

16 位元等电流 LED 驱动器

特色

Ⅰ 16 个等电流输出通道

■ 等电流输出值不受输出端负载电压影响

■ 极为精确的电流输出值,

通道间最大差异值:<±3%;

芯片间最大差异值:<±6%。

Ⅰ 利用一个外接电阻,可调整电流输出值

■ 等电流输出范围值:5-90 mA

■ 快速的输出电流响应, OE (最小値): 200ns

Ⅰ 高达 25MHz 时钟频率

I 具 Schmitt trigger 输入装置

▮ 操作电压:5伏特

精确的	勺电流	条件
通道间	芯片间	未 什
< ±3%	< ±6%	I _{OUT} = 10 ~ 60 mA

产品说明

MBI5026 与 MBI5016 的脚位完全一致,然而在电气规格的表现上大幅提升,主要是因为 MBI5026 采用 PrecisionDriveTM 技术以改进电气特性。 MBI5026 是利用最新硅半导体技术,专为 LED 显示面版设计的驱动 IC,它内建的 CMOS 位移缓存器与栓锁功能,可以将串行的输入数据转换成平行输出数据格式。 MBI5026 的 16 个电流源,可以在每个输出级提供5-90 mA 定电流量以驱动 LED。

在应用 MBI5026 于 LED 面板系统设计之时, MBI5026 可提供系统设计 人员极大的弹性与极佳的组件效能。 MBI5026 的使用者可以经由选用不 同阻值的外接电阻器来调整 MBI5026 各输出级的电流大小,藉此机制, 使用者可轻松地控制 LED 的发光亮度。

MBI5026 的设计保证其输出级可耐压 17 伏特以上,因此可以在每个输出 端串接多个 LED。此外,MBI5026 亦提供 25MHz 的高时钟频率以满足系 统对大量数据传输上的需求。

功能方块图

脚位说明

Pin 脚名称	功能
GND	控制逻辑及驱动电流之接地端。
SDI	输入至位移缓存器之串行数据输入端。
CLK	时钟讯号之输入端;资料位移会发生在时钟上 升缘。
LE	数据闪控(data strobe)输入端。 当 LE 是高电位时,串行数据会被传入至输出 栓锁器;当 LE 是低电位时,资料会被栓锁住。
OUT0~OUT15	等电流输出端。
ŌĒ	输出致能讯号端。 当 OE 是低电位时,即会启动 OUT0 ~ OUT15 输出;当 OE 是高电位时, OUT0 ~ OUT15 输出会被关闭(不驱动电流)。
SDO	串行数据输出端;可接至下一个驱动器之 SDI 端。
R-EXT	连接外接电阻之输入端;此外接电阻可设定所 有输出通道之输出电流。
VDD	5V 电源供应端。

脚位图

MBI5026CN\CNS\CD\CF\CP

输入及输出等效电路

时序图

真值表

CLK	LE	ŌĒ	SDI	OUT0 OUT7 OUT15	SDO
	Н	L	D _n	<u>Dn</u> <u>Dn - 7</u> <u>Dn - 15</u>	D _{n-15}
	L	L	D _{n+1}	不变	D _{n-14}
	Н	L	D _{n+2}	<u>Dn+2</u> <u>Dn-5</u> <u>Dn-13</u>	D _{n-13}
—	Х	L	D _{n+3}	<u>Dn+2</u> <u>Dn-5</u> <u>Dn-13</u>	D _{n-13}
\Box	Х	Н	D _{n+3}	使LED不亮	D _{n-13}

最大工作范围

特性		代表符号	最大工作范围	单位
电源电压		V_{DD}	0~7.0	V
输入端电压		V _{IN}	-0.4 ~ V _{DD} +0.4	V
输出端电流		I _{OUT}	+90	mA
输出端电压		V _{DS}	-0.5 ~ +17.0	V
时钟频率		F _{CLK}	25	MHz
接地端电流		I _{GND}	1440	mA
	CN – type		2.32	
	CNS – type		1.87	
 消耗功率(在印刷电路板上,25°C 时)	CD – type	P_{D}	2.51	w
信起切平(在印刷电路恢正, 25 0 m)	CF – type	. 0	2.12	VV
	CP – type		1.73	
	CPA – type		1.73	
	CN – type		53.82	
	CNS – type		66.74	
│ │热阻值(在印刷电路板上,25°C 时)	CD- type	$R_{\text{th(j-a)}}$	49.81	°C/W
	CF – type	¹ ` th(j-a)	59.01	J, v,
	CP – type		72.43	
	CPA – type		72.43	
IC工作时的环境温度		T_{opr}	-40 ~ +85	°C
IC 储存时的环境温度		T_{stg}	-55 ~ +150	°C

直流特性

特性		代表符号	量	最小値	一般值	最大値	单位			
电源电压		V_{DD}		4.5	5.0	5.5	V			
输出端电压		V_{DS}	OUT0 ~ OL	JT15	-	-	17.0	V		
		I _{OUT}	用直流特性量	量测电路	5	-	90	mA		
输出端电流		I _{OH}	SDO		-	-	-1.0	mA		
		I _{OL}	SDO		-	-	1.0	mA		
输入端电压	高电位位准	V _{IH}	Ta = -40~85	°C	0.8V _{DD}	-	V_{DD}	V		
和八蜥巴瓜	低电位位准	V_{IL}	Ta = -40~85	°C	GND	ı	0.3V _{DD}	V		
输出端漏电流		I _{OH}	V _{OH} =17.0V		-	-	0.5	μΑ		
输出端电压	SDO	V_{OL}	I _{OL} =+1.0mA			ı	0.4	V		
和山地也压	300	V_{OH}	I _{OH} =-1.0mA	I _{OH} =-1.0mA			-	V		
输出电流1		I _{OUT1}	V _{DS} =0.6V	R _{ext} =720 Ω	-	26.25	-	mA		
电流偏移量		dl _{OUT1}	$\begin{vmatrix} I_{OL} = 26.25 \text{mA} \\ V_{DS} = 0.6 \text{V} \end{vmatrix}$ $R_{ext} = 720 \ \Omega$		-	±1	±3	%		
输出电流 2		I _{OUT2}	V _{DS} =0.8V	R _{ext} =360 Ω	-	52.5	-	mA		
电流偏移量	流偏移量		I _{OL} =52.5mA V _{DS} =0.8V	R _{ext} =360 Ω	-	±1	±3	%		
电流偏移量 vs.	输出电压	%/dV _{DS}	输出电压 =	1.0~3.0V	-	±0.1	-	% / V		
电流偏移量 vs.	电源电压	$\%/dV_{DD}$	电源电压 =	4.5~5.5V	-	±1	-	% / V		
Pull-up电阻		R _{IN} (up)		OE	250	500	800	ΚΩ		
Pull-down电阻		R _{IN} (down)		LE	250	500	800	ΚΩ		
		I _{DD} (off) 1	R _{ext} =未接,(OUTO ~ OUT15 =Off	-	7	12			
	"OFF"	I _{DD} (off) 2	R _{ext} =720 Ω, $\bar{\alpha}$	OUT0 ~ OUT15 =Off	-	10	12			
电压源输出电流	5	I _{DD} (off) 3	R _{ext} =360 Ω, \bar{c}		12	15	mA			
	"ON"	I _{DD} (on) 1	R _{ext} =720 Ω, (OUT0 ~ OUT15 =On	-	10	18			
	ON	I _{DD} (on) 2	R _{ext} =360 Ω, $\bar{\alpha}$	OUT0 ~ OUT15 =On	-	12	20			

直流特性的测试电路

交流特性

特性		代表符号	量测条件	最小値	一般値	最大値	单位
	CLK - OUTn	t _{pLH1}		-	100	150	ns
延迟时间	LE - OUTn	t _{pLH2}		-	100	150	ns
(低电位到高电位)	OE - OUTn	t _{pLH3}		-	50	150	ns
,	CLK - SDO	t _{pLH}		15	20	-	ns
	CLK - OUTn	t _{pHL1}		-	50	100	ns
延迟时间	LE - OUTn	t _{pHL2}	V_{DD} =5.0 V V_{DS} =0.8 V	-	50	100	ns
(高电位到低电位)	OE - OUTn	t _{pHL3}	V _{IH} =V _{DD}	-	20	100	ns
	CLK - SDO	t _{pHL}	V_{IL} =GND R _{ext} =300 Ω	15	20	-	ns
	CLK	t _{w(CLK)}	$V_L = 4.0 \text{ V}$ $R_L = 52 \Omega$ $C_L = 10 \text{ pF}$	20	-	-	ns
脉波宽度	LE	t _{w(L)}		20	-	-	ns
	Œ	t _{w(OE)}	ο _[.ο ρ.	200	ı	-	ns
LE的Hold Time		t _{h(L)}		5	-	-	ns
LE的Setup Time		t _{su(L)}		5	-	-	ns
SDI的Hold Time		t _{h(D)}		10	-	-	ns
SDI的Setup Time	SDI的Setup Time			5	-	-	ns
时钟讯号频率		F _{CLK}	IC串接操作时	-	-	25.0	MHz
CLK讯号的最大爬升时间		t _r **		-	-	500	ns
CLK讯号的最大下降时间	t _f **		-	ı	500	ns	
电流输出埠的电位爬升时间	t _{or}		-	70	200	ns	
电流输出埠的电位下降时间	ī	t _{of}		-	40	120	ns

^{**}如果是以多颗 IC 串联方式连接使用,若 tr 与 tf 值太大(>500 ns),可能会难以达成数据传输所要的时序要求。

交流特性的测试电路

时序的波形图

应用信息

等电流

当客户将 MBI5026 应用于 LED 面板设计上时,信道间与信道间,甚至芯片与芯片间的电流,差异极小。此源自于 MBI5026 的优异特性:

- 1) 通道间的最大电流差异小于 ±3%, 而芯片间的最大电流差异小于 ±6%。
- 2) 具有不受负载端电压影响的电流输出特性,如下图所示。输出电流的稳定性将不受 LED 顺向电压(Vf)变化而影响。

调整输出电流

如下图所示,藉由外接一个电阻(Rext)调整输出电流(IouT)。

外接至 R-EXT 端的电阻值,以 Ω 为单位

套用下列公式可计算出输出电流值,

 $V_{R-EXT} = 1.26V$; $I_{OUT} = (V_{R-EXT} / R_{ext}) \times 15$

公式中的 $V_{R\text{-EXT}}$ 是指 R-EXT 端的电压值, R_{ext} 是指外接至 R-EXT 端的电阻值。当电阻值是 360Ω ,套入公式可得输出电流值是 52.5mA;当电阻值是 720Ω 时,输出的电流则为 26.25mA。

封装体散热功率 (P_D)

對裝体的最大散热功率 是由公式 $P_D(max) = (Tj - Ta) / R_{th(j-a)}$ 来决定 当 16 个通道同时打开时 填正的功率为 $P_D(act)$ = $(I_{DD} \times V_{DD}) + (I_{OUT} \times Duty \times V_{DS} \times 16)$ 。

为保持 $P_D(act) \le P_D(max)$,可输出的最大电流与 duty cycle 间的关系为:

 $I_{OUT} = \{ [(Tj - Ta) / R_{th(j-a)}] - (I_{DD} \times V_{DD}) \} / V_{DS} / Duty / 16$,其中 Tj = 150°C。

CN 包装

CF 包装

CNS 包装

CP\CPA 包装

	100		-	out	vs.	Dut	y C ₃	/cle	at F	Rth :	= 49	9.81	(°C	:/W)								1
	90																					
	80									H	-		1									
_	70										H	+	+	+	4							
ΨĀ	60								L		1	+	1	1								
lout(mA)	50								L		L	+	1	1								
_	40					┡	┡		╄	1	╀	+	4	4	4							
	30									L	L	1	1	1								
	20								L	L	L	1	1	1								
	10																					
	0																					
	8	10%	15%	2 2	%07	%27	30%	32%	40%	45%	20%	22%	%09	%59	%02	75%	70 Ca	8 8	8 8	808	82%	8
	Duty Cycle																					

CD 包装

条件:I _{out} = 90mA,V _{DS} = 1.0V,16 输出埠均被导通								
包装型式	热阻值(°C/W)	图例格式						
CN	53.82							
CNS	66.74	———— Ta = 25°C						
CD	49.81	Ta = 55°C Ta = 85°C						
CF	59.01	1a = 65 C						
CP\CPA	72.43							

依据 $P_D(max) = (Tj - Ta) / R_{th(j-a)}$,被允许的最大散热功率会随环境温度增加而降低。

负载端供应电压 (VLED)

为使封装体散热能力达到最佳化,建议输出端电压(V_{DS})的最佳操作范围是 $0.4V\sim1.0V$ 。如果 $V_{DS}=V_{LED}-Vf$ 且 $V_{LED}=5V$ 时,此时过高的输出端电压(V_{DS})可能会导致 $P_D(act)>P_D(max)$;在此状况,建议尽可能使用较低的 V_{LED} 电压供应,也可用外串电阻或 Zener diode 当做 V_{DROP} 。此可导致 $V_{DS}=(V_{LED}-Vf)-V_{DROP}$,达到降低输出端电压(V_{DS})之效果。外串电阻或 Zener 的应用图可参阅下图。

外观轮廓图示

MBI5026CN 轮廓图示

MBI5026CNS 轮廓图示

MBI5026CD 轮廓图示

MBI5026CF 轮廓图示

MBI5026CP\CPA 轮廓图示

MBI5026 包装信息

包装型式	产品名称	重量(g)
CN	P-DIP24-300-2.54	1.628
CNS	SP-DIP24-300-1.78	1.11
CD	SOP24-300-1.27	0.617
CF	SOP24-300-1.00	0.28
CP\CPA	SSOP24-150-0.64	0.11

附注:轮廓图标的单位是 mm。