

Low voltage dual brush DC motor driver

Datasheet - production data

Features

- Operating voltage from 1.8 to 10 V
- Maximum output current 1.3 A_{rms}
- $R_{DS(ON)}$ HS + LS = 0.4 Ω typ.
- · Current control with programmable off-time
- · Full protection set
 - Non-dissipative overcurrent protection
 - Short-circuit protection
 - Thermal shutdown
- Energy saving and long battery life with standby consumption less than 80 nA

Applications

Battery-powered DC motor applications such as:

- Toys
- Portable printers
- Robotics
- Point of sale (POS) devices
- Portable medical equipment
- Healthcare and wellness devices (shavers and toothbrushes)

Description

The STSPIN240 is a dual brush DC motor driver integrating a low $R_{DS(ON)}$ power stage in a small QFN 3 x 3 mm package.

Both the full-bridges implement an independent PWM current controller with fixed OFF time.

The device is designed to operate in batterypowered scenarios and can be forced into a zeroconsumption state allowing a significant increase in battery life.

The device offers a complete set of protection features including overcurrent, overtemperature and short-circuit protection.

Contents STSPIN240

Contents

1	Bloc	k diagram	5
2	Elec	trical data	6
	2.1	Absolute maximum ratings	6
	2.2	Recommended operating conditions	6
	2.3	Thermal data	6
	2.4	ESD protections	7
3	Elec	trical characteristics	8
4	Pin o	description	10
5	Турі	cal applications	12
6	Fund	ctional description	13
	6.1	Standby and power-up	13
	6.2	Motor driving	13
	6.3	PWM current control	15
		TOFF adjustment	17
	6.4	Overcurrent and short-circuit protections	18
	6.5	Thermal shutdown	20
7	Grap	ohs	21
8	Pack	kage information	23
	8.1	VFQFPN 3 x 3 x 1.0 mm - 16L package information	23
9	Orde	ering information	25
10	Revi	ision history	25

STSPIN240 List of tables

List of tables

Table 1.	Absolute maximum ratings	. 6
Table 2.	Recommended operating conditions	. 6
Table 3.	Thermal data	
Table 4.	ESD protection ratings	. 7
Table 5.	Electrical characteristics	
Table 6.	Pin description	
Table 7.	Typical application values	
Table 8.	Truth table	
Table 9.	ON and slow decay states	15
Table 10.	Recommended R _{RCOFF} and C _{RCOFF} values according to R _{OFF}	17
Table 11.	VFQFPN 3 x 3 x 1.0 mm - 16L package mechanical data	24
Table 12.	Device summary	
Table 13.	Document revision history	25

List of figures STSPIN240

List of figures

Figure 1.	Block diagram	5
Figure 2.	Pin connection (top view)	
Figure 3.	Typical application schematic	. 12
Figure 4.	Timing diagram	. 14
Figure 5.	PWM current control	. 16
Figure 6.	OFF time regulation circuit	. 17
Figure 7.	OFF time vs. R _{OFF} value	. 17
Figure 8.	Overcurrent and short-circuit protections management	. 18
Figure 9.	Disable time versus R _{EN} and C _{EN} values (V _{DD} = 3.3 V)	. 19
Figure 10.	Disable time versus R _{EN} and C _{EN} values (V _{DD} = 1.8 V)	. 19
Figure 11.	Thermal shutdown management	
Figure 12.	Power stage resistance versus supply voltage	. 21
Figure 13.	Power stage resistance versus temperature	. 21
Figure 14.	Overcurrent threshold versus supply voltage	. 22
Figure 15.	VFQFPN 3 x 3 x 1.0 mm - 16L package outline	. 23
Figure 16	VECEPN 3 v 3 v 1.0 mm 16L recommended footprint	24

STSPIN240 **Block diagram**

Block diagram

Figure 1. Block diagram STBY\RESET OUTA1 REF EN\FAULT [Brush DC OUTA2 PHA SENSEA PWMA Control logic PHB OUTB1 PWMB Brush DC OUTB2 TOFF Oscillator SENSEB

GND

Electrical data STSPIN240

2 Electrical data

2.1 Absolute maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Test condition	Value	Unit
V _S	Supply voltage	-	-0.3 to 11	V
V _{IN}	Logic input voltage	-	-0.3 to 5.5	V
V _{OUT} - V _{SENSE}	Output to sense voltage drop	-	up to 12	V
V _S - V _{OUT}	- V _{OUT} Supply to output voltage drop		up to 12	V
V _{SENSE}	Sense pins voltage	-	-1 to 1	V
V_{REF}	Reference voltage input	-	-0.3 to 1	V
I _{OUT,RMS}	I _{OUT,RMS} Continuous power stage output current (each bridge)		1.3	A _{rms}
T _{j,OP}	T _{j,OP} Operative junction temperature -		-40 to 150	°C
T _{j,STG}	Storage junction temperature	-	-55 to 150	°C

2.2 Recommended operating conditions

Table 2. Recommended operating conditions

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _S	Supply voltage	-	1.8	-	10	V
V _{IN}	Logic input voltage	-	0	-	5	V
V_{REF}	Reference voltage input	-	0.1	-	0.5	V

2.3 Thermal data

Table 3. Thermal data

Symbol	Parameter	Conditions	Value	Unit
R_{thJA}	Junction to ambient thermal resistance	Natural convection, according to JESD51-2a ⁽¹⁾	57.1	°C/W
R _{thJCtop}	Junction to case thermal resistance (top side)	Simulation with cold plate on package top	67.3	°C/W
R _{thJCbot}	Junction to case thermal resistance (bottom side)	Simulation with cold plate on exposed pad	9.1	°C/W
R _{thJB}	Junction to board thermal resistance	According to JESD51-8 ⁽¹⁾	23.3	°C/W
Ψ_{JT}	Junction to top characterization	According to JESD51-2a ⁽¹⁾	3.3	°C/W
Ψ_{JB}	Junction to board characterization	According to JESD51-2a ⁽¹⁾	22.6	°C/W

^{1.} Simulated on a 21.2 x 21.2 mm board, 2s2p 1 Oz copper and four 300 μm vias below exposed pad.

STSPIN240 Electrical data

2.4 ESD protections

Table 4. ESD protection ratings

Symbol	nbol Parameter Test condition		Class	Value	Unit
НВМ	Human body model	Conforming to ANSI/ESDA/JEDEC JS-001-2014	H2	2	kV
CDM	Charge device model	Conforming to ANSI/ESDA/JEDEC JS-002-2014	C2a	500	V

Electrical characteristics STSPIN240

3 Electrical characteristics

Testing conditions: V_S = 5 V, T_j = 25 °C unless otherwise specified.

Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Supply				·	<u>I</u>	
V _{Sth(ON)}	V _S turn-on voltage	V _S rising from 0 V	1.45	1.65	1.79	V
V _{Sth(OFF)}	V _S turn-off voltage	V _S falling from 5 V	1.3	1.45	1.65	V
V _{Sth(HYS)}	V _S hysteresis voltage	-	-	180	-	mV
1	V gupply gurrent	No commutations, EN = 0 R_{OFF} = 160 k Ω	-	960	1300	μА
I _S	V _S supply current	No commutations, EN = 1 R _{OFF} = 160 k Ω	-	1500	1950	μА
I _{S,STBY}	V _S standby current	STBY = 0 V	-	10	80	nA
V_{STBYL}	Standby low logic level input voltage	-	-	-	0.9	V
V _{STBYH}	Standby high logic level input voltage	-	1.48	-	-	٧
Power stage						
		V _S = 10 V, I _{OUT} = 1.3 A	-	0.4	0.65	
R _{DS(ON)HS+LS}	Total on resistance HS + LS	$V_S = 10 \text{ V}, I_{OUT} = 1.3 \text{ A}, T_j = 125 \text{ °C}^{(1)}$	-	0.53	0.87	Ω
		V _S = 3 V, I _{OUT} = 0.4 A	-	0.53	0.8	
1	Leakage current	OUTx = V _S	-	-	1	μ.Λ
I _{DSS}	Leakage current	OUTx = GND	- 1	-	-	μA
V _{DF}	Freewheeling diode forward voltage	I _D = 1.3 A	-	0.9	-	V
t _{rise}	Rise time	V _S = 10 V; unloaded outputs	-	10	-	ns
t _{fall}	Fall time	V _S = 10 V; unloaded outputs	-	10	-	ns
t _{DT}	Dead time	-	-	50	-	ns
PWM current	controller					
V _{SNS,OFFSET}	Sensing offset	V _{REF} = 0.5 V; internal reference 20% V _{REF}	-15	-	+15	mV
	Total OFF time	$R_{OFF} = 10 \text{ k}\Omega$	-	9	-	μs
t _{OFF}	Total OFF time	R _{OFF} = 160 kΩ	-	125	-	μs
Δf_{OSC}	Internal oscillator precision (f _{OSC} /f _{OSC,ID})	R _{OFF} = 20 kΩ	-20%	-	+20%	-
t _{OFF,jitter}	Total OFF time jittering	R _{OFF} = 10 kΩ	-	-	2%	-

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Logic IOs			•	•		
V _{IH}	High logic level input voltage	-	1.6	-	-	V
V _{IL}	Low logic level input voltage	-	-	-	0.6	V
V _{RELEASE}	FAULT open drain release voltage	-	-	-	0.4	V
V _{OL}	Low logic level output voltage	I _{OL} = 4 mA	-	-	0.4	V
R _{STBY}	STBY pull-down resistance	-	-	36	-	kΩ
I _{PDEN}	EN pull-down current	-	-	10.5	-	μΑ
t _{ENd}	EN input propagation delay	From EN falling edge to OUT high impedance	-	55	-	ns
t _{PWM,d(ON)}	PWMX turn-on propagation delay	See Figure 4 on page 14	-	125	-	ns
t _{PWM,d(OFF)}	PWMX turn-off propagation delay	See Figure 4	-	140	-	ns
t _{PH,d}	PHX propagation delay	See Figure 4	-	125	-	ns
Protections						
T _{jSD} Thermal shutdown threshold		-	-	160	-	°C
T _{jSD,Hyst} Thermal shutdown hysteresis		-	-	40	-	°C
loc	Overcurrent threshold	See Figure 14 on page 22	-	2	-	Α

^{1.} Based on characterization data on a limited number of samples, not tested during production.

Pin description STSPIN240

4 Pin description

STBY\ PWMB PHB RESET EN\FAULT (12 PHA TOFF PWMA (11 REF EPAD (10 OUTB1 OUTA1 (9 SENSEB SENSEA 8 OUTB2 OUTA2 VS GND

Figure 2. Pin connection (top view)

1. The exposed pad must be connected to ground.

Table 6. Pin description

No.	Name	Туре	Function
1	PHA	Logic input	Phase input for bridge A
2	PWMA	Logic input	PWM input for bridge A
3	OUTA1	Power output	Power bridge output side A1
4	SENSEA	Power output	Sense output of the bridge A
5	OUTA2	Power output	Power bridge output side A2
6	VS	Supply	Device supply voltage
7, EPAD	GND	Ground	Device ground
8	OUTB2	Power output	Power bridge output side B2
9	SENSEB	Power output	Sense output of the bridge B
10	OUTB1	Power output	Power bridge output side B1
11	REF	Analog input	Reference voltage for the current limiter circuitry
12	TOFF	Analog input	Internal oscillator frequency adjustment
13	EN\FAULT	Logic input\ open drain output	Logic input 5 V compliant with open drain output. This is the power stage enable (when low, the power stage is turned off) and is forced low through the integrated open drain MOSFET when a failure occurs.

STSPIN240 Pin description

Table 6. Pin description (continued)

No.	Name	Туре	Function
14	STBY\RESET	Logic input	Logic input 5 V compliant. When forced low, the device is forced into low consumption mode.
15	PHB	Logic input	Phase input for bridge B
16	PWMB	Logic input	PWM input for bridge B

Typical applications STSPIN240

5 Typical applications

Table 7. Typical application values

Name	Value
C _S	2.2 μF / 16 V
C _{SPOL}	22 μF / 16 V
R _{SNSA} , R _{SNSB}	330 mΩ / 1 W
C _{EN}	10 nF / 6.3 V
R _{EN}	18 kΩ
C _{STBY}	1 nF / 6.3 V
R _{STBY}	18 kΩ
C _{RCOFF}	22 nF
R _{RCOFF}	1 kΩ
R _{OFF}	47 kΩ ($t_{OFF} \cong 37 \mu s$)

Figure 3. Typical application schematic

6 Functional description

The STSPIN240 is a dual brush DC motor driver integrating two PWM current controllers and a power stage composed by two fully-protected full-bridges.

6.1 Standby and power-up

The device provides a low settable consumption mode forcing the STBY\RESET input below the V_{STBYL} threshold.

When the device is in standby status, the power stage is disabled (outputs are in high impedance) and the supply to the integrated control circuitry is cut off.

6.2 Motor driving

The outputs of each bridge are controlled by the respective PWMx and PHx inputs as listed in *Table 8*.

EN\FAULT PHx **PWMx** OUTx1 OUT_{x2} **Full-bridge condition** 0 Χ Χ HiZ HiZ Disabled 1 0 0 **GND GND** Both LS on 1 0 1 VS **GND** HS2 and LS1 on (current $X1 \leftarrow X2$) 1 1 0 **GND GND** Both LS on 1 VS 1 1 **GND** HS1 and LS2 on (current $X1 \rightarrow X2$)

Table 8. Truth table

PWMx

PWMx

OUTx1

OUTx2

Figure 4. Timing diagram

LSx2 = ON

6.3 PWM current control

The device implements two independent current controllers, one for each full-bridge.

The voltage on the sense pins (V_{SENSEA} and V_{SENSEB}) is compared to the reference voltage applied on the REF pin (V_{REF}).

When $V_{SENSEX} > V_{REF}$, the current limiter is triggered, the OFF time counter is started and the decay sequence is performed.

The decay sequence starts turning on both low sides of the full-bridge.

PWMx PHx Decay HSx1 = OFF LSx1 = ONN.A.⁽¹⁾ 0 0 HSx2 = OFF LSx2 = ONHSx1 = OFF HSx1 = OFFLSx1 = ONLSx1 = ON 0 1 HSx2 = ONHSx2 = OFFLSx2 = OFF LSx2 = ON HSx1 = OFFLSx1 = ONN.A.⁽¹⁾ 0 1 HSx2 = OFF LSx2 = ONHSx1 = OFF HSx1 = ONLSx1 = OFF LSx1 = ON1 1 HSx2 = OFFHSx2 = OFF

Table 9. ON and slow decay states

LSx2 = ON

The reference voltage value, V_{REF}, has to be selected according to the load current target value (peak value) and sense resistors value.

Equation 1

In choosing the sense resistor value, two main issues must be taken into account:

- The sensing resistor dissipates energy and provides dangerous negative voltages on the SENSE pins during the current recirculation. For this reason the resistance of this component should be kept low (using multiple resistors in parallel will help to obtain the required power rating with standard resistors).
- The lower is the R_{SNSx} value, the higher is the peak current error due to noise on the V_{REF} pin and to the input offset of the current sense comparator: too low values of R_{SNSx} must be avoided.

^{1.} During decays the inputs values are ignored until the system returns to ON condition (decay time expired).

Figure 5. PWM current control

TOFF adjustment

The decay time is adjusted through an external resistor connected between the TOFF pin and ground as shown in Figure 6. A small RC series must be inserted in parallel with the regulator resistor in order to increase the stability of the regulation circuit according to indications listed in Table 10.

TOFF AM039900

Figure 6. OFF time regulation circuit

The relation between the OFF time and the external resistor value is shown in the graph of *Figure 7*. The value typically ranges from 10 μ s to 150 μ s.

Table 10. Recommended R_{RCOFF} and C_{RCOFF} values according to R_{OFF}

R _{OFF}	R _{RCOFF}	C _{RCOFF}
10 kΩ ≤ R _{OFF} < 82 kΩ	1 kΩ	22 nF
82 kΩ ≤ R _{OFF} ≤ 160 kΩ	2.2 kΩ	22 nF

6.4 Overcurrent and short-circuit protections

The device embeds circuitry protecting each power output against the overload and short-circuit conditions (short to ground, short to VS and short between outputs).

When the overcurrent or the short-circuit protection is triggered, the power stage is disabled and the EN\FAULT input is forced low through the integrated open drain MOSFET discharging the external C_{FN} capacitor.

The power stage is kept disabled and the open drain MOSFET is kept ON until the EN\FAULT input falls below the $V_{RELEASE}$ threshold, then the C_{EN} capacitor is charged through the R_{EN} resistor.

Figure 8. Overcurrent and short-circuit protections management

The total disable time after an overcurrent event can be set by properly sizing the external network connected to the EN\FAULT pin (refer to *Figure 9* and *Figure 10*):

Equation 2

$$t_{DIS} = t_{discharge} + t_{charge}$$

But t_{charge} is normally much higher than $t_{discharge}$, thus we can consider only the second one contribution:

Equation 3

$$t_{DIS} \cong R_{EN} \bullet C_{EN} \bullet I_{n} \frac{(V_{DD} - R_{EN} \bullet I_{PDEN}) - V_{RELEASE}}{(V_{DD} - R_{EN} \bullet I_{PDEN}) - V_{IH}}$$

Where V_{DD} is the pull-up voltage of the R_{EN} resistor.

577

6.5 Thermal shutdown

The device embeds circuitry protecting it from overtemperature conditions.

When the thermal shutdown temperature is reached, the power stage is disabled and the EN\FAULT input is forced low through the integrated open drain MOSFET.

The protection and the EN\FAULT output are released when the IC temperature returns below a safe operating value (T_{jSD} - $T_{jSD,Hyst}$).

Figure 11. Thermal shutdown management

STSPIN240 **Graphs**

7 **Graphs**

Figure 12. Power stage resistance versus supply voltage

Figure 13. Power stage resistance versus temperature

Graphs STSPIN240

Figure 14. Overcurrent threshold versus supply voltage

STSPIN240 Package information

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 VFQFPN 3 x 3 x 1.0 mm - 16L package information

Figure 15. VFQFPN 3 x 3 x 1.0 mm - 16L package outline

Package information STSPIN240

Table 11. VFQFPN 3 x 3 x 1.0 mm - 16L package mechanical data

Symbol	Dimensions (mm)			
	Min.	Тур.	Max.	Notes
Α	0.80	0.90	1.00	(1)
A1	-	0.02	-	-
A3	-	0.20	-	-
b	0.18	0.25	0.30	-
D	2.85	3.00	3.15	-
D2	1.70	1.80	1.90	-
E	2.85	3.00	3.15	-
E2	1.70	1.80	1.90	-
е	-	0.50	-	-
L	0.45	0.50	0.55	-

VFQFPN stands for "Thermally Enhanced Very thin Fine pitch Quad Packages No lead".
 Very thin: 0.80 < A ≤ 1.00 mm / fine pitch: e < 1.00 mm.
 The pin #1 identifier must be present on the top surface of the package by using an indentation mark or an other feature of the package body.

0.50

1.85

Figure 16. VFQFPN 3 x 3 x 1.0 mm - 16L recommended footprint

9 Ordering information

Table 12. Device summary

Ord	er code	Package	Packaging
STS	PIN240	VFQFPN 3 x 3 x 1.0 16L	Tape and reel

10 Revision history

Table 13. Document revision history

Date	Revision	Changes
06-May-2016	1	Initial release.
30-Jun-2016	2	Updated document status to Datasheet - production data on page 1. Updated Table 1 on page 6 (changed Max. value of V_S from 12 to 11). Updated Table 7 on page 11 (changed value of t_{OFF} from 47 μs to 37 μs).
04-Nov-2016	3	Updated Figure 1 on page 5 and Figure 12 on page 21 (replaced by new figures). Updated Table 2 on page 6 (added t _{INw} symbol). Updated Table 3 on page 6 (replaced by new table). Minor modifications throughout document.
11-Aug-2017	4	Updated <i>Table 2 on page 6</i> (removed t _{INw} parameter). Updated title of <i>Figure 12 on page 21 and Figure 13 on page 21</i> [removed "(normalized at"]. Minor modifications throughout document.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

