李宁混码装箱解决方案

问题定义:

根据历史特定时长 (*需要与贵方讨论*) 的销量, 找到每个小类的最佳装箱数量/尺码比, 使其能够尽量靠近全国各区域该小类的尺码比。

解决方案:

考虑到客户没有给定哪些小类输出尺码比、哪些输出装箱数量,所以我们期望做两套模型(流程和思想类似),为每个小类同时提供尺码比和装箱数量。

(一) 通过特定时长的历史销量分析每个区域小类的尺码比

小类1	区域 1	尺码比 1——S1:M1:L1
	区域 2	尺码比 2——S2:M2:L2
	区域 3	尺码比 3——S3:M3:L3
	区域 4	尺码比 4——S4:M4:L4

注: 尺码比以S码为1

(二) 优化建模,考虑各区域小类销量作为权重,找到最佳尺码比

区域算出来的销量尺码,以第一个尺码为 1,假设区域 d 的尺码比是 1:S2:S3:···:SNd

模型一: 决策每个箱子下各尺码的装箱件数

决策变量: 特定小类箱容下, 每个尺码的装箱件数 X1、X2···X···XN

目标函数: 最小化

 $\sum_{i,d}$ 区域销量权重* $|X_i - S_{id} \cdot X_1|$

约束:

 $\sum_{i} X_{i} = \Lambda$ 类的特定容量

模型输出:已知每个销量的箱容后,获取箱子里各尺码的件数

模型二:决策每个小类的最佳尺码比

决策变量: 小类的最佳尺码比 1:S2:S3···:SN

目标函数: 最小化

 $\sum_{i,d}$ 区域销量权重* $|S_i - S_{id}|$

模型输出:每个小类的最佳尺码比

箱容限制

鞋 6 双或 12 双装, 优先 12 双装, 如果箱体特别大,降为 6 双装。(这里客户没有给出具体什么是"特别大",所以可能 6 双和 12 双,我们都要跑一次模型)

表(二)

装箱数量 (件/条)		朋	装装	名	称	
10	棉风衣	棉茄克	棉裤	羽绒服	羽绒裤	
20	风衣(厚)	卫衣	卫裤	棉马甲	羽绒马甲	厚里长裤
30	茄克	牛仔外套	牛仔长裤	休闲长裤	编织衫	连衣裙
	运动上衣	运动长裤	风衣 (薄)			
40	长袖T恤	单马甲	七分休闲裤	七分运动裤	七分牛仔裤	裤裙
	长袖衬衫	牛仔背心	裙裤			
50	短袖T恤	文化衫	比赛上衣	比赛短裤	短袖衬衫	短裙
60	吊带	背心	泳衣	泳裤		