

A Practical Comparison of Three Robot Learning from Demonstration Algorithms

Russell Toris, Halit Bener Suay, Sonia Chernova

Overview

Existing evaluations of robot learning from demonstration have focused exclusively on algorithmic performance and not on usability factors. In this work we present findings from a comparative user study in which we asked non-experts to evaluate three distinctively different robot learning from demonstration algorithms -- Behavior Networks, Interactive Reinforcement Learning, and Confidence Based Autonomy.

DBUG Domain

- 31 users 21 male and 10 female ages ranging from 18 to 35
- asked to train Nao humanoid robot to pickup moving HEXBUG toys
- 10 minutes given to each per algorithm
- Robot able to track X, Y location of the bugs
- Pick-up, wait, and sweep actions

User Performance

The DBUG experimental setup

Goals

- Highlight the algorithmic assumptions violated by users
- Provide guidance for future algorithm designs

Algorithms

- Interactive Reinforcement Learning [1]
- RL with human given rewards
- Taught through on-screen +/- input
- Confidence Based Autonomy [2]
 - Confidence based classifier
 - Taught through on-screen action selections
- Behavior Networks [3]
 - Planning-based policy learning
 - Taught through physical guidance

Summary Results

Expert vs. User Behavior Networks

"How quickly did the robot learn the task?"

	Very-Slowly	Slowly	Quickly
Int-RL	11	16	4
CBA	3	9	19
BNets	8	11	12

"How well did the robot learn the task?"

	Not-at-All	Not-Well	Well	Very-Well
Int-RL	4	9	17	1
CBA	1	4	17	9
BNets	4	17	9	1

References

- [1] A. L. Thomaz and C. Breazeal. Adding guidance to interactive reinforcement learning. In the Twentieth Conference on Artificial Intelligence (AAAI), 2006.
- [2] S. Chernova and M. Veloso. Interactive policy learning through confidence-based autonomy. Journal Artificial Intelligence Research (JAIR), pages 1-25, 2009.
- [3] M. N. Nicolescu and M. J. Matarić. Natural methods for robot task learning: instructive demonstrations, generalization and practice. Autonomous Agents and Multiagent Systems (AAMAS), pages 241-248, New York, NY, USA, 2003. ACM.