محاضرة: المواسير المتفرعة

مقدمة

المواسير المتفرعة هي أنظمة أنابيب يتفرع فيها الجريان من خطر ئيسي إلى خطوط فرعية أو العكس، وتُستخدم على نطاق واسع في شبكات توزيع المياه، الصرف، التبريد، وغير ها

أولاً :تعربف المواسير المتفرعة

المواسير المتفرعة هي شبكة من المواسير يحدث فيها تفرع للجريان عند نقاط محددة، ما يؤدي إلى تقسيم التدفق أو دمجه من عدة .

ثانياً :الفروض المستخدمة في تحليل المواسير المتفرعة

- 1. الجريان مستقر (Steady Flow).
- لا يوجد فاقد في نقطة التفرع نفسها .2
- خواص السائل ثابتة)غير قابلة للانضغاط، كثافة ثابتة (3.
- 4. ينطبق قانون بقاء الكتلة)معادلة الاستمرارية (Qin = Q1out + Q2out

ثالثاً: طرق التحليل

- 1. باستخدام معادلة الاستمرارية: $Q_in = \sum Q_out$
- باستخدام معادلة برنولي مع الفاقد بيتم كتابة المعادلة لكل مسار مع تضمين الفواقد . 2
- 3. باستخدام مخطط مودي أو معادلة هازن-ويليامز الحساب الفاقد: $hf = f * L*v^2/(2gd)$

رابعاً :خطوات الحل

- تحديد النقاط الرئيسية ونقطة التفرع .1
- استخدام معادلة الاستمر ارية لحساب التصرفات. 2
- كتابة معادلة برنولي على كل فرع . 3
- تقدير الفاقد باستخدام القوانين أو المخططات 4.

مثال بسيط

ماسورة رئيسية يتفرع منها خطان إذا علمت أن التصرف في الماسورة الرئيسية =20 لتر/ثانية، والتصرف في الخط الأول = 20 - 12 = 20 - 12 : لتر/ثانية 20 = 20 - 12 = 20 : لتر/ثانية فإن 12

مثال تطبيقي :تحليل نظام مواسير متفرعة

:المعطيات

الطول =30 م، :BD ; الطول =40 م، القطر =150 مم :BC ; الأنابيب BC ; أرئيسية :(الطول =50 م، القطر =200 مم BB :الأنابيب القطر =100 مم

م $^{3}/^{2}$ عند النقطة A: QAB = 0.03 مأ

ثابت لجميع المواسير: (f) معامل الاحتكاك

متساو BD و BC متساو، أي أن الفاقد في المسارين Dو C الفرض :الضغط عند

:الخطوات

: حساب الفاقد باستخدام معادلة دار سي-و ايسباخ . 2

$$hf = f * (L/D) * (Q/A)^2 / (2g)$$

$$A_BC = \pi/4 * (0.15)^2 = 0.0177^2$$

$$A_BD = \pi/4 * (0.10)^2 = 0.00785^2$$

:المعادلة بعد فرض التساوي

 $(40/0.15)*(Q1/0.0177)^2 = (30/0.10)*((0.03 - Q1)/0.00785)^2$

:النتيجة التقريبية

 Q_1 (BC): 18 لتر/ثانية

 Q_2 (BD): 12 لتر /ثانية