Quiz 1 Coding Theory

 20^{th} January 2006

Time: 1 hours (12:30-1:30pm)

1. Write the addition [3] \dagger and multiplication [4] tables for \mathbf{Z}_6 .

Solution. The addition table,

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

The multiplication table,

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

2. Given ISBN $0.19.8538 \square 3.0$. Find the missing digit $\square .[3]$

Solution.For ISBN $x_1 \dots x_1 0$,

$$\sum_{i=1}^{10} ix_i \equiv \pmod{11}$$

Writing y for \square ,

$$0 + 1(2) + 9(3) + 8(4) + 5(5) + 3(6) + 8(7) + y(8) + 3(9) = 187 + 8y \equiv 0 \pmod{11}$$

Hence y = 0, and the ISBN is therefore 0.198538030.

3. Let $f(x) = 1 + x^2 + x^3$. Show whether f(x) is irreducible over \mathbb{Z}_2 .[4] Then find $\mathbb{Z}_2[x]/(f(x))$.[4] And then draw the addition [5] and multiplication [7] tables of $\mathbb{Z}_2[x]/(f(x))$.

Solution. We note that f(x) is of degree 3. Suppose f(x) be reducible. Then it would have a linear factor x or 1 + x, which would make 0 and 1 roots of f(x). But g(0) = g(1) = 1, which is in \mathbb{Z}_2 . Therefore f(x) is irreducible.

$$\mathbf{Z}_{2}[x]/(1+x^{2}+x^{3}) = \{0, 1, x, 1+x, x^{2}, x+x^{2}, 1+x^{2}, 1+x+x^{2}\}$$

† Numbers between square brackets are marks.

Coding theory, Quiz 1

-1-

From 19 Jan 05, as of 20^{th} January, 2006

#

#

#

#

The addition table,

+	0	1	x	1+x	x^2	$x + x^2$	$1 + x^2$	$1 + x + x^2$
0	0	1	x	1+x	x^2	$x + x^2$	$1 + x^2$	$1 + x + x^2$
1	1	0	1+x	x	$1 + x^2$	$1 + x + x^2$	x^2	$x + x^2$
x	x	1+x	0	1	$x + x^2$	x^2	$1 + x + x^2$	$1 + x^2$
1+x	1+x	x	1	0	$1 + x + x^2$	$1 + x^2$	$x + x^2$	x^2
x^2	x^2	$1 + x^2$	$x + x^2$	$1 + x + x^2$	0	x	1	1+x
$x + x^2$	$x + x^2$	$1 + x + x^2$	x^2	$1 + x^2$	x	0	1+x	1
$1 + x^2$	$1 + x^2$	x^2	$1 + x + x^2$	$x + x^2$	1	1+x	0	x
$1 + x + x^2$	$1 + x + x^2$	$x + x^2$	$1 + x^2$	x^2	1+x	1	x	0
	•							#

The multiplication table,

	0	1	x	1 + x	x^2	$x + x^2$	$1 + x^2$	$1 + x + x^2$
0	0	0	0	0	0	0	0	0
1	0	1	x	1 + x	x^2	$x + x^2$	$1 + x^2$	$1 + x + x^2$
x	0	x	x^2	$x + x^2$	$1 + x^2$	1	$1 + x + x^2$	1+x
1+x	0	1+x	$x + x^2$	$1 + x^2$	1	$1 + x + x^2$	x	x^2
x^2	0	x^2	$1 + x^2$	1	$1 + x + x^2$	x	1+x	$x + x^2$
$x + x^2$	0	$x + x^{2}$	1	$1 + x + x^2$	x	1+x	x^2	$1 + x^2$
$1 + x^2$	0	$1 + x^2$	$1 + x + x^2$	x	1+x	x^2	$x + x^{2}$	1
$1 + x + x^2$	0	$1 + x + x^2$	1+x	x^2	$x + x^2$	$1 + x^2$	1	1+x
	i							#