ECOLE POLYTECHNIQUE

CONCOURS D'ADMISSION 2020

MARDI 21 AVRIL 2020 - 8h00 - 12h00 FILIERE MP - Epreuve n° 3

MATHEMATIQUES B
(X)

Durée : 4 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

Les trois parties sont indépendantes.

Notations

Dans tout le sujet, (Ω, \mathcal{A}, P) désigne un espace probabilisé sur lequel seront définies les différentes variables aléatoires. On notera P[A] la probabilité d'un événement $A \subset \Omega$ et E[X] l'espérance d'une variable aléatoire X sur (Ω, \mathcal{A}, P) à valeurs réelles.

On pourra utiliser sans démonstration le résultat suivant :

Si Y_1, \ldots, Y_n sont des variables aléatoires réelles discrètes mutuellement indépendantes et intégrables, alors

$$E[Y_1 \cdots Y_n] = E[Y_1] \cdots E[Y_n].$$

On note log la fonction logarithme népérien. Par convention, on pose $\log 0 = -\infty$.

Première partie

Soit $n \ge 1$ un entier naturel, et soient (X_1, \dots, X_n) des variables aléatoires réelles discrètes mutuellement indépendantes telles que, pour tout $k \in \{1, \dots, n\}$,

$$P[X_k = 1] = P[X_k = -1] = \frac{1}{2}.$$

On définit

$$S_n = \frac{1}{n} \sum_{k=1}^n X_k$$

ainsi que, pour tout $\lambda \in \mathbb{R}$,

$$\psi(\lambda) = \log\left(\frac{1}{2}e^{\lambda} + \frac{1}{2}e^{-\lambda}\right).$$

1. Soit Z une variable aléatoire réelle discrète telle que $\exp(\lambda Z)$ est d'espérance finie pour tout $\lambda > 0$. Montrer que pour tout $\lambda > 0$ et $t \in \mathbb{R}$,

$$P[Z \geqslant t] \leqslant \exp(-\lambda t) E[\exp(\lambda Z)].$$

- **2.** Montrer que $P[S_n \geqslant 0] \geqslant \frac{1}{2}$.
- **3.** Montrer que pour tout $t \in \mathbb{R}$, on a

$$\frac{1}{n}\log P[S_n \geqslant t] \leqslant \inf_{\lambda \geqslant 0} (\psi(\lambda) - \lambda t).$$

Pour chaque $\lambda \geqslant 0$, on pose

$$m(\lambda) = \frac{E[X_1 \exp(\lambda X_1)]}{E[\exp(\lambda X_1)]},$$

ainsi que

$$D_n(\lambda) = \exp(\lambda n S_n - n\psi(\lambda)).$$

- **4.** Montrer que la fonction m est strictement croissante sur \mathbb{R}_+ , et que pour tout $t \in [0, 1[$, il existe un unique $\lambda \geqslant 0$ tel que $m(\lambda) = t$.
- **5a.** Pour $n \ge 2$ et $\lambda \ge 0$, montrer que

$$E[(X_1 - m(\lambda))(X_2 - m(\lambda))D_n(\lambda)] = 0.$$

5b. En déduire que, pour $n \ge 1$ et $\lambda \ge 0$,

$$E[(S_n - m(\lambda))^2 D_n(\lambda)] \leqslant \frac{4}{n}.$$

Pour tous $n \ge 1$, $\lambda \ge 0$ et $\varepsilon > 0$, on note $I_n(\lambda, \varepsilon)$ la variable aléatoire définie par

$$I_n(\lambda, \varepsilon) = \begin{cases} 1 & \text{si } |S_n - m(\lambda)| \leq \varepsilon, \\ 0 & \text{sinon.} \end{cases}$$

6. Montrer que

$$P[|S_n - m(\lambda)| \le \varepsilon] \ge E[I_n(\lambda, \varepsilon) \exp(\lambda n(S_n - m(\lambda) - \varepsilon)],$$

7. Montrer que

$$E[I_n(\lambda, \varepsilon)D_n(\lambda)] \geqslant 1 - \frac{4}{n\varepsilon^2}.$$

8a. En déduire, pour chaque $\lambda \geqslant 0$ et $\varepsilon > 0$, l'existence d'une suite $(u_n(\varepsilon))_{n\geqslant 1}$ qui tend vers 0 quand n tend vers l'infini et telle que

$$\frac{1}{n}\log P[S_n \geqslant m(\lambda) - \varepsilon] \geqslant \psi(\lambda) - \lambda m(\lambda) - \lambda \varepsilon + u_n(\varepsilon).$$

8b. Conclure que pour tout $t \in [0,1]$,

$$\lim_{n \to \infty} \frac{1}{n} \log P[S_n \geqslant t] = \inf_{\lambda \geqslant 0} (\psi(\lambda) - \lambda t).$$

8c. La formule précédente est-elle encore valide pour t=1?

Deuxième partie

On admet l'identité

$$\int_{-\infty}^{+\infty} \exp\left(-x^2\right) \, \mathrm{d}x = \sqrt{\pi}.$$

Soient a < b deux réels et $f : [a, b] \to \mathbb{R}$ une fonction infiniment dérivable. Appelons (H) l'hypothèse suivante : il existe un unique point $x_0 \in [a, b]$ où f atteint son maximum, on a $a < x_0 < b$, et $f''(x_0) \neq 0$.

9. Montrer que sous l'hypothèse (H), on a $f''(x_0) < 0$.

10. Sous l'hypothèse (H), montrer que pour tout $\delta > 0$ tel que $\delta < \min(x_0 - a, b - x_0)$, on a l'équivalent, quand $t \to +\infty$,

$$\int_a^b e^{tf(x)} dx \sim \int_{x_0 - \delta}^{x_0 + \delta} e^{tf(x)} dx.$$

11. Sous l'hypothèse (H), montrer l'équivalent, quand $t \to +\infty$,

$$\int_{a}^{b} e^{tf(x)} dx \sim e^{tf(x_0)} \sqrt{\frac{2\pi}{t |f''(x_0)|}}.$$

12a. Montrer que pour tout entier $n \in \mathbb{N}$, on a

$$n! = \int_0^{+\infty} e^{-t} t^n dt.$$

12b. En utilisant les résultats précédents, retrouver la formule de Stirling donnant un équivalent asymptotique de n!.

Troisième partie

13. Montrer que

$$\lim_{a \to +\infty} \int_0^a |\sin(x^2)| \, \mathrm{d}x = +\infty.$$

14. Montrer que pour tout $a \in \mathbb{R}$,

$$\int_0^a \sin(x^2) \, \mathrm{d}x = \sum_{n=0}^{+\infty} (-1)^n \frac{a^{4n+3}}{(2n+1)! (4n+3)}.$$

15. Montrer que les limites

$$\lim_{a \to +\infty} \int_0^a \sin(x^2) dx \quad \text{ et } \lim_{a \to +\infty} \int_0^a \cos(x^2) dx$$

existent et sont finies.

On admet les identités :

$$\lim_{a \to +\infty} \int_0^a \sin(x^2) \, \mathrm{d}x = \lim_{a \to +\infty} \int_0^a \cos(x^2) \, \mathrm{d}x = \frac{\sqrt{2\pi}}{4}.$$

16. Montrer qu'il existe des nombres réels $c, c' \in \mathbb{R}$ tels que, pour $a \to +\infty$, on a

$$\int_0^a \sin(x^2) dx = \frac{\sqrt{2\pi}}{4} + \frac{c}{a}\cos(a^2) + \frac{c'}{a^3}\sin(a^2) + O\left(\frac{1}{a^5}\right).$$

On admettra qu'il existe des nombres réels $d, d' \in \mathbb{R}$ tels que, pour $a \to +\infty$, on a

$$\int_{0}^{a} \cos(x^{2}) dx = \frac{\sqrt{2\pi}}{4} + \frac{d}{a} \sin(a^{2}) + \frac{d'}{a^{3}} \cos(a^{2}) + O\left(\frac{1}{a^{5}}\right).$$

À partir de maintenant et jusqu'à la fin de l'énoncé, f désigne une fonction infiniment dérivable de [0,1] dans \mathbb{R} . On suppose qu'il existe un unique point $x_0 \in [0,1[$ où f' s'annule. On suppose également que $f''(x_0) > 0$. On se donne également une fonction $g: [0,1] \to \mathbb{R}$ infiniment dérivable.

17. Montrer qu'on a, pour $t \to +\infty$,

$$\int_{x_0}^1 g(x) \sin(tf(x)) dx = g(x_0) \int_{x_0}^1 \sin(tf(x)) dx + O\left(\frac{1}{t}\right).$$

Pour tout $x \in [x_0, 1]$, on définit

$$h(x) = \sqrt{|f(x) - f(x_0)|}.$$

- **18a.** Montrer que la fonction h définit une bijection de $[x_0, 1]$ sur [0, h(1)].
- **18b.** Montrer que l'application h est dérivable en x_0 à droite, et que $h'(x_0) = \sqrt{\frac{f''(x_0)}{2}}$. On admet que la bijection

$$h: \left\{ \begin{array}{ccc} [x_0, 1] & \to & [0, h(1)] \\ x & \mapsto & h(x) \end{array} \right.$$

admet une application réciproque $h^{-1}:[0,h(1)]\to [x_0,1]$ qui est infiniment dérivable.

19. Montrer que, pour $t \to +\infty$,

$$\int_{x_0}^{1} \sin(tf(x)) dx = \sin\left(tf(x_0) + \frac{\pi}{4}\right) \sqrt{\frac{\pi}{2tf''(x_0)}} + O\left(\frac{1}{t}\right).$$

20. On suppose que $x_0 \in]0,1[$. Montrer que, pour $t \to +\infty$,

$$\int_0^1 g(x) \sin(tf(x)) dx = g(x_0) \sin\left(tf(x_0) + \frac{\pi}{4}\right) \sqrt{\frac{2\pi}{tf''(x_0)}} + O\left(\frac{1}{t}\right).$$