Signály a informace

Přednáška č.12 Biologicky inspirované systémy

Opakování z minulé přednášky

- Signály v sobě nesou větší či menší množství informace
- Získáváním informace ze signálů/dat se zabývá obor data mining
- Jednou z dílčích úloh je úloha klasifikace, tj. roztřídění dat do předem daných tříd
- Ukázali jsme si jednoduchou metodu založenou na měření vzdálenosti a nalezení nejbližšího souseda mezi vzory
 - Metoda funguje relativně dobře, jsou-li jednotlivé třídy reprezentované mnoha (např. tisíci) vzory
 - Pracovat s mnoha vzory je ale neefektivní, s každým dalším vzorem vzrůstají výpočetní a paměťové nároky
- Existují i efektivnější metody dosahující zároveň i lepších výsledků

Vektor příznaků

- Klasifikovaný objekt lze reprezentovat jako vektor příznaků s rozměrem D
- Např. jak bude vypadat vektor příznaků pro černobílý obrázek a jaká bude dimenze toho vektoru?

255	255	0	255	255
255	0	0	255	255
255	255	0	255	255
255	255	0	255	25 2
255	255	0	255	255

Vektor příznaků vznikne zřetězením řádků: $x = [255,255,0,255,255,255,0,0,255,255 \dots ... 0,255,255]$

Lze zřetězit sloupce? ANO, prováděno v Matlabu v rámci příkazu RESHAPE

- Hodnoty vektoru budou odpovídat hodnotám jasu jednotlivých pixelů
- D = dimenze = a*b, kde a je šířka obrázku a b výška v pixelech

Prostor příznaků

- Každý objekt respektive jeho vektorová reprezentace určuje v daném v D-dimenzionálním prostoru příznaků jeden bod
- Prostory o velkém počtu dimenzí nelze vykreslovat na 2D ploše 🗵
 - Počet dimenzí si proto pro další výklad omezíme na dvě až tři
 - Nebudeme chvíli pracovat s obrázky 🕾

Prostor příznaků – 2D příklad

- Pro objekty, popsané jen 2 příznaky, x_1 a x_2 , je prostor příznaků 2D rovina
- Jednotlivé třídy se pak znázorňují různými symboly a/nebo barvami
- Objekty patřící do jednotlivých tříd mají podobné hodnoty příznaků
 - Vytváří v prostoru příznaků shluky (jsou blízko sebe)

- Klasifikátor osob na třídy Dítě, Muž, Žena
- x_1 ...výška, x_2 ...hmotnost
- Čtverečky...třída Děti
- Křížky... třída Muži
- Trojúhelníky…třída Ženy

Prostor příznaků – 3D ilustrace pro 5 tříd

Jak funguje NN klasifikátor v prostoru příznaků?

- NN klasifikátor definuje oblasti odpovídající jednotlivým třídám
 - Hranice oblastí jsou určeny rozložením všech trénovacích bodů v prostoru příznaků
 - Jsou to často složité nelineární křivky

• Neznámý objekt x, bod v prostoru, je zařazen do dané třídy podle toho, ve které oblasti leží

Co když je ale problém jednodušší?

- V některých úlohách je počet tříd omezen jen na dvě = binární klasifikace
 - Pacient má/nemá nemoc, výrobek je bezvadný/zmetek
- Dané dvě třídy lze navíc někdy v prostoru příznaků separovat přímkou
 - I když třeba za cenu určité chyby klasifikace....
- Vyplatí se pak používat NN klasifikátor?
 - Když NN klasifikace trvá dlouho, protože je třeba vyhodnocovat vzdálenost ke všem objektům v trénovací množině?
- Nebyl by lepší klasifikátor definovaný rovnicí přímky, který by určil příslušnost ke třídě na základě toho, v jaké polorovině vzhledem k dané přímce leží objekt x?

Nejprve opakování z matematiky:

Obecná rovnice přímky ve 2D

- Obecný tvar rovnice přímky v prostoru o souřadnicích x_1, x_2 má tvar:
 - $w_1x_1 + w_2x_2 + b = 0$
 - w je normálový vektor (kolmý na směr přímky)
 - b souvisí s posunem od počátku (bias)

- Příklad:
 - Rovnice přímky: $-2x_1 + x_2 1 = 0$
 - $\mathbf{w} = [w_1; w_2] = [-2; 1]$
 - b = -1

Rovnice přímky pomocí skalárního součinu

• Obecnou rovnici přímky ve 2D lze zapsat jako:

$$w_1x_1 + w_2x_2 + b = \sum_{i=1}^2 w_ix_i + b = \mathbf{w}^T\mathbf{x} + b = \mathbf{x}^T\mathbf{w} + b$$

kde $\mathbf{w}^T\mathbf{x}$ je skalární součin vektoru \mathbf{w} a \mathbf{x}

• Někdy se bias b označuje jako w₃, pak platí:

$$w_1 x_1 + w_2 x_2 + w_3 = \sum_{i=1}^3 w_i \widetilde{x}_i = \mathbf{w}^T \widetilde{\mathbf{x}} = \widetilde{\mathbf{x}}^T \mathbf{w}$$

kde $\widetilde{\boldsymbol{x}}$ je vektor \boldsymbol{x} rozšířený o složku x_3 s hodnotou 1: $\widetilde{\boldsymbol{x}} = [x_1; x_2; 1]$

Poloha bodu vůči přímce ve 2D

• Orientovaná vzdálenost d bodu x od přímky s param. w se definuje jako:

$$d = \frac{w_1 x_1 + w_2 x_2 + b}{\sqrt{w_1^2 + w_2^2}} = \frac{w^T x + b}{\sqrt{w_1^2 + w_2^2}}$$

- Bod x leží ve vzdálenosti d
 - ve směru vektoru w (nad přímkou) d > 0 tedy $\mathbf{w}^T \mathbf{x} + \mathbf{b} > 0$
 - proti směru vektoru w (pod přímkou) d < 0 tedy $\mathbf{w}^T \mathbf{x} + \mathbf{b} < 0$
 - přímo na přímce $d = 0 \text{ tedy } \mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$

Příklad:

- Rovnice přímky: $-2x_1 + x_2 1 = 0$
- Vektor parametrů $\mathbf{w} = [w_1; w_2; w_3] = [-2; 1; -1]$
- Bod $\mathbf{x} = [2;3] = > \widetilde{\mathbf{x}} = [\mathbf{x}; x_{n+1} = 1] = [2;3;1]$
 - Leží tedy pod přímkou proti směru vektoru n = [-2; 1]
- Dosazení do rovnice:

$$-2 * 2 + 1 * 3 - 1 * 1 = \sum_{i=1}^{n+1} w_i \widetilde{x}_i = \mathbf{w}^T \widetilde{\mathbf{x}} = [-2, 1, -1][3; 3; 1] = -2$$

 Algoritmicky lze realizovat pomocí skalárního součinu, nikoli dosazováním do sumy pomocí cyklu FOR

Vícerozměrné prostory

 Obecná rovnice v N dimenzionálním prostoru má tvar

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n + w_{n+1} = 0$$

• Např. pro 3D je o rovnici roviny $w_1x_1 + w_2x_2 + w_3x_3 + w_4 = 0$

Vše funguje principiálně stejně

Funkce sigmoida

- Funkce definovaná jako:
 - $sigmoid(x) = \sigma(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$
- Má zajímavé vlastnosti:
 - definiční obor $(-\infty, +\infty)$
 - obor hodnot (0,1)
 - ⇒"přiřazuje reálným číslům pravděpodobnost"

$$\sigma(x) > 0.5 \ pro \ x > 0$$
 $\sigma(x) < 0.5 \ pro \ x < 0$

Binární lineární klasifikace

Binární lineární klasifikátor se sigmoidou #1

- Vstupem je vektor $\mathbf{x} = [x_1; x_2; ...; x_n]$
 - Například hodnoty pixelů testovacího obrázku
- Každá vstupní hodnota x_i se vynásobí vahou w_i , výsledek se sečte a přičte se k němu váha w_{n+1}
 - To lze zapsat jako $\sum_{i=1}^{n+1} w_i \widetilde{x_i} = \mathbf{w}^T \widetilde{\mathbf{x}} = \mathbf{u}$
 - Kde $\widetilde{\boldsymbol{x}}$ je původní vektor \boldsymbol{x} rozšířený o hodnotu $x_{n+1}=1$
- Hodnota tohoto součinu říká, zda bod x leží v prostoru o n dimenzích a souřadných osách $x_1, x_2, ..., x_n$ nad, pod nebo přímo na podploše o dimenzi n-1, která je definována rovnicí

$$w_1 x_1 + \dots + w_n x_n + w_{n+1} = 0$$

- Hodnota součinu u se dosadí do sigmoidy
 - "Převede se na pravděpodobnost v rozmezí (0,1)"

Binární lineární klasifikátor se sigmoidou #2

- Pokud je hodnota na výstupu sigmoidy ≥ 0.5 , přiřadíme x ke třídě 1
- Pokud je hodnota na výstupu sigmoidy < 0.5, přiřadíme x ke třídě 0
- Popsaný klasifikátor je binární a pravděpodobnostní
 - Třída 1 má pro x pravděpodobnost $\sigma(u) = \sigma(\mathbf{w}^T \widetilde{\mathbf{x}})$
 - Třída 0 má pro ${\pmb x}$ pravděpodobnost $1-\sigma(u)=1-\sigma({\pmb w}^T\widetilde{\pmb x})$
- Umí klasifikovat jen třídy separovatelné lineárně (přímkou)

 $\mathbf{w}^T \widetilde{\mathbf{x}} \ge 0 \Rightarrow \sigma(\mathbf{w}^T \widetilde{\mathbf{x}}) \ge 0.5 \Rightarrow \text{bod leží v jedné části příznakového prostoru}$ $\mathbf{w}^T \widetilde{\mathbf{x}} < 0 \Rightarrow \sigma(\mathbf{w}^T \widetilde{\mathbf{x}}) < 0.5 \Rightarrow \text{bod leží ve druhé části příznakového prostoru}$

- Klasifikátor je parametrický s vektorem parametrů w
 - Během trénování se používá jiné kritérium než pro učení obyčejné regrese!!

Příklad ve 2D

- Klasifikátor pracuje se dvěma vstupy (příznaky)
 - Vstup x_1 reprezentuje váhu, vstup x_2 výšku
- Na základě těchto dvou příznaků se určuje, zda
 - Klasifikovaný objekt spadá do třídy A (křížky) …oblast nad přímkou
 - Nebo do třídy B (kolečka)... oblast pod přímou
- Rovnice separující přímky je daná vektorem w
 - Jeho hodnota [1; 1; −3] byla určena během trénování
- Rozpoznáváme objekt x, jeho váha = 1 (kg), výška = 1 (m)
- $\widetilde{x} = [x; x_{n+1}] = [1; 1; 1]$
- Klasifikace:

•
$$\mathbf{w}^T \widetilde{\mathbf{x}} = [1,1,-3][1;1;1] = 1+1-3=-1$$

- $\sigma(-1) = \frac{1}{1+\rho^{-(-1)}} = 0.27$
- 0.27 < 0.5 => objekt x patří mezi kolečka s P=1-0.27=0.73...73%

$$\mathbf{w} = [w_1; w_2; w_3 = b]$$

 $\mathbf{w} = [1; 1; -3]$
 $x_1 + x_2 - 3 = 0$
 $x_2 = 3 - x_1$

Co když jsou příznaky více než dva?

- Vše funguje principiálně stejně
- Nemluvíme pak ale rovnici přímky, která by třídy separovala, ale o rovnici rozdělující podplochy, která má v daném prostoru dimenzi D-1
- Příklad pro 3D:
 - Separující plocha je zde 2D rovina
 - Rovnice 2D roviny má tvar $w_1x_1 + w_2x_2 + w_3x_3 + w_4 = 0$

Shrnutí

- Představený klasifikátor se označuje jako perceptron
- Z hlediska úlohy klasifikace objektů do tříd je perceptron
 - BINÁRNÍ, (Proč?)
 - LINEÁRNÍ, (Proč?)
 - PARAMETRICKÝ (Proč?) a
 - PRAVDĚPODOBNOSTNÍ MODEL (Proč?)
- Perceptron zároveň představuje umělý neuron
 - Jde o ekvivalent biologické neuronové buňky
 - Je základním stavebním kamenem umělých neuronových sítí

Neuronová síť

Co je to umělá neuronová síť?

- Matematický model tvořený sériovým a paralelním spojením umělých neuronů
- Podle typů spojení a uspořádání neuronů existuje celá řada typů umělých neuronových sítí
- Následující výklad bude omezen na architekturu označovanou jako Multi-Layer Perceptron (MLP), kde jsou
 - Neurony uspořádány vedle sebe do vrstev a vrstvy jsou spojeny sériově za sebou
 - 2) Výstup z každého neuronu vrstvy i je přiveden na vstup všech neuronů vrstvy i+1
- Inspirací je mozek a biologické neuronové sítě

Mozek	Umělá neuronová síť typu MLP
Skládá se z asi 10 ¹¹ buněk - neuronů	Skládá se z několika až několika desítek tisíc umělých neuronů
Neurony jsou různě nepravidelně pospojovány do sítě	Umělé neurony jsou pospojovány paralelně do vrstev, a vrstvy jsou pak spojeny mezi sebou sériově = pravidelná struktura
Proces učení spočívá v aktivování a zesilování/zeslabování synapsí (vazeb) mezi neurony	Proces učení spočívá v nastavení a následném neustálém přepočítávání váhových koeficientů w na každém vstupu do každého neuronu

Neurony	Umělé neurony
Spoje mezi neurony tvoří axony	Spoje jsou dány logickou strukturou sítě, kdy výstup z jedné vrstvy/vstupní data je naveden na vstupy do další/první vrstvy
Spoj je tvořen synapsí = parametr učení	Parametrem učení je vektor vah w
Samotný vstup do buňky tvoří dendrity	Dendrit lze chápat jako hodnotu součinu $w_i x_i$
Podněty jsou v těle neuronu akumulovány	Vstupní signály jsou v modelu sčítány
Po překročení určitého prahu je podnět poslán dál	Po překročení prahové hodnoty je výstupní signál změněn podle typu použité aktivační funkce

Paralelní spojení perceptronů (lineární klasifikace do více tříd)

Lineární klasifikace do více tříd

- Je možná spojením více neuronů paralelně
 - Vznikne jednovrstvá paralelní síť
 - Má tolik výstupů, kolik je tříd
- Síť pak nemá jeden vektor parametrů w, ale matici parametrů W
- Příklad:
 - x má dimenzi 3 (máme tři příznaky)
 - Klasifikujeme shodou okolností také do 3 tříd
 - Jak klasifikace probíhá?
 - Na výstupu ze sítě jsou 3 čísla v intervalu (0,1)
 - Maximum z těchto čísel určuje výslednou třídu

$$\mathbf{W}^{T} = \begin{bmatrix} [\mathbf{w}_{11}, \mathbf{w}_{12}, \mathbf{w}_{13}, \mathbf{w}_{14} = \mathbf{b}_{1}] \\ [\mathbf{w}_{21}, \mathbf{w}_{22}, \mathbf{w}_{23}, \mathbf{w}_{24} = \mathbf{b}_{2}] \\ [\mathbf{w}_{31}, \mathbf{w}_{32}, \mathbf{w}_{33}, \mathbf{w}_{34} = \mathbf{b}_{3}] \end{bmatrix}$$

Trénování klasifikátoru na více tříd

- Síť se trénuje postupně jeden klasifikátor za druhým
- Trénuje se tedy vždy jedna třída proti všem ostatním datům (třídám)
 - Při trénování klas. pro danou třídu jsou všechna trénovací data náležící ostatním třídám brány dohromady jako jedna "negativní třída" odpovídající výstupu s hodnotou nula
- Klasifikátor se nazývá 1 vs ALL nebo také 1 vs REST

Pozn.: existují i jiné metody, jak trénování provádět a celý model paralelní sítě definovat, ale jejich vysvětlení přesahuje rámec této přednášky

A: klasifikátor typu MAX (1 vs ALL) - trénování

Ilustrace výsledného klasifikátoru:

Příklad – úloha rozpoznávání psaných číslovek

- Rozpoznávaný objekt = digitální obrázek dané číslovky = vektor čísel x
- Třídy pro klasifikaci = deset kategorií číslovek (0,1,2,3,4,5,6,7,8,9)
- Lineární klasifikátor do více tříd rozpoznávanému objektu x (obrázku) přiřadí třídu (0...9)
 - Třídy jsou vnitřně reprezentovány modelem s parametry = matice W
 - Tato matice reprezentuje D-1 dimenzionální separující podroviny v prostoru o D dimenzích
 - Definuje celkem 10 podrovin
 - Je určena ve fázi trénování systému
 - Pomocí modelu (matice W) se určí pravděpodobnost, že objekt patří do každé jednotlivé třídy (0...9)
 - Např.: P(0) = 0.3, P(1) = 0.05, ..., P(P) = 0.1
 - Třída s největší pravděpodobností (skóre) je vybrána jako výsledek rozpoznávání

Interpretace a význam naučených vah - příklad

- Obrázky znázorňují naučené váhové koeficienty v jednovrstvé síti rozpoznávající psané číslice – viz předchozí příklad.
 - Koeficientů je 10x(32x32)
 - Každý pixel je napojen do každého z 10 neuronů.
- Hodnoty vah jsou znázorněny barvou přiřazené každému pixelu:
 - Černá -velké kladné hodnoty
 - Bílá velké záporné hodnoty
 - Šedá něco mezi tím
- Interpretace:
 - Číslice 0
 - Pro rozhodnutí je důležitá přítomnost oválného obrysu, uprostřed obrazu naopak nesmí nic být
 - Číslice 8
 - Je důležitá zejména přítomnost překřížení uprostřed číslovky

Sériové spojení neuronů (nelineární klasifikace)

Jednovrstvý percepron a jeho omezení

- Co klasifikovat umí?
 - Třídy oddělitelné přímkou

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	1

- Co neumí? Nelineárně separovatelné třídy
 - Dokážete najít přímku oddělující kolečka a křížky ?!?!

Řešení: nelineárního klasif. se skrytou vrstvou

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	$y = a_1^{(3)}$
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

- Příznaky a_1 a a_2 dané jako výstup skryté vrstvy jsou pomocné
 - Příznak a_1 určuje, zda jsou oba vstupy rovny číslu 1
 - Příznak a_2 , zda jsou oba vstupy rovny číslu 0
- Pomocí těchto dvou příznaků je možné v další vrstvě rozhodnout o výsledku (logický součet)
- Pozn.: hodnoty vah v tomto příkladu byly nastaveny ručně
 - Reálně se nastaví během trénování podle trénovacích dat a počáteční inicializace
 - Mohly by vyjít podobně jako v příkladu nebo číselně odlišně, ale příznaky by fungovaly i pokud by například vektory vah u a_1 a a_2 byly úplně prohozené

Sériové spojení = vícevrstvý perceptron obecně

- Obecně obsahuje vícevrstvý perceptron
 - Vstupní vrstvu: nemá neurony, reprezentuje vektor vstupních hodnot
 - Jednu nebo více skrytých vrstev s nelineární aktivační funkcí
 - Výstupní vrstvu
- Výstupní vrstva a skryté vrstvy mají vždy vlastní matice váhových koeficientů W

Skryté vrstvy obecně

- Pomocí těchto vrstev si síť vytváří sama svoje vlastní příznaky
 - Umožňují nelineární klasifikaci
 - Nejsou vytvořeny člověkem, nějakou matematickou metodou, ale neuronovou sítí samotnou v době trénování
- Většinou je těžké interpretovat význam těchto příznaků
 - Jde to lehce např. u obrázků, viz další přednáška
- Obecně příznaky ve vyšší vrstvě směrem od vstupu reprezentují vyšší úroveň rozhodování (abstrakce) na základě hodnot jednodušších příznaků z předcházející vrstvy
- Sítě s více než 2 skrytými vrstvami se nazývají jako hluboké neuronové sítě (Deep Neural Networks = DNNs)

Porovnání výsledků lin. a nelin. klasifikace

Data – tři třídy, 2-rozměrný příznakový vektor

Paralelní lineární klasifikátor

+ jedná skrytá vrstva = nelin. klas.

Závěr: MLP vs NN klasifikátor

	MLP	NN klasifikátor
Co se vypočítává pro rozpoznávaný objekt?	Pravděpodobnosti, že objekt patří do jednotlivých tříd	Vzdálenost objektu od všech objektů v trénovací množině
Kolik výpočtů se provádí během rozpoznávání?	Jeden výpočet s celým modelem	Tolik, kolik objektů je v trénovací množině!!
Jak se určí výsledná třída?	Vybere se ta, pro kterou je vypočtená pravděpodobnost nejvyšší	Je daná třidou, do které patří trénovací objekt, který má nejmenší vzdálenost k rozpoznávanému objektu
Pracuje se vnitřně s nějakým modelem?	Ano, klasifikátor má vnitřní model s parametry (vektory či matice vah)	Ne, klasifikátor vnitřně pracuje se všemi trénovacími daty
Je třeba klasifikátor natrénovat?	Ano, je třeba určit parametry modelu	Ne, nic se netrénuje, při klasifikaci se pracuje přímo s trénovacími daty
Je možné klasifikovat i třídy separovatelné pouze nelineárně?	Ano, ale perceptrony musí být uspořádány i sériově	Ano, separujíc podplocha je nelineární a je určena rozložením všech trénovacích bodů v příznakovém prostoru

Bonusová úloha

- Dostupná na e-learningu
- Multiclass_perceptron.m
 - 3 různě efektivní implementace klasif. tohoto typu (skóre vždy 49 %)
 - Každá využívá různě efektivní implementaci funkce sigmoida (nutno také vytvořit)
 - Na začátku programu se využívá funkce data_preprocessing.m (nutno také vytvořit)
- Data_preprocessing_fast.m
 - Výpočetně efektivní implementace data_preprocessing.m bez cyklů for
- DNN_128_128_10.m program pro rozpoznávání ručně psaných číslic
 - Implementace MLP se 2 skrytými vrstvami bez cyklů for
 - Využívá aktivační funkci typu ReLU místo sigmoidy a natrénovaný model Image_DNN_128_128_10.mat (128 neuronů v 1. a 2. vrstvě)
 - Aplikujte na základní testovací set (skóre 75,9 %) a nezávislý testovací set z minulé úlohy
 - Následně otestujte model Image_centered_DNN_128_128_10.mat natrénovaný na vycentrovaných obrázcích
 - sami si vycentrujte oba testovací sety a porovnejte výsledky
- Odevzdání všech těchto programů = 1 bod + splněné cvičení

Extra - bonusová úloha

- Aplikujte odladěný program také na úlohu rozpoznávání mluvených číslic.
- Projděte si program a upravte ty části (je jich minimum), které se musí změnit, aby síť rozpoznávala slova zparametrizovaná do matice 64x64.
- Pro experiment použijte data z minulé bonusové úlohy
 - a to jak (SD Speaker Dependent), tak i SI (Speaker Independent).
- Natrénovali jsme pro Vás síť se 128, 128 a 10 neurony, čili ve stejné struktuře jako pro psané číslice.
 - Váhy sítě jsou uloženy v souboru Spoken_DNN_128_128_10.mat, který si můžete stáhnout.
- Otestujte opět na obou testovacích setech (SD a SI) a zjistěte výsledek.
 Porovnejte dosažené výsledky s metodou NN a do mailu při odevzdávání uveďte oba výsledky.

Jak bonusové úlohy a cvičení řešit?

- Kód nelze spustit ... je na různých místech nedopsaný!
 - Řešení může být kód postupně kopírovat do vlastního m-filu
- V různých místech obsahuje pro kontrolu zakomentované mezivýsledky
- Nezapomenout na začátku programu vždy vymazat paměť!
- Může se hodit
 - Funkce whos
 - Vypíše obsah paměti a dimenze proměnných
 - Tužka a papír
 - Pro hledání logiky, jak výpočty správně zapsat maticově

Aktivační funkce ReLU

- ReLU je správně označení neuronu, který využívá aktivační funkci r definovanou jako: r(x) = rectifier(x) = max(0, x)
- Často se ale termín ReLU používá i pro samotnou aktivační funkci r(x) jako takovou
- ReLU je zkratka Rectified Linear Unit
 - jde o typ umělého neuronu
 - představen v roce 2000
 - v současné době nejpoužívanější typ
 - DNN s těmi neurony dosahují nejlepších výsledků

