Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Programmable devices have existed for centuries. Following a consistent programming style often helps readability. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. It affects the aspects of quality above, including portability, usability and most importantly maintainability. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. It is very difficult to determine what are the most popular modern programming languages. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. Following a consistent programming style often helps readability.