Social and Information Networks

Module 1 - Notations

Reference Book:

Wasserman Stanley, and Katherine Faust. (2009). Social Network Analysis: Methods and Applications, Structural Analysis in the Social Sciences.

Graph

- Ordered pair denotes a pair of actors/nodes related from actor I to actor J on a relationship.
- If the ordered pair under consideration is < n_i, n_j >, and if there is a tie present, represent the tie as

$$n_i \rightarrow n_i$$

- Example: <Allison, Drew>, <Allison, Ross>
 - · Allison views Drew as a friend, Allison also views Ross as a friend
- How many ordered pair can be present in a directional graph with g nodes/actors?

Graph

- Graph with Multiple Relations
 - $-G(N, L_r)$, r= 1, 2, ..., R
 - Example:

NOTATIONS FOR SOCIAL NETWORK DATA

- Three network schemas to represent a wide range of social network data
 - Graph Theoretic
 - Sociometric
- Algebraic

Graph:

- Consists of a number of nodes and a number of lines connecting the nodes
- Symbol N is used to indicate a set of actors/nodes in a graph, denoted as {N₁, N₂,...N_n}

Graph

Sociagram:

- Graphic representation of social links that a person has with others
- Plots the structure of interpersonal relations in a group
- Developed by Jacob L. Moreno to analyze choices or preferences within a group
- · Example : Graph with Single Relation

Classification of Graphs

• Four types of graphs

	Non-directed	Directed
Binary	Binary, non- directional graphs	Binary Directional Graphs
Valued	Valued, non- directional graphs	Valued, directional graphs

Graph

- Suppose we have a collection of 6 actors
 - $N = {N_1 = Allison; N_2 = Drew; N_3 = Eliot; N_4 = Keith; N_5 = Ross; N_6 = Sarah}$
- Relation: Defined to see how each actor is related to other actors on this relation
 - Dichotomous relations mean either the relation among actors/nodes present or absent in a graph
 - Directional ties mean relationship from actor A to B is distinctive from the relationship from actor B to A.

Graph

- G (N{n₁, n₂, ... n_n}, L{l₁, l₂, ... l_n})
- Valued graphs have one more factor of values attached to each line
 - $-G(N\{n_1, n_2, ... n_n\}, L\{l_1, l_2, ... l_n\}, W\{w_1, w_2, ... w_n\})$

Sociometric Notation

- Sociometry is the study of positive and negative affective relations
 - Example: liking/disliking and friends/enemies, among a set of people.
- A social network data set consisting of people and measured affective relations between people is often referred to as sociometric.
- Relational data are often presented in two-way matrices termed sociomatrices
- Two dimensions of a sociomatrix are indexed by the sending actors (the rows) and the receiving actors (the columns).

Sociometric Notation

- In a one-mode network, the sociomatrix will be square
- A sociomatrix for a dichotomous relation is the adjacency matrix for the graph (or sociogram) quantifying the ties between the actors for the relation
- An entry X_{ij} in the sociomatrix is
 X_{ii} = the value of the tie from n_i to n_i
- To capture multiple relationship among actors
- \boldsymbol{X}_{ijr} = the value of the tie from \boldsymbol{n}_i to \boldsymbol{n}_j on relation \boldsymbol{X}_r

Algebraic Notation

- Most useful for multirelational networks
- Relations are represented with distinct capital letters
- Example: Use **F** to denote the relation "is a friend of" and E for the relation "is an enemy of"
- Record the presence of a tie from actor i to actor
 j on relation F as iFj
- In general, XijF= 1 if ni -> nj on the relation labeled F

Sociometric Notation

- Multiple Relations
 - If g is the number of nodes and R is the number of relations then there exists R g x g sociomatrices
- R sociomatrices can be viewed as layers in a threedimensional matrix of size g x g x R
 - Rows index the sending actors, columns index the receiving actors and the layers index the relations
 - Matrix is referred to as a <u>super-sociomatrix</u>, representing the information in a multi-relational network

Sociometric Notation

Sociomatrices

	Friendship at Beginning of Year					Lives Near							
	Allison	Drew	Eliot	ng of red Keith	Ross	Sarah		Allison	Drew	Eliot	Keith	Ross	Sarah
Allison	-	1	0	0	1	0	Allison	-	0	0	0	1	1
Drew	0	-	1	0	0	1	Drew	0		1	0	0	0
Eliot	0	1	-	0	0	0	Eliot	0	- 1		0	0	0
Keith	0	0	0	-	1	0	Keith	0	ō	0		1	1
Ross	0	0	0	0		1	Ross	1	0	0	1		1
Sarah	0	1	0	0	0	-	Sarah	î	ő	0	i	1	

	Fi					
	Allison	Drew	Eliot	Keith	Ross	Sarah
Allison		1	0	0	1	0
Drew	0		1	0	1	1
Eliot	0	0		0	1	0
Keith	0	1	0	-	1	0
Ross	0	0	0	1	-	1
Sarah	0	1	0	0	0	