Orbits

Definition

Let σ be a permutation on a set A and let $a \in A$. The *orbit* of a under σ is given by:

$$\mathcal{O}_{a,\sigma} = \{ \sigma^n(a) \mid n \in \mathbb{Z} \}$$

Theorem

Let σ be a permutation on a set A and define the relation $a \sim b$ iff $b \in \mathcal{O}_{a,\sigma}$:

 \sim is an equivalence relation

Proof

R: Assume $a \in A$ $\sigma^0(a) = a$ $\therefore a \sim a$

S: Assume $a \sim b$ $\exists n \in \mathbb{Z}, \sigma^n(a) = b$ $\sigma^{-n}(b) = a$ $\therefore b \sim a$

T: Assume $a \sim b$ and $b \sim c$ $\exists n, m \in \mathbb{Z}, \sigma^n(a) = b$ and $\sigma^m(b) = c$ $\sigma^m(\sigma^n(a)) = c$ $\sigma^{n+m}(a) = c$ $\therefore a \sim c$

: is an equivalence relation.

Thus, the orbits are the equivalence classes of the above equivalence relation.

Corollary

Let σ be a permutation on a set A and $a, b \in A$:

$$(\exists c \in A, c \in \mathcal{O}_{a,\sigma} \text{ and } c \in \mathcal{O}_{b,\sigma}) \implies \mathcal{O}_{a,\sigma} = \mathcal{O}_{b,\sigma}$$

<u>Proof</u>

Assume $\exists c \in A, c \in \mathcal{O}_{a,\sigma}$ and $c \in \mathcal{O}_{b,\sigma}$ $a \sim c$ and $b \sim c$ $c \sim b$ $a \sim b$ $\therefore \mathcal{O}_{a,\sigma} = \mathcal{O}_{b,\sigma}$