Diabetes_Predection

```
import numpy as np
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.preprocessing import LabelEncoder
         from sklearn.preprocessing import StandardScaler
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from xgboost import XGBClassifier
         from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
         import warnings
         warnings.filterwarnings("ignore")
         df=pd.read csv(r"C:\Users\JANHAVI\Desktop\diabetes prediction dataset.csv")
In [2]:
In [3]:
         df.head()
                    age hypertension heart_disease smoking_history
                                                                   bmi HbA1c_level blood_glucose_
Out[3]:
            gender
                   80.0
                                   0
                                                1
                                                                  25.19
            Female
                                                                                6.6
                                                            never
            Female
                   54.0
                                   0
                                                0
                                                          No Info
                                                                  27.32
                                               0
                                                            never 27.32
                                                                                5.7
         2
              Male
                   28.0
                                   0
            Female 36.0
                                   0
                                                0
                                                          current 23.45
                                                                                5.0
                                                1
              Male 76.0
                                   1
                                                          current 20.14
                                                                                4.8
In [4]:
         df.isna().any()
         gender
                                 False
Out[4]:
                                 False
         age
         hypertension
                                 False
         heart disease
                                 False
         smoking_history
                                 False
         bmi
                                 False
         HbA1c level
                                 False
         blood_glucose_level
                                 False
         diabetes
                                 False
         dtype: bool
         df.corr(numeric only=True)
In [5]:
```

Out[5]:		age	hypertension	heart_disease	bmi	HbA1c_level	blood_glucose_le
	age	1.000000	0.251171	0.233354	0.337396	0.101354	0.110
	hypertension	0.251171	1.000000	0.121262	0.147666	0.080939	0.084
	heart_disease	0.233354	0.121262	1.000000	0.061198	0.067589	0.070
	bmi	0.337396	0.147666	0.061198	1.000000	0.082997	0.091
	HbA1c_level	0.101354	0.080939	0.067589	0.082997	1.000000	0.166
	blood_glucose_level	0.110672	0.084429	0.070066	0.091261	0.166733	1.000
	diabetes	0.258008	0.197823	0.171727	0.214357	0.400660	0.419

```
In [6]: df.shape
Out[6]: (100000, 9)
```

Unique Elements

```
for column in df.columns:
In [7]:
             unique_values = df[column].unique()
             print('Column "{}" has unique values: {}'.format(column, unique_values))
        Column "gender" has unique values: ['Female' 'Male' 'Other']
        Column "age" has unique values: [80.
                                                54.
                                                                          20.
                                                                                44.
                                                                                      79.
              32.
                    53.
                          78.
                                   5.
                                               72.
         67.
                15.
                      37.
                            40.
                                        69.
                                                      4.
                                                           30.
                                                                 45.
                                                                        43.
                                                                              50.
         41.
                26.
                      34.
                            73.
                                  77.
                                        66.
                                               29.
                                                     60.
                                                           38.
                                                                  3.
                                                                        57.
                                                                              74.
          19.
                46.
                      21.
                            59.
                                  27.
                                        13.
                                               56.
                                                      2.
                                                            7.
                                                                 11.
                                                                         6.
                                                                              55.
                                  68.
                                        75.
                                               22.
                                                     58.
                                                                 24.
          9.
                62.
                      47.
                            12.
                                                           18.
                                                                        17.
                                                                              25.
          0.08 33.
                      16.
                            61.
                                  31.
                                         8.
                                               49.
                                                     39.
                                                           65.
                                                                 14.
                                                                        70.
                                                                               0.56
         48.
                51.
                      71.
                             0.88 64.
                                        63.
                                               52.
                                                      0.16 10.
                                                                 35.
                                                                        23.
                                                                               0.64
          1.16 1.64 0.72 1.88 1.32 0.8
                                                1.24 1.
                                                                  0.48 1.56 1.08
                                                            1.8
           0.24 1.4
                       0.4
                             0.32 1.72 1.48]
        Column "hypertension" has unique values: [0 1]
        Column "heart disease" has unique values: [1 0]
        Column "smoking_history" has unique values: ['never' 'No Info' 'current' 'former'
         'ever' 'not current']
        Column "bmi" has unique values: [25.19 27.32 23.45 ... 59.42 44.39 60.52]
        Column "HbA1c_level" has unique values: [6.6 5.7 5. 4.8 6.5 6.1 6. 5.8 3.5 6.2
        4. 4.5 9. 7. 8.8 8.2 7.5 6.8]
        Column "blood glucose level" has unique values: [140 80 158 155 85 200 145 100 1
        30 160 126 159 90 260 220 300 280 240]
        Column "diabetes" has unique values: [0 1]
        df["smoking_history"].value_counts()
In [8]:
        smoking_history
Out[8]:
        No Info
                        35816
        never
                        35095
        former
                         9352
         current
                         9286
        not current
                         6447
         ever
                         4004
        Name: count, dtype: int64
         df["smoking history"].value counts()/len(df)
```

```
smoking_history
Out[9]:
                        0.35816
         No Info
         never
                        0.35095
         former
                        0.09352
         current
                        0.09286
         not current
                        0.06447
                        0.04004
         ever
         Name: count, dtype: float64
In [10]: # Replaceing No Info columns with pd.NA
         df['smoking_history'] = df['smoking_history'].replace('No Info', pd.NA)
         # Replace missing values with the mode it is string so we are using mode
         mode_value = df['smoking_history'].mode()[0]
         df['smoking_history'] = df['smoking_history'].fillna(mode_value) #filling no info
         # Printing the updated value counts
         print(df['smoking_history'].value_counts())
         smoking_history
                        70911
         never
         former
                         9352
         current
                         9286
         not current
                         6447
                         4004
         ever
         Name: count, dtype: int64
In [11]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 100000 entries, 0 to 99999
         Data columns (total 9 columns):
          #
             Column
                                   Non-Null Count
                                                    Dtype
         ---
              -----
                                   -----
          0
             gender
                                   100000 non-null object
                                   100000 non-null float64
          1
              age
                                   100000 non-null int64
          2
              hypertension
          3
              heart_disease
                                   100000 non-null int64
          4
              smoking history
                                   100000 non-null object
          5
                                   100000 non-null float64
              bmi
                                   100000 non-null float64
              HbA1c_level
          6
                                   100000 non-null int64
          7
              blood_glucose_level
          8
              diabetes
                                   100000 non-null int64
         dtypes: float64(3), int64(4), object(2)
         memory usage: 6.9+ MB
In [12]:
         df.gender.value counts()
         gender
Out[12]:
         Female
                   58552
         Male
                   41430
         Other
         Name: count, dtype: int64
In [13]:
         df.describe()
```

Out[13]:

		age	hypertension	heart_disease	bmi	HbA1c_level	blood_glucose_le
c	ount	100000.000000	100000.00000	100000.000000	100000.000000	100000.000000	100000.000
r	nean	41.885856	0.07485	0.039420	27.320767	5.527507	138.058
	std	22.516840	0.26315	0.194593	6.636783	1.070672	40.708
	min	0.080000	0.00000	0.000000	10.010000	3.500000	80.000
	25%	24.000000	0.00000	0.000000	23.630000	4.800000	100.000
	50%	43.000000	0.00000	0.000000	27.320000	5.800000	140.000
	75 %	60.000000	0.00000	0.000000	29.580000	6.200000	159.000
	max	80.000000	1.00000	1.000000	95.690000	9.000000	300.000

```
In [14]: #removing , in bmi parameter
    df["bmi"] = [float(str(i).replace(",", "")) for i in df["bmi"]]
In [15]: #ploting value_counts of diabetes in graphical representation
    df['diabetes'].value_counts().plot(kind='barh')

#Xlabel name
    plt.xlabel('count')

#ylabel name
    plt.ylabel('diabetes')

#title of the plot
    plt.title('count of diabetes and Non diabetes')

#invert ylabes to no diabetes on top
    plt.gca().invert_yaxis()

#printing the plot
    plt.show()
```

9/14/25, 10:14 PM Diabetes_Predection

count of diabetes and Non diabetes


```
df['diabetes'].value_counts()/len(df) #percentage of 1--diabetes and 2--no diabetes
In [16]:
         diabetes
Out[16]:
              0.915
              0.085
         Name: count, dtype: float64
In [17]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 100000 entries, 0 to 99999
         Data columns (total 9 columns):
              Column
                                  Non-Null Count
                                                   Dtype
              -----
                                   -----
                                                    ----
          0
             gender
                                  100000 non-null object
          1
              age
                                  100000 non-null float64
                                  100000 non-null int64
              hypertension
              heart disease
                                  100000 non-null int64
              smoking_history
          4
                                  100000 non-null object
          5
              bmi
                                  100000 non-null float64
              HbA1c_level
                                  100000 non-null float64
          6
          7
              blood_glucose_level 100000 non-null int64
                                   100000 non-null int64
              diabetes
         dtypes: float64(3), int64(4), object(2)
         memory usage: 6.9+ MB
In [18]: le=LabelEncoder() #activating Label encoder function
         le
Out[18]:
            LabelEncoder
         ► Parameters
```

In [19]: Label_encod_columns=['gender','smoking_history'] #selecting columns to apply label

df[Label_encod_columns]=df[Label_encod_columns].apply(le.fit_transform) #applying l

In [20]: df.head(3)

Out[20]:		gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_
	0	0	80.0	0	1	3	25.19	6.6	
	1	0	54.0	0	0	3	27.32	6.6	
	2	1	28.0	0	0	3	27.32	5.7	

In [21]: sns.boxplot(data=df[['age','blood_glucose_level','bmi']]) #checking outliers using
Out[21]:

In [22]: sns.boxplot(data=df['HbA1c_level'])

Out[22]: <Axes: ylabel='HbA1c_level'>

In [23]: sns.lmplot(data=df, x='blood_glucose_level', y='diabetes', fit_reg=False)#implot pl
Out[23]: <seaborn.axisgrid.FacetGrid at 0x23078334c90>

In [25]: df.corr()

Out[25]:		gender	age	hypertension	heart_disease	smoking_history	bmi
	gender	1.000000	-0.030656	0.014203	0.077696	-0.044081	-0.022994
	age	-0.030656	1.000000	0.251171	0.233354	-0.098969	0.337396
	hypertension	0.014203	0.251171	1.000000	0.121262	-0.048631	0.147666
	heart_disease	0.077696	0.233354	0.121262	1.000000	-0.048253	0.061198
	smoking_history	-0.044081	-0.098969	-0.048631	-0.048253	1.000000	-0.087735
	bmi	-0.022994	0.337396	0.147666	0.061198	-0.087735	1.000000
	HbA1c_level	0.019957	0.101354	0.080939	0.067589	-0.017534	0.082997
	blood_glucose_level	0.017199	0.110672	0.084429	0.070066	-0.022985	0.091261
	diabetes	0.037411	0.258008	0.197823	0.171727	-0.049841	0.214357

In [26]: plt.figure(figsize=(20,8)) #figsize

```
#printing graphical representations of
df.corr()['diabetes'].sort_values(ascending=False).plot(kind='bar')
```

Out[26]: <Axes: >

In [27]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999

Data columns (total 9 columns):

```
Column
                       Non-Null Count
                                        Dtype
   -----
                        -----
   gender
0
                       100000 non-null int32
                       100000 non-null float64
1
   hypertension
                       100000 non-null int64
3
   heart_disease
                       100000 non-null int64
                       100000 non-null int32
   smoking_history
5
                       100000 non-null float64
   HbA1c_level
                       100000 non-null float64
7
    blood_glucose_level 100000 non-null int64
   diabetes
                       100000 non-null int64
```

dtypes: float64(3), int32(2), int64(4)

memory usage: 6.1 MB

```
In [28]: #selecting X variables
X = df.loc[:, 'age':'heart_disease'].join(df.loc[:, 'bmi':'blood_glucose_level'])
X
```

age hypertension heart_disease bmi HbA1c_level blood_glucose_level

Out[28]:

			1	25.19	6.6		140
0	80.0	0	ı		0.0		
1	54.0	0	0	27.32	6.6		80
2	28.0	0	0	27.32	5.7		158
3	36.0	0	0	23.45	5.0		155
4	76.0	1	1	20.14	4.8		155
•••							
99995	80.0	0	0	27.32	6.2		90
99996	2.0	0	0	17.37	6.5		100
99997	66.0	0	0	27.83	5.7		155
99998	24.0	0	0	35.42	4.0		100
99999	57.0	0	0	22.43	6.6		90
y=df.		,'diabetes'] g y variable	#y variable	?			
v #nr	nTine						
0		y var table					
0 1	0	g y var table					
0 1 2 3	0 0 0	g y var tubte					
0 1 2	0 0 0	g y var tubte					
0 1 2 3	0 0 0 0	g y var tubte					
0 1 2 3 4 99995 99996 99997	0 0 0 0 0	g y var tubte					
99995 99996 99997 99998 99999	0 0 0 0 0 0 0						
0 1 2 3 4 99995 99996 99997 99998 99999 Name:	0 0 0 0 0 0 0 0 0 diabe	etes, Length:	: 100000, dty				
0 1 2 3 4 99995 99996 99997 99998 99999 Name:	0 0 0 0 0 0 0 0 0 diabe	etes, Length:				testing size i	s 0.3 random_
0 1 2 3 4 99995 99996 99997 99998 99999 Name:	0 0 0 0 0 0 0 0 diabe	etes, Length:	testing data	in 70	0 30 rating	testing size i	
0 1 2 3 4 99995 99996 99997 99998 99999 Name:	0 0 0 0 0 0 0 diabe	etes, Length: trining and test,y_train	testing data	in 70	0 30 rating	_	
0 1 2 3 4 99995 99996 99997 99998 99999 Name: # spl	0 0 0 0 0 0 0 diabe	etes, Length: trining and test,y_train ad()	testing data	in 70	0 30 rating _split(X,y,t	_	andom_state=0
0 1 2 3 4 99995 99996 99997 99999 Name: # spl	0 0 0 0 0 0 0 diabe	etes, Length: trining and test,y_train ad()	testing data ,y_test=train heart_disease	in 70	0 30 rating _split(X,y,t	cest_size=0.2,r	andom_state=0
0 1 2 3 4 99995 99996 99997 99998 99999 Name: # spl X_tra: X_tra:	0 0 0 0 0 0 0 0 diabe	etes, Length: trining and test,y_train ad() hypertension	<pre>testing data ,y_test=train heart_disease 0</pre>	in 70	<pre>0 30 rating _split(X,y,t HbA1c_level</pre>	cest_size=0.2,r	andom_state=0
0 1 2 3 4 99995 99996 99997 99998 99999 Name: # spl X_tra: X_tra: 10382	0 0 0 0 0 0 0 0 diabet iting in,X_1 in.hea age 2.0	etes, Length: trining and test,y_train ad() hypertension	<pre>testing data ,y_test=train heart_disease 0 0</pre>	bmi 16.45	9 30 rating _split(X,y,t HbA1c_level	cest_size=0.2,r	andom_state=0 vel 159
0 1 2 3 4 99995 99996 99997 99998 99999 Name: # spl X_tra: X_tra: 10382 73171	0 0 0 0 0 0 0 0 diabet iting in,X_1 in.hea 2.0 55.0	etes, Length: trining and test,y_train ad() hypertension 0	testing data ,y_test=train heart_disease 0 0 0	bmi 16.45 24.59	9 30 rating _split(X,y,t HbA1c_level 6.2 6.0	blood_glucose_le	andom_state=0 vel 159

```
print(y_train.shape)
          print('Shape of Testing data')
          print(X_test.shape)
          print(y_test.shape)
         Shape of Train data
          (80000, 6)
          (80000,)
         Shape of Testing data
          (20000, 6)
         (20000,)
In [33]:
         ss=StandardScaler() #activating StandardScaler()
          SS
Out[33]:
          ▼ StandardScaler
          ▶ Parameters
In [34]:
         X_train_scaled=ss.fit_transform(X_train) #scaling X_train data
In [35]: if len(X_{test.shape}) == 1: #if x is 1d array
             X_test = X_test.values.reshape(-1, 1) #converting to 2d array
         X_test_scaled = ss.fit_transform(X_test) #scaling X_test data
In [36]: model_lr=LogisticRegression() #activating Logistic Regression
In [37]: model_lr.fit(X_train_scaled,y_train) #training logistic regression model
Out[37]:
           LogisticRegression
          ▶ Parameters
         y_pred=model_lr.predict(X_test_scaled) #predecting y_test data
In [38]:
         y_pred[:10]
         array([0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int64)
Out[38]:
In [39]: y_test[:10] # actual y_test data
         3582
                  0
Out[39]:
         60498
                  0
         53227
                  0
         21333
                  0
         3885
                  0
         51521
                  0
         84261
                  0
         10685
                  1
         59948
         41032
         Name: diabetes, dtype: int64
         accuracy_score(y_pred,y_test) #accuracy_score
In [40]:
```

Out[40]: 0.95975

```
print(classification_report(y_pred,y_test)) #classifiaction_report
In [41]:
                        precision recall f1-score
                                                        support
                     0
                             0.99
                                       0.97
                                                 0.98
                                                           18736
                     1
                             0.63
                                       0.86
                                                 0.73
                                                           1264
             accuracy
                                                 0.96
                                                           20000
             macro avg
                             0.81
                                       0.91
                                                 0.85
                                                           20000
                                       0.96
                                                 0.96
                                                           20000
         weighted avg
                             0.97
In [42]: confusion_matrix(y_pred,y_test) #confusion_matrix
         array([[18114,
                           622],
Out[42]:
                 [ 183, 1081]], dtype=int64)
         y_train.value_counts() #data is highly imblancing
In [43]:
         diabetes
Out[43]:
               73203
               6797
         Name: count, dtype: int64
In [44]: value_counts=y_train.value_counts()
          plt.figure(figsize=(16, 8))
          plt.pie(value_counts, labels=value_counts.index, autopct='%1.2f%%', startangle=140)
          plt.title('Distribution of y_train')
          plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
          plt.show()
                                             Distribution of y_train
```


In [45]: from imblearn.over_sampling import SMOTE # using smote function to balance our set
smote=SMOTE()
X_ovs,y_ovs=smote.fit_resample(X,y) #passing X and y variables to it to balance out

```
fig, oversp = plt.subplots()
oversp.pie( y_ovs.value_counts(), autopct='%.2f')
oversp.set_title("Over-sampling")
plt.show()
```

Over-sampling


```
In [46]: # Dividing our resampling data into 70 30 ratio
         Xr_train,Xr_test,yr_train,yr_test=train_test_split(X_ovs,y_ovs,train_size=0.7,randometric)
In [47]: print('train data shape')
          print(Xr_train.shape)
          print(yr_train.shape)
         print('test data shape')
          print(Xr_test.shape)
         print(yr_test.shape)
         train data shape
         (128099, 6)
         (128099,)
         test data shape
         (54901, 6)
         (54901,)
         print('y_train and y_test value_count')
In [48]:
          print(yr_train.value_counts())
          print(yr_test.value_counts())
```

```
y_train and y_test value_count
         diabetes
              64131
         1
               63968
         Name: count, dtype: int64
         diabetes
               27532
         1
         a
               27369
         Name: count, dtype: int64
          ss=StandardScaler()
In [49]:
          SS
Out[49]:
          StandardScaler
          ▶ Parameters
          data=Xr_train,Xr_test
In [50]:
          xr_train_sc=ss.fit_transform(Xr_train) # scaling our resampling data xr train
          Xr_test_sc=ss.fit_transform(Xr_test) # scaling our resamplig xr_test data
In [51]: Xr_train_scaled = pd.DataFrame(xr_train_sc) #Xr_train_scaled converting into the dc
          print(Xr_train_scaled.shape)
          Xr_train_scaled.head()
          print(yr_train.shape)
          (128099, 6)
          (128099,)
In [52]: Xr_test_scaled=pd.DataFrame(Xr_test_sc) #Xr_test converting into the dataframe
          print(Xr_test_scaled.shape)
          Xr_test_scaled.head()
          (54901, 6)
Out[52]:
                            1
                                      2
                                               3
                                                        4
                                                                  5
          0 0.957108 -0.294735 -0.204364
                                        0.539410 -0.111145
                                                            2.029416
         1 -1.095860 -0.294735 -0.204364 -0.404865
                                                  0.370604 -0.064547
          2 -1.467180 -0.294735 -0.204364 -0.287066
                                                  0.370604 -1.460522
         3 -0.770954 3.392878 -0.204364 0.293712
                                                  0.370604 -1.373274
          4 -1.374350 -0.294735 -0.204364 -0.287066 -2.150914 -1.111528
In [53]: model_lk=LogisticRegression()
          model_lk.fit(Xr_train_scaled,yr_train) #trining the model
```

Out[53]:

LogisticRegression

```
► Parameters
         y_pred_lr=model_lk.predict(Xr_test_scaled) #predecting yr_test data
In [54]:
          y_pred_lr[:10]
         array([1, 0, 0, 0, 0, 1, 0, 0, 0, 1], dtype=int64)
Out[54]:
In [55]:
        yr_test[:10]
         180328
                   1
Out[55]:
         573
                   a
         13494
                   0
         93981
         75389
                   0
         180973
                   1
         71021
                   0
         19293
                   0
         16393
                   0
         121419
                   1
         Name: diabetes, dtype: int64
In [56]: #classification_report for predict value and orginal value
          print(classification_report(y_pred_lr,yr_test))
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.88
                                       0.88
                                                 0.88
                                                          27383
                             0.88
                                       0.88
                                                 0.88
                                                          27518
             accuracy
                                                 0.88
                                                          54901
                            0.88
                                       0.88
                                                 0.88
                                                          54901
            macro avg
                                       0.88
                                                 0.88
                                                          54901
         weighted avg
                            0.88
In [57]: #confusion matrix for predict value and orginal value
         confusion_matrix(y_pred_lr,yr_test)
         array([[24174, 3209],
Out[57]:
```

Decision Tree Classifier

[3195, 24323]], dtype=int64)

```
y_pred_dtc=model_dtc.predict(Xr_test_scaled) # predicting yr_test data
In [59]:
In [60]: # classification report for decisionTreeclassifier
          print(classification_report(y_pred_dtc,yr_test))
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.64
                                       1.00
                                                 0.78
                                                          17500
                                       0.73
                                                 0.85
                     1
                             1.00
                                                          37401
                                                 0.82
                                                          54901
             accuracy
            macro avg
                             0.82
                                       0.87
                                                 0.81
                                                          54901
         weighted avg
                             0.88
                                       0.82
                                                 0.82
                                                          54901
        confusion_matrix(y_pred_dtc,yr_test)
In [61]:
         array([[17433,
                           67],
Out[61]:
                 [ 9936, 27465]], dtype=int64)
```

Random Forest Classifier

```
model_rfc=RandomForestClassifier() #activating the fuction
In [62]:
         model_rfc.fit(Xr_train_scaled,yr_train)
Out[62]:
          RandomForestClassifier
          ▶ Parameters
         y_pred_rfc=model_rfc.predict(Xr_test_scaled)
In [63]:
         print(classification_report(y_pred_rfc,yr_test))
In [64]:
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.78
                                      0.99
                                                0.87
                                                          21526
                    1
                            0.99
                                      0.82
                                                0.90
                                                          33375
                                                0.89
                                                          54901
             accuracy
                                      0.90
                                                0.88
                                                          54901
                            0.89
            macro avg
         weighted avg
                            0.91
                                      0.89
                                                0.89
                                                          54901
         confusion_matrix(y_pred_rfc,yr_test)
In [65]:
         array([[21306,
                          220],
Out[65]:
                [ 6063, 27312]], dtype=int64)
```

XGBOOST

```
In [66]: model_xgb=XGBClassifier()
    model_xgb.fit(Xr_train_scaled,yr_train)
```

```
Out[66]: 

✓ XGBClassifier 

→ Parameters

The [67]: 
✓ pred ygh=model ygh predict(Yr test so
```

```
In [67]: y_pred_xgb=model_xgb.predict(Xr_test_scaled)
         print(classification_report(y_pred_xgb,yr_test))
In [68]:
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.89
                                       0.96
                                                 0.92
                                                          25342
                    1
                            0.96
                                       0.90
                                                 0.93
                                                          29559
                                                 0.93
                                                          54901
             accuracy
            macro avg
                            0.93
                                      0.93
                                                 0.93
                                                          54901
         weighted avg
                                      0.93
                                                 0.93
                                                          54901
                            0.93
         confusion_matrix(y_pred_xgb,yr_test)
In [69]:
         array([[24305, 1037],
Out[69]:
                [ 3064, 26495]], dtype=int64)
```

Hyperparameter Tunning & Best Parameter GridSearchcv

```
from sklearn.model selection import GridSearchCV, cross val score
from sklearn.linear_model import LogisticRegression
# Define the parameter grid to search over
param grid = {
    'C': [0.001, 0.01, 0.1, 1, 10, 100], # Regularization parameter
    'penalty': ['11', '12']
                                          # Penalty type
# Create a Logistic Regression model
logistic = LogisticRegression()
# Create a GridSearchCV object
grid_search = GridSearchCV(estimator=logistic, param_grid=param_grid, cv=10)
# Initialize an empty list to store the accuracy scores
accuracy_scores = []
# Perform cross-validation 10 times
for _ in range(10):
    # Fit the GridSearchCV object to the training data
    grid_search.fit(Xr_train_scaled, yr_train)
    # Get the best parameters
    best_params = grid_search.best_params_
    # Perform cross-validation with the best model
    cv_scores = cross_val_score(grid_search.best_estimator_, Xr_train_scaled, yr_tr
    # Store the mean accuracy score
    accuracy_scores.append(cv_scores.mean())
# Print the accuracy scores obtained over 10 iterations
```

```
#print("Accuracy scores over 10 iterations:", accuracy_scores)
print("Accuracy scores over 10 iterations:", ["{:.2f}".format(score) for score in a

# Get the best parameters and best score
best_params = grid_search.best_params_
best_score = grid_search.best_score_
print("Best parameters found:", best_params)
print("Best cross-validation score:", best_score)
```

Final Model

```
In [74]: from sklearn.linear_model import LogisticRegression
         # Create a Logistic Regression model with the best parameters
         final_model = LogisticRegression(C=0.001, penalty='12')
         # Fit the final model to the entire training dataset
         final_model.fit(Xr_train_scaled, yr_train)
Out[74]:
          ▼ LogisticRegression
          ▶ Parameters
In [75]: import pickle
         # Save the final model to a pickle file
         with open('final_model.pkl', 'wb') as file:
             pickle.dump(final_model, file)
         import pickle
In [76]:
         import numpy as np
         # Load the model from the pickle file
         with open('final_model.pkl', 'rb') as file:
             loaded_model = pickle.load(file)
         # Define the mean and standard deviation of the training data
         mean_values = [41.885856, 0.07485, 0.03942, 27.320767, 5.527507, 138.058060]
         std values = [22.516840, 0.26315, 0.194593, 6.636783, 1.070672, 40.708136]
         # Define the input features for prediction
         age = 30
         hypertension = 0
         heart disease = 0
         bmi = 100.0
         HbA1c level = 5.0
         blood_glucose_level = 90
         # Scale the input features manually
         scaled_features = [(x - mean) / std for x, mean, std in zip(
             [age, hypertension, heart_disease, bmi, HbA1c_level, blood_glucose_level],
             mean_values, std_values
         )1
         # Make predictions on the scaled data
         prediction = loaded_model.predict([scaled_features])
```

```
# Print the prediction
if prediction[0] == 1:
    print("Diabetic")
else:
    print("Not Diabetic")
```

In []: