THE THOM ISOMORPHISM

PEDRO NÚÑEZ

ABSTRACT. Script for a talk of the Wednesday Seminar of the GK1821 at Freiburg during the Summer Semester 2021. The main reference is [Ati67, §2].

CONTENTS

1. Recollection from previous talks	1
2. Thom spaces and statement of the	theorem 4
3. Proof for sums of line bundles	5
4. Proof of the general case	Ę
Appendix A. Conventions and preliming	inaries 5
References	6

—parts in gray will be omitted during the talk—

1. Recollection from previous talks

We start off with some recollections from [Ati67, §2]. We refer to [Ati67] and the appendix for previous conventions and other preliminaries.

1.1. Notation and topological preliminaries. For $n \in \mathbb{N}$ we denote by S^n the n-dimensional sphere. We think of it as the pointed compact Hausdorff space $I^n/\partial I^n$, where $I^n \subseteq \mathbb{R}^n$ is the unit interval and the basepoint is given by the equivalence class of any point in the boundary ∂I^n . The unit interval $I^1 = [0, 1]$ is denoted simply by I.

Given pointed compact Hausdorff spaces (X, x_0) and (Y, y_0) , we define their *smash product* as

$$X \wedge Y := X \times Y/X \vee Y$$
,

where $X \vee Y := X \times \{y_0\} \cup \{x_0\} \times Y$ is their wedge sum. The reduced suspension of (X, x_0) is obtained from the usual suspension $(I \times X)/(\{0\} \times X \cup \{1\} \times X)$ by further collapsing the line $I \times \{x_0\}$ joining the two vertices of the suspension along the basepoint. Using our explicit description of S^1 , we may rewrite the reduced suspension of

Date: 30th June 2021.

The author gratefully acknowledges support by the DFG-Graduiertenkolleg GK1821 "Cohomological Methods in Geometry" at the University of Freiburg.

X as $S^1 \wedge X$, and we denote it by SX. The *n*-th iterated suspension is naturally homeomorphic to $S^n \wedge X$, and we denote it by S^nX . Finally, the *cone* of the pointed compact Hausdorff space (X, x_0) is defined as $CX := (I \times X)/(\{0\} \times X)$, and we take as basepoint the equivalence class of any point in the subspace that we are collapsing [Ati67, p. 68].

1.2. The functor K(-). We follow [Ati67, p. 44]. Let **CHaus** be the category of compact Hausdorff topological spaces and let **Ring** be the category of commutative unital rings. We have defined a functor $K: \mathbf{CHaus} \to \mathbf{Ring}$ which can be explicitly described as follows. If $E \in \mathrm{Vect}(X)$ is a vector bundle on a compact Hausdorff space X, then we denote by [E] its stable equivalence class, i.e.,

$$[E] := \{ F \in \text{Vect}(X) \mid \exists n \in \mathbb{N} \text{ s.t. } E \oplus n \cong F \oplus n \},$$

where we denote also by n the trivial vector bundle of rank n on X. Then the underlying set of the ring K(X) consists of formal differences [E] - [F] for vector bundles $E, F \in \text{Vect}(X)$. The sum is given by

$$([E] - [F]) + ([E'] - [F']) = [E \oplus E'] - [F \oplus F'],$$

and the product is given by

$$([E]-[F])([E']-[F'])=[(E\otimes E')\oplus (F\otimes F')]-[(E\otimes F')\oplus (E'\otimes F)].$$

The element zero can be represented by [0] - [0] and the element one by [1] - [0], where again by 0 we mean $X \times \{0\}$ and by 1 we mean $X \times \mathbb{C}$. Moreover, since X is compact and Hausdorff, we can represent every element of K(X) as [E] - [n] for some $E \in \text{Vect}(X)$ and some $n \in \mathbb{N}$.

If $f: X \to Y$ is a continuous map between compact Hausdorff topological spaces, then $K(f) =: f^*$ is given by

$$f^* \colon K(Y) \to K(X)$$

 $[E] - [F] \mapsto [f^*(E)] - [f^*(F)],$

and this ring homomorphism only depends on the homotopy class of f.

1.3. The functor $\tilde{K}(-)$. We follow [Ati67, p. 66]. Let CHaus⁺ be the category of pointed compact Hausdorff topological spaces and let Rng be the category of commutative non-unital rings. We have defined a functor \tilde{K} : CHaus⁺ \to Rng as follows. Let (X, x_0) be pointed compact Hausdorff topological space and let $i: \{x_0\} \to X$ denote the inclusion of the base point. Then

$$\tilde{K}(X) := \ker(i^*) \subseteq K(X).$$

Remark 1. $\tilde{K}(X)$ is a non-unital subring: it is a subgroup closed under multiplication but it does not contain $1 \in K(X)$.

If $c: X \to \{x_0\}$ is the constant morphism to the basepoint, then c^* induces a splitting $K(X) \cong \tilde{K}(X) \oplus K(x_0)$ which is natural with respect to morphisms in **CHaus**⁺, hence $\tilde{K}(-)$ is a functor as claimed above. If $f: (X, x_0) \to (Y, y_0)$ is a morphism in **CHaus**⁺ given by a continuous function $f: X \to Y$ such that $f(x_0) = y_0$, then $\tilde{K}(f) =: f^*$ is induced by the restriction of $f^*: K(Y) \to K(X)$.

Remark 2. We can recover the functor K(-) from the functor $\tilde{K}(-)$ by adding disjoint basepoints:

$$K(X) \cong \tilde{K}(X^+),$$

where X^+ is the pointed compact Hausdorff space obtained from adding a disjoint basepoint to the compact Hausdorff space X. This is a priori an isomorphism of non-unital rings, but we recover the unit $1 \in K(X)$ as the element corresponding to finish this!

1.4. The functor K(-,-). We follow [Ati67, p. 66]. Let **CHaus**² be the category of pairs (X,Y) consisting of a compact Hausdorff space X and a compact Hausdorff subspace $Y \subseteq X$, or equivalently a compact Hausdorff space X and a closed subspace $Y \subseteq X$. We have defined a functor $K: \mathbf{CHaus}^2 \to \mathbf{Rng}$ as follows. For an object (X,Y) in \mathbf{CHaus}^2 , we set

$$K(X,Y) := \tilde{K}(X/Y),$$

where the basepoint of X/Y is the equivalence class of any point $y \in Y$, which we denote by Y/Y. If $f: (X,Y) \to (Z,W)$ is a morphism in **CHaus**² given by a continuous function $f: X \to Z$ such that $f(Y) \subseteq W$, then it induced a morphism $\bar{f}: (X/Y,Y/Y) \to (Z/W,W/W)$ in **CHaus**⁺. Then $K(f) =: f^*$ is given by $\tilde{K}(\bar{f})$.

1.5. The six-term exact sequence.

Definition 3 ([Ati67, Definition 2.4.1]). For $n \in \mathbb{N}_{>0}$ we define a functor \tilde{K}^{-n} : **CHaus**⁺ \to **Rng** by setting

$$\tilde{K}^{-n}(X) := \tilde{K}(S^n X).$$

Then we define a functor K^{-n} : $\mathbf{CHaus}^2 \to \mathbf{Rng}$ via

$$K^{-n}(X,Y) := \tilde{K}^{-n}(X/Y),$$

and finally a functor K^{-n} : CHaus \to Rng with the formula

$$K^{-n}(X) := K^{-n}(X, \varnothing).$$

Remark 4. The last functor takes values in **Ring**, the unit of $K^{-n}(X)$ being given by... finish!

Recall from Vera's talk:

Proposition 5 ([Ati67, Proposition 2.4.4]). For each pair (X, Y) in CHaus² there is a natural exact sequence

$$\cdots \to K^{-1}(Y) \xrightarrow{\delta} K^0(X,Y) \xrightarrow{j^*} K^0(X) \xrightarrow{i^*} K^0(Y),$$

where $i: Y \to X$ and $j: (X, \emptyset) \to (X, Y)$ are the inclusions.

Remark 6. The morphism $\delta \colon K^{-1}(Y) \to K^0(X,Y)$ can be constructed as the composition $m^* \circ \theta^{-1}$, where θ is the isomorphism $K(X \cup CY)$... finish! But the important part is that δ is induced by a morphism of spaces, cf. [Ati67, p. 77].

Using the periodicity isomorphisms $\beta \colon K^{-n}(X) \to K^{-n-2}(X)$ from [Ati67, Theorem 2.4.9] we extend the collection of functors $\{K^{-n}(-,-)\}_{n\in\mathbb{N}}$ to a collection of functors $\{K^n(-,-)\}_{n\in\mathbb{N}}$ inductively, i.e. $K^1=K^{-1}$, $K^2=K^0$, $K^3=K^1=K^{-1}$, and so on. Then we use the previously seen relations among the different K functors to define collections of functors $\{K^n(-)\}_{n\in\mathbb{Z}}$ and $\{\tilde{K}^n(-)\}_{n\in\mathbb{Z}}$ as well. As we saw at the end of Vera's talk, this allows us to extend the previous exact sequence to the right, and we rearrange this data into the following six-term exact sequence

Definition 7. Let X be a compact Hausdorff space. Then we define

$$K^*(X) := K^0(X) \oplus K^1(X).$$

Similarly, for a pair (X,Y) in **CHaus**² we define

$$K^*(X,Y) := K^0(X,Y) \oplus K^1(X,Y)$$

and finally

$$\tilde{K}^*(X) := K^*(X, \varnothing).$$

Remark 8. Ring structure on K^* finish! In fact, we get the triangle of [Ati67, p. 87] in which all morphisms are $K^*(X)$ -module morphisms.

2. Thom spaces and statement of the theorem

Introduction and goal of the section: introduce Thom spaces and state the Thom isomorphism theorem.

Brief spoiler defining Thom spaces here already.

2.1. Even dimensional spheres. Recall the structure of the group $\tilde{K}^0(\mathbb{S}^{2n})$ determined in Vera's talk [Hat03, Corollary 2.12]. We already have a generator from this result in Hatcher's book. We can describe this canonical generator—up to a sign—in terms of the exterior algebra on an n-dimensional \mathbb{C} -vector space V [Ati67, p. 99].

- 2.2. **Thom spaces.** Generalize discussion on even dimensional spheres to Thom spaces as in [Ati67, p. 100]. Define the canonical $\lambda_E \in \tilde{K}(X^E)$ and explain its properties. Explain this also in terms of projectivizations of vector bundles plus a trivial line bundle, and recall Prof. Huber's remark that this projectivization is a way to compactify the vector bundle.
- 2.3. **Statement of the theorem.** State the Thom isomorphism theorem [Ati67, Corollary 2.7.12].
 - 3. Proof for sums of line bundles

In this section we work with a direct sum of line bundles

$$E = L_1 \oplus \ldots \oplus L_m$$
.

- 3.1. **Recall** $K^0(\mathbb{P}(E))$. This is treated in [Ati67, Proposition 2.5.3]; leave proof in gray, omitted during the talk.
- 3.2. Computation of $K^*(\mathbb{P}(E))$. This is [Ati67, Proposition 2.7.1].
- 3.3. Thom isomorphism theorem in this case. This is [Ati67, Proposition 2.7.2].
 - 4. Proof of the general case

This corresponds to [Ati67, Proposition 2.7.8], [Ati67, Proposition 2.7.9] and [Ati67, Proposition 2.7.12].

APPENDIX A. CONVENTIONS AND PRELIMINARIES

- A.1. Construction of K(X). The Grothendieck group is defined via universal property, but let us agree on a specific construction in order to have a precise description of the elements in the ring K(X). We follow both [Ati67] and [Hat03] and consider the construction 1 described by Jin in the first talk of the seminar, which is the second construction discussed by Atiyah in [Ati67, p. 42].
- **Lemma 9.** Let M be a commutative monoid. Then Jin's construction 1 agrees with Atiyah's second construction of K(M).

Proof. In both cases K(M) is the quotient of $M \times M$ by an equivalence relation, so it suffices to show that the equivalence relations agree. In Atiyah's construction we have

$$(x,y) \sim_A (x',y') : \Leftrightarrow \exists z, z' \in M, (x+z,y+z) = (x'+z',y'+z').$$

In Jin's construction we have

$$(x,y) \sim_J (x',y') : \Leftrightarrow \exists z \in M, x+y'+z=x'+y+z.$$

If $(x, y) \sim_A (x', y')$, then we have x + z = x' + z' and y + z = y' + z' for some $z, z' \in M$. Associativity and commutativity of M imply that

$$x + y' + z + z' = x' + y' + z' + z' = x' + y + z + z',$$

hence $(x,y) \sim_J (x',y')$. Conversely, if $(x,y) \sim_J (x',y')$, then we have x+y'+z=x'+y+z for some $z \in M$. In particular we have

$$(x + (x + y' + z), y + (x + y' + z)) = (x + (x' + y + z), y' + (x + y + z))$$
$$= (x' + (x + y + z), y' + (x + y + z)),$$

so
$$(x,y) \sim_A (x',y')$$
 as well.

Given (an isomorphism class of) a vector bundle $E \in \operatorname{Vect}(X)$, we denote by [E] its image in K(X), that is, [E] = [(E,0)]. Since -[E] = [(0,E)], we can write every element $[(E,F)] \in K(X)$ as [E] - [F]. We can find some vector bundle G such that $F \oplus G$ is trivial [Ati67, Corollary 1.4.14]. With the notation introduced earlier we can write $[F \oplus G] = [\underline{n}]$ for some $n \in \mathbb{N}$. Then we would have

$$[E] - [F] = [E] + [G] - ([F] + [G]) = [E \oplus G] - [\underline{n}],$$

showing that every element of K(X) can be written as $[H] - [\underline{n}]$ for some vector bundle H on X and some natural number $n \in \mathbb{N}$ [Ati67, p. 44].

Suppose now that E and F are such that [E] = [F], that is, [(E, 0)] = [(F, 0)]. By definition of the equivalence relation that we are using, there exists some vector bundle G such that $E \oplus G \cong F \oplus G$. Applying [Ati67, Corollary 1.4.14] again we deduce that $E \oplus \underline{n} \cong F \oplus \underline{n}$ for some $n \in \mathbb{N}$. In this case we say that E and F are stably equivalent. This brings us to Hatcher's description of K(X) [Hat03, p. 39], namely, as formal differences E - E' in which we identify $E_1 - E'_1$ with $E_2 - E'_2$ if and only if $E_1 \oplus E'_2$ and $E_2 \oplus E'_1$ are stably equivalent, that is, if and only if $[E_1 \oplus E'_2] = [E_2 \oplus E'_1]$. Since $[E_1 \oplus E'_2] = [E_1] + [E'_2]$ and $[E_2 \oplus E'_1] = [E_2] + [E'_1]$, we do have $E_1 - E'_1 = E_2 - E'_2$ in Hatcher's sense if and only if $[(E_1, E'_1)] = [(E_2, E'_2)]$ in Atiyah's sense. We will try to follow Atiyah's notation most of the time.

REFERENCES

[Ati67] M. F. Atiyah. K-theory. Lecture notes by D. W. Anderson. W. A. Ben-jamin, Inc., New York-Amsterdam, 1967.

[Hat03] A. Hatcher. Vector Bundles and K-Theory. 2003. http://www.math.cornell.edu/~hatcher.

Pedro Núñez

Albert-Ludwigs-Universität Freiburg, Mathematisches Institut Ernst-Zermelo-Strasse 1, 79104 Freiburg im Breisgau (Germany) *Email address*: pedro.nunez@math.uni-freiburg.de

Homepage: https://home.mathematik.uni-freiburg.de/nunez