1.	Soient un monoïde (M, \star) d'élément neutre e , et x, y et z des éléments de M .
	Sachant que $x \star y = x \star z$, à quelle condition est-on certain que $y = z$?

x = e	y = e	x est inversible	y est inversible
-------	-------	------------------	------------------

2. On considère l'opération \star entre les points du plan \mathbb{R}^2 définie par $A \star B =$ le milieu de A et B.

* est commutative	\mathbb{R}^2 possède un élément	Tout élément de \mathbb{R}^2 possède
	neutre pour *	un symétrique pour *

3. Soit • l'opération de concaténation sur l'ensemble des chaînes de caractères (ex "ISE" • "N" = "ISEN")

• est commutative	• est associative	ıl y a un élément	Tout élément possède un
		neutre pour •	symétrique pour •

4. Combien y a-t-il de groupes d'ordre 4 (à isomorphisme près) ?

0	1	2	3	4
---	---	---	---	---

5. Un groupe d'ordre 15 peut-il avoir un sous groupe d'ordre?

0	2	3	4
		1	

6. Soient (G, \star) un groupe, a et b deux éléments de G.

L'équation $a \star x = b \dots$

n'a pas de solution $a^{-1} \star b$ a une unique solution $a^{-1} \star b$ solution $a^{-1} \star $	

7. Soient (G, \star) un groupe d'élément neutre e, et F une partie de G.

Condition(s) nécessaire(s) et suffisante(s) pour que F soit un sous-groupe de G :

F est un	$F \neq \emptyset$ et	$F \neq \emptyset$ et	$e \in F$ et
groupe	$\forall x, y \in F / x \star y \in F$	$\forall x, y \in F / x^{-1} \star y \in F$	$\forall x, y \in F /$
pour *			$x \star y \in F \text{ et } x^{-1} \in F$

8. Soient (G, \circ) le groupe des rotations de centre O dans le plan et r la rotation d'angle $\frac{\pi}{3}$

Quel est l'ordre du sous-groupe engendré par r?

0	1	2	3	4	6	12

9. Dans $(\mathbb{Z}/12\mathbb{Z},+)$, quel est l'ordre de 8?

0	1	2	3	4	6	12

10. Dans (\mathbb{Z}	$/12\mathbb{Z},+)$, qu	iel est l'ordr	e de 5 ?					
	0	1	2	3	4	6	12	
11. Soient ((G,\star) un gro	upe, a et b o	leux éléments	s de <i>G</i> .				•
	erse de $a \star b$ est $b \star a$	l'inverse de est a^{-1}	•	est $b^{-1} \star a^{-1}$,	$de \ a \star b \qquad 1$ $^{2} \star b^{2}$	le carré de $a \star b^2 \star a^2$	b est
12. Dans S_5	soient les po	ermutations	$\sigma_1 = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$	$\begin{pmatrix} 3 & 4 & 5 \\ 3 & 1 & 4 \end{pmatrix}$ et	$\sigma_2 = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$	$ \begin{array}{cccc} 3 & 4 & 5 \\ 3 & 2 & 5 \end{array} $	-	
($\sigma_1 \circ \sigma_2$ est transposit		$\sigma_1 \circ \sigma_2$ est u 3-cycle	an o		$\sigma_{_{1}}\circ$	$\circ \sigma_2 = \sigma_2 \circ \sigma_1$	
		•	3 4 5 6 10 8 1 7 tes distinctes		10 11 5 4			1
	0	1	2	3	4	10	11	
14. Dans S	S_n , quelle est	la signature	d'une transpo	osition?				
			0	1 -	1 1	ı		
15. Dans <i>S</i>	S_n , quelle est	la signature	d'un 3-cycle	?				
		0	1	2	3	n		
16. Quelle	est la signatu	re de la perr	nutation $\sigma =$	$ \begin{pmatrix} 1 & 2 & 3 \\ 9 & 3 & 10 \end{pmatrix} $	4 5 6 7 8 1 7 11			
			0	1 -	1 1	1		
17. Taquin								
		disposition	ı 1	disposition 2	disp	osition fina	le	
		2 3 4 5 6 7 9 10 11 3 14 15	1 4 5 9 13 de la disposi	10 11 3 14 15	1	10 11 1	4 8 12	

à la disposition finale

à la disposition finale