Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів

розгалуженяя»

Варіант 15

Виконав студен	т 111-12, Кириченко Владислав Сергиович		
•	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
	(прізвище, ім'я, по батькові)		

Лабораторна робота № 3

Назва роботи: Дослідження ітераційних циклічних алгоритмів

Мета: Дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 15

Умова задачі:

3 точністю $\varepsilon = 10^{-6}$ обчислити значення функції Ln x:

Ln(1+x) =
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$
 при $|x| < 1$.

Постановка задачі: Задана змінна "**x**", обчислити значення функції $Ln(1+\mathbf{x})$ із заданою точністю **e**. Результатом розв'язку задачі ϵ змінна **ln**.

Побудова математичної моделі: Маємо змінну "х", в залежності від якої ми повинні знайти значення натурального логарифму числа (x+1) (змінна ln) із заданою точністю. Для цього скористаємося циклом передумови while і введемо змінну n у якості лічильника. Точність обчислення знаходться за формулою $abs(X_n - X_{n+1})$. Також нам буде потрібні функції pow(a,n) - піднесення числа a у степінь n, та abs(a) - модуль числа a.

Складемо таблицю змінних:

Змінна	Тип	Ім'я	Призначення
Значення е	Дійсний	e	Початкові дані
Значення п	Натуральний	n	Початкові дані
Значення х	Дійсний	X	Початкові дані
Значення	Дійсний	InPrevious	Проміжкове
InPrevious			значення
Значення In	Дійсний	ln	Результат

3.Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Перевірка чи задовольняє значення вхідного даного х умові задачі.

Крок 3. Ініціалізація змінної InPrevious.

Крок 4. Деталізація обчислення початкового значення ln.

Крок 5. Деталізаці знаходження значення ln з точністю е.

```
Псевдокод:
Крок 1.
початок
  введення х,е,п
  перевірка чи abs(x) < 1
  Ініціалізація змінної InPrevious
  обчислення значення In
  знаходження значення ln з точністю e за допомогою цикла
  виведення ln
кінець
Крок 2.
початок
  введення х,е,п
  якщо abs(x) < 1
        інізіалізація змінної InPrevious
        обчислення значення In
        знаходження значення ln з точністю e за допомогою цикла
       виведення ln
       виведення "дані виходять за межі передбачены умовою задачі"
  все якщо
кінець
Крок 3.
початок
  введення х,е,п
  якщо abs(x) < 1
        InPrevious = 0
        обчислення значення Іп
        знаходження значення ln з точністю e за допомогою цикла
        виведення ln
  інакше
       виведення "дані виходять за межі передбачены умовою задачі"
  все якщо
```

кінець

```
Крок 4.
```

```
початок
  введення х,е,п
  якщо abs(x) < 1
        InPrevious = 0
        ln = lnPrevious + pow(-1,(n-1)) * float(pow(x,n))/n
        знаходження значення ln з точністю e
        виведення ln
  інакше
       виведення "дані виходять за межі передбачены умовою задачі"
  все якщо
кінець
Крок 5.
початок
  введення х,е,п
  якщо abs(x) < 1
        InPrevious = 0
        ln = lnPrevious + pow(-1,(n-1)) * float(pow(x,n))/n
        n++
        поки (abs(In - InPrevious) > e) повторити
          InPrevious = In
          ln += pow(-1,(n-1)) * float(pow(x,n))/n
        все повторити
        виведення ln
  інакше
       виведення "дані виходять за межі передбачены умовою задачі"
  все якщо
кінець
```

Блок схема:

4. Перевірка алгоритму

Блок	Дія	Дія	Дія
	Початок	Початок	Початок
1	Введення	Введення	Введення
	x=0.2, n=1,	x=-0.3, n=1,	$\mathbf{x}=2,\mathbf{n}=1,$
	e = 0.000001	e=0.000001	e=0.000001
2	abs(0.2) < 1 - true	abs(-0.3)<1 - true	abs(2) < 1 - false
3	InPrevious = 0	InPrevious =0	вивід
			«дані виходять за
			межі передбачены
			умовою задачі»
4	ln = 0.2	$\ln = -0.3$	Кінець
5	виконання циклу	виконання циклу	
	(результат =>	(результат =>	
	In =0.182322)	ln = -0.356675	
6	Вивід: 0.182322	Вивід: -0.356675	
	Кінець	Кінець	

Перевірка 1(всі значення ln)

0.2

0.18

0.182667

0.182267

0.182331

0.18232

0.182322

Перевірка 2(всі значення ln)

 $-0.\bar{3}$

-0.345

-0.354

-0.356025

-0.356511

-0.356633

-0.356664

-0.356672

-0.356674

Висновок - Було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій.