DISCIPLINA: Matemática Discreta I

PROFa.: Karla Lima

EACH-USP

October 17, 2018

- Dado um conjunto arbitrário S, podemos definir algumas operações binárias e unárias no conjunto $\mathcal{P}(S)$, S, neste caso, é chamado o conjunto universo.
- Uma operação binária em $\mathcal{P}(S)$ precisa atuar em quaisquer dois subconjuntos de S para produzir um único subconjunto de S.

Definição - União de Conjuntos

Sejam A, $B \in \mathcal{P}(S)$. A união de A e B, denotada por $A \cup B$, é $\{x | x \in A \text{ ou } x \in B\}$.

Definição - Interseção de Conjuntos

Sejam A, $B \in \mathcal{P}(S)$. A interseção de A e B, denotada por $A \cap B$, é $\{x | x \in A \ e \ x \in B\}$.

Definição - Complemento de um Conjunto

Para um conjunto $A \in \mathcal{P}(S)$, o complemento de A, A' é $\{x | x \in S \ e \ x \notin A\}$.

Exemplo

Sejam

```
A = \{x | x \text{ \'e um inteiro n\~ao negativo par} \}
```

$$B = \{x | (\exists y)(y \in \mathbb{N} \ e \ x = 2y + 1)\}$$

$$C = \{x | (\exists y)(y \in \mathbb{N} \ e \ x = 4y\}.$$

Produto Cartesiano

- Sejam $A \in B$ subconjuntos de S. O **produto cartesiano** (produto cruzado) de $A \in B$, denotado por $A \times B \in \{(x,y)|x \in A \in y \in B\}$
- Denotaremos por A^n para denotar o conjunto de todas as n-uplas (x_1, x_2, \dots, x_n) de elementos de A.

O produto cartesiano não é uma operação binária em $\mathcal{P}(S)$.

Identidade em Conjuntos

Identidades de Conjuntos Básicas

1a.	$A \cup B = B \cup A$
2a.	$(A \cup B) \cup C =$
	$A \cup (B \cup C)$
3a.	$A \cup (B \cap C) =$
	$(A \cup B) \cap (A \cup C)$
4a.	$A \cup \emptyset = A$
5a	$A \sqcup A' = S$

1b.
$$A \cap B = B \cap A$$

2b. $(A \cap B) \cap C =$
 $A \cap (B \cap C)$
3b. $A \cap (B \cup C) =$
 $(A \cap B) \cup (A \cap C)$
4b. $A \cap S = A$
5b. $A \cap A' = \emptyset$

(propriedades comutativas) (propriedades associativas)

(propriedades distributivas)

(propriedades de identidade) (propriedades de complemento)

Exercício

Demonstre que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Exemplo

Demonstre que $[A \cup (B \cap C)] \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$.

O **dual** para cada identidade de conjunto são obtidos substituindo-se \cup por \cap e trocando S por \emptyset .

Exemplo

O dual de:

$$[A \cup (B \cap C)] \cap [A' \cup (B \cap C)] \cap (B \cap C)' = \emptyset \ \acute{e}$$

$$[A \cap (B \cup C)] \cup [A' \cap (B \cup C)] \cup (B \cup C)' = S.$$

Exercício

Demonstre que $[C \cap (A \cup B)] \cup [(A \cup B) \cap C'] = A \cup B$.

Combinatória

A combinatória é o ramo da Matemática que trata da contagem. Tratar a contagem é importante, sempre que temos recursos finitos.

- Quanto espaço um banco de dados consome?
- Quantos usuários a configuração de um computador pode suportar?
- Quantos cálculos um determinado algoritmo envolve (eficiência)?

Princípio da Multiplicação

Exemplo - A uma criança é permitido escolher um dentre dois confeitos, um vermelho e outro preto, e um entre três chicletes, amarelo, lilás e branco. Quantos conjuntos diferentes de doces a criança pode ter?

Escolher confeito

Escolher chiclete

Escolher chiclete

Escolher confeito

Princípio da Multiplicação

Se existem n_1 possibilidades para um primeiro evento e n_2 possibilidades para um segundo evento, então existem $n_1.n_2$ possibilidades para a sequência dos dois eventos.

O Princípio da Multiplicação é útil, quando desejamos contar o número de possibilidades totais de uma tarefa que pode ser quebrada em uma sequência de etapas sucessivas.

Princípio da Multiplicação

Exemplo

A última parte do número de seu telefone contém quatro dígitos. Quantos números de quatro dígitos existem? E sem repetição?

Exemplo

Se um homem tem quatro ternos, oito camisas e cinco gravatas, quantas combinações ele pode compor?

Princípio da Multiplicação

Exemplo

Para qualquer conjunto finito S, seja |S| o número de elementos em S. Se A e B são conjuntos finitos, então $|AXB| = |A| \bullet |B|$

Exemplo

Suponha que desejamos escolher uma sobremesa dentre três tortas e quatro bolos. De quantas formas isto pode ser feito?

Princípio da Adição

Se A e B são eventos disjuntos com n_1 e n_2 possibilidades, respectivamente, então o número total de possibilidades para o evento A ou B é $n_1 + n_2$.

Princípio da Adição

Se A e B são eventos disjuntos com n_1 e n_2 possibilidades, respectivamente, então o número total de possibilidades para o evento A ou B é $n_1 + n_2$.

O Princípio da Adição é útil sempre que desejamos contar o número total de resultados possíveis para uma tarefa que pode ser quebrada em dois casos disjuntos.

Exemplo

Sejam A e B conjuntos finitos disjuntos $|A \cup B| = |A| + |B|$

Exemplo

Sejam A e B conjuntos finitos, então

$$|A-B|=|A|-|A\cap B|$$
 e

$$|A - B| = |A| - |B|$$
 se $B \subseteq A$.

Exemplo

Sejam A e B conjuntos finitos, então

$$|A - B| = |A| - |A \cap B| e$$

$$|A - B| = |A| - |B|$$
 se $B \subseteq A$.

Exemplo

Quantos inteiros de três dígitos (números entre 100 e 999) são pares?

Exemplo

Sejam A e B conjuntos finitos, então

$$|A - B| = |A| - |A \cap B| e$$

$$|A - B| = |A| - |B|$$
 se $B \subseteq A$.

Exemplo

Quantos inteiros de três dígitos (números entre 100 e 999) são pares?

Exemplo

Suponha que os quatro últimos dígitos de um número de telefone precisam incluir, pelo menos, um dígito repetido. Quantos números deste tipo existem?

Princípio da Inclusão e Exclusão

Princípio da Inclusão e Exclusão

se A e B são quaisquer conjuntos de um conjunto universo S, então A-B, B-A são conjuntos mutuamente disjuntos.

- Se $x \in A B$ então $x \notin B$, portanto $x \notin B A$ e $x \notin A \cap B$.
- Qual o outro nome do conjunto $(A B) \cup (B A) \cup (A \cap B)$?.
- Como representar |A ∪ B| (Princípio da Inclusão e Exclusão para dois conjuntos)?
- Como representar $|A \cup B \cup C|$ (Princípio da Inclusão e Exclusão para três conjuntos)?

Princípio da Casa de Pombo

Princípio da Casa de Pombo

Se mais do que k itens são distribuídos entre k caixas, então pelo menos uma caixa conterá mais de um item.

Exemplo

Quantas pessoas precisam estar no mesmo quarto para se garantir que pelo menos duas pessoas têm o sobrenome iniciado pela mesma letra?

Princípio da Casa de Pombo

Princípio da Casa de Pombo

Se mais do que k itens são distribuídos entre k caixas, então pelo menos uma caixa conterá mais de um item.

Exemplo

Quantas pessoas precisam estar no mesmo quarto para se garantir que pelo menos duas pessoas têm o sobrenome iniciado pela mesma letra?

Exemplo

Prove que se 51 inteiros positivos entre 1 e 100 são escolhidos, então pelo menos um deles divide outro?

Permutações e Combinações

Sabemos que número 1259 não é o mesmo que o número 2951. Um arranjo ordenado de objetos é chamado de **permutação**.

Exemplo

A determinação da quantidade de números de quatro dígitos sem dígitos repetidos pode ser considerada a contagem do número de permutações ou arranjos: são 4 objetos distintos escolhidos de um conjunto de 10 objetos distintos (os dígitos).

Exemplo

A determinação da quantidade de números de quatro dígitos sem dígitos repetidos pode ser considerada a contagem do número de permutações ou arranjos: são 4 objetos distintos escolhidos de um conjunto de 10 objetos distintos (os dígitos).

Permutações e Combinações

Em geral, o número de permutações de r objetos distintos escolhidos de n objetos distintos é denotada por P(n,r). Portanto, a solução do problema dos quatro dígitos sem repetição pode ser expressada como P(10,4).

Permutações e Combinações

Em geral, P(n, r) é dado por:

$$P(n,r) = \frac{n!}{(n-r)!} \text{ para } 0 \le r \le n$$