Pompe à piston radial ★

C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\lambda(t)$ en fonction de $\theta(t)$.

Question 3 En utilisant Python, tracer $\lambda(t)$ en fonction de $\theta(t)$.

Question 4 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

On prendra une section de piston **2** de 1 cm² et une fréquence de rotation de $\dot{\theta}(t) = \pi \times 2 \text{ rad s}^{-1}$.

Question 5 Exprimer le débit instantané de la pompe.

Question 6 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour e=10 mm et e=15 mm.

Question 7 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour e = 10 mm pour une pompe à 5 pistons (5 branches **1+2**).

```
Indications (à vérifier...) : 

1. . 

2. \lambda(t) = e \cos \theta(t) \pm \sqrt{e^2 \cos^2 \theta(t) - e^2 + R^2}. 

3. . 

4. q(t) = S\dot{\lambda}(t). 

5. .
```

Corrigé voir .

