					,					GE - C	Calc.	Remarks
Test. Tank		Before			1	E	Ċ	1-wk 2-	•wk >-	** 4-	řκ γ	-Q XM	ا۔ٰ اپخ	¥	2			1-WK 2-WK 3-WK 4-WK 5-WK 6-WK /-WK 7-HO 7-HO 7-HO 7-HO	l.
No. No.	Type	Conc.	Stab.	Conc.	Stan.		3			,	'		,	ac At	27	1.52	;	66	Removed at 17-WK, 154 ps1
١.	1	500	0	00 27	8.70	.34	144	0	٥.	9	11	15 21							000
23	90% comm. 90.04 19.09	70.07	0.66	2		•	į	,			15	20	28 3	35 42	50	34	;	₹	Removed at 19-WK, 102 per
8	90% comm. 90.61 99.0	. 90.61	0.66		90.33 95.6	۲.	161.	·	_				•				;	75	Removed at 7.5-wk, 183 ps1
	_		9	17	4 48	55	٦.	₹	.	1 1	18	26 3	38 11/		; ;	:		<u>`</u>	
53	90% prop. 90.40 90.9	3	9	1				,	,	4		16 2	* #C	34 60	1	:	;	175	Removed 114-wk, 190 par
2,	908 04.06 gord 200 3	90.40	98.9	89.86	0.96	٠.	.23	9	5	•								180	Bemoved 16-wk, 175 ps1
<u>,</u>				1	ţ	u	, C	0	0	0	•	8	18	19	25 24	1(2)	;	2	
25	2 98% comm. 98.26 99.8	1. 98.26	966	97.77	3.16	;	}					2,	,,	26 3c	33 60	94	102	;	Removed 20-wk, 102 ps1
	8.00 36 90 80	98 26	8,00	97.67 95.8	95.8	9.	8	0	c,	٥	11								ten all various
<u> </u>		2				70	4	0	0	#	01	13 1	91	20	22 28	3 37	:	;	Nemoved 19 and 11 for
56	6 98% prop. 98.26 99.8	3. 98.26	8 8.	97.3	41.5		?)	,		,	·	a	ָר ר	13 24	97	88	140	Removed 20-wk.
		98 26	8,66	97.85	97.85 88.1	745	.19	0	0	0	•	v				- 1			
0		1	```																

NOTES: Each bladder contained 3730 ml. of H₂O₂. Por H₂O₂ designations, See notes Table VIII. All tank pressures corrected to (20°C). Tank Ullage 9.1%.

Each absorbent bag was double thickness (2-1 ml. TPE Teflon Film).
2 - 1" x 3/4" x 3" vinyl sponges saturated with 30 ml. of a molar solution 1:3:10 alkaline pyrogalite acid--potassium hydroxide and water were placed in the bags and the bags heat sealed.
All bags lost weight.

ee Calculated pressure buildup based on HgO2 concentration change.

TABLE X

RESULTS OF 49°C.(120°F.) SEALED STORAGE TESTS WITH BECCO HYDROGEN PEROXIDE IN 1-GALLON CAPACITY TFE TEFLON BLADDERS S/V .69 1n.2/1n.3

		Remarks			Rupture disc failed. Lost sample			Removed 5th day	addition of the angle		Removed on 7-da. Slight leak noted 5-day.	** Sample contaminated
		7-da	133	123	221	143	80	:	153	100	ŀ	62
		6-da	110	102	98	59	19	ŀ	128	87	1	ક
		4-da 5-da	85	85	14	*1	83	166	8	8	:	53
30		ap-4	19	62	32	13	19	123	14	55	#	32
PEROXII.	11dup	3-da	,					Nebn	uS			
ROGEN	re Bu	2-da						Rep In	sa2			
CO HYD .69 1n	Pressure Buildup	1-da	15	*1	11	œ	10	\$₹	0	91	16	23
TH BEC		• *	0	7	0	•	•	17	К	•	0	0
STS WI		2-wk 3-wk	0	#	0	0	0	15	19	0	0	•
ORAGE TE:		2. 4. 4. 7.	0	Q.	0	•	0	10	6	0	•	•
D STOR		3-wk	0	0	0	0	0	0	0	0	٥	0
SEALE	Absorb.	wgt. Chng.				S	DAG T	ОМВЕИ	SELA O	N		
LON CAL		3 %	.3	72.	ŀ	.23	.21	٦.	.23	.19	.19	:13
RESULTS OF 49°C.(120°F.) SEALED STORAGE TESTS WITH BECCO HYDROGEN PEROXIDE IN 1-GALLON CAPACITY THE TEFLON BLADDERS S/V .69 in.2/in.3		Loss &	τι.	* 9.	:	.54	15.	.26	.55	÷.	5 ⁴ 5	.29
LTS OF	erox1d	r Stab.	1.66	98.6	;	8.96	9.47	0.89	93.8	7.	50.5	0.0
KESU	Hydrogen Peroxide	Conc. Stab.	98.76	88.82	ł	89.81	89.94	o. 8 6.	97.72	97.81	97.82	97.97
	H.	1 165 1	98.9	98.9	6.86	6.86	98.9	8.8	8.66	8.66	8.	8.8
		Before Conc. St	39.53	39.53		04.06	30.40	98.26	38.26	98.26	98.26	98.26
		Type	90% comm. 89.53	90% com. 89.53	90% prop. 90.40	90% prop. 90.40	90% prop. 80.40	98% com. 98.26 99.8	9 8% comm. 98.26	98% prop. 98.26	98% prop. 98.26	98% prop. 98.26
	Test	Tank No.	-	9	18	2		61	^	*	7	8
SSD-TR	-61 -29	Test.	17	18	19	50	23	25	8	₹.	æ	56

Each bladder contained 7730 ml. of H₂O₂ For H₂O₂ designations see TABLE VIII. Tank Ullage, 10.4% All bladders bleached during test. NOTES:

Test tanks stored for 4-wk, at 13°C to 15°C prior to start of 49°C tests.
 These tanks were vented prior to the 49°C tests.

TABLE XI

RESULTS OF \$9°C. (120°F.) SEALED-STORAGE TESTS WITH BECCO HYDROGEN PEROXIDE IN 1-GALLON CAPACITY IFE TEFLON BLADDERS S/V ratio 0.69 in.2/in.3

*
Bag
ent
one O
Contained One Absorb
Bladder
Bach

Type 90% com.	Before Conc. S		9	-			Bag		Pre	Pressure Bulldup	Pulldy	2			
Type com.		1	After After	T TOTA	Loss	8	Wgt.		And the first of the Table of the Table	, P	9	9	_de	40	Personal
. co		Stab.	conc.	Stab.	Conc.	20		1-02	20-7						
	3	1 8	25	og og	89	.23	-2.58	33	56	16	;	;	*11	139	Bladder Bleached
	0.66 10.06	 S		,			9	Ç	8	7.4	;	1	1	174	Bladder Bleached
	90.61 99.0	0.66	90.39	8 8 8	. 2 4	<u>.</u>	Š	₹	2				8	5	Dadden Bleeched
OOM DEOD	90.61 99.0	0.66	90.34	9.04	.27	11.	-0.51	! 	1	21	!	;	3	\$	name of temper
	5	8	90 56	98.5	Ŕ	8	-3.00	જ	;	ł	;	83	ક્ષ	901	Bladder Bleached
prop.	70.06	2.6		, 4	ã	3.5	-2.82	. 23	80	109	120	170	1	ŀ	Removed after 117-hrs.
98% com.	8.8	• •	3 :5	. a	, y	30	-4.47	9	8	8	1	;	156	161	Bladder Bleached
99% comm.	8.9	0.0	77.01	2 4	} .	8	-3.66		23	32	1	1	;	75	Bladder Bleached
prop.	8 8 8 8			86.8	- 8	ì →	# 4		31	5	ł	1	1	₹6	Bladder Bleached
	90% prop. 99% com. 99% com.		90.61 99.0 98.26 99.8 98.06 99.8 98.08 99.8	90.61 99.0 90.56 98.5 98.26 99.8 97.43 95.5 98.26 99.8 97.81 98.8 98.08 99.8 97.57 84.0 98.08 99.8 97.52 86.8	90.61 99.0 90.56 98.5 .05 .02 98.6 98.26 99.8 97.43 95.5 .84 .35 98.26 99.8 97.81 98.8 .46 .19 98.08 99.8 97.57 84.0 .7 .29 98.08 99.8 97.32 86.8 .95 .4	90.61 99.0 90.56 98.5 .05 .02 -3.00 98.26 99.8 97.43 95.5 .84 .35 -2.82 98.26 99.8 97.81 98.8 .46 .19 -4.47 98.08 99.8 97.57 84.0 .7 .29 -3.66 98.08 99.8 97.32 86.8 .95 .4 -4.44	90.61 99.0 90.56 98.5 .05 .02 -5.00 25 98.26 99.8 97.43 95.5 .84 .35 -2.82 53 98.26 99.8 97.81 98.8 .46 .19 -4.47 40 98.08 99.8 97.57 84.0 .7 .29 -5.66 13 98.08 99.8 97.32 86.8 .95 .4 .4.44 13	90.61 99.0 90.56 98.5 .05 .02 -3.00 25	90.61 99.0 90.56 98.5 .05 .02 -3.00 25	90.61 99.0 90.56 98.5 .05 .02 -3.00 25	90.61 99.0 90.56 98.5 .05 .02 -3.00 25 0.0 25 0.0 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	96.26 99.8 97.47 95.5 84.0 7.7 .29 -3.00 25 0.0 2.5 0.0 2.5 0.0 2.5 0.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			

Each bladder contained 3730 ml. of HeOr. For HeOr designations See Table VIII Tank Ullage 9.1% All bladders bleached NOTES:

Each absorbent bag was double thickness (2-1 ml. TFE Teflon bags) $2-1^{\circ} \times 3/4^{\circ} \times 3^{\circ}$ vinyl sponges saturaged with a 30 ml. of a molar solution 1:3:10 alkaline pyrogallin acid-potassium hydroxide and water were placed in the bags and the bags heat-sealed. ٠

63

TABLE XII

RESULTS OF 74°C (165°F) SEALED STORAGE TESTS WITH BECCO HYDROGEN PEROXIDE IN 1 GALLON CAPACITY TFE TEFLON BLADDERS S/V RATIO .69 IN²/IN³

				REMARKS	24 hour test	48 hour test	72 hour test	*R.D. blew	30 hour test	48 hour test	48 hour test	72 hour test very slight sign of leakage
		LDUP	72	Hrs.	ı	1	205	260*	ı	ı	ı	207
	NO	RE BUI	87	Hrs.	ı	208	144	191	ı	197	201	109
	YFE TEFLON	PRESSURE BUILDUP	24	Hrs.	239	66	74	67	183	110	112	62
	74°C (165°F) SEALED STORAGE TESTS WITH EN PEROXIDE IN 1 GALLON CAPACITY TFE T BLADDERS S/V RATIO .69 IN²/IN³	ABSORBENT	BAG WEIGHT	CHANGE		1. 2	SoA	a 1	ВЕИЈ	SOR	ЯΑ	ON
	STORA LLON C .69 IN	•	æ	02	.105%	.071%	.29%	ı	.15%	.224%	224%	.149%
TABLE XII	SEALED IN 1 GA RATIO		Loss	Conc.	%575	.166%	.68%	ı	.32%	.486%	.486%	.32%
Y.	165°F) COXIDE TRS S/V	CIDE	Į.	Stab.	6.36	97.3	96.5	ı	99.2	7.66	98.7	98.7
	RESULTS OF 74°C (165°F) BECCO HYDROGEN PEROXIDE BLADDERS S/	HYDRO GEN PEROXI	After	Conc.	90.18	90.25	89.97	I	98.36	98.2	98.16	98.32
	SULTS O	HYDROG	le Fe	Stab.	99.2	99.5	98.6	98.6	99.5	99.5	8.66	99.8
	BECO		Before	Conc.	07.06	07.06	90.59	90.59	98.68	98.68	98.64	98.64
				TYPE	206	:	90P		98C	:	98P	:
		TEST	TANK	NO.	3	24	7	4	80	2	10	18
SSI)-TR-61-29		TEST	Ø	35	35	37	38	39	07	14	42

Each bladder contained 3730 ml of H202. For H202 designations see Table VIII. Tank ullage 10.4% NOTE:

TABLE XIII

١

RESULTS OF 74°C (165°F) SEALED STORAGE TESTS WITH BECCO HYDROGEN PEROXIDE IN 1 GALLON CAPACITY TFE TEFLON BLADDERS S/V 0.69 IN²/IN³

EACH BLADDER CONTAINED ONE ABSORBENT BAG.*

9													
	тест			HYDRO GEN	N PEROXIDE	LDE			ABSORBENT	PRESSURE	RE BL	BUILDUP	
TO COM	TANK		HATOTA	6	Arter	S.L.	LOSS	S	BAG WEIGHT	1	2	2	
NO.	NO.	TYPE	Conc.	Stab.	Conc.	Stab.	Conc.	02	CHANGE	Day	Day	Day	REMARKS
43	2	%06 Comm	90.15	8.66	89.76	98.3	.43%	.18%	-1.76 Grams	258			24 hour test
77	29	E	90.15	8.66	89.76	98.3	.43%	.18%	-1.80	250			24 hour test Rupture disc blew
45	4	90% Prop	90.32	97.2	89.97	9.06	.38%	.16%	-2.00	81	169		48 hour test
97	19	:	90.32	97.2	89.97	86.4	.38%	.16%	-2.25	160	115		Leak at Girth Flange - 48 hour test
47	11	98% Comm.	98.32	7.66	10.86	98.9	.31%	.13%	-2.45	148	92		Leak at Girth Flange – 48 hour test
87	24	:	98.32	7.66	98.19	99.5	.13%	.03%	-0.17	114	135		Leak at Girth Flange - 48 hour test
67	18	98% Prop.	98.08	98.7	98.04	99.5	.04%	.017%	-4.00	71	140	207	72 hour test
50	7	=	98.08	98.7	98.05	99.3	.03%	.012%	-2.65	72	118	150	72 hour test
NOTES:	1	ach bla	Each bladder contained 3730 ml of	tained	3730 ml)2 For	C H2 02	H ₂ O ₂ . For H ₂ O ₂ designations see Table VIII.	3 386	Table VIII	VIII.	on baga)

Each bladder contained 5750 ml or H₂O₂. For H₃O₂ designations see labre viit.

*Tank ullage 9.1%. Each absorbent bag was double thickness (2 - 1 mil TFE Teflon bags)

2 - 1" x 3/4" x 3" vinyl sponges saturated with 230 ml of a molar solution 1:3:10 alkaline. Pyrogallic acid, potassium hydroxide and water were placed in the bags and the bags were heat sealed.

65

TABLE XIV

RESULTS OF SEALED STORAGE TESTS AT 20°C in TPE TEPLON BLADDERS TREATED WITH FARRELLOK SOLUTION S/V ratio 0.69 in.2/in.3

							F	Absorb.			•		7.14	•				
				Percentage Demoxique	Demovid	٩		bag			2	Cessur.	Pressure Bullum		-	!		
	Test		4	TO TO TO	10000	7080		Total				•		t		Z Z	1	Remarks
1			Refore	¥	Arcer	2007				7.3	7	, X	TO XX	1 × ×	*K 2-m-			
Test	Test Tank	- Jan	Conc. stab.	couc.	stab.	conc. stab. conc. 02	05	Chg.	7-A.K	Y N		Ì						
		29.6														•	(31 71 71
						í	a c	1	α	12 15		19	19 23 27	Z 2	3 39	2	2	28 39 54 (0 nemoved to-mas.
7.	20	98% comm.	20 98% comm. 98.26 99.8 97.87 99.0	97.87	0.66	<u>.</u> پر	01.	3 (S	•	1								
`								No Pe					,	ď	7 7	72	96	2 2 2 A 43 72 96 Removed 16-wks.
			,	100	6	53	22	10	6	10 15		51	S	9	•	-		.,,,
52	21	Se comm.	21 996 comm. 98.20 99.0 91.17 39.7		13.5	·	 !	8										
\								av										
															;	,		
									NOTES.	Tach.	bladde	r cont	ained 3	730 ml	Normes. Fach bladder contained 3730 ml. of H202	8		
		STATE TO STATE OF THE STATE OF									1	at another	1 one	Lee TAB	LE VIII			

Parrellok-Treated Bladders Room Temperature

Each bladder contained 3730 ml. of H202 For H202 designations, see TABLE VIII. Tank ullage 10.4% Bladders bleached alightly

TABLE XV

RESULTS OF 20°C. (68°F.) SEALED STORAGE TESTS WITH BECCO HYDROGEN PEROXIDE IN 1-GALLON CAPACITY USED TPE TEPLON BLADDERS S/V ratio 0.69 in.2/in.3

		Rema rics	L	Bladders bleached		Bladders bleached		Bladders bleached		Bladders bleached			
		1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19		;		85	1	19			•
		5-WK	$\left \cdot \right $	0	•	9) }	70	-	53	:		
u11dup		4-WK		O T	}	78	2	μς	9	45			
Pressure Buildup		7-1		P4 04 8c 9c	Ş	ų ų	5	4	2	30	`		
Pres		3	V	a	9	4	7	•	7	Œ	3		
		7	Y B - T	,	0	7.	9	-	₹	7	_		
Absoro. Bak	1		cng.			4	u	o q		80	٧		
		Loss &	000		01.		-		.21		52.		
	١	Los	Conc.		.25		₫.		÷.	,	5		
44.4	ייייייייייייייייייייייייייייייייייייייי	ı	Stab.		98.3		0.79		3.6		& &		
	roken re	Arter	Conc. Stab. Conc. Uz		90.20 98.3 .25	,	#O. 0.79 # 00	•	98.25 99.5		8.80 98.8		
:		Г	т-	_ [8		9	2.6	9		9.		
		Her ore	Hear Sean	2153	11 TO		4	2	08 70	2	98.70		
		•		1ype	0.00 44 00 000 200		}	0.66 tr.06 .mmos 606 6	9 00 02 80	COMMITTER STATE OF THE STATE OF	7 Jose comm 98.70 99.6		
		2 1 5	Tank	So.		S		6	,	٠	,	_	
		2000	1881			2(-	,	26	9	3	

Used Bladders Room Temperature

NOTES: Each bladder contained 3730 ml. of H₂O₂ All bladders had a minimum of 300 hours exposure Tank ullage 10.4%

TABLE XVI

RESULTS OF LABORATORY TESTS WITH NEW AND USED TFE BLADDERS

Test propellant Becco 90% Commercial H2O2

All samples exposed to 90% $\rm H_2\,O_2$ at 66°C (151°F) for 1 week

BLADDER SAMPLE	TREATMENT	A.O.L.	H ₂ O ₂ FINAL STABILITY
New TFE Teflon	Regular passivation +20% HNO ₃ l hr.	4.4% 3.2% 3.2%	96.2% 97.4% 99 %
Used TFE Teflon	11 11	4.0% 5.4% 3.3%	98 % 99.4% 98.1%
Used TFE Teflon	Regular passivation No acid treatment	7.2% 6.4% 6.7%	94.8% 97.6% 96.2%

TABLE XVII

١

RESULTS OF SCREENING TESTS WITH VARIOUS BLADDER MATERIALS INCLUDING KANIGEN PLATED AND TINPLATED-KANIGEN PLATED MILD STEEL

	TEST MATERIAL	TEST CO	TEST CONDITIONS		HYDROGEN PEROXIDE	ROXIDE					
Source & Type	Treatment	Temp.	Period	A.O.L.	Conc.	Stab111ty		Ren	Remarks		
29711 S111cone	Regular	151°F	7 days	9.7%	806	98.2%	Samples	bleached	slightly		l
	=	=	=	8.7%	=	99.8%	=	Ξ	=		
	=	=	=	9.5%	=	8. 76 - 18. 18	=	=	=		
=	=	=	=	9.1%	986	92.3%	Samples torted	bleached,	l, swelled	and	dis-
=	=	=	=	8.3%	=	94.68	=	=	=	Ξ	=
=======================================	:	=	=	8.7%	=	98.6%	=	=	=	E	=
Vicone #185				•							
(N.A.A. Corp.)	-	=	z	4.1%	806	96.4%	Samples	bleached	slightly		
E	2	=	=	6.1%	Έ	93.2%	=	=			
=	=	=	Ξ	8.7%	2	88.78	=	=	=		
Vicone #31-2											
(N.A.A. Corp.)	2	=	=	19.5%	98%	81.0%	=	E	E		
=	=	=	=	20.6%	2	80.7%	=	=	=		
=		=	=	19.5%	=	83.4%	=	=	t		
Vicone #185 Bladder Sample						•					
	=	=	=	4.1%	806	97.8%	=	=	=		
=	*	=	=	3.8%	=	82.66	=	=	=		
=	#	=	=	3.8%	=	98.X	=	=	=		
₹		:				 -					
(N.A.A. Corp.)	=	=	=	15.9%	986	88.98	=	=	E		
•	=	Ξ	=	15.8%	=	89.0%	*	=	=		
" " " " " " " " " " " " " " " " " " "	=	2	=	13.5%	=	74.0%	=	=	=		
TFE Teflon 0.015"		120°F	2 2	2.00 2.00	% 506	92.98	Sample 1	bleached "	very slig	slightly	
=	=	=	E	, v	280	٠, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲,	2	Ξ	=	_	
ŧ	=	=	=	る。)= \	.12 .82	=	=	=	_	

TABLE XVII (Continued)

CO TEST MATERIAL	RIAL	TEST 00	CONDITIONS	HYDROGEN		PEROXIDE	
Source & Type	Treatment	Temp.	Period	A.0.L.	Conc.	Stability	Remarks
TFE Teflon	Regular	120°F	7 days	1.3%	90% Prop.	91.5%	Sample bleached slightly
: :	=	:	=	1.9%	%86	89.5%	
	=	165°F	3 days	4.0%	Frop.	95.5%	
	:	:	=	7.4%	%86	92.5%	11 11
	:	:		3.3%	%06 Dags	79.4%	
=	E		:	2.7%	98% Prop.	90.4%	
Stillman	=	151°F	7 days	14.4%	%06	96.4%	
Co. Compound	:		:	14.4%	%06	97.6%	11 11
#TH1131	:	:	:	16.1%	%06	91.2%	11 11
•	:	-	÷	16.4%	%86	%8.96	11 11
=	:			16.9%	%86	86.6%	11 11
=		:	=	16.0%	%86	%9.06	., ., .,
duPont	-	:	-	2.6%	%06	98.4%	Sample blistered
Compound	-	=	1 day	0.6%	%06	99.1%	No effect upon the sample
#805			2 days	0.6%	%06	%4.66	No effect upon the sample
Viton B	:	:	3 days	%9:0	%06	95.3%	No effect upon the sample
			4 days	3.5%	%06	97.2%	Sample became swollen & blistered
11 11	:	120°F	7 days	3.3%	%06	96.8%	Signs of slight blister formation
11	2	:	=	3.1%	%86	99.5%	ii ii ii ii ii ii
11	•	86°F	30 days	1%	%06	96.1%	No effect upon the sample
3-M	*	151°F	7 days	1.1%	%06	98.5%	Sample blistered on one surface
Fluorel		:	1 day	.3%	%06	99.1%	No effect upon the sample
6 #2141	:	120°F	7 days	3.3%	%06	98.2%	Very slight indications of
	11	",	11	2.9%	8%	%9.66	

TABLE XVII (Continued)

							덪					
		ple		ly			staine	=	£	=	E	
	Remarks	No effect upon the sample	:	Samples stained slightly	*	=	Samples very slightly stained	=	=	=	:	
	Re	t upol	:	stain	=	=	very	=	z	=	E	
		No effec		Samples	E	=	Samples	E	:	•	:	
ROXIDE	Stability	%7.46	97.9%	88.8%	95.1%	92.5%	98.2%	98.0%	96.7%	96.3%	94.2%	
HYDROGEN PEROXIDE	Conc.	%06	%86	%06	%06	%06	%06	%06	%06	%06	%06	
HYDR(A.O.L.	1.0%	0.9%	82.1%	51.2%	60.3%	10.6%	13.7%	0.55%	0.55%	0.98%	- 1
DITIONS	Period	5 Mons.	=	7 days		:	=	<u> </u>	:			
TEST MATERIAL TEST CONDITIONS	Temp.	70-72*F 5 Mons	=	151°F	=	13	1 151 F	**	70-72'F 7 days	*	*	
	Treatment	Regular	:	Kan 1gen	Coated	1020 Steel	Tinplated 151°F	Kan4gen	Coated	1020	Mild Steel	
	Source & Type	g Fluorel	#2141 -	Keystone	Chromium	Company	Buffalo	New York	:	:	=	

NOTES: Passivation - Procedure used with plastics:

- . Washed with detergent solution (Nacconal-water)
 - . Rinsed with distilled water
- 3. Placed in 20% HNO3 for 1 hour room temperature
 - . Rinsed with distilled water

Kanegin and tinplated samples:

- 1. Washed with detergent solution (Nacconal-water)
- . Double rinse in distilled water

TABLE XVIII

RESULTS OF 49°C. (120°F.) SEALED-STORAGE TESTS WITH ONE OF BECCO'S EXPERIMENTAL LOW-FREEZING HIGH-EMERGY MONOPHOPELLANTS

IN 1-GALLON CAPACITY TFE TEFLON BLADDERS -- S/V ratio .69 in.2/in.3

		/-da nemarks		139 7-day Test	90 7-day Test		
		ep-0		٠u	uE		
dnp	,	2-da	.3&2				
re But	Mgt. 1-da 2-da 3-da 4-da 5-da 6-da 7-da Chg. 1-da 2-da 3-da 4-da 5-da 6-da 7-da Chg 20 34 52 70 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
Pressu	,	3-da		52	1 †		
		2-da			56		
		1-ds		50	91		
1							
	2088 %	02		9.	.33		
	Q		ŀ		16 26 41 51 05 34		
-		ဇ္ဌ		2.3			
Proxide		Stab. Con		0.0			
rogen Peroxide	After	Conc. Stab. Con		71.93 0.0 2.7	72.98 95.5 1.3		
Hydrogen Peroxide	After	couc.					
Hydrogen Peroxide	After	cone. Stab. Conc. Stab. Con		74.0 94.8 71.93 0.0 2.7			
Hydrogen Peroxide	After	couc.			74.0 94.8		
HAC	Tank Before After	Type Conc. Stab. Conc.		74.0 94.8	74.0 94.8		

Mar - DEG - 1800 120°F.

NOTES: Each bladder contained 3730 ml. propellant Tank Ullage 10.4%

TABLE XIX

RESULTS OF ROOM TEMPERATURE (20°C.) SEALED-STORAGE TESTS WITH ONE OF BECCO'S EXPERIMENTAL LOW-FREEZING HIGH-EMERGY MOMOPHOPELLANTS IN 1-GALLON CAPACITY TPE TEPLON BLADDERS -- S/V ratto .69 in.2/in.3

	Rema riks		Bag Porosity Noted	Nemoved after 10-wk.		
			Bag Pc	Remov		
	10-wk		;	6		
	9 -w k		62	42		
	8-wk		51	35		
dmp	7-wk		39	33		
E Bull	6-wk		20 29 39	21 27 33 35 42		
resaur	5-WK				l	
н	#-#K		11 15	7.	ļ	
	3-#K		11	11 12		
	S-WK		6	11		
	1-#K		2	6		
Absorb. Bag Wgt. Chg. 1-wk 2-wk 3-wk 5-wk 6-wk 7-wk 8-wk 9-wk 10-wk			oN Spacroent Bags			
	% 02 03	Ī	0.0	.15		
	Loss Conc.		0.0	.#5		
e rox1de	r Stab.		80.1	84.4		
Hwdrogen Peroxide	After Conc. Stab.		73.2 95.3 73.3 80.1 0.0	73.2 95.3 72.87 84.4		
PAH	Sta		95.3	5.3		
	Bef Conc.		73.2	73.2		
	Type		BACP	BAC		
1	S P		6 0	81		
	Test		53	₹,		

MP - DEG - 1800 DOM temperatury

NOTES: Each bladder contained 3730 ml. of HzOz. Tank ullage 10.4%