Stream Cipher

Santanu Sarkar

IIT Madras, Chennai

Parties: A (Sender/Receiver) and B (Receiver/Sender) Procedure

▶ A and B share a stream of random data (keystream) Z_i , where i = 0, 1, ...

Parties: A (Sender/Receiver) and B (Receiver/Sender) Procedure

- ▶ A and B share a stream of random data (keystream) Z_i , where i = 0, 1, ...
- ▶ The plaintext stream M_i is XOR-ed with Z_i to generate the cipher stream C_i . $[C_i = M_i \oplus Z_i]$

Parties: A (Sender/Receiver) and B (Receiver/Sender) Procedure

- ▶ A and B share a stream of random data (keystream) Z_i , where i = 0, 1, ...
- ▶ The plaintext stream M_i is XOR-ed with Z_i to generate the cipher stream C_i . $[C_i = M_i \oplus Z_i]$
- ▶ The cipher stream C_i is XOR-ed with Z_i to generate the plaintext stream M_i . $[M_i = C_i \oplus Z_i]$

Parties: A (Sender/Receiver) and B (Receiver/Sender) Procedure

- ▶ A and B share a stream of random data (keystream) Z_i , where i = 0, 1, ...
- ▶ The plaintext stream M_i is XOR-ed with Z_i to generate the cipher stream C_i . $[C_i = M_i \oplus Z_i]$
- ▶ The cipher stream C_i is XOR-ed with Z_i to generate the plaintext stream M_i . $[M_i = C_i \oplus Z_i]$

Pseudorandom Generator

▶ The security of the message depends on the randomness of Z.

Pseudorandom Generator

- \triangleright The security of the message depends on the randomness of Z.
- ► A and B share a small binary string called *key*

Pseudorandom Generator

- \triangleright The security of the message depends on the randomness of Z.
- ► A and B share a small binary string called *key*
- After that, the algorithm will take key as input and keep on generating random-looking bitstream, the keystream bits. This algorithm is the Stream cipher.

- ▶ RC4 was designed by Ron Rivest in 1987.
- ▶ Made public in 1994.

- RC4 was designed by Ron Rivest in 1987.
- ► Made public in 1994.
- Twenty years from its release, RC4 was the most used stream cipher in the world.

- RC4 was designed by Ron Rivest in 1987.
- ► Made public in 1994.
- Twenty years from its release, RC4 was the most used stream cipher in the world.
- ► Used in WEP(Wired Equivalent Privacy) in 1997 and later in WPA(Wi-fi Protected Access).

- RC4 was designed by Ron Rivest in 1987.
- ▶ Made public in 1994.
- Twenty years from its release, RC4 was the most used stream cipher in the world.
- ► Used in WEP(Wired Equivalent Privacy) in 1997 and later in WPA(Wi-fi Protected Access).
- Used by Google and Microsoft.

- RC4 was designed by Ron Rivest in 1987.
- ▶ Made public in 1994.
- Twenty years from its release, RC4 was the most used stream cipher in the world.
- ► Used in WEP(Wired Equivalent Privacy) in 1997 and later in WPA(Wi-fi Protected Access).
- Used by Google and Microsoft.

Technical Details

Connection Encrypted (TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 128 bit keys, TLS 1.2)

The page you are viewing was encrypted before being transmitted over the Internet.

 ${\tt Encryption\ makes\ it\ difficult\ for\ unauthorized\ people\ to\ view\ information\ traveling\ between\ computers.}$

Key Scheduling Algorithm (KSA)

Initialize index:
$$j = 0$$
;

for
$$i = 0, ..., 255$$
 do
 $j = j + S[i] + K[i];$
Swap $S[i] \leftrightarrow S[j];$

end

INPUT: S-array initialized to identity permutation, and key K

OUTPUT: Scrambled S-array

Pseudo-Random Generation Algorithm (PRGA)


```
Initialize indices: i=j=0;

while TRUE do

i=i+1;

j=j+S[i];

Swap S[i]\leftrightarrow S[j];

Output Z=S[S[i]+S[j]];

end
```

INPUT: Scrambled *S*-array, obtained as the KSA output

OUTPUT: Pseudo-random stream

An ideal stream cipher should generate all the numbers from 0 to 255 with equal probabilities, i.e, $\frac{1}{256}$.

An ideal stream cipher should generate all the numbers from 0 to 255 with equal probabilities, i.e, $\frac{1}{256}$. Biases of RC4:

An ideal stream cipher should generate all the numbers from 0 to 255 with equal probabilities, i.e, $\frac{1}{256}$.

Biases of RC4:

- ▶ $Pr(Z_2 = 0) = \frac{2}{256}$ Mantin et al in 2001.
- $Pr(Z_r = r) > \frac{1}{256}$ Isobe et al in 2013.

An ideal stream cipher should generate all the numbers from 0 to 255 with equal probabilities, i.e, $\frac{1}{256}$.

Biases of RC4:

- ▶ $Pr(Z_2 = 0) = \frac{2}{256}$ Mantin et al in 2001.
- ▶ $Pr(Z_r = r) > \frac{1}{256}$ Isobe et al in 2013.
- ▶ $Pr(Z_r = r K[0]) < \frac{1}{256}$: Paterson et al in 2014.

■ InfoWorld

Google, Mozilla, Microsoft browsers will dump RC4 encryption

Credit: Steve Travnor

The decision to remove RC4 from IE, Edge, Chrome, and Firefox is final nail in the coffin for the vulnerable cryptographic algorithm

InfoWorld | Sep 3, 2015

MORE LIKE THIS

Google to shutter SSLv3, RC4 from SMTP servers, Gmail

Researchers devise new attack techniques against SSL

Microsoft's .Net Framework security updates further effort to phase out RC4...

on IDG Answers 🗢

What is typosquatting and how is it a security risk?

Thank You