

# 2. Computer Graphics Primer

## $\Omega$ hm







Source: Various: LGDV, Nvidia, BMW

### ρhm

## **Computer Graphics**



## **Computer Graphics**

We start here



## Contents

- The rendering pipeline
- Transformations
- Projections
- Color
- Lighting and Shading
- Texture Mapping



# 2.1 The Rendering pipeline

The Rendering Pipeline

## The Rendering Pipeline

### **Key Graphics Areas**

- Modeling
  - Mathematical specification of shape and appearance properties of objects
  - Primitives: Points, lines, curves, surfaces, ...
  - Attributes: color, texture maps, lighting properties, ...
  - Geometric transformations
- Animation
  - Create the illusion of motion: sequence of still images
  - Time as parameter for modeling and rendering
  - Keyframes, physically-based animations, collision detection, ...

#### $oldsymbol{o}hm$

## The Rendering Pipeline

### **Key Graphics Areas**

- Rendering
  - Creation of shaded images from 3D computer models given
    - A virtual camera
    - Objects (modeling)
    - Light sources
  - 2D images from 3D scenes
- Important issues
  - Visibility and Projection
  - Simulation of light
  - Interactivity vs. photorealism

## The Rendering Pipeline

- 3D input
  - Virtual camera
    - Position, orientation, focal length, ...
  - Objects
    - Points, lines, polygons and attributes
  - Light sources
    - Position, direction, color, ...
  - Textures
    - Images

#### 2D output

Per-pixel color values in the framebuffer



## The Rendering Pipeline

## Classic pipeline architecture





## The Rendering Pipeline

### Current pipeline architecture (OpenGL 4.4)



Source: http://openglinsights.com/pipeline.html

#### $\mathfrak{O}\mathsf{hm}$



### Ωhm



Prof. Dr. Matthias Teßmann

## The Rendering Pipeline

### **Geometry representation**

- Points (vertices) w.r.t. a known coordinate system
  - Vertices are used for modeling polygons (objects)
- Arbitrary polygons and surfaces are represented as triangles
  - Triangles, Triangle Strips, Triangle Fans used to build meshes
  - Meshes form objects
- Attributes are associated with vertices
  - Color, material, surface normal vectors, ...
  - Used to calculate final appearance (pixel color)
- Every single vertex is processed in the same way
  - The series of processing steps is known as the rendering pipeline
  - This is what graphics hardware is for

### $oldsymbol{o}hm$

Computer Graphics

**Geometry representation** 





## The Rendering Pipeline

## **Geometry representation**



## The Rendering Pipeline

### Rasterization

| Object space                           | Image space                                                                       |
|----------------------------------------|-----------------------------------------------------------------------------------|
| for <b>all objects</b> set pixel color | for all pixels  for all objects  calculate color contribution  of object to pixel |

 The framebuffer is the intermediate memory space storing the accumulated pixel values

### $oldsymbol{o}hm$

## The Rendering Pipeline

### Rasterization

