

Introducción a Python aplicado a Series de Tiempo

Tarea 3

I. Utiliza la librería bcrp - webscrapper para buscar todas las series disponibles de consumo trimestral en la página de estadísticas del BCRP. Realiza lo mismo para inversión trimestral.

	Código	Descripción	Frecuencia
79	RD15481DQ	Inversión bruta fija de los gobiernos regional	Trimestral
80	RD15480DQ	Inversión bruta fija de los gobiernos regional	Trimestral
81	RD15479DQ	Inversión bruta fija de los gobiernos regional	Trimestral
82	RD15478DQ	Inversión bruta fija de los gobiernos regional	Trimestral
83	RD15477DQ	Inversión bruta fija de los gobiernos regional	Trimestral

- II. Importa en un dataframe la variable de código "PN02528AQ", "PN02529AQ", "PN02533AQ" y "PN02530AQ" desde enero 2002 hasta diciembre 2019.
- III. Crea dos nuevas columnas, una llamada "log", que sea igual al logaritmo de la columna 'Producto bruto interno por tipo de gasto (millones S/2007) Demanda Interna', y otra llamada "diff" que sea igual a la misma columna en diferencias, llenando espacios vacíos con 0.
- IV. Aplica el test de estacionariedad Dickey-Fuller aumentado a cada una de las tres columnas por separado. ¿Son estacionarias o no? ¿Cuál de las tres series se acerca más?
- V. Grafica el ACF y el PACF para la columna en diferencias. ¿Dirías que la serie se comporta como un AR, un MA o un ARMA?
- VI. Modela la columna en diferencias como un ARMA(1, 0) e imprime los resultados de la estimación. Comenta.
- VII. Modela la columna en diferencias como un ARMA(4, 0) e imprime los resultados de la estimación. No comentes.
- VIII. Grafica la variable a partir del año 2011 y plotea la predicción del modelo a partir de la observación 100. El resultado debería lucir así.

IX. Subir el archivo .ipynb al repositorio del grupo y dejar el link en el Google Sheets hasta el lunes 2 de septiembre a medianoche.

Laboratorio de Inteligencia Artificial y Métodos Computacionales en Ciencias Sociales

X. BIBLIOGRAFÍA

Los scripts desarrollados en clase serán el principal material de referencia el cual será entregado al inicio de cada clase.

Enlace de la carpeta Drive:

https://drive.google.com/drive/folders/17bgV4HpqzhWbVvAaOHlxjvmhZwrF9Xyr

Enlace del repositorio:

https://github.com/estcab00/timeseries-python

De manera complementaria, se recomienda revisar la siguiente literatura:

- Matsui, M. (n.d.). Time Series with Python [MOOC].
 Coursera. https://app.datacamp.com/learn/skill-tracks/time-series-with-python
- Witten, D., & James, G. (2013). An introduction to statistical learning with applications in Python. Springer publication.