Lezione dei 25 Ottobre di Gandini

Definizione 0.1 (Convesso).

 $A \subseteq \mathbb{R}^n$ si dice convesso se

$$\forall x, y \in A \quad tx - (1 - t)y \in A \quad \forall t \in [0, 1]$$

Ovvero il segmento che congiunge 2 punti dell'insieme è tutto contenuto nell'insieme

Osservazione 1. $A \subseteq \mathbb{R}^n$ convesso $\Rightarrow A$ connesso per archi $\Rightarrow A$ connesso.

Come cammino scelgo il segmento infatti, dalla definizione, è tutto contenuto nell'insieme A

Proposizione 0.1. $Sia\ I \subseteq \mathbb{R}$.

I sequenti fatti sono equivalenti:

- (i) I è convesso ovvero è un intervallo
- (ii) I è connesso per archi
- (iii) I è connesso

Dimostrazione. (i) \Rightarrow (ii) \Rightarrow (iii).

Mostriamo che (iii)⇒(i) in modo contronominale.

Supponiamo che I non sia convesso dunque

$$\exists a < b < c \quad a, c \in I \quad b \not\in I$$

dunque ottengo

$$I = ((-\infty, b) \cap I) \cup ((b, +\infty) \cap I)$$

ovvero I si scrive come unione di 2 aperti disgiunti, I è sconnesso.

Esempio 0.2. (0,1) non è omeomorfo a [0,1]

Supponiamo, per assurdo che $f:[0,1)\to(0,1)$ sia un omeomorfismo.

 $Ora [0,1)\setminus\{0\}$ è connesso mentre $(0,1)\setminus\{f(0)\}$ non lo è.

In modo analogo si prova che (0,1), [0,1] e [0,1), [0,1] non sono omeomorfi

Esempio 0.3. Connesso ≠ connesso per archi

Dimostrazione. Sia

$$Y = \left\{ \left(x, \sin \frac{1}{x} \right) \middle| \ x > 0 \right\} \subseteq \mathbb{R}^2$$

Y in modo ovvio è connesso per archi (il grafico della funzione $f(x) = (x, \sin \frac{1}{x})$ è il cammino cercato)

Sia

$$X = \overline{Y} = Y \cup \{(0, t) \mid |t| \le 1\}$$

X è connesso in quanto chiusura di un connesso, mostriamo che non è connesso per archi. Supponiamo, per assurdo, che esista un cammino

$$\alpha: [0,1] \to X \quad \alpha(0) = (0,0) \in \alpha(1) \in Y$$

dove indicheremo $\alpha(t) = (x(t), y(y))$

$$x: [0,1] \to [0,+\infty)$$
 continue

$$y: [0,1] \rightarrow [-1,-1]$$
continue

Sia

$$\Omega = \{t \in (0,1) \mid x(t) = 0\} = x^{-1}(\{0\})$$

Tale insieme è chiuso (controimmagine di un chiuso) e limitato dunque ammette un massimo $t_0 = \max \Omega$, per ipotesi $t_0 < 1$ infatti $\alpha(1) \in y$.

Supponiamo che $y(t_0) \ge 0$ (altra analoga) dunque per continuità di y

$$\exists \delta > 0 \quad y(t) \ge -\frac{1}{2} \quad \forall t \in [t_0, t_0 + \delta]$$
 (1)

Ora $x([t_0, t_0 + \delta])$ è un connesso che contiene $0 = x(t_0)$ dunque

$$\exists \varepsilon \quad [0, \varepsilon) \subseteq x([t_0, t_0 + \delta])$$

Per avere un assurdo, basta trovare $(\lambda, \mu) \in \alpha([t_0, t_0 + \delta])$ con $\mu < -\frac{1}{2}$, ciò è assurdo per 1. Cerchiamo

$$\lambda \in (0, \varepsilon] \text{ con } \sin \frac{1}{\lambda} = -1 \quad \lambda = \frac{1}{2k\pi - \frac{\pi}{2}}$$

Dunque se prendiamo un k >> 0 allora $\lambda \in (0, \varepsilon)$ da cui abbiamo un assurdo

Definizione 0.2 (Giunzione di cammini).

Siano $x, y, z \in X$ e $\alpha, beta : [0,1] \to X$ cammini tali che

$$\begin{cases} \alpha(0) = x \\ \alpha(1) = y \end{cases} \quad e \quad \begin{cases} \beta(0) = y \\ \beta(1) = z \end{cases}$$

Allora la giunzione di α e β è il cammino

$$\gamma = (\alpha \star \beta)(t) = \begin{cases} \alpha(2t) \text{ se } t \in \left[0, \frac{1}{2}\right] \\ \beta(2t - 1) \text{ se } t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Osservazione 2. La giunzione è ben definita ed è un cammino che congiunge x a z infatti

$$\gamma(0) = x$$
 $\gamma(1) = z$ $\gamma\left(\frac{1}{2}\right) = \alpha(1) = \beta(0) = y$

Inoltre è continua poichè $[0,1]=\left[0,\frac{1}{2}\right]\cup\left[\frac{1}{2},1\right]$ è un ricoprimento chiuso finito dunque fondamentale, inoltre, $\gamma_{|\left[0,\frac{1}{2}\right]}$ e $\gamma_{|\left[\frac{1}{2},1\right]}$ sono continue dunque anche γ lo è

Definizione 0.3 (Componenti connesse per archi).

Dato $x \in X$ uno spazio topologico, la componente connessa per archi di x è il massimo connesso per archi che contiene x.

In modo equivalente:

Dato $x \in X$ la sua componente connessa per archi è

$$C_a(x) = \{ y \in X \mid \exists \alpha : [0, 1] \to X \text{ con } \alpha(0) = x \in \alpha(1) = y \}$$

Mostriamo che la definizione è ben posta

Proposizione 0.4. La relazione $\sim su\ X$ definita come

$$x \sim y \quad \Leftrightarrow \quad \exists : \alpha : [0,1] \to X \ con \ \alpha(0) = x \ e \ \alpha(1) = y$$

è una relazione di equivalenza

Dimostrazione.

- $\bullet \sim$ è riflessiva, prendo il cammino $\alpha(t) = x$ dunque $x \sim x$
- \sim è simmetrica Sia α un cammino che congiunge x con y allora il cammino $\beta(t) = \alpha(1-t)$ congiunge y con x
- \sim è transitiva. SIa α cammino che congiunge x a y e β cammino che congiunge y a z allora la loro giunzione congiunge x a z

Osservazione 3. Le componenti connesse per archi non sono nè aperte nè chiuse

Proposizione 0.5. Supponiamo che ogni punto abbia un intorno connesso. Allora le componenti connesse sono aperte

Dimostrazione. Sia $x \in X$ e C(x) la sua componente connessa.

 $\forall y \in C(x)$ sia $U \in I(y)$ un intorno connesso $\Rightarrow U \subseteq C(y)$ per massimalità Ora, poichè le componenti connesse formano una partizione C(x) = C(y).

$$\forall y \in C(x) \quad \exists U \in I(y) \quad U \subseteq C(x)$$

Proposizione 0.6. Supponiamo che ogni punto abbia un intorno connesso per archi. Allora le componenti connesse per archi sono aperte e coincidono con le componenti connesse

Dimostrazione. Sia $x \in X$ e $C_a(x)$ la sua componente connessa per archi

$$\forall y \in C_a(x)$$
 sia $U \in I(y)$ intorno connesso per archi

Ora $C_a(x) \cap U$ è connesso per archi dunque $U \subseteq C_a(x)$.

Vediamo che $C_a(x) = C(x)$.

Chiaramente $C_a(x) \subseteq C(x)$, mostriamo l'altra inclusione.

$$C(x) = \coprod_{y \in C(x)} C_a(y) \implies C(x) \cap C_a(x)$$
 aperto poichè unione di aperti \Rightarrow $C(x)$ connesso

dunque
$$C_a(x) = C(x)$$

Definizione 0.4. X è detto localmente connesso se ogni punto ammette un sistema fondamentale di intorni connessi.

X è detto localmente connesso per archi se ogni punto ammette un sistema fondamentale di intorni connessi per archi

Esempio 0.7. Spazio connesso per archi non localmente connesso.

Dimostrazione. Consideriamo $(\mathbb{Q} \times \mathbb{R}) \cup (\mathbb{R} \times \{0\}$ unione delle rette verticale a distanza razionale unito ad una retta orizzantale.

Tale insieme prende il nome di pettine infinito.

Tale insieme è connesso per archi, ma non connesso.

Consideriamo una palla centrata in (y, x) e raggio $\langle x$.

Allora la palla si può dividere con un irrazionale, dunque si scrive come unione di due aperti disgiunti

Esercizio 0.8. Prodotto di connessi per archi è connesso per archi

Esercizio 0.9. Prodotto di 2 connessi è connesso

Dimostrazione. Supponiamo X, Y connessi.

Per assurdo

$$X\times Y=A\cup B$$
 decomposizione in aperti disgiunti

Ora anche $X = \pi_X(A) \cup \pi_X(B)$ è una decomposizione in aperti, essendo X connesso $x_0 \in \pi_X(A) \cap \pi_X(B)$.

Considero $\{x_0\} \times Y$ esse è omeomorfo a Y dunque connesso.

Sia

$$A_1 = A \cap (\{x_0 \times Y\})$$
 $B_1 = B \cap (\{x_0 \times Y\})$

dunque

$$\{x_0\} \times Y = A_1 \cup B_1$$
 decomposizione in aperti non vuoti

dunque

$$A_1 \cap A_2 \neq \emptyset \quad \Rightarrow \quad A \cap B \neq \emptyset$$

Esercizio 0.10. Il prodotto arbitrario di connessi è connesso

Esercizio 0.11. $Sia \ n > 1 \ allora$

 $\mathbb{R}^n \setminus \{insieme \ numerabile\} \ \dot{e} \ connesso \ per \ archi$