Database Management Systems Chapter 9: Data Warehousing

DR. ADAM LEE

Objectives

- Define terms.
- Explore reasons for information gap between information needs and availability.
- Understand reasons for need of data warehousing.
- Describe three levels of data warehouse architectures.
- Describe two components of star schema.
- Estimate fact table size.
- Design a data mart.
- Develop requirements for a data mart.

Definitions

- Data Warehouse A subject-oriented, integrated, timevariant, non-updatable collection of data used in support of management decision-making processes.
 - Subject-oriented: e.g. customers, patients, students, products.
 - **Integrated**: consistent naming conventions, formats, encoding structures; from multiple data sources.
 - Time-variant: can study trends and changes.
 - Non-updatable: read-only, periodically refreshed.
- Data Mart A data warehouse that is limited in scope.

History Leading to Data Warehousing

- Improvement in database technologies, especially relational DBMSs.
- Advances in computer hardware, including mass storage and parallel architectures.
- Emergence of end-user computing with powerful interfaces and tools.
- Advances in middleware, enabling heterogeneous database connectivity.
- Recognition of difference between operational and informational systems.

Need for Data Warehousing

- Integrated, company-wide view of high-quality information (from disparate databases).
- Separation of operational and informational systems and data (for improved performance).

Issues with Company-Wide View

- X Inconsistent key structures.
- X Synonyms.
- X Free-form vs. structured fields.
- X Inconsistent data values.
- X Missing data.

See Figure 9-1 for example.

Figure 9-1: Examples of Heterogeneous Data

STUDENT DATA

StudentNo	LastName	МІ	FirstName	Telephone	Status	•
123-45-6789	Enright	т	Mark	483-1967	Soph	
389-21-4062	Smith	R	Elaine	283-4195	Jr	

STUDENT EMPLOYEE

StudentID	Address	Dept	Hours	•••
123-45-6789	1218 Elk Drive, Phoenix, AZ 91304	Soc	8	
389-21-4062	134 Mesa Road, Tempe, AZ 90142	Math	10	

STUDENT HEALTH

StudentName	Telephone	Insurance	ID	•••
Mark T. Enright	483-1967	Blue Cross	123-45-6789	
Elaine R. Smith	555-7828	?	389-21-4062	

Separating Operational and Informational Systems

- Operational system A system that is used to run a business in real time, based on current data; also called a system of record.
- Informational system A system designed to support decision making based on historical point-in-time and prediction data for complex queries or data-mining applications.

Table 9-1: Comparison of Operational and Informational Systems

TABLE 9-1 Comparison of Operational and Informational Systems

Characteristic	Operational Systems	Informational Systems
Primary purpose	Run the business on a current basis	Support managerial decision making
Type of data	Current representation of state of the business	Historical point-in-time (snapshots) and predictions
Primary users	Clerks, salespersons, administrators	Managers, business analysts, customers
Scope of usage	Narrow, planned, and simple updates and queries	Broad, ad hoc, complex queries and analysis
Design goal	Performance: throughput, availability	Ease of flexible access and use
Volume	Many constant updates and queries on one or a few table rows	Periodic batch updates and queries requiring many or all rows

Data Warehouse Architectures

- Independent data mart.
- Dependent data mart and operational data store.
- Logical data mart and real-time data warehouse.
- Three-layer architecture.

All involve some form of extract, transform and load (ETL).

Figure 9-2: Independent Data Mart Data Warehousing Architecture Data Mart D

Mini-warehouses, limited in scope.

Lee-703-Ch9

10 ROBERT H. SMIT.

Figure 9-3: Dependent Data Mart with

ODS provides option for **Operational Data Store** obtaining *current* data.

enterprise data warehouse (EDW).

Robert H.Smiti 11

loaded from EDW.

Figure 9-4: Logical Data Mart and Real Time

Warehouse Architecture

ODS and data warehouse are one and the same.

Table 9-2: Data Warehouse Versus Data Mart

TABLE 9-2 Data Warehouse Versus Data Mart

Data Warehouse	Data Mart		
Scope	Scope		
 Application independent Centralized, possibly enterprise-wide Planned 	 Specific DSS application Decentralized by user area Organic, possibly not planned 		
Data	Data		
Historical, detailed, and summarizedLightly denormalized	 Some history, detailed, and summarized Highly denormalized 		
Subjects	Subjects		
Multiple subjects	 One central subject of concern to users 		
Sources	Sources		
 Many internal and external sources 	 Few internal and external sources 		
Other Characteristics	Other Characteristics		
 Flexible Data oriented Long life Large Single complex structure 	 Restrictive Project oriented Short life Start small, becomes large Multi, semi-complex structures, together complex 		

Lee-703-Ch9

13 ROBERT H. SMITH

Figure 9-5: Three-Layer Data Architecture for a Data Warehouse

Figure 9-6: Example of DBMS Log Entry (Data Characteristics Status versus Event Data)

Figure 9-7: Transient Operational Data (Data Characteristics Status versus Event Data)

	Table X (10/10)				
	Key	Α	В		
	001	a	b		
•	002	r	d		
	003	е	f		
•	004	у	h		
•	005	m	n		

	Table X (10/11)				
	Key	Α	В		
	001	a	b		
	002	r	d		
•	003	е	t		
•					
	005	m	n		

With transient data, changes to existing records are written over previous records, thus destroying the previous data content.

Figure 9-8: Periodic Warehouse Data (Data Characteristics Status versus Event Data)

Table V (40/44)

Table X (10/09)					
Key	Date	Α	В	Action	
001	10/09	a	b	С	
002	10/09	С	d	С	
003	10/09	е	f	С	
004	10/09	g	h	С	

	Key	Date	Α	В	Action
Ī	001	10/09	a	b	С
	002	10/09	С	d	С
Þ	002	10/10	r	d	U
	003	10/09	е	f	С
	004	10/09	g	h	С
Þ	004	10/10	у	h	U
	005	10/10	m	n	С

	Key	Date	Α	В	Action
	001	10/09	a	b	С
	002	10/09	С	d	С
	002	10/10	r	d	U
	003	10/09	е	f	С
•	003	10/11	е	t	U
	004	10/09	g	h	С
	004	10/10	у	h	U
•	004	10/11	у	h	D
	005	10/10	m	n	С

Periodic data are never physically altered or deleted once they have been added to the store.

Other Data Warehouse Changes

- New descriptive attributes.
- New business activity attributes.
- New classes of descriptive attributes.
- Descriptive attributes become more refined.
- Descriptive data are related to one another.
- New source of data.

Derived Data

Objectives:

- Ease of use for decision support applications.
- Fast response to predefined user queries.
- Customized data for particular target audiences.
- Ad-hoc query support.
- Data mining capabilities.

Characteristics:

- Detailed (mostly periodic) data.
- Aggregate (for summary).
- Distributed (to departmental servers).

Most common data model = dimensional model (usually implemented as a star schema)

Figure 9-9: Components of a Star Schema

Excellent for ad-hoc queries, but bad for online transaction processing

Lee-703-Ch9 20 ROBERT H.SMITH SCHOOL OF BUSINES

Figure 9-10: Star Schema Example

Figure 9-11: Star Schema with Sample Data

Surrogate Keys

- Dimension table keys should be surrogate (non-intelligent and non-business related), because:
 - Business keys may change over time.
 - Helps keep track of non-key attribute values for a given production key.
 - Surrogate keys are simpler and shorter.
 - Surrogate keys can be same length and format for all key.

Lee-703-Ch9

23 ROBERT H. SMITH

Grain of the Fact Table

- Granularity of Fact Table what level of detail do you want?
 - Transactional grain finest level.
 - Aggregated grain more summarized.
 - Finer grains
 better market basket analysis capability.
 - Finer grain \rightarrow more dimension tables, more rows in fact table.
 - In Web-based commerce, finest granularity is a click.

Lee-703-Ch9

24 ROBERT H. SMITH

Duration of the Database

- Natural duration 13 months or 5 quarters.
- Financial institutions may need longer duration.
- Older data is more difficult to source and cleanse.

Lee-703-Ch9 25 ROBERT H. SMITH

Size of Fact Table

- Depends on the number of dimensions and the grain of the fact table
- Number of rows = product of number of possible values for each dimension associated with the fact table
- Example: Assume the following for Figure 9-11:

```
Total number of stores = 1,000

Total number of products = 10,000

Total number of periods = 24 (2 years' worth of monthly data)
```

Total rows calculated as follows (assuming only half the products record sales for a given month):

Total rows = 1,000 stores × 5,000 active products × 24 months = 120,000,000 rows (!)

Figure 9-12 Modeling Dates

Fact tables contain time-period data

→ Date dimensions are important

Variations of the Star Schema

- Multiple Facts Tables:
 - Can improve performance.
 - Often used to store facts for different combinations of dimensions.
 - Conformed dimensions.
- Factless Facts Tables:
 - No non-key data, but foreign keys for associated dimensions.
 - Used for: tracking events, inventory coverage, ...

Lee-703-Ch9

28 ROBERT H. SMITH

Figure 9-13: Conformed Dimensions

Two fact tables \rightarrow two (connected) star schemas.

Conformed dimension

Associated with multiple fact tables.

Figure 9-14: Factless Fact Table Showing Occurrence of an Event

Time key [PK] Full date Day of week Week number

Course key [PK] Name Department Course number Laboratory flag

Facility key [PK]
Type
Location
Department
Seating
Size

No data in fact table, just keys associating dimension records.

Attendance Fact Table

Time key [PK][FK] Student key [PK][FK] Course key [PK][FK] Teacher key [PK][FK] Facility key [PK][FK]

Fact table forms an n-ary relationship between dimensions

Student key [PK] Student ID Name

Address

Major Minor

First enrolled

Graduation class

Teacher key [PK] Employee ID Name

Address

Department

Title Degree

Normalizing Dimension Tables

Multivalued Dimensions:

- Facts qualified by a set of values for the same business subject.
- Normalization involves creating a table for an associative entity between dimensions.

Hierarchies:

• Sometimes a dimension forms a natural, fixed depth hierarchy.

Design options:

- Include all information for each level in a single denormalized table.
- Normalize the dimension into a nested set of 1:M table relationships.

Figure 9-15: Multivalued Dimension

Helper table is an associative entity that implements a M:N relationship between dimension and fact.

Lee-703-Ch9

32 ROBERT H. SMITH
school of Business

Figure 9-16: Fixed Product Hierarchy

Dimension hierarchies help to provide levels of aggregation for users wanting summary information in a data warehouse.

Lee-703-Ch9

33 ROBERT H. SMITH

Slowly Changing Dimensions (SCD)

- How to maintain knowledge of the past?
- Kimble's approaches:
 - Type 1: just replace old data with new. (lose historical data)
 - Type 2: create a new dimension table row each time the dimension object changes, with all dimension characteristics at the time of change. (most common approach)
 - Type 3: for each changing attribute, create a current value field and several old-valued fields. (multivalued)

Lee-703-Ch9

34 ROBERT H. SMITH

Figure 9-18: Example of Type 2 SCD Customer Dimension Table

The dimension table contains several records for the same customer. The specific customer record to use depends on the key and the date of the fact, which should be between start and end dates of the SCD customer record.

WHERE Fact.CustomerKey = Customer.CustomerKey

AND Fact.DateKey BETWEEN Customer.StartDate and Customer.EndDate

Lee-703-Ch9

35 ROBERT H. SMITI

Figure 9-19: Dimension Segmentation

For rapidly changing attributes (hot attributes), Type 2 SCD approach creates too many rows and too much redundant data. Use segmentation instead.

10 Essential Rules For Dimensional Modeling

- Use atomic facts.
- Create single-process fact tables.
- Include a date dimension for each fact table.
- 4. Enforce consistent grain.
- 5. Disallow null keys in fact tables.
- 6. Honor hierarchies.
- 7. Decode dimension tables.
- 8. Use surrogate keys.
- 9. Conform dimensions.
- 10. Balance requirements with actual data.

Other Data Warehouse Advances

- Move data warehouse into the cloud to enjoy the benefits of lower total cost of ownership (TCO).
 - IBM, Oracle, Microsoft, Teradata, SAP (HANA), Amazon (Redshift).
- Columnar databases:
 - Issue of Big Data (huge volume, often unstructured).
 - Optimize storage for summary data of few columns.
 - Sybase, Vertica, Infobright.
- NoSQL:
 - "Not only SQL".
 - Deals with unstructured data.
 - MongoDB, CouchDB, Apache Cassandra.

