Data Warehousing: concepts and techniques

Advanced Topics in Databases

Outline

- What is a data warehouse?
- A multi-dimensional data model
- Data warehouse architecture
- Data warehouse implementation
- Further development of data cube technology

What is Data Warehouse?

- Defined in many different ways, but not rigorously.
- A decision support database that is maintained separately from the organization's operational database
- Support information processing by providing a solid platform of consolidated, historical data for analysis.
- "A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management's decisionmaking process."—W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented

- Organized around major subjects, such as customer, product, sales.
- Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing.
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process.

Data Warehouse—Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied.
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - E.g., Hotel price: currency, tax, breakfast covered, etc.
 - When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems.
 - Operational database: current value data.
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element".

Data Warehouse—Non-Volatile

- A physically separate store of data transformed from the operational environment.
- Operational update of data does not occur in the data warehouse environment.
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data.

Data Warehouse vs. Operational DBMS

- OLTP (on-line transaction processing)
 - Major task of traditional relational DBMS
 - Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.
- OLAP (on-line analytical processing)
 - Major task of data warehouse system
 - Data analysis and decision making
- Distinct features (OLTP vs. OLAP):
 - User and system orientation: customer vs. market
 - Data contents: current, detailed vs. historical, consolidated
 - Database design: ER + application vs. star + subject
 - View: current, local vs. evolutionary, integrated
 - Access patterns: update vs. read-only but complex queries

OLTP vs. OLAP

	OLTP	OLAP	
users	clerk, IT professional	knowledge worker	
function	day to day operations	decision support	
DB design	application-oriented	subject-oriented	
data	current, up-to-date detailed, flat relational isolated	historical, summarized, multidimensional integrated, consolidated	
usage	repetitive	ad-hoc	
access	read/write index/hash on prim key	lots of scans	
unit of work	short, simple transaction complex query		
# records accessed	tens	millions	
#users	thousands	hundreds	
DB size	100MB-GB	100GB-TB	
metric	transaction throughput	query throughput, response	

Why Separate Data Warehouse?

- High performance for both systems
 - DBMS— tuned for OLTP: access methods, indexing, concurrency control, recovery
 - Warehouse—tuned for OLAP: complex OLAP queries, multidimensional view, consolidation.
- Different functions and different data:
 - missing data: Decision support requires historical data which operational DBs do not typically maintain
 - data consolidation: DS requires consolidation (aggregation, summarization) of data from heterogeneous sources
 - data quality: different sources typically use inconsistent data representations,
 codes and formats which have to be reconciled

From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- In data warehousing literature, an n-D base cube is called a base cuboid. The top most 0-D cuboid, which holds the highest-level of summarization, is called the apex cuboid. The lattice of cuboids forms a data cube.

CUBE: A Lattice of Cuboids

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures
 - Star schema: A fact table in the middle connected to a set of dimension tables
 - Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
 - Fact constellations: Multiple fact tables share dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation

Example of Star Schema

Example of Snowflake Schema

Example of Fact Constellation

Measures: Three Categories

- distributive: if the result derived by applying the function to n aggregate values is the same as that derived by applying the function on all the data without partitioning.
 - E.g., count(), sum(), min(), max().
- algebraic: if it can be computed by an algebraic function with M arguments (where M is a bounded integer), each of which is obtained by applying a distributive aggregate function.
 - E.g., avg(), min_N(), standard_deviation().
- holistic: if there is no constant bound on the storage size needed to describe a subaggregate.
 - E.g., median(), mode(), rank().

A Concept Hierarchy: Dimension (location)

Multidimensional Data

• Sales volume as a function of product, month and region.

A Sample Data Cube

Cuboids Corresponding to the Cube

Typical OLAP Operations

- Roll up (drill-up): summarize data
 - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
 - from higher level summary to lower level summary or detailed data, or introducing new dimensions
- Slice and dice:
 - project and select
- Pivot (rotate):
 - reorient the cube, visualization, 3D to series of 2D planes.
- Other operations
 - drill across: involving (across) more than one fact table
 - drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

Design of a Data Warehouse: A Business Analysis Framework

- Four views regarding the design of a data warehouse
 - Top-down view
 - allows selection of the relevant information necessary for the data warehouse
 - Data source view
 - exposes the information being captured, stored, and managed by operational systems
 - Data warehouse view
 - consists of fact tables and dimension tables
 - Business query view
 - sees the perspectives of data in the warehouse from the view of end-user

Data Warehouse Design Process

- Top-down, bottom-up approaches or a combination of both
 - Top-down: Starts with overall design and planning (mature)
 - Bottom-up: Starts with experiments and prototypes (rapid)
- From software engineering point of view
 - Waterfall: structured and systematic analysis at each step before proceeding to the next
 - Spiral: rapid generation of increasingly functional systems, short turn around time, quick turn around
- Typical data warehouse design process
 - Choose a business process to model, e.g., orders, invoices, etc.
 - Choose the grain (atomic level of data) of the business process
 - Choose the dimensions that will apply to each fact table record
 - Choose the measure that will populate each fact table record

Multi-Tiered Architecture

Three Data Warehouse Models

- Enterprise warehouse
 - collects all of the information about subjects spanning the entire organization
- Data Mart
 - a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart
 - Independent vs. dependent (directly from warehouse) data mart
- Virtual warehouse
 - A set of views over operational databases
 - Only some of the possible summary views may be materialized

OLAP Server Architectures

- Relational OLAP (ROLAP)
 - Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware to support missing pieces
 - Include optimization of DBMS backend, implementation of aggregation navigation logic, and additional tools and services
 - greater scalability
- Multidimensional OLAP (MOLAP)
 - Array-based multidimensional storage engine (sparse matrix techniques)
 - fast indexing to pre-computed summarized data
- Hybrid OLAP (HOLAP)
 - User flexibility, e.g., low level: relational, high-level: array
- Specialized SQL servers
 - specialized support for SQL queries over star/snowflake schemas

Efficient Data Cube Computation

- Data cube can be viewed as a lattice of cuboids
 - The bottom-most cuboid is the base cuboid
 - The top-most cuboid (apex) contains only one cell
 - How many cuboids in an n-dimensional cube with L levels?

$$T = \prod_{i=1}^{n} (L_i + 1)$$

- Materialization of data cube
 - Materialize every (cuboid) (full materialization), none (no materialization), or some (partial materialization)
 - Selection of which cuboids to materialize
 - Based on size, sharing, access frequency, etc.

Cube Operation

- Cube definition and computation in DMQL
 - define cube sales[item, city, year]: sum(sales_in_dollars)
 - compute cube sales

Transform it into a SQL-like language (with a new operator cube by, introduced

by Gray et al.'96)

SELECT item, city, year, SUM (amount) FROM SALES CUBE BY item, city, year

 Need compute the following Group-Bys (city, item, year), (city, item),(city, year), (item, year), (city), (item), (year)

Cube Computation: ROLAP-Based Method

- Efficient cube computation methods
 - ROLAP-based cubing algorithms (Agarwal et al'96)
 - Array-based cubing algorithm (Zhao et al'97)
 - Bottom-up computation method (Bayer & Ramarkrishnan'99)
- ROLAP-based cubing algorithms
 - Sorting, hashing, and grouping operations are applied to the dimension attributes in order to reorder and cluster related tuples
 - Grouping is performed on some subaggregates as a "partial grouping step"
 - Aggregates may be computed from previously computed aggregates, rather than from the base fact table

An Example

- Creating a simple 3D Datawarehouse based on the taxi_services and taxi_stands tables:
- Which dimensions?
- Which measures?

Table "public.taxi_stands"								
Column	Туре	Collation	Nullable	Default				
		+	+					
id	integer		not null					
name	character varying(255)	1						
location	geometry(Point,4326)	1						
proj_location	geometry(Point,3763)	ĺ	İ					
Indexes:		-						

"taxi_stands_pkey" PRIMARY KEY, btree (id)

Column	Type	ole "public. Collation	taxi_service Nullable	es" Default
id initial_ts final_ts taxi_id initial_point final_point initial_point jndexes:	integer integer integer integer integer geometry(Point,4326) geometry(Point,3763)		not null	nextval('taxi_services_id_seq'::regclass)

"taxi_services_pkey" PRIMARY KEY, btree (id)