BETTI NUMBERS AND ALPHA COMPLEXES

March 23, 2015

TOPLOGICAL SPACES

A topological space may be defined as a set of points, along with a set of neighbourhoods for each point, that satisfy a set of axioms relating points and neighbourhoods.

BETTI NUMBERS

Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. The k'th Betti number refers to the number of k-dimensional holes on a topological surface.

- \cdot b_0 is the number of connected components
- \cdot b_1 is the number of one-dimensional or "circular" holes
- · b2 is the number of two-dimensional "voids" or "cavities"

BETTI NUMBERS BY EXAMPLE

Examples of Betti numbers for a complex.

 $\beta_2 = 1$

AN ALGORITHM FOR BETTI NUMBERS

FILTERING A COMPLEX BY SIMPLICES

Incremental algorithm, that uses filtration.

Filtrations. A filtration is a sequence of simplicial complexes, where every complex is a proper subcomplex of its successor. If $\sigma_1, \sigma_2, \dots, \sigma_n$ is a sequence of simplices, then $\mathcal{K}_1, \mathcal{K}_2, \dots, \mathcal{K}_n$, with $\mathcal{K}_i = \{\sigma_1, \sigma_2, \dots, \sigma_i\}$, is a filtration, provided each \mathcal{K}_i is a genuine simplicial complex. We call the sequence of simplices the filter of the filtration. Figure 2 illustrates an example filtration.

THE ALGORITHM

The incremental algorithm:

```
for \ell:=0 to d do b_\ell:=0 endfor; for i:=0 to m do k:=\dim\sigma_i; if \sigma_i belongs to a k-cycle of \mathcal{K}_i then b_k:=b_k+1 else b_{k-1}:=b_{k-1}-1 endifiendfor.
```

Lets do a small example.

RUNNING TIME

In practice cycles are checked by using sets. Running time is $O(\alpha(n)n)$, where $\alpha(n)$ is the inverse ackermann function. and n is the sum of k-simplices.

ALPHA COMPLEXES

ALPHA COMPLEXES

Definition goes here.

PERSISTENCE AND SIMPLIFICATION

SIMPLIFICATION

PAIR DATASTRUCTURE

PAIRS PERSISTENCE

