knn

December 9, 2023

```
[]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
[]: data=pd.read_csv('dataset2.csv')
[]: data=data.dropna()
[]: data=data.drop(['PeopleId'],axis=1)
[]: #filter data if activity id is transient activities
     data_transient = data[data['activityID'] == 'transient activities']
     #reduce number to 0.25 percent
     data_transient = data_transient.sample(frac=0.25)
     #add data transient back to data
     data = data[data['activityID'] != 'transient activities']
     data = pd.concat([data,data_transient])
[]: #plot activityID distributiom
     plt.figure(figsize=(20,5))
     sns.countplot(data['activityID'])
     plt.show()
    /Users/franklin/opt/anaconda3/lib/python3.9/site-
    packages/seaborn/ decorators.py:36: FutureWarning: Pass the following variable
    as a keyword arg: x. From version 0.12, the only valid positional argument will
    be `data`, and passing other arguments without an explicit keyword will result
    in an error or misinterpretation.
      warnings.warn(
```



```
le=LabelEncoder()
     data['activityID'] = le.fit_transform(data['activityID'])
[]: #print(data.info())
     data=data.sample(frac=0.1)
     y=data["activityID"]
     X=data.drop(["activityID"],axis=1)
     #split the data into training, validation and testing sets
     from sklearn.model_selection import train_test_split
     X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.
      →2,stratify=y,random_state=42)
[]: from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import accuracy_score
     accuracy_scores=[]
     for k in range(4,11):
         knn=KNeighborsClassifier(n_neighbors=k)
         knn.fit(X_train,y_train)
         y_pred=knn.predict(X_test)
         accuracy=accuracy_score(y_test,y_pred)
         accuracy_scores.append(accuracy)
```

[]: #encode activityID

from sklearn.preprocessing import LabelEncoder

```
print(accuracy_scores)
```

[0.9569267662792843, 0.9531682346430548, 0.9485334809075816, 0.9458356391809629, 0.9421923999262128, 0.9400710201069913, 0.9372117690463014]

```
[]: import pickle
with open('knn_model.pkl', 'rb') as f:
    knn = pickle.load(f)

y_pred_knn=knn.predict(X_test)
print(accuracy_score(y_test,y_pred_knn))
```

```
[]: import matplotlib.pyplot as plt
import seaborn as sn
from sklearn.metrics import confusion_matrix,classification_report

plt.figure(figsize = (10,7))
sn.heatmap(confusion_matrix(y_test,y_pred), annot=True)

print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0	0.88	0.97	0.92	3766
1	0.85	0.87	0.86	2336
2	0.97	0.99	0.98	3291
3	0.88	0.79	0.84	2116
4	0.97	0.99	0.98	4767
5	0.99	1.00	1.00	3872
6	0.94	0.98	0.96	852
7	0.99	0.95	0.97	1965
8	0.99	1.00	0.99	3735
9	0.98	1.00	0.99	3815
10	0.92	0.73	0.81	4630
11	0.94	0.96	0.95	3490
12	0.87	0.95	0.91	4733
accuracy			0.94	43368
macro avg	0.94	0.94	0.93	43368
weighted avg	0.94	0.94	0.94	43368

[]: