Lecture 19

COL 351: Analysis and Design of **Algorithms**

Lecture 19

2-Majority Problem

Definition:

$$>\frac{\gamma}{2}$$

Let $S = \{a_1, a_2, ..., a_n\}$ be a multiset. An element $x \in S$ is said to be majority element if it appears more List/ Set with Referred elements) than n/2 times in S.

Problem:

Computing the majority element in a multiset S.

Example:

multiset

et
$$S = \{\underbrace{a, b, a, c, c, a, b, a, a}_{7}, \underbrace{S} = \{\underbrace{a, b, a, c, c, a, b, a, a, a}_{7}, \underbrace{S} = \{\underbrace{a, b, a, c, c, a, b, a, a, a}_{7}, \underbrace{S} = \{\underbrace{a, b, a, c, c, a, b, a, a}_{7}, \underbrace{S} = \{\underbrace{a, b, a, a, c, c, a, b, a, a}_{7}, \underbrace{S} = \{\underbrace{a, b, a, a, c, c, a, b, a, a}_{7}, \underbrace{S} = \{\underbrace{a, b, a, c, c, a, b, a, a}_{7}, \underbrace{S} = \{\underbrace{a, b, a, a, a, a, a, a}_{7}, \underbrace{S} = \{\underbrace{a, b, a, a, a, a, a, a, a}_{7}, \underbrace{S} = \{\underbrace{a, b, a, a,$$

Naive Algorithm

- Count frequency of each element in multiset $S = \{a_1, a_2, ..., a_n\}$.

- Report the element with frequency larger than n/2 if exists.

How much time does it take to verify majority?

To verify if an element \underline{x} is majority of $S = \{a_1, a_2, ..., a_n\}$ it takes O(n) time.

L
$$feq(x,s) > \frac{n}{2} \rightarrow x$$
 is majointy.

Simple Observation

Lemma: Suppose S contains n pairs each having identical elements, and S_0 is obtained from S by keeping only one element per pair.

Then a majority of S is also a majority of S_0

$$S = \begin{cases} a_1 & b_1 & a_2 & b_2 & \dots & a_n & b_n \end{cases}$$

$$a_1 = b_1 \qquad a_2 = b_2 \qquad a_n = b_n$$

$$S_0 = \{ a_1 \ a_2 \ \dots \ a_n \}$$

 $\rightarrow \times \text{ is majority } \{ S \ \text{iff} \ x \text{ is majority } \{ S_0 \ \text{otherwise} \}$

Cancellation Lemma

Lemma: Let x = majority(S) and, $a, b \in S$ be two distinct elements, then $x = majority(S - \{a, b\})$.

Reducing problem of size 2n to problem of size at most n

Lemma: Let S be multiset of even size. Obtain S_0 from S by

- · removing those pairs which have non-identical elements, and
- · keeping only one element per identical pair.

Then a majority of S is also a majority of S_0 .

Algorithm

Copy elements of
$$S$$
 to A .

$$T(n) = T(\frac{n}{2}) + O(n)$$

$$= O(n + \frac{n}{2} + \frac{n}{4} + \cdots)$$
While (|A| > 1):

If (|A| is even):

- 1. Pair up the elements;
- 2. Eliminate all pairs of distinct elements;
- 3. Keep one element per pair of identical elements.

Else:

Remove last element of A and check whether it is majority of \nearrow

If (Only element left in *A* is a majority element of *S*): Return element in *A*; Else: Return 'No majority';

"Onlie Algoritis"

Scang the list 'S' only suce horse

Last lema

Improved Algorithm

count =
$$0$$
;
For $(i = 1 \text{ to } n)$:

```
x = S[i];
count = 1;
else:
if (x \neq S[i]): count = count - 1;
else: count = count + 1;
If (x is a majority element of S): Return x;
Else: Return 'No majority';
```


Improved Algorithm

count = 0;
For
$$(i = 1 \text{ to } n)$$
:
if (count = 0):
 $x = S[i]$;
count = 1;
else:
if $(x \neq S[i])$: count = count -1;
else: count = count +1;
If $(x \text{ is a majority element of } S)$: Return x ;
Else: Return 'No majority';

Improved Algorithm

RASE CASE: a to MAJ of (SEI], ... S[n])

RASE CASE: a to MAJ of (x°, S[i], ..., S[n])

```
count = 0;

For (i = 1 \text{ to } n):

Claim:

If a is majority of (x^{count}, S[i], ..., S[n]) before i^{th} round,
```

```
if ( count = 0 ):
         x = S[i]:
         count = 1:
      else:
         if (x \neq S[i]): count = count -1;
         else: count = count +1:
If (x \text{ is a majority element of } S): Return x;
Else: Return 'No majority';
```

```
a is majority of (x^{count-new}, S[i+1], ..., S[n]) after i^{th} round.
            Case 1: court =0, court - new = 1
                                              (S[i],..,S[n]) = (x=S[i], S[i+i],...,S[n])
    \frac{\text{Case 2: court} > 0, \ z \neq S[i]}{(2^{\text{court}}, \underline{S[i]}, .., S[n]) \rightarrow (2, S[i+1], .., S[n])}
\frac{1}{2} (2002) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2004) = (2
```

Improved Algorithm

O(n) time

count = 0;
For
$$(i = 1 \text{ to } n)$$
:
if $(\text{count} = 0)$:
 $x = S[i]$;
count = 1;
else:
if $(x \neq S[i])$: count = count -1;
else: count = count +1;
If $(x \text{ is a majority element of } S)$: Return x ;
Else: Return 'No majority';

H.W. 3- may out people.

An elent of freq >
$$\frac{n}{3}$$

Claim:

If *a* is majority of $(x^{count}, S[i], ..., S[n])$ before i^{th} round, **a** is majority of $(x^{count-new}, S[i+1], ..., S[n])$ after i^{th} round.