Exercises Remark: L(V, W) = net of all

1. Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if dim V=1 and $T\in \mathcal{L}(V,V)$, then there exists $a\in F$ such that $T\nu=a\nu$ for all $\nu\in V$.

2. Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that

$$f(a\nu)=af(\nu)$$

for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but f is not linear.

- 3. Suppose that V is finite dimensional. Prove that any linear map on a subspace of V can be extended to a linear map on V. In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U, W)$, then there exists $T \in \mathcal{L}(V, W)$ such that Tu = Su for all $u \in U$.
- 4. Suppose that T is a linear map from V to F. Prove that if $u \in V$ is not in null T, then

$$V = \text{null } T \oplus \{au : a \in \mathbf{F}\}.$$

- 5. Suppose that $T \in \mathcal{L}(V, W)$ is injective and (v_1, \ldots, v_n) is linearly independent in V. Prove that (Tv_1, \ldots, Tv_n) is linearly independent in W.
- 6. Prove that if S_1, \ldots, S_n are injective linear maps such that S_1, \ldots, S_n makes sense, then S_1, \ldots, S_n is injective.
- 7. Prove that if (ν_1, \ldots, ν_n) spans V and $T \in \mathcal{L}(V, W)$ is surjective, then $(T\nu_1, \ldots, T\nu_n)$ spans W.
- 8. Suppose that V is finite dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \text{null } T = \{0\}$ and range $T = \{Tu : u \in U\}$.
- 9. Prove that if T is a linear map from F^4 to F^2 such that

null
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4\}$$

then *T* is surjective.

10. Prove that there does not exist a linear map from \mathbf{F}^5 to \mathbf{F}^2 whose null space equals

$$\{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}.$$

- 11. Prove that if there exists a linear map on V whose null space and range are both finite dimensional, then V is finite dimensional.
- 12. Suppose that V and W are both finite dimensional. Prove that there exists a surjective linear map from V onto W if and only if $\dim W \leq \dim V$.
- 13. Suppose that V and W are finite dimensional and that U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that null T = U if and only if dim $U \ge \dim V \dim W$.
- 14. Suppose that W is finite dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V.
- 15. Suppose that V is finite dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is surjective if and only if there exists $S \in \mathcal{L}(W, V)$ such that TS is the identity map on W.

linear transformation
from V to W.
You can easily show that
L(V, W) is itself a
vector space (over the
Exercise 2 shows that some base
homogeneity alone is field F)

Exercise 2 shows that homogeneity alone is not enough to imply that a function is a linear map. Additivity alone is also not enough to imply that a function is a linear map, although the proof of this involves advanced tools that are beyond the scope of this book.

(1) A map $f: V \to W$	between vector spaces V	and W over F is linear, if
	$Af(x) + \mu f(y)$ for all $x, y \in Af(x)$ eight axioms for a vector spijective.	$\in V, \lambda, \mu \in \mathbb{F}$. pace.
(2) By the kernel of a	linear map $f: V \to W$ on	e understands
(3) Which of the follow map, we have	ing statements are correct	? If $f: V \to W$ is a linear
$ \Box f(0) = 0. $ $ \Box f(-x) = -x \text{ for } $ $ \Box f(\lambda v) = f(\lambda) + y $	all $x \in V$. $f(v)$ for all $\lambda \in \mathbb{F}, v \in V$.	
(4) A linear map $f: V$	$\rightarrow W$ is called an isomorph	hism if
\square V and W are is	ear map $g:W\to V$ with comorphic. (v_1,\ldots,v_n) in V , the n -t	
(5) By the rank $rk(f)$	of a linear map $f: V \to W$, one understands
\Box dim Ker f	\Box dim Im f	\Box dim W
$(6) \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} =$		
\square $\binom{2}{6}$	$\square \begin{pmatrix} 5 \\ -3 \end{pmatrix}$	\square $\binom{0}{2}$
(7) The map R ² → R ² , matrix ("The column	$(x,y) \mapsto (x+y,x-y),$ as are the"):	is given by the following
$\Box \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$\Box \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$	$\square \stackrel{\cdot \cdot}{\left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right)}$
	vector spaces with bases (v be the linear map with $f(v)$	
$\Box A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	$\Box A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\Box A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
(9) A linear map $f: V - \Box f$ is surjective.	$\rightarrow W$ is injective if and only $\Box \dim \operatorname{Ker} f = 0.$	y if $\Box \operatorname{rk} f = 0 \ .$
(10) Let $f: V \longrightarrow W$ be a surjective linear map and dim $V = 5$, dim $W = 3$. Then		
	or 2 and each of these case	es can arise.