4.7. Пополнение нормированного пространства

Если последовательность $\{u_n\}$ элементов банахова пространства $\mathcal B$ такова, что любой элемент $u\in \mathcal B$ можно единственным образом представить в виде сходящегося ряда

$$\boldsymbol{u} = \sum_{n=1}^{\infty} a_n \boldsymbol{u}_n, \quad a_n \in \mathbb{R}, \tag{4.52}$$

то последовательность $\{u_n\}$ называют счетным базисом в \mathcal{B} . При этом равенство (4.52) называют разложением элемента u по базису $\{u_n\}$, а коэффициенты a_n в этом равенстве — координатами элемента u в данном базисе.

Счетный базис является последовательностью линейно независимых элементов. Банахово пространство со счетным базисом сепарабельно [IX], но не всякое сепарабельное пространство имеет счетный базис.

Обсуждение математических моделей физических процессов в части I показывает, что в этих моделях, как правило, приходится иметь дело с решением операторного уравнения вида

$$P(u) = f, (4.53)$$

где P — некоторый оператор в банаховом пространстве \mathcal{B} , $u \in D(P)$, $f \in R(P)$. На практике элементами банахова пространства являются функции u(x), определенные в некоторой области $V \subset \mathbb{R}^m$ и удовлетворяющие краевым условиям на границе ∂V этой области. Большинство приближенных методов решения подобных уравнений основано на построении такой последовательности $\{\widetilde{u}_N\}$, что

$$\lim_{N \to \infty} P(\widetilde{\boldsymbol{u}}_N) = \boldsymbol{f}.\tag{4.54}$$

При этом изучают вопросы, имеет ли последовательность $\{\tilde{u}_N\}$ предел, принадлежит ли этот предел D(P) и является ли он решением уравнения P(u)=f.

Учитывая (4.52), можно положить

$$\widetilde{\boldsymbol{u}}_N = \sum_{n=1}^N a_n(N) \boldsymbol{u}_n, \quad a_n(N) \in \mathbb{R},$$
 (4.55)

где функции $u_n \in \mathcal{B}, \ n = \overline{1, N},$ являются элементами счетного базиса $\{u_n\}$ в банаховом пространстве \mathcal{B} .

Если область определения D(P) оператора P является подпространством и $u_n \in D(P)$, $n \in \mathbb{N}$, то при выполнении условия (4.54) в некоторых случаях (см. **5.2**) можно ожидать, что последовательность $\{\widetilde{u}_N\}$ будет сходиться к искомой функции $u_0 \in D(P)$, удовлетворяющей (4.53). Но если $u_n \notin D(P)$, то и $\widetilde{u}_N \notin D(P)$, так что выражение $P(\widetilde{u}_N)$ в (4.54) не будет определено. Поэтому следует использовать такие функции $u_n \in D(P)$, $n \in \mathbb{N}$, которые бы составляли счетный базис $\{u_n\}$ в D(P).

Однако D(P) может и не быть подпространством. Тогда последовательность $\{\tilde{u}_N\}\subset D(P)$ может сходиться к элементу $u\notin D(P)$, не являющемуся решением уравнения (4.53) в обычном смысле. Кроме того, (4.53) не имеет решения в D(P), если $f\notin R(P)$, что характерно для прикладных задач.

Эти трудности можно преодолеть, расширив понятие решения операторного уравнения. Такое решение, называемое обобщенным в отличие от классического решения $u_0 \in D(P)$, рассматривают в пространстве, получаемом расширением области D(P) определения оператора P, пополняя ее некоторыми особыми элементами.

Напомним, что линейные пространства D и D' называют изоморфными, если существует такое взаимно однозначное отображение $\varphi \colon D \to D'$, что $\varphi(\lambda u + \mu v) = \lambda \varphi(u) + \mu \varphi(v)$, $\lambda, \mu \in \mathbb{R}, \ u, v \in D$. Такое отображение называют изоморфизмом этих пространств.

Определение 4.10. Нормированные пространства D и D' называют изометричными и говорят, что D' изометрично D (и наоборот), если существует их изоморфизм φ как

198

линейных пространств, удовлетворяющий условию $\|\varphi(u)\|_{D'} = \|u\|_D$, $u \in D$. При этом изоморфизм φ называют **изометрией**.

Определение 4.11. Банахово пространство \mathcal{B} называют пополнением нормированного пространства D, если существует линейное многообразие $D' \subset \mathcal{B}$, изометричное D и являющееся множеством, всюду плотным в \mathcal{B} ($\overline{D'} = \mathcal{B}$).

Теорема 4.23. Любое нормированное пространство D имеет некоторое пополнение \mathcal{B} . Любые два пополнения \mathcal{B}_1 и \mathcal{B}_2 нормированного пространства D изометричны.

lacktriangleleft Две фундаментальные последовательности $\{u_n\}$ и $\{u'_n\}$ элементов из D назовем эквивалентными и будем писать $\{u_n\}\sim \{u'_n\}$, если

$$\lim_{n \to \infty} \| \boldsymbol{u}_n - \boldsymbol{u}_n' \|_D = 0. \tag{4.56}$$

Для отношения \sim из (4.56) следуют свойства рефлексивности ($\{u_n\} \sim \{u_n\}$, так как $\|u_n - u_n\|_D \equiv 0$), симметричности (если $\{u_n\} \sim \{u_n'\}$, то $\{u_n'\} \sim \{u_n'\}$ в силу $\|u_n - u_n'\|_D = \|u_n' - u_n\|_D$) и транзитивности: если $\{u_n\} \sim \{u_n'\}$ и $\{u_n'\} \sim \{u_n''\}$, то $\{u_n\} \sim \{u_n''\}$, так как из (4.1) имеем

$$0 \leqslant \|\boldsymbol{u}_{n} - \boldsymbol{u}_{n}''\|_{D} = \|(\boldsymbol{u}_{n} - \boldsymbol{u}_{n}') + (\boldsymbol{u}_{n}' - \boldsymbol{u}_{n}'')\|_{D} \leqslant$$
$$\leqslant \|\boldsymbol{u}_{n} - \boldsymbol{u}_{n}'\|_{D} + \|\boldsymbol{u}_{n}' - \boldsymbol{u}_{n}''\|_{D}$$

и после перехода в этом неравенстве к пределу при $n \to \infty$ получаем

$$\lim_{n\to\infty} \|\boldsymbol{u}_n - \boldsymbol{u}_n''\|_D = 0.$$

Следовательно, отношение \sim является отношением эквивалентности. Поэтому множество всех фундаментальных последовательностей элементов из D распадается на непересекающиеся подмножества, каждое из которых составляет некоторый класс эквивалентности. Множество классов эквивалентности фундаментальных последовательностей из D обозначим $\mathcal B$ и покажем, что его можно наделить структурой банахова пространства.

Начнем с определения в \mathcal{B} операции сложения. Пусть $\widetilde{\boldsymbol{u}}$ и $\widetilde{\boldsymbol{v}}$ — классы эквивалентности по отношению, введенному в D. Выберем из этих классов эквивалентности фундаментальные в D последовательности $\{\boldsymbol{u}_n\}\in\widetilde{\boldsymbol{u}}$ и $\{\boldsymbol{v}_n\}\in\widetilde{\boldsymbol{v}}$. Нетрудно проверить, что последовательность $\{\boldsymbol{u}_n+\boldsymbol{v}_n\}$ также фундаментальна в D. Поэтому она входит в некоторый класс эквивалентности, который обозначим $\widetilde{\boldsymbol{u}}+\widetilde{\boldsymbol{v}}$. Покажем, что определение этого класса корректно, т.е. оно не зависит от выбора последовательностей из классов $\widetilde{\boldsymbol{u}}$ и $\widetilde{\boldsymbol{v}}$. Пусть $\{\boldsymbol{u}_n\}\sim\{\boldsymbol{u}'_n\}$ и $\{\boldsymbol{v}_n\}\sim\{\boldsymbol{v}'_n\}$. Докажем, что $\{\boldsymbol{u}_n+\boldsymbol{v}_n\}\sim\{\boldsymbol{u}'_n+\boldsymbol{v}'_n\}$. Наряду с $\{4.56\}$ будет верно и

$$\lim_{n\to\infty} \|\boldsymbol{v}_n - \boldsymbol{v}_n'\|_D = 0. \tag{4.57}$$

Используя (4.1), получаем

$$0 \leqslant \|(\boldsymbol{u}_n + \boldsymbol{v}_n) - (\boldsymbol{u}'_n + \boldsymbol{v}'_n)\|_D = \|(\boldsymbol{u}_n - \boldsymbol{u}'_n) + (\boldsymbol{v}_n - \boldsymbol{v}'_n)\|_D \leqslant$$
$$\leqslant \|\boldsymbol{u}_n - \boldsymbol{u}'_n\|_D + \|\boldsymbol{v}_n - \boldsymbol{v}'_n\|_D.$$

Переходя в этом неравенстве к пределу при $n \to \infty$ и учитывая (4.56) и (4.57), имеем

$$\lim_{n\to\infty} \|(\boldsymbol{u}_n + \boldsymbol{v}_n) - (\boldsymbol{u}'_n + \boldsymbol{v}'_n)\|_D = 0,$$

т.е. $\{u_n+v_n\}\sim \{u'_n+v'_n\}$, а значит, и $\{u'_n+v'_n\}\in \widetilde{u}+\widetilde{v}$, что доказывает корректность определения в $\mathcal B$ операции сложения элементов.

Введем операцию умножения элементов из \mathcal{B} на числа. Если последовательность $\{u_n\} \in \widetilde{u}$ фундаментальна в D, то легко проверить, что последовательность $\{\lambda u_n\}$, где $\lambda \in \mathbb{R}$, также фундаментальна в D. Следовательно, она входит в некоторый класс эквивалентности, который обозначим $\lambda \widetilde{u}$. Проверим, что определение этого класса корректно, т.е. оно не зависит от выбора последовательностей из класса \widetilde{u} . Пусть $\{u_n\} \sim \{u_n'\}$.

Докажем, что $\{\lambda u_n\} \sim \{\lambda u_n'\}$ для любого $\lambda \in \mathbb{R}$. Используя (4.56), находим

$$\lim_{n\to\infty} \|\lambda \boldsymbol{u}_n - \lambda \boldsymbol{u}_n'\|_D = |\lambda| \lim_{n\to\infty} \|\boldsymbol{u}_n - \boldsymbol{u}_n'\|_D = 0,$$

т.е. $\{\lambda u_n\} \sim \{\lambda u_n'\}$, а значит, и $\{\lambda u_n'\} \in \lambda \tilde{u}$, что доказывает корректность определения в \mathcal{B} операции умножения элемента на число.

Итак, в \mathcal{B} введены линейные операции. Так как они определены через линейные операции в D, то можно показать, что в \mathcal{B} выполнены все аксиомы линейного пространства. Поэтому \mathcal{B} является линейным пространством. Роль нулевого элемента в \mathcal{B} выполняет класс $\widetilde{\mathbf{0}}$, определяемый условием $\widetilde{\mathbf{u}} + \widetilde{\mathbf{0}} = \widetilde{\mathbf{u}}$, $\widetilde{\mathbf{u}} \in \mathcal{B}$. Представителем этого класса является фундаментальная последовательность, все члены которой равны нулевому элементу $\mathbf{0} \in D$. Отсюда, учитывая (4.56), получаем, что последовательность $\{\mathbf{u}_n\} \in \widetilde{\mathbf{0}}$ тогда и только тогда, когда $\|\mathbf{u}_n\| \to 0$ при $n \to \infty$.

Введем норму в линейном пространстве \mathcal{B} . Для любого класса эквивалентности \widetilde{u} выберем фундаментальную последовательность $\{u_n\} \in \widetilde{u}$ и положим

$$\|\widetilde{\boldsymbol{u}}\|_{\mathcal{B}} = \lim_{n \to \infty} \|\boldsymbol{u}_n\|_{D}. \tag{4.58}$$

Так как в соответствии с (4.1)

$$|||\boldsymbol{u}_m||_D - ||\boldsymbol{u}_n||_D| \leqslant ||\boldsymbol{u}_m - \boldsymbol{u}_n||_D,$$

то числовая последовательность $\{\|\boldsymbol{u}_n\|\}$ в силу определения 4.1 фундаментальна и, согласно критерию Коши [I], сходится к некоторому пределу. Значение этого предела не зависит от выбора последовательности из класса $\tilde{\boldsymbol{u}}$. В самом деле, для произвольных последовательностей $\{\boldsymbol{u}_n\}$ и $\{\boldsymbol{u}_n'\}$ из класса эквивалентности $\tilde{\boldsymbol{u}}$ в соответствии с (4.1) имеем $|\|\boldsymbol{u}_n\|_D - \|\boldsymbol{u}_n'\|_D| \leqslant \|\boldsymbol{u}_n - \boldsymbol{u}_n'\|_D$ и, используя (4.56), получаем $\|\boldsymbol{u}\|_D - \|\boldsymbol{u}_n'\|_D \to 0$ при $n \to \infty$, или $\lim_{n \to \infty} \|\boldsymbol{u}_n'\|_D = \lim_{n \to \infty} \|\boldsymbol{u}_n\|_D$.

Для (4.58) выполнены аксиомы нормы (см. 4.1). Действительно, $\|\widetilde{\boldsymbol{u}}\|_{\mathcal{B}} \geqslant 0$, причем если $\|\widetilde{\boldsymbol{u}}\|_{\mathcal{B}} = 0$, то для любой последовательности $\{\boldsymbol{u}_n\} \in \widetilde{\boldsymbol{u}}$ в соответствии с (4.58) $\|\boldsymbol{u}_n\|_D \to 0$ при $n \to \infty$. Таким образом, $\{\boldsymbol{u}_n\} \in \widetilde{\boldsymbol{0}}$, т.е. $\widetilde{\boldsymbol{u}} = \widetilde{\boldsymbol{0}}$. Очевидно и обратное: если $\widetilde{\boldsymbol{u}} = \widetilde{\boldsymbol{0}}$, то $\|\widetilde{\boldsymbol{u}}\|_{\mathcal{B}} = 0$. Из аксиом нормы имеем $\|\lambda \boldsymbol{u}_n\|_D = |\lambda| \|\boldsymbol{u}_n\|_D$ и $\|\boldsymbol{u}_n + \boldsymbol{v}_n\|_D \leqslant \|\boldsymbol{u}_n\|_D + \|\boldsymbol{v}_n\|_D$, где $\lambda \in \mathbb{R}$, $\{\boldsymbol{u}_n\} \in \widetilde{\boldsymbol{u}}$ и $\{\boldsymbol{v}_n\} \in \widetilde{\boldsymbol{v}}$. Переходя в этих соотношениях к пределу при $n \to \infty$, получаем $\|\lambda \widetilde{\boldsymbol{u}}\|_{\mathcal{B}} = |\lambda| \|\widetilde{\boldsymbol{u}}\|_{\mathcal{B}}$ и $\|\widetilde{\boldsymbol{u}} + \widetilde{\boldsymbol{v}}\|_{\mathcal{B}} \leqslant \|\widetilde{\boldsymbol{u}}\|_{\mathcal{B}} + \|\widetilde{\boldsymbol{v}}\|_{\mathcal{B}}$.

Таким образом, (4.58) определяет в линейном пространстве \mathcal{B} норму, т.е. \mathcal{B} является нормированным пространством. Покажем, что оно включает линейное многообразие D', изометричное D. Прежде всего убедимся, что существует инъективное отображение φ , переводящее D в \mathcal{B} . Любому элементу $u \in D$ поставим в соответствие класс $\varphi(u) = \widetilde{u}' \in \mathcal{B}$ фундаментальных последовательностей, которому принадлежит стационарная последовательность $\{u_n\}$ с элементами $u_n = u \in D, \ n \in \mathbb{N}$. Ясно, что эта последовательность сходится к элементу $u \in D$. Но если в классе эквивалентности $\widetilde{u}' \in \mathcal{B}$ хотя бы одна последовательность $\{u_n\} \in \widetilde{u}'$ сходится к некоторому элементу $u \in D$, то все последовательности этого класса сходятся, причем к этому же элементу $u \in D$. В самом деле, пусть $\{u_n'\} \in \widetilde{u}'$. Тогда с учетом аксиомы 3 нормы (см. 4.1) запишем

$$\|u'_n - u\|_D \leq \|u'_n - u_n\|_D + \|u_n - u\|_D.$$

Переходя в этом неравенстве к пределу при $n \to \infty$ и учитывая (4.56), получаем, что $\|\boldsymbol{u}_n' - \boldsymbol{u}\|_D \to 0$ при $n \to \infty$. Поэтому, если $\varphi(\boldsymbol{u}) = \varphi(\boldsymbol{w})$ для некоторых $\boldsymbol{u}, \boldsymbol{w} \in D, \ \boldsymbol{u} \neq \boldsymbol{w}$, то класс эквивалентности $\varphi(\boldsymbol{u})$ состоит из последовательностей, которые сходятся как к \boldsymbol{u} , так и к \boldsymbol{w} , что невозможно. Следовательно, отображение φ инъективно.

Из (4.58) вытекает, что если ${m u}\in D$ и $\widetilde{m u}'=\varphi({m u})$, то

$$\|\widetilde{\boldsymbol{u}}'\|_{\mathcal{B}} = \|\boldsymbol{u}\|_{D}. \tag{4.59}$$

Обозначим область значений отображения φ через D'. Соответствие φ между элементами $u \in D$ и классами $\widetilde{u}' \in D' \subset \mathcal{B}$,

удовлетворяющее (4.59), является биективным (взаимно однозначным) отображением D в D'. Это отображение линейно в силу определения в \mathcal{B} линейных операций с классами эквивалентности, и поэтому D' — линейное многообразие в \mathcal{B} , а отображение φ — изоморфизм между D и D'. В качестве нормы в D' используем норму в \mathcal{B} . С учетом (4.59) $\|\varphi(u)\|_{D'} = \|\varphi(u)\|_{\mathcal{B}} = \|u\|_{D}$. Согласно определению 4.10, это означает, что D и D' изометричны.

Итак, множество D' всех классов \widetilde{u}' , содержащих стационарные последовательности, члены каждой из которых равны соответствующему элементу из D, является линейным многообразием в \mathcal{B} , изометричным D. Покажем, что это многообразие всюду плотно в \mathcal{B} . Выберем произвольное $\varepsilon>0$ и в любом классе $\widetilde{u}\in\mathcal{B}$ рассмотрим некоторую фундаментальную последовательность $\{u_m\}\in\widetilde{u}$ элементов из D. В силу определения 4.1 фундаментальной последовательности существует такой номер $N\in\mathbb{N}$, что

$$\|\boldsymbol{u}_n - \boldsymbol{u}_m\|_D < \frac{\varepsilon}{2} \tag{4.60}$$

при m>N и n>N. Зафиксируем номер m>N. Тогда класс $\varphi(u_m)=\widetilde{u}_m\in D'$ содержит стационарную последовательность, все элементы которой равны u_m . В соответствии с (4.58) и (4.60) получим

$$\|\widetilde{\boldsymbol{u}} - \widetilde{\boldsymbol{u}}_m\|_{\mathcal{B}} = \lim_{n \to \infty} \|\boldsymbol{u}_n - \boldsymbol{u}_m\|_{D} \leqslant \frac{\varepsilon}{2} < \varepsilon.$$
 (4.61)

Это означает, что в любой ε -окрестности точки $\widetilde{u} \in \mathcal{B}$ найдется хотя бы одна точка из D'. Таким образом, согласно определению 4.2, линейное многообразие D' всюду плотно в \mathcal{B} .

Наконец, покажем, что нормированное пространство $\mathcal B$ является полным, т.е. банаховым. Пусть задана фундаментальная в $\mathcal B$ последовательность $\{\widetilde{\boldsymbol u}_n\}$ элементов из $\mathcal B$. Так как D' всюду плотно в $\mathcal B$, то для каждого $\widetilde{\boldsymbol u}_n\in\mathcal B$ можно найти такой элемент $\widetilde{\boldsymbol v}_n\in D'$, что

$$\|\widetilde{\boldsymbol{v}}_n - \widetilde{\boldsymbol{u}}_n\|_{\mathcal{B}} < \frac{1}{n}.$$
 (4.62)

Тогда, используя (4.1), получаем

$$\|\widetilde{\boldsymbol{v}}_{m} - \widetilde{\boldsymbol{v}}_{n}\|_{\mathcal{B}} = \|(\widetilde{\boldsymbol{v}}_{m} - \widetilde{\boldsymbol{u}}_{m}) + (\widetilde{\boldsymbol{u}}_{n} - \widetilde{\boldsymbol{v}}_{n}) + (\widetilde{\boldsymbol{u}}_{m} - \widetilde{\boldsymbol{u}}_{n})\|_{\mathcal{B}} \leqslant$$

$$\leqslant \|\widetilde{\boldsymbol{v}}_{m} - \widetilde{\boldsymbol{u}}_{m}\|_{\mathcal{B}} + \|\widetilde{\boldsymbol{u}}_{n} - \widetilde{\boldsymbol{v}}_{n}\|_{\mathcal{B}} + \|\widetilde{\boldsymbol{u}}_{m} - \widetilde{\boldsymbol{u}}_{n}\|_{\mathcal{B}} <$$

$$< \frac{1}{m} + \frac{1}{n} + \|\widetilde{\boldsymbol{u}}_{m} - \widetilde{\boldsymbol{u}}_{n}\|_{\mathcal{B}}. \quad (4.63)$$

Согласно определению 4.1 фундаментальной последовательности, для произвольного $\varepsilon>0$ существует такой номер N, что $\|\widetilde{\boldsymbol{u}}_m-\widetilde{\boldsymbol{u}}_n\|_{\mathcal{B}}<\frac{\varepsilon}{2}$ при m>N и n>N. Выберем $m>\max\left\{\frac{4}{\varepsilon},N\right\}$ и $n>\max\left\{\frac{4}{\varepsilon},N\right\}$. Тогда из (4.63) имеем

$$\|\widetilde{\boldsymbol{v}}_m - \widetilde{\boldsymbol{v}}_n\|_{\mathcal{B}} < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon,$$
 (4.64)

что, согласно определению 4.1, означает фундаментальность последовательности $\{\widetilde{\boldsymbol{v}}_n\}$ в \mathcal{B} . Благодаря изометричности D' и D каждому элементу $\widetilde{\boldsymbol{v}}_n \in D'$ соответствует единственный элемент $\boldsymbol{v}_n \in D$, причем в силу фундаментальности последовательности $\{\widetilde{\boldsymbol{v}}_n\}$ последовательность $\{\boldsymbol{v}_n\}$ также фундаментальна и ей соответствует некоторый класс эквивалентности $\widetilde{\boldsymbol{v}} \in \mathcal{B}$.

Учитывая (4.1) и (4.62), запишем

$$0 \leqslant \|\widetilde{\boldsymbol{u}}_n - \widetilde{\boldsymbol{v}}\|_{\mathcal{B}} \leqslant \|\widetilde{\boldsymbol{u}}_n - \widetilde{\boldsymbol{v}}_n\|_{\mathcal{B}} + \|\widetilde{\boldsymbol{v}} - \widetilde{\boldsymbol{v}}_n\|_{\mathcal{B}} < \frac{1}{n} + \|\widetilde{\boldsymbol{v}} - \widetilde{\boldsymbol{v}}_n\|_{\mathcal{B}}.$$
(4.65)

Так как $\|\widetilde{\boldsymbol{v}} - \widetilde{\boldsymbol{v}}_n\|_{\mathcal{B}} = \lim_{m \to \infty} \|\widetilde{\boldsymbol{v}}_m - \widetilde{\boldsymbol{v}}_n\|_{\mathcal{B}}$, то $\lim_{m \to \infty} \|\widetilde{\boldsymbol{v}} - \widetilde{\boldsymbol{v}}_n\|_{\mathcal{B}} = 0$. Переходя в (4.65) к пределу при $n \to \infty$, получаем

$$\lim_{n\to\infty}\|\widetilde{\boldsymbol{u}}_n-\widetilde{\boldsymbol{v}}\|_{\mathcal{B}}=0,$$

т.е. на основании (4.2) заключаем, что $\lim_{n\to\infty} \tilde{\boldsymbol{u}}_n = \tilde{\boldsymbol{v}}$. Это означает, что произвольная фундаментальная последовательность элементов из \mathcal{B} сходится по норме $\|\cdot\|_{\mathcal{B}}$ к элементу, также принадлежащему \mathcal{B} , т.е. нормированное пространство \mathcal{B} является полным (банаховым) пространством (см. 4.1).

Таким образом, все условия определения 4.11 выполнены, а это значит, что $\mathcal B$ является пополнением нормированного пространства D.

Вопросы и задачи

4.1. Доказать, что в функциональном пространстве $\mathcal U$ непрерывно дифференцируемых на отрезке [a,b] функций f(x) можно ввести следующие нормы:

$$||f||_1 = |f(a)| + \max_{x \in [a,b]} |f'(x)|, \quad ||f||_2 = \int_a^b |f(x)| dx + \max_{x \in [a,b]} |f'(x)|.$$

Показать, что нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ эквивалентны норме

$$||f||_0 = \max \left\{ \max_{x \in [a,b]} |f(x)|, \max_{x \in [a,b]} |f'(x)| \right\}, \quad f \in \mathcal{U},$$

т.е. найдутся числа $lpha_i, eta_i > 0, \ i = 1, 2,$ такие, что

$$\alpha_i ||f||_0 \leqslant ||f||_i \leqslant \beta_i ||f||_0, \quad f \in \mathcal{U}.$$

4.2. Доказать неравенство Гельдера* для интегралов при p > 1, 1/p + 1/q = 1:

$$\int_a^b |f(t) g(t)| dt \leqslant \left(\int_a^b |f(t)|^p dt\right)^{1/p} \left(\int_a^b |g(t)|^q dt\right)^{1/q}.$$

4.3. Доказать неравенство Минковского для интегралов при $p\geqslant 1$:

$$\left(\int\limits_{a}^{b}|f(t)+g(t)|^{p}dt\right)^{1/p}\leqslant \left(\int\limits_{a}^{b}|f(t)|^{p}dt\right)^{1/p}+\left(\int\limits_{a}^{b}|g(t)|^{p}dt\right)^{1/p}.$$

^{*}O. Ге́льдер (1859-1937) — немецкий математик.