Word embedding

(Some slides come from Geoffrey Hinton's lectures)

Outline

Motivation

What is word embedding?

A semantic task

Bias in word embedding

Neural LM

N-gram LM

- Given a sentence $w_1 w_2 ... w_n$, how to estimate $P(w_1 ... w_n)$?
- The Markov independence assumption: $P(w_n \mid w_1, ..., w_{n-1})$ depends only on the previous k words.
- $P(w_1... w_n)$ = $P(w_1) * P(w_2 | w_1) * ... P(w_n | w_1, ..., w_{n-1})$ $\approx P(w_1) * P(w_2 | w_1) * ... P(w_n | w_{n-k+1}, ..., w_{n-1})$
- 0th order Markov model: unigram model
- 1st order Markov model: bigram model
- 2nd order Markov model: trigram model
- ...

Limitation of n-gram LM

- It does not understand the similarities between words:
 - Ex: cat/dog, garden/yard, Friday/Monday, Seattle/LA, king/queen
 - → Represent each word as a feature vector
- We cannot use a bigger context (i.e., large n) because there are too many parameters to store and most ngrams will be unseen.
 - → Represent the context as a vector

Sentences have structures.

• ...

What is word embedding?

- Represent a word as a d-dimensional vector:
 - Vectors created by a system such as word2vec

Similar words should have similar embeddings.

Recent work on embedding of phrases, sentences, documents, etc.

Part of a 2-D map of the 2500 most common words

```
winner
player
                    nf1
   tean
club sport
                               baseball
                                  wrestling
                      olympic
 league
                                   sports
                 champion
            finals championships
                olympics
                            matches
                       races games
                             clubs
    medal
                             players
```

```
virginia
    columbia
indiamety
            cologado
   washitgtas orege
   houston
         torontomtariassachusetts ygresmand
            montreal
                             oaribrildge
  london
                    victoria
bez<u>phivi s</u>
             quebec
  MOSCOW
                     scotland
            mexico
                  walengland
                  ireland <sub>britain</sub>
      canada
        aus trocktij weden
singapore norwaltance
                           aŭstria
            europe
     asia
Africa
                 yexiis
Yussia
         korea japan rome
         pak£h<del>tin</del>a
       vistajam rael
```


Many studies on neural network

• Early studies: (Hinton 1986), (Pollack 1990), (Elman 1991), etc.

• Feed-forward networks: (Bengio et al., 2003; 2006)

• Recurrent neural networks: (Mikolov et al., 2010; 2011; 2013)

Now: tons of papers in 2014-now

Where is the word embedding used?

- Answer semantic questions: e.g., A:B is like C:D
- LM
- Classification
- Sequence labeling: POS tagging, chunking, NER, etc.
- Structure prediction: parsing
- Question answering
- ...

Outline

Motivation

What is word embedding?

A semantic task

Bias in word embedding

Neural LM

A semantic task (Mikolov et al., 2013)

- Task: "A:B C:D"
 - Training: given a corpus of text, learn word embedding
 - Test: given A, B, and C, find D
 - Evaluation: percentage of examples with the correct D.

• Examples:

- Good:better rough:
- Year:years law:____
- See:sees return:
- come:go borrow:

Algorithm

• A:B is like C:D

$$\rightarrow$$
 $x_b - x_a = x_d - x_c$

$$\rightarrow$$
 $x_b - x_a + x_c = x_d$

- Represent each word w as a word vector x_w
- Compute $y = x_b x_a + x_c$
- Find $w^* = arg max_w sim(x_w, y)$

Results

Method	Adjectives	Nouns	Verbs	All
LSA-80	9.2	11.1	17.4	12.8
LSA-320	11.3	18.1	20.7	16.5
LSA-640	9.6	10.1	13.8	11.3
RNN-80	9.3	5.2	30.4	16.2
RNN-320	18.2	19.0	45.0	28.5
RNN-640	21.0	25.2	54.8	34.7
RNN-1600	23.9	29.2	62.2	39.6

Bias in word embedding

• (Bolukbasi et al., 2016): Man is to computer programmer as woman is to homemaker? Debiasing word embeddings

• Ex: man: woman = king: queen

• But man: woman = programmer: homemaker

Extreme she	Extreme <i>he</i>	Gender stereotype she-he analogies		
 homemaker nurse receptionist librarian 	 maestro skipper protege philosopher 	sewing-carpentry nurse-surgeon blond-burly giggle-chuckle	registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist	housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky
 socialite hairdresser 	 captain architect 	sassy-snappy volleyball-footbal	diva-superstar l cupcakes-pizzas	charming-affable lovely-brilliant
7. nanny8. bookkeeper9. stylist10. housekeeper	7. financier8. warrior9. broadcaster10. magician	queen-king waitress-waiter	Gender appropriate she-he a sister-brother ovarian cancer-prostate cance	mother-father

Outline

Motivation

What is word embedding?

A semantic task

Bias in word embedding

Neural LM

Feed-forward neural network

- This is the simplest type of NN:
 - The first layer is the input and the last layer is the output
 - If there is more than one hidden layer, we call them deep NN
- Training: learn the weights on the arcs, using backpropagation.

Recurrent neural network (RNN)

 There are directed cycles in the network.

The training becomes more difficult.

 One of the most commonly used NN types in the NLP field right now.

RNNs for modeling sequences

- Recurrent neural networks are a very natural way to model sequential data:
 - They are equivalent to very deep nets with one hidden layer per time slice.
 - Except that they use the same weights at every time slice and they get input at every time slice.
- They have the ability to remember information in their hidden state for a long time.
 - But its very hard to train them to use this potential.

Bengio's neural LM

A problem with having 100K output words

- Each unit in the last hidden layer has 100K outgoing weights:
 - If the number of units in the hidden layer is big, we need a huge number of training instances.
 - If the number of units in the hidden layer is small, it's hard to get the 100K probabilities right.
- Is there a better way to deal with a large number of outputs?

A serial architecture

Recurrent Neural Network LM (Mikolov et al., 2010)

Input layer is w(t) and s(t-1)
Hidden layer represents context s(t)
Output layer is the prob distribution of w(t+1)

W(t) uses 1-to-N coding.

Training is slow

→ Cannot use large amount of data

Results

Table 1: Performance of models on WSJ DEV set when increasing size of training data.

Model	# words	PPL	WER
KN5 LM	200K	336	16.4
KN5 LM + RNN 90/2	200K	271	15.4
KN5 LM	1M	287	15.1
KN5 LM + RNN 90/2	1M	225	14.0
KN5 LM	6.4M	221	13.5
KN5 LM + RNN 250/5	6.4M	156	11.7

Summary

• Word embedding is to represent a word as a vector, and it is often used in the input layer of neural networks.

 Neural networks have been used in many NLP tasks. As a case study, we look at three neural LMs.

• There are tons of recent studies on neural network. To find out more, go to ACL anthology, and look at recent proceedings (e.g. ACL 2017).