Practical Asymptotics (APP MTH 4048/7044) Assignment 2 (5%)

Due 12 April 2019

1. (Bowen & Witelski) Consider the problem

$$\frac{\mathrm{d}v}{\mathrm{d}t} + \epsilon v^2 + t = 0$$
, $v(0) = 0$, $\epsilon \to 0$.

- (a) Find the first three terms in the expansion of the solution $v(t) \sim v_0(t) + \epsilon v_1(t) + \epsilon^2 v_2(t)$, as $\epsilon \to 0$
- (b) Determine the range of times $0 \le t \le \mathcal{O}(\epsilon^{\alpha})$, for which the terms in the expansion retain asymptotic ordering, i.e. $v_0 \gg \epsilon v_1 \gg \epsilon^2 v_2$.
- 2. (Hinch, adapted) The (shear) flow along a corrugated channel is described by a streamfunction $\psi(x,y)$ (the x and y components of velocity are given by $u = \partial \psi/\partial y$ and $v = -\partial \psi/\partial x$). The streamfunction satisfies

$$\nabla^2 \psi = -1$$
, in $|y| < h(x, \epsilon) \equiv 1 + \epsilon \cos kx$,

subject to the boundary condition $\psi=0$ on the walls at $y=\pm h(x;\epsilon)$, and is periodic in x so that $\psi(0,y)=\psi(2\pi/k,y)$.

- (a) Obtain the first three terms in the perturbation expansion for ψ .
- (b) Plot a few streamlines in MATLAB for a different values of ϵ and k.
- (c) Comment on the validity of this solution.
- 3. (Kelvin-Helmholtz instability) Consider two fluid layers moving in parallel:

In the unperturbed state, the upper layer moves with speed c_1 and the lower layer moves with speed c_2 . The upper layer is of density ρ_1 and the lower layer is of density ρ_2 .

Assume the shape of the interface between the two layers is small in amplitude by writing $y = \epsilon h(x, t)$, where $\epsilon \ll 1$ and $h = \mathcal{O}(1)$.

The flow of the two layers is described by

$$abla^2 \phi_1 = 0,$$
 for $y > \epsilon h(x, t),$
 $abla^2 \phi_2 = 0,$ for $y < \epsilon h(x, t).$

Far from the interface the layers are at their unperturbed speeds, namely

$$\phi_1 = c_1 x, \quad y \to \infty,$$

 $\phi_2 = c_2 x, \quad y \to -\infty.$

The kinematic conditions in each fluid are

$$\frac{\partial \phi_1}{\partial y} = \epsilon \left(\frac{\partial h}{\partial t} + \frac{\partial \phi_1}{\partial x} \frac{\partial h}{\partial x} \right), \quad \text{on } y = \epsilon h(x, t),$$

$$\frac{\partial \phi_2}{\partial y} = \epsilon \left(\frac{\partial h}{\partial t} + \frac{\partial \phi_2}{\partial x} \frac{\partial h}{\partial x} \right), \quad \text{on } y = \epsilon h(x, t).$$

Finally, the Bernoulli condition is

$$\rho_1 \left(\frac{\partial \phi_1}{\partial t} - \frac{1}{2} c_1^2 + \frac{1}{2} |\nabla \phi_1|^2 + gy \right) = \rho_2 \left(\frac{\partial \phi_2}{\partial t} - \frac{1}{2} c_2^2 + \frac{1}{2} |\nabla \phi_2|^2 + gy \right),$$
on $y = \epsilon h(x, t)$.

- (a) Expand the various quantities about the unperturbed state to rewrite the kinematic and Bernoulli conditions on y = 0.
- (b) Introduce perturbation series for the velocity potentials where

$$\phi_1(x, y, t) = \phi_{10}(x, y, t) + \epsilon \phi_{11}(x, y, t) + \mathcal{O}(\epsilon^2),$$

$$\phi_2(x, y, t) = \phi_{20}(x, y, t) + \epsilon \phi_{21}(x, y, t) + \mathcal{O}(\epsilon^2),$$

as $\epsilon \to 0$. Write down a solution for ϕ_{10} and ϕ_{20} (the unperturbed problem), and then write down a problem for ϕ_{11} and ϕ_{21} .

(c) Assume the interface shape is a travelling wave, so that

$$h(x, t) = ae^{i(kx - \omega t)}$$
.

The stability of the system will be determined by ω . Use separation of variables to find ϕ_{11} and ϕ_{21} (each up to a multiplicative constant).

- (d) Substitute h(x, t), $\phi_{11}(x, y, t)$ and $\phi_{21}(x, y, t)$ into the boundary conditions to obtain an expression for ω .
- (e) Use your expression for ω to determine the stability/instability of the interface in terms of the parameters c_1 , c_2 , ρ_1 , ρ_2 and k. Briefly interpret the physical significance of this result.