УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Лабораторная работа №2.4

Дисциплина «Информационная безопасность»

Вариант 13

Выполнил: студент группы Р34131

Кузнецов Максим Александрович

Преподаватель:

Маркина Татьяна Анатольевна

Цель работы

Изучить атаку на алгоритм шифрования RSA посредством Китайской теоремы об остатках.

Задание

	Модуль, N			Блоки зашифрованного текста		
Вариант						
	N_1	N_2	N_3	C_1	C_2	C_3
13	483603920323	484627023409	486046777033	373852443734 447989059513 140756140384 207791711792 252160015422 151272799305 431450717984 252882800366 112417596471 301753741810 480461056512 334158277030 368394150653	22286870422 343015689591 281801228231 360270382562 264253306719 128520421967 399665129411 448878989738 70913527757 295285211952 247990966487 202711954425 201121363025	22286870422 343015689591 281801228231 360270382562 264253306719 128520421967 399665129411 448878989738 70913527757 295285211952 247990966487 202711954425 201121363025

Экспонента для всех вариантов е = 3;

Ход работы

- 1. Вычисляем $M_0 = N_1 * N_2 * N_3$
- 2. Вычисляем $m_1 = N_2 * N_3$
- 3. Вычисляем $m_2 = N_1 * N_3$
- 4. Вычисляем $m_3 = N_1 * N_2$
- 5. Вычисляем $n_1 = m_1^{-1} \ mod \ N_1$
- 6. Вычисляем $n_2 = m_2^{-1} \ mod \ N_2$
- 7. Вычисляем $n_3 = m_3^{-1} \ mod \ N_3$
- 8. Вычисляем $S=c_1*n_1*m_1+c_2*n_2*m_2+c_3*n_3*m_3$
- 9. Вычисляем $M = (S \mod M_0)^{\frac{1}{3}}$
- 10. Преобразуем в текст полученное число
- 11. Повторяем шаги 8-10 для каждой строки и получаем итоговый текст.

Для решения задачи была разработана программа на Python.

Листинг разработанной программы

```
N1 = 483603920323
N2 = 484627023409
N3 = 486046777033
C1 = ''
45854580612
105237269523
169259415669
93616181002
111788215636
19646301574
344814513220
C2 = '''
274960963762
445004609734
314321127441
121008447611
185428067959
483476916533
145768361237
427513468440
16789037076
C3 = '''
337297880630
```

```
192371047425
368079140170
444426125103
485088147460
384977923665
52336096116
217360431271
261094805307
77329919173
280539607542
c 1 = list(map(int, C1.split()))
c 2 = list(map(int, C2.split()))
c 3 = list(map(int, C3.split()))
M 0 = N1 * N2 * N3
print(f"1. Шаг первый: Вычисляем М 0 = N1 * N2 * N3 = {M 0}")
m 1 = N2 * N3
print(f"2. Шаг второй: Вычисляем m 1 = N2 * N3 = \{m \ 1\}")
m 2 = N1 * N3
print(f"3. Шаг третий: Вычисляем m 2 = N1 * N3 = \{m 2\}")
m 3 = N1 * N2
print(f"4. Шаг четвертый: Вычисляем m 3 = N1 * N2 = \{m \ 3\}")
n 1 = pow(m 1, -1, N1)
print(f"5. Шаг пятый: Вычисляем n 1 = (n 1)^-1 mod N1 = {n 1}")
n 2 = pow(m 2, -1, N2)
print(f"6. Шаг шестой: Вычисляем n 2 = (n 2)^{-1} \mod N2 = \{n 2\}")
n 3 = pow(m 3, -1, N3)
print(f"7. Шаг седьмой: Вычисляем n 3 = (n 3)^-1 mod N3 = {n 3}")
output = ""
for i in range(len(c 1)):
m 3)
        print(f"8. Шаг восьмой: Вычисляем S = c 1 * n 1 * m 1 + c 2 * n 2
        M = round((S % M 0) ** (1 / 3))
        print(f"9. Шаг девятый: Вычисляем M = (S mod M 0)^(1/3) = \{M\}")
        msg = M.to bytes(4, byteorder='big').decode('cp1251')
        print(f"10. Шаг десятый: Преобразуем М в текст = {msg}")
        output += msq
print(f"11. Шаг одиннадцатый: итоговый текст -->{output}")
```

Ссылка на программу: ссылка

Результат работы программы:

```
1. Шаг первый: Вычисляем M_0 = N1 * N2 * N3 = 113913581827329323872903190292895531
2. Шаг второй: Вычисляем m_1 = N2 * N3 = 235551402791040694565497
3. Шаг третий: Вычисляем m_2 = N1 * N3 = 235054126833517878341659
3. Пат четвертый: Вычисляем m_2 = N1 * N2 = 234367528415058691841107
5. Шаг пятый: Вычисляем m_3 = N1 * N2 = 234367528415058691841107
5. Шаг пятый: Вычисляем n_1 = (n_1)^-1 mod N1 = 397183092488
6. Шаг шестой: Вычисляем n_2 = (n_2)^-1 mod N2 = 25306047792
7. Шаг седьмой: Вычисляем n_3 = (n_3)^-1 mod N3 = 61477186524
8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * m_2 + c_
                                                                                      * n_2 * m_2 + c_3 * n_3 * m_3 = 9461606488385560063080307974941720471191061568
 9. Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 3236815083
10. Шаг десятый: Преобразуем M в текст = Анал
8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * m_2 + c_3 * n_3 * m_3 = 13335600552596321037493467716387716864076042652
  ). Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 3907510514
10. Шаг десятый: Преобразуем M в текст = изат

8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * r

9. Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 4008770336
10. Шаг десятый: Преобразуем М в текст = оры
8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * r
9. Шаг девятый: Вычисляем М = (S mod M_0)^(1/3) = 4025544434
10. Шаг десятый: Преобразуем M в текст = прот

8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * m_2 + c_3 * n_3 * m_3 = 16221691512077024882604659412504592282936605560

9. Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 4008373995
10. Шаг десятый: Преобразуем M в текст = окол

8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * m_2 + c_3 * n_3 * m_3 = 9344435316783047923657683853241266273926900620

9. Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 4007796976
10. Шаг десятый: Преобразуем M в текст = ов р
8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * m_2 + c_3 * n_3 * m_3= 40843436385936807701252956142866415143127097632
  . Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 3773296869
10. Шаг десятый: Преобразуем M в текст = азре

8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * m_2 + c_3 * n_3 * m_3 = 35004210037976830754973558723020259707179806788

9. Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 4175494898
10. Шаг десятый: Преобразуем M в текст = шают

8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * m_2 + c_3 * n_3 * m_3 = 15640380904970277016913957181912135235996672040

9. Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 552137201

    10. Шаг десятый: Преобразуем М в текст = исс
    8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1

 8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * r
9. Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 3957712110
                                                                                      * n_2 * m_2 + c_3 * n_3 * m_3= 4784131534905751753048886107979988760101407180
10. Шаг десятый: Преобразуем М в текст = ледо
8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 * m_2 + c_3 * n_3 * m_3= 30734411439208665233014149917415886834292179364

    Шаг девятый: Вычисляем М = (S mod M_0)^(1/3) = 3806393084

10. Шаг десятый: Преобразуем M в текст = вать

8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1 + c_2 * n_2 *

9. Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 552083694
                                                                                      * n_2 * m_2 + c_3 * n_3 * m_3= 12614995615907325978567577799998012475046622868
10. Шаг десятый: Преобразуем M в текст = и о 8. Шаг восьмой: Вычисляем S = c_1 * n_1 * m_1
                                                                                      * n_2 * m_2 + c_3 * n_3 * m_3= 7116120691603481600862145081499351356720233624
 9. Шаг девятый: Вычисляем M = (S mod M_0)^(1/3) = 3790413856
10. Шаг десятый: Преобразуем М в текст = бн
11. Шаг одиннадцатый: итоговый текст -->Анализаторы протоколов разрешают исследовать и обн
```

<u>Итоговый текст:</u> Анализаторы протоколов разрешают исследовать и обн

Вывод

В ходе выполнения данной лабораторной работы я:

- ознакомился с методом для атаки на алгоритм шифрования RSA, основанном на Китайской теореме об остатках.
- Реализовал данный метод на языке Python.