CSC 580 Principles of Machine Learning

09 Unsupervised learning

Chicheng Zhang

Department of Computer Science

Supervised Learning

Unsupervised Learning

Task 1: Group These Set of Document into 3 Groups based on meaning

Doc1: Health, Medicine, Doctor

Doc 2 : Machine Learning, Computer

Doc 3 : Environment, Planet

Doc 4: Pollution, Climate Crisis

Doc 5 : Covid, Health, Doctor

Task 1: Group These Set of Document into 3 Groups.

Doc1: Health, Medicine, Doctor

Doc 2: Machine Learning, Computer

Doc 3: Environment, Planet

Doc 4: Pollution, Climate Crisis

Doc 5: Covid, Health, Doctor

Task 1: Group These Set of Document into 3 Groups.

Doc1: Health, Medicine, Doctor

Doc 5: Covid, Health, Doctor

Doc 3: Environment,

Planet

Doc 4 : Pollution, Climate

Crisis

Doc 2 : Machine Learning, Computer

Task 2: Topic modeling

- Provides a summary of a corpus.
- *n* tweets containing the keyword "bullying", "bullied", etc.
- Extracts *k* topics: each topic is a list of words with importance weights.
 - A set of words that co-occurs frequently throughout.

Figure 4: Selected topics discovered by latent Dirichlet allocation.

What is unsupervised learning?

- Uncovering structures in unlabeled data
- What can we expect to learn?
 - <u>Clustering</u>: obtain partition of the data that are well-separated.
 - can be viewed as a preliminary classification without predefined class labels.
 - <u>Components</u>: extract common components that compose data points.
 - e.g., topic modeling given a set of articles: each article talks about a few topics => extract the set of topics that appears frequently.
- Usage
 - As a summary of the data
 - Exploratory data analysis: what are the patterns we can get even without labels?
 - Often used as a 'preprocessing techniques'
 - e.g., extract useful **features** using "gaussian mixture model" (will be covered later)

Clustering

Clustering

• Input: *k*: the number of clusters (hyperparameter)

$$S = \{x_1, \dots, x_n\}$$

- Output
 - partition $\{G_i\}_{i=1}^k$ s.t. $S = \bigcup_i G_i$ (disjoint union).
 - often, we also obtain 'centroids'
- Q: what would be a reasonable definition of centroids?

Application: Clustering for feature extraction

- Feature extraction: histogram features (bag of visual words)
- A set of images: $S = \{x_1, ..., x_n\}$
- Cut up each $x_i \in \mathbb{R}^d$ into different parts $x_i^{(1)}, \dots, x_i^{(m)} \in \mathbb{R}^p$
 - e.g., small (overlapping) patches of an image
- Notation: $[n] \coloneqq \{1, ..., n\}$
- Pool all the patches together: $P \coloneqq \left\{x_i^{(j)}\right\}_{i \in [n], j \in [m]}$

- Run clustering on P with #clusters= $k \Rightarrow$ for each $x_i^{(j)}$, we have a cluster assignment $A\left(x_i^{(j)}\right) \in [k]$
- Generate the feature vector of x_i as the histogram of $\left\{A\left(x_i^{(j)}\right)\right\}_{j\in[m]}$
 - i.e., $z=(z_1,\ldots,z_k)$ where z_ℓ is the count of the cluster ℓ

k-means clustering

• Idea: to partition the data, it would be great if someone gives us k reasonable centroids c_1, \ldots, c_k , since then we can partition the data with them.

$$A(x) = \arg\min_{j \in [k]} ||x - c_j||_2$$

• But we don't have those centroids => Let's find them with an optimization formulation.

minimize
$$f(c_1, ..., c_k)$$
, where $f(c_1, ..., c_k) = \sum_{i=1}^n \min_{j \in [k]} ||x - c_j||_2^2$

Special case: k=1

•
$$\min_{c_1,\dots,c_k} \sum_{i=1}^n \min_{j \in [k]} ||x_i - c_j||_2^2 \Rightarrow \min_{c} \sum_{i=1}^n ||x_i - c||_2^2$$

• Let $F(c)=\sum_{i=1}^n \|x_i-c\|_2^2$ convex; minimizer c^* satisfies that $\nabla F(c^*)=0$ => $\sum_{i=1}^n (x_i-c^*)=0$ => $c^*=\frac{1}{n}\sum_{i=1}^n x_i$

For $k \geq 2$

• $\min_{c_1,\dots,c_k} f(c_1,\dots,c_k)$, where $f(c_1,\dots,c_k) = \sum_{i=1}^n \min_{j\in[k]} \left\|x-c_j\right\|_2^2 \Rightarrow \text{NP-hard even when } d=2$

- Lloyd's algorithm: solve it approximately (heuristic)
- Observation: The chicken-and-egg problem.
 - Cluster center location depends on the cluster assignment
 - Cluster assignment depends on cluster location
- Very common heuristic (that may or may not be the best thing to do)

(but people just say it is k-means clustering algorithm)

Initialization

Arbitrary/random initialization of c_1 and c_2

(A) update the cluster assignments.

(B) Update the centroids $\{c_j\}$

(A) update the cluster assignments.

(B) Update the centroids $\{c_i\}$

(A) update the cluster assignments.

(B) Update the centroids $\{c_j\}$

(A) update the cluster assignments.

(B) Update the centroids $\{c_j\}$

Next lecture (10/10)

• Dimensionality reduction; Principal component analysis (PCA)

• Probabilistic machine learning; naïve Bayes algorithm

Assigned reading: CIML Chap. 15

Lloyd's algorithm for k-means clustering

Input: k: num. of clusters, $S = \{x_1, ..., x_n\}$

[Initialize] Pick $c_1, ..., c_k$ as randomly selected points from S (see next slides for alternatives)

For t=1,2,...,max_iter

- [Assignments] $\forall x \in S$, $a_t(x) = \arg\min_{j \in [k]} ||x c_j||_2^2$
- If $t \neq 1$ AND $a_t(x) = a_{t-1}(x), \forall x \in S$
 - break
- [Centroids] $\forall j \in [k], c_j \leftarrow \text{average}(\{x \in S: a_t(x) = j\})$

Output: c_1, \dots, c_k and $\{a_t(x_i)\}_{i \in [n]}$

Lloyd's algorithm: cost minimization perspective

- Key idea: solving the optimization problem by reformulation and alternating minimization:
- Reformulation: denote by $\vec{c}\coloneqq(c_1,\ldots,c_k), \vec{z}\coloneqq(z_1,\ldots,z_n);$ $f(\vec{c})=\min_{\vec{z}}g(\vec{c},\vec{z}), \text{ where } g(\vec{c},\vec{z})=\sum_{i=1}^n\left\|x_i-c_{z_i}\right\|_2^2$ suffices to solve

$$\min_{\vec{c},\vec{z}} g(\vec{c},\vec{z})$$

- For t = 1, 2, ..., T:
 - Update the cluster assignments: $\vec{z}_t \leftarrow \operatorname{argmin}_{\vec{z}} g(\vec{c}_{t-1}, \vec{z})$
 - Update the centroids: $\vec{c}_t \leftarrow \operatorname{argmin}_{\vec{c}} g(\vec{c}, \vec{z}_t)$
- Observation: objective function $g(\vec{c}_t, \vec{z}_t)$ decreases monotonically in t

Issue 1: Unreliable solution

- You usually get suboptimal solutions
- You usually get different solutions every time you run.
- Standard practice: Run it 50 times and take the one that achieves the smallest objective function
 - Recall: $\underset{c_1, \dots, c_k}{\text{minimize}} f(c_1, \dots, c_k)$, where $f(c_1, \dots, c_k) = \sum_{i=1}^n \min_{j \in [k]} \left\| x c_j \right\|_2^2$
- Or, change the initialization (next slide)
 - Idea: ensure that we pick a widespread c_1, \dots, c_k

Two alternative initializations.

- Furthest-first traversal \Rightarrow Sequentially choose c_i that are the farthest from the previously-chosen.
 - Pick $c_1 \in \{x_1, ..., x_n\}$ arbitrarily (or randomly)
 - For j = 2, ..., k
 - Pick $c_j \in \mathbb{R}^d$ as a point in $\{x_1, \dots, x_n\}$ that maximizes the squared distances to c_1, \dots, c_{j-1} .

$$c_j = \arg\max_{i \in [n]} \min_{j'=1,\dots,j-1} ||x_i - c_{j'}||_2^2$$

- k-means++ (Arthur and Vassilvitskii, 2007)
 - Pick $c_1 \in \{x_1, ..., x_n\}$ uniformly at random
 - For j = 2, ..., k
 - Define a distribution $\forall i \in [n]$, $\mathbb{P}(c_j = x_i) \propto \min_{j'=1,\dots,j-1} \|x_i c_{j'}\|_2^2$
 - Draw c_j from the distribution above.

More likely to choose x_i that is farthest from already-chosen centroids.

=> has a mathematical guarantee that it will be better than an arbitrary starting point!

Issue 2: Choosing k

• $\hat{L}_k = f(c_1, ..., c_k)$ for $c_1, ..., c_k$ obtained by any k-means clustering algorithm

- Elbow method: see where you get saturation.
- Akaike information criterion (AIC): $\operatorname{argmin}_k (\hat{L}_k + 2kd)$
- Bayesian information criterion (BIC): $\operatorname{argmin}_k \left(\widehat{L}_k + kd \cdot \log n \right)$

Kernelizing Lloyd's algorithm

How to perform clustering with feature transformations $\phi: \mathcal{X} \to \mathbb{R}^D$?

Input: k: num. of clusters, $S = \{x_1, ..., x_n\}$, kernel function K with feature map ϕ

Idea: perform clustering over $\tilde{S} = \{\phi(x_1), ..., \phi(x_n)\}$ without explicitly evaluating ϕ

[Initialize] Pick c_1, \ldots, c_k as randomly selected points from \tilde{S}

For t=1,2,...,max_iter

- [Assignments] $\forall x \in S$, $a_t(x) = \arg\min_{j \in [k]} \|\phi(x) c_j\|_2^2$
- If $t \neq 1$ AND $a_t(x) = a_{t-1}(x), \forall x \in S$
 - break
- [Centroids] $\forall j \in [k], c_j \leftarrow \text{average}(\{\phi(x): x \in S, a_t(x) = j\})$

Output: c_1, \ldots, c_k and $\{a_t(x_i)\}_{i \in [n]}$

Kernelizing Lloyd's algorithm (cont'd)

- How to calculate $\|\phi(x) c_j\|_2^2$ without explicitly evaluating ϕ ?
- Key observation: c_j always takes the form $c_j = \frac{1}{|S|} \sum_{i \in S} \phi(x_i)$ for some S, and therefore has the form $c_j = \sum_{i=1}^n \alpha_i \phi(x_i)$
- Therefore,

$$\|\phi(x) - c_j\|_2^2 = \langle \phi(x), \phi(x) \rangle - 2\langle \phi(x), \sum_{i=1}^n \alpha_i \phi(x_i) \rangle + \langle \sum_{i=1}^n \alpha_i \phi(x_i), \sum_{i=1}^n \alpha_i \phi(x_i) \rangle$$
$$= K(x, x) - 2\sum_{i=1}^n K(x, x_i) + \sum_i \sum_j \alpha_i \alpha_j K(x_i, x_j)$$

• Efficiently computable: only requires evaluating *K* now

Clustering as cost minimization: additional remarks

k-means objective function is not the only one used in practice

$$f(c_1, ..., c_k) = \sum_{i=1}^n \min_{j \in [k]} ||x - c_j||_2^2$$

• Alternative popular cost functions:

k-median:
$$f(c_1, ..., c_k) = \sum_{i=1}^n \min_{j \in [k]} ||x - c_j||_2$$

k-center:
$$f(c_1, ..., c_k) = \max_{i} \min_{j \in [k]} ||x - c_j||_2$$

• Furthermore, we don't have to restrict to using the ℓ_2 metric

Hierarchical clustering

Hierarchical clustering – getting rid of tuning k

- Idea: produce a tree structure over objects
- Can prune the tree appropriately to fit application needs (e.g. cluster radius / size requirements)

Hierarchical clustering

- Method 1: Top-down (divisive)
 - k-means clustering with k=2
 - Do this recursively on each resulting cluster (no more recursion when there is only one point in a cluster)
 - You now have a binary tree.
- Method 2: bottom-up (agglomerative, more popular)
 - Start with every point x_i being a singleton cluster
 - Repeatedly pick a pair of clusters with the smallest 'distance'
 - How do we define a distance between two clusters?

Agglomerative clustering: Distance between two clusters

- Single linkage
 - $dist(C, C') = \min_{x \in C, x' \in C'} ||x x'||_2$
- Complete linkage
 - $\operatorname{dist}(C, C') = \max_{x \in C, x' \in C'} ||x x'||_2$
- Average linkage
 - dist $(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C} \sum_{x' \in C} ||x x'||_2$

Dimensionality Reduction and Principal Component Analysis (PCA)

Dimensionality reduction: motivation

- Data compression: Identifies important components that can reconstruct data points
- Identify informative feature transformations
- Visualization & visual analytics: high-dim data -> 2d => easy to plot

Iris flower dataset (4 features)

PCA: Introduction

- Task:
 - Given: raw feature vectors $x_1, \dots, x_n \in \mathbb{R}^d$, target dimension k
 - Output: a k-dimensional <u>subspace</u> represented by an *orthonormal* basis $q_1, ..., q_k \in \mathbb{R}^d$ that the projections of datapoints with it would maximally preserve the ``spread''.

Application: dimensionality reduction

Closely related to projections

if k=1, which basis should we choose?

Principal components: usage

Compressing the data:

• Let
$$Q = \begin{pmatrix} -q_1 - \\ \dots \\ -q_k - \end{pmatrix} \in \mathbb{R}^{d \times k}$$

• Every $x_i \in \mathbb{R}^d$ gets mapped to $z_i = Qx_i = \begin{pmatrix} q_1^\intercal x_i \\ \dots \\ q_k^\intercal x_i \end{pmatrix} \in \mathbb{R}^k$

Resconstructing the data

• Given
$$z_i$$
, reconstruct x_i with $\widetilde{x_i} = \begin{pmatrix} | & \cdots & | \\ q_1 & \dots & q_k \\ | & \cdots & | \end{pmatrix} z_i = Q^{\mathsf{T}} z_i$

- Reconstruction error: $x_i \widetilde{x_i} = x_i Q^T Q x_i$
- If k = d, then perfect reconstruction ($\widetilde{x_i} = x_i$)

Projection

• Why reconstructing using $Q^T z_i$?

• Given orthonormal
$$Q = \begin{pmatrix} -q_1 & - \\ & \cdots \\ -q_k & - \end{pmatrix}$$
,
$$Q^\top Q x = \begin{pmatrix} | & \cdots & | \\ q_1 & \cdots & q_k \\ | & \cdots & | \end{pmatrix} \cdot \begin{pmatrix} -q_1 & - \\ & \cdots \\ -q_k & - \end{pmatrix} x = \sum_i (q_i^\top x) q_i$$
 projection matrix $\Pi = \sum_{i=1}^k q_i q_i^\top$

is also the *projection* (nearest neighbor) of x to the linear span of q_1, \dots, q_k

• **Projection Objective**: find a k-dimensional <u>projection matrix</u> Π s.t. the average residual squared error (reconstruction error) is minimized:

Q: why square the distance?

$$\frac{1}{n} \left(\sum_{i=1}^{n} \|x_i - \Pi x_i\|_2^2 \right)$$

Projection when k=1

Objective:

$$\arg\min_{q:\|q\|=1} \sum_{i=1}^{n} \|x_i - qq^{\top}x_i\|_2^2$$

$$\frac{1}{n} \left(\sum_{i=1}^{n} x_i^{\mathsf{T}} x_i - 2x_i^{\mathsf{T}} q q^{\mathsf{T}} x_i + x_i^{\mathsf{T}} q q^{\mathsf{T}} q q^{\mathsf{T}} x_i \right)$$

$$\propto -\frac{1}{n} \sum_{i} x_i^{\mathsf{T}} q q^{\mathsf{T}} x_i = q^{\mathsf{T}} \left(\frac{1}{n} X^{\mathsf{T}} X \right) q \quad \text{where } X \in \mathbb{R}^{n \times d} \text{ is the design matrix}$$

Thus, equivalent to arg $\max_{q:\|q\|=1} q^{\top} \left(\frac{1}{n} X^{\top} X\right) q$

Eigendecomposition for real symmetric matrices

• Every <u>Symmetric real</u> matrix A is guaranteed to have eigen decomposition with real eigenvalues:

- Convention: $\lambda_1 \geq \cdots \geq \lambda_d$
- For positive semi-definite A, $\lambda_i \geq 0$ for all i
- Recall the definition: $Av_i = \lambda_i v_i \ \forall i \in [d]$
- Here, $V = \begin{pmatrix} | & \cdots & | \\ v_1 & \dots & v_d \\ | & \cdots & | \end{pmatrix}$ has orthonormal columns, i.e. $v_i^\mathsf{T} v_j = I(i=j)$

Variational characterization of the top eigenvector

- Claim: $\max_{q:\|q\|=1} q^{\mathsf{T}}Aq$ has a maximizer $q^*=v_1$, with optimal objective λ_1
- Proof: recall $A = \sum_{i=1}^{n} \lambda_i v_i v_i^{\mathsf{T}}$
 - (Optimal objective upper bound): For any unit vector q,

$$q^{\top}Aq = \sum_{i=1}^{d} \lambda_i \big(v_i^{\top}q\big)^2 \leq \lambda_1,$$
 since $\left(a_i = \left(v_i^{\top}q\right)^2\right)_{i=1}^d$ is such that $\sum_{i=1}^{d} a_i = 1$ and $a_i \geq 0$ for all i

Connection to the variance

$$A = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}} \Rightarrow q^{\mathsf{T}} A q = \frac{1}{n} \sum_{i=1}^{n} q^{\mathsf{T}} x_i x_i^{\mathsf{T}} q = \frac{1}{n} \sum_{i=1}^{n} (q^{\mathsf{T}} x_i)^2 = \mathrm{E}_S[(q^{\mathsf{T}} x)^2]$$
 equal to $\mathrm{var}_S[x^{\mathsf{T}} q] = \mathrm{E}_S[(x^{\mathsf{T}} q - \mathrm{E}_S[x^{\mathsf{T}} q])^2]$ if data is centralized

PCA with $k \geq 2$

$$\underset{Q \in \mathbb{R}^{d \times k}, Q^{\top}Q = I}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \left\| x_{i} - QQ^{\top}x_{i} \right\|_{2}^{2} = \underset{Q \in \mathbb{R}^{d \times k}, Q^{\top}Q = I}{\operatorname{argmax}} \operatorname{tr} \left(Q^{\top} \left(\frac{1}{n} X^{\top} X \right) Q \right)$$
 where for $B \in \mathbb{R}^{d \times d}$, $\operatorname{tr}(B) = \sum_{i=1}^{d} B_{ii}$

Interpretation:
$$Q^{\top}\left(\frac{1}{n}X^{\top}X\right)Q = \frac{1}{n}\sum_{i=1}^{n}(Q^{\top}x_i)(Q^{\top}x_i)^{\top}$$
 is the covariance matrix of $\{Q^{\top}x_i\}$'s

Fact: the optimal
$$Q$$
 has the form $Q^* = \begin{pmatrix} | & \cdots & | \\ v_1 & \dots & v_k \\ | & \cdots & | \end{pmatrix}$, where $A = \frac{1}{n} X^\mathsf{T} X$ has eigendecomposition $A = \sum_i^d \lambda_i v_i v_i^\mathsf{T}$

=> k-dimensional subspace with the maximum total variance = top-k eigenvectors!

PCA pseudocode (with centering)

- Input: data matrix $X \in \mathbb{R}^{n \times d}$
- Preprocess: Let $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$. Compute $x_i' = x_i \mu$, $\forall i \in [n]$
- Compute the top k eigenvectors $V = [v_1, \dots, v_k]$ of $\frac{1}{n} \sum_{i=1}^n x_i'(x_i')^{\mathsf{T}}$
- Feature map: $\phi(x) = \left(v_1^\top(x-\mu), \dots, v_k^\top(x-\mu)\right) \in \mathbb{R}^k$

(k-dimensional embedding)

- (thm) Decorrelating property (aka "whitening")
 - $\bullet \ \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) = 0$
 - $\frac{1}{n}\sum_{i=1}^{n}\phi(x_i)\phi(x_i)^{\mathsf{T}}=\mathrm{diag}(\lambda_1,\ldots,\lambda_k)$

 λ_i is the eigen value (paired with v_i)

- (optional) Reconstruction (the actual projection): apply $\mu + V\phi(x) \in \mathbb{R}^d$
 - can be used as a ``denoising'' procedure.

Example: MNIST dataset

Example: data compression

 16×16 pixel images of handwritten 3s (as vectors in \mathbb{R}^{256})

Mean μ and eigenvectors v_1, v_2, v_3, v_4

Mean

 $\lambda_1 = 3.4 \cdot 10^5$

$$\lambda_2 = 2.8 \cdot 10^5$$

$$\lambda_3 = 2.4 \cdot 10^5$$

$$\lambda_4 = 1.6 \cdot 10^5$$

Reconstructions:

X

k = 1

k = 10 k = 50

k = 200

Only have to store k numbers per image, along with the mean μ and k eigenvectors (256(k+1) numbers)

Example: eigenfaces

 92×112 pixel images of faces (as vectors in \mathbb{R}^{10304})

100 example images

top k = 48 eigenvectors

PCA caveat

• The direction of maximizing variance is not necessarily useful for classification!

