CSC343 A3 Part 2

1-

(a)

 $A^+ = AE$, which means A is not a superkey thus $A \rightarrow E$ violates BCNF.

 $BC^+ = BCAFE$, for the same reasoning BC \rightarrow AE also violates BCNF.

 $C^+ = CAFE$, $C \rightarrow ACF$ also violates BCNF.

 $DE^+ = DEA$, $DE \rightarrow A$ also violates BCNF.

 $EFG^{+} = EFGABE$, $EFG \rightarrow AB$ also violates BCNF.

 $I^+ = IJAE$, $I \rightarrow J$ also violates BCNF.

 $J^{+} = JAIE$, $J \rightarrow AI$ also violates BCNF.

(b)

- Decompose R using FD A \rightarrow E. A⁺ = AE, so this yields two relations: R1 = AE, R2 = ABCDFGHIJ
- Project FDs onto R1 = AE:

A	Е	Closure	FDs
X		$A^+ = AE$	A → E
	X	$E_{+} = E$	

- Project FDs onto R2 = ABCDFGHIJ

Α	В	С	D	F	G	Н	I	J	Closure	FDs
X									A+=A	none
	X								B+=B	none
		X							C+=	C → AF
									ACF	

C→AF violates BCNF, so we abort projection. We must decompose R2 further.

-Decompose R2 using FD C \rightarrow AF. This yields two relations: R3 = CAF and R4 = BDGHIJ.

-Project FDs onto R3 = CAF

С	A	F	Closure	FDs
X			$C^+ = CAF$	C→AF,C is
				a superkey
	X		$A^+ = A$	Nothing
		X	$F^+ = F$	Nothing
Supersets of			Irrelevant	Can only
C				generate
				weaker FDs
	X	X	$AF^{+} = AF$	Nothing

This relation satisfies BCNF.

-Project FDs onto R4 = BDGHIJ

В	D	G	Н	I	J	Closure	FDs
X						$B_{+}=B$	Nothing
	X					$D_{+}=D$	Nothing
		X				$G_{+}=G$	Nothing
			X			H ⁺ =H	Nothing
				X		I ⁺ =IJ	I → J

- I→J violates BCNF, so we abort the projection.
- -Decompose R4 using I \rightarrow J. This yields two relations R5 = IJ and R6 = BDGH.
- -Project the FDs onto R5 = IJ

I	J	Closure	FDs
X		$I^+ = IJ$	I → J
	X	$J^{+} = JI$	J → I

This relation satisfies BCNF.

-Project the FDs onto R6 = BDGH

В	D	G	Н	Closure	FDs
X				$B_{+}=B$	Nothing
	X			$D_{+}=D$	Nothing
		X		$G_{+}=G$	Nothing
			X	$H^+=H$	Nothing

This relation satisfies BCNF.

Result

- 1. R3: ACF with C→AF
- 2. R1: AE with A→E
- 3. R6: BDGH with no FDs
- 4. R5: IJ with $I \rightarrow J$ and $J \rightarrow I$
- (c) No it's not dependency preserved because BC→AE is not preserved.

2-

(a) FH is in every key because they never appear on the right hand side. D is not in any key. We have to check the others.

```
AFH^{+} = AFHB (not a key)
```

 $BFH^{+} = BFH$ (not a key)

CFH⁺ = CFHBAEGD (CFH is a key)

 $EFH^{+} = EFHCGABD$ (EFH is a key)

GFH⁺ = GFHABCDE (GFH is a key)

(b)

- We have to first simplify to singleton right-hand sides and call this set T1.

- 1. A**→**B
- 2. BC→A
- 3. BC**→**C
- 4. BC→E
- 5. C**→**B
- 6. EF**→**C
- 7. EF**→**G
- 8. EFG→A
- 9. EFG→B
- 10.EFG→C
- 11.EFG**→**D
- 12.GH→A
- 13.GH**→**B
- 14.GH→C
- 15.GH**→**D

-Look for redundant FDs to eliminate

FD	Exclude these	Closure	Decision
	from T1 when	0105 0 10	2 00121011
	computing		
	closure		
1	1	$A^+=A$	Keep
2	2	BC ⁺ =BCE	Keep
3	3	BC ⁺ =BC/	Discard
4	3,4	BC ⁺ =BC	Keep
5	3,5	$C^{+}=C$	Keep
6	3,6	EF ⁺ =EFGC/	Discard
7	3,6,7	$EF^{+} = EF$	Keep
8	3,6,8	EFG ⁺ =EFGBCDA/	Discard
9	3,6,8,9	EFG ⁺ =EFGCDB/	Discard
10	3,6,8,9,10	EFG ⁺ =EFGD	Keep
11	3,6,8,9,11	EFG ⁺ =EFGCB	Keep
12	3,6,8,9,12	GH ⁺ =GHBCDA/	Discard
13	3,6,8,9,12,13	GH ⁺ =GHCDB/	Discard
14	3,6,8,9,12,13,14	GH ⁺ =GHD	Keep
15	3,6,8,9,12,13,15	GH ⁺ =GHCBEA	Keep

-Let's call the remaining FDs T2:

- 1 A**→**B
- 2 BC**→**A
- 4 BC**→**E
- 5 C**→**B
- 7 EF**→**G
- 10 EFG**→**C
- 11 EFG**→**D
- 14 GH**→**C
- 15 GH**→**D

⁻Let's try reducing the left hand side of any FDs with multiple attributes on the left hand side.

2 BC**→**A

 $B^{+} = B$ we can't reduce left hand side.

 C^{+} = CBA so we can reduce the left hand side to C.

4 BC**→**E

 C^{+} = CBE so we can reduce left hand side to C.

7 EF**→**G

 $E^+ = E$ we can't reduce.

 $F^+ = F$ we can't reduce.

10 EFG→C

 $E^+ = E$ we can't reduce.

 $F^+ = F$ we can't reduce.

 $G^+ = G$ we can't reduce.

 $EF^{+} = EFGC$ we can reduce left hand side to EF.

11 EFG→D

 EF^{+} = EFGD we can reduce the left hand side to EF.

14 GH→C

 $G^+ = G$ we can't reduce left hand side.

 H^{+} = H we can't reduce left hand side.

15 GH→D can't reduce

-Let's call the set of FDs that we have after reducing left hand side T3:

1 A**→**B

2' C→A

4' C→E

5 C**→**B

7 EF**→**G

10' EF**→**C

11' EF**→**D

14 GH→C

15 GH**→**D

-We must look again in case any of changes we made allow further simplification.

FD	Exclude from T3 when computing closure	Closure	Decision
1	1	$A^+ = A$	Keep
2'	2'	$C_{+} = CEB$	Keep
4'	4'	$C^+ = CAB$	Keep
5	5	$C^+ = CAE$	Keep
7	7	EF ⁺ =EFCDAB	Keep
10'	10'	EF ⁺ =EFGD	Keep
11'	11'	EF ⁺ =EFGCAB	Keep
14	14	$GH^+ = GHD$	Keep
15	15	GH ⁺ =GHCAEB	Keep

- So the following set T4 is a minimal basis:

1 A**→**B

2' C**→**A

4' C**→**E

5 C**→**B

7 EF**→**G

10' EF**→**C

11' EF**→**D

14 GH**→**C

15 GH**→**D

(b)-Let's call the revised FDs T5:

- The set of relations that would result would have these attributes:

-Since attributes AB occur within R2, we don't need to keep the relation R1.

R2(C,A,E,B), R3(E,F,G,C,D), R4(G,H,C,D)

(c) $A \rightarrow B$ will project onto relation R2 and A+=AB is not a super key of this relation. It violates BCNF therefore allows redundancy. So, the answer is yes, this schema allows redundancy.