Contents

1	Me	tric Space and Continuous Map	
	1.1	Metric Space	
	1.2	Topological Space	
	1.3	Compact Set	
	1.4	Connected Set	
	1.5	Complete Metric Spaces	
	1.6	Continuous Mapping	
	1.7	Contraction	1
2	Noi	rmed Linear Space and Differential Calculus	1
	2.1	Normed Linear Space	1

1 Metric Space and Continuous Map

1.1 Metric Space

Definition 1.1. function

$$d: X^2 \to \mathbb{R} \tag{1-1}$$

 $\forall x_1, x_2, x_2 \in X \text{ satisfied:}$

- a) $d(x_1, x_2) = 0 \Leftrightarrow x_1 = x_2;$
- b) $d(x_1, x_2) = d(x_2, x_1)$ (symmetry);
- c) $d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3)$ (Triangle inequality),

is called a **metric** or **distance** in X. Such X is said to be equiped with metric d, (X; d) is called a **metric space**.

Some examples:

- $(\mathbb{R}^n; d_p)$, where $d_p(x_1, x_2) = \left(\sum_{i=1}^n |x_1^i x_2^i|^p\right)^{1/p}$, while $d_{\infty}(x_1, x_2) = \max_{1 \leq i \leq n} |x_1^i x_2^i|$.
- Similarly we can define metric spaces as $(C[a,b];d_p)$ or $C_p[a,b]$. $d_p(f,g) = \left(\int_a^b |f-g|^p dx\right)^{\frac{1}{p}}$. C_{∞} is called a **Chebyshev metric**.
- On class $\tilde{\mathfrak{R}}[a,b]$ over $\mathfrak{R}[a,b]$ similar metric can be defined. Functions are considered of one same class if they are equivalent expect on a set not larger than null set.

Lemma 1. If (X;d) is a metric space, then $\forall a,b,u,v, |d(a,b)-d(u,v)| \leq d(a,u)+d(b,v)$.

Proof. Without loss of generality, we assume that d(a,b) > d(u,v). According to the triangle inequality (see def. 1-1), $d(a,b) \le d(a,u) + d(u,v) + d(v,b)$, which is to proof.

Definition 1.2. $\delta \in \mathbb{R}_+$, $a \in X$. Set

$$B(a; \delta) = \{x \in X | d(a, x) < \delta\}$$

is then called a **ball** with centre $a \in X$, and a radius of δ , or a δ -**ball** of point a.

Definition 1.3. A open set $G \subset X$ in metric space (X; d) satisfies: $\forall x \in G$, $\exists B(x; \delta)$, s.t. $B(x; \delta) \subset G$.

Definition 1.4. A closed set F in metric space (X; d) satisfies: X - F is a open set in (X; d).

 $\tilde{B}(x;\delta) = \{x \in X | d(a,x) \le r\}$ is an example of closed sets in (X;d).

Proposition 1. a) An infinite union of open sets is an open set.

- b) A definite intersection of open sets is an open set.
- c) A definite union of closed sets is a closed set.
- d) An infinite intersection of closed sets is a closed set.

Proof. a) If open sets
$$G_{\alpha} \subset X, \forall \alpha \in A, \forall a \in \bigcap_{\alpha \in A} G_{\alpha}, \exists \alpha_0 \in A, a \in G_{\alpha_0}, \exists B(a; \delta) \subset G_{\alpha_0} \subset \bigcap_{\alpha \in A} G_{\alpha}.$$

- b) Open sets $G_1 \cup G_2 \subset X$, $a \in G_1 \cap G_2$, therefore $\exists \delta_1, \delta_2 \in \mathbb{R}_+$, $B(a; \delta_1) \subset G_1$, $B(a; \delta_2) \subset G_2$, without loss of generality, let $\delta_1 \geq \delta_2$, $a \in B(a; \delta_1) \cap B(a; \delta_2) = B(a; \delta_2) \subset G_1 \cap G_2$.
- c) Just consider $\mathcal{C}_X \left(\bigcap_{\alpha \in A} F_\alpha \right) = \bigcup_{\alpha \in A} \mathcal{C}_X(F_\alpha)$ and a).
- d) Similarly, $C_X(F_1 \cup F_2) = C_X(F_1) \cap C_X(F_2)$.

Definition 1.5. If $x \in X$ is an element of an open set, then such open set is called a **neighbourhood** of point x in X, denoted by U(x).

Definition 1.6. $x \in X$, $E \subset X$.

- a) If $\exists U(x) \subset E$, x is called an **interior point** of E.
- b) If $\exists U(x) \subset X E$, x is called an **exterior point** of E.
- c) If x isn't an interior point nor exterior point of E, it is called a **boundary point** of E. The set of boundary points is called **boundary**, denoted by ∂E .

Definition 1.7. $a \in X$, $E \subset X$. If $\forall U(a)$, $|E \cap U(a)| = \infty$, a is called a **limit point** of E.

Definition 1.8. The intersections of $E \subset X$ and set of all its limit points is called the **closure** of E, denoted by \overline{E} .

Theorem 1.1. $F \subset X$ is a closed set in $X \Leftrightarrow \overline{F} = F$.

Proof. \Rightarrow : $C_X(F)$ is open, hence its elements are all its interior points. Therefore $\overline{F} - F = \overline{F} \cup C_X(F) = \emptyset$, $F \subset \overline{F} \Rightarrow F = \overline{F}$.

 \Leftarrow : $F = \overline{F}$ means that $\forall x \in \mathbb{C}_X(F)$, x is not a boundary of F, which indicates that x is an interior point of X - F. Therefore F - X is open while F is closed.

Theorem 1.2. \overline{E} is always closed.

Proof. $\forall x \in X - \overline{E}$, since it is not a element of the set E or its limit points, $\exists U(x) \text{ s.t. } U(x) \cap \overline{E}\varnothing$, which implies that x is an extorior point of E, therefore \overline{E} is closed.

Theorem 1.3. $\overline{E} = \overline{\overline{E}}$.

Proof. Since \overline{E} is closed, its complement is open, which implies that its elements are all exterior point of \overline{E} , therefore \overline{E} has contained all of its limit points. \square

Definition 1.9. We called (X';d') a subspace of (X;d) when $X' \subset X$ and $\forall x, y \in X', d'(x,y) = d(x,y)$.

1.2 Topological Space

Definition 1.10. We say X is equiped with a **topological space** or equiped with **topology** if we assigned a $\mathscr{T} \subset 2^X$, which has got the following propoties:

- a) $\emptyset \in \mathscr{T}; X \in \mathscr{T}$.
- b) $(\forall \alpha \in A, \mathscr{T}_{\alpha} \in \mathscr{T}) \Rightarrow \bigcup_{\alpha \in A} \mathscr{T}_{\alpha} \in \mathscr{T}.$
- c) $(\mathscr{T}_1, \mathscr{T}_2 \in \mathscr{T}) \Rightarrow \mathscr{T}_1 \cap \mathscr{T}_2$.

Then we call $(X; \mathcal{T})$ a topological space.

These are correspondence of propoties of open sets (See proposition 1). Topology made of all open sets defined in metric space (\mathbb{R} ; d_2) is called the **standard topology** of n-dimension Euclidean space.

Definition 1.11. Topology \mathcal{T} 's elements are called **open sets**, and their complements are called **closed sets**.

Definition 1.12. $(X; \mathcal{T})$ is a topological space, $\mathfrak{B} \subset 2^X$. If $\forall G \in \mathcal{T}, \exists B_{\alpha} \in \mathfrak{B}$ $(\alpha \in A)$ s.t. $\bigcup_{\alpha \in A} B_{\alpha} = G$, it is called a (topological or open) **base**.

Definition 1.13. The smallest possible cardinity of base is called the **weight** of the topological space.

Definition 1.14. If $x \in G$ and $G \in \mathcal{T}$, then G is a **neighbourhood** of x in topological space $(X; \mathcal{T})$.

For example, we define an equivalence relation \sim in $C(\mathbb{R}; \mathbb{R})$. If $f, g \in C(\mathbb{R}; \mathbb{R})$, at point $a \in \mathbb{R}$:

$$f \sim_a q \Leftrightarrow (\exists U(a) (\forall x \in U(a), f(x) = q(x))).$$
 (1-2)

Then we call f and g define a **germ** at point a, denoted by f_a . If $f \in C(\mathbb{R}; \mathbb{R})$ is defined in U(a), then we can call $f_x := \{f_x | x \in U(a)\}$ a neighbourhood of germ f_a . Class of neighbourhoods of each f_x constructs a base of topological space $(C(\mathbb{R}; \mathbb{R}); \mathcal{T})$, where \mathcal{T} is made of the sets of germs of continuous function in $C(\mathbb{R}; \mathbb{R})$.

Definition 1.15. We call a topological space $(X; \mathcal{T})$ a **Hausdorff space**, separated space or T_2 space, if $\forall x, y \in X, \exists U(x), U(y)$ s.t. $U(x) \cap U(y) = \emptyset$ (Hausdorff axiom or separation axiom).

Definition 1.16. $E \subset X$ is a **dense set** in topological space $(X; \mathscr{T})$, if $\forall x \in X$, $\forall U(x), U(x) \cap E \neq \emptyset$.

Definition 1.17. If there is a countable dense set in topological space $(X; \mathcal{F})$, then $(X; \mathcal{F})$ is **separable**.

We can also define interior points, exterior points, boundary points, limit points in topological space as in metric space.

Definition 1.18. Each subset Y of X equiped with topology \mathscr{T} can be given a **subspace topology** \mathscr{T}_Y whose elements G_Y are intersections of the subset with an open set G in $(X; \mathscr{T})$ i.e. $\forall G_Y \in \mathscr{T}_Y, \exists G \in \mathscr{T} \text{ s.t. } G_Y = G \cap Y.$ Subset equiped with such topology construct a **topological subspace** $(Y; \mathscr{T}_Y)$.

If two topology $\mathscr{T}_1, \mathscr{T}_2$ are defined on the same X, \mathscr{T}_1 is said to be **stronger** than \mathscr{T}_2 if $\mathscr{T}_1 \subsetneq \mathscr{T}_2$.

1.3 Compact Set

Definition 1.19. Set K in topological space $(X; \mathcal{T})$ is called a **compact set** if each of its **open covers** has a finite **subcover**. Class Ω is called a open cover of K if $K \subset \cup \Omega$ and for all sets in Ω are open sets.

Specially, \emptyset is compact.

Theorem 1.4. Set $K \subset X$ is compact in $(X; \mathcal{T})$ **iff** K is compact in $(K; \mathcal{T}_K)$ itself.

This theorem tells a truth that whether K is compact or not isn't dependent on the topological space it's in, it can be easily proofed: just need to notice that every open set G_K in $(K; \mathcal{T}_K)$ is an intersection of an open set G in $(X; \mathcal{T})$ and K.

Theorem 1.5. If K is compact in a Hausdorff space $(X; \mathcal{T})$ (See definition 1.15), then K is a closed set in $(X; \mathcal{T})$.

Proof. If x_0 is a limit point of K, which means $\forall U(x_0)$,

$$|U(x_0) \cap K| \notin \mathbb{N}$$
.

Assume that $x_0 \notin K$. In a Hausdorff space, $\forall x \in K$, $\exists U(x) \text{ s.t. } U(x) \cap U(x_0) = \emptyset$. Such U(x) construct a open cover $\Omega = \{U(x) | x \in K\} \subset 2^K$. Since K is compact, $\exists \Omega' \subset \Omega \text{ s.t. } |\Omega| \in \mathbb{N}$.

$$(\cup\Omega')\cap U(x_0) = \left(\bigcup_{k=1}^n U_k\right)\cap U(x_0) = \bigcup_{k=1}^n \left(U_k\cap U(x_0)\right) = \varnothing$$

Since $K \subset \cup \Omega'$, x_0 is an exterior point of K, which leads to a contradiction. Hence $x_0 \in K$. $\overline{K} = K$. **Theorem 1.6.** Each decreasing **nested sequences** of non-empty compact sets has a non-empty limit, i.e. $\forall \{K_n\}$ s.t. $\forall n \in \mathbb{N}_+, K_n \supset K_{n+1} \land K_n \neq \emptyset \land (K_n \text{ is compact}), K_n \downarrow K \neq \emptyset$.

Proof. Assume that $K = \emptyset$. Compact subsets of K_1 are all colsed, while their complements are all open. An open cover Ω can be constructed as $\{K_1 - K_n | n \in \mathbb{N}_+\}$. Since K_1 is compact, there would be a finite subcover $\Omega' \subset \Omega$, notice that $\{X - K_n\}$ is also a nested sequence, there must be one single $X - K_{n_0} \in \Omega'$ that covers K_1 , which means $K_{n_0} = \emptyset$ contradicting that $\forall n \in \mathbb{N}_+, K_n$ is non-empty.

Theorem 1.7. Closed subsets F of a compact set K are also compact.

Proof. If $\Omega_F \subset 2^K$ is an open cover of F. Notice that K - F is open, $\Omega = (\cup \Omega_F) \cap \{K - F\}$ constructs an open cover over K. Since K is compact there must be a finite cover $\Omega' \subset \Omega$ which obviously also covers over F.

The following propoties of compact sets are on the topological space induced from a metric space.

Definition 1.20. (X;d) is a metric space, $E \subset X$. E is called an ε -net if $\forall x \in X, \exists e \in E, d(e,x) < \varepsilon$.

Theorem 1.8. If (K, d) is a compact metric space, then $\forall \varepsilon \in \mathbb{R}_+, \exists$ finite ε -net in (K; d).

Proof. For each point $x \in K$, find it a $B(x,\varepsilon)$, of which an infinite cover Ω over K is made. Since K is compact, there exists a finite cover $\Omega' = \{B(x_1,\varepsilon),\cdots,B(x_n,\varepsilon)\}$ $(n \in \mathbb{N}_+)$. Therefore $\{x_1,\cdots,x_n\}$ is a finite ε -net in K.

Theorem 1.9. (K;d) is compact **iff** it is **sequentially compact**, that is, $\forall \{x_n\} \ (x_n \in K, \ n \in \mathbb{N}_+)$, it has convergent subsequence $\{x_{k_n}\}$ whose limit $a \in K$.

To proof it, we need to proof two lemmata first.

Lemma 2. If (K; d) is sequentially compact, then $\forall \varepsilon \in \mathbb{R}_+, \exists$ finite ε -net in (K; d).

Proof. Assume that there were no finite ε_0 -net in (K;d). Define such sequence $\{x_n\}$ s.t. $\forall k, n \in \mathbb{N}_+$ $(1 \le k < n), d(x_n, x_k) \ge \varepsilon_0$ (There would always be the next one since there exists no ε_0 -net). It has no convergent subsequence for it there were a $\{x_{k_n}\}$ convergent to $a \in K$, $\exists N, M \in \mathbb{N}_+$, $d(x_N, x_M) \le d(x_N, a) + d(x_M, a) \le \varepsilon_0$, which lead to a contradictary.

Lemma 3. If (K;d) is sequentially compact then every nested sequence of closed non-empty sets $\{F_n\}$ in K have a non-empty intersection.

Proof. Let $\{x_{k_n}\}$ be a convergent subsequence of $\{x_n\}$, Let a be the limit of $\{x_{k_n}\}$ ($\forall n \in \mathbb{N}_+, x_n \in F_n$). Assume that $a \notin \bigcap_{n \in \mathbb{N}_+} F_n$, in metric space, $\exists U(a) \cap \left(\bigcap_{n \in \mathbb{N}_+} F_n\right) = \varnothing \Rightarrow U(a) \cap \left(\bigcap_{n \in \mathbb{N}_+} F_{k_n}\right) = \varnothing$. But this conflict the fact that $\exists N \in \mathbb{N}_+$, s.t. n > N, $x_{k_n} \in U(a)$ while $x_{k_n} \in F_{k_n}$.

Then get back to theorem 1.9.

Proof. \Rightarrow : If $|\{x_n\}| \in \mathbb{N}$, it is obvious; if $|\{x_n\}| = \infty$, make finite $\frac{1}{n}$ -net (Theorem 1.8), $n \in \mathbb{N}_+$. For each n, there must be at least one $B(x_n; \frac{1}{n})$ that includes infinite elements in $\{x_n\}$. Select $x_{k_n} \in B(x_n; \frac{1}{n})$, and $\{\tilde{B}(x_n; \frac{1}{n})\}$ is a nested sequence of a closed non-empty sets in sequentially compact K, (Lemma 3) $\lim_{n\to\infty} x_{k_n} \in K$.

 \Leftarrow : Assume that there were a open cover Ω over K having no finite subcover, $\forall n \in \mathbb{N}_+, \exists$ finite $\frac{1}{n}$ -net (Lemma 3), in which there would be at least one x_n whose $\tilde{B}(x_n; \frac{1}{n})$ can't be covered finitely. Then $\tilde{B}(x_n; \frac{1}{n}) \downarrow B = \{a\}$ (Theorem 1.6) can't be finitely covered by any subcover of Ω which means Ω can't cover the whole K, leading to the contradiction.

1.4 Connected Set

Definition 1.21. Topological space $(X; \mathcal{T})$ is called **connected** if there is no **open-closed set** (i.e. both open and closed) besides \emptyset and X itself.

Notice that if $A \subset X$ is open-closed, its complement X-A is also open-closed, which means a topological space is connected **iff** it is not a union of its two open subsets.

Definition 1.22. $(X; \mathcal{T})$ is a topological space. Subset C is said to be **connected** if subspace $(C; \mathcal{T}_C)$ is connected.

Theorem 1.10. $(X; \mathcal{T})$ is a topological space. $\forall \alpha \in A, C_{\alpha}$ are connected subsets of X. If $\bigcap_{\alpha \in A} C_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha \in A} C_{\alpha}$ is also connected.

Proof. If $C = \bigcup_{\alpha \in A} C_{\alpha}$ were not connected, $\exists E \subset C$ s.t. $E \neq \emptyset \land E \neq C \land E, C - E \in \mathscr{T}_{C}$. For E is not empty there exists a $\beta \in A$ s.t. $E \cap C_{\beta} \neq \emptyset$. It can be proofed that $C_{\beta} \subset E$.

Suppose that $C_{\beta} \nsubseteq E$, which implies that $(C-E) \cap C_{\beta} \neq \emptyset$. $E, C-E, C_{\beta} \in \mathscr{T}_{C} \Rightarrow E \cap C_{\beta}, (C-E) \cap C_{\beta} \in \mathscr{T}_{C}$. This conflicts to the fact that C_{β} is connected. Therefore $C_{\beta} \subset E$.

Hence there exists a $B \subsetneq A$, $\bigcup_{\beta \in B} C_{\beta} = A$. Since C_{γ} , $\gamma \in A - B$ would have a empty intersection with E, which contradicts $\bigcap_{\alpha \in A} C_{\alpha} \neq \emptyset$.

Theorem 1.11. Connected sets have connected closure.

Proof.

Theorem 1.12. $E \subset \mathbb{R}$ is connected **iff** that if $\forall x, z \in E, y \in \mathbb{R}$ s.t. x < y < z, then $y \in C$.

Proof. \Rightarrow : Assume that there were such $y \in \mathbb{R}$ that $\exists x, z \in C, x < y < z$ but $y \notin C$. $\{x \in C | x < y\}$ and $\{x \in C | x > y\}$ are open in C for they are intersection of open sets in \mathbb{R} and C. Since they're each other's complement, they are both open-closed, which conflict to the definition of connected set.

 \Leftarrow : It can be proofed that $(\inf C, \sup C) \subset C$. Assume that there were an open-closed proper subset $E \neq \emptyset$ contained in C. Find two points $x \in E$, $z \in C - E$. Without loss of generality, let x < z. Since E and C - E are closed, $c_1 = \inf\{E \cap [a,b]\} \in E$ while $c_2 = \inf\{(C - E) \cap [a,b]\} \in C - E$. However $E \cap (C - E) = \emptyset \Rightarrow c_1 < c_2$, which means $(c_1, c_2) \cap E = \emptyset$. Here's the contradiction.

Definition 1.23. A topological space $(X; \mathcal{T})$ is said to be **locally connected** if $\forall x \in X, \exists U(x) \text{ s.t. } U(x)$ is connected.

1.5 Complete Metric Spaces

We now take a closer look at one of the most important sorts of metric spaces: complete spaces.

Definition 1.24. A sequence $\{x_n \mid n \in \mathbb{N}\}$ of points of a metric space (X;d) is called a **fundamental** or **Cauchy sequence** if $\forall \varepsilon \in \mathbb{R}_+, \exists N \in \mathbb{N}$ s.t. as long as $m, n > N, d(x_n, x_m) < \varepsilon$.

Definition 1.25. A metric space (X; d) is **complete** if every Cauchy sequence of its points is convergent.

For example, metric space $C_{\infty}[a,b]$ is complete while $C_1[a,b]$ isn't. Proof see p22, Zorich. Consider incomplete space \mathbb{Q}_1 , which is a subspace of the complete space \mathbb{R}_1 . If \mathbb{R}_1 is the smallest complete space containing \mathbb{Q}_1 , we can say that we have achieved a **completion** of \mathbb{Q}_1 . However, the definition of "completion" hasn't been defined yet.

Definition 1.26. If a metric space (X;d) is a subspace of a complete metric space (Y;d) and everywhere dense in it, we call the latter one the **completion** of (X;d).

We need to confirm that such completion is the smallest and unique. So we introduce:

Definition 1.27. If there exists a **isometry** $f: X_1 \to X_2$ when $(X_1; d_1)$ and $(X_2; d_2)$ are both metric space, i.e. f is a bijective and for each $a, b \in X_1$, $d_2(f(a), f(b)) = d_1(a, b)$, then these two metric space is **isometric**.

This relation is reflexive (e), symmetric (f^{-1}) , and transitive $(f \circ g)$, so it is a equivalence relation, noted by \sim . We shall consider isometric spaces are identical.

Theorem 1.13. If metirc spaces $(Y_1; d_1)$ and $(Y_2; d_2)$ are both completions of (X; d), then they are isometric.

Proof. Such isometry $f: Y_1 \to Y_2$ can be defined: if $x_1, x_2 \in X$,

$$d_2(f(x_1), f(x_2)) = d(f(x_1), f(x_2)) = d(x_1, x_2) = d_1(x_1, x_2).$$

For each $y_1 \in Y_1 - X_1$, a Cauchy sequence $\{x_n\}$ can be found in the nested sequence of balls centered in y_1 . It is obvious that $\{x_n\}$ is also fundamental in Y_2 , limitting to $y_2 \in Y_2$. Different sequences of points $\{x'_n\}$ selected won't result in a diffrent y'_2 , or $d(x_n, x'_n)$ wouldn't converge to 0, which violate the fact that the radii of balls converge to 0. Let $f(y_1) = y_2$.

- a) For each $y_2 \in Y_2 X$, there always exists a Cauchy sequence converging to it, which implies that f is a surjection.
 - b) Also notice that $\forall y_1', y_1'' \in Y_1 X$,

$$d_1(y_1', y_1'') = \lim_{n \to \infty} d(x_n', x_n'') = d_2(y_2', y_2'')$$

while $\{x_n'\}$ and $\{x_n''\}$ are both Cauchy sequence. This equality also proofed that f is a injection. \Box

Theorem 1.14. There always exists a completion for every metric space.

Proof. A isometric space $(S_X; d)$ to the metric space $(X; d_X)$ can be constructed, which consists of constant sequence of points in X. Its completion (S; d) can be defined as Cauchy sequences whose mutual distances' limits are not 0.

1.6 Continuous Mapping

Let's recall the definition of the limitation.

Definition 1.28. A set $\mathcal{B} \subset 2^X$ is called a **(filter) base** in X if the following conditions hold:

- a) $\emptyset \notin \mathcal{B}$.
- b) $\forall B_1, B_2 \in \mathcal{B}, \exists B \in \mathcal{B} \text{ s.t. } B \subset B_1 \cap B_2 \subset B_2.$

Introduction of the limits in a topological space is as follows.

Definition 1.29. Let $a \in Y$ be the **limit** over the base $\mathscr{B} \subset 2^{\mathscr{D}(f)}$ of a mapping $f : \mathscr{D}(f) \to Y$, in which Y is equiped with a topology \mathscr{T} .

$$\lim_{\mathscr{R}} f = a \quad := \quad \forall U(a) \subset Y \; \exists B \in \mathscr{B}(f(B) \subset U(a)).$$

Such definition is parallel to the definition we have introduced on the limits of real number, hence it basically holds the same propoties.

Definition 1.30. A mapping $f: X \to Y$, where X,Y is respectively equiped with topology $\mathscr{T}_X, \mathscr{T}_Y$, is said to be **continuous** at $x_0 \in X$ (let $y_0 = f(x_0) \in Y$), if $\forall U(y_0), \exists U(x_0)$ s.t. $f(U(x_0)) \subset U(y_0)$. It is **continuous** in X if it is continuous at each point $x \in X$.

The set of continuous mappings from X into Y can be denoted by C(X,Y) or C(X) when Y is clear.

Theorem 1.15. (Criterion for continuity)

 $(X; \mathscr{T}_X)$ and $(Y; \mathscr{T}_Y)$ are both topological spaces. A mapping $f: X \to Y$ is continuous **iff** $\forall G_Y \in \mathscr{T}_Y, f^{-1}(G_Y) \in \mathscr{T}_X$.

Proof. \Rightarrow : It is obvious if $f^{-1}(G_Y) = \varnothing$. If $f^{-1}(G_Y) \neq \varnothing$ and $x_0 \in X$, since $f \in C(X,Y)$, for G_Y , $\exists U(x_0)$ s.t $f(U(x_0)) \subset G_Y$. Also notice that $f(U(x_0)) \subset G_Y \Rightarrow U(x_0) \subset f^{-1}(G_Y)$, therefore $f^{-1}(G_Y)$ is open. \Leftarrow : $\forall x_0 \in X$, let $y_0 = f(x_0)$, $f^{-1}(U(y_0)) \in \mathscr{T}_X$. Notice that $x_0 \in f^{-1}(U(y_0))$, therefore $f \in C(X,Y)$.

Definition 1.31. $(X; \mathcal{T}_X)$ and $(Y; \mathcal{T}_Y)$ are both topological spaces. A bijective mapping $f: X \to Y$ is a **homeomorphism** if $f \in C(X, Y) \land f^{-1} \in C(Y, X)$.

Definition 1.32. Two topological spaces $(X; \mathcal{T}_X)$ and $(Y; \mathcal{T}_Y)$ are said to be **homeomorphic** if there exists a homeomorphism $f: X \to Y$.

Homeomorphic topological spaces are identical with respect to their topological propoties since the theorem 1.15 has shown that their open sets correspond to each other.

Theorem 1.16. $(X; \mathcal{T}_X)$ and $(Y; \mathcal{T}_Y)$ are both topological spaces. $K \subset X$ is a compact set. If $f: X \to Y \in C(X, Y)$, then f(K) is compact.

Proof. For each open cover $\Omega_Y = \{G_Y \in \mathcal{T}_Y\} \subset \mathcal{T}_Y \text{ over } f(K), f^{-1}(G_Y) \in \mathcal{T}_X \text{ (Therem 1.15)}. \ f(K) \subset \cup \Omega_Y \Rightarrow K \subset f^{-1}(\cup \Omega_Y) = \cup \Omega_X, \text{ where } \Omega_X = \{f^{-1}(G_Y) \mid G_Y \in \Omega_Y\} \text{ is an open cover over } K. \text{ Since } K \text{ is compact, } \exists \Omega_X' \subset \Omega_X (|\Omega_X'| \in \mathbb{N}_+ \land K \subset \cup \Omega_X'), \ f(K) \subset f(\cup \Omega_X'). \ f(G_X') \in \Omega_Y, \text{ hence } \Omega_Y' = \{f(G_X') \mid G_X' \in \Omega_X'\} \text{ is a finite subcover over } f(K).$

Theorem 1.17. $(K; \mathcal{T}_K)$ is a compact space and $(Y; \mathcal{T}_Y)$ is a Hausdorff space. If a bijective $f: K \to Y \in C(K, Y)$, then it is a homeomorphism.

Proof. $\forall F = K - G$ s.t. $G \in \mathcal{T}_K$ is compact (Theorem 1.7). Hence f(F) is compact (Theorem 1.16), then it is also closed (Theorem 1.5). This fact shows that f^{-1} is continuous (Theorem 1.15).

Theorem 1.18. $(X; \mathcal{I}_X)$ and $(Y; \mathcal{I}_Y)$ are both topological spaces. $E \subset X$ is a connected set. If $f: X \to Y \in C(X, Y)$, then f(E) is also connected.

Proof. Only to notice that the open-closed sets in $(f(E); \mathscr{T}_{f(E)})$ have concurrently open-closed pre-images in $(E; \mathscr{T}_{E})$.

1.7 Contraction

Definition 1.33. A point $a \in X$ is a fixed point of a mapping $f: X \to X$ if f(a) = a.

Definition 1.34. Let (X;d) be a metric space. A mapping $f: X \to X$ is called a **contraction** if $\exists q \in (0,1) \subset \mathbb{R}$ s.t. $\forall x_1, x_2 \in X$,

$$d(f(x_1), f(x_2)) \le qd(x_1, x_2). \tag{1-3}$$

Lemma 4. A contraction $f: X \to X$ is always continuous.

Proof. $\forall x \in X, \forall \varepsilon \in \mathbb{R}_+, \exists \delta < \varepsilon/q, \text{ according to inequality 1-3:}$

$$f(B(x;\delta)) \subset B(f(x);\varepsilon)$$
.

Theorem 1.19. (Picard-Banach fixed-point principle or contraction mapping principle) Let (X;d) be a complete metric space. Each contraction $f: X \to X$ has a unique fixed point a. Also, $\forall \{x_n\} \subset X$ s.t. $\forall n \in \mathbb{N} (f(x_n) = x_{n+1})$ then $\lim_{n \to \infty} x_n = a$, and

$$d(x_n, a) \le \frac{q^n}{1 - q} d(x_1, x_0). \tag{1-4}$$

Proof. By the inequality 1-3:

$$d(x_{n+1}, x_n) \le qd(x_n, x_{n-1}) \le \dots \le q^n d(x_1, x_0)$$

Therefore, $\forall n, k \in \mathbb{N}$,

$$d(x_{n+k}, x_n) \le \sum_{i=0}^{k-1} d(x_{n+i+1}, x_{n+i}) \le \sum_{i=0}^{k-1} q^{n+i} d(x_1, x_0) \le \frac{q^n}{1-q} d(x_1, x_0), \quad (1-5)$$

which implies that x_n is a Cauchy sequence in a complete space (X; d), hence it converges to a point $a \in X$.

To proof that a is a fixed point of f, since f is continuous (Lemma 4), just notice that

$$a = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(x_n).$$

If there were a second fixed point $a' \in X$ of f, then:

$$0 \le d(a, a') = d(f(a), f(a')) \le qd(a, a')$$

which can't be true unless a = a'.

By passing to the limit as $k \to \infty$ in the inequality 1-5, we have the inequality 1-4.

2 Normed Linear Space and Differential Calculus

2.1 Normed Linear Space

Definition 2.1. Let V be a linear space over \mathbb{R} or \mathbb{C} . A function $\| \| : X \to \mathbb{R}$ assigning to each vector $\mathbf{x} \in X$ a real number $\| \mathbf{x} \|$ is called a **norm** in the linear space X if:

- a) $\|\boldsymbol{x}\| = 0 \Leftrightarrow \boldsymbol{x} = \boldsymbol{0}$ (nondegeneracy);
- b) $\|\lambda \boldsymbol{x}\| = |\lambda| \|\boldsymbol{x}\|$ (homogeneity);
- c) $\|\boldsymbol{x}_1 + \boldsymbol{x}_2\| \le \|\boldsymbol{x}_1\| + \|\boldsymbol{x}_2\|$ (the triangle inequality).

A linear space with a norm defined on it is called **normed**.

Index

 δ -ball, 2 T_2 space, 4 ε -net, 6 ball, 2 base, 4, 9 boundary point, 3 Cauchy sequence, 8 Chebyshev metric, 2 closed set, 2, 4 closure, 3 compact set, 5 complete, 8 completion, 8 connected, 7 connected set, 7 connected space, 7 continuous, 9 dense set, 4 distance, 2 exterior point, 3 filter base, 9 fundamental, 8 fundamental sequence, 8 germ, 4 Hausdorff axiom, 4 Hausdorff space, 4 homeomorphic, 10 homeomorphism, 10 interior point, 3 isometric, 8 isometry, 8 limit, 9 limit point, 3

locally connected, 8

metric, 2

metric space, 2 neighbourhood, 3, 4 nested sequence, 5 open base, 4 open cover, 5 open set, 2, 4 open-closed set, 7 separable, 4 separated space, 4 separation axiom, 4 sequentially compact, 6 standard topology, 4 stronger, 5 subcover, 5 subspace, 3, 5 subspace topology, 5 topological base, 4 topological space, 4 topology, 4weight, 4