LIFTING REPRESENTATIONS OF FINITE REDUCTIVE GROUPS: A CHARACTER RELATION

JEFFREY D. ADLER, MICHAEL CASSEL, JOSHUA M. LANSKY, EMMA MORGAN, AND YIFEI ZHAO

ABSTRACT. Given a connected reductive group \widetilde{G} over a finite field k, and a semisimple k-automorphism ε of \widetilde{G} of finite order, let G denote the connected part of the group of ε -fixed points. Then there exists a lifting from packets of representations of G(k) to packets for $\widetilde{G}(k)$. In the case of Deligne-Lusztig representations, we show that this lifting satisfies a character relation analogous to that of Shintani.

0. Introduction

Suppose k is a finite field, \widetilde{G} is a connected reductive k-group, and ε is a semisimple k-automorphism of \widetilde{G} of finite order ℓ . From [6, Theorem 7.5], ε must preserve some pair $(\widetilde{B},\widetilde{T})$ consisting of a Borel subgroup of $\widetilde{B}\subseteq\widetilde{G}$ and a maximal torus $\widetilde{T}\subseteq\widetilde{B}$. Call such a pair a *Borel-torus pair* for \widetilde{G} . Let G be the connected part of the group $\widetilde{G}^{\varepsilon}$ of ε -fixed points of \widetilde{G} . Then we have the following from [1, Proposition 3.5].

Proposition 1.

- G is a connected reductive k-group.
- For every ε -invariant Borel-torus pair $(\widetilde{B}, \widetilde{T})$ for \widetilde{G} , one has a Borel-torus pair $(\widetilde{B}^{\varepsilon}, (\widetilde{T}^{\varepsilon})^{\circ})$ for G. Moreover, $(\widetilde{T}^{\varepsilon})^{\circ} = \widetilde{T} \cap G$.
- For every Borel-torus pair (B,T) for G, one has an ε -invariant Borel-torus pair $(\widetilde{B},\widetilde{T})$ where $\widetilde{T}=C_{\widetilde{G}}(T)$.

Note that by choosing T to be defined over k, we can show that \widetilde{G} has an ε -invariant Borel-torus pair $(\widetilde{B},\widetilde{T})$ whose torus \widetilde{T} is defined over k.

Let \widetilde{G}^* and G^* denote the duals of \widetilde{G} and G. For each semisimple element $s \in G$, one obtains a collection $\mathcal{E}_s(G(k))$ of irreducible representations of G(k), and these collections, known as Lusztig series, partition the set $\mathcal{E}(G(k))$ of (equivalence classes of) irreducible representations of G(k) [5, §14.1]. Suppose that s is regular, and let $T^* \subseteq G^*$ be the unique maximal k-torus containing s. Then the pair (T^*, s) corresponds to a pair (T, θ) , where $T \subseteq G$ is a maximal k-torus, and θ is a character of T(k). This latter pair is uniquely determined up to G(k)-conjugacy. The Lusztig series $\mathcal{E}_s(G(k))$ corresponding to s is the set of irreducible components of the Deligne-Lusztig virtual representation whose character is $\mathbb{R}_T^G \theta$.

Date: March 5, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.$ Primary 20C33. Secondary 20G40.

 $Key\ words\ and\ phrases.$ Finite reductive groups, Deligne-Lusztig representations, liftings, character relations.

In an earlier work [1, Corollary 11.3], two of the authors constructed a map from semisimple classes in $G^*(k)$ to semisimple classes in $\widetilde{G}^*(k)$, thus lifting each Lusztig series for G(k) to one for $\widetilde{G}(k)$. The series of representations coming from $\pm R_T^G \theta$ lifts to that coming from $\pm R_{\widetilde{T}}^{\widetilde{G}} \widetilde{\theta}$, where $\widetilde{T} = C_{\widetilde{G}}(T)$ and $\widetilde{\theta} = \theta \circ \mathcal{N}$, and $\mathcal{N} \colon \widetilde{T} \longrightarrow T$ is the norm map defined by

$$\mathcal{N}(t) = t\varepsilon(t)\cdots\varepsilon^{\ell-1}(t).$$

(Of course, one could define a similar map \mathcal{N} on any ε -invariant torus in \widetilde{G} .) In order to understand better this lifting of representations, one would like to have a relation between the character $\mathbf{R}_T^G \theta$ (for θ an arbitrary character of T(k), not necessarily associated to a regular element of $G^*(k)$) and the ε -twisted character $(\mathbf{R}_T^{\widetilde{G}}\widetilde{\theta})_{\varepsilon}$ associated to the ε -invariant character $\mathbf{R}_T^{\widetilde{G}}\widetilde{\theta}$. The purpose of the present paper is to prove that such a relation holds at sufficiently regular points.

Theorem. Suppose $\widetilde{s} \in \widetilde{G}(k)$ belongs to an ε -invariant, maximal k-torus and that $\mathcal{N}(\widetilde{s})$ is regular in \widetilde{G} . Let S denote the unique maximal torus in G containing $\mathcal{N}(\widetilde{s})$. Then

$$(\mathbf{R}_{\widetilde{T}}^{\widetilde{G}}\widetilde{\theta})_{\varepsilon}(\widetilde{s}) = \sum_{w \in W_k(G,T) \setminus W_k(\widetilde{G},S,T)} (\mathbf{R}_T^G \theta)(w \mathcal{N}(\widetilde{s})w^{-1}).$$

Here $W_k(\widetilde{G},S,T)$ is defined to be the quotient $\widetilde{T}(k)\backslash\{\widetilde{g}\in\widetilde{G}(k)\mid\widetilde{g}S\widetilde{g}^{-1}=T\}$ and $W_k(G,T)=N_{G(k)}(T)/T(k)$. We see that $W_k(\widetilde{G},S,T)$ is a union of right $W_k(G,T)$ -cosets from the fact that $N_{G(k)}(T)\cap\widetilde{T}(k)=T(k)$, so the index set for the summation makes sense. We define $w\mathcal{N}(\widetilde{s})w^{-1}$ to be $n\mathcal{N}(\widetilde{s})n^{-1}$ for any lift n of w to $\widetilde{G}(k)$, and claim that the right-hand side does not depend on our choices of lifts.

Here is what we mean by $(R_{\widetilde{T}}^{\widetilde{G}}\widetilde{\theta})_{\varepsilon}$. Since $\widetilde{T}\subseteq \widetilde{G}$ is an ε -invariant maximal k-torus, and $\widetilde{\theta}$ is an ε -invariant character of $\widetilde{T}(k)$, we have that ε preserves $(\widetilde{T},\widetilde{\theta})$, so it acts on the corresponding Deligne-Lusztig variety, and thus on the virtual representation whose character is $R_{\widetilde{T}}^{\widetilde{G}}\widetilde{\theta}$. That is, even if this representation is reducible, we can form its ε -twisted character. One can construct this character as follows. Extend $\widetilde{\theta}$ to a character of $\widetilde{T}(k) \rtimes \Gamma$ by setting $\widetilde{\theta}(\varepsilon) = 1$. Define the ε -twisted Deligne-Lusztig character $(R_{\widetilde{T}}^{\widetilde{G}}\widetilde{\theta})_{\varepsilon}$ induced from $\widetilde{\theta}$ by $(R_{\widetilde{T}}^{\widetilde{G}}\widetilde{\theta})_{\varepsilon}(g) = (R_{\widetilde{T}}^{\widetilde{G}}\rtimes\Gamma)(g\varepsilon)$ for $g\in \widetilde{G}(k)$. (See [2] for the definition of Deligne-Lusztig induction for nonconnected groups.)

Remark 2. Consider the automorphism of GL(2) given by $\varepsilon(g) = {}^t g^{-1}$. Then an analogous relation holds for all irreducible representations, not just those of Deligne-Lusztig type. On the other hand, while the relation can hold for unipotent elements, it fails if \tilde{s} is regular but $\mathcal{N}(\tilde{s})$ is singular.

Remark 3. Consider the special case where E/k is a finite extension, and \widetilde{G} arises from G via restriction of scalars: $\widetilde{G} = R_{E/k}G$. Suppose that ε is the k-automorphism of \widetilde{G} associated to the action of a generator of the Galois group $\operatorname{Gal}(E/k)$. Given a representation π of G(k), one often has an associated representation $\widetilde{\pi}$ of $\widetilde{G}(k)$, known as the Shintani lift of π . (See [4] for a discussion.) The character of π and the ε -twisted character of $\widetilde{\pi}$ are related by the Shintani relation: $\Theta_{\pi}(\mathcal{N}(g)) = \Theta_{\widetilde{\pi},\varepsilon}(g)$. From work of Digne [3, Cor. 3.6], one already knows that if $R_T^G \theta$ has a Shintani lift,

then it must be $R_T^{\widetilde{G}}\widetilde{\theta}$. Thus, our character relation is a generalization of Shintani's, if one ignores the fact that the former only holds at sufficiently regular elements of $\widetilde{G}(k)$, while that latter holds at all elements, provided that one interprets the norm map \mathcal{N} correctly.

ACKNOWLEDGEMENTS. The authors were partially supported by a National Science Foundation Focused Research Group grant (DMS-0854844). The fourth-named author was partially supported by the Frank Cox Jones Scholarship Fund and a Dean's Undergraduate Research Award from the College of Arts and Sciences of American University. We have benefited from conversations with Prof. Jeffrey Hakim.

1. Consequences of regularity

From now on, we let k, \widetilde{G} , ε , ℓ , G, and \mathcal{N} be as in $\S 0$. Let Γ be the group generated by ε .

Proposition 4. Suppose \widetilde{s} belongs to an ε -invariant maximal k-torus \widetilde{S} in \widetilde{G} , and $s := \mathcal{N}(\widetilde{s})$ is regular in \widetilde{G} . Let $S := (\widetilde{S} \cap G)$. Then:

- (a) \widetilde{S} belongs to an ε -invariant Borel-torus pair for \widetilde{G} ;
- (b) $\widetilde{s}\varepsilon$ is regular in $\widetilde{G} \rtimes \Gamma$; and
- $(c)\ N_{\widetilde{G}(k)}(S) = \big\{g \in \widetilde{G}(k) \, \big| \, gsg^{-1} \in \operatorname{Im}(\mathcal{N}|_{\widetilde{S}(k)}) \big\}.$

Proof. Since \widetilde{S} is ε -invariant, we have that $s \in S$. Let S' be a maximal k-torus in G containing S, and let $\widetilde{S}' = C_{\widetilde{G}}(S')$. From Proposition 1, \widetilde{S}' is a maximal torus in \widetilde{G} , and belongs to an ε -invariant Borel-torus pair. But

$$\widetilde{S}' = C_{\widetilde{G}}(S') \subseteq C_{\widetilde{G}}(S) \subseteq C_{\widetilde{G}}(s) = \widetilde{S},$$

proving statement (a).

Now choose an ε -invariant Borel subgroup of \widetilde{G} containing \widetilde{S} , and let Φ^+ denote the corresponding system of positive roots. For each $\alpha \in \Phi^+$, consider the following sum of root spaces in the Lie algebra $\widetilde{\mathfrak{g}}$ of \widetilde{G} : $V_{\alpha} := \bigoplus_{\beta \in \Gamma \cdot \alpha} \widetilde{\mathfrak{g}}_{\beta}$. Via the adjoint action, the element $\widetilde{s}\varepsilon$ induces a linear transformation on $\widetilde{\mathfrak{g}}$, preserving each V_{α} . To see that $\widetilde{s}\varepsilon$ is regular, it is enough to choose a positive root $\alpha \in \Phi^+$ and show that the action of $\widetilde{s}\varepsilon$ on V_{α} does not have 1 as an eigenvalue.

Let $m=m_{\alpha}=|\Gamma \cdot \alpha|$. There is a nonzero scalar $\mu=\mu_{\alpha}$, not necessarily rational, such that ε^m acts on V_{α} via multiplication by μ . By necessity, μ is a root of unity of order dividing ℓ/m . Let $\chi'=\chi'_{\alpha}=\sum_{\beta\in\Gamma\cdot\alpha}\beta$, and let $\chi=\chi_{\alpha}=\sum_{\gamma\in\Gamma}\gamma(\alpha)$. Thus, $\chi=\frac{\ell}{m}\chi'$.

It is not hard to see that the characteristic polynomial (in the variable X) of our transformation of V_{α} is $X^m - \mu \cdot \chi'(\tilde{s})$, so it is enough to show that $\mu \cdot \chi'(\tilde{s}) \neq 1$. Since s is regular, we have that

$$1 \neq \alpha(s) = \chi(\widetilde{s}) = \chi'(\widetilde{s})^{\ell/m} = (\mu \cdot \chi'(\widetilde{s}))^{\ell/m},$$

and therefore, $\mu \cdot \chi'(\tilde{s}) \neq 1$, proving statement (b).

Now consider statement (c). From statement (a) and Proposition 1, we have that S is a maximal k-torus in G, and $\widetilde{S} = C_{\widetilde{G}}(S)$. To show that the right-hand-side is included in the left, take any $g \in \widetilde{G}$ such that $gsg^{-1} \in \operatorname{Im}(\mathcal{N}|_{\widetilde{S}(k)}) \subseteq S(k)$. Since s

and gsg^{-1} are in S(k), they are both ε -invariant, so we have $\varepsilon(g)s\varepsilon(g)^{-1}=gsg^{-1}$. This implies $g^{-1}\varepsilon(g)\in C_{\widetilde{G}}(s)=\widetilde{S}$. Therefore $\varepsilon(g)=g\widetilde{t}$ for some $\widetilde{t}\in\widetilde{S}(k)$.

Since g conjugates a regular element of \widetilde{S} back into \widetilde{S} , we must have that g normalizes \widetilde{S} . Let $t \in S(k)$. Since

$$\varepsilon(gtg^{-1})=g\widetilde{t}t\widetilde{t}^{-1}g^{-1}=gtg^{-1},$$

we have that $gtg^{-1} \in \widetilde{S}^{\varepsilon}$. But since $t \in (\widetilde{S}^{\varepsilon})^{\circ} = S$, so is gtg^{-1} . Thus, $g \in N_{\widetilde{G}}(S)$. To prove the converse, let $n \in N_{\widetilde{G}(k)}(S)$. We want to show that $nsn^{-1} \in \text{Im}(\mathcal{N}|_{\widetilde{S}(k)})$. Since every element in S is ε -fixed, we have $\varepsilon^i(n)s\varepsilon^i(n)^{-1} = nsn^{-1}$ for all i, and therefore $n^{-1}\varepsilon^i(n)$ belongs to $C_{\widetilde{G}(k)}(s) = \widetilde{S}$, and thus commutes with every element of $\widetilde{S}(k)$. Consider the following product:

$$(n^{-1}\varepsilon(n))\left(\varepsilon(n)^{-1}\varepsilon^2(n)\right)\left(\varepsilon^2(n)^{-1}\varepsilon^3(n)\right)\cdots\left(\varepsilon^{\ell-1}(n)^{-1}n\right)=1$$

Since each term in the above equation commutes with $\varepsilon^{j}(\tilde{s})$, we have

$$\begin{split} nsn^{-1} &= n\widetilde{s}\varepsilon(\widetilde{s})\cdots\varepsilon^{\ell-1}(\widetilde{s})n^{-1} \\ &= n\widetilde{s}\left(n^{-1}\varepsilon(n)\right)\varepsilon(\widetilde{s})\left(\varepsilon(n)^{-1}\varepsilon^{2}(n)\right)\cdots\varepsilon^{\ell-1}(\widetilde{s})\left(\varepsilon^{\ell-1}(n)^{-1}n\right)n^{-1} \\ &= \left(n\widetilde{s}n^{-1}\right)\left(\varepsilon(n)\varepsilon(\widetilde{s})\varepsilon(n)^{-1}\right)\cdots\left(\varepsilon^{\ell-1}(n)\varepsilon^{\ell-1}(\widetilde{s})\varepsilon^{\ell-1}(n)^{-1}\right) \\ &= \left(n\widetilde{s}n^{-1}\right)\left(\varepsilon(n\widetilde{s}n^{-1})\right)\cdots\left(\varepsilon^{\ell-1}(n\widetilde{s}n^{-1})\right) \\ &= \mathcal{N}(n\widetilde{s}n^{-1}). \end{split}$$

Since n conjugates a regular element (s) of \widetilde{S} back into \widetilde{S} , we must have that $n \in N_{\widetilde{G}}(\widetilde{S})$, and so $n\widetilde{s}n^{-1} \in \widetilde{S}(k)$. Therefore

$$nsn^{-1} = \mathcal{N}(n\widetilde{s}n^{-1}) \in \operatorname{Im}(\mathcal{N}|_{\widetilde{S}(k)}),$$

as desired. \Box

2. Proof of the Theorem

We start by recalling some facts about Deligne-Lusztig virtual characters.

Lemma 5.

(a) If $x \in G(k)$ is a regular semisimple element, then

$$(\mathbf{R}_{T}^{G}\theta)(x) = \begin{cases} \sum_{v \in W_{k}(G,T)} \theta(vx'v^{-1}) & \text{if } x \text{ is } G(k)\text{-conjugate to an} \\ 0 & \text{element } x' \in T(k), \end{cases}$$

(b) Suppose that $\widetilde{x} \in \widetilde{G}(k)$ and that $\widetilde{x}\varepsilon$ is a regular semisimple element of $\widetilde{G}(k) \rtimes \Gamma$. Let $\widetilde{\theta}$ be an ε -invariant character of $\widetilde{T}(k)$, extended to trivially $\widetilde{T}(k) \rtimes \Gamma$. Then

$$(\mathbf{R}_{\widetilde{T}}^{\widetilde{G}}\,\widetilde{\theta})_{\varepsilon}(\widetilde{x}) = \frac{1}{|\widetilde{T}(k) \rtimes \Gamma|} \sum_{\left\{h \in \widetilde{G}(k) \rtimes \Gamma \,\middle|\, \widetilde{x}\varepsilon \in h(\widetilde{T}(k) \rtimes \Gamma)h^{-1}\right\}} \widetilde{\theta}(h^{-1}(\widetilde{x}\varepsilon)h).$$

Proof. For each formula, see [2, Proposition 2.6]. For the second formula, note that $C_{\widetilde{G}}(x)$ contains no nontrivial unipotent elements and that the Green function $Q^{C_{\widetilde{G}}(\widetilde{x}\varepsilon)^{\circ}(k)}_{C_{\widetilde{G}}(\widetilde{x}\varepsilon)^{\circ}(k)}$ in this proposition takes the value $|C_{\widetilde{G}}(\widetilde{x}\varepsilon)^{\circ}(k)|$ at (1,1).

Let \widetilde{S} denote an ε -invariant maximal k-torus in \widetilde{G} containing \widetilde{s} . From Proposition 4(a) and Proposition 1, $S = \widetilde{S} \cap G$ and $\widetilde{S} = C_{\widetilde{G}}(S)$.

Suppose that for all $\widetilde{h} \in \widetilde{G}(k) \rtimes \Gamma$, we have that $\widetilde{h}(\widetilde{s}\varepsilon)\widetilde{h}^{-1} \notin \widetilde{T}(k)\varepsilon$. Then $\widetilde{h}\widetilde{s}\varepsilon(\widetilde{h}^{-1}) \notin \widetilde{T}(k)$, so in particular $g\widetilde{s}g^{-1} \notin \widetilde{T}(k)$ for all $g \in G(k)$. This implies that for all $g \in G(k)$, $g\widetilde{S}g^{-1} \neq \widetilde{T}$, and thus from Proposition 1 that $gSg^{-1} \neq T$. Then the regularity of $\mathcal{N}(\widetilde{s})$ implies that $g\mathcal{N}(\widetilde{s})g^{-1} \notin T(k)$. For every lift n of w to $\widetilde{G}(k)$, we have that the summand corresponding to w in the right-hand side of the equation in the theorem is zero. But our assumption on \widetilde{s} implies that the left-hand side is zero, too. Thus, the theorem holds in this case.

Now suppose that $\widetilde{h}(\widetilde{s}\varepsilon)\widetilde{h}^{-1} \in \widetilde{T}(k)\varepsilon$ for some $\widetilde{h} = \widetilde{g}\varepsilon^i \in \widetilde{G}(k) \rtimes \Gamma$. Then $\widetilde{g} \cdot \widetilde{s} \cdot \varepsilon(\widetilde{g})^{-1} \in \widetilde{T}(k)$ so $\widetilde{g}\mathcal{N}(\widetilde{s})\widetilde{g}^{-1} = \mathcal{N}(\widetilde{g} \cdot \widetilde{s} \cdot \varepsilon(\widetilde{g})^{-1}) \in T(k)$. Thus $\widetilde{g}S\widetilde{g}^{-1} = T$. Rewriting each index w in the summation in the theorem in the form $w'\widetilde{g}$, where w' is a coset representative for $W_k(G,T)\backslash W_k(\widetilde{G},T)$ (where $W_k(\widetilde{G},T)$) is defined to be $W_k(\widetilde{G},T,T)$), we see that the right-hand side is equal to

$$\sum_{w \in W_k(G,T) \setminus W_k(\widetilde{G},T)} (\mathbf{R}_T^G \theta) (w \widetilde{g} \mathcal{N}(\widetilde{s}) \widetilde{g}^{-1} w^{-1}).$$

Thus, we may replace \widetilde{s} by its twisted conjugate $\widetilde{h} \cdot \widetilde{s} \cdot \varepsilon(\widetilde{h}^{-1})$, and $\mathcal{N}(\widetilde{s})$ by its conjugate $\widetilde{g}\mathcal{N}(\widetilde{s})\widetilde{g}^{-1}$. Having done so, we may now assume that S = T and $\widetilde{S} = \widetilde{T}$.

From Proposition 4(b), we have that $\widetilde{s}\varepsilon$ is regular, so we can analyze the right-hand side of the equation (LHS) using Lemma 5(b):

LHS =
$$\frac{1}{\ell |\widetilde{T}(k)|} \sum \widetilde{\theta}(h^{-1}(\widetilde{s}\varepsilon)h) = \frac{1}{\ell |\widetilde{T}(k)|} \sum \widetilde{\theta}(h^{-1}\widetilde{s}\varepsilon(h)\varepsilon)$$
,

where each sum is over the set $\{h \in \widetilde{G}(k) \rtimes \Gamma \mid \widetilde{s}\varepsilon \in h(\widetilde{T} \rtimes \Gamma)h^{-1}\}$. If $g \in \widetilde{G}(k)$, then $g\varepsilon^i$ belongs to the index set if and only if $g^{-1}\widetilde{s}\varepsilon(g) \in \widetilde{T}(k)$. Thus,

LHS =
$$\frac{1}{\ell |\widetilde{T}(k)|} \sum_{i=0}^{\ell-1} \sum_{g \in \widetilde{G}(k)} \sum_{g^{-1}\widetilde{s}\varepsilon(g) \in \widetilde{T}(k)} \widetilde{\theta} \left((g\varepsilon^{i})^{-1}\widetilde{s}\varepsilon(g\varepsilon^{i})\varepsilon \right)$$

$$= \frac{1}{|\widetilde{T}(k)|} \sum_{g \in \widetilde{G}(k)} \sum_{g^{-1}\widetilde{s}\varepsilon(g) \in \widetilde{T}(k)} \widetilde{\theta} (g^{-1}\widetilde{s}\varepsilon(g))$$

Letting $s = \mathcal{N}(\tilde{s})$, we hence have

LHS =
$$\frac{1}{|\widetilde{T}(k)|} \sum_{\widetilde{t} \in \widetilde{T}(k)} \sum_{\{g \in \widetilde{G}(k) \mid g^{-1}\widetilde{s}\varepsilon(g) = \widetilde{t}\}} \widetilde{\theta}(g^{-1}\widetilde{s}\varepsilon(g))$$
=
$$\frac{1}{|\widetilde{T}(k)|} \sum_{\widetilde{t} \in \widetilde{T}(k)} \sum_{\{g \in \widetilde{G}(k) \mid g\widetilde{s}\varepsilon(g)^{-1} = \widetilde{t}\}} \widetilde{\theta}(g\widetilde{s}\varepsilon(g)^{-1})$$
=
$$\frac{1}{|\widetilde{T}(k)|} \sum_{\widetilde{t} \in \widetilde{T}(k)} \sum_{\{g \in \widetilde{G}(k) \mid g\widetilde{s}\varepsilon(g)^{-1} = \widetilde{t}\}} \theta(\mathcal{N}(\widetilde{t}))$$
=
$$\frac{1}{|\widetilde{T}(k)|} \sum_{\widetilde{t} \in \widetilde{T}(k)} \left| \{g \in \widetilde{G}(k) \mid g\widetilde{s}\varepsilon(g)^{-1} = \widetilde{t}\} \right| \theta(\mathcal{N}(\widetilde{t}))$$

$$= \frac{1}{|\widetilde{T}(k)|} \sum_{t \in T(k)} \left| \left\{ g \in \widetilde{G}(k) \mid g\widetilde{s}\varepsilon(g)^{-1} \in \widetilde{T} \text{ and } gsg^{-1} = t \right\} \right| \theta(t)$$

$$= \frac{1}{|\widetilde{T}(k)|} \sum_{t \in \operatorname{Im}(\mathcal{N}|_{\widetilde{T}(k)})} \left| \left\{ g \in \widetilde{G}(k) \mid gsg^{-1} = t \right\} \right| \theta(t)$$

$$= \frac{1}{|\widetilde{T}(k)|} \sum_{g \in \widetilde{G}(k) \mid gsg^{-1} \in \operatorname{Im}(\mathcal{N}|_{\widetilde{T}(k)})} \theta(gsg^{-1})$$

$$= \frac{1}{|\widetilde{T}(k)|} \sum_{g \in N_{\widetilde{G}(k)}(T)} \theta(gsg^{-1}) \quad \text{(by Proposition 4(c))}$$

$$= \sum_{w \in W_k(\widetilde{G},T) \setminus W_k(\widetilde{G},T)} \sum_{v \in W_k(G,T)} \theta(vwsw^{-1}v^{-1}),$$

where the first summation in the final line is over a set of representatives for the right-coset space $W_k(G,T)\backslash W_k(\widetilde{G},T)$. But from Lemma 5(a), the final expression above is equal to the right-hand side of the relation in the Theorem.

References

- [1] Jeffrey D. Adler and Joshua M. Lansky, Lifting representations of finite reductive groups I: Semisimple conjugacy classes, available at arxiv:1106.0706.
- [2] François Digne and Jean Michel, Groupes réductifs non connexes, Ann. Sci. École Norm. Sup.
 (4) 27 (1994), no. 3, 345–406 (French, with English and French summaries). MR1272294 (95f:20068)
- [3] François Digne, Descente de Shintani et restriction des scalaires, J. London Math. Soc. (2)59 (1999), no. 3, 867–880 (French, with English summary). MR1709085 (2001a:20081)
- [4] Noriaki Kawanaka, Shintani lifting and Gel fand-Graev representations, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), 1987, pp. 147–163. MR933357 (89h:22037)
- [5] George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR742472 (86j:20038)
- [6] Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR0230728 (37 #6288)

(Adler, Cassel, Lansky, and Morgan) Department of Mathematics and Statistics, American University, Washington, DC 20016-8050

 $E ext{-}mail\ address,\ Adler: jadler@american.edu}$

E-mail address, Cassel: michael.cassel@american.edu

E-mail address, Lansky: lansky@american.edu

 $E ext{-}mail\ address,\ \mathrm{Morgan:}\ \mathtt{emmamorgan90@gmail.com}$

(Zhao) DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NY 10027 $E\text{-}mail\ address:\ yz2427@columbia.edu$