```
#Assignment: V
```

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pylab as pl
%matplotlib inline

cust\_df= pd.read\_csv("Cust\_Segmentation\_csv.csv")
cust\_df.head()

| $\Rightarrow$ |   | Customer | Id | Age | Edu | Years Employed | Income | Card Debt | Other Debt | Defaulted | Address | DebtIncomeRatio |
|---------------|---|----------|----|-----|-----|----------------|--------|-----------|------------|-----------|---------|-----------------|
|               | 0 |          | 1  | 41  | 2   | 6              | 19     | 0.124     | 1.073      | 0.0       | NBA001  | 6.3             |
|               | 1 |          | 2  | 47  | 1   | 26             | 100    | 4.582     | 8.218      | 0.0       | NBA021  | 12.8            |
|               | 2 |          | 3  | 33  | 2   | 10             | 57     | 6.111     | 5.802      | 1.0       | NBA013  | 20.9            |
|               | 3 |          | 4  | 29  | 2   | 4              | 19     | 0.681     | 0.516      | 0.0       | NBA009  | 6.3             |
|               | 4 |          | 5  | 47  | 1   | 31             | 253    | 9.308     | 8.908      | 0.0       | NBA008  | 7.2             |

#pre-processing
df= cust\_df.drop('Address', axis=1)
df.head()

|   | Customer I | d | Age | Edu | Years Employed | Income | Card Debt | Other Debt | Defaulted | DebtIncomeRatio |
|---|------------|---|-----|-----|----------------|--------|-----------|------------|-----------|-----------------|
| 0 |            | 1 | 41  | 2   | 6              | 19     | 0.124     | 1.073      | 0.0       | 6.3             |
| 1 |            | 2 | 47  | 1   | 26             | 100    | 4.582     | 8.218      | 0.0       | 12.8            |
| 2 |            | 3 | 33  | 2   | 10             | 57     | 6.111     | 5.802      | 1.0       | 20.9            |
| 3 |            | 4 | 29  | 2   | 4              | 19     | 0.681     | 0.516      | 0.0       | 6.3             |
| 4 |            | 5 | 47  | 1   | 31             | 253    | 9.308     | 8.908      | 0.0       | 7.2             |

#normalizing over standard division

from sklearn.preprocessing import StandardScaler

X= df.values[:,1:]

X=np.nan\_to\_num(X)

 ${\tt clus\_dataset=\ StandardScaler().fit\_transform(X)}$ 

 ${\tt clus\_dataset}$ 

```
array([[ 0.74291541,  0.31212243, -0.37878978, ..., -0.59048916, -0.52379654, -0.57652509],
        [ 1.48949049, -0.76634938,  2.5737211 , ...,  1.51296181, -0.52379654,  0.39138677],
        [-0.25251804,  0.31212243,  0.2117124 , ...,  0.80170393,  1.90913822,  1.59755385],
        ...,
        [-1.24795149,  2.46906604, -1.26454304, ...,  0.03863257,  1.90913822,  3.45892281],
        [-0.37694723, -0.76634938,  0.50696349, ..., -0.70147601, -0.52379654, -1.08281745],
        [ 2.1116364 , -0.76634938,  1.09746566, ...,  0.16463355, -0.52379654, -0.2340332 ]])
```

# modelling

from sklearn.cluster import KMeans

clusterNum = 3

k\_means = KMeans (init ="k-means++", n\_clusters=clusterNum, n\_init=12)

 $k_{means.fit(X)}$ 

labels = k\_means.labels\_

print(labels)



df["Clus\_km"]=labels
df.head(5)

|   | Customer Id | Age | Edu | Years Employed | Income | Card Debt | Other Debt | Defaulted | DebtIncomeRatio | Clus_km |
|---|-------------|-----|-----|----------------|--------|-----------|------------|-----------|-----------------|---------|
| 0 | 1           | 41  | 2   | 6              | 19     | 0.124     | 1.073      | 0.0       | 6.3             | 0       |
| 1 | 2           | 47  | 1   | 26             | 100    | 4.582     | 8.218      | 0.0       | 12.8            | 1       |
| 2 | 3           | 33  | 2   | 10             | 57     | 6.111     | 5.802      | 1.0       | 20.9            | 0       |
| 3 | 4           | 29  | 2   | 4              | 19     | 0.681     | 0.516      | 0.0       | 6.3             | 0       |
| 4 | 5           | 47  | 1   | 31             | 253    | 9.308     | 8.908      | 0.0       | 7.2             | 2       |

df.groupby('Clus\_km').mean()

|   |        | Customer Id | Age       | Edu      | Years Employed | Income     | Card Debt | Other Debt | Defaulted | DebtIncomeRatio |
|---|--------|-------------|-----------|----------|----------------|------------|-----------|------------|-----------|-----------------|
| C | Lus_km |             |           |          |                |            |           |            |           |                 |
|   | 0      | 432.468413  | 32.964561 | 1.614792 | 6.374422       | 31.164869  | 1.032541  | 2.104133   | 0.285185  | 10.094761       |
|   | 1      | 402.295082  | 41.333333 | 1.956284 | 15.256831      | 83.928962  | 3.103639  | 5.765279   | 0.171233  | 10.724590       |
|   | 2      | 410.166667  | 45.388889 | 2.666667 | 19.555556      | 227.166667 | 5.678444  | 10.907167  | 0.285714  | 7.322222        |

```
area = np.pi*(X[:,1])**2
plt.scatter(X[:,0],X[:,3], s=area, c=labels.astype(np.float),alpha=0.5)
plt.xlabel('Age', fontsize=18)
plt.ylabel('income', fontsize=16)
```

plt.show()

<ipython-input-21-2fa503bc9657>:2: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this war
Deprecated in NumPy 1.20; for more details and guidance: <a href="https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations">https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations</a>
plt.scatter(X[:,0],X[:,3], s=area, c=labels.astype(np.float),alpha=0.5)



```
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(1, figsize=(8, 6))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
plt.cla()
# plt.ylabel('Age', fontsize=18)
# plt.xlabel('Income', fontsize=16)
# plt.zlabel('Education', fontsize=16)
ax.set_xlabel('Education')
ax.set_ylabel('Age')
ax.set_zlabel('Income')
ax.scatter(X[:, 1], X[:, 0], X[:, 3], c= labels.astype(np.float))
```

<ipython-input-26-6d2ba62b5239>:13: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this wa
Deprecated in NumPy 1.20; for more details and guidance: <a href="https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations">https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations</a>
ax.scatter(X[:, 1], X[:, 0], X[:, 3], c= labels.astype(np.float))
<mpl\_toolkits.mplot3d.art3d.Path3DCollection at 0x7ac4e507a320>

