Лабораторная работа №8 Фильтрация и свёртка

Крынский Павел

27 мая 2021 г.

Оглавление

1	Упражнение 8.1	4
2	Упражнение 8.2	5
3	Упражнение 8.3	ç
4	Выводы	13

Список иллюстраций

2.1	Визуализация Гауса	5
2.2	Визуализация FFT	6
2.3	Визуализация гауссовского сигнала	6
2.4	Визуализация окна Гаусса и его FFT	7
2.5	Изменение std	8
3.1	Визуализация окон	10
3.2	Визуализация ДПФ	11
3.3	Визуализация ДПФ	11

Листинги

2.1	Φ ункция plot_gaussian	6
2.2	Изменение std	7
3.1	Создание сигнала	S
3.2	Создание различных окон	S
3.3	Визуализация окон	9
3.4	Визуализация ДПФ	10
3.5	Визуализация ДПФ	11

Упражнение 8.1

В данном упражнении нас просят открыть chap02.ipynb, прочитать пояснения и запустить примеры. Поэтому я просто изучил все примеры и комментарии к ним. В итоге, на основе полученых результатов можно сделать вывод, что увеличение std приводит к "сплющиванию" гаусовой кривой.

Упражнение 8.2

Во втором пункте нам необходимо оаробывать ДПФ и понять, что происходит при изменении std.

Рассмотрим Гауссовский пример:

Рис. 2.1: Визуализация Гауса

Отобразим FFT:

Рис. 2.2: Визуализация FFT

Если мы повернём отрицательные частоты влево, то сможем яснее увидеть, что это гауссово, по крайней мере приблизительно.

Рис. 2.3: Визуализация гауссовского сигнала

Эта функция отображает окно Гаусса и его FFT друг с другом.

```
def plot_gaussian(std):
    M = 32
    gaussian = scipy.signal.gaussian(M=M, std=std)
    gaussian /= sum(gaussian)
```

```
thinkplot.subplot(1, 2, 1)
thinkplot.plot(gaussian)
decorate(xlabel='Time')

fft_gaussian = np.fft.fft(gaussian)
fft_rolled = np.roll(fft_gaussian, M//2)

thinkplot.subplot(1, 2, 2)
thinkplot.plot(np.abs(fft_rolled))
decorate(xlabel='Frequency')
thinkplot.show()
plot_gaussian(2)
```

Листинг 2.1: Функция plot_gaussian

Рис. 2.4: Визуализация окна Гаусса и его FFT

Теперь мы можем сделать манипуляции, которые покажут, что происходит при изменении std.

```
slider = widgets.FloatSlider(min=0.1, max=10, value=2)
interact(plot_gaussian, std=slider);
```

Листинг 2.2: Изменение std

Рис. 2.5: Изменение std

По мере увеличения std Гауссовский становится шире, а его $Б\Pi\Phi$ сужается.

С точки зрения непрерывной математики, если

$$f(x) = e^{-ax^2}$$

который является гауссовским со средним 0 и стандартным отклонением 1/a, его преобразование Фурье имеет вид $F(k) = \sqrt{\frac{\pi}{a}} e^{-\pi^2 k^2/a}$

$$F(k) = \sqrt{\frac{\pi}{a}} e^{-\pi^2 k^2/a}$$

который является гауссовским со стандартным отклонением a/π^2 . Таким образом, существует обратная зависимость между стандартными отклонениями f и F.

Упражнение 8.3

Тут нам нужно создать окно Хемминга тех размеров, что и Гаусса. Распечатать его ДПФ. Определить какое окно больше для фильтрации НЧ. Создадим 1-секундную волну с частотой дискретизации $44~\mathrm{k\Gamma}$ ц.

```
signal = thinkdsp.SquareSignal(freq=440)
wave = signal.make_wave(duration=1.0, framerate=44100)
Листинг 3.1: Создание сигнала
```

Затем создадим несколько окон. Выберем стандартное отклонение окна Гаусса, чтобы сделать его похожим на другие.

```
1 M = 18
2 std = 2.5
3
4 gaussian = scipy.signal.gaussian(M=M, std=std)
5 bartlett = np.bartlett(M)
6 blackman = np.blackman(M)
7 hamming = np.hamming(M)
8 hanning = np.hanning(M)
9
10 windows = [ gaussian, blackman, hamming , hanning]
11 names = [ 'gaussian', 'blackman', 'hamming', 'hanning']
12
13 for window in windows:
14 window /= sum(window)

Листинг 3.2: Создание различных окон
```

Теперь посмотрим, как выглядят эти окна.

```
1 for window, name in zip(windows, names):
```

```
thinkplot.plot(window, label=name)
decorate(xlabel='Index')
```

Листинг 3.3: Визуализация окон

Рис. 3.1: Визуализация окон

Они выглядят довольно похоже. Посмотрим, как выглядят их ДПФ:

- plot_window_dfts(windows, names)
- 2 decorate(xlabel='Frequency (Hz)')

Листинг 3.4: Визуализация ДПФ

Рис. 3.2: Визуализация ДПФ

Стоит отметить, что Гауссово падает быстрее всех, Блэкман - самый медленный.

```
plot_window_dfts(windows, names)
```

Листинг 3.5: Визуализация ДПФ

Рис. 3.3: Визуализация ДПФ

В логарифмической шкале мы видим, что сначала значения Хэммин-

² decorate(xlabel='Frequency (Hz)', yscale='log')

га и Хеннинга падают быстрее, чем два других. И окна Хэмминга и Гаусса, кажется, имеют самые стойкие боковые лепестки. Окно Ханнинга, кажется, имеет наилучшее сочетание быстрого спада и минимальных боковых лепестков.

Выводы

Во время выполнения лабораторной работы получены навыки работы с концепцией свёртки и теоремой свёртки, а также научился применять эти знания на практике.