Donor-akceptorová vazba

donor-akceptorová vazba je ekvivalentní kovalentní vazbě

Donor-akceptorová vazba

VB teorie

$$NH_3$$
 + BF_3 \longrightarrow $H_3N \longrightarrow BF_3$

Donor-akceptorová vazba

Donor-akceptorová vazba

MO teorie

N

dsp² hybridní orbitaly elektrony z Cl⁻, čtvercový

sp³ hybridní orbitaly elektrony z Cl⁻, tetraedrický

p

Monodentátní ligandy

Ni(CO)₄, Fe(CO)₅, Mo(CO)₆

NH₃ amoniak

PPh₃ fosfan

H₂O voda

SR₂ thioether

Teorie ligandového pole

d-orbitaly v oktaedrickém poli ligandů

Rozštěpení d-hladin v O_h poli

Stabilizace 0.4 Δ_0

Stabilizační energie ligandového pole

(CFSE = Crystal Field Stabilization Energy)

Slabé pole

 $\Delta_{o} < P$ (párovací energie)

Vysokospinové komplexy

Silné pole

 $\Delta_{0} > P$ (párovací energie)

Nízkospinové komplexy

Rozštěpení d-hladin v O_h poli

d-orbitaly v tetraedrickém poli ligandů

Rozštěpení d-hladin v čtvercovém poli (d⁸)

Vliv ligandů na vlastnosti komplexů

en = ethylendiammin

Vliv ligandů na vlastnosti komplexů

