Gait dependent oscillations from LFP data in home-based recording

Project idea

Project priors

- 1. Gait events can be detected using IMUs in home-based enviroments
 - Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit (Camps ea., Knowledge-Based System, 2018)
 - A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU:
 Validation in Healthy and Neurological Cohorts (Romijnders ea., Sensors, 2022)
- 2. The gait cycle can be detected from LFPs in subcortical recordings
 - Decoding Movement States in Stepping Cycles Based on Subthalamic LFPs in Parkinsonian Patients (Tan ea., IEEE, 2018)
 - Gait-Phase Modulates Alpha and Beta Oscillations in the Pedunculopontine Nucleus (He, *Journal of Neuroscience*, 2021)

LFP decoding examples

Project aims

- 1. Understand how everyday gait is represented on a neural basis in LFPs
- 2. "Identify, gait biomarkers from LFPs for adaptiv DBS

Figure 1 Clinical outcomes. (A) Fahn-Tolosa-Marin Tremor Rating Scale and (B) Assessment and Rating of Ataxia (mean ± SD).

The results of our study suggest that DBS reduces ataxia by reducing a functional impairment of the cerebello-cortico-cerebellar loop caused by abnormal entrainment of cerebellar pathways. Excessive DBS is hypothesized to disrupt normal neuronal traffic in this loop, resulting in a return of ataxia without tremor.

Figure 4 Mean coefficient of variation (CV) of swing phase measured during the tandem gait task.

Project idea (currently at UCSF)

What can we learn from walking bouts?

Clustering approach (1 participant)

Individual biomarker for aDBS

How?

