Introduction to

Time Series Analysis

Contents

- 1. What is Time Series
- 2. Components of Time Series
- 3. Application Areas
- 4. Time Series Analysis in R
 - i. Plotting a Time Series
 - ii. Subsetting a Time Series
- 5. Irregular Time Series

What is Time Series?

Time Series is a sequence of values observed over time

Types of Time Scale	
Discrete	Value changes after jumping from one time period to other. Example: Dow Jones Index -End of Day Values
Continuous	Value changes within an infinitely short amount of time. Example. Temperature, Dow Jones Index Tracked Real Time

Components of Time Series ____

Trend	Long-term increase or decrease in the time series.	*
	There may be increase/decrease in short term but	
	overall trend in the long term can be increasing or	
	decreasing.	
Seasonality	Predictable and recurring trends and patterns	→
	over a period of time, normally a year. An example	.
	of a seasonal time series is retail data, which sees	
	spikes in sales during holiday seasons like	
	Christmas.	
	Seasonality is reflected only when data is	
	available for more than one year	,
Cyclic Pattern	Exists when data exhibit rises and falls that are not	A 1
	of fixed period. The duration of these fluctuations	
	is usually of at least 2 years	

Application Areas

R packages

R has robust infrastructure for handling and managing time series data. The base R has function "ts" to handle time series data. However, there are many other packages in R to work with time series data.

Package	Features
Z00	R package for regularly and irregularly spaced time series
xts	Based on zoo and provides uniform handling of R's different time-based data classes
timeSeries	Recommended for managing financial time series objects

Case Study

Background

Annual Sales for a specific company from year 1961 to 2017

Objective

• To plot a time series object

Available Information

- Number of cases: 57
- Variables: Year, sales(in 10's GBP)

Data Snapshot

Time Series in R

Import turnover_annual Data

```
turnover_annual <- read.csv("turnover_annual.csv",header=TRUE)</pre>
```

- Performing any time series related operations require the data type to be time-based.
- We will use the most basic function **ts()** for converting our **data frame object** into

```
time series object.
#Creating a Time Series Object
```

```
salesseries<-ts(turnover_annual$sales,start=1961,end=2017*)</pre>
```

ts() from package **stats** in R, is a very important function and is used to create time series object. We use **ts()** to convert a column from our data frame **turnover_annual** to time series object named **salesseries**.

The **start=** and **end=** arguments specify first and last period

When the time series has seasonal component, argument **frequency** = can be included in **ts()**. It denotes number of observations per unit of time. Ex. If data is quarterly: **frequency** = **4**, if data is monthly: **frequency** = **12**.

Frequency argument is not required for annual data.

Plotting Time Series in R

```
# Plotting a Time Series Object

plot(salesseries,col="red",main="Sales Time Series (Simple Plot)")

plot() generates a simple line chart.
# Output
```


Interpretation:

 The time-series clearly shows upward trend.

Subsetting Time Series in R

- Large volumes of data are required for most real world analytics, time series is no exception.
- Subsetting is an important tool as it facilitates partitioning the data within R for micro-level specific analysis.

Subsetting a Time Series Object

salesseries2<-window(salesseries,start=1990,end=2017)←</pre>

window() is a generic function which extracts the subset of the object x observed between the times **start** and **end**.

Subsetting Time Series in R

plot(salesseries2, col="red", main="Sales Time Series (Subset)")

Output

Interpretation

Upward trend is observed for period 1990 to 2017

Irregular Time Series

- The time series considered so far is "Regular" time series. It is observed after regular time interval of one year.
- However, not all time series are evenly spaced. For instance, ATM withdrawal data of a customer is a time series, but the transactions may not happen after uniform intervals like daily, weekly, monthly.
- Irregular time series can be found in a number of industries and domains like ecology (natural disasters), finance (stock prices), clinical research (patient's reactions), astronomy (movement of celestial objects), to name a few.
- But with advancements in computer technology, such uneven time series can be analyzed in their original form.

Handling Irregular Time Series in R:

- It is impossible to coerce irregular time series into **ts()**, because the arguments of start, end and frequency are irrelevant.
- R has two highly effective packages for handling unevenly spaced time series, zoo and xts.

Quick Recap

Time Series	Sequence of values measured over timeTime scale can be discrete or continuous
Time Series in Analytics	 Used for simple forecasting or building predictive model on time series data
Time Series in R	 R has different packages and functions for handling different types of time series ts() in the basic stats package is the most commonly used function A time series object can also be subsetted using window() from stats package
Irregular Time Series	 Time Series which are not evenly spaced. R has two highly effective packages for handling unevenly spaced time series, zoo and xts.