ADVANCED CALCULUS 1 ASSIGNMENT # 2: 2019 SPRING

- §2.1. # 2. Let $S = \{(x, y) \in \mathbb{R}^2 \mid xy > 1\}$. Show that S is open.
- §2.3. # 5. Let $S = \{x \in \mathbb{R} \mid x \text{ is irrational } \}$. Is S closed?
- §2.4. # 3. Find the accumulation points of the following sets in \mathbb{R}^2 :
- a. $\{(m,n) \mid m,n \text{ integers }\}$
- b. $\{(p,q) \mid p,q \text{ rational }\}$
- c. $\{(\frac{n}{n}, \frac{1}{n}) | m, n \text{ integers}, n \neq 0 \}$ d. $\{(\frac{1}{n} + \frac{1}{m}, 0) | n, m \text{ integers}, n \neq 0, m \neq 0 \}$
- §2.6. # 5. Let $A \subset \mathbb{R}$ be bounded and nonempty and let $x = \sup(A)$. Is $x \in \operatorname{bd}(A)$?
- $\S 2.8. \# 2.$ Let (M,d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that M is complete

(Exercises for Chapter 2)

- # 18. If $x, y \in M$ and $x \neq y$, then prove that there exist open sets U and V such that $x \in U, y \in V$, and $U \cap V = \emptyset$
- # 29. Let $A, B \subset \mathbb{R}^n$ and x be an accumulation point of $A \cup B$. Must x be an accumulation point of either A or B?