Paradigmas de aprendizado de máquina

Paradigmas -	Supervisionado	Não-supervisionado
Tarefas -	Classificação	Mineração de itemsets
	Regressão	Agrupamento (clustering)
	Outros	Redução de dimensionalidade
		Outros

7 tarefas
comuns de
aprendizado de
máquina:
http://vitalflux.co
m/7-common-m
achine-learningtasks-related-m
ethods/

- O objetivo da regressão é aproximar um **valor** para uma instância não conhecida, com base nas instâncias conhecidas
- Diferente da classificação, onde o objetivo é aproximar uma categoria

Problema: dado o tamanho de uma casa (em pés quadrados,
 1 pé = 30.48cm), qual o preço desta casa?

Como podemos resolver o problema de aproximar um preço para uma área de casa?

Podemos utilizar regressão linear univariada (quando há apenas um atributo), onde a hipótese (i.e. modelo) é dada por:

$$h_{\Theta}(x) = 1 * \Theta_0 + \Theta_1 * x$$

Data table		
size in feet²	price in \$1000's	
2104	400	
1416	232	
1534	315	
852	178	
3210	870	

Podemos utilizar regressão linear univariada (quando há apenas um atributo), onde a hipótese (i.e. modelo) é dada por:

$$h_{\Theta}(x) = 1 * \Theta_0 + \Theta_1 * x$$

bias **(sempre** é 1)

Atributo preditivo x

$$h_{\Theta}(x) = 1 * \Theta_0 + \Theta_1 * x$$

Predição (i.e. valor de y, ou valor de classe)

Parâmetros theta zero e theta 1

- Faça uma projeção para cada um dos parâmetros (i.e. pesos) a seguir:
- Variando Θ_0 :

$$\Theta_0 = 0$$
, $\Theta_1 = 0.5$

$$\Theta_0^0 = 0.5, \ \Theta_1^1 = 0.5$$

$$\Theta_0 = 1, \Theta_1 = 0.5$$

• Variando Θ_1 :

$$\Theta_0 = 0.5$$
, $\Theta_1 = 0$

$$\Theta_0 = 0.5, \Theta_1 = 0.5$$

$$\Theta_0 = 0.5, \ \Theta_1 = 0.5$$

 $\Theta_0 = 0.5, \ \Theta_1 = 1$

x	у
0	?
1	?
2	?
3	?

• Quais os valores de Θ_0 e Θ_1 ?

- Exercício 1: Reflexão Baseada em Cenário
- Um pesquisador quer entender a relação entre número de horas de estudo e nota final dos alunos. Ele coletou os seguintes dados:

Horas de Estudo	Nota
1	50
2	55
3	60
4	68
5	75

- Exercício 1: Reflexão Baseada em Cenário
- Se você precisasse prever a nota de um aluno que estudou 6 horas, como faria isso sem usar programação tradicional?
- Que padrões você consegue identificar nos dados apenas olhando para eles?
- Será que outros fatores além do estudo podem influenciar a nota? Como a regressão linear lida com isso?

O objetivo da hipótese é se aproximar dos valores do conjunto de treino, o que significa dizer que a distância entre $h_{\Theta}(x)$ e os dados deve ser **minimizada**

Training set

features size in feet $^2(x)$	price \$1000's (y)
2104	460
1416	232
1534	315
852	178

Model: $f_{w,b}(x) = wx + b$

w,b: parameters

coefficients

weights

What do w, b do?

$$\Rightarrow w = 0$$

$$\Rightarrow b = 1.5$$

$$\forall -intercept$$

 $f_{\underline{w,b}}(x) = wx + b$

$$\rightarrow w = 0.5$$

 $\rightarrow b = 1$

Cost function

$$\left(\begin{array}{cc} \hat{y} & -y \\ \end{array}\right)$$

Find w, b: $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

Cost function

$$\sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^{2}$$

m = number of training exam

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

Cost function: Squared error cost function

$$\overline{J}(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$

m = number of training examples

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

- Podemos assumir que há um custo associado a cada hipótese realizada sobre o conjunto de dados
- O objetivo da regressão linear é traçar uma hipótese com custo mínimo
- A função de custo é dada por:

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Temos então que a hipótese é dada por:

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x$$

E a função de custo é dada por:

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Dado o seguinte conjunto de dados e os parâmetros, calcule o custo das predições:

$$\mathbf{\Theta}_0 = 0, \, \mathbf{\Theta}_1 = 0$$

$$\mathbf{\Theta}_0 = 0, \mathbf{\Theta}_1 = 0.5$$

$$\mathbf{\Theta}_{0} = \mathbf{0}, \, \mathbf{\Theta}_{1} = \mathbf{1}$$

$$\Theta_0 = 0, \Theta_1 = 1.5$$

$$\Theta_0 = 0, \Theta_1 = 2$$

•
$$\Theta_0 = 0$$
, $\Theta_1 = 2$
• $\Theta_0 = 0$, $\Theta_1 = 2.5$

Preencha os gráficos a seguir:

Podemos observar que a função de custo é convexa

Para um parâmetro

Podemos observar que a função de custo é convexa

- Parâmetros têm valores iniciais arbitrários
- Como minimizar a função de custo?
- Atualizando os pesos
- Como saber quando e quanto aumentar ou diminuir os valores dos parâmetros?
- Devemos alterar os valores continuamente até um determinado critério de parada (convergência)

- A derivada parcial verifica como a função de custo se comporta quando modificamos o valor de um parâmetro
- Se a inclinação é negativa, o valor do parâmetro deve aumentar

Reta tangente a função de custo

- A derivada parcial verifica como a função de custo se comporta quando modificamos o valor de um parâmetro
- Se a inclinação é positiva, o valor do parâmetro deve diminuir

- A derivada parcial dá a **direção** que um peso deve ser atualizado e o quanto ele está **errado** em relação a um ajuste ideal
- Porém, podemos amenizar o cálculo do quanto está errado através de uma taxa de aprendizado
- Permite um maior controle sobre o aprendizado realizado pelo modelo

- Se a taxa de aprendizado for muito alta, podemos passar "por cima" do ótimo global
- Se a taxa de aprendizado for muito baixa, podemos demorar muito para convergir
- Não existe almoço grátis!

- Logo, para fazer a atualização de pesos, utilizamos o gradiente descendente
 - ▶ **Gradiente** é como chamamos o grupo de derivadas de diversos parâmetros
- Utilizamos uma taxa de aprendizado para ditar o passo em torno de melhores resultados

O j-ésimo parâmetro recebe

O antigo valor do j-ésimo parâmetro, menos

A derivada da função de custo em relação ao jésimo parâmetro

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

vezes a taxa de aprendizado

A atualização dos pesos deve ser simultânea!

- Não atualize o valor do parâmetro j + 1, com base no valor **atualizado** do parâmetro j
- Em vez disso, calcule antes todos os novos valores de parâmetros, e só então faça as atribuições

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$
 $\theta_0 := \text{temp0}$
 $\theta_1 := \text{temp1}$

Para a função de custo da regressão linear, a atualização de pesos (com derivadas calculadas) é:

$$\theta_0 := \theta_0 - \alpha \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

Achatando o landscape

Exercício

Dados os seguintes parâmetros, realize a atualização de pesos:

$$\alpha = 0.5$$

$$\Theta_0 = 0.1$$

$$\Theta_1 = 1$$

$$X = [0, 1, 2]$$

$$y = [0, 1, 4]$$

 Em um problema de regressão linear, a função de custo é sempre convexa

Uma função é dita convexa se o mínimo global situa-se abaixo de uma linha reta que conecta quaisquer dois segmentos da função

- A atualização de pesos se dá após a passada de um lote (batch) de dados pela **hipótese**
 - O tamanho do batch pode variar de 1 (apenas uma instância) a N (tamanho inteiro do conjunto de treino)
 - Utiliza-se múltiplos de 8, para otimizações em frameworks
- A passada de instâncias pode ser ainda estocástica
 - A ordem de passada das instâncias é aleatória

- Passada de um batch: iteração
- Passada do conjunto de treino: época

- O processo de aprendizado é parado quando alcançamos um número máximo de passadas pelo conjunto de treino ("épocas") ou quando atingimos a convergência (diferença entre o último custo e o atual é menor do que 0.001, por exemplo)
- O Gradiente Descendente pode convergir mesmo que a taxa de aprendizado seja fixa (mas a mesma não pode ser muito alta)
- Pode ser decrementada no decorrer do treino
- Para uma escolha específica da função de custo $J(\Theta_0, \Theta_1)$ utilizada na **regressão linear**, não existe ótimo local além do ótimo global

Exercício

 Utilize a <u>regressão linear</u> do scikit-learn para prever o preços de imóveis (dataset houses.csv)

Conclusão

Leitura recomendada:

Apêndice D de Introduction to Data Mining

