MATH 243 Statistical Inference

Final Examination - Fall 1999/2000

1. Let X_1, \ldots, X_n be i.i.d. with p.d.f.

$$f(x|\theta) = \frac{1}{\theta}, \quad 0 \le x \le \theta, \quad \theta > 0.$$

Estimate θ using both the method of moments and maximum likelihood. Which one should be preferred and why?

- 2. Let X_1, X_2, \ldots, X_n denote a random sample of size n > 2 from a distribution with p.d.f. $f(x; \theta) = \theta e^{-\theta x}, 0 < x < \infty$, zero elsewhere, and $\theta > 0$. Find the best estimator for θ .
- 3. Suppose X_1, \ldots, X_n are independent random variable with distribution B(1, p).
 - (a) Find the maximum likelihood estimator of $\theta = (1 p)^2$.
 - (b) Show that $\hat{\theta}$ is an unbiased estimator of θ , where $\hat{\theta} = 1$ if $X_1 + X_2 = 0$ and $\hat{\theta} = 0$ otherwise.
 - (c) Find the best estimator for θ .
- 4. Let X_1, X_2, \ldots, X_n be i.i.d. random variables, each with the Poisson distribution of parameter θ (and therefore of mean θ and variance θ). Find the best size α test of $H_0: \theta = 1$ against $H_1: \theta = 1.21$. By using the Central Limit Theorem to approximate the distribution of $\sum_i X_i$, find the smallest value of n required to make $\alpha = 0.05$ and $\beta \leq 0.1$.
- 5. The data x_1, \ldots, x_n has been observed and it is known that X_i is a sample from a Poisson distribution with an unknown mean λ_i . It is desired to test $H_0: \lambda_1 = \ldots = \lambda_n$ against a general alternative hypothesis that the λ_i are arbitrary. Derive the approximate large sample likelihood ratio test. What would you conclude for data (3,4,1,6,5)? Take $\alpha = 0.05$.
- 6. Suppose that we have two independent random samples: X_1, \ldots, X_n are exponential(θ), with density

$$f(x|\theta) = \theta e^{-\theta x}, \quad x > 0$$

and Y_1, \ldots, Y_n are exponential (μ) .

- (a) Find the form of the likelihood ratio test for testing $H_0: \theta = \mu$ against $H_1: \theta \neq \mu$.
- (b) Show that the test in part (a) can be expressed in terms of the statistic

1

$$T = \frac{\sum X_i}{\sum X_i + \sum Y_i}$$

(c) Find the distribution of T when H_0 is true. (Bonus: 5 marks)