

Rei de Ohm

Trabalho realizado por:

Rúben Peixoto, n° 37514 Sarah Simon, n° 38116 Luís Antunes, n° 34160

1. Objetivo

O objetivo desta experiência laboratorial é determinar a resistência de um condutor.

2. Introdução

"A Lei de Ohm, assim designada em homenagem ao seu formulador, o físico alemão Georg Simon Ohm (1789-1854), afirma que, para um condutor mantido à temperatura constante, a razão entre a tensão entre dois pontos e a corrente elétrica é constante. Essa constante é denominada de resistência elétrica." (Frase retirada do wikipédia, ver link na bilbiografia).

Para este trabalho o grupo criou um circuito elétrico. Este circuito é constituído por uma fonte de tensão ligada a uma resistência. Só que para medirmos tanto a voltagem como a corrente elétrica tivemos que colocar um amperímetro em série com a resistência e um voltímetro em paralelo com a resistência.

Com este esquema de montagem iremos obter os valores da voltagem e da corrente elétrica "reais" para determinar o valor da resistência. Para tal iremos aplicar a formula da Lei de Ohm:

$$V = R * I \Leftrightarrow R = V/I$$

3. Material Utilizado

- Amperímetro
- Voltímetro
- Fonte de Tensão (0v-12v)
- Resistências
- Interruptor
- Fios
- Crocodilo
- Lápis
- Calculadora

4. Esquema de montagem

Fig.2- Fonte de Tensão

Fig.3- Voltímetro

Figure 4- Esquema de Montagem

5. Procedimentos

- -Foi montado o circuito de acordo com as instruções do professor, escolhemos duas resistências com valores superiores a $100~\Omega$ para evitar danificar os materiais;
- Depois de escolhidas as resistências, determinou-se os valores de resistência e tolerância nominal, baseado no código de cores, de cada uma das resistências;
- Para cada uma das 12 tensões da fonte de tensão foram observados e registados os valores no voltímetro e amperímetro;
 - -O processo anterior foi repetido para a 2ª resistência;
- -Por fim calculamos os valores das resistências dos condutores para verificar se são óhmicos, ou seja, cumprem a lei de ohm.

6. Tratamento dos dados

Resistência de 560 Ω

Tensão (V)	Voltagem(V)	Amperagem (A)	Resistência registada (Ω)	Resistência calculada (Ω)
1	1.17	2.11	560	554.5
2	1.8	3.5		514.3
3	3.03	6		505.0
4	3.93	7.5		524.0
5	5.1	9.3		548.4
6	6	11.7		512.8
7	6.9	12.3		561.0
8	7.8	15		520.0
9	8.7	15.3		568.6
10	9.6	18		533.3
11	10.8	18		600.0
12	11.7	21.3		549.3

Resistência de 2 500 000 Ω

Tensão (V)	Voltagem(V	Amperagem (A)	Resistência registada (Ω)	Resistência calculada (Ω)
1	1.52	0.6	25*10^(5)	2533333.3
2	2.25	0.9		2500000.0
3	3.03	1.1		2754545.5
4	3.9	1.6		2437500.0
5	5.1	2		2550000.0
6	6	2.3		2608695.7
7	6.9	2.7		2555555.6
8	7.8	3.1		2516129.0
9	8.7	3.4		2558823.5
10	9.6	3.8		2526315.8
11	10.7	4.2		2547619.0
12	11.7	4.6		2543478.3

7. Resultados

Neste trabalho laboratorial constatou-se, de acordo com o gráfico obtido, há medida que se ia aumentado a voltagem a corrente elétrica segue em proporcionalidade inversa com a voltagem, ou seja, à medida que aumenta a tensão a corrente também diminuía uma vez que a resistência tem valor constante.

7. Comentários/Crítica

Nesta experiência houve alguns erros instrumentais, sistemáticos e acidentais:

- Ao realizar as medições da voltagem e da amperagem o grupo constatou que, devido à resistência interna tanto do amperímetro como do voltímetro, esses valores tanto da voltagem e da corrente elétrica têm pequenas discrepâncias comparadas com o valor real.
- Um outro erro é o facto de o circuito não estar 100% isolada o que pode levar a uma perda de corrente e consequentemente os valores podem ser apresentados com mais erros.
- O grupo também constatou que se tivermos uma tensão demasiado alta e uma resistência demasiada pequena (por exemplo $10~\Omega$) este entrará em curto circuito.

8. Bibliografia

- Atividade experimental n°2 (Lei de Ohm)
- https://pt.wikipedia.org/wiki/Lei_de_Ohm