Actividades sobre sistemas de archivos

Actividad 1

Existen sistemas de archivos diversos que varían según el sistema operativo empleado. Vamos a analizar los usados en los sistemas mayoritarios:

1. Windows:

NTFS (New Technology File System): es el más moderno, tiene mejoras respecto a tecnologías anteriores, con mayor confiabilidad, uso del espacio en disco y rendimiento. Utiliza el registro en diario y las listas de control de acceso para un sistema de seguridad más robusto.

Seguridad: archivo abierto que se implementa como un objeto archivo con un descriptor que define sus atributos de seguridad. Los bloques están organizados en mapa de bits.

- FAT32 (File Allocation Table): es un tipo de sistema de archivos FAT que se diseñó para superar las limitaciones de volumen de FAT16 e implementar funciones adicionales sin un consumo de memoria significativamente mayor. Compatible con casi todos los S.O. pero con limitaciones como tamaño máximo de archivo 4Gb o máximo de partición de 8Tb, falta de permisos modernos y funciones de seguridad. Los bloques están organizados en una lista enlazada.
- **ExFAT:** se introdujo en 2006, supera algunas limitaciones del FAT32. Diseñado para ser liviano, pero evita las limitaciones de tamaño de archivo y de partición. Los bloques están organizados en etiquetado de clústers.

2. Apple:

- HFS+ (Hierarchical File System): Evolución del sistema HFS creado por Apple para su sistema de archivos macOS. Es un sistema de archivos de diario que puede desde soportar archivos grandes hasta enlaces duros y nombres de archivos largos. Carece de algunas funciones de sistemas de archivos como NTFS. Los bloques están organizados en Árbol-B (una estructura de datos de árbol).

3. Otros:

ext4: es un sistema de archivos registrados que se usa normalmente en las distribuciones de Linux. ext4 es más rápido que su predecesor ext3 y tiene menos límites de almacenamiento. Se dice que todavía hace uso de tecnología antigua y es un "provisional". Además de usarse en Linux, se usa en sistemas operativos Android. Los bloques están organizados en tablas.

Resumen de sistemas de archivos:

Sistema de archivos	Creador	Sistema operativo original	Longitud máxima del nombre de archivo	Tamaño máximo de archivo	Tamaño de volumen máximo
exFAT	Microsoft	Windows CE 6.0	255 caracteres UTF-16	16 EB	64 ZB
ext3	Esteban Tweedie	Linux	255 bytes	2TB	32TB
ext4	varios	Linux	255 bytes	16TB	1 EB
AT32	Microsoft	MS-DOS 7.10 Windows 95 OSR2	255 caracteres UCS-2 con LFN	4 GB	16TB
HFS	Apple	Sistema 2.1	31 bytes	2GB	2TB
HFS+	Apple	MacOS 8.1	255 caracteres UTF-16	8 EB	8 EB
NTFS	Microsoft	Windows NT 3.1	255 caracteres	16 EB	16 EB
FAT32	Microsoft	MS-DOS 7.10 / Windows 95 OSR2	255 caracteres UCS-2 con LFN	4 GB	16 TB

Actividad 2

- **inode** (nodo-i): es una estructura de control que contiene la información clave de un archivo necesaria para el SO. Esta información incluye: propietario, derechos de acceso, tamaño, localización en sistema de archivos, etc.
- POSIX (Portable Operating System Interface, en UNIX): es una norma escrita por la IEEE, que define una interfaz estándar del sistema operativo y el entorno, incluyendo un intérprete de comandos (o "shell").
- Transacción atómica: es una interacción con una estructura de datos compleja, compuesta por varios procesos sucesivos. Debe realizarse de una sola vez y sin que la estructura a medio manipular pueda ser alcanzada por el resto del sistema hasta que se hayan finalizado todos sus procesos. La atomicidad es la propiedad que asegura que la operación se ha realizado o no, y por lo tanto ante un fallo del sistema no puede quedar a medias.
- LRU (Least Recently Used): Algoritmo de reemplazo de páginas.
- Caché de disco (Disk cache o Cache buffer): es una porción de memoria RAM asociada a un disco con la utilidad de almacenar los datos recientemente leídos y por lo tanto agilizar la carga de estos en caso de que vuelvan a ser solicitados.

Fuentes:

https://winbuzzer.com/2021/06/30/filesystems-explained-whats-the-difference-between-fat32-ntfs-exfat-hfs-and-ext4-xcxwbt/

https://es.wikipedia.org/wiki/Transacci%C3%B3n_(inform%C3%A1tica)

https://es.wikipedia.org/wiki/Algoritmo_de_reemplazo_de_p%C3%A1ginas

 $\frac{http://repositori.uji.es/xmlui/bitstream/handle/10234/171651/TrasparenciasTema4.pdf?sequence=1\&isAllowed=y$

https://es.wikipedia.org/wiki/Ext4

https://es.wikipedia.org/wiki/HFS%2B

https://es.wikipedia.org/wiki/ExFAT

https://es.wikipedia.org/wiki/Tabla_de_asignaci%C3%B3n_de_archivos

https://es.wikipedia.org/wiki/Cach%C3%A9_de_disco