

EFFICIENT ML& QUANT RESEARCHER

baykal@alum.mit.edu people.csail.mit.edu/baykal | linkedin.com/in/cenkbaykal | Scholar: tinyurl.com/cbaykal-scholar

EDUCATION

Massachusetts Institute of Technology

Cambridge, MA

Ph.D. IN COMPUTER SCIENCE

2017-2021

· Minor: Probability in High Dimension (Mathematics)

Thesis: Sampling-based Algorithms for Fast and Deployable Al

· Advisor: Daniela Rus

• GPA: 5.00/5.00

Massachusetts Institute of Technology

Cambridge, MA

S.M. IN COMPUTER SCIENCE

2015-2017

• Thesis: Algorithms for Persistent Autonomy and Surveillance

• GPA: 4.91/5.00

· Advisor: Daniela Rus

Chapel Hill, NC

University of North Carolina at Chapel Hill B.S. Computer Science with Highest Honors, B.A. Mathematics

2011-2015

· Graduated with Highest Distinction

· Advisor: Ron Alterovitz

• Thesis: Design Optimization Algorithms for Concentric Tube Robots

• GPA: 3.91/4.00

Two Sigma

EXPERIENCE

New York City, NY

QUANTITATIVE RESEARCHER

July 2024 - Present

- Design systematic alpha strategies that combine alternative data and market microstructure signals
- · Build and maintain Python/pandas/NumPy research tooling to accelerate signal evaluation and backtesting
- · Partner with portfolio managers to translate promising research prototypes into production pilots

Google Research Cambridge, MA

RESEARCH SCIENTIST

January 2022 - June 2024

- $\bullet \ \ \, \text{Developed conditional computation algorithms for transformers that enabled up to 30\% speedups on Large Language Models (LLMs)}$
- \bullet Designed data-efficient knowledge distillation strategies that led to improved transformer architectures with only 50% of teacher labeling cost
- Mentored scholars in Google CSRMP, supporting project design and research execution for students from historically marginalized groups
- Received the 2023 Google Research Tech Impact Award for leading "high-impact projects made sustainable by achieving tech excellence and great team dynamics"
- Received a Google Spot Bonus for "critical contributions to the efficiency of compact Gemini models"

Massachusetts Institute of Technology

Cambridge, MA

September 2021 - January 2022

· Worked on algorithms for privacy-aware and efficient Machine Learning

JP Morgan

New York City, NY

AI RESEARCH INTERN May 2021 - September 2021

· Developed sampling-based algorithms with regret guarantees for large-scale graph neural network training

Massachusetts Institute of Technology

Cambridge, MA

TEACHING ASSISTANT FOR ADVANCED ALGORITHMS (6.854J / 18.415J)

Fall 2019

- · Conducted office hours to help students on problem sets and concepts covered in lectures; designed and graded assignments
- TA rating according to the official MIT subject evaluation report: 7.0/7.0

Microsoft Redmond, WA

SOFTWARE ENGINEER INTERN

• Improved the computational efficiency of Huffman coding in SQL Server as part of the SQL Server Performance Team

University of North Carolina

Chapel Hill, NC

Summer 2015

Undergraduate Research Assistant

August 2012 - May 2015

- Developed and analyzed efficient algorithms for motion planning and design optimization of concentric tube medical robots Computational Robotics Group under Prof. Ron Alterovitz
- Enhanced and implemented a Self-Aware Traffic Route Planning Algorithm (http://gamma.cs.unc.edu/TROUTE/) as a member of the GAMMA group under Prof. Ming Lin
- · Developed enabling technologies, such as the Tar Heel Reader (tarheelreader.org), with Prof. Gary Bishop

University of North Carolina

Chapel Hill, NC

Undergraduate Teaching Assistant for Intro. to Scientific Computing (COMP 116)

August 2014 - December 2014

· Conducted office hours to help students on problem sets and concepts covered in lectures; designed and graded assignments

SAS Cary, NC

SOFTWARE ENGINEERING INTERN

Summer 2014

· Developed fully-automated tests and utilized SAS software to perform data analysis of coverage reports

SAS Cary, NC

SOFTWARE ENGINEERING INTERN

Summer 2013

• Developed automated tests for SAS University, a web-based SAS platform

UNC Eshelman School of Pharmacy

Chapel Hill, NC

SOFTWARE DEVELOPER INTERN

Summer 2012

Developed novel educational products using XHTML/HTML, CSS, PHP, JavaScript to facilitate learning for pharmacy students

HONORS & AWARDS

2024	Google Spot Bonus, For critical contributions to the efficiency of compact Gemini models	Google
2023	Google Research Tech Impact Award, For contributions to ML efficiency techniques	Google
2023	NeurIPS Spotlight Paper, Neural Information Processing Systems	NeurlPS
2021	Winner, MIT The Engine's Interval Program (one of 2 winning teams)	MIT
2021	Expert Reviewer, International Conference on Learning Representations	ICLR
2021	Expert Reviewer, International Conference on Machine Learning	ICML
2020	Expert Reviewer, International Conference on Learning Representations	ICLR
2020	Top 10% of Reviewers, Neural Information Processing Systems	NeurlPS
2017	Best Paper Award, Robotics: Science and Systems Conference	RSS@MIT
2015	Carolina Research Scholar, University of North Carolina at Chapel Hill	UNC
2015	Finalist, CRA Outstanding Undergraduate Researcher Award	CRA
2014	Phi Beta Kappa, University of North Carolina at Chapel Hill	UNC
2014	Charles H. Dunham Scholarship, SAS-funded scholarship at UNC	UNC
2014	Dunlevie Honors Undergraduate Award, University of North Carolina at Chapel Hill	UNC
2014	Summer Undergraduate Research Fellowship, University of North Carolina at Chapel Hill	UNC
2012-2015	Honors Carolina, UNC Honors Program	UNC
2011-2015	Dean's List, University of North Carolina at Chapel Hill	UNC

PEER-REVIEWED PUBLICATIONS

Alternating Updates for Efficient Transformers (Spotlight)

NeurIPS

Cenk Baykal, Dylan Cutler, Nishanth Dikkala, Nikhil Ghosh, Rina Panigrahy, Xin Wang

SLAM: Student-label Mixing for Distillation with Unlabeled Examples

NeurIPS 2023

Vasilis Kontonis, Fotis Iliopoulos, Khoa Trinh, **Cenk Baykal**, Gaurav Menghani, Erik Vee

Robust Active Distillation Cenk Baykal, Khoa Trinh, Fotis Iliopoulos, Gaurav Menghani, Erik Vee	ICLR 2023
Weighted Distillation with Unlabeled Examples Vasilis Kontonis, Fotis Iliopoulos, Cenk Baykal , Gaurav Menghani, Khoa Trinh, Erik Vee	NeurlPS 2022
A Theoretical View on Sparsely Activated Networks Cenk Baykal, Nishanth Dikkala, Rina Panigrahy, Cyrus Rashtchian, Xin Wang	NeurlPS 2022
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks CENK BAYKAL*, LUCAS LIEBENWEIN*, IGOR GILITSCHENSKI, DAN FELDMAN, AND DANIELA RUS	SIAM SIMODS 2022
Coresets for Support Vector Machines Cenk Baykal*, Murad Tukan*, Dan Feldman, and Daniela Rus	TCS 2021
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus	MLSys 2021
Provable Filter Pruning for Efficient Neural Networks Lucas Liebenwein*, Cenk Baykal*, Harry Lang, Dan Feldman, and Daniela Rus	ICLR 2020
On Coresets for Support Vector Machines Murad Tukan*, Cenk Baykal*, Dan Feldman, and Daniela Rus	<i>TAMC</i> 2020
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds	ICLR
CENK BAYKAL*, LUCAS LIEBENWEIN*, IGOR GILITSCHENSKI, DAN FELDMAN, AND DANIELA RUS Deterministic Coresets for Stochastic Matrices with Applications to Scalable Sparse	2019 TAMC
PageRank Cenk Baykal*, Harry Lang*, Najib Abu Samra, Tony Tannous, Dan Feldman, and Daniela Rus	2019
Resilient Multi-Agent Consensus using Wi-Fi Signals Stephanie Gil, Cenk Baykal, and Daniela Rus	L-CSS 2019
Sampling-Based Approximation Algorithms for Reachability Analysis with Provable Guarantees	RSS
CENK BAYKAL*, LUCAS LIEBENWEIN*, IGOR GILITSCHENSKI, SERTAC KARAMAN, AND DANIELA RUS	2018
Asymptotically Optimal Kinematic Design of Robots using Motion Planning CENK BAYKAL, CHRIS BOWEN, AND RON ALTEROVITZ	Autonomous Robots 2018
Kinematic Design Optimization of a Parallel Surgical Robot to Maximize Anatomical Visibility via Motion Planning	ICRA
Alan Kuntz, Chris Bowen, Cenk Baykal , Arthur W. Mahoney, Patrick L. Anderson, Fabien Maldonado, Robert J. Webster III, and Ron Alterovitz	2018
Asymptotically Optimal Design of Piecewise Cylindrical Robots using Motion Planning (Best Paper Award) CENK BAYKAL AND RON ALTEROVITZ	RSS 2017
Persistent Surveillance of Events with Unknown, Time- varying Statistics CENK BAYKAL, GUY ROSMAN, SEBASTIAN CLAICI, AND DANIELA RUS	ICRA 2017
Persistent Surveillance of Events with Unknown Rate Statistics CENK BAYKAL, GUY ROSMAN, KYLE KOTOWICK, MARK DONAHUE, AND DANIELA RUS	WAFR 2016
Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based	IROS
Motion Planning Cenk Baykal, Luis G. Torres, and Ron Alterovitz	2015

Participatory Route Planning	SIGSPATIAL
David Wilkie, Cenk Baykal , and Ming Lin	2014
Interactive-rate Motion Planning for Concentric Tube Robots	ICRA
Luis G. Torres, Cenk Baykal , and Ron Alterovitz	2014