- 1. Sabent que el poder calorífic del gasoil és  $44\,MJ/kg$  i que la seva densitat és de  $0,8\,g/cm^3$ , calculeu-lo en kcal/L.
- 2. Una indústria necessita 15000 L d'aigua calenta cada dia, que s'ha d'escalfar de 20° C a 90° C. Disposa d'una instal·lació calefactora que utilitza carbó amb un poder calorífic de  $28\,MJ/kg$  i amb un rendiment del 75%. Calcula la quantitat de carbó que ha de cremar cada dia. Podeu suposar coneguda la calor específica de l'aigua  $C_e = 1\,cal/g\,^{\circ}C$
- 3. Una central tèrmica que utilitza gas natural disposa d'un grup motriu que té rendiment  $\eta=40\,\%$  i proporciona una potència  $P_u=200\,MW$ . Calculeu el consum horari de gas  $c_{hor}$  si se subministra a una pressió  $P=506,5\,kPa$  i a una temperatura  $T=20^\circ$ . Podeu suposar que el poder calorífic del gas natural en condicions normals val  $p_c(CN)=46\,MJ/m^3$  i cal recordar el poder calorífic a pressió p (en Pa) i temperatura T (en  $^\circ C$ ), es calcula com

$$p_c = p_c(CN) \cdot \frac{p}{101325} \cdot \frac{273}{273 + T}$$

- 4. Calculeu la quantitat de calor Q necessària per escalfar 100 litres d'aigua que està a una temperatura  $t_1 = 20^{\circ}C$  fins a una temperatura  $t_2 = 60^{\circ}C$ .
- 5. Calculeu l'energia elèctrica  $E_u$  en kWh, que produeix una central tèrmica que té un rendiment energètic  $\eta = 35\%$  si consumeix c = 1 t/h de carbó de poder calorífic  $p_c = 32 \, MJ/kg$ . Recordeu que  $1 \, t = 1000 \, kg$ .
- 6. En una planta d'aprofitament de biomassa es reben cada dia una quantitat  $m = 50 \cdot 10^3 \, kg$  de residus vegetals que tenen un poder calorífic mitjà  $p_c = 11 \, MJ/kg$ . La planta produeix electricitat amb un rendiment  $\eta_{elec} = 0,28$  i la resta d'energia, amb un  $\eta_{termic} = 0,85$ , s'aprofita per escalfar aigua. La calor específica de l'aigua és  $C_e = 4,19 \, J/(g^{\circ}C)$  i la seva temperatura s'incrementa en  $\Delta T = 40 \, ^{\circ}C$ . Es demana:
  - (a) Calculeu l'energia elèctrica  $E_{elec}$ , en MWh, produïda en un dia i la potència elèctrica mitjana  $P_{elec}$ .
  - (b) Calculeu la quantitat d'aigua diària  $m_{aigua}$  escalfada.
  - (c) Calculeu el cabal mitjà q, en l/s, d'aigua escalfada.
- 7. Calculeu el rendiment d'una instal·lació que consumeix  $c=3\,m^3/h$  de gas natural a una pressió  $p=303,9\,kPa$  i a una temperatura  $T=25\,^{\circ}C$  per obtenir un cabal d'aigua calenta  $q=500\,L/h$  a una temperatura



- $T_2 = 90\,^{\circ}C$ , si la temperatura inicial de l'aigua és de  $T_1 = 20\,^{\circ}C$ . Podeu suposar coneguda la dada pel gas natural  $p_c(CN) = 44\,MJ/m^3$ .
- 8. Una estufa de butà té sis cremadors, dels quals en poden funcionar simultàniament un, tres, quatre o sis. Cada cremador encès consumeix c = 72 g/h de butà. El poder calorífic del butà és  $p_c = 49, 5 \, MJ/kg$  i se subministra en bombones que en contenen  $m_b = 12, 5 \, kg$  i el preu de la bombona és de  $17 \in$ . Es demana calcular:
  - (a) La potència calorífica de cada cremador i la potència de l'estufa.
  - (b) La durada d'una bombona amb els sis cremadors encesos.
  - (c) El preu del kWh obtingut amb aquesta estufa.

