Convex Optimization: Reading Notes 1

GKxx

May 6, 2022

1 Least-squares problems

A least-squares problems is an optimization problem of the form

min
$$f(x) = ||Ax - b||_2^2 = \sum_{i=1}^k (\alpha_i^T x - b_i)^2$$
,

where $A \in \mathbb{R}^{k \times n}$ with $k \geqslant n$, and a_i^T are the rows of A, and the vector $x \in \mathbb{R}^n$ is the optimization variable. The gradient of the objective function is

$$\nabla f(x) = \nabla ((Ax - b)^{\mathsf{T}}(Ax - b)) = 2A^{\mathsf{T}}Ax - 2A^{\mathsf{T}}b.$$

Setting this to zero yields $A^TAx = A^Tb$. So the analytical solution to the least-squares problem, if A^TA is invertible, is $x = (A^TA)^{-1}A^Tb$.

Definition 1.1 (Moore-Penrose generalized inverse). For $A \in \mathbb{R}^{k \times n}$, consider the singular value decomposition $A = U\Sigma V^T$, as well as the thin SVD $A = \bar{U}\bar{\Sigma}\bar{V}^T$. Define $A^\dagger = \bar{V}\bar{\Sigma}^{-1}\bar{U}^T$, or $A^\dagger = V\Sigma^\dagger U^T$, where Σ^\dagger is obtained from Σ by first replacing each nonzero singular value with its inverse and then transposing. The matrix A^\dagger is called the Moore-Penrose generalized inverse.

Remark 1.2. In the SVD of $A \in \mathbb{R}^{k \times n}$, $U = \begin{bmatrix} \bar{U} & \tilde{U} \end{bmatrix}$ and $V = \begin{bmatrix} \bar{V} & \tilde{V} \end{bmatrix}$, where $\bar{U}, \tilde{U}, \bar{V}$ and \tilde{V} are the orthonormal bases of $\mathcal{R}(A)$, $\mathcal{N}(A^T)$, $\mathcal{R}(A^T)$ and $\mathcal{N}(A)$, respectively.

Lemma 1.3. $\mathcal{R}(A^{\dagger}) = \mathcal{R}(A^{T})$.

Proof. $A^{\dagger} = \bar{V}\bar{\Sigma}^{-1}\bar{U}^{T} \Rightarrow \mathcal{R}\left(A^{\dagger}\right) \subseteq \mathcal{R}\left(\bar{V}\right)$. Moreover, $\bar{V} = A^{\dagger}\bar{U}\bar{\Sigma} \Rightarrow \mathcal{R}\left(\bar{V}\right) \subseteq \bar{A}^{\dagger}$. Therefore $\mathcal{R}\left(A^{\dagger}\right) = \mathcal{R}\left(\bar{V}\right)$. Since \bar{V} is the orthonormal basis of $\mathcal{R}\left(A^{T}\right)$, we obtain $\mathcal{R}\left(A^{\dagger}\right) = \mathcal{R}\left(A^{T}\right)$.

Lemma 1.4. If the linear system of equations Ax = b is consistent, then $A^{\dagger}b$ is the unique solution of minimal Euclidean norm.

Proof. First check that $A(A^{\dagger}b) = b$. Since the system is consistent, $b \in \mathcal{R}(A)$ and we have that

$$A\left(A^{\dagger}b\right) = \bar{U}\bar{\Sigma}\bar{V}^{\mathsf{T}}\bar{V}\bar{\Sigma}^{-1}\bar{U}^{\mathsf{T}}b = \bar{U}\bar{U}^{\mathsf{T}}b = \Pi_{\mathcal{R}(A),\mathcal{R}(A)^{\perp}}(b) = b,$$

where $\Pi_{S,T}(x)$ is the projection of x onto S along T. Now let $A^{\dagger}b + \xi$ be any other solution, where $\xi \in \mathcal{N}(A)$. We have that

$$\left| \left| A^{\dagger} b + \xi \right| \right|_{2}^{2} = \left(A^{\dagger} b + \xi \right)^{\mathsf{T}} \left(A^{\dagger} b + \xi \right) = \left| \left| A^{\dagger} b \right| \right|_{2}^{2} + \left\| \xi \right\|_{2}^{2} + 2 \xi^{\mathsf{T}} A^{\dagger} b.$$

Here $A^{\dagger}b\in\mathcal{R}\left(A^{\dagger}\right)=\mathcal{R}\left(A^{T}\right)$, while $\xi\in\mathcal{N}\left(A\right)=\mathcal{R}\left(A^{T}\right)^{\perp}$, so $\xi^{T}A^{\dagger}b=0$. Therefore

$$\left|\left|A^{\dagger}b+\xi\right|\right|_{2}^{2}=\left|\left|A^{\dagger}b\right|\right|_{2}^{2}+\left|\left|\xi\right|\right|_{2}^{2}>\left|\left|A^{\dagger}b\right|\right|_{2}^{2}.$$

Proposition 1.5. The unique solution of minimal Euclidean norm to the least-squares problem is $A^{\dagger}b$.

Proof. We have known that the solution to the least-squares problem must satisfy $A^TAx = A^Tb$. Note that $A^TA = \bar{V}\bar{\Sigma}\bar{U}^T\bar{U}\bar{\Sigma}\bar{V}^T = \bar{V}\bar{\Sigma}^2\bar{V}^T$, so the Moore-Penrose generalized inverse of A^TA is

$$(A^TA)^{\dagger} = \bar{V}\bar{\Sigma}^{-2}\bar{V}^T.$$

From Lemma 1.4 we know that the unique solution of minimal Euclidean norm is

$$\left(A^{\mathsf{T}}A\right)^{\dagger}A^{\mathsf{T}}b = \bar{V}\bar{\Sigma}^{-2}\bar{V}^{\mathsf{T}}\bar{V}\bar{\Sigma}\bar{U}^{\mathsf{T}}b = \bar{V}\bar{\Sigma}^{-1}\bar{U}^{\mathsf{T}}b = A^{\dagger}b.$$

2 Affine sets, convex sets and cones

Definition 2.1 (Affine set). A set $C \subseteq \mathbb{R}^n$ is affine if for any $x_1, x_2 \in C$ and $\theta \in \mathbb{R}$, we have $\theta x_1 + (1 - \theta)x_2 \in C$.

Definition 2.2 (Affine combination). The affine combination of k points x_1, \dots, x_k is the linear combination

$$\theta_1 x_1 + \cdots + \theta_k x_k$$

where $\theta_1 + \cdots + \theta_k = 1$.

Proposition 2.3. The solution set of a system of linear equations is an affine set. Conversely, every affine set can be expressed as the solution set of a system of linear equations.

Proof. We only show the converse. Suppose C is an affine set. If $C = \emptyset$ this is trivial. When $C \neq \emptyset$, take any $x_0 \in C$ and the set $V = C - x_0 = \{x - x_0 \mid x \in C\}$ is a linear subspace. Suppose dim $V^{\perp} = d$ and $B = \{b_1, \dots, b_d\}$ is a basis for V^{\perp} . Then

$$x \in V \iff \forall \xi \in V^{\perp}, x \perp \xi \iff \forall i \in [d], x \perp b_i.$$

Now define the matrix $A = \begin{bmatrix} b_1 & \cdots & b_d \end{bmatrix}^T$, the i-th row of which is b_i^T , and then $x \in V \iff Ax = 0$. Therefore $x \in C \iff Ax = Ax_0$, which shows that C is the solution set of $Ax = Ax_0$.

Definition 2.4 (Affine hull). For a set $C \subseteq \mathbb{R}^n$, the set of all affine combinations of points in C is called the affine hull of C, denoted **aff** C:

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \theta_1 + \dots + \theta_k = 1\}.$$

Remark 2.5. aff C is the smallest affine set that contains C. For any affine set $S \supseteq C$, aff $C \subseteq S$.

Definition 2.6 (Relative interior). The relative interior of a set C, denoted **relint** C, is defined to be its interior relative to **aff** C, i.e.

relint
$$C = \{x \in C \mid \exists r > 0 \text{ s.t. } B(x,r) \cap \text{aff } C \subseteq C\}$$
.

Here B(x, r) is the ball of radius r and center x defined by any norm.

Remark 2.7 (Interior). The interior of a set C

$$\{x \in C \mid \exists r > 0 \text{ s.t. } B(x,r) \subseteq C\}$$

is contained in the set relint C.

Proposition 2.8. All norms define the same relative interior.

Proof Sketch. We can show that there exists nonnegative constants c and d such that

$$c \|x\| \leqslant \|x\|_1 \leqslant d \|x\|$$

holds for every $x \in \mathbb{R}^n$, no matter what norm $\|\cdot\|$ is chosen. Here $\|\cdot\|_1$ is the ℓ_1 -norm. In that sense, all norms are equivalent in a vector space.

Definition 2.9 (Cone). A set $C \subseteq \mathbb{R}^n$ is a cone if $\theta x \in C$ for every $x \in C$ and $\theta \geqslant 0$.

Definition 2.10 (Conic combination). The conic combination of k points $x_1, \dots, x_k \in \mathbb{R}^n$ is of the form

$$\theta_1 x_1 + \cdots + \theta_k x_k$$

where $\theta_1, \dots, \theta_k \geqslant 0$.

Remark 2.11. The convex combination is both a conic combination and an affine combination.

Definition 2.12 (Convex cone). The set of convex cones is the intersection of the set of convex sets and that of cones.

Proposition 2.13. C is a convex cone if and only if C contains all conic combinations of points in itself.

Proof. \Leftarrow : Suppose C contains all conic combinations of points in itself, i.e. for every $x_1, x_2 \in C$ and $\theta_1, \theta_2 \geqslant 0$ we have $\theta_1 x_1 + \theta_2 x_2 \in C$. Set $\theta_2 = 0$ and we obtain that $\forall \theta_1 \geqslant 0, \theta_1 x_1 \in C$, so C is a cone. Setting $\theta_1 + \theta > 0$ yields

$$\frac{\theta_1}{\theta_1 + \theta_2} x_1 + \frac{\theta_2}{\theta_1 + \theta_2} x_2 = \frac{1}{\theta_1 + \theta_2} (\theta_1 x_1 + \theta_2 x_2) \in C,$$

which means that C is a convex set. Hence C is a convex cone.

 \Rightarrow : For a convex cone C, suppose $x_0 = \theta_1 x_1 + \dots + \theta_k x_k$ is a conic combination of k points $x_1, \dots, x_k \in C$, where $\theta_1, \dots, \theta_k \geqslant 0$. If $\Theta = \theta_1 + \dots + \theta_k = 0$, then all the θ_i 's are zero and $x_0 = 0 \in C$ is obvious. When $\Theta > 0$, we know that

$$\frac{1}{\Theta}x_0 = \frac{\theta_1}{\Theta}x_1 + \dots + \frac{\theta_k}{\Theta}x_k \in C$$

since C is convex, noting that

$$\frac{\theta_1}{\Theta} + \dots + \frac{\theta_k}{\Theta} = 1.$$

Since C is a cone, x_0 is also contained in C.

3 Balls, ellipsoids and norm cones

Definition 3.1 (Norm ball). A norm ball in \mathbb{R}^n has the form

$$B(x_c, r) = \{x \mid ||x - x_c|| \le r\},\$$

where r > 0. Here $\|\cdot\|$ is any norm.

Definition 3.2 (Euclidean ball). A Euclidean ball is a norm ball defined by the Euclidean norm $\|\cdot\|_2$.

Remark 3.3. $B(x_c, r) = \{x_c + ru \mid ||u||_2 \le 1\}.$

Proposition 3.4. A norm ball is convex.

Proof. Suppose $x_1, x_2 \in B(x_c, r)$. Then for any $0 \le \theta \le 1$,

$$\begin{split} \|\theta x_1 + (1 - \theta) x_2 - x_c\| &= \|\theta(x_1 - x_c) + (1 - \theta)(x_2 - x_c)\| \\ &\leqslant \theta \|x_1 - x_c\| + (1 - \theta) \|x_2 - x_c\| \\ &\leqslant \theta r + (1 - \theta) r = r. \end{split}$$

Therefore the convex combination $\theta x_1 + (1 - \theta)x_2$ is also contained in $B(x_c, r)$.

Definition 3.5 (Euclidean ellipsoid). A Euclidean ellipsoid in \mathbb{R}^n has the form

$$\mathcal{E}(x_c, P) = \{x \mid (x - x_c)^T P^{-1}(x - x_c) \leq 1\},$$

where $x_c \in \mathbb{R}^n$ is its center and $P \in \mathbb{S}^n_{++}$ determines how far the ellipsoid extends in every direction from x_c . The lengths of the semi-axes of $\mathcal{E}(x_c,P)$ are given by $\sqrt{\lambda_i}$, where λ_i 's are the eigenvalues of P.

Remark 3.6. For r > 0, $\mathcal{E}(x_c, r^2I)$ is the Euclidean ball $B(x_c, r)$.

Remark 3.7. $\mathcal{E}(x_c,P) = \{x_c + Au \mid ||u||_2 \leqslant 1\}$, where $A = P^{1/2}$ is defined by first diagonalizing $P = Q\Lambda Q^T$ and then taking $A = Q\Lambda^{1/2}Q^T$. A is also symmetric and positive definite.

Proposition 3.8. A Euclidean ellipsoid is convex.

Proof. For a Euclidean ellipsoid $\mathcal{E} = \{x_c + Au \mid ||u||_2 \leq 1\}$, consider any $x_c + Au_1, x_c + Au_2 \in \mathcal{E}$ and $\theta \in [0, 1]$, the convex combination induced by which satisfies

$$\theta(x_c + Au_1) + (1 - \theta)(x_c + Au_2) = x_c + A(\theta u_1 + (1 - \theta)u_2),$$

and by triangle inequality we have

$$\|\theta u_1 + (1-\theta)u_2\|_2 \le \theta \|u_1\|_2 + (1-\theta) \|u_2\|_2 \le 1.$$

Therefore the convex combination is contained in \mathcal{E} .

Proof by convex function. For a Euclidean ellipsoid $\mathcal{E}(x_c,P)$, consider the function $f(x) = (x-x_c)^T P^{-1}(x-x_c)$. f is convex because $\nabla^2 f(x) = 2P^{-1} \succ 0$. Then for every $x_1, x_2 \in \mathcal{E}(x_c,P)$ and every $\theta \in [0,1]$, we have

$$f(\theta x_1 + (1 - \theta)x_2) \leqslant \theta f(x_1) + (1 - \theta)f(x_2)$$

$$\leqslant \theta + (1 - \theta) = 1.$$

Therefore the convex combination $\theta x_1 + (1 - \theta)x_2$ is contained in $\mathcal{E}(x_c, P)$, so $\mathcal{E}(x_c, P)$ is convex.

Question 3.9. The inequality

$$(\mathbf{x} - \mathbf{x}_{c})^{\mathsf{T}} \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_{c}) \leqslant 1$$

can be rewritten as

$$1 - (x - x_c)^{\mathsf{T}} P^{-1} (x - x_c) \geqslant 0,$$

the left-hand side of which is the Schur complement of the matrix

$$S = \begin{bmatrix} P & x - x_c \\ (x - x_c)^T & 1 \end{bmatrix},$$

so the inequality holds if and only if $S \in \mathbb{S}^n_+$. What can we obtain with this?

Definition 3.10 (Norm cone). The norm cone associated with the norm $\|\cdot\|$ is the set

$$C = \{(x, t) \mid ||x|| \leqslant t\} \subseteq \mathbb{R}^{n+1}.$$

Proposition 3.11. A norm cone is a convex cone.

Proof. We will show the convexity of a norm cone $C = \{(x,t) \mid ||x|| \le t\}$. For every (x_1,t_1) , $(x_2,t_2) \in C$ and $\theta \in [0,1]$,

$$\|\theta x_1 + (1-\theta)x_2\| \le \theta \|x_1\| + (1-\theta)\|x_2\| \le \theta t_1 + (1-\theta)t_2.$$

Therefore the convex combination $\theta(x_1, t_1) + (1 - \theta)(x_2, t_2) \in C$.

Definition 3.12 (Second-order cone). A second-order cone is the norm cone defined by the Euclidean norm. It is also called the quadratic cone, the Lorentz cone or the ice-cream cone.

Definition 3.13 (Positive semidefinite cone). The set \mathbb{S}^n_+ , which denotes the set of all positive semidefinite matrices, induces a positive semidefinite cone.

Proposition 3.14. \mathbb{S}^n_+ is a convex cone.

Proof. Since for any $A \in \mathbb{S}^n_+$ and any $\theta \geqslant 0$, θA is also positive semidefinite, \mathbb{S}^n_+ is a cone. Moreover, for any $\theta \in [0,1]$ and every $A,B \in \mathbb{S}^b_+$,

$$x^{T} (\theta A + (1 - \theta)B) x = \theta x^{T} A x + (1 - \theta) x^{T} B x \geqslant 0$$

holds for every vector \mathbf{x} , so $\theta \mathbf{A} + (1 - \theta) \mathbf{B} \in \mathbb{S}^n_+$. This shows the convexity.