TRƯỜNG ĐẠI HỌC MỎ - ĐỊA CHẤT ĐỀ CHÍNH THỰC

____************

ĐỀ THI CHỌN ĐỘI TUYỂN OLYMPIC TOÁN SINH VIÊN NĂM 2016

> Môn: Giải tích (vòng 2) Thời gian: 180 phút

Câu 1.

a) Cho dãy số $\left\{a_n\right\}$ được xác định như sau $a_1=\alpha$, $a_n=\frac{n+1}{n}a_n-\frac{2}{n}$, với n=1,2,3... Tìm α để dãy $\left\{a_n\right\}$ hội tụ.

b) Tính
$$\lim_{n\to\infty} \frac{S_n}{n^2}$$
, trong đó $S_n = \sum_{k=2}^n k \cos \frac{\pi}{k}$.

Câu 2. Cho hàm số f(x) thỏa mãn các điều kiện liên tục trên [a,b], có đạo hàm cấp hai trên (a,b), f(a) = f(b) = 0 và c là một điểm cho trước nằm trong (a,b). CMR tồn tại ít nhất một điểm $d \in (a,b)$ sao cho $f(c) = (c-a)(c-b)\frac{f''(d)}{2}$.

Câu 3. Cho hàm số $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1,1]$ là hàm khả vi có đạo hàm liên tục và không âm. CMR tồn tại ít nhất một điểm $x_0 \in (-\frac{\pi}{2}, \frac{\pi}{2})$ sao cho $(f(x_0))^2 + (f'(x_0))^2 \le 1$.

Câu 4. Tính
$$\lim_{n\to\infty} \int_0^1 \frac{nx^n}{2016+x^n} dx$$
.

Câu 5. Cho f(x) liên tục $\left[0, \frac{\pi}{2}\right]$ và thỏa mãn f(0) > 0, $\int_{0}^{\frac{\pi}{2}} f(x) dx < 1$.

Chứng minh rằng phương trình $f(x) = \sin x$ có ít nhất một nghiệm trong khoảng $(0, \frac{\pi}{2})$.

Câu 6. Tìm hàm f(x) khả vi thỏa mãn với mọi $x \neq 0$

$$3x^2 f'(x) + x^3 f''(x) = -1$$
, $f(1) = 1$, $f(-2) = -1$.

Câu 7.

Giả sử hàm f(x) có đạo hàm cấp hai trên [0,1], f(0) = f(1) = 0, $\min_{0 \le x \le 1} f(x) = -1$.

Chứng minh rằng $\sup_{0 \le x \le 1} |f''(x)| \ge 8$.