Development of informational technology architecture for software development process improvement using dynamic planning problem statement based on CMMI model

PERFORMER:

STUDENT OF GROUP KN-33J BULYGA A.V

SUPERVISOR:

PROF. GODLEVSKY M.D

List of abbreviations

SWDP – Software Development Process

CMMI – Capability Maturity Model Integration

Problem statement

The **object** of the work is the software development process.

The **subject** of the work is architecture of a SWDP improvement software system and SWDP quality management model CMMI.

The **goal** of the work is to design architecture of a future software.

Problem actuality

- SWDP is on the most important activities for a lot of companies.
- CMMI has already shown some results on practice and it is tested by time.
- Optimal trajectory of SWDP improvement allows companies to invest their resources wisely, which is really important in condition of limited resources.

Tasks for goal achievement:

- Analyze the domain area
- Analyze SWDP assessment methods
- Analyze CMMI model
- Research applying of sliding planning task for CMMI model
- Develop and analyze architecture of the future software

CMMI model

CMMI model

Maturity Level Process Areas

MATURITY LEVEL	PROCESS AREAS						
5- OPTIMISING	Organisational Performance Management	Causal Analysis & Resolution					
4- QUANTITATIVELY MANAGED	Organisational Process Performance	Organisational Work (Project) Performance					
3- DEFINED	Organisational Process Focus	Organisational Process Definition	Organisational Training	Integrated Work (Project) Management	Decision Analysis & Resolution	Risk Management	
	Strategic Service Management	Capacity & Availability Management	Incident Resolution & Prevention	Service System Transition	Service Continuity	Service System Development	
2- MANAGED	Requirements Management	Work (Project) Planning	Work (Project) Monitoring & Control	Supplier Agreement Management	Measurement & Analysis	Process & Product Quality Assurance	Configuration Management
	Service Delivery						-5

Sliding planning technique

Requirements specification: use case

10

IDEFO for main process: visualize optimal strategy Метод СММІ Алгоритми динамічного програмування Алгоритми планування Метод СММІ -Запит користувача-Набір категорій Алгоритми Розрахувати динамічну планування задачу Метод CMMI Оптимальні -Вхідні данітраекторії під Розрахувати A01 періоду оптимальні траекторії підперіоду (статична задача) A02 Зовнішня ПС Візуалізувати Користувач ^LОптимальні траектор**і**ї періоду-Візуальне для динаміної задачі -відображеннястратегію стратегії Зовнішня ПС для статичної A03 задачі ПС

ПС

Requirements specification: Ontology of the project

Conceptual Data Model

System architecture: deployment diagram

System architecture advantages

- Independent from the software platform
- High security
- High scalability
- •Low performance requirements of the client work machine

System architecture: technologies of the future software

- Java Development Kit (JDK)
- Spring MVC
- Apache Tomcat Java Servlet Container
- Hibernate
- Eclipse IDE

Conclusions

In this work, we have done the analysis of the domain area, as well as SWDP assessment. The CMMI model was researched and analyzed. The sliding planning task was applied for the problem. As the result, architecture of the future software was developed.