Community Detection Approaches for Networks

James D. Wilson

ICPSR: Network Analysis I

Community Structure

Informally: Communities in a network are subgraphs $C_1, \ldots, C_k \subseteq [n]$ such that

- Edge density within sets C_i is large
- Edge density between sets C_i is small

Community Structure

- In the adjacency matrix, re-ordering the rows and columns according to community labels / modules will result in densely connected "blocks" along the diagonal
- Networks with community structure are said to be assortative

Aims of Community Detection

Aim: Capture relevant structure of a complex system

- Example 1: Facebook friendship networks
 - User friendships → Geographic location of user
- Example 2: Human Connectome
 - Clustering of regions signify "functional regions"

Community Detection Approaches

- In general, community detection (when well-defined mathematically) is NP-hard. Thus, identifying communities requires approximate algorithms
- That being the case, there is no shortage of computational algorithms to identify communities
- We will describe several key approaches i.e., ways to define community structure. For each of these approaches there are many algorithms available (which we won't detail here)
- A 100 + review on algorithms is available on github

Key Community Detection Approaches

Min-cut

• Identify cut of vertices that "cuts" the fewest edges

Modularity

Partition that deviates most from organization in random graph

Spectral

Focus on spectral properties of graph Laplacian

Stochastic Block Model

Model-based approach. Relies on maximum likelihood estimation

Extraction

Local, significance based algorithms

Features of Community Detection Methods

Common: Communities $\{C_i\}$ partition vertices [n].

In real networks:

- Overlap: Vertices may belong to two or more communities
- Background: Vertices may belong to no community

Potential Issue: Many methods, many results...

Recall Paths and Path Lengths

• A path exists between *u* and *v* if there is a collection of edges

$$P(u, v) = \{(u, u_1), (u_1, u_2), \dots, (u_{k-1}, u_k), (u_k, v)\} \subseteq E$$

that connects u with v

• The path length of a path P(u, v):

$$\mathcal{L}(P(u,v)) = A_{u,u_1} + A_{u_k,v} + \sum_{i=1}^k A_{u_i,u_{i+1}}$$

The Min-k-Cut Approach

Goal (Min-cut Max flow problem): Find the partition of vertices $\Pi = C_1 \cup ... \cup C_k$ whose communities have the *minimum number of edges between them* (Goldberg and Tarjan, 1988)

The cut of two communities $C_1, C_2 \subset [n]$ is:

$$cut(C_1, C_2) = \frac{1}{2} \sum_{i,j} A_{i,j} \mathbb{I}(i \in C_1, j \in C_2)$$

We seek the partition -

$$\mathsf{Min-k-Cut}(G) = \mathsf{argmin}_{\Pi} \left(\sum_{\ell=1}^{k-1} \sum_{m=\ell+1}^{k} \mathit{cut}(C_{\ell}, C_m) \right)$$

Question: What happens if we search for the Min-2-cut when there are nodes that are only connected to one other node?

Normalized Cut

- Problem with Min-Cut: Tends to find many singleton communities!
- To address this, one can normalize the cut between two communities by their size (Ratio-Cut) or by their volume (Norm-cut)

Normalized-Cut (Shi and Malik, 2000):

Define the volume of a collection $B \subset [n]$ as: $vol(B) = \sum_{i \in B} d_i$. Then,

$$\text{Min-Norm-k-Cut}(\textit{G}) = \text{argmin}_{\Pi} \left(\sum_{\ell=1}^{k-1} \sum_{m=\ell+1}^{k} \frac{cut(\textit{B}_{\ell}, \textit{B}_{m})}{vol(\textit{B}_{\ell})} + \frac{cut(\textit{B}_{\ell}, \textit{B}_{m})}{vol(\textit{B}_{m})} \right)$$

Normalized Cut

- Addresses the issue of singleton communities but ...
- Issue: When k > 2, finding the solution to the Norm-Cut is NP-hard.
- Fortunately, an approximate solution can be found!

Recall Connected Components

- A connected component of an undirected graph is a collection of vertices $C \subseteq V$ such that
 - $P(u, v) \neq \emptyset$ for all $u, v \in C$
 - $P(u, v) = \emptyset$ for all $u \in C$ and $v \in V \setminus C$

Note: Partitioning a network into its connected components is an "extreme" example of community detection. So we want to identify communities that are "like" disjoint connected components

Spectral Clustering and The Graph Laplacian

- Define $D = \operatorname{diag}(d_1, \dots, d_n) \in \mathbb{R}^{n \times n}$ where
- Graph Laplacian L:

$$L = D - A$$

Normalized graph laplacian L_{norm}:

$$L_{norm} = D^{-1}L = I - D^{-1}A$$

Properties of the Graph Laplacian

- λ is an eigenvalue of L_{norm} with eigenvector v iff λ and v solve the eigenproblem $Lv = \lambda Dv$
- 0 is an eigenvalue of *L* and *L*_{norm} with eigenvector **1**
- L and L_{norm} are nonnegative definite and have n real-valued eigenvalues $0 = \lambda_1 \leq \ldots \leq \lambda_n$
- L is symmetric

Key Property of the Graph Laplacian

Theorem 1.

Let G be an undirected graph with non-negative weights and let L_{norm} be its normalized graph laplacian.

Let $k = the multiplicity of the eigenvalue 0 of L_{norm}$. Then,

(1) k is the number of connected components C_1, \ldots, C_k in G

(2) The eigenspace of 0 is spanned by the indicator vectors $\mathbf{1}_{C_i}$

Key Point:

 If G clustered into k disjoint connected components, then we can perfectly identify the k clusters using the k smallest eigenvectors

Spectral Clustering

Algorithm

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}_+$, number of communities k

- 1 Calculate normalized graph laplacian L_{norm}
- 2 Compute

X =the $n \times k$ matrix of the k smallest eigenvectors of L_{norm}

3 Cluster the rows of X using k-means

Output: Clusters C_1, \ldots, C_k

Properties of Spectral Clustering

- Requires a prespecified number of clusters k
- Works perfectly in an ideal scenario
- Requires the use of another clustering method (k-means)
- The solution to a relaxed version of the normalized-cut problem

Reference (*seriously, read this*): Ulrike Von Luxburg "A tutorial on spectral clustering" (2006)

Stochastic Block Model (SBM)

- Model-based approach to community detection
- G = (V = [n], E) with binary adjacency matrix A
- Assumes that G has k blocks generated as follows:
 - **①** Community labels $\mathbf{c} = (c_1, \dots, c_n)$ generated at random:

$$c_1, \ldots, c_n \stackrel{\textit{iid}}{\sim} \text{multinomial}(1, \pi = \{\pi_1, \ldots, \pi_k\})$$

2 Conditional on \mathbf{c} , A(u, v) are independent Bernoulli rvs with

$$\mathbb{E}[A(u,v)|\mathbf{c}] = P_{c_u,c_v}$$

Reference: Holland, et al. "Stochastic block models: first steps" (1983)

Stochastic Block Model (SBM)

- Observe $G = G_o$, calculate likelihood $\mathcal{L}(\Theta|G_o, k)$ with $\Theta = \{P, c\}$
- Finding *c* becomes an estimation problem:

$$\widehat{\Theta} = \arg\max_{\Theta} \mathcal{L}(\Theta|G_o, k)$$

- Requires approximate algorithms like MCMC or variational EM
- Issue: Approximate algorithms can be slow!

Properties of SBM

- Requires pre-specified k
- "Best" performance on identifying disjoint communities
- Block labels are consistent (as $n \to \infty$) if for all $i \neq \ell$:

$$nP_{i,i} - nP_{i,\ell} \ge \sqrt{k(nP_{i,i} + (k-1)nP_{i,\ell})}$$

Algorithms like MCMC and variational EM can be slow!

Modularity

Aim: find the partition of *G* whose communities contain the highest density of edges relative to the expected density of edges

Remarks:

- Requires a notion of what a random network looks like
- The choice of a null network model affects resulting communities
- This is the most widely adopted approach to community detection!

Reference: Mark E Newman "Modularity and community structure in networks" (2004)

Modularity

- Graph G = (V = [n], E), adjacency matrix $A = [A_{u,v}]$
- Modularity (Q): Measures the "significance" of partition c:

$$Q(\mathbf{c}) = \frac{1}{2|E|} \sum_{u,v} \left[\left(A(u,v) - \frac{d_u d(v)}{2|E|} \right) \mathbb{I} \{ c_u = c_v \} \right]$$

 Measures the average departure of observed edge density from expected edge density

Modularity Maximization

Aim: Find the labels $c^* \in \{1, ..., k\}^n$ that maximizes modularity:

$$c^* = \arg \max_{c} \{Q\}$$

- NP hard optimization problem
- Many approximate algorithms developed

Reference: Santo Fortunato, "Community detection in graphs" (2009). [100+ page review paper]

Community Extraction

Basic Idea:

- Identify communities $C_i \subseteq V$ one at a time via iterative search
- Remove/avoid C_1, \ldots, C_i when searching for C_{i+1}

Virtues:

- Possible to accommodate overlap
- Automatic selection of number of communities
- Parallelizable! Can easily scale to large networks.

Community Extraction Methods

Methods:

- OSLOM: Lancichinetti, et al. "Finding statistically significant communities in networks" (2011) – resampling based method
- Extraction: Zhao, et al. "Community extraction for social networks"
 (2011) score-based residualizing
- ESSC: Wilson, et al. "A testing based extraction algorithm for identifying significant communities in networks" (2014) – hypothesis testing based extraction

Significance based Community Extraction

Measure Significance Locally

$$G_{obs} = ([n], E)$$
: obs. graph with degree sequence $\mathbf{d} = \{d(1), \dots, d(n)\}$

Statistic

Let
$$u \in [n]$$
; $B \subseteq [n]$

$$D_{obs}(u:B) = \sum_{v \in B} \mathbb{I}(\{u,v\} \in E) = \# \text{ edges between } u \text{ and } B$$

Null Distribution (*G*_{null})

Configuration model P_d based on the degree sequence **d**

P-Values

Use P_d to evaluate connection between u and B via $D_{obs}(u:B)$

Configuration Null Model (G_{null})

Generative model for Gobs

Result: Distribution P_d on family of graphs with degree sequence **d**

The Configuration Null

Features

- Preserves the observed degree sequence d.
- Uniform distribution on simple graphs with degree sequence d
- Pr(edge between u,v) $\propto d_u d(v)$
- No preferential interconnection between vertices

Idea: Use P_d to test connectivity of a set of nodes in G_{obs}

Local Connectivity p-values

 Quantify statistical signficance of a collection of nodes via the p-value:

$$p_n(u:B) = \Pr(D_{null}(u:B) \ge D_{obs}(u:B))$$

• Fact: As $n \to \infty$, we have that

$$p_n(u:B) \rightarrow \mathbb{P}\{Bin(d_u, r(B)) \geq D_{obs}(u:B)\}$$

- Above, r(B) is the volume, or density of the collection B.
- Thus, we can test the strength of a collection B using a Binomial tail probability!

The ESSC Algorithm

Single Extraction

Given: Graph G = ([n], E). Significance level $\alpha \in (0, 1)$

Input: Initial set $B_0 \subseteq [n]$

Loop: Until $B_{t+1} = B_t$

- For each $u \in [n]$, compute p-value $p(u : B_t)$
- Order the vertices of *G* so that $p(u_1 : B_t) \le \cdots \le p(u_n : B_t)$
- Let $k \ge 0$ be the largest integer such that $p(u_k : B_t) \le (k/n)\alpha$
- Let $B_{t+1} = \{u_1, ..., u_k\}$ and increment t := t + 1

Return: Community $C = B_t$

The ESSC Algorithm

- Repeat Single Extraction using vertex neighborhoods as an initial set
- Final collection: set of unique fixed points of search global search
- Code and Readme available at

https://github.com/jdwilson4/ESSC

Application: Personal Facebook Network

- Network with 561 vertices and 8375 edges
 - Vertices (561): friend of mine on Facebook
 - Edges (8375): friendships
 - Each individual categorized into one of 8 different locations

Results

Results of ESSC with α = 0.05

- 7 communities detected (size \approx 68 \pm 51)
- 18% background vertices (0.90 match with Acquaintances)
- Community match score = 0.87 / 1

Community Detection in igraph

The igraph package contains several fast methods for identifying communities. Primarily these methods are all algorithms that seek the partition with the highest modularity. These methods include:

- Infomap (cluster_infomap())
- Fast and Greedy (cluster_fast_greedy())
- Label Propagation (cluster_label_prop())
- Louvain (cluster_louvain())
- Spinglass (cluster_spinglass())
- Walktrap (cluster_walktrap())

Brief Excursion into Multilayer Networks

Network model for multidimensional system

- Unordered sequence of m networks $\mathbf{G}(m,n) = \{([n], E_{\alpha})\}_{\ell=1}^{m}$
- $G_{\ell} = ([n], E_{\ell})$ describes relational structure of layer ℓ
 - Each layer represents a relational type or sample
- Can incorporate layer dependencies (correlation, temporal dependence)

Multilayer Community Detection

Three general approaches: Aggregate, Separate, and Super Adjacency

Big Idea: Identify densely connected collections of vertices that persist across layers

Important Considerations:

- What is a multilayer community?
- How to measure significance of a community?
- How to identify communities?

Aggregate Analysis

Ex: m layers; adjacency matrices $\{A_\ell\}_{\ell=1,...,m}$

Approach: Use weighted average:

$$\overline{A} = \sum_{\ell=1}^{m} w_{\ell} A_{\ell}$$

Pros/Cons

- Homogeneous community structure
- Heterogeneous community structure

Separate Analysis

Ex: m layers; adjacency matrices $\{A_\ell\}_{\ell=1,\ldots,m}$

Approach: Use A_{ℓ} separately and combine results

Pros/Cons

- Heterogeneous community structure
- No use of inter-layer relationships
- How to combine results?

Super Adjacency Matrices

Ex: m = 3 layers; adjacency matrices $\{A_{\ell}\}_{\ell=1,...,3}$

Approach: Use super adjacency matrix (or, e.g. Laplacian):

$$A_{super} = \begin{pmatrix} A_1 & R_{1,2} & R_{1,3} \\ R_{2,1} & A_2 & R_{2,3} \\ R_{3,1} & R_{3,2} & A_3 \end{pmatrix}$$
, $R_{i,j} = \text{inter-layer connections } i \text{ and } j$

Pros/Cons

- Heterogeneous community structure
- \odot Choice of $R_{i,j}$?

Multilayer Extraction

Setting: Observe multilayer network $\mathbf{G}(m,n) = \{([n], E_{\ell})\}_{\ell=1}^{m}$

Objective: Find vertex-layer communities $\{(B_{\kappa}, \mathcal{L}_{\kappa})\}_{\kappa}$ s.t.

- $B_{\kappa} \subseteq \text{vertices } ([n]), \mathcal{L}_{\kappa} \subseteq \text{layers } ([m])$
- Vertices B_{κ} densely connected within layers \mathcal{L}_{κ}

Upshot:

- Can capture heterogeneous community structure
- Identified communities (layers and/or vertices) may overlap
- Not all vertices nor layers need belong to a community

Multilayer Extraction: Example

- Two communities: (i) $(\{\star,\star,\star\},\{A,B\})$ (ii) $(\{\blacksquare,\blacksquare,\blacksquare\},\{A,C\})$
- Layer D, and vertex belong to no communities

Score-based Approach to Multilayer Extraction

Given $\mathbf{G}(m,n) = \{([n], E_{\ell})\}_{\ell=1}^{m}$ and candidate community (B, \mathcal{L})

Outline:

- Formulate null model for G(m, n)
- Compare edges in (B, \mathcal{L}) w/ expected number in null model
- Score (B, L) according to significance

Reference: Wilson et al. "Community Extraction in Multilayer Networks with Heterogeneous Community Structure" (2016)