Luca Brodo – Summer Semester 2021

Deep Learning

Algorithm for optimization of Machine Learning models

- Performance plays a huge role when it comes to training models
- By knowing how it works, ad hoc solutions can be implemented

 This algorithm is usually attributed to Cauchy, who first suggested it in 1847

- Basic idea:
 - Finding local minimum through an iterative process
 - The step opposite direction of the gradient of the loss function is taken

$$\mathbf{a_n} = \mathbf{a_{n-1}} - \alpha \nabla F(\mathbf{a_{n-1}})$$

- Calculate the minimum of the cost function
- Steps = Learning Rate

$$\mathbf{a_n} = \mathbf{a_{n-1}} - \alpha \nabla F(\mathbf{a_{n-1}})$$

(1)

Incorrect Value for the learning rate

• Overshooting:

Incorrect Value for the learning rate

Undershooting

Gradient Descent Pitfalls

(1)

3 Variations:

Batch Gradient Descent

Stochastic Gradient Descent

Mini-Batch Gradient Descent

Batch Gradient Descent

$$\mathbf{a_n} = \mathbf{a_{n-1}} - \alpha \nabla F(\mathbf{a_{n-1}})$$

$$\theta^{(i)} = \theta^{(i-1)} - \alpha \nabla \mathcal{L}(\theta; \tau)$$

- Optimizes the parameters using the whole data set at every iteration
- 0(1/E) iterations to reach the optimum => E depending on the shape of the cost function

Result

Smaller learning rate

Bigger learning rate

Characteristics

- The optimal minimum is guaranteed to be found
- Very solid
- Works with all type of loss functions

But:

- Slow
- Not suitable for large datasets

Stochastic Gradient Descent

$$\mathbf{a_n} = \mathbf{a_{n-1}} - \alpha \nabla F(\mathbf{a_{n-1}})$$

$$\theta^{(i)} = \theta^{(i-1)} - \alpha \nabla \mathcal{L}(\theta; (x_i, y_i))$$

- Batch version too slow
 - Using the entire dataset introduces unwanted redundancy
- Solution →
 - Use only one instance of the dataset
 - At every iteration, select one instance randomly

Result

Drawbacks

- Randomness \rightarrow much less solid
 - Possibility to jump out of the local minimum
- Depends on the type of cost function

- One possible solution
 - Reduce the learning grade gradually at every iteration

Mini-Batch Gradient Descent

$$\theta^{(i)} = \theta^{(i-1)} - \alpha \nabla \mathcal{L}(\theta; \beta)$$

- Select batch from the dataset
- Use this batch for the optimization

Result

Characteristics

- Randomness still plays a major role
- Faster than the batch version, more stable than the stochastic
- The form of the loss function has an impact on the performance
- Suitable for large dataset

Comparison

Comparison and conclusion

- Very solid optimization algorithm
- Huge room for improvements for ad-hoc solutions
- Not a work-for-all solution
- Important trade off to consider:
 - Faster solutions but higher possibility to overshoot