Differentialgleichungen

1.Ordnung

$$y'=f(x,y)=\frac{dy}{dx}$$

 $n'(t)=-\lambda\times n(t),$ allgemein löst $n(t)=C\times e^{-\lambda t}$ die DG

Trennen der Variablen

 $y'=f(x)\times g(y)=\frac{dy}{dx}$ jede Variable auf eine Seite, dann getrennt Integrieren: $\int \frac{1}{g(y)} dy = \int f(x) dx + c$

Kurvenschaar-Problem

Idee

- 1. Kurvenschaar y=f(x,c), nach Konstante auflösen, dann in DG einsetzen um C zu eliminieren
- 2. Zugehörige DG y' = g(x, y)
- 3. Zugehörige DG der orth. KS $y' = \frac{-1}{g(x,y)}$
- 4. Kurvenschaar bestimmen y = f(x, c)

Integration durch Substitution

- 1. Fall
 - y' = f(ax + by + c)
 - u = ax + by(x) + c = y' = f(u), u' = a + by'(x)
 - in u' für y' die ursprüngliche Gleichung y' = f(u) einsetzen
- 2. Fall
 - $y' = f(\frac{y}{x}) \Longrightarrow y' = f(u)$
 - $u = \frac{y}{x}$, $u(x) \times x = y = u'(x) \times x + u(x) = y'$
 - y' = u'x + u in y' = f(u) eingesetzt und aufgelöst ergibt: $u' = \frac{1}{x}(f(u) u)$ (anschliessend trennen der Variablen)

2.Ordnung

$$x''(t) = -q$$

- $x'(t) = -gt + v_0$
- $x(t) = -gt^2 \frac{1}{2} + v_0 t + s_0 =$ allgemeine Lösung
- $v(0) = 0, s(0) = 0 = x(t) = -gt^{2}\frac{1}{2}$

Linerare DG (1.0)

Normalformen

- $y' + f(x) \times y = g(x)$ -> inhomohene DG 1.0
- $y' + f(x) \times y = 0$ -> homogene DG 1.0

Allgemeine lösung mit freiem Parameter einer **Homogenen DG** (durch trennen der Variabeln)

•
$$y_h(x) = K \times e^{-\int f(x)dx}$$

Lösung einder Inhomogenen DG

- 1. LDG als homogene lösen -> y_h
- 2. $y_p = K(x) \times e^{-\int f(x)dx}$
 - (a) $K'(x) = \frac{g(x)}{y_h(x)_{K=1}}$ bestimmen, danach Integrieren
- 3. Allgemeine Lösung: $y_a(x) = y_h(x) + y_p(x)$
- 4. Falls Anfangsbedingungen vorhanden, einsetzen und partikuläre Lösung bestimmen