The group G is isomorphic to the group labelled by [660, 13] in the Small Groups library. Ordinary character table of $G \cong \mathrm{PSL}(2,11)$:

	11b	11a	6a	5b	5a	3a	2a	1a	
	1	1	1	1	1	1	1	1	χ_1
$-E(11)^{10}$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	1	0	0	-1	1	5	χ_2
$-E(11)^9$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E$	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	1	0	0	-1	1	5	χ_3
	-1	-1	1	0	0	1	-2	10	χ_4
	-1	-1	-1	0	0	1	2	10	χ_5
	0	0	-1	1	1	-1	-1	11	χ_6
	1	1	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0	12	χ_7
	1	1	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0	12	χ_8
_	1 1	1 1	0			-	0	12 12	

Trivial source character table of $G \cong PSL(2,11)$ at p = 5:

Normalisers N_i		N_1				N	V_2	
p-subgroups of G up to conjugacy in G		P_1						\mathcal{P}_2
Representatives $n_j \in N_i$	1a	2a	3a	6a	11a	11b	1a	2a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	25	1	1	1	3	3	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	35	-1	-1	-1	2	2	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$					$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$		0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	5	1	-1	1	$E(11)^2 + E(11)^6 + E(11)^7 + E(11)^8 + E(11)^{10}$	$E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9$	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10	-2	1	1	-1	-1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	10	2	1	-1	-1	-1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	11	-1	-1	-1	0	0	1	-1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(2, 6, 8, 7, 10)(3, 5, 9, 4, 11)]) \cong C5$

 $N_1 = Group([(2,10)(3,4)(5,9)(6,7),(1,2,11)(3,5,10)(6,8,9)]) \cong PSL(2,11)$ $N_2 = Group([(2,6,8,7,10)(3,5,9,4,11),(3,11)(4,5)(6,10)(7,8)]) \cong D10$