APR 8 1958
CRPL-F163 PART A

FOR OFFICIAL USE

The hock not to be taken.

PART A IONOSPHERIC DATA

ISSUED MARCH 1958

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

CRPL-F163
PART A

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

Issued 24 Mar. 1958

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	. ii
Predicted and Observed Sunspot Numbers	. v
World-Wide Sources of Ionospheric Data	. vi
Errata	viii
Examples of Ionospheric Vertical Soundings Talara, Peru: September 29, 1957	, ix
Tables of Ionospheric Data	. 1
Graphs of Ionospheric Data	. 13
Index of Tables and Graphs of Ionospheric Data in CRPL-F163 (Part A).	. 49

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, and continuing through December 1956, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1957, the symbols used are given in NBS Report 5033, "Summary of Changes in Ionospheric Vertical Soundings, Observing and Scaling Procedures - Effective 1 January 1957," which draws upon the First Report of the Special Committee on World-Wide Ionospheric Soundings (URSI/AGI), Brussels, Sept. 2, 1956. A list of these symbols is available upon request.

In the Second Report of the Special Committee on World-Wide Ionospheric Soundings of the URSI/AGI Committee, May 1957, a new descriptive letter was introduced:

M Measurement questionable because the ordinary and extraordinary components are not distinguishable.

There was an expansion in meaning of the following:

- Z (1) (qualifying letter) Measurement deduced from the third magnetoionic component.
 - (2) (descriptive letter) Third magnetoionic component present.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, H, L, N or R are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F (and h'E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic; the descriptive symbol D, only when it replaces a frequency characteristic.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

B for fEs is counted on the low side when there is a numerical value of a higher layer critical frequency; otherwise it is omitted from the median count.

S for fEs is counted on the low side at night; during the day it is omitted from the median count (beginning with data for November 1957).

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D.C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If the count is four or less, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, h'F or foEs, if the count is from five to nine, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as the count is at least five, the median is not considered doubtful. A count of at least 5 is considered sufficient for an h'Es median.
- 3. For all layers, if more than half of the data used to compute the medians are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

Ordinarily, a blank space in the fEs or foEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'F2 or h'F1, foF1, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'F1 and foF1 is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.
- d. The tables may contain median values of either foEs or fEs. The graph of median Es corresponds to the table. Percentage curves of fEs are estimated from values of foEs when necessary.

PREDICTED AND OBSERVED SUNSPOT NUMBERS

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month	Predicted Sunspot Number										
	1958	1957	1956	1955	1954	1953	1952	1951	1950	1949	1948
	-										
December		150*	150	42	11	15	33	53	86	108	114
November		150*	147	35	10	16	38	52	87	112	115
October		150*	135	31	10	17	43	52	90	114	116
September		150*	119	30	8	18	46	54	91	115	117
August	150*	150%	105	27	8	18	49	57	96	111	123
July	150*	150*	95	22	8	20	51	60	101	108	1 2 5
June	150*	150*	89	18	9	21	5 2	63	103	108	12 9
May	150*	150*	77	16	10	22	5 2	68	102	108	130
April	150*	150*	68	13	10	24	52	74	101	109	133
March	150*	150*	60	14	11	27	52	7 8	103	111	133
February	150*	150%	53	14	12	2 9	51	82	103	113	133
January	150*	150*	48	12	14	30	53	85	105	112	130

^{*}This number is believed representative of solar activity at a maximum portion of the current sunspot cycle.

The latest available information follows concerning the corresponding observed Zürich numbers beginning with the minimum of April 1954. Final numbers are listed through June 1957.

Observed Sunspot Number

Month	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1954				3	1	1	5	7	8	В	Q	12
1955	14	16	19						55			81
1956	89								151	156	160	164
1957	170	172	174	181	186	100	191	194				

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Hobart, Tasmania

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics: Watheroo, Western Australia

Escola Politecnica, University of Sao Paulo: Sao Paulo, Brazil

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is. Inverness, Scotland Singapore, British Malaya

Defence Research Board, Canada:
Baker Lake, Canada
Ottawa, Canada
Resolute Bay, Canada
Victoria, Canada
Winnipeg, Canada

Danish National Committee of URSI: Godhavn, Greenland

The Finnish Academy of Sciences and Letters: Sodankyla, Finland

National Laboratory of Radio-Electricity (French Ionospheric Bureau):

Casablanca, Morocco Poitiers, France

Heinrich Hertz Institute, German Academy of Sciences, Berlin: Juliusruh/Rügen, Germany

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:

Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute: De Bilt, Holland

Central Institute of Meteorology, Budapest, Hungary: Budapest, Hungary

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

Indian Council of Scientific and Industrial Research, Radio Research Committee, New Delhi, India:

Ahmedabad (Physical Research Laboratory)

Bombay (All India Radio)

Calcutta (Institute of Radio Physics and Electronics)

Delhi (All India Radio)

Madras (All India Radio)

Tiruchy (All India Radio)

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:

Akita, Japan Tokyo (Kokubunji), Japan

Wakkanai, Japan Yamagawa. Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research:

Campbell I.

Christchurch, New Zealand

Rarotonga, Cook Is.

Scott Base

Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:

Tromso, Norway

Manila Observatory:

Baguio, P. I.

Institute of Terrestrial Magnetism, Ionosphere and Radio Propagation, Moscow, U.S.S.R.:

Moscow

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa United States Army Signal Corps:

Adak, Alaska Grand Bahama I. Okinawa I. White Sands. New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):

Anchorage, Alaska
Fairbanks, Alaska (Geophysical Institute of the University of Alaska)
Huancayo, Peru (Instituto Geofisico de Huancayo)
Point Barrow, Alaska
Talara, Peru (Instituto Geofisico de Huancayo)
Washington, D. C.

ERRATA

- 1. CRPL-F162 (A), p.52, fig. 119: The value of foE indicated for the 19th hour (150°E) should be <1.70.
- 2. CRPL-F162 (A), p.46, fig. 95: The values of foEs indicated for hours 22 through 02 (30°E) should read <1.5.
- 3. CRPL-F162 (A), p.20, table 60: In foF2 column at 22nd and 23rd hours, values should be >7.0 and >7.7, respectively.
- 4. CRPL-F160, -161, -162, -163 (A): (M3000)F2 data from Rarotonga I. and Scott Base for the months of July through September 1957 as listed and graphed are in error.

EXAMPLE OF IONOSPHERIC VERTICAL SOUNDINGS Talara; September 29, 1957 (Geomagnetic Latitude 7°N)

The following ionograms were obtained at the Talara vertical sounding station operated by Instituto Geofisico de Huancayo. They are typical of day and night conditions for September at this geomagnetic latitude. Ionospheric data are scaled directly from these records onto the daily f-plot, a graph of frequency characteristics vs. time. The f-plot for the day represented by these soundings is found on the following page. Medians as found in the Tables of Ionospheric Data are calculated using hourly values taken from the f-plot or directly from the ionogram.

Fig. A. Talara, September 29, 1957, 1500 hours, 75°W time.

Fig. B. Talara, September 29, 1957, 2315 hours, 75°W time.

Km

November 1957

(M3000)F2

OECEMBER 1957 - MARCH 1956

Table 1 Table 2 Washington, O. C. (38.7°N, 77.1°W) Oecember 1957 Tromso, Norway (69.7°N, 19.0°E) November 1957 h *F (M3000)F2 Time h*E (M3000)F2 Time h'F2 foF2 foE foEs h*F2 foF2 h*F foFl foE foEs 6.5 6.7 6.5 2.65 (6.6) (5.8) (380) 4.3 4.0 4.0 2,65 2,65 01 02 280 (360) (2.40)275 (6,4) 325 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 6.0 5.7 5.7 5.5 2.60 03 04 270 (6.6)315 4.0 (2, 20)275 3.1 2.9 2.3 ----(2.50) (2.55) (6.8)300 05 06 07 08 2.60 270 (6.7)260 ---2.35 2.40 2.55 2.65 2.70 2.70 6.0 5.9 7.2 9.6 11.8 13.2 14.2 300 ----1.70 6.3 260 2.80 300 2.45 3.00 3.35 119 240 280 12.3 13.5 3.00 09 10 230 117 ------230 113 2.05 2.15 2.10 2.00 (255)250 (245) (245) 245 (245) 230 230 11 13.7 111 3.50 2.80 250 13.8 115 2.70 2.70 2.70 3.60 250 13.5 13.5 230 235 3.60 14 15 12.6 1.75 2.70 115 245 250 2.60 12.8 12.6 115 119 3.00 2.60 2.65 2.0 2.7 3.0 3.9 3.6 235 240 2.70 2.55 16 17 7.0 5.6 250 12.2 245 250 2.70 250 11.0 18 (5,6) (5,9) 255 (2.55)9.7 8.7 7.8 7.2 2.70 2.75 19 20 250 (320) ----250 (6.6) (5.4) (305) 4.0 2.65 2.70 250 21 >3.8 260 (370) 22 (5.8)3.5 6.9 270 2.70 23 (6.4)340 4.0

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 15.0°E.

Washington, O. C. (38.7°N, 77.1°W)

Time h*F2 foF2

5weep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

h 'F

Anchora	ge, Alask	a (61.2°	N, 149.	Table :	3		No	vember 1957
Time	h*F2	foF2	h*F	f oF l	h * E	foE	foEs	(M3000)F2
00		4.2						2,55
01		4.2					3.2	2,30
02		4.4					2.4	2.30
03		4.9					3.0	2.30
04		5.0						2,30
05		5.0						2,30
06		4.8						2,40
07	1	4.8						2,40
08		6.7						2,70
09		8.9			116	(2.15)		2,90
10		10.9			120	2.50		2.95
11		12.5			125	2.60		2.90
12		13.4			1 2 3	2.70		2.90
13		13.6			123	2.50		2.90
14		13.8			125	2.30		2.90
15		13.3			<i55< td=""><td>2.10</td><td></td><td>2.85</td></i55<>	2.10		2.85
16		12.8						2.80
17		11.4						2.80
18		9.4						2,80
19		7.0						2.80
20		6.0						2.80
21		5.4						2.70
22		4.8						2,50
23		(4.4)					2.6	2,50

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds,

00		7.6	270			2.70	
01		7.4	270			2,65	
02		7.2	270			2,65	
03		7.0	265			2.70	
04	ļ	6.5	260			2.60	
05		6.1	250			2.65	
06	i	5.9	265			2.60	
07		8.3	250	119	2,10	2.90	
08		11.7	235	111	2.70	3,00	
09		13.7	230	109	3.20	2.90	
10		14.4	230	109	3.50	2.80	
11		14.7	230	109	3.70	2.70	
12		14.3	230	111	3.75	2.70	
13		14.2	230	111	3.70	2.60	
14		13.8	235	111	3.50	2.60	
15	1	13.6	235	111	3.10	2.60	
16		13.2	240	119	2.50	2.65	
17		12.5	245			2.65	
18		11.3	240			2.65	
19	1	10.0	245			2.70	
20	l	9.3	250			2.70	
21		8.7	260			2.70	
22		8.0	250			2.65	
23	Į.	7.8	270			2.60	

Table 4

h*E

foE

foEs

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table 5				
Resolut	e θay, Car	nada (74	.7ºN, 9	4.9°W)				October 1957
Time	h'F2	foF2	h *F	f oF l	h*E	foE	f Es	(M3000)F2
00 01		6.0 6.0	280 280				<2.0 2.3	(2.5)
02		5.8	280				<1.2	(2.5) 2.5
03		6.0	270				3.0	(2, 4)
04		5.2	280				3.8	(2.5)
05		5.4	280			1.3	<2.6	(2.45)
06		6.0	280			1.3	1.6	(2.5)
07		6.5	270		130	1.8	3.6	
08		7.0	270		130	1.9		(2,65)
09		7.9	270		120	2.1		2.6
10		7.8	270		120	2, 2		2.7
11	(400)	8.0	260		120	2.4		2.6
12	(320)	8.7	270	(3,9)	110	2.4		2.5
13	(320)	8.0	270	(3.9)	120	2.4		2.5
14	(350)	7.8	270		120	2.3		2.6
15		8.0	280		110	2.0		2.55
16		7.0	280		120	1.8		(2.6)
17		7.2	280		140	1.8	1.8	(2.5)
18		7.2	280			1.5	1.6	
19	1	7.0	290			1.4		(2.5)
20		6.6	290			1.1	<1.4	(2.5)
21		6.2	300				<1,2	
22		6.2	300				<1.4	
23		6.6	280				<1.1	

Time: 90.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time	h°F2	foF2	h*F	foF l	h*E	foE	foEs	(M3000)F2
00		(5.2)	<300				4.8	2,50
01		(5,6)	310				3.6	(2.50)
02		6.4	<300				3.5	(2.35)
03		(4.8)	305				3.4	(2, 40)
04		5.2	315				2.1	(2, 35)
05		5.0	340				2.6	(2, 35)
06		(6.0)	320		125	2.30		(2,60)
07		(6.3)	330		127	(2.20)	2.5	(2.70)
08		(6.8)	310		122	2.30		2.70
09	i	7.5	280		125	2.55		2.80
10		8.3	270		126	2.60		2.85
11		8.4	<265		124	2.65		2.80
12		9.1	255		123	2.80		2.80
13		9.0	260		123	2.80		2.85
14	l	10.4	250		125	2.60		2.80
15	1	11.0	2 55		1 2 5	2.45		2.80
16	ł	11.0	255		125	2.30		2.75
17		10.5	260		121	2.00		2.80
18		9.4	265					2.75
19	l	5.9	280					2.70
20	•	5.4	305				2.9	2.70
21		5.2	310				2.7	2.70
22		(5.2)	315				3.0	2.60
23		(5.3)	290				3.0	(2,60)

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Tromso	Norway (69 79N	19 NºF)	Table 7	:		0	ctober 1957	Fairha	nks, Alask	a (64.99	N 147 8	Table 8	3			
Time	h'F2	foF2	h*F	foFl	h*E	foE	foEs	(M3000)F2	Time	h°F2	foF2	h°F	foF1	h*E	foE	foEs	(M3000)F2
										 			10.1		100	1003	(113000712
00		(6.1)	340				4.0		00	1	(4.6)					3.8	(2.55)
01		(5.7)	350				3.9		01		(5.0)					4.8	(2.45)
02		5.7	(315)				4.0	(2,20)	02		(5.0)					3.9	(2,40)
03		(4.5)	340				3, 2		03		(5.2)					3.9	(2.50)
04		5.9	310				3.2	(2,25)	04		(5.1)					3.0	(2,50)
05	i .	(5.7)	295				2.9	(2,30)	05		(5.7)					2.3	(2,50)
06	ľ	6.2	290			1.50	2.4	2.50	06		5.5					2.2	(2,60)
07	ŀ	7.6	270		110	1.95		2,60	07		(6.5)						2.75
08		9.2	260		120	2.25		2.70	08		8.1			121	2.40		2,90
09	250	10.7	2 55		125	2.60		2.70	09		9.2			114	2.70		2,90
10	250	12.0	2 50		130	2.70		2.70	10		9.8			111	2.90		2.85
11	250	12.5	2 50		130	2.75		2.70	11		10.3			113	3.00		2,80
12	245	13.0	245		115	2.70		2,70	12		11.0			113	3,00		2.80
13	245	12.8	245		135	2.70		2,70	13		11.5			115	2,90		2.75
14	245	12.7	2 50		1 2 5	2.55		2.70	14	i	11.6			121	2.80		2.80
15		11.7	2 50		120	2.20		2.70	15		11.8			123	2.50		2.80
16		10.0	250		140	1.90	2.0	2,70	16		11.1			<141	2,15		2.80
17	ł	(7.0)	250		135	1.75	2.8	(2,60)	17		11.0						2.80
18	-	(5.9)	280				2.9	(2,55)	18		10.0						2.80
19	İ	(5.8)	300				3.2	(2.45)	19		8.5						2.85
20		(6.5)	300				3.6	(2.40)	20		6.6						2.85
21	1	(6.0)	320				4.0		21		5.8					2.3	2.85
22		(6.2)	300				4.2		22		(5.0)					2.8	2.80
23		(6.6)	345				4.0		23		(4, 4)					3.2	(2.70)

Time: 15.0°E. Sweep: 0.7 Mc to 25.0 Mc in 5 minutes, automatic operation.

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Baker L	ake, Cana	da (64.3	96.0	Table 9				October 1957
Time	h°F2	foF2	h*F	foFl	h'E	foE	f Es	(M3000)F2
00		6.0	290				5.3	
01		6.0	290				5.2	
02		5.7	300				5.0	
03		4.9	300				4.5	
04		5.0	300			1.6	4.8	
05		4.7	300		145	1.7	4.5	
06		5.0	300		130	1.6	4.7	
07		6.0	300		120	2.0	4.0	
08		6.2	300		115	2.4	4.0	
09		7.0	280		110	2.7	<3.9	
10		8.2	260	4.6	110	3.0		(2.9)
11	(400)	9.0	260	4.6	110	3.0		(2.75)
12	(400)	10.1	2 50	4.6	110	3.1		2.8
13	(390)	11.2	260	4.7	110	3.1		2.7
14	(390)	11.0	260	4.8	110	3.0		(2.7)
15	(370)	8.6	270	4.6	110	2.7		
16		8.0	280	3.9	120	2.4	<3.8	
17		7.1	300		120	2.2	4.2	
18		7.0	300		130	2.0	4.6	
19		6.2	300		125	2.0	4.0	
20		6.0	300		125	(1.9)	5.1	
21		6.2	300			1.8	6.5	
22		6.1	300				6.5	
23		6.0	280				6.0	

Time: 90.0°W. Sweep: 1.0 Mc to 16.0 Mc in 16 seconds.

Dankian	ik, Icela		ON 91 0	Table 1	10				
				30W)			0	ctober 1957.	_
Time	h'F2	foF2	h°F	f oF l	h*E	foE	foEs	(M3000)F2	
00							3.4		
01							3.4		
02							3,2		
03							3.0		
04		(6.0)					2.6	(2.55)	
05		(5.7)						(2.55)	
06		5.6						(2.55)	
07		6.0						2.70	
00		7.8			119	2,25		2.80	
09		9.0			117	(2.65)		2.80	
10		9.8			116	2.80		2,75	
11		>10.8			111	3.00		2.75	
12		>11.2			116	3,00		2,70	
13		>11.5			117	3.00		2,70	
14		>11.4			111	2,90		(2,70)	
15		11.3			117	2.70		2.75	
16		10.9			121	(2.50)		2.80	
17		8.8			<134			(2,75)	
18		8.1						(2.80)	
19		>7.8					3.6	(2, 30)	
20							3.2		
21							3.7		
22							4.0		
23							3.6		

Time: 15.0°W. Sweep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

Anchora	ge. Alask	a (61,2°	N. 149.	Table 90W)	11		0	ctober 1957
Time	h*F2	foF2	h'F	foFl	h*E	foE	foEs	(M3000)F2
00		4.4					2.3	2,45
01		4.0					3.5	2.35
02		(4.1)					3.6	2.35
03		4.6					3.4	2.35
04		(5.1)					3.4	2,30
05		(4.4)					2.5	2, 35
06		(5.0)					2.8	2.50
07		6.3			126	(2.10)		2.65
08		8.2			121	2.50		2.90
09		10.0			117	2.80		2.90
10		11.0			113	3.00		2.80
11		11.9			111	3.10		2.75
12		12.4			113	3.10		2.75
13		12.0			112	3.05		2.75
14		12.0			116	2.90		2.70
15	į .	11.8			116	2,70		2.75
16	i	11.5			123	2.30		2.75
17	1	11.0			<150	(1.80)		2.80
18		10.0						2.75
19		8.7						2.75
20		7.0						2.80
21		5.6						2.75
22		4.7						2,70
23		4.4					3.1	2.55

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Oe 8ilt	. Hollan	d (52.1°N	. 5.2°E)	Table 1	2			October 1957
Time	h'F2	foF2	h*Fl	foF1	h°E	foE	f Es	(M3000)F2
00 01	320 320	6.4						2.45 2.50
02	320	5.4						2.50
03	300	5.3						2.50
04	270	5.0						2.55
05	260	4.7						2.60
06	250	6.1				1.6		2.90
07	230	9.4			120	2.5		3.00
08	220	11.6			110	3.0		3,00
09	220	12.8			110	3.3	3.5	2.95
10	220	13.5			110	3.6	3.8	2.90
11	220	13.3	220		110	3.7		2.90
12	220	>13.0			105	3.6		2.90
13	220	>13.0			110	3.6		2.85
14	225	12.6	220		110	3.3		2,80
15	230	12.6			110	3.0		2.85
16	230	>12.0			120	2.5		2.90
17	230	11.8				E		2.90
18	230	10.8						2.90
19 20	230	9.0						2.80
20 21	250 260	8.2						2.70
22	260	7.1						2.60
23	290 300	7.0 6.6						2.60 2.50

Time: 0.0°. Sweep: 1.4 Mc to 16.0 Mc in 40 seconds.

				Table_1	3								Table 1	4			
Adak,	Alaska (51	.9ºN, 1	76.6°W)				0	ctober 1957	Winnipeg	Canada	(49,9°N	, 97.49	N)				October 1957
Time	h'F2	f oF2	h'F	foF1	h'E	foE	foEs	(M3000)F2	Time	h*F2	f oF2	h*F	foF1	h*E	foE	f Es	(M3000)F2
00		4.4	335					2.35	00		6.0	290				<1.6	
01		4.3	340					2.35	01		5.4	300				<1.6	
02		4,2	340					2.30	02		5.1	320				<1.7	
03		4.1	<340				1.2	2.35	03		5.0	320				<1.9	
04		4.2	325				1.4	2.35	04		4.9	320				<1.7	
05	1	4.0	335				1.4	2.35	05		4.8	320				<1.7	
06	1	5.9	275		120	(1.40)	1.6	2.45	06		4.8	300				<1.6	
07		8.9	240		119	2.35		2.95	07		6.2	290		125	2.0		
08		11.8	235		115	2.80	2.9	2.95	08		9.0	250		110	2.7		
09		12.7	235		115	3.20	3.4	2.90	09	280	10.4	240		110	3.1		
10		13.6	230		111	3.40	3.6	2.80	10	290	11.4	240		105	3.3		
11		13.5	230		112	3,50		2.75	11	320	12.2	240		110	3.5		
12		13.0	235		111	3.50		2.65	12	300	12.7	240		105	3.8		
13		12.9	240		111	3,40	3.5	2,60	13	340	12.8	240		100	3.8		
14		12.6	245		115	3,20		2.65	14	330	12.8	240		100	3.6		
15		12.3	245		119	2.85		2.65	15	310	12.5	240		105	3.3		
16		11.5	240		119	2.45		2.75	16	290	12.2	250		110	2.9		
17	ł	11.0	245		135	1.80		2.75	17		12.0	260		120	2.5		
18	1	9.5	240				1.6	2.75	18		11.4	240			1.8		
19		8.1	240				1.5	2.70	19		10.0	260				<1.8	
20		6.8	250				1.6	2.70	20		9.0	260				<1.8	
21		5.6	255				1.4	2,70	21		8.0	260				<1.6	
22 23		4.9	<280				1.2	2.50	22		7.2	280				<1.6	
23		4.4	300					2.45	23		6.8	280				<1.6	
m:	100 000									0.000							

Time: 180.0°W. 5weep: 1.0 Mc to 25.0 Mc in 27 seconds.

Time: 90.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

White 5	ands, New	Mexico	(32.3°N	Table 1			00	tober 1957
Time	h'F2	foF2	h*F	foF1	h'E	foE	foEs	(M3000)F2
00 01 02 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23		6.3 6.1 6.1 5.7 5.6 5.5 6.7 10.2 12.2 12.2 13.5 13.6 13.4 13.3 11.3 9.8 8.7 8.7	280 <290 285 275 270 275 2790 245 240 230 230 230 230 235 240 245 245 245 255 240 <245 <255 240 <265 <270		<pre><119 113 111 (111 110 109 112 113 115 119</pre>	2,55 3,20 3,75 4,00 4,00 3,95 (3,00) 2,40	(3, 4) 2,8 (2,8) (3,0) (3,1) (3,2) 1,8 2,7 3,3 3,7	2.60 2.55 2.60 2.55 2.70 3.00 2.95 2.75 2.60 2.55 2.55 2.50 2.50 2.50 2.50 2.65 2.65 2.65 2.65

Time: 105.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

				Table_16	5			
Grand Ba	hama I.	(26.6°N,	78.2°W				00	tober 1957
Time	h'F2	foF2	h*F	f oF l	h° E	foE	foEs	(M3000)F2
00		7.7	260				(2.9)	2.70
01		7.4	260				(3.6)	2.70
02		6.8	260				3.0	2.75
03		6.4	250				2.4	2.70
04		6.0	<255				(3.0)	2.60
05		5.8	280				3.7	2.60
06		6.8	270				2,2	2.80
07		10.0	240		111	2,55		3.05
08		12.0	230		109	3.20		2.95
09		13.5	225		105	3,60		2.85
10		13.7	230		108	3,95		2.70
ii		13.5	230		109	4, 10	4.1	2.60
12		13.4	230		109	4.15	4.3	2.50
13		13.3	230		109	4.10	4.4	2.50
14		12.9	235		109	4.00	4.2	2.45
15		12.6	235		111	3,75	4.0	2.45
16		12.2	240		111	3,30	3.8	2.50
17		12.0	250		117	(2.50)	3.0	2.55
18		11.2	250				3.7	2.60
19	1	10.2	250				3.0	2.60
20		9.5	265				3.0	2.65
21		9.0	260				(3.1)	2.65
22		8.3	260				(2,3)	2.65
23		8.0	270				(2.8)	2.70

Time: 75.0°W. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Okinawa	I. (26.3	3°N, 127.8	3°E)	Table	17		October 1957		
Time	h'F2	foF2	h'F	foF1	h'E	foE	foEs	(M3000)F2	
00 01 02 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	420 410 410 410 (395)	(14.5) 13.0 11.1 9.3 7.5 6.3 6.7 10.6 13.0 14.0 14.7 14.6 15.3 15.4 15.6 15.3 14.4 14.6 (16.6) >17.5 (17.5)	250 235 240 235 240 230 240 255 240 235 230 230 240 240 240 245 260 280 290 270 250	7.5	(125) 115 111 113 (115 115 115 115 115 115 115	(2, 40) (3, 20) 3, 65 (3, 95) (4, 10) (4, 20) (4, 20) 4, 05 3, 40 3, 45 (2, 85)	(3.1) (2.7) (2.4) (2.3) 3.4 3.9 4.3 4.4 4.6 4.4 4.1 4.1 3.7 4.0 4.2 3.6 3.1 (3.2)	2.90 2.95 3.00 2.75 2.70 2.60 3.00 2.95 2.85 2.75 2.60 2.50 2.50 2.45 2.45 2.45 2.45 2.60 2.55 2.60 2.55 2.60 2.55 2.75	

Time: 135.0°E. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

8aguio.	P. I. (16	5.4°N, 12	0.6°E)	Table 1	<u> </u>		0	ctober 1957
Time	h*F2	foF2	h'F	foFl	h*E	foE	foEs	(M3000)F2
00		(13,0)	255				2.5	2.70
01	1	12.0	250				2.0	2,80
02	l	10.7	235					2.80
03	1	9.0	250				1.9	2.70
04	1	7.6	250				2.2	2.60
05	1	7.2	260				2.0	2.75
06	l	8.6	300		147	(1,90)	2,1	2.70
07	ł	12.2	280		126	(2,90)	3,2	2.75
03		14.8	270		121	(3,50)	4.0	2.60
09	l .	15.0	250		121	(3,90)	4, 4	2,45
10		15.5	250		121	(4.05)	4.3	2,30
11		15.0	245		121	(4.20)		2.15
12		14.2	245		121	(4.25)		2,10
13		14.0	245		121	(4.15)		2.05
14		14.2	250		121	(4.00)	4.0	2,15
15	l	14.5	260		121	3.75		2.15
16	i	14.5	280		123	(3, 20)	4.2	2.20
17	l	(14.0)	300		129	(2.40)	3.3	(2.15)
18		(13,9)	370				3.2	(2,05)
19		(12.2)	460				2.1	(2,00)
20		>12.5	(410)				2.7	(2,30)
21		>13.0	330				3.0	
22		(13.5)	300				4.0	(2.65)
23		13.6	265				2.4	2.70

Time: 120.0°E. 5weep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: 150.0°E. 5weep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

5 oda nky	la, Finla	nd (67.4	PN, 26.	5 ° E)			5eptember 1957			
Time	h'F2	foF2	h'F	foF1	h¹E	foE	foEs	(M3000)F2		
00							4.1			
01		(4.8)					3.9			
02		(4.8)					3.9			
03	ļ	(5.2)					3.5			
04	1	(4.4)					3.3			
05	i	(4.8)					3.7			
06	1	5.8				2.00	3.9	2.75		
07	l	6.6				2.60	4.0	2.85		
00		7.0				2.80	4.0	2.80		
09		6.8				3.10	3.9	2.80		
10	i	8.0		4.6		3.30	3.8	2.75		
11	1	8.9				3.30	3.9	2.80		
12	l.	8.8				3.35	3.9	2.75		
13	1	8.6				3.30	4.0	2.80		
14	1	9.2				3.20	4.2	2.85		
15	ľ	9.0				3.05	3.8	2.85		
16	1	8.6				2.90	3.7	2.90		
17	1	8.0				2.75	3.9	2.95		
18		8.3				2.25	3.7	3.00		
19		8.2				1.80	3.4	2.05		
20	1	7.9					2.9	(2.80)		
21		(6.7)					3.5	(2.80)		
22		(5,4)					3.8 3.9			

Time: 30.0°E. 5weep: 1.4 Mc to 22.6 Mc in 8 minutes, automatic operation.

OUNCE D	ake, Canad	18 (64.3	ON, 96.0) ^{OW})			Sep	tember 1957
Time	h*F2	foF2	h'F	foF1	h'E	foE	f Es	(M3000)F2
00		5.5	290				4.8	
01	l	6.0	280				5.1	
02	l .	5.0	300				5.0	
03	1	4.7	290				5.0	
04		4.4	310				4.2	
05		4.2	300		125	1.7	3.0	
06		5.0	300		120	2.0		
07		5.7	280		110	2.4		
08	(360)	5.8	260	4.2	110	2.8		
09	360	6.1	2 50	4.6	110	3.1		
10	410	6.2	250	5.0	110	3.5		G
11	400	7.0	240	4.8	105	3.6		(2.55)
12	380	6.9	240	4.5	110	3.6		(2.55)
13	380	8.5	240	4.9	110	3.5		(2.6)
14	340	9.0	250	4.7	105	3.5		(2.7)
15	380	8.1	260	4.4	110	3.2		
16		8.1	270	4.5	110	3.1		
17		8.0	270		110	2.8		
18		7.8	280		120	2.5		
19		7.4	280		120	2.0	<4.6	
20		6.6	290		115	1.8	6.5	
21		6.2	280				6.0	
22		5.6	290				6.0	
23		5.0	290				4.8	

Time: 90.0°W. Sweep: 1.0 Mc to 16.0 Mc in 16 seconds.

Inverne	ss, 5cotla	and (57.	4°N, 4.	20W)			5eptember 1957			
Time	h'F2	foF2	h'F	foF1	h'E	foE	foEs	(M3000)F2		
00		6.3	310				<1.4	2.70		
01		5.7	315				<1.4	2.7 5		
02		5.2	330				<1.4	2.7 5		
03		4.8	3 2 0				<1.4	2.7 5		
04		4.6	320				<1.5	2.85		
05	1	4.6	305		130		<1.4	2.95		
06		5.5	285		125	2.00		3.20		
07	(740)	6.6	260		120	2.60		3 .2 0		
00	(490)	7.5	250	4.4	110	3.00		3.25		
09	390	8.3	250	4.8	110	3.30		3.20		
10	(395)	8.6	250	5.0	110	3.50		3.10		
11	(410)	9.5	240	5.0	110	3,65		3.10		
12	(510)	9.5	240	5.2	110	3,70		3.00		
13	(400)	9.8	245	5.4	110	3.70		3.00		
14	(420)	9.3	245	5.3	110	3,60		3.00		
15	(455)	9.4	245	5.2	110	3,40		3.05		
16	(400)	9.3	250	4.7	110	3.15		3.05		
17	(490)	9,1	250		110	2.75		3.10		
18		8,8	2 55		125	2.30		3.15		
19	l .	9.2	255		130	1.70	2.2	3.20		
20		>7.6	250				<1.6	3.00		
21		>7.8	250				<1.6	2.95		
22		7.4	265				<1.6	2.80		
23		6.8	300				<1.4	2.80		

Time: 0.0°. 5weep: 0.67 Mc to 25.0 Mc in 5 minutes, automatic operation.

Table 24 Juliusruh/Rügen, Germany (54.6°N, 13.4°E) September 1957										
Time	h'F2 foF2	h'F	foF1	h¹E	foE	foEs	(M3000)F2			
00	6.5						2,50			
01	6.3						2.55			
02	6.0						2.55			
03	5.4					1.0	2.50			
04	5.1						2.55			
05	4.7				1,30		2.70			
06	5.5				2.00		2.90			
07	6.8				2.55		2.95			
08	7.7				3.00		2.90			
09	9.2				3.30		2.85			
10	9,8				3.55	3.7	2.80			
11	9.8				3.60	3.9	2.80			
12	10.2		5.0		3.70	3.8	2.75			
13	9.8		5.2		3.60	3.8	2.70			
14	9,6				3,40	3.8	2.70			
15	9,6				3,20		2,75			
16	8.8				3.00		2.75			
17	9.6				2.50		2.85			
18	9.6				2.10		2.80			
19	9,6						2.85			
20	8.6						2.70			
21	7.8						2.75			
22	7.2						2.65			
2 3	6.9						2.60			

Time: 15.0°E. 5weep: 0.5 Mc to 20.0 Mc in 20 seconds.

September 1957

(M3000)F2

				Table 25				
De Silt	Holland	(52.1°N,	5, 2°E)				Se	ptember 1957
Time	h°F2	foF2	h*F1	foF1	h°E	foE	f Es	(M3000)F2
7 Time 00 01 02 03 04 05 06 07 06 09	290 280 290 295 290 260 245 240 260 270	6.2 5.7 5.4 4.9 4.2 4.6 6.4 7.6 8.2	245 230 230	4.2 4.5 5.0	125 115 110	1.8 2.6 3.0 3.3		2.60 2.65 2.60 2.55 2.60 2.90 3.05 3.00 2.95
10 11 12 13 14 15 16	440 330 335 355 415 390 240 240	9.6 9.8 10.4 10.4 10.2 10.0	230 230 220 225 225 230 230 240	5.0 5.5 5.2 5.6 5.2 4.8	105 105 110 105 105 105 105 110 120	3.8 4.0 4.0 4.0 3.9 3.8 3.5 3.1	3.8	2.90 2.85 2.80 2.80 2.75 2.80 2.80 2.85
17 18 19 20 21 22 23	240 240 245 245 250 265 280	10.0 9.4 8.8 7.9 7.0 6.9 6.4			120	2.7	2.8 2.0 1.9	2.90 2.95 2.90 2.90 2.75 2.70 2.70

Time: 90.0°W.

Time

00

01 02

23

Ottawa

Time

00

01 02

Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

foF2

6.0 5.4 5.0 4.8 4.7 4.5 5.4 7.2 8.5 9.0 9.3 9.6 10.0 9.8 9.9

10.0 10.1

10.1 9.2

8.5 7.6 7.1

6.8

Canada (45.4°N,

h°F2

(430) 350 300

360 350

360

(430)

h'F2

(290)

250 250

290 280

315 340 320

300

(290)

Winnipeg Canada (49.9°N, 97.4°W) Table 26

foF2

4.9 4.6 4.4 4.3 4.5 4.3 4.6

6.0

6.8 7.3 8.0 8.2 8.8 8.9 9.1 9.0

8.8 7.9 8.0 7.5 7.0 6.2

6.0

h 'F

300

340 340 340

330 320

300 270

240 240

240 240

250 260

280 270

280 290

300 300

75.9°W)

h°F

300 320

300 300

240 240

230 220

220

230

230

240

240 260

250

250

250

260

270

290

h F

305

300

300 295

300 300

285 300

300

foFl

4.8 4.9 5.0 5.0 5.0 5.1 5.0 5.0

Table 28

foF1

4.5 5.0 5.0 5.1 5.2 5.0 5.0

4.8

Table 30

foFl

5.3 5.4 5.9 6.3 6.0 5.9 5.8

h°E

120

110 105

100 100

100 100

100 100

110 110

120

h*E

110

110

110 110

110 110

110 110

110

110

110

115

120

h'E

foE

2.25 3.00 3.40 3.65 3.80 3.85

3.85 3.90 3.75 3.50

3.10 2.50

foE

1.8 2.5 3.0 3.3 3.7 3.9 3.9 3.9

3.8 3.6 3.2 2.9 2.4 1.8

foE

2.0 2.8 3.3 3.7 3.9 4.0 4.0 3.9 3.8 3.7 3.3 2.8 2.0

f Es

3.5 3.2

3.4

3.0 3.0 2.8

<1.7 <1.8 <1.7 3.0

f Es

<1.7 2.4 <1.7 <1.6 <2.0 <1.6

<1.6

<1.6 <1.6 <1.7 <1.7

foEs

2.4 2.4 2.4 2.5 2.2 2.8 3.5 3.9 4.2 4.1 4.2

4.2

3.5 3.5 3.5 3.0 3.0 2.9

2.8

September 1957

(M3000)F2

2.6 2.6 2.7 2.6

2.6

3.0 3.0 2.95 2.9 2.9 2.8 2.7 2.7 2.7 2.7 2.7

2.8 2.8

2.8 2.7 2.7 2.6

September 1957

(M3000)F2

2.55 2.50 2.50 2.50 2.50 2.60

3.00

3.05

2.95 2.85

2.75 2.70

2.70 2.70 2.70 2.70 2.70

2.75 2.85

2.90 2.75 2.70 2.60

2.60

h°F2

(300)

360 380

360 380

340 340

0.0°. 1.4 Mc to 16.0 Mc in 40 seconds. Time: Sweep:

Table 27 Victoria, Canada (48.4°N, 123.4°W) September 1957 h*E (M3000)F2 h'F2 h'F foF1 Time foF2 foE f Es 4.5 4.4 4.1 3.9 4.0 5.0 6.0 300 310 01 02 03 04 05 06 07 08 09 10 11 12 13 310 320 350 340 280 240 220 210 210 210 2.2 2.7 3.2 3.5 3.8 3.9 4.0 4.0 3.8 3.6 3.3 2.9 4.0 4.4 4.8 5.2 5.4 5.2 5.0 5.2 5.0 100 G 520 100 100 6.6 7.2 7.7 8.2 7.8 7.8 8.2 8.1 450 440 100 100 500 640 220 220 100 100 220 230 230 240 14 15 16 17 18 19 20 21 22 400 (560) 100 100 8.0 8.0 7.7 7.2 100 100 240 240 6.8 230 240 260

> Time: 75.0°W.

23

Akita

Time

01 02 03

5weep: 1.0 Mc to 16.0 Mc in 16 seconds.

Japan (39.7°N, 140.1°E)

foF2

7.2 6.8

6.6

6.0 6.4 9.0

10.0 10.6 11.1 10.9 11.3 11.2 10.8

11.0

10.5 10.0 9.8 8.4 8.1 7.7 7.5 7.3

120,0°W. Time: 1.6 Mc to 20.0 Mc in 15 seconds.

Table 29 Wakkanai, Japan (45.4°N, 141.7°E) September 1957												
Time	h'F2	foF2	h°F	foFl	h*E	foE	foEs	(M3000)F2				
00 01 02 03 04 05 06 07 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	(440) (380)	6.7 6.5 6.1 5.8 5.8 6.2 8.0 9.5 9.8 10.2 10.4 10.5 10.1 10.1 10.1 10.8 9.8 9.8 9.3 9.3 9.5 8.0 7.3 9.5 8.0 7.3 9.5	320 320 320 320 305 315 290 250 250 230 230 230 230 230 250 250 250 250 250 250 250 250 250 25	5.7 5.8 		1.75 2.35 3.00 3.40 3.50 3.60 3.70 3.60 3.75 3.45 3.00 2.40	2.3 2.3 3.0 2.4 2.4 2.5 3.6 4.0 4.1 4.0 3.5 3.5 3.5 3.5 3.5 3.4 4.0 4.1	2.50 2.45 2.40 2.50 2.45 2.60 2.95 3.00 2.90 2.75 2.70 2.70 2.70 2.70 2.75 2.80 2.80 2.95 2.65 2.65 2.65 2.65 2.65				

Time:

135.0°E. 0.85 Mc to 22.0 Mc in 2 minutes. Sweep:

Wakkana	i, Japan	(45.4°N,	141.7°E)				5ep	tember 1957
Time	h'F2	foF2	h*F	foFl	h*E	foE	foEs	(M3000)F2
00		6.7	320				2.3	2.50
01		6.5	320				2.3	2.45
02		6.1	320				3.0	2.40
03		5.8	305				2.4	2.50
04		5.8	315				2.4	2.45
05		6.2	290			1.75		2.60
06		8.0	250			2.35	2.5	2.95
07		9.5	250			3,00	3.4	3,00
08		9.8	240			3.40	3.6	2.90
09		10.2	235			3.50	4.0	2.90
10	(440)	10.4	230	5.7		3.60	4.1	2.75
11		10.5	230	5.8		3.70		2.70
12		10.1	230			3.60	4.0	2.70
13	(380)	10.1	235	6.0		3.70		2.70
14		9.8	240			3.55		2.70
15	1	9.8	250			3.45	3.5	2.70
16		9.7	2 55			3.00	3.5	2.75
17		9.3	260			2.40	3.5	2,80
18	ł	9.5	260				3.5	2.80
19		8.3	2 65				3.4	2.75
20		8.0	270				3.0	2.65
21		7.3	275				2.4	2.60
22		7.2	300					2.50
23		7.0	310					2.45

Time: 135.0°E. Sweep: 1.0 Mc to 20.7 Mc in 1 minute.

6.1 5.5 4.9 280

				Table 3	1								Table 3	2			~
Tokyo,	Јарал (35	.7°N, 13	9.5°E)				5ep	tember 1957	Yamagaw	a, Japan	(31.2°N,	130.69				5ep	tember 1957
Time	h'F2	foF2	h*F	foFl	h°E	foE	foEs	(M3000)F2	Time	h¹F2	foF2	h F	foFl	h°E	foE	foEs	(M3000)F2
00		7.7	330					2.55	00		(8,9)	290				3.1	(2,60)
01	i .	7.3	330					2.45	01		8.6	270				2.9	2.70
02		6.9	3 2 5					2,50	02		8.1	260				2.5	2.75
03		6.6	320					2, 45	03		7.5	250				2.4	2.70
04		6.3	345					2.45	04		6.8	260				2.2	2.70
05		6.4	3 2 5					2.50	05		6.4	27 0				2.8	2.75
06		9.2	2 65				2.5	2. 95	06		7.7	270				2.8	2.90
07	(280)	10.9	250			3,00	3.3	3.00	07		10.4	240			2.60	3.1	3.20
00	290	11.2	250			3.40	3.7	2.90	08		11.1	22 5			3.30	4.0	3.20
09	305	11.5	2 50	6.2			4.3	2.80	09		11.6	220			3.70	4.4	3.00
10	360	11.8	2 50	6.2				2.65	10		12.4	22 5			3.95	5.0	2.85
11	340	12, 1	2 50	6.2				2.60	11		13,2	2 15			4.05	4.6	2.75
12	350	12.3	250	6.2				2.60	12		13.6	220			4.00	4.6	2.7 5
13	360	12,2	255	6.4				2. 55	13	(350)	13.9	230			4.10	5.1	2.70
14	350	11.8	2 55	6.2				2. 55	14	350	13.9	230			4.05	5.0	2.70
15	340	11.9	260	5 .7				2.60	15	(340)	13.8	240			3.90	4.3	2.70
16	330	11.3	260			3, 15	3.4	2.65	16	(315)	13.1	24 5			3,50	3.6	2.75
17	(300)	10.7	280			2.55	3.6	2.7 5	17	(290)	12.7	250			3.00	3.6	2.80
18		10.8	27 5				3.5	2.80	18		12.6	255			2.20	3,6	2.90
19	İ	9.2	27 5				3.3	2. 65	19		11.5	2 50				3.9	2.90
20		8.5	300				2.5	2,50	20	l	10, 1	250				3.3	2.70
21		8.3	310				2.2	2.50	21		9.5	27 5				3.2	2.60
22	1	7.9	320					2.50	2 2	1	(9,6)	280				3.0	(2,65)
23		7.9	330					2,50	23		9.3	290				3.0	2.65

Time: 135.0°E. 5weep: 2.0 Mc to 20.0 Mc in 20 seconds.

Time: 135.0°E. Sweep: 1.0 Mc to 20.0 Mc in 1 minute.

<u>Table 33</u> Singapore, British Malaya (1,3°N, 103,8°E) September 1957										
Time	h¹F2	foF2	h F	foFl	h°E	foE	foEs	(M3000)F2		
			h*F 235 245 250 250 245 235 275 255 245 230 225 <210 <220		125 120 115 110 115 120	<1.80 2,90 3,60 4.00 4.30 4.45 (4.40)	<1.6 2.1 1.6 2.2 2.3 2.4 2.2 <3.2 3.9 4.4 4.8 <4.9 <5.0	2.70 2.65 2.70 2.85 2.90 3.05 2.95 2.99 2.65 2.40 2.15 1.90		
13 14 15 16 17 18 19 20 21 22 23		12.6 12.8 13.0 13.4 13.3 13.2 13.0 >12.8 (13.4) 13.8 12.1	<210 215 235 250 260 300 380 345 290 240 225		120 120 110 110 115	4, 40 4, 25 4, 00 3, 45 2, 80 1, 70	4.7 4.3 <4.6 3.7 3.0 <2.4 <1.4 <1.5 1.5 <1.6 <1.9	1. 95 1. 90 1. 90 1. 95 2. 00 2. 00 2. 10 (2. 45) (2. 70) 2. 65		

Time: $105.0^{\circ}E$. 5weep: 0.67 Mc to 25.0 Mc in 5 minutes, automatic operation.

Talara,	Peru (4.	605, 81.3	3°W)				5ept	ember 1957
Time	h°F2	foF2	h*F	foFl	h • E	foE	foEs	(M3000)F2
00 01 02 03 04 05 06	h*F2	10.8 10.3 9.4 8.5 7.9 6.6 6.0	230 230 250 240 240 250 265	forl			4.4 3.2 4.3 2.6 4.1 3.8 4.4	2.75 2.80 2.95 2.95 3.00 2.90 2.70
07 00 09 10 11 12 13		9.5 11.8 12.9 13.6 13.7 13.7	260 250 230 220 215 215 210		123 115 111 111 111 111	2.60 3.40 3.85 4.15 4.30 4.40 4.35	3.4 3.6 4.0	2.90 2.70 2.50 2.35 2.15 2.10 2.00 2.00
14 15 16 17 18 19 20 21 22 23	===	13.6 13.2 12.6 12.2 (11.5) (11.2) >10.8 (11.4) -11.3 (12.2)	210 215 230 255 280 370 410 340 265 240		111 109 111 114 <141	4.20 4.00 3.60 3.10 2.30	3.7 4.2 (3.2) 2.4 3.2 4.0	2.00 2.00 2.05 (2.10) (2.10) (2.10) (2.30) 2.70 2.80

Table 34

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Raroton	ga 1, (21	.205, 15	9.8°W)	Table 3	_		5ep	tember 1957
Time	h*F2	foF2	h*F	foFl	h°E	foE	foEs	(M3000)F2
00		8.5	250					3,00
01		(8.7)	2 50					(3,00)
02	ŀ	8.2	250					3,20
03	1	7.2	250					2,90
04	1	7.0	<290					2.90
05	1	6.4	290					2.90
06		6.4	300					2.90
07		(8,0)	270			2.0	2.8	3,20
00	(250)	(12,7)	250		110	3.0		3.30
09	(250)	(13, 2)	240		110	3.7		3,30
10		(13,8)	240		110	4.0		3.20
11	(280)	14.0	230		110	4.1		3, 10
12	(280)	13.5	230		110	4.2		3.00
13	(390)	13, 2	220	7.2	110	4.2	4.6	2.90
14		13.0	230	7.0	110	4.1	4.7	2.90
15	400	(12, 9)	230	6.8	110	4.0	4.5	(2.80)
16		(12,4)	240		110	3.7	4.2	2,80
17		(12,5)	2 50		100	3,2	3.7	2,90
18	1	(12.8)	280		110		3.1	(2,90)
19	i	(12,4)	300				2.9	(2,90)
20			290				2.8	
21		(9.6)	280				2.6	(2.80)
22	i		<270				<1.3	
23	1	(8.7)	250				<1.2	(3, 10)

Time: 150.0°W. Sweep: 1.5 Mc to 20.0 Mc in 5 minutes, manual operation.

5ao Pau	lo, Brazi	il (23.5°	S, 46.5°	Table 36	2		5ep	otember 1957
Time	h°F2	foF2	h*F	foFl	h*E	foE	f Es	(M3000)F2
00		15.0	220				<2,2	3.20
01		14.0	220				<2,2	3, 15
02		11.6	220				<2,2	3,20
03	i e	8.9	240				<2,2	2.90
04		7.6	250				<2,1	2,90
05		6.8	2 50				<2.2	2.90
06	l	7.3	260				<2.2	2.85
07		10.1	240			2,65		3.10
08		11.7	240			3.15		3.00
09		12,6	230			3.80		2.85
10	1	13.3	<230					2.75
11		13.4	(220)					2.70
12	j	13,6	(215)					2,65
13		13.8						2.60
14		14.0	(220)					2.65
15		14.0	235					2,65
16		>14.0	24 5				4, 2	2,65
17		14.0	260					2.65
18		(14, 4)	280				<2.5	(2.70)
19		(14,5)	320				<2,2	(2, 55)
20		(14,4)	320				<2.2	(2,50)
21		14.0	270				<2.2	2,65
22		14.6	2 50				<2.2	2.75
2 3		14.4	240				<2.1	3, 10

Time: 45.0°W . Sweep: 1.75~Mc to 20.0~Mc in 2 minutes 30~seconds.

				Table 3	7									Table 3	8			
Johanne	sburg, Un	ion of S	. Africa	(26, 2°S	, 28.0°	E)	Sep	tember 1957	8r	isbane	, Austral	lia (27.	5°S, 152	2.9°E)			Sep	tember 1957
Time	h'F2	foF2	h*F	f oF 1	h¹E	foE	foEs	(M3000)F2	Ti	me	h*F2	foF2	h*F	foFl	h E	foE	foEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11	(250) (250) (250) (250) (270) (315)	foF2 5.8 5.5 4.7 4.4 4.0 3.9 5.8 0.9 11.2 12.0 12.4 12.8 12.8 12.6	h*F 250 <265 265 260 255 260 260 230 230 230 220 210 215		h'E	<1.8 2.8 3.4 3.8 4.0 4.0	<pre>foEs <1.6 <1.7 <1.6 <1.6 <1.6 <1.6 <2.0</pre>	(N3000)F2 2.80 2.00 2.75 2.75 2.75 2.75 2.90 3.05 2.95 2.80 2.75 2.96 2.75 2.96 2.66	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 2 3 3 4 4 5 5 6 6 7 7 0 9 0 0 1 1 2	 (290)	7.4 7.0 6.5 6.3 6.2 6.4 8.4 11.2 12.8 12.7 12.2 11.9	260 265 260 270 300 290 250 250 240 230 230 220 220	 5.6 5.4	130 120 120 110 110 110	E 2,35 3,00 3,55 3,85 3,85 3,90 (4,00) 4,00	foEs	2.60 2.60 2.50 2.50 2.50 2.60 2.05 2.95 2.95 2.95 2.85 2.75 2.65
13 14 15 16 17 18 19 20 21 22 23	(360) (370) (355)	12.6 12.6 12.2 11.9 11.6 10.7 9.7 8.6 8.1 >6.6	215 225 230 240 250 250 245 240 245 250 250	6.8		4.0 3.8 3.5 2.8 <2.0	2.9 <1.8 <1.8 <1.8 <1.8 <1.8	2.60 2.55 2.60 2.65 2.75 2.80 2.85 2.90 2.90	1 1 1 1 1 1 2 2 2 2	4 5 6 7 8 9 0 1	(350)	11.2 11.0 10.6 10.6 9.9 9.5 9.2 9.0 8.9 8.5 8.0	230 240 235 250 250 260 270 270 270 265 260	4.9	120 120 120 120 130	3,95 3,85 3,80 3,25 2,50 E		2.60 2.55 2.55 2.55 2.65 2.65 2.65 2.65 2.65

Time: 30.0°E. Sweep: 1.0 Mc to 16.0 Mc in 7 seconds.

Time: 150.0°E. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

				Table 3	9			
Wathero	o, W. Aus	tralia	(30.3°S,	115.9°E)			Sep	tember 1957
Time	h'F2	foF2	h F	foFl	h ® E	foE	foEs	(M3000)F2
00		6.7	250					3.05
01		6.4	250					3.00
02		6.2	255					3.00
03		5.7	250					3,00
04		5.8	260					(2,95)
05		5.0	280					2.95
06		5.7	270		165	1.60		3.10
07		8.4	240		110	2.65		<3.45
03		10.2	235		110	3.20		3.50
09		>10.4	(235)		105	3.50		<3.30
10	G	>10.9			105			<3.15
11	G	>10.8		(6.2)	100			3.00
12	(420)	11.0		(6.6)	105			<2.95
13	(300)	11.0	+	6.7	105			<2.90
14		11.4		(6.7)	110			2.90
15		11.4		(6.6)	110			2.85
16		10.6	(230)		110	3.45		2.90
17		>10.0	250		110	2,90		3.00
18		>7.3	250		120	2,10		(3,25)
19		(6.8)	240					
20		>7.0	240					(2.90)
21		>7.0	250					<3.05
22		6.8	250					3.00
23		>6.6	250					3.05

т	im			120	O°E.
*	Y eve	С	۰	120.	0.5

Sweep: 1.0 Mc to 16.0 Mc in 1 minute 45 seconds.

Capeton	wn, Union	of S. A:	frica (3	4.1°S, 18	.3°E)		Sep	tember 1957
Time	h*F2	foF2	h ¹F	foF.1	h*E	foE	foEs	(M3000)F2
00		4.7	<255				<1.6	2.75
01	1	4.4	<270				<1.5	2.70
02		4.2	270				<1.6	2.70
03		4.1	255				<1.5	2.70
04		4.0	<270				<1.4	2.70
05		3.8	<280				<1.4	2.70
06		4.0	<290			<1.4	<1.4	2.65
07		7.0	250			2.1		3.05
00		9.7	245			2.9		3, 10
09	(250)	10.8	240			3.4		2,95
10		11.9	230			(3.6)		2.85
11		12.6	230					2.70
12	(260)	12,8	225					2.65
13	(270)	12,9	225					2,60
14	(305)	12.8	230					2,60
15	(310)	12.4	240			(3, 9)		2,55
16		12.0	245			3.6		2,55
17		12.1	250			3, 1		2,60
18		11.8	250			2.4		2,70
19	1	10.8	240			<1.6	<1.6	2,80
20		9.6	240				<1.6	2,85
21		8.6	240				<1.6	2.85
22		7.0	240				<1.6	2,90
23		5.4	<245				<1.6	2,85

Time: 30.0°E. Sweep: 1.0 Mc to 17.0 Mc in 7 seconds.

			Table 4	1			
Hobart.	Tasmania (42,905	5, 147, 2°		_		Sep	tember 1957
Time	h*F2 foF2	h°F	foFl	h*E	foE	foEs	(M3000)F2
00	5.8	300					2.55
01	6.2	300					2,60
02	5.8	300					2.55
03	5.2	280					2.50
04	>4,4	290					2, 45
05	4, 2	300					2,50
06	4.8	300					2.70
07	>6.0	260		130	2.70		2,90
08	7.4	250		120	3,10		2,90
09	8.3	240		120	3.50		2,90
10	9.4	240		120	3.60		2.85
11	10.3	230		120	3.80		2.80
12	10.3	240		120	3.90		2.70
13	10,2	240		120	3,90		2.70
14	10.0	230		120	3.80		2.65
15	9.8	240		120	3,60		2.65
16	9.5	250		120	3.25		2.65
17	>9.0	250		130	2.75		2.70
18	9.2	260					2.70
19	>8.0	250					2,60
20	7.9	270					2.55
21	7.6	280					2,60
22	7.0	300					2.60
23	7.0	300					2.60

	150.0°E.					
Sweep:	1.0 Mc to	13.0 Mc	in 1	minute	55	seconds

Christe	hurch, Ne	w Ze al an	d (43.6	Table 4			Sep	tember 1957
Time	h*F2	foF2	h*F	foFl	h*E	foE	foEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	G G (550) (520) (530) (520) (500)	6.7 6.0 5.8 5.4 5.0 4.6 4.3 6.0 7.4 8.8 9.2 10.0 10.4 9.6 9.4 9.0 8.5 8.0 7.7 7.8	290 300 290 270 280 250 250 250 240 240 240 240 250 250 250 250 250 250 250 250 250 25	4.8 4.8 5.0 5.2 5.1 5.3 4.8	120 110 110 110 110 110 110 110 110 110	1.5 2.3 2.9 3.7 3.9 4.0 3.9 3.7 3.9 2.9 2.2	<1.5 <1.7 <1.2 <1.1 <1.2 <1.5 <1.6 <1.6 <1.6 <1.6	2.55 2.50 2.50 2.50 2.55 2.60 2.90 3.00 2.90 2.80 2.75 2.70 2.70 2.70 2.70 2.65 2.66 2.65 2.66 2.65

Time: 180,0°E, Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Campbel	1 I. (52.	595 169	29E)	Table 4	<u>3</u>		Sen	tember 1957	Scott 8	Base (77.8	3°S 166	8 0 E)	Table 4	4		500	tombon 1057
	,			C-E1	ute	6-5		(M3000)F2	Time	h'F2	foF2		C. E1				tember 1957
Time	h'F2	f oF2	h'F	foFl	h E	foE	foEs	(MSUUU)F2	ine	n r z	1012	h'F	foFl	h'E	foE	foEs	(M3000)F2
00		(6.1)	(290)				2.3	(2.7)	00		5.2	3 20				<1.9	2,85
01		(5.8)	300				3.0	(2,65)	01	ł	(5.2)	290				<2.4	
02	i	(3.7)	(300)				2.6		02	İ	4.7	300				<2.0	(3,00)
03	Į.	(3, 2)	(300)				2.6	(2.8)	03	1	3.8	300				<2.0	(2,80)
04	l	(3, 2)	(300)				<1.5	(2.8)	04	į	4.3	290				<2.1	(3, 10)
05	1	(3.9)	(280)				<1.5	(2.7)	05		4.6	300				<2.2	3, 10
06	ì	(4.2)	(250)					(2.65)	06	i	5.6	280			1.5	<2.7	3,20
07		(5.1)	(250)			2.5		(2.9)	07		6.1	260		150	1.8	2.4	3,20
08		(6.9)	(240)		120	2.9		(3,0)	00		7.0	260		130	2.2	<2.3	3.20
09		(7.2)	240		120	3.2		(3,0)	09		7.6	250		130	2.4	<2.8	3,20
10		(6.7)	(240)					(2.9)	10	1	8.0	260		120	2.6		3,20
11	i	(7.3)	(230)		110	3.5		(2.8)	11	i	8.2	250		130	2.6		3.00
12		(9.0)	(240)					(2.7)	12		8.4	260		130	2.7		3.05
13		(8.3)	220		115	3.5		(2.7)	13	ĺ	8.0	250		120	2.6	2.8	3.10
14		(7.8)	(240)		120	3.2		(2.7)	14		8.0	260		140	2.5	<2.7	3, 10
15		(7.3)	(240)		120	3.1		(2.75)	15		8.8	270		140	2.4	<2.6	3.10
16			(240)		125	2.9			16		8.9	280		140	2.3		3.00
17	i	(6.7)	(250)			1.9		(2. 85)	17	i	8.8	280		140	1.9	<2.4	3.00
18	ł		(270)				<1.5		18		8.4	280			1.6	<2,1	3,00
19							(4.6)		19	1	8.5	270				<2.1	2,90
20	1		<290				<2.8		20		7.3	270				<1.9	3.00
21		(6.3)	<280				3.4	(2.6)	21 22		6.0	280				<1.9	3.00
22		(6.0)	(280)				3.8	(2.6)	23	i	6.9	280				<1.7	3,00
23		(6.2)	<280				3.3	(2.65)	23		5.4	290				<1.6	2.70

Time: 165.0°E. Sweep: 1.0 Mc to 15.0 Mc in 5 minutes, manual operation.

Time: 165.0°E.

inverne	ss, 5cotl							August 1957		ruh/Rugen, German			
Time	h'F2	foF2	h'F	foFl	h'E	foE	foEs	(M3000)F2	Time	h'F2 foF2	h 'F	foFl	h
00		5.9	310				2.2	2.80	00	6.0			
01		5.5	315				2.4	2.75	01	5,8			
02		5.5	310				2.4	2.75	02	5,5			
03		4.9	305				2.4	2.80	03	5.2			
04		4.8	290		140		<1.4	2.90	04	4.7			
05	400	5.3	275		130	1.90		3.15	05	5.4			
06	410	5.9	2 55		115	2.40	2.6	3.20	06	6.2			
07	410	6.3	245	4.4	110	2.80	3,2	3,20	07	7.0			
00	420	6.9	240	4.8	105	3.15	3.4	3.05	00	7.2		4.9	
09	350	7.2	240	5.0	105	3,35	3.7	3.15	09	8.2		5.4	
10	370	7.6	230	5.3	105	3.50	3.7	3,00	10	8.2		5.3	
11	355	8.0	220	5.3	105	3,80		3.05	11	8.4		5.3	
12	390	7.7	225	5.5	105	3,80	3.9	2,95	12	8.5		5.6	
13	370	7.6	220	5.6	105	3,80		2.95	13	8.2		5.6	
14	370	7.6	225	5.5	105	3.70		3.00	14	7.9		5.4	
15	360	7.6	230	5,3	105	3,60		3.00	15	7.9		(5.3)	
16	360	7.6	240	5.2	105	3.40		3.05	16	7.8		5.2	
17	345	7.8	250	4.7	105	3,10		3.10	17	8.0			
18	355	7.7	255		110	2.60	2.8	3, 10	18	8.0			
19		7.8	265		120	2, 15		3.10	19	7.6			
20		7.2	260		150	1.80	2,2	3.05	20	7.6			
21		7.2	260				<1.6	3,00	21	6.9			
22		6.9	275				<1.6	2.90	22	-6.6			
23		6.2	300				2.4	2.80	23	6,7			

Time: 0.0° . Sweep: $0.67~\mathrm{Mc}$ to $25.0~\mathrm{Mc}$ in 5 minutes, automatic operation.

02	5.5		E		2,30	
03	5.2		E	1.0	2.35	
04	4.7		1,20		2,40	
05	5.4		1,55	2.0	2,60	
06	6,2		2,20	2.4	2.70	
07	7.0		2,65	3.2	2.55	
00	7.2	4.9	2,95	3.5	2.60	
09	8,2	5.4	3,30	3.9	2,55	
10	8.2	5.3	3,60	4.0	2,55	
11	8.4	5.3	3.70	4.0	2.50	
12	8.5	5.6	3,80	4.0	2.45	
13	8,2	5.6	3,70	3,9	2.50	
14	7.9	5.4	3.65		2,50	
15	7.9	(5,3)	3.45		2,50	
16	7.8	5,2	3.35		2,50	
17	8.0		3.00	3.3	2.55	
18	8.0		2,50	3.1	2,60	
19	7.6		1.95	2.7	2,60	
20	7.6				2.50	
21	6.9				2.45	
22	- 6.6				2.40	
23	6.7				2.35	

foFl h'E foE foEs

E E

August 1957

(M3000)F2

2.30 2.35

Time: 15.0°E. 5weep: 0.5 Mc to 20.0 Mc in 20 seconds.

Victoria	, Canada	(48.4°N,	123.	Table 47				August 1957
Time	h'F2	foF2	h¹F	foFl	h°E	foE	f Es	(M3000)F2
00		4,6	300					(2,55)
01		4.3	300					(2.6)
02		4.1	310				3.0	(2,6)
03		4.0	310				3.0	
04		3,6	300					
05		4.1	290				3.0	(2.8)
06		5.4	250	3.9	105	2.4	3,4	2.9
07	420	6.1	220	4.4	100	2.9	4.0	2.7
08	420	6.8	210	4.9	100	3,2	4.5	2.7
09	400	7.3	200	5.1	100	3.5	4.8	2.7
10	400	7.8	200	5.2	100	3.8		2,6
11	400	8.1	200	5.4	100	4.0		2,6
12	400	8.0	210	5.5	100	4.0		2.6
13	420	8.0	200	5.5	100	4.0		2.5
14	400	7.9	210	5.4	100	3.9		2.6
15	400	7.6	210	5.2	100	3.8		2,6
16	400	7.4	210	5.0	100	3.5		2.6
17	360	7.6	220	5.0	100	3.1		2.75
18		7.1	240		100	2.7		2,9
19		6.8	250		100	2.0		2.9
20		6.8	240					2.9
21		6.4	240				3.1	(2.85)
22		5.5	260					(2.7)
23		5.0	290					(2,7)

Time: 120.0°W. Sweep: 1.6 Mc to 20.0 Mc in 15 seconds.

Talara,	Peru (4.	6°5, 81.3	loM)	Table 4	<u>8</u>			August 1957	
Time	h'F2	foF2	h •F	f oF l	h'E	foE	foEs	(M3000)F2	_
00		10.2	220				(3,0)	3,00	
01		9.2	225				(3,2)	3.00	
02		9.0	235					3.10	
03		7.5	230					3.10	
04		6.4	235				1.6	3.15	
05		5.0	230				2.1	3, 10	
06		4.2	245				3.2	2.80	
07		7.0	260		128	2.20	4.0	2.90	
08		9.0	240		112	3.00	4.6	2,80	
09		9.8	220		109	3,50	5.2	2.50	
10		10.7	215		109	3.80	3.9	2.30	
11		11.0	210		109	4.05	4.2	2.20	
12		11.4	205		109	4.15	4.2	2.10	
13		11.5	200		109	4.10	4.3	2.05	
14		11.3	200		107	4.05		2.10	
15		11.2	200		109	3.80		2. 10	
16		11.0	210		109	3.50	3.7	2,10	
17		10.8	240		110	3,00	3.5	2.10	
18		10.5	270		121	2,30	4.5	2,15	
19		10.0	340				3.2	2.15	
20		10.1	370				(2.5)	2.15	
21		10.5	310				2.9	2.30	
22		10.8	255				2.6	2.70	
23		(10.7)	230				4.2	(2.85)	

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

August 1957 (M3000)F2

	_			Table 4	9							0.0113	Table 5	0		
Huancay	o, Peru	(12,005,	75.3°W)					August 1957	Falklan	d Is. (51	,7°S, 57	.B.M)				
Time	h¹F2	foF2	h'F	foFl	h'E	foE	foEs	(M3000)F2	Time	h'F2	foF2	h*F	foFl	h*E	foE	foEs
00		8.1	220					3,00	00		4.0	320				<1.2
01		7.8	225					3.10	01	1	4.1	330				
02		6.8	225					3, 15	02		4.0	315				
03		5.9	235					3.10	03		3.9	310				
04		5.1	235					3.15	04	ı	3.7	305				
05		4.4	245					3.10	05	1	3.7	305				
06		4.8	265			E	2.7	2.90	06		3.6	290				
07		8.5	250		115	2.50	5.9	3.05	07	l .	6.2	245		155	1.7	
08		10.5	230		107	3,20	7.4	2.85	08	1	8.2	225		130	2.3	2.4
09		11.5	220		107		9.0	2.60	09		9.5	225		115	2.7	3.0
10		11.5	205				9.2	2.45	10		10.3	230		115	3.0	3.5
11		11.3	200				11.0	2.25	11		10.6	225		110	3.2	3.7
12		10.6	<200				11.0	2.20	12		11.0	235		110	3.3	3.4
13		10.4	195				10.0	2.25	13	1	9.9	230		110	3.3	3.4
14		10.3	190				9.0	2.20	14	l	9.5	235		110	3.0	3.6
15		10.2	200				9.0	2,20	15	1	8.9	235		120	2.7	3.4
16		10.0	220				9.0	2.20	16	ì	8.1	235		125	2.1	3.1
17		9.7	250		109		7.1	2.25	17		7.1	230			1.7	2.6
18		9.4	290		149	1.60	4.3	2.30	18		5.4	220				2.8
19		8.5	375					2.20	19		4.7	235				<1.4
20		8.2	(355)					2.35	20		4.0	245				<1.4
21		8.5	275				3.2	2.60	21		4.0	<300				2.0
22		8.5	220				3.2	2.85	22		3.9	<330				<1.5
23		8.4	220				3.4	2.90	23		4.0	<350				<1.4

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

me in io.5 seconds.

Time: 60.0° W. 5weep: 0.67 Mc to 25.0 Mc in 5 minutes, automatic operation.

Juliusruh/Rügen, Germany (54.6°N) 13.4°E July 1957 Time h°F2 foF2 h°F foF1 h°E foE foEs (M3000)F2 00 7.0 2.40 01 6.6 2.45 02 6.2 E 1.2 2.45 03 5.9 1.2 E 1.3 2.50 04 5.8 2.00 2.2 2.50 05 6.2 2.65 3.2 2.50 06 6.8 2.65 3.2 2.50 07 7.1 4.8 3.05 3.5 2.55 07 7.6 5.4 3.50 4.0 2.60 09 7.8 5.4 3.50 4.0 2.60 10 7.6 5.4 3.60 4.1 2.55 12 7.8 5.5 3.60 4.1 2.55 12 7.8 <th></th> <th></th> <th></th> <th>Table 5</th> <th></th> <th></th> <th></th> <th></th>				Table 5				
00 7.0 2.40 01 6.6 2.45 02 6.2 E 1.2 2.45 03 5.9 1.2 E 1.3 2.50 04 5.8 1.30 1.5 2.50 05 6.2 2.65 3.2 2.50 06 6.8 2.65 3.2 2.50 07 7.1 4.8 3.05 3.5 2.55 00 7.6 5.1 3.35 3.9 2.60 09 7.8 5.4 3.50 4.0 2.60 10 7.6 5.4 3.60 4.1 2.55 11 7.8 5.5 3.65 4.1 2.55 12 7.8 5.5 3.60 4.1 2.55 13 7.8 5.5 3.60 4.0 2.55 14 7.7 5.6 3.60 3.8 <td>Juliusr</td> <td>uh/Rugen, German</td> <td>y (54.6°</td> <td>N, 13.4°E</td> <td>)</td> <td></td> <td></td> <td>July 1957</td>	Juliusr	uh/Rugen, German	y (54.6°	N, 13.4°E)			July 1957
01 6.6 2,45 02 6.2 E 1,2 2,45 03 5,9 1,2 E 1,30 1,5 2,50 04 5,8 1,30 1,5 2,50 2,50 2,60 2,60 2,2 2,60 2,60 2,2 2,60 3,2 2,50 2,50 2,55 3,2 2,55 2,55 2,55 3,50 4,0 2,60 2,55 13 3,60 4,1 2,55 13 3,60 4,1 2,55 13 3,60	Time	h'F2 foF2	h'F	foFl	h*E	foE	foEs	(M3000)F2
02 6.2 E 1.2 2.45 03 5.9 1.2 E 1.3 2.50 04 5.8 1.30 1.5 2.50 05 6.2 2.00 2.2 2.60 06 6.8 2.65 3.2 2.55 07 7,1 4.8 3.05 3.5 2.55 09 7.6 5.1 3.35 3.9 2.60 10 7.6 5.4 3.50 4.0 2.60 11 7.8 5.5 3.65 4.1 2.55 12 7.8 5.5 3.65 4.1 2.55 13 7.8 5.5 3.60 4.1 2.55 14 7.7 5.6 3.60 4.1 2.55 15 7.7 5.5 3.60 4.0 2.55 16 7.4 5.3 3.45 3.7 2.65 17 7.5 5.1 3.20 3.6 2.65 18 7.5 2.80 3.7 2.65 19 7.8 2.25 3.0 2.70 20 7.6 1.70 2.7 2.70 21 7.6 2.55 22 7.7	00	7.0						2.40
02 6.2 E 1.2 2.45 03 5.8 1.30 1.5 2.50 05 6.2 2.00 2.2 2.60 06 6.8 2.65 3.2 2.50 07 7,1 4.8 3.05 3.5 2.55 08 7.6 5.1 3.35 3.9 2.60 09 7.8 5.4 3.50 4.0 2.60 10 7.6 5.4 3.60 4.1 2.55 11 7.8 5.5 3.65 4.1 2.55 12 7.8 5.5 3.65 4.1 2.55 13 7.8 5.5 3.60 4.1 2.55 14 7.7 5.6 3.60 4.0 2.55 15 7.7 5.5 3.50 2.55 16 7.4 5.3 3.45 3.7 2.60 17 7.5 5.1 3.20 3.6 2.65 18 7.5 2.80 3.7 2.65 19 7.8 2.25 3.0 2.70 20 7.6 1.70 2.7 2.70 21 7.6 2.55 22 7.7	01	6.6						2.45
03	02	6.2					1.2	2.45
05 6.2 2,00 2.2 2,60 06 6.8 2,65 3,2 2,50 07 7,1 4.8 3.05 3.5 2,55 08 7.6 5,1 3.35 3.9 2,60 10 7.6 5.4 3.60 4.1 2,50 11 7.8 5.5 3.60 4.1 2,55 12 7.8 5.5 3.60 4.1 2,55 13 7.8 5.5 3.60 4.1 2,55 14 7.7 5.6 3.60 4.0 2,55 15 7.7 5.5 3.50 2,55 16 7.4 5.3 3.45 3.7 2,55 17 7.5 5.1 3.20 3.6 2,65 18 7.5 2.80 3.7 2,65 19 7.8 2.25 3.0 2,70 20 7.6 1.70 2.7 2.70 21 7.6 2.55	03	5.9		1.2		E	1.3	
66 68 2,65 3,2 2,55 07 7,1 4,8 3,05 3,5 2,55 00 7,6 5,1 3,35 3,9 2,60 09 7,8 5,4 3,50 4,0 2,60 10 7,6 5,4 3,60 4,1 2,50 11 7,8 5,5 3,60 4,1 2,55 12 7,8 5,5 3,60 4,1 2,55 13 7,8 5,5 3,60 4,0 2,55 14 7,7 5,6 3,60 4,0 2,55 15 7,7 5,5 3,50 2,55 16 7,4 5,3 3,45 3,7 2,60 17 7,5 5,1 3,20 3,6 2,65 18 7,5 2,80 3,7 2,65 19 7,8 2,25 3,0 2,70 2	04	5.8				1.30	1.5	2.50
07 7,1 4,8 3,05 3,5 2,55 00 7,6 5,1 3,35 3,9 2,60 09 7,8 5,4 3,50 4,0 2,60 10 7,6 5,4 3,60 4,1 2,50 11 7,8 5,5 3,65 4,1 2,55 12 7,8 5,5 3,60 4,1 2,55 13 7,8 5,5 3,60 4,1 2,55 14 7,7 5,6 3,60 4,0 2,55 15 7,7 5,5 3,50 2,55 16 7,4 5,3 3,45 3,7 2,60 17 7,5 5,1 3,20 3,6 2,65 18 7,5 2,80 3,7 2,65 19 7,8 2,25 3,0 2,70 20 7,6 1,70 2,7 2,70 21 7	05	6.2				2.00	2,2	
08	06	6.8				2.65	3.2	2.50
00	07	7.1		4.8		3,05	3.5	2.55
10 7.6 5.4 3.60 4.1 2.50 11 7.8 5.5 3.65 4.1 2.55 12 7.8 5.5 3.60 4.1 2.55 13 7.8 5.5 3.60 4.0 2.55 14 7.7 5.6 3.60 3.8 2.50 15 7.7 5.5 3.50 2.55 16 7.4 5.3 3.45 3.7 2.60 17 7.5 5.1 3.20 3.6 2.65 18 7.5 2.80 3.7 2.65 19 7.8 2.25 3.0 2.70 20 7.6 1.70 2.7 2.70 21 7.6 1.6 2.60 2.55 22 7.7 2.55 3.50 3.7 3.6 3.6 2.65	08			5.1		3.35	3.9	2,60
11 7.8 5.5 3.65 4.1 2.55 12 7.8 5.5 3.60 4.1 2.55 13 7.8 5.5 3.60 4.0 2.55 14 7.7 5.6 3.60 3.8 2.50 15 7.7 5.5 3.50 2.55 16 7.4 5.3 3.45 3.7 2.60 17 7.5 5.1 3.20 3.6 2.65 18 7.5 2.80 3.7 2.65 19 7.8 2.25 3.0 2.70 20 7.6 1.70 2.7 2.70 21 7.6 1.6 2.60 2.55 22 7.7 2.55 3.50 3.7 3.6 3.6 2.60 3.6 2.60 3.6 2.60 3.6 2.60 3.7 2.60 3.7 2.70 3.7 3.0 3.7 2.55 3.7	09	7.8		5.4		3.50	4.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10			5.4		3.60	4.1	2.50
13 7.8 5.5 3.60 4.0 2.55 14 7.7 5.6 3.60 3.8 2.55 15 7.7 5.5 3.50 2.55 16 7.4 5.3 3.45 3.7 2.60 17 7.5 5.1 3.20 3.6 2.65 18 7.5 2.80 3.7 2.65 19 7.8 2.25 3.0 2.70 20 7.6 1.70 2.7 2.70 21 7.6 1.6 2.60 22 7.7 2.55		7.8		5.5		3.65	4.1	
14 7.7 5.6 3.60 3.8 2.50 15 7.7 5.5 3.50 3.62 16 7.4 5.3 3.45 3.7 2.60 17 7.5 5.1 3.20 3.6 2.65 18 7.5 2.80 3.7 2.65 19 7.8 2.25 3.0 2.70 20 7.6 1.70 2.7 2.70 21 7.6 2.55	12	7.8				3.60	4.1	
15	13	7.8		5.5		3.60		
16	14	7.7		5.6		3.60	3.8	
17	15	7.7		5.5		3.50		
18	16	7.4		5.3			3.7	
19 7.8 2.25 3.0 2.70 20 7.6 1.70 2.7 2.70 21 7.6 1.6 2.60 22 7.7 2.55	17	7.5		5.1				
20 7.6 1.70 2.7 2.70 21 7.6 1.6 2.60 22 7.7 2.55	18	7.5						
21 7.6 2.60 22 7.7 2.55	19	7.8				2.25		
22 7.7 2.55		7.6				1.70		
							1.6	
23 7.2 2.45		7.7						
	23	7.2						2.45

Time: 15.0°E. Sweep: 0.5 Mc to 20.0 Mc in 20 seconds.

	Haiz, Ger	many (or	.6°N, 1	U. I'E)				July 1957
Time	h¹F2	f oF2	h'F	foFl	h*E	foE	f Es	(M3000)F2
00		7.28	302				2.5	2.49
01		6.87	298				2.8	2.52
02	1	6.56	292				2.4	2.50
03	i	6.16	300				2.4	2.50
04	1	6.17	299			Ε	2.9	2.56
05		6.17	266		108		3.1	2.64
06	(488)	6.80	250	4.30	106	2,62	3.7	2.65
07	455	7.05	232	4.70	106	3.00	4.3	2.66
08	448	7.64	228	5.04	105	3.41	4.6	2.68
09	431	7.81	220	5.25	106	3,60	5.0	2,60
10	405	8.05	223	5.43	105	3.70	5.4	2.58
11	434	8.30	215	5.65	103	3.82	5.3	2.60
12	458	8.07	209	5.65	103	3,90	5.3	2.55
13	423	8,20	218	5.70	102	3.86	5.2	2,52
14	430	7.96	217	5.80	102	3.82	5.7	2.60
15	408	7.95	220	5.68	105	3.75	5.1	2.60
16	408	7.73	222	5.45	105	3,63	4.9	2.65
17	430	7.80	230	5,20	106	3.34	4.6	2.65
18	!	7.83	246		106	3.04	4.1	2.70
19	ſ	8.18	265		108	2.54	4.6	2.75
20	1	7.99	270		110	1.92	3.7	2.75
21		7.76	269				3.3	2.67
22		7.92	282				3.2	2.55
23		7.55	286				3.2	2.55

Time: 15.0°E.
5weep: 1.0 Mc to 16.0 Mc in 4 minutes, automatic operation.

				Table 53	3			
Wakkana	i, Japan	(45.4°N,	141.7°E	Ξ)				July 1957
Time	h*F2	foF2	h'F	foFl	h*E	foE	foEs	(M3000)F2
00 01 02 03 04 05 06 07	(400) 350 350 365	8.2 8.0 7.6 7.0 7.1 8.0 8.8 8.4 8.4	305 300 290 290 300 265 250 240 250	3.8 4.5 4.8 5.3	11.5	1.50 2.35 3.00 3.35 3.50	4.6 4.7 3.5 3.5 3.5 3.5 3.5 3.6 5.8 6.4	2.55 2.55 2.50 2.55 2.55 2.60 2.65 2.65 2.55
09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	430 445 460 425 440 430 410 390 350	7.9 8.2 7.6 7.8 8.0 7.6 7.9 8.0 7.8 7.9 8.0 8.4 8.2	(250) 235 220 250 250 240 240 250 250 260 290 290 305 305	5. 4 5. 7 5. 6 5. 7 5. 7 5. 7 5. 5 5. 3 (4. 7)		3.70 3.75 3.75 3.70 3.80 3.80 3.65 3.50 2.40	7.7 6.6 7.5 5.9 6.0 5.5 5.0 4.3 4.3 4.8 5.0 5.0	2.60 2.50 2.60 2.55 2.60 2.60 2.65 2.70 2.75 2.70 2.65 2.70 2.65 2.50 2.55

Time: 135.0°E. Sweep: 1.0 Nc to 20.7 Mc in 1 minute.

Akita,	Japan (39	.7°N, 14	0.1°E)	Table 5	<u>i4</u>			July 1957
Time	h*F2	foF2	h'F	foFl	h ⁴ E	foE	foEs	(M3000)F2
00		8,6	310				4.6	2,55
01		8.2	300				4.2	2.60
02		7.9	300				4.2	2.60
03		7.5	300				3.5	2.55
04		7.5	310				3.0	2.55
05	340	8.0	270			2.00	3.5	2.65
06	300	8.8	250	4.5		2.80	3.6	2,70
07	310	8.9	245	5.1		3.25	5.1	2.80
08	340	8.9	245	5.5		3,50	6.0	2,70
09	400	8.7	240	5.6		3.75	6.6	2,60
10	400	8.8	240	5.8		3.90	6.8	2.50
11	410	8.6	225	5.9		4.00	6.3	2.50
12	400	8.9	230	5.9		4.00	6.1	2.55
13	400	9.0	225	5.9		4.00	6.4	2.55
14	390	9.1	240	5.6		3.90	5.0	2,60
15	390	8.8	240	5.5		3.80	5.2	2,65
16	370	8.8	250	5.5		3.50	4.7	2,70
17	340	8.8	250	5.0		3.05	4.6	2.70
18	300	8.8	280			2.45	4.8	2.75
19		8.2	290				4.7	2.70
20		8.1	300				4.4	2,60
21		8.3	310				4.0	2.50
22		8.2	330				3.8	2.55
23		8.4	330				4.5	2.50

Time: 135.0°E. Sweep: 0.85 Mc to 22.0 Mc in 2 minutes.

	× (05			Table 5	<u>5</u>				V	a, Japan	(21 20N	120 49	Table 5	<u>6</u>			July 1957
Tokyo,	Japan (35	.7°N, 13	9.5°E)					July 1957	Yamagaw				C)				
Time	h'F2	f oF2	h'F	foF1	h*E	foE	foEs	(M3000)F2	Time	h'F2	foF2	h'F	foFl	h E	foE	foEs	(M3000)F2
00		9.1	345				3.8	2.50	00		9.5	300				3,7	2,65
01		8.7	320				3.1	2.60	01		9.4	295				3.5	2,70
02		8.4	310				3.0	2,60	02		9.1	280				3.6	2,80
03		7.9	3 2 5				3.0	2.55	03		8.5	280				3,3	2,70
04		7.7	330				2.4	2,50	04		7.8	290				3,2	2,70
05		7.9	295					2.65	05		7.6	280				3.2	2.75
06	310	9.0	260			2.70	3,0	2.75	06		8.5	250			2, 10	3.2	2.95
07	310	9,2	260	5.0		3,20	3.9	2,65	07	265	9.3	240			2.85	3.8	3,00
08	335	9.0	250	(5,6)		3,60	4.9	2,60	00	(250)	9.0	235			3.40	5.4	2,90
09	410	8.9	2 55	6.0		(3.95)	6.0	2.45	09	(420)	8.9	235	5.7		3.80	5.7	2.70
10	440	9.0	275	6.0			6.3	2,40	10	405	9, 2	230	6,2		4,00	5.6	2,60
11	440	9.2	255	6.2			5.7	2.45	11	390	9.7	230	6.2		4.10	5.4	2.55
12	430	9.4	260	6.1		4.15	5.9	2.45	12	400	10,2	230	6.2		4,20	5.3	2.55
13	420	9.9	250	5.9		3.95	5.6	2,50	13	390	10.6	225	6.2		4, 10	5.2	2.60
14	405	10.1	250	5.8		3,90	5.1	2,50	14	385	11.0	230	6.1		4.10	5.5	2.65
15	400	9.7	2 55	5.6		3.80	4.9	2.50	15	380	11.0	240	5.9		4.00	5.2	2.65
16	380	9.7	255	5.4		(3.50)	5.0	2.55	16	355	11.0	250	5.8		3.70	4.9	2.70
17 .	350	9.5	280	5 .2		3.00	4.8	2.65	17	340	11.1	250	5.4		3,35	4.9	2.75
18	320	9.4	300			2,30	5.0	2.70	18	295	10.4	255			2.75	5.9	2.80
19		8.6	300				3.9	2.60	19		9.5	275			1.85	4.3	2.75
20		8.4	330				, 4.9	2,40	20		9.0	300				4.1	2.55
21		8.7	350				3.9	2,40	21		9.2	320				3.5	2.45
22		8.8	355				4.2	2.40	22		9.2	325				3.2	2,50
23		9.0	355				3.9	2.45	23		9.3	320				3.2	2.55

Time: 135.0°E. Sweep: 1.0 Mc to 20.0 Mc in 20 seconds.

Time: 135.0°E. Sweep: 1.0 Mc to 20.0 Mc in 1 minute.

Talara,	Peru (4.	6°S, 81.	,3°W)	Table S	57			July 1957	Falkland	i Is. (51	.7°S, 57.	.8°W)	Table 5	0			July 1957
Time	h'F2	f oF2	h*F	foFl	h*E	foE	foEs	(M3000)F2	Time	h'F2	f oF2	h*F	foFl	h*E	foE	foEs	(M3000)F2
00 01 02 03 04 05 06 07 00 09 10 11 12 13 14 15 16 17 18 19 20 21 22		9.8 9.0 9.2 8.5 7.0 5.4 4.4 4.7 7.0 8.6 9.9 10.5 10.5 10.5 10.3 10.3 10.0 10.0	225 235 235 240 230 230 230 240 270 245 225 220 210 210 210 210 210 215 235 275 340 340 340 370 270		125 109 107 105 106 106 105 105 105 123	2.15 3.00 3.45 3.80 4.00 4.00 3.40 3.40 3.40 3.40 2.20	2.6 >3.1 4.3 4.5 5.0 4.3 4.2	2.85 2.90 3.00 3.15 3.25 3.10 3.00 2.95 2.80 2.50 2.30 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.1	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22		3.4 3.4 3.5 3.4 3.4 3.2 3.0 4.0 6.9 8.4 10.1 10.4 9.3 8.6 7.5 5.7 4.7 4.7 4.3 2 3.3 3.3	350 350 350 335 335 300 255 220 220 230 230 230 230 230 230 225 220 240 255 220 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 235 230 230 230 230 230 230 230 230 230 230	10.1	165 150 125 120 115 115 110 115 120	(1.40) 2.00 2.70 2.70 2.90 3.00 2.75 2.40 2.00	2.9 3.3 3.5 3.6 3.2 3.0 2.8 (2.7) (2.2) (1.7) (1.9)	2. 45 2. 45 2. 45 2. 45 2. 45 2. 45 2. 70 2. 75 3. 35 3. 30
																(1.7)	

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 13.5 seconds.

Time: $60.0^{\rm oW}$. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes, automatic operation.

Moscow,	U.S.S.R.	(55.5°N	, 37.3°E	Table 5	9			June 1957	Godhavn	, Greenla	nd (69,2	PN, 53.5	Table 6	<u>o</u>			May 1957
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	f Es	(M3000)F2	Time	h*F2	foF2	h*Fl	foFl	h • E	foE	f Es	(M3000)F2
00	320	7.0						2,45	00		(5.6)			144			2.65
01	320	6.8				E		2.46	01		(5.3)			<140			2.65
02	320	6.6			130	1.0		2,47	02		(5.3)			134			(2.65)
03	360	6.7	310	3.1	110	1.6		2,47	03		(5.2)			131	(1.90)		2,60
04	330	7.0	280	3.7	110	2.2		2.54	04		(5.3)			117	(2,20)		2.70
05	360	7.6	260	4.6	110	2.7		2,52	05		(5.0)		3.9	113	(2,40)		(2.80)
06	400	7.6	240	4.9	110	3.1		2,50	06		(5.0)		(4.1)	111	2.70		2.70
07	440	7.8	250	5.3	110	3.4		2, 42	07		(5.0)		4.3	109	3.00		G
80	470	7.4	240	5,6	105	3,6		2,45	08		(5.4)		(4.4)	109	3,20		G
09	470	7.4	230	5.6	100	3.7		2,44	09		(6.3)		(4.6)	105	(3.30)		(2.65)
10	480	7.8	230	5.6	100	3.8		2,40	10		(6.6)		(4.9)	105	(3,40)		2,65
11	480	7.6	240	5.7	105	3.8		2.39	11		6.8		5.0	105	(3,50)		2.55
12	460	7.8	240	5.7	105	3.8		2,45	12		(6.8)		4.9	105	(3.50)		(2.55)
13	460	7.6	250	5.6	110	3.8		2,46	13		(6.4)		5.0	105	(3,50)		(2.50)
14	460	7.4	240	5,6	100	3.7		2,45	14		(6.2)		5.0	102	(3.40)		
15	460	7.2	240	5.5	110	3.6		2, 43	15		(6.3)		4.9	106	(3,35)		(2.45)
16	440	7.1	240	5.3	110	3.4		2.53	16		(6.1)		4.8	107	(3,20)		2.50
17	390	7.0	260	5,0	110	3.1		2.59	17		(6.2)		4.7	107	3.10		2.50
18	370	7.2	260	4.5	110	2.7		2,64	18		(6,2)		4.5	109	(2.90)		2,60
19	310	7.0	280	3.7	110	2.2		2,70	19		(6.4)		(4.3)	109	(2.75)		2,60
20	290	7.2			110	1.4		2.67	20		(6.3)		(4,0)	112	2.50		2.60
21	300	7.3				E		2,60	21		(6.2)		(3.8)	119	(2,20)		2.65
22	300	7.2						2,55	22		(6.0)			<139	(2.10)		2.75
23	310	7.2						2,50	23		(5.9)			135	(1.80)		2.70

Time: 30.0°E. Sweep: 0.5 Mc to 20.0 Mc in 10 to 30 seconds.

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 16.2 seconds.

April 1956

(M3000)F2

2.85

				lable b	<u>.1</u>			
Moscow,	U.5.5.R.	(55.5°N	, 37.3°E	()				May 1957
Time	h*F2	foF2	h*Fl	foF1	h*E	foE	f Es	(M3000)F2
00	300	6.7						2,50
01	310	6.5						2,48
02	310	6.3				E		2.46
03	320	6.1			120	1.3		2,50
04	320	6.7	280	3.6	110	1.9		2.61
05	320	7.3	260	4.5	110	2.5		2.63
06	340	7.7	250	4.9	110	2.9		2.63
07	380	7.8	240	5.2	110	3.3		2.56
08	420	7.7	240	5.6	110	3.5		2.47
09	410	8.1	230	5.5	110	3.6		2.52
10	420	8.6	230	5.7	110	3.7		2.50
11	410	8.7	230	5.8	110	3.7		2.50
12	400	8.7	230	5.8	110	3.7		2.53
13	390	8.6	230	5.8	110	3.7		2.55
14	390	8.5	230	5.8	110	3.6		2.53
15	370	8.4	240	5.6	110	3.5		2.59
16	340	8.1	240	5.1	110	3.3		2.64
17	320	8.1	250	4.8	110	2.9		2.70
18	290	8.1	260	4.1	110	2.4		2.72
19	280	8.1		(3,5)	110	1.7		2.75
20	280	7.8			(120)	1.3		2.70
21	280	7.7				E		2,60
22	280	7.4						2.55
23	290	7.1						2.51
	1							

Time: 30.0°E. 5weep: 0.5 Mc to 20.0 Mc in 10 to 30 seconds.

D-into-	- F	(46 60N	0.305)	Table 6	2		5.01	tember 1956
Time	h'F2	foF2	h*F1	foF1	h*E	foE	f Es	(M3000)F2
00	295	6.4					1.7	(2,60)
01	300	6.2					1.6	(2.50)
02	300	5.8						(2.55)
03	<305	5.4						2.50
04	<290	5.2						2.55
05	275	4.7				E		2.75
06	260	6.3	250	2.4		1.9		3.05
07	270	7.9	250	4.2	110	2.7	2.8	(2.95)
08	255	>8.4	235	4.6	105	3.1	3.4	(3.00)
09	260	9.3	230	5.0	105	3.3	3.8	(2,95)
10	280	9.5	230	5.4	100	3.6	4.5	(2.95)
11	300	9.9	230	5.5	100	3.6	4.4	2.80
12	320	10.5	235	6.0	100	3.5	4.0	2.60
13	320	11.3	230	5.8	100	3.4	4.2	(2,60)
14	305	10.4	235	5.6	105	3.4	3.8	
15	290	10.4	240	5.5	105	3.3	3.6	(2.70)
16	280	(8.6)	245	4.8	110	3.0	3.4	
17	265	8.5	255	4.1	115	2.6	2.9	
18	250	(7.6)				E	2.6	
19	240	(7.6)				E	2.7	
20	250	(7.0)					2.2	
21	250	6.9					2.3	
22	270	6.6					2.0	
23	280	6.6					1.4	

Time: 0.0°. Sweep: 1.6 Mc to 16.8 Mc in 1 minute.

					Table 63	1			
	Casabla	nca, Mor	оссо (33,	6°N, 7.6	°W)			5e ₁	otember 1956
	Time	h*F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
Т	00	<300	9.00					2.3	2.60
	01	<300	>8.80					2.3	2.60
	02	<300	8.35					1.9	2.60
	03	<290	7.85						2.60
	04	<280	7.10					1.9	2,60
	05	<290	6.75					2.1	2.60
	06	260	6.70					2.4	2.90
	07	245	8.35	235		125	2,30	3.1	3,20
	08	250	9.65	240	4.00	115	3.00	3.5	3.20
	09	250	10.55	230	(4.90)	110	3,35	3.8	3.10
	10	280	10.30	230		110	3.60	4.0	2.90
	11	(330)	11.45			110	3,60	3.9	2.80
	12	(340)		(250)		110			2.70
	13	350	12.20		6,60	110	(3,60)		2.60
	14	345	>12,10			110	(3,60)		2.65
	15	330	>12.30	(245)		110	(3.50)		2.70
	16	(300)	12,00	250		115	3,35		2.70
	17	(300)		250		115	3.00	3.7	(2.80)
	18	275	11.60	260		130	2.20	3.6	2.85
	19	255	>10.80					3.4	(2.90)
	20	<250	>9.00					3.2	2.70
	21	<275	>9.00					3,2	2.50
	22	<285	>9,10					3.0	2.60
	23	<300	>9.00					2.3	2.60

Time: 0.0° . 5weep: 1.6 Mc to 16.0 Mc in 1 minute 15 seconds.

				Table 6	4			
8udapes:	t, Hungar	y (47.4°	N, 19.2°	E)				July 1956
Time	h*F2	foF2	h'F1	foFl	h*E	foE	f Es	(M3000)F2
00	315	6.3					2.7	
01	310	6.3						
02	300	5.9					2.4	
03	295	5.5					2.6	
04	260	6.0			125	2.3	3.3	
05	300	6.8	245	4.3	120	2.8	4.0	
06	330	7.0	235	4.9	115	3.2	4.8	
07	335	7.2	230	5.1	110	3.3	5.2	
08	345	7.6	225	5.2	110	3.5	5.4	
09	360	7.9	220	5.3	110	3.5	5.6	
10	360	8.2	220	5.4	110	3.5	5.1	
11	370	8.1	220	5.4	110	3.5	4.6	
12	355	8.0	220	5.3	110	3.4	4.4	
13	360	7.8	2 30	5.4	110	3.4	4.9	
14	360	7.8	230	5.2	110	3.3	4.8	
15	340	7.4	240	5.0	115	3.2	4.3	
16	3 0 0	7.3	240	4.6	115	3.0	3.6	
17	300	7.7	2 55	3.9	120	2.5	3.7	
18	280	8.1					3.9	
19	270	8.2					3.6	
20	280	7.0					3.7	
21	300	6.9					3.1	
22	310	6.9					2.8	
23	310	6.8					2.6	

h*E

110

foE f Es

2.7 3.2 3.5 3.7 3.8 3.9 3.8 3.7 3.6 3.3 2.7

4.0 4.0 4.2

2.0 2.0

2.1

Time

Time: 0.0°. 5weep: 1.0 Mc to 20.0 Mc in 35 seconds.

Ahmedabad, India (23,0°N, 72,6°E)

12.8

11.6 10.1 7.4 6.8 7.0 8.0 10.2 11.3 11.8 14.2 15.2 15.6 15.7 15.8 >15.2 14.9 13.9 13.9 13.9

h*F2

280 265 250

Delhi,	India (28	3.6°N. 77	.1ºE)	Table 6	5			April 1956
Time		foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	320	9.3						3.00
01	320	>8.9						3.00
02								
03								
04	320	6.9						3,00
05	300	7.0						3,10
06	280	8.5						3,25
07	260	10.0						3,40
08	280	11.1						3.25
09	320	11.8						3.00
10	360	12.8						2.80
11	360	14.2						2.80
12	340	14.7						2.90
13	360	15.2						2.80
14	360	15.7						2.80
15	320	15.2						3.00
16	320	>14.8						3.00
17	320	14.5						3.00
18	310	13.9						3.05
19	320	12.9						3.00
20	320	11.7						3.00
21	360	10.4						2.80
22	320	10.0						3.00
23	320	9.5						3.00

Time: 75.0°E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Time:	75.0°E.
Swaan.	0 6 11-

Sweep: 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

245

4.4 4.7 5.0 5.2 5.3 5.5 5.4 5.2 5.0 4.7 4.5

				Table 67	7			
Calcutt	a, India	(22,9°N,	88.5°E)					April 1956
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	f Es	(M3000)F2
00	260	11.5					2,1	3, 4
01	250	11.5					2, 1	3,55
02	230	11.0						3,55
03	230	7.5					1.6	3.1
04	240	7.0					2.0	3, 1
05	250	5.9					2.1	3.0
06	250	7.5			120	1.9	2.1	3.1
07	250	10.2	240		110	2.8	4.0	3.3
08	250	11.5	230	4.7	100	3.3	4.4	3.1
09	265	11.6	220	5.0	100	3.5	4.4	2.95
10	300	12.0	220	5.1	100	3.5		2.8
11	3 2 0	12.2	210	5.3	100	3.7		2.8
12	360	12.3	215	5.5	100	3.7		2.8
13	360	12.5	220	5.5	100	3.8		3.0
14	340	12.5	225	5.3	100	3.6		2.95
15	330	12.5	220	5.0	100	3.5		3.0
16	300	12.2	230	4.8	100	3.4	3.6	3.1
17	300	12.0	250	5.0	100	3.0	3.6	3.1
18	270	12.0			100	2.0	3, 3	3.2
19	295	11.7					3.8	3.0
20	300	11.5					3.0	3, 1
21	270	11.5					2.0	3.2
22	275	11.5					2.1	3.3
23	265	11.5					2 1	3.4

Time

	.1									-		
me:	90.0°E.											 Time
eep:	1.0 Mc	to	13.0	Mc	in	l minu	te	55	seconds.			Swee

Madras.	India (1	3.0°N, 8	0.2°E)	Table 6	2			April 1956
Time	*	foF2	h'Fl	foFl	h¹E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	280 360 440 480 520 520 520 520 520 480 480 480 440 (440)	9.4 11.7 12.4 11.9 12.0 13.0 13.6 13.5 13.5 12.1	h·FI	1 or 1	h E	101	118	3, 25 2,80 2,50 2, 30 2, 20 2,
22 23								

Time: 75.0° E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

				Table 7	<u>1</u>			
Delhi,	India (28	.6°N, 77.	.1°E)					March 1956
Time	*	f oF2	h'Fl	foFl	h*E	foE	f Es	(M3000)F2
00	300	>7.3						3, 10
01	280	6.9						3, 25
02	(300)	(7,6)						(3, 10)
03								
04	320	5.0						3,00
05	320	4.8						3.00
06	280	6.0						3,25
07	240	8,9						3,60
08	280	10,9						3, 25
09	280	12, 2						3,25
10	310	13.2						3.05
11	320	14.0						3.00
12	320	14.7						3.00
13	320	15,2						3,00
14	360	>15.0						2.80
15	320	>15,2						3,00
16	320	>15.4						3,00
17	280	15.0						3,25
18	280	>15.2						3,25
19	280	14.6						3, 25
20	280	13,5						3.25
21	280	11.4						3.25
22	320	9.5						3,00
23	320	8.7						3.00

Time: 75.0°E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Bombay, India (19.0°N, 73.0°E) Table 60 April 1956									
Time	4	foF2	h'Fl	foFl	h¹E	foE	f Es	(M3000)F2	
00 01 02 03 04 05 06 07 08:30 09 10 11 12 13 14 15 16 17 18	360 390 420 420 480 600 600 570 480 420 390 360 330	6.5 7.9 9.5 10.2 10.9 11.8 12.5 12.9 12.2 11.4 11.0 10.6 9.7 8.7 5.6.4						2.80 2.65 2.55 2.55 2.30 2.15 2.00 2.00 2.05 2.20 2.35 2.55 2.65 2.80 2.80 2.95	

Time: 75.0°E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

	India (4.51		C . D	o.F.	April 1956 (M3000)F2
Time	*	foF2	h'Fl	foFl	h • E	foE	f Es	(#I30007F2
00								
01								
02								
03								
04								
05								0.00
06	320	8.3						3.00
07	400	10.7						2.60
08	440	11.2						2.50
09	480	11.5						2.30
10	480	11.2						2.30
11	480	11.2						2.30
12	480	11.5						2.30
13	480	11.5						2.30
14	480	11.6						2,30
15	480	11.2						2,30
16	480	11.0						2.30
17	480	10.4						2.30
18	480	10.0						2.30
19	480	9.8						2.30
20	(480)	(9.2)						(2,30)
21 21:30	(480)	(9.0)						(2,30)

Time: 75.0°E. Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation. *Height at 0.83 foF2.

Ahmedab	ad, Indi	a (23.0°N	, 72.6°E	Table 7	2			March 1956
Time	h*F2	f oF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	260	11.4						2.80
01	250	11.3						3,05
02	240	10.4						3.15
03	230	8.0						3, 20
04	240	6.2						2.90
05	255	5.0						2.85
06	275	5.3					1.9	2.85
07	245	9.2			115	2,2	3.7	3.20
80	250	10.9	230	4.4	110	2.9	3.8	3.15
09	255	12.5	225	4.7	107	3,3	3.8	2,90
10	275	13.6	225	5.1	107	3,6		2.80
11	280	15.1	215	5.2	105	3.8		2.80
12	335	15.4	215	5.3	106	3.9		2.70
13	350	15.4	230	5.3	107	3.8		<2.70
14	350	15.4	235	5.2	107	3.8		2.65
15	335	15.5	230	5.1	110	3.6		2.70
16	290	15.6	240	5.0	110	3.2		2.75
17	265	>15.3	250	4.6	115	2,6		<2.75
18	255	15.0						2.80
19	270	>15.0						<2.75
20	260	>15.0						<2.80
21	230	14.8						2.85
22	250	14.8						2.80
23	260	12,8						2.90

Time: 75.0°E. Sweep: 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

US COMM-NBS-BL

03 Commercia Standarda Benider, Colo.

MBS 490

POINT BARROW, ALASKA

71.3°N, 156.8°W

Fig. II.

OCTOBER 1957

OCTOBER 1957

64.9°N, 147.8°W

TAINBANNS, ALASKA GOTOBEI

NBS 490

NBS 490

Fig. 43. BAKER LAKE, CANADA 64.3°N, 96.0°W SEPTEMBER 1957

NBS 503 Commerce-Standards-Besiden

NB\$ 49

405 400

39.7°N, 140.1°E

SEPTEMBER 1957

Fig. 58. WAKKANAI, JAPAN

SEPTEMBER 1957

Fig. 60. AKITA, JAPAN

SEPTEMBER 1957

NBS 490

....

51.7°S, 57.8°W

1 19. 100.

NBS 496

69.2°N,53.5°W

MAY 1957

13.0°N, 80.2°E

---- LIMITING FREQUENCY = 7 Mc.

Fig. 138. MADRAS, INDIA

APRIL 1956

Fig. 140. TIRUCHY, INDIA

APRIL 1956

APRIL 1956

Index of Tables and Graphs of Ionospheric Data

in CRPL-F163 (Part A)

<u>Table page</u> <u>Fi</u>	quie page
Adak, Alaska	
October 1957	19
Ahmedabad, India	
April 1956 11	4 5
March 1956 12	4 8
Akita, Japan	_
September 1957 5	27
July 1957 9	39
Anchorage, Alaska	3.4
November 1957	14
	18
Baguio, P. I. October 1957	21
Baker Lake, Canada	21
October 1957	17
September 1957 4	23
Bombay, India	
April 1956 12	46
Brisbane, Australia	
September 1957	31
Budapest, Hungary	
July 1956 11	44
Calcutta, India	
April 1956	46
Campbell I.	
September 1957 8	34
Capetown, Union of S. Africa	00
September 1957	32
Casablanca, Morocco September 1956	4.4
1	44
Christchurch, New Zealand September 1957	33
De Bilt, Holland	00
October 1957	18
September 1957 5	25
Delhi, India	20
April 1956	45
March 1956	48
Fairbanks, Alaska	
October 1957	16
Falkland Is.	
August 1957 9	37
July 1957 10	41
Godhavn, Greenland	
May 1957 10	42

Index (CRPL-F163 (Part A), continued)

		Table page	Figure page
Grand Bahama I.			
October 1957	• •	. 3	20
Hobart, Tasmania			
October 1957		. 4	22
September 1957		. 7	33
Huancayo, Peru			
August 1957	• •	. 9	37
Inverness, Scotland			
September 1957		. 4	24
August 1957		. 8	35
Johannesburg, Union of S. Africa			
September 1957		. 7	31
Juliusruh/Rügen, Germany			
September 1957		. 4	24
August 1957		. 8	35
July 1957		. 9	38
Lindau/Harz, Germany			
July 1957		. 9	38
Madras, India			
April 1956		. 12	47
Moscow, U.S.S.R.		•	-,
June 1957		. 10	42
May 1957			43
Okinawa I.	•	• • •	10
October 1957		. 3	21
Ottawa, Canada	•		. .
September 1957		. 5	26
Point Barrow, Alaska	•		20
October 1957		. 1	15
Poitiers, France	•	• 1	10
September 1956		. 11	43
Rarotonga I.	•	. 11	40
		. 6	30
September 1957	•	. 0	50
Resolute Bay, Canada		. 1	15
October 1957	•	. 4	22
Reykjavik, Iceland	•	. 4	44
October 1957		. 2	17
Sao Paulo, Brazil	•	. 2	11
		. 6	30
September 1957	•	. 0	30
		0	24
September 1957	•	. 8	34
Singapore, British Malaya		4	29
September 1957	•	. 6	49
Sodankyla, Finland		4	99
September 1957	•	. 4	23

Index (CRPL-F163 (Part A), concluded)

	Table page	Figure page
Talara, Peru		
Séptember 1957	. 6	29
August 1957	. 8	36
July 1957	. 10	41
Tiruchy, India		
April 1956	. 12	47
Tokyo, Japan		
September 1957	. 6	2 8
July 1957	. 10	40
Tromso, Norway		
November 1957	. 1	13
October 1957	. 2	16
Victoria, Canada		
September 1957	• 5	26
August 1957	. 8	36
Wakkanai, Japan		
September 1957	. 5	27
July 1957	. 9	39
Washington, D. C.		
December 1957	. 1	13
November 1957	. 1	14
Watheroo, W. Australia		
September 1957	. 7	3 2
White Sands, New Mexico		
October 1957	. 3	20
Winnipeg, Canada		
October 1957	. 3	19
September 1957	. 5	2 5
Yamagawa, Japan		
September 1957	. 6	28
July 1957	. 10	40

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request] Daily:

Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL-J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following month).

North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following CRPL—Jp. month).

Semimonthly: CRPL-Ja.

Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Air Force, TO 31-3-28 series). On sale by Superintendent of Documents.* Members of the Armed Forces should address cognizant CRPL—D.

military office. (Part A). Iono CRPL-F. Ionospheric Data.

Solar-Geophysical Data.

Limited distribution. These publications are in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of iono-(Part B).

spheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics, and geophysics for the CRPL library.

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, National Bureau of Standards, Boulder Laboratories, Boulder, Colorado, unless otherwise indicated. Please note that the F series is not generally available.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission:
NBS Circular 462. Ionospheric Radio Propagation. \$1.25.
NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

NBS Circular 557. Worldwide Radio Noise Levels Expected in the Frequency Band 10 Kilocycles to 100 Megacycles. 30 cents.

NBS Circular 582. Worldwide Occurrence of Sporadic E. \$3.25.

> These Circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

^{*} For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D. C. Price 10 cents (single copy). Subscription Price: \$1.00 a year; 25 cents additional for foreign mailing.

