Informed Search

Heuristics function

- Heuristic is a function which is used in Informed Search, and it finds the most promising path.
- It takes the current state of the agent as its input and produces the estimation of how close agent is from the goal.
- The heuristic method, however, might not always give the best solution, but it guaranteed to find a good solution in reasonable time.
- Heuristic function estimates how close a state is to the goal.
- It is represented by h(n), and it calculates the cost of an optimal path between the pair of states.
- The value of the heuristic function is always positive.

Informed Search

- It expands nodes based on their heuristic value h(n).
- It maintains two lists, OPEN and CLOSED list.
- In the CLOSED list, it places those nodes which have already expanded and in the OPEN list, it places nodes which have yet not been expanded.
- On each iteration, each node n with the lowest heuristic value is expanded and generates all its successors and node n is placed to the closed list. The algorithm continues until a goal state is found.
- In the informed search two main algorithms are given below:
 - Best First Search Algorithm(Greedy search)
 - A* Search Algorithm

Best First Search (Greedy Search)

- With the help of best-first search, at each step, we can choose the most promising node.
- In the best first search algorithm, we expand the node which is closest to the goal node and the closest cost is estimated by heuristic function, i.e.
 - $\circ \quad f(n) = h(n)$

Where, h(n)= estimated cost from node n to the goal.

- The worst-case time complexity for greedy search is O(b^m), where m is the maximum depth of the search space.
- space complexity is the same as its time complexity.
- Complete: Greedy best-first search is also incomplete, even if the given state space is finite.
- **Optimal:** Greedy best first search algorithm is not optimal.

node	H (n)
A	12
В	4
С	7
D	3
E	8
F	2
Н	4
I	9
S	13
G	0

20
22
21
10
25
24
30
5
12
0

Figure 4.2 Map of Romania with road distances in km, and straight-line distances to Bucharest.

Figure 4.3 Stages in a greedy search for Bucharest, using the straight-line distance to Bucharest as the heuristic function h_{SLD} . Nodes are labelled with their h-values.

Initial State: F Goal State: C

Initial State: A Goal State: G

Nodes	h(n)	- 1
A	5	- 1
В	3	- 1
C	3	- 1
D	2	
E	1	
F G	4	- 1
G	5	- 1
H	2	- 1
1	7	
J	8	
K	1	

A: 5 B: 1 C: 3 D: 9 E: 4 F: 0 G: 0 H: 7

Initial State: S Goal State: G

State	h(x)
S	7
Α	6
В	2
С	1
G	0

Initial State: S Goal State: G

2	8	3
1	6	4
7		5

Initial State

1	2	3
8		4
7	6	5

Final State