TRANSFORMADOR DE 34,5 / 13,8 KV

Os dados do transformador são:

> Transformador trifásico de 60 Hz;

➤ Potência nominal: 20 MVA;

Tensões nominais de linha: 34,5 / 13,8 KV;

> Ligação: Δ - Y aterrado;

ightharpoonup Impedância: $Z_{\%} = 6,13 \%$;

 \triangleright Resistência: R% = 1,0 %;

Corrente a vazio: 0,4 %.

Primeiramente, serão calculados os valores das indutâncias e resistências do primário e do secundário do transformador, considerando o primário o lado de maior tensão.

> Cálculo da impedância base:

$$Z_{b1} = \frac{V_{SE}^2}{S_n} = \frac{34.5^2}{\frac{20}{3}} = 178.54[\Omega] \qquad Z_{b2} = \frac{V_{MT}^2}{S_n} = \frac{\left(\frac{13.8}{\sqrt{3}}\right)^2}{\frac{20}{3}} = 9.52[\Omega]$$

➤ Cálculo de X_%:

$$X_{\%} = \sqrt{Z_{\%}^2 - R_{\%}^2} = \sqrt{6,13^2 - 1,0^2} = 6,048[\%]$$

➤ Cálculo de L₁:

$$X_{1} = \frac{X_{\%}}{100} \cdot \frac{Z_{b1}}{2} = \frac{6,048}{100} \cdot \frac{178,54}{2} = 5,3989[\Omega]$$

$$L_{1} = \frac{X_{1}}{2\pi \cdot f} = \frac{5,3989}{2\pi \cdot 60} *1000 = 14,3209[mH]$$

Cálculo de L₂:

$$X_2 = \frac{X_{\%}}{100} \cdot \frac{Z_{b2}}{2} = \frac{6,048}{100} \cdot \frac{9,52}{2} = 0,2879[\Omega]$$

Prof. Fabricio Parra Santilio

$$L_2 = \frac{X_2}{2\pi \cdot f} = \frac{0.2879}{2\pi \cdot 60} *1000 = 0.7638[mH]$$

Cálculo de R₁:

$$R_1 = \frac{R_{\%}}{100} \cdot \frac{Z_{b1}}{2} = \frac{1.0}{100} \cdot \frac{178,54}{2} = 0.8927[\Omega]$$

➤ Cálculo de R₂:

$$R_2 = \frac{R_{\%}}{100} \cdot \frac{Z_{b2}}{2} = \frac{1,0}{100} \cdot \frac{9,52}{2} = 0,0476[\Omega]$$

Para determinar a característica de saturação do transformador foram utilizados os dados da curva de magnetização da chapa de aço silício de grãos orientados da Acesita, apresentada a seguir.

H [A/m]	B [T]	I pico [A]	λ _{pico} [Wb]
6,684	0,200	0,114	16,188
11,099	0,400	0,189	32,376
17,729	0,800	0,302	64,752
23,805	1,200	0,406	97,128
31,495	1,400	0,537	113,316
64,166	1,600	1,093	129,505
136,311	1,700	2,322	137,599
946,842	1,850	16,130	149,740
7419,427	2,000	126,394	161,881
30000,000	2,100	511,065	169,975

Os valores de corrente a vazio e de fluxo, apresentados na tabela e que serão utilizados no modelo do transformador no ATP, foram obtidos a partir do cálculo apresentado abaixo. Para isso, inicialmente calculam-se os valores de I_0 e λ_0 .

$$I_{n1} = \frac{S_n}{V_{SE}} = \frac{\frac{20 \times 10^6}{3}}{34500} = 193,24[A]$$

$$I_0 = \sqrt{2} \cdot \frac{I_{0\%}}{100} \cdot I_{n1} = \sqrt{2} \cdot \frac{0.4}{100} \cdot 193,24 = 1,093[A]$$

Prof. Fabricio Parra Santilio

$$\lambda_0 = \frac{V_{SE}}{\frac{2\pi}{\sqrt{2}} \cdot f} = \frac{34500}{4,44 \cdot 60} = 129,505[Wb]$$

Os demais valores de corrente e fluxo mostrados na tabela foram obtidos pelas seguintes equações:

$$I_{i} = \frac{I_{0}}{64,166} \cdot H_{i} = \frac{1,093}{64,166} \cdot H_{i} \Rightarrow I_{i} = 1,704 \times 10^{-2} \cdot H_{i}$$

$$\lambda_{i} = \frac{\lambda_{0}}{1,600} \cdot B_{i} = \frac{129,505}{1,600} \cdot B_{i} \Rightarrow \lambda_{i} = 80,938 \cdot B_{i}$$

A resistência do ramo de magnetização foi calculada conforme apresentado a seguir (considerando um fator de potência a vazio de 0,2):

$$\begin{split} P_0 &= \sqrt{3} \cdot V_0 \cdot I_0 \cdot \cos \phi_0 \\ P_0 &= \sqrt{3} \cdot V_{MT} \cdot \frac{13.8}{100} I_{n1} \cdot 0.2 = S_n \cdot \frac{0.08}{100} = 20 \times 10^6 \cdot \frac{0.08}{100} = 16000 [W] \\ R_{mag} &= \frac{V_{AT}^2}{P_0} = \frac{34500^2}{16000} = 74390,6 [\Omega] \end{split}$$

No modelo do transformador também foram consideradas capacitâncias de fuga das buchas e entre os enrolamentos do primário e secundário de 8 nF.