Metodi Matematici per l'Informatica (secondo canale) Prova scritta - 9 Settembre 2019

TA T	α
Nome e	Cognome:
1,01110	COSHOIIIO.

Risp	ondere qui
2. Sia ($Q = \{(a, b), (a, c), (a, d), (b, c)\} \subseteq \{a, b, c, d\} \times \{a, b, c, d\}; $ allora
$V \square_F \mathbf{A}.$	Q è una funzione;
v 1	Motivare la risposta
$V \square_F \mathbf{B}.$	Q è una relazione di equivalenza;
	Motivare la risposta
$V \square_F \mathbf{C}$.	Q è una relazione transitiva;
v —1 —	Motivare la risposta
$V \square_F $ D .	Q è una relazione d'ordine;
	Motivare la risposta
9 D:	
	ostrare che l'insieme $\mathbb Z$ dei numeri interi è numerabile.
Risp	ondere qui

Rispo	ondere qui
	o Falso? (N.B. Le lettere A,B,C variano su proposizioni arbitrarie nel linguaggio della logica osizionale, non necessariamente distinte).
$\square_V\square_F$ A.	$(A \to B), (C \to \neg A), C \models \neg B;$
	Se A è insoddisfacibile allora per ogni B vale $A \models B$;
	Se $A \wedge \neg B$ è soddisfacibile allora il tableau di $A \to B$ ha qualche ramo aperto;
	Esistono A e B tali che $\neg(A \land B) \lor (A \to B)$ è insoddisfacibile;
	Se il tableau di A e il tableau di B hanno entrambi qualche ramo aperto allora il tableau di $A \wedge B$ ha qualche ramo aperto.
Es 6. I seg	uenti i enunciati sono verità logiche: Vero o Falso?
$\square_V\square_F$ A.	$\forall x (P(x) \to \neg Q(x)) \to (\forall x \neg P(x) \to \neg \exists x Q(x));$
	$\exists x (P(x) \to Q(x)) \leftrightarrow (\forall x P(x) \to \exists x Q(x));$
relaz	inguaggio predicativo adeguato per la teoria degli insiemi è composto da un singolo simbolo di ione a due posti, \in (che intuitivamente indica l'appartenenza). Tradurre in questo linguaggio pre- ivo le seguenti proposizioni. Due insiemi coincidono se e soltanto se hanno esattamente gli stessi enti.
Λ	Esiste l'insieme vuoto.
Α.	Rispondere qui
R	Per ogni coppia di insiemi esiste la loro intersezione.
ъ.	Rispondere qui
	Tuoponavie qui
~ .	
Es 8. Scriv	ere la definizione di modello nella logica predicativa.
Rispo	ondere qui