

Electrónica Microcontrolada

Circuito Digital

Índice

Definición:

- Definición de sistema digital.
- Componentes y Elementos básicos.

Analógico Vs Digital:

- Sistemas analógicos, digitales y mixtos.
- Un ejemplo: DSP.

Objetivo Final: El Computador:

- Propósito general.
- Abstracción.

- Sistema Digital: circuito electrónico capaz de comunicar/almacenar/procesar <u>información digital</u>.
- Información Digital: datos codificados mediante un vector de <u>dígitos</u>.
- **Dígito:** elemento de un conjunto de símbolos finito:
 - Decimal: 10 símbolos (0, 1, 2...).
 - BIT (Binary digit): 2 símbolos (0, 1).

- Elementos básicos: Todo sistema digital se construye con un pequeño conjunto de elementos básicos:
 - Puertas: realización de operaciones básicas (and, or...).
 - Cables: transporte de resultados entre puerta y puerta.
 - Flip--flops: almacenamiento de resultado.

 Codificación: Conversión de la información a un sistema de representación distinto.

- Codificación: Conversión de la información a un sistema de representación distinto.
- Codificación Binaria: conversión a un sistema de representación binaria (0 ó 1):
 - n bits pueden codificar 2ⁿ símbolos diferentes.
 - M símbolos requieren N bits, con N≥log₂M.
 - Ejemplo:

Tres personas (M=3):
•Juan

- Luisa
- Andrés

Hacen falta, al menos: 2 bits ≥ (log₂ 3) Posible tabla de codificación:

x
y
w

0
0

0
1
Luisa

1
0
Andrés

1
1
Juan

Índice

- Definición:
 - Definición de sistema digital.
 - Componentes y Elementos básicos.
- Analógico Vs Digital:
 - Sistemas analógicos, digitales y mixtos.
 - Un ejemplo: DSP.
- Objetivo Final: El Computador:
 - Propósito general.
 - Abstracción.

- Sistema Analógico: procesado de una <u>señal</u> variable en el tiempo que toma valores de un rango continuo.
- Señal: variación en el tiempo (o en el espacio) de una magnitud física.
 - Señal eléctrica: magnitud física = Voltaje (intensidad).
 - Señal eléctrica analógica: el voltaje puede tomar infinitos valores dentro de un rango.

- Sistema Digital: procesado de una señal variable en el tiempo que toma valores de un rango discreto:
 - Señal eléctrica digital: el voltaje puede tomar un númerofinito de valores dentro de un rango.

Señal Digital Asíncrona: el voltaje puede cambiar de valor en cualquier instante de tiempo.

Señal Digital Síncrona: el voltaje solo varía en ciertos instantes de tiempo (cuando marca la señal de reloj).

• ¿Por qué Digital?:

- Mucho mayor inmunidad al ruido.
- Facilidad de diseño y fabricación (menores costes).
- Menor necesidad de calibrado/mantenimiento.
- Mayor fiabilidad (diagnóstico y reparación más simples).
- Podemos utilizar sistemas digitales de propósito general (computador) para procesar la información.

Señal Binaria:

 Necesitamos convertir la señal eléctrica digital a algo que el computador entienda (código binario).

Codificación Binaria de señal eléctrica:

Señal eléctrica digital síncrona = secuencia de números.

	0	0	0	0
	1	0	0	1
Posible tabla	2	0 0 0 0 1 1	1	0
de codificación	3	0	1	1
	4	1	0	0
	5	1	0	1
	6	1	1	0

 $X \mid X_0 \mid X_1 \mid X_2$

Codificamos los valores decimales en sistema binario (facilita la realización de operaciones aritméticas.

¿¿Cuántos bits necesitamos??

- Codificación Binaria de señal eléctrica:
 - Señal eléctrica digital síncrona = secuencia de números.

- Pero... el mundo real es analógico:
 - Ejemplo: el sonido (no presenta valores discretos).
 - Necesitamos sistemas mixtos:
 - Parte Digital: control y procesado de datos (DSP).
 - Parte Analógica: interfaz con el entorno (recogida de datos).
 - Conversores (A/D y D/A).
 - Ejemplo: Filtro Paso Bajo (elimina altas frecuencias elimina cambios bruscos de la señal).

Índice

- Definición:
 - Definición de sistema digital.
 - Componentes y Elementos básicos.
- Analógico Vs Digital:
 - Sistemas analógicos, digitales y mixtos.
 - Un ejemplo: DSP.
- Objetivo Final: El Computador:
 - Propósito general.
 - Abstracción.

Objetivo Final: El Computador

- Computador: Sistema Digital de Propósito General:
 - Del latin «com putare»: con pensamiento.
 - ¿Ordenador? Imposición de IBM en Europa:
 - Del Francés «ordinateur» (Dios que pone orden en el Mundo).

Objetivo Final: El Computador

- ¿Cómo se puede manejar un sistema digital tan complejo? (millones de puertas lógicas).
- Abstracción: esconder los detalles cuando no sean importantes:
 - Dividimos el sistema en objetos, cada uno con:
 - Interfaz (entrada/salida): para la comunicación entre objetos.
 - Implementación: especifica la funcionalidad del objeto (qué hace).
 - Los especialistas trabajan en la implementación, el resto solo conoce el interfaz.
 - -Ejemplo: conductor de coche / mecánico.

Objetivo Final: El Computador

 Niveles de Abstracción: construimos el sistema de forma progresiva.

