CS & IT ENGINEERING

Theory of Computation Finite Automata

Mallesham Devasane Sir

DPP 13 Discussion Notes

TOPICS TO BE COVERED

01 Question

02 Discussion

Consider the following statements:

S₁: Kleene Closure (*) of infinite set is always finite.

S₂: Kleene Closure (*) of finite set is always infinite.

Which of the following is correct?

$$S_2$$
 only.

- Both S₁ and S₂ are correct.
- None of these.

$$(Fin)^* \Rightarrow ?$$

Consider a language L, then subset of L will be?

- Regular.
- Subset of L > may be fin Regular but finite.
- Non-regular.
- None of these.

Consider two languages L_1 and L_2 .

$$L_1 = a^*b^* \longrightarrow \%$$

$$L_1 = a^*b^* \longrightarrow \%$$

$$L_1 \cap L_2 = \alpha^* + \beta^*$$

$$L_2 = b^*a^* \longrightarrow \gamma \vee \gamma$$

Which of the following is/are correct for above languages.

- A. $L_1 \cup L_2$ is regular.
- B. For $L_1 \cup L_2$ regular expression will be $(a + b)^*$.
- C. $L_1 \cap L_2$ is regular.
- D. For $L_1 \cap L_2$ regular expression will be $(a^* + b^*)$.

If subset of L_1 is regular then what is L_1 ?

- A. L_1 must be finite.
- B. L₁ must be regular.
- L₁ must be non-regular.
- D. None of these.

Regular language does not close under on which operation?

- A. Complement
- B. Union X
- C. Subset
- D. Intersection

Consider the following statements:

[II] If L is regular, then L is regular.

[III] Union of L and its complement is Σ^* .

Let
$$L_1 = \{ \in \}$$

$$L_2 = \{a^+\}$$

Then which of the following is correct?

A.
$$L_1 \cap L_2 = \in$$
.

- B. $L_1 \cup L_2 = \text{any language.}$ $L_1 \cup L_2 = \frac{1}{\alpha}$
- C. $L_1 \cup \overline{L}_2 = \in$.
- D. None of these.

