

JC12 Rec'd PCT/PTC 1 9 OCT 2005

SPECIFICATION

5

10

15

20

25

30

Α POLYMORPH **OF** 4-[3-CHLORO-4-(CYCLOPROPYLAMINOCARBONYL)AMINOPHENOXY]-7-METHOXY-6-OUINOLINECARBOXAMIDÉ AND A PROCESS FOR THE PREPARATION OF THE SAME Technical Field of the Invention [0001] The present invention relates to a polymorph of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6quinolinecarboxamide and a process for the preparation of the same. **Background Art** [0002] 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7methoxy-6-quinolinecarboxamide (additional name: 4-[3-chloro-4-(N'cyclopropylureido)phenoxyl-7-methoxyquinoline-6-carboxamide) is known to show an excellent angiogenesis inhibitory action (WO 02/32872). chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6quinolinecarboxamide is also known to show a strong c-Kit kinase inhibitory action (95th Annual Meeting Proceedings, AACR (American Association for Cancer Research), Volume 45, Page 1070-1071, 2004). Disclosure of the Invention [0003] However, for 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6quinolinecarboxamide, there has been needed crystals of the compound expected to be more excellent in physical properties and stability than those obtained by conventional preparation processes, and a process to prepare the crystals easily and with a high purity. [0004] Thus, an object of the present invention is to provide crystals of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6quinolinecarboxamide and a process for the preparation of the crystals. [0005] In order to achieve the above object, the present invention provides polymorphs (1) to (10) below. (1): polymorph (A) 4-(3-chloro-4of (cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide, having a diffraction peak at a diffraction angle (20 ±

- 0.2°) of 15.75° in a powder X-ray diffraction.
- (2): The polymorph (A) according to (1), wherein the polymorph further has diffraction peaks at diffraction angles ($2\theta \pm 0.2^{\circ}$) of 9.98° and 11.01° in a powder X-ray diffraction.
- 5 (3): A polymorph (A) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide, having an absorption band at a wavenumber of
 - 3452.3 ± 2.5 cm⁻¹ in an infrared absorption spectrum in potassium bromide. (4): The polymorph (A) according to (1) or (2), wherein the polymorph has an absorption band at a wavenumber of 3452.3 ± 2.5 cm⁻¹ in an infrared
 - absorption spectrum in potassium bromide.

10

- (5): The polymorph (A) according to (3) or (4), wherein the polymorph further has an absorption band at a wavenumber of 1712.2 ± 1.0 cm⁻¹.
- (6): A polymorph (B) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-
- 15 (cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6quinolinecarboxamide, having a diffraction peak at a diffraction angle (2θ ± 0.2°) of 21.75° in a powder X-ray diffraction.
 - (7): The polymorph (B) according to (6), wherein the polymorph further has diffraction peaks at diffraction angles $(2\theta \pm 0.2^{\circ})$ of 12.43° and 16.56° in a powder X-ray diffraction.
 - (8): A polymorph (B) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide, having an absorption band at a wavenumber of
 - quinoline carboxamide, having an absorption band at a wavenumber of $1557.6 \pm 1.0 \text{ cm}^{-1}$ in an infrared absorption spectrum in potassium bromide.
- 25 (9): The polymorph (B) according to (6) or (7), wherein the polymorph has an absorption band at a wavenumber of 1557.6 ± 1.0 cm⁻¹ in an infrared absorption spectrum in potassium bromide.
 - (10): The polymorph (B) according to (8) or (9), wherein the polymorph further has an absorption band at a wavenumber of $1464.4 \pm 1.0 \text{ cm}^{-1}$.
- 30 [0006] The present invention also provides processes (11) to (28) for preparing a polymorph below.
 - (11): A process for the preparation of the polymorph (A) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-

quinolinecarboxamide according to any one of (1) to (5), comprising a step of dissolving 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide, which may be in the form of a crystal or not, in a good organic solvent, followed by rapid admixing with a poor solvent.

5

- (12): A process for the preparation of the polymorph (A) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide according to any one of (1) to (5), comprising a step of dissolving 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide in a good organic solvent with stirring, followed by admixing with a poor solvent in such a way that the resultant crystals precipitate when the stirring is stopped.
- (13): A process for the preparation of the polymorph (A) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-
- quinolinecarboxamide according to any one of (1) to (5), comprising a step of reacting 7-methoxy—4-chloro-quinoline-6-carboxamide with 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea in the presence of a base in a good organic solvent for 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-
- quinolinecarboxamide, followed by rapid admixing with a poor solvent.
 - (14): The process for the preparation according to any one of (11) to (13), wherein the poor solvent is admixed rapidly within 10 minutes.
 - (15): A process for the preparation of the polymorph (B) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-
- quinolinecarboxamide according to any one of (6) to (10), comprising a step of dissolving 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide, which may be in the form of a salt or not, in a good organic solvent, followed by slow admixing with a poor solvent.
- (16): A process for the preparation of the polymorph (B) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide according to any one of (6) to (10), comprising a step of dissolving 4-[3-chloro-4-

(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6quinolinecarboxamide in a good organic solvent with stirring, followed by admixing with a poor solvent in such a way that the resultant crystals diffuse when the stirring is stopped.

- (17): A process for the preparation of the polymorph (B) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide according to any one of (6) to (10), comprising a step of reacting 7-methoxy—4-chloro-quinoline-6-carboxamide with 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea in the presence of a base in a good organic solvent for 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide, followed by slow admixing with a poor solvent. (18): The process for the preparation according to any one of (15) to (17),
 - wherein the poor solvent is admixed slowly in 1 hour or more.

 (19): A process for the preparation of the polymorph (B) of 4-[3-chloro-4-
- (19): A process for the preparation of the polymorph (B) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide according to any one of (6) to (10), comprising a step of heating a polymorph (A) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-
- quinolinecarboxamide, having a diffraction peak at a diffraction angle (2θ ± 0.2°) of 15.75° in a powder X-ray diffraction, in suspension in a mixed solvent of a good organic solvent for the polymorph and a poor solvent for the polymorph.
 - (20): The process for the preparation according to (19), wherein the polymorph (A) is a polymorph further having diffraction peaks at diffraction angles ($2\theta \pm 0.2^{\circ}$) of 9.98° and 11.01° in a powder X-ray diffraction.

- (21): A process for the preparation of the polymorph (B) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-
- quinolinecarboxamide according to any one of (6) to (10), comprising a step of heating a polymorph (A) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide, having an absorption band at a wavenumber of

- 3452.3 ± 2.5 cm⁻¹ in an infrared absorption spectrum in potassium bromide, in suspension in a mixed solvent of a good organic solvent for the polymorph and a poor solvent for the polymorph.
- (22): The process for the preparation according to (19) or (20), wherein the polymorph (A) is a polymorph having an absorption band at a wavenumber of 3452.3 ± 2.5 cm⁻¹ in an infrared absorption spectrum in potassium bromide.

5

10

15

25

- (23): The process for the preparation according to (21) or (22), wherein the polymorph (A) is a polymorph further having an absorption band at a wavenumber of 1712.2 ± 1.0 cm⁻¹.
- (24): The process for the preparation according to any one of (11) to (23), wherein the good organic solvent is dimethylsulfoxide, dimethylimidazolidinone, 1-methyl-2-pyrrolidinone, N,N-dimethylformamide, N,N-dimethylacetamide, acetic acid, sulforane, or a mixed solvent of at least two of the foregoing.
- (25): The process for the preparation according to any one of (11) to (23), wherein the poor solvent is water, acetone, acetonitrile, ethyl acetate, isopropyl acetate, methanol, ethanol, n-propanol, isopropanol, or a mixed solvent of at least two of the foregoing.
- 20 (26): The process for the preparation according to (13), (14), (17) or (18), wherein the base is potassium t-butoxide, cesium carbonate or potassium carbonate.
 - [0007] The present invention also provides the followings.
 - (27): A prophylactic or therapeutic agent for a disease for which angiogenesis inhibition is effective, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
 - (28): An angiogenesis inhibitor, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
 - (29): An anti-tumor agent, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
 - (30): The anti-tumor agent according to (29), wherein the tumor is a pancreatic cancer, a gastric cancer, a colon cancer, a breast cancer, a prostate cancer, a lung cancer, a renal cancer, a brain tumor, a blood cancer

or an ovarian cancer.

5

- (31): A therapeutic agent for angioma, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
- (32): A cancer metastasis inhibitor, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
- (33): A therapeutic agent for retinal neovascularization, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
- (34): A therapeutic agent for diabetic retinopathy, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
- 10 (35): A therapeutic agent for an inflammatory disease, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
 - (36): The therapeutic agent for an inflammatory disease according to (35), wherein the inflammatory disease is deformant arthritis, rheumatoid arthritis, psoriasis or delayed hypersensitivity reaction.
- 15 (37): A therapeutic agent for atherosclerosis, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
 - (38): A prophylactic or therapeutic method for a disease for which angiogenesis inhibition is effective, comprising administering to a patient, a pharmacologically effective dose of the polymorph according to any one of (1) to (10).
 - (39): Use of the polymorph according to any one of (1) to (10) for the manufacture of a prophylactic or therapeutic agent for a disease for which angiogenesis inhibition is effective.
 - [0008] The present invention also provides the followings.
- 25 (40): A c-Kit kinase inhibitor comprising as an active ingredient, the polymorph according to any one of (1) to (10).
 - (41): An anti-cancer agent for treating a cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
- (42): The anti-cancer agent according to (41), wherein the cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase is acute myelogenous leukemia, mast cell leukemia, a small cell lung cancer, GIST, a testicular cancer, an ovarian cancer, a breast cancer, a brain cancer,

neuroblastoma or a colorectal cancer.

15

20

25

- (43): The anti-cancer agent according to (41), wherein the cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase is acute myelogenous leukemia, a small cell lung cancer or GIST.
- 5 (44): The anti-cancer agent according to (41), which is applied to a patient for which a cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase is identified.
 - (45): A therapeutic agent for mastocytosis, allergy or asthma, comprising as an active ingredient, the polymorph according to any one of (1) to (10).
- 10 (46): A therapeutic method for a cancer, comprising administering to a patient suffering from a cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase, a pharmacologically effective dose of the polymorph according to any one of (1) to (10).
 - (47): The method according to (46), wherein the cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase is acute myelogenous leukemia, mast cell leukemia, a small cell lung cancer, GIST, a testicular cancer, an ovarian cancer, a breast cancer, a brain cancer, neuroblastoma or a colorectal cancer.
 - (48): The method according to (46), wherein the cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase is acute myelogenous leukemia, a small cell lung cancer or GIST.
 - (49): A therapeutic method for a cancer, comprising the steps of: extracting cancer cells from a patient suffering from a cancer; confirming that the cancer cells are expressing excessive c-Kit kinase or a mutant c-Kit kinase; and
 - administering to the patient a pharmacologically effective dose of the c-Kit kinase inhibitor according to (40).
 - (50): A therapeutic method for mastocytosis, allergy or asthma, comprising administering to a patient suffering from the disease, a pharmacologically effective dose of the c-Kit kinase inhibitor according to (40).
 - (51): A method for inhibiting the c-Kit kinase activity, comprising applying to a cell expressing excessive c-Kit kinase or a mutant c-Kit kinase, a pharmacologically effective dose of the c-Kit kinase inhibitor according to

(40).

- (52): Use of the c-Kit kinase inhibitor according to (40) for the manufacture of an anti-cancer agent for treating a cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase.
- 5 (53): The use according to (52), wherein the cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase is acute myelogenous leukemia, mast cell leukemia, a small cell lung cancer, GIST, a testicular cancer, an ovarian cancer, a breast cancer, a brain cancer, neuroblastoma or a colorectal cancer. (54): The use according to (52), wherein the cancer expressing excessive c-Kit kinase or a mutant c-Kit kinase is acute myelogenous leukemia, a small cell lung cancer or GIST.
 - (55): Use of the c-Kit kinase inhibitor according to (40) for the manufacture of a therapeutic agent for mastocytosis, allergy or asthma.
 - [0009] The polymorph (A) according to the invention has such an advantage that filtration is easy after crystallization.
 - [0010] Also, the polymorph (B) according to the invention can be advantageously used to prepare 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide with a high purity.
 - [0011] Further, the polymorph (A) has a property that it undergoes crystal transition to the polymorph (B) by suspending the polymorph (A) in a solvent, and the polymorph (B) has an advantage that it can be obtained stably in a production process.

Brief Description of the Drawings

25 [0012]

15

20

- Fig. 1 is a figure illustrating a powder X-ray diffraction pattern of the crystals obtained in Example 1a.
- Fig. 2 is a figure illustrating a powder X-ray diffraction pattern of the crystals obtained in Example 1b.
- Fig. 3 is a figure illustrating a powder X-ray diffraction pattern of the crystals obtained in Example 1c.
- Fig. 4 is a figure illustrating a powder X-ray diffraction pattern of the crystals obtained in Example 2a.

rrus) - (
Fig. 5 is a figure illustrating a powder X-ray diffraction pattern	of
the crystals obtained in Example 2b.	
Fig. 6 is a figure illustrating a powder X-ray diffraction pattern	of
the crystals obtained in Example 2c.	
Fig. 7 is a figure illustrating an infrared absorption spectrum of the	he
crystals obtained in Example 1a.	
Fig. 8 is a figure illustrating an infrared absorption spectrum of the	he
crystals obtained in Example 1b.	
Fig. 9 is a figure illustrating an infrared absorption spectrum of the	he
crystals obtained in Example 1c.	
Fig. 10 is a figure illustrating an infrared absorption spectrum of	of
the crystals obtained in Example 2a.	
Fig. 11 is a figure illustrating an infrared absorption spectrum of	of
the crystals obtained in Example 2b.	
Fig. 12 is a figure illustrating an infrared absorption spectrum of	of
the crystals obtained in Example 2c.	
Fig. 13 is a figure showing the results of hygroscopicity of the	1e
crystals obtained in Example 1d by microbalance method.	
Fig. 14 is a figure showing the results of hygroscopicity of the	ıe
crystals obtained in Example 2d by microbalance method.	
Fig. 15 is a figure showing the results of immunoblot of	эf
phosphorylated c-Kit kinase by SCF stimulation.	
Fig. 16 is a graph showing the relationship between the number of	o f

Fig. 16 is a graph showing the relationship between the number of days elapsed after transplantation and tumor volume when H526 was transplanted to a nude mouse.

Fig. 17 is a figure showing the results of the immunoblot of phosphorylated c-Kit kinase, c-Kit kinase and β -actin when H526 was transplanted to a nude mouse.

Best Mode for Carrying Out the Invention

5

10

15

20

25

[0013] The polymorph (A) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide of the invention can be produced, for example, by the following method.

[0014] 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7methoxy-6-quinolinecarboxamide is dissolved in a suitable dissolvable organic solvent (such as dimethylsulfoxide, dimethylimidazolidine, 1methyl-2-pyrrolidinone, N,N-dimethylformamide, N,N-dimethylacetamide, acetic acid or sulforane), followed by rapid (for example, within 10 minutes) admixing with an undissolvable solvent (such as water, acetone, acetonitrile, ethyl acetate, isopropyl acetate, methanol, ethanol, n-propanol, isopropanol, or a mixed solvent thereof) to produce the polymorph (A). The crystals may appear when the undissolvable solvent is admixed rapidly, and the crystals precipitate in the solvent when the stirring is stopped. [0015] Alternatively, the polymorph (A) can be also obtained by reacting 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea with 7-methoxy—4chloro-quinoline-6-carboxamide in an organic solvent (such dimethylimidazolidinone, dimethylsulfoxide (DMSO), 1-methyl-2-N, N-dimethylformamide, N,N-dimethylacetamide, pyrrolidinone, sulforane) in the presence of a base (such as potassium t-butoxide, cesium carbonate, or potassium carbonate), followed by rapid (for example, within 10 minutes) admixing with an undissolvable solvent (such as water, acetone, acetonitrile, ethyl acetate, isopropyl acetate, methanol, ethanol, n-propanol, isopropanol or a mixed solvent thereof). [0016] More specifically, for example, to a mixture of 1-(2-chloro-4hydroxyphenyl)-3-cyclopropylurea, 7-methoxy—4-chloro-quinoline-6carboxamide (1 equivalent or more relative to 1-(2-chloro-4hydroxyphenyl)-3-cyclopropylurea) and potassium t-butoxide (1 equivalent or more relative to 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea), is added 5- to 10-fold volume of DMSO relative to 1-(2-chloro-4hydroxyphenyl)-3-cyclopropylurea at room temperature, followed by heating to react at 55-75°C with stirring for 20 hours or more. To the mixture is added 15-fold volume of an undissolvable solvent (20-50% acetone-water or 20-50% 2-propanol- water) relative to 1-(2-chloro-4hydroxyphenyl)-3-cyclopropylurea with heating and stirring at 60-65 °C within 8 minutes, then the crystals can appear. Preferably, seed crystals are added when the undissolvable solvent is added in order to allow the

5

10

15

20

25

stirred at room temperature to 40 °C for 3 hours or more, and the crystals are filtered off to give the polymorph (A). [0017] The polymorph (B) 4-[3-chloro-4of 5 (cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6quinolinecarboxamide of the invention can be produced, for example, by the following method. [0018] 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7methoxy-6-quinolinecarboxamide can be dissolved in a suitable dissolvable 10 organic solvent (such as DMSO, dimethylimidazolidine, 1-methyl-2pyrrolidinone, N,N-dimethylformamide, N,N-dimethylacetamide, acetic acid, or sulforane), followed by slow (for example, for 1 hour or more) admixing with an undissolvable solvent (such as water, acetone, acetonitrile, ethyl acetate, isopropyl acetate, methanol, ethanol, n-propanol, isopropanol, 15 or a mixed solvent thereof) to produce the polymorph (B). The crystals may appear when the undissolvable solvent is mixed slowly, and the crystals diffuse in the whole solvent when the stirring is stopped. [0019] More specifically, for example, to 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-20 quinolinecarboxamide is added 4- to 5-fold volume of a dissolvable solvent 1-methyl-2-pyrrolidinone) (DMSO or relative 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6quinolinecarboxamide, followed by heating and stirring at 80 °C or more to dissolve the compound. To the reaction mixture is added 10- to 20-fold 25 volume of an undissolvable solvent (isopropyl acetate, ethyl acetate, methanol. or isopropanol) relative to 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6quinolinecarboxamide over 30 minutes or more with heating and stirring at 65-85 °C, then the crystals can appear. Preferably, seed crystals are added 30 when the undissolvable solvent is added in order to allow the crystals to appear. The reaction mixture in which the crystals appeared is heated and stirred at 70 °C or higher for 30 minutes or more and further stirred at room temperature, and the crystals are filtered off to give the polymorph (B).

crystals to appear. The reaction mixture in which the crystals appeared is

[0020] The polymorph (B) can be also produced by heating and suspending the polymorph (A) of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6-quinolinecarboxamide in a mixed solvent of a dissolvable solvent and an undissolvable solvent.

5

10

15

20

25

30

[0021] Alternatively, the polymorph (B) can be also obtained by reacting 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea with 7-methoxy—4-chloro-quinoline-6-carboxamide in an organic solvent (such as DMSO, dimethylimidazolidinone, 1-methyl-2-pyrrolidinone, N,N-dimethylformamide, N,N-dimethylacetamide, or sulforane) in the presence of a base (such as potassium t-butoxide, cesium carbonate, or potassium carbonate), followed by slow (for example, for 30 minutes or more) admixing with an undissolvable solvent (such as water, acetone, acetonitrile, ethyl acetate, isopropyl acetate, methanol, ethanol, n-propanol, isopropanol, or a mixed solvent thereof).

[0022] More specifically, for example, to a mixture of 1-(2-chloro-4hydroxyphenyl)-3-cyclopropylurea, 7-methoxy—4-chloro-quinoline-6carboxamide (1 equivalent or more relative to 1-(2-chloro-4hydroxyphenyl)-3-cyclopropylurea) and potassium t-butoxide (1 equivalent or more relative to 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea), is added 5- to 10-fold volume of DMSO relative to 1-(2-chloro-4hydroxyphenyl)-3-cyclopropylurea at room temperature, followed by heating to react at 55-75 °C with stirring for 20 hours or more. To the mixture is added 15-fold volume of an undissolvable solvent (33% acetonewater) relative to 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea with heating and stirring at 60-65 °C for 2 hours or more, and the crystals can appear. The reaction mixture in which the crystals appeared is heated and stirred at 40 °C for 3 hours or more, and the crystals are filtered off to give the polymorph (B).

[0023] The dosage of a medicine according to the invention will differ depending on the severity of symptoms, patient age, gender and weight, administration form and type of disease, but administration may usually be from 100 µg to 10 g per day for adults, either at once or in divided doses.

[0024] There are no particular restrictions on the form of administration of a medicine according to the invention, and it may usually be administered orally or parenterally by conventional methods.

[0025] Common excipients, binders, glossy agents, coloring agents, taste correctors and the like, and if necessary stabilizers, emulsifiers, absorption promoters, surfactants and the like, may also be used for formulation, with inclusion of components ordinarily used as starting materials for formulation of pharmaceutical preparations by common methods.

[0026] Examples of such components which may be used include animal and vegetable oils (soybean oil, beef tallow, synthetic glycerides, etc.), hydrocarbons (liquid paraffin, squalane, solid paraffin, etc.), ester oils (octyldodecyl myristate, isopropyl myristate, etc.), higher alcohols (cetostearyl alcohol, behenyl alcohol, etc.), silicone resins, silicone oils, surfactants (polyoxyethylene fatty acid esters, sorbitan fatty acid esters, glycerin fatty acid esters, polyoxyethylenesorbitan fatty acid esters, hydrogenated castor polyoxyethylene oil. polyoxyethylenepolyoxypropylene block copolymer, etc.), water-soluble polymers (hydroxyethyl cellulose, polyacrylic acid, carboxyvinyl polymer, polyethyleneglycol, polyvinylpyrrolidone, methyl cellulose, etc.), alcohols (ethanol, isopropanol, etc.), polyhydric alcohols (glycerin, propyleneglycol, dipropyleneglycol, sorbitol, etc.), sugars (glucose, sucrose, etc.), inorganic powders (silicic anhydride, aluminium magnesium silicate, aluminium silicate, etc.), purified water and the like. For pH adjustment there may be used inorganic acids (hydrochloric acid, phosphoric acid, etc.), alkali metal salts of inorganic acids (sodium phosphate, etc.), inorganic bases (sodium hydroxide, etc.), organic acids (lower fatty acids, citric acid, lactic acid, etc.), alkali metal salts of organic acids (sodium citrate, sodium lactate, etc.), and organic bases (arginine, ethanolamine, etc.). If necessary, preservatives, antioxidants and the like may also be added.

[Examples]

5

10

15

20

25

30

[0027] The present invention will be explained through the following examples, but these examples are in no way limitative on the invention.

[0028] (Preparation Example 1) Preparation of 1-(2-chloro-4-

hydroxyphenyl)-3-cyclopropylurea

[0029] a) Phenyl N-(2-chloro-4-hydroxyphenyl)carbamate

5

10

15

20

25

[0030] To a suspension of 4-amino-3-chlorophenol (23.7g) suspended in N,N-dimethylformamide (100 mL) was added pyridine (23.4 mL) while cooling in an ice bath, and phenyl chlorocarbonate (23.2 mL) was added dropwise below 20°C. After stirring at room temperature for 30 minutes, water (400 mL), ethyl acetate (300 mL), and 6N-HCl (48 mL) were added and stirred, and the organic phase was separated off. The organic phase was washed twice with a 10% aqueous sodium chloride solution (200 mL), and dried over magnesium sulfate. The solvent was evaporated to give 46g of the titled compound as a solid.

[0031] ¹H-NMR (CDCl₃): 5.12 (1h, br s), 6.75 (1H, dd, J=9.2, 2.8 Hz), 6.92 (1H, d, J=2.8 Hz), 7.18-7.28 (4H, m), 7.37-7.43 (2H, m), 7.94 (1H, br s).

[0032] b) 1-(2-chloro-4-hydroxypenyl)-3-cyclopropylurea

[0033] To a solution of phenyl N-(2-chloro-4-hydroxyphenyl)carbamate in N,N-dimethylformamide (100 mL) was added cyclopropylamine (22.7 mL) with cooling in an ice bath, and the stirring was continued at room temperature overnight. Water (400 mL), ethyl acetate (300 mL), and 6N-HCl (55 mL) were added thereto, the mixture was stirred, and the organic phase was separated off. The organic phase was washed twice with a 10% aqueous sodium chloride solution (200 mL), and dried over magnesium sulfate. The solvent was evaporated to give prism crystals, which were filtered off and washed with heptane to give 22.8g of the titled compound (yield from 4-amino-3-chlorophenol: 77%).

[0034] ¹H-NMR (CDCl₃): 0.72-0.77 (2H, m), 0.87-0.95 (2H, m), 2.60-2.65 (1H, m), 4.89 (1H, br s), 5.60 (1H, br s), 6.71 (1H, dd, J=8.8, 2.8 Hz), 6.88

(1H, d, J=2.8 Hz), 7.24-7.30 (1H, br s), 7.90 (1H, d, J=8.8 H).

[0035] (Preparation Example 2) Preparation of 7-methoxy-4-chloro-quinoline-6-carboxamide

[0036] a) 4-[(2,2-dimethyl-4,6-dioxo-[1,3]dioxane-5-ylidenemethyl)-amino]-2-methoxybenzoic acid ethyl ester

5

10

15

20

25

[0037] To a suspension of 4-amino-2-methoxybenzoic acid ethyl ester (CAS NO. 14814-06-3) (3.00g) suspended in 2-propanol (15 mL) were added Meldrum's acid (2.44g: 1.1 equivalent weight) and ethyl orthoformate (7.5 mL), followed by heating at 85 °C for 1 hour. The resultant precipitates were filtered off and washed with MTBE (methyl-tert-butylether) to give 4.92g of titled compound (yield: 81%).

[0038] ¹H-NMR (DMSO-d₆): 1.26 (3H, t, J=7.0 Hz), 1.60 (6H, s), 3.85 (3H, s), 4.20 (2H, q, J=7.0 Hz), 7.15 (1H, br d, J=8.4 Hz), 7.38 (1H, s), 7.69 (1H, d, J=8.4 Hz), 8.63 (1H, s).

[0039] b) 7-methoxy-4-oxo-1,4-dihydroquinoline-6-carboxylic acid ethyl ester

[0040] 4-[(2,2-dimethyl-4,6-dioxo-[1,3]dioxane-5-ylidenemethyl)-amino]-2-methoxybenzoic acid ethyl ester (3.55g) was suspended in Dawtherm (10.7 mL), and the suspension was heated in an oil bath at 200 °C for 50 minutes. After allowed to stand at room temperature, MTBE (10 mL) was added thereto, then the resultant precipitates were filtered off and dried under vacuum to give 1.56g of the titled compound (yield: 63%).

[0041] ¹H-NMR (DMSO-d₆): 1.29 (3H, t, J=7.2 Hz), 3.87 (3H, s), 4.25 (2H, q, J=7.2 Hz), 5.79 (1H, d, J=7.4 Hz), 7.01 (1H, s), 7.84 (1H, d, J=7.4 Hz),

8.38 (1H, s), 11.77 (1H, br s).

[0042] c) 7-methoxy-4-oxo—1,4-dihydroquinoline-6-carboxylic acid

5

10

15

20

25

[0043] To a solution of 7-methoxy-4-oxo-1,4-dihydroquinone-6-carboxylic acid ethyl ester (120 mg) dissolved in ethanol (1 mL) was added a 25% aqueous sodium hydroxide solution (0.2 mL), and the stirring was continued at 65°C for 1 hour. 6N-HCl (0.5 mL) was added thereto, then the resultant precipitates were filtered off, washed with water, and dried under vacuum to give 100 mg of the titled compound (yield: 94%).

[0044] ¹H-NMR (DMSO-d₆): 4.87 (3H, s), 6.14 (1H, d, J=7.4 Hz), 7.04 (1H, s), 7.98 (1H, d, J=6.0 Hz), 8.40 (1H, s).

[0045] d) 7-methoxy-4-chloro-quinoline-6-carboxamide

[0046] To 7-methoxy-4-oxo-1,4-dihydroquinoline-6-carboxylic acid (2.0g) were added thionyl chloride (10 mL) and a small amount of N,N-dimethylformamide, and the mixture was heated under reflux for 2 hours. The mixture was concentrated under vacuum, followed by azeotropic distillation twice with toluene to give 7-methoxy-4-chloro-quinoline-6-carbonyl chloride (2.7g).

[0047] Subsequently, 7-methoxy-4-chloro-quinoline-6-carbonyl chloride (2.7g) thus obtained was dissolved in tetrahydrofuran (150 mL), and the solution was cooled to 0 °C. 30% aqueous ammonia (5 mL) was added thereto, and the mixture was stirred at room temperature for 30 minutes. Water was added thereto, and the resultant mixture was extracted three times with ethyl acetate. The combined organic phase was washed with water and saturated brine, dried over sodium sulfate, and dried under vacuum to give the titled compound (1.35g).

[0048] ¹H-NMR (DMSO-d₆): 4.03 (3H, s), 7.56-7.66 (2H, m), 7.79 (1H,

brs), 7.88 (1H, brs), 8.46-8.49 (1H, m), 8.78-8.82 (1H, m).

[0049] (Preparation Example 3) Preparation of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide

5

10

15

20

25

[0050] To DMSO (20 mL) were added 7-methoxy-4-chloro-quinoline-6-carboxamide (0.983g), 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea (1.13g) and cesium carbonate (2.71g), and the mixture was heated and stirred at 70 °C for 23 hours. The reaction mixture was cooled to room temperature, water (50 mL) was added, and the resultant solid was then filtered off to give 1.56g of the titled compound (yield: 88%).

[0051] ¹H-NMR (d₆-DMSO): 0.41 (2H, m), 0.66 (2H, m), 2.56 (1H, m), 4.01 (3H, s), 6.51 (1H, d, J=5.6 Hz), 7.18 (1H, d, J=2.8 Hz), 7.23 (1H, dd, J=2.8, 8.8 Hz), 7.48 (1H, d, J=2.8 Hz), 7.50 (1H, s), 7.72 (1H, s), 7.84 (1H, s), 7.97 (1H, s), 8.25 (1H, d, J=8.8 Hz), 8.64 (1H, s), 8.65 (1H, d, J=5.6 Hz). [0052] (Example 1a) Preparation of polymorph (A) of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide

[0053] Firstly, 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea was obtained in a similar manner as Preparation Example 1, and 7-methoy-4-chloro-quinoline-6-carboxamide was obtained in a similar manner as Preparation Example 2.

[0054] Then, to a mixture of 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea (114.9g), 7-methoy-4-chloro-quinoline-6-carboxamide (80.0g) and potassium t-butoxide (56.9g) was added DMSO (800 mL) at room temperature, and the mixture was heated and stirred at 55 °C for 20 hours and, then further at 60 °C for 4 hours. To the reaction mixture, 33% (v/v) acetone-water (165 mL) was added in 1 minute at 60 °C with stirring.

Additional 33% (v/v) acetone water (1035 mL) was added dropwise over 7 minutes to allow the crystals to appear, followed by stirring at 40 °C for 19 hours. The crystals were filtered off, washed with 33% (v/v) acetonewater and acetone, and dried to give 131.9g of yellowish brown granular crystal (the polymorph (A)).

[0055] (Examples 1b, 1c and 1d)

5

10

15

20

25

The polymorph (A) of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide was obtained in a similar manner as Example 1a.

[0056] (Example 2a) Preparation of polymorph (B) of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide

[0057] Firstly, 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea was obtained in a similar manner as Preparation Example 1, and 7-methoy-4-chloro-quinoline-6-carboxamide was obtained in a similar manner as Preparation Example 2.

[0058] Secondly, to a mixture of 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea (11.49g), 7-methoy-4-chloroquinoline-6-carboxamide (8.00g) and potassium t-butoxide (5.69g) was added DMSO (80 mL) at room temperature, and the mixture was heated and stirred at 60 °C for 25 hours. The reaction mixture was divided into four equal parts. To an aliquot was added dropwise 33% (v/v) acetone-water (10 mL) over 3 hours at 60 °C with stirring to allow the crystals to appear. Additional 33% (v/v) acetone-water (20 mL) was added dropwise over 1 hour, and the stirring was continued at 40 °C for 5 hours. The resultant crystals were filtered off, washed with 33% (v/v) acetone-water and acetone, and dried to give 3.22g of white fibrous crystals (the polymorph (B)).

[0059] (Examples 2b, 2c and 2d)

A polymorph (B) of 4-(3-chloro-4-30 (cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide was obtained in a similar manner as Example 2a. [0060] (Example 3) Preparation of polymorph (B) of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide

15

25

[0061] Firstly, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide was obtained in a similar manner as Preparation Example 3.

- 5 [0062] Secondly, the resultant 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6quinolinecarboxamide (42.7g)was added 1,3-dimethyl-2to imidazolidinone (425 mL) to dissolve at 84 °C, and then isopropyl acetate (1000 mL) was added over 20 minutes. After stirring at 80 °C for 30 10 minutes and further at room temperature for 6 hours, the crystals were
 - [0063] (Example 4) Crystal transition from the polymorph (A) to the polymorph (B)
 - [0064] To a mixed solvent of DMSO (1.7 mL) and 33% (v/v) acetone water (0.17, 0.34, 0.51 or 0.85 mL) was added 300 mg of the polymorph (A) of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, and the mixture was heated and stirred at 60 °C for hours, during which 4-(3-chloro-4-
 - (cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

filtered off to give 41.1g of the polymorph (B).

- quinolinecarboxamide did not dissolve and remained in suspension.
 - [0065] These suspensions were filtered to collect 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-
 - quinolinecarboxamide (184 to 266 mg). Evaluation of the forms of the resultant crystals demonstrated that crystal transition to the polymorph (B) occurred in every case.
 - [0066] In this connection, when 300 mg of the polymorph (A) was dissolved in DMSO (1.7 mL) followed by heating and stirring at 60 °C for 3 hours without adding 33% acetone-water, most of the polymorph (A) dissolved.
- [0067] (Comparative Example 1) Crystal transition from the polymorph (B) to the polymorph (A)
 - [0068] To a mixed solvent of DMSO (1.7 mL) and 33% (v/v) acetonewater (0.17, 0.34, 0.51 or 0.85 mL), was added 300 mg of the polymorph

(B) of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, and the mixture was heated and stirred at 60 °C for 3 hours, during which the 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide did not dissolve and remained in suspension.

[0069] These suspensions were filtered to collect 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide (141 to 256 mg). Evaluation of the forms of the resultant crystals demonstrated that all of them remained the polymorph (B) to reveal that the transition from the polymorph (B) to the polymorph (A) does not occur under the aforementioned conditions.

[0070] In this connection, when 300 mg of the polymorph (B) was dissolved in DMSO (1.7 mL) followed by heating and stirring at 60 °C for 3 hours without adding 33% acetone-water, most of the polymorph (B) dissolved.

[0071] (Powder X-ray diffraction measurement)

Powder X-ray diffraction analysis of the crystals obtained in respective Examples was carried out according to the powder X-ray diffraction method as described in the Japanese Pharmacopoeia, General Tests under the following measurement conditions using about 100 mg of sample.

Apparatus: Geiger Flex RAD-3C manufactured by Rigaku Denki KK

X-ray: CuKα ray

Counter: Scintillation counter

Filter: monochromatic

Goniometer: horizontal goniometer

Applied Voltage: 40 kV Charging current: 20 mA

Scan speed: 3°/min

30 Scan axis: 2θ

5

10

15

20

Scan range: $2\theta = 5-30^{\circ}$

Divergent slit: 1° Scattering slit: 1° Receiving slit: 0.15 mm

[0072] The powder X-ray diffraction patterns of the crystals obtained in Examples 1a-1c and 2a-2c are shown in Fig. 1-6, and peaks of the diffraction angles (2 θ) and intensities are shown in Tables 1-6. Further, the peaks of the diffraction angles (2 θ) in respective Examples and the average values of the peaks are listed in Table 7.

[0073] (Table 1)

SAMPLE :	EXAMPLE 1	a			
PEAK NUMBER	2 θ	HALF WIDTH	D-VALUE	INTENSITY	RELATIVE INTENSITY
ı	8.280	****	10.6696	290	5
2	9.960	****	8.8734	385	6
3	11.000	****	8.0367	445	7
4	13.760	****	6.4302	582	10
5	15.700	****	5.6398	872	1 4
6	18.600	****	4.7665	1860	3 1
7	19.260	****	4.6046	3182	5 3
8	19.960	****	4.4447	678	11
9	20.380	****	4.3540	1642	2 7
10	21.020	****	4.2229	5 5 2	9
11	22.060	****	4.0261	398	7
12	22.420	*****	3.9622	800	13
13	23.480	****	3.7857	6032	100
14	24.160	*****	3.6807	1432	2 4
15	24.580	*****	3.6187	1170	19
16	25.000	****	3.5589	738	1 2
17	26.300	*****	3.3858	1528	2 5
18	26.940	****	3.3068	705	1 2
19	28.600	****	3.1186	772	13
20	28.900	****	3.0869	628	1 G

[0074] (Table 2)

SAMPLE :	EXAMPLE 1	b ·		_	
PEAK NUMBER	2 θ	HALF WIDTH	D-VALUE	INTENSITY	RELATIVE INTENSITY
1	8.320	****	10.6184	322	6
2	10.000	****	8.8380	418	8
3	11.000	****	8.0367	458	8
4	13.800	****	6.4117	792	14
5	15.780	****	5.6114	1095	20
6	18.660	****	4.7513	1822	33
7	19.360	****	4.5810	2932	53
8	20.000	****	4.4359	808	15
9	20.420	****	4.3456	1932	35
10	21.040	****	4.2189	558	10
11	22.100	****	4.0189	480	9 -
1 2	22.480	****	3.9518	820	15
13	23.540	****	3.7762	5522	100
14	24.220	****	3.6717	1185	2 1
15	24.640	. *****	3.6100	1062	19
16	25.060	****	3.5505	745	13
17	26.340	****	3.3808	1502	27
18.	26.980	****	3.3020	780	14
19	28.640	****	3.1143	810	15
20	28.980	****	3.0785	525	10

[0075] (Table 3)

SAMPLE :	EXAMPLE 1	lc			
PEAK NUMBER	2 θ	HALF WIDTH	D-VALUE	INTENSITY	RELATIVE INTENSITY
1	8.360	****	10,5677	425	14
2	9.980	****	8.8556	292	10
3	11.040	****	8.0076	650	2 1
4	13.820	****	6.4025	1318	43
5	15.780	****	5.6114	995	3 2
6	18.700	****	4.7412	1150	37
7	19.380	*****	4.5764	3075	100
8	20.020	****	4.4315	738	24
9	20.480	****	4.3330	2658	86
10	21.120	****	4.2031	782	25
11	22.120	****	4.0153	528	17
12	22.520	****	3.9449	1048	34
13	23.580	****	3.7699	2492	81
14	24.280	****	3.6628	718	23
15	24.700	****	3.6014	595	19
1.6	25.140	****	3.5394	940	31
17	26.420	****	3.3707	1215	40
1.8	27.040	****	3.2948	582	19
19	28.680	****	3.1100	710	23
20	29.020	****	3.0744	740	24

[0076] (Table 4)

SAMPLE :	EXAMPLE 2	2a			
PEAK NUMBER	2 θ	HALF WIDTH	D-VALUE	INTENSITY	RELATIVE INTENSITY
1	8.400	****	10.5175	142	5
] 2	10.520	****	8.4023	362	14
3	12.480	****	7.0867	2390	92
4	14.120	****	6.2671	282	1 I
5	16.620	****	5.3296	2600	100
6	17.340	****	5.1099	262	10
7	19.160		4.6284	572	2 2
8	21.000	****	4.2268	295	11
9	21.840	****	4.0661	612	2 4
10	23.640	****	3.7604	440	17
11	26.760	****	3.3287	1112	43
1 2	29.180	****	3.0579	1340	5 2

[0077]

5 (Table 5)

SAMPLE :	EXAMPLE 2	2b			
PEAK NUMBER	2 0	HALF WIDTH	D-VALUE	INTENSITY	RELATIVE INTENSITY
1	8.300	****	10.6440	228	Б
2	10.320	****	8.5646	510	11
3	12.400	****	7.1323	4600	100
4	13.980	****	6.3295	388	8
5	16.520	****	5.3616	4555	99
6	17.280	****	5.1275	410	. 9
7	19.040	****	4.6573	852	19
8	20.940	****	4.2388	432	9
9	21.700	****	4.0920	1050	2 3
10	23.540	****	3.7762	585	13
11	26.640	****	3.3434	1592	35
12	29.140	****	3.0620	1785	39

[0078] (Table 6)

SAMPLE :	EXAMPLE 2	?c			
PEAK NUMBER	2 0	HALF WIDTH	D-VALUE	INTENSITY	RELATIVE INTENSITY
1	8.320	****	10.6184	240	6
2	10.400	****	8.4989	722	19
3	12.420	****	7.1208	3788	100
4	14.000	****	6.3205	492	13
5	16.540	****	5.3552	3642	96
6	17.300	****	5.1216	465	J 2
7	19.100	****	4.6428	1052	28
8	20.900	****	4.2468	318	. 8
9	21.720	****	4.0883	1078	28
10	23.520	****	3.7794	405	11
11	26.700	****	3.3360	1628	43
1 2	29.100	****	3.0661	1608	4 2

[0079] (Table 7)

5

10

Polymor	ph (A),	diffraction	on angle	Polymor	ph (B),	diffraction	on angle
Ex. 1a	Ex. 1b	Ex. 1c	Ave.	Ex. 2a	Ex. 2b	Ex. 2c	Ave.
8.28	8.32	8.36	8.32	8.40	8.30	8.32	8.34
9.96	10.00	9.98	9.98	10.52	10.32	10.40	10.41
11.00	11.00	11.04	11.01	12.48	12.40	12.42	12.43
13.76	13.80	13.82	13.79	14.12	13.98	14.00	14.03
15.70	15.78	15.78	15.75	16.62	16.52	16.54	16.56
18.60	18.66	18.70	18.65	17.34	17.28	17.30	17.31
19.26	19.36	19.38	19.33	19.16	19.04	19.10	19.10
19.96	20.00	20.02	19.99	21.00	20.94	20.90	20.95
20.38	20.42	20.48	20.43	21.84	21.70	21.72	21.75
21.02	21.04	21.12	21.06	23.64	23.54	23.52	23.57
22.06	22.10	22.12	22.09	26.76	26.64	26.70	26.70
22.42	22.48	22.52	22.47	29.18	29.14	29.10	29.14
23.48	23.54	23.58	23.53	ر			
24.16	24.22	24.28	24.22				
24.58	24.64	24.70	24.64				
25.00	25.06	25.14	25.07				
26.30	26.34	26.42	26.35				
26.94	26.98	27.04	27.99				
28.60	28.64	28.68	28.64				
28.90	28.98	29.02	28.97				

[0080] (Infrared absorption spectrum measurement)

Infrared absorption spectrum measurement of the crystals obtained in respective Examples was carried out according to the potassium bromide tablet method in the infrared absorption spectrum measurement method as described in the Japanese Pharmacopoeia, General Tests by using FT/IR-620 (JASCO Corporation) with a measurement range of 4000-400 cm⁻¹ and a resolution of 4 cm⁻¹.

[0081] The infrared absorption spectra of the crystals obtained in

Examples 1a-1c and 2a-2c are shown in Fig. 7-12, respectively, and wave numbers of the absorption peaks and transmittance (%T) are shown in Tables 8-13, respectively. Further, the peaks of characteristic absorptions in respective Examples and the average values of respective peaks are listed in Table 14.

[0082] (Table 8)

SAM	PLE : EXA	SAMPLE: EXAMPLE 1a									
PEAK NUMBER	WAVE NUMBER (cm ⁻¹)	%Т	PEAK NUMBER	WAVE NUMBER (cm ⁻¹)	⊥%	PEAK NUMBER	WAVE NUMBER (cm ⁻¹)	%T	PEAK NUMBER	WAVE NUMBER (cm-1)	±%
-	3931. 18		2			۳.			•		AR 0000
S	3853.08		60			, ~			rα	-	45.0280
<u>ი</u>	3748.90		2			=			. 2	_	46 0532
5	3690, 12	46.1108	7	3674. 69	44. 0923	5	3648. 66	43, 7544	9	3629.37	44, 8435
17	3617. 80		8			18			202		22, 3589
5	3352. 64		22			23			24		45, 5361
- 22 -	2361. 41		56			27			28		58, 8413
53	1792. 51		္က			<u></u>			32		36, 3550
ဗ္ဗ	1664. 27		34			ж Ж			38		7, 8357
37	1488. 78		88			38			\$		25, 7948
₹	1396. 21		42			\$			4		20 A167
5	1251.58		46			47			8		25 7844
\$	1140.69		သ			5			22		44 9575
23	992. 20		24			25			9 6		34 3007
27	831. 17		28			200			8 8		7491
<u>6</u>	682. 68		85			8			88		27 6110
_ &	544. 79		99			63			5		0.75
						;					

[0083] (Table 9)

EXA	SAMPLE: EXAMPLE 1b									
	Т%	PEAK NUMBER	WAVE NUMBER (cm ⁻¹)	Т%	PEAK NUMBER	WAVE NUMBER (cm·1)	1%	PEAK NUMBER	WAVE NUMBER (cm ⁻¹)	%T
60	2. 7887	2	3854.04	62. 6193	9	3839. 58	63. 0859	4		63. 5221
D (90			_	3674. 69	60, 8349	80		61, 1385
N,		2			=	3196. 43	36. 6064	12		51, 2164
47		7			5	1711.51	29. 3651	19		5.3748
•		<u>~</u>			6	1524, 45	6. 6503	20	1475.28	27, 7752
_		22			23	1398. 21	22, 5288	24	1374 03	21 2850
"		56			27	1251 58	25 5724	2 6	1232.20	17 BARR
_		99			. F.	1140 60	42 4420	3 5	1120 15	7.0400
-	41, 2862	8			, c	000	30 + 065	3 6	20.07	40. 73/6
		g			38	992. 20	28. 1802	9	810.24	32. 3236
		3 5			B C	832. 13	53, 1289	4	812.85	58. 7989
••		42			\$	737. 64	61, 4664	44	683, 64	49 178B
-		4			47	582 04	50 1828	48	5.05 JA	A5 2044
		23						?	2	##A7 .7

[0084] (Table 10)

SAM	SAMPLE: EXAMPLE 1c	MPLE 1c									
PEAK NUMBER	WAVE NUMBER (cm-1)	Т%	PEAK NUMBER	WAVE NUMBER (cm ⁻¹)	Т%	PEAK NUMBER	WAVE NUMBER (cm-1)	1%	PEAK	WAVE NUMBER (cm ⁻¹)	1%
-	3802. 25	50, 3617	2	3854.04	50. 1553	ဇ	3839. 58		4	3801.97	51. 7857
2	3749.90		•	3735. 44		7	3711.33		8	3689. 16	52.0424
Φ	3673. 73		2	3648, 66		=	3629. 37		. 12	3451.96	24, 3465
	3350. 71		*	3190.65		15	2983. 34		18	1844. 58	69.0444
-1	1772. 26		8	1712. 48		19	1664. 27		20	1625.70	28, 1570
2	1585, 20		22	1560, 13	25, 9825	23	1523. 49	10. 4464	24	1474. 31	26, 1905
22	1447.31		58	1422. 24		27	1396. 21		28	1373.07	21.8362
58	1344, 14		၉	1292. 07		<u>ج</u>	1251. 58		35	1231. 33	18.8437
<u>ස</u>	1186, 97		34	1164, 79		33	1139. 72		38	1127. 19	34, 1104
37	1063, 55		38	1014. 37		38	992. 20		\$	909. 27	32. 4686
4	872. 63		42	857. 20		3	831. 17		4	780. 67	49, 3395
₹ \$	760. 78		46	737. 64		47	683.64		84	645.07	42.0847
49	610, 36	46. 1061	2	592. 04		52	543.83		52	471.51	48. 7501
	442. 58		54	403, 05							
		,									

[0085] (Table 11)

SAMPLE: EXAMPLE 2a	MPLE 2a									
WAVE NUMBER (cm ⁻¹)	жт	PEAK NUMBER	WAVE NUMBER (cm ⁻¹)	1%	PEAK NUMBER	WAVE NUMBER (cm-1)	1%	PEAK NUMBER	WAVE NUMBER (cm-1)	1%
3947. 57		2			e			4	3882 00	
3870. 43	62, 8534	60	3853.08	61, 1682	,	3839. 58	61, 9789	. 00	3820. 29	62, 9568
3801. 01		2			=			12.	3735, 44	
3723.87		4			15			18	3675, 66	
3648. 66		18			6			20	3565, 74	
3339, 14		22			23			24	3007, 44	
2979. 48		78			27			28	2345.98	
2311. 27		ဓ			<u>က</u>			32	1844. 58	
1828. 19		34			33			38	1732, 73	
1662, 34		8			88			\$	1558, 20	
1524. 45		42			₹			\$	1388.50	
1370. 18		48			47			8	1281. 47	
1255. 43		20			2			25	1187.69	
1127, 19		₹.			22			28	997. 02	
916.02		8			28			9	819.60	
792. 60		62			63			8	686, 53	
647. 96		99			67			88	579, 50	
565.04		2			7			72	417.51	
					_					

[0086] (Table 12)

4		
	1%	65. 5681 62. 1397 62. 1397 63. 0106 57. 2073 59. 6548 67. 5680 67. 5680 65. 1128 65. 1128 19. 3922 48. 731 58. 2522 54. 6364
	WAVE NUMBER (cm ⁻¹)	3882. 00. 3820. 29 3735. 44 3674. 68 3564. 68 3008. 41 1771. 30 1835. 34 1246. 67 1349. 93 1229. 40 1061. 62 874. 56 874. 56
	PEAK NUMBER	4 8 25 2 2 2 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3
	1%	63. 8862 62. 5944 62. 5944 62. 5944 62. 59. 7570 35. 9208 68. 6540 65. 9869 3. 5651 27. 1589 27. 1589
	WAVE NUMBER (cm·1)	3902, 25 3838, 61 3748, 80 3610, 09 3185, 83 2376, 84 1920, 75 1782, 51 1524, 45 1127, 14 1251, 14 1251, 14 1251, 43 1127, 19 1127, 19 1127, 19 1127, 19 1127, 19 1127, 19
	PEAK NUMBER	2 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1%	68. 5212 62. 8655 67. 5582 64. 5822 60. 6478 60. 6478 68. 4156 67. 7038 67. 7038 67. 7038 67. 7038 67. 459 33. 459 49. 8615 50. 6887 53. 3351
	WAVE NUMBER (cm ⁻¹)	3931. 18 3853. 08 3780. 76 3711. 33 3628. 41 3339. 14 2839. 67 1842. 93 1732. 24 1357. 24 1357. 24 1357. 24 1357. 24 1357. 24 1357. 24 1361. 69 997. 02 819. 60
	PEAK NUMBER	7 8 9 5 5 5 6 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
MPLE 2b	· %T	66. 9343 66. 3683 65. 3683 65. 4550 65. 4550 65. 4550 69. 3115 67. 4810 67.
	œ	257 277 277 277 277 277 277 277 277 277
SAMPLE: EXAMPLE 2b	WAVE NUMBER (cm ⁻¹)	3847, 5 3871, 6 3801, 6 3723, 8 3565, 7 2810, 2 1748, 1 1748, 1 1748, 1 1781, 6 1193, 1 1042, 6 851, 4

[0087] (Table 13)

	1%	55. 0310 53. 8496 50. 8872 52. 5872 48. 5140 8. 6318 44. 8418 60. 1388 60. 1388 57. 1056 12. 4268 10. 3828 10. 3828 35. 8481 44. 1803 35. 8481
	WAVE NUMBER (cm ⁻¹)	3882, 00 3820, 29 3735, 44 3674, 69 3586, 95 3339, 14 2979, 48 1686, 88 1171, 30 1635, 34 1463, 71 1349, 93 1228, 43 1064, 51 874, 56 752, 10 627, 72 518, 76
	PEAK NUMBER	4 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1%	53. 0225 52. 6328 51. 2303 53. 9965 50. 4203 44. 3791 61. 6056 61. 115 61. 6056 58. 1187 17. 1433 37. 4359 38. 6148 38. 6148 38. 6168 38. 6168
	WAVE NUMBER (cm ⁻¹)	3802. 25, 3838. 61, 3748. 94, 3616. 84, 3524. 27, 3007. 44, 2345. 98, 1792. 51, 1792. 51, 1792. 54, 1523. 48, 1255. 43, 126. 02, 782. 60, 648. 93, 565. 04,
	PEAK NUMBER	8711588888886778
	₩1	56. 2460 51. 7187 57. 8637 54. 1180 51. 0640 61. 331 61. 1286 61. 1286 61. 1286 62. 7410 22. 7410 22. 7410 33. 7870 39. 4562 40. 0418 43. 1782
	WAVE NUMBER (cm ⁻¹)	38531, 18 3853, 08 3780, 76 3711, 33 3628, 41 3545, 49 1942, 93 1828, 19 1732, 73 1557, 24 1388, 50 1281, 47 1167, 69 897, 02 897, 02 8819, 60 686, 53 575, 50
	PEAK NUMBER	2 0 0 2 4 0 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2
MPLE 2c	Т%	56. 7484 53. 8317 54. 8032 55. 0212 49. 5453 49. 5594 57. 4731 62. 1221 62. 1221 62. 1388 30. 2743 20. 8358 42. 9887 44. 1042 44. 1042
SAMPLE: EXAMPLE	WAVE NUMBER (cm-1)	3947, 57 3870, 43 3801, 01 3723, 87 365, 74 3184, 86 2838, 67 1991, 14 1748, 16 1748, 16 1591, 95 1429, 96 1296, 89 1193, 72 1042, 34 850, 45 728, 60 594, 93
Ī	PEAK UMBER	113 113 113 113 113 113 113 113 113 113

[8800]

5

10

15

(Table 14)

Polymorph (A), wave number (cm ⁻ Polymorph (B), wave number (cm ⁻							
1)			¹)				
Ex. 1a	Ex. 1b	Ex. 1c	Ave.	Ex. 2a	Ex. 2b	Ex. 2c	Ave.
3451.96	3452.92	3451.96	3452.28	1558.20	1557.24	1557.24	1557.56
1712.48	1711.51	1712.48	1712.16	1464.67	1464.67	1463.71	1464.35

[0089] (Purity test of the polymorph (A))

In Example 1a, the purities of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide anterior and posterior to crystallization were measured according to the following method.

[0090] In Example 1a, a portion of the reaction mixture after being heated and stirred at 55 °C for 20 hours and further at 60 °C for 4 hours was collected, and it was subjected to HPLC as a sample anterior to crystallization. On the other hand, the polymorph (A) obtained in Example 1a was subjected to HPLC as a sample posterior to crystallization. [0091] The conditions of HPLC were as follows.

Column: ODS column (Mightysil RP-18 GP, Kanto Kagaku KK; inner diameter 4.6 mm, column length 150 mm, particle size 3 µm)

Column temperature: 40 °C (using a column oven)

Mobile phase:

Solution A H₂O:CH₃CN:HClO₄*=990:10:1 (v/v/v)

Solution B $H_2O:CH_3CN:HClO_4^*=100:900:1 (v/v/v)$

20 (*: 70% aqueous solution)

Eluted by the linear gradient shown in Table 15

(Table 15)

time (minute)	B conc. (%)
0	5
3	20
15	20
30	100

Flow rate: 1.0 mL/min

Detection: UV detector (wavelength: 252 nm)

[0092] The contents (the ratio of peak areas) of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamides and impurities in the samples anterior and posterior to crystallization to the polymorph (A) are shown in Table 16.

[0093]

5

10

15

20

25

(Table 16)

substance	Р	Q	R
anterior	1.26	3.65	92.4
posterior	0.49	not	97.6

[0094] In Tables 16 and 17, P represents 7-methoy-4-chloro-quinoline-6-carboxamide, Q represents 1-(2-chloro-4-hydroxyphenyl)-3-cyclopropylurea, and R represents 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide.

[0095] 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-

methoxy-6-quinolinecarboxamide was 92.4% in purity anterior to crystallization, but 97.6% in purity posterior to crystallization to the polymorph (A), indicating that the crystallization improved the purity.

[0096] (Purity test of the polymorph (B))

In Example 2a, the purities of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide anterior and posterior to crystallization were measured according to the following method.

[0097] In Example 2a, a portion of the reaction mixture after being heated and stirred at 60 °C for 25 hours was collected, and it was subjected to HPLC as a sample anterior to crystallization. On the other hand, the polymorph (B) obtained in Example 2a was subjected to HPLC as a sample posterior to crystallization. The conditions of HPLC were the same as those above-described in the purity test for the polymorph (A).

[0098] The contents (the ratio of peak areas) of 4-(3-chloro-4-

(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6quinolinecarboxamides and impurities in the samples anterior and posterior to crystallization to the polymorph (B) are shown in Table 17. [0099]

(Table 17)

5

10

15

20

substance	Р	Q	R
anterior	0.46	3.48	92.2
posterior	0.05	not	98.1

[0100] 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-

methoxy-6-quinolinecarboxamide was 92.2% in purity anterior to crystallization, but 98.1% in purity posterior to crystallization to the polymorph (B), indicating that the crystallization improved the purity. Also, the purity was higher compared with that of the polymorph (A), that is, 97.6%. This revealed that the crystallization operation to the polymorph (B) was superior to that to the polymorph (A) in the efficiency of removing the impurities.

[0101] (Hygroscopicity test by a desiccator method)

The hygroscopicities of the crystals obtained in Examples 1d and 2d were evaluated by a desiccator method. The crystals were stored for 1 week under the conditions as shown in Table 18, and then appearance observation, powder X-ray diffraction measurement, and water content measurement were carried out. Weighing bottles (in opened caps) were used for containers, and MIR-552 (Sanyo) was used for a storage apparatus. [0102]

(Table 18)

condition	temperature	relative humidity	desiccator
Α	25 °C	75%	NaCl
			saturated
В	25 °C	93%	KNO₃
*			saturated

[0103] The powder X-ray diffraction analysis was carried out under the following conditions.

Apparatus: RINT2000 manufactured by Rigaku Denki KK

Sample holder: glass holder (diameter 10 mm)

Target: Cu

Detector: Scintillation counter

5 Tube voltage: 40 kV

Tube current: 200 mA

Slit: DS 1/2°, RS 0.3 mm, SS 1/2°

Scan speed: 2°/min Step/sampling: 0.02°

10 Scan range: 5-40°

Goniometer: Vertical goniometer

Filter: not used

[0104] The water content was measured (by the Karl Fischer method) by using the following apparatus and reagents.

15 Apparatus: Moisture meter CA-06 (Mitsubishi Chemical)

Reagents:

Lactose monohydrate NF (Mallinckrodt)

Karl Fischer reagents:

Anode solution/Aquamicron AX (Mitsubishi Chemical)

Cathode solution/Aquamicron CXU (Mitsubishi Chemical)

[0105] The results of evaluating the hygroscopicities of the crystals obtained in Examples 1d and 2d are listed in Tables 19 and 20, respectively. [0106]

(Table 19)

condition	appearance		water content	powder	X-ray
			(wt%)	diffraction patter	n
prior to storage	light	brown	1.0	Α	
	powder				
Α	light	brown	1.0	Α	
	powder				
В	light	brown	1.2	A	
	powder				

25 [0107]

20

(Table 20)

condition	appearance	water content	powder X-ray
		(wt%)	diffraction pattern
prior to storage	pale brownish	0.5	В
	white powder		
Α	pale brownish	0.5	В
	white powder		
В	pale brownish	0.5	В
	white powder		

[0108] As is evident from the results shown in Tables 19 and 20, both of the crystals obtained in Examples 1d and 2d had no perceivable hygroscopicitiy and no perceivable crystal transition.

[0109] (Hygroscopicity test by microbalance method)

5

The higroscopicities of the crystals obtained in Examples 1d and 2d were evaluated by microbalance method. An apparatus and conditions employed were as follows.

Apparatus: Integrated microbalance system MB 300W (VTI Co.)

Temperature: 25 °C

10 Relative humidity step: 5 to 95 by 5

Equilibrium Criteria: 0.0050 wt% (5 minutes)

Maximum equilibrium time: 120 minutes

Initial dry: on

[0110] The results of measuring the higroscopicities of the crystals obtained in Examples 1d and 2d by microbalance method are shown in Fig. 13 and 14, respectively. As is seen from the results shown in these figures, within the range of 5-95% of relative humidity, the polymorph (A) gave a weight change of 1% and the polymorph (B) gave that of 1.5%. Both of the polymorphs, therefore, had no perceivable hygroscopisity.

20 [0111] (Solid stability test)

> The solid stabilities of the crystal obtained in Examples 1d and 2d were evaluated. The crystals were stored for 1 month under the conditions as shown in Table 21, and then appearance observation, water content measurement (by the Karl Fischer method), purity test and residual ratio (percent) measurement by HPLC, and powder X-ray diffraction measurement were carried out. The water content measurement and the

25

15

powder X-ray diffraction measurement were carried out by the same method as descrobed in the hygroscopicity test by the dessiccator method. Further, the purity test and the residual ratio (percent) measurement by HPLC were carried out by the same method as described above, except for the condition that the column temperature was 35 °C. In this connection, the residual ratio (percent) (measurement by HPLC) was defined as stated bellow by using the crystal stored under the condition C as the standard and its solution as the standard solution.

Remaining percent (%)=[(Peak area of the sample solution)×(Weighed amount of the standard: in terms of a dehydrate (mg))]×100/[(Peak area of the standard solution)×(Weighed amount of the sample: in terms of a dehydrate (mg))]

[0112]

5

10

(Table 21)

				
condition	temperature	container	сар	storage
	etc.			apparatus
С	-20 °C	brown screw vial	closed	PU-1F ¹
D	25 °C, 1000lx	shading with aluminum	closed	LT-120*2
E	25 °C, 1000lx	quartz tube	closed	LT-120*2
F	40 °C, 75%RH	brown screw vial	open	LH21-
G	60 °C	brown screw vial	closed	DN-61*3

^{15 *1:} Tabai Espec KK

[0113] The results of evaluating solid stabilities of the crystals obtained in Examples 1d and 2d are listed in Tables 22 and 23, respectively.

20 [0114]

(Table 22)

^{*2:} Nagano Science KK

^{*3:} Yamato Science KK

condition	appearance	water	impurity	remaining	powder X-ray
		content	(%)	percent	diffraction
		(wt %)		(%)	pattern
prior to	light brown	1.0	2.71	-	Α
storage	powder				
С	light brown	1.0	2.66	(100)	Α
	powder				
D	light brown	0.7	2.67	103.3	Α
	powder				
E	light brown	0.8	2.68	104.3	Α
	powder				
F	light brown	1.2	2.65	102.3	Α
	powder				:
G	light brown	0.5	2.65	104.4	Α
	powder				

[0115]

(Table 23)

condition	appearance	water	impurity	remaining	powder X-ray
		content	(%)	percent	diffraction
		(wt %)		(%)	pattern
prior to	pale brownish	0.5	1.53	-	В
storage	white powder				
С	pale brownish	0.4	1.55	(100)	В
	white powder				
D	pale brownish	0.3	1.54	101.8	В
1	white powder				
E	pale brownish	0.3	1.55	100.5	В
	white powder				
F	pale brownish	0.4	1.54	100.4	В
	white powder				
G	pale brownish	0.5	1.53	101.3	В
	white powder				

[0116] As is evident from the results shown in Tables 22-23, no change was observed in the polymorphs (A) and (B) under any storage conditions.
[0117] (Solubility test)

The solubilities (pH 3) of the crystals obtained in Examples 1d and 2d were evaluated by the following method. About 3 mg of the crystals obtained in Examples 1d and 2d were weighed and each of them was put in a 10 mL screw-capped transparent test tube. 5 mL of a buffer solution (Britton Robinson buffer, pH 3.091, ionic strength I=0.3) was added to each of the test tubes to prepare the test solutions.

[0118] The test tubes were wrapped with aluminum foil to shield from light, and shaken by a shaker (MS-1 Iuchi Seieido) in the following conditions.

Temperature: 25-26 °C (a temperature in a laboratory)

Shaking frequency: 150 times/minute

15 Shaking time: 3 hours and 5 hours

5

10

20

[0119] Respective sample solutions after shaking were filtered (0.2 μ M, Samplep LCR13-LG, Millipore Co.,), and each 1 mL of the initial filtrate was discarded. Each of accurately pipetted 1 mL of the filtrates was put in a 10 mL test tube, to which accurately pipetted 1 mL of a mixed solution of water/acetonitrile (1:1 (v/v)) was added to prepare a solution for the HPLC analysis.

[0120] The HPLC conditions were as follows.

Column: ODS column (Mightysil RP-18GP; inner diameter 4.6 mm, column length 150 mm, particle size 3 µm, manufactured by Kanto Kagaku KK)

25 Column temperature: 35 °C

Mobile phase:

Solution A $H_2O:CH_3CN:HClO_4^* = 990:10:1 (v/v/v)$

Solution B $H_2O:CH_3CN:HClO_4^*=100:900:1 (v/v/v)$

(*: 70% aqueous solution)

30 Isocratic elution by B=20%

Flow rate: 1.0 mL/min

Detection: UV detector (wavelength: 252 nm)

[0121] A standard solution for the HPLC analysis were prepared as follows.

About 10 mg of the crystals obtained in Example 2d was accurately weighed, to which a mixed solution of water/acetonitrile/ammonium acetate (100:100:0.1, v/v/w) was added to give accurate 100 mL to prepare a stock standard solution. Accurately pipetted 5 mL of the stock control solution was added with a mixed solution of water/acetonitrile/ammonium acetate (100:100:0.1, v/v/w) to give accurate 25 mL to prepare the standard solution for the HPLC analysis. Regarding a blank solution, a mixed solution of water/acetonitrile/ammonium acetate (100:100:0.1, v/v/w) was used.

10 [0122] The standard solution and respective filtrates were analyzed by HPLC to measure concentrations (mg/mL) of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide in respective filtrates according to the following equation.

Concentration (mg/mL)=(Concentration in the standard solution, mg/mL) \times [(Peak area in each filtrate) \times 2/(Peak area in the standard solution)]

[0123] The respective results of the solubility test for the crystals obtained in Examples 1d and 2d are listed in Table 24. The pH of the respective filtrates are listed in Table 25. As is evident from the results, there was no significant difference in the solubility at pH 3 between the polymorphs (A) and (B).

[0124]

5

15

20

25

(Table 24)

shaking time	Example 1d	Example 2d
3 hours	7.7 x 10 ⁻²	6.2 x 10 ⁻²
5 hours	7.1 x 10 ⁻²	5.4 x 10 ⁻²

(mg/mL)

[0125]

(Table 25)

shaking time	Example 1d	Example 2d
3 hours	3.123	3.109
5 hours	3.107	3.106

[0126] c-Kit

5

10

15

20

25

30

kinase

inhibition

by

4-(3-Chloro-4-

(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide was tested in the following Test Example 1 to 4.

[0127] (Test Example 1: Effect on cell proliferation stimulated by SCF)

[0128] 4-(3-Chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-

methoxy-6-quinolinecarboxamide was tested for their effects on the proliferation of the small cell lung cancer cell line H-526 expressing c-Kit kinase (purchased from ATCC: CRL-5811).

[0129] 4-(3-Chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-

methoxy-6-quinolinecarboxamide was prepared similarly to the method described in Preparation Examples 1 to 3.

[0130] H-526 cells were cultured in a 5% CO₂ incubator (37 °c) using an RPMI1640 medium (Nissui Pharmaceutical Co., Ltd.) containing 10% FCS (purchased from Cell Culture Technologies). After culturing, H-526 cells were washed with PBS three times and were suspended in an RPMI1640 medium containing 0.1% BSA (Sigma Corporation) (hereinafter abbreviated as "BSA-RPMI1640") at 1.0x10⁵ cells/ml. Each 50 µl of this cell suspension was inoculated to each well of a round bottom 96-well plate, and the suspension was cultured in a 5% CO₂ incubator (37 °c) overnight. After culturing overnight, 50 µl of BSA-RPMI1640 containing 200 ng/ml SCF (R&D Co., Ltd.) and 100 µl of BSA-RPMI1640 containing a diluted test substance (4-(3-Chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide) were added to each well.

[0131] On the 7th day after addition of the test substance, 20 µl of Cell Counting Kit-8 (Dojin Laboratories) was added to the well and was cultured in a 5% CO₂ incubator (37 °c) for about 2 hours. After color development, the absorbance of each well was determined using a MTP-32 plate reader (Colona Electric Co., Ltd.) at a measuring wavelength of 450 nm and at a reference wavelength of 660 nm. The absorbance of each well was subtracted by the absorbance of the well without addition of SCF, and

then the ratio of the absorbance of the well with addition of the test substance to the ratio of the absorbance of the well without addition of the test substance was determined. This ratio was used to calculate the concentration of the test substance required for 50% inhibition of the cell proliferation (IC₅₀).

[0132] Consequently, IC₅₀ of 4-(3-Chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

5

10

15

20

25

30

quinolinecarboxamide was 9.46 nM. The compound inhibited the cell proliferation stimulated by SCF, and was considered to possess c-Kit kinase inhibitory activity. The IC₅₀ of the compound KRN633, which is described in Kazuo Kubo et al., 22nd Symposium on Medicinal Chemistry, Abstracts, pp. 275-277, 2P-320, 2002, proved to be 301 nM and the compound showed only weak activity as compared to 4-(3-Chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide. STI571 known as a c-Kit kinase inhibitor showed IC₅₀ of 190 nM.

[0133] (Example 2: Effect on c-Kit kinase phosphorylation by SCF stimulation)

[0134] 4-(3-Chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-

methoxy-6-quinolinecarboxamide was tested for its effect on the phosphorylation of the c-Kit kinase molecule by SCF stimulation in the small cell lung cancer cell line H-526 expressing c-Kit kinase.

[0135] H-526 cells were cultured in a 5% CO₂ incubator (37 °c) using an RPMI1640 medium containing 10% FCS. After culturing, H-526 cells were washed with PBS three times and were suspended in a BSA-RPMI1640 medium at 5.0x10⁵ cells/ml. Each 1 ml of this cell suspension was inoculated to the well of a 24-well plate and the suspension was cultured in a 5% CO₂ incubator (37 °c) for 6 hours. After 6-hours culturing, 1 ml of BSA-RPMI1640 containing a diluted test substance (4-(3-Chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide) was added to each well and culturing was carried out in a 5% CO₂ incubator (37 °c) for 1 hour. Additional culturing was then carried out in a 5% CO₂ incubator (37 °c) for 5 minutes after the

addition of 10 μ l of SCF (10 μ g/ml, R&D Corporation). After 5-minutes culturing, the cells were washed with PBS and 100 μ l of SDS sample loading buffer was added to the cells to prepare a cell lysate sample. After the sample was heat-treated at 94 °c for 10 minutes, it was cryopreserved at -20 °c.

5

10

15

20

30

[0136] The cell lysate sample, 20 µl, was then electrophoresed on a 4-20% gradient polyacrylamide gel (Daiichi Pure Chemicals Co., Ltd.). After electrophoresis, the sample was transferred to a PVDF membrane (Amersham Pharmacia Biotech Inc.) for 3 hours. The transferred membrane was subjected to immunoblot using a phospho-c-kit (Tyr719) antibody (Cell Signaling Technology Inc.) as a primary antibody and an anti-rabbit IgG, HRP-linked antibody (Cell Signaling Technology Inc.) as a secondary antibody. After the membrane was washed, it was developed with a Super Signal (Pierce Biotechnology, Inc.).

[0137] As the results are shown in Fig. 15, c-Kit kinase was not phosphorylated (the farthest left lane) in the absence of SCF, and the addition of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7methoxy-6-quinolinecarboxamide ("compound 1" in figures) suppressed the c-Kit kinase phosphorylation that would take place in the presence of SCF in a concentration-dependent manner. The phosphorylation inhibitory activity of STI571, which is known as a c-Kit kinase inhibitor, was of approximately one tenth of that 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6quinolinecarboxamide.

[0138] (Example 3: Effect on growth of H-526 tumor transplanted to nude mice)

[0139] H-526 cells were cultured in a 5% CO₂ incubator (37 °c) using an RPMI1640 medium containing 10% FCS. After the culture medium was collected, H-526 cells were washed with PBS twice and were suspended in PBS at 5.0x10⁷ cells/ml. This cell suspension (0.1 ml) was transplanted to the subcutaneous parts of the right flank of 6-week female Balb/c nu/nu mice (purchased from Charles River Laboratories, Inc.). After transplantation, administration of a test substance (4-(3-chloro-4-

(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

5

10

15

20

25

30

quinolinecarboxamide) was started at the point the tumor volume reached approximately 150 mm³, and thus, oral administration was conducted twice daily for a period of 14 days. The test substance was suspended in a 0.5% methylcellulose solution (Wako Pure Chemical Industries Co., Ltd.) so as to give a dose of 0.1 ml/10 g body weight.

[0140] The tumor volume was measured with a caliper twice weekly during the administration period. The long and short diameters of the tumor were measured with a caliper and the tumor volume was calculated according to the equation: 1/2 x long diameter x short diameter x short diameter. Here, the experiment was conducted in a vehicle control group of 10 animals (solvent-administered group) as well as in a test substance administered group of 5 animals.

[0141] As the results are shown in Fig. 16, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide suppressed the growth of the nude mouse transplanted H-526 tumor in a dose-dependent manner. On the other hand, STI571 known as a c-Kit kinase inhibitor showed little anti-tumor effect

[0142] (Example 4: Effect on c-Kit kinase phosphorylation in H-526 tumor transplanted to nude mice)

when administered even at 160 mg/kg.

[0143] 0.1 ml of a H-526 cell suspension prepared at a concentration of 5.0x10⁷ cells/ml, was transplanted to the subcutaneous parts of the right latus of 6-week female Balb/c nu/nu mice (purchased from Charles River Laboratories, Inc.). The animals were then divided into a vehicle control group (solvent-administered group) and a test substance (4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide) administered group at the point the tumor volume reached 300-1000 mm³: the test substance was administered to the latter group. The extracted tumor was placed in a cell lysate buffer (50 mM HEPES (pH 7.4), 150 mM NaCl, 10% glycerol, 1% Triton X-100, 1.5 mm MgCl₂, 1 mM EDTA, 100 mM NaF, 1 mM PMSF, 10 μg/ml aprotinin, 50 μg/ml leupeptin, 1 μg/ml peptatin A, 1 mM Na₃VO₄, 25 mM β-

glycerophosphate, and phosphatase inhibitor cocktail II) and homogenized. After centrifugation, the supernatant was protein quantified, and a 3xSDS sample loading buffer was added to prepare a cell lysate sample. Subsequently, the cell lysate was heat-treated at 94 °c for 10 minutes and cryopreserved at -20 °c.

[0144] The cell lysate sample which was equivalent to 30 μ g of protein was electrophoresed on a 4-20% gradient polyacrylamide gel (Daiichi Pure Chemicals Co., Ltd.). After electrophoresis, the sample was transferred to a PVDF membrane (Amersham Pharmacia Biotech Inc.) for 3 hours. In order to assay phosphorylated c-Kit, c-Kit and β -actin, immunoblot was performed using a phospho-c-kit (Tyr719) antibody (Cell Signaling Technologies, Inc.), an anti c-Kit antibody (Cell Signaling Technologies, Inc.) and an anti-rabbit IgG, HRP-linked antibody (Cell Signaling Technologies, Inc.) as a secondary antibody. After the membrane was washed, it was developed with a Super Signal (Pierce Biotechnology, Inc.).

[0145] As the results are shown in Fig. 17, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-

quinolinecarboxamide reduced phosphorylated c-Kit in tumor tissue when administered at 30 or 100 mg/kg, but c-Kit and β-actin remained unchanged. While 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide completely inhibited phosphorylation when administered at 30 or 100 mg/kg, STI571 known as a c-Kit kinase inhibitor partially inhibited phosphorylation when administered even at 160 mg/kg.

[0146] These results demonstrated that 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide inhibits phosphorylation of c-Kit *in vivo*, and it was confirmed that 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide inhibits activity of c-Kit kinase and

shows anti-tumor activity. Industrial Applicability

5

10

15

20

25

30

[0147] As described above, the present invention can provide novel

crystals of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide (polymorph (A) and (B)) and a process for the preparation of the same.