Applied Category Theory

Caleb Hill

Fall 2025

9/3/2025

Why?

Why should you care about studying the coming content and applying it to your field? Physicists:

- The particles in the standard model are irreducible representations. So rep theory is crucial to you.
- Monoidal categories give a good framework for understanding QM.

Computer scientists:

• It gives a framework for the Curry-Howard correspondence (proofs are programs).

Me:

- Began as a study of "analogies" and turned into a study of nifty algebraic gadgets.
- It's written in a wild language, and learning languages is fun.

Plan

The **first goal** is to define monoidal categories with some context. The **second goal** is to describe a "skeletal" category defined by diagrammatics. To accomplish the first goal, we will study things including:

- Algebraic objects (groups, vector spaces, ...) and maps between them
- Subobjects, images, combining objects $(\times, \otimes, \oplus, ...)$
- Categories (Grp, Set, PoSet, \mathbb{N} , Vec, ...)

I'd like to have as little fat on this as necessary. That is, not get sidetracked studying, for instance, too much of the internal structure of these objects. I want to give many examples and try to build intuition. For the second goal we'll study things including:

- Representations and maps (T(qv) = gT(v))
- $Rep(D_3)$ in detail

Up to this point I have a strong vision of where we're going. After this we can go where the interest steers us.

This plan is incomplete and non-exhaustive.

Caleb Hill UNH Mathematics

Groups

This is the best onramp to categories I know of, so bear with me through some basics.

Definition 1. A group is a triple

$$(G, \mu, e)$$

where G is a set, $\mu: G \times G \to G$ is a function, and $e \in G$, such that

$$\forall a, b, c \in G, \quad \mu(\mu(a, b), c) = \mu(a, \mu(b, c))$$
 (Associativity)

$$\forall a \in G, \quad \mu(a, e) = \mu(e, a) = a$$
 (Identity)

$$\forall a \in G, \exists b \in G, \quad such \ that \quad \mu(a,b) = \mu(b,a) = e$$
 (Inverse)