Proof. By the definition for even numbers, there exist integers μ and ν such that $2\mu = \chi$ and $2\nu = \zeta$. Hence, $\chi + \zeta = \left[\langle 2\mu \rangle + \langle 2\nu \rangle \right] = \left[2\langle \mu + \nu \rangle \right]$

Theorem (1602). Let χ and ζ be integers. If χ and ζ are even, then $\chi + \zeta$

is even.

 $\chi + \zeta = \lfloor \langle 2\mu \rangle + \langle 2\nu \rangle \rfloor = \lfloor 2\langle \mu + \nu \rangle \rfloor$ are closed under addition. Thus, the factor $\langle \mu + \nu \rangle$ is an integer. It

Integers are closed under addition. Thus, the factor $\langle \mu + \nu \rangle$ is an integer. It follows that $\chi + \zeta$ is even, by the definition for even numbers.