CSCI 285 Scientific Computing

Analytics And Data Science

Data Scientist: The Sexiest Job of the 21st Century

Meet the people who can coax treasure out of messy, unstructured data. by Thomas H. Davenport and DJ Patil

From the Magazine (October 2012)

Why did you sign up?

Figure 4: Initial gaussian wave with zero velocity. $\mu = 0.001$, $\epsilon = 1$, L = 1, N = 256. cfl# = 0.1, $\sigma = 0.05$. Nonlinear shallow water.

CSCI 285 Learning Goals

Module #1: Data Analysis

- Analyze & visualize data sets from a variety of sources.
- Learn several analysis techniques include EDA, clustering, and regression.

Module #2: Modeling

- Model and solve system dynamics problems.
- Construct a Monte-Carlo simulation model.
- Develop agent-based models for complex simulations.

Module #3: Numerical Techniques

- Approximate the roots of continuous functions.
- Understand the strengths and limitations of numerical techniques.

Write idiomatic python and use scientific python libraries.

CSCI 285 Course Overview

https://hendrix-cs.github.io/csci285/index.html

Policies

- Attendance
- Check ins / Office Hours
- Late Work

Coursework / In-class

- Lecture (36%)
- Labs (27%)
- Exams / Module Review (20%)
- Final Project (17%)

More Info

- Course Calendar / Class Notes / Project Timeline
- W2 Requirement
- Grading scale
- Prerequisites: MATH 130 & CSCI 150
- Teams comms / submitting assignments

Commitments

- Active Participation
- Constructive Feedback
- Academic Integrity
- Learning Accommodation
- Physical & Mental Health

CSCI 285 Grading Scale

CSCI 285 Development Environment

- 1. Visit https://www.anaconda.com/
- 2. Download the open source distribution.
- 3. Follow the Anaconda3 installer instructions.
- 4. Launch Anaconda-Navigator (Mac, Windows, Linux)
- 5. Create new environments, launch processes, surf learning resources, etc.

(Alternatively, check out <u>miniconda</u> if you prefer a more lightweight approach)

Data Analysis

Module #1

import pandas as pd

pandas is an open-source python library built for data manipulation and analysis. It is part of the standard library for many teams of data scientists and engineers. pandas introduces new types that have special syntax for data manipulation that are not shared with python's builtin types (e.g. list, dict). Some of the new syntax can look jarring at first, but is *lingua franca* for many data researchers.

Getting Started with pandas

- https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
- https://chrisalbon.com/
- https://www.datacamp.com/courses/data-manipulation-with-pandas

pd.Series

	Series.1				
0	Item 1.1				
1	Item 1.2				
2	Item 1.3				
3	Item 1.4				

	Series.2
0	Item 2.1
1	Item 2.2
2	Item 2.3
3	Item 2.4

pd.DataFrame

	Series.1				
0	Item 1.1				
1	Item 1.2				
2	Item 1.3				
3	Item 1.4				

	Series.2			
0	Item 2.1			
1	Item 2.2			
2	Item 2.3			
3	Item 2.4			

	Dataframe					
0	Item 1.1	Item 2.1				
1	Item 1.2	Item 2.2				
2	Item 1.3	Item 2.3				
3	Item 1.4	Item 2.4				

Components of a DataFrame

The Columns, Index, and Data

Columns

	trip_id	usertype	gender	starttime	stoptime	tripduration	from_station_name	latitude_start	longitude_start	dpcapacity_start	to_station_name	latitude
0	7147	Subscriber	Male	2013-06- 28 19:01:00	2013-06- 28 19:17:00	993	Lake Shore Dr & Monroe St	41.8811	-87.617	11	Michigan Ave & Oak St	4
1	7524	Subscriber	Male	2013-06- 28 22:53:00	2013-06- 28 23:03:00	623	Clinton St & Washington Blvd	41.8834	-87.6412	31	Wells St & Walton St	41
2	10927	Subscriber	Male	2013-06- 30 14:43:00	2013-06- 30 15:01:00	1040	Sheffield Ave & Kingsbury St	41.9096	-87.6535	15	Dearborn St & Monroe St	41
3	12907	Subscriber	Male	2013-07- 01 10:05:00	2013-07- 01 10:16:00	667	Carpenter St & Huron St	41.8946	-87.6534	19	Clark St & Randolph St	41
4	13168	Subscriber	Male	2013-07- 01 11:16:00	2013-07- 01 11:18:00	130	Damen Ave & Pierce Ave	41.9094	-87.6777	19	Damen Ave & Pierce Ave	41

Data

Description

- Columns label each column
- · Index label each row
- Data actual values in DataFrame

Alternative Names

- Columns column names/labels, column index
- Index index names/labels, row names/labels
- Data values

Axis Number

- Columns: 1
- Index: 0

Application: Pandas Intro

Application: Palmer Penguins

Artwork by @allison_horst".

Lab #1: Lake Trout

Data Visualization

Module #1

Lab Report Format

- Palmer Penguins notebook (reference)
- Professor Wilson's trout lab (reference, next week)
- Mixture of Markdown, Code, and Figures
- Submitted via Teams (zip file)
- Must Include
 - a. Any input data (data used to produce the report)
 - b. Any output data (e.g. CSV files)
 - Notebook with relative paths to load the data

Any Questions about Lab #1?

import seaborn as sns

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics

Getting Started with seaborn

- https://seaborn.pydata.org/introduction.html
- https://seaborn.pydata.org/tutorial/function_overview.html
- https://chrisalbon.com/
- https://www.datacamp.com/courses/intermediate-data-visualizati on-with-seaborn

import seaborn as sns

Application: Palmer Penguins

Artwork by @allison_horst".

Final Project

- Project Description
- <u>COMAP</u>
- Markdown (https://dillinger.io/)
- LaTeX / <u>Overleaf</u>

Lab #2: Data Visualization

- Due Date: 9/12 (midnight).
- FEV notebook
- Linear Regression

Machine Learning

Module #1

What is Machine Learning?

From Wikipedia:

Machine learning, a branch of artificial intelligence, is about the construction and study of systems that can learn from data...

The core of machine learning deals with **representation** and **generalization**

- Representation == extracting structure from data
- Generalization == making predictions from data

Types of Learning Problems

supervised unsupervised

labeled examples no labeled examples

Types of Learning Problems

supervised unsupervised

making predictions discovering patterns

Types of Learning Problems

generalization making predictions supervised unsupervised discovering patterns representation

Types of Data

continuous	categorical
quantitative	qualitative
age, salary, height, etc.	city, yes/no, vote, etc.

Types of ML

	continuous	categorical
supervised	regression	classification
unsupervised	dimension reduction	clustering

from sklearn import

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Getting Started with scikit-learn

- https://scikit-learn.org/stable/index.html
- https://www.datacamp.com/courses/machine-learning-with-scikit-learn
- https://chrisalbon.com/

Distance Measures (sklearn.metrics)

- a. L1 Dist (manhattan)
- b. L2 Dist (pythagorean)
- c. LR Dist (general formulation)
- Non-Euclidean Space
 - a. Jaccard Dist (sets)
 - b. Edit Dist (strings)

Clustering (sklearn.cluster)

- K-Means Algorithm (step-by-step)
- scikit-learn K-Means module
- from sklearn.datasets import make_blobs
- Picking the right value for *k*
- Clustering Palmer Penguins
- Comparing predictions to ground truth
 - Confusion matrix
 - Seaborn heatmaps

Application: Palmer Penguins

Artwork by @allison_horst".

Additional scikit-learn modules

- from sklearn.preprocessing import StandardScaler
- https://scikit-learn.org/stable/auto_examples/preprocessing /plot_scaling_importance.html#sphx-glr-auto-examples-preprocessing-plot-scaling-importance-py
- from sklearn.decomposition import PCA

from sklearn.datasets

• <u>sklearn.datasets</u>

from sklearn.linear_model

sklearn.linear_model

Choropleths & More Data Viz

Module #1

Choropleths

Heatmaps & pd.melt

