





# การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 18

โรงเรียนมหิดลวิทยานุสรณ์

วันจันทร์ที่ 25 กรกฎาคม 2565 เวลา 09.00 - 14.00 น.

ข้อสอบภาคทฤษฎี

| เลขประจำตัวสอบ |  |
|----------------|--|
|                |  |

## คำชี้แจงการสอบภาคทฤษฎี

- 1. ข้อสอบภาคทฤษฎีมี 12 ข้อ คะแนนรวม 120 คะแนน คิดเป็นร้อยละ 60 ของคะแนนทั้งหมด
- 2. เอกสารข้อสอบภาคทฤษฎี มีทั้งหมด 2 ชุด ก่อนลงมือทำให้นักเรียนตรวจสอบเลขประจำตัวสอบในแต่ละชุดว่า เป็นหมายเลขเดียวกันทุกหน้า และตรงกับเลขประจำตัวสอบของผู้เข้าสอบ
  - 2.1 ข้อสอบภาคทฤษฎี 1 ชุด จำนวน 21 หน้า (รวมปก คำชี้แจง ค่าที่กำหนดให้ และตารางธาตุ)
  - 2.2 กระดาษคำตอบภาคทฤษฎี 1 ชุด จำนวน 34 หน้า (รวมปก)
- 3. เอกสารทั้งสองชุดอยู่ในสภาพเรียบร้อย และในแต่ละชุด<u>ห้าม</u>แยกหรือฉีกกระดาษออกจากกัน
- 4. ลงมือทำข้อสอบได้เมื่อกรรมการคุมสอบประกาศให้ "ลงมือทำข้อสอบ" และเมื่อประกาศว่า "หมดเวลาสอบ" นักเรียน**ต้อง**หยุดทำข้อสอบทันที และวางเอกสารข้อสอบภาคทฤษฎีและกระดาษคำตอบภาคทฤษฎี อุปกรณ์ เครื่องเขียน เครื่องคิดเลข ไว้บนโต๊ะ และรอให้กรรมการเก็บข้อสอบก่อนออกจากห้องสอบ
- 5. การทำข้อสอบ มีระเบียบดังนี้
  - 5.1 ให้เขียนตอบในกระดาษคำตอบ**ด้วยปากกาสีน้ำเงินที่วางไว้บนโต๊ะสอบเท่านั้น หากเขียนด้วยดินสอจะ** ไม่ได้รับการตรวจ
  - 5.2 ให้เขียนตอบในกระดาษคำตอบให้ตรงกับข้อ ในกรอบที่กำหนดให้เท่านั้น **ห้ามเขียนนอกกรอบหรือ ด้านหลังของกระดาษคำตอบ**
  - 5.3 กรณีเขียนผิดให้ขีดฆ่า และเขียนใหม่ให้ชัดเจนภายในกรอบที่กำหนดให้ <u>ห้ามลบด้วยน้ำยาหรือวัสดุลบ</u> คำผิด
  - 5.4 **ห้ามทดหรือขีดเขียนอย่างอื่นในกระดาษคำตอบ** หากจำเป็นให้ทดหรือเขียนในกระดาษข้อสอบเท่านั้น
- 6. โจทย์คำนวณให้แสดงวิธีคำนวณตามคำสั่งของโจทย์ในแต่ละข้อ กรณีคำตอบที่เป็นตัวเลข ให้ตอบเป็นเลข ทศนิยม หรือเลขนัยสำคัญตามที่กำหนดในโจทย์แต่ละข้อ หากข้อใดไม่ระบุให้ตอบโดยคำนึงถึงเลขนัยสำคัญ
- 7. อนุญาตให้รับประทานอาหารว่างที่วางให้บนโต๊ะในระหว่างการสอบได้
- 8. อนุญาตให้เข้าห้องน้ำในกรณีจำเป็นเท่านั้น โดยยกมือ รอกรรมการผู้คุมสอบอนุญาต (กรรมการลงบันทึกในใบ บันทึกรายงานเหตุการณ์ในระหว่างการสอบ)
- 9. ห้ามยืมเครื่องเขียนและเครื่องคิดเลขผู้อื่นโดยเด็ดขาด
- 10. ห้ามนำเอกสารและอุปกรณ์ใด ๆ เข้าหรือออกจากห้องสอบโดยเด็ดขาด
- 11. ห้ามพูด คุย หรือปรึกษากันในระหว่างทำการสอบ หากฝ่าฝืนถือว่าทุจริตในการสอบ <u>กรณีทุจริตใด ๆ ก็ตาม</u> <u>นักเรียนจะหมดสิทธิ์ในการแข่งขัน และจะถูกให้ออกจากห้องสอบทันที</u>

## Physical Constants

| Avogadro constant, $N_A$ | = | $6.02 \times 10^{23}  \text{mol}^{-1}$         | Faraday's constant, F       | = | 96,485 C mol <sup>-1</sup>            |
|--------------------------|---|------------------------------------------------|-----------------------------|---|---------------------------------------|
| atomic mass unit, amu    | = | $1.66 \times 10^{-27} \text{ kg}$              | mass of electron, $m_e$     | = | $9.11 \times 10^{-31} \text{ kg}$     |
| charge of electron, e    | = | $1.60 \times 10^{-19} \text{ C}$               | Planck constant, <i>h</i>   | = | $6.626 \times 10^{-34} \text{ J s}$   |
| gas constant, R          | = | 0.0821 L atm K <sup>-1</sup> mol <sup>-1</sup> | speed of light in vacuum, c | = | $3.00 \times 10^8 \mathrm{m\ s^{-1}}$ |
|                          | = | 8.314 J K <sup>-1</sup> mol <sup>-1</sup>      |                             |   |                                       |

#### SI Prefixes

| pico-             | nano-            | micro-           | milli-           | centi-           | deci-            | kilo-           | mega-           | giga-           |
|-------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-----------------|-----------------|
| р                 | n                | μ                | m                | С                | d                | k               | М               | G               |
| 10 <sup>-12</sup> | 10 <sup>-9</sup> | 10 <sup>-6</sup> | 10 <sup>-3</sup> | 10 <sup>-2</sup> | 10 <sup>-1</sup> | 10 <sup>3</sup> | 10 <sup>6</sup> | 10 <sup>9</sup> |

#### Conversions and Relationships

| Length (SI unit: m)                    | Volume (SI unit: m³)                             | Mass (SI unit: kg)             |  |  |  |  |
|----------------------------------------|--------------------------------------------------|--------------------------------|--|--|--|--|
| 1 inch = 2.54 cm (exactly)             | $1 L = 1 dm^3$                                   | 1 ton = 1000 kg                |  |  |  |  |
| $1 \text{ Å} = 10^{-10} \text{ m}$     | $1 \text{ mL} = 1 \text{ cm}^3$                  | 1 lb = 453.59237 g = 16 oz     |  |  |  |  |
| Pressure (SI unit: Pa)                 | Energy (SI unit: J)                              | Temperature (SI unit: K)       |  |  |  |  |
| 1 Pa = 1 N m <sup>-2</sup>             | $1 J = 1 \text{ kg m}^2 \text{ s}^{-2}$          | T/K = T/°C + 273.15            |  |  |  |  |
| $= 1 \text{ kg m}^{-1} \text{ s}^{-2}$ | = 1 N·m                                          | <i>T/</i> °C <i>T/</i> °F − 32 |  |  |  |  |
| 1 atm = 101.325 kPa                    | = 1 C·V                                          | 5 9                            |  |  |  |  |
| = 760 mmHg = 760 torr                  | 1 cal = 4.184 J                                  | Current (SI unit: A)           |  |  |  |  |
| 1 bar = $10^5$ Pa                      | $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ | 1 A = 1 C s <sup>-1</sup>      |  |  |  |  |

## Formulae and Equations

| Arrhenius equation:                 | $k = Ae^{\frac{-E_a}{RT}}$                                                                                           |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Heisenberg's uncertainty principle: | $\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$                                                                         |
| Nernst's equation:                  | $E = E^{\circ} - \frac{RT}{nF} \ln Q = E^{\circ} - \frac{0.0592}{n} \log Q  \vec{\mathfrak{N}}  25 ^{\circ}\text{C}$ |
| Gibb's free energy:                 | $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$                                                           |
|                                     | $\Delta G^{\circ} = -RT \ln K = -nFE^{\circ}$                                                                        |
| Heat transfer:                      | $q = mc\Delta T$                                                                                                     |

## **Periodic Table of the Elements**

| 1     |       |        |        |        |       |       |       |       |       |       |       |       |       |       |       |       | 18    |
|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1     |       |        | atomic | number |       |       |       |       |       |       |       |       |       |       |       |       | 2     |
| Н     |       |        | Syn    | nbol   |       |       |       |       |       |       |       |       |       |       |       |       | He    |
| 1.0   | 2     |        | atomic | weight |       |       |       |       |       |       |       | 13    | 14    | 15    | 16    | 17    | 4.0   |
| 3     | 4     |        |        |        | •     |       |       |       |       |       |       | 5     | 6     | 7     | 8     | 9     | 10    |
| Li    | Be    |        |        |        |       |       |       |       |       |       |       | В     | С     | N     | 0     | F     | Ne    |
| 6.9   | 9.0   |        |        |        |       |       |       |       |       |       |       | 10.8  | 12.0  | 14.0  | 16.0  | 19.0  | 20.2  |
| 11    | 12    |        |        |        |       |       |       |       |       |       |       | 13    | 14    | 15    | 16    | 17    | 18    |
| Na    | Mg    |        |        |        |       |       |       |       |       |       |       | ΑI    | Si    | Р     | S     | CI    | Ar    |
| 23.0  | 24.3  | 3      | 4      | 5      | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 27.0  | 28.1  | 31.0  | 32.1  | 35.5  | 40.0  |
| 19    | 20    | 21     | 22     | 23     | 24    | 25    | 26    | 27    | 28    | 29    | 30    | 31    | 32    | 33    | 34    | 35    | 36    |
| K     | Ca    | Sc     | Ti     | V      | Cr    | Mn    | Fe    | Со    | Ni    | Cu    | Zn    | Ga    | Ge    | As    | Se    | Br    | Kr    |
| 39.1  | 40.1  | 45.0   | 47.9   | 50.9   | 52.0  | 54.9  | 55.8  | 58.9  | 58.7  | 63.5  | 65.4  | 69.7  | 72.6  | 74.9  | 79.0  | 79.9  | 83.8  |
| 37    | 38    | 39     | 40     | 41     | 42    | 43    | 44    | 45    | 46    | 47    | 48    | 49    | 50    | 51    | 52    | 53    | 54    |
| Rb    | Sr    | Υ      | Zr     | Nb     | Мо    | Tc    | Ru    | Rh    | Pd    | Ag    | Cd    | ln    | Sn    | Sb    | Te    | I     | Xe    |
| 85.5  | 87.6  | 88.9   | 91.2   | 92.9   | 96.0  | (98)  | 101.1 | 102.9 | 106.4 | 107.9 | 112.4 | 114.8 | 118.7 | 121.8 | 127.6 | 126.9 | 131.3 |
| 55    | 56    | 57-71  | 72     | 73     | 74    | 75    | 76    | 77    | 78    | 79    | 80    | 81    | 82    | 83    | 84    | 85    | 86    |
| Cs    | Ва    | *      | Hf     | Та     | W     | Re    | Os    | Ir    | Pt    | Au    | Hg    | TI    | Pb    | Bi    | Ро    | At    | Rn    |
| 132.9 | 137.3 |        | 178.5  | 181.0  | 183.8 | 186.2 | 190.2 | 192.2 | 195.1 | 197.0 | 200.6 | 204.4 | 207.2 | 209.0 | (209) | (210) | (222) |
| 87    | 88    | 89-103 | 104    | 105    | 106   | 107   | 108   | 109   | 110   | 111   | 112   | 113   | 114   | 115   | 116   | 117   | 118   |
| Fr    | Ra    | **     | Rf     | Db     | Sg    | Bh    | Hs    | Mt    | Ds    | Rg    | Cn    | Nh    | FI    | Мс    | Lv    | Ts    | Og    |
| (223) | (226) |        | (265)  | (268)  | (271) | (270) | (277) | (276) | (281) | (280) | (285) | (286) | (289) | (289) | (293) | (294) | (294) |
|       |       |        |        |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
|       |       |        | 57     | 58     | 59    | 60    | 61    | 62    | 63    | 64    | 65    | 66    | 67    | 68    | 69    | 70    | 71    |

|              | 57    | 58    | 59    | 60    | 61    | 62    | 63    | 64    | 65    | 66    | 67    | 68    | 69    | 70    | 71    | ĺ |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|
| Lanthanoids* | La    | Ce    | Pr    | Nd    | Pm    | Sm    | Eu    | Gd    | Tb    | Dy    | Но    | Er    | Tm    | Yb    | Lu    |   |
|              | 138.9 | 140.1 | 140.9 | 144.2 | (145) | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | 167.3 | 168.9 | 173.0 | 175.0 |   |
|              | 89    | 90    | 91    | 92    | 93    | 94    | 95    | 96    | 97    | 98    | 99    | 100   | 101   | 102   | 103   |   |
| Actinoids**  | Ac    | Th    | Pa    | U     | Np    | Pu    | Am    | Cm    | Bk    | Cf    | Es    | Fm    | Md    | No    | Lr    |   |
|              | (227) | 232.0 | 231.0 | 238.0 | (237) | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (262) |   |

#### โจทย์ข้อที่ 1 (10 คะแนน)

ส้มโอเป็นผลไม้ที่มีปริมาณวิตามินซีหรือกรดแอสคอร์บิกสูง โดยกรดแอสคอร์บิกดูดกลืนแสงได้ที่ความยาวคลื่น 265 nm จึงสามารถใช้ค่าการดูดกลืนแสง (absorbance, *A,* ไม่มีหน่วย) นี้หาปริมาณของกรดแอสคอร์บิกในตัวอย่าง ได้ (ดังรูป) แต่กรดแอสคอร์บิกถูกออกซิไดส์และสลายตัวได้ง่ายระหว่างการเก็บรักษา โดยปัจจัยที่ส่งผลต่อการ เกิดปฏิกิริยาดังกล่าว ได้แก่ แสง ค่า pH ปริมาณออกซิเจน ปริมาณน้ำตาล และอุณหภูมิ



หากทำการทดลองคั้นน้ำส้มโอ (ที่มีกรดแอสคอร์บิก 61.29 mg/100 mL) จากนั้นเจือจาง 40.00 เท่าด้วยสารละลาย บัฟเฟอร์ แล้วเก็บไว้ภายใต้ภาวะที่แตกต่างกัน หาปริมาณกรดแอสคอร์บิกทุกชั่วโมงด้วยการวัดค่าการดูดกลืนแสง และนำผลที่ได้ไปพล็อตแบบต่าง ๆ ได้ผลดังตาราง

|                                                                      | แกน x เป็นเ | วลา (ชั่วโมง)   | แกน x เป็นเ | วลา (ชั่วโมง)          | แกน x เป็นเวลา (ชั่วโมง) |        |  |
|----------------------------------------------------------------------|-------------|-----------------|-------------|------------------------|--------------------------|--------|--|
| ภาวะการเก็บรักษา                                                     | และแกน      | y เป็น <i>A</i> | และแกน y    | <sup>,</sup> เป็น ln A | และแกน y เป็น 1/A        |        |  |
|                                                                      | ความชั้น    | $R^2$           | ความชั้น    | $R^2$                  | ความชั้น                 | $R^2$  |  |
| 1. pH 3.40 เก็บไม่ให้โดนแสง ที่ 25 ℃                                 | -0.0881     | 0.9973          | -0.0716     | 0.9741                 | 0.3307                   | 0.9058 |  |
| <b>2.</b> pH 3.40 เก็บไม่ให้โดนแสง ที่ 50 °C                         | -0.1192     | 0.9979          | -0.3032     | 0.9228                 | 0.9958                   | 0.7353 |  |
| 3. pH 5.40 เก็บไม่ให้โดนแสง ที่ 25 °C                                | -0.1007     | 0.9971          | -0.0889     | 0.9702                 | 0.4614                   | 0.8873 |  |
| <b>4.</b> pH 3.40 และเติมน้ำตาลฟรักโทส 3% เก็บไม่ให้โดนแสง ที่ 25 °C | -0.0565     | 0.9943          | -0.0858     | 0.9874                 | 0.1327                   | 0.9707 |  |
| 5. pH 3.40 เก็บให้แสงแดดส่องถึง ที่ 25°C                             | -0.1286     | 0.9969          | -0.4124     | 0.8490                 | 2.3230                   | 0.5535 |  |

- 1.1 (1 คะแนน) การสลายตัวของกรดแอสคอร์บิกในน้ำส้มโอมีอันดับของปฏิกิริยาเป็นเท่าใดเมื่อเทียบกับกรด แอสคอร์บิก และทราบได้อย่างไร
- (3 คะแนน) กรดแอสคอร์บิกในน้ำส้มโอ (pH 3.40) ซึ่งเก็บไม่ให้โดนแสง ที่ 25 °C มีค่าคงที่อัตราของการ
   สลายตัว (k) เท่าใด (พร้อมระบุหน่วยให้ถูกต้อง) และมีค่าครึ่งชีวิตเท่าใด
- **1.3** (2 คะแนน) พลังงานก่อกัมมันต์ ( $E_a$ ) ของการสลายตัวของกรดแอสคอร์บิกในน้ำส้มโอ (pH 3.40) ที่เก็บไม่ให้ โดนแสง มีค่าเท่าใด

- 1.4 (2 คะแนน) การสลายตัวของกรดแอสคอร์บิกในน้ำส้มโอซึ่งเก็บไม่ให้โดนแสง ที่ 25 °C มีอันดับของปฏิกิริยา เป็นเท่าใดเมื่อเทียบกับ [H<sup>+</sup>]
- 1.5 (1 คะแนน) การเติมน้ำตาลฟรักโทสลงในน้ำส้มโอทำให้การสลายตัวของกรดแอสคอร์บิกเปลี่ยนแปลงไป อย่างไร และมีกระบวนการเช่นใดที่ทำให้เกิดการเปลี่ยนแปลงนั้น
- 1.6 (1 คะแนน) **จากผลการทดลองข้างต้น** การทำน้ำส้มโอคั้นให้เป็นผลิตภัณฑ์ OTOP ควรเก็บน้ำส้มโอคั้น อย่างไรบ้าง เพื่อรักษาปริมาณกรดแอสคอร์บิกไว้ให้นานยิ่งขึ้น

#### โจทย์ข้อที่ 2 (10 คะแนน)

แผนภาพเอลลิงแฮม (Ellingham diagram) ดังแสดง เป็นกราฟที่พล็อตค่า  $\Delta G^\circ$  ของการเกิดสารประกอบออกไซด์ที่ อุณหภูมิต่าง ๆ ซึ่งนำไปใช้หาวิธีแยกโลหะออกจากแร่



ค่า  $\Delta G^\circ$  ในแผนภาพเอลลิงแฮมเป็นค่าที่ได้จากการทำปฏิกิริยากับ**แก๊สออกซิเจน 1 mol** ซึ่งสอดคล้องกับสมการ

$$a M(s) + O_2(g) \longrightarrow b M_xO_y(s)$$

- **2.1** (0.5 คะแนน) เขียน **b** และ **y** ในรูปของ **a** และ **x**
- 2.2 (0.5 คะแนน) กราฟในแผนภาพมีลักษณะเป็นเส้นตรงเมื่อมีค่าใดคงที่บ้าง
- **2.3** (2 คะแนน) เขียนสมการเคมีที่สอดคล้องกับ  $\Delta_{\rm f} H^{\rm o}$  ของ  ${\sf Fe}_2{\sf O}_3({\sf s})$  และแสดงวิธีคำนวณ (ในหน่วย kJ mol $^{-1}$ )
- **2.4** (1.5 คะแนน) วาดกราฟของ  $CO_2(g)$  ลงในแผนภาพเอลลิงแฮม และอธิบายที่มาของกราฟที่วาด (กำหนดให้  $\Delta_f H^o$  ของ  $CO_2(g)$  มีค่าเท่ากับ  $-393.5~\rm kJ~mol^{-1}$ )
- 2.5 (2 คะแนน) ปฏิกิริยาใดต่อไปนี้เกิดขึ้นได้เองในทางอุณหพลศาสตร์ พร้อมทั้งแสดงวิธีคำนวณ

ปฏิกิริยาที่ 1:  $3SiO_2(s) + 4Al(s) \longrightarrow 3Si(s) + 2Al_2O_3(s)$  ที่ 25 °C

ปฏิกิริยาที่ 2: PbO(s) + C(s) → Pb(s) + CO(g) ที่ 200  $^{\circ}$ C

- 2.6 (1.5 คะแนน) การออกซิไดส์พื้นผิวของแผ่นซิลิคอน (Si) ด้วยแก๊สออกซิเจนเพื่อให้เกิดฟิล์มบางของ SiO₂ เป็น ขั้นตอนหนึ่งในการผลิตชิปคอมพิวเตอร์ คำนวณการเปลี่ยนแปลงพลังงานภายใน ΔU (ในหน่วย kJ) เมื่อ ซิลิคอน 7.025 g ทำปฏิกิริยาพอดีกับแก๊สออกซิเจนที่อุณหภูมิ 900.0 ℃ และความดัน 1.0 atm
- **2.7** (2 คะแนน) เขียนสมการเคมีที่สอดคล้องกับกระบวนการที่เกิดขึ้นที่จุด **X** และคำนวณ  $\Delta S^\circ$  (ในหน่วย J  $K^{-1}$  mol $^{-1}$ ) ของกระบวนการนั้น โดยให้แสดงวิธีคิดด้วย



(แผนภาพนี้เป็นภาพขยายของแผนภาพเอลลิงแฮมข้างต้น)

#### โจทย์ข้อที่ 3 (10 คะแนน)

คอมพิวเตอร์ทั่วไปจัดเก็บข้อมูลและประมวลผลในหน่วยย่อยที่เรียกว่า บิต (bit) ซึ่งแทนด้วย 0 และ 1 ลักษณะนี้ คล้ายกับอิเล็กตรอนที่อยู่ได้ในสองสถานะสปิน (spin state) คือ ขึ้น (up) และ ลง (down) อิเล็กตรอนสปินจึงเป็น ทางเลือกหนึ่งของการพัฒนาควอนตัมบิตหรือคิวบิต (qubit) ซึ่งเป็นหน่วยย่อยของควอนตัมคอมพิวเตอร์ที่สามารถ เก็บข้อมูลได้มากกว่าและประมวลผลได้เร็วกว่า เพราะคิวบิตนั้นนอกจากจะอยู่ในสถานะทั้งสอง (0 และ 1) ได้แล้ว ยัง สามารถอยู่ในสถานะผสม (mixed state) ซึ่งเกิดจากปรากฏการณ์ทางควอนตัมที่เรียกว่า "การซ้อนทับ (superposition)" ได้อีกด้วย

- 3.1 (2 คะแนน) ทำเครื่องหมายหน้าอะตอมอิสระหรือโลหะแทรนซิชันที่มีสถานะออกซิเดชันตามที่กำหนดใน กระดาษคำตอบซึ่งทำให้ระดับพลังงานย่อยของวงนอกสุด (outermost subshell) มีอิเล็กตรอนเพียงตัวเดียว
- 3.2 (2 คะแนน) หากต้องใช้โฟตอนความถี่ 803.5 MHz ในการกระตุ้นอะตอม <sup>7</sup>Li เทคโนโลยีการควบคุมแสง ความยาวคลื่นประมาณ 1 µm จากคอมพิวเตอร์ทั่วไปจะเหมาะสมต่อการใช้งานในควอนตัมคอมพิวเตอร์ที่ใช้ อะตอม <sup>7</sup>Li ด้วยหรือไม่ หากไม่เหมาะสม ควรเลือกใช้สารที่มีช่องว่างระหว่างพลังงาน (energy gap) ประมาณเท่าใดมาเป็นคิวบิต
- 3.3 (1 คะแนน) สารโลหอินทรีย์ (organometallic compound) ของ Tb<sup>III</sup> อาจใช้แทนอะตอม <sup>7</sup>Li เพราะมี ช่องว่างระหว่างพลังงานที่เหมาะสมและมีความเสถียรกว่า จึงไม่ต้องใช้งานที่อุณหภูมิต่ำมาก อธิบายสาเหตุที่ Tb<sup>III</sup> สามารถใช้เป็นคิวบิตได้

เพื่ออธิบายปรากฏการณ์การซ้อนทับของสถานะสปินทั้งสอง มักเขียนฟังก์ชันคลื่น

$$\Psi = c_{\rm up}\phi_{\rm up} + c_{\rm down}\phi_{\rm down}$$

แทนสถานะผสมใด ๆ ที่อาจเกิดขึ้นของคิวบิต และโดยทั่วไป สามารถใช้เวกเตอร์หนึ่งหน่วย (ลูกศร) ที่ชี้ไปตามทิศทาง +z และ -z แทนสถานะ up และ down ได้ ตามที่ปรากฏในรูป (a) และ (b) ตามลำดับ ดังนั้นสถานะที่เกิดจากการ ผสมสถานะทั้งสองเท่า ๆ กันจึงแทนด้วยรูป (c)

หมายเหตุ สามารถคิดภาพแบบง่ายเช่นนี้ได้ เนื่องจากทั้งสองสถานะสปิน "ตั้งฉาก" หรือ "ออร์โทโกนัล (orthogonal)" กัน



- 3.4 (1 คะแนน) เติมเลขสัมประสิทธิ์ที่เหมาะสมของสถานะ (a) (b) และ (c)
- 3.5 (3 คะแนน) เขียนฟังก์ชันตรีโกณมิติจากตารางข้างล่างที่ทำให้สัมประสิทธิ์  $c_{
  m up}$  และ  $c_{
  m down}$  มีค่าที่ถูกต้อง สำหรับสถานะผสมใด ๆ โดยที่ heta คือมุมที่เวกเตอร์สปินทำกับแกน +z วาดลูกศรแทนสถานะที่มีสัดส่วนในการ ผสมของสถานะ up และสถานะ down เป็น 3:1 และระบุค่าสัมประสิทธิ์ทั้งสองที่ mixed state นี้

| $\sin\frac{\theta}{3}$  | $\sin\frac{\theta}{2}$  | $\sin \theta$ | $\sin 2\theta$ | $\sin 3\theta$ | $\sin^2\frac{\theta}{3}$ | $\sin^2\frac{\theta}{2}$ | $\sin^2 \theta$ | $\sin^2 2\theta$ | $\sin^2 3\theta$ |
|-------------------------|-------------------------|---------------|----------------|----------------|--------------------------|--------------------------|-----------------|------------------|------------------|
| $\cos\frac{\theta}{3}$  | $\cos \frac{\theta}{2}$ | $\cos \theta$ | $\cos 2\theta$ | $\cos 3\theta$ | $\cos^2\frac{\theta}{3}$ | $\cos^2\frac{\theta}{2}$ | $\cos^2 \theta$ | $\cos^2 2\theta$ | $\cos^2 3\theta$ |
| $\tan \frac{\theta}{3}$ | $\tan \frac{\theta}{2}$ | tan θ         | tan 2θ         | $\tan 3\theta$ | $\tan^2\frac{\theta}{3}$ | $\tan^2\frac{\theta}{2}$ | $\tan^2 \theta$ | $\tan^2 2\theta$ | tan² 3θ          |

3.6 (1 คะแนน) ตำแหน่งและโมเมนตัมเชิงเส้นไม่สามารถวัดค่าที่ถูกต้องแม่นยำได้พร้อมกัน ในทำนองเดียวกัน การวัดค่าพลังงานของสถานะและช่วงเวลาที่สถานะนั้นคงความเสถียรก็มีความสัมพันธ์ในลักษณะเดียวกัน ถ้า โมเลกุลแม่เหล็กชนิดหนึ่งคงความเสถียรได้เพียง 3 ps จะสามารถระบุค่าพลังงานได้แม่นยำถึงระดับขนาด (order of magnitude) ใดในหน่วย meV

#### Problem 4 (10 points)

Twistane  $(C_{10}H_{16})$  is a polycyclic compound with rings permanently forced into the twist-boat conformation.



- **4.1** (0.5 point) How many stereogenic centers are there in twistane?
- **4.2** (1 point) In the given structure, use an arrow to identify each stereogenic center and assign its absolute configuration.
- **4.3** (1 point) How many stereoisomers are possible for twistane?

The synthesis of twistane was first reported by Whitlock in 1962. The scheme is as follows.

1. LiAlH<sub>4</sub>
2. MsCl, pyridine

A

1. NaCN
2. KOH
3. acid workup

B

$$I_2$$
NaHCO<sub>3</sub>

X

 $H_2/Pt$ 
NEt<sub>3</sub>

Teagent Y

 $I_2$ 
NaHCO<sub>3</sub>
 $I_3$ 
 $I_4$ 
 $I_4$ 
 $I_5$ 
 $I_5$ 
 $I_5$ 
 $I_5$ 
 $I_5$ 
 $I_6$ 
 $I_7$ 
 $I_8$ 
 $I_8$ 

- **4.4** (4 points) What are the structures of compounds A-D?
- 4.5 (1 point) Conversion of D to twistane was done in basic condition. What is the reagent Y?
- **4.6** (0.5 point) There is a carbon labeled with (●) in the starting material. Where is this carbon in compound **D**?
- 4.7 (2 points) Propose a mechanism for the conversion of B to X.

#### Problem 5 (11.5 points)

Anthocyanin is a class of natural pigments that are common in many plants such as orchids. Apart from their intense and attractive colors, most of them can function as acid-base indicators.

5.1 (1.5 points) Cyanidin is an anthocyanin found in orchids. Use an arrow to identify only <u>ONE</u> proton that is most likely to be deprotonated if one equivalent of strong base is used. Also provide your reasoning.

**5.2** (1 point) A key intermediate in the biosynthesis of cyanidin is naringenin. From the scheme below, draw the structure of **X**.

**5.3** (2 points) Naringenin can undergo multiple steps of enzymatic transformations to cyanidin. From the scheme below, identify the type of reactions of each step (I-IV).

5.4 (1 point) Also, naringenin can be an intermediate that leads to the synthesis of another anthocyanin, namely catechin. Identify the maximum number of stereoisomers of compound A and B.

- **5.5** (1 point) From the scheme in question 5.4, draw the correct structure for *(2R,3S)*-catechin. Hint: The numbering rule in a heterocyclic system always starts at the heteroatom in the ring.
- 5.6 (5 points) Cyanidin can also occur naturally as a glycoside. Kondo and coworkers proposed a synthesis pathway for cyanidin  $3-O-\beta-D$ -glucoside as shown below.
  - **5.6.1** Propose the mechanism for *step I* that explains the fact that only one stereoisomer is formed (as shown in the scheme).
  - **5.6.2** Suggest suitable reagents for *steps II* and *III*. Some steps may require more than one reagent.
  - **5.6.3** Identify the structure of compound IV.

Bn = Benzyl; Ac= Acetyl; TBS = tert-butyldimethylsilyl; DDQ = 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone.

#### Problem 6 (8.5 points)

In addition to biosynthetic pathways, cyanidin may be synthesized by various methods. An example is a reported synthetic strategy which adopted the preparation of two parts so-called the 'Western' part (Compound A) and the 'Eastern' part (Compound E) of the molecule.

A route to Compound A could be synthesized from 2,4,6-trihydroxybenzaldehyde, the method of which is shown below.

HO OH 
$$Ac_2O$$
, DMAP  $A$  western Part

Compound **E** can be prepared as follows:

OH OH 
$$K_2CO_3$$
, Mel acetone, reflux  $C_9H_9O_3CI$ )

B  $K_2CO_3$ , BnBr acetone, reflux  $C_9H_9O_3CI$ )

 $C_1$ 
 $C_1$ 
 $C_2$ 
 $C_1$ 
 $C_2$ 
 $C_3$ 
 $C_4$ 
 $C_4$ 
 $C_4$ 
 $C_5$ 
 $C_7$ 
 $C_$ 

A reaction of **A** and **E** in dry EtOAc promoted by anhydrous HCl resulted in the formation of intermediate **F** which further cyclize to cyanidin.

A + E 
$$\xrightarrow{\text{HCI}}$$
 F (C<sub>43</sub>H<sub>44</sub>O<sub>19</sub>)  $\xrightarrow{\text{HO}}$  OH cyanidin

- **6.1** (5.5 points) Draw structures of Compounds A F.
- **6.2** (1.5 points) Show an arrow-pushing mechanism for the formation of Compound F.
- 6.3 (1.5 points) Indicate what you should observe when each of the following compounds (2,4,6-trihydroxybenzaldehyde, compound A, and cyanidin) is reacted with each of the following reagents (2,4-dinitrophenylhydrazine, Tollens' reagent, and FeCl<sub>3</sub>.

#### โจทย์ข้อที่ 7 (12 คะแนน)

กำหนดให้  $\mathrm{MH}_2$  และ  $\mathrm{LH}_3$  เป็นโมเลกุลที่มีสมบัติกรด-เบสและสมบัติทางเคมีไฟฟ้าที่ 25  $^{\circ}\mathrm{C}$  เป็นดังนี้

| โมเลกุล         | K <sub>a</sub>                 | ครึ่งปฏิกิริยารีดักชั้น                                            | E° (V) |
|-----------------|--------------------------------|--------------------------------------------------------------------|--------|
| MH <sub>2</sub> | $K_{a1} = ?$                   | M + 2H <sup>+</sup> + 2e <sup>-</sup> ⇌ MH <sub>2</sub>            | +0.400 |
| (150.0 g/mol)   | $K_{a2} = 3.6 \times 10^{-12}$ |                                                                    |        |
| LH <sub>3</sub> | $K_{a1} = 7.5 \times 10^{-4}$  | LH + 2H⁺ + 2e⁻ ⇌ LH₃                                               | +1.000 |
| (200.0 g/mol)   | $K_{a2} = 2.0 \times 10^{-5}$  |                                                                    |        |
|                 | $K_{a3} = 8.0 \times 10^{-7}$  |                                                                    |        |
|                 |                                | $10_3^- + 6H^+ + 5e^- \rightleftharpoons \frac{1}{2} I_2 + 3 H_2O$ | +1.180 |
|                 |                                | l <sub>2</sub> + 2e <sup>-</sup> <b>⇌</b> 2l <sup>-</sup>          | +0.620 |

- 7.1 (1 คะแนน) สารละลายที่มีความเข้มข้นของ  $LH^{2-}$  เท่ากับ  $LH_{2}^{-}$  มีค่า pH เท่าใด
- **7.2** (3 คะแนน) เมื่อผสมสารละลาย 0.0100 M  $MH_2$  ปริมาตร 50.00 mL กับสารละลาย 0.0200 M NaOH ปริมาตร 20.00 mL พบว่า สารละลายผสมมีค่า pH เป็น 3.25 คำนวณ  $K_{a1}$  ของ  $MH_2$

ทำการทดลองเพื่อวิเคราะห์สารละลายผสมตัวอย่างของ MH<sub>2</sub> และ LH<sub>3</sub> ตามขั้นตอนดังนี้

#### ตอน A

ไทเทรตสารละลายตัวอย่าง 25.00 mL ในกรด โดยมี KI มากเกินพอ พบว่า ที่จุดยุติต้องใช้สารละลาย 0.00175 M KIO<sub>3</sub> ปริมาตร 12.70 mL โดยปฏิกิริยาเกิดขึ้นดังสมการ

$$IO_3^- + 5I^- + 6H^+ \rightleftharpoons 3I_2 + 3H_2O$$

#### ตอน B

เจือจางสารละลายตัวอย่าง 25.00 mL ให้มีปริมาตรเป็น 100.00 mL จากนั้นไทเทรตสารละลายเจือจางที่ได้ 10.00 mL พบว่า ที่จุดยุติต้องใช้สารละลาย 0.0800 M NaOH ปริมาตร 10.16 mL

- **7.3** (2 คะแนน) ค่าคงที่สมดุลของปฏิกิริยา  $MH_2 + I_2 \rightleftharpoons M + 2H^+ + 2I^-$  และของปฏิกิริยา  $LH_3 + I_2 \rightleftharpoons LH + 2H^+ + 2I^-$  เป็นเท่าใด
- **7.4** (4 คะแนน) คำนวณความเข้มข้นของ MH $_2$  และ LH $_3$  ในสารละลายผสมตัวอย่างเริ่มต้นในหน่วย g/L
- 7.5 (2 คะแนน) ข้อความต่อไปนี้ถูกหรือผิด
  - ...... ที่ pH 9.00 ในสารละลาย MH<sub>2</sub> มี [M<sup>2-</sup>] > [MH<sup>-</sup>]
  - ...... กราฟการไทเทรตสารละลาย LH<sub>3</sub> ด้วยสารละลาย NaOH จะเห็นจุดสมมูล 3 จุดอย่างชัดเจน
  - ..... cresol red (ช่วงการเปลี่ยนสี pH 7.2–8.8 เหลือง–แดง) เป็นอินดิเคเตอร์ที่ดีสำหรับปฏิกิริยาการ ไทเทรต LH $_3$  + 3NaOH  $\longrightarrow$  LNa $_3$  + 3H $_2$ O
  - ......  $LH_3$  เป็นตัวออกซิไดส์ที่ดีกว่า  $MH_2$  ที่ภาวะมาตรฐาน

#### โจทย์ข้อที่ 8 (6 คะแนน)

สีย้อม MWIT พัฒนาโดยโรงเรียนมหิดลวิทยานุสรณ์ เป็นอินดิเคเตอร์รีดอกซ์ (redox indicator) มีสีต่างกันใน สารละลายที่มีศักย์ไฟฟ้า ( $E_{\rm soln}$ ) ต่างกัน นักเรียนกลุ่มหนึ่งต้องการแสดงกลวิทยาศาสตร์ (science show) ที่ไฟฟ้า สามารถเปลี่ยนสีสารละลายได้ โดยผสมสีย้อม MWIT กับสารละลายไฮโดรเจนเปอร์ออกไซด์เป็นน้ำยามหัศจรรย์ จากนั้นต่อขั้วไฟฟ้าเฉื่อยกับแบตเตอรี่ จุ่มในน้ำยามหัศจรรย์ แล้วให้กระแสไฟฟ้าคงที่ ทำให้  $E_{\rm soln}$  เปลี่ยนไป และสีย้อม MWIT เปลี่ยนสีจากสีเหลืองเป็นสีน้ำเงิน

## กำหนดข้อมูลดังนี้

- นิยาม E<sub>soln</sub> เป็นศักย์ไฟฟ้าของเซลล์เคมีไฟฟ้าที่มีครึ่งเซลล์ช้ายมือเป็นขั้วไฟฟ้าไฮโดรเจนมาตรฐาน และ
   ครึ่งเซลล์ขวามือเป็นขั้วไฟฟ้าเฉื่อย (เช่น แพลทินัม) จุ่มในน้ำยามหัศจรรย์
- สีย้อม MWIT มีสีเหลืองเมื่อ  $E_{\rm soln} < 0.600 \ V$  และมีสีน้ำเงินเมื่อ  $E_{\rm soln} > 0.660 \ V$
- น้ำยามหัศจรรย์เตรียมได้โดยปีเปตไฮโดรเจนเปอร์ออกไซด์ล้างแผล (ความเข้มข้น 3.06 %w/v) ปริมาตร 10.00 mL เจือจางด้วยกรดไฮโดรคลอริกในขวดกำหนดปริมาตรขนาด 500.0 mL แล้วผสมกับสีย้อม MWIT ปริมาณน้อยมากจนถือว่า  $E_{soln}$  ขึ้นกับครึ่งปฏิกิริยาของไฮโดรเจนเปอร์ออกไซด์เพียงอย่างเดียว สารละลายมี [H<sup>+</sup>] = 1.00 M ตลอดเวลา และในน้ำยามหัศจรรย์นี้เริ่มต้นไม่มีออกซิเจน
- การแยกสลายด้วยไฟฟ้า (electrolysis) ที่เกิดขึ้นที่แอโนด คือ ปฏิกิริยาของไฮโดรเจนเปอร์ออกไซด์ ได้แก๊ส ออกซิเจนและโปรตอน ศักย์ไฟฟ้ารีดักชันมาตรฐานที่ 25 ℃ ของครึ่งปฏิกิริยานี้เท่ากับ +0.680 V และถือว่า ปฏิกิริยาที่แคโทดไม่ส่งผลต่อ E<sub>soln</sub>
- 8.1 (1 คะแนน) ความเข้มข้นของไฮโดรเจนเปอร์ออกไซด์ในน้ำยามหัศจรรย์ที่เตรียมได้ในหน่วยโมลาร์เป็นเท่าใด
- 8.2 (1 คะแนน) เขียนสมการที่ดุลของครึ่งปฏิกิริยาการแยกสลายด้วยไฟฟ้าที่เกิดขึ้นที่แอโนด พร้อมระบุสถานะ
- 8.3 (0.5 คะแนน) ระบุสถานะออกซิเดชันของออกซิเจนในไฮโดรเจนเปอร์ออกไซด์
- 8.4 (3.5 คะแนน) คำนวณกระแสไฟฟ้าคงที่จากแบตเตอรี่ที่น้อยที่สุดที่ต้องใช้เพื่อเปลี่ยนสีน้ำยามหัศจรรย์จากสี เหลืองเป็นสีน้ำเงินภายในเวลา 60.0 วินาที ที่ 25 °C

#### โจทย์ข้อที่ 9 (11 คะแนน)

9.1 (5 คะแนน) Chromium(III) ion ทำปฏิกิริยากับ NaOH ให้ตะกอนสีเขียวของ chromium(III) hydroxide ซึ่ง ละลายใน NaOH มากเกินพอ เกิดสารเชิงซ้อน  $[Cr(OH)_4]^-$ 

กำหนดให้ ที่ 25 °C  $K_{\rm sp}$  ของ  ${\rm Cr}({\rm OH})_3=6.3\times 10^{-31}$   $K_{\rm f}$  ของ  ${\rm [Cr}({\rm OH})_4]^-=8.0\times 10^{29}$ 

- 9.1.1  $\,$  pH ต่ำสุดที่สามารถตกตะกอน Cr(OH) $_3$  จากสารละลายที่มี Cr $^{3+}$  เข้มข้น 0.075 M เป็นเท่าใดที่ 25  $^{\circ}$ C
- **9.1.2** เขียนขั้นตอนการเตรียมสารละลาย Cr³+ เข้มข้น 0.075 M ปริมาตร 250 mL จากของแข็ง Cr(NO₃)₃•9H₂O (400.0 g/mol)
- **9.1.3** คำนวณมวลสูงสุดของ Cr(OH) $_3$  ที่ละลายได้ในสารละลายบัฟเฟอร์ pH 9.00 ปริมาตร 1.00 L ที่ 25  $^{\circ}$ C
- 9.2 (4 คะแนน) เมื่อนำสารละลาย Cr(NO<sub>3</sub>)<sub>3</sub> มาเติมสารละลาย ammonia และสารละลาย potassium chloride จะเกิดสารประกอบเชิงซ้อน A ที่เป็น octahedral complex แยกของแข็ง A มาทดลอง ได้ผลการทดลองดังนี้
  - i) นำสาร A 0.572 g ไปเผาไหม้เมื่อมี  ${\rm O_2}$  มากเกินพอ พบว่า เกิด  ${\rm CrO_3}$  0.235 g
  - ii) ละลายสาร A 0.126 g ในน้ำปริมาตร 25.0 mL แล้วนำไปไทเทรตกับสารละลาย HCl เข้มข้น 0.100 M พบว่า ที่จุดยุติ ใช้สารละลาย HCl ปริมาตร 25.87 mL
  - iii) ละลายสาร A 0.326 g ในน้ำ 10.00 g สารละลายที่ได้มีจุดเยือกแข็ง –0.72 °C ( $K_{\rm f}$  ของน้ำ = 1.86 °C kg/mol)

ระบุ van't Hoff factor (i) สูตรโมเลกุลที่แสดงส่วนที่เป็นสารเชิงซ้อน (coordination sphere) ให้ชัดเจน และเขียนชื่อของสารประกอบเชิงซ้อน A เป็นภาษาอังกฤษตามหลัก IUPAC

9.3 (2 คะแนน) นำเซลล์เคมีไฟฟ้าที่ประกอบด้วยขั้วไฟฟ้าจุ่มในสารละลาย  $Cr(NO_3)_3$  ต่อกับเซลล์เคมีไฟฟ้าอีก 2 เซลล์แบบอนุกรม โดยเซลล์ที่ 2 ประกอบด้วยสารละลายของ  $Os^{n+}$  และ  $NO_3^-$  และเซลล์ที่ 3 ประกอบด้วย สารละลายของ  $\mathbf{X}^+$  เมื่อเวลาผ่านไป 30 นาที พบว่า มีโลหะเกาะที่ขั้วไฟฟ้าของแต่ละเซลล์ดังนี้

เซลล์ที่ 1 มี chromium 1.51 g เซลล์ที่ 2 มี osmium 4.14 g เซลล์ที่ 3 มี **X** 9.40 g

- 9.3.1 เขียนชื่อเกลือ nitrate ของ Os<sup>n+</sup> เป็นภาษาอังกฤษ
- 9.3.2 X คือธาตุใด

#### โจทย์ข้อที่ 10 (10 คะแนน)

กำหนดให้ อะตอมหรือไอออนในโครงสร้างผลึกเรียงชิดกัน และขนาดของอะตอมหรือไอออนไม่ขึ้นกับอุณหภูมิ ที่ความดัน 1 atm เหล็ก (iron, Fe) มี 3 อัญรูปหลัก

- ที่อุณหภูมิปกติ เหล็กอยู่ในรูปที่เรียกว่า ferrite หรือ  $\alpha$ -Fe มีโครงสร้างผลึกเป็นแบบลูกบาศก์กลางตัว (body-centered cubic, bcc) และมีความหนาแน่น 7.874 g cm<sup>-3</sup>
- ที่อุณหภูมิสูงกว่า 912 °C โครงสร้างจะเปลี่ยนไปอยู่ในรูปที่เรียกว่า austenite หรือ γ-Fe มีโครงสร้างผลึก แบบลูกบาศก์กึ่งกลางหน้า (face-centered cubic, fcc)
- ที่อุณหภูมิสูงกว่า 1394 °C โครงสร้างผลึกของเหล็กจะเปลี่ยนไปอยู่ในรูปที่อะตอมมีเลขโคออร์ดิเนชันลดลง เหลือ 2 ใน 3 ของอัญรูปที่ 912 °C
- 10.1 (2 คะแนน) หน่วยเซลล์ของ  $\alpha$ -Fe มีมวลกี่กรัม และมีความยาวด้านกี่พิโคเมตร
- 10.2 (1.5 คะแนน) ปริมาตรของอะตอม Fe ใน 1 หน่วยเซลล์ของ γ-Fe คิดเป็นกี่ลูกบาศก์เซนติเมตร
- **10.3** (1.25 คะแนน)  $\gamma$ -Fe มีความหนาแน่นเป็นกี่เท่าของ lpha-Fe
- **10.4** (0.5 คะแนน) หน่วยเซลล์ของเหล็กที่อุณหภูมิ 1394 °C มีโครงสร้างผลึกแบบใด
- 10.5 (1.25 คะแนน) การปรับปรุงคุณภาพของเหล็กให้เป็นเหล็กกล้าสามารถทำได้ด้วยการเติมอะตอมคาร์บอน เข้าไปในหน่วยเซลล์ของเหล็ก
  - 10.5.1 ช่องว่างออกตะฮีดรัลใน  $\gamma$ -Fe มีเส้นผ่านศูนย์กลางยาวกี่พิโคเมตร
  - 10.5.2 ถ้าอะตอมคาร์บอนมีรัศมีอะตอม 77 pm เข้าไปอยู่ในช่องออกตะฮีดรัลของ γ-Fe จะทำให้ ปริมาตรของหน่วยเซลล์ใหม่นี้เปลี่ยนเป็นกี่ลูกบาศก์เซนติเมตร
- 10.6 (3.5 คะแนน) หนึ่งในสารประกอบออกไซด์ของเหล็ก มีโครงสร้างผลึกที่ไอออนลบเรียงตัวเป็นโครงสร้างแบบ ชิดที่สุดชนิดลูกบาศก์ (ccp) และมีไอออนบวกเข้าไปอยู่ในช่องออกตะฮีดรัลทุกช่อง
  - 10.6.1 วาดรูปแสดงตำแหน่งไอออนของเหล็กและออกซิเจนที่ระยะที่ระบุตามแกน z

กำหนดให้

🔿 = ไอออนบวก

X = ไอออนลบ

- 10.6.2 สูตรอย่างง่ายของสารประกอบออกไซด์ชนิดนี้คืออะไร
- 10.6.3 เลขโคออร์ดิเนชันของไอออนลบเท่ากับเท่าใด

#### โจทย์ข้อที่ 11 (11 คะแนน)

ธาตุ X, Y และ Z เป็นธาตุต่างหมู่กัน โดยมีจำนวนเวเลนซ์อิเล็กตรอน (valence electron) ไม่เกิน 4 มีผลรวมของ เลขควอนตัม n และ l ของอิเล็กตรอนตัวสุดท้ายที่บรรจุตามหลักการบรรจุอิเล็กตรอนเป็นเลขคี่ไม่เกิน 5 โดยที่ผลรวม (n+l) นี้ มีทั้งที่มากกว่า น้อยกว่า และเท่ากับจำนวนอิเล็กตรอนวงนอก

11.1 (1 คะแนน) โลหะแทรนซิชันใดบ้างที่ตรงตามเงื่อนไขด้านบน

ข้อมูลเพิ่มเติมของแต่ละธาตุเป็นดังนี้

- สารประกอบออกโซที่รู้จักโดยทั่วไปของธาตุ X เป็นแก๊สที่อุณหภูมิห้อง
- Y เกิดสารประกอบกับ Z ในรูป dimer ได้
- เฟสไดอะแกรมของธาตุ Z เป็นดังแสดง



ตอบคำถามต่อไปนี้โดยใช้สัญลักษณ์ตามตารางธาตุ เขียนชื่อสารด้วยตัวอักษรอังกฤษ

- 11.2 (1 คะแนน) วาดรูปโครงสร้างของสารประกอบ dimer ของ YZ ที่เห็นมุมและรูปร่างที่ชัดเจน
- 11.3 (2 คะแนน) ระบุชื่อและสูตรของกรดออกโซของ X ที่มี X 1 อะตอมที่เป็นไปได้ และตามหลัก VSEPR มุมพันธะรอบอะตอมกลางของกรดนี้มีค่าประมาณเท่าใด
- 11.4 (1 คะแนน) การจัดอิเล็กตรอนแบบย่อ (noble gas core notation) ของ Z เป็นอย่างไร
- 11.5 (1 คะแนน) หากวาง Z ไว้บนมือนาน ๆ Z จะอยู่ในสถานะใด หากความหนาแน่นของ Z ในรูปของแข็งมีค่า
   5.9 g/cm³ และความหนาแน่นของ Z ในรูปของแข็งและของเหลวต่างกัน 3.4% เมื่อนำของแข็ง Z 125 g มา
   ทำให้เป็นของเหลว ที่ 30 ℃ ปริมาตรของ Z จะมีค่าเท่าใดในหน่วย mL (ตอบทศนิยม 1 ตำแหน่ง)
- 11.6 (5 คะแนน) เขียนแผนภาพออร์บิทัลเชิงโมเลกุลของสารประกอบออกไซด์ XO ที่เกิดจากการผสมออร์บิทัล วงนอกสุดชนิดเดียวกันและเกิด s-p mixing โดยเลือกธาตุที่สอดคล้องกับแผนภาพที่ให้ และใช้ตัวเลือก a-s (ในกระดาษคำตอบ) ใส่ลงในกรอบ การจัดเรียงอิเล็กตรอนของ XO ตามแผนภาพนี้เป็นอย่างไร อันดับ พันธะของ XO มีค่าเท่าใด ความยาวพันธะเป็นอย่างไรเมื่อเทียบกับความยาวพันธะของ X<sub>2</sub>

#### โจทย์ข้อที่ 12 (10 คะแนน)

ทฤษฎีสนามผลึก (crystal field theory) และทฤษฎีสนามลิแกนด์ (ligand field theory) สามารถนำมาใช้อธิบาย สมบัติแม่เหล็กของสารประกอบเชิงซ้อน ในทางกลับกันถ้าทราบสมบัติแม่เหล็กก็สามารถวิเคราะห์โครงสร้างโมเลกุล ของสารประกอบเชิงซ้อนได้ สมบัติแม่เหล็กจะเชื่อมโยงกับแมกเนติกโมเมนต์ (magnetic moment) ใน สารประกอบเชิงซ้อน อันเป็นผลมาจากจำนวนอิเล็กตรอนเดี่ยว (unpaired electron) ของอะตอมกลางในไอออน เชิงซ้อน โดยคำนวณได้จาก  $\mu_{\mathrm{B}}=\sqrt{n(n+2)}$  เมื่อ  $\mu_{\mathrm{B}}$  คือ แมกเนติกโมเมนต์ มีหน่วยเป็น Bohr magneton (BM) และ n คือจำนวนอิเล็กตรอนเดี่ยวของอะตอมกลางในไอออนเชิงซ้อน

- 12.1 (3 คะแนน) สารประกอบเชิงซ้อน A และ B ประกอบด้วยไอออนเชิงซ้อนประจุลบของ Fe(II) และ Ni(II) ตามลำดับ มีลิแกนด์เป็น CN⁻ ทั้งหมด ทั้งสาร A และ B มีค่าแมกเนติกโมเมนต์เท่ากับศูนย์ โดยไอออน เชิงซ้อนในสาร A มีประจุเป็น 2 เท่าของไอออนเชิงซ้อนในสาร B
  - 12.1.1 จากสมบัติแม่เหล็กของสาร A และ B ทำนายสูตรเคมีของไอออนเชิงซ้อนประจุลบในสาร A และ B
  - 12.1.2 เขียนแผนภาพพลังงานของ d ออร์บิทัลของไอออนเชิงซ้อนในสาร A และ B ที่ระบุชนิดของ d ออร์บิทัลและเติมอิเล็กตรอนให้สมบูรณ์
- **12.2** (2 คะแนน) สารประกอบเชิงซ้อนของโลหะพลวงมีสูตรอย่างง่ายเป็น ( $NH_4$ ) $_2$ [SbCl $_6$ ] มีสมบัติแม่เหล็กเป็น ไดอะแมกเนติก ถ้าสารประกอบเชิงซ้อนดังกล่าวเป็นของผสมของสารประกอบที่มีไอออนเชิงซ้อน  $[\operatorname{SbCl}_d]^{ imes}$ และ  $[SbCl_6]^Y$  ในสัดส่วน 1:1 X และ Y มีค่าเท่าใด และสูตรของสารประกอบทั้งสองชนิดคืออะไร
- 12.3 (5 คะแนน) Spin crossover (SCO) เป็นสมบัติของสารเชิงซ้อนที่สามารถเปลี่ยนสถานะของสปิน (spin) ระหว่างแบบสปินสูง (high spin, HS) กับแบบสปินต่ำ (low spin, LS) ในปัจจุบันมีการวิจัยเรื่อง SCO อย่าง แพร่หลาย ตั้งแต่การสังเคราะห์สารเชิงซ้อนที่มีสมบัติ SCO จนถึงการประยุกต์ใช้งานด้านต่าง ๆ เช่น การใช้ เป็นเซ็นเซอร์และการใช้เป็นหน่วยความจำ ให้นักเรียนใช้ความรู้พื้นฐานในทฤษฎีสนามผลึกและทฤษฎีสนาม ลิแกนด์ ตอบคำถามต่อไปนี้
  - 12.3.1 สารเชิงซ้อนที่มีโครงสร้างแบบทรงแปดหน้า มีจำนวนอิเล็กตรอนใน d ออร์บิทัลแบบใดบ้างที่เกิด ปรากฏการณ์ SCO ได้
  - **12.3.2** เขียนแผนภาพระดับพลังงานของ d ออร์บิทัลที่เลือกในข้อ 12.3.1 มา 2 แบบ พร้อมเติมอิเล็กตรอน ทั้ง HS และ LS และหาผลต่างแมกเนติกโมเมนต์ของ HS และ LS
  - 12.3.3 สารประกอบเชิงซ้อน [Fe(phen)3](SCN)2 เมื่อให้ความร้อนจะเกิดการเปลี่ยนแปลงเป็นสารประกอบ เชิงซ้อน  $Fe(phen)_2(NCS)_2$  ซึ่งมีโครงสร้างดังรูป ที่อุณหภูมิ 27 °C พบว่า สารทั้งสองมีแมกเนติก โมเมนต์เป็น 0 และ 4.90 BM ตามลำดับ



[Fe(phen)<sub>3</sub>](SCN)<sub>2</sub> Fe(phen)<sub>2</sub>(NCS)<sub>2</sub>

- 12.3.3.1 ข้อความใดบ้างถูกต้อง (เลือกคำตอบผิดติดลบ)
  - $\square$  สารประกอบเชิงซ้อน [Fe(phen) $_3$ ](SCN) $_2$  มีการจัดอิเล็กตรอนในออร์บิทัลแบบสปินต่ำ (LS) เนื่องจาก phen เป็นลิแกนด์สนามอ่อน (weak field ligand) มีผลทำให้  $\Delta$  มีค่าน้อย กว่าพลังงานในการเข้าคู่ (pairing energy)
  - สารประกอบเชิงซ้อน [Fe(phen) $_3$ ](SCN) $_2$  มีการจัดอิเล็กตรอนในออร์บิทัลแบบสปินต่ำ (LS) เนื่องจาก phen เป็นลิแกนด์สนามแรง (strong field ligand) มีผลทำให้  $\Delta$  มีค่ามากกว่า พลังงานในการเข้าคู่ (pairing energy)
  - สารประกอบเชิงซ้อน  $Fe(phen)_2(NCS)_2$  ที่ phen ถูกแทนที่ด้วย  $NCS^-$  ทำให้ค่า  $\Delta$  ลดลง มีผลทำให้พลังงานในการเข้าคู่ (pairing energy) มีค่ามากกว่า ทำให้เกิดสารประกอบ เชิงซ้อนที่มีการจัดอิเล็กตรอนในออร์บิทัลแบบสปินสูง (HS)
  - ☐ สารประกอบเชิงซ้อน Fe(phen)₂(NCS)₂ ที่ phen ถูกแทนที่ด้วย NCS⁻ ทำให้ค่า ∆ เพิ่มขึ้น
    มีผลทำให้พลังงานในการเข้าคู่ (pairing energy) มีค่าน้อยกว่า ทำให้เกิดสารประกอบ
    เชิงซ้อนที่มีการจัดอิเล็กตรอนในออร์บิทัลแบบสปินสูง (HS)
- 12.3.3.2 เมื่อตรวจวัดสารประกอบเชิงซ้อน [Fe(phen) $_3$ ](SCN) $_2$  และ Fe(phen) $_2$ (NCS) $_2$  ด้วยเทคนิค Mössbauer spectroscopy ได้ Mössbauer spectrum ดังรูปที่ 1 และ 2 ตามลำดับ นอกจากนี้พบว่า สารเชิงซ้อน Fe(phen) $_2$ (NCS) $_2$  เท่านั้นที่มีสมบัติ SCO จากการทดลองวัด แมกเนติกโมเมนต์ ( $\mu_{\rm B}$ ) ที่อุณหภูมิต่าง ๆ ดังรูปที่ 3 วาดเส้น Mössbauer spectrum ของ Fe(phen) $_2$ (NCS) $_2$  ที่อุณหภูมิ 180 K



รูปที่ 1 Mössbauer spectrum ของ [Fe(phen)<sub>3</sub>](SCN)<sub>2</sub>



รูปที่ 2 Mössbauer spectrum ของ Fe(phen),(NCS),



รูปที่ 3  $\mu_{\text{B}}$  ของ Fe(phen) $_2$ (NCS) $_2$  ที่ เปลี่ยนไปตามอุณหภูมิ

