Descriptive Modelling

Rita P. Ribeiro Machine Learning - 2022/2023

Today

References

- Moreira, João, et al. 2018.
 Data Analytics: A General Introduction. Ch 5
- Gama, João, et al. 2015.
 Data Mining 3rd Ed. Ch 12, Ch 13.1 13.3, 15.2.1
- Aggarwal, Charu C. 2015.
 Data Mining, the Textbook. Ch 6.3, 6.4, 6.6.2, 6.9.1

Today

- · Descriptive Analytics
- · Descriptive Modelling
 - · Partitional Clustering
 - Hierarchical Clustering

Descriptive Analytics

Descriptive Analytics

 Main Goal: Describe/summarize or finding structure on what we have observed

- Data summarization and visualization (e.g. PCA) can be seen as simple forms of descriptive analytics
- However, most frequently descriptive modeling is associated with clustering

- How to measure similarity between objects?
- The notion of similarity is strongly related with the notion of distance between observations
- It can be measured as the ooposite of the distance

ID	Income	Position	Age
1	2500	manager	35
2	2750	manager	30
3	4550	director	50

· Which cases are more similar?

Similarity measure

- Numerical measure of how alike two data objects are.
- · Is higher when objects are more alike.
- Often falls in the range [0,1]

Dissimilarity measure

- Numerical measure of how different two data objects are
- · Lower when objects are more alike
- Minimum dissimilarity is often 0 Upper limit varies

Proximity refers to a similarity or dissimilarity

- Dissimilarity measure can be expressed by a distance metric
- Distance metrics d have some well-known properties
- Triangle Inequality
- Given two data points x_i and x_j
 - $d(x_i, x_i) \geq 0$
 - $d(x_i, x_j) = 0$ only if $x_i = x_j$
 - $d(\mathbf{x}_i, \mathbf{x}_i) = d(\mathbf{x}_i, \mathbf{x}_i)$
 - $d(x_i, x_j) \le d(x_i, x_k) + d(x_k, x_j)$ for any point x_i, x_j and x_k

Euclidean Distance

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{\sum_{a=1}^{m} (x_{i}^{a} - x_{j}^{a})^{2}}$$

where m is the number of attributes and x_i^a and x_j^a are the a^{th} attribute value for the data points x_i and x_j , respectively

Manhattan Distance

$$d(x_i, x_j) = \sum_{a=1}^{m} |x_i^a - x_j^a|$$

where m is the number of attributes and x_i^a and x_j^a are the a^{th} attribute value for the data points x_i and x_j , respectively

A Generalization: Minkowski Distance

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt[p]{\sum_{a=1}^{m} |x_{i}^{a} - x_{j}^{a}|^{p}}$$

where if

- p = 1, we have the Manhattan Distance (or L_1 -norm)
- p = 2, we have the Euclidean Distance (or L_2 -norm)
- ...
- $p = \infty$, we have Chebyschev or *supremum* distance (or L_{∞} -norm):
 - maximum difference between any of the attributes of the data points.

Example of Minkowski Distances: L_1 -norm, L_2 -norm and L_{∞} -norm

point	х	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

- More examples of similarity/distance measures
 - · Canberra distance
 - · Jaccard Coefficients
 - Cosine similarity
- Several problems may arise that may distort the notion of distance:
 - · different scales of variables
 - · different importance of variables
 - different types of data (e.g. both numeric and categorical variables)

Heterogeneous Distance Functions

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{a=1}^m \delta_a(x_i^a, y_i^a)$$

where

if a is a categorical variable

$$\delta_a(x_i^a, x_j^a) = \begin{cases} 0 & \text{if } x_i^a == x_j^a \\ 1 & \text{otherwise} \end{cases}$$

• if a is a numeric variable

$$\delta_a(x_i^a, x_j^a) = \frac{|x_i^a - x_j^a|}{|max_a - min_a|}$$

General Coefficient of Similarity

$$S(x_i, x_j) = \sum_{a=1}^{m} w_a S(x_i^a, y_i^a) / \sum_{a=1}^{m} w_a$$

- s() is a similarity measure, m is the number of attributes,
- x_i^a and x_i^a are the a^{th} attribute value for x_i and x_j , respectively,
- $w_a \in [0, 1]$ is the weight for the attribute a.
 - Given any two data points x_i and x_j
 - $s(x_i, x_j) = 1$, only if $x_i == x_j$
 - $s(\mathbf{x}_i, \mathbf{x}_j) = s(\mathbf{x}_j, \mathbf{x}_i)$

Clustering

Clustering

Goals:

- Obtain the "natural" grouping of a set of data, i.e. find some structure on the data set
 - · The key issue on clustering is the notion of similarity
 - Observations on the same group are supposed to share some properties, i.e. being similar
 - Most clustering methods use the information on the distances among observations in a data set
- Provide some abstraction of the found groups (e.g. a representation of their main features; a prototype for each group; etc.), gain novel insights of data

Clustering: Some Applications

Biology

- describe spatial and temporal communities of organisms
- group genes or proteins that have similar functionality

· Business and Marketing

- · describe different market segments from a set of potetential clients
- group stocks with similar price fluctuations

Web Mining

- find groups of related documents for information retrieval
- find communities in social networks
- build recommender systems

• . . .

Clustering: Main Types of Methods

- Partitional: divide the observations in k partitions according to some criterion
- Hierarchical: generate a hierarchy of groups, from 1 to n groups, where n is the number of lines in the data set
 - Agglomerative: create a hierarchy bottom up (from n to 1 group)
 - Divisive: create a hierarchy top down (from 1 to n groups)

Goal: Partition the given set of data into *k* groups by either minimizing or maximizing a pre-specified criterion

- · Some key issues:
 - The choice of the number of groups
 - The nr of possible divisions of n cases into k groups can grow fast!

$$N(n,k) = \frac{1}{k!} \sum_{i=1}^{k} (-1)^{k-i} \binom{k}{i} i^n$$

e.g. for n = 100 and k = 5, $N(100,5) \approx 6.6 \cdot 10^{67}$

Some important properties

- · Cluster compactness
 - how similar are cases within the same cluster
- Cluster separation
 - · how far is the cluster from the other clusters

Goal:

minimize intra-cluster distance and maximize inter-cluster distances

- A clustering solution assigns all the objects to a cluster
 - hard clustering: an object belongs to a single cluster
 - fuzzy clustering: each object has a probability associated to belong to each cluster

Consider the cluster $C_k = \{x_1, x_2, \dots, x_{n_k}\}$, the centroid of C_k is given by

$$\bar{\mathbf{x}}^{(k)} = \frac{1}{n_k} \sum_{\mathbf{x}_i \in C_k} \mathbf{x}_i$$

the centroid of C_k can also be the median of its data objects, i.e. $\tilde{\mathbf{x}}^{(k)}$

Goal: obtain a set of clusters C that minimize

$$h(C) = \sum_{j=1}^{k} \sum_{x_i \in C_j} d(x_i, \bar{x}^{(j)})$$

(Some) Criteria for numeric data

- Sum of Squared Errors (SSE): $d(x_i, \bar{x}^{(j)}) = (x_i \bar{x}^{(j)})^2$
- L_1 measure: $d(\mathbf{x}_i, \bar{\mathbf{x}}^{(j)}) = |\mathbf{x}_i \tilde{\mathbf{x}}^{(j)}|$

Clustering Partitional Methods: k-Means

It is a partition-based method that obtains k groups of a data set

k-means algorithm

- Initialize the centers of the k groups to a set of randomly chosen observations
- Repeat
 - Allocate each observation to the group whose center is nearest
 - Re-calculate the center of each group
- Until the groups are stable, i.e. there is no significant decrease or there is an increase on the minimize criterion h(C)

Clustering Partitional Methods: k-Means

Some observations:

- Clusters have always a convex shape
 - line connecting any two instances in the cluster lies within the cluster
- · The shape depends on the distance function
 - · hypercube for Manhattan distance
 - · hypersphere for Euclidean distance
 - hyperellipsoid for Mahalanobis distance
- Typically, it uses the Euclidean distance as criterion
- Maximizes inter-cluster dissimilarity

Clustering Partitional Methods: k-Means

Advantages:

- · Fast algorithm that scales well
- Stochastic approach that frequently works well. It tends to identify local minima.

Disadvantages:

- It does not ensure an optimal clustering
- We may obtain different solutions with different starting points
- The initial guess of k for the number of clusters, maybe away from the real optimal value of k.

Clustering Validation

How to validate/evaluate/compare the results obtained by some clustering method?

- · Is the found group structure random?
- What is the "correct" number of groups?
- How to evaluate the result of a clustering algorithm when we do not have information on the number of groups in the data set?
- How to compare the results obtained by different methods when outside information on the number of groups exists?
- How to compare alternative solutions (e.g. obtained using different clustering algorithms)?

Clustering Validation: Types of Evaluation Measures

- Supervised compare the obtained clustering (grouping) with the external information that we have available
- Unsupervised try to measure the quality of the clustering without any information on the "ideal" structure of the data
 - Cohesion coefficients determine how compacts/cohesive are the members of a group
 - Separation coefficients determine how different are the members of different groups

Clustering Validation: Silhouette Coefficient

Silhouette Coefficient (unsupervised measure)

- Popular coefficient that incorporates both the notions of cohesion and separation
- For each object x_i:
 - obtain the average distance to all objects in the same group (a_i)
 - to any other group to which x_i does not belong, calculate the average distance to the members of these other groups; obtain the minimum value of these distances (b_i)
 - The silhouette coefficient, s_i is equal to

$$s_i = \frac{b_i - a_i}{max(a_i, b_i)}$$

The coefficient takes values between −1 and 1.

Clustering Validation: Silhouette Coefficient (cont.)

Example: iris data set silhouette coefficients s_i with k = 3 clusters

- Large s_i (almost 1) means that they are very well clustered.
- Small s_i (around 0) means that they lie between two clusters.
- Negative s_i means that they are probably placed in the wrong cluster.
- The closer average silhouette to 1, the better.

Clustering Validation: Best Number of Clusters

How to select the right *k* for k-means?

- An inappropriate choice of k can result in a clustering with poor performance.
- What happens if we select a k that is too high?
- · What if the k is too low?
- Ideally, you should have some a priori knowledge on the real structure of the data.
- If no a priori value is known start with $\sqrt{n/2}$ as a rule of thumb, where n is the number of attributes.

Clustering Validation: Best Number of Clusters

Silhouette-based method

For several possible number of clusters *k*:

 Calculate the average silhouette coefficient value and choose the k that yields to the highest value

Clustering Validation: Best Number of Clusters (cont.)

Elbow method

For several possible number of clusters *k*:

 Calculate the within-cluster SSE, also called distortion, and choose the k so that adding another cluster doesn't yield to a much smaller SSE.

Other, more sophisticated methods exist (e.g. intracluster to intercluster distance ratio)

PAM (Partitioning Around Medoids)

- It searches for the *k* representative objects (the medoids) among the cases in the given data set.
- As with k-means each observation is allocated to the nearest medoid.
- Is more robust to the presence of outliers because it uses original objects as centroids instead of averages that may be subject to the effects of outliers.
- Moreover, it uses a more robust measure of the clustering quality:
 L₁ norm, which is based on absolute error instead of the squared error used in k-means,

CLARA (Clustering Large Applications)

- The PAM algorithm has several advantages in terms of robustness when compared to k-means.
- However, these advantages come at the price of aditional computational complexity that may be critical for large data sets
- CLARA tries to solve these efficiency problems
- It does that by using sampling, i.e. working on parts of the data set instead of the full data set

CLARA Algorithm

- Repeat *n* times the following:
 - Draw a random sample of size m
 - Apply PAM to this random sample to obtain k centroids
 - Allocate the full set of observations to one of these centroids
 - Calculate sum of dissimilarities of the resulting clustering (as in PAM)
- Return as result the clustering of the n repetitions that got lowest sum of dissimilarities

These "k-means like" methods have problems with:

· clusters of different sizes, densities and with non-globular shape

· data that contains outliers/noise

Other Clustering Partitional Methods

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

- The density of an observation is estimated by the nr. of observations within a certain radius (a parameter of the method)
- Based on this idea observations are classified as:
 - core points: if the nr. of observations within its radius are above a certain threshold
 - border points: if the nr. of observations within their radius does not reach the threshold but they are within the radius of a core point
 - noise points: they do not have enough observations within their radius, nor are they sufficiently close to any core point

Other Clustering Partitional Methods

DBSCAN: Core, Border and Noise Points

Other Clustering Partitional Methods

- DBSCAN Algorithm
 - Classify each observation in one of the three possible alternatives
 - Eliminate the noise points from the formation of the groups
 - All core points that are within a certain distance of each other are allocated to the same group
 - Each border point is allocated to the group of the nearest core point
- Note that this method does not require the user to specify the number of groups.
- But, you need to specify the radius (ε) and the minimum number of points (MinPts)

Other Clustering Partitional Methods (cont.)

DBSCAN

Advantages:

- Can detect clusters of an arbitrary shape
- · Resistant to noise

· Disadvantages:

- Computationally more complex than k-means
- Difficulty in setting the hyper-parameter values

Hierarchical Clustering

Goal:

- Obtain a hierarchy of groups, where each level represents a possible solution with k groups.
- It is up to the user to select the solution he wants.
- · A dendogram can be used for visualization

Hierarchical Clustering

- Agglomerative Methods bottom-up
 - · Start with as many groups as there are cases
 - On each upper level a pair of groups is merged into a single group
 - · The chosen pair is formed by the groups that are more similar
- Divisive Methods top-down (much less used)
 - · Start with a single group
 - · On each level select a group to be split in two
 - The selected group is the one with smallest uniformity

Hierarchical Clustering

Some proximity measures for the merging/splitting step

single link

$$d(C_1, C_2) = \min_{x_i \in C_1, x_j \in C_2} d(x_i, x_j)$$

complete link

$$d(C_1, C_2) = \max_{x_j \in C_1, x_j \in C_2} d(x_i, x_j)$$

average link

$$d(C_1, C_2) = \frac{1}{n_1 n_2} \sum_{\mathbf{x}_i \in C_1, \mathbf{x}_j \in C_2} d(\mathbf{x}_i, \mathbf{x}_j)$$

Other methods: distance between the centroids, Ward's method (uses SSE).

Hierarchical Agglomerative Algorithm

- · Compute the proximity matrix
- · Let each data point be a cluster
- Repeat
 - Merge the two closest clusters
 - · Update the proximity matrix
- Until only a single cluster remains

Example: Consider the following distance matrix

	Α	В	С	D	E	F
Α	0					
В	4	0				
С	25	21	0			
D	24	20	1	0		
E	9	5	16	15	0	
F	7	3	18	17	2	0

Distance Matrix - Stage 0

Use agglomerative hierarchical clustering with single-link method

Example: Agglomerative Hierarchical Clustering, single-link method.

	A	В	С	D	E	F
Α	0					
В	4	0				
С	25	21	0			
D	24	20	1	0		
E	9	5	16	15	0	
F	7	3	18	17	2	0
Distance	Distance Matrix Ctore 0					

Distance Matrix - Stage 0

	Α	В	CD	E	F
Α	0				
В	4	0			
CD	24	20	0		
E	9	5	15	0	
F	7	3	17	2	0

Distance Matrix - Stage 1

	Α	В	CD	EF
Α	0			
В	4	0		
CD	24	20	0	
EF	7	3	15	0
Distance Matrix, Disease 0				

Distance Matrix - Stage

	Α	BEF	CD
Α	0		
BEF	4	0	
CD	24	15	0

Distance Matrix - Stage 3

	ABEF	CD
ABEF	0	
CD	15	0

Example: Agglomerative Hierarchical Clustering, single-link method.

Different proximity measures yield to different types of clusters.

- · single-link
 - · can handle non-elliptical shapes
 - · uses a local merge citerion
 - distant parts of the cluster and the clusters' overall structure are not taken into account

Different proximity measures yield to different types of clusters.

- · complete-link
 - · biased towards globular clusters
 - · uses a non-local merge citerion
 - chooses the pair of clusters whose merge has the smallest diameter
 - the similarity of two clusters is the similarity of their most dissimilar members
 - · sensitive to noise/outliers
- average-link
 - it is a compromise between single and complete link

Hierarchical Clustering: Divisive Methods

Hierarchical Divisive Algorithm

- · Compute the proximity matrix
- · Start with a single cluster that contains all data points
- Repeat
 - choose the cluster with the largest diameter, i.e. largest dissimilarity between any two of its points
 - select the data point with largest average dissimilarity to the other members in that cluster
 - re-allocate the data points to either the cluster of this selected point or the "old" cluster (represented by its center), depending on which one is nearest
- Until each data point constitutes a cluster

Clustering Methods: Wrap-up

Overall, we can compare clustering methods w.r.t

- Algorithm:
 - · complexity and scalability
 - similarity measures that can be employed
 - · robustness to noise
 - · it is able to find clusters on sub-spaces
 - · different runs lead to different results
 - · it is incremental

Clustering Methods: Wrap-up

Overall, we can compare clustering methods w.r.t

- Data:
 - it is able to handle different types of data?
 - · continuous, categorical, binary
 - is there dependency on the order of data points?
- Domain:
 - does the algorithm finds the number of clusters, or needs it as input?
 - · how many parameters are necessary?
 - · what is the required domain knowledge for that?
- · Results:
 - · shape of clusters that is able to find
 - · interpretability

References

References

- Aggarwal, Charu C. 2015. Data Mining, the Texbook. Springer.
- Gama, João, André Carlos Ponce de Leon Ferreira de Carvalho, Katti Faceli, Ana Carolina Lorena, and Márcia Oliveira. 2015. *Extração de Conhecimento de Dados: Data Mining -3rd Edition*. Edições Sílabo.
- Gandomi, Amir, and Murtaza Haider. 2015. "Beyond the Hype: Big Data Concepts, Methods, and Analytics." *International Journal of Information Management* 35 (2): 137–44. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2014.10.007.
- Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. *Data Mining: Concepts and Techniques*. 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
- "R Project." 2021. https://www.r-project.org/.
- Tan, Pang-Ning, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. 2018. *Introduction to Data Mining*. 2nd ed. Pearson.