Twos Complement and Floating Point

CSCI 23000

Andy Harris

Indiana University / Purdue University - Indianapolis

Adding Binary Numbers

- 101 + 111 = ?
- Just like base ten
- 11 101 +111 ==== 1100

Subtracting binary numbers

- Also like base ten
- Use borrowing: 101 11
- 101 5 -11 3 === 10 2
- Sometimes you'll need to borrow from several digits
- 1000 8 - 1 1 ==== 111 7

Multiplying binary numbers

- 101 * 101
- Actually simpler than in base 10!

Problems with unsigned numbers

- finite space in memory
- There will be a number to big to store
- No negative numbers
- No fractional or real values

Possible solutions

- Sign / Magnitude
- Ones complement
- Twos complement

Sign / Magnitude

- first digit is sign
- · rest is magnitude
- two zeros (?!?)
- 5 + (-3) doesn't work

Ones Complement

- Just reverse all values
- If first value is 1:
 - invert everything
 - make it negative
- Still has two zeros
- 5 + (-5) works, but 5 + (-3) doesn't

Twos complement

- All digits have ordinary magnitude
- leftmost digit is negative
- (trick invert and add one)
- Only one zero
- Adding negatives works!

Two's Complement examples

• Leftmost digit is negative

•

-8	4	2	1
1	0	0	1

- -8 + 1 = -7
- If leftmost digit is zero, number is positive
- If leftmost digit is one, number is negative

The strange behavior of negative numbers

- What is 10 in two's comp? (-2)
- What is 110? (-4 + 2 = -2)
- 1110? (-8 + 4 + 2 = -2)
- 11110? (-16 + 8 + 4 + 2 = -2)
- A negative number in two's complement has infinite leading ones!

Adding a negative

• 5 + -3

•

-8	4	2	1
0	1	0	1
1	1	0	1
0	0	1	0

• Negative numbers have infinite leading 1s!

Real numbers in binary

- How could you handle fractions?
- What about the decimal (binary?) point
- Does .1 have meaning in binary?
- How about .01?

Reviewing binary notation

- Values to the left of the point are two raised to a positive exponent
- Values to the right of the point are two raised to a negative exponent

•

2^{-1}	2-2	2^{-3}	2-4	
1/2	1/4	1/8	1/16	
.5	.25	.125	.0625	

• $\overline{.011}$ (binary) = .25 + .125 = .375 (decimal)

Converting binary to decimal

- Convert .101 (binary) to decimal
- Just like converting whole numbers:

•

.5	.25	.125	.0625
1	0	1	0
.5	0	.125	0

• $\overline{.5 + .125} = .625$

Converting Decimal to Binary

- Convert .6 (decimal) to binary
- Just like integers:

•

.5	.25	.125	.0625	.03125	.015625	.0078125	.00390625
1	0	0	1	1	0	0	1

• 1/2 + 1/16 + 1/32 + 1/256 = 0.59765625

Real numbers and error

- Binary conversion is not exact
- Many fractions (like .6) are repeating
- Limited precision
- Working with floating numbers frequently introduces error

Floating point notation

- Two main approaches:
- Fixed: easier but less flexible
- Floating: More flexible but more complex
- Fixed: point is always in the same place
- Floating: point can move around.
- Floating is now standard

Reviewing Scientific notation

- Avagadro's Number
- $6.02 * 10^{23}$
- Scientific notation descrives large and small numbers
- It stores a real number as two integers
- 6.02 is *Mantissa*
- 10 is *Base*
- 23 is Exponent

Devising a floating notation

- Scientific notation can be modified for binary
- Store mantissa and exponent as integers
- Use 2 as the base
- EG .01 binary could be represented like this:
- 0001 * 2⁻²

A representative notation

- for simplicity, we'll devise a format
- ABBBBCDD
- A = sign of mantissa
- B = magnitude of mantissa
- C = sign of exponent
- D = magnitude of exponent

Using our notation

• Start with a floating number:

1	0	1	0	1	0	1	1

• Break it into pieces:

sm	mantissa				se	exp	onent
1	0	1	0	1	0	1	1

• Resolve all but mantissa:

sm	mantissa					expoi	nent
1	0 1 0 1				0	1	1
_	0	1	0	1	+	3	

Conversion continued

- Begin with mantissa in binary
- move binary point

$$-0101*2^3 = -0101000$$

- Solve as binary problem
- Don't forget sign of mantissa

128	64	32	16	8	4	2	1
0	0	1	0	1	0	0	0

• -40

Working with negative exponents

• same, but move binary point to left

sm	mantissa					exp	onent
1	0	1	0	1	1	1	1
-	0	1	0	1	_	3	

- $-0101 * 2^{-3} = -0.101$
- (1/2) + (1/8) = .5 + .125 = .625
- -.625

Decimal to float conversion

• Start with a decimal value

-.375

Find the binary approximation

.5	.25	.125
0	1	1

• Convert to 4 digit mantissa

• $-0011 * 2^{-3}$

• Build ABBBBCDD chart

sm	mai	ntissa		se	exp	exponent	
1	0	0 0 1 1				1	1
-	0	0	1	1	-	3	

Notes about floating point

- There can be more than one 'right' answer
- convention is to use the smallest integer mantissa
- mantissa is stored as an integer (point on right)
- mantissa and exponent in sign / magnitude format
- There are four zeros!
- limited precision means possiblity (likelihood) of error

"Real" floating point notation

- The ABBBBCDD format is an approximation
- Numerous real formats exist
- All work the same way
- All have many more digits
- Basic idea is the same