MATH 32A Spring 2018, Midterm Exam 2 Practice Problems

1. Show that, for an arc-length parameterisation and some constant k,

$$\frac{\mathrm{d}\mathbf{B}}{\mathrm{d}s} = k\mathbf{N}.$$

Recall $\mathbf{B}(s) = \mathbf{T}(s) \times \mathbf{N}(s)$, and/or try differentiating $\mathbf{B} \cdot \mathbf{B}$.

2. Let $\kappa(t)$ be the curvature of a path $\mathbf{r}(t) = (x(t), y(t), z(t))$. Show that the scaled path $\mathbf{r}_1(t) = (\lambda x(t), \lambda y(t), \lambda z(t))$ has curvature $\kappa(t)/\lambda$. Use

$$\kappa(t) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{||r'(t)||^3}.$$

3. A particle follows the path $\mathbf{r}(t)$ for $0 \le t \le T$, starting from the origin, $\mathbf{r}(0) = 0$. The quantity

$$\bar{\mathbf{v}} = \frac{1}{T} \int_0^T \mathbf{r}'(t) \, \mathrm{d}t$$

is called the average velocity.

Suppose the $\bar{\mathbf{v}} = \mathbf{0}$. Where is the particle at time T? Is the particles average speed $(\frac{1}{T} \int_0^T v \, dt)$ also equal to zero?

- 4. Find the path of an object starting at position $\mathbf{r}_0 = (0,0)$ with initial velocity $\mathbf{v}_0 = (1,3)$, with constant acceleration $\mathbf{a} = (-1,-1)$. Find the position of the object at time t=2.
- 5. Decompose the acceleration $\mathbf{a}(t)$ at t=0 into components parallel and perpendicular to $\mathbf{r}'(0)$ for an object following the path $\mathbf{r}(t)=(t,e^t,te^t)$. Hence find v', v, and κ at t=0.
- 6. Evaluate $\lim_{(x,y)\to(1,2)} (x^2+y)$.
- 7. Evaluate $\lim_{(x,y)\to(1/9,2/9)} \frac{x}{y}$.
- 8. If $\lim_{(x,y)\to(2,5)} f(x,y) = 3$ and $\lim_{(x,y)\to(2,5)} g(x,y) = 7$, evaluate $\lim_{(x,y)\to(2,5)} \frac{f(x,y)}{f(x,y)+g(x,y)}$.
- 9. Show that $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{xy^2}$ does not exist.
- 10. Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^4y+xy^4}{x^4+2x^2y^2+y^4}$ or show the limit doesn't exist.
- 11. Is the function $f(x,y) = \begin{cases} x^2 + y^2, & \text{if } x^2 + y^2 < 1, \\ 1, & \text{if } x^2 + y^2 \ge 1, \end{cases}$ continuous?
- 12. Calculate f_x , f_y , f_{xx} , f_{yy} and f_{xy} for $f(x,y) = \frac{xy}{y+1}$.
- 13. Calculate U_r and U_t for $U(r,t) = \frac{e^{-rt}}{r}$.

Answers: 3: **0**, no, 4: (0,4), 5: (0,1,2) = (1,1,1) + (-1,0,1), $v' = \sqrt{3}$, $v = \sqrt{3}$, $\kappa = \sqrt{2}/3$, 6: 3, 7: 1/2, 8: 3/10, 10: 0, 11: yes, 12: $f_x = y/(y+1)$, $f_y = x/(y+1)^2$, $f_{xx} = 0$, $f_{yy} = -2x/(y+1)^3$, $f_{xy} = 1/(y+1)^2$, 13: $U_r = -te^{-rt}/r - e^{-rt}/r^2$, $U_t = -e^{-rt}$,

1