Project_2_CemKazan

February 28, 2023

1 Structural Discovery of Macromolecules

author: Cem Kazan date: 02/28/2023

2 Structural Discovery of Macromolecules

The main question in structural discovery field is how macro molecules behave in their natural forms and natural environments and how macromolecules stray away from natural behavior.

3 Setup for Data Analysis

Loading Libraries and the Data Frame

```
[1]: import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import numpy as np
  from sklearn.cluster import DBSCAN
  from sklearn.cluster import KMeans
  from sklearn.cluster import AgglomerativeClustering
  from sklearn.preprocessing import StandardScaler
  from sklearn.decomposition import PCA
  sns.set_context('talk')
```

```
[2]: import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras.wrappers.scikit_learn import KerasClassifier
```

- For data visualization, I use **matplotlib** or **seaborn** to uncover patterns and relationships in my data.
- For data manipulation, I use pandas to filter, summarize, and transform my data.
- For clustering analysis, I use **scikit-learn** and its **DBSCAN** algorithm to identify clusters within large datasets.
- For deep learning, I use **TensorFlow** to build and train neural networks
- For dimensionality reduction, I use **scikit-learn** and its **PCA** algorithm to reduce the number of features in my data while retaining as much information as possible

3.1 Data Summary

```
[3]: df_input = pd.read_csv('./pdb_data_no_dups.csv')
    display(df_input)
    df_input.describe(include='all')
```

	structureId	c.	lassification	\	
0	100D	Dì	NA-RNA HYBRID		
1	101D		DNA		
2	101M	OXYO	GEN TRANSPORT		
3	102D		DNA		
4	102L	HYDROLASI	E(O-GLYCOSYL)		
	•••		•••		
141396	9RUB	LYASE(CA	ARBON-CARBON)		
141397	9TNA		T-RNA		
141398	9WGA	LECTIN	(AGGLUTININ)		
141399	9XIA ISOMERASE(IN	TRAMOLECULAR OX	IDOREDUCTASE)		
141400	9XIM ISOMERASE(IN	TRAMOLECULAR OX	IDOREDUCTASE)		
	experimentalTechnique mad	cromoleculeType	residueCount	resolution	\
0	X-RAY DIFFRACTION	DNA/RNA Hybrid	20	1.90	
1	X-RAY DIFFRACTION	DNA	24	2.25	
2	X-RAY DIFFRACTION	Protein	154	2.07	
3	X-RAY DIFFRACTION	DNA	24	2.20	
4	X-RAY DIFFRACTION	Protein	165	1.74	
•••		•••		••	
141396	X-RAY DIFFRACTION	Protein	932	2.60	
141397	X-RAY DIFFRACTION	NaN	0	NaN	
141398	X-RAY DIFFRACTION	Protein	342	1.80	
141399	X-RAY DIFFRACTION	Protein	388	1.90	
141400	X-RAY DIFFRACTION	Protein	1572	2.40	
	structureMolecularWeight	crysta	allizationMetho	od \	
0	6360.30	VAPOR DIFFUSIO	ON, HANGING DRO)P	
1	7939.35	5	Na	aN	
2	18112.80)	Na	aN	
3	7637.17	VAPOR DIFFUSIO	ON, SITTING DRO)P	
4	18926.61		Na	aN	
•••	***		•••		
141396	101838.68			aN	
141397	24244.34			aN	
141398	34270.22			aN	
141399	43542.29			aN	
141400	174722.12	2	Na	aN	

```
densityMatthews densityPercentSol \
             crystallizationTempK
    0
                               NaN
                                                 1.78
                                                                    30.89
                               NaN
                                                 2.00
                                                                    38.45
    1
    2
                               NaN
                                                 3.09
                                                                    60.20
    3
                             277.0
                                                 2.28
                                                                    46.06
    4
                               NaN
                                                 2.75
                                                                    55.28
                                                                    48.29
    141396
                               NaN
                                                 2.38
    141397
                               NaN
                                                3.17
                                                                    61.18
    141398
                               NaN
                                                 2.50
                                                                    50.76
    141399
                               NaN
                                                 2.79
                                                                    55.93
    141400
                               NaN
                                                 3.96
                                                                    68.92
                                                      pdbxDetails
                                                                    phValue
                         pH 7.00, VAPOR DIFFUSION, HANGING DROP
    0
                                                                        7.0
    1
                                                                        NaN
    2
             3.0 M AMMONIUM SULFATE, 20 MM TRIS, 1MM EDTA, ...
                                                                      9.0
    3
             pH 7.00, VAPOR DIFFUSION, SITTING DROP, temper...
                                                                      7.0
    4
                                                               NaN
                                                                        NaN
    141396
                                                               {\tt NaN}
                                                                        NaN
    141397
                                                                        NaN
                                                              NaN
    141398
                                                                        NaN
                                                              NaN
    141399
                                                              NaN
                                                                        NaN
    141400
                                                              NaN
                                                                        NaN
             publicationYear
    0
                       1994.0
                       1995.0
    1
    2
                       1999.0
    3
                       1995.0
                       1993.0
    141396
                       1991.0
    141397
                       1986.0
    141398
                       1990.0
    141399
                       1989.0
    141400
                       1992.0
    [141401 rows x 14 columns]
[3]:
             structureId classification experimentalTechnique macromoleculeType
                                                                             137636
     count
                  141401
                                  141399
                                                          141401
     unique
                  140911
                                    5050
                                                                                  13
                                                              33
     top
                    2FYM
                               HYDROLASE
                                              X-RAY DIFFRACTION
                                                                            Protein
```

126432

NaN

127798

NaN

20915

NaN

NaN

freq

mean

std	NaN	NaN	M	aN	NaN
min	NaN	NaN		aN	NaN
25%				aN	
	NaN N-N	NaN N-N			NaN N-N
50%	NaN NaN	NaN N-N		aN - N	NaN NaN
75%	NaN	NaN		aN	NaN
max	NaN	NaN	N	aN	NaN
					,
	residueCount	resolution	structureMolecu	•	\
count		128589.000000	1.4	14010e+05	
unique	NaN	NaN		NaN	
top	NaN	NaN		NaN	
freq	NaN	NaN		NaN	
mean	825.374849	2.263807	1.1	20790e+05	
std	2136.461080	1.410878	5.6	90152e+05	
min	0.000000	0.480000	3.1	43800e+02	
25%	226.000000	1.800000	2.6	12856e+04	
50%	414.000000	2.100000	4.7	47779e+04	
75%	820.000000	2.500000	9.4	.08484e+04	
max	313236.000000	70.000000	9.7	73054e+07	
	crystal	lization Method	crystallizatio	nTempK de	$^{\circ}$ ensityMatthews
count		96242	97039.	000000	124724.000000
unique		549		NaN	NaN
top	VAPOR DIFFUSION	, HANGING DROP		NaN	NaN
freq		53870		NaN	NaN
mean		NaN	290.	967713	2.670267
std		NaN	9.	541080	0.783740
min		NaN		000000	0.000000
25%		NaN		000000	2.210000
50%		NaN		000000	2.490000
75%		NaN		000000	2.910000
max		NaN		000000	99.000000
			353.		00.00000
	densityPercentS	ol pdbxDetails	phValue	publicati	lonYear
count	124749.0000	-	105110.000000	117602.	
unique		aN 91025	NaN		NaN
top		aN pH 7.5	NaN		NaN
freq		aN 361	NaN		NaN
mean	51.3531		6.788685	2008	922365
std	10.1045		2.556819		459286
min	0.0000		0.000000		.000000
25%	44.3700		6.000000		.000000
50%	50.5000				.000000
			7.000000		
75%	57.7100		7.500000		.000000
max	92.0000	00 NaN	724.000000	2018.	.000000

```
[4]: col_names = df_input.columns.tolist()
col_names_str = ', '.join(col_names)
```

The Structural Protein Sequences data [@structur] frame comprises 14 columns, as indicated by structureId, classification, experimentalTechnique, macromoleculeType, residueCount, resolution, structureMolecularWeight, crystallizationMethod, crystallizationTempK, densityMatthews, densityPercentSol, pdbxDetails, phValue, publicationYear. An examination of the summary statistics revealed the presence of NA and empty values that must be addressed. Additionally, columns deemed irrelevant to our analysis have been removed.

```
[5]: df_clean = df_input.dropna()
    df_clean = df_clean.drop(columns=['publicationYear', 'pdbxDetails'])
    df_clean
```

<u>ar_crc</u>						
	structureId c	lassification	experiment	talTechnique	macromoleculeType \	\
3	102D	DNA	X-RAY	DIFFRACTION	DNA	
27	110D	DNA	X-RAY	DIFFRACTION	DNA	
30	111D	DNA	X-RAY	DIFFRACTION	DNA	
36	113D	DNA	X-RAY	DIFFRACTION	DNA	
44	117D	DNA	X-RAY	DIFFRACTION	DNA	
•••	•••	•••		•••	•••	
141064	6F6S	VIRAL PROTEIN	X-RAY	DIFFRACTION	Protein	
141066	6F73	FLAVOPROTEIN	X-RAY	DIFFRACTION	Protein	
141068	6F8P	VIRAL PROTEIN	X-RAY	DIFFRACTION	Protein	
141077	6FAH	FLAVOPROTEIN	X-RAY	DIFFRACTION	Protein	
141172	7BNA	DNA	X-RAY	DIFFRACTION	DNA	
	residueCount	resolution	structure	MolecularWeig	ght \	
3	24	2.20		7637.	.17	
27	6	1.90		2337	.73	
30	24	2.25		7374.	.83	
36	24	2.50		7356.	.81	
44	12	2.55		3663.	.39	
•••	•••	•••		•••		
141064	497	2.29		58337.	.03	
141066	1148	2.22		128053.	.03	
141068	316	1.60		34958.	.86	
141077	2074	3.13		231360.	.91	
141172	24	1.90		7326.	.78	
	crys	tallizationMet	thod cryst	tallizationTe	empK densityMatthews	3
3	VAPOR DIFFUS	ION, SITTING I	OROP	277	7.00 2.28	3
27	VAPOR DIFFUS	ION, SITTING I	OROP	277	7.00 2.90)
30	VAPOR DIFFUS	ION, SITTING I	OROP	277	7.00 2.29	9
36	VAPOR DIFFUS	ION, SITTING I	OROP	281	1.00 2.39	5
44		VAPOR DIFFUS	SION	277	7.00 3.03	L

141064	VAPOR DIFFUSION, SITTING D	PROP 293.00	3.83
141066	VAPOR DIFFUSION, HANGING D	ROP 294.00	2.90
141068	VAPOR DIFFUSION, SITTING D	PROP 298.00	2.47
141077	VAPOR DIFFUSION, SITTING D	ROP 293.15	3.49
141172	VAPOR DIFFUS	SION 290.00	2.27

	${\tt densityPercentSol}$	phValue
3	46.06	7.0
27	57.63	6.6
30	46.25	6.6
36	47.59	7.4
44	59.09	6.5
	•••	
141064	67.89	5.2
141066	57.00	5.0
141068	50.15	7.0
141077	64.73	8.5
141172	45.79	7.5

[65886 rows x 12 columns]

4 Data Analysis

4.1 Molecule Type and Experiment Technique

First thing that need to be considered are the molecule types and the technique used for the experiment to choose ideal data for examination.

```
[6]: sns.countplot(y='macromoleculeType', data=df_clean)
   plt.title("No of Data Points by Molecule Type")
   plt.xlabel("Molecule Type")
   plt.ylabel("Count")
   plt.xticks(rotation=45)
   plt.show()
```



```
[7]: sns.countplot(y='experimentalTechnique', data=df_clean)
  plt.title("No of Data Points by Experimental Techniques")
  plt.xlabel("Molecule Type")
  plt.ylabel("Count")
  plt.xticks(rotation=45)
  plt.show()
```



```
df_clean['experimentalTechnique'] == 'X-RAY DIFFRACTION'
)
].copy()
```

Due to the large amount of data available for proteins, it was selected as the subject of further analysis. Given the majority of the results are obtained through x-ray diffraction, my focus was specifically directed towards proteins that have been studied using this technique.

4.2 Effect of Resolution

Majority of the protein structural discoveries uses the x-ray diffraction and one major achievement in discovery is obtaining a resolution (in angstrom units) as close to one as possible. [@warren1990; @whittig1986] This is limited by the physics behind it. To understand this one dimensional data I used histogram to see how it is distributed.

```
[9]: plt.hist(df_select_1['resolution'], bins=50)
    plt.title("Histogram of Resolution")
    plt.xlabel("Resolution Å")
    plt.show()
```


The histogram of resolution shows that majority of the experiments can resolve structures with a resolution around 2. (As there are more then 60000 data points in my set, the number of bins is selected as 50 to get the details about the distribution more precisely). Investigation of structures

with resolution below 2 would give much deeper understanding of the structural features and the underlying physics/chemistry.

The number of protein structures with a resolution below two are 26248.

4.3 Effect of Residue Count

Next I wanted to understand how residue count (the number of residue in macromolecules) affects the resolution of the discovered structure.

```
[11]: df_protein1 = df_select_1[(df_select_1['resolution'] < 2) &__
       ⇔(df_select_1['residueCount'] < 2000)].copy()
      df_protein2 = df_select_1[(df_select_1['resolution'] > 2) &__
       ⇔(df_select_1['residueCount'] < 2000)].copy()
      df_protein1['label'] = 'resolution < 2'</pre>
      df_protein2['label'] = 'resolution > 2'
      df_plot = pd.concat([df_protein1, df_protein2])
      sns.displot(
          data=df_plot,
          x='residueCount',
          hue='label',
          kind='hist',
          common_norm=False,
          binwidth=50,
          multiple='dodge',
          shrink=0.8,
          aspect=2,
      sns.displot(
          data=df_plot,
          x='residueCount',
          hue='label',
          kind='kde',
          common_norm=False,
          aspect=2,
```

[11]: <seaborn.axisgrid.FacetGrid at 0x7f646b965f10>

The relation between resolution and number of residues is intriguing. The plot shows that number of residues in a protein is a factor in determining the protein resolution. There is a negative correlation between the number of residues and resolution. The lesser the number of residues better the resolution (close to 1). Most of the high resolution structures have less than 500 residues. Thus, I investigated that set.

4.4 Exploring Discrepancies in the Density of Proteins in Crystalline and Soluble Forms

Proteins in solution has shown to display features that are being missed in structural discovery. One of the parameters that has been trusted in protein studies in solution is solution density calculation. On the other side structural discovery utilizes a metric depending on the protein crystals. Now the question is how do proteins act in solution (normal conditions) versus in a crystal lattice (restricted environment)? Thus I investigated two features from both calculations.

```
[13]: sns.lmplot(
    data = df_select_residu,
    x='densityMatthews',
    y='densityPercentSol',
    order = 2,
    ci = 0,
    line_kws={'color': 'red'},
    aspect=1.2,
    legend = True
)
plt.title("Crystaline vs Solution Density")
```

[13]: Text(0.5, 1.0, 'Crystaline vs Solution Density')

The spread of the data in the plot resembles a second degree polynomial fit, hence I added a second degree polynomial fit to capture the underlying principle that correlates these two metrics. However because of the outliers the fit does not recapitulate the data. Thus the outliers needs to be removed.

4.4.1 K-means clustering

I used K-means clustering to discover similar data points in the clusters within the two feature space. It can reveal hidden patterns and trends such that it can cluster and separate the data points that don't follow the correct trend. There are thousands of data points in my system therefore I selected k value as 20 to be able to generate unique clusters.

```
[14]: df_density = df_select_residu[['densityMatthews', 'densityPercentSol']].copy()
kmeans_fit = KMeans(n_clusters=10, max_iter=20, n_init=2).fit(df_density)
df_density['clusters'] = kmeans_fit.labels_
```

```
[15]: sns.scatterplot(
    data = df_density,
    x='densityMatthews',
    y='densityPercentSol',
    legend = True,
    hue='clusters',
    palette = sns.color_palette('tab10')
)

plt.xlabel('Crystal Density')
plt.ylabel('Solution Density')
plt.title('Crystaline vs Solution Density, k-means clustering')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., ncol=2)
```

[15]: <matplotlib.legend.Legend at 0x7f646b502be0>

The K-means clustering failed to identify the correct clusters, therefore I used Hierarchical clustering that can identify clusters using agglomerative method which does not require a prior specification of the number of clusters.

4.4.2 Hierarchical clustering

```
[17]: sns.scatterplot(
    data = df_density_2,
    x='densityMatthews',
    y='densityPercentSol',
    legend = True,
    hue='cluster',
)

plt.xlabel('Crystal Density')
plt.ylabel('Solution Density')
plt.title('Crystaline vs Solution Density, Hierarchical Clustering')
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., ncol=2)
```

[17]: <matplotlib.legend.Legend at 0x7f646d452940>

The figures indicate that kmeans and hierarchical clustering was not the best approach to identify the main overlapping points versus the outliers in the data. This data show dense regions around several data points. Therefore a density based clustering approach would be more useful in understanding this data. To achieve that I used dbscan function. DBscan is a density-based clustering algorithm that groups together data points that are close in space and separates points that are far apart. Dbscan is useful because it can find clusters of arbitrary shapes and sizes, unlike k-means

and hierarchical clustering which tend to find circular clusters.

4.4.3 Density Based Clustering

```
[18]: df_density_3 = df_select_residu[['densityMatthews', 'densityPercentSol']].copy()
    dbscan = DBSCAN(eps=0.1, min_samples=1)
    result = dbscan.fit_predict(df_density_3)
    df_density_3['cluster'] = result
    # print(df_density_3['cluster'].value_counts())
[19]: sns.scatterplot(
    data = df_density_3,
    x='densityMatthews',
    y='densityPercentSol',
    legend = True,
    hue='cluster',
]
```

plt.title('Crystaline vs Solution Density, Density-based Spatial Clustering')

plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., ncol=2)

[19]: <matplotlib.legend.Legend at 0x7f646ab86b50>

plt.xlabel('Crystal Density')
plt.ylabel('Solution Density')

Looking at the plot we can clearly see the outliers in our data set. To focus more clearly on the data I choose main cluster and re-plot the data. I added a second degree polynomial fit once again to discover the underlying relation. The polynomial fit now captures more than 95% of the data as shown in the plot below.

```
[20]: df_density_4 = df_density_3[df_density_3['cluster'] == 0]
```

```
sns.lmplot(
    data = df_density_4,
    x='densityMatthews',
    y='densityPercentSol',
    order = 2,
    ci = 0,
    line_kws={'color': 'red'},
    aspect=1.2,

)
plt.title("Crystaline vs Solution Density")
plt.xlabel('Crystal Density')
plt.ylabel('Solution Density')
plt.title("Crystaline vs Solution Density, Density-based Spatial Clustering')
```

[20]: Text(0.5, 1.0, 'Crystaline vs Solution Density, Density-based Spatial Clustering')

The results of this analysis demonstrate that through the utilization of various machine learning techniques, it is possible to identify and decipher fundamental relationships within a data set. This study highlights the challenges of achieving results that resemble natural phenomena using these techniques, with only 26% of the data points, equivalent to only 26% of the experiments, resulting in naturally occurring behavior that captures the correct underlying fundamentals.

So far focused on only several features from the dataset and filtering based on physics based

principals I was able to distinguish different protein structures from each other. However, the dataset contains vast number of features that could be understood in a cohesive manner. In example for every protein 5 features could be analyzed at the same time to achive higher clarity in its natural behaviour relative with other proteins in the set. Several mathematical approaches could be utilized to achieve this. In the next chapters I will apply several diffrent methods to analyze the data. This will hopefully provide a better understanding of the data and potentially be able to distinguish proteins with similar characteristics from the ones that behave differently.

5 Principal Component Analysis

PCA is a technique that helps us understand complex datasets by simplifying them into a smaller number of variables (dimension reduction). The most significant links and patterns in the data are found, and new variables are then created to capture those relationships and patterns. These new variables, referred to as principle components, are simpler to use and can provide us with new perspectives on the underlying structure of the data.

First I will define a python function that takes a dataframe with several features and outputs its principal components.

```
[22]: df_clean
```

```
[22]:
             structureId classification experimentalTechnique macromoleculeType
      3
                     102D
                                              X-RAY DIFFRACTION
                                                                                 DNA
                                      DNA
      27
                     110D
                                      DNA
                                              X-RAY DIFFRACTION
                                                                                 DNA
                                      DNA
      30
                     111D
                                              X-RAY DIFFRACTION
                                                                                 DNA
      36
                     113D
                                      DNA
                                              X-RAY DIFFRACTION
                                                                                 DNA
      44
                     117D
                                      DNA
                                              X-RAY DIFFRACTION
                                                                                 DNA
                           VIRAL PROTEIN
                                              X-RAY DIFFRACTION
                                                                             Protein
      141064
                     6F6S
                     6F73
                            FLAVOPROTEIN
                                              X-RAY DIFFRACTION
                                                                             Protein
      141066
      141068
                     6F8P
                           VIRAL PROTEIN
                                              X-RAY DIFFRACTION
                                                                             Protein
      141077
                            FLAVOPROTEIN
                                              X-RAY DIFFRACTION
                                                                             Protein
                     6FAH
      141172
                     7BNA
                                              X-RAY DIFFRACTION
                                                                                 DNA
                                      DNA
```

```
3
                         24
                                   2.20
                                                            7637.17
                         6
                                                            2337.73
      27
                                   1.90
      30
                         24
                                   2.25
                                                            7374.83
                                   2.50
      36
                         24
                                                            7356.81
      44
                         12
                                   2.55
                                                            3663.39
                                   2.29
                                                           58337.03
      141064
                        497
      141066
                                   2.22
                                                         128053.03
                       1148
                                   1.60
      141068
                        316
                                                           34958.86
      141077
                       2074
                                   3.13
                                                         231360.91
      141172
                         24
                                   1.90
                                                            7326.78
                                                                      densityMatthews \
                       crystallizationMethod
                                               crystallizationTempK
      3
              VAPOR DIFFUSION, SITTING DROP
                                                              277.00
                                                                                  2.28
              VAPOR DIFFUSION, SITTING DROP
      27
                                                              277.00
                                                                                  2.90
              VAPOR DIFFUSION, SITTING DROP
      30
                                                              277.00
                                                                                  2.29
      36
              VAPOR DIFFUSION, SITTING DROP
                                                              281.00
                                                                                  2.35
      44
                             VAPOR DIFFUSION
                                                              277.00
                                                                                  3.01
      141064 VAPOR DIFFUSION, SITTING DROP
                                                              293.00
                                                                                  3.83
      141066 VAPOR DIFFUSION, HANGING DROP
                                                              294.00
                                                                                  2.90
      141068 VAPOR DIFFUSION, SITTING DROP
                                                              298.00
                                                                                  2.47
      141077 VAPOR DIFFUSION, SITTING DROP
                                                              293.15
                                                                                  3.49
      141172
                             VAPOR DIFFUSION
                                                              290.00
                                                                                  2.27
              densityPercentSol
                                 phValue
      3
                           46.06
                                       7.0
      27
                           57.63
                                       6.6
      30
                           46.25
                                      6.6
      36
                           47.59
                                      7.4
      44
                           59.09
                                      6.5
                                      5.2
      141064
                           67.89
      141066
                           57.00
                                      5.0
      141068
                           50.15
                                      7.0
      141077
                           64.73
                                      8.5
                           45.79
      141172
                                      7.5
      [65886 rows x 12 columns]
[23]: df_PCA_input= df_clean[[
          'structureId',
          'residueCount', 'resolution', 'structureMolecularWeight',
          'crystallizationTempK', 'densityMatthews', 'densityPercentSol', 'phValue'
      ]]
```

residueCount resolution structureMolecularWeight

111D	24	2.25		7374.83	
113D	24	2.50		7356.81	
117D	12	2.55		3663.39	
•••	•••	•••		•••	
6F6S	497	2.29		58337.03	
6F73	1148	2.22		128053.03	
6F8P	316	1.60		34958.86	
6FAH	2074	3.13		231360.91	
7BNA	24	1.90		7326.78	
	crystallizatio	nTempK den	sityMatthews	densityPercentSol	phValue
structureId	v	•	·	·	•
102D		277.00	2.28	46.06	7.0
110D		277.00	2.90	57.63	6.6
111D		277.00	2.29	46.25	
113D		281.00	2.35	47.59	
117D		277.00	3.01	59.09	6.5
***		•••	•••	***	
6F6S		293.00	3.83	67.89	5.2
6F73		294.00	2.90	57.00	5.0
6F8P		298.00	2.47	50.15	7.0
6FAH		293.15	3.49	64.73	
7BNA		290.00	2.27	45.79	7.5
IDINA		230.00	2.21	45.75	7.5

[65886 rows x 7 columns]

```
[24]: principal_df = pca_df(df_PCA_input)
print(principal_df)

df_PCA_output = pd.concat([df_PCA_input, principal_df], axis=1)
print(df_PCA_output)
```

[7.41476344e+07 1.63878371e+05 2.56273553e+03 2.29696160e+03

3.31008249e+02 1.27457167e+02 6.82179473e+01]

	PC1	PC2	PC3	PC4	PC5	\
structureId						
102D	-92952.188408	302.324139	1.442777	14.778515	0.219619	
110D	-98251.650145	292.661844	12.073082	10.172944	-0.197828	
111D	-93214.524838	300.955409	1.617215	14.702583	-0.179696	
113D	-93232.544587	300.858965	1.262695	10.496945	0.626207	
117D	-96925.976875	293.574242	13.425705	9.584843	-0.288906	

•••	•••	•••		•••	
6F6S	-42250.550792			-8.368569 -1	
6F73			3.390525		
6F8P	-65629.346967				
6FAH	130779.201212				
7BNA	-93262.574191	300.705058	-3.983118	2.962916 0	.725861
	PC6	PC7			
structureId					
102D	0.270970 -0.0				
110D	-0.330770 -0.1				
111D	0.322020 -0.0				
113D	0.513798 -0.1				
117D	0.280719 -0.1	98232			
•••					
6F6S	-0.226797 0.1				
6F73	-0.094823 -0.1				
6F8P	-0.499678 -0.0				
6FAH	0.482994 -0.0	80599			
7BNA	-0.049173 -0.0	28479			
[65886 rows	x 7 columns]				
	residueCount	resolution	structureMol	.ecularWeight	\
structureId					
102D	24	2.20		7637.17	
110D	6	1.90		2337.73	
111D	24	2.25		7374.83	
113D	24	2.50		7356.81	
117D	12	2.55		3663.39	
•••					
6F6S	497	2.29		58337.03	
6F73	1148	2.22		128053.03	
6F8P	316	1.60		34958.86	
6FAH	2074	3.13		231360.91	
7BNA	24	1.90		7326.78	
		m 17 1			
	crystallizati	onlempk den	sityMatthews	densityPerc	entSol \
structureId		077 00	0.00		46.06
102D		277.00	2.28		46.06
110D		277.00	2.90		57.63
111D		277.00	2.29		46.25
113D		281.00	2.35		47.59
117D		277.00	3.01		59.09
				•••	07.65
6F6S		293.00	3.83		67.89
6F73		294.00	2.90		57.00
6F8P		298.00	2.47		50.15
6FAH		293.15	3.49		64.73

7BNA		290.00	2.	27	45.79	
	phValue	PC1	PC2	PC3	PC4	\
structureId						
102D	7.0	-92952.188408	302.324139	1.442777	14.778515	
110D	6.6	-98251.650145	292.661844	12.073082	10.172944	
111D	6.6	-93214.524838	300.955409	1.617215	14.702583	
113D	7.4	-93232.544587	300.858965	1.262695	10.496945	
117D	6.5	-96925.976875	293.574242	13.425705	9.584843	
		•••				
6F6S	5.2	-42250.550792	93.752619	14.588273	-8.368569	
6F73	5.0	27467.896436	-193.569594	3.390525	-4.616139	
6F8P	7.0	-65629.346967	152.835223	-3.529095	-5.956155	
6FAH	8.5	130779.201212	-580.698352	9.772903	-6.473497	
7BNA	7.5	-93262.574191	300.705058	-3.983118	2.962916	
	205	200	5.00			
	PC5	PC6	PC7			
structureId						
102D	0.219619					
110D		-0.330770 -0.1				
111D	-0.179696					
113D	0.626207					
117D	-0.288906	0.280719 -0.1	198232			
•••	•••					
6F6S	-1.597463	-0.226797 0.1	102477			
6F73	-1.794568	-0.094823 -0.1	120307			
6F8P	0.218748	-0.499678 -0.0	064418			
6FAH	1.696199	0.482994 -0.0	80599			
7BNA	0.725861	-0.049173 -0.0)28479			

[65886 rows x 14 columns]

The first two principal components in PCA are often the most important because they capture the largest amount of variation in the original dataset. This means that they contain the most information about the underlying patterns and relationships in the data. By analyzing these components, we can gain a better understanding of the key factors that are driving the variation in the dataset, and use this information to make better decisions or predictions. Essentially, the first two components give us a high-level overview of the data and provide a foundation for deeper analysis.

```
[25]: plt.scatter(
          x= df_PCA_output['PC1'],
          y= df_PCA_output['PC2'],
      plt.axhline(y=0, color='k', linestyle='--', alpha=0.2)
      plt.axvline(x=0, color='k', linestyle='--', alpha=0.2)
      plt.xlabel('PC1')
      plt.ylabel('PC2')
      plt.show()
```


By plotting the first two principal components using matplotlib scatter plot we can identify data points that are most deviant and the ones that are similar to eachother. Here intriguingly PC2 identifies and seperates outliers very clearly. Thus first I will investigate the differences between these clusters.

```
[26]: df_PC2_1 = df_PCA_output [ (df_PCA_output['PC2'] > 0)]
    df_PC2_2 = df_PCA_output [ (df_PCA_output['PC2'] < 0)]

[27]: df_PC2_1.mean()</pre>
```

[27]:	residueCount	435.409737
	resolution	2.030232
	${\tt structure Molecular Weight}$	60391.695490
	${ t crystallization}{ t TempK}$	291.161979
	${\tt densityMatthews}$	2.604698
	densityPercentSol	50.299365
	phValue	6.773873
	PC1	-40196.234610
	PC2	166.088967
	PC3	-0.758308
	PC4	0.285095
	PC5	-0.008981
	PC6	-0.056183
	PC7	0.013720

dtype: float64

```
[28]: df_PC2_2.mean()
```

```
[28]: residueCount
                                      1637.439114
                                         2.429300
      resolution
      structureMolecularWeight
                                   188973.750474
      crystallizationTempK
                                       291.013852
      densityMatthews
                                         2.836193
      densityPercentSol
                                        54.425100
      phValue
                                         6.818693
      PC1
                                    88390.341108
      PC2
                                      -365.224768
      PC3
                                         1.667497
      PC4
                                        -0.626916
      PC5
                                         0.019749
      PC6
                                         0.123545
      PC7
                                        -0.030170
      dtype: float64
```

By looking at the mean values of each feature in two clusters separated by PC2, we observe a marginal difference in the number of residues of a protein (residueCount). The first cluster have an average residue count of 435, while the second cluster has an average of 1637. Following, the molecular weights of the protein (structureMolecularWeight) shows a similar trend. One of the most important components in structural discovery, resolution, shows distinction in these two clusters. We have previously seen the effect of residue count on resolution in this study and PCA was able to identify this difference robustly. The first cluster with an average less number of residues shows an average resolution of 2 angstrom, while the second cluster containing proteins with a large number of residues has an average of 2.4 angstrom. On the other hand the second principal component was not able to distinguish the difference of densities of proteins.

```
[29]: df_PC1_1 = df_PCA_output [ (df_PCA_output['PC1'] > 0)]
df_PC1_2 = df_PCA_output [ (df_PCA_output['PC1'] < 0)]
print(df_PC1_1.mean())</pre>
```

residueCount	2133.092425
resolution	2.520103
structureMolecularWeight	276029.527503
${ t crystallization Temp K}$	291.091253
${\tt densityMatthews}$	2.904525
densityPercentSol	55.344906
phValue	6.818821
PC1	175447.519219
PC2	-406.775345
PC3	1.998317
PC4	-0.883510
PC5	0.010809
PC6	0.154124
PC7	-0.024116
dtype: float64	

[30]: print(df_PC1_2.mean())

residueCount 399.138125 resolution 2.041178 structureMolecularWeight 45903.344035 crystallizationTempK 291.123286 densityMatthews 2.606167 densityPercentSol 50.418430 phValue 6.778241 PC1 -54684.578158 PC2 126.786279 PC3 -0.622848 PC4 0.275378 PC5 -0.003369 PC6 -0.048038 PC7 0.007517

dtype: float64

By investigating the first principal component we again see a similar trend as PC2. Thus I looked into the third principal component.

```
[31]: df_PC3_1 = df_PCA_output [ (df_PCA_output['PC3'] > 0)]
df_PC3_2 = df_PCA_output [ (df_PCA_output['PC3'] < 0)]
print(df_PC3_1.mean())</pre>
```

```
residueCount
                                848.059225
resolution
                                   2.357352
structureMolecularWeight
                             103099.207839
crystallizationTempK
                                288.626577
densityMatthews
                                  3.170135
densityPercentSol
                                 59.624731
phValue
                                  6.791331
PC1
                               2512.849230
PC2
                                -23.800663
PC3
                                  8.330472
PC4
                                 -0.898369
PC5
                                 -0.004923
PC6
                                 -0.007954
PC7
                                 -0.032932
dtype: float64
```

[32]: print(df_PC3_2.mean())

residueCount 779.146510
resolution 1.979356
structureMolecularWeight 98405.916627
crystallizationTempK 293.275799
densityMatthews 2.249158

densityPercentSol	44.615448
phValue	6.784893
PC1	-2180.737672
PC2	20.655040
PC3	-7.229472
PC4	0.779636
PC5	0.004272
PC6	0.006902
PC7	0.028579

dtype: float64

The average of the features when separating the data by its third principal componant shows that the density of a protein in solution (densityPercentSol) is different in two clusters. Following, the density of a protein in crystal (densityMatthews) shows a similar trend. We have previously shown the correlation between the densities in solution and crystal, and we are observing the same distinction with PC3 clustering of the data. The crystal and solution densities for the first and second cluster of PC3 is 3.1, 59.6, and 2.2, 44.6, respectively.

By utilizing PCA, we observe that the features residue count, resolution and molecular weight are tied together within the second and first principal component, while density related features are tied to the third principal component. This implies that one can harness the power of dimensionality reduction techniques to identify the physical characteristics of proteins and distinguish, and potentially predict behaviours of new proteins by looking into several of their features.

6 Non-Linear Data Analyses with Artificial Neural Network Treatment

Previous analyses have shown great promise in deciphering the structural data of proteins. However, using all the features of the data together most of the methods uses functions in a linear fashion and this challenges and restricts the possible highly accurate understanding and predictions of the data. Hence, I wanted to follow a more non linear approach which are Artificial Neural Networks. In this study I want to explore the data and try to pin down the underlying physics to be able to classify proteins by their structural data. One interesting way to achieve this is using unsupervised learning. Unsupervised learning is useful when we do not already have the defining labels for the data and trying to learn the representations of the data which will provide us with the classification of the proteins in this study. Autoencoders, which are a type of neural networks, are often used for unsupervised learning tasks, meaning that the data used to train the autoencoder does not have any labels. Instead, the autoencoder tries to learn the underlying structure of the data without any guidance from an outside source or predefined criteria. Once the autoencoder is trained, it can be used for various classifications of proteins. It is composed of two parts: an encoder and a decoder. The encoder takes the input data and compresses it into a lower-dimensional representation, and the decoder takes this compressed representation and reconstructs the data as closely to the original as possible. This systematic algorithm learns the most important parts of the data and uses it to reconstruct it. Here I apply a simple autoencoder to understand the structural data from structural discovery.

```
[33]: # this function separates data as features and labels.
# This is not required in the current case as it is unsupervised but
```

```
# the function splitting the data requries labels, hence
# I used dummy data as labels to use it later on splitting.
def prepare_xy(dataset, x_label_list, y_label_list):
    x = dataset.loc[:, x_label_list]
    y = dataset.loc[:, y_label_list]
    print('x: {}'.format(x.shape))
    print('y: {}'.format(y.shape))
    return x, y
```

```
[34]: # the data going into a neural network needs to be renormalized for it to be
# functioning better, meaning a data distributed evenly between negative and
# positive values with a mean around zero, would make multiplying and summing
# up the weights and values much easire, leading to shorter convergance of
# neural network training and easier learning.
def scaler_1(x):
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    sc.fit(x)
    xs = sc.transform(x)
    return sc, xs
```

```
[35]: # This function is used to split the data into training and testing.
      # This is an important step as I am training the model with part of my data,
      # and testing the ability of my model in capturing correct featrues with
      # previously unseen data for the neural network.
      # I am using 90% training, 10% testing splitting.
      # 85% to 15% is also a common way to split, but as I have thousands of data
      \# points, I would already have enough data points to test the neural network \sqcup
       \rightarrow with.
      def splitter_1(x, y, test_size=0.1):
        from sklearn.model_selection import train_test_split
        display(y.apply(pd.value_counts))
        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = __ 
       →test_size)
        print('x_train: {}'.format(x_train.shape))
        display(x_train)
        print('x_test: {}'.format(x_test.shape))
        display(x_test)
        print('y_train: {}'.format(y_train.shape))
        display(y_train)
        display(y_train.apply(pd.value_counts))
        print('y_test: {}'.format(y_test.shape))
        display(y_test)
        display(y_test.apply(pd.value_counts))
        return x_train, x_test, y_train, y_test
```

```
[36]: # Here I build the architecture of my neural net
      def build_keras_model(input_dim, output_dim):
        classifier = tf.keras.Sequential()
        # Input layer takes the input data and passes it to hidden layers
        classifier.add(layers.Dense(
            units=(0.6 * input_dim),
            kernel_initializer=tf.initializers.he_uniform(),
            activation=tf.keras.activations.relu,
            input_dim = input_dim
        classifier.add(layers.Dense(
            units=(0.2 * input_dim),
            kernel_initializer=tf.initializers.he_uniform(),
            activation=tf.keras.activations.relu
      # The number of nodes in each layer decreases initially and then increases.
      # this is to reduce the dimensions as much as possible and try to
      # recapitulate the iniital data values later
       classifier.add(layers.Dense(
            units=(0.6 * input dim),
            kernel_initializer=tf.initializers.he_uniform(),
            activation=tf.keras.activations.relu
            )
      # The final layer is the output layer which has a sigmoid function.
      # Sigmoid is important here as it give a distribution of values between 0 and 1,
      # and these values can be translated back into real values later.
        classifier.add(layers.Dense(
            units=output_dim,
            kernel_initializer=tf.initializers.glorot_uniform(),
            activation=tf.keras.activations.sigmoid
      # the last part is the seelction of minimizer and loss function. Adam is a
      # common minimizer and MSE is a robust function to check how much the system is
      # closer to the original data
        classifier.compile(
            optimizer=tf.keras.optimizers.Adam(),
            loss=tf.keras.losses.MeanSquaredError(),
            metrics=[
                    tf.keras.metrics.Accuracy(),
                    tf.keras.metrics.BinaryAccuracy(),
                    tf.keras.metrics.AUC(),
                    tf.keras.metrics.TruePositives(),
                    tf.keras.metrics.TrueNegatives(),
```

```
tf.keras.metrics.FalseNegatives()
                    ]
        return classifier
[37]: # this function is to do the fitting of the data on to the model which is the
      # neural network architecture built here.
      def train_classifier(x_train, x_test, y_train, y_test, keras_model,__
       →train_num=10):
        for count1 in range(0, 10):
          keras_model.fit(x_train, y_train, batch_size = 10, epochs=(train_num - 1),__
       ⇔verbose=0)
          keras_model.fit(x_train, y_train, batch_size = 10, epochs=1,__
       →validation_data=(x_test, y_test), verbose=2)
[38]: # this function is used to make predictions on the test data set.
      def predict_1(keras_model, x_test):
        y_pred = keras_model.predict(x_test)
        return y_pred
[39]: # Here we are preparing the input data and splitting it into train and test
      x1, y1 = prepare_xy(
          df_PCA_output,
          'residueCount', 'resolution', 'structureMolecularWeight',
          'crystallizationTempK', 'densityMatthews', 'densityPercentSol', 'phValue'
          ],
          ['PC1']
          )
      sc, x1s = scaler_1(x1)
      x1s = pd.DataFrame(index=x1.index, columns=x1.columns, data=x1s)
      x1_train, x1_test, y1_train, y1_test = splitter_1(x1s, y1, 0.1)
     x: (65886, 7)
     y: (65886, 1)
                    PC1
     -69696.566349
     -40586.367926
     -86536.188918
     -86537.168902
     -86554.198676
     -79200.268356
                      1
     -78995.971125
     -83953.497492
     -84714.907141
```

tf.keras.metrics.FalsePositives(),

-93262.574191 1

[65705 rows x 1 columns]

x train: (59297, 7)

x_train: (59	297, 7)						
	residueCount	resolut	ion	structureMol	ecularWeight	\	
structureId					· ·		
1LL7	-0.016600	-0.265	744		-0.045554		
1FV2	-0.207255	0.591	600		-0.154751		
5GSU	0.285271	1.620	412		0.346139		
4DFI	-0.417465	-0.608	681		-0.300258		
3REH	0.277938	0.591			0.339800		
3L5H	-0.135759				-0.101584		
4JVR	-0.319693	-0.780			-0.227082		
2G75	0.064062	0.214			-0.010429		
5UDV	0.552922	0.797			0.315303		
409C	1.425536	-0.265	744		0.778229		
	crystallizati	onTempK	den	sityMatthews	densityPerce	ntSol	\
structureId	v	•		J	J		
1LL7	0	.754795		-0.633587	-0.6	75803	
1FV2		. 206597		-0.165904		41208	
5GSU		. 206597		0.018334		53205	
4DFI		.012683		-1.129614		99674	
3REH		.231962		-0.010010		38762	
	·						
3L5H	0	.754795		4.170789	2.6	61558	
4JVR		.547638		-0.704448		09177	
2G75		.206597		-0.463521		93009	
5UDV		.332682		-0.364315		46599	
409C		.425876		0.230917		17544	
	phValue						
structureId							
1LL7	0.552108						
1FV2	1.327414						
5GSU	-0.610851						
4DFI	1.327414						
3REH	-0.610851						
	-0.610851						
	-1.386157						
2G75	1.327414						
	-0.223198						
409C	0.552108						

[59297 rows x 7 columns]

x_test: (6589, 7)

	· · · ·				
	residueCount	resoluti	on structureMol	lecularWeight \	
structureId					
1Y7A	0.053063	-0.6601	22	-0.019047	
4V9D	12.294720	1.4489		14.615002	
3EII	0.012732	0.1629		-0.026963	
2Q67	-0.356357	0.2486		-0.259335	
3MJ3	-0.469406	1.6204		-0.298657	
		1.0201		0.200001	
 1RK5	 -0 192589	-0.6086	R1	 -0.162419	
3RL7	-0.063041	0.2486		-0.076680	
	0.196054			0.092361	
1Q7Q					
1HZT		-1.2088		-0.273429	
4J1G	0.106226	1.0888	59	0.063445	
	crustallizat:	ionTomnV /	dongityMatthoug	densityPercentSc	.π \
a+m, a+, m a T d	CI y Stall 12at.	ronrempk (densityMatthews	densityrercentsc	'
structureId	,	000507	0.755000	0 60004	
1Y7A		0.206597	0.755289	0.62284	
4V9D		0.012683	0.882838	1.11622	
3EII		0.754795	-0.265110	-0.10319	
2Q67		0.754795	3.150391	2.33564	
3MJ3	(0.206597	0.726944	0.98284	:9
•••		•••	•••	***	
1RK5	(0.425876	0.641911	0.88457	′4
3RL7	-(0.451241	-0.831998	-1.05486	6
1Q7Q	-:	1.547638	3.802312	2.55225	1
1HZT	(0.206597	-0.803653	-1.00271	.9
4J1G	-(0.231962	-0.619415	-0.66276	6
	phValue				
structureId					
1Y7A	2.102720				
4V9D	-0.223198				
3EII	-0.223198				
2Q67	0.939761				
3MJ3	0.552108				
•••	•••				
1RK5	-0.920974				
3RL7	0.552108				
	-0.843443				
	-0.998504				
4J1G	0.164455				
1014	0.101100				
[6589 rows x	7 columns]				
y_train: (59	297, 1)				

PC1

```
structureId
1LL7
             -13158.819632
1FV2
             -44703.197913
5GSU
              99988.557954
4DFI
             -86736.370547
3REH
              98157.400246
3L5H
             -29344.776423
4JVR
             -65597.913477
2G75
              -3011.869117
              91083.513759
5UDV
409C
             224812.153269
[59297 rows x 1 columns]
                PC1
-69696.566349
                  9
                  7
-40586.367926
-86536.188918
                   6
-86537.168902
                  5
 241431.298559
                  4
-14268.240232
                  1
-382.630995
-63564.094675
                   1
-77513.224733
224812.153269
                  1
[59144 rows x 1 columns]
y_test: (6589, 1)
                       PC1
structureId
            -5.501349e+03
1Y7A
4V9D
             4.221809e+06
3EII
            -7.788452e+03
2Q67
            -7.491483e+04
            -8.627429e+04
3MJ3
            -4.691825e+04
1RK5
3RL7
            -2.215034e+04
1Q7Q
             2.668109e+04
1HZT
            -7.898630e+04
             1.832764e+04
4J1G
[6589 rows x 1 columns]
                PC1
-66774.258365
                  2
```

[6587 rows x 1 columns]

[40]: # Summary of the neural net architecture with the number of nodes # scaled based on the number of input features keras_model_1 = build_keras_model(x1s.shape[1], x1s.shape[1]) keras_model_1.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 4)	32
dense_1 (Dense)	(None, 1)	5
dense_2 (Dense)	(None, 4)	8
dense_3 (Dense)	(None, 7)	35

Total params: 80 Trainable params: 80 Non-trainable params: 0

```
[41]: # Training the model, This takes time.
# In the training the loss function value is an important parameter to follow
# as it gives an idea about how close the final representation is to
# the original data. The loss should decrease over multiple iterations (epochs)
train_classifier(
    x1_train, x1_test,
    x1_train, x1_test,
    keras_model_1, train_num=10,
    )
```

```
5930/5930 - 14s - loss: 0.7948 - accuracy: 0.0000e+00 - binary_accuracy: 0.0000e+00 - auc: 0.0000e+00 - true_positives: 52065.0000 - true_negatives:
```

```
0.0000e+00 - false_positives: 0.0000e+00 - false_negatives: 363014.0000 -
val_loss: 0.7329 - val_accuracy: 0.0000e+00 - val_binary_accuracy: 0.0000e+00 -
val auc: 0.0000e+00 - val true positives: 5946.0000 - val true negatives:
0.0000e+00 - val_false_positives: 0.0000e+00 - val_false_negatives: 40177.0000 -
14s/epoch - 2ms/step
5930/5930 - 15s - loss: 0.7923 - accuracy: 0.0000e+00 - binary_accuracy:
0.0000e+00 - auc: 0.0000e+00 - true positives: 51471.0000 - true negatives:
0.0000e+00 - false_positives: 0.0000e+00 - false_negatives: 363608.0000 -
val_loss: 0.7310 - val_accuracy: 0.0000e+00 - val_binary_accuracy: 0.0000e+00 -
val_auc: 0.0000e+00 - val_true_positives: 5763.0000 - val_true_negatives:
0.0000e+00 - val_false positives: 0.0000e+00 - val_false negatives: 40360.0000 -
15s/epoch - 3ms/step
5930/5930 - 14s - loss: 0.7911 - accuracy: 0.0000e+00 - binary_accuracy:
0.0000e+00 - auc: 0.0000e+00 - true positives: 50301.0000 - true negatives:
0.0000e+00 - false_positives: 0.0000e+00 - false_negatives: 364778.0000 -
val loss: 0.7295 - val accuracy: 0.0000e+00 - val binary accuracy: 0.0000e+00 -
val_auc: 0.0000e+00 - val_true_positives: 5870.0000 - val_true_negatives:
0.0000e+00 - val_false positives: 0.0000e+00 - val_false negatives: 40253.0000 -
14s/epoch - 2ms/step
5930/5930 - 14s - loss: 0.7905 - accuracy: 0.0000e+00 - binary accuracy:
0.0000e+00 - auc: 0.0000e+00 - true_positives: 53594.0000 - true_negatives:
0.0000e+00 - false_positives: 0.0000e+00 - false_negatives: 361485.0000 -
val_loss: 0.7284 - val_accuracy: 0.0000e+00 - val_binary_accuracy: 0.0000e+00 -
val auc: 0.0000e+00 - val true positives: 5874.0000 - val true negatives:
0.0000e+00 - val_false_positives: 0.0000e+00 - val_false_negatives: 40249.0000 -
14s/epoch - 2ms/step
5930/5930 - 14s - loss: 0.7904 - accuracy: 0.0000e+00 - binary_accuracy:
0.0000e+00 - auc: 0.0000e+00 - true positives: 53667.0000 - true negatives:
0.0000e+00 - false positives: 0.0000e+00 - false negatives: 361412.0000 -
val loss: 0.7280 - val accuracy: 0.0000e+00 - val binary accuracy: 0.0000e+00 -
val_auc: 0.0000e+00 - val_true_positives: 6186.0000 - val_true_negatives:
0.0000e+00 - val_false_positives: 0.0000e+00 - val_false_negatives: 39937.0000 -
14s/epoch - 2ms/step
5930/5930 - 14s - loss: 0.7902 - accuracy: 0.0000e+00 - binary_accuracy:
0.0000e+00 - auc: 0.0000e+00 - true positives: 53915.0000 - true negatives:
0.0000e+00 - false_positives: 0.0000e+00 - false_negatives: 361164.0000 -
val loss: 0.7285 - val accuracy: 0.0000e+00 - val binary accuracy: 0.0000e+00 -
val_auc: 0.0000e+00 - val_true_positives: 5853.0000 - val_true_negatives:
0.0000e+00 - val_false_positives: 0.0000e+00 - val_false_negatives: 40270.0000 -
14s/epoch - 2ms/step
5930/5930 - 14s - loss: 0.7900 - accuracy: 0.0000e+00 - binary_accuracy:
0.0000e+00 - auc: 0.0000e+00 - true positives: 53333.0000 - true negatives:
0.0000e+00 - false_positives: 0.0000e+00 - false_negatives: 361746.0000 -
val loss: 0.7275 - val accuracy: 0.0000e+00 - val binary accuracy: 0.0000e+00 -
val_auc: 0.0000e+00 - val_true_positives: 6107.0000 - val_true_negatives:
0.0000e+00 - val_false positives: 0.0000e+00 - val_false negatives: 40016.0000 -
14s/epoch - 2ms/step
5930/5930 - 15s - loss: 0.7908 - accuracy: 0.0000e+00 - binary_accuracy:
```

```
0.0000e+00 - auc: 0.0000e+00 - true_positives: 52491.0000 - true_negatives:
     0.0000e+00 - false_positives: 0.0000e+00 - false_negatives: 362588.0000 -
     val loss: 0.7289 - val accuracy: 0.0000e+00 - val binary accuracy: 0.0000e+00 -
     val_auc: 0.0000e+00 - val_true_positives: 5805.0000 - val_true_negatives:
     0.0000e+00 - val false positives: 0.0000e+00 - val false negatives: 40318.0000 -
     15s/epoch - 3ms/step
     5930/5930 - 13s - loss: 0.7898 - accuracy: 0.0000e+00 - binary accuracy:
     0.0000e+00 - auc: 0.0000e+00 - true_positives: 54053.0000 - true_negatives:
     0.0000e+00 - false_positives: 0.0000e+00 - false_negatives: 361026.0000 -
     val_loss: 0.7275 - val_accuracy: 0.0000e+00 - val_binary_accuracy: 0.0000e+00 -
     val auc: 0.0000e+00 - val true positives: 6159.0000 - val true negatives:
     0.0000e+00 - val_false positives: 0.0000e+00 - val_false negatives: 39964.0000 -
     13s/epoch - 2ms/step
     5930/5930 - 13s - loss: 0.7900 - accuracy: 0.0000e+00 - binary accuracy:
     0.0000e+00 - auc: 0.0000e+00 - true_positives: 53496.0000 - true_negatives:
     0.0000e+00 - false positives: 0.0000e+00 - false negatives: 361583.0000 -
     val_loss: 0.7274 - val_accuracy: 0.0000e+00 - val_binary_accuracy: 0.0000e+00 -
     val auc: 0.0000e+00 - val true positives: 6186.0000 - val true negatives:
     0.0000e+00 - val_false_positives: 0.0000e+00 - val_false_negatives: 39937.0000 -
     13s/epoch - 2ms/step
[42]: # After the model is trained we can make predictions. Here the predictions are
      ⇔on training set
      # meaining the neural network already learned this data and should be very qood_{\sqcup}
      ⇔at predciting it again.
      x1_train_pred = predict_1(keras_model_1, x1_train)
      x1 train pred = pd.DataFrame(index=x1 train.index, columns=x1 train.columns,

data=x1_train_pred)

      display(x1_train_pred)
     1854/1854 [============ ] - 3s 2ms/step
                  residueCount
                                  resolution structureMolecularWeight \
     structureId
                  0.000000e+00 0.000000e+00
                                                          0.000000e+00
     1LL7
     1FV2
                  0.000000e+00 0.000000e+00
                                                          0.000000e+00
     5GSU
                  1.604278e-02 9.999959e-01
                                                          4.211403e-03
                  0.000000e+00 0.000000e+00
                                                          0.000000e+00
     4DFI
     3REH
                  0.000000e+00 2.045232e-15
                                                          0.000000e+00
                  6.441210e-08 9.997588e-01
                                                          3.130737e-10
     3L5H
                  0.000000e+00 0.000000e+00
     4JVR
                                                          0.000000e+00
     2G75
                  0.000000e+00 0.000000e+00
                                                          0.000000e+00
     5UDV
                  0.000000e+00 0.000000e+00
                                                          0.000000e+00
     409C
                  0.000000e+00 5.548220e-13
                                                          0.000000e+00
                  crystallizationTempK densityMatthews densityPercentSol \
```

structureId

```
1LL7
                          0.000000e+00
                                                0.000000
                                                                   0.000000
     1FV2
                          0.000000e+00
                                                0.000000
                                                                   0.00000
     5GSU
                          2.202764e-26
                                                0.999997
                                                                   0.999996
     4DFI
                          0.000000e+00
                                                0.000000
                                                                   0.00000
                          0.000000e+00
     3REH
                                                0.040100
                                                                   0.208307
     3L5H
                          5.168652e-31
                                                0.999988
                                                                   0.999988
     4JVR
                          0.000000e+00
                                                0.000000
                                                                   0.000000
     2G75
                          0.000000e+00
                                                0.000000
                                                                   0.00000
     5UDV
                          0.000000e+00
                                                0.000000
                                                                   0.000000
                                                                   0.585437
     409C
                          0.000000e+00
                                                0.223872
                       phValue
     structureId
     1LL7
                  0.000000e+00
     1FV2
                  0.000000e+00
     5GSU
                  5.847347e-01
     4DFI
                  0.000000e+00
     3REH
                  3.931682e-24
     3L5H
                  1.164974e-02
     4JVR
                  0.000000e+00
     2G75
                  0.000000e+00
     5UDV
                  0.000000e+00
     409C
                  2.814206e-21
     [59297 rows x 7 columns]
[43]: # prediction using test data subset.
      x1_test_pred = predict_1(keras_model_1, x1_test)
      x1_test_pred = pd.DataFrame(index=x1_test.index, columns=x1_test.columns,_

data=x1_test_pred)
      display(x1_test_pred)
     206/206 [======== ] - 1s 2ms/step
                  residueCount
                                  resolution structureMolecularWeight
     structureId
     1Y7A
                  0.000000e+00 3.027744e-13
                                                           0.000000e+00
     4V9D
                  9.999892e-01 9.999960e-01
                                                           9.997815e-01
     3EII
                  0.000000e+00 0.000000e+00
                                                           0.000000e+00
                  8.911152e-04 9.999894e-01
                                                           9.137367e-05
     2Q67
     3MJ3
                  6.960497e-07
                                9.998894e-01
                                                           7.240248e-09
                  0.000000e+00
                                7.112930e-11
                                                           0.000000e+00
     1RK5
     3RL7
                  0.000000e+00
                                0.000000e+00
                                                           0.000000e+00
     1Q7Q
                  1.230201e-05
                                9.999568e-01
                                                           3.205005e-07
     1HZT
                  0.000000e+00
                                0.000000e+00
                                                           0.000000e+00
```

0.000000e+00

0.000000e+00 0.000000e+00

4J1G

display(x1_test_pred_inverse)

structureId

	residueCount	resolution	structureMolecularWeight	\	
structureId			9		
1LL7	784.0	2.00	87427.66		
1FV2	472.0	2.50	55884.48		
5GSU	1278.0	3.10	200574.00		
4DFI	128.0	1.80	13852.53		
3REH	1266.0	2.50	198742.88		
 3L5H	 589.0	 3.60	 71242.50		
4JVR	288.0	1.70	34990.44		
2G75	916.0	2.28	97574.06		
5UDV	1716.0	2.62	191666.55		
409C	3144.0	2.00	325389.56		
	crwetallizati	onTempV den	nsityMatthews densityPerc	entSol	nhValue
structureId	Crystallizati	onrempk den	isitymatthews densityreic	encoor	piivarue
1LL7		298.00	2.23	44.85	7.5
1FV2		293.00	2.56	52.00	8.5
5GSU		293.00	2.69	59.10	6.0
4DFI		291.00	1.88	34.64	8.5
3REH		289.00	2.67	53.97	6.0
		•••		•••	
3L5H		298.00	5.62	78.13	6.0
4JVR		277.00	2.18	43.52	5.0
2G75		293.00	2.35	47.67	8.5
5UDV		294.15	2.42	49.13	6.5
409C		295.00	2.84	56.75	7.5
[59297 rows	x 7 columns]				
	residueCount	resolution	structureMolecularWeight	\	
structureId					
1LL7	811.164795	2.154981	100586.515625		
1FV2	811.164795	2.154981	100586.515625		
5GSU	837.418152	2.738175	101803.046875		
4DFI	811.164795	2.154981	100586.515625		
3REH	811.164795	2.154981	100586.515625		
3L5H	811.164917	2.738037	100586.515625		
4JVR	811.164795	2.154981	100586.515625		
2G75	811.164795	2.154981	100586.515625		
5UDV	811.164795	2.154981	100586.515625		
409C	811.164795	2.154981	100586.515625		
	crystallizati	onTempK den	nsityMatthews densityPerc	entSol	\
	•	•	·		

1LL7	291.115662	2.677063	51.589073
1FV2	291.115662	2.677063	51.589073
5GSU	291.115662	3.382668	61.560989
4DFI	291.115662	2.677063	51.589073
3REH	291.115662	2.705358	53.666302
•••	•••	•••	•••
3L5H	291.115662	3.382662	61.560902
4JVR	291.115662	2.677063	51.589073
2G75	291.115662	2.677063	51.589073
5UDV	291.115662	2.677063	51.589073
409C	291.115662	2.835029	57.427021
	${\tt phValue}$		

	_
structureId	
1LL7	6.787884
1FV2	6.787884
5GSU	7.542082
4DFI	6.787884
3REH	6.787884
•••	•••
 3L5H	 6.802910
 3L5H 4JVR	 6.802910 6.787884
	0.002010
4JVR	6.787884
4JVR 2G75	6.787884 6.787884

[59297 rows x 7 columns]

residueCount	resolution	${ t structure Molecular Weight}$	\
898.0	1.77	95084.64	
20931.0	3.00	4322348.00	
832.0	2.25	92797.85	
228.0	2.30	25673.71	
43.0	3.10	14315.06	
•••	•••		
496.0	1.80	53669.27	
708.0	2.30	78436.41	
1132.0	3.10	127266.30	
190.0	1.45	21602.38	
985.0	2.79	118913.50	
	898.0 20931.0 832.0 228.0 43.0 496.0 708.0 1132.0 190.0	898.0 1.77 20931.0 3.00 832.0 2.25 228.0 2.30 43.0 3.10 496.0 1.80 708.0 2.30 1132.0 3.10 190.0 1.45	898.0 1.77 95084.64 20931.0 3.00 4322348.00 832.0 2.25 92797.85 228.0 2.30 25673.71 43.0 3.10 14315.06 496.0 1.80 53669.27 708.0 2.30 78436.41 1132.0 3.10 127266.30 190.0 1.45 21602.38

	crystallizationTempK	densityMatthews	densityPercentSol	phValue
structureId				
1Y7A	293.0	3.21	57.80	9.5
4V9D	291.0	3.30	62.72	6.5
3EII	298.0	2.49	50.56	6.5
2Q67	298.0	4.90	74.88	8.0

3MJ3		293.0	3.19	61.39	7.5	
•••		•••	•••	•••		
1RK5		295.0	3.13	60.41	5.6	
3RL7		287.0	2.09	41.07	7.5	
1Q7Q		277.0	5.36	77.04	5.7	
1HZT		293.0	2.11	41.59	5.5	
4J1G		289.0	2.24	44.98	7.0	
[6589 rows :	x 7 columns]					
	${\tt residueCount}$	resolution	structureMol	ecular $ ext{Weight}$ \		
structureId						
1Y7A	811.164795	2.154981	1	00586.515625		
4V9D		2.738176	3	89388.375000		
3EII	811.164795	2.154981		00586.515625		
2Q67	812.623047	2.738172		00612.914062		
3MJ3 	811.165894	2.738113	1	00586.515625		
 1RK5	811.164795	 2.154981	1	 00586.515625		
3RL7	811.164795	2.154981	1			
1Q7Q	811.184937	2.738153				
1HZT		2.154981		100586.609375 100586.515625		
4J1G	811.164795	2.154981		00586.515625		
10 1 0	0117101700	_,,_,,	_			
	crvstallizati	onTempK den	sitvMatthews	densityPercentSol	\	
	j		J	donbi by r or combbor	•	
structureId		•		donstoyrerconder	,	
structureId 1Y7A		.115662	2.810902	56.981762	`	
	291	-		•	•	
1Y7A	291 291	.115662	2.810902	56.981762	`	
1Y7A 4V9D	291 291 291	.115662	2.810902 3.382659	56.981762 61.560799	·	
1Y7A 4V9D 3EII	291 291 291 291	.115662 .364319 .115662	2.810902 3.382659 2.677063	56.981762 61.560799 51.589073	`	
1Y7A 4V9D 3EII 2Q67	291 291 291 291	.115662 .364319 .115662	2.810902 3.382659 2.677063 3.382667	56.981762 61.560799 51.589073 61.560978	`	
1Y7A 4V9D 3EII 2Q67 3MJ3	291 291 291 291 291	.115662 .364319 .115662	2.810902 3.382659 2.677063 3.382667 3.382664	56.981762 61.560799 51.589073 61.560978 61.560928	`	
1Y7A 4V9D 3EII 2Q67 3MJ3	291 291 291 291 291	.115662 .364319 .115662 .115662 	2.810902 3.382659 2.677063 3.382667 3.382664	56.981762 61.560799 51.589073 61.560978 61.560928	`	
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5	291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7	291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q	291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT	291 291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT 4J1G	291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT 4J1G	291 291 291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT 4J1G structureId 1Y7A	291 291 291 291 291 291 291 291 291 phValue 6.787884	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT 4J1G structureId 1Y7A 4V9D	291 291 291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT 4J1G structureId 1Y7A 4V9D 3EII	291 291 291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT 4J1G structureId 1Y7A 4V9D 3EII 2Q67	291 291 291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT 4J1G structureId 1Y7A 4V9D 3EII	291 291 291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT 4J1G structureId 1Y7A 4V9D 3EII 2Q67 3MJ3 	291 291 291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		
1Y7A 4V9D 3EII 2Q67 3MJ3 1RK5 3RL7 1Q7Q 1HZT 4J1G structureId 1Y7A 4V9D 3EII 2Q67 3MJ3	291 291 291 291 291 291 291 291 291 291	.115662 .364319 .115662 .115662 .115662 .115662 .115662 .115662	2.810902 3.382659 2.677063 3.382667 3.382664 3.104656 2.677063 3.382665 2.677063	56.981762 61.560799 51.589073 61.560978 61.560928 60.147289 51.589073 61.560951 51.589073		

```
1HZT
                   6.787884
     4J1G
                   6.787884
     [6589 rows x 7 columns]
[46]: # reindexing and relabeling for analyses in the next part
      x1_train_inverse.reset_index(inplace=True)
      x1_train_inverse['label'] = 'train'
      x1_train_pred_inverse.reset_index(inplace=True)
      x1_train_pred_inverse['label'] = 'train_pred'
      x1_test_inverse.reset_index(inplace=True)
      x1_test_inverse['label'] = 'test'
      x1_test_pred_inverse.reset_index(inplace=True)
      x1_test_pred_inverse['label'] = 'test_pred'
[47]: df train final = pd.concat([x1 train inverse, x1 train pred inverse])
      df_train_final.reset_index(inplace=True)
      df_test_final = pd.concat([x1_test_inverse, x1_test_pred_inverse])
      df_test_final.reset_index(inplace=True)
[48]: display(df train final)
      display(df_test_final)
              index structureId residueCount
                                                            structureMolecularWeight
                                               resolution
                  0
     0
                           1LL7
                                   784.000000
                                                  2.000000
                                                                         87427.660000
                  1
     1
                           1FV2
                                   472.000000
                                                  2.500000
                                                                         55884.480000
     2
                  2
                           5GSU
                                  1278.000000
                                                  3.100000
                                                                        200574.000000
                                   128.000000
                                                                         13852.530000
     3
                  3
                           4DFI
                                                  1.800000
     4
                           3REH
                                  1266.000000
                                                  2.500000
                                                                        198742.880000
             59292
                                   811.164917
     118589
                           3L5H
                                                  2.738037
                                                                        100586.515625
                           4JVR
                                                  2.154981
     118590
             59293
                                   811.164795
                                                                        100586.515625
                                   811.164795
                                                  2.154981
     118591
             59294
                           2G75
                                                                        100586.515625
     118592
             59295
                           5UDV
                                   811.164795
                                                  2.154981
                                                                        100586.515625
     118593
             59296
                           409C
                                   811.164795
                                                  2.154981
                                                                        100586.515625
              crystallizationTempK
                                    densityMatthews
                                                      densityPercentSol
                                                                           phValue
     0
                        298.000000
                                            2.230000
                                                              44.850000 7.500000
     1
                        293.000000
                                            2.560000
                                                              52.000000
                                                                          8.500000
     2
                        293.000000
                                            2.690000
                                                              59.100000
                                                                          6.000000
     3
                        291.000000
                                            1.880000
                                                              34.640000
                                                                          8.500000
                        289.000000
                                            2.670000
                                                              53.970000
                                                                          6.000000
     118589
                        291.115662
                                            3.382662
                                                              61.560902 6.802910
                                            2.677063
                                                              51.589073 6.787884
     118590
                        291.115662
                        291.115662
                                            2.677063
                                                              51.589073 6.787884
     118591
                                            2.677063
                                                              51.589073 6.787884
     118592
                        291.115662
```

1Q7Q

6.893054

118593		291.11566	62 2.	835029		57.427021	6.787884		
0 1 2 3 4 118589 118590 118591 118592	train_pre	n n n n n							
118593	train_pre	ed							
[11859	4 rows x 10	_							
	index stru		residueCount	resol		structureMol	ū		\
0	0	1Y7A	898.000000		70000		9.508464e+		
1	1	4V9D 2	20931.000000		00000		4.322348e+		
2	2	3EII	832.000000		50000		9.279785e+		
3	3	2Q67	228.000000		00000		2.567371e+		
4	4	3MJ3	43.000000	3.1	00000		1.431506e+	04	
	•••	•••	•••	•••		•••			
13173	6584	1RK5	811.164795	2.1	54981		1.005865e+	05	
13174	6585	3RL7	811.164795	2.1	54981		1.005865e+	05	
13175	6586	1Q7Q	811.184937	2.7	38153		1.005866e+	05	
13176	6587	1HZT	811.164795	2.1	54981		1.005865e+	05	
13177	6588	4J1G	811.164795	2.1	54981		1.005865e+	05	
	crystalliz	ationTempl	K densityMat	thews	densi	tyPercentSol	phValue	\	
0		293.00000	3.2	210000		57.800000	9.500000		
1		291.00000	3.3	300000		62.720000	6.500000		
2		298.00000	0 2.4	190000		50.560000	6.500000		
3		298.00000	0 4.9	900000		74.880000	8.000000		
4		293.000000	3.1	190000		61.390000	7.500000		
				0.4.05.0					
13173		291.115662		104656		60.147289	6.787884		
13174		291.11566		677063		51.589073	6.787884		
13175		291.11566		382665		61.560951	6.893054		
13176		291.115662		577063		51.589073	6.787884		
13177		291.115662	2 2.6	377063		51.589073	6.787884		
	label								
0	test								
1	test								
2	test								
3	test								

```
4 test
... ...
13173 test_pred
13174 test_pred
13175 test_pred
13176 test_pred
13177 test_pred
[13178 rows x 10 columns]
```

After the training of the neural net is completed, I looked at the predictions of the network based on the training data subset and compared it to the original values. I do it by plotting their distributions and also comparing the means of the data (original vs prediction). The mean values show that the neural network can learn the hidden features of the data well enough to make predictions very close to original values. However, when the distributions of each feature is inspected we can recognize that neural network learned important features that are already closer to the mean values of the original data (peak of the distributions of blue curves), meaning the orange curve (distribution of predictions) have peak or peaks that are closer to the peaks of the original data. This is an interesting observation as the neural network show more than one peak for most of the features, implying that there might be two separate clusters of proteins in the data set.

```
[49]: for feature in [
          'residueCount', 'resolution', 'structureMolecularWeight',
          'crystallizationTempK', 'densityMatthews', 'densityPercentSol', 'phValue'
          1:
        sns.displot(
            data=df train final,
            x=feature,
            hue='label',
            kind='kde',
            common_norm=False,
            aspect=2,
          )
        print(
             '{} means for training data, original:{:.2f} <-> prediction:{:.2f}'.
       →format(
                feature,
                df train final[df train final['label'] == 'train'][feature].mean(),
                df_train_final[df_train_final['label'] == 'train_pred'][feature].
       →mean()
            )
        )
```

residueCount means for training data, original:812.90 <-> prediction:896.42 resolution means for training data, original:2.16 <-> prediction:2.25 structureMolecularWeight means for training data, original:100858.02 <-> prediction:112630.61 crystallizationTempK means for training data, original:291.09 <->

prediction:291.12
densityMatthews means for training data, original:2.68 <-> prediction:2.87
densityPercentSol means for training data, original:51.58 <-> prediction:54.79
phValue means for training data, original:6.79 <-> prediction:6.87

The same analyses applied on training data is subjected on the testing subset. This is very curcial as this is data which is completely new to the neural network (unseen) data. The results show that, we still observe a similar trend seen with the training set as the predictions are close to the original values within $\sim 5\%$ deviation.

```
[50]: for feature in [
          'residueCount', 'resolution', 'structureMolecularWeight',
          'crystallizationTempK', 'densityMatthews', 'densityPercentSol', 'phValue'
          ]:
        sns.displot(
            data=df_test_final,
            x=feature,
            hue='label',
            kind='kde',
            common_norm=False,
            aspect=2,
          )
        print(
            '{} means for test data, original:{:.2f} <-> prediction:{:.2f}'.format(
                feature,
                df_test_final[df_test_final['label'] == 'test'][feature].mean(),
                df_test_final[df_test_final['label'] == 'test_pred'][feature].mean()
            )
          )
```

```
residueCount means for test data, original:795.59 <-> prediction:897.36 resolution means for test data, original:2.15 <-> prediction:2.26 structureMolecularWeight means for test data, original:98143.13 <-> prediction:112591.51 crystallizationTempK means for test data, original:291.31 <-> prediction:291.12 densityMatthews means for test data, original:2.68 <-> prediction:2.88 densityPercentSol means for test data, original:51.65 <-> prediction:54.89 phValue means for test data, original:6.80 <-> prediction:6.87
```


Overall the neural network treatment was successful and it captured the essence of the structural protein features strong enough to make predictions not so far from the originals. However one drawback seen from distributions is that predictions are not as diverse as the original data, meaning predictions are mostly centered on one or two regions whereas original data points are distributed across multiple values for each feature. Besides the drawback neural network was able to identify multiple classes which can not be easily comprehended from the distribution of original values. This is the strongest achievement of the autoencoder as it captures the fundamental details that are missed by human (by human observation). On the other hand, when the computational cost is considered the overall enhancement in classification compared to PCA is minimal. While for the current data set this might be true but, considering only 7 features in structural protein data, when the number of features are increased several fold, the power of autoencoders will shine more as the first two components of PCA could become very convoluted and several more components should be considered and additional techniques should be incorporated to further understand the data.

7 Conclusion

Through my analysis of structural discovery protein data, we were able to utilize both machine learning, PCA and neural network techniques to gain new insights into several properties of the proteins. This study highlights the challenges of achieving results that resemble natural phenomena by comparing solution densities to crystal densities. By using machine learning techniques (k-means clustering, hierarchical clustering, DBSCAN) these results obtained show that only 26% of the experimental data points display naturally occurring behavior that captures the correct underlying biological fundamentals. Thus, I used PCA technique to better understand the data. PCA allowed me to identify key factors driving variation in the dataset and provided a simplified view of the underlying patterns and relationships. PCA analyses showed that the first three principal components can distinguish key protein features from each other and enabled me to cluster the protein labels based on these differences.

In addition, by using a non-linear approach like neural network, I was able to accurately distinguish input features, highlighting its potential for learning complex patterns in protein structural discovery data. The results showed that the autoencoder learned the hidden characteristics of protein structural features and was able to reconstruct the features accurately. When compared

to the distributions and the means of the original data, the features that were reconstructed from the autoencoder showed high overlap and indicated the existence of two separate clusters (multiple peaks in the distribution) of proteins in the dataset. This observation is intriguing as for future investigations to determine if there are indeed distinct groups of proteins provided their structural features. Overall, the results demonstrate the potential of both PCA and neural networks in analyzing complex protein data, and the insights gained from these techniques can provide valuable information for further research in the field.

8 References

- "Structural Protein Sequences." n.d. https://www.kaggle.com/datasets/shahir/protein-dataset.
- Warren, Bertram Eugene. 1990. X-Ray Diffraction. Courier Corporation.
- Whittig, L. D., and W. R. Allardice. 1986. "X-Ray Diffraction Techniques." Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5: 331362.
- Fausett, L. V. (2006). Fundamentals of neural networks: architectures, algorithms and applications. Pearson Education India.
- Haykin, S. (2009). Neural networks and learning machines, 3/E. Pearson Education India.
- SKLEARN.DECOMPOSITION.PCA. scikit. (n.d.). Retrieved February 28, 2023, from https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html