1. Moments and Moment Generating Function

Moments: Let $\mathbf{X} = (X_1, \dots, X_p)$ be a p-dimensional random vector of either discrete type, or (absolutely) continuous type. Let $f_{\mathbf{X}}$ and $S_{\mathbf{X}} = \{\mathbf{X} \in \mathbb{R}^p : f_{\mathbf{X}}(\mathbf{x}) > 0\}$ denote the pmf (or, pdf) and support of \mathbf{X} (or, $f_{\mathbf{X}}$). Further, let f_{X_i} and $S_{X_i} = \{x \in \mathbb{R} : f_{X_i}(x) > 0\}$ denote the pmf (or, pdf) and support of X_i (or, f_{X_i}) for $i = 1, \dots, p$.

Let $\psi : \mathbb{R}^p \to \mathbb{R}$ be a function such that $\mathbf{E}[\psi(\mathbf{X})]$ exists (i.e., $\mathbf{E}|\psi(\mathbf{X})| < \infty$).

• If **X** is of discrete type, then

$$\mathbf{E}(\psi(\mathbf{X})) = \sum_{\mathbf{x} \in S_{\mathbf{X}}} \psi(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}).$$

• If **X** is of absolutely continuous type, then

$$\mathbf{E}(\psi(\mathbf{X})) = \int_{\mathbb{R}^p} \psi(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.$$

• For non-negative integers k_1, \ldots, k_p , let $\psi(\mathbf{x}) = x_1^{k_1} \cdots x_p^{k_p}$. Then,

$$\mu'_{k_1,\dots,k_p} = \mathbf{E}\left(X_1^{k_1}\cdots X_p^{k_p}\right)$$

is called a joint raw moment of order $k_1 + \cdots + k_p$ of **X**.

• For non-negative integers k_1, \ldots, k_p , let $\psi(\mathbf{x}) = (x_1 - \mathbf{E}(X_1))^{k_1} \cdots (x_p - \mathbf{E}(X_p))^{k_p}$. Then

$$\mu_{k_1,...,k_p} = \mathbf{E}\left((X_1 - \mathbf{E}(X_1))^{k_1} \cdots (X_p - \mathbf{E}(X_p))^{k_p} \right)$$

is called a joint central moment of order $k_1 + \cdots + k_p$ of **X**.

• Let $\psi(\mathbf{x}) = (x_i - \mathbf{E}(X_i))(x_j - \mathbf{E}(X_j))$ for i, j = 1, ..., p. Then, the covariance between X_i and X_j is

$$Cov(X_i, X_j) = \mathbf{E}((X_i - \mathbf{E}(X_i))(X_j - \mathbf{E}(X_j)))$$
$$= \mathbf{E}(X_i X_j) - \mathbf{E}(X_i) \mathbf{E}(X_j).$$

Let $\mathbf{X}=(X_1,X_2,\ldots,X_{p_1})$ and $\mathbf{Y}=(Y_1,Y_2,\ldots,Y_{p_2})$ be random vectors, and let a_1,\ldots,a_{p_1} and b_1,\ldots,b_{p_2} be real constants. Assume that the involved expectations exist. Then,

(i)
$$\mathbf{E}\left(\sum_{i=1}^{p_1} a_i X_i\right) = \sum_{i=1}^{p_1} a_i \mathbf{E}\left(X_i\right)$$

(ii)
$$\operatorname{Cov}\left(\sum_{i=1}^{p_1} a_i X_i, \sum_{j=1}^{p_2} b_j Y_j\right) = \sum_{i=1}^{p_1} \sum_{j=1}^{p_2} a_i b_j \operatorname{Cov}\left(X_i, Y_j\right).$$

In particular,

$$\operatorname{Var}\left(\sum_{i=1}^{p_{1}} a_{i} X_{i}\right) = \sum_{i=1}^{p_{1}} a_{i}^{2} \operatorname{Var}\left(X_{i}\right) + \sum_{i=1}^{p_{1}} \sum_{\substack{j=1\\j\neq i}}^{p_{1}} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$
$$= \sum_{i=1}^{p_{1}} a_{i}^{2} \operatorname{Var}\left(X_{i}\right) + 2 \sum_{1 \leq i < j \leq p_{1}} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right).$$

We now state a property of expectations related to independence.

Lemma 1. Let X, Y be random variables on a common probability space. If X and Y are independent, then $\mathbf{E}[H_1(X)H_2(Y)] = \mathbf{E}[H_1(X)]\mathbf{E}[H_2(Y)]$ for any functions $H_1, H_2 : \mathbb{R} \to \mathbb{R}$ (for which the expectations exist). In particular, $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$.

Proof. Independence means that the joint density (analogous statements for pmf omitted) of (X, Y) is of the form f(t, s) = g(t)h(s), where g(t) is the density of X and h(s) is the density of Y. Hence,

$$\mathbf{E}[H_1(X)H_2(Y)] = \iint H_1(t)H_2(s)f(t,s)dtds = \left(\int_{-\infty}^{\infty} H_1(t)g(t)dt\right) \left(\int_{-\infty}^{\infty} H_2(s)h(s)ds\right)$$

which is precisely $\mathbf{E}[H_1(X)]\mathbf{E}[H_2(Y)]$.

Moment Generating Function: Let $\mathbf{X} = (X_1, \dots, X_p)$ be a *p*-dimensional random vector, and

$$A = \left\{ \mathbf{t} = (t_1, t_2, \dots, t_p) \in \mathbb{R}^p : \mathbf{E} \left(e^{\sum_{i=1}^p t_i X_i} \right) < \infty \right\}.$$

Define the function $M_{\mathbf{X}}: A \to \mathbb{R}$ by

$$M_{\mathbf{X}}(\mathbf{t}) = \mathbf{E}\left(e^{\sum_{i=1}^{p} t_i X_i}\right), \quad \mathbf{t} = (t_1, t_2, \dots, t_p) \in A.$$

The function $M_{\mathbf{X}}: A \to \mathbb{R}$ is called the joint moment generating function (mgf) of random vector \mathbf{X} . For $\mathbf{a} = (a_1, a_2, \dots, a_p) \in \mathbb{R}^p$, $-\mathbf{a} = (-a_1, -a_2, \dots, -a_p)$ and $(-\mathbf{a}, \mathbf{a}) = \{\mathbf{t} \in \mathbb{R}^p : -a_i < t_i < a_i \text{ for } i = 1, \dots, p\}$. As in the one-dimensional case, many properties of probability distribution of \mathbf{X} can be studied through the joint mgf of \mathbf{X} . Some of the results, which may be useful in this direction, are provided below (without their proofs). Note that $M_{\mathbf{X}}(0_p) = 1$, where 0_p is the vector of 0s.

If X_1, \ldots, X_p are independent, then

$$M_{\mathbf{X}}(\mathbf{t}) = \mathbf{E}\left(e^{\sum_{i=1}^{p} t_i X_i}\right) = \mathbf{E}\left(\prod_{i=1}^{p} e^{t_i X_i}\right) = \prod_{i=1}^{p} \mathbf{E}\left(e^{t_i X_i}\right) = \prod_{i=1}^{p} M_{X_i}\left(t_i\right) \text{ for } \mathbf{t} \in \mathbb{R}^p.$$

Suppose that $M_{\mathbf{X}}(\mathbf{t})$ exists in a rectangle $(-\mathbf{a}, \mathbf{a}) \subseteq \mathbb{R}^p$. Then, $M_{\mathbf{X}}(\mathbf{t})$ possesses partial derivatives of all orders in $(-\mathbf{a}, \mathbf{a})$. Furthermore, for positive integers k_1, \ldots, k_p

$$\mathbf{E}\left(X_1^{k_1}X_2^{k_2}\cdots X_p^{k_p}\right) = \left[\frac{\partial^{k_1+k_2+k_3+\cdots+k_p}}{\partial t_1^{k_1}\cdots \partial t_p^{k_p}}M_{\mathbf{X}}(\mathbf{t})\right]_{\mathbf{t}=0_p}.$$

For $i \neq j$ with $i, j \in \{1, \dots, p\}$, define

$$\operatorname{Cov}(X_{i}, X_{j}) = \mathbf{E}(X_{i}X_{j}) - \mathbf{E}(X_{i})\mathbf{E}(X_{j})$$

$$= \left[\frac{\partial^{2}}{\partial t_{i}\partial t_{j}}M_{\mathbf{X}}(\mathbf{t})\right]_{\mathbf{t}=0_{p}} - \left[\frac{\partial}{\partial t_{i}}M_{\mathbf{X}}(\mathbf{t})\right]_{\mathbf{t}=0_{p}} \left[\frac{\partial}{\partial t_{j}}M_{\mathbf{X}}(\mathbf{t})\right]_{\mathbf{t}=0_{p}}$$

$$= \left[\frac{\partial^{2}}{\partial t_{i}\partial t_{j}}\Psi_{\mathbf{X}}(\mathbf{t})\right]_{\mathbf{t}=0_{p}},$$

where $\Psi_{\mathbf{X}}(\mathbf{t}) = \ln M_{\mathbf{X}}(\mathbf{t})$.

We also have $M_{\mathbf{X}}(0,\ldots,0,t_{i},0,\ldots,0,t_{j},0,\ldots,0) = \mathbf{E}\left(e^{t_{i}X_{i}+t_{j}X_{j}}\right) = M_{X_{i},X_{j}}(t_{i},t_{j})$ for $i,j \in \{1,\ldots,p\}$.

Identically distributed: Let \mathbf{X} and \mathbf{Y} be two p-dimensional random vectors, defined on the same probability space. Then, \mathbf{X} and \mathbf{Y} are said to have the same distribution (written as $\mathbf{X} \stackrel{D}{=} \mathbf{Y}$) if

$$F_{\mathbf{X}}(\mathbf{x}) = F_{\mathbf{Y}}(\mathbf{x}) \ \forall \ \mathbf{x} \in \mathbb{R}^p$$
 (i.e., they have the same distribution function).

If **X** and **Y** are *p*-dimensional random vectors of discrete type with joint pmf $f_{\mathbf{X}}$ and $f_{\mathbf{Y}}$, respectively. Then, $\mathbf{X} \stackrel{D}{=} \mathbf{Y}$ if and only if $f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{Y}}(\mathbf{x}) \ \forall \ \mathbf{x} \in \mathbb{R}^p$.

If **X** and **Y** are *p*-dimensional random vectors of absolutely continuous type with joint pdf $f_{\mathbf{X}}$ and $f_{\mathbf{Y}}$, respectively. Then, $\mathbf{X} \stackrel{D}{=} \mathbf{Y}$ if and only if $f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{Y}}(\mathbf{x}) \ \forall \ \mathbf{x} \in \mathbb{R}^p$.

Let **X** and **Y** be *p*-dimensional random vectors with $\mathbf{X} \stackrel{D}{=} \mathbf{Y}$. Then, for any function $h : \mathbb{R}^p \to \mathbb{R}$, we have

- (i) $h(\mathbf{X}) \stackrel{D}{=} h(\mathbf{Y})$,
- (ii) $\mathbf{E}[h(\mathbf{X})] = \mathbf{E}[h(\mathbf{Y})]$ (provided the expectations exist).

Let X and Y be two random vectors having mgfs M_X and M_Y that are finite on a rectangle $(-\mathbf{a}, \mathbf{a})$ for some $\mathbf{a} = (a_1, a_2, \dots, a_p) \in \mathbb{R}^p$. Suppose that

$$M_{\mathbf{X}}(\mathbf{t}) = M_{\mathbf{Y}}(\mathbf{t}) \quad \forall \quad \mathbf{t} \in (-\mathbf{a}, \mathbf{a}).$$

Then, $\mathbf{X} \stackrel{D}{=} \mathbf{Y}$.

If X_1, X_2, \dots, X_p are independent and identically distributed (i.i.d.), i.e., $X_i \stackrel{D}{=} X_1$ for $i = 2, \dots, p$, then

$$M_{\mathbf{X}}(\mathbf{t}) = \prod_{i=1}^{p} M_{X_1}(t_i) \text{ for } \mathbf{t} \in \mathbb{R}^p.$$

Define $Y = \sum_{i=1}^{p} X_i$ and $\bar{X} = \frac{1}{p} \sum_{i=1}^{p} X_i$, then

$$M_Y(t) = [M_{X_1}(t)]^p$$
 and $M_{\bar{X}}(t) = [M_{X_1}(t/p)]^p$ for $t \in \mathbb{R}$.

Exercise 2. Let X_1, X_2, \ldots, X_p be independent random variables such that $X_i \sim N\left(\mu_i, \sigma_i^2\right)$ with $-\infty < \mu_i < \infty$ and $\sigma_i > 0$ for $i = 1, \ldots, p$. If a_1, \ldots, a_p are real constants (such that not all of them are zero), then show that

$$\sum_{i=1}^{p} a_i X_i \sim N\left(\sum_{i=1}^{p} a_i \mu_i, \sum_{i=1}^{p} a_i^2 \sigma_i^2\right).$$

2. COVARIANCE AND CORRELATION

Covariance: Let X, Y be random variables on a common probability space. The *covariance* of X and Y is defined as $Cov(X, Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])]$. It can also be written as $Cov(X, Y) = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y]$.

Correlation: Let X, Y be random variables on a common probability space. Their *correlation* is defined as $Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$.

Measures of association: The marginal distributions of X and Y do not determine the joint distribution of (X,Y). In particular, giving the means and standard deviations of X and Y does not tell anything about possible relationships between the two.

Read this: http://probability.ca/jeff/teaching/uncornor.html.

Covariance is the quantity that is used to measure the "association" of Y and X. Correlation is a dimension free quantity that measures the same. For example, we shall see that if Y = X, then Corr(X,Y) = +1, if Y = -X then Corr(X,Y) = -1. Further, if X and Y are independent, then Corr(X,Y) = 0. In general, if an increase in X is likely to mean an increase in Y, then the correlation is positive and if an increase in X is likely to mean a decrease in Y then the correlation is negative.

Properties of covariance and variance: Let X, Y, X_i, Y_i be random variables on a common probability space. Small letters a, b, c etc. will denote scalars.

- (1) (Bilinearity): $Cov(aX_1 + bX_2, Y) = aCov(X_1, Y) + bCov(X_2, Y)$ and $Cov(X, aY_1 + bY_2) = aCov(X, Y_1) + bCov(X, Y_2)$.
- (2) (Symmetry): Cov(X, Y) = Cov(Y, X).
- (3) (Positivity): $Cov(X, X) \ge 0$ with equality if and only if X is a constant random variable. Indeed, Cov(X, X) = Var(X).

Exercise 3. If X and Y are independent, then show that Cov(X,Y) = 0 and hence, Var(X+Y) = Var(X) + Var(Y).

However, Cov(X, Y) = 0 does not necessarily imply that X and Y are independent!

Example 4. Let $\mathbf{X} = (X_1, X_2)$ be a bivariate random vector of absolutely continuous type with pdf given by

$$f_{\mathbf{X}}(x_1, x_2) = \begin{cases} 1, & \text{if } 0 < |x_2| \le x_1 < 1 \\ 0, & \text{otherwise.} \end{cases}$$

Then,

$$\mathbf{E}(X_1 X_2) = \int_0^1 \int_{-x_1}^{x_1} x_1 x_2 \, \mathrm{d}x_2 \, \mathrm{d}x_1 = 0,$$

$$\mathbf{E}(X_1) = \int_0^1 \int_{-x_1}^{x_1} x_1 \, \mathrm{d}x_2 \, \mathrm{d}x_1 = \frac{2}{3},$$

$$\mathbf{E}(X_2) = \int_0^1 \int_{-x_1}^{x_1} x_2 \, \mathrm{d}x_2 \, \mathrm{d}x_1 = 0,$$

and

$$Cov(X_1, X_2) = \mathbf{E}(X_1 X_2) - \mathbf{E}(X_1) \mathbf{E}(X_2) = 0$$

Therefore,

$$Corr\left(X_1, X_2\right) = 0$$

i.e., X_1 and X_2 are uncorrelated.

Exercise 5. Show that

$$f_{\mathbf{X}}(x_1, x_2) \neq f_{X_1}(x_1) f_{X_2}(x_2) \quad \forall (x_1, x_2) \in \mathbb{R}^2.$$

Therefore, X_1 and X_2 are not independent.

Remark 6. Note that the properties of covariance are very much like properties of inner-products in vector spaces. In particular, we have the following analogue of the well-known inequality for vectors $(\mathbf{u} \cdot \mathbf{v})^2 \leq (\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{v})$.

Cauchy-Schwarz inequality: If *X* and *Y* are random variables with finite variances, then

$$(\operatorname{Cov}(X,Y))^2 \leq \operatorname{Var}(X) \operatorname{Var}(Y)$$

with equality if and only if Y = aX + b for some scalars a, b.

Follow the proof of Cauchy-Schwarz inequality that you have seen for vectors. This just means that $Var(X+tY) \ge 0$ for any scalar t and choose an appropriate t to get the Cauchy-Schwarz inequality.

3. MULTIVARIATE NORMAL DISTRIBUTION

Bivariate Normal Distribution: We say that (X, Y) follows a bivariate normal distribution if its pdf is given by

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-Q/2} \text{ for } -\infty < x < \infty, \quad -\infty < y < \infty,$$

where

$$Q = \frac{1}{1 - \rho^2} \left[\left(\frac{x - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x - \mu_1}{\sigma_1} \right) \left(\frac{y - \mu_2}{\sigma_2} \right) + \left(\frac{y - \mu_2}{\sigma_2} \right)^2 \right]$$

with $-\infty < \mu_i < \infty, \sigma_i > 0$ for i = 1, 2, and ρ satisfies $\rho^2 < 1$. Clearly, this function is positive everywhere in \mathbb{R}^2 .

Remark 7. Note that we can derive this new formulation from the earlier one by defining

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}.$$

Exercise 8. Compute Σ^{-1} and $det(\Sigma)$.

This pdf has mgf given by (proof is given later):

$$M_{(X,Y)}\left(t_{1},t_{2}\right)=\exp\left\{t_{1}\mu_{1}+t_{2}\mu_{2}+\frac{1}{2}\left(t_{1}^{2}\sigma_{1}^{2}+2t_{1}t_{2}\rho\sigma_{1}\sigma_{2}+t_{2}^{2}\sigma_{2}^{2}\right)\right\}.$$

Thus, the mgf of *X* is

$$M_X(t_1) = M_{(X,Y)}(t_1,0) = \exp\left\{t_1\mu_1 + \frac{1}{2}t_1^2\sigma_1^2\right\},$$

while the mgf of *Y* is

$$M_Y(t_2) = M_{(X,Y)}(0,t_2) = \exp\left\{t_2\mu_2 + \frac{1}{2}t_2^2\sigma_2^2\right\}.$$

Hence, X has a $N\left(\mu_1, \sigma_1^2\right)$ distribution. In the same way, Y has a $N\left(\mu_2, \sigma_2^2\right)$ distribution. Thus, μ_1 and μ_2 are the respective means of X and Y, while σ_1^2 and σ_2^2 are the respective variances of X and Y.

Exercise 9. For the parameter ρ , show that

$$\mathbf{E}(XY) = \frac{\partial^2 M_{(X,Y)}}{\partial t_1 \partial t_2}(0,0) = \rho \sigma_1 \sigma_2 + \mu_1 \mu_2.$$

Hence, $Cov(X,Y) = \rho \sigma_1 \sigma_2$. As the notation suggests, ρ is the correlation coefficient between X and Y (Check!).

Remark 10. We know that if X and Y are independent, then Cov(X,Y)=0. For the bivariate normal distribution, if $\rho=0$ (equivalently, Cov(X,Y)=0), then the joint mgf of (X,Y) factors into the product of the marginal mgfs. Hence, X and Y are independent random variables. Thus, if (X,Y) has a bivariate normal distribution, then X and Y are independent if and only if they are uncorrelated (i.e., $\rho=0$). Read below:

https://en.wikipedia.org/wiki/Normally_distributed_and_uncorrelated_does_not_imply_independent.

Check the file 'N_2distribution.R'.

Multivariate Normal Distribution: In this section, we generalize the bivariate normal distribution to the n-dimensional multivariate normal distribution. The derivation of the distribution is simplified by first discussing the standardized variable case, and then proceeding to the general case. Consider the random vector $\mathbf{Z} = (Z_1, \dots, Z_n)$, where Z_1, \dots, Z_n are i.i.d. N(0,1) random variables. Then, the density of \mathbf{Z} is

$$f_{\mathbf{Z}}(\mathbf{z}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}z_{i}^{2}\right\} = \left(\frac{1}{2\pi}\right)^{n/2} \exp\left\{-\frac{1}{2}\sum_{i=1}^{n} z_{i}^{2}\right\} = \left(\frac{1}{2\pi}\right)^{n/2} \exp\left\{-\frac{1}{2}\mathbf{z}'\mathbf{z}\right\}$$

for $\mathbf{z} \in \mathbb{R}^n$.

Definition 11. We define $\mathbf{E}[\mathbf{X}]$ as the n-dimensional vector $(\mathbf{E}[X_1], \dots, \mathbf{E}[X_n])'$, and $\mathrm{Cov}[\mathbf{X}]$ as a $n \times n$ matrix with the (i, j)th element as $\mathrm{Cov}(X_i, X_j)$ for $1 \le i, j \le n$.

Note that the diagonal elements of Cov[X] (a symmetric matrix) are the componentwise variances $Var[X_i]$ for $1 \le i \le n$.

Exercise 12. The mean and covariance matrix of **Z** are

$$\mathbf{E}[\mathbf{Z}] = 0_n \text{ and } \operatorname{Cov}[\mathbf{Z}] = I_n,$$

where 0_n is the vector of 0s and I_n denotes the identity matrix of order n.

The mgf of Z_i s evaluated at t_i is $\exp\{t_i^2/2\}$ for $i=1,\ldots,n$. Since the Z_i s are independent, the mgf of **Z** is

$$M_{\mathbf{Z}}(\mathbf{t}) = \mathbf{E}\left[\exp\left\{\mathbf{t}'\mathbf{Z}\right\}\right] = \mathbf{E}\left[\prod_{i=1}^{n}\exp\left\{t_{i}Z_{i}\right\}\right] = \prod_{i=1}^{n}\mathbf{E}\left[\exp\left\{t_{i}Z_{i}\right\}\right] = \exp\left\{\frac{1}{2}\sum_{i=1}^{n}t_{i}^{2}\right\} = \exp\left\{\frac{1}{2}\mathbf{t}'\mathbf{t}\right\}.$$

for all $\mathbf{t} \in \mathbb{R}^n$. We say that **Z** has a multivariate normal distribution with mean vector 0_n and covariance matrix I_n . We abbreviate this by saying that **Z** has a $N_n(0_n, I_n)$ distribution.

For the *general case*, suppose Σ is a $n \times n$ symmetric and positive definite matrix. Then, from linear algebra, we can always decompose Σ as follows:

$$\Sigma = \Gamma' \Lambda \Gamma$$
,

where Λ is the diagonal matrix $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ satisfying $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n > 0$ are the eigenvalues and the columns of Γ' (say, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$) are the corresponding eigenvectors of Σ . This decomposition is called the spectral decomposition of Σ . The matrix Γ is orthogonal, i.e., $\Gamma^{-1} = \Gamma'$ and hence, $\Gamma\Gamma' = I_n$.

We define the square root of the positive definite matrix Σ as

$$\Sigma^{1/2} = \Gamma' \Lambda^{1/2} \Gamma.$$

Note that $\Sigma^{1/2}$ is symmetric and positive definite. It is now easy to show that

$$\left(\Sigma^{1/2}\right)^{-1} = \Gamma' \Lambda^{-1/2} \Gamma.$$

We write the left side of this equation as $\Sigma^{-1/2}$. Suppose **Z** has a $N_n(0_n, I_n)$ distribution. Let Σ be a positive definite, symmetric matrix and μ be an $n \times 1$ vector of constants. Define the random vector **X** by

$$\mathbf{X} = \Sigma^{1/2} \mathbf{Z} + \mu.$$

We now have

$$\mathbf{E}[\mathbf{X}] = \mu$$
 and $\operatorname{Cov}[\mathbf{X}] = \Sigma^{1/2} \Sigma^{1/2} = \Sigma$.

Further, the mgf of **X** is given by

$$\begin{split} M_{\mathbf{X}}(\mathbf{t}) &= \mathbf{E} \left[\exp \left\{ \mathbf{t}' \mathbf{X} \right\} \right] = \mathbf{E} \left[\exp \left\{ \mathbf{t}' \Sigma^{1/2} \mathbf{Z} + \mathbf{t}' \mu \right\} \right] \\ &= \exp \left\{ \mathbf{t}' \mu \right\} \left[\exp \left\{ \left(\Sigma^{1/2} \mathbf{t} \right)' \mathbf{Z} \right\} \right] \\ &= \exp \left\{ \mathbf{t}' \mu \right\} \exp \left\{ \left(1/2 \right) \left(\Sigma^{1/2} \mathbf{t} \right)' \Sigma^{1/2} \mathbf{t} \right\} \\ &= \exp \left\{ \mathbf{t}' \mu \right\} \exp \left\{ \left(1/2 \right) \mathbf{t}' \Sigma \mathbf{t} \right\} \\ &= \exp \left\{ \mathbf{t}' \mu + \frac{1}{2} \mathbf{t}' \Sigma \mathbf{t} \right\}. \end{split}$$

The transformation between **X** and **Z** is one-to-one with the inverse transformation

$$\mathbf{Z} = \Sigma^{-1/2}(\mathbf{X} - \mu)$$

and Jacobian $|\Sigma^{-1/2}| = |\Sigma|^{-1/2}$. Hence, upon simplification, the pdf of **X** is given by

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)' \Sigma^{-1}(\mathbf{x} - \mu)\right\} \quad \text{for } \mathbf{x} \in \mathbb{R}^n.$$

The following theorem says that a linear transformation of a multivariate normal random vector has a multivariate normal distribution.

Theorem 13. Suppose \mathbf{X} has a $N_n(\mu, \Sigma)$ distribution. Let $\mathbf{Y} = A\mathbf{X} + \mathbf{b}$, where A is an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. Then, \mathbf{Y} has a $N_m(A\mu + \mathbf{b}, A\Sigma A')$ distribution.

Proof. For $\mathbf{t} \in \mathbb{R}^m$, the mgf of \mathbf{Y} is

$$M_{\mathbf{Y}}(\mathbf{t}) = \mathbf{E} \left[\exp \left\{ \mathbf{t}' \mathbf{Y} \right\} \right]$$

$$= \mathbf{E} \left[\exp \left\{ \mathbf{t}' (A\mathbf{X} + \mathbf{b}) \right\} \right]$$

$$= \exp \left\{ \mathbf{t}' \mathbf{b} \right\} \mathbf{E} \left[\exp \left\{ \left(A' \mathbf{t} \right)' \mathbf{X} \right\} \right]$$

$$= \exp \left\{ \mathbf{t}' \mathbf{b} \right\} \exp \left\{ \left(A' \mathbf{t} \right)' \mu + (1/2) \left(A' \mathbf{t} \right)' \Sigma \left(A' \mathbf{t} \right) \right\}$$

$$= \exp \left\{ \mathbf{t}' (A\mu + \mathbf{b}) + \frac{1}{2} \mathbf{t}' A \Sigma A' \mathbf{t} \right\}$$

which is the mgf of a $N_m (A\mu + \mathbf{b}, A\Sigma A')$ distribution.