# Lattice Based Codes for Insertion and Deletion Channels

Lin Sok<sup>1</sup>, Patrick Solé<sup>1,2</sup>, Aslan Tchamkerten<sup>1</sup>

<sup>1</sup>Telecom ParisTech, CNRS LTCI, 46 rue Barrault 75 634 Paris, France.

<sup>2</sup> King Abdulaziz University, Department of Mathematics, Jeddah, Saudi Arabia.

{lin.sok;patrick.sole;aslan.tchamkerten}@telecom-paristech.fr

Abstract—Insertion/Deletion codes for the Levenshtein distance are constructed by truncation of lattices for the  $L^1$  metric. These lattices are obtained from Construction A applied to binary codes and  $\mathbb{Z}_4$ —codes. Finally, Gilbert and Hamming type of bounds are derived.

**Keywords:** Insertion/ Deletion codes, lattice, Lee metric, Construction A, weight enumerator,  $\nu$ -series

#### I. Introduction

Coding for the insertion/deletion channel remains a major challenge for coding theorists. Part of the reason for this is that the use of standard block algebraic coding techniques (parity-checks, cosets, syndromes) is precluded due to the specificity of the channel which produces output vectors of variable lengths. A variation of this channel is the so-called segmented insertion/deletion channel where at most a fixed number of r-1 errors can occur within segments of given size [12], [11]. By looking at the input-output runlengths of symbols, the channel becomes a standard memoryless channel for which algebraic coding techniques can be used. Specifically, we construct lattice-based codes, which, in principle, can be decoded when obtained via Construction A from Lee metric codes with known decoding algorithms [6].

The proposed code constructions are analoguous to the so-called (d,k)—codes in magnetic recording where each codeword contains runs of zeros of length at least d and at most k while each run of one has unit length [7], [10]. Given d,k and assuming a constant number of runs of zeros, label the runs by integers modulo m and consider block codes over the ring of integers modulo m—the smallest possible m depends on d and k.

Our approach differs from the one in [7], [10] in two ways. First, we relax the unit length runlength of the ones. Second, we consider lattices rather than codes over the integers modulo m to allow a wider choice of parameters. Indeed our codes are obtained as sets of vectors in a lattice with certain metric properties. A code determines a lattice by Construction A but not conversely. We extend some results of [1], [15] on generalized theta series, called there  $\nu$ -series, to enumerate effectively these special sets of vectors in the lattice. In particular, if the lattice is obtained via Construction A from a

This work was supported in part by an Excellence Chair Grant from the French National Research Agency (ACE project).

code, the generalized  $\nu$ -series allows to enumerate these sets from the weight enumerators of the code.

The paper is organized as follows. In Section 2, we formulate the problem. In Section 3, we state the main results on  $\nu$ -series for Construction A lattices and provide some numerical results. In Section 4, we derive the analogue of the Gilbert and Hamming code size bounds for the  $L^1$  metric space. In Section 5, we provide asymptotic bounds. In Section 6, we provide a few concluding remarks.

## II. BACKGROUND AND STATEMENT OF THE PROBLEM

Consider a binary sequence of length N, that starts with a zero and ends with a one, and that contains n' runs of zeros and n' runs of ones. (Similar considerations occur for different choices of starting/ending symbol).

**Example:** The sequence 0011100011 contains n' = 2 runs of each symbol for a length of N = 10.

**Caveat:** In the whole paper, we assume that n' is the same for all the vectors in any given code so that we can work in constant length.

There is a natural correspondence between such a sequence and a sequence defined over the natural integers. Let  $x_i$  and  $y_i$  denote the ith run length of zeros and ones, respectively. Then we can form a sequence of length n=2n' over the integers defined by

$$(x_1, y_1, \ldots, x_i, y_i, \ldots, x_{n'}, y_{n'}).$$

**Example:** The binary sequence 0011100011 corresponds to (2, 3, 3, 2).

This approach is a natural generalization of [10] which considers the case where the  $y_i$ 's are all equal to one.

Note that the integer sequence so constructed satisfies the constraint

$$N = \sum_{i=1}^{n'} (x_i + y_i).$$

Denote by  $\phi$  the above correspondence from  $\mathbb{F}_2^N$  to  $\mathbb{Z}^n$ . The **Levenshtein distance** between two binary vectors is the least number of insertions/deletions to go from one to the other. Alternatively it is the complement to the length of the largest common subsequence. The  $L^1$  **distance** between two vectors  $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^n$  is given by the expression

$$|\mathbf{x} - \mathbf{y}| = \sum_{i=1}^{n} |x_i - y_i|.$$

The following observation is trivial but crucial.

Proposition 2.1: The map  $\phi$  is an isometry between the Levenshtein distance and the  $L^1$  distance.

Proof: Let

$$\mathbf{z} = (x_1, y_1, \cdots, x_n, y_n)$$

denote the sequence of runs. Any insertion /deletion of j zeros (resp. ones) into run number i will result into a change of  $x_i$  (resp.  $y_i$ ) into  $x_i \pm j$  (resp.  $y_i \pm j$ ) yielding a sequence  $\mathbf{z}'$  at  $L^1$  distance j away from  $\mathbf{z}$ .

The problem we consider is to characterize A(n,d,N,r), the largest number of length n vectors of nonnegative integers at  $L^1$  distance at least d apart and with coordinates summing up to N. Vectors are restricted to have runs of length at least r so that deletions of at most r-1 bits do not destroy the runs' pattern at the receiving end.

Any set of length n vectors with integral entries  $\geq r$ , at  $L^1$  distance at least d apart, and coordinates summing up to N, we refer to as an (n, d, N, r)—set.

# III. ENUMERATION FOR CONSTRUCTION A LATTICES

By a **code** C of  $\mathbb{Z}_m^n$ , we shall mean a  $\mathbb{Z}_m$ — submodule of  $\mathbb{Z}_m^n$ . Define the **complete weight enumerator** (cwe) of C as

$$cwe_C(x_1, x_2, \dots, x_m) = \sum_{c \in C} \prod_{i=0}^{m-1} x_i^{n_i(C)},$$

where  $n_i(c)$  is the number of entries equal to i in the vector c. For m=2, we let  $W_C(x,y)=cwe_C(x,y)$ , the **weight enumerator**. By a **lattice** of  $\mathbb{R}^n$ , we shall mean a discrete additive subgroup of  $\mathbb{R}^n$ . A lattice L is said to be obtained by **Construction A** from a code C of  $\mathbb{Z}_m^n$  if it is the inverse image of C in  $\mathbb{Z}^n$  by reduction modulo m componentwise. This will be denoted by L=A(C). An important parameter of a lattice is its minimum distance (norm) which is given by the following proposition. Recall that the **Lee weight** of a symbol  $x \in \mathbb{Z}_m = \{0,1,\cdots,m-1\}$ , is  $\min(x,m-x)$ . The weight is extended componentwise to vectors and the Lee distance of two vectors is the Lee weight of their difference. The **Lee distance** of a linear code  $C \leq \mathbb{Z}_m^n$  is then the minimum nonzero weight of one its element.

Proposition 3.1 ([14]): Let L be a lattice constructed from a code C with reduction modulo m. Then its minimum distance

$$d = \min(d', m),$$

where d' is the minimum Lee distance of C.

Denote by  $\nu_L(r;q)$  the shifted  $\nu$ - series of the lattice L

$$\nu_L(r;q) = \sum \{q^{|\mathbf{x}|} : \mathbf{x} \in L, \& \min_i x_i \ge r\}.$$

This definition extends trivially to any discrete subset L of  $\mathbb{R}^n$ . The motivation for this generating function, a slight generalization of the  $\nu$ -series of [1], [13], is as follows.

**Caveat:** If the q-series  $f = \sum_i f_i q^i$ , we denote by  $[q^i] f(q)$  the coefficient  $f_i$ .

Proposition 3.2: Keep the above notation. If L is a lattice of  $\mathbb{R}^n$ , of minimum  $L^1$  distance d then the set of vectors of L with coordinate entries bounded below by r and  $L^1$  norm N form a (n, d, N, r)-set of size  $[q^N]\nu_L(r;q) \leq A(n, d, N, r)$ .

Theorem 3.3: If L = A(C) and m = 2, then

$$\nu_L(r;q) = W_C(\frac{q^a}{1-q^2}, \frac{q^b}{1-q^2}),$$

where a (resp. b) is the first even (resp. odd) integer  $\geq r$ . If L=A(C) and m=4, then

$$\nu_L(r;q) = cwe_C(\frac{q^a}{1-q^4}, \frac{q^b}{1-q^4}, \frac{q^c}{1-q^4}, \frac{q^d}{1-q^4}),$$

where a, b, c, d are the first integers  $\geq r$ , congruent to 0, 1, 2, 3 modulo 4 respectively.

*Proof:* By the same argument as in [1], [15], writing A(C) as a disjoint union of cosets of  $m\mathbb{Z}^n$ , we have

$$\nu_L(r;q) = W_C(\nu_{2\mathbb{Z}}(r;q), \nu_{2\mathbb{Z}+1}(r;q))$$

for m=2, and

$$\nu_L(r;q) = cwe_C(\nu_{4\mathbb{Z}}(r;q),\nu_{4\mathbb{Z}+1}(r;q),\nu_{4\mathbb{Z}+2}(r;q),\nu_{4\mathbb{Z}+3}(r;q))$$

respectively, for m=4. The result follows by summing appropriate geometric series.

In Table I and Table II we list, for some values of N and r, the size  $[q^N]\nu_L(r;q)$  of (n,d,N,r)—set of the well-known lattices  $D_4$ ,  $E_8$ ,  $BW_{16}$  and  $\Lambda_{24}$  which are constructed from the extended Hamming code  $H_8$ , the Klemm code  $K_8$ , the code RM(1,4)+2RM(2,4) and the lifted Golay code  $\mathcal{Q}R_{24}$  respectively, where  $K_8=R_8+2P_8$  with  $R_8$  being length—8 repetition code and  $P_8=R_8^\perp$  its dual and RM(k,m) is the Reed-Muller code of order k.

Some cwe's for these codes can be found in [2], [3]; others were computed using Magma [4]. The cwe of  $K_n$  is easily seen to be

$$\frac{1}{2}[(x_0+x_2)^n+(x_0-x_2)^n+(x_1+x_3)^n+(x_1-x_3)^n].$$

Recall that Proposition 3.1 can only give a lower bound on the minimum distance of a (n,d,N,r)-set. To select good codes among the above mentioned lattices, we need exact minimum distances of the (n,d,N,r)-sets which characterize the capacity of error correction. These numerical results show, for instance, that for r=2 and N=64, among the three lattices  $E_8$ ,  $BW_{16}$  and  $\Lambda_{24}$ ,  $BW_{16}$  contains the largest code while  $\Lambda_{24}$  contains the largest one for r=1 and N=64.

IV. BOUNDS ON 
$$A(n, d, N, r)$$

We will use the enumerative results of the previous section. First we recall a well-known identity of formal power series.

Size  $[q^N] \nu_L(r;q)$  of (n,d,N,r)- set with  $L=D_4,E_8,d\geq 2,4$  respectively and r=1,2

|   | N                                                                    | $[q^N]\nu_{D_4}(1;q)$                                                                          | N                                                                    | $[q^N]\nu_{E_8}(1;q)$                                                                                      |
|---|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|   | 8                                                                    | 1                                                                                              | 8                                                                    | 1                                                                                                          |
|   | 10                                                                   | 8                                                                                              | 12                                                                   | 36                                                                                                         |
|   | 12                                                                   | 50                                                                                             | 16                                                                   | 331                                                                                                        |
|   | 14                                                                   | 232                                                                                            | 20                                                                   | 1752                                                                                                       |
|   | 16                                                                   | 835                                                                                            | 24                                                                   | 6765                                                                                                       |
|   | 18                                                                   | 2480                                                                                           | 28                                                                   | 21164                                                                                                      |
|   | 20                                                                   | 6372                                                                                           | 32                                                                   | 56823                                                                                                      |
|   | 22                                                                   | 14640                                                                                          | 36                                                                   | 135728                                                                                                     |
|   | 24                                                                   | 30789                                                                                          | 40                                                                   | 295545                                                                                                     |
|   | 26                                                                   | 60280                                                                                          | 44                                                                   | 596980                                                                                                     |
|   | 28                                                                   | 111254                                                                                         | 48                                                                   | 1133187                                                                                                    |
|   | 30                                                                   | 195416                                                                                         | 52                                                                   | 2041480                                                                                                    |
|   | 32                                                                   | 329095                                                                                         | 56                                                                   | 3517605                                                                                                    |
|   | 34                                                                   | 534496                                                                                         | 60                                                                   | 5832828                                                                                                    |
|   | 36                                                                   | 841160                                                                                         | 64                                                                   | 9354095                                                                                                    |
| ĺ | N                                                                    | $[q^N]\nu_{D_4}(2;q)$                                                                          | N                                                                    | $[q^N]\nu_{E_8}(2;q)$                                                                                      |
|   |                                                                      |                                                                                                | 16                                                                   | 1                                                                                                          |
|   | 16                                                                   | 1                                                                                              | 10                                                                   | 1                                                                                                          |
|   | 16<br>18                                                             | 8                                                                                              | 20                                                                   | 36                                                                                                         |
|   |                                                                      |                                                                                                |                                                                      | 36<br>331                                                                                                  |
|   | 18<br>20<br>22                                                       | 8<br>50<br>232                                                                                 | 20<br>24<br>28                                                       | 36<br>331<br>1752                                                                                          |
|   | 18<br>20<br>22<br>24                                                 | 8<br>50<br>232<br>835                                                                          | 20<br>24<br>28<br>32                                                 | 36<br>331<br>1752<br>6765                                                                                  |
|   | 18<br>20<br>22                                                       | 8<br>50<br>232                                                                                 | 20<br>24<br>28<br>32<br>36                                           | 36<br>331<br>1752                                                                                          |
|   | 18<br>20<br>22<br>24<br>26<br>28                                     | 8<br>50<br>232<br>835<br>2480<br>6372                                                          | 20<br>24<br>28<br>32<br>36<br>40                                     | 36<br>331<br>1752<br>6765<br>21164<br>56823                                                                |
|   | 18<br>20<br>22<br>24<br>26<br>28<br>30                               | 8<br>50<br>232<br>835<br>2480<br>6372<br>14640                                                 | 20<br>24<br>28<br>32<br>36<br>40<br>44                               | 36<br>331<br>1752<br>6765<br>21164<br>56823<br>135728                                                      |
|   | 18<br>20<br>22<br>24<br>26<br>28<br>30<br>32                         | 8<br>50<br>232<br>835<br>2480<br>6372<br>14640<br>30789                                        | 20<br>24<br>28<br>32<br>36<br>40<br>44<br>48                         | 36<br>331<br>1752<br>6765<br>21164<br>56823<br>135728<br>295545                                            |
|   | 18<br>20<br>22<br>24<br>26<br>28<br>30                               | 8<br>50<br>232<br>835<br>2480<br>6372<br>14640                                                 | 20<br>24<br>28<br>32<br>36<br>40<br>44                               | 36<br>331<br>1752<br>6765<br>21164<br>56823<br>135728                                                      |
|   | 18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36             | 8<br>50<br>232<br>835<br>2480<br>6372<br>14640<br>30789                                        | 20<br>24<br>28<br>32<br>36<br>40<br>44<br>48<br>52<br>56             | 36<br>331<br>1752<br>6765<br>21164<br>56823<br>135728<br>295545                                            |
|   | 18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38       | 8<br>50<br>232<br>835<br>2480<br>6372<br>14640<br>30789<br>60280<br>111254<br>195416           | 20<br>24<br>28<br>32<br>36<br>40<br>44<br>48<br>52<br>56<br>60       | 36<br>331<br>1752<br>6765<br>21164<br>56823<br>135728<br>295545<br>596980<br>1133187<br>2041480            |
|   | 18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38<br>40 | 8<br>50<br>232<br>835<br>2480<br>6372<br>14640<br>30789<br>60280<br>111254<br>195416<br>329095 | 20<br>24<br>28<br>32<br>36<br>40<br>44<br>48<br>52<br>56<br>60<br>64 | 36<br>331<br>1752<br>6765<br>21164<br>56823<br>135728<br>295545<br>596980<br>1133187<br>2041480<br>3517605 |
|   | 18<br>20<br>22<br>24<br>26<br>28<br>30<br>32<br>34<br>36<br>38       | 8<br>50<br>232<br>835<br>2480<br>6372<br>14640<br>30789<br>60280<br>111254<br>195416           | 20<br>24<br>28<br>32<br>36<br>40<br>44<br>48<br>52<br>56<br>60       | 36<br>331<br>1752<br>6765<br>21164<br>56823<br>135728<br>295545<br>596980<br>1133187<br>2041480            |

TABLE II SIZE  $[q^N] \nu_L(r;q)$  of (n,d,N,r)- set with  $L=BW_{16},\Lambda_{24},d\geq 4$  and r=1,2

| N              | $[q^N]\nu_{BW_{16}}(1;q)$ | N              | $[q^N] u_{\Lambda_{24}}(1;q)$  |
|----------------|---------------------------|----------------|--------------------------------|
| 16             | 1                         | 24             | Ĩ                              |
| 20             | 16                        | 28             | 24                             |
| 24             | 306                       | 32             | 300                            |
| 28             | 3984                      | 36             | 2600                           |
| 32             | 39235                     | 40             | 23415                          |
| 36             | 310176                    | 44             | 299760                         |
| 40             | 2016996                   | 48             | 4144211                        |
| 44             | 11005344                  | 52             | 48058824                       |
| 48             | 51463749                  | 56             | 448956690                      |
| 52             | 210557360                 | 60             | 3450990152                     |
| 56             | 767796630                 | 64             | 22448210613                    |
| 60             | 2535136560                | 68             | 126639274800                   |
| 64             | 7680579975                | 72             | 632120648146                   |
| 68             | 21588192576               | 76             | 2837407970784                  |
| 72             | 56814408136               | 80             | 11605964888130                 |
| $\overline{N}$ | $[q^N]\nu_{BW_{16}}(2;q)$ | $\overline{N}$ | $[q^N]\nu_{\Lambda_{24}}(2;q)$ |
| 32             | 1                         | 48             | 1                              |
| 36             | 16                        | 52             | 24                             |
| 40             | 306                       | 56             | 300                            |
| 44             | 3984                      | 60             | 2600                           |
| 48             | 39235                     | 64             | 23415                          |
| 52             | 310176                    | 68             | 299760                         |
| 56             | 2016996                   | 72             | 4144211                        |
| 60             | 11005344                  | 76             | 48058824                       |
| 64             | 51463749                  | 80             | 448956690                      |
| 68             | 210557360                 | 84             | 3450990152                     |
| 72             | 767796630                 | 88             | 22448210613                    |
| 76             | 2535136560                | 92             | 126639274800                   |
| 80             | 7680579975                | 96             | 632120648146                   |
| 84             | 21588192576               | 100            | 2837407970784                  |
| 88             | 56814408136               | 104            | 11605964888130                 |

Lemma 4.1: For any integer  $n \ge 1$ , we have

$$\frac{1}{(1-q)^n} = \sum_{i=0}^{\infty} \binom{i+n-1}{n-1} q^i.$$

Proof: Differentiate the geometric series

$$\frac{1}{(1-q)} = \sum_{i=0}^{\infty} q^i$$

with respect to q and use induction on n.

Using generating functions, we compute the volume V(n,e) of the  $L^1$  ball of radius e in  $\mathbb{Z}^n$ .

Lemma 4.2: For any integers  $n \ge e \ge 1$ , we have

$$V(n,e) = [q^e] \frac{(1+q)^n}{(1-q)^{n+1}} = \sum_{i=0}^{\min(n,e)} 2^i \binom{n}{i} \binom{e}{i}.$$

Proof:

$$\begin{array}{l} V(n,e) = \sum_{i=0}^{e} [q^i] \nu_{\mathbb{Z}^n}(-\infty,q) = \sum_{i=0}^{e} [q^i] (\frac{1+q}{1-q})^n \\ = [q^e] \frac{(1+q)^n}{(1-q)^{n+1}}. \end{array}$$

The second expression is from [9]. It can be derived from the above generating series by expanding

$$(1 + \frac{2q}{1-q})^{n+1} = \sum_{i=0}^{n} \binom{n}{i} 2^{i} \frac{q^{i}}{(1-q)^{i+1}}$$

by Lemma 4.1.

By the same techniques, we can compute the volume of the ambient space A(n, 1, N, r).

Lemma 4.3: For any integer N>nr and  $r>e\geq 1$ , we have

$$A(n, 1, N, r) = \binom{N - nr + n - 1}{n - 1}.$$

Proof:

$$A(n,1,N,r) = [q^N]\nu_{\mathbb{Z}^n}(r,q) = [q^N](q^r \frac{1}{1-q})^n$$
  
=  $[q^{N-nr}] \frac{1}{(1-q)^n}$ .

The result follows from Lemma 4.1.

We are now in a position to formulate the analogues of the Gilbert and Hamming bound in the present context.

Theorem 4.4: For any integers  $N>nr, n\geq d$ , and  $r>e=\lfloor (d-1)/2\rfloor \geq 1$ , we have

$$\frac{\binom{N-nr+n-1}{n-1}}{V(n,d-1)} \leq A(n,d,N,r) \leq \frac{\binom{N-nr+n-1}{n-1}}{V(n,e)}.$$

*Proof:* Combine Lemma 4.2 and Lemma 4.3 with the standard arguments.

The lower and upper bound of A(n,d,N,r) in Theorem 4.4 for lattices  $E_8$  and  $BW_{16}$  are given in Table III and Table IV, where we use I(n,d,N,r) and S(n,e,N,r) to

denote  $\lceil \frac{\binom{N-nr+n-1}{n-1}}{V(n,d-1)} \rceil$  and  $\lfloor \frac{\binom{N-nr+n-1}{n-1}}{V(n,e)} \rfloor$ , respectively. The numerical results show that  $\lceil q^N \rceil \nu_L(r;q)$  (a lower bound to A(n,d,N,r) by Proposition 3.2), lies between I(n,d,N,r) and S(n,e,N,r) for many parameter values. Exceptions are, for instance, for  $BW_{16}$  with r=2, and  $N=48,\ldots,96$ . Whether these code constructions yield sizes between I(n,d,N,r) and S(n,e,N,r) for large N is an open issue.

Since all codewords have constant  $L^1$  distance, it is natural to use the Johnson bound in the Lee metric.

Theorem 4.5: If d > N(1 - 1/2n), then we have

$$A(n,d,N,r) \le \frac{d}{d - N(1 - 1/2n)}.$$

*Proof:* Reduce all vectors modulo Q=2N. Use Lemma 13.62 of [5] with  $\overline{D}=Q/4=N/2$ , and x=1/n.

TABLE III BOUNDS ON A(n,d,N,r) with  $L=E_8$  and r=2,3,4

| N        | I(8, 4, N, 2)      | $[q^N]\nu_{E_8}(2;q)$ | S(8, 1, N, 2)        |
|----------|--------------------|-----------------------|----------------------|
| 24       | 8                  | 331                   | 378                  |
| 28       | 61                 | 1752                  | 2964                 |
| 32       | 295                | 6765                  | 14421                |
| 36       | 1067               | 21164                 | 52237                |
| 40       | 3157               | 56823                 | 154680               |
| 44       | 8073               | 135728                | 395560               |
| 48       | 18465              | 295545                | 904761               |
| 52       | 38685              | 596980                | 1895536              |
| 56       | 75500              | 1133187               | 3699499              |
| 60       | 138986             | 2041480               | 6810300              |
| 64       | 243611             | 3517605               | 11936925             |
| 68       | 409544             | 5832828               | 20067614             |
| 72       | 664191             | 9354095               | 32545333             |
| 76       | 1043996            | 14567520              | 51155776             |
| 80       | 1596508            | 22105457              | 78228865             |
| N        | I(8, 4, N, 3)      | $[q^N]\nu_{E_8}(3;q)$ | S(8, 1, N, 3)        |
| 32       | 8                  | 331                   | 378                  |
| 36       | 61                 | 1752                  | 2964                 |
| 40       | 295                | 6765                  | 14421                |
| 44       | 1067               | 21164                 | 52237                |
| 48       | 3157               | 56823                 | 154680               |
| 52       | 8073               | 135728                | 395560               |
| 56       | 18465              | 295545                | 904761               |
| 60       | 38685              | 596980                | 1895536              |
| 64       | 75500              | 1133187               | 3699499              |
| 68       | 138986             | 2041480               | 6810300              |
| 72       | 243611             | 3517605               | 11936925             |
| 76       | 409544             | 5832828               | 20067614             |
| 80       | 664191             | 9354095               | 32545333             |
| 84       | 1043996            | 14567520              | 51155776             |
| 88       | 1596508            | 22105457              | 78228865             |
| N        | I(8, 4, N, 4)      | $[q^N]\nu_{E_8}(4;q)$ | S(8, 1, N, 4)        |
| 40       | 8                  | 331                   | 378                  |
| 44       | 61                 | 1752                  | 2964                 |
| 48       | 295                | 6765                  | 14421                |
| 52       | 1067               | 21164                 | 52237                |
| 56       | 3157               | 56823                 | 154680               |
| 60       | 8073               | 135728                | 395560               |
| 64       | 18465              | 295545                | 904761               |
| 68       | 38685              | 596980                | 1895536              |
| 72       | 75500              | 1133187               | 3699499              |
| 76       | 138986             | 2041480               | 6810300              |
| 80<br>84 | 243611             | 3517605               | 11936925             |
|          | 409544             | 5832828               | 20067614             |
| 88       | 664191             | 9354095               | 32545333             |
| 92       | 1043996<br>1596508 | 14567520<br>22105457  | 51155776<br>78228865 |
| 90       | 1390308            | 22103437              | 10220003             |

TABLE IV Bounds on A(n,d,N,r) with  $L=BW_{16}$  and r=2,3,4

| N   | I(16, 4, N, 2) | $[q^N]\nu_{BW_{16}}(2;q)$ | S(16, 1, N, 2)  |
|-----|----------------|---------------------------|-----------------|
| 36  | 1              | 16                        | 117             |
| 40  | 82             | 306                       | 14858           |
| 44  | 2890           | 3984                      | 526783          |
| 48  | 49949          | 39235                     | 9107278         |
| 52  | 539795         | 310176                    | 98422520        |
| 56  | 4178302        | 2016996                   | 761843656       |
| 60  | 25184088       | 11005344                  | 4591898687      |
| 64  | 124915457      | 51463749                  | 22776251653     |
| 68  | 529944363      | 210557360                 | 96626522164     |
| 72  | 1977679995     | 767796630                 | 360596985630    |
| 76  | 6630474804     | 2535136560                | 1208956572561   |
| 80  | 20297778673    | 7680579975                | 3700961644542   |
| 84  | 57467324395    | 21588192576               | 10478208814512  |
| 88  | 152025004051   | 56814408136               | 27719225738485  |
| 92  | 378928483749   | 141077361984              | 69091293536850  |
| 96  | 896068510238   | 332674600329              | 163383158366718 |
| N   | I(16, 4, N, 3) | $[q^N]\nu_{BW_{16}}(3;q)$ | S(16, 1, N, 3)  |
| 52  | 1              | 16                        | 117             |
| 56  | 82             | 306                       | 14858           |
| 60  | 2890           | 3984                      | 526783          |
| 64  | 49949          | 39235                     | 9107278         |
| 68  | 539795         | 310176                    | 98422520        |
| 72  | 4178302        | 2016996                   | 761843656       |
| 76  | 25184088       | 11005344                  | 4591898687      |
| 80  | 124915457      | 51463749                  | 22776251653     |
| 84  | 529944363      | 210557360                 | 96626522164     |
| 88  | 1977679995     | 767796630                 | 360596985630    |
| 92  | 6630474804     | 2535136560                | 1208956572561   |
| 96  | 20297778673    | 7680579975                | 3700961644542   |
| 100 | 57467324395    | 21588192576               | 10478208814512  |
| 104 | 152025004051   | 56814408136               | 27719225738485  |
| 108 | 378928483749   | 141077361984              | 69091293536850  |
| 112 | 896068510238   | 332674600329              | 163383158366718 |
| N   | I(16, 4, N, 4) | $[q^N]\nu_{BW_{16}}(4;q)$ | S(16, 1, N, 4)  |
| 68  | 1              | 16                        | 117             |
| 72  | 82             | 306                       | 14858           |
| 76  | 2890           | 3984                      | 526783          |
| 80  | 49949          | 39235                     | 9107278         |
| 84  | 539795         | 310176                    | 98422520        |
| 88  | 4178302        | 2016996                   | 761843656       |
| 92  | 25184088       | 11005344                  | 4591898687      |
| 96  | 124915457      | 51463749                  | 22776251653     |
| 100 | 529944363      | 210557360                 | 96626522164     |
| 104 | 1977679995     | 767796630                 | 360596985630    |
| 104 | 6630474804     | 2535136560                | 1208956572561   |
| 112 | 20297778673    | 7680579975                | 3700961644542   |
| 116 | 57467324395    | 21588192576               | 10478208814512  |
| 120 | 152025004051   | 56814408136               | 27719225738485  |
| 120 | 378928483749   | 141077361984              | 69091293536850  |
| 124 | 896068510238   | 332674600329              | 163383158366718 |
| 120 | 090000310238   | 332074000329              | 103363136300/18 |

## V. Asymptotic bounds on A(n, d, N, r)

We assume that r is fixed, that  $N \to \infty$ , and that  $n \sim \eta N/r$ ,  $d \sim \delta N$  for some constants  $\eta, \delta$  with  $\eta \in (0,1)$ , and  $\delta \geq 0$ . Because each codeword has weight N, the triangle inequality in the  $L^1$  metric shows that  $\delta \in (0,2)$ . Denote by R the asymptotic exponent of A(n,d,N,r), that is

$$R = \limsup \frac{1}{N} \log A(n, d, N, r).$$

The asymptotic form of Theorem 4.5 shows that  $\delta \in (0,1)$  whenever  $R \neq 0$ .

Let

$$L(x) = x \log_2 x + \log_2(x + \sqrt{x^2 + 1}) - x \log_2(\sqrt{x^2 + 1} - 1).$$

It was proved in [8] that when  $x \to \infty$  and  $e \sim \epsilon n$ , then

$$\lim \frac{1}{n} \log_2 V(n, e) = L(\epsilon).$$

For convenience, let  $H(q) = -q \log q - (1-q) \log(1-q)$  denote the binary entropy function and let

$$f(x, y, z) = [1 - y + y/x]H(\frac{y}{y + x(1 - y)}) - (y/x)L(\frac{xz}{y}).$$

We now state and prove the asymptotic version of Theorem 4.4.

Theorem 5.1: With the above notation, we have

$$f(r, \eta, \delta) \le R \le f(r, \eta, \delta/2).$$

*Proof:* The result follows from Theorem 4.4 by standard entropic estimates for binomial coefficients for the numerator and the result on large alphabet Lee balls from [8] for the denominators.

In Fig. 1 and 2, the graphs of the asymptotic lower bound curve  $f(r, \eta, \delta)$  with different parameters  $\eta$  and r=2 show that the rate R is high when  $\eta$  is around 0.5.



Fig. 1. Graphs of  $f(r, \eta, \delta)$  for r = 2 and  $\eta = 0.2, 0.4, 0.5, 0.6, 0.8$ 



Fig. 2. Graphs of  $f(r, \eta, \delta)$  for r = 2 and  $\eta = 0.1, 0.3, 0.5, 0.7, 0.9$ 

#### VI. CONCLUSION

In this work, we have approached a problem of binary coding for the Levenshtein distance by using lattices for the  $L^1$  metric. These lattices are obtained by Construction A applied to binary and quaternary codes. Finding the densest lattice for the  $L^1$ -metric in a given dimension is still an open problem. Therefore it is worth varying codes, alphabets and use other constructions to improve the constructions of (n,d,N,r)-sets.

## REFERENCES

- M. Barlaud, M. Antonini, P. Solé, P. Mathieu, T. Gaidon "A pyramidal scheme for lattice vector quantization of wavelet transform coefficients applied to image coding" IEEE Trans. on Image Processing. 3 (1994) 367-381.
- [2] A. Bonnecaze, P. Solé, C. Bachoc, B. Mourrain "Type II Codes over Z<sub>4</sub>", IEEE Trans. on Information Theory, IT-43 (1997) 969-976.
- [3] A. Bonnecaze, P. Solé, R. Calderbank, "Quaternary Quadratic Residue Codes and Unimodular Lattices" IEEE Trans. on Information Theory IT-41 (1995) 366-377.
- [4] W. Bosma and J. Cannon, Handbook of Magma Functions, Sydney, 1995
- [5] E. Berlekamp, Algebraic Coding Theory, Aegean Park Press (1984).
- [6] Antonio Campello, Grasiele C. Jorge, Sueli I. R. Costa, Decoding q-ary lattices in the Lee metric.http://arxiv.org/abs/1105.5557
- [7] AJ. Han Vinck, H. Morita, Codes over the ring of integers modulo m, IEICE Fundamentals, (1998) 2013–2018. http://www.exp-math.uni-essen.de/vinck/ reference-papers/ vinck-morita-integer.pdf
- [8] D. Gardy, P. Solé, "Saddle Point Techniques in Asymptotic Coding Theory." Congrès Franco-Soviétique de codage algébrique, Paris (1991), Springer Lecture Notes in Computer Science 573 (1991) 75–81. ftp://ftp.cs.brown.edu/pub/.../91/cs91-29.pdf
- [9] S.W. Golomb, L.R. Welch, Perfect codes in the Lee metric and the packing of polyominoes, SIAM J. on Applied Math, Vol. 18, No 2, (1970) 302–317.
- [10] Vladimir I. Levenshtein, A. J. Han Vinck: Perfect (d, k)—codes capable of correcting single peak-shifts. IEEE Transactions on Information Theory 39(2): 656-662 (1993)
- [11] H. Mirghasemi, A. Tchamkerten: On the capacity of the one-bit deletion and duplication channel, Allerton (2012).
- [12] Z. Liu, M. Mitzenmacher, Codes for deletion and insertion channels with segmented errors, ISIT (2007) 846–850.
- [13] N. J. A. Sloane, On Single-Deletion-Correcting Codes, Codes and Designs, Ohio State University, May 2000 (Ray-Chaudhuri Festschrift), K. T. Arasu and A. Seress (editors), Walter de Gruyter, Berlin, 2002, pp. 273-291. http://neilsloane.com/doc/dijen.pdf
- [14] Rush J. A. and Sloane N. J. A. An improvement to the Minkowski-Hlawka bound for packing superball, Mathematika, vol. 34 (1987), pp. 8-18
- [15] P. Solé, Counting lattice points in pyramids. Discrete Mathematics, Volume 139, Number 1, 24 May 1995, pp. 381-392