

Inteligência Artificial II

Engenharia de Computação

Redes Neurais Artificiais

Prof. Anderson Luiz Fernandes Perez Email: anderson.perez@ufsc.br

Sumário

- Introdução
- Neurônio Bilógico
- Neurônio Artificial
- Redes Neurais Artificiais
- Arquiteturas de Redes Neurais
- Processamento Neural
- Tipos de Aprendizado em uma RNA
- Aplicações das RNA's
- Referências

 Os estudos da neurocomputação surgiram em 1943, com os estudos de Warren McCulloch e Walter Pitts.

- Apresentarem a simulação artificial de um neurônio biológico.
- O neurônio artificial de McCulloch e Pitts possuía apenas uma saída, produzida a partir da soma de suas diversas entradas.

- As Redes Neurais Artificiais RNA's são modelos matemáticos inspirados no princípio de funcionamento do neurônio biológico.
- As RNA's buscam <u>simular computacionalmente</u> habilidades humanas tais como:
 - aprendizado;
 - generalização;
 - associação;
 - abstração.

 As RNA's devem ser capazes de aprender e tomar decisões baseadas no aprendizado.

Neurônio Biológico	Neurônio Artificial
Cérebro	RNA
Rede de neurônios	Estrutura em camadas
10 bilhões de neurônios	Centenas/milhares de neurônios
Aprendizado	Aprendizado
Generalização	Generalização
Associação	Associação
Reconhecimento de padrões	Reconhecimento de padrões

Neurônio Biológico

Neurônio Artificial

Características de uma RNA

- Busca paralela
 - A procura pela informação ocorre de maneira paralela e não sequencial.
- Aprendizado por Experiência
 - Aprendem padrões a partir dos dados que são abstraídos de modelos de conhecimento. O aprendizado é realizado/implementado por um algoritmo de aprendizado.

- Características de uma RNA
 - Generalização
 - A partir de exemplos anteriores uma RNA é capaz de generalizar seu conhecimento.
 - Exemplo:

- Características de uma RNA
 - Associação
 - Podem estabelecer relações de padrões de natureza distinta.

- Características de uma RNA
 - Abstração

de Santa Catarina

- Capacidade de identificar a essência a partir de um conjunto de dados de entrada. A partir de padrões ruidosos uma RNA pode extrair as informações do padrão se ruído.
- Exemplo:

- Características de uma RNA
 - Robustez e Degradação Gradual
 - Como o processamento em uma RNA é distribuído, a perda de um conjunto de neurônio não causa o mau funcionamento da rede. O desempenho tende a diminuir gradativamente na medida em que aumenta a quantidade de neurônios artificiais inoperantes.

- Características de uma RNA
 - Não Programáveis
 - Uma RNA deve ser modelada segundo as entradas e saídas envolvidas em um algoritmo de aprendizado, buscando mapear corretamente as entradas nas saídas correspondentes.

- Características de uma RNA
 - Soluções Aproximadas
 - Muitas vezes uma RNA produz uma solução aproximada para um determinado problema. As RNA's são suscetíveis a geração de soluções incorretas.

- Uma RNA é formada por neurônios artificiais com conexões ponderadas por valores denominados pesos.
- Em uma RNA os neurônios são arrumados em camadas, com conexões entre elas.
- As camadas são organizadas em: camada de entrada, camada de saída e camada intermediária, comumente chamada de camada escondida.

Visão Geral de uma RNA

Universidade Federal de Santa Catarina

- Um neurônio artificial foi projetado para imitar algumas das principais características de um neurônio biológico.
- Cada entrada de um neurônio artificial é multiplicada por um peso W_{ii}, gerando entradas ponderadas.
- Todas as entradas ponderadas são somadas, obtendose uma valor NET, que é o potencial de ativação do neurônio artificial.
- O valor NET será comparado ao valor limite para ativação do neurônio (F).

Estrutura Interna de um Neurônio Artificial

de Santa Catarina

- Conexões entre Neurônios
 - Cada entrada de um neurônio artificial possui um valor real chamado peso sináptico.
 - Dependendo do valor do peso sináptico maior ou menor será a influência positiva ou negativa do neurônio.

Conexões entre Neurônios

Onde:

i é a identificação do neurônio de entradak é a identificação do neurônio de saída

Regra de Propagação

- Maneira com que os estímulos provenientes de outros neurônios são combinados aos pesos sinápticos correspondentes para compor o potencial de ativação de um neurônio.
- A regra de propagação estabelece o potencial de ativação de um neurônio NET_k.
- A regra de ativação pode ser o produto escalar entre o vetor de entrada e o vetor de pesos.

Regra de Propagação

$$Net_k = \sum W_{ik} * O_i$$

Onde:

 Net_k é o potencial de ativação do neurônio k. O_i saída do processador i. W_{ik} peso da conexão entre os neurônios i e k.

Função de Ativação

- Determina o novo valor do estado de ativação do neurônio a partir do potencial de ativação Net_k.
- Determina a saída efetiva de um neurônio artificial.
- $-S_k = F(Net_k + b_k)$
- F é a função de ativação do neurônio.
- b_k é uma constante que tem o efeito de aumentar o diminuir a entrada líquida da função de ativação. Esta constante é chamada de bias.

- Função de Ativação
 - Função Linear
 - $y = \alpha X Net$

Função de Ativação

de Santa Catarina

Função Rampa (linear por partes)

- Função de Ativação
 - Função Degrau

Universidade Federal de Santa Catarina

Função de Ativação

Universidade Federal de Santa Catarina

Função Degrau Bipolar

Universidade Federal de Santa Catarina

Redes Neurais Artificiais

- Função de Ativação
 - Função Sigmóide

$$y = \frac{1}{1 + e^{(-a \times net + b)}}$$

Universidade Federal de Santa Catarina

Redes Neurais Artificiais

- Função de Ativação
 - Função Tangente Hiperbólica

$$y = \frac{2}{(1+e^{(-2a\times net+b)})-1}$$

- Redes de uma Única Camada
 - São RNA's que possuem apenas uma única camada de neurônios.

- Redes de Múltiplas Camadas
 - São RNA's que possuem mais de uma cada de neurônios.

- Redes Feedforward (acíclica)
 - O fluxo do processamento da informação ocorre da esquerda para a direita.
 - Não há retorno de sinal para as camadas anteriores.

Redes Neurais

Redes Feedback (cíclica)

 Existe um sinal de retorno em sentido contrário ao fluxo de processamento da

informação.

- Redes com Recorrência Autoassociativa
 - A saída de cada neurônio serve de entrada para todos os outros neurônios.

- Redes Parcialmente Conectadas
 - Existem neurônio em um determinada camada que não se conectam a todos os neurônios na camada seguinte.

- Redes Completamente Conectadas
 - Um neurônio em uma determinada camada se conecta a todos os neurônios da camada seguinte.

- O processamento em um rede neural artificial pode ser dividido em:
 - Aprendizado
 - Processo de atualização dos pesos sinápticos para aquisição do conhecimento.
 - Os pesos são atualizados conforme o algoritmo de aprendizado escolhido.
 - O vetor de pesos w(t+1) no instante t+1 pode ser escrito como:
 - $w(t+1) = w(t) + \delta w(t)$
 - δw(t) é o ajuste aplicado aos pesos.

- O processamento em um rede neural artificial pode ser dividido em:
 - Aprendizado
 - Os algoritmos de aprendizado diferem na forma como δw(t) é calculado.
 - O processo de aprendizado possui os seguintes passos:
 - A rede neural é estimulada ao receber um padrão de entrada retirado de um conjunto histórico de padrões ou dados.
 - 2. A rede neural sofre modificações em seus parâmetros livres.
 - 3. A rede neural responde de uma nova maneira ao ambiente.

- O processamento em um rede neural artificial pode ser dividido em:
 - Aprendizado
 - Os passos do algoritmo de aprendizado são repetidos até que algum critério de parada seja estabelecido, podendo ser:
 - Número de iterações máximo atingido.
 - Erro produzido pela rede atinge um patar abaixo do limiar definido. O erro produzido pela rede atinge um valor considerado suficientemente pequeno.

- O processamento em um rede neural artificial pode ser dividido em:
 - Aprendizado
 - Um rede neural somente pode ser aplicada a um problema após ter sido treinada.
 - Na fase de aplicação não há atualização dos pesos sinápticos.

Tipos de Aprendizado em uma RNA

Aprendizado Supervisionado

- A rede neural recebe um conjunto de dados de entrada e seus correspondentes padrões de saída.
- Os pesos sinápticos são atualizados até que o valor do erro fique abaixo de um limite máximo de tolerância especificado pelo usuário.
- e(t) = d(t) y(t)
- $w(t+1) = w(t) + \eta e(t)X(t)$
- Onde:
 - η é a taxa de aprendizado.
 - e(t) é uma medida de erro, no instante t.
 - X(t) entrada do neurônio, no instante t.

Tipos de Aprendizado em uma RNA

- Aprendizado Supervisionado
 - Este tipo de aprendizado envolve a minimização da soma dos erros quadráticos das saídas.

$$\varepsilon^2 = 1/2 \sum_{i=1}^{p} (y_d^i - y)^2$$

– Onde:

- p é o número de exemplos.
- yⁱ_dé a saída desejada para o vetor de entrada x_i e y é a saída corrente da rede para o vetor x_i.

Tipos de Aprendizado em uma RNA uma RNA

- Aprendizado Não Supervisionado
 - Trabalho os dados de maneira a determinar algumas propriedades dos conjuntos de dados.
 - Não existe para cada entrada uma saída desejada.
 - Regularidade e redundância nas entradas são características essenciais para haver aprendizado não supervisionado.
 - Este tipo de aprendizado é muito últil para agrupamento de dados.

Tipos de Aprendizado em uma RNA

- Aprendizado por Reforço
 - Tente a maximizar (reforçar) as ações boas produzidas pela rede.
 - Se uma ação produzida representa um estado satisfatório, então a tendência de reproduzir esta ação é reforçada.
 - Se uma ação produzida representa um estado insatisfatório, então a tendência de reproduzir esta ação não é enfraquecida.
 - Muito útil para ser aplicado em tarefas de controle.

Aplicações das RNA's

- As Redes Neurais Artificiais podem ser utilizados em diversos problemas, tais como:
 - Classificação de padrões
 - Reconhecimento de padrões
 - Correção de padrões
 - Previsão de séries temporais
 - Mineração de dados
 - Suporte à decisão

Referências

- As figuras desta apresentação foram extraídas de:
 - Um Introdução a Inteligência Computacional: fundamentos, ferramentas e aplicações. GOLDSCHIMIDT, R. L. Rio de Janeiro, 2010. Editora IST-RJ.