A Framework for Equivalence of Cast Calculi

BY LU KUANG-CHEN

1 Definitions

Definition 1. $s \approx^* s'$ if and only if there exists a state t such that $s \longrightarrow^* t$ and $t \approx s'$. Intuitively, $s \approx^* s'$ means s will be related to s'.

Notation 2. [c] means λV .applyCast(V, c).

Lemma 3. If $U \approx U' : A$ then $[A \Rightarrow^l B](U) \approx [[A \Rightarrow^l B]](U') : B$.

Definition 4. $\operatorname{extCont}(c, [\Box \langle d \rangle]k) = [\Box \langle \operatorname{seq}(c, d) \rangle]k$

Lemma 5. $\operatorname{extCont}(\operatorname{seq}(c,d),\kappa) = \operatorname{extCont}(c,\operatorname{extCont}(d,\kappa))$

Lemma 6. If $\kappa \approx \kappa'$ then $[\Box \langle A \Rightarrow^l B \rangle] \kappa \approx \text{extCont}([A \Rightarrow^l B], \kappa')$

Lemma 7. For all $U \approx U'$ and $V \approx V'$ and $k \approx k'$ then $\operatorname{doApp}(U, V, \kappa) \approx^* \operatorname{doApp}'(U', V', \kappa')$.

Proof. By induction on $U \approx U'$. There are two cases.

Case
$$\langle \lambda x : A.e : B, E \rangle \approx \langle \lambda x : id(A).e : id(B), E' \rangle$$

In this case

$$\begin{aligned} \operatorname{doApp}(U,V,k) &= \operatorname{doApp}(\langle \lambda x \colon A.\ e \colon B,E \rangle, V,\kappa) \\ &= \langle e, E[x \leftarrow V], \kappa \rangle \\ &= \langle e, E[x \leftarrow V], \kappa \rangle \\ &= \operatorname{doApp'}(U',V',\kappa') \\ &= \operatorname{doApp'}(\langle \lambda x \colon \operatorname{id}(A).\ e \colon \operatorname{id}(B),E' \rangle, V',\kappa') \\ &= \left[\operatorname{id}(A) \right] (V') & \geq \lambda V'. \langle e, E'[x \leftarrow V'],\kappa' \rangle \\ &= \langle e, E'[x \leftarrow V'],\kappa' \rangle \end{aligned}$$

The step marked with (\star) follows from the basic property of $\mathrm{id}(\cdot),$ that is

$$[id(A)](V) = Just V$$

By definition, $\langle e, E[x \leftarrow V], \kappa \rangle \approx \langle e, E'[x \leftarrow V'], \kappa' \rangle$.

Thus
$$\langle e, E[x \leftarrow V], \kappa \rangle \approx^* \langle e, E'[x \leftarrow V'], \kappa' \rangle$$
.

Case
$$\langle U_1 \langle A \to B \Rightarrow^l C \to D \rangle, E \rangle \approx \langle \lambda(x : \text{seq}(\lceil C \Rightarrow^l A \rceil, c)) : \text{seq}(d, \lceil B \Rightarrow^l D \rceil), e, E' \rangle$$

Let $U_1' = \langle \lambda x^{c,d}.e, E' \rangle$, we also have $U_1 \approx U_1'$.

In this case,

$$\begin{aligned} \operatorname{doApp}(U,V,\kappa) &= \operatorname{doApp}(\langle U_1 \langle A \to B \Rightarrow^l C \to D \rangle, E \rangle, V, \kappa) \\ &\to \llbracket C \Rightarrow^l A \rrbracket(V) \geq \lambda V_1. \langle V_1, \llbracket (U_1 \Box) \rrbracket \llbracket B \Rightarrow^l D \rrbracket \kappa \rangle \\ &\operatorname{doApp}'(U',V',k') \\ &= \operatorname{doApp}'(\langle \lambda(x : \operatorname{seq}(\lceil C \Rightarrow^l A \rceil,c)) : \operatorname{seq}(d,\lceil B \Rightarrow^l D \rceil).e,E' \rangle, V',\kappa') \\ &= \llbracket \operatorname{seq}(\lceil C \Rightarrow^l A \rceil,c) \rrbracket(V') \geq \lambda V_1'. \langle e,E' \llbracket x \leftarrow V_1' \rrbracket, \operatorname{extCont}(\operatorname{seq}(d,\lceil B \Rightarrow^l D \rceil),\kappa') \rangle \\ &\in \underbrace{\operatorname{Return} V' \geq \llbracket c \rrbracket \geq \llbracket d \rrbracket} \geq \lambda V_1'. \langle e,E' \llbracket x \leftarrow V_1' \rrbracket, \operatorname{extCont}(\operatorname{seq}(d,\lceil B \Rightarrow^l D \rceil),\kappa') \rangle \\ &= \llbracket c \rrbracket(V') \geq \llbracket d \rrbracket \geq \lambda V_1'. \langle e,E' \llbracket x \leftarrow V_1' \rrbracket, \operatorname{extCont}(\operatorname{seq}(d,\lceil B \Rightarrow^l D \rceil),\kappa') \rangle \end{aligned}$$

The step marked with (\star) follows from the basic property of seq (\cdot,\cdot) , that is

$$\llbracket \operatorname{seq}(c,d) \rrbracket(V) = \operatorname{Return} V \ge \llbracket c \rrbracket \ge \llbracket d \rrbracket$$

By Lemma 3, we can case-split $[C \Rightarrow^l A](V)$ and $[[C \Rightarrow^l A]](V')$ at the same time.

Case
$$[C \Rightarrow^l A](V) = \text{Raise } l$$
 and $[[C \Rightarrow^l A]](V') = \text{Raise } l$

In this case

$$\begin{split} &\operatorname{doApp}(U,V,\kappa)\\ &\longrightarrow \operatorname{Raise} l \geq \lambda V_1.\langle V_1, [(U_1 \square)][B \Rightarrow^l D] \kappa \rangle \\ &\longrightarrow \operatorname{Raise} l \\ &\operatorname{doApp}'(U',V',\kappa')\\ &= \operatorname{Raise} l \geq \llbracket c \rrbracket \geq \lambda V_1'.\langle e,E'[x \leftarrow V_1'],\operatorname{extCont}(\operatorname{seq}(d,\lceil B \Rightarrow^l D \rceil),\kappa') \rangle \\ &= \operatorname{Raise} l \end{split}$$

By definition, $\operatorname{Err} l \approx \operatorname{Err} l$.

Thus $\operatorname{doApp}(U, V, \kappa) \approx^* \operatorname{doApp}'(U', V', \kappa')$.

Case
$$[C \Rightarrow^l A](V) = \text{Return } V_1 \text{ and } [[C \Rightarrow^l A]](V') = \text{Return } V_1' \text{ and } V_1 \approx V_1'$$

In this case

$$\begin{aligned} \operatorname{doApp}(U,V,\kappa) &\longrightarrow \operatorname{Return} V_{1} \geq \lambda V_{1}.\langle V_{1}, [(U_{1} \square)][B \Rightarrow^{l} D] \kappa \rangle \\ &\longrightarrow \langle V_{1}, [(U_{1} \square)][B \Rightarrow^{l} D] \kappa \rangle \\ &\longrightarrow \operatorname{doApp}(U_{1},V_{1}, [\square \langle B \Rightarrow^{l} D \rangle] \kappa) \\ & \operatorname{doApp}'(U',V',\kappa') \\ &= \operatorname{Return} V_{1}' \geq \llbracket c \rrbracket \geq \lambda V_{2}'.\langle e,E'[x \leftarrow V_{2}'], \operatorname{extCont}(\operatorname{seq}(d,\lceil B \Rightarrow^{l} D \rceil),\kappa') \rangle \\ &= \llbracket c \rrbracket (V_{1}') \geq \lambda V_{2}'.\langle e,E'[x \leftarrow V_{2}'], \operatorname{extCont}(\operatorname{seq}(d,\lceil B \Rightarrow^{l} D \rceil),\kappa') \rangle \\ (\star) &= \llbracket c \rrbracket (V_{1}') \geq \lambda V_{2}'.\langle e,E'[x \leftarrow V_{2}'], \operatorname{extCont}(d,\operatorname{extCont}(\lceil B \Rightarrow^{l} D \rceil,\kappa')) \rangle \\ &= \operatorname{doApp}'(\langle \lambda(x:c):d.e,E'\rangle,V_{1}',\operatorname{extCont}(\lceil B \Rightarrow^{l} D \rceil,\kappa')) \\ &= \operatorname{doApp}'(U_{1}',V_{1}',\operatorname{extCont}(\lceil B \Rightarrow^{l} D \rceil,\kappa')) \end{aligned}$$

The step marked with (\star) follows from Lemma 5.

Now we can use the induction hypothesis two show that

$$\operatorname{doApp}(U_1, V_1, [\Box \langle B \Rightarrow^l D \rangle] \kappa) \approx^* \operatorname{doApp}'(U_1', V_1', \operatorname{extCont}([B \Rightarrow^l D], \kappa'))$$

because $U_1 \approx U_1'$ and $V_1 \approx V_1'$ and, by Lemma 6, $[\Box \langle B \Rightarrow^l D \rangle] \kappa \approx \text{extCont}(\lceil B \Rightarrow^l D \rceil, \kappa')$. Thus $\text{doApp}(U, V, \kappa) \approx^* \text{doApp}'(U', V', \kappa')$.