Malware Detection in Android Applications with Machine Learning Techniques

Thesis presentation

Catarina Rodrigues Palma

Mestrado em Engenharia Informática e de Computadores Instituto Superior de Engenharia de Lisboa

Júri

Orientador: Professor Doutor Artur Jorge Ferreira

Presidente: Professor Doutor Tiago Miguel Braga da Silva Dias

Vogais: Professor Doutor Rui Manuel Feliciano de Jesus

Professor Doutor Artur Jorge Ferreira

Summary

- Context and Motivation
- Goals
- Proposed Approach
- Datasets
- Experimental Results
- Conclusions and Future Work
- Contributions

Context and Motivation

- 70% of mobile phones use the Android operating system (OS)
- In Q3 2022, Google Play Store hosted around 3.5 million applications (apps)
- These apps deal with a great amount of user-sensitive data

- Thus, they are a prized target for malicious software (malware) developers
- In 2020, 5.7 million Android malware packages were detected, tripling 2019's 2.1 million

Context and Motivation (2)

- Existing security measures to mitigate malware are to some extent successful
- However, malware keeps growing in both sophistication and diffusion, sometimes easily bypassing security measures
- Machine Learning (ML) approaches are known to be efficient and versatile
- Thus, we explore the use of ML techniques to detect malware in Android apps

Goals

- Identify the most decisive features for Android malware classification
- Recognise the ML classifiers that provide the most satisfying results in detecting malware in Android applications
- Assess the impact of different data pre-processing techniques applied to this problem's datasets
- Develop a prototype that resorts to ML techniques to detect malware in Android applications

Proposed Approach

 Formulated as a binary classification problem

- The proposed approach can be divided into two major parts:
 - Machine Learning module
 - Feature extraction module and Android applications

Machine Learning module

Datasets – Data Acquisition

- Features can be obtained via different types of analysis:
 - Static analysis Analysis in a non-runtime environment
 - **Dynamic analysis** Requires the Android application to be running
 - **Hybrid analysis** Combination of the two previous analysis
- Static analysis is the most common approach
- A static analysis approach is followed, thus, dynamic features were removed from the datasets

Dataset analysis & Data processing

	Drebin	CICAndMal2017	Android Malware (AM)	Android Malware static feature (AMSF)
instances (n)	15036	29999	11476	5019
features (d)	215	110	182	966
Release year	2014	2018	2016	-
Categorical features	1	5	12	0
Missing values	0	204	19888	0
Class label majority	63.02%	66.67%	70.22%	50.03%

- The following experiments were performed after:
 - Converting categorical features to numerical via label encoding
 - Removal of the instances containing missing values

Evaluation Metrics

Confusion Matrix

- True Positive (TP) Malicious app as malicious
- False Positive (FP) Benign app as malicious
- True Negative (TN) Benign app as benign
- False Negative (FN) Malicious app as benign

Accuracy

correct predictions rate

Recall

true positive rate

Precision

positive predictive value

• F1-Score

 AUC-ROC (Area Under the Curve-Receiver Operating Characteristic)

Experimental Results: Baseline

Experimental Results: Baseline

- Stratified random split of 70-30 for train-test was applied
- Experiments with different classifiers:
 - Random Forest (RF)
 - Support Vector Machines (SVM)
 - K-Nearest Neighbours (KNN)
 - Naive Bayes (NB)
 - Multi-layer Perceptron (MLP)

Experimental Results: Baseline (2)

Experimental Results: Handling Missing Values

Experimental Results: Handling Missing Values

 Experiments with different methods to deal with missing values

- The results do not differ significantly between the tested methods
- May be an indicator of the presence of redundant and/or irrelevant features

Experimental Results: Normalisation

Experimental Results: Normalisation

- Min-max normalisation was applied to deal with large differences in the scales of features
- Results did not differ significantly with the RF classifier and with datasets that previously had essentially no categorical features

Classifier	Dataset	Min-max normalisation	Acc (%)	F1-Score (%)	AUC-ROC (%)
SVM AN	CICAndN4212017	×	66.13	78.96	51.51
	CICAHUWai2017		70.81	79.71	63.22
	A N 4	×	70.23	00.00	50.00
	AIVI		90.88	82.77	85.89

Experimental Results: Numerosity Balancing

Experimental Results: Numerosity Balancing

- Dealing with numerosity balancing:
 - Use of the AM dataset (the most imbalanced dataset)

Classifier	Numerosity balancing method	Acc (%)	Rec (%)
RF	None	93.28	83.02
	Random undersampling	91.36	86.44
	Random oversampling	96.28	96.07
	Synthetic Minority Oversampling Technique (SMOTE)	94.06	91.39
SVM	None	70.81	86.00
	Random undersampling	89.18	82.44
	Random oversampling	89.47	82.75
	Synthetic Minority Oversampling Technique (SMOTE)	88.81	81.42

Experimental Results: Feature Selection

Experimental Results: Feature Selection

- A filter method was applied
- Relevance-Redundancy Feature Selection (RRFS)
 - Fisher ratio (FR) relevance measure (supervised)
 - Mean-median (MM) relevance measure (unsupervised)
 - Overall, FR (supervised) outperformed MM (unsupervised)
 - Thus, the class label data is impactful to the result
 - Absolute cosine (AC) redundancy measure

Experimental Results: Feature Selection (2)

- Substantial dimensionality reduction compensated for a slight metric decrease
 - Drebin dataset:
 ≈56% reduction
 - CICAndMal2017 dataset:
 ≈76% reduction
 - AM dataset:
 ≈93% reduction
 - AMSF dataset:
 ≈87% reduction

Experimental Results: Feature Selection (3)

• 4 most indicative features of malware presence in each dataset

Drebin dataset

- 1. transact
- 2. SEND_SMS
- 3. Ljava.lang.Class.getCanonicalName
- 4. android.telephony.SmsManager

AM dataset

- 1. com.android.launcher.permission.UNINSTALL_SHORTCUT
- 2. android.permission.VIBRATE
- 3. android.permission.ACCESS_FINE_LOCATION
- 4. name

CICAndMal2017 dataset

- 1. Category
- 2. Price
- 3. Network communication : view network state (S)
- 4. Your location: access extra location provider commands (S)

AMSF dataset

- 1. androidpermissionSEND_SMS
- 2. android.telephony.SmsManager.sendTextMessage
- 3. float-to-int
- 4. android.telephony.SmsManager
- Overall, permissions seem to have a prevalent presence among the most relevant features for Android malware detection

Experimental Results: Hyperparameter tuning & CV

Experimental Results: Hyperparameter tuning & CV

Hyperparameter tuning

- Optimisation of the hyperparameters deemed more impactful
- Use of a function that optimises the hyperparameters. It uses 5-fold CV with the training and validation sets
- The metrics results improved slightly (about 2%)

Cross-Validation (CV)

- 10-fold CV and Leave-one-out CV were applied to the training and testing sets, leading to nested CV
- Often challenging due to "training time bottlenecks"
- Mean and standard deviation values for the different metrics
- Standard deviation values were low

Comparative Analysis of Results

 'Artificial Intelligence Algorithms for Malware Detection in Android-Operated Mobile Devices', Alkahtani and Aldhyani, 2022

Classifier	Dataset	Accuracy (%)		
		Alkahtani and Aldhyani	Proposed	
SVM	Drebin	80.71	97.47	
	CICAndMal2017	100.00	73.22	

- Data pre-processing greatly impacts the results
- 'Android malware detection applying feature selection techniques and machine learning', Keyvanpour et al., 2023
 - The authors applied FS techniques to the Drebin dataset
 - Reported features, SEND_SMS and android.telephony.SmsManager, were also selected on the Drebin and AMSF datasets by RRFS

Complete approach

Experimental Results: Real-world Applications

 Simple Android apps built for testing:

 App2 - doesn't request/use any unnecessary features

 App3 – requests some permissions selected as the most relevant features in the Drebin and AM datasets

Experimental Results: Real-world Applications (2)

- Experiments performed with the RF classifier
- App1 classified as malicious
 - with models trained with the Drebin, CICAndMal2017, and AMSF datasets
- App2 and App3 are classified as benign
 - with models trained with the Drebin, AM, and AMSF datasets
- Experiments performed with other APK found online

- The non-standardization of feature names presents a major challenge

Conclusions

- The RF and SVM classifiers present the best results
- We were able to identify the most relevant features in each dataset for malware detection in Android apps
- Overall, permissions have a prevalent presence among the most relevant features for Android malware detection
- ML and FS approaches effectively mitigate this problem
- No model performs globally best for all datasets
- Use of the ML model in real-world scenarios is not straightforward

Future Work

- Use more up-to-date datasets
- Aim to use datasets more standardised
- Expand the proposed approach to hybrid analysis
- Further explore Deep Learning approaches and others
- Address this problem as multiclass

Contributions

 Catarina Palma, Artur Ferreira, and Mário Figueiredo, "<u>On the use of machine</u> <u>learning techniques to detect malware in mobile applications</u>", Simpósio em Informática (INForum), September 2023, Porto, Portugal

RECPAD 2023

Catarina Palma, Artur Ferreira, and Mário Figueiredo, "<u>A study on the role of feature selection for malware detection on Android applications</u>", Portuguese Conference on Pattern Recognition (RECPAD), October 2023, Coimbra, Portugal

Catarina Palma, Artur Ferreira, and Mário Figueiredo, "<u>Explainable Machine</u>
 <u>Learning for Malware Detection on Android Applications</u>", Information journal,
 MDPI, January 2024

Public <u>GitHub repository</u> for the code developed in the context of the thesis

Contributions (2)

RECPAD 2023

