Jan 17 #8 $W \in T^*M$, Θ_1, Θ_2 basis of T^*M , Assume $W = U_1\theta_1 + U_2\theta_2$, where U_1, U_2 are variables of each basis. Show U., Uz have a solution $d\theta = - (u_1\theta_1 + u_2\theta_2) \wedge \theta^2$ $d\theta_1(X_1,X_2)$ write into basis $\theta_1 \wedge \theta_2 \in \Lambda^2 T^*M$ b) $\tilde{\chi}_i = A \cdot \chi_i$, A is a transition of 2 basis $\widetilde{\Theta}_{i}(\widehat{\chi}_{i}) = 1 = \widetilde{\Theta}_{i}(A\chi_{i}) = A \cdot \widetilde{\Theta}_{i}(\chi_{i})$ $d\theta_i = -\sum_{i} W_{ij} \wedge \theta_j$ A-1 H; $H_1 = \begin{pmatrix} 1 & \theta_1 \\ 0 & \theta_2 \end{pmatrix} \qquad (Wij) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $(Wij) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $(H)_2 = (0)_{0} \theta_1$ θ_2 H = - W / B write in component dôi = \(\frac{1}{5} \dai; \lambda \theta \) - \(\frac{1}{5} \alpha '' \) \(\frac{1}{5} \text{W} \) Collect OK term $=\sum_{k}\left(da^{i}k-\sum_{j}a^{i}jW_{j}k\right)\Lambda\theta k$

Qual Prep Page

write Θ_k in terms of $\widetilde{\Theta}_k$, $A \cdot \widetilde{\Theta}_k = \widetilde{\Theta}_k$ = \(\frac{1}{k}\) \(\frac{1}{k On the other hand $d\widehat{\theta}_{k} = -\sum_{i}\widehat{w}_{i} + \Lambda \widehat{\theta}_{i}$ Wip = \(\frac{1}{k} \left(- datik akp + \(\subseteq atij \) wjk akp) Trick in forms $A^{-1} \cdot A = Id \Rightarrow d(A^{7}A) = 0$ => dA1.A+ A1.dA=0 \Rightarrow $dA^{-1}A = -A^{-1}dA$ $\widehat{W}_{i} = \sum_{k} \left(\widehat{a}_{ik}^{\dagger} d \widehat{a}_{k} + \sum_{j} \widehat{a}_{ij}^{\dagger} W_{jk} \widehat{a}_{k} \right)$ $\widehat{A}_{i}^{\dagger} d \widehat{A}$ $\widehat{A}_{i}^{\dagger} w \cdot \widehat{A}$ $(\widetilde{W})_{i} = (A^{-1} \cdot dA)_{i} + (A^{-1} W A)_{i}$ W = A -1 dA + A-1 WA dw= dA-1 AdA + d (A-1 WA) Since $A \in SO(2)$ i.e. $A \cdot A^T = Id$ dim So (2) = 1, dA -1 1 dA = 0 dw = d(A-1WA)

A-1WA = W Tleave to

ual Prep Page 2

dŵ=dw