MIPS 16 Pipeline

Modificari făcute pentru instrucțiunile alese suplimentar:

Doar în cazul instrucținilor BNE și BGEZ au fost făcute modificări ,și anume am adăugat două noi semnale în MainControl ,unul pentru BNE și altul pentru BGEZ , care vor intra în etajul de semnal M,și vor trece prin registrele ID/EX și EX/MEM .După ce vor iesi din EX/MEM vor forma fiecare câte o poartă and ,iar iesirea acestei porți va intra intr-o poarta or,formând semnalul PCSrc.Această modificare poate fi observată mai jos ,pe poza cu schema procesorului.

Tabelul cu descriere registrilor:

Am realizat prima variantă de tabel.În paranteză este reprezentat numărul de biți pe care îl ocupă fiecare semnal din registru.

- Pentru implementarea registrul IF/ID am folosit 32 de biţi.
- Pentru implementarea registrul ID/EX am folosit 84 de biți.
- Pentru implementarea registrul EX/MEM am folosit 59 de biți.
- Pentru implementarea registrul MEM/WB am folosit 37 de biţi.

REG_IF_ID(31 - 0)	REG_ID_EX(83-0>)	REG_EX_MEM(58 – 0)	REG_MEM_WB(36 - 0)
Instr(31 – 16)	RegDst(83)	br_ne(58)	RegWrite(36)
PC + 1(15 - 0)(PCinc)	ALUSrc(82)	br_gez(57)	MemtoReg(35)
	Branch(81)	Branch(56)	ALUResOut(34-19)
	br_gez(80)	MemWrite(55)	MemData(18-3)
	br_ne(79)	MemtoReg(54)	rWA(2-0)
	ALUOp(78-77)	RegWrite(53)	
	MemWrite(76)	Zero(52)	
	MemtoReg(75)	gez(51)	
	RegWrite(74)	BranchAddress(50-35)	
	RD1(73-58)	ALURes(34-19)	
	RD2(57-42)	rWA(18-16)	
	Ext_lmm(41-26)	RD2(15-0)	
	func(25-23)		
	sa(22)		
	rd(21-19)		
	rt(18-16)		
	PC+1(15-0)		
	i		i

Schema procesorului mips pipeline:

Am modificat schema din laborator ,astfel încăt să corespundă procesorului pe 16 biți. Şi se pot observa și semnalele de BNE și BGEZ ,despre care am discutat anterior.

Diagrama Pipeline:

Hazardele de tip structural au fost tratate prin frontul descedent de clock în blocul de registre. Asa că trebuia să identificăm numai hazardele de date și cele de control.

Pe schema de mai jos se pot observa hazardele de date/control pe care leam intălnit.

Adr.	Instrucțiune/Clk	CC1	CC2	CC3	CC4	CC5	CC6	CC5	CC8	CC9	CC10	CC11	CC12	CC13	CC14	CC15	CC16	CC17	CC18	CC1
0	addi \$1,\$0,0	IF	ID	EX	MEM	WB														
1	addi \$2,\$0,4		IF	ID	EX	MEM	WB													
2	add \$3,\$0,\$0			IF	ID	EX	MEM	WB												
3	addi \$4,\$0,1				IF	ID	EX	MEM	WB											
4	addi \$5,\$0,12					IF	ID	EX	MEM	VB(\$5-D:6	i)									
5	addi \$6,\$0,1						IF	ID	EX	MEM	WB									
6	beq \$1,\$5,8							IF	ID(\$5)	EX	MEM(C)	WB								
7	sw \$1,0(\$3)								IF	ID	EX	MEM	WB							
8	sw \$2,0(\$4)									IF	ID	EX	MEM	WB						
9	lw \$1,0(\$3)										IF	ID	EX	MEM	/B(\$1-D:11)				
10	lw \$2,0(\$4)											IF	ID	EX	MEM	/B(\$2-D:1	2)			
11	add \$1, \$1,\$6												IF	ID(\$1)	EX	MEM	/B(\$1-D:12	2)		
12	add \$2,\$2,\$1													IF	ID(\$2,\$1)	EX	MEM	WB		
13	sub \$5,\$5,\$6														IF	ID	EX	MEM	WB	
14	.j 6.															IF	ID	EX	MEM(C)	WB

Am tratat aceste hazarde prin introducerea unor operații de tip NoOp, după cum se poate observa:

Adr. Instructiune	CC1	CC2	CC3	CC4	CC5	CC6	CC7	CC8	CC9	CC10	CC11	CC12	CC13	CC14	CC15	CC16	CC17	CC18	CC19	CC20	CC21	CC22	CC23	CC24	CC25	CC26	CC27	CC28	CC2
0 addi \$1,\$0,0	IF	ID	EX	MEM	WB																								
1 addi \$2,\$0,4		IF	ID	EX	MEM	WB																							
2 add \$3,\$0,\$0			IF	ID	EX	MEM	WB																						
3 addi \$4,\$0,1				IF	ID	EX	MEM	WB																					
4 addi \$5,\$0,12					IF	ID	EX	MEM	WB																				
5 addi \$6,\$0,1						IF	ID	EX	MEM	WB																			
6 NoOp							IF	ID	EX	MEM	WB																		
7 beg \$1,\$5,14								IF	ID	EX	MEM	WB																	
8 NoOp									IF	ID	EX	MEM	WB																
9 NoOp										IF	ID	EX	MEM	WB															
10 NoOp											IF	ID	EX	MEM	WB														
11 sw \$1,0(\$3)												IF	ID	EX	MEM	WB													
12 sw \$2,0(\$4)													IF	ID	EX	MEM	WB												
13 lw \$1,0(\$3)														IF	ID	EX	MEM	WB											
14 lw \$2,0(\$4)															IF	ID	EX	MEM	WB										
15 NoOp																IF	ID	EX	MEM	WB									
16 add \$1, \$1,\$6																	IF	ID	EX	MEM	WB								
17 NoOp																		IF	ID	EX	MEM	WB							
18 NoOp																			IF	ID	EX	MEM	WB						
19 add \$2,\$2,\$1																				IF	ID	EX	MEM	WB					
20 sub \$5,\$5,\$6																					IF	ID	EX	MEM	WB				
21 J7																						IF	ID	EX	MEM	WB			
22 NoOp																							IF	ID	EX	MEM	WB		
																								15	10	EV		1400	_

După adaugarea operațiilor NoOp intrucțiunea beq va sari peste 14 instrucțiuni dacă valoarea celor 2 registre sunt egale, respectiv jump sare acuma la intrucțiunea de la adresa 7 ,nu 6 cum era inițial.

Operația NoOp este o operație de adunare de forma :,add \$0,\$0,\$0 ,care face ca citirea să se facă deodată cu scrierea sau ulterior,astfel încăt să nu mai apară hazarde .

În continuare ,voi atasa o poză ,cu parcurgerea primei iterații a programului.Se pot observa deosebiri față de parcurgerea primei iterații ale procesorul mips cu ciclu unic,deoarece aici execuția programului se execută în mai multe cicluri,deci există o întărziere.Valoriile obținute sunt aceleași ,doar că întărziate.

		CC1	CC2	CC3	CC4	CC5	CC6	CC7	CC8	CC9	CC10	CC11	CC12	CC13	CC14	CC15	CC16	CC17	CC18	CC19	CC20	CC21	CC22	CC23
IF	Instr	2080	2104	0030	2201	228C	2301	0000	868E	0000	0000	0000	6C80	7100	4C80	5100	0000	0710	0000	0000	08A0	1751	E007	0000
	PC	0001	0002	0003	0004	0005	0006	0007	8000	0009	000A	000B	000C	000D	000E	000F	0010	0011	0012	0013	0014	0015	0016	0017
EX	Rd1	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0001	0000	0001	0000	0000	0000	0000	0004	000C
	Rd2	0000	0000	0000	0000	0000	0000	0000	0000	0000	000C	0000	0000	0000	0000	0004	0000	0004	0000	0001	0000	0000	0001	0001
	Ext_imm	0000	0000	0000	0004	0030	0001	000C	0001	0000	000E	0000	0000	0000	0000	0000	0000	0000	0000	0010	0000	0000	0020	0051
	Result All	0000	0000	0000	0004	0000	0001	000C	0001	0000	FFF4	0000	0000	0000	0000	0001	0000	0001	0000	0001	0000	0000	0005	000B
MEN	MemData	0000	0000	0000	0000	0000	;0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0004	0000	0004	0000	0000	0000
WE	WriteData	0000	0000	0000	0000	0000	0004	0000	0001	000C	0001	0000	FFF4	0000	0000	0000	0000	0001	0000	0004	0000	0001	0000	0000

Elemente funcționale/nefuncționale:

Toate elementele funcționează corect. Pentru a realiza procesorul pipeline ,au fost necesare unele modificari în ID,EX,reg_file și în test_env.

ID

Am eliminat semnalul de RegDst, și mux-ul corespunzator lui. Am adăugat un nou semnal de întrare WA care reprezintă write address din reg_file, am adăugat două semnale de iesire rt și rd. Şi implicit a fost modificat și port map-ul corespunzător registrului reg_file.

- reg file

Nu mai avem un clock ascedent ,ci unul descedent (falling_edge).Cu ajutorul acestuia sa rezolvat problema cu hazardul structural.

EX

Am introdus 3 semnale de intrare ,care formează un nou mux, și un semnal de iesire rWa. Cele 3 semnale noi de intrare sunt:rt,rd,RegDst.Mux-ul nou format este întălnit în cod cu eticheta mux2.

test env

A suferit mai multe modificări. Au fost adăugate 4 noi procese și 4 noi semnale, care simboliează cele 4 registre :IF/ID,ID/EX,EX/MEM,MEM/WB. Dimensiunea alocată pentru fiecare registru în parte este prezentă în paragraful 2. Port map-urile au fost modificate astfel încât să corespundă cu semnalele registrelor

Schema RTL:

Nu am activități incomplete ,am reusit să implementez toate componentele necesare.Nu există erori.

Am testat pe placuță, și am comparat ceea ce se afisează, cu tabelul scris de mine pentru prima interație, rezultatele erau aceleași.