

# Brief Intro to (Geo)spatial Data

AFRE 891 Spring 2024

Modifed from "Overview of Geospatial Data" by Patty Frontiera, Drew Hart, and Hikari Murayama of UC Berkeley's D-Lab Used under CC BY-NC-SA 4.0

# **Geographic Data**



A single unit of geographic data includes:

1. Location (where): Anatone

**2.** Attributes (what): data that describe the

location

Also great to have metadata:

When: 2003

Who: Anatone 4-H

**How**: local census?

# **Geospatial Data**

Encodes geographical location geometrically with coordinates

Anatone, WA: 46.130479, -117.134167





Challenge: how do we know that those coordinates reference this specific location?



# **Coordinate Reference System (CRS)**

Challenge: how do we know that those coordinates reference the

desired location?

Solution: Coordinate Reference System (CRS)

 System for associating coordinates with a specific, unambiguous location on the earth's surface



New Orleans = 30N, 90W

# **Coordinate Reference System (CRS)**

# Geographic coordinates: Latitude and Longitude pair



# **Coordinate Reference System (CRS)**



Complication: there are many CRSs

- Earliest known: <u>Hipparchus</u> 190-120
   BCE
- Knowledge of earth and our ability to measure its shape improved over time...

## **Two Types of Coordinate Reference Systems**

# **Geographic CRS**



Angular units = Degrees (DMS or DD)

Good for storing data

## **Projected CRS**



Cartesian units = Feet or Meters
Good for local/regional mapping
and analysis



# **Geographic Coordinate System (GCS)**

Latitude and longitude coordinates are an angular system

Latitude: angle between line passing through equatorial plane and line between the point and the center of the earth

Longitude: angle from a reference meridian (line of constant longitude) to a meridian passing through the point





# **Geographic Coordinate System (GCS)**

**Problem:** can't measure these angles directly





# **Geographic Coordinate System (GCS)**

→ Use a datum, a model of the earth's shape

## 2 Most Common:

# WGS84 (EPSG: 4326)

Based on satellites, used by cell phones, GPS

Best overall fit for most places on earth

# NAD83 (EPSG: 4269)

Based on satellites and survey data
Best fit for USA
Used by many federal agencies (Census)

MICHIGAN STATE UNIVERSITY



CRSs are referenced in software by numeric codes, often called **EPSG** codes

# Map Projections: 3D to 2D

The earth isn't flat (spoiler), but maps and (most) computer screens are

We use **map projections** to transform a datum (3D spherical model of the earth) to a 2D plane.

This necessarily introduces **distortion**, which might impact your maps and spatial analyses!



# Map Projections: 3D to 2D







# **Mercator Projection: Preserves Angles**





# **Equirectangular Projection: Preserves Distance**







# **Projected Coordinate System (PCS)**

#### In short:

- Cartography is bonkers
- Map projections are needed to go from a 3D datum to 2D coordinates (i.e. making maps)
- They introduce distortion in at least area, shape, distance, or direction



# **Projected Coordinate System (PCS)**

 Fortunately for us, the sf package in R performs most geometric operations using spherical geometry, so ignores these distortion issues!

## We'll still need to

- Know the CRS of your input data
- Select the CRS that is most suitable for your data and application (we'll learn how to transform to other CRSs)
- Use a projection for making maps





# **Types of Spatial Data**

There are **two** main spatial data structures:



## **Vector Data: "Connect the Dots"**



# **Vector Data: Points, Lines, and Polygons**



Crime locations



City freeways



Neighborhoods



Each row represents one geospatial **feature** 

ID

1

Each row represents one geospatial **feature** 

**Attributes** describe the features (fields or columns)

| ID | City    | Population |
|----|---------|------------|
| 1  | Detroit | 645,658    |

Each row represents one geospatial **feature** 

**Attributes** describe the features (fields or columns)

Each feature has an associated **geometry** or **geometry collection** 



| ID | City    | Population |
|----|---------|------------|
| 1  | Detroit | 645,658    |



Each row represents one geospatial **feature** 

**Attributes** describe the features (fields or columns)

Each feature has an associated geometry or geometry collection

A group of features is called a **layer** 



| ID | City         | Population |
|----|--------------|------------|
| 1  | Detroit      | 645,658    |
| 2  | Lansing      | 113,592    |
| 3  | East Lansing | 47,427     |



# Raster Data: regular grids describing continuous phenomena



A location is divided into rectangular **cells** 

Cells have regular size (e.g. 20m x 20m)

Grid has a fixed number of rows and columns

Each cell has a value that represents the attribute of interest (e.g. elevation)



# **Categorical Raster Data**





# **Satellite Imagery Data are Raster Data**



# **Satellite Imagery Data are Raster Data**



Note: aerial or satellite imagery and other remotely-sensed data are commonly used as sources of vector data

I.e. the Ag Hall building footprint can be digitized and converted to vector data.

## **Vector vs. Raster**

Vector data are **better for discretely bounded** data e.g. political boundaries, waterways, parcels

Raster data are **better for continuous data** 

e.g. temperature, rainfall, elevation, night lights



Point features



Line features



Polygon features



Raster point features



Raster line features



Raster polygon features



# **Common Spatial File Formats**

#### **Vector**

- Shapefile (.shp)
- GeoJSON, JSON
- KML
- GeoPackage

## Raster

- GeoTIFF (.tif)
- netCDF
- DEM



# Georeferencing

Data layers in the same coordinate reference system can be linked dynamically to explore associations and build complex models of the real world

Can link rasters and vectors





# The Power of Spatial Data

## What does this mean for us?

- Add vector data to create maps of features and attributes
- Combine, split, and perform operations on vectors
- Extract raster values for the vector features, across space and/or time





# The Power of Spatial Data

#### A recent workflow of mine:

- Link vector parcel data for two Northern CA counties to water billing records
- Extract raster temp/precip data for each parcel/billing cycle
- Read in vector data of pricing zones, calculate distance of each parcel to boundary
- Use spatial regression discontinuity models
- Make a bunch of maps

