

Александр Калиниченко

ИНТЕЛЛЕКТУАЛЬНЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МЕДИЦИНЕ

Модуль 2. Методы искусственного интеллекта

Лекция 15. Использование ИНС в медицине

ПРИНЦИПЫ ИСПОЛЬЗОВАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В МЕДИЦИНЕ

Интеграция ИИ в процессы отделения лучевой диагностики

Принцип № 1

Искусственный интеллект и компьютерное зрение необходимо рассматривать как помощников врачей и медицинских сестер. Эти средства должны быть нацелены на решение полностью конкретных задач с измеримым и воспроизводимым результатом работы.

ПРИНЦИПЫ ИСПОЛЬЗОВАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В МЕДИЦИНЕ

Принцип № 2

Искусственный интеллект абсолютно точно влияет на клинические решения, диагностику, выбор тактики лечения. Поэтому он не может не быть медицинским изделием. Тщательные медицинские испытания, контролируемое внедрение и постмаркетинговые исследования — это залог появления рынка медицинского ИИ.

ПРИНЦИПЫ ИСПОЛЬЗОВАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В МЕДИЦИНЕ

Принцип №3

Программные решения на базе ИИ должны бесшовно **интегрироваться** в **информационные системы** медицинских организаций.

Обязательная поддержка принятых в сфере здравоохранения стандартов:

- семантических (Международный классификатор болезней)
- представления (DICOM, EDF+ и т. д.)
- обмена медицинскими данными (HL7, FHIR)

ИСПОЛЬЗОВАНИЕ НАКАПЛИВАЕМЫХ МЕДИЦИНСКИХ ДАННЫХ

Накапливаемые в медицинских организациях данные служат:

- **Сейчас** для валидации точности и качества ИИ (в условиях научных экспериментов, клинических испытаний).
- **В ближайшей перспективе** для постмаркетинговых исследований и внутреннего, регулярного контроля ИИ-сервисов.
- **В отдаленной перспективе** для дообучения алгоритмов в процессе их постоянной эксплуатации.

РАСПОЗНАВАНИЕ АРИТМИЙ ПО ЭКГ

Модель разработана в Стенфордском университете, США, 2017 г.

Данные

- Обучающая выборка: 64121 записей ЭКГ по 30 с от 29163 пациентов
- Тестовая выборка: 336 записей ЭКГ по 30 с от 328 пациентов

Записи ЭКГ были размечены квалифицированными кардиологами

Аннотировалось 14 типов ритма сердца и аритмий (классов)

ПРИМЕРЫ АРИТМИЙ

ПРИМЕРЫ АРИТМИЙ

АРХИТЕКТУРА ИНН

РЕЗУЛЬТАТЫ КЛАССИФИКАЦИИ АРИТМИЙ

ОЦЕНКА АРТЕРИАЛЬНОГО ДАВЛЕНИЯ ПО СИГНАЛУ ФОТОПЛЕТИЗМОГРАММЫ

СПбГЭТУ (ЛЭТИ), каф. БТС, 2022 г.

Вид цикла фотоплетизмограммы при разных значениях артериального

Предобработка фотоплетизмограммы

ФОРМИРОВАНИЕ ВЫБОРОК ДАННЫХ

100 125

Формирование уравновешенных выборок

Обучающая выборка N 100 записей ФПГ 80 40 20

150 АД, мм рт. ст.

Подготовка входных образцов

Каждая запись ФПГ имела продолжительность 3 мин., что соответствовало в среднем 180-200 циклам

100 125

МОДЕЛЬ И РЕЗУЛЬТАТЫ ОЦЕНКИ АД

ПРЕДСКАЗАНИЕ СЕРДЕЧНО-СОСУДИСТЫХ СОБЫТИЙ

- Петразаводский государственный университет, 2021 г.
- Цель: разработать модель при помощи машинного обучения для предсказания сердечно-сосудистого риска и валидировать ее с использованием российских медицинских данных.
- **Набор данных** для обучения получен из Фрамингемского исследования, в него входили 4363 пациента без ССЗ, из которых 852 (19,5%) умерли от инфаркта миокарда и инсульта в течение 10 лет с начала наблюдения.

ИСПОЛЬЗОВАННЫЕ КЛИНИЧЕСКИЕ ПРИЗНАКИ

Характеристика клинических признаков, используемых для построения модели

Наименование признака	Возраст, годы	Пол, [1, 0]	Курение, [1, 0]	ОХ, г/моль	САД, мм рт. ст.	ИМТ, кг/м²	ЧСС в минуту
Условное наименование признака	AGE	SEX	SMOKE	TOTCHOL	SYSBP	BMI	HEART
Среднее (mean)	49,9	0,44	0,49	6,16	132,8	25,8	75,86
Стандартное отклонение (std)	8,65	0,50	0,50	1,16	22,3	4,10	12,02
Минимальное значение (Min)	32	0	0	2,935	83,5	15,54	44
Максимальное значение (Мах)	70	1	1	18,08	295	56,8	143

Примечание. ОХ — общий холестерин, САД — систолическое АД.

НЕЙРОСЕТЕВАЯ МОДЕЛЬ

Полносвязная нейросеть:

- Входной слой
- 2 скрытых слоя
- Выходной слой

ОБЩИЙ ДИЗАЙН ИССЛЕДОВАНИЯ

CPABHEHUE C ЕВРОПЕЙСКОЙ ШКАЛОЙ «SCORE»

HOCUMЫЕ УСТРОЙСТВА, ВХОДЯЩИЕ В ЭКОСИСТЕМУ APPLE HEALTH

Устройство для коррекции осанки UPRIGHT GO 2 Posture Trainer

Термометр Withings Thermo Smart Temporal Thermometer

Глюкометр One Drop Chrome Blood Glucose Monitoring Kit

УСТРОЙСТВО ДЛЯ СЛЕПЫХ

Віреd — устройство для слепых на основе ИИ, предсказывающее окружающее пространство и позволяющее избежать столкновений с препятствиями

ВЕЛОСИПЕДНЫЙ ШЛЕМ

Велосипедный шлем с ИИ производства компании Thinkable Studio, повышающий безопасность езды

«УМНЫЕ БРЮКИ»

Умные брюки для фитнеса

Виртуальный тренер ассистирует пользователю во время занятий спортом, отслеживая в реальном времени его движения: бег, езду на велосипеде и другие упражнения. В зависимости от параметров здоровья Bluetooth-наушники рекомендуют персональный трек для достижения индивидуальных фитнес-целей.

РАЗРАБОТКА ЛЕКАРСТВ

НАПРАВЛЕНИЯ ДИЗАЙНА ЛЕКАРСТВЕННЫХ СРЕДСТВ, В КОТОРЫХ ИСПОЛЬЗУЕТСЯ ИИ

- Виртуальный скрининг автоматизированный поиск в базах данных химических соединений молекул, обладающих заданными свойствами
- Разработка лекарств синтез сложных молекул из простых молекул
- Ретросинтез планирование синтеза сложных органических соединений, когда известен продукт, но неизвестен простой и дешевый метод синтеза
- Предсказание реакций моделирование химических реакций при помощи различных алгоритмов.
- Конструирование белков дизайн белков, обладающих какими-то заданными полезными свойствами

ИСПОЛЬЗОВАНИЕ МЕТОДОВ ИИ В ХИРУРГИИ

- Компания Asensus Surgical разработала лапароскопический робот с искусственным интеллектом, который автоматически предоставляет хирургам данные измерений, необходимые для проведения операции, например, о размере ткани
- Робот обучается на демонстрации при проведении людьмихирургами операций

ИСПОЛЬЗОВАНИЕ МЕТОДОВ ИИ В ХИРУРГИИ

- Компания **Microsure** создала робота для проведения экстраточных микрохирургических операций. Роботом управляет человек-хирург
- Движения рук человека превращаются в более мелкие и точные движения, выполняемые «руками» робота
- Хирургический робот также используется для устранения тремора движений хирурга

ИСПОЛЬЗОВАНИЕ МЕТОДОВ ИИ В ХИРУРГИИ

Роботы-хирурги **Да Винчи** применяются для кардиохирургических операций через очень маленькие разрезы в грудной клетке с помощью инструментов, управляемых роботами

