Chapter 8 Introduction to linear regression¹

Department of Mathematics & Statistics North Carolina A&T State University

 $^{^1\}mbox{These}$ notes use content from OpenIntro Statistics Slides by Mine Cetinkaya-Rundel.

Nature or nurture?

In 1966 Cyril Burt published a paper called "The genetic determination of differences in intelligence: A study of monozygotic twins reared together and apart". The data consist of IQ scores for [an assumed random sample of] 27 identical twins, one raised by foster parents, the other by the biological parents.

Which of the following is false?

```
##
## Call:
## lm(formula = twins$Foster ~ twins$Biological)
##
## Residuals:
                 10 Median
##
       Min
                                  30
                                          Max
## -11.3512 -5.7311 0.0574 4.3244 16.3531
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    9.20760
                            9.29990 0.990
                                                 0.332
## twins$Biological 0.90144 0.09633 9.358 1.2e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.729 on 25 degrees of freedom
## Multiple R-squared: 0.7779, Adjusted R-squared: 0.769
## F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
```

- A) Additional 10 points in the biological twin's IQ is associated with additional 9 points in the foster twin's IQ, on average.
- B) Roughly 78% of the foster twins' IQs can be accurately predicted by the model.
- C) The linear model is $\widehat{fosterIQ} = 9.2 + 0.9 \times bioIQ$.
- D) Foster twins with IQs higher than average IQs tend to have biological twins with higher than average IQs as well.

Which of the following is false?

```
##
## Call:
## lm(formula = twins$Foster ~ twins$Biological)
##
## Residuals:
                 10 Median
##
       Min
                                  30
                                          Max
## -11.3512 -5.7311 0.0574 4.3244 16.3531
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    9.20760
                             9.29990 0.990
                                                 0.332
## twins$Biological 0.90144 0.09633 9.358 1.2e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.729 on 25 degrees of freedom
## Multiple R-squared: 0.7779, Adjusted R-squared: 0.769
## F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
```

- A) Additional 10 points in the biological twin's IQ is associated with additional 9 points in the foster twin's IQ, on average.
- B) Roughly 78% of the foster twins' IQs can be accurately predicted by the model.
- C) The linear model is $\widehat{fosterIQ} = 9.2 + 0.9 \times bioIQ$.
- D) Foster twins with IQs higher than average IQs tend to have biological twins with higher than average IQs as well.

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?

- A) $H_0: b_0 = 0; H_A: b_0 \neq 0$
- B) $H_0: \beta_0 = 0; H_A: \beta_0 \neq 0$
- C) $H_0: b_1 = 0; H_A: b_1 \neq 0$
- D) $H_0: \beta_1 = 0; H_A: \beta_1 \neq 0$

Assuming that these 27 twins comprise a representative sample of all twins separated at birth, we would like to test if these data provide convincing evidence that the IQ of the biological twin is a significant predictor of IQ of the foster twin. What are the appropriate hypotheses?

- A) $H_0: b_0 = 0; H_A: b_0 \neq 0$
- B) $H_0: \beta_0 = 0; H_A: \beta_0 \neq 0$
- C) $H_0: b_1 = 0; H_A: b_1 \neq 0$
- D) $H_0: \beta_1 = 0; H_A: \beta_1 \neq 0$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

 \blacktriangleright We always use a t-test in inference for regression.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

We always use a t-test in inference for regression. Remember: Test statistic, $T = \frac{point\ estimate-null\ value}{SE}$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression. Remember: Test statistic, $T = \frac{point\ estimate-null\ value}{SE}$
- lackbox Point estimate $=b_1$ is the observed slope.

9.2999	0.00	0.2216
9.2999	0.99	0.3316
0.0963	9.36	0.0000
	0.0963	0.0963 9.36

- We always use a t-test in inference for regression. Remember: Test statistic, $T = \frac{point\ estimate-null\ value}{SE}$
- Point estimate $= b_1$ is the observed slope.
- $igwedge SE_{b_1}$ is the standard error associated with the slope.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression. Remember: Test statistic, $T = \frac{point\ estimate-null\ value}{SE}$
- lackbox Point estimate = b_1 is the observed slope.
- $igwedge SE_{b_1}$ is the standard error associated with the slope.
- Degrees of freedom associated with the slope is df = n 2, where n is the sample size.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- We always use a t-test in inference for regression. Remember: Test statistic, $T = \frac{point\ estimate-null\ value}{SE}$
- ightharpoonup Point estimate = b_1 is the observed slope.
- $igwedge SE_{b_1}$ is the standard error associated with the slope.
- lackbox Degrees of freedom associated with the slope is df=n-2, where n is the sample size.
 - Remember: We lose 1 degree of freedom for each parameter we estimate, and in simple linear regression we estimate 2 parameters, β_0 and β_1 .

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

$$T = \frac{0.9014 - 0}{0.0963} = 9.36$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

$$T = \frac{0.9014 - 0}{0.0963} = 9.36$$

$$df = 27 - 2 = 25$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

$$T = \frac{0.9014 - 0}{0.0963} = 9.36$$

$$df = 27 - 2 = 25$$

$$p - value = P(|T| > 9.36) < 0.01$$

% College graduate vs. % Hispanic in LA

What can you say about the relationship between % college graduate and % Hispanic in a sample of 100 zip code areas in LA?

% College graduate vs. % Hispanic in LA - another look

What can you say about the relationship between of % college graduate and % Hispanic in a sample of 100 zip code areas in LA?

Which of the below is the best interpretation of the slope?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
%Hispanic	-0.7527	0.0501	-15.01	0.0000

- A) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 75% decrease in % of college grads.
- B) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 0.75% decrease in % of college grads.
- C) An additional 1% of Hispanic residents decreases the % of college graduates in a zip code area in LA by 0.75%.
- D) In zip code areas with no Hispanic residents, % of college graduates is expected to be 75%.

Which of the below is the best interpretation of the slope?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
%Hispanic	-0.7527	0.0501	-15.01	0.0000

- A) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 75% decrease in % of college grads.
- B) A 1% increase in Hispanic residents in a zip code area in LA is associated with a 0.75% decrease in % of college grads.
- C) An additional 1% of Hispanic residents decreases the % of college graduates in a zip code area in LA by 0.75%.
- D) In zip code areas with no Hispanic residents, % of college graduates is expected to be 75%.

Do these data provide convincing evidence that there is a statistically significant relationship between % Hispanic and % college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Do these data provide convincing evidence that there is a statistically significant relationship between % Hispanic and % college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Yes, the p-value for % Hispanic is low, indicating that the data provide convincing evidence that the slope parameter is different than 0.

Do these data provide convincing evidence that there is a statistically significant relationship between % Hispanic and % college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Yes, the p-value for % Hispanic is low, indicating that the data provide convincing evidence that the slope parameter is different than 0.

How reliable is this p-value if these zip code areas are not randomly selected?

Do these data provide convincing evidence that there is a statistically significant relationship between % Hispanic and % college graduates in zip code areas in LA?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.7290	0.0308	23.68	0.0000
hispanic	-0.7527	0.0501	-15.01	0.0000

Yes, the p-value for % Hispanic is low, indicating that the data provide convincing evidence that the slope parameter is different than 0.

How reliable is this p-value if these zip code areas are not randomly selected?

Not very...

Remember that a confidence interval is calculated as $point\ estimate \pm ME\ \text{and the degrees of freedom associated with}$ the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- A) $9.2076 \pm 1.65 \times 9.2999$
- B) $0.9014 \pm 2.06 \times 0.0963$
- C) $0.9014 \pm 1.96 \times 0.0963$
- D) $9.2076 \pm 1.96 \times 0.0963$

Remember that a confidence interval is calculated as $point\ estimate \pm ME\ \text{and the degrees of freedom associated with}$ the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- A) $9.2076 \pm 1.65 \times 9.2999$
- B) $0.9014 \pm 2.06 \times 0.0963$
- C) $0.9014 \pm 1.96 \times 0.0963$
- D) $9.2076 \pm 1.96 \times 0.0963$

Remember that a confidence interval is calculated as $point\ estimate \pm ME\ \text{and the degrees of freedom associated with}$ the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- A) $9.2076 \pm 1.65 \times 9.2999$
- B) $0.9014 \pm 2.06 \times 0.0963$
- C) $0.9014 \pm 1.96 \times 0.0963$
- D) $9.2076 \pm 1.96 \times 0.0963$

$$n = 27$$
 $df = 27 - 2 = 25$

Remember that a confidence interval is calculated as $point\ estimate \pm ME\ \ \text{and}\ \ \text{the degrees}\ \ \text{of freedom associated}\ \ \text{with}$ the slope in a simple linear regression is n-2. Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
bioIQ	0.9014	0.0963	9.36	0.0000

- A) $9.2076 \pm 1.65 \times 9.2999$
- B) $0.9014 \pm 2.06 \times 0.0963$
- C) $0.9014 \pm 1.96 \times 0.0963$
- D) $9.2076 \pm 1.96 \times 0.0963$

$$n = 27$$
 $df = 27 - 2 = 25$

$$95\%: t_{25}^{\star} = 2.06$$

Remember that a confidence interval is calculated as $point\ estimate \pm ME\ \text{and the degrees of freedom associated with the slope in a simple linear regression is }n-2.$ Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

- A) $9.2076 \pm 1.65 \times 9.2999$
- B) $0.9014 \pm 2.06 \times 0.0963$
- C) $0.9014 \pm 1.96 \times 0.0963$
- D) $9.2076 \pm 1.96 \times 0.0963$

$$n = 27$$
 $df = 27 - 2 = 25$
 $95\%: t_{25}^{\star} = 2.06$

$$0.9014 \quad \pm \quad 2.06 \times 0.0963$$

Remember that a confidence interval is calculated as $point\ estimate \pm ME\ \text{and the degrees of freedom associated with the slope in a simple linear regression is }n-2.$ Which of the below is the correct 95% confidence interval for the slope parameter? Note that the model is based on observations from 27 twins.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.2076	9.2999	0.99	0.3316
biolQ	0.9014	0.0963	9.36	0.0000

A)
$$9.2076 \pm 1.65 \times 9.2999$$

B)
$$0.9014 \pm 2.06 \times 0.0963$$

C)
$$0.9014 \pm 1.96 \times 0.0963$$

D)
$$9.2076 \pm 1.96 \times 0.0963$$

$$\begin{array}{rcl} n & = & 27 & df = 27 - 2 = 25 \\ 95\%: \ t_{25}^{\star} & = & 2.06 \\ 0.9014 & + & 2.06 \times 0.0963 \end{array}$$

(0.7, 1.1)

▶ Inference for the slope for a single-predictor linear regression model:

- ▶ Inference for the slope for a single-predictor linear regression model:
 - Hypothesis test:

$$T = \frac{b_1 - null\ value}{SE_{b_1}} \qquad df = n - 2$$

- ▶ Inference for the slope for a single-predictor linear regression model:
 - Hypothesis test:

$$T = \frac{b_1 - null \ value}{SE_{b_1}} \qquad df = n - 2$$

Confidence interval:

$$b_1 \pm t^\star_{df=n-2} SE_{b_1}$$

- Inference for the slope for a single-predictor linear regression model:
 - Hypothesis test:

$$T = \frac{b_1 - null \ value}{SE_{b_1}} \qquad df = n - 2$$

Confidence interval:

$$b_1 \pm t^\star_{df=n-2} SE_{b_1}$$

➤ The null value is often 0 since we are usually checking for any relationship between the explanatory and the response variable.

- Inference for the slope for a single-predictor linear regression model:
 - Hypothesis test:

$$T = \frac{b_1 - null\ value}{SE_{b_1}} \qquad df = n - 2$$

Confidence interval:

$$b_1 \pm t^\star_{df=n-2} SE_{b_1}$$

- ➤ The null value is often 0 since we are usually checking for any relationship between the explanatory and the response variable.
- The regression output gives b_1 , SE_{b_1} , and **two-tailed** p-value for the t-test for the slope where the null value is 0.

- ▶ Inference for the slope for a single-predictor linear regression model:
 - Hypothesis test:

$$T = \frac{b_1 - null\ value}{SE_{b_1}} \qquad df = n - 2$$

Confidence interval:

$$b_1 \pm t^\star_{df=n-2} SE_{b_1}$$

- ➤ The null value is often 0 since we are usually checking for any relationship between the explanatory and the response variable.
- The regression output gives b_1 , SE_{b_1} , and **two-tailed** p-value for the t-test for the slope where the null value is 0.
- ▶ We rarely do inference on the intercept, so we'll be focusing on the estimates and inference for the slope.

Always be aware of the type of data you're working with: random sample, non-random sample, or population.

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.
- If you have a sample that is non-random (biased), inference on the results will be unreliable.

- Always be aware of the type of data you're working with: random sample, non-random sample, or population.
- Statistical inference, and the resulting p-values, are meaningless when you already have population data.
- If you have a sample that is non-random (biased), inference on the results will be unreliable.
- ▶ The ultimate goal is to have independent observations.