AMALTHEAREU 2016 SHAPE RETRIEVALONTHE

WAVELET DENSITY HYPERSPHERE

Glizela Taino Washington University in St. Louis

Yixin Lin Duke

Mark Moyou Adrian M. Peter

A novel solution for shape retrieval is presented. Shapes are represented as probability densities; specifically, we expand the squareroot of the density in a multiresolution wavelet basis. Under this model, each density (of a corresponding shape) is mapped to a unit hypersphere. The ensuing geometry is used to create hierarchical representations of shape categories and perform shape warping--increasing retrieval speed and accuracy.

APPROACH & RESULTS

ABSTRACT

HIERARCHICAL SHAPE RETRIEVAL

Hierarchical clustering uses different levels of abstraction to group similar shapes together. Using spherical k-means, a recursive tree structure on the cluster centers is formed on the hypersphere---the means of one level form the children of the higher level--increasing retrieval speed and accuracy.

ACCURACY HIERARCHICAL v. NONHIERARCHICAL before after before before after SHRECII (600) BROWN (99) MPEG7 (1400)

DATABASE (# of shapes)

LINEAR ASSIGNMENT

- Optimized performance of 2D multiresolution wavelet

- Improved shape similarity metric using linear assignment

dimensional unit hypersphere and analyzed algorithmic

- Implemented hierarchical clustering algorithm on high-

CONTRIBUTIONS

density estimator

complexity

and multiresolution wavelets

APPROACH & RESULTS

WARPING FROM SOURCE TO TARGET

By warping two shapes together, the distance between similar shapes decreases and dissimilar shapes increases, respectively. To perform this warping, we use a constrained linear assignment objective function, where lambda regularizes the amount of warping. As lambda decreases, the amount of warping increases.

Fig. 6 ACCURACY WITH VARYING LAMBDA

REFERENCES

- Adrian M Peter and Anand Rangarajan. Maximum likelihood wavelet density estimation with applications to image and shape matching. IEEE Transactions on Image Processing, 17(4):458–468, 2008.
- Adrian M. Peter, Anand Rangarajan, and Jeffrey Ho. Shape L'ane Rouge: Sliding Wavelets for Indexing and Retrieval. IEEE Conference on Computer Vision and Pattern Recognition. I-8., 2008.
- Liu, Meizhu, et al. "Shape retrieval using hierarchical total Bregman soft clustering." IEEE Transactions on Pattern Analysis and Machine Intelligence 34.12 (2012): 2407-2419.

This material is based upon work/research supported in part by the National Science Foundation under Grant No. 1560345

APPROACH

WAVELET DENSITY ESTIMATION

Wavelets are crucial mathematical functions that form an orthonormal basis for probability density functions. Given a point-set representation of a shape, we use a constrained maximum likelihood approach to estimate the coefficients of the wavelet density basis expansion in eq. (1).

$$\sqrt{p(\mathbf{x})} = \sum_{j_0, \mathbf{k}} \alpha_{j_0, \mathbf{k}} \phi_{j_0, \mathbf{k}}(\mathbf{x}) + \sum_{j \ge j_0, \mathbf{k}} \sum_{w=1}^{3} \beta_{j, \mathbf{k}}^w \psi_{j, \mathbf{k}}^w(\mathbf{x})$$
(1)

APPROACH & RESULTS

WDE OPTIMIZATION

Fig. 2 OPTIMIZATION TIMING RESULTS

Wavelet density estimation (WDE) involves estimating the wavelet coefficients (α and β 100 \times in eq.1) which is a computationally expensive task. Through parallelization we were able to **FASTER** significantly improve the algorithm's run time.