人智大作业 2 报告

2017011534 王思程 自71

1.import 包

Import 了 tensorflow, pandas, numpy, matplolib (使用的是 tensorflow 的 2.0版本)

使用了 tensorflow.keras.layers 中的 Conv2D, MaxPooling2D, Dropout, Dense, Flatten, ReLU, BatchNormalization, GlobalAveragePooling2D

2.读入数据并更改维度

用 numpy.load 读入.npy 文件,并修改维度为(xxx, 28, 28, 1)数据类型改为 float

用 pandas.read_csv 读 csv 文件,并取出 label 那一列

3.画出来看一下数据长什么样

用修改维度前的 ndarray,隔 1000 取一张图出来显示,共显示 25 张,可以看到要分类的东西长什么样,并看到其有相当的椒盐噪声

4.数据处理

4.1normalization

都是 float 形式了,除以 255 即可

4.2shuffle

在3画图时就看到,原训练数据是同一种类的图片在一起连着的,有必要将其打乱以获得更好的效果。可以生成对应长度的 index,然后将其 shuffle,再将训练集的数据和标签按打乱后的 index 排,这样就保证数据和标签还是对应的

4.3one-hot 编码

标签原本是 0-9 的数,将其编码为 one-hot 形式。

其实也可以不改这个,那么分类时 loss 函数使用 Sparse Categorical Cross Entropy 而不是 categorical_corssentropy 了。

4.4 将数据进一步切分

我将训练集中 25000 个用于训练网络,5000 用于当测试集,这样是否过拟合自己就知道,没必要每次训练出来都交 kaggle,自己的 val_accuracy 就和最终交 kaggle 的结果差不多

5.模型

5.1 建立一些小模块

5.1.1 ConvBNRelu: conv + batch normalization + relu

一个 Conv2D 层,一个 BatchNormalization(),一个 relu()

(参考了https://blog.csdn.net/abc13526222160/article/details/95472241)

将其作为基本单元替代 Con2D 有一些好处,一是收敛速度更快了:因为不在处于 sigmoid 函数的饱和区,梯度信息会更大。二是更加鲁棒:更不容易梯度消失,让 learning rate 可以更容易选择

5.1.2 Inception 层

(b) Inception module with dimension reductions

基本按上图实现的 (图来自 Going deeper with convolutions 这篇论文)

但是 channel 数有所不同,按照上图这个比例写的,其中上图的 32 作为一个基本 单元 ,可以改变 其大小 (图 来自 https://blog.csdn.net/abc13526222160/article/details/95472241)

Strides 设计的可以自己控制,因为这 4 个计算完要在页的维度垒叠在一起concat(···,axis=3),所以要保证各自计算完后 width 和 height 一样,所以右三个

两层的,第一层 strides=1,第二层 strides=给定的 strides, 左边那个就 strides=给定的 strides。

其中 5*5 卷积核本来计算量很大,但在前面加一个 1*1 卷积核进行降维,可以减少计算压力。

追求可解释性的话,这个单元很好用的原因就是它有各种卷积和池化层,相当于让机器训练自己看那种效果更好,而不是人来指定具体哪一种

5.2 设计 Model

5.2.1 普通的卷积池化后加全连接层的网络

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	28, 28, 64)	640
max_pooling2d (MaxPooling2D)	(None,	14, 14, 64)	0
dropout (Dropout)	(None,	14, 14, 64)	0
conv2d_1 (Conv2D)	(None,	14, 14, 32)	51232
max_pooling2d_1 (MaxPooling2	(None,	7, 7, 32)	0
dropout_1 (Dropout)	(None,	7, 7, 32)	0
flatten (Flatten)	(None,	1568)	0
dense (Dense)	(None,	128)	200832
dropout_2 (Dropout)	(None,	128)	0
dense_1 (Dense)	(None,	10)	1290

Total params: 253,994 Trainable params: 253,994 Non-trainable params: 0

感觉可提升空间不大,试过各种参数,最后 val_accuracy 也就 80-86 之间吧。

5.2.2 用了两个 InceptionBlk,不同步长

Model: "sequential_197"

Layer (type)	Output	Shape	Param #
conv2d_223 (Conv2D)	(None,	28, 28, 192)	1920
batch_normalization_175 (Bat	(None,	28, 28, 192)	768
re_1u_175 (ReLU)	(None,	28, 28, 192)	0
inception_b1k_29 (InceptionB	(None,	14, 14, 256)	165168
inception_b1k_30 (InceptionB	(None,	14, 14, 256)	178480
dropout_4 (Dropout)	(None,	14, 14, 256)	0
global_average_pooling2d_9 ((None,	256)	0
dense_11 (Dense)	(None,	10)	2570

Total params: 348,906 Trainable params: 347,050 Non-trainable params: 1,856

其中,最后没有使用 Flatten 后加一个 Dense,而是用一个 global_average_pooling2d 层。若使用 Dense 层则参数过多训练很慢,用 GAP (global average pooling) 按作者的话说"is easier to interpret and less prone to overfitting than traditional fully connected layers"(论文 Network In Network)就更不容易过拟合,确实这次只切分后只有 25000 个训练样本,不是很多,要多注意过拟合问题。

下图是采用传统 Flatten + Dense 层的,参数数量比用 GAP 多了近 20 倍。

Model: "sequential_223"

Layer (type)	Output	Shape	Param #
conv2d_249 (Conv2D)	(None,	28, 28, 192)	1920
batch_normalization_201 (Bat	(None,	28, 28, 192)	768
re_1u_201 (ReLU)	(None,	28, 28, 192)	0
inception_blk_33 (InceptionB	(None,	14, 14, 256)	165168
inception_b1k_34 (InceptionB	(None,	14, 14, 256)	178480
dropout_6 (Dropout)	(None,	14, 14, 256)	0
flatten_2 (Flatten)	(None,	50176)	0
dense_13 (Dense)	(None,	128)	6422656
dense_14 (Dense)	(None,	10)	1290

Total params: 6,770,282 Trainable params: 6,768,426 Non-trainable params: 1,856

5.2.3 实现 GoogLeNet 缩短版

上图是 https://d2l.ai/chapter_convolutional-modern/googlenet.html 中给出的一

个版本的 GoogLeNet 模型,这个太深了,我自己给它剪短了点,结果如下

Model: "sequential_292"

Layer (type)	Output Shape	Param #
conv2d_320 (Conv2D)	(None, 22, 22, 64)	3200
max_pooling2d_77 (MaxPooling	(None, 10, 10, 64)	0
conv2d_321 (Conv2D)	(None, 10, 10, 64)	4160
conv2d_322 (Conv2D)	(None, 8, 8, 192)	110784
max_pooling2d_78 (MaxPooling	(None, 4, 4, 192)	0
inception_blk_44 (InceptionB	(None, 4, 4, 256)	165168
inception_blk_45 (InceptionB	(None, 4, 4, 272)	197829
inception_blk_46 (InceptionB	(None, 4, 4, 288)	221886
inception_blk_47 (InceptionB	(None, 4, 4, 304)	247323
inception_blk_48 (InceptionB	(None, 4, 4, 320)	274140
max_pooling2d_84 (MaxPooling	(None, 1, 1, 320)	0
inception_blk_49 (InceptionB	(None, 1, 1, 256)	191792
inception_b1k_50 (InceptionB	(None, 1, 1, 512)	603744
global_average_pooling2d_12	(None, 512)	0
dense_17 (Dense)	(None, 10)	5130

Total params: 2,025,156 Trainable params: 2,018,808 Non-trainable params: 6,348

5.2.3 ResNet

5.2.3.1 Bottleneck Residual Block

基本的残差模块,由于有残差所以输入输出的通道数一样。

且有两个 1*1 大大缩小参数数量, 使得可以层数很深。

5.2.3.2 Res Block

先来个 ConvBNRelu,然后不同通道数的 Bottleneck Residual Block 叠起来,最后再一个全连接层分类。

5.2.3.3 Res Net

选择 64, 256, 256, 512 通道的 Bottleneck Residual Block 有几个,垒叠出来就是 ResNet。

Model: "res_net_27"		
Layer (type)	Output Shape	Param #
sequential_168 (Sequential)	multiple	896
sequential_169 (Sequential)	multiple	9664
sequential_170 (Sequential)	multiple	61376
sequential_172 (Sequential)	multiple	311040
sequential_174 (Sequential)	multiple	381184
global_average_pooling2d_17	multiple	0
dense_20 (Dense)	multiple	5130

Total params: 769,290 Trainable params: 763,018 Non-trainable params: 6,272

5.3 编译 Model

优化器选择的 adam

Loss 函数选择的 categorical_crossentropy

Metrics 选择的 accuracy

5.4 训练 Model

BATCH_SIZE = 32。 Epochs 初始设置为 50,然后在 callbacks 里用 earlingstopping 监视 val_accuracy,耐心为 2,不再增长时停止训练。validation_data 就是最开始 切出来的那 5000 个样本。

6.预测和保存

就预测给的测试集样本,然后改成要求的 DataFrame 格式保存为 csv 文件交到 Kaggle 上就行了。