

Phase diagrams

41680 Introduction to advanced materials

T/°C Allotropy of elements: tin • 50 electrons, electron configuration [Kr] 4d¹⁰ 5s² 5p² • 4 valence electrons = 4 atomic bonds L • 3 different (allotrope) structures • γ Sn: rhombic • β Sn (white Sn): metallic, tetragonal 232 • α Sn (grey Sn): nonmetallic, diamond structure 161 β 13 α White (β) tin

DTU Construct, Technical University of Denmark

Alloys - three principle types

- Solid solutionsforeign atoms in crystal lattice
- Atoms unordered in same lattice

 Mixture of different metallic phases

 Distinct phases with different composition and possibly different lattices

Intermetallic compounds

 Atoms ordered in possibly different lattice

Which version exists is seen in phase diagrams!

Phases and solubility

Example: sugar - water system Binary system (two components)

Phases and solubility

Phase

- Definition: Homogeneous part of a system,
 i.e. equal (unique) chemical and physical properties
- Characteristic parts of a heterogeneous system

Examples

- Gas, Liquid, Solid -> Ice water (as two phase system)
- Single phase materials
- Several solid phases
 (allotropy, polymorphism)
 α- and β-tin,
 α-Fe (bcc) and γ-Fe (fcc)

Solubility limit

 Maximum concentration of A (e.g. sugar) in B (e.g. water)

Material properties depend on:

- Number of phases
- Chemical composition and crystal structure of each phase
- Phase fraction (mass or volume fraction)
- Size and spatial arrangement of phases

Example Pb-Sn

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Phase diagrams

Graphical representation of phases as function of temperature and chemical composition

Equilibrium phase diagrams

- ⊕ represent state of lowest energy (Gibbs energy G)
- © show phases in equilibrium
- $\ensuremath{\mathfrak{S}}$ do not show how much time is required for attaining equilibrium

Metastable state (non-equilibrium) sometimes equilibrium never obtained (for assessable time)

Isomorphous binary phase diagram

Complete solubility in solid an liquid state

Isomorphous binary phase diagram

Example Cu-Ni

2 phases

- liquid (L)
- solid phase (α)

3 regions

- Ľ
- L + α
- α

liquidus line solidus line

 $T_{\rm m}(Ni)$

100

1453°C

Isomorphous binary phase diagram

Example Cu-Ni

• For given temperature and composition, number and existing phases are revealed

Composition (wt% Ni)

• A
$$T = 1100$$
 °C $c_0 = 60$ wt.% Ni $\Rightarrow \alpha$

• B
$$T = 1250 \text{ °C}$$

 $c_0 = 35 \text{ wt. % Ni}$
 $\Rightarrow \alpha + \text{L}$

DTU Construct, Technical University of Denmark

100

(Ni)

Isomorphous binary phase diagram

 $T_{\rm m}(Cu)$

1000

(Cu)

Composition c of phases

Cu-Ni system

$$c_0 = 35 \text{ wt.} \% \text{ Ni}$$

C: at
$$T = 1300^{\circ}$$
C

$$\rightarrow$$
 L (liquid)

$$\Rightarrow c_0 = c_L = 35 \text{ wt.}\% \text{ Ni}$$

A: at
$$T = 1150^{\circ}$$
C

$$\rightarrow \alpha$$
 (solid)

$$\Rightarrow$$
 $c_0 = c_\alpha = 35$ wt.% Ni

B: at
$$T = 1250 \, ^{\circ}\text{C}$$

$$\rightarrow$$
 L + α

$$\Rightarrow c_L = c_{liq} = 32 \text{ wt.}\% \text{ Ni}$$

Lever rule for mass fractions (weight fractions)

Sum of mass fractions

$$1 = W_{\alpha} + W_{L}$$

- Average composition (conservation of mass)
- $\mathbf{c}_0 = \mathbf{c}_\alpha \mathbf{W}_\alpha + \mathbf{c}_I \mathbf{W}_I$
- Combination (lever rule)

$$W_{\alpha} = \frac{c_0 - c_L}{c_{\alpha} - c_I} = \frac{R}{S + R}$$

- $W_{\alpha} = \frac{c_0 c_L}{c_{\alpha} c_{l}} = \frac{R}{S + R} \qquad W_{L} = \frac{c_{\alpha} c_0}{c_{\alpha} c_{l}} = \frac{S}{S + R}$
- Geometrical analogy
- Balance of torques

$$W_{l}R = W_{\alpha}S$$

41680 Intro to advanced materials

 $C_{\mathsf{L}} \quad C_{\mathsf{0}}$

F24

DTU Construct, Technical University of Denmark

Isomorphous binary phase diagram

Mass fractions W of individual phases

Cu-Ni system $c_0 = 35 \text{ wt.} \% \text{ Ni}$

B:
$$T = 1250 \, ^{\circ}\text{C}$$

 $\rightarrow \text{L} + \alpha$
 $\Rightarrow c_{\text{L}} = c_{\text{liq}} = 32 \, \text{wt.\% Ni}_{\text{particle}}^{\text{model}}$
 $c_{\alpha} = c_{\text{sol}} = 43 \, \text{wt.\% Ni}_{\text{particle}}^{\text{particle}}$

$$W_{\alpha} + W_{L} = 100 \%$$

Microstructure – equilibrium cooling Isomorphous binary system (complete solubility)

Equilibrium

i.e. extremely slow cooling

During solidification

change of composition of phases by atomic motion (diffusion)

Diffusion

- depends on time and temperature
- faster at higher temperatures

41680 Intro to advanced materials

F24

Phases and solubility

Example: ethanol – water system Binary system (two components)

Isomorphous binary phase diagram

- Starting point: two different alloys of two components, Cu and Ni, which are completely solvable in each other in the liquid as well as the solid state
- Alloy A with 5 wt.% Ni
- Alloy B with 55 wt.% Ni
- Sketch the microstructure for both alloys after equilibrium cooling to room temperature
- Which phases are formed?

7 DTU Construct, Technical University of Denmark

Binary system without any solubility Example Al-Sn

- Identify and mark
 - One phase regions (3)
 - Two phase regions (2)
 - Liquidus line
 - Solidus line
- A liquid with 40% wt. Sn is cooled from 700 °C under equilibrium conditions
 - At which temperature does solidification occur?
 - What is the first solid phase?
 - Which phases exist at 400 °C?
 - What is their composition?
 - Which phases exist at 200 °C?
 - What is their composition?

Binary eutectic systems

Limited solubility in the solid state

9 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Gibbs phase rule

Number of degrees of freedom + Number of phases in equilibrium = Number of constituents + 1

Binary eutectic system

Example Cu-Ag

3 one phase regions (L, α , β)

Limited solubility

- of B in A $\,$
 - α -solid solution
- of A in B
 - β-solid solution

eutectic temperature

eutectic hypo-eutectic (under) hyper-eutectic (over)

liquidus line solidus line solvus line

21 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Binary eutectic system

Example 33 wt.% Ag 67 wt.% Cu at 575 °C

 α and β Phase compositon

$$c_{\alpha}$$
 = 2 wt.% Ag c_{β} = 97 wt.% Ag

Mass fraction of each phase from lever rule

$$W_{\alpha} = \frac{c_{\beta} - c_{0}}{c_{\beta} - c_{\alpha}} = \frac{64}{95}$$
$$= 0.67 = 67 \%$$

$$W_{\beta} = \frac{c_0 - c_{\alpha}}{c_{\beta} - c_{\alpha}} = \frac{31}{95}$$
$$= 0.33 = 33 \%$$

Binary eutectic system - composition

Example 40 wt.% Sn 60 wt.% Pb at 150 °C

23 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Binary eutectic system – mass fraction

Example 40 wt.% Sn 60 wt.% Pb at 150 °C

 α phase and β phase

⇒ Lever rule

$$W_{\alpha} = \frac{C_{\beta} - C_{1}}{C_{\beta} - C_{\alpha}} = \frac{98 - 40}{98 - 10} = 0.66 = 66 \%$$

$$W_{\beta} = \frac{c_1 - c_{\alpha}}{c_{\beta} - c_{\alpha}} = \frac{40 - 10}{98 - 10} = 0.34 = 34 \%$$

$$W = W_{\alpha} + W_{\beta} = 1 = 100\%$$

Microstructure - binary eutectic systems

- Entire content of B soluble in α at RT
- Single phase α or (A) as in isomorphous systems

DTU Construct, Technical University of Denmark

Microstructure - binary eutectic systems

- Entire content of element B soluble in α at higher temperature, but not at RT
- \bullet Precipitates of β phase in α matrix at RT

Microstructure – binary eutectic systems

Eutectic composition (Pb-Sn)

F24

Microstructure – binary eutectic systems Eutectic composition (Pb-Sn)

lamellar structure: alternating layers of α and β

- Distance between lamellae depends on cooling rate
- Properties depend on distance between lamellae

Eutectic solidification

- Slow solidification
- Wide lamellae

- Fast solidification
- Thin lamellae

Mass fraction exactly same in both cases (here 50%)

29 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Microstructure – binary eutectic systems Hypo-eutectic composition (Pb-Sn)

Intermediate phases Mg-Pb phase diagram

Composition (wt% Pb)

(Pb)

Demonstration of microstructure formation

- Materials Science and Engineering Database
- > Phase diagrams

(Mg)

- Cooling paths
- Pb-Sn (Eutectic)

Caveats

You must know how to read phase diagrams (which information can be read form the diagram about the material and possible heat treatments)

but you do not have to learn the phase diagrams by heart (they can be found in databases).

Exception: Complete solubility (isomorphous systems) or complete insolubility

Distinction between composition *c* and mass fraction *W c* in wt.% (or at.%) *W* in %

33 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Composition vs. mass fraction Two phase system: nut chocolate (100 g)

- Phase 1 chocolate
- Mass 75 g
- Mass fraction $W_1 = 75\%$
- Comp. $c_1 = 27$ wt.% fat
- Phase 2 hazel nuts
- Mass 25 q
- Mass fraction $W_2 = 25\%$
- Comp. $c_2 = 61$ wt.% fat

(Average) composition $c_0 = W_1c_1 + W_2c_2 = 35.5$ wt.% fat

F24

Group exercises

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

Characteristic points: Eutectic, eutectoid, and peritectic transformations

L = liquid

S = solid

S1, S2, S3 different solid phases

eutectic

$$L \rightarrow S_1 + S_2$$

$$\frac{L}{S_1+S_2}$$

eutectoid

$$S_1 \rightarrow S_2 + S_3$$

$$S_1$$
 S_2+S_3

peritectic

$$S_1 + L \rightarrow S_2$$

 $\frac{S_1+L}{S_2}$

41680 Intro to advanced materials

F24