## Transient Effects in the Optical Pumping of Rubidium

Giacomo Resta

April 3, 2013

#### Transient Effects

- Measurements of re-population rate with varying,
  - Light Intensity
  - Vapor Temperature
  - Magnetic Field Tangent to Optical Axis
  - Magnetic Field Along Optical Axis
- Measurements of Rabi oscillation period with varying,
  - RF Amplitude
  - RF Frequency

# Energy Structure of Hydrogen-Like Atoms in a Magnetic Field $B_z$



### Photon Induced Energy Transitions in a Magnetic Field

Circularly-Polarized Light

Right-Handed 
$$\rightarrow \sigma^+$$
  
Left-Handed  $\rightarrow \sigma^-$ 

$$\Delta M_z = +1$$

$$\mathbf{B_z} \cdot \sigma^+ > 0$$
  $\Delta M_z = +1$   $\mathbf{B_z} \cdot \sigma^- < 0$   $\Delta M_z = +1$ 

$$\Delta M_z = -1$$

$$\mathbf{B}_{\mathbf{z}} \cdot \sigma^{+} < 0$$
  $\Delta M_{z} = -1$   $\Delta M_{z} = -1$   $\Delta M_{z} = -1$ 

#### Optical Pumping of Hydrogen

#### Right-Handed Circularly Polarized Light

$$\mathbf{B_z} \cdot \sigma^+ > 0$$

$$\Delta M_z = +1$$



### Optical Pumping of Hydrogen Following $B_z$ Reversal

Right-Handed Circularly Polarized Light

$$\mathbf{B_z} \cdot \sigma^+ < 0 \qquad \qquad \Delta M_z = -1$$



#### **Experiment Apparatus**



#### Photo-diode Voltage With B<sub>z</sub> Current



# Simulation of Optical Pumping of Atomic Models with Different Numbers of $M_7$ Levels



### Towards a Functional Approximation for Rubidium Signal

Assuming a Hydrogen like, three  $M_z$  level structure,

$$\frac{dn_1}{dt} = n_0 a_0$$

$$\frac{dn_0}{dt} = -n_0 a_0 + n_{-1} a_{-1}$$

$$\frac{dn_{-1}}{dt} = -n_{-1} a_{-1}$$

hence,

$$\frac{d^2n_0}{dt^2} = -(a_{-1} + a_0)\frac{dn_0}{dt} - a_{-1}a_0n_0$$

Assuming  $a_{-1} = a_0$ ,

$$I(x) = c_4 - c_0(t + c_1) \exp(-c_2(t - c_3))$$

#### Rabi Oscillations Signal Overview



#### Rabi Oscillation Period vs RF Amplitude

