

Arora V Analog to Digital Converter (ADC)

User Guide

UG299-1.0E, 05/08/2023

Copyright © 2023 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN is a trademark of Guangdong Gowin Semiconductor Corporation and is registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
05/08/2023	1.0E	Initial version published.

Contents

Со	ntents	. i
Lis	st of Figures	. i
Lis	st of Tables	ii
1	About This Guide	1
	1.1 Purpose	. 1
	1.2 Related Documents	. 1
	1.3 Terminology and Abbreviations	. 1
	1.4 Support and Feedback	. 2
2	Overview	3
	2.1 Features	. 3
	2.2 Functional Description	4
	2.2.1 Overview	4
	2.2.2 Architecture	4
	2.3 ADC Characteristics	6
	2.3.1 ADC Conversion Timing	6
	2.3.2 Electrical Characteristic Parameters	8
3	ADC Primitives1	0
	3.1 Gowin_ADC (GW5A-25)1	10
	3.1.1 Port Diagram1	10
	3.1.2 Port Description	10
	3.1.3 Parameter Description	11
	3.1.4 Primitive Instantiation	12
	3.2 Gowin_ADC (GW5A-138/ GW5AT-138/ GW5AST-138)1	14
	3.2.1 Port Diagram1	14
	3.2.2 Port Description	14

	3.2.3 Parameter Description	. 15
	3.2.4 Primitive Instantiation (Take ADCULC as an Example)	. 17
4	ADC Configuration and Call	20
	4.1 ADC Configuration	. 20
	4.2 Generation Files	21

UG299-1.0E ii

List of Figures

Figure 2-1 GW5A-25 ADC Structure Diagram	4
Figure 2-2 GW5A-138/GW5AT-138/GW5AST-138 ADC Structure Diagram	5
Figure 2-3 ADC Conversion Timing	7
Figure 3-1 ADC Port Diagram	10
Figure 3-2 ADC Port Diagram	14
Figure 4-1 ADC Configuration	20

UG299-1.0E

List of Tables

Table 1-1 Terminology and Abbreviations	1
Table 2-1 ADC Timing Parameters	7
Table 2-2 ADC Electrical Parameters	8
Table 3-1 ADC Port Description	10
Table 3-2 GUI ADC Parameters	11
Table 3-3 ADCULC Port Description	14
Table 3-4 ADCLRC Port Description	15
Table 3-5 ADCULC Parameters	15
Table 3-6 ADCLRC Parameters	17

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

Arora V Analog to Digital Converter (ADC) User Guide is to help you quickly learn the features and usage of Arora V ADC by introducing to the functions, ports, configuration, etc.

1.2 Related Documents

The latest user guides are available on the GOWINSEMI website. You can find the related documents at www.gowinsemi.com:

- DS981E, GW5AT series of FPGA Products Data Sheet
- DS1103E, GW5A series of FPGA Products Data Sheet
- DS981E, GW5AST series of FPGA Products Data Sheet
- SUG100, Gowin Software User Guide

1.3 Terminology and Abbreviations

The terminology and abbreviations used in this manual are as shown in Table 1-1.

Table 1-1 Terminology and Abbreviations

Terminology and Abbreviations	Full Name
ADC	Analog to Digital Converter
CIC Filter	Cascaded Integrator–comb Filter
FPGA	Field Programmable Gate Array
IP	Intellectual Property
OSC	Oscillator
SRAM	Static Random Access Memory

UG299-1.0E 1(21)

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below.

Website: www.gowinsemi.com

E-mail:<u>support@gowinsemi.com</u>

Tel: +86 755 8262 0391

UG299-1.0E 2(21)

2 Overview 2.1 Features

2 Overview

Arora V series of FPGA products integrate eight-channel 10 bits Delta-sigma ADC. It is an ADC with low power, low-leakage current, and high dynamic performance. When combined with the programmable logic capability of the FPGA, the sensor can address the data acquisition and monitoring requirements for by chip internal temperature and power monitoring. FPAG also provides rich and freely configurable GPIO interfaces and ADC analog signal interfaces to connect to the ADC voltage channels, which can meet the voltage data sampling and monitoring requirements.

2.1 Features

The main features of Arora V ADC are as follows:

- Number of ADC:
 - GW5A-25: 1
 - GW5A-138/ GW5AT-138/ GW5AST-138: 2
- Reference voltage source: Built-in
- Number of channels per ADC: 8
- Bit width accuracy: 10 bits
- Sampling Clock: < 2MHz
- ADC unipolar input voltage: 0~1V
- Temperature sensor accuracy: +/-2□
- Voltage sensor accuracy: +/-5mV

UG299-1.0E 3(21)

2.2 Functional Description

2.2.1 Overview

Arora V ADC provides analog Delta-sigma modulators to meet the requirements of on-chip temperature and voltage detection in multiple regions, and also provides abundant input interfaces to meet off-chip voltage and temperature input, supporting single-ended and differential signal input. (Positive input voltage > Negative input voltage)

Arora V ADC has embedded reference voltage source with high accuracy, and it does not require off-chip voltage reference source; Arora V ADC features low power and high accuracy for temperature and supply voltage detection. Arora V ADC has an internally integrated voltage signal processing module, so no external voltage reference source is required. It meets the accuracy of voltage signal measurements and helps to reduce user costs.

2.2.2 Architecture

Figure 2-1 shows the structure diagram of GW5A-25 ADC.

Figure 2-1 GW5A-25 ADC Structure Diagram

GW5A-25 ADC supports on-chip temperature and voltage detection. Through the control signal, you can select the voltage from the on-chip temperature sensor to enter the on-chip temperature detection mode; or

UG299-1.0E 4(21)

you can select another path to monitor the power supply voltage of IP modules in the FPGA, including Bank1/4/5/10 voltage, core voltage, and SRAM voltage, etc.

For GW5A-25 ADC, you can select UserLogic clock or OSC clock to obtain a better balance between power and performance.

The voltage signal into the Delta_sigma modulator0 is quantized and noise-shaped to output adc_1bit0 and adc_clk0, which can be sent to the embedded CIC hard core or CIC soft core for further processing to obtain the digital characterization of temperature and voltage.

GW5A-138/GW5AT-138/GW5AST-138 offers two ADCs. Figure 2-2 shows the structure diagram.

Figure 2-2 GW5A-138/GW5AT-138/GW5AST-138 ADC Structure Diagram

UG299-1.0E 5(21)

GW5A-138/GW5AT-138/GW5AST-138 supports on-chip temperature and voltage detection. Through the control signal, you can select the voltage from the on-chip temperature sensor to enter the on-chip temperature detection mode; or you can select another path to monitor the power supply voltage of IP modules in the FPGA, including Bank2/3/4/5/6/7/10 voltage, core voltage, MIPI and Serdes voltage, etc. Off-chip voltage signals can be sent to ADC for ADC quantization via Bank2/3/4/5/6/7 GPIO pins.

For GW5A-138/GW5AT-138/GW5AST-138 ADC, you can select user logic clock IO, GPIO clock or OSC clock to obtain a better balance between power and performance.

The voltage signal into the Delta_sigma modulator1/Delta_sigma modulator2 is quantized and noise-shaped to output adc_1bit1/adc_1bit2 and adc_clk1/adc_clk2. They can be sent to the embedded CIC hard core for further processing to obtain the digital characterization of temperature and voltage.

In addition, the 138K ADC supports two differential pairs: adcvp/adcvn, adctp/adctn, providing users with a low-latency, low-noise differential voltage input channel.

2.3 ADC Characteristics

2.3.1 ADC Conversion Timing

There are N clock cycles needed for ADC to sample analog input signals and convert them to output digital signals; then output signals are generated. When the rising edge of the sensor_req signal comes, and the sensor_en signal is enabled (active-high), it will trigger ADC to sample once; when the sensor measurement is finished, it will pull the sensor_rdy signal high to indicate the completion of sampling and output the sampling value of sensor value[13:0].

Due to the fixed-point processing of the numbers, in voltage measurement mode, the output value needs to be divided by 2048 to get the actual measured value sensor_value [13:0] (sensor_value [13:11] for the integer part and sensor_value [10:0] for the fractional part); in temperature mode, the output value needs to be divided by 4 to get the actual measured value sensor_value [13:0] (sensor_value [13] for the sign bit, sensor_value [12:2] for the integer part and sensor_value [10:0] for the fractional part).

UG299-1.0E 6(21)

Figure 2-3 ADC Conversion Timing

Table 2-1 ADC Timing Parameters

Symbol	Description	Spec.	Unit	
Syllibol	Description	Min.	Max.	Offic
CLK	Clock cycle	TBD	TBD	ns
Ts	SOC setup time	TBD	TBD	ns
Тн	SOC hold-up time	TBD	TBD	ns
T _{D_EOC}	EOC delay time	TBD	TBD	ns
T _{D_B}	Data-out delay time	TBD	TBD	ns

UG299-1.0E 7(21)

2.3.2 Electrical Characteristic Parameters

Table 2-2 ADC Electrical Parameters

D	Description	Spec.			11.4	
Parameter	Description	Min.	Тур.	Max.	Unit	
DC precision						
Output	Digital output bits	-	10	-	Bit	
INL	Integral nonlinearity	-	TBD	-	LSB	
DNL	Differential nonlinearity	-	TBD	-	LSB	
Offset error	Offset error	-	TBD	-	%FS	
Gain error	Gain error	-	TBD	-	%FS	
Analog Input						
CH[7: 0]	Single-ended input range	-	TBD	-	V	
CIN	Input capacitance	-	TBD	-	pF	
Slew Rate						
SoC	Sample frequency	-	TBD	-	MHz	
CLK	Master Clock	-	TBD	-	MHz	
Date-out delay	Date-out delay	-	TBD	-	Clock cycle	
Dynamic Character	Dynamic Characteristic Parameters					
SINAD Signal Noise Ratio	-	TBD	-	DB		
SIVAD	Signal Noise Natio	-	TBD	-	DB	
SFDR	Spurious-free	-	TBD	-	DB	
SI DIX	dynamic range	-	TBD	-	DB	
ENOB	Valid output data	-	TBD	-	Bit	
LINOD	bits	-	TBD	-	Bit	
Digital Input	Digital Input					
V _{IH}	Input high level	-	TBD	-	V	
V _{IL}	Input low level	-	TBD	-	V	
Digital output B[9: 0]						
V _{OH}	Output high level	-	TBD	-	V	
V _{OL}	Output low level	-	TBD	-	V	
Supply voltage						
V_{dd_a}	Analog core voltage	-	TBD	-	V	

UG299-1.0E 8(21)

Parameter	Description	Spec.	Unit		
		Min.	Тур.	Max.	Offic
V_{dd_dig}	Digital voltage	-	TBD	-	\
Vddx	Analog voltage	-	TBD	-	TBD
I _{vdd_a}	Analog bitstream	-	TBD	-	uA
I _{vdd_dig}	Digital current	-	TBD	-	uA
I _{vddx}	Analog current	-	TBD	-	TBD
I _{pd}	Turn-off current	-	TBD	-	mA

UG299-1.0E 9(21)

3 ADC Primitives

3.1 Gowin_ADC (GW5A-25)

3.1.1 Port Diagram

Figure 3-1 ADC Port Diagram

3.1.2 Port Description

Table 3-1 ADC Port Description

Port	I/O	Description
clk	input	clk input
drstn	input	digital part reset signal, active low
adcmode	input	mode selection 1'b0: temperature mode 1'b1:voltage mode

UG299-1.0E 10(21)

Port	I/O	Description	
		input source selection bit [2:0]	
		3'b000: glo_left	
		3'b001:glo_right	
		3'b010:loc_left(对应 Bank1 GPIO)	
vsenctl	input	3'b011: vtest	
		3'b100:vcc	
		3'b101:vccc	
		3'b110:vccm	
		3'b111:vccx_buf	
adcen	input	enable signal, active high	
adcreqi	input	measurement request signal, valid rising edge	
adcrdy	output	measurement completion signal, active high	
adcvalue	output	bit[13:0] the measurement result output	
mdrp_rdata	output	bit[7:0] mdrp_rdata	
mdrp_clk	input	mdrp clock	
mdrp_wdata	input	bit[7:0] mdrp_wdata	
mdrp_a_inc	input	mdrp_a_inc	
mdrp_opcode	input	bit[1:0] mdrp_opcode	

3.1.3 Parameter Description

Table 3-2 GUI ADC Parameters

Parameter	Default Value	Description
ADC Select	ADC	ADC
ADC Mode	Temperature	Temperature/Voltage
Division Factor	1	clock division 0: /1, 1: /2, 2: /4, 3: /8 Clock after frequency division, 500kHz~8MHz
Clock Select	osc	clk source osc (2.5MHz) or CLK
Sample Rate	64	sample rate configuration 4/8/16/32/64/128
Sample Count	1024	sample count configuration 64/128/256/512/1024/2048
Fscal Value	730(Temperature) 623(Voltage)	temperature mode: 510~948 voltage mode: 452~840
Offset	-1180(Temperature)	temperature mode: -1560~-760

UG299-1.0E 11(21)

Parameter	Default Value	Description
	0(Voltage)	voltage mode: -410~410
glo_left	vcc	vcc/vcc_ext/vccio_bk1/vccc
(Voltage mode)		
glo_right	vcc_reg	vcc/vcc_reg/vccc/vccm/vccio_bk4/ vccio_bk5/
(Voltage mode)		vccio_bk10
vccx_buf	vccx	vccx
(Voltage mode)		

3.1.4 Primitive Instantiation

Verilog Instantiation:

```
Gowin_ADC Gowin_ADC_inst (
    .adcrdy(adcrdy_o),
    .adcvalue(adcvalue_o),
    .mdrp_rdata(mdrp_rdata_o),
    .vsenctl(vsenctl_i),
    .adcen(adcen_i),
    .clk(clk_i),
    .drstn(drstn_i),
    .adcreqi(adcreqi_i),
    .adcmode(adcmode_i),
    .mdrp_clk(mdrp_clk_i),
    .mdrp_wdata(mdrp_wdata_i),
    .mdrp_a_inc(mdrp_a_inc_i),
    .mdrp_opcode(mdrp_opcode_i)
);
```

VhdI Instantiation:

```
component Gowin_ADC
    port (
        adcrdy: out std_logic;
        adcvalue: out std_logic_vector(13 downto 0);
        mdrp_rdata: out std_logic_vector(7 downto 0);
```

UG299-1.0E 12(21)

```
vsenctl: in std logic vector(2 downto 0);
        adcen: in std logic;
        clk: in std_logic;
        drstn: in std logic;
        adcreqi: in std_logic;
        adcmode: in std logic;
        mdrp clk: in std logic;
        mdrp_wdata: in std_logic_vector(7 downto 0);
        mdrp_a_inc: in std_logic;
        mdrp opcode: in std logic vector(1 downto 0)
    );
end component;
Gowin ADC inst: Gowin ADC
    port map (
        adcrdy => adcrdy_o,
        adcvalue => adcvalue o,
        mdrp rdata => mdrp rdata o,
        vsenctl => vsenctl i,
        adcen => adcen i,
        clk => clk i,
        drstn => drstn i,
        adcregi => adcregi i,
        adcmode => adcmode i,
        mdrp clk => mdrp clk i,
        mdrp wdata => mdrp wdata i,
        mdrp a inc => mdrp a inc i,
        mdrp opcode => mdrp opcode i
    );
```

Note!

When the user ADC source input selects loc_left, the GIPO of bank1, a call to the TLVDS_IBUF_ADC primitive is required to constrain the ADC input signal. The specific primitives are: TLVDS IBUF ADC(I, IB, ADCEN);

UG299-1.0E 13(21)

3.2 Gowin_ADC (GW5A-138/ GW5AT-138/ GW5AST-138)

3.2.1 Port Diagram

Figure 3-2 ADC Port Diagram

3.2.2 Port Description

Table 3-3 ADCULC Port Description

Port	I/O	Description
clk	input	clk input
drstn	input	digital part reset signal, active low
	input	input source selection bit[2:0]
		3'b000:vtest
		3'b001:vdd09_0
.vaarati		3'b010:vdd09_1
vsenctl		3'b011:vdd09_2
		3'b100:vdd18_0
		3'b101:vdd18_1
		3'b111:vdd33
adcen	input	enable signal, active high
adcreqi	input	measurement request signal, valid rising edge
adcrdy	output	measurement completion signal, active high
adcvalue	output	bit[13:0] the measurement result output
adcinbk6a	input	adcin from Bank6 GPIO
adcinbk6b	input	adcin from Bank6 GPIO
adcinbk7a	input	adcin from Bank7 GPIO

UG299-1.0E 14(21)

Port	I/O	Description
adcinbk7b	input	adcin from Bank7 GPIO

Table 3-4 ADCLRC Port Description

Port	I/O	Description
clk	input	clk input
drstn	input	digital part reset signal, active low
		input source selection bit[2:0]
		3'b000: adcv
		3'b001: adct
		3'b010: vdd09_0
vsenctl	input	3'b011: vdd09_1
		3'b100: vdd18_0
		3'b101: vdd18_1
		3'b110: vdd33_0
		3'b111: vdd33_1
adcen	input	enable signal, active high
adcreqi	input	measurement request signal, valid rising edge
adcrdy	output	measurement completion signal, active high
adcvalue	output	bit[13:0] the measurement result output
adcinbk2a	input	adcin from Bank2 GPIO
adcinbk2b	input	adcin from Bank2 GPIO
adcinbk3a	input	adcin from Bank3 GPIO
adcinbk3b	input	adcin from Bank3 GPIO
adcinbk4a	input	adcin from Bank4 GPIO
adcinbk4b	input	adcin from Bank4 GPIO
adcinbk5a	input	adcin from Bank5 GPIO
adcinbk5b	input	adcin from Bank5 GPIO

3.2.3 Parameter Description

Table 3-5 ADCULC Parameters

Parameter	Default Value	Description
ADC Select	ADCULC	ADCULC/ADCLRC
ADC Mode	Temperature	Temperature/Voltage
Division Factor	1	clock division 0: /1, 1: /2, 2: /4, 3: /8

UG299-1.0E 15(21)

Parameter	Default Value	Description
		Clock after frequency division, 500kHz~8MHz
Clock Select	OSC	clk source osc(2.5MHz) /CLK/IO
Sample Rate	64	sample rate configuration 4/8/16/32/64/128
Sample Count	1024	sample count configuration 64/128/256/512/1024/2048
Fscal Value	730(Temperature) 623(Voltage)	temperature mode: 510~948 voltage mode: 452~840
Offset	-1180(Temperature) 0(Voltage)	temperature mode: -1560~-760 voltage mode: -410~410
vtest (Voltage mode)	vcc_ulc	vcc_ulc
vdd09_0 (Voltage mode)	vccm_ulc	vccm_ulc
vdd09_1 (Voltage mode)	vdda_serdes_q0	vdda_serdes_q0/vddt_serdes_q0/vdda_mipi_m0/ vddd_mipi_m0/ vdda_mipi_m1/ vddd_mipi_m1
vdd09_2 (Voltage mode)	ADCINBK6	ADCINBK6/vcc/ ADCINBK7
Vdd18_0 (Voltage mode)	vddh_serdes_q0	vddh_serdes_q0/vccx_mipi_m0/ vccx_mipi_m1
Vdd18_1 (Voltage mode)	vccx	VCCX
Vdd33 (Voltage mode)	vccio_bk6	vccio_bk6/vccio_bk7

UG299-1.0E 16(21)

Table 3-6 ADCLRC Parameters

Parameter	Default Value	Description
ADC Select	ADCULC	ADCULC/ADCLRC
ADC Mode	Temperature	Temperature/Voltage
Division Factor	1	clock division 0: /1, 1: /2, 2: /4, 3: /8
DIVISION LACTOR	1	Clock after frequency division, 500kHz~8MHz
Clock Select	osc	clk source
Clock Colock	000	osc(2.5MHz) /CLK/IO
Sample Rate	64	sample rate configuration
- Campio riaio		4/8/16/32/64/128
Sample Count	1024	sample count configuration
Campio Count	.02.	64/128/256/512/1024/2048
Fscal Value	730(Temperature)	temperature mode: 510~948
Todai valdo	623(Voltage)	voltage mode: 452~840
Offset	-1180(Temperature)	temperature mode: -1560~-760
Oliset	0(Voltage)	voltage mode: -410~410
vdd09_0	vdda_serdes_q1	vdda_serdes_q1/vddt_serdes_q1/vcc/ADCINBK2/ADCINB
(Voltage mode)		КЗ
vdd09_1	ADCINBK4	ADCINBK4/vcc/ ADCINBK5
(Voltage mode)		
vdd18_0	vddh_serdes_q1	vddh_serdes_q1/ vccx
(Voltage mode)		
vdd18_1	vccx	vccx
(Voltage mode)		
vdd33_0	vccio_bk2	vccio_bk2/vccio_bk3
(Voltage mode)		
vdd33_1	vccio_bk4	vccio_bk4/ vccio_bk5/vccio_bk10
(Voltage mode)		

3.2.4 Primitive Instantiation (Take ADCULC as an Example)

Verilog Instantiation:

Gowin_ADC Gowin_ADC_inst(

.adcrdy(adcrdy_o), //output adcrdy

.adcvalue(adcvalue_o), //output [13:0] adcvalue

.adcinbk6a(adcinbk6a_i), //input adcinbk6a

UG299-1.0E 17(21)

```
.adcinbk6b(adcinbk6b i), //input adcinbk6b
            .adcinbk7a(adcinbk7a i), //input adcinbk7a
            .adcinbk7b(adcinbk7b_i), //input adcinbk7b
            .vsenctl(vsenctl_i), //input [2:0] vsenctl
            .adcen(adcen_i), //input adcen
            .clk(clk i), //input clk
            .drstn(drstn i), //input drstn
            .adcreqi(adcreqi_i) //input adcreqi
       );
VhdI Instantiation:
       component Gowin ADC
           port (
                adcrdy: out std logic;
                adcvalue: out std logic vector(13 downto 0);
                adcinbk6a: in std logic;
                adcinbk6b: in std logic;
                adcinbk7a: in std logic;
                adcinbk7b: in std logic;
                vsenctl: in std_logic_vector(2 downto 0);
                adcen: in std logic;
                clk: in std logic;
                drstn: in std logic;
                adcreqi: in std logic
           );
       end component;
       Gowin ADC inst: Gowin ADC
           port map (
                adcrdy => adcrdy o,
                adcvalue => adcvalue o,
                adcinbk6a => adcinbk6a i,
                adcinbk6b => adcinbk6b i,
```

UG299-1.0E 18(21)

```
adcinbk7a => adcinbk7a_i,
adcinbk7b => adcinbk7b_i,
vsenctl => vsenctl_i,
adcen => adcen_i,
clk => clk_i,
drstn => drstn_i,
adcreqi => adcreqi_i
);
```

UG299-1.0E 19(21)

4 ADC Configuration and Call

You can click "Tools > IP Core Generator" in Gowin Software to call and configure ADC.

The following description takes the GW5A-25 ADC call as an example.

4.1 ADC Configuration

The ADC configuration interface is shown in Figure 4-1.

Figure 4-1 ADC Configuration

UG299-1.0E 20(21)

4.2 Generation Files

After ADC configuration, it will generate three files that are named after the "File Name". Take the default configuration as an example:

- "gowin_adc.v" file is a complete Verilog module to generate instance Gowin ADC;
- "gowin_adc_tmp.v" is a template file for IP designs;
- "gowin_adc.ipc" file is an IP configuration file for users to load and configure the IP.

Note!

If VHDL is selected as the hardware description language, the first two files will be named with .vhd suffix.

UG299-1.0E 21(21)

