This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

			•
, 00			
·			
,	*	4. A.	•
**	•		
••			
	4		
<u>.</u>	* (%)		
~ <u>*</u> *	v		
•	,	, v	
•	00	· · · · · · · · · · · · · · · · · · ·	
			•
<u>.</u>		· ·	
			•
	· ·	. 9	
	*		
			. 3
			¥ .
		e e e	
			*
	* 4 1	1	
	• 1		
* :			
	•		· · · · · · · · · · · · · · · · · · ·
	,	¥-	
· · · · · · · · · · · · · · · · · · ·			
	. R * 1	of a second sec	

(1) Publication number:

0 245 058 A2

® EUROPEAN PATENT APPLICATION

- 2) Application number: 87303961.4
- 2 Date of filing: 01.05.87

(a) Int. Cl.4: C 07 D 403/12, C 07 D 409/12, C 07 D 401/12, C 07 D 491/04, C 07 F 7/18, C 07 D 231/18, C 07 D 233/34, C 07 D 213/71, C 07 D 213/89, A 01 N 47/36 //
(C07D491/04, 307:00, 239:00), (C07D491/04, 311:00, 239:00)

Priority: 02.05.86 US 859275 13.06.86 US 874307 13.03.87 US 22365 30.03.87 US 29434 (1) Applicant: E.I. DU PONT DE NEMOURS AND COMPANY, 1007 Market Street, Wilmington Delaware 19898 (US)

- Date of publication of application: 11.11.87

 Bulletin 87/46
- inventor: Wexler Barry Arthur, 2205 Patwynn Road, Wilmington Delaware 19810 (US)
- Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- 74 Representative: Hildyard, Edward Martin et al, Frank B. Dehn & Co. European Patent Attorneys Imperial House 15-19 Kingsway, London WC2B 6UZ (GB)

- Merbicidal heterocyclic sulfonamides.
- Sulfonylures derivatives of formula

W | JSO2NHCNR1A

(1

wherein J is a pyrazole, thiophene or pyridine residue of defined structure;

W is O or S;

R₁ is H or CH₃;

A is a mono- or bicyclic haterocyclic residue, e.g. pyrimidin-2-yl or triazinyl;

and their agriculturally suitable salts, exhibit potent herbicidal activity. Some also exhibit a plant growth regulant action.

The novel compounds may be made e.g. by reacting an appropriate sulfonyl isocyanate or isothiocyanate of formula JSO₂NCW with an appropriate aminoheterocycle HNR₁A.

COMPLETE DOCUMENT

ACTORUM AC

0 245

ı

Title

HERBICIDAL HETEROCYCLIC SULFONAMIDES

Background of the Invention

This invention relates to novel ketone pyrazole. thiophene. and pyridine sulfonylurea herbicidal compounds, agriculturally suitable compositions thereof and a method of using them to control the growth of undesired vegetation.

New compounds effective for controlling the growth of undesired vegetation are in constant demand. In the most common situation, such compounds are sought to selectively control the growth of weeds 15 in useful crops such as cotton, rice, corn, wheat and soybeans, to name a few. Unchecked weed growth in such crops can cause significant losses, reducing profit to the farmer and increasing costs to the consumer. In other situations, herbicides are desired 20 which will control all plant growth. Examples of areas in which complete control of all vegetation is desired are areas around railroad tracks and industrial storage areas. There are many products commercially available for these purposes, but the search continues for products which are more effective, less costly and environmentally safe.

The "sulfonylurea" herbicides are an extremely potent class of herbicides discovered within the last few years. A multitude of structural variations exist within the class of herbicides, but they generally consist of a sulfonylurea bridge. -SO₂NHCONH-. linking two aromatic or heteroaromatic rings.

EP-A95,925 which was published 7.12.83/discloses herbicidal sulfonylureas of formula

35

5

o 2-so_znhčn-a

wherein

Q is, in part,

R₁₀ is H. C₁-C₄ alkyl. C₃-C₄ alkenyl. C₃-C₄ alkynyl. CO₂R₂₄. SO₂NR₂₀R₂₁ or SO₂R₂₂:

R₁₁ is H. C₁-C₃ alkyl. F. Cl. Br. NO₂.

OR₁₆, CO₂R₂₄, S(O)_mR₂₅ or

SO₂NR₂₀R₂₁;

provided that when R₂ is other than

provided that when R₁₀ is other than C₁-C₃ alkyl. then R₁₁ is H. Cl. OCH₃. NO₂. or CH₃:

R₁₂ is H or CH₃;

R₁₃ and R₁₄ are independently H. C₁-C₃ alkyl.

OR₁₆. F. Cl. Br. NO₂. CO₂R₂₄.

S(O)_mR₂₅ or SO₂NR₂₀R₂₁:

provided that, when either of R₁₃ or R₁₄ is CO_2 R₂₄. S(O)_mR₂₅ or SO₂NR₂₀R₂₁.

then the other 36 H. Cl. CH₃. OCH₃ or NO₂:

and

R₁₅ is H or CH₃. EP-A-87.780 (published 7.9.83) discloses herbicidal sulfonylureas of formula

35

30

wherein

A is H. C₁-C₈ alkyl or optionally substituted phenyl:

B and C are independently H. halogen, NO₂.

C₁-C₈ alkyl, arylalkyl, C₁-C₈ alkoxy,
haloalkyl, CO₂R, CONR₁R₂, S(O)_nR₃,

SO₂NR₄R₅, or
optionally substituted phenyl.

ZA 83/3850 (published 28.11.83) discloses compounds of formula

20

25

30

15

5

$$2 \times 10^{-1} \times$$

wherein

Q is a five-membered, heterocyclic radical which is bound by way of a carbon atom and contains 2 or 3 heteroatoms and which may be optionally substituted by halogen, pseudohalogen, nitro. alkyl, hydroxyl, haloalkyl, alkoxy, alkylthio, haloalkoxy, haloalkylthio, amino, alkylamino, dialkylamino, alkylcarbonylamino, alkylcarbonyl, alkoxycarbonyl, alkoxyalkyl, alkylthiocarbonyl, carbamoyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, alkylsulfonyl, alkyl-sulfonyl, alkenyloxy or alkynyloxy; and

groups such as phenyl, phenoxy or phenylthio, which are unsubstituted or substituted by halogen, nitre, cyano, alkyl, alkoxy, haloalkyl, alkylcarbonyl, alkoxycarbonyl or haloalkoxy; and also benzyl unsubstituted or substituted by halogen and/or alkyl.

U.S. 4,127,405 and U.S. 4,169,719 disclose herbicidal thiophenesulfonamides, wherein the thiophene ring may be optionally substituted with CH₃. Cl or Br.

U.S. 4.398,939 discloses herbicidal thiophenesulfonamides, wherein the thiophene ring is substituted with substituent groups selected from

So₂N(C_1 - C_3 alkyl), or So₂N(OCH_3), NO₂. Cl. Br. So₂N(OCH_3) OCH_3 .

U.S. 4.481.029 discloses herbicidal thiophenesulfonamides. wherein the thiophene ring is substituted with carboxylic acid, carboxylic ester and alkylcarbonyl groups or derivatives thereof.

U.S. 4,441,910 discloses herbicidal thiophenesulfonamides, wherein the thiophene ring is substituted with the group represented by $R_6S(0)_n$ wherein R_6 is C_1-C_4 alkyl, C_3-C_4 alkenyl, cyclopentyl or cyclopropylmethyl.

European Publication No. 13.480 (published July 23. 1980) discloses herbicidal pyridine-2-. -3- and -4-sulfonylureas, wherein the pyridine ring may be substituted by Cl. Br. F. C_1-C_4 alkyl.

30 C₁-C₄ alkoxy, C₁-C₄ alkylthio, NO₂ or a carboxylic ester group.

U.S. 4.456.469 (issued 29.6.84) discloses herbicidal pyridine-3-sulfonylureas substituted by

35

 C_1-C_6 alkyl-, C_3-C_6 alkenyl-, C_2-C_4 alkoxyalkyl- and C5-C6 cycloalkylsulfonyl groups. U.S. 4.518.776 (Swiss priority 19.7.82) discloses, in part, a process for the preparation of compounds of formula

GSO₂NHČNH-

10

15

wherein

 R_1 is H. C_1-C_4 alkyl, halogen, NO_2 , CN. NH_2 , $S(0)_nC_1-C_4$ alkyl, $SO_2C_1-C_4$ alkoxy. SO2-di-C1-C4 alkylamino, CHO, CONH2. 20 DC₃-C₅ alkynyl, CODC₃-C₅ alkynyl, DC₁-C₄ alkyl, DC₃-C₅ alkenyl, COC1-C4 alkyl, CODC1-C4 alkyl or CODC₃-C₅ alkenyl; n is 1 or 2;

25

D is O, S, NH or NC_1-C_4 alkyl; R₂ is H. halogen, CF₃, NO₂, C₁-C₄ alkyl or C1-C4 alkoxy; and A is 0, S, NR_5 or -C=N-.

U.S. 4.521.597 discloses, in part, a process for 30 the preparation of compounds of formula

wherein

10 A is
$$R_3$$
 R_1 R_5 or

R₃

R₃ is H, halogen, NO₂, OCH₃ or CF₃;
R₅ is H, F, Cl, Br, NO₂, C₁-C₅ alkyl, C₁-C₅
alkoxy, CF₃, S(O)_mC₁-C₅ alkyl, COR₇ or
SO₂NR₈R₉;

Y is O. S or C(R₆)=N; and

R₇ is H, C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₁-C₅

alkoxy. C₁-C₅ haloalkoxy. C₂-C₁₀ alkoxyalkoxy. C₃-C₅ alkenyloxy. C₃-C₅ alkynyloxy. phenoxy. benzyloxy. C₁-C₅ alkylthio or NR₈R₉.

U.S. 4,549,898 discloses herbicidal sulfonylureas of formula

35

30

15

20

25

_

wherein

5

10

15

X is O, S, NR_A or $C(R_S)=N$;

Y is O or S:

Z is O or S:

E is N or CH;

 R_1 is H. C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, C_1 - C_4 alkoxy, halogen, C_1 - C_4 alkylthic. NR_6R_7 or alkoxyalkyl containing not more than 4 carbon atoms;

 R_2 is H. C_1-C_3 alkyl. C_1-C_3 haloalkyl. halogen. NO_2 . C_1-C_3 alkoxy. $C(W)R_8$. $SO_2NR_6R_7$. $S(O)_n-C_1-C_3$ alkyl or COR_9 :

R₃ is H. halogen. C₁-C₃ alkyl. OCH₃ or CF₃;

 R_5 is H. NO₂, F. Cl. Br. CH₃, CF₃, S(O)_nC₁-C₃ alkyl, COC₁-C₄ alkoxy or C₁-C₃ alkoxy;

R₈ is H. C₁-C₆ alkyl. C₁-C₄ haloalkyl. C₃-C₆ cycloalkyl. C₄-C₇ cycloalkylalkyl or alkoxy-alkyl containing not more than 4 carbon atoms:

20 and

W is O or NOR₁₀.

Japanese Patent Application Number 58-70407 (SHO 59-219.218. laid open 10.12.84)/discloses pyrazole-5-sulfonylureas of formula

25

30 wherein

A is H. lower alkyl or phenyl:

B is H or lower alkyl;

D is H. CO₂R or COAr, halogen, NO₂ or SO₂NR¹R²; and

Ar is phenyl optionally substituted with halogen.
U.S. 4.370,480 discloses herbicidal sulfonylureas
of formula

wherein

$$\mathbb{R}_{1} \stackrel{\text{is } \mathbb{R}^{a}-o}{\underset{\mathbb{R}}{\bigvee}_{\mathbb{R}}} \mathbb{O}_{-\mathbb{R}^{a}}$$
, $\mathbb{R}_{\mathbb{R}} \stackrel{\mathbb{R}}{\underset{\mathbb{R}}{\bigvee}} \mathbb{R}$ or $\mathbb{R}_{\mathbb{R}}$:

R is H. C₁-C₂ alkyl. C₂-C₆ alkenyl.

C₂-C₆ alkynyl;

C₁-C₄ alkyl substituted with one to four substituents selected from 0-3 F, 0-3 Cl. 0-3 Br.

0-2 OCH₃, 0-1 cyano, 0-1 CO₂R'₁ where R'₁ is

C₁-C₃ alkyl. CO₂R'₁, C₂-C₄ alkenyl substituted with 1-3 Cl. C₃-C₆ cycloalkyl. C₅-C₆ cycloalkyl, C₅-C₆ cycloalkyl, C₅-C₆ cycloalkyl substituted with substituents selected from 1-3 CH₃ or one of CH₃CH₂. Cl. OCH₃, C₄-C₇ cycloalkylalkyl.

$$-T_1 \xrightarrow{R_1^{I}} \text{ where } T_1 \text{ is } C=CH-,-CH-(CH_2)-$$

or a single bond; and

T is O or NOR1111.

Japanese Patent Application Number 84-273152 (Sho 86-151188, laid open July 9, 1986) discloses the following compound

5 CH₂SO₂NHCNH-OCH₃

- 25

10 SUMMARY OF THE INVENTION

This invention relates to novel compounds of Formula 1. agriculturally suitable compositions containing them, and their method-of-use as general preemergence and/or postemergence herbicides or plant growth regulants.

10

w Jso₂nhčnr₁A

1

15 wherein

30

J is $R_{2} = \begin{pmatrix} CH_{2} \end{pmatrix}_{n} \stackrel{\circ}{CR}' \qquad -E = \begin{pmatrix} CH_{2} \end{pmatrix}_{n} \stackrel{\circ}{CR}' \qquad \frac{CH_{2}}{R} = \begin{pmatrix} CH_{2} \end{pmatrix}_{n} \stackrel{\circ}{CR}' \qquad \frac{J-2}{R}$

R₂ E- OR'C(CH₂) N R'C(CH₂) N R₂

<u>J-3</u>

<u>J-5</u> <u>J-6</u> 15 . O (CH₂)_nČR' OI

R is H, C₁-C₃ alkyl, phenyl, SO₂NR_aR_b, C₁-C₂ haloalkyl, C2-C4 alkoxyalkyl, C2-C3 cyanoalkyl, C2 C4 alkylthioalkyl. C2 C4 alkylsulfinylalkyl. c_2-c_4 alkylsulfonylalkyl, $c_2c_1-c_2$ alkyl, c_1-c_4 alkylcarbonyl. C₁-C₂ alkylsulfonyl. C₃-C₄ alkenyl. C_3-C_4 alkynyl or C_1-C_2 alkyl substituted with CO₂C₁-C₂ alkyl; R, is H or CH; R_2 is H, C_1-C_3 alkyl, C_1-C_3 haloalkyl, halogen, 10 nitro, C₁-C₃ alkoxy, SO₂NR_cR_d, C₁-C₃ alkylthio. C₁-C₃ alkylsulfinyl, C₁-C₃ alkylsulfonyl, CN, CO2Re, C1-C3 haloalkoxy, C1-C3 haloalkylthio, amino, C₁-C₂ alkylamino, di(C₁-C₃ alkyl)amino or $C_1 - C_2$ alkyl substituted with $C_1 - C_2$ alkoxy. 15 C1-C2 haloalkoxy, C1-C2 alkylthio, C1-C2 haloalkylthio, CN, OH or SH; R_a and R_h are independently C_1-C_2 alkyl: R_c is H. C_1-C_4 alkyl, C_2-C_3 cyanoalkyl, methoxy or 20 R_d is H, C_1-C_4 alkyl or C_3-C_4 alkenyl; or R_d and R_d may be taken together as -(CH₂)₄-. -(CH₂)₄-. -(CH₂)₅- or -CH₂CH₂OCH₂CH₂-; R_e is C_1-C_4 alkyl, C_3-C_4 alkenyl, C_3-C_4 alkynyl, C_2-C_4 haloalkyl, C_1-C_2 cyanoalkyl, C_5-C_6 cyclo-25 alkyl, C_4-C_7 cycloalkylalkyl or C_2-C_4 alkoxyalkyl; R' is C_1-C_5 alkyl, C_1-C_5 haloalkyl, C_1-C_5 alkyl substituted with one or two R_3 groups, C_2 - C_5 alkenyl, C2-C5 haloalkenyl, C3-C5 alkenyl sub-30 stituted with one or two R₂ groups, C₂-C₅ alkynyl, C_3-C_5 haloalkynyl, C_3-C_5 alkynyl substituted with one or two R_3 groups. C_3-C_5 cycloalkyl, C_3-C_5 halocycloalkyl, C_3-C_5 cycloalkyl substituted with one or two R_4 groups. C4-C7 cycloalkylalkyl, C4-C7 halocycloalkyl-35 alkyl C4-C7 cycloalkylalkyl substituted with

one or two R₄ groups, phenyl or benzyl;

13 R_3 is C_1-C_3 alkoxy, C_1-C_3 alkylthio, C_1-C_3 haloalkoxy, C₁-C₃ alkylsulfinyl, C₁-C₃ alkylsulfonyl. CN. NO₂. OH. OR₅ or $di-(C_1-C_3)$ alkyl)amino; 5 R_4 is C_1-C_3 alkyl, C_1-C_3 alkoxy, C_1-C_3 haloalkoxy. CN. NO2. OH. OR5 or di-(C1-C3 alkyl)amino; R_5 is SO_2CH_3 , $Si(CH_3)_3$, C_2-C_3 alkylcarbonyl or co₂c₁-c₂ alkyl: E is a single bond or CH2: 10 W is O or S; n is O or 1; n' is 0 or 1: 15 20 25 30

<u>A-7</u>

X is H. C_1-C_4 alkyl. C_1-C_4 alkoxy. C_1-C_4 hal alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio. C1-C4, alkylthio, halogen, C2-C alkoxyalkyl, C2-C5 alkoxyalkoxy, amino, C1-C3 alkylamino. $di(C_1-C_3$ alkyl)amino or C_3-C_5 cycloalkyl; Y is H, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy, C1-C4 haloalkylthio, C1-C4 alkylthio, C2-C5 alkoxyalkyl. C2-C5 alkoxyalkoxy. amino. $c_{1}^{-c_{3}}$ alkylamino, $di(c_{1}^{-c_{3}}$ alkyl)amino, $c_{3}^{-c_{4}}$ 10 alkenyloxy, C3-C4 alkynyloxy, C2-C5 alkylthioalkyl, C₁-C₄ haloalkyl, C₂-C₄ alkynyl, azido, cyano, C2-C5 alkylsulfinylalkyl, C2-C5 alkylsulfonylalkyl. CR₆. -CL₁R₇. 15 or N(OCH₃)CH₃; m is 2 or 3; L_1 and L_2 are independently O or S: 20 R_6 is H or C_1-C_3 alkyl: R_7 and R_8 are independently C_1-C_3 alkyl; Z is CH or N; Z, is CH or N; Y, is O or CH,; 25 X₁ is CH₃, OCH₃, OC₂H₅ or OCF₂H; x is CH3. C2H5 or CH2CF3: Y2 is OCH3. OC2H5. SCH3. SC2H5. CH3 or CH2CH3; X3 is CH3 or OCH3; Y, is H or CH; 30 X_4 is CH_3 . OCH_3 . OC_2H_5 . CH_2OCH_3 or Cl: and

Ya is CH3, OCH3, OC2H5 or C1;

and their agriculturally suitable salts; provided that

- a) when X is Cl. F. Br or I. then Z is CH and Y is
 - OCH_3 , OC_2H_5 , $N(OCH_3)CH_3$, $NHCH_3$, $N(CH_3)_2$ or OCF_2H ;
- b) when X or Y is C_1 haloalkoxy, then Z is CH;
- c) X_4 and Y_4 are not simultaneously C1;
- d) when W is S. then R_1 is H. A is A-1 and Y is CH_3 , OCH_3 , OC_2H_5 , CH_2OCH_3 , C_2H_5 , CF_3 , SCH_3 , $OCH_2CH=CH_2$, $OCH_2C\equiv CH$, $OCH_2CH_2OCH_3$, $CH(OCH_3)_2$ or 1.3-dioxolan-2-y1;
- e) when the total number of carbons of X and Y is greater than four, then the number of carbons of R must be less than or equal to two;
- f) when J is J-1, J-2, J-3 or J-4 then R' is other than phenyl;
- g) when J is J-5, J-6 or J-7 wherein E is a single bond, then R' is other than C_1-C_5 alkyl, C_3-C_5 alkenyl, phenyl, benzyl, cyclopentyl or C_4-C_7 cycloalkylalkyl;
- h) when either or both of X and Y are OCF₂H then J is J-1, J-2, J-3, J-4, J-8, J-9, J-10 or J-11; and
- i) when A is A-7 and Z₁ is N, then J is J-1, J-2, J-3 or J-4 and R' is C₃-C₅ cycloalkyl;
- j) when the total number of carbon atoms of X and Y is greater than four, then the total number of carbon atoms of R_2 and R' must be less than or equal to 7.

In the above definitions, the term "alkyl", used either alone or in compound words such as "alkylthio"

35

5

10

15

20

25

or "haloalkyl", denotes straight chain or branched alkyl, e.g. methyl, ethyl, n-propyl, isopropyl or the different butyl, and mentyl isomers. And the hard beautyl and mentyl isomers.

Alkoxy denotes methoxy, ethoxy, <u>n</u>-propyloxy, isopropyloxy and the different butyl isomers.

Alkenyl denotes straight chain or branched alkenes. e.g., 1-propenyl, 2-propenyl, 3-propenyl and the different butenyl and pentenyl isomers.

10 Alkynyl denotes straight chain or branched alkynes. e.g. ethynyl. 1-propynyl. 2-propynyl and the different butynyl and pentynyl isomers.

Alkylsulfonyl denotes methylsulfonyl, ethylsulfonyl and the different propylsulfonyl isomers.

Alkylthio, alkylsulfinyl, alkylamino, etc. are defined analogously to the above examples.

Cycloalkyl denotes cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "halogen", either alone or in compound of words such as "haloalkyl", denotes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl" said alkyl may be partially halogenated or fully substituted with halogen atoms and said halogen atoms may be the same or different.

5 Examples of haloalkyl include CH2CH2F, CF2CF3

Examples of haloalkyl include CH₂CH₂F, CF₂CF₃ and CH₂CHFCl.

子 经线数分额的

The total number of carbon atoms in a substituent group is indicated by the C_i-C_j prefix where i and j are numbers from 1 to 7. For example, C_1-C_3 alkylsulfonyl would designate methylsulfonyl through propylsulfonyl, C_2 alkoxyalkoxy would designate OCH_2OCH_3 , C_2 cyanoalkyl would designate CH_2CN and C_3 cyanoalkyl would designate CH_2CH_2CN and C_3 cyanoalkyl would designate CH_2CH_2CN and $CH(CN)CH_3$.

35

Compounds preferred for reasons of increased ease of synthesis and/or greater herbicidal efficacy are:

1. Compounds of Formula I wherein in addition

5 the provisos (a) to (j) there is additionally the following proviso (k) when J is J-5. R₁ is H. R₂ is H. E is CH₂. A is A-1. X is OCH₃. Y is OCH₃ and Z is CH, then R' is other than CH₃.

10

15

20

25

30

35

- Compounds of <u>Formula I</u> where E is a single bond; and W is O.
- 3. Compounds of Formula I where E is CH₂; and W is O.
- 4. Compounds of Preferred 2 where

 R₂ is H. C₁-C₃ alkyl. halogen. C₁-C₃ alkyl
 substituted with 1 to 3 halogen atoms
 selected from 1 to 3 Cl. 1 to 3 F or 1 Br.

 OCH₃. SO₂NHCH₃. SO₂N(CH₃)₂. S(O)_nCH₃.

 CO₂CH₃. CO₂CH₂CH₃. OCF₂H. CH₂OCH₃ or
 CH₂CN;

R is H, C₁-C₃ alkyl, phenyl, CH₂CF₃ or CH₂CH=CH₂; X is C₁-C₂ alkyl, C₁-C₂ alkoxy, Cl. F. Br. I. OCF₂H, CH₂F, CF₃, OCH₂CH₂F, OCH₂CHF₂, OCH₂CF₃, CH₂Cl or CH₂Br; and

Y is H. C₁-C₂ alkyl. C₁-C₂ alkoxy. CH₂OCH₃.

CH₂OCH₂CH₃. NHCH₃. N(OCH₃)CH₃. N(CH₃)₂.

CF₃. SCH₃. OCH₂CH=CH₂. OCH₂CECH. OCH₂CH₂OCH₃.

CH₂SCH₃. CR₂. -C

R₂L₂R₄

R₂L₂R₄

R₂L₂R₄

R₂L₂R₄

R₂CCH₂OCH₃.

OCF₂H. OCF₂Br. SCF₂H. cyclopropyl. CECH or CECCH₃.

R' is C_1-C_4 alkyl. C_1-C_3 alkyl substituted with 1 to 3 halogen atoms selected from 1 to 3 Cl. 1 to 3 F or 1 Br. C_2-C_4 alkoxyalkyl. C_2-C_4 alkylthioalkyl.

5. Compounds of Preferred 4 where

C₂-C₄ cyanoalkyl, C₂-C₄
alkenyl, C₂-C₃ alkenyl substituted with
1 to 3 halogen atoms selected from 1 to
3 Cl. 1 to 3 f or 1 Br. C₃-C₄ alkynyl,
C₃-C₅ cycloalkyl, C₃-C₅ cycloalkyl
substituted with 1 to 3 halogen atoms
selected from 1 to 3 Cl. 1 to 3 f or 1 Br
or cyclopropylmethyl.

6. Compounds of Preferred 5 where

A is A-1;

n is O:

10

15

20

30

35

X is CH₃, OCH₃, OCH₂CH₃, Cl or OCF₂H; and Y is CH₃, OCH₃, C₂H₅, CH₂OCH₃, NHCH₃,

CH(OCH₃)₂ or cyclopropyl.

7. Compounds of <u>Preferred 6</u> where R₁ is H;

R'is C₁-C₃ alkyl, C₁-C₃ alkyl

Bubstituted with 1 to 3 F, C₂-C₃

alkoxyalkyl, C₂-C₃ alkylthicalkyl,

C₂-C₃ cyanoalkyl, C₂-C₃ alkenyl,

propargyl, C₃-C₅ cycloalkyl or

cyclopropylmethyl.

8. Compounds of <u>Preferred 7</u> where J is J-1.

9. Compounds of Preferred 7 where J is J-2.

10. Compounds of Preferred 7 where J is J-3.

11. Compounds of Preferred 7 where J is J-4.

12. Compounds of Preferred 7 where J is J-5.

13. Compounds of Preferred 7 where J is J-6.

14. Compounds of Preferred 7 where J is J-7.

15. Compounds of Preferred 7 where J is J-8.

16. Compounds of Preferred 7 where J is J-9.

17. Compounds of Preferred 7 where J is J-10.

18. Compounds of Preferred 7 where J is J-11.

19. Compounds of Preferred 8 where R' is C_1-C_3 alkyl.

- 20. Compounds of Preferred 8 where

 R' is C₁-C₃ alkyl substituted with 1 to 3 F.

 C₂-C₃ alkoxyalkyl. C₂-C₃ alkylthioalkyl. C₂-C₃

 cyanoalkyl. C₂-C₃ alkenyl. propargyl. C₃-C₅ cycloalkyl or cyclopropylmethyl.
- 21. Compounds of <u>Preferred 8</u> where R' is C_3-C_5 cycloalkyl.
- 22. Compounds of Preferred 3 where

 R is H. C₁-C₃ alkyl. phenyl. CH₂CF₃ or CH₂CH=CH₂;

 R₂ is H. Cl. Br. OCH₃ or CH₃;

 R' is C₁-C₃ alkyl. C₁-C₃ alkyl substituted

 with 1 to 3 F. C₂-C₃ alkoxyalkyl. C₂-C₃

 alkylthioalkyl. C₂-C₃ cyanoalkyl. C₂-C₃

 alkenyl. propargyl. C₃-C₅ cycloalkyl or

 cyclopropylmethyl.

 n is 0;

A is A-1;

- X is CH₃, OCH₃, OCH₂CH₃, Cl or OCF₂H; and Y is CH₃, OCH₃, C₂H₅, CH₂OCH₃, NHCH₃, CH(OCH₃)₂ or cyclopropyl.
- 23. Compounds of Formula I where

 J is J-1, J-2, J-3 or J-4; and

 R' is C₁-C₅ haloalkyl, C₁-C₅ alkyl substituted with one or two R₃ groups, C₂-C₅ alkenyl,

 C₂-C₅ haloalkenyl, C₃-C₅ alkenyl substituted with one or two R₃ groups, C₃-C₅ alkynyl,

 C₃-C₅ haloalkynyl, C₃-C₅ alkynyl substituted with one or two R₃ groups, C₃-C₅ cycloalkyl,

 C₃-C₅ halocycloalkyl, C₃-C₅ cycloalkyl substituted with one or two R₄ groups, C₄-C₇ cycloalkylalkyl substituted with one or two R₄

35

5

groups, phenyl or benzyl.

24. Comp unds of Formula I where J is J-5, J-6 or J-7.

25. Compounds of Formula I where when J is J-8, J-9, J-10 or J-11.

Compounds of the invention specifically preferred for reasons of greatest ease of synthesis and/or greatest herbicidal efficacy are 4-(cyclopropylcar-bonyl)-N-[(4.6-dimethoxy-pyrimidin-2-yl)aminocarbinyl]-1-methyl-1H-pyrazole-5-sulfonamide. m.p. 189-192°C (d): 4-(1-oxopropyl)-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1-methyl-1H-pyrazole-5-sulfonamide. m.p. 189-192°C(d). and 2-(cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-3-thiophenesulfonamide. m.p. 165-168°C.

The compounds of this invention are highly active as preemergent and/or postemergent herbicides or plant growth regulants with selectivity on rice. corn. wheat, soybeans and barley.

25

5

30

35

.1

DETAILED DESCRIPTION OF THE INVENTION

Synthesis

Compounds of Formula I can be prepared by one or more of the procedures shown in Equations 1. 4. and 5. J. R_{1} , and A are as previously defined. Equation 1

The reaction of Equation 1 is best carried out in an inert aprotic organic solvent such as dichloromethane. 1.2-dichloroethane. tetrahydrofuran. or acetonitrile. at a temperature between 20° and 85°C. The order of addition is not critical: however. it is often convenient to add the sulfonyl isocyanate or a solution of it in the reaction solvent, to a stirred suspension of the amine.

In some cases, the desired product is insoluble in the reaction solvent at ambient temperature and crystallizes from it in pure form. Products soluble in the reaction solvent are isolated by evaporation of the solvent. Compounds of Formula I then may be purified by trituration of the evaporation residue with solvents such as 1-chlorobutane or ethyl ether and filtration, by recrystallization from mixtures of solvents such as 1.2-dichloroethane, 1-chlorobutane and heptane or by chromatography on silica gel.

Sulfonyl isocyanates (II. W is O) are known in the art and are prepared from the corresponding sulfonamides (IV) by one of the following two general methods.

35

15

25

Equation 2

JSO₂NH₂ CH₃ (CH₂) NCO COCl₂. cat.

<u>II.</u> W is 0

IV

The sulfonamide IV is reacted with an alkyl isocyanate (e.g., \underline{n} -butyl isocyanate) in a solvent whose boiling point is above 135°C, such as xylene. The reaction can optionally be carried out in the presence of a catalytic amount of 1.4-diaza[2.2.2]bicyclooctane (DABCO). The reaction mixture is heated to 135-140°C and held at that temperature for 5-60 15 minutes, after which phospene is slowly added at such a rate that the temperature remains between 133 and 135°C. When the consumption of phosgene has ceased, the mixture is cooled and filtered to remove insoluble material. Finally, the solvent, alkyl isocyanate, and 20 excess phosgene are evaporated, leaving the sulfonyl isocyanate (II).

If desired, the alkyl isocyanate-sulfonamide adduct can be made and isolated before reaction with the phosgene. In this case the sulfonamide (IV).

alkyl isocyanate, and anhydrous base (e.g. K₂CO₃) in a polar, aprotic solvent (e.g. acetone, butanone, or acetonitrile) are mixed and heated under reflux for 1 to 6 hours. The reaction mixture is then diluted with water, and the pH is adjusted to about 3 with acid (e.g. HCl, H₂SO₄). The adduct is filtered out and dried; and then reacted with phosgene as described above. This procedure modification is especially useful when sulfonamide (IV) is high melting and has low solubility in the phosgenation solvent.

Sulfonyl isocyanates (II, W is O) can also be prepared by the following method.

Equation 3

5

(a)
$$\underline{IV} \xrightarrow{SOCl_2}$$
 $\underline{JSO_2NSO}$

10

30

35

(b)
$$\underline{V}$$
 pyridine cat.

II. W is 0

The sulfonamide (IV) is heated at reflux in an 15 excess of thionyl chloride. The reaction is continued until the sulfonamide protons are no longer detectable in the proton magnetic resonance spectrum. From 16 hours to 5 days is typically sufficient for complete conversion to the thionylamide (V) (Equation 3a). 20

The thionyl chloride is evaporated and the residue is treated with an inert solvent (e.g. toluene) containing at least one equivalent (typically 2-3 equivalents) of phosgene. A catalytic amount of pyridine (typically 0.1 equivalent) is added, and the mixture is heated to about 60-140°C, with 80-100°C preferred. Conversion to the isocyanate (II. W is O) is usually substantially complete within 15 minutes to 3 hours (Equation 3b). The mixture is then cooled and filtered, and the solvent is evaporated, leaving the sulfonyl isocyanate (II, W is O).

Sulfonyl isothiocyanates (II, W is S) are known in the art and are prepared from the corresponding sulfonamides (IV) by reaction with carbon disulfide and potassium hydroxide followed by treatment of the resulting dipotassium salt VI with phosgene. procedure is described in <u>Arch. Pharm. 299</u>, 174 (1966).

Many of the compounds of Formula I can be prepared by the procedure shown in Equation 4.

5

$$_{\rm JSO_2NH\overset{\circ}{c}oc_6H_5}$$
 + $_{\rm III}$ \longrightarrow $_{\rm I}$

<u>VI</u>

The reaction of Equation 4 is carried out by contacting phenylcarbamates or phenylthiocarbamates of Formula VI with aminoheterocycles of Formula III in an inert organic solvent such as dioxane or tetrahydrofuran at temperatures of about 20-100°C for a period of about one-half to twenty-four hours. The product can be isolated by evaporation of the reaction solvent and purified by methods previously described.

Phenylcarbamates and phenylthiocarbamates of Formula VI can be prepared by the methods described.

20 or modifications thereof known to those skilled in the art. in U.S. 4.443.243.

Alternatively, many of the compounds of Formula I can be prepared by the method described in Equation 5.

Equation 5

25

$$\underline{\underline{IV}} + c_{6}H_{5}\overset{\circ cna}{\overset{R_{1}}{\overset{}{c}}} \longrightarrow \underline{\underline{I}}$$

The reaction of Equation 5 can be carried out by contacting equimolar amounts of a sulfonamide of Formula IV with a heterocyclic phenylcarbamate or phenylthiocarbamate of Formula VII in the presence of a base such as 1.8-diazabicyclo[5.4.0]undec-7-ene (DBU). by methods analogous to those described in South African Patent Application 83/0441. The phenylcarbamates and

phenylthiocarbamates of Formula VII can be prepared by methods. or modifications thereof known to those skilled in the art. described in South African Patent Application 82/5671 and South African Patent Application 82/5045.

The sulfonamides IV of this invention may be prepared in a variety of ways some of which are described in Equations 6 through 15.

For example, the 4-keto-5-sulfonamide isomer 1 may be prepared as outlined in Equation 6.

Equation 6

Preparation of the intermediates such as bromide $\underline{2}$ may be found in EPA-95.925. Exposure of bromide $\underline{2}$ to nBuLi followed by addition of the resulting anion to cyclopropyl acid chloride affords the protected sulfonamide. Deprotection of the sulfonamide affords the desired sulfonamide $\underline{1}$.

Introduction of various R and R $_2$ groups to sulfonamides such as $\underline{1}$ may be accomplished in several ways. For example, the sequence in Equation 6 could also be performed on 3-chloro-1-methylpyrazole or 1.3-dimethylpyrazole affording $\underline{3}$ and $\underline{4}$ respectively. Chloride $\underline{3}$ may then be used to further elaborate

R₂ as outlined in Equation 7.

Equation 7

The N-substituent of compounds such as 1, 3; 4 and 5 may also be varied by applying the same sequence of reactions as outlined in Equation 6 to various N-substituted pyrazoles. For example, pyrazole may be alkylated with dimethylsulfamoylchloride to afford pyrazole 6. Pyrazole 6 is then converted to sulfonamide 7 as outlined in Equation 8.

Equation 8

In the case where either R or R₂ are sensitive to nBuLi (i.e. R₂ is CO₂CH₃ or Br) then the lithiating reagent of choice is lithium diisopropylamide (LDA). Utilizing the same sequence as outlined in Equation 6 but substituting LDA for nBuLi affords sulfonamides such as 8. This is outlined in Equation 9.

Equation 9

10

The isomeric 5-keto-4-sulfonamide pyrazoles may be prepared as outlined in Equations 10 and 11.

25 Equation 10

In Equation 10 the sequential order of group introduction is reversed to that of Equation 6. The introduction of various R and R₂ groups may be accomplished in the same manor as previously described for the 4-ketoisomer in Equations 7. 8 and 9.

An alternate synthesis of sulfonamides such as $\underline{9}$ is outlined in Equation 11.

Equation 11

25

20 12 9 ·

Oxidations of alcohols to ketones such as 12 to 9 are well known in the art. For further discussion pertaining to the oxidation of alcohols to ketones. see R. H. Cornforth. J. W. Cornforth and G. Popjak. Tetrahedron, 18. 1351 (1962).

The isomeric 3-keto-4-sulfonamide such as <u>13</u> may be prepared as outlined in Equation 12.

Equation 12

30
CH₃0
CH₃0
CH₃
C

In the above example of Equation 12, as before, minor variations of starting material allows for the introduction of different R and R₂ groups. The starting pyrazoles 14 or 15 may be prepared via the condensation of a hydrazine with a triketo species as outlined in Equation 13.

Equation 13

The final pyrazole isomer of the invention such as sulfonamide $\underline{16}$ may be prepared as outlined in Equation 14.

Equation 14

25

Again, as described previously, alteration of the starting material allows for the preparation of compounds such as 16 where R and/or R_2 may be varied. For example, utilizing phenylhydrazine and a chloronitrite results in pyrazole 20 and subsequently sulfonamide, 21. This is outlined in Equation 15.

Equation 15

35

In all the above examples, substitution of cyclopropyl acid chloride with other acid chlorides would 15 result in the corresponding ketones such as compounds 22, 23, 24, 25 and 26.

For further details pertaining to the synthesis of pyrazoles see EP-A-87.780. South African Patent Application 833,350. EP-A-95.925 and T. L. Jacobs. "Heterocyclic compounds". R. C. Elderfield ed.. Vol. 5, pp. 45-161, Wiley, New York, 1957.

For further details pertaining to carbanions see J. Stowell. "Carbanions in Organic Synthesis", Wiley-Interscience, New York, 1979.

Thiophene sulfonamides such as $\underline{27}$ may be prepared as outlined in Equation 16.

Equation 16

5

Introduction of various R₂ groups on the thiophene ring may be accomplished in several ways. For example, the sequence in Equation 16 may also be performed on the 4-substituted analogs resulting in the corresponding sulfonamides such as 29 and 30.

• The isomeric 2-thiophenesulfonamide such as 31 may be prepared as outlined in Equation 17.

Equation 17

35

An alternate synthesis of sulfonamides such as $\underline{\mathbf{31}}$ is outlined in Equation 18.

10 Equation 18

5

15

The isomeric 3-thiophenesulfonamide such as 33 may be prepared as outlined in Equation 19.

Equation 19

Equation 19

Introduction of various R₂ groups onto the thiophene ring may be accomplished by varying the starting material as previously described.

Further details pertaining to the preparation and functional group manipulation of thiophenes may be found in U.S. Patent 4.481,029.

Preparation of the pyridinesulfonamides of this invention, such as pyridine 36 may be carried out in a variety of ways. For example, Meerwein reaction of 37 followed by ortho lithiation affords sulfonamides such as 36, as outlined in Equation 20.

15
$$\frac{1) \text{ NaNO}_2}{\text{SO}_2/\text{CuCl}} \rightarrow \frac{\text{SO}_2\text{NH}}{\text{N}}$$
2) $+\text{NH}_2$
38

20

$$\frac{1) \text{ LDA}}{\text{2)} \rightarrow \text{Cl}}$$
SO₂NH₂
38

Prior to removal of the <u>tert</u>-butyl group it may be necessary to protect the ketone functionality as the ethylene ketal which may then be removed subsequently at a later time.

The isomeric sulfonamide. 39. may be prepared as outlined in Equation 21.

35

30

Equation 21

5
$$NH_2$$

H + SCH_3
 $-H_2O$
 NH_2

1) Cl_2

Propionic

acid

2) NH_3

The isomeric sulfonamide <u>40</u> may be prepared as outlined in Equation 22.

Equation 22

20
$$\longrightarrow$$
 Br \longrightarrow DMF \longrightarrow SPr \longrightarrow 1) C1₂/HOAc \longrightarrow 2) NH+

Introduction of various substituents on the pyridine ring system as well as variation of R' may be accomplished as described previously for the pyrazole system.

For further details pertaining to the synthesis of pyridines see, E. Beritmaier, S. Gassenmann and

- E. Bayer. <u>Tetrahedron 26</u>, 5907 (1970); B. Blank et al., <u>J. Med. Chem.</u>, <u>17</u>, 1065 (1974); M. Mallet and G. Queguiner, <u>Tetrahedron</u>, <u>41</u>, 3433 (1985) and
- J. Delarge and C. L. Lapiere, <u>Annales Pharm. France</u>,
 36, 369 (1978).

The synthesis of heterocyclic amines such as those represented by Formula III has been reviewed in "The Chemistry of Heterocyclic Compounds," a series published by Interscience Publ., New York and London. Aminopyrimidines are described by D. J. Brown in "The Pyrimidines," Vol. XVI of the series mentioned above which is herein incorporated by reference. The 2-amino-1,3,5-triazines of Formula III, where A is A-1 and Z is N, can be prepared according to methods described by E. M. Smolin and L. Rapaport in "s-Triazines and Derivatives," Vol. XIII.

Pyrimidines of Formula III. where A is A-1 and Y is an acetal or thioacetal substituent, can be 20 prepared by methods taught in European Patent Application No. 84.224 (published July 27, 1983).

Pyrimidines of Formula III. where A is A-1 and Y is cyclopropyl or OCF₂H can be synthesized according to the methods taught in United States
25 Patent 4.515.626 and United States Patent 4.540.782. respectively.

Compounds of Formula III, where A is A-2 or A-3, can be prepared by procedures disclosed in United States Patent 4.339.267.

Compounds of Formula III. where A is A-4, can be prepared by methods taught in United States Patent 4.487.626.

Additional references dealing with the synthesis of bicyclic pyrimidines of Formula III, where A is A-2.

35 A-3, or A-4 are Braker, Sheehan, Spitzmiller and Lott.

J. Am. Chem. Soc., 69, 3072 (1947); Mitler and Bhattachanya, Quart. J. Indian Chem. Soc., 4, 152 (1927); Shrage and Hitchings, J. Org. Chem., 16, 1153 (1951);
Caldwell, Kornfeld and Donnell, J. Am. Chem. Soc., 63, 2188 (1941); and Fissekis, Myles and Brown, J. Org. Chem., 29, 2670 (1964).

Compounds of Formula III, where A is A-5. can be prepared by methods taught in United States Patent 10 4.421,550.

Compounds of Formula III, where A is A-6, can be prepared by methods taught in the United States Patent 4.496.392.

Compounds of Formula III, where A is A-7 can be prepared by methods taught in EP-A-125,864.

Agriculturally suitable salts of compounds of Formula I are also useful herbicides and can be prepared in a number of ways known to the art. For example, metal salts can be made by contacting compounds of Formula I with a solution of an alkali or alkaline earth metal salt having a sufficiently basic anion (e.g., hydroxide, alkoxide, carbonate or hydroxide). Quaternary amine salts can be made by similar techniques.

Salts of compounds of Formula I can also be prepared by exchange of one cation for another. Cationic
exchange can be effected by direct contact of an
aqueous solution of a salt of a compound of Formula I
(e.g.. alkali or quaternary amine salt) with a solution
containing the cation to be exchanged. This method is
most effective when the desired salt containing the
exchanged cation is insoluble in water and can be
separated by filtration.

Exchange may also be effected by passing an aqueous solution of a salt of a compound of Formula I (e.g., an alkali metal or quaternary amine salt)

through a c lumn packed with a cation exchange resin containing the cation to be exchanged for that of the original salt and the desired product is eluted from the column. This method is particularly useful when the desired salt is water-soluble, e.g., a potassium sodium or calcium salt.

Acid addition salts, useful in this invention, can be obtained by reacting a compound of Formula I

10 with a suitable acid, e.g., p-toluenesulfonic acid, trichloroacetic acid or the like.

The preparation of the compounds of this invention is further illustrated by the following specific examples. Unless otherwise indicated, temperatures are in degrees centigrade.

Example 1

Preparation of 4-cyclopropylcarbonyl-1-methyl-5-pyrazole t-butyl sulfonamide

To a cooled -78°C, solution of n-BuLi (3.7 g, 57.2 mmol) in approximately 350 ml of tetrahydrofuran is added 1-methyl-4-bromo-5-pyrazole t-butylsulfonamide (7.5 g, 25.4 mmol) dropwise. The solution is stirred for 15 minutes and then added via cannula to freshly distilled cyclopropyl acid chloride (6 g, 57.2 mmol) cooled to -78°C. The resulting solution was quenched with brine, separated, dryed and concentrated in vacuo. The resulting oil was flash chromatographed (50:50 (v/v)) ethylacetate-hexane to afford 2.7 g of a white solid, m.p. 113-115°C.

Example 2

Preparation of 4-cyclopropylcarbonyl-1-methyl-5pyrazolesulfonamide

35

To a stirring solution of trifluoroacetic acid was added 4-cyclopropyl-1-methyl-5-pyrazole t-butyl-sulfonamide. The solution was stirred overnight at

room temperature. The reaction mixture was concentrated in vaccuo and the resulting solids were triturated with n-butylchloride, m.p. 125-127°C; NMR (200 MHz, CDCl₃) 1.1 (m, 2H), 1.3 (m, 2H), 2.4 (m, 1H), 4.2 (s, 3H), 6.4 (br. s, 2H), 8.07 (s, 1H).

Example 3

Preparation of 4-(Cyclopropylcarbonyl)-N-[(4.6-dimeth-10 oxypyrimidin-2-yl)aminocarbonyl]-1-methyl-1H-pyrazole-5-sulfonamide

To a stirring mixture of the sulfonamide from Example 2 (175 mg, 0.76 mmol) and the phenylcarbamate of 4.6-dimethoxy-2-aminopyrimidine (210 mg, 0.76 mmol) in 3 ml of acetonitrile was added diazobicycloundecane (116 mg, 0.76 mmol). The solution was stirred for approximately 10 minutes. Acidification of the reaction mixture and filtration of the resulting solids afforded 300 mg of the desired compound

20 m.p. 189-192°C NMR (200 MHz, CDCl₃) 1.0 (m, 2H), 1.1 (m, 2H), 2.4 (m, 1H), 4.0 (s, 6H), 4.35 (s, 1H), 5.80 (s, 1H), 7.4 (br. s, 1H), 8.05 (s, 1H).

Example 4

Preparation of 4-Acetyl-1-methyl-1H-pyrazole-5-sulfonamide

mmol) in 350 mL of tetrahydrofuran cooled to -95°C is added 4-bromo-1-methyl-1H-pyrazole-5-t-butylsulfonamide (7.5 g. 25.4 mmol). The solution is cannulated into a stirring solution of acetyl chloride (76.2 mmol) cooled to -78°C. The reaction is stirred for 1/2 hour at -78°C then quenched with saturated sodium chloride. The organic layer is separated, dried and concentrated.

The resulting crude oil was added to CF₃CO₂H and allowed to stir for 24 hours. The acid was removed

under vacuum and the resulting oil was flash chromatographed. The resulting solid, m.p. 153-162°C, was mostly the closed hemiaminal, which was used directly in the next reaction.

Example 5

Preparation of 4-Acetyl-N-[(4,6-dimethoxy-2-pyrimidinyl)aminocarbonyl]-1-methyl-1H-pyrazole-5-sulfonamide

To a mixture of the hemiaminal from Example 4 10 (200 mg. 0.98 mmol), the phenyl carbamate of 4.6dimethoxy-2-aminopyrimidine (271 mg, 0.98 mmol) 3 mL of acetonitrile, and DBU (212 mg, 0.98 mmol) was added. The reaction was diluted with 3 mL of water 15 and 3 mL of 5% hydrochloric acid. The resulting solids were collected to afford 200 mg of a white solid, m.p. 179-182°C: NMR (200 MHz, CDCl₂) & 2.46 (s. 3H), 4.06 (s. 6H), 4.37 (s. 3H), 5.81 (s. 1H), 7.4 (br.s, 1H), 7.9 (s, 1H) and 13.0 (br.s, 1H); 20 IR (KBr) 1730 cm⁻¹.

Example 6

Preparation of N-(1,1-Dimethylethyl)-1-methyl-4-(1oxobutyl)-1H-pyrazole-5-sulfonamide

To a solution of \underline{n} -BuLi (2.1 g. 33.7 mmol) cooled to -78°C in 250 mL of tetrahydrofuran is added the t-butyl protected 4-bromo-1-methyl-5-pyrazolesulfonamide (4.5 g. 15.2 mmol). The solution is then added to butyric anhydride (2.9 g, 18.2 mmol) at 30 -78°C. Standard work-up afforded 4.4 g of an oil which was a mixture of the desired product and debrominated starting material. This material was not purified, but used as is in the next reaction.

41 Example 7

Preparation of 1-Methyl-4-(1-oxobutyl)-1H-pyrazole-5-sulfonamide

The mixture from the previous Example 6 (3.9 g) was added to CF₃CO₂H (TFA) and stirred for 4.5 hours. Removal of the TFA afforded a brown oil. Flash chromatography (15:85 EtOAC:hexane (v/v)) yielded 1.0 g of a white solid, m.p. 97-99°C. NMR (200 MHz. CDCl₃) 8 0.97 (t. 3H), 1.67 (m. 2H), 2.83 (t. 3H), 4.19 (s. 3H), 6.40 (br.s. 2H) and 7.91 (s. 1H).

Example 8

Preparation of N-[(4-Methoxy-6-methyl-1,3,5-triazin-2yl)aminocarbonyl]-1-methyl-4-(1-oxobutyl)-1H-pyrazole-5-sulfonamide

To a mixture of sulfonamide (150 mg, 0.61 mmol) and the phenyl carbamate of 4-methyl-6-methoxy-2-aminotriazine (158 mg, 0.61 mmol) in 3 mL of acetonitrile is added DBU (93 mg, 0.61 mmol). The solution is diluted with 3 mL of H₂O and 3 mL of 5% HCl; and the resulting solids are collected, m.p. 174-176°C. NMR (200 MHz, CDCl₃) & 0.88 (s, 3H), 1.68 (m, 2H), 2.7 (s, 3H), 2.79 (t, 2H), 4.19 (s, 3H), 4.33 (s, 3H), 7.7 (br.s. 1H), 7.9 (s, 1H) and 12.9 (br.s. 1H).

Example 9

Preparation of 2-(cyclopropylcarbonyl)-N-(1-1-dimethylethyl)-3-thiophenesulfonamide

30

To a stirring solution of n-BuLi (6.6g, 102 mmol) in 300 ml of tetrahydrofuran is added the t-butyl protected 3-thiophenesulfonamide (10.0g, 45.7 mmol). The solution was warmed to -30°C and then recooled to -78°C. The solution was cannulated into a mixture of cyclopropane carbonylic acid chloride (5.7g, 51.7 mmol) in 50 ml of tetrahydrofuran @ -78°C. The reaction was quenched with brine,

separated and dryed over magnesium sulfate, concentration of the organic in <u>vaccuo</u> afforded 17g of anvil. Flash chromatography (25:75 EtCAC/hexane (v/v)) afforded 44 g of the desired product. NMR (200MHz, CDC₃) & 1.26 (m. 13H), 2.5 (m. 1H), 6.5 (br. S, 1H), 7.5 (d, 1H), 7.67 (d, 1H):

Example 10

Preparation of 2-(cyclopropylcarbonyl)-N
[(4.6-dimethoxy-1,3.5-triazin-2-yl)aminocarbonyl]3-thiophenesulfonamide

To a stirring solution of sulfonamide (300 mg. 1.3 mmol). the phenylcarbamate of 4.6-dimethoxy-2-aminotriazine (358 mg. 1.3 mmol) in 5 ml of acetonitrile was added DBU (197 mg. 1.3 mmol). The same work up as in example 5 afforded 390 mg of the desired product. m.p. 146-148°C. NMR (200 mHz. CDCl₃) &, 1.1 (m.2H), 1.3 (m.2H), 2.5 (m.1H), 4.1 (S.6H), 7.5 hr.s.1H), 7.6 (d.1H), 7.9 (d.1H), 12.3

Using the procedures from Equations 1 to 22 and Examples 1 to 10 the compounds of Tables I to XV can be prepared.

25

30

<u>Tables</u>

Tables (continued)

Tables (continued)

5 <u>Table X</u>

10

20

30

Table XI

15

Table XII

25 Table XIII

Table XIV 35

46 Tables (continued)

Table XV

47 Table I

5	R	R ₁	n	R ₂	R'	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃				cyclopropyl		CH ₃	_	162-165
	CH ₃				cyclopropyl	J	OCH ₃		155-157
	CH ₂		0		cyclopropyl	-	OCH ₃		189-192
					cyclopropyl	3	CH ₃	N	
10	CH ₃				cyclopropyl	J	осн ₃	N	134-136
	_	н			cyclopropyl	•	OCH3	H	164-166
	CH ₂		0		cyclopropyl	3	OCH ₃		197-199
	CH ₃	н			cyclobutyl		CH ₃		190-194
	CH ₂		0			CH ₃	OCH3		200-203
15		H	0			OCH ₃	OCH ₃		196-199
	CH ₃		0			CH ₃	СН ₃	N	
		н	0			CH ₃	OCH ₃	N	175–178
	_	H	0			OCH ³	och ₃	N	168-170
	CH ₃	H	0		cyclobutyl	C1	och ₃		210-212
20	CH ₂		0		cyclopentyl		_	СН	
	-	H	0		cyclopentyl	•	сн ₃	СН	•
	CH ₃		0		cyclopentyl	•	осн ₃	СН	
	_		0		cyclopentyl	-	сн ₃	N.	
	CH ₃		0			•		N	
25	CH ₃		0		cyclopentyl cyclopentyl	•	OCH 3	N	
	CH ₃		0		cyclopentyl	•	OCH 3	CH	
	CH ₃		0				OCH CH	CH	
	CH ₃		0		cyclopropyl	cyclopropyl	OCH ₂ CH ₃	СН	
	_		0				_	CH	
30	CH ₃	H	0		cyclopropyl	J	CH(OCH ₃) ₂	n	
	3				cyclopropyl	~	OCH ₂ CH ₃	N	
	CH ₃	н	0	H	cyclopropyl	3	OCH CH	N	
	3				cyclopropyl	•	och ₂ ch ₃		
	CH ₃	Н	0	п	cyclopropyl	^{Un} 2 ^F	CH ₃	CH	

. 35

48
Table I (cont.)

5	R	R ₁	n	R ₂	R*	<u>x</u>	<u>¥</u>	Z m.p.(*C)
					cyclopropyl	_	CH ₃	CH
	_	-		_	cyclopropyl		OCH ₃	CH
	CH ₃			. —	cyclopropyl	-	OCH ₃	CH
	CH ₃					_	CH ₃	H
10	CH3			_	cyclopropyl		OCH3	N
	_			_	cyclopropyl		OCH ₃	H
	CH ₃			_	cyclopropyl		OCH ₃	CH .
	_				cyclopropyl			CH .
	CH ₃			_	cyclobutyl	~	CH ₃	CH
15	_			_	cyclobutyl		OCH 3	CH
	CH3				cyclobutyl	-	осн _З	M
	_			_	cyclobutyl		CH ₃	¥
•	CH ₃			_	cyclobutyl	_	OCH ₃	H
	CH ₃			_	cyclobutyl	_	OCH ³	CH
20	CH ₃	•		_	cyclobutyl		OCH ₃	CH
	CH ₃			_	cyclopentyl	_	CH ₃	CH .
	CH ₃			_	cyclopentyl	-	OCH ₃	
	CH ₃			_	cyclopentyl		OCH ³	CH
	_			_	cyclopentyl		CH ₃	M
25	_			_	cyclopentyl		OCH ₃	H
23	CH ₃			_	cyclopentyl		OCH ₃	Y
	CH ₃	H		_	cyclopentyl		OCH ₃	CH
	-	, H		-	cyclopropy	_	och ₂ ch ₃	CH .
	CH ₃	н				cyclopropyl		CH
20	CH ₃	H		_	cyclopropy	_	CH(OCH ₃) ₂	CH
30	CH ₃	H		-	cyclopropy	_	OCH ₂ CH ₃	N
	CH	H		~	cyclopropy:	_	OCH ₃	N .
	CH ₃	H	C	CH ₃	cyclopropy:	r och ³	OCH ₂ CH ₃	H
	CH	H	C	CH ₂	cyclopropy:	L CH ₂ F	CH ₃	CH

49
Table I (cont.)

5	<u>R</u>	R ₁	n	R_2	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(*C)
	CH				cyclopropyl	CH2	CH ₃	CH 167-169
	CH ₃				cyclopropyl		OCH3	CH 178-180
	_				cyclopropyl	•	OCH ₃	CH 193-195
	CH ₃	н	0	C1	cyclopropyl	CH ₃	CH3	N
10	CH ₃	H	0	Cl	cyclopropyl	CH ₃	OCH ₃	N
	CH ₃	H	0	Cl	cyclopropyl	OCH ₃	OCH ₃	N .
	CH3	H	0	Cl	cyclopropyl	Cl	OCH ₃	СН
	CH3	H	0	Cl	cyclobutyl	CH ₃	CH ₃	СН
1 =	CH ₃	H	0	Cl	cyclobutyl	CH3	OCH ₃	СН
15	CH ₃	H	0	Cl	cyclobutyl	осн ₃	OCH ₃	CH
	CH ₃	н	0	Cl	cyclobutyl	CH3	CH ₃	n
	CH ₃	н	0	Cl	cyclobutyl	•	OCH ₃	n
	CH3	Н	0	Cl	cyclobutyl	OCH ₃	OCH ₃	n
20	CH ³	H	0	Cl	cyclobutyl	Cl	OCH ₃	CH
20	CH ₃	н	0	Cl	cyclopentyl	CH ₃	CH ₃	СН
	CH ₃	H	0	Cl	cyclopentyl	CH ₃	och ₃	СН
	CH ₃				cyclopentyl	.	och ₃	СК
	CH ₃	н	0	Cl	cyclopentyl	CH ₃	CH ₃	n
25	CH ₃				cyclopentyl	3	OCH ₃	n
23	CH ₃				cyclopentyl	•	OCH ₃	N
	CH ₃				cyclopentyl		OCH ₃	СН
	CH ₃				cyclopropyl	•	OCH ₂ CH ₃	СН
	CH ₃				cyclopropyl		•	CH
30	CH ₃				cyclopropyl	•	CH(OCH ₃) ₂	CH
	CH ₃				cyclopropyl	9	OCH ₂ CH ₃	N
	CH ₃				cyclopropyl	3	OCH ₃	N
	CH ₃				cyclopropyl	3	осн ₂ сн ₃	n
	CH ³	Н	0	Cl	cyclopropyl	CH ₂ F	CH ₃	CH .

50 Table I (cont.)

5	<u>R</u>	<u>R</u> 1	ū	R ₂	<u>R*</u>	X	<u>¥</u>	Z m.p.(*C)
	CHa	н	0	Br	cyclopropyl	CH	CH ₃	CH
					cyclopropyl		OCH ₃	CH
	_	н	O	Br	cyclopropyl		OCH ₃	CET
	CH ₃	н	0	Br	cyclopropyl	CH ₃	CH ₃	M.
10	_	н	0	Br	cyclopropyl	СНЗ	OCH ₃	N
	_	H	0	Br	cyclopropyl	OCH ₃	OCH ₃	×
	_	H	0	Br	cyclopropyl	Cl	OCH ₃	CH
	CH ₃	H	0	Br	cyclobutyl	CH3	CH ₃	CH
	CH ₃	H	0	Br	cyclobutyl	CH ₃	OCH ₃	CH
15	CH ₃	H	0	Br	cyclobutyl	OCH ₃	OCH ₃	CH
	CH ₃	H	0	Br	cyclobutyl	CH ₃	CH ₃	
	CH ₃	H	0	Br	cyclobutyl	CH ₃	OCH ₃	H
	CH ₃	H	0	Br	cyclobutyl	OCH3	OCH ₃	H
20	CH ₃	H	0	Br	cyclobutyl	Cl	OCH ₃	CH
20	CH3	H	0	Br	cyclopentyl	CH ₃	CH ₃	CH
	CH ₃	H	0	Br	cyclopentyl	CH ₃	OCH3	CH
	CH3	H	0	Br	cyclopentyl	OCH ³	OCH ₃	CH
	CH3	H	0	Br	cyclopentyl	CH ₃	CH ₃	M
25	CH3	н	0	Br	cyclopentyl	CH ₃	OCH ₃	N
25	СНЗ	H	0	Br	cyclopentyl	OCH ₃	OCH ₃	X .
	CH ₃	H	0	Br	cyclopentyl	C1	OCH ₃	CH
	CH3				cyclopropyl		och ₂ ch ₃	CH
	CH ₃	H	0	Br	cyclopropyl	cyclopropyl		CH
30	CH ₃	H	0	Br	cherobLobAl	OCH ₃	CH(OCH ₃) ₂	CH
30	CH3	H	0	Br	cyclopropyl	инсн3	OCH ₂ CH ₃	N
	CH ₃	,	O	Br	cyclopropyl	NHCH ₃	OCH ³	N
	CH ₃		O	Br	cyclopropyl	OCH ₃	OCH ₂ CH ₃	N
	CH3	н	O	Br	cyclopropyl	CH ₂ F	CH3	CH .

51 Table I (cont.)

5	R	<u>R</u> 1	n	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH ₃	н	0	CH ₂ F	cyclopropyl	CH ₃	CH ₃	СН
·	CH ₃	H	0	CH ₂ F	cyclopropyl	CH ₃	OCH ₃	СН
	CH ₃	H	0	CH ₂ F	cyclopropyl	осн ₃	OCH ₃	CH
	CH ₃	H	0	CH ₂ F	cyclopropyl	CH ₃	CH ₃	Ħ
10	CH3	H	0	CH ₂ F	cyclopropyl	CH ₃	OCH ₃	H
	CH.3	н	0	CH ₂ F	cyclopropyl	OCH ₃	och ₃	H
	CH ₃	н	0	CH ₂ F	cyclopropyl	Cl	och ₃	CH
	CH3	H	0	CH ₂ F	cyclobutyl	CH ₃	CH ₃	СН
	CH3	H	0	CH ₂ F	cyclobutyl	CH ₃	och ₃	CH
15	CH3	H	0	CH ₂ F	cyclobutyl	och ₃	och ₃	CH
	CH3	н	0	CH ₂ F	cyclobutyl	CH ₃	CH ₃	N .
	CH ³	H	0	CH ₂ F	cyclobutyl	CH ₃	och ₃	H
	CH3	H	0	CH ₂ F	cyclobutyl	och ₃	OCH ₃	N.
20	CH3	H	0	CH ₂ F	cyclobutyl	Cl	och ₃	CH
20	CH3	н	0	CH ₂ F	cyclopentyl	CH ₃	CH ₃	CH
	CH ₃	H	0	CH ₂ F	cyclopentyl	CH ₃	OCH ₃	CH .
	CH3	H	0	CH ₂ F	cyclopentyl	och ₃	och ₃	СН
	CH3	H	0	CH ₂ F	cyclopentyl	CH ₃	CH ₃	N
25	CH ₃	H	0	CH ₂ F	cyclopentyl	CH ₃	осн ₃	N
25	CH ₃	H	0	CH ₂ F	cyclopentyl	осн ₃	осн ₃	N
	CH3	H	0	CH ₂ F	cyclopentyl	Cl	оснз	ĊH
	CH3	н	0	CH ₂ F	cyclopropyl	och ₃	och ₂ ch ₃	СН
	CH3	H	0	CH ₂ F	cyclopropyl	cyclopropyl	OCH3	CH
20	CH ₃	H	0	CH ₂ F	cyclopropyl	OCH ₃	сн(осн ₃) ₂	СН
30	CH3	H	0	CH ₂ F	cyclopropyl	NHCH3	осн ₂ сн ₃	N
	CH3	H	0	CH ₂ F	cyclopropyl	инсн ₃	och ₃	N
	СН _З	Н	0	CH ₂ F	cyclopropyl	осн ₃	och ₂ ch ₃	N
•	CH ₃	Н	0	CH ₂ F	cyclopropyl	CH ₂ F	CH ₃	CH

52
Table I (cont.)

_		_		_	•			
5	<u>R</u>	-R ₁	n	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH ₃	Н	0	OCH ₃	cyclopropyl	CH ₃	CH ₃	СН
	CH3	H	0	OCH ₃	cyclopropyl	CH ₃	OCH ₃	СН
	CH3	H	0	OCH ₃	cyclopropyl	осн ₃	OCH ₃	CH
	CH3	H	0	OCH ₃	cyclopropyl	CH ₃	CH ₃	N
10	CH3	H	.0	OCH ₃	cyclopropyl	CH ₃	OCH ₃	H
	CH ₃	H	0	OCH ₃	cyclopropyl	OCH ₃	OCH ₃	H
	CH3	H	0	OCH ₃	cyclopropyl	Cl	OCH ₃	CH
	CH ₃	H	0	OCH ₃	cyclobutyl	CH ₃	CH ₃	CH
	CH ₃	H	0	OCH ₃	cyclobutyl	CH ₃	OCH ₃	CH ·
15	CH ₃	H	0	ocH ₃	cyclobutyl	осн ₃	OCH ₃	CH
	CH ₃	H	0	OCH ₃	cyclobutyl	CH ₃	сн ₃	x
	CH3				cyclobutyl		OCH ₃	N .
	CH3	H	0	OCH ₃	cyclobutyl	OCH ₃	OCH ₃	N
	CH ₃	H	0	OCH3	cyclobutyl	Cl	OCH3	СН
20	CH ₃	H	0	OCH ₃	cyclopentyl	CH ₃	CH3	CH
	CH ₃	н	0	och ₃	cyclopentyl	CH ₃	och ₃	ĊН °
	CH ₃	H	0	OCH ₃	cyclopentyl	OCH ₃	OCH ³	CH
	CH ₃	H	0	OCH ₃	cyclopentyl	CH ₃	CH ₃	N
25	CH ₃	H	0	OCH ₃	cyclopentyl	CH ₃	och ₃	H
25	CH ₃	H	0	OCH ₃	cyclopentyl	OCH ₃	OCH3	H
	CH3	H	0	OCH ₃	cyclopentyl	Cl	OCH ₃	CH
	CH ₃	H	0	OCH ₃	cyclopropyl	OCH ³	OCH2CH3	CH
	CH ₃	H	0	OCH ₃	cyclopropyl	cyclopropyl		CH
20	CH3	H	0	OCH ₃	cyclopropyl	осн ₃	CH(OCH ₃) ₂	CH
30	CH3	H	0	och ³	cyclopropyl	инсн ₃	OCH ₂ CH ₃	M
	CH3	H	0	OCH ₃	cyclopropyl	NHCH ₃	OCH ₃	N
	CH3	H	0	OCH ₃	cyclopropyl	осн ₃	OCH ₂ CH ₃	N
	CH ₃	H	0	OCH ₃	cyclopropyl	CH ₂ F	CH ₃	CH

53
Table I (cont.)

5	<u>R</u>	R ₁	n	R ₂	R'	<u>x</u>	<u>¥</u>	Z m.p.(°C)
					cyclopropyl	CH ₂	CH ₃	CH .
					cyclopropyl		OCH ₃	СН
					cyclopropyl	•	OCH ₃	CH
					cyclopropyl	• • •	CH ₃	n
10					cyclopropyl	_	OCH ₃	N
	CH.	н	0	SO_N(CH ₂)	cyclopropyl	OCH ₃	OCH ₃	n
	CH.	н	0	SO_N(CH ₂)	cyclopropyl	C1	OCH ₃	CH
	CH.	н	0	SO_N(CH ₂)	cyclobutyl	СН	CH ₃	СН
	CH.	н	0	SO_N(CH ₂)	cyclobutyl	CH ₃	OCH ₃	СН
15	CH.	н	0	2 3 2 SO_N(CH_)	cyclobutyl	OCH ₃	OCH ₃	CH
					cyclobutyl		CH ₃	N
	CH_	н	0	SON(CH ₂)	cyclobutyl	CH	OCH ₃	H
	CH_	н	0	SO_N(CH ₂)	cyclobutyl	OCH ₃	OCH ₃	N
	CH_	н	0	SON(CH ₂)	cyclobutyl	C1	OCH ₃	CH
20					cyclopentyl		CH ₃	СН
	CH_	н	0	SON(CH)	cyclopentyl	. сн ₃	осн ₃	CH
	CH_	н	o	SON(CH2)	cyclopentyl	. осн ₃	OCH ₃	CH
	-	н	0	SON(CH)	cyclopentyl	CH ₃	CH ₃	И .
					cyclopentyl		OCH ₃	N
25		Н	C	SON(CH3)	cyclopenty]	OCH ₃	OCH ₃	H
		,			cyclopenty)		och ₃	CK
		н	C	SON(CH3)	cyclopropy)	COCH3	OCH ₂ CH ₃	CH
			C	SON(CH3)	2 cyclopropy	cyclopropyl	OCH ₃	CH.
	CH	, H	C	SO2N(CH3)	cyclopropy:	L OCH3	CH(OCH ₃) ₂	CH
30		, H	C	20 H(CH3)	cyclopropy:	т инсн	OCH ₂ CH ₃	N
		, 3 H			2 cyclopropy		OCH ₃	N
	Cit	3 H			2 cyclopropy		och ₂ ch ₃	N
					2 cyclopropy		CH ₃	CH

54
Table I (cont.)

5	R I	R <u>1</u> 1	ו מ	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(*C)
					cyclopropyl	CH	CH3	CH
					cyclopropyl		OCH ₃	CH
	_			_	cyclopropyl	_	OCH ₃	CH
	_			_	cyclopropyl		CH ₃	H
10	CH ₂				cyclopropyl		OCH ₃	M
	-			_	cyclopropyl		OCH ₃	N .
					cyclopropyl		OCH ₃	CH
	CH ₃				cyclobutyl		CH ₃	CH
	CH ₃				cyclobutyl		OCH ₃	CH
15	CH ₃			_	cyclobutyl		OCH ₃	CH
	CH ₃			_	cyclobutyl	_	CH3	=
	CH			_	cyclobutyl	•	och ₃	
	CII3				cyclobutyl		och ₃	X
	CH		0	SCH ₃	cyclobutyl	C1	och ₃	CH
20	CH3			_	cyclopenty		CH ₃	CH.
	CH3		0	SCH ₃	cyclopenty	1 CH ₃	OCH ₃	CH
	CH3				cyclopenty		OCH ₃	CH
	CH	ĸ	0	SCH ₃	cyclopenty	1 CH ₃	CH ₃	N
	CH3	н	0	SCH ₃	cyclopenty	1 CH ₃	och ₃	N .
25	CH3				cyclopenty		och ₃	M .
	CH ₃				cyclopenty		och ₃	CH .
	CH ₃	н	0	SCH ₃	cyclopropy	1 och ₃	OCH ₂ CH ₃	CH
	CH ₃	H	0	SCH ₃	cyclopropy	l cyclopropy		CH
	CH ₃	H	0	SCH ₃	cyclopropy	1 OCH ₃	CH(OCH ₃) ₂	CH
30	CH ₃	H	0	SCH	cyclopropy	1 MHCH3	OCH ₂ CH ₃	M ·
	CH3	H	0	SCH	cyclopropy	1 NHCH ₃	OCH3	H
	CH ₃	H	0	SCH	cyclopropy	OCH3 .	OCH ₂ CH ₃	H
	CH3	H	0	SCH	3 cyclopropy	1 CH ₂ F	CH ₃	CH

55
Table I (cont.)

5	<u>R</u>	R ₁	n	R ₂	<u>R'</u>	<u>X</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH2	н	o	SOCH,	cyclopropyl	CH	CH ₃	СН	•
	CH3			•	cyclopropyl	•	OCH ₃	СН	
	СНЗ			_	cyclopropyl	•	och ₃	CH	
	CH3	н	0	SOCH ₃	cyclopropyl	CH ₃	CH3	N	
10	CH3	H	0	SOCH ₃	cyclopropyl	CH ₃	OCH ₃	H	
	CH3	H	0	SOCH ₃	cyclopropyl	och ₃	OCH ₃	N	
	CH ₃	Н	0	SOCH ₃	cyclopropyl	Cl	och ₃	СН	
•	CH3	н	0	SOCH ₃	cyclobutyl	CH ₃	CH ₃	CH	
	CH ₃	н	0	SOCH3	cyclobutyl	CH3	och ₃	CH	
15	CH ₃	н	0	SOCH3	cyclobutyl	•	och ₃	CH	•
	CH3	Н	0	SOCH ₃	cyclobutyl	CH ₃	CH ₃	N	
	CH3	Н	0	SOCH ₃	cyclobutyl	CH ₃	och ₃	M	•
	CI43			_	cyclobutyl	_	och ₃	H	
20	CH3	H	0	SOCH3	cyclobutyl	Cl	осн ₃	CH	
20	CII ₃	Н	0	SOCH3	cyclopentyl	CH ₃	CH ₃	СН	
	CH3	Н	0	SOCH3	cyclopentyl	CH ₃	OCH ₃	CH	
	CH3				cyclopentyl	3	och ₃	CH	
	CH3	Н	0	SOCH ₃	cyclopentyl	CH ₃	CH ₃	N	
25	CH3	н		•	cyclopentyl	_	och ₃	N	
4 3	CH3.	Н		•	cyclopentyl	•	OCH ₃	N	
	CH ₃			•	cyclopentyl		OCH ₃	CH	•
	CH3	Н		_	cyclopropyl	_	OCH ₂ CH ₃	CH	·
	CH3	H	0	SOCH3	cyclopropyl	cyclopropyl	•	СН	•
30	CH ₃	Н	0	SOCH3	cyclopropyl	och ₃	CH(OCH ₃) ₂	СН	•
30	CH3			_	cyclopropyl	•	OCH ₂ CH ₃	N	
	CH ₃			_	cyclopropyl	•	OCH ₃	N	
	CH ₃			_	cyclopropyl	•	och ₂ ch ₃	N	
	CH ₃	Н	0	SOCH ₃	cyclopropyl	CH ₂ F	CH ₃	CH	

56
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	<u>ù</u>	<u>R</u> 2	<u>R*</u>	<u>X</u>	<u>¥</u> .	Z m.p.(*C)
	CH ₃	н	0	SO2CH3	cyclopropyl	CH ₃	CH ₃	CH
	_				cyclopropyl		OCH ₃	CH
	CH3	H	0	SO2CH3	cyclopropyl	OCH ³	OCH3	CH
	CH ₃	H	0	SO2CH3	cyclopropyl	CH ₃	CH ₃	H
10	CH3	H	0	SO2CH3	cyclopropyl	CH ₃	och ₃	n
	CH ₃	H	0	SO2CH3	cyclopropyl	och ³	OCH3	N
	CH ₃	H	0	SO2CH3	cyclopropyl	C1 ·	осн ₃	CH
	CH3	H	0	SO2CH3	cyclobutyl	CH ₃	CH ₃	CH
	CH ₃	H	0	SO2CH3	cyclobutyl	CH ³	och ₃	CH
15	CH3	H	0	SO2CH3	cyclobutyl	OCH3	och ₃	CH
	CH ₃	H	0	SO2CH3	cyclobutyl	CH ₃	CH ₃	N
	CH ₃	H	0	SO ₂ CH ₃	cyclobutyl	CH3	och ₃	N
	CH ₃	н	0	SO ₂ CH ₃	cyclobutyl	OCH3	OCH ₃	n
	CH ₃	H	0	SO2CH3	cyclobutyl	Cl	OCH ³	CH
20	CH ₃	H	0	SO2CH3	cyclopentyl	CH3	CH ₃	CH
	CH3	H	0	SO2CH3	cyclopentyl	CH ₃	OCH ₃	ÇĦ
	CH3				cyclopentyl	-	OCH ₃	CH
	CH ₃	н	0	SO2CH3	cyclopentyl	CH ₃	CH3	H .
25	CH3				cyclopentyl		OCH ₃	H
25	СH _З				cyclopentyl		.OCH ₃	H
	СH _З	Н	0	SO2CH3	cyclopentyl	. C1	OCH3	CH.
	CH3				cyclopropyl	•	OCH ₂ CH ₃	CH
	CH3					cyclopropyl	_	CH
30	CH ₃				cyclopropyl	-	CH(OCH ₃) ₂	CH .
30	CH ₃				cyclopropyl	-	OCH ₂ CH ₃	N
	CH ³				cyclopropyl	•	OCH ₃	M
	CH3	Н			cyclopropyl	_	OCH ₂ CH ₃	H.
	CH ₃	н	C	SO ₂ CH ₃	cyclopropy]	CH ₂ F	CH3	CH

57 Table I (cont.)

5	R	R ₁	n	R ₂	<u>R*</u>	<u>x</u> .	<u>¥</u>	2 m.p.(°C)
	CH3	н	0	CN	cyclopropyl	CHa	CH ₃	СН
	CH3				cyclopropyl	_	осн	СН
	CH3				cyclopropyl	•	OCH3	CH
	CH ₃	н	0	CN	cyclopropyl	CH ₃	CH3	N
10	CH ₃	H	0	CN	cyclopropyl	CH ₃	OCH ₃	N
	CH ₃	H	0	CN	cyclopropyl	OCH ₃	OCH ₃	N
	CH ₃	H	0	CN	cyclopropyl	Cl	OCH ₃	CH
	CH ₃	н	0	CN	cyclobutyl	CH ₃	CH ₃	CH
15	CH ₃	н	0	CN	cyclobutyl	CH ₃	och ₃	СН
15	CH3	H	0	CN	cyclobutyl	осн ₃	och ₃	CH
-	CH3				cyclobutyl	CH ₃	CH ₃	N -
	CH ₃	H	0	CN	cyclobutyl	CH ₃	OCH ₃	N
	CH ₃	H	0	CN	cyclobutyl	OCH ₃	OCH ₃	N
20	CH3				cyclobutyl	C1	OCH ₃	CH ·
20	CI13				cyclopentyl	_	CH ₃	CH
	CH3	Н	0	CN	cyclopentyl	CH ₃	OCH 3	CH .
	CH3	H	0	CN	cyclopentyl	OCH ₃	OCH ₃	СН
	CH3	H	0	CN	cyclopentyl	CH ₃	CH ₃	N
25	CI ₃	H	0	CN	cyclopentyl	CH ₃	OCH ₃	N
23	CH ₃				cyclopentyl	-	OCH ₃	N .
	CII3				cyclopentyl	•	OCH ₃	CH .
	CH ₃				cyclopropyl		OCH ₂ CH ₃	СН
	CH ₃				cyclopropyl			CH
30	CH ₃				cyclopropyl	•	CH(OCH ₃) ₂	CH
	3				cyclopropyl	9	осн ₂ сн ₃	N
	CH ₃				cyclopropyl	9	OCH ₃	N
	CH ₃				cyclopropyl	-	OCH ₂ CH ₃	n .
	CH ₃	Н	0	CN	cyclopropyl	CH ₂ F	CH ₃	СН

58
Table I (cont.)

5	<u>R</u> R ₁	n	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(*C)
	CH2 H	0	CO2CH3	cyclopropyl	CH ₃	CH ₃	CH
				cyclopropyl	CH ₃	OCH ₃	CH
				cyclopropyl		OCH ₃	CH
				cyclopropyl		CH3	N .
10				cyclopropyl		OCH ₃	·N
				cyclopropyl	OCH ₃	OCH ₃	H
				cyclopropyl		OCH3	CH
	сн ₃ н	0	CO2CH3	cyclobutyl	CH ₃	CH ₃	CH
				cyclobutyl		OCH ³	CH
15				cyclobutyl		OCH ³	CH
				cyclobutyl		CH ₃	<u>.</u>
				cyclobutyl		och ₃	· u
	CH ₃ H			cyclobutyl		OCH ₃	1
20	сн _з н			cyclobutyl		OCH3	CH
20	сн _з н			cyclopenty		CH ₃	CH
	СН ₃ Н			cyclopenty!		OCH3	CH
	CH ₃ H			cyclopenty:		och ³	CH
				3 cyclopenty		CH ₃	. ¥
25	CH3 H			3 cyclopenty		OCH ₃	. H
23	CH3 H			3 cyclopenty		OCH ₃	N CH
	CH3 H			3 cyclopenty		OCH CH	CH CH
				3 cyclopropy		OCH ₂ CH ₃	CH
					l cyclopropy:		
30				3 cyclopropy		CH(OCH ₃) ₂	n .
				3 cyclopropy		OCH ₂ CH ₃	N
				3 cyclopropy		осн ₂ сн ₃	. N
				g cyclopropy		CH ₃	СН
	CT3 h		2 202	g cyclopropy	2-	3	•

Table I (c nt.)

5	<u>R</u>	R ₁	<u>n</u>	R_2 .	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH3	н	0	N(CH ₃) ₂	cyclopropyl	CH3	CH3	CH
	_				cyclopropyl	=	OCH ₃	СН
	_				cyclopropyl	_	OCH ₃	СН
	_				cyclopropyl	_	CH3	N
10	_				cyglopropyl	•	осн	N
	CH ₃	н	0	N(CH ₃) ₂	cyclopropyl	осн	OCH ₃	H
	CH ₃	н	0	N(CH ₃) ₂	cyclopropyl	Cl	осн ₃	СН
	CH ₃	H	0	N(CH ₃) ₂	cyclobutyl	CH ₃	CH ₃	CH ·
	_				cyclobutyl	-	OCH ₃	СН
15	_				cyclobutyl	_	OCH ₃	СН
	CH ₃	H	0	N(CH ₃) ₂	cyclobutyl	CH3	CH3	N
	CH3	H	Q	N(CH ₃)2	cyclobutyl	CH ₃	OCH ₃	H
	CH ₃	н	0	N(CH ₃)2	cyclobutyl	OCH ₃	OCH ₃	n
20	CH ₃	н	0	N(CH ₃)2	cyclobutyl	Cl	OCH ₃	СН
20	CH ₃	H	0	N(CH ₃) ₂	cyclopentyl	CH ₃	CH ₃	CH
	CH3	H	0	N(CH ₃)2	cyclopentyl	CH3	осн ₃	СН
	CH3	Н	0	N(CH ₃) ₂	cyclopentyl	_	OCH ₃	СН
	CH ₃	н	0	N(CH ₃)2	cyclopentyl	CH ₃	CH ₃	H
25	CH ₃	н	0	N(CH ₃)2	cyclopentyl	CH ₃	OCH ₃	n
25	-			~ -	cyclopentyl	•	OCH ₃	n
	_				cyclopentyl		осн ₃	СН
	_				cyclopropyl	_	och ₂ ch ₃	СН
	_					cyclopropyl	_	СН
30					cyclopropyl	-	CH(OCH ₃) ₂	СН
30	-				cyclopropyl	_	OCH ₂ CH ₃	N
	_				cyclopropyl	_	OCH ₃	n
	_				cyclopropyl	•	OCH ₂ CH ₃	n
	CH ₃	Н	0	N(CH ₃) ₂	cyclopropyl	CH ₂ F	CH ₃ .	СН

60
Table I (cont.)

5	<u>R</u> <u>R</u> 1 <u>r</u>	1 R2	R*	X	<u>X</u>	Z m.p.(°C)
			cyclopropyl	CH ₃	CH ₃	CH
			cyclopropyl		OCH ₃	CH
			cyclopropyl		och ₃	CH
			cyclopropyl		CH3	M
10			cyclopropyl		OCH ₃	¥
			cyclopropyl		OCH ₃	H
			cyclopropyl		OCH ₃	CH
			cyclobutyl		CH ₃	CH
	CH2 H	o CH_CN	cyclobutyl	CH ₃	OCH ₃	CH
15	CH3 H	о сн ² ся	cyclobutyl	OCH ₃	OCH ₃	CH
	сн, н	O CH ₂ CN	cyclobutyl	CH ³	CH ₃	N .
			cyclobutyl		OCH ₃	. H
			cyclobutyl		och ₃	, N
			I cyclobutyl		OCH ₃	CH
20	сна н	O CH2CI	e cyclopenty	CH3	CH ₃	CH
			x cyclopenty		OCH3	CR
			x cyclopenty		OCH ₃	CH
	CH ₃ H	O CH2C	N cyclopenty	r ch.	CH3	M
			N cyclopenty		OCH ₃	¥
25			N cyclopenty		OCH ₃	N
	сн ₃ н	O CH2C	N cyclopenty	1 C1	OCH3	CH
			N cyclopropy		och ₂ ch ₃	CH
			N cyclopropy			CH
	сн3 н		N cyclopropy		CH(OCH ₃) ₂	
30	CH3 H		N cyclopropy		och ₂ ch ₃	M
			N cyclopropy		OCH ₃	H
			N cyclopropy		OCH ₂ CH ₃	N .
	CH ₃ H	O CH ₂ C	M cyclopropy	1 CH ₂ F	CH ₃	CH

61
Table I (c nt.)

5	<u>R</u>	R ₁	D.	R_2	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	СНа	н	0	СН2ОСН3	cyclopropyl	CH	CH ₃	CH _
	_				cyclopropyl	•	осн	СН
	CH ₃	н	0	CH ₂ OCH ₃	cyclopropyl	OCH ₃	OCH ₃	СН
	CH ₃	н	0	CH2OCH3	cyclopropyl	CH ₃	CH3	N
10	CH ₃	H	0	CH2OCH3	cyclopropyl	CH ₃	och ₃	N
	CH ₃	H	0	CH2OCH3	cyclopropyl	och ₃	och ₃	N
	CH ₃	н	0	CH ₂ OCH ₃	cyclopropyl	Cl	OCH ₃	СН
	CH3	H	0	CH ₂ OCH ₃	cyclobutyl	CH ₃	CH ₃	CH
16	CH3	H	0	CH ₂ OCH ₃	cyclobutyl	CH ₃	OCH ₃	CH
15	CH ₃	Н	0	CH ₂ OCH ₃	cyclobutyl	осн _з	осн ₃	СН
	CH3	н	0	сн ₂ осн ₃	cyclobutyl	CH ₃	CH ₃	N
	_				cyclobutyl	•	OCH ₃	N
	-				cyclobutyl	• .	OCH ₃	H
20	_				cyclobutyl		och ₃	CH
20	_				cyclopentyl	_	CH ₃	CH
	_				cyclopentyl	•	3	·CH
	_				cyclopentyl	•	OCH ₃	CH .
	_				cyclopentyl	•	CH ₃	N
25	_				cyclopentyl	•	OCH ₃	N
	_				cyclopentyl		OCH ₃	Я
	_				cyclopentyl		och ₃	CH .
	_				cyclopropyl	_	OCH ₂ CH ₃	СН
	_				cyclopropyl		-	СН
30	_				cyclopropyl	_	CH(OCH ₃) ₂	СН
	_				cyclopropyl	_	OCH ₂ CH ₃	N
	_				cyclopropyl	•	och ₃	N
	_				cyclopropyl	•	OCH ₂ CH ₃	N
	CH ₃	н .	0	CH ₂ OCH ₃	cyclopropyl	CH ₂ F	CH ₃	СН

62
Table I (cont.)

5	<u>R</u> <u>R</u> 1	n	<u>R</u> 2	<u>R*</u>		<u>¥</u>	Z m.p.(*C)
	сн, н	0	CH(OH)CH3	cyclopropyl	CH ₃	CH ₃	CH
	сн, н	0	CH(OH)CH3	cyclopropyl		OCH ³	CH
	-		•	cyclopropyl		OCH ₃	CH
	_		•	cyclopropyl	_	CH ₃	H
10	•		_	cyclopropyl		OCH3	n
	сн _з н	0	CH(OH)CH3	cyclopropyl	OCH ₃	OCH 3	M
	сн _з н	0	CH(OH)CH3	cyclopropyl	C1	OCH ³	CH
	сн ₃ н	0	CH(OH)CH3	cyclobutyl	CH ³	CH ₃	CH
	сн _з н	0	CH(OH)CH3	cyclobutyl	CH ³	OCH ₃	СН
15	сн _з н	0	CH(OH)CH3	cyclobutyl	OCH ₃	och ³	CH
	сн ₃ н	0	CH(OH)CH3	cyclobutyl	CH ³	CH3	T ×
	CH ₃ H	0	CH(OH)CH3	cyclobutyl	CH3	OCH ₃	H
	сн _з н	0	сн(он)сн	cyclobutyl	OCH ₃	OCH ₃	N
	сн _з н	0	CH(OH)CH3	cyclobutyl	Cl	OCH ₃	СН
20	сн _з н	0	CH(OH)CH3	cyclopentyl	CH ₃	CH ₃	CH
	сн _з н	0	CH(OH)CH3	cyclopentyl	CH ₃	OCH 3	CH
	сн ₃ н	0	сн(он)сн ³	cyclopentyl	OCH ₃	OCH ₃	СН
	сн ₃ н	0	CH(OH)CH3	cyclopentyl	CH ₃	CH ₃	H
	сн _з н	0	CH(OH)CH3	cyclopentyl	CH3	OCH ₃	H
25	сн _з н	0	CH(OH)CH3	cyclopentyl	OCH ₃	OCH ₃	N
	CH3 H	0	CH(OH)CH ₃	cyclopentyl	. C1	OCH ³	CH .
	CH3 H		•	cyclopropyl	• •	OCH ₂ CH ₃	CH
	CH3 H	C	CH(OH)CH ₃	cyclopropyl	cyclopropyl		CH
20	CH ₃ H	C	сн(он)сн _з	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH .
30	сн ₃ н		_	cyclopropyl		och ₂ ch ₃	N
	сн _з н	C	сн(он)сн _з	cyclopropy)	NHCH ₃	OCH ₃	H
	СН ^З Н			cyclopropy]		OCH ₂ CH ₃	N
	сн ₃ н	C	сн(он)сн	cyclopropy1	CH ₂ F	CH ₃	CH

63
Table I (cont.)

5	<u>R</u>	R ₁	ū	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(*C)
	CH2CH3	н	0	Н	cyclopropyl	CH3	CH ₃	CH
	CH2CH3		0	н	cyclopropyl	CH ₃	OCH ₃	CH
	CH2CH3		0	H	cyclopropyl	OCH ₃	OCH ₃	CH
	CH ₂ CH ₃		0	н	cyclopropyl	CH3	CH ₃	N
10	CH2CH3		0	H	cyclopropyl	CH3	OCH ₃	N
	CH2CH3		0	H	cyclopropyl	осн	OCH ₃	N
	CH2CH3		0	н	cyclopropyl	Cl	OCH ₃	CH
	CH2CH3	H	0	H	cyclobutyl	CH ₃	CH ₃	CH
	CH2CH3		0	н	cyclobutyl		OCH ₃	CH
15	CH2CH3		0	H	cyclobutyl	осн	OCH ₃	СН
	CH2CH3	H	0	H	cyclobutyl	CH ₃	CH ₃	N
	CH2CH3		0	H	cyclobutyl	CH ₃	och ₃	N
	CH2CH3	н	0	H	cyclobutyl	осн ₃	och ₃	H
	CH ₂ CH ₃	н	0	H	cyclobutyl	Cl	och ₃	CH
20	CH2CH3	Н	0	H	cyclopentyl	CH ₃	CH ₃	CH
	CH ₂ CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ₃	СН
	CH2CH3	H	0	H	cyclopentyl	och ₃	och ₃	СН
	CH2CH3	н	0	H	cyclopentyl	CH ₃	CH ₃	N
	CH2CH3	H	0	H	cyclopentyl	CH3	OCH ₃	N ·
25	CH2CH3	H	0	H	cyclopentyl	OCH3	OCH ₃	n ·
	CH2CH3	H	0	H	cyclopentyl	Cl	OCH .	CH
	CH ₂ CH ₃	H	0	H	cyclopropyl	OCH ₃	OCH ₂ CH ₃	СН
	CH2CH3	H	0	H	cyclopropyl	cyclopropyl	och ₃	CH
20	CH2CH3	H	0	H	cyclopropyl	och ₃	CH(OCH ₃) ₂	СН
30	CH2CH3	H	0	H	cyclopropyl	инсн3	OCH2CH3	H
	CH ₂ CH ₃	Н	0	H	cyclopropyl	NHCH ₃	och ₃	N
	CH2CH3	Н	0	H	cyclopropyl	осн3	OCH ₂ CH ₃	N .
	CH2CH3	н	0	Н	cyclopropyl	CH ₂ F	CH ₃	СН

64
Table I (cont.)

5	<u>R</u> R ₁	n R2	<u>R*</u>	<u>x</u> .	<u>Y</u>	Z m.p.(°C)
	Ph H	ОН	cyclopropyl	CHa	CH ₃	CH
	Ph H	о н	cyclopropyl	•	OCH ₃	CH
	Ph H	о н	cyclopropyl	OCH ₃	och ₃	CH
	Ph H	о н	cyclopropyl	CH3	CH3	H
10	Ph H	о н	cyclopropyl	CH3	och ₃	M .
	Ph H	O H	cyclopropyl	OCH ₃	OCH ₃	M
	Ph H	O H	cyclopropyl	Cl	OCH ₃	CH
	Ph H	ОН	cyclobutyl	CH ₃	CH ₃	CH
	Ph H	о н	cyclobutyl	CH ₃	OCH ₃	CH
15	Ph H	ОН	cyclobutyl	OCH ₃	OCH ₃	CH
	Ph H	о н	cyclobutyl	CH ₃	CH.	.
	Ph H	O H	cyclobutyl	CH ₃	OCH ₃	N ·
	Ph H	O H	cyclobutyl	och ₃	OCH ₃	N
	Ph H	ОН	cyclobutyl	Cl	OCH ₃	CH
20	Ph H	о н	cyclopentyl	CH ₃	CH3	CH .
	Ph H	о н	cyclopentyl	CH3	OCH ₃	CH
	Ph H	ОН	cyclopentyl	L OCH3	OCH ₃	CH
	Ph H	ОН	cyclopenty	CH3	CH ³	N
	Ph H	о н	cyclopenty	L CH ₃	QCH ₃	M
25	Ph H	о н	cyclopenty	1 och ³	och ³	M
	Ph H	о н	cyclopenty		осн ₃	CH
	Ph H	ОН	cyclopropy	•	och ₂ ch ₃	CH
	Ph H	o H		l cyclopropy	_	CH
20	Ph H	ОН	cyclopropy	•	CH(OCH ₃) ₂	CH
30	Ph H	ОН		-	OCH ₂ CH ₃	n .
•	Ph H	ОН		₹.	OCH ₃	N
	Ph H	ОН		•	OCH ₂ CH ₃	A
	Ph H	ОН	суслоргору	1 CH ₂ F	CH ³	CH

65
Table I (cont.)

5	R	R ₁	n	R ₂	R*	<u>X</u>	<u>¥</u> .	Z m.p.(°C)
	CO2CH3	н	0	н	cyclopropyl	CH ₃	CH ₃	СН
	_				cyclopropyl	_	och ₃	СН
					cyclopropyl	_	och ₃	CH .
					cyclopropyl		CH ₃	N
10	CO_CH3				cyclopropyl		OCH ₃	N
					cyclopropyl	•	och ₃	N
	CO_CH3				cyclopropyl	_	OCH ₃	СН
	CO ₂ CH ₃				cyclobutyl	CH ₃	CH ₃	СН
	CO_CH3				cyclobutyl	CH ₃	осн	СН
15					cyclobutyl		OCH ₃	СН
					cyclobutyl	CH	CH3	N
	CO ₂ CH ₃				cyclobutyl	CH ₃	och ₃	N .
	CO2CH3			н	cyclobutyl	och ₃	OCH ₃	N
	CO_CH3			н	cyclobutyl	_	OCH ₃	СН
`20	CO_CH3			н	cyclopentyl		CH ₃	CH
	CO2CH3			н	cyclopentyl	CH ₃	och ₃	сн
	COCH				cyclopentyl	•	OCH ₃	CH .
	CO2CH3			H	cyclopentyl	CH ₃	CH ₃	N
	CO2CH3			H	cyclopentyl	CH ₃	OCH ₃	N
25	COCH				cyclopentyl	•	OCH ₃	N
	CO2CH3			н	cyclopentyl	C1	OCH ₃	CH .
	CO2CH3		0	н	cyclopropyl	och ₃	OCH2CH3	СН
	CO2CH3	H	0	н	cyclopropyl	cyclopropyl	осн	СН
	CO_CH3			H	cyclopropyl	och ₃	CH(OCH ₃) ₂	CH
30	CO_CH3	н	0	H	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	n .
	CO2CH3		0	H	cyclopropyl	NHCH ₃	OCH ₃	N
	CO2CH3	H	0	н	cyclopropyl	och ₃	OCH ₂ CH ₃	N .
	CO2CH3	H	0	H	cyclopropyl	CH ₂ F	CH ₃	СН

66
Table I (cont.)

5	<u>R</u>	R ₁	n	R ₂	R'	Ī	<u>¥</u>	Z m.p.(*C)
	SO2N(CH3)2	н	0	н	cyclopropyl	CH ₂ .	CH ₃	CH
	SO2N(CH3)2				cyclopropyl		OCH ₃	CH
					cyclopropyl	-	OCH ₃	CH
					cyclopropyl	•	CH3 CH3	¥
10	SO ₂ N(CH ₃) ₂			н	_	CH	OCH ₃	N
	SO ₂ N(CH ₃) ₂				cyclopropyl	_	OCH ₃	×
					cyclopropyl	•	OCH ₃	CH
					cyclobutyl		CH ₃	CH
	SON(CH_)	н	0	н	cyclobutyl	CH	OCH ₃	CH
15	SON (CH3)				cyclobutyl		OCH ₃	CH
					cyclobutyl	CR ₃	CH ₃	n
	SON(CH3)2				cyclobutyl		OCH ₃	H
	SO2N(CH3)2				cyclobutyl	•	OCH ₃	N
	SO2N(CH3)2				cyclobutyl	C1	OCH3.	CH
20	SO ₂ N(CH ₃) ₂	-			cyclopentyl	. CH _a	CH ³	CH
	SO2N(CH3)				cyclopentyl	-	OCH3	СН
	SO2N(CH3)				cyclopentyl	•	OCH ³	CH
	SO2N(CH3)				cyclopentyl	•	CH ³	N .
	SO2N(CH3)	_			cyclopenty	•	осн	H
25	SO2N(CH3)				cyclopenty	_	OCH ³	N
	SON(CH3)	_			cyclopenty	. c1	OCH ₃	CH
		_			cyclopropy		OCH ₂ CH ₃	CH
	SO2N(CH3)	_				l cyclop ro pyl	. осн _з -	CH
	SON(CH3)	_		ЭН	cyclopropy:	L OCH 3	CH(OCH ₃) ₂	CH
30	SO_N(CH3)	_		ЭН	cyclopropy	т инсн	осн ₂ сн ₃	И
	SO2H(CH3)	_			cyclopropy	_	och ₃	H
	SON (CH3)	_			cyclopropy	-	OCH ₂ CH ₃	· N
				о н	cyclopropy	1 CH ₂ F	CH ₃	СН

67
Table I (cont.)

5	<u>R</u>	R ₁	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH ₂ F	н	0	н	cyclopropyl	CH	CH ₃	CH
•	_		0	н	cyclopropyl	•	OCH ₃	СН
	_				cyclopropyl	-	OCH ₃	СН
	-				cyclopropyl	•	CH ₃	N
10	_				cyclopropyl	_	OCH ₃	N
	CH ₂ F	H	0	H	cyclopropyl	OCH ₃	OCH ₃	n
	CH ₂ F	H	0	H	cyclopropyl	Cl	OCH ₃	СН
	CH ₂ F	H	0	H	cyclobutyl	CH ₃	CH ₃	CH
	CH ₂ F	H	0	H	cyclobutyl	CH ₃	OCH ₃	СН
15	CH ₂ F	H	0	H	cyclobutyl		OCH ₃	СН
	CH ₂ F	H 3	0	H	cyclobutyl	CH ₃	CH ₃	N .
	CH ₂ F	H	0	H	cyclobutyl	CH ₃	осн ₃	N
	CH ₂ F	H	0	H	cyclobutyl	OCH ₃	OCH ₃	N
30	CH ₂ F	H	0	H	cyclobutyl	Cl	OCH3	СН
20	CH ₂ F	H	Ó	H	cyclopentyl	CH ₃	CH3	СН
	CH ₂ F	H	0	H	cyclopentyl	CH ₃	OCH3	СН
	CH ₂ F	H	0	H	cyclopentyl	OCH ₃	OCH ₃	СН
	CH ₂ F	H	0	H	cyclopentyl	CH ₃	CH ₃	N
25	CH ₂ F	H	0	Н	cyclopentyl	CH ³	OCH3	n
25	CH ₂ F	H	0	Н	cyclopentyl	OCH ₃	OCH ₃	H
	CH ₂ F	H	0	H	cyclopentyl	Cl	och3	СН
	CH ₂ F	H	0	Н	cyclopropyl	OCH3	och ₂ ch ₃	СН
	CH ₂ F	Н	0	H	cyclopropyl	cyclopropyl	OCH ₃	СН
30	CH ₂ F	н	0	H	cyclopropyl	осн ₃	CH(OCH ₃) ₂	CH .
30	CH ₂ F	H	0	н	cyclopropyl	NHCH ₃	осн ₂ сн ₃	N
	CH ₂ F	Н	0	н	cyclopropyl	NHCH ₃	och ₃	N
	CH ₂ F	Н	0	H	cyclopropyl	осн ₃	OCH2CH3	N
	CH ₂ F	H	0	Н	cyclopropyl	CH ₂ F	CH ₃	СН

68
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	ū	R_2	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(*C)
	CH_CH=CH_	H	0	Н	cyclopropyl	CH ₃	CH ₃	СН
	CH_CH=CH2				cyclopropyl	CH ₃	OCH ₃	CH
	_			н	cyclopropyl	_	OCH ₃	CH
					cyclopropyl	_	CH ₃	H
10	CH2CH=CH2				cyclopropyl	•	OCH3	M
	_			н	cyclopropyl	OCH ₃	OCH ₃	M
					cyclopropyl		OCH ₃	CH .
					cyclobutyl		CH3	CH
					cyclobutyl		OCH ₃	CH
15	CH_CH=CH_				cyclobutyl		OCH ₃	CH
	CH2CH=CH2	н	0	H	cyclobutyl	CH ₃	CH ₃	¥
	CH2CH=CH2		0	H	cyclobutyl	CH3	och ₃	N
	CH_CH=CH_		0	H	cyclobutyl	och ₃	OCH ₃	H
	CH2CH=CH2	н	0	H	cyclobutyl	C1	OCH ³	CH
20	CH2CH=CH2	н	0	H	cyclopentyl	CH ₃	CH ₃	CH
	CH2CH=CH2				cyclopentyl	CH ₃	OCH ₃	CH
	CH2CH=CH2	н	0	H	cyclopentyl	OCH ₃	OCH ₃	CH -
	CH2CH=CH2	н	0	H	cyclopentyl	CH ₃	CH3	¥
	CH2CH=CH2	н	0	H	cyclopentyl	CH3	OCH ₃	N .
25	CH2CH=CH2				cyclopentyl		OCH ₃	N
	CH_CH=CH_	н	0	,H	cyclopentyl	C1	OCH ₃	CH
	CH_CH=CH	н	0	H	cyclopropyl	осн ₃	OCH ₂ CH ₃	CH .
	CH_CH=CH	н	0	H	cyclopropyl	cyclopropyl	OCH ₃	CH
	CH2CH=CH	н	0	H	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	CH2CH=CH	H	0	Н	cyclopropyl	NHCH ₃	och ₂ ch ₃	N
	сн_сн=сн	H	0	H	cyclopropy	инсн _з	OCH ₃	n
	CH2CH=CH	₂ H	0	Н	cyclopropy)	COCH ₃	och ₂ ch ₃	N
	CH2CH=CH	2 H	0	н	cyclopropy	CH ₂ F	CH ₃	СН

69
Table I (cont.)

5	<u>R</u>	R ₁	n	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u> .	Z m.p.(°C)
	сн₂с≘сн	н	0	н	cyclopropyl	СН	CH ₃	СН
	~	н	0	н	cyclopropyl	7	och ₃	CH
	сн ₂ с≡сн	н	0	н	cyclopropyl	•	OCH ₃	СН
	СН ₂ С≣СН	Н	0	H	cyclopropyl	CH ₃	CH3	N
·10	СН ₂ С≣СН	н	0	H	cyclopropyl	CH ₃	OCH ₃	N
	CH ₂ C≡CH	н	0	H	cyclopropyl	OCH ₃	OCH3	N
	сн ₂ с≘сн	H	0	H	cyclopropyl	C1	OCH ₃	CH
	сн ₂ с≣сн	н	0	H	cyclobutyl	CH ₃	CH3	СН
	сн ₂ с≣сн	H	0	H	cyclobutyl	CH ₃	OCH ₃	CH
15	CH ₂ C≡CH	H	0	H	cyclobutyl	OCH ₃	OCH ₃	CH
	сн ₂ с≡сн	H	0	H	cyclobutyl	CH ₃	CH3	N
	сн ₂ с≡сн	H	0	H	cyclobutyl	CH ₃	OCH ₃	N
	сн ₂ с≘сн	H	0	H	cyclobutyl	OCH ₃	OCH ₃	N
20	сн ₂ с≅сн	H	0	H	cyclobutyl	Cl	OCH ₃	CH .
20	CH ₂ C≡CH	H	0	н	cyclopentyl	CH ₃	CH3	CH .
	CH ₂ C≡CH	H	0	Н	cyclopentyl	CH3	och ₃	CH
	CH ₂ C≡CH	Н	0	Н	cyclopentyl	осн	och ₃	CH
	CH ₂ C≡CH	н	0	Н	cyclopentyl	CH3	CH ₃	H .
25	сн ₂ с≡сн	H	0	H	cyclopentyl	CH ₃	OCH ₃	H
25	CH ₂ C≡CH	H	0	H	cyclopentyl	OCH ₃	OCH ₃	N .
	CH ₂ C≡CH	Н	0	H	cyclopentyl	C1	OCH ₃	CH
	сн ₂ с≘сн	H	0		cyclopropyl		OCH2CH3	СН
	CH ₂ C≣CH	H	0	H	cyclopropyl	cyclopropyl		СН
30	сн ₂ с≣сн	Н	0	H .	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	СН
30	сн ₂ с≣сн	H	0	H .	cyclopropyl	NHCH ₃	och ₂ ch ₃	N
	сн ₂ с≘сн	H	0		cyclopropyl	_	OCH ₃	N
	CH ₂ C≣CH	H	0		cyclopropyl	•	OCH ₂ CH ₃	N
	сн ₂ с≣сн	H	0	H	cyclopropyl	CH ₂ F	CH ₃	СН

70
Table I (cont.)

5	<u>R</u> R1	n R2	R'	Ī	<u>¥</u>	Z m.p.(°C)
	нн	o Cl	cyclopropyl	CH ₃	CH ₃	CH
	нн	o Cl	cyclopropyl		OCH ₃	CH
	нн	0 Cl	cyclopropyl	OCH ₃	OCH3	СН
	нн	0 C1	eyclopropyl	CH3	CH3	H
10	нн	o Cl	cyclopropyl	CH ₃	och ₃	Ħ
	нн	0 C1	cyclopropyl	OCH ₃	OCH ₃	H
	нн	o ci	cyclopropyl	CI	OCH ₃	CH
	нн	0 C1	cyclobutyl	CH ₃	CH ₃	CH
	нн	o cı	cyclobutyl	CH ₃	OCH ³	CH
15	нн	0 C1	cyclobuty1	OCH ³	OCH ₃	CH
	нн	o Cl	cyclobutyl	CH ₃	CH3	M
	нн	o Cl	cyclobutyl	CH ³	och ₃	¥
	нн	0 C1	cyclobutyl	och ₃	och ₃	N
20	нн	o Cl	cyclobutyl	Cl	och ₃	CH
20	нн	0 C1	cyclopentyl	CH ₃	CH3	CH .
	HH	0 C1	cyclopentyl	CH ₃	OCH ₃	CH
	нн	0 C1	cyclopentyl	OCH ₃	och ³	CH
	нн	o Cl	cyclopentyl	CH3	CH ₃	M
25	нн	0 C1	cyclopentyl	CH3	OCH ₃	N
25	нн		cyclopentyl	•	OCH ₃	N
	нн		cyclopentyl		OCH ³	CH
	нн		cyclopropyl	•	och ₂ ch ₃	CH
	нн			cyclopropyl	_	CH
30	нн		cyclopropyl	•	CH(OCH ₃) ₂	CH _
30	нн		cyclopropyl	•	OCH ₂ CH ₃	H
	нн		cyclopropyl	•	OCH ₃	N
	нн		cyclopropyl	_	OCH ₂ CH ₃	H
	нн	o ci	cyclopropyl	CH ₂ F	CH ₃	CH

71 Table I (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH2CH3	H	0	Cl	cyclopropyl	CH ₃	CH3	CH .
	CH ₂ CH ₃	H	0	Cl	cyclopropyl	CH ₃	оснз	СН
	CH ₂ CH ₃	H .	0	Cl	cyclopropyl	OCH ₃	OCH ₃	СН
3.0	CH ₂ CH ₃	H	0	Cl	cyclopropyl	CH ₃	CH ₃	n
10	CH ₂ CH ₃	H	0	Cl	cyclopropyl	CH ₃	OCH ₃	N
	CH ₂ CH ₃	H	0	Cl	cyclopropyl	OCH ₃ .	OCH ₃	N
	CH ₂ CH ₃	н	0	Cl	cyclopropyl	C1	OCH ₃	CH
	CH ₂ CH ₃	H	0	Cl	cyclobutyl	CH ₃	CH ₃	СН
3.5	CH ₂ CH ₃	н	0	Cl	cyclobutyl	CH ₃	OCH ₃	СН
15	CH ₂ CH ₃	H	0	Cl	cyclobutyl	OCH ₃	осн ₃	СН
	CH ₂ CH ₃	н	0	Cl	cyclobutyl	CH3.	CH ₃	N
	CH ₂ CH ₃	H	0	Cl	cyclobutyl	CH3	OCH3	N
	CH ₂ CH ₃	H	0	Cl	cyclobutyl	OCH ₃	OCH3	N
20	CH ₂ CH ₃	Н	0	C1	cyclobutyl	C1	оснз	CH
20	CH ₂ CH ₃	H	0	Cl	cyclopentyl	CH3	CH ₃	CH
	CH ₂ CH ₃	Н	0	Cl	cyclopentyl	CH ₃	OCH ₃	CH
	CH ₂ CH ₃	H	0	Cl	cyclopentyl	осн ₃	OCH ₃	CH
	CH ₂ CH ₃	H	0	Cl	cyclopentyl	CH ₃	CH ₃	N
25	CH ₂ CH ₃	H	0	Cl	cyclopentyl	CH ₃	осн ₃	N
23	CH ₂ CH ₃	Н	0	Cl	cyclopentyl	осн ₃	och3	N
	CH ₂ CH ₃	H	0	Cl	cyclopentyl	Cl	OCH ₃	СН
	CH ₂ CH ₃	н	0	Cl	cyclopropyl	och ₃	och ₂ ch ₃	CH
	сн ₂ сн ₃	Н	0	Cl	cyclopropyl	cyclopropyl	ocH ₃	СН
30	CH ₂ CH ₃	H	0	Cl	cyclopropyl	осн ₃	CH(OCH ₃) ₂	CH
30	сн ₂ сн ₃	Н	0	Cl	cyclopropyl	инсн _з .	och ₂ ch ₃	N .
					cyclopropyl	_	OCH ₃	N
	сн ₂ сн ₃	н	0	Cl	cyclopropyl	осн ₃	OCH ₂ CH ₃	N
	CH ₂ CH ₃	H	0	Cl	cyclopropyl	CH ₂ F	CH ₃	СН

Table I (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	<u>R*</u>	<u>x</u> .	¥	Z m.p.(*C)
					cyclopropyl	CH	CH ₃	CH
					cyclopropyl		OCH ³	CH
•					cyclopropyl	_	OCH3	CH
					cyclopropyl	_	CH ₃	H
10					cyclopropyl		OCH ₃	W
					cyclopropyl		OCH ₃	N
					cyclopropyl	_	OCH ₃	CH
					cyclobutyl		CH ₃	CH
					cyclobutyl		OCH ₃	CH
15					cyclobutyl	7.	OCH ₃	CH
					cyclobutyl		CH ₃	H
					cyclobutyl	•	OCH ₃	P
					cyclobutyl		OCH3	n
					cyclobutyl		OCH ₃	CH
20					cyclopentyl		CH ₃	CH
					cyclopentyl		OCH ₃	СН
					cyclopentyl	_	OCH ₃	CH
					cyclopentyl	_	CH ₃	R
	CH_CH_CH3	H	0	Cl	cyclopentyl	CH ₃		H
25					cyclopentyl		осн ₃	M
	CH2CH2CH3	H	0	Cl	cyclopentyl	Cl	och ₃	CH
	CH2CH2CH3	H	0	Cl	cyclopropyl	осн ₃	OCH ₂ CH ₃	CH
	CH2CH2CH3	H	0	C1	cyclopropyl	cyclopropyl	OCH ₃	. CH
	CH2CH2CH3	H	0	Cl	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	CH2CH2CH3	H	0	Cl	cyclopropyl	инсн ₃	осн ₂ сн ₃	H
	CH2CH2CH3	H	0	Cl	cyclopropyl	NHCH ₃	OCH ₃	M
	CH2CH2CH3	н	0	Cl	cyclopropyl	och ₃	OCH ₂ CH ₃	n
	CH2CH2CH3	н	0	Cl	cyclopropyl	CH ₂ F	CH ₃	CH

73
Table I (cont.)

5	<u>R</u>	R ₁	n	R ₂	R'	<u>x</u>	<u>¥</u>	Z m.p.(°C)
								СН
					cyclopropyl	CK.	CH ₃	
					cyclopropyl	_	OCH ₃	СН
					cyclopropyl		OCH ³	CH
10					cyclopropyl		CH ₃	N
10	~				cyclopropyl	•	осн ₃	N
	CH2SO2CH3	H	0	C1	cyclopropyl	осн ₃	och3	N
	CH2SO2CH3	H	0	Cl	cyclopropyl	Cl	OCH ₃	CH ·
	CH2SO2CH3	H	0	C1	cyclobutyl	CH ₃	CH ₃	СН
	CH2SO2CH3	H	0	Cl	cyclobutyl	CH ₃	осн ₃	CH .
15	CH2SO2CH3	H	0	C1	cyclobutyl	OCH ₃	осн ₃	СН
	CH2SO2CH3	H	0	Cl	cyclobutyl	CH ₃	CH ₃	B
				Cl	cyclobutyl	-	OCH ₃	n
					cyclobutyl	_	OCH ₃	n
					cyclobutyl		OCH ₃	CH
20	CH2SO2CH3				cyclopentyl		CH ₃ .	CH
				Cl	cyclopentyl	CH ₃	осн ₃	СН
	CH2SO2CH3	H	0	Cl	cyclopentyl	OCH ₃	OCH ₃	CH
	CH2SO2CH3	н	0	C1	cyclopentyl	CH ₃	CH ₃	n
					cyclopentyl	. •	OCH ₃	N
25					cyclopentyl	_	OCH ₃	N
					cyclopentyl	_	OCH ₃	CH
	CH2SO2CH3				cyclopropyl		OCH ₂ CH ₃	CH
	CH2SO2CH3					cyclopropyl		CH
					cyclopropyl		CH(OCH ₃) ₂	СН
30					cyclopropyl	•	OCH ₂ CH ₃	พ
					cyclopropyl	_	OCH ₃	N
					cyclopropyl	•	OCH ₂ CH ₃	N .
					cyclopropyl	_	CH ₃	СН
						-	_	

74
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	R*	<u>x</u> .	<u>¥</u>	Z m.p.(°C)
-	Ph	н	0	Cl	cyclopropyl	CH ₃	CH ³	CH
	Ph	H	0	Cl	cyclopropyl	CH3	OCH ₃	CH
	Ph	H			cyclopropyl		OCH	CH
	Ph	н	0	Cl	cyclopropyl	CH	CH3	H
10	Ph.	H	0	Cl	cyclopropyl	CH3	OCH ³	H
	Ph	H	0	Cl	cyclopropyl	OCH ₃	осн	H
	Ph	H	0	C1	cyclopropyl	C1	OCH.	СН
	Ph	H	0	Cl	cyclobutyl	CH ³	CH3	CH
	Ph	н	0	Cl	cyclobutyl	CH ₃	OCH ₃	CH
15	Ph	H	0	Cl	cyclobutyl	_	OCH ₃	CH
	Ph	H	0	Cl	cyclobutyl	CH3	CH ₃	n
	Ph	H	0	Cl	cyclobutyl	CH ₃	OCH ₃	N
•	Ph	H	0	Cl	cyclobutyl	OCH ₃	OCH ₃	N
	Ph	H	0	Cl	cyclobutyl	Cl	OCH ₃	CH
20	Ph	H	0	Cl	cyclopentyl	CH ₃	CH3	СН
	Ph	H	0	Cl	cyclopentyl	CH ₃	осн ₃	CH .
	Ph	H	0	Cl	cyclopentyl	och ₃	OCH ₃	CH
	Ph	H	0	Cl	cyclopentyl	CH ₃	CH ₃	n
25	Ph	н	0	Cl	cyclopentyl	CH ₃	OCH ₃	n .
25	Ph	H	0	Cl	cyclopentyl	OCH ₃	OCH ₃	M
	Ph	H	0	Cl	cyclopentyl	Cl	OCH ₃	СН
	Ph	н			cyclopropyl	~	осн ₂ сн ₃	CH
	Ph	н	0	Cl	cyclopropyl	cyclopropyl	OCH ₃	СН
20	Ph	H	0	Cl	cyclopropyl	осн ₃	CH(OCH ₃) ₂	CH
30	Ph	н	0	Cl	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	H
	Ph	н	0	Cl	cyclopropyl	NHCH ₃	осн ₃	N
	Ph	H	0	Cl	cyclopropyl	осн ₃	OCH ₂ CH ₃	H
	Ph	Н	0	Cl	cyclopropyl	CH ₂ F	CH ₃	СН

75
Table I (cont.)

5	<u>R</u> R ₁	n R	2	R¹	x	<u>¥</u>	Z m.p.(*C)
	н н			cyclopropyl	_	CH ₃	CH
			•		_	осн ₃	СН
			_	cyclopropyl	•	_	CH
	нн		•	cyclopropyl	•	OCH ₃	N .
10			_	cyclopropyl	_	CH ₃	
	нн		•	cyclopropyl	•	OCH ₃	N
	нн		_	cyclopropyl	_	OCH ₃	N
	нн		-	cyclopropyl		OCH ₃	CH
	нн		_	cyclobutyl .	_	CH3	CH
16	нн		-	cyclobutyl	_	och ₃	CH
15	нн	0 0	:H3	cyclobutyl	осн ₃	OCH ₃	СН
	нн	0 0	:H3	cyclobutyl	CH ₃	CH3	N
	нн	0 C	:H ₃	cyclobutyl	CH ₃	OCH ₃	N
	нн	0 0	:H ₃	cyclobutyl	OCH ₃	OCH ₃	N
	нн	0 C	H ₃	cyclobutyl	Cl	OCH ₃	CH
20	нн	0 0	H ₃	cyclopentyl	CH ₃	CH ₃	CH
	нн	0 0	:H ₃	cyclopentyl	CH ₃	осн _з	СН
	нн	0 0	H ₃	cyclopentyl	och ₃	OCH ₃	CH
	н н	0 0	н3	cyclopentyl	CH ₃	CH3	R
	нн	0 0	ж3	cyclopentyl	CH ₃	och ₃	N
25	нн	0 0	н ₃	cyclopentyl	OCH ₃	осн ₃	r .
	нн	0 0	:Н3	cyclopentyl	Cl	OCH ₃	СН
	нн	0 0	H	cyclopropyl	OCH ₃	och ₂ ch ₃	СН
	нн	0 0	ж3	cyclopropyl	cyclopropyl	осн	СН
	нн		-	cyclopropyl		CH(OCH ₃) ₂	СН
30	нн		_	cyclopropyl	•	осн ₂ сн ₃	N
	нн		_	cyclopropyl	•	OCH ₃	N
	нн			cyclopropyl	•	осн ₂ сн ₃	N.
	нн		_	cyclopropyl	•	CH ₃	СН
			J		4	3	

76
Table I (cont.)

5	<u>R</u>	R ₁	n	R ₂	<u>R*</u>	<u>x</u> .	<u>¥</u>	Z m.p.(°C)
	CH ₂ CH ₃	н	0	CH3	cyclopropyl	CH3	CH ₃	CH
				_	cyclopropyl	CH ₃	OCH ₃	CH
				-	cyclopropyl	•	OCH ₃	CH
				_	cyclopropyl	-	CH ₃	n
10					cyclopropyl		OCH,	M
	CH2CH3	H	0	CH ₃	cyclopropyl	осн ₃	осн ₃	K
					cyclopropyl		OCH ₃	CH
	CH2CH3	H	0	CH ₃	cyclobutyl	CH ³	CH ₃	CH
	CH2CH3	H	0	CH ₃	cyclobutyl	CH ³	och ₃	CH
15	CH2CH3	H	0	CH ₃	cyclobutyl	OCH ₃	OCH ₃	CH
	CH2CH3	H	0	CH ₃	cyclobutyl	CH3	CH ₃	N
	CH2CH3	Н	0	CH ₃	cyclobutyl	CH ³	OCH ₃	N
	CH ₂ CH ₃	H	0	CH ₃	cyclobutyl	och ³	och ₃	H
	CH2CH3	H	0	CH ₃	cyclobutyl	Cl	OCH ₃	CH
20	CH2CH3	H	0	CH ₃	cyclopentyl	CH ³	CH3	CH
	CH ₂ CH ₃	H	0	CH ₃	cyclopentyl	CH3	осн ₃	CH
	CH2CH3	H	0	CH ₃	cyclopentyl	OCH ₃	OCH ₃	CH
	CH ₂ CH ₃	H	0	CH3	cyclopentyl	CH3	CH3	F
25	CH ₂ CH ₃	H	0	CH ₃	cyclopentyl	CH ³	OCH ₃	ľ
25				_	cyclopentyl	•	OCH ³	P
	CH ₂ CH ₃	H	0	CH ₃	cyclopentyl	Cl	OCH3	CH
	~ ~			_	cyclopropyl	•	och ₂ ch ₃	CH
				_	cyclopropyl			CH
30				_	cyclopropyl	-	CH(OCH ₃) ₂	CH
30				_	cyclopropyl	-	OCH ₂ CH ₃	N
	2 -	,		-	cyclopropyl	•	OCH ₃	N
				_	cyclopropyl	•	OCH ₂ CH ₃	N
	CH ₂ CH ₃	H	0	CH ₃	cyclopropyl	CH ₂ F	CH ₃	CH

ļ

٠,٠

77
Table I (cont.)

5	<u>R</u>	R ₁	n	R_2	R'	X	<u>x</u> .	Z m.p.(°C)
	CH_CH=CH_	н	0	CH,	cyclopropyl	CH	CH ₃	CH
	_				cyclopropyl		OCH ₃	CH
	_			_	cyclopropyl		OCH ₃	CH
					cyclopropyl		CH3	N
10					cyclopropyl		OCH ₃	M .
				_	cyclopropyl		OCH ₃	N .
				_	cyclopropyl			CH
				_	cyclobutyl		CH ₃	CH
	_	•			cyclobutyl		OCH ₃	CH
3.5				_	cyclobutyl	-	OCH ₃	CH
					cyclobutyl		CH ₃	N
					cyclobutyl		OCH ₃	N
					cyclobutyl		och ₃	N
					cyclobutyl		OCH ₃	CH
20					cyclopentyl		CH ₃	СН
					cyclopentyl		OCH ₃	СН
					cyclopentyl		OCH ₃	СН
					cyclopentyl		CH ₃	N
				_	cyclopentyl		OCH ₃	R
25					cyclopentyl		OCH ₃	N .
	CH2CH=CH2	H	0	CH3	cyclopentyl	Cl	OCH ₃	СН
					cyclopropyl		OCH ₂ CH ₃	СН
	CH2CH=CH2	H	٥	CH ₃	cyclopropyl	cyclopropyl	OCH ₃	СН
	CH2CH=CH2	H	0	CH ₃	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	СН
30	CH2CH=CH2	H	0	CH ₃	cyclopropyl	инсн3	OCH2CH3	n .
	CH2CH=CH2	H	0	CH ₃	cyclopropyl	NHCH ₃	OCH ₃	N
	CH2CH=CH2	н	0	CH ₃	cyclopropyl	осн _з	OCH ₂ CH ₃	N
	CH2CH=CH2	H	0	CH ₃	cyclopropyl	CH ₂ F	CH ₃	СН

78
Table I (cont.)

5	R	R ₁	n	R ₂	R*	<u>x</u>	<u>¥</u>	Z m.p.(°C)
					cyclopropyl	CH	CH ₃	CH
	_			_	cyclopropyl		OCH ₃	CH
	_			_	cyclopropyl	_	OCH ₃	CH
	-			_	cyclopropyl	-	CH ₃	R
10	_			_	cyclopropyl		OCH ₃	N
	_			_	cyclopropyl		OCH	H
	_			•	cyclopropyl	•	осн ₃	CH
					cyclobutyl		CH ₃	CH
	_			_	cyclobutyl	·	OCH ₃	CH
15				_	cyclobutyl		OCH ₃	CH
	_			_	cyclobutyl	•	CH ₃	Y
					cyclobutyl		OCH ₃	A .
	CH_C1	н	0	CH ₃	cyclobutyl	OCH ₃	OCH ₃	H
	_			_		C1	OCH ₃	CH
20	CH2C1	н	0	CH ₃	cyclopentyl	CH ₃	CH3	CH
	CH ₂ Cl	н	0	CH ₃	cyclopentyl	CH ₃	OCH ₃	CH
	CH ₂ C1	н	0	CH ₃	cyclopentyl	OCH ₃	OCH ₃	CH
	CH ₂ C1	н	0	CH ₃	cyclopentyl	CH ₃	CH ₃	A ,
	CH ₂ C1	. н	0	CH3	cyclopentyl	CH ₃	OCH ³	H
25	CH ₂ C1	. н	0	CH3	cyclopentyl	OCH ₃	OCH ₃	M
	CH ₂ C1	. н	0	CH3	cyclopentyl	. C1	OCH3	CH
	CH ₂ C1	. н	0	CH3	cyclopropyl	. осн ₃ .	QCH2CH3	CH
	CH ₂ C1	. н	0	CH3	cacjobrobaj	. cyclopropyl	OCH ₃	CH
20	CH ₂ C1	. н	0	CH3	caclobrobal	OCH ₃	CH(OCH ₃) ₂	CH
30	CH ₂ C1	. н	0	CH3	cyclopropy)	NHCH ₃	och ₂ ch ₃	N .
	CH ₂ C1	H	0	CH ₃	cyclopropy]	NHCH ₃	OCH ₃	N
	CH ₂ C1	L H	0	CH ₃	cyclopropy	OCH ₃	осн ₂ сн ₃	N.
	CH ₂ CI	н	0	CH ₃	cyclopropy	CH ₂ F	CH ₃	CH

79
Table I (cont.)

5	<u>R</u>	R ₁	n R2	R*	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	сн₂с≡сн	H		cyclopropyl	СН	CH ₃	СН
	~	н	_	cyclopropyl	•	OCH ₃	СН
	CH ₂ C≣CH	н	_	cyclopropyl	_	OCH ₃	CH .
	сн₂с≘сн	н	_	cyclopropyl	_	CH ₃	N .
10	сн_с≡сн	н	_	cyclopropyl	_	och ₃	N
	сн_с≡сн	н	-	cyclopropyl	•	OCH ₃	N
	сн₂с≡сн	н	_	cyclopropyl	5	OCH ₃	СН
	сн_с≡сн		_	cyclobutyl		CH3	СН
	сн_с≘сн	H	O CH3	cyclobutyl	CH ₃	OCH ₃	CH ·
15	сн2с≡сн		_	cyclobutyl	- ,	OCH ₃	СН
	сн ₂ с≡сн	н	O CH ₃	cyclobutyl	CH ₃	CH ₃	Y
	CH ₂ C≡CH	H	O CH ₃	cyclobutyl	CH ₃	och ₃	N .
	CH ₂ C≡CH		_	cyclobutyl	-	осн ₃	N
	CH ₂ C≡CH	н	O CH3	cyclobutyl	Cl	OCH ₃	СН
20	CH ₂ CECH	H	o CH ₃	cyclopentyl	CH ₃	CH3	СН
	CH ₂ C≡CH	H	0 CH ₃	cyclopentyl	CH ₃	OCH3	CH
	CH ₂ C≡CH	н	0 CH ₃	cyclopentyl	OCH ₃	осн ₃	СН
	CH ₂ C≡CH	H	o ch3	cyclopentyl	CH ₃	CH ₃	N
	CH ₂ C≡CH	н	o ch3	cyclopentyl	CH ₃	OCH ₃	N
25	CH ₂ C≡CH	н	O CH ₃	cyclopentyl	осн ₃	OCH ₃	N
	CH ₂ C≡CH	н	о сн ₃	cyclopentyl	Cl	OCH ₃	СН
	CH ₂ C≡CH	H	O CH3	cyclopropyl	OCH ₃	OCH ₂ CH ₃	CH
	CH ₂ C≡CH	Н	o CH3	cyclopropyl	cyclopropyl	оснз	CH
20	сн ₂ с≘сн	н	о сн ₃	cyclopropyl	OCH ₃	CH(OCH ₃)2	СН
30	CH ₂ C≡CH	H	o ch3	cyclopropyl	NHCH ₃	осн ₂ сн ₃	N
	CH ₂ C≡CH	H	o ch3	cyclopropyl	NHCH ₃	OCH ₃	N
	CH ₂ C≡CH	H	o ch3	cyclopropyl	оснз	OCH2CH3	N
	CH ₂ C≡CH	H _.	O CH3	cyclopropyl	CH ₂ F	CH ₃	CH

80
Table I (cont.)

5	R	R ₁	n	R ₂	R!	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(*C)
	CH ₃		_		cyclopropyl		CH ₃	CH	
	CH ₃		1		cyclopropyl		OCH ³	СН	
	CH ₂				cyclopropyl	-	OCH ³	CH	
	CH ₃				cyclopropyl	_	CH ₃	H	
10	_	H		н	cyclopropyl	•	OCH ³	H	•
	CH ₃		1	н	cyclopropyl	• .	OCH ₃	H	
	_	н	1		cyclopropyl	_	OCH3	СН	
	CH ₃	н	1	H	cyclobutyl	CH ₃	CH ₃	CH	
	_		1	н	cyclobutyl	CH ₃	OCH ³	CH	
15	CH		1	н	cyclobutyl		OCH ₃	CH	•
	CH3		1	н	cyclobutyl	CH ₃	CH.3	N	
	CH ₃		1	H	cyclobutyl	CH3	OCH ₃	M .	
	CH ₃		1	н	cyclobutyl	OCH ₃	OCH ₃	N	
	CH3		1	H	cyclobutyl	Cl	OCH ₃	СН	
20	CH ₃	н	1	H	cyclopentyl	CH ₃	CH3	CH	
	CH ₃	H	1	H	cyclopentyl	CH ₃	OCH ₃	CH	•
	CH ₃	H	1	н	cyclopentyl	OCH ₃	OCH ₃	CH	
	CH3		1	н	cyclopentyl	CH ₃	CH3	M	
	CH ₃	н	1	H	cyclopentyl	CH ₃	OCH ₃	M	
25	CH ₃	н	1	н	cyclopentyl	OCH ₃	OCH3	N	•
	CH3	H	. 1	н	cyclopentyl	C1	OCH ₃	CH	•
	CH ₃	н	1	н	cyclopropyl	OCH 3	OCH ₂ CH ₃	CH	· ·
	CH3	н	1	H	cyclopropyl	. cyclopropyl	OCH ³	· CH	
20	CH ₃	H	1	. н	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH	
30	CH3		1	. н	cyclopropyl	инсн _з	och ₂ ch ₃	H	
	CH3		1	. н	cyclopropyl	инсн _з	och ₃	N	
	CH3		1	. н	cyclopropyl	OCH ₃	OCH ₂ CH ₃	N	• ,
	CH ₃	н	1	. н	cyclopropyl	CH ₂ F	CH ₃	CH	

81
Table I (cont.)

5	<u>R</u>	R ₁	n	R ₂	R*	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH	н	1	Cl	cyclopropyl	CH ₂	CH ₃	СН
					cyclopropyl			СН
					cyclopropyl	•	OCH3	СН
					cyclopropyl	_	CH ₃	N .
10	CH ₂				cyclopropyl		OCH ₃	N
	CH ₃	н	1	Cl	cyclopropyl	осн	OCH ₃	n .
	_	н	1	Cl	cyclopropyl	Cl	OCH ₃	СН
	CH ₃	н	1	Cl	cyclobutyl	CH ₃	CH ₃	СН
	_	H	1	Cl	cyclobutyl	CH ₃	OCH ₃	CH
15	CH ₃	н	1	Cl	cyclobutyl	осн	OCH ₃	CH
	CH ₃	H	1	Cl	cyclobutyl	CH ₃	CH ₃	N
	CH ₃	H	1	Cl	cyclobutyl	CH ₃	OCH ₃	N
	CH3	н	1	Cl	cyclobutyl	OCH ₃	OCH ₃	N
	CH3	H	1	Cl	cyclobutyl	Cl	OCH ₃	CH
20	CH ₃	H	1	Cl	cyclopentyl	CH ₃	CH ₃	СН
	CH ₃	Н	1	Cl	cyclopentyl	CH ₃	och ₃	CH ·
	CH ₃	H	1	Cl	cyclopentyl	осн ₃	OCH ₃	СН
	CH ₃	н	1	Cl	cyclopentyl	CH ₃	CH ₃	N .
25	CH ₃	H	1	Cl	cyclopentyl	CH ₃	OCH ₃	N
25	CH ₃	H	1	C1	cyclopentyl	och ₃	OCH ₃	N
	CH3	н	1	C1	cyclopentyl	C1	OCH ₃	CH .
	CH3	н	1	Cl	cyclopropyl	OCH ₃	OCH2CH3	CH
	3	H				cyclopropyl	-	CH
30	CH ₃	H			cyclopropyl	, -	CH(OCH ₃) ₂	CH
30	3	Н			cyclopropyl	•	OCH2CH3	N
	CH ₃	н			cyclopropyl	•	OCH ₃	N
	CH ₃	H			cyclopropyl	" <u> </u>	OCH2CH3	N
	CH ₃	н	1	Cl	cyclopropyl	CH ₂ F	CH ₃	CH

82
Table I (cont.)

5	_	R.	_	R ₂	21	~	v	7 (10)
						X	<u>X</u>	Z n.p.(°C)
	_			_	cylopropyl		CH ₃	CH
	CI13			_	cyclopropyl	-	OCH ₃	CH
				•	cyclopropyl	_	OCH ₃	CH
	CH3	H	1	CH3	cyclopropyl	CH ³	CH ₃	H
10	CH ₃	H	1	CH ₃	cyclopropyl	CH ₃	OCH3	N
	CH ₃	H	1	CH3	cyclopropyl	och ₃	OCH3	N
	CH ₃	H	1	CH3	cyclopropyl	Cl	och ₃	CH
	CH3			_	cyclobutyl		CH ₃	CH
	CH3	H	1	CH3	cyclobutyl	CH3	OCH ₃	CH
15	CH3			_	cyclobutyl	_	OCH ₃	CH
	CH2	н	1	CH3	cyclobutyl	CH3	CH ₃	Ŋ
	_			_	cyclobutyl		OCH ₃	H
				_	cyclobutyl	•	OCH ₃	M
	_			_	cyclobutyl	_	och ₃	CH
20	3			•	cyclopentyl		CH ₃	CH
	_			_	cyclopentyl		OCH ₃	CH .
	CH ₂			_	cyclopentyl	•	OCH ₃	CH
•					cyclopentyl	•	CH ³	M
	CH ₃			_	cyclopentyl	_	OCH ₃	H
25	CH3			_	cyclopentyl	-	OCH ₃	N
	CH3			_	cyclopentyl	•	och ₃	СН
	CH ³			_	cyclopropyl		оснусна	СН
	CH3			_	cyclopropyl	•	-	СН
	CHa			_	cyclopropyl		CH(OCH ₃) ₂	CH
30	CH	•		9	cyclopropyl	•	OCH ₂ CH ₃	N .
	CII.			_	cyclopropyl	_	OCH ₃	n
	CH ₃	•			cyclopropyl	•	OCH ₂ CH ₃	H
	CH			_	cyclopropyl	•	CH ₃	СН
	3		_	3		2	3.	•

83
Table I (cont.)

5	R	R ₁	n	R_2	R.	<u>x</u> .	<u>¥</u>	<u>z</u>	m.p.(*C)
	_	CH ₃		-	cylopropyl	CH ₃	CH ₃	СН	
	_	_			cyclopropyl	-	OCH ₃	СН	
	_	_			cyclopropyl		OCH ₃	СН	
		•			cyclopropyl	_	CH ₃	N	
10					cyclopropyl		OCH ₃	N	
	_	_			cyclopropyl	_	och3	H	
	_	_			cyclopropyl		оснз	CH	
		_			cyclobutyl	CH ₃	CH ³	CH	
						CH ₃	OCH ₃	CH	
15	_	•			cyclobutyl		осн	CH	
	_	•				CH ₃	CH ₃	N	* * *
	CH ₃	CH3	0	H	cyclobutyl	CH ₃	осн ₃	H	
	_	-				осн ₃	och ₃	Ħ	
	CH3	CH3	0	H	cyclobutyl	Cl	OCH ₃	CH	
20	CH ₃	CH ₃	0	H	cyclopentyl	CH ₃	CH ₃	CH	
	CH3	CH3	0	H	cyclopentyl	CH ₃	OCH ₃	CH	
	CH ₃	CH ₃	0	H	cyclopentyl	och ₃	och ₃	CH	
	CH ₃	CH3	0	H	cyclopentyl	CH ₃	CH ₃	Ħ	
25	CH ₃	CH3	0	H	cyclopentyl	CH ₃	och ₃	N	
25	CH ₃	CH3	0	H	cyclopentyl		OCH ₃	N	
	CH3	CH3	0	H	cyclopentyl	Cl	OCH3	CH	
	CH3	CH ³	0	H	cyclopropyl	OCH3	och ₂ ch ₃	CH	•
	CH3	CH ;	30	H	cyclopropyl	cyclopropyl	•	CH	•
20	CH3	CH ₃	0	H	cyclopropyl	осн ₃	ch(och ₃) ₂	CH	
30	CH3	CH3	0	н	cyclopropyl	инсн ₃	осн ₂ сн ₃	N	
	CH ₃	CH ₃	0	Н	cyclopropyl	NHCH ₃	осн ₃	N	
	CH ₃	CH ₃	0	H	cyclopropyl	och ₃	och ₂ ch ₃	N	
	CH ₃	CH ₃	0	H	cyclopropyl	CH ₂ F	CH ₃	CH	

84
Table I (cont.)

5	R	R ₁	n	R ₂	R*	<u>x</u>	<u>¥</u>	Z m.p.(*C)
	CH3		0		cylopropyl	CH_CH_	СH ₃	СН
	CH ₃		0		cyclopropyl		OCH3	CH .
	CH3		0		cyclopropyl		CH3	CH .
	CH3		0		cyclopropyl	•	CH3	СН
10	CH3		0		cyclopropyl	•	OCH ³	CH
	_		0	H	cyclopropyl	OCH_CF3	OCH3	CH
	CH ₃	H	0	H .	cyclopropyl	CH ₂ F	OCH ₃	CH
•	CH ₃	H	0	H	cyclopropyl	CH ₂ C1	OCH ₃	¥
	CH ₃	H	0	H	cyclopropyl	SCH ₃	OCH ₃	СН
15	CH ₃	н	0	H	cyclopropyl	SCH ₂ F	OCH ₃	CFT
	CH3	H	0	H	cyclopropyl	Br	OCH ₃	СН
	CH3	H	0	H	cyclopropyl	CH ₂ OCH ₃	OCH ₃	¥
	CH ₃	H	0	H	cyclopropyl	OCH ₂ OCH ₃	OCH ₃	CH
	CH3	H	0	H	cyclopropyl	OCH2OCH2CH3	CH ₃	CH
20	CH ₃	H	0	H	cyclopropyl	N(CH3)2	OCH ₃	M
	CH ₃	H .	0	н	cyclopropyl	NHCH2CH3	CH ₃	T .
	CH3	H	0	H	cyclopropyl	янсн3	OCH ₂ CH ₃	N
	CH3	H	0	H	cyclopropyl	CH ₃	CH ₂ SCH ₃	CH
25	CH3	H	0	H	cyclopropyl	осн ₃	CH ₂ SO ₂ CH ₃	CH
25	CH3	H	0	H	cyclopropyl	NH ₂	OCH ₂ CH ₃	N
	CH ₃	H	0	H	cyclopropyl	CH3	OCH2CH=CH2	СН
	CH ₃	H	0	H	cyclopropyl	CH ₂ CH ₃	OCF ₂ H	CH
	CH ₃	H	0	H	cyclopropyl	ocf ₂ H	OCF ₂ H	CH
20	CH3	H	0	H	cyclopropyl	och ₃	och=ch ₂	CH
30	CH3		0		cyclopropyl	_	C(0)CH3	N
	CH3				cyclopropyl	•	N(OCH ₃)CH ₃	N
	CH3	H	0	H	cyclopropyl	OCH(CH ₃)	ocr ₂ H	CH ·

85
Table I (cont.)

5	R	R ₁	n	R ₂	<u>R'</u>	<u>x</u>	Ā	<u>z</u>	m.p.(°C)
	CH ₃	H	0	н	СНЗ	CH ₃	CH ₃	СН	185-188
	CH ₃	н	0	H	CH3	CH ₃	OCH ₃	СН	180-183
	CH ₃	H	0	H	снз	OCH ₃	OCH3	СН	179-182
	CH3	н	0	H	CH ₃	CH ₃ .	CH ₃	N	
10	CH ₃	н	0	H	CH ₃	CH ₃	OCH ₃	N	110-112
	СНЗ	H	0	H	CH ₃	OCH ₃	OCH ₃	N	163-165
	CH ₃	H	0	H	CH ₃	Cl	OCH ₃	CH	199-201
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	CH ₃	CH	157-161
	CH ₃	н	0	H	сн ₂ сн ₃	CH ₃	OCH ₃	CH	151-154
15	CH ₃	H	0	H	сн ₂ сн ₃	OCH ₃	OCH ₃	CH	143-146
	CH ₃	Н	0	H	CH ₂ CH ₃	CH ₃	CH ₃	N	
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	N	145-147
	CH ₃	н	0	H	сн ₂ сн ₃	OCH ₃	OCH ₃	N	122-137
20	CH ₃	н	0	H	CH ₂ CH ₃	Cl	OCH ₃	CH	180-182
20	CH ₃	н	0	H	сн ₂ сн ₂ сн ₃	CH ₃	CH ₃	CH	163-165
	CH ₃	H	0	н	CH2CH2CH3	CH ₃	OCH ₃	CH	173-175
	CH ₃	н	0	H	CH2CH2CH3	OCH ₃	OCH ₃	CH	180-184
	CH ₃	H	0	Н	сн ₂ сн ₂ сн ₃	CH ₃	CH3	N	
25	CH ₃	H	0	н	сн ₂ сн ₂ сн ₃	CH ₃	OCH ₃	N	174-176
23	CH ₃	H	0	н	сн ₂ сн ₂ сн ₃	OCH ₃	OCH ₃	N	154-156
	CH ₃	н	0	Н	сн ₂ сн ₂ сн ₃	Cl	OCH ₃	CH	203-205
	CH ₃	H	0	H ·	CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH3	CH ₃	OCH ₃	CH	
30	CH ₃	Н	0	H	сн ₂ сн ₂ сн ₂ сн ₃	OCH ₃	OCH ₃	CH	
30	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	CH3	N	
	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	осн _з	N	
	CH3	н	0	H	сн ₂ сн ₂ сн ₂ сн ₃		осн ₃	N	
	CH ₃	H	0	Н	CH2CH2CH2CH3	Cl	OCH ₃	CH	

86
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	<u>R*</u>	X	<u>¥</u> .	<u>z</u>	m.p.(°C)
	CH3	H	0	H	CH2CH2CH2CH3		CH ₃	CH	
	CH ₃	H	0:		CH ₂ CH ₂ CH ₂ CH ₂ CH ₃		OCH ₃	СН	
	_	н	0	Ħ	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃		OCH ₃	СН	
	CH ₃	H	0	н	CH2CH2CH2CH2CH3	CH ₃	СH ₃	R	
10	_	н	0		CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	CH ³	och ₃	W	
	CH ₃	н	.0		CH2CH2CH2CH2CH3		OCH ³	N	
	CH ₃	H	.0	н		C1	OCH ³	CH	
	CH ₃				CH2CH2CH2CH2CH3		CH 3	CH	148-150
	CH ₃	H	0	H	CH(CH ₃) ₂	CH ₃	CH ₃	СН	178-180
15	CH ₃	H	0	H	CH(CH ₃) ₂	CH ³		CH	181-183
	CH ₃	H	. 0	H	CH(CH ₃) ₂	OCH ₃	OCH ₃	N	101-100
	CH ₃	H	0	H	CH(CH ₃) ₂	CH ₃	CH ₃	M	152-154
	CH ₃	H	0	H	CH(CH ₃) ₂	CH ₃	OCH ₃		159-161
	CH ₃	H	0	H	CH(CH ₃) ₂	OCH ₃	OCH ₃	H	
20	CH ₃	H	′ 0	H	CH(CH ₃) ₂	Cl	OCH ₃	CH	194-196
20	CH3	H	0	H	CH ₂ CH(CH ₃) ₂	CH ³	CH ₃	CH	
	CH ₃	H	0	Н	CH2CH(CH3)2	CH ₃	och ₃		
	CH ₃	H	. 0	H	CH ₂ CH(CH ₃) ₂	OCH ³	och ₃	CH	
	CH ₃	H	0	H	CH ₂ CH(CH ₃) ₂	CH ₃	CH 3	M	
202	CĤ ³	H	0	H	CH2CH(CH3)2	CH ₃	OCH ₃	Ħ	
25	CH ₃	H	0	H	CH ₂ CH(CH ₃) ₂	OCH ₃	OCH ³	H	
	CH ₃	H	0	H	CH2CH(CH3)2	Cl	OCH ₃	CH	
	CH ₃	H.	0	H	CH(CH ₃)CH ₂ CH ₃	CH3	CH ₃	CH	
	CH ₃	H	0	H	CH(CH ₃)CH ₂ CH ₃	CH ₃	OCH ₃		
	CH ₃	H	0	H	CH(CH ₃)CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
30	CH3	H	0	H	CH2CH2CH(CH3)2	CH ₃	CH ₃	M .	
	CH ₃	H	0	Ĥ	CH2CH2CH(CH3)2	CH ₃	ÓСН _З		
	СH ₃	H	0	н	CH2CH2CH(CH3)2	OCH ₃	OCH ₃	Ħ	
	CH3	H	0	н	CH2CH2CH(CH3)2	Cl	OCH ₃	CH	•

87
Table I (cont.)

5	<u>R</u>	R ₁	ū	R ₂	R*	<u>x</u> .	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	н	0	н	CH ₂ OCH ₃	CH ₃	CH ₃	CH	
	CH ₃	н	0	H	CH2OCH3	CH3	och ₃	CH	
	CH ₃	н	0	н	си оси	OCH ₃	och ₃	CH	
	CH ₃	H	0	н	CH ₂ OCH ₃	CH ₃	CH3	N	•
10	CH ₃	н	0	н	сносн	CH ₃	OCH ₃	N	
	CH ₃	н	0	H.	CH OCH3	OCH ₃	OCH ₃	N	
	CH ₃	н	0	н	сносн	C1 (OCH ₃	CH	
	CH ₃	н	0.	н	CH2OCH2CH3	CH3	CH3	СН	
	CH ³	н	0	н	CH2OCH2CH3	CH ₃	OCH ₃	CH	
15	CH ₃	н	0	н	CH2OCH2CH3	OCH ₃	OCH3	CH	
	CH ₃	н	0	н	CH2OCH2CH3	CH ₃	CH ₃	N	•
•	CH ₃	н	0	н	CH2CH2OCH3	CH3	OCH ₃	N	
	CH ₃	н	0	н	CH2CH2OCH3	OCH ₃	och3	N	
	CH ₃	H	0	н	CH2CH2OCH3	Cl	och ₃	CH	
20	CH ₃	н	0	н	CH2CH2OCH3	CH ₃	CH3	CH	Ā
	CH ₃	н	0	н	CH2CH2OCH3	. CH ³	OCH ₃	CH	-
	CH ₃	н	0	н	CH2CH2OCH3	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	н	CH2CH2OCH3	CH ₃	CH ₃	H	
	CH ₃	H	0	н	CH(OCH ₃) ₂	CH ₃	och ₃	N	
25	CH ₃	н	0	н	CH(OCH ₃) ₂	OCH ₃	och ₃	N	
	CH ₃	H.	0	H	CH(OCH ₃) ₂	Cl	OCH ₃	CH	
	CH ₃	н	0	Н	снэснз	CH ₃	CH ₃	CH	
	CH ₃	н	0	H		CH ₃	OCH ₃	CH	
	CH ₃	н	0	н	снувсну	осн	och ₃	CH	I
30	CH ₃	н	0	н	CH2SCH3	СНЗ	СНЗ	Ŋ	
	CH ₃	н	0	н	CH2SCH3	CH ₃	OCH ₃	N	
	CH ₃	н	0	н	CH2SCH3	осн ₃	ocH3	N	
	CH ₃	н	C	н	CH ₂ SCH ₃	C1	OCH ₃	CI	H
•	3	,			- 2	•			

88
Table I (cont.)

5	. <u>R</u>	<u>R</u> 1	ū	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(*C)
	CH ₃	н	0	н	CH2N(CH3)2	CH ₃	CH ₃	CH,	
	CH3	H	0	H	CH2N(CH3)2	CH ₃	OCH ³	CH	
	CH ₃	H	0	H	CH2N(CH3)2	OCH ₃	och ₃	CH	
	CH ₃	H	0	H	CH2N(CH3)2	CH ³	CH ₃	H	
10	CH ₃	H	0	H	CH2N(CH3)2	CH ₃	OCH ³	H	
	CH ₃	H	0	H	CH2H(CH3)2	OCH ₃	OCH ₃	N	•
	CH3	H	0	H	CH2N(CH3)2	Cl	och ³	CH	
	CH ₃	H	0	H	CH2CH2N(CH3)2	CH ₃	CH ₃	CH	•
	CH ₃	н	0	H	CH2CH2H(CH3)2	CH ₃	OCH ³	CH	
15	CH ₃	H	0	H	CH2CH2H(CH3)2	och ₃	och ₃	CH	
	CH ₃	н	. 0	Ħ	CH2CH2N(CH3)2	CH3	CH ₃	H	
	CH ₃	н	0	H	CH2CH2N(CH3)2		OCH ₃	N	
	CH ₃	н	0	H	CH2CH2W(CH3)2	OCH ₃	OCH ³	H	
	CH3	H	0	Н	CH2CH2W(CH3)2		OCH ₃	CH	
20	CH ₃	H	0	H	CH2CH=CH2	CH3	CH ₃	CH	•
	CH ₃	H	0	H	CH2CH=CH2	CH ₃	OCH ₃		
	CH ₃		0	H	CH ₂ CH=CH ₂	OCH ₃	OCH ₃		
	CH3		. 0	H	CH2CH=CH2	CH ₃	CH ₃	H	
	CH3		0	H	CH ₂ CH=CH ₂	CH ₃	OCH ₃		
25	CH ³	н	0	H	CH2CH=CH2	OCH ₃			
	CH3	н	0	H	CH2CH=CH2	Ċl	och ₃		
	CH ₃	н	C	н	CH-CH ₂	CH ₃	сн ₃	Cl	
	CH		C	H		CH ³	OCH		
	CH.) H	CH=CH ₂	осн	OCH		i
30	CH,	, H	(H	CH=CH ₂	CH3	CH3	B	
	CH	3	. (Н	~	CH ₃	OCH	-	
	, CH		. (ЭН	-	OCH	3 OCH		_
	CH		. () H	CH=CH ₂	. Cl	OCH	3 C	Н

89
Table I (cont.)

5	•	<u>R</u>	R ₁	n	R ₂	R'	X	<u>¥</u>	<u>z</u>	m.p.(°C)
		CH ₃	H	0	CH ₃	CH ₂ OCH ₃	CH ₃	CH3	СН	
		CH ₃	н	0	CH	CH ₂ OCH ₃	CH3		СН	
		CH ₃	н	0	-	CH ₂ OCH ₃	OCH3	OCH ₃	СН	
		CH ₃	н	0	CH ₃	CH2OCH3	CH ₃	CH3	H	
10		CH ₃	н	0	CH3		CH ₃	OCH ₃	N	
		CH ₃	н	0		сн осн з	осн ₃	осн ₃	N	
		CH ₃	н	0	CH ₃		Cl	OCH ₃	CH	
		CH3	н	0	CH ₃	сн ₂ осн ₂ сн ₃	CH ₃	CH ₃	CH	
		CH ₃	н	0	CH ₃		CH ₃	OCH ₃	CH	
15		CH3	Н	0	_	CH2OCH2CH3	OCH ₃	OCH ₃	CH	
		CH3	H	0	CH ₃	CH2OCH2CH3	CH ₃	CH ₃	N	
		CH ₃	H	0	CH ₃	CH2CH2OCH3	CH ₃	OCH ₃	N	
		CH ₃	н	0		CH2CH2OCH3	OCH ₃	OCH ₃	N	
		CH3	H	0	CH ₃		Cl	OCH ₃	CH	
20		CH3	H	0	CH ₃		CH ₃	CH ₃	CH	
		CH3	H	0	CH ₃	CH2CH2OCH3	CH ₃	OCH ₃	CH	•
		CH ₃	H	0	CH ₃		OCH ₃	OCH ₃	CH	
		CH ₃	H	0	CH ₃	CH2CH2OCH3	CH ₃	CH ₃	N	
		CH ₃	H	0	CH3	СН(ОСН ₃)2	CH ₃	OCH ₃	N	
25		CH ₃	Н	0	CH ₃	CH(OCH ₃) ₂	och ₃	OCH ₃	N	
		CH ₃	H	0	CH ₃		Cl	OCH ₃	CH	• •
		CH3	H	0	CH ₃	CH ₂ SCH ₃	CH3	CH3	CH	
		CH ₃	H	0	CH3	CH ₂ SCH ₃	CH3	OCH ₃	CH	
		CH ₃	Н	0	CH ₃		OCH ₃	OCH ₃		
30		CH ₃	н	0		CH2SCH3	CH ₃	CH ₃	N	
		CH ₃	H	0	CH ₃	CH ₂ SCH ₃	CH ₃	OCH ₃		
		CH ₃	H	0	CH ₃	CH ₂ SCH ₃	осн3	осн 3		
		CH ₃	H	0	CH ₃		Cl	оснз	CH	

90
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>x</u>	<u>z</u>	m.p.(*C)
	CH ₃	H.	0	Cl		CH ₃	CH ₃	CH	
	CH ₃	н	0	Cl	CH ₂ OCH ₂ F	CH ₃	OCH ₃	CH	
	CH ₃	H	. 0	Cl	•	осн ³	OCH3	СН	
	CH ₃	H	0	C1	CH ₂ OCH ₂ F	CH3	CH ³	¥	•
10	CH ₃	н	0	Cl	CH ₂ OCH ₂ F	CH ³	OCH ³	H	
	CH ₃	н	0	Cl	CH ₂ OCH ₂ F	OCH ₃	OCH ₃	H	
	CH ₃	Н	0	Cl	CH ₂ OCH ₂ F	Cl	OCH ₃	CH	
	CH3	н	. 0	Cl	CH ₂ SOCH ₃	CH3	CH3	CH	
	CH ₃	H	0	Cl	CH2 SOCH3	CH ₃	осн ₃	CH	
15	CH ₃	H	0	Cl	CH2 SOCH3	OCH ₃	осн ₃	CH	
	CH3	H	0	Cl	CH2SOCH3	CH3	CH ³	Ħ	
	CH ₃	H	0	Cl	CH2SOCH3	CH3.	OCH ₃	M	3 ·
	CH ₃	H	0	Cl	CH ₂ SOCH ₃		OCH ₃	Ħ	
	CH ₃	H	0	Cl	CH ₂ SOCH ₃	Cl	OCH ₃	CH	
20	CH3	H	0	Cl	CH2SO2CH3	CH ₃	CH ₃	CH	
	CH ₃	H	0	Cl	CH ₂ SO ₂ CH ₃		OCH ³	CH	•
	CH ₃	H	0	CI	CH2SO2CH3		OCH ₃	CH	
	CH ₃	H	0	Cl	CH2SO2CH3		CH ₃	¥	
25	CH ₃	H	0	Cl	CH2SO2CH3	CH ₃	OCH ₃	N	
25	CH ₃	H	0	C1	CH2SO2CH3	OCH 3	och ₃	H	
	CH3	H	0	Cl	CH ₂ SO ₂ CH ₃	Cl ·	OCH ₃	CH	
	CH ₃	H	0	Cī	CH ₂ CN	CH ₃	CH3	CH	
	CH3	H	0	Cl	CH ₂ CH ₂ CN		осн3	CH	
30 .	CH3	H	0	Cl	CH(CH3)CM	OCH3	OCH ₃	CH	
	CH ₃	H	0	Cī	CH ₂ NO ₂	CH ₃	CH ₃	N	
	CH3	H	. 0	Cl	CH2CH2NO2	CH ₃	OCH ₃	R	
	CH3	H	0	Cl	CH ₂ CN	OCH ₃		H	
	CH ₃	H	0	Cl	CH ₂ CN	Cl	OCH ₃	CH	

91
Table I (cont.)

•				D				_	4.5.5
5	<u>R</u>	<u>R</u> 1	$\overline{\boldsymbol{u}}$	<u>2</u>	R'	X	<u>¥</u> .	<u>Z</u>	m.p.(*C)
	CH ₃	H	0	CF ₃	CH ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	CF ₃	CH ₃	CH ₃	OCH ₃	CH	
•	CH ₃	H	0	CF ₃	CH ₃	OCH ₃	OCH ₃	CH	
•	CH ₃	H	0	CF ₃	CH ₃	CH ³	CH ₃	N	
10	CH ₃	H	0	CF ₃	CH ₃	CH ₃	OCH ₃	N	
	CH ₃	H	0	CF ₃	CH ₃	OCH ₃	OCH ₃	H	
	CH ₃	н	0	CF ₃	CH ₃	C1	OCH ₃	CH	•
	CH ₃	н	0	CF ₃	CH ₂ CH ₃	CH ₃	CH3	CH	
	CH ₃	н	0	CF ₃	CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	CH ₃	н	0	CF ₃	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	CF ₃	CH ₂ CH ₃	CH3	CH ₃	N	
	CH ₃	н	0	CF ₃	CH ₂ CH ₃	CH ₃	OCH ₃	H	
	CH ₃	н	0	CF ₃	CH ₂ CH ₃	OCH ₃	OCH ₃	N	
	CH ₃	н	0	CF ₃	CH ₂ CH ₃	Cl	OCH ₃	CH	•
20	CH ₃	н	0	CF ₃	сн сн сн	CH ₃	CH3	CH	
	CH ₃	н	0	CF ₃	CH2CH2CH3	CH ₃	OCH ₃	CH	•
	CH ₃	н	0	CF ₃	сн_сн_сн	OCH3	OCH ₃	CH	
	CH ₃	н	0		CH2CH2CH3	CH3	CH3	N	
	CH ₃	н	0	CF ₃	CH2CH2CH3	CH ₃	OCH ₃	N	
25	CH ₃	н	0	CF ₃	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	N	
	CH ₃	н	0		CH ₂ CH ₂ CH ₃	Cl	OCH ₃	CH	
	CH ₃	н	0	_	CH2CH2CH2CH3	CH ₃	CH ₃	CH	•
	CH ₃	H	Ō	CF ₃	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
	CH ₃	н	0	CF ₃	CH2CH2CH2CH3	och3			I
30	CH ₃	н	0	CF ₃	CH2CH2CH2CH3	CH3	CH3	n	
	CH ₃		0	CF ₃	- CH2CH2CH2CH3		OCH ₃	N	
	CH ₃	H	0	CF ₃	CH ₂ CH ₂ CH ₂ CH ₃				
	CH ₃	н	0		CH2CH2CH2CH3		оснз		(
	- 3			3	2.2 2 3		,	•	

. 35

92
Table I (cont.)

5	<u>R</u> .	<u>R</u> 1	<u>n</u>	R ₂	R*	Ī	Ā	<u>z</u>	m.p.(*C)
	CH ₃	н	0	CN	CH ₃	CH ₃	CH ³	CH	
	CH3	H	0	CN	CH ₃	CH ₃	OCH ₃	CH	
	CH ₃	H	0	CN	CH ₃	OCH ₃	OCH ₃	СН	
	CH3	H	0	CN	CH ₃	CH3	CH3	N	
10	CH3	н	0	CN	CH ₃	CH ₃	och ₃	H	•
	CH ₃	н	0	CN	CH ₃	OCH ³	OCH ₃	H	
	CH3	н	0	CN	CH3	Cl	OCH ₃	СН	
	CH ³	H	0	CN	CH ₂ CH ₃	CH ₃	CH3	CH	
	CH ₃	H	0	CN	CH ₂ CH ₃		осн ₃	СН	
15	CH3	H	0	CN	CH ₂ CH ₃	OCH ₃	OCH		
	CH ₃	H	0	CN	CH ₂ CH ₃	.CH ₃	CH ₃	M	
	CH ₃	H	0	CN	CH ₂ CH ₃	CH ₃	OCH ₃	M	
	CH3	H	0	CN		OCH ₃		N	
	CH ₃	Н	0		CH ₂ CH ₃	Cl	OCH ₃	CH	
20	CH ₃	H	0	CN	CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	CH	•
	CH ₃	H	0	CH	CH ₂ CH ₂ CH ₃		OCH ₃	CH	
	CH ₃	H	0	CN	CH ₂ CH ₂ CH ₃	OCH ₃		CH	
	CH ₃	H	0	CN	CH2CH2CH3	CH ₃	CH ₃	M	
0.5	CH ₃	H	0	CN	CH ₂ CH ₂ CH ₃	CH ³		N	
25	CH ₃	H	0	CN	CH2CH2CH3	OCH ₃	OCH ₃	N	
	CH ₃	H	0	CN	CH ₂ CH ₂ CH ₃	Cl	OCH ₃	CH	
	CH ₃	н	0	CN	CH2CH2CH2CH3	CH ₃		CH	
	CH ₃	H	0	CN	CH2CH2CH2CH3			CH	
30	CH ₃	Н	0	CN	CH2CH2CH2CH3		OCH ₃	СН	
30	CH ₃	H	0	CN	CH2CH2CH2CH3	· CH ₃	CH ₃	Ħ	
	CH3	H	0	CN	CH2CH2CH2CH3	CH3	OCH ₃	N	
	CH ₃	н	0	CN	CH2CH2CH2CH3	осн ₃	осн ₃	H	
	CH ₃	H	0	CN	CH ₂ CH ₂ CH ₂ CH ₃	ci	OCH ₃	CH	

93
Table I (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	R*	<u>x</u>	¥	<u>z</u>	m.p.(*C)
	CH ₂ CH ₃	н	0	н	CH2CH2CH2CH2CH3	CH3	CH ₃	CH	
	CH ₂ CH ₃	н	0	H .		CH ₃	OCH ₃	СН	
	CH ₂ CH ₃	н	0	н	снуснуснуснусну	оснз	OCH ₃	CH	
	CH ₂ CH ₃	н	0	H	CH2CH2CH2CH2CH3	CH3	CH3	N	
10	CH ₂ CH ₃	н	0	н	CH2CH2CH2CH2CH3	CH3	OCH ₃	N	
	CH ₂ CH ₃	н	0	н	сн_сн_сн_сн_сн	OCH ₃	OCH ₃	N	
	CH ₂ CH ₃	н	0	H	CH2CH2CH2CH2CH3	C1	осн _з	CH	
	CH ₂ CH ₃	н	0	H		CH ₃	CH3	СН	
	CH ₂ CH ₃	н	0	H	CH(CH ₃) ₂	CH3.	оснз	CH	
15	CH ₂ CH ₃	н	0	н	CH(CH ₃) ₂	OCH ₃	OCH ₃	СН	
	CH ₂ CH ₃	н	0	н	CH(CH ₃) ₂	CH3	CH3	H	*** *** * ***
	CH ₂ CH ₃	н	0	н	CH(CH ₃) ₂	CH ₃	OCH ₃	M .	
	CH ₂ CH ₃	H	0	н	CH(CH ₃) ₂	OCH ₃	OCH ₃	N	
	CH ₂ CH ₃	н	0	н	CH(CH ₃) ₂	Ç1	OCH ₃	CH	
20	CH ₂ CH ₃	H	0	н	CH2CH(CH3)2	CH ₃	CH ₃	CH	
	CH ₂ CH ₃	H	0	н	CH2CH(CH3)2	CH ₃	OCH ₃	ĊН	
	СН2СН3	H	0	H	CH2CH(CH3)2	OCH ₃	OCH ₃	CH	
	CH2CH3	H	0	н	CH ₂ CH(CH ₃) ₂	CH ₃	CH ₃	H	
	CH ₂ CH ₃	H	0	H	CH2CH(CH3)2	CH ₃	OCH ₃	N	
25	CH2CH3	н	0	н	CH2CH(CH3)2	OCH ₃	OCH ₃	N	
	CH ₂ CH ₃	H	0	H	CH2CH(CH3)2	C1	OCH ₃	ĊH	
	CH2CH3	H	0	H	CH(CH3)CH2CH3	CH ₃	CH ₃	CH	
	CH2CH3	н	0	H	CH(CH ₃)CH ₂ CH ₃	CH ₃	OCH ₃	CH	
	CH ₂ CH ₃	н	0	н	CH(CH3)CH2CH3	оснз	OCH ₃	CH	
30	CH ₂ CH ₃	H	0	н.	CH2CH2CH(CH3)2	CH ₃	CH ₃	N	
	CH ₂ CH ₃	H	0	н	CH2CH2CH(CH3)2	CH ₃	OCH ₃	N	
	СН ₂ СН ₃	н	. 0	н	CH2CH2CH(CH3)2	OCH ₃	OCH ₃	N	
	CH ₂ CH ₃	н	0	н	CH2CH2CH(CH3)2	Cl	OCH ₃	CH	•

94
Table I (cont.)

5	<u>R</u>	R ₁	<u>n</u>	R ₂	R*	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(*C)
	сн осн 3	Н	0	H	CH2CH2CH2CH2CH3	CH ₃	CH ₃	СН	
	CH ₂ OCH ₃	н	0		CH2CH2CH2CH2CH3	CH ₃	OCH ₃	СН	•
	CH_OCH3	H	0	H	CH2CH2CH2CH2CH3	OCH ₃	OCH ₃	CH	
	CH ₂ OCH ₃	H	0		CH2CH2CH2CH3CH3	CH ₃	CH ₃	M	
10	CH ₂ OCH ₃	H	0		CH2CH2CH2CH2CH3	CH ₃	OCH ₃	'n	
	CH ₂ OCH ₃	H	0		CH2CH2CH2CH2CH3	OCH ₃	OCH 3	H	
	CH_OCH3	Ĥ	0	H	CH2CH2CH2CH2CH3	Cl	OCH	CH	
	CH ₂ OCH ₃	H	0		CH(CH ₃) ₂	CH ₃	CH 3	CHİ	
		H	0	н	CH(CH ₃) ₂	CH ₃	OCH ₃	CH	
15	CH_OCH_3	H	0	н	CH(CH ₃) ₂	OCH ₃	OCH ₃	CH	
	CH ₂ OCH ₃	H	0	H	CH(CH ₃) ₂	CH ₃	CH ₃	H	
	CH_OCH_3	H	0	н	CH(CH ₃) ₂	CH ₃	OCH ₃	H	
	CH_OCH3	н	0		CH(CH ₃) ₂	OCH ₃	OCH ₃	M .	
Ω	CH OCH 3		0		CH(CH ₃) ₂	C1	OCH ₃	CH	
20	CH_OCH3	H	0		CH2CH(CH3)2	CH ₃	CH ₃	CH	
	CH_OCH3	. H	0	H	CH2CH(CH3)2	CH ₃	OCH ₃	CH	
	CH_OCH3	H	0	н	CH2CH(CH3)2	OCH ₃	OCH ₃	CH	
	CH2OCH3	H	0		CH2CH(CH3)2	CH ₃	CH3	M	
	CH ₂ OCH ₃	н	0	H	CH2CH(CH3)2	CH ₃	OCH ₃	N	
25	CH ₂ OCH ₃	н	0		CH2CH(CH3)2	OCH ₃		N	,
	CH_OCH3	Н	0	H	CH2CH(CH3)2	Cl	осн ₃	CH	,
	сн осн 3	H	0		CH(CH3)CH2CH3	сн3	CH ₃	СН	
	CH ₂ OCH ₃	H	0	H	CH(CH3)CH2CH3	CH ₃	осн3	CH	
	CH ₂ OCH ₃	H	0	н	CH(CH ₃)CH ₂ CH ₃	осн ₃	оснз	CH	
30	CH ₂ OCH ₃	H	0	H	CH2CH2CH(CH3)2	CH ₃	CH3	H	
	сн осн 3	H	0		CH2CH2CH(CH3)2	CH ³	OCH ₃	N	
	CH ₂ OCH ₃	H	0	H	CH2CH2CH(CH3)2	OCH ₃	осн3	Ħ	
		Ĥ	0	н		Cl	OCH ₃	CH	

95
Table I (cont.)

5	R	R ₁	D	R ₂	<u>R'</u>	<u>x</u>	<u>X</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0	н	CH ₃	н	CH ₃	CH	
	CH ₃	н	0	н	CH3	н	OCH3	CH	
•	CH ₃	н	0	н	CH ₃	CH ₃	OCH_CH3	ĊН	
	CH ₃	H	0	H	CH3	CH ₃	OCH(CH ₃) ₂	CH	
10	CH ₃	H	0	H	CH ₃	н	OCH ₃	N	
	CH ₃	H	0	н	CH ₃	och ₃	OCH ₂ CH ₃	CH	
	CH ₃	н	0	H	CH ₃	CH ₂ F	CH ₃	CH	
	CH ₃	н	0	H	CH ₃	CH ₂ F	OCH ₃	CH	
	CH ₃	н	0	H	CH ₃	OCF ₂ H	CH ₃	CH	
15	CH ₃	H	0	H	CH ₃	ocf ₂ H	och ₃	CH	
	CH ₃	H	0	H	CH ₃	OCH2CF3	och ₃	N	
	CH ₃	H	0	H	CH ₃	SCH ₃	OCH ₃	CH	
	CH3	H	0	H	CH ₃	осн ₃	MHCH ₃	N	
	CH ₃	H	0	H	CH ₃	och ₂ ch ₃	nhch ₃	N	195-197
20	CH ₃	H	. 0	H	CH ₃	осн _з	OCH ₂ CH ₃	N .	
	CH ₃	H	0	H	CH ₃	SCF ₂ H	OCH ₃	CH	
	CH ₃	H	0	н	CH ₃	Br	осн ₃	CH	
	CH ₃	Н	0	H	CH ₃	сн ₂ осн ₃	och3	CH	
	CH ₃	Н	0	H		CH2OCH3	CH3	N	
25	CH ₃	Н	0	H	CH3		och ₃	N	
	CH ₃	H	, 0	H	CH3	N(CH ₃) ₂	OCH ₃	N	
	CH3	H	0	H	CH ₃	NHCH ₃	NHCH ₃	N	
	CH3	H	. 0	H	CH ₃	cyclopropyl	OCH ₃	CH	
30	CH ₃	H	0	H	CH ₃	cyclopropyl	CH ₃	N CH	
30	CH ₃		0		CH3	cyclopropyl	-	N N	
	CH ₃	н	0		CH ₃	cyclopropyl			•
	CH ₃	н	0	•	CH3		CH(OCH ₃) ₂	СН	
	CH ₃	Н	0		CH ³		och ₃	СН	
35	CH ₃	н	0	н	CH ₃	оснз	CECH	Un	1

96 Table I (cont.) E is CH₂

5							-		
	<u>R</u>	<u>R</u> 1	<u>n</u>	<u>R</u> 2	<u>R*</u>	<u>X</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0	H	CH ₃	CH ₃	CH ₃	CH	
	CH3	H	0	H	CH ₃	CH ₃		CH	
	CH3	H	0	H	CH ₃	OCH ₃	OCH ³	CH	
10	CH ₃	H	0	H	CH ₃	CH ₃	3	N	
	CH ₃	H	0	H·	CH ₃	CH ³	OCH ₃	n	
	CH ₃	H	0	H	CH ₃	OCH ₃	OCH ₃	H.	
	CH3	H	0	H	CH ₃	C1	OCH ₃	CH	
	. CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	CH ₃	CH	
15	CH3	H	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH ₂ CH ₃	OCH ₃	OCH ³	CH	÷
	CH ₃	H	0	H	CH ₂ CH ₃	CH3	CH ³	N	
	CH3	H	0	H	CH ₂ CH ₃	CH ₃	och ₃	H	
	CH ₃	H	0	H	CH ₂ CH ₃	OCH ³	OCH ₃	N	
20	CH ₃	H	0	H	CH ₂ CH ₃	Cl	OCH ₃	CH	•
	CH ₃	H	0	H	CH2CH2CH3	CH3		CH	
	CH ₃	H	0	H	CH2CH2CH3	CH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH3	OCH ³	OCH ₃	CH	
_	CH ₃	H	0	H	CH2CH2CH3	CH.3	CH ₃	Ä	
25	CH ₃	H	0	H	CH2CH2CH3	CH ³	och3	H	
	CH ₃	H	0	H	CH2CH2CH3	OCH3	OCH ₃	N	
	CH ₃		0	H	CH2CH2CH3	Cl	OCH ₃		
	CH ₃		0	н	CH2CH2CH2CH3	CH ₃	CH ³	CH	
	CH3		0	Н	CH2CH2CH2CH3		och ₃		
30	CH ₃		0	Н	CH2CH2CH2CH3	och ³	.OCH		
	СНЗ		0	H	CH2CH2CH2CH3		CH ₃	N	
	CH ₃	Н	O		CH2CH2CH2CH3				
	СНЗ		C		CH2CH2CH2CH3		OCH ₃		•
35	CH ³	н	C	Н	CH ₂ CH ₂ CH ₂ CH ₃	C1	осн	CI	1

97
Table I (cont.)

5									
	R	<u>R</u> 1	n	R ₂	<u>R*</u>	<u>x</u>	<u>Y</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0	н	·CH ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	н	CH3	CH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH ₃	OCH ₃	OCH ₃	СН	
10	CH ₃	H	0	H	CH ₃	CH3	CH ₃	N	
	CH ₃	H	0	H	CH ₃	CH ₃	OCH ₃	N	
	CH3	H	0	H	CH ₃	OCH ₃	OCH ₃	N	
	CH ₃	H	0	H	CH ₃	Cl	OCH ₃	CH	
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	CH3	CH	
15	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	CH	. * *
	CH ₃	H	0	H	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	Н	0	н	CH ₂ CH ₃	CH ₃	CH3	N	
	CH ₃	H	0	н	CH ₂ CH ₃	CH ₃	OCH ₃	N	
	CH ₃	H	0	H	CH ₂ CH ₃	och ₃	оснз	N	
20	CH ₃	H	0	H	CH ₂ CH ₃	Cl	OCH ₃	CH	•
	CH ₃	H	0	H	CH2CH2CH3	CH ³	CH3	CH	
	CH ₃	H	0	н	CH2CH2CH3	CH3	OCH ₃	CH	
	CH ₃	H	0	н	CH2CH2CH3	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH3	CH ₃	CH ₃	N	
25	CH ₃	H	0	н	CH2CH2CH3	CH3	OCH ₃	N	
	CH ₃	H	0	H	CH2CH2CH3	OCH ₃	OCH3	N	•
	CH ₃	H	0	H	CH2CH2CH3		OCH ₃	ĊН	
	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃		CH	• .
20	CH ₃	н	0	H	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
30	CH ₃	H	0	Н	CH2CH2CH2CH3	och ₃	OCH ₃	CH	
	CH3	н	0	Н	CH2CH2CH2CH3	CH ₃	CH ₃	N	
	CH ₃	Н	0	Н	CH2CH2CH2CH3	CH ₃	OCH3	N	•
	CH3	Н	0	Н	CH2CH2CH2CH3	OCH ₃		N	
35	CH ₃	Н	0	Н	CH2CH2CH2CH3	Cl	och ₃	CH	

<u>Table II</u>

5	R	<u>R</u> 1	n	R_2	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH ₃	н	0	H	cyclopropyl	CH ₃	CH ₃ ·	CH
	_	н	0	H		CH3	осн ₃	CH
	CH3	н	0	H		OCH ₃	OCH ₃	CH
	_	H	0	H	cyclopropyl	CH ₃	CH ₃	M
10	CH ₃	н	0	H	cyclopropyl	CH3	OCH ₃	M
	CH ₃	H	0	H	cyclopropyl	OCH ₃	OCH ₃	H
	CH ₃	H	0	H	cyclopropyl	Cl	OCH ₃	CH
	CH3	H	0	H	cyclobutyl	CH ₃	CH ₃	CH
	CH ₃	H	0	H	cyclobutyl	CH ₃	OCH ₃	CH
15	CH ₃	H	0	H	cyclobutyl	OCH ₃	OCH ₃	CH
	CH ₃	H	0	H	cyclobutyl	CH ₃	CH ₃	T
	CH ₃	H	0	H	cyclobutyl	CH ₃	och ₃	M
	CH ₃	H	0	H	cyclobutyl	OCH ₃	OCH ₃	H
	CH ₃	н	0	H	cyclobutyl	C1	OCH3	CH
20	CH3	H	0	H	cyclopentyl	CH ₃	CH ₃	CH
	CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ₃	CH
	CH ₃	H	0	H	cyclopentyl	OCH ³	OCH ₃	CH
	CH ₃	H	0	H	cyclopentyl	CH ₃	CH ₃	×
0.5	CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ₃	N
25	CH ₃		0	Н	cyclopentyl	OCH ₃	OCH 3	H
	CH3	H	0	н	cyclopentyl	C1	OCH ₃	CH
	CH3		0	H	cyclopropyl	осні _з	OCH2CH3	CH
	CH3	H	0	H	cyclopropyl	cyclopropyl	OCH ₃	CH
20	CH ₃		0	Н	cyclopropyl	OCH ³	CH(OCH ₃) ₂	CH
30	CH ₃	н	0	H	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	H
	CH ₃		0	Н	cyclopropyl	NHCH ₃	OCH ₃	N
	CH ₃	,	O	H	cyclopropyl	OCH 3	OCH ₂ CH ₃ .	N
	CH3	н	O	Н	cyclopropyl	CH ₂ F	CH ₃	СН

Table II (cont.)

5	<u>R</u>	R ₁	Ū	R ₂	<u>R*</u>	<u>x</u>	¥	<u>z</u>	m.p.(°C)
	CH3	н	0	CH ₂ F	cyclopropyl	CH ₃	CH ₃	CH	•
					cyclopropyl		OCH ₃	CH	
	CH ₃			_	cyclopropyl		OCH ₃	CH	•
	CH ₃		0	CH ₂ F	cyclopropyl	CH ₃	CH ₃	n	
10	CH ₃		0	CH ₂ F	cyclopropyl	CH ₃	och ₃	N	
	CH ₃		0	CH ₂ F	cyclopropyl	och ₃	OCH ₃	N	
	CH3	H	0	CH ₂ F	cyclopropyl	Cl	och ₃	CH	•
	CH ₃	H	0	CH ₂ F	cyclobutyl	CH ₃	CH ₃	CH	
	CH3			_	cyclobutyl		OCH ₃	CH	
15	CH ₃	н	0	CH ₂ F	cyclobutyl	OCH3	3	CH	;
	CH ₃	н	0	CH ₂ F	cyclobutyl	СН.	CH3	N	
	CH ₃	H	0	CH ₂ F	cyclobutyl	СН ^З	осн ₃	N	
	CH ₃	H	0	CH ₂ F	cyclobutyl	осн3	осн ₃	N	·
22	CH ₃	H	0	CH ₂ F	cyclobutyl	CI.	осн	CH	
20	CH3	н	0	CH ₂ F	cyclopentyl	CH ₃	CH ₃	CH	
	CH ₃	н	0	CH ₂ F	cyclopentyl	CH ₃	och ₃	CH	
	CH ₃	н	0	CH ₂ F	cyclopentyl	OCH ₃	och ₃	CH	.,
	CH ₃	Н	0	CH ₂ F	cyclopentyl	CH ₃	CH ₃	N	
	CH ₃	н	0	CH ₂ F	cyclopentyl	CH ₃	OCH ₃	N	
25	CH3	H	0	CH ₂ F	cyclopentyl	OCH ₃	och ₃	N	
	CII	H	0	CH ₂ F	cyclopentyl	. Cl	OCH ₃	CH	· · ·
	CH3	н	0	CH ₂ F	cyclopropyl	OCH ₃	2 3	, CH	
	CH3	Н	0	CH ₂ F	cyclopropyl	. cyclopropyl	3	· CH	
	CH3	Н	O	CH ₂ F	cyclopropyl	. осн ₃	CH(OCH ₃) ₂		
30	CH	н	C	CH ₂ F	cyclopropyl	инсн ₃	och ₂ ch ₃	Ŋ	
	CH	н	C	CH ₂ F	cyclopropyl	инсн ₃	OCH ₃	N	
	CH	н	C	CH ₂ F	chejobrobaj	осн ₃	OCH ₂ CH ₃	N	
	CH ₃	3 H	C	CH ₂ F	cyclopropyl	CH ₂ F	CH3	CH	· · ·

100
Table II (cont.)

5	<u>R</u>	R ₁	n	R ₂	<u>R*</u>	<u>X</u>	<u>¥</u>	Z m.p.(*C)
	CH ₃				cyclopropyl	CH	СН ₃	СН
	CH ₃				cyclopropyl	•	OCH ₃	CH
	CH				cyclopropyl	•	OCH ₃	СН
	_				cyclopropyl		CH ₃	X
10	CH ₃				cyclopropyl	•	OCH ₃	H
	_				cyclopropyl		OCH ₃	M
	CH ₃				cyclopropyl	•	OCH ₃	CH
	CH ₃		0	CN	cyclobutyl	CH ₃	CH ₃	CH -
	CH3		0	CN		CH3	OCH ₃	CH
15	СНЗ		0	CN	cyclobutyl	-	OCH ₃	CH
	CH		0	CN	cyclobutyl	CH ₃	CH ₃	M
	CH ₃	H	0	CN	cyclobutyl	CH ₃	OCH ₃	N
	CH ₃		0	CN	cyclobutyl		OCH ₃	M
	CH ₃	H	0	CN	cyclobutyl	Cl	och ₃	CH
20	CH ₃	H	0	CN	cyclopentyl	CH ₃	CH ₃	CH
	CH ₃	H	0	CN	cyclopentyl	CH ₃	OCH ₃	CH .
	CH ₃	H	0	CN	cyclopentyl	OCH ₃	OCH ₃	CH
	CH3		0	CN	cyclopentyl	CH ₃	CH3	¥ .
	CH3	H	0	CN	cyclopentyl	CH3	och ³	n
25	CH3		0	CN	cyclopentyl	OCH ₃	OCH	M
	CH3	H	0	CN	cyclopentyl	Cl	OCH ³	CH
	CH ₃		0	CN	cyclopropyl	OCH ₃	OCH2CH3	CH
	CH3	H	0	CN	cyclopropyl	cyclopropyl	OCH ₃	CH
20	CH ₃	H	0	CN	cyclopropyl	осн3	CH(OCH ₃) ₂	CH
30	CH3	H	0	CN	cyclopropyl	инсн3	OCH ₂ CH ₃	N
	CH3		0	CN	cyclopropyl	NHCH ₃	OCH ₃	N .
	CH ₃	н	0	CN	cyclopropyl	OCH ₃	OCH ₂ CH ₃	n
	CH3	н	0	CN	cyclopropyl	CH ₂ F	CH ₃	CH

101 Frable II (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	R'	<u>x</u>	<u>¥</u> .	<u>z</u>	m.p.(*C)
	CH2CH3	н	0	н	cyclopropyl	СНа	CH ₃	СН	
	CH2CH3		0	н	cyclopropyl		OCH ₃	СН	
	CH2CH3		0		cyclopropyl	•	OCH ₃	СН	
	CH2CH3		0		cyclopropyl	•	CH3	N.	•
10	СНСН		0	н	cyclopropyl		och ₃	H	
	СНСНЗ		0	H	cyclopropyl	оен	OCH ₃	N	
	CH_CH_		o	H	cyclopropyl	CI	OCH ₃	CH	
	CH ₂ CH ₃		0	H	cyclobutyl	CH ₃	CH ₃	CH	· ·
	СНСН		0	н	eyclobutyl	CH ₃	OCH ₃	CH	;
15	CH_CH_		0	н	cyclobutyl	-	OCH ₃	CH	÷ .
	CH2CH3	н	0	H	cyclobutyl	CH.3	CH3	N	•
	CH ₂ CH ₃	H	0	H	cyclobutyl	CH ₃	OCH ₃	Ħ	
	CH ₂ CH ₃		0	н	cyclobutyl	осн _з	OCH ₃	N	
·	CH2CH3		0	H	cyclobutyl	Cj	OCH ₃	СН	
20	CH ₂ CH ₃	H	0	H	cyclopenty1	CH ₃	CH ₃	CH	
	CH ₂ CH ₃	H	0	н	cyclopentyl	CH ₃	OCH ₃	СН	
	CH2CH3	H	0	H	cyclopentyl	OCH ₃	och ₃	CH	
	CH ₂ CH ₃	H	0	H	cyclopentyl	CH ₃	CH ₃	N	
	CH2CH3	H	0	H	cyclopentyl	CH ₃	OCH ₃	N	•
25	CH ₂ CH ₃	H	0	H	cyclopentyl	осн	OCH ₃	N	•
	CH ₂ CH ₃	н	0	H	cyclopentyl	C1	och ₃	СН	
	CH ₂ CH ₃	H	0	H	cyclopropyl	осн	OCH ₂ CH ₃	CH	
	CH ₂ CH ₃	H	0	H	cyclopropyl	cyclopropyl	OCH ₃	СН	•
2.0	CH ₂ CH ₃	H	0	H	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH	
30	CH ₂ CH ₃	н	0	H	cyclopropyl	NHCH ₃	осн ₂ сн ₃	N	
	CH2CH3	H	0	H	cyclopropyl	инен3	och ₃	N	
	CH ₂ CH ₃	н	0	н.	cyclopropyl	осн ₃	och ₂ ch ₃	Ħ	
	CH ₂ CH ₃	Н	0	H	cyclopropyl	CH ₂ F	CH ₃	CH	

102
Table II (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u> R ₂	<u>R*</u>	X .	<u>¥</u>	Z m.p.(°C)
	сн₂с≡сн	H	о н	cyclopropyl	CH ₃	CH ₃	CH .
	сн2с≡сн	н	ОН	cyclopropyl	CH3	OCH ₃	СН
	сн_с≡сн	H	о н	cyclopropyl	OCH ₃	OCH ₃	СН
	СН2СΞСН	H	о н	cyclopropyl	CH3	CH ₃	N
10	сн₂с≘сн	H	о н	cyclopropyl	CH ³	OCH ₃	N ·
	CH ₂ C≡CH	H	о н	cyclopropyl	OCH ₃	OCH ₃	M
	CH ₂ C≡CH	н	о н	cyclopropyl	Cl	OCH ₃	CH
	снос≣сн	H	он	cyclobutyl	CH ₃	CH ₃	CH ·
	сн2с≡сн	н	о н	cyclobutyl		OCH ₃	CH
15 .	сн³с≘сн	H	ОН	cyclobutyl		OCH ₃	CH
	сн ₂ с≘сн	H	ОН	cyclobutyl		CH ₃	N
	CH2C≡CH	H	ОН	cyclobutyl.	CH ₃	OCH ₃	Ħ
	CH ₂ C≅CH	H	ОН	cyclobutyl	OCH ₃	OCH ₃	H
	сн ₂ с≘сн	н	ОН	cyclobutyl	; C1	OCH ₃	СН
20	CH ₂ ≡CH	H	ОН	cyclopentyl	CH ³	CH ₃	CH
	CH ₂ CECH	H	о н	cyclopentyl	CH ₃	OCH ₃	CH
	CH ₂ C≡CH	H	ОН	cyclopentyl	och ³	OCH	СН
	CH ₂ C≣CH	H	ОН	cyclopentyl	CH ₃	CH ₃	H
0.5	CH ₂ C≡CH	H	ОН	cyclopentyl	CH3	OCH ₃	H
25	CH ₂ C≡CH	H	ОН	cyclopentyl	OCH ₃	OCH ₃	N
	сн ₂ с≡сн	H	о н	cyclopentyl	C1	OCH ₃	CH
	сн ₂ с≡сн	H	ОН	cyclopropyl	_	och ₂ ch ₃	СН
	сн ₂ с≘сн	H	ОН	cyclopropyl	cyclopropyl	_	CH .
20	CH ₂ CΞCH	H	ОН	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	CH ₂ CECH	H	ОН	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	19
	CH ₂ C≡CH	Н	ОН	cyclopropyl		OCH ₃	H
	CH ₂ C≡CH	H	ОН	cyclopropyl	OCH ₃	OCH ₂ CH ₃	n
	сн ₂ с≘сн	H	ОН	cyclopropyl	CH ₂ F	CH ₃	СН

103
Table II (c nt.)

5	R	R ₁	<u>n</u>	R ₂	R*	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	н	н	0	Cl	cyclopropyl	CHa	CH ₃	СН	
	н	н			cyclopropyl	•	OCH ₃	СН	·
	н				cyclopropyl	•	OCH ₃	СН	
	н				cyclopropyl	_	CH3	N	. ,.
10	н	н	0	Cl	cyclopropyl	CH ₃	OCH ₃	N	
	H	н	0	Cl	cyclopropyl	OCH ₃	OCH ₃	N	
	H	н	0	Cl	cyclopropyl	Cl	OCH ₃	СН	
	н	H	0	Cl	cyclobutyl	CH ₃	CH3	СН	
	H	н	0	Cl	cyclobutyl	CH ₃	OCH ₃	CH	
15	н	н	0	Cl	cyclobutyl	OCH ₃	och ₃	CH	
	н	H	0	Cl	cyclobutyl	CH ₃	CH ₃	N	
	н	H	0	Cl	cyclobutyl	CH ₃	och ₃	N	
	H	H	0	Cl	cyclobutyl	OCH ₃	OCH ₃	N	
	H	H	0	Cl	cyclobutyl	Cl	OCH ₃	CH	
20	H	н	0	Cl	cyclopentyl	CH ₃	CH ₃	CH	
	H	н	0	Cl	cyclopentyl	CH ₃	OCH ₃	CH	•
	H	н	0	Cl	cyclopentyl	осн ₃	осн ₃	CH	
	H	H	0	Cl	cyclopentyl	CH ₃	CH ₃	N	
25	H	H	0	Cl	cyclopentyl	CH ₃	och ₃	N	
25	H	H	0	Cl	cyclopentyl	och ³	och ₃	N	
	H	H	0	Cl	cyclopentyl	Cl	OCH ₃	CH	~ *
	H	Н	0	Cl	cyclopropyl	OCH ₃	OCH ₂ CH ₃	CH	
	Н	Н	0	Cl	cyclopropyl	cyclopropyl		CH	
30	Н	Н	0	Cl	cyclopropyl	оснз	CH(OCH ₃) ₂	CH	
30		H			cyclopropyl	•	осн ₂ сн ₃	N	
		Н			cyclopropyl	•	OCH ₃	N	•
		H			cyclopropyl	•	och ₂ ch ₃	N	
	H	H	0	Cl	cyclopropyl	CH ₂ F	CH ₃	CH	

104
Tabl II (cont.)

5	R R1	n R ₂	R'	<u>x</u>	Ā	Z m.p.(°C)
	нн	O CH ₃	cyclopropyl	CH ₃	CH3	CH
		_	cyclopropyl		OCH.	CE
		-	cyclopropyl	-	OCH ₃	CH
		_	cyclopropyl	-	CH ₃	M
10	нн	O CH3	cyclopropyl	CH ₃	OCH ₃	M
	нн	O CH3	cyclopropyl	OCH ₃	OCH ₃	M
	нн	O CH3	cyclopropyl	Cl	OCH ₃	CH ·
	нн	O CH3	cyclobutyl	CH3	CH3	CH
	нн	O CH ₃	cyclobutyl	CH ₃	OCH ₃	CH
15	нн	O CH	cyclobutyl	OCH ₃	OCH ₃	CH
	нн	O CH	cyclobutyl	CH ₃	CH ₃	M
,	нн	0 CH	cyclobutyl	CH ³	OCH ₃	.I
	нн	O CH	cyclobutyl	och ₃	och ₃	A
	нн	O CH	cyclobutyl	Cl	OCH ₃	CH
20	нн	O CH	cyclopentyl	. СН ₃	CH ₃	CH
	нн	о СН	cyclopentyl	. СН ₃	OCH ₃	CH . *
	нн	о сн	3 cyclopentyl	. осн ₃	och ₃	CH
	нн	O CH	3 cyclopentyl	CH ₃	CH ₃	n
	нн	O CH	3 cyclopentyl	CH ₃	OCH ₃	n
25	нн	O CH	3 cyclopenty	L OCH ₃	OCH 3	M
	нн		3 cyclopenty		OCH ₃	CH
	нн		3 cyclopropy		OCH ₂ CH ₃	CH .
	нн	O CH	3 cyclopropy	l cyclopropy	•	CH .
20	нн		g cyclopropy		CH(OCH ₃) ₂	CH
30	нн		3 chclobroba		och ₂ ch ₃	H
	нн		cyclopropy		OCH ₃	H
	нн		g cyclopropy		och ₂ ch ₃	¥
	нн	O CH	g cyclopropy	1 CH ₂ F	CH ₃	CH

105
Table II (cont.)

-		_		_					•
5	R	<u>*1</u>	n	R ₂	<u>R*</u>	X	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0	H	cylobutyl	CH2CH3	CH ₃	CH	
	CH3	H	0	H	cyclobutyl	CH2CH3	OCH ₃	CH	. 0
	CH3	H	0	н	cyclobutyl	CH ₂ F	CH ₃	CH	
	CH ₃	H	0	H	cyclobutyl	OCF ₂ H	CH ₃	CH	
10	CH3	H	0	H	cyclobutyl	ocf ₂ H	OCH ₃	CH	
	CH3	н	0	H	cyclobutyl	OCH ₂ CF ₃	OCH ₃	CH	
	CH ₃	H	0	н	cyclobutyl	CH ₂ F	OCH ₃	CH	
	CH ₃	H	0	н	cyclobutyl	CH ₂ C1	OCH ₃	N	
	CH ₃	н	0	н	cyclobutyl	SCH ₃	OCH ₃	CH	
15	CH ₃		0	н	cyclobutyl	SCH ₂ F	och3	CH	
	CH3		0	H	cyclobutyl	Br	OCH ₃	CH	
	CH3		0	н	cyclobutyl	CH2OCH3	OCH ₃	И	•
	CH ₃		0	н	cyclobutyl	OCH ₂ OCH ₃	OCH ₃	CH	·
	CH ₃		0	н	cyclobutyl	och_och_ch_	CH3	CH	
20	CH3		0	н	cyclobutyl	N(CH ₃) ₂	OCH ₃	H	n .
	CH		0	н	cyclobutyl	NHCH2CH3	CH3	N	•
	CH ₃	н	0	н	cyclobutyl	NHCH ₃	OCH ₂ CH ₃	N	
	CH3		0	н	cyclobutyl	CH ₃	CH2SCH3	Cŀ	I .
	CH		O	н	cyclobutyl	OCH ₃	CH2SO2CH3	Cŀ	ł
25	CH ₃	,	O	н	cyclobutyl	NH ₂	OCH2CH3	Ħ	
	CH		C	н	cyclobútyl	CH ₃	OCH_CH=CH_2	CI	.
	CH ₃	н	C	н	cyclobutyl	CH ₂ CH ₃	ocr ₂ H	Cl	{
	CH,		C	н	cyclobutyl	ocf ₂ H	ocf ₂ H	CI	i
30	CH,	н	C	Н	cyclobutyl	OCH3	OCH=CH2	CI	1
	CH.	,	C	н	cyclobutyl	OCH ₃	C(O)CH ₃	N	
	CH,		C	н	cyclobutyl	CH3	N(OCH ₃)CH ₃	N	
	CH	,	C	Н	cyclobutyl	OCH(CH ₃) ₂	OCF ₂ H	C	H

106
Table II (c nt.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	<u>R</u> 2	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	н		н	CH3	CH ₃	CH ₃	CH	-
	CH ₃	H	0	H	снз	CH ₃	OCH ³	CH	
	CH ₃	H	0	н	CH ₃	OCH ³	OCH ₃	CH	
	CH ₃	H	0	н	СНЗ	CH3	CH ₃	H	
10	CH ₃	н	0	H	CH ₃	CH ₃	OCH ₃	r	
	CH ₃	H	0	н	CH ₃	OCH ³	OCH ₃	H	:
	CH ₃	н	0	H	CH ₃	Cl	OCH ₃	CH	
	CH ₃	н	0	н	CH ₂ CH ₃	CH ₃	CH ₃	CH	
	CH ₃	н	0	H	CH2CH3	CH ₃	OCH ₃	CH	•
15	CH3	н	0	н	CH ₂ CH ₃	OCH ³	OCH ₃	CH	
	CH3	H	0	H	CH ₂ CH ₃	CH ₃	CH3	N	
	CH ₃	H	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	n .	
	CH ₃	H	0	H	CH ₂ CH ₃	OCH ₃	OCH ³	Ħ	
	CH ₃	H	0	H	CH ₂ CH ₃	Cl	OCH ₃	CH	
20	CH ₃	H	0	н	CH2CH2CH3	CH ₃	CH ₃	CH	•
	CH ₃	H	0	н	CH2CH2CH3	CH ₃	OCH ₃	CH	•
	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	CH3	CH ₃	H	
25	CH ₃	H	0	H	CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	M	
25	CH ₃	H	0	н	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	N	•
	CH ₃	Н	0	H	CH2CH2CH3	. C1	OCH ₃	CH	
	CH3	н	0	H	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
30	. CH3	H	0	H	CH2CH2CH2CH3	осн ₃	оснз	CH	
30	CH ₃	H	0	H	CH2CH2CH2CH3		CH ³	N	
	CH ³	H	0		CH2CH2CH2CH3		OCH ³	N	,
	CH ₃	H	0	H	CH2CH2CH2CH3	OCH ₃	OCH ₃	N	
	CH ₃	H	0	H	CH2CH2CH2CH3	C1	OCH ₃	CH	

T

Table II (cont.)

5	<u>R</u>	R ₁	Ū	R ₂	<u>R*</u>	x	<u>¥</u> .	<u>z</u>	m.p.(*C)
	CH ₃	н	0	н	сн ₂ он	CH ₃	CH ₃	СН	
	CH ₃	н	0	н	сн ₂ он	CH3	OCH ₃	CH	•
	CH ₃	н	0	н	сн ₂ он	OCH	OCH3	СН	
	CH ₃	H	0	Н	СН ₂ ОН	CH3	CH3	M	
10	CH ₃	H	0	H	Сн2он	CH ₃	OCH ₃	H	
	CH ₃	H	0	H	CH ₂ OH	OCH ₃	OCH ₃	H	
	CH ₃	н -	0	н	СН ₂ ОН	Cl	OCH	CH	•
	CH3	H	0	H	сн(сн ₃)он	CH ₃	CH3	CH	
	CH ₃	H	0	H	СН(СН ₃)ОН	CH ₃	OCH ₃	CH	
15	CH ₃	H	0	H	CH(CH ₃)OH	OCH ₃	OCH ₃	CH	•
	CH ₃	H	0	H	сн(сн ₃)он	CH ₃	CH ₃	N	
	CH ₃	н	0	Н	сн(сн ₃)он	CH3	осн ₃	N	
	CH ₃	н	0	н	сн(сн ₃)он	OCH ₃	OCH ₃	N	
20	CH ₃	H	0	Н	сн(сн ₃)он	Cl	OCH ₃	CH	
20	CH ₃	H	0	H	CH2OSI(CH3)3	CH ₃	CH ₃	CH	
	CH ₃	Н	0	H	CH2OSi(CH3)3	CH ₃	OCH ₃	CH	•
	CH ₃	н	0	H	CH2OSi(CH3)3	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	H	CH2OSI(CH3)3	CH3	CH3	N	
25	CH ₃	H	0	H	CH2OSi(CH3)3	CH3	OCH ₃	N	
23	CH ₃	н	0	н	CH ₂ OSi(CH ₃) ₃	OCH ₃	OCH ₃	N	•
	CH ₃	н	0	Н	CH2OSi(CH3)3	Cl ·	OCH ₃	CH	٠
	СH _З	H	0 _	Н	CH2COCH3	CH3	CH3	CH	• .
	CH ₃	H .	0	Н	CH2COCH3	CH3	OCH ₃	CH	•
30	CH ₃	H	0	Н	CH2COCH3	OCH ₃	OCH ₃	CH	
30	CH ₃	H	0	Н	CH ₂ COCH ₃	CH ₃	CH ₃	N	
	CH ₃	H	o .		CH ₂ COCH ₃	CH3	OCH ₃	N	
	с н ₃	H	0	н	CH2CO2CH3	OCH ₃	осн	N	
	СH ₃	Н	0	Н	CH2CO2CH3	Cl	OCH ₃	CH	

108
Table II (cont.)

5	R	R ₁	n	R ₂	R*	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(*C)
	CH ₃	H	0	CH ₂ F	CH ₃	CH ₃	CH3	CH ·	
	CH ₃	н	0	CH ₂ F	CH ₃	CH.3	OCH ₃	CH	•
	CH ₃	H	0	CH ₂ F	CH ₃	OCH ₃	осн	CH	
	CH ₃	H	0	CH ₂ F	CH ₃	CH ₃	CH ₃	H	
10	CH ₃	н	0	CH ₂ F	CH ₃	CH ₃	OCH ₃	H	
	CH ₃	н		CH ₂ F	_	осн ₃	OCH ₃	M.	
	CH ₃	н	0	CH ₂ F	CH ³	C1	OCH ³	CH	
	CH ³	н	0	CH ₂ F		CH3	CH ₃	CH	
	CH ₃	н		_	CH ₂ CH ₃	CH ³	OCH ₃	CH	•
15	CH ³	н		CH ₂ F	-	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	CH ₂ F	=	CH3	CH ³	M	
	CH ₃	н		CH ₂ F	• • .	CH ³	OCH3	H	
	CH ₃	н		CH ₂ F		OCH ₃	OCH ₃	H	
	CH ₃	H		CH ₂ F		Cl	OCH ₃	CH	•
20	CH ₃	н	0	CH ₂ F		CH ₃	CH ₃	CH	
	CH ₃	н	0	_	CH ₂ CH ₂ CH ₃	CH ³	OCH ³	СН	•
	CH ₃	н		CH ₂ F	-	OCH ₃	OCH ³	CH	
	CH ₃	н	0	_		CH ₃	CH ³	H	
	CH ₃		0	_		CH3	OCH ₃	N	
25	CH ₃	н	0	_	-	OCH ₃	OCH ₃	M	
	CH ₃	H		CH ₂ F		Cĺ	OCH ₃	CH	•
	CH ₃	н	0	_	CH2CH2CH2CH3	CH ₃		CH	•
	CH ₃	н	. 0	_		CH ₃	OCH ₃	CH	
	CH ₃			. CH ₂ F		осн ₃	OCH ₃		
30	CH ₃			-	CH2CH2CH2CH3		CH ₃	M	
	CH ₃	н	0	_	CH2CH2CH2CH3		OCH ₃	H	
	сн ₃	н	0				OCH ₃		
	CH ₃	н	0			Cl	OCH ₃		Ţ.

109
Table II (cont.)

									•
	<u>R</u>	$\frac{R_1}{2}$	Ū	R ₂	<u>R*</u>	X	<u>¥</u>	<u>z</u>	m.p.(*C)
5	CH2OCH3	н	0	H	CH2CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	сносн	H	. 0	H	CH2CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
•	CH_OCH_	н	0	н	CH2CH2CH2CH2CH3	OCH ₃	OCH ₃	CH	
	CH ₂ OCH ₃	н	0	н	CH2CH2CH2CH2CH3	CH ₃	CH ₃	H	
10	CH ₂ OCH ₃	н	0	н	CH2CH2CH2CH2CH3	CH ₃	OCH ₃	M	
	CH ₂ OCH ₃	н	0	н	CH2CH2CH2CH2CH3	OCH ₃	OCH ₃	N	
	CH ₂ OCH ₃	н	0		CH_CH_CH_CH_CH_	Cl	OCH ₃	CH	
	CH2OCH3	Н	0	н	CH(CH ₃) ₂	CH ₃	CH ₃	CH	
•	CH ₂ OCH ₃	H	0	н	CH(CH ₃) ₂	CH ₃	OCH ₃	CH	
•	CH2OCH3	н	0	H	CH(CH ₃) ₂	OCH ₃	OCH ₃	CH	
15	CH ₂ OCH ₃	н	0	н	CH(CH ₃) ₂	CH3	CH ₃	N	
	CH ₂ OCH ₃	н	0	н	CH(CH ₃) ₂	CH ₃	OCH ₃	H	
	CH_OCH3	н	0	H	CH(CH ₃) ₂	OCH ₃	OCH ₃	H	
	CH ₂ OCH ₃	н	0	Н	CH(CH ₃)2	Cl	OCH ₃	CH	
	CH ₂ OCH ₃	н	0	Н	CH2CH(CH3)2	CH ₃	CH3	CH	
20	CH_OCH3	н	0	н	CH2CH(CH3)2	CH3	OCH ₃	CH	
	CH2OCH3	н	0	H	CH2CH(CH3)2	OCH ₃	och ₃	CH	•
	CHOCH	н	0	н	CH2CH(CH3)2	CH ₃	CH ₃	N	
	CH ₂ OCH ₃	н	0	H	CH2CH(CH3)2	CH ₃	OCH ₃	N	
	CH ₂ OCH ₃	н	0	н	CH2CH(CH3)2	OCH ₃	OCH ₃	N	
25	сн осн з	H	0	H		Cl	осн _з	CH	
	CH_OCH3	н	0	н	•	CH ₃	CH ₃	CH	
30	CH ₂ OCH ₃	н	0	н	CH(CH ₃)CH ₂ CH ₃	CH ₃	och ₃	CH	
	CH ₂ OCH ₃		0	H		OCH ₃	OCH ₃	CH	I
	CH2OCH3			н	·:	CH ₃	CH ₃	N	
	CH ₂ OCH ₃		0	н		CH ₃	OCH ₃	N	
	CH ₂ OCH ₃		0	н	CH2CH2CH(CH3)2	OCH ₃	оснз		
	CH ₂ OCH ₃		0	н		Cl	OCH3	Cł	(

110 Tabl III

5	<u>R</u>	R ₁	ū	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(*C)
	CH3	H	0	H	cyclopropyl	CH ₃	CH ₃	CH	157-159
	CH ₃	н	0	н	cyclopropyl	СНЗ	OCH ₃	CH	179-182
	CH3	н	0	Ĥ	cyclopropyl	OCH ₃	OCH ₃	CH	159-161
	CH ₃	H	0	H	cyclopropyl	CH ₃	CH ₃	H	
10	CH3	н	0	Ä	cyclopropyl	CH ₃	OCH ₃	H	185-187
	CH ₃	H	0	H	cyclopropyl	OCH ₃	OCH ₃	M	196-198
	CH3	H	0	H	cyclopropyl	Cl	OCH ₃	CH	202-205
	CH ₃	H	0	H	cyclobutyl	CH ₃	CH ₃	CH	
	CH3	H	0	H	cyclobutyl	CH ₃	OCH ₃	CH	
15	CH ₃	H	0	H	cyclobutyl	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	н	cyclobutyl	CH ³	CH ₃	M	
	CH ₃	H	0	H	cyclobutyl	CH ₃	OCH ₃	M	
	CH ₃	H	0	н	cyclobutyl	OCH ₃	OCH ₃	M	•
	CH ₃	H	0	H	cyclobutyl	Cl	OCH ₃	CH	
20	CH ₃	H	0	H	cyclopentyl	CH ₃	CH3	CH	
	CH ₃	H	0	н	cyclopentyl	CH ₃	OCH3	CH	•
	CH ₃	H	0	· H	cyclopentyl	OCH ₃	OCH ₃	CH	
	CH ₃		0	H	cyclopentyl	. сн ₃	CH ₃	H	
0.5	CII3		0	H	cyclopentyl	. CH ₃	OCH ₃	H	•
25	CH ₃	H	0	H	cyclopentyl	OCH ₃	OCH ₃	I	
	CH3		O	H	cyclopentyl	. C1	OCH ₃	CH	
	CH ₃	н	C	Н	cyclopropyl	OCH ₃	OCH ₂ CH ₃	CH	
	CH ₃		C	Н	cyclopropyl	. cyclopropyl	•	CH	
20	CH3	H	C	H	cyclopropyl	L OCH ₃	CH(OCH ₃) ₂	CH	
30	CH ₃	,	C	H	cyclopropy	NHCH ₃	OCH ₂ CH ₃	N	
	CH ₃	,		Н	cyclopropy	NHCH ₃	OCH3	N	•
	CH ₃		C	Н	cyclopropy	•	OCH2CH3	H	
	CH ₃	н	(Н	cyclopropy:	L CH ₂ F	CH ₃	CH	Į.

35

1

٠,

111
Table III (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	R*	<u>x</u>	<u>y</u>	Z m.p.(*C)
	CH ₃	H	0	Br	cyclopropyl	CH ₃	CH ₃	СН
	CH3				cyclopropyl		OCH ₃	СН
	CH ₃		0	Br	cyclopropyl	осн	OCH ₃	CH
			0	Br	cyclopropyl	CH3	CH ₃	N
10	CH	н	0	Br	cyclopropyl	CH ₃	OCH ₃	N
	CH ₃	н	0	Br	cyclopropyl	OCH ₃	OCH ₃	H
	CH3	н	0	Br	cyclopropyl	Cl	OCH ₃	CH .
	CH ₃	н	0	Br	cyclobutyl	CH ₃	CH ₃	CH
	CH ₃		0	Br	cyclobutyl.	CH ₃		CH
15	CH3	н	0	Br	cyclobutyl	OCH ₃	och ₃	CH
	CH ₃	H	0	Br	cyclobutyl	CH ₃	CH ₃	N
	CH ₃	H	0	Br	cyclobutyl	CH ₃	OCH ₃	N
	CH ₃	H	0	Br	cyclobutyl	осн ₃	och ₃	N
	CH3	H	0	Br	cyclobutyl	Cl	OCH ₃	СН
20	CH ₃	H	0	Br	cyclopentyl	CH ₃	CH ₃	СН
	CH ₃	н	0	Br	cyclopentyl	CH ₃	och ₃	CH .
	CH3	н	0	Br	cyclopentyl	OCH ₃	осн ₃	СН
	CH ₃	н	0	Br	cyclopentyl	CH3	CH ₃	n
0.5	СНЗ	н	0	Br	cyclopentyl	CH ₃	OCH ₃	N
25	CH ₃	Н	0	Br	cyclopentyl	OCH ₃	OCH ₃	N .
	CH ₃	H	0	Br	cyclopentyl	Cl	OCH ₃	СН
	CH3	H	0	Br	cyclopropyl	OCH ₃	och ₂ ch ₃	CH .
	CH3		0	Br	cyclopropyl	cyclopropyl	•	СН
30	CH ₃		0	Br	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH
30	CH3				cyclopropyl	•	och ₂ ch ₃	N
	CH ₃		0	Br	cyclopropyl	NHCH ₃ .	OCH ₃	N
	CH ₃		0	Br	cyclopropyl	och3	och ₂ ch ₃	H
	CH ₃	Н	0	Br	cyclopropyl	CH ₂ F	CH ₃	СН

112
Table III (cont.)

5	R	<u>R</u> 1	n	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH ₂	н	0	SO2CH3	cyclopropyl	CH	CH ₃	СН
	_				cyclopropyl	CH	OCH ₃	CH .
	_				cyclopropyl	_	OCH ₃	CH
	_				cyclopropyl	_	CH3	ĸ
10	CH ₃	H	0	SO2CH3	cyclopropyl	CH3	OCH ₃	H
	CH ₃	H	0	SO2CH3	cyclopropyl	och ₃	OCH ₃	H
	_				cyclopropyl		OCH ³	CH
	CH ₃	H	0	SO2CH3	cyclobutyl	CH ₃	CH ₃	CH
	_				cyclobutyl		OCH ³	CH
15	CH3	H	0	SO2CH3	cyclobutyl	осн _з	OCH 3	CH
	CH3	H	0	SO2CH3	cyclobutyl	CH ₃	CH ₃	M
	CH3	H	0	SO ₂ CH ₃	cyclobutyl	CH3	OCH ₃	X
	CH ₃	H	0	SO2CH3	cyclobutyl	OCH ³	OCH ₃	
	CH3	H	0	SO2CH3	cyclobutyl	Cl	OCH ₃	CH
20	CH ₃	H	0	SO ₂ CH ₃	cyclopentyl	CH3	CH ₃	CH
	CH ₃	H	0	SO2CH3	cyclopentyl	CH3	OCH ₃	ĊН
	CH ₃	H	0	SO2CH3	cyclopentyl	०त्स ₃	OCH ³	CH
	CH3	н	0	SO2CH3	cyclopentyl	CH ³	CH ₃	H
25	CH3	H	0	SO2CH3	cyclopentyl	CH ₃	OCH ³	N
25	CH3	H	0	SO2CH3	cyclopentyl	och ₃	OCH3	¥
	CH3	H	0	SO2CH3	cyclopentyl	Cl	OCH ₃	CH
	CH ₃	н	0	SO2CH3	cyclopropyl	OCH3	OCH ₂ CH ₃	СН
	CH ₃	н	0	SO2CH3	cyclopropyl	cyclopropyl		CH
30	-				cyclopropyl	•	CH(OCH ₃) ₂	CH
30	_				cyclopropyl	-	OCH ₂ CH ₃	M
	CH ₃				cyclopropyl	_	OCH ₃	H
	CH ₃				cyclopropyl	•	och ₂ ch ₃	N
	CH ₃	H	0	SO ₂ CH ₃	cyclopropyl	CH ₂ F	CH ₃	CH

٠,

113 Table III (cont.)

5		R		R.		_	_	- 444
		R ₁			<u>R'</u>	X	<u>Y</u> .	Z m.p.(*C)
	-			_	cyclopropyl		CH ₃	СН
	•			-	cyclopropyl	_	OCH ₃	CH .
	•			-	cyclopropyl		OCH ₃	CH
10	_			_	cyclopropyl		CH ₃	N
	3			-	cyclopropyl	_	OCH ₃	H
	CH ₃	H	0	CH(OH)CH3	cyclopropyl	och ³	OCH ³	N
	CH ₃	Н	0	CH(OH)CH3	cyclopropyl	CÏ	OCH ₃	СН
	CH3	н	0	CH(OH)CH3	cyclobutyl	CH ₃	CH ₃	CH
3 5	CH3	H	0	CH(OH)CH3	cyclobutyl	CH ₃	OCH ₃	CH
15	CH3	H	0	CH(OH)CH3	cyclobutyl	OCH ₃	3	CH
	CH3	H	0	CH(OH)CH3	cyclobutyl	CH ₃	CH3	N
	CH ₃	H	0	CH(OH)CH3	cyclobutyl	CH3	OCH ₃	N
	CH3	H	0	CH(OH)CH3	cyclobutyl	och ₃	осн ₃	N
20	CH ₃	H	0	CH(OH)CH3	cyclobutyl	Cl	och ₃	CH
20	CH ₃	H	0	CH(OH)CH3	cyclopentyl	CH ₃	CH ₃	CH
	CH ₃	H	0	CH(OH)CH3	cyclopentyl	CH ₃	OCH ₃	CH
	CH ₃	H	0	CH(OH)CH3	cyclopentyl	och ₃	och ₃	CH
	CH ₃	H	0	CH(OH)CH3	cyclopentyl	CH ₃	CH ₃	N
25	CH ₃	H	0	CH(OH)CH3	cyclopentyl	CH ₃	och ₃	N
25	CH ₃	H	0	CH(OH)CH3	cyclopentyl	och ₃	OCH ₃	N
	CH ₃	Н	0	CH(OH)CH3	cyclopentyl	C1	OCH ₃	CH ·
	CH3	н	0	CH(OH)CH3	cyclopropyl	OCH ₃	осн ₂ сн ₃	СН
	CH3	H	0	CH(OH)CH3	cyclopropyl	cyclopropyl	осн ₃	CH
20	CH3	Ĥ	0	CH(OH)CH3	cyclopropyl	och ₃	CH(OCH ₃) ₂	СН
30	CH3	н	0	CH(OH)CH3	cyclopropyl	NHCH3.	осн ₂ сн ₃	N
	CH3	H	0	CH(OH)CH3	cyclopropyl	инсн3	och ₃	N .
	CH ₃	н	0	CH(OH)CH3	cyclopropyl	OCH3	och ₂ ch ₃	N
	CH ₃	Н	0	CH(OH)CH3	cyclopropyl	CH ₂ F	CH ₃	ĊH

114
Table III (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	Z m.p.(*C)
	CH2CH=CH2	H	0	H	cyclopropyl	.CH ₃	CH ₃	CH
				H	cyclopropyl		OCH ₃	CH
					cyclopropyl	_	OCH ₃	CH .
					cyclopropyl	CH ₃	CH ³	H
10					cyclopropyl	CH ₃	OCH ₃	Ħ
					cyclopropyl		och ₃	N
	CH_CH=CH_	H	0	H	cyclopropyl	Cl	och ₃	CH
	CH2CH-CH2				cyclobutyl		CH3	CH
	CH2CH=CH2			H	cyclobutyl	CH ₃	och ³	CH
15	CH2CH=CH2			H	cyclobutyl	OCH ³	OCH ³	CH
	CH2CH=CH2	H	0	H	cyclobutyl	CH ₃	CH ₃	M
	CH2CH=CH2	H	0	H	cyclobutyl	CH ₃	OCH ₃	x
					cyclobutyl		OCH ³	n .
20	CH2CH=CH2	H	0	H	cyclobutyl	Cl	och ³	CH
20	CH2CH=CH2	н	0	H	cyclopentyl	CH ₃	CH ₃	CH
	CH2CH=CH2	H	0	H	cyclopentyl	CH ₃	3	CH
	CH2CH=CH2	Н	0	H	cyclopentyl	OCH ₃	OCH 3	CH
	CH2CH=CH2	н	0	H	cyclopentyl	CH3	CH ₃	M
25	CH2CH=CH2	H	0	H	cyclopentyl	CH ₃	och ³	H
25					cyclopentyl		och ³	A
	CH2CH=CH2	H	. 0	H	cyclopentyl	CI	och ₃	CH .
	CH ₂ CH=CH ₂	-			cyclopropyl	-	OCH ₂ CH ₃	СН
	CH2CH=CH2	H				cyclopropyl		CH
30	CH ₂ CH=CH ₂	H	0	H	cyclopropyl	. осн ₃	CH(OCH ₃) ₂	CH
30	CH2CH=CH2	H	0	H	cyclopropyl	ERCH ₃	OCH ₂ CH ₃	N
	CH ₂ CH=CH ₂	•	0	H	cyclopropyl	•	OCH ₃	1
	CH2CH=CH	_		H		•	OCH ₂ CH ₃	N
	CH2CH=CH	2 H	O	Н	cyclopropyl	CH ₂ F	CH ₃	CH

115
Table III (cont.)

5	R	R ₁	n	R ₂	R'	x	<u>X</u>	Z m.p.(*C)
	Ph				cyclopropyl	_	CH ₃	CH CH
	Ph				cyclopropyl	_	OCH ₃	CH
	Ph				cyclopropyl		OCH ₃	СН
	Ph				cyclopropyl	-		N
10	Ph				cyclopropyl	_	CH ³	N
	Ph				cyclopropyl	•	och 3	N
	Ph				cyclopropyl	•	OCH ₃	
	Ph						OCH ₃	CH
					cyclobutyl	CH ₃	CH ₃	CH
15	Ph				cyclobutyl	CH ₃	OCH3	CH
	Ph				cyclobutyl	OCH ₃	OCH ₃	CH
	Ph				cyclobutyl	CH ₃	CH ₃	N .
	Ph	Н	0	Cl	cyclobutyl	CH ₃	OCH ₃	N
	Ph	H	0	Cl	cyclobutyl	och ₃	och ³	N
30	Ph	H	0	Cl	cyclobutyl	Cl	OCH ₃	СН
20	Ph	H	0	Cl	cyclopentyl	CH ₃	CH ₃	СН
	Ph	H	0	Cl	cyclopentyl	CH ₃	OCH ₃	CH .
	Ph	H	0	Cl	cyclopentyl	осн	осн ₃	CH
	Ph	H	0	Cl	cyclopentyl	CH ₃	CH ₃	n
0.5	Ph	H	0	Cl	cyclopentyl	CH ₃	OCH ₃	N
25	Ph	H	0	Cl	cyclopentyl	OCH	OCH ₃	n
	Ph	н	0	Cl	cyclopentyl	C1	оснз	СН
	Ph	H	0	C1	cyclopropyl	осна	оснасна	CH
	Ph					cyclopropyl		СН
	Ph :				cyclopropyl		CH(OCH ₃) ₂	CH .
30	Ph :				cyclopropyl	•	OCH ₂ CH ₃	N
	Ph				cyclopropyl	•	OCH ₃	N .
	Ph 1				cyclopropyl	3	OCH ₂ CH ₃	N
	Ph 1				cyclopropyl	•	CH ₃	СК

Table III (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₂ C≡CH			cyclopropyl	CH ₃ .	CH3	CH	
	сн_с≘сн	H	•	cyclopropyl	CH	OCH ³	CH	
	снас≣сн	H	_	cyclopropyl	•	OCH ³	CH	
	сн³с≘сн	H	o сн ₃	cyclopropyl	CH ₃	CH ³	H	
10	сн_с≣сн	H	O CH3	cyclopropyl	CH ₃	OCH ³	H	
	сн_с≡сн	H	o CH ₃	cyclopropyl	OCH ₃	OCH,	H	
	сн_с≘сн	H	O CH3	cyclopropyl	Cl	OCH3	CH	
	сн₂с≡сн	H	O CH ₃	cyclobutyl	CH ₃	CH3	CH	
	снос≡сн	H		cyclobuty1		OCH ₃	CH	
15	сн2с≡сн	H	-	cyclobutyl	_	OCH ₃	CH	
	сн ₂ с≣сн	H	o CH ₃	cyclobutyl	CH ₃	CH ₃	Ħ	
	СН2С≡СН	H	O CH3	cyclobutyl	CH ₃	OCH ³	H	
	сн₂с≘сн	H	O CH3	cyclobutyl	och ₃	OCH ₃	M	
	сн2с≡сн	H	O CH ₃	cyclobutyl	Ċ1	OCH ₃	CH	
20	сн ₂ с≘сн	H	O CH3	cyclopentyl	CH ₃	CH3	CH	
	CH ₂ C≘CH	H	o CH ₃	cyclopentyl	CH ₃	OCH ³ .	CH	
	сн₂с≘сн	H	O CH3	cyclopentyl	OCH ₃	OCH ³	CH	
	сн ₂ с≡сн	H	O CH ₃	cyclopentyl	CH ₃	CH ₃	M	
	сн ₂ с≡сн	H	O CH3	cyclopentyl	CH ₃	OCH3	H	
25	CH ₂ C≡CH	H	O CH3	cyclopentyl	OCH ₃	OCH ³	M	
	СН ₂ С≣СН	H	0 CH ₃	cyclopentyl	C1	OCH ₃	CH	
	сн ₂ с≡сн	H	O CH ₃	cyclopropyl	OCH3	OCH ₂ CH ₃	CH	
	сн ₂ с≣сн	Н	о сн ₃	cyclopropyl	cyclopropyl	och ³	CH	
	сн ₂ с≘сн	H	o CH ₃	cyclopropyl	OCH ₃	· CH(OCH ₃) ₂	CH	
30	сн ₂ с≘сн	H	O CH3	cyclopropyl	NHCH3	OCH ₂ CH ₃	Ħ	
	сн2с≡сн	H	O CH3	cyclopropyl	NHCH ₃	OCH ₃	N	
	сн ₂ с≘сн	H	o CH3	cyclopropyl	OCH ³	OCH ₂ CH ₃	¥	
	сн ₂ с≡сн	H	O CH ₃	cyclopropyl	CH ₂ F	CH ₃	CH	

117
Tabl III (cont.)

5	R	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	н	0	H	cylopropyl	сн ₂ сн ₃	CH ₃	СН	
	CH ₃	H	0	н	cyclopropyl	CH2CH3	OCH ₃	СН	•
	CH ₃		0	н	cyclopropyl	CH ₂ F	CH3	CH	
	CH3	H	0	H	cyclopropyl	OCF ₂ H	CH ₃	CH	•
10	CH ₃	н	0	н	cyclopropyl	OCF ₂ H	OCH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	OCH ₂ CF ₃	och ₃	CH	
	CH ₃	Н	0	H	cyclopropyl	CH ₂ F	OCH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	CH ₂ C1	OCH ₃	N	
	CH ₃	H	0	н	cyclopropyl	SCH ₃	och ₃	CH	
15	CH ₃	H	0	H	cyclopropyl	SCH ₂ F	OCH ₃	CH	•
	CH3	H	0	H	cyclopropyl	Br	och ₃	СН	
	CH3	H	0	H	cyclopropyl	CH2OCH3 ·	OCH ₃	N	
	CH ₃	H	0	H	cyclopropyl	OCH ₂ OCH ₃	OCH ₃	CH	
20	CH ₃	н	0	н	cyclopropyl	$och_2och_2ch_3$	CH ₃	CH	
20	CH ₃	н	0	H	cyclopropyl	N(CH3)2	OCH ₃	H	•
	CH3	н	0	н	cyclopropyl	NHCH2CH3	CH ₃	N	•
•	CH ₃	H	0	H	cyclopropyl	NHCH3	осн ₂ сн ₃	N	
	CH3	H	0	Н	cyclopropyl	CH ₃	CH ₂ SCH ₃	CH	
25	СH3	H	0	H	cyclopropyl	осн ₃	CH2SO2CH3	CH	
25	CH3	H	0	H	cyclopropyl	NH ₂	OCH ₂ CH ₃	N	
	CH3	H	0	H	cyclopropyl	•	och ₂ ch=ch ₂		
	CH ₃	Н	0	н	cyclopropyl	CH ₂ CH ₃	OCF ₂ H	CH	٠,
	CH ₃	H	0	Н	cyclopropyl	ocf ₂ H	OCF ₂ H	CH	
30	CH ₃	H	0	н	cyclopropyl	och ₃	OCH=CH ₂	CH	•
	CH ₃	Н	0	Н	cyclopropyl	och ₃	C(0)CH3	N	
	CH3	Н	0	Н	cyclopropyl	CH ₃	N(OCH3)CH3	N	
	CH3	Н	0	H	cyclopropyl	OCH(CH ₃) ₂	ocf ₂ H	CH	

118
Table III (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(*C)
	CH ₃	H.	0	H	CH ₃	CH ₃	CH ₃	CH	
	CH ₃	н	0	H	CH ₃	CH ₃	OCH	CH	
	CH ₃	н	0	н	CH3	OCH ₃	OCH	CH	
	CH3	н	0	H	CH3	CH3	CH ₃	H	
10	CH ₃	H	0	н	CH3	CH ₃	OCH	M	
	CH ₃	н	0	H	CH ₃	OCH ₃		n	
	сн _з	н	0	H	CH ₃	Cl	OCH ₃	CH	
	CH ₃	н	0	н	CH ₂ CH ₃	CH ₃	CH ³	CH	
	CH3	н	0	н	CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	CH3	н	0	н	CH ₂ CH ₃	OCH 3		CH	
	CH3	н	0	H	CH ₂ CH ₃	CH ₃	CH ₃	N	
	CH ₃	н	0	н	CH ₂ CH ₃	CH ₃		H	
	CH ₃	H	0	H	CH ₂ CH ₃		OCH ³	H	
	CH3	H	0	H	CH ₂ CH ₃	Cl		CH	
20	CH3		0		CH ₂ CH ₂ CH ₃	CH ₃		CH	•
	CH3		0	H	CH2CH2CH3	CH ₃		CH	•
	CH3	н	0	H	CH ₂ CH ₂ CH ₃	OCH ₃		CH	
	CH3	H	0	н	CH2CH2CH3	CH3		n	
	CH ₃	н	0	H	CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	N	
25	CH3	н	0	H	CH2CH2CH3		OCH ₃	H	
	CH ₃	H	0	H	CH2CH2CH3	Cl	OCH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH2CH3			CH	
	CH ₃	H	0	H	CH2CH2CH2CH3		OCH ₃	CH	
	CH3	H	0	H	CH2CH2CH2CH3		OCH ₃	CH	
30	CH3	H	0	н	CH2CH2CH2CH3	CH ₃	CH3	M.	
	CH ₃	H	0	H	CH2CH2CH2CH3	CH ₃	OCH ₃	B	
	CH ₃		0	H	CH2CH2CH2CH3		OCH ₃		
	CH ₃		0	H	CH2CH2CH2CH3		OCH ₃	CH	

119
Table III (cont.)

5	<u>R</u>	<u>R</u> 1	<u>n</u>	<u>R</u> 2	<u>R*</u>	X	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH ₃	H	0		CH ₂ OCH ₂ F	CH ₃	CH ₃	CH	
	CH ₃	н	0	_	CH ₂ OCH ₂ F	CH ₃	OCH ₃	CH	
	CH ₃	н	0		CH ₂ OCH ₂ F	OCH ₃	OCH3	CH,	
	CH ₃	н	0	CH3		CH3	CH ₃	N	
10	CH ₃	н	0		CH ₂ OCH ₂ F	CH3	OCH ₃	N	
	CH ₃	н.	0	-	CH ₂ OCH ₂ F	OCH ₃	OCH ₃	N	
	CH ₃	H	0		CH ₂ OCH ₂ F	Cl	OCH	CH	
	CH ₃	H	0	CH ₃	CH2SOCH3	CH ₃	CH ₃	CH	
	CH ₃	H	. 0		CH ₂ SOCH ₃	CH ₃	OCH ₃	CH	
15	CH ₃	H	0	_	CH ₂ SOCH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	H	0		CH2SOCH3	CH ₃	CH ₃	N	
	CH ₃	H	0	CH ₃		CH ₃	OCH ₃	N	
	CH ₃	н	0		CH2SOCH3	OCH ₃	OCH ₃	N	
	CH ₃	H	0	_	CH ₂ SOCH ₃	Cl	OCH ₃	CH	
20	CH ₃	H	0	CH ₃		CH ₃	CH ₃	CH	
	CH ₃	н	0	CH ₃		CH ₃	OCH ₃	CH	•
	CH ₃	H	0		CH ₂ SO ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	CH ₃	CH2SO2CH3	CH ₃	CH ₃	N	
	CH ₃	н	0	CH ₃	CH2SO2CH3	CH ₃	OCH ₃	N	
25	CH ₃	н	0	СH _З	CH2SO2CH3	OCH ₃	OCH ₃	N	
	CH ₃	H	0	CH ₃	CH ₂ SO ₂ CH ₃	Cl .	OCH ₃	CH	
	CH3	H	0	•	CH ₂ CN	CH ₃	CH ₃	СН	
	CH ₃	н	0	CH ₃	CH ₂ CH ₂ CN	CH ₃	оснз	CH	
20	CH ₃	н	0	3	сн ₂ (сн ₃) си	OCH ₃	OCH ₃	CH	
30	CH ₃	H	0	CH ₃	CH2NO2	CH ₃	CH ₃	N	
	CH3	н	0	CH ₃	CH2CH2NO2	CH3	OCH ₃	N	
	CH ₃	Н	0	CH ₃	CH ₂ CN	OCH ₃	och ₃	N	
	CH3	H	0	CH3	CH ₂ CN	Cl	OCH ₃	CH	

120
Table III (cont.)

5	<u>R</u> .	R ₁	<u>n</u>	R ₂	<u>R'</u>	<u>x</u>	<u>x</u>	<u>z</u>	m.p.(°C)
	CH3	н	0	Br	CH ₃	CH3	CH ³	CH	
	CH ₃	н	0	Br	CH ₃	CH ₃	OCH ₃	CH	
	ĊH ³	H	0	Br	CH ³	OCH ³	OCH ₃	CH	
	CH ₃	H	0	Br	CH ₃	CH3	CH ³	H	·
10	CH ₃	H.	0	Br	CH ₃	CH3	OCH ₃	H	
	CH ₃	н	0	Br	CH3	OCH ₃	OCH ₃	H	
	CH ₃	H	0	Br	CH ₃	Cl ,	OCH ₃	CH	
	CH ₃	H	0	Br	CH ₂ CH ₃	CH3	CH3	CH.	
	CH ₃	н	0	Br	CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	CH ₃	н	0	Br	CH ₂ CH ₃	OCH ³	OCH3	CH	
	CH ₃	н	0	Br	CH ₂ CH ₃	CH ³	CH 3	Ħ	
	CH ₃	н	0	Br	CH ₂ CH ₃	CH ³	OCH ₃	M	,
	CH ₃	H	0	Br	CH ₂ CH ₃	OCH ₃	OCH ₃	H	
	CH ₃	H	0	Br	CH ₂ CH ₃	Cl	OCH ₃	CH	
20	CH ₃	н	0	Br	CH2CH2CH3	CH ³		CH	
	CH ₃	н	0	Br	CH2CH2CH3	CH ₃	OCH	CH	•
	CH ₃	н	0	Br		OCH ₃	OCH ₃	CH	
	CH ₃	H	0	Br	CH2CH2CH3	CH3	CH ₃	N	
	CH ₃	H	0	Br	CH2CH2CH3	CH ₃	OCH ₃	N	
25	CH ₃	H	0	Br	CH2CH2CH3		OCH ₃	H	
	CH3	н	0	Br		Cl	OCH3	CH	
	CH3	H	0	Br	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	CH3	н	0	Br	CH2CH2CH2CH3		OCH ₃		
22	CH3	H	0	Br	CH2CH2CH2CH3		OCH ₃	CH	I
30	CH ₃	н	0	Br	CH2CH2CH2CH3	CH ₃	CH ₃	H	-
	CH3	н	0	Br	CH2CH2CH2CH3	CH3	OCH ₃		•
	CH ₃	н	. 0	Br	2 2 2 3		OCH ₃		
	CH ₃		0	Br	CH2CH2CH2CH3	. C1	осн	CI	i.

ı.

Table IV

5	R	R ₁	n	R ₂	R'	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(*C)
	CH ₃	H	0	н	cyclopropyl	-	CH ₃	_ CH	
	CH ₃	н		н	cyclopropyl	CH ₃	och _a	CH	
	CH ₃	H		H	cyclopropyl	och ₃	OCH ₃	СН	
	CH ₃	H		н	cyclopropyl	CH ₃	CH ₃	N	
10	CH ₃	н	0	н	cyclopropyl	CH ₃	OCH ₃	N	
	CH ₃	н	0	н	cyclopropyl	OCH ₃	OCH ₃	N	•
	CH ₃	н	_	н	cyclopropyl	Cl	OCH ₃	СН	
	CH ₃	н	0	н	cyclobutyl	CH ₃	CH3	СН	
	CH ₃	н	0		cyclobutyl	CH ₃	OCH ₃	СН	•
15	CH ₃	н	0	н	cyclobutyl	och ₃	OCH ₃	СН	
	CH ₃	н	0	н	cyclobutyl	CH ₃	CH3	H	
	CH ₃	н	0	н	cyclobutyl	CH ₃	OCH ₃	H	
	CH ₃	н	0	н	cyclobutyl	OCH	OCH ₃	N	
	CH ₃	н	0	н	cyclobutyl	Cl	OCH ₃	CH	
20	CH3	н	0	н	cyclopentyl	CH ₃	CH3	СН	-
	CH ₃	н	0	н	cyclopentyl	CH ₃	OCH ₃	СН	•
	CH ₃	н	0	н	cyclopentyl	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	н	cyclopentyl	CH3	CH ₃	N	
	CK	н	0	н	cyclopentyl	CH ₃	OCH ₃	N	
25	CH ₃	н	0	н	cyclopentyl	осн	OCH ₃	H	
	CH3	н	0	н	cyclopentyl	C1	OCH ₃	CH	
	CH ₃		0	н	cyclopropyl	och ₃	OCH2CH3	CH	
	CH ₃		0	н	cyclopropyl	cyclopropyl	OCH ₃	CH	
	CH ₃	н	0	н	cyclopropyl	och ₃	CH(OCH ₃) ₂	CH	I
30	CH ₃		0	н	cyclopropyl	NHCH ₃	OCH ₂ CH ₃	N	
	CH3		0	н	cyclopropyl	MHCH ₃	OCH ₃	N	
	CH ₃		0	н	cyclopropyl	осн3	OCH2CH3	H	
	CH ₃	H	0	н	cyclopropyl	CH ₂ F	CH3	CH	Ī

122
Table IV (cont.)

5	R	<u>R,</u>	n	<u>R</u> 2	<u>R'</u>	<u>x</u> .	<u>¥</u>	<u>z</u>	m.p.(°C)
	CH3	H	0	CH ₂ F	cyclopropyl	CH ₃	CH ₃	CH	•
					cyclopropyl	CH3	OCH ₃	CH	
	_			_	cyclopropyl	OCH ₃	OCH ³	CH	
	CH ₃	H	0	CH ₂ F	cyclopropyl	CH ₃	CH3	N	
10	CH ₃	H	0	CH ₂ F	cyclopropyl	CH ₃	OCH ₃	H	
	CH ₃	H	0	CH ₂ F	cyclopropyl	OCH ₃	OCH ₃	Ħ	
	CH ₃	H	0	CH ₂ F	cyclopropyl	C1	OCH ₃	CH	
	CH ₃	H	0	CH ₂ F	cyclobutyl	CH ₃	CH ₃	CH	
	CH3	H	0	CH ₂ F	cyclobutyl	CH3	OCH ₃	CH	
15	CH ₃	H	0	CH ₂ F	cyclobutyl	och ₃	OCH ₃	CH	
	CH3	H	0	CH ₂ F	cyclobutyl	CH ₃	CH ₃	M	
	CH3	H	0	CH ₂ F	cyclobutyl	CH ₃	OCH3	M.	
	CH ³	H	0	CH ₂ F	cyclobutyl	och ₃	OCH ₃	M	
	CH ₃	H	0	CH ₂ F	cyclobutyl	C1	OCH,	CH	
20	CH3	H	0	CH ₂ F	cyclopentyl	CH ₃	CH ₃	CH	
	CH3	H	0	CH ₂ F	cyclopentyl	CH ₃	OCH3	CH	
	CH ₃	H	0	CH ₂ F	cyclopentyl	осн	OCH ₃	CH	
	CH3	H	0	CH ₂ F	cyclopentyl	CH ₃	CH3	M	
25	CH ₃	H	0	CH ₂ F	cyclopentyl	CH ₃	OCH ₃	M	
25	CH3	H	0	CH ₂ F	cyclopentyl	OCH3	OCH ₃	M	
	CH ₃	H	0	CH ₂ F	cyclopentyl	CI	осн3	CH	•
	CH3	H	0	CH ₂ F	cyclopropyl	och3	OCH ₂ CH ₃	CH	
	CH3	H	0	CH ₂ F	cyclopropyl	cyclopropyl	OCH3	CH	
20	CH3	H	0	CH ₂ F	cyclopropyl	och ₃	сн (осн ₃) 2	CH	
30	CH ₃	H	0	CH ₂ F	cyclopropyl	NHCH ₃	осн ₂ сн ₃	H	
	CH ³	H	0	CH ₂ F	cyclopropyl	инсн3	OCH ₃	N	
	CH3	H	0	CH ₂ F	cyclopropyl	och ³	och ₂ ch ₃	H	•
	CH ₃	H	0	CH ₂ F	cyclopropyl	CH ₂ F	CH3	CH	••

123
Table IV (cont.)

5	R	R ₁	n	R ₂	R*	<u>x</u>	<u>¥</u>	Z m.p.(°C)	
	CH3				cyclopropyl	CH	CH ₃	СН	
	CH3				cyclopropyl	•	OCH ₃	СН	
	-				cyclopropyl		OCH ₃	СН	
					cyclopropyl	-	CH ₃	N	
10					cyclopropyl	•	OCH ₃	N	
	CH ₃				cyclopropyl	•	OCH ₃	H	
	CH ₃				cyclopropyl	•	OCH ₃	СН	
	CH ₃		0	CN	cyclobutyl	CH ₃	CH ₃	СН	
		H	0	CN	cyclobutyl	CH ₃	OCH ₃	СН	
15		H	0	CN	cyclobutyl	OCH ₃	OCH ₃	СН	
	_	H	o	CN	cyclobutyl .	CH ₃	CH ₃	N	
	CH ₃	H	0	CN	cyclobutyl	CH ₃	OCH ₃	N	
			0	CN	cyclobutyl	och ₃	OCH ₃	N	
	CH ₃	H	0	CN	cyclobutyl	Cl	OCH ₃	CH	
20	CH ₃	H	0	CN	cyclopentyl	CH ₃	CH ₃	CH	
	CH ₃	H	0	CN	cyclopentyl	CH ₃	OCH ₃	CH .	
	CH ₃	H	0	CN	cyclopentyl	осн ₃	OCH ₃	CH	
	CH ₃	H	0	CN	cyclopentyl	CH ₃	CH ₃	N	
0.5	3		0	CN	cyclopentyl	CH ₃	OCH ₃	N	
25	CH3	H	0	CN	cyclopentyl	осн ₃	OCH ₃	N	
	CH ₃	H	0	CN	cyclopentyl	Cl	OCH ₃	CH	
	CH ₃	H	0	CN	cyclopropyl	осн ₃	OCH2CH3	СН	
	CH3	H	0	CN	cyclopropyl	cyclopropyl	OCH ₃	СН	
	CH ₃	Н	0	CN	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	CH .	
30	CH3		0	CN	cyclopropyl	инсн _з	OCH2CH3	N	
	CH ₃	H			cyclopropyl	•	OCH3.	n	
	CH3	Н	0	CN	cyclopropyl	OCH ₃	OCH ₂ CH ₃	n	
	CH ₃	Н	0	CN	cyclopropyl	CH ₂ F	CH3	СН	

124
Table IV (cont.)

5	<u>R</u>	<u>R</u> 1	n	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	Z m.p.(°C)
	CH ₂ CH ₃	н	0	н	cyclopropyl	CH	CH ₃	CH
					cyclopropyl	•		CH
					cyclopropyl	•	OCH3	CH
					cyclopropyl	-	CH3	ĸ
ΪO					cyclopropyl	-	OCH ₃	H
					cyclopropyl	_	OCH3	#
	CH ₂ CH ₃				cyclopropyl	-	OCH ₃	CH
	CH2CH3			H	cyclobutyl	CH ₃	CH ₃	CH
				H	cyclobutyl	CH3	осн ³	CH
15					cyclobutyl		OCH ₃	CH
	CH2CH3				cyclobutyl		CH ₃	M .
	CH2CH3	H	0		cyclobutyl		OCH ₃	H
	CH ₂ CH ₃	H	0		cyclobutyl		OCH ₃	N
	CH2CH3	H	0	H	cyclobutyl	Cl	OCH ₃	CH
20	CH2CH3	H	0	H	cyclopentyl	CH ₃	-	CH
	CH ₂ CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ₃	CH
	CH ₂ CH ₃	H	0	H	cyclopentyl	OCH ₃	OCH ³	CH
	CH ₂ CH ₃	H	0	H	cyclopentyl	CH ₃	CH ₃	¥
	CH2CH3	H	0	H	cyclopentyl	CH ₃	OCH ₃	N
25	CH ₂ CH ₃	H	0	H	cyclopentyl	och3	OCH ₃	n
	CH2CH3	H	0	H	cyclopentyl	CI	OCH 3	СН
_	CH ₂ CH ₃	Н	0	H	cyclopropyl	OCH ₃	OCH2CH3	CH
	CH ₂ CH ₃	H	0	H	cyclopropyl	cyclopropyl	OCH3	CH
20	CH ₂ CH ₃	H	0	H	cyclopropyl	осн ₃	CH(OCH ₃) ₂	CH
30	CH ₂ CH ₃	H	0	H	cyclopropyl	WHCH3.	OCH ₂ CH ₃	H
	CH ₂ CH ₃	H	0	H	cyclopropyl	инсн3	OCH ₃	N
	CH ₂ CH ₃	H	0	H	cyclopropyl	осн	OCH ₂ CH ₃	H
	CH ₂ CH ₃	H	0	H	cyclopropyl	CH ₂ F	CH ₃	CH

125
Table IV (cont.)

5	<u>R</u>	R ₁	n R2	R'	<u>x</u> .	¥	Z m.p.(°C)
	сн₂с≘сн	H	ОН	cyclopropyl	CH3	CH ₃	СН
	сн2с≣сн	н	о н	cyclopropyl	СН	осн	СН
	сн ₂ с≘сн		о н	cyclopropyl	OCH	OCH ₃	СН
	сн ₂ с≡сн		ОН	cyclopropyl	CH ₃	СНЗ	N
10	CH ₂ C≣CH		ОН	cyclopropyl	CH3	оснз	N
	сн₂с≡сн	H	о н	cyclopropyl	OCH ₃	OCH ₃	N
	сн₂с≡сн	H	O H	cyclopropyl	Cl	OCH ₃	СН
	сн ₂ с≡сн	н	о н	cyclobutyl	CH ₃	CH ₃	CH
	CH ₂ C≡CH	H	ОН	cyclobutyl	_	OCH ₃	СН
15	СН ₂ С≣СН	H	ОН	cyclobutyl.	_	OCH ₃	CH
	сн ₂ с≡сн	H	ОН	cyclobutyl	СНЗ	CH3	N
	сн ₂ с≡сн	н	ОН	cyclobutyl	CH ₃	OCH ₃	N
	CH ₂ C≡CH	Н	ОН	cyclobutyl	OCH ₃	OCH ₃	N
20	CH ₂ C≣CH	H	о н	cyclobutyl	Cl	OCH ₃	СН
20	сн ₂ ≡сн	H	ОН	cyclopentyl	CH ₃	CH ₃	СН
	сн ₂ с≡сн	н	ОН	cyclopentyl	CH ₃	OCH ₃	СН
	сн ₂ с≡сн	н	ОН	cyclopentyl	OCH ₃	OCH ₃	CH
	сн ₂ с≡сн	н	ОН	cyclopentyl	CH ₃	CH ₃	H
25	CH ₂ C≡CH	Н	о н	cyclopentyl	CH ₃	OCH ₃	N
25	сн ₂ с≡сн	H	ОН	cyclopentyl	9	OCH ₃	N
	CH ₂ C≘CH	н	ОН	cyclopentyl	Cl .	och ₃	СН
	CH ₂ C≘CH	Н	ОН	cyclopropyl	OCH ₃	OCH2CH3	СН
	CH ₂ C≡CH	H	ОН	cyclopropyl	cyclopropyl	och ₃	СН
30	сн ₂ с≡сн	H	он	cyclopropyl	OCH ₃	CH(OCH ₃) ₂	СН
30	сн ₂ с≡сн	H	ОН	cyclopropyl	MHCH3	OCH ₂ CH ₃	n
	сн ₂ с≘сн	Н	ОН	cyclopropyl	NHCH ₃	OCH ₃	. N
	сн ₂ с≡сн	H	о н	cyclopropyl	•	OCH ₂ CH ₃	N
	CH ₂ C≣CH	H	ОН	cyclopropyl	CH ₂ F	CH ₃	СН

126
Table IV (cont.)

5	R 1	n R2	R'	X	<u>¥</u>	Z m.p.(°C)
	нн	0 C1	cyclopropyl	CH ₂	CH ₃	CH
	нн		cyclopropyl	_	OCH ₃	СН
			cyclopropyl	•	OCH	CH
			cyclopropyl	•	CH ₃	R
10	нн		cyclopropyl	•	OCH ₃	N
	нн	0 C1	cyclopropyl	OCH	OCH ₃	N
	нн		cyclopropyl	•	OCH ₃	CH
·	нн	o cı	cyclobutyl	CH ₃	CH ₃	CH
	нн	0 C1	cyclobutyl	CH ₃	OCH ₃	СН
15	нн	o Cl	cyclobutyl	-	OCH ₃	СН
	нн	O Cl	cyclobutyl	CH ₃	CH ₃	N
	нн	0 C1	cyclobutyl	CH ₃	OCH ₃	N
	нн	0 C1	cyclobutyl	OCH ₃	OCH ₃	n
	нн	o Cl	cyclobutyl	Cl	OCH ₃	CH
20	нн	0 C1	cyclopentyl	CH ₃	CH ₃	CH
	нн	o cı	cyclopentyl	СН3	OCH ₃	CH .
	нн	0 C1	cyclopentyl	OCH ₃	OCH ₃	CH
	нн	0 C1	cyclopentyl	CH ₃	CH ₃	M
	H H	o cl	cyclopentyl	CH ₃	OCH ₃	N
25	нн	0 C1	cyclopentyl	осн ₃	OCH ₃	N
	нн	O Cl	cyclopentyl	Cl	OCH ³	CH
	H H		cyclopropyl	•	OCH ₂ CH ₃	CH
	нн	o ci	cyclopropyl	cyclopropyl	OCH ₃	CH
30	нн	o Cl	cyclopropyl	och ₃	CH(OCH ₃) ₂	CH
30	нн	0 C1	cyclopropyl	NHCH ₃	OCH2CH3	N
	нн	o cı	cyclopropyl	NHCH ₃	OCH ₃	N
	нн	o cl	cyclopropyl	OCH ₃	OCH ₂ CH ₃	H
	нн	o cı	cyclopropyl	CH ₂ F	CH ₃	CH

127
Table IV (cont.)

5	R	R ₁	Ū	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u> .	Z m.p.(°C)
	н	H	0	CH ₃	cyclopropyl	CH ₃	CH ₃	СН
	н			-	cyclopropyl		OCH ₃	CH
	н			_	cyclopropyl	-	OCH ₃	CH .
	н			_	cyclopropyl	_	CH ₃	N
10,	H	H	0	CH ₃	cyclopropyl	CH3	OCH ₃	n
•	н	H	0	CH ₃	cyclopropyl	OCH ₃	OCH ₃	R
	H	H	0	CH ₃	cyclopropyl	Cl	OCH ₃	СН
	H	H	0	CH ₃	cyclobutyl	CH ₃	CH ₃	CH
	H	н	0	CH ₃	cyclobutyl	CH ₃	och ₃	CH
15	H	н	0	CH ₃	cyclobutyl	och ₃	OCH ₃	CH
	H	н	0	CH ₃	cyclobutyl	CH ₃	CH ₃	N
	H	H	0	CH3	cyclobutyl	CH ₃	OCH ₃	H
	H	н	0	CH3	cyclobutyl	OCH ₃	och ₃	N
20	H	н	0	CH ₃	cyclobutyl	Cl	OCH ₃	СН
20	Н	H	0	CH3	cyclopentyl	CH ₃	CH ₃	СН
	H	Н	0	CH3	cyclopentyl	сн ₃	OCH ₃	СН
	Н	н	0	CH3	cyclopentyl	осн ₃	OCH ₃	CH
	H	н	0	CH ₃	cyclopentyl	CH ₃	CH ₃	N
25	H	Н	0	CH ₃	cyclopentyl	CH3	och ₃	N
25	H	H	0	CH ₃	cyclopentyl	och ₃	och ₃	N
	H	н	0	CH3	cyclopentyl	Cl	OCH ₃	CH
	Н	Н		•	cyclopropyl	•	OCH2CH3	CH
	H	H	0	CH3	cyclopropyl	cyclopropyl	_	CH
30	H	Н	0	CH ₃	cyclopropyl	оснз	CH(OCH ₃) ₂	CH
30	Н			_	cyclopropyl	-	OCH ₂ CH ₃	N .
	H	н		3	cyclopropyl	_	OCH ₃	N
		н			cyclopropyl	•	OCH ₂ CH ₃	N
	Н	H	0	CH ₃	cyclopropyl	CH ₂ F	CH ₃	CH

128
Table IV (cont.)

5	R	<u>R</u> 1	n	R ₂	<u>R*</u>	<u>x</u>	_	<u>z</u>	m.p.(°C)
	CH ₃	н	0	H	cyclobutyl	CH ₂ CH ₃	CH ₃	CH	
	_	H	0	H	cyclobutyl	CH2CH3	OCH ₃	CH	
	CH3	H	0	H	cyclobutyl	CH ₂ F	CH ₃	CH	
	CH ₃	н	0	H	cyclobutyl	OCF ₂ H	CH3	CH	
10	_	H	0	H	cyclobutyl	OCF ₂ H	OCH ₃	CH	
	CH ₃	H	0	H	cyclobutyl	OCH ₂ CF ₃	OCH ₃	CH	
	CH ₃	H	0	н	cyclobutyl	CH ₂ F	OCH ₃	CH	
	CH ₃	H	0	H	cyclobutyl	CH ₂ C1	OCH ₃	H	
	CH3	H	0	H	cyclobutyl	SCH ₃	och3	CH	
15	CH ₃	H	0	H	cyclobutyl	SCH ₂ F	och ₃	CH	
	CH ₃	H	0	H	cyclobutyl	Br	OCH ₃	CH	
	CH ₃	H	O	н	cyclobutyl	CH ₂ OCH ₃	OCH ₃	Ħ	
	CH ₃	H	0	H	cyclobutyl	OCH2OCH3	OCH ₃	CH	
	CH ₃	H	0	H	cyclobutyl	OCH2OCH2CH3	CH ₃	CH	
20	CH ₃	H	0	H	cyclobutyl	N(CH ₃)2	OCH3	N	
	CH3	H	0	H	cyclobutyl	NHCH2CH3	CH ₃	N	•
	CH3	H	0	Н	cyclobutyl	NHCH ₃	OCH2CH3	N	
	CH ₃	н	0	H	cyclobutyl	CH ₃	CH ₂ SCH ₃	CH	
á.	CH3	H	0	H	cyclobutyl	och ₃	CH ₂ SO ₂ CH ₃	CH	
25	CH3	H	0	Н	cyclobutyl	NH ₂	осн ₂ сн ₃	H	
	CII3	н	O	H	cyclobutyl	CH ₃	och ₂ ch=ch ₂	CH	
	CH3	н	O	H	cyclobutyl	CH ₂ CH ₃	ocf ₂ H	CH	
	CH3	H	C	Н	cyclobutyl	2	OCF ₂ H	CH	
30	CH3)	C	H	cyclobutyl	осн ₃	och=ch ₂	CH	
	CH3	H	C	H	cyclobutyl	осн _з	C(O)CH ₃	N	
	CH3	•	C	H	cyclobutyl	CH ₃	R(OCH ³)CH ³	N	
	CH ₃	H	C	Н	cyclobutyl	осн(сн ₃) ₂	OCF ₂ H	CH	

٦.

129
Table IV (cont.)

5	<u>R</u>	R ₁	<u>n</u>	R ₂	<u>R'</u>	X	<u>¥</u>	<u>z</u>	m.p.(*C)
	CH ₃	н	0	H	CH ₃	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH ₃	CH ₃	оснз	CH	
	CH ₃	н	0	H	CH ³	OCH ₃	OCH ₃	СН	
	CH3	н	0	н	сн3	CH3	сн ₃	N	
10	CH3	н	0	H	СНЗ	CH ₃	оснз	N	
	CH ₃	н	.0	H	CH ₃	OCH ³	OCH ₃	N	
	CH	н	0	H	CH3	C1	OCH	СН	
	CH ₃	н	0	н	CH ₂ CH ₃	CH ₃	CH3	СН	
	CH ₃	н	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	CH ₃	H	0	H	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	CH ₃	н	0	H	CH ₂ CH ₃	CH ₃	CH ₃	N	· · · ·
	CH ₃	н	0	H	CH ₂ CH ₃	CH ₃	OCH ₃	N	
	CH ₃	н	0	Н	CH ₂ CH ₃	OCH ₃	OCH ₃	N	
20	CH ₃	H	0	H	CH ₂ CH ₃	Cl	OCH ₃	CH	
20	CH ₃	н	0	Н	CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	H	0	H	CH2CH2CH3	CH ₃	OCH ₃	CH	•
	CH ₃	н	0	Н	CH2CH2CH3	OCH ₃	OCH ₃	CH	
	CH ₃	Н	0	Н	сн ₂ сн ₂ сн ₃	CH ₃	CH ₃	N	
25	CH ₃	H	0	Н	CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	N	
25	CH3	H	0	Н	CH2CH2CH3	OCH ₃	осн ₃	N	
	CH ₃	H	0	H	CH2CH2CH3	Cl.	оснз	CH	
	CH ₃	н	0	н	CH2CH2CH3	CH ₃	CH ₃	СН	
	CH ₃	н	0	H	CH2CH2CH2CH3	CH ₃	OCH ₃	CH	:
30	CH ₃	Н	0	H	сн ₂ сн ₂ сн ₂ сн ₃	OCH ₃	OCH ₃	CH	
	CH ₃	Н	0	Н	CH ₂ CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	N	
	CH ₃	H			CH2CH2CH2CH3	CH ₃	OCH ₃	N	
	CH ₃	н	0	H	CH2CH2CH2CH3	осн	och ₃	N	
	CH ₃	H	0	н	CH2CH2CH3	Cl	осн ₃	CH	

130
Table IV (cont.)

5	R	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°С)
	CH ₃	H	0	Cl	C(CH ₃)=CH ₂	CH ₃	CH	CH	•
	CH ₃	H	0		C(CH3)=CH2	CH ₃	_	CH	
	CH ₃	H	0		C(CH3)=CH2	OCH ₃	_	CH	
	CH ₃	н	0	Cl	C(CH ₃)=CH ₂	CH3		H	
10	CH ₃	н	0	C1	C(CH ₃)=CH ₂	CH ₃	OCH ₃	N	
	CH ₃	H	0	Cl	C(CH ₃)=CH ₂	OCH ₃		H	
	CH ₃	н	0	C1	C(CH ₃)=CH ₂	Cl		CH	
	CH ₃	H	0	Cl	CH2CH=CHCH3	CH ₃	CH ₃	CH	
	CH ₃	н	0	Cl	CH=CH-CH ₂ CH ₃		OCH ₃	CH	
15	CH ₃	н	0	Cl	CH=CH-CH ₂ CH ₃		OCH ₃	CH	
	CH ₃	H	0	Cl	CH=CH-CH ₂ CH ₃	CH ₃	CH ₃	N	
	CH ₃	н	0	Cl	CH=CH-CH ₂ CH ₃	CH ₃	OCH ₃	H	
	CH ₃	H	0	Cl	CH=CH-CH ₂ CH ₃	OCH ₃		N	
20	CH3	н	0		CH=CH-CH ₂ CH ₃	Cl		CH	•
20	CH3	H	0	Cl	CH=CHCH ₂ F	CH ₃		CH	
	CH ₃	н	0		CH=CHCH ₂ F	CH ₃	OCH ₃	CH	•
	CH ₃	H	0	Cl	CH=CHCH ₂ F	OCH ₃	OCH ₃	CH	
	CH ₃	н	0		CH=CHCH ₂ F	CH ₃	CH ₃	H	
25	CH ₃	H	0	Cl	CH=CHCH ₂ F	CH ₃		H	
	CH ₃	H	0		CH=CHCH ₂ F	OCH ₃		H	
	CH3	н	0	Cl	CH=CHCH ₂ F .	Cl	3	CH	•
	CH ₃	н	0		CH=CHF	CH ₃	_	CH	
	CH.3	Н	0	C1	CH=CHF	CH ₃	OCH ₃	CH	
30	CH ₃	Н	0	Cl	CH=CHF	OCH ₃	OCH ₃	CH	
30	CH ₃	н	0	Cl	CH=CHF	CH3	CH ₃	H	
	CH ₃	н	0		CH=CHF	CH ₃	OCH ₃	N	
	CH ₃	H	0	Cl	CH=CHF	OCH ₃	OCH ₃	H	
	CH ₃	H	0	Cl	CH=CHF	Cl	OCH ₃	CH	

131
Tabl IV (cont.)

5	<u>R</u>	R ₁	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	¥	<u>z</u>	m.p.(°C)
	СНЗ	н			снз	CH3	CH ₃	СН	
	CH ₃	н		CO2CH3		CH ₃	осн	СН	
	CH ₃	H		CO ₂ CH ₃	CH ₃	оснз	OCH ₃	СН	
	CH3	H		CO2CH3	CH ₃	CH ₃	CH ₃	N	
10,	CH3	H		CO2CH3	CH ₃	CH ³	och ₃	N	
	CH ₃	н		CO_CH_	CH ₂	осн3	OCH ₃	N	
	CH ₃	н		CO2CH3	CH ₃	Cl	OCH ₃	СН	
	CH3	н		CO ₂ CH ₃		СНЗ	CH3	CH	
	CH3	н		CO2CH3		CH3	оснз	СН	
1.5	CH ₃	н		CO2CH3		оснз	OCH ₃	СН	
	CH ₃	H	0	CO2CH3		CH3	CH3	N	
	CH ₃	н	0	CO2CH3		CH ³	OCH ₃	N	
	CH ₃	H	0	CO ₂ CH ₃		оснз	OCH ₃	N	
	CH ₃	H		CO2CH3		Cl	OCH ₃	CH	
20	CH ₃	н	0	CO2CH3	CH2CH2CH3	CH ₃	CH3	CH	
	CH ₃	H	0		CH2CH2CH3	CH ₃	OCH ₃	ĊН	
	CH ₃	Н	0		CH2CH2CH3	OCH ₃	OCH ₃	CH	
	CH3	H	0	CO2CH3	CH2CH2CH3	CH ₃	CH ₃	N	
	CH ₃	н	0	со ₂ сн ₃	сн ₂ сн ₂ сн ₃	CH ₃	OCH ₃	N	
25	CH ₃	H	0	CO2CH3	сн ₂ сн ₂ сн ₃	OCH ₃	OCH ₃	N	
	CH ₃	H	0	со ₂ сн ₃	сн ₂ сн ₂ сн ₃	Cl	OCH ₃	CH	
	CH ₃	H	0	CO2CH3	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	CH ₃	н .	0	CO2CH3	сн ₂ сн ₂ сн ₂ сн ₃	CH3	OCH ₃	CH	
30	CH3	H	0	CO2CH3	CH2CH2CH3	оснз	OCH ₃	CH	•
30	СНЗ	н	0		CH2CH2CH2CH3	CH ₃	CH ₃	N	
	CH ₃	H	0	CO2CH3	CH2CH2CH2CH3	CH ₃	OCH ₃	N	
•	СH _З	H	0	CO2CH3	CH2CH2CH2CH3	OCH ₃	OCH ₃	N	
	CH3	H	0	CO2CH3	сн ₂ сн ₂ сн ₂ сн ₃	C1	OCH ₃	CH	

132
Table IV (cont.)

_		_		_					
5	<u>R</u>	$\frac{R_1}{2}$	n	R ₂	<u>R*</u>	X.	<u>x</u>	<u>Z</u>	m.p.(°C)
	CH ₂ CN	H	0	H	CH ₂ F	CH ₃	CH ₃	CH	
	CH_CN	H	. 0	H	CH ₂ F	CH ₃	OCH ₃	CH	
•	CH ₂ CN	H	0	H	CH ₂ F	OCH ₃	OCH ₃	CH	
	CH ₂ CN	H	0	H	CH ₂ F	CH3	CH3	H	
10	CH ₂ CN	н	0	H	CH ₂ F	CH ₃	OCH ₃	M	
	CH ₂ CN	H	0	H	CH ₂ F	och ₃	OCH ₃	H	
	CH ₂ CN	H	0	н	CH ₂ F	Cl	OCH ₃	CH	
	CH ₂ CN	н	0	H	CH ₂ CH ₂ F	CH ₃	CH3	CH	
	CH ₂ CN	н	0	H	CH2CH2F	_	осн ₃	ÇН	
15	CH ₂ CN	н	0	H	CH ₂ CH ₂ F	OCH ₃	OCH ₂	CH	
	CH ₂ CN	н	0	H	CH ₂ CH ₂ F		CH ₃	H	
	CH ₂ CN	н	0	н	CH ₂ CH ₂ F	CH3	OCH 3	N	
	CH ₂ CN	н	0	н	CH ₂ CH ₂ F			N	•
	CH ₂ CN	H	0	н	CH ₂ CH ₂ F		OCH ₃	СН	
20	CH ₂ CN		0	H	CHF ₂	CH ₃	CH ₃	CH	
	CH ₂ CN		0	н	CHF ₂	CH ₃	OCH ₃	CH	•
	CH ₂ CN		0	н	CHF ₂	OCH ₃	OCH ₃	CH	•
	CH ₂ CN		0	н	CHF ₂	CH ₃	CH ₃	N	
	CH ₂ CN		0	H	CHF ₂	CH ₃	OCH3	H	
25	CH ₂ CN		0	H	CHF ₂	OCH ₃	OCH ₃	H	
	CH ₂ CN		0	н	CHF ₂	Cl	OCH ₃	CH	
	CH ₂ CN		. 0	н	CH ₂ CF ₃	CH ₃ .			
	CH ₂ CN		0	н	CH ₂ CF ₃	CH ₃	осн ₃	CH	4
	CH ₂ CN		0	н	CH ₂ CF ₃	OCH ₃	OCH ₃	CH	·
30	CH ₂ CN		- 0	H	CH ₂ C1	CH ₃	CH ₃	N	
	CH ₂ CN		0	н	CH ₂ C1	CH ₃	OCH ₃	N	
	CH ₂ CN		0	н	CH ₂ C1	осн 3	OCH ₃	N	
	CH ₂ CN		0	н	CH ² C1	Cl	OCH ₃	CH	ſ

133 Table V

```
13 m.B.
        CH2 H H cyclopropyl O A-2 CH2
        CH3 H H cyclopropyl O A-2 OCH3
                                                         CH<sub>2</sub>
       CH<sub>3</sub> H H cyclopropyl O A-2 OCH<sub>3</sub>
        CH<sub>3</sub> H H cyclopropyl O A-2 OCH<sub>2</sub>CH<sub>3</sub>
10 CH<sub>3</sub> H H cyclopropyl O A-3 CH<sub>3</sub>
        CH<sub>2</sub> H H cyclopropyl O A-3 OCH<sub>2</sub>
       CH<sub>2</sub> H H cyclopropyl O A-3 OCH<sub>2</sub>CH<sub>2</sub>
       CH3 H H cyclopropyl O A-3 OCF2H
       CH<sub>2</sub> H H cyclopropyl O A-4 CH<sub>2</sub>
15
       CH2 H H cyclopropyl O A-4 CH3
       CH<sub>2</sub> H H cyclopropyl O A-4 OCH<sub>2</sub>
       CH3 H H cyclopropyl O A-4 OCH3
       CH<sub>2</sub> H H cyclopropyl O A-4 OCF<sub>2</sub>H
                                                                         OCH<sub>3</sub>
       CH<sub>3</sub> H H cyclopropyl O A-5 -
                                                               CH2
20
       CH<sub>3</sub> H H cyclopropyl O A-5 -
                                                               CH<sub>3</sub>
                                                                         OCH2CH3
       CH<sub>3</sub> H H cyclopropyl O A-5 -
                                                               CH3
                                                               CH2CH3 OCH3
       CH<sub>3</sub> H H cyclopropyl O A-5 -
                     cyclopropyl O A-6 -
                                                                                  OCH<sub>q</sub> -
       CH3 H H cyclopropyl O A-6 -
25
       CH<sub>2</sub> H H cyclopropyl O A-7 CH<sub>2</sub> CH<sub>3</sub> CH
```

30

134 Table V (cont.)

5	R	<u>R</u> 1	R ₂	<u>R*</u>	Ū	Ā	<u>x</u>	<u>Y</u> 1	<u>x</u> 2	<u>Y_2</u>	x ₃ _	Y3 T-81
	CH3	н	CH3	cyclopropyl	0	A-2	CH ₃	0	-	_		-
	CH ₃	н	CH ₃	cyclopropyl	0	A-2	OCH ₃	0	- ·	-	_	-
•	CH ₃	H	CH ₃	cyclopropyl	0	A-2	осн ₃	CH ₂	-	-	-	-
	CH ₃	H	CH ₃	cyclopropyl	0	A-2	OCH2CH3	_	_	_	-	-
10	CH ₃	H	CH ₃	cyclopropyl	0	A-3	CH3	-	-	-	-	-
•	CH ₃	H	CH ₃	cyclopropyl	0	A-3	OCH ₃	-	-	- .	-	-
	CH ₃	H	CH3	cyclopropyl	0	A-3	OCH2CH3	-	-	-	-	-
	CH ₃	H	CH ₃	cyclopropyl	0	A-3	oce ₂ H	-	-	-	-	-
	CH ₃	H	CH ₃	cyclopropyl	0	A-4	CH3	-	-	-	-	н
15	CH3	H	CH ₃	cyclopropyl	0	A-4	CH ₃	-	-		-	CH ₃
	CH3	H	CH ₃	cyclopropyl	0	A-4	OCH ₃	-	- [-	-	H
•	CH ₃	H	CH ₃	cyclopropyl	0	A-4	och ₃	-	-	÷	-	CH ₃
	CH ₃	H	CH ₃	cyclopropyl	0	A-4	OCF ₂ H	-	-	-	-	H _i
20	CH ₃	H	CH ₃	cyclopropyl	0	A-5	-	-	CH ₃	OCH ₃	-	-
20	CH ₃	H	CH ₃	cyclopropyl	0	A-5	-	-	CH ₃	OCH ₂ CH	3	-
	CH3	·H	CH ₃	cyclopropyl	0	A-5	-	-	CH ₃	SCH ₃	-	_
	CH ₃	H	CH3	cyclopropyl	0	A-5	- '	-	CH ₂ CH ₃	OCH ₃	-	- .
	CH ₃	H	CH ₃	cyclopropyl	0	A-6	-	-	-	-	CH ₃	-
25	CH3	H	CH ₃	cyclopropyl	0	A-6	-	-	-	-	OCH ³	-

T.

135
Table Va

5							
	<u>J</u>	<u>R</u>	R'	¥	<u>x</u>	<u>Y</u> 1	m.p.(°C)
	J-1	CH ₃	CH ₃	A-2	CH ₃	0	
	J-1	CH ₃	CH3	A-2	оснз	0	
	J-1	CH	CH _a	A-2	OCH ₂ CH ₃	0	
10,	J-1	CH ₃	CH ₃	A-2	OCF ₂ H	0	
	J-1	CH ₃	CH ₃	A-2	CH ₃	CH ₂	
	J-1	CH ₃	CH ₃	A-2	осн	CH ₂	
	J-5	-	cyclopropyl	A-2	CH ₃	٥٦	
	J-5	-	cyclopropyl	A-2	OCH ₃	0	•
15	J-5	-	cyclopropyl	A-2	OCH2CH3	0	
	J-5		cyclopropyl	A-2	OCF ₂ H	0	
•	J-5	-	cyclopropyl	A-2	CH3	CH ₂	
	J-5	-	cyclopropyl	A-2	OCH ₃	CH ₂	
	J-8	-	cyclopropyl	A-2	CH ₃	0	
20	J-8	-	cyclopropyl	A-2	OCH3	0	
	J-8	-	cyclopropyl.	A-2	OCH ₂ CH ₃	0	•
	J-8	-	cyclopropyl	A-2	OCF ₂ H	0	
	J-8	-	cyclopropyl	A-2	CH3	CH ₂	•
	J-8	-	cyclopropyl	A-2	осн	CH ₂	
25						-	
	<u>J</u>	<u>R</u>	<u>R*</u>	A	<u>x</u> 1		m.p.(°C)
	J-1	CH ₃	сн ₃	A-3	CH ₃		
	J-1	CH ₃	CH ₃	A-3	OCH3		
	J-1	CH ₃	CH ₃	A-3	оснасна	1	
30	J-1	CH ₃	CH ₃	A-3	OCF ₂ H		
	J-5	_	cyclopropyl	A-3	CH ₃		
	J-5	-	cyclopropyl	A-3	OCH ₃		•
	J-5	-	cyclopropyl	A-3	осносна		
	J-5	-	cyclopropyl	A-3	OCF ₂ H		
35	J-8	-	cyclopropyl	A-3	CH ₃		
	J-8	-	cyclopropyl	A-3	och ₃		
	J-8	-	cyclopropyl	A-3	осносн		
	J-8	•	cyclopropyl	A·3	ocf ₂ H		

136
Table Va (cont.)

5	J	<u>R</u> .	R'	A	<u>x</u> 1	Y_3	m.p.(*C)
	J-1	CH ₃	CH ₃	A-4	CH ₃	H	
	J-1	CH ₃	CH ₃	A-4	OCH ₃	H	
	J-1	CH ₃	CH	A-4	OCH ₂ CH ₃	H	
	J-1	CH ₃	сн ₃	A-4	OCE H	H	•
10	J-1	CH ₃	CH ₃	A-4	CH ₃	CH3	
	J-1	CH ₃	CH ₃	A-4	OCH3	CH ³	
	J-5	-	cyclopropyl	A-4	CH ₃	H	
	J-5	-	cyclopropyl	A-4	OCH ₃	н	
	J-5	_	cyclopropyl	A-4	OCH CH3	H	
15	J-5	-	cyclopropyl	A-4	oce h	H	•
	J-5	_	cyclopropyl	A-4	CH3 .	CH ³	
	J-5		cyclopropyl	A-4	OCH ₃	CH ³	
	J-8	_	cyclopropyl	A-4	CH ³	н	
	J-8	-	cyclopropyl	A-4	осн	H	
20	J-8	-	cyclopropyl	A-4	OCH2CH3	H	
	J -8	_	cyclopropyl	A-4	ocf ₂ h	н .	
	J-8	-	cyclopropyl	A-4	CH ₃	CH ₃	
	J-8	-	cyclopropyl	A-4	OCH ₃	CH ³	
25							
	<u>J</u>	<u>R</u>	<u>R*</u>	▲	<u> </u>	<u>Y</u> 2	m.p.(°C)
	J-1	CH ₃	CH ₃	A-5	CH ₃	OCH ₃	
٠.	J-1	CH3	СНЗ	A-5	CH ₃	OCH CH	
	J-1	CH ₃	CH ₃	A-5	CH ₃	SCH ₃	
30 .	J-1	CH ₃	снз	A-5	CH ₃	CH3	
	J-1	CH3	CH ₃	A-5	CH ₃	CH ₂ CH ₃	
	J-1	CH ₃	снз	A-5	CH ₂ CH ₃	OCH ₃	
	J-1	CH3	CH ³	A-5	CH ₂ CF ₃	CH3	
	J-5	-	cyclopropyl	A-5	CH ₃	осн	
35	J-5 .	-	cyclopropyl	A-5	CH ₃	OCH ₂ CH ₃	

137
Table Va (c nt.)

5	<u>J</u>	<u>R</u>	<u>R*</u>	A	<u>x</u> _2	<u> 4</u> 2	m.p.(*C)
	J-5		cyclopropyl	A-5	CH ₃	sch ₃	m.P.1
	J-5	_	cyclopropyl	A-5	CH ₃	сн ³	. •
	J-5	_	cyclopropyl	A-5	CH ₃		•
	J-5	_	cyclopropyl	A-5		CH ₂ CH ₃	
10	J-5	_	cyclopropyl	A-5	CH ₂ CH ₃	OCH ³	•
•	J-8	_	cyclopropyl	A-5	CH ₂ CF ₃	CH ³	
	J-8	_	cyclopropyl	A-5	CH ₃	OCH CH	
	J-8	_			CH ₃	och ₂ ch ₃	
		-	cyclopropyl	A-5	CH ₃	SCH ₃	
15	J-8	-	cyclopropyl	A-5	CH ₃	CH ₃	
	J-8	-	cyclopropyl	A-5	CH ₃	CH ₂ CH ₃	
	J-8	-	cyclopropyl	A-5	CH ₂ CH ₃	OCH ₃	
	J-8	- `	cyclopropyl	A-5	CH ₂ CF ₃	CH3	
			· .				
20	<u>J</u>	R	<u>R*</u>	<u>A</u>	<u> </u>	m.p.(°C)	
		CH ₃	CH ₃	A-6	CH ₃	<u>-</u>	-
	J-1	CH ₃	CH ₃	A-6	OCH ₃		
	J-5	-3	cyclopropyl	A-6	CH ₃		
	J-5	_	cyclopropyl	A-6	осн ₃		
25	J-8	_	cyclopropyl	A-6	CH ₃		
	J-8	_	cyclopropyl	A-6	OCK 03		
	5 5	_	cyclopropyr	N-0	OCH ₃		
			'	•		•	
	<u>J</u>	R	<u>R*</u>	` <u>A</u>	X ₄	Y ₄ m.p	.(°C)
30	J-1	CH ₃	сн ₃	A-7	СНЗ	OCH ₃	
30	J-1	CH ₃	CH ₃	A-7	осн	OCH3	
	J-5	-	cyclopropyl	A-7	CH ₃	OCH ₃	
	J-5	_	cyclopropyl ·	A-7	осн	och ₃	•
	J-8	_	cyclopropyl	A-7	CH ₃	OCH ₃	
35	J-8		cyclopropyl	A-7	och ₃	och ₃	

Table VI

5		R		R					m.p.
	R	_1	D	_2	R'	<u>x</u>	<u>¥</u>	<u>z</u>	(°C)
	CH ₃	H	0	H	cyclopropyl	CH ³	CH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	CH ₃	OCH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	OCH ₃	OCH ₃	CH	
10	CH ₃	H	0	H	cyclopropyl	CH ₃	CH ₃	H	
	CH3	H	0	H	cyclopropyl	CH ₃	OCH ₃	Ħ	
	CH ₃	H	0	H	cyclopropyl	OCH ₃	OCH ₃	Ħ	
•	CH ₃	H	0	H	cyclopropyl	Cl	OCH ₃	CH	
	CH3	H	0	H	cyclobutyl	CH ₃	CH3	CH ·	
15	CH ₃	H	0	H	cyclobutyl	CH ₃	OCH ₃	CH	
	CH3	H	0	H	cyclobutyl	OCH ₃	OCH ₃	CH	
	CH3	H	0	H	cyclobutyl	CH ₃	CH3	H	•
	CH ₃		0	H	cyclobutyl	CH ₃	OCH ₃	H	
	CH3	H	0	H	cyclobutyl	OCH ₃	OCH ₃	H	
20	CH3		0	H	cyclobutyl	Cl	OCH ₃	CH	
	CH ₃	H	0	H	cyclopentyl	CH ³	CH ₃	CH	•
	CH ₃		0	H	cyclopentyl	CH ₃	OCH ₃	CH	
	CH ₃	H	0	H	cyclopentyl	OCH.	OCH ₃	CH	
	CH ₃	H	0	H	cyclopentyl	CH ³	CH ₃	n	
25	CH ₃	H	0	H	cyclopentyl	CH ₃	OCH ₃	M .	
	CH ₃	H	0	H	cyclopentyl	OCH ₃	OCH ₃	H	
	CH ₃	H	0	H	cyclopentyl	C1	OCH ₃	CH	
	CH ₃	H		H			OCH ₂ CH ₃	CH	
	CH ₃	H	0	H	cyclopropyl	cyclopropyl	OCH ₃	CH	
30	CH ₃	H	0	H	cyclopropyl	och ₃	CH(OCH ₃) ₂	CH	
	CH ₃	H	0	H	cyclopropyl	NHCH ₃	OCH ₂ CH ₃ .	R ·	
	CH ₃	H	0	H	cyclopropyl	NHCH3	OCH ₃	H	
	CH ₃	н	0	H	cyclopropyl	och ³	OCH ₂ CH ₃	K	
	CH ₃	H	0	H	cyclopropyl	CH ₂ F	CH ₃	CH	

<u>Table VII</u>

5	1	R		R					m.p.
3	-		n	_2	<u>R*</u>		<u>¥</u>	<u>z</u>	(*C)
	CH ₃ I	H	0	H	cyclopropyl	CH ₃	CH ₃	CH	
	CH ₃ I		0	н	cyclopropyl		OCH ₃	CH .	
•	CH ₂ 1		0	н	cyclopropyl	осн	OCH ₃	CH	
10.	CH		0	н	cyclopropyl	CH ₃	CH ₃	H	
10,	CH ₃ I		0	H	cyclopropyl	CH ₃	och ₃	H	
	CH ₃		0	H	cyclopropyl	och ₃	och ₃	H	
	•	H	0	H	cyclopropyl	Cl	och ₃	СН	
	•	H	0	н	cyclobutyl	CH ₃	CH ₃	CH	
15	•	H	0	H	cyclobutyl	CH ₃	OCH ₃	CH	
	CH ₃	H	0	H	cyclobutyl	och ₃	OCH ₃	CH	
	CH ₃	H	0	H	cyclobutyl	CH ₃	CH ₃	T.	
	CH ₃	H	0	H	cyclobutyl	-	och ³	N	
	CH3	H	0	H	cyclobutyl	och ₃	och ₃	N	
20	CH ₃	H	0	H	cyclobutyl	Cl	OCH ₃	CH	
	CH ₃	H	0	H	cyclopentyl	CH ₃	CH ₃	CH	•
	CH ₃	H	0	H	cyclopentyl	CH ₃	och ₃	CH	
	СH _З	H	0	H	cyclopentyl	OCH ₃	OCH ₃	CH	
	CH ₃	H	0	H	cyclopentyl	CH ₃	CH ₃	N	
25	CH ₃	H	0	H	cyclopentyl	CH ₃	och ³	H	
	CH ₃	H	0	H		•	OCH ₃	N	
	CH3	H	0	Н	_		och ₃	CH	
	CH ₃	H	0	H		•	och ₂ ch ₃	CH	
	CH ₃	H	0	н	cyclopropyl	cyclopropyl	-	CH	
30	CH ₃	H	0	H	cyclopropyl	och ₃	CH(OCH ₃) ₂	CH	
	3	H	0	Н	cyclopropyl	мнснз	och ₂ ch ₃	N	
	3	H	0	н	cyclopropyl	-	och ₃	N	
	CH ₃	H	0	H	cyclopropyl	•	och ₂ ch ₃	N	
	CH ₃	H	0	H	cyclopropyl	CH ₂ F	CH ₃	CH	

Table VIII

Compounds of Formula I where R is CH₃ and n' is O

•	J	R ₁	<u>R</u> 2	<u>n</u>	<u>R*</u>	X	¥	<u>z</u>	m.p.(°C)
	J-8	H	H	1	CH ₃	CH ³	CH ₃	CH	
10	J-8	H	н	1	CH ₃	CH ₃	OCH ₃	CH	
	J-8	H	H	1	CH ₃	OCH ₃	OCH ₃	CH	
	J-8	CH ₃	H	1	CH ₃	OCH ₃	OCH 3	CH	
	J-8	H	H	1	CH ₃	OCH ₃	осн ₃	n	
15	J-8	H	H	1	CH ₃	OCH ₃	CH ₃	M	
15	J-8	H	H	1	CH ₂ CH ₃	CH ₃	CH ₃	CH	
	J-8	H	H	1	CH ₂ CH ₃	OCH ₃	CH ₃	CH	
	J-8	H	H	1	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	J-8	H	H	1	CH ₂ CH ₃	OCH ₃	OCH ₃	M	
	J-8	H	H	1	CH ₂ CH ₃	OCH ₃	CH ₃	H	
20	J-9	H	H	1	CH2CH2CH3	OCH ₃	OCH ₃	CH	•
	J-1	H	H	-	CH ₃	OCH ₃	OCH ₃	CH	•
	J-6	H	H	-	CH ₃	OCH ₃	OCH ₃	CH	

Table IX

_							
5	R ₁	R ₂	R*	X	X	<u>z</u>	m.p.(°C)
	н	н	cyclopropyl	CH ₃	CH ₃	CH	154-157
	н	н	cyclopropyl	CH ₃	OCH ₃	CH	167-171
	н	н	cyclopropyl	OCH ₃	OCH ₃	CH	165-168
10	н	н	cyclopropyl	CH ₃	CH ₃	N	
10	н	H	cyclopropyl	CH ₃	OCH ₃	n	146-148
	н	н	cyclopropyl	OCH.	OCH ₃	Ħ	146-149
	н	H	cyclopropyl	Cl	OCH ₃	CH	122-125
	H	H	cyclobutyl	CH ₃	CH ₃	CH	
15	н	H	cyclobutyl	CH ₃	OCH ₃	CH	•
13	H	H	cyclobutyl	OCH ₃	OCH ₃	CH	
	н	H	cyclobutyl	CH ₃	CH3	N	
	н	H	cyclobutyl	CH ₃	осн	N	
	н	H	cyclobutyl	OCH ₃	осн ₃	N	
20	н	H	cyclobutyl	Cl	OCH ₃	CH	
20	н	H	2-fluorocyclopropyl	CH ₃	CH ₃	CĤ	
	н	H	2-fluorocyclopropyl	CH ₃	OCH3	СН	
	н	H	2-fluorocyclopropyl	OCH ₃	och ₃	CH	•
	н	H	2-fluorocyclopropyl	CH ₃	СН _З	N	
25	н	н	2-fluorocyclopropyl	CH ₃	осн _з	N	
23	н	н	2-fluorocyclopropyl	OCH ₃	och ₃	N	
	н	H	2-fluorocyclopropyl	Cl	OCH3	CH	
	н	н	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	H	Н	2,2-difluorocyclopropyl	CH ₃	осн ₃	CH	
30	н	Н	2,2-difluorocyclopropyl		OCH ₃	CH	
30	н	H	2,2-difluorocyclopropyl	~	CH ₃	N	
	н	H	2,2-difluorocyclopropyl	CH ₃	OCH ₃	N	
	Н	H	2,2-difluorocyclopropyl	och ₃	OCH ₃	n	
	н	H	2,2-difluorocyclopropyl	Cl	осн _з	CH	

142
Table IX (cont.)

5							
3	<u> </u>	R ₂	R1	X	<u>Y</u>	<u>z</u>	m.p. (°C)
	H	F	cyclopropyl	CH ₃	CH3	CH	
	H	F	cyclopropyl	CH ³ .	OCH ₂	СН	
	H	F	cyclopropyl	OCH ₃	OCH ⁴	CH	
10	н	F	cyclopropyl	CH ₃	CH ₃	N	
10	H	F	cyclopropyl	CH3	OCH _a	Ħ.	
	H	F	cyclopropyl	осн	OCH ₃	M	
	H	F	cyclopropyl	C1	OCH ₃	CH	
	н	F	cyclobutyl	CH ₃	CH3	СН	
15	H	F	cyclobutyl	CH3	OCH	CH	
13	H	F	cyclobutyl	OCH	OCH ³	CH.	
	H	F	cyclobutyl	CH3	CH ₃	H	
	H	F	cyclobutyl	CH ³	OCH3	H	
	H	F	cyclobutyl	осн	оснз	M	
20	H	F	cyclobutyl	Cl	осна	СН	
	H	F	2-fluorocyclopropyl	CH ₃	CH3	CH	
	H	F	2-fluorocyclopropyl	CH ³	OCH	CH	
	H	F	2-fluorocyclopropyl	осн	OCH ³	CH	•
	H	F	2-fluorocyclopropyl	CH3	CH3	M	
25	H	F	2-fluorocyclopropyl	CH ³	OCH ³	M	
	H	F	2-fluorocyclopropyl	осн	OCH ₃	H	
	H	F	2-fluorocyclopropyl	Cl	OCH	CH	
	H	F	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	H	F	2,2-difluorocyclopropyl	CH ₃	OCH ₃	СН	
30	H	F	2,2-difluorocyclopropyl	осн ₃	осн ₃	CH	
	H	F	2.2-difluorocyclopropyl	CH3	CH3	N	
	H	F	2,2-difluorocyclopropyl	CH ³	OCH ₃	Ħ	
	H	F	2,2-difluorocyclopropyl	осн 3	OCH ₃	M	
	H	F	2,2-difluorocyclopropyl	Cl	осн3	CH	

143
Table IX (cont.)

5							m.p.
3	$\frac{R_1}{2}$	<u>R</u> 2	<u>R*</u>	<u>x</u> .	¥	<u>z</u>	(°C)
	H	CO2CH3	cyclopropyl	CH3	CH ₃	CH	
	H	CO2CH3	cyclopropyl	CH3	OCH ₃	CH	
	н	CO2CH3	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	CO2CH3	cyclopropyl	CH ₃	CH ₃	H	
	H	CO2CH3	cyclopropyl	CH ₃	och ₃	N	•
	н	CO2CH3	cyclopropyl	осн ₃	och ₃	N	
	H	CO2CH3	cyclopropyl	Cl	OCH ₃	CH	
	н	CO2CH3	cyclobutyl	CH ₃	CH ₃	CH	
15	H	CO2CH3	cyclobutyl	CH ₃	OCH ₃	CH	
	H	CO2CH3	cyclobutyl	OCH3	OCH ₃	CH	
	H	CO2CH3	cyclobutyl '	CH ₃	CH ₃	N	
	н	CO2CH3	cyclobutyl	CH ₃	och ₃	N	
	н	CO2CH3	cyclobutyl	осн ₃	och ₃	H	
20	н	CO2CH3	cyclobutyl	Cl	och ₃	CH	
	H	CO2CH3	2-fluorocyclopropyl	CH ₃	CH3.	CH	
	H	CO2CH3	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
	H	CO2CH3	2-fluorocyclopropyl	och ₃	OCH ₃	CH	
	H	CO2CH3	2-fluorocyclopropyl	CH ₃	CH ₃	N	
25	H	CO2CH3	2-fluorocyclopropyl	CH ₃	OCH ₃	Ħ	
	Н	CO2CH3	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	H	CO2CH3	2-fluorocyclopropyl	Cl	OCH ₃	CH	
	H	CO2CH3	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	н	CO2CH3	2,2-difluorocyclopropyl	CH ₃	och ₃	CH	
30	н	co2CH3	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	CO2CH3	2,2-difluorocyclopropyl	CH ₃	CH ₃	N	
	н	CO2CH3	2,2-difluorocyclopropyl	CH ₃	OCH ₃	N	
	н	CO2CH3	2,2-difluorocyclopropyl		OCH ₃	N	•
	Н	CO2CH3	2,2-difluorocyclopropyl	Cl	och ₃	CH	•

144
Table IX (cont.)

5							m.p.
5	<u>R</u> 1	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	<u>z</u>	(°C)
	H	R	cyclopropyl	H	CH ₃	CH	
	H	H	cyclopropyl	н	OCH ₃	CH	
	H	H	cyclopropyl	CH3	OCH ₂ CH ₃	CH	
10	H	H	cyclopropyl	CH ₃	OCH(CH ₃) ₂	CH	
10	H.	н	cyclopropyl	н	OCH ³	Ħ	
	H	H	cyclopropyl	OCH ₃	OCH ₂ CH ₃	CH	
	н	H	cyclopropyl	CH ₂ F	CH ₃	CH	
	H.	H	cyclopropyl	CH ₂ F	OCH ₃	CH	
15 .	H	H	cyclopropyl	ocf ₂ H	CH ₃	CH	
15 .	н	H.	cyclopropyl	ocf ₂ H	OCH ₃	CH	
	H	H	cyclopropyl	OCH ₂ CF ₃	осн	H	
	H	н	cyclopropyl	SCH	OCH ₃	CH	
	H	H	cyclopropyl	OCH ₃	инсн _з	H	
20	H	H	cyclopropyl	OCH ₂ CH ₃	NHCH ₃	M	
20	H	H	cyclopropyl	OCH ₃	OCH ₂ CH ₃	'n	
	H	H	cyclopropyl	SCF ₂ H	OCH ₃	CH	
	H	н	cyclopropyl	Br	OCH ₃	CH	
	H.	H	cyclopropyl	CH ₂ OCH ₃	OCH ₃	CH	
25	H	H	cyclopropyl	сн ₂ осн ₃	CH ₃	H	
25	H	H	cyclopropyl	NH ₂	OCH ₃	N	
	H	н	cyclopropyl	N(CH ₃)2	OCH ₃	M	
	н	H	cyclopropyl	mhch ₃	NHCH ₃	H.	
	H	H	cyclopropyl	cyclopropyl	OCH ₃	CH	
30	H	H	cyclopropyl	cyclopropyl	CH ₃	M	
30	H	H	cyclopropyl	cyclopropyl	CH ₃	. CH	
	H	H	cyclopropyl	cyclopropyl	OCH ₃	H	
	H	H	cyclopropyl	CH ₃	CH(OCH ₃) ₂	CH	
	H	H	cyclopropyl	CF ₃	осн3	CH	
35	н	н	cyclopropyl	OCH ₃	C ≘ CH	СН	

Table X

5			•				m.p.
	$\frac{R_1}{}$	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u> .	<u>z</u>	(-c)
	H	H	cyclopropyl	CH ₃	CH ₃	CH	
	H	H	cyclopropyl	CH ₃	OCH ₃	CH	
	H	H	cyclopropyl	OCH ₃	och ₃	CH	•
10 1	H	H	cyclopropyl	CH ₃	CH ₃	H	
	H	H	cyclopropyl	CH ₃	OCH ₃	H	
	н	H	cyclopropyl	OCH ₃	OCH ³	N	
	H	н	cyclopropyl	Cl	OCH ₃	CH	
	H	H	cyclobutyl	CH ₃	CH ₃	CH	
15	H	н	cyclobuty1	CH ₃	OCH ₃	CH	
	H	н	cyclobutyl	OCH ₃	OCH ₃	CH	•
	H	н	cyclobutyl	CH ₃	CH ₃	N	
	н	H	cyclobutyl	CH ₃	OCH ₃	H	
	н	н	cyclobutyl	och ₃	OCH ₃	n	
20	н	н	cyclobutyl	Cl ·	och ₃	CH	
	H	H	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	Н	н	2-fluorocyclopropyl	CH ₃	och ₃	CH	
	н	H	2-fluorocyclopropyl	och ₃	оснз	CH	
	н	H	2-fluorocyclopropyl	CH3	CH ₃	H	
25	H	H	2-fluorocyclopropyl	CH3	OCH ₃	H	
	н	н	2-fluorocyclopropyl	OCH ₃	och ₃	N	
	н	H	2-fluorocyclopropyl	Cl	OCH ₃	CH	
	H	H	2,2-difluorocyclopropyl	CH3	CH ₃	CH	
	H	H	2,2-difluorocyclopropyl	CH3	och3	CH	
30	H	Н	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	н	2,2-difluorocyclopropyl	CH ₃	CH ₃	N	
	H	н	2,2-difluorocyclopropyl	CH ₃	осн _з	N	
	H	Н	2,2-difluorocyclopropyl	och ₃	осн _з	N	
	H	H	2,2-difluorocyclopropyl	Cl	OCH ₃	CH	

146
Table X (cont.)

5							
5	<u>R</u> 1	R ₂	<u>R*</u>	x	. <u>Y</u>	<u>z</u>	m.p. (°C)
	H	CO2CH3	cyclopropyl	CH ₃	CH ₃	CH	
•	H.	CO ₂ CH ₃	cyclopropyl	CH ₃	осн	CH	
	H.	CO_CH3	cyclopropyl	OCH ₃	оснз	СН	
10	H	CO2CH3	cyclopropyl	CH ₃	CH3	H	
	. H .	CO2CH3	cyclopropyl	CH ₃	OCH3	N	
	H	CO2CH3	cyclopropyl	OCH ₃	осн3	M	
	H	CO2CH3	cyclopropyl	Cl	OCH ₃	CH	
	. H .	CO2CH3	cyclobutyl	CH ₃	CH ₃	CH	
15	H	CO2CH3	cyclobutyl	CH ₃	och ₃	CH	
	H	CO2CH3	cyclobutyl	OCH ₃	осн3	CH	-
	H	CO2CH3	cyclobutyl	CH ₃	CH ₃	H	
	H	CO ₂ CH ₃	cyclobutyl	CH ₃	OCH ₃	N	
	H .	CO2CH3	cyclobutyl	OCH ₃	OCH ₃	N	
20	H	CO2CH3	cyclobutyl	C1	OCH ₃	CH	
•	H	CO2CH3	2-fluorocyclopropyl	CH ³	CH.	CH	
	H	CO2CH3	2-fluorocyclopropyl	CH3	OCH ₃	CH	
•	н	CO2CH3	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	CO ₂ CH ₃	2-fluorocyclopropyl	CH ₃	CH ₃	H	
25	H	CO2CH3	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	H	CO2CH3	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	H	CO ₂ CH ₃	2-fluorocyclopropyl	Cl	OCH ₃	CH	
	H	CO2CH3	2,2-difluorocyclopropyl	CH ₃	CH3	CH	
	H	CO2CH3	2,2-difluorocyclopropyl	CH ₃	OCH ₃	CH	
30	H	CO2CH3	2,2-difluorocyclopropyl	OCH ₃	OCH ³	CH	
	H	CO2CH3	2,2-difluorocyclopropyl	CH ₃	CH ₃	H	
	H	CO ₂ CH ₃	2,2-difluorocyclopropyl	CH ₃	OCH ₃	H	
	н	CO2CH3	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	H	
	. н	CO2CH3	2,2-difluorocyclopropyl	Cl	OCH ₃	CH	

147
Table X (cont.)

_							
5	$\frac{R_1}{2}$	R ₂	<u>R*</u>	X	<u>¥</u>	<u>z</u>	m.p.
	н	CH ₂ F	cyclopropyl	CH ₃	CH ₃	CH	
	н	CH ₂ F	cyclopropyl	CH ₃	OCH ₃	CH	
	н	CH ₂ F	cyclopropyl	осна	осн3	CH	
10,	н	CH ₂ F	cyclopropyl	CH ₃	CH ₃	M	
20	Н	CH ₂ F	cyclopropyl	CH ₃	осн	N.	
	н	CH ₂ F	cyclopropyl	OCH ₃	осн	N	
	н	CH ₂ F	cyclopropyl	Cl	осн ₃	CH	
	Н	CH ₂ F	cyclobutyl	CH ₃	CH ₃	CH	
15	н	CH ₂ F	cyclobutyl	CH ₃	осн ₃	CH	
	H	CH ₂ F	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	CH ₂ F	cyclobutyl	CH ₃	CH ₃	N	
	H	CH ₂ F	cyclobutyl	CH ₃	OCH ₃	N	
20	н	CH ₂ F	cyclobutyl	OCH ₃	OCH ₃	N	
	H	CH ₂ F	cyclobutyl	Cl	OCH ₃	CH	
	H	CH ₂ F	2-fluorocyclopropyl	CH ₃	CH ³	. CH	
	н	CH ₂ F	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
	H	CH ₂ F	2-fluorocyclopropyl	OCH3	OCH ₃ .	CH	
	н	CH ₂ F	2-fluorocyclopropyl	СНЗ	CH3	N	
25	H	CH ₂ F	2-fluorocyclopropyl	CH ₃	OCH ₃	N	
	H	CH ₂ F	2-fluorocyclopropyl	OCH3	OCH ₃	N	. ,
	H	CH ₂ F	2-fluorocyclopropyl	Cl	OCH ₃	CH	
	н	CH ₂ F	2,2-difluorocyclopropyl	CH3	CH ₃	CH	
	н	CH ₂ F	2,2-difluorocyclopropyl	CH3	OCH ₃	CH	
30	н	CH ₂ F	2,2-difluorocyclopropyl	оснз	OCH ₃	CH	
- -	н	CH ₂ F	2,2-difluorocyclopropyl	CH ₃	CH3	N	
	н	CH ₂ F	2,2-difluorocyclopropyl	CH ₃	och ₃	N	
	н	CH ₂ F	2,2-difluorocyclopropyl	och3		N	
	н	CH ₂ F	2,2-difluorocyclopropyl	Cl	och ₃	CH	

Table XI

5	_	_					m.p.
	<u>R</u> 1	R ₂	<u>R*</u>	X	<u>¥</u>	<u>z</u>	(°C)
	H	H	cyclopropyl	CH ₃	CH ³	CH	
	H	H	cyclopropyl	CH ₃	OCH	- CH	
	H	H	cyclopropyl	OCH ₃	OCH ₃	CH	
10	Ħ	H	cyclopropyl ·	CH ₃	CH3	H	
	H	H	cyclopropyl	CH3	осн ₃	H	
	,H	H	cyclopropyl	OCH ₃	OCH ₃	H	
	H	H	cyclopropyl	Cl	осн ₃	CH	
	H	H	cyclobutyl	CH ₃	CH ³	CH	
15	H	H	cyclobutyl	CH ₂	осн ₃	CH	
	H	H	cyclobutyl	OCH ₃	осн ₃	CH	
	H	H	cyclobutyl	CH3	CH ₃	Ħ	
	H	H	cyclobutyl	CH ₃	OCH ₃	n	
	H	H	cyclobutyl	OCH ₃	OCH ₃	N	
20	H	H	cyclobutyl	Cl	OCH ₃	CH	
•	H	H	2-fluorocyclopropyl	CH ₃	CH ³	CH	
	H .	H	2-fluorocyclopropyl	CH3	OCH ₃	CH	
	H	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	H	2-fluorocyclopropyl	CH ₃	CH3	M	
25	H	H	2-fluorocyclopropyl	CH ₃	OCH ₃	M	
	H	н	2-fluorocyclopropyl	OCH ₃	OCH ₃	M	
	H	H	2-fluorocyclopropyl	Cl	OCH ₃	CH	•
	H	H	2,2-difluorocyclopropyl	CH ₃	CH3	CH	
	H	H	2,2-difluorocyclopropyl	CH ³	OCH ³	CH	
30	H	H	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	H	2,2-difluorocyclopropyl	CH ₃	CH3	M	
	H	H	2,2-difluorocyclopropyl	CH ₃	OCH ₃	Ħ	
	H	H .	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	N	
	н	Н	2,2-difluorocyclopropyl	Cl	OCH ₃	CH	

η.

149
Table XI (cont.)

5	R ₁	<u>R</u> 2				_	m.p.
			<u>R'</u>	X	<u>Y</u>	<u>z</u>	(°C)
	H	SO ₂ N(CH ₃) ₂	cyclopropyl	CH ₃	CH ₃	CH	
	H	SO2M(CH3)2	cyclopropyl	CH ₃	OCH ₃	CH	
	H	SO2N(CH3)2	cyclopropyl	OCH ₃	OCH ₃	CH	•
10 ,	н	SO2N(CH3)2	cyclopropyl	CH ₃	CH ₃	H	
	H	SO2N(CH3)2	cyclopropyl	CH ₃	OCH ₃	¥	
	н	SO2N(CH3)2	cyclopropyl	OCH ₃	OCH ₃	M	
	н	SO2N(CH3)2	cyclopropyl	C1	OCH ₃	CH	
	H	SO2N(CH3)2	cyclobutyl	CH3	CH ₃	CH	
15	H	SO2N(CH3)2	cyclobutyl	CH ₃	OCH ₃	CH	
	H	SO2N(CH3)2	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	SO2N(CH3)2	cyclobutyl	CH ₃	CH ₃	H	
	н	SO2N(CH3)2	cyclobutyl	CH ₃	осн ₃	H	
	н	SON(CH3)2	cyclobutyl	och ₃	OCH ₃	H	
20	H	SON(CH3)2	cyclobutyl	Cl	OCH ₃	CH	
	H	SON(CH3)2	2-fluorocyclopropyl	CH ₃	CH3.	CH	
	H	SO2N(CH3)2	2-fluorocyclopropyl	CH ₃	och ₃	CH	
	H	SO2N(CH3)2	2-fluorocyclopropyl	OCH ₃	och ₃	CH	
	H	SO2N(CH3)2	2-fluorocyclopropyl	CH ₃	CH ₃	H	
25	H	SON(CH3)2	2-fluorocyclopropyl	CH ₃	осн _з	H	
	H	SON(CH3)2	2-fluorocyclopropyl	OCH ₃	OCH ₃	H	
	H	SON(CH3)2	- 2-fluorocyclopropyl	C1	OCH3	CH	
	н	SO2N(CH3)2	2,2-difluorocyclopropyl	CH ₃	CH3	CH	
	н	SON(CH3)2	2,2-difluorocyclopropyl	CH ₃	OCH ₃	СН	
30	н	SON(CH3)2	2,2-difluorocyclopropyl	OCH ₃	оснз	CH	
	н	SON(CH3)2	2,2-difluorocyclopropyl	CH ₃	CH ₃	Ħ	
	H	SON(CH3)2	2,2-difluorocyclopropyl	CH ₃	OCH ₃	H	
	H	SON(CH3)2	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	N	
	H	SON(CH3)2	2,2-difluorocyclopropyl	Cl	OCH ₃	CH	
					_		

150
Table XI (cont.)

5							m n
	$\frac{R_1}{2}$	<u>R_2</u>	<u>R*</u>	<u>X</u>	<u>¥</u>	<u>z</u>	m.p. (°C)
	H.	CH ₂ CN	cyclopropyl	CH ₃	CH ₃	СН	
	H	CH ₂ CN	cyclopropyl	CH ³	OCH	СН	
	H	CH ₂ CN	cyclopropyl	OCH ₃	оснз	CH	
10	H	CH ₂ CN	cyclopropyl	CH3	CH ₃	n	
	H	CH ₂ CN	cyclopropyl	CH ₃	OCH ₃	H	
	н	CH ₂ CN	cyclopropyl	OCH ₃	OCH ₃	ĸ	
	H	CH ₂ CN	cyclopropyl	Cl	OCH ₃	CH	
	H	CH ₂ CN	cyclobutyl .	CH ₃	CH ₃	CH	
15	H	CH ₂ CN	cyclobutyl	CH ₃	осн ₃	CH	
	H	CH ₂ CN	cyclobutyl	OCH 3	OCH ₃	CH	
	H	CH ₂ CN	cyclobutyl	CH ₃	CH ₃	Ħ	
	H	CH ₂ CN	cyclobutyl	CH3	OCH ₃	H	•
20	H	CH ₂ CM	cyclobutyl	OCH ³	OCH ₃	N	
	H	CH ₂ CN	cyclobutyl	Cl	OCH ₃	CH	
	H	CH ₂ CN	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	H	CH ₂ CN	2-fluorocyclopropyl	CH3	OCH ₃	CH	
	H	CH ₂ CN	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	CH ₂ CN	2-fluorocyclopropyl	CH ₃	CH ₃	H	
25	H	CH2CN	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	H	CH ₂ CN	2-fluorocyclopropyl	OCH.	OCH ₃	H	
	H	CH ₂ CN	2-fluorocyclopropyl	Cl	OCH ₃	СН	
	H	CH ² CN	2,2-difluorocyclopropyl	CH ₃	CH ₃	CH	
	H	CH ₂ CN	2,2-difluorocyclopropyl	CH3	OCH ₃	CH	
30	H	_	2,2-difluorocyclopropyl	OCH ³	OCH ₃	CH	
30	H	CH ₂ CN	2,2-difluorocyclopropyl	CH ₃	CH ₃	H	
	H	CH ₂ CN	2,2-difluorocyclopropyl	CH ₃	OCH ₃	H	
	H	CH ₂ CN	2,2-difluorocyclopropyl	OCH ₃	OCH ₃	Ħ	
	Н	CH ₂ CN	2,2-difluorocyclopropyl	Cl	OCH ₃	CH	٠

.1.

Table XII

5	_		_					m.p.
	R ₁	<u>n</u>	R ₂	<u>R*</u>	X	<u>¥</u>	<u>z</u>	(•ċ)
	H	0	H	cyclopropyl	CH ₃	CH3	CH	
	H	0	H	cyclopropyl	CH ₃	OCH ₃	CH	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	СН	
10 ′	H	0	H	cyclopropyl	CH ₃	CH ₃	N	
	H	0	H	cyclopropyl	CH ₃	OCH ₃	N	
	H	0	н	cyclopropyl	OCH ₃	OCH ₃	N	
	H	0	H	cyclopropyl	Cl	OCH ₃	CH	
	H	0	н	cyclobutyl	CH ₃	CH ₃	CH	
15	H	0	н	cyclobutyl	CH ₃	OCH ₃	CH-	
	н	0	·H	cyclobutyl	осн _з	OCH ₃	CH	
	H	0	н	cyclobutyl	CH ₃	CH ₃	H	
	H	0	H	cyclobutyl	CH3	OCH ₃	H	
	H	0	н	cyclobutyl	осн ₃	OCH ₃	N	
20	H	0	H	cyclobutyl	Cl	осн3	CH	
	H	0	H	cyclopentyl	CH ₃	CH ₃	CH '	•
	H	0	H	cyclopentyl	CH ₃	OCH ₃	CH	
	H	0	H.	cyclopentyl	OCH ₃	OCH ₃	CH	
	H	0	H	cyclopentyl	CH ₃	CH ₃	N	
25	H	0	H	cyclopentyl	CH3	OCH ₃	N	
	н	0	H	cyclopentyl	OCH ₃	OCH ₃	N	
	н	0	н	cyclopentyl	C1	OCH ₃	CH	
	H	o	н	2-fluorocyclopropyl	CH ₃	CH3	CH	
	н	0	н	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
30	H	0	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	0	H	2-fluorocyclopropyl	CH3	CH ₃	N	
	н	0	H	2-fluorocyclopropyl	CH ₃	осн _з	N	
	н	0	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	н	o	H	2-fluorocyclopropyl	Cl	OCH ₃	СН	
						_		

152
Table XII (cont.)

5								m.p.
_	R ₁	<u>n</u>	R ₂	<u>R*</u>	X	<u>¥</u>	<u>z</u>	(°C)
	H	0	Cl	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	Cl	cyclopropyl	CH ₃	OCH ₃	CH	
	H	0	Cl	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	Cl	cyclopropyl	CH ₃	CH ₃	Ħ	
10	H	0	Cl	cyclopropyl	CH ₃	OCH ₃	H	
	н	0	Cl	cyclopropyl	OCH ₃	OCH ₃	H	
	H	0	Cl	cyclopropyl	Cl	OCH ₃	CH	
	H	0	Cl	cyclobutyl	CH ₃	CH ₃	CH	
15	H	0	Cl	cyclobutyl	CH ₃	OCH 3	CH	
يـــ	н	Ó	Cl	cyclobutyl	OCH ₃	OCH ₃	CH	_
	H	0	Cl	cyclobutyl	CH ₃	CH ₃	M	
	H	0	C1	cyclobutyl	CH ₃	och ₃	H	
	H	0	Cl	cyclobutyl	OCH ₃	och3	H	
20	H	0	Cl	cyclobutyl	Cl	och3	CH	
20	H	0	Cl	cyclopentyl	CH ₃	CH ₃	CH	
	H	0	Cl	cyclopentyl	CH ₃	OCH 3	CH	
	H	0	C1	cyclopentyl	OCH ₃	OCH ₃	CH	
	H	0	Cl	cyclopentyl	CH ₃	CH ₃	Ħ	
25	H	0	Cl	cyclopentyl	CH ₃	OCH ₃	H	
23	H	0	C1	cyclopentyl	OCH ₃	och ₃	Ħ	
	H	0	Cl	cyclopentyl	Cl	OCH 3	CH	•
	H	0	Cl	2-fluorocyclopropyl	•	CH ₃	CH	
	H	0	Cl	2-fluorocyclopropyl	CH ₃	OCH 3		[
30	н	0	C1	2-fluorocyclopropyl			CH	<u>[</u>
	H	0	C1	2-fluorocyclopropyl		CH3	H	
	н	O	C1	•	J	och ₃		•
	н	C	C1	2-fluorocyclopropyl	-			
•	H	C	C1	2-fluorocyclopropyl	. C1	OCH ₃	CE	ł

153 Table XII (cont.)

5	Ð		Þ		_		_	m.p.
	$\frac{R_1}{2}$	$\overline{\boldsymbol{v}}$	<u>R₂</u>	<u>R*</u>	X	Ā	<u>Z</u>	(°C)
	H	0	CH ₂ CH ₃	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	CH ₂ CH ₃	cyclopropyl	CH ₃	OCH ₃	CH	
	H	0	CH ₂ CH ₃	cyclopropyl	OCH ₃	OCH ₃	CH	
10-	H	0	CH ₂ CH ₃	cyclopropyl	CH3	CH ₃	H	
	H	0	CH2CH3	cyclopropyl	CH ₃	OCH ₃	H	
	H	0	CH2CH3	cyclopropyl	OCH ₃	OCH ₃	H	
	н	0	CH ₂ CH ₃	cyclopropyl	C1 .	OCH ₃	CH	
	H	0	CH2CH3	cyclobutyl	CH ₃	CH ₃	CH	
15	н	0	CH2CH3	cyclobutyl ·	CH ₃	OCH ₃	CH	
13	H	0	CH2CH3	cyclobutyl	OCH3	OCH ₃	CH	
	н	0	CH ₂ CH ₃	cyclobutyl	CH ₃	CH ₃	H	
	н	0	CH2CH3	cyclobutyl	CH ₃	OCH ₃	N	
	н	0	CH ₂ CH ₃	cyclobutyl	OCH ₃	OCH ₃	N	
20	H	0	CH2CH3	cyclobutyl	Cl	OCH ₃	CH	
20	H	0	CH ₂ CH ₃	cyclopentyl	CH ₃	СH ₃	CH	
	H	0	CH2CH3	cyclopentyl	CH ₃	och ₃	·CH	
	Н	0	CH2CH3	cyclopentyl	OCH	OCH ₃	CH	
	н	0	CH ₂ CH ₃	cyclopentyl	CH3	CH ₃	Ħ	
25	н	0	CH2CH3	cyclopentyl	CH ₃	OCH ₃	n	
23	н	0	CH ₂ CH ₃	cyclopentyl	OCH ₃	OCH ₃	Ħ	
	H	0	CH ₂ CH ₃	cyclopentyl	Cl	OCH ₃	CH	
	н	0	CH ₂ CH ₃	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	н	0	CH ₂ CH ₃	2-fluorocyclopropyl	CH3	OCH ₃	CH	
20	н	0	CH ₂ CH ₃	2-fluorocyclopropyl	och ₃	OCH ₃	CH	
30	н	0	CH ₂ CH ₃	2-fluorocyclopropyl	CH ₃	CH ₃	H	
	н	0	CH ₂ CH ₃	2-fluorocyclopropyl	CH ₃	оснз	N	
	н	٥	CH ₂ CH ₃	2-fluorocyclopropyl	оснз	OCH ₃	N	
	н	0	CH ₂ CH ₃	2-fluorocyclopropyl	ຶcາ	OCH3	CH	l
			2 3			•		

Table XII (cont.)

						•		
5 .	<u>R</u> 1	n	<u>R</u> 2	<u>R*</u>	¥	<u>¥</u>	<u>z</u>	m.p. (°C)
	H	0	OCHF ₂	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	OCHF ₂	cyclopropyl	CH ³	OCH ₃	CH	
	H	0	OCHF ₂	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	OCHF ₂	cyclopropyl	CH ₃	CH3	Ħ	
20	H	0	OCHF ₂	cyclopropyl	CH3	OCH ₃	H	
	H	0	ochr ₂	cyclopropyl	OCH ₃	OCH ₃	H	
٠	H	0	OCHF ₂	cyclopropyl	C1	OCH ₃	CH	
	H	.0	OCHF ₂	cyclobutýl	CH3	CH ₃	CH	
15	H	0	OCHF ₂	cyclobutyl	CH ₃	OCH ₃	CH	
	H	0	OCHF ₂	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	0	OCHF ₂	cyclobutyl	CH ₃	CH ₃	M	
	H	0	OCHF ₂	cyclobutyl	CH ³	OCH ³	H	
-	H	0	OCHF ₂	cyclobutyl	OCH ₃	OCH ₃	N	
20	H	0	OCHF ₂	cyclobutýl	Cl	OCH ₃	CH	
	H	0	OCHF ₂	cyclopentyl	CH ₃	CH ³	CH	
	H	0	OCHF ₂	cyclopentyl	CH ₃	OCH ₃	CH	
	H	. 0	OCHF ₂	cyclopentyl .	och ₃	OCH ₃	CH	
• .	н	0	OCHF ₂	cyclopentyl	CH ₃	CH ₃	H	
25	H	0	OCHF ₂	cyclopentyl	CH ₃	OCH ₃	N	
7.7	н	0	OCHF ₂	cyclopentyl	OCH ₃	OCH ₃	H	
	H	0	OCHF ₂	cyclopentyl	Cl	OCH ₃	CH	
	H	0	OCHF ₂	2-fluorocyclopropyl	CH ₃	CH.3	CH	
	H	0	OCHF ₂	2-fluorocyclopropyl	CH3	OCH ³	CH	
30	H	0	OCHF ₂	2-fluorocyclopropyl	OCH ₃	och ₃	CH	
	H	0	OCHF ₂	2-fluorocyclopropyl	CH3	CH ₃	M	
	H	0	OCHF ₂	2-fluorocyclopropyl	CH ³	OCH ₃	H	
	H	0	OCHF ₂	2-fluorocyclopropyl	OCH ₃	OCH ₃	n	
	H	0	OCHF ₂	2-fluorocyclopropyl	Cl	OCH ₃	CH	

155 Table XII (cont.)

5	R		R					m.p.
	<u>R</u> 1	<u>n</u>	<u>R</u> 2	<u>R*</u>	X	<u>¥</u> .	<u>z</u>	<u>(°C)</u>
	H	0	CN	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	CN	cyclopropyl	CH ₃	OCH ₃	CH	
	H	0	CN	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	CN	cyclopropyl	CH ₃	CH ₃	N	
	H	0	CM	cyclopropyl ·	CH ₃	och ₃	M	
	H	0	CN	cyclopropyl	OCH3	осн ₃	N	
	H	0	CN	cyclopropyl	Cl	OCH ₃	CH	
	H	0	CN	cyclobutyl	CH ₃	CH ₃	CH	
15	н	0	CN	cyclobutyl	CH ₃	OCH ₃	CH	•
	H	0	CN	cyclobutyl	OCH3	OCH ₃	CH	
	H	0	CN	cyclobutyl	CH ₃	CH ₃	H	
	H	0	CN	cyclobutyl	CH ₃	осн	N	
	H	0	CN	cyclobutyl	OCH3	OCH ₃	M	
20	H	0	CN	cyclobutyl	Cl	OCH ₃	CH	
	н	0	CN	cyclopentyl	CH ₃	CH ₃	CH	
	H	0	CN	cyclopentyl	CH ₃	OCH ₃	CH	
	H	0	CN	cyclopentyl	OCH ₃	OCH ₃	СН	
	H	0	CN	cyclopentyl	CH ₃	CH ₃	N	
25	н	0	CN	cyclopentyl	CH ₃	OCH ₃	N	
	H	0	CN	cyclopentyl	OCH ₃	OCH ₃	N	
	H	0	CN	cyclopentyl	C1	OCH ₃	CH .	•
	H	0	CN	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	н	0	CN	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
30	H	0	CN	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	н	0	CN	2-fluorocyclopropyl	CH ₃	CH ₃	N	
	H	0	CN	2-fluorocyclopropyl	CH ₃	OCH ₃	N	
	H	0	CN	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	н	0	CN	2-fluorocyclopropyl	Cl	OCH ₃	CH	
						-		

156
Table XII (cont.)

5	R_1	<u>n</u>	R ₂	R'	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	H	0	CH ₃		CH ₃	CH ₃	СН	
	н	0	CH ₃	CH ₃	CH ³	OCH ₃	CH	
	н	0	CH ₃	CH ₃	OCH ₃	OCH ³	CH	
	H	0	CH ₃	CH ₃	CH ₃	CH ₃	H	
10	н	0	CH ₃	CH ₃	CH ₃	OCH ₃	H	
	H	0	CH ₃	CH ₃	оснз	OCH ₃	H	
	H	0	CH ₃	CH ₃	Cl	OCH ₃	CH	
•	H	0		CH ₂ CH ₃	CH ₃	CH3	СН	
	H	0		CH ₂ CH ₃	CH ₃	OCH ₃	CH	
15	H	0	CH3	CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	H	0	CH ₃	CH ₂ CH ₃	CH3	CH ³	H	. ,
	H	0	CH ₃	CH ₂ CH ₃	CH ₃	OCH ₃	Ħ	
	H	0	CH ₃	CH ₂ CH ₃	OCH ₃	OCH ₃	N	
	H	0		CH ₂ CH ₃	Cl	OCH ₃	CH	
20	H	0	_	CH2CH2CH3	CH ₃	CH3	CH	•
	H	0	CH3		CH ₃	OCH ₃	CH	
	H	0		CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	H	0	CH ₃	CH2CH2CH3	CH ₃	CH ₃	N.	
	H	0	CH ₃	CH2CH2CH3	CH ₃	OCH ³	M	
25	H	0	CH ₃	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	H	
	H	0	CH3	CH2CH2CH3	Cl	OCH ₃	CH	
	H	0	CH ₃	CH2CH2CH2CH3	CH ₃	CH ₃	CH	
	H	0	CH ₃	CH2CH2CH2CH3		OCH ₃	CH	
	H	0	CH ₃	CH2CH2CH2CH3	OCH ₃	OCH ₃	CH	
30	H	. 0	CH ₃	CH2CH2CH2CH3	CH ₃		H.	
	H	0	CHa	CH2CH2CH2CH3	CH ₃	OCH ₃	N	
	H	0	CH ₃	CH2CH2CH2CH3		OCH ₃	N	
• •	H	. 0	CH ₃	CH2CH2CH2CH3	Cl	OCH ₃	CH	

.1

157
Table XII (cont.)

5	R ₁	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	н		OCH3		CH ₃	CH ₃	CH	•
	н		OCH ₃		CH ₃		CH	
	н	0	OCH ₃		OCH ₃		CH	•
	н	0	och ₃	_	CH ₃	CH3	H	
10 '	н	0	OCH ₃		CH ₃	OCH ₃	H	
	н	0	OCH ₃		оснз	оснз	N	
	н	0	OCH ₃		C1		CH	
	н	0		CH ₂ CH ₃	CH ₃	СНЗ	CH	
	H	0		CH ₂ CH ₃	CH3	OCH ₃	CH	
15	н	0	-	CH ₂ CH ₃	och ₃	OCH3	СН	
•	H	0	OCH ₃		CH3	CH3	- N	
	н	0	оснз		CH ₃	осн	N	
	н	0		CH ₂ CH ₃	OCH ₃	OCH3	N	
	н	0	och ₃		Cl	OCH ₃	CH	
20	н	0		CH2CH2CH3	CH ₃	CH ₃	CH	•
	н	0		CH2CH2CH3	CH3		CH	
	н	0		CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	CH	
	н	0		сн ₂ сн ₂ сн ₃	CH ₃	CH ₃	N	
	н	0	_	CH2CH2CH3	CH3	осн	N	
25	н	0	_	CH2CH2CH3	OCH ₃		N	
	н	0		CH2CH2CH3		· och	CH	
	Н	0	_	CH2CH2CH2CH3	CH ₃	сн3	CH	•
	н	0	_	CH2CH2CH2CH3	CH3	осн	CH	
	н	0		CH2CH2CH2CH3		OCH ₃	·CH	
30	н	0		CH2CH2CH2CH3	CH ₃	CH ₃	N	
	H	0		CH2CH2CH2CH3		осн	N	
	H	0	_	CH2CH2CH2CH3	осн ₃	OCH ₃	N	
	H	0		CH2CH2CH2CH3	Cl	OCH ₃	CH	

158
Table XII (cont.)

5	R ₁	_	R ₂	D :	_		_	
	_			R*	<u>x</u>	<u>¥</u> .	<u>z</u>	m.p.(°C)
•	H	0	3			CH ³	CH	•
	H	0	SCH ₃	CH ₃	CH ³	OCH ₃	CH	
	H	0	SCH ₃	CH ₃	OCH ₃	OCH ₃	CH	
	H	0	SCH ₃	CH ₃	CH ₃	CH ³	H	
10	H		SCH ₃		CH ₃	OCH ₃	H	
	H	0	SCH ₃	CH ₃	OCH ³		H	
	H	0	scH ₃	CH ₃	C1	OCH ³	СН	
	H			CH ₂ CH ₃	CH ₃		CH	
	H	0	SCH	CH ₂ CH ₃		OCH ³	CH	
15	H			CH ₂ CH ₃	OCH ₃		CH	
	H	0			CH ³	CH ³	H	•
	H	0	SCH	CH ₂ CH ₃		OCH ₃	H	•
	H			CH ₂ CH ₃		OCH ₃	H	
	н			CH ₂ CH ₃	Cl		CH	
20 .	н	0		CH ₂ CH ₂ CH ₃	CH ₃		CH	•
•	Ĥ		SCH	CH ₂ CH ₂ CH ₃		OCH ³		
	H			CH ₂ CH ₂ CH ₃		OCH ³	CH	
	н			CH ₂ CH ₂ CH ₃	CH ₃		H	
	н			CH ₂ CH ₂ CH ₃		OCH ₃	M	
25	н			CH ₂ CH ₂ CH ₃		OCH ₃	N	
	н			2 2 3 CH ₂ CH ₂ CH ₃	Cl	och ³	СН	
••	н	0	-	CH ₂ CH ₂ CH ₂ CH ₃			CH	
	н	0					CH	
	H			CH ₂ CH ₂ CH ₂ CH ₃	сн _З	ОСН	СН	
30	н			CH_CH_CH_CH_CH_3	OCH ₃	OCH ³	N	
•	H	0	_	CH ₂ CH ₂ CH ₂ CH ₃	CH ₃	CH ₃		
				CH ₂ CH ₂ CH ₂ CH ₃			N	
	H	0	3		OCH ₃	OCH ³	N	
•	H	0	SCH ₃	CH ₂ CH ₂ CH ₂ CH ₃	Cl	OCH ₃	CH	

Table XII (cont.)

5	R ₁	_	R ₂	R*	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
		n					CH	<u>м.р. (с/</u>
	H	0	N(CH ₃) ₂	CH ₃	CH ₃	CH ₃		
	н	0	N(CH ₃)2	CH ₃	CH ₃	OCH ₃	CH	
	H	0	N(CH ₃)2	сн ₃	OCH ₃	OCH ₃	CH	
	H	0	N(CH ₃)2	CH ₃	CH3	CH ₃	H	
10-	H	0	N(CH ₃)2	CH ₃	CH ₃	OCH ₃	N	
	H	0	N(CH ₃)2	CH ₃	OCH ₃	OCH ₃	H	
	H	0	N(CH ₃)2	CH ₃	Cl	OCH ₃	CH	
	H	0	N(CH ₃)2		CH ₃	CH3	CH	
	н	0	N(CH ₃)2		CH3	OCH ₃	CH	
15	н	0	N(CH ₃) ₂		OCH ₃	OCH ₃	CH	
	н	0	N(CH ₃)2		CH ₃	CH3	N	
	н	0	N(CH ₃) ₂		CH3	och ₃	H	
	н	0	N(CH ₃) ₂		OCH ₃	OCH3	H	
	н	0	N(CH ₃)2		Cl	OCH ₃	CH	
20	н	0	N(CH ₃) ₂		CH ₃	CH3	.CH	
	н	0	N(CH ₃)2		CH ₃	OCH3	CH	
	н	٥		CH ₂ CH ₂ CH ₃	och ₃	och ₃	CH	
	н	0	N(CH ₃)2		CH ₃	CH3	N	
	н	0	N(CH ₃) ₂		CH ₃	OCH ₃	N	
25	н	0	N(CH ₃)2		och ₃	och ₃	N	
	н	0	N(CH ₃) ₂		C1	OCH ₃	CH	
	н	0	N(CH ₃) ₂		CH ₃	CH ₃	СН	
	н	0		CH ₂ CH ₂ CH ₂ CH ₃	CH ₃	OCH ₃	СН	
	н	0		CH2CH2CH2CH3	och3		СН	
30	н	0			CH 3		H	
	н	0		CH ₂ CH ₂ CH ₂ CH ₃	CH ³	CH ₃	H	
			N(CH ₃) ₂		_		N	
	H	0	N(CH ₃) ₂		OCH ₃			
	Н	0	N(CH ₃) ₂	CH2CH2CH2CH3	Cl	OCH ₃	CH	

160
Table XII (cont.)

5	R		R.				
			<u>R</u> 2		X	<u>¥</u>	Z ' m.p.(°C)
	H	0		CH2CH2CH2CH3	CH ₃	CH ₃	СН
	H	0	H	CH2CH2CH2CH2CH3	CH ³	OCH ³	CH
	H	0	Н	CH2CH2CH2CH3	OCH ₃	OCH ₃	CH
10	H	0	H	2 2 2 2 3	CH3	CH ₃	H
	H	0	H	CH2CH2CH2CH2CH3	CH ₃	OCH ₃	n
	H	0	H	CH2CH2CH2CH2CH3	OCH ₃	OCH ³	H
	H	0	H	CH2CH2CH2CH2CH3	Cl	OCH ₃	CH
	H	0	H	CH(CH ₃) ₂	CH ₃	CH ₃	CH
	H	0	H	CH(CH ₃) ₂	CH ₃	осн ₃	CH
15	H	0	H	CH(CH ₃) ₂	OCH ³	OCH ³	СН
	H	0	H		CH ₃	CH3	N
	H	0	H	CH(CH ₃) ₂		OCH	N
	H	0	H		OCH ³		N
	H	0	н	CH(CH ₃) ₂	Cl	OCH ³	CH
20	H	0	H	CH2CH(CH3)2	CH ₃	CH ₃	CH .
	H	0	н	CH2CH(CH3)2	CH ³	OCH	CH
	H	0		CH2CH(CH3)2	OCH ³	OCH,	CH
	H	0	H	CH ₂ CH(CH ₃) ₂	CH3		Ħ
	H	0	н			OCH ³	H
25	H	0	H	CH ₂ CH(CH ₃) ₂	OCH ³	OCH	n
	H	0		CH ₂ CH(CH ₃) ₂	Cl	OCH ₃	CH
	H	0	H	CH(CH ₃)CH ₂ CH ₃	CH ₃	CH ₃	CH
	н	0	н	CH(CH ₃)CH ₂ CH ₃		OCH ₃	
	н	0	н	CH(CH ₃)CH ₂ CH ₃	och ³	OCH	CH .
30	н	0		CH2CH2CH(CH3)2	CH ₃	CH ³	N
	н	0		CH ₂ CH ₂ CH(CH ₃) ₂	CH ₃	OCH ₃	N
	н .	0	н	CH ₂ CH ₂ CH(CH ₃) ₂	och ³	och ³	N
	н	0	H	CH2CH2CH(CH3)2	C1	OCH ₃	СН

161
Table XII (cont.)

5	R ₁	Ū	R ₂	R*	<u>x</u>	¥	<u>z</u>	m.p.(°C)
	н	0	H	CH ₂ Br	CH ₃	CH ₃	CH	
	н	0	H	CH ₂ Br	CH ₃	OCH ₃	CH	
	н	0	н	CH ₂ Br	och ₃	OCH ₃	CH	
	н	0	H	CH ₂ Br	CH ₃	CH3	H	
10 .	H	0	н	CH ₂ CH ₂ Br	CH ₃	OCH ₃	N	
	н	0	H	CH2CH2Br	och ₃	och ₃	N	
	н	0	H	CH2CH2Br	Cl	оснз	CH	
	н	0	H	CH(CH ₃)CH ₂ F	CH ₃	CH ₃	CH	
	H	0	H	CH(CH3)CH2F	CH ₃	OCH ₃	CH	
15	н	0	H	CH(CH ₃)CH ₂ F	OCH ₃	och ₃	CH	
	н	0	н	CH(CH3)CH2F		CH ₃	N	
	н	0	H	CH(CH3)CH2F	CH ₃	OCH ₃	N	
	н	0	H	CH(CH ₃)CH ₂ F	och ₃	OCH ₃	N	
	н	0	H	CH(CH ₃)CH ₂ F	C1	OCH ₃	CH	
20	н	0	н	CH(CH ₂ F) ₂	CH ₃	CH ₃	CH	
	H	0	H	CH(CH ₂ F) ₂	CH3	осн _з	CH	
	н	0	н	CH(CH ₂ F) ₂	OCH ₃	OCH ₃	CH	
•	н	0	H	CH(CH ₂ F) ₂	CH ₃	CH3	N	
	H	0.	H	CH(CH ₂ F) ₂	CH3	och ₃	N	
25	н	0	H	CH(CH ₂ F) ₂	och ₃	och ₃	N	_
	н	0	H	CH(CH ₂ F) ₂	C1.	OCH ₃	CH	
	H	0	H	CH ₂ I	CH3	CH ₃	Cl	
	н	0	H	CH ₂ I	CH ₃	OCH3		
	н	0	H	CH ₂ I	оснз	OCH ₃	CI	
30	н	0	H	CH ₂ I	CH ₃	CH ₃	n	
	н	0	н	2 2 2		OCH ₃		
	н	. 0	н	2 2 2	OCH3			
	н	0	н	CH2CH2CH2F	Cl	och ₃	C	Н

162 Table XII (cont.)

				•				
5 ·	<u>R</u>	n	<u>R</u> 2	<u>R*</u>	<u>x</u>	<u>¥</u>	<u>z</u>	m.p.(°C)
	H	0	H	CH ₂ OCH ₂ F	CH ₃	CH ₃	CH	
•	H	0	H	CH ₂ OCH ₂ F	CH ₃	OCH ₃	CH	
	H	0	H	CH ₂ OCH ₂ F	OCH ₃	OCH ³	CH	
	H	0	н	CH ₂ OCH ₂ F	CH ₃	CH ³	H	
10	H	0	H	CH ₂ OCH ₂ F	CH ₃	OCH ₃	Ħ	
	H	0	H	CH ₂ OCH ₂ F	OCH 3	och ³	H	
	H	0	H	CH ₂ OCH ₂ F	Cl	оснз	CH	
	H	0	H	CH ₂ SOCH ₃	CH ₃	CH ₃	CH	
	H	0	H	CH ₂ SOCH ₃	CH ₃	OCH3	CH	
15	H	0	H	CH ₂ SOCH ₃	OCH ₃	OCH ₃	CH	
	H	0	H	CH ₂ SOCH ₃	CH ₃	CH ₃	H	
	H	0	H	CH ₂ SOCH ₃	CH ₃	OCH ₃	Ħ	
	н	0	H	CH ₂ SOCH ₃	OCH ₃	OCH ₃	Ħ	
	H	0	H	CH2SOCH3	C1	OCH ³	CH	
20	H	0	H	CH2SO2CH3	CH ₃	CH ₃	CH	/ =
	H	0	H	CH2SO2CH3	CH ₃	OCH ₃	CH	• •
	H	0	H	CH2SO2CH3	OCH ₃	OCH ₃	CH	
	H	0	н	CH2SO2CH3	CH3	CH ₃	. H	
•	H	0	н	CH2SO2CH3	CH ₃	OCH ₃	M	
25	H	0	н	CH2SO2CH3	OCH ₃	och ₃	H	
	H	0	H	CH2SO2CH3	Cl .	OCH3	CH	
	H	0	H	CH ₂ CN	CH3	CH ₃	CH	
	н	0	H	CH ₂ CH ₂ CN	CH ₃	OCH ₃	CH	
	H	0	H	CH ₂ (CH ₃)CN	och ₃	OCH ₃	CH	
30	н	0	H	CH2NO2	CH3	CH.3	, n	•
•	н	0	H	CH2CH2NO2	CH3	OCH ³	Ħ	
	H	0	H	CH ₂ CN	OCH3	och ³	H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	H	0	H	CH ₂ CN	Cl .	OCH ₃	CH	•
							•	•

163
Table XII (cont.)

5	$\frac{R_1}{2}$	n	R ₂	<u>R*</u>	<u>x</u> .	<u>¥</u> .	<u>z</u>	m.p.(°C)
	H	0	H	CH2N(CH3)2	CH ₃	CH3	CH	
	H	0	H		CH ₃	OCH ₃	СН	
	H	0	H	CH ₂ N(CH ₃) ₂	осн ₃	OCH3	CH	
	н	0	н	CH ₂ N(CH ₃) ₂	CH ₃	CH ₃	N	
10.	н	0	Н		CH ₃	оснз	N	
	н	0	н	CH2N(CH3)2	оснз	OCH ₃	N	
	н	0	н	CH ₂ N(CH ₃) ₂	C1	OCH ³	СН	
	н	0	H		CH ₃	_	CH	
	н	0	н			OCH3	CH	
15	н	0	H	CH_CH_N(CH_3)2	осн		CH	,
	н	0	H	CH2CH2N(CH3)2	CH ₃	CH ₃	·H -	
	н	0	H	CH2CH2N(CH3)2		OCH ₃	H	
	H	0	H	CH2CH2N(CH3)2	оснз	OCH ₃	N	
	н	0	H		Cl		СН	
20	н	0	н	CH2CH=CH2	CH ₃	CH3	CH	•
	H	0	н	CH ₂ CH=CH ₂	CH ₃		СН	
	н	0	H	CH2CH=CH2	осн	OCH3	CH .	
	н	0	н	CH2CH=CH2	СНЗ	CH ₃	N	
	н	0	H	CH ₂ CH=CH ₂	CH ₃	осн	N	
25	H	0	H	CH ₂ CH=CH ₂	OCH ₃	оснз	N	
	H	0	н	CH ₂ CH=CH ₂	C1	осн	CH	
	н	0	н	CH=CH ₂	CH ₃		CH	
	H	0	H	CH=CH ₂	CH3	оснз	CH	
	H	0	H	CH=CH ₂	осн	OCH ₃	CH	
30	н	0	н	CH=CH ₂	CH ₃	CH ₃	N	
	н	0	н	CH=CH ₂	CH ₃	осн	N	
	Н	0	Н	CH=CH ₂	оснз	осн ₃	n	
	Н	0	Н	CH=CH ₂	Cl	OCH ₃	СН	

164
Table XII (cont.)

5			_					
3	<u>R</u> 1	<u>n</u>	R ₂	<u>R*</u>	X	<u>¥</u>	<u>z</u>	m.p.(°C)
	H	1	H	CH ₃	CH ₃	CH ₃	CH	
	Ħ	1	H	CH ₃		OCH ₃	CH	
	H	1	H	CH ₃	OCH3			
	H	1	H	CH ₃	CH ₃	CH ₃	M	
10	H	1	н	CH ₃		OCH ₃	N	
	н	1	H	CH ₃	OCH ₃		H	
	H	1	H	CH ₃	Cl	осн	CH	
	H	1	H	CH ₂ CH ₃	CH ₃	CH ₃	CH	
	H	1	H	CH ₂ CH ₃		OCH ³	CH	
15	·H	1	H	CH ₂ CH ₃	OCH ₃		CH	
	H	1	H	CH ₂ CH ₃	CH ₃		H	
	TH.	1	H	CH ₂ CH ₃	CH ₃	OCH ₃	n	
	Ħ	1	H	CH ₂ CH ₃		OCH ₃	N	
	H.	1	H	CH ₂ CH ₃	Cl	OCH ₃	CH	
20	н	1	H	CH2CH2CH3	CH ₃		CH	•
•	н	1	H	CH2CH2CH3		OCH ₃	CH	-
	H	1	H	CH2CH2CH3		OCH ₃	CH	
	H	1	H	CH2CH2CH3	CH ₃		M	
	н	1	H	CH2CH2CH3		OCH ₃	Ħ	
25	H	1	H	CH ₂ CH ₂ CH ₃		OCH 3	Ħ	
	н	1		CH2CH2CH3	Cl		CH	
	IF	1	H	CH2CH2CH2CH3	CH ₃		CH	
	H	1		CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
20	н	1	H	CH2CH2CH2CH3	OCH ₃	OCH ₃	CH	
30	H	1		CH2CH2CH2CH3			H	
•	H	1		CH2CH2CH2CH3		OCH ₃	n	
	H	1		CH2CH2CH2CH3			N	
	H	1	H	CH, CH, CH, CH,	CI	OCH 2	CH	•

.1

Table XIII

5 .	R ₁	n	R ₂	<u>R*</u>	<u>x</u>	<u>¥</u> .	<u>z</u>	m.p. (°C)
	H	0	н	cyclopropyl	CH ₃	CH ₃	СН	
	H	0	н	cyclopropyl	CH ₃	OCH	СН	
	H	0	н	cyclopropyl	осн	OCH	СН	
10-	H	0	H	cyclopropyl	CH ₃	CH ₃	M	
20	H	0	H	cyclopropyl	CH ₃	OCH ₃	M	
	H	0	н	cyclopropyl	OCH ₃	OCH ₃	N	
	H	0	н	cyclopropyl	Cl	OCH ₃	CH	
	н	0	н	cyclobutyl	CH ₃	CH ₃	CH	
15	н	0	H	cyclobutyl	CH ₃	OCH ₃	CH	
	H	0	H	cyclobutyl	OCH ₃	OCH ₃	CH	
	н	0	н	cyclobutyl	CH ₃	CH ₃	N	
	н	0	н	cyclobutyl	CH ₃	OCH ₃	N	
	н	0	H	cyclobutyl	OCH ₃	OCH ₃	N	
20	H	0	H	cyclobutyl	Cl	OCH ₃	CH	
	H	0	H	cyclopentyl	CH ₃	CH ₃	CH	
	H	0	H	cyclopentyl	CH ₃	OCH ₃	CH	
	H	0	H	cyclopentyl	OCH ₃	OCH ₃	CH	
	H	0	H	cyclopentyl	CH ₃	CH ₃	N	
25	H	0	H	cyclopentyl	CH ₃	OCH ₃	N	
	H	0	H	cyclopentyl	OCH ₃	OCH ₃	N	
	H	0.	H	cyclopentyl	Cl	OCH ₃	CH	
	H	0	H	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	H	0	H	2-fluorocyclopropyl	CH3	OCH ₃	CH	
30	H	0	Н	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	Н	0	н	2-fluorocyclopropyl	CH ₃	CH ₃	H	
	H	0	Н	2-fluorocyclopropyl	CH ₃	OCH3	H	
	H	0	н	2-fluorocyclopropyl	OCH ₃	осн ₃	N	
	H	0	Н	2-fluorocyclopropyl	C1	och ³	CH	

166
Table XIII (cont.)

5					•			
3	<u>R</u> 1	<u>n</u>	<u>R</u> 2	<u>R*</u>	X	Ā	<u>z</u>	m.p. (°C)
	H	0	OCHF ₂	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	OCHF ₂	cyclopropyl	CH ₃	OCH ₃ .	CH	
	H	0	OCHF ₂	cyclopropyl	OCH ₃	OCH ₃	СН	
10	H	0	OCHF ₂	cyclopropyl	CH3	CH ³	H	
	H	0	OCHF ₂	cyclopropyl	CH3	OCH	H	
	H	Ò	OCHF ₂	cyclopropyl	OCH ₃	OCH	H	
	H	0	OCHF ₂	cyclopropyl	Cl	OCH ₃	CH	
	H	0	OCHF ₂	cyclobutyl	CH ₃	CH ₃	CH	
15	H	Ò	OCHF ₂	cyclobutyl	CH ₃	OCH ₃	CH	
	H	٠ ب	OCHF ₂	cyclobutyl	OCH ₃	OCH.	CH	
	Ħ	, o	OCHF ₂	cyclobutyl	CH ₃	CH ₃	H	
	H	٥.	OCHF ₂	cyclobutyl	CH ₃	OCH ₃	Ħ	
	H	:0	OCHF ₂	cyclobutyl	OCH ₃	OCH ₃	M	
20	H	. o .	OCHF ₂	cyclobutyl	Cl	OCH ₃	CH	
	H	O.	OCHF ₂	cyclopentyl	CH ₃	CH ₃	CH	
	H	0	OCHF ₂	cyclopentyl	CH ₃	OCH ³	CH	
	H	0	OCHF ₂	cyclopentyl	OCH ₃	OCH ³	CH	
	H	0	OCHF ₂	cyclopentyl	CH ₃	CH ₃	M	
25	H	Ø :	OCHF ₂	cyclopentyl	CH ₃	OCH ₃	N	
	H	٠.	OCHF ₂	cyclopentyl	OCH ₃	OCH ₃	H	
	H	: 0	OCHF ₂	cyclopentyl	C1	OCH ₃	CH	
	H	Ю	OCHF ₂	2-fluorocyclopropyl	CH ₃	CH ₃	CH	
	H	.0	OCHF ₂	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
30	H	0	OCHF ₂	2-fluorocyclopropyl	OCH ₃	OCH ³	CH	
	H	0	OCHF ₂	2-fluorocyclopropyl	CH ₃	CH ₃	H	
	H	·.O	OCHP ₂	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	H	0	OCHF ₂	2-fluorocyclopropyl	OCH ₃	OCH ₃	N	
	H	0	OCHF ₂	2-fluorocyclopropyl	Cl	OCH ₃	CH	

167
Table XIII (cont.)

5	R		R					
•	<u>R</u> 1	n		R*	X	<u>¥</u>	<u>z</u>	m.p.(°C)
	H	0	H	CH ₂ F	CH ₃	CH ₃	CH	
	H	0	H	CH ₂ F	CH ₃	OCH ₃	CH	
	H	0	H	CH ₂ F	OCH ₃	OCH ₃	CH	
10	H	0	H	CH ₂ F	CH ₃	CH3	M	
10 ,	H	0	H	CH ₂ F	CH ₃	осн _з	N	
	H	0	H	CH ₂ F	OCH ₃	осн3	N	
	H	0	H	CH ₂ F	Cl	OCH ₃	CH	
	H	0	H	CH2CH2F	CH ₃	CH3	CH	
• •	H	0	H	CH2CH2F		OCH ₃	CH	
15	H	0	H	CH2CH2F	OCH ₃	OCH ₃	CH	· ·
	н	0	H	CH2CH2F	_	СНЗ	N	
	н	0	H	CH2CH2F		осн	N	
	H	0	H	CH2CH2F		осн ₃	N	
	H	0	H	CH ₂ CH ₂ F	Cl	OCH	СН	
20	H	0	H	CHF ₂	CH ₃	CH3	CH	•
	H	0	н	CHF ₂	CH ₃	оснз	CH	
	H	0	H	CHF ₂	осн ₃	осн ₃	СН	
	H	0	н	CHF ₂	CH ₃	снз	N	
	H	0	H	CHF ₂	CH ₃	осн3	N	
25	H	0	H	CHF ₂	осн	осн ₃	N	
	H	0	H	CHF ₂	Cl	OCH ₃	CH	
	H	0	H	CH2CF3	CH ₃	CH ₃	CH	
	H	0	н	CH ₂ CF ₃	CH3	OCH ₃	CH	
2.0	н	0	н	CH2CF3	осн	OCH ₃	CH	
30	H	0	H	CH ₂ C1	CH ₃	CH ₃	N	
	H	0	H	CH ₂ C1	CH ₃	осн	N	
	н	0	н	CH ₂ C1	оснз	осн3	N	
	H.	0	н	CH ₂ C1	Cl	OCH ₃	CH	

168 Table XIV

5	R ₁	<u>n</u>	R ₂	<u>R*</u>	x	<u>¥</u>	<u>z</u>	m.p. (°C)
	H	0	H	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	н	cyclopropyl	CH ₃	OCH ₃	CH	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	H	cyclopropyl	CH ₃	CH ₃	H	•
10	H	0	H	cyclopropyl	CH ₃	OCH ₃	H	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	H	
	H	0	H	cyclopropyl	Cl	OCH ₃	ĊH	
	H	0	H	cyclobutyl	CH ₃	CH3	CH	
15	H	0	H	cyclobutyl	CH ₃	OCH 3	CH	
23	·H	0	H	cyclobutyl	OCH ³	OCH ₃	CH	
	H	0	H	cyclobutyl	CH ₃	CH ₃	M	
	H	0,	H	cyclobutyl	CH ₃	OCH ₃	Ħ	
	H	0	H	cyclobutyl	OCH ₃	OCH ₃	M	
20	H	0	H	cyclobutyl	Cl	och ₃	CH	
	H	0	H	. cyclopentyl	CH ₃	CH ₃	CH	
	H	0	H	cyclopentyl	CH ₃	OCH ₃	CH	
	H	0	H	cyclopentyl	OCH ₃	OCH ₃	CH	
	H	0	H.	cyclopentyl	CH ₃	CH ₃	H	
25	H	0	H	cyclopentyl	CH ₃	OCH ₃	H	
	.H	0	H	cyclopentyl	OCH ₃	och ³	H	
	H	0	H	cyclopentyl	Cl	OCH ₃	CH	
	H	0	H	2-fluorocyclopropyl	CH3	CH3	CH	
	H	0	H	2-fluorocyclopropyl	CH ₃	och ₃	CH	
30	H	0	H	2-fluorocyclopropyl	OCH ₃	och ₃	CH	
	H	0	H	2-fluorocyclopropyl	CH ₃	CH ₃	M	
	H	0	H	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	H	0	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	H	
•	H	0	H	2-fluorocyclopropyl	Cl	OCH ₃	CH	

T68

169
Table XIV (cont.)

5	<u>R</u> 1	Ū	R ₂	<u>R*</u>	X	<u>¥</u>	<u>z</u>	m.p.(*C)
	н	0		CH ₃	CH3	CH ³	CH	
	н	0	CH ₃	CH ₃	CH ₃	OCH ₃	СН	
	н	0	CH ₃	CH ₃	OCH ₃	OCH ₃	СН	
	н	0	CH3	CH ₃	CH ₃	CH ₃	N	
10'	H	0	CH3	CH ₃	CH ₃	OCH ₃	N	
	н	0	CH3	CH ₃	OCH3	OCH ₃	H	
	H	0	CH ₃	CH ₃	CI 3	OCH ³	СН	
	н	0	CH ₃	CH ₂ CH ₃	CH ₃	CH ₃	СН	
	н	0	CH3	CH ₂ CH ₃	CH ₃	OCH ₃	СН	
15	н	0		CH ₂ CH ₃	OCH ³	OCH ₃	СН	
	н	0	CH3		CH3	CH ₃	H	
	н	0	CH ₃		CH3	осн	N	
	H	0		CH ₂ CH ₃	осн	OCH ₃	N	
	H	0		CH ₂ CH ₃	Cl	OCH ₃	CH	
20	н	0		CH2CH2CH3	CH ₃	CH ₃	СН	•
	H	0		CH2CH2CH3			СН	
	н	0			OCH ₃	OCH ₃	СН	•
	H	0		CH2CH2CH3	CH3	CH ₃	N	
0.5	H	0		CH2CH2CH3	CH ₃	OCH ₃	N	
25	H	0		CH2CH2CH3	OCH ₃	OCH ₃	N	
	Н	0		CH2CH2CH3	Cl	OCH ₃	CH	
	н	0		CH2CH2CH2CH3	CH ₃	CH3	CH	
	Н	0		CH2CH2CH2CH3	CH ₃	OCH ₃	CH	
30	H	0		CH2CH2CH2CH3		OCH ₃	CH	
30	H	0	CH ₃		CH ₃	CH ₃	N	
	H	0		CH2CH2CH2CH3	CH ₃	OCH ₃	N	
	H	0		CH2CH2CH2CH3		OCH ₃	N	
	H	0	CH ₃	CH2CH2CH2CH3	Cl	OCH ₃	CH	

170
Table XIV (cont.)

					•			
5	<u>R</u> 1	n	<u>R</u> 2	R*	¥	<u>¥</u>	<u>z</u>	m.p.(*C)
	H	0	H	CH ₂ F	CH ₃	CH ₃	CH	
	H	0	H	CH ₂ F	CH ³	OCH ₃	CH	
	н	0	H	CH ₂ F	осн ₃	OCH ₃	CH	
	н	0	H	CH ₂ F	CH ₃	CH ₃	H	
10	Ħ	0	H	CH ₂ F	CH ₃	och ₃	H	
	H	0	H	CH ₂ F	och ₃	OCH ₃	Ħ	
	H	0	H	CH ₂ F	Cl	OCH ₃	CH	
	H	0	H	CH ₂ CH ₂ F	CH ₃	CH ₃	CH	
	H	0	H	CH ₂ CH ₂ F	CH ₃	OCH ₃	CH	
15	H	0	H	CH ₂ CH ₂ F	OCH ₃	OCH ₃	CH	
	H	0	H	CH2CH2F	CH3	CH3	Ħ	
	H	0	H	CH2CH2F	CH ₃	OCH ₃	H	
	H	0	H	CH ₂ CH ₂ F	OCH ₃	OCH ₃	H	
	H	0	H	CH ₂ CH ₂ F	Cl	OCH ₃	CH	
20	H	0	н	CHF ₂	CH ₃	CH ₃	CH	•
	H	0	н	CHF ₂	CH ₃	OCH ₃	CH	·
	H	0	н	CHF ₂	осн	OCH ₃	CH	
	H	0	H	CHF ₂	CH ₃	CH ₃	N	
	H	0	H	CHF ₂	CH ₃	OCH ₃	H	
25	H	0	H	CHF ₂	OCH ₃	OCH ₃	H	
	H	0	H	CHF ₂	Cl	OCH ₃	CH	
	H	0	H	CH ₂ CF ₃	CH ₃	CH ₃	CH	
	н	0	H	CH ₂ CF ₃	CH ₃	OCH ₃	CH	
	H	0	H	CH ₂ CF ₃	осн _з	OCH ₃	CH	
30	H	0	H	CH ₂ Cl	CH ₃	CH ₃	H	
	H	0	H	CH ₂ C1	CH ₃	OCH ₃	N	
	H	0	H	CH ₂ C1	OCH ₃	оснз	N	•
	H	0	н	CH ₂ C1	Cl	оснз	CH	•

Table XV

5								m.p.
	$\frac{R_1}{L}$	<u>n</u>	R ₂	<u>R*</u> .	X	¥	<u>z</u>	(°C)
	H	0	H	cyclopropyl	CH ₃	CH ₃	CH	
	H	0	H	cyclopropyl	CH3	OCH ₃	CH	
	H	0 .	H.	cyclopropyl	OCH ₃	OCH ₃	CH	
10	H	0	H	cyclopropyl	CH ₃	CH ₃	N	
-	H	0	H	cyclopropyl	CH ₃	OCH ₃	H	
	H	0	H	cyclopropyl	OCH ₃	OCH ₃	H	
	H	0	H	cyclopropyl	Cl	OCH ₃	CH	
	H	0	H	cyclobutyl	CH ₃	CH3	CH	
15	H	0	H	cyclobutyl	CH3	OCH ₃	CH	
	H	0 .	H	cyclobutyl	OCH ₃	och ₃	CH	
	H	0	н	cyclobutyl.	CH3	CH3	. H	
	H	0	H	cyclobutyl	CH ₃	осн ₃	N	
	H	0	н	cyclobutyl	OCH ₃	OCH ₃	H	
20	н	0	н	cyclobutyl	Cl	осн ₃	CH	
20	H	0	н	cyclopentyl	CH ₃	CH ₃	·CH	
	· H	0	н	cyclopentyl	CH ₃	осн ₃	CH	
	н	0	н	cyclopentyl	OCH ₃	OCH ₃	CH	
	H	0	H	cyclopentyl	CH ₃	CH3	H	
25	н	0	н	cyclopentyl	CH ₃	OCH ₃	H	
	н	0	н	cyclopentyl	OCH ₃	OCH ₃	H	
	H	0	H	cyclopentyl	Cl	OCH ₃	CH	
	н	0	н	2-fluorocyclopropyl	сн3 · ·	CH3	CH	
	H	0	H	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
30	H	0	H	2-fluorocyclopropyl	OCH3	OCH ₃	CH	
- -	H	0	H	2-fluorocyclopropyl	CH3	CH ₃	N	
	H	0	H	2-fluorocyclopropyl	CH ₃	och ₃	n	
	H	0	H	2-fluorocyclopropyl	оснз	OCH ₃	H	
	H	0	H	2-fluorocyclopropyl	Cl	och3	CH	

172
Table XV (cont.)

5			D .					m.p.
	<u>R1</u>	$\overline{\boldsymbol{v}}$	R ₂	<u>R'</u>	<u>x</u>	<u>¥</u>	<u>z</u>	(°C)
	H	1	H	cyclopropyl	CH ₃	CH3	CH	
	H	1	H	cyclopropyl	CH ₃	OCH ₃	CH	
	H	1	H	cyclopropyl	OCH ₃	och ³	CH	
10	H	1	H	cyclopropyl	CH ₃	CH ₃	H	
	H	1	H	cyclopropyl	CH ₃	OCH ₃	Ħ	
	н	1	H	cyclopropyl	OCH ₃	OCH ₃	H	
	H	1	H	cyclopropyl	Cl	OCH ₃	CH	
	H	1	H	cyclobutyl	CH ₃	CH ₃	CH	
15	н	1	H	cyclobutyl	CH ₃	OCH ₃	CH	
	H	1	H	cyclobutyl	OCH ₃	OCH ₃	CH	
	H	1	H	cyclobutyl	CH ₃	CH ₃	M.	
	H	1	H	cyclobutyl	CH ₃	OCH ₃	H	
	H	1	H	cyclobutyl	och ₃	OCH ₃	H	
20	H	1	H	cyclobutyl	Cl	OCH ₃	CH	
	H	1	H	cyclopentyl	CH ₃	CH ₃	CH	
	H	1	H	cyclopentyl .	CH ₃	OCH ³	CH	•
	H	1	H	cyclopentyl	OCH ₃	OCH ₃	CH	
· ·	H	1	H	cyclopentyl	CH ₃	CH ₃	Ħ	
25	H	1	H	cyclopentyl	CH ₃	OCH ³	Ħ	
	H	1	H	cyclopentyl	OCH ₃	OCH ₃	H	
	H	1	H	cyclopentyl	Cl	OCH ₃	CH	_
	H	1	H	2-fluorocyclopropyl	CH ₃	CH3	CH	
	H	1	Ħ	2-fluorocyclopropyl	CH ₃	OCH ₃	CH	
30	H	1	H	2-fluorocyclopropyl	OCH ₃	OCH ₃	CH	
	H	1	H	2-fluorocyclopropyl	CH ₃	CH ₃	n	
	H	1	H	2-fluorocyclopropyl	CH ₃	OCH ₃	H	
	H	1	H	2-fluorocyclopropyl	OCH ₃	OCH ³	H	
	H	1	H	2-fluorocyclopropyl	Cl	OCH ₃	СН	

T72

١.

173
Table XV (c nt.)

5	R ₁	<u>n</u>	R ₂	<u>R*</u>	<u>x</u>	ĭ	<u>z</u>	m.p.(°C)
	н	0	н	CH ₂ OCH ₃	CH ₃	CH3	CH	
	н	0	н	CH ₂ OCH ₃	CH ₃	OCH ₃	СН	
•	H	0	Ħ	сн осн з	OCH ₃	OCH ₃	СН	
	H	0	H	сн ₂ осн ₃	CH3	CH3	M	
10 .	н	0	H	сн осн з	CH ₃	OCH3	M	
	н	0	H	сн осн з	OCH ₃	оснз	N	
	н	0	H	CH ₂ OCH ₃	Cl	OCH ₃	CH	
	H	0	H	CH ₂ OCH ₂ CH ₃	CH ₃	CH ₃	CH	
	н	0	H	сн ₂ осн ₂ сн ₃	CH3	осн	CH	•
15	н	0	H	сн ₂ осн ₂ сн ₃	OCH ₃	OCH ₃	CH	•
	H	0	н	CH2OCH2CH3	CH ₃	CH ₃	N	
	H	0	H	сн ₂ сн ₂ осн ₃	CH ₃	осн _з	N	
	H	0	Н	CH2CH2OCH3 ·	OCH ₃	оснз	N	
	H	0	H	CH2CH2OCH3	Cl	оснз	CH	
20	H	0	H	CH2CH2OCH3	CH3	CH3	CH	•
	H	0	н	CH2CH2OCH3	CH ₃	осн _з	CH	
	H	0	H	CH2CH2OCH3	осн _з	OCH ₃	CH	
•	H	0	H	CH ₂ CH ₂ OCH ₃	CH ₃	CH ₃	H	
25	H	0	H	CH(OCH ₃) ₂	CH ₃	оснз	H	
25	H	0	н	CH(OCH ₃) ₂	осн _з	оснз	H	
	H	0	H	CH(OCH ₃) ₂	Cl	OCH ₃	CH	•
	H	0	н	CH ₂ SCH ₃	CH ₃	CH3	CH	
	H	0	H	CH ₂ SCH ₃	CH ₃	OCH ₃	CH	
30	Н	0	н	CH ₂ SCH ₃	оснз	оснз	CH	
30	H	0	Н	CH ₂ SCH ₃	CH ₃	CH3	N	
	H	0	н	CH2SCH3	CH ₃	оснз	N	
	н	0	н	сн ₂ scн ₃	och3	оснз	N	
	н	0	н	CH ₂ SCH ₃	Cl	осн	CH	

Formulations |

Useful formulations of the compounds of Formula I can be prepared in conventional ways. They include 5 dusts, granules, pellets, solutions, suspensions. emulsions, wettable powders, emulsifiable concentrates and the like. Many of these may be applied directly. Sprayable formulations can be extended in suitable media and used at spray volumes of from a few liters 10 to several hundred liters per hectare. High strength compositions are primarily used as intermediates for further formulation. The formulations, broadly, contain about 0.1% to 99% by weight of active ingredient(s) and at least one of (a) about 0.1% to 20% 15 surfactant(s) and (b) about 1% to 99.9% solid or liquid inert diluent(s). More specifically, they will contain these ingredients in the following approximate proportions:

			Welgh	c Percent~
20	·	Active Ingredient	Diluent(s)	Surfactant(s)
	Wettable Powders	20-90	0-74	1-10
25	Oil Suspensions. Emulsions. Solutions. (including Emulsifiat Concentrates)	3-50 ole	40-95	0-15
23	Aqueous Suspension	10-50	40-84	1-20
	Dusts	1-25	70-99	0-5
	Granules and Pellets	0.1-95	5-99.9	0-15
	High Strength Compositions	90-99	0-10	0-2

* Active ingredient plus at least one of a Surfactant or a Diluent equals 100 weight percent.

Lower or higher levels of active ingredient can, of course, be present depending on the intended use and the physical properties of the compound. Higher

ratios of surfactant to active ingredient are sometimes desirable, and are achieved by incorporation into the formulation or by tank mixing.

Typical solid diluents are described in Watkins, et al., "Handbook of Insecticide Dust Diluents and Carriers". 2nd Ed., Dorland Books, Caldwell, New Jersey, but other solids, either mined or manufactured, may be used. The more absorptive diluents 10 are preferred for wettable powders and the denser ones for dusts. Typical liquid diluents and solvents are described in Marsden, "Solvents Guide," 2nd Ed., Interscience. New York. 1950. Solubility under 0.1% is preferred for suspension concentrates; solution 15 concentrates are preferably stable against phase separation at 0°C. "McCutcheon's Detergents and Emulsifiers Annual", MC Publishing Corp., Ridgewood, New Jersey, as well as Sisely and Wood, "Encyclopedia of Surface Active Agents", Chemical Publishing Co., 20 Inc., New York, 1964. list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foaming, caking, corrosion, microbiological growth, etc.

The methods of making such compositions are well
known. Solutions are prepared by simply mixing the ingredients. Fine solid compositions are made by blending and, usually, grinding as in a hammer or fluid energy mill. Suspensions are prepared by wet milling (see, for example, Littler, U.S. Patent
30 3.060.084). Granules and pellets may be made by spraying the active material upon preformed granular carriers or by agglomeration techniques. See J. E. Browning, "Agglomeration". Chemical Engineering.
December 4, 1967, pp. 147ff. and "Perry's Chemical

Engineer's Handbook", 5th Ed., McGraw-Hill, New York, 1973, pp. 8-57ff.

For further information regarding the art of 5 formulation, see for example:

H. M. Loux, U.S. Patent 3.235.361, February 15. 1966. Col. 6, line 16 through Col. 7, line 19 and Examples 10 through 41;

R. W. Luckenbaugh, U.S. Patent 3,309,192,

10 March 14, 1967, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182;

H. Gysin and E. Knusli, U.S. Patent 2,891,855, June 23, 1959, Col. 3, line 66 through Col. 5, line 17 15 and Examples 1-4;

- G. C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, pp. 81-96; and
- J. D. Fryer and S. A. Evans, "Weed Control Hand-20 book", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, pp. 101-103.

In the following Examples, all parts are by weight unless otherwise indicated.

Example 11

25 Wettable Powder

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-l-methyl-l-H-pyrazole-5-sulfonamide 80% sodium alkylnaphthalenesulfonate 2% sodium ligninsulfonate 2% synthetic amorphous silica 3% kaolinite 13%

The ingredients are blended, hammer-milled until all the solids are essentially under 50 microns, reblended, and packaged.

35

177 Example 12

	Example 12	
	Wettable Powder	
	4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)amino	carbon-
5	yl]-l-methyl-l-H-pyrazole-5-sulfonamide	501
	sodium alkylnaphthalenesulfonate	25
	low viscosity methyl cellulose	29
	diatomaceous earth	469
	The ingredients are blended, coarsely ha	mmer-
LO	milled and then air-milled to produce particle	es esse
	tially all below 10 microns in diameter. The	produc
	is reblended before packaging.	
	Example 13	
	<u>Granule</u>	
L5	Wettable Powder of Example 12	5
	attapulgite granules	959
	(U.S.S. 20 to 40 mesh; 0.84-0.42 mm)	
	A slurry of wettable powder containing	259
	solids is sprayed on the surface of attapulgit	:e
20	granules in a double-cone blender. The granul	les are
	dried and packaged.	
	Example 14	
	Extruded Pellet	
	4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)amino	carbon
25	yl]-1-methy1-1-H-pyrazole-5-sulfonamide	25
	anhydrous sodium sulfate	10
	crude calcium ligninsulfonate	51
	sodium alkylnaphthalenesulfonate	1:
	calcium/magnesium bentonite	59
30	The ingredients are blended, hammer-mil	led and
	then moistened with about 12% water. The mix	cure is

extruded as cylinders about 3 mm diameter which are cut to produce pellets about 3 mm long. These may be used directly after drying, or the dried pellets may

35 be crushed to pass a U.S.S. No. 20 sieve (0.84 mm

openings). The granules held on a U.S.S. No. 40 sieve (0.42 mm openings) may be packaged for use and the fines recycled.

Example 15

Low Strength Granule

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-5-sulfonamide 0.1% attapulgite granules 99.9%

(U.S.S. 20 to 40 mesh) 10

> The active ingredient is dissolved in a solvent and the solution is sprayed upon dedusted granules in a double-cone blender. After spraying of the solution has been completed, the material is warmed to evaporate the solvent. The material is allowed to cool and then packaged.

Example 16

Granule

5

25

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-5-sulfonamide 80% 20 11 wetting agent crude ligninsulfonate salt (containing 10% 5 to 20% of the natural sugars) attapulgite clay

The ingredients are blended and milled to pass This material is then added through a 100 mesh screen. to a fluid bed granulator, the air flow is adjusted to gently fluidize the material, and a fine spray of water is sprayed onto the fluidized material. The fluidiza-30 tion and spraying are continued until granules of the desired size range are made. The spraying is stopped. but fluidization is continued, optionally with heat, until the water content is reduced to the desired level, generally less than 1%. The material is then 35 discharged, screened to the desired size range.

٠,

generally 14 to 100 mesh (1410 to 149 microns). and packaged for use.

Example 17

5 Low Strength Granule

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-l-methyl-l-H-pyrazole-5-sulfonamide 1%
N,N-dimethylformamide 9%
attapulgite granules 90%

10. (U.S.S. 20 to 40 sieve)

The active ingredient is dissolved in the solvent and the solution is sprayed upon dedusted granules in a double cone blender. After spraying of the solution has been completed, the blender is allowed to run for a short period and then the granules are packaged.

Example 18

Aqueous Suspension

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbon-40% yl]-1-methyl-1-H-pyrazole-5-sulfonamide 0.3% polyacrylic acid thickener 20 dodecylphenol polyethylene glycol ether 0.5% 13 disodium phosphate 0.5% monosodium phosphate 1.0% polyvinyl alcohol 56.7% water 25

The ingredients are blended and ground together in a sand mill to produce particles essentially all under 5 microns in size.

Example 19

30 Solution

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-1-methyl-1-H-pyrazole-5-sulfonamide. ammonium salt 5% water 95%

The salt is added directly to the water with stirring to produce the solution, which may then be packaged for use.

Example 20

5 High Strength Concentrate

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl) aminocarbonylj-l-methyl-l-H-pyrazole-5-sulfonamide 998

silica aerogel

0.5%

synthetic amorphous silica

0.5%

The ingredients are blended and ground in a hammer-mill to produce a material essentially all passing a U.S.S. No. 50 screen (0.3 mm opening). The concentrate may be formulated further if necessary.

Example 21

15 Wettable Powder

10

20

Ì

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl) aminocarbon-90% yl)-methyl-l-H-pyrazole-5-sulfonamide

dioctyl sodium sulfosuccinate

0.18

synthetic fine silica

9.98

The ingredients are blended and ground in a hammer-mill to produce particles essentially all below 100 microns. The material is sifted through a U.S.S. No. 50 screen (0.3 mm opening) and then packaged.

Example 22

25 Wettable Powder

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbon-40% yl)-methyl-1-H-pyrazole-5-sulfonamide

sodium ligninsulfonate

.20%

montmorillonite clay

The ingredients are thoroughly blended, coarsely 30 hammer-milled and then air-milled to produce particles essentially all below 10 microns in size. The material is reblended and then packaged.

59%

181

Example 23

Oil Suspension

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-1-methyl-1-H-pyrazole-5-sulfonamide 35% blend of polyalcohol carboxylic 6% esters and oil soluble petroleum sulfonates

xylene

The ingredients are combined and ground together in a sand mill to produce particles essentially all below 5 microns. The product can be used directly, extended with oils, or emulsified in water.

Example 24

15 Dust

30

4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-1-methyl-1-H-pyrazole-5-sulfonamide 10% attapulgite 10% Pyrophyllite 80%

The active ingredient is blended with attapulgite and then passed through a hammer-mill to produce
particles substantially all below 200 microns. The
ground concentrate is then blended with powdered
pyrophyllite until homogeneous.

25 Example 25

Oil Suspension

4-Acetyl-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbon-yl]-l-methyl-l-H-pyrazole-5-sulfonamide 25% polyoxyethylene sorbitol hexaoleate 5% highly aliphatic hydrocarbon oil 70%

The ingredients are ground together in a sand mill until the solid particles have been reduced to under about 5 microns. The resulting thick suspension may be applied directly, but preferably after being extended with oils or emulsified in water.

Example 26

	Example 26	
	Wettable Powder	
	4-Acetyl-N-[(4.6-dimethoxypyrimidin-2-yl)-[aminocarbon
5	yl]-1-methyl-1-H-pyrazole-5-sulfonamide	20%
	sodium alkylnaphthalenesulfonate	4%
	sodium ligninsulfonate	4%
	low viscosity methyl cellulose	3%
	attapulgite	69%
10	The ingredients are thoroughly blende	ed. After
	grinding in a hammer-mill to produce partic	
	tially all below 100 microns. the material	is reblende
	and sifted through a U.S.S. No. 50 sieve (0.3 mm
	opening) and packaged.	
15	Example 27	
	Wettable Powder	
	4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypy	yrimidin
	2-yl)aminocarbonyl]-l-methyl-l-H-pyrazol	e-
	5-sulfonamide	80%
20	sodium alkylnaphthalenesulfonate	2%
	sodium ligninsulfonate	. 28
	synthetic amorphous silica	3\$
	kaolinite	13%
	The ingredients are blended, hammer-	
25	all the solids are essentially under 50 mi	crons, re-
	blended, and packaged.	
	Example 28	
	Wettable Powder	
	4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxyp	
30	2-yl)aminocarbonyl]-l-methyl-l-H-pyrazol	
	5-sulfonamide	50%
	sedium alkylnaphthalenesulfonate	. 2%
	lcw viscosity methyl cellulose	2%
	diatomaceous earth	46%

The ingredients are blended, coarsely hammermilled and then air-milled to produce particles essentially all below 10 microns in diameter. The product is reblended before packaging.

Example 29

Granule

15

20

Wettable Powder of Example 27

attapulgite granules

95%

(U.S.S. 20 to 40 mesh; 0.84-0.42 mm)

A slurry of wettable powder containing

solids is sprayed on the surface of attapulgite
granules in a double-cone blender. The granules are
dried and packaged.

Example 30

Low Strength Granule

4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin 2-yl)aminocarbonyl]-l-methyl-l-H-pyrazole-

5-sulfonamide 0.1% attapulgite granules 99.9%

(U.S.S. 20 to 40 mesh)

The active ingredient is dissolved in a solvent and the solution is sprayed upon dedusted granules in a double-cone blender. After spraying of the solution has been completed, the material is warmed to evaporate the solvent. The material is allowed to cool and then packaged.

Example 31

Aqueous Suspension

30 4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin 2-yl)aminocarbonyl]-l-methyl-l-H-pyrazole-

	5-sulfonamide	40%
	polyacrylic acid thickener	0.3%
	dodecylphenol polyethylene glycol ether	0.5%
35	disodium phosphate	1%
	monosodium phosphate	0.5%

1	8	4

	polyvinyl alcohol	1.0%
	water	56.7%
	The ingredients are blended and ground tog	ether
5	in a sand mill to produce particles essentially	all
	under 5 microns in size.	
	Example 32	
	High Strength Concentrate	
	4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimid	in ·
10	2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-	
	5-sulfonamide	99%
	silica aerogel	0.5%
	synthetic amorphous silica	0.5%
	The ingredients are blended and ground in	a
15	hammer-mill to produce a material essentially al	1
	passing a U.S.S. No. 50 screen (0.3 mm opening).	The
	concentrate may be formulated further if necessa	EY.
	Example 33	
	Wettable Powder	
20	4-(Cyclopropylcarbonyl)-N-[(4,6-dimethoxypyrimic	in
	2-yl)aminocarbonyl]-l-methyl-l-H-pyrazole+	
•	5-sulfonamide	90%
	dioctyl sodium sulfosuccinate	0.1%
	synthetic fine silica	9.9%
25	The ingredients are blended and ground in	
	hammer-mill to produce particles essentially al	
	100 microns. The material is sifted through a l	J.S.S.
	No. 50 screen and then packaged.	
	Example 34	
30		••-
	4-(Cyclopropylcarbonyl)-N-((4.6-dimethoxypyrimic	11N
	2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-	254
	5-sulfonamide	35%
	blend of polyalcohol carboxylic	6%
35		
	sulfonates	E O O
	xylene	59%

The ingredients are combined and ground together in a sand mill to produce particles essentially all below 5 microns. The product can be used directly.

5 extended with oils, or emulsified in water.

Example 35

Dust

4-(Cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin 2-yl)aminocarbonyl]-1-methyl-1-H-pyrazole-

10 5-sulfonamide

10%

attapulgite

10%

Pyrophyllite

\$08

The active ingredient is blended with attapulgite and then passed through a hammer-mill to produce
particles substantially all below 200 microns. The
ground concentrate is then blended with powdered
pyrophyllite until homogeneous.

Utility

Test results indicate that the compounds of the present invention are highly active preemergent or postemergent herbicides or plant growth regulants.

Many of them have utility for broad-spectrum preand/or post-emergence weed control in areas where complete control of all vegetation is desired, such as around industrial storage areas, parking lots, drive-in theaters, around billboards, highway and railroad structures. Some of the compounds have utility for selective weed control in crops such as wheat, barley, rice, soybeans and corn. Alternatively, the subject compounds are useful to modify plant growth.

The rates of application for the compounds of the invention are determined by a number of factors, including their use as plant growth modifiers or as herbicies, the crop species involved, the types of

we ds to be controlled, weather and climate, formulations selected, mode of application, amount of
foliage present, etc. In general terms, the subject
compounds should be applied at levels of around 0.001
to 10 kg/ha, the lower rates being suggested for use
on lighter soils and/or those having a low organic
matter content, for plant growth modification or for
situations where only short-term persistence is
required.

The compounds of the invention may be used in combination with any other commercial herbicide, examples of which are those of the triazine, triazole, imidazolinone, uracil, urea, amide, diphenylether, carbamate and bipyridylium types as well as other

sulfonylureas. They are particularly useful with the following herbicides.

	•	
	Common Name	187 <u>Chemical Name</u>
	alachlor	2-chloro-2'.6'-diethyl-N-(methoxy-methyl)-acetanilide
5	atrazine	2-chloro-4-(ethylamino)-6-(isopropyl- amino)- <u>s</u> -triazine
	butylate	S-ethyl-diisobutylthiocarbamate
	cyanazine	2-[[4-chloro-6-(ethylamino)- <u>s</u> -triazin-2-yl]amino]-2-methylpropionitrile
10	dicamba	3,6-dichloro-o-anisic acid
	EPTC	S-ethyl dipropylthiocarbamate
	linuron	3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea
15	metolachlor	2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide
	metribuzin	4-amino-6- <u>tert</u> -butyl-3-(methylthio)-as- triazine-5(4H)-one
20	tridiphane	2-(3,5-dichlorophenyl)-2-(2,2,2-tri-chloroethyl)oxirane
	2.4-D	(2,4-dichlorophenoxy)acetic acid
	thiobencarb	S-4-chlorobenzyldiethylthiocarbamate
	molinate	S-ethyl N.N-hexamethylenethiocarbamate
25	butachlor	N-(butoxymethyl-2-chloro-2',6'-di- ethylacetanilide
	naproanilide	N-phenyl-2-(l-naphthyloxy)propionamide
	pyrazolate	4-(2.4-dichlorobenzoyl)-1.3-dimethyl- pyrazol-5-yl-4-toluenesulfonate
30	pretilachlor	2-chloro-2',6'-diethyl-N-(\underline{n} -propoxy-ethyl)acetanilide
	oxidiazon	3-[2.4-dichloro-5-(1-methylethoxy)-phenyl]-5-(1.1-dimethylethyl)-1.3.4-oxadizol-2(3H)-one

		180
	Trade Name or <u>Code Number</u>	Chemical Name
5	Harmony [®]	3-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosulfonyl]-2-thiophenecarboxylic acid, methyl ester
	Cinch [®]	exo-l-methyl-4-(l-methylethyl)-2-[(2-methylphenyl)methoxy]-7-oxabicyclo- [2.2.1]heptane
10	MY-93	S-(1-methyl-1-phenethyl)piperidine-1-carbothioate
	CH-83	S-(2-methylpropyl)-hexanhydro-lH-aze- pine-l-carbothioic acid, ester
	X-52	2.4-dichlorophenyl-3-methoxy-4-nitro- phenyl ether
15	SC-2957	S-benzyl-N-ethyl-N-propylthiocarbamate
	HW-52	N-(2,3-dichlorophenyl)-4-(ethoxy-methoxy)benzamide
	NTN-801	2-(benzothiazol-2-yl)-N-methyl-N- phenylacetamide
20	SL-49	2-[4-[(2.4-dichlorophenyl)carbonyl]- 1.3-dimethyl-lH-pyrazol-5-yloxy]-l- phenylethanone
	BAS-514	3.7-dichloro-8-quinoline carboxylic acid
25		

The herbicidal properties of the subject compounds were discovered in a number of greenhouse tests. The test procedures and results follow.

Compounds

10 .	Compound	R'	<u>x</u>	<u>Y</u>	<u>z</u>
	1	CH ₃	осн ₃	OCH ₃	CH
	2	CH ₂ CH ₂ CH ₃	CH ₃	CH ₃	CH
	3	CH2CH2CH3	OCH ₃	CH3	CH
	4	CH2CH2CH3	OCH ₃	OCH ₃	CH
15	5	CH ₂ CH ₂ CH ₃	OCH ₃	CH ₃	N
	6	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	N
	7	CH ₂ CH ₂ CH ₃	Cl	OCH ₃	CH
	8	CH ₂ CH ₂ CH ₃	OCH ₃	OCH ₃	CH
	9	CH ₂ CH ₃	CH ₃	CH ₃	CH
20	10	CH ₂ CH ₃	CH ₃	OCH ₃	CH
,	11	CH ₂ CH ₃	CH ₃	OCH ₃	'n
-	12	CH ₂ CH ₃	OCH ₃	OCH ₃	N
	13	CH ₂ CH ₃	Cl	OCH ₃	CH
	14	CH(CH ₃) ₂	сн.3	CH3	CH
25	15	CH(CH ₃) ₂	CH ₃	OCH ₃	CH
	16	CH(CH ₃) ₂	OCH ₃ .	OCH ₃	CH
	17	CH(CH ₃) ₂	CH3	OCH ₃	N
	18	CH(CH ₃) ₂	OCH ₃	OCH ₃	N
	19	CH(CH ₃) ₂	Cl	OCH ₃	CH

190
Compounds (continued)

5	SO ₂ NHCNH N
	S Y

10	Compound	<u>X</u>	<u>¥</u>	<u>z</u>
	20	CH ³	CH ₃	CH
	21	CH3	осн ₃	CH
	22	OCH ₃	OCH ₃	CH
	23	CH ₃	OCH ₃	N
15	24	OCH ₃	OCH ₃	N
	25	C1	· OCH3	CH.

Test A

Seeds of crabgrass (Digitaria spp.), barnyardgrass (Echinochloa crusqalli), giant foxtail (Setaria 5 faberi), wild oats (Avena fatua), cheatgrass (Bromus secalinus), velvetleaf (Abutilon theophrasti), morningglory (Ipomoea spp.), cocklebur (Xanthium pennsylvanicum), sorghum, corn soybean, sugarbeet, cotton, rice, wheat, barley and purple nutsedge (Cyperus 10 rotundus) tubers were planted and treated preemergence with the test chemicals dissolved in a non-phytotoxic solvent. At the same time, these crop and weed species were treated with a soil/foliage application. At the time of treatment, the plants ranged in height from 2 15 to 18 cm. Treated plants and controls were maintained in a greenhouse for sixteen days, after which all species were compared to controls and visually rated for response to treatment. The ratings, summarized in Table A, are based on a numerical scale extending from 20 0 = no injury, to 10 = complete kill. The accompanying descriptive symbols have the following meanings:

C = chlorosis/necrosis

B = burn

D = defoliation

E = emergence inhibition

G = growth retardation

H = formative effect

U = unusual pigmentation

X = axillary stimulation

30 S = albinism

6Y = abscised buds or flowers

Table A

	Compound :		ind 1	1 Compound 2	
5					
-	Rate g/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				•
	Corn	9H	3C,5H	0	0
	Wheat	2G	0	0	0
10	Barley	5G	0	0	0
	Rice	5C.9G	8G	4G	0
	Soybean	4C,9G	6H	0	0
	Cotton	9G	9H	3C,8H	3C,8H
	Sugar beet	9C	9C	3C,6G	2C,3G
	Crabgrass	3C,8G	2C.6G	0	0
	Barnyardgrass	9C	5C,9H	2C,6G	0
	Nutsedge	3C,9G	9G	7G	0
15	Giant Foxtail	5C.9G	3C,BG	2G	0
	Cheatgrass	4C,9G	8G	6G ·	0
	Wild Oats	2C,5G	0	0	. 0
	Cocklebur	9C	3C,9H	4C,9G	3C,9H
	Morningglory	9C	3C.9H	3C,8G	2H
	Velvetleaf	, 9C	3C,8H	4C.9G	3 G
20	PREEMERGENCE			_	•
	Corn	3C,9H	3C.7H	0 .	0
	Wheat	3 G	0	0	0
	Barley	2C.5G	2C.4G	0	0
	Rice	9H	8H	2C	0
	Soybean	3C,6H	3C.4H	0	0
	Cotton	9G ·	6H	7G	5G
25	Sugar beet	9 G	4C,8G	0	0
23,	Crabgrass	5 G	2C.5G	0	0
	Barnyardgrass	9H	9H	2G	. 0
	Nutsedge	10E	10E	0	0
	Giant Foxtail	7G	3C,7H	0	0
	Cheatgrass	9H	9H	0	0
	Wild Oats	3G	2G	=	8H
	Cocklebur	2C,7H	5H	8H 2G	0
30	Morningglory	8H ·	8G	2G 5G	0
	Velvetleaf	7H	0	3G	-

194
Table A (continued)

		Compou	nd 3	Compound	đ 4
5	Rate g/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				
	Corn	3C,9H	1C.4H	3C,9H	3C,9H
	Wheat	0	0	0	0
10	Barley	2C	0	0	0
10	Rice	7G	3 G	7 G	ZG
	Soybean	2C.4H	1H	3C,8G,7X	3H
	Cotton	10C	4C.8H	4C,9G	4C,9G
	Sugar beet	4C,9H	3C,6G	4C,8G	4C,8G
	Crabgrass	2G	0	4G	0
	Barnyardgrass	4C,9H	2C.5G	5C,9H	3C,5H
	Nutsedge	4C.9G	2C,5G	4C,9G	4C,8G
15	Giant Foxtail	3C.7G	2G	4C.8G	4G
	Cheatgrass	8G	5 G	8G	2G
	Wild Oats	1C	• 0	0	0 -
	Cocklebur	9C	4C.9G	10C	6C.9G
	Morningglory	9C	3C,8G	10C	9C
	Velvetleaf	9C	4C,9G	10C	4C,9G
20	PREEMERGENCE				20.60
	Corn	3C,8G	2C.7G	3C'8G .	2C,6G
	Wheat	0	0	0	0
	Barley	2G	0	0	0
•	Rice	2C,2G	0	3G	0
	Soybean	1H	0	3G	_
	Cotton	9G	8G	9G	8G 6G
25	Sugar beet	8G	5G	9G	
25	Crabgrass	0	0	0	0
	Barnyardgrass	3C.7G	2G	3C,8G	2C,2G 7G
	Nutsedge	7G	8 G	9G	0
	Giant Foxtail	2C.4G	0	3C,7G	0
	Cheatgrass	4G	0	6G O	0
	Wild Oats	0	0	9H	9H
	Cocklebur	9H	9H	9H 8G	8G
30	Morningglory	9G	8G	8G 9C	9G
	Velvetleaf	9C	9G	90	34

195
Table A (continued)

		Compour	nd 5	Compound	6
5		0.05	0.01	0.05	0.01
	Rate g/ha	0.05	0.01	0.05	
	POSTEMERGENCE				•
	Corn	2C,6H	0	6 H	0
	Wheat	0	0	0	Ö
10	Barley	0	0	0	3 G
	Rice	5G	3G	4C,9G	0
	Soybean	0	0	0	3 G
	Cotton	8G	0	4C.9G	2H
	Sugar beet	1C	2G	3C,5G	0
	Crabgrass	0	0 .	0 9H	Ö
	Barnyardgrass	2C.5H	. 2H	4G	Ö
15	Nutsedge	0	0	2C,5G	· ŏ
15	Giant Foxtail	2G	0	5G	ŏ
	Cheatgrass	* 5G	0 0 ·	0	ŏ
	Wild Oats	0	4C.9H	4C,9G	4C,9H
	Cocklebur	5C,9G	3C,7G	5C,9G	3C.8H
	Morningglory	4C,9G	2C,5G	3C,8H	6G
	Velvetleaf	3C,8H	2C,5G	30,011	
20	PREEMERGENCE	3C 6C	2C,4G	2C.5G .	2C,5G
	Corn	3C,6G	0	0	0
	Wheat	0	0	5 G	0
	Barley	4G	3 G	2C.6G	2G
	Rice		0	0	0
	Soybean	0 2C,2G	ŏ	8 G	2C.2G
	Cotton	2C,2G	5 G	9G	5G
25	Sugar beet	0	0	0	0
	Crabgrass	3 G	ő	6G	2C,2G
	Barnyardgrass	0	Ŏ	0	.0
	Nutsedge Giant Foxtail	4G	0	0	0
	Cheatgrass	0	Ö	5G	O .
	Wild Oats	Ö	Ō	0	Ο,
	Cocklebur	7 G	7H	9H	3H
30	Morningglory	6G	5G	7G	5H
30	Velvetleaf	9C	8G	8G	3 G

196
Table A (continued)

5		Compo	und 7	Compo	und 8
,	Rate g/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				
	Corn	0	0	9C	4C,9G
	Wheat	0	0	0	0
10	Barley	0	0	0	0
	Rice	2G	0	5G	0
	Soybean	ıc	0	3C,BH	3C.5H
	Cotton	7G	0	10C	10C
	Sugar beet	3C,6G	0	10C	10C
	Crabgrass	0	0	3C,7G	2G .
	Barnyardgrass	. 0	0	9C	5C,9H
	Nutsedge	0	0	9C	9C
15	Giant Foxtail	0	0	10C	9C .
	Cheatgrass	. 0	0	· 9C···	- 7G
	Wild Oats	0	0	0	0
	Cocklebur	3C,9G	2C.8H	10C	10C
	Morningglory	3C,8G	3G	10C	10C
	Velvetleaf	7 G	0	9C	9C
	Sorghum	-	_	3C,8H	3G∙
20					
	PREEMERGENCE				•
	Corn	2C,3G	0	2C.9G	2C.9G
	Wheat	Ó	0	2G	0
	Barley	0	0	3G	0
	Rice	2C.3G	0	8H	2G
	Soybean	Ó	0	6H	6G
	Cotton	5G	Ō	9G	9G
25	Sugar beet	BG	Ō	9G	8Ħ
	Crabgrass	0	0	2G	0
	Barnyardgrass	3C,5G	Ö	9H	4G
	Nutsedge	Ó	0	10E	10E
	Giant Foxtail	Ö	Ō	9H	5G
	Cheatgrass	ŏ	Ö	9 G	8G
	Wild Oats	ō	Ö	10	0
30	Cocklebur	9H	-	811	3C,6H
	Morningglory	8H .	0	9H	9G
	Velvetleaf	7G	ŏ	8H	6H
	Sorghum	-	-	9H	7 G
					

197
Table A (continued)

5									
		CMPD	9	CMPD 1	0	CMPD 1	1	CMPD 1	2
	RATE RATE-KG/HA	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05
	POSTEMERGENCE COTTON	10C	9c ·	10C	100	76	100	6G	10C
	MORNING GLORY	30,86	9 c	50.90	3 C	4C, 8H	10C	3C, 8E	10C
		100	100	10C	10C	50.96	10C	3C,7E	9 C
	COCKLEBUR	46.90	90	.50,96	9 C	26	30,50	•	٥
	RUTSEDGE	10.50	36	36	10	0	40	•	. 0
10	CRABGRASS	3C,9R	90	4C.9H	90	611	4C,9E	3 2	4C.9K
	MARNIARD GRASS	30,31	30.60	0	2C,6G	٥	o o	•	10
	WILD OATS	ŏ	7G	ŏ	76	0	0	G	0
	WHEAT	46	2C.9H	98	90	9 11	9 G	3 X	30,90
	CORN		68	2C.3H	30.76	Ö	211	0	7 E
	SOTBEAR	3 11	90	46	20.76	2G	3C.9G	50	6C, 9G
	RICE	16	90	4C.9H	90	2C,9H	20.96	3C,4K	4C,9G
	SORGHUM	30.96	90	76	90	SG .	50,96	0	40,98
	CHEATGRASS	20,86		\$0.96	100	50	40.84	21	60
	SUGAR BEETS	9 C	100	90.90	100	26	30,88	0	30,76
	VELVETLEAP	4C,98	100	30,80	30	ō	3C,7K	. •	46
15	GART POITAIL	20,56	50,96	30,00	30,76	ō	0	0	0
	BARLEY	66	3C,8G	•	30,70	•	٠,		
	PREEMERGENCE			• •	9 G	٠ .	• 0 K	6	. SG
	COTTON	8 12	96	8.0	96	ŏ	9 G	0	7 E
	MORNING GLORY	7 E	9 G	96	,,,	10	2C.7E	12	3C,3K
	COCKLEBUR	9 R	9 R	9 H 8 G	10E	10	10E	-	0
	MUTSEDGE	9 G	96		46	ŏ	- 7 -	•	Ó
	CRABGRASS	_ 0	0	0	**	ŏ	78	ŏ	38
	BARRYARD GRASS	70	9 11	6 H		ŏ	75	ă	6
	WILD OATS	0	26	26	20,40	ŏ	ě	ŏ	26
20	TABEW	0	46	0	36	2C.9E	20,90	4 #	2C.98
20	zGrn	0	20,99	3C,9K	9 K	20,78	30,46	. 10	10,12
	SOTHERN	3 G	5 G	36	20,75	7 H) H	46	9 8
	RICE	8 E	5 R	76	30,81	9 G) E	* 2C.7E	50,90
	SORGHUM	9 E	10M	9 8	102		ž	-6, -	36
	CHEATGRASS	5 G	9 G	60	94	_0	-	-48	50
	SUGAR BEETS	9 G	9 G	40,90	30,94	7 2	30,40	75	20.10
	VELVETLEAP	5 E	9 K	8 K	9 m	•	2 M		20,14
	GIART POXTAIL	•	20	20,40	8.0	0	36	26	Sa
	BARLEY	76	20,86	•	7¢	0	6 G		-4

198
Table A (continued)

,									
		CHPD 1	3	CHPD 1	6	CHPD 15	i	CKPD 1	•
	RATE RATE=KG/HA	0.01	0.05	10.0	0.05	0.01	0.05	0.01	0.05
	POSTEMERGENCE					92		50.96	
	COTTON	100	100	30,66		30,86		\$C	
	MORNING GLORY	40,99	100	30,66		40.96		100	
	COCKGEBUR	3C	10C	3C,7G		30,80		5C,9G	
	HUTSEDGE	40,96	10C	0		30,00		2G	
10	CRABGRASS	0	46	0		ŏ		3C.5E	
	BARNYARD GRASS	7 x	5C,98	10				. 0	
	WILD OATS	G	0	0		0		ò	
	WHEAT	6	0	C		0		99	
	CORN	7 K	3C,9G	0		7K		38	
	SOTBEAR	0	3 G	2 H		3C,5H		ic	
	RICE	26	76	36		26		30,80	
	SORGHUH	5 G	3C,9R	3C,5G		3C,8H		20,60	
	CHEATGRASS	5 G	50,96	0		2G		50.96	
	SULER BEETS	30.79	9 C	30,46		50,96		30,30	
16	VELVETLEAP	SG	30.70	30,76		10.96		46	
15	GIANT FOXTAIL	SG	5C,9H	10		24			
		0	3 G	0		•		. 0	
	BARLET PREEMERGENCE	•	• -						
		3 G	84	0		24		76	
	COTTON	76	9.6	0	•	3C,4E	•	9 G	
	HORNING GLORY	3 H		0		30,56		30,78	
	COCKLEBUR	7G	9 G.	0		105		96	
	RUTSEDGE		36	ō				8.6	
	CRABGRASS	2 G	9 11	ò		0		26	
	BARRIARD GRASS	10	6	ŏ		0		0	
20	WILD OATS	ŏ	ŏ	ă		0		. •	
20	WREAT	20,56	9 G ·	ă		20		30,46	
	CORR	20,30	29	ă		1 =	•	3 G	
	SOTBEAR	_	8.6	ŏ		0		26	
	RICE			ŏ		2C		56	
-	SORGEUM	30,48	9 G	ŏ		G		40	
	CHEATGRASS	5 G	96	36		34		8 G	
	SUGAR BEETS	8.6	72	-0		2C.2E		CE.	
	VELVETLEAF	3 K	76	ĕ		•		5-G	
	GIANT FOITAIL	0		š		•		•	
	8 <i>1</i> 2\$27	8	30,30	•		_			

199
Table A (continued)

		CMPD 1	7	CHPD 1		CMPD 1	•	CKPD 2	0
	RATE RATE-EG/RA	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05
	POSTEMERGENCE		•					40,96	50,90
	COTTON	3C,6G		3C, 6R		26		38	100
10	MORNENG GLORY	3C,7H		30,76		2C,4K		5C.9G	36
	COCKLEBUR	50,90		4C,8H		30,76		30.86	40,94
	MUTSEDGE	3C,5G		0		0		30,00	10,75
	CRABGRASS	0		0		0		-	4C.9X
	BARNYARD GRASS	0		0		0		3C,7H	30.66
	WILD OATS	0		0		o.		36	20.76
	WREAT	C		0		Q		36	78
	CORN	9 H		3C,8K		0		26 -	30.86
	SOYBEAR	1 H		1 H		0		5 R	
	RICE	36	•	7G		0		8.6	50,96
	SORGRUM	3C.8G		30,86		30,50		4C,9E	9C
15	CHERTGRASS	30		2 G	•	0		30,76	30,96
	SUGAR BEETS	4C,8G		4C,9R		2C,3G		4C,8G	40.86
	VELVETLEAF	2C.5G		30,60		10	•	10C	9C
	GIART POSTAIL	2 C		10		0 '		2G	30,16
	BARLEY	-0		0		0 .		36	9 G
	PREEMERGENCE	•		-					4_1
	COTTON	0		0		C		26	• G
	MORNING GLORY	2C.5G		2 C		2C		0	€G
		20		2 C		10		36	9 H
	COCKLEBUR	-6		0		0		•	Ō
20	RUTSEDGE	ŏ		46		46		0	0
20	CRAPGRASS BARNYARD GRASS	ă		ŏ		0	_	76	6H
		ŏ		ō	•	•	•	2 Ģ	78
	WILD OATS	Ž .	•	ō		0 .		0	7G
	WHEAT	30.66		20,50				0	72
	CORN			0		0		26	3C,3E
	SOTBEAN	ŏ		36		0		86	9 E
	RICE	30.50		20,36		20.40		9 E	TOR
	SORGHUN	0		0,00		0		5 G	8 G
	CHEATGRASS	74		71		46		5 E	76
	SUGAR BEETS	20		26		0		56	ex
25	VILVETLEAF	40		26		ō		0	•
	GIZET POSTAIL	0		- 6		Ô		0	74
	BARLEY	v		•		-			

200
Table A (continued)

		CMPD 2	11	CHPD 2	12	CKPD 2	13	CHPD 2	4
	RATE RATE=KG/NA POSTEMERGENCE	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.05
10	COLICE	50,90	90	1c.96	4C,9G	96	100	40.96	40.96
TO	MORNING GLORY	100	100	. 4C.9G	100	100	100	100	100
	COCKLEBUR	90	100	10C	10C	100	100	100	100
	MUTSEDGE	40,86	9 C	9C	100	0	Õ	0	20,56
	CRABGRASS	0	4 G	C	36	ō	Ğ	ŏ	0
	BARNTARD GRASS	30,98	9 C	3c,5a	30,84	o	3C,7E	ŏ	SE
	WILD OATS	5G	7G	0	3G	٥	26	ò	26
	WHEAT	3 G	76	36	4G	0	3 G	Ď	36
	CORN	8 H	3C.98	2G	30,98	2C,3G	9 H	ō	46
	SOYBEAR	5C,9G	40,96	30,96	40.96	9 C	\$0,96	40,96	40.96
	RICE_	76	3C.9G	4 G	20,86	26	40,86	10	40.40
15	SORGHER	9 H	100	7丝	3C.9E	36	30,68	20,36	2C.6E
	CHEATGRASS	5C,9G	5C,9G	30,50	90	۵	26	0	20.46
	SUGAR BEETS	100	100	9 C	10Ċ	9 C	9 C	100	90
	VELVETLEAP	100	10C	40,90	10C	100	100 -	2C.4E	56
	GIART FOXTAIL	1G	3C,8G	6	2C,4E	O	36	0	3C,5G
	BARLET	5 <i>G</i>	8 G	26	40	•	36	0	٥
	PREEMERGERCE							-	-
	COTTOR	70	8 H	Q	5G	O H	94	5 G	30.80
	MORNING GLORY.	SG	9 G	26	76	9 G	9 G	96	40,96
	COCKLEBUR	4 H	30,68	26	76	3C,7K	9 E	30,88	9 8
20	MUTSERGE		6 G	O	10E	0	0	0	a .
20	Crastrass	0	4 G	0	26	0	.0	0	•
	BARNYARD GRASS	7 H	9 M	0	7×	10	ŹĦ	8	0 .
	WILD OATS	. 3C	30,80	0	0	0	0	0	0
	AEST	2 G	7G	0	6	0	0	0	0
	CORN	2C,8E	9 G	C	30,76	3C,4G	30,70	10	2c,54
	SOTBEAM	3C,5G	3C.9E	1C,1K	3C,5E	3C,7E	9 H	30,72	3C,9K
	RICE	6G .	3C,9E	. 74	9 G	0	8 G	30	7G
	SORGRUN	3€,9€	3C,9E	£G	30,92	20,34	€ G	20,30	3c,66
	CHEATGRASS	56	9 G	0	8 G	•	26	0	•
	SUGAR BEETS	30,86	5C,9G	26	30,70	90	96	40,96	90
25	VELOSTEAT	CH.	96	0	4 X	72	40,90	0	24
	GIART POITAIL	20	411	0	46	•	•	•	• .
	BARLEY	26	2C,8G	0	10	•	20,30	•	1

200.

T

201 Table A (continued)

		CMPD	25
••	RATE RATE=KG/HA	0.01	0.05
	POSTEMERGENCE		
10	COTTOR	9 C	9C ·
10	MORNING GLORY	100	10C
	COCKLEBUR	9 C .	100
	RUTSEDGE	3 C	90
	CRABGRASS	0	0
	BARNYARD GRASS	0	2 K
	WILD OATS	0	0
	WHEAT	0	26
•	CORN	0	0 .
	SOYBEAR	0	8 G
	RICE	4 H	36
15	SORGHUM	0	3C,8G
10	CHEATGRASS	0	3 G
	SUGAR BEETS	4 G	100
	VELVETLEAF	9 C	10C
	GIANT FOXTAIL	0	0
	BARLET	0	•
	PREEMERGENCE		
	COTTON	0	2 G
	HORNING GLORY	5 0	9 H
	COCKLEBUR	•	10
	MUTSEDGE	5 G	1 G
20	CRABGRASS	õ	0
	BARNYARD GRASS	ō	48
	WILD OATS	ŏ	Ö
	WREAT	. 0	ò
		ŏ	24
	CORR	ŏ	10
	SOTBEAN	ŏ	76
	RICE	36	20,70
	SORGRUN		36
	CHEATGRASS	. 0	1 G
	SUGAR BEETS	5 G	

Table A

		Compound	1 26	Compound	27
5	Rate kg/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				
	Morningglory	9C	3C,8G	10C	10C
	Cocklebur	9C	5C.9G	10C	10C.
	Velvetleaf	10C	9C	10C	10C
10	Nutsedge	9G	3C,8G	5C,9G	9 G .
	Crabgrass	3G	0	2G	0
	Barnyardgrass	3H	0	5C,9H	3C,5H
	Cheatgrass	3C,7G	0	3C,9G	8 G
	Wild Oats	O	. 0	2C,2G	0
	Sicklepod	-	-	_	=
	Wheat	0	0	0	0
15	Corn	0	0	9H	2C,6G
TO	Soybean	3H	0	3C.6H	3H
•	Rice	3G	Ο .	3G	0
	Sorghum	9G	3C,9H	4C.9G	4C.9G
	Sugar beet	9C	10C	9C	10C
	Cotton	100	3C.9H	100	100
	PREEMERGENCE				
20	Morningglory	8H	0	3C.7H	5G
	Cocklebur	7H	2C,3H	9H . •	7H
	Velvetleaf	7H	0	5C,9G	5H
	Nutsedge	10E	3C,8G	10E	10E
	Crabgrass	Ο.	0	3C	0
	Barnyardgrass	2G	0	3C.7G	3G
	Cheatgrass	7G	0	9G	8G
25	Wild Oats	0	0	ıc	0
25	Sicklepod	-	-	-	-
	Wheat	0	2G	0	0_
	Corn	3 G	0	2C,9G	3C,7G
	Soybean	1H	0	3C,6H	2C,3H
	Rice	6G	5G	5G	2G
	Sorghum	3C,9H	3C,8G	9G	8H
	Sugar beet	3C,9G	3C,7H	4C.9G	4C.9G
30	Cotton	8G	0	9G	7H

203
Table A (cont.)

		Compound	1 28	Compound	29
5					
	Rate kg/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE	•			
	Morningglory	10C	10C	9C	3C,8G
	Cocklebur	10C	10C	9C .	4C,9G
10	Velvetleaf	10C	10C	9C	3C,7H
	Nutsedge	9G	9 G	9G	2C,5G
	Crabgrass	2C,5G	2G	2C.5G	0
	Barnyardgrass	5C,9H	6C,9H	3C,BH	0
	Cheatgrass	2C.8G	7G	9G	0
	Wild Oats	0	0	0	0
	Sicklepod	-	-	-	-
	Wheat	2G	0	3G	0
15	Corn	9H	9H	3C,9H	3C,7H
	Soybean	3C,5H	5H	3C,6H	.2H
	Rice	3G	0	3 G	0
	Sorghum	9H	5H	2C,9H	2C,8G
	Sugar beet	9C .	9C	5C,9H	4C.8H
	Cotton	10C	9C	4C,9G	8H
20	PREEMERGENCE				
	Morningglory	9 G	7G	9G .	7H
	Cocklebur	9H	-	7H	_
	Velvetleaf	9G	2H	2C,5H	2H
	Nutsedge	10E	10E	BG	,5 G
	Crabgrass	3G ·	0	2C.3G	0
	Barnyardgrass	9H	7H	4G	2H
25	Cheatgrass	9H	7G	7 G	0
25	Wild Oats	0	0	0	0
	Sicklepod	_	-	-	_
	Wheat	0	0	0	. 0
	Corn	9G	5G	9H	3C.9H
	Soybean	2C,5H	0	3C,6H	3C,5H
	Rice	2G	0	6G	10
	Sorghum .	2C,9H	2 G	9H	3C,9H
30	Sugar beet	9G	7 G	5C.9G	8H
	Cotton	9G	7G	2C,7H	2C,2G

204
Table A (cont.)

		Compound	30	Compound	31
5	Rate kg/ha	0.05	0.01	0.05	0.01
	POSTEMERGENCE				22.40
•	Morningglory	5C,9G	3C.8H	10C	2C,4G
	Cocklebur	9H	3C,9H	9C	2C.8H
10	Velvetleaf	2G	0	9C .	3C.7H
	Nutsedge	9 G	0	9G	96
	Crabgrass	4G	0	0 20 FW	0
	Barnyardgrass	9H	2H	2C.5H	0
	Cheatgrass	3C.9G	0	2C,5G	0
	Wild Oats	0	0	0	-
	Sicklepod	_	0	0	0
15	Wheat	0	2H	2 G	Ŏ
	Corn	3C.9H	3C.3H	2G - 2C	ŏ
	Soybean	3C,6H	3C, 3E	0	Ö
	Rice	5C.9G	3C.7H	3C.8H	2Ğ
	Sorghum	4C.9G	4C,8G	5C,9G	BG
	Sugar beet	4C,9H 10C	5C,9G	9C	7G
	Cotton	100	30,78	,0	
20	PREEMERGENCE				_
	Morningglory	3C,8G	2C,5H	2C.5H ·	0
	Cocklebur	7H	20	2C,5H	0
	Velvetleaf	0	Ο.	3C.7G	0
	Nutsedge	9G	9G	10E	. 0
	Crabgrass	0	0	0	0
	Barnyardgrass	3H	0	5G	_
25	Cheatgrass	5G	0	3 G	. 0
23	Wild Oats	0	0	0	_
	Sicklepod	- -	_	-	0
	Wheat	0	0	0	2G
	Corn	9H	2C,8H	2C,6G	20
	Soybean	3C,6H	3C,3H 5G	0 2G	Ö
	Rice	3C.9H		2C.7H	0
	Sorghum	3C,9H	2C,8G	2C. /H	5 G
30	Sugar beet	9G	8H 0	3G	0
	Cotton	3C,7H	U	- G	_

205
Table A (cont.)

5									
		CMPD	<u> 32</u>	CMPD	<u>33</u>	CMPD	34	CMPD	<u>35</u>
	RATE RATE-EG/MA	0.01	0.05	0.01	0.05	0.01	0.05	0.01	
	POSTEHERGENCE	4C.9G	10C	50.96	10C	4C,9G	100	. 2C.9E	10C
	COTTON	30.94	100	105	100	20.66	10C	3C,7H	100
	MORNING GLORY	30,66	100	100	100	10C	100	100	100
	COCKLEBUR	3C,76	30	90	9 C	. 16	90	76	9¢.
	EUTSEDGE	26	30,76	76	4C,9G	46	30,96	30,16	90
10	CRABGRASS	40.98	30	4C.9E	90	9 M	90	9C	9C
	BARNTARD GRASS	30.56	30,96	20,36	40,96	20,56	20,86	40,40	40.96
	WILD OATS	76	90	5G	9 G	26	66	35,86	5c.96
	WHEAT CORN	3C.7H	30.96	40.98	60.96	9 G	50,94	50,96	9C
	SOTEEN	40.96	50.96	40,96	90	90	30,96	40,94	9 C
	RICE	30	96	40,86	90	40,96	50,96	9 C	90
		30.94	90	\$6.96	90	9 G	50,96	9C	100
	SORGRUM	90	100	100	90	90	10C	90	50,96
	CHEATGRASS SUGAR BEETS	90	96	100	90	100	90	9 C	30C
	VELVETLEAP	40,98	9 C	100	10C	9 C	10C	3C,7M	6C,9E
15	GIART PORTAIL	30.66	40.96	40.86	5C.9G	3C,76	30,96	60,95	90
	BARLEY	30,66	20,86	30,76	60,96	20,46	30,74	20,66	40.96
	PREEMERGENCE	20,00	,		-				
	COTTON	30.60	96	3C.7E	96	26	6G	50	96
	MORNING GLORY	72	96	3C. 8E	811	76	8.0	2C,5E	96
	COCKLEBUR	• • • •	9 8	30,56	3C,7E	1#	8 2		
	BUTSEDGE	3C.8G	102	10E	10E	16	102	40,96	102
	CRABGRASS	36	36	66	40.96	36	6G	40,96	91
	BARRYARD GRASS	30,66	40.91	30,86	9 11	3C,7E	92	4C,9E	4C,9H
	WILD OATS	20.46	40.08	36,36	30,76	0	64	3C,7H	40,88
	WHEAT	36	30,48	26	76	•	26		. 20,98
20	COIM	30,46	40,98	30,76	3C.9E	30,76	86	20,86	96
	SOTBEAN	30,56	30,78	40.88	911	20,44	92	3C,7E	911
	RICE	98	IOE	9 11	10H	9 m	92 ·	5C,9E	102
	SORGHUM	3C. 8 H	101	3C.9E	102	30,86	· DX	9 X	102
	CEENTGRASS	30.70	96) X	10E	66	92	911	102
	SUGAR BEETS	76	96	40.96	40.96	96	9 C	96	50,94
	VELVETLEAP	30,68	30,96	30,56	30,96	7# ·	40,96	72	30,96
	GIANT PORTAIL	30,56	40,88	3C,8G	92	30,36	92	40,96	40,98
	BARLEY	30.76	94	30,86	96	20,46	74	14	40.98

Table A (cont.)

5					
		CMPD :	<u>36</u>	CMPD :	37
	RATE RATE=KG/HA POSTEMERGENCE	0.01	0.05	0.01	0.05
	COTTON	5C,9H	5C,9G	4C,9G	10C
	MORNING GLORY	3C,7H	100	4C,8G	9 C
10	COCKLEBUR	3C.8H	10C	100	70C
	NUTSEDGE	4 G	5G	4C,9G	5C,9G
	CRABGRASS	5C.8G	9 C	2G	20,50
	BARNYARD GRASS	5C.9H	10C	3C,7G	4C,9H
	WILD OATS	6C,9G	5C,9G	0	2C,2G
	WHEAT	3C,9G	6C,9G	0	2C,4G
	CORN	9 C	90	2G	3C,7H
	SOYBEAN	5C,9G	6C,9G	3C,5H	4C,9G
15	RICE	9 C	. 9C	6G	9 C
	SORGHUM	9 C	9 C	3C,9H	9 G
	CHEATGRASS	6C,9G	9 C	7G	9 C
	SUGAR BEETS	9 C	10C	, 9C	. 9C .
	VELVETLEAF	6 G	7G	9 C	10C
	GIANT FOXTAIL	5C,9G	9 C	3C,3G	4C,8H
	BARLEY	7G	9 C	0	2C,3G
	PREEMERGENCE				
20	COTTON	4 H	7 H	4 G	8 G
	MORNING GLORY	3C,3H	8 G	3C,5G	SH
	COCKLEBUR	2C	3C,7H	0	•
	NUTSEDGE		. 10E	9 G	10E
	CRABGRASS	3C,8G	4C,8G	0	7 G
	BARNYARD GRASS	3C,7H	9 H	4H	9 H
	WILD OATS	3C,6G	3C,7G	0	3 G
	WHEAT	7G	9 H	0	3 G
25	CORN	3C,9G	3C,9G	2C	3C,9G
د ج	SOYBEAN	3C,7H	9 H	3C,4H	3C,7H
	RICE	9 H	105	8 H	9 H
	SORGHUM	5C,9H	10H	3C,8H	5C,9H
	CHEATGRASS	8 H	10E	8 G	9 H
	SUGAR BEETS	3 G	30,86	8 G	€G
	VELVETLEAF	0	5H	3 H	5 H
	GIANT FOXTAIL	3C,8H	4C,9H	3 G	9H
30	BARLEY	9 G	9 G	4G	3C,5G

Table A (cont.)

Compound 38

	RATE=KG/HA	0.01	0.05
	POSTEMERGENCE		
	BARLEY	0	2G
	BARNYARD GRASS	0	0
	CHEATGRASS	3 G	8 G
10	COCKLEBUR	5C,9G	10C
	CORN	0	0
	COTTON	7 G	4C,9G
	CRABGRASS	0	0
	GIANT FOXTAIL	0	3 G
	MORNING GLORY	2C,5G	3C,8G
	NUTSEDGE	3C,7G	4C,9G
	RICE	0	5G
15	SORGHUM	0	0
	SOYBEAN	1 H	5 H
•	SUGAR BEETS	9 C	10C ···
	VELVETLEAF	4C,8H	10C
	WHEAT	0	2G
	WILD OATS	0	2 G
	PREEMERGENCE		
	BARLEY	0	2G
20	BARNYARD GRASS	0	2C,2H
	CHEATGRASS	0	7G .
	COCKLEBUR	3C,3H	-
	CORN	0	2G
	COTTON	0	7 H
	CRABGRASS	0	0
	GIANT FOXTAIL	0	2G
	MORNING GLORY	2 G	8 G
0.5	NUTSEDGE	0	9 G
25	RICE	0	0
	sorghum .	0	0
	SOYBEAN	_ 0	0
	SUGAR BEETS	7G	9 G
	VELVETLEAF	0 .	3C,8H
	WBEAT	0	· 3G
	WILD OATS	0	3 G

Table A (cont.)

Compound 39

	RATE=KG/HA	0.01	0.05
	POSTEMERGENCE	•	
	BARLEY	0	3G
•	BARNYARD GRASS	211	2C,5G
	CHEATGRASS	8 G	8 G
	COCKLEBUR	100	10C ·
10	COCKDEBOK	0	0
	COTTON	90	5C,9G
	CRABGRASS	6	0,75
	GIANT FOXTAIL	ŏ	3 G
		3C.8G	90
	MORNING GLORY	9G	100
	NUTSEDGE	0	2G
	RICE	ŏ	2G
15	SORGHUM	2C,5H	3C.7H
	SOYBEAN	4C,9G	90
	SUGAR BEETS	90	100
	VELVETLEAF	0	5G
	WHEAT	٥	3C.7G
	WILD OATS	U	30,70
	PREEMERGENCE	•	0
	BARLEY	0	5G
	BARNYARD GRASS	0	8G ·
20	CHEATGRASS	0	
	COCKLEBUR	2C,3H	9 R
•	CORN	0 .	3G 8G
	COTTON	0	2G
	CRABGRASS	0	2G 3G
	GIANT FOXTAIL	0	
	MORNING GLORY	5G	9G
	NUTSEDGE	102	10E
25	RICE	0	0
	SORGHUM	0	0
	SOYBEAN	_0.	6 H
	SUGAR BEETS	7G	9G
	VELVETLEAF	. SH	40,96
•	WHEAT	0	' 4G
•	WILD OATS	0	3G

209 Table A (cont.)

Compound 40

	RATE=KG/HA	0.01	.0.05
	POSTEMERGENCE		
	BARLEY	0 ′	0
	BARNYARD GRASS	3 G	2C,7G
	CHEATGRASS	6G	4C,9G
10	COCKLEBUR	10C	100
	CORN	0	2C, 2H
	COTTON	5C,9G	5C,9G
	CRABGRASS	2G	3C,7G
	GIANT POXTAIL	3 G	4C,7G
	MORNING GLORY	6G	10C
	NUTSEDGE	4C,9G	100
	RICE	0	2G
15	SORGHUM	0	. 0
	SOYBEAN	3C,8H	5C,9G
	SUGAR BEETS	100	10C
	VELVETLEAF	10C	10C
	TABHW	0	0
	WILD OATS .	0	0
	PREEMERGENCE		
	BARLEY	0	2G
20	BARNYARD GRASS	0	5 G
20	CHEATGRASS	4 G	9 G
	COCKLEBUR	2C,4H	7 H
	CORN	0	2G
	COTTON	-	48
	CRABGRASS	2C,3G	2C,5G
	GIANT FOXTAIL	0	3 G
	MORNING GLORY	7G	8 G
	NUTSEDGE	5G	10E
25	RICE	0	0
	SORGHUM	0	0
	SOYBEAN	0	6 H
	SUGAR BEETS	9 C	9 G
	VELVETLEAF	3 H	8 G
	WHEAT	0	0
	WILD OATS	0	0

. 210

Test B

<u>Postemergence</u>

Three round pans (25 cm diameter by 12.5 cm 5 deep) were filled with Sassafras sandy loam soil. One pan was planted with nutsedge (Cyperus rotundus) tubers, crabgrass (Digitaria sanguinalis), sicklepod (Cassia obtusifolia), jimsonweed (Datura stramonium), velvetleaf (Abutilon theophrasti), lambsquarters 10 (Chenopodium album), rice (Oryza sativa) and teaweed (Sida spinosa). The second pot was planted with green foxtail (Setaria viridis), cocklebur (Xantium pensylvanicum), morningglory (Ipomoea hederacea), cotton (Gossypium hirsutum), johnsongrass (Sorghum halepense). barnyardgrass (Echinochloa crusqalli). corn (Zea mays). soybean (Glycine max) and giant foxtail (Setaria faberi). The third pot was planted with wheat (Triticum aestivum), barley (Hordeum vulgare). wild buckwheat (Polgonum convolvulus L.), cheatgrass (Bromus secalinus L.), sugarbeet (Beta vulgaris), wild 20 oats (Avena fatua), viola (Viola arvensis), blackgrass (Alopecurus myosuroides), and rape (Brassica napus). The plants were grown for approximately fourteen days. then sprayed postemergence with the chemicals dissolved 25 in a non-phytotoxic solvent.

Preemergence

Three round pans (25 cm diameter by 12.5 cm deep) were filled with Sassafras sandy loam soil. One pan was planted with nutsedge tubers, crabgrass.

30 sicklepod, jimsonweed, velvetleaf, lambsquarters, rice and teaweed. The second pot was planted with green foxtail, cocklebur, morningglory, cotton, johnsongrass, barnyardgrass, corn, soybean and giant foxtail. The third pot was planted with wheat, barley, wild buck—

35 wheat, cheatgrass, sugarbeet, wild oat, viola, black-grass and rape. The three pans were sprayed preemer—

gence with the chemicals dissolved in a non-phytotoxic solvent.

Treated plants and controls were maintained in

5 the greenhouse for 24 days, then all rated plants were compared to controls and visually rated for plant response.

Response ratings are based on a scale of 0 to
100 where 0 = no effect and 100 = complete control. A
10 dash (-) response means no test.

Response ratings are contained in Table B.

Table B

Compound 3

5										
		PC	Postemergence				PREEMERGENCE			
	Rate g/ha	62	16	4	1	250	62	16	4	
	Corn	20	0	0	0	40	0	0	. 0	
	Wheat	0	0	0	0	0	0	0	0	
10	Barley	0	0	0	.0	0	. 0	0	0	
	Rice	0	0	0	0	60	40	20	0	
	Soybean	0	0	0	0	20	0	0	0	
	Cotton	70	50	30	0	50	20	0	0	
	Sugar beet	100	70	50	30	100	90	80	70	
	Rape	90	70	50	30	90	80	70	50	
	Crabgrass	60	30	0	0	50	30	0	0	
	Johnsongrass	. 70	30	0	0	90	70	50	30	
15	Blackgrass	30	0	0	0	70	30	0	0	
	Barnyardgrass	70	30	0	0	80	60	40	O.	
	Nutsedge	80	60	30	0	0	. 0	0	. 0	
	Giant Foxtail	30	0	0	0	80	60	40	0	
	Green Foxtail	70	30	0	0	90	70	50	30	
	Cheatgrass	30	0	0 '	0	90	60	30	O	
	Wild Oats	0	0	0	0	0	0	0	0	
20	Wild Buckwheat	7,0	50	30	0	90	70	50	30	
	Viola	90	70	50	30	100	. 90	70	50	
	· Lambsquarter	100	70	50	30	100	90	70	50	
	Cocklebur	100	90	70	50	80	50	30	0	
	Morningglory	100	70	50	30	90	60	30	0	
	Teaweed	90	70	50	30	80	60	40	20	
	Sicklepod	60	30	0	0	100	70	50	30	
	Jimsonweed	70	50	30	0	90	70	50	30	
25	Valvatlasf	90	70	50	30	90	70	50	30	

213 Table B (cont.)

Compound 4

5	5		POSTEMERGENCE				PREEMERGENCE			
	Rate g/ha	62	16	4	ı	250	62	16	4	
		30	0	0	0	60	20	0	0	
	Corn	0	ŏ	Ö	0	30	0	0	0	
	Wheat	ŏ	ŏ	ō	Ō	30	0	0	0	
10	Barley	ŏ	ŏ	Ö	0	70	30	0	0	
	Rice	20	ŏ	ŏ	Ŏ	0	0	0	0	
	Soybean	90	40	ō	0	20	0	0	0	
	Cotton	100	90	70	50	100	90	70	50	
	Sugar beet	100	70	40	Õ	90	80	70	50	
	Rape	70	50	30	Õ	50	30	0	0	
	Crabgrass	50	30	Õ	Ö	70	50	30	0	
15	Johnsongrass	0	0	ō	Ō	30	0	0	0	
	Blackgrass	90	60	30	Õ	70	30	0	0	
	Barnyardgrass	90	70	50	30	100	70	. 50 .	30	
	Nutsedge	80	60	30	Ö	70	50	30	0	
	Giant Foxtail	70	50	30	Ō	90	70	50	30	
	Green Foxtail	30	0	ő	ŏ	70	30	0	0	
	Cheatgrass	100	70	50	30	0	0	0	0	
-	Wild Oats	90	70	50	30	80	60	40	0	
20	Wild Buckwheat	100	90	70	50	100	. 90	70	50	
	Viola	90	70	50	30	100	90	80	70	
	Lambsquarter	100	90	70	50	90	70	50	30	
	Cocklebur	100	90	70	50	90	80	60	40	
	Morningglory	90	70	50	30	90	70	50	30	
	Teaweed	80	70	50	30	100	100	70	50	
	Sicklepod	100	70	50	30	90	70	50	30	
25	Jimsonweed	100	70	50	30	90	80	70	50	
	Velvetleaf	TOO	, 0							

30

Table B (cont.)

	RATE RATE=G/HA	0004	0016	0062	0250
	PREEMERGENCE		•		
	GIANT FOXTAIL	40	90	100	100
10	VELVETLEAF	50	90	100	100
	SUGAR BEETS	90	100	100	100
	CRABGRASS	0	0	20	90
	TEAWEED	30	80	90	100
	JIMSONWEED	40	80	100	100
	RICE	0	0	20	100
	COCKLEBUR	40	50	90	100
	COTTON	30	50	70	100
3.5	SOYBEAR	0	20	50	100
15	BARNYARD GRASS	50	90	100	100
		30		- 0	
	WILD OATS	-	60	100	100
	MORNINGGLORY	40			-00
	TABRY	0	0	_0	-
	CASSIA	0	40	70	100
	Johnsongrass	0	40	60	90
	MUTSEDGE	90	100	100	100
20	CORN	20	50	70	100
20	WILD BUCKWHEAT	80	. 90	100	100
	BLACK GRASS		40	90	. 90
	RAPESEED	40	30.	100	100
	BARLEY	0	0	0	0
	GREEN POITAIL	70	100	100	100
	CHEAT GRASS	70	90	90	100
	LANESQUARTER	9 0	100	100	100

Table B (cont.)

Compound 8

	RATE RATE=G/BA POSTEMERGENCE	0001	0004	0016	0062
	GIANT POXTAIL	20	60	9.0	100
	VELVETLEAP	100	100	100	100
10	SUGAR BEZTS	70	80	100	100
10	CRABGRASS	Ö	20	50	100
	TEAWEED	ŏ	30	70	100
	JINSORWEED	ŏ	50	100	100
	RICE	ŏ	ő	0	0
	COCKLEBUR	40	70	100	100
	COTTON	40	40	80	90
		20	40	60	70
	SOYBEAN		40	80	100
- 15	BARNTARD GRASS	40	10	• 0	- 20
	WILD OATS	0	30	80	100
	HORNINGGLORY	0	. 0	• 0	100
	WHEAT	-	30	50	100
	CASSIA	30	30	90	100
	JOHNSONGRASS	0	-	•	100
	RUTSEDGE	• 0	100	100	90
	CORN	0	20	80	
20	WILD BUCKWHEAT	30	50	100	100
	BLACK GRASS	0	0	30	30
	RAPESEED	100	100	100	100
	BARLET	0	0	0	0
	GREEN POXIALL	0	30	100	100
	CHEAT GRASS	0	30	50	80
	BUCKWHEAT	•			
	VIOLA				
25	Lambsquarter	100			100

35 -

216
Table B (cont.)

	RATE RATE=G/HA	0001	0004	0016	0062
	POSTEHERGENCE	_	_	30	50
	GIART FOXTAIL	-0	_0	• •	_
	VELVETLEAP	50	70	100	100
10	SUGAR BEETS	70	80	90	90
	CRABGRASS	0	0	30	70
	TEAWEED	. 30	50	70	90
	JINSONWEED	· 3 0	50	70	100
	RICE	0	20	30	50
	COCKLEBUR	50	80	100	100
	COTTOR	50	. 60	70	80
	SOYBEAR	. 70	90	90	100
	BARNYARD GRASS	0	0	20	40
15	WILD OATS	0	0	0 .	. 0
	MORNINGGLORY	60	80	100	100
	WHEAT	0	0	0	0
	CASSIA	30	50	.80	100
	ZZAROZNKOL	ō	Ŏ	30	70
	WUTSEDGE	30	40	60	100
	CORN	ō	ō	20	60
	WILD BUCKWHEAT	30	So	70	80
20	BLACK GRASS	30	. 50	30	50
	RAPESEED	100	100	100	100
		100			20
	BARLEY	ŏ	ŏ	30	50
	GREEN POITAIL	_	ŏ ·	30	. 60
	CHEAT GRASS	.	•	100	100
	AIOTY	70	90		70
	LANBSQUARTER	30	40	50	70

丹

Table B (cont.)

Compound 22

	RATE RATE=G/HA	0004	0016	0062	0250
10	PREEMERGENCE				
10	GIANT FOXTAIL	0	30	50	70
	VELVETLEAP	30	50	70	90
	SUGAR BEETS	70	80	90	100
	CRABGRASS	0	30 .	60	90
	TEAWEED	50	70	80	90
	JIMSONWEED	50	70	8.0	90
	RICE	30	50	80	100
	COCKLEBUR	60	70	80	90
15	COTTON	0	30	50	70
	SOYBEAN	Ö	20	40	60
	BARNYARD GRASS	30	50	70	90
	WILD OATS	Ō	0	20	30
	MOREINGGLORY	70	80	90	100
	WHEAT	Ö	0	. 0	•
	CASSIA	30	50	70	90
	JOHNSONGRASS	30	50	70	90
20	NUTSEDGE	50	70	100	100
	CORM	0	0	20 .	60
	WILD BUCKWHEAT	70	80	90	100
	BLACK GRASS	50	60	. 70	80
	RAPESEED	80	90	100	100
	BARLEY	0	0	0	0
	GREEN POXTAIL	0	30	60	90
	CHEAT GRASS		30	50	80
25	LANDSQUARTER	70	80	90	100

<u>Table B (cont.)</u>

	.RATE RATE=G/HA	0001.	0004.	0016.	0062.
10	POSTEHERGENCE	•			
	GIANT FOXTAIL	0	30	60	80
	VELVETLEAF	60	100	100	100
	SUGAR BEETS	100	100	100	
	CRABGRASS	. 0	30	50	70
	TEAWEED	30	50	70	90
	JIMSONWEED	30	50	70	100
	RICE	O	0	. 0	100
15	COCKLEBUR	100	100	100	100
LJ	COTTON	30	60	100	100
	SOYBEAN	ō	0	20	
	BARNYARD GRASS	ŏ	G	60	100
	WILD OATS	ŏ	0	0	
	MORNINGGLORY	30	50	70	90
	WHEAT	ō	Ö	O	
	CASSIA	ŏ	30	50	70
	JOHNSONGRASS	ŏ	Ô	0	50
20	RUTSEDGE	100	100	100	100
	CORN	- 0	30	50	
	WILD BUCKWHEAT	30	50	70	
	BLACK GRASS	0	30	50	
		100	100	100	
	RAPESEED	100	0	0	
	BARLEY	ŏ	ŏ	30	. 60
	GREEN FOXTAIL	ŏ	ŏ	30	
25	CHEAT GRASS	v	•		
-	BUCKWHEAT	70	90	100	
	VIOLA		70	90	100
	Lambsquarter	50	70		

Table B (cont.)

	RATE RATE=G/HA	0004.	0016.	0062.	0.250
	PREEMERGENCE				
10	GIANT FOXTAIL	30	60	100	100
	VELVETLEAF	50	70	80	100
	SUGAR BEETS	60	70	80	90
	CRABGRASS	30	50	80	100
	TEAWEED	30	50	70	90
	JIMSONWEED	40	70	80	90
	RICE	0	0	30	80
	COCKLEBUR	50	70	50	90 ·
	COTTON	Ŏ	30	60	80
15	- - - - ·	ŏ	20	50	70
	SOYBEAN		40	70	90
	BARNYARD GRASS	0	0	O .	0
	WILD OATS	30	70	80	90
	MORNINGGLORY	0	Ö	0	0
	WHEAT	30	50	60	80
	CASSIA	30	50	70	90
	JOHNSONGRASS	100	100	100	100
20	MUTSEDGE	100	20	. 60	8.0
	CORN	50	70	80	90
	WILD BUCKWHEAT		30	60	90
	BLACK GRASS	0	90	100	100
	RAPESEED	80	90	100	- 0
	BARLEY	0	-	100	100
	GREEN FOXTAIL	30	50	60	90
	CHEAT GRASS	0	30	60	, ,
	BUCKWHEAT				100
25	VIOLA	70	90	100	100
	LAMBSQUARTER	80	100	100	100

Table B (cont.)

	RATE RATE=G/HA	0001.	0004.	0016.	0062.
10	PREEMERGENCE				
	GIANT FOXTAIL	50	70	*0	90
	VELVETLEAF	.30	50	70	90
	SUGAR BEETS	70	90	100	100
	CRABGRASS	50	70	80	100
	TEAWEED	40	50	70	80
	JINSONWEED	50	70	8.0	90
	RICE	90	100	100	100
15	COCKLEBUR	60	70	80	90
12	COTTON	20	40	60	80
	SOYBEAN	20	40	- 70	-·· 90 ·
	BARNYARD GRASS	30	60	90	100
	WILD OATS	40	50	70	90
	MORNINGGLORY	30	50	60	70
	WHEAT	20	30	60	100
	CASSIA	80	90	100	100
	JOHNSONGRASS	70	80	90	100
20	NUTSEDGE	0	30	60	90
	CORN	Q	. 60	80 .	100
	WILD BUCKWHEAT	30	60	80	90
	BLACK GRASS	50	70	80	100
	RAPESEED	60	70	80	90
	BARLEY	20	40	90	100
	GREEN POXTAIL	60	80 .	100	100
	CHEAT GRASS	50	8.0	100	100
25	BUCKWHEAT				
	AIOLY	60	70	80	100
	LAMBSQUARTER	70	80	90	100

221
Table B (cont.)

	RATE RATE=G/HA	0.25	0001.	0004.	0016.
10	POSTEMERGENCE	•	20	50	80
	GIANT FOXTAIL	0	40	60	8.0
	VELVETLEAF	30	80	90 /	100
	SUGAR BEETS	70	0	60	60
	CRABGRAS5	0	-	70	80
	TEAWEED	60	60	70	80
	JIMSONWEED	0	40		100
	RICE	30	50	80	100
	COCKLEBUR	40	50	80	80
15	COTTON	0	20	80	• •
	SOYBEAN		60	70	100
	BARNYARD GRASS	20	60	70	100
	WILD OATS	0	50	80	90
•	MORNINGGLORY	0	30	70	80
	WHEAT	0	20	50	90
	CASSIA	60		80	90
	JOHNSONGRASS	30	70	90	100
		20	40	60 .	
20	MUTSEDGE	ō	40	90	. 90
	CORN	ŏ	50	90	90
	WILD BUCKWHEAT	20	70	8.0	100
	BLACK GRASS	40	80	90	100
	RAPESEED	20	60	90	100
	BARLEY		60	70	90
	GREEN FOXTAIL	30	30	60	70
	CHEAT GRASS	0	30		
25	BUCKWHEAT	_		90	100
	AIOFY	0	40	90	100
	LAMBSQUARTER	40	70	3 0	

Test C

Sixteen cm diameter Wagner pots, equipped with a stoppered drain opening near the bottom of the side 5 wall. were partially filled with Woodstown sandy loam. About 1500 mls of water were added to each pot to bring the water level to a point 3 cm above the soil surface. Japonica and Indica rice seedlings were transplanted as described in Test E. Also, a number 10 of barnyardgrass (Echinochola crusqalli) seeds were added to each pot. At the same time, seedlings or tubers of the following species were transplanted into the muddy soil: water plantain (Alisma trivale). Scirpus (Scirpus mucranatus), and Cyperus (Cyperus 15 difformis). The weed species selected for this test are of economic importance in major rice-growing areas. The chemical treatments were applied directly to the paddy water after being formulated in a nonphytotoxic solvent within hours after transplanting of 20 two additional species: water chestnuts (Eleocharis spp.) and arrowhead (Sagittaria latifolia). Shortly after treatment, the drain hole was opened to drop the water level by 2 cm. Water was then added to restore the water level to its original height. The following 25 day the draining and refilling process was repeated. The pots were then maintained in the greenhouse. Rates of application and plant response ratings made 21 days after treatment are summarized in Table C.

In the subsequent tables. LS is used as an 30 abbreviation for leaf stage.

Table C

Compound 8

	RATE RATE=G/RA	0004	0008	0016
10	SOIL			
	BARNYARD GRASS	50	67	70
	WATER CHESTRUT	62	77	90
	ARROWHEAD	0	57	80
	SCIRPUS (SEDGE)	37	72	8.5
	CYPRESS (SEDGE)	75	75	95
	WATER PLANTAIN	75	55	90
	RICE JAP EFF	0	0	10
15 ′	RICE INDICA EFF	0	17	0

224 Table C (cont.)

Compound 28

	RATE RATE=G/HA	0004.	0008.	0016.
	SOIL			
10	BARNYARD GRASS	45	60	65
	WATER CHESTRUT	75	95	92
	ARROWHEAD	8.5	90	95
	SCIRPUS (SEDGE)	8 2	8.5	92
	CYPRESS (SEDGE)	92	95	100
	WATER PLANTAIN	87	100	100
	RICE JAP EFF	0	5	10
	PICE INDICA EFF	0	0	5

Test D

The soybeans were planted in large 25

cm-diameter pots of soil. 6 to 10 plants per pot. The

5 other plant species were planted in 15 cm-diamter pots
of soil. Carn. because of its importance as a
rotational crop. was by itself in one container. 3 to
5 plants per pot. The weed species used in this test
were all of major economic importance in soybean
10 growing regions. They were planted 3 to 4 species per
pot. each confined to a separate quadrant of the soil
surface. The following species were included in the
screen:

15	barnyardgrass	Echinochloa crus-galli
	giant foxtail	Setaria faberi
	green foxtail	Setaris virdis
	johnsongrass	Sorghum halepense
	fall panicum	Panicum dichotomiflorum
20	purple nutsedge	Cyperus rotundus
	signalgrass	Brachiaria platyphylla
•	crabgrass	<u>Digitaria sanguinalis</u>
	velvetleaf	Abutilon theophrasti
	jimsonweed	Datura stramonium
25	hemp sesbania	Sesbania exaltata
	sicklepod	Cassia obtusifolia
	cocklebur	Xanthium pensylvanicum
	ivyleaf morningglory	Ipomoea hederacea
	purslane	Portulaca oleracea
30	pigweed	Amaranthus retroflexus
	lambsquarter	Chenopodium album
	teaweed	Sida spinosa
	bindweed	Convolvulus arvensis

For the post-emergence phase of the test, crop and weed species were planted two to three weeks before application so that they were present as young plants at the time of treatment. Plantings for the pre-emergence phase were made on the day before, or on the day of treatment. Approximate planting depths were: corn and soybeans - 3 to 4 cm; morningglory, cocklebur and nutsedge - 2.5 to 3 cm; velvetleaf, sicklepod and sesbania - 2 cm; all other species - 0.5 cm.

The test chemicals were dissolved/suspended in a non-phytotoxic solvent in concentrations required to obtain the desirec rate of application. The solutions or suspensions were then applied as soil/foliage sprays to the young plants (post-emergence phase) and to the soil surfaces of the freshly planted containers (pre-emergence phase). Application was made utilizing an automatic spray machine at a spray volume of 500 liters per hectare. Immediately after treatment, the containers were transferred to a greenhouse and subsequently watered on a demand basis, taking care not to wet the foliage of the plants in the post-emergence phase of the test.

Table D

5	• .	:: •	•		•	
	RATE RATE GM/H	0002	0004	8000	0016	0031
	POSTEMERGENCE					
	SOYBEAN	0	0	0	20	60
	CORN	0	0	0	50	70
10	VELVETLEAF	50	65	90	100	100
	NIGHTSHADE	0	20	30	75	85
	J IMSONWEED	0	0	20	30	40
	SICKLEPOD	0	0	0	20	50
	SESBANIA	0	. 0	0	30	50
15	COCKLEBUR	40	85	100	100	100
	IVYLEAF M/G	30	65	75	80	95
	PIGWEED	40	60	75	85	90
	LAMBSQUARTER	30	60	85	85	85
	PRICKLY SIDA	0	30	50	75	85
20	SMARTWEED	40	50	80	80	90
	BARNYARDGRASS	0	30	50	70	80
	GIANT FOXTAIL	0	0	0	40	65
	GREEN FOXTAIL	0	0	0	40	60
	JOHNSONGRASS	0	30	65	80	95
25	FALL PANICUM	0	20	40	50	75
	CRABGRASS	0	0	0	20	30
	SIGNALGRASS	0	20	30	50	65
	NUTSEDGE	65	80	90	100	100

228
Table D (cont.)

5			-		
	RATE RATE GM/H	0031	0062	0125	0250
	PREEMERGENCE	•			
	SOYBEAN	0	0	25	60
	CORN	0	20	65	90
10	VELVETLEAF	. • 0	20	80	95
	NIGHTSHADE	50	70	85	95
	JIMSONWEED	0	30	70	95
	SICKLEPOD	0	0	30	60
	SESBANIA	0	0	40	50
15	COCKLEBUR	80	75	80	95
	IVYLEAF M/G	0	0	40	50
	PIGWEED	70	85	100	100
	LAMBSQUARTER	20	75	95	100
	PRICKLY SIDA	40	70	80	90
20	SMARTWEED	70	90	90	100
	BARNYARDGRASS	o	0	40	85
	GIANT FOXTAIL	0	0	30	70
	GREEN FOXTAIL	0	20	40	70
	JOHNSONGRASS	85	90	95	95
25	FALL PANICUM	90	100	100	95
	CRABGRASS	0	O	20	40
	SIGNALGRASS	•	30	70	85
	NUTSEDGE	80	90	100	100

For the contracting states BE CH DE FR GB GR IT LI LU NL SE

229

Claims:

1. Compounds of Formula I

5

JSO²NHCNE¹y

10

<u>I</u>

wherein

15
$$J$$
 is
$$R_{2} (CH_{2})_{n} \ddot{C}R'$$

$$\frac{J-1}{\dot{R}}$$

$$R^{2} (CH_{2})_{n} \ddot{C}R'$$

30

<u>J-5</u>

J-6

$$R_2$$
 CH_2
 C

<u>J-11</u>

R is H. C₁-C₃ alkyl, phenyl, SO₂NR_aR_b, C₁-C₂
haloalkyl, C₂-C₄ alkoxyalkyl, C₂-C₃ cyanoalkyl,

C₂-C₄ alkylthioalkyl, C₂-C₄ alkylsulfinylalkyl,

C₂-C₄ alkylsulfonylalkyl, CO₂C₁-C₂ alkyl, C₁-C₄
alkylcarbonyl, C₁-C₂ alkylsulfonyl, C₃-C₄ alkenyl,

C₃-C₄ alkynyl or C₁-C₂ alkyl substituted with

CO₂C₁-C₂ alkyl;

R₁ is H or CH₃;

(-

35

 R_2 is H. C_1-C_3 alkyl. C_1-C_3 haloalkyl. halogen. nitro, $\bar{c}_1 - \bar{c}_3$ alkoxy, $SO_2NR_cR_d$, $C_1 - C_3$ alkylthio, C₁-C₃ alkylsulfinyl, C₁-C₃ alkylsulfonyl, CN, CO2Re. C1-C3 haloalkoxy. C1-C3 haloalkylthio. 5 . . amino, c_1-c_2 alkylamino, $di(c_1-c_3$ alkyl)amino or $C_1 - C_2$ alkyl substituted with $C_1 - C_2$ alkoxy. C1-C2 haloalkoxy, C1-C2 alkylthio, C1-C2 haloalkylthio. CN. OH or SH: R_a and R_b are independently C_1-C_2 alkyl; 10 Rc is H. C1-C4 alkyl. C2-C3 cyanoalkyl, methoxy or ethoxy; R_d is H. C_1-C_4 alkyl or C_3-C_4 alkenyl; or R_c and R_d may be taken together as -(CH₂)₃-, -(CH₂)₄-, $-(CH_2)_5$ or $-CH_2CH_2OCH_2CH_2$; 15 R_e is C_1-C_4 alkyl, C_3-C_4 alkenyl, C_3-C_4 alkynyl, C2-C4 haloalkyl, C1-C2 cyanoalkyl, C5-C6 cycloalkyl, C4-C7 cycloalkylalkyl or C2-C4 alkoxyalkyl; R' is c_1-c_5 alkyl. c_1-c_5 haloalkyl. c_1-c_5 alkyl substituted with one or two R₃ groups, C₂-C₅ 20 alkenyl, C2-C5 haloalkenyl, C3-C5 alkenyl substituted with one or two R₃ groups, C₃-C₅ alkynyl, C3-C5 haloalkynyl, C3-C5 alkynyl substituted with one or two R3 groups. C3-C5 cycloalkyl, C3-C5 halocycloalkyl, C3-C5 cyclo-25 alkyl substituted with one or two R4 groups. C4-C7 cycloalkylalkyl. C4-C7 halocycloalkylalkyl, C4-C7 cycloalkylalkyl substituted with one or two R4 groups, phenyl or benzyl; R_3 is C_1-C_3 alkoxy, C_1-C_3 alkylthic, C_1-C_3 halo-30 alkoxy. C₁-C₃ alkylsulfinyl, C₁-C₃ alkylsulfonyl, CN. NO2, OH, OR5 or di-(C1-C3 alkyl)- R_4 is C_1-C_3 alkyl, C_1-C_3 alkoxy, C_1-C_3 haloalkoxy. CN. NO2. OH. OR5 or di-(C1-C3 alkyl)amino;

R₅ is SO₂CH₃, Si(CH₃)₃, C₂-C₃ alkylcarbonyl or CO₂C₁-C₂ alkyl;
E is a single bond or CH₂;
W is 0 or S;
n is 0 or 1;
n' is 0 or 1;

A is

A=1

A=2

A=3

15

CN

X₄

OCH₃

OCH₃

A=6

A-7

30 X is H. C₁-C₄ alkyl. C₁-C₄ alkoxy, C₁-C₄ halo-alkoxy, C₁-C₄ haloalkyl. C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, halogen, C₂-C₅ alkoxyalkyl. C₂-C₅ alkoxyalkoxy, amino, C₁-C₃ alkylamino, di(C₁-C₃ alkyl)amino or C₃-C₅ cycloalkyl;

Y is H, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 haloalkoxy. $C_1 - C_4$ haloalkylthio, $C_1 - C_4$ alkylthio, C2-C5 alkoxyalkyl, C2-C5 alkoxyalkoxy, amino, C_1-C_3 alkylamino, $di(C_1-C_3$ alkyl)amino, C_3-C_4 alkenyloxy, C3-C4 alkynyloxy, C2-C5 alkylthioalkyl, C₁-C₄ haloalkyl, C₂-C₄ alkynyl, azido. cyano, C₂-C₅ alkylsulfinylalkyl, C₂-C₅ alkylsul-

fonylalkyl, CR_6 , $-C_{R_6}^{L_1R_7}$, $-C_{R_6}^{L_1CH_2}$, $-CR_6^{L_1CH_2}$

or N(OCH₃)CH₃;

m is 2 or 3;

 L_1 and L_2 are independently O or S: 15 R_6 is H or C_1-C_3 alkyl: R_7 and R_8 are independently C_1-C_3 alkyl;

Z is CH or N;

Z, is CH or N;

Y, is O or CH2: 20

5

10

25

X₁ is CH₃. OCH₃. OC₂H₅ or OCF₂H;

X₂ is CH₃, C₂H₅ or CH₂CF₃:

Y2 is OCH3, OC2H5, SCH3, SC2H5, CH3 or CH2CH3;

 X_3 is CH_3 or OCH_3 :

Y, is H or CH3:

 X_4 is CH_3 , OCH_3 , OC_2H_5 , CH_2OCH_3 or C1: and

Y4 is CH3, OCH3, OCH5 or C1;

and their agriculturally suitable salts; provided that

- a) when X is Cl. F. Br or I, then Z is CH and 30 OCH_3 , OC_2H_5 , $N(OCH_3)CH_3$, $NHCH_3$, $N(CH_3)_2$ or OCF₂H;
 - b) when X or Y is C, haloalkoxy, then Z is CH;
- c) X_4 and Y_4 are not simultaneously C1; 35

- d) when W is S, then R₁ is H. A is A-1 and Y is CH₃. OCH₃. OC₂H₅. CH₂OCH₃. C₂H₅. CF₃. SCH₃. OCH₂CH=CH₂. OCH₂CECH. OCH₂CH₂OCH₃. CH(OCH₃)₂ or 1.3-dioxolan-2-y1;
- e) when the total number of carbons of X and Y is greater than four, then the number of carbons of R must be less than or equal to two;
- f) when J is J-1, J-2, J-3 or J-4 then R' is other than phenyl;
- g) when J is J-5. J-6 or J-7 wherein E is a single bond, then R' is other than C₁-C₅ alkyl. C₃-C₅ alkenyl. phenyl. benzyl. cyclopentyl or C₄-C₇ cycloalkylalkyl;
- h) when either or both of X and Y are OCF₂H then J is J-1. J-2. J-3. J-4. J-8. J-9. J-10 or J-11; and
 - i) when A is A-7 and Z_1 is N, then J is J-1, J-2, J-3 or J-4 and R' is C_3-C_5 cycloalkyl:
 - j) when the total number of carbon atoms of X and Y is greater than four. then the total number of carbon atoms of R_2 and R' must be less than or equal to 7.
 - 2. Compounds of Claim 1 provided (k) when J is J-5. R₁ is H. R₂ is H. E is CH₂. A is A-1. X is OCH₃. Y is OCH₃ and Z is CH, then R' is other than CH₃.
- 3. Compounds of Claim 1 where E is a single bond; and W is O.
 - 4. Compounds of Claim 1 where E is CH₂; and W is O.

35

5

10

20

```
5. .. Compounds of Claim 3 where
               R<sub>2</sub> is H. C<sub>1</sub>-C<sub>3</sub> alkyl. halogen, C<sub>1</sub>-C<sub>3</sub> alkyl
                   substituted with 1 to 3 halogen atoms
                   selected from 1 to 3 Cl. 1 to 3 F or 1 Br.
5
                   OCH_3. SO_2NHCH_3, SO_2N(CH_3)_2. S(O)_nCH_3.
                   CO2CH3. CO2CH2CH3. OCF2H. CH2OCH3 or
                   CH, CN:
               R is H. C<sub>1</sub>-C<sub>3</sub> alkyl. phenyl. CH<sub>2</sub>CF<sub>3</sub> or CH<sub>2</sub>CH=CH<sub>2</sub>:
                x is C<sub>1</sub>-C<sub>2</sub> alkyl. C<sub>1</sub>-C<sub>2</sub> alkoxy. Cl. F. Br. 1.
10
                   OCF2H. CH2F. CF3, OCH2CH2F. OCH2CHF2.
                   OCH2CF3. CH2Cl or CH2Br; and
                Y is H. C1-C2 alkyl, C1-C2 alkoxy, CH2OCH3.
                   CH2OCH2CH3. NHCH3, N(OCH3)CH3. N(CH3)2.
                   CF3. SCH3. OCH2CH=CH2. OCH2CECH. OCH2CH2OCH3.
15
                   CH_2SCH_3. CR_2. -C
R_2
L_2
R_4
R_2
L_2
R_4
R_2
L_2
R_4
R_2
R_2
R_2
R_3
                    OCF2H. OCF2Br. SCF2H. cyclopropyl. CECH or CECCH3.
             6. Compounds of Claim 5 where
20
                R' is C_1-C_4 alkyl. C_1-C_3 alkyl
                   substituted with 1 to 3 halogen atoms
                   selected from 1 to 3 Cl. 1 to 3 F or 1 Br,
                   C2-C4 alkoxyalkyl. C2-C4 alkylthioalkyl.
 25
                   C2-C4 cyanoalkyl. C2-C4
                   alkenyl. C2-C3 alkenyl substituted with
                   1 to 3 halogen atoms selected from 1 to
                   3 Cl. 1 to 3 F or 1 Br. C3-C4 alkynyl,
                   C3-C5 cycloalkyl. C3-C5 cycloalkyl
                   substituted with 1 to 3 halogen atoms
 30
                   selected from 1 to 3 Cl. 1 to 3 F or 1 Br
                   or cyclopropylmethyl.
              7. Compounds of Claim 6 where
                 A is A-1:
  35
                 n is O:
```

X is CH₃. OCH₃. OCH₂CH₃. C1 or OCF₂H; and Y is CH₃. OCH₃. C₂H₅. CH₂OCH₃. NHCH₃. CH(OCH₃)₂ or cyclopropy1.

8. Compounds of Claim 7 where

R₁ is H:

R₂ is H, Cl. Br. OCH₃ or CH₃; and

R'is C₁-C₃ alkyl, C₁-C₃ alkyl

substituted with 1 to 3 F, C₂-C₃

alkoxyalkyl, C₂-C₃ alkylthicalkyl,

C₂-C₃ cyanoalkyl, C₂-C₃ alkenyl,

propargyl, C₃-C₅ cycloalkyl or

cyclopropylmethyl.

5

10

15

- 9. Compounds of Claim 8 where J is J-1, J-2, J-3 or J-4.
- 10. Compounds of Claim 9 where

 R' is C₁-C₃ alkyl substituted with 1 to 3 F,

 C₂-C₃ alkoxyalkyl. C₂-C₃ alkylthioalkyl. C₂-C₃

 cyanoalkyl. C₂-C₃ alkenyl, propargyl, C₃-C₅ cycloalkyl or cyclopropylmethyl.
- 11. A compounds of Claim 1 which is

 4-(cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbinyl]-1-methyl-1Hpyrazole-5-sulfonamide.
- 25 12. A compound of Claim 1 which is

 4-(1-oxopropyl)-N-[(4.6-dimethoxypyrimidin2-yl)aminocarbonyl]-1-methyl-IH-pyrazole-5sulfonamide.
- 13. A compound of Claim 1 which is

 2-(cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-3-thiophenesulfonamide.
- 14. An agriculturally suitable composition for controlling the growth of undesired vegetation or for use as a plant growth regulant comprising an effective amount of a compound of any of Claims 1 to 13 and at

least one f the following: surfactant, s lid, or liquid diluent.

- 15. A composition of Claim 14 comprising a compound of Claim 11. 12. or 13 or an agriculturally 5 suitable salt thereof.
 - 16. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of any of Claims 1 to 13.
- 17. A method of Claim 16 wherein the compound of Claim 11. 12, or 13 is applied or an agriculturally suitable salt thereof.
- 18. A method for regulating the growth of plants which comprises applying to the locus of such plants
 15 an effective but substantially non-phytotoxic amount of a plant growth regulant selected from compounds of any of Claims 1 to 13.
 - 19. A process for the preparation of a compound of claim 1 which comprises:
- 20 (a) reacting a sulfonyl isocyanate or isothiocyanate of formula

$$JSO_2N=C=W$$
 (II)

or a phenyl carbamate or thiocarbamate of formula

30 with an aminoheterocycle of formula

35 (b) reacting a sulfonamide of formula

(VI)

with a heterocyclic phenyl carbamate or thiocarbamate of formula

C₆H₅OCNA (VII);

wherein J, A, R₁ and W are as defined in claim 1.

20. Compounds of formulae

JSO₂N=C=W (II)

 JSO_2NH_2 (IV) and

15 W

wherein J and W are as defined in claim 1.

Claims:

1. A process for the preparation of a compound

5 of Formula I

JSO₂NHCNR₁A

10

I

wherein

15 Jis
$$R_{2}$$
 $(CH_{2})_{n}CR'$ $-E$ $(CH_{2})_{n}CR'$

20
$$R_{2}$$

$$R_{2}$$

$$R_{2}$$

$$R_{2}$$

$$R_{3}$$

$$R_{2}$$

$$R_{2}$$

$$R_{3}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{2}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{2}$$

$$R_{4}$$

$$R_{5}$$

$$R_{4}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{1}$$

$$R_{2}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{2}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

J-5.

10.

$$R_2$$
 CH_2
 C

<u>J-11</u>

R is H, C₁-C₃ alkyl, phenyl, SO₂NR_aR_b, C₁-C₂
haloalkyl, C₂-C₄ alkoxyalkyl, C₂-C₃ cyanoalkyl,

C₂-C₄ alkylthioalkyl, C₂-C₄ alkylsulfinylalkyl,

C₂-C₄ alkylsulfonylalkyl, CO₂C₁-C₂ alkyl, C₁-C₄
alkylcarbonyl, C₁-C₂ alkylsulfonyl, C₃-C₄ alkenyl,

C₃-C₄ alkynyl or C₁-C₂ alkyl substituted with

CO₂C₁-C₂ alkyl;

R₁ is H or CH₃;

 R_2 is H. C_1-C_3 alkyl. C_1-C_3 haloalkyl. halogen. nitro, C₁-C₃ alkoxy, SO₂NR_cR_d, C₁-C₃ alkylthio, C1-C3 alkylsulfinyl, C1-C3 alkylsulfonyl, CN. CO2Re. C1-C3 haloalkoxy. C1-C3 haloalkylthio. 5 amino, C₁-C₂ alkylamino, di(C₁-C₃ alkyl)amino or C_1-C_2 alkyl substituted with C_1-C_2 alkoxy. C1-C2 haloalkoxy, C1-C2 alkylthio, C1-C2 haloalkylthio. CN. OH or SH; 10 R_a and R_b are independently C_1-C_2 alkyl: R_c is H. C_1-C_4 alkyl. C_2-C_3 cyanoalkyl. methoxy or R_d is H. C_1-C_4 alkyl or C_3-C_4 alkenyl; or R_{c} and R_{d} may be taken together as $-(CH_{2})_{3}$ -. $-(CH_{2})_{4}$ -. 15 -(CH₂)₅- or -CH₂CH₂OCH₂CH₂-; R_e is C_1-C_4 alkyl, C_3-C_4 alkenyl, C_3-C_4 alkynyl, C2-C4 haloalkyl. C1-C2 cyanoalkyl. C5-C6 cycloalkyl, C4-C7 cycloalkylalkyl or C2-C4 alkoxyalkyl; R' is C_1-C_5 alkyl, C_1-C_5 haloalkyl, C_1-C_5 alkyl substituted with one or two R_3 groups, C_2-C_5 20 alkenyl, C2-C5 haloalkenyl, C3-C5 alkenyl substituted with one or two R_3 groups, C_3-C_5 alkynyl, $C_3 - C_5$ haloalkynyl, $C_3 - C_5$ alkynyl substituted with one or two R3 groups, C3-C5 cycloalkyl, C_3-C_5 halocycloalkyl, C_3-C_5 cyclo-25 alkyl substituted with one or two R groups. C4-C7 cycloalkylalkyl. C4-C7 halocycloalkylalkyl, C₄-C₇ cycloalkylalkyl substituted with one or two R groups, phenyl or benzyl; 30 R_3 is C_1-C_3 alkoxy, C_1-C_3 alkylthic, C_1-C_3 haloalkoxy, C₁-C₃ alkylsulfinyl, C₁-C₃ alkylsulfonyl, CN, NO₂, OH, OR₅ or $di-(C_1-C_3)$ alkyl)- R_4 is C_1-C_3 alkyl, C_1-C_3 alkoxy, C_1-C_3 haloalkoxy.

CN. NO₂. OH. OR₅ or di-(C₁-C₃ alkyl)amino;

R₅ is SO₂CH₃, Si(CH₃)₃, C₂-C₃ alkylcarbonyl or CO₂C₁-C₂ alkyl;
E is a single bond or CH₂;
W is O or S;
n is O or 1;
n' is O or 1;

A is
$$N_{Y}$$
 N_{Y_1} N_{Y_1} N_{Y_2} N_{Y_2} N_{Y_2} N_{Y_2} N_{Y_2} N_{Y_2} N_{Y_3} N_{Y_2} N_{Y_3} N_{Y_2} N_{Y_3} N_{Y_4} N

or
$$X_4$$

5

A-7

X is H. C₁-C₄ alkyl. C₁-C₄ alkoxy. C₁-C₄ halo-alkoxy. C₁-C₄ haloalkyl. C₁-C₄ haloalkylthio. C₁-C₄ alkylthio. halogen. C₂-C₅ alkoxyalkyl. C₂-C₅ alkoxyalkoxy. amino. C₁-C₃ alkylamino. di(C₁-C₃ alkyl)amino or C₃-C₅ cycloalkyl:

Y is H. C₁-C₄ alkyl. C₁-C₄ alkoxy. C₁-C₄ halo-alkoxy. C₁-C₄ haloalkylthio. C₁-C₄ alkylthio.

C₂-C₅ alkoxyalkyl. C₂-C₅ alkoxyalkoxy. amino.

C₁-C₃ alkylamino. di(C₁-C₃ alkyl)amino. C₃-C₄

alkenyloxy. C₃-C₄ alkynyloxy. C₂-C₅ alkylthio-alkyl. C₁-C₄ haloalkyl. C₂-C₄ alkynyl. azido.

cyano. C₂-C₅ alkylsulfinylalkyl. C₂-C₅ alkylsul
fonylalkyl. CR₆. -CL₁R₇. -CL₁(CH₂)_m. -CR₆

R₆L₂R₈. -CR₆L₂CH₃

or N(OCH₃)CH₃:

m is 2 or 3;

10

20

25

L₁ and L₂ are independently O or S:

R₆ is H or C₁-C₃ alkyl;

R₇ and R₈ are independently C₁-C₃ alkyl;

Z is CH or N;

Z, is CH or N:

Y is O or CH2:

X₁ is CH₃. OCH₃. OC₂H₅ or OCF₂H;

X2 is CH3. C2H5 or CH2CF3;

 Y_2 is och₃, oc₂ H_5 , sc H_3 , sc₂ H_5 , c H_3 or c H_2 C H_3 ;

X, is CH, or OCH;

Y3 is H or CH3;

X4 is CH3, OCH3, OC2H5, CH2OCH3 or Cl; and

Y₄ is CH₃, OCH₃, OC₂H₅ or Cl;

or an agriculturally suitable salt thereof; provided that

a) when X is Cl. F. Br or I, then Z is CH and
Y is
OCH₃, OC₂H₅, N(OCH₃)CH₃, NHCH₃,N(CH₃)₂

och₃, oc₂ H_5 , $N(och_3)ch_3$, $Nhch_3$, $N(ch_3)_2$ or ocf₂H;

- b) when X or Y is C haloalkoxy. then Z is CH;
- c) X₄ and Y₄ are not simultaneously Cl:

- d) when W is S. then R₁ is H. A is A-1 and Y is CH₃. OCH₃. OC₂H₅. CH₂OCH₃. C₂H₅. CF₃. SCH₃. OCH₂CH=CH₂. OCH₂C=CH. OCH₂CH₂OCH₃. CH(OCH₃)₂ or 1.3-dioxolan-2-y1;
- e) when the total number of carbons of X and Y is greater than four, then the number of carbons of R must be less than or equal to two;
- f) when J is J-1, J-2, J-3 or J-4 then R' is other than phenyl:
- g) when J is J-5. J-6 or J-7 wherein E is a single bond. then R' is other than C_1-C_5 alkyl. C_3-C_5 alkenyl. phenyl. benzyl. cyclopentyl or C_4-C_7 cycloalkylalkyl:
- h) when either or both of X and Y are OCF₂H
 then J is J-1, J-2, J-3, J-4, J-8, J-9, J-10
 or J-11; and
 - i) when A is A-7 and Z₁ is N. then J is J-1. J-2. J-3 or J-4 and R' is C₃-C₅ cycloalkyl;
 - j) when the total number of carbon atoms of X and Y is greater than four, then the total number of carbon atoms of R₂ and R' must be less than or equal to 7; which comprises:
- (i) reacting a sulfonyl isocyanate or isothiocyanate of formula

 $JSO_2N=C=W \qquad (II)$

or a phenyl carbamate or thiocarbamate of formula

JSO₂NHCOC₆H₅ (VI)

35

5

10

with an aminoheterocycle of formula

HN-A

(III); or

5

(ii) reacting a sulfonamide of formula

JSO2NH2

(IV)

10

with a heterocyclic phenyl carbamate or thiocarbamate of formula

W II C₆H₅OCNA I R₁

(VII);

15

wherein J, A, R, and W are as defined above.

- 2. A process of Claim 1 provided (k) when J is

 J-5, R₁ is H, R₂ is H, E is CH₂, A is

 A-1. X is OCH₃, Y is OCH₃ and Z is CH.

 then R' is other than CH₃.
 - A process of Claim 1 where E is a single bond: and
 W is O.
- 4. A process of Claim 1 where E is CH₂: and W is O.

5. A process of Claim 3 where R_2 is H, C_1-C_3 alkyl, halogen, C_1-C_3 alkyl substituted with 1 to 3 halogen atoms selected from 1 to 3 Cl, 1 to 3 F or 1 Br, OCH_3 , SO_2NHCH_3 , $SO_2N(CH_3)_2$, $S(O)_nCH_3$, 5 CO2CH3. CO2CH2CH3. OCF2H. CH2OCH3 or CH, CN; R is H. C₁-C₃ alkyl, phenyl, CH₂CF₃ or CH₂CH=CH₂; X is C_1-C_2 alkyl. C_1-C_2 alkoxy. Cl. F. Br. I. OCF_H, CH2F, CF3, OCH2CH2F, OCH2CHF2. 10 OCH2CF3, CH2Cl or CH2Br; and Y is H. C₁-C₂ alkyl. C₁-C₂ alkoxy, CH₂OCH₃. CH₂OCH₂CH₃, NHCH₃, N(OCH₃)CH₃, N(CH₃)₂, CF₃, SCH₃, OCH₂CH=CH₂, OCH₂CECH, OCH₂CH₂OCH₃, 15 CH_2SCH_3 , CR_2 , -C, CR_2 , -C, R_2 , -C, R_2 , -C, R_2 , -C, R_2 , -C, -OCF2H. OCF2Br. SCF2H. cyclopropyl. CECH or CECCH3. 6. A process of Claim 5 where 20 R' is C_1-C_4 alkyl, C_1-C_3 alkyl substituted with 1 to 3 halogen atoms selected from 1 to 3 Cl. 1 to 3 F or 1 Br. C_2-C_4 alkoxyalkyl, C_2-C_4 alkylthioalkyl, C₂-C₄ cyanoalkyl, C₂-C₄ 25 . alkenyl, C2-C3 alkenyl substituted with 1 to 3 halogen atoms selected from 1 to 3 Cl. 1 to 3 F or 1 Br. C_3-C_4 alkynyl. C₃-C₅ cycloalkyl. C₃-C₅ cycloalkyl substituted with 1 to 3 halogen atoms 30 selected from 1 to 3 Cl. 1 to 3 F or 1 Br or cyclopropylmethyl. 7. A process of Claim 6 where

35

A is A-1; n is 0;

	X is CH ₃ . OCH ₃ . OCH ₂ CH ₃ . C1 or OCF ₂ H; and Y is CH ₃ . OCH ₃ . C ₂ H ₅ . CH ₂ OCH ₃ . NHCH ₃ . CH(OCH ₃) ₂ or cyclopropyl.
5	8. A process of Claim 7 where
	R, is H;
	R ₂ is H. Cl. Br. OCH ₃ or CH ₃ ; and
	R^{i}_{i} C_{1} C_{3} alkyl. C_{1} C_{3} alkyl
	substituted with 1 to 3 F. C2-C3
10	alkoxyalkyl, C2-C3 alkylthioalkyl.
	C ₂ -C ₃ cyanoalkyl, C ₂ -C ₃ alkenyl,
	propargyl, C ₃ -C ₅ cycloalkyl or
	cyclopropylmethyl.
	9. A process of Claim 8 where J is J-1. J-2. J-3
15	
	or J-4.
	10. A process of Claim 9 where
	R' is C ₁ -C ₃ alkyl substituted with 1 to 3 F.
	C2-C3 alkoxyalkyl, C2-C3 alkylthioalkyl, C2-C3
	cyanoalkyl, C ₂ -C ₃ alkenyl, propargyl, C ₃ -C ₅ cycle
20	alkyl or cyclopropylmethyl.
	11. A process of Claim 1 wherein the product is
	4-(cyclopropylcarbonyl)-N-[(4.6-dimethoxy-
	pyrimidin-2-yl)aminocarbinyl]-1-methyl-1H-
	pyrazole-5-sulfonamide, or an agriculturally
25	suitable salt thereof.
	12. A process of Claim l wherein the product is
	4-(1-oxopropyl)-N-[(4,6-dimethoxypyrimidin-
	2-yl)aminocarbonyl]-1-methyl-1H-pyrazole-5-

13. A process of Claim 1 wherein the product is 2-(cyclopropylcarbonyl)-N-[(4.6-dimethoxypyrimidin-2-yl)aminocarbonyl]-3-thiophenesulfonamide, or an agriculturally suitable salt

sulfonamide, or an agriculturally suitable salt

35 thereof.

thereof.

- 14. An agriculturally suitable composition for controlling the growth of undesired vegetation or for use as a plant growth regulant comprising an effective amount of a compound of formula (I) or an agriculturally suitable salt thereof as defined in any of Claims 1 to 13 and at least one of the following: surfactant, solid, or liquid diluent.
- 15. A composition of Claim 14 comprising a compound of Claim 11, 12 or 13 or an agriculturally 10 suitable salt thereof.
- 16. A method for controlling the growth of undesired vegetation which comprises applying to the locus to be protected an effective amount of a compound of formula (I) or an agriculturally suitable salt thereof as defined in any of Claims I to 13.
 - 17. A method of Claim 16 wherein the compound of Claim 11, 12 or 13 is applied or an agriculturally suitable salt thereof.
- 18. A method for regulating the growth of plants
 20 which comprises applying to the locus of such plants
 an effective but substantially non-phytotoxic amount
 of a plant growth regulant selected from compounds of
 formula (I) or an agriculturally suitable salt thereof
 as defined in any of Claims 1 to 13.

THIS PAGE BLANK (USPTO)