AUA CS108, Statistics, Fall 2020 Lecture 23

Michael Poghosyan

19 Oct 2020

Contents

- ► Convergence Types of R.V. Sequences, Some Theorems
- ► Limit Theorems

Theorem: Assume $X_n \overset{a.s.(P,qm,D)}{\longrightarrow} X$ and $Y_n \overset{a.s.(P,qm,D)}{\longrightarrow} Y$.

Theorem: Assume $X_n \stackrel{a.s.(P,qm,D)}{\longrightarrow} X$ and $Y_n \stackrel{a.s.(P,qm,D)}{\longrightarrow} Y$. Then

$$\searrow X_n + Y_n \xrightarrow{a.s.(P,qm)} X + Y;$$

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\triangleright X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\searrow X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- $\blacktriangleright X_n \cdot Y_n \stackrel{a.s.(P)}{\longrightarrow} X \cdot Y$; and $\alpha \cdot X_n \stackrel{qm}{\longrightarrow} \alpha \cdot X$ for any constant α ;

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\triangleright X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- $\blacktriangleright X_n \cdot Y_n \stackrel{a.s.(P)}{\longrightarrow} X \cdot Y$; and $\alpha \cdot X_n \stackrel{qm}{\longrightarrow} \alpha \cdot X$ for any constant α ;
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\triangleright X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- $\blacktriangleright X_n \cdot Y_n \stackrel{a.s.(P)}{\longrightarrow} X \cdot Y$; and $\alpha \cdot X_n \stackrel{qm}{\longrightarrow} \alpha \cdot X$ for any constant α ;
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Note: In the general case, if $X_n \stackrel{D}{\longrightarrow} X$ and $Y_n \stackrel{D}{\longrightarrow} Y$, then not necessarily $X_n + Y_n \stackrel{D}{\longrightarrow} X + Y$.

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\searrow X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- $\blacktriangleright X_n \cdot Y_n \stackrel{a.s.(P)}{\longrightarrow} X \cdot Y$; and $\alpha \cdot X_n \stackrel{qm}{\longrightarrow} \alpha \cdot X$ for any constant α ;
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Note: In the general case, if $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} Y$, then not necessarily $X_n + Y_n \xrightarrow{D} X + Y$.

But we have:

Theorem (Slutsky) Assume $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} c$, where $c \in \mathbb{R}$ is a constant. Then

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\searrow X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- $\blacktriangleright X_n \cdot Y_n \stackrel{a.s.(P)}{\longrightarrow} X \cdot Y$; and $\alpha \cdot X_n \stackrel{qm}{\longrightarrow} \alpha \cdot X$ for any constant α ;
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Note: In the general case, if $X_n \stackrel{D}{\longrightarrow} X$ and $Y_n \stackrel{D}{\longrightarrow} Y$, then not necessarily $X_n + Y_n \stackrel{D}{\longrightarrow} X + Y$.

But we have:

Theorem (Slutsky) Assume $X_n \stackrel{D}{\longrightarrow} X$ and $Y_n \stackrel{P}{\longrightarrow} c$, where $c \in \mathbb{R}$ is a constant. Then

$$X_n + Y_n \xrightarrow{D} X + c;$$

Theorem: Assume $X_n \xrightarrow{a.s.(P,qm,D)} X$ and $Y_n \xrightarrow{a.s.(P,qm,D)} Y$. Then

- $\searrow X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$
- $X_n \cdot Y_n \xrightarrow{a.s.(P)} X \cdot Y$; and $\alpha \cdot X_n \xrightarrow{qm} \alpha \cdot X$ for any constant α ;
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Note: In the general case, if $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} Y$, then not necessarily $X_n + Y_n \xrightarrow{D} X + Y$.

But we have:

Theorem (Slutsky) Assume $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{P} c$, where $c \in \mathbb{R}$ is a constant. Then

- $X_n + Y_n \xrightarrow{D} X + c;$
- $X_n \cdot Y_n \stackrel{D}{\longrightarrow} c \cdot X.$

Relationship between Convergence Types

Theorem: (Convergence Relationship Diagram)

Relationship between Convergence Types

Theorem: (Convergence Relationship Diagram)

Note: Inverse implications are not always correct.

Relationship between Convergence Types

Theorem: (Convergence Relationship Diagram)

Note: Inverse implications are not always correct. But, say, the following holds: If $X_n \xrightarrow{D} X$ and $X \equiv constant$, then $X_n \xrightarrow{P} X$ ($X_n = X_n = X_n$

Note

Note: Mostly, in our course, we will deal with the following type of sequences of r.v.s:

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n},$$

Note

Note: Mostly, in our course, we will deal with the following type of sequences of r.v.s:

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n},$$

and to calculate the limit of this sequence $\overline{X}_1, \overline{X}_2, ..., \overline{X}_n, ...$, we will use our famous Limit Theorems: LLN and CLT.

Limit Theorems

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s.

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

ightharpoonup All X_n -s have the same Distribution.

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide.

Assume X_n is a sequence of **Independent**, **Identically Distributed (IID)** r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

We will use this many-many

Assume X_n is a sequence of **Independent**, **Identically Distributed (IID)** r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

We will use this many-many-many-many-... times.

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

We will use this many-many-many-many-... times.

 \triangleright X_n -s are independent.

Assume X_n is a sequence of **Independent**, **Identically Distributed (IID)** r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$
 $Var(X_1) = Var(X_2) = ... = Var(X_n) =$

We will use this many-many-many-many-... times.

 $ightharpoonup X_n$ -s are independent. Say, in particular,

$$Var(X_1+X_2+...+X_n) = Var(X_1)+Var(X_2)+...+Var(X_n) = n \cdot Var(X_1)$$

Assume we have a sequence X_n of IID rvs.

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

or the average

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

or the average

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Note: Not an easy task to find the Distribution of S_n or \overline{X}_n .

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

or the average

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Note: Not an easy task to find the Distribution of S_n or \overline{X}_n . Even for n = 2.

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

or the average

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Note: Not an easy task to find the Distribution of S_n or \overline{X}_n . Even for n = 2. We need Convolutions!

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) =$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) =$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) =$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) =$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) = \frac{Var(X_1)}{n}.$$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) = \frac{Var(X_1)}{n}.$$

The last property is the mathematical proof of the effectivness of "7 angam chapir, mek angam ktrir" $\ddot{\ }$

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) = \frac{Var(X_1)}{n}.$$

The last property is the mathematical proof of the effectivness of "7 angam chapir, mek angam ktrir" $\ddot{\ }$

The interpretation of $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1)$ and $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$:

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{-}$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) = \frac{Var(X_1)}{n}.$$

The last property is the mathematical proof of the effectivness of "7 angam chapir, mek angam ktrir" $\ddot{\ }$

The interpretation of $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1)$ and $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$: the values of \overline{X}_n are centered at $\mathbb{E}(X_1)$ and are becoming more and more concentrated around that number as n increases.

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim$$

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$$

and

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n} \sim$$

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$$

and

$$\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$$

and

$$\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

▶ If $X_k \sim Pois(\lambda)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim$$

The following are important cases when we can find exactly the Distribution of S_n and/or \overline{X}_n :

▶ If $X_k \sim \mathcal{N}(\mu, \sigma^2)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim \mathcal{N}(n \cdot \mu, n \cdot \sigma^2)$$

and

$$\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

▶ If $X_k \sim Pois(\lambda)$, k = 1, ..., n, are Independent, then

$$S_n = X_1 + ... + X_n \sim Pois(n \cdot \lambda).$$

▶ If $X_k \sim Bernoulli(p)$, k = 1, ..., n are Independent, then

$$S_n = X_1 + ... + X_n \sim$$

▶ If $X_k \sim Bernoulli(p)$, k = 1, ..., n are Independent, then

$$S_n = X_1 + ... + X_n \sim Binom(n, p);$$

If $X_k \sim Bernoulli(p)$, k=1,...,n are Independent, then $S_n = X_1 + ... + X_n \sim Binom(n,p);$

If
$$X_k \sim Binom(m,p), \ k=1,...,n,$$
 are Independent, then
$$S_n = X_1 + ... + X_n \sim$$

▶ If $X_k \sim Bernoulli(p)$, k=1,...,n are Independent, then $S_n = X_1 + ... + X_n \sim Binom(n,p);$

If $X_k \sim Binom(m,p)$, k=1,...,n, are Independent, then $S_n = X_1 + ... + X_n \sim Binom(n \cdot m,p).$

Now, what can be said about S_n and \overline{X}_n in the general case?

Now, what can be said about S_n and \overline{X}_n in the general case? LLN and CLT help us in this matter, they describe the *asymptotic* properties of these guys:

Now, what can be said about S_n and \overline{X}_n in the general case? LLN and CLT help us in this matter, they describe the *asymptotic* properties of these guys:

The Weak Law of Large Numbers, WLLN:

If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(X_1)$ and Variance $Var(X_1)$, then

$$\overline{X}_n = \frac{X_1 + X_2 + ... + X_n}{n} \xrightarrow{\mathbb{P}} \mathbb{E}(X_1), \qquad n \to +\infty,$$

Now, what can be said about S_n and \overline{X}_n in the general case? LLN and CLT help us in this matter, they describe the *asymptotic* properties of these guys:

The Weak Law of Large Numbers, WLLN:

If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(X_1)$ and Variance $Var(X_1)$, then

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \stackrel{\mathbb{P}}{\to} \mathbb{E}(X_1), \qquad n \to +\infty,$$

i.e., for any $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{X_1+X_2+\ldots+X_n}{n}-\mathbb{E}(X_1)\right|\geq\varepsilon\right)\to 0, \qquad n\to+\infty.$$

Now, what can be said about S_n and X_n in the general case? LLN and CLT help us in this matter, they describe the *asymptotic* properties of these guys:

The Weak Law of Large Numbers, WLLN:

If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(X_1)$ and Variance $Var(X_1)$, then

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \stackrel{\mathbb{P}}{\to} \mathbb{E}(X_1), \qquad n \to +\infty,$$

i.e., for any $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\frac{X_1+X_2+\ldots+X_n}{n}-\mathbb{E}(X_1)\right|\geq\varepsilon\right)\to 0, \qquad n\to+\infty.$$

Note: This means that for any $\varepsilon > 0$, the chances that \overline{X}_n is far from $\mathbb{E}(X_1)$ more than ε , is very small, if n is large.

The Strong LLN

The Strong Law of Large Numbers, SLLN, Kolmogorov If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(|X_1|)$, then

$$\frac{X_1+X_2+\ldots+X_n}{n}\stackrel{a.s.}{\to} \mathbb{E}(X_1), \qquad n\to+\infty,$$

The Strong LLN

The Strong Law of Large Numbers, SLLN, Kolmogorov

If $X_1, X_2, ..., X_n$ are IID, with finite $\mathbb{E}(|X_1|)$, then

$$\frac{X_1+X_2+\ldots+X_n}{n}\stackrel{\text{a.s.}}{\to} \mathbb{E}(X_1), \qquad n\to+\infty,$$

that is,

$$\mathbb{P}\left(\lim_{n\to+\infty}\frac{X_1+X_2+\ldots+X_n}{n}=\mathbb{E}(X_1)\right)=1.$$

Visualization of the LLN

```
set.seed(111); n <- 1000; expect <- 0.6
X <- rbinom(n, 1, expect)
S <- cumsum(X); p <- S/(1:n)
plot(p, type = "l")
abline(expect,0, col = "red", lwd = 2)</pre>
```

