y		3	F/3	3
7 (750)	10	*	6	7
	2	0		
	¢	*		
١.	*	I		
6	1/5/			1

I. E. S. " SAN ISIDRO "

Ca	lifica	ciór
\sim	11100	0101

Asignatura			Fecha	
Alumno/a			Curso	
	Apellidos	Nombre		

2- Demvestra que si la senie Zon converge y largents de 1 entonces la serie converge absolutamente.

Sabemos que una serie de nimeros complejos converge si y solo si convergen su parte real y su park imaginaria. Por tanto, Z Re(cn) y Z Im(cn) convergen. Ademais $arg(c_n) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. (omo

Cn = |Cn/. (&os(arg(cn)) + i sen(arg(cn))) = Re(cn) + i Im(cn) yel cos x >0 si xe(-及)型) => Re(cn) > 0

Por tambo Z Re(cn) converge absolutamente

Por otro kdo $\frac{Im(c_n)}{Re(c_n)} = tg(arg(c_n)) \Rightarrow Jm(c_n) = tg(arg(c_n)) Re(c_n)$

| Im (cn) = | tg(arg(cn)) | | Re(cn) = tg(larg(cn)) . Re(cn) < tg(x). Re(cn) fg(x) arecreate

 $S_{i \times e\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} | t_{g \times i}| = \begin{cases} t_{g \times i} & \text{if } i = 1 \\ t_{g \times i} & \text{if } i = 1 \end{cases}$ $| t_{g \times i}| = \begin{cases} t_{g \times i} & \text{if } i = 1 \\ t_{g \times i} & \text{if } i = 1 \end{cases}$ $| t_{g \times i}| = \begin{cases} t_{g \times i} & \text{if } i = 1 \\ t_{g \times i} & \text{if } i = 1 \end{cases}$ $| t_{g \times i}| = \begin{cases} t_{g \times i} & \text{if } i = 1 \\ t_{g \times i} & \text{if } i = 1 \end{cases}$

Como la serie [Re(cn) converge y tgla) es una constante positiva entonces la serie [Im(cn) converge absolutamente.

Par tento

|Cn|=|Re(cn)+i Im(cn)| \le |Re(cn)|+|Im(cn)|. (omo \(\text{ERe(cn)} \)

g \(\text{Im(cn)} \) convergen absolutamente entonces

\[\text{Z(n)} \) converge.

B. Supongamos que las series Icn y Ech convergen.

Demvestra que si Re(cn) >0 entonces la serie I |cn|2 también

Converge.

Sabemos que una serie de números compleses converge si y solo si las serie rde su parte real y la serie de su parte imaginaria converge

Por tanto Z Re(cn), Z Im(cn), Z Re(cn) y Z Im(cn)
convergen.

Sabemos que si una serie númerica de reales an 30 converge. enlonces ha serire de sus cuadrados an también converge.

Esto es claro porque si $\sum a_n$ converge entonces $a_n \rightarrow 0$ y a partir de un no sufricientemente grande $a_n < 1 \Rightarrow a_n^2 = a_n < 1$.

Como Ian converge, por el criterio de comporación Zañ en estanbién converge.