

Analyse musicale des chansons sur Spotify

Projet réalisé par : Oukhdouch abdelaali et Ammari Salma

1. Description des données fournit par tanagra :

1513 chansons répartis / 9 classes et de 16 variable :

Attribute	Category	Informations
artiste	Discrete	(WARNING !!!) 975 values
titre	Discrete	(WARNING !!!) 1407 values
genre	Discrete	9 values
danceability	Continue	-
energy	Continue	-
key	Discrete	12 values
loudness	Continue	-
mode	Discrete	2 values
speechiness	Continue	-
acoustioness	Continue	-
instrumentalness	Continue	-
liveness	Continue	-
valence	Continue	-
tempo	Continue	-
duration_ms	Continue	-
time_signature	Discrete	4 values

Description des données del'énonce :

Nom de la variable	Description	Type de variable
Artiste	Artiste de la chanson	Identifiant
Titre	Titre de la chanson	Identifiant
Genre	Genre de la chanson. Défini en fonction de la playlist d'origine.	Qualitative nominale
Danceability	Indice décrivant si un morceau convient à la danse sur la base d'une combinaison d'éléments musicaux (tempo, stabilité du rythme,), entre 0 et 1 (du moins dansant au plus dansant)	Quantitative
Energy	Indice décrivant si un morceau semble intense et énergique sur la base d'éléments tels que la dynamique du morceau, le volume sonore perçu. Entre 0 et 1 (du moins énergique au plus énergique)	Quantitative
Key	Tonalité du morceau par demi-tons, entre 0 (Do) et 12 (Si). La tonalité 4 sera par exemple Ré#/Mib.	Qualitative
Loudness	Intensité sonore globale d'une piste en décibels (dB).	Quantitative
Mode	Indique la modalité majeure (1) /mineure (0) d'une piste. Les chansons majeure "sonnent" plus joyeuses que les chansons mineures.	Qualitative
Speechiness	Détecte la présence de paroles dans une piste. Plus l'enregistrement contient de voix, plus la valeur sera proche de 1.	Quantitative
Acousticness	Indice déterminant si la chanson est acoustique (instrument non électrique), entre 0 et 1, du moins au plus acoustique.	Quantitative
Instrumentalness	Indice détectant la présence d'instruments, entre 0 et 1, du moins instrumental au plus instrumental.	Quantitative
Liveness	Détecte la présence d'un public dans l'enregistrement, entre 0 et 1 (plus probable que la chanson soit enregistrée en live).	Quantitative
Valence	Mesure de 0 à 1 évaluant la positivité musicale d'une piste. Les pistes à valence élevée ont un son plus positif.	Quantitative
Тетро	Tempo global estimé d'une piste en battements par minutes (bpm).	Quantitative
Duration time	Durée de la piste en millisecondes.	Quantitative
Time signature	Une estimation de la signature temporelle globale d'une piste en temps par mesure. Par exemple, une chanson pop moderne aura très certainement 4 temps par mesure, là où la valse a distinctement 3 temps par mesure.	Qualitative

Table 1 : Description du tableau de donnée

L'ensemble des données continues en entree :

Choix de méthode de classification :

Compte tenu du nombre d'individus = 1513,

la méthode des k-moyennes (classification hiérarchique ascendante)

TANAGRA nous annonce qu'il y a respectivement 19 et 113, 316... observations dans chaque groupe. La partition (R-square) explique 63,63% de l'inertie totale.

Dans la partie basse de la fenêtre de visualisation, On' a choisi 9 classes qui présentent les effectifs. Tanagra affiche les moyennes conditionnelles sur les variables ayant participé à la construction de la partition. Elles sont donc calculées sur les données centrées et réduites. Elles permettent de comprendre les différenciations entre les groupes, elles ne sont pas vraiment utilisables pour l'interprétation.

il y a respectivement 19,113, 316.

Carré R 63,63% de l'inertie totale.

9 classes qui ont été choisies qui présentent l'inscription. Tanagra affiche les moyennes conditionnelles sur les variables qui ont participé à la construction de la partition. Ils sont donc calculés sur les données centrées et réduites. Ils permettent de comprendre les différenciations entre groupes, ils ne sont pas vraiment utilisables pour l'interprétation.

Elles sont donc calculées sur les données centrées et réduites. Elles permettent de comprendre les différenciations entre les groupes, elles ne sont pas vraiment utilisables pour l'interprétation.

3. Statistiques descriptives comparatives

Nous présentons maintenant le composant DEFINE STATUS dans le diagramme. Nous plaçons dans TARGET la variable désignant les classes CLUSTER_KMEANS_1, dans INPUT les variables qualitatives et quantitatives de dansabilité, énergie, clé, mode,... et la variable pour expliquer le sexe. Ensuite, nous insérons le composant de CARACTÉRISATION du groupe (onglet STATISTIQUES).

Cluster_	KMean:	s_1=c_kmea	ns_1	Cluster_KMeans_1=c_kmeans_2						
Examples			[1,3 %] 19	Examples			[7,5 %] 113			
Att - Desc	Test value	Group	Overral	Att - Desc	Test value	Group	Overral			
Continuous attrib	outes :	Mean (StdDev	<i>ı</i>)	Continuous attributes : Mean (StdDev)						
duration_ms	26,65	1247220,42 (623420,12)	267595,67 (161209,58)	tempo	13,80	152,97 (18,99)	116,88 (28,89)			
instrumentalness	8,14	0,77 (0,18)	0,18 (0,32)	acoustioness	7,52	0,62 (0,27)	0,36 (0,39)			
acoustioness	6,62	0,94 (0,05)	0,36 (0,39)	valence	0,99	0,50 (0,20)	0,47 (0,26)			
speechiness	-1,58	0,06 (0,06)	0,09 (0,09)	duration_ms	-0,36	262292,47 (123097,17)	267595,67			
liveness	-1,75	0,11 (0,06) 95,01	116,88	,17 (0,14) liveness		0,14 (0,07)	0,17 (0,14)			
tempo	-3,32	(28,81) (28,8		instrumentalness	-2,53	0,10 (0,22)	0,18 (0,32)			
energy	-5,82	0,15 (0,12)		loudness	-2,85	-12,81 (3,73)	-10,79 (7,79)			
loudness	-5,95	-21,37 (6,92)	-10,79 (7,79)	danceability	-3,81	0,49 (0,12)	0,56 (0,18)			
valence	-6,49	0,09 (0,10)	0,47 (0,26)	speechiness	-5,41	0,04 (0,02)	0,09 (0,09)			
danceability	-7,25	0,25 (0,13)	0,56 (0,18)	energy	-7,66	0,35 (0,14)	0,56 (0,31)			
Discrete attribut	es : [Re	ecall] Accurac	у	Discrete attribut	es : [Re	ecall] Accurac	у			
genre=Classique	11,20	[9,5 %] 100,0 %	13,3 %	genre=Folk	12,55	[30,6 %] 48,7 %	11,9 %			
genre=Reggae	-1,08	[0,0 %] 0,0 %	5,8 %	genre=Jazz	6,05	[19,0 %] 28,3 %	11,1 %			
genre=Metal	-1,24	[0,0 %] 0,0 %	7,4%	genre=Rock	-1,14	[5,7 %] 11,5 %	15,2 %			
genre=Pop	-1,45	[0,0 %] 0,0 %	9,9 %	genre=Reggae	-1,47	[3,4 %] 2,7 %	5,8 %			
		[0,0 %]				[3,5 %]				

On constate que le premier groupe C_K_MEANS_1 correspond davantage aux genres classiques. Notez que la musique du genre musical classique utilise une durée de piste en millisecondes ou instrumentale ou acoustique, ce qui implique que la classification est correcte.

Pour la deuxième classe C_K_MEANS_2 est associée au genre folk et jazz, ce genre utilise les variables de tempo et acoustiques, donc la classification est correcte.

Cluster_k	(Means	_1=c_kmea	ns_3					Cluster_k	Means	_1=c_kmea	ıns_5	
Examples		I	[20,9 %] 316					Examples			[9,8 %] 148	
Att - Desc	Test value	Group	Overral	Cluster_	KMeans	_1=c_kmear	ns_4	Att - Desc	Test value	Group	Overral	
Continuous attrib	utes://	Nean (StdDe	v)	Examples			[12,0 %] 181	Continuous attrib	utes :	Mean (StdDe	ev)	
valence	20,25	0,74 (0,15)	0,47 (0,26)	Att - Desc	Test value	Group	Overral	speechiness	32,30	0,32 (0,09)	0,09 (0,09)	
danceability	17,09	0,71 (0,11)	0,56 (0,18)	Continuous attrib acousticness	utes : <i>N</i>		0,36 (0,39)	danceability	13,45	0,75 (0,13)	0,56 (0,18)	
loudness	8,97	-7,30 (3,07)	-10,79 (7,79)	duration_ms	-1,00	256382,19		valence	9,50	0,67 (0,18)	0,47 (0,26)	
energy	8,86	0,69 (0,16)	0,56 (0,31)	danceability	-3,04	0,52 (0,12)		loudness	5,89	-7,21 (2,66)	-10,79 (7,79)	
tempo	-1,70	114,42 (19,11)	116,88 (28,89)	valence	-3,84 -4,40	0,13 (0,06)		energy	4,94	0,68 (0,15)	0,56 (0,31)	
speechiness	-4,02	0,07	0,09 (0,09)	instrumentalness speechiness	-4,72 -7,17	0,07 (0,16)		duration_ms	-1,19	252605,03 (61022,80)	267595,67 (161209,58)	
duration_ms	-4,54	230960,17 (59466,87)	267595,67 (161209,58)	loudness	-7,46	-14,85 (4,39)	-10,79 (7,79)	tempo	-1,47	113,56 (33,10)	116,88 (28,89)	
liveness	-7,84	0,11 (0,07)	0,17 (0,14)	tempo	-9,11	98,53 (17,53)	116,88 (28,89)	liveness	-2,17	0,14 (0,11)	0,17 (0,14)	
instrumentalness	-9,40	0,03 (0,11)	0,18 (0,32)	energy	-	0,25 (0,14)		acoustioness	-6,41	0,17 (0,17)	0,36 (0,39)	
acoustioness	-10,66	0,16 (0,18)	0,36 (0,39)	Discrete attribut genre=Folk	13,81	[43,3 %] 43,1 %	11,9 %	instrumentalness	-6,75	0.01	0,18 (0,32)	
Discrete attribut	es : [Re	call] Accurac	у		40.00	[43,5 %]	44.40	Discrete attribut	es : [Re	ecall] Accura	uracy	
genre=Reggae	10,55	[65,5 %] 18,0 %	5,8 %	genre=Jazz	13,33	40,3 % [7,0 %]	11,1 %	genre=Hip-Hop	24,29	[63,2 %] 69,6 %	10,8 %	
genre=Pop	6,28	[40,7 %] 19,3 %	9,9 %	genre=Classique	-2,34	7,7 %	13,3 %	genre=Reggae	5,76	[27,6 %] 16,2 %	5,8 %	
genre=Rock	4,40	[31,7 %]	15,2 %	genre=Rock	-3,20	7,2 %	15,2 %	genre=Pop	-0,77	[8,0 %] 8,1 %	9,9 %	

Pour le groupe C_K_MEANS 3 correspond aux genres raggae, pop et rock. Se genre de music utilise le valence, danceability, loudness et energy ce qui est tout à fait correcte.

Pour la classe C_K_MEANS 4 est associé au genre folk et jazz, ce genre utilise la variable acousticness, alors la classification est correcte.

Pour la classe C_K_MEANS 5 est associé au genre hip-hop et raggae, ce genre utilise les chansons speechiness, loudness, valence, danceability et energy, alors la classification est correcte.

Pour le groupe C_K_MEANS_6 est associé aux genres classique et jazz ce genre de music utilise une durée de piste en millisecondes, instrumentales ou acousticness, ce qui implique que la classification est correcte.

Pour la classe C_K_MEANS_7 est associé aux genres metal et rock et pop, ce genre utilise les variables tempo, loudness, liveness, et energy, alors la classification est correcte.

Pour la classe C_K_MEANS_8 est associé aux genres electro, metal et pop et rock, ce genre utilise les variables loudness et energy, alors la classification est correcte.

Pour la classe C_K_MEANS_9 est associé aux genres rock et electro, ce genre utilise les variables loudness, liveness, et energy, valence, danceability, alors la classification est correcte.

Le principal intérêt de GROUP CHARACTERIZATION est qu'il permet d'introduire à la fois les variables explicatives et à expliquer, qu'elles soient quantitatives ou qualitatives.

4.2.1Analyse en composantes principales

La courbe de la proportion de variance cumulée aide au choix du nombre de facteurs.

Axis	Eigen value	Difference	Proportion (%)	Histogram	Cumulative (%)
1	4,125327	2,848604	41,25 %		41,25 %
2	1,276724	0,255575	12,77 %		54,02 %
3	1,021149	0,111053	10,21 %		64,23 %
4	0,910096	0,108331	9,10 %		73,33 %
5	0,801765	0,094638	8,02 %		81,35 %
6	0,707127	0,220678	7,07 %		88,42 %
7	0,486449	0,117007	4,86 %		93,29 %
8	0,369442	0,150099	3,69 %		96,98 %
9	0,219342	0,136763	2,19 %	I	99,17 %
10	0,082579		0,83 %		100,00 %
Tot.	10,000000		-	-	-

7 axes (93%) pour ne pas perdre l'information.

Les variables présentant une corrélation supérieure à 0.5 en valeur absolue, le reste des variables sont triées sur le second axe, avec la même contrainte, etc.

Factor Loadings [Communality Estimates]

Le but est de mettre en valeur les groupes. Ici, on note que (volume, énergie, acoustique, instrumentalité, danse, valence) sont associés au premier facteur, tandis que (vivacité, durée_ms) au troisième.

3. K-Means

Il faut préciser à TANAGRA que ce sont ces variables transformées qui seront utilisées pour les calculs. Nous insérons un nouveau DEFINE STATUS, nous plaçons les variables PCA_1_AXIS_1 à PCA_1_AXIS_7 dans INPUT.

la caractérisation sur k-means.

cette fois, nous mettrons les variables en entrée pour qu'elles puissent les interpréter

Même résultat

On déduit alors que c'est une bonne caractérisation, et on remarque qu'il y a plusieurs relations entre variables :

Energy et loudness.

La danceability et valence.

Instrumentalness et duration-ms.

Tempo et liveness.

Tempo et energy.

Acoustecness et Instrumentalness

Speechiness et liveness

Speechiness et danceability

Et les chansons appartenant à un même genre musical sont :

Tempo et acostecness appartenant aux genres Jazz et Falk.

Duration-ms et instrumentalness faites partie de la music classique.

Valence et danceability appartenant a la musique genre Raggae....

Passons maintenant à la visualisation des classes :

Plans factoriels:

Nous cliquons sur VIEW et nous le paramétrons de manière à avoir en abscisse le premier facteur, en ordonnée le second facteur. Notons qu'il est très aisé de passer d'un plan factoriel à un autre.

On voit les classe 7, 9, 3, 5 qui sont entrelacés les uns avec les autres, pareil pour les classes 2 et 4, Cette situation est due au genres musicaux qui se partagent les mêmes variables.

Cercle des corrélations et variables illustratives quantitatives :

Le cercle de corrélations est un outil graphique qui permet de comprendre la nature des axes. Il sert à interpréter les axes.

Nous définissons les deux premiers axes comme TARGET, les variables continues et les variables discrètes sont placées en INPUT.

Define attribute statuses

Dans un deuxième temps, nous ajoutons le composant CORRELATION SCATTERPLOT dans le diagramme. Nous obtenons le cercle des corrélations.

Les variables bien représentées:

- +: loudness, danceability energy.
- _: acoustecness

Les variables mal représentées : instrumentaless, duration-ms, liveness, speechiness, tempo, valence.

selon l'axe 1 : élimination de danceability

bien représentés > energy, loudness Acousticness.

variables mal présentées.

variables mal présentées.

Analyse discriminante linéaire :

Nous utilisons le composant DEFINE STATUS pour indiquer le rôle des variables: GENRE est la cible (TARGET), les autres (DANCEABILITY....DURATION) sont les prédictives(INPUT)

Nous plaçons le composant LINEAR DISCRIMINANT ANALYSIS (onglet SPV LEARNING).

Nous cliquons sur VIEW pour accéder aux résultats.

3.2.1Matrice de confusion et le taux d'erreur :

En appliquant le modèle sur les données d'apprentissage, nous obtenons la matrice de confusion et le taux d'erreur associé : 36.62 %.

Passons maintenant à la solution par la méthode des K plus proches voisins. Au moins avec cette méthode on aura la possibilité de gérer les distances et le nombre de voisins.

On choisit 5 comme nombre de voisins au départ.

On obtient 54% pour le taux d'erreur, c'est très grand.

	Error ra	te		0,5400									
Valu	ues prec	liction		Confusion matrix									
Value	Recall	1-Precision		Classique	Jazz	Electro	Rock	Рор	Metal	Hip-Hop	Folk	Reggae	Sum
Classique	0,5473	0,4301	Classique	110	26	7	17	9	4	10	12	6	201
Jazz	0,4286	0,5689	Jazz	21	72	12	18	4	5	13	16	7	168
Electro	0,5541	0,5040	Electro	6	9	123	21	12	9	17	19	6	222
Rock	0,4348	0,5556	Rock	18	15	30	100	10	17	19	11	10	230
Рор	0,4467	0,5074	Рор	4	11	16	13	67	6	13	14	6	150
Metal	0,3482	0,5938	Metal	7	6	13	12	8	39	13	9	5	112
Нір-Нор	0,4785	0,5806	Нір-Нор	10	13	10	18	11	7	78	11	5	163
Folk	0,4111	0,5795	Folk	14	9	22	17	12	8	16	74	8	180
Reggae	0,3793	0,6163	Reggae	3	6	15	9	3	1	7	10	33	87
			Sum	193	167	248	225	136	96	186	176	86	1513

Prenons un nombre plus petit que 5, soit le nombre choisi = 3

Exécutons le résultat par le nombre choisi :

Nous activons le menu PARAMETERS pour définir les paramètres de la méthode.

Cross-validation parameters						
Folds	10					
Trials	1					

III.2 Résultats de l'application de l'algorithme CART

III.2.1 Arbre obtenu

D'abord, nous présentons les résultats permettant de choisir la profondeur de l'arbre.

Le tableau ci-dessous montre que l'arbre qui satisfait la règle X-SE Rule = 1 a pour nombre de feuilles 3.

Data partition

Growing set	237
Pruning set	117

Trees sequence

N	# Leaves	Err (growing set)	Err (pruning set)	SE (pruning set)	X
6	1	0,4135	0,4701	0,0461	9,480709
5	2	0,1730	0,2051	0,0373	1,537412
4	3	0,1392	0,1538	0,0334	0,000000
3	4	0,1224	0,1880	0,0361	-
2	6	0,1055	0,2051	0,0373	-
1	7	0,1013	0,1966	0,0367	-

L'arbre obtenu est exprimé sous formes des règles suivantes :

- loudness < -18,4235 then genre = Classique (84,03 % of 144 examples)
- loudness >= -18,4235
 - danceability < 0,3745 then genre = Classique (70,00 % of 20 examples)
 - danceability >= 0,3745 then genre = Jazz (94,52 % of 73 examples)

III.2 Performances du classifieur

Le taux de rappel et la précision:

Le taux de rapper et la precision.													
	Error ra	te		0,1441									
Valu	ues pred	diction		Confusion matrix									
Value	Recall	1-Precision		Classique	Jazz	Electro	Rock	Рор	Metal	Нір-Нор	Folk	Reggae	Sum
Classique	0,9751	0,1901	Classique	196	5	0	0	0	0	0	0	0	201
Jazz	0,6993	0,0446	Jazz	46	107	0	0	0	0	0	0	0	153
Electro	0,0000	1,0000	Electro	0	0	0	0	0	0	0	0	0	0
Rock	0,0000	1,0000	Rock	0	0	0	0	0	0	0	0	0	0
Рор	0,0000	1,0000	Pop	0	0	0	0	0	0	0	0	0	0
Metal	0,0000	1,0000	Metal	0	0	0	0	0	0	0	0	0	0
Нір-Нор	0,0000	1,0000	Нір-Нор	0	0	0	0	0	0	0	0	0	0
Folk	0,0000	1,0000	Folk	0	0	0	0	0	0	0	0	0	0
Reggae	0,0000	1,0000	Reggae	0	0	0	0	0	0	0	0	0	0
			Sum	242	112	0	0	0	0	0	0	0	354

Le taux d'erreur 14,41%

97,51% Classique

69,93% jazz

III.2. Validation de l'arbre de décision

Nous utilisons la fonction Test du composant superv.Learning assessment.

	genre												
Error rate							0,9905),9905					
Valu	ues pred	liction					Co	onfusion mat	rix				
Value	Recall	1-Precision		Classique	Jazz	Electro	Rock	Рор	Metal	Hip-Hop	Folk	Reggae	Sum
Classique	0,0000	1,0000	Classique	0	4	7	35	2	35	0	26	0	109
Jazz	0,0105	0,2667	Jazz	0	11	215	195	148	77	163	154	87	1050
Electro	0,0000	1,0000	Electro	0	0	0	0	0	0	0	0	0	0
Rock	0,0000	1,0000	Rock	0	0	0	0	0	0	0	0	0	0
Pop	0,0000	1,0000	Pop	0	0	0	0	0	0	0	0	0	0
Metal	0,0000	1,0000	Metal	0	0	0	0	0	0	0	0	0	0
Нір-Нор	0,0000	1,0000	Hip-Hop	0	0	0	0	0	0	0	0	0	0
Folk	0,0000	1,0000	Folk	0	0	0	0	0	0	0	0	0	0
Reggae	0,0000	1,0000	Reggae	0	0	0	0	0	0	0	0	0	0
			Sum	0	15	222	230	150	112	163	180	87	1159