ECON 203, CHALLENGE QUIZ 6

CHARLES ANCEL

Problem Statement: Prove that $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{a} - \hat{b}X_i)^2$ is an unbiased estimator of the variance σ^2 of the error term U in the linear regression model Y = a + bX + U.

Proof. Step 1: Model Specification

The linear regression model for each observation i is:

$$Y_i = a + bX_i + U_i$$

where U_i is the error term with properties $E[U_i] = 0$ and $Var(U_i) = \sigma^2$.

Step 2: OLS Estimators

The OLS estimators \hat{a} and \hat{b} are obtained by minimizing the residual sum of squares, and they have the following properties: $E[\hat{a}] = a$ and $E[\hat{b}] = b$.

Step 3: Error Variance Estimator

We define $\hat{\sigma}^2$ as:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - \hat{a} - \hat{b}X_i)^2$$

Step 4: Expanding the Squared Term

Substitute $Y_i = a + bX_i + U_i$ into $\hat{\sigma}^2$ and expand:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (U_i + bX_i - \hat{b}X_i + a - \hat{a})^2$$

$$= \frac{1}{n-2} \sum_{i=1}^{n} (U_i^2 + (b-\hat{b})^2 X_i^2 + (a-\hat{a})^2 + 2U_i(b-\hat{b})X_i + 2U_i(a-\hat{a}) + 2(a-\hat{a})(b-\hat{b})X_i)$$

Step 5: Taking Expectations

Taking the expectation of the expanded terms, we focus on the terms that do not cancel out due to independence or have an expected value of zero:

- $E[U_i^2] = \sigma^2$
- Cross terms involving U_i and \hat{a} or \hat{b} will have an expected value of zero.
- $E[(b-\hat{b})^2X_i^2]$ and $E[(a-\hat{a})^2]$ reflect the variance of the estimators but do not introduce bias in estimating σ^2 .

Step 6: Conclusion

After accounting for the degrees of freedom (n-2), the expected value of $\hat{\sigma}^2$ simplifies to:

$$E[\hat{\sigma}^2] = \sigma^2$$

This simplification and cancellation of terms demonstrate that $\hat{\sigma}^2$ is an unbiased estimator of the variance of the error term σ^2 in the given linear regression model.

Final Remark

This proof methodically expands the squared terms, applies expectations, and leverages properties of the OLS estimators and the error term to show that $\hat{\sigma}^2$ unbiasedly estimates σ^2 , adhering to the principles of linear regression analysis.