Computational Linear Algebra - Problem Set 6

(points: 35)

Problem 1 (points: 5)

Let \mathbf{M}_1 and \mathbf{M}_2 be two matrix representations of $\ell \in \mathcal{L}(\mathbb{V})$ w.r.t. two different bases of \mathbb{V} . Show that there exists an invertible matrix \mathbf{P} such that $\mathbf{M}_2 = \mathbf{P}\mathbf{M}_1\mathbf{P}^{-1}$.

Problem 2 (points: 2+2 = 4)

Let $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ be a real inner-product space. Prove from first-principles that, for any $\delta > 0$,

$$|\langle u, v \rangle| \leqslant \frac{1}{2} \left(\frac{\|u\|^2}{\delta} + \delta \|v\|^2 \right).$$

Notice that the right-hand side depends on δ but not the left-hand side. Minimizing the right-hand side over $\delta > 0$, establish the Cauchy-Schwarz inequality: $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.

Problem 3 (points: 3)

Let $(\mathbb{V}, \|\cdot\|)$ be a normed vector space and let $\ell \in \mathcal{L}(V)$ be such that $\|\ell(v)\| \leq \|v\|$ for all $v \in V$. Prove that $\ell - 2I$ is invertible where I is the identity map.

Problem 4 (points: 4)

Suppose $u, v \in \mathbb{R}^n$. Prove that $\langle u, v \rangle = 0$ if and only if $||u|| \leq ||u + cv||$ for all $c \in \mathbb{R}$.

Problem 5 (points: 4+2 = 6)

Let $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ be an inner-product space and let $\ell \in \mathcal{L}(V)$ be injective. Prove that $\langle u, v \rangle_* = \langle \ell(u), \ell(v) \rangle$ is a valid inner-product on \mathbb{V} . Is $\langle u, v \rangle_{**} = \langle \ell(u), v \rangle$ also a valid inner-product on \mathbb{V} for if $\ell \in \mathcal{L}(\mathbb{V})$ is injective?

Problem 6 (points: 4+4 = 8)

Let \mathcal{P}_2 be the space of real-valued polynomials on [0,1] whose degree is at most 2. Show that

$$\langle p, q \rangle = \int_0^1 p(t)q(t) dt \qquad (p, q \in \mathcal{P}_2)$$

is a valid inner-product on \mathcal{P}_2 . Furthermore, apply the Gram-Schmidt process to the monomials $\{1, t, t^2\}$ to produce an orthonormal basis of \mathcal{P}_2 .

Problem 7 (points: 5)

Let $\mathbb U$ and $\mathbb W$ be subspaces of a finite-dimensional space and let $P_{\mathbb U}$ and $P_{\mathbb W}$ be the orthogonal projectors onto $\mathbb U$ and $\mathbb W$. Prove that $P_{\mathbb U}P_{\mathbb W}$ is the zero operator if and only if $\langle u,w\rangle=0$ for all $u\in\mathbb U$ and $w\in\mathbb W$.
