

图形开发

用户指南

文档版本 07

发布日期 2018-11-23

版权所有 © 上海海思技术有限公司 2019。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何 形式传播。

商标声明

(上) AISILICON、海思和其他海思商标均为海思技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做 任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指 导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

上海海思技术有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: http://www.hisilicon.com/cn/

客户服务邮箱: support@hisilicon.com

前言

概述

本文为图形开发推荐了1个方案,分别从方案介绍、衍生方案、开发流程、应用场景及优点和限制介绍,为用户在进行图形开发时提供参考。

□ 说明

- 本文未做特殊说明, Hi3516D 与 Hi3516A 完全一致
- 本文未做特殊说明, Hi3518EV201、Hi3516CV200 与 Hi3518EV200 完全一致
- 未有特殊说明, Hi3556V100 与 Hi3559V100 完全一致
- 未有特殊说明, Hi3516AV200 与 Hi3519V101 完全一致
- 本文未做特殊说明, Hi3519AV100、Hi3559CV100 与 Hi3559AV100 完全一致
- 未有特殊说明, Hi3516DV300、Hi3516AV300、Hi3559V200、Hi3556V200 与 Hi3516CV500 内容一致

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3516A	V100
Hi3516D	V100
Hi3518E	V200
Hi3518E	V201
Hi3516C	V200
Hi3519	V100
Hi3519	V101
Hi3559	V100
Hi3556	V100
Hi3516A	V200
Hi3559A	V100

产品名称	产品版本
Hi3559C	V100
Hi3519A	V100
Hi3516C	V500
Hi3516D	V300
Hi3516A	V300
Hi3559	V200
Hi3556	V200
Hi3516E	V200
Hi3516D	V200
Hi3516E	V300
Hi3518E	V300

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲ 危险	用于警示紧急的危险情形,若不避免,将会导致人员死亡或严重的人身伤害。
△警告	用于警示潜在的危险情形,若不避免,可能会导致人员死亡或严 重的人身伤害。
△ 注意	用于警示潜在的危险情形,若不避免,可能会导致中度或轻微的 人身伤害。
注意	用于传递设备或环境安全警示信息,若不避免,可能会导致设备 损坏、数据丢失、设备性能降低或其它不可预知的结果。 不带安全警示符号的"注意"不涉及人身伤害。

符号	说明	
□ 说明	用于突出重要/关键信息、最佳实践和小窍门等。	
	"说明"不是安全警示信息,不涉及人身、设备及环境伤害信息。	

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

文档版本 07 (2018-11-23)

第7次正式版本发布。

添加 Hi3516EV200/Hi3516EV300/Hi3518EV300 的相关内容。

文档版本 06 (2018-01-04)

添加 Hi3559AV100 相关内容。

文档版本 05 (2016-12-20)

第5次正式版本发布。

添加 Hi3559V100 相关内容。

文档版本 04 (2016-05-10)

第4次正式版本发布。

添加 Hi3519V101 相关内容。

文档版本 03 (2015-08-20)

第3次正式版本发布。

添加 Hi3519V100 的相关内容。

文档版本 02 (2015-05-29)

第2次正式版本发布。

添加 Hi3518EV200/V201 和 Hi3516CV200 的相关内容。

1.1 小节涉及修改。

文档版本 01 (2014-12-20)

第1次正式版本发布。

添加 Hi3516D 的相关内容。

文档版本 00B01 (2014-09-14)

第1次临时版本发布。

前 言	i
1 图形层介绍	
1.1 概述	
1.2 图形层体系结构	1
2 图形开发推荐方案	3
2.1 概述	3
2.2 单图层实现用户界面方案	3
2.2.1 方案介绍	
2.2.2 衍生方案	
2.2.3 开发流程	
2.2.4 应用场景	6
2.2.5 优卢和限制	6

插图目录

图 2-1	单图层方案的结构示意图	4
图 2-2	衍生方案的结构图	. 5

表格目录

1 图形层介绍

1.1 概述

海思数字媒体处理平台提供一整套机制支持图形界面的开发,主要包括:

- 图形二维加速引擎(Two Dimensional Engine,简称 TDE),它利用硬件加速对图 形图像进行处理。
- Hisilicon Framebuffer(以下简称 HiFB)用于管理叠加图形层,它不仅提供 Linux Framebuffer 的基本功能,还在 Linux Framebuffer 的基础上增加层间 colorkey、层间 Alpha 等扩展功能。

□ 说明

- TDE 相关使用方法请参见《TDE API 参考》
- HiFB 相关使用方法请参见《HiFB 开发指南》和《HiFB API 参考》

1.2 图形层体系结构

Hi3516A/Hi3518EV200/Hi3519V100/Hi3519V101/Hi3559V100 支持 1 路标清 SD0 显示设备,同时支持 1 个图形层 G0。

Hi3559AV100/Hi3519AV100 支持 1 路超清 HD0 显示设备, 1 路高清 HD1 显示设备, 同时支持 3 个图形层 G0、G1、G3。

Hi3516CV500/Hi3516DV300/Hi3516AV300/Hi3516EV200/Hi3516EV300/Hi3518EV300/H i3516DV200 只支持 1 路高清 HD0 显示设备,同时支持 1 个图形层 G0。

□ 说明

每个输出设备支持的接口类型和时序请参见《Hi35xx xx HD IP Camera Soc 用户指南》的 VDP 章 节,或《Hi35xx Vx00 ultra-HD Mobile Camera SoC 用户指南》的"视频接口"章节。

各个图形层与各设备有一定的约束关系,如表 1-1 所示。

表1-1 FB 设备文件、图形层以及输出设备的对应关系

FB 设备文件	图形层	对应显示设备
/dev/fb0	G0	G0 在 SD0(或 HD0)设备上显示。

FB 设备文件	图形层	对应显示设备
/dev/fb1	G1	G1在 HD1 设备上显示。
/dev/fb2	G3	G3 在 HD0 设备上显示或 G3 在 HD1 上显示。

□ 说明

为了显示图形层, 使用

Hi3516A/Hi3518EV200/Hi3519V100/Hi3519V101/Hi3559V100/Hi3559AV100/Hi3519AV100/Hi3516CV500/Hi3516DV300/Hi3516AV300/Hi3516EV200/Hi3516EV300/Hi3518EV300/Hi3516DV200 芯片的用户必须先配置并启动输出设备(通过 VOU 模块的接口,Hi3559AV100 中称为 VO 模块),最后通过 HiFB 模块接口操作图像层使之显示。

2 图形开发推荐方案

2.1 概述

在监控领域中,一般输出设备的图形用户界面内容包括:

- 后端 OSD: 显示画面分割线、通道号、时间等信息,用以界定多画面显示布局。
- GUI 界面:包括各种菜单、进度条等元素,用户通过操作 GUI 界面进行设备配置。
- 鼠标:提供更方便易用的界面菜单操作方式。

以上3类图形内容可以通过1个图形层实现,也可以通过多个图形层实现。Hi35xx 芯片提供多个图形层,指导用户正确、合理、有效地利用这些图形层,以满足不同的输出界面应用场景。下面推荐几种方案供参考。

2.2 单图层实现用户界面方案

2.2.1 方案介绍

该方案总体思路是:每个设备都只使用1层图形层来完成本设备的后端 OSD、GUI和 鼠标的显示,鼠标也可以使用独立的鼠标层实现。

可具体描述为:每个输出设备使用一个图形层来完成本设备的后端 OSD、GUI; GUI 画在独立的缓存上,后端 OSD 直接画在 FB 显存中,再通过 TDE 进行 alpha 混合;鼠标可以使用单独的鼠标图形层,也可以跟 OSD、GUI 共用一个图层,共用图层的时候,可以画在 GUI 缓存上。

该方案使用了以下机制:

- 每个设备的后端 OSD 直接绘制在各自的 FB 显存中。
 例如在每个图形层对应的 FB 显存中绘制分割布局、通道号或者时间。
- 每个设备一块 GUI 画布, GUI 变更时局部刷新。
 每个设备使用一块独立的缓存绘制 GUI (称该块缓存为 GUI 画布), 当 GUI 变更时仅需要进行局部刷新。
- GUI 画布整体搬移至相应图层的 FB 显存中

将绘制好的画布整体搬移到相应的 FB 缓冲中,在此过程中可利用 TDE 实现 GUI 和 OSD 的叠加透明效果。每次 GUI 或 OSD 有变动时,由于是对画布和 OSD 整体做叠加,故不需要针对局部信息计算 GUI 和 OSD 的叠加区域。

FB 双缓冲

为防止一块 FB 缓冲被边绘制边显示而导致绘制过程可见,推荐使用 FB 双缓冲机制或是 HiFB 实现的扩展模式中的 HIFB_LAYER_BUF_DOUBLE / HIFB_LAYER_BUF_DOUBLE_IMMEDIATE 机制。它们的原理都是为 FB 分配 2 块大小相同的缓冲作为显存交替绘制和显示。如 VO 正在显示缓冲 2,则本次绘制的对象为缓冲 1,然后对于 FB 标准模式可通过 FB 的 PAN_DISPLAY 或FBIOFLIP_SURFACE 调用通知 VO 显示缓冲 1,而对于 FB 扩展模式可通过 FB 的 FBIO REFRESH 调用通知 VO 显示缓冲 1。

方案的结构如图 2-1 所示。

图2-1 单图层方案的结构示意图

该方案在后端 OSD 或者 GUI 界面变动时,都需要重新绘制 FB 缓存:

本设备的后端 OSD 改变时,如 16 通道分割线切换到 9 通道分割线:先清空 FB 缓存,再绘制新的 OSD,再将 GUI 界面整体搬移到 FB 缓存中。

● GUI 界面每次变动时,都需要先清空 FB 缓存,再绘制 OSD,然后将新的 GUI 界面整体搬移到 FB 缓存中。

2.2.2 衍生方案

当 SD0 和 HD0 设备上想同时显示同样的 GUI 界面时,该方案可简化仅有一块 GUI 画布缓存:

- 画布大小与 HD0 的 GUI 层大小相同(800*600),用户可按照 HD0 的 GUI 规格 (如 800*600)准备一套图片,每次 GUI 变更时仅局部绘制画布,而 SD0 的 GUI 则是将画布整体经过缩放、抗闪得到,其效果略差于 HD 上的 GUI。
- 每次更新画布后,对于 HD 设备,由于画布大小与 GUI 界面大小相同,故利用 TDE 做整体搬移操作即可,对于 SD0 设备,需要利用 TDE 对画布整体进行缩放 至和 SD0 绑定的图形层对应的 FB 显存中,同时进行抗闪烁处理(因 SD0 是隔行设备)。

该衍生方案的结构如图 2-2 所示。

图2-2 衍生方案的结构图

2.2.3 开发流程

方案1的开发流程

以 HD0 和 SD0 设备上的 GUI 和 OSD 为例: HD0 设备上 16 画面等分分割线, SD0 设备上 4 画面等分分割线,且 HD0 和 SD0 同时显示同样的 GUI。

若此时 GUI 界面有变化,则该方案的实现过程为:

- 步骤 1 清空 HD0 和 SD0 对应图形层的 FB 的空闲缓冲(假设为缓冲 1,缓冲 2 正在被 VO 显示)。
- 步骤 2 在 HD0 对应图形层的 FB 缓冲 1 中绘制 16 通道分割线。
- 步骤3 在 SD0 对应图形层的 FB 缓冲1 中绘制4 通道分割线。
- 步骤4 局部更新画布。
- 步骤 5 用 TDE 将画布整体搬移到 HD0 对应图形层的 FB 缓冲 1 的合适位置,此过程可以做 alpha 透明度叠加以实现 GUI 半透明效果。
- 步骤 6 用 TDE 将画布整体缩放到 SD0 对应图形层的 FB 缓冲 1 的合适位置,此过程可以做抗 闪、alpha 透明度叠加(以实现 GUI 半透明效果)。
- 步骤7 通过 FB 接口调用 PAN_DISPLAY 通知 HD0 显示和本设备绑定图形层已准备好的 FB 的缓冲1。
- 步骤 8 通过 FB 接口调用 PAN_DISPLAY 通知 SD0 显示本设备绑定图形层已准备好的 FB 的 缓冲 1。

----结束

2.2.4 应用场景

应用场景如下:

- 每个设备上有各自的后端 OSD(如 HD0 为 16 画面分割布局,HD1 为 8 画面分割布局,SD0 为 4 画面分割布局)。
- 2 或多个输出设备上同时有 GUI 界面(相同或者不同)。

2.2.5 优点和限制

该方案具有以下优点:

- 可同时在多个设备上显示 GUI 界面。
- GUI 画布可局部刷新, 节省总线带宽和 TDE 性能。
- 可实现 GUI 和 OSD 的叠加透明效果,且用户控制流程简单。每次 GUI 或 OSD 有变动时,由于是对画布和 OSD 整体做叠加,故不需要针对局部信息计算 GUI 和 OSD 的叠加区域。
- 对于衍生方案,用户仅需要一套 GUI 界面的图片,就可适应不同分辨率设备的 GUI 需求,节省 Flash 空间。

该方案具有以下约束:

• 对于衍生方案:标清设备上的 GUI 是画布缩放得到的,故效果略差于高清设备上的 GUI。