MATH 644

CHAPTER 3

SECTION 3.1: THE MAXIMUM PRINCIPLE

Contents

First Version	2
Second version	4
Third Version	5

Created by: Pierre-Olivier Parisé Spring 2023

FIRST VERSION

THEOREM 1. Suppose f is analytic in a region Ω . If there exists a $z_0 \in \Omega$ such that

$$|f(z_0)| = \sup_{z \in \Omega} |f(z)|,$$

then f is constant in Ω .

Lemma 2. If $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ which converges in $\{z : |z-z_0| < r_0\}$ for some $r_0 > 0$, then for $r < r_0$

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$

Proof.

Proof of the Maximum Modulus Principle.

SECOND VERSION

COROLLARY 3. If f is a non-constant analytic function in a bounded region Ω , and if f is continuous on $\overline{\Omega} = \operatorname{clos}(\Omega)$, then

$$\max_{z\in\overline{\Omega}}|f(z)|$$

occurs on $\partial\Omega$, but not in Ω .

Note:

- The requirement that Ω is bounded is necessary: the function $f(z)=e^{-iz}$ is
 - analytic in the upper half-plane $\mathbb{H}:=\{z\,:\, \mathrm{Im}\, z>0\};$
 - continuous on $\{z : \operatorname{Im} z \ge 0\}$ and;
 - has absolute value 1 on the real line \mathbb{R} .

However, f is not bounded by 1 in \mathbb{H} .

THIRD VERSION

Let Ω be a region in \mathbb{C} .

- A sequence $(z_n)_{n\geq 1}$ tends to $\partial\Omega$ if for any compact subset $K\subset\Omega$, there exists an $N\in\mathbb{N}$ such that $z_n\not\in K$, when $n\geq N$.
- The region Ω can be unbounded. In this case, we consider the region as lying in \mathbb{C}^* and ∞ might be on $\partial\Omega$.
- If $f: \Omega \to \mathbb{C}$ is a continuous function, then

$$\limsup_{z \to \partial \Omega} |f(z)| := \sup \Big\{ \limsup_{n \to \infty} |f(z_n)| : z_n \to \partial \Omega \Big\}.$$

We can show that, if Ω is bounded, then

$$\limsup_{z\to\partial\Omega}|f(z)|=\lim_{\delta\to0}\sup\{|f(z)|\,:\,z\in\Omega,\mathrm{dist}(z,\partial\Omega)=\delta\}$$

Example 4.

- a) Show that $z_n \to \partial \mathbb{D}$ if and only if $|z_n| \to 1$, as $n \to \infty$.
- **b)** Let $\Omega := \{z : |z| > 2\}$. Compute $\limsup_{z \to \partial \Omega} \left| \frac{1+z}{1-z} \right|$.

THEOREM 5. If f is analytic on a bounded region Ω , then

$$\limsup_{z\to\partial\Omega}|f(z)|=\sup_{\Omega}|f(z)|.$$

Proof.

Note:	
• If f is continuous on $\overline{\Omega}$, then we recover the second vers	sion of the Maximum Principle.