Vertex Cover (max 2p):

Fie X={ x_1 , x_2 , ..., x_n } o mulţime de variabile de tip bool. Numim formulă booleană peste mulţimea X o formulă CNF (conjunctive normal form) o expresie de forma $C_1 \land C_2 \land ... \land C_m$ unde fiecare predicat (clause) C_i este o disjuncţie a unui număr de variabile (e alcătuit din mai multe variabile cu simbolul V - logical or - între ele). Exemplu de astfel de expresie:

$$(\mathbf{x}_1 \lor \mathbf{x}_3 \lor \mathbf{x}_4) \land (\mathbf{x}_2 \lor \mathbf{x}_3 \lor \mathbf{x}_7) \land (\mathbf{x}_1 \lor \mathbf{x}_5 \lor \mathbf{x}_6) \land (\mathbf{x}_2 \lor \mathbf{x}_5 \lor \mathbf{x}_7).$$

Evident că orice expresie de acest tip va fi evaluată cu "true" dacă toate elementele lui X iau valoarea true. Ne interesează în schimb, să aflăm un număr minim de elemente din X care trebuie să aibă valoarea *true* astfel încât toată expresia să fie *true*.

Fie următorul algoritm pentru problema in forma 3CNF Greedy-3CNF(C, X)

1: C = {C₁, ..., C_m} mulțimea de predicate, X = {x₁, ..., x_n} - mulțime de variabile 2: cât timp C $\neq \emptyset$ execută

- 3: Alegem aleator $C_i \subseteq C$.
- 4: Fie x_i una dintre variabilele din C_i.
- 5: x_i ← true.
- 6: Eliminăm din C toate predicatele ce îl conțin pe x_i.

7: return X

a) Analizati factorul de aproximare (worst case) al algoritmului (0,5 p)

Rezolvare

- Fie S multimea variabilelor alese de algoritmul nostru
- Consideram un caz in care algoritmul nostru alege din fiecare predicat o variabila care nu se afla in alt predicat, astfel cazul cel mai nefavorabil pentru algoritmul nostru rezulta un cost de m (|S| = m)
- Insa, predicatele noaste pot sa aiba o variabila comuna pe care daca algoritmul nostru ar alege-o, costul ar fi 1.
- Spre exemplu in cazul

$$(x_1 \land x_2 \land x_m) \lor (x_2 \land x_3 \land x_m) \lor \cdots \lor (x_m \land x_{m+1} \land x_{m+2})$$

Algoritmul nostru ar putea alege variabilele de pe prima pozitie pereu si ar rezulta un cost de m, insa, dar ar alege variabila x_m

costul ar fi 1. Astfel $|S| \le m \cdot \mathit{OPT}$, deci algoritmul nostru este m-aproximativ

- b) Modificați algoritmul de mai sus, astfel încât acesta să fie un algoritm 3-aproximativ pentru problema inițială (si justificati) (0,5p)
- Rezolvare

1:
$$C = \{C_1, \ldots, C_m\}$$
 mulțimea de predicate, $X = \{x_1, \ldots, x_n\}$ - mulțime de variabile

2: cât timp C ≠ Ø execută

3: Alegem aleator $C_i \subseteq C$.

4: Fie x_i, x_j, x_k variabilele din C_j .

5:
$$x_i, x_i, x_k \leftarrow \text{true}$$
.

6: Eliminăm din C toate predicatele ce îl conțin pe $x_{i'}$ $x_{j'}$ x_k

7: return X

Trebuie sa aratam ca algoritmul nostru este 3 aproximativ

Fie Ssolutia problemei noastre. Stim ca S este o solutie valida, deoarece noi iteram cat timp avem predicate in C, iar la final Ceste vida

Aratam $|S| \leq 3 \cdot OPT$:

Fie C_j multimea aleasa de noi la pasul 3, stim ca aceasta multime contine 3 variabile disjuncte. Deoarece atunci cand adaugam o variabila in S toate celelalte predicate care conding unca dintre cele 3 variabile vor fi excluse din C

$$OPT \ge \left| C_j \right| = \frac{1}{3} |S|$$
 $OPT \ge \frac{1}{3} |S|$
 $3OPT \ge S$

- c) Reformulati problema de mai sus sub forma unei probleme de programare liniară (0,5p)
- Rezolvare
- Fie multimea $Y = \{y, y_2, ..., y_n\}$ cu proprietaea ca daca $y_i = 1$ atunci x_i are valoarea true si $y_i = 0$ altfel.

- Trebuie sa minimizez $\sum\limits_{x_i \in S} f(x_i) = \sum\limits_{1 \leq i \leq n} f(x_i) \cdot y_i$, unde f imi face legatura dintre multimea Xsi Ydupa regula stabilita
- Constrangeri:
 - Pentru $\forall x_i, x_i \leq 1$
 - Pentru $\forall C_z \in C$, $C_z = (x_i, x_j, x_k)$ avem $x_i + x_j + x_k \le 1$
- d) Dați o soluție 3-aproximativă pentru problema de programare liniara (0,5p)

- Rezolvare:

- Rezolv problema de programare in varianta cu numere reale si daca $y_i \geq \frac{1}{3}$ atunci rotunjesc y_i la 1, iar x_i va face parte din solutie, altfel y_i va fi 0 iar x_i nu va face parte din solutie
- Justificare:
- Deoarece $x_i + x_j + x_k \geq 1$ pentru orice predicat $C_z \in \mathcal{C}$, ceea ce inseamna ca macar una dintre variabilele x_i, x_j, x_k au valoare $\geq \frac{1}{3}$, deci macar o variabila va fi selectata in solutie si implicit setata ca true, deci orice $C_z \in \mathcal{C}$ va fi evaluat ca true.

$$ALG = \sum_{1 \le i \le n} f(x_i) \cdot (y_i \ge \frac{1}{3}? \ 1:0) \le \sum_{1 \le i \le n} f(x_i) \cdot 3y_i \le 3 \cdot \sum_{1 \le i \le n} f(x_i) \cdot y_i \le 3 \cdot OPT$$

-Unde , $(y_i \ge \frac{1}{3}? \ 1: \ 0)$ se reduce la faptul ca: daca y_i este mai mare decat $\frac{1}{3}$ expresia este evaluata la 1 si 0 altfel