Apuntes de un curso de

MÉTODOS DE LA FÍSICA MATEMÁTICA II

Departamento de Física Facultad de Ciencias Universidad de Chile

> Víctor Muñoz G. José Rogan C.

Índice

1.	Espacio de funciones	1
	1.1. Definiciones	1
	1.2. Sucesiones de funciones	3
	1.3. Proceso de ortonormalización de Gram-Schmidt	9
	1.4. Coeficientes de Fourier	10
	1.5. Integrales impropias (valor principal)	14
	1.6. Convergencia según Cesàro	15
2.	Series de Fourier	19
3.	Transformada de Fourier	35
	3.1. Definiciones	35
	3.2. Ejemplos	36
	3.3. Propiedades	41
	3.4. Aplicaciones	43
4.	Convolución	45
	4.1. Espacio S	45
	4.2. Producto de convolución	46
	4.3. El espacio S como anillo	49
5 .	Distribuciones temperadas	53
	5.1. Definiciones	53
	5.2. Sucesión de distribuciones	61
	5.3. Producto de distribuciones	71
	5.4. Distribuciones y ecuaciones diferenciales	72
	5.5. Convergencia débil	73
6.	Distribuciones y transformada de Fourier	79
7.	Convolución de distribuciones	87
	7.1. Definiciones	87
	7.2. Propiedades de la convolución de distribuciones	89
	7.3. Uso de convolución en Física	91

	,
T3 /	ÍNDICE
IV	INDICE

8.	La f	función Gamma	93
	8.1.	La función factorial	93
	8.2.	La función Gamma	94
	8.3.	Función Beta	96
	8.4.	Notación doble factorial	99
	8.5.	Fórmula de Stirling	99
	8.6.	Otras funciones relacionadas	101

78 ÍNDICE

Capítulo 6

Distribuciones y transformada de Fourier

versión preliminar 3.1-5 octubre 2002

Sea $f \in \mathcal{S}$. Sabemos que $\mathcal{F}\{f, k\} \in \mathcal{S}$.

Definición 6.1 Transformada de Fourier de un funcional.

Sea $\overline{f} \in \overline{S}^*$ el funcional asociado a f. Definimos $\mathcal{F}\{\overline{f}\}\in \overline{S}^*$ por:

$$\mathcal{F}\{\overline{f},k\} = \overline{\mathcal{F}\{f,k\}} \ .$$

Proposición 6.1 $\left\langle \overline{\mathcal{F}\{f\}}, x \right\rangle = \left\langle \overline{f}, \mathcal{F}\{x\} \right\rangle$

Demostración

$$\left\langle \overline{\mathcal{F}\{f\}}, x \right\rangle = \int_{-\infty}^{\infty} dk \, \mathcal{F}\{f, k\} x(k) = \int_{-\infty}^{\infty} dk \, \int_{-\infty}^{\infty} dt \, \frac{1}{\sqrt{2\pi}} f(t) e^{ikt} x(k)$$

$$= \int_{-\infty}^{\infty} dt \, f(t) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \, x(k) e^{ikt} = \int_{-\infty}^{\infty} dt \, f(t) \mathcal{F}\{x, t\}$$

$$= \left\langle \overline{f}, \mathcal{F}\{x\} \right\rangle .$$

q.e.d.

Esta proposición motiva la siguiente definición.

Definición 6.2 Transformada de Fourier de una distribución. Sea $\varphi \in \overline{\mathcal{S}}^*$ y $x \in \mathcal{S}$ arbitrario. Definimos

Proposición 6.2 Si $\varphi \in \overline{\mathcal{S}}^*$, entonces $\mathcal{F}\{\varphi\} \in \overline{\mathcal{S}}^*$.

Demostración

a) Linealidad.

$$\langle \mathcal{F}\{\varphi\}, \alpha x + \beta y \rangle = \langle \varphi, \mathcal{F}\{\alpha x + \beta y \} \rangle = \alpha \langle \varphi, \mathcal{F}\{x \} \rangle + \beta \langle \varphi, \mathcal{F}\{y \} \rangle$$
$$= \alpha \langle \mathcal{F}\{\varphi\}, x \rangle + \beta \langle \mathcal{F}\{\varphi\}, y \rangle .$$

b) Sea $x_n \xrightarrow[n \to \infty]{!} x$. Entonces

$$\lim_{n \to \infty} \langle \mathcal{F} \{ \varphi \}, x_n - x \rangle = \lim_{n \to \infty} \langle \varphi, \mathcal{F} \{ x_n - x \} \rangle .$$

Puesto que $\varphi \in \overline{\mathcal{S}}^*$ y $\mathcal{F}\{x_n - x\} \xrightarrow[n \to \infty]{!} 0$,

$$\lim_{n \to \infty} \langle \mathcal{F}\{\varphi\}, x_n - x \rangle = \left\langle \varphi, \lim_{n \to \infty} \mathcal{F}\{x_n - x\} \right\rangle \\
= \left\langle \varphi, \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} \int_{-\infty}^{\infty} [x_n(t) - x(t)] e^{i\omega t} dt \right\rangle \\
= \left\langle \varphi, \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \lim_{n \to \infty} [x_n(t) - x(t)] e^{i\omega t} dt \right\rangle \\
= \left\langle \varphi, \mathcal{F}\{\lim_{n \to \infty} (x_n - x)\} \right\rangle \\
= \left\langle \mathcal{F}\{\varphi\}, \lim_{n \to \infty} (x_n - x) \right\rangle .$$

Por lo tanto $\mathcal{F}\{\varphi\} \in \overline{\mathcal{S}}^*$.

q.e.d.

Ejemplos

1) La delta
 $\delta.$ Sea $x\in\mathcal{S}$ arbitrario. Entonces

$$\langle \mathcal{F}\{\delta\}, x \rangle = \langle \delta, \mathcal{F}\{x\} \rangle = \left\langle \delta, \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ist} x(t) dt \right\rangle$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) dt = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} x(t) dt = \left\langle \frac{1}{\sqrt{2\pi}}, x \right\rangle.$$

Luego

$$\mathcal{F}\{\delta\} = \frac{1}{\sqrt{2\pi}} \ . \tag{6.2}$$

2) La derivada de la delta δ' . Sea $x \in \mathcal{S}$ arbitrario.

$$\begin{split} \langle \mathcal{F}\{\delta'\}, x \rangle &= \langle \delta', \mathcal{F}\{x\} \rangle = \left\langle \delta', \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ist} x(t) \, dt \right\rangle \\ &= -\frac{d}{ds} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ist} x(t) \, dt \right] \bigg|_{s=0} = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) \, \frac{\partial}{\partial s} e^{ist} \, dt \bigg|_{s=0} \\ &= -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) it e^{ist} \bigg|_{s=0} \, dt = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) it \, dt \\ &= \int_{-\infty}^{\infty} \frac{-it}{\sqrt{2\pi}} x(t) \, dt = \left\langle \frac{-it}{\sqrt{2\pi}}, x \right\rangle \, . \end{split}$$

Entonces

$$\mathcal{F}\{\delta'\} = \frac{\overline{(-it)}}{\sqrt{2\pi}} \ . \tag{6.3}$$

3) En general,

$$\mathcal{F}\{\delta^{(n)}\} = \frac{\overline{(-it)^n}}{\sqrt{2\pi}} \ . \tag{6.4}$$

Definición 6.3 Antitransformada de Fourier en $\overline{\mathcal{S}}^*$. Definimos la antitransformada de Fourier de una distribución $\varphi \in \overline{\mathcal{S}}^*$ como

$$\overline{\langle \mathcal{F}^{-1}\{\varphi\}, x\rangle = \langle \varphi, \mathcal{F}^{-1}\{x\}\rangle} \quad \forall x \in \mathcal{S}$$
(6.5)

Proposición 6.3 Si $\varphi \in \overline{\mathcal{S}}^*$, entonces

$$\mathcal{F}\mathcal{F}^{-1}\{\varphi\} = \mathcal{F}^{-1}\mathcal{F}\{\varphi\} = \varphi . \tag{6.6}$$

(Vale decir, se tiene un teorema de reciprocidad, análogamente al que encontramos en el espacio de funciones S.)

Demostración

$$\langle \mathcal{F}\mathcal{F}^{-1}\{\varphi\}, x\rangle = \langle \mathcal{F}^{-1}\{\varphi\}, \mathcal{F}\{x\}\rangle = \langle \varphi, \mathcal{F}^{-1}\mathcal{F}\{x\}\rangle = \langle \varphi, x\rangle$$
.

q.e.d.

Como en el caso de funciones en \mathcal{S} , se cumplen las siguientes dos proposiciones.

Proposición 6.4 Si $\varphi \in \overline{\mathcal{S}}^*$ es una distribución par, entonces

$$\mathcal{F}\{\varphi\} = \mathcal{F}^{-1}\{\varphi\} \ . \tag{6.7}$$

Demostración

$$\langle \mathcal{F}^{-1} \{ \varphi \}, x \rangle = \langle \varphi, \mathcal{F}^{-1} \{ x \} \rangle = \langle \varphi, \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dt \, x(t) e^{-i\omega t} \rangle$$
.

Siendo φ par podemos cambiar ω por $-\omega$:

$$\langle \mathcal{F}^{-1} \{ \varphi \}, x \rangle = \left\langle \varphi, \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dt \, x(t) e^{i\omega t} \right\rangle = \left\langle \varphi, \mathcal{F} \{ x \} \right\rangle = \left\langle \mathcal{F} \{ \varphi \}, x \right\rangle ,$$

de modo que

$$\mathcal{F}\{\varphi\}=\mathcal{F}^{-1}\{\varphi\}$$

si φ es una distribución par.

q.e.d.

Notemos entonces que si φ es una distribución par,

$$\mathcal{F}\{\varphi + \mathcal{F}\{\varphi\}\} = \mathcal{F}\{\varphi\} + \mathcal{F}\{\mathcal{F}^{-1}\{\varphi\}\} = \mathcal{F}\{\varphi\} + \varphi,$$

lo cual nos dice que, para cualquier distribución par φ , la distribución $\varphi + \mathcal{F}\{\varphi\}$ es igual a su transformada.

Proposición 6.5 Si $\varphi \in \overline{\mathcal{S}}^*$ es una distribución impar, entonces

$$\mathcal{F}\{\varphi\} = -\mathcal{F}^{-1}\{\varphi\} \ .$$

Demostración Ejercicio.

Ejemplo Sea f(t) = 1. f(t) es de crecimiento lento, luego $\overline{f} = \overline{1}$ existe. Consideremos $\mathcal{F}\{\overline{f}\} = \mathcal{F}\{\overline{1}\}$. Sabemos que, por ser δ una distribución par,

$$\mathcal{F}^{-1}\{\delta\} = \mathcal{F}\{\delta\} = \frac{1}{\sqrt{2\pi}} ,$$

luego

$$\frac{1}{\sqrt{2\pi}}\mathcal{F}\{\overline{1}\} = \delta .$$

Entonces

$$\frac{1}{\sqrt{2\pi}}\mathcal{F}\{\overline{1},\omega\} = \delta(\omega) , \qquad (6.8)$$

$$\mathcal{F}\{\delta\} = \frac{1}{\sqrt{2\pi}} \ . \tag{6.9}$$

Y puesto que de modo puramente simbólico escribimos

$$\begin{split} \mathcal{F}\{\overline{1},\omega\} &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} 1 \cdot e^{i\omega t} \, dt \ , \\ \mathcal{F}\{\delta\} &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta(t) e^{i\omega t} \, dt \ , \end{split}$$

obtenemos las expresiones (en rigor incorrectas):

$$\delta(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} dt , \qquad (6.10)$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta(t)e^{i\omega t} dt = \frac{1}{\sqrt{2\pi}} . \tag{6.11}$$

Observemos, sin embargo, que aun cuando la integral en el lado derecho de (6.10) no existe en el sentido ordinario, uno puede escribir

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\cos \omega t + i \sin \omega t) dt = \frac{2}{2\pi} \int_{0}^{\infty} \cos \omega t dt ,$$

donde hemos usado el valor principal de la integral de sen ωt :

$$\int_{-\infty}^{\infty} \sin \omega t \, dt = \lim_{K \to \infty} \int_{-K}^{K} \sin \omega t \, dt = 0.$$

Y como la integral de Cesàro de $\cos \omega t$ es

$$\int_{0}^{\infty} \cos \omega t \, dt = \begin{cases} 0 & \text{si } \omega \neq 0 \\ \infty & \text{si } \omega = 0 \end{cases},$$

encontramos una cierta consistencia con el resultado (6.10).

Análogamente a lo que ocurre en el espacio de funciones, se tiene el siguiente par de proposiciones para derivadas de distribuciones:

Proposición 6.6 Sea $\varphi \in \overline{\mathcal{S}}^*$. Entonces

$$(\mathcal{F}\{\varphi\})^{(n)} = \mathcal{F}\{\overline{(it)^n}\,\varphi\}\ . \tag{6.12}$$

Demostración

$$\langle (\mathcal{F}\{\varphi\})^{(n)}, x \rangle = (-1)^n \langle \mathcal{F}\{\varphi\}, x^{(n)} \rangle = (-1)^n \langle \varphi, \mathcal{F}\{x^{(n)}\} \rangle$$

$$= (-1)^n \langle \varphi, (-it)^n \mathcal{F}\{x\} \rangle = \langle \overline{(it)^n} \varphi, \mathcal{F}\{x\} \rangle$$

$$= \langle \mathcal{F}\{\overline{(it)^n} \varphi\}, x \rangle .$$

Así

$$(\mathcal{F}\{\varphi\})^{(n)} = \mathcal{F}\{\overline{(it)^n}\,\varphi\} \in \overline{\mathcal{S}}^*$$
.

Proposición 6.7

$$\mathcal{F}\{\varphi^{(n)}\} = \overline{(-i\omega)^n} \,\mathcal{F}\{\varphi\} \ . \tag{6.13}$$

Demostración Ejercicio.

Observemos que si f es una función de crecimiento lento, entonces $\mathcal{F}\{\overline{f}\}$, considerada como una función, no lo es necesariamente. Por ejemplo, f(t)=1 es de crecimiento lento, pero $\mathcal{F}\{\overline{1}\}=\sqrt{2\pi}\,\delta$ no lo es.

Por otra parte, en general, las funciones $1, t, t^2, \ldots$, no tienen transformada de Fourier (no existe $\int_{-\infty}^{\infty} |f|$). Sin embargo, sí la tienen $\overline{1}, \overline{t}, \overline{t^2}, \ldots$, a saber:

$$\mathcal{F}\{\overline{it^n}\} = (\mathcal{F}\{\overline{1}\})^{(n)} = \sqrt{2\pi}\,\delta^{(n)}$$

Vale decir, ¡hemos ampliado (en algún sentido) el espacio de funciones que tienen transformada de Fourier!

Consideremos ahora la distribución δ_a tal que $\langle \delta_a, x(t) \rangle = x(a)$. Entonces

$$\langle \mathcal{F}\{\delta_a\}, x\rangle = \langle \delta_a, \mathcal{F}\{x, \omega\}\rangle = \left\langle \delta_a, \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t)e^{i\omega t} dt \right\rangle$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t)e^{iat} dt = \left\langle \frac{1}{\sqrt{2\pi}} e^{iat}, x \right\rangle ,$$

es decir,

$$\mathcal{F}\{\delta_a\} = \frac{1}{\sqrt{2\pi}} e^{iat} \ . \tag{6.14}$$

Sustituyendo a por -a:

$$\mathcal{F}\{\delta_{-a}\} = \frac{1}{\sqrt{2\pi}} e^{-iat} \ .$$

Luego

$$\mathcal{F}\{\delta_a + \delta_{-a}\} = \frac{2}{\sqrt{2\pi}\cos(at)}$$

У

$$\mathcal{F}\{\delta_a - \delta_{-a}\} = \frac{2i}{\sqrt{2\pi}} \operatorname{sen}(at) .$$

En consecuencia,

$$\mathcal{F}\{\overline{\cos(at)}\} = \sqrt{\frac{\pi}{2}}(\delta_a + \delta_{-a}) = \mathcal{F}^{-1}\{\overline{\cos(at)}\}, \qquad (6.15)$$

$$\mathcal{F}\{\overline{\operatorname{sen}(at)}\} = -i\sqrt{\frac{\pi}{2}}(\delta_a - \delta_{-a}) = -\mathcal{F}^{-1}\{\overline{\operatorname{sen}(at)}\}, \qquad (6.16)$$

donde hemos usado el hecho de que $\delta_a + \delta_{-a}$ es una distribución par y que $\delta_a - \delta_{-a}$ es impar. En textos de Física encontraremos las relaciones (6.15) y (6.16) en la forma:

$$\mathcal{F}\{\cos(\omega_0 t), \omega\} = \sqrt{\frac{\pi}{2}} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] ,$$

$$\mathcal{F}\{\sin(\omega_0 t), \omega\} = -i\sqrt{\frac{\pi}{2}} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] .$$

Vale decir, al graficar el espectro de frecuencias de $\cos(\omega_0 t)$ tendríamos dos peaks, en $\pm \omega_0$:

y en el caso de sen $(\omega_0 t)$ el peak en $-\omega_0$ sería negativo:

Terminemos este Capítulo encontrando una representación útil para la delta. Consideremos la función "dientes de sierra":

$$f(t) = \begin{cases} -\frac{1}{2\pi}(t+\pi) & -\pi \le t < 0\\ 0 & t = 0\\ -\frac{1}{2\pi}(t-\pi) & 0 < t \le \pi \end{cases}$$

La función es periódica:

$$f(t+2m\pi) = f(t) \quad \forall \ m \in \mathbb{Z} \ .$$

Es pues expandible en una serie de Fourier impar:

$$f(t) = \sum_{\nu=1}^{\infty} b_{\nu} \operatorname{sen}(\nu t) ,$$

con

$$b_{\nu} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t') \operatorname{sen}(\nu t') dt' = \frac{1}{\pi \nu} ,$$

entonces

$$f(t) = \frac{1}{\pi} \sum_{\nu=1}^{\infty} \frac{\operatorname{sen}(\nu t)}{\nu} .$$

Consideremos la distribución asociada

$$\overline{f(t)} = \frac{1}{\pi} \sum_{\nu=1}^{\infty} \overline{\left(\frac{\operatorname{sen}(\nu t)}{\nu}\right)} ,$$

y derivémosla:

$$\left(\overline{f(t)}\right)' = \frac{1}{\pi} \sum_{\nu=1}^{\infty} \left(\overline{\frac{\operatorname{sen}(\nu t)}{\nu}}\right)' = \frac{1}{\pi} \sum_{\nu=1}^{\infty} \overline{\left(\frac{\operatorname{sen}(\nu t)}{\nu}\right)'} = \frac{1}{\pi} \sum_{\nu=1}^{\infty} \overline{\cos(\nu t)} \ .$$

Por otra parte,

$$\left(\overline{f(t)}\right)' = \sum_{n=-\infty}^{\infty} \delta_{2n\pi} - \frac{1}{2\pi}$$

(la demostración queda como ejercicio), luego

$$\frac{1}{\pi} \sum_{\nu=1}^{\infty} \overline{\cos(\nu t)} = \sum_{n=-\infty}^{\infty} \delta_{2n\pi} - \frac{1}{2\pi} ,$$

es decir,

$$\sum_{n=-\infty}^{\infty} \delta_{2n\pi} = \overline{\frac{1}{2\pi}} + \frac{1}{\pi} \sum_{\nu=1}^{\infty} \overline{\cos(\nu t)} .$$

Restringiéndonos al intervalo $[-\pi,\pi],$ encontramos la relación:

$$\delta(t) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{\nu=1}^{\infty} \cos(\nu t) , \quad t \in [-\pi, \pi] . \tag{6.17}$$