НОВЫЙ ВИД КЛЕЩА EWINGANA TENIOTIS (ACARIFORMES: MYOBIIDAE) С ШИРОКОУХОГО СКЛАДЧАТОГУБА ИЗ КИРГИЗИИ

А. В. Бочков, С. Н. Рыбин

Описан новый вид миобиидного клеща *Ewingana (Doreyana) teniotis* sp. п. с широкоухого складчатогуба из Южной Киргизии.

Клещи рода Ewingana Radford, 1948 (Myobiidae) — облигатные эктопаразиты рукокрылых, специфичные семейству бульдоговых летучих мышей Molossidae (Chiroptera) (Dusbabek, 1969; Uchikawa, 1988).

На сегодняшний день род *Ewingana* насчитывает 19 видов, объединенных в 3 подрода: *Ewingana* s. str. (5 видов); *Doreyana* Dusbabek, 1968 (11 видов) и *Mormomyobia* Fain, 1973 (2 вида). Один вид — *E. amorphochilus* Fain, 1976, описанный по единственному самцу с обыкновенной

Размеры самки и дейтонимфы *Ewingana (Doreyana) teniotis* sp. п. и *E. (D.) crinita* Dusbabek et Lukoschus

Sizes of females and deutonymphs of *Ewingana* (*Doreyana*) teniotis sp. n. and *E.* (*D.*) crinita Dusbabek et Lukoschus

Признак	E. (D.) teniotis голотип, паратипы, n=9	E. (D.) crinita голотип	E. (D) te- niotis n=1	E. (D.) crinita n=4	
1 2 4 2 - 1 - 2	Самки	Самки		Тейтонимфы	
Длина идио- сомы	427 (427—472)*	495	360	368—372	
Ширина идиосомы	202 (202—223)	192	148	164—188	
vi	94 (85—89)				
ve	90 (85—108)		65	102—111	
sci	157 (139—166)	101	74	102—111	
sce	126 (112—135)	85	67	102-111	
dl	99 (90—112)	63	51		
d_2	85 (76—90)		36		
d_3	72 (72—81)		27		
d_4	15 (15—20)	29	20		
d_5	22 (22—27)	29	31	5	
l_1	103 (103—117)	85	58	63	
l_2	67 (67—76)		27		
l_3	33 (33—45)	29	36	17	
ic ₁	126 (108—130)	50	13		
ic_2	130 (112—135)	92	22		
ic ₃	138 (135—144)	115			
ic ₄	139 (135—153)	420			
g_1 g_2	76 (6776)	29			
62 g 3	69 (63—72)	112			
vi—vi	22 (22-27)	25			
sce—sce	45 (39—45)				
$l_1 - l_1$	103 (99—108)		101		
d_3-d_4	108 (108—117)		90		
d_4 — l_3 ic_1 — ic_1	54 (42—54)				
ic_2-ic_2	45 (42—49)				
l_5	33 (27—33)		42		
- 0	112 (108—117)		101		
	,		146		

 Π римечание. Данные по E. (D.) crinita из: Dusbabek, Lukoschus, 1971. * B скобках даны размеры паратипов.

дымчатой летучей мыши Amorphochilus schnablii Peters, 1877 (Furipteridae) не был отнесен автором к какому-либо из перечисленных подродов (Fain, 1976). Причиной тому, видимо, послужили отличия в хетоме ног III—IV описанного экземпляра от представителей других подродов и нетипичный хозяин, относящийся к другому семейству рукокрылых.

Нами впервые зарегистрированы клещи рода *Ewingana* на единственном в отечественной фауне представителе рукокрылых сем. Molossidae — широкоухом складчатогубе *Tadarida teniotis* (Rafinesque, 1814) из Южной Киргизии. Обнаруженный вид клещей оказался новым для науки. Материалом для описания послужили сборы эктопаразитов, проведенные С. Н. Рыбиным в Ошской обл. (Ю. Киргизия, Ферганский хребет) в 1990 г. с летучих мышей, отловленных чешскими зоологами. При описании использована номенклатура хетома идиосомы, разработанная для сем. Муовіїdae Фэном (Fain, 1973). Все промеры клещей сделаны в микрометрах и сведены в таблицу. Голотип и паратипы нового вида хранятся в Зоологическом институте РАН, Санкт-Петербург.

¹ Авторы статьи выражают глубокую признательность коллегам И. Червену, И. Обух, К. Пруха (J. Cerveny, J. Obuch и К. Prucha, ЧСФР, Прага) за передачу рукокрылых для паразитологического обследования.

Ewingana (Doreyana) teniotis Bocisko et Rybin, sp. n. (рис. 1—3)

Самка (голотип). Гнатосома хорошо развита (рис. 1, a, b). Размеры гнатосомы голотипа 90×45 , паратипов $85 - 90 \times 45 - 49$. В апикальной части имеется пара заостренных латеральных выступов. Дорсальные щетинки пальп в 2 раза длиннее вентральных. Задние вентральные щетинки гнатосомы не превышают ее длину.

Идиосома. Дорсальная сторона (рис. 1, a). Щетинки vi, ve, sci, sce, d_1-d_3 , l_1 , l_2 узкие ланцетовидные, d_4 , d_5 — волосовидные. Щетинки vi и ve, sce и l_1 примерно равны между собой: sci самые длинные из дорсальных щетинок идиосомы, их длина составляет у голотипа — 157, l_1 у паратипов — (139-166). Щетинки d_1 , a_2 и l_2 , составляющие медиальный ряд и перекрывающие друг друга на $l_1/2-l_3$. Щетинки l_3 такой же длины, как и l_2 , расположены вне медиального ряда; l_3 короче l_3 в 2 раза. Щетинки l_4 очень короткие, их вершины не достигают генитально-анального комплекса.

Вентральная сторона (рис. 1, δ). Все щетинки волосовидные. Щетинки l_5 бичевидные, их длина превосходит длину идиосомы почти в 2 раза; щетинки ic_2 и ic_4 незначительно длиннее ic_1 . Расстояние между щетинками ic_1 — ic_1 в 6 раз меньше расстояния ic_2 — ic_2 . На уровне оснований

Рис. 1. Самка Ewingana (Doreyana) teniotis sp. n. a — дорсально; δ — вентрально.

Fig. 1. Female of Ewingana (Doreyana) teniotis.

¹ Размеры даны в микрометрах.

Рис. 2. Отдельные структуры самки Ewingana (Doreyana) teniotis sp. n.

a — генитально-анальный комплекс; δ — нога I — дорсально; δ — то же, вентрально; ϵ — лапка II — дорсально, δ — лапка III — дорсально.

Fig. 2. Some structures of Ewingana (Doreyana) teniotis female.

щетинок ic_4 находится медиальная склеротизованная площадка (размером около $70{ imes}40$), не имеющая четких границ.

Генитально-анальный комплекс (рис. 2, a) имеет строение типичное для подрода Doreyana. Все щетинки комплекса, кроме g_7 , волосовидные. Генитальные щетинки g_1 , g_2 длиннее g_3 более чем в 3 раза; g_4-g_6 микрохеты, g_4-g_5 длиннее g_6 примерно в 2 раза; g_7 видоизменены в крючья с притупленными концами, анальные щетинки ai микрохеты.

Дейтоним фа (рис. 3). Тело вытянутое. Гнатосома в значительной степени редуцирована. Щетинки ve, sce, sce, d_1-d_3 , l_1 , l_2 — широкие ланцетовидные; щетинки vi и sce примерно равны между собой, длина щетинок sci незначительно превосходит длину vi, sce. Щетинки d_1 , d_2 , l_2 образуют медиальный ряд; a_2 и l_2 перекрываются друг с другом, sce и l_1 не перекрываются. Щетинки d_4 , d_5 и l_3 узкие, ланцетовидные; l_3 и d_5 равны, d_4 примерно в 1.7 раза короче шетинок d_5 и l_3 . Основания щетинок d_4 расположены кпереди от анального отверстия, вершины щетинок d_4 заходят за уровень анального отверстия. Все щетинки вентральной стороны идиосомы волосовидные. Щетинки ic_1 — ic_4 короткие, щетинки l_5 в 2 раза короче идиосомы. Ноги I асимметричные, что типично для рода Ewingana (рис. 3, a, b). Щетинки кокс I модифицированы в овальные ребристые пластинки (рис. 3, b), щетинки кокс b1 немного короче b2. На лапках

Рис. 3. Дейтонимфа Ewingana (Doreyana) teniotis sp. n.

a — дорсально; δ — вентрально.

Fig. 3. Deutonymph of Ewingana (Doreyana) tentiotis.

II—IV 1 коготь. Хетом ног: II сх 1 — tr 0 — fe+ge 4 (1) — ti 6 — ta 6 (1), III 0-0-2-5-6, IV 0-9-1-4-6. Самец, протонимфа и личинка неизвестны.

Локализация: плечо.

Дифференциальный диагноз. Новый вид наиболее близок к *E. (D.) crinita* Dusbabek et Lukoschus, 1971 с палласовой летучей мыши Molossus molossus Pallas, 1766 из Суринама (Dusbabek, Lukoschus, 1971). У самки E. (D.) teniotis sp. п. щетинки d4 короче l1 более чем в 2 раза, ic_4 примерно равны ic_2 , ic_3 и незначительно длиннее ic_1 ; у самки $E_-(D_-)$ crinita щетинки d_4 равны l_3 , ic_4 длиннее ic_2 , ic_3 в 2 раза, а ic_4 — в 4 раза.

У дейтонимфы $E.~(D.)~teniotis~{
m sp.}$ п. вершины щетинок d_4 заходят за уровень анальной щели, l_5 лишь в 2 раза короче идиосомы; у дейтонимфы $E.\ (D.)$ crinita вершины щетинок d_4 не достигают уровня анальной щели, І5 микрохеты. Сравнительные размеры некоторых признаков самок и дейтонимф E. (D.) teniotis sp. п. и E. (D.) crinita даны в таблице.

Материал. Голотип Q (Т-Му-N 4), паратипы 8 Q, 1 N 2 c *Tadarida teniotis* (Киргизия, Ошская обл., Ферганский хребет, пещера Сасык-Унгур. 31.05.1990. Сб. С. Н. Рыбин).

Список литературы

Dusbabek F. Generic revision of the myobiid mites (Acarina: Myobiidae) parasitic on bats // Folia

Parasitol. 1969. Vol. 17. P. 1—17.

Dusbabek F., Lukoschus F. S. Mites of the genera Ewingana and Ugandobia (Acarina: Myobiidae) from surinam bats. Parasitic mites of Surinam XVI // Folia Parasitol. 1971. Vol. 18. P. 337—345.

Fain A. Notes sur la nomenclatur des poils idiosomaux chez les Myobiidae aves description de taxa nouveaux // Acarol. 1973. Vol. 15, N 2. P. 289-303.

Fain A. Notes sur des Myobiidae parasites de rongeurs, d'insectivores et de chiropteres (Acarina: Prostigmata) // Acta Zool. Pathol. Antverp. 1976. Vol. 64. P. 3—32.

Uchikawa K. Myobiidae (Acarina, Trombidiformes) associated with minor families of Chiroptera (Mammalia) and a discussion of phylogeny of chiropteran myobiid genera/J. Parasitol. 1988. Vol. 74, N 1. P. 159—176.

ЗИН РАН, Санкт-Петербург

Поступила 18.04.1991

EWINGANA TENIOTIS SP. N. (ACARIFORMES: MYOBIIDAE) FROM FREE-TAILED BAT IN KIRGHIZIA

A. V. Bochkov, S. N. Rybin

Key words: Myobiidae, Ewingana teniotis sp. n.

SUMMARY

Ewingana (Doreyana) teniotis sp. n. is described from the free-tailed bat Tadarida teniotis (Rafinesque, 1814) captured in the south of Kirghizia (Ferghana mountain range). It is the first record of the genus Ewingana in the USSR. The females of E. (D.) teniotis sp. n. differ from all other known species of the subgenus Doreyana by the short setae d_4 (15 mkm in length) and from the closely related species E. (D.) crinita Dusbabek et Lukoschus, 1971 by the short setae ic_4 (139 mkm in length). The deutonymphs of the new species differ from other species of the subgenus Doreyana by the long setae l_5 (146 mkm in length).