

Description

Features

- 30V, 15A
 - $R_{DS(ON)}$ <8m Ω @ V_{GS} =10V $R_{DS(ON)}$ <14m Ω @ V_{GS} =4.5V
- Advanced Trench Technology
- Provide Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM15N03-S8	VSM15N03	TAPING	SOP-8	13inch	4000	48000

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		30	V
V_{GSS}	Gate-Source Voltage		±20	V
I _D	Continuous Drain Current	T _A = 25℃	15	Α
		T _A = 100°C	10	Α
I_{DM}	Pulsed Drain Current note1		60	Α
E _{AS}	Single Pulsed Avalanche Energy note2		39	mJ
P _D	Power Dissipation	T _A = 25℃	3	W
R _{θJA}	Thermal Resistance, Junction to Ambient		41	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}\!\mathbb{C}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units			
Off Characteristic									
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	30	-	-	V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V,	-	-	1.0	μA			
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±20V	-	-	±100	nA			
On Charac	cteristics								
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1.0	1.5	2.5	V			
R _{DS(on)}	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =15A	-	6.2	8				
	note3	V _{GS} =4.5V, I _D =10A	-	10	14	mΩ			
Dynamic 0	Characteristics								
C _{iss}	Input Capacitance	\\ -45\\\\ -0\\	-	1116	-	pF			
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V,	-	187	-	pF			
C_{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	152	-	рF			
Q_g	Total Gate Charge	\/ -45\/ L -0A	-	13.3	-	nC			
Q_gs	Gate-Source Charge	V_{DS} =15V, I_{D} =8A, V_{GS} =10V	-	3.1	-	nC			
Q_gd	Gate-Drain("Miller") Charge	VGS-10V	-	5	-	nC			
Switching	Characteristics								
t _{d(on)}	Turn-on Delay Time	1/ 45)/	-	15	-	ns			
t _r	Turn-on Rise Time	V _{DS} =15V,	-	19	-	ns			
$t_{d(off)}$	Turn-off Delay Time	$I_D=15A$, $R_{GEN}=3\Omega$,	-	35	-	ns			
t _f	Turn-off Fall Time	V _{GS} =10V	-	21	-	ns			
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings							
_	Maximum Continuous Drain to Source Diode Forward Current			-	15	А			
Is									
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	60	Α			
V_{SD}	Drain to Source Diode Forward	V _{GS} =0V, I _S =15A	_	_	1.2	V			
	Voltage								
trr	Body Diode Reverse Recovery Time	 I _F =15A,dI/dt=100A/μs	-	14	-	ns			
Qrr	Body Diode Reverse Recovery Charge		-	4.1	-	nC			

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: TJ=25 $^{\circ}\mathrm{C}$, VGs=15V, RG=25 Ω , L=0.5mH, IAs=12.6A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms