REPORT DOCUMENTATION	PAGE	Form Approved OMB NO. 0704-0188			
searching existing data sources, gathering and mair regarding this burden estimate or any other asp Headquarters Services, Directorate for Information	ntaining the data needed, ect of this collection of Operations and Report y other provision of law, no ol number.	and completing information, ts, 1215 Jeffer	ng and revie including suç rson Davis	sponse, including the time for reviewing instructions, swing the collection of information. Send comments ggesstions for reducing this burden, to Washington Highway, Suite 1204, Arlington VA, 22202-4302. In any oenalty for failing to comply with a collection of	
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)	
18-02-2011	Final Report			1-Jun-2006 - 28-Feb-2011	
4. TITLE AND SUBTITLE		5	5a. CONTRA	ACT NUMBER	
IPE Operations Field Effect Standard (Press	sure Sensing Suit)				
		5	5b. GRANT NUMBER		
		_,	W911NF-0	06-C-0040	
		5	c. PROGRA	AM ELEMENT NUMBER	
			206023		
6. AUTHORS		5	d. PROJEC	ΓNUMBER	
Mark Summers		<u> </u>			
		5	e. TASK NI	UMBER	
		<u> </u>			
		5	of. WORK U	NIT NUMBER	
7. PERFORMING ORGANIZATION NAMES A	ND ADDRESSES	I	8. 1	PERFORMING ORGANIZATION REPORT	
Defense Science and Technology Laboratory			NU	MBER	
Porton Down					
SP4 0JQ					
0000	-				
9. SPONSORING/MONITORING AGENCY NA ADDRESS(ES)	ME(S) AND			SPONSOR/MONITOR'S ACRONYM(S) RO	
U.S. Army Research Office				SPONSOR/MONITOR'S REPORT	
P.O. Box 12211				MBER(S)	
Research Triangle Park, NC 27709-2211			471	74-CH-CDP.1	
12. DISTRIBUTION AVAILIBILITY STATEME	NT				
Approved for Public Release; Distribution Unlimited	ed				
13. SUPPLEMENTARY NOTES					
The views, opinions and/or findings contained in the			should not co	ontrued as an official Department	
of the Army position, policy or decision, unless so	designated by other docur	mentation.			
14. ABSTRACT					
A prototype pressure sensing suit capability	•	-		*	
captured whilst performing activities in the		-			
subjects were used to collect representative	pressure data from a	series of sta	indard batt	lefield-type activities. The	
impact of terrain and wearing	-4:4-J				
additional combat equipment was also inve	sugateu.				

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

15. SUBJECT TERMS

a. REPORT

UU

pressure suit, pressure mapping, liquid protection

c. THIS PAGE

UU

16. SECURITY CLASSIFICATION OF:

UU

b. ABSTRACT

19a. NAME OF RESPONSIBLE PERSON

Veronica Rapley

441-980-6135

19b. TELEPHONE NUMBER

Report Title

IPE Operations Field Effect Standard (Pressure Sensing Suit)

ABSTRACT

A prototype pressure sensing suit capability was developed successfully that allows real-time pressure data to be captured whilst performing activities in the field that cannot be readily simulated in the laboratory. Three military subjects were used to collect representative pressure data from a series of standard battlefield-type activities. The impact of terrain and wearing additional combat equipment was also investigated.

The data obtained from this study indicated that the mean pressures experienced at the elbows and knees ranged between 90 kPa to 160 kPa, whereas the remaining locations fell between 40 kPa and 60 kPa. Extremely high peak pressures were recorded up to 1379 kPa; however, generally these pressures were encountered for less than 2% over the duration of the exercise.

List of papers submitted or published that acknowledge ARO support during this reporting period. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Number of Papers published in peer-reviewed journals: 0.00
(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)
Number of Papers published in non peer-reviewed journals: 0.00
(c) Presentations
Number of Presentations: 0.00
Non Peer-Reviewed Conference Proceeding publications (other than abstracts):
Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts): 0
Peer-Reviewed Conference Proceeding publications (other than abstracts):
Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 0
(d) Manuscripts
Number of Manuscripts: 0.00
Patents Submitted
Patents Awarded

Awards

Graduate Students	
NAME PERCENT_SUPPORTED	
FTE Equivalent:	
Total Number:	
Names of Post Doctorates	
NAME PERCENT_SUPPORTED	
FTE Equivalent:	
Total Number:	
Names of Faculty Supported	
NAME PERCENT SUPPORTED	
FTE Equivalent:	
Total Number:	
Names of Under Graduate students supported	
NAME PERCENT SUPPORTED	
FTE Equivalent:	
Total Number:	
Student Metrics This section only applies to graduating undergraduates supported by this agreement in this reporting period	
The number of undergraduates funded by this agreement who graduated during this period: The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields:	
The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:	0.00
Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):	0.00
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering:	0.00
The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense	
The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:	0.00

Names of Personnel receiving masters degrees

<u>NAME</u>		
Total Number:		

	Names of personnel receiving PHDs	
NAME		
Total Number:		
	Names of other research staff	
<u>NAME</u>	PERCENT SUPPORTED	
FTE Equivalent:		
Total Number:		

Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress

The reader is referred to the final technical report for a full description of the work carried out under this programme "See Attachment". The following information summarises the main scientific progress and accomplishments.

Executive summary

This work was carried out under a 3 year US programme funded by the Defense Threat Reduction Agency (DTRA) (contract number W911 INF-06-C-0040).

Aims

The overall aim of the programme was to develop a prototype pressure sensitive suit to map pressure and contact profiles experienced by CBRN protective clothing under field conditions.

The objective of the work reported here was to evaluate the prototype pressure suit and to collect pressure data from a series of battlefield-type activities.

Military Relevance

Pressure data gained from the field trials will be used to validate/update clothing test regimes so that the liquid chemical agent performance of material swatches and full clothing systems is assessed using pressures representative of those experienced in the field. This will provide a clearer indication of the dermal protection offered by protective clothing and greatly enable risk management when using it. This information will also be used to inform the design requirements of future CBRN protective apparel.

Work carried out

Three military subjects were used to collect representative pressure data from a series of standard battlefield-type activities. A number of variables were investigated that included: activity, subject mass terrain and the effect of wearing additional combat equipment.

Conclusions

A pressure sensing suit capability has been developed to accurately map pressure and contact profiles experienced by CBRN protective clothing on the battlefield. The suit has been employed to capture real-time pressure data from a series of battlefield exercises that were designed in consultation with UK and US military officers.

Pressure data obtained from the field trials should be used for indication only. Pressures that fell outside the calibration range of the sensors were not recorded.

Typically, mean pressures at the elbows and knees ranged between 90 kPa to 160 kPa and the remaining locations across the body fell between 40 kPa and 60 kPa. Peak pressures at the elbows and knees were recorded up to 1379 kPa; however, generally these extremely high pressures were encountered for less than 2% over the duration of the exercise.

Performing the exercises whilst wearing the additional combat webbing and a back pack (weighing ~ 15 kg) had the biggest impact on the peak pressures recorded for the kneeling and assault exercises where average increases of 13% and 18% were observed respectively.

Sensors located at the knees and elbows suffered some damage during the trials.

This was attributed to the high shear forces experienced. The damage, however, did not render the sensors completely ineffective, as pressure readings were still obtained for the active sensels.

A more complete understanding of the effects of pressure impaction on liquid penetration through clothing is required before changes in current swatch and full system clothing tests can be recommended.

Proposed Future Work

Further carefully planned trials with a larger number of volunteers should be conducted in order to provide more statistically robust data.

If this capability is to be developed further, it is recommended that the sensors are made more robust. Alternatively, since it has

been shown that the pressures experienced at elbows and knees can be very high, the use of protective pads may be the only practical option for providing high levels of liquid protection at these locations. If this is the case, then sensors would no longer be required at the knees and elbows, but instead could be located at other additional positions. This would also have the advantage of preventing the pads having to be exchanged between different activities. It is also be recommended that the dynamic range of the sensors be increased.

Man-in-simulant tests should be conducted to investigate the real impact on protection.

The extent of activities performed in the pressure suit should be extended to cover other specialist roles within the military.

Pressure data should be obtained for other types of terrain, for example desert, road,etc.

Additional functionality could be added to the system by including accelerometers to provide information on the dynamics of a subject s motion.

The use of protective pads at critical pressure points should be considered in future CBRN apparel design.

Technology Transfer

Pressure Sensing Suit

MJ Summers

Dstl/TR53405 February 2011

CA06PRO426

Dstl Porton Down Salisbury Wiltshire SP4 0JQ UK

Release Conditions

This document has been prepared for DOD and, unless indicated, may be used and circulated in accordance with the conditions of the Order under which it was supplied.

It may not be used or copied for any non-Governmental or commercial purpose without the written agreement of DTRA.

Defence Science and Technology Laboratory UK

Authorisation (Comple	te as applicable)		
	Name	Signature	Date
Group Leader	Mr. David Southgate	Julles	14-02-2011
Project Manager	Mrs. Tina Robinson-Collins	ALLA CO.	14/Peb/2011
Technical Reviewer	Dr. Colin Willis		14/2/11

Executive summary

This technical report describes work carried out under a 3 year US programme funded by the Defense Threat Reduction Agency (DTRA) (contract number W911 INF-06-C-0040).

Aims

The overall aim of the programme was to develop a prototype pressure sensitive suit to map pressure and contact profiles experienced by CBRN protective clothing under field conditions.

The objective of the work reported here was to evaluate the prototype pressure suit and to collect pressure data from a series of battlefield-type activities.

Military Relevance

Pressure data gained from the field trials will be used to validate/update clothing test regimes so that the liquid chemical agent performance of material swatches and full clothing systems is assessed using pressures representative of those experienced in the field. This will provide a clearer indication of the dermal protection offered by protective clothing and greatly enable risk management when using it. This information will also be used to inform the design requirements of future CBRN protective apparel

Work carried out

Three military subjects were used to collect representative pressure data from a series of standard battlefield-type activities. A number of variables were investigated that included: activity, subject mass terrain and the effect of wearing additional combat equipment.

Conclusions

- A pressure sensing suit capability has been developed to accurately map pressure and
 contact profiles experienced by CBRN protective clothing on the battlefield. The suit
 has been employed to capture real-time pressure data from a series of battlefield
 exercises that were designed in consultation with UK and US military officers.
- Pressure data obtained from the field trials should be used for <u>indication only</u>. Pressures that fell outside the calibration range of the sensors were not recorded.
- Typically, mean pressures at the elbows and knees ranged between 90 kPa to 160 kPa and the remaining locations across the body fell between 40 kPa and 60 kPa.
- Peak pressures at the elbows and knees were recorded up to 1379 kPa; however, generally these extremely high pressures were encountered for less than 2% over the duration of the exercise.

- Performing the exercises whilst wearing the additional combat webbing and a back pack (weighing ~ 15 kg) had the biggest impact on the peak pressures recorded for the kneeling and assault exercises where average increases of 13% and 18% were observed respectively.
- Sensors located at the knees and elbows suffered some damage during the trials.
 This was attributed to the high shear forces experienced. The damage, however, did not render the sensors completely ineffective, as pressure readings were still obtained for the active sensels.
- A more complete understanding of the effects of pressure impaction on liquid penetration through clothing is required before changes in current swatch and full system clothing tests can be recommended.

Future Programme Directions

- Further carefully planned trials with a larger number of volunteers should be conducted in order to provide more statistically robust data.
- If this capability is to be developed further, it is recommended that the sensors are made more robust. Alternatively, since it has been shown that the pressures experienced at elbows and knees can be very high, the use of protective pads may be the only practical option for providing high levels of liquid protection at these locations. If this is the case, then sensors would no longer be required at the knees and elbows, but instead could be located at other additional positions. This would also have the advantage of preventing the pads having to be exchanged between different activities. It is also be recommended that the dynamic range of the sensors be increased.
- Man-in-simulant tests should be conducted to investigate the real impact on protection.
- The extent of activities performed in the pressure suit should be extended to cover other specialist roles within the military.
- Pressure data should be obtained for other types of terrain, for example desert, road, etc.
- Additional functionality could be added to the system by including accelerometers to provide information on the dynamics of a subject's motion.
- The use of protective pads at critical pressure points should be considered in future CBRN apparel design.

Results Table of contents

Exec	cutive summary	1
List	of figures	5
List	of tables	11
1	Introduction	14
2	Prototype Pressure Sensitive Suit System	15
2.1	Pressure mapping technology	15
2.2	Carriage system	16
2.3	Integration into a CBR garment	18
2.4	WiFi Network	19
2.5	Software	20
3	Field Trial	23
3.1	Kneeling	23
3.2	Assault	24
3.3	Leopard Crawl	25
3.4	Subjects	25
3.5	Field trial variables	26
3.6	Pressure sensor configuration	26
4	Data Presentation	29
5	Results	31
5.1	Kneeling	31
5.2	Assault	56
5.3	Leopard Crawl	81
6	Discussion	101
7	Conclusions	104

8	Future Programme Directions	105
9	List of references	106
10	Appendix A: Sensor specifications	107
11	Appendix B: Suit design drawings	111
11.1	XSENSOR pad configurations	111
12	Appendix C: Peak pressure distributions	115
12.1	Assault	115
12.2	Leopard Crawl	123
Initia	al distribution	131
Repo	ort Documentation Form	133

List of figures

Figure 1 – Prototype pressure sensing suit system	15
Figure 2 – Schematic of the electronic hardware	16
Figure 3 – Panasonic Toughbook CF-U1	16
Figure 4 – Bespoke carriage system	17
Figure 5 – CAD image of the cradles designed to secure X3 electronics	17
Figure 6 – CAD image of the USB A connector	18
Figure 7 – Schematic of modified MkIVa CBR garment	18
Figure 8 – Carriage loading options: beneath and outside the suit.	19
Figure 9 – Cisco AP 541N Wireless Access Point	20
Figure 10 – Test definition window	20
Figure 11 – Live display window used to monitor real-time pressures	21
Figure 12 – Synchronised video and data	22
Figure 13 – Taking aim during a kneeling exercise	23
Figure 14 – Relaxed kneeling position	23
Figure 15 – Taking cover during an assault	24
Figure 16 – Prone position taking aim during an assault	24
Figure 17 – Hip re-load during an assault	24
Figure 18 – Standing recovery after performing an assault	25
Figure 19 – Leopard crawl	25
Figure 20 – Suit configuration 1 used to assess 'kneeling' and the 'leopard crawl'	27
Figure 21 – Suit configuration 2 used to assess the 'assault' only	27
Figure 22 – Suit configuration 3 used to assess 'kneeling', the 'assault' and the 'leopard cra	wl' 28
Figure 23 – Suit configuration 4 used to assess the 'assault' only	28

Figure 24 – Pressure data for a given location taken at time 't' during an exercise	29
Figure 25 – Mean pressures calculated for the kneeling exercise performed on grassland by Subject A.	31
Figure 26 – Peak pressures recorded for the kneeling exercise performed on grassland by Subject A.	33
$Figure\ 27-Peak\ pressure\ distribution\ recorded\ for\ right\ knee\ during\ the\ kneeling\ exercise\ performed\ on\ grassland\ by\ Subject\ A.$	35
Figure 28 – Mean pressures calculated for the kneeling exercise performed inside the laboratory by Subject A.	36
Figure 29 – Peak pressures recorded for the kneeling exercise performed inside the laborat by Subject A.	ory 38
Figure 30 – Peak pressure distribution recorded for the right knee during the kneeling exercise performed in the laboratory by Subject A.	40
Figure 31 – Mean pressures calculated for the kneeling exercise performed on grassland by Subject B.	41
Figure 32 – Peak pressure distribution recorded for the kneeling exercise performed on grassland with additional kit by Subject B.	43
Figure 33 – Peak pressure distribution recorded for the right knee during the kneeling exercise performed on grassland by Subject B.	45
Figure 34 – Mean pressures calculated for the kneeling exercise performed inside the laboratory by Subject B.	46
Figure 35 – Peak pressures recorded for the kneeling exercise performed in the laboratory volunteer B.	by 48
Figure 36 – Peak pressure distribution recorded for the right knee during the kneeling exercise performed in the laboratory by Subject B.	50
Figure 37 – Mean pressures calculated for the kneeling exercise performed inside the laboratory by Subject C.	51
Figure 38 – Peak pressures recorded for the kneeling exercise performed inside the laborate by Subject C.	ory 53
Figure 39 – Peak pressure distribution recorded for the right knee during the kneeling exercise performed in the laboratory by Subject C.	55
Figure 40 – Mean pressures obtained for the assault exercise performed on grassland by Subject A.	56

Figure 41 – Peak pressures recorded for the assault exercise performed on grassland by Subject A.	8
Figure 42 – Peak pressure distribution recorded for the right elbow during the assault exercise performed on grassland by Subject A.	0
Figure 43 – Mean pressures obtained for the assault exercise performed in the laboratory by Subject A.	1
Figure 44 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject A.	3
Figure 45 – Peak pressure distribution recorded for the right elbow during the assault exercise performed in the laboratory by Subject A.	5
Figure 46 – Mean pressures obtained for the assault exercise performed on grassland by Subject B.	6
Figure 47 – Maximum pressures recorded for the assault exercise performed on grassland by Subject B.	
Figure 48 – Peak pressure distribution recorded for the right elbow during the assault exercise performed on grassland by Subject B.	0
Figure 49 – Mean pressures obtained for the assault exercise performed in the laboratory by Subject B.	1
Figure 50 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject B.	3
Figure 51 – Peak pressure distribution recorded for the right elbow during the assault exercise performed in the laboratory by Subject B.	5
Figure 52 – Mean pressures obtained for the assault exercise performed in the laboratory by Subject C.	6
Figure 53 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject C.	8
Figure 54 – Peak pressure distribution recorded for the right elbow during the assault exercise performed in the laboratory by Subject C.	0
Figure 55 – Mean pressures obtained for the leopard crawl performed on grassland by Subject A.	1
Figure 56 – Peak pressures obtained for the leopard crawl performed on grassland by Subject A.	
Figure 57 – Peak pressure distribution recorded for the right knee during the leopard crawl performed on grassland by Subject A.	5

Figure 58 – Mean pressures obtained for the leopard crawl performed in the laboratory by Subject A.
Figure 59 – Peak pressures obtained for the leopard crawl performed in the laboratory by Subject A.
$ Figure \ 60-Peak \ pressure \ distribution \ recorded \ for \ the \ right \ knee \ during \ the \ leopard \ crawl \\ performed \ in \ the \ laboratory \ by \ Subject \ A. $
Figure 61 – Mean pressures obtained for the leopard crawl performed on grassland by Subject B.
Figure 62 – Peak pressures obtained for the leopard crawl performed on grassland by Subject B. 93
Figure 63 – Peak pressure distribution recorded for the right elbow during the leopard crawl performed on grassland by Subject B. 95
Figure 64 – Mean pressures obtained for the leopard crawl performed in the laboratory by Subject C. 96
Figure 65 – Peak pressures obtained for the leopard crawl performed in the laboratory by Subject C. 98
Figure 66 – Peak pressure distribution recorded for the right elbow during the leopard crawl performed on grassland by Subject C.
Figure 67 – Peak pressure distribution recorded for the left elbow during the assault exercise performed on grassland by Subject A.
Figure 68 – Peak pressure distribution recorded for the left elbow during the assault exercise performed in the laboratory by Subject A. 116
Figure 69 – Peak pressure distribution recorded for the left knee during the assault exercise performed on grassland by Subject A. 116
Figure 70 – Peak pressure distribution recorded for the left knee during the assault exercise performed in the laboratory by Subject A.
Figure 71 – Peak pressure distribution recorded for the right knee during the assault exercise performed on grassland by Subject A.
Figure 72 – Peak pressure distribution recorded for the right knee during the assault exercise performed in the laboratory by Subject A. 118
Figure 73 – Peak pressure distribution recorded for the left elbow during the assault exercise performed on grassland by Subject B. 118
Figure 74 - Peak pressure distribution recorded for the left elbow during the assault exercise performed in the laboratory by Subject B.

Figure 75 – Peak pressure distribution recorded for the left knee during the assault exercise performed on grassland by Subject B.	: 119
Figure 76 – Peak pressure distribution recorded for the left knee during the assault exercise performed in the laboratory by Subject B.	: 1 20
Figure 77 – Peak pressure distribution recorded for the right knee during the assault exercise performed on grassland by Subject B.	se 120
Figure 78 – Peak pressure distribution recorded for the right knee during the assault exercise performed in the laboratory by Subject B.	se 121
Figure 79 – Peak pressure distribution recorded for the left elbow during the assault exercise performed in the laboratory by Subject C.	se 21
Figure 80 – Peak pressure distribution recorded for the left knee during the assault exercise performed in the laboratory by Subject C.	22
Figure 81 - Peak pressure distribution recorded for the right knee during the assault exercis performed in the laboratory by Subject C.	se 122
Figure 82 – Peak pressure distribution recorded for the left elbow during the leopard crawl performed on grassland by Subject A.	123
Figure 83 – Peak pressure distribution recorded for the left elbow during the leopard crawl performed in the laboratory by Subject A.	124
Figure 84 – Peak pressure distribution recorded for the right elbow during the leopard craw performed on grassland by Subject A.	vl 24
Figure 85 – Peak pressure distribution recorded for the right elbow during the leopard craw performed in the laboratory by Subject A.	vl 125
Figure 86 – Peak pressure distribution recorded for the left knee during the leopard crawl performed on grassland by Subject A.	125
Figure 87 – Peak pressure distribution recorded for the left knee during the leopard crawl performed in the laboratory by Subject A.	126
Figure 88 – Peak pressure distribution recorded for the left elbow during the leopard crawl performed on grassland by Subject B.	126
Figure 89 – Peak pressure distribution recorded for the left knee during the leopard crawl performed on grassland by Subject B.	127
Figure 90 - Peak pressure distribution recorded for the right knee during the leopard crawl performed on grassland by Subject B.	127
Figure 91 – Peak pressure distribution recorded for the left elbow during the leopard crawl performed in the laboratory by Subject C.	128

Figure 92 – Peak pressure distribution recorded for the left knee during the leopard crawl performed in the laboratory by Subject C. 128

Figure 93 – Peak pressure distribution recorded for the right knee during the leopard crawl performed in the laboratory by Subject C. 129

List of tables

Table 1 – Subject information	26			
Table 2 – Mean pressures, and standard deviations of the mean (SD), calculated for the kneeling exercise performed on grassland by Subject A.				
Table 3 – Peak pressures recorded for kneeling performed on grassland by Subject A.				
Table 4 – Mean pressures, and standard deviations of the mean (SD), calculated for kneeling performed in the laboratory by Subject A.	ng 37			
Table 5 – Peak pressures recorded for kneeling performed in the laboratory by Subject A.	39			
Table 6 – Mean pressures, and standard deviations of the mean (SD), calculated for kneeling performed on grassland by Subject B.	ng 42			
Table 7 – Peak pressures recorded for kneeling performed on grassland by Subject B.	44			
Table 8 – Mean pressures, and standard deviations of the mean (SD), calculated for kneeling performed in the laboratory by Subject B.	ng 47			
Table 9 – Peak pressures recorded for kneeling performed in the laboratory by Subject B.	49			
Table $10-$ Mean pressures, and standard deviations of the mean (SD), calculated for kneeli performed in the laboratory by Subject C.	ing 52			
Table 11 – Peak pressures recorded for kneeling performed in the laboratory by Subject C.	. 54			
Table 12 – Mean pressures, and standard deviations of the mean (SD), calculated for the assault exercise performed on grassland by Subject A.	57			
Table 13 – Peak pressures recorded for the assault exercise performed on grassland by Subject A.	59			
Table 14 – Mean pressures, and standard deviations of the mean (SD), calculated for the assault exercise performed in the laboratory by Subject A.	62			
Table 15 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject A.	64			
Table 16 – Mean pressures, and standard deviations of the mean (SD), calculated for the assault exercise performed on grassland by Subject B.	67			
Table 17 – Peak pressures recorded for the assault exercise performed on grassland by Subject B.	69			

$Table\ 18-Mean\ pressures, and\ associated\ standard\ deviations\ (SD)\ obtained\ for\ the\ assault\ exercise\ performed\ in\ the\ laboratory\ by\ Subject\ B.$	72
Table 19 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject B.	74
$Table\ 20-Mean\ pressures,\ and\ associated\ standard\ deviations\ (SD)\ obtained\ for\ the\ assault\ exercise\ performed\ in\ the\ laboratory\ by\ Subject\ C.$: 77
Table 21 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject C.	79
Table 22 – Mean pressure, and associated standard deviations (SD) for the leopard crawl performed on grassland by Subject A.	82
Table 23 – Peak pressures recorded for the leopard crawl performed on grassland by Subject A.	et 84
Table 24 – Mean pressures, and associated standard deviations (SD) for the leopard crawl performed in the laboratory by Subject A.	87
Table 25 – Peak pressures recorded for the leopard crawl performed in the laboratory by Subject A.	89
Table 26 – Mean pressures, and associated standard deviations (SD), obtained for the leopard crawl performed on grassland by Subject B.	rd 92
Table 27 – Peak pressures recorded for the leopard crawl performed on grassland by Subject B.	et 94
Table 28 – Mean pressures, and associated standard deviations (SD), obtained for the leopard crawl performed in the laboratory by Subject C.	d 97
Table 29 – Peak pressures recorded for the leopard crawl performed in the laboratory by Subject C.	99
Table 30 – Summary of the average pressure changes resulting from the additional kit load	02

INTENTIONALLY LEFT BLANK

1 Introduction

This report summarises the work carried out under a three year US programme funded by the Defense Threat Reduction Agency (DTRA). The ultimate aim of this programme was to develop a prototype pressure sensitive suit to accurately map pressure and contact profiles across a CBRN protective garment during a set of standard battlefield-type activities.

Pressure data gained from the field trials will be used to validate/update clothing test regimes so that the liquid chemical agent performance of material swatches and full clothing systems is assessed using pressures representative of those experienced in the field. This will provide a clearer indication of the dermal protection offered by protective clothing and greatly enable risk management when using it. This information will also be used to inform the design requirements of future CBRN protective apparel.

This final report is broken down into different sections that describe the following:

- Section 2 provides an overview of the prototype pressure sensing suit system and its components.
- Section 3 describes the exercises performed during the field trial.
- Section 4 defines the way in which the data from the trials have been represented.
- Section 5 describes the results of the field trials.
- Section 6 discusses the results from the field trials.
- Section 7 draws conclusions from the programme.
- Section 8 presents recommendations for future work.

2 Prototype Pressure Sensitive Suit System

A prototype pressure sensing suit capability has been developed that allows real-time pressure data to be captured whilst carrying out realistic battlefield activities that cannot be readily simulated inside a laboratory.

The prototype system is displayed in Figure 1 and its components and software are described in detail in Sections 2.1 to 2.5.

Figure 1 – Prototype pressure sensing suit system

2.1 Pressure mapping technology

The XSENSOR pressure mapping technology was down-selected based upon its performance over alternative pressure mapping technologies [1-4]. The sensors were precalibrated over two pressure ranges: 34.5 kPa to 344.7 kPa (i.e. 5 psi to 50 psi) and 68.9 kPa to 1379 kPa (i.e. 10 psi to 200 psi). The sensor specifications are provided in Appendix A. XSENSOR developed a Dynamic Link Library (DLL) to allow remote control and monitoring of the sensor pads through a bespoke software package (Section 2.5).

The pressure mapping system was designed and manufactured to include five pairs of split sensors. Each sensor pair connects to a single sensor pack (SPK) and the sensor packs connect to a data logging device *via* an X3 Pro hub and X3 node, as illustrated in

Figure 2. The mobile data logging device then stores and transmits data wirelessly to a remote workstation to allow the trial to be monitored in real-time.

Figure 2 – Schematic of the electronic hardware

A number of mobile data logging devices were investigated, but the Panasonic Toughbook CF-U1 (Figure 3) was chosen as it provided the most confidence in its performance. The reader is referred to Refence 5 for the review of candidate devices carried out under this programme.

Figure 3 – Panasonic Toughbook CF-U1

2.2 Carriage system

A bespoke carriage system was designed and manufactured to house the associated sensor electronics, sensor cabling and Panasonic Toughbook CF-U1 (Figure 4).

Figure 4 – Bespoke carriage system

Connectivity of the X3 electronics was a potential a vulnerability and therefore secure sheaths were designed using Dstl's CAD and rapid prototyping facility (Figure 5). The USB connection from the X3 Pro electronics to the Panasonic Toughbook CF-U1 was another vulnerability with potential to cause technical problems when conducting a trial. The Toughbook CF-U1 had a 'screw in' USB A port, therefore a support was designed to clamp around the USB A connector and securely screw it into the Toughbook CF-U1 (Figure 6).

Figure 5 – CAD image of the cradles designed to secure X3 electronics

Figure 6 – CAD image of the USB A connector

2.3 Integration into a CBR garment

Smart Garment People Ltd. (an independent clothing design house) was used to modify a UK CBR garment (the MkIVa) to include sensor pockets at target locations. The sensor location was dependent upon the type of activity being assessed and the dress-state of the subject; therefore in consultation with both UK and US military officers, primary target locations were identified as: knees, elbows, forearms, shoulders and hips. However, to maximise body coverage, the garment was designed to include additional sensor pockets, as shown in Figure 7. The design drawings used to modify the garment are included in Appendix B.

Figure 7 – Schematic of modified MkIVa CBR garment

The modified CBR ensemble was designed to allow the carriage system to be worn either underneath or over the top of the jacket, as shown in Figure 8.

Figure 8 – Carriage loading options: beneath and outside the suit.

2.4 WiFi Network

In terms of networking, the Panasonic Toughbook CF-U1 supports IEEE 802.11a/b/g/draft-n. "Draft-n" WiFi claims typical maximum throughput of over 5 MBytes/s. These rates can, however, be affected by a number of factors, including radio interference and obstacles between the transmitter and receiver.

Nominal maximum outdoor range is approximately 100 m; this figure is also affected by interference and obstacles. The aerial size of the remote device is also a factor. Placing the Toughbook CF-U1 within a backpack worn by the subject has the potential to decrease the range and strength of the signal. Therefore a WiFi network was constructed using a Cisco AP 541N dual band (2.4-GHz or 5-GHz) WiFi access point to increase the radio reception (Figure 9). The access point is intended to be situated in the centre of the testing area and connected to the monitoring station by a wired or wireless link. This also provides the option to add secondary access points to extend the wireless coverage if required.

Figure 9 – Cisco AP 541N Wireless Access Point

2.5 Software

A software package was developed by Mathshop, an independent software house, which consists of 3 separate modules:

2.5.1 Recording module

The recording module interacts with the XSENSOR system through an interface dynamic link module (DLL) to capture (at a specified rate or as frequently as possible) the pressure values for each cell of the pads being monitored. The recording module provides the user with the ability to define, save and reload test configurations and exercise sequences, as shown in Figure 10.

Figure 10 – Test definition window

2.5.2 Remote control and monitoring module

The remote control and monitoring module interacts with the recording module to monitor and manage the trial. This provides the remote user with the ability to initiate, suspend and end recording, and to designate the beginning and end of exercises. It also contains a live display that allows the user to monitor a trial in real-time (Figure 11).

Figure 11 – Live display window used to monitor real-time pressures

2.5.3 Analysis module

The analysis module provides the user with data analysis, presentation and export facilities This module enables the user to:

- view average pressure, peak pressure and integrated pressure (i.e. total load) for each sensor pad as a function of time
- locate data by exercise
- display data for each pad as pressure contours
- synchronise a moving cursor on the charts with the contour display and video
- export the results to Excel files and to .csv files

Figure 12 displays a screen shot of the analysis window taken from a preliminary laboratory trial.

Figure 12 – Synchronised video and data

3 Field Trial

A series of exercises deigned to mimic standard battlefield-type activities was constructed based upon advice from both UK and US military personnel.

The exercises included:

3.1 Kneeling

The subject would walk a short distance, as if on patrol, and then take cover to the kneeling position whilst taking aim with their rifle, as shown in Figure 13.

Figure 13 – Taking aim during a kneeling exercise

The subject would then take up a more relaxed kneeling position by repositioning their body weight on to the back of the heel of the kneeling leg, as shown in Figure 14, before standing.

Figure 14 – Relaxed kneeling position

3.2 Assault

The subject would walk a short distance, as if on patrol, then as if encountering fire would take cover, adopt the prone position and simulate returning fire, as shown in Figures 15 and 16.

Figure 15 – Taking cover during an assault

Figure 16 – Prone position taking aim during an assault

The subject would then rotate onto their right hip to simulate reloading their riffle (Figure 17) and take aim once more, before standing (Figure 18).

Figure 17 – Hip re-load during an assault

Figure 18 – Standing recovery after performing an assault

3.3 Leopard Crawl

The subject would begin from standing and then drop to the floor to perform a leopard crawl, as shown in Figure 19.

Figure 19 – Leopard crawl

A SA80 riffle was used for each exercise. The exercises were performed for a maximum duration of 1 minute, followed by a minimum of 1 minute rest. The tempo of the exercises was determined by the individual subject; therefore there was no limit on the number of times each exercise was performed within the 1 minute time period.

3.4 Subjects

Three UK military subjects took part in the field trials. The subjects varied in mass, height and stature, and also came from different regiments within the British Army. Table 1 provides the information for the three subjects, referred to as Subjects A, B and C.

Subject	Mass / kg	Height / cm	Regiment
A	83	178	Mercian Regt
В	87	182	Royal Logistics Core
C	91	188	Royal Tank Regt

Table 1 – Subject information

3.5 Field trial variables

A number of variables were investigated during the trials including:

- i. Type of exercise
 - a. Kneeling
 - b. Assault
 - c. Leopard crawl
- ii. Subject
 - a. A
 - b. B
 - c. C
- iii. Terrain
 - a. Grassland
 - b. Laboratory on ¼-inch carpet underlay
- iv. Equipment load
 - a. No kit
 - b. Additional combat webbing and back pack (collectively weighing approximately 15 kg)

3.6 Pressure sensor configuration

The location of the pressure sensors within the suit varied depending upon the exercise being assessed. A total of four sensor configurations were used during the trial; the configurations are shown in Figures 20 to 23 where the black dot represents the sensor origin (refer to Appendix A). The configurations include:

Configuration 1 was used to assess 'kneeling' and the 'leopard crawl'.

Configuration 2 was used to assess the 'assault' only.

Configuration 3 was used to assess 'kneeling', the 'assault' and the 'leopard crawl'.

Configuration 4 was used to assess the 'assault' only.

Figure 20 – Suit configuration 1 used to assess 'kneeling' and the 'leopard crawl'

Figure 21 – Suit configuration 2 used to assess the 'assault' only

Figure 22 – Suit configuration 3 used to assess 'kneeling', the 'assault' and the 'leopard crawl'

Figure 23 – Suit configuration 4 used to assess the 'assault' only

4 Data Presentation

The sensor network reliably achieved a sampling rate in the region of 33 Hz. Figure 24 illustrates example data captured for three individual time frames. For each time frame of data it is possible to display the 'average pressure' experienced, by summing the individual pressures for each active sensel (i.e. sensor point) and dividing this by the total number of active sensels. Alternatively, the 'peak pressure' can be displayed, which corresponds to the individual sensel that gives the largest pressure response across the sensor pad for each time frame.

Figure 24 – Pressure data for a given location taken at time 't' during an exercise

For the purpose of this report, the data has been represented as the 'mean pressure' (Equation 1) and 'peak pressure' (Equation 2).

i. Mean pressure – 'the average of the average pressures recorded during an exercise', defined by Equation 1:

Mean pressure =
$$\frac{\sum \left(x_1 + x_2 + \dots + x_n \right)}{n}$$
 [1]

where x_n represents the average pressure over a sensor pad at time frame 'n' during an exercise.

ii. Peak pressure – 'the absolute maximum pressure recorded over a single sensel during an exercise', defined by Equation2:

Peak pressure =
$$y_{max}$$
 [2]

In cases where the recorded peak pressures have been very high (i.e. in the order of mega-Pascals), a pressure distribution has been generated to reveal the frequency at which these high pressures were encountered during an exercise.

All pressure readings recorded were within the calibration range of the sensors. Pressure values that fell below the calibration range of the sensors have been treated as 'zero' values and those that fell above the upper calibration limit were recorded as the maximum calibrated pressure (i.e. 1379 kPa). The averaged data was calculated from 'non-zero' values only (i.e. no data could be obtained from inactive sensels or from sensels that fell below the lower calibration limit). For future design, it would desirable to increase the dynamic range of the sensor pads.

5 Results

5.1 Kneeling

5.1.1 Subject A (Grassland)

5.1.1.1 Mean Pressure

The mean pressures obtained for each location during the kneeling exercise, performed on grassland by Subject A, are displayed in Figure 25 and tabulated in Table 2.

For this exercise, the calibration range for all the sensors was set to 68.9 kPa to 1379 kPa (i.e. 10 psi to 200 psi). Therefore, where 'zero' values were recorded during points of contact, it can be concluded that these values were less than 68.9 kPa.

Figure 25 – Mean pressures calculated for the kneeling exercise performed on grassland by Subject A.

	Mean Pressure / kPa	SD	Kit	Change due to kit / %
Leg Lower Back Right	74.5	2.4	No	2.4
	76.3	3.3	Yes	2.4
	< 68.9	-	No	
Leg Lower Front Right	< 68.9	-	Yes	-
Lag Ilanar Frant Bight	< 68.9	-	No	
Leg Upper Front Right	< 68.9	-	Yes	-
	< 68.9	-	No	
Leg Upper Front Left	73.2	3.3	Yes	-
Law Hawan Baat Lafe	< 68.9	-	No	
Leg Upper Back Left	< 68.9	-	Yes	-
Landles and Biola	< 68.9	-	No	
Leg Upper Back Right	< 68.9	-	Yes	-
Knee Front Left	86	7.2	No	2.2
Knee Front Leit	88	8.1	Yes	2.3
Elboyr Loft	85	14.1	No	0.7
Elbow Left	84.4	17.9	Yes	-0.7
Knee Front Right	94.5	13.4	No	7.6
	101.7	37.1	Yes	7.6
Elbayy Dight	87.1	7.6	No	2.2
Elbow Right	84.2	7.2	Yes	-3.3
Average %				2

Table 2 – Mean pressures, and standard deviations of the mean (SD), calculated for the kneeling exercise performed on grassland by Subject A.

For the initial kneeling exercise performed without the additional webbing and back pack, the largest mean pressure of 94.5 kPa was calculated for the right knee (i.e. the knee of the kneeling leg). This increased to 101.7 kPa when performing the exercise with additional kit.

A mean pressure of 74.5 kPa (without kit) was calculated for the 'leg lower back right', which increased to 76.3 kPa with kit. This was attributed to the force generated by the subject adopting the more relaxed kneeling position, where his body weight was shifted on to the back of the heel of the kneeling leg (as shown in Figure 14).

A mean pressure of 73.2 kPa was observed for the 'leg upper front left' with kit. This may have been caused by the subject leaning on this leg with his left elbow (as shown in Figure 13).

It is less clear why relatively high mean pressures were observed for the left knee and right elbow. One explanation may be that bending the knee/elbow produced tension in the garment that generated a subsequent compressive force at the centre of the joints, causing one or two sensels to respond. By comparison, when the right knee came into contact with the ground, a large number of sensels would have exhibited a pressure

response; the central sensels would have experienced the majority of the force with the peripheral sensels exhibiting a much lower pressure response, thereby reducing the overall mean pressure.

Performing the kneeling exercise on grassland when wearing the combat webbing and back pack (weighing approximately 15 kg) resulted in an average increase in the mean pressure by 2%, as shown in Table 2; the largest change of 7.6% was observed for the right knee.

5.1.1.2 Peak Pressure

The peak pressures recorded during the kneeling exercise, performed on grassland by Subject A, are shown in Figure 26 and tabulated in Table 3. The largest peak pressure of 498 kPa was recorded for the right knee, which was increased by 117% to 1078 kPa with the additional kit load. Overall, a net increase in the peak pressures of 36% was observed when performing the exercise with the combat webbing and back packs (Table 3).

Figure 26 – Peak pressures recorded for the kneeling exercise performed on grassland by Subject A.

	Peak Pressure / kPa	Kit	Change %
Log Lower Book Bight	86.6	No	0.0
Leg Lower Back Right	94.2	Yes	8.8
Lag Lawer Front Bight	< 68.9	No	
Leg Lower Front Right	< 68.9	Yes	-
Leg Upper Front Right	< 68.9	No	
	< 68.9	Yes	-
Leg Upper Front Left	< 68.9	No	
	76.7	Yes	-
Log Unner Book Loft	< 68.9	No	
Leg Upper Back Left	< 68.9	Yes	-
	< 68.9	No	
Leg Upper Back Right	< 68.9	Yes	-
Knee Front Left	335.6	No	12.8
Kilee Front Leit	378.5	Yes	12.0
Elbow Left	422.6	No	24.5
Elbow Leit	526.1	Yes	24.5
Knoo Front Dight	498	No	116 F
Knee Front Right	1078.1	Yes	116.5
Elbaw Bight	178.6	No	16.6
Elbow Right	208.3	Yes	16.6
Average %			36

Table 3 – Peak pressures recorded for kneeling performed on grassland by Subject A.

For both knees and elbows, there was a large difference between the calculated mean pressures and the recorded peak pressures. Figure 27 displays a distribution of the peak pressures for the right knee. This data demonstrates that although a peak pressure of 1078 kPa was recorded when performing the exercise with the additional kit, over the duration of the exercise this was encountered less than 0.1% of the time

Furthermore, it can be seen from Figure 27 that when conducting the exercise without the additional webbing and back pack, the majority of peak pressures were at or below 350 kPa, whereas with the kit the majority were at or below 450 kPa.

Figure 27 – Peak pressure distribution recorded for right knee during the kneeling exercise performed on grassland by Subject A.

5.1.2 Subject A (Laboratory)

5.1.2.1 Mean Pressure

The mean pressures obtained for each location during the kneeling exercise, performed in the laboratory by Subject A, are displayed in Figure 28 and tabulated in Table 4.

For this exercise, the calibration range for all the sensor pads (excluding those at the knees and elbows/forearms) was set to 34.5 kPa to 344.7 kPa (i.e. 5 psi to 50 psi). Therefore, where 'zero' values were recorded during points of contact, it can be concluded that these values were less than 34.5 kPa.

Figure 28 – Mean pressures calculated for the kneeling exercise performed inside the laboratory by Subject A.

	Mean Pressure / kPa	SD	Kit	Change due
				to kit / %
Leg Lower Back Right	50.6	10.5	No	0.8
Leg Lower Back Right	51.0	11.8	Yes	0.8
Leg Lower Front Right	< 34.5	-	No	6.9
Leg Lower Front Right	< 34.5	-	Yes	0.9
Leg Upper Front Right	36.1	1.4	No	
Leg Opper i font Right	38.6	2.1	Yes	-
Log Unner Frent Left	42.3	4.3	No	6.6
Leg Upper Front Left	45.1	8.6	Yes	0.0
Law Human Daala Laft	37.1	2.9	No	16.7
Leg Upper Back Left	43.3	4.2	Yes	16.7
Law Human Daak Dight	40.7	4.1	No	10.6
Leg Upper Back Right	45	5.6	Yes	10.6
Knee Front Left	87.1	7.4	No	-2.9
Milee I Tollt Left	84.6	6.4	Yes	-2.9
Elbow Left	88.7	16.3	No	-3.2
Elbow Left	85.9	17.6	Yes	-3.2
Knee Front Right	99.1	29.9	No	3.2
	102.3	37.7	Yes	3.2
Elbow Bight	85.6	9.9	No	0.7
Elbow Right	85.0	11.1	Yes	-0.7
Average %				4

Table 4 – Mean pressures, and standard deviations of the mean (SD), calculated for kneeling performed in the laboratory by Subject A.

As shown for the kneeling exercise performed on grassland, the largest mean pressure of 99.1 kPa was found for the right knee, which increased to 102.3 kPa when performing the exercise with the additional kit.

Similar to the findings on grassland, unexpectedly high mean pressures were observed for the left knee and right elbow. The upper legs (front and back) exhibited mean pressures in the region of 40 kPa, whereas the 'leg lower back right' produced a mean pressure of approximately 51 kPa, both with and without the webbing and back pack. No response was observed for the 'leg lower front right' of the kneeling leg.

As shown in Table 4, performing the exercise when wearing the combat webbing and back pack resulted in an average increase in the mean pressure of 4%, which was similar to the results obtained on grassland. The largest change of 16.7% was observed for the 'leg upper back left', and not the right knee.

5.1.2.2 Peak Pressure

The peak pressures recorded during the kneeling exercise, performed inside the laboratory, are shown in Figure 29 and tabulated in Table 5.

Figure 29 – Peak pressures recorded for the kneeling exercise performed inside the laboratory by Subject A.

As found for the kneeling exercise carried out on grassland, the maximum peak pressure was recorded at the right knee. However, in this instance the peak pressure reached the sensor's upper calibration limit of 1379 kPa, both with and without the additional kit.

Apart from for the left elbow and left knee, the peak pressures were all greater when the additional kit was worn. Overall, an average increase in the peak pressure of only 3% was observed when performing the exercise with the combat webbing and back pack (Table 5), compared to the 36% observed on grassland. However, this percentage may be different as the change in pressure for the right knee could not be determined as the upper calibration limit had been reached.

	Peak Pressure / kPa	Kit	Change due
			to kit / %
Leg Lower Back Right	105.9	No	14.4
Leg Lower Back Night	121.2	Yes	14.4
Log Lower Front Bight	< 34.5	No	
Leg Lower Front Right	< 34.5	Yes	-
Leg Upper Front Right	39.8	No	2.0
Leg Opper Front Right	41	Yes	3.0
Leg Upper Front Left	58.8	No	12.6
	66.2	Yes	12.6
Leg Upper Back Left	52.1	No	40.6
	77.4	Yes	48.6
Landles - Bart Biold	79.9	No	4.0
Leg Upper Back Right	83.1	Yes	4.0
Knee Front Left	348.1	No	F0.6
Knee Front Leit	171.9	Yes	-50.6
Filham Laft	575.4	No	11.0
Elbow Left	507.2	Yes	-11.9
Knee Front Right	1379	No	
	1379	Yes	-
Elbow Right	336.3	No	4.2
	350.4	Yes	4.2
Average %			3

Table 5 – Peak pressures recorded for kneeling performed in the laboratory by Subject A.

Figure 30 shows the distributions of the peak pressures for the right knee over the duration of the exercises performed with and without the additional combat kit. The majority of the peak pressures recorded were at or below 450 kPa. The frequency at which the maximum peak pressure of 1379 kPa was encountered during the exercises was approximately 1% without kit and 5% with kit.

Figure 30 – Peak pressure distribution recorded for the right knee during the kneeling exercise performed in the laboratory by Subject A.

5.1.3 Subject B (Grassland)

5.1.3.1 Mean Pressure

The mean pressures calculated for each location during the kneeling exercise, performed on grassland by Subject B, is shown in Figure 31 and tabulated in Table 6.

The calibration range for all sensor pads, apart from those positioned at the knees and elbows, was set to the lowest calibration range of 34.5 kPa to 344.7 kPa (i.e. 5 psi to 50 psi) in order to capture the lower pressure readings from these body regions. Therefore, where 'zero' values were recorded during points of contact, it can be concluded that these values were less than 34.5 kPa.

Figure 31 – Mean pressures calculated for the kneeling exercise performed on grassland by Subject B.

	Mean Pressure / kPa	SD	Kit	Change due to kit / %
Law Lawer Book Birth	49.6	7.2	No	
Leg Lower Back Right	61.1	10.9	Yes	23.2
Landanian Frank District	< 34.5	-	No	
Leg Lower Front Right	42	3.6	Yes	-
Landlenan Frant Piets	< 34.5	-	No	
Leg Upper Front Right	36.7	1.4	Yes	-
Leg Upper Front Left	67.2	24.1	No	10.9
	80.5	16.4	Yes	19.8
Leg Upper Back Left	< 34.5	-	No	
	< 34.5	-	Yes	-
Landlenan Baala Binkt	58.1	8.8	No	-12.6
Leg Upper Back Right	50.8	10.8	Yes	-12.0
Knee Front Left	87	11	No	2.6
Kilee Front Leit	89.3	10.5	Yes	2.0
Elbow Left	88.2	7.6	No	2 5
Elbow Left	90.1	13.7	Yes	3.5
Knee Front Right	89.5	21.1	No	2.2
	92.6	24.6	Yes	2.2
Elbow Right	81.3	7.4	No	4.8
	85.2	6.9	Yes	4.8
Average %				6

Table 6 – Mean pressures, and standard deviations of the mean (SD), calculated for kneeling performed on grassland by Subject B.

As found for Subject A, the mean pressure for the right knee (i.e. knee of the kneeling leg) was the highest; 89.5 kPa without the additional kit and 92.6 kPa with the kit. Similar findings were also observed for the right elbow and left knee, which produced unexpectedly high mean pressures.

In general, the results demonstrate that a mean pressure in the region of 90 kPa was obtained for the knees and elbows, whereas the other locations experienced mean pressures within a range of 40 kPa to 80 kPa (similar to that observed with Subject A, both when performing the kneeling exercise on grassland and inside the laboratory).

Apart from the exception of the 'leg upper back right', the mean pressure was increased when wearing the additional kit, as shown in Table 6. Overall, there was an average increase in the mean pressure of 6% when adding the webbing and back pack, with the most pronounced increase of 23.2% at the 'lower leg back right'.

5.1.3.2 Peak Pressure

The peak pressures recorded during the kneeling exercise, performed on grassland by Subject B, are shown in Figure 32 and tabulated in Table 7.

Figure 32 – Peak pressure distribution recorded for the kneeling exercise performed on grassland with additional kit by Subject B.

The maximum peak pressure was recorded at the right knee, as observed for Subject A. However, when performing the exercise with the additional kit the value recorded at the right knee for Subject B (371.8 kPa) was significantly less than that obtained for Subject A (1078 kPa), even though Subject B was 4 kg heavier (Table 1). This effect could be attributed to the noticeably slower tempo at which the exercise was performed by Subject B, in comparison to Subject A.

Furthermore, conducting the exercise with the additional webbing and back pack reduced the peak pressure recorded at the right knee by approximately 13%. This result may have been attributed to the fact that the exercise where the additional kit was worn was performed second. As a consequence, it is a possibility that Subject B became fatigued or experienced a degree of physical discomfort during the first set of kneeling attempts and therefore performed the second set of exercises, with the additional kit, at a slower tempo and with more caution.

	Peak Pressure / kPa	Kit	Change due to kit / %
Lag Lawer Book Bight	106.4	No	22.4
Leg Lower Back Right	141.9	Yes	33.4
Leg Lower Front Right	< 34.5	No	
Leg Lower Front Right	50.5	Yes	-
Leg Upper Front Right	< 34.5	No	
Leg Opper Front Right	43.2	Yes	-
Leg Upper Front Left	126.9	No	6.4
	135	Yes	0.4
Leg Upper Back Left	< 34.5	No	
	< 34.5	Yes	-
Leg Upper Back Right	139	No	-8.2
Leg Opper Back Right	127.6	Yes	-0.2
Knee Front Left	251.5	No	18.2
Milee I Tolit Left	297.3	Yes	10.2
Elbow Left	233.2	No	41.9
LIDOW Left	331	Yes	41.5
Knee Front Right	425.7	No	-12.7
	371.8	Yes	-12./
Elbow Pight	181.9	No	15.2
Elbow Right	209.5	Yes	15.2
Average %			13

Table 7 – Peak pressures recorded for kneeling performed on grassland by Subject B.

Apart from the right knee and the 'leg upper back right' the peak pressures were higher when performing the exercise with the additional kit. Overall, there was an average increase in the peak pressures of 13% when the webbing and back pack was worn.

The distributions of the peak pressures for the right knee are shown in Figure 33. The majority of peak pressures recorded (60%) were at or below 100 kPa, both with and without the additional kit.

Figure 33 – Peak pressure distribution recorded for the right knee during the kneeling exercise performed on grassland by Subject B.

5.1.4 Subject B (Laboratory)

5.1.4.1 Mean Pressure

The mean pressures obtained for each location during the kneeling exercise, performed in the laboratory by Subject B, are shown in Figure 34 and tabulated in Table 8.

Figure 34 – Mean pressures calculated for the kneeling exercise performed inside the laboratory by Subject B.

The right knee produced the highest mean pressure, as observed previously. Broadly speaking, the values for the knees and elbow fell within 90 kPa to 95 kPa, whereas the rest of the body, namely the upper and lower legs, were in the region 35 kPa to 65 kPa.

Performing the exercise with the additional kit resulted in an average increase in the mean pressures of 5%, which is very similar to the results obtained on grassland. Furthermore, the kit was found to have the biggest impact on the mean pressure obtained for the 'leg lower back right', as also found during the exercise performed on grassland.

	Mean Pressure / kPa	SD	Kit	Change due
	50.1	8.4	No	to kit / % 18.6
Leg Lower Back Right	59.4	10.6	Yes	
Log Lower Front Dight	< 34.5	< 34.5	No	-
Leg Lower Front Right	< 34.5	< 34.5	Yes	
Leg Upper Front Right	< 34.5	< 34.5	No	-
Leg Opper Front Right	< 34.5	< 34.5	Yes	
Law Unner Frent Left	35.1	0.4	No	17.9
Leg Upper Front Left	41.4	6.5	Yes	
Leg Upper Back Left	< 34.5	< 34.5	No	-
Leg Opper Back Left	< 34.5	< 34.5	Yes	
Leg Upper Back Right	60.2	7.3	No	6.5
Leg Opper Back Night	64.1	5.2	Yes	
Knee Front Left	91.1	8.9	No	-5.4
	86.2	7.6	Yes	
Elbow Left	88.8	10.6	No	-1.9
EIDOW Left	87.1	7	Yes	
Knee Front Right	94.6	17.6	No	0.4
	95	10.6	Yes	
Elhaw Dight	91.1	9.2	No	-4.3
Elbow Right	87.2	7.1	Yes	
Average %				5

Table 8 – Mean pressures, and standard deviations of the mean (SD), calculated for kneeling performed in the laboratory by Subject B.

5.1.4.2 Peak Pressure

The peak pressures recorded during the kneeling exercise, performed in the laboratory by Subject B, are shown in Figure 35 and tabulated in Table 9.

These results are comparable to the results obtained on the grassland with the right knee producing the highest peak pressure of 439.9 kPa. Similar to the results on grassland, the peak pressure for the right knee was reduced by approximately 9% when the additional kit was worn (Table 9). Overall, an average increase in the peak pressures of 6% was observed by introducing the additional kit.

Figure 35 – Peak pressures recorded for the kneeling exercise performed in the laboratory by volunteer B.

	Peak Pressure / kPa	Kit	Change due
			to kit / %
Leg Lower Back Right	110.1	No	30.7
Leg Lower Back Night	143.9	Yes	30.7
Log Lawer Frant Dight	< 34.5	No	
Leg Lower Front Right	< 34.5	Yes	-
Lan Ilman Frant Dinbt	< 34.5	No	
Leg Upper Front Right	< 34.5	Yes	-
Log Upper Front Left	35.5	No	70.0
Leg Upper Front Left	63.2	Yes	78.0
Leg Upper Back Left	< 34.5	No	
	< 34.5	Yes	-
Log Upper Pook Bight	136.4	No	10.0
Leg Upper Back Right	151.2	Yes	10.9
Knee Front Left	323.9	No	-35.0
Kilee Floiit Leit	210.6	Yes	-55.0
Elbow Left	323	No	12.0
Elbow Left	278.4	Yes	-13.8
Knee Front Right	439.9	No	0.0
	401.2	Yes	-8.8
Elbani Diabt	276.5	No	10.2
Elbow Right	223.5	Yes	-19.2
Average %			6

Table 9 – Peak pressures recorded for kneeling performed in the laboratory by Subject B.

The distributions of the peak pressures obtained for the right knee are shown in Figure 36. Unlike the results obtained on grassland, there appeared no clear trend. The majority of peak pressures were at or below 300 kPa.

Figure 36 – Peak pressure distribution recorded for the right knee during the kneeling exercise performed in the laboratory by Subject B.

5.1.5 Subject C (Laboratory)

5.1.5.1 Mean Pressure

Owing to poor weather conditions, Subject C had to perform the exercises in the laboratory only.

The mean pressures obtained for each location during the kneeling exercise, performed in the laboratory by Subject C, are shown in Figure 37 and Table 10.

Figure 37 – Mean pressures calculated for the kneeling exercise performed inside the laboratory by Subject C.

	Mean Pressure / kPa	SD	Kit	Change due
				to kit / %
Leg Lower Back Right	59.5	13.6	No	6.7
Log Lower Baok Right	63.5	15.3	Yes	0.7
Leg Lower Front Right	< 34.5	-	No	_
Leg Lower Front Right	35.1	0.5	Yes	_
Leg Upper Front Right	< 34.5	-	No	
Leg Opper Front Right	35.5	0.4	Yes	-
Log Upper Front Loft	40.8	3.8	No	-8.1
Leg Upper Front Left	37.5	2.4	Yes	-0.1
Leg Upper Back Left	< 34.5	-	No	_
Leg Opper Back Left	< 34.5	-	Yes	_
Leg Upper Back Right	81.4	9.1	No	9.5
Leg Opper Back Right	89.1	8.8	Yes	9.5
Knee Front Left	84.9	7.7	No	2.9
Kilee i font Leit	87.4	9.7	Yes	2.9
Elbow Left	96	16.1	No	-0.8
EIDOW Left	95.2	15	Yes	-0.8
Knee Front Right	109.7	25.1	No	-8.2
	100.7	12.6	Yes	-0.2
Elbow Bight	100.5	10.9	No	-2.4
Elbow Right	98.1	12.2	Yes	-2.4
Average %				0

Table 10 – Mean pressures, and standard deviations of the mean (SD), calculated for kneeling performed in the laboratory by Subject C.

The largest mean pressure (109.7 kPa) was observed for the right knee during the exercise where no additional kit was worn. Similar to Subjects A and B, unexpectedly high pressures were produced by the right elbow and left knee. Generally, the mean pressures observed for the knees and elbows were in the region of 90 kPa to 110 kPa, whereas the rest of the body was between 40 kPa and 80 kPa.

The biggest impact on the mean pressures from wearing the additional webbing and back pack was observed for the 'leg upper back right' where there was an increase of approximately 10% (Table 10). However, overall, there was no increase in the mean pressures when the exercise was performed with the additional kit. As mentioned previously, this finding may be explained by a change in tempo at which the exercises were carried out when the combat webbing and back pack was worn.

5.1.5.2 Peak Pressure

The peak pressures recorded during the kneeling exercise, performed in the laboratory by Subject C, are shown in Figure 38 and Table 11.

The highest peak pressure was observed for the right knee (540.6 kPa), but as found for Subject B, this was significantly less than the peak pressure observed for Subject A (1379 kPa), despite Subject C weighing more than Subject A by 8 kg.

Overall, there was an average increase in the peak pressures of 6% when carrying out the exercise wearing the additional webbing and back pack; this was consistent with the overall net increase found for Subject B.

Figure 38 – Peak pressures recorded for the kneeling exercise performed inside the laboratory by Subject C.

	Peak Pressure / kPa	Kit	Change due to kit / %
Log Lower Book Bight	152.7	No	7.5
Leg Lower Back Right	164.2	Yes	7.5
Log Lower Frant Dight	< 34.5	No	
Leg Lower Front Right	35.5	Yes	-
Log Upper Front Dight	< 34.5	No	
Leg Upper Front Right	35.8	Yes	-
Leg Upper Front Left	60.9	No	-26.1
Leg Opper Front Left	45	Yes	-20.1
Leg Upper Back Left	< 34.5	No	
	< 34.5	Yes	-
Leg Upper Back Right	182.4	No	4.3
Leg Opper Back Right	190.3	Yes	4.5
Knee Front Left	183.4	No	53.0
Kilee Front Leit	280.6	Yes	55.0
Elbow Left	468.4	No	9.3
Elbow Leit	512	Yes	9.3
Knee Front Right	484.8	No	11.5
	540.6	Yes	11.5
Elbow Dight	398.2	No	15.6
Elbow Right	336.2	Yes	-15.6
Average %			6

Table 11 – Peak pressures recorded for kneeling performed in the laboratory by Subject C.

The peak pressure distributions obtained for the right knee are shown in Figure 39. As observed above, the maximum peak pressure recorded was only encountered for a very small fraction of time (less than 0.1%) throughout the exercise and the majority of the peak pressures were at or below 350kPa.

Figure 39 – Peak pressure distribution recorded for the right knee during the kneeling exercise performed in the laboratory by Subject C.

5.2 Assault

5.2.1 Subject A (Grassland)

5.2.1.1 Mean Pressure

The mean pressures obtained for each location during the assault exercise, performed on grassland by Subject A, are shown in Figure 40 and Table 12. The calibration range for all the sensor pads (excluding those at the knees and elbows/forearms) was set to 34.5 kPa to 344.7 kPa (i.e. 5 psi to 50 psi).

Owing to the nature of this exercise, pressure readings were recorded from more locations across the body, in comparison to the kneeling exercise. Consequently, this meant the exercise had to be performed a number of times to allow the sensors to be exchanged between the different locations. Measurements for the shoulders and back were only taken when the additional kit was worn.

Figure 40 – Mean pressures obtained for the assault exercise performed on grassland by Subject A.

	Mean Pressure / kPa	SD	Kit	Change due to kit / %
Leg Lower Front Right	41.2	1.7	No	-3.4
Leg Lower Front Right	39.8	0.5	Yes	-3.4
Leg Lower Front Left	45.2	3.4	No	17.5
	53.1	7.9	Yes	17.5
Leg Upper Front Right	53	12	No	-14.9
Leg Opper From Right	45.1	7.8	Yes	-14.5
Leg Upper Front Left	43.4	8.3	No	11.3
Leg Opper Front Len	48.3	12.8	Yes	11.5
Hip Right	68	23.3	No	-21.9
nip kigiit	53.1	14.8	Yes	-21.9
Hip Left	39.5	3.3	No	11.1
	43.9	8.5	Yes	11.1
Knee Front Left	89	20.4	No	2.1
	91.8	23.6	Yes	3.1
Elbow Loft	108.1	45	No	6.0
Elbow Left	101.6	38.6	Yes	-6.0
Vnaa Frant Dight	86.9	23.8	No	2.6
Knee Front Right	84.6	19.3	Yes	-2.6
Filhaw Biaht	113.8	43.3	No	F.0
Elbow Right	108.1	37.1	Yes	-5.0
Chart Laft	56.2	12.4	No	1. C
Chest Left	53.6	7.8	Yes	-4.6
Chast Bight	47.1	11	No	11.2
Chest Right	52.4	9.3	Yes	11.3
Chauldou Laft	-		No	
Shoulder Left	82.5	6.1	Yes	-
Chauldon Dialet	-		No	
Shoulder Right	85.7	7.5	Yes	-
Back Lower	-		No	
	50.1	10.3	Yes	-
Deal: Hanne	-		No	
Back Upper	55.2	6.6	Yes	-
Average %				0

Table 12 – Mean pressures, and standard deviations of the mean (SD), calculated for the assault exercise performed on grassland by Subject A.

For this exercise the highest mean pressures, 108.1 kPa and 113.8 kPa, were observed for the left and right elbows, respectively. The standard deviation of the means was also the largest for these two locations. Broadly speaking, as observed for the kneeling exercise, the mean pressures for the knees and elbows were in the region of 85 kPa to 110 kPa. Reasonably high mean pressures of approximately 80 kPa were generated at the

shoulders through the addition of the combat webbing and back pack. The remaining locations produced mean pressures between 40 kPa and 60 kPa.

Excluding the shoulders and back, overall, there was no increase in the mean pressures when the additional kit was worn (Table 12). In fact, from the 12 locations assessed, 7 locations displayed mean pressures that were higher when no additional kit was worn.

5.2.1.2 Peak Pressure

The peak pressures recorded during the assault exercise for Subject A are displayed in Figure 41 and Table 13.

Figure 41 – Peak pressures recorded for the assault exercise performed on grassland by Subject A.

Extremely high peak pressures were observed for both the right and left elbows without the additional kit (1186.0 kPa and 985.5 kPa, respectively). Performing the exercise with the additional kit resulted in a 16% and 30% increase in the recorded peak pressures for the right and left elbows, respectively (Table 13).

Peak pressures recorded at the other locations were typically less than 200 kPa, which was similar to those obtained for the kneeling exercises.

Overall, performing the assault exercise with the additional webbing and back pack resulted in an average increase of 33% in the peak pressures.

	Peak Pressure / kPa	Kit	Change due to kit / %
Log Lower Front Dight	44.2	No	4.1
Leg Lower Front Right	46	Yes	4.1
Log Lower Front Loft	101.3	No	27.6
Leg Lower Front Left	129.3	Yes	27.0
Leg Upper Front Right	85.3	No	77.1
Leg Opper i font Right	151.1	Yes	//.1
Leg Upper Front Left	110.4	No	26.8
	140	Yes	20.8
Hip Right	160	No	-28.8
	114	Yes	-20.0
Hip Left	44.4	No	175.7
	122.4	Yes	1/3./
Knee Front Left	769.4	No	-16.5
	642.6	Yes	-10.5
Elboyr Loft	985.5	No	29.7
Elbow Left	1278.3	Yes	29.7
Knoo Eront Dight	763.1	No	6.7
Knee Front Right	814.1	Yes	6.7
Elboy Dight	1186	No	16.2
Elbow Right	1379	Yes	16.3
Chest Left	158.6	No	7.0
Chest Left	169.7	Yes	7.0
Chart Bight	113.8	No	72.0
Chest Right	195.7	Yes	72.0
Shoulder Left	-	No	
Shoulder Left	202.3	Yes	-
Shoulder Bight	-	No	
Shoulder Right	174.3	Yes	-
	-	No	
Back Lower	124.6	Yes	-
Dool: Honor	-	No	
Back Upper	175.5	Yes	-
Average %			33

Table 13 – Peak pressures recorded for the assault exercise performed on grassland by Subject A.

Figure 42 shows the distributions of peak pressures for the right elbow recorded during the assault exercise. The majority of the peak pressures (approximately 60%) were at or below 150 kPa and the extremely high peak pressure of 1379 kPa was observed for less

than 0.1% of the exercise. Similar trends were also observed for the left elbow and left and right knees (Appendix C).

Figure 42 – Peak pressure distribution recorded for the right elbow during the assault exercise performed on grassland by Subject A.

5.2.2 Subject A (Laboratory)

5.2.2.1 Mean Pressure

The mean pressures obtained for each sensor location during the assault exercise performed in the laboratory by Subject A, are shown in Figure 43 and Table 14.

Measurements for the shoulders and back were only taken when the additional kit was worn.

Figure 43 – Mean pressures obtained for the assault exercise performed in the laboratory by Subject A.

Similarly to the assault exercise performed on grassland, the highest mean pressures (and variation) were obtained for the elbows, which were just above 100 kPa. The knees averaged in the region of 85 kPa, and the shoulders in the region of 75 kPa. The remaining locations averaged between 40 kPa and 60 kPa.

Excluding the 'leg lower front left', the right elbow and right side of the chest, the webbing and back pack had no impact on the mean pressures; overall, an average reduction of 1% was observed (Table 14).

	Mean Pressure / kPa	SD	Kit	Change due to kit / %
Leg Lower Front Right	38	2.5	No	-7.1
	35.3	0.4	Yes	
Leg Lower Front Left	44.8	12.9	No	24.1
	55.6	17.4	Yes	
Leg Upper Front Right	45.3	4.9	No	-4.0
	43.5	4.7	Yes	
Leg Upper Front Left	48	11.6	No	-12.7
	41.9	5.2	Yes	
Hin Dight	54.3	15.5	No	-6.4
Hip Right	50.8	16.4	Yes	
Hip Left	52	15	No	-9.8
	46.9	8.8	Yes	
Knee Front Left	85.1	19.5	No	-0.5
	84.7	15.7	Yes	
Elbow Left	103.1	39.8	No	-0.8
	102.3	38.1	Yes	
Knee Front Right	82.8	17.1	No	1.3
	83.9	15.4	Yes	
Elbow Right	102.3	30.3	No	5.0
	107.4	26.7	Yes	
Chest Left	52.8	13.5	No	-4.4
	50.5	8.3	Yes	
Chest Right	49.6	8.9	No	8.7
	53.9	9.5	Yes	
Shoulder Left	-		No	-
	74.1	8.1	Yes	
Chauldau Biabt	-		No	
Shoulder Right	75.8	11.5	Yes	-
Back Lower	-		No	-
	39.1	5.1	Yes	-
Back Upper	-		No	-
	43.9	7.9	Yes	
Average %				-1

Table 14 – Mean pressures, and standard deviations of the mean (SD), calculated for the assault exercise performed in the laboratory by Subject A.

5.2.2.2 Peak Pressure

The peak pressures recorded during the assault exercise, performed in the laboratory by Subject A, are displayed in Figure 44 and Table 15.

Figure 44 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject A.

Peak pressures obtained for the knees and elbows were all in the mega-Pascal range, with the right knee and both elbows achieving the sensor's upper calibration limit of 1379 kPa. However, the highest peak pressures were observed when the exercise was performed without the additional kit; in fact overall there was an average reduction of 5% in the peak pressures when the exercise was performed with the additional webbing and back pack.

Excluding the pressures obtained for the right and left shoulders, which were 220 kPa and 249 kPa, respectively, the peak pressures obtained at the other locations were less than 200 kPa, similar to the results obtained on grassland.

	Peak Pressure / kPa	Kit	Change due to kit / %
Leg Lower Front Right	42.2	No	-14.2
	36.2	Yes	
Leg Lower Front Left	148.9	No	17.7
	175.3	Yes	
Leg Upper Front Right	87.9	No	35.4
	119	Yes	
Leg Upper Front Left	181.7	No	-41.4
	106.4	Yes	
Hip Right	160.8	No	1.2
	162.7	Yes	
Hip Left	94.1	No	-10.6
	84.1	Yes	
Knee Front Left	1249	No	-20.8
	989	Yes	
Elbow Loft	1379	No	-17.4
Elbow Left	1139.5	Yes	
Knee Front Right	1379	No	-29.9
	966.7	Yes	
Elbow Right	1379	No	-
	1379	Yes	
Chest Left	131.6	No	13.0
	148.7	Yes	
Chast Bight	121.3	No	16.0
Chest Right	140.7	Yes	
Chauldou Loft	-	No	-
Shoulder Left	220.2	Yes	
Shoulder Right	-	No	
	248.5	Yes	-
Back Lower	-	No	-
	119.2	Yes	
Back Upper	-	No	-
	134.5	Yes	
Average %			-5

Table 15 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject A.

The distributions for the peak pressures obtained for the right elbow are displayed in Figure 45. As observed in all the instances above, the maximum peak pressure (1379 kPa) occurred only for a very small fraction of the total duration of the exercise (i.e. less than 0.5%). The majority of peak pressures were at or below350 kPa when performing

the exercise either with or without the additional kit. Similar findings were also observed for the left elbow and left and right knees (Appendix C).

Figure 45 – Peak pressure distribution recorded for the right elbow during the assault exercise performed in the laboratory by Subject A.

5.2.3 Subject B (Grassland)

5.2.3.1 Mean Pressure

The mean pressures obtained for the assault exercise, performed on grassland for Subject B, are shown below in Figure 46 and Table 16.

Figure 46 – Mean pressures obtained for the assault exercise performed on grassland by Subject B.

These results were very similar to those obtained for Subject A (Figure 40). The mean pressures obtained for the elbows were between 107 kPa to 120 kPa, the knees were around 80 kPa, the shoulders 71 kPa and the remaining locations were between 40 kPa and 60 kPa.

Apart from the right hip and right knee, the mean pressures obtained when the exercise was performed with kit were slightly higher compared to the exercise performed without kit. Overall, there was an average increase of 7% in the mean pressures when the additional kit was worn; the largest difference was measured for the left hip where an increase of 33% was observed.

	Mean Pressure / kPa	SD	Kit	Change due to kit / %
Lag Lawar Frant Bight	43.7	15.2	No	0.4
Leg Lower Front Right	47.8	16.3	Yes	9.4
Log Lawer Front Loft	< 34.5	-	No	
Leg Lower Front Left	< 34.5	-	Yes	-
Lan Ilman Frant Binkt	43.3	4.6	No	12.2
Leg Upper Front Right	48.6	7	Yes	12.2
Leg Upper Front Left	42.6	11.3	No	5.9
Leg opper Front Leit	45.1	9.8	Yes	5.9
Lin Dight	46.1	7.1	No	-0.4
Hip Right	45.9	8	Yes	-0.4
Him Laft	42.3	5.8	No	32.9
Hip Left	56.2	28.8	Yes	32.9
Knee Front Left	82.1	16.9	No	1.3
Kilee Front Leit	83.2	15.8	Yes	1.5
Elbow Left	107	45.9	No	2.3
Elbow Left	109.5	47.6	Yes	2.5
Vnaa Frant Diaht	89.9	17.3	No	-2.9
Knee Front Right	87.3	18.9	Yes	-2.9
Elbow Right	117.5	46.6	No	2.7
Elbow Right	120.7	48.4	Yes	2.7
Chest Left	46.8	12.6	No	9.4
Chest Left	51.2	8.1	Yes	9.4
Chest Right	45.7	9.4	No	4.2
Chest Right	47.6	7.9	Yes	4.2
Shoulder Left	-		No	_
Silouidei Leit	71.2	9.3	Yes	<u>-</u>
Shoulder Right	-		No	_
Shoulder Right	71	10.8	Yes	-
Back Lower	-		No	_
Dack LUWCI	-		Yes	<u>-</u>
Back Upper	-		No	
back Opper	-		Yes	<u>-</u>
Average %				7

Table 16- Mean pressures, and standard deviations of the mean (SD), calculated for the assault exercise performed on grassland by Subject B.

5.2.3.2 Peak Pressure

The peak pressure values recorded during the assault exercise, performed on grassland by Subject B, are shown in Figure 47 and Table 17.

As for Subject A, the highest peak pressures were obtained for the knees and elbows. However, the peak pressures obtained for the right knee (both with and without additional kit) and left knee without the additional kit were all below 1 MPa.

For the remaining locations the peak pressures were generally less than 200 kPa, with the exception of the 'leg lower front right' and left hip, both when the additional kit was worn

Performing the exercise with the additional kit caused an average increase in the recorded peak pressures of 55%; the largest increase of 321% was observed for the left hip.

Figure 47 – Maximum pressures recorded for the assault exercise performed on grassland by Subject B.

	Peak Pressure / kPa	Kit	Change due to kit / %
Log Lower Front Dight	139	No	F1.6
Leg Lower Front Right	210.7	Yes	51.6
Log Lower Front Loft	< 34.5	No	
Leg Lower Front Left	< 34.5	Yes	-
Leg Upper Front Right	79.7	No	59.7
Leg Opper i font Right	127.3	Yes	39.7
Leg Upper Front Left	116.9	No	24.9
Leg opper Front Left	146	Yes	24.3
Hip Right	57.4	No	23.9
nip vigiit	71.1	Yes	23.3
Hip Left	56.4	No	320.7
nip tert	237.3	Yes	320.7
Knee Front Left	663.9	No	106.2
Milee I folit Left	1369	Yes	100.2
Elbow Left	1133.2	No	-14.1
Elbow Left	973.4	Yes	-14.1
Knee Front Right	934	No	-19.1
Milee I Tolit Night	755.4	Yes	-13.1
Elbow Right	1181.3	No	11.4
Libow Right	1315.4	Yes	11.4
Chest Left	157	No	13.5
Chest Left	178.2	Yes	13.5
Chest Right	148.2	No	25.2
Chest Night	185.6	Yes	25.2
Shoulder Left	-	No	_
Shoulder Left	202.5	Yes	
Shoulder Pight	-	No	_
Shoulder Right	194.2	Yes	-
Back Lower	-	No	
Dack LUWEI	-	Yes	
Back Unner	-	No	
Back Upper	<u>-</u>	Yes	
Average %			55

Table 17 – Peak pressures recorded for the assault exercise performed on grassland by Subject B.

The distributions of peak pressures for the right elbow are displayed in Figure 48. The majority of peak pressures recorded were at or below 150 kPa. However, approximately 5% fell between 551 kPa and 600 kPa, both with and without the additional kit. Similar results were obtained for the left elbow and left and right knees (Appendix C).

Figure 48 – Peak pressure distribution recorded for the right elbow during the assault exercise performed on grassland by Subject B.

5.2.4 Subject B (Laboratory)

5.2.4.1 Mean Pressure

The mean pressures obtained for the assault exercise, performed in the laboratory by Subject B, are displayed in Figure 49 and Table 18.

Mean pressure values were not obtained for the shoulders or back regions owing to time constraints.

The results obtained in the laboratory are fairly consistent with the results obtained on the grassland (Figure 46); however, performing the exercises with the additional kit had less of an impact. The overall effect of performing the exercise with the webbing and back pack was a 1% reduction in the mean pressure (Table 18).

Figure 49 – Mean pressures obtained for the assault exercise performed in the laboratory by Subject B.

	Mean Pressure / kPa	SD	Kit	Change due to kit / %
Leg Lower Front Right	37.5	2.1	No	14.4
	42.9	3.4	Yes	
Leg Lower Front Left	<34.5	-	No	_
	<34.5	-	Yes	
Leg Upper Front Right	46	4	No	-2.2
	45	3.5	Yes	
Leg Upper Front Left	44.2	3.7	No	-2.3
	43.2	3.1	Yes	
Hip Right	47.2	7.3	No	-7.4
	43.7	6.8	Yes	
Hip Left	56.5	15.4	No	-13.1
	49.1	14.8	Yes	
Knee Front Left	87.4	14.8	No	-2.7
	85	10.2	Yes	
Elbow Left	104.2	46.7	No	8.8
	113.4	61.7	Yes	
Knee Front Right	95.4	33.1	No	-4.6
	91	28.9	Yes	
Elbow Right	118.1	37.2	No	2.8
	121.4	32.1	Yes	2.0
Chest Left	52	13.5	No	0.4
Onest Lert	52.2	14.2	Yes	0.1
Chest Right	49.3	9.3	No	-2.0
Chest rught	48.3	9.5	Yes	2.0
Shoulder Left	-	-	No	_
	-	-	Yes	
Shoulder Right	-	-	No	_
	-	-	Yes	
Back Lower	-	-	No	_
	-	-	Yes	
Back Upper	-	-	No	_
Duck Opper	-	-	Yes	_
Average %				-1

Table 18 – Mean pressures, and associated standard deviations (SD) obtained for the assault exercise performed in the laboratory by Subject B.

5.2.4.2 Peak Pressure

The peak pressures recorded during the assault exercise performed in the laboratory are shown in Figure 50 and Table 19.

Figure 50 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject B.

The trends are very similar to those observed from the assault exercise conducted on grassland. The right knee and both elbows exhibited peak pressures greater than 1 MPa, with both elbows reaching the sensor's upper calibration limit of 1379 kPa. When performing the exercise with the additional kit, the left knee however, displayed a relatively low peak pressure reading of 437 kPa, which was 54% lower than the value obtained for the same knee without any additional kit being worn (Table 19).

The peak pressures recorded for the other locations were all below 200 kPa.

Performing the exercise with the additional webbing and back pack had the biggest impact on the 'leg upper front left' where an increase in the peak pressure of approximately 37% was observed. Overall, an average reduction was observed in the peak pressure values of 3%.

	Peak Pressure / kPa	Kit	Changedue to kit / %
Log Lower Front Dight	92	No	21.2
Leg Lower Front Right	111.6	Yes	21.3
Lag Lauren Frank Laft	<34.5	No	
Leg Lower Front Left	<34.5	Yes	-
Log Upper Front Bight	86.4	No	0.0
Leg Upper Front Right	77.9	Yes	-9.8
Leg Upper Front Left	75.2	No	26.6
	102.7	Yes	36.6
Ulia Biaka	70.8	No	22.6
Hip Right	54.8	Yes	-22.6
	94.4	No	4.2
Hip Left	98.4	Yes	4.2
Wass Francis of	944	No	F2.7
Knee Front Left	436.7	Yes	-53.7
Elbow Left	1379	No	
	1379	Yes	-
	1260.7	No	10.0
Knee Front Right	1126.8	Yes	-10.6
EU - B' 14	1379	No	
Elbow Right	1379	Yes	-
	128	No	7.0
Chest Left	137.2	Yes	7.2
al	127.4	No	2.0
Chest Right	122.4	Yes	-3.9
Chardan Laft	-	No	
Shoulder Left	-	Yes	-
Charles Birth	-	No	
Shoulder Right	-	Yes	-
B. d. L.	-	No	
Back Lower	-	Yes	-
	-	No	
Back Upper	-	Yes	-
Average %			-3

Table 19 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject B.

The distributions of peak pressures obtained for the right elbow are shown in Figure 51. In this instance, the majority of peak pressures were at or below 300 kPa without kit and 500 kPa with kit; approximately 2% occurred between 1351 kPa and 1379 kPa.

Figure 51 – Peak pressure distribution recorded for the right elbow during the assault exercise performed in the laboratory by Subject B.

5.2.5 Subject C (Laboratory)

Owing to poor weather conditions, Subject C performed the activities inside the laboratory only.

5.2.5.1 Mean Pressure

The mean pressures calculated for during the assault exercise, performed in the laboratory by Subject C, are shown in Figure 52 and Table 20.

Figure 52 – Mean pressures obtained for the assault exercise performed in the laboratory by Subject C.

These results are fairly consistent with those observed with both Subjects A and B (Figures 43 and 49, respectively). The mean pressures obtained for the knees and elbows were between 100 kPa and 125 kPa, the shoulders were around 80 kPa and the remaining locations were between 40 kPa and 70 kPa.

The largest impact of performing the exercise in the additional kit was for the right hip where an increase of approximately 23% was observed. Overall, an average increase of 6% was observed for the mean pressure when wearing the combat webbing and back pack.

	Mean Pressure / kPa	SD	Kit	Change due to kit / %
Leg Lower Front Right	40.9	8.1	No	7.3
Leg Lower Front Right	43.9	13.4	Yes	7.5
Leg Lower Front Left	56.9	7.3	No	18.3
Leg Lower Front Left	67.3	6.4	Yes	16.5
Leg Upper Front Right	46.4	4.5	No	-3.2
Leg opper i font Right	44.9	4	Yes	-3.2
Leg Upper Front Left	54.2	25.4	No	21.4
Leg opper i font Leit	65.8	23.9	Yes	21.4
Hin Dight	46.3	6.5	No	23.1
Hip Right	57	17.6	Yes	23.1
Hip Loft	47.6	8.3	No	-4.4
Hip Left	45.5	8.8	Yes	-4.4
Knee Front Left	100.1	16	No	4.9
Milee I Tolit Leit	105	19.1	Yes	4.5
Elbow Left	115.7	39.5	No	2.2
cibow Leit	118.3	42.7	Yes	2.2
Vaca Frant Dialet	99.3	29	No	4.4
Knee Front Right	103.7	36.3	Yes	4.4
Elbour Dight	123.4	44.1	No	1.6
Elbow Right	125.4	48.9	Yes	1.0
Chast Laft	53	7.2	No	-5.3
Chest Left	50.2	7.6	Yes	-5.5
Chast Bight	54.1	11.3	No	
Chest Right	54.1	8.8	Yes	-
Shoulder Left	-		No	
Silouider Leit	84.1	15.5	Yes	-
Chaulder Dight	-		No	
Shoulder Right	81	14.4	Yes	-
Back Lower	-		No	
Dack Lower	47	5.9	Yes	-
Pools Hanney	-		No	
Back Upper	66.4	8.5	Yes	-
Average %				6

Table 20 – Mean pressures, and associated standard deviations (SD) obtained for the assault exercise performed in the laboratory by Subject C.

5.2.5.2 Peak Pressure

The peak pressures obtained during the assault exercise, performed in the laboratory by Subject C, are displayed in Figure 53 and Table 21.

Figure 53 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject C.

As for Subjects A and B, a similar trend was observed, with the highest peak pressures generated at the knees and elbows; in this trial the peak pressures recorded at both knees and elbow exceeded the upper calibration limit of 1379 kPa.

Apart from the shoulders where peak pressures of 246 kPa and 217 kPa were observed, the remaining locations generated peak pressures below 200 kPa, as observed for Subjects A and B.

Overall, an average increase of 12% in the peak pressures was observed for the assault exercise performed with the additional kit; however, this value may have been skewed by the 85% increase found for the right hip (Table 21).

	Peak Pressure / kPa	Kit	Change due to kit / %
Leg Lower Front Right	66	No	22.3
Leg Lower Front Right	80.7	Yes	22.5
Leg Lower Front Left	74.6	No	7.4
Leg Lower Front Left	80.1	Yes	7.4
Leg Upper Front Right	97	No	-1.8
	95.3	Yes	
Leg Upper Front Left	186.2	No	-5.2
	176.6	Yes	
Hip Right	69.8	No	85.2
	129.3	Yes	03.2
Hip Left	69	No	3.3
	71.3	Yes	3.3
Knee Front Left	1379	No	_
- Tance I Tolk Left	1379	Yes	
Elbow Left	1379	No	_
	1379	Yes	
Knee Front Right	1379	No	_
	1379	Yes	
Elbow Right	1379	No	_
	1379	Yes	
Chest Left	131.6	No	2.1
Chest Left	134.3	Yes	2.1
Chest Right	157.7	No	-13.8
Chest Right	135.9	Yes	-13.8
Shoulder Left	-	No	_
Jilouluei Leit	246.2	Yes	_
Chauldau Diabt	-	No	
Shoulder Right	216.7	Yes	-
Rack Lower	-	No	
Back Lower	55.5	Yes	<u> </u>
Pack Unner	-	No	
Back Upper	164	Yes	-
Average %			12

Table 21 – Peak pressures recorded for the assault exercise performed in the laboratory by Subject C.

The distributions of peak pressures for the right elbow are shown in Figure 54. The majority of peak pressures were at or below 250 kPa both with and without kit. The maximum peak pressure was encountered for approximately 5% of the time without kit and approximately 10% with kit, which was more than for Subjects A and B.

Figure 54 – Peak pressure distribution recorded for the right elbow during the assault exercise performed in the laboratory by Subject C.

5.3 Leopard Crawl

5.3.1 Subject A (Grassland)

5.3.1.1 Mean Pressure

The mean pressures obtained during the leopard crawl, performed on grassland for Subject A, are displayed in Figure 55 and Table 22.

The largest mean pressures were generated at the knees and elbows and were in the region of 100 kPa and 120 kPa. The remaining locations across the body experienced mean pressures between 40 kPa and 60 kPa. Broadly speaking, these mean pressures were fairly consistent with those obtained during the kneeling and assault exercises.

The biggest effect of performing the leopard crawl with the additional webbing and back pack was seen on the right side of the chest where an 11% increase was observed. However, overall, there was no net increase in the mean pressure with added kit.

Figure 55 – Mean pressures obtained for the leopard crawl performed on grassland by Subject A.

	Mean Pressure / kPa	SD	Kit	Change due to kit / %
Log Upper Front Dight	43	4.9	No	Г 1
Leg Upper Front Right	40.8	4.6	Yes	-5.1
Leg Upper Front Left	45.1	7.3	No	8.4
Leg opper Front Leit	48.9	11.6	Yes	0.4
Hip Right	51.8	13.1	No	-6.4
nip kigiit	48.5	8.9	Yes	-0.4
Hip Left	57	23.4	No	-4.7
пір сеіс	54.3	12.1	Yes	-4.7
Knee Front Left	91.4	17.2	No	9.5
Kliee Floiit Leit	100.1	34	Yes	9.3
Elbow Left	121	44.7	No	-14.8
LIDOW Left	103.1	55.8	Yes	-14.0
Knee Front Right	99.6	23.6	No	3.5
	103.1	32.4	Yes	3.3
Elbow Right	94.3	14.7	No	4.2
Libow Right	98.3	15.2	Yes	4.2
Chest Left	50.5	8	No	-9.9
Chest Lett	45.5	6.2	Yes	-5.5
Chest Right	48.6	8.1	No	11.3
CHEST VIRIL	54.1	10.8	Yes	11.5
Average %				0

Table 22 – Mean pressure, and associated standard deviations (SD) for the leopard crawl performed on grassland by Subject A.

5.3.1.2 Peak Pressure

The peak pressures obtained during the leopard crawl, performed on grassland by Subject A, are displayed in Figure 56 and Table 23.

The left elbow and right knee produced peak pressures that achieved the sensor's upper calibration limit of 1379 kPa, whereas the right elbow and left knee produced peak pressures below 1 MPa.

Peak pressures generated at the chest, upper legs and hips all fell below 200 kPa.

Performing the exercise in additional kit had the biggest impact for the left knee where an increase in the peak pressure of 64% was observed. Overall, the effect of the additional kit increased the peak pressures by 10%.

Figure 56 – Peak pressures obtained for the leopard crawl performed on grassland by Subject A.

	Peak Pressure / kPa	Kit	Change due to kit
			/%
Leg Upper Front Right	99	No	-31.3
	68	Yes	
Leg Upper Front Left	106.7	No	33.5
	142.4	Yes	33.3
Hip Right	83.2	No	52.5
	126.9	Yes	32.3
Hip Left	116.3	No	-7.2
	107.9	Yes	-7.2
Knee Front Left	546.7	No	64.2
	897.9	Yes	04.2
Elbow Left	1379	No	0.0
LIDOW Left	1379	Yes	0.0
Knee Front Right	1198.7	No	15.0
	1379	Yes	13.0
Elbow Right	963	No	-2.5
Libow Kigiit	939.4	Yes	-2.3
Chest Left	115.5	No	-14.0
Chest Left	99.3	Yes	-14.0
Chest Pight	137.2	No	-10.3
Chest Right	123.1	Yes	-10.3
Average %			10

Table 23 – Peak pressures recorded for the leopard crawl performed on grassland by Subject A.

The distributions of peak pressures obtained for the right knee during the leopard crawl on grassland are shown in Figure 57. These plots exhibited a similar trend to the rest of the peak pressure distributions observed above. The majority of peak pressures were at or below 250 kPa followed by what appears to be an exponential decrease in the frequency as the pressure range is increased. Similar findings were observed for the left knee and right and left elbows (Appendix C).

Figure 57 – Peak pressure distribution recorded for the right knee during the leopard crawl performed on grassland by Subject A.

5.3.2 Subject A (Laboratory)

5.3.2.1 Mean Pressure

The mean pressures obtained during the leopard crawl, performed in the laboratory for Subject A, are shown in Figure 58 and Table 24.

These results were fairly consistent with the results observed on grassland, with the knees and elbow generating mean pressures in the region of 100 kPa and the remaining locations exhibited pressures between 40 kPa and 60 kPa.

Performing the exercise with the additional kit increased the mean pressures obtained at the knees and elbows by 14% to 18%. Overall, an average increase in the mean pressures of 4% was observed when the exercise was performed with the additional combat webbing and back pack.

Figure 58 – Mean pressures obtained for the leopard crawl performed in the laboratory by Subject A.

	Mean Pressure / kPa	SD	Kit	Change due to
				kit / %
Leg Upper Front Right	45	6.6	No	-9.1
Leg Opper Front Right	40.9	5.1	Yes	-9.1
Leg Upper Front Left	47.7	11.2	No	-2.3
Leg Opper Front Left	46.6	8.4	Yes	-2.3
Hip Right	53.6	15.1	No	-26.9
пір кідііі	39.2	2.5	Yes	-20.9
Hip Left	48.6	8.8	No	0.6
пір сетс	48.9	9.9	Yes	0.0
Knee Front Left	90.2	20.9	No	13.6
Kliee Flolit Leit	102.5	27.4	Yes	13.0
Elbow Left	90.9	30.3	No	17.9
LIDOW Left	107.2	45.9	Yes	17.9
Knee Front Right	88.6	25.1	No	15.1
Kilee i folit Kigili	102	27.1	Yes	13.1
Elbow Right	87.4	21.5	No	16.7
Elbow Right	102	20.3	Yes	10.7
Class to the	44.6	9.5	No	5.4
Chest Left	47	7.3	Yes	5.4
Chast Bight	49.4	8.5	No	5.5
Chest Right	52.1	10.5	Yes	j.j
Average %				4

Table 24 – Mean pressures, and associated standard deviations (SD) for the leopard crawl performed in the laboratory by Subject A.

5.3.2.2 Peak Pressure

The peak pressures obtained during the leopard crawl, performed in the laboratory by Subject A, are displayed in Figure 59 and Table 25.

The knees and elbow generated peak pressures above 1 MPa, with the left and right elbows and right knee all achieving the 1379 kPa upper limit.

Peak pressures generated at the chest, upper legs and hips all fell below 200 kPa, as observed for the exercise performed on grassland (Figure 56).

Apart from for the left hip, performing the exercise with the additional kit reduced the peak pressures recorded; overall there was a reduction in the peak pressures of 22%.

Figure 59 – Peak pressures obtained for the leopard crawl performed in the laboratory by Subject A.

	Peak Pressure / kPa	Kit	Change due to kit / %
Log Unner Front Dight	124.6	No	27.5
Leg Upper Front Right	90.3	Yes	-27.5
Leg Upper Front Left	181.7	No	-56.2
	79.5	Yes	-30.2
Llin Dight	160.8	No	-71.6
Hip Right	45.7	Yes	-/1.0
Llin Loft	94.1	No	6.4
Hip Left	100.1	Yes	0.4
Knee Front Left	1264.3	No	-23.6
Kilee Floiit Leit	965.8	Yes	-23.0
Elbow Left	1379	No	
EIDOW Leit	1379	Yes	-
Knee Front Right	1379	No	
Kilee i folit Kigiit	1379	Yes	-
Elbow Right	1379	No	-21.1
Elbow Right	1087.5	Yes	-21.1
Chest Left	128.3	No	-20.0
	102.6	Yes	-20.0
Chast Right	127.7	No	-3.1
Chest Right	123.7	Yes	-3.1
Average %			-22

Table 25 – Peak pressures recorded for the leopard crawl performed in the laboratory by Subject A.

The distributions of peak pressures obtained for the right knee during the leopard crawl on grassland are shown in Figure 60. Over 50% of the peak pressures were at or below 100 kPa when the exercise was performed without the additional webbing and back pack. By comparison, conducting the exercise with the added kit, approximately 23% of the peak pressures fell between 51 kPa and 100 kPa with around the same fraction falling between 101 kPa and 150 kPa. For both exercises, the maximum peak pressure of 1379 kPa was encountered for less than 0.5% of the total exercise.

Similar findings were observed for the left knee and right and left elbows (Appendix C).

Figure 60 – Peak pressure distribution recorded for the right knee during the leopard crawl performed in the laboratory by Subject A.

5.3.3 Subject B (Grassland)

Owing to time constraints, Subject B performed the leopard crawl on grassland only.

5.3.3.1 Mean Pressure

The mean pressures obtained for Subject B are displayed in Figure 61 and Table 26.

The mean pressures generated by Subject B were very similar to those generated by Subject A, and also fairly consistent with previous results from the other two exercises. Broadly speaking, the knees and elbow were in the region of 100 kPa (excluding the left elbow that measured 150 kPa), with the remaining locations falling between 40 kPa and 60 kPa.

Performing the leopard crawl when wearing additional kit resulted in a reduction in the mean pressure of 4% (Table 26).

Figure 61 – Mean pressures obtained for the leopard crawl performed on grassland by Subject B.

	Mean Pressure / kPa	SD	Kit	Change due to kit / %
Log Upper Front Bight	45.4	5.5	No	1 [
Leg Upper Front Right	46.1	5.8	Yes	1.5
Leg Upper Front Left	48.4	6.9	No	-7.9
Leg Opper From Len	44.6	5.2	Yes	-7.9
Him Diaht	40.7	5	No	2.0
Hip Right	39.1	3.4	Yes	-3.9
Hin Loft	44.3	8.6	No	1 1
Hip Left	44.8	6.4	Yes	1.1
Knee Front Left	92.6	22	No	-4.9
Kliee Floiit Leit	88.1	14.9	Yes	-4.5
Elbow Left	160.3	77.5	No	-12.2
EIDOW Leit	140.8	62.5	Yes	-12.2
Knee Front Right	96.2	16.3	No	8.3
Kilee i folit Kigiit	104.2	31.7	Yes	0.5
Elbow Dight	107.4	37	No	-9.3
Elbow Right	97.4	20.3	Yes	-9.5
Chest Left	43.1	7.4	No	2.1
Cilest Left	44.5	9.2	Yes	3.2
Chast Bight	58.5	20.6	No	-18.5
Chest Right	47.7	12.4	Yes	-10.5
Average %				-4

Table 26 – Mean pressures, and associated standard deviations (SD), obtained for the leopard crawl performed on grassland by Subject B.

5.3.3.2 Peak Pressure

The peak pressures obtained during the leopard crawl, performed on grassland by Subject B, are shown in Figure 62 and Table 27.

The left and right elbow generated peak pressures that reached the 1379 kPa upper calibration limit. However, unlike the results obtained for Subject A, the peak pressures generated at the left and right knees were below 1 MPa.

Similar to the findings for Subject A, the peak pressures generated at the chest, upper legs and hips all fell below 200 kPa.

The load of the additional kit had the biggest impact for the left side of the chest, increasing the recorded peak pressure by 50%. However, overall, the effect of the additional kit was considerably lower at 3%.

Figure 62 – Peak pressures obtained for the leopard crawl performed on grassland by Subject B.

	Peak Pressure / kPa	Kit	Change due to kit / %
	99.1	No	
Leg Upper Front Right	88.4	Yes	-10.8
Landlenan Frank Laft	97.2	No	22.6
Leg Upper Front Left	75.2	Yes	-22.6
Hip Right	53.2	No	10 F
	42.8	Yes	-19.5
Hip Left	66	No	14.1
	75.3	Yes	14.1
Knee Front Left	507.7	No	13.8
	578	Yes	
Elbow Left	1379	No	_
	1379	Yes	
Knee Front Right	745	No	-8.7
	679.9	Yes	-0.7
Elbow Right	1114.3	No	23.8
	1379	Yes	23.6
Chest Left	94.8	No	50.3
	142.5	Yes	50.5
Chest Right	181.6	No	-14.8
Cilest rigiit	154.7	Yes	-14.0
Average %			3

Table 27 – Peak pressures recorded for the leopard crawl performed on grassland by Subject B.

The distributions for the peak pressures recorded at the right elbow are shown in Figure 63. The majority of peak pressures were at or below 200 kPa, followed by a sharp decrease in the frequency with increasing pressure ranges. The maximum peak pressure of 1379 kPa was encountered less than 0.5% over the duration of the exercise.

Figure 63 – Peak pressure distribution recorded for the right elbow during the leopard crawl performed on grassland by Subject B.

5.3.4 Subject C (Laboratory)

Owing to poor conditions, Subject C performed the leopard crawl in the laboratory only.

5.3.4.1 Mean Pressure

The mean pressures obtained for the leopard crawl exercise, performed in the laboratory by Subject C, are displayed in Figure 64 and Table 28.

The mean pressures generated by Subject C were very similar to those generated by Subjects A and B, and also fairly consistent with previous results from the other two exercises. The biggest difference was observed for the elbows where the mean pressures were between 145 kPa and 161 kPa.

Performing the exercise in additional kit had the biggest impact on the 'leg lower front right' where an increase in the mean pressure of 11 % was observed. However, the overall effect of additional kit was very low, resulting in an increase in mean pressure by only 1%.

Figure 64 – Mean pressures obtained for the leopard crawl performed in the laboratory by Subject C.

	Mean Pressure / kPa	SD	Kit	Change due to kit
				/%
Leg Upper Front Right	38.2	2.2	No	10.7
	42.3	5	Yes	
Leg Upper Front Left	52.9	17.3	No	-17.6
	43.6	6.8	Yes	
Hip Right	50.8	14.2	No	-2.8
	49.4	10.1	Yes	
Hip Left	41.5	5.2	No	5.1
	43.6	5.7	Yes	
Knee Front Left	97	19.1	No	0.5
	97.5	16.8	Yes	
Elbow Left	150.8	57.9	No	7.0
	161.3	56.5	Yes	
Knee Front Right	107.3	32.1	No	-6.3
	100.5	27.5	Yes	
Elbow Right	144.3	40.9	No	2.5
	147.9	41.9	Yes	
Chest Left	53.7	8.5	No	4.7
	56.2	12	Yes	
Chest Right	48.8	7	No	5.3
	51.4	8.4	Yes	
Average %				1

Table 28 – Mean pressures, and associated standard deviations (SD), obtained for the leopard crawl performed in the laboratory by Subject C.

5.3.4.2 Peak Pressure

The peak pressures obtained during the leopard crawl, performed in the laboratory by Subject C, are shown in Figure 59 and Table 29.

The left and right elbow and right knee generated peak pressures that achieved the 1379 kPa upper calibration limit. However, similar to the results obtained for Subject B, the peak pressure generated at the left knee was less than 1 MPa.

Peak pressures generated at the chest, upper legs and hips all fell below 200 kPa, as found for Subjects A and B, regardless if the exercise was performed on grassland or in the laboratory.

A large change in the peak pressure of 65% was observed for the 'leg upper front right' when additional kit was worn. However, quite the opposite was seen for the 'leg upper front left' where there was a reduction of 61%. Overall, there was a reduction of 7% in the peak pressures recorded when performing the exercise with the additional kit.

Figure 65 – Peak pressures obtained for the leopard crawl performed in the laboratory by Subject C.

	Peak Pressure / kPa	Kit	Change due to kit / %
Log Unner Front Dight	44.3	No	65.0
Leg Upper Front Right	73.1	Yes	
Log Upper Front Left	171.7	No	-60.9
Leg Upper Front Left	67.1	Yes	
Lin Dight	100.6	No	-6.1
Hip Right	94.5	Yes	
Hin Laft	70	No	10.1
Hip Left	77.1	Yes	
Knee Front Left	698.3	No	-16.1
Kilee Front Leit	586	Yes	
Elbow Left	1379	No	
LIDOW Left	1379	Yes	-
Knee Front Right	1379	No	-35.6
	888.4	Yes	
Elbow Right	1379	No	-
	1379	Yes	
Chest Left	138.9	No	7.1
CHEST LEIT	148.7	Yes	
Chast Bight	108.8	No	-18.8
Chest Right	88.4	Yes	
Average %			-7

Table 29 – Peak pressures recorded for the leopard crawl performed in the laboratory by Subject C.

The distributions of the peak pressures recorded for the right elbow are shown in Figure 66. The majority of peak pressures were at or below 300 kPa for both with and without kit. However, the most pronounced deviation in the general trend was the high frequency at which the maximum pressure was recorded. The maximum pressure range was encountered 17% of the time when performing the exercise without the additional webbing and back pack, and 11% of the time when wearing it.

A similar distribution profile was observed for the left elbow/forearm (Appendix C), however, in this instance the majority of the peak pressures fell within the highest pressure interval.

Figure 66 – Peak pressure distribution recorded for the right elbow during the leopard crawl performed on grassland by Subject C.

6 Discussion

The overall aim of the programme was to develop a prototype pressure sensitive suit to accurately map pressure and contact profiles experienced by CBRN protective clothing on the battlefield. This has been achieved to allow real-time pressure data to be captured whilst performing activities in the field that cannot be readily simulated in the laboratory. To assess the functionality of the system, the suit was used to capture pressure data from a series of exercises designed to mimic battlefield-type activities.

Since the field trials involved only three military subjects, the data should be treated as indicative only. Based upon advice from Dstl statisticians, approximately forty volunteers would be required to obtain statistically valid data.

Furthermore, it is difficult to compare the results from the different exercises as the order in which they were performed (as a result of necessity) would have had an effect on the recorded pressures. For instance, when observing the trials it was very clear that the exercises caused the subjects to become fatigued, which increased as the trial went on. All the exercises performed with additional kit took place after the exercise had been performed without kit, and all the exercises performed in the laboratory took place after the exercises on grassland; apart from those for Subject C, where all the exercises were conducted in the laboratory owing to poor weather conditions.

Broadly speaking, the results obtained from the three trials (kneeling, assault and leopard crawl) indicate that the mean pressures captured for each location was similar for the three subjects despite the fact the subjects differed in weight and height, and were from different military backgrounds. The reason for this could be explained by the tempo at which the exercises were performed and also the technique used to execute each exercise. Based upon observations made during the trial, Subject A was more dynamic than Subject B, who was more dynamic than Subject C. This could account for the similar mean pressures despite the fact that Subject C was the heaviest. When referring to the dynamics of human motion, there is also a subtle difference between a subject's 'actual' mass and 'apparent' mass. The contact force and energy exerted when a moving body makes contact with the ground will depend upon the body's 'apparent mass', which relies on the action of internal muscles, joint rigidity and body posture that can change during falling [7]. These factors will depend upon the exercise technique used by each subject and is impossible to determine unless additional biomechanical information is available.

To add functionality to the pressure sensing suit capability, and gain additional information that may be used to interpret results, accelerometers could be integrated into the system to provide information on the subject's dynamics.

Terrain appeared to have little influence on the pressures obtained during the three trials. However, the laboratory trials were performed on ¼-inch carpet underlay that offered a degree of compliance, as opposed to a hard surface. It is expected that there may have been little difference between this surface and the grassland. To extend this study and increase the knowledge of the type of pressures experienced in the field, similar trials should be performed on other terrains, for example concrete and sand.

The additional kit did have an impact on the recorded pressures obtained during the trials. Table 30 summarises the average change in the mean and peak pressures obtained when wearing additional kit for all three subjects over the three exercises. The largest changes were observed for the peak pressures recorded during the kneeling and assault exercises. By comparison, an overall reduction of 4% was observed for the peak pressures recorded during the leopard crawl. Small increases were observed in the mean pressures for the kneeling and assault exercises and overall no effect of additional kit was observed for the leopard crawl.

Exercise	Ave Mean Pressure change %	Ave Peak Pressure change %
Kneeling	+3	+13
Assault	+2	+18
Leopard Crawl	0	-4

Table 30 – Summary of the average pressure changes resulting from the additional kit load

Extremely high peak pressures were recorded during the exercises, namely for the knees and elbows. However, when viewing the distribution of peak pressures over the duration of the exercises, the fraction of time that these extremely high pressures were encountered was in fact very low in the majority of cases. The exception to this was for Subject C during the leopard crawl exercise where up to 33% of the peak pressures encountered for the left elbow fell into the highest pressure range (Annex C). To mitigate against the extremely high peak pressures observed at the knees and elbow/forearms, chemical resistant knee and elbow pads may provide a feasible solution.

An important point to consider when analysing the trials data presented in this report is that the sensors only measure the vertical forces experienced by the subject and not the shear forces. Independent laboratory tests conducted at Dstl Porton Down have demonstrated that the penetration of liquids through fabrics is broadly governed by the vertical force component [6]. The presence of shear may be beneficial in the sense that it could cause a liquid droplet to spread over a large surface area and therefore help reduce the amount of penetration through the fabric. Simply increasing the vertical pressure used in swatch and full system tests may therefore result in a worse situation than that actually experienced in the field.

To understand the impact that these pressures (and the presence of shear) will have on agent penetration through a CBRN garment, it would be very useful to perform a series of MIST (man-in-simulant) tests using liquid simulant. Depositing droplets of simulants on to the target areas and performing the exercises used in this trial will allow the amount of penetration through a CBRN garment to be determined and provide a clearer understanding of the barrier properties of current protective apparel.

Sensor performance was assessed after the field trials using a 5565 Instron in order examine pressure response. This assessment revealed that the sensors located the knees

and elbows had suffered some damaged during the trials, which would have been caused by shear forces. The damage resulted in rows and columns of sensels being no longer active; this was most noticeable for the sensor located at the right elbow that resulted in approximately 30% of the sensels no longer exhibiting a pressure response. The damage, however, did not render the sensors completely ineffective, as pressure readings were still obtained for the active sensels.

If this capability is to be developed further, it is therefore recommended that the sensors are made more robust. Alternatively, since it has been shown that the pressures experienced at elbows and knees can be very high, the use of protective pads may be the only practical option for providing high levels of liquid protection at these locations. If this is the case, then sensors would no longer be required at the knees and elbows, but instead could be located at other additional positions. This would also have the advantage of preventing the pads having to be exchanged between different activities. As stated earlier, it would also be recommended that the dynamic range of the sensors be increased.

7 Conclusions

- A pressure sensing suit capability has been developed to accurately map pressure and contact profiles experienced by CBRN protective clothing on the battlefield. The suit has been employed to capture real-time pressure data from a series of battlefield exercises that were designed in consultation with UK and US military officers.
- Pressure data obtained from the field trials should be used for <u>indication only</u>. Pressures that fell outside the calibration range of the sensors were not recorded.
- Typically, mean pressures at the elbows and knees ranged between 90 kPa to 160 kPa and the remaining locations across the body fell between 40 kPa and 60 kPa.
- Peak pressures at the elbows and knees were recorded up to 1379 kPa; however, generally these extremely high pressures were encountered for less than 2% over the duration of the exercise.
- Performing the exercises whilst wearing the additional combat webbing and a back pack (weighing ~ 15 kg) had the biggest impact on the peak pressures recorded for the kneeling and assault exercises where average increases of 13% and 18% were observed respectively.
- Sensors located at the knees and elbows suffered some damage during the trials.
 This was attributed to the high shear forces experienced. The damage, however, did not render the sensors completely ineffective, as pressure readings were still obtained for the active sensels.
- A more complete understanding of the effects of pressure impaction on liquid penetration through clothing is required before changes in current swatch and full system clothing tests can be recommended.

8 Future Programme Directions

- Further carefully planned trials with a larger number of volunteers should be conducted in order to provide more statistically robust data.
- If this capability is to be developed further, it is recommended that the sensors are made more robust. Alternatively, since it has been shown that the pressures experienced at elbows and knees can be very high, the use of protective pads may be the only practical option for providing high levels of liquid protection at these locations. If this is the case, then sensors would no longer be required at the knees and elbows, but instead could be located at other additional positions. This would also have the advantage of preventing the pads having to be exchanged between different activities. It is also be recommended that the dynamic range of the sensors be increased.
- Man-in-simulant tests should be conducted to investigate the real impact on protection.
- The extent of activities performed in the pressure suit should be extended to cover other specialist roles within the military.
- Pressure data should be obtained for other types of terrain, for example desert, road, etc.
- Additional functionality could be added to the system by including accelerometers to provide information on the dynamics of a subject's motion.
- The use of protective pads at critical pressure points should be considered in future CBRN apparel design.

9 List of references

- SUMMERS, M.J., IPE Field Operations Effects Standard QTC Pressure Sensor Development, Dstl/TR29247, April 2008
- 2. SUMMERS, M.J., IPE Operations Field Effect Standard QTC Pressure Sensor Evaluation, Dstl/TR32052, December 2008
- 3. SUMMERS, M.J., IPE Operations Field Effect Standard Evaluation of Commercial-off-the-Shelf (COTS) Pressure Sensing Technologies, Dstl/TR36619, July 2009.
- 4. SUMMERS, M.J., IPE Field Operations Effects Standard Contact Pressures Experienced during Military Exercises, Dstl/TR40510, January 2010.
- 5. SUMMERS, M.J., IPE Field Operations Effects Standard Review of Mobile Data Logging Devices, Dstl/TR40511, January 2010.
- 6. SUMMERS, M.J., Influence of Force Contact Angle (Shear) on Liquid Ingress through a Multi-layered Fabric, Dstl/TR40038, December 2009.
- 7. ZATSIORSKY, V. M., Kinetics of Human Motion, 1998.

10 Appendix A: Sensor specifications

11 Appendix B: Suit design drawings

11.1 XSENSOR pad configurations

12 Appendix C: Peak pressure distributions

12.1 Assault

Figure 67 – Peak pressure distribution recorded for the left elbow during the assault exercise performed on grassland by Subject A.

Figure 68 – Peak pressure distribution recorded for the left elbow during the assault exercise performed in the laboratory by Subject A.

Figure 69 – Peak pressure distribution recorded for the left knee during the assault exercise performed on grassland by Subject A.

Figure 70 – Peak pressure distribution recorded for the left knee during the assault exercise performed in the laboratory by Subject A.

Figure 71 – Peak pressure distribution recorded for the right knee during the assault exercise performed on grassland by Subject A.

Figure 72 – Peak pressure distribution recorded for the right knee during the assault exercise performed in the laboratory by Subject A.

Figure 73 – Peak pressure distribution recorded for the left elbow during the assault exercise performed on grassland by Subject B.

Figure 74 - Peak pressure distribution recorded for the left elbow during the assault exercise performed in the laboratory by Subject B.

Figure 75 – Peak pressure distribution recorded for the left knee during the assault exercise performed on grassland by Subject B.

Figure 76 – Peak pressure distribution recorded for the left knee during the assault exercise performed in the laboratory by Subject B.

Figure 77 – Peak pressure distribution recorded for the right knee during the assault exercise performed on grassland by Subject B.

Figure 78 – Peak pressure distribution recorded for the right knee during the assault exercise performed in the laboratory by Subject B.

Figure 79 – Peak pressure distribution recorded for the left elbow during the assault exercise performed in the laboratory by Subject C.

Figure 80 – Peak pressure distribution recorded for the left knee during the assault exercise performed in the laboratory by Subject C.

Figure 81 - Peak pressure distribution recorded for the right knee during the assault exercise performed in the laboratory by Subject C.

12.2 Leopard Crawl

Figure 82 – Peak pressure distribution recorded for the left elbow during the leopard crawl performed on grassland by Subject A.

Figure 83 – Peak pressure distribution recorded for the left elbow during the leopard crawl performed in the laboratory by Subject A.

Figure 84 – Peak pressure distribution recorded for the right elbow during the leopard crawl performed on grassland by Subject A.

Figure 85 – Peak pressure distribution recorded for the right elbow during the leopard crawl performed in the laboratory by Subject A.

Figure 86 – Peak pressure distribution recorded for the left knee during the leopard crawl performed on grassland by Subject A.

Figure 87 – Peak pressure distribution recorded for the left knee during the leopard crawl performed in the laboratory by Subject A.

Figure 88 – Peak pressure distribution recorded for the left elbow during the leopard crawl performed on grassland by Subject B.

Figure 89 – Peak pressure distribution recorded for the left knee during the leopard crawl performed on grassland by Subject B.

Figure 90 - Peak pressure distribution recorded for the right knee during the leopard crawl performed on grassland by Subject B.

Figure 91 – Peak pressure distribution recorded for the left elbow during the leopard crawl performed in the laboratory by Subject C.

Figure 92 – Peak pressure distribution recorded for the left knee during the leopard crawl performed in the laboratory by Subject C.

Figure 93 – Peak pressure distribution recorded for the right knee during the leopard crawl performed in the laboratory by Subject C.

INTENTIONALLY LEFT BLANK

Initial distribution

External		Copy No
DTRA	Dr Charles Bass	1 & electronic
DTRA	Dr Salvatore Clamenti	1 & electronic
DTRA	Lt Col Tilghman Rittenhouse	1 & electronic

Internal

Project Manager Mrs Tina Robinson-Collins electronic
GCA CBP & SP Dr Colin Willis electronic
Author Dr Mark Summers 1 & electronic

INTENTIONALLY LEFT BLANK

Report Documentation Form

A copy of this form is to be completed by the principal author for all Dstl reports. When complete, it is to be bound as the last numbered pages of the finished report.

1. Originators Report Number incl. V	ersion No	Dstl/TR53405			
2. Report Protective Markings and any other markings e.g. Caveats, Descriptors, Privacy markings					
UNCLASSIFIED					
3. Title of Report Pressure Sensing Suit					
4. Title Protective Markings incl. any	Caveats	UNCLASSIFED			
5. Authors MJ Summers					
6. Originator's Name and Address		7. DOD Sponsor Name and Address			
Dr M Summers Dstl Porton Down Salisbury, Wiltshire SP4 0JQ UK		Dr C Bass Protection CAPO Defense Threat Reduction Agency DTRA 8752 John J Kingman Rd Stop 6201, Fort Belvoir, VA 22060-6201, USA			
8. DOD Contract number and period covered W911NF-06-C-0040 May 07 – Feb 11		ny 07 – Feb 11			
9. Other Report Nos. N/A					
10. Date of Issue	11. Paginatio	on	12. No. of References		
February 2011	139 7		7		

13. Abstract (A brief (approximately 150 words) factual summary of the report)

A prototype pressure sensing suit capability was developed successfully that allows real-time pressure data to be captured whilst performing activities in the field that cannot be readily simulated in the laboratory. Three military subjects were used to collect representative pressure data from a series of standard battlefield-type activities. The impact of terrain and wearing additional combat equipment was also investigated.

The data obtained from this study indicated that the mean pressures experienced at the elbows and knees ranged between 90 kPa to 160 kPa, whereas the remaining locations fell between 40 kPa and 60 kPa. Extremely high peak pressures were recorded up to 1379 kPa; however, generally these pressures were encountered for less than 2% over the duration of the exercise.

14. Abstract Protective Marking including any Caveats

UNCLASSIFIED

15. Keywords/Descriptors (Authors may provide terms or short phrases which identify concisely the technical concepts, platforms, systems etc. covered in the report.

Pressure mapping, liquid protection					
16. Report Announcement (refers to title/abstract being included in accessions lists e.g. Defence Reports Abstracts)					
Announcement of this report is UNLIMITED					
If there are limitations on the announcement of this report please indicate below the groups to whom it can be announced (more than one if required)					
Can be announced to	to MOD and its Agencies		2		
Can be announced to	to UK Defence Contractors				
Can be announced to	to Overseas Defence Departme	ents			
Other (please special	fy)		2 80		
17. Report Availability	,				
UNLIMITED distri	bution				
☐ No Release without	t approval of the Release Author	ority	2.		
If the above do not apply, please indicate below the groups to whom the report may be released upon request without further Need-To-Know checks.					
Can be released to 1	MOD and its Agencies				
Can be released to o	other UK Government Departn	nents			
Can be released to l	UK Defence Contractors				
Can be released to 0	Overseas Defence Departments	S	₩		
Other (please special	fy)				
18. Downgrading Instr	uctions (check as appropriate)				
☐ This report may be automatically downgraded to after years					
☐ This report may be reviewed 5 years after publication					
19. Authorisation (Complete as applicable)					
	Name	Signature	Date		
Group Leader	Mr. David Southgate	Mille	14/02/2011 14 fe b 2011		
Project Manager	Mrs. Tina Robinson-Collins	Metalo	14 fe b 2011		
Technical Reviewer	Dr. Colin Willis	(/n	14/2/11		

When complete the form is to be bound into the report to which it refers and is to form the last numbered pages of the report. Dstl Knowledge Services, Porton Down will enter an abstract and other details onto the relevant report management systems.

INTENTIONALLY LEFT BLANK