

Transformers

- Static electromagnetic device which converts AC from one voltage to another without change in frequency.
- Consists of two windings that are electrically isolated from each other.
- AC voltage when applied to one winding sets up alternating flux in the magnetic core.
- This flux links with the other magnetic core and induces emf which circulates current when connected to load.

- Winding to which input is applied is called primary winding.
- Winding which is connected to the load is called secondary winding.

Principle of Operation

- Alternating voltage V_p is applied at primary coil, a current I_p flows producing magnetic flux in the core.
- As per Faraday's laws of electromagnetic induction, self-induced emf is set up in primary given by,

$$E_p = -N_p \frac{d\phi}{dt}$$

- Assuming that there is no leakage flux, φ will link with each turn of secondary coil S.
- This sets up a mutually induced emf given by,

$$E_s = -N_s \frac{d\phi}{dt}$$

This emf will circulate current in the load circuit

Ideal transformer

- Core is highly permeable so that it requires very small magnetomotive force(mmf) to set up flux in the core.
- Leakage flux is zero, i.e. entire flux is confined to the core and links with both windings.
- Resistance of primary and secondary winding is negligible.
- There are no losses due to resistance, hysteresis and eddy currents.

For an ideal transformer,

$$I_p N_p = I_s N_s$$
 (mmf of the windings)
$$V_p I_p = V_s I_s$$

$$\frac{E_p}{E_s} = \frac{V_p}{V_s} = \frac{I_s}{I_p} = \frac{N_p}{N_s} = a \text{ (turns ratio)}$$

emf equation

emf induced due to change of main flux is

$$e_p = -N_p \frac{d\phi}{dt}$$

Main flux is

$$\phi = \phi_{\text{max}} \sin \omega t$$

$$e_p = -N_p \frac{d}{dt} (\phi_{\text{max}} \sin \omega t)$$

$$=-N_p\omega\phi_{\rm max}\cos\omega t$$

$$E_{p \max} = N_p \omega \phi_{\max}$$

rms value is given by,

$$E_p = \frac{E_{p \max}}{\sqrt{2}} = \frac{N_p \omega \phi_{\max}}{\sqrt{2}} = \frac{N_p 2\pi f \phi_{\max}}{\sqrt{2}}$$

$$=4.44 fN_p \phi_{\text{max}} \ volts$$

$$=4.44 fN_p B_m A_i volts$$

Emf in secondary is $= 4.44 fN_s B_m A_i \ volts$

- When a voltage is applied to the primary keeping the secondary open circuited, a current $I_m \sim 0$ phase shifted 90°(lagging) w.r.t the primary voltage would be present.
- The current I_m and induced flux are in phase.
- We already know that flux lags e_p by 90°.
- Therefore e_p lags v_p by 180°.

Construction

- 1. Magnetic circuit (core)
- 2. Electric circuit (primary and secondary windings)
- 3. Dielectric circuit consisting of insulation
- 4. Tank and accessories

1. Magnetic circuit(cores)

- Provides path to the flow of magnetic flux
- Cores are laminated to reduce eddy current loss
- The iron core is made of thin laminated silicon steel (2-3 % silicon)
- Transformers types based on magnetic circuit : a) core type b) shell type

Electric circuit

- Primary and secondary winding(copper)
- Insulation may be double cotton or single cotton with layer of enamel

Dielectric circuit

- Used to insulate conducting parts b/w magnetic and electric parts
- Insulators used are paper, bakelite or pressboard

Tank and accessories

Tank

 Assembled transformer with magnetic frame and windings are housed in proper tank that contains transformer oil. Tanks are fabricated from welded sheet steel. Lids from cast iron. Water-proof gasket used at joints

Accessories

- Conservator:- airtight cylindrical metal drum supported horizontally. Used for oil expansion and contraction volume compensation while over loading.
- Breather:- Mainly calcium chloride or silica gel which extracts moisture from the air which enters the tank during expansion and contraction of air.
- Bushing:- Current carrying rod and porcelain cylinder for isolation.

Losses in a transformer

- Iron losses
 - caused by varying magnetization
 - constant
 - sub divided as hysteresis and eddy current losses
 - Hysteresis loss: The energy used by core for alignment with the varying flux is dissipated as heat within the iron core.
 - Eddy current loss: Varying magnetic field cuts the conducting core material and induces a voltage into it.
 The induced voltage causes random currents to flow through the core which dissipates power in the form of heat.
- Copper loss: I^2R loss

Efficiency

$$efficiency, \eta = \frac{output\ power}{input\ power}$$

input power = output power + total losses

 $total\ losses = iron\ losses + copper\ losses$

$$=W_i+(I_p^2R_p+I_s^2R_s)$$

output power = $V_s I_s \cos \theta$

$$\therefore efficiency(\eta) = \frac{V_s I_s \cos \theta}{V_s I_s \cos \theta + W_i + (I_p^2 R_p^2 + I_s^2 R_s^2)}$$

Condition for maximum efficiency

Total copper losses= $I_s^2 \overline{R_s}$

$$\eta = \frac{V_s I_s \cos \theta}{V_s I_s \cos \theta + W_i + I_s^2 \overline{R}_s}$$

efficiency maximum when the denominator is minimum, i.e.

$$\frac{d}{dI_s} \left(V_s \cos \theta + \frac{W_i}{I_s} + I_s \overline{R}_s \right) = 0$$

$$W_i = I_s^2 \overline{R}_s$$

Total copper loss= iron loss

All day efficiency

```
all day efficiency, \eta = \frac{output \ in \ kWh \ over \ 24 \ hours}{input \ in \ kWh \ over \ 24 \ hours}
= \frac{output \ in \ kWh \ over \ 24 \ hours}{output \ in \ kWh \ over \ 24 \ hrs + 24 * W_i + (copper \ losses \ in \ kWh \ in \ 24 \ hrs)}
```