```
In [15]:
import warnings
warnings.filterwarnings("ignore")
In [16]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
In [39]:
from statsmodels.graphics.tsaplots import plot acf, plot pacf
from statsmodels.tsa.arima_model import ARIMA
In [40]:
df = pd.read csv('/content/Airline Passangers.csv')
df.isnull().sum()
Out[40]:
Month
              0
Passengers
              0
dtype: int64
In [41]:
df.head(3)
Out[41]:
   Month Passengers
0 1949-01
               112
1 1949-02
              118
2 1949-03
               132
In [42]:
print('df shape: ',df.shape)
print('df columns:', df.columns)
df shape: (144, 2)
df columns: Index(['Month', 'Passengers'], dtype='object')
In [43]:
df.Passengers.plot()
Out[43]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f189958f590>
 600
        500
 400
 300
```

200

```
100 - 20 40 60 80 100 120 140
```

In [44]:

```
acf = plot_acf(df.Passengers, title = 'ACF Plot')
pacf = plot_pacf(df.Passengers, title = 'PACF Plot')
```


Observations:

- . ACF reduces to 0 slowly after first few 'q' lags
- PACF reduces to 0 immediately after p = 1 lag

Hence, we choose $[p,d,q] = [0,0,1] \rightarrow MA$ method

```
In [58]:
```

```
pdq = (0,0,1)
```

In [69]:

```
model = ARIMA(df.Passengers, order = (0,0,1))
```

In [70]:

```
ma_model = model.fit()
ma_model.summary2()
```

Out[70]:

Model:	ARMA	BIC:	1627.7720
Dependent Variable:	Passengers	Log-Likelihood:	-806.43
Date:	2022-08-28 22:38	Scale:	1.0000

No. Observations:	144		Method:	css-n	nle
Df Model:	2	!	Sample:		0
Df Residuals:	142	!			4
Converged:	1.0000	in	S.D. of novations:	64.8	349
No. Iterations:	7.0000		HQIC:	1622.4	183
AIC:	1618.8625				
	Coef. Std.Err.	t	P>ltl	[0.025	0.975]
const 2	280.6467 10.5788	26.5291	0.0000 25	9.9126	301.3808
ma.L1.Passengers	0.9642 0.0214	45.0583	0.0000	0.9223	1.0062
Real Imag	ginary Modulus	Frequency			
MA.1 -1.0371 0	.0000 1.0371	0.5000			

In [71]:

ma_model.pvalues

Out[71]:

dtype: float64

Since, p-value < 0.05, Therefore MA 1 (Lag q = 1 of ACF) is significant

In [104]: