BASIC PHD WRITTEN EXAMINATION IN BIOSTATISTICS

THEORY, SECTION 2

(9:00 AM- 1:00 PM Thursday, August 12, 2010)

INSTRUCTIONS:

- a) This is a CLOSED-BOOK examination.
- b) The time limit for this Examination is four hours.
- c) Answer any TWO (2) (BUT ONLY TWO) of the THREE (3) questions that follow.
- d) Put the answers to different questions on separate sets of paper.
- e) Put your code letter, **NOT YOUR NAME**, on each page. The same code will be used for Section 1 and Section 2 of the PhD Theory Exam. Please keep the code confidential and do not share this information with any students or faculty.
- f) Return the examination with a signed statement of the UNC honor pledge, separately from your answers. The pledge statement is given on the last page of the exam handout.
- g) In the questions to follow, you are required to answer only what is asked, and not to tell all you know about the topics involved.

- 1. Consider independent observations $(X_1, Y_1), \dots, (X_n, Y_n)$, where Y_i takes values 0 and 1. Suppose that $X_i|Y_i=m \sim N(\mu_m, \sigma^2)$ and $P(Y_i=m)=\pi_m$ for m=0,1, where $\pi_0+\pi_1=1$ and $\pi_0 \in (0,1)$.
 - (a) Show that $P(Y_i = m|X_i), m = 0, 1$ satisfies a logistic model, that is

$$logit(P(Y_i = 1|X_i, \alpha)) = \alpha_0 + \alpha_1 X_i$$

where logit(u) = log(u/(1-u)), $\alpha = (\alpha_0, \alpha_1)$, and α_0 and α_1 are unknown parameters. Derive the explicit form of $\alpha = g(\theta)$ as a function of $\theta = (\pi_1, \mu_0, \mu_1, \sigma^2)$.

- (b) Based on the logistic model in (a), please give the explicit form of the Newton-Raphson algorithm for calculating the maximum likelihood estimate of α , denoted by $\hat{\alpha} = (\hat{\alpha}_0, \hat{\alpha}_1)$, and derive the asymptotic covariance matrix of $\hat{\alpha}$.
- (c) Please write down the joint distribution of $\{(X_i, Y_i) : i = 1, \dots, n\}$ and calculate the maximum likelihood estimate of θ , denoted by $\hat{\theta}_F$, and its asymptotic covariance matrix.
- (d) Calculate the asymptotic covariance matrix of $g(\hat{\theta}_F)$.
- (e) In this part, suppose that $\mu_0 = \mu_1$. Show that $\operatorname{Cov}(\hat{\alpha})^{-1}\operatorname{Cov}(g(\hat{\theta}_F))$ converges to a matrix, which does not depend on θ . Please interpret the results.
- (f) Now, suppose that π_1 is known. Will the results in (b)-(e) be changed? Please explain. If so, then please derive the corresponding results and compare with those obtained above.

2. Consider the following model:

$$Y_i = X_{i1}\beta_1 + X_{i2}\beta_2 + \ldots + X_{in}\beta_n + U + \epsilon_i, \tag{0.1}$$

 $i=1\ldots n$, where β_1,\ldots,β_p are unknown parameters, $Y=(Y_1,\ldots,Y_n)$ is the vector of responses, and $X_{ij}, i=1\ldots n, j=1\ldots p$, are fixed covariates. Assume that $\epsilon_i \sim N(0,\sigma^2)$, $U \sim N(\alpha,k\sigma^2)$, where α and $\sigma^2 > 0$ are unknown, k>0 is known, and ϵ_i are independent of each other and of U. Assume further that the $(n \times p)$ matrix with entries $X_{ij} - \overline{X}_{.j}$ has rank p, where $\overline{X}_{.j} = \frac{1}{n} \sum_{i=1}^{n} X_{ij}$.

- (a) Find the distribution of Y, and show that the variance-covariance matrix for Y is positive-definite. (Hint: For a constant c the inverse of a matrix I + cJ is in the form of I + dJ for certain constant d, where I is the $(n \times n)$ identity matrix and J is the $(n \times n)$ matrix with all entries equal to 1.)
- (b) Show that β_1, \ldots, β_p and α are estimable.
- (c) Let $\theta = (\alpha, \beta_1, \dots, \beta_p)^T$. Derive the maximum likelihood estimator for θ , denoted by $\hat{\theta} = (\hat{\alpha}, \hat{\beta}_1, \dots, \hat{\beta}_p)^T$. What is the distribution of $\hat{\theta}$?
- (d) Let $\tilde{\theta} = (\tilde{\alpha}, \tilde{\beta}_1, \dots, \tilde{\beta}_p)$ be the value of the vector θ minimizing the sum of squares

$$\sum_{i=1}^{n} [Y_i - (\alpha + X_{i1}\beta_1 + \ldots + X_{ip}\beta_p)]^2.$$

Is it true that $Var(\hat{\alpha}) < Var(\tilde{\alpha})$? Carefully justify your answer.

3. To evaluate the diagnostic performance using two continuous biomarkers, we randomly select n diseased subjects and m non-diseased subjects. Let $X_1 = (X_{11}, X_{12})', ..., X_n = (X_{n1}, X_{n2})'$ be these two measured biomarkers for the diseased subjects and $Y_1 = (Y_{11}, Y_{12})', ..., Y_m = (Y_{m1}, Y_{m2})'$ be the same two measured biomarkers for the non-diseased subjects. We aim to find an optimal linear combination of these two biomarkers to maximize some measure of the diagnostic performance. In particular, we need to find $\beta = (\beta_1, \beta_2)'$ such that the area under the receiver operating characteristics curve, defined by $AUC(\beta) \equiv P(\beta'\mathbf{X}_1 \geq \beta'\mathbf{Y}_1)$, is maximized.

Assume $X_1, ..., X_n$ are i.i.d from $MN(\mu_1, \Sigma)$ and $Y_1, ..., Y_m$ are i.i.d from $MN(\mu_2, \Sigma)$, where $\mu_1 = (\mu_{11}, \mu_{21})', \mu_2 = (\mu_{12}, \mu_{22})', \Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$ are unknown parameters and Σ is a positive definite matrix. Moreover, assume $m = \tau n$ for a fixed constant $\tau > 0$.

- (a) Show $AUC(\beta) = \Phi\left(\beta'(\mu_1 \mu_2)/\sqrt{2\beta'\Sigma\beta}\right)$, where $\Phi(x)$ is the cumulative distribution function of N(0,1).
- (b) Show that the maximum of $AUC(\beta)$, denote as $A^{optimal}$, is

$$\Phi\left(\left[(\mu_1-\mu_2)'\Sigma^{-1}(\mu_1-\mu_2)/2\right]^{1/2}\right).$$

Hint: the β maximizing $AUC(\beta)$ is unique up to some multiplicative scale.

- (c) Calculate the maximum likelihood estimator for $A^{optimal}$ and denote it by \hat{A} .
- (d) Describe how you will obtain the asymptotic distribution of $\sqrt{n}(\hat{A} A^{optimal})$. You do not need to give the explicit expression of the asymptotic variance.
- (e) To test whether the combination of the two biomarkers is useful for diagnosis, we formulate the hypothesis $H_0: A^{optimal} = 1/2$ vs $H_1: A^{optimal} > 1/2$ and reject H_0 when $\hat{A} > c_n$ for some threshold value c_n (depending on n).
 - i. Determine c_n such that the type I error converges to a given level α , where c_n is a constant depending only on n and α ; that is, $\lim_{n\to\infty} P(\hat{A} > c_n|H_0) = \alpha$.
 - ii. Calculate the asymptotic power of this test at a local alternative $H_1: A^{optimal} = 1/2 + \delta/\sqrt{n}$ where δ is a fixed positive constant.

2010 PhD Theory Exam, Section 2

<u> </u>	of the honor code, I certify that I have neither that I will report all Honor Code violations observe	_
received and on mos examinations and o	iai I aiii report aii IIonor Coac violavione ooserve	a og me.
(Signed)		
(Signed)	NAME	
(Printed)		

NAME

Statement of the UNC honor pledge: