EXPONENTIELLE – LIMITES ET ÉTUDE DE FONCTION

1) On admet que $\lim_{x \to +\infty} \left(\frac{e^x}{x} \right) = +\infty$. Rechercher la limite de xe^x quand x tend vers $-\infty$ revient à chercher la limite de $-xe^{-x} = -\frac{x}{e^x} = -\frac{1}{\frac{e^x}{x}}$ quand x tend vers $+\infty$. De ce qui précède, on voit que cette limite est égale à 0. On en déduit que $\lim_{x \to +\infty} (xe^x) = 0$

- 2) On considère f définie sur **R** par $f(x) = xe^x$.
 - 2.a) Calculons la dérivée de f:

 $f'(x) = e^x + xe^x = e^x(x+1)$. Comme e^x est strictement positive sur $]-\infty$; $+\infty[,f']$ est du signe de (x+1), c'est à dire :

$$f'(x) < 0 \text{ pour } x < -1,$$

$$f'(x) = 0$$
 pour $x = -1$,

$$f'(x) > 0 \text{ pour } x > -1.$$

En remarquant que $f(-1) = -e^{-1}$, on peut dresser le tableau de variation de f:

X	-∞	-1	$+\infty$
f'(x)	_	0	+
f(x)	0	$-e^{-1}$ -	+ ∞

- 2.b) On calcule facilement que f'(0) = 1. Par ailleurs f(0) = 0. L'équation de la tangente (T) à la courbe C représentative de f au point d'abscisse 0 est donc y = x.
- 2.c) f est d'abord décroissante puis croissante et, puisque f'(-1) = 0, on en déduit que f passe par un minimum de coordonnées $(-1; -e^{-1})$. C et (T) sont représentées cidessous :

