Concours National Commun - Session 2013

Corrigé de l'épreuve de mathématiques I Filière MP

La transformée de Laplace et théorèmes de Tauber

Corrigé par M.TARQI

PARIE I. RÉSULTATS PRÉLIMINAIRES

- 1.1 Soit z = x + iy un nombre complexe fixé.
 - 1.1.1 On a, pour tout $t \in \mathbb{R}^+$, $|e^{-zt}| = e^{-xt}$. Si $x \neq 0$, alors $\forall a > 0$, $\int_0^a e^{-xt} dt = \frac{1}{x}(1 e^{-xa})$, si x = 0, $|e^{-zt}| = 1$. Donc la fonction $t \mapsto e^{-zt}$ est intégrable sur \mathbb{R}^+ si et seulement si, x = Re(z) > 0.
 - 1.1.2 Soit γ un réel non nul. Posons $f(t)=\cos(\gamma t)$ pour tout $t\in\mathbb{R}$. Si $\lim_{t\to+\infty}f(t)$ existe et vaut L, alors pout toute suite $(u_n)_{n\in\mathbb{N}}$ tendant vers $+\infty$, la suite de terme général $f(u_n)$ converge vers L. Mais la suite de terme général $u_n=\frac{1}{\gamma}n\pi$ tend vers $+\infty$, cependant la suite image de terme général $f(u_n)=(-1)^n$ est divergente, ce qui prouve que f n'a pas de limite en $+\infty$. De même on montre que la fonction $t\mapsto\sin(\gamma t)$ n'admet pas de limite en $+\infty$, en conséquence la fonction $t\mapsto e^{-iyt}=\cos(yt)-i\sin(yt)$ possède une limite que si y=0.
 - 1.1.3 Pour tout a > 0, on a

$$\int_0^a e^{-zt} \, \mathrm{d}t = \frac{1}{z} (1 - e^{-az})$$

- Si x est non nul, $\lim_{a\to +\infty} |e^{-az}| = \lim_{a\to +\infty} e^{-ax}$ existe et vaut 0 si et seulement si, x>0.
- Si x=0 (donc $y\neq 0$ car z est non nul), $\lim_{a\to +\infty}e^{-az}=\lim_{a\to +\infty}e^{-iay}$ n'existe pas.

En conclusion, l'intégrale $\int_0^{+\infty} e^{-zt} dt$ converge si et seulement si, Re(z) > 0 et dans ce cas

$$\int_0^{+\infty} e^{-zt} \, \mathrm{d}t = \frac{1}{z}.$$

- 1.2 Soit $f \in \mathscr{C}(\mathbb{R}^+, \mathbb{C})$ et $z_0 \in \mathbb{C}$.
 - 1.2.1 La fonction $t\mapsto e^{-z_0t}f(t)$ étant continue sur \mathbb{R}^+ , donc sa primitive F sur \mathbb{R}^+ est dérivable sur \mathbb{R}^+ et pour tout $x\geq 0$, $F'(x)=e^{-z_0x}f(x)$, et comme $x\mapsto e^{-z_0x}f(x)$ est continue F est \mathscr{C}^1 sur \mathbb{R}^+ . D'autre part, on a $\lim_{x\to +\infty}F(x)$ existe car la fonction $t\mapsto e^{-z_0t}f(t)$ a une intégrale convergente, donc F est bornée sur \mathbb{R}^+ .
 - 1.2.2 F étant bornée sur \mathbb{R}^+ , donc il existe M>0 tel que $\forall t\in\mathbb{R}^+$, $|F(t)|\leq M$. Donc

$$\forall t \ge 0, \ |e^{-(z-z_0)t}F(t)| \le Me^{-Re(z-z_0)t},$$

et comme la fonction $t\mapsto e^{-Re(z-z_0)}t$ est intégrable sur \mathbb{R}^+ , il est de même de la fonction $t\mapsto e^{-(z-z_0)t}F(t)$.

1

1.2.3 Soit A > 0, on a:

$$\int_0^A e^{-zt} f(t) dt = \int_0^A e^{-(z-z_0)t} e^{-z_0 t} f(t) dt$$

$$= [e^{-(z-z_0)t} F(t)]_0^A + (z-z_0) \int_0^A e^{-(z-z_0)t} F(t) dt$$

$$= e^{-(z-z_0)A} F(A) + (z-z_0) \int_0^A e^{-(z-z_0)t} F(t) dt, \quad \text{car } F(0) = 0.$$

On obtient donc par passage à la limite, quand A tend vers $+\infty$, l'égalité demandée (car F est bornée) :

$$\int_0^{+\infty} e^{-zt} f(t) dt = (z - z_0) \int_0^{+\infty} e^{-(z - z_0)t} F(t) dt,$$

donc $\int_0^{+\infty} e^{-zt} f(t) dt$ est bien convergente.

1.3 Un lemme de Littlewood

1.3.1 On obtient à l'aide d'une intégration par parties :

$$\int_{x}^{\alpha x} (\alpha x - t) \psi''(t) dt = [(\alpha x - t) \psi']_{x}^{\alpha x} + \int_{x}^{\alpha x} \psi'(t) dt$$
$$= -(\alpha - 1) x \psi'(x) + \int_{x}^{\alpha x} \psi'(t) dt$$
$$= -(\alpha - 1) x \psi'(x) + \psi(\alpha x) - \psi(x).$$

D'où la formule:

$$\psi(\alpha x) - \psi(x) = (\alpha - 1)x\psi'(x) + \int_{x}^{\alpha x} (\alpha x - t)\psi''(t) dt.$$

1.3.2 D'après ce qui précède, on peut écrire :

$$|x\psi'(x)| \leq \frac{1}{1-\alpha}(|\psi(\alpha x)| + |\psi(x)|) + \frac{1}{1-\alpha} \left| \int_{x}^{\alpha x} (\alpha x - t)\psi''(t) dt \right|$$

$$\leq \frac{2}{1-\alpha} \sup_{t \in [0,x]} |\psi(t)| + \int_{\alpha x}^{x} (t - \alpha x)|\psi''(t)| dt$$

Mais $\psi''(t) \leq \frac{M}{t^2}$ pour tout t > 0 et si $t \in [\alpha x, x]$, $\frac{1}{t^2} \leq \frac{1}{(\alpha x)^2}$. On obtient donc :

$$\int_{\alpha x}^{x} (t - \alpha x) |\psi''(t)| dt \le \frac{M}{(\alpha x)^2} \int_{\alpha x}^{x} \left(\alpha x t - \frac{t^2}{2}\right) dt = M \frac{(1 - \alpha)^2}{2\alpha^2}$$

D'où:

$$|x\psi'(x)| \le \frac{2}{1-\alpha} \sup_{t \in [0,x]} |\psi(t)| + \frac{1-\alpha}{2\alpha^2} M$$

1.3.3 Soit $\varepsilon>0$ donné. Il existe $\alpha_0\in]0,1[$ tel que $\frac{1-\alpha_0}{2\alpha_0^2}M\leq \frac{\varepsilon}{2}.$ D'autre part, ψ est prolongaeble par continuité en 0 (par 0), donc il existe $\eta>0$ tel que $0< x<\eta$ entraı̂ne $|\psi(x)|\leq \frac{1-\alpha_0}{2}\frac{\varepsilon}{2}.$ L'inégalité (*) qui est vraie pour tout $\alpha\in]0,1[$, entraı̂ne $|x\psi'(x)|\leq \varepsilon$ dès que $x\in]0,\eta[$, donc $\lim_{x\to 0^+}x\psi'(x)=0.$

PARIE II. EXEMPLES ET PROPRIÉTÉS DE LA TRANSFORMÉE DE LAPLACE

2.1 D'après ce qui précède, la fonction $t\mapsto e^{-(z-\lambda)t}$ a une intégrale convergente si et seulement si, $Re(z-\lambda)>0$, autrement dit la fonction $L(f_\lambda)(z)$ existe si et seulement si, $Re(z)>Re(\lambda)$. Donc $L(f_\lambda)$ est définie sur $\{z\in\mathbb{C}/Re(z)>Re(\lambda)\}$, de plus

$$L(f_{\lambda})(z) = \int_0^{+\infty} e^{-(z-\lambda)t} dt = \frac{1}{z-\lambda}.$$

2.2 Abscisse de convergence

Soit $E = \{Re(z)/L(f)(z) \text{ existe}\}$. La propriété est évidente si E est vide on prend donc $\sigma = +\infty$, si E est non vide deux cas sont possibles :

- Si E est non minoré, on prend $\sigma = -\infty$. Alors L(f) serait définie sur tout le plan complexe.
- Si E est minoré, on prend $\sigma = \inf E$. En effet, soit $x_0 > \sigma$ et z = x + iy tel que $x > x_0$, alors la fonction $t \longmapsto f(t)e^{-zt}$ à une est intégrale convergente sur $]0, +\infty[$ (d'après la question 1.2.3), d'où $x \in E$.

On en déduit $E = [\sigma, +\infty[$ si $\sigma \in E$ et $E =]\sigma, +\infty[$ si $\sigma \notin E$.

2.3 Quelques propriétés

2.3.1 D'après 1.2.3, on a $L(f)(z)=(z-z_0)\int_0^{+\infty}e^{-(z-z_0)t}F(t)\,\mathrm{d}t$. La fonction $z\mapsto z-z_0$ est continue sur $\mathbb C$. La fonction F est de classe $\mathscr C^1$ et bornée sur $\mathbb R^+$ par M. La fonction $\phi:(z,t)\to e^{-(z-z_0)t}F(t)$ est continue sur $\Pi(\sigma(f))\times\mathbb R^+$, et :

$$|\phi(z,t)| \le Me^{-(x-x_0)t} \le Me^{-(a-x_0)t}$$

pour tout z tel que $Re(z) = x > a > Re(z_0) = x_0$.

La fonction majorante ne dépend pas de z et est intégrable sur \mathbb{R}^+ . Le théorème de continuité des intégrales à paramètres affirme que L(f) est continue pour tout z tel que $Re(z) \geq a$. Donc, puisque la notion de continuité est une notion locale, L(f) est continue sur $\Pi(\sigma(f))$.

2.3.2 Toujours d'après 1.2.3, on a :

$$L_f(x,y) = L(f)(x+iy) = (z-z_0) \int_0^{+\infty} e^{-(z-z_0)t} F(t) dt$$

Montrons que f est \mathscr{C}^1 sur Ω_f , pour cela il suffit de montrer que les dérivées partielles $\frac{\partial L_f}{\partial x}$ et $\frac{\partial L_f}{\partial y}$ existent et sont continues sur Ω_f .

La fonction $(x,y)\mapsto z-z_0$ est de classe \mathscr{C}^1 sur \mathbb{R}^2 . Soit maintenant, avec y fixé, la pplication :

$$g:(x,t)\mapsto e^{-(z-z_0)t}F(x)$$

g est continue sur $\mathbb{R} \times \mathbb{R}^+$. Elle admet une dérivée partielle par raport à x et :

$$\frac{\partial g}{\partial x}(x,t) = -tg(x,t)$$

qui est continue sur le même domaine. De plus :

$$\left| \frac{\partial g}{\partial x}(x,t) \right| \le Mte^{-(x-a_0)t} \le Mte^{-t(a-a_0)t}$$

pour tout z tel que $Re(z)=x>a>Re(z_0)=a_0$. Cette dernière fonction est intégrable sur \mathbb{R}^+ . Le théorème de dérivation des intégrales à paramètres affirme que L_f est de dérivable par rapport à x (cette dérivée partielle étant continue) pour tout z tel que $Re(z)\geq a$. Donc, puisque la notion de dérivabilité est une notion locale, $\frac{\partial L_f}{\partial x}$ existe et est continue sur $\Pi(\sigma(f))$ et :

$$\frac{\partial L_f}{\partial x}(x,y) = \int_0^{+\infty} e^{-(z-z_0)t} F(t) dt - (z-z_0) \int_0^{+\infty} t e^{-(z-z_0)t} F(t) dt \quad (*).$$

Soit A > 0 donné,

$$\int_0^A e^{-(z-z_0)t} F(t) dt = \left[-\frac{e^{-(z-z_0)t}}{z-z_0} F(t) \right]_0^A + \frac{1}{z-z_0} \int_0^A e^{-zt} f(t) dt$$

En prenant la limite lorsque A tend vers l'infini, il vient, car F(0)=0, $Re(z)>Re(z_0)$ et F majorée sur \mathbb{R}^+ :

$$\int_0^{+\infty} e^{-(z-z_0)t} F(t) dt = \frac{1}{z-z_0} \int_0^{+\infty} e^{-zt} f(t) dt \quad (1).$$

D'autre part, une primitive de $t\mapsto (z-z_0)e^{-(z-z_0)t}$ sur \mathbb{R}^+ est $t\mapsto -\frac{(z-z_0)t+1}{z-z_0}e^{-(z-z_0)t}$. Donc :

$$\int_0^A (z - z_0) t e^{-(z - z_0)t} F(t) dt = \left[F(t) \left(-\frac{(z - z_0)t + 1}{z - z_0} e^{-(z - z_0)t} \right) \right]_0^A + \int_0^A \frac{(z - z_0)t + 1}{z - z_0} e^{-(z - z_0)t} e^{-z_0 t} f(t) dt$$

Pour les mêmes raisons, en prenant la limite lorsque A tend vers l'infini, il vient :

$$\int_0^{+\infty} (z - z_0)e^{-(z - z_0)t} F(t) dt = \int_0^{+\infty} \frac{(z - z_0)t + 1}{z - z_0} e^{-zt} f(t) dt \quad (2)$$

D'où, en tenant compte des relations (1) et (2) et de l'égalité (*) :

$$\frac{\partial L_f}{\partial x}(x,y) = -\int_0^{+\infty} t e^{-zt} f(t) \, \mathrm{d}t.$$

Et de la même façon, on démontre l'existence et la continuité sur $]\sigma(f), +\infty[\times \mathbb{R}$ de $\frac{\partial L_f}{\partial x}$ avec cette fois, pour tout $(x,y) \in]\sigma(f), +\infty[\times \mathbb{R}, \frac{\partial L_f}{\partial y}(x,y) = -i\int_0^{+\infty} te^{-zt} f(t) \,\mathrm{d}t.$

2.3.3 Soit $x>\sigma(f)$. On sait que L(f) est de classe \mathscr{C}^1 sur $]\sigma(f),+\infty[$ et que :

$$L(f)'(x) = -\int_0^{+\infty} te^{-xt} f(t) dt = -L(t \mapsto tf(t))(x).$$

La fonction $t\mapsto tf(t)$ est un élément de $\mathscr{C}(\mathbb{R}^+,\mathbb{C})$. La même démonstration que celle de la question précédente où f a été remplacé par $t\mapsto tf(t)$ donnera que L(f) est de classe \mathscr{C}^2 sur $]\sigma(f),+\infty[$ et que :

$$L(f)''(x) = \int_0^{+\infty} t^2 e^{-xt} f(t) dt.$$

Une démonstration par récurrence montre que L(f) est de classe \mathscr{C}^{∞} sur $]\sigma(f), +\infty[$ et que pour tout $p \in \mathbb{N}$:

$$L(f)^{(p)}(x) = (-1)^p \int_0^{+\infty} t^p e^{-xt} f(t) dt.$$

2.3.4 On sait que pour tout x et x_0 dans $]\sigma(f), +\infty[$:

$$L(f)(x) = (x - x_0) \int_0^{+\infty} e^{-(x - x_0)t} F(t) dt,$$

où F continue, majorée sur \mathbb{R}^+ par M et F(0)=0. Soit $\varepsilon>0$. Par continuité de F, il existe $\alpha>0$ tel que $0\leq x<\alpha\Rightarrow |F(x)|<\frac{\varepsilon}{2}$.

On a aussi:

$$\int_0^{+\infty} e^{-(x-x_0)t} F(t) dt = \int_0^{\alpha} e^{-(x-x_0)t} F(t) dt + \int_{\alpha}^{+\infty} e^{-t(x-x_0)t} F(t) dt.$$

Or, si $x > x_0$:

$$\left| \int_0^\alpha e^{-(x-x_0)} F(t) \, \mathrm{d}t \right| \le \frac{\varepsilon}{2} \left(\frac{1 - e^{-\alpha(x-x_0)}}{x - x_0} \right)$$

et

$$\left| \int_{\alpha}^{+\infty} e^{-(x-x_0)} F(t) \, \mathrm{d}t \right| \le M \frac{e^{-\alpha(x-x_0)}}{x-x_0}.$$

Ainsi:

$$|L(f)(x)| \le \frac{\varepsilon}{2} + Me^{-\alpha(x-x_0)}$$

Or pour cet α fixé, $\lim_{x\to +\infty}e^{-\alpha(x-x_0)}=0$. Il existe donc A>0 tel que $x>A\Rightarrow Me^{-\alpha(x-x_0)}<\frac{\varepsilon}{2}$. Finalement, pour 0>A, il vient $|L(f)(x)|<\varepsilon$. D'où :

$$\lim_{x \to \infty} L(f)(x) = 0.$$

2.4 Un exemple

- 2.4.1 On a $\cos t = 1 \frac{t^2}{2} + o(t^2)$, donc $\frac{1 \cos t}{t^2} = \frac{1}{2} + o(1)$, ainsi la fonction ω se prolonge par $\frac{1}{2}$ en 0. Puisque w se prolonge par continuité en 0, les deux intégrales $\int_0^{+\infty} \frac{1 \cos t}{t^2} \, \mathrm{d}t$ et $\int_1^{+\infty} \frac{1 \cos t}{t^2} \, \mathrm{d}t$ sont de même nature. Or pour tout $t \ge 1$, $\left| \frac{1 \cos t}{t^2} \right| \le \frac{2}{t^2}$ et par conséquent $\int_1^{+\infty} \frac{1 \cos t}{t^2} \, \mathrm{d}t$ existe, il est de même de $\int_0^{+\infty} \frac{1 \cos t}{t^2} \, \mathrm{d}t$. Ceci montre que la transformée de Laplace de w existe en 0, et en tenant compte de la définition de $\sigma(w)$, on a donc nécessairement $\sigma(w) \le 0$.
- 2.4.2 D'après l'étude précédente, L(w) admet une dérivée seconde sur $]0, +\infty[$ avec $\forall x>0$, $L(w)''(x)=\int_0^{+\infty}(1-\cos t)\mathrm{e}^{-xt}\,\mathrm{d}t.$ Les calcules montrent que

$$L(w)''(x) = \int_0^{+\infty} (1 - \cos t) e^{-xt} dt = \frac{1}{x(x^2 + 1)}.$$

2.4.3 On trouve $L(w)'(x) = \ln(x) - \frac{1}{2}\ln(1+x^2) + \alpha$ et $L(w)(x) = x\ln(x) - \frac{1}{2}x\ln(1+x^2) - \arctan(x) + \alpha x + \beta$ avec α et β sont des réels.

On sait que $0 = \lim_{x \to +\infty} L(w)(x) = \lim_{x \to +\infty} x \left(\ln \frac{x}{\sqrt{1+x^2}} + \alpha \right) + \beta$, donc nécessairement $\alpha = \beta = 0$. D'où

$$L(w)(x) = x \ln(x) - \frac{1}{2}x \ln(1+x^2) - \arctan(x).$$

2.5 Un théorème de Césaro

2.5.1 h étant continue par morceaux sur [0,1] donc bornée par un certain M>0, il est de même da la fonction $t\mapsto h(e^{-xt})$ car si $t\geq 0$, e^{-xt} décrit l'intervalle [0,1]. Ainsi pour tout $t\geq 0$,

$$|e^{-xt}g(t)h(e^{-xt})| \le Me^{-xt}g(t).$$

Donc la fonction $t \mapsto e^{-xt}g(t)h(e^{-xt})$ est intégrable sur $[0, +\infty[$.

2.5.2 Soit x > 0. Avec le changement de variable $u = e^{-xt}$, on a :

$$xL(g)(x) = \int_0^1 g\left(\frac{-\ln u}{x}\right) du$$

et

$$\int_0^{+\infty} e^{-xt} g(t) h(e^{-xt}) dt = \int_0^1 h(u) g\left(\frac{-\ln u}{x}\right) du.$$

D'après les hypothèses $\lim_{x\to 0^+}\int_0^1g\left(\frac{-\ln u}{x}\right)du-1=0$. Maintenant pour tout $k\in\mathbb{N}$, on a

$$\Delta_x(X^k) - \int_0^1 u^k \, \mathrm{d}u = \int_0^1 u^k \left[g\left(\frac{-\ln u}{x}\right) - 1 \right] \mathrm{d}u$$
$$= \frac{1}{k+1} \int_0^1 \left[g\left(\frac{-\ln t}{(k+1)x}\right) - 1 \right] \mathrm{d}t \quad \text{avec } t = u^{k+1}$$

Ainsi
$$\lim_{x \to 0^+} \left(\Delta_x(X^k) - \int_0^1 u^k \, \mathrm{d}u \right) = \lim_{x \to 0^+} \frac{1}{k+1} \int_0^1 \left[g\left(\frac{-\ln t}{(k+1)x} \right) - 1 \right] \, \mathrm{d}t = 0.$$
 Donc
$$\lim_{x \to 0^+} \Delta_x(X^k) = \int_0^1 t^k \, \mathrm{d}t,$$

puis on conclut par linéarité de l'opérateur Δ_x .

2.5.3 D'après le théorème de Weierstrass, il existe une suite de polynômes $(P_n)_{n\in\mathbb{N}}$ qui converge uniformément vers h sur [0,1]. On a alors pour $n\in\mathbb{N}$:

$$\left| \Delta_x(h) - \int_0^1 h(u) \, du \right| \le |\Delta_x(h) - \Delta_x(P_n)| + \left| \Delta_x(P_n) - \int_0^1 P_n(u) \, du \right| + \left| \int_0^1 (P_n(u) - h(u)) \, du \right|$$

Or

$$|\Delta_x(h) - \Delta_x(P_n)| \le \sup_{u \in [0,1]} |h(u) - P_n(u)| x \int_0^{+\infty} e^{-xt} g(t) dt = \sup_{u \in [0,1]} |h(u) - P_n(u)| x L(g)(x),$$

donc $\lim_{x\to 0} \Delta_x(h) - \Delta_x(P_n) = 0$. Les autres termes convergent vers 0 d'après le résultat de la question 2.5.2 et la convergence uniforme. D'où

$$\lim_{x \to 0^+} \Delta_x(h) = \int_0^1 h(t) \, \mathrm{d}t.$$

2.5.4 Calculons $\Delta_x(h_1)$: on a pour tout x > 0,

$$\Delta_x(h_1) = \int_0^1 g\left(\frac{-\ln u}{x}\right) h_1(u) du$$

$$= \int_{\frac{1}{e}}^1 \frac{1}{u} g\left(\frac{-\ln u}{x}\right) du$$

$$= -x \int_{\frac{1}{x}}^0 g(t) dt, \text{ avec } t = \frac{-\ln u}{x}.$$

D'où
$$\int_0^{\frac{1}{x}} g(t)dt = \frac{1}{x} \Delta_x(h_1).$$

Ainsi, pour tout a > 0, on a $\frac{1}{a} \int_0^a g(t) dt = \Delta_{\frac{1}{a}}(h_1)$ et donc

$$\lim_{a \to +\infty} \frac{1}{a} \int_0^a g(t) dt = \lim_{x \to 0^+} \Delta_x(h_1) = \int_0^1 h_1(t) dt = [\ln t]_{\frac{1}{e}}^1 = 1.$$

PARIE III. COMPORTEMENT AU VOISINAGE DE L'ORIGINIE

- 3.1 Soit $f \in (\mathbb{R}^+, \mathbb{C})$.
 - 3.1.1 Soit $H(x) = \int_0^x f(t)dt$ avec x > 0. H est \mathscr{C}^1 sur $[0, +\infty[$ et admet une limite finie en $+\infty$, donc bornée sur $[0, +\infty[$. Pour tout x > 0, la fonction $t \longmapsto F(t)e^{-xt}$ est intégrable sur $]0, +\infty[$ et $\lim_{t \to +\infty} F(t)e^{-xt} = 0$, donc par une intégration par parties, $\forall x > 0$,

$$x \int_0^{+\infty} (F(t) - L(f)(0))e^{-xt}dt = [(F(t) - L(f)(0))e^{-xt}]_0^{+\infty} + \int_0^{+\infty} f(t)e^{-xt}dt$$
$$= \int_0^{+\infty} f(t)e^{-xt}dt - L(f)(0)$$

d'où

$$L(f)(x) - L(f)(0) = x \int_0^{+\infty} (F(t) - L(f)(0))e^{-xt} dt.$$

3.1.2 On sait que $\lim_{t\to +\infty} F(t)=L(f)(0)$, donc pour tout $\varepsilon>0$, il existe A>0 tel que $|F(t)-L(f)(0)|\leq \varepsilon$ dès que $t\geq A$. D'autre part, pour x>0, on a :

$$\left| x \int_0^{+\infty} (F(t) - L(f)(0)) e^{-xt} \, \mathrm{d}t \right| \leq \left| x \int_0^A (F(t) - L(f)(0)) e^{-xt} \, \mathrm{d}t \right| + \left| x \int_A^{+\infty} (F(t) - L(f)(0)) e^{-xt} \, \mathrm{d}t \right|$$

$$\leq \left| x \int_0^A (F(t) - L(f)(0)) e^{-xt} \, \mathrm{d}t \right| + \varepsilon x \left| \int_A^{+\infty} e^{-xt} \, \mathrm{d}t \right|$$

$$\leq \left| x \int_0^A (F(t) - L(f)(0)) \, \mathrm{d}t \right| + \varepsilon,$$

inégalité qui montre que $x \mapsto x \int_0^{+\infty} (F(t) - L(f)(0)) e^{-xt} dt$ tend vers 0 en 0^+ , il est de même de la fonction $x \mapsto L(f)(x) - L(f)(0)$, c'est à dire

$$\lim_{x \to 0^+} \int_0^{+\infty} e^{-xt} f(t) dt = \int_0^{+\infty} f(t) dt.$$

- 3.2 La fonction $t \mapsto e^{it}$ répond à la question.
- 3.3 Théorème de Tauber
 - 3.3.1 Il existe A>0 tel que |tf(t)|<1 dès que $x\geq A$, et soit $z\in\mathbb{C}$ tel que x=Re(z)>0. Alors pour tout $t\geq A$, on a $|e^{-tz}f(t)|\leq \frac{e^{-tx}}{t}$ et comme la fonction $t\mapsto \frac{e^{-tx}}{t}$ est intégrable sur $[A,+\infty[$, car x>0, donc l'intégrale $\int_A^{+\infty}e^{-tz}f(t)\,\mathrm{d}t$ existe, il est de même de l'intégrale $\int_0^{+\infty}e^{-tz}f(t)\,\mathrm{d}t$ (la fonction $t\mapsto e^{-zt}f(t)$ est continue sur [0,A]). Donc $\sigma(f)\leq 0$.
 - 3.3.2 Soit $\varepsilon > 0$ fixé. Il existe A > 0 tel que $x \ge A \Rightarrow |tf(t)| \le \varepsilon$. On a donc :

$$\frac{1}{a} \int_0^a |tf(t)| \, \mathrm{d}t = \frac{1}{a} \int_0^A |tf(t)| \, \mathrm{d}t + \frac{1}{a} \int_A^a |tf(t)| \, \mathrm{d}t \le \frac{1}{a} \int_0^A |tf(t)| \, \mathrm{d}t + \frac{(a-A)}{a} \varepsilon$$

Mais $\lim_{a\to +\infty} \frac{1}{a} \int_0^A |tf(t)| dt = 0$, donc l'inégalité précédente montre que $\lim_{a\to +\infty} \frac{1}{a} \int_0^a |tf(t)| dt = 0$.

- 3.3.3 Une étude simple de la fonction $u \mapsto \varphi(u) = u e^{-u} + 1$, montre que $\varphi(u) \ge 0$ pour tout $u \in \mathbb{R}$.
- 3.3.4 Soit a et x des réels strictement positifs, on peut écrire :

$$\left| \int_{0}^{+\infty} f(t)e^{-xt} dt - \int_{0}^{a} f(t) dt \right| \leq \int_{0}^{a} (1 - e^{-xt})|f(t)| dt + \int_{a}^{+\infty} |f(x)|e^{-xt} dt$$

$$\leq x \int_{0}^{a} t|f(t)| dt + \int_{a}^{+\infty} |f(t)|e^{-xt} dt$$

$$\leq x \int_{0}^{a} t|f(t)| dt + \sup_{t \geq a} |tf(t)| \frac{e^{-ax}}{ax}$$

Mais

$$\left| \int_{a}^{+\infty} f(t)e^{-xt} dt \right| \leq \int_{a}^{+\infty} |tf(t)| \frac{e^{-xt}}{t} dt$$

$$\leq \sup_{t \geq a} |tf(t)| \int_{a}^{+\infty} \frac{e^{-xt}}{t} dt$$

$$= \sup_{t \geq a} |tf(t)| \frac{e^{-ax}}{ax} \leq \sup_{t \geq a} |tf(t)| \frac{1}{ax}$$

D'où l'inégalité demandée :

$$\left| \int_0^{+\infty} f(t)e^{-xt} dt - \int_0^a f(t) dt \right| \le x \int_0^a |tf(t)| dt + \sup_{t \ge a} |tf(t)| \frac{1}{ax}.$$

3.3.5 L'inégalité précédente reste vraie pour $a = \frac{1}{x}$; on obtient donc :

$$\left| \int_0^{+\infty} f(t)e^{\frac{-t}{a}} dt - \int_0^a f(t) dt \right| \le \frac{1}{a} \int_0^a |tf(t)| dt + \sup_{t \ge a} |tf(t)|.$$

Soit maintenant ε > donné. D'après les données et le résultat de la question 3.3.2, il existe a_0 > 0 tel que pour tout $a \ge a_0$, on a :

$$\frac{1}{a} \int_0^a |tf(t)| \, \mathrm{d}t \le \frac{\varepsilon}{2}$$

et

$$\sup_{t \ge a} |tf(t)| \le \frac{\varepsilon}{2}.$$

Ainsi, pour tout $a \ge a_0$, on obtient :

$$\left| \int_0^{+\infty} f(t)e^{\frac{-t}{a}} dt - \int_0^a f(t) dt \right| \le \varepsilon.$$

On en déduit que si $\lim_{x \to 0^+} L(f)(x) = \mu$, alors $\lim_{a \to +\infty} \int_0^a f(t) dt = \mu$.

PARIE IV. UNE GÉNÉRALISATION DU THÉORÈME DE TAUBER DANS LE CAS RÉEL

4.1 La fonction f_1 est continue sur \mathbb{R}^+ (c'est une fonction de classe \mathscr{C}^1), donc par opérations les fonctions f_2 et f_3 sont continues sur $]0,+\infty[$.

Il existe $\alpha_x \in]a,x[$ tel que $f_1(x)=\int_0^x tf(t)\,\mathrm{d}t=x\alpha_x f(\alpha_x)$, ceci montre que que $\lim_{x\to 0^+}f_2(x)$ existe. De même $f_3(x)=\frac{\alpha_x}{x}f_1(\alpha_x)$, donc $\lim_{x\to 0^+}f_3(x)$ existe car $0<\frac{\alpha_x}{x}<1$.

- 4.2 pour tout x > 0 et t > 0, on a $|f_1(x)| \le Mx$ et donc $|f_2(t)e^{-xt}| \le Me^{-xt}$; donc $\lim_{x \to +\infty} f_2(t)e^{-xt} = 0$.
- 4.3 L'inégalité précédente $|f_2(t)e^{-xt}| \le Me^{-xt}$ montre que la fonction $t \mapsto f_2(t)e^{-xt}$ est intégrable sur $[0, +\infty[$ et ceci pour tout x > 0, donc $\sigma(f_2) \le 0$.

D'autre part, $|f_3(x)e^{-xt}| \le M\frac{e^{-xt}}{t^2}$ et la fonction $t \mapsto \frac{e^{-xt}}{t^2}$ est intégrable (par exemple) sur tout $[1, +\infty[$, donc $t \mapsto f_3(t)e^{-xt}$ est intégrable sur $[1, +\infty[$ et même sur $[0, +\infty[$, car elle est continue sur [0, 1] (par prolongment). Donc $\sigma(f_3) \le 0$.

4.4 On remarque que f_2 est dérivable est que $f_2'(x) = \frac{xf_1'(x) - f_1(x)}{x^2} = f(x) - f_3(x)$ et donc une intégration par parties donne :

$$x \int_{u}^{v} f_{2}(x)e^{-xt} dt = -\int_{u}^{v} f_{2}(t)(e^{-xt})' dt$$

$$= -[f_{2}(t)e^{-xt}]_{u}^{v} + \int_{u}^{v} (f(t) - f_{3}(t)) dt$$

$$= f_{2}(u)e^{-xu} - f_{2}(v)e^{-vx} + \int_{u}^{v} f(x)e^{-xt} dt - \int_{u}^{v} f_{3}(x)e^{-xt} dt$$

ce qui entraîne évidement l'égalité en question.

Puisque les fonctions $t\mapsto f_2(t)e^{-xt}$ et $t\mapsto f_3(t)e^{-xt}$ sont intégrables sur $[0,+\infty[$, la limite de la quantité à droite (l'égalité précédente) existe lorsque le couple (u,v) tend vers $(0,+\infty)$, donc l'intégrale $\int_0^{+\infty} f(t)e^{-xt}\,\mathrm{d}t$ existe et ceci pour tout x>0, par conséquent $\sigma(f)\leq 0$. De plus, le passage à la limite entraîne :

$$\forall x > 0, \ L(f)(x) = xL(f_2)(x) + L(f_3)(x).$$

4.5

4.5.1 D'après le lemme de Littelwood, il suffit donc de montrer que la fonction $x\mapsto x^2L(f)''(x)$ est bornée sur $]0,+\infty[$. En effet, pour tout $x\in]0,+\infty[$, on a $L(f)''(x)=\int_0^{+\infty}t^2e^{-xt}f(t)\,\mathrm{d}t$ et donc

$$|x^2 L(f)''(x)| \le \sup_{t>0} |tf(t)| \int_0^{+\infty} x^2 t e^{-xt} dt$$

Or $\int_0^{+\infty} x^2 t e^{-xt} dt = [-(xt+1)e^{(-xt)}]_0^{+\infty} = 1$, donc $x \mapsto x^2 L(f)''(x)$ est bornée, et par conséquent $\lim_{x\to 0^+} xL(f)'(x) = 0$.

4.5.2 Pour tout x > 0, on a

$$xL(g)(x) = x \int_0^{+\infty} e^{-xt} g(t) dt$$

$$= x \int_0^{+\infty} e^{-xt} \left(1 - \frac{tf(t)}{M} \right) dt$$

$$= x \int_0^{+\infty} e^{-xt} dt - \frac{x}{M} \int_0^{+\infty} tf(t)e^{-xt} dt$$

$$= 1 + \frac{1}{M}xL(f)'(x)$$

Donc

$$\lim_{x \to 0^+} xL(g)(x) = 1 + \frac{1}{M} \lim_{x \to 0^+} xL(f)'(x) = 1.$$

4.5.3 D'après le théorème de Césaro, puisque $\lim_{x\to 0^+}xL(g)(x)=1$, on a $\lim_{x\to +\infty}\frac{1}{x}\int_0^xg(t)dt=1$. Mais

$$\frac{1}{x} \int_0^x g(t) dt = \frac{1}{x} \int_0^x dt - \frac{1}{Mx} \int_0^x tf(t) dt = 1 - Mx f_1(x) = x f_3(x).$$

Donc $\lim_{x \to +\infty} x f_3(x) = 0$.

4.6 Soit donc $\varepsilon>0$ et A>0 tel que $|f_2(t)|\leq \varepsilon$ dés que $t\geq A.$ Alors on peut écrire :

$$|xL(f_2)(x)| \leq \left| \int_0^A x e^{-xt} f_2(t) dt \right| + \left| \int_A^{+\infty} x e^{-xt} f_2(t) dt \right|$$

$$\leq \sup_{t \in [0,A]} |f_2(t)| \int_0^A x e^{-xt} dt + \varepsilon \int_A^{+\infty} x e^{-xt} dt$$

$$\leq \sup_{t \in [0,A]} |f_2(t)| Ax + \varepsilon.$$

Cette inégalité montre que $\lim_{x\to 0^+} xL(f_2)(x) = 0$.

4.7 On sait que, d'après la question 4.4, que $\forall x>0, \ L(f_3)(x)=L(f)(x)-xL(f_2)(x)$, donc $\lim_{x\to 0^+}L(f_3)(x)$ existe et vaut 0 (d'après les hypothèses $\lim_{x\to 0^+}L(f)(x)=0$). Le théorème de Tauber (question 3.3) assure que $\int_0^{+\infty}f_3(t)\,\mathrm{d}t$ existe et égale à 0, car $\lim_{x\to 0^+}xf_3(x)=0$.

4.8 On a

$$L(f)(0) = \int_0^{+\infty} f(t)dt = \int_0^{+\infty} \frac{f'(t)}{t}dt = [f_2(t)]_0^{+\infty} + \int_0^{+\infty} \frac{f_1(t)}{t} dt = L(f_3)(0),$$
 car $f_2(0) = 0$ et $\lim_{x \to +\infty} f_2(x) = 0$. Donc $L(f)(0) = 0$.

- 4.9 Considérons la fonction f définie sur $]0,+\infty[$ par $t\mapsto f(t)=\phi(t)-\mu e^{-t}.$ La fonction f vérifie les conditions suivantes :
 - la fonction $\mapsto tf(t) = t\phi(t) \mu t e^{-t}$ est bornée sur $]0, +\infty[$,
 - la fonction $x \mapsto \int_0^{+\infty} f(t)e^{-xt} dt = \int_0^{+\infty} \phi(t)e^{-xt} dt \frac{\mu}{x+1}$ tend vers 0 lorque x tend vers 0^+ .

Donc, d'après ce qui précède, L(f)(0) existe vaut 0, c'est à dire $L(\phi)(0)$ existe et vaut μ .

•••••