Prácticas de Aprendizaje Automático

Trabajo 2: Complejidad de H y Modelos Lineales

Pablo Mesejo

Universidad de Granada Departamento de Ciencias de la Computación e Inteligencia Artificial

Interesante referencia para visualizar fronteras de decisión

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html#sphx-glr-auto-examples-classification-plot-classifier-comparison-py

Dibujar gráficas con nubes de puntos simuladas bajo ciertas condiciones

• Generar otra muestra de puntos 2D a la que vais a añadir una etiqueta usando el signo de la función f(x,y) = y-ax-b

 Modificar de forma aleatoria un 10% de las etiquetas positivas y otro 10% de las negativas

Datos (con un 10% de ruido por clase) y recta generada para el etiquetado inicial.

Misclassification rate: 10.0%

 Emplear otras funciones para definir la frontera de clasificación de los puntos de la muestra en lugar de una recta

$$f(x,y) = (x-10)^2 + (y-20)^2 - 400$$

$$f(x,y) = 0.5(x+10)^2 + (y-20)^2 - 400$$

$$f(x,y) = 0.5(x-10)^2 - (y+20)^2 - 400$$

$$f(x,y) = y - 20x^2 - 5x + 3$$

NOTA: se aconseja utilizar la función plot_datos_cuad proporcionada en template_trabajo2.py.

2. Modelos Lineales. Perceptron

Referencias de apoyo sobre el perceptrón:

"Pattern Recognition and Machine Learning" (Christopher M. Bishop, 2006, págs. 192-196)

"Learning from Data" (Yaser S. Abu-Mostafa et al., 2012, págs. 5-8)

Perceptron Learning example: http://130.243.105.49/~lilien/ml/seminars/2007_02_01b-Janecek-Perceptron.pdf

2. Modelos Lineales. Perceptron

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^d \mathbf{w_i} \ x_i\right) + \mathbf{w_0}\right)$$

Introduce an artificial coordinate $x_0 = 1$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w_i} \ x_i\right)$$

In vector form, the perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

http://work.caltech.edu/slides/slides01.pdf slide 11

2. Perceptron Learning Algorithm (PLA)

- Given the data set (\mathbf{x}_n, y_n) , $n = 1, 2, \dots, N$ - Step.1: Fix $\mathbf{w}_{ini} = 0$ Step.2: Iterate on the D-samples improving the solution: repeat For each $x_i \in \mathcal{D}$ do if: $sign(\mathbf{w}^T\mathbf{x}_i) \neq y_i$ then update w: $\mathbf{w}_{new} = \mathbf{w}_{old} + \mathbf{y}_i \mathbf{x}_i$ else continue End for
- Until No changes in a full pass on D

2. Perceptron. Apuntes finales.

- Si datos linealmente separables → Convergencia garantizada

 De lo contrario → No convergerá
- Es un algoritmo que suele requerir muchas iteraciones para converger (en problemas linealmente separables)

En nuestro caso, del orden de miles o decenas de miles...

Muy sensible a la inicialización

2. Modelos Lineales. Logistic Regression

A third linear model

$$s = \sum_{i=0}^{d} w_i x_i$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

linear regression

$$h(\mathbf{x}) = s$$

logistic regression

$$h(\mathbf{x}) = \theta(s)$$

11 de 16

2. Modelos Lineales. Logistic Regression

The LR classifier is defined as

$$\sigma(f(\mathbf{x}_i)) \begin{cases} \ge 0.5 & y_i = +1 \\ < 0.5 & y_i = -1 \end{cases}$$

where
$$\sigma(f(\mathbf{x})) = \frac{1}{1 + e^{-f(\mathbf{x})}}$$

The logistic function or sigmoid function

2. Modelos Lineales. Logistic Regression

Logistic regression algorithm

$$p(Y=1|x)+p(Y=-1|x)=1$$
 RECOMENDACIÓN: N=1

- In Initialize the weights at t=0 to $\mathbf{w}(0)$
- 2: for $t = 0, 1, 2, \dots$ do
- 3: Compute the gradient

$$\nabla E_{\text{in}} = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^{\mathsf{T}}(t) \mathbf{x}_n}}$$

- Update the weights: $\mathbf{w}(t+1) = \mathbf{w}(t) \eta \nabla E_{\mathrm{in}}$
- 5: Iterate to the next step until it is time to stop
- 6: Return the final weights **w**

Parar el algoritmo cuando $||\mathbf{w}^{(t-1)} - \mathbf{w}^{(t)}|| < 0.01,$ donde $\mathbf{w}^{(t)}$ denota el vector de pesos al final de la época t.

BONUS

http://work.caltech.edu/slides/slides03.pdf slides 7 y 8

BONUS

$$E_{out}(h) \le E_{in}(h) + \sqrt{\frac{8}{N} \log \frac{4((2N)^{d_{VC}} + 1)}{\delta}}$$

$$E_{out}(h) \le E_{in}(h) + \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}$$

Template

- Podéis partir, <u>si queréis</u>, del template que os hemos preparado
 - template_trabajo2.py

```
TRABAJO 2
Nombre Estudiante:
import numpy as np
import matplotlib.pyplot as plt
# Fijamos la semilla
np.random.seed(1)
def simula unif(N, dim, rango):
    return np.random.uniform(rango[0],rango[1],(N,dim))
def simula_gaus(N, dim, sigma):
    media = 0
    out = np.zeros((N,dim),np.float64)
    for i in range(N):
        # Para cada columna dim se emplea un sigma determinado. Es decir, para
        # la primera columna (eje X) se usará una N(0,sqrt(siqma[0]))
        # y para la segunda (eje Y) N(0,sqrt(sigma[1]))
        out[i,:] = np.random.normal(loc=media, scale=np.sqrt(sigma), size=dim)
    return out
def simula recta(intervalo):
    points = np.random.uniform(intervalo[0], intervalo[1], size=(2, 2))
    x1 = points[0,0]
    x2 = points[1,0]
    y1 = points[0,1]
    v2 = points[1,1]
    # v = a*x + b
    a = (y2-y1)/(x2-x1) # Calculo de la pendiente.
    b = y1 - a*x1
                       # Calculo del termino independiente.
    return a, b
# EJERCICIO 1.1: Dibujar una gráfica con la nube de puntos de salida correspondiente
x = simula unif(50, 2, [-50,50])
#CODIGO DEL ESTUDIANTE
x = simula gaus(50, 2, np.array([5,7]))
#CODIGO DEL ESTUDIANTE
input("\n--- Pulsar tecla para continuar ---\n")
```