SUPPLEMENTARY MATERIAL: PROOFS

Proof of Proposition 3.1. The proof is an immediate consequence of equation (19) and the fact that, for all $A \in \mathcal{P}(A_1)$, it holds that

$$\widehat{\nu}_{n+1}^{\alpha}(S_{n+1} \in As_n | S_n = s_n) = \widehat{\beta}_1^{\alpha}(A).$$

Indeed, by the linearity of the Choquet integral with respect to the integrating capacity (see, e.g., [30]) it holds that

$$\begin{split} \oint_{\mathcal{A}_1} \varphi_{n+1}^{\alpha}(as_n) \mathrm{d}\widehat{\beta}_1^{\alpha}(a) &= \alpha \oint_{\mathcal{A}_1} \varphi_{n+1}^{\alpha}(as_n) \mathrm{d}\widehat{\beta}_1(a) \\ &+ (1-\alpha) \oint_{\mathcal{A}_1} \varphi_{n+1}^{\alpha}(as_n) \mathrm{d}\overline{\widehat{\beta}}_1(a), \end{split}$$

where by Proposition 3 in [16] we have that

840

$$\begin{split} \oint_{\mathcal{A}_1} \varphi_{n+1}^\alpha(as_n) \mathrm{d}\widehat{\beta}_1(a) &= \widehat{b_u} \varphi_{n+1}^\alpha(us_n) + \widehat{b_d} \varphi_{n+1}^\alpha(ds_n) \\ &+ (1 - (\widehat{b_u} + \widehat{b_d})) \min_{a \in \mathcal{A}_1} \varphi_{n+1}^\alpha(as_n), \\ \oint_{\mathcal{A}_1} \varphi_{n+1}^\alpha(as_n) \mathrm{d}\overline{\widehat{\beta}}_1(a) &= \widehat{b_u} \varphi_{n+1}^\alpha(us_n) + \widehat{b_d} \varphi_{n+1}^\alpha(ds_n) \\ &+ (1 - (\widehat{b_u} + \widehat{b_d})) \max_{a \in \mathcal{A}_1} \varphi_{n+1}^\alpha(as_n). \end{split}$$

Proof of Proposition 3.2. We prove the statement by backward induction, focusing only on the case φ is non-decreasing, as the non-increasing case has a similar proof.

Define the function $\varphi_T^{\alpha} = \varphi$ on \mathcal{S}_T , which is non-decreasing since φ is non-decreasing by hypothesis. For n = T - 1, define $\varphi_{T-1}, \overline{\varphi}_{T-1} : \mathcal{S}_{T-1} \to \mathbf{R}$ by setting, for every $s_{T-1} \in \mathcal{S}_{T-1}$,

$$\begin{split} \varphi_{T-1}(s_{T-1}) &= \frac{1}{1+r} \widehat{\mathbf{C}}[\varphi_T(S_T) | S_{T-1} = s_{T-1}] \\ &= \frac{1}{1+r} \left(\widehat{b_u} \varphi_T^{\alpha}(us_{T-1}) + (1 - \widehat{b_u}) \varphi_T^{\alpha}(ds_{T-1}) \right), \\ \overline{\varphi}_T(s_{T-1}) &= -\frac{1}{1+r} \widehat{\mathbf{C}}[-\overline{\varphi}_T(S_T) | S_{T-1} = s_{T-1}] \\ &= \frac{1}{1+r} \left((1 - \widehat{b_d}) \varphi_T^{\alpha}(us_{T-1}) + \widehat{b_d} \varphi_T^{\alpha}(ds_{T-1}) \right), \end{split}$$

where the last equality of both equations follows from Proposition 3 in [16]. We have that both $\varphi_{T-1}, \overline{\varphi}_{T-1}$ are non-decreasing since, for every $s_{T-1}^i, s_{T-1}^j \in \mathcal{S}_{T-1}$ with $s_{T-1}^i < s_{T-1}^j$ it holds $ds_{T-1}^i < us_{T-1}^i \leq ds_{T-1}^j < us_{T-1}^j$, which implies $\varphi_{T-1}(s_{T-1}^i) \leq \varphi_{T-1}(s_{T-1}^j)$ and $\overline{\varphi}_{T-1}(s_{T-1}^i) \leq \overline{\varphi}_{T-1}(s_{T-1}^j)$. In turn, the function φ_{T-1}^α : $\mathcal{S}_{T-1} \to \mathbf{R}$ defined, for every $s_{T-1} \in \mathcal{S}_{T-1}$, as

$$\varphi_{T-1}^\alpha(s_{T-1}) = \alpha \varphi_{T-1}(s_{T-1}) + (1-\alpha)\overline{\varphi}_{T-1}(s_{T-1}),$$

is non-decreasing since it is the α -mixture of two non-decreasing functions.

Now, for every $n=0,\ldots,T-1$, assuming that $\varphi_{n+1}^{\alpha}:\mathcal{S}_{n+1}\to\mathbf{R}$ is non-decreasing, define $\varphi_n,\overline{\varphi}_n:\mathcal{S}_n\to\mathbf{R}$ by setting, for every $s_n\in\mathcal{S}_n$,

$$\varphi_n(s_n) = \frac{1}{1+r} \widehat{\mathbf{C}}[\varphi_{n+1}^{\alpha}(S_{n+1})|S_n = s_n]$$

$$= \frac{1}{1+r} \left(\widehat{b_u}\varphi_{n+1}^{\alpha}(us_n) + (1 - \widehat{b_u})\varphi_{n+1}^{\alpha}(ds_n)\right),$$

$$\overline{\varphi}_n(s_n) = -\frac{1}{1+r} \widehat{\mathbf{C}}[-\overline{\varphi}_{n+1}(S_{n+1})|S_n = s_n]$$

$$= \frac{1}{1+r} \left((1 - \widehat{b_d})\varphi_{n+1}^{\alpha}(us_n) + \widehat{b_d}\varphi_{n+1}^{\alpha}(ds_n) \right),$$

where the last equality of both equations follows again from Proposition 3 in [16]. We have that both $\varphi_n, \overline{\varphi}_n$ are non-decreasing since, for every $s_n^i, s_n^j \in \mathcal{S}_n$ with $s_n^i < s_n^j$ it holds $ds_n^i < us_n^i \le ds_n^j < us_n^j$, which implies $\varphi_n(s_n^i) \le \varphi_n(s_n^j)$ and $\overline{\varphi}_n(s_n^i) \le \overline{\varphi}_n(s_n^j)$. Again, the function φ_n^α : $\mathcal{S}_n \to \mathbf{R}$ defined, for every $s_n \in \mathcal{S}_n$, as

$$\varphi_n^{\alpha}(s_n) = \alpha \varphi_n(s_n) + (1 - \alpha)\overline{\varphi}_n(s_n),$$

is non-decreasing since it is the α -mixture of two non-decreasing functions.

Finally, substituting the expression of φ_{n+1}^{α} in that of φ_n^{α} and proceeding backward from n=T-1, we get the claim after setting $\gamma^{\alpha}=\alpha \widehat{b_u}+(1-\alpha)(1-\widehat{b_d})$ and grouping similar terms.

12