SignLang: An AI-Driven Interactive Tutoring System with Gesture Recognition for Pakistan Sign Language (PSL)

Project Team

Syed Saad kabeer 22P-9032 Sana Ullah 22P-9038

Session 2022–2026

Supervised by

Dr. Muhammad Amin

Department of Computer Science National University of Computer and Emerging Sciences Peshawar, Pakistan

October, 2025

Student's Declaration

We declare that this project titled "SignLang: An AI-Driven Interactive Tutoring System with Gesture Recognition for Pakistan Sign Language (PSL)", submitted as a requirement for the award of the degree of Bachelors in Computer Science, does not contain any material previously submitted for a degree in any university; and that to the best of our knowledge, it does not contain any materials previously published or written by another person except where due reference is made in the text.

We understand that the management of the Department of Computer Science, National University of Computer and Emerging Sciences, has a zero-tolerance policy towards plagiarism. Therefore, we, as authors of the above-mentioned thesis, solemnly declare that no portion of our thesis has been plagiarized and any material used in the thesis from other sources is properly referenced.

We further understand that if we are found guilty of any form of plagiarism in the thesis work even after graduation, the University reserves the right to revoke our BS degree.

Student 1:	Syed Saad Kabeer	Signature:
Student 2:	Sana Ullah	Signature:
	Ver	ified by Plagiarism Cell Officer
		Dated:

Certificate of Approval

The Department of Computer Science, National University of Computer and Emerging Sciences, accepts this thesis titled SignLang: An AI-Driven Interactive Tutoring System with Gesture Recognition for Pakistan Sign Language (PSL), submitted by Syed Saad Kabeer (22P-9032), SanaUllah (22P-9038), in its current form, and it is satisfying the dissertation requirements for the award of Bachelors Degree in Computer Science.

Supervisor	
Dr. Muhammad Amin	Signature:
FYP Coordinator	Signature:
Head of Department (Computer Science)	Signature:

National University of Computer and Emerging Sciences, Peshawar

Acknowledgements

We would like to express our heartfelt gratitude to our supervisor, Dr. Muhammad Amin, for his invaluable guidance, continuous support, and insightful feedback throughout the development of this project.

We extend our sincere thanks to the Special Complex Peshawar for their cooperation and assistance in enabling us to work on Pakistan Sign Language (PSL), and for providing valuable insights that helped us design and standardize the PSL content for our web-based learning and evaluation platform.

We are also grateful to the National University of Computer and Emerging Sciences (FAST-NUCES) for providing the necessary resources, technical facilities, and a productive academic environment that contributed to the successful completion of our project, SignLang: An AI-Powered Interactive Tutoring System Using Pakistan Sign Language (PSL).

Finally, we thank our families and friends for their constant encouragement, patience, and motivation throughout this journey.

Syed Saad Kabeer Sana Ullah

Abstract

SignLang is an AI-driven interactive tutoring system designed to facilitate the learning of Pakistan Sign Language (PSL) through gesture recognition and real-time feedback. The system integrates Computer Vision and Deep Learning models to detect and evaluate hand gestures using live camera input, ensuring accurate PSL posture recognition. Recognized signs are mapped to English and Urdu text, enhancing both comprehension and communication. The web-based platform enables students and tutors to engage through interactive lessons, quizzes, and AI-assisted evaluations. By promoting standardized PSL learning and inclusivity for the deaf and hard-of-hearing community, SignLang aligns with UN SDGs 4, 9, and 10, advancing equitable education and innovation in assistive technology.

Contents

St	Student's Declaration Certificate of Approval						
C							
\mathbf{A}	Acknowledgements						
A	Abstract						
1	Intr	roduction	7				
	1.1	Overview	7				
	1.2	Motivation	7				
	1.3	Problem Statement	8				
	1.4	Project Scope	8				
	1.5	Objectives	8				
	1.6	Expected Outcomes	9				
	1.7	SDG Alignment	9				
2 Rev		view of Literature	10				
	2.1	Introduction	10				
	2.2	Pakistan Sign Language Recognition	10				
	2.3	Deep Learning Approaches in PSL	10				
	2.4	Challenges and Research Gaps	11				
	2.5	Literature Review Summary	11				
3	Pro	ject Vision	12				
	3.1	Problem Statement (Revisited)	12				
	3.2	Business Opportunity	12				
	3.3	Goals and Objectives	12				
	3.4	Constraints	13				
	3.5	Expected Impact	13				

Bibliography 14

Chapter 1

Introduction

1.1 Overview

SignLang is an AI-powered interactive learning platform that enables users to learn Pakistan Sign Language (PSL) through real-time gesture recognition and feedback. The system employs Computer Vision and Deep Learning techniques to identify and evaluate PSL gestures captured via a camera, ensuring accuracy and adherence to standardized signs. It offers a web-based interface where students can take lessons, practice signs, and complete AI-assisted evaluations, while tutors can create customized lessons, track progress, and analyze performance trends. By combining AI-driven learning, interactive assessments, and bilingual support (English, Urdu), SignLang aims to make PSL education more accessible, inclusive, and standardized for the deaf and hard-of-hearing community in Pakistan.

1.2 Motivation

In Pakistan, the **deaf and hard-of-hearing community** faces significant barriers in accessing quality education due to the limited availability of trained sign language instructors and standardized learning resources. Existing teaching methods for **Pakistan Sign Language (PSL)** are largely manual, lacking interactivity, accessibility, and real-time feedback. This gap creates challenges in effective communication and social inclusion for hearing-impaired individuals.

The motivation behind **SignLang** is to harness the power of **Artificial Intelligence** (AI) and **Computer Vision** (CV) to make PSL learning **interactive**, **standardized**, and accessible for everyone. By enabling real-time gesture recognition, evaluation, and guided learning through a web-based platform, the project aims to **empower learners** and educators, promote inclusive education, and bridge the communication divide between hearing and non-hearing communities in Pakistan.

1.3 Problem Statement

In Pakistan, the lack of standardized and accessible platforms for learning Pakistan Sign Language (PSL) limits educational opportunities for the deaf and hard-of-hearing community. Traditional sign language teaching methods rely heavily on manual instruction, offering minimal interactivity and no real-time feedback. This creates inconsistencies in learning accuracy and slows the adoption of PSL across institutions. Furthermore, there is limited technological integration to assess and evaluate learners' gestures effectively. Therefore, there is a need for an AI-driven interactive tutoring system that can recognize, evaluate, and guide PSL gestures in real time, promoting standardized, inclusive, and efficient learning.

1.4 Project Scope

- 1. Data collection and preprocessing of Pakistan Sign Language (PSL) gesture datasets.
- 2. Training and fine-tuning of AI models for hand gesture recognition and pose estimation.
- 3. Mapping recognized PSL gestures to corresponding English and Urdu text.
- 4. Development of an interactive web-based learning platform for students and tutors.
- 5. Integration of real-time feedback and performance evaluation using AI-based accuracy analysis.
- 6. Implementation of tutor tools for lesson creation, quiz management, and progress tracking.
- 7. Deployment of the system for accessibility across desktop, mobile, and Smart TV platforms.

1.5 Objectives

- Develop an AI-driven tutoring system capable of recognizing and evaluating Pakistan Sign Language (PSL) gestures in real time.
- Convert recognized gestures into corresponding English and Urdu text for better understanding and accessibility.

- Provide interactive lessons, quizzes, and AI-based feedback to enhance learning accuracy and engagement.
- Enable tutors to create, manage, and track lessons and student performance using intelligent analytics.
- Deploy the system as a responsive web-based platform accessible via desktop, mobile, and Smart TV.

1.6 Expected Outcomes

- A trained AI model for accurate PSL gesture recognition using computer vision and deep learning.
- A fully functional web-based learning platform supporting interactive PSL lessons and real-time evaluations.
- Tools for tutors to create content, manage quizzes, and monitor student progress through AI-generated insights.
- Bilingual support (English and Urdu) for improved communication and inclusivity.
- An accessible and standardized platform promoting PSL education nationwide.

1.7 SDG Alignment

- Goal 4: Quality Education Ensure inclusive and equitable education for the deaf and hard-of-hearing community.
- Goal 9: Industry, Innovation, and Infrastructure Promote innovation in assistive and educational technologies using AI.
- Goal 10: Reduced Inequalities Empower persons with disabilities by providing equal access to digital learning tools.

Chapter 2

Review of Literature

2.1 Introduction

Sign Language Recognition (SLR) has gained significant attention in recent years as a crucial step toward bridging communication gaps between the hearing and speech-impaired communities and the rest of society. With the advancements in computer vision and deep learning, researchers have focused on recognizing hand gestures and postures to automate the interpretation of sign languages, including Pakistan Sign Language (PSL). However, challenges remain due to limited datasets, variations in lighting and background, and the complexity of continuous sign gestures.

2.2 Pakistan Sign Language Recognition

Several studies have explored PSL recognition using machine learning and deep learning techniques. Imran et al. (2021) developed a dataset for PSL and focused on recognizing hand configurations of Urdu alphabets using traditional machine learning methods. Their work laid the foundation for PSL dataset availability. Mirza et al. (2022) further enhanced recognition accuracy using a Bag-of-Words model and Support Vector Machines (SVM), proving that vision-based models can handle PSL with reasonable success.

2.3 Deep Learning Approaches in PSL

Recent work has shifted toward deep learning due to its superior performance in image and gesture recognition tasks. Hamza and Wali (2023) demonstrated the use of deep learning models for PSL recognition even with limited data, emphasizing transfer learning as a viable approach. Similarly, Arooj et al. (2024) combined Convolutional Neural Networks (CNN) with Scale-Invariant Feature Transform (SIFT) to improve feature extraction and classification accuracy in PSL datasets.

2.4 Challenges and Research Gaps

While significant progress has been made, several challenges persist. Zahid et al. (2022) conducted a systematic review highlighting issues such as inconsistent datasets, lack of standardization, and the need for real-time recognition systems. Moreover, Khan et al. (2021) discussed the broader challenges in developing PSL through information technology, including limited community engagement, insufficient linguistic resources, and lack of government-backed standardization.

2.5 Literature Review Summary

No.	Literature	Year	Methodology	Limitations
1	Imran et al.	2021	Created PSL dataset;	Limited to static hand
			used ML for Urdu al-	shapes
			phabet recognition	
2	Mirza et al.	2022	Vision-based PSL	Dependent on image
			recognition using	quality
			BoW + SVM	
3	Zahid et al.	2022	Systematic review	Lacks implementation
			of ML classifiers for	and real-time testing
			Urdu SL	
4	Hamza & Wali	2023	Deep learning with	Dataset too small for
			limited PSL data us-	robust models
			ing transfer learning	
5	Arooj et al.	2024	CNN + SIFT hybrid	Focused on static ges-
			approach for PSL ges-	tures only
			ture recognition	
6	Khan et al.	2021	Discussion on develop-	Conceptual; lacks
			ing PSL using IT	technical implementa-
				tion

Chapter 3

Project Vision

3.1 Problem Statement (Revisited)

In Pakistan, the hearing-impaired community faces significant barriers to education and communication due to the limited availability of standardized and accessible learning tools for Pakistan Sign Language (PSL). Existing methods rely on manual instruction or non-interactive video tutorials, which fail to provide personalized feedback or real-time gesture evaluation. Moreover, PSL lacks a unified digital learning platform that aligns with officially recognized standards and is easily deployable across classrooms, Smart TVs, and personal devices.

3.2 Business Opportunity

- Educational Institutions Schools and special education centers can integrate the system into their curriculum to promote inclusive learning.
- Tutors and Trainers Instructors can create customized PSL lessons, track student progress, and receive AI-driven insights on gesture performance.
- Students and Learners Individuals can practice and learn PSL interactively through real-time gesture recognition and accuracy feedback.
- Organizations and NGOs Assistive technology programs can adopt this solution to train staff or provide accessible communication tools.

3.3 Goals and Objectives

The primary goal of this project is to design and develop an AI-driven, web-based tutoring system that enables real-time learning and evaluation of Pakistan Sign Language. The

objectives include:

- Implement computer vision models for gesture recognition and accuracy evaluation.
- Convert recognized signs into English and Urdu text for accessibility.
- Develop interactive modules with quizzes and assignments for student assessment.
- Enable tutors to create, manage, and evaluate lessons via a centralized portal.
- Deploy the platform on web and Smart TV interfaces to enhance accessibility.

3.4 Constraints

- Dataset Limitations Lack of large-scale, standardized PSL datasets for model training.
- Model Complexity Real-time gesture detection requires efficient yet accurate deep learning models.
- Hardware Dependence Performance varies based on camera quality and system processing power.
- Standardization PSL still lacks complete official standardization, making linguistic alignment challenging.
- **Deployment and Maintenance** Ensuring consistent performance across multiple devices and platforms.

3.5 Expected Impact

The proposed system will have a transformative effect on the accessibility and quality of PSL education in Pakistan. It will:

- Standardize PSL learning and teaching through AI-assisted evaluation.
- Enhance inclusivity by providing equal learning opportunities to deaf and hard-of-hearing individuals.
- Empower teachers through data-driven insights on student progress.
- Encourage adoption of assistive AI technologies in the education sector.
- Contribute to the Sustainable Development Goals (SDG 4, SDG 9, and SDG 10) by promoting quality education, innovation, and reduced inequalities.

Bibliography

- [1] A. Imran, A. Razzaq, I. A. Baig, A. Hussain, S. Shahid, and T. Rehman, "Dataset of Pakistan Sign Language and automatic recognition of hand configuration of Urdu alphabet through machine learning," *Data in Brief*, vol. 36, p. 107021, Jun. 2021.
- [2] M. S. Mirza, S. M. Munaf, F. Azim, S. Ali, and S. J. Khan, "Vision-based Pakistani sign language recognition using bag-of-words and support vector machines," *Scientific Reports*, vol. 12, art. no. 21325, Dec. 2022.
- [3] H. M. Hamza and A. Wali, "Pakistan sign language recognition: leveraging deep learning models with limited dataset," *Machine Vision and Applications*, vol. 34, no. 5, Jul. 2023.
- [4] S. Arooj, S. Altaf, S. Ahmad, H. Mahmoud, and A. S. N. Mohamed, "Enhancing sign language recognition using CNN and SIFT: A case study on Pakistan sign language," *Journal of King Saud University – Computer and Information Sciences*, vol. 36, no. 2, p. 101934, Feb. 2024.
- [5] H. Zahid, M. Rashid, S. Hussain, F. Azim, S. A. Syed, and A. Saad, "Recognition of Urdu sign language: A systematic review of the machine learning classification," *PeerJ Computer Science*, vol. 8, p. e883, Feb. 2022.
- [6] N. S. Khan, A. Abid, K. Abid, et al., "Speak Pakistan: Challenges in developing Pakistan Sign Language using information technology," Journal of South Asian Studies, May 2021.