## ساختمانهای گسسته

## نیمسال دوم ۳ ۰۱۴ - ۲ ۱۴۰

مدرس: حميد ضرابي زاده



دانشکدهی مهندسی کامپیوتر

تمرین سری پنجم مجموعهها و تواپی مبحث آزمون ۲

- 1. آرمان تعریف میکند که ۲۲، ۱۳ و ۱۵ نفر از دوستانش به ترتیب در مسابقات شطرنج، فیفا و دوتا شرکت داشته اند. همچنین ۸ نفر هم در شطرنج و هم در فیفا شرکت کرده اند، ۷ نفر هم در شطرنج هم در دوتا، ۶ نفر هم در دوتا. ۳ نفر از دوستانش نیز در هر سه مسابقه شرکت داشته اند. اگر بدانیم هر یک از دوستان او در حداقل یک مسابقه شرکت کرده است، تعداد دوستان آرمان را بیابید.
- ۲. در یک گروه از دانشجویان n دانشجو وجود دارند که روی  $7^{n-1}$  سوال گسسته فکر کردهاند. می دانیم به ازای هر دو سوال متمایز از بین این سوالات یک دانشجو وجود دارد که هر دو سوال را حل کرده باشد و یک دانشجوی دیگر وجود دارد که دقیقا یکی از این دو سوال را حل کرده باشد. نشان دهید سوالی وجود دارد که تمام دانشجویان آن را حل کرده باشند.
- ۳. فرض کنید  $\mathcal F$  مجموعهای شامل زیرمجموعههای مجموعهی  $\Omega$  باشد به طوری که اگر  $A,B\in\mathcal F$  آنگاه  $A-B\in\mathcal F$ 
  - $A \cap B \in \mathcal{F}$  داریم  $A, B \in \mathcal{F}$  الف) برای هر
  - ب) اجتماع شمارا عضو از  $\mathcal F$  را میتوان به شکل اجتماع شمارا عضو مجزا از  $\mathcal F$  نوشت.
    - ج) اگر  $\mathcal{F}$  نسبت به اجتماع شمارا بسته باشد نسبت به اشتراک شمارا نیز بسته است.
- ۵. مجموعه ی  $\Omega = \{0,1\}^{\mathbb{N}}$  شامل همه ی دنباله های با طول متناهی از 0 و 0 را در نظر بگیرید زیرمجموعه ی 0 از 0 را متناهی البعد گوییم هر گاه عدد طبیعی 0 و مجموعه ی 0 و مجموعه ی 0 و مجموعه ی اعضای 0 با عضوی از 0 شروع شوند. به عبارت دیگر:

$$A = \{ \omega \in \Omega \mid w = (w_1, \dots, w_m), \ m \geqslant n, \ (w_1 \dots w_n) \in B \}$$

فرض کنید زیرمجموعههای متناهی البعد  $A_1\supseteq A_2\supseteq \dots$  از  $A_2$  موجود باشند به طوری که:

$$\bigcap_{n=1}^{\infty} A_n = \emptyset$$

 $A_n = \emptyset$  نشان دهید مقدار n وجود دارد که

- ۶. رده ی  $\mathcal{F}$  از زیرمجموعههای  $\Omega$  را یک «میدان سیگمایی» مینامیم هرگاه سه شرط زیر برقرار باشند:
- $\Omega \in \mathcal{F}$
- $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

همچنین میگوییم  $\mathcal{F}$  یک «لاندا سیستم» است اگر سه شرط زیر برقرار باشند:

- $\Omega \in \mathcal{F}$
- $A \subseteq B \in \mathcal{F} \Rightarrow B \setminus A \in \mathcal{F}$
- $A_1, A_2, \dots \in \mathcal{F}, \forall i \neq j : A_i \cap A_j = \emptyset \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

نشان دهید کوچکترین لاندا سیستم شامل رده ی  $\mathcal{F}$  که نسبت به اشتراک بسته باشد یک میدان سیگمایی است.

- V. با فرض شمارا بودن مجموعهی A نشان دهید:
  - الف) مجموعهی  $A^{\Upsilon}$  شمارا است.
- ب برای هر n طبیعی مجموعه ی  $A^n$  شمارا است.
  - ج) مجموعهی  $A^n$  شمارا است.
- ۸. برای مجموعههای A و B نماد  $|B| \geqslant |A|$  به این معنی است که تابعی یکبهیک از A به B وجود دارد. نماد |A| = |B| به این معناست که تابعی یکبهیک و پوشا بین مجموعههای A و B موجود است. با توجه به این تعاریف نشان دهید اگر برای دو مجموعه ی A و A بدانیم A و A و A بدانیم A و A و A بدانیم A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A و A
- ۹. مجموعه ی A را «مجموع متناهی» گوییم هر گاه مجموع اعضای هر زیرمجموعه ی متناهی آن از مقدار ثابت c تجاوز نکند. نشان دهید اگر A مجموعه ای مجموع متناهی با اعضای مثبت باشد، آن گاه A شمارا عضو ناصفر دارد.
- A کوی x,y یافت به طوری که برای هر دو نقطه متمایز x,y گوی x,y دشان دهید میتوان شمارا گوی در فضای x,y یافت به طوری که: شامل x موجود باشند به طوری که:

$$A \cap B = \emptyset$$

را برابر مجموعه  $[\circ, 1]$  قرار میدهیم. سپس برای ساختن  $C_1$  یک سوم میانی مجموعه  $[\circ, 1]$  قرار میدهیم. سپس برای ساختن  $C_1$  یک سوم میانی را حذف حذف میکنیم. پس از آن برای ساختن  $C_1$  از هر کدام از بازههای موجود در  $C_1$  یک سوم میانی را حذف میکنیم و به همین شکل ادامه میدهیم. مجموعه  $C_1$  برای چند  $C_2$  اول در شکل زیر نمایش داده شده است:



$$C_{\circ} = [\circ, 1]$$

$$C_1 = [\circ, \frac{1}{r}] \cup [\frac{r}{r}, 1]$$

:

همچنین تعریف میکنیم  $C=\bigcap_{n=0}^{\infty}C_n$  تابعی یکبهیک و پوشا از مجموعهی C به C ارائه دهید.

- ۱۲. مجموعه ی ناشمارای  $\Omega$  را در نظر بگیرید. تعدادی شمارا عضو از آن را حذف می کنیم و مجموعه ی جدید را  $\Omega'=|\Omega'|=|\Omega'|$ .
- ۱۳. رده ی  $\mathcal{F}$  از زیرمجموعه های  $\mathbb{R}^n$  را «شمارای دوم» گوییم هرگاه بتوان زیرمجموعه ی شمارای  $\mathbb{F}'$  از  $\mathcal{F}'$  نمایش یافت به شکلی که هر عضو از  $\mathcal{F}$  را بتوان به شکل اجتماع تعدادی (احتمالا بی شمار) عضو از  $\mathcal{F}'$  نمایش داد.

- $x\in A$  و هر نقطه ی  $A\in \mathcal{F}$  و هر نقطه ی الف) نشان دهید  $\mathcal{F},\mathcal{F}'$  در خاصیت بالا صدق میکنند اگر به ازای هر عضو  $X\in \mathcal{F}$  و هر نقطه ی  $X\in B$  موجود باشد به طوری که  $X\in B$ 
  - ب) نشان دهید مجموعه ی $^{\mathbb{R}}$  (مجموعه یه همه ی زیرمجموعه های اعداد حقیقی) شمارای دوم نیست.
    - ج) نشان دهید مجموعهی همه گویهای باز در  $\mathbb{R}^n$  شمارای دوم است.
      - ۱۴. فرض کنید A مجموعهای از دایرهها در فضای  $\mathbb{R}^{\mathsf{Y}}$  باشد. نشان دهید:
  - الف) اگر دایرهها توپر باشند و هیچ دوتایی با یک دیگر اشتراک و برخورد نداشته باشند، A شمارا است.
- $\cdot$ ب) اگر دایرهها توخالی باشند و هیچ دوتایی با یک دیگر برخورد نداشته باشند، A می تواند ناشمارا باشد.
  - ۱۵. برای مجموعه یA منظور از  $A^{A}$  مجموعه یتمام زیرمجموعههای A است. نشان دهید:
    - الف) اگر A شمارا باشد،  $|A| > |Y^A|$ .
    - $|\mathbf{Y}^A|>|A|$  برای هر مجموعهی  $|\mathbf{Y}^A|>|A|$
    - داشته باشیم:  $x,y\in\mathbb{R}$  هر که برای هر  $f:\mathbb{R}\to\mathbb{R}$  داشته باشیم:

$$f(f(x) + f(y)) = x + f(y)$$

- ۱۷. فرض کنید  $S \subset \mathbb{R}$  مجموعهای متناهی باشد که حداقل ۴ عضو دارد. فرض کنید تابع پوشای غیرهمانی  $a,b \in f(a)$  موجود باشد به طوری که برای هر دو عضو متمایز a,b مثل a,b بدانیم a,b برابر صفر است.
  - . تمام توابع  $x,y\in\mathbb{R}$  را بیابید که برای هر  $f:\mathbb{R} \to \mathbb{R}$  داشته باشیم:

$$f(xy + f(x)) = xf(y) + f(x)$$

اای هر  $x,y\in\mathbb{R}$  هر که برای هر  $f:\mathbb{R}\to\mathbb{R}$  داشته باشیم: مام توابع کران دار

$$f(f(x) + y) = f(x) + f(y)$$