Worksheet #1
Introduction and Mathematical Background

1. In one sentence each, define complexity theory, computability theory, and automata theory.

complexity theory: Complexity theory classifies problems according to their difficulty, often by the order of the algorithm, or big 0 time.

computability theory: Some problems are solvable and some
are unsolvable.

automata theory: Automata theory defines the properties and limitations of various computational models.

2. Define each of the following mathematical sets and give three examples of elements of each set: N, Z, Q, N \times Q, and R.

	N	Z	Q	N×Q	R
Definition	Set of natural numbers	Set of integers {, -3, -2, -1, 0, 1, 2, 3,}	Set of rational numbers. x/y where x and y are both ints and y is not zero. Q={m/n:m∈ Z,n∈Z,n≠0}	Set of ordered pairs of each combinati on of elements from both sets; Cartesian product. N × Q = {(x, y): x ∈ N and y ∈ Q}	Set of real numbers
Example	1	-1	7	(1,7)	$\sqrt{3}$
Example	9	-9	11/3	(9, 11/3)	1.7
Example	25	-25	15/2	(25 , 15/2)	П

3. Write down any subset (\subseteq) relationships between the mathematical sets described in Question #2.

 $N \subseteq Z$

 $Q \subseteq R$

N ⊆ R

z ⊆ R

4. Suppose we have the set $A = \{2, 3, 5, 7\}$. Write down all the elements in $\mathcal{P}(A)$, the power set of A.

 $\mathcal{P}(A) = \{\{\}, \{2\}, \{3\}, \{5\}, \{7\}, \{2, 3\}, \{2, 5\}, \{2, 7\}, \{3, 5\}, \{3, 7\}, \{5, 7\}, \{2, 3, 5\}, \{2, 3, 7\}, \{2, 5, 7\}, \{3, 5, 7\}, \{2, 3, 5, 7\}\}$ | $\mathcal{P}(A) \mid = 2^{|A|} = 16$

5. Give an example string \mathbf{w} over the alphabet $\Sigma = \{a, b, c, d\}$. Also, give $|\mathbf{w}|$.

w = abc

|w| = 3

6. Prove that any subset of size (n+1) from $\{1, 2, 3, \ldots, 2n\}$, contains (at least) two numbers that are consecutive.

Proof by contradiction:

Suppose any subset of size (2n) from {1,2,3, ...,2n}, doesn't contain any pairs of two numbers that are consecutive. Only half of the elements would be valid in a given subset, because for any element selected, the following element is invalid (1).

- 1. The maximum size of a subset containing no consecutive elements is $\frac{2n}{2}$.
- 2. Assume $\frac{2n}{2} \ge n + 1$.
- 3. Reduce to $n \ge n+1$. This cannot be true because n will always be less than n+1.
- 4. Therefore, since there are no possible subsets of size n+1 containing no consecutive numbers, our assumption is

incorrect and any subset of size n+1 must contain at least two consecutive numbers.