Project Design Phase-II Technology Stack (Architecture & Stack)

Date	27 June 2025	
Team ID	LTVIP2025TMID49412	
Project Name	Measuring the pulse of prosperity	
Maximum Marks	4 Marks	

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Example: Order processing during pandemics for offline mode

Reference: https://developer.ibm.com/patterns/ai-powered-backend-system-for-order-processing-during-pandemics/

MEASURING THE PULSE OF PROSPERITY: AN INDEX OF ECONOMIC FREEDOM ANALYSS

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How users interact with the system	Tableau Public / Power BI Web Dashboards
2.	Application Logic-1	Data preprocessing pipeline	Python (pandas, numpy)
3.	Application Logic-2	Correlation and statistical logic	Python (SciPy, statsmodels)
4.	Dashboard/Story Logic	Visualization & interactive logic	Tableau Filters, Parameters, Actions / Power BI DAX
5.	Data Source	Source of structured data	CSV datasets from Heritage Foundation, World Bank
6.	File Storage	Hosted data platform (if any)	Google Drive / GitHub for dataset hosting

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Frameworks for analytics and visualization	Python, Tableau Public, Power Bl
2.	Security Implementations	Basic file access control, secure sharing of data and dashboards	Google Drive Permissions, Power BI Access
3.	Scalable Architecture	Cloud dashboards enable scalable sharing and embedding	Tableau Public / Power BI Cloud
4.	Availability	Dashboards can be published and available 24/7	Tableau Public / Power BI Service
5	Performance	Optimized data queries, dashboard filters, fast rendering visualizations	Tableau Public / Power BI Service

References:

https://c4model.com/ https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/ https://www.ibm.com/cloud/architecture https://aws.amazon.com/architecture https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d