BIOINFORMATICS DATABASES

Dr. Garrett Dancik

2011 Pelaison Education, inc.

- If we know the DNA sequence (and know the gene structure)
 - Then we can predict the mRNA sequence
 - Then we can predict the **protein** sequence
- If we know the protein sequence, then we can (possibly) predict
 - secondary and tertiary structure, domains
 - protein function

Overview of databases

- Many (thousands of) bioinformatics databases are accessible via the internet
- Although databases are generally built around one biological aspect (e.g., DNA sequences), they will often link to external relevant information (e.g., protein sequences)
- The underlying biological data (usually experimentally determined), is referred to as the data
- Additional information (research citations, links to other databases, interpretation of the data) is referred to as annotation
- Primary databases contain data that is experimentally derived
- Secondary databases contain data that is predicted from primary data.

How many databases are there?

- Every year the journal Nucleic Acids Research has an issue devoted to new and updated database
 - They currently list >1900 databases
 - http://www.oxfordjournals.org/nar/database/c
- Selected database types
 - Sequence databases
 - DNA
 - RNA
 - Protein
 - Microarray and gene expression databases
 - Organelle databases
 - Plant databases
 - Immunological databases

Sequence databases – generating data

- A DNA sequence is a sequence of chromosomal DNA and contains introns, exons, and untranslated regions.
- Complementary DNA, or cDNA, are DNA sequences synthesized from reverse transcription of a mRNA.
 - cDNA sequences correspond to genes that are expressed at the time of sampling
 - cDNA will not contain any introns or control sequences (such as the promoter) that are not transcribed
- An expressed sequence tag (EST) is a partial cDNA sequence
- Protein sequences are generated experimentally or are translated from nucleotide sequence data

Understanding Data Quality

- Always remember that Garbage in = Garbage out!
- If multiple individuals sequence the same gene, then the data produced will be redundant (identical or nearly identical)
- A non-redundant database finds a consensus sequence which summarizes the redundant entries
- Data consistency can be checked automatically
 - DNA sequences should consist of only the letters A,C,G, and T, though experimental uncertainty can be recorded
 - Protein structure has physical limitations (bonding geometry), and errors can be identified, and either corrected or annotated
- Ontologies were developed so consistent naming conventions are used
 - http://www.genenames.org
 - http://www.geneontology.org

Understanding data quality

- If a gene or protein is labeled as "hypothetical", "putative", or "predicted", then it has been predicted using computational methods
- Database entries generally have version numbers that allow for tracking of changes
- In GenBank and GenPept, we will generally look at RefSeq entries, which are non-redundant and well annotated
 - RefSeq accession numbers have meaningful prefixes:
 - See table 1 from https://www.ncbi.nlm.nih.gov/books/NBK21091/