

LVM

Logical Volume Manager

Linux OS

Recap: Fundamentals: Unix architecture

Device driver:

 It is a software that can perform I/O (input/output) with one type of hardware

Major number:

 Points to the Name of device driver loaded in the kernel

Minor number:

 Points to the instance of a device associated with a particular device driver

Backward compatibility:

• When a new s/w is released, it continues to support features available in previous 1 or 2 versions.

Recap: RAID theory

- RAID is a storage virtualization technology which is used to organize multiple drives into various arrangements to meet certain goals like reliability, availability, and serviceability (RAS).
- RAID can be categorized into Software RAID and Hardware RAID.
- In software RAID, a software (logical volume manager) implements RAID concepts.
- In case of hardware RAID, there is a dedicated controller and processor present inside the disks that manage the memory.

Recap: RAID theory (Traditional)

RAID 0	Concatenation, i.e. appending at the bottom of existing device			
RAID 1	Stripe / Striping data, i.e. Spread evenly across different disks			
RAID 2	Mirroring, i.e. maintain 2 or more identical copies of data			
RAID 3	Single Parity i.e. stripped user data, Single dedicated parity disk			
RAID 4	Stripped user data with multiple but dedicated Parity disks holding same parity values			
RAID 5	Stripped data, Single Parity information that is stored on all disks equally			
RAID 6	Multiple Circular Parity, Stripped data, Multiple Parity information, that is stored in all disks equally			

Recap: RAID theory (Operational)

RAID 0	Stripe / Striping data, i.e. user data is spread evenly across different disks
RAID 1	Mirroring, i.e. maintain 2 or more identical copies of data, data may or may not be stripped
RAID 4	Multiple Parity i.e. stripped user data, multiple parity disk, group parity
RAID 5	Stripped data, Single Parity information, parity information is circularly stored on all disks (equally)
RAID 6	Stripped data, two or more different Parity information, that is stored circularly on all disks (equally)
RAID 10	(RAID 1 + 0): Stipe and mirror the stripe

Reference: https://www.booleanworld.com/raid-levels-explained

Introduction to LVM in Linux

Dynamic Storage Allocation

LVM allows you to resize logical volumes dynamically, enabling efficient use of storage by allocating space according to needs without downtime.

Flexible Backup Solution

LVM snapshots facilitate creating backup copies of the system instantly, providing a reliable point-in-time backup solution for data protection.

Simplified Volume Management

With LVM, managing disk space becomes easier, allowing for the quick creation, deletion, and modification of volume groups and logical volumes.

LVM Architecture

 Logical volume manager (LVM) software introduces an extra layer between the operating system and device drivers (thus the disk hardware)

LVM Components

- Physical Volume (PV): A storage device initialized for LVM use.
- Volume Group (VG): A pool of storage created from one or more physical volumes.
- Logical Volume (LV): A virtual partition within a volume group used by the operating system.
- Physical Extent (PE): The smallest unit of storage on a physical volume.
- Logical Extent (LE): The smallest unit of storage on a logical volume.
- Volume Group Name (VG Name): The name assigned to a volume group.
- LVM Metadata: Configuration information about physical volumes, volume groups, and logical volumes.
- LVM Snapshots: Point-in-time copies of logical volumes for backup or recovery.
- LVM Thin Provisioning: Allows for on-demand allocation of storage space to logical volumes.

Physical Volume (PV)

- pvcreate command is used to convert the disk or disk partition into a physical volume (PV)
- When PV create runs, Disk partition is broken into two regions
 - Private region: This stores the meta-data associated with Volume manager such as
 - Name of the Volume group this disk/partition belongs to
 - Name of the logical volume created on this disk/partition
 - Numbers of the physical extents allocated to the given disk/partition
 - Type of logical volume (RAID theory)
 - Public region: This is the usable portion of the disk
- The Public region is further broken into uniform sized allocation units called as physical extents (PE)
- Each physical extent carries a unique identifier
- Default value of a physical extent (PE) is 4 MB.

Volume Group (VG)

SOFTENGER Strive to Excel

- Physical volumes are combined into volume groups (VGs). This creates a pool of disk space out of which logical volumes can be allocated.
- Within a volume group, the disk space available for allocation is divided into units of a fixed-size called logical extents (LE). An LE is the smallest unit of space that can be allocated.
- A logical volume is allocated into logical extents of the same size as the physical extents. The extent size is same for all logical volumes in the volume group.

DISK Vs DISK PARTITION

- It is generally recommended that you create a single partition that covers the whole disk to label as an LVM physical volume for the following reasons:
 - Administrative convenience
 - It is easier to keep track of the hardware in a system if each real disk only appears once.
 - This becomes particularly true if a disk fails.
 - In addition, multiple physical volumes on a single disk may cause a kernel warning about unknown partition types at boot-up.
 - Striping performance
 - LVM cannot tell that two physical volumes are on the same physical disk.
 - If you create a striped logical volume when two physical volumes are on the same physical disk, the stripes could be on different partitions on the same disk.
 - This would result in a decrease in performance rather than an increase.

Logical Volume (LV)

SOFTENGER Strive to Excel

- In LVM, a volume group is divided up into logical volumes.
- There are three types of LVM logical volumes: linear volumes, striped volumes, and mirrored volumes.

Types of Logical Volumes

- A *linear volume* aggregates space from one or more physical volumes into one logical volume. For example, if you have two 60GB disks, you can create a 120GB logical volume.
- The physical storage is concatenated.
- Example:
 - We can take different extents shown from different disks to create a linear logical volume as shown in the diagram.

Types of Logical Volumes

• A *Stripped volume* aggregates space from one or more Logical extents into one logical However The logical extents will be from physical volumes within the VG.

• Example:

- We can take different extents shown from different disks to create a linear logical volume as shown in the diagram.
- Each LE is made up of two PE's
- Data is first written in LE1 disk1, followed by LE2 disk2, followed by LE3 disk3, the again back to disk-1, LE4 and so on

Types of Logical Volumes

- A *Mirrored volume* aggregates space from two or more Logical extents into one logical volume.
- The logical extents will be from PE from different disks within the VG.
- Example:
 - We can take different extents shown from different disks to create a linear logical volume as shown in the diagram.
 - Each LE is made up of two PE's
 - Data is first written in LE1 disk1, followed by LE2 disk2, followed by LE3 disk3, the again back to disk-1, LE4 and so on

LVM Component Relationships

lvmscandisk, pvs, pvcreate, pvdisplay

- lvmscandisk
 - To scan the system and identify disks connected to the machine.
 - It also detects if any PV. VG. LV exists on the system
- pvs
 - scan physical volume available on the machines
 - It checks to see if a private region is defined for the physical disk/partition
- pvcreate
 - Create the public and private region on disk or a partition of disk.
 - Syntax: pvcreate "name of the device (disk or partition)"
 - Example:
 - pvcreate /dev/sdb
 - pvcreate /dev/sdb2
- pvdisplay
 - Display the details for pv's available on the machine

lvmscandisk, pvs, pvcreate, pvdisplay


```
root@Sipl-183:~
[root@sip1-183 ~]#
[root@Sipl-183 ~]# pvcreate /dev/sdb1 /dev/sdb
      sdb1 sdb2 sdb3
sdb
[root@Sipl-183 ~]# pvcreate /dev/sdb1 /dev/sdb2
[root@Sipl-183 ~] # pvcreate /dev/sdb1 /dev/sdb2
  Physical volume "/dev/sdb1" successfully created.
  Physical volume "/dev/sdb2" successfully created.
[root@Sipl-18C3 ~] # pvs
             VG Fmt Attr PSize
                                   PFree
  /\text{dev/sda2} rl lvm2 a-- <27.95q 4.00m
  /dev/sdb1 lvm2 --- 10.00g 10.00g
  /dev/sdb2 lvm2 --- 10.00g 10.00g

    root@SipI-183:∼

[root@Sipl-183 ~]# pvdisplay /dev/sdb1 /dev/sdb2
  "/dev/sdb1" is a new physical volume of "10.00 GiB"
  --- NEW Physical volume
  PV Name
                        /dev/sdb1
  VG Name
                        10.00 GiB
  PV Size
  Allocatable
                        NO
  PE Size
                        0
  Total PE
                        0
  Free PE
  Allocated PE
  PV UUID
                        sAYHGt-WiZz-WUSL-2f8f-cEhK-sfSL-eN1pSj
```

vgs, vgcreate, vgdisplay

- vgs
 - To scan the system and identify volume groups available on the machine
 - To achieve this the system reads the "private area" in all physical volumes
- vgcreate
 - Create a volume group using one or more physical volumes (PV).
 - Syntax: vgcreate "Vg name" " one or more PV names"
 - Example:
 - vgcreate test_vg /dev/sdb1 /dev/sdd
 - Vgcreate vg00 /dev/sdb1
- vgdisplay
 - Display the details for volume group available on the machine

VGS / VGCREATE / VGDISPLAY


```
root@Sipl-183:~
   login as: root
   root@192.168.25.183's password:
Activate the web console with: systemctl enable --now cockpit.socket
Last login: Tue Jan 21 12:58:11 2025 from 192.168.20.99
[root@Sipl-183 ~]# pvs
  _{\rm PV}
              VG Fmt Attr PSize
                                     PFree
  /dev/sda2 rl lvm2 a-- <27.95g 4.00m
  /dev/sdbl
                            10.00g 10.00g
                 1vm2 ---
  /dev/sdb2
                 lvm2 ---
                             10.00g 10.00g
[root@Sip1-183 ~]#
[root@Sipl-183 ~] # vgcreate myvg /dev/sdbl /dev/sdb2
 Volume group "mvvg" successfully created
[root@Sipl-183 ~]# vgs
       #PV #LV #SN Attr
                            VSize
                  0 wz--n-
                             19.99g 19.99g
                   0 \text{ wz}--n- < 27.95 \text{ q} 4.00 \text{ m}
root@Sipl-183 ~| # vgdisplav
 VG Name
                        myvg
 System ID
 Format
                        1 vm2
 Metadata Areas
 Metadata Sequence No
                        read/write
 VG Access
 VG Status
                        resizable
 MAX LV
 Cur LV
 Open LV
                        0
 Max PV
 Cur PV
 Act PV
 VG Size
                        19.99 GiB
 PE Size
                        4.00 MiB
 Total PE
                        5118
 Alloc PE / Size
                        0 / 0
 Free PE / Size
                        5118 / 19.99 GiB
 VG UUID
                        PlcMFE-KDoR-JJ7h-11BO-GXV2-Knv1-PvODOY
```

Important options while creating VG

Option	Meaning
-S	Physical Extent Size
-p	Maximum number of physical volumes
-1	Maximum number of logical volumes
-alloc	allocation policy (either contiguous, anywhere, or cling)

LVS / LVCREATE / LVDISPLAY/LVSCAN

- Ivs
 - To scan the system and identify volume groups available on the machine
 - To achieve this the system reads the "private area" in all physical volumes
- lvcreate
 - Create linear volume
 - lvcreate -L 5G -n lvol01 vg00
 - Create a stripped volume
 - lvcreate -L 5G -I 4096 -i 2 -n stripped-Vol vg00
 - Create mirrored volume
 - lvcreate -L 4G -i 2 -n mirr-vol vg00
- lvgdisplay
 - Display the details for logical volumes available on the machine

LVS / LVCREATE / LVDISPLAY


```
[root@localhost ~]# vqs vq00
  VG #PV #LV #SN Attr VSize VFree
  vq00 2 0 0 wz-n-19.99q 19.99q
[root@localhost ~]#
[root@localhost ~]# lvcreate -L 5G -n lvol01 vq00
  Logical volume "lvol01" created.
[root@localhost ~]# lvcreate -L 5G -I 4096 -i 3 -n stripped-Vol vg00
  Rounding size 5.00 GiB (1280 extents) up to stripe boundary size 5.00 GiB (128
1 extents).
  Number of stripes (3) must not exceed number of physical volumes (2)
[root@localhost ~]# echo $?
[root@localhost ~]# lvcreate -L 5G -I 4096 -i 2 -n stripped-Vol vg00
  Logical volume "stripped-Vol" created.
[root@localhost ~]# lvcreate -L 4G -i 2 -n mirr-vol vg00
  Using default stripesize 64.00 KiB.
  Logical volume "mirr-vol" created.
[root@localhost ~]# lvs
                   Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync
  _{
m LV}
               VG
 Convert
  lvol01 vq00 -wi-a---- 5.00q
  mirr-vol vq00 -wi-a---- 4.00q
  stripped-Vol vq00 -wi-a---- 5.00q
[root@localhost ~]#
```

LVS / LVCREATE / LVDISPLAY


```
[root@localhost ~]# lvdisplay
 --- Logical volume ---
 LV Path
                        /dev/vg00/lvol01
                        lvol01
 LV Name
                        vq00
 VG Name
                        6iL1wo-16cz-mzku-0J1E-YutC-IDWW-ksCaHC
 TA AAID
 LV Write Access read/write
 LV Creation host, time localhost, 2020-04-05 16:26:29 +0530
 LV Status
                        available
 # open
 LV Size
                        5.00 GiB
 Current LE
                        1280
 Segments
 Allocation
                        inherit.
```

LVSCAN / MKFS / MOUNT

- Ivscan
 - Show the list of volumes available
- mkfs
 - Create file system on the logical volume
 - mkfs /dev/vg00/lvol01
- Mount file system
 - Mkdir /u09
 - Mount /dev/vg00/lvol1 /u09

Important options while creating LV

Option	Meaning
-I	Stripe size
-m	Number of mirrors
-n	Name of the logical volume
-L	Size of the logical volume (M for MB, G for GB)
-S	Snapshot
type	Type of RAID www.softenger.com

LVSCAN / MKFS


```
root@Sipl-183:~
[root@Sip1-183 ~]# lvscan
                    '/dev/rl/root' [9.31 GiB] inherit
  ACTIVE
 ACTIVE
                    '/dev/rl/swap' [13.97 GiB] inherit
                    '/dev/rl/var' [<4.66 GiB] inherit
 ACTIVE
[root@Sip1-183 ~]# vgs
  VG #PV #LV #SN Attr VSize
                                  VFree
                 0 wz--n- 19.99g 19.99g
                 0 \text{ wz}--n- < 27.95q 4.00m
[root@Sip1-183 ~] # lvcreate -L 15G -n /dev/myvg/LVMl
    wisel welcome WINMIN excepted.
[root@Sip1-183 ~1# lvscan
  ACTIVE
                   '/dev/myvq/LVM1' [15.00 GiB] inherit
                    '/dev/rl/root' [9.31 GiB] inherit
 ACTIVE.
                    '/dev/rl/swap' [13.97 GiB] inherit
  ACTIVE
                    !/dev/rl/war! [<4 66 GiB] inherit
[root@Sip1-183 ~] # mkfs.ext4 /dev/myvg/LVM]
mke2fs 1.46.5 (30-Dec-2021)
Creating filesystem with 3932160 4k blocks and 983040 inodes
Filesystem UUID: f951e40d-9e4f-464a-8638-e06dfd5f7ee7
Superblock backups stored on blocks:
        32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208
Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
```

LVSCAN / LVEXTEND /RESIZE2FS for Filesystem resizing

- Lvscan
 - Show the list of logical volumes available
 - Lvscan /dev/myvg/LVM1
- Lvextend
 - To extend logical volumes
 - Lvextend –L 18G /dev/myvg/LVM1
- Resize2fs
 - To resize filesystem of extended logical volume.
 - resize2fs /dev/myvg/LVM1
- **NOTE** :- resize2fs command is specifically used for resizing ext2, ext3, and ext4 filesystems. For XFS filesystems, the appropriate command to resize the filesystem is xfs_growfs.

LVSCAN / LVEXTEND /RESIZE2FS for Filesystem resizing


```
root@Sipl-183:~
```

```
[root@Sipl-183 ~] # lvs /dev/myvg/LVMl
                      LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
 LVM1 myvq -wi-a---- 15.00q
[root@Sipl-183 ~]# lvextend -L 18G /dev/myvg/LVM1
 Size of logical volume myvg/LVM1 changed from 15.00 GiB (3840 extents) to 18.00 GiB (4608 extents).
 Logical volume myvg/LVMl successfully resized.
[root@Sip1-183 ~] # resize2fs /dev/myvg/LVMl
resize2fs 1.46.5 (30-Dec-2021)
Resizing the filesystem on /dev/myvg/LVM1 to 4718592 (4k) blocks.
The filesystem on /dev/myvg/LVMl is now 4718592 (4k) blocks long.
[root@Sipl-183 ~]# lvs /dev/myvg/LVMl
                      LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
           Attr
 LVMl myvg -wi-a---- 18.00g
[root@Sip1-183 ~]# ||
```

LVSCAN / LVREDUCE /RESIZE2FS for Filesystem resizing

- While reducing LVM we must reduce first filesystem then LVM.
- lvscan
 - Show the list of logical volumes available
 - Lvscan /dev/myvg/LVM1
- E2fsck
 - To check filesystem
 - e2fsck /dev/myvg/LVM1
- Resize2fs
 - To resize filesystem of reduce logical volume.
 - resize2fs /dev/myvg/LVM1 10 (size we want re-assign)
- Lvreduce
 - To reduce logical volume.
 - Lvreduce –L 10G /dev/sda/LVM1
- Note:- ext2, ext3, and ext4 filesystems support the ability to be reduced in size, whereas XFS filesystems do not support shrinking

LVSCAN / LVREDUCE /RESIZE2FS for Filesystem resizing


```
    root@SipI-183:∼
```

```
[root@Sip1-183 ~]# lvs /dev/myvg/LVM1
                      LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
 LVM1 mvvg -wi-a---- 18.00g
[root@Sip1-183 ~]# e2fsck /dev/myvg/LVM1
eZISCK 1.46.5 (30-DeC-ZUZI)
/dev/myvg/LVM1: clean, 11/1179648 files, 101703/4718592 blocks
[root@Sip1-183 ~] # resize2fs /dev/myvg/LVMl 10G
resize2fs 1.46.5 (30-Dec-2021)
Resizing the filesystem on /dev/myvg/LVM1 to 2621440 (4k) blocks.
The filesystem on /dev/myvg/LVMl is now 2621440 (4k) blocks long.
[root@Sip1-183 ~] # lvreduce -L 10G /dev/myvg/LVM1
 File system ext4 found on myvg/LVMl.
  File system size (10.00 GiB) is equal to the requested size (10.00 GiB).
  File system reduce is not needed, skipping.
  Size of logical volume myvg/LVM1 changed from 18.00 GiB (4608 extents) to 10.00 GiB (2560 extents).
 Logical volume myvg/LVMl successfully resized.
[root@Sip1-183 ~]# lvs /dev/myvg/LVM1
                      LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
      VG Attr
 LVM1 myvg -wi-a---- 10.00g
[root@Sip1-183 ~]#
```

LVSCAN/SNAPSHOT of LVM /LVMERGE to Rollback

- While creating Snapshot your Lvm and Snapshot should on same VG.
- lvscan
 - Show the list of logical volumes available
 - Lvscan /dev/myvg/LVM1
- Lvcreate
 - To create Snapshot
 - Lvcreate –L 10G –s –n /dev/myvg/LVM1snap /dev/myvg/LVM1
- Lvconvert --merg
 - To Rollback the snapshot
 - Lvconvert --merg /dev/myvg/LVM1snap (Name of SNAPSHOT)

LVSCAN/SNAPSHOT of LVM /LVMERGE to Rollback


```
root@SipI-183:∼
```

```
[root@Sip1-183 ~] # lvs /dev/myvg/LVMl
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
 LVM1 mvvg -wi-a---- 18.00g
[root@Sipl-183 ~] | lvcreate -L 10G -s -n /dev/myvg/LVMsnap /dev/myvg/LVM1
 Logical volume "LVMsnap" created.
[root@Sip1-183 ~]# lvs
                  LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
 _{\rm LV}
     VG Attr
 LVM1
        mvvg owi-a-s--- 18.00g
 LVMsnap myvg swi-a-s--- 10.00g
                                 LVM1 0.00
 root rl -wi-ao---- 9.31g
 swap rl -wi-ao---- 13.97g
        rl -wi-ao---- <4.66g
 var
[root@Sip1-183 ~]# lvconvert --merge /dev/myvg/LVMsnap
 Merging of volume myvg/LVMsnap started.
 mvvg/LVM1: Merged: 100.00%
[root@Sip1-183 ~]# lvs
 LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
 LVM1 myvg -wi-a---- 18.00g
 root rl -wi-ao---- 9.31g
 swap rl -wi-ao---- 13.97g
 var rl -wi-ao--- <4.66g
[root@Sip1-183 ~]#
```

Summary of commands

Physical Volume	Volume Group	Logical Volume	Others
pvs	vgs	lvs	dmesg
pvdisplay	vgdisplay	lvdisplay	fdisk
pvcreate	vgcreate	lvcreate	mkfs
pvremove	vgremove	lvremove	mount
pvextend	vgextend	lvextend	umount
	vgreduce	Lvresize	blkid
	vgchange	Lvconvert	fuser
	vgcfgbackup		Isof
	vgcfgrestore		lsblk

Practical's

- Create different types of raid volumes
- Create filesystems on these raid volumes
- Add the filesystem to config file so that when the machine starts, the filesystems are mounted (i.e. are accessible)
- Reduce Physical Volume from Volume Group.