Arithmetique — CM: 3

Par Lorenzo

20 septembre 2024

Définition 0.1. Soient (G, *) et (H, \square) deux groupes. On appelle morphisme de groupes toute application $f: G \to H$ vérifiant $\forall x, y \in G, f(x * y) = f(x) \square f(y)$

Proposition 0.1.

Si $f: G \to H$ est un morphisme de groupe, alors $f(e_G) = e_H$

Démonstration 0.1.

$$f(e_G) = f(e_G * e_G) = f(e_G) \square f(e_G)$$

$$f(e_G) = f(e_G) \square e_H$$

$$f(e_G) \square f(e_G) = f(e_G) \square e_H \implies f(e_G) = e_H$$

Proposition 0.2.

Si $f: G \to H$ est un morphisme de groupe, alors $\forall x \in G, f(x^{-1}) = f(x)^{-1}$

 \Box

Démonstration 0.2.

$$f(x^{-1}) = f(x^{-1})\Box f(x)\Box f(x)^{-1} = f(x^{-1} * x)\Box f(x)^{-1} = f(x)^{-1}$$

1 Anneaux et Corps

Définition 1.1. Un anneau est $(A, +, \times)$ où A est un ensemble, + et x sont deux l.c.i sur A vérifiant les axiomes suivants

- (A, +) est un groupe abélien (on note 0_A sont élément neutre)
- \bullet × est associative
- \bullet × est distributive sur +

Remarques 1.1. On dit que $(A, +, \times)$ est un anneau commutatif si, de plus \times est commutative

Un élément $x \in A$ est dit inversible dans A lorsqu'il adment un symétrique pour \times .

Proposition 1.1.

Soit
$$(A, +, x)$$
 un anneau alors $\forall x \in A, 0_A \times x = 0_A$

Démonstration 1.1.

$$0_A \times x = (0_A + 0_A) \times x$$

= $0_A \times x + 0_A \times x \implies 0_A = 0_A \times x \ (par \ soustraction \ de \ 0_A \times x)$

Proposition 1.2.

Soient $x, y, z \in A$, Si $x \times z = y \times z$ et z est inversible alors x = y

Démonstration 1.2.

$$x \times z = y \times z \implies (x \times z) \times z^{-1} = (y \times z) \times z^{-1}$$
$$\implies x \times (z \times z^{-1}) = y \times (z \times z^{-1})$$
$$\implies x \times 1_A = y \times 1_A$$
$$\implies x = y$$

Définition 1.2. Un corps est la donnée d'un triplet $(\mathbb{k}, +, \times)$ où \mathbb{k} est un ensemble, + et \times sont deux l.c.i sur \mathbb{k} vérifiant les axiomes suivants:

- $(\mathbb{k}, +, \times)$ est un anneau commutatif
- (\mathbb{k}^*, \times) est un groupe abélien (de neutre noté $1_{\mathbb{K}}$).

Remarques 1.2. De manière équivalente, un corps est un anneau commutatif avec un élément neutre pour \times où tout élément non-nul est inversible.

2 Arithmétique des entiers

2.1 Rappels sur \mathbb{N} et \mathbb{Z}

À vérifier, certains théorèmes manque de consistance

Théorème 2.1. (propriétés $de + et \times sur \mathbb{N}$)

- (a) + et \times sont associative et commutative sur \mathbb{N}
- (b) 0 est élement neutre pour + tandis que 1 est neutre pour ×
- (c) Il y a une distributivité de × sur +
- (d) $\forall x, y, m \in \mathbb{N}, x + m = y + m \implies x = y$

Théorème 2.2. (propriétés $de \leq sur \mathbb{N}$)

1) (relation d'ordre total) $\forall m, n, p \in \mathbb{N}$

- (a) $n \leq n$
- (b) $m \le n \land n \le m \iff m = n$
- (c) $m \le n \land n \le p \implies m \le p$
- (d) $m \le n \lor n \le m$
- 2) Les opérations + et × sont compatibles avec la relation d'ordre $\forall n, m, p \in \mathbb{N}, n \leq m \implies (n+p \leq m+p) \land (n \times p \leq m \times p)$
- 3) $\forall n \in \mathbb{N}, \ 0 \leq n$
- 4) $\forall n, m \in \mathbb{N}, \forall p \in \mathbb{N}^*, n \leq m \implies n \times p \leq m \times p$

Théorème 2.3.

- 1. Toute partie finie de N admet un plus grand élément.
- 2. Toute partie non vide de N admet un plus petit élément.
- 3. Toute partie non vide et majorée de N admet un plus grand élément.
- **4.** N n'admet pas de plus grand élément.

Théorème 2.4. (propriétés $de + et \times sur \mathbb{Z}$)

- (a) + et \times sont associative et commutative sur \mathbb{Z}
- (b) 0 est élement neutre pour + tandis que 1 est neutre pour ×
- (c) Il y a une distributivité $de \times sur +$
- (d) Tout $m \in \mathbb{Z}$ admet un symétrique (élément inverse), $-m \in \mathbb{Z}$ pour +

Théorème 2.5. (propriétés $de \leq sur \mathbb{Z}$)

- 1) \leq est une relation d'ordre totale sur \mathbb{Z} .
- 2) Soient $n, m, p \in \mathbb{Z}$
- (a) $n \le m \iff n+p \le m+p$
- (b) $\forall p \in \mathbb{Z}_+^*, n \leq m \iff np \leq mp$
- (c) $\forall p \in \mathbb{Z}_{-}^{*}, n \leq m \iff mp \leq np$
- (d) $\forall p \in \mathbb{Z}^*, m = n \iff mp = np$