Зовнішнє незалежне оцінювання 2013 року з математики (Основна сесія № 1)

1. Визначте m із співвідношення $\frac{m}{2} = \frac{3}{n}$, де $n \neq 0$.

A	Б	В	Γ	Д
m=6n	$m = \frac{6}{n}$	$m = \frac{2n}{3}$	$m = \frac{3}{2n}$	$m = \frac{n}{6}$

2. Укажіть вираз, тотожно рівний виразу $(2x+5) \cdot (3-x)$.

\mathbf{A}	Б	В	Γ	Д
$15 + x - 2x^2$	$15 + x + 2x^2$	$15 + 6x - 2x^2$	$15 + 11x - 2x^2$	$15 + 11x + 2x^2$

- 3. Пряма b не має спільних точок з площиною α . Які з наведених тверджень є правильними?
 - I. Через пряму b можна провести лише одну площину, перпендикулярну до площини a.
 - II. Через пряму b можна провести лише одну площину, паралельну площині α .
 - III. У площині α можна провести лише одну пряму, паралельну прямій b.

A	Б	В	Γ	Д
лише I	лише II	лише I і II	лише II і III	I, II i III

4. Укажіть ескіз графіка функції $y = x^3 - 1$.

5. Обчисліть $\frac{2^6 \cdot 5^6}{10^4}$.

A	Б	В	Γ	Д
$10^{1,5}$	10^2	10^{8}	10^9	10^{10}

6. У трикутнику ABC: $\angle A = 65^{\circ}$, BD — бісектриса кута B (див. рисунок). Знайдіть градусну міру кута BCA, якщо $\angle ABD = 35^{\circ}$.

A	Б	В	Γ	Д
35°	45°	50°	$55^{ m o}$	80°

7. В арифметичній прогресії (a_n) задано $a_1=4,\ a_2=-1$. Укажіть формулу для знаходження n-го члена цієї прогресії.

\mathbf{A}	Б	В	Γ	Д
$a_n = -1 + 5n$	$a_n = 7 - 3n$	$a_n = 5 - n$	$a_n = 1 + 3n$	$a_n = 9 - 5n$

8. На рисунку зображено графік функції y = f(x), визначеної на проміжку [-5; 3]. Укажіть проміжок, на якому функція y = f(x) зростає.

A	Б	В	Γ	Д
[0; 3]	[-1; 2]	[1; 3]	[-3; 3]	[-5; 1]

9. Розв'яжіть систему рівнянь $\begin{cases} 2x+5y=5, \\ x-2y=7. \end{cases}$ Для одержаного розв'язку $(x_0;y_0)$ системи знайдіть $cymy \ x_0+y_0.$

A	Б	В	Γ	Д
-18	3	4	8	12

10. На діаграмі відображено нараховану фірмою загальну суму заробітної плати усім своїм працівникам у січні, лютому та березні 2011 року. У січні на фірмі працювали 15 співробітників, у лютому — 18, а в березні — 25. Як змінилася середня нарахована заробітна плата в цій фірмі в березні порівняно з січнем?

A	Б	В	Γ	Д
зменшилась більше ніж на 1000 <i>грн</i>	зменшилась менше ніж на 1000 <i>грн</i>	не змінилась	збільшилась менше ніж на 1000 <i>грн</i>	збільшилась більше ніж на 1000 <i>грн</i>

11. Знайдіть площу повної поверхні куба, діагональ якого дорівнює $2\sqrt{3}\ cm$.

\mathbf{A}	Б	В	Γ	Д
$8 cm^2$	$16~c$ m^2	$20~c$ m^2	$24~c{\it m}^2$	$36\sqrt{2}c$ м 2

12. Укажіть проміжок, якому належить корінь рівняння $\sqrt{1-x} = 4$.

A	Б	В	Γ	Д
(-20; -10)	(-10; -5)	(-5; 5)	(5; 10)	(10; 20)

13. У координатній площині xy зображено п'ять точок: O, L, N, M, K (див. рисунок). Коло з центром в одній із цих точок дотикається до осі ординат у точці M. У якій точці знаходиться центр цього кола?

- ${f A}$ у точці L
- \mathbf{B} у точці N
- \mathbf{B} у точці M
- Γ у точці O
- $\mathbf{\Pi}$ у точці K

14. Укажіть парну функцію.

\mathbf{A}	Б	В	Γ	Д
$y = 4^x$	y = x	$y = \sqrt{x}$	$y = \operatorname{tg} x$	y = x

15. Менша сторона прямокутника дорівнює 16~m і утворює з його діагоналлю кут 60° . Середини всіх сторін прямокутника послідовно сполучено. Знайдіть площу утвореного чотирикутника.

\mathbf{A}	Б	В	Γ	Д	
$64\sqrt{3}~{ extit{m}}^2$	$128\sqrt{3}\ {\it m}^2$	$128~{\it m}^2$	$256~{ extit{m}}^2$	$256\sqrt{3}~{\it m}^2$	

16. Розв'яжіть нерівність $2^x \le 3$.

A	Б	В	Γ	Д
$(-\infty; \log_2 3]$	$(0; \log_2 3]$	$\left(-\infty;rac{3}{2} ight]$	$(-\infty; \log_3 2]$	$[\log_2 3; +\infty)$

17. Переріз кулі площиною має площу 81π cm^2 . Знайдіть відстань від центра кулі до площини перерізу, якщо радіус кулі дорівнює 15 cm.

A	Б	В Г		Д
6 см	8 см	9 см	12 см	15 см

18.
$$\log_5 49 + 2\log_5 \frac{5}{7} =$$

A	Б	В	Γ	Д	
25	$\log_5 70$	$\log_5 49 rac{5}{7}$	$\log_5 \! 35$	2	

19. Укажіть нерівність, що виконується для $\alpha \in \left(\frac{\pi}{2}; \pi\right)$.

A	БВ		Γ	Д	
$1-\sin^2 \alpha < 0$	$\cos \alpha \cdot \mathrm{tg} \alpha < 0$	$\cos^2\!\alpha + \sin^2\!\alpha < 0$	$1-\cos^2 \alpha < 0$	$\sin \alpha \cdot \operatorname{ctg} \alpha < 0$	

20. У трикутник ABC вписано квадрат KLMN (див. рисунок). Висота цього трикутника, проведена до сторони AC, дорівнює 6 cm. Знайдіть периметр квадрата, якщо $AC = 10 \ cm$.

A	Б	В	Γ	Д	
7,5 см	12,5 см	17,5 см	15 см	20 см	

21. Установіть відповідність між фігурою (1-4) і тілом обертання (A-Д), яке утворено внаслідок обертання цієї фігури навколо прямої, зображеної пунктиром.

 Фігура
 Тіло обертання

 1
 2

 рівнобедрені трикутники
 В

 рівнобічні трапеції
 Д

22. У прямокутній системі координат на площині xy задано точки O (0; 0) і A (6; 8). З точки A на вісь x опущено перпендикуляр. Точка B — основа цього перпендикуляра. Установіть відповідність між величиною (1—4) та її числовим значенням (A—Д).

	Величина	Числове	значення
1	довжина вектора <i>ОА</i>	\mathbf{A}	0
2	відстань від точки A до осі x	Б	5
3	ордината точки <i>В</i>	В	6
4	довжина радіуса кола, описаного	Γ	8
	навколо трикутника ОАВ	Д	10

23. Дві однакові автоматичні лінії виготовляють 16 т шоколадної глазурі за 4 дні. Установіть відповідність між запитанням (1–4) та правильною відповіддю на нього (А–Д). Уважайте, що кожна лінія виготовляє однакову кількість глазурі щодня.

Запитання

- 1 Скільки тонн шоколадної глазурі дві лінії виготовляють за 3 дні?
- 2 За скільки днів одна лінія виготовить 16 т шоколадної глазурі?
- **3** Скільки тонн шоколадної глазурі виготовить одна лінія за 2 дні?
- 4 Скільки таких ліній потрібно для виготовлення 48 т шоколадної глазурі за 4 дні?

Відповідь на запитання

- **A** 2
- Б 4
- **B** 6
- Γ 8
- Д 12

24. На рисунку зображено графік функції y = f(x), визначеної на проміжку [0; 11] та диференційовної на проміжку (0; 11). Установіть відповідність між числом (1–4) та проміжком (А–Д), якому належить це число.

Число

- **1** *f*(8)
- **2** f'(7)
- 3 найменше значення функції y = f(x) на її області визначення
- $4 \int_{0}^{3} f(x) dx$

Проміжок

- A $(-\infty; -2]$
- **B** (-2; -0,5]
- B (-0.5; 2]
- Γ (2; 4]
- Д $(4; +\infty)$
- **25.** Додатне число A більше додатного числа B у 3,8 раза. На скільки відсотків число A більше за число B?

26. Обчисліть значення виразу $\frac{a^2-b^2}{a-b}-\frac{a^3-b^3}{a^2-b^2}$, якщо $a=10,2;\ b=-0,2.$

27. Розв'яжіть нерівність $\frac{3}{x-2} + \frac{4}{x} \ge 1$. У відповіді запишіть *суму* всіх цілих її розв'язків.

28. Знайдіть найменший додатний період функції $f(x) = 9 - 6\cos\left(20\pi x + 7\right)$.

29. В автобусному парку налічується n автобусів, шосту частину яких було обладнано інформаційними табло. Пізніше інформаційні табло встановили ще на 4 автобуси з наявних у парку. Після проведеного переобладнання навмання вибирають один з n автобусів парку. Ймовірність того, що це буде автобус з інформаційним табло, становить 0,25. Визначте n. Уважайте, що кожен автобус обладнується лише одним табло.

30. План паркової зони, обмеженої трикутником ABC, зображено на рисунку. Дуга AB — велосипедна доріжка. Відомо, що дуга AB є четвертою частиною кола радіуса 1,8 κm . CA і CB — дотичні до цього кола (A і B — точки дотику). Обчисліть площу зображеної на плані паркової зони $(y \kappa m^2)$.

31. На рисунку зображено графік функції $F(x) = x^2 + bx + c$, яка є первісною для функції f(x). Визначте параметри b і c, знайдіть функцію f(x). У відповіді запишіть значення f(-8).

- 32. Основою піраміди SABCD є трапеція ABCD ($AD \parallel BC$), довжина середньої лінії якої дорівнює 5 cm. Бічне ребро SB перпендикулярне до площини основи піраміди і вдвічі більше від середньої лінії трапеції ABCD. Знайдіть відстань від середини ребра SD до площини SBC (у cm), якщо об'єм піраміди дорівнює $210 \ cm^3$.
- **33.** Знайдіть значення параметра a, при якому корінь рівняння

$$\lg(\sin 5\pi x) = \sqrt{16 + a - x}$$
 належить проміжку $\left(\frac{3}{2}; 2\right)$.