NETWORK 보안 실무 (사이버보안과 2학년)

양승익(Yang Seung Ik)

KIMPO University

Tel: +82-010-3341-7700

Email: skyang611@gmail.com

Busines

Orientation

1. 담당 교수 : 양 승 익(Seung Ik Yang)

학교소속: 사이버보안과 겸임교수

2. E-mail: skyang611@kimpo.ac.kr

- 3. 교재: 자체교재
- 4. 교육방법
- ▶ 산업현장에서 필요로 하는 Human-Resource
- ▶ 기초 지식을 바탕으로 한 기술능력 배양
- ▶ 핵심 기술 위주의 교육

Busines

Orientation

- 5. NCS 교육과정의 강의 계획 및 평가계획
- 평가 계획(8주차, 16주차, 평시)
 - . 서술형, 실무, 평가자 체크리스트, 출석

서술형, 실무, : 60%, 평가자 체크리스트 : 20, 출석 : 20%

평가자 체크리스트는 REPORT, 수업 중 제출자료, 수업태도 등

Busines

Orientation(과정확인을 위한 질의 / 응답)

본 시간은 네트워크 보안의 강의진행을 위하여 사전 기술 습득및 강의진행에 참고하기 위하여 시행하는 평가입니다

본인의 학번 이름 없이 무기명으로 진행합니다 솔직한 답변을 바랍니다

- ❖ 네트워크에 대한 이해도 질의사항
 - 1. TCP/IP Layer 또는 OSI 7 Layer 에 대하여 쓰시오
 - 2. Data Link Layer의 Ethernet 프래임 포멧에 대하여 쓰시오
 - 3. IP Packet의 구조에 대하여 아는 대로 설명하시오
- ❖ 네트워크 보안 관련
 - 4. NMS(Network Management system)이란?
 - 5. Network 보안 종류에 대하여 아는데로 쓰시오

- ✓ 모스와 전신기
 - 1800년경 볼타(Volta)가 최초로 전지를 발명
 - 이후 전선을 통해 신호를 보내는 방법을 연구하기 시작 했고, 모스가 처음 실질적인 성과를 냄.
 - 1832년 알파벳 문자에 점과 대시를 사용하여 모스 부호를 발명
- ✓ 벨의 전화기
 - 1876년 알렉산더 그레이엄 벨이 전화기를 개발
 - 1877년 1월 30일 상자 모양의 첫 전화기가 등장(일대일 통신만 가능)
 - 1878년 1월 28일 미국 코네티컷주 뉴헤이븐에서 처음으로 교환기가 설치되어 사용자의 전화가 중앙의 교환수를 거쳐 연결됨.
 - 우리나라는 1896년 궁 내부 전화가 전화기의 효시 1902년에는 서울과 인천 사이에 전화가 개설
- ✓ 전자기파의 발견 및 전파이용
 - 1864년 제임스 클럭 맥스웰이 전자기파가 대기중으로 전파된다고 처음 예측
 - 1888년 하인리히 루돌프 헤르츠가 실험을 통해 라디오파를 주고받음으로써 전파의 존재가 실제로 입증됨.

- ✓ 모뎀의 개발과 네트워크의 시작
 - 벨 텔레폰 연구소가 '모델-K' 기기를 개발했고, 후에 뉴욕의 CNC와 전화선으로 연결해 데이터를 입력하는 과정을 시연, (네트워크 컴퓨팅의 효시)
 - 1958년 벨 연구소에서 최초의 상업용 모뎀인 데이터폰을 개발
 - 미국 국방부는 군사 작전 수행을 위한 세계 최초의 컴퓨터 네트워크 개발에 착수하여 사상 최초 대단위 컴퓨터 네트워크인 ARPANET의 탄생으로 이어짐.
- ✓ 장거리 컴퓨터 통신과 인터넷의 시작
 - ARPA는 MIT 링컨 연구소의 TX-2와 캘리포니아 산타모니카 SDC의 Q-32 컴퓨터와 전화선으로 직접 통신하는 장거리 데이터 통신을 최초로 시도
 - 프로토콜: 컴퓨터와 컴퓨터 사이에서 메시지를 전달하는 과정(톰 마릴)
 - 년 ARPA는 ACM에서 각 호스트를 IMP라는 특정 컴퓨터에 연결하고, IMP를 서로 연결하는 ARPANET을 제안(현재의 라우터와 개념이 유사)
 - 1969년 네 개의 노드(UCLA, USCB, SRI, UU)를 네트워크로 구성하고 NCP라는 프로토콜을 호스트 간통신에 사용
 - 1971년 레이 톰린슨이 전자 메일 프로그램을 발명

- ✓ 장거리 컴퓨터 통신과 인터넷의 시작
 - 1972년 빈트 서프와 로버트 칸이 게이트웨이를 개발
 - 1973년 빈트 서프는 로버트 칸과 함께 TCP/IP 프로토콜과 인터넷 구조를 설계
 - 호스트 컴퓨터와 터미널로 구성된 네트워크는 IBM의 SNA 망이 최초
 - 1974년 제록스가 이더넷을 개발(오늘날의 클라이언트-서버 구조로 전환)
 - 1979년 유즈넷 탄생
 - 1981년 유닉스 운영체제에 TCP/IP가 포함되어 배포되었고, TCP/IP가 ARPANET의 공식 프로토콜.
 - 1983년 군사용 MILNET과 군사용이 아닌 ARPANET으로 분리
 - 1983년 존 포스텔이 도메인이름 시스템 개발
 - 1984년 DNS가 구성되어 네트워크가 폭발적으로 확장됨.
 - 1990년 ARPANET이 해체되고 NSFNET이 만들어짐.
 - 1989년 3월 버너스-리가 웹 개념을 제안
 - 1990년 동료 로버트 카이유와 개정된 개념을 소개
 - → 서로 다른 컴퓨터끼리 정보를 공유하고 서로 링크하여 찾기 쉬운 하이퍼텍스트 형태의 서비스 를 도입하자는 것

- ✓ 국내 인터넷의 역사
 - 1982년 서울대학교와 KIET(전자통신연구소의 전신)가 TCP/IP로 SDN 시작
 - 1983년 미국으로 UUCP 다이얼 업(Dial-Up) 연결
 - 1984년 유럽으로 X.25를 이용한 UUCP 연결
 - 1987년 교육 연구 전산망 추진 위원회 구성
 - 1988년 연구 전산망 기본 계획 확정, 교육망을 BITNET과 연결
 - 1990년 HANA/SDN이 56Kbps로 인터넷에 연결
 - 1991년 연구 전산망이 56Kbps로 인터넷에 연결
 - 1993년 HANA/SDN이 56Kbps에서 256Kbps로 확충
 - 1994년 한국통신, 데이콤에서 인터넷 상용 서비스 시작
 - 1995년 INET, 나우콤에서 인터넷 상용 서비스 시작
 - 1995년 초고속 정보통신망 구축 사업 시작
 - 1996년 7천 대 이상의 호스트 컴퓨터가 연결됨
 - 1997년 한국인터넷협회 설립
 - 1998년 초고속 정보통신망 구축 사업 1단계 완료
 - 2000년 초고속망 구축 기술로 각종 서비스가 이루어짐(하나로, 두루넷, 드림라인, 신비로 등)
 - 2001년 초고속 광전송망 구축(155Mbps~40Gbps)
 - 2002년 서울대, 한국전자통신연구원ETRI 등이 참여한 IPv6 활성화를 위한 프로젝트 시작
 - 2004년 한국 인터넷 이용자 수 3천만 명 돌파
 - 2005년 한국 IPv6 주소 보유율 세계 3위로 평가
 - 2012년 한국 인터넷 속도 세계 1위로 평가

- 네트워크 보안 개념
 - ✔ 조직의 네트워크 및 네트워크 접근 가능한 리소스에 대한 공격을 방지하는 정책, 실행, 기술.
 - ✓ 권한 밖의 네트워크와 네트워크로 접속 가능한 자원에 접근 시, 네트워크 관리자가 사용하는 컴퓨터 네트워크 하부구조에서의 기본적인 설비 또는 방책.
 - ✓ 공격자가 TCP/IP 등 통신 프로토콜의 다양한 취약점을 이용하여 허가 되지 않은 네트워크자원에 접근 하거나 그 자원을 파괴하거나 또는 그 자원의 사용을 방해하는 것을 방어하는 것.

- 네트워크 보안 중요성
 - ✓ 네트워크의 모든 부분이 공격이나 불법행위의 대상이 됨.
 - ✓ 네트워크뿐만 아니라 연결된 리소스를 위협으로부터 방어하는 것이 중요.
 - ✓ 승인 받지 않은 사람이나 프로그램이 네트워크와 네트워크에 연결된 디바이스에 접근하는 것을 막는데 사용하는 툴과 작업으로 구현.

- ○정보 보안의 3요소와 추가 요소
 - ✓ 기밀성(Confidentiality)
 - ✓ 무결성(Integrity)
 - ✓ 가용성(Availability)
 - ✓ 서버 인증(Server Authentication)
 - ✓ 클라이언트 인증(Client Authentication)

- ✓ 기밀성(Confidentiality)
- 허락되지 않은 사용자 또는 객체가 정보의 내용을 알 수 없도록 하는 것
- 프라이버시 보호와도 밀접한 관계가 있음.
- 네트워크 보안 측면에서 기밀성은 '시스템 간 안전한 데이터 전송'과 관련이 있음.
- 스니핑(Sniffing)은 기밀성을 해치는 가장 일반적인 공격 형태
- 통신의 암호화가 가장 일반적인 보안 대책

- 1. 네트워크 보안의 기초
- 정보 보안의 3요소와 추가 요소
 - ✓ 무결성(Integrity)
 - 허락되지 않은 사용자 또는 객체가 정보를 함부로 수정할 수 없도록 하는 것
 - 네트워크에서의 무결성은 '클라이언트와 서버 간의 데이터가 변조되지 않고 전송되는가 ' 와 관련이 있음.
 - 중간에 유효한 다른 연결을 빼앗는 세션 하이재킹, 두 시스템 간의 데이터를 중간에 변조하는 MITM 공격은 무결성을 해치는 대표적인 공격
 - 통신의 암호화가 가장 일반적인 보안 대책(PKI와 밀접한 관련이 있음)
 - ✓ 가용성(Availability)
 - 허락된 사용자 또는 객체가 정보에 접근하려고 할 때 방해받지 않도록 하는 것
 - DoS가 가용성을 해치는 대표적인 공격

- 1. 네트워크 보안의 기초
- 정보 보안의 3요소와 추가 요소
 - ✓ 서버 인증(Server Authentication)
 - '클라이언트가 올바른 서버로 접속하는가 ' 를 의미
 - 서버 인증으로 생기는 문제는 무척 다양하며, 일반적으로 DNS 스푸핑이나 서버 파밍 등이 있음.
 - SSL(HTTPS)을 통해 서버 인증을 하지만, 경고를 보여주고 사용자에게 선택을 하게 하는 것이 일반 적이며 강제적인 서버 인증은 흔치 않음.
 - ✓ 클라이언트 인증(Client Authentication)
 - '올바른 클라이언트가 접속을 시도하는가 ' 를 의미
 - 웹 사이트에 접근할 때 사용하는 아이디와 패스워드가 대표적인 클라이언트 인증
 - 클라이언트 인증과 관련된 해킹은 스푸핑, 세션 하이재킹, 피싱 등이 있음.

- 정보 보안의 3요소와 추가 요소
 - ✓ 제3자가 갑순이에게 보낸 E-mail을 훔쳐보지 않았을까?
 - : Confidential (기밀성)
 - ✓ 갑돌이가 보낸 E-mail내용이 혹 변경되지는 안았을까?
 - : Integrity(무결성), Message 인증
 - ✓ 갑순이 입장 : 갑돌이가 보낸 E-mail 인데 갑돌이가 보냈다는 것과 Mail내용이 나중에 갑돌이가 안 보냈다고 하지는 않을까?
 - : 부인방지

- 정보보호 기술의 특징
 - ✓ 특수성
 - ✓ 독자성
 - ✓ 기반특성
 - ✓ 고부가가치

○ 정보보호 위협요소

정보보호 위협요소	요구되는 보안요소
비인가 접근	인증
데이터 도청	기밀성
데이터 가로막기	가용성
데이터 변조 / 위조	무결성/인증
부인	부인방지
서비스 거부	가용성 / 인증

- ❖ 해킹(Hacking)이란
 - 해킹의 개념
 - ✓ 어떠한 의도에 상관없이 다른 컴퓨터에 침입하는 모든 행위.
 - ✓ 불법적인 시스템 사용, 자료열람, 유출 및 변조 등을 하는 것.
 - ✓ 긍정적의미로써'각종 정보
 - ✓ "침해사고"란 해킹, 컴퓨터바이러스, 논리폭탄, 메일폭탄, 서비스거부.
 - ✓ 고출력 전자기파 등의 방법으로 정보통신망 또는 이와 관련된 정보시스템을 공격하는 행위를 하여 발생한 사태.
 - ✓ 시스템의 보안 취약점을 미리 알아내고 보완하는 데에 필요한 행위'

❖ 해커의 개념

- 긍정적 의미: 초기 사전적 의미로써 컴퓨터 전반에 걸쳐 깊이 배우기를 즐기는 사람 또는 컴퓨터 프로그래밍을 즐기고 열광하는 사람.
- 부정적 의미(크래커 또는 시스템 침입자): 보안시스템을 악의적으로 무력화 시키거나 상대 시스템에서 불법으로 정보를 빼내는 사람.
- 현재는 해커와 크래커는 구분 없이 해커로 통칭하며 범죄를 일으키는 블랙해커와 윤리적이고 합법적 인 화이트해커로 구분.

- 해커의 수준별 분류
 - 길버트 아라베디언은 해커의 등급을 프로그램 능력, 네트워크 이해도, 시스템의 취약점 분석 능력 등세가지 능력에 따라 수준을 5가지로 분류.

분류	설명
Lamer	해커가 되고 싶지만 경험도 없고 컴퓨터 관련 지식도 많지 않은 해커
Script Kiddie	네트워크와 운영체제에 대한 약간의 기술적인 지식이 있는 해커
Developed Kiddie	대부분의 해킹 기법에 대해 알고 있으며, 해킹 수행 코드가 적용될 수 있는 취약점을 발견한 때까지 여러 번 시도해 시스템 침투에 성공할 수 있는 해커
Semi Elite	컴퓨터에 대한 포괄적인 지식이 있고 운영체제와 네트워크에 대한 지식도 갖추고 있으며, 운영체제에 존재하는 특정 취약점을 알고 이 취약점을 공격할 수있는 해킹 코드를 만들 수 있는 해커
Elite	해킹하고자 하는 시스템의 새로운 취약점을 찾아내어 해킹할 수 있고 해킹 시도 후 흔적을 완벽하게 지울 수 있어 추적하기 어려운 최고 수준의 해커

- 해커의 성격에 따른 분류
 - 화이트 해커 : 모의 해킹이나 취약점 점검 등의 기법을 활용하여 취약점을 알려주고 문제를 해결
 하도록 도와주는 윤리적이고 합법적인 정보보호 전문가.
 - 블랙 해커: 악의적 목적의 정보 체계 침입, 컴퓨터 소프트웨어 변조, 컴퓨터 바이러스 유포 등의 행위로 해를 끼치는 해커(크래커).
 - 그레이 해커: 해커와 크래커의 중간적인 성질을 가짐.
 - 그외 구분
 - ✓ 레드햇(홍커)
 - ✓ 스크립트 키디