Advanced Topics with Programming Languages

Josh Felmeden

October 19, 2021

Contents

1	Introduction	3
2	Judgements 2.1 Simultaneous rules	3
3	Induction 3.1 Simultaneous induction	4
4	Types 4.1 Basic properties of typing	5
5	Dynamics	5
	Lambda Calculus 6.1 Preserving Type Safety with Error	6

1 Introduction

One way of looking at programming languages is to look at **types** and **type systems**. Haskell is a language that uses typing. There can be static and dynamic typing.

Types classify programs by the kind of data they compute.

2 Judgements

A **judgement** is a statement. In this topic, we will centre everything around an *evident judgement*. A judgement becomes evident when you can *prove* it. Therefore, when we sa a judgement, we need to provide evidence of proof.

Judgements come with rules. Here is an axiom:

```
zero nat
```

Zero is the object, and nat is the name. Alongside this, we can use an inference rule:

These two structures can be used in **derivation trees** which are used to prove judgements. For example, to prove that two is a natural number, we can do the following:

```
------ axiom
zero nat
------ s
succ(zero) nat
------ s
succ(succ(zero)) nat
```

We can also write

```
data nat = zero | succ nat
```

2.1 Simultaneous rules

we can state proofs of rules mix and match to use a proof that proves two things at once. For example:

```
----- ZE
zero even
```

```
n even
------ ODD
succ(n) odd

n odd
----- EVEN
succ(n) even
```

This proves both odd and even.

3 Induction

Every set of rules generates an induction principle.

Consider the claim if succ(n)nat then n nat. This seems obvious, but we can actually prove this.

```
Proof We will use induction
P(n): 'If n nat and n = succ(x) for some x then x nat'
Case zero: Nothing to prove
Case(succ(n) nat) The derivation of succ(n) nat ends with

n nat
.....succ
succ(n) nat

The D is a derivation of n nat.
succ(n) = succ(x) and therefore n = x. We can conclude that n is nat and therefore x is nat.
```

This statement is an **admissible rule**. A rule is admissible when we have a derivation of the premises, then we know we can construct a derivation of the conclusion. In essence, you need to *prove* this one (usually by induction).

In contrast, a rule is **derivable** if we can use a derivation of its premise as a building block in deriving its conclusion. In essence, you can *infer* this one (stitch together stuff).

3.1 Simultaneous induction

Recalling the even and odd proof, we can write these as Let P(n even) and Q(n odd). If:

- P(zero) and
- whenever n even and $\mathcal{P}(n)$ we have $\mathcal{Q}(\operatorname{succ}(n))$ and
- whenever n odd and $\mathcal{Q}(n)$ we have $\mathcal{P}(\operatorname{succ}(n))$

We are allowed to *invert* a judgement, and this is called an *inversion principle*.

4 Types

Term e is **well-typed** iff there is τ such that $\emptyset \vdash e : \tau$ is derivable according the the *static* rules of the language.

Say we want to prove the following:

```
\emptyset \vdash \mathsf{let}(\mathsf{str}[\mathsf{my}]; x, (\mathsf{times}(\mathsf{len}(x); \mathsf{num}(0))))
```

Type systems restrict the set of allowed programs.

4.1 Basic properties of typing

Lemma (Inversion of Typing): Suppose that $\Gamma \vdash e : \tau$. If $e = \mathsf{plus}(e_1; e_2)$ then $\tau = \mathsf{num}, \Gamma \vdash e_1 : \mathsf{num}$ and $\Gamma \vdash e_2 : \mathsf{num}$ and similarly for the other constructs of the language.

Lemma (Unicity of Typing): For every typing context Γ and expression e there exists at most one τ such that Γ such that $\Gamma \vdash e : \tau$.

Lemma (Weakening): If $\Gamma \vdash e' : \tau'$ then $\Gamma, x : \tau \vdash e' : \tau'$ for any $x \notin dom(\Gamma)$ and any type τ .

Lemma (Substitution): If $\Gamma, x : \tau \vdash e' : \tau'$ and $\Gamma \vdash e : \tau$ then $\Gamma \vdash e'[e/x] : \tau'$

5 Dynamics

Now, we are going to look at the runtime *semantics*. A **value** is an atomic structure that cannot be reduced any more (like a string or a value). Once we have that as a program, we know we don't need to evaluate it any more.

Now, let's define the actual semantics of language **E**. It is defined by the form: The transition judgement between states is inductively defined by the following rules. If we have some two argument (such as plus), evaluate the left hand side into a value first, before doing the second. While this doesn't make a difference to plus, it makes a different for more complicated things.

At this point, if we have something that doesn't match the type, we end up being 'stuck'. Additionally, we introduce the symbol: \longmapsto^* , which means derives in multiple steps. This is transitive: $e_1 \longmapsto^* e_2$, $e_2 \longmapsto^* e_3 \to e_1 \longmapsto^* e_3$.

Propositions

```
If e val, then there is no e' such that e \longmapsto e'.
If e \longmapsto e_1 and e \longmapsto e_2 then e \equiv e_2.
```

To ensure **type safe** programming languages, we know a few things:

- Certain kinds of mismatches cannot happen at runtime (such as "one" == 123)
- Type safety expresses the *coherence* between statics (Types) and dynamics (semantics)
- A consequence of type safety is that evaluation cannot get stuck.

From here onwards, we write $\vdash e : \tau$ for $\emptyset \vdash e : \tau$.

Theorem (type safety)

- 1. If $\vdash e : \tau$ and $e \longmapsto e'$, then $\vdash e' : \tau$ (type preservation)
- 2. If $\vdash e : \tau$, then either e val, or there exists e' such that $e \longmapsto e'$ (*progress*)

6 Lambda Calculus

So, well typed programs are very cool and all. But, if we were to add a division operator, what would happen if we divide by 0? This is well typed but the program can still get stuck. We can either define the rule with a 0 divisor rule, or add a check.

We can check at runtime to return an error so that the computer still returns something (an error, which is not a type). These errors need to be differentiated:

- **Unchecked error**: ruled out by the type system. No run-time checking performed because the type system rules out the possibility of the error arising
- · Checked error: not ruled out by the type system, hence run-time check must occur

Important to differentiate between the two because the checked error will incur significant overhead.

Error, therefore is a new type:

error err

6.1 Preserving Type Safety with Error

Theorem Progress with Error

If $\vdash e : \tau$ then either e = err, e = val or there exists e' such that $e \mapsto e'$.

6.2 Binary Product

We will introduce a new type: binary **product**. This looks like:

Type
$$\tau ::= \dots$$
 (as in E)
 $\mathsf{prod}(\tau_1; \tau_2)\tau_1 \times \tau_2$ binary product

 $\begin{array}{lll} \mathsf{Exp}\ e ::= \dots (\mathsf{as}\ \mathsf{in}\ \mathsf{E}) & & & & \mathsf{ordered}\ \mathsf{pair} \\ & & \mathsf{pair}(e_1;e_2) & & & & \mathsf{left}\ \mathsf{projection} \\ & & & \mathsf{pr}(e_1;e_2) & & & & \mathsf{right}\ \mathsf{projection} \end{array}$