REMARKS/ARGUMENTS

This is a response to the Office Action of May 19, 2006. Reconsideration of this patent application is requested.

Claims 1-13, 15-18, 20, 21, 24-31, 33, 34, 36-39, and 41 are pending in the application.

Claims 1-13, 15-18, 20, 21, 24-31, 33, 34, 36-39, and 41 are rejected.

Claim 29 is objected to.

Claims 2, 3, 4, 28, 29, and 34 are hereby canceled.

The Claimed Invention

The claimed invention presents a system and method for generation and storage of pressurized hydrogen gas, comprising:

- (a) a <u>hydrogen gas generator</u> which comprises:
- a first compartment <u>comprising at least one chemical hydride</u> for irreversibly generating pressurized hydrogen gas by a chemical reaction of the at least one chemical hydride;
- (b) a <u>hydrogen storage canister</u> in fluid communication with the hydrogen gas generator for storing the pressurized hydrogen gas, wherein the hydrogen storage canister <u>comprises at least one metal hydride</u>; and
- (c) at least one <u>hydrogen conditioner</u> in fluid communication with the hydrogen gas generator and the hydrogen storage canister wherein the at least one hydrogen conditioner comprises a <u>vessel</u> which contains one or more desiccant materials.

Amendments to the Specification:

Paragraph [0013] is amended to conform to Claim 1 as filed. No new matter is added by this amendment to the specification.

Response Dated August 17, 2006

Reply to Office Action Mailed May 19, 2006

Amendments to the Claims:

Independent Claim 1 (currently amended) has been amended to incorporate limitations from Claim 2 and Claim 4. No new matter is added by this amendment to the claim.

Claim 5 has been amended to depend from Claim 1 instead of canceled Claim 4. No new matter is added by this amendment to Claim 5.

Claim 8 has been amended to delete ammonia from the Markush list, thereby further narrowing the scope of claim 8. No new matter is added by this amendment to Claim 8.

Claim 30 has been amended to depend from Claim 18 instead of canceled Claim 29. No new matter is added by this amendment to Claim 30.

Claim 33 has been amended to incorporate limitations from Claim 34 and Claim 4. No new matter is added by this amendment to Claim 33.

Claim 36 has been amended to delete ammonia from the Markush list, thereby further narrowing the scope of claim 36. No new matter is added by this amendment to Claim 36.

Claim Objections

The Examiner objected to Claim 29, stating:

"There is not antecedent basis in either claim 1 or claim 18 for the "hydrogen conditioner" set forth in applicants' claim 29. "

Applicants have canceled Claim 29 thereby making Examiner's objection moot.

Claim Rejections - 35 USC §103

The Examiner has advised Applicants of their obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the Examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a). Applicants acknowledge that the subject matter of the claims was commonly owned at the time any inventions covered therein were made.

Claims 1-13, 15-18, 20, 21, 24-31, 33, 34, 36-39, and 41 are rejected under 35 U.S.C. § 103(a) as being unpatentable over U.S. Patent Application Publication No. US2002/0081235 A1 to *Baldwin*.et al. in view of U.S. Patent 4,489,564 to Hausler et al.

The Examiner states:

"The difference between the applicants' claims and the Baldwin et al. reference is that applicants' claims 1, 15, 26, 27 and 33 set forth that the hydrogen storage canister comprises a metal hydride.

U.S. Patent 4,489,564 to Hausler reports the use of a hydride storage canister for hydrogen (please see col. 1 lines 6-8). The storage material within the canister may be a metal alloy containing titanium, zirconium, chromium and manganese which evidently react with the gaseous hydrogen inserted into the canister to form metal hydrides (please see col. 12 lines 10-22). The Hausler patent reports the advantages of the canister as being able to store hydrogen in the metal hydride form without problems, safely and in a small space (please see col. 1 lines 14-26).

It would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the process and apparatus described in the Baldwin et al. reference by substituting the metal hydride hydrogenstorage canister of taught in col. 1 lines 6-22 in U.S. Patent 4,489, 564 in lieu of the "storage tank (7)" described in paragraph no. 0041 in the Baldwin et al. reference, in the manner required by at least applicants' claims 1, 15, 26, 27, and 33, because of the expected advantages of avoiding problems and storing the hydrogen safely while using only a small space, as suggested by the disclosure set forth in col. 1 lines 13-16 in U.S. Patent 4,489,564 to Hausler et al."

Water (moisture) and other impurities tend to poison metal hydrides.

In paragraph [0034] Myasnikov et al. U.S. Patent Application Publication US 2005/0211573 (prior art of record) states:

"The Ti-Fe alloy system, which has been considered as a typical and superior material of the titanium alloy systems, has the advantages that it is relatively inexpensive and the hydrogen dissociation equilibrium pressure of hydrogen is several atmospheres at room temperature. However, since it requires a high temperature of about 350°C. and a high pressure of over 30 atmospheres for initial hydrogenation. Also, it has a hysteresis problem which hinders the complete release of hydrogen stored therein. <u>The Ti-Fe alloy is also easily poisoned by moisture</u>, which will be present within the heating pack." (<u>emphasis added</u>)

Singh et al. U.S. Patent No. 5,686,196, col. 4, lines 37-44 states:

"When metal hydride storage is used in accordance with the present invention, it is preferable to purify the hydrogen stream prior to contact with the metal in order to reduce or eliminate oxygen, carbon dioxide, water, and other constituents which tend to poison the metal hydride. A suitable hydrogen purifier comprises a Pd, Pd--Ag membrane. The hydrogen purifier may significantly prolong the life of the hydrogen storage system." (emphasis added)

Baldwin et al. disclose water removal by a condenser and a condenser comprising a dilute sodium hydroxide solution.

Baldwin et al., paragraph [0041] states, in part:

"The generated hydrogen gas, under pressure, flows from the reactor (5) through the check valve (2) into the condenser (6). The other check valve (2) prevents the pressure from forcing gas into the water storage tank (1). In the condenser (6), water is condensed out of the generated hydrogen gas which then passes into the storage tank (7) for eventual use. The stored higher pressure hydrogen is made available through a pressure regulator (8) for distribution to the end use application. The pressure gauges (4) indicate the pressure in both the reactor (5) and the storage tank (7). Condensed water is periodically drained from the condenser (6) through the valve (9). "(emphasis added)

Baldwin et al., paragraph [0046] states:

"The chemical container (32) is shown as a cylindrical pressure vessel fitted with a porous sintered metal filter element (30) at the top, and connected to the metering pump (20) through external piping (21). The lower portion of the chemical container is filled with sodium hydroxide pellets (31). The metering pump (20) is connected to the water tank (19). The condenser (24) is a cylindrical pressure vessel connected to the reactor through external piping (10) which extends almost to the bottom of the condenser. It is connected to the pressure regulator (26) output through external piping (25). <u>The lower half of the condenser (24) is filled with a dilute solution of sodium hydroxide</u> (27). Again, other configurations may be used. "(emphasis added)

The hydrogen effluent stream from the condensers of Baldwin et al. contains significant water.

A condenser, even at a temperature as low as 1°C, would provide an effluent gas having a water mole fraction of about 0.0065. According to Table 3-5, page 3-45 of Perry's Chemical Engineers' Handbook, 6th Edition, the vapor pressure of water at 1°C is 4.926 mmHg. At 1 atm. (760 mmHg), the mole fraction of water is about 0.0065. Table 3.5 is included in Appendix A.

A condenser having a dilute solution of sodium hydroxide would similarly have a significant water content. According to Table 3-27, page 3-73 of Perry's Chemical Engineers' Handbook, 6th Edition, at a concentration of 10 g. sodium hydroxide in 100 g. water, the partial pressure of water is 16.0 mmHg at 20°C. At 1 atm. (760 mmHg), this translates to a water mole fraction of about 0.021. Table 3-27 is included in Appendix A.

Significant water content in the effluent hydrogen stream, as achieved through the use of the condensers of Baldwin et al., would therefore poison the metal hydride of Hausler et al.

Consequently, one of ordinary skill in the art would not make the combination of Baldwin et al. and Hausler et al.

Applicants respectfully submit that the Examiner has failed to establish a <u>prima facie</u> obviousness rejection of the independent claims 1 and 33, in view of Baldwin et al. and Hausler et al and Applicants respectfully request the Examiner to withdraw such rejection.

Since the independent claims are *per se* nonobvious, the dependent Claims 5-13, 15-18, 20, 21, 24-27, 30, 31, 36-39, and 41 are nonobvious. According to MPEP 2143.03, if an independent claim is nonobvious under 35 U.S.C. 103, then any claim depending therefrom is nonobvious.

Applicants respectfully submit that the Examiner has failed to establish a <u>prima facie</u> obviousness rejection of Claims 5-13, 15-18, 20, 21, 24-27, 30, 31, 36-39, and 41 in view of Baldwin et al. and Hausler et al. and Applicants respectfully request the Examiner to withdraw such rejection.

Applicants' claimed invention as amended comprises water removal by use of at least one desiccant material. Desiccant materials provide orders of magnitude lower water content in the effluent stream than the condensers of Baldwin et al. and are therefore <u>not functionally equivalent</u>.

From the Desiccant Selection Guide available on the jtbaker website, www.jtbaker.com, included as Appendix B, the mole fraction of water present in an effluent air stream after passing through a desiccant containing vessel may be calculated. One (1) liter of dry air is about 0.04159 moles. The residual water after passing through the desiccant ranges from 0.001 mg/L for molecular sieve to about 0.25 mg/L for calcium chloride. Calcium sulfate and DRIERITE provide a residual water content of about 0.005 mg/L. A water content of 0.001 mg/L translates to a water mole fraction of about 0.000001. A water content of 0.25 mg/L translates to a water mole fraction of about 0.000334. Hence, one of the least effective desiccants, calcium chloride, provides more than an order of magnitude better water removal than the most effective condenser at 1°C; 0.000334 water mole fraction for calcium chloride versus 0.0065 water mole fraction for the 1°C condenser.

It is therefore evident that the condensers of Baldwin et al. and the hydrogen conditioner with desiccant of the present invention are not equivalent.

Double Patenting

The Examiner has provisionally rejected Claims 1-13, 15-18, 20, 21, 24-31, 33, 34, 36-39 and 41 on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1-26 of copending Application No. 11-188,465.

The Examiner states:

"A showing that the inventions were commonly owned at the time the invention in this application was made will preclude a rejection under 35 U.S.C. 103(a) based upon the commonly assigned case as a reference under 35 U.S.C. 102(f) or (g), or 35 U.S.C. 102(e) for applications pending on or after December 10, 2004. "

Applicant acknowledges the provisional obviousness-type double patenting rejection.

The inventors of the present invention, Graham, Xu, and Meski, having an obligation to assign their patent rights to Air Products and Chemicals, Inc. are the same Graham, Xu, and Meski listed as inventors of copending Application No. 11/188,465. Copending Application No. 11/188,465 also lists inventor Horninger, who also has an obligation to assign patent rights to Air Products and Chemicals, Inc.

The inventions were commonly owned at the time the inventions were made.

The present Application No. 10/712,195 has an earlier filing date than the co-pending Application No. 11/188,465. At this time, no action on the merits has been mailed for the co-pending Application No. 11/188,465.

No further action regarding the provisional obviousness-type double patenting rejection for the present Application is believed necessary at this time.

Prior Art of Record, Not Relied Upon by Examiner

Applicants acknowledge that U.S. Pat. App'n Pub. US 2006/0088467 A1, U.S. Pat. App'n Pub. US 2005/0211573 A1, U.S. Patent 7,037,483 B2, U.S. Patent 7,029,600 B2, U.S. Patent 6,991,770 B2, U.S. Patent 6,742,650 B2, U.S. Patent 6,651,701 B2, and U.S. Patent 6,638,348 B2 have been cited as prior art of record, but not relied upon by the Examiner, although considered pertinent by the Examiner to Applicants' disclosure.

SUMMARY

For all of the foregoing reasons, Applicant respectfully requests withdrawal of the rejection of Claims 1, 5-13, 15-18, 20, 21, 24-27, 30, 31, 33, 36-39, and 41 and earnestly solicit a Notice of Allowance thereof.

Respectfully submitted,

Bryan C. Hoke, Jr., Ph.D. Agent for Applicants Registration No. 56,204

7201 Hamilton Boulevard Allentown, PA 18195-1501 (610) 481-6393

N:\DOCNOS\06400-06499\06446\US\Amends\Response to 06446 Second Office action (Final).doc

PERRY'S CHEMICAL ENGINEERS' HANDBOOK

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Hamburg Johannesburg london Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo

Toronto

Prepared by a staff of specialists under the editorial direction of

Late Editor Robert H. Perry

Editor

Don W. Green

Conger-Gabel Professor of Chemical
and Petroleum Engineering,
University of Kansas

Assistant Editor
James O. Maloney
Professor of Chemical Engineering,
University of Kansas

Library of Congress Cataloging in Publication Data Main entry under title:

Perry's Chemical engineers' handook.

(McGraw-Hill chemical engineering series) Rev. ed. of: Chemical engineers' handbook. 5th ed. 1973.

Includes bibliographical references and index.

1. Chemical engineering—Handbooks, manuals, etc.

I. Perry, Robert H., 1924–1978. II. Green, Don W.

III. Maloney, James O. IV. Chemical engineers' handbook.

V. Series.

TP151.P45 1984 660.2'8 84-837

Copyright © 1984, 1973, 1963 by McGraw-Hill, Inc. All rights reserved. Copyright renewed 1962, 1969 by Robert H. Perry.

Copyright 1950, 1941, 1934 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1234567890 DOW/DOW

ISBN 0-07-049479-7

The editors for this book were Harold B. Crawford and Beatrice E. Eckes, the designer was Mark E. Safran, and the production supervisor was Teresa M. Leaden. It was set in Caledonia by University Graphics, Inc.

Printed and bound by R. R. Donnelley & Sons Company.

VAPOR PRESSURES OF PURE SUBSTANCES

UNITS CONVERSIONS

For this subsection, the following units conversions are applicable: $\circ F = \% \circ C + 32.$

To convert millimeters of mercury to pounds-force per square inch, multiply by 0.01934.

TABLE 3-3 Vapor Pressure of Water Ice from -- 15 to 0°C*

					*******			•		
	- A		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
<i>i</i> , °C.	0.0	0.1						1 276	1 264	1. 253
-14	T.361	1.348	1.336	1.324	1.312	1.300	1. 200	1.200	207	
– i3	1.490	1.477	1.464	[1,450	1.437	1.424	[[.9]]	1.399	1.200	1.264
– i ž	1. /22	4 4 17	11 407	L1 52932	11 574	אר וו	II 3400	11 334	11.JLD	
–iī	i a west	. 740	11 752	11 727	11 777	11 7017			11.001	11.070
—iò	1.950	1.934	1.916	1.899	1.883	1,666	1.849	1.633	11.017	1.800
		1		ı						1
- 9	2 131	12.112	2.093	2.075	2.057	2.039	12,021	2.003	11.985	1.968
<u> </u>	10 00	12 200	17 705	13 344	17 746	17 7M	1	12 10/	12. LOD	114.147
_ ÿ	4	12 215	12 402	3 477	17 ASA	17 A74	1 / AIDI	12 20	14.30	14.770
– 6	12 746	742	12 718	17 605	17 677	12.649	12.620	12. OU	42.30	4.337
- ş	3 613	2 087	2 962	2 937	2.912	2.887	2.862	2.838	2.813	2.790
-,			ı				1		•	
	2 200	2 262	2 229	3 105	3 171	13 144	3. 117	13.091	3.065	3.039
- ;										
- 3	12.20	42.222	12. 20	2.70	2 362	3 77	3 601	3 44	3 630	3.599
– 2	[3.88L	010 د ا	12.015	12.70	4 676	14 64	34 013	12 07	13 04	3.913
<u>– i</u>	14.217	9, 107	97. 12	17:12	12.45	4 30	(L 35	14 37	14 28	4,252
_ 0	14.57	14.547	49.30	17. 90/	7.93					17.22

For data at 0(0.2)-30(2)-98°C. see p. 2324, "Handbook of Chemistry and Physics," 40th ed., Chemical Rubber Publishing Co.

TABLE 3-4 Vapor Pressure of Liquid Water from -16 to 0°C° mmHg

€, °C.	0.0 + 0.1 + 0.2 + 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-15	1.436 1.425 1.414 1.402 1.390 1.379 1.368 1.356 1.345 1.334
	560 567 534 522 511 497 485 472 460 449
- 14	
- 13	11.636 1.665 1.665 1.651 1.637 1.624 1.511 1.322 1.324
—12	[1.834] . 819] 1.804] 1.790] 1.770] 1.770] 1.770] 1.770] 1.843] 1.848
-11	1.987 1.971 1.955 1.939 1.924 1.909 1.893 1.878 1.863 1.848
	1
-10	2, 149 2, 134 2, 116 2, 099 2, 084 2, 067 2, 050 2, 034 2, 018 2, 001
- 9	2 326 2 307 2 289 2 27 2 254 2 236 2 219 2 201 2 184 2 167
- 8	2.5142.4952.4752.4562.4372.4182.3992.3802.3622.343
_ ž	12 71517 60517 67417 65417 63312 61312 59314 57414 53314 333
- 6	2.931 2.909 2.887 2.866 2.863 2.822 2.800 2.778 2.757 2.736
- •	
	3, 163 3, 139 3, 115 3, 092 3, 069 3, 046 3, 022 3, 000 2, 976 2, 955
- 5	3.410 3.384 3.359 3.334 3.309 3.284 3.259 3.235 3.211 3.187
- •	3 673 3 647 3 620 3 593 3 567 3 540 3 514 3 487 3 461 3 436
– 3	3 956 3 927 3 898 3 87 3 841 3 813 3 785 3 757 3 730 3 702
– 2	3.956 3.92/ 3.896 3.87 (3.691).013 3.703 3.703 3.704 3.896
- 1	4. 258 4. 227 4. 196 4. 165 4. 135 4. 105 4.075 4. 045 4.016 3.986
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 0	4. 579 4. 546 4. 513 4. 480 4. 448 4. 416 4. 385 4. 353 4. 320 4. 289
	to the state of th

^{*} Computed from the above table with the aid of the thermodynamic agustica $\log_{10} \frac{p_{10}}{p_i} = \frac{-1.148\pi}{273.1 + t}$ -1.1489t

TABLE 3-5 Vapor Pressure of Liquid Water from 0 to 100°C* mmHg

 $-1.330 \times 10^{-6\xi^2} + 9.084 \times 10^{-8\xi^2}$

						0				
1, °C.	0.0	011	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
-0	4.579	4.613 4.962	4.647	4.681 5.034	4.715 5.070	4.750 5.107	4.785 5.144	4.820 5.181	4.855 5.219	5.256
2	5.294 5.685	5.332 5.725		5.408	5.447	5.486 5.889	5.525 5.931	5.565 5.973	5.605 6.015	6.058
4	6.101	6.144		6.230				6.408	6.453	6.498
5	6.543	6.589	6.635	6.681		6.775 7.259	6.822 7.309			
7	7.013 7.513	7.062 7.565	7.617		7.722	7.775	7.828	7.882 8.437	7.936	7.990
8 9	8.045 8.609	8.100 8.668	8.155 8.727	8.211 8.786	8.267 8.845	8.323 8.905				

ADDITIONAL REFERENCES

Additional compilations of vapor-pressure data include Boublik, Fried, and Additional compilations of vapor-pressure data inclinde Boublik, Fried, and Hala, The Vapor Pressures of Pure Substances, Elsevier, Amsterdam, 1984. See also Hirata, Ohe, and Nagahama, Computer Aided Data Book of Vapor-Liquid Equilibria, Kodansha/Elsevier, Tokyo, 1975; Weishaupt, Landult-Börnstein New Series Group IV, vol. 3: Thermodynamic Equilibria of Boiling Mixtures, Springer-Verlag, Berlin, 1975; Wichterle, Linek, and Hala, Vapor-Liquid Equilibrium Data Ribbiography. Elsevier Amsterdam, 1979; cuppl 1. Liquid Equilibrium Data Bibliography, Elsevier, Amsterdam, 1973; suppl. 1, 1976; suppl. 2, 1982.

TABLE 3-5 Vapor Pressure of Liquid Water from 0 to 100°C* (Concluded)

Conc	iva o a	''								~~
4,° C. 1	0.0	0.1	0.2	0.3	04	0.5	0.6	0.7	0.8	0.9
10	9.209	9.2 1	9.333	9395	9.458	9.521	9.585 10.244	9.649	9./14	9.//9 In 449
!!	9.844	9.910	9.976	10.042	10.109	10.170	10.941	11.013	11.085	11.158
12	11.231	11.305	11379	11.453	11.528	11.604	11.680	11 756	11.833	11.910
13	11.987	12.065	12.144	12.223	12.302	12.382	10.244 10.941 11.680 12.462	12.543	12.024	12.700
			12 053	12 027	13 121	13 205	13.290 14.166 15.092 16.071 17.105	13,375	13,461	13.547
15	12.788	13 771	13 800	13.898	13.987	14.076	14.166	14.256	14.347	14.438
16 17	14.530	14.622	14.715	14.809	14.903	14.997	15.092	15.188	15.284	15.380
18	15.477	15.575	15.673	15.772	15.871	15.971	116.071	17 212	17 319	17.427
19	[16.477	16.581	10.083	10.769	10.074	10.777	17.10	17.212	1	
20	17.535	17.644	17.753	17.863	17.974	18.085	18.197 19.349 20.565 21.845	18.309	18.422	18.536
21 22	18.650	18.765	18.880	18.996	19.113	19.231	19.349	19.468	19.58/	20 041
22	19.827	19.948	20.070	20.193	20.310	3477	20.202	21.977	22.110	22.243
23 24	27 377	22.512	22.648	22.78	22.922	23.060	23.198	23.337	23.476	23.616
]						
25	23.756	23.897	24.039	24.187	24.32	24.47	24.01/	24.JO1	24.912	26.582
26	25.20	20.337	77.00	77 21	27.374	27.53	27.690	27.858	28.021	28.185
25 26 27 28 29	28.349	28.514	28.680	28.847	29.015	29.18	29.354	29.525	29.697	29.870
29	30.043	30.217	30.392	30.56	30.745	30.92	24.617 26.117 27.696 29.354 31.102	31.281	31.401	31.042
20	21 02/	22 000	22 10	32 37/	32 561	32.747	32.934	33.122	33 312	33.503 35.462 37.518 39.677 41.942
30 31 32 33	33.69	33.88	34.082	34.27	34.47	34.66	7 34.86	35.062	35.261	35.462
32	35.663	35.86	36.068	36.27	2 36.477	36.68	3 36.89	37.09	137.30t	37.518
33	37 725	37.94	33.15	38.30	233.20 20 70	41 07	3 41.25	141.480	41.710	41.942
34	277.030	70.12	100		~	7'''-	1			
35 36 37	42.17	42.40	42.64	42.88	43.11	43.35	5 43.59	143.830	44.075	44.320 46.811 49.424 52.160 55.030
36	144.563	144.80	45.05	45.30	1145.541 1148.10	43.79	4 48.67	7 48 89	49.157	49.424
38	49.69	49.96	50.23	50.50	2 50.77	51.04	85132	51.600	51.879	52.160
38 39	52.44	52.72	53.00	53.29	4 53.58	53.86	7 54.15	6 54.44	5 54.737	55.030
40	EE 22	455.61	55.91	56.21	56.51	56.81	57.11	57.41	57.72 60.86	58.03
41	58.34	55.61 58.65	58.96 62.14	59.27	59.58	59,90	60.22	60.54	60.86	61.18
42	61.50	61.82	62.14	62.47	62.80	63.13	63.46 66.86	63.79	64.12 67.56	64.46 67.91
43 44	64.80	65.14	65.48 68.97	65.82 69.33	66.16	66.51 70.05		70.77	71.14	71.51
	00.20	100.01	00.77	107.55	107.07		1 .		I	L
45 46 47	71.88 75.65	72.25	72.62	72.99	73.36	73.74	74.12	74.50 78.40	74.88 78.80	75.26 79.20
46	75.65	76.04	76.43		77.21 81.23	77.60 81.64			82.87	83.29
48	79.60 83.71	80.00 84.13	80.41 84.56	84.99	85.42	85.85	86.28	86.71	87.14	87.58
49	88.02	88.46	84.56 88.90	189.34	89.79	90.24	190.69	91.14	191.59	192.05
				1 3	1 4	1 3	1 6	7	1 8	1 9
1, °C	0	1-4-	2						2 136.0	8 142.60
50 60	1403	1 3/4	31163.7	71713	18 179.3	187.5	123.8 4 196.0 301.4	9 204.9 314.1	6 214.1	7 223.73
70	233.7	243.9	254.6	265	277.2	289.1	301.4	314.1	327.3	341.0 506.1
80	355.1	369.7	384.9	400.0	5 4162	435.0	1420.7	400.7		F ***
90	525 7	K 577 7	6 529 2	77 531.7	78 533.8	io 535.6	32 537.8	6 539.9	0 541.9	5 544.00
91	546.0	5 548	1 550,1	8 552.	26 554.3	5 556.4	44 558.5	3 560.6	4 562.7	5 564.87
92	566.9	9 569.	2 571-	b) 573.4	0 575.	5 577.	7 579 X	2 282	3/07/3	8 608 64
93 94	288.6 1010	אואלות	7/273. 17/6154	ルフソフ・ 14 617 :	72 620	1622	31 624.6	626.9	2 629.2	5 544.00 5 564.87 2 586.41 8 608.64 4 631.57
• • •	1010.	7						eleen .	12 462 0	2655 22
95	633.	0 636.	24 638.	59 640.	M 643.	M \$49 Ins	75 672	DJ 674 4	6677	2 655 22 2 679.69 7 704.71 8 730.61 8 757.29 0 784.78 11 813.08
96	1027.1	17 684	55 687	M 689	54 692	35 694 .	57 697.	10 699.6	3 702.1	7 704.71
98	707	7709.	83 712	10 714.	98 717.	56 720	15 722	75 725.3	6 727.9	8,730.61
95 96 97 98 99 100	733.	24 735.	88 738.	53 741.	18 743	B5 746.	54 749. .	W 721.	7777.3 7787.0	0 784.78
100	760.	W 762.	/ 2/ / 05.4 37 702	12 /00. 18 704	no 792	73 //3. 82 801	66 804	50 807	5 810.2	11813.08
101	/0/.	2/[/70.	26 [173.	101770.	outs son					

^{*}From the Physikalisch-technische Reichsanstalt, Holborn, Scheel, and Henning. "Wärmetabellen," Friedrich Vieweg & Sohn, Brunswick, 1909. By permission. For data at 50(0.2) 101.8°C., see "Handbook of Chemistry and Physics." 40th ed., p. 2326, Chemical Rubber Publishing Co. For a tabulation of temperature for pressures 700(1)779 mm. Hg. see Atack, "Handbook of Chemical Data." p. 117, Reinhold, New York, 1957. For a tabulation of pressure for 105(5)200(10)370°C., see Atack, p. 134, and for 100(1)374°C., see "Handbook of Chemistry and Physics," 40th ed., pp. 2328–2330. Chemical Rubber Publishing Co.

TABLE 3-24 Total Vapor Pressures of Aqueous Solutions of NH₃*

Pressures are in pounds per square inch absolute

_												, scittat									
ኒ ም.							₩(₩	eight o	ocentra Ocentra	tion of s stion of	ammoni ammon	a in the ia in the	solution solution	s in per Se in per	espatus: espatus:	s)					
٦	(0)	1474	10	(14.29)	20	25	(28.81	(33.71	40 (38 6	45	50	55 N/53 50	60	65	70	75	80	85	90	95	(100.00)
32	0.0	91 O 3	61 O.60	0.97	1.50	2.6	4.20	6.5	9.9	3 14.1	8 19.4	0 25.1	6 31.1	36.7	42 7	45 0	49 2	32 1	54 Or	38 OI	62.29
32 40 50 60 70	.1 .2 .3	3 .6	1.05 1.42	1.24	2.01	3.2	5.21 6.75	8.00	12.0	5 17.2	Q 23.3	9 30.2	37.2	43.7	49.60	54.4	58.3	61.6	64.7	58.01 8 68.32 7 83.41 9 100.66 6 120.63	73.32
60	2	1.8	1.42	1.65		5.5	8.65	13.2	19.3	27.0	36.2	6 46.2	56.3	65.90	74.00	80.9	86.4	91.0	95.69	9 100 .66	89.19 107.6
	1	j .		2.90	4.50	7.13	1	16.50	1	5 33.3	9 44.4	2 56.4	68.4	79.5	89.30	97.5	104.0	109.60	114.80	120.63	128.8
80 90 100 110 120	.5 .7(1.5 2.0 2.6	2.43 2.3.15	3.76 4.83	5.85 7.43	9.0	13.86	20.6 25.4 31.1	29.6	40.9	g 54.0	8 68.1	82.5	95.69	107.20	116.54	124.3	130.6	136.40	143.72	153.0
100		2.6	4.05	6.13	9.34	14.2	21.32	31.10	44.1	2 59.9	9 78.3	0 97.6	117.17	135.0	50.50	163.16	173.4	154.X	161.81 190.22	1 169 76 2 199 22 232 85	180.6 211.9
110	1.2	3.3				17.50 21.54	26.07 31.69	137.81	53.1	6 71.8 0 85 3	7 93. I	9 115.7 136.2	138.10	158.84	176.54	191.15	203.2	212.8	222.34	232.85	247.0 286.4
130	•		8.07			1	I	1	1		1	!		i			1				
140	2.85	6.70	9.98	14.63	21.49	31.5	45.73	64.70	89.1	9 118.2 9 118.2	4 151.3	159. 185.4 214.5	219.25	249.6	239.33 276.15	297.81	315.0	286.4 329.4	298.67 343.2	358.6	330.3 379.1
150 160		8.2 10.1	12.23 14.92	17.81 21.54	26.00	37.81 45.02	54.43	76.61	104.6	5 138. I	175.4	214.5	252.65	287.24	317.3	341.7	361.1	377.1 430.4	392.8 447.8	409.8 466.6	432.2 492.8
170		12.4	18.01	25.87	37. ii	53.2	75.55	104.8	141.7	8 i85. î	233.2	247.0 283.1	331.7	375.6	413.3	443.7	467.8	488.7		528.8	558.4
180	7.51	15.00	21.65	30.86	44.02	62.68	88. 17	121.68	163.7	212.6	267.0	323.1	377.1	426.6	468.4	502.4	529.5	552.3			
190 200	9.3	18.00	25.87	36.60	51.81	73.32	102.56	140.75	188. 1	243.3	304.3	367.1		492.5 543.6	528.8				ļ		
210	14. 12	25.6	36.26	50.58	70.72	98.80	136.42	185.10	245.1	314.5	390.7	367.1 415.1 468.4	542.9	J-13.0					ĺ		
220	17.15	טכן. ע	42.47	59.00	81.91	113.81	156,41	211.24	278.2	355. 1	439.6	525.5	1				ĺ				
230	20.78	35.5	49.60	68.46 78.91	94.43	130.64	178.28	239.70	314.5	400.2											
250	29.83	48.3	66.67	90.74	124.08	169. 48	229.62	305.60	397.6	502. 4	552.3	1					1				

^{*} Wilson, Univ. Ill., Eng. Expt. Sta. Bull. 146.

TABLE 3-25 Partial Pressures of H_2O over Aqueous Solutions of Sodium Carbonate

			mr	nHg			
ı, °C.				%NacCO			
	6	- 5	10	15	20	25	30
0 10 20 30 40 50 60 70 80 90	4.5 9.2 17.5 31.8 55.5 92.5 149.5 239.8 355.5 526.0 760.0	4.5 9.0 17.2 31.2 54.2 90.7 146.5 235 348 516 746	8.8 16.8 30.4 53.0 88.7 143.5 230.5 342 506 731	16.3 29.6 57.6 86.5 139.9 225 334 494 715	28.8 50.2 84.1 136.1 219 325 482 697	27.8 48.4 81.2 131.6 211.5 315 467 676	26.4 46.1 77.5 125.7 202.5 301 447 648

TABLE 3-26 Partial Pressures of H₂O and CH₃OH over Aqueous Solutions of Methyl Alcohol*

Mole		9°C.	Mole		PC.
fraction CH ₂ OH	P _{HeO} ; mm. Hg	P _{CHyOR} ; mm. Hg	fraction CH ₂ OH	P _{H:O} , mm, Hg	P _{CHeOH} , mm. Hg
0 14.99 17.85 21.07 27.31 31.06 40.1 47.0 55.8 68.9 100.0	54.7 39.2 38.5 38.5 35.8 34.9 32.8 31.5 27.3 20.7	0 66. 1 75. 5 85. 2 100. 6 108. 8 127. 7 141. 6 153. 4 186. 6 2250. 7	0 22. 17 27. 40 33. 24 39. 80 47. 08 55. 5 69. 2 78. 5 85. 9 100. 0	145.4 106.9 102.2 96.6 91.7 84.8 76.9 57.8 43.8 30.1	0 210.1 240.2 272.1 301.9 335.6 373.7 439.4 486.6 526.9 609.3

^{*&}quot;International Critical Tables," vol. 3, p. 290, McGraw-Hill.

TABLE 3-27 Partial Pressures of H₂O over Aqueous Solutions of Sodium Hydroxide

			•			mmHg						
Conc. NaOH/						Tempera	ture, °C.					
100 g. H ₂ O	0	20	40	60	80	100	120	160	200	250	300	350
<u> </u>	4.6	17.5	55.3	149.5	355.5	760.0	1,489	4,633	11,647	29,771	64,200	123,60
.2	4.2	16.9	53.2	143.5	341.5	730.0	1,430	4,450	11,200 10,750 9,800 8,950	28,600 27,500 25,300 23,300 21,500 19,900	61,800 59,300 54,700	118,90
20	3.6	16.0 13.9	50.6 44.2	137.0	325.5	69 7.0	1,365 1,225 1,070 920	4,260	10,750	27,500	59,300	114,10
2 0	2.9	11.3	36.6	120.5 101.0	288.5 246.0	621.0	1,225	3,860	9,800	25,300	54,700	105,40
añ i	2.2	8.7	28.7	81.0	202.0	537.0	1,070	3,400	8,950	23,300	50,800	98,00
₹ .		6.3	20.7	62.5	160.5	450.0	320	3,460 3,090 2,690	8,150	21,500	47,200	91,60
10 20 30 40 50 67 80	•••	4.4	15.5	47.0	124.0	368.0 294.0	770	400	7,400	19,900	44,100	96,00 91,60 85,80 80,70
70	•••	3.6	10.9	34.5	94.0	231.0	635 5!5	2,340	6,750	18,400	41,200	80,70
8ŏ I	•••	2.0	7.6	24.5	70.5	179.0	415	2,030 1,740	6,100	17,100	38,700	76,00
90		l 1:3	5.2	17.5	53.0	138.0	330	1,490	5,500 5,000 4,500	15,800 14,700	36,300 34,200 32,200	/1,90
100 120		ì ò.5	3.6	12.5	38.5	105.0	262	1,300	3,000	13,460	20,200	90,10
120	•••	1	1.7	6.3	20.5	61.0	164	915	3,500	11,030	28,800	04,00
140		}	l	3.0	11.0	35.5	102	765	3,650 2,980	13,650 11,800 10,300	25,900	20,00
160 180			l ::::	3.0 1.5	6.0	20.5	63	266	260	8,960	20,700	23,40
180			l ::::		3.5	12.0	40	340	1,980	7.830	21,200	45 10
200					2.0	7.ŏ	23	245	1.620	7,830 6,870	23,300 21,200 19,200	41 80
250	•••			l	0.5	2.0	- 8	245 110	1,620 985	5,000	15 400	35,00
300	•••				0.1	0.5	2.7	i šŏ l	610	3,690	12,500	76,00 71,90 68,10 64,60 58,60 49,00 45,10 41,80 35,00 29,80
200 250 300 350 400	•••						0.9	50 23	380	2,750	12,500 10,300 8,600	25,70
400	•••		• • • • • •		••••			11	240	2,080	8,600	22,40
500 700	•••		••••		.,				100	1,210	6,100	17,50
1000	•••		• • • •		,					440	3,300	11,50
2000	•••		••••		·	• • • • • •					1,470	25,70 22,40 17,50 11,50 6,80
4C03	•••		••••		••••					••••	150	1,70
8000	•••		• • • • •		•••••					••••	•••••	12

Desiccant Selection Guide

Drying Agent	Product Number	Size	Suitable for Drying	Not Suitable for Drying	Residual Water mg H ₂ O/L Dried Air	g H ₂ O/g Desiccant	Regeneration	Reaction Mechanism
Aluminum Oxide	0536-01 0536-05	500g 2.5 kg	Hydrocarbons, air, ammonia, argon, helium, nitrogen, oxygen, Freon, H_2O , CO_2 , SO_2		0.003	0.2	175°C	Chemisorption Adsorption
ANHYDRONE® (Magnesium Perchlorate anhydrous)	0828-01	500 9	Inert gas, air	** Most Organics	0.001	0.2	250°C with Vacuum	Hydration
Barium Oxide	B <u>65</u> 6-04	125 g	Organic bases, alcohols, aldehydes, amines	Acidic Compounds, CO ₂	0.00065	0.1	Not Recommended	Absorption and Adsorption
Boric Anhydride	117 <u>6-01</u> 1176- <u>05</u>	500 g 2.5 kg	Formic Acid			0.8	450°C	
Calcium Chloride (20 Mesh)	1311-01 1311-05	500 g 2.5 kg	Alkyl and Aryl Halides, most esters, saturated and aromatic hydrocarbons, ethers	Alcohols, amines, phenols, aldehydes, amides, amino acids, some esters, ketones	0.14-0.25	0.2 (1H ₂ O) 0.3 (2H ₂ O)	250°C	Hydration
Calcium Chloride (4-8 Mesh)	1313 <u>-01</u> 1313 <u>-05</u>	500 g 2.5 kg	Alkyl and Aryl Halides, most esters, saturated and aromatic hydrocarbons, ethers	Alcohols, amines, phenols, aldehydes, amides, amino acids, some esters, ketones	0.14-0.25	0.2 (1H ₂ O) 0.3 (2H ₂ O)	250°C	Hydration
Calcium Oxide	1410-01 1410-05	500 g 2.5 kg	Alcohols, amines and ammonia gas	Acidic compounds, esters	0.007	0.3	1000°C	Chemisorption
Calcium Sulfate	1458-01	500 g	Most organic compounds		0.005	0.066	235°C	Absorption

Desiccant Selection Guide

Cupric Sulfate	1850-01 1850-0 <u>5</u>	500 g 2.5 kg	Esters, alcohols (excellent for benzene and toluene)		4.1	0.6	200°C	
DRIERITE, Regular	L056-07 L056-02	454 g 2.3 kg	Air, industrial gases, refrigerants, organic liquids and solids.		0.005	0.066	210°C for 1 hour	Hydration
DRIERITE, Indicating (4 Mesh)	70-7201 1057-07	454 g 2.3 kg	Air, industrial gases, refrigerants, organic liquids and solids.		0.005	0.066	210°C for 1 hour	Hydration
(8 Mesh)	L058-07 L058-02	454 g 2.3 kg						
(10-20 Mesh)	L059-07	454 g						
Lithium Aluminum Hydride	P403-05	100 g	Aldehydes, ketones, esters, carboxylic acids, peroxides, acid anhydrides, acid chlorides, ethers	Acid and its derivatives, aromatic nitro compounds				
Magnesium Oxide	2476-01	500 g	Hydrocarbons, aldehydes, alcohols, basic gases, amines	Acidic compounds	0.008	0.5	800°C	Hydration
Magnesium Sulfate	2506-01 2506-0 <u>5</u>	500 G 2.5 kg	Most compounds, incl. Acids, ketones, aldehydes, esters, nitriles	Acid sensitive compounds	1.0	0.2 · 0.8	200°C and red heat	Hydration
Molecular Sieve Activated Type 3A 8- 12 Mesh	2710-01 2710-05	500 g 2.5 kg	Molecules of diameter >3 angstroms	Molecules of diameter <3 angstroms		0.18	117-260°C	Adsorption
Molecular Sieve Activated 8-12 Mesh Indicating Type 4A	2707-01 2708-01 2708-05	500 g 500 g 2.5 kg	Molecules of diameter >4 angstroms	Molecules of diameter <4 angstroms, Ethanol, H ₂ S, CO ₂ , SO ₂ , C ₂ H ₄ , C ₃ H ₄ , and strong acids	0.001	0.18	250°C	Adsorption
Molecular Sieve Activated (8-12 Mesh) Type 5A	2709-01 2709-05	500g 2.5 kg	Molecules of diameter > 5 angstroms, e.g., branched chain compounds and those having 4 carbon or larger rings	Molecules of diameter <5 angstroms, e.g., butanol, n- C_4H_{10} to n- $C_{22}H_{46}$	0.003	0.18	. 250°C	Adsorption
Phosphoric Acid	0260- <u>01</u> 0260- <u>03</u>	500ml 2.5 L			0.003		Not recommended	Absorption and Solution
Phosphorous Pentoxide	2155-01	500 g	Saturated hydrocarbons, aromatic hydrocarbons, ethers, alkyl halides, aryl halides, nitriles, anhydrides, nitrites, esters	Alcohols, acids, amines, ketones, HF and HCl vapors	3×10-5	0.5	ON	Chemisorption leading to H ₃ PO ₄
Potassium Carbonate	3012-01	500 g	Alcohols, nitriles, ketones, esters,	Acids, phenols		0.2	300° C	Hydrate Formation

8/4/2006

	3012-05	2.5 kg	amines					
Potassium Hydroxide	3140-01 3140-05 3140-07	500 g 2.5 kg 12 kg	Amines, organic bases	Acids, phenols, esters, amides, acidic gases, aldehydes	0.3	Indeterminate	ON	Hydration and Solution Formation
Silica Gel Indicating 6-16 Mesh	3401-01 3401-05	500 g 2.5 kg	Most organics	HF vapors	0.03	0.2	200-350°C	Adsorption
Sodium	9410-04 9410-01	113 g 454 g	Saturated and aromatic hydrocarbons, ethers	Acids, alcohols, aldehydes, ketones, amines, esters, organic halides, and any substance with high water content			Not Recommended	Leads to NaOH + H ₂
Sodium Hydroxide Pellets	3722-01 3722-05 3722-07	500 g 2.5 g 12 kg	Amines	Acids, phenols, esters, amides	0.16	Indefinite	Not Recommended	Absorption and Solution Formation
Sodium Sulfate Anhydrous Granular Powder	3891-01 3891-05 3891-07	500 g 2.5 kg 12 kg	Alkyl halides, aryl halides, aldehydes, ketones, acids		12	1.2	150°C	Hydration
Sodium Sulfate Anhydrous Powder	3898-01 3898-05 3898-07	500 g 2.5 kg 12 kg	Alkyl halides, aryl halides, aldehydes, ketones, acids		12	1.2	150°C	Hydration
Sodium Sulfate Anhydrous Granular (12-60 mesh)	3375-01 3375-05 3375-07	500 g 2.5 kg 12 kg	Alkyl halides, aryl halides, aldehydes, ketones, acids		12	1.2	150°C	Hydration
Sulfuric Acid	9681-01 9681-03	500ml 2.5 L	Inert gases, HCI, CI ₂ , CO, SO ₂ , air used in desiccators	Too reactive to actually contact organic materials	0.003	Indefinite	No	Hydration
Zinc Chloride Reagent, Broken Lump	4321-01 4321-05 4321-07	500 g 2.5 kg 12 kg	Hydrocarbons	Ammonia, amines, alcohol	0.9	0.2	110°C	Hydration

^{**} May form explosive compound when exposed to organic vapors.

Lit #3045

8/4/2006

ANHYDRONE® is a registered trademark of Mallinckrodt Baker Inc.

^{© 2000} by Mallinckrodt Baker Inc. All Rights Reserved.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
$igl(\Box)$ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
A FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.