

UNIVERSITY OF MORATUWA, SRI LANKA

Faculty of Engineering

Department of Electronic and Telecommunication Engineering

Semester 3 (Intake 2020)

EN2063-SIGNALS AND SYSTEMS

Project

K.P. Tharuka

200641T

Table of contents

Table of contents	2
`1 FIR Bandpass Digital Filter Design	3
1.1 Filter Specifications	3
1.2 Impulse Response of the FIR Filter	4
1.3 Magnitude Response of the FIR Filter for $-\pi \le \omega < \pi$ rad/sample	4
1.3 Magnitude Response of the FIR Filter for $\omega p1 \le \omega \le \omega p2$ rad/sample	5
2 IIR Bandpass Digital Filter Design	6
2.1 coefficients of the transfer function of the IIR filter	6
2.2 Magnitude Response of the IIR Filter for $-\pi \le \omega < \pi$ rad/sample	7
2.3 Magnitude Response of the IIR Filter for $\omega p1 \le \omega \le \omega p2$ rad/sample	8
3 Comparison of FiR and IIR filters	8
4 Appendices	9

`1 FIR Bandpass Digital Filter Design

1.1 Filter Specifications

- A=6
- B=4
- C=1

Parameter (Analog Domain)	Value	
Maximum passband ripple, A~ p	$0.1 + (0.01 \times A) dB$	= 0.16 dB
Minimum stopband attenuation, A a	50 + B dB	=54dB
Lower passband edge, Ωp1	$(C \times 100) + 400 \text{ rad/s}$	=500rad/s
Upper passband edge, Ωp2	$(C \times 100) + 900 \text{ rad/s}$	=1000rad/s
Lower stopband edge, Ω s1	$(C \times 100) + 100 \text{ rad/s}$	=200rad/s
Upper stopband edge, Ωs2	$(C \times 100) + 1100 \text{ rad/s}$	=1200rad/s
Sampling frequency, Ωsm	$2((C \times 100) + 1500) \text{ rad/s}$	=3200rad/s

$$\omega = \frac{2\pi\Omega}{\Omega sm}$$

Parameter (Digital Domain)	Value
Lower passband edge,ωp1	$5\pi/16$
Upper passband edge, ωp2	$10\pi/16$
Lower stopband edge, ωs1	$2\pi/16$
Upper stopband edge, ωs2	$12\pi/16$

1.2 Impulse Response of the FIR FIlter

1.3 Magnitude Response of the FIR Filter for $-\pi \le \omega < \pi$ rad/sample

1.3 Magnitude Response of the FIR Filter for $\omega p1 \le \omega \le \omega p2$ rad/sample

2 IIR Bandpass Digital Filter Design

$$D=1\%4=1$$

Approximation method is Chebyshev.

Transfer function of the IIR filter is in the form of;

$$H_z(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + \dots + b_{N-1}z^{-N+1}}{1 + \dots + a_{M-1}z^{-M+1}}$$

2.1 coefficients of the transfer function of the IIR filter

k	b_k	a_k
0	0.000301994810908868	0.000301994810908868
1	$-2.66453525910038 \times 10^{-15}$	-2.66453525910038 ×10 ⁻¹⁵
2	-0.00211396367635608	-0.00211396367635608
3	-2.66453525910038 ×10 ⁻¹⁵	-2.66453525910038 ×10 ⁻¹⁵
4	0.00634189102909666	0.00634189102909666
5	-4.44089209850063 ×10 ⁻¹⁴	-4.44089209850063e-14
6	-0.0105698183817093	-0.0105698183817093
7	-1.17239551400417 ×10 ⁻¹³	-1.17239551400417 ×10 ⁻¹³
8	0.0105698183819296	0.0105698183819296
9	-1.07469588783715 ×10 ⁻¹³	-1.07469588783715 ×10 ⁻¹³
10	-0.00634189102901317	-0.00634189102901317
11	-3.06421554796543 ×10 ⁻¹⁴	$-3.06421554796543 \times 10^{-14}$
12	0.00211396367638228	0.00211396367638228
13	-6.66133814775094 ×10 ⁻¹⁵	-6.66133814775094 ×10 ⁻¹⁵
14	-0.000301994810906620	-0.000301994810906620

2.2 Magnitude Response of the IIR Filter for $-\pi \le \omega < \pi$ rad/sample

2.3 Magnitude Response of the IIR Filter for $\omega p1 \le \omega \le \omega p2$ rad/sample

3 Comparison of FiR and IIR filters

FIR Filter	IIR Filter
FIR filter is a non recursive filter; Difference equation of a non recursive filter is given by; $\mathbf{y[n]} = \sum_{k=0}^{m} b_k \mathbf{x[n-k]}$ Due to the symmetric property $\mathbf{y[n]} = \sum_{k=0}^{m/2-1} b_k (\mathbf{x[n-k]} + \mathbf{x[n-(m-k)]}) + b_{m/2} \mathbf{x[n-m/2]}$ Order of the filter = m=52 Number of adders required = m=52 Number of multipliers required = m/2+1=27 Group delay = m/2 = 26	IIR filter is a recursive filter; Difference equation of a recursive filter is given by; $\mathbf{y[n]} = \sum_{k=0}^{m} b_k \mathbf{x[n-k]} + \sum_{k=1}^{n} a_k \mathbf{y[n-k]}$ Since we have used bilinear transformation m=n; Order of the filter = m=14 Number of adders required =2*m=28 Number of multipliers required = $2m+1=2x14+1=29$ Group delay = m/2 =7

1/19/23 1:49 AM C:\Users\pahan\FIR Filter.m

```
1 of 2
```

```
%sampling frequency
fsampling = 3200/(2*pi);
% Filter specifications
bandedges = [200/(2*pi) 500/(2*pi) 1000/(2*pi) 1200/(2*pi)];
magnitudes = [0 1 0];
deviations = [10^{-54/20}] 10^{0.16/20} 10^{-54/20}];
%obtaining the FIR filter related to the given specifications
[n,Wn,beta,filter type] = kaiserord(bandedges,magnitudes,deviations,fsampling);
n = n + rem(n, 2);
hn = fir1(n, Wn, filter type, kaiser(n+1, beta), 'noscale');
%plot impulse response
figure ('name', 'Impulse Response of the FIR Filter');
impz(hn,1);
grid on;
% Magnitude response in between [-pi,pi]
figure ('name', 'Magnitude response of the FIR filter');
[H,f] = freqz(hn,1);
plot(f/pi,20*log10(abs(H)), 'b');
hold on;
plot(-f/pi,20*log10(abs(H)), 'b');
xlabel("$frequency \ *\pi \ rad/sample$","Interpreter","Latex");
ylabel("$Magnitude (db) $", "Interpreter", "Latex");
% Magnitude response in between [-pi,pi]
figure('name', 'Magnitude response of the FIR filter');
[H,f] = freqz(hn,1);
plot(f/pi,abs(H),'b')
hold on
plot(-f/pi,abs(H),'b')
xlabel("$frequency \ *\pi \ rad/sample$","Interpreter","Latex");
ylabel("$Magnitude$", "Interpreter", "Latex");
% Magnitude response in between [Wp1,Wp2]
figure('name','Magnitude response of the FIR filter for [Wp1,Wp2]');
plot(f/pi, 20*log10(abs(H)), 'b')
xlim([(5/16) (10/16)])
xlabel("$frequency \ *\pi \ \omega \ rad/sample$","Interpreter","Latex");
ylabel("$Magnitude (db)$","Interpreter","Latex");
grid on;
```

1/19/23 1:50 AM C:\Users\pahan\Documents\MATLAB...\IIR.m 1 of 2

```
%Sampling interval
Tsm = (2*pi)/3200;
%Spceification of the Analog FIlter
Wp = [abs((2/Tsm)*tan((5*pi)/32)) abs((2/Tsm)*tan((10*pi)/32))];
Ws = [abs((2/Tsm)*tan(pi/16)) abs((2/Tsm)*tan((12*pi)/32))];
Rp = 0.16;
Rs = 54;
% obtain the analog filter according to the above specification
[n,W] = cheblord(Wp, Ws, Rp, Rs, 's');
%obtaining the transfer function of the analog filter
[b,a] = chebyl(n,Rp,W,'s');
%obtaining the transfer function of the digital filter using the bilinear
%transformation
[zd,zp]=bilinear(b,a,1/Tsm);
[H,f] = freqs(b,a);
[A,w] = freqz(zd,zp);
% Magnitude response of analog filter
figure('name','Magnitude response of the analog filter');
plot(f,20*log10(abs(H)), 'b');
hold on;
plot(-f,20*log10(abs(H)),'b');
xlabel("$frequency \ *\pi \ rad/sample$","Interpreter","Latex");
ylabel("$Magnitude (db)$","Interpreter","Latex");
% Magnitude response of Analog filter
figure('name','Magnitude response of the analog filter');
plot(f,abs(H),'b')
hold on
plot(-f,abs(H),'b')
xlabel("$frequency \ rad/sample$","Interpreter","Latex");
ylabel("$Magnitude$","Interpreter","Latex");
% Magnitude response in between [-pi,pi]
figure('name','Magnitude response of the IIR filter');
plot(w/pi,20*log10(abs(A)),'b');
```

1/19/23 1:50 AM C:\Users\pahan\Documents\MATLAB...\IIR.m 2 of 2

```
hold on;
plot(-w/pi,20*log10(abs(A)), 'b');
xlabel("$frequency \ *\pi \ rad/sample$","Interpreter","Latex");
ylabel("$Magnitude (db)$","Interpreter","Latex");
% Magnitude response in between [-pi,pi]
figure('name','Magnitude response of the IIR filter');
plot(w/pi,abs(A),'b')
hold on
plot(-w/pi,abs(A),'b')
xlabel("$frequency \ *\pi \ rad/sample$","Interpreter","Latex");
ylabel("$Magnitude$","Interpreter","Latex");
% Magnitude response in between [Wp1,Wp2]
figure ('name', 'Magnitude response of the IIR filter for [Wp1, Wp2]');
plot(w/pi, 20*log10(abs(A)), 'b')
xlim([(5/16) (10/16)])
xlabel("$frequency \ *\pi \ \omega \ rad/sample$","Interpreter","Latex");
ylabel("$Magnitude (db)$","Interpreter","Latex");
grid on;
```