Weekly Meeting with Dr. Hannah

Presenter: Hasan Shaikh

Quantitative Imaging Research and

Artificial Intelligence Lab (QIRAIL)

	ML Model Optimization Process					
1	Implement Multi-Core Processing Speed up training by using multiple cores					
2	Apply Grid Search Tune hyperparameters using a systematic search					
3	Apply Bayesian Optimization Tune hyperparameters using a probabilistic approach					
4	Test Additional Classifiers Evaluate performance of XGBoost, LightGBM, and MLPClassifier					
5	Identify System Bottleneck Recognize system slowness as a limiting factor					
6	Verify Data Split Ensure test data is excluded during training					

^{*} All codes have now been modularized into functions for streamlined workflow and clarity

NVIDIA Academic Grant Program

De-Identified Head and Neck Cancer Data for NITK

Oropharynx/Hypopharynx

30 cases of Oropharynx and Hypopharynx cancer were prepared. These cases are de-identified for the NITK study.

Larynx

62 cases of Larynx cancer were prepared. These cases are de-identified for the NITK study.

Tonsil

21 cases of Tonsil cancer were prepared. These cases are de-identified for the NITK study.

#Website link: https://www.nvidia.com/en-in/industries/higher-education-research/academic-grant-program/

Selected Feature Techniques: Particle Swarm Optimization (PSO)

Classifier	Training ROC AUC	Training Accuracy	Test ROC AUC	Test Accuracy
Logistic Regression	0.63	0.54	0.57	0.59
Naive Bayes	0.77	0.51	0.58	0.42
Linear Support Vector Machine (Linear SVM)	0.87	0.65	0.48	0.63
Radial Basis Function Kernel SVM (RBF SVM)	0.87	0.64	0.44	0.63
Decision Tree	0.84	0.82	0.64	0.63
Random Forest	0.99	0.95	0.49	0.47
Voting Classifier	0.99	0.82	0.48	0.63

Rianned Future Work – Classifiers vs Feature Selection Techniques

In the upcoming weeks, I plan to test the following classifiers:

- 1. Logistic Regression
- 2. Naive Bayes
- 3. Linear Support Vector Machine (Linear SVM)
- 4. Radial Basis Function Kernel SVM (RBF SVM)
- Decision Tree
- Random Forest
- 7. Gradient Boosting (e.g., XGBoost, LightGBM)
- 8. Voting Classifier
- 9. Stacking Classifier
- 10. Multi-Layer Perceptron Classifier (MLPClassifier)

These classifiers will be evaluated in combination with the following feature selection/optimization techniques:

- SelectKBest (Univariate statistical selection)
- 2. Least Absolute Shrinkage and Selection Operator (LASSO)
- 3. Particle Swarm Optimization (PSO)
- 4. Whale Optimization Algorithm (WOA)
- 5. Grey Wolf Optimizer (GWO)
- 6. Genetic Algorithm (GA)
- 7. Simulated Annealing (SA)

This results in a total of 70 unique combinations (10 classifiers × 7 feature selection techniques) that I plan to implement.

Selected Feature Techniques: Least Absolute Shrinkage and Selection Operator (LASSO)

Classifier	Training ROC AUC	Training Accuracy	Test ROC AUC	Test Accuracy
Logistic Regression	0.69	0.68	0.35	0.63
Naive Bayes	0.63	0.68	0.70	0.68
Linear Support Vector Machine (Linear SVM)	0.61	0.65	0.73	0.63
Radial Basis Function Kernel SVM (RBF SVM)	0.64	0.66	0.68	0.63
Decision Tree	0.87	0.80	0.27	0.47
Random Forest	0.99	0.92	0.33	0.53
Voting Classifier	0.99	0.82	0.48	0.63