Computer Science 181, Homework 4

Michael Wu UID: 404751542

April 30th, 2018

Postponed Problem 5

Assume for contradiction that this language

$$L = \{0^{i}1^{j}0^{k} \mid i, j, k \ge 0 \land k = |i - j|\}$$

is finite state. Then by the pumping lemma if a language is finite state then there exists some p such that for any string s in L with |s| > p, s can be split into three strings x, y, and z where s = xyz, $|y| \ge 1$, $|xy| \le p$, and $xy^*z \subseteq L$. Take the string $0^p1^p \in L$, and note that xy must be a string made entirely of 0's, since $|xy| \le p$. Additionally, y must be in 0^+ , since $|y| \ge 1$. Let $x = 0^a$ and $y = 0^b$ for some constants $a \ge 0$ and b > 0. Then z must be $0^{p-a-b}1^p$. By the pumping lemma $xy^*z \subseteq L$, so

$$\{0^a(0^b)^*0^{p-a-b}1^p \mid a \ge 0 \land b > 0\} \subseteq L$$

This can be stated equivalently as

$$\{0^{p-b}0^{xb}1^p \mid \forall x \in \{0, 1, 2, \ldots\} \land b > 0\} \subseteq L$$

When x=2, this means that the string $0^{p+b}1^p \in L$ for some constant b>0. But in the definition of L, this string has the parameters i=p+b, j=p, and k=0. Thus $k \neq |i-j|$ and $0^{p+b}1^p \notin L$. This is a contradiction, so L cannot be finite state.

1 Problem 1

a) Always. The intersection of a finite language and any other language must be a finite language, and thus $L_f \cap L_{nfs}$ is finite state.

- b) Sometimes. $\{\} \cup L_{=}$ is not finite state but $\Sigma^* \cup L_{=}$ is finite state.
- c) Never. Non finite state languages are infinite languages, so there are an infinite number of strings in $L_{\rm nfs}$ that cannot be expressed through a finite state machine. Because $L_{\rm f}$ is finite, there aren't enough strings in $L_{\rm f}$ to simplify $L_{\rm nfs}$ into a finite state language. For example, consider the finite language L_x consisting of all the strings with length smaller than x. $L_x \cup L_{\rm nfs}$ would still be a non finite state language, as there would be no finite state machine to express the strings in $L_x \cup L_{\rm nfs}$ that have a length greater than x, since these are strings that are exclusively from $L_{\rm nfs}$. For any finite language $L_{\rm f}$ a similar argument could apply, as there must be a maximum length string in $L_{\rm f}$. After this maximum length, all the strings in $L_x \cup L_{\rm nfs}$ would come from $L_{\rm nfs}$ and could not be expressed through a finite state machine.

2 Problem 2

3 Problem 3

We can write a regular expression for this language L_3 , which shows that it is finite state. Let x be a string in the set

 $\{aaa, aab, aba, abb, baa, bab, bba, bbb\}$

and R be some constant. Then the regular expression

$$E_x = (\Sigma^* x \Sigma^* x^R \Sigma^*) \cup (\Sigma^* x^R \Sigma^* x \Sigma^*)$$

denotes a string in L_3 that contains a given x and x^R . Then we have that

$$L_3 = E_{aaa} \cup E_{aab} \cup E_{aba} \cup E_{abb} \cup E_{baa} \cup E_{bab} \cup E_{bba} \cup E_{bbb}$$

which is a regular expression that proves that L_3 is a finite state language.

4 Problem 4

a)

b) The leftmost derivation yields the following sequence.

S, A, aC, aSb, aAb, aaCb, aaSbb, aabb

 $\mathbf{c})$

d) The leftmost derivation yields the following sequence.

S, B, Db, aSb, aBb, aDbb, aaSbb, aabb

5 Problem 5

Given a starting state S the following context free grammar describes the language.

$$S \to LR$$

$$L \to aLb \mid \epsilon$$

$$R \to bRc \mid \epsilon$$