EFC3 173096

November 4, 2022

Luciano Pinheiro Batista 173096

Para a atividade foram utilizadas algumas funções prontas da biblioteca ScikitLearn, já que algumas delas demandariam uma complexidade razoavelmente grande para serem feitas do zero.

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import warnings
  warnings.filterwarnings('ignore')

from sklearn.neural_network import MLPClassifier
  from sklearn.metrics import confusion_matrix
  from sklearn.metrics import accuracy_score
```

Os conjuntos de imagens de treino, teste e validação foram carregados e normalizados. Em seguida as imagens, que são compostas de 3 canais de cor, foram redimensionadas com o objetivo de servirem como entrada para a rede neural MLP.

```
[2]: Train_Images = np.load('train_images.npy')/255
    Train_Labels = np.load('train_labels.npy')

Val_Images = np.load('val_images.npy')/255
Val_Labels = np.load('test_images.npy')/255
Test_Images = np.load('test_images.npy')/255
Test_Labels = np.load('test_labels.npy')

Train_Images = np.reshape(Train_Images, (len(Train_Images), 28*28*3))
Train_Labels = np.reshape(Train_Labels, len(Train_Labels))

Val_Images = np.reshape(Val_Images, (len(Val_Images), 28*28*3))
Val_Labels = np.reshape(Val_Labels, len(Val_Labels))

Test_Images = np.reshape(Test_Images, (len(Test_Images), 28*28*3))
Test_Labels = np.reshape(Test_Labels, len(Test_Labels))
```

A primeira rede neural consistiu de apenas uma camada intermediária e foi configurada da seguinte

maneira: o número de neurônios da camada foi aumentado 1 a até 100, de 10 em 10. O algoritmo de otimização utilizado foi o *Adam*, que se adequa a datasets relativamente grandes e a função de ativação utilizada foi a *Relu*, que apresenta um melhor custo benefício entre eficiência no ajuste de pesos e desempenho da aproximação. A acurácia obtida com o conjunto de validação foi calculada para cada configuração e o gráfico de acurácia em função de número de neurônios foi gerado.

```
[5]: #Treinamento e Validação
     Num_Neuronios = np.arange(1, 100, 10)
     Acuracias = []
     for Numero in Num Neuronios:
         print(Numero)
         Neuronio_1 = MLPClassifier(hidden_layer_sizes = (Numero),
                            \max iter = 50,
                            tol = 0.01,
                            learning_rate_init = .001,
                            solver = "adam",
                            activation = "relu",
                            learning_rate = "constant",
         Neuronio_1.fit(Train_Images, Train_Labels)
         Pred_1 = Neuronio_1.predict(Val_Images)
         Acuracias.append(accuracy_score(Val_Labels, Pred_1))
     fig, ax = plt.subplots()
     ax.scatter(Num_Neuronios, Acuracias)
     ax.set_xlabel('Número de Neurônios')
     ax.set_ylabel('Acurácia')
     plt.locator_params ('x', nbins = len(Num_Neuronios))
     plt.show()
```


Para a etapa de teste da primeira rede neural foram utilizados 41 neurônios. Observando o gráfico, há relativamente pouca melhora da acurácia ao se aumentar ainda mais o número de neuronios, o que implicaria também em mais parâmetros para serem ajustados e um maior esforço computacional.

```
#Matriz de Confusão
mc_1 = confusion_matrix(Test_Labels, Pred_1, labels=[0, 1, 2, 3, 4, 5, 6, 7])
Formata_Matriz(mc_1)
```

Acurácia MLP 1 camada: 0.7930429698918445

[22]:		Basófilos	Eosinófilos	Eritroblastos	\
	Basófilos	139	5	0	
	Eosinófilos	2	592	0	
	Eritroblastos	5	0	237	
	Granulócitos Imaturos	27	28	8	
	Linfócitos	12	1	21	
	Monócitos	6	7	1	
	Neutrófilos	0	28	19	
	Plaquetas	0	0	5	

	Granulócitos	Imaturos	Linfócitos	Monócitos
Basófilos		74	5	20
Eosinófilos		13	1	3
Eritroblastos		27	6	3
Granulócitos Imaturos		429	9	50
Linfócitos		35	166	1
Monócitos		135	1	128
Neutrófilos		45	2	10
Plaquetas		0	0	0

	Neutrófilos	Plaquetas
Basófilos	1	0
Eosinófilos	13	0
Eritroblastos	20	13
Granulócitos Imaturos	27	1
Linfócitos	7	0
Monócitos	6	0
Neutrófilos	560	2
Plaquetas	3	462

A segunda rede neural foi construída de maneira similar a primeira, com os neurônios aumentado de 1 até 100, a passos de 10. Por questão de simplicidade os mesmos números de neurônios foram utilizados em cada iteração. Um novo gráfico de acurácia por número de neurônios foi, então, gerado. É interessante pontuar que para a segunda rede foi possível obter uma melhor acurácia com menos neurônios por camada em comparação à primeira.

```
[24]: #Treinamento e Validação

Num_Neuronios = np.arange(1, 100, 10)
Acuracias = []
```

```
for Numero in Num_Neuronios:
   Neuronio_2 = MLPClassifier(hidden_layer_sizes = (Numero, Numero),
                       max_iter = 50,
                       tol = 0.01,
                       learning_rate_init = .001,
                       solver = "adam",
                       activation = "relu",
                       learning_rate = "constant",
   Neuronio_2.fit(Train_Images, Train_Labels)
   Pred_2 = Neuronio_2.predict(Val_Images)
   Acuracias.append(accuracy_score(Val_Labels, Pred_2))
fig, ax = plt.subplots()
ax.scatter(Num_Neuronios, Acuracias)
ax.set_xlabel('Número de Neurônios')
ax.set_ylabel('Acurácia')
plt.locator_params ('x', nbins = len(Num_Neuronios))
plt.show()
```


Para a etapa de teste da segunda rede neural foram utilizados 91 neurônios na primeira e na segunda camada, que se mostrou o valor com a melhor acurácia obtida na etapa de validação.

```
mc_2 = confusion_matrix(Test_Labels, Pred_2, labels=[0, 1, 2, 3, 4, 5, 6, 7])
Formata_Matriz(mc_2)
```

Acurácia MLP 2 camadas: 0.8427360420929553

	Acuracia MLP 2 camadas:	0.8427360420	0929553			
[27]:		Basófilos E	Cosinófilos	Eritroblas	tos \	
	Basófilos	138	1		0	
	Eosinófilos	1	592		1	
	Eritroblastos	3	1		249	
	Granulócitos Imaturos	25	15		4	
	Linfócitos	4	0		9	
	Monócitos	5	0		1	
	Neutrófilos	0	12		11	
	Plaquetas	0	0		1	
		Granulócitos	Imaturos	Linfócitos	Monócitos	\
	Basófilos		80	11	13	
	Eosinófilos		9	1	2	
	Eritroblastos		15	12	3	
	Granulócitos Imaturos		442	15	36	
	Linfócitos		26	199	2	
	Monócitos		89	3	184	
	Neutrófilos		23	2	2	
	Plaquetas		0	0	0	
		Neutrófilos	Plaquetas			
	Basófilos	1	0			
	Eosinófilos	17	1			
	Eritroblastos	9	19			
	Granulócitos Imaturos	42	0			
	Linfócitos	3	0			
	Monócitos	2	0			
	Neutrófilos	610	6			
	Plaquetas	0	469			

Houve um aumento de aproximadamente 5% na acurácia na segunda rede neural em relação a primeira. Isso ocorreu pois com um maior número de parâmetros disponíveis para treinamento a rede adquiriu uma maior flexibilidade para a aproximação. Observando as matrizes de confusão, fica evidente que houve um aumento no acerto em relação a classe Monócitos: de 128 na primeira para 184 na segunda.

Obs: A função Formata_Matriz foi utilizada para formatar a matriz de confusão com o nome das células dos bancos de imagem.

```
"Eritroblastos": mc[:, 2],

"Granulócitos Imaturos": mc[:, 3],

"Linfócitos": mc[:, 4],

"Monócitos": mc[:, 5],

"Neutrófilos": mc[:, 6],

"Plaquetas": mc[:, 7]}

Indice = ["Basófilos", "Eosinófilos", "Eritroblastos", "Granulócitos

GImaturos", "Linfócitos", "Monócitos", "Neutrófilos", "Plaquetas"]

mc_df = pd.DataFrame(Colunas, index = Indice)

return mc_df
```