Foundations of Computing Lecture 3

Arkady Yerukhimovich

January 21, 2025

Outline

- 1 Lecture 2 Review
- 2 Regular Languages
- Non-deterministic Finite Automata (NFA)
- 4 Example NFAs

Lecture 2 Review

- ullet Language decided by DFA M
- Building DFAs
- Proving Correctness of DFAs

Outline

- 1 Lecture 2 Review
- 2 Regular Languages
- Non-deterministic Finite Automata (NFA)
- 4 Example NFAs

From Machines to Languages

- Last lecture we saw how to build DFA M to decide a language L
- Learned to reason about machine M
- Recall that each machine M decides one language L(M)

From Machines to Languages

- Last lecture we saw how to build DFA M to decide a language L
- Learned to reason about machine M
- Recall that each machine M decides one language L(M)

Let's switch our perspective

Instead of reasoning about machines, let's focus on languages decided by those machines.

Regular Language

Definition

A language L is regular if it is decided by a DFA.

Regular Language

Definition

A language L is regular if it is decided by a DFA.

Observations:

- All languages we have seen thus far are regular
- To prove that a language is regular just need to show a DFA that decides it
- We will prove that regular languages correspond to regular expressions

Regular Language

Definition

A language L is regular if it is decided by a DFA.

Observations:

- All languages we have seen thus far are regular
- To prove that a language is regular just need to show a DFA that decides it
- We will prove that regular languages correspond to regular expressions

Something to think about

Are all languages regular?

Closure under Complement

If L is a regular language, then \overline{L} is also regular

 \overline{L} is the language that consists of all strings (in alphabet Σ) not in L.

Suppose M decides L

$$\overline{M}$$
 (.1 $\forall x \in M(x) = 1 \quad \overline{M}(x) = 0$
 $M(x) = 0 \quad \overline{M}(x) = 1$

Closure under Complement

If L is a regular language, then \overline{L} is also regular

 \overline{L} is the language that consists of all strings (in alphabet Σ) not in L.

Intuition: Swap the accept and reject states

Closure under Complement

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ decide L

Closure under Complement

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ decide L

Closure under Complement

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ decide L

Closure under Complement

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ decide L

- $2 \Sigma' = \Sigma$

Closure under Complement

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ decide L

- $2 \Sigma' = \Sigma$
- $\delta' = \delta$
- q' = q

Closure under Complement

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ decide L

- $2 \Sigma' = \Sigma$
- $\delta' = \delta$
- q' = q

Closure under Complement

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ decide L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that decides \overline{L}

- $2 \Sigma' = \Sigma$
- $\delta' = \delta$
- q' = q
- $F' = Q \setminus F$

Observe:

• If $w \in L \iff w \notin \overline{L}$, then M(w) stops in some $q \in F$, so $q \notin (Q \setminus F)$

Closure under Complement

If L is a regular language, then \overline{L} is also regular

Proof: Let $M = (Q, \Sigma, \delta, q, F)$ decide L

Construct $M' = (Q', \Sigma', \delta', q', F')$ that decides \overline{L}

- $\delta' = \delta$
- q'=q
- $F' = Q \setminus F$

Observe:

- If $w \in L \iff w \notin \overline{L}$, then M(w) stops in some $q \in F$, so $q \notin (Q \setminus F)$
- If $w \notin L \iff w \in \overline{L}$, then M(w) stops in some $q \notin F$, so $q \in (Q \setminus F)$

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

 $L_1 \cup L_2$ is the language consisting of all strings either in L_1 or L_2

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

 $L_1 \cup L_2$ is the language consisting of all strings either in L_1 or L_2

Intuition: Run both machines in parallel and accept if either of them stops in an accept state

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 , and

 $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2) \text{ recognize } L_2$

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 , and

 $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2) \text{ recognize } L_2$

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

 $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2 \}$

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 , and

$$M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2) \text{ recognize } L_2$$

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 , and $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2))$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

- **3** δ is as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 , and $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

- **3** δ is as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$

$$\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a))$$

 $q_0 = (q_1, q_2)$

Closure Under Union

If L_1 and L_2 are both regular languages then $L_1 \cup L_2$ is also regular

Proof: Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize L_1 , and $M_2 = ((Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize L_2

Construct $M = (Q, \Sigma, \delta, q, F)$ that recognizes $L_1 \cup L_2$

- **3** δ is as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

- $q_0 = (q_1, q_2)$
- **5** $F = \{(r_1, r_2) | r_1 \in F_1 \not\bowtie r_2 \in F_2\}$

Closure Under Intersection

If L_1 and L_2 are both regular languages then $L_1 \cap L_2$ is also regular

 $L_1 \cap L_2$ is the language consisting of all strings in both L_1 and L_2

Closure Under Intersection

If L_1 and L_2 are both regular languages then $L_1 \cap L_2$ is also regular

 $L_1 \cap L_2$ is the language consisting of all strings in both L_1 and L_2

Intuition: Run both machines in parallel (same as for union) and accept if BOTH of them stop in an accept state

Closure Under Concatenation

If L_1 and L_2 are both regular languages then $L_1 \circ L_2$ is also regular

Outline

- 1 Lecture 2 Review
- 2 Regular Languages
- 3 Non-deterministic Finite Automata (NFA)
- 4 Example NFAs

Nondeterminism

Deterministic Finite Automaton

- For every state q and every symbol $x \in \Sigma$, exactly one value $\delta(q, x)$ is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Nondeterminism

Deterministic Finite Automaton

- For every state q and every symbol $x \in \Sigma$, exactly one value $\delta(q, x)$ is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Nondeterministic Finite Automaton

- Allow multiple transitions for same state and symbol: e.g., $\delta(q1,1) = \{q2,q3\}$
- Allow empty (ϵ) transitions transitions not requiring an input

Nondeterminism

Deterministic Finite Automaton

- For every state q and every symbol $x \in \Sigma$, exactly one value $\delta(q, x)$ is defined
- State transitions only on an input symbol
- Execution of DFA is fully determined

Nondeterministic Finite Automaton

- Allow multiple transitions for same state and symbol: e.g., $\delta(q1,1) = \{q2,q3\}$
- ullet Allow empty (ϵ) transitions transitions not requiring an input

What is going on here?!?

What does non-determinism mean?

An Example NFA

An Example NFA

Input: 010

An Example NFA

Input: 010

Input: 010110

An Example NFA

Input: 010 Input: 010110

Question: What language does this recognize?

Interpretation 1: Try all paths in parallel

If any path leads to accept then accept

Interpretation 2: Guess and verify

Interpretation 2: Guess and verify

ullet M stays in q_1 until it "guesses" next input is 11 or 101

Interpretation 2: Guess and verify

- ullet M stays in q_1 until it "guesses" next input is 11 or 101
- \bullet Verifies that this guess was correct on path to q_4

Interpretation 3: Verifying a proof vs. finding a solution

Interpretation 3: Verifying a proof vs. finding a solution

- OFA execution on input x:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$

Interpretation 3: Verifying a proof vs. finding a solution

- DFA execution on input x:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$
- NFA execution on input x

Interpretation 3: Verifying a proof vs. finding a solution

- OFA execution on input x:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$
- NFA execution on input x
 - ullet Input x alone does not necessarily take you to an accept state

Interpretation 3: Verifying a proof vs. finding a solution

- OFA execution on input x:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$
- NFA execution on input x
 - Input x alone does not necessarily take you to an accept state
 - Need to somehow choose which edge to take whenever there is a choice

Interpretation 3: Verifying a proof vs. finding a solution

Consider the execution of a finite automaton

- DFA execution on input *x*:
 - A DFA must follow an exact path to an accept state
 - Input x must specify path to an accept state if $x \in L(M)$
- NFA execution on input x
 - Input x alone does not necessarily take you to an accept state
 - Need to somehow choose which edge to take whenever there is a choice
 - Can view this sequence of nondeterministic choices as a "witness" w that allows you to verify that $x \in L(M)$

Important

For any $x \notin L$, there must be no path to an accepting state – no possible "witness" works