EIOT

Energy

Aleksander Pruszkowski Instytut Telekomunikacji Politechniki Warszawskiej

This lecture

- Electrical energy: background
- Sources of energy for IoT nodes
- Energy consumption levels in IoT nodes
- How to reduce energy consumption in IoT nodes

 Electrical energy is energy that electrical current delivers to electrical load doing work ...

$$E_{electrical} = I * U * t$$

where

- I current flowing through the electrical load [A]
- U voltage at the load [V]
- t time (how long the current flows) [s]
- Thus <u>units</u> of E_{electrical} are (all are allowed)
 - A*V*s or
 - W*s or
 - (more often) Wh or
 - kWh

How to measure electrical energy: "textbook approach"

- How to measure electrical energy: practical approach
 - find the current based on voltage drop

$$E_{electrical} = I * V2 * t = (V1 / R) * V2 * t$$

- cons:
 - voltage drop across R amounts to losing energy
 - the voltage meter V1 is connected to non-ground terminals, which makes the entire meter hard to integrate

- How to measure electrical energy: practical approach modified
 - find the current based on voltage drop

$$E_{electrical} = (V1-V2) / R * V2 * t$$

- cons:
 - voltage drop across R amounts to losing energy
 - the voltage difference V1-V2 is hard to measure without an error, which cannot be easily eliminated in digital systems

- How to measure electrical energy: practical approach modified
 - find the current based on voltage drop
 - example: INA219 IC ("power monitor")
 - ADC: 12bit, 1LSB, conversion time <586us

- Handling a power monitor in software
 - example: INA219 (Adafruit library for Arduino, $R_{SHUNT}=0.1\Omega$)

Sources of energy for IoT nodes

Sources of energy: battery cells

- Electricity-related features
 - nominal voltage
 - unit: volt [V]
 - the voltage that is measured, for a given current, at the cell's terminals
 - in reality, voltage drops, as the battery is discharged
 - capacity
 - unit: ampere hour [Ah] and related ones: [As], [mAh]
 - 1Ah is electric charge of 3600 coulombs [C]
 - specifies how long you can draw energy from the cell
 - often one uses the term "10h current", e.g., for the capacity of 330mAh, you can draw, for 10 hours, the current of 33mA
 - internal resistance
 - unit: ohm $[\Omega]$
 - resistance "in series"
 - affects how much current you can draw for a short period of time
 - resistance "in parallel"
 - affects the current flowing without any load (self-discharge)

Sources of energy: battery cells

- Physical features
 - reaction to low temperatures
 - in reaction to low temperatures (even those close to 0°C), cells tend to reduce their current capacity
 - they appear as if they discharged faster
 - connectors, size, weight
 - standardizing casing and the position of terminals
 - examples: AA, AAA or LR6, LR3
 - technology applied to produce a cell determines how much electrical charge one can "package" in a given volume

Sources of energy: battery cells

Chemical features

- cells can be classified based on chemical compounds used to make them
 - zinc-carbon, nickel-zinc, zinc-chloride
 - lithium, lithium-ion, lithium-polymer
 - alkaline
- ecology
 - being harmful to the environment
 - · e.g., cadmium-free are less harmful
 - cost of utilization
 - low battery capacity means that you need to replace the battery more often, and that increases the negative impact on the environment
 - some technologies make it easier to utilize (consider the toxicity of lead used to manufacture lead-acid accumulators)
- On the Earth, the elements needed to build cells (eg Lithium) are become running out

Sources of energy

- Classification by way of using
 - primary cells (non-rechargeable)
 - charged at production time
 - problems with utilization
 - elements that can store energy produced during "runtime", e.g., supercapacitors
 - often used in energy harvesting systems, like solar cells, thermal energy sources, wind turbines, etc.
 - secondary cells (rechargeable)
 - can be charged multiple times

- Accumulators can be charged multiple times
 - in the process of charging, electrical energy is converted to chemical energy
 - in discharging, chemical energy is converted to electrical energy
 - charging/discharging cycle is possible multiple times, which makes accumulators different from primary cells
 - process of charging is designed so as to be easy under virtually any conditions
 - charging an accumulator should take less time than using it
 - currently, the replacement of electrolyte or electrodes is considered difficult, and, in new designs, the user does need to do these things

- Accumulator technologies
 - Lead-acid (1,2V)
 - electrodes made of lead (Pb), electrolyte: sulfuric acid (H₂ SO₄)
 - currently, electrolyte is mostly gel (used, e.g., in UPS's)
 - no dangerous liquid electrolyte
 - NiCd (1,2V) [nickel oxide hydroxide]
 - electrodes made of nickel NiO(OH) and cadmium (Cd)
 - NiMh (1,2V) [nickel metal hydride]
 - very similar to those made of NiCd, but exhibit less significant memory effect, and are more environment-friendly
 - Li-Ion (3,6V) [lithium-ion]
 - positive electrode made of carbon, negative electrode made of metal oxide
 - electrolyte: lithium salt dissolved in organic solvent
 - Li-Poly (3,6V) [lithium-ion polymer]
 - lithium-polymer, similar to Li-Ion, electrolyte: organic polymer (Polyacrylonitrile)

- What can go wrong during usage
 - mechanical damage
 - may be due to incorrect usage (e.g., a wrong position),
 - design may be faulty (e.g., electrolyte may evaporate via leaks)
 - memory effect
 - inability to fully charge (when you try charge an accumulator, say NiCd, that is not fully discharged)
 - capacity reduction
 - when you charge (and discharge) multiple times, you may not be able to charge to the nominal capacity
 - over-discharge
 - affects Li-Ion accumulators and similar ones; these may require charging and discharging controllers (e.g., cutting off the load at a high level of discharging)

- Charging methods
 - regular: during period of 10h using a ten-hour current (1/10 of capacity)
 - fast ("intelligent"): charging with pulse current, with monitoring the accumulator's voltage, current, and temperature (!)
 - exceeding the temperature of the cell may cause self-ignition

- Accumulator's condition vs. device's working time
 - may try to estimate the working time based on the accumulator's voltage
 - need to know the accumulator's discharging characteristics
 - doesn't work well when discharging characteristics is flat (e.g., Li-Ion)
 - may try to estimate the working time based on the charge in the accumulator
 - better results, but requires continuous monitoring of charging and discharging currents
 - · special purpose circuits supporting this
 - INA219: monitors the current and its direction
 - DS2438: calculates the amount of the inflowing and outflowing charge

- CPUs/MCUs: ATMega328p
 - active mode: CPU executes programs
 - entire Arduino UNO with 16MHz clock draws <49mA [www.peterbeard.co]
 - alone AVR ATmega328p with 8MHz clock draws <9mA
 - sleep modes

Źródło: www.atmel.com

- you go to a sleep mode by executing the assembly language instruction SLEEP
- before that you need to select the sleep mode
 - SMCR (Sleep Mode Control Register) register: bits SM2/1/0 select the mode, bit SE makes it possible to go to a sleep mode
- in C you may use avr-libc functions; include "avr/sleep.h"

```
set_sleep_mode(SLEEP_MODE_POWER_DOWN);
sleep_mode();
...
```

 Bit
 7
 6
 5
 4
 3
 2
 1
 0

 SM2
 SM1
 SM0
 SE

 Access
 R/W
 R/W
 R/W
 R/W

 Reset
 0
 0
 0
 0

- CPUs/MCUs: ATMega328p
 - available sleep modes
 - Idle (similar to "ADC Noise Reduction Mode") [SMCR: 000 and 001]
 - CPU stopped
 - all peripherals and oscillators work as usual
 - leaving the mode (wake-up) is possible via RESET and interrupts (including Watchdog)
 - MCU draws: <2.7mA (5V, 8MHz)
 - Power-Down [SMCR: 010]
 - CPU, timers/counters and external oscillator stopped
 - interrupt detection circuits and TWI work as usual
 - leaving the mode is possible via RESET, interrupts (including Watchdog); FUSE bits (SUT i CKSEL) determine the start-up time (how long the level of a level triggered interrupt must be held)
 - MCU draws: ~15uA (3.3V), if WDT is not active: ~2uA (3.3V)

- CPUs/MCUs: ATMega328p
 - available sleep modes (cont.)
 - Power-Save [SMCR: 011]
 - just like Power-Down, except that Timer/Counter2 may be working, and it may wake up the MCU after some specified time
 - MCU draws ~0.9mA (3.3V, frequency for Timer/Counter2 TOSC =32786Hz)
 - Standby [SMCR: 110] and External Standby [SMCR: 111]
 - just like Power-Down, except that the external oscillator does work (to enable faster wakeup, which in this mode takes six clock periods only – but normally it consumes 0.5ms)

- Handling sleep modes in software
 - LowPower/Rocketscream library for Arduino (ATMega328p)
 - The LowPower library takes care of many operations related to limiting energy consumption
 - entering idle mode for 0.5 s., with all the peripherals stopped and off

 entering the power down mode for 8 s. (limit for WDT), with ADC and BOD stopped

```
#include "LowPower.h"
LowPower.powerDown(SLEEP_8S, ADC_OFF, BOD_OFF);
```

entering the power down mode (forever), but this time only RESET and INTO/1 interrupts can wake the MCU up

```
#include "LowPower.h"
LowPower.powerDown(SLEEP_FOREVER, ADC_OFF, BOD_OFF);
```

- CPUs/MCUs: MSP430
 - Includes an extensive clock subsystem
 - Main System Clock (MCLK)
 - Sub System Clock (SMCLK)
 - Auxiliary Clock (ACLK)
 - Digitally controlled oscillator (DCO)
 - DC Generator

 (an external clock source)

DIVAx

Źródło: www.ti.com

- CPUs/MCUs: MSP430
 - Active Mode
 - CPU and all the clocks active
 - LPM0
 - CPU, MCLK (Main System Clock) are disabled
 - SMCLK(Sub System Clock), ACLK(Auxiliary Clock) are active
 - LPM1
 - CPU, MCLK, DCO oscillator (Digitally controlled oscillator) are disabled, DC generator is disabled
 - SMCLK , ACLK are active
 - LPM2
 - CPU, MCLK, SMCLK, DCO oscillator are disabled
 - DC generator remains enabled, ACLK is active
 - LPM3
 - CPU, MCLK, SMCLK, DCO oscillator are disabled, DC generator is disabled
 - ACLK is active
 - LPM4
 - CPU and all clocks are disabled

CPUs/MCUs: MSP430

Modes

- Energy IDE (counterpart of Arduino IDE/API)
 - sleep()/sleepSeconds() causes the MCU to enter LPM3, reduces energy consumption from 3mW to 100uW
 - suspend() causes the MCU to enter LPM4, only an external interrupt can wake the device up
 - to successfully wake up the device you need to invoke wakeup() in the interrupt service routine

Źródło: www.ti.com

- Ethernet networking modules: ENC28J60
 - Power supply voltage: 3.1...3.6V
 - Power supply current
 - active
 - when transmitting: 180mA
 - when listening: 120mA
 - sleep mode: 2mA
- Ethernet networking modules: W5100
 - Power supply voltage: 3.1...3.6V
 - Power supply current
 - active
 - when transmitting: 183mA
 - in other modes: no data
 - Power supply current depends on the Ethernet version: is it 10Base-T or 100Base-T

- Wireless transceivers: CC2420 (802.15.4)
 - Power supply voltage: 2.1...3.6V
 - can work with voltage as low as 1.6V with an external power supply (it features a built-in DC/DC converter, which needs to be powered)
 - Power supply current
 - active
 - receiving and listening: ~18.8mA
 - transmitting (depends on output power, which affects the range): from ~8.5mA(-25dBm) to ~17.4mA(0dBm)
 - low power modes
 - oscillator and voltage regulator off: ~0.02uA(!)
 - idle mode (ready to work, but without transmitting or listening): ~426uA

- Wireless transceivers: nRF24L01+ (ISM, non standard)
 - Power supply voltage: 1.9...3.6V
 - Power supply current
 - active mode
 - listening: 8.9mA (listening is required for services like acknowledgements)
 - receiving: 12.6mA (250Kbps)...13.5mA (2Mbps)
 - transmitting (depends on output power, which affects the range): from 7mA (-18dBm) to 11.3mA(0dBm)
 - deep sleep mode
 - can configure to consume only 900nA(!)
 - in standby modes (standby-I i standby-II): 26...320uA
 - while starting the oscillator: 400uA (can last up to 1.5ms)

- Wireless transceivers: nRF24L01+
 - State diagram

- Wireless transceivers: RFM95 (LoRa)
 - Power supply voltage: 1.8...3.7V
 - Power supply current
 - active mode
 - receiving and listening:from 10.8mA (LNA amplifier disabled) to 11.5mA (LNA amplifier enabled)
 - transmitting (depends on output power, which affects the range) : from 20mA (+7Bm) to 120mA (+20dBm)!
 - sleeping mode
 - 1.5uA (RC oscillator active)
 - 1.8mA (main oscillator active)
 - 5.8mA (synthesizer mode)

- Wireless transceivers: CC3000 (Wifi)
 - Power supply voltage: 3.6V
 - Power supply current
 - active mode
 - receiving and listening: <103mA
 - transmitting: (depends on output power, which affects the range): from 207mA (Po=14dBm, 54Mbps) to 275mA (Po=18dBm, 11Mbps)
 - sleeping mode: 5uA

Major directions

- lowering the clock frequency
 - at design time choose the frequency that corresponds to your system's actual need for processing power
 - at runtime adjust the frequency according to the processing power that the currently executing code requires
 - e.g., you may adjust the MCU clock frequency with a configurable PLL circuit
- lowering the power supply voltage
 - lowering the voltage for entire sub-systems
 - the problem of compatibility with devices powered at different voltages
 - too little difference between the voltages for the logic levels "0" i "1" may lead to errors –
 noise may cause wrong interpretation of logic states
 - lowering the voltage for the CPU core only, without changing the voltages used to communicate with other modules (to preserve logic level compatibility)
 - a complex solution

- Selected problems exemplified by the CMOS technology
 - how is energy lost: steady states
 - leakage current
 - parasitic diodes, present in silicon, allow leakage current to flow
 - if the Gate-Source voltage gets close to the threshold voltage (V_t) sub-threshold current becomes dominant
 - the trend to reduce the size of transistors leads to a reduction of the threshold voltage

- elected problems exemplified by the CMOS technology (cont.)
 - how is energy lost: dynamic phenomena
 - gate switching frequency
 - asymmetry of build the two transistors (P-MOS i N-MOS) output of the CMOS gate causes short-circuit current during transition between "0" and "1", as well as "1" and "0"
 - losses due to charging the load capacitor C_L , with power supply voltage V_{dd} and frequency F_{CLK} (the load capacitance C_L could be the capacitance of the gate of the connected MOS transistor)

$$P = f(C_L * V_{dd}^2 * F_{CLK})$$

Źródło: elektronikab2b.pl

- Method: periodic sleeping
 - the programmer makes the MCU/system periodically switch between the active mode and sleeping

- Method: periodic sleeping (cont.)
 - power supply current for active mode and power-down* mode for selected CPUs/MCUs

	Active mode	Power-down			
AT89C51	20mA	40100uA			
ATmega8L	615mA	30uA			
ATmega128L	520mA	40uA			
PIC18Lxxxx	0.0350mA	12uA			
MSP430F149	7560uA	0.570uA			
AT91RM9200	1548mA	1.7mA			

^{*} not taking into account the impact of temperature, power supply voltage, clock frequency, and with WDT active (in CPUs/MCUs with built-in WDT)

- Method: periodic sleeping (cont.)
 - power supply current for selected sensors and actuators*

	Active mode	Sleeping mode
Passive elements		
Thermistor (YSI 44006)	16.5323uA	-
 Photoresistor (Clairex CL94L) 	0.3275uA	-
Active elements		
 Intelligent photodiode (TSL2550) 	0.35mA	10uA
 Humidity meter (SHT11) 	0.55mA	0.3uA
 Acceleration meter (ADXL202) 	0.6mA	-
 Pressure meter (MS5534A) 	1mA	2.5uA
GPS (Leadtek9546)	60mA	-

^{*} These are rough data, and they do not include the power consumption of the CPU/MCU controlling the sensors/actuators.

- How long can a periodically sleeping system work
 - Notation:
 - T_a time when MCU is in active mode [s]
 - I_a current consumed while in active mode [A]
 - T_s time when MCU is in deep sleep mode [s]
 - I_s current consumed while in deep sleep mode [A]
 - Ratio (Duty cycle*) [¹/₁]

$$N = T_s / T_a$$

Battery capacity [Ah]

$$Q = I * T$$

*) - in papers that is related function

- How long can a periodically sleeping system work (cont.)
 - Below, the time spent in-between states is neglected

$$Q = I_a * T_a + I_s * T_s$$

S0

$$Q = I_a * T/(1+N) + I_s * T * N /(1+N)$$

which yields

$$Q=T * (I_a + I_s * N)/(1+N)$$

ultimately, the working time is given by

$$T = Q * \frac{1+N}{(I_a + I_s * N)}$$

- How long can a periodically sleeping system work (cont.)
 - estimated MCU working time with selected batteries (unit: 24h)
 - battery capacities taken from respective data sheets
 - remember about self-discharge of batteries(!)

	CR2032 (225mAh)			LR3-Alkaline (1.25Ah)			LR6-NiMh (2.5Ah)					
N	0	100	1K	10k	0	100	1K	10k	0	100	1K	10k
AT89C51	0.5	31	78	92	2.6	175	434	510	5.2	350	868	1021
ATMega8L	0.6	52	208	297	3.5	292	1158	1653	7	584	2317	3307
ATMega128L	0.4	39	156	223	2.6	219	868	1240	5.2	438	1737	2480
PIC18Lxxxx	0.2	18	180	1400	1.0	104	1002	7441	2.0	210	2005	14882
MSP430F149	16.7	125	133	133	93	696	738	743	186	1392	1478	1487
AT91RM9200*	0.6	5.1	5.4	5.5	3.5	28	30	31	7	56.8	60.8	61.2

^{*} all built-in peripherals disabled

Thank you!

