

Interpolants from SAT solving certificates

Adrián Rebola-Pardo TU Wien

Automata, Logic and Games Singapore

August 29th, 2016

Propositional interpolants

Let A, B be propositional formulae such that $A \wedge B$ is unsatisfiable.

Propositional interpolants

Let A,B be propositional formulae such that $A \wedge B$ is unsatisfiable.

Interpolants an (A, B)-interpolant is a propositional formula P such that:

- $\blacksquare A \models P$.
- \blacksquare $P \land B$ is unsatisfiable.
- lacksquare P contains only variables occurring in both A and B.

Propositional interpolants

Let A, B be propositional formulae such that $A \wedge B$ is unsatisfiable.

Interpolants an (A, B)-interpolant is a propositional formula P such that:

- $\blacksquare A \models P$.
- \blacksquare $P \land B$ is unsatisfiable.
- \blacksquare P contains only variables occurring in both A and B.

Interpolants are essential tools in formal methods and software verification:

- (Un)bounded model checking [McMillan '03]
- Boolean synthesis [Jiang et al. '09]
- Fault localization [Ermis et al. '12]
- Hardware verification [Keng Veneris '09]

Interpolation in practice

The good old times...

The good old times are gone

The good old times are gone

Properties of DRAT proofs

- ✓ Shorter and easier to generate or check than resolution proofs.
- Allow to express satisfiability-preserving techniques.

The good old times are gone

Properties of DRAT proofs

- ✓ Shorter and easier to generate or check than resolution proofs.
- ✓ Allow to express satisfiability-preserving techniques.
- ✗ We do not know how to generate interpolants from DRAT proofs.

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Interpolation rules [Huang '95]

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Interpolation rules [Huang '95]

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Interpolation rules [Huang '95]

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Interpolation rules [Huang '95]

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Interpolation rules [Huang '95]

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Interpolation rules [Huang '95]

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Interpolation rules [Huang '95]

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Interpolation rules [Huang '95]

Example

$$A = (\overline{a} \ b \ c) \land (\overline{b} \ d) \land (a \ b) \qquad B = (\overline{c} \ e \ f) \land (\overline{e} \ f) \land (\overline{d} \ f) \land (\overline{f})$$

Interpolation rules [Huang '95]

Three approaches

DRUP proof system RUP introduction + arbitrary clause deletion

DRUP proof system RUP introduction + arbitrary clause deletion

■ Essentially as powerful as resolution [Beame et al. '04]

■ Interpolants can be easily generated [Gurfinkel Vizel '14]

Resolution asymmetric tautologies

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

Resolution asymmetric tautologies

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

A clause C is a resolution asymmetric tautology (RAT) in a CNF formula F upon a literal l if every resolvent $C \otimes D$ upon l, where $D \in F$, is a RUP in F.

Theorem If C is a RAT in F, then F is satisfiable if and only if $F \cup \{C\}$ is. RAT introduction can be used as an inference rule of a proof system.

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

$$p \leftrightarrow q \land r \quad \equiv \quad (\neg p \lor q) \ \land \ (\neg p \lor r) \ \land \ (p \lor \neg q \lor \neg r)$$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

$$\ \, \mathsf{DRAT}\,\mathsf{proof}\ \, (\neg p \lor q)^{\mathsf{RAT}}\,,\, (\neg p \lor r)^{\mathsf{RAT}}\,,\, (p \lor \neg q \lor \neg r)^{\mathsf{RAT}}$$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

$$\circ \neg p \lor q$$

$$\ \, \mathsf{DRAT}\,\mathsf{proof}\ \, (\neg p \lor q)^{\mathsf{RAT}}\,,\, (\neg p \lor r)^{\mathsf{RAT}}\,,\, (p \lor \neg q \lor \neg r)^{\mathsf{RAT}}$$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

 $\ \, \mathsf{DRAT} \ \mathsf{proof} \ \ (\neg p \lor q)^{\mathsf{RAT}} \, , \, (\neg p \lor r)^{\mathsf{RAT}} \, , \, (p \lor \neg q \lor \neg r)^{\mathsf{RAT}}$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

DRAT proof
$$(\neg p \lor q)^{\mathsf{RAT}}$$
, $(\neg p \lor r)^{\mathsf{RAT}}$, $(p \lor \neg q \lor \neg r)^{\mathsf{RAT}}$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

$$\circ \neg p \vee r$$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

$$\ \, \mathsf{DRAT}\,\mathsf{proof}\ \, (\neg p \lor q)^{\mathsf{RAT}}\,,\, (\neg p \lor r)^{\mathsf{RAT}}\,,\, (p \lor \neg q \lor \neg r)^{\mathsf{RAT}}$$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

$$\circ p \lor \neg q \lor \neg r$$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

 $\ \, \mathsf{DRAT} \ \mathsf{proof} \ \ (\neg p \lor q)^{\mathsf{RAT}} \, , \, (\neg p \lor r)^{\mathsf{RAT}} \, , \, (p \lor \neg q \lor \neg r)^{\mathsf{RAT}}$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

$$\ \, \mathsf{DRAT}\,\mathsf{proof}\ \, (\neg p \lor q)^{\mathsf{RAT}}\,,\, (\neg p \lor r)^{\mathsf{RAT}}\,,\, (p \lor \neg q \lor \neg r)^{\mathsf{RAT}}$$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

 $\circ p \vee \neg q \vee \neg r$ RAT upon p

 $\ \, \mathsf{DRAT}\,\mathsf{proof}\ \, (\neg p \lor q)^{\mathsf{RAT}}\,,\, (\neg p \lor r)^{\mathsf{RAT}}\,,\, (p \lor \neg q \lor \neg r)^{\mathsf{RAT}}$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

$$\ \, \mathsf{DRAT}\,\mathsf{proof}\ \, (\neg p \lor q)^{\mathsf{RAT}}\,,\, (\neg p \lor r)^{\mathsf{RAT}}\,,\, (p \lor \neg q \lor \neg r)^{\mathsf{RAT}}$$

DRAT proof system RUP introduction + RAT introduction + arbitrary clause deletion

Extended resolution resolution + definitions $p \leftrightarrow q \land r$ where p is fresh Extended resolution can be simulated by DRAT

Properties of extended resolution

- No lower bound for length of extended resolution proofs is known.
- Used to express inprocessing techniques used in SAT solvers.
- Lacks the efficient interpolation property.
- No interpolation method is known.

Partial soundness $F \vdash G \implies F \models G$

Partial soundness $F \vdash G \implies F \models G$

■ A CNF formula is unsatisfiable iff there is a DRAT refutation.

Partial soundness $F \vdash G \implies F \models G$

- A CNF formula is unsatisfiable iff there is a DRAT refutation.
- Intermediate clauses are not necessarily consequences of the premise formula.

If
$$p$$
 is fresh, then $F \not \models F \land (p \leftrightarrow q \land r)$

Partial soundness $F \vdash G \implies F \models G$

- A CNF formula is unsatisfiable iff there is a DRAT refutation.
- Intermediate clauses are not necessarily consequences of the premise formula.

If
$$p$$
 is fresh, then $F \not \models F \land (p \leftrightarrow q \land r)$

■ In fact, we can always derive any satisfiable CNF formula!

$$F = p$$
 $(p)^{\text{DEL}}, (\neg p)^{\text{RAT}}$ $F' = \neg p$

Partial soundness $F \vdash G \implies F \models G$

- A CNF formula is unsatisfiable iff there is a DRAT refutation.
- Intermediate clauses are not necessarily consequences of the premise formula.

If
$$p$$
 is fresh, then $F \not \models F \land (p \leftrightarrow q \land r)$

■ In fact, we can always derive any satisfiable CNF formula!

$$F = p$$
 $(p)^{\mathsf{DEL}}, (\neg p)^{\mathsf{RAT}}$ $F' = \neg p$

Interpolation and soundness

- Interpolation algorithms work because an induction invariant holds for partial interpolants.
- This invariant strongly requires soundness of the proof system.

RATs, consequences and bindings

Why does RAT work? Eventually, some successor of every RAT becomes a consequence.

RATs, consequences and bindings

Why does RAT work? Eventually, some successor of every RAT becomes a consequence.

RATs, consequences and bindings

Why does RAT work? Eventually, some successor of every RAT becomes a consequence.

Why does RAT work? Eventually, some successor of every RAT becomes a consequence.

Why does RAT work? Eventually, some successor of every RAT becomes a consequence.

But when? As soon as the pivot literal is eliminated by resolution.

Why does RAT work? Eventually, some successor of every RAT becomes a consequence.

But when? As soon as the pivot literal is eliminated by resolution.

Why does RAT work? Eventually, some successor of every RAT becomes a consequence.

But when? As soon as the pivot literal is eliminated by resolution.

Question Can we obtain a resolution proof of that consequence clause?

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a clause from ${\it F}$

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a clause from *F*A proof can be extracted when checking the RAT property.

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a clause from ${\cal F}$

A proof can be extracted when checking the RAT property.

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a consequence of F

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a consequence of F

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a consequence of F

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a consequence of F

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a consequence of F

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a consequence of F

Question Can we obtain a resolution proof of that consequence clause?

Elimination by resolving the RAT with a consequence of F

Transform the RAT witnesses along the derivation of the consequence.

RAT in F upon l $\ni l$

Question Can we obtain a resolution proof of that consequence clause?

Question Can we obtain a resolution proof of that consequence clause?

Question Can we obtain a resolution proof of that consequence clause?

Question Can we obtain a resolution proof of that consequence clause?

Question Can we obtain a resolution proof of that consequence clause?

Question Can we obtain a resolution proof of that consequence clause?

Question Can we obtain a resolution proof of that consequence clause?

Question Can we obtain a resolution proof of that consequence clause?

 $egin{array}{ll} C & {\sf RAT upon } F {\sf in } l \\ D, E & {\sf clauses mutually resolvable upon } k. \end{array}$

- $egin{array}{ll} C & {\sf RAT upon } F {\sf in } l \\ D, E & {\sf clauses mutually resolvable upon } k. \end{array}$
- D is resolvable with C upon l

 $egin{array}{ll} C & {\sf RAT upon } F {\sf in } l \\ D, E & {\sf clauses mutually resolvable upon } k. \end{array}$

 ${\cal E}$ is not resolvable with ${\cal C}$ upon l

 $egin{array}{ll} C & {\sf RAT upon } F {\sf in } l \\ D, E & {\sf clauses mutually resolvable upon } k. \end{array}$

 $egin{array}{ll} C & {\sf RAT upon } F {\sf in } l \\ D, E & {\sf clauses mutually resolvable upon } k. \end{array}$

C RAT upon F in lC, E clauses mutually resolvable upon k.

 $egin{array}{ll} C & {\sf RAT upon } F {\sf in } l \\ D, E & {\sf clauses mutually resolvable upon } k. \end{array}$

Interpolation by rectification into a resolution proof

axioms from F

Interpolant generation from DRAT proofs

Interpolation by rectification into a resolution proof

axioms from ${\it F}$

Interpolant generation from DRAT proofs

Interpolation by rectification into a resolution proof

Issues

- The interpolant may be exponential with respect to the DRAT proof.

 But DRAT proofs can be exponentially shorter than DRUP proofs!
- Currently we only eliminate RATs and bound paths one by one.
 For a general enough case, the number of required sweeps is reduced.
- Fully rectified DRAT proofs are huge and cannot be held in memory.

 We try to store only necessary information and exploit RUPs to compress it.

Conclusions

■ State-of-the-art SAT solvers do not (and most likely, *will not*) produce resolution proofs, because of inprocessing techniques.

Conclusions

- State-of-the-art SAT solvers do not (and most likely, *will not*) produce resolution proofs, because of inprocessing techniques.
- The *de facto* standard DRAT certificates can be rectified into resolution proofs, and then interpolants can be extracted.

Conclusions

- State-of-the-art SAT solvers do not (and most likely, will not) produce resolution proofs, because of inprocessing techniques.
- The *de facto* standard DRAT certificates can be rectified into resolution proofs, and then interpolants can be extracted.
- Our efforts now are directed towards an efficient implementation of the algorithm by storing minimal information and using restrictive but general enough versions of DRAT.

Interpolation through communicating SAT solvers [Chockler Ivrii Matsliah '12]

A B

Interpolation through communicating SAT solvers [Chockler Ivrii Matsliah '12]

Interpolation through communicating SAT solvers [Chockler Ivrii Matsliah '12]

Interpolation through communicating SAT solvers [Chockler Ivrii Matsliah '12]

Interpolation through communicating SAT solvers [Chockler Ivrii Matsliah '12]

Interpolation through communicating SAT solvers [Chockler Ivrii Matsliah '12]

Interpolation through communicating SAT solvers [Chockler Ivrii Matsliah '12]

Disadvantages

- Simplification techniques can only be applied locally.
- Obtained interpolants are in DNF or CNF.
- Clause minimization is required to obtain reasonably-sized interpolants.

A timeline of proof logging and interpolation for SAT solvers

	Resolution	RUP	DRUP	DRAT
Manageable proof size				
Easily expresses CDCL				
Efficient verification				
Expressive enough for inprocessing				
Interpolant generation				

A timeline of proof logging and interpolation for SAT solvers

	Resolution	RUP	DRUP	DRAT
Manageable proof size				
Easily expresses CDCL				
Efficient verification				
Expressive enough for inprocessing				
Interpolant generation	✓			

A timeline of proof logging and interpolation for SAT solvers

	Resolution	RUP	DRUP	DRAT
Manageable proof size	X	✓		
Easily expresses CDCL	X	1		
Efficient verification	✓	X		
Expressive enough for inprocessing	X	X		
Interpolant generation	✓			

A timeline of proof logging and interpolation for SAT solvers

	Resolution	RUP	DRUP	DRAT
Manageable proof size	×	✓	✓	
Easily expresses CDCL	×	✓	✓	
Efficient verification	✓	X	✓	
Expressive enough for inprocessing	×	X	X	
Interpolant generation	✓			

A timeline of proof logging and interpolation for SAT solvers

	Resolution	RUP	DRUP	DRAT
Manageable proof size	×	✓	✓	✓
Easily expresses CDCL	×	✓	✓	✓
Efficient verification	✓	×	✓	✓
Expressive enough for inprocessing	×	X	X	✓
Interpolant generation	✓			

A timeline of proof logging and interpolation for SAT solvers

	Resolution	RUP	DRUP	DRAT
Manageable proof size	X	✓	✓	✓
Easily expresses CDCL	X	✓	✓	✓
Efficient verification	✓	X	✓	✓
Expressive enough for inprocessing	X	X	X	✓
Interpolant generation	✓	✓	✓	

A timeline of proof logging and interpolation for SAT solvers

	Resolution	RUP	DRUP	DRAT
Manageable proof size	X	✓	✓	✓
Easily expresses CDCL	×	✓	✓	✓
Efficient verification	✓	X	✓	✓
Expressive enough for inprocessing	×	X	X	✓
Interpolant generation	✓	✓	✓	???