Nome:	RA:	

- 1. Responda falso ou verdadeiro a cada uma das afirmações abaixo. Justifique suas respostas (respostas sem justificativas não serão consideradas)
- a) (8pts) Se $T: \mathbb{R}^8 \longrightarrow \mathbb{R}^8$ é um operador linear com polinômio característico $f(X) = (X-1)^3(X-2)^5$ e polinômio minimal $p(X) = (X-1)^2(X-2)^2$ então a dimensão do subespaço dos vetores característicos de T é exatamente igual a 5.
- b) (8pts) Sejam K um corpo e V um K-espaço vetorial de dimensão finita. Se $T:V\longrightarrow V$ é um operador linear que não é invertível então existe um operador não nulo $U:V\longrightarrow V$ tal que $T\circ U=U\circ T=0$.
- c) (8pts) Sejam K um corpo e V um K-espaço vetorial de dimensão finita. Se $T:V\longrightarrow V$ é um operador linear que é invertível então $T^{-1}=F(T)$, onde $F(X)\in K[X]$ é um polinômio.
- d) (8pts) Dados um corpo K e um número natural n > 1. Se A é a matriz, $n \times n$, definida por

$$A = \left(\begin{array}{ccccc} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ & \cdot & \cdot & \cdot & \dots & \cdot \\ 1 & 1 & 1 & \dots & 1 \end{array}\right).$$

então A é diagonalizável.

e) Sejam $V = \mathbb{R}^3$, $S = V \otimes_S V =$ o produto simétrico de V por V, $W = V \wedge V =$ o produto exterior de V por $V \in B : V \times V \longrightarrow \mathbb{R}$ a transformação bilinear definida por

$$B((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1y_1 + x_2y_1 - x_3y_1 - x_1y_2 + x_3y_2 - x_1y_3 + x_2y_3 + x_3y_3.$$

- e_1) (5pts) Existe $T: S \longrightarrow \mathbb{R}$ linear tal que para todo $u \otimes_S v \in S$, $T(u \otimes_S v) = B(u, v)$.
- e_2) (5pts) Existe $U: W \longrightarrow \mathbb{R}$ linear tal que para todo $u \land v \in W$, $U(u \land v) = B(u, v)$.
- f) (8 pts) Sejam A e B duas matrizes 4×4 com entradas em \mathbb{R} . Se o polinômio mínimo de ambas é igual a X^2 e elas possuem o mesmo posto, então A e B são semelhantes.
- **2.** Sejam K um corpo e $\mathbb{M}_n = \mathbb{M}_n(K)$ o conjunto das matrizes $n \times n$ com entradas em K (n > 1). Dado $A \in \mathbb{M}_n$ defina o operador linear $T_A : \mathbb{M}_n \longrightarrow \mathbb{M}_n$ por $T_A(B) = AB$. Mostre que:
- a) (7pts) Se $A, C, D \in \mathbb{M}_n$ e $\alpha \in K$ então $T_{AC+\alpha D} = T_A \circ T_C + \alpha T_D$. Conclua que se $f(X) \in K[X]$ e $A \in \mathbb{M}_n$ então $f(T_A) = T_{f(A)}$.
- **b)(8pts)** $A \in T_A$ tem os mesmos auto-valores.
- c) (10pts) A é diagonalizável se e somente se T_A é diagonalizável.

- 3. Sejam V um \mathbb{C} -espaço vetorial de dimensão finita n e com um produto interno hermitiano. Seja $T:V\longrightarrow V$ um operador linear.
- a) (7 pts) Defina o operador adjunto T^* de T, diga quando T é operador normal e enuncie o teorema espectral.
- b) (7pts) Mostre que se $W \subseteq V$ é subespaço T-invariante (ie $T(W) \subseteq W$) então W^{\perp} é T^* -invariante.
- c) (11pts) Suponha que T tenha a seguinte propriedade: todo subespaço de V que é T-invariante tambem é T^* -invariante. Mostre que T é normal.

BOA PROVA

Departamento de Matemática, IMECC-UNICAMP EXAME DE QUALIFICAÇÃO DE MESTRADO ANÁLISE NO \mathbb{R}^n

20 de julho de 2011.

1. (a) Seja $B: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ bilinear. Mostre que existe c>0 tal que

$$|B(u,v)| < c|u||v|$$

para todo $u \in \mathbb{R}^n$ e $v \in \mathbb{R}^m$.

- (b) Mostre que B é diferenciável.
- 2. (a) Mostre que, para c=3

$$y^2 + 2cx^2 + 4x^3 = 1 (1)$$

define uma curva fechada em \mathbb{R}^2 de classe C^{∞} que contorna a origem e encontra o eixo x nos pontos $x_1 = -1/2$ e $x_2 = (-1 + \sqrt{3})/2$.

(b) Suponha que precisamos parametrizar essa curva fechada. Os termos quadráticos de (1) fornecem a elipse

$$y^{2} + 2cx^{2} = 1 \Leftrightarrow \frac{x^{2}}{(\frac{1}{\sqrt{2c}})^{2}} + y^{2} = 1$$

que pode ser parametrizada por $x = \cos t/\sqrt{2c}, \ y = \sin t, \ t \in [0, 2\pi].$ Considere o sistema de equações

$$F = x - r \frac{\cos t}{\sqrt{2c}} = 0$$

$$G = y - r \sin t = 0$$

$$H = y^2 + 2cx^2 + 4x^3 - 1 = 0$$

Explique, em detalhes, quais as condições que devemos ter para que o sistema (F, G, H) = 0 forneça x, y, r como funções suaves de t e c.

Supondo que essas condições estão atendidas, escreva fórmulas explícitas para as derivadas $\partial x/\partial t$ e $\partial y/\partial t$?

- 3. Seja $\omega = adx + bdy + cdz$ uma 1-forma de classe C^1 de \mathbb{R}^3
 - (a) Calcule $d\omega$ e defina o que significa dizer que ω é fechada.
 - (b) Se ω é fechada e f é definida por

$$f(x,y,z) = \int_{\gamma} \omega$$

onde $\gamma:[0,1]\to\mathbb{R}^3$ é dada por $\gamma(t)=(tx,ty,tz)$. Mostre que

$$\frac{\partial f}{\partial x} = a, \quad \frac{\partial f}{\partial y} = b, \quad \frac{\partial f}{\partial z} = c.$$

Basta mostrar uma dessas igualdades.

- 4. Seja ω uma r-forma de classe C^1 de \mathbb{R}^n tal que $\int_M \omega = 0$ para toda variedade compacta e orientável M de dimensão r de \mathbb{R}^n . Use o teorema de Stokes para mostrar que ω é fechada.
- 5. Seja $f: B_r(x_0) \subset \mathbb{R}^n \to \mathbb{R}^n$ um difeomorfismo de classe C^1 de $B_r(x_0)$ em $f(B_r(x_0))$. Se $||f'(x)^{-1}|| \leq M$ para todo $x \in B_r(x_0)$ e $|f(x_0)| < r/M$, mostre que f tem um zero.

Sugestão: Mostre que existe $\delta > 0$ tal que $0 \in B_{\delta}(y_0)$ e $B_{\delta}(y_0) \subset f(B_r(x_0))$, onde $y_0 = f(x_0)$.

BOA PROVA!

EXAME TOPOLOGIA GERAL, 18/7/2011

Nome:

Assinatura:

RA:

Responder com curta justificativa se cada uma das seguintes afirmações é VERDADEIRA ou FALSA. Cada ítem vale 1,0 pontos.

1. Os racionais $\mathbb{Q}\subset (\mathbb{R}, Euclid.)$ são um subespaço DISCRETO.

- 2. As componentes conexas por caminhos de um espaço topológico X são subespaços FECHADOS.
- 3. Para qualquer espaço topológico Xe compacto $Y\subset X,$ o fecho \overline{Y} é também COMPACTO.
- 4. Se $X\times Y$ é o espaço produto, a PROJEÇÃO $p:X\times Y\longrightarrow X$ é sempre FECHADA.
 - 5. Todo subgrupo não tivial, discreto de $(\mathbb{R},+)$ é CÍCLICO INFINITO.
- 6. O grupo topológico U(3) é HOMEOMÓRFO, como espaço topológico, com o $SU(3) \times U(1)$, mas eles NÃO são ISOMÓRFOS como grupos.

7. A aplicação ANTÎPODA de S^3 é HOMOTÒPICA à id_{S^3} .

- 8. Seja X HOMOTOPICAMENTE EQUIVALENTE a Y. Então, X tém a propriedade do PONTO FIXO para HOMEOMORFISMOS APENAS SE Y TEM A MESMA propriedade.
- 9. Sejam $m,n\in\mathbb{Z}$, com m.d.c.(m,n)=1, i.é., relativamente primos, e seja $S^3=\{(z,w)\in\mathbb{C}\times\mathbb{C}\mid z\overline{z}+w\overline{w}=1\}$. Seja g um GERADOR de $\mathbb{Z}_m=\mathbb{Z}/m\mathbb{Z}$ e a ação de g

$$g\cdot(z,w)=(\exp(\frac{2\pi}{m}i)z,\exp(\frac{2\pi n}{m}i)w)$$

que define naturalmente uma ação LIVRE

$$\alpha: \mathbb{Z}_m \times S^3 \longrightarrow S^3$$

cujo quociente é o chamado espaço LENTICULAR L(m,n). $10. \ \pi_1 L(m,n) \cong \mathbb{Z}_n$.