Interaction Models (Continuous x Continuous)

LI(x) - Relationship between Y and X's are not linear

Interactions with Continuous Variables

- Interactions with 2 continuous variables are modeled in a similar fashion than with 1 continuous x 1 dummy variable
- But they are more challenging (e.g., high multicollinearity) and harder to interpret, therefore less useful in predictive modeling
- Take for example: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{Int} x_1 x_2 + \varepsilon$
- Where x_1 and x_2 are both **continuous**, therefore:
 - $\triangleright \beta_1$ is the effect of x_1 when x_2 is θ
 - $\triangleright \beta_2$ is the effect of x_2 when x_1 is θ
 - ightharpoonup The total effect of x_1 is $\beta_1 x_1 + \beta_{Int} x_1 x_2 = (\beta_1 + \beta_{Int} x_2) x_1$
 - \succ That is, the effect of x_1 changes for every value of x_2
 - \triangleright Similarly, the total effect of x_2 is $\beta_2 x_2 + \beta_{Int} x_1 x_2 = (\beta_2 + \beta_{Int} x_1) x_2$
 - \triangleright That is, the effect of x_2 changes for every value of x_1 , so

Graphical Illustration

When x_1 and x_2 are continuous

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{Int} x_1 x_2 + \varepsilon$$

Problems with Continuous Interactions

- The model is **no** longer **scale invariant**. Since the effect of x_1 depends on x_2 , re-scaling x_2 will affect the effect of x_1 , and vice versa
- Multicollinearity increases substantially i.e., if x_1 is correlated with x_2 , it will also be correlated with x_1 x_2
- Since β_1 is the effect of x_1 when x_2 is θ , it will be meaningless if $x_2 = \theta$ can never happen (e.g., vehicle weight = θ)
- Solution: center or standardize the dependent variable and all independent variables associated involved in the interaction
 - ✓ It reduces multi-collinearity substantially
 - \checkmark β_1 becomes the effect of x_1 when x_2 is at its mean (not θ)
 - \checkmark β_2 is the effect of x_2 when x_1 is θ

Graphical Illustration

When x_1 and x_2 are continuous and centered

$$y_c = \beta_1 x_{1c} + \beta_2 x_{2c} + \beta_{Int} x_{1c} x_{2c} + \varepsilon$$

For continuous x continuous interaction effects, all variables involved in interaction terms and the response variable need to be centered first to avoid issues of high multicollinearity and scale invariance.

dataName\$y=scale(dataName\$y,center=TRUE,scale=FALSE)

Use a different name (e.g., dataName\$y.centered=etc.) if you would like the centered values to be stored in different variables.

dataName\$x1=scale(dataName\$x1,center=TRUE,scale=FALSE)

dataName\$x2=scale(dataName\$x2,center=TRUE,scale=FALSE)

 $lm (y\sim x1:x2, data=dataName) \rightarrow The main effects are unchanged, but the interaction effects are at the means of <math>x1$ and x2, and they change as the values of x1 and x2 change.

KOGOD SCHOOL of BUSINESS

