Topic: Functions of the Cell II

Subtopics:

- 1. Cellular Respiration Aerobic, Anaerobic, and Energy Release
- 2. Anabolism and Usefulness of Food

Class: SS1

Term: First Term

Duration: 40 Minutes

Lesson Objectives:

By the end of this lesson, students should be able to:

- 1. Define **cellular respiration** and explain how **energy is released**.
- 2. Differentiate between aerobic and anaerobic respiration.
- 3. Define anabolism and explain how the body uses food for growth and repair.
- 4. Relate **cellular respiration** to daily life activities.

Introduction:

All living things need energy to survive.

Cells require energy for:

- Movement
- Growth
- Repair of damaged parts
- Reproduction
- Active transport (moving substances across membranes)

The process by which cells **release energy from food** is called **cellular respiration**. Cells also use the nutrients from food to **build and repair** body tissues, which is called **anabolism**.

1. Cellular Respiration

Definition:

Cellular respiration is the **process by which food substances (mainly glucose)** are **broken down** to release **energy** in the form of **ATP (Adenosine Triphosphate)**, which the cell uses to carry out life processes.

Purpose of Cellular Respiration:

- To provide energy for cellular activities
- To help organisms maintain life by supporting metabolism

The Food Used in Respiration:

- The main food used is **glucose** (C₆H₁₂O₆), a simple sugar.
- Glucose is obtained from digested food in animals and photosynthesis in plants.

Types of Respiration:

A. Aerobic Respiration

Definition:

Aerobic respiration is the **breakdown of glucose in the presence of oxygen** to release energy.

Process:

- Oxygen is inhaled and transported to the cells.
- In the mitochondria of the cell, glucose is combined with oxygen.
- The glucose is **completely broken down** into **carbon dioxide and water**.
- A large amount of energy (38 ATP molecules) is produced.

Word Equation:

Glucose+Oxygen→Carbon dioxide+Water+Energy (ATP)\text{Glucose} + \text{Oxygen} \rightarrow \text{Carbon dioxide} + \text{Water} + \text{Energy} (ATP)}Glucose+Oxygen→Carbon dioxide+Water+Energy (ATP)

Chemical Equation:

C6H12O6+6O2 \rightarrow 6CO2+6H2O+Energy (ATP)C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + \text{Energy (ATP)}C6H12O6+6O2 \rightarrow 6CO2+6H2O+Energy (ATP)

Examples of Aerobic Respiration:

- Humans breathing and using oxygen for energy
- Plants using oxygen at night for respiration
- All vertebrates and most invertebrates

B. Anaerobic Respiration

Definition:

Anaerobic respiration is the **breakdown of glucose without oxygen** to release energy.

Process:

- Oxygen is not available
- Glucose is partially broken down
- Produces little energy (2 ATP molecules)
- Produces by-products like alcohol, carbon dioxide, or lactic acid

Word Equations:

In yeast (Alcoholic fermentation):

Glucose → Alcohol (Ethanol) + Carbon dioxide + Energy\text{Glucose} \rightarrow \text{Alcohol (Ethanol)} + \text{Carbon dioxide} + \text{Energy}Glucose → Alcohol (Ethanol) + Carbon dioxide + Energy

In human muscle cells (Lactic acid fermentation):

Glucose→Lactic acid+Energy\text{Glucose} \rightarrow \text{Lactic acid} + \text{Energy}Glucose→Lactic acid+Energy

Examples of Anaerobic Respiration:

Organism/Process By-product

Yeast Alcohol (Ethanol) + Carbon dioxide

Muscle cells during heavy exercise Lactic acid

Why Do Muscles Use Anaerobic Respiration?

• During **intense exercise** (e.g., running), muscles may not get enough oxygen.

• They temporarily switch to anaerobic respiration to continue producing energy.

• Lactic acid builds up, causing muscle cramps and fatigue.

Comparison of Aerobic and Anaerobic Respiration:

Feature Aerobic Respiration Anaerobic Respiration

Oxygen needed? Yes No

Energy produced High (38 ATP) Low (2 ATP)

By-products CO₂ and Water Alcohol, CO₂ (yeast) / Lactic acid (humans)

Efficiency More efficient Less efficient

Occurs in Most plants and animals Yeast, muscle cells (during exercise), some bacteria

Importance of Respiration:

- Provides energy for life activities
- Helps in growth and repair

- Supports movement, reproduction, and active transport
- Maintains **body temperature** (in warm-blooded animals)

2. Anabolism and Usefulness of Food

Definition of Anabolism:

Anabolism is the **building up of complex molecules from simpler ones** using energy from respiration.

It is the constructive phase of metabolism.

Examples of Anabolic Processes:

Process Description

Protein synthesis Amino acids are joined to form proteins needed for growth and repair

Fat synthesis Extra glucose is converted to fat for storage

Formation of glycogen Glucose is stored in the liver and muscles as glycogen

Photosynthesis Plants build glucose from carbon dioxide and water

Usefulness of Food to the Body:

Food is used for:

Purpose Explanation

Energy For work, movement, and body activities

Growth Building new cells and tissues

Repair Replacing worn-out or damaged parts

Maintenance Keeping the body systems functioning properly

Storage Storing energy as fats or glycogen for future use

Summary of Metabolism:

Process Meaning

Anabolism Building complex substances from simple ones

Catabolism Breaking down complex substances to release energy (e.g., respiration)

3. Importance of Anabolism:

- **Growth and development** of the body
- Repair of tissues and cells
- Storage of excess food for future energy needs
- Helps plants and animals to **build vital structures**

Conclusion:

The **cell performs respiration** to release **energy from food**, which is used for:

- Work and movement
- Growth and repair (anabolism)
- Storage of extra nutrients

Both **aerobic and anaerobic respiration** are essential for life, but **aerobic respiration is more efficient** because it produces more energy.