Notes on "The Core Model Induction"

Stefan Mesken

February 27, 2019

1 The Successor Case

1.4 Capturing, Correctness and Genericity Iterations

Exercise 1.4.5. Suppose that (\mathcal{M}, Σ) absorbs reals at δ and $\mathcal{M} \models \mathrm{ZFC}^- \wedge \delta^+$ exists. Then δ is either Woodin or a limit of Woodins in \mathcal{M} .

Proof. By taking a countable hull

$$\sigma \colon \mathcal{N} \prec \mathcal{M}$$

of \mathcal{M} and considering $(\mathcal{N}, \Sigma^{\sigma})$ we may and shall assume that \mathcal{M} is countable. Let $x \in \mathbb{R}$ code \mathcal{M} and suppose that δ is neither Woodin nor a limit of Woodins in \mathcal{M} .

Suppose that there is some $\eta < \delta$ such that there are no \mathcal{M} -Woodin cardinals in the interval $[\eta, \delta]$ and let $\delta^* \leq \delta$ be minimal such that for every real y there is some iteration tree \mathcal{U} on $\mathcal{M}^{\mathcal{T}}_{\eta}$ that lives on (η, δ^*) and absorbs y.

In V, fix $(\xi_n \mid n < \omega)$ cofinal in δ^* and for every n fix some real x_n such that x_n cannot be absorbed by a tree living below ξ_n . Now let

$$z = x \oplus \bigoplus_{n < \omega} x_n,$$

where x is a real coding \mathcal{M} .

Notice that any iteration that absorbs z must use unboundedly long extenders below δ^* . Let $\mathcal U$ be such an iteration tree. Since $\mathcal M$ has no Woodin cardinals in the interval $[\eta, \delta]$, $\mathcal U$ is guided by $\mathcal Q$ -structures in $\mathcal M$, so that $\mathcal U$ and $i_\infty^{\mathcal U}$ are in fact members of $\mathcal M$. Let g be $\operatorname{Coll}(\omega, i_\infty^{\mathcal U}(\delta^*))$ -generic such that

¹It is here that we use that $\mathcal{M} \models ZFC^- \wedge \delta^+$ exists.

 $z \in \mathcal{M}^{\mathcal{U}}_{\infty}[g]$. Since x codes \mathcal{M} and $x \leq_T z$, we have $\mathcal{M} \in \mathcal{M}^{\mathcal{U}}_{\infty}[g]$ and hence $i^{\mathcal{U}}_{\infty} \upharpoonright (\delta^*)^{+\mathcal{M}} \in \mathcal{M}^{\mathcal{U}}_{\infty}[g]$. But $i^{\mathcal{U}}_{\infty} \upharpoonright (\delta^*)^{+\mathcal{M}}$ is cofinal in $i^{\mathcal{U}}(\delta^*)^{+\mathcal{M}^{\mathcal{U}}_{\infty}}$, so that

$$\mathcal{M}^{\mathcal{U}}_{\infty}[g] \models i^{\mathcal{U}}_{\infty}(\delta^*)^{+\mathcal{M}^{\mathcal{U}}_{\infty}}$$
 is singular.

Since $i_{\infty}^{\mathcal{U}}(\delta^*)^{+\mathcal{M}_{\infty}^{\mathcal{U}}}$ is regular in $\mathcal{M}_{\infty}^{\mathcal{U}}$ and $\operatorname{Coll}(\omega, i_{\infty}^{\mathcal{U}}(\delta^*))$ has the $i_{\infty}^{\mathcal{U}}(\delta^*)^+$ -c.c., this is a contradiction!