11. (Amended) A process for production of a sintered oxide ceramic of composition $Ce_xM_yD_zO_{2-a}$ with dense structure without open porosity or with a predetermined porosity comprising the steps of:

using a first doping element M selected from the group consisting of rear earths, but wherein $M \neq Ce$, alkali metals, earth alkali metals, and Ga; using an educt with a second doping element D of at least one metal, but wherein $D \neq M$, selected from the group consisting of Cu, Co, Fe, Ni, and Mn wherein second doping element D is of submicron particle size or is a salt solution; and sintering the educts at a temperature between 750-1200°C until a density of at least around 98% of the theoretically possible density is reached to form said oxide ceramic having a grain size no greater than 0.5 µm and wherein the mol fractions used range from 0.5 < x < 1 for Ce, 0 < y < 0.5for first doping element M, and 0 < z < 0.05 for second doping element D.

21. (Amended) The process according to claim 11 wherein sintering is prematurely interrupted leading to a porous structure with a specified lower density around 98%.