Version Control

C++ Programming Practice
Victor Yacovlev (Viktor Iakovlev)
and Julia Ivanova

What is Versioning

Versioning for Single Developer

- Use of different computers (at work, at home)
- Tracking of changes between versions

Version Control Systems

- Centralized:
 - Concurrent Version System (cvs)
 - Subversion (svn)
- Distributed:
 - Mercurial (hg)
 - Git (git)

The Key Idea

Any text might be created by having initial text X_0 updated by set of patches $\partial X_{0\text{-}1}$.. $\partial X_{1\text{-}2}$.. $\partial X_{M\text{-}N}$.. X_N .

The Key Idea

- Store initial version of files
- Keep current version as-is (the working copy)
- Commit changes from current version to previous by calculating differences
- Store differences in history

Alternate Version (Branch)

Alternate Version

- Do not make a full copy just keep changes
- Versions can be switched by reapplying patches
- Typical use case: make new feature in project keeping mainstream untouched until feature ready

Merging Alternate Back

This join might have conflicts to be resolved manually!

Conflicts

- Alternate history may affect the same files and the same parts of files
- On merging there is a problem: which part of text to use
- This can't be performed automatically

What is a difference calculation (a bit of mathematics to undestand)

Text Alignment Problem

fox jumps over dog white fox dumbs dog

Text Alignment Problem

insertion

replacements deletion

Patch := (+white), $(j \rightarrow d)$, $(p \rightarrow b)$, (-over)

How Patches are Calculated

- The key idea use the **Dynamic Programming** optimization method
- Each string S₁ and S₂ to be compared have a substrings S₁^N and S₂^N of length N
- Recursively calculate some measure function $F(S_1^N, S_2^N)$ and choose the best value on recursion stage

How Patches are Calculated

- The F(S₁^N, S₂^N) function is an **edit distance**
- There is several way to calculate $F(S_1^N, S_2^N)$
- The notable methods to calculate F:
 - Takes account only on insertions and deletions:
 - Levenshtein Distance
 - Longest Common Subsequence used in git version control system
 - Takes account boths insertions/deletions and symbols matching:
 - Needleman-Wunsch Algorithm
 - Smith-Waterman Algorithm
 - Roytberg-Yacovlev Algorithm

The Levenshtein Distance Measure Function

$$D_{i,j} = min \begin{cases} D_{i-1,j-1} + Score_{i,j} \\ D_{i-1,j} + 1 \\ D_{i,j-1} + 1 \end{cases}$$

$$Score_{i,j} = \begin{cases} 1 & S_1^i \neq S_1^i \\ 0 & S_1^i = S_2^j \end{cases}$$

The Longest Common Sequence Measure Fucntion

$$C_{i,j} = \begin{cases} max \left\{ \begin{matrix} C_{i-1,j} \\ C_{i,j-1} \end{matrix} \right\} & S_1^i \neq S_1^i \\ C_{i,j-1} & S_1^i = S_2^j \end{cases}$$

$$C_{i-1,j-1} + 1 \quad S_1^i = S_2^j$$

The Needle-Wunch Measure Function

$$W_{i,j} = max \begin{cases} W_{i-1,j-1} + Score_{i,j} \\ W_{i-1,j} - GEP \\ W_{i,j-1} - GEP \end{cases}$$

Score(i,j) - the Weight of symbols matching

GEP - the Gap Elongation Penalty for symbol deletion

Example: Using NW to calculate difference

		f	0	X		j	u	m	р	S		0	٧	е	r		d	0	g
		-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-13	-14	-15	-16	-17	-18
W	-1	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11
h	-2	5	12	11	10	9	8	7	6	5	C					I	120		20
i	-3	4	11	18	17	16	15	14	13	12	Space v.s. space					120		27	
t	-4	3	10	17	18	23	22	21	20	19	Exact symbol match					30		34	
е	-5	2	9	16	17	24	29	28	27	26	Letter v.s. letter					6		41	
	-6	1	8	15	46	45	44	43	42	41	Space v.s. letter					0		72	
f	-7	24	23	22	45	52	51	50	49	48	Gap Elongation Penalty				-1		79		
0	-8	23	54	53	52	51	58	57	56	55	54 85 84 83 82 81				80	87	86		
X	-9	22	53	84	83	82	81	80	79	78	77	84	91	90	89	88	87	86	93
	-10	21	52	83	114	113	112	111	110	109	198	197	196	195	194	209	208	207	206
d	-11	20	51	82	113	120	119	118	117	116	197	204	203	202	201	208	239	238	237
u	-12	19	50	81	112	119	150	149	148	147	196	203	210	209	208	207	238	245	244
m	-13	18	49	80	111	118	149	180	179	178	195	202	209	216	215	214	237	244	251
b	-14	17	48	79	110	117	148	179	186	185	194	201	208	215	222	221	236	243	250
S	-15	16	47	78	109	116	147	178	185	216	215	214	213	214	221	222	235	242	249
	-16	15	46	77	198	197	196	195	194	215	246	245	244	243	242	251	250	249	248
d	-17	14	45	76	197	204	203	202	201	214	245	252	251	250	249	250	281	280	279
0	-18	13	44	75	196	203	210	209	208	213	244	275	274	273	272	271	280	311	310
g	-19	12	43	74	195	202	209	216	215	214	243	274	281	280	279	278	279	310	341

Block Alignment

- Matrices might be too big
- This might be solved by grouping symbols

		fox	jumps	over	gop
		-1	-2	-3	-4
white	-1	0	-1	-2	-3
fox	-2	9	8	7	6
dumbs	-3	8	9	8	7
dog	-4	7	8	9	18

Block Alignment

insertion

replacements deletion

insertion

replacement deletion

Git Version Control System

git init && git add && git commit

git branch new-feature

git checkout new-feature

git commit

git checkout master

git commit

Distributed Storage

Distributed Git

Distributed Git

git merge origin/master

