

MINI-PROJET DE PHYSIQUE

RESSORT LINEAIRE & RESSORT SPIRALE

2017-2018 Aéro 1 E

IS CHERGUI – VALENTIN BOULANGER – ADRIEN COLLAND

Table des matières :

- I- Introduction
- II- Généralités sur les ressorts
- III- Les ressorts linéaires
- IV- Les ressorts spiraux
- V- Conclusion

I. Introduction

Tout d'abord, un ressort est un objet profitant des propriétés élastiques des matériaux le composant afin de supporter d'importantes déformations et exerce une force en essayant de reprendre sa forme initiale après avoir été plié, tendu, comprimé ou tordu. Cette forme s'appelle la force de rappel.

Un ressort peut être sous trois états, tout d'abord à vide, dans ce cas le ressort n'est soumis à aucune force extérieur, ensuite à l'équilibre, dans ce cas le ressort est soumis à l'action d'une force extérieur qui l'étire, le comprime, le tord, etc..., mais celle-ci est compensé par la force de rappel du ressort, le ressort ne bouge plus, il est donc à l'équilibre, enfin le ressort peut être en mouvement, c'est la période durant laquelle le ressort bouge afin de trouver sa position d'équilibre.

L'objectif de cette étude est de présenter les différentes propriétés élastiques du ressort. Nous verrons donc tout d'abord les énergies utilisées, les mouvements effectués ainsi que les efforts ou les couples exercés. Puis, nous calculerons les formules de l'énergie emmagasinée par un ressort ce qui nous permettra plus tard de déterminer l'utilisation des constantes de raideur, pour enfin découvrir les analogies possibles entre un ressort linéaire et un ressort spiral.

II. Généralités sur les ressorts

Dans cette partie nous allons voir les différents types de ressort qui existe et donner divers exemples de leurs applications dans la vie courantes.

Ressort coniques	Ressort de compression	Ressort de traction	Ressort spirale
Connecteur de piles	Amortisseur de vélo de	Tendeur de câble électrique	Balancier dans une
	descente		montre, un réveil, une horloge
Ressort hélicoïdale	Ressort en coupelles	Ressort en lames	Ressort en fil
Mousqueton	Chambre de frein	Clefs de clarinettes	Attache de sac
	d'automobile	THO CONTRACTOR OF THE PARTY OF	alimentaires

III. Les ressorts linéaires

1. Etude de la force de rappel ou tension du ressort

1)

On suppose que l'on est dans un référentiel galiléen.

Le système étudié est la masse.

D'après la fig. 1 (cf. énoncé), à vide, rien ne déforme le ressort. Il n'y à donc aucune force extérieur sur l'objet et le système est pseudo-isolé.

Lorsque la masse est placée qu bout du ressort, les forces extérieur sont le Poids \vec{P} et la Force de rappel \vec{Fr} exercé par le ressort sur le solide (cf. schéma ci-dessus).

À l'équilibre, les forces extérieures se compensent. Cela implique:

$$\vec{P} + \overrightarrow{Fr} = \vec{0}$$

Donc
$$\overrightarrow{Fr} = -\overrightarrow{P}$$
.

2) Tableau réalisé sur Exel

Résultats expérimentaux								
Masse m (kg)	0,001	0	50	100	150	200	250	300
Allongemen t x (m)	0,01	0	1,6	2,9	4,5	6	7,4	9,1
Incertitude absolue Am (kg)	0,001	0	0,5	1	1,5	2	2,5	3
Incertitude relative \Delta m/m	%	1	1	1	1	1	1	1
Force de traction F = mg (N)		0	0,4905	0,981	1,4715	1,962	2,4525	2,943
Incertitude absolue ΔF (N)		0	0,004905	0,00981	0,014715	0,01962	0,024525	0,02943
Incertitude relative ΔF/F	%	/	1	1	1	1	1	1
Incertitude absolue Δx (m)	0,001	1	* 1	€ 1	1	1	1	1
Incertitude relative Δx/x	0/0	/	6,25	3,45	2,22	1,67	1,35	1,10

3 et 4)

5) Le coefficient directeur de la droite de la force de traction en fonction de l'allongement nous donne le coefficient k.

On sait que k On a $F=kx \le k=F/x \le [k]=[F/x]=[F]/[x]=N/m$ Donc k s'exprime en $N.m^{-1}$.

-Ici le coefficient est y=0,327. Cela veut donc dire que k vaut 0,327 N.cm⁻¹, soit 32,7 N.m⁻¹.

-Incertitude absolue de k:

$$\delta k = \delta F + \delta x$$

- Pour une masse de 0,000 kg: $\delta k = 0,001 \text{ N.m}^{-1}$
- Pour une masse de 0,050 kg: $\delta k = 0,005905 \text{ N.m}^{-1}$
- Pour une masse de 0,100 kg: $\delta k = 0.01081 \text{ N.m}^{-1}$
- Pour une masse de 0,150 kg: $\delta k = 0.015715 \text{ N.m}^{-1}$
- Pour une masse de 0,200 kg: $\delta k = 0,02062 \text{ N.m}^{-1}$
- Pour une masse de 0,250 kg: $\delta k = 0,025525 \text{ N.m}^{-1}$
- Pour une masse de 0,300 kg: $\delta k = 0,03043 \text{ N.m}^{-1}$

La valeur moyenne de δk est 0,015715 N.m⁻¹

-Incertitude relative de k:

 $\delta k/k =>$

- Pour une masse de 0,000 kg: 0,0%
- Pour une masse de 0,050 kg: 0,0%
- Pour une masse de 0,100 kg: 0,0%
- Pour une masse de 0,150 kg: 0,0%
- Pour une masse de 0,200 kg: 0,0%
- Pour une masse de 0,250 kg: 0,0%
- Pour une masse de 0,300 kg: 0,0%

nb: l'incertitude relative moyenne étant de l'ordre de 10^{-4} %, on la considère négligeable.

La constante k représente le rapport sollicitation/déformation du ressort. On parle aussi de dureté d'un ressort. k est propre à chaque ressort.

6) On a dit précédemment que \overrightarrow{Fr} était l'opposée de la force de traction,

On a donc:

$$\overrightarrow{Fr} = -k.\Delta x.\overrightarrow{ux}$$

où Δx est la variation de longueur du ressort entre la phase au repos et la phase d'équilibre. Δx est positif dans le cas d'un étirement, et négatif dans le cas d'une compression.

2. Etude du travail d'une force

On réalise l'expérience dans un référentiel supposé galiléen (référentiel terrestre). Le système étudié est la masse.

Au repos, les forces extérieurs agissant sur le système sont le Poids \vec{P} et la réaction de la surface \vec{R} .

 \vec{P} :

• -Point d'application: Centre de gravité Cg

• -Direction: vertical

Sens: bas

• -Norme: P=m.g en N

 \vec{R} :

• -Point d'application: Point de contact masse/surface

• -Direction: vertical

• -Sens: haut

• -Norme: R=m.g en N

(à l'équilibre, la somme des forces extérieurs est le vecteur nulle (2nde loi de Newton). Donc $\vec{P} = -\vec{R}$, et P = R = m.g).

2)

Nous étudions toujours le même système. Cette fois ci, les forces extérieurs agissant sur le système sont le Poids \vec{P} , la réaction de la surface \vec{R} , la force de rappel \vec{Fr} et la force de traction \vec{f} .

D'après l'énoncé, la vitesse est supposée constante. Le mouvement est donc rectiligne uniforme. Dans ce cas on peut donc appliquer la 2nde loi de Newton.

La somme des forces extérieurs est le vecteur nul

Donc
$$\vec{P} + \vec{R} + \vec{f} + \vec{Fr} = \vec{0}$$

Or on a vu que $\vec{P} + \vec{R} = \vec{0}$

Donc
$$\vec{f} + \overrightarrow{Fr} = \vec{0}$$

$$\vec{f}$$
= - \overrightarrow{Fr}

Or
$$\overrightarrow{Fr}$$
=-k. $\Delta x.\overrightarrow{ux}$

Donc $\overrightarrow{Fr} = k.\Delta x.\overrightarrow{ux}$

3)

Nous étudions toujours le même système. Les forces extérieurs agissant sur le système sont le Poids \vec{P} , la réaction de la surface \vec{R} , la force de rappel \vec{Fr} et la force de traction \vec{f}' .

D'après l'énoncé, la vitesse est supposée constante. Le mouvement est donc rectiligne uniforme. Dans ce cas on peut donc appliquer la 2nde loi de Newton.

La somme des forces extérieurs est le vecteur nul

Donc
$$\vec{P} + \vec{R} + \vec{f}' + \vec{Fr} = \vec{0}$$

Or on a vu que $\vec{P} + \vec{R} = \vec{0}$

Donc
$$\vec{f}' + \overrightarrow{Fr} = \vec{0}$$

$$\vec{f}' = -\overrightarrow{Fr}$$

Or
$$\overrightarrow{Fr}$$
=-k. $\Delta x.\overrightarrow{ux}$

Donc $\vec{f}' = k \cdot \Delta x \cdot \overrightarrow{ux}$ avec Δx négatif (car compression)

- 4) Avec cette formule, on ne peut pas calculer le travail de cette force car la position définitive du point d'arrivée M est inconnue. On ne peut donc pas connaître la distance MoM demandée dans la formule.
- 5) Soit dl déplacement entre o et x.

$$\delta W = \vec{F} \cdot \vec{dl}$$

$$=\vec{F}.\delta x \overrightarrow{ux}$$

$$=k.x.\overrightarrow{ux}.\delta x\overrightarrow{ux}$$

$$=k.x.\delta x$$

$$W = \int_{x}^{x} kx dx$$

$$W = k \left[x^2/2 \right] x^x$$

6)
$$W = \int_0^x \vec{f} \cdot \vec{dl} = \int_0^x f \cdot dx \cdot \cos\alpha = \int_0^x k \cdot x \cdot dx = k \cdot [x^2/2]_0^x = k \cdot x^2/2$$

7) 1^{er} cas: allongement (x>0)

$$\overrightarrow{Fr} = -k.x.\overrightarrow{ux}$$

$$W = \int_0^x -k \cdot x \cdot dx = -k \cdot [x^2/2]_0^x = -k \cdot x^2/2$$

2^{ème} cas: compression (x<0)

$$\overrightarrow{Fr} = -k.x.\overrightarrow{ux}$$

$$W = \int_0^{-x} -k. x. dx = -k. [x^2/2]_0^{-x} = -k. x^2/2$$

Conclusion: Dans les deux cas le travail de la force élastique est le même.

8)
$$W(\vec{P}) = \int_0^x dx \cdot \cos \pi / 2P = 0$$

$$0 \rightarrow x$$

$$W(\vec{R}) = 0$$

$$W(\vec{f}) = k.x^2/2$$

$$W(\overrightarrow{Fr}) = -k.x^2/2$$

3. Etude de l'énergie potentiel du ressort

1) Si l'énergie potentielle dépend seulement de x, $\vec{F} = -(\Delta E p / \Delta x) \cdot \vec{u} \vec{x}$

2)
$$\vec{F} = -(\Delta E p / \Delta x) \cdot \vec{u} \vec{x}$$

$$<=> F = -(\Delta E p / \Delta x)$$

$$<=> Ep = -\int_0^x F \cdot dx$$

3)
$$\delta W = - d.Ep$$

 $<=> F.dx = - d.ep$
 $<=> d.Epe = d((k.x^2)/2)$

4)

FORCES DÉRIVANT D'UN POTENTIEL	ÉNERGIES POTENTIELLES
Force gravitationelle : $\vec{F} = G \frac{m.m'}{d^2} \vec{u}$	Energie potentielle gravitationnelle : E_{pg} : - $G\frac{m.m\prime}{r}$
Force de pesanteur : $\vec{P} = \text{m.g.} \vec{u}_z$	Energie potentielle de pesanteur :
	$E_{pp} = m.g.z$
Force de Coulomb :	Energie potentielle électrique :
$\vec{F} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q \cdot q'}{r^2} \cdot \vec{u}$	$E_{pe} = -\frac{1}{4\pi\varepsilon_0} \cdot \frac{q \cdot q'}{r}$
Force de rappel du ressort :	Energie potentielle élastique :
$\vec{F} = -k.x.\vec{u}_x$	$E_{pe} = \frac{1}{2} k.x^2$

4. Association de ressorts

1)

Les jointures des ressorts sont aux positions A_0 et B_0 lorsque aucune force de traction n'est appliquée sur l'objet.

On applique une force de traction \vec{f} et les extrémités des ressorts sont désormais aux positions A et B.

Au niveau du point A, on écrit :

$$\overrightarrow{Fr1} + \overrightarrow{Fr2}' = \overrightarrow{Fr1} - \overrightarrow{Fr2}$$

$$= -k1.(x1 - x01).\overrightarrow{ux} + k2.(x2 - x02).\overrightarrow{ux}$$

Au point B on obtient:

$$\overrightarrow{Fr2} = -k2.(x2 - x02).\overrightarrow{ux}$$

Or, les normes des forces de rappel sont égales, ainsi:

$$\overrightarrow{Fr1} = \overrightarrow{Fr2} = -\overrightarrow{Fr2}'$$

On peut donc poser:

$$\overrightarrow{Fr\acute{eq}} = -k\acute{e}q. ((x1+x2) - (x01+x02)). \overrightarrow{ux}$$

$$\overrightarrow{Fr\acute{eq}} = -k\acute{e}q. ((x1-x2) + (x01-x02)). \overrightarrow{ux}$$

$$-\overrightarrow{Fr\acute{eq}}/k\acute{e}q = (x1+x2). \overrightarrow{ux} - (x01+x02). \overrightarrow{ux}$$

$$Or -\overrightarrow{Fr2}/k2 = (x2-x02). \overrightarrow{ux}\acute{e}t -\overrightarrow{Fr1}/k1 = (x1-x01). \overrightarrow{ux}$$

D'où
$$\overrightarrow{Fr\acute{\text{eq}}}/k\acute{\text{eq}}=\overrightarrow{Fr1}/k1=\overrightarrow{Fr2}/k2$$

Nous avons également défini que $\overrightarrow{Fr1} = \overrightarrow{Fr2} = \overrightarrow{Freq}$

Donc
$$1/k \neq q = 1/k1 = 1/k2$$

Donc la constante de raideur équivalente kéq aux constantes de deux ressorts montés en série est:

$$k\acute{e}q = (k1.k2) / (k1+k2)$$

2)

Le système est à l'équilibre, on peut donc appliquer la 2nd loi de Newton:

$$\Sigma \overrightarrow{Fext} = \overrightarrow{Fr1} + \overrightarrow{Fr2} + \overrightarrow{f}$$

$$=-k1. x. \overrightarrow{ux} - k2. x. \overrightarrow{ux} + \overrightarrow{f} = \overrightarrow{0}$$
$$=-(k1 + k2). x. \overrightarrow{ux} + \overrightarrow{f} = \overrightarrow{0}$$

On pose donc $k_3 = k_1 + k_2$

On a alors : $\Sigma \overrightarrow{Fext} = -k3.x.\overrightarrow{ux} + \overrightarrow{f} = \overrightarrow{0}$

On peut donc écrire:

$$\Sigma \overrightarrow{Fext} = \overrightarrow{Fr3} + \overrightarrow{f} = \overrightarrow{0}$$

Donc on a la force de rappel équivalente de constante de raideur équivalente. On peut donc trouver la constante de raideur de deux ressorts montés en dérivation:

$$k\acute{e}q = k1 + k2$$

IV. Ressort spirale

5. Etude du mouvement d'une force

1. Le moment d'une force est une grandeur physique vectorielle qui désigne la rotation créée lorsque l'on exerce une force sur un objet. Par exemple, lorsque l'on appuie sur une porte, elle tourne, cela est dû à sa liaison avec le support.

Donc le moment d'une force \vec{F} est $\overline{M(\frac{F}{0})} = \vec{r}$ \wedge $\vec{F} = r * F * \sin(\alpha) = d * F$. A l'équilibre, $\sum \vec{M} = \vec{0}$. Or, $\sum \vec{M} = m * g * d * \overrightarrow{uz} + \overline{Mrappel}$, donc $m * g * d * \overrightarrow{uz} = \overline{Mrappel}$, on écrit alors que $\vec{P} + \overrightarrow{Fr} = \vec{0}$. Où p=m*g*d et Fr est la force de rappel.

	2.																	
	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R
1	masse (kg)	10^-3	0	25,4	25,4	25,4	25,4	49,9	49,9	49,9	49,9	75,4	75,4	75,4	100,6	100,6	100,6	176,5
2	distance d (m)	10^-2	0	8,1	5	3,4	1,8	7,3	4,4	3,1	1,7	5,8	3,9	2,7	5	3,4	2,5	2,3
3	angle θ (°)		0	44	28	20	10	70	44	29	16	90	56	42	96	64	51	78
4	moment de la force M (Nm)		0	0,0202	0,0125	0,0085	0,0045	0,0357	0,0215	0,0152	0,0083	0,0429	0,0288	0,02	0,0493	0,0336	0,0247	0,0398
5	incertitude absolue ∂m (kg)	10^-3	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
6	incertitude relative ∂m/m	%	###	0,3937	0,3937	0,3937	0,3937	0,2004	0,2004	0,2004	0,2004	0,1326	0,1326	0,1326	0,0994	0,0994	0,0994	0,0567
7	incertitude absolue ∂d (m)	10^-2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
8	incertitude relative ∂d/d	%	###	1,2346	2	2,9412	5,5556	1,3699	2,2727	3,2258	5,8824	1,7241	2,5641	3,7037	2	2,9412	4	4,3478
9	incertitude absolue ∂θ (°)		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	incertitude relative ∂θ/θ (°)	%	###	2,2727	3,5714	5	10	1,4286	2,2727	3,4483	6,25	1,1111	1,7857	2,381	1,0417	1,5625	1,9608	1,2821
11	incertitude relative ∂M/M	%	###	1,6283	2,3937	3,3349	5,9493	1,5703	2,4731	3,4262	6,0828	1,8568	2,6967	3,8363	2,0994	3,0406	4,0994	4,4045

3.4.

- 5. La constante de torsion C du ressort vaut ici, C=0.003 Nm/° et représente la raideur du ressort. On remarque également que C=-M/ θ .
 - 6. On obtient alors M=-C* θ , d'où $\overrightarrow{M} = -C * \theta * \overrightarrow{uz}$

6. Travail du moment d'une force

- 1. On sait que l'expression du travail est $\partial W = \vec{F} * \vec{dl} = F*r*\partial\theta = M*\partial\theta$.
- 2. Pour passer de la position o à la position M d'angle θ , le travail à fournir est :

$$W(M0 \to M) = \int_0^\theta M * \partial \theta = \int_0^\theta C * \theta * d\theta = C * \frac{1}{2} * \theta^2$$

7. Etude de l'énergie potentielle du ressort

- 1. On en déduit alors $Epe = \frac{1}{2}C\theta^2$
- 2. Pour le ressort linéaire $Epe=1/2kx^2$, les deux formules sont semblables.

V. Conclusion et analogie

	Ressort linéaire	Ressort spiral
Caractéristiques	Translation selon l'axe Ox	Rotation autour de l'axe Δ
	Grandeur	Grandeur

y = 0,003x - 0,003

	Cause du mouvement	Force (N)	Moment
		F = m.g	F = m.g.d
iiques	Grandeur fondamentale	Masse(kg)	Moment cinétique I = m.r²
Grandeurs mécaniques	Déplacement (déformation)	Linéaire(axe): x	Angulaire : θ
Grande	Relation entre la cause et le déplacement du ressort	F = -k.x	M = -C.θ

		Ressort linéaire	Ressort spiral
	Caractéristiques	Translation selon l'axe Ox	Rotation autour de l'axe Δ
4 1		Grandeur	Grandeur
Energie	Déformation élémentaire	Linéaire : dx	Angulaire : dθ
Ene	Travail élémentaire δW	$\delta W = f dx = -kx dx$	$\delta W = M.d\theta = -C.\theta.d\theta$
	Energie potentielle élastique	$Epe = \frac{1}{2}.\mathbf{k}.\mathbf{x}^2$	$Epe = \frac{1}{2} \cdot C \cdot \theta^2$
	Energie cinétique de la masse	Ec = $\frac{1}{2}$. $m. v^2 = \frac{1}{2}$. $m. (\dot{x})^2$	$E_{c} = \frac{1}{2} \cdot m \cdot (r \cdot \dot{\theta})^2 = \frac{1}{2} \cdot \boldsymbol{I} \cdot \dot{\boldsymbol{\theta}}^2$