习题解答:

1.4.1 自我检查题

1-1 解:

(1)
$$(10110101)_2 = (181)_{10}$$
, $(01101010)_2 = (106)_{10}$
 $(11000011)_2 = (195)_{10}$, $(01101001)_2 = (105)_{10}$

(2)
$$(63)_{10} = (111111)_2$$
, $(129)_{10} = (10000001)_2$
 $(222)_{10} = (11011110)_2$, $(254)_{10} = (11111110)_2$

1-2 解:

$$(1) A + \overline{AC} + CD = A + C$$

(2)
$$AB + \overline{B}C + AC = AB + \overline{B}C$$

(3)
$$A \oplus \overline{B} \rightleftharpoons \overline{B} + \overline{A} \overline{B} = AB + \overline{A} \overline{B}$$

(4)
$$A\overline{B} + \overline{AC} + B\overline{C} = A\overline{B} + \overline{AC} + B\overline{C} + \overline{BC} + A\overline{C} + \overline{AB}$$

= $A\overline{C} + \overline{BC} + \overline{AB}$

1-3 解:

(1)
$$Y_1 = A + B + C + \overrightarrow{A} \cdot \overrightarrow{B} \cdot \overrightarrow{C}D' = A + B + C + D$$

(2)
$$Y_2 = A \overline{B} \overline{C} + \overline{A} \overline{B}C + A \overline{B}C + \overline{A}BC = A \overline{B} + \overline{A}CC$$

(3)
$$Y_3 = \overline{A} \ \overline{B} \ \overline{C} + \overline{A} \ \overline{B} \ \overline{D} + \overline{B} \ \overline{C} \ \overline{D} + A \ \overline{B} \ \overline{D} + \overline{A} \ \overline{B} C$$

$$= \overline{A} \ \overline{B} \ \overline{C} + \overline{A} \ \overline{B} \ \overline{D} + A \ \overline{B} \ \overline{D} + \overline{B} \ \overline{C} \ \overline{D} + A \ \overline{B} C$$

$$= \overline{A} \ \overline{B} \ \overline{C} + \overline{B} \ \overline{D} + \overline{B} \ \overline{D} \ \overline{C} + A \ \overline{B} C = \overline{A} \ \overline{B} \ \overline{C} + \overline{B} \ \overline{D} + A \ \overline{B} C$$

(4)
$$Y_4 = \overline{B} \overline{C} + \overline{A}C \overline{D}$$

 $= \overline{B} \overline{C}D + \overline{A}C \overline{D} + \overline{A}C \overline{D} + \overline{A}C \overline{D}$
 $= \overline{B} \overline{C}D + \overline{A}C \overline{D} + \overline{A}C \overline{D} + \overline{A}C \overline{D}$
 $= \overline{B} \overline{C}D + \overline{C}\overline{D}$
 $= \overline{B} \overline{C}D + \overline{C}\overline{D}$
约束项, 去掉
 $AB + AC = \mathbf{0}$

1-4 解:

如图 1-6 所示。

1-5 解:

(a)
$$Y_1 = \overline{A} \overline{AB} \overline{BB} = A \overline{B} + \overline{ABB}$$

(b) 先列出 Y₂的真值表,如表 1-2 所示。

表 1-2

A	В	Y ₂	
0	0	1	
0	1	O O	
1	0	0	
1	1	1	

$$Y_2 = \overline{A} B + \overline{AB}$$

(c)
$$Y_3 = AD + BC + BD$$

(c)
$$Y_3 = \overline{A} \overline{D} + \overline{B}C + \overline{B}D$$

(d) $Y_4 = AB + BC + AC$

1-6 解:

(1)
$$Y_1 = \overline{AB + AC} = \overline{AB AC}$$
,逻辑图如图 1-7 所示。

图 1-8

逻辑图如图 1-8 所示。

图 1-7

(3) $Y_3 = \overline{AB + AB} = \overline{AB + AB} = \overline{AB} = \overline{AB}$ 逻辑图如图 1 - 9 所示。

(4) $Y_4 = A \overline{BC} + \overline{ABC}$, Y_4 的卡诺图如图 1-10 所示。

合并值为 0 的最小项得

 $Y_4 = \overline{\overline{AB} + AC + B\overline{C}} = \overline{\overline{AB}ACB\overline{C}}, Y_4$ 的逻辑图如图 1 - 11 所示。

图 1-11

1-7 解:

(a)
$$Y_1 = A \oplus B \oplus C$$

(b)
$$Y_2 = \overline{AB + AC + BC}$$

(c)
$$Y_3 = \overline{A} \overline{B}C + \overline{A}B \overline{C} + A \overline{B} \overline{C} + ABC$$

 Y_1, Y_2, Y_3 的真值表如表 1-3 所示。

		表 1 - 3	3	CIL	
A	В	c	Y ₁ 000	Y ₂	<i>Y</i> ₃
0	0	0	0	0	0
0	0	1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	1
0	1	0 -	1	0	1
0	1	XXXX	0	1	0
1	0	0	1	0	1
1	0 70	1	0	1	0
1	1/8/7	0	0	1	0
1	1	1	1	1	1

(d)
$$Y_4 = A_1 A_0 + A_1 \overline{B}_1 + A_4 \overline{B}_0 + A_0 \overline{B}_1 + \overline{B}_1 \overline{B}_0$$

Y_4 的真值表如表 1-4 所示。

表 1-4

	. <u>.</u>			
A_{1}	A_{o}	\boldsymbol{B}_1	B_0	Y.,
0	0	0	0	1
0	0	0	1	0
0	0	1	00	0
0	0	1	Sol.	0
0	1	. 0	1 0Ci 0 21 0 1 0	1
0	· 1	0	1	1
0	1 .	1 4 11/1/1/	0	0
0	1	- 1/13-	1	0
1	0	(4-0)	0	1
1	0	TO O	1	i
1	0	1	0	1
1	0 1	1	1	0
1	0 1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	. 1	1

1.4.2 思考题与习题

【題1-1】解:

(1)
$$(302)_8 = 3 \times 8^2 + 0 \times 8^1 + 2 \times 8^0 = (194)_{10}$$

(2)
$$(F8)_{16} = 15 \times 16^{1} + 8 \times 6^{0} = (248)_{10}$$

(3)
$$(1001001)_2 = 1 \times 2^6 + 1 \times 2^3 + 1 \times 2^0 = (73)_{10}$$

$$(4) (105)_{10}$$

题 1-2 中最大的数是(F8)₁₆,最小的数是(\bigcirc 001001)₂。

【题1-2】 解:

$$(1) (10000001)_2 = (129)_{10}$$

$$(3) (01100110)_2 = (102)_{10}$$

$$(5) (11001100)_2 = (204)$$

$$(7) (111111111)_2 = (255)_{10}$$

【题 1-3】解: 🛷

$$(1) (37)_{10} = (100101)_{2} (2) (51)_{10} = (110011)_{2}$$

$$(3) (65)_{10} = (1000001)$$

$$(5) (92)_{10} = (1011100)_{2}$$

$$(2)$$
 (10011001)₂ = (153)₁₀

$$(4) (01000100)_2 = (68)_{10}$$

(6)
$$(11100111)_2 = (231)_{10}$$

(3)
$$(65)_{10} = (1000001)_2$$
 (4) $(73)_{10} = (1001001)_2$

【题1-4】解:

- (1) $A \setminus B \setminus C$ 取值为 001 \,011 \,110 \,111 时 $Y_1 = 1$;
- (2) $A \ B \ C$ 取值为 000 、001 、100 、110 时 $Y_2 = 1$;
- (3) A、B、C取值为000、010、011、100、101、110时Y3=1;
- (4) A、B、C 取值为 011、100、101 时 Y₄=4。

【题1-5】解:

(1)
$$\overline{A + BC + D} = \overline{A} \cdot \overline{BC} \cdot \overline{D} = \overline{A} \cdot (\overline{B} + \overline{C}) \cdot \overline{D}$$

(2)
$$AB + \overline{A} \overline{B} + \overline{C} = AB + \overline{A} \overline{B} \cdot C = (A \oplus B) \cdot C$$

(3)
$$A + \overline{A}(B + C) = A + A + \overline{B} + \overline{C} = A + \overline{B} + \overline{C}$$

(4)
$$\overline{A} \, \overline{B} + \overline{A} \, B = \overline{A} (\overline{B} + \overline{B}) + \overline{A} (\overline{B} + \overline{B}) = \overline{A} + \overline{A} = 1$$

【題1-6】解:

式(1)、(2)、(3)真值表如表1-5所示。

表 1-5

 -			(1)		(2)		(3)	
A	В	С	Y	Y 2	Y	Y ₂	Y _i	Y ₂
0	0	0	0	0	·00.	1	1	0
0	0	1	1	1	00	0	0	1
0	1	0	1	Name of the last o	0	0	0	1
0	1	1	1	12-185-	0	0	1	0
1	0	0	1		0	0	0	1
1	0	1	The state of the s	1	0	0	1	0
1	1	0	4	1	0	0	1	0
1	1	1 /	0	0	1	1	0	1

(1)
$$Y_1 = Y_2$$
; (2) $Y_1 = Y_2$; (3) $Y_1 + Y_2 = 1$, $||| Y_1 = \overline{Y}_2||$

式(4) 真值表如表 1-6 所示。

表 1-6

A	В	c	D	Yi	Y ₂
0	0	0	0	1	0
0	0	0	1	1	0
0	θ	1	0	1	0
0	0	1	1	1 ~	0
0	1	0	0	0.	1
0	1	0	1	100°	1
0	1	1	0	1	0
0	1	1	1 ,	1	0

【题1-7】解:

$$Y_1 = \overline{A} \overline{B}C + \overline{A}B \overline{C} + A \overline{B} \overline{C} + ABC$$

$$Y_2 = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

$$Y_3 = \overline{A} \overline{B}C + \overline{A}B \overline{C} + A \overline{B} \overline{C}$$

$$Y_{4} = \overline{A} \ \overline{B}C + \overline{A}B \ \overline{C} + \overline{A}BC + \overline{A}BC$$

$$Y_5 = \overline{A} \overline{B} \overline{C} + \overline{A}BC + ABC$$

【题1-8】解:

(1)
$$Y_1 = AB + BC + CA = AB(\overline{C} + C) + BC(\overline{A} + A) + CA(\overline{B} + B)$$

$$= AB\overline{C} + ABC + \overline{A}BC + ABC + ABC + ABC$$

$$= \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

(2)
$$Y_2 = S + \overline{R}Q = S(\overline{R} \overline{Q} + \overline{R}Q + R \overline{Q} + RQ) + \overline{R}Q(\overline{S} + S)$$

 $= \overline{R}S \overline{Q} + \overline{R}SQ + RS \overline{Q} + RSQ + \overline{R} \overline{S}Q + \overline{R}SQ$
 $= \overline{R} \overline{S}Q + \overline{R} S \overline{Q} + \overline{R}SQ + RS \overline{Q} + RSQ$

(3)
$$Y_3 = J \overline{Q} + \overline{K}Q = J \overline{Q}(\overline{K} + K) + \overline{K}Q(\overline{J} + J)$$

$$= \overline{J} \overline{K}Q + J \overline{K} \overline{Q} + J \overline{K}Q + JK \overline{Q}$$

$$(4) Y_{4} = \overline{AB + AD + BC} = \overline{AB} \overline{AD} \overline{BC} = \overline{(A + \overline{B})} (\overline{A} + \overline{D}) (B + \overline{C})$$

$$= \overline{AB} + \overline{A} \overline{C} + \overline{B} \overline{C} \overline{D}$$

$$= \overline{AB} (\overline{C} \overline{D} + \overline{CD} + C \overline{D}) + \overline{A} \overline{C} (\overline{B} \overline{D} + \overline{BD} + B \overline{D} + B \overline{D}) + B \overline{D} + B \overline{D}) + B \overline{D} + B \overline{D} + B \overline{D}$$

$$= \overline{AB} \overline{C} \overline{D} (\overline{A} + A)$$

$$= \overline{AB} \overline{C} \overline{D} + \overline{AB} \overline{C} \overline{D}$$

(5)
$$Y_5 = A \overline{B} \overline{C} \overline{D} + \overline{ABC} = \overline{A} \overline{B} \overline{C} \overline{D} \overline{ABC} = (\overline{A} + B + C + D) ABC$$

= $ABC + ABCD = ABC(\overline{D} + D) + ABCD = ABC \overline{D} + ABCD$

【题1-9】

(1)
$$A(\overline{A} + B) + B(B + C) + B = AB + B = B$$

(2) $(\overline{A} + \overline{B} + \overline{C}) (B + \overline{B} + C) (C + \overline{B} + \overline{C}) = \overline{A} + \overline{B} + \overline{C}$
(3) $AB + A \overline{B} + \overline{AB} + \overline{AB} = 1$
(4) $(A + AB + ABC) (A + B + C) = A$
(5) $(A \overline{B} + \overline{AB}) (AB + \overline{AB}) = 0$
(6) $ABC + \overline{AB} + AB \overline{C} = B$
(7) $(AB + A \overline{B} + \overline{AB}) (A + B + D + \overline{ABD}) = A + B$
(8) $(A \overline{B} + D) (A + \overline{B}) D = A \overline{BD} = AD + \overline{BD}$
(9) $\overline{AC} + \overline{AB} + BC + \overline{ACD} + \overline{BCD} = AC + \overline{AB} + BC = \overline{A(B + C)} + BC$
(10) $A\overline{B} + C + \overline{ACD} + \overline{BCD} = AB + C + \overline{AD} + BD = AB + D(\overline{A} + B) + C$
 $= AB + \overline{ABD} + C$
 $= AB + \overline{ABD} + C$

【题 1-10】 解:

$$(1) (A + \overline{B}) \overline{C} + \overline{D} = \overline{A} + \overline{B} + \overline{C} + \overline{D} = \overline{AB} + C + \overline{D}$$

(2)
$$(A B + B \overline{D})(AC + BD) = A \overline{BC} \overline{D} = \overline{A} + B + \overline{C} + D$$

(3)
$$\overline{A \cdot B + C + AD} = \overline{ABC + AD} = \overline{ABC} \overline{AD} = (\overline{A} + B + \overline{C}) (A + \overline{D})$$

$$=AB+A\overline{C}+\overline{A}\overline{D}+B\overline{D}+\overline{C}\overline{D}=AB+A\overline{C}+\overline{A}\overline{D}$$

(4)
$$AB + B\overline{D} + \overline{BC} + \overline{CD} = \overline{AB}$$
 \overline{BD} \overline{BC} \overline{CD}

$$= (\overline{A} + \overline{B}) (\overline{B} + D) (B + \overline{C}) + (C + \overline{D})$$

$$=(\overline{A}\ \overline{B}+\overline{A}D+\overline{B}+\overline{B}D)(\overline{B}C+\overline{B}\ \overline{D}+\overline{C}\ \overline{D})$$

$$=(\overline{A}D + \overline{B})(BC + \overline{C}\overline{D}) = \overline{A}BCD + \overline{B}\overline{C}\overline{D}$$

(5)
$$\overline{D[C + (AD + B)E]} = \overline{CD + ADE + BDE} = \overline{CD} \overline{ADE} \overline{BDE}$$

$$= (C + \overline{D})(\overline{A} + \overline{D} + \overline{E})(\overline{B} + \overline{D} + \overline{E})$$

$$= (\overline{AC} + \overline{CD} + C\overline{E} + \overline{A}\overline{D} + \overline{D} + \overline{D}\overline{E})(\overline{B} + \overline{D} + \overline{E})$$

$$= (\overline{A} \overrightarrow{C} \overrightarrow{E} + \overline{D}) (\overline{B} + \overline{D} + \overline{E}) = \overline{A} \overline{B} C + C \overline{E} + \overline{D}$$

(6)
$$\overline{A \oplus B \oplus C} = \overline{A} \overline{B}C + \overline{A}R \overline{C} + \overline{A}B \overline{C} + \overline{A}BC + \overline{A}BC$$

$$(7) (A \oplus B) C + \overline{B \oplus C} D = (\overline{AB} + \overline{AB}) C + (\overline{BC} + BC) D$$

$$=\overline{ABC} + A\overline{BC} + B\overline{CD} + B\overline{CD}$$

$$= (A + \overline{B} + \overline{C}) (\overline{A} + B + \overline{C}) (B + C + \overline{D}) (\overline{B} + \overline{C} + \overline{D})$$

$$=(AB+\overline{A}\overline{B}+\overline{C})(B\overline{C}+\overline{B}C+\overline{D})$$

$$=\overline{A} \ \overline{B}C + AB \overline{D} + B \overline{C} + \overline{C} \overline{D}$$

(8)
$$\overline{A + B} + \overline{CD} + \overline{C + D} + \overline{AB} = (\overline{A + B} + \overline{CD}) (\overline{C + D} + \overline{AB})$$

= $(\overline{A} \ \overline{B} + \overline{CD}) (\overline{C} \ \overline{D} + \overline{AB}) = \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{ABCD}$

【題 1-11】解:

(a)
$$Y_a = C + AB$$
; (b) $Y_b = \overline{A} + C$; (c) $Y_c = A\overline{B} + AC$; (d) $Y_d = \overline{A}\overline{C} + \overline{B}C + \overline{B}\overline{D}$; (e) $Y_c = \overline{D} + \overline{A}B$;

(d)
$$Y_d = A C + BC + \overline{B} \overline{D}$$
; (e) $Y_e = \overline{D} + \overline{A}B$;

(f)
$$Y_f = A \overline{B} + AD + BC + C \overline{B}_o$$

【题1-12】解:

各函数的卡诺图与相应的最简与或式如图 1-12 所示。

【题1-13】解:

各函数的卡诺图与相应的最简与或式如图1-13所示。

【题1-14】解:

各函数的卡诺图与相应的最简与或式如图 1-14 所示。

【题1-15】解:

各函数的卡诺图与相应的最简与或式如图 1-15 所示。

 $\begin{array}{c}
\widehat{B}\overline{C} + \overline{B}D = \mathbf{0}
\end{array}$

$$\begin{cases} Y_7 = B\overline{D} + C\overline{D} + \overline{A}\overline{C}D \\ \overline{A}BC + \overline{A}BD + A\overline{B}\overline{C} + A\overline{B}\overline{D} = \mathbf{0} \end{cases}$$

$$\begin{cases} Y_8 = \overline{D} + B\overline{C} + \overline{B}C \\ ABC + A\overline{C}D + A\overline{B}\overline{D} = 0 \end{cases}$$

【题 1-16】 解:

(a)
$$S_{i} = \overline{A_{i}B_{i}C_{i-1} + A_{i}\overline{C}_{i} + B_{i}\overline{C}_{i} + C_{i-1}\overline{C}_{i}} = A_{i}B_{i}C_{i-1} + (A_{i} + B_{i} + C_{i-1})\overline{C}_{i}$$

$$= A_{i}B_{i}C_{i-1} + (A_{i} + B_{i} + C_{i-1})\overline{A_{i}B_{i} + A_{i}C_{i-1} + B_{i}C_{i-1}}$$

$$= A_{i}B_{i}C_{i-1} + A_{i}\overline{B}_{i}\overline{C}_{i-1} + \overline{A_{i}B_{i}C_{i-1}} + \overline{A_{i}B_{i}C_{i-1}}$$

$$C_{i} = \overline{A_{i}B_{i} + A_{i}C_{i-1} + B_{i}C_{i-1}} = A_{i}B_{i} + A_{i}C_{i-1} + \overline{A_{i}B_{i}C_{i-1}}$$

 S_i 、 C_i 的真值表如表 1-7 所示。

(b)
$$H = A \oplus B \oplus C$$

 $G = \overline{A(B \oplus C) + BC} = A(\overline{BC} + \overline{BC}) + BC$
 $= A \overline{BC} + AB \overline{C} + BC = AC + AB \overline{C} + BC$
 $= AC + AB + BC = AC + AC + BC$

H、G 的真值表如表上编 所示。

表	1 – 7	$S_i, C_i $	以 值表		₹	長1-8	H、 G 的	具值表	
A_i	B_{i}	<i>C</i> _{i-1}	S_i	C,	A	В	С	H	G
0	0	0	0	0	0	0	Q	0	0
0	0	1	1	0	0	0 🕻	, Ci	1	0
0	1	0	ı	0	. 0	, 400°	0	1	0
0	1	1	0	1	0 (7	1	0	1
1	0	0	ı	0	Why.	0	0	1	0
1	0	1	0	1	R-18-1	0	1	0	1
1	1	0	0	1	1	1	0	0	1
1	1	1	1	1	1	1	1	1	1

由表 t-7 和表 1-8 可见,图 P1-16(见教材)中,两个逻辑图的真值表是相同的。

图 1-17 所示是 $Y_1 \sim Y_{10}$ 的逻辑图。

习题解答:

2.4.1 自我检查题

2-1 解:

i,和 u,波形如图 2-14 所示。

2-2 解:

$$u_1 = 0 \text{ V 时, T 截止, } u_0 = V_{CC} = 5 \text{ V}_{\circ}$$
 $u_1 = 3 \text{ V 时, T 导通, } U_{BE} = 0.7 \text{ V}_{\circ}$
 $I_{R_1} = (u_1 - U_{BE})/R_1 = [(3 - 0.7)/1.5] \text{ mA} \approx 1.53 \text{ mA}_{\circ}$
 $I_{R_2} = U_{BE}/R_2 = (0.7/18) \text{ mA} \approx 0.04 \text{ mA}_{\circ}$
 $I_{R_3} = I_{R_1} - I_{R_2} = (1.53 - 0.04) \text{ mA}_{\circ} = 1.49 \text{ mA}_{\circ}$
 $I_{RS} = (V_{CC} - U_{CES})/\beta R_c = [(3 - 0.3)/(30 \times 1)] \text{ mA} \approx 0.16 \text{ mA}_{\circ}$
因 $I_{R_3} = 1.49 \text{ mA} > I_{R_3} = 616 \text{ mA}_{\circ}$,则 T 饱和导通, $u_0 = U_{CES} = 0.3 \text{ V}_{\circ}$
 u_0 的波形如图 $2 - 15$ 所示。

2-3 解:

(a)
$$Y_1 = \overline{\overline{ABC}} = AB + C$$
;

(b)
$$Y_2 = \overline{AB} + \overline{C} = AB\overline{C}$$
;

(c)
$$Y_3 = \overline{A + BC} = A + B + \overline{C}$$
;

(c)
$$Y_3 = \overline{A + BC} = A + B + \overline{C}$$
; (d) $Y_4 = (A \oplus B) \oplus (B \oplus C) = A \oplus C_{\odot}$

各个输出端信号的波形如图 2-16 所示。

2-4 解:

(a)
$$Y_1 = \overline{A + B}$$
; (b) $Y_2 = A \oplus B$; (c) $Y_3 = \overline{AB}$ 。 对应 $A \setminus B$ 的波形如图 2 - 17 所示。

2-5 解:

(a)
$$Y_1 = 0$$
; (b) $Y_2 = \overline{A}$; (c) $Y_3 = \overline{AB}$ 。
对应 $A \setminus B$ 的波形如图 2-18 所示。

(b)
$$Y_b = \overline{AB} \cdot \overline{CD} = \overline{AB + CD}$$
;

$$+ \overline{CD};$$
 $(d) Y_d = \overline{AB + \overline{CD}}_o$

2-7 解:

(a)
$$Y_1 = A \Big|_{B=0}$$

$$= Z \Big|_{B=1}$$
;

(b)
$$Y_2 = A \Big|_{B=0}$$

= $Z \Big|_{B=1}$;

(c)
$$Y_3 = AB_{\circ}$$

图 T2-7(a)为三态门,图 T2-7(b)是传输门。当 B=0时,前者输出不是 U_{OL} 就是 U_{OH} ,由 A 的高、低电平规定,而后者是模拟开关, $u_{\text{O}}=u_{\text{I}}$,可以不变地传送加在输入端的模拟电压;而当 B=1 时,它们的输出端均为高阻态。图 T2-7(c)是普通的与门。(图 T2-7 见教材 P134。)

(a)
$$Y_1 = \overline{AB} = AB$$
;

$$2-8$$
解:
(a) $Y_1 = \overline{AB} = AB$;
(b) $Y_2 = B \Big|_{A=0}$

$$= Z \Big|_{A=1}$$
(c) $Y_3 = AB + CD$

(c)
$$Y_2 = AE + CD$$

2.4.2 思考题与习题

【题 2-1】解:

画图 2-19 所示波形图时,忽略半导体二极管的导通压降。

- $(1) Y_1 = A \cdot B \cdot C;$ $Y_2 = A + B + C_0$ (2) Y_1, Y_2 的波形如图 2 20 所示。

【题 2-3】解:

(a)
$$u_1 = 0$$
 V 时, T_N 截止, $u_0 = V_{DD} = 10$ V。
 $u_1 = 10$ V 时, T_N 导通

$$u_0 = \frac{R_{\text{ON}}}{R_{\text{D}} + R_{\text{ON}}} V_{\text{DD}} = \frac{0.5}{10 + 0.5} \times 10 \text{ V} \approx 0.48 \text{ V}$$

(b)
$$u_1 = 0$$
 V 时, T_P 似此, $u_0 = -V_{DD} = -10$ V $u_1 = -10$ V 时, T_P 导道

$$u_0 = \frac{R_{\text{on}}}{R_{\text{n}} + R_{\text{on}}} (-V_{\text{ph}}) = \frac{0.5}{10 + 0.5} \times (-10) \,\text{V} \approx -0.48 \,\text{V}$$

(c)
$$u_1 = 0$$
 V 时, T_s 截止、 T_p 导通, $u_0 = V_{BD} = 10$ V; $u_1 = 10$ V 时, T_s 导通、 T_p 截止, $u_0 = V_{ss} = 0$ V.

【题 2-4】 解:

(a)
$$Y_1 = 1$$
;

(a)
$$Y_1 = 1$$
; (b) $Y_2 = \overline{A}$; (c) $Y_3 = 1$; (d) $Y_4 = 1$;

(c)
$$Y_3 = 1$$
;

(d)
$$Y_a = 1$$
:

$$(e) Y_5 = \overline{A}$$
:

(f)
$$Y_{b} = 0$$
;

$$(g) Y_{\gamma} = \overline{A}$$

(e)
$$Y_5 = \bar{A}$$
; (f) $Y_6 = 0$; (g) $Y_7 = \bar{A}$; (h) $Y_8 = \bar{A}$;

(i)
$$Y_{o} = A$$
;

$$(j) Y_{10} = \overline{A};$$

$$(k) Y_{ij} = A$$

(i)
$$Y_9 = A$$
; (j) $Y_{10} = \bar{A}$; (k) $Y_{11} = A$; (l) $Y_{12} = A_{\odot}$

【题 2-5】解:

(a)
$$Y_1 = \overline{AB} \ \overline{CD} = \overline{AB + CD}$$
;

(b) 不能正常工作;

(c)
$$Y_3 = \overline{E} \overline{AB} + E \overline{CD}$$
;

(e)
$$Y_5 = EA + \overline{E}B$$
;

於了不能正常工作。

【题 2 - 6】解:

(a)
$$Y_1 = AB$$
;

b)
$$Y_2 = \overline{AB}$$

(a)
$$Y_1 = AB$$
; (b) $Y_2 = \overline{AB}$; (c) $Y_3 = \overline{A + B}$; (d) $Y_4 = A \oplus B$;

(d)
$$Y_A = A \oplus B$$
:

(e)
$$Y_5 = \overline{\overline{A}B + A\overline{B}} = A \odot B$$
;

(e)
$$Y_5 = \overline{AB} + A\overline{B} = A \odot B$$
; (f) $Y_6 = 1 \Big|_{B=0}$, $Y_6 = Z \Big|_{B=1}$;

$$(g) Y_7 = \overline{AB}_{\circ}$$

输出信号的波形如图 2 - 21 所示。

(a)
$$Y_1 = \overline{A + B} \ \overline{C + D} = \overline{(A + B) + (C + D)} = \overline{A + B + C + D};$$

(b)
$$Y_2 = \overline{\overline{AB + CD}} \Big|_{\overline{EN} = 0} = (AB + CD) \Big|_{\overline{EN} = 0}, Y_2 = Z \Big|_{\overline{EN} = 1};$$

(c)
$$Y_3 = \overline{A + B} \mid_{C=1}, Y_3 = Z \mid_{C=0}$$

【题 2-8】解:

- (a) 不能正常工作; (b) $Y_2 = \overline{A}$;
- (c) 不能正常工作; (d) $Y_4 = Y'_4 = \bar{A}$;
- (e) 不能正常工作。

【题 2-9】 解:

 $u_1 = 0.3 \text{ V }$ 时

 $u_i = 3.6 \text{ V}$ 时

$$i_1 = \beta_1 \frac{V_{\text{CC}} - 3 \times 0.75 \text{ V}}{R} = 0.02 \times \frac{5 - 3 \times 0.7}{2.7} \text{mA} \approx 0.03 \text{ mA}$$

$$I_{\text{IL}} = -1.48 \text{ mA}, I_{\text{IR}} = 0.03 \text{ mA}_{\circ}$$

【题 2-10】解:

$$I_{B3} = \frac{V_{CC} - U_{BE3} - U_{D} - u_{O}}{R_{2}} = \frac{5 - 0.7 - 0.7 - 2.8}{1.6} \text{ mA} = 0.5 \text{ mA}$$

$$I_{BS3} = \frac{V_{CC} - U_{CES3} - U_{D} - u_{O}}{\beta_{3}R_{4}} = \frac{5 - 0.3 - 0.7 - 2.8}{20 \times 0.13} \text{ mA} = 0.46 \text{ mA}$$
因 $I_{B3} > I_{BS3}$,则 T_{3} 工作在饱和区。

$$I_{G3} = I_{GS3} = \frac{V_{GC} - V_{CES3} - U_{D}}{R_4} = \frac{5 - 0.3 - 0.7 - 2.8}{0.13} \text{mA} = 9.23 \text{ mA}$$

$$i_0 = I_{B3} + I_{GS3} = (0.5 + 9.23) \text{ mA} = 9.73 \text{ mA}$$

【题 2-11】 解:

(1)
$$i_{\text{OH}} = -6 \times I_{\text{IH}} = -6 \times 40 \text{ } \mu\text{A} = -240 \text{ } \mu\text{A}$$

 $i_{\text{OLI}} = 3 \times (-I_{\text{IL}}) = 3 \times [-(-1)] \text{ m/s} = 3 \text{ mA}$

(2)
$$R_{\min} = \frac{V_{\text{CC}} - U_{\text{D}} - U_{\text{OL}}}{i_{\text{Dmax}}} = \frac{5 - 1.8 - 0.2}{1200} k\Omega = 0.25 \text{ k}\Omega = 250 \Omega$$

$$R_{\text{max}} = \frac{V_{\text{c.c.}} - U_{\text{D}} - U_{\text{OL}}}{i_{\text{Drain}}} = \frac{5 + 1 + 8 - 0.2}{6} k\Omega = 0.5 \text{ k}\Omega = 500 \text{ }\Omega$$

【题 2-13】解:

- (1) 改正后的电路如图 2-22 所示。
- (2) 按(1)图 2 22 所示电路改正即可,但图 P2 P3 (e)中 P3 电阻可以保留

【题 2-14】解:

(a)
$$Y_1 = \overline{\overline{A} BC} = \overline{A + BC}$$
;

(b)
$$Y_2 = \overline{\overline{A+B}} \Big|_{C=0} = (A+B) \Big|_{C=0}$$

 $Y_2 = Z \Big|_{C=1}$;

(c)
$$Y_3 = \overline{AB} \mid_{C=1}$$
, $Y_3 = Z \mid_{C=0}$

输出信号的波形如图 2-23 所示。

【题 2-15】 解: 结果如表 2-3 所示。

表 2-3

Λ	В	Y
0	0	D_{n}
0	1	D_1
1	0	D ₂
1	1	D_3

【题 2 - 16】 解:	结果如表2一条示示。	
A,	₹ 2 - 4 A ₀	γ.
0	(A)	D_{o}
0	1	$D_{_1}$
i	0	D_2
1	1	D_3

习题解答:

3.4.1 自我检查题

3-1 解:

- (1) 是组合电路。
- (2) $S = \bar{X}(Y \oplus Z) + X Y \oplus Z = X \oplus Y \oplus Z$ $C = X(Y \oplus Z) + YZ = X(\bar{Y}Z + Y\bar{Z}) + YZ(\bar{X} + X)$ $= X\bar{Y}Z + XY\bar{Z} + YZ\bar{X} + YZX = XY + YZ + XZ$ $P = Y \oplus Z$ L = YZ
- (3) 当把 X、Y、Z 当成 A 。 C_{i-1} 时,S 就是全加和 S_i , C 就是全加进位 C_i ,而把 Y、Z 看成是两个 1 位二进制数,则 P 就是半加和,L 就是半加进位。不难理解,图 T3-1(教材 P18)所示可以看成是一个半加器和全加器的组合。

3-2 解:

(1) $X = \overline{AB}$; $Y = \overline{\overline{AB} + A\overline{B}} = \overline{A}\overline{B} + AB$; $Z = A\overline{B}_{\circ}$ 真值表如表 3 - 10 所示。

表 3-10

A	В	X	Y	Z
0	0	0 11111	1	0
0	1	A STATE OF THE PARTY OF THE PAR	0	0
1	0	B 10	0	1
1	1	0	1	0

(2) 实现 I 位数值比较功能。

3-3 解:

由表 T3.3(教材 P224)所示真值表可得

$$G_0 = B_1 \oplus B_0$$

$$G_0 = B_1 \oplus B_0$$
 $B_0 = G_2 \oplus G_1 \oplus G_0$

$$G_1 = B_2 \oplus B_1 \qquad B_1 = G_2 \oplus G_1$$

$$B_1 = G_2 \oplus G_1$$

$$G_2 = B_2 \qquad B_2 = G_2$$

$$B_2 = G_2$$

在图 T3-3(教材 P182)所示电路中:

当
$$K=1$$
时 当 $K=0$ 时

$$Y_2 = X_2 \qquad Y_2 = X_2$$

$$Y_2 = X_2$$

$$Y_1 = X_2 \oplus X_1$$

$$Y_1 = X_2 \oplus X_1 \qquad Y_1 = X_2 \oplus X_1$$

$$Y_0 = X_1 \oplus X_0$$

$$Y_0 = X_1 \oplus X_0$$
 $Y_0 = \overline{Y} \oplus X_0 = \overline{X_2 \oplus X_1} \oplus X_0$

若令 $X_2 = B_2$ 、 $X_1 = B_1$ 、 X_2 长,则当 K = 1 时电路可正确地实现 3 位二进制 码到3位循环码的转换, 即有 $Y_2 = G_2$ 、 $Y_1 = G_1$ 、 $Y_0 = G_0$ 。 若令 $X_2 = G_2$ 、 $X_1 = G_1$ 、 $X_0 = G_0$,则当 K = 0 时, 通过比较可明显看出,只要去掉一个反相器便可实现 3 位循环码到3位二进制码的转换,即有 $Y_2 = B_2$ 、 $Y_1 = B_1$ 、 $Y_0 = B_0$ 。

3-4 解:

输入 4 位二进制数用 $B = B_3 B_2 B_1 B_0$ 表示,输出信号用 Y表示。根据题意可列出真值表,如表 3 – 11 所示。

表 3-11

		A 3 – 11		
В,	B ₂	B_1	B_0	Y
0	0	0	0	<u>()</u> 0
0	0	0	1 0 000	0
0	0	1	69,00	0
0	0	1	**	0
0	1	0	My o	0
0	1	0	1	0
0	1	TIES .	0	0
0	1	XXXX.	1	0
1	0	0	0	0
1	0	0	1	0
1	(c))	1	0	1
1		1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

卡诺图如图 3-7 所示,电路图如图 3-8 所示。

$$3.-5 解:$$
(1) $Y'_1 = \overline{A}\overline{B}(\overline{C} + C) + AB\overline{C}$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + AB\overline{C}$$

$$= \overline{m_0 + m_1 + m_6} = \overline{m_0}\overline{m_1}\overline{m_6}$$
(2) $Y'_2 = \overline{m_0 + m_3 + m_6 + m_9} = \overline{m_0}\overline{m_3}\overline{m_6}\overline{m_9}$
(3) $Y'_3 = \overline{m_0 + m_2 + m_4 + m_6 + m_7 + m_8}$

$$= \overline{m_0}\overline{m_2}\overline{m_3}\overline{m_6}\overline{m_7}\overline{m_8}$$
(4)
$$\begin{cases} Y'_4 = A\overline{B} + BC + CD + B\overline{D} \\ AB + AC = \mathbf{0} \\ Y_4 = \overline{m_3}\overline{m_4}\overline{m_6}\overline{m_7}\overline{m_8}\overline{m_9} \end{cases}$$

卡诺图及电路图分别如图 3-9、图 3-10 所示。

3-6 解:

 Y_1 、 Y_2 是 4 变量逻辑函数,应选用 8 选 1 数据选择器,其输出信号逻辑表达式为

$$Y = \overline{A}_{2} \overline{A}_{1} \overline{A}_{0} D_{0} + \overline{A}_{2} \overline{A}_{1} A_{0} D_{1} + \overline{A}_{2} A_{1} \overline{A}_{0} D_{2} + \overline{A}_{2} A_{1} A_{0} D_{3} + A_{2} \overline{A}_{1} \overline{A}_{0} D_{4} + A_{2} \overline{A}_{1} A_{0} D_{5} + A_{2} A_{1} \overline{A}_{0} D_{6} + A_{2} A_{1} A_{0} D_{7}$$

Y₃、Y₄是3变量逻辑函数,应选用4选1数据选择器,其输出信号逻辑表达式为

$$Y' = \overline{A}_{1} \overline{A}_{0} D_{0} + \overline{A}_{1} A_{0} D_{1} + A_{1} \overline{A}_{0} D_{2} + A_{1} A_{0} D_{3}$$

- (1) Y₁的卡诺图如图 3-11(a) 所示。
- (2) Y₂的卡诺图如图 3-11(b) 所示。

图 3-11

$$Y_{1} = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + A\overline{B}\overline{C}D + A\overline{B}\overline{C}$$

比较 Y 和 Y 的表达式,可令:

$$A_2=A$$
, $A_1=B$, $A_0=C$, 进而可得 $D_0=1$, $D_1=D$, $D_2=0$, $D_3=0$, $D_4=D$, $D_5=\overline{D}$, $D_6=1$, $D_7=1$ 。

$$Y_2 = \overline{A}\overline{B}CD + \overline{A}BC\overline{D} + \overline{A}BCD + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}D$$

比较 Y 和 Y_2 的表达式,可令:

$$A_2 = A$$
, $A_1 = B$, $A_0 = C$, $\#$ \overline{m} \overline{m} \overline{q} $D_0 = 0$, $D_1 = D$, $D_2 = 0$, $D_3 = 1$, $D_4 = 1$, $D_5 = 0$,

$$D_6 = \mathbf{0}$$
, $D_7 = \mathbf{0}_{\circ}$

 Y_1 、 Y_2 的连线图如图 3-13、图 3-14 所示。

×

$$A_1 = B$$
, $A_0 = C$, 进而可得 $D_0 = 1$, $D_1 = 0$, $D_2 = D$, $D_3 = 0$ 。
 $Y_4 = \overline{ABC} + AB\overline{C} + ABC$

比较 Y'和 Y_4 的表达式,可令:

 $A_1 = A_1 A_0 = B_1$,进而可得 $D_0 = C_1 D_1 = 0$, $D_2 = 0$, $D_3 = 1$ 。 $Y_3 \setminus Y_4$ 的连线图如图 3 - 15 所示。

3.4.2 思考题与习题

【题 3-1】解:

(a)
$$Y_1 = \overline{A + A + B + A + B + B} = \overline{A}\overline{B} + AB$$
电路实现同或运算,可用于检偶。

(b) $Y_1 = AB + (A + B)C = AB + AC + BC$

(b)
$$Y_2 = AB + (A + B)C = AB + AC + BC$$

$$Y_3 = ABC + \bar{Y}_2(A + B + C) + \bar{A}BC + \bar{A}B + AC + BC(A + B + C)$$

$$= ABC + \bar{A}BC + \bar{A}BC + \bar{A}BC$$

电路实现全加运算,1/5/2个加进位,1/5,是全加和。

【题 3-2】 解:

$$Y_1 = (A \oplus B) \oplus C = A \oplus B \oplus C$$

$$Y_2 = AB + (A \oplus B)C = AB + (AB + AB)C$$

$$= AB + \overline{A}BC + ABC = AB + BC + AC$$

$$Y_3 = A \oplus B \oplus C$$

$$Y_4 = AB + (A \oplus B)C = AB \oplus BC + AC$$

两个电路功能相同。势为全加器。

【题 3-3】解:

化简过程如图 3-16 所示。 电路连线如图 3-17 所示。

图 3-16

【题 3-4】解:

$$Y = \overline{AB \ \overline{A} + C} + (B \oplus \overline{C})$$

$$= (AB + \overline{A} + C) \overline{B \oplus \overline{C}}$$

$$= (B + \overline{A} + C) (BC + B\overline{C})$$

$$= \overline{BC + B\overline{C}} = \overline{BC} \overline{B\overline{C}}$$

实现该函数的电路图如图 3-18 所示。

【题 3-5】 解:

输入信号用 $A \setminus B \setminus C \setminus D$ 表示,输出用Y 表示,而且用卡诺图——真值方格图表示有关逻辑关系,进而求出解答。

- (1) 如图 3-19(a) 所示。
- (2) 如图 3-19(b) 所示。

实现(1)、(2)的电路如图 3-20 所示。

实现(1)、(2)的电路如图 3-20 所示。

【题 3-6】解:

真值表如表 3 - 12 所示。令 $Y_1 = 2B = F_3 F_2 F_1 F_0$, $Y_3 \in B^2 = G_5 G_4 G_3 G_2 G_1 G_0$ 。 表 3 - 12

B_2	B_{\perp}	$B_{\rm o}$	F,	F 2	$F_{\scriptscriptstyle 1}$	F_{n}	G,	C.	G_3	G_z	G_1	G_0
0	0	0	0	0	0	0	Q ₁	0	0	0	0	0
0 .	0	1	0	0	1	0	9	0	0	0	0	1
0	1	0	0	1	0	0	0	0	0	1	0	0
0	1	1	0	1	1	75	0	0	1	0	0	1
1	0	0	1	0		0	0	1	0	0	0	0
1	0	1	1	0 /	Y	0	0	1	1	0	0	1
1	1	0	1	APD "	0	0	1	0	0	1	0	0
1	1	1	1	** ***	1	0	1	1	0	0	0	1

表达式

$$F_{3} = B_{2} , F_{2} = B_{1} , F_{1} = B_{0} , F_{0} = \mathbf{0} ;$$

$$G_{5} = B_{2} B_{1} , G_{4} = B_{2} \overline{B}_{1} + B_{2} B_{0} , G_{3} = \overline{B}_{2} B_{1} B_{0} + B_{2} \overline{B}_{1} B_{0} , G_{2} = B_{1} \overline{B}_{0} ,$$

$$G_{1} = \mathbf{0} , G_{0} = B_{0} \circ$$

逻辑图如图 3-21 所示。

图 3-21

【题 3-7】 解: 真值表如表 3-13 所示。

表 3-13

			•				
B_3	B_2	B_1	B_0	Y_{i}	Y_2	Y_3	Y
0	0	0	0	1	10	0	1
0	0	0.	1	0	6 0.	0	1
0	0	1	0	1 .	0	0	1
0	. 0	1	1	0 0	0	0	1
0	1	0	0	Way.	0	0	1
0	1	0	1	0	1	1	1
0	1	1	0,-15	1	0	1	1
0	1	1	KIR	0	0	1	1
1	0	0	0	1	0	1	1
1	0	0	1	0	0	1	1
1	0	14)	0	1	1	1	1
1	0	**	1	0	0.	1	0
1	1	0	0	1	0	1	0
1	1	0	1	0	0	1	0
1	1	1	0	1	0	1	0
1	1	1	1	0	1	1	. 0

 Y_2 、 Y_3 、 Y_4 的卡诺图如图 3-22 所示。

 Y_2 的卡诺图

Y,的卡诺图

Y.的卡诺图

由真值表可直接得 $Y_1 = \overline{B}_2$

由 Y₂、Y₃、Y₄的卡诺图可得

$$Y_{2} = \overline{B}_{3}\overline{B}_{2}\overline{B}_{1}\overline{B}_{0} + \overline{B}_{3}B_{2}\overline{B}_{1}B_{0} + B_{3}\overline{B}_{2}B_{1}\overline{B}_{0} + B_{3}B_{2}B_{1}B_{0}$$

$$Y_{3} = B_{3} + B_{2}B_{1} + B_{2}B_{0}$$

$$Y_{4} = \overline{B}_{3} + \overline{B}_{2}\overline{B}_{1} + \overline{B}_{2}\overline{B}_{0}$$

逻辑图如图 3-23 所示。

【题 3-8】解:

表达式

(1)
$$Y_1 = \overline{D}_3 \overline{D}_2 \overline{D}_1 \overline{D}_0 = \overline{D}_3 + \overline{D}_2 + \overline{D}_1 + \overline{D}_0$$

- (2) Y₂如图 3-24(a)所示。
- (3) Y₃如图 3-24(b)所示。

$$\begin{split} \dot{Y}_2 &= \overline{D}_3 D_2 \overline{D}_1 D_0 + \overline{D}_3 D_2 D_1 \overline{D}_0 + D_3 \overline{D}_2 \overline{D}_1 D_0 + D_3 \overline{D}_2 \overline{D}_1 \overline{D}_0 \\ &+ \overline{D}_3 \overline{D}_2 D_1 D_0 + \overline{D}_3 D_2 D_1 \overline{D}_0 + D_3 D_2 \overline{D}_1 \overline{D}_0 + \overline{D}_3 \overline{D}_2 \overline{D}_1 D_0 \end{split}$$

图 3-24

$$Y_3 = D_3 \oplus D_2 \oplus D_1 \oplus D_0$$

逻辑图如图 3-25 所示。

【题 3-9】解:

【题 3-10】 解:

$$A = A_3 A_2 A_1 A_0$$
 8421BCD $A = B_3 B_2 B_1 B_0$

$$B = B_1 B_2 B_1 B_0$$

余3 BCD 码

$$C = C_3 C_2 C_1 C_0$$

$$C = C_3 C_2 C_1 C_0$$
 2421 BCD \triangle $D = D_3 D_2 D_1 D_0$

余3循环码

(1) 卡诺图如图 3-27 所示。

$$B_3 = \overline{A_3 + A_2 A_1 + A_2 A_0} = \overline{A_3 A_2 A_1 A_2 A_0}$$

00	01	1300	10
0011	0100	%110	0101
0111	1000	1010	1001
×××	XXXX	$\times \times \times \times$	××××
1011	1100	××××	××××
	×××	××× ××××	××× ××××××

$$B_{2} = \overline{\overline{A}_{2}A_{0} + \overline{A}_{2}A_{1} + A_{2}\overline{A}_{1}\overline{A}_{0}} = \overline{\overline{A}_{2}A_{0}} \overline{A_{2}A_{1}} \overline{A_{2}\overline{A}_{1}\overline{A}_{0}}$$

$$B_{1} = \overline{\overline{A}_{1}\overline{A}_{0} + A_{1}A_{0}} = \overline{\overline{A}_{1}\overline{A}_{0}\overline{A}_{1}A_{0}}$$

$$B_{0} = \overline{A}_{0}$$

(3) 卡诺图如图 3-29 所示。

(4) 卡诺图如图 3-30 所示。

图 3-30

$$D_{3} = \overline{B}_{3}$$

$$D_{2} = \overline{\overline{B}_{3}B_{2} + B_{3}\overline{B}_{2}} = \overline{\overline{B}_{3}B_{2}} B_{3}\overline{B}_{2}$$

$$D_{1} = \overline{\overline{B}_{2}B_{1} + B_{2}\overline{B}_{1}} = \overline{\overline{B}_{2}B_{1}} B_{2}\overline{B}_{1}$$

$$D_{0} = \overline{\overline{B}_{1}B_{0} + B_{1}\overline{B}_{0}} = \overline{\overline{B}_{2}B_{1}} B_{2}\overline{B}_{1}\overline{B}_{0}$$

由于余 3 BCD 码 $B = \dot{B}_3 B_2 B_1 B_0$ 和 2421 BCD 码的变量都是 8421 BCD 码 $A = A_3 A_2 A_1 A_0$,所以把它们的逻辑电路图画在一起,以简化画图,电路图如图 3 - 31 所示。图 3 - 32、图3 - 33 所示是将 8421 BCD 码和余 3 BCD 码分别转换成余 3 循环码的电路图。

【题 3-11】 解:

 $Y = \overline{S}_{2}\overline{S}_{1}\overline{S}_{0} \cdot \mathbf{1} + \overline{S}_{1}\overline{S}_{2}S_{0} \cdot (A+B) + \overline{S}_{2}S_{1}\overline{S}_{0} \cdot \overline{AB} + \overline{S}_{2}S_{1}S_{0} \cdot (A \oplus B) + S_{2}\overline{S}_{1}\overline{S}_{0} \cdot \overline{AB} + S_{2}\overline{S}_{1}S_{0} \cdot (A \oplus B) + S_{2}\overline{S}_{1}\overline{S}_{0} \cdot \overline{A+B} + S_{2}S_{1}S_{0} \cdot \overline{A+B} + S_{2}S_{1}S_{0} \cdot \mathbf{0}$ 多功能运算电路如图 3 - 33 所示。

【题 3-12】解:

- (1) 全加器的真值表如表 3-14 所示。
- (2) 全减器的真值表如表 3-15 所示。

表 3-14

$$S_{i} = \bar{A}_{i}\bar{B}_{i}C_{i-1} + \bar{A}_{i}B_{i}\bar{C}_{i-1}$$

$$+ A_{i}\bar{B}_{i}\bar{C}_{i-1} + A_{i}B_{i}C_{i-1}$$

$$C_{i} = \bar{A}_{i}B_{i}C_{i-1} + A_{i}\bar{B}_{i}C_{i-1}$$

$$+ A_{i}B_{i}\bar{C}_{i-1} + A_{i}B_{i}C_{i-1}$$

夜 3 - 13				
A_{i}	\boldsymbol{B}_{i}	E_{i-1}	O,	E_{i}
0	0	95	0	0
0	0	100	1	1
• 0	. KAN.	0	1	1
	1	1	0	1
N ₁	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\begin{split} D_{i} &= \overline{A}_{i} \overline{B}_{i} E_{i-1} + \overline{A}_{i} B_{i} \overline{E}_{i-1}, \\ &+ A_{i} \overline{B}_{i} \overline{E}_{i-1} + A_{i} B_{i} E_{i-1}, \\ E_{i} &= \overline{A}_{i} \overline{B}_{i} E_{i-1} + \overline{A}_{i} B_{i} \overline{E}_{i-1} \\ &+ \overline{A}_{i} B_{i} E_{i-1} + A_{i} B_{i} E_{i-1}. \end{split}$$

电路图如图 3-34 所示。

【题 3-13】 解:

(1)
$$Y_1 = \overline{ABC} + \overline{AB}(\overline{C} + C) + \overline{AC}(\overline{B} + B)$$

$$= \overline{\overline{ABC} + \overline{ABC} + \overline{AB}\overline{C} + \overline{AB}\overline{C}}$$

$$= \overline{\overline{m}_1 \overline{m}_2 \overline{m}_3 \overline{m}_7}$$

$$= \overline{m}_{1} \overline{m}_{2} m_{3} m_{7}$$

$$(2) Y_{2} = A \overline{B} + \overline{A} B = \overline{A} B (\overline{C} + C) + A \overline{B} (\overline{C} + C)$$

$$= \overline{\overline{A} B \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A \overline{B} C}$$

$$= \overline{m}_{2} \overline{m}_{3} \overline{m}_{4} \overline{m}_{5}$$

(3)
$$Y_3 = \overline{A + B} + \overline{A} + \overline{C} = \overline{A}\overline{B} + AC = \overline{A}\overline{B}(\overline{C} + C) + AC(\overline{B} + B)$$

$$= \overline{\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}C}$$

$$= \overline{\overline{m}_0}\overline{m}_1\overline{m}_5\overline{m}_7$$

$$(4) Y_4 = \overline{\overline{A}\overline{B}\overline{C} + ABC} = \overline{\overline{m}_0\overline{m}_7}$$

【题 3-14】 解: 逻辑图如图 3-36 所示。

【题 3-15】 解:

四个地方的开关分别用 $A \setminus B \setminus C \setminus D$ 表示,灯用 Z 表示。按 4 位循环码顺序排列 $A \setminus B \setminus C \setminus D$ 取值,列真值表,如表 3 – 16 所示。

 $Z = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}BCD + \overline{A}B\overline{C}\overline{D} + AB\overline{C}D + ABC\overline{D} + A\overline{B}C\overline{D} + A\overline{B}C\overline{D}$ $= \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}BCD + A\overline{B}\overline{C}\overline{D} +$ $A\overline{B}CD + AB\overline{C}D + ABC\overline{D}$

		# 2 1 <i>6</i>	. ~?	
		表 3 - 16	7,00	1
A	В	<i>c</i>	D	Y
0	. 0	0	0 - 10	0
0	0	0	1	1
0	0	1,	1	0
0	0	11-15-11	0	1
0	1	29/41	0	0
0	1	1	1	1
0	1	0	1	0
0	15/3	0	0	1
1	(A) F/F)1	0	0	0
1	1	0	1	1
1	1	1	1	0
1	1	1	0	1
1	0	1	0	0
1	0	1	1	1
1	0	0	. 1	0
1	0	0	0	1

选用 8 选 1 数据选择器 74151,其输出信号表达式为 $Y = \overline{A}_2 \overline{A}_1 \overline{A}_0 D_0 + \overline{A}_2 \overline{A}_1 A_0 D_1 + \overline{A}_2 A_1 \overline{A}_0 D_2 + \overline{A}_2 A_1 A_0 D_3 + A_2 \overline{A}_1 \overline{A}_0 D_4 + A_2 \overline{A}_1 A_0 D_5 + A_2 A_1 \overline{A}_0 D_6 + A_2 A_1 A_0 D_7$

令 $A_2 = A \setminus A_1 = B \setminus A_0 = C$, 比较 $Y \setminus Z$ 的表达式,可得

 $D_0 = D \setminus D_1 = \overline{D} \setminus D_2 = \overline{D} \setminus D_3 = D \setminus D_4 = \overline{D} \setminus D_5 = D \setminus \overline{D}_7 = \overline{D}$

路灯控制电路如图 3-37 所示。

图 3-37

【题 3-16】 解:

变量用 $A \setminus B \setminus C$ 表示,且按 ABC 顺序排列。74153 输出信号的表达式为 $Y = \overline{A}_1 \overline{A}_0 D_0 + \overline{A}_1 A_0 D_1 + A_1 \overline{A}_0 D_2 + A_1 A_0 D_3$

令 $A_1 = A \setminus A_0 = B$,可得下列各式。

$$(1) Y_1 = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

比较 $Y_{\iota}Y_{\iota}$ 的表达式可得

$$D_0 = C \setminus D_1 = \overline{C} \setminus D_2 = \overline{C} \setminus D_3 = C$$

(2)
$$Y_2 = \overline{A}BC + A\overline{B}C + AB\overline{C} + AB\overline{C}$$

比较 Y、Y2的表达式可得

$$D_0 = 0 \ D_1 = C \ D_2 = C \ D_3 = 1$$

(3)
$$Y_3 = \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + ABC$$

比较 Y、Y,的表达式可得

$$D_0 = C D_1 = 1 D_2 = 0 D_3 = C$$

实现 Y_1, Y_2, Y_3 的逻辑电路如图 3-38 所示。

【题 3-17】解:

先将 $Y_1 \sim Y_4$ 扩展成四变量 $A \setminus B \setminus C \setminus D$ 的函数,写出它们的最小项表达式,然后再画连线图。

$$Y_1 = \sum m(2,3,4,5,6,7,14,15);$$
 $Y_2 = \sum m(4,5,6,7,8,9,10,11);$
 $Y_3 = \sum m(0,1,2,3,10,11,14,15);$ $Y_4 = \sum m(0,1,14,15)_{\circ}$

存储矩阵的连线图如图 3-39 所示。

【題3-18】 解:

$$Y_1 = \sum m(0,2,3,5,6,8,10,12); Y_2 = \sum m(0,2,4,5,6,7,8,9,14,15);$$

 $Y_3 = \sum m(0,1,2,3,10,11,14,15); Y_4 = \sum m(0,2,5,7,14,15);$
 $Y_5 = \sum m(3,7,8,9,13,14); Y_6 = \sum m(2,4,5,6,8,9,10,11,12,13,14);$
 $Y_7 = \sum m(0,1,2,4,5,8,9,10,13)_{\circ}$
存储矩阵的连线图如图 3 - 40 所示。

【题 3-19】 解:

用 $A \setminus B \setminus C \setminus D$ 分别代表火警、急救、工作、生活电话, $Y = Y_1 Y_0$ 表示输出。 优先编码表如表 3 - 17 所示。

表 3 – 17					
A	В	С	D	Y _i	C)Yo
0	0	0	1	0	7. 0
0	0	1	×	0 80	1
0	1	×	×	3	0
1	×	×	×	1	1

【題 3-20】 解:

用 A_i 表示第 i 种药材,值为 1 时表示用了该种药材,值为 0 时表示未用该种药材,用 Y 表示输出信号,值为 1 时表示违反了规定,为 0 时表示未违反规定。

$$Y = \overline{\overline{A_3 A_{16}} + A_5 A_{21}} + \overline{A_{12} A_{22} A_{30} + A_7 \overline{A_{17}} + A_{10} A_{20} \overline{A_6}}$$

$$= \overline{\overline{A_3 A_{16}}} \overline{A_5 A_{21}} \overline{A_{12} A_{22} A_{30}} \overline{A_7 \overline{A_{17}}} \overline{A_{10} A_{20} \overline{A_6}}$$

组合电路如图 3-42 所示。

习题解答:

4.4.1 自我检查题

4-1 解:

$$RS: \begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ RS = \mathbf{0} \end{cases}$$

$$JK:Q^{n+1}=J\overline{Q}^n+\overline{K}Q^n$$

RS、JK 触发器的简化特性表如表 4-4 及表 4-5 所示。

表 4-4

R	S	Q ⁿ⁺¹
0	0	Q*
0	1	1
1	0	0
1	1	×

×	4 –	5
---	-----	---

J	K	Q**1
	0	Q"
OFFICE	1	0
1	0	1
1	1	\overline{Q}^n

$$T:Q^{n+1}=T\oplus Q^n$$

$$D:Q^{n+1}=L$$

D、T触发器的简化特性表如表。2-6 及表 4-7 所示。

表 4 - 6

** *** *******************************		
T		
0	Q^n	
1	₹"	

<u>. </u>	
D	Q^{n+1}
. 0	0
1	1

$$T':Q^{n+1}=\overline{Q}^n$$

4-3 解:

 $Q \setminus \overline{Q}$ 端的波形如图 4-11 所示。

4-4 解:

 $Q \setminus \overline{Q}$ 端的波形如图 4-12 所示。

4-5 解:

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$
 $CP \downarrow$ 波形如图 4 – 13 所示。

4-6 解:

$$Q^{n+1} = D \qquad CP \uparrow$$

 $Q \setminus \overline{Q}$ 端波形如图 4-14 所示。

4-7 解:

 $Q^{n+1} = K \oplus \overline{Q}^n \qquad CP \uparrow$

 $Q \setminus \overline{Q}$ 端波形如图 4-15 所示。

4-8 解:

描述方法有特性方程、特性表、卡诺图、状态图、时序图,如表4-8、图 4-16 所示,VHDL程序。

$$T: Q^{n+1} = T \oplus Q^n$$

图 4-16

4.4.2 思考题与习题

【题 4-1】解:

三种情况下 $Q \setminus \overline{Q}$ 端波形如图 4-17 所示。

【题 4-2】解:

Q的波形如图 4-18 所示。

【题 4-3】 解:

(1)
$$\overline{S} = A \setminus \overline{R} = B$$
; (2) $S = B \setminus R = C \setminus CP = A$; (3) $D = B \setminus CP = A$

$$\begin{cases} Q_1^{n+1} = S + \overline{R}Q^n \\ RS = \mathbf{0} \end{cases} \qquad \begin{cases} Q_2^{n+1} = S + \overline{R}Q^n \\ RS = \mathbf{0} \end{cases} \qquad CP = \mathbf{1} \qquad Q_3^{n+1} = D \qquad CP = \mathbf{1} \end{cases}$$

$$\begin{cases} Q_1^{n+1} = \overline{A} + BQ^n \\ \overline{B}\overline{A} = \mathbf{0} \end{cases} \qquad \begin{cases} Q_2^{n+1} = B + \overline{C}Q^n \\ CB = \mathbf{0} \end{cases} \qquad A = \mathbf{1} \qquad Q_3^{n+1} = \overline{B} \quad A = \mathbf{1} \end{cases}$$

$$Q_1 \setminus Q_2 \setminus Q_3$$
 的波形如图 $4 - 19$ 所示。

【题 4-4】 解:

 $Q \setminus \overline{Q}$ 的波形如图 4-20 所示。

【题 4-5】解:

 $Q \setminus \overline{Q}$ 的波形如图 4-21 所示。

【题 4-6】解:

各边沿触发器 Q端波形如图 4-22 所示。

【题 4-7】解:

(1)
$$Q_1^{n+1} = D_1 = A \oplus B$$
;

(2)
$$Q_2^{n+1} = D_2 = \overline{Q}_2^n \Big|_{C=1}$$
;

(3)
$$Q_3^{n+1} = \overline{Q}_3^n \Big|_{C=1}$$
;

(4)
$$Q_4^{n+1} = \overline{AQ_4^n + B\overline{Q}_4^n} \overline{Q}_4^n = \overline{B}\overline{Q}_4^n$$

各电路 Q 端波形如图 4-23 所示。

画 Q_2 、 Q_3 的波形时,要注意异步输入端为有效电平,即低电平($C=\mathbf{0}$)时触发器被置 $\mathbf{0}$, CP 和 D、J、K 均失去作用。

图 4-23

【题 4-8】解:

$$Q_1^{n+1} = \overline{Q}_1^n \bigg|_{\overline{Q}_2^n = \mathbf{1}}, \qquad Q_2^{n+1} = Q_1^n \overline{Q}_2^n$$

Q的波形如图 4-24 所示。

同步电路。A 为随机输入信号,每当 A 出现下降沿时,在电路的输出端 B 就会产生一个与 CP 同步,宽度等于 CP 周期的脉冲信号。

【题 4-9】 解:

【题 4-10】解:

$$Q_0^{n+1} = \overline{Q}_0^n$$
 $CP \downarrow$, $Q_1^{n+1} = \overline{Q}_1^n$ $Q_0 \downarrow$

$$Q_1^{n+1} = \overline{Q}_1^n$$

$$Q_0 \downarrow$$

波形如图 4-26 所示(\overline{Q}_0 、 \overline{Q}_1 的波形略)

【题4-11】解:

 $Q_0^{n+1} = A \oplus Q_0^n$ $CP \uparrow$, $Q_1^{n+1} = \overline{Q}_1^n$

 Q_0 、 Q_1 的波形如图 4-27 所示。

习题解答:

5-2 解:

(1) 写方程式

驱动方程: $J_0 = K_0 = \overline{Q}_2^n$ $J_2 = Q_1^n Q_0^n, \quad K_2 = Q_2^n$

输出方程: $Y = Q_2^n$

(2) 求状态方程

$$Q_{0}^{n+1} = J_{0} \overline{Q}_{0}^{n} + \overline{K}_{0} Q_{0}^{n} = \overline{Q}_{0}^{n} \overline{Q}_{0}^{n} + \overline{Q}_{2}^{n} Q_{0}^{n} = \overline{Q}_{2}^{n} \overline{Q}_{0}^{n} + Q_{2}^{n} Q_{0}^{n}$$

$$Q_{1}^{n+1} = J_{1} \overline{Q}_{1}^{n} + \overline{K}_{1} Q_{0}^{n} = \overline{Q}_{0}^{n} \overline{Q}_{1}^{n} + \overline{Q}_{0}^{n} Q_{1}^{n} = \overline{Q}_{1}^{n} Q_{0}^{n} + Q_{1}^{n} \overline{Q}_{0}^{n}$$

$$Q_{2}^{n+1} = J_{2} \overline{Q}_{2}^{n} + \overline{K}_{2} Q_{2}^{n} = Q_{1}^{n} Q_{0}^{n} \overline{Q}_{2}^{n} + \overline{Q}_{2}^{n} Q_{2}^{n} = \overline{Q}_{2}^{n} Q_{1}^{n} Q_{0}^{n}$$

(3) 画状态图和时序图 状态图如图 5-17 所示。

 Q_2

5-3 解:

(1) 写方程式

驱动方程:
$$D_0 = \overline{Q_2^n}$$

$$D_1 = Q_0^n$$

$$D_2 = Q_0^n Q_1^n$$

(2) 求状态方程

$$Q_0^{n+1} = D_0 = \overline{Q}_2^n$$

$$Q_{\downarrow}^{n+1} = D_1 = Q_0^n$$

$$Q_2^{n+1} = D_2 = Q_1^n Q_0^n$$

输出方程: $Y = Q_2^n \overline{Q_0^n}$

(3) 画状态图和时序图

状态图如图 5-19 所示。

图 5-19

时序图如图 5-20 所示。

(4) 该电路是能够自启动的五世制同步加法计数器。

5-4 解:

(1) 状态图如图 5-21 所示。

(2) 求状态方程、输出方程

 $Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}/C$ 的卡诺图如图 5-22 诉示。

输出方程: $C = Q_2^n Q_1^n$

图 5-22

状态方程:

$$Q_{2}^{n+1} = Q_{1}^{n}Q_{0}^{n} + Q_{2}^{n}\overline{Q}_{1}^{n} \qquad Q_{1}^{n+1} = \overline{Q}_{1}^{n}Q_{0}^{n} + \overline{Q}_{2}^{n}Q_{1}^{n}\overline{Q}_{0}^{n} \qquad Q_{0}^{n+1} = \overline{Q}_{1}^{n}\overline{Q}_{0}^{n} + \overline{Q}_{2}^{n}\overline{Q}_{0}^{n}$$

(3) 求驱动方程

$$Q_2^{n+1} = Q_1^n Q_0^n (\overline{Q}_2^n + Q_2^n) + \overline{Q}_1^n Q_2^n = Q_1^n Q_0^n \overline{Q}_2^n + \overline{Q}_1^n Q_2^n + Q_2^n \overline{Q}_1^n Q_0^n$$

$$Q_1^{n+1} = Q_0^n \overline{Q}_1^n + \overline{Q}_2^n \overline{Q}_0^n Q_1^n$$

$$Q_0^{n+1} = (\overline{Q}_2^n + \overline{Q}_1^n)\overline{Q}_0^n + \overline{1}Q_0^n$$

与 JK 触发器的特性方程 $Q^{n+1} = J\overline{Q}^n + XQ^n$ 比较,可以得到驱动方程

$$J_2 = Q_1^n Q_0^n \backslash K_2 = Q_1^n$$

$$J_1 = Q_0^n , K_1 = \overline{Q}_2^n \overline{Q}_0^n$$

$$J_0 = \overline{Q}_2^n + \overline{Q}_1^n = \overline{Q_2^n Q_1^n}, \quad K_0$$

(4) 无效状态转换情况

111/1000

能自启动

(5) 逻辑图如图 5-23 所示。

5-5 解: 加法计数器和减法计数器的逻辑电路图如图 5-24 所示。

5-6 解: 用两片 74161 构成的二十四进制计数器的电路连线图如图 5-25 所示。

5-7 解:

用两片 4 位双向移位寄存器 74LS194 组成的 8 位双向移位寄存器的连线图 如图 5-26 所示。

5-8 解:

(1) 基本 RS 触发器(×);(2) 同步 RS 触发器(×);(3) 同步 D 锁存器 (\times) ;(4) 边沿 D 触发器($\sqrt{}$);(5) 边沿 JK 触发器($\sqrt{}$)。

5.4.2 思考题与习题

【题 5-1】解:

状态图如图 5-27(a) 所示。时序图如图 5-27(b) 所示。

【题 5-2】解:

(1) 驱动方程

$$D_0 = \overline{\overline{Q}_0^n \overline{Q}_1^n \overline{Q}_2^n} = \overline{Q}_0^n \overline{Q}_1^n \overline{Q}_2^n, \quad D_1 = Q_0^n, \quad D_2 = Q_1^n$$

(2) 状态方程

$$Q_0^{n+1} = D_0 = \overline{Q}_0^n \overline{Q}_1^n \overline{Q}_2^n \qquad Q_1^{n+1} = D_1 = Q_0^n \qquad Q_2^{n+1} = D_2 = Q_1^n$$

(3) 状态图如图 5-28 所示。

【题 5-3】解:

(1) 驱动方程

$$J_0 = K_0 = 1$$
, $J_1 = K_1 = \overline{Q}_0^n$, $J_2 = K_2 = \overline{Q}_1^n \overline{Q}_0^n$

(2) 状态方程

$$Q_0^{n+1} = J_0 \overline{Q}_0^n + \overline{K}_0 Q_0^n = \overline{Q}_0^n$$

$$Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n = \overline{Q}_0^n \overline{Q}_1^n + \overline{\overline{Q}}_0^n Q_1^n = \overline{Q}_0^n \oplus Q_1^n$$

$$Q_2^{n+1} = J_2 \overline{Q}_2^n + \overline{K}_2 Q_2^n = \overline{Q}_0^n \overline{Q}_1^n \overline{Q}_2^n + \overline{\overline{Q}_0^n \overline{Q}_1^n} Q_2^n = (\overline{Q}_1^n \overline{Q}_0^n) \oplus Q_2^n$$

(3) 状态图如图 5-29 所示。

图 5-29

(4) 时序图如图 5-30 所示。

【题 5-4】解:

(1) 驱动方程

$$D_0 = A, \quad D_1 = D_0^n$$

(2) 输出方程

$$B = \overline{\overline{Q_0^n Q_1^n}}, \quad C = \overline{Q_0^n \overline{Q}_1^n}$$

(3) 状态方程

$$Q_0^{n+1} = D_0 = A$$

$$Q_1^{n+1} = D_1 = Q_0^n$$

(4) 时序图如图 5-31 所示。

【题 5-5】解:

(1) 驱动方程

$$J_0 = \overline{Q_2^n Q_1^n}, \quad K_0 = 1, \quad J_1 = Q_0^n, \quad K_1 = \overline{\overline{Q}_2^n \overline{Q}_0^n}, \quad J_2 = Q_1^n Q_0^n, \quad K_2 = Q_1^n$$

(2) 状态方程

$$Q_0^{n+1} \simeq J_0 \overline{Q}_0^n + \overline{K}_0 Q_0^n = \overline{Q_2^n} \overline{Q_1^n} \overline{Q}_0^n = \overline{Q}_2^n \overline{Q}_0^n + \overline{Q}_1^n \overline{Q}_0^n$$

$$Q_{1}^{n+1} = J_{1}\overline{Q}_{1}^{n} + \overline{K}_{1}Q_{1}^{n} = Q_{0}^{n}\overline{Q}_{1}^{n} + \overline{\overline{Q}_{2}^{n}}\overline{Q}_{0}^{n}Q_{1}^{n} = \overline{Q}_{1}^{n}Q_{0}^{n} + \overline{Q}_{2}^{n}Q_{1}^{n}\overline{Q}_{0}^{n}$$

$$Q_{2}^{n+1} = J_{2}\overline{Q}_{2}^{n} + \overline{K}_{2}Q_{2}^{n} = Q_{1}^{n}Q_{0}^{n}\overline{Q}_{2}^{n} + \overline{Q}_{1}^{n}Q_{2}^{n} = \overline{Q}_{2}^{n}Q_{1}^{n}\overline{Q}_{0}^{n} + Q_{2}^{n}\overline{Q}_{1}^{n}$$

(3) 状态图如图 5-32 所示。

$$Q_{2}^{n}Q_{1}^{n}Q_{6}^{n}Q_{2}^{n+1}Q_{1}^{n+1}Q_{0}^{n+1}$$

$$111 - 000 - 001 - 010 - 011 - 100 - 101 - 110$$

$$\boxed{\$ 5 - 32}$$

【题 5-6】解:

(1) 驱动方程

$$Q_0^{n+1} = J_0 \overline{Q}_0^n + \overline{K}_0 Q_0^n = \overline{Q}_2^n \oplus \overline{Q}_1^n \overline{Q}_0^n + \overline{Q}_2^n \oplus \overline{Q}_1^n \overline{Q}_0^n = \overline{Q}_2^n \oplus \overline{Q}_1^n$$

$$Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n = \overline{Q}_2^n Q_0^n \overline{Q}_1^n + \overline{Q}_2^n \overline{Q}_0^n Q_1^n = \overline{Q}_2^n \overline{Q}_1^n Q_0^n + \overline{Q}_2^n \overline{Q}_1^n Q_0^n + \overline{Q}_2^n \overline{Q}_1^n + \overline{Q}_1^n \overline{Q}_0^n$$

$$= \overline{Q}_{2}^{n} Q_{0}^{n} + \overline{Q}_{2}^{n} Q_{1}^{n} + Q_{1}^{n} \overline{Q}_{0}^{n}$$

$$Q_{2}^{n+1} = J_{2} \overline{Q}_{2}^{n} + \overline{K}_{2} Q_{2}^{n} = Q_{1}^{n} \overline{Q}_{0}^{n} \overline{Q}_{2}^{n} + \overline{Q}_{1}^{n} Q_{2}^{n} = \overline{Q}_{2}^{n} Q_{1}^{n} \overline{Q}_{0}^{n} + Q_{2}^{n} Q_{1}^{n}$$

$$= Q_{1}^{n} \overline{Q}_{0}^{n} + Q_{2}^{n} \overline{Q}_{1}^{n}$$

(3) 状态图如图 5-34 所示。

(4) 计数长度 N=7,能息超动。

【题 5-7】解:

(1) 时钟方程与驱动方程

$$CP_0 = CP$$
, $CP_1 = CP_2 = Q_0$

$$CP_0 = CP$$
, $CP_1 = CP_2 = Q_0$
 $J_0 = K_0 = 1$, $J_1 = \overline{Q}_2^n$, $K_1 = 1$, $J_2 = \overline{Q}_1^n$, $K_2 = 1$
(2) 状态方程
 $Q_0^{n+1} = \overline{Q}_0^n$ $CP \downarrow$
 $Q_1^{n+1} = \overline{Q}_2^n \overline{Q}_1^n$ $Q_0 \downarrow$

$$Q_0^{n+1} = \overline{Q}_0^n \qquad CP \downarrow$$

$$Q_1^{n+1} = \overline{Q}_2^n \overline{Q}_1^n \qquad Q_0 \downarrow$$

$$Q_2^{n+1} = \overline{Q}_2^n Q_1^n \qquad Q_0 \downarrow$$

(3) 状态图如图 5-35 所示。

$$Q_2^n Q_1^n Q_0^n \longrightarrow Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$$

(4) 时序图如图 5-36 所示。

【题 5-8】 解:

(1) 状态方程如图 5-37 所示。

图 5-37

(2) 驱动方程

$$Q_2^{n+1} = Q_1^n (\overline{Q}_2^n + Q_2^n) = Q_1^n \overline{Q}_2^n + Q_1^n Q_2^n$$

$$J_2 = Q_1^n , \quad K_2 = \overline{Q}_1^n$$

$$Q_1^{n+1} = Q_0^n (\overline{Q}_1^n + Q_1^n) = Q_0^n \overline{Q}_1^n + Q_0^n Q_1^n$$

$$J_1 = Q_0^n \quad K_1 = Q_0^n$$

$$Q_0^{n+1} = \overline{Q}_2^n (\overline{Q}_0^n + Q_0^n) = \overline{Q}_2^n \overline{Q}_0^n + \overline{Q}_2^n \overline{Q}_0^n$$

$$J_0 = \overline{Q}_2^n , \quad K_0 = Q_2^n$$

(3) 逻辑图如图 5-38 所示。

【题 5-9】解:

(1) 状态方程与输出方程 卡诺图如图 5-39 所示。

 $D_1 = \overline{\overline{Q}_2^n Q_0^n + \overline{Q}_2^n Q_1^n} = \overline{\overline{Q}_2^n Q_0^n} \overline{\overline{Q}_2^n Q_1^n}$

 $D_0 = \overline{\overline{Q}_2^n \overline{Q}_1^n + Q_1^n \overline{Q}_0^n} = \overline{\overline{Q}_2^n \overline{Q}_1^n} \overline{\overline{Q}_1^n \overline{Q}_0^n}$

(3) 逻辑图如图 5-40 所示。

【题 5-10】解:

(1) 原始状态图如图 5-41 所示。

$$S_0 \xrightarrow{/0} S_1 \xrightarrow{/0} S_2 \xrightarrow{/1} S_3 \xrightarrow{/0} S_4 \xrightarrow{/1} S_5 \xrightarrow{/1} S_6 \xrightarrow{/0} S_7$$
图 5 - 41

(2) 状态分配:选用循环码,即令

$$S_0 = 000$$
, $S_1 = 001$, $S_2 = 011$, $S_3 = 010$
 $S_4 = 110$, $S_5 = 111$, $S_6 = 100$, $S_7 = 100$

- (3) 状态图如图 5-42 所示。
- (4) 状态方程与输出分程 卡诺图如图 5-43 所示。

(3) 逻辑图如图 5-40 所示。

【题 5-10】解:

(1) 原始状态图如图 5-41 所示。

(2) 状态分配:选用循环码。即令

$$S_0 = 000$$
, $S_1 = 001$, $S_2 = 011$, $S_3 = 010$
 $S_4 = 110$, $S_5 = 111$, $S_6 = 101$, $S_7 = 100$

- (3) 状态图如图 5-42 所示。
- (4) 状态方程与输出方程 卡诺图如图 5-43 所示。

$$Q_2^{n+1} = Q_2^n Q_0^n + Q_1^n \overline{Q}_0^n$$

$$Q_1^{n+1} = \overline{Q}_2^n Q_0^n + Q_1^n \overline{Q}_0^n$$

$$Q_0^{n+1} = \overline{Q}_2^n \overline{Q}_1^n + Q_2^n Q_1^n$$

$$Y = Q_2^n \overline{Q}_0^n + Q_1^n Q_0^n$$

(5) 驱动方程:选用 D 型触发器

$$D_2 = Q_2^n Q_0^n + Q_1^n \overline{Q}_0^n$$

$$D_1 = \overline{Q}_2^n Q_0^n + Q_1^n \overline{Q}_0^n$$

$$D_0 = \overline{Q}_2^n \overline{Q}_1^n + Q_2^n Q_1^n$$

(6) 逻辑图如图 5-44 所示。

【题 5-11】解:

$$\Leftrightarrow Q_2^n = A \setminus Q_1^n = B \setminus Q_0^n = C$$

(1) 状态方程与驱动方程

卡诺图如图 5-45 所示。

$$\begin{cases} Q_2^{n+1} = \overline{G}\overline{Q}_0^n + G\overline{Q}_1^n = \overline{D}_2 \\ Q_1^{n+1} = \overline{G}\overline{Q}_2^n + G\overline{Q}_0^n = D_1 \\ Q_0^{n+1} = \overline{G}\overline{Q}_1^n + G\overline{Q}_2^n = D_0 \end{cases}$$
 驱动方程:选用 D 型触发器

- (2) 逻辑图如图 5-46 所示。
- (3) 无效状态转换情况:电路不能自启动。

【题 5-12】解:

(1) 状态图如图 5-47 所示。

$$Q_3^n Q_2^n Q_1^n Q_0^n \xrightarrow{M/C_1 C_2} Q_3^{n+1} Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$$

(2) 状态方程与输出方程 卡诺图如图 5-48 所示。

$\searrow Q_2^n Q_1^n Q_0^n$		Pin						
MQ_3^n	000	001	7 011	010	110	111	101	100
00	0001/00	0010/00	0100/00	0011/00	xxxx/xx	XXXX/XX	0000/10	0101/00
01	XXX/XX	XXXX/XX	XXX /XX	xx/xx	XXXX/XX	XXXX/XX	XXXX/XX	XXXX/XX
11	1001/00	1010/00	0000/01	1011/00	XXXX/XX	xxxx/xx	xxxx/xx	XXXX/XX
10	0001/00	0010/00	0100/00	0011/00	0111/00	1000/00	0110/00	0101/00

$$Q_3^{n+1} = Q_2^n Q_1^n Q_0^n + Q_3^n \overline{Q}_1^n + Q_3^n \overline{Q}_0^n$$

$$C_1 = \overline{M} Q_2^n Q_0^n$$

$$Q_2^{n+1} = \overline{Q}_3^n \overline{Q}_2^n Q_1^n Q_0^n + Q_2^n \overline{Q}_0^n + M Q_2^n \overline{Q}_1^n$$

$$C_2 = Q_3^n Q_1^n Q_0^n$$

$$Q_1^{n+1} = \overline{Q}_2^n \overline{Q}_1^n Q_0^n + M \overline{Q}_1^n Q_0^n + Q_1^n \overline{Q}_0^n$$

$$Q_0^{n+1} = \overline{Q}_0^n$$

(3)驱动方程:选用 4 个下降沿触发的边沿 JK 触发器 🕎

$$Q_3^{n+1} = Q_2^n Q_1^n Q_0^n (\overline{Q}_3^n + Q_3^n) + (\overline{Q}_1^n + \overline{Q}_0^n) Q_3^n = Q_2^n Q_1^n Q_0^n \overline{Q}_3^n + Q_1^n Q_0^n Q_3^n + Q_3^n Q_2^n Q_1^n Q_0^n$$

$$J_3 = Q_2^n Q_1^n Q_0^n, \quad K_3 = Q_1^n Q_0^n$$

$$Q_2^{n+1} = \overline{Q}_3^n Q_1^n Q_0^n \overline{Q}_2^n + (M \overline{Q}_1^n + \overline{Q}_0^n) Q_2^n$$

约束项,去掉

$$J_2 = \overline{Q}_3^n Q_1^n Q_0^n, \quad K_2 = \overline{M} \overline{Q}_1^n + \overline{Q}_0^n$$

$$Q_1^{n+1} = (\overline{Q}_2^n Q_0^n + MQ_0^n) \overline{Q}_1^n + \overline{Q}_0^n Q_1^n$$

$$J_1 = \overline{Q}_2^n Q_0^n + M Q_0^n = (\overline{Q}_2^n + M) Q_0^n, \quad K_1 = Q_0^n$$

$$Q_0^{n+1} = \mathbf{1} \cdot \overline{Q}_0^n + \overline{\mathbf{1}} \cdot Q_0^n$$
$$J_0 = K_0 = \mathbf{1}$$

- (4)逻辑图如图 5 49 所示。
- (5) 无效状态转换情况

如图 5-50 所示。

电路能够自启动。

【题 5-13】解:

状态图如图 5-51 所示。

【题 5-14】 解:

- (a) 十三进制计数器(74163 同步清零);
 - (b) 十三进制计数器(74161 同步预置数)。
 - (1) 状态图如图 5-52 所示。

(2) 时序图如图 5-53 所示。

【题 5-15】 解:

连线分别如图 5-54 所示。

【题 5-16】 解:

$$(1) S_N = \mathbf{1010} , \overline{CR} = \overline{Q_3 Q_1}$$

$$S_{N-1} = 1001 , \quad \overline{LD} = \overline{Q_3 Q_0}$$

连线如图 5-55 所示。

(2)
$$S_N = \mathbf{00111100}$$
, $\overline{CR} = \overline{Q_5 Q_4 Q_3 Q_2}$ 连线如图 5 - 56 所示。
$$S_{N-1} = \mathbf{00111011}$$
、 $\overline{LD} = \overline{Q_5 Q_4 Q_3 Q_1 Q_0}$

图 5-57

(3) $S_N = \mathbf{01100100}$ 、 $\overline{CR} = \overline{Q_6 Q_5 Q_2}$ 连线如图 5 - 58 所示。

 S_{N-1} = **01100011**、 $\overline{CR} = \overline{Q_6 Q_5 Q_1 Q_0}$ 连线如图 5 - 59 所示。

图 5 - 59

(4) $S_N = 10110100$, $\overline{CR} = \overline{Q_7 Q_5 Q_4 Q_2}$

连线如图 5-60 所示。

 $S_{N-1} = 10110011$ 、 $\overline{LD} = Q_7 Q_5 Q_4 Q_1 Q_0$ 连线如图 5 - 61 所示。

【题 5-17】解:

(1) $S_N = S_9 = 1001$ 、 $R_{0A}R_{0B} = Q_3Q_0$ 连线如图 5 - 62 所示。

图 5-62

(2)
$$S_N = S_{50} = \mathbf{01010000}$$
, $R_{0A}R_{0B} = \mathbf{0}$

连线如图 5-63 所示。

图 5-63

(3)
$$S_N = S_{88} = 10001000$$
, $R_{0A}R_{0B} = Q_7Q_3$

连线如图 5-64 所示。

行動民籍其品

图 5-64

(4) $S_N = S_{30} = 00110000$ 、 $R_{0A}R_{0B} = Q_5Q_4$ 连线如图 5 - 65 所示。

【题 5-18】 解:

- (1) $D_s = Q_2^n$ (2) $D_s = Q_4^n$ (3) $D_s = Q_6^n$

连线如图 5-66 所示。

图 5-66

【题 5-19】 解:

连线如图 5-67 所示。

【题 5-20】 解:

- (1) $D_{\rm S} = Q_2^n \oplus Q_0^n$ (2) $D_{\rm S} = Q_3^n \oplus Q_0^n$ (3) $D_{\rm S} = Q_6^n \oplus Q_0^n$

连线如图 5-68 所示。

【题 5-21】解:

静态 RAM 的存储单元是静态触发器,存储的代码只要不断电就可以长期 保持。动态 RAM 是用 MOS 管电容存储代码,信息保持时间很短,而且读出是破 坏性的,需要及时重写,即使不读出,也要定时童写,否则内容就会丢失。

【题 5-22】解:

- (1) 2 K×16 位存储器如图 5-69 所示。
- (2) 4 K×8 位存储器如图 5-70 所示。

