

FUNDAMENTOS ELEMENTARES DA MATEMÁTICA

AVALIAÇÃO 1

Turma 2

Uma Resolução

QUESTÃO 1

Uma Solveas:

Varnos es conceitos de lógica pora rolucionos o problema. Pode-se verifier de mechato 4 proposições:

T: " En mos fri "

afinnada por Tomás.

M: "Foi o Tche"

afirmada pa Morelo.

TC: "Foi o Lond"

afirmada por Tehê. A lim dono

L: "Marcelo está mentindo"

afurmon o Lord.

Note que:

Vanus agora analisor es cossis comiderando que apenar una dos proposições é fabra:

Coro 1: T fabra.

Este casa now é porséel pois anim 2 colegos triam es condide (tomés e Tchê, poss M i verdade, meste casa).

Coso 2: M falsa.

Neste cara temes T, Tc e L viriladuras e concluimos de Tc que fai o Lord o único que esconder.

Coro 3: Tc falsa.

North earso M. L. reviam undadinas e mo nos pode pois L = ~ M.

Coro 4: L folso.

North coso terms M e Tc verdaderns, porin usso implier que 2 colegor es conderonn (o Tchè e o Lord), o que nou é possível. Entrelados todos os porrivers caros, elegames a conclusar que exconden a bolsa fai o Lond.

QUESTÃO 2

Uma Solveas:

(a) Conforme estudour, vanno reserver

In & IN tol que Y y & IN terms y => x

Como

BreN; YyeN, yzn.

~[IneN; YyeN, yzn]

= AneN; ~ [AyeN, y'>n]

= YneN; ∃yeN, ~[y²≥n]

= YneN; ByeN, y2<n.

Conclusat: a mgo éat buseale é

YREIN, 3 YEIN tal que y2 x.

Valor logres falso pais now existe 4 E/N guando n=0.

(b) Para obter a negaçon do item (b):

YNEIN, I Y E IN tal que ny<1

procedures como antes e reservemes:

YNEIN, I Y E IN; ny<1.

Entas:

Conclusat: a nigoéat buseade é

I n∈N tol que y y ∈ N, ny≥1.

Valor logres Falso, pars paner y=0 mais vale xy≥1.

QUESTÃO 3

Uma Solveas:

luna roluéat pera este quertai é simplimente construçat de Tabelo Verdade.

P	a	R	PAQ	(P)	a).	→ R
V	٧	٧	٧		V	
V	٧	F	٧		F	
٧	F	٧	F		V	
٧	F	F	F		V	
F	V	1	F		٧	
F	٧	F	F		V	
F	F	٧	F		V	
F	F	F	F		V	

P	a	R	~R	PA(~R)	~Q	PALR	->	(~Q)
V	٧	٧	F	F	F	^	/	
V	٧	F	٧	V	F	Ł	١ (
V	F	٧	F	F	٧	١	/	
٧	F	F	٧	٧	٧	,	V	
F	٧	٧	F	F	F	١	/	
F	٧	F	٧	F	F	\	\	
F	F	٧	F	F	√	١	/	
ド	F	F	V	F	٧	,	V	

Conclusãos: as Tabelas Verdade de (PAQ)→R 1 PA(~R) → (~Q) são iguais, logo i uma

equivolènce lógrea.

QUESTÃO 4

(a)

Este item pode-se ererever una prova usondo o método direto. Vijanus:

Se 15m é pon, entais ele i da forma 15m = 2K

onde KEZ. Assim podum eserver que

$$9m + 6m = 2K$$

e times

$$9m = 2k - 6m = 2(k - 3m)$$

Dersa forma, temes um número $t = K - 3n \in \mathbb{Z}$ e entos $9n = 2 \cdot t$.

Assim, portento, 9 n é um número por, conforme afirmado. Assim, tenuos uma prova pora o itum.

(b)
Como temos uma afirmação de tipo "re, e
romente re', precisonos prova 2 implicações "=>" e

Prova de => ": Devenus prover que m+1 é imper => m² é per.

Pora into, viga que: se m+1 é imprimtes m+1=2k+1,

pera algum $k \in \mathbb{Z}$. Logo, m = 2K

Assim,

$$m^2 = (2 k)^2 = 2(2 \cdot k^2) = 2 l$$

onde l=2 k², e enter m² i por, como pricinariamos concluir.

Prova de <= : agora precirames prova que

 $m^2 i pr => m+1 éimps.$

Pera esto, vanos usor o método da contrapositiva, or sya, vanos mestros que

 $m+1 i por => m^2 i mpor$. (***)

Vejames: re m+1 é pr, enter m+1=2m, pro algum $m\in\mathbb{Z}$. Logo, m=2m-1 e terms

 $m^2 = (1m-s)^2 = 4m^2-2\cdot 1m + 1^2 = 2(2m^2-1m) + 1 = 2n + 1$, onde $n = 2n^2 - 2m \in \mathbb{Z}$, a arrien m^2 i mpor, provendo arrien a implienção (XX), que grante a validade (X).

(c)

Uma Solueas:

Vanus fazer una prova mondo o método da contradição. Vijanus:

suste nimeros a, b ∈ Z, com b ≠ 0, tal que

$$\sqrt[3]{2} = \frac{a}{b}$$
.

eomo a i una façat, podemos arrunin que da i unideral, ou reja, b not divide a, e arrien tinse mde(a,b)=1.

Agora, tenus
$$2 = \left(\frac{a}{b}\right)^3 = \frac{a^3}{b^3}. = > 2b^3 = a^3.$$

Entar, a³ é por Prieironnes concluir agraque a é por e fazennes ests com a contraponitiva: Si a mos é por, intos é impr, ou rya, ria

e então com o número t=4K3+6K2+3K € Z, terms

$$a^3 = 2 + +1$$

que merte coro é un número impr. Logo, pela contrapositiva

$$a^3$$
 por \Rightarrow $a \in por$.

Mas arrim, a=2k com K6 Z. Entas

$$2 \cdot b^3 = a^3 = (2K)^3 = 2 \cdot 2 \cdot 2 \cdot K^3 \implies b^3 = 2 \cdot 2K^3$$
.

Logo, pora $l = 2K^3$ terms $b^3 = 2l$, on repa,

 b^3 é por. Conno já mostromos, podemus com-
cluir que b é por, ou seja, $b = 2n$ com $n \in \mathbb{Z}$

e n=0. Mas avrim 2 divide

a=2l e b=2n, 0 que i uma contradress pois considerons $mde(a_1b)=1$.

Portonts, pelo metodo da contradicas Provenos que $\sqrt[3]{2}$ é voracional.