- सभोवताली उपलब्ध असलेले साहित्य वापरून प्रतिकृती तयार करतात व त्यांचे कार्य स्पष्ट करतात. उदा. एकतारी विद्युतदर्शक, अग्निशामक, तंतूवाद्य, पेरिस्कोप, इत्यादी.
- रचना, नियोजन, उपलब्ध स्रोतांचा वापर इत्यादी बाबींमध्ये सर्जनशीलता प्रदर्शित करतात.
- शिकत असलेल्या वैज्ञानिक संकल्पनांचा दैनंदिन जीवनात वापर करतात, उदा. पाण्याचे शुद्धीकरण, जैविक विघटनशील आणि अजैविक विघटनशील कचरा वेगळा करणे, पीक उत्पादन वाढविणे, योग्य धातू व अधातूंचा विविध कारणांसाठी वापर, घर्षण वाढविणे/कमी करणे, पौगंडावस्थेसंबधी असलेल्या दंतकथा व नकारात्मक रूढींना आव्हान देणे, इत्यादी.
- वैज्ञानिक शोधांबद्दल चर्चा आणि त्यांचे महत्त्व समजून घेतात.
- पर्यावरणाचे संरक्षण करण्यासाठी प्रयत्न करतात. उदा. संसाधन स्रोताचा विवेकाने वापर करणे, खते आणि कीटकनाशकांचा नियंत्रित वापर करणे, पर्यावरण आपत्तींना सामोरे जाण्याचे मार्ग सुचविणे, इत्यादी.
- नैसर्गिक संसाधनांच्या अतिवापराच्या परिणामांविषयी इतरांना संवेदनक्षम करतात.
- प्रामाणिकपणा, वस्तुनिष्ठता, सहकार्य, भय आणि पूर्वग्रह यांच्यापासून मुक्ती ही मूल्ये प्रदर्शित करतात.
- विश्वाची निर्मिती व अवकाश तंत्रज्ञानातील मानवाची प्रगती स्पष्ट करतात.
- माहिती संप्रेषण तंत्रज्ञानाच्या विविध साधनांचा संकल्पना समजून घेण्यासाठी वापर करतात.

अ.क्र.	पाठाचे नाव पृष्ठ क्र.
1.	सजीव सृष्टी व सूक्ष्मजीवांचे वर्गीकरण
2.	आरोग्य व रोग 6
3.	बल व दाब14
4.	धाराविद्युत आणि चुंबकत्व23
5.	अणूचे अंतरंग
6.	द्रव्याचे संघटन39
7.	धातू–अधातू49
8.	प्रदूषण
9.	आपत्ती व्यवस्थापन
10.	पेशी व पेशीअंगके67
11.	मानवी शरीर व इंद्रिय संस्था75
12.	आम्ल, आम्लारी ओळख83
13.	रासायनिक बदल व रासायनिक बंध89
14.	उष्णतेचे मापन व परिणाम95
15.	ध्वनी
16.	प्रकाशाचे परावर्तन
17.	मानवनिर्मित पदार्थ
18.	परिसंस्था
19.	ताऱ्यांची जीवनयात्रा

1. सजीव सृष्टी व सूक्ष्मजीवांचे वर्गीकरण

- 1 सजीवांच्या वर्गीकरणाचा पदानुक्रम कोणता आहे?
- 2 सजीवांना नाव देण्याची 'द्विनाम पद्धती' कोणी शोधली?
- 3 द्विनाम पद्धतीने नाव लिहिताना कोणते पदानुक्रम विचारात घेतले जातात?

जैवविविधता व वर्गीकरणाची आवश्यकता (Biodiversity and need of classification)

मागील इयत्तेत आपण पाहिले की भौगोलिक प्रदेश, अन्नग्रहण, संरक्षण अशा विविध कारणांनी पृथ्वीवरील सजीवांत अनुकूलन झालेले आढळते अनुकूलन साधताना एकाच जातीच्या सजीवांतही विविध बदल झालेले दिसतात

2011 च्या गणनेनुसार पृथ्वीवरील जमीन व समुद्र यांमधील सर्व सजीव मिळून सुमारे 87 दशलक्ष जाती ज्ञात आहेत एवढ्या प्रचंड संख्येने असणाऱ्या सजीवांचा अभ्यास करण्यासाठी त्यांची गटांत विभागणी व्हायला हवी, अशी गरज भासली सजीवांतील साम्य व फरक लक्षात घेऊन त्यांचे गट व उपगट करण्यात आले

सजीवांचे गट व उपगट बनविण्याच्या या प्रक्रियेला जैविक वर्गीकरण म्हणतात

इतिहासात डोकावताना.....

- इस 1735 मध्ये कार्ल लिनिअस यांनी सजीवांना 2 सृष्टीत विभागले वनस्पती व प्राणी (Vegetabilia & Animalia) सृष्टी
- इ.स. 1866 साली हेकेल यांनी 3 सृष्टी कल्पिल्या त्या म्हणजे प्रोटिस्टा, वनस्पती व प्राणी
- इस 1925 मध्ये चॅटन यांनी पुन्हा सजीवांचे दोनच गट केले – आदिकेंद्रकी व दृश्यकेंद्रकी
- इ स 1938 मध्ये कोपलँड यांनी सजीवांना
 4 सृष्टीमध्ये विभागले मोनेरा, प्रोटिस्टा,
 वनस्पती व प्राणी

रॉबर्ट हार्डींग व्हिटाकर (1920-1980) हे अमेरिकन परिस्थितीकी तज्ज्ञ (Ecologist) होऊन गेले त्यांनी इ स 1969 मध्ये सजीवांची 5 गटांत विभागणी केली

वर्गीकरणासाठी व्हिटाकर यांनी पुढील निकष विचारात घेतले.

- पेशीची जटिलता (Complexity of cell structure): आदिकेंद्रकी व दृश्यकेंद्रकी
- 2. सजीवांचा प्रकार / जटिलता (Complexity of organisms): एकपेशीय किंवा बहुपेशीय
- पोषणाचा प्रकार (Mode of nutrition): वनस्पती - स्वयपोषी (प्रकाश सश्लेषण), कवके - परपोषी (मृतावशेषातून अन्नशोषण), प्राणी- परपोषी (भक्षण)
- 4. जीवनपद्धती (Life style): उत्पादक वनस्पती, भक्षक प्राणी, विघटक कवके
- वर्गानुवंशिक संबंध (Phylogenetic relationship): आदिकेंद्रकी ते दृश्यकेंद्रकी, एकपेशीय ते बहुपेशीय

सृष्टी 1: मोनेरा (Monera)

कृती. एका स्वच्छ काचपट्टीवर दही किंवा ताकाचा अगदी लहान थेंब घ्या, त्यात थोडे पाणी मिसळून विरलन करा त्यावर अलगद आच्छादन काच ठेवा सूक्ष्मदर्शीखाली काचपट्टीचे निरीक्षण करा तुम्हांला काय दिसले?

यातील हालचाल करणारे, अगदी लहान काडीसारखे सूक्ष्मजीव म्हणजे लॅक्टोबॅसिलाय जीवाणू मोनेरा या सृष्टीत सर्व प्रकारच्या जीवाणूंचा व नीलहरित ऑरिअस शैवालांचा समावेश होतो

लक्षणे :

- 1 हे सर्व सजीव एकपेशीय असतात
- 2 स्वयंपोषी किंवा परपोषी असतात
- 3 हे आदिकेंद्रकी असून पटलबद्ध केंद्रक किंवा पेशीअंगके नसतात

सृष्टी 2 : प्रोटिस्टा (Protista)

कृती. एखाद्या डबक्यातील पाण्याचा एक थेंब काचपट्टीवर ठेवून सूक्ष्मदर्शीखाली निरीक्षण करा काही अनियमित आकाराचे सूक्ष्मजीव हालचाल करताना दिसतील हे सजीव अमिबा आहेत

लक्षणे :

- 1 प्रोटिस्टा सृष्टीतील सजीव एकपेशीय असून पेशीत पटलबद्ध केंद्रक असते
- 2 प्रचलनासाठी छद्मपाद किंवा रोमके किंवा कशाभिका असतात
- 3 स्वयंपोषी उदा युग्लिना, व्हॉल्व्हॉक्स पेशीत हरितलवके असतात परपोषी उदा अमिबा, पॅरामेशिअम, प्लास्मोडिअम, इत्यादी

सृष्टी 3 : कवके (Fungi)

कृती. पावाचा किंवा भाकरीचा तुकडा थोडा ओलसर करा व एका डबीत ठेवून तिला झाकण लावा दोन दिवसानंतर डबी उघडून पहा त्या तुकड्यावर कापसासारखे पांढरे तंतू वाढलेले दिसतील यातील काही तंतू काचपट्टीवर घेऊन सूक्ष्मदर्शीखाली निरीक्षण करा

1.2 मोनेरा सृष्टीतील विविध सजीव

1.3 प्रोटीस्टा सृष्टीतील सजीव

1.4 बुरशी

कार्य संस्थाचेः राष्ट्रीय विषाणू संस्था, पुणे (National Institute of Virology, Pune) ही विषाणु संदर्भातील संशोधनाचे कार्य करते भारतीय वैद्यकीय संशोधन परिषदेच्या अखत्यारित 1952 साली या संस्थेची स्थापना करण्यात आली होती

लक्षणे:

- 1 कवक सृष्टीत परपोषी, असंश्लेषी व दृश्यकेंद्रकी सजीवांचा समावेश होतो
- 2 बहुसंख्य कवके मृतोपजीवी आहेत कुजलेल्या कार्बनी पदार्थांवर जगतात
- 3 कवकांची पेशीभित्तिका 'कायटीन' या जटील शर्करेपासून बनलेली असते
- 4 काही कवके तंतुरूपी असून आतील पेशीद्रव्यात असंख्य केंद्रके असतात
- 5 कवक किण्व (बेकर्स यीस्ट) बुरशी, ॲस्परजिलस, (मक्याच्या कणसावरील बुरशी), पेनिसिलिअम, भूछत्रे (मशरूम)

व्हिटाकरनंतर वर्गीकरणाच्या काही पद्धती मांडल्या गेल्या, तरी आजही अनेक शास्त्रज्ञ व्हिटाकर यांच्या पंचसृष्टी वर्गीकरणालाच प्रमाण मानतात, हे या पद्धतीचे यश आहे

जरा डोके चालवा.

व्हिटाकर यांच्या वर्गीकरण पद्धतीचे गुणदोष स्पष्ट करा

सूक्ष्मजीवांचे वर्गीकरण (Classification of microbes)

पृथ्वीवरील एकूण सजीवांमध्ये सूक्ष्मजीव सर्वाधिक संख्येने आहेत त्यांची पुढीलप्रमाणे विभागणी करण्यात आली आहे

1.5 काही कवके

1.6 सूक्ष्मजीवांचे वर्गीकरण

सूक्ष्मजीवांच्या आकारासंदर्भात खालील प्रमाण लक्षात ठेवा. 1 मीटर = 10⁶मायक्रोमीटर (µm)

1 मीटर = 10^9 नॅनोमीटर (nm)

1. जीवाणू (Bacteria):

(आकार - 1 μm ते 10 μm)

- एकच पेशी स्वतंत्र सजीव म्हणून जगते काही वेळा बरेच जीवाणू एकत्र येऊन वसाहती (Colonies) बनवतात
- उजीवाणू पेशी आदिकेंद्रकी असते पेशीत केंद्रक व पटलयुक्त अंगके नसतात पेशीभित्तिका असते
- 3 प्रजनन बहुधा द्विखंडीभवनाने (एका पेशीचे दोन भाग होऊन) होते
- 4 अनुकूल परिस्थितीत जीवाणू प्रचंड वेगाने वाढतात व 20 मिनिटांत संख्येने दृप्पट होऊ शकतात

1.7 काही जीवाणू

2. आदिजीव (Protozoa): (आकार - सुमारे 200 μm)

- 1 माती, गोडे पाणी व समुद्रात आढळतात, काही इतर सजीवांच्या शरीरात राहतात व रोगास कारणीभूत ठरतात
- 2 दृश्यकेंद्रकी पेशी आढळणारे एकपेशीय सजीव
- 3 प्रोटोझुआंच्या पेशीरचना, हालचालींचे अवयव, पोषणपद्धती यांत विविधता आढळते
- 4 प्रजनन द्विखंडन पद्धतीने होते उदा अमिबा, पॅरामेशिअम - गढूळ पाण्यात आढळतात, स्वतंत्र जीवन जगतात एन्टामिबा हिस्टोलिटिका - आमांश होण्यास कारणीभूत प्लाज्मोडिअम व्हायवॅक्स - मलेरिया (हिवताप) होण्यास कारणीभूत यग्लीना - स्वयंपोषी

- 1 कुजणारे पदार्थ, वनस्पती व प्राण्यांची शरीरे, कार्बनी पदार्थ यांमध्ये आढळतात
- 2 दृश्यकेंद्रकी एकपेशीय सूक्ष्मजीव कवकाच्या काही प्रजाती डोळ्यांनी दिसतात
- 3 मृतोपजीवी असून कार्बनी पदार्थांपासून अन्नशोषण करतात
- 4 प्रजनन लैंगिक पद्धतीने आणि द्विखंडन व मुकुलायन अशा अलैंगिक पद्धतीने होते

उदा यीस्ट, कॅन्डीडा, आळंबी (मशरूम)

- 1 पाण्यात वाढतात
- 2 दृश्यकेंद्रकी, एकपेशीय, स्वयंपोषी सजीव
- 3 पेशीतील हरितलवकाच्या साहाय्याने प्रकाशसंश्लेषण करतात उदा क्लोरेल्ला, क्लॅमिडोमोनास

शैवालांच्या थोड्या प्रजाती एकपेशीय आहेत, तर इतर सर्व शैवाले बहुपेशीय असून न्सत्या डोळ्यांनी दिसतात

विषाणूंना साामान्यतः सजीव मानले जात नाही किंवा ते सजीव-निर्जिवांच्या सीमारेषेत आहेत असे म्हणतात मात्र त्यांचा अभ्यास सूक्ष्मजीवशास्त्रात (Microbiology) केला जातो

- 1 विषाणू अतिसूक्ष्म म्हणजे जीवाणूंच्या 10 ते 100 पटीने लहान असून फक्त इलेक्ट्रॉन सूक्ष्मदर्शीनेच दिसू शकतात
- 2 स्वतंत्र कणांच्या रूपात आढळतात विषाणू म्हणजे DNA (डीऑक्सीरायबो न्युक्लिक आम्ल) किंवा RNA (रायबो न्युक्लिक आम्ल) पासून बनलेला लांबलचक रेणू असून त्याला प्रथिनांचे आवरण असते
- 3 वनस्पती व प्राण्यांच्या जिवंत पेशीतच ते राहू शकतात व या पेशींच्या मदतीने विषाणू स्वतःची प्रथिने बनवितात व स्वतःच्या असंख्य प्रतिकृती निर्माण करतात त्यानंतर यजमान पेशींना नष्ट करून या प्रतिकृती मुक्त होतात व मुक्त विषाणू पुन्हा नव्या पेशींना संसर्ग करतात
- 4 विषाणूंमुळे वनस्पती व प्राण्यांना विविध रोग होतात

पॅरामेशिअम

एन्टामिबा

प्लास्मोडिअम

सॅकरोमायसिस

क्लोरेला

टोमॅटो - विल्ट विषाणू

1.8 काही सूक्ष्मजीव

माहीत आहे का तुम्हांला?

मानव – पोलिओ विषाणू, इन्फ्लुएंझा विषाणू, HIV – एड्स विषाणू इत्यादी गुरे – पिकोर्ना विषाणू (Picorna virus)

वनस्पती - टोमॅटो विल्ट विषाणू, तंबाखू मोझाईक विषाणू इत्यादी

जीवाणू - बॅक्टेरिओफाज हे विषाणू जीवाणूंवर हल्ला करतात

इंटरनेट माझा मित्र

विविध सूक्ष्मजीवांची चित्रे व त्यांची वैशिष्ट्ये यांबद्दल माहिती घेऊन तक्ता तथार करा

स्वाध्याय

- 1. जीवाणू, आदिजीव, कवके, शैवाल, आदिकेंद्रकी, दृश्यकेंद्रकी, सूक्ष्मजीव यांचे वर्गीकरण व्हिटाकर पद्धतीने मांडा.
- 2. सजीव, आदिकेंद्रकी, दृश्यकेंद्रकी, बहुपेशीय, एकपेशीय, प्रोटिस्टा, प्राणी, वनस्पती, कवके यांच्या साहाय्याने पंचसृष्टी वर्गीकरण पूर्ण करा.

3. माझा जोडीदार शोधा.

अ	ब
कवक	क्लोरेल्ला
प्रोटोझुआ	बॅक्टेरियोफेज
विषाणू	कॅन्डिडा
शैवाल	अमिबा
जीवाणू	आदिकेंद्रकी

- 4. दिलेली विधाने चूक की बरोबर ते लिहून त्यांचे स्पष्टीकरण लिहा.
 - अ. लॅक्टोबॅसिलाय हे उपद्रवी जीवाणू आहेत.
 - आ. कवकांची पेशीभित्तिका कायटीनपासून बनलेली असते.
 - इ. अमिबा छद्मपादाच्या साहाय्याने हालचाल करतो.
 - ई. प्लास्मोडिअममुळे आमांश होतो.
 - उ. टोमॅटोविल्ट हा जीवाणूजन्य रोग आहे.

5. उत्तरे लिहा.

- अ. व्हिटाकर वर्गीकरण पदधतीचे फायदे सांगा.
- आ. विषाणूंची वैशिष्ट्ये लिहा.
- इ. कवकांचे पोषण कसे होते?
- ई. मोनेरा या सृष्टीमध्ये कोणकोणत्या सजीवांचा समावेश होतो?

6. ओळखा पाहू मी कोण ?

- अ. मला केंद्रक, प्रद्रव्यपटल किंवा पेशीअंगके नसतात.
- आ. मला केंद्रक, प्रद्रव्यपटल युक्त पेशीअंगके असतात.
- इ. मी कुजलेल्या कार्बनी पदार्थांवर जगते.
- ई. माझे प्रजनन बहुधा दिवखंडनाने होते.
- उ. मी माझ्यासारखी प्रतिकृती निर्माण करतो.
- माझे शरीर निरावयवी आहे व मी हिरव्या रंगाचा आहे.
- 7. अचूक आकृत्या काढून नावे द्या.
 - अ. जिवाणूंचे विविध प्रकार
 - आ पॅरामेशिअम
 - इ. बॅक्टेरिओफेज
- 8. आकारानुसार पुढील नावे चढत्या क्रमाने लिहा.

जिवाणू, कवक, विषाणू, शैवाल

उपक्रम :

- 1. इंटरनेटच्या मदतीने विविध रोगकारक जीवाणू व त्यामुळे होणारे रोग यांचा माहिती तक्ता बनवा.
- तुमच्याजवळील पॅथॉलॉजी प्रयोगशाळेस भेट द्या व तेथील तज्ज्ञांकडून सूक्ष्मजीव, त्यांच्या निरीक्षण पद्धती व विविध सूक्ष्मदर्शकांविषयी सविस्तर माहिती घ्या.

2. आरोग्य व रोग

थोडे आठवा.

- 1 आजारपणामुळे तुम्ही कधी शाळेतून सुट्टी घेतली आहे का?
- 2 आपण आजारी पडतो म्हणजे नेमकं काय होतं?
- 3 आजारी पडल्यानंतर कधीकधी औषधोपचार न घेताही आपणांस काही काळानंतर बरे वाटायला लागते, तर कधीकधी डॉक्टरकडे जाऊन औषधोपचार घ्यावा लागतो असे का होते?

आरोग्य (Health)

रोगाचा नुसता अभाव म्हणजेच आरोग्य नव्हे तर शारीरिक, मानसिक आणि सामाजिकरीत्या पूर्णतः सुदृढ असण्याची स्थिती म्हणजे आरोग्य

2.1 ताप मोजणे

रोग म्हणजे काय ?

शरीरक्रियात्मक किंवा मानसशास्त्रीयरीत्या शरीरातील महत्त्वाच्या जैविक कार्यामध्ये अडथळा आणणारी स्थिती म्हणजे रोग होय प्रत्येक रोगाची विशिष्ट लक्षणे असतात

रोगांचे प्रकार : तुम्ही मधुमेह, सर्दी, दमा, डाऊन संलक्षण, हृदयविकार अशा विविध रोगांची नावे ऐकली असतील या सर्व रोगांची कारणे व लक्षणे वेगवेगळी आहेत विविध रोगांचे वर्गीकरण खालीलप्रमाणे केले जाते

THE T

सांगा पाहू!

- 1 खाली दिलेल्या रोगांचा प्रसार कोणत्या माध्यमांद्वारे होतो ? (कावीळ, मलेरिया, खरूज, क्षय, डेंग्यू, अतिसार, नायटा, स्वाईन फ्ल्यू)
- 2 रोगजंतू म्हणजे काय ?
- 3 संसर्गजन्य रोग म्हणजे काय?

अ. संसर्गजन्य रोग/संक्रामक रोग: दूषित हवा, पाणी, अन्न किंवा वाहक (कीटक व प्राणी) याद्वारे पसरणारे रोग म्हणजे संसर्गजन्य रोग होय

रोगाचे नाव	कारक	संक्रमणाचे माध्यम	लक्षणे	उपाय व उपचार
क्षय	जीवाणू	रोग्याच्या थुंकीतून,	दीर्घमुदतीचा खोकला,	बी. सी.जी. लस टोचून घ्यावी,
(Tuberculosis)	(मायकोबॅक्टेरिअम	हवेमार्फत प्रसार, रोग्याच्या	थुंकीतून रक्त पडणे, वजन	रुग्णास इतरांपासून वेगळे
	ट्युबरक्युली)	सान्निध्यात दीर्घकाळ	कमी होणे, श्वासोच्छ्वास	ठेवावे. नियमित औषध घ्यावे.
		असणे, रोग्याच्या वस्तू	प्रक्रियेत त्रास	DOT हा उपचार पूर्ण व
		वापरणे.		नियमित घ्यावा.
कावीळ	विषाणू	पाणी, रुग्णासाठी	भूक मंदावणे, गर्द पिवळी	पाणी उकळून व गाळून प्यावे,
(Hepatitis)	(हेपॅटीटीस	वापरलेल्या सुया,	लघवी, थकवा, मळमळ,	स्वच्छतागृहांचा वापर
	A,B,C,D,E)	रक्तपराधन	उलटी, राखाडी विष्ठा	करण्यापूर्वी व नंतर हात
			(मल)	साबणाने स्वच्छ धुवावेत.
अतिसार	जीवाणू, विषाणू	दूषित अन्न व पाणी	पोटदुखी, पाण्यासारखे	अन्न झाकून ठेवावे, पाणी
(हगवण)	शिगेल्ला बॅसीलस		पातळ जुलाब	उकळून व गाळून प्यावे,
(Diarrhoea)	एन्टामिबा			जलसंजीवनी (ORS) घ्यावी.
	हिस्टोलिटीका			
पटकी (Cholera)	जीवाणू	दूषित अन्न व पाणी	उलट्या व तीव्र जुलाब,	स्वच्छता राखावी,
	(व्हिब्रियो		पोट दुखणे, पायांत पेटके	उघड्यावरील अन्नपदार्थ खाऊ
	कॉलरी)		येणे.	नयेत, पाणी उकळून प्यावे,
				कॉलरा प्रतिबंधक लस घ्यावी.
विषमज्वर	जीवाणू	दूषित अन्न व पाणी	भूक मंदावणे, डोकेदुखी,	स्वच्छ व निर्जंतुक पाणी प्यावे,
(Typhoid)	(सालमोनेला		मळमळ, पोटावर पुरळ	लसीकरण करून घ्यावे,
	टायफी)		उठणे, अतिसार, 104ºF	सांडपाण्याची विल्हेवाट योग्य
			पर्यंत ताप येणे.	रीतीने करावी.

2.3 काही संसर्गजन्य रोग

🚧 तक्ता पूर्ण करा

आंत्रशोथ, हिवताप, प्लेग, कुष्ठरोग, अशा विविध रोगांची माहिती मिळवा व वरीलप्रमाणे तक्ता तयार करा

निरीक्षण करा व चर्चा करा.

2.4 परिसरातील अस्वच्छता

इंटरनेट माझा मित्र

- 1 कांजिण्या (Chicken pox) या रोगाची माहिती, कारणे, लक्षणे व उपाय शोधा
- 2 अधिक माहिती घ्या अ पल्स पोलिओ अभियान आ WHO
- 1 चित्रातील पाणी साठलेल्या वस्तू तुम्हांला कुठे-कुठे आढळतात ?
- 2 चित्रावरून तुम्हांला धोक्याची कोणती कल्पना येते?

सद्यःस्थितीतील काही महत्त्वाचे रोग

- शाळेमध्ये स्वच्छ हात उपक्रम का राबवला जातो ?
- 2 पावसाळ्यात पाणी उकळून का प्यावे ?
- 3 वैयक्तिक स्वच्छता कशी पाळता येते ?

डेंग्यू (Dengue) : साठलेल्या पाण्यात डास अंडी घालतात आणि त्यांच्या वाढीस पोषक वातावरण निर्माण होऊन त्यांची संख्या वाढते डासांच्या विविध प्रजाती वेगवेगळे रोग पसरवतात त्यांपैकी एडिस इजिप्ती प्रकारच्या डासांमार्फत डेंग्यू हा संसर्गजन्य रोग पसरतो हा आजार फ्लेवी व्हायरस या प्रकारातील डेन -1, 2 या विषाणूमुळे होतो लक्षणे

- 1 तीव्र ताप, तीव्र डोकेदुखी, उलट्या होणे
- 2 सर्वांत महत्त्वाचे म्हणजे डोळ्यांच्या खोबणीत दखणे
- उ रक्तातील रक्तिबंबिका (platelets) यांचे प्रमाण कमी होणे त्यामुळे शरीरांतर्गत रक्तस्राव होणे

निरीक्षण करा व चर्चा करा.

खालील आकृतीत दाखवलेल्या चित्रांचे निरीक्षण करून त्याचे वर्णन चौकटीत लिहा व वर्गात चर्चा करा

2.5 डेंग्यू : कारणे व प्रतिबंधात्मक उपाय

स्वाईन फ्लू: संसर्ग होण्याची कारणे

- स्वाईन फ्ल्यूचा संसर्ग डुक्कर या प्राण्याद्वारे तसेच माणसाद्वारे होतो
- स्वाईन फ्ल्यूच्या विषाणूंचा प्रसार रोग्याच्या घामातून होतो तसेच नाकातील व घशातील स्राव व थुंकीतून होतो

माहिती मिळवा.

तुमच्या परिसरातील ग्रामपंचायत, नगरपालिका, महानगरपालिका डासांच्या प्रसारास प्रतिबंध करण्यासाठी काय उपाययोजना करते ?

माहीत आहे का तुम्हांला?

हिवताप हा ॲनाफिलीस डासाच्या मादीमुळे होतो, तर हत्तीरोग हा क्युलेक्स डासाच्या मादीमुळे होतो ॲनाफिलिस व एडिस डासाचे वास्तव्य स्वच्छ पाण्यात असते, तर क्युलेक्स डास प्रदूषित पाणी/ गटारे येथे असतो

स्वाईन फ्लू ची लक्षणे

- धाप लागणे किंवा श्वसनाला अडथळा निर्माण होणे
- घसा खवखवणे, शरीर दुखणे

स्वाईन फ्लूचे निदान: स्वाईन फ्लूच्या निदानासाठी रुग्णाच्या घशातील द्रव पदार्थाचा नमुना प्रयोगशाळेत तपासणीसाठी पाठवावा लागतो 'राष्ट्रीय विषाणू विज्ञान संस्था (नॅशनल इन्स्टिट्यूट ऑफ व्हायरॉलॉजी – एन आय व्ही), पुणे' व 'राष्ट्रीय संचारी रोग संस्था (नॅशनल इन्स्टिट्यूट ऑफ कम्युनिकेबल डिसिजेस – एन आय सी डी) दिल्ली' येथील प्रयोगशाळेत तपासणीची व्यवस्था उपलब्ध आहे

माहीत आहे का तुम्हांला?

मार्च 2009 मध्ये मेक्सिको देशात या आजाराची प्रथम बाधा झाली स्वाईन फ्लू इन्फ्लुएन्सा ए (H_1N_1) या विषाणुमुळे हा रोग होतो हा रोग डुकरांमध्ये आढळणाऱ्या विषाणूंमुळे होतो डुकरांमध्ये वावरणाऱ्या व्यक्तीला या विषाणूंची बाधा होऊ शकते

एड्स (AIDS): एड्स (AIDS - Acquired Immune Deficiency Syndrome) हा रोग HIV (Human Immunodeficiency Virus) या विषाणूमुळे मानवाला होतो यामध्ये मानवाची नैसर्गिक रोगप्रतिकारशक्ती हळूहळू दुर्बल झाल्याने त्याला विविध रोगांची लागण होते वैद्यकीय प्रयोगशाळेत केलेल्या चाचणीत निष्पन्न झाल्याशिवाय एड्सचे निदान निश्चित करता येत नाही त्याचे नेमके निदान करण्यासाठी ELISA ही रक्ताची चाचणी आहे एड्सची लक्षणे

हे नेहमी लक्षात ठेवा.

- HIV बाधित व्यक्तीला स्पर्श केल्याने, सोबत जेवल्याने व HIV बाधित व्यक्तीची सेवासुश्रूषा केल्याने एडस होत नाही
- HIV बाधित व्यक्तीसोबत सर्वसामान्य व्यवहार असावा

व्यक्तिसापेक्ष असतात

माहीत आहे का तुम्हांला?

एच आय व्ही विषाणू पहिल्यांदा आफ्रिकेतील एका खास प्रजातीच्या माकडात सापडला 'नॅशनल एड्स कंट्रोल प्रोग्राम' आणि 'यू एन एड्स' यांच्यानुसार भारतात 80 ते 85 टक्के संसर्ग असुरक्षित विषम लैंगिक संबंधातून पसरत आहेत

प्राण्यांमार्फत होणारा रोगप्रसार

सांगा पाह

- 1 उंदीर, घुशींचा नायनाट करण्यासाठी तुमच्या घरी कोणते उपाय योजतात?
- 2 पाळीव कुत्रे, मांजरे, पक्षी यांच्या आरोग्याबद्दल काळजी का घ्यावी लागते?
- 3 कबुतरे, भटके प्राणी यांचा व मानवी आरोग्याचा काही संबंध आहे का?
- 4 उंदीर, घुशी, झुरळे यांचा मानवाच्या आरोग्यावर काय परिणाम होतो?

रेबीज (Rabies): रेबीज हा विषाणुजन्य रोग आहे हा रोग संसर्ग झालेल्या कुत्रा, ससा, माकड, मांजर इत्यादी चावल्यानंतर होतो या रोगाचे विषाणू मज्जातंतूवाटे मेंदूत प्रवेश करतात जलद्वेष (Hydrophobia) हे या रोगाचे महत्त्वाचे लक्षण आहे या रोगामध्ये रोगी पाण्याला घाबरत असल्याने त्यास जलसंत्रास असेही म्हणतात रेबीज प्राणघातक रोग आहे मात्र रोग होण्यापूर्वी लस देऊन त्यापासून संरक्षण करता येते कुत्रा चावल्यानंतर या आजाराची लक्षणे 90 ते 175 दिवसांत दिसू लागतात

रेबीज रोगाची लक्षणे

- 1 2 ते 12 आठवडे ताप राहतो
- 2 अतिशयोक्ती करत वागणे
- 3 पाण्याची भीती वाटणे

इंटरनेट माझा मित्र

- 1 इंटरनेटवर रेबीज या रोगासंबंधीचे विविध व्हिडीओ पहा
- 2 रेबीज रोगावरील प्रतिबंधात्मक उपचाराची माहिती मिळवा व यादी तयार करून मित्रांसोबत चर्चा करा

- 1 प्राण्यांच्या राहण्याच्या जागा, पिंजरे हे स्वयंपाकघर व जेवणाच्या ठिकाणी का असू नये?
- सांगा पाहू! 2 रेबीज हा रोग कोणत्या लक्षणांद्वारे ओळखाल?
- ब. असंसर्गजन्य रोग: जे रोग संसर्गातून किंवा संक्रमणातून पसरत नाहीत त्या रोगांना असंसर्गजन्य किंवा असंक्रामक रोग असे म्हणतात असे रोग काही विशिष्ट कारणांमुळे व्यक्तीच्या शरीरातच उद्भवतात
- 1. कर्करोग (Cancer): पेशींच्या अनियंत्रित व अपसामान्य वाढीस कर्करोग म्हणतात कर्करोगाच्या पेशीसमूहास किंवा गाठीस दुर्दम्य अर्बुद म्हणतात कर्करोग फुफ्फुस, तोंड, जीभ, जठर, स्तन, गर्भाशय, त्वचा यांसारख्या अवयवांत रक्त किंवा अन्य कोणत्याही उतीत होऊ शकतो

कारणे : अतिप्रमाणात तंबाखू, गुटखा, धूम्रपान, मद्यपान करणे, आहारात चोथायुक्त अन्नपदार्थांचा (फळे व पालेभाज्यांचा) समावेश नसणे, अति प्रमाणात जंकफूड (वडापाव,पिइझा, इत्यादी) खाणे यांसारखी अनेक कारणे असू शकतात अनुवांशिकता हेही एक कारण असू शकते

लक्षणे

- 1 दीर्घकालीन खोकला, आवाज घोगरा होणे, गिळताना त्रास होणे
- 2 उपचार करूनही बरा न होणारा व्रण किंवा सूज
- 3 स्तनात गाठी निर्माण होणे
- 4 अकारण वजन घटणे

चर्चा करा.

कर्करोगावर प्रतिबंध कसा करावा यावर चर्चा करा व पोस्टर तयार करून वर्गात लावा

विना साखरेचा चहा घेणारी अथवा गोड पदार्थांचे सेवन टाळणारी व्यक्ती तुम्हांला माहिती आहे का? काय कारण असेल त्यामागे ?

2. मधुमेह (Diabetes): स्वादुपिंडात निर्माण होणारे इन्सुलिन हे संप्रेरक रक्तातील ग्लुकोज शर्करेच्या प्रमाणावर नियंत्रण ठेवते इन्सुलिनचे प्रमाण कमी झाल्यास शर्करेचे प्रमाण नियंत्रित होत नाही, ह्या विकाराला मधुमेह म्हणतात

माहीत आहे का तुम्हांला?

कर्करोगावरील आधुनिक निदान व उपचार पद्धती : कर्करोगाचे निदान करण्यासाठी टिशू डायग्नोसिस, सी टी स्कॅन, एम आर आय स्कॅन, मॅमोग्राफी बायप्सी, इत्यादी तंत्राचा वापर करण्यात येतो तर उपचारांमध्ये रसायनोपचार, किरणोपचार, शल्यचिकित्सा या प्रचलित पद्धतींबरोबरच रोबोटिक सर्जरी, लॅप्रोस्कॉपिक सर्जरी अशा उपचार पद्धती वापरल्या जातात

हे नेहमी लक्षात ठेवा.

आहारावर योग्य नियंत्रण ठेवल्यास काही प्रकारच्या कर्करोगांपासून संरक्षण मिळते कर्करोगावर आधुनिक उपचारां-बरोबरच शारीरिक व्यायाम केल्यास अधिक फायदा होतो

तंबाखू सेवन, धूम्रपान यांसारख्या व्यसनांच्या आहारी जाऊ नका

या लक्षणांकडे दुर्लक्ष करणे योग्य नाही.

- रात्री मूत्रविसर्जनास वारंवार जावे लागणे, वजन खूप वाढणे किंवा कमी होणे यांसारखी लक्षणे आढळतात
 मधुमेहाची कारणे:
 अनुवंशिकता
 अतिलठठपणा
- व्यायामाचा/कष्टाचा अभाव मानसिक ताण/ तणाव

प्रतिबंधात्मक उपचार : डॉक्टरांच्या सल्ल्याने आहार, औषधे व व्यायाम याचा अवलंब करून नियंत्रण करावे.

माहीत आहे का तुम्हांला?

सध्या देशात साधारणतः सात कोटी मधुमेहाचे रुग्ण आहेत जगातील सर्वाधिक मधुमेहाचे रुग्ण भारतात आढळतात

3. हृदयविकार (Heart Diseases): हृदयाच्या स्नायूंना रक्ताचा व पर्यायाने ऑक्सिजन व पोषक द्रव्यांचा पुरवठा अपुरा पडल्यास हृदयाची कार्यक्षमता कमी होते यामुळे हृदयास जास्त कार्य करावे लागते व ताण आल्याने हृदयविकाराचा झटका येऊ शकतो हृदयविकाराचा झटका आल्यास त्वरित डॉक्टरांचा सल्ला व औषधोपचार अत्यावश्यक आहे

या लक्षणांकडे दुर्लक्ष करून चालणार नाही

छातीत असह्य वेदना होणे, छातीतील वेदनांमुळे खांदे, मान व हात दखणे, हात आखडणे, घाम येणे, अस्वस्थता कंप जाणवणे

इंटरनेट माझा मित्र

इंटरनेटवर मधुमेहाची माहिती देणारे विविध व्हिडीओ पहा महत्त्वपूर्ण माहितीची नोंद करा व गटाने वर्गात PPT सादरीकरण करा

हे नेहमी लक्षात ठेवा.

प्रत्येक रोगाला विशिष्ट असे वैज्ञानिक कारण असते दैवी प्रकोप किंवा इतर व्यक्तींच्या मत्सरामुळे रोग होत नाही योग्य वैद्यकीय उपचारांनीच रोग बरे होतात मंत्रतंत्र, जादूटोणा यांमुळे रोग बरे होत नाहीत

हृदयविकाराची कारणे : धूम्रपान करणे, मद्यपान, मधुमेह, उच्च रक्तदाब, लठ्ठपणा, शारीरिक श्रमाची कमतरता, व्यायामाचा अभाव, सतत बैठे काम करणे, अनुवंशिकता, तणाव, रागीटपणा आणि चिंता

हे नेहमी लक्षात ठेवा.

्राण्या हृदयरोगावर प्राथमिक उपचार

पहिल्यांदा 108 क्रमांकावर रूग्णवाहिकेसाठी फोन करा रूग्णाचे खांदे हलवून तो शुद्धीवर आहे का ते तपासा रूग्णाला कडक पृष्ठभागावर झोपवून शास्त्रशुद्ध पद्धतीने रूग्णाच्या छातीवर दाब द्या या पद्धतीला कॉम्प्रेशन ओन्ली लाईफ सपोर्ट (COLS) म्हणतात यामध्ये एका मिनीटाला 100 ते 120 दाब या गतीने किमान 30 वेळा छातीच्या बरोबर मध्यभागी दाब द्यावा

माहिती मिळवा.

1 तुम्ही कधी आजी, आजोबांना काढा (अर्क) घेताना किंवा काही चाटण घेताना पहिले आहे का ? त्यांच्याशी त्याबद्दल चर्चा करा 2 कोरफड, हळद, आले, लसूण यांचा वापर औषधी म्हणून कोणत्या आजारासाठी व कसा करतात त्याची माहिती आजी, आजोबांकडून मिळवा

इंटरनेट माझा मित्र

आयुर्वेदिक, होमिओपॅथी, निसर्गोपचार, ॲलोपॅथी, युनानी या वैद्यकीय उपचारपद्धतींविषयी इंटरनेटवरून माहिती मिळवा

औषधांचा गैरवापर: कधी कधी डॉक्टरांच्या सल्ल्याशिवाय परस्पर काही व्यक्ती औषधे घेतात त्यांच्या अतिवापराने आपल्या शरीरावर वाईट परिणाम घडून येतात जसे, जास्त प्रमाणात अथवा वारंवार वेदनाशामके (Pain Killers) घेतल्यास चेतासंस्था, उत्सर्जन संस्था, यकृत यावर विपरीत परिणाम होतो प्रतिजैविकांच्या (Antibiotics) अतिवापराने मळमळ, पोटदखी,पातळ जुलाब, अंगावर पुरळ येणे, जिभेवर पांढरे चट्टे पडणे इत्यादी लक्षणे तयार होतात

गरीब रुग्ण महागडी औषधे विकत घेऊ शकत नाहीत, अशा वेळी त्यांच्यासाठी काही पर्याय उपलब्ध असेल का व कोणता ?

जेनेरिक औषधे: जेनेरिक औषधे यांना सामान्य औषधे असेही म्हणतात या औषधांची निर्मिती व वितरण कोणत्याही पेटेंट शिवाय केली जाते ही औषधे ब्रॅन्डेड औषधांच्या समकक्ष व त्याच दर्जाची असतात जेनेरिक औषध तयार करताना त्या औषधातील घटकांचे प्रमाण किंवा त्या औषधांचा फॉर्मुला तयार मिळत असल्यामुळे संशोधनावरील खर्च वाचतो त्यामुळे जेनेरिक औषधांची किंमत ब्रॅन्डेड औषधांच्या किमतीपेक्षा तुलनेने खूप कमी असते

2.6 जेनेरिक औषधे

जोड माहिती संप्रेषण तंत्रज्ञानाची

जेनेरिक औषधे तुम्ही Healthkart व Jan Samadhan या मोबाईल ॲप च्या साहाय्याने सहज मिळवू शकता ते ॲप तुमच्या घरातील मोबाईलवर डाऊनलोड करा गरज पडल्यास त्याचा वापर करा

जीवनशैली आणि आजार: जीवनशैली म्हणजे आहार-विहार यामध्ये रोजच्या दिनचर्येचा आणि आहाराचा समावेश होतो आजकाल उशीरा उठणे, उशीरा झोपणे, आहाराच्या वेळा सारख्या बदलणे, व्यायाम व कष्टाची कामे यांचा अभाव असणे, जंकफूड (अरबट चरबट) खाणे अशा गोष्टींचे प्रमाणे वाढले आहे यामुळेच आजारी पडण्याचे प्रमाणे वाढले आहे

आजारी पडण्याचे प्रमाण कमी करायचे असेल तर योग्य जीवनशैली अंगीकारणे अत्यंत आवश्यक आहे यामध्ये योग्य झोप, योग्य आहार या व्यतिरिक्त योगासने, प्राणायाम आणि व्यायाम करणे आवश्यक आहे तसेच व्यायामसुद्धा आपल्या शरीराला झेपेल असाच करावा

प्राणायाम व योगासने तज्ज्ञांच्या मार्गदर्शनाखाली करावीत विविध प्राणायाम व योगासनांचे व्हिडिओ पहा लसीकरण (Vaccination): आजार होऊ नये म्हणून, त्यांचा प्रतिबंध म्हणून लसीकरण करून घेणे हेही तितकेच महत्वाचे आहे तुमच्या जवळच्या दवाखान्यातून लसीकरण तक्ता मिळवा व अभ्यासा

माहीत आहे का तुम्हांला?

- * पंतप्रधान जन औषध योजना 1 जुलै 2015 ला भारत सरकारने जाहीर केली या योजनेअंतर्गत उत्तम दर्जाची औषधे कमी किमतीत जनतेला उपलब्ध करून देण्यात येतात त्यासाठी 'जन औषधी स्टोअर्स' सुरू करण्यात आलेली आहेत
- * भारतीय कंपन्या मोठ्या प्रमाणावर जेनेरिक औषधांची निर्यात करतात; परंतु देशात मात्र ब्रॅन्डेड कंपनीच्या नावानेच जास्त किमतीला औषधे विकतात अमेरिकेत 80% जेनेरिक औषधांचा वापर केला जातो त्यामुळे औषधावरील शेकडो अब्ज रुपये तेथे वाचविले जातात

साजरे करूया आरोग्य दिनविशेष

7 एप्रिल - जागतिक आरोग्य दिन 14 जून - जागतिक स्कतदान दिन 29 सप्टेंबर - जागतिक हृदय दिन 14 नोव्हेंबर - जागतिक मधुमेह दिन

महत्त्व जाणा....

रक्तदान: रक्तदात्याचे एक युनिट रक्तदान एका वेळेला किमान तीन रुग्णांची गरज पूर्ण करते जसे की, तांबड्या पेशी, पांढऱ्या पेशी, रक्तबिंबिका एका वर्षात चारदा रक्तदान केल्यास 12 रुग्णांचे प्राण वाचवता येतात नेत्रदान: मृत्यूनंतर आपल्याला नेत्रदान करता येते त्यामुळे अंध व्यक्तींना दृष्टी मिळू शकते

स्वाध्याय

- फरक स्पष्ट करा. संसर्गजन्य व असंसर्गजन्य रोग
- 2. वेगळा शब्द ओळखा.
 - अ. हिवताप, कावीळ, हत्तीरोग, डेंग्यू
 - आ. प्लेग, एड्स, कॉलरा, क्षय
- 3. एक ते दोन वाक्यांत उत्तरे द्या.
 - अ. संसर्गजन्य रोग पसरविणारे माध्यम कोणकोणते?
 - आ. असंसर्गजन्य रोगांची पाठाव्यतिरिक्त कोणती नावे तुम्हांला सांगता येतील ?
 - इ. मधुमेह, हृदयविकार यांची मुख्य कारणे कोणती ?
- तर काय साध्य होईल /तर काय टाळता येईल /तर कोणत्या रोगांना आळा बसेल?
 - अ. पाणी उकळून व गाळून पिणे.
 - आ. धूम्रपान, मद्यपान न करणे.
 - इ. नियमित संतुलित आहार घेणे व व्यायाम करणे.
 - ई. रक्तदानापूर्वी रक्ताची योग्य प्रकारे तपासणी केली.
- 5. परिच्छेद वाचून प्रश्नांची उत्तरे द्या.

''गौरव 3 वर्षांचा आहे. तो व त्याचे कुटुंबीय साधारण वसाहतीत (झोपडपट्टीत) राहतात. सार्वजिनक शौचालय त्याच्या घराजवळच आहे. त्याच्या विडलांना मद्यपानाची सवय आहे. त्याच्या आईला संतुलित आहाराचे महत्त्व नाही.''

- अ. वरील परिस्थितीत गौरवला कोणकोणते आजार उद्भवू शकतात ?
- आ. त्याला किंवा त्याच्या पालकांना तुम्ही काय मदत कराल ?
- इ. गौरवच्या वडिलांना कोणता आजार होण्याची शक्यता आहे ?
- 6. खालील रोगांवरील प्रतिबंधात्मक उपाय लिहा.
 - अ. डेंग्यू आ. कर्करोग इ. एड्स

- 7. महत्त्व स्पष्ट करा.
 - अ. संतुलित आहार
 - आ. व्यायाम/योगासने
- 8. यादी करा.
 - अ. विषाणूजन्य रोग
 - आ. जीवाणूजन्य रोग
 - इ. कीटकांमार्फत पसरणारे रोग
 - ई. अनुवंशिकतेने येणारे रोग
- 9. कर्करोगावरील आधुनिक निदान व वैद्यकीय उपचार पद्धती विषयी माहिती लिहा.
- 10. तुमच्या घरी असणाऱ्या औषधांची नावे व त्यातील घटक लिहा व त्यांची यादी करा.

उपक्रम :

- 1. विविध आजारांवर माहिती देणारी, जनजागृती करणारी भित्तीपत्रके तयार करा व शाळेत प्रदर्शन भरवा.
- 2. जवळच्या आरोग्यकेंद्रास/दवाखान्यास भेट द्या व लसीकरणाविषयी अधिक माहिती मिळवा.
- 3. डेंग्यू, मलेरिया, स्वाईन फ्लू यांविषयी जनजागृती करणारे पथनाट्य बसवा व तुमच्या शाळेच्या जवळच्या भागात सादर करा.

3. बल व दाब

थोडे आठवा.

बल म्हणजे काय ?

स्थिर वस्तूवर बल कार्यरत नसेल तर ती स्थिरच राहते गतिमान वस्तूवर बल कार्यरत नसेल तर ती त्याच वेगाने व दिशेने सतत पुढे जात राहते हा न्यूटनचा गतिविषयक पहिला नियम आहे

निरीक्षण करा.

आकृती 3 1 व 3 2 मधील चित्रांचे निरीक्षण करा

3.1 विविध क्रिया

संपर्क व असंपर्क बले (Contact and Non contact Forces): आकृती 3 1 मध्ये मोटार ढकलणाऱ्या माणसाने मागून बल लावल्याने मोटार पुढील दिशेने ढकलली जाते तटून बसलेल्या कुत्र्याला मुलगा ओढत आहे व फुटबॉल खेळणारा मुलगा पायाने चेंडूला टोलवत आहे यावरून काय आढळते ? दोन वस्तूंमधील आंतरक्रियेमधून त्या वस्तूंवर

बल प्रयुक्त होते

आकृती 3 2 मध्ये चुंबकाच्या ध्रुवाकडे लोखंडी टाचण्या चुंबकीय बलामुळे आकर्षित होतात व चिकटतात, हे दाखवले आहे

3.2 काही घटना

ढकलणे,ओढणे,अशा कित्येक क्रियांमधून ते प्रयुक्त होते याउलट चुंबकीय बल, गुरुत्वीय बल, स्थितिक विद्युत बल यांसारखी बले कोणत्याही संपर्काशिवाय प्रयुक्त होतात म्हणून ती असंपर्क बलाची उदाहरणे आहेत

एखादा चेंडू टेबलावर ठेवून त्याला हलकासा धक्का मारला तर तो थोडा पुढे जाऊन संथ होत होत थांबतो सपाट रस्त्यावर पळणारी मोटारगाडी इंजिन बंद केल्यावर थोडे अंतर जाऊन थांबते टेबलाचा व जिमनीचा पृष्ठभाग आणि त्यावर गितमान असणारी वस्तू यांच्यामधील घर्षण बलामुळे हे घडते घर्षण बल नसते तर न्यूटनच्या पहिल्या गितविषयक नियमानुसार वस्तू गितमान राहिली असती घर्षण बल रोजच्या जीवनात अतिशय उपयुक्त आहे जिमनीवर चालताना आपण पावलाने जमीन मागे ढकलत असतो घर्षण नसेल तर आपण घसरून पडू व चालू शकणार नाही घर्षण बल हे सर्व गितमान वस्तूंवर प्रयुक्त

तसेच नारळाच्या झाडावरून नारळ खाली पडत आहे गुरुत्वीय बलामुळे वस्तू पृथ्वीकडे आकर्षित होतात केसांमध्ये घासलेल्या कंगव्याकडे टेबलावरील कागदाचे कपटे आकर्षित होतात कंगव्यावर स्थितिक विद्युतभार असल्याने व कपट्यांवर विरुद्ध प्रवर्तित भार असल्याने कंगवा व कागदाचे कपटे यांच्यात स्थितिक विद्युतबल प्रयुक्त होते व कपटे कंगव्याला चिकटतात

आकृती 3 1 मध्ये वस्तूंच्या एकमेकांशी आलेल्या थेट संपर्कामुळे किंवा आणखी एका वस्तूमार्फत आलेल्या संपर्कामुळे बल प्रयुक्त झालेले दिसते अशा बलास 'संपर्क बल' असे म्हणतात आकृती 3 2 मध्ये दोन वस्तूंमध्ये संपर्क नसला तरीही त्या दोन वस्तूंमध्ये बल प्रयुक्त होताना दिसते; अशा बलास 'असंपर्क बल' म्हणतात

स्नायूबल हे संपर्क बलाचे उदाहरण असून हे आपल्या स्नायूंच्या मदतीने वस्तूंवर प्रयुक्त केले जाते उचलणे, असते आणि ते गतीच्या दिशेच्या विरुद्ध दिशेने प्रयुक्त होत असते रस्त्यातील केळीच्या सालीवरून घसरायला होते हे तुम्ही पाहिले असेल तसेच चिखलामुळेही घसरायला होते, ही दोन्ही उदाहरणे घर्षण कमी झाल्याने घडतात

संपर्क व असंपर्क बल प्रयुक्त असण्याची आणखी काही उदाहरणांची यादी करा कोणत्या प्रकारचे बल आहे, ते लिहा

प्लॅस्टिकच्या दोन लहान चौकोनी आकाराच्या बाटल्या घ्या त्यांची झाकणे घट्ट बसवा दोन्ही बाटल्यांवर २ लहान चुंबकपट्ट्या ठेवा व त्या चिकटपट्टीच्या साहाय्याने नीट बसवा (आकृती 3 3)

3.3 असंपर्क बल

एका मोठ्या प्लॅस्टिक ट्रेमध्ये पाणी भरून त्यात ह्या बाटल्या चुंबक वरच्या बाजूस येतील अशा रितीने तरंगत सोडा. एक बाटली दुसरीच्या जवळ न्या. चुंबकाच्या विरुद्ध ध्रुवामध्ये आकर्षण असल्याने एका बाटलीवरील चुंबकपट्टीचा उत्तर ध्रुव दसऱ्या चुंबकपट्टीच्या दक्षिण ध्रुवानजीक असेल तर दोन्ही

बाटल्या एकमेकांकडे सरकू लागतील बाटल्यांच्या दिशा बदलून काय होते त्याचे निरीक्षण करा प्रत्यक्ष संपर्क न येता बाटल्यांच्या गतीत होणारे बदल आपल्याला दिसतात याचा अर्थ दोन्ही चुंबकांमध्ये असंपर्क बल कार्यरत आहे

स्थितिक विद्युत बल तुम्ही मागील इयत्तेत शिकला आहात स्थितिक विद्युत बल हे असंपर्क बल आहे हे सिद्ध करण्यासाठी कोणता प्रयोग कराल?

संतुलित आणि असंतुलित बले (Balanced and Unbalanced Forces)

3.4 संतुलित व असंतुलित बले

पुठ्ठ्याचे एक खोके घेऊन त्याच्या दोन बाजूंना सुतळी किंवा जाड दोरा बांधून आकृती 3 4 मध्ये दाखिवल्याप्रमाणे खोके सपाट पृष्ठभागाच्या टेबलावर ठेवा दोरा टेबलाच्या दोन्ही बाजूंकडे खाली घ्या त्यांच्या टोकांना पारडी बांधा दोन्ही पारड्यात एकाच वस्तुमानाच्या वस्तू (किंवा वजने) ठेवा खोके टेबलावर स्थिर रहात असल्याचे दिसेल एखाद्या पारड्यात दुसऱ्या पारड्यापेक्षा अधिक वस्तुमानाच्या वस्तू ठेवल्यास खोके त्या पारड्याच्या दिशेने सरकू लागेल पारड्यात एकसारखे वस्तुमान असताना दोन्ही पारड्यांवर समान गुरुत्वीय बल कार्यरत होते महणजेच खोक्यावर संतुलित बले लावली जातात, ती विरुद्ध दिशेने असल्याने त्यांचे परिणामी बल शून्य होते, आणि खोके हालत नाही याउलट जर एखाद्या पारड्यात अधिक वस्तुमान ठेवल्यास खोके अधिक वस्तुमानाच्या पारड्याच्या दिशेने सरकू लागते खोक्याला दोन्ही बाजूंना असमान बले लावल्याने असंतुलित बल कार्यरत होते व त्याची परिणती खोक्याला गती मिळण्यास होते

रस्सीखेच खेळणारी मुले आपआपल्या दिशेने दोर ओढतात दोन्ही बाजूंनी सारखीच ओढ म्हणजे बल असेल तर दोर हलत नाही एका बाजूचे बल अधिक झाले तर दोर त्या बाजूला सरकतो म्हणजेच आधी दोन्ही बले संतुलित असतात; ती असंतुलित झाल्यावर अधिक बलाच्या दिशेने दोर सरकतो

आणखी एक उदाहरण पाहू धान्याने भरलेला मोठा डबा जिमनीवरून सरकवताना तो एका व्यक्तीने सरकविण्यापेक्षा दोघांनी एकाच दिशेने बल लावल्यास सरकवणे सोपे जाते याचा अनुभव तुम्हीही घेतला असेल या उदाहरणावरून आपल्याला काय समजते ?

अ एखाद्या वस्तूवर एकाच दिशेने अनेक बले लावल्यास त्यांच्या बेरजेएवढे बल वस्तूंवर प्रयुक्त होते आ जर दोन बले एकाच वस्तूवर परस्पर विरुद्ध बाजूने लावली तर, त्यांचा फरकाइतके बल वस्तूवर प्रयुक्त होते इ बल हे परिमाण व दिशा यांमध्ये व्यक्त केले जाते बल ही सदिश राशी आहे

एखाद्या वस्तूवर एकापेक्षा अधिक बले प्रयुक्त असतील तर त्या वस्तूवर होणारा परिणाम हा त्यावर प्रयुक्त निव्वळ बलामुळे असतो बलामुळे स्थिर वस्तूला गती मिळते, गतिमान वस्तूची चाल व दिशा बदलते त्याचप्रमाणे गतिमान वस्तू थांबविण्यासाठीसुद्धा बल आवश्यक असते बलामुळे वस्तूचा आकारही बदलू शकतो कणीक मळताना कणकेच्या गोळ्याला बल लावले तर त्याचा आकार बदलतो कुंभार मडक्याला आकार देताना विशिष्ट दिशेने बल लावतो रबर ताणले की ते प्रसरण पावते अशी कितीतरी उदाहरणे देता येतात

जडत्व (Inertia): बलामुळे वस्तूची स्थिती बदलते हे आपण पाहिले बलाशिवाय, पदार्थांच्या वस्तू गतीच्या आहे त्याच स्थितीत राहण्याची प्रवृत्ती दाखवितात खालील उदाहरणे पाहू

कृती 1: एका काचेच्या पेल्यावर पोस्टकार्ड ठेवा त्यावर 5 रुपयांचे नाणे ठेवा आता पोस्टकार्डला जोरात टिचकी मारा नाणे सरळ पेल्यात पडते हे पाहिले आहे का ?

कृती 2: एका लोखंडी स्टॅंडला एका दोऱ्याच्या 1 साहाय्याने एक अर्धा किलोग्रॅमचे वस्तुमान लटकवा त्या वस्तुमानाला दुसरा दोरा 2 बांधून लटकवत ठेवा आता दोरा 2 झटका देऊन खाली ओढा दोरा 2 तुटतो पण वस्तुमान खाली पडत नाही जड वस्तुमान हलत नाही आता दोरा 2 हळू हळू खाली ओढा दोरा 1 तुटतो व वस्तुमान खाली पडते याचे कारण म्हणजे दोरा 1 मध्ये वस्तुमानामुळे आलेला ताण

दाब (Pressure): दुचाकी आणि चारचाकी गाड्यांच्या टायरमध्ये हवा भरताना तुम्ही पाहिले असेल हवा भरण्याच्या यंत्रावर 'दाब' दर्शविणारी तबकडी असते किंवा डिजिटल मीटर वर 'दाबाचे' आकडे दिसतात यंत्राने एका विशिष्ट मूल्यापर्यंत टायरमधील दाब वाढविला जातो सायकलच्या टायरमध्ये हातपंपाने हवा भरताना बल लावावे लागते ते तुम्हांला माहीत आहे बल लावून हवेचा दाब वाढवून ती टायरमध्ये भरली जाते बल आणि दाब यांचा काही संबंध आहे का ?

कृती 3: काही टोकदार खिळे घेऊन हातोडीच्या साहाय्याने ते एका लाकडी फळीत ठोका त्यातलाच एखादा खिळा घेऊन तो खिळचाच्या डोक्याच्या बाजूने फळीवर ठेवून टोकाच्या बाजूवर हातोडीने ठोकायचा प्रयत्न करा काय होते ? खिळा टोकाच्या बाजूने फळीत घुसतो, परंतु डोक्याच्या बाजूने घुसत नाही ड्रॉईंगबोर्डवर पिना टोचताना त्या सहज टोचल्या जातात आपल्या अंगठ्याने बल लावून आपण पिना टोचू शकतो याउलट टाचणी ड्रॉईंगबोर्डवर टोचताना अंगठ्याला इजा होण्याची शक्यता असते

हे नेहमी लक्षात ठेवा.

वस्तू आहे त्या गतीच्या स्थितीत राहण्याच्या प्रवृत्तीला त्याचे जडत्व असे म्हणतात. म्हणूनच बाहेरून बल प्रयुक्त न केल्यास स्थिर स्थितीतील वस्तू स्थिर राहते व गतिमान स्थितीतील वस्तू गतिमान स्थितीत राहते

जडत्वाचे प्रकार : 1. विराम अवस्थेतील जडत्व : वस्तूच्या ज्या स्वाभाविक गुणधर्मामुळे ती आपल्या विराम अवस्थेत बदल करू शकत नाही, त्यास विराम अवस्थेचे जडत्व म्हणतात उदाहरणार्थ, बस अचानक सुरू झाल्यास प्रवासी मागच्या दिशेने फेकले जातात 2. गतीचे जडत्व : वस्तूच्या ज्या स्वाभाविक गुणधर्मामुळे गतिमान अवस्थेत बदल होऊ शकत नाही, त्यास गतीचे जडत्व म्हणतात उदाहरणार्थ. फिरणारा विजेचा पंखा केल्यानंतरही काही वेळ फिरत राहतो, बस अचानक थांबल्यास बसमधील प्रवासी पुढच्या दिशेने फेकले जातात 3. दिशेचे जडत्व : वस्तूच्या ज्या स्वाभाविक गुणधर्मामुळे ती आपल्या गतीची दिशा बदलू शकत नाही, यास दिशेचे जडत्व म्हणतात उदाहरणार्थ, वाहन सरळ रेषेत गतिमान असताना अचानक वळण घेतल्यास प्रवासी विरुद्ध दिशेला फेकले जातात

या साध्या प्रयोगातून काय समजते ? खिळ्याच्या टोकदार भागाकडून खिळा लाकडात सहज घुसतो यावरून तुमच्या एक गोष्ट लक्षात येईल, की बल खिळ्याच्या डोक्याकडून लावल्यास खिळा फळीत ठोकणे सोपे आहे

भाजी, फळे चिरताना धारदार सुरीने कापणे सोपे जाते बोथट सुरी अशा कामी उपयोगी पडत नाही हे कशामुळे घडते?

एकक क्षेत्रफळावर लंब दिशेत प्रयुक्त असणाऱ्या बलास दाब (Pressure) असे म्हणतात

सध्या आपण केवळ एखाद्या पृष्ठभागावरील त्यास लंब असलेल्या बलाचा विचार करत आहोत दाबाचे एकक (Unit of Pressure) : बलाचे SI पद्धतीत एकक Newton (N) आहे क्षेत्रफळाचे एकक m^2 किंवा चौरस मीटर आहे

म्हणून दाबाचे एकक N/m^2 असे होईल यालाच पास्कल (Pa)असे म्हणतात हवामानशास्त्रात दाबाचे एकक bar हे आहे $1 \text{ bar} = 10^5 \text{ Pa}$, दाब ही अदिश राशी आहे

क्षेत्रफळ वाढले की त्याच बलाला दाब कमी होतो आणि क्षेत्रफळ कमी झाले की त्याच बलाला दाब वाढतो उदाहरणार्थ, उंटाच्या पायांचे तळवे पसरट असतात त्यामुळे उंटाचे वजन अधिक पृष्ठभागावर पडते आणि वाळूवर पडणारा दाब कमी होतो म्हणूनच उंटाचे पाय वाळूत घुसत नाहीत आणि त्याला चालणे सोपे जाते स्थायूवरील दाब : हवेत ठेवलेल्या सर्व स्थायू पदार्थांवर हवेचा दाब असतोच स्थायूवर एखादे वजन ठेवले तर त्या वजनामुळे स्थायूवर दाब पडतो तो त्या वजनावर व वजनाच्या स्थायूवरील संपर्काच्या क्षेत्रफळावर अवलंबून असतो

खालील आकृती 3 5 प्रमाणे कृती करा काय आढळून येते?

3.5 बल व दाब

भाजीची पाटी डोक्यावर घेऊन जाणारी भाजीवाली तुम्ही पाहिली असेल तिच्या डोक्यावर पाटीखाली ती कापडाची चुंबळ ठेवते, ह्याचा काय उपयोग होतो?

आपण जास्त वेळ एकाच ठिकाणी उभे राहू शकत नाही मग एकाच ठिकाणी आठ आठ तास झोपू कसे शकतो ?

बर्फावरून घसरण्यासाठी पसरट फळचा का वापरल्या जातात ?

द्रवाचा दाब (Pressure of liquid)

कृती 1: प्लॅस्टिकची एक बाटली घ्या रबरी फुगा ज्यावर बसेल अशा काचेच्या नळीचा साधारण $10~\mathrm{cm}$ लांबीचा तुकडा घ्या नळीचे एक टोक जरा तापवून हलकेच बाटलीच्या तळापासून $5~\mathrm{cm}$ वर बाटलीत एका बाजूने दाबून आत जाईल असे बसवा (आकृती 3~6) पाणी गळू नये म्हणून नळीच्या बाजूने मेण तापवून लावा आता बाटलीत थोडे थोडे पाणी भरून फुगा फुगत जातो ते पहा यावरून काय दिसते ? पाण्याचा दाब बाटलीच्या बाजूवरही पडतो

कृती 2: एक प्लॅस्टिकची बाटली घ्या आकृती 3 7 मध्ये दाखिवल्याप्रमाणे 1,2,3 अशा ठिकाणी प्रत्येक पातळीवर दाभणाने िकंवा जाड सुईने छिद्रे पाडा बाटलीत पूर्ण उंचीपर्यंत पाणी भरा आकृतीत दाखिवल्याप्रमाणे पाण्याच्या धारा बाहेर येताना दिसतील सर्वांत वरच्या छिद्रातून पाण्याची धार बाटलीच्या जवळ पडते, तर सर्वांत खालच्या उंचीवरील छिद्रातून धारा सर्वांत दूर पडते शिवाय एकाच पातळीतील दोन छिद्रांमधून धारा बाटलीपासून समान अंतरावर पडतात यावरून काय समजते? एकाच पातळीत द्रवाचा दाब एकच असतो तसेच द्रवाच्या खोलीप्रमाणे दाब वाढत जातो

3.7 द्रवाचा दाब व पातळी

वायूचा दाब (Gas Pressure): एखादा फुगा तोंडाने हवा भरून फुगवताना तो सर्व बाजूंनी फुगत जातो फुग्याला बारीक छिद्र पाडले तर त्यातून हवा बाहेर जात राहते आणि फुगा पूर्ण फुगत नाही ही निरीक्षणे वरील द्रवावरील प्रयोगांच्या निष्कर्षाप्रमाणे आहेत असे दिसून येते की, वायूसुद्धा द्रवाप्रमाणेच ज्या पात्रात तो बंदिस्त आहे त्या पात्राच्या भिंतीवर दाब देत असतो सर्व द्रव आणि वायू यांना द्रायू (fluid) अशी संज्ञा आहे पात्रातील द्रायू पात्राच्या सर्वच पृष्ठभागावर भिंतीवर आणि तळावर आतून दाब प्रयुक्त करतात बंदिस्त अशा दिलेल्या वस्तुमानाच्या द्रायूमध्ये असलेला दाब सर्व दिशांना समरूपाने प्रयुक्त होतो

वातावरणीय दाब (Atmospheric Pressure): पृथ्वीवर सर्व बाजूंनी हवेचे आवरण आहे ह्या आवरणालाच वातावरण असे म्हणतात पृथ्वीच्या पृष्ठभागापासून सुमारे 16 km उंचीपर्यंत हे वातावरण आहे त्यापुढेही सुमारे 400 km पर्यंत ते अतिशय विरल स्वरूपात असते हवेमुळे निर्माण झालेल्या दाबाला वातावरणीय दाब असे संबोधले जाते अशी कल्पना करा की एकक क्षेत्रफळाच्या पृथ्वीच्या पृष्ठभागावर लांबच लांब पोकळ दंडगोल उभा आहे, आणि त्यात हवा आहे (आकृती 3 8) ह्या हवेचे वजन हे पृथ्वीच्या दिशेने लावलेले बल आहे याचाच अर्थ हवेचा दाब म्हणजे हे वजन आणि पृष्ठभागाचे क्षेत्रफळ याचे गृणोत्तर

समुद्रसपाटीला असणाऱ्या हवेच्या दाबाला 1 Atmosphere म्हणतात जसजसे समुद्रसपाटीपासून वर जावू तसतसा हवेचा दाब कमी कमी होतो

1 Atmosphere = $101x10^3$ Pa = 1 bar = 10^3 mbar 1 mbar $\approx 10^2$ Pa (hectopascal)

वातावरणीय दाब mbar किंवा hectopascal (hPa) या एककामध्ये सांगितला जातो वातावरणीय दाब हवेतील एखाद्या बिंदूवर सर्व बाजूंनी असतो हा दाब कसा तयार होतो? एखाद्या बंदिस्त पात्रात हवा असल्यास हवेचे रेणू यादृच्छिक गतीने पात्राच्या बाजूंवर आदळतात या आंतरिक्रयेत पात्राच्या बाजूंवर बल प्रयुक्त होते बलामुळे दाब तयार होतो

आपणही वातावरणाचा दाब सतत डोक्यावर बाळगत असतो परंतु आपल्या शरीरातील पोकळ्चांमध्येही हवा असते आणि रक्तवाहिन्यांमध्ये रक्तही असते त्यामुळे पाणी व वातावरणीय दाबाखाली आपण चिरडले जाऊ शकत नाही, वातावरणाचा दाब संतुलित होतो पृथ्वीच्या वातावरणाचा दाब समुद्रासपाटीपासूनच्या उंचीप्रमाणे बदलतो कसा बदलतो ते आकृती 3 9 मध्ये दर्शविले आहे

3.9 वातावरणीय दाब

प्लावक बल (Buoyant Force)

3.10 संतुलित व असंतुलित प्लावक बल

1 m² पृष्ठभाग असलेल्या टेबलावर समुद्रसपाटीस 101x103 Pa इतका दाब प्रयुक्त असतो इतक्या प्रचंड दाबाने टेबलाचा पृष्ठभाग तुटून कोसळत का नाही?

प्लॅस्टिकची एक रिकामी हलकी बाटली घेऊन तिचे झाकण घट्ट बसवा आता ही बाटली पाण्यात टाकून काय होते पहा ती तरंगत राहील बाटली पाण्यात ढकलून खाली जाते का ते पहा ढकलली तरी बाटली वर येऊन तरंगत राहते प्लॅस्टिकचा पोकळ चेंडू घेऊनही असाच प्रयोग करता येईल (आकृती 3 10)

आता प्लॅस्टिकची पाण्याची बाटली काठोकाठ भरून झाकणाने घट्ट बंद करा आणि पाण्यात सोडा बाटली पाण्याच्या आत तरंगताना दिसेल, असे का होते?

प्लॅस्टिकची रिकामी बाटली व चेंड्र पाण्याच्या पृष्ठभागावर तरंगतात याउलट पाण्याने पूर्ण भरलेली बाटली पाण्याच्या आत तरंगत राहते, ती पूर्ण बुडत नाही आतील पाण्याच्या वजनाच्या मानाने रिकाम्या बाटलीचे वजन नगण्य आहे अशी बाटली पूर्ण बुडत नाही आणि वरही येत नाही याचा अर्थ पाणी भरलेल्या बाटलीवर खालच्या दिशेने प्रयुक्त गुरुत्वीय बल (f_j) त्या विरुद्ध वरच्या दिशेने प्रयुक्त अशा बलाने (f_j) संतुलित झाले असणार हे बल बाटलीच्या सभोवतालच्या पाण्यातून उद्भवलेले असणार पाण्यात किंवा अन्य द्रवात किंवा वायूत असलेल्या वस्तूवर वरच्या दिशेने प्रयुक्त बलाला प्लावक बल (f,) असे म्हणतात

विहिरीतून पाणी शेंदताना दोराला बांधलेली बादली पाण्यात पूर्ण बुडालेली असताना जितकी हलकी वाटते, त्यापेक्षा ती पाण्यातून बाहेर काढताना जड का वाटू लागते? प्लावक बल कोणत्या गोष्टीवर अवलंबून असते?

एक ॲल्युमिनिअमचा लहान पातळ पत्रा घ्या आणि एका बादलीत पाणी घेऊन हलकेच बुडवा काय आढळते? आता त्याच पत्र्याला वाकवून लहानशी बोट तयार करा व पाण्यावर सोडा बोट तरंगते ना ?

लोखंडाचा खिळा पाण्यात बुडतो पण स्टीलचे मोठे जहाज तरंगते असे का होते? द्रवात बुडविलेल्या वस्तूवर प्लावक बल प्रयुक्त होत असल्याने वस्तूचे वजन कमी झाल्याचे जाणवते

गोड्या पाण्याच्या पोहण्याच्या तलावात पोहण्यापेक्षा समुद्राच्या पाण्यात पोहणे सोपे जाते याचे मुख्य कारण म्हणजे समुद्राच्या पाण्याची घनता साध्या पाण्याच्या घनतेपेक्षा जास्त असते, कारण त्यात क्षार विरघळलेले असतात ह्या पुस्तकात तुम्ही पेल्यामध्ये पाणी भरून त्यात लिंबू सोडल्यास ते बुडते, पण पाण्यात २ चमचे मीठ टाकून ढवळल्यास त्यात मात्र लिंबू तरंगते हे अभ्यासले आहे पाण्याची घनता मिठाने वाढते येथे प्लावक बल गुरुत्वीय बलापेक्षा जास्त होते या उदाहरणांवरून काय दिसून येते ? प्लावक बल दोन गोष्टींवर अवलंबून असते :

- १ वस्तूचे आकारमान द्रवात बुडणाऱ्या वस्तूचे आकारमान जास्त असल्यास प्लावक बल जास्त असते
- २ द्रवाची घनता जितकी जास्त घनता तितके प्लावक बल जास्त असते

माहीत आहे का तुम्हांला?

एखादी वस्तू द्रवात टाकल्यास ती वस्तू द्रवात बुडेल, वर येवून तरंगेल, की द्रवाच्या आत तरंगेल हे कसे ठरते?

- 1 प्लावक बल वस्तूच्या वजनापेक्षा जास्त असेल तर वस्तू तरंगते
- 2 प्लावक बल वस्तूच्या वजनापेक्षा कमी असेल तर वस्तू बुडते
- 3 प्लावक बल वस्तूच्या वजनाएवढे असेल तर वस्तू द्रवामध्ये तरंगत राहते

वरील प्रकारात असंतुलित बले कोणती आहेत?

आर्किमिडीजचे तत्त्व :

आकृती 3 11 मध्ये दाखिवल्याप्रमाणे एक मोठा रबरबँड घेऊन तो एका बिंदूपाशी कापा त्याच्या एका टोकाला एक स्वच्छ धृतलेला लहानसा दगड किंवा 50 gm चे वजन बांधा

आता रबरबँडचे दुसरे टोक बोटांनी पकडून तेथे पेनने खूण करा दगड हवेत लटकता ठेवून वरील खुणेपासून लटकत्या दगडापर्यंत रबरबँडची लांबी मोजा आता एका पात्रात पाणी भरून दगड त्यात बुडेल अशा उंचीवर तो धरा आता पुन्हा रबराची लांबी मोजा काय दिसून आले? ही लांबी आधीपेक्षा कमी भरलेली आढळेल पाण्यात दगड बुडविताना ताणलेल्या रबराची लांबी हळूहळू कमी होते व तो पाण्यात पूर्ण बुडाला की लांबी सर्वांत कमी होते लांबी पाण्यात कमी होण्याचे काय कारण असावे ?

पाण्यात दगड बुडाल्याने त्यावर वरील दिशेने प्लावक बल प्रयुक्त होते दगडाचे वजन खालील दिशेने प्रयुक्त असते त्यामुळे खालील दिशेने प्रयुक्त असलेले एकूण बल कमी होते

3.11 प्लावक बल

ह्या प्लावक बलाचे परिमाण किती असते? ते कोणत्याही द्रवाला सारखेच असते का ? सर्व वस्तूंवर प्लावक बल सारख्याच परिमाणाचे असते का ? ह्या प्रश्नांची उत्तरे आर्किमिडीजच्या तत्त्वामध्ये अंतर्भूत आहेत हे तत्त्व असे : एखादी वस्तू द्रायूमध्ये अंशत: अथवा पूर्णतः बुडविल्यास त्यावर वरील दिशेने बल प्रयुक्त होते हे बल त्या वस्तूने बाजूस सारलेल्या द्रायूच्या वजनाइतके असते

जरा डोके चालवा.

आर्किमिडिजच्या तत्त्वानुसार मागील प्रयोगातील निरीक्षणांचे स्पष्टीकरण करा

(287 ख्रिस्तपूर्व – 212 ख्रिस्तपूर्व)

आर्किमिडिज हे ग्रीक शास्त्रज्ञ आणि प्रखर बुद्धीचे गणिती होते π चे मूल्य त्यांनी आकडेमोड करून काढले भौतिकशास्त्रात तरफा, कप्पी, चाके यासंबधीचे त्यांचे ज्ञान ग्रीक सैन्याला रोमन सैन्याशी लढताना उपयोगी ठरले भूमिती व यांत्रिकीमधील त्यांचे काम त्यांना प्रसिद्धी देऊन गेले बाथटबमध्ये स्नानासाठी उतरल्यावर बाहेर सांडणारे पाणी पाहून त्यांना वरील तत्त्वाचा शोध लागला 'युरेका, युरेका' म्हणजे 'मला सापडले, मला सापडले' असे ओरडत ते त्याच अवस्थेत रस्त्यावर धावले होते

आर्किमिडिजच्या तत्त्वाची उपयुक्तता मोठी आहे जहाजे, पाणबुड्या यांच्या रचनेत हे तत्त्व वापरलेले असते 'दृग्धतामापी' व 'आर्द्रतामापी' ही उपकरणे ह्या तत्त्वावर आधारित आहेत

पदार्थांची घनता व सापेक्ष घनता :

घनता = वस्तुमान/आकारमान घनतेचे एकक SI पद्धतीत kg/m^3 आहे पदार्थाची शुद्धता ठरवताना घनता हा गुणधर्म उपयोगी ठरतो पदार्थाची सापेक्ष घनता पाण्याच्या घनतेच्या तुलनेत व्यक्त केली जाते सापेक्ष घनता = पदार्थाची घनता/पाण्याची घनता, हे समान राशींचे गुणोत्तर प्रमाण असल्याने यास एकक नाही सापेक्ष घनतेलाच पदार्थाचे 'विशिष्ट गुरुत्व' म्हणतात

सोडविलेली उदाहरणे

उदाहरण 1. फळीवर ठेवलेल्या खाऊच्या डब्याच्या तळाचे क्षेत्रफळ 0.25m^2 असून त्याचे वजन 50 N आहे, त्या डब्याने फळीवर प्रयुक्त केलेला दाब काढा

दिलेले : क्षेत्रफळ = 0.25 m^2 , डब्याचे वजन = 50 N,

दाब =
$$\frac{\overline{\text{बल}}}{\hat{\text{क्षेत्रफळ}}} = \frac{50 \text{ N}}{0.25 \text{ m}^2} = 200 \text{ N/m}^2$$

उदाहरण 2. जर पाण्याची घनता 10^3 kg/m^3 आणि लोखंडाची घनता 7 85 x 103 kg/m3 असेल तर लोखंडाची सापेक्ष घनता काढा

दिलेले : पाण्याची घनता = 10^3 kg/m^3 , लोखंडाची

घनता = $7.85 \times 10^3 \text{ kg/m}^3$ लोखंडाची सापेक्ष घनता = ?

लोखंडाची सापेक्ष घनता = (लोखंडाची घनता) (पाण्याची घनता)

$$= \frac{7.85 \times 10^{3} \text{ kg/m}^{3}}{10^{3} \text{ kg/m}^{3}} = 7.85$$

उदाहरण 3. स्क्रूच्या टोकाचे क्षेत्रफळ 0 5 mm² असून त्याचे वजन 0 5 N आहे तर स्क्रूने लाकडी फळीवर प्रयुक्त केलेला दाब काढा (Pa मध्ये)

दिलेले : क्षेत्रफळ = $0.5 \times 10^{-6} \text{ m}^2$

स्क्रूचे वजन= 0 5 N, दाब =?

বাৰ =
$$\frac{\text{as}}{\hat{\aleph}$$
রিদক্ত = $\frac{0.5\text{N}}{(0.5\text{x}10^{-6}\text{m}^2)}$ = 10^6 N/m^2 = 10^6 Pa

उदाहरण 4 एका धातूच्या ठोकळयाचे वस्तुमान 10 kg असून त्याची लांबी 50 cm, रूंदी 10 cm व उंची 20 cm आहे (आकृती) टेबलावर धातूचा ठोकळा पुढील पृष्ठभागांवर ठेवल्यास त्याने प्रयुक्त केलेला दाब काढा ABCD, CDEF व BCFG कोणत्या स्थितीत दाब अधिकतम असेल ते सांगा

दिलेले: धातूच्या ठोकळयाचे वजन = mg

 $=10 \times 9 \ 8 = 98 \text{ N}$

पृष्ठभाग ABCD करीता, लांबी = 50 cm, उंची = 20

क्षेत्रफळ = लांबी x उंची = 50 cm x 20 cm

 $= 1000 \text{ cm}^2 = 0.1 \text{m}^2$

दाब =
$$\frac{\text{वजन}}{क्षेत्रफळ} = \frac{98}{(0\ 1)} = 980 \text{ Pa}$$

पृष्ठभाग CDEF करिता, लांबी = 50 cm रुंदी

= 10 cm

क्षेत्रफळ = लांबी $x \dot{v}$ दी = 50 cm x 10 cm

 $= 500 \text{ cm}^2 = 0.05 \text{ m}^2$

दाब =
$$\frac{\overline{\text{वज}}}{\overline{\text{क्षेत्रफळ}}} = \frac{98}{(0.05)} = \frac{9800}{5} = 1960 \text{ Pa}$$

पृष्ठभाग BCFG करिता उंची = 20 cm रुंदी = 10

क्षेत्रफळ = उंची x रुंदी = 20 cm x 10 cm

 $= 200 \text{ cm}^2 = 0.02 \text{ m}^2$

दाब = $\frac{\text{वजन}}{क्षेत्रफळ} = \frac{98 \text{ N}}{0.02 \text{ m}^2}$ = 4900 Pa : अधिकतम दाब

∴ संपर्क क्षेत्रफळ जेवढे कमी, तेवढा दाब अधिक उदाहरण 5. एका संगमरवरी फरशीच्या तुकड्याचे वजन हवेमध्ये 100 g आहे त्याची घनता 2 5g/cc इतकी असेल तर त्याचे पाण्यातले वजन किती होईल?

दिलेले: हवेतील वजन 100 g

घनता 2 5g/cc : आकारमान = (वजन)/(घनता) = 100g/(2.5 g/cc) = 40 cc

म्हणून आर्किमिडीजच्या तत्त्वानुसार पाण्यात बुडवल्यावर तुकड्याच्या आकारमानाएवढे 40 cc इतके पाणी बाजूस सारले जाईल या पाण्याच्या वजनाइतकी म्हणजे 40g इतकी तृट तुकड्याच्या वजनात येईल

 \therefore पाण्यातील वजन = 100 g - 40 g = 60 g

स्वाध्याय

1. रिकाम्या जागी योग्य शब्द लिहा.

- अ. SI पद्धतीत बलाचे एकक हे आहे. (डाईन, न्यूटन,ज्यूल)
- आ. आपल्या शरीरावर हवेचा दाब दाबा इतका असतो.
 - (वातावरणीय,समुद्राच्या तळावरील, अंतराळातील)
- इ. एखाद्या वस्तूकरिता वेगवेगळ्याद्रवात प्लावक बल असते.
 - (एकसारखे, घनतेच्या, भिन्न, क्षेत्रफळाच्या)
- ई. दाबाचे SI पद्धतीतील एककआहे. (N/m³, N/m², kg/m², Pa/m²)

2. सांगा पाहू माझा जोडीदार !

'अ' गट

'ब' गट

- 1. द्रायू अ. जास्त दाब
- 2. धार नसलेली सुरी आ. वातावरणीय दाब
- 3. अणकुचीदार सुई इ. विशिष्ट गुरुत्व
- 4. सापेक्ष घनता ई. कमी दाब
- 5. हेक्टोपास्कल 3. सर्व दिशांना सारखा दाब

3. खालील प्रश्नांची थोडक्यात उत्तरे लिहा.

- अ. पाण्याखाली प्लॅस्टिकचा ठोकळा सोडून दिला. तो पाण्यात बुडेल की पाण्याच्या पृष्ठभागावर येईल? कारण लिहा.
- आ. माल वाहून नेणाऱ्या अवजड वाहनांच्या चाकांची संख्या जास्त का असते ?
- इ. आपल्या डोक्यावर सुमारे किती हवेचा भार असतो ? तो आपल्याला का जाणवत नाही ?

4. असे का घडते ?

- अ. समुद्राच्या पाण्यापेक्षा गोड्या पाण्यात जहाज अधिक खोलीपर्यंत ब्रुडते.
- आ. धारदार चाकूने फळे सहज कापता येतात.
- इ. धरणाची भिंत तळाशी रुंद असते.
- ई. थांबलेल्या बसने अचानक वेग घेतल्यास प्रवासी मागच्या दिशेला फेकले जातात.

5. खालील सारणी पूर्ण करा.

वस्तुमान (kg)	आकारमान (m³)	घनता (kg/m³)
350	175	_
-	190	4

धातूची घनता (kg/m³)	पाण्याची घनता (kg/m³)	सापेक्ष घनता
_	10^{3}	5
8.5×10^3	10^{3}	_

वजन (N)	क्षेत्रफळ (m²)	दाब (Nm ⁻²)
_	0.04	20000
1500	500	_

- 6. एका धातूची घनता $10.8 ext{ x}10^3 ext{ kg/m}^3$ आहे, तर धातूची सापेक्ष घनता काढा. (उत्तर : 10.8)
- 7. एका वस्तूचे आकारमान $20~{\rm cm^3}$ आणि वस्तुमान $50~{\rm g}$ आहे. पाण्याची घनता $1~{\rm g}~{\rm cm}^{-3}$ तर ती वस्तू पाण्यावर तरंगेल की बुडेल? (उत्तर : बुडेल)
- 8. एका 500 g वस्तुमानाच्या, प्लॅस्टिक आवरणाने बंद केलेल्या खोक्याचे आकारमान 350 cm^3 इतके आहे. पाण्याची घनता 1 g cm^{-3} असेल तर खोके पाण्यावर तरंगेल की बुडेल ? खोक्याने बाजूस सारलेल्या पाण्याचे वस्तुमान किती असेल? (उत्तर : बुडेल, 350 g)

उपक्रम :

पाठामध्ये देण्यात आलेल्या सर्व कृतींचे मोबाईल फोनच्या मदतीने चित्रीकरण करा व इतरांना पाठवा.

4. धाराविद्युत आणि चुंबकत्व

थोडे आठवा.

अणूमध्ये कोणकोणते घटक असतात?

अणूमध्ये इलेक्ट्रॉन (ऋणप्रभारित कण) व प्रोटॉन (धनप्रभारित कण) असतात त्यामुळे एकंदरीत वस्तू विद्युतदृष्ट्या उदासीन (neutral) असते तरीही त्यात अणू असल्याने त्यात ऋणप्रभार व धनप्रभार असतोच म्हणूनच असे म्हणता येईल, की आपल्या सभोवतालच्या वस्तूंमध्ये 'विद्युतप्रभार' भरपूर प्रमाणात भरून राहिलेला असतो काचेची कांडी रेशमी कापडावर घासल्यावर काय होते ? वस्तू प्रभारित कशा होतात ? स्थिर आणि चल प्रभार कशाला म्हणतात ? चल विद्युत एका वस्तूवरून दुसऱ्या वस्तूवर स्थानांतरित होते हा ऋणप्रभार होय चल ऋणप्रभारित कणांना इलेक्ट्रॉन असे म्हणतात हा ऋणप्रभार प्रवाही करता येईल का ? पाणी जसे उंचावरून खालील भागाकडे वाहत जाते, त्याप्रमाणे विद्युत प्रवाही बनविता येईल का ? स्थिर वस्तूला गती देण्यासाठी बल लावावे लागेल हे तुम्ही शिकला आहात एखाद्या सुवाहकामधील इलेक्ट्रॉन्सना जर गती देऊन वाहते केले तर आपल्याला 'धारा विद्युत' मिळते

धाराविद्युत (Current Electricity): जेव्हा ढगातून जिमनीवर वीज पडते तेव्हा मोठा विद्युतप्रवाह वाहतो, तर कोणतीही संवेदना आपल्याला मेंदूकडे जाणाऱ्या सूक्ष्म विद्युतप्रवाहाने होते घरामध्ये तारांमधून, विजेच्या बल्बमधून, उपकरणांमधून वाहणाऱ्या विद्युत प्रवाहाचा तुम्हांला परिचय आहेच रेडिओच्या विद्युत घटांमधून (electric cells) आणि मोटारीच्या बॅटरीमधून धनप्रभारित अन् ऋणप्रभारित अशा दोन्ही कणांच्या वहनामुळे विद्युतप्रवाह निर्माण होतो विद्युतस्थितिक विभव (Electrostatic Potential): पाणी किंवा द्रव पदार्थ उंच पातळीतून खालील पातळीकडे वाहतात उष्णता नेहमी अधिक तापमानाच्या वस्तूकडून कमी तापमानाच्या वस्तूकडे वाहते त्याचप्रमाणे धनप्रभाराची प्रवृत्ती अधिक विद्युतपातळीच्या बिंदूपासून कमी विद्युतपातळीच्या बिंदूपर्यत वाहण्याची असते विद्युतप्रभाराच्या वहनाची दिशा ठरविणाऱ्या या विद्युतपातळीस विद्युतस्थितिक विभव (electrostatic potential) असे म्हणतात विभवांतर (Potential difference): 'धबधब्याची उंची', 'उष्ण व थंड' वस्तूंच्या तापमानातील फरक, याचप्रमाणे दोन बिंदूच्या विभवांमधील फरक म्हणजे 'विभवांतर' आपल्या दृष्टीने रोचक आहे

4.1 (अ) विद्युत परिपथ

4.1 (आ) विद्युत परिपथ

तांब्याची जोडणीची तार घेऊन आकृती 4 1 (अ) मध्ये दाखिवल्याप्रमाणे 'परिपथ' तयार करा बल्बमधून विद्युतप्रवाह वाहत नाही असेच दिसते आता याच परिपथात आकृती 4 1 (आ) मध्ये दाखवल्याप्रमाणे बाजारात मिळणारा एक दीड व्होल्टचा कोरडा विद्युतघट जोडा आता तारेतून विद्युतप्रवाह वाहत आहे हे बल्ब लागल्यामुळे लक्षात येईल विद्युतघटाच्या दोन टोकांमधील विभवांतरामुळे तारेतील इलेक्ट्रॉन्स प्रवाहित होतात ते विद्युतघटाच्या ऋण टोकाकडून धन टोकाकडे वाहतात सांकेतिक विद्युतप्रवाह उलट दिशेने वाहतो व तो बाणाने आकृतीत दाखविला आहे विद्युतपरिपथ म्हणजे काय ते याच पाठात पुढे पाहू

आकृती $4\ 1\ (3)$ मध्ये विद्युतघट नसल्यामुळे कोणतेही विभवांतर नाही, म्हणून विद्युतप्रवाह वाहत नाही परिपथात विद्युतघटामुळे विभवांतर निर्माण झाल्याबरोबर स्थिर विद्युतप्रवाह वाहू लागतो (आकृती $4\ 1\ (3)$) विभवांतराचे एकक SI पद्धतीत व्होल्ट (Volt) हे आहे याविषयी पुढील इयत्तेत आपण अधिक जाणून घेणार आहोत

एखाद्या नळीतून येणारा पाण्याचा प्रवाह कसा मोजायचा? विशिष्ट वेळात त्यातून किती लीटर पाणी आले, यावरून ते काढता येईल मग विद्युतप्रवाह कसा मोजाल?

विद्युतप्रवाह हा विद्युतप्रभारित कणांच्या वहनामुळे निर्माण होतो हे आपण पाहिले एखाद्या तारेतून 1 सेकंद एवढ्या वेळात वाहणाऱ्या विद्युत प्रभाराला एकक विद्युतप्रवाह म्हणता येईल विद्युतप्रवाहाचे SI एकक कूलोम प्रति सेकंद म्हणजेच ऑपिअर (Ampere) हे आहे

1 Ampere = 1A = 1 Coulomb/1 second = 1 C/s विद्युतप्रवाह ही अदिश राशी आहे विद्युतघट (Electric cell): एखाद्या परिपथामध्ये सतत विद्युतप्रभाराचा प्रवाह निर्माण करण्यासाठी एका स्त्रोताची गरज असते, असे एक सर्वसाधारण साधन म्हणजे विद्युतघट विविध तऱ्हेचे विद्युतघट आज उपलब्ध आहेत ते मनगटी घड्याळांपासून पाणबुड्यांपर्यंत अनेक यंत्रांमध्ये वापरले जातात विद्युतघटांपैकी सौरघट (solar cell) तुम्हांला माहीत असतील विविध विद्युतघटांचे मुख्य कार्य त्याच्या दोन टोकांमधील विभवांतर कायम राखणे हे होय विद्युतप्रभारावर कार्य करून विद्युतघट हे विभवांतर कायम राखतात, हे तुम्ही पुढे शिकाल

विद्युतघटांचे काही प्रकार हल्ली वापरात आहेत, त्याबद्दल आपण जाणून घेऊया

कोरडा विद्युतघट (Dry Cell) : आपल्या रेडिओ संचामध्ये, भिंतीवरील घड्याळामध्ये, विजेरीमध्ये हे कोरडे विद्युतघट बसविले जातात ते 3-4 आकारांत उपलब्ध असतात कोरड्या विद्युतघटाची रचना आकृती 4 2 मध्ये दाखविल्याप्रमाणे असते

एक निकामी झालेला कोरडा विद्युतघट घेऊन त्याचे बाहेरचे आवरण काढा त्याच्या आत एक पांढरट धातूचे आवरण दिसेल हे जस्त (Zn) धातूचे आवरण होय हेच घटाचे ऋण टोक आता हेही आवरण हलकेच फोडा जस्ताच्या आवरणाच्या आत आणखी एक आवरण असते या दोन्ही आवरणांमध्ये विद्युत अपघटनी (Electrolyte) भरलेली असते विद्युत अपघटनीमध्ये धनप्रभारित व ऋणप्रभारित आयन असतात त्यांच्यामार्फत विद्युतवहन होते ही अपघटनी म्हणजे $ZnCl_2$ (झिंक क्लोराईड) आणि NH_4Cl (अमोनिअम क्लोराईड) यांच्या ओल्या मिश्रणाचा लगदा असतो घटाच्या मध्यभागी एक ग्राफाइट कांडी असते हे घटाचे धन टोक असते कांडीच्या बाहेरील भागात MnO_2 (मँगनीज डायॉक्साइड) ची पेस्ट भरलेली असते या सर्व रासायनिक पदार्थांच्या रासायनिक अभिक्रियेद्वारा दोन्ही टोकांवर (graphite rod, zinc) विद्युतप्रभार तयार होतो व परिपथातून विद्युतप्रवाह वाहतो

या विद्युतघटात ओलसर लगदा वापरल्यामुळे रासायनिक अभिक्रिया मंदपणे चालते म्हणून मोठा विद्युतप्रवाह यातून मिळवता येत नाही द्रवपदार्थांचा वापर करणाऱ्या विद्युतघटांच्या तुलनेत त्यांची साठवण कालमर्यादा (shelf life) अधिक असते कोरडे विद्युतघट वापरायला सोयीचे असतात कारण ते उभे, आडवे, तिरपे, कसेही ठेवता येतात व चल साधनांमध्येही सहजपणे वापरता येतात

लेड-आम्ल विद्युतघट (Lead-Acid Cell) : आकृती 4 3 मध्ये लेड-आम्ल विद्युतघटाची रचना दाखविली आहे त्याचे तत्त्व पाहू ह्या प्रकारचे घट विद्युतविमोचन (Electrical discharge) झाल्यानंतर पुन्हा विद्युत प्रभारित करता येतात लेड-आम्ल विद्युतघटात शिश्याचे (Pb) एक लेड विद्युतअग्र (electrode) व लेड डायॉक्साईड (PbO₂) चे दुसरे विद्युतअग्र (electrode) विरल सल्फ्युरिक आम्लात बुडविलेले असते PbO₂ या विद्युतअग्रावर धन प्रभार, तर Pb ह्या विद्युतअग्रावर ऋणप्रभार असतो दोन्हींमधील विभवांतर सुमारे 2V इतके असते घटामधील पदार्थांच्या रासायनिक अभिक्रियेने दोन्ही विद्युतअग्रांवर विद्युतप्रभार तयार होतो व परिपथातील भारामधून (जसे की बल्बमधून) विद्युतप्रवाह

4.3 लेड-आम्ल विद्युतघट

Tile to the second

वाहतो

4.4 (अ) घटधारक

4.4 (ब) साधा विद्युत परिपथ

शोध घ्या

लिथिअम (Li) आयन विद्युत घट आधुनिक साधनांमध्ये वापरले जातात, उदाहरणार्थ स्मार्टफोन, लॅपटॉप, इत्यादी हे घट पुनःप्रभारित करता येतात ह्यामध्ये Ni-Cd घटांपेक्षा अधिक विद्युत ऊर्जा साठविली जाते ह्या प्रकारच्या विद्युतघटांची मोठा विद्युतप्रवाह पुरविण्याची क्षमता असते ह्यामुळे मोटारी, ट्रक, मोटारसायकली, अखंड विद्युतशक्ती पुरवठायंत्रे (UPS), यांमध्ये लेड-आम्ल विद्युतघट वापरले जातात निकेल-कॅडिमअम घट (Ni-Cd cell): सध्या वेगवेगळी साधने उपकरणे उपलब्ध आहेत, की जी इकडे तिकडे न्यावी लागतात अशा साधनांसाठी निकेल कॅडिमअम विद्युतघट वापरतात हे घट 1 2 V विभवांतर देतात व पुन्हा प्रभारित करता येतात

विद्युत परिपथ (Electric Circuit): आकृती 4 4 (अ) मध्ये दाखिवल्याप्रमाणे घटधारक (cell holder), विद्युत दिवा (बल्ब) व कळ जोडणीच्या विद्युतवाहक तारांनी जोडल्यावर व घट धारकामध्ये कोरडा विद्युतघट बसिवल्यास बल्ब प्रकाशतो याचा अर्थ बल्बमधून विद्युतप्रवाह वाहतो व बल्ब प्रकाशतो घट काढून घेताच बल्बमधील विद्युतप्रवाह खंडित होतो व बल्बचे प्रकाशणे बंद होते या प्रकारच्या विद्युत घटकांच्या जोडणीला विद्युत परिपथ असे म्हणतात परिपथ आकृती 4 4 (ब) मध्ये दाखविला आहे विद्युतघट अशा खुणेने दाखविला आहे : 十一

आपल्या घरातही विद्युत परिपथाची जोडणी केलेली असते, मात्र विद्युतघटाच्या ऐवजी बाहेरून तारांमार्फत विद्युतपुरवठा केला जातो याविषयी तुम्ही पुढे शिकाल घटांची जोडणी: विद्युत परिपथात काही वेळा एकापेक्षा अधिक घट जोडलेले तुम्ही पाहिले असेल (आकृती 4 5 (अ)) ट्रान्झिस्टर रेडिओमध्ये 2-3 कोरडे घट 'एकसर' जोडणीत जोडलेले दिसतात असे करण्याचा उद्देश, एका घटाच्या विभवांतरापेक्षा अधिक विभवांतर मिळविणे हा असतो त्यामुळे अधिक विद्युतप्रवाह मिळवता येतो विद्युतघट आकृती 4 5 (आ) मध्ये दाखविल्याप्रमाणे जोडल्यास त्यास घटांची बॅटरी (Battery of cells) असे म्हणतात ह्या एकसर जोडणीत एका घटाचे धन टोक दुसऱ्याच्या ऋण टोकाला व दुसऱ्याचे घनटोक तिसऱ्याच्या ऋण टोकाला जोडतात त्यामुळे जर प्रत्येक घटाचे विभवांतर 1 V असेल तर तीन घटांचे एकूण विभवांतर 3 V होईल

4.5 विद्युतघटांची जोडणी

बाजारात मिळणाऱ्या मोटारीची बॅटरी तुम्ही पाहिली असेल, तिला घट (cell) न म्हणता 'बॅटरी' (Battery) का म्हणतात?

धारा विद्युतचे चुंबकीय परिणाम : (Magnetic effects of electric current)

कृती 1: एखाद्या टाकाऊ काड्यापेटीसारख्या डबीच्या आतील ट्रे घ्या त्यात लहानशी चुंबकसूची ठेवा आता जोडणीची लांब तार घेऊन ती ट्रेभोवती गुंडाळा विद्युतघट, प्लग, कळ ही तार व बल्ब जोडून परिपथ पूर्ण करा (आकृती 4 6)

आता चुंबकसूचीची स्थिती पहा एक चुंबकपट्टी घेऊन ती चुंबकसूचीजवळ न्या काय आढळले? चुंबकसूचीकडे नजर ठेवून परिपथाची कळ दाबा बल्ब प्रकाशमान होईल, म्हणजे विद्युतप्रवाह चालू झाला हे लक्षात येईल चुंबकसूची दिशा बदलते का? आता कळ खुली करा चुंबकसूची पुन्हा मूळ दिशेत स्थिरावते का? ह्या प्रयोगातन काय निष्कर्ष काढाल?

4.6 धारा विद्युतचा चुंबकीय परिणाम

चुंबकसूची म्हणजे एक लहानसा चुंबकच असतो हे तुम्हांला माहित आहे चुंबकपट्टी चुंबकसूचीजवळ नेल्यावर चुंबकसूची दिशा बदलते हे तुम्ही पाहिले त्याचबरोबर परिपथात विद्युतप्रवाह चालू केल्यासही चुंबकसूची दिशा बदलते, हेही निरीक्षण तुम्ही केले म्हणजेच तारेतून विद्युतप्रवाह गेल्यास चुंबकीय क्षेत्र निर्माण होते हान्स ख्रिस्तिअन ओरस्टेड या वैज्ञानिकाने असे निरीक्षण प्रथम नोंदविले थोडक्यात असे म्हणता येईल, की एखाद्या तारेतून विद्युतप्रवाह गेल्यास त्या तारेभोवती चुंबकीय क्षेत्र निर्माण होते

4.7 विद्युतचुंबक

कृती 2: एखादा मीटरभर विद्युतरोधी आवरण असलेली तांब्याची लवचीक तार घेऊन एका लांब स्क्रूवर कसून गुंडाळा तारेची दोन टोके आकृती 4 7 मध्ये दाखविल्याप्रमाणे परिपथात जोडा परिपथात विद्युतघट व कळही जोडा स्क्रूच्या जवळ २-४ लोखंडी टाचण्या ठेवा आता कळ बंद करून परिपथातून विद्यतुप्रवाह सुरू करा टाचण्या स्क्रूच्या टोकाला चिकटलेले दिसतील कळ खुली करताच टाचण्या चिकटलेल्या स्थितीतच राहतील का?

तारेतून विद्युतप्रवाह वाहताना स्क्रूभोवतीच्या तारेच्या कुंतलात (Coil मध्ये) चुंबकत्व निर्माण होते व त्यामुळे स्क्रूलाही चुंबकत्व प्राप्त होते विद्युतप्रवाह खंडित होताच ते नाहिसे होते कुंतल व स्क्रू ह्या संहितेस विद्युतचुंबक म्हणतात विद्युतचुंबकाचे विविध उपयोग तुम्ही मागील इयत्तेत पाहिले आहेत विज्ञान संशोधनात उपयोगी तीव्र चुंबकीय क्षेत्र तयार करण्यासाठी विद्युतचुंबक वापरले जातात

26

विद्युतघंटा: दारावरची साधी विद्युतघंटा अनेकांनी पाहिली असेल एखादी बंद पडलेली अशी घंटा खोलून पहा आकृती ४ ८ मध्ये विद्युतघंटेचे बाह्य आवरण काढलेले आहे आपल्याला दिसते आहे की त्यात विद्युतचुंबकही आहे ह्या घंटेचे कार्य कसे चालते ते पाहूया तांब्याची तार एका लोखंडी तुकड्यावर गुंडाळलेली असते हे कुंतल विद्युतचुंबक म्हणून कार्य करते एक लोखंडी पट्टी टोलासहित विद्युतचुंबकाजवळ बसवलेली असते लोखंडी पट्टी ह्या पट्टीच्या संपर्कात संपर्क स्क्रू असतो विद्युत परिपथ आकृती ४ ८ मध्ये दाखविल्याप्रमाणे जोडलेला असतो स्क्रू पट्टीला खेटलेला असताना परिपथातून विद्युतप्रवाह वाहतो व त्यामुळे कुंतलाचा विद्युतचुंबक होतो व तो लोखंडी पट्टीला खेचून घेतो त्यामुळे घंटेवर टोला आदळून नाद होतो मात्र त्याच वेळी संपर्क स्क्रूचा लोखंडी पट्टीशी संपर्क तुटतो आणि परिपथातील विद्युतप्रवाह खंडित होतो अशा स्थितीत विद्युतचुंबकाचे चुंबकत्व नाहिसे होते व लोखंडी पट्टी पुन्हा मागे येऊन संपर्क स्क्रूला चिकटते त्यामुळे लगेच पुन्हा विद्युतप्रवाह सुरू होतो व पुन्हा वरील क्रियेने टोला घंटेवर आढळतो ही क्रिया वारंवार होते आणि घंटा खणाणते

4.8 विद्युत घंटा

स्वाध्याय

- 1. रिकाम्या जागी खालील शब्दसमूहातील योग्य शब्द लिहा. (चुंबकत्व, 4.5V, 3.0V, गुरूत्वाकर्षण, विभवांतर, विभव, अधिक, कमी, 0V)
 - अ. धबधब्याचे पाणी वरील पातळीपासून खालील पातळीवर पडते, याचे कारण
 - आ. एखाद्या परिपथात इलेक्ट्रॉन्स विभव असलेल्या बिंदूपासून विभव असलेल्या बिंद्कडे वाहतात.
 - इ. विद्युतघटाच्या धन अग्र व ऋण अग्र यांच्या विद्युत स्थितिक विभवातील फरक म्हणजे त्या घटाचे होय.
 - ई. 1.5 V विभवांतराच्या 3 विद्युतघटांची बॅटरी स्वरूपात जोडणी केली आहे. या बॅटरीचे विभवांतर V इतके असेल.
 - एखाद्या विद्युतवाहक तारेतून जाणारी विद्युतधारा तारेभोवती निर्माण करते.
- 2. 3 कोरड्या विद्युतघटांची जोडणीच्या तारांनी बॅटरी करायची आहे. तारा कशा जोडाल ते आकृतीसह स्पष्ट करा.
- 3. एका विद्युतपरिपथात एक बॅटरी व एक बल्ब जोडले असून बॅटरीत दोन समान विभवांतराचे घट बसविले आहेत. जर बल्ब प्रकाशित होत नसेल, तर ते कशामुळे याचा शोध घेण्यासाठी कोणत्या तपासण्या कराल ?

4. प्रत्येकी 2 V विभवांतराचे विद्युतघट खालीलप्रमाणे बॅटरीच्या स्वरूपात जोडले आहेत. दोन्ही जोडण्यांत बॅटरीचे एकूण विभवांतर किती असेल?

- 5. कोरड्या विद्युतघटाची रचना, कार्य व उपयुक्तता यांचे थोडक्यात वर्णन आकृतीच्या साहाय्याने करा.
- विद्युतघंटेची रचना व कार्य आकृतीच्या साहाय्याने वर्णन करा.

उपक्रम :

पाठामध्ये केलेल्या सर्व कृती नव्याने बनवून विज्ञान प्रदर्शनात सादर करा.

33.00

5. अणूचे अंतरंग

- 1 द्रव्य म्हणजे काय ? 2 अणू म्हणजे काय ?
- 3 द्रव्याचा सर्वांत लहान घटक कोणता ?

आपण पाहिले की द्रव्य हे रेणूंचे बनलेले असते रेणू हे अणूंपासून बनलेले असतात म्हणजेच अणू हे द्रव्याचे सर्वांत लहान एकक आहे सर्व भौतिक व रासायनिक बदलांमध्ये आपली रासायनिक ओळख कायम राखणारा मूलद्रव्याचा लहानात लहान कण म्हणजे अणू होय

तक्ता 5 1 मध्ये काही पदार्थांची नावे व सूत्रे दिली आहेत त्यावरून पदार्थाच्या लहानात लहान कणाची माहिती व पदार्थाचा प्रकार दर्शवणाऱ्या खुणा भरुन तक्ता पूर्ण करा

पदार्थाचे नाव	सूत्र	पद	पदार्थाचे प्रकार				
		अणू आहे (एक अणू	रेणू आहे	रेणूमधील अणू	रेणूमधील अणू	मूलद्रव्य	संयुग
		असलेला रेणू आहे)		एकाच प्रकारचे	अनेक प्रकारचे		
पाणी	H ₂ O		✓		✓		✓
ऑक्सीजन	O ₂		✓	\checkmark		✓	
हेलिअम	Не	✓		✓		✓	
हायड्रोजन	H_2						
अमोनिआ	NH ₃						
नायट्रोजन	N ₂						
मिथेन	CH ₄						
अरगॉन	Ar						
निऑन	Ne						
क्लोरीन	Cl ₂						

5.1 पदार्थाचे प्रकार

आपण मागील इयत्तेत अभ्यासले की बऱ्याच पदार्थांचे लहानात लहान कण रेणू असतात काही थोड्या पदार्थांच्या रेणूंमध्ये एकच अणू असतो रेणू हे अणूंच्या रासायनिक संयोगाने तयार होतात त्यावरून आपल्याला समजते की रासायनिक संयोगात भाग घेणारा मूलद्रव्याचा लहानात लहान कण म्हणजे अणू अणूविषयी संकल्पना 2500 वर्षांहूनही जुनी आहे पण काळाच्या ओघात ती विस्मृतीत गेली आधुनिक काळात वैज्ञानिकांनी प्रयोगांच्या आधारे अणूचे स्वरूपच नव्हे तर अंतरंग स्पष्ट केले आहे याची सुरुवात डाल्टनच्या अणुसिद्धांताने झाली

माहित आहे का तुम्हांला?

- द्रव्याचे लहान कणांमध्ये विभाजन करायला एक मर्यादा असते, असे भारतीय तत्वज्ञ कणाद (ख्रिस्तपूर्व 6 वे शतक) यांनी सांगितले द्रव्य ज्या अविभाज्य कणांचे बनलेले असते त्यांना कणाद मुनींनी परमाणू (म्हणजे लहानात लहान कण) असे नाव दिले त्यांनी असेही मत मांडले की परमाणू अनाशवंत असतो
- ग्रीक तत्ववेत्ता डेमोक्रिटस (ख्रिस्तपूर्व 5 वे शतक) यांनी असे प्रतिपादन केले की द्रव्य लहान कणांचे बनलेले असते व ह्या कणांना कापता येत नाही द्रव्याच्या लहानात लहान कणाला डेमोक्रिटसने ॲटम असे नाव दिले (ग्रीक भाषेत ॲटमॉस म्हणजे कापता न येणारा)

डाल्टनचा अणुसिद्धांत : इ स 1803 मध्ये ब्रिटिश वैज्ञानिक जॉन डाल्टन यांनी सुप्रसिद्ध अणुसिद्धांत मांडला ह्या सिद्धांतानुसार द्रव्य अणूंचे बनलेले असते व अणू हे अविभाजनीय व अनाशवंत असतात एका मूलद्रव्याचे सर्व अणू एकसमान असतात तर भिन्न मूलद्रव्यांचे अणू भिन्न असतात व त्यांचे वस्तुमान भिन्न असते

5.2 डाल्टनचे अणुप्रारूप

1 एक भरीव चेंडू व एक बुंदीचा लाडू घ्या त्या दोन्ही गोलांना हाताने दाब द्या काय दिसले ? 2 भरीव चेंडू धारदार सुरीने काळजीपूर्वक कापा काय दिसले ?

बुंदीच्या लाडवाला अंतर्गत संरचना असून तो त्याच्याहून लहान कण म्हणजे बुंदी एकमेकांना चिकटवून बनल्याचे समजते मात्र भरीव चेंडूला ढोबळमानाने अंतर्गत संरचना काहीच नाही असे समजते डाल्टनचे वर्णन केलेला अणु हा एखाद्या कडक, भरीव गोलाप्रमाणे काहीच संरचना नसलेला असा ठरतो डाल्टनच्या अणुसिद्धांतानुसार अणूमध्ये वस्तुमानाचे वितरण सर्वत्र एकसमान असते जे जे थॉमसन ह्या वैज्ञानिकाने अणूच्या आत असलेल्या ऋणप्रभारित कणांचा शोध लावला आणि डाल्टनच्या थॉमसनने प्रयोग अणुसिद्धांताला धक्का बसला करून दाखवून दिले की अणूंच्या अंतरंगात असलेल्या ऋणप्रभारित कणांचे वस्तुमान हायड्रोजन अणूपेक्षा 1800 पट कमी असते ह्या कणांना पढे इलेक्ट्रॉन असे नाव दिले गेले सर्वसाधारण पदार्थ हे निसर्गतः विद्युतप्रभारदृष्ट्या उदासीन असतात अर्थातच पदार्थांचे रेणू तसेच ते ज्यांच्या रासायनिक संयोगाने बनतात ते अणू विद्युतप्रभारदृष्ट्या उदासीन असतात

अंतरंगात ऋणप्रभारित इलेक्ट्रॉन असूनही अणू विद्युतप्रभारदृष्ट्या उदासीन कसा ? थॉमसनने अणुसंरचनेचे प्लम पुडिंग प्रारूप मांडून ह्या अडचणीतून मार्ग काढला थॉमसनचे प्लम पुडिंग अणुप्रारूप: अणुसंरचनेचे पहिले प्रारूप म्हणजे थॉमसन यांनी सन 1904 मध्ये मांडलेले प्लम पुडिंग प्रारूप होय ह्या प्रारूपानुसार अणूमध्ये सर्वत्र धनप्रभार पसरलेला असतो व त्यामध्ये ऋणप्रभारित इलेक्ट्रॉन जडवलेले असतात पसरलेल्या धनप्रभाराचे संतुलन इलेक्ट्रॉनांवरील ऋणप्रभारामुळे होते त्यामुळे अणू विद्युतप्रभारदृष्ट्या उदासीन होतो

5.3 थॉमसनचे प्लम पुडिंग अणुप्रारूप

थॉमसनच्या प्रारूपानुसार अणूच्या वस्तुमानाचे वितरण कसे असेल असे तुम्हाला वाटते ? हे वितरण डाल्टनच्या अणुसिद्धांताप्रमाणे सर्वत्र समान की असमान ?

माहित आहे का तुम्हांला?

प्लम पुडिंग किंवा प्लम केक हा गोड खाद्यपदार्थ ख्रिसमस ह्या सणात बनवतात पूर्वी पाश्चात्य देशांत ह्या पदार्थात प्लम ह्या फळाचे सुकवलेले तुकडे घालत हल्ली प्लमऐवजी बेदाणे किंवा खजूर वापरतात

- 1 तुम्ही स्ट्रायकरने सोंगटीवर धरलेला नेम चुकला तर स्ट्रायकर कोणत्या दिशेने जाईल ?
- 2 नेम बरोबर लागला तर स्ट्रायकर कोणत्या दिशेला जाईल ? सरळ पुढे की बाजूच्या अथवा उलट दिशेला ?

रूदरफोर्डचे केंद्रकीय अणूप्रारूप (1911)

अर्नेस्ट रूदरफोर्ड यांनी त्यांच्या सुप्रसिद्ध विकीरण प्रयोगाने अणूच्या अंतरंगाचा वेध घेतला व सन 1911 मध्ये अणुचे केंद्रकीय प्रारूप मांडले

रूदरफोर्ड यांनी सोन्याचा अतिशय पातळ पत्रा (जाडी: 10^{-4}mm) घेऊन त्यावर किरणोत्सारी मूलद्रव्यातून उत्सर्जित होणाऱ्या धनप्रभारित lpha - कणांचा मारा केला व कणांच्या मार्गांचा वेध घेतला (आकृती 5 4) सोन्याच्या पत्र्याभोवती लावलेल्या प्रतिदीप्तीमान पडदा लावून त्यांनी जर अणूंमध्ये धनप्रभारित वस्तुमानाचे वितरण सर्वत्र एकसमान असेल तर धन प्रभारित α - कणांचे पत्र्यावरून परावर्तन होईल अशी अपेक्षा होती अनपेक्षितपणे बहसंख्य α -कण पत्र्यातून आरपार सरळ गेले, काही थोड्या α -कणांचे मूळ मार्गापासून लहान कोनामधून विचलन झाले, आणखी थोड्या α - कणांचे मोठ्या कोनातून विचलन झाले आणि आश्चर्य म्हणजे 20000 पैकी एक lpha -कण मूळ मार्गाच्या उलट दिशेने उसळला

5.4: रूदरफोर्डचा विकीरण प्रयोग

मोठ्या संख्येने आरपार गेलेले α - कण असे दर्शवतात की त्यांच्या वाटेत कोणताच अडथळा नव्हता याचा अर्थ सोन्याच्या स्थायुरूप पत्र्यामधील अणूंच्या आत बरीचशी जागा मोकळीच असली पाहिजे ज्या थोड्या lpha - कणांचे लहान किंवा मोठ्या कोनातून विचलन झाले त्यांच्या वाटेत अडथळा आला याचा अर्थ अडथळ्यास कारण असलेला अणुचा धनप्रभारित व जड भाग अणुच्या मध्यभागी होता यावरून रूदरफोर्डने पुढीलप्रमाणे अणूचे केंद्रकीय प्रारूप मांडले

5.5 रूदरफोर्डचे केंद्रकीय अणुप्रारूप

- अणूच्या केंद्रभागी धनप्रभारित केंद्रक असते
- 2 केंद्रकात अणूचे जवळजवळ सर्व वस्तुमान एकवटलेले असते 3 केंद्रकाभोवती इलेक्ट्रॉन नावाचे ऋणप्रभारित कण परिभ्रमण करीत असतात 4 सर्व इलेक्ट्रॉनांवरील एकत्रित ऋणप्रभार हा केंद्रकावरील धनप्रभाराएवढा असल्याने विजातीय प्रभारांचे संतुलन होऊन अणू हा विद्युतदृष्ट्या उदासीन असतो 5 परिभ्रमण करणारे इलेक्ट्रॉन व अण्केंद्रक ह्यांच्या दरम्यान पोकळी असते

जरा डोके चालवा

- 1 अणूला अंतर्गत संरचना आहे हे कोणत्या शोधामुळे लक्षात आले ?
- 2 डाल्टनच्या अणुसिद्धांतामधील भरीव अणू व थॉमसनच्या प्रारूपातील भरीव अणू यांच्यात फरक
- 3 थॉमसनच्या अणुप्रारूपातील धनप्रभाराचे वितरण व रूदरफोर्डच्या अणुप्रारूपातील धनप्रभाराचे वितरण यातील फरक स्पष्ट करा
- 4 थॉमसन व रूदरफोर्ड यांच्या अणुप्रारूपांमध्ये इलेक्ट्रॉनांच्या स्थितीसंबंधात वेगळेपणा काय आहे ?
- 5 डाल्टन व थॉमसनच्या अणूप्रारूपात नसलेली कोणती गोष्ट रूदरफोर्डच्या अणूप्रारूपात आहे ?

वर्त्वळाकार कक्षेत परिभ्रमण करणाऱ्या विद्युतप्रभारित वस्तूची ऊर्जा कमी होते असा भौतिकशास्त्रातील प्रस्थापित नियम आहे ह्या नियमानुसार रूदरफोर्डने मांडलेल्या प्रारूपातील अणू अस्थायी ठरतो मात्र प्रत्यक्षात किरणोत्सारी अणू सोडून इतर सर्व अणूंना स्थायीभाव असतो रूदरफोर्डच्या अणुप्रारूपातील ही त्रुटी नील्स बोर यांनी सन 1913 मध्ये मांडलेल्या अणुप्रारूपाने द्र झाली

बोरचे स्थायी कक्षा अणुप्रारूप (1913)

सन 1913 मध्ये डॅनिश वैज्ञानिक नील्स बोर यांनी स्थायी कक्षा अणुप्रारूप मांडून अणूचा स्थायीभाव स्पष्ट केला बोरच्या अणुप्रारूपाची महत्त्वाची आधारतत्वे पुढीलप्रमाणे आहेत

(i) अणूच्या केंद्रकाभोवती परिभ्रमण करणारे इलेक्ट्रॉन केंद्रकापासून विशिष्ट अंतरावर असणाऱ्या समकेंद्री वर्तुळाकार कक्षांमध्ये असतात

- (ii) विशिष्ट कक्षेत असताना इलेक्ट्रॉनची ऊर्जा स्थिर असते
- (iii) इलेक्ट्रॉन आतील कक्षेतून बाहेरील कक्षेत उडी मारताना फरकाइतक्या ऊर्जेचे शोषण करतो, तर बाहेरील कक्षेतून आतील कक्षेत उडी मारताना फरकाइतकी ऊर्जा उत्सर्जित करतो

माहित आहे का तुम्हांला?

घरातील गॅसच्या शेगडीच्या निळ्या ज्योतीमध्ये मिठाचे (सोडिअम क्लोराइडचे) कण टाकल्यावर त्या क्षणी त्या जागी पिवळी ठिणगी दिसते पाण्यात सोडिअम धातूचा तुकडा टाकला असता तो पेटून पिवळी ज्योत दिसते रस्त्यावरील सोडिअम व्हेपर दिव्यांमधूनही त्याच पिवळ्या रंगाचा प्रकाश येतो ह्या सर्व उदाहरणांमध्ये सोडिअम अणूमधील इलेक्ट्रॉन ऊर्जा शोषून बाहेरील कक्षेमध्ये जातो व पुन्हा आतील कक्षेमध्ये उडी मारून परत येताना ती ऊर्जा उत्सर्जित करतो सोडिअम अणूच्या या दोन कक्षांच्या ऊर्जा पातळीतील फरक ठराविक असतात हा फरक पिवळ्या प्रकाशाच्या ऊर्जेइतका असतो म्हणून वरील तिन्ही उदाहरणांमध्ये तोच विशिष्ट पिवळा प्रकाश बाहेर पडल्याचे दिसते

5.6: बोरचे स्थायी कक्षा अणुप्रारूप

बोरच्या अणुप्रारूपानंतर आणखी काही अणुप्रारूपे मांडली गेली त्यानंतर उदयाला आलेल्या पुंजयांत्रिकी (quantum mechanics) ह्या नवीन विज्ञानशाखेमध्ये अणुसंरचनेचा सखोल अभ्यास करण्यात आला या सर्वांमधून अणुसंरचनेविषयी सर्वमान्य झालेली काही मूलभूत तत्त्वे पुढीलप्रमाणे आहेत

अणुची संरचना

केंद्रक व केंद्रकाबाहेरील भाग यांचा मिळून अणू बनतो यांच्यामध्ये तीन प्रकारच्या अवअणुकणांचा समावेश असतो

केंद्रक

अणूचे केंद्रक धनप्रभारित असते अणूचे जवळजवळ सर्व वस्तुमान केंद्रकात एकवटलेले असते केंद्रकामध्ये दोन प्रकारचे अवअणुकण असतात एकत्रितपणे त्यांना न्युक्लिऑन म्हणतात प्रोटॉन व न्यूट्रॉन हे न्यूक्लिऑनचे दोन प्रकार आहेत

प्रोटॉन (p)

प्रोटॉन हा अणुकेंद्रकात असणारा धनप्रभारित अवअणुकण असून केंद्रकावरील धनप्रभार हा त्याच्यातील प्रोटॉनांमुळे असतो प्रोटॉनचा निर्देश 'p' ह्या संज्ञेने करतात प्रत्येक प्रोटॉनवरील धनप्रभार +1e एवढा असतो (1e = 16 × 10⁻¹⁹ कूलॉम) त्यामुळे केंद्रकावरील एकूण धनप्रभार 'e' ह्या एककामध्ये व्यक्त केल्यास त्याचे परिमाण केंद्रकातील प्रोटॉनसंख्येएवढे असते अणूच्या केंद्रकातील प्रोटॉनसंख्या म्हणजे त्या मूलद्रव्याचा अणूअंक असून तो 'Z' ह्या संज्ञेने दर्शवतात एका प्रोटॉनचे वस्तुमान सुमारे 1u (unified mass) इतके असते (1 डाल्टन म्हणजे 1 u = 1 66 ×10⁻²⁷g) (हायड्रोजनच्या एका अणूचे वजनसुध्दा सुमारे 1 u इतके आहे)

न्यूट्रॉन (n)

न्यूट्रॉन हा विद्युतप्रभारदृष्ट्या उदासीन असलेला अवअणुकण असून त्याचा निर्देश 'n' ह्या संज्ञेने करतात केंद्रकातील न्यूट्रॉन संख्येसाठी 'n' ही संज्ञा वापरतात

1 u इतके अणुवस्तुमान असलेल्या हायड्रोजनचा अपवाद वगळता सर्व मूलद्रव्यांच्या अणुकेंद्रकांमध्ये न्यूट्रॉन असतात एका न्यूट्रॉनचे वस्तुमान सुमारे 1 u इतके आहे, म्हणजेच जवळजवळ प्रोटॉनच्या वस्तुमानाइतकेच आहे

केंद्रकाबाहेरील भाग

अणूच्या संरचनेत केंद्रकाबाहेरील भागात परिभ्रमण करणारे इलेक्ट्रॉन आणि केंद्रक व इलेक्ट्रॉन यांच्या दरम्यान असलेली पोकळी यांचा समावेश होतो

इलेक्ट्रॉन (e⁻)

इलेक्ट्रॉन हा ऋणप्रभारित अवअणुकण असून त्याचा निर्देश 'e' ह्या संज्ञेने करतात प्रत्येक इलेक्ट्रॉनवर एक एकक ऋणप्रभार (-1e) असतो इलेक्ट्रॉनचे वस्तुमान हायड्रोजन अणूच्या वस्तूमानापेक्षा 1800 पटीने कमी आहे त्यामुळे इलेक्ट्रॉनचे वस्तुमान नगण्य मानता येते

अणूच्या केंद्रकाबाहेरील भागातील इलेक्ट्रॉन हे केंद्रकाभोवती असलेल्या वेगवेगळ्या कक्षांमध्ये परिभ्रमण करतात भ्रमणकक्षेचे स्वरूप त्रिमित असल्याने 'कक्षा' ह्या पदाऐवजी 'कवच' (shell) हे पद वापरतात इलेक्ट्रॉनची ऊर्जा तो ज्या कवचात असतो त्यावरून ठरते

अणुकेंद्रकाबाहेरील इलेक्ट्रॉनांची संख्या केंद्रकामधील प्रोटॉनसंख्येइतकीच (Z) असते त्यामुळे विद्युतप्रभारांचे संतुलन होऊन अणू विद्युतदृष्ट्या उदासीन असतो

- 1 अणूत किती प्रकारचे अवअणुकण आढळतात ?
- 2 कोणते अवअणुकण प्रभारयुक्त आहेत ?
- 3 केंद्रकांत कोणते अवअणुकण आहेत ?
- 4 केंद्रकाभोवती परिभ्रमण करणारे इलेक्ट्रॉन कोठे असतात ?

इलेक्ट्रॉनचे वस्तुमान नगण्य असल्याने अणूचे वस्तुमान प्रामुख्याने त्याच्या केंद्रकातील प्रोटॉन व न्यूट्रॉन यांच्यामुळे असते अणूमधील प्रोटॉन व न्यूट्रॉन यांची एकत्रित संख्या म्हणजे त्या मूलद्रव्याचा अणुवस्तुमानांक होय अणुवस्तुमानांक 'A' ह्या संज्ञेने दर्शवितात अणुसंज्ञा, अणुअंक व अणुवस्तुमानांक हे एकत्रितपणे चिन्हांकित संकेतरूपात दर्शविण्याची पद्धत पुढे दिली आहे

 $_{Z}^{A}$ संज्ञा उदा $_{6}^{12}$ C ह्या चिन्हांकित संकेताचा अर्थ कार्बनचा अणुअंक म्हणजेच प्रोटॉनसंख्या 6 व कार्बनचा अणुवस्तुमानांक 12 आहे यावरून हे सुद्धा समजते की कार्बनच्या केंद्रकात (12-6) म्हणजे 6 न्यूट्रॉन आहेत

जरा डोके चालवा

- 1 ऑक्सीजनची संज्ञा 'O' असून त्याच्या केंद्रकात 8 प्रोटॉन व 8 न्यूट्रॉन असतात यावरून ऑक्सीजनचा अणुअंक (Z) व अणुवस्तुमानांक (A) ठरवा, तसेच त्यांची चिन्हांकित संकेताने मांडणी करा
- 2 कार्बनचा अणुअंक 6 आहे कार्बनच्या अणूत किती इलेक्ट्रॉन असतील?
- 3 सोडिअमच्या अणूत 11 इलेक्ट्रॉन आहेत सोडिअमचा अणुअंक किती ?
- 4 मॅग्नेशिअमचा अणुअंक व अणुवस्तुमानांक अनुक्रमे 12 व 24 आहे चिन्हांकित संकेतामध्ये तुम्ही ते कसे दर्शवाल ?
- 5 कॅल्शिअमचा अणुअंक व अणुवस्तुमानांक अनुक्रमे 20 व 40 आहे यावरून कॅल्शिअमच्या केंद्रकात किती न्यूट्रॉन असतील ते काढा

इलेक्ट्रॉन वितरण : बोरच्या अणुप्रारूपानुसार इलेक्ट्रॉन स्थायी कवचांमध्ये परिभ्रमण करतात या कवचांना विशिष्ट ऊर्जा असते अणुकेंद्रकाच्या सर्वात जवळ असलेल्या कवचाला पहिले कवच, त्यानंतरच्या कवचाला दुसरे कवच म्हणतात कवचांच्या क्रमांकासाठी 'n' ही संज्ञा वापरतात n=1,2,3,4, या क्रमांकानुसार कवचांना K,L,M,N, ह्या संज्ञांनी संबोधण्यात येते प्रत्येक कवचात जास्तीत जास्त ' $2n^2$ ' या सूत्राने मिळालेल्या संख्येइतके इलेक्ट्रॉन असू शकतात 'n' चे मूल्य वाढते तशी त्या कवचातील इलेक्ट्रॉनची ऊर्जा वाढते

तक्ता पूर्ण करा

कवच		कवचाची इलेक्ट्रॉन धारकता			
संज्ञा n		सूत्र : 2 n ²	इलेक्ट्रॉन संख्या		
K	1	$2 \times (1)^2$			
L					
M					
N					

वरील तक्त्यांवरून कवचातील जास्तीत जास्त इलेक्ट्रॉनांची संख्या लिहा : K कवच : , L कवच :

M कवच : , N कवच :

- 1 अणूची संरचना व सूर्यमाला यांच्यात साधर्म्य आहे सूर्यमालेतील ग्रह सूर्याभोवती गुरूत्वीय बलाम्ळे फिरतात अणुसंरचनेत कोणते बल कार्यरत असेल ?
- 2 केंद्रकात अनेक धनप्रभारित प्रोटॉन एकत्र असतात केंद्रकातील न्यूट्रॉन्सचे एक कार्य काय असेल असे तुम्हांला वाटते ?

मूलद्रव्यांचे इलेक्ट्रॉन संरूपण : आपण पाहिले की K, L, M, N या कवचांमध्ये अनुक्रमे जास्तीत जास्त, 2, 8, 18, 32 इलेक्ट्रॉन सामावू शकतात हीच कवचांची कमालधारकता होय कवचांच्या कमालधारकतेनुसार अणूमधील इलेक्ट्रॉनांचे कवचांमध्ये वितरण होते एखाद्या मूलद्रव्याच्या अणूमधील इलेक्ट्रॉनांची कवचिनहाय मांडणी म्हणजे त्या मूलद्रव्याचे इलेक्ट्रॉन संरूपण होय प्रत्येक इलेक्ट्रॉनकडे तो ज्या कवचात असतो त्यानुसार निश्चित अशी ऊर्जा असते पहिल्या कवचातील (K कवच) इलेक्ट्रॉनांची ऊर्जा सर्वांत

कमी असते त्यापुढील कवचामधील इलेक्ट्रॉनची ऊर्जा कवचक्रमांकाप्रमाणे वाढत जाते मूलद्रव्याच्या अणूचे इलेक्ट्रॉन संरूपण असे असते की त्यायोगे सर्व इलेक्ट्रॉनांची एकत्रित ऊर्जा कमीत कमी असते अणूतील इलेक्ट्रॉन कवचांच्या कमाल धारकतेप्रमाणे तसेच ऊर्जेच्या चढत्या क्रमानुसार असलेल्या कवचांमध्ये स्थान मिळवतात आता आपण काही मूलद्रव्यांच्या अणूंचे इलेक्ट्रॉन संरूपण पाहू (तक्ता 5 7) या तक्त्यामधील 1 ते 3 ओळी भरून दिलेल्या आहेत त्याप्रमाणे उरलेला तक्ता तुम्ही भरावयाचा आहे

			कव	चातील इ		त्रेतरण	
गलवला	 संज्ञा	अणूतील इलेक्ट्रॉन संख्या	कवचसंज्ञा (कमाल धारकता)				संख्या स्वरूपात इलेक्ट्रॉन संरूपण
मूलद्रव्य	स्यशा	जणूताल इलक्ट्रान संख्या	K	L	M	N	संख्या स्यरूपात इतिष्ट्रान सरूपण
			(2)	(8)	(18)	(32)	
हायड्रोजन	Н	1	1				1
हेलियम	Не	2	2				2
लिथियम	Li	3	2	1			2, 1
कार्बन	С	6					
नायट्रोजन	N	7					
ऑक्सिजन	О	8					
फ्लुओरिन	F	9					
निऑन	Ne	10					
सोडिअम	Na	11					
क्लोरिन	Cl	17					
अरगॉन	Ar	18					
ब्रोमीन	Br	35					

5.7 काही मूलद्रव्यांचे संरूपण

संख्या स्वरूपातील इलेक्ट्रॉन संरूपण स्वल्पविरामांनी विलग केलेल्या अंकांनी दर्शवितात यातील अंक ऊर्जेच्या चढत्या क्रमाने असलेल्या कवचांमधील इलेक्ट्रॉन संख्या दाखवितात उदाहरणार्थ, सोडिअमचे इलेक्ट्रॉन संरूपण 2,8,1 आहे याचा अर्थ सोडिअम अणूमध्ये 'K' कवचात 2, 'L' कवचात 8 व 'M' कवचात 1 याप्रमाणे एकूण 11 इलेक्ट्रॉन वितिरत केलेले असतात अणूचे इलेक्ट्रॉन संरूपण आकृती 5 8 प्रमाणे कवचांच्या रेखाटनानेसुद्धा दाखवितात संयुजा (Valency) व इलेक्ट्रॉन संरूपण (Electronic configuration): संयुजा म्हणजे एका अणूने तयार केलेल्या रासायनिक बंधांची संख्या हे आपण मागील पाठात पाहिले आपण हेही पाहिले की साधारणपणे मूलद्रव्याची संयुजा त्याच्या विविध संयुगांमध्ये स्थिर असते

पुढील रेणुसूत्रांचा उपयोग करून H, Cl, O, S, N, C, Br, I, Na यांच्या संयुजा ठरवा रेणुसूत्रे – H_2 , HCl, H_2O , H_2S , NH_3 , CH_4 , HBr, HI, NaH

5.8 : इलेक्ट्रॉन संरूपणाचे रेखाटन

जरा डोके चालवा

- 1 विविध अणूंमधील इलेक्ट्रॉन ज्यांच्यामध्ये सामावलेले असतात त्या कवचांच्या संज्ञा कोणत्या आहेत ?
- 2 सर्वात आतील कवचाची संज्ञा व क्रमांक काय आहे ?
- 3 फ्लुओरीन अणूमधील इलेक्ट्रॉन ज्या कवचांमध्ये वितरित झालेले असतात त्यांच्या संज्ञा लिहा
- 4 फ्लुओरीन अणूमधील सर्वांत बाहेरचे म्हणजे बाह्यतम कवच कोणते ?
- 5 सोडिअम अणूमधील बाह्यतम कवच कोणते ?
- 6 हायड्रोजन अणूमधील बाह्यतम कवच कोणते ?

मूलद्रव्याची संयुजा, संयुगांमधील रासायनिक बंध यांच्यासंबंधी संकल्पना इलेक्ट्रॉन संरूपणामुळे स्पष्ट होतात अणू आपल्या बाह्यतम कवचातील इलेक्ट्रॉन वापरून रासायनिक बंध तयार करतो अणूंची संयुजा त्याच्या बाह्यतम कवचाच्या इलेक्ट्रॉन संरूपणावरून ठरते त्यामुळे बाह्यतम कवचाला संयुजा कवच म्हणतात तसेच बाह्यतम कवचातील इलेक्ट्रॉन म्हणजे संयुजा इलेक्ट्रॉन होत

अणूच्या संयुजेचा संबंध अणूमधील संयुजा इलेक्ट्रॉनांच्या संख्येशी असल्याचे दिसून येते प्रथम हेलिअम व निऑन ह्या मूलद्रव्यांकडे पाहू ह्या दोन्ही वायुरूप मूलद्रव्यांचे अणू इतर कोणत्याही अणूबरोबर संयोग पावत नाहीत ही मूलद्रव्ये रासायनिक दृष्ट्या निष्क्रीय आहेत म्हणजेच त्यांची संयुजा 'शून्य' आहे हेलिअमच्या अणूत दोन इलेक्ट्रॉन असतात व ते 'K' ह्या

पहिल्या कवचात सामावलेले असतात पहा तक्ता 5 7 हेलिअममध्ये इलेक्ट्रॉन असलेले फक्त एकच 'K' कवच आहे व तेच बाह्यतम कवचस्ध्दा आहे 'K' कवचाची इलेक्ट्रॉन धारकता $(2n^2)$ ही 'दोन' आहे म्हणजेच हेलिअमचे बाह्यतम कवच पूर्ण भरलेले असते ह्यालाच हेलिअममध्ये इलेक्ट्रॉन द्विक असते असे म्हणतात निऑन ह्या निष्क्रीय वायूच्या इलेक्ट्रॉन संरूपणात 'K' व 'L' ही दोन कवचे असून 'L' हे संयुजा कवच आहे 'L' कवचाची इलेक्ट्रॉन धारकता 'आठ' आहे व तक्ता 5 7 वरून दिसते की निऑनचे संयुजा कवच पूर्ण भरलेले आहे ह्यालाच निऑनमध्ये इलेक्ट्रॉन अष्टक आहे असे म्हणतात K, L a M ह्या कवचांमध्ये इलेक्ट्रॉन असलेला निष्क्रीय वायू म्हणजे अरगॉन होय M ह्या कवचाची इलेक्ट्रॉन धारकता $2 \times 3^2 = 18$ आहे परंतु अरगॉनमध्ये M ह्या संयुजा कवचात फक्त 8 इलेक्ट्रॉन आहेत (पहा तक्ता 5 7) याचा अर्थ निष्क्रीय वायूंच्या संयुजा कवचात आठ इलेक्ट्रॉन असतात, म्हणजेच संयुजा कवचात इलेक्ट्रॉन अष्टक असते इलेक्ट्रॉन अष्टक (किंवा द्विक) पूर्ण असते तेव्हा संयुजा शून्य असते

निष्क्रीय वायू सोडून इतर मूलद्रव्यांचे इलेक्ट्रॉन संरूपण पाहता (तक्ता 5 7) असे दिसते की त्यांच्यामध्ये इलेक्ट्रॉन अष्टक स्थिती नाही किंवा त्यांची इलेक्ट्रॉन अष्टके अपूर्ण आहेत हायड्रोजनच्या बाबतीत असे म्हणता येईल की हायड्रोजनचे इलेक्ट्रॉन द्विक अपूर्ण आहे

निष्क्रीय वायू वगळता इतर सर्व मूलद्रव्यांच्या अणूंमध्ये इतर अणूंबरोबर संयोग पावण्याची प्रवृत्ती असते म्हणजेच त्यांची संयुजा शून्य नसते हायड्रोजनच्या संयोगाने तयार झालेल्या रेणूंच्या सूत्रांवरून (उदा H_2 , HCl) हायड्रोजनची संयुजा 'एक' असल्याचे तुम्ही पाहिले आहेच, हायड्रोजनच्या इलेक्ट्रॉन संरूपणावरून दिसते की हायड्रोजनमध्ये एक इलेक्ट्रॉन 'K' ह्या कवचात आहे म्हणजे हायड्रोजनमध्ये 'पूर्ण द्विक' स्थितीपेक्षा एक इलेक्ट्रॉन कमी आहे

ही 'एक' संख्या हायड्रोजन च्या संयुजेशी जुळते सोडिअमच्या 2, 8, 1 ह्या संरूपणावरून समजते की सोडिअमच्या संयुजा कवचात 'एक' इलेक्ट्रॉन आहे आणि NaCl, NaH अशा रेणुसूत्रांवरून समजते की सोडिअमची संयुजा 'एक' आहे याचा अर्थ असा आहे की, मूलद्रव्यांची संयुजा व त्यांच्या संयुजा कवचातील इलेक्ट्रॉन संख्या यात काहीतरी संबंध आहे

पुढील तक्त्यात (5 9) काही मूलद्रव्यांपासून बनलेल्या संयुगांची रेणुसूत्रे दिली आहेत त्यावरून ठरिवलेली त्या त्या मूलद्रव्यांची संयुजा, त्या त्या मूलद्रव्याचे इलेक्ट्रॉन संरूपण व त्याची संयुजा इलेक्ट्रॉन संख्या रिकाम्या जागी लिहा

अ.	मूलद्रव्याची	संयुगाचे रेणुसूत्र	मूलद्रव्याची	मूलद्रव्याचे	मूलद्रव्यातील संयुजा	8 - x
क्र	संज्ञा		संयुजा	इलेक्ट्रॉन संरूपण	इलेक्ट्रॉन संख्या x	(x ≥ 4 करिता)
1	Н	HC1	1	1	1	
2	Cl	HC1	1	2, 8, 7	7	8-7 = 1
3	Ne	संयुग नाही	0			
4	F	HF				
5	Na	NaH				
6	Mg	MgCl ₂				
7	С	CH ₄				
8	Al	AlCl ₃				

जरा डोके चालवा.

तक्ता क्र 5 9 मध्ये चौथ्या स्तंभात तुम्ही संयुगाच्या रेणुसूत्रावरून शोधलेली मूलद्रव्याची संयुजा लिहिली आहे

- 1 जेव्हा मूलद्रव्यातील संयुजा इलेक्ट्रॉन संख्या, x चे मूल्य 4 किंवा 4 पेक्षा कमी असेल तेव्हा x चे मूल्य मूलद्रव्याच्या संयुजेशी जुळते का ?
- 2 जेव्हा 'x' चे मूल्य 4 किंवा 4 पेक्षा अधिक असेल तेव्हा '(8-x)' चे मूल्य मूलद्रव्याच्या संयुजेशी जुळते का ? या मूलद्रव्याचे इलेक्ट्रॉन अष्टक पूर्ण होण्यासाठी किती इलेक्ट्रॉन कमी आहेत ?

यावरून तुमच्या लक्षात येईल, की मूलद्रव्यांची संयुजा व मूलद्रव्याचे इलेक्ट्रॉन संरूपण यांच्यात साधारणपणे पृढील संबंध असतो

हे नेहमी लक्षात ठेवा.

''ज्या मूलद्रव्यात संयुजा इलेक्ट्रॉन संख्या चार किंवा त्यापेक्षा कमी असते त्या मूलद्रव्याची संयुजा त्यातील संयुजा इलेक्ट्रॉन संख्येएवढी असते, याउलट ज्या मूलद्रव्यात चार किंवा त्याहून अधिक इलेक्ट्रॉन असतात तेव्हा अष्टक पूर्ण होण्यासाठी जितके इलेक्ट्रॉन कमी असतात ती उणीवेची संख्या म्हणजे त्या मूलद्रव्याची संयुजा असते ''

- 1 मूलद्रव्याचा अणुअंक (Z) म्हणजे काय ?
- 2 पुढे काही मूलद्रव्यांचे अणुअंक (Z) दिले आहेत त्या मूलद्रव्यांच्या बाह्यतमकक्षेत प्रत्येकी किती इलेक्ट्रॉन आहेत ते लिहा

मूलद्रव्य	Н	С	Li	О	N
Z	1	6	3	8	7
बाह्यतम कक्षेतील इलेक्ट्रॉन संख्या					

3 पुढे काही मूलद्रव्यांची इलेक्ट्रॉन संख्या दिली आहे त्यावरून त्या त्या मूलद्रव्याचे इलेक्ट्रॉन संरूपण, संयुजा इलेक्ट्रॉन संख्या व संयुजा लिहा

मूलद्रव्य	Na	С	Mg	Cl
इलेक्ट्रॉन संख्या	11	6	12	17
इलेक्ट्रॉन संरूपण				
संयुजा इलेक्ट्रॉन संख्या				
संयुजा				

- 4 अणुक्रमांक व अणुवस्तुमानांक नेहमी पूर्णांकातच का असतात ?
- 5 सल्फरमध्ये 16 प्रोटॉन व 16 न्यूट्रॉन असतात तर त्याचा अणुअंक व अणुवस्तुमानांक किती असेल ?

समस्थानिके (Isotopes) : मूलद्रव्यांचा अणुअंक हा मूलद्रव्याचा मूलभूत गुणधर्म व त्याची रासायनिक ओळख आहे निसर्गातील काही मूलद्रव्यांमध्ये अणुअंक समान परंतु अणुवस्तुमानांक मात्र विभिन्न असे अणू असतात एकाच मूलद्रव्याच्या अशा भिन्न अणुवस्तूमानांक असलेल्या अणूंना समस्थानिके म्हणतात उदा कार्बन कार्बनची तीन समस्थानिके आहेत ती म्हणजे उदा C-12, C-13, C-14 समस्थानिकांचा अणुवस्तुमानांक ^{12}C , ^{13}C व ^{14}C ह्या पध्दतीनेही दर्शवितात समस्थानिकांची प्रोटॉन संख्या समान असते परंतु न्यूट्रॉन संख्या भिन्न असते

समस्थानिके	अणुवस्तुमानांक A	प्रोटॉन संख्या Z (अणुअंक)	न्यूट्रॉन संख्या N = A - Z
¹² C	12	6	6
¹³ C	13	6	7
¹⁴ C	14	6	8

हायड्रोजनची एकूण तीन समस्थानिके आहेत, त्यांना हायड्रोजन, ड्युटेरिअम व ट्रीटिअम अशी स्वतंत्र नावे आहे त्यांचे अणुवस्तुमानांक शोधा जड पाणी (Heavy water) म्हणजे काय ती माहिती इंटरनेटवरून मिळवा

तक्ता पूर्ण करा

समस्थानिके	प्रोटॉन संख्या	न्यूट्रॉन संख्या
¹ H		
1	1	1
	1	2
³⁵ Cl 17		
³⁷ Cl		

समस्थानिकांचे उपयोग: काही मूलद्रव्यांची समस्थानिक किरणोत्सारी असतात त्यांचा उपयोग विविध क्षेत्रांत केला जातो उदा औद्योगिक क्षेत्र, कृषी क्षेत्र, वैद्यक क्षेत्र, संशोधन क्षेत्र

- 1 युरेनिअम 235 चा उपयोग केंद्रकीय विखंडन व ऊर्जानिर्मितीसाठी होतो
- 2 कॅन्सरसारख्या प्राणघातक आजारांवरील वैद्यकीय उपचारांमध्ये काही मूलद्रव्यांच्या किरणोत्सारी समस्थानिकांचा उपयोग होतो, उदा कोबाल्ट - 60
- 3 गॉयटर या थायरॉईड ग्रंथींच्या आजारावरील उपचारांमध्ये आयोडिन -131 चा उपयोग होतो
- 4 किरणोत्सारी मूलद्रव्यांच्या समस्थानिकांचा उपयोग जिमनीखालून गेलेल्या नळांमधील चीरा शोधण्यासाठी होतो , उदा, सोडिअम-24
- 5 अन्नपदार्थांचे सूक्ष्म जीवाणूपासून परिरक्षण करण्यासाठी किरणोत्सारी मूलद्रव्यांचा उपयोग होतो
- 6 C-14 ह्या किरणोत्सारी समस्थानिकाचा उपयोग जीवाश्मांचे वय ठरविण्यासाठी होतो

अण्भट्टी (Nuclear Reactor) : अणुऊर्जेच्या वापराने मोठ्याप्रमाणावर वीजनिर्मिती करण्याचे संयत्र म्हणजे अणुभट्टी (आकृती 5 10 पहा) अणुभट्टीमध्ये अणुइंधनावर केंद्रकीय अभिक्रिया घडवून आणतात व अणूमधील केंद्रकीय ऊर्जा मुक्त करतात संबंधित केंद्रकीय अभिक्रिया समजून घेण्यासाठी युरेनिअम - 235 ह्या अणुइंधनाचे उदाहरण घेऊ मंद गतीच्या न्यूट्रॉनांचा मारा केला असता युरेनिअम - 235 ह्या समस्थानिकाच्या केंद्रकाचे विखंडन होऊन क्रिप्टॉन — 92 व बेरिअम — 141 ह्या वेगळ्या मूलद्रव्यांची केंद्रके व 2 ते 3 न्यूट्रॉन निर्माण होतात ह्या न्यूट्रॉनांची गती कमी केल्यावर ते आणखी U - 235 केंद्रकांचे विखंडन घडवतात अशा प्रकारे केंद्रकीय विखंडनाची शृंखला अभिक्रिया होते (आकृती 5 11 पहा) यामध्ये केंद्रकातून मोठ्या प्रमाणात केंद्रकीय ऊर्जा म्हणजेच अणुऊर्जा मुक्त होते संभाव्य विस्फोट टाळण्यासाठी शुंखला अभिक्रिया नियंत्रित ठेवतात

अणुभट्टीमध्ये शृंखला अभिक्रिया नियंत्रित करण्यासाठी न्यूट्रॉन्सचा वेग व संख्या कमी करण्याची आवश्यकता असते त्यासाठी पुढील गोष्टींचा वापर केला जातो

5.10 अणुभट्टी : भाभा अणुसंशोधन केंद्र, मुंबई

5.11 युरेनिअम - 235 चे विखंडन

- 1. संचलक / मंदक (Moderator) : न्यूट्रॉन्सचा वेग कमी करण्यासाठी ग्रॅफाईट किंवा जड पाणी यांचा संचलक किंवा मंदक म्हणून वापर केला जातो
- 2. नियंत्रक (Controller) : न्यूट्रॉन शोषून घेऊन त्यांची संख्या कमी करण्यासाठी बोरॉन, कॅडिमअम, बेरिलिअम इत्यादींच्या कांड्या नियंत्रक म्हणून वापरतात

विखंडन प्रक्रियेत निर्माण झालेली उष्णता पाण्याचा शीतक (coolant) म्हणून वापर करून बाजूला काढली जाते त्या उष्णतेने पाण्याची वाफ करून वाफेच्या साहाय्याने टर्बाइन्स चालविले जातात व वीजनिर्मिती होते भारतामध्ये आठ ठिकाणच्या अणुवीजनिर्मिती केंद्रांमध्ये एकूण बावीस अणुभट्ट्या कार्यान्वित आहेत 'अप्सरा' ही मुंबईच्या भाभा अणुसंशोधन केंद्रात 4 ऑगस्ट 1956 रोजी कार्यान्वित झालेली भारतातील पहिली अणुभट्टी आहे भारतात थोरिअम- 232 ह्या मूलद्रव्याचे साठे मोठ्या प्रमाणात असल्याने भारतीय वैज्ञानिकांनी पुढील काळासाठी Th - 232 पासून U- 233 ह्या समस्थानिकाच्या निर्मितीवर आधारित अणुभट्ट्यांची योजना विकसित केली आहे

जोड षव्महिती संपरवेषण तंतरव्जवनाची:

वरून अणुभट्टीच्यकायायवची सविस्तर माहिती दयव्हिडिओद् वारे मिळवा व ती वरयायवत सवाांना दाखवा

स्वाध्याय

1. खालील प्रश्नांची उत्तरे लिहा.

- अ. थॉमसन व रूदरफोर्ड यांच्या अणुप्रारूपांत कोणता फरक आहे ?
- आ. मूलद्रव्यांची संयुजा म्हणजे काय ? संयुजा इलेक्ट्रॉन संख्या व संयुजा यांच्यातील संबंध काय ते लिहा.
- इ. अणुवस्तुमानांक म्हणजे काय ? कार्बनचा अणुअंक 6 तर अणुवस्तुमानांक 12 आहे. हे कसे ते स्पष्ट करा.
- ई. अवअणुकण म्हणजे काय? विद्युतप्रभार, वस्तुमान व स्थान ह्या संदर्भात तीन अवअणुकणांची थोडक्यात माहिती लिहा.

2. शास्त्रीय कारणे लिहा.

- अ. अणूचे सगळे वस्तुमान केंद्रकात एकवटलेले असते.
- आ. अणू विद्युतदृष्ट्या उदासीन असतो.
- इ. अणुवस्तुमानांक पूर्णांकात असते.
- ई. परिभ्रमण करणारे प्रभारित इलेक्ट्रॉन असूनही सामान्यपणे अणूंना स्थायीभाव असतो.

3. व्याख्या लिहा.

- अ. अणू ब. समस्थानिके क. अणुअंक
- ड. अणुवस्तुमानांक इ. अणुभट्टीतील मंदक

4. सुबक व नामनिर्देशित आकृती काढा.

- अ. रूदरफोर्डचा विकीरण प्रयोग
- आ. थॉमसनचे अणुप्रारूप
- इ. मॅग्नेशिअमच्या (अणुअंक 12) इलेक्ट्रॉन संरूपणाचे ग्रेग्वारन
- ई. ॲरगॉनच्या (अणुअंक 18) इलेक्ट्रॉन संरूपणाचे रेखाटन

5. रिकाम्या जागा भरा.

- अ. इलेक्ट्रॉन, प्रोटॉन, न्यूट्रॉन हे अणूमध्ये असणारेआहेत.
- आ. इलेक्ट्रॉनवरप्रभार असतो.

- इ. अणुकेंद्रकापासून सर्वांत जवळचे इलेक्ट्रॉन कवचहे आहे.
- ई. मॅग्नेशिअमचे इलेक्ट्रॉन संरूपण 2, 8, 2 आहे. यावरून असे समजते की मॅग्नेशिअमचे संयुजा कवच हे आहे.
- उ. H_2O ह्या रेणुसूत्रानुसार हायड्रोजनची संयुजा 1 आहे. त्यामुळे Fe_2O_3 ह्या सूत्रानुसार Fe ची संयुजाठरते.

6. जोड्या जुळवा.

'अ' गट

'ब' गट

अ. प्रोटॉन

i. ऋणप्रभारित

आ. इलेक्ट्रॉन

ii. उदासीन

इ. न्यूट्रॉन

iii. धनप्रभारित

7. दिलेल्या माहितीवरून शोधून काढा.

	• (
माहिती	शोधा
23 11	न्यूट्रॉन संख्या
¹⁴ ₆ C	अणुवस्तुमानांक
37 17	प्रोटॉन संख्या

उपक्रम

जुन्या सी.डी., फुगे, गोट्या इत्यादी वस्तूंचा वापर करून अणूची प्रारूपे स्पष्ट करा.

6. द्रव्याचे संघटन

- 1 द्रव्याच्या विविध अवस्था कोणत्या ?
- 2 बर्फ, पाणी व वाफ यांच्यातील फरक सांगा
- 3 द्रव्याच्या लहानात लहान कणांना काय म्हणतात?
- 4 द्रव्याचे प्रकार कोणते?

मागील इयत्तांमध्ये आपण पाहिले की आपल्या सभोवती दिसणाऱ्या तसेच दृष्टीला दिसू न शकणाऱ्या सर्वच वस्तू कोणत्या तरी द्रव्यापासून बनलेल्या असतात

- 1 द्रव्यांचे तीन गटांत वर्गीकरण करा शीतपेय, हवा, सरबत, माती, पाणी, लाकूड, सिमेंट
- 2 वरील वर्गीकरणासाठी निकष म्हणून वापरलेल्या द्रव्याच्या अवस्था कोणत्या?

एका रुंद तोंडाच्या पारदर्शी प्लॅस्टिकच्या बाटलीमध्ये मोहरीचे दाणे घ्या मोठ्या फुग्याच्या मध्यभागी सुईच्या सहाय्याने लांब दोरा ओवून पक्की गाठ मारा हा रबरी पडदा बाटलीच्या

तोंडावर रबरबँडच्या साहाय्याने ताणून बसवा दोरा बाटलीच्या बाहेर राहील हे पहा दोऱ्याच्या साहाय्याने पडदा क्रमाक्रमाने हळुवार, थोड्या जोराने, खूप जोराने, खालीवर करा व पुढील तक्त्यात निरीक्षणे नोंदवा

पडदा खालीवर	मोहरीच्या दाण्यांची हालचाल
करण्याची पद्धत	
हळुवार	जागच्या जागी
थोड्या जोराने	
खूप जोराने	

वरील प्रयोगात पडदा खालीवर करून आपण हवेमार्फत मोहरीच्या दाण्यांना कमी-अधिक ऊर्जा देतो त्यामुळे मोहरीच्या दाण्यांची जी हालचाल होताना दिसते तशीच काहीशी हालचाल स्थायू, द्रव व वायू या अवस्थांमधील द्रव्यांच्या कणांमध्ये असते

द्रव्याच्या कणांमध्ये (अणु किंवा रेणूंमध्ये) आंतररेण्वीय आकर्षण बल कार्यरत असते ह्या बलाच्या क्षमतेनुसार कणांच्या हालचालीचे प्रमाण ठरते स्थायूंमध्ये आंतररेण्वीय बल अतिशय प्रभावी असते त्यामुळे स्थायूंचे कण एकमेकांच्या अगदी जवळ असतात व ते आपापल्या ठराविक जागी स्पंद पावत राहतात यामुळे स्थायूंना ठराविक आकार व आकारमान प्राप्त होतात, तसेच उच्च घनता व असंपीड्यता (non-compressibility) हे गुणधर्म प्राप्त होतात द्रव अवस्थेमध्ये आंतररेण्वीय बलाची सक्षमता मध्यम असते ते कणांना ठराविक जागी अडकवून ठेवण्याइतके प्रभावी नसले तरी त्यांचे एकत्रित गठण करण्यासाठी पुरेसे प्रभावी असते त्यामुळे द्रवांचे आकारमान ठराविक राहते पण त्यांना प्रवाहिता प्राप्त होते तसेच द्रवांचा आकार ठराविक न राहता धारकपात्राप्रमाणे

6.1: मोहरीच्या दाण्यांची हालचाल

6.2 द्रव्याच्या भौतिक अवस्था : अतिसूक्ष्म पातळीवरील

चित्र

बदलतो, परंतु वायूंमध्ये आंतररेण्वीय बल अति क्षीण असते त्यामुळे वायूंचे घटक कण मुक्तपणे हालचाल करू शकतात व उपलब्ध असलेली सर्व जागा व्यापून टाकतात त्यामुळे वायूंना ठराविक आकार किंवा ठराविक आकारमान हे दोन्ही नसतात आकृती 6 2 मध्ये द्रव्याच्या भौतिक अवस्थांचे हे अतिसूक्ष्म पातळीवरील चित्र लाक्षणिक पद्धतीने दाखविले आहेत व तक्ता 6 3 मध्ये द्रव्याच्या अवस्थांची वैशिष्ट्ये दर्शवली आहेत

द्रव्याची	प्रवाहिता/दृढता/	आकारमान	आकार	संपीड्यता	आंतररेण्वीय	कणांमधील
भौतिक	आकार्यता/				बल	अंतर
अवस्था	स्थितिस्थापकता					
स्थायू	दृढ/ आकार्य/	ठराविक	ठराविक	नगण्य	प्रभावी	कमीत कमी
	स्थितिस्थापक					
द्रव	प्रवाही	ठराविक	अनिश्चित	खूप कमी	मध्यम	मध्यम
वायू	प्रवाही	अनिश्चित	अनिश्चित	उच्च	अति क्षीण	खूप

6.3: द्रव्याच्या अवस्थांची वैशिष्ट्ये

पुढील द्रव्यांचे संघटन रासायनिक सूत्रांच्या साहाय्याने लिहा व त्यावरून वर्गीकरण करा

द्रव्याचे नाव	रासायनिक सूत्र/संघटन	द्रव्याचा प्रकार
पाणी		
कार्बन		
ऑक्सिजन		
हवा		
अल्युमिनिअम		
पितळ		
कार्बन डायऑक्साइड		

द्रव्याचे वर्गीकरण करण्याची ही दुसरी पद्धत आहे ह्या पद्धतीत 'द्रव्याचे रासायनिक संघटन' हा निकष वापरलेला आहे द्रव्याचे लहानात लहान कण एकसारखे आहेत की वेगळे व कशापासून बनले आहेत त्यावरून द्रव्याचे 'मूलद्रव्य' (element), 'संयुग' (Compound) व 'मिश्रण' (Mixture) असे तीन प्रकार पडतात हे आपण मागील इयत्तेत पाहिले आहे एका मूलद्रव्यातील किंवा एका संयुगातील सर्वच लहानात लहान कण (अणू/रेणू) हे एकसारखे असतात, मात्र मिश्रणातील लहानात लहान कण हे दोन किंवा अधिक प्रकारांचे असतात

मूलद्रव्याच्या लहानात लहान कणांमध्ये एकाच प्रकारचे अणू असतात, जसे ऑक्सिजनच्या प्रत्येक रेणूमध्ये ऑक्सिजनचे दोन अणू जोडलेल्या स्थितीत असतात संयुगाचे लहानात लहान कण (रेणू) हे दोन किंवा अधिक प्रकारचे अणू एकमेकांना जोडून बनलेले असतात, जसे पाण्याच्या प्रत्येक रेणूमध्ये हायड्रोजनचे दोन अणू हे ऑक्सिजनच्या एका अणूला जोडलेल्या स्थितीत असतात मिश्रणाचे लहानात लहान कण म्हणजे दोन किंवा अधिक मूलद्रव्य/संयुगांचे अणू/रेणू असतात उदाहरणार्थ, हवा ह्या मिश्रणात N_2 , O_2 , Ar, H_2O , CO_2 हे प्रमुख घटक रेणू आहेत तसेच पितळ ह्या मिश्रणात (संमिश्रात) तांबे (Cu) व जस्त (Zn) तर ब्राँझमध्ये तांबे (Cu) व कथिल (Sn) ह्या मूलद्रव्यांचे अणू असतात

आकृती 6 4 मध्ये मूलद्रव्य, संयुग व मिश्रण ह्या द्रव्याच्या प्रकारांचे अतिसूक्ष्म पातळीवरील चित्र लाक्षणिक पद्धतीने दाखविले असून त्यांची वैशिष्ट्येसुद्धा सांगितलेली आहेत

मूलद्रव्य	संयुग	मिश्रण
नायट्रोजन $(N_{_2})$ रेणू	नायट्रोजन डायऑक्साईड (NO2) रेणू	N_2 व NO_2 यांचे मिश्रण
~~~ ~~~		
ऑक्सिजन $({\rm O_{_2}})$ रेणू	नायट्रिक ऑक्साइड (NO) रेणू	$N_{_2}$ व $O_{_2}$ यांचे मिश्रण
	8	
मूलद्रव्याचा घटक पदार्थ एकच व तो	संयुगाचा घटक पदार्थ एकच व तो म्हणजे	मिश्रणाचे घटक पदार्थ दोन किंवा
म्हणजे ते मूलद्रव्य स्वतः	ते संयुग स्वतः	अधिक मूलद्रव्ये व/वा संयुगे
मूलद्रव्याचे सर्व अणू/रेणू एकसमान	संयुगाचे सर्व रेणू एकसमान	मिश्रणातील रेणू/अणू दोन किंवा
		अधिक प्रकारचे
मूलद्रव्याच्या रेणूतील सर्व अणू एकसमान	संयुगाच्या रेणूतील घटक अणू दोन किंवा	मिश्रणातील घटक रेणू एकमेकांपासून
व एकमेकांना रासायनिक बंधानी जोडलेले	अधिक प्रकारचे व एकमेकांना रासायनिक	भिन्न, रासायनिक बंधाने न जोडलेले
	बंधाने जोडलेले	
वेगवेगळ्या मूलद्रव्यांचे रेणू/अणू	संयुगातील घटक मूलद्रव्यांचे प्रमाण	मिश्रणातील घटक पदार्थांचे प्रमाण
वेगवेगळे	ठराविक	बदलू शकते.
-	संयुगाचे गुणधर्म घटक मूलद्रव्यांच्या	मिश्रणामध्ये त्याच्या घटक पदार्थांचे
	गुणधर्मांपेक्षा वेगळे	गुणधर्म राखले जातात.

6.4 : मूलद्रव्य, संयुग, मिश्रण-अतिसूक्ष्म पातळीवरील चित्र व वैशिष्टये



# माहित आहे का तुम्हांला?

पाणी: एक संयुग – शुद्ध पाणी हे हायड्रोजन व ऑक्सिजन ह्या मूलद्रव्यांच्या रासायनिक संयोगाने बनलेले एक संयुग आहे पाण्याचा स्त्रोत कोणताही असला तरी त्यातील ऑक्सिजन व हायड्रोजन ह्या घटक मूलद्रव्यांचे वजनी प्रमाण 8:1 असेच असते हायड्रोजन हा ज्वलनशील वायू आहे तर ऑक्सिजन वायू ज्वलनाला मदत करतो मात्र, हायड्रोजन व ऑक्सिजन ह्या वायुरूप मूलद्रव्यांच्या रासायनिक संयोगाने बनलेले पाणी हे संयुग द्रवरूप असून ते ज्वलनशीलही नसते व ज्वलनास मदतही करत नाही; उलट पाण्यामुळे आग विझायला मदत होते

दूध: एक मिश्रण – दूध हे पाणी, दुग्धशर्करा, स्निग्ध पदार्थ, प्रथिने आणि आणखी काही नैसर्गिक पदार्थांचे मिश्रण आहे दुधाच्या स्रोताप्रमाणे दुधातील विविध घटक पदार्थांचे प्रमाण वेगवेगळे असते गाईच्या दुधात स्निग्ध पदार्थांचे प्रमाण 3-5% असते, तर म्हशीच्या दुधात हेच प्रमाण 6-9% असते दुधात निसर्गत:च पाणी हा घटकपदार्थ मोठ्या प्रमाणात असतो त्यामुळे दूध द्रव अवस्थेत आढळते दुधाची गोडी ही प्रामुख्याने त्याच्यातील दुग्धशर्करा (Lactose) ह्या घटक पदार्थामुळे असते महणजेच घटक पदार्थांचे गुणधर्म दुधात राखले जातात

# मूलद्रव्यांचे प्रकार (Types of elements)



लोखंडी खिळा/पत्रा, तांब्याची तार, ॲल्युमिनिअमची तार, कोळशाचा तुकडा ह्या वस्तू घ्या प्रत्येक वस्तू सँडपेपरने घासून मिळालेला ताजा पृष्ठभाग पहा प्रत्येक वस्तूवर हातोडीने जोराने ठोका (मात्र स्वत:ला इजा होणार नाही याची दक्षता घ्या) तुमची निरीक्षणे पुढील तक्त्यात नोंदवा



वस्तू	पृष्ठभागाला चकाकी आहे/नाही	ठोकल्यावर आकार पसरट होतो/बारीक तुकडे होतात.
लोखंडी खिळा		
तांब्याची तार		
ॲल्युमिनिअम तार		
कोळशाचा तुकडा		

वरील कृतीमधील अनुक्रमे वस्तू लोह (Fe), तांबे (Cu), ॲल्युमिनिअम (Al) व कार्बन (C) ह्या मूलद्रव्यांच्या बनलेल्या आहेत वरील दोन परीक्षा प्रत्येक वस्तूवर केल्यावर मिळालेल्या निरीक्षणांच्या आधारे पुढील तक्ता भरा

पृष्ठभागाला चकाकी असणारी मूलद्रव्ये	
ठोकल्यावर पसरट होणारी मूलद्रव्ये	
पृष्ठभाग निस्तेज असणारी मूलद्रव्ये	
ठोकल्यावर तुकडे होणारी मूलद्रव्ये	

तुम्ही पाहिले की मूलद्रव्यांना चकाकी/निस्तेजपणा, वर्धनीयता/ठिसूळपणा असे वेगवेगळे भौतिक गुणधर्म आहेत व त्यांच्या आधारे मूलद्रव्यांचे वर्गीकरण करता येते सुरुवातीच्या काळात मूलद्रव्यांचे वर्गीकरण 'धातू' व 'अधातू' ह्या दोन प्रकारांत केले जात होते काही आणखी मूलद्रव्यांचा शोध लागल्यावर 'धातुसदृश' असा मूलद्रव्यांचा आणखी एक प्रकार लक्षात आला मूलद्रव्यांच्या या प्रकाराविषयी अधिक माहिती आपण 'धातू – अधातू' या पाठात पाहणार आहोत संयुगांचे प्रकार



साहित्य : बाष्पनपात्र, तिवई, बर्नर इत्यादी रासायनिक पदार्थ : कापूर, चुनखडी, धुण्याचा सोडा, मोरचूद, साखर, ग्लुकोज, युरिआ

कृती: बाष्पनपात्र आकृतीत दाखवल्याप्रमाणे तिवईवर ठेवा बाष्पनपात्रात थोडा कापूर घ्या, बर्नरच्या साहाय्याने बाष्पनपात्रातील कापूर 5 मिनिटे तीव्रपणे तापवा बाष्पनपात्रात काय शिल्लक उरते ते पहा कापराऐवजी चुनखडी, धुण्याचा सोडा, मोरचूद, साखर, ग्लुकोज, युरिआ हे पदार्थ वापरून वरील कृती पुन्हा करा तुमची निरीक्षणे पुढीलप्रमाणे तक्त्यात नोंदवा (एखादे चूर्ण पेट घेऊ शकते त्यामुळे ही कृती शिक्षकांच्या देखरेखीखाली काळजीपूर्वक करा)



बाष्पनपात्रातील चूर्ण	बाष्पनपात्रात अवशेष उरला/उरला नाही	अवशेषाचा रंग
कापूर		
चुनखडी		
•••••		

वरील कृतीत तुम्ही पाहिले की तीव्र उष्णता दिल्यावर काही संयुगांपासून अवशेष मिळतो तर काही संयुगांपासून अवशेष मिळत नाही किंवा काळसर अवशेष मिळतो हा काळा अवशेष प्रामुख्याने कार्बनचा बनलेला असतो तसेच ही संयुगे हवेमध्ये तीव्रपणे तापवली असता त्यांचा ऑक्सिजनबरोबर संयोग होऊन काही वायुरूप पदार्थ तयार होतात व ज्वलन पूर्ण न झाल्यास खाली अवशेषरूपाने काळ्या रंगाचा कार्बन राहतो ह्या संयुगांना सेंद्रिय संयुगे किंवा कार्बनी संयुगे म्हणतात उदाहरणार्थ, कर्बोदके, प्रिथिने, हायड्रोकार्बन (उदा पेट्रोल, स्वयंपाकाचा गॅस) अशी द्रव्ये सेंद्रिय संयुगांची बनलेली आहेत वरील कृतीत कापूर, साखर, ग्लुकोज व युरिआ ही सेंद्रिय संयुगे आहेत याउलट, ज्या संयुगांचे तीव्र उष्णता दिल्यावर अपघटन होऊन मागे अवशेष उरतो ती असेंद्रिय संयुगे किंवा

अकार्बनी संयुगे असतात मीठ, सोडा, गंज, मोरचूद, चुनखडी ही असेंद्रिय संयुगे आहेत याशिवाय संयुगांचा आणखी एक प्रकार म्हणजे जिटल संयुगे जिटल संयुगाच्या रेणूंमध्ये अनेक अणूंनी तयार झालेली जिटल संरचना असते व या संरचनेच्या मध्यभागात धातूंच्या अणूंचा सुद्धा समावेश असतो मॅग्नेशिअमचा समावेश असलेले क्लोरोफिल, लोहाचा समावेश असलेले हिमोग्लोबिन व कोबाल्टचा समावेश असलेला सायनोकोबालमीन (जीवनसत्त्व B-12) ही जिटल संयुगांची काही उदाहरणे आहेत

संयुगांच्या रेणूंमध्ये वेगवेगळे अणू **रासायनिक बंधांनी जोडलेले** असतात, त्याविषयी आपण पुढे पाहणार आहोत मिश्रणांचे प्रकार



तीन चंचुपात्रे घ्या पहिल्या चंचुपात्रात थोडी वाळू व पाणी घ्या दुसऱ्या चंचुपात्रात मोरचुदाचे स्फटिक व पाणी घ्या तिसऱ्या चंचुपात्रात मोरचूद व वाळू घ्या सर्व चंचुपात्रांमधील द्रव्ये ढवळा व होणाऱ्या बदलांचे निरीक्षण करा निरीक्षणांआधारे खालील तक्ता पूर्ण करा

चंचुपात्र क्र.	घेतलेली द्रव्ये	ढवळल्यानंतर काय दिसले	मिश्रणातील प्रावस्थांची संख्या	मिश्रणाचा प्रकार
1				
2				
3				

एकसारखे संघटन असलेल्या द्रव्याच्या भागाला **प्रावस्था** (phase) म्हणतात ढवळल्यानंतर वरील कृतीमधील चंचुपात्रांमध्ये प्रत्येकी किती प्रावस्था दिसतात जेव्हा मिश्रणाच्या सर्व घटकांची मिळून एकच प्रावस्था असते तेव्हा त्याला समांगी मिश्रण म्हणतात जेव्हा मिश्रणातील घटक दोन किंवा अधिक प्रावस्थांमध्ये विभागलेले असतात तेव्हा त्याला विषमांगी मिश्रण म्हणतात



सांगा पाह !

वरील कृतीत ढवळल्यानंतर फक्त एकाच चंचुपात्रात समांगी मिश्रण तयार होते ते कोणते?



# हे नेहमी लक्षात ठेवा.

एका स्थायूचे एकत्रित असलेले (किंवा एका पात्रात असलेले) सर्व कण मिळून एकच प्रावस्था होते (उदा , दगडांचा ढीग) द्रवरूप पदार्थ व त्यात विरघळलेले सर्व द्रावणीय पदार्थ मिळून एकच प्रावस्था होते (उदा , सम्द्राचे पाणी) एका द्रवाच्या किंवा एकत्रित (किंवा एका पात्रात) असलेल्या सर्व थेंबाची मिळून एकच प्रावस्था होते (उदा , पावसाचे थेंब) एकाच पात्रात किंवा एकत्र असलेल्या; परंतु एकमेकांत न मिसळलेल्या द्रवांच्या प्रावस्था स्वतंत्र असतात (उदा , तेल व पाणी) एकत्रित असलेल्या सर्व वायुरूप पदार्थांची मिळून एकच प्रावस्था होते (उदा , हवा)



तीन चंचुपात्रे घ्या पहिल्या चंचुपात्रात 10 ग्रॅ मीठ घ्या दुसऱ्या चंचुपात्रात 10 ग्रॅ लाकडाचा भुसा घ्या तिसऱ्या चंचुपात्रात 10 मिली दूध घ्या तीनही चंचुपात्रांमध्ये 100 मिली पाणी ओतून ढवळा पाण्याची स्वतंत्र प्रावस्था कोणत्या मिश्रणात दिसते? उभ्या धरलेल्या कागदासमोर तीनही चंचुपात्रे ठेऊन विरुद्ध बाजूने लेझर किरणांचा झोत सोडा (लेझर किरणांचा वापर शिक्षकाच्या मार्गदर्शनाने करावा) त्याचवेळी चंचुपात्रासमोरील कागदावर काय दिसते ते पहा तसेच चंचुपात्राकडे बाजूच्या दिशेनेही पहा गालनक्रियेसाठी शंकूपात्र, नरसाळे व गालनकागद वापरून तीन मांडण्या जुळवा तीनही चंचुपात्रातील मिश्रणे ढवळून त्यांची गालन क्रिया करा सर्व निरीक्षणांचा खालीलप्रमाणे तक्ता बनवा

चंचुपात्र	मिश्रणाचे घटक	पाण्याची स्वतंत्र प्रावस्था	पारदर्शक/अर्धपारदर्शक/	गालन क्रियेने घटकांचे
		दिसते/दिसत नाही	अपारदर्शक	विलगीकरण होते/होत नाही

द्रावण (Solution) : दोन किंवा अधिक पदार्थांच्या समांगी मिश्रणाला द्रावण म्हणतात वरील कृतीमध्ये पहिल्या चंच्पात्रात पाणी व मीठ ह्या दोन पदार्थांचे समांगी मिश्रण तयार होते त्याला मिठाचे पाण्यातील द्रावण म्हणतात द्रावणात जो घटक पदार्थ सर्वाधिक प्रमाणात असतो त्याला द्रावक म्हणतात व द्रावकापेक्षा कमी प्रमाणात असणाऱ्या इतर घटक पदार्थांना द्वाव्य म्हणतात द्राव्य द्रावकात मिसळून द्रावण बनण्याची क्रिया म्हणजे विरघळणे द्रावणातील घटकांच्या अवस्थांप्रमाणे द्रावणांचे अनेक प्रकार होतात समुद्राचे पाणी, पाण्यात विरघळलेला मोरचूद, पाण्यात विरघळलेले मीठ, साखरेचा पाक ही द्रावणे 'द्रवामध्ये स्थायू' ह्या प्रकाराची आहेत याशिवाय 'द्रवामध्ये द्रव' (उदा व्हिनेगार, विरल सल्फ्युरिक आम्ल), 'वायुमध्ये वायु' (उदा हवा), 'स्थायूमध्ये स्थायू' (उदा पितळ, पोलाद, स्टेनलेस स्टील अशी संमिश्रे), 'द्रवामध्ये वायु' (उदा क्लोरीनयुक्त पाणी, हायड्रोक्लोरिक आम्ल) असेही द्रावणांचे प्रकार आहेत समांगी मिश्रणाचे म्हणजेच द्रावणाचे संघटन संपूर्ण राशीभर एकसारखे असते द्रावक पारदर्शक द्रव असल्यास द्रावण सुद्धा पारदर्शक असते व ते गालन कागदातून आरपार जाते

निलंबन (Suspension) : वरील कृतीमध्ये दुसऱ्या चंचुपात्रात पाणी व भुसा ह्या दोन पदार्थांचे विषमांगी मिश्रण तयार झाले हे द्रव आणि स्थायू यांचे मिश्रण आहे द्रव आणि स्थायू यांच्या विषमांगी मिश्रणाला निलंबन म्हणतात निलंबनातील स्थायूकणांचा व्यास  $10^{-4}$  मी पेक्षा जास्त असतो त्यामुळे त्यातून प्रकाशाचे संक्रमण होत नाही, तसेच सामान्य गालनकागदावर हे स्थायूकण

अवशेषी म्हणून राहतात व गालनक्रियेने निलंबनातील द्रव व स्थायू घटकांचे विलगीकरण होते

कलिल (Colloid) : वरील कृतीमध्ये तिसऱ्या चंचुपात्रातील पाणी व द्ध यांचे मिश्रण अर्धपारदर्शक आहे म्हणजेच ह्या मिश्रणाच्या पृष्ठभागावर प्रकाशाचे आपतन केले असता त्याचे काही प्रमाणात संक्रमण व काही प्रमाणात अपस्करण होते याचे कारण म्हणजे ह्या विषमांगी मिश्रणामधील पाण्याच्या प्रावस्थेमध्ये दुधाच्या प्रावस्थेचे सूक्ष्म कण सर्वत्र विखुरलेल्या स्थितीत असतात आणि ह्या कणांचा व्यास 10-5 मी च्या जवळपास असतो अशा विषमांगी मिश्रणाला कलिल म्हणतात मात्र कलिलातील कणांच्या व्यासापेक्षा गालनकागदाची छिद्रे मोठी असल्याने गालनक्रियेमुळे कलिल ह्या विषमांगी मिश्रणाचे विलगीकरण होत नाही द्ध स्वत:च एक कलिल आहे ह्यामध्ये पाणी ह्या माध्यमात प्रथिने, स्निग्ध पदार्थ इत्यादींचे स्थायूकण व द्रव थेंब यांचा व्यास 10⁻⁵ मी च्या आसपास असतो, विखुरलेले असतात याशिवाय वायूंमध्ये स्थायू (उदा,धूर) वायूमध्ये द्रव (उदा, धुके, ढग) असे व आणखी सुद्धा कलिलाचे प्रकार आहेत

समजून घेऊ संयुगांना: द्रव्याचे प्रकार अभ्यासताना आपण पाहिले की मूलद्रव्य म्हणजे सर्वांत साधे संघटन असलेला द्रव्याचा प्रकार आहे संयुग व मिश्रण ह्या प्रकारांचे संघटन तपासले असता असे लक्षात येते की ते दोन किंवा अधिक घटकांपासून बनलेले असते हे घटक एकमेकांबरोबर जोडलेल्या स्थितीत असतात की स्वतंत्र असतात त्यावरून ते द्रव्य म्हणजे संयुग आहे की मिश्रण हे ठरते



कृती: दोन बाष्पनपात्रे घ्या पहिल्या बाष्पन पात्रात 7 ग्रॅम लोहकीस घ्या दुसऱ्यामध्ये 4 ग्रॅम गंधक चूर्ण घ्या दोन्ही बाष्पनपात्रांमधील द्रव्याजवळ नालाकृती चुंबक नेऊन निरीक्षण करा पहिल्या पात्रातील सर्व लोहकीस दुसऱ्या पात्रात ओतून काचकांडीने ढवळा व नालाकृती चुंबक द्रव्याजवळ नेऊन निरीक्षण करा तसेच द्रव्याच्या रंगाचेही निरीक्षण करा आता दुसऱ्या पात्रातील हे द्रव्य थोडे तापवून थंड होऊ द्या ह्या द्रव्याच्या रंगात काही बदल झाला का ह्याचे निरीक्षण करा व त्यावर नालाकृती चुंबकाचा काय परिणाम होतो त्याचे निरीक्षण करा सर्व निरीक्षण पुढील तक्त्यात नोंदवा

कृती	द्रव्याचा रंग	नालाकृती चुंबकाचा परिणाम
बाष्पनपात्रात लोहकीस व गंधक मिसळले		
बाष्पनपात्रात लोहकीस व गंधक एकत्र तापवले		

मागील कृतीत लोहकीस व गंधकचूर्ण मिसळून मिळालेल्या द्रव्याची नालाकृती चुंबकाने परीक्षा केल्यावरअसे दिसले की तयार झालेले द्रव्य म्हणजे लोह व गंधक यांचे मिश्रण आहे व त्याला दोन्ही घटकांचे गुणधर्म होते काही कण पिवळे दिसले ते गंधकाचे होते काही कण काळे दिसले ते लोहाचे होते लोहचुंबकाकडे ओढले जाण्याचा लोहकणांचा गुणधर्म ही कायम होता म्हणजेच ह्या द्रव्यात लोह व गंधक हे घटक स्वतंत्र स्थितीमध्ये होते याउलट लोहकीस व गंधक एकत्र तापवून थंड केले असता त्यावर चुंबकाचा परिणाम झाला नाही व गंधकाचा वैशिष्ट्यपूर्ण पिवळा रंगही दिसेनासा झाला यावरून लक्षात येते की वरील कृतीत तयार झालेले द्रव्य मूळ घटकांपेक्षा वेगळे आहे

या कृतीमध्ये तापवण्याच्या क्रियेमुळे लोह व गंधक या मूलद्रव्यांमध्ये रासायनिक संयोग घडून आला लोह व गंधक यांचे अणू रासायनिक बंधाने जोडले जाऊन नव्या संयुगाचे रेणू तयार झाले

रेणुसूत्र व संयुजा (Molecular formula and valency): संयुगामध्ये घटक मूलद्रव्यांचे प्रमाण ठराविक असते संयुगाच्या रेणूमध्ये घटक मूलद्रव्यांचे अणू विशिष्ट संख्येने एकमेकांना जोडलेले असतात संयुगाच्या एका रेणूमध्ये कोणकोणत्या मूलद्रव्याचे प्रत्येकी किती अणू आहेत ते रेणुसूत्राच्या साहाय्याने दर्शवले जाते रेणुसूत्रामध्ये सर्व घटक मूलद्रव्यांच्या संज्ञा व प्रत्येक संज्ञेच्या पायाशी त्या त्या अणूंची संख्या, ही माहिती समाविष्ट असते



पुढील तक्त्यात काही संयुगांची रेणुसूत्रे दिली आहेत त्यांच्या उपयोगाने तक्त्यातील रिकाम्या जागा भरा

अ. क्र	संयुगाचे नाव	रेणूसूत्र	घटक मूलद्रव्ये	घटक मूलद्रव्यांच्या अणूंची संख्या	
1	पाणी	H ₂ O	Н	2	
			О	1	
2	हायड्रोजन क्लोराइड	HC1			
3	मिथेन	CH ₄			
4	मॅग्नेशिअम क्लोराइड	MgCl ₂			

रेणुसूत्र आणि रेणूमधील विविध मूलद्रव्यांच्या अणूंची संख्या यातील संबंध आपण पाहिला अणू एकमेकांना रासायनिक बंधाने जोडलेले असतात दुसऱ्या अणूशी रासायनिक बंधाने जोडले जाण्याची क्षमता हा प्रत्येक अणूचा रासायनिक गुणधर्म आहे ही क्षमता एका संख्येने दर्शवितात व ही संख्या म्हणजे त्या अणूची संयुजा होय एक अणू त्याच्या संयुजेइतके रासायनिक बंध इतर अणूंबरोबर करतो साधारणपणे मूलद्रव्याची संयुजा त्याच्या विविध संयुगांमधे स्थिर असते



# माहित आहे का तुम्हांला?

वैज्ञानिकांनी 18 व्या व 19 व्या शतकात संयुगांच्या संघटनासंबंधात अनेक प्रयोग केले व त्यावरून मूलद्रव्यांच्या संयुजा शोधून काढल्या हायड्रोजन हा सर्वात हलक्या मूलद्रव्याची संयुजा 1 आहे असे मानून वैज्ञानिकांनी इतर मूलद्रव्यांच्या संयुजा ठरविल्या



पुढील तक्त्यात हायड्रोजन ह्या मूलद्रव्याने इतर मूलद्रव्यांबरोबर तयार केलेल्या विविध संयुगांची रेणुसूत्रे दिलेली आहेत त्यावरून संबंधित मूलद्रव्यांच्या संयुजा शोधून काढा

अ. क्र.	संयुगाचे रेणुसूत्र	घटक	मूलद्रव्ये	'H' ची संयुजा	'X' ने 'H' तयार केलेल्या एकूण बंधांची संख्या	'X' ची संयुजा
		Н	X			
1	HCl	Н	Cl	1	1	1
2	H ₂ O	Н	0	1	2	2
3	H ₂ S			1		
4	NH ₃			1		
5	HBr			1		
6	HI			1		
7	NaH			1		
8	CH ₄			1		

संयुगाचे रेणुसूत्र माहीत असल्यास त्यावरून घटक मूलद्रव्यांच्या संयुजा ओळखता येतात यासाठी हायड्रोजनची संयुजा '1' आहे हा आधार आहे याउलट मूलद्रव्याची संयुजा माहित असल्यास त्यावरून तिरकस गुणाकार संयुगाचे रेणुसूत्र लिहिता येते ते खालीलप्रमाणे

# तिरकस गुणाकार पद्धतीने साध्या संयुगांचे रेणुसूत्र लिहिणे

पायरी 1: घटक मूलद्रव्यांच्या संज्ञा लिहिणे

पायरी 2: त्या त्या मूलद्रव्याखाली त्याची संयुजा लिहिणे

C 4 2

पायरी ३: बाणांनी दर्शविल्याप्रमाणे तिरकस गुणाकार करणे



पायरी 4: तिरकस गुणाकाराने मिळालेले सूत्र लिहिणे

 $C_2O_4$  **पायरी** 5: संयुगाचे अंतिम रेणुसूत्र लिहिणे अंतिम रेणुसूत्रामध्ये घटक अणूंची संख्या लहानात लहान व पूर्णांकी असावी यासाठी आवश्यक असल्यास पायरी 4 मधील सूत्रास योग्य त्या अंकाने भागणे )

तिरकस गुणाकाराने मिळालेले सूत्र  $\rm C_2O_4$  व 2 ने भागून मिळालेले अंतिम रेणुसूत्र  $\rm CO_2$ 

खालील तक्त्यात मूलद्रव्यांच्या जोड्या व त्यांच्या संयुजा दिलेल्या आहेत त्यांचा तर्कसंगत उपयोग करून त्या मूलद्रव्य जोड्यांपासून तयार होणाऱ्या संयुगांची रेणुसूत्रे शेवटच्या रकान्यात लिहा

मूलद्रव्य	संयुजा	संबंधित संयुगाचे रेणुसूत्र
С	4	
Н	1	
N	3	
Н	1	
Fe	2	
S	2	
С	4	
О	2	



# जरा डोके चालवा

- खालील मूलद्रव्य-जोड्यांपासून तयार होणाऱ्या संयुगांची रेणुसूत्रे तिरकस गुणाकार पद्धतीने शोधून काढा (i) H (संयुजा 1) व O (संयुजा 2), (ii) N (संयुजा 3) व H (संयुजा 1), (iii) Fe (संयुजा 2) व S (संयुजा2)
- 2 H, O a N ह्या अणूंच्या संयुजा अनुक्रमे 1, 2 a 3 आहेत तसेच हायड्रोजन, ऑक्सिजन, नायट्रोजन ह्या वायुरूप मूलद्रव्यांची रेणुसूत्रे अनुक्रमे H₂, O₂ a N₂ अशी आहेत ह्या रेणूंमध्ये प्रत्येकी किती रासायनिक बंध आहेत ?

# योग्य पर्याय निवडून खालील विधाने पुन्हा लिहा.

- अ. स्थायूच्या कणांमध्ये आंतररेण्वीय बल ....... असते.
  - (i) कमीत कमी
- (ii) मध्यम
- (iii) जास्तीत जास्त
- (iv) अनिश्चित
- आ. स्थायूंवर बाह्य दाब दिल्यावरसुद्धा त्यांचे आकारमान कायम राहते. ह्या गुणधर्माला ...... म्हणतात.
  - (i) आकार्यता (ii) असंपीड्यता
  - (iii) प्रवाहिता (iv) स्थितिस्थापकता
- इ. द्रव्यांचे वर्गीकरण मिश्रण, संयुग व मूलद्रव्य ह्या प्रकारांमध्ये करताना .... हा निकष लावला जातो.
  - (i) द्रव्याच्या अवस्था (ii) द्रव्याच्या प्रावस्था
  - (iii) द्रव्याचे रासायनिक संघटन
  - (iv) यांपैकी सर्व
- ई. दोन किंवा अधिक घटक पदार्थ असणाऱ्या द्रव्याला ...... म्हणतात.
  - (i) मिश्रण
- (ii) संयुग
- (iii) मूलद्रव्य
- (iv) धातुसदृश
- दूध हे द्रव्याच्या ...... ह्या प्रकाराचे उदाहरण आहे.
  - (i) द्रावण
- (ii) समांगी मिश्रण
- (iii) विषमांगी मिश्रण
- (iv) निलंबन
- ए. पाणी, पारा व ब्रोमीन यांच्यामध्ये साधर्म्य आहे,कारण तीनही .... आहेत.
  - (i) द्रवपदार्थ
- (ii) संयुगे
- (iii) अधात्
- (iv) मूलद्रव्ये
- ऐ. कार्बनची संयुजा 4 आहे व ऑक्सिजनची संयुजा 2 आहे. यावरून समजते, की कार्बन डाय ऑक्साइड ह्या संयुगात कार्बन अणू व एक ऑक्सिजन अणू यांच्यात ...... रासायनिक बंध असतात.
  - (i) 1 (ii) 2 (iii) 3 (iv) 4

# 2. गटात न बसणारे पद ओळखून स्पष्टीकरण द्या.

- अ. सोने, चांदी, तांबे, पितळ
- आ. हायड्रोजन, हायड्रोजन पेरॉक्साइड, कार्बन डायऑक्साइड, पाण्याची वाफ

- इ. द्ध, लिंब्रस, कार्बन, पोलाद
- ई. पाणी, पारा, ब्रोमीन, पेट्रोल
- उ. साखर, मीठ, खाण्याचा सोडा, मोरचूद
- ऊ. हायड्रोजन, सोडिअम, पोटॅशिअम, कार्बन

#### 3. खालील प्रश्नांची उत्तरे लिहा.

- अ. वनस्पती सूर्यप्रकाशात क्लोरोफिलच्या मदतीने कार्बन डायऑक्साइड व पाणी यांच्यापासून ग्लूकोज तयार करतात व ऑक्सिजन बाहेर टाकतात. या प्रक्रियेतील चार संयुगे कोणती ते ओळखून त्यांचे प्रकार लिहा.
- आ. पितळ ह्या संमिश्राच्या एका नमुन्यात पुढील घटक आढळले: तांबे (70%) व जस्त (30%). यामध्ये द्रावक, द्राव्य व द्रावण कोण ते लिहा.
- इ. विरघळलेल्या क्षारांमुळे समुद्राच्या पाण्याला खारट चव असते. काही जलसाठ्यांची नोंदिविलेली क्षारता (पाण्यातील क्षारांचे प्रमाण) पुढीलप्रमाणे आहे : लोणार सरोवर : 7.9%, प्रशांत महासागर : 3.5%, भूमध्य समुद्र : 3.8%, मृत समुद्र : 33.7%. या माहितीवरून मिश्रणाची दोन वैशिष्ट्ये स्पष्ट करा.

## प्रत्येकी दोन उदाहरणे द्या.

- अ. द्रवरूप मूलद्रव्य
- आ. वायुरूप मूलद्रव्य
- इ. स्थायुरूप मूलद्रव्य
- ई. समांगी मिश्रण
- उ. कलिल
- ऊ. सेंद्रिय संयुग
- ए. जटिल संयुग
- ऐ. असेंद्रिय संयुग
- ओ. धातुसदृश
- औ. संयुजा 1 असलेले मूलद्रव्य
- अं. संयुजा 2 असलेले मूलद्रव्य
- पुढे दिलेल्या रेणुसूत्रांवरून त्या त्या संयुगातील घटक मूलद्रव्यांची नावे व संज्ञा लिहा व त्यांच्या संयुजा ओळखा.

KCl, HBr, MgBr₂, K₂O, NaH, CaCl₂, CCl₄, HI, H₂S, Na₂S, FeS, BaCl₂

## 6. काही द्रव्यांचे रासायनिक संघटन पुढील तक्त्यात दिले आहे. त्यावरून त्या द्रव्यांचा मुख्य प्रकार ठरवा.

द्रव्याचे नाव	रासायनिक संघटन	द्रव्याचा मुख्य प्रकार
समुद्राचे पाणी	$H_2O + NaCl + MgCl_2 +$	
उर्ध्वपातित पाणी	H ₂ O	
फुग्यात भरलेला हायड्रोजन वायू	$H_2$	
LPG सिलिंडरमधील वायू	$C_{4}H_{10} + C_{3}H_{8}$	
खाण्याचा सोडा	NaHCO ₃	
शुद्ध सोने	Au	
ऑक्सिजनच्या नळकांड्यातील वायू	$O_2$	
कास्य	Cu + Sn	
हिरा	С	
मोरचूद	CuSO ₄	
चुनखडी	CaCO ₃	
विरल हायड्रोक्लोरिक आम्ल	HCl + H ₂ O	

#### 7. शास्त्रीय कारणे लिहा.

- अ. हायड्रोजन ज्वलनशील आहे, ऑक्सिजन ज्वलनास मदत करतो, परंतु पाणी आग विझवण्यास मदत करते.
- आ. कलिलाचे घटक पदार्थ गाळणक्रियेने वेगळे करता येत नाहीत.
- इ. लिंबू सरबताला गोड, आंबट, खारट अशा सर्व चवी असतात व ते पेल्यामध्ये ओतता येते.
- ई. स्थायुरूप द्रव्याला निश्चित आकार व आकारमान हे गुणधर्म असतात.

# 8. पुढील मूलद्रव्यांच्या जोड्यांपासून मिळणाऱ्या संयुगांची रेणुसूत्रे तिरकस गुणाकार पद्धतीने शोधून काढा.

- अ. C (संयुजा 4) व Cl (संयुजा 1)
- आ. N (संयुजा 3) व H (संयुजा 1)
- इ. С (संयुजा 4) व 🔾 (संयुजा 2)
- ई. Ca (संयुजा 2) व ( (संयुजा 2)

#### उपक्रम :

वेगवेगळ्या तयार खाद्यपदार्थांची वेष्टने जमवा. त्यावर दिलेल्या माहितीचा उपयोग करून खाद्यपदार्थ व त्यातील घटक यांचे कोष्टक बनवा. जे घटक मिळवता येतील ते मिळवा. मित्र व शिक्षक यांच्याशी चर्चा करून तसेच शिक्षकांच्या देखरेखीखाली मिळालेल्या घटकांची ज्वलन-परीक्षा करा व हे घटक सेंद्रिय की असेंद्रिय हे ठरवा.





# 7. धातू-अधातू



- 1 सर्वसाधारणपणे मूलद्रव्यांचे वर्गीकरण कोणत्या तीन प्रकारांत करतात?
- 2 दैनंदिन जीवनात आपण कोणकोणते धातू आणि अधातू वापरतो?

जगातील सर्व वस्तू किंवा पदार्थ हे मूलद्रव्ये, संयुगे, किंवा त्यांच्या मिश्रणांपासून बनलेले आहेत शास्त्रज्ञांनी सर्व मूलद्रव्यांचे सर्वसाधारणपणे धातू, अधातू व धातुसदृश याप्रमाणे वर्गीकरण केलेले आहे

धातू (Metals) : सोने, चांदी, लोखंड, तांबे, ऑल्युमिनिअम, मॅग्नेशिअम, कॅल्शिअम, सोडिअम, प्लॅटिनम हे काही धातू आहेत धातूंना चकाकी असते ते कठीण असतात त्यांची तार किंवा पत्रे बनविता येतात धातू उष्णता व विद्युतचे सुवाहक असतात धातु त्यांचे संयुजा इलेक्ट्रॉन गमावून धनप्रभारी आयन, धन-आयन म्हणजेच कॅटायन निर्माण करतात

# धातूंचे भौतिक गुणधर्म (Physical Properties of Metals)

1. अवस्था (Physical State) : सर्वसामान्य तापमानाला धातू स्थायू अवस्थेत राहतात पण पारा व गॅलिअमसारखे काही धातू अपवाद आहेत ते कक्ष तापमानालाही द्रव अवस्थेत असतात



तुम्ही तुमच्या नातेवाइकांसोबत एखाद्या दवाखान्यात गेला असता डॉक्टरांजवळ रक्तदाबमापक पाहिला असेल त्यातील काचेच्या नळीत एक राखाडी रंगाचा द्रव पाहिला असेल तो कोणता धातू असतो?

- 2. तेज (Lustre)(चकाकी): तुमच्या घरी असणारी तांब्यांची भांडी घ्या व त्याला लिंबाने घासा व पाण्याने धुवा, धुण्यापूर्वी व धुतल्यानंतरच्या तेजाचे निरिक्षण करा धातूच्या घासलेल्या वा नुकत्याच कापलेल्या पृष्ठभागावरून प्रकाशाचे परावर्तन होते व धातू तेजस्वी दिसतो
- 3. कठीणपणा (Hardness): सर्वसाधारणपणे धातू कठीण असतात ते मऊ नसतात अपवाद सोडिअम व पोटॅशिअम मऊ असतात व ते चाकूने सहज कापता येतात

- 4. तन्यता (Ductility): तुम्ही कधी सोनाराच्या दुकानात गेलात का? सोनाराला सोने किंवा चांदीची तार बनविताना पाहिले का? छिद्रामधून धातूला ओढले असता त्याची तार बनते या गुणधर्माला धातूची तन्यता असे म्हणतात
- 5. वर्धनीयता (Malleability): एक खिळा घ्या व त्याला ओट्यावर ठेवून हातोडीने ठोकत रहा, काही वेळानंतर तुम्हांला पातळ पत्रा तयार होताना दिसेल या गुणधर्माला धातूची वर्धनीयता म्हणतात
- 6. उष्णतेचे वहन (Conduction of Heat): तांब्याची पट्टी घ्या व त्याच्या एका टोकाला मेण लावा व दुसरे टोक गरम करा काय होते त्याचे निरीक्षण करून शिक्षकांसोबत चर्चा करा

धातू उष्णतेचे सुवाहक असतात चांदी, तांबे, ॲल्युमिनिअम उष्णतेचे उत्तम वाहक आहेत

- 7. विद्युत वहन (Conduction of Electricity): विजेच्या तारा बनवण्यासाठी कोणकोणत्या धातूंचा उपयोग केला जातो? धातू विजेचे सुवाहक असतात अपवाद शिसे हा एकमेव धातू आहे जो उष्णता आणि वीज यांचा सुवाहक नाही
- 8. घनता (Density): धातूंची घनता जास्त असते अपवाद सोडिअम, पोटॅशिअम व लिथिअमची घनता पाण्यापेक्षा कमी असते लिथिअमची घनता 0 53 g/cc इतकीच आहे
- 9. द्रवणांक व उत्कलनांक (Melting & Boiling Points): सर्वसाधारणपणे धातूंचे द्रवणांक व उत्कलनांक जास्त असतात अपवाद Hg, Ga, Na, K
- 10. नादमयता (Sonority) : तुमच्या शाळेची घंटा कोणत्या धातूची आहे व ती कसे कार्य करते? धातू नादमय असतात

अधातू (Non-metals) : कार्बन, सल्फर, फॉस्फरस हे काही अधातू आहेत साधारणपणे स्थायू अधातू ठिसूळ असतात व त्यांना चकाकी नसते

# अधातूंचे भौतिक गुणधर्म (Physical Properties of nonmetals):

1. भौतिक अवस्था (Physical State): सर्वसामान्य तापमानाला अधातू स्थायू, द्रव व वायुरूपात आढळतात

स्थायू : C, S, P  $\,$  द्रवरूप :  $Br_2^{}$  वायुरूप :  $H_2^{}$ ,  $N_2^{}$ ,  $O_2^{}$ 

- 2. चकाकी (Lustre) : अधातूंना चकाकी नसते अपवाद हिरा, आयोडिनचे स्फटिक काही अधातू रंगहीन तर काहींना विविध रंग असतात कार्बन म्हणजेच कोळसा, कोणत्या रंगाचा असतो?
- 3. ठिसूळपणा (Brittleness): कोळसा (कार्बन) घ्या व त्याला हातोडीने ठोका काय होते पाहा स्थायुरूप अधातू ठिसूळ असतात काही अधातू मऊ असतात अपवाद हिरा (कार्बनचे अपरूप) सर्वांत कठीण नैसर्गिक पदार्थ
- 4. तन्यता व वर्धनीयता (Ductility & Malleability): अधातू तंतुक्षम व वर्धनीय नसतात
- 5. उष्णता व विद्युत वहन (Conduction of Heat & Electricity): अधातू उष्णतेचे व विजेचे दुर्वाहक असतात अपवाद ग्रॅफाईट (कार्बनचे अपरूप) विजेचा उत्तम सुवाहक आहे
- 6. घनता (Density): अधातूची घनता कमी असते
- 7. द्रवणांक व उत्कलनांक (Melting & Boiling Point): अधातूचे द्रवणांक व उत्कलनांक कमी असतात अपवाद कार्बन, बोरॉन हे स्थायू अधातू असून उच्च तापमानाला वितळतात



- 1 सोने, चांदी, ॲल्युमिनिअम हे उत्तम वर्धनीय धातू आहेत
- 2 सोन्याचे 1/10,000 मिलीमीटर जाडीचे पातळ पत्रे करता येतात व 1/5000 मीमी व्यासाची तार बनवता येते

धातुसदृश (Metalloids) : आर्सेनिक (As), सिलिकॉन (Si), जर्मेनिअम (Ge), ॲंटिमनी (Sb) यांसारख्या काही मूलद्रव्यांना धातू आणि अधातू यांच्या दरम्यानचे गुणधर्म असतात अशा मूलद्रव्यांना धातुसदृश असे म्हणतात

# धातूंचे रासायनिक गुणधर्म (Chemical properties of Metals)

## अ. इलेक्ट्रॉन संरूपण:

इलेक्ट्रॉन संरूपण हे सर्व मूलद्रव्यांच्या रासायनिक वर्तनाचा आधार असतो बहुसंख्य धातूंच्या अणूंच्या बाह्यतम कवचातील इलेक्ट्रॉनची संख्या कमी म्हणजे तीन पर्यंत असते

मूलद्रव्य	अणुअंक	इलेक्ट्रॉन संरूपण
₁₁ Na	11	2, 8, 1
₁₂ Mg	12	2, 8, 2
13 Al	13	2, 8, 3

आ. आयनांची निर्मिती: धातूंमध्ये त्यांचे संयुजा इलेक्ट्रॉन गमावून धनप्रभारी आयन, धन-आयन म्हणजेच 'कॅटायन' निर्माण करण्याची प्रवृत्ती असते

$$Mg \longrightarrow Mg^{++} + 2e^{-}$$
  
(2,8,2) (2,8)

मॅग्नेशिअम मॅग्नेशिअम आयन

Al 
$$\longrightarrow$$
 Al⁺⁺⁺ + 3e⁻ (2,8,3) (2,8)

ॲल्युमिनिअम ॲल्युमिनिअम आयन

इ. ऑक्सिजनबरोबर अभिक्रिया : धातूंचा ऑक्सिजनशी संयोग होऊन त्यांची ऑक्साइडे तयार होतात

धातूंची ऑक्साइडे आम्लारीधर्मी असतात धातूंच्या ऑक्साइडची अभिक्रिया आम्लासोबत होऊन क्षार आणि पाणी तयार होते

**ई. आम्लाबरोबर अभिक्रिया** : बहुतेक धातूंची विरल आम्लांबरोबर अभिक्रिया होऊन धातूंचे क्षार तयार होतात व हायड़ोजन वायू बाहेर पडतो

परीक्षानळी घ्या व त्यात विरल हायड्रोक्लोरिक आम्ल घ्या नंतर जस्ताची पूड टाका नळीच्या तोंडाशी जळती काडी न्या पेटत्या काडीचे निरीक्षण करा त्यातून आवाज आल्याचे तुम्हांला जाणवेल

3. पाण्यासोबत अभिक्रिया: काही धातूंची पाण्यासोबत अभिक्रिया होऊन हायड्रोजन वायूची निर्मिती होते काही धातूंची पाण्याबरोबर कक्ष तापमानाला, काहींची गरम पाण्यासोबत, तर काहींची पाण्याच्या वाफेसोबत अभिक्रिया होते, त्यांच्या अभिक्रियेचा दर वेगवेगळा असतो

अधातूंचे रासायनिक गुणधर्म (Chemical properties of nonmetals)

अ. इलेक्ट्रॉनी संरूपण : बहुसंख्य अधातूंच्या संयुजा कवचातील इलेक्ट्रॉनची संख्या जास्त म्हणजे 4 ते 7 पर्यंत असते

मूलद्रव्य	अणुअंक	इलेक्ट्रॉन संरूपण
₇ N	7	2, 5
₈ O	8	2, 6
Cl	17	2, 8, 7

आ. आयनांची निर्मिती: अधातूंमध्ये त्यांच्या संयुजा कवचात इलेक्ट्रॉन स्वीकारून ऋण प्रभारी आयन, ऋण-आयन म्हणजेच 'ॲनायन' निर्माण करण्याची प्रवृत्ती असते

$$Cl + e^- \longrightarrow Cl^ (2, 8, 7)$$
 $(2, 8, 8)$ 
 $4e^ 4e^ 4e^-$ 

इ. ऑक्सिजनबरोबर अभिक्रिया : अधातू ऑक्सिजनशी संयोग करून त्यांची ऑक्साइडे तयार करतात

अधातू + ऑक्सिजन — अधातूचे ऑक्साईड अधातूंची ऑक्साइडे ही आम्लधर्मी असतात ती आम्लारीशी संयोग पावून द्रावणीय क्षार व पाणी तयार करतात

$$C + O_2 \longrightarrow CO_2$$
 $CO_2 + 2NaOH \longrightarrow Na_2CO_3 + H_2O$ 
धातुंचे ऑक्साइड पाण्यासोबत अभिक्रिया करून आम्त

अधातूंचे ऑक्साइड पाण्यासोबत अभिक्रिया करून आम्ल तयार करतात

$$CO_2$$
 +  $H_2O$   $\longrightarrow$   $H_2CO_3$  कार्बोनिक आम्ल  $SO_2$  +  $H_2O$   $\longrightarrow$   $H_2SO_3$  सल्फ्युरस आम्ल  $SO_3$  +  $H_2O$   $\longrightarrow$   $H_2SO_4$  सल्फ्युरिक आम्ल

ई. अधातूंची विरल आम्लासोबत अभिक्रिया होत नाही.

# धातू व अधातूंचे उपयोग



यादी करा व चर्चा करा.

आपल्या दैनंदिन जीवनात धातू व अधातू कोठे कोठे वापरात असतात त्यांची यादी तयार करा.

धातूचे नाव	उपयोग	अधातूचे नाव	उपयोग



धातूंच्या रासायनिक गुणधर्मांचा अभ्यास करताना सोन्याची किंवा चांदीची सहजपणे अभिक्रिया होत नाही असे का आढळते? राजधातू (Nobel Metal): सोने, चांदी, प्लॅटिनम, पॅलेडिअम व ऱ्होडिअम यांसारखे काही धातू राजधातू आहेत ते निसर्गात मूलद्रव्यांच्या स्वरूपात आढळतात त्यांच्यावर हवा, पाणी, उष्णता यांचा सहजपणे परिणाम होत नाही त्यांची क्षरण व ऑक्सिडीकरण अभिक्रिया ही कक्ष तापमानाला होत नाही

# राजधातूंचे उपयोग :

- 1 सोने, चांदी व प्लॅटिनम यांचा वापर मुख्यत: अलंकार बनवण्यासाठी होतो
- 2 चांदीचा उपयोग औषधीमध्ये होतो (Antibacterial property)
- 3 सोन्या चांदीची पदकेही तयार करतात
- 4 काही इलेक्ट्रॉनिक उपकरणात चांदी, सोने ह्यांचा उपयोग होतो
- 5 प्लॅटिनम, पॅलेडिअम या धातूंचा उपयोग उत्प्रेरक (Catalyst) म्हणून सुद्धा होतो

सोन्याची शुद्धता (Purity of Gold): सोनाराच्या दुकानात सोन्याचे भाव विचारले असता ते वेगवेगळे भाव सांगतात असे का?

सोने हा एक राजधातू असून सोने निसर्गात मूलद्रव्य स्वरूपात आढळते 100 टक्के शुद्ध सोने म्हणजे 24 कॅरेट सोने शुद्ध सोने मऊ असते त्यामुळे शुद्ध सोन्याने तयार केलेले दागिने दाबामुळे वाकतात किंवा तुटतात म्हणून त्यात सोनार तांबे किंवा चांदी विशिष्ट प्रमाणात मिसळतात दागिने तयार करण्यासाठी 22 कॅरेट किंवा त्याहन कमी कॅरेटचे सोने वापरतात

# सोन्याची शुद्धता : कॅरेट व टक्केवारी

कॅरेट	टक्केवारी
24	100
22	91.66
18	75.00
14	58.33
12	50.00
10	41.66

क्षरण (Corrosion): धातूंवर ओलाव्यामुळे हवेतील वायूंची प्रक्रिया होऊन धातूंची संयुगे तयार होतात या प्रक्रियेमुळे धातूंवर परिणाम होऊन ते झिजतात यालाच क्षरण असे म्हणतात



# माहीत आहे का तुम्हांला?



अमेरिकेतील न्यूयॉर्क शहराजवळ समुद्रात स्वातंत्र्यदेवतेचा पुतळा आहे मूळ पुतळ्याचा पृष्ठभाग तांब्यापासून बनवलेला होता पण आता हिरव्या रंगाचा दिसतो त्याचे कारण असे, की हवेतील कार्बन डायऑक्साइड व आर्द्रतेची अभिक्रिया तांब्यासोबत होऊन हिरव्या रंगाचे कॉपर कार्बोनेट तयार झाले आहे हे क्षरणाचे एक उत्तम उदाहरण आहे



# यादी करा व चर्चा करा.

तुमच्या दैनंदिन जीवनातील क्षरणाच्या उदाहरणांची यादी तयार करा

लोखंडावर ऑक्सिजन वायूची अभिक्रिया होऊन तांबूस रंगाचा लेप तयार होतो तांब्यावर कार्बन डायऑक्साइड वायूची अभिक्रिया होऊन हिरवट रंगाचा लेप तयार होतो चांदीवर हायड्रोजन सल्फाइड वायूची अभिक्रिया होऊन काळ्या रंगाचा लेप तयार होतो धातूंचे क्षरण होऊ नये म्हणून त्यांच्यावर तेल, ग्रीस, वारिनश, व रंगाचे थर दिले जाते तसेच दुसऱ्या न गंजणाऱ्या धातूचा मुलामा दिला जातो लोखंडावर जस्ताचा मुलामा देऊन लोखंडाचे क्षरण थांबवता येते या क्रियांमुळे धातूंच्या पृष्ठभागाचा हवेपासून संपर्क तुटतो व त्यामुळे रासायनिक अभिक्रिया घडू न शकल्याने क्षरण होत नाही

संमिश्रे (Alloy): दोन किंवा अधिक धातूंच्या किंवा धातू व अधातूंच्या एकजीव (समांगी) मिश्रणाला संमिश्र असे म्हणतात आवश्यकतेनुसार घटक मूलद्रव्ये विविध प्रमाणात मिसळून विविध संमिश्रे तयार करता येतात उदा घरामध्ये वापरण्यात येणारी स्टेनलेस स्टीलची भांडी लोखंड व कार्बन, क्रोमिअम, निकेल यांपासून बनलेले संमिश्र आहे पितळ हे संमिश्र तांबे व जस्त यांपासून बनवतात कांस्य हे संमिश्र तांबे व कथिल यांच्यापासून बनवतात



# माहीत आहे का तुम्हांला?

दिल्लीत कुतुबमिनार परिसरात सुमारे 1500 वर्षांपूर्वी तयार करण्यात आलेला एक लोहस्तंभ आहे इतकी वर्षे होऊनही तोस्तंभ आजही चकचकीत आहे कारण आपल्या पूर्वजांनी तो संमिश्रापासून



तयार केला आहे त्या लोहामध्ये अत्यल्प प्रमाणात कार्बन, सिलीकॉन, फॉस्फरस मिसळले आहे



# माहीत आहे का तुम्हांला?

स्वस्त किंमतीचे स्टेनलेस स्टील बनवताना कधीकधी महाग निकेल ऐवजी तांब्याचा वापर करतात तुम्ही काही स्टनेलेस स्टील भांड्यांना उभ्या चिरा गेल्याचे पाहिले असेल त्यामागे हे कारण असते



### चर्चा करा.

तुमच्याकडे भंगार घेणारे येत असतील ते भंगार घेऊन काय करतात ? त्याची आवश्यकता काय?

# स्वाध्याय

तक्ता पूर्ण करा.

धातूंचे गुणधर्म	दैनंदिन जीवनात उपयोग
(i) तन्यता	
(ii) वर्धनीयता	
(iii) उष्णतेचे वहन	
(iv) विद्युतवहन	
(v) नादमयता	

- 2. गटात न बसणारा शब्द ओळखा.
  - अ. सोने, चांदी, लोह, हिरा
  - आ. तन्यता, ठिसूळता, नादमयता, वर्धनीयता
  - इ. C, Br, S, P
  - ई. पितळ, कांस्य, लोखंड, पोलाद
- शास्त्रीय कारणे लिहा.
  - अ. स्वयंपाकाच्या स्टेनलेस स्टील भांड्यांच्या खालच्या भागावर तांब्याचा मुलामा दिलेला असतो.
  - आ. तांबे व पितळेची भांडी लिंबाने का घासतात?
  - इ. सोडिअम धातूला केरोसीनमध्ये ठेवतात.
- 4. खालील प्रश्नांची उत्तरे द्या.
  - अ. धातूंचे क्षरण होऊ नये म्हणून तुम्ही काय कराल?
  - आ. पितळ व कांस्य ही संमिश्ने कोणकोणत्या धातूंपासून बनलेली आहेत?
  - इ. क्षरणांचे दुष्परिणाम कोणते?
  - ई राजधातूंचे उपयोग कोणते?

 खाली गंजणे याची क्रिया दिली आहे. या क्रियेत तीनही परीक्षानळ्यांचे निरीक्षण करून खालील प्रश्नांची उत्तरे द्या.



- अ. परीक्षानळी 2 मधील खिळ्यावर गंज का चढला नाही?
- आ. परीक्षानळी 1 मधील खिळ्यावर खूप गंज का चढला असेल?
- इ. परीक्षानळी 3 मधील खिळचावर गंज चढेल का?

#### उपक्रम:

मिठाईवरील वर्ख कसा तयार करतात ? वर्ख कोणकोणत्या धातूंपासून बनवलेला असतो त्याची माहिती मिळवा.









# निरीक्षण करा.







8.1 पर्यावरणातील विविध समस्या

- पर्यावरणातील या समस्या का निर्माण झाल्या असाव्यात?
- या समस्यांवर मात करण्यासाठी काय करावे लागेल?

माणसाच्या निसर्गातील हस्तक्षेपामुळे पृथ्वीवर अनेक समस्या निर्माण झाल्या आहेत औद्योगिकीकरण, वाढती लोकसंख्या, खाणकाम, वाहतूक, कीटकनाशकांचा आणि खतांचा वाढता वापर यांमुळे पृथ्वीवर प्रदूषण वाढलेय या प्रद्षणाचे परिणाम माणसावर सुद्धा होऊ लागलेत

प्रदृषण (Pollution): नैसर्गिक पर्यावरणाचे परिसंस्थेला हानिकारक असे दृषितीकरण म्हणजे प्रदृषण होय



- 1 तुमच्या सभोवताली कोठे कोठे प्रद्षण आढळते?
- 2 प्रदूषण कशामुळे होते ?

# प्रदूषके (Pollutants)

परिसंस्थेच्या नैसर्गिक कार्यात अडथळा आणणाऱ्या, अजैविक व जैविक घटकांवर (वनस्पती, प्राणी आणि मानवावर)घातक परिणाम घडवणाऱ्या घटकांना प्रदूषके म्हणतात प्रदूषके पर्यावरणात जास्त प्रमाणात सोडली गेल्यास पर्यावरण विषारी व अनारोग्यकारक होते

प्रद्षके नैसर्गिक तसेच मानवनिर्मित असतात नैसर्गिक प्रद्षके निसर्गनियमानुसार कालांतराने नष्ट होतात, याउलट मानवनिर्मित प्रदुषके नष्ट होत नाहीत



8.2 माझ्या लेकरांनो ! मला वाचवा !



जर नैसर्गिक पदार्थ हे प्रदूषक असतील, तर ते वापरताना त्याचे दुष्परिणाम आपल्याला का जाणवत नाहीत ? असे पदार्थ प्रद्षक कधी बनतात ?



कृती: तुमच्या परिसराचे तुम्ही स्वत: सर्वेक्षण करून तुमच्या परिसरातील प्रदृषित ठिकाणे कोणती ते ठरवा प्रदूषण आढळलेल्या प्रत्येक ठिकाणाशी संबंधित असा प्रदूषणकारी घटक (प्रदूषक) कोणता, तो ओळखण्याचा प्रयत्न करा



- 1 कोणकोणत्या प्रकारची प्रदुषके आढळून येतात ?
- 2 प्रदुषके विघटनशील असतात की अविघटनशील ?



#### अ. हवा प्रदुषण (Air pollution)



- 1 पृथ्वीवरील वातावरणात असणाऱ्या विविध वायूंचे प्रमाण दर्शविणारा आलेख काढा
- 2 हवा हे वेगवेगळ्या वायूंचे/घटकांचे एकजिनसी मिश्रण आहे, असे का म्हणतात ?
- 3 इंधनांच्या ज्वलनातून हवेत कोणकोणते घातक वायू बाहेर सोडले जातात ?

विषारी वायू, धूर, धूलिकण, सूक्ष्मजीव यांसारख्या घातक पदार्थामुळे हवा दूषित होण्यास हवेचे प्रदूषण म्हणतात

# हवा प्रदूषणाची कारणे



खालील चित्रातील हवा प्रदूषण कोणत्या घटकांमुळे होते ते सांगा







8.3 विविध घटकांमुळे हवा प्रदूषण

# हवा प्रदूषणाची कारणे

# नैसर्गिक कारणे

- 1. ज्वालामुखीचा उद्रेक: उद्रेकातून घनरूप, वायुरूप व द्रवरूप पदार्थ बाहेर पडतात उदा हायड्रोजन सल्फाईड, सल्फर डायऑक्साइड, कार्बन डायऑक्साइड, अमोनिअम क्लोराइड, हायड्रोजन, बाष्प, धुलिकण
- 2. भूकंप: भूकंपामुळे पृथ्वीच्या अंतर्गत भागातील विषारी वायू व पाण्याची वाफ मोठ्या प्रमाणात हवेत मिसळली जाते
- 3. **वावटळी व धुळीची वादळे** : जिमनीवरील धूळ, केरकचरा, माती, परागकण व सूक्ष्मजीव हवेत मिसळतात
- 4. वणवे : वणव्यामुळे कार्बन डायऑक्साइड, सल्फरडाय ऑक्साइड, हायड्रोजन सल्फाइड व धूर वातावरणात मिसळतो
- 5. सूक्ष्मजीव हवेत मिसळल्यामुळे : उदा गाजरगवत, काही जीवाणू, कवकांचे बिजाणू हवेत मिसळतात

#### मानवनिर्मित कारणे

- 1. इंधनाचा वापर : I. दगडी कोळसा, लाकूड, एलपीजी, रॉकेल, डीझेल, पेट्रोल यांच्या वापरामुळे कार्बन डायऑक्साइड, कार्बन मोनाक्साइड, नायट्रोजन ऑक्साइड, सल्फर डायऑक्साइड, शिशाची संयुगे हवेत मिसळतात II घन कचरा, शेतीचा कचरा, बागेतला कचरा उघड्यावर जाळल्यामुळे हवा प्रदूषण होते
- 2. औद्योगिकीकरण : विविध कारखान्यातून प्रचंड प्रमाणात धूर बाहेर पडतो गंधकाची भस्मे, नायट्रोजन ऑक्साइड, वातावरणात मिसळतात
- 3. अणुऊर्जानिर्मिती व अणुस्फोट : अणुऊर्जानिर्मितीत युरेनिअम, थोरिअम, ग्रॅफाइट, प्लुटोनिअम या मूलद्रव्यांच्या वापरामुळे किरणोत्सर्जन होऊन हवा प्रदृषण घडून येते



1 वरील प्रमुख कारणांशिवाय हवा प्रदूषणाची कारणे कोणती आहेत ?

55

2 चार स्ट्रोक (Four Stroke) इंजिनगाड्यांपेक्षा दोन स्ट्रोक इंजिनगाड्यांमुळे हवा जास्त प्रदृषित होते का?

# इंटरनेट माझा मित्र

- जगातील मोठ-मोठ्या ज्वालामुखींची माहिती मिळवा
- य महाराष्ट्रातील मोठ्या शहरांमध्ये व गावांमध्ये वायू प्रदूषणाचा मानवी स्वास्थ्यावर काय परिणाम होतो याची माहिती मिळवा

# इतिहासात डोकावताना...

- 1 लंडनमध्ये हवा प्रदूषणामुळे 5 ते 9 डिसेंबर 1952 या कालावधीत दाट धुके पडले त्यात दगडी कोळसा ज्वलनातून बाहेर पडणारा धूर मिसळला या धुरक्याची छाया 5 दिवस राहिली लंडन शहरात 3 ते 7 डिसेंबर 1962 या कालावधीत अशीच छाया होती
- 2 इ स 1948 साली पिट्सबर्ग शहरावर धूर व धुराची काजळी यांमुळे दिवसाही रात्रच झाली, यावेळी या शहराला "काळे शहर" म्हणून ओळखले गेले

蛃.	हवा प्रदूषके	स्त्रोत	परिणाम
1	सल्फर डाय ऑक्साईड ( $SO_2$ )	कारखाने (ज्या ठिकाणी कोळसा व	डोळ्यांचा दाह, श्वसनमार्गाचा दाह,
		खनिज तेल – इंधनाचा वापर )	अतिरिक्त कफ निर्मिती, खोकला दम लागणे
2	कार्बन मोनाक्साइड (CO)	वाहन आणि कारखान्यांचा धूर	रक्ताच्या ऑक्सिजन धारणक्षमतेत घट
3	नायट्रोजनची ऑक्साइडे	वाहनांचा धूर	फुफ्फुसे व श्वसन मार्गाचा दाह
4	हवेत मिसळलेले कणरूप पदार्थ	उद्योग व वाहनांचा धूर	श्वसनरोग
5	<u> </u>	उद्योग व वाहनांचा धूर	सिलिकॉसिस व्याधी
6	कीडनाशके	कीडनाशकांची निर्मिती व वापर	मनोदौर्बल्य, दीर्घश्वसनामुळे मृत्यू
7	मिथेन (CH ₄ )	कारखान्यांतून होणारी वायुगळती	विषबाधा, त्वचेचा कर्करोग, दमा, श्वसनसंस्थेचे विकार





# माहीत आहे का तुम्हांला?

2 डिसेंबर 1984च्या रात्री भोपाळमध्ये आतापर्यंतची सर्वांत भयानक औद्योगिक दुर्घटना घडली तेथे अपघातातून घडलेल्या वायुगळतीमुळे आठ हजार लोक प्राणाला मुकले

भोपाळ गॅस दुर्घटनेबद्दल अधिक माहिती मिळवा आणि त्या आधारे पुढील मुद्दयांची चर्चा करा - दुर्घटनेचे स्वरूप, कारणे, नंतरचे परिणाम प्रतिबंधात्मक उपाय

# हवा प्रदूषणाचा वनस्पती व प्राणी यांच्यावर होणारा परिणाम

#### वनस्पती

- 1 पर्णछिद्रे बुजून जातात
- 2 प्रकाश संश्लेषणाची क्रिया मंदावते
- 3 वनस्पतीची वाढ खुंटते पाने गळतात, पिवळी पडतात

### प्राणी

- 1 श्वसनावर विपरीत परिणाम होतो
- 2 डोळ्यांचा दाह



- 1 ओझोनच्या थराचे महत्त्व काय ?
- 2 ओझोनच्या थरात घट होण्याची कारणे कोणती ?



#### हवा प्रदषणाचा वातावरणावर होणारा परिणाम

ओझोन थराचा ऱ्हास/नाश : आपण पूर्वी अभ्यासले आहे की, वातावरणाच्या स्थितांबर या थराच्या खालच्या भागात ओझोनचा थर आढळतो सूर्यापासून उत्सर्जित होणाऱ्या अतिनील किरणांपासून (UV-B) ओझोन वायूचा थर पृथ्वीवरील सजीव सृष्टीचे संरक्षण करतो परंतु आता या ओझोन थराला खालील कारणांमुळे धोका निर्माण झाला आहे

हरितगृह परिणाम व जागितक तापमान वाढ ः  $\mathrm{CO}_2$  वातावरणात अगदी कमी प्रमाणात असला तरी तो सूर्याची उत्सर्जित ऊर्जा शोषून घेण्याचे अतिशय उपयुक्त काम करतो मागील शंभर वर्षांमध्ये औद्योगिकीकरणामुळे वातावरणामधील  $\mathrm{CO}_2$  चे प्रमाण वाढले आहे या  $\mathrm{CO}_2$  चा पृथ्वीच्या तापमानावर होणारा परिणाम म्हणजेच 'हरितगृह परिणाम' होय  $\mathrm{CO}_2$  प्रमाणे नायट्रस ऑक्साइड, मिथेन वायू व  $\mathrm{CFC}$  हे पृथ्वीवरील वातावरणातील उष्णता रोखून ठेवतात एकत्रितपणे त्यांना 'हरितगृह वायू' असे म्हटले जाते



8.5 हरितगृह परिणाम

वाढत्या हरितगृह परिणामामुळे हळूहळू जागतिक तापमान वाढत चालले आहे यामुळे हवामानात बदल घडून त्यामुळे पिकांचे उत्पादन, वन्यजीवांचे वितरण ह्यात बिघाड तसेच हिमनग व हिमनद्या वितळून समुद्रपातळीमध्ये वाढ दिसून येत आहे



8.6 आम्लवर्षा

आम्लवर्षा (Acid Rain): कोळसा, लाकूड, खनिज तेले यांसारख्या इंधनाच्या ज्वलनातून सल्फर व नायट्रोजन यांची ऑक्साइडे वातावरणात सोडली जातात ही पावसाच्या पाण्यात मिसळतात व त्यापासून सल्फुरिक आम्ल, नायट्रस आम्ल व नायट्रीक आम्ल तयार होते ही आम्ले, पावसाचे थेंब किंवा हिमकणांमध्ये मिसळून जो पाऊस किंवा बर्फ पडतो त्यालाच आम्लवर्षा महणतात

#### आम्लवर्षेचे परिणाम

आम्लयुक्त पावसामुळे मृदेची व पाण्याच्या साठ्याची आम्लता वाढते यामुळे जलचर प्राणी, वनस्पती व संपूर्ण जंगलातील जीवनाची हानी होते व संपूर्ण परिसंस्थेवर विपरित परिणाम होतो

- 2 इमारती, पुतळे, ऐतिहासिक वास्तू, पूल, धातूच्या मूर्ती, तारेची कुंपणे इत्यादींचे क्षरण होते
- 3 आम्ल पर्जन्यामुळे अप्रत्यक्षपणे कॅडिमअम आणि मर्क्युरीसारखे जड धातू वनस्पतीमध्ये शोषली जाऊन अन्नसाखळीत शिरतात
- 4 जलाशयातील आणि जलवाहिन्यातील पाणी आम्लयुक्त झाल्याने जलवाहिन्यांच्या विशिष्ट धातूंचे व प्लॅस्टीकचे पेयजलात निक्षालन होऊन आरोग्याच्या गंभीर समस्या उद्भवतात



### हवा प्रदृषणावर प्रतिबंधात्मक उपाय

- 1 कारखान्यातून बाहेर पडणाऱ्या धुरात अनेक दूषित कण असतात, हवा प्रदूषण नियंत्रित करणाऱ्या यंत्रणेचा वापर बंधनकारक करावा उदा निरोधक यंत्रणा (Arresters), गाळणीयंत्र (Filters) यांचा वापर करावा
- शहरातील दुर्गंध पसरविणाऱ्या कचऱ्याची योग्य विल्हेवाट लावावी
- 3 आण्विक चाचण्या, रासायनिक अस्त्रे यांच्या वापरावर योग्य नियंत्रण असावे
- 4 CFC निर्मितीवर बंदी/बंधने आणावीत



# माहीत आहे का तुम्हांला?

हवेच्या गुणवत्तेचा निर्देशांक (Air Quality Index) : आपल्या शहरातील हवा कितपत प्रदूषित झाली आहे, ही गोष्ट नागरिकांना माहित असणे आवश्यक आहे हवेच्या गुणवत्तेचा निर्देशांक निश्चित करण्यासाठी हवेतील  $SO_2$ , CO,  $NO_2$ , भूपृष्ठाजवळील हवेत असलेला ओझोन, कणीय पदार्थ वगैरे वायूंचे प्रमाण दररोज मोजले जाते

मोठ्या शहरांमध्ये जास्त रहदारी असणाऱ्या मुख्य चौकात असे हवेच्या गुणवत्तेचे निर्देशांक दर्शविणारे फलक लावलेले आहेत



# माहीत आहे का तुम्हांला?

सल्फरयुक्त हवा प्रदूषकाचा रंगकाम, तैलचित्र, नायलॉन कापड, सुती कपडे, रेयॉन कपडे, कातडी वस्तू आणि कागद यावर परिणाम होऊन त्यांच्या रंगात बदल होतो

#### आ. जल प्रदूषण (Water Pollution)



# सांगा पाहू !

- 1 वापरण्यास योग्य असे पाणी आपणांस कोणकोणत्या जलस्त्रोतापासून मिळते?
- 2 पाण्याचा वापर आपण कोणकोणत्या कारणांसाठी करतो?
- 3 पृथ्वीवर एकूण क्षेत्रफळाच्या किती टक्के पाणी आहे?
- 4 कोणकोणत्या कारणांमुळे पाणी प्रदूषित होते?
- 5 पाण्याला जीवन असे का म्हणतात?

नैसर्गिक व बाह्य घटकांच्या मिश्रणाने पाणी जेव्हा अस्वच्छ, विषारी होते, जेव्हा त्यातील ऑक्सिजन प्रमाण घटते व त्यामुळे सजीवांना अपाय होतो, साथीच्या रोगांचा फैलाव होतो तेव्हा जलप्रदूषण झाले असे म्हणतात

गोड्या किंवा समुद्राच्या पाण्यामधील प्रदूषणामध्ये भौतिक, रासायनिक व जैविक बदलांचा समावेश होतो



8.7 जल प्रद्षण

# जलप्रदूषके (Water Pollutants)

- अ जैविक जलप्रदूषके : शैवाल, जिवाणू, विषाणू व परजीवी सजीव यांच्यामुळे पाणी पिण्यायोग्य राहत नाही या जैविक अशुद्धीमुळे रोग पसरतात
- ब असेंद्रिय जलप्रदूषके : बारीक वाळू, धुलिकण, मातीचे कण असे तरंगणारे पदार्थ, क्षारांचा साका, आर्सेनिक, कॅडिमिअम, शिसे, पारा यांची संयुगे व किरणोत्सारी पदार्थांचे अंश
- क सेंद्रिय जलप्रदूषके : तणनाशके, कीटकनाशके, खते, सांडपाणी तसेच कारखान्यातील उत्सर्जके



# माहीत आहे का तुम्हांला?

तामिळनाडू राज्यात कातडी कमावण्याची अनेक केंद्रे आहेत त्यातून बाहेर टाकले जाणारे पाणी पलार या नदीत सोडले जाते, त्यामुळे या नदीला 'पझ्झर' (गटार नदी) असे म्हणतात

### पाणी प्रदुषणाची कारणे

#### अ. नैसर्गिक कारणे व परिणाम

#### 1. जलपणींची वाढ

- प्राणवायु कमी होतो
- पाण्याचा नैसर्गिक गुणधर्म बदलतो

#### 2. कुजणारे पदार्थ

• प्राणी व वनस्पतीचे अवशेष सडणे व कुजणे इ मुळे

## 3. गाळामुळे

• नदीच्या प्रवाहामुळे व पात्र बदलल्यामुळे

# 4. जिमनीची धूप

• जिमनीची धूप झाल्याने जीवाणू यांसारखे सूक्ष्मजीव अनेक जैविक, अजैविक घटक पाण्यात मिसळतात

#### 5. **कवक**

 पाण्यात कुजणाऱ्या सेंद्रीय पदार्थांवर कवक व जीवाणूंची वाढ होते

#### 6. शैवाल

• जास्त वाढल्याने पाणी अस्वच्छ होते

#### 7. कुमी

जिमनीवरील कृमी पावसाच्या पाण्यात वाहत जातात

#### ब. मानव निर्मित कारणे व परिणाम

#### 1. निवासी क्षेत्रातील सांडपाणी

 गावातील - शहरातील सांडपाणी - मैला नदीच्या वाहत्या पाण्यात, जलाशयात सोडले जाते

#### 2. औद्यागिक सांडपाणी

 कापड, साखर, कागद, लोह, चर्मोद्योग व दुग्धप्रक्रिया उद्योगातून रंग, विरंजक रसायने, चामड्याचे तुकडे, तंतू, पारा, शिसे इत्यादी पाण्यात सोडले जातात

#### 3. खनिज तेल गळती

 वाहतूक करताना तेल सांडणे, गळती होणे, टॅंकर सफाई करताना पाण्यावर तेलाचा तवंग येतो

#### 4. खते व कीटकनाशकांचा वापर

- रासायनिक, फॉस्फेटयुक्त व नायट्रोजयुक्त खते
- एन्ड्रीन, क्लोरिन, कार्बोनेटयुक्त कीटकनाशके इत्यादी पाण्याबरोबर वाहत जाऊन प्रवाहाला मिळते

#### 8. इतर कारणे

 नदीच्या पाण्यात मलमूत्र विसर्जन, कपडे धुणे, आंबाडी-घायपात पाण्यात सडविणे यांमुळे पाणी प्रदूषित होते रक्षा, अस्थि विसर्जन व निर्माल्य पाण्यात टाकणे औष्णिक विद्युत केंद्रातून सांडपाणी सोडणे

# पाणी प्रदूषणाचे परिणाम

# 1. मानवावर होणारा परिणाम

- प्रदूषित पाण्यामुळे अतिसार कावीळ, विषमज्वर, त्वचारोग, पचनसंस्थेचे विकार होतात
- यकृत, मूत्रपिंड, मेंदू विकार, हाडांमध्ये विकृती,
   उच्च रक्तदाब हे विकार होतात

# 2. परिसंस्थेवर होणारा परिणाम

- वनस्पतींची वाढ खुंटते,
- वनस्पतीं प्रजातींचा नाश होतो
- पाण्यातील क्षाराचे प्रमाण वाढते
- पाण्यात विरघळणाऱ्या ऑक्सीजनचे प्रमाणे घटते
- जलपरिसंस्थेचे संतुलन बिघडते
- जलचर मरतात
- समुद्रपक्ष्यांवरही परिणाम होतो

# 3. इतर परिणाम

- पाण्याचे नैसर्गिक व भौतिक गुणधर्म बदलतात
- पाण्याचा रंग, चव बदलते
- पाण्यातील उपयुक्त जीवजंतू नष्ट होतात
- जिमनीच्या सुपिकतेवर परिणाम होतो
- पिकात विषारी तत्त्व समाविष्ट होतात



## इ. मृदा प्रदुषण (Soil Pollution)



- 1 जिमनीची धूप म्हणजे काय ?
- 2 मृदेची सुपीकता कमी होण्याची कारणे कोणती ?

पृथ्वीवरील जिमनीने व्यापलेल्या एकूण भागांपैकी काही भाग बर्फाच्छादित आहे, काही भाग वाळवंटी तर काही भाग पर्वत व डोंगररांगानी व्यापलेला आहे मानवी वापराला उपयुक्त जमीन खूप कमी आहे

मातीतील भौतिक, जैविक व रासायनिक गुणधर्मात नैसर्गिकरीत्या व मानवी कृत्यामुळे जे बदल घडून येतात, त्यामुळे तिची उत्पादकता कमी होते तेव्हा मृदा प्रदूषण झाले असे म्हणतात



शेजारील दोन छायाचित्रांची तुलना करा





घरगुती टाकाऊ वस्तू, जैविक टाकाऊ पदार्थ शेतीतून बाहेर पडणारे पदार्थ यांची प्रत्येकी 5 उदाहरणे द्या व त्यांच्या मातीत साचण्यामुळे माती कशी प्रदूषित होते हे तुमच्या शब्दांत लिहा

"ओला कचरा सुका कचरा," तसेच "घरोघरी शौचालय" यावर वर्गमित्रांबरोबर चर्चा करून तुमच्या शब्दांत माहिती लिहा.

# मृदा प्रदूषणाचे परिणाम

- 1 कारखान्यातील क्षारयुक्त, आम्लयुक्त पाणी, मातीत मिसळल्याने माती नापीक बनते
- 2 किरणोत्सारी पदार्थ व इतर प्रदूषक मृदेमधून पिके, पाणी व मानव अशा अन्नसाखळीतून प्रवास करतात
- 3 मृदा प्रदूषणामुळे जलप्रदूषणाचा धोका वाढतो कारण विषारी द्रव्ये मृदेमधून जवळच्या पाणीसाठ्यात किंवा पाझरून भूगर्भजलात प्रवेश करतात, तसेच जीवजंतूमुळे विविध रोगांचा प्रसार होतो

# मृदा प्रदूषणाचा हवा तसेच जल प्रदूषण यांच्याशी असणारा संबंध

ओल्या कचऱ्याचे खतात रूपांतर न करता चुकीच्या पद्धतीने तो फेकून दिल्यास तो तेथे सडतो, कुजतो, त्यामध्ये हानिकारक रोगजंतूंची वाढ होते व हे वाहत्या पाण्यात मिसळले जाऊन पाणी प्रद्षण होते

शेतीसाठी कीटकनाशकांचा, रासायनिक खतांचा, तणनाशकांचा वापर केला जातो, त्यामुळे मृदा प्रदूषण होते कीटकनाशक व तणनाशकांचा जास्त प्रमाणात केलेल्या त्या फवारणीमुळे ती रसायने हवेत मिसळतात व हवा प्रदूषण होते तसेच रासायनिक खतांचा वापर जास्त प्रमाणात केल्यास ही रसायने पाण्यात मिसळतात व पाणी प्रदूषण होते

मानवी मलमूत्र, पशु, पक्षी यांची विष्ठा मातीत मिसळल्यामुळे मृदा प्रदूषण होते ही घाण तेथे तशीच राहिल्यास त्यातून वेगवेगळे वायू बाहेर पडतात व दुर्गंधी सुटते, हे वायू हवेत मिसळतात व हवा प्रदूषण होते हीच घाण पाण्यात मिसळल्यास पाणी प्रदूषण होते

प्रदूषण - प्रतिबंध व नियंत्रण : प्रदूषण नियंत्रण, नियमन व ते रोखण्यासाठी भारत सरकारने काही कायदे केले आहेत, प्रदूषण नियंत्रणाशी संबंधित कायदे पुढीलप्रमाणे आहे

- 1. जल प्रद्षण प्रतिबंध व नियंत्रण अधिनियम 1974
- 2. हवा प्रदुषण प्रतिबंध व नियंत्रण अधिनियम 1981

3. पर्यावरण संरक्षण अधिनियम 1986

जैव वैद्यकीय कचरा, धोकादायक उत्सर्ग, घनकचरा, ध्वनी प्रदूषण नियंत्रण या सर्वांबाबत विविध कायदे व नियम अस्तित्वात आहे कारखाने, औद्यागिक वसाहती, महानगरपालिका, जिल्हा परिषदा, पंचायत समित्या, ग्रामपंचायती इत्यादी संस्थांद्वारे वरील प्रदूषण नियंत्रणाशी संबंधित कायदे यांचे पालन होत आहे की नाही यावर देखरेख ठेवण्याचे काम महाराष्ट्र प्रदूषण नियामक मंडळ व केंद्रीय प्रदूषण नियामक मंडळ या शासकीय संस्थांद्वारे केले जाते



#### स्वाध्याय

- 1. खाली काही वाक्ये दिली आहेत, ती कोणत्या प्रकारच्या प्रदेषणात मोडतात ते सांगा.
  - अ. दिल्लीत भरदिवसा धुके असल्याचे जाणवते.
  - आ. पाणीपुरी खाल्ल्यावर बरेचदा उलट्या व जुलाबांचा त्रास होतो.
  - इ. बरेचदा बगीच्यात फिरण्यास गेल्यावर शिंकांचा त्रास होतो.
  - ई. काही भागांतील मातीत पिकांची वाढ होत नाही.
  - जास्त वाहतूक असणाऱ्या चौकात काम करणाऱ्या बऱ्याच व्यक्तींना श्वसनाचे रोग, धाप लागणे असे त्रास होतात.
- 2. परिच्छेद वाचून त्यात कोणकोणते प्रदूषणाचे विविध प्रकार आलेत व कोणत्या वाक्यात आलेत ते नोंदवा.

निलेश शहरी भागात राहणारा व इयत्ता आठवीत शिकणारा मुलगा आहे. दररोज तो शाळेत बसने जातो, शाळेत जाण्यासाठी त्याला एक तास लागतो. शाळेत जाताना त्याला वाटेत अनेक चार चाकी, दोन चाकी गाड्या, रिक्षा, बस या वाहनांची वाहतूक लागते. काही दिवसांनी त्याला सम्याचा त्रास व्हायला लागला. डॉक्टरांनी त्याला शहरापासून लांब राहण्यास सांगितले. तेव्हा त्याच्या आईने त्याला त्याच्या मामाच्या गावाला पाठविले. निलेश जेंव्हा गावात फिरला तेंव्हा त्याला अनेक ठिकाणी कचऱ्याचे ढीग दिसले, अनेक ठिकाणी प्राणी, मानवी मलमूत्राची दुर्गंधी येत होती, काही ठिकाणी छोट्या नाल्यातून दुर्गंधी येणारे काळे पाणी वाहताना दिसले. काही दिवसांनी त्याला पोटाच्या विकारांचा त्रास व्हायला लागला.

3. 'अ' व 'ब' स्तंभाची योग्य सांगड घालून प्रदृषित घटकाचा मानवी स्वास्थ्यावर कोणता परिणाम होतो ते स्पष्ट करा.

#### 'अ'स्तंभ

#### 'ब' स्तंभ

- 1. कोबाल्टमिश्रित पाणी
- अ. मतिमंदत्व
- 2. मिथेन वायू
- ब. अर्धांग वायू
- 3. शिसेमिश्रित पाणी
- क. फुफ्फुसांवर सूज येणे
- 4. सल्फर डायऑकसाइड
- ड. त्वचेचा कॅन्सर
- 5. नायट्रोजन डायऑक्साइड
- इ. डोळे चुरचुरणे

## 4. चूक की बरोबर ठरवा.

- अ. नदीच्या वाहत्या पाण्यात कपडे धुतल्यास पाणी प्रदूषित होत नाही.
- आ. विजेवर चालणारी यंत्रे जितकी जास्त वापरावी तितके प्रदूषण जास्त होते.

#### 5. खालील प्रश्नांची उत्तरे द्या.

- अ. प्रदूषण व प्रदूषके म्हणजे काय ?
- आ. आम्लपर्जन्य म्हणजे काय ?
- इ. हरितगृह परिणाम म्हणजे काय ?
- ई. दृश्य प्रदूषके व अदृश्य प्रदूषके कोणती ?

### 6. पुढील प्रश्नांची उत्तरे लिहा.

- अ. तुमच्या आसपासच्या भागात आढळलेली हवा प्रदूषण, जल प्रदूषण व मृदा प्रदूषण यांची प्रत्येकी दोन उदाहरणे द्या.
- आ. वाहनांमुळे प्रदूषण कसे घडते ? कमीत कमी प्रदूषण ज्यामुळे घडते अशा काही वाहनांची नावे सांगा.
- इ. जल प्रदूषणाची नैसर्गिक कारणे कोणती ते लिहा.
- ई. हवा प्रदूषणा वर कोणतेही चार प्रतिबंधात्मक उपाय सुचवा.
- उ. हरितगृह परिणाम व जागतिक तापमान वाढ संबंध स्पष्ट करा./परिणाम सांगा.
- ऊ. हवा प्रदूषण, मृदा प्रदूषण व पाणी प्रदूषण यावर प्रत्येकी दोन-दोन घोष वाक्ये तयार करा.
- 7. खालील प्रदूषकांचे मानवनिर्मित व निसर्गनिर्मित या गटांमध्ये वर्गीकरण करा.

सांडपाणी, धूळ, परागकण, रासायनिक खते, वाहनांचा धूर, शैवाल, किटकनाशके, पशुपक्ष्यांची विष्ठा.

#### उपक्रम :

- तुमच्या भागात असणाऱ्या पाण्याच्या शुद्धतेची चाचणी करणाऱ्या प्रयोगशाळेला भेट द्या आणि पिण्याच्या पाण्याचे प्रदूषण ओळखणाऱ्या चाचण्यांची माहिती घ्या.
- 2. तुमच्या भागातील सर्वात जास्त रहदारीच्या चौकाला भेट द्या आणि तेथील वेगवेगळ्या वेळी जाणवणारे हवा प्रदूषण अनुभवा व कोणत्या वेळी सर्वांत जास्त व कोणत्या वेळी सर्वांत कमी हवा प्रदूषण आहे त्याची नोंद घ्या.





# 9. आपत्ती व्यवस्थापन



थोडे आठवा.

- 1 आपत्ती म्हणजे काय?
- 2 आपत्तीचे प्रकार कोणते?

मागील इयत्तेत आपण विविध नैसर्गिक आपत्तींची तोंडओळख / थोडक्यात माहिती घेतलेली आहे या इयत्तेत आपण भूकंप व इतर काही नैसर्गिक आपत्तींविषयी अधिक अभ्यासणार आहोत



भूकंप म्हणजे काय? भूकंपाचे कोणकोणते परिणाम होतात?

## भूकंप (Earthquake)

भूकवचामध्ये अचानक कंपन होणे अथवा भूकवच अचानक काही क्षण हादरणे यास 'भूकंप' म्हणतात भूकंपामुळे भूपृष्ठाचा काही भाग मागे-पुढे किंवा वर-खाली होतो साहजिकच त्यामुळे भूपृष्ठ हादरते

भूगर्भात निर्माण होणारे धक्के व लाटा जिमनीच्या आत आणि वरच्या पृष्ठभागावर सर्व दिशांनी पसरतात भूकंपनाभीच्या अगदी वर, भूपृष्ठावर असलेल्या बिंदूस भूकंपाचा केंद्रबिंदू म्हणतात तीव्र स्वरूपाच्या लाटा/हादरे सर्वप्रथम केंद्रालगत येऊन पोहोचतात, त्यामुळे तेथे हानीचे प्रमाण सर्वांत जास्त असते

भूकंपाचे हादरे हे सौम्य किंवा तीव्र अशा दोन्ही स्वरूपाचे अ सूश कतात पृथ्वीवर होणाऱ्या विध्वंसक भूकंपापेक्षा सौम्य भूकंपाची संख्या खूपच जास्त असते

पृथ्वीवर दररोज कुठे ना कुठे भूकंप होतो National Earthquakes information centre च्या निरीकयषणानुसार आपल्म पृथ्वीवर प्रयत्क वषायवला सुमारे 12,400-14,000 भूकंप होतात या वरून लकयषात येते, की पृथ्वी सतत कमी-अधिक प्रयमाणात कंप पावत असते



9.3 : भूकंपमापक यंत्र



9.1 इमारतींना गेलेले तडे



9.2 भूकंपनाभी व भूकंपकेंद्र

भूकंपाची नोंद घेणाऱ्या यंत्रास 'सेस्मोग्राफ अथवा 'सेस्मोमीटर' असे नाव आहे तसेच भूकंपाची 'तीव्रता' मोजण्यासाठी 'रिश्टर स्केल' या एककाचा वापर केला जातो हे एक गणिती एकक आहे

भूकंपाच्या परिणामांचे वर्णन दिले आहे या तक्त्याचा काळजीपूर्वक अभ्यास करा

इंटरनेट माझा मित्र इंटरनेटच्या साहाय्याने रिश्टर मापन पद्धती व भूकंपाचे परिणाम यांबाबत माहिती मिळवा

भूकंपाची कारणे		भूकंपाचे परिणाम	
1 ज्वालामुखीचे उद्रेक	1	मनुष्यासह वन्यजीव व पाळीव प्राणी यांची जीवित हानी	
2 मोठमोठ्या धरणांचा जिमनीवर पडणारा ताण	2	मोठ्या प्रमाणात वित्तहानी होते (विजेचे खांब, पाईप लाईन्स	
3 खाणकाम		घरे, इमारती, रस्ते, लोहमार्ग उद्ध्वस्त होतात)	
4 जिमनीच्या आत घेतल्या जाणाऱ्या अणुचाचण्या	3	जैवविविधतेचे नुकसान होऊन परिसंस्था धोक्यात येते	
5 भूपृष्ठातून अंतर्गत भागात पाणी झिरपते आतील	4	नद्या, नाले यांचे प्रवाह बदलतात	
प्रचंड उष्णतेने त्या पाण्याची वाफ होते व ती वाफ	5	शहरी भागात आग लागण्याचा धोका असतो	
कमकुवत पृष्ठभागातून बाहेर येण्याचा प्रयत्न	6	समुद्राच्या तळाशी भूकंप झाल्यास त्सुनामी लाटा निर्माण	
करते तेव्हा भूकंप होतात		होऊन किनारपट्टीच्या भागाचे खूप मोठ्या प्रमाणावर	
		नुकसान होण्याची शक्यता असते	
	7	भूमिगत जलपातळी वर-खाली जाते	

## भुकंपात घ्यायची दक्षता :

# भूकंपाच्यावेळी तुम्ही घरामध्ये असाल, तर

भूकंपाची जाणीव झाल्यास न घाबरता सैरावैरा न पळता, आहे त्याच जागी शांत उभे राहावे जिमनीवर बसा, टेबल, पलंग कोणत्याही एखाद्या फर्निचरखाली जाऊन स्वतःला झाकून घ्या आणि जिमनीची हालचाल थांबेपर्यंत तेथेच थांबा तुमच्या आसपास कुठे टेबल किंवा डेस्क नसेल, तर घराच्या एखाद्या कोपऱ्यात खाली बसून दोन्ही हात गुडघ्यांभोवती त्यात तुमचा चेहरा झाकून ठेवा

## चालत्या वाहनात असाल, किंवा घराबाहेर असाल, तर

सुरक्षित ठिकाण पाहून लगेच वाहन थांबवा आणि तुम्ही देखील वाहनाच्या आत थांबा, बाहेर येण्याचे टाळा इमारती, झाडे, विजेच्या तारांजवळ थांबू नका

# भूकंपाच्या वेळी हे करू नका.

- 1 बहुमजली इमारतीमधील लिफ्टचा वापर करू नका जिना वापरा
- एका जागी अवघडलेल्या स्थितीत जास्त वेळ बसू नका शरीराची थोडीफार हालचाल करा
- 3 भूकंपानंतर विजेच्या शॉर्टसर्किटमुळे आग लागू शकते हे टाळण्यासाठी घरातील मेन स्वीच दक्षतापूर्वक बंद करा अशा प्रसंगी मेणबत्या, कंदील, काड्यापेटी यांचा वापर करू नका बॅटरी / टॉर्चचा वापर करा





(आ)



9.4 घ्यायची काळजी

भूकंपरोधक इमारती: जिमनीची ठराविक मर्यादेपर्यंत हालचाल झाली तरी धोका होत नाही, अशा बांधकामांना भूकंपरोधक बांधकामे म्हणतात इमारतींच्या बांधकामांसाठी भारतीय मानक संस्थेने काही कोड बनवलेले आहेत आय एस 456 प्रमाणे इमारतीचे बांधकाम केले जाते तसेच भूकंपरोधक बांधकामासाठी 'आय एस 1893 (भूकंपरोधक आरेखनांच्या संरचनांचे मानदंड) आणि आय एस 13920 (भूकंप प्रभावाच्या संदर्भात सशक्त काँक्रीट संरचनाचा ताणीय विस्तार) वापरले जातात भूकंपरोधक बांधकामात प्रगत तंत्रज्ञान वापरले जाते

भूकंपाची पूर्वसूचना मिळावी यासाठी लेसर रेंजिग, व्हेरी लाँग, बेसलाईन, गायगर कौंटर, क्रीप मीटर, स्ट्रेन मीटर, टाइड गेज, टिल्ट मीटर, व्हॉल्युमेट्रिक स्ट्रेन गेज यांसारखी आधुनिक साधने वापरली जातात

#### आग (Fire)



आग ही नैसर्गिक आपत्ती आहे की मानवनिर्मित ?

# आगीचे प्रकार (Types of Fire)

- 1. 'अ' वर्गीय आग (घनरूपपदार्थ) : सर्वसाधारण ज्वालाग्राही घनपदार्थांपासूनची आग (जसे, लाकूड, कपडे, कोळसा, कागद इत्यादी) थंडावा निर्माण करून विझवली जाते
- 2. 'ब' वर्गीय आग (द्रवरूप पदार्थ): ज्वालाग्राही द्रव पदार्थापासून लागलेली आग उदा पेट्रोल, तेल, वार्निश, द्रावके, स्वयंपाकाचे तेल, रंग इत्यादी हे पदार्थ पाण्यापेक्षा हलके असतात तेथे फेस येणाऱ्या अग्निशामकामार्फत आग विझवली जाते
- 3. 'क' वर्गीय आग (वायुरूपपदार्थ) : ॲसिटीलीन घरगुती गॅस (एल पी जी गॅस) इत्यादी ज्वलनशील गॅसमधून लागणारी आग
- 4. 'ड' वर्गीय आग (रासायनिक पदार्थ): ज्वलनशील धातूपासून लागलेली आग यामध्ये पोटॅशिअम, सोडियम व कॅल्शिअम आहेत, हे सामान्य तापमानात पाण्याबरोबर क्रिया करतात, तसेच मॅग्नेशिअम, ॲल्युमिनिअम व झिंक जे उच्च तापमानात पाण्याबरोबर क्रिया करतात दोन्ही गट जेव्हा पाण्याशी संयोग पावतात, तेव्हा भडका उडतो
- 5. 'इ' वर्गीय आग (इलेक्ट्रीकल): यामध्ये इलेक्ट्रीकल सामान, फिटिंग इत्यादीं साधनांमुळे लागलेली आग कार्बन डायऑक्साइडसारख्या आग प्रतिबंधकाच्या साहाय्याने विझवली जाते

- आग विझविण्याच्या पद्धती : आगीचा फैलाव होण्यावर किंवा ती पसरण्यावर नियंत्रण आणण्याच्या तीन प्रमुख पद्धती आहेत
- 1. थंड करणे आग विझविण्यासाठी पाणी हे एक प्रभावी साधन आहे व ते सर्वत्र उपलब्ध असते आगीवर अगर आगीच्या आजूबाजूस पाणी मारल्यामुळे गारवा निर्माण होतो व पुढे आगीवर नियंत्रण आणणे सोपे जाते
- 2. आगीची कोंडी करणे आग शमविण्यासाठी व विशेषतः तेलामुळे व विजेमुळे भडकलेली आग विझविण्यासाठी वाळू किंवा मातीचा चांगला वापर करता येतो फेसासारखा पदार्थ आगीवर फेकल्यास त्याचा उपयोगही पांघरूण घातल्यासारखा होतो ही आग विझविण्याची पद्धत तेलामुळे लागलेल्या आगीवर फारच परिणामकारक ठरते
- 3. ज्वलनशील पदार्थ हलवणे या पद्धतीमध्ये प्रत्यक्ष ज्वलनशील पदार्थच बाजूस करायचे असतात लाकडी सामान किंवा इतर पेट घेणाऱ्या वस्तू आगीपासून दूर केल्यास आगीचे भक्ष्यच नाहीसे होते नुकतीच लागलेली आग विझविण्यासाठी स्ट्रिरप पंप हे सर्वांत उत्तम साधन आहे त्या पंपातून आगीवर सर्व बाजूने पाण्याचा मारा करून आग विझवता येते

#### -काळजी व सुरक्षात्मक उपाय

- 1 गॅसचा रेग्युलेटर वापरात नसेल त्या वेळी, रात्री झोपताना व बाहेरगावी जाताना बंद करण्याची दक्षता घ्यावी घराबाहेर पडताना विजेवर चालणारी उपकरणे बंद ठेवा
- 2 'आग-आग' असे जोराने ओरडून इतरांना सावध करा व मदतीसाठी बोलवा
- 3 अग्निशामक दलाला तात्काळ फोन करून बोलावून घ्या
- 4 अग्नीशमन टाक्या कशा वापरायच्या त्याची माहिती घ्या

प्रथमोपचार : रुग्णाला आरामदायी वाटेल अशा रीतीने बसवा किंवा झोपवून ठेवा व तात्काळ डॉक्टरांची मदत घ्या

# दरड कोसळणे / भूस्खलन (Land-slide)



- 1 पुणे जिल्ह्यातील माळीण दुर्घटना कशामुळे घडली? तिचा काय परिणाम झाला ?
- 2 दरड कोसळणे म्हणजे काय?



कठीण पाषाणात नैसर्गिकरीत्या अस्तित्वात असलेल्या भेगा व फटी मोठ्या खडकांचे तुकडे होण्यास कारणीभूत असतात विशेषतः अतिवृष्टीच्या कालावधीमध्ये खडकातील भेगा-फटींमध्ये पाणी शिरून खडकांची झीज होत राहते, वजन वाढते आणि अशा प्रकारचे खडक उतारी प्रदेशात घसरत जाऊन खालील बाजूस स्थिरावतात यालाच दरड कोसळणे म्हणतात

#### दरड कोसळण्याची कारणे

- भूकंप, त्सुनामी, अतिवृष्टी, वादळे, महापूर वगैरे मोठ्या नैसर्गिक आपत्तीनंतरचे परिणाम म्हणून दरडी कोसळण्यासारखे प्रकार घडतात
- 2 बेसुमार वृक्षतोडीमुळेही जिमनीची धूप होते
- 3 डोंगराळ/घाटात रस्ते बांधण्यासाठी खोदकाम केल्याने डोंगर कमकुवत होतात व त्याच्या कडेचे दगड/खडक कोसळतात

#### दरड कोसळण्याचे परिणाम

- 1 नद्यांना अचानक पूर येतात नद्यांचे मार्ग बदलतात
- 2 धबधब्याचे स्थानांतरण होते कृत्रिम जलाशय निर्माण होतात
- 3 दरड कोसळल्याने पायथ्यालगतचे वृक्षही उन्मळून पडतात उतारावर झालेली बांधकामे कोसळून पडतात हे सर्व दगड-मातीचे ढिगारे, वृक्ष खाली सपाट क्षेत्रात पडतात त्यामुळे मोठ्या प्रमाणात जीवित व वित्त हानी होते
- 4 वाहतुकीच्या रस्त्यांवर लोहमार्गावर दरड कोसळली की, वाहतूक विस्कळीत होते
- 5 भूस्खलन होताना त्यावरील वनस्पती जीवन नष्ट होते

आपत्ती निवारण – नियोजन आराखडा: शाळेच्या आपत्ती निवारणा संदर्भात नियोजन आराखड्याची आपत्ती प्रसंगी मदत कार्य पोहोचण्यास मदत होते त्यासाठी त्यात खालील गोष्टींची नोंद असणे आवश्यक आहे खाली एक नमुना तक्ता दिला आहे त्याप्रमाणे तुम्ही एक तक्ता तयार करा

प्रमुख मुद्दे	नोंदी करायच्या आवश्यक बाबी		
शाळेची प्राथमिक माहिती	अ शाळेचे पूर्ण नाव, पत्ता		
	आ मुख्याध्यापकाचे पूर्ण नाव, निवासाचा पत्ता, संपर्क क्रमांक		
	इ शाळा संस्थापक व व्यवस्थापकांचे नावे व संपर्क क्रमांक		
	ई एकूण कर्मचारी		
शाळा आपत्ती व्यवस्थापन	अ अग्निशामक आ जागरूकता इ सूचना ई वाहतूक व्यवस्थापन उ सुरक्षा		
समिती	ऊ प्रसारमाध्यम समिती या सर्व उपसमितीमध्ये प्रत्येकी 2-3 सदस्य		
इमारतीची विस्तृत माहिती	अ एकूण खोल्यांची संख्या आ वर्गांची संख्या इ इयत्ता ई छताच्या बांधकामाचे		
	स्वरूप (लाकडी /पत्रा/सिमेंट) उ इमारतीचे वय, वर्ष		
शाळेच्या मैदानाविषयी	अ शालेय परिसरात असणारे मोकळे मैदानाचा प्रकार, खो-खो, कबड्डी, प्रार्थना व		
माहिती	इतर मैदान यांबाबत माहिती आ मैदानाचे मुख्य रस्त्यापासूनचे अंतर		
शाळेची दिनचर्या	अ शाळा भरण्याची, दीर्घ व लघु सुट्टीची व शाळा सुटण्याची वेळ		
	आ शाळेत दिवसभरात राबवले जाणारे विविध उपक्रम		
शाळेतील संभाव्य धोके	अ संभाव्य धोक्याचे नाव व स्वरूप (साधे, मध्यम व तीव्र)		
	आ पूर्वी झालेले नुकसान इ सध्या केलेली उपाययोजना		
शाळेचा आपत्ती	त्ती शाळेच्या सर्व इमारती, त्यांची रचना, मैदाने प्रवेशद्वार, शाळेतील संभाव्य धोक्यांच्या		
व्यवस्थापन नकाशा	गा जागा, आपत्ती प्रसंगी सुरक्षित जागा, जवळचा रस्ता या सर्व बाबी त्यात दाखवणे		
	आवश्यक आहे हा नकाशा शाळेच्या प्रवेशद्वाराजवळ लावण्यात यावा		

दरडी कोसळल्याने वाहतूक खोळंबल्याच्या घटना महाराष्ट्रात कोठे कोठे घडतात? अशा ठिकाणांची यादी करा ह्याच ठिकाणी दरडी कोसळण्याच्या घटना का घडत असाव्यात? वर्गात चर्चा करा व उपाय सुचवा

#### शाळेची रंगीत तालीम

शाळेतील संभाव्य धोके व आपत्तींना अनुसरून ठराविक कालावधीनंतर (दरमहा) रंगीत तालीम (Mock Drill) घ्यावी यावेळी उपस्थित विद्यार्थी संख्या, दिनांक, वेळ व कमतरता याची नोंद घ्यावी

#### कार्य संस्थांचे

- 1 राष्ट्रीय भूकंपशास्त्र संस्था (National Centre of Seismology NCS) केंद्र शासनाच्या भू-विज्ञान मंत्रालयाअंतर्गत भूकंप व विविध आपत्तीसंदर्भात संशोधनाचे कार्य करते
- 2 भूस्खलनाच्या संभाव्य परिणामांचा सुनियोजित अंदाज घेण्यासाठी भारत सरकारने इंडियन माउंटनियरिंग इन्स्टिट्यूट व इंटरनॅशनल सेंटर फॉर इंटिग्रेटेड माउंटन डेव्हलपमेंट या संस्थांशी अनुसंधान करून कार्यक्रम सुरू केला आहे इन्स्टिट्यूट ऑफ जिऑलॉजी व वर्ल्ड जिऑलॉजिकल कोरम या संस्थांची मदत घेतली जाते

#### स्वाध्याय

# खालील प्रश्नांची उत्तरे तुमच्या शब्दांत लिहा.

- अ. बराच काळ मोठा पाऊस आणि दरड कोसळणे यांतील संबंध व कारणे स्पष्ट करा.
- आ. भूकंप आपत्तीच्या प्रसंगी काय करावे व काय करू नये यांच्या सूचनांचा तक्ता तयार करा.
- इ. भूकंपरोधक इमारतींची वैशिष्ट्ये कोणती?
- ई. दरड कोसळल्याने कोणकोणते परिणाम होतात ते स्पष्ट करा.
- धरण आणि भूकंप यांचा काही संबंध आहे काय?
   तो स्पष्ट करा.

#### शास्त्रीय कारणे द्या.

- अ. भूकंपकाळात पलंग, टेबल, अशा वस्तूंच्या खाली आश्रय घेणे अधिक सुरक्षित असते.
- आ. पावसाळ्चात डोंगराच्या पायथ्याशी आसरा घेऊ नये.
- इ. भूकंपाच्या वेळी लिफ्टचा वापर करू नये.
- ई. भूकंपरोधक इमारतीचा पाया बाकीच्या भूभागापासून वेगळा केलेला असतो.
- 3. भूकंपानंतर मदतकार्य करताना आसपास लोकांची मोठी गर्दी जमल्याने कोणकोणत्या अडचणी येतील?
- 4. आपत्तीकालीन प्रसंगी मदत करू शकतील अशा संघटना व संस्था यांची यादी करा. त्यांच्या मदतीचे स्वरूप याविषयी अधिक माहिती मिळवा.
- 5. आपत्ती निवारण आराखड्याच्या मदतीने तुमच्या शाळेचे सर्वेक्षण करून मुद्देनिहाय माहिती लिहा.
- तुमच्या परिसरात दरडी कोसळण्याच्या शक्यता असलेली ठिकाणे आहेत काय? याची जाणकारांच्या मदतीने माहिती मिळवा.

 खालील चित्राच्या साहाय्याने आपत्तीकाळातील तुमची भूमिका काय असेल ते लिहा.



#### उपक्रम

- 1. दरडी कोसळणे/भूस्खलनाच्या घटना व त्यामुळे झालेली हानी या संदर्भातील बातम्या, कात्रणे, छायाचित्रे यांचा संग्रह करा.
- 2. भूकंपाची पूर्वसूचना मिळावी यासाठी वापरली जाणारी आधुनिक साधने व तंत्रज्ञान याविषयी इंटरनेटच्या साहाय्याने माहिती घ्या.
- 3. NDRF, RPF, CRPF, NCC बद्दल इंटरनेटवरून माहिती मिळवा.
- 4. CCTV ची गरज याबददल चर्चा करा.









# 10. पेशी व पेशीअंगके





- 1 सजीवांमध्ये किती प्रकारच्या पेशी आढळतात?
- 2 पेशींचे निरीक्षण करण्यासाठी तुम्ही कोणते उपकरण वापरले होते ? का व कसे ?

आधीच्या इयत्तांमध्ये तुम्हा पाहिले की, पेशी हे सजीवांचे रचनात्मक व कार्यात्मक एकक आहे विविध अवयवांमध्ये कार्यानुसार वेगवेगळ्या आकारांच्या व प्रकारांच्या पेशी आढळतात

# पेशीरचना ( Cell Structure)



निरीक्षण करा.

खालील आकृत्यांचे निरीक्षण करा, नावे लिहा व तक्ता पूर्ण करा



10.1 वनस्पती पेशी व प्राणी पेशी

घटक	प्राणीपेशी	वनस्पती पेशी
पेशीपटल	आहे	आहे
पेशीभित्तिका		
	आहे	नाही
लवके		
	आहे	आहे
रिक्तिका		
गॉल्गी संकुल		
तंतुकणिका		

पेशीतील कार्ये कशी चालतात हे समजण्यासाठी आपल्याला पेशीतील प्रत्येक घटकाचा अभ्यास करावा लागेल

# पेशीचे भाग (Parts of Cell)

- 1. पेशीभित्तिका (Cell wall): शैवाल, कवक व वनस्पतीपेशींभोवती आढळते; प्राणीपेशीला पेशीभित्तिका नसते पेशीभित्तिका म्हणजे पेशीपटलाभोवती असणारे मजबूत व लवचिक आवरण पेशीभित्तिका मूलत: सेल्युलोज व पेक्टीन ह्या कर्बोदकांपासून बनलेली असते कालांतराने आवश्यकतेनुसार लिग्निन, सुबेरिन, क्युटीन अशी बहुवारिके पेशीभित्तिकेत तयार होतात पेशीला आधार देणे, पेशीत जाणाऱ्या अतिरिक्त पाण्याला अडवून पेशीचे रक्षण करणे ही पेशीभित्तिकेची कार्ये आहेत
- 2. प्रदव्यपटल/पेशीपटल (Plasma membrane/Cell membrane) : हे पेशीभोवती असणारे पातळ, नाजूक व लवचिक आवरण असून पेशीतील घटकांना बाह्य पर्यावरणापासून वेगळे ठेवते

स्फुरिल मेदाच्या (Phospholipid) दोन थरांमध्ये मिसळलेले प्रथिनांचे रेणू - अशी प्रद्रव्यपटलाची रचना असते

प्रद्रव्यपटल काही ठराविक पदार्थांना ये-जा करू देते, तर काही पदार्थांना अटकाव करते; म्हणून त्याला निवडक्षम पारपटल (selective Permeable membrane) म्हणतात या गुणधर्मामुळे पाणी, क्षार, ऑक्सिजन असे उपयुक्त रेणू पेशीत प्रवेश करतात तर कार्बनडाय ऑक्साइडसारखे टाकाऊ पदार्थ पेशीबाहेर पडतात

पेशीबाहेर काही बदल झाले तरी पेशीतील पर्यावरण कायम राखण्याचे काम प्रद्व्यपटल करते; यास समस्थिती म्हणतात



पेशींमधला पदार्थांचा प्रवास कसा होतो?

#### पेशीची ऊर्जा वापरून चालणाऱ्या क्रिया

- 1. पेशीय भक्षण (Endocytosis)
  बाहेरील पर्यावरणातून अन्न व इतर पदार्थ गिळंकृत
  करणे
- 2. पेशी उत्सर्जन (Exocytosis)

टाकाऊ पदार्थ पेशीबाहेर टाकणे

### पेशीची ऊर्जा न वापरता चालणाऱ्या क्रिया

- 1. विसरण (Diffusion) : O, CO, सारखे लहान रेणू पेशीमध्ये घेणे/पेशीबाहेर जाणे
- 2. परासरण (Osmosis) : जास्त पाणी असलेल्या भागाकडून कमी पाणी असलेल्या भागाकडे निवडक्षम पारपटलातून होणारा पाण्याचा प्रवास म्हणजे परासरण ही भौतिक क्रिया असून ती घडण्याच्या 3 वेगवेगळ्या शक्यता असतात



10.2 पेशीभित्तिका रचना



10.3 प्रद्रव्यपटलाची रचना



वनस्पती पेशीतील परासरण

10.4 परासरण

प्राणी पेशीतील परासरण



- 1 4-5 बेदाणे पाण्यात ठेवून एका तासानंतर काय होते ते निरीक्षण करा नंतर तेच बेदाणे साखरेच्या द्रावणात ठेवा व एका तासानंतर त्याचे निरीक्षण करा निरीक्षणाच्या नोंदी ठेवा व वर्गात चर्चा करा
- 2 पावसाळ्यामध्ये लाकडी दरवाजे घट्ट बसतात असे का होते?



- अ. समपरासारी (Isotonic) द्रावण : पेशीभोवती असलेले माध्यम व पेशी या दोन्हींतील पाण्याचे प्रमाण सारखे असते त्यामुळे पाणी आत वा बाहेर जात नाही
- **ब. अवपरासारी (Hypotonic) द्रावण**: पेशीतील पाण्याचे प्रमाण कमी व सभोवतालच्या माध्यमातील पाण्याचे प्रमाण जास्त असल्याने पाणी पेशीत शिरते याला अंतःपरासण (Endosomis) म्हणतात उदा बेदाणे पाण्यात ठेवल्यावर काही वेळाने फुगतात
- क. अतिपरासारी (Hypertonic) द्रावण : पेशीतील पाण्याचे प्रमाण जास्त व पेशीभोवतालच्या माध्यमातील पाण्याचे प्रमाण कमी असल्याने पेशीतून पाणी बाहेर पडते उदा फळांच्या फोडी साखरेच्या घट्ट पाकात टाकल्यास फोडींतील पाणी पाकात जाऊन थोड्या वेळाने त्या आकसतात अतिपरासरी द्रावणात ठेवल्याने प्राणीपेशी किंवा वनस्पतीपेशीतील पाणी बहिःपरासरण (Exosmosis) प्रक्रियेमुळे बाहेर पडते आणि पेशीद्रव्य आकसते ह्या क्रियेला रससंकोच (Plasmolysis) म्हणतात

## 3. पेशीद्रव्य (Cytoplasm)



थोडे आठवा.

कांद्र्याच्या पापुद्र्यात भरपूर द्रवाने भरलेल्या आयताकृती पेशी तुम्ही पाहिल्या आहेत का?

प्रद्रव्यपटल व केंद्रक यांमधील तरल पदार्थाला पेशीद्रव्य म्हणतात पेशीद्रव्य हा चिकट पदार्थ असून तो सतत हालचाल करीत असतो त्यात अनेक पेशीअंगके विखुरलेली असतात पेशीत रासायनिक अभिक्रिया घडून येण्यासाठी पेशीद्रव्य हे माध्यम आहे पेशीअंगकांव्यतिरिक्त असलेला पेशीतील भाग म्हणजे पेशीद्रव्य (Cytosol) पेशीद्रवात अमिनो आम्ले, ग्लुकोज, जीवनसत्त्वे साठवलेली असतात मोठ्या केंद्रीय रिक्तिकेमुळे वनस्पतीपेशीत पेशीद्रव्य कडेला सारलेले असते वनस्पतीपेशीतील पेशीद्रव्यापेक्षा प्राणीपेशीतील पेशीद्रव्य हे अधिक कणयुक्त व दाट असते

पेशी अंगके (Cell organelles): विशिष्ट कार्य करणारे पेशीतील उपघटक म्हणजे पेशीअंगके होत ही अंगके म्हणजे 'पेशीचे अवयव' आहेत प्रत्येक अंगकाभोवती मेदप्रथिनयुक्त पटल असते केंद्रक व हिरतलवक यांव्यतिरिक्त इतर सर्व अंगके ही इलेक्ट्रॉन सूक्ष्मदर्शकाच्या मदतीनेच पाहता येतात

केंद्रक (Nucleus)



10.5 कांद्याचा पापुद्रा



10.6 इलेक्ट्रॉन सूक्ष्मदर्शक



कृती: स्वच्छ काचपट्टीवर पाण्याचा थेंब घ्या आइस्क्रीमच्या चमच्याने गालाची आतील बाजू खरवडा चमच्यावरील थोडा पदार्थ सुईच्या टोकावर घ्या व काचपट्टीवरील पाण्यात पसरवा त्यावर मिथिलीन ब्लू रंजकाचा एक थेंब टाका आच्छादन काच ठेवून संयुक्त सूक्ष्मदर्शकाखाली निरीक्षण करा केंद्रक दिसले का?

कांद्याच्या पापुद्र्याची आयोडिनरंजित काचपट्टी सूक्ष्मदर्शकाखाली पाहताना प्रत्येक पेशीत दिसलेला गोलाकार, गडद ठिपका म्हणजे त्या पेशीचे केंद्रक होय

69



इलेक्टॉन सुक्ष्मदर्शीने पाहिल्यास केंद्रकाभोवती दहेरी आवरण व त्यावर केंद्रकी छिद्रे दिसतात केंद्रकाच्या आतबाहेर होणारे पदार्थांचे वहन या छिद्रांमधन होते केंद्रकामध्ये एक गोलाकार केंद्रकी (Nucleolus) असते व रंगसूत्रांचे जाळे असते रंगसूत्रे ही पातळ दोऱ्यांसारखी असून पेशीविभाजनाच्या वेळी त्यांचे रूपांतर गुणसूत्रांमध्ये होते गुणसूत्रांवरील कार्यात्मक घटकांना जनके (Genes) म्हणतात

#### कार्ये

- पेशींच्या सर्व चयापचय क्रिया व पेशीविभाजन यांवर नियंत्रण तेवणे
- जनुकांदवारे आनुवंशिक गुणांचे संक्रमण पृढील पिढीकडे करणे



# माहीत आहे का तुम्हांला?

- रक्तातील लोहितरक्तकणिकांमधील (RBC) केंद्रक नष्ट झाल्याने हिमोग्लोबीनसाठी अधिक जागा उपलब्ध होते व जास्त ऑक्सिजन वाहन नेला जातो
- वनस्पतींच्या रसवाहिन्यांतील चाळणी नलिकांमधील केंद्रक नष्ट झाल्याने त्या पोकळ होतात व अन्नपदार्थांचे वहन सोपे होते

# आंतर्द्रव्यजालिका (Endoplasmic Reticulum)



तुमच्या इमारतीत किती प्रकारच्या पाईपलाईन्स आहेत? त्या कोणकोणती कामे करतात? त्या नसल्या तर काय होईल?

पेशीच्या आतमध्ये विविध पदार्थांचे वहन करणाऱ्या अंगकाला आंतर्द्रव्यजालिका म्हणतात आंतर्द्रव्यजालिका म्हणजे तरल पदार्थांनी भरलेल्या सूक्ष्मनलिका व पट एकमेकांना जोडले जाऊन बनलेली जाळचासारखी रचना असते आंतर्द्रव्यजालिका आतील बाजूने केंद्रकाला तर बाहेरील बाजूने प्रद्रव्यपटलाला जोडलेली असते

पृष्ठभागावर रायबोझोम्सचे कण असतील तर तिला खडबडीत आंतर्द्रव्यजालिका म्हणतात



10.8 आंतर्द्रव्यजालिका

## कार्ये

- पेशीला आधार देणारी चौकट
- प्रथिनांचे वहन करणे
- अन्न, हवा, पाणी यांमार्फत शरीरात आलेल्या विषारी पदार्थांना जलद्रावणीय करून शरीराबाहेर टाकणे



- तुमच्या आवडीची बिस्किटे, चॉकलेट्स यांभोवती कोणकोणती वेष्टने असतात?
- कारखान्याचा 'पॅकिंग विभाग' कोणते काम करतो?

# गॉल्गी काय (गॉल्गी संकुल) - Golgi Complex:

एकमेकांना समांतर रचलेल्या 5-8 चपट्या, पोकळ कोशांपासून गॉल्गी संकुल बनते या कोशांना 'कुंडे' म्हणतात कुंडांमध्ये विविध प्रकारची विकरे असतात आंतर्द्रव्यजालिकेकडून आलेली प्रथिने गोलीय पीटिकांमध्ये बंदिस्त होतात पेशीद्रव्यामार्फत ह्या पीटिका गॉल्गी संकुलापर्यंत येतात, त्याच्या निर्मितीक्षम बाजूशी संयोग पावून त्यांतील द्रव्य कुंडांमध्ये पाठवले जाते

कुंडांच्या घड्यांतून पुढे सरकताना विकरांमुळे त्या द्रव्यांमध्ये बदल होत जातात ही बदल झालेली प्रथिने पुन्हा गोलीय पीटिकांमध्ये बंद होऊन गॉल्गी संकुलाच्या परिपक्व बाजूने बाहेर पडतात म्हणजेच कारखान्यातील वस्तू बांधून पुढे पाठविणाऱ्या पॅकिंग विभागासारखे काम कुंडांद्वारे होते

#### कार्ये

- 1 गॉल्गी संकुल हे पेशीतील 'स्त्रावी अंगक' आहे
- 2 पेशीत संश्लेषित झालेल्या विकरे, प्रथिने, वर्णके इत्यादी पदार्थांमध्ये बदल घडवून त्यांची विभागणी करणे, त्यांना पेशीमध्ये किंवा पेशीबाहेर अपेक्षित ठिकाणी पोहोचविणे
- 3 रिक्तिका व स्त्रावी पीटिका यांची निर्मिती करणे
- पेशीभित्तिका, प्रद्रव्यपटल व लयकारिका यांच्या निर्मितीस मदत करणे

## लयकारिका (Lysosomes)



10.9 गॉल्गी संकुल

#### परिचय शास्त्रज्ञांचा

कॅमिलिओ गॉल्गी या शास्त्रज्ञाने सर्वप्रथम गॉल्गी संकुलाचे वर्णन केले 'काळी अभिक्रिया' हे रंजन तंत्र त्यांनी विकसित केले व ह्या तंत्राने त्यांनी चेतासंस्थेचा सखोल अभ्यास केला

'चेतासंस्थेची रचना' या अभ्यासासाठी साँटियागो काजल या शास्त्रज्ञाबरोबर त्यांना 1906 मध्ये नोबेल पारितोषिक मिळाले





शेतीकामात निर्माण झालेला पालापाचोळा व इतर कचरा कंपोस्ट खड्ड्यात टाकल्यानंतर काही दिवसांनी त्या कचऱ्याचे काय होते?

पेशीत घडणाऱ्या चयापचय क्रियांमध्ये जे टाकाऊ पदार्थ तयार होतात, त्यांची विल्हेवाट लावणारी संस्था म्हणजे लयकारिका लयकारिका हे साधे एकपटलाने वेष्टित कोश असून त्यांमध्ये पाचक विकरे असतात

#### कार्ये

- 1 रोगप्रतिकार यंत्रणा पेशीवर हल्ला करणाऱ्या जिवाणू व विषाणूंना नष्ट करते
- 2 उद्ध्वस्त करणारे पथक जीर्ण व कमजोर पेशीअंगके, कार्बनी कचरा हे टाकाऊ पदार्थ लयकारिकेमार्फत बाहेर टाकले जातात
- 3 आत्मघाती पिशव्या पेशी जुनी किंवा खराब झाली की लयकारिका फुटतात व त्यातील विकरे स्वत:च्याच पेशीचे पचन करतात
- 4 उपासमारीच्या काळात लयकारिका पेशीत साठविलेल्या प्रथिने व मेद यांचे पाचन करते



10.10 लयकारिका



## तंतुकणिका (Mitochondria)



तुमच्या वर्गातील दिवे, पंखे तसेच शाळेतील संगणक कोणत्या ऊर्जेवर चालतात? ही ऊर्जा कुठे निर्माण होते?

प्रत्येक पेशीला ऊर्जेची गरज असते पेशीला ऊर्जा पुरविण्याचे काम तंतुकणिका करतात इलेक्ट्रॉन सूक्ष्मदर्शीखाली पाहिल्यास तंतुकणिका दुहेरी आवरणांची बनलेली दिसते

तंतुकणिकेचे बाह्य आवरण सच्छिद्र तर आतील आवरण घड्यांनी (शिखांनी) बनलेले असते तंतुकणिकेच्या आतील पोकळीत असलेल्या जेलीसदृश द्रव्यात रायबोझोम्स, फॉस्फेट कण व डीऑक्सीरायबो न्युक्लिक आम्ल (DNA) रेणू असल्याने त्या प्रथिने संश्लेषित करू शकतात तंतुकणिका पेशींतील कर्बोदके व मेदाचे विकरांच्या साहाय्याने ऑक्सिडीकरण करते व ह्या प्रक्रियेत मुक्त झालेली ऊर्जा ATP (ॲडेनोसाईन ट्राय फॉस्फेट) च्या रूपात साठवते प्राणीपेशीपेक्षा वनस्पतीपेशीत तंतुकणिकांची संख्या कमी असते

#### कार्ये

- 1 ATP हे ऊर्जासमृद्ध संयुग तयार करणे
- 2 ATP मधील ऊर्जा वापरून स्वतःसाठी प्रथिने, कर्बोदके, मेद यांचे संश्लेषण करणे



10.11 तंतुकणिका



# माहीत आहे का तुम्हांला?

लोहितरक्तकणिकेत तंतूकणिका नसतात त्यामुळे त्या पेशी जो ऑक्सिजन वाहून नेतात, तो त्यांच्या स्वतःसाठी वापरला जात नाही



तंतुकणिकांच्या आतील आवरण शिखायुक्त असण्याचा फायदा काय?

## रिक्तिका (Vacuoles)

पेशीतील घटकद्रव्याची साठवण करणारे पेशीअंगक म्हणजे रिक्तिका होय रिक्तिकांना ठराविक आकार नसतो पेशीच्या गरजेनुसार रिक्तिकेची रचना बदलत असते रिक्तिकेचे पटल एकपदरी असते

#### कार्ये

- 1 पेशीचा परासरणीय दाब नियंत्रित ठेवणे
- 2 चयापचय क्रियेत बनलेली उत्पादिते (ग्लायकोजेन, प्रथिने, पाणी) साठवणे
- 3 प्राणीपेशीतील रिक्तिका टाकाऊ पदार्थ साठवतात, तर अमिबाच्या रिक्तिकेत अन्न पचनपूर्व साठवले जाते
- 4 वनस्पतीपेशीतील रिक्तिका पेशीद्रवाने भरलेल्या असून त्या पेशीला ताठरता व दृढता देतात



10.12 रिक्तिका

लवके (Plastids): वनस्पतीच्या पानांना हिरवा रंग, तर फुलांना लाल, पिवळा, केशरी, निळा असे अनेक रंग कशामुळे येत असतील? असे रंग देणारे एक अंगक फक्त वनस्पतीपेशींत आढळते, ते म्हणजे लवक लवके ही द्विपटलयुक्त असून दोन प्रकारांची असतात

वनस्पतीच्या भागाचा रंग	रंगद्रव्य
हिरवा (उदा पाने)	हरितद्रव्य (क्लोरोफिल)
लाल (उदा गाजर)	कॅरोटीन
पिवळा	झॅन्थोफिल
जांभळा, निळा	ॲन्थोसायनिन
गडद गुलबक्षी (उदा बीट)	बिटालीन्स

- 1 अवर्णलवके (पांढरी/रंगहीन लवके/Leucoplasts)
- 2 वर्णलवके (रंगीत लवके/Chromoplasts)

हरितलवके ही वर्णलवके असून इतर प्रकारच्या वर्णलवकांत रूपांतरित होऊ शकतात उदा हिरवे कच्चे टोमॅटो पिकल्यावर हरितद्रव्य नष्ट पावते तर लायकोपीन (Lycopene) तयार झाल्याने लाल रंग येतो

## हरितलवक (Chloroplast)

कृती: क्रोटन/ऱ्हीओ वनस्पतीच्या पानावरील पापुद्रा काढा तो काचपट्टीवर ठेवा व त्यातील वर्णलवकांचे संयुक्त सूक्ष्मदर्शीखाली निरीक्षण करा

तुम्हांला माहिती आहे की, वनस्पतींच्या पानांत चालणाऱ्या प्रकाशसंश्लेषण प्रक्रियेसाठी हरितलवके फार महत्त्वाची आहेत हरितलवके सौर ऊर्जेचे रासायनिक ऊर्जेत रूपांतर करतात

हरितलवकाच्या पिठिकेमध्ये प्रकाशसंश्लेषणासाठी आवश्यक विकरे, DNA, रायबोझोम्स व पिष्टमय पदार्थ असतात

## इंटरनेट माझा मित्र

फुले, फळे यांमध्ये आढळणारे आणखी काही रंग व त्यासाठी कारणीभूत रंगद्रव्य यांची माहिती इंटरनेटवरून मिळवा व वरील तक्ता पूर्ण करा



10.13 हरितलवक

## लवकांची कार्ये

तुलनात्मक अभ्यास करूया

- 1 हरितलवके सौर ऊर्जा शोषून तिचे रासायनिक ऊर्जेत म्हणजे अन्नात रूपांतर करतात
- 2 वर्णलवकांमुळे फुले व फळे यांना रंग प्राप्त होतो
- 3 अवर्णलवके ही पिष्टमय पदार्थ, मेद व प्रथिनांचे संश्लेषण व साठवण करतात तंतूकणिका व लवके यांमध्ये DNA व रायबोझोम्स असल्याने ही अंगके स्वतःची प्रथिने तसेच तयार करू शकतात पेशींच्या रचनेचा व अंगकांचा अभ्यास केल्यानंतर तुमच्या लक्षात आले असेल की वनस्पतीपेशी व प्राणीपेशी यांमध्ये आढळणाऱ्या अंगकांमुळे पेशीतील कार्ये सुरळीतपणे चालू असतात अशा विकसित पेशींना दृश्यकेंद्रकी पेशी म्हणतात मागील इयत्तेत तुम्ही जिवाणूंच्या आदिकेंद्रकी पेशीचा अभ्यास केला होता आता या दोन्ही पेशी प्रकारांचा

कार्य संस्थाचे : राष्ट्रीय पेशी विज्ञान केंद्र (National Centre for cell Science -NCCS) ही भारत सरकारच्या जैवतंत्रज्ञान विभागा अंर्तगत कार्यरत असलेली स्वायत्त संस्था आहे या संस्थेचे कार्यालय सावित्रीबाई फुले पुणे विद्यापीठाच्या आवारात असून पेशीजीव विज्ञानामध्ये संशोधन करते, राष्ट्रीय प्राणी पेशी भांडारासाठी सेवा देण्याचे प्रमुख कार्य करते तसेच कॅन्सरसारख्या रोगावर सुद्धा उपचाराबाबतचे संशोधन कार्य करत आहे

# दृश्यकेंद्रकी पेशी

- आकार 5-100 मायक्रोमीटर
- गुणसूत्र संख्या एकापेक्षा जास्त
- केंद्रक केंद्रकपटल, केंद्रकी व केंद्रकद्रव्य असलेले सुस्पष्ट केंद्रक असते
- तंतुकणिका, लवके असतात
- उदाहरणे उच्चिवकसित एकपेशीय व बहुपेशीय वनस्पती व प्राणी यांमध्ये आढळतात

## आदिकेंद्रकी पेशी

- 1-10 मायक्रोमीटर
- एकच
- केंद्रकसदृश केंद्रकाभ असतो
- आवरणयुक्त अंगके नसतात
- जीवाणू

## स्वाध्याय

#### 1. मला ओळखा

- अ. ATP तयार करण्याचा कारखाना आहे.
- आ. एकपदरी आहे, पण पेशीचा परासरणीय दाब नियंत्रित ठेवतो.
- इ. पेशीला आधार देतो पण मी पेशीभित्तिका नाही. माझे शरीर तर जाळीसारखे आहे.
- ई. पेशींचा जणू रसायन कारखाना.
- उ. माझ्यामुळे तर आहेत पाने हिरवी.

#### 2. तर काय झाले असते?

- अ. लोहितरक्तकणिकेत तंतुकणिका असत्या.
- आ. तंतुकणिका व लवके यांमध्ये फरक नसता.
- इ. गुणसूत्रांवर जनुके नसती.
- ई. पारपटल निवडक्षम नसते.
- वनस्पतीत ॲन्थोसायानिन नसते.

#### 3. आमच्यामध्ये वेगळा कोण? कारण द्या.

- अ. केंद्रकी, तंतुकणिका, लवके, आंतर्द्रव्यजालिका
- आ. डी.एन.ए, रायबोझोम्स, हरितलवके

#### 4. कार्ये लिहा.

- अ. पेशीपटल
- आ. पेशीद्रव्य
- इ. लयकारिका
- ई. रिक्तिका
- उ. केंद्रक

## 5. माझा रंग कोणामुळे ? (अचूक पर्याय निवडा)

- अ. लाल टोमॅटो
- 1. क्लोरोफिल
- आ. हिरवे पान
- 2. कॅरोटीन
- इ. गाजर
- 3. ॲन्थोसायनिन
- ई. जांभूळ
- 4. लायकोपीन

#### उपक्रम

- वेगवेगळ्या पर्यावरण स्नेही वस्तूंचा वापर करुन पेशीचे मॉडेल करा.
- 2. वर्गातील तुमच्या मित्रांचा एक गट तयार करा. पेशीच्या प्रत्येक अंगकाची भूमिका प्रत्येकाला देऊन नाटिका तयार करून वर्गात सादर करा.
- 3. पार्चमेंट कागद किंवा तत्सम आवरण वापरून परासरणाचा अभ्यास करा.









# 11. मानवी शरीर व इंद्रिय संस्था





थोडे आठवा.

- 1 इंद्रिये व इंद्रिय संस्था कशापासून बनलेली असतात?
- 2 मानवी शरीरामध्ये कोणकोणत्या इंद्रिय संस्था आहेत?

मागील इयत्तेत आपण सजीवांची काही वैशिष्ट्ये/लक्षणे अभ्यासली आहेत सजीवातील लक्षणे प्रकर्षाने दर्शविणाऱ्या सर्व जीवनावश्यक क्रियांना जीवनप्रक्रिया (Life processes) असे म्हणतात



- 1 आपण गाढ झोपेत असताना शरीरामध्ये सुरू असलेली कार्ये कोणती?
- 2 आपल्या शरीरात कोणकोणत्या जीवनक्रिया सतत सुरू असतात?

आपल्या शरीरात जीवनक्रिया सुरळीतपणे पार पडण्यासाठी अनेक इंद्रिये समूहाने काम करत असतात या जीवनप्रक्रियांचे वेगवेगळे टप्पे असतात विशिष्ट टप्प्यांवर विशिष्ट इंद्रिये पद्धतशीरपणे काम पार पाडत असतात ठराविक काम एकत्रितपणे करणाऱ्या इंद्रिय समूहाला इंद्रिय संस्था असे म्हणतात आपल्या शरीरात पचनसंस्था, श्वसन संस्था, रक्ताभिसरण संस्था, चेता संस्था, उत्सर्जन संस्था, प्रजनन संस्था, अस्थि संस्था, स्नायू संस्था अशा अनेक इंद्रिय संस्था कार्यरत असतात



थोडे आठवा.

प्राण्यांच्या शरीरामध्ये श्वासोच्छ्वासाचे कार्य कोणकोणती इंद्रिये करतात?

मानवी शरीरातील सर्व जीवनप्रक्रिया चालू राहण्यासाठी ऊर्जेची नितांत आवश्यकता असते ऊर्जानिर्मिती पेशींमध्ये होते त्यासाठी पेशींना विद्राव्य अन्नघटक व ऑक्सिजनचा पुरवठा व्हावा लागतो ही कामे श्वसनसंस्था व रक्ताभिसरण संस्थामार्फत होतात श्वसनाची प्रक्रिया पुढील तीन टप्प्यांत होते

## 1. बहिःश्वसन / बाह्यश्वसन :

- अ. श्वास घेणे नाकावाटे हवा आत घेतली जाते, तेथून ती श्वासनलिकेद्वारा दोन्ही फुफ्फुसांत जाते
- **ब. उच्छ्वास (श्वास सोडणे) –** फुफ्फुसात घेतलेल्या हवेतील ऑक्सिजन रक्तात जातो रक्त शरीरातील CO₂ फुफ्फुसांकडे पोहोचवते व ती हवा उच्छ्वासावाटे बाहेर टाकली जाते

फुफ्फुसावाटे होणाऱ्या या दोन क्रियांना एकत्रितपणे बहिःश्वसन म्हणतात

- 2. अंतःश्वसनः शरीरातील सर्व पेशी आणि रक्त यादरम्यान होणाऱ्या वायूंच्या देवाणघेवाणीला अंतःश्वसन म्हणतात रक्तातून पेशींमध्ये  ${\rm O_2}$  जातो व पेशींतून रक्तामध्ये  ${\rm CO_2}$  येतो
- 3. पेशीश्वसन: ऑक्सिजनमुळे पेशींतील ग्लूकोजसारख्या विद्राव्य घटकांचे मंदज्वलन होऊन ATP च्या स्वरूपात ऊर्जा मोकळी होते त्याचबरोबर  $CO_2$  व जलबाष्प हे निरुपयोगी पदार्थ तयार होतात या क्रियेला पेशीश्वसन असे म्हणतात खालील समीकरणाच्या साहाय्याने पेशीश्वसन प्रक्रिया सारांश रूपाने मांडतात

 $C_6H_{12}O_6+6O_2 \longrightarrow 6CO_2+6H_2O+ ऊर्जा(38ATP)$ 



## जरा डोके चालवा

अमीबा, गांडूळ, झुरळ, वनस्पती, विविध जलचर प्राणी व पक्षी हे कशाच्या साहाय्याने श्वसन करतात त्याचा तक्ता तयार करा



इंधनाच्या ज्वलनातून उष्णतेबरोबरच ध्वनी व प्रकाश निर्मिती होते याच प्रकारे पेशीत अन्नघटकांचे ज्वलन होत असताना ध्वनी व प्रकाश निर्मिती होत असेल काय?



- 1 श्वसनसंस्थेमध्ये कोणकोणत्या इंद्रियांचा समावेश होतो?
- 2 जेवताना बोलू नये असे का ?

## श्वसन संस्था (Respiratory system): रचना व कार्य

- 1. **नाक (Nose)** : श्वसनक्रियेची व श्वसनसंस्थेची सुरुवात नाकापासून होते नाकातील केसांच्या व चिकट पदार्थांच्या साहाय्याने हवा गाळून आत घेतली जाते
- 2. घसा (Pharynx): घशापासून अन्ननलिका व श्वासनिलका सुरू होतात श्वासनिलका अन्ननिलकेच्या पुढे असते श्वासनिलकेच्या वरच्या बाजूस एक झाकण असते अन्ननिलकेत अन्न जाताना या झाकणामुळे श्वासनिलका झाकली जाते त्यामुळे श्वासनिलकेत बहुधा अन्नाचे कण शिरत नाहीत इतर वेळी श्वासनिलका उघडी असते यामुळे हवा घशातून श्वासनिलकेत जाते
- 3. श्वासनिका (Trachea) : श्वासनिकिचा सुरुवातीचा भाग स्वरयंत्रामुळे फुगलेला असतो छातीमध्ये श्वासनिकिकेला दोन फाटे फुटतात एक फाटा उजव्या फुफ्फुसाकडे व दुसरा डाव्या फुफ्फुसाकडे जातो
- 4. फुफुसे (Lungs): छातीच्या पोकळीत हृदयाच्या डाव्या व उजव्या बाजूस एकेक फुफ्फुस असते छातीच्या पोकळीचा बराचसा भाग फुफ्फुसांनी व्यापला असून हृदयाचा बराचसा पृष्ठभाग त्यांच्यामुळे झाकला जातो प्रत्येक फुप्फुसावर दुपदरी आवरण असते त्यास फुप्फुसावरण (Pleura) म्हणतात फुप्फुसे स्पंजाप्रमाणे स्थितिस्थापक असतात फुप्फुसे लहान लहान कप्प्यांनी बनलेली असतात त्यांना वायुकोश म्हणतात वायुकोशांच्या भोवती केशवाहिन्यांचे अत्यंत दाट जाळे असते

वायुकोशावरील आवरण अत्यंत झिरझिरीत असते तसेच केशवाहिन्यांचे आवरणही फार पातळ असते या पातळ आवरणातून वायूची देवघेव सहज होऊ शकते फुप्फुसात केशिकेमध्ये वहन् असंख्य वायुकोश असल्यामुळे वायूंच्या देवघेवीसाठी फार विस्तृत पृष्ठभाग उपलब्ध होतो





हवेचा प्रवाह आत आणि बाहेर वायूकोश केशिकेमध्ये वहन

11.1 मानवी श्वसनसंस्था व वायुकोश

फुफ्, सांमध्ये होणारी वायूंची देवघेव : फुप्फुसातील वायुकोशांभोवती रक्त वाहत असताना वायूंची सतत देवघेव चालू असते रक्तातील तांबड्या पेशी (RBC) मध्ये हिमोग्लोबीन हे लोहयुक्त प्रथिन असते वायुकोशात आलेल्या हवेतील ऑक्सिजन हिमोग्लोबीन शोषून घेते त्याचवेळी  $CO_2$  व जलबाष्प रक्तातून वायुकोशात जातात व तेथील हवेत मिसळतात ऑक्सीजन रक्तात घेतला जातो  $CO_2$  आणि जलबाष्प रक्तातून बाहेर काढले जाऊन उच्छ्वासावाटे बाहेर टाकले जातात 5. श्वासपटल (Diaphragm) : बरगड्यांनी बनलेल्या छातीच्या पिंजऱ्याच्या तळाशी एक स्नायूचा पडदा असतो या पडद्याला श्वासपटल म्हणतात श्वासपटल हे उदरपोकळी व छातीची पोकळी (उरोपोकळी) यांच्या दरम्यान असते बरगड्या किंचित वर उचलल्या जाणे आणि श्वासपटल खाली जाणे, या दोन्ही क्रिया एकदम घडल्याने फुफ्फुसांवरील दाब कमी होतो त्यामुळे बाहेरील हवा नाकावाटे फुफ्फुसांमध्ये जाते बरगड्या मूळ जागी परत आल्या आणि श्वासपटल पुन्हा वर उचलले गेले की फुफ्फुसांवर दाब पडतो त्यातील हवा नाकावाटे बाहेर ढकलली जाते श्वासपटल सतत वर आणि खाली होण्याची हालचाल श्वासोच्छ्वास घडण्यासाठी गरजेची असते



श्वसनक्रिया होताना छातीच्या पिंजऱ्याच्या खालील भागात होणाऱ्या हालचालींचे निरीक्षण करा व चर्चा करा



11.2 श्वसनक्रिया व हालचाल



- 1 रक्ताभिसरण म्हणजे काय?
- 2 रक्ताभिसरण संस्थेमध्ये कोणकोणत्या इंद्रियांचा समावेश होतो ?

#### रक्ताभिसरण संस्था (Blood circulatory system)

शरीराच्या निरनिराळ्या अवयवांमध्ये पाणी, संप्रेरके, ऑक्सिजन, विद्राव्य अन्नघटक, टाकाऊ पदार्थ अशा विविध पदार्थाचे वहन रक्ताभिसरण संस्था करते मानव आणि उच्चतर प्राण्यांमध्ये रक्ताभिसरणासाठी स्वतंत्र संस्था असते रक्ताभिसरण संस्थेमध्ये हृदय, रक्तवाहिन्या आणि केशिकांचा समावेश होतो



11.3 हृदय रचना व रक्ताभिसरण

हृद्य : रचना व कार्ये : छातीच्या पिंजऱ्यामध्ये जवळजवळमध्यभागी हृदय असते ते बरगङ्यांमागे, दोन्ही फुप्फुसांच्यामध्ये आणि थोडेसे त्याच्या डाव्या बाजूला कललेले असते आपल्या हृदयाचा आकार आपल्या मुठीएवढा असतो व वजन साधारणपणे 360 ग्रॅम असते आपल्या हृदयाभोवती दुपदरी हृदयावरण असते या हृदयावरणाच्या दोन थरांमध्ये एक द्रवपदार्थ असतो, त्यामुळे घर्षणापासून व धक्क्यांपासून हृदयाचे संरक्षण होते

मानवी हृदय हा एक स्नायूमय, मांसल अवयव आहे हृदय हे हृदस्नायूचे बनलेले असते हृदय स्नायू अनैच्छिक असतात त्यांचे आकुंचन व शिथिलीकरण एका निश्चित तालात होत असते यालाच हृदयाचे स्पंदन म्हणतात हृदयाचे आतील उभ्या पडद्यामुळे डावे व उजवे असे दोन भाग पडतात या भागांचे परत दोन-दोन कप्पे पडतात अशा प्रकारे हृदयाचे चार कप्पे असतात वरच्या कप्प्यांना अलिंद तर खालील कप्प्यांना निलय असे



रक्तवाहिन्या - रचना व कार्ये : हृदयाची स्पंदने सतत चालू असते त्यामुळे रक्तवाहिन्यांत सतत रक्त फिरत राहते रक्तवाहिन्या प्रामुख्याने दोन प्रकारच्या आहेत

रोहिणी/धमन्या : हृदयापासून शरीराच्या वेगवेगळ्या भागांकडे रक्त नेणाऱ्या वाहिन्यांना धमन्या म्हणतात धमन्या शरीरामध्ये खोलवर असतात फुप्फुसधमनी व्यतिरिक्त इतर सर्व धमन्या ऑक्सिजनयुक्त रक्त वाहून नेतात धमन्यांची

भित्तिका जाड असते त्यांच्या पोकळीमध्ये झडपा नसतात

## नीला (शीरा)

शरीराच्या विविध भागांकडून हृदयाकडे रक्त वाहून नेणाऱ्या वाहिन्यांना नीला म्हणतात फुप्फुसशिरांव्यतिरिक्त उरलेल्या सर्व नीलांमधून विनाक्षजती (कार्बनडायऑक्साइड युक्त) रक्त वाहून नेले जाते बहुतेक नीला या त्वचेलगतच असतात यांची भित्तिका पातळ असते तसेच, यांच्या पोकळीमध्ये झडपा असतात



11.4 धमन्या व नीला यांची रचना

#### असे होऊन गेले

1628 साली विल्यम हार्वे या ब्रिटिश डॉक्टरने शरीरातील रक्ताभिसरण कसे होते याचे वर्णन केले आपले हृदय म्हणजे एक स्नायूमय पंप असून या पंपाद्वारे आपल्या शरीरात रक्ताभिसरण केले जाते, असा सिद्धान्त मांडला रक्तवाहिन्यांमधील झडपांचे काम कसे चालते हे हार्वे यांनी शोधन काहले





नीलांच्या पोकळीमध्ये झडपा कशासाठी असतात ? त्या नसत्या तर काय झाले असते ?

## केशवाहिन्या (केशिका) (Capillaries)

धमन्या शरीरभर पसरताना त्यांना फाटे फुटतात त्यांचा व्यास लहान लहान होत जाऊन त्या केसासारख्या दिसतात त्यांना केशिका म्हणतात केशिकांच्या भित्तिका अत्यंत बारीक, एकसरी आणि पातळ असतात त्यामुळे केशिका आणि पेशी यांच्या दरम्यान पदार्थांची देवाणघेवाण सुलभ होते या देवाणघेवाणीत रक्तातील ऑक्सिजन, अन्नघटक, संप्रेरके व जीवनसत्त्वे पेशींत मिळतात, तर पेशींतील टाकाऊ पदार्थ रक्तात येतात केशिका एकमेकींना जोडल्या जाऊन जास्त व्यासाच्या वाहिन्या तयार होतात त्यांनाच आपण शिरा म्हणतो प्रत्येक अवयवांमध्ये केशवाहिन्यांचे जाळे पसरलेले असते



# माहीत आहे का तुम्हांला?

सामन्यपणे निरोगी मानवाच्या हृदयाचे दर मिनिटास 72 ठोके पडतात व्यायाम वा काम केल्याने तसेच मनात निर्माण होणाऱ्या भावनांमुळे हृदयाचे ठोके वाढतात तसेच माणूस आराम करत असताना वा झोपला असताना ते कमी होतात असे आढळून आले आहे लहान बालकांच्या हृदयाच्या ठोक्यांची संख्या जास्त असते

हृदयाचे ठोके पडत असताना दोन प्रकारचे आवाज येतात यांतील एका आवाजाचे वर्णन 'लब्ब' तर दसऱ्या आवाजाचे वर्णन 'डब्ब' असे करतात हृदय प्रत्येक ठोक्याला सुमारे 75 मिलिलीटर रक्त ढकलते

#### हृदयातील रक्ताभिसरण / हृदयाचे कार्य

हृदयाद्वारे शरीराच्या विविध अवयवांकडे रक्त पोहोचविण्याच्या आणि तेथून परत हृदयाकडे आणण्याच्या क्रियेस 'रक्ताभिसरण' म्हणतात रक्त सतत फिरते राहण्यासाठी हृदयाच्या आकुंचन आणि शिथिलीकरण या एकांतरीत क्रिया घडत असतात हृदयाचे लागोपाठचे एक आकुंचन व एक शिथिलीकरण मिळून हृदयाचा एक ठोका होतो



साहित्य : बारीक छिद्र असणारी दोन फूट लांब रबरी नळी, घड्याळ, नरसाळे

- 1 रबरी नळीच्या एका टोकाला नरसाळे जोडा
- 2 नरसाळचाचे उघडे तोंड छातीवर डाव्या बाजूला ठेवा
- 3 नळीचे दुसरे टोक हृदयाचा आवाज ऐकण्यासाठी कानाजवळ ठेवा
- 4 घड्याळाच्या मदतीने एका मिनिटात हृदयाचे किती ठोके होतात ते नोंदवा



नाडीचे ठोके : हृदयाचे ठोके व हाताच्या नाडीचे ठोके यांचा सहसंबंध शोधा



- 1 कानांच्या मागे किंवा पायांच्या टाचेच्या वरच्या बाजूस सुद्धा ठोके अनुभवले जातात हे ठोके कशामुळे होतात?
- 2 बोट कापले किंवा कुठेही जखम झाली की काय वाहते?

#### रक्त (Blood)

रक्त हा लाल रंगाचा एक प्रवाही पदार्थ आहे रक्त ही द्रायू संयोगी ऊती आहे ऑक्सिजनयुक्त रक्ताचा रंग लाल भडक असतो आणि चव खारट असते तसेच सामू (pH) 7 4 असतो रक्त दोन प्रमुख घटकांनी बनलेले असते

#### रक्तद्रव (Plasma) रक्तकणिका / रक्तपेशी (Blood corpuscles / cells) 1. लोहित रक्तपेशी (RBC) अ रक्तद्रव फिकट पिवळसर रंगाचा. आकाराने लहान, वर्त्वळाकार, केंद्रक नसलेल्या पेशी नितळ, काहीसा आम्लारीधर्मी या पेशीतील हिमोग्लोबीन या घटकामुळे रक्त लाल रंगाचे दिसते हिमोग्लोबीनमुळे द्रव असतो यात सुमारे 90 ते 92% पाणी, ऑक्सिजन रक्तात विरघळतो 6 ते 8% प्रथिने - रक्ताच्या प्रत्येक घनमिलीमीटरमध्ये 50-60 लक्ष RBC असतात RBC ची निर्मिती अस्थिमज्जेत होते व त्या सुमारे 100 ते127 दिवस जगतात 1 ते 2 % असेंद्रिय क्षार व इतर घटक असतात 2. श्वेत रक्तकणिका (पांढऱ्या पेशी) (WBC) आ अल्ब्युमिन - संबंध शरीरभर आकाराने मोठ्या, केंद्रकयुक्त, रंगहीन पेशी रक्ताच्या प्रत्येक घनमिलीमीटरमध्ये पाणी विभागण्याचे काम करते 5000-10,000 पांढऱ्या पेशी असतात इ ग्लोब्युलीन्स - संरक्षणाचे काम - या पेशींचे 5 प्रकार आहेत - बेसोफील, इओसिनोफिल, न्यूट्रोफील, मोनोसाईट्स लिम्फोसाईट्स करतात ई फायब्रिनोजेन व प्रोथ्रोम्बीन रक्त - पांढऱ्या पेशींची निर्मिती अस्थिमज्जेत होते गोठण्याच्या क्रियेत मदत कार्य - पांढऱ्या पेशी, आपल्या शरीरात सैनिकाचे काम करतात शरीरात कुठेही करतात रोगजंतूचा शिरकाव झाल्यास त्यावर या पेशी हल्ला करतात सूक्ष्मजीवांमुळे उ असेंद्रिय आयने - कॅल्शिअम, होणाऱ्या रोगांपासून रक्षण करतात सोडिअम, पोटॅशिअम हे चेता 3. रक्तपट्टीका (Platelets) आणि स्नायू कार्याचे नियंत्रण - या अतिशय लहान आणि तबकडीच्या आकारासारख्या असतात ठेवतात - रक्ताच्या एका घनमिलीमीटरमध्ये या सुमारे 2 5 लक्ष ते 4 लक्ष असतात कार्य - या रक्त गोठवण्याच्या क्रियेमध्ये भाग घेतात

#### रक्ताची कार्ये

- 1. वायूंचे परिवहन: फुप्फुसांमधील ऑक्सिजन रक्ताद्वारे शरीराच्या सर्व भागांत पेशींपर्यंत वाहून नेला जातो तसेच ऊतींकडून फुप्फुसांमध्ये CO आणला जातो
- 2. पोषणतत्त्वांचे वहन (पेशींना खाद्य पुरविणे): अन्ननिलकेच्या भित्तिकेमधून ग्लुकोज, अमिनो आम्ले, मेदाम्ले यांसारखी पचन झालेली साधी पोषणत्त्वे रक्तात घेतली जातात व ती शरीराच्या प्रत्येक पेशीपर्यंत पोहोचवली जातात
- 3. टाकाऊ पदार्थांचे वहन: युरिया, अमोनिया, क्रिएटिनीन इत्यादी नायट्रोजनयुक्त टाकाऊ पदार्थ ऊर्तींकडून रक्तात जमा केले जातात नंतर हे पदार्थ शरीराबाहेर टाकण्यासाठी रक्ताद्वारे वृक्काकडे वाहून नेले जातात
- 4. शरीररक्षण : रक्तात प्रतिपिंडांची निर्मिती होते आणि ते सूक्ष्म जीवाणू व इतर उपद्रवी कण यांच्यापासून शरीराचे रक्षण करतात
- 5. विकर व संप्रेरक परिवहन : विकरे आणि संप्रेरके ज्या ठिकाणी स्रवतात तेथून ती ज्या ठिकाणी त्यांची अभिक्रिया होते तेथे रक्ताद्वारे वाहून नेली जातात
- **6. तापमान नियमन** : योग्य अशा वाहिनी विस्फारण आणि वाहिनी संकोचन यांमुळे शरीराचे तापमान 37 °C इतके कायम राखले जाते
- 7. शरीरातील सोडिअम, पोटॅशियम यांसारख्या क्षारांचा समतोल ठेवणे
- 8. रक्तस्राव झाल्यास गुठळी निर्माण करून जखम बंद करणे हे कार्य प्लेटलेट व रक्तद्रवातील फायब्रिनोजेन नावाचे प्रथिन करतात

#### मानवी रक्तगट (Human blood groups)

रक्तातील प्रतिजन आणि प्रतिपिंडे या दोन प्रथिनांवर आधारित रक्ताचे वेगवेगळे गट पाडले आहेत मानवी रक्ताचे A, B, AB आणि O असे चार प्रमुख गट असून 'आर एच' (न्हीसस) पॉझिटिव्ह व 'आर एच' निगेटिव्ह असे या प्रत्येक गटाचे दोन प्रकार मिळून आठ रक्तगट होतात (उदाहरणार्थ, A Rh +Ve a A Rh -Ve) रक्तदान : एखाद्या व्यक्तीला अपघात झाला की जखमांवाटे रक्तस्त्राव होतो अनेक वेळा शस्त्रक्रियेच्या वेळीही रुग्णास रक्त द्यावे लागते तसेच ॲनेमिया, थॅलॅसेमिया (Thalassemia), कॅन्सरप्रस्त रुग्णांनाही बाहेरून रक्तपुरवठा केला जातो शरीरातील रक्ताची कमतरता भरून काढण्यासाठी त्या व्यक्तीला बाहेरचे रक्त दिले जाते याला 'रक्त पराधान' म्हणतात

## रक्त पराधनासाठी रक्ताचा पुरवठा कोठून होतो?

रक्तपेढ्या: रक्तपेढ्यांमध्ये निरोगी व्यक्तीच्या शरीरातून विशिष्ट पद्धतीने रक्त काढले जाते आणि ते गरजूंना पुरवले जाते

जमा झालेले रक्त लगेच वापरायचे नसल्यास ते रेफ्रिजरेटरमध्ये काही दिवसांपर्यंत ठेवता येते

रक्तदाता: जी व्यक्ती रक्त देते तिला रक्तदाता म्हणतात रक्तग्राही: ज्या व्यक्तीला रक्त दिले जाते ती व्यक्ती म्हणजे रक्तग्राही होय

O गटाचे रक्त इतर सर्व गटांना देता येते, तर AB गटाची व्यक्ती सर्वांकडून रक्त घेऊ शकते, म्हणून 'O' रक्तगटाला सर्वयोग्य दाता (Universal Donar) म्हणतात तर 'AB'रक्तगटाला सर्वयोग्य ग्राही (Universal Recipient) म्हणतात

रक्तगट आनुवंशिक असतात व ते आपल्या शरीरात माता व पित्याकडून येणाऱ्या जनुकांवर अवलंबून असतात रक्तदान करताना रक्तगट जुळल्यासच ते रक्त रुग्णाला दिले जाते रक्त पराधनात रक्तगट न जुळल्यास रुग्णाला धोका पोहोचू शकतो त्यामुळे रुग्ण दगावण्याचाही संभव असतो

आजचा रक्तदाता उद्याचा रक्त घेणारा असू शकतो काहीही अपेक्षा न करता दिलेले रक्तदान हे जीवनदान आहे अपघात, रक्तस्त्राव, प्रसवकाळ आणि शस्त्रक्रिया अशा स्थितीमध्ये रुग्णास रक्ताची गरज पडते निरोगी व्यक्तीद्वारा केलेल्या रक्तदानाचा उपयोग गरजू रुग्णाचे जीवन वाचवण्यासाठी केला जातो यामुळेच रक्तदान हे सर्वश्रेष्ठ दान आहे



## तुमच्या परिसरातील एखाद्या रक्तपेढीला भेट द्या व रक्तदानासंबंधी अधिक माहिती मिळवा

रक्तदाब (Blood pressure): हृदयाच्या आकुंचनप्रसरणामुळे धमन्यांतील रक्त सारखे प्रवाहित ठेवले जाते आकुंचनामुळे धमन्यांच्या भिंतीवर रक्ताचा दाब पडतो त्यास 'रक्तदाब' असे म्हणतात शरीराच्या सर्व भागांत रक्त पोहोचण्यासाठी योग्य रक्तदाब हा आवश्यक असतो हृदयाच्या आकुंचनाच्या वेळी जो दाब नोंदिवला जातो त्यास 'सिस्टॉलिक दाब'(अकुंचक दाब) असे म्हणतात व प्रसरणाच्या वेळी नोंदल्या जाणाऱ्या दाबास 'डायस्टोलिक दाब' (प्रकुंचनीय दाब) असे म्हणतात निरोगी माणसाचा रक्तदाब सुमारे 120/80 मिमी ते 139/89 मिमी मर्क्युरीच्या (पाऱ्याच्या) स्तंभाएवढा असतो तो मोजण्यासाठी 'स्पिग्मोमॅनोमीटर' नावाचे यंत्र वापरतात



#### 11.6 रक्तढाबमापक यंत्र

उच्च रक्तदाब : माणसाच्या शरीरातील साधारण रक्तदाबापेक्षा जास्त दाब म्हणजे उच्च रक्तदाब होय उच्च रक्तदाब असलेल्या व्यक्तीच्या धमन्यांमध्ये अनावश्यक तणाव निर्माण होतो उच्च रक्तदाब म्हणजे हृदयाला गरजेपेक्षा जास्त काम करावे लागते यात दोन्ही सिस्टॉलिक व डायस्टॉलिक दाब वाढलेले असतात



## हे नेहमी लक्षात ठेवा.

- आपल्या शरीरात नवीन रक्त तयार होण्याची
   प्रक्रिया सतत चालू असते
- रक्तदानासाठी एकावेळी एका व्यक्तीचे 350 ml रक्त घेतले जाते, तर आपले शरीर 24 तासांमध्ये घेतलेल्या रक्ताच्या तरल भागाची पूर्ती करते
- गर्भावस्था, स्तनपानकाळ सुरू असणाऱ्या स्त्रियांना रक्तदान करता येत नाही
- रक्तदान करताना / केल्यानंतर कोणताही त्रास होत नाही
- 18 वर्षावरील निरोगी व्यक्ती वर्षातून 3-4 वेळा
   रक्तदान करू शकते

प्रकार	प्रकार सिस्टॉलिक दाब	
साधारण रक्तदाब	90-119 मिमी	60-79 मिमी
पूर्व उच्च रक्तदाब	120-139 मिमी	80-89 मिमी
उच्च रक्तदाब अवस्था -1	140-159 मिमी	90-99 मिमी
उच्च रक्तदाब अवस्था - 2	≥ 160 मिमी	≥ 100 मिमी

A, B आणि O या रक्तगटांचा शोध इ स 1900 साली डॉ कार्ल लॅंडस्टेनर यांनी लावला या शोधाबद्दल त्यांना 1930 सालचे नोबेल पारितोषिक देण्यात आले AB रक्तगटाचा शोध डिकास्टेलो आणि स्टर्ली यांनी 1902 मध्ये लावला



# माहीत आहे का तुम्हांला?

रक्तशास्त्र (हिमॅटॉलॉजी) : रक्त, रक्त तयार करणारे अवयव आणि रक्ताचे रोग यांचा अभ्यास करणारी वैद्यक विज्ञानाची शाखा रक्ताच्या सर्व रोगांचे निदान करणे व त्यांवर उपचार करणे याविषयीचे संशोधनही या शाखेत केले जाते



तुमच्या जवळच्या एखाद्या दवाखान्याला भेट देऊन रक्तदाब मोजण्याच्या यंत्राच्या साहाय्याने B P कसे मोजतात याविषयी माहिती मिळवा

#### स्वाध्याय

#### 1. माझा जोडीदार शोधा.

#### 'अ' गट

- 1. हृदयाचे ठोके
- 2. RBC
- 3. WBC
- 4. रक्तदान
- निरोगी व्यक्तीच्या शरीराचे तापमान
- 6. ऑक्सिजनयुक्त रक्ताचा सामू

#### 'ब' गट

- अ. 350 मिली
- आ. 7.4
- इ. 37 °C
- ई. 72
- उ. 50 ते 60 लक्ष प्रति घ. मिली
- ऊ. 5000 ते 10000 प्रति
  - घ. मिली

#### 2. खालील तक्ता पूर्ण करा.

इंद्रिय संस्था	इंद्रिये	कार्ये
1. श्वसनसंस्था		
2. रक्ताभिसरण संस्था		

- 3. नामनिर्देशित सुबक आकृत्या काढा.
  - अ. श्वसनसंस्था, आ. हृदयाची आंतररचना
- 4. सकारण स्पष्ट करा.
  - अ. मानवाचे रक्त तांबड्या रंगाचे असते.
  - आ. श्वासपटलाची वर आणि खाली होण्याची क्रिया एकापाठोपाठ एक होते.
  - इ. रक्तदानास सर्वश्रेष्ठ दान संबोधले जाते.
  - ई. 'O' रक्तगट असलेल्या व्यक्तीला 'सार्वत्रिक दाता' म्हणतात.
  - उ. आहारात मिठाचे प्रमाण कमी असावे.

## 5. खालील प्रश्नांची उत्तरे तुमच्या शब्दांत लिहा.

- अ. रक्ताभिसरण संस्थेचा श्वसन, पचन व उत्सर्जन संस्थेशी असणारा संबंध कार्याच्या स्वरूपात लिहा.
- आ. मानवी रक्ताची संरचना व कार्ये लिहा.
- इ. रक्तदानाचे महत्त्व व गरज स्पष्ट करा.
- 6. फरक स्पष्ट करा.
  - अ. धमन्या व शिरा
  - आ. बहिःश्वसन व अंतःश्वसन
- 7. रक्तदान करणाऱ्या व्यक्तीसाठी निरोगी असल्याबाबतचे कोणते निकष लक्षात घ्याल?

- 8. कंसात दिलेल्या पर्यायांचा योग्य ठिकाणी वापर करा व रिकाम्या जागा भरा. (हिमोग्लोबीन, आम्लारीधर्मी, श्वासपटल, अस्थिमज्जा, ऐच्छिक, अनैच्छिक, आम्लधर्मी)
  - अ. रक्तातील तांबड्या पेशीमध्ये..... हे लोहाचे संयुग असते
  - आ. ...... हे उदरपोकळी व उरोपोकळी यांच्या दरम्यान असते.
  - इ. हृदय स्नायू..... असतात.
  - ई. ऑक्सिजनमुक्त रक्ताचा सामू pH ....असते.
  - उ. RBC ची निर्मिती ..... मध्ये होते.
- 9. आमच्यातील वेगळे कोण ते ओळखा.
  - अ. A, O, K, AB, B
  - आ. रक्तद्रव्य, रक्तपट्टीका, रक्तपराधान, रक्तकणिका
  - इ. श्वासनलिका, वायुकोश, श्वासपटल, केशिका
  - ई. न्यूट्रोफिल, ग्लोब्युलिन्स, ॲल्ब्युमिन, प्रोथ्नोम्बीन
- 10. खालील उतारा वाचा व रोग/विकार ओळखा. आज तिचे बाळ दीड वर्षाचे झाले, पण ते निरोगी, हसरे नाही ते सारखे किरिकर करते, दिवसेंदिवस अशक्त दिसत आहे त्याला धाप लागते त्याचा श्वास फार जलद आहे त्याची नखे निळसर दिसू लागली आहेत
- 11. तुमच्या शेजारच्या काकांचे रक्तदाबाच्या विकाराचे निदान डॉक्टरांनी केले आहे. त्यांचा रक्तदाब नियंत्रणात राहण्यासाठी त्यांनी काय करावे बरे?

#### उपक्रम:

हृदयरोगाशी संबंधित वेगवेगळ्या आधुनिक वैद्यकीय उपचारांची माहिती मिळवा.







# 12. आम्ल, आम्लारी ओळख





- 1 आपण रोजच्या आहारात अनेक खाद्यपदार्थांचा उपयोग करतो, जसे लिंबू, चिंच, टोमॅटो, साखर, व्हिनेगर, मीठ इत्यादी, सगळ्या पदार्थांची चव एकसारखी असते का?
- 2 लिंबू, साखर, दही, चुन्याची निवळी, खाण्याचा सोडा, आवळा, चिंच, कैरी, डांळिब, पाणी या पदार्थांची चव कशी आहे ते लिहा (आंबट, तुरट, गोड, कडवट, चवहीन)

#### आम्ल (Acid)

तुमच्या लक्षात येईल, की काही पदार्थ चवीला गोड, काही कडू तर काही आंबट किंवा तुरट असतात िलंबू, चिंच, व्हिनेगर किंवा आवळा यांसारख्या पदार्थांना आंबट चव, ही त्यांच्यात असलेल्या एका विशिष्ट प्रकारच्या संयुगांमुळे प्राप्त होते ह्या आंबट चव देणाऱ्या संयुगांना आम्ल असे म्हणतात आम्ल पाण्यात विद्राव्य असतात व ते क्षरणकारकही असतात प्राणी आणि वनस्पतींमध्ये सुद्धा आम्ले असतात

खाद्यपदार्थांमध्ये असणाऱ्या आम्लांना नैसर्गिक आम्ल किंवा कार्बनिक आम्ल असेही म्हणतात ही आम्ले क्षीण प्रकृतीची असल्यामुळे त्यांना सौम्य आम्ल (weak acid) म्हणतात काही आम्ले तीव्र प्रकृतीची असतात ती दाहक असतात उदा सल्फ्यूरिक आम्ल ( $H_2SO_4$ ), हायड्रोक्लोरिक आम्ल (HCl), आणि नायट्रिक आम्ल (HNO $_3$ ) ह्या आम्लांना 'खनिज आम्ल' असेही म्हणतात त्यांची संहत द्रावणे त्वचेवर पडल्यास त्वचा भाजते तसेच त्यांची धुरी श्वसनाद्वारे किंवा तोंडाद्वारे शरीरात गेल्यास ही हानिकारक ठरते संहत आम्ले हळू हळू पाण्यात घालून त्यांचे विरल आम्लाच्या तुलनेत थोडी कमी हानिकारक असतात

तुम्ही खाण्याच्या सोड्याचे विरल द्रावण जर चाखले, तर ते काहीसे तुरट/कडवट जाणवेल जे पदार्थ तुरट/कडवट चवीचे व स्पर्शाला बुळबुळीत लागतात, उदा चुन्याची निवळी ( $Ca(OH)_2$ ), खाण्याचा सोडा ( $NaHCO_3$ ), कॉस्टिक सोडा (NaOH) व साबण इत्यादी पदार्थांना आम्लारी म्हणतात आम्लारी हे आम्लापेक्षा पूर्णपणे विभिन्न असतात ते रासायनिकदृष्ट्या आम्लाच्या विरुद्ध गुणधर्मांचे असतात तेही संहत अवस्थेत त्वचेला दाहक असतात आपणांस माहित आहे की उर्ध्वपातित पाणी चवहीन असते पाणी हे आम्लधर्मी किंवा आम्लारीधर्मी नसते

#### दर्शक (Indicator)

जे पदार्थ आम्लधर्मी किंवा आम्लारीधर्मी नसतात, ते रासायनिकदृष्ट्या उदासीन असतात आम्ल किंवा आम्लारी पदार्थांची चव घेणे किंवा त्यांना स्पर्श करणे खूप अपायकारक असल्याने त्यांची ओळख करण्यासाठी दर्शक (Indicator) म्हणून विशिष्ट पदार्थांचा वापर केला जातो जे पदार्थ आम्ल किंवा आम्लारीच्या संपर्काने स्वतःचा रंग बदलतात त्यांना 'दर्शक' असे म्हणतात

प्रयोगशाळेतील दर्शक: आम्ल व आम्लारी पदार्थांचे परीक्षण करण्यासाठी प्रयोगशाळेत मुख्यत्वे लिटमस कागदाचा वापर केला जातो हा कागद लायकेन (दगडफूल) नावाच्या वनस्पतीच्या अर्कापासून तयार केला जातो तो तांबडा किंवा निळ्या रंगाचा असतो निळा लिटमस आम्लात बुडविल्यावर तांबडा होतो आणि तांबडा लिटमस कागद आम्लारीमुळे निळा होतो त्याच प्रमाणे फिनॉल्फथॅलिन, मिथिल ऑरेंज व मिथिल रेड हे दर्शक द्रावणस्वरूपात प्रयोगशाळेत वापरले जातात मिथिल ऑरेंज हा दर्शक आम्लामध्ये गुलाबी, तर आम्लारीमध्ये पिवळा होतो फिनॉल्फथॅलिन आम्लामध्ये रंगहीन व आम्लारीमध्ये गुलाबी असतो वैश्विक दर्शक हे (Universal Indicator) हे द्रावणरूपात असणारे दर्शक आम्ल, आम्लारीच्या संपर्कात आल्यावर वेगवेगळे रंगबदल दाखवितात



蛃.	दर्शक पदार्थाचे नाव	दर्शकाचे मूळ रंग	आम्लातील रंग	आम्लारीतील रंग
1.	लिटमस कागद	निळा	तांबडा	निळा (तसाच राहतो)
2.	लिटमस कागद	तांबडा	तांबडा (तसाच राहतो)	निळा
3.	मिथिल ऑरेंज	नारंगी	गुलाबी	पिवळा
4.	फिनॉल्फ्थॅलिन	रंगहीन	रंगहीन	गुलाबी
5.	मिथिल रेड	तांबडा	तांबडा	पिवळा

12.2: दर्शक आणि त्यांचे आम्ल व आम्लारी द्रावणातील रंग

नैसर्गिक दर्शक बनविणे करून पहा

घरगुती दर्शक: प्रयोगशाळेतील दर्शक पदार्थ उपलब्ध नसल्यास घरातील अनेक पदार्थांच्या साहाय्याने 'नैसर्गिक दर्शक' बनविता येतात अन्नाचा पिवळसर डाग साबणाने धुतल्यानंतर लालसर झालेला तुम्ही पाहिला असेल हा रंगबदल अन्नातील हळद आणि साबणामधील आम्लारीमधील होणाऱ्या रासायनिक अभिक्रियेचा परिणाम होय येथे हळद ही दर्शकाचे कार्य करते याचप्रमाणे लाल कोबी, मुळा, टोमॅटो तसेच जास्वंद आणि गुलाबांपासूनही नैसर्गिक दर्शक तयार करता येतात

साहित्य: जास्वंद, गुलाब, हळद, लाल कोबीची पाने, गालन कागद इत्यादी कृती: लाल जास्वंदाच्या फुलांच्या पाकळ्या पांढऱ्या गालन कागदावर घासा ह्या पट्ट्या कापून घ्या हा झाला जास्वंदपासून तयार झालेला दर्शक कागद त्याचप्रमाणे गुलाबाच्या पाकळ्या पांढऱ्या गालन कागदावर घासा ह्या कागदाच्या पट्ट्या कापून घ्या हा झाला गुलाबाचा दर्शक कागद हळदीची पूड घ्या त्यात थोडे पाणी घाला ह्या हळदीच्या पाण्यात गाळण कागद किंवा साधा कागद थोडा वेळ बुडवून ठेवा वाळल्यावर त्या कागदाच्या पट्ट्या तयार करा ह्याप्रमाणे हळददर्शक कागद तयार करा लाल कोबीची पाने थोड्याशा पाण्यात टाकून पाणी तापवा कोबीच्या पानाचे द्रावण थंड झाल्यावर त्यामध्ये कागद बुडवून बाहेर काढा कागद वाळवून त्याचे छोटे तुकडे करा ह्या प्रकारे कोबीच्या पानांचा दर्शक तयार करून पहा

## याप्रकारे तयार केलेल्या दर्शक कागदांवर खालील विविध पदार्थांचे थेंब टाका व काय परिणाम होतो ते लिहा.

剱.	पदार्थ	हळदीच्या पट्टीवर झालेला परिणाम	आम्लारीधर्मी /आम्लधर्मी
1.	लिं <b>बू</b> रस		
2.	चुन्याची निवळी		
3.	•••••		



खाण्याचा सोडा घ्या त्यात थोडे पाणी टाका जे द्रावण होईल ते लिंबूरस, व्हिनेगर, संत्रारस, सफरचंद रस इत्यादी पदार्थावर टाकून निरीक्षणाची नोंद करा

खाण्याच्या सोड्याचे पाण्यामधील द्रावण फळांच्या रसात टाकल्यावर तुम्हांस काय आढळले ? बुडबुडे आले की फळांचा रस फसफसल्यासारखा झाला?

वरीलपैकी पहिल्या कृतीवरून समजते, की हळदीपासून बनविलेल्या दर्शक कागदी पट्ट्यांचा पिवळा रंग काही विशिष्ट पदार्थांच्या पाण्यामधील द्रावणात लाल होतो आम्लारीधर्मी पदार्थांमध्ये हळदीच्या दर्शक कागदाचा रंग लाल होतो त्याचप्रमाणे आम्लधर्मी पदार्थांच्या द्रावणात खाण्याचा सोड्याचे पाण्यामधील द्रावण टाकल्यावर बुडबुडे येतात किंवा ते फसफसते

ह्या दोन्ही साध्या व सोप्या कृतींवरून आपल्याला पदार्थ आम्ल की आम्लारी याची ओळख पटू शकते





शिक्षकांच्या मार्गदर्शनाखाली व्हिनेगर, लिंबूरस, अमोनिअम हायड्राक्साईड ( $\mathrm{NH_4OH}$ ) आणि विरल हायड्रोक्लोरिक आम्ल ( $\mathrm{HCl}$ ) यांचे नमुने वेगवेगळ्या परीक्षानळीत घ्या त्यामध्ये खाली दिलेल्या दर्शकांचे थेंब घाला तसेच लिटमस कागदही द्रावणात बुडवा निरीक्षण करून ती नोंद तक्त्यात लिहा

नमुना द्रावण	तांबडा लिटमस	निळा लिटमस	फिनॉल्फ्थॅलिन	मिथिल ऑरेंज	आम्ल/आम्लारी
लिंबू रस					
NH ₄ OH					
HC1					
HNO ₃					





वरील प्रयोगात असे दिसते की आम्लात लिटमसचा निळा रंग बदलून तांबडा होतो व आम्लारीत तांबडा लिटमस निळा होतो मिथिल ऑरेंजचा नारंगी रंग आम्लात गुलाबी होतो तर रंगहीन फिनॉल्फ्थॅलिन आम्लारीत गुलाबी होतो

#### 12.3 आम्ल व आम्लारीचा लिटमस कागदावरील परिणाम



- 1 घरातील शहाबाद फरशीवर, ओट्यावर लिंबाचा रस, चिंचेचे पाणी यांसारखे आंबट पदार्थ पडले तर काय घडते ? का?
- 2 आपल्या परिसरातील माती आणून ती आम्ल, आम्लारी की उदासीन आहे हे पहा
- 3 हिरवट डाग पडलेल्या तांब्याची भांडी व काळसर पडलेली चांदीची भांडी चकचकीत करण्यासाठी काय वापरतात?
- 4 दात घासताना दूथपेस्ट का वापरतात ? आम्ल (Acid)

आम्ल हा एक असा पदार्थ असतो की ज्याचे पाण्यातील द्रावण हायड्रोजन आयन (H⁺) उपलब्ध करून देते/निर्माण करते उदा पाण्यातील द्रावणात हायड्रोक्लोरिक (HCl)(aq) चे विघटन होते

HCl (aq) → H⁺ + Cl ⁻ (हायड्रोजन आयन) (क्लोराइड आयन)

आम्लांची काही उदाहरणे : हायड्रोक्लोरिक आम्ल (HCl), नायट्रिक आम्ल (HNO $_3$ ), सल्फ्युरिक आम्ल ( $H_2SO_4$ ), कार्बोनिक आम्ल ( $H_2CO_3$ ) (शीतपेयांमधील), लिंबू व इतर अनेक फळांतील ॲस्कॉर्बिक आम्ल, सायट्रिक आम्ल, विहनेगरमधील ॲसेटिक आम्ल, इत्यादी

आपण वापरत असलेल्या खाद्यपदार्थांमध्येही काही नैसर्गिक (सेंद्रीय) आम्ले असतात ती सौम्य प्रकृतीची असल्याने खनिज आम्लाप्रमाणे हानिकारक/अपायकारक नसतात

क्र.	पदार्थ/स्रोत	आम्ले (नैसर्गिक/सेंद्रीय)
1	व्हिनेगर	ॲसिटिक आम्ल
2	संत्रे	सायट्रिक आम्ल
3	चिंच	टार्टारिक आम्ल
4	टोमॅटो	ऑक्सॅलिक आम्ल
5	दही	लॅक्टिक आम्ल
6	लिंबू	सायट्रिक आम्ल

12.4: काही नैसर्गिक आम्ले



## आम्लाचे गुणधर्म:

- 1 आम्लाची चव आंबट असते
- 2 आम्लाच्या रेणूत हायडोजन आयन (H+) हा मुख्य घटक असतो
- 3 आम्लाची धातूशी अभिक्रिया होऊन हायड्रोजनची निर्मिती होते
- 4 आम्लाची कार्बोनेटशी अभिक्रिया होऊन  ${
  m CO}_2$  वायू मुक्त होतो
- 5 आम्लामुळे निळा लिटमस कागद तांबडा होतो

#### आम्लाचे उपयोग :

- 1 रासायनिक खतांच्या उत्पादनात आम्ले वापरली जातात
- 2 तेलाच्या शुद्धीकरण प्रक्रियेत, औषधी द्रव्ये, रंग (dyes/paints), स्फोटक द्रव्ये यांच्या निर्मिती प्रक्रियेत आम्लांचा वापर होतो
- 3 भिन्न-भिन्न क्लोराइड क्षार बनविण्याकरिता हायड्रोक्लोरिक आम्ल वापरतात
- 4 विरल सल्फ्युरिक आम्ल बॅटरी (विद्युत घट) मध्येही वापरतात
- 5 पाणी जंतुविरहित करण्याकरिता विरल हायड्रोक्लोरिक आम्लाचा वापर होतो
- 6 लाकडाच्या लगद्यापासून पांढराशुभ्र कागद बनविण्याकरिता आम्लाचा वापर होतो

## संहत आम्ल आणि आम्लारीची दाहकता :

संहत सल्फ्युरिक आम्लाचे पाण्यातील विरघळणे खूप उष्णता निर्माण करते म्हणून त्याचे विरलीकरण करण्याकरिता ते अतिशय हळूहळू पाण्यात टाकतात व काचकांडीने हळूहळू ढवळतात जेणेकरून मोठ्या प्रमाणावर तयार होणारी उष्णता एकाच जागी न राहता संपूर्ण द्रावणात एकसमान पसरेल असे आम्लाचे द्रावण उसळून बाहेर उडू नये म्हणून करतात कधीही संहत सल्फ्युरिक आम्लात पाणी घालू नये तसे केल्याने प्रचंड उर्जा निर्माण होते आणि स्फोट होऊ शकतो

सोडिअम हायड्रॉक्साइड आणि पोटॅशिअम हायडॉक्साइडसारख्या आम्लारीही तीव्र व दाहक असतात त्यांची संहत द्रावणे त्वचेवर पडल्यास त्वचा भाजते कारण ते त्वचेतील प्रथिनांचे विघटन करतात



जरा डोके चालवा.

लिंबू, कैरी यांसारखे आंबट पदार्थ लोखंडी सुरीने कापले असता सुरीचे पाते उजळ बनते का?

- खनिज आम्ले शरीराला हानिकारक असतात पण अनेक सेंद्रिय आम्ले आपल्या शरीरात आणि वनस्पतींमध्येही असतात आणि ती हितकारक असतात
- आपल्या शरीरातील DNA (डि ऑक्सिरायबो न्यूक्लिइक ॲसिड) हे आम्ल असते, जे आपले आनुवंशिक गुण ठरवते
- प्रोटिन शरीरातील पेशींचा भाग असतात, ते ॲिमनो ॲिसडने बनलेले असतात
- शरीरातील मेद (Fat) हा मेदाम्लापासून (Fatty Acid) बनलेला असतो

## आम्लारी (Base)

आम्लारी हा एक असा पदार्थ असतो ज्याचे पाण्यातील द्रावण हायड्रॉक्साइड आयन  $(OH^-)$  उपलब्ध करून देतात/ निर्माण करतात उदा NaOH(aq)  $\longrightarrow Na^+(aq) + OH^-(aq)$  (सोडिअम हायडॉक्साइड) (सोडिअम आयन) (हायडॉक्साइड आयन)



सोडिअम हायड्रॉक्साइड



पोटॉशिअम हायड्रॉक्साइड



कॅल्शिअम हायड्रॉक्साइड



मॅग्नेशिअम हायड्रॉक्साइड



अमोनिअम हायड्रॉक्साइड

蛃.	आम्लारीचे नाव	सूत्र	उपयोग
1	सोडिअम हायड्रॉक्साइड/कॉस्टिक सोडा	NaOH	कपडे धुण्याच्या साबणामध्ये
2	पोटॅशिअम हायड्रॉक्साइड/पोटॅश	KOH	अंघोळीचे साबण, शॅम्पू
3	कॅल्शिअम हायडॉक्साइड/चुन्याची निळी	Ca(OH) ₂	चुना/रंग सफेदीकरिता
4	मॅग्नेशिअम हायड्रॉक्साइड/मिल्क ऑफ मॅग्नेशिआ	Mg(OH) ₂	आम्लविरोधक औषध
5	अमोनिअम हायड्रॉक्साइड	NH ₄ OH	खते तयार करण्यासाठी

12.6 आम्लारी सूत्रे व त्यांचे उपयोग



कोणताही पदार्थ ओळखण्यासाठी त्या पदार्थाची चव घेणे, वास घेणे किंवा त्यांना स्पर्श करणे चुकीचे असते असे करणे शरीराला घातक ठरू शकते

## आम्लारीचे गुणधर्म:

- 1 आम्लारीची चव कडवट असते
- 2 त्यांचा स्पर्श बुळबुळीत असतो
- 3 आम्लारीमध्ये हायड्रॉक्साइड आयन (OH-)हा मुख्य घटक असतो
- 4 सामान्यतः धातूंची ऑक्साइड आम्लारीधर्मी असतात

उदासिनीकरण: आपण पाहिले की आम्लामध्ये हायड्रोजन आयन (H⁺) आणि आम्लारीमध्ये हायड्रॉक्साइड आयन (OH⁻)असतात आम्ल व आम्लारीच्या संयोगाने क्षार व पाणी निर्माण होतात उदा ,

आम्ल + आम्लारी 
$$\longrightarrow$$
 क्षार + पाणी HCl + NaOH  $\longrightarrow$  NaCl +  $H_2$ O (हायड्रोक्लोरिक आम्ल) (सोडिअम हायड्रॉक्साइड) (सोडिअम क्लोराइड) (पाणी)

या रासायनिक अभिक्रियेला उदासिनीकरण म्हणतात



# माहीत आहे का तुम्हांला?

आपल्या जठरात हायड्रोक्लोरिक आम्ल असते त्यामुळे अन्नपचन सुलभ होते मात्र हे आम्ल गरजेपेक्षा जास्त वाढले की अपचन होते यावर उपाय म्हणून सामान्यतः आम्लारीधर्मी औषधे दिली जातात त्यामध्ये मिल्क ऑफ मॅग्नेशिआ ( ${\rm Mg(OH)}_2$ ) चा समावेश असतो असे आम्लारी जठरात असलेल्या अतिरिक्त आम्लाचे उदासिनीकरण घडवून आणतात रासायनिक खतांच्या अनावश्यक अतिवापरामुळे शेतजिमनीतील आम्लाचे प्रमाण वाढते जमीन आम्लधर्मी असते तेव्हा जिमनीत आम्लारीधर्मी चुनखडी किंवा चुन्याची निवळीसारखी रसायने शेतीतज्ज्ञांच्या मार्गदर्शनाखाली मिसळतात असे आम्लारी जिमनीतील आम्लांचे उदासिनीकरण करतात

खाली दिलेली दावणे आम्ल की आम्लारी ते ओळखा.

द्रावण		आम्ल/आम्लारी		
	लिटमस			
1		बदल नाही.		
2			नारंगी रंग बदलून लाल झाला.	
3	लाल लिटमस निळा झाला.			

#### 2. सूत्रांवरून रासायनिक नावे लिहा.

 $\mathrm{H_{2}SO_{4}}$ ,  $\mathrm{Ca(OH)_{2}}$ , HCl, NaOH, KOH, NH,OH

- 3. सल्फ्युरिक आम्लाला रासायनिक उद्योगधंद्यात सर्वांत जास्त महत्त्व का आहे?
- 4. उत्तरे द्या.
  - अ. क्लोराइड क्षार मिळवण्यास कोणते आम्ल वापरले पाहिजे?
  - आ. एका खडकाच्या नमुन्यावर लिंबाचा रस पिळताच तो फसफसतो आणि त्यात निर्माण होणाऱ्या वायूने चुन्याची निवळी पांढरी बनते. खडकात कोणत्या प्रकारचे संयुग आहे?
  - इ. प्रयोगशाळेतील एका अभिक्रियाकारकाच्या बाटलीवरची चिठ्ठी खराब झाली. त्या बाटलीतील द्रव्य आम्ल आहे की नाही हे तुम्ही कसे शोधून काढाल?

## 5. खालील प्रश्नांची उत्तरे लिहा.

- अ. आम्ल व आम्लारीतील फरक स्पष्ट करा.
- आ. दर्शकावर मिठाचा परिणाम का होत नाही?
- इ. उदासिनीकरणातून कोणते पदार्थ तयार होतात?
- ई. आम्लाचे औद्योगिक उपयोग कोणते ?

#### 6. रिकाम्या जागा भरा.

- 1. आम्लातील प्रमुख घटक...... आहे.
- 2. आम्लारीतील प्रमुख घटक...... आहे.
- 3. टार्टारिक हे ...... आम्ल आहे.

#### 7. जोड्या लावा.

#### 'अ' गट

- 1. चिंच
- a. ॲसेटिक आम्ल

'ब' गट

- 2. दही
- b. सायट्रिक आम्ल
- 3. लिंबू
- c. टार्टारिक आम्ल
- 4. व्हिनेगर
- d. लॅक्टिक आम्ल

#### 8. चूक की बरोबर ते लिहा.

- अ. धातूंची ऑक्साइडस् आम्लारीधर्मी असतात.
- आ. मीठ आम्लधर्मी आहे.
- इ. क्षारांमुळे धातूचे क्षरण होते.
- ई. क्षार उदासीन असतात.
- 9. पुढील पदार्थांचे आम्लधर्मी, आम्लारीधर्मी व उदासीन या गटांत वर्गीकरण करा.

HCl, NaCl, MgO, KCl, CaO, H₂SO₄, HNO₃, H₂O, Na₂CO₃

#### उपक्रम :

आपल्या दैनंदिन जीवनात उदासिनीकरणाचे उपयोग व महत्त्व आपल्या भाषेत लिहा.







# 13. रासायनिक बदल व रासायनिक बंध





- 1 बदलांचे वर्गीकरण करण्याच्या विविध पद्धती कोणत्या?
- 2 भौतिक बदल व रासायनिक बदल यांच्यात फरक काय ?
- 3 पुढे दिलेल्या बदलांचे भौतिक बदल व रासायनिक बदल असे वर्गीकरण करा

बदल: कैरीचा आंबा होणे, बर्फ वितळणे, पाणी उकळणे, पाण्यात मीठ विरघळणे, हिरवे केळे पिवळे होणे, फळ पिकल्यावर सुगंध येणे, बटाटा चिरून ठेवल्यावर काळा पडणे, फुगवलेला फुगा फट्दिशी फुटणे, फटाका पेटवल्यावर आवाज होणे, खाद्यपदार्थ खराब झाल्यावर आंबूस वास येणे

कोणताही रासायनिक बदल होताना मूळ पदार्थाचे संघटन बदलते व त्याच्यापासून वेगळे संघटन असलेला, वेगळे गुणधर्म असलेला नवीन पदार्थ मिळतो एखादा बदल हा रासायनिक बदल आहे हे ओळखायचे कसे?



एका स्वच्छ काचपात्रात लिंबाचा रस घ्या चमच्यामध्ये दोन थेंब लिंबूरस घेऊन त्याची चव घ्या आता लिंबूरसात चिमूटभर खाण्याचा सोडा टाका सोड्याच्या कणांभोवती बुडबुडे तयार होताना दिसले का? पात्राजवळ कान नेल्यास काही आवाज ऐकू आला का? आता काचपात्रातील दोन थेंब द्रव घेऊन त्याची चव घ्या सुरुवातीला लिंबूरसाची चव आंबट होती तशीच ही चव होती का? (वरील कृती स्वच्छ साहित्य व खाद्यपदार्थ वापरून करावयाची असल्याने चव घेणे ही परीक्षा करणे शक्य आहे. अन्यथा 'चव घेणे' ही परीक्षा करता येणार नाही हे लक्षात ठेवा)

वरील कृतीतील बदल घडून येत असताना जाणवण्याजोगी अनेक निरीक्षणे आढळतात बुडबुड्यांच्या रूपात वायू मुक्त होताना दिसतो हलकासा ध्वनी ऐकू येतो खाण्याच्या सोड्याचे पांढरे स्थायूकण दिसेनासे होतात मूळची आंबट चव कमी किंवा नाहीशी होते त्यावरून ह्या बदलात वेगळ्या चवीचा नवीन पदार्थ तयार झाल्याचे समजते वरील बदलाच्या शेवटी पदार्थाची चव वेगळी होती म्हणजे त्याचे संघटन वेगळे होते याचा अर्थ असा, की वरील बदलात मूळ पदार्थाचे संघटन बदलून वेगळ्या गुणधर्माचा नवीन पदार्थ तयार झाला म्हणजेच लिंबूरसात खाण्याचा सोडा मिसळल्यावर होणारा बदल हा रासायनिक बदल आहे काही वेळा रासायनिक बदल घडत असताना वेगवेगळी वैशिष्ट्यपूर्ण निरीक्षणे जाणवतात व त्यावरून रासायनिक बदल झाल्याचे ओळखता येते त्यांपैकी काही निरीक्षणे तक्ता क्र 13 1 मध्ये दिली आहेत



13.1 रासायनिक बदलांमधील काही जाणवणारी निरीक्षणे

रासायनिक बदल व शाब्दिक समीकरण : रासायनिक बदल घडताना मूळच्या द्रव्याचे रासायनिक संघटन बदलून, वेगळे रासायनिक संघटन असलेले वेगळ्या गुणधर्माचे नवीन पदार्थ तयार होतात रासायनिक संघटनातील बदल नेमकेपणाने माहित असल्यास रासायनिक बदलासाठी रासायनिक अभिक्रिया लिहीता येते रासायनिक अभिक्रिया लिहीताना मूळच्या द्रव्यातील रासायनिक पदार्थाचे नाव व रासायनिक सूत्र, तसेच तयार झालेल्या नवीन पदार्थाचे नाव व रासायनिक सूत्र यांचा उपयोग करतात उदाहरणार्थ, लिंबूरसात खाण्याचा सोडा मिसळल्यास घडून येणारा रासायनिक बदल हा लिंबूरसामधील सायट्रिक आम्लामध्ये होतो व तयार होणारा वायू कार्बन डायऑक्साइड असतो या रासायनिक अभिक्रियेसाठी पृढीलप्रमाणे शाब्दिक समीकरण लिहिता येते



13.2 फसफसण्याची क्रिया होवून कार्बन डायऑक्साइडची निर्मिती

सायट्रिक आम्ल + सोडिअम बायकार्बोनेट - कार्बन डायऑक्साइड + सोडिअम सायट्रेट

आम्ल + आम्लारी → CO, + क्षार ही उदासिनीकरण अभिक्रिया आहे



एखादी रासायनिक अभिक्रिया लिहिण्याची पहिली पायरी म्हणजे संबंधित पदार्थांची नावे वापरून शाब्दिक समीकरण लिहिणे ही होय ह्यात प्रत्येक नावाऐवजी त्या पदार्थाचे रासायनिक सूत्र लिहिले की ते रासायनिक समीकरण होते रासायनिक अभिक्रिया लिहिताना मूळचे पदार्थ डाव्या बाजूला तर तयार झालेले नवीन पदार्थ उजव्या बाजूला लिहितात व मध्ये बाण काढतात या बाणाचे टोक तयार झालेल्या पदार्थांच्या दिशेला असते हा अभिक्रियेची दिशा दर्शवणारा बाण आहे बाणाच्या डाव्या बाजूला लिहिलेले मूळचे पदार्थ म्हणजेच अभिक्रियेत भाग घेणारे पदार्थ होत त्यांना अभिक्रियाकारक किंवा अभिकारक म्हणतात अभिक्रियेमुळे तयार होणाऱ्या नवीन पदार्थांना उत्पादित म्हणतात अभिक्रियेतील उत्पादितांची जागा बाणाच्या उजव्या बाजूला असते

दैनंदिन जीवनातील रासायनिक बदल : आपल्या आजूबाजूला, शरीरात, घरात तसेच प्रयोगशाळेत आपल्याला रासायनिक बदलांची अनेक उदाहरणे दिसतात शाब्दिक व रासायनिक समीकरणे लिहिता येतात असे काही रासायनिक बदल पाहू

## नैसर्गिक रासायनिक बदल

अ. श्वसन: श्वसन ही आपल्या जीवनात सतत चालू असणारी जैविक प्रक्रिया आहे ह्या क्रियेमध्ये आपण श्वासावाटे हवा आत घेतो व उच्छ्वासावाटे कार्बन डायऑक्साइड वायू व पाण्याची वाफ बाहेर पडतात सखोल अभ्यासानंतर समजते की श्वासावाटे घेतलेल्या हवेतील ऑक्सिजनची पेशींमधील ग्लुकोजबरोबर अभिक्रिया होऊन कार्बन डायऑक्साइड व पाणी हे तयार होतात या रासायनिक अभिक्रियेचे शाब्दिक व रासायनिक समीकरण पुढीलप्रमाणे आहे (येथे रासायनिक समीकरणाचे संतुलन केलेले नाही)

#### शाब्दिक समीकरण :

ग्लुकोज + ऑक्सीजन ख़्सन ►कार्बन डायऑक्साइड + पाणी रासायनिक समीकरण :

$$C_6H_{12}O_6 + O_2 \xrightarrow{\text{श्वस-}} CO_2 + H_2O$$



एका परीक्षानळीत ताजी चुन्याची निवळी (कॅल्शिअम हायड्रॉक्साइडचे द्रावण) घ्या त्यात फुंकनळीने फुंकत रहा काही वेळाने काय दिसले? रंगहीन असलेली चुन्याची निवळी दुधाळ झाली का? आणखी काही वेळाने पांढरा अद्रावणीय स्थायू परीक्षानळीच्या तळाशी बसतो असे दिसेल हा कॅल्शिअम कार्बोनेटचा अवक्षेप आहे चुन्याची निवळी दुधाळ झाली याचा अर्थ तिच्यात फुंकनळीवाटे मिसळलेला वायू कार्बन डायऑक्साईड होता

कार्बन + कॅल्शिअम - कॅल्शिअम कार्बोनेट + पाणी वरील शाब्दिक समीकरणासाठी रासायनिक समीकरण लिहा



**आ. प्रकाशसंश्लेषण**: सूर्यप्रकाशात हिरव्या वनस्पती प्रकाशसंश्लेषण करतात हे तुम्हांला माहीत आहे ह्या नैसर्गिक रासायनिक बदलासाठी शाब्दिक समीकरण व रासायनिक समीकरण (असंतुलित) पृढीलप्रमाणे लिहिता येते

रासायानक बदलासाठा शाब्दिक समाकरण व रासायानक समाकरण (असतुालत) पुढालप्रमाण

रासायनिक समीकरण : 
$$CO_2 + H_2O \xrightarrow{\frac{4 \sqrt{2} \sqrt{3} + 10}{8 \log 2}} C_6 H_{12} O_6 + O_2$$

मानविनर्मित रासायनिक बदल : आपण दैनंदिन जीवनात आपल्या उपयोगासाठी अनेक रासायनिक बदल घडवून आणतो त्यातील काही रासायनिक बदल आता पाहू पहिल्या कृतीमध्ये जो रासायनिक बदल पाहिला त्याचा उपयोग 'सोडा-लिंबू' ह्या शीतपेयात करतात, म्हणजेच हा एक उपयुक्त मानविनर्मित रासायनिक बदल आहे का नाही ते तुम्हीच ठरवा कारण 'सोडा-लिंबू' या पेयात कार्बन डायऑक्साइड व सायट्रिक आम्ल हे दोघेही आम्लधर्मीच आहेत त्यामुळे जठररसाची आम्लता वाढते

अ. इंधनाचे ज्वलन : ऊर्जा मिळवण्यासाठी लाकूड, कोळसा, पेट्रोल किंवा स्वयंपाकाचा गॅस जाळतात या सर्व इंधनामध्ये ज्वलन होणारा एक सामाईक पदार्थ 'कार्बन' हा आहे ज्वलन प्रक्रियेमध्ये कार्बनचा संयोग हवेतील ऑक्सिजनबरोबर होतो व कार्बन डायऑक्साइड हे उत्पादित तयार होते या सर्व ज्वलनाचे क्रियांसाठी सामाईक असे पुढील समीकरण लिहिता येते

**शाब्दिक समीकरण** : कार्बन + ऑक्सिजन -> कार्बन डायऑक्साइड

**रासायनिक समीकरण** :  $C + O_2 \longrightarrow CO_2$  इंधनाचे ज्वलन हा जलद व अपरिवर्तनीय असा रासायनिक बदल आहे आ. विरल हायड्रोक्लोरिक आम्लाने शहाबादी फरशी स्वच्छ करणे : येथे शहाबादी फरशीचे रासायनिक संघटन मुख्यत्वे कॅल्शिअम कार्बोनेट असे आहे फरशी हायड्रोक्लोरिक आम्लाने स्वच्छ करताना फरशीच्या वरच्या थराची हायड्रोक्लोरिक आम्लाबरोबर रासायनिक अभिक्रिया होते व तीन उत्पादिते तयार होतात त्यांपैकी एक कॅल्शिअम क्लोराइड ; हे पाण्यात द्रावणीय असल्याने पाण्याने धुतल्यावर निघून जाते दुसरे उत्पादित म्हणजे कार्बन डायऑक्साइड, ह्याचे बुडबुडे हवेत मिसळून जातात तिसरे उत्पादित पाणी, जे पाण्यात मिसळून जाते ह्या रासायनिक बदलासाठी पुढील समीकरण लिहिता येते

#### शाब्दिक समीकरण :

कॅल्शिअम कार्बोनेट + हायड्रोक्लोरिक आम्ल —> कॅल्शिअम क्लोराइड + कार्बन डायऑक्साइड + पाणी वरील अभिक्रियेसाठी रासायनिक समीकरण (असंतुलित) लिहा

इ. दुष्फेन पाणी सुफेन बनवणे: काही विहिरींचे किंवा कुपनिलकांचे पाणी दुष्फेन असते ते चवीला मचूळ लागते व त्यात साबणाचा फेस होत नाही याचे कारण दुष्फेन पाण्यात कॅल्शिअम व मॅग्नेशिअमचे क्लोराइड व सल्फेट हे क्षार विरघळलेले असतात हे दुष्फेन पाणी सुफेन करण्यासाठी त्यात धुण्याच्या सोड्याचे द्रावण घालतात त्यामुळे रासायनिक अभिक्रिया होऊन कॅल्शिअम व मॅग्नेशिअमच्या अद्रावणीय कार्बोनेट क्षारांचा अवक्षेप तयार होऊन तो बाहेर पडतो पाण्यातील विरघळलेले कॅल्शिअम व मॅग्नेशिअमचे क्षार कार्बोनेट क्षारांच्या अवक्षेपाच्या रूपात बाहेर पडल्याने पाणी सुफेन होते या रासायनिक बदलासाठी पुढील समीकरण लिहिता येते

#### शाब्दिक समीकरण:

कॅल्शिअम क्लोराइड + सोडिअम कार्बोनेट → कॅल्शिअम कार्बोनेट + सोडिअम क्लोराइड

## रासायनिक समीकरण (असंतुलित):

$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + NaCl$$

दुष्फेन पाणी सुफेन करताना मॅग्नेशिअमच्या क्षारांमध्ये होणाऱ्या रासायनिक बदलांसाठी शाब्दिक व रासायनिक समीकरण लिहा



रासायनिक बदल होताना द्रव्याचे रासायनिक संघटन बदलते व मूळच्या पदार्थांची, अभिकारकांची, रासायनिक अभिक्रिया होऊन वेगळ्या गुणधर्माचे नवीन पदार्थ, उत्पादिते, तयार होतात हे आपण पाहिले हे होताना अभिकारकांमधील काही रासायनिक बंध तुटतात व अभिक्रियेमध्ये नवीन रासायनिक बंध तयार होऊन नवीन पदार्थ, म्हणजेच उत्पादिते तयार होतात एका अणूने तयार केलेल्या रासायनिक बंधांची संख्या म्हणजे त्या अणूची संयुजा हेही आपण 'द्रव्याचे संघटन' ह्या पाठात पाहिले आहे रासायनिक बंध म्हणजे काय ते आता पाहू

रासायनिक बंध (Chemical Bond): अणूचे अंतरंग ह्या पाठात आपण मूलद्रव्याचे इलेक्ट्रॉन संरूपण व मूलद्रव्याची संयुजा यांतील संबंध पाहिला राजवायू रासायनिक बंध तयार करत नाहीत व त्यांचे इलेक्ट्रॉन अष्टक / द्विक पूर्ण असते याउलट इलेक्ट्रॉन अष्टक / द्विक पूर्ण नसलेले अणू रासायनिक बंध तयार करतात यामागचे कारण असे आहे की रासायनिक बंध तयार करताना अणू त्यांच्या संयुजा इलेक्ट्रॉनांचा उपयोग करतात तसेच संयुजेच्या संख्येइतके रासायनिक बंध तयार केल्यावर अणूला इलेक्ट्रॉन अष्टकाचे / द्विकांचे संरूपण प्राप्त होते इलेक्ट्रॉन अष्टक / द्विक पूर्ण करण्याच्या दोन प्रमुख पद्धती आता पाहू

1. आयनिक बंध (Ionic Bond) : प्रथम सोडिअम व क्लोरिन या मूलद्रव्यांच्या अणूंपासून सोडिअम क्लोराइड हे संयुग कसे तयार होते ते पाहू यासाठी सोडिअम व क्लोरिनचे इलेक्ट्रॉन संरूपण पाहू

Na - 2,8,1;  $_{17}$ Cl - 2,8,7 सोडिअमच्या संयुजा कवचात एक इलेक्ट्रॉन असल्याने त्याची संयुजा एक व क्लोरीनच्या संयुजा कवचात सात इलेक्ट्रॉन म्हणजे अष्टकाला एक कमी म्हणून क्लोरिनची संयुजा सुद्धा एक हा संबंध आपण पाहिला सोडिअमचा अणू त्याच्या 'M' ह्या कवचातील एकमेव संयुजा इलेक्ट्रॉन गमावतो तेव्हा त्याचे उपांत्य कवच 'L' हे बाह्यतम कवच होते त्यामध्ये आठ इलेक्ट्रॉन आहेत परिणामतः आता सोडिअमला इलेक्ट्रॉन अष्टक स्थिती प्राप्त होते, मात्र आता इलेक्ट्रॉनांची संख्या 10 झाल्यामुळे सोडिअमच्या केंद्रकावरील +11 ह्या धनप्रभाराचे संतुलन होत नाही व निव्वळ +1 इतका धनप्रभार असलेला Na+ हा धनआयन तयार होतो याउलट क्लोरिनच्या संयुजा कवचात अष्टक स्थितीपेक्षा एक इलेक्ट्रॉन कमी आहे बाहेरून एक इलेक्ट्रॉन घेतल्यावर क्लोरिनचे इलेक्ट्रॉन अष्टक पूर्ण होते, मात्र उदासीन क्लोरीन अणुवर एका इलेक्ट्रॉनची भर पडल्यामुळे प्रभार संतुलन बिघडते व निव्वळ -1 इतका ऋणप्रभार असलेला Cl- हा ऋण सोडिअम व क्लोरीन ही मूलद्रव्ये जेव्हा संयोग पावतात तेव्हा सोडिअमचा अणू त्याचा संयुजा इलेक्ट्रॉन क्लोरीनच्या अणूला देतो व त्यामुळे Na⁺ हे धन आयन व Cl⁻ हे ऋण आयन तयार होतात विजातीय प्रभारांमध्ये स्थितिक विद्युत आकर्षण बल असल्यामुळे हे विरुद्ध प्रभारी आयन एकमेकांकडे आकर्षिले जातात व त्यांच्यात रासायनिक बंध तयार होतो

परस्परविरुद्ध प्रभार असलेल्या धन आयन व ऋण आयन यांच्यामधील स्थितिक विद्युत आकर्षण बलामुळे तयार होणाऱ्या रासायनिक बंधाला आयनिक बंध किंवा विद्युत संयुज बंध म्हणतात एक किंवा अधिक आयनिक बंधांमुळे तयार होणाऱ्या संयुगाला आयनिक संयुग म्हणतात

सोडिअम व क्लोरीन या मूलद्रव्यांपासून सोडिअम क्लोराईड ह्या आयनिक संयुगाची निर्मिती इलेक्ट्रॉन संरूपणाच्या रेखाटनाचा उपयोग करून आकृती 13 3 मध्ये दाखविली आहे

आयनावर असलेल्या +1 किंवा -1 विद्युतप्रभारामुळे एक आयनिक बंध तयार होतो आयनावर जितका धनप्रभार किंवा ऋणप्रभार असतो ती त्या आयनाची संयुजा असते व संयुजेइतके आयनिक बंध तो आयन तयार करतो



13.3 NaCl ह्या आयनिक संयुगाची निर्मिती



13.4 MgCl ह्या आयनिक संयुगाची निर्मिती

मॅग्नेशिअम क्लोराईड ह्या आयनिक संयुगाची निर्मिती मॅग्नेशिअम व क्लोरीन या मूलद्रव्यांपासून कशी होते ते आकृती 13 4 मध्ये दाखविले आहे

संबंधित मूलद्रव्यांपासून पुढील आयनिक संयुगांची निर्मिती संख्यात्मक इलेक्ट्रॉन संरूपण व इलेक्ट्रॉन संरूपणाचे रेखाटन या दोन्ही पद्धतींनी दर्शवा  $(3)_{19}$ K व $_9$ F पासून  $\mathrm{K}^+\mathrm{F}^-,(3)_{20}$ Ca व $_8\mathrm{O}$ पासून  $\mathrm{Ca^{2+}O^{2-}}$ 

2. सहसंयुज बंध : जेव्हा सारखे गुणधर्म असलेल्या मूलद्रव्यांच्या अणूंचा संयोग होतो तेव्हा साधारणपणे सहसंयुज बंध तयार होतो अशा अणूंमध्ये इलेक्ट्रॉनांचे आदान-प्रदान (देवाण-घेवाण) होऊ शकत नाही त्याऐवजी अशा अण्मध्ये इलेक्ट्रॉनांचे संदान (sharing) होते संदान केलेले इलेक्ट्रॉन दोन्ही अणूंची सामाईक मालमत्ता झाल्यामुळे दोन्ही अणूंचे इलेक्ट्रॉन अष्टक / द्विक पूर्ण होते प्रथम हायड्रोजनच्या रेणूचे (H) उदाहरण पाहू

'अणूचे अंतरंग' पाठात आपण पाहिले आहे, की हायड्रोजनच्या अणूमध्ये एक इलेक्ट्रॉन असून त्याचे इलेक्ट्रॉन द्विक पूर्ण होण्यासाठी एक इलक्ट्रॉन कमी आहे व हायड्रोजनची संयुजा एक आहे हायड्रोजनच्या दोन

अणूंमध्ये बंध तयार होताना दोन्ही अणू एकसमान व एकाच प्रवृत्तीचे असल्याने ते एकमेकांबरोबर आपापल्या इलेक्ट्रॉनचे संदान करतात त्यामुळे हायड्रोजनच्या दोन्ही अणूंचे इलेक्ट्रॉन द्विक पूर्ण होते व त्यांच्यामध्ये रासायनिक बंध तयार होतो

दोन अणूंनी एकमेकांबरोबर आपापले संयुजा इलेक्ट्रॉन संदान केल्यावर जो रासायनिक बंध तयार होतो त्याला सहसंयुज बंध म्हणतात दोन संयुजा इलेक्ट्रॉनांच्या संदानाने एक सहसंयुज बंध तयार होतो हायड्रोजनच्या दोन अणूंपासून  $H_\gamma$  ह्या रेणूची निर्मिती इलेक्ट्रॉन संरूपणाच्या रेखाटनाचा उपयोग करून आकृती 13 5 मध्ये दाखविली आहे दोन अणूंमधील सहसंयुज बंध त्या अणूंच्या संज्ञांना जोडणाऱ्या रेषेनेस्दधा दर्शवतात



आता  $\mathrm{H}_{2}\mathrm{O}$  ह्या सहसंयुज संयुगाच्या रेणूची निर्मिती हायड्रोजन व ऑक्सिजन ह्या अणूंपासून कशी होते ते पाहू (पहा आकृती 13 6) ऑक्सिजन अणूच्या संयुजा कवचात सहा इलेक्ट्रॉन आहेत म्हणजे ऑक्सिजनमध्ये इलेक्ट्रॉन अष्टकापेक्षा दोन इलेक्ट्रॉन कमी आहेत व ऑक्सिजनची संयुजा '2' आहे H₂O रेणूमध्ये ऑक्सिजन अणू दोन सहसंयुज बंध करून आपले इलेक्ट्रॉन अष्टक पूर्ण करतो ऑक्सिजनचा एक अणू हे दोन सहसंयुज बंध दोन हायड्रोजन अणूंबरोबर प्रत्येकी एक याप्रमाणे करतो हे होताना दोन्ही हायड्रोजन अणूंचे इलेक्ट्रॉन द्विक स्वतंत्रपणे पूर्ण होते





HCl ह्या रेणूच्या H a Cl ह्या घटक अणूमध्ये एक सहसंयुज बंध असतो या माहितीचा वापर करून H a Cl अणूंपासून HCl रेणूची निर्मिती कशी होते ते इलेक्ट्रॉन संरुपणाच्या रेखाटनाने दाखवा

#### स्वाध्याय

 कंसात दिलेल्या पदांपैकी योग्य पद रिकाम्या जागी भरून वाक्य पूर्ण करा.
 (सावकाश, रंगीत, बाण, जलद, वास, दुधाळ, भौतिक,

(सावकाश, रंगीत, बाण, जलद, वास, दुधाळ, भौतिक, उत्पादित, रासायनिक, अभिकारक, सहसंयुज, आयनिक, अष्टक, द्विक, आदान-प्रदान, संदान, बरोबरचे चिन्ह)

- अ. रासायनिक अभिक्रियेचे समीकरण लिहिताना अभिक्रियाकारके व उत्पादिते यांच्यामध्ये ..... काढतात.
- आ. लोखंडाचे गंजणे हा.....होणारा रासायनिक बदल आहे.
- इ. अन्न खराब होणे हा रासायनिक बदल आहे हे त्यात विशिष्ट .......... निर्माण होतो त्यावरून ओळखता येते.
- ई. परीक्षानळीतील कॅल्शिअम हायड्रॉक्साइडच्या रंगहीन द्रावणात फुंकनळीने फुंकत राहिल्यास काही वेळाने द्रावण ..... होते.
- उ. लिंब्र्सात थोडे खाण्याच्या सोड्याचे चूर्ण टाकल्यास थोड्या वेळाने पांढरे कण दिसेनासे होतात, म्हणजेच हा ......... बदल आहे.
- ऊ. श्वसनक्रियेमध्ये ऑक्सिजन हा एक ......आहे.
- ए. सोडिअम क्लोराइड हे ...... संयुग आहे, तर हायड्रोजन क्लोराइड हे ..... संयुग आहे.
- एे. हायड्रोजनच्या रेणूमध्ये प्रत्येक हायड्रोजनचे इलेक्ट्रॉन ...... पूर्ण असते.
- ओ. क्लोरीनच्या दोन अणूंमध्ये इलेक्ट्रॉनांचे ...... होऊन  $\operatorname{Cl}_{2}$  हा रेणू तयार होतो.

## 2. शाब्दिक समीकरण लिहून स्पष्ट करा.

- अ. श्वसन हा एक रासायनिक बदल आहे.
- आ. धुण्याच्या सोड्याचे द्रावण मिसळल्याने दुष्फेन पाणी सुफेन होते.
- इ. विरल हायड्रोक्लोरिक आम्लामध्ये टाकल्यावर चुनखडी चूर्ण दिसेनासे होते.
- ई. खाण्याच्या सोड्याच्या चूर्णावर लिंबूरस टाकल्यावर बुडबुडे दिसतात.

#### 3. जोड्या जुळवा.

- अ. प्रकाशसंश्लेषण
- i. इलेक्ट्रॉन गमावण्याची प्रवृत्ती
- आ. पाणी
- ii. ज्वलनप्रक्रियेतील अभिकारक
- इ. सोडिअम क्लोराइड
- iii. रासायनिक बदल
- ई. पाण्यात मीठ विरघळणे
- iv. सहसंयुज बंध
- उ. कार्बन
- v. आयनिक संयुग
- ऊ. फ्लुओरिन
- vi. भौतिक बदल
- ए. मॅग्नेशिअम
- vii. ऋण आयन बनण्याची प्रवृत्ती
- 4. घटक अणुंपासून पुढील संयुगांची निर्मिती कशी होते ते इलेक्ट्रॉन संरूपणाच्या रेखाटनाने दर्शवा.
  - अ. सोडिअम क्लोराइड
  - आ. पोटॅशिअम फ्लुओराइड
  - इ. पाणी
  - ई.हायड्रोजन क्लोराइड

#### उपक्रम :

तुमच्या घरामध्ये तसेच परिसरामध्ये दिसून येणाऱ्या रासायनिक बदलांची यादी बनवा व वर्गामध्ये यासंबधी चर्चा करा.





# 14. उष्णतेचे मापन व परिणाम



# थोडे आठवा.

- 1 आपल्याला उष्णता कोणकोणत्या स्रोतांपासून मिळते?
- 2 उष्णता स्थानांतरित कशी होते?
- 3 उष्णतेचे कोणकोणते परिणाम तुम्हांला माहीत आहेत? आकृती 14 1 मध्ये उष्णतेचे परिणाम दाखविले आहेत, ते कोणते?

आपण मागील इयत्तांमध्ये पाहिले आहे की उष्णता ही एक प्रकारची ऊर्जा आहे, जी अधिक तापमान असलेल्या वस्तूकडून कमी तापमान असलेल्या वस्तूकडे प्रवाहित होते एखाद्या वस्तूचे तापमान हे ती वस्तू किती उष्ण किंवा किती थंड आहे हे दर्शविते थंड वस्तूचे तापमान उष्ण वस्तूच्या तापमानापेक्षा कमी असते, म्हणजेच आइस्क्रीमचे तापमान हे चहाच्या तापमानापेक्षा कमी असते









14.1 उष्णतेचे विविध परिणाम

आपण हेही पाहिले आहे की उष्णता दिल्यास वस्तूचे प्रसरण होते व वस्तू थंड केल्यास तिचे आकुंचन होते तसेच उष्णतेमुळे द्रव्याचे अवस्थांतरण होते

उष्णतेचे SI मधील एकक Joule (ज्यूल) व CGS मधील एकक Calorie (कॅलरी) हे आहे 1 cal उष्णता 4 18 1 एवढी असते एक ग्रॅम पाण्याचे तापमान 1 0 C ने वाढण्यासाठी लागणारी ऊर्जा ही एक cal ऊर्जा असते

## सोडवलेली उदाहरणे

**उदाहरण** 1. 1.5 kg पाण्याचे तापमान 1.5 °C पासून 4.5 °C पर्यंत वाढविण्यास किती ऊर्जा लागेल ?उत्तर कॅलरी व ज्यूल या दोन्ही मध्ये द्या

दिलेले: पाण्याचे वस्तुमान = 1.5 kg = 1500 gm, तापमानातील बदल =  $45 \, ^{\circ}\text{C} - 15 \, ^{\circ}\text{C} = 30 \, ^{\circ}\text{C}$  तापमानवाढीसाठी आवश्यक ऊर्जा = ?

तापमानवाढीसाठी आवश्यक ऊर्जा (cal) = पाण्याचे वस्तुमान (gm) x तापमान वाढ ( 0 C)

- $= 1500 \text{ gm x } 30 \, ^{\circ}\text{C} = 45000 \text{ cal}$
- = 45000 x 4 18 = 188100 J

उदाहरण 2. 300 cal उष्णता दिल्यावर पाण्याचे तापमान  $10 \, ^{\circ}\text{C}$  ने वाढले असल्यास पाण्याचे वस्तुमान किती असेल?

दिलेली उष्णता = 300 cal, तापमानातील बदल =  $10\,^{0}$ C, पाण्याचे वस्तुमान (m) = ? उष्णता = पाण्याचे वस्तुमान (gm) x तापमान वाढ ( 0 C)  $300 = m \times 10$  m = 30 gm

## उष्णतेचे स्रोत (Sources of Heat)

- 1. सूर्य: सूर्य हा पृथ्वीला मिळणाऱ्या उष्णतेचा सर्वांत मोठा स्रोत आहे सूर्याच्या केंद्रामध्ये होणाऱ्या केंद्रकीय एकीकरणामुळे (Nuclear fusion) मोठ्या प्रमाणात ऊर्जा निर्माण होते केंद्रकीय एकीकरण प्रक्रियेमध्ये हायड्रोजनच्या केंद्रकांचा संयोग होऊन हेलियमची केंद्रके तयार होतात व त्यातून ऊर्जा निर्मिती होते ह्यातील काही ऊर्जा प्रकाश व उष्णतेच्या स्वरूपात पृथ्वीपर्यंत पोहोचते
- 2. **पृथ्वी :** पृथ्वीच्या केंद्रातील तापमान अधिक असल्याने पृथ्वी देखील उष्णतेचा स्रोत आहे ह्या उष्णतेस भू- औष्णिक ऊर्जा म्हणतात
- 3. रासायनिक ऊर्जा: लाकूड, कोळसा, पेट्रोल इत्यादी इंधनाच्या ज्वलनात इंधनाची ऑक्सिजनबरोबर रासायनिक प्रक्रिया होऊन उष्णता निर्माण होते
- 4. विद्युत ऊर्जा: विद्युत ऊर्जा वापरून उष्णता निर्माण करण्याचे अनेक प्रकार, जसे विजेची इस्त्री, विद्युत शेगडी इत्यादी तुम्ही दैनंदिन जीवनात पाहिलेच आहेत म्हणजे विद्युतही उष्णतेचा स्नोत असते

- 5. अणुऊर्जा: काही मूलद्रव्यांच्या, जसे युरेनिअम, थोरिअम इत्यादी, अणूंच्या केंद्रकांचे विभाजन केले असता अत्यंत थोड्या कालावधीत प्रचंड ऊर्जा व उष्णता निर्माण होते अणुऊर्जा प्रकल्पात ही प्रक्रिया वापरली जाते
- 6. हवा: आपल्या सभोवताली असलेल्या हवेत देखील बरीच उष्णता सामावलेली असते

तापमान (Temperature) : एखादी वस्तू किती उष्ण किंवा किती थंड आहे हे आपण त्या वस्तूला हात लावून पाहू शकतो, परंतु आपल्याला जाणवणारी उष्ण किंवा थंड ही संवेदना सापेक्ष असते हे आपण खालील कृतीवरून समजू शकतो



- 1 तीन सारखी भांडी घ्या त्यांना अ, ब व क नावे द्या (आकृती 14 2 पहा)
- 2 अ मध्ये थोडे गरम व ब मध्ये थंड पाणी भरा क मध्ये अ व ब मधील थोडे थोडे पाणी टाका
- 3 तुमचा उजवा हात अ मध्ये व डावा हात ब मध्ये बुडवा व 2-3 मिनिटे ठेवा
- 4 आता दोन्ही हात क मध्ये बुडवा तुम्हांला काय जाणवते?



जरी दोन्ही हात एकाच भांड्यातील पाण्यात, म्हणजे एकाच तापमानाच्या पाण्यात बुडवलेले असले तरी उजव्या हाताला ते पाणी थंड जाणवेल आणि डाव्या हाताला तेच पाणी गरम जाणवेल ह्याचे काय कारण आहे त्याचा विचार करा

वरील कृतीवरून तुमच्या लक्षात आले असेल की केवळ स्पर्शाने एखाद्या वस्तूचे किंवा पदार्थांचे तापमान आपण अचूकपणे सांगू शकत नाही तसेच जास्त गरम किंवा थंड वस्तूस हात लावल्याने इजा होण्याची देखील शक्यता असते म्हणून तापमान मोजण्यासाठी आपल्याला उपकरणाची गरज भासते तापमापी (Thermometer) हे तापमान मोजण्यासाठीचे उपकरण आहे तुम्ही मागील इयत्तेत तापमापीबद्दल वाचले आहे या पाठात आपण तापमापीच्या रचनेविषयी जाणून घेणार आहोत



थोडे आठवा.

स्थितिज ऊर्जा व गतिज ऊर्जा म्हणजे काय?

उष्णता व तापमान (Heat and temperature): उष्णता व तापमान ह्यात काय फरक आहे? पदार्थ हा अणूंपासून बनलेला असतो हे आपल्याला माहीत आहे पदार्थातील अणू सतत गतिशील असतात त्यांच्या गतिज ऊर्जेचे एकूण प्रमाण हे त्या पदार्थातील उष्णतेचे मापक असते तर तापमान हे अणूंच्या सरासरी गतिज ऊर्जेवर अवलंबून असते दोन वस्तूंतील अणूंची सरासरी गतिज ऊर्जे समान असल्यास त्यांचे तापमान समान असते

आकृती 14 3 'अ' व 'ब' मध्ये अधिक तापमान व त्यापेक्षा कमी तापमानाच्या वायूंतील अणूंची गती क्रमशः दाखविली आहे अणूंना जोडून दर्शविलेल्या बाणांची दिशा व लांबी अनुक्रमे अणूंच्या वेगाची दिशा व परिमाण दर्शवितात उष्ण वायूतील अणूंचा वेग थंड वायूतील अणूंच्या वेगापेक्षा अधिक आहे



14.3 वायू व स्थायूमधील अणूंची गती

आकृती 'क' मध्ये स्थायु वस्तृतील अणुंचा वेग बाणांदवारे दाखविला आहे स्थायूतील अणू त्यांच्यामधील परस्पर बलाने बांधलेली असतात व त्यामुळे आपल्या स्थानावरून विस्थापित होत नाहीत उष्णतेमुळे आपल्या स्थिर जागेवरच ते आंदोलित होतात जितके स्थायूचे तापमान अधिक तितका त्यांचा दोलन वेग अधिक असतो

समजा अ व ब ह्या एकाच पदार्थापासून बनलेल्या दोन वस्तू आहेत अ चे वस्तुमान ब च्या वस्तुमानाच्या दुप्पट आहे म्हणजेच अ मधील अणूंची संख्या ही ब मधील अणूंच्या संख्येच्या दृप्पट आहे जरी अ व ब चे तापमान समान असले, म्हणजे त्यातील अणूंची सरासरी गतिज ऊर्जा समान असली तरी अ मधील अणूंची एकूण गतिज ऊर्जा ब मधील अणूंच्या एकूण गतिज ऊर्जेपेक्षा दुप्पट असेल म्हणजेच जरी अ व ब चे तापमान समान असले तरीही अ मधील उष्णता ही ब मधील उष्णतेपेक्षा दुप्पट असेल



करू<mark>न पहा</mark> 1 एकाच आकाराची दोन (अ व ब) स्टीलची भांडी घ्या

- 2 अ मध्ये थोडे पाणी भरा व ब मध्ये त्याच्या दुप्पट पाणी भरा दोन्ही भांड्यातील पाण्याचे तापमान समान आहे हे सुनिश्चित करा
- 3 एक स्पिरीट दिवा घेऊन अ व ब मधील पाण्याचे तापमान  $10~{}^{0}\mathrm{C}$  ने वाढवा दोन्ही भांड्यातील तापमान वाढविण्यासाठी तुम्हांला सारखाच वेळ लागला का?

ब मधील पाण्याचे तापमान वाढविण्यास तुम्हांला अधिक वेळ लागला असेल म्हणजेच समान तापमान वाढीसाठी तुम्हांला ब ला अधिक उष्णता द्यावी लागली अर्थात अ व ब मधील पाण्याचे तापमान समान असून देखील ब मधील पाण्यातील उष्णता ही अ मधील पाण्यातील उष्णतेपेक्षा अधिक असेल तापमान मोजण्यासाठी सेल्सियस (°C), फॅरेनहाईट  $({}^{0}F)$  व केल्व्हीन (K) ही एकके वापरतात केल्व्हीन हे एकक शास्त्रीय प्रयोगांमध्ये वापरतात तर इतर दोन्ही एकके दैनंदिन व्यवहारात वापरतात या तिन्हींतील संबंध खालील सूत्राने दाखवता येतो

$$\frac{(F-32)}{9} = \frac{C}{5}$$
 ----(1)

$$K = C + 273 \ 15$$
 ----(2)

शेजारील तक्त्यात काही विशिष्ट तापमाने सेल्सिअस, फॅरेनहाईट व केल्व्हीन या तीन एककांत दिली आहेत ती वरील सूत्राप्रमाणे आहेत हे पडताळून पहा व रिकाम्या जागी योग्य त्या किमती लिहा

वर्णन	$^{0}\mathrm{F}$	°C	K
पाण्याचा उत्कलन बिंदू	212	100	373
पाण्याचा गोठण बिंदू	32	0	273
कक्ष तापमान	72	23	296
पाऱ्याचा उत्कलन बिंदू		356 7	
पाऱ्याचा गोठण बिंदू		-38 8	

## सोडवलेली उदाहरणे

उदाहरण 1. 68 °F हे तापमान सेल्सिअस व केल्व्हीन या एककांत किती असेल?

**दिलेल:** फॅरेनहाईट मधील तापमान = F = 68

सेल्सियस मधील तापमान = C = ?, केल्व्हिनमधील तापमान = K = ?

सूत्र (1) प्रमाणे, 
$$\frac{(F-32)}{9} = \frac{C}{5}$$

$$\frac{(68-32)}{9} = \frac{C}{5}$$

$$C = 5 \text{ x} \frac{36}{9} = 20 \, ^{\circ}\text{C}$$
 ; सूत्र (2) प्रमाणे  $K = C + 273 \, 15$ 

$$K = 20 + 273 \ 15 = 293 \ 15 \ K$$

सेल्सिअसमधील तापमान = 20 °C व केल्व्हिनमधील तापमान = 293 15 K

उदाहरण 2. कोणते तापमान सेल्सिअस व फॅरेनहाईट या दोन्ही एककांत समान असेल?

**दिलेल:** सेल्सिअसमधील तापमान C असले तर व फॅरेनहाईटमधील तापमान F हे तेवढेच असेल म्हणजे F=C

सूत्र (1) प्रमाणे, 
$$(F-32)$$
 =  $C$  5

अर्थात, 
$$\frac{(C-32)}{9} = \frac{C}{5}$$

$$(C-32) \times 5 = C \times 9$$

$$5 \text{ C} - 160 = 9 \text{ C}$$

$$4 C = -160$$

C = -40  $^{\circ}C = -40$   $^{\circ}F$  सेल्सिअसमधील व फॅरेनहाईटमधील तापमान -40  $^{\circ}$  असताना समान असतील

तापमापी (Thermometer): घरी कोणाला ताप आला असताना वापरलेली तापमापी तुम्ही पाहिली असेल त्या तापमापीला वैद्यकीय तापमापी म्हणतात याशिवाय इतर प्रकारच्या तापमापी वेगवेगळ्या मापनासाठी वापरल्या जातात प्रथम साधारण तापमापीच्या कार्याविषयी माहित करून घेऊ

आकृती 14 4 अ मध्ये एका तापमापीचे चित्र दाखिवले आहे तापमापीत एक काचेची अरुंद नळी असते जिच्या एका टोकाकडे एक फुगा असतो नळीत पूर्वी पारा भरलेला असायचा परंतु, पारा आपल्यासाठी हानिकारक असल्याने त्याऐवजी आता अल्कोहोल वापरले जाते नळीची उरलेली जागा निर्वात असून नळीचे दुसरे टोक बंद केलेले असते ज्या वस्तूचे तापमान मोजायचे असते त्या वस्तूच्या संपर्कात तापमापीचा फुगा काही काळ ठेवला जातो त्यामुळे त्याचे तापमान वस्तूच्या तापमाना एवढे होते वाढलेल्या तापमानामुळे अल्कोहोलचे प्रसरण होते व नळीतील त्याची पातळी वाढते अल्कोहोलच्या प्रसरणाचे गुणधर्म वापरून (याची चर्चा या पाठात पुढे केली आहे) त्याच्या नळीतील पातळीवरून तापमान जाणून घेता येते व त्याप्रमाणे तापमापीची नळी चिन्हांकित केलेली असते

आकृती 14 4 ब मध्ये वैद्यकीय तापमापी दाखिवली आहे एका निरोगी मानवी शरीराचे तापमान 37 °C असते, त्यामुळे वैद्यकीय तापमापीत सुमारे 35 °C ते 42 °C या दरम्यान तापमान मोजता येते आजकाल वैद्यकीय उपयोगासाठी वरील प्रकारच्या तापमापीऐवजी डिजिटल तापमापी वापरली जाते ही आकृती 14 4 क मध्ये दाखिवली आहे यात तापमान मोजण्यासाठी, उष्णतेमुळे होणारे द्रवाचे प्रसरण न वापरता एक संवेदक

(sensor) वापरला जातो, जो शरीरातून निघणाऱ्या उष्णतेचे व त्यावरून तापमानाचे थेट मापन करू शकतो

प्रयोगशाळेत वापरली जाणारी तापमापी वरील आकृती 14 4 अ प्रमाणेच असते परंतु, त्याचा तापमान मोजण्याचा आवाका मोठा असू असतो त्याद्वारे 40 °C ते 110 °C मधील, किंवा त्याहूनही कमी किंवा अधिक तापमान मोजता येते दिवसभरातील किमान व कमाल तापमानाचे मापन करण्यासाठी एक विशिष्ट प्रकारची तापमापी वापरतात ज्यास कमाल-किमान तापमापी म्हणतात ही आकृती 14 4 ड मध्ये दाखविली आहे



14.4 विविध तापमापी

एखादी उष्ण वस्तू व थंड वस्तू एकमेकांच्या संपर्कात ठेवली असता त्या दोन्हींत उष्णतेची देवाणघेवाण होते उष्ण वस्तू उष्णता देते व थंड वस्तू ती शोषते यामुळे उष्ण वस्तूचे तापमान कमी होते तर थंड वस्तूचे तापमान वाढते, अर्थात उष्ण वस्तूतील अणूंची गतिज ऊर्जा कमी होत जाते तर थंड वस्तूतील अणूंची गतिज ऊर्जा वाढत जाते एक स्थिती अशी येते की त्यावेळी दोन्ही अणूंची सरासरी गतिज ऊर्जा समान होते, म्हणजेच त्यांचे तापमान देखील समान होते

विशिष्ट उष्मा (Specific heat) : पदार्थाचा विशिष्ट उष्मा हा एकक वस्तुमानाच्या पदार्थाचे तापमान एक अंशाने वाढिवण्यासाठी लागणारी उष्णता असते ह्यास 'c' या चिन्हाने दर्शवितात याचे SI मधील एकक  $J/(kg\ ^{\circ}C)$  व cgs मधील एकक  $cal/(gm\ ^{\circ}C)$  हे असते विशिष्ट उष्मा c व वस्तुमान m असलेल्या वस्तूचे तापमान  $T_{i}$  पासून  $T_{f}$  पर्यंत वाढवायचे असल्यास त्यास Q उर्जा द्यावी लागेल ही वस्तूचे वस्तुमान, विशिष्ट उष्मा व तापमानवाढीवर अवलंबून असते ही आपण खालील सूत्राप्रमाणे लिहू शकतो

$$Q = m \times c \times (T_f - T_i) - - - - (3)$$

वेगवेगळ्या पदार्थांचा विशिष्ट उष्मा वेगवेगळा असतो पुढील इयत्तांत ह्याबद्दल आपण अधिक जाणून घेणार आहोत पुढील तक्त्यात काही वस्तूंचा विशिष्ट उष्मा दिला आहे

पदार्थ	विशिष्ट उष्मा	पदार्थ	विशिष्ट उष्मा
	cal /(gm °C)		cal /(gm °C)
ॲल्युमिनियम	0 21	लोखंड	0 11
अल्कोहोल	0 58	तांबे	0 09
सुवर्ण	0 03	पारा	0 03
हायड्रोजन	3 42	पाणी	1 0

कॅलरीमापी (Calorimeter) : आपण पाहिले की वस्तूचे तापमान मोजण्यासाठी तापमापी वापरली जाते वस्तूतील उष्णता मोजण्यासाठी कॅलरीमापी हे उपकरण वापरले जाते या उपकरणाद्वारे एखाद्या रासायनिक किंवा भौतिक प्रक्रियेमध्ये बाहेर पडणाऱ्या किंवा शोषित होणाऱ्या उष्णतेचे मापन आपण करू शकतो आकृती 14 5 मध्ये एक कॅलरीमापी दाखविली आहे यात एखाद्या धर्मास फ्लास्कप्रमाणेच आत व बाहेर अशी दोन भांडी असतात ज्यामुळे आतील भांड्यात ठेवलेल्या वस्तूंतील उष्णता आतून बाहेर जाऊ शकत नाही व तसेच उष्णता बाहेरून आत देखील येऊ शकत नाही महणजे आतील भांडे व त्यातील वस्तू सभोवतालापासून औष्णिकदृष्ट्या अलिप्त ठेवल्या जातात हे भांडे तांब्याचे असते यात तापमान मोजण्यासाठी एक तापमापी व द्रव ढवळण्यासाठी एक कांडी बसवलेली असते



- 1 ताप आल्यावर आई लगेच कपाळावर थंड पाण्याच्या पट्ट्या का ठेवते?
- 2 कॅलरीमापी तांब्याची का बनवतात?

कॅलरीमापीत एका स्थिर तापमानाचे पाणी ठेवलेले असते म्हणजे पाण्याचे व आतील भांड्याचे तापमान समान असते त्यात एखादी उष्ण वस्तू टाकल्यास ती वस्तू, पाणी व आतील भांडे यांत उष्णतेची देवाणघेवाण होते व त्यामुळे त्यांचे तापमान समान होते कॅलरीमापीतील आतील भांडे व त्यातील पदार्थ हे सभोवतालच्या इतर सर्व वस्तूंपासून व वातावरणापासून औष्णिकदृष्ट्या अलिप्त ठेवलेले असल्याने उष्ण वस्तूने दिलेली एकूण उष्णता व पाण्याने व कॅलरीमापीने ग्रहण केलेली एकूण उष्णता ही समान असते

ह्याचप्रमाणे आपण कॅलरीमापीत उष्ण वस्तूच्या ऐवजी थंड वस्तू टाकली असता, ती वस्तू पाण्यातून उष्णता ग्रहण करेल व तिचे तापमान वाढेल पाण्यातील व कॅलरीमापीतील उष्णता कमी होईल व त्यांचे तापमान कमी होईल

समजा, कॅलरीमापीच्या आतील भांड्याचे वस्तुमान ' $m_{\rm C}$ ' व तापमान ' $T_{\rm I}$ ' आहेत व त्यात भरलेल्या पाण्याचे वस्तुमान ' $m_{\rm W}$ ' आहे पाण्याचे तापमान कॅलरीमापीच्या तापमाना एवढेच म्हणजे ' $T_{\rm I}$ ' असेल त्यात आपण ' $m_{\rm O}$ ' वस्तुमान व ' $T_{\rm O}$ ' तापमान असलेली वस्तू टाकली  $T_{\rm O}$  हे  $T_{\rm I}$  पेक्षा अधिक असल्यास ती वस्तू उष्णता पाण्याला व कॅलरी मापीला देईल व लवकरच तिन्हींचे तापमान समान होईल



या अंतिम तापमानास आपण ' $T_F$ ' म्हणूया वस्तूने दिलेली एकूण उष्णता ( $Q_O$ ) ही पाण्याने ग्रहण केलेली उष्णता ( $Q_W$ ) व कॅलरीमापीने ग्रहण केलेल्या उष्णता ( $Q_C$ ) यांच्या बेरजे एवढी असेल हे समीकरण आपण पृढीलप्रमाणे लिह शकतो

$$Q_{0} = Q_{W} + Q_{C} ----- (4)$$

वर पाहिल्याप्रमाणे,  $Q_{_{\rm O}}$ ,  $Q_{_{\rm W}}$  व  $Q_{_{\rm C}}$  हे वस्तुमान, तापमानातील बदल, म्हणजेच  $\Delta T$  (डेल्टा टी) व पदार्थांचा विशिष्ट उष्मा यांवर अवलंबून असते कॅलरीमापीच्या पदार्थाचा, पाण्याचा व गरम वस्तूच्या पदार्थाचा विशिष्ट उष्मा क्रमशः  $C_{_{\rm C}}$ ,  $C_{_{\rm W}}$  व  $C_{_{\rm O}}$  असल्यास, सूत्र (3) वापरून,

सर्व तापमानांचे व वस्तुमानांचे मापन आपण करू शकतो तसेच पाण्याचा व कॅलरीमापीचा, म्हणजेच तांब्याचा विशिष्ट उष्मा माहित असल्यास वस्तूच्या पदार्थाचा विशिष्ट उष्मा आपण सूत्र (5) वापरून काढू शकतो याबद्दल अधिक खोलात आपण पुढील इयत्तांत शिकणार आहोत

## सोडवलेली उदाहरणे

उदाहरण : समजा कॅलरीमापी, त्यात असलेले पाणी व त्यात टाकलेली तांब्याची उष्ण वस्तू यांचे वस्तुमान समान आहे उष्ण वस्तूचे तापमान  $60\,^{\circ}$ C व पाण्याचे तापमान  $30\,^{\circ}$ C आहे तांब्याचा व पाण्याचा विशिष्ट उष्मा क्रमशः  $0\,09\,\mathrm{cal}$  / (gm  $^{\circ}$ C) व  $1\,\mathrm{cal}$  / (gm  $^{\circ}$ C) आहे पाण्याचे अंतिम तापमान किती असेल?

दिलेले : 
$$m_o = m_w = m_c$$
,  $= m$ ,  $T_i = 30$  °C,  $T_o = 60$  °C  $T_f = ?$  सूत्र (4) वरून  $m \times (60 - T_f) \times 0.09$   $= m \times (T_f - 30) \times 1 + m \times (T_f - 30) \times 0.09$   $\therefore (60 - T_f) \times 0.09 = (T_f - 30) \times 1.09$   $60 \times 0.09 + 30 \times 1.09 = (1.09 + 0.09) T_f$   $T_f = 32.29$  °C पाण्याचे अंतिम तापमान 32.29 °C असेल

## उष्णतेचे परिणाम (Effects of heat)

आपण मागील इयत्तांमध्ये उष्णतेचे पदार्थांवर होणारे दोन परिणाम पाहिले आहेत: 1 आकुंचन/प्रसरण 2 अवस्थांतरण या पाठात आपण प्रसरणाविषयी अधिक जाणून घेणार आहोत अवस्थांतराविषयी तुम्ही पुढील इयत्तेत अधिक माहिती घेणार आहात

## प्रसरण (Expansion)

कोणत्याही पदार्थास उष्णता दिली गेल्यास त्याचे तापमान वाढते तसेच त्याचे प्रसरण होते होणारे प्रसरण त्याच्या तापमान वाढीवर अवलंबून असते उष्णतेमुळे स्थायू, द्रव व वायू अशा सर्व पदार्थांचे प्रसरण होते

## स्थायूचे प्रसरण (Expansion of solids)

एकरेषीय प्रसरण (Linear Expansion) : स्थायूचे एकरेषीय प्रसरण म्हणजे तापमानवाढीमुळे तार किंवा सळईच्या रूपातील स्थायूच्या लांबीत होणारी वाढ

एका  $l_{_1}$  लांबीच्या सळईचे तापमान  $T_{_1}$  पासून  $T_{_2}$  पर्यंत वाढिविल्यास तिची लांबी  $l_{_2}$  होते सळईच्या लांबीतील वाढ ही सळईची मूळ लांबी व केलेल्या तापमानवाढीच्या ( $\Delta T = T_{_2} - T_{_1}$ ) अनुपातात असते म्हणजे लांबीतील बदल खालीलप्रमाणे लिहिता येतो

लांबीतील बदल  $\alpha$  मूळ लांबी x तापमानातील बदल

$$\therefore l_2 - l_1 \propto l_1 \times \Delta T$$

$$\therefore l_2 - l_1 = \lambda \times l_1 \times \Delta T - - - - - - (6)$$

:. 
$$l_2^2 = l_1^{-1} (1 + \lambda \Delta T)$$
 -----(7)

यथे  $\hat{\lambda}$  (लॅम्बडा) हा स्थिरांक असून त्यास पदार्थाचा एकरेषीय प्रसरणांक म्हणतात.

वेगवेगळ्या पदार्थांचे प्रसरणांक वेगवेगळे असतात वरील सूत्रावरून दिसून येते की, दोन पदार्थांच्या समान लांबीच्या सळयांचे तापमान समान परिमाणाने वाढिवले असता (म्हणजे  $\Delta T$  समान असता) ज्या पदार्थाचा प्रसरणांक जास्त तो पदार्थ जास्त प्रसरण पावेल व त्या पदार्थांच्या सळईची लांबी जास्त वाढेल

वरील सूत्रावरून आपण पदार्थाचा प्रसरणांक पुढीलप्रमाणे लिहू शकतो

$$\lambda = (l_2 - l_1) / (l_1 \Delta T) -----(8)$$

म्हणजेच प्रसरणांक हा एकक लांबीच्या सळईचे तापमान एककाने वाढविल्यावर तिच्या लांबीत होणारा बदल दर्शवितो वरील सूत्रावरून दिसून येते, की प्रसरणांकाचे एकक तापमानाच्या एककाच्या व्यस्त, म्हणजेच 1/°C असते खालील तक्त्यात काही पदार्थांचे प्रसरणांक दिलेले आहेत

स्थायू पदार्थ	एकरेषीय प्रसरणांक x 10 ⁶ (1/°C)	द्रव पदार्थ	घनीय प्रसरणांक x 10³ (1/°C)	वायू पदार्थ	प्रसरणांक x 10 ³ (1/°C)
तांबे	17	अल्कोहोल	1 0	हायड्रोजन	3 66
ॲल्युमिनिअम	23 1	पाणी	0 2	हिलीयम	3 66
लोह	11 5	पारा	0 2	नायट्रोजन	3 67
चांदी	18	क्लोरोफोर्म	1 3	सल्फर डाय ऑक्साईड	3 90

14.6 : काही पदार्थांचे प्रसरणांक

# सोडवलेली उदाहरणे

उदाहरण : एका अर्धा मीटर लांबीच्या स्टीलच्या सळईचे तापमान  $60~^{\circ}$ C ने वाढिविल्यास तिच्या लांबीत किती वाढ होईल? स्टीलचा एकरेषीय प्रसरणांक =  $0~000013~1/^{\circ}$ C आहे

दिलेले: सळईची मूळ लांबी =  $0.5~\mathrm{m}$ , तापमानातील वाढ =  $60~\mathrm{^{\circ}C}$ , लांबीतील वाढ =  $\Delta$  l = ?

सूत्र (6) वापरून  $\Delta l = \lambda \times l_1 \times \Delta T = 0~000013 \times 0~5 \times 60 = 0~00039~m$  लांबीतील वाढ = 0 039 cm

स्थायूचे प्रतलीय प्रसरण (Areal expansion of solids) : स्थायूच्या एकरेषीय प्रसरणाप्रमाणेच स्थायूच्या पत्र्याचे तापमान वाढविल्यावर त्याचे क्षेत्रफळ वाढते यास स्थायूचे प्रतलीय प्रसरण म्हणतात ते खालील सूत्राने दिले जाते

$$A_2 = A_1 (1 + \sigma \Delta T)$$
----(9)

येथे  $\Delta T$  हा तापमानातील बदल असून  $A_1$  व  $A_2$  ही पत्र्याची आरंभी व अंतिम क्षेत्रफळे आहेत  $\sigma$  (सिग्मा) हा पदार्थाचा दिवधाती किंवा प्रतलीय प्रसरणांक आहे.

स्थायूचे घनीय प्रसरण (Volumetric expansion of solids): पत्र्याप्रमाणेच स्थायूच्या त्रिमितीय तुकड्याला उष्णता दिली असता त्याचे सर्व बाजूने प्रसरण होते व त्याचे आकारमान वाढते यास स्थायूचे घनीय प्रसरण म्हणतात या वाढीचे सूत्र आपण पुढीलप्रमाणे लिहू शकतो

 $V_2=V_1(1+eta\Delta T)$ -----(10) येथे  $\Delta T$  हा तापमानातील बदल असून  $V_2$  व  $V_1$  ही स्थायूची अंतिम व आरंभीची आकारमाने आहेत व eta (बीटा) हा पदार्थाचा घनीय प्रसरणांक आहे



# माहीत आहे का तुम्हांला?

तुम्ही रेल्वेचे रूळ पाहिले आहेत काय? ते लांबच्या लांब सलग नसतात काही ठराविक अंतरावर त्यात थोडी फट ठेवली जाते म्हणजे तापमानातील बदलाप्रमाणे त्यांची लांबी कमी किंवा जास्त होण्यास वाव असतो ही फट ठेवली नाही तर उष्णतेने प्रसरण झालेले रूळ वाकडे होतील व अपघात होण्याचा धोका उद्भवेल



रेल्वेच्या रुळांप्रमाणेच, प्रसरणामुळे उन्हाळ्यात पुलांची लांबी वाढण्याची देखील शक्यता असते डेन्मार्कमधील  $18~\mathrm{km}$  लांबीच्या The great belt bridge याची लांबी उन्हाळ्यात  $4.7~\mathrm{m}$  ने वाढते म्हणून पुलांच्या रचनेत देखील हे प्रसरण सामावून घेण्यासाठी तरतूद केलेली असते

## द्रवाचे प्रसरण (Expansion of liquids)

द्रवाला ठराविक आकार नसतो पण त्यांना ठराविक आकारमान मात्र असते म्हणून आपण द्रवाचा घनीय प्रसरणांक वरील सूत्राप्रमाणे लिहू शकतो

$$V_2 = V_1 (1 + \beta \Delta T)$$
----(11)

येथे  $\Delta T$  हा तापमानातील बदल असून  $V_2$  व  $V_1$  ही द्रवाची अंतिम व आरंभीची आकारमाने आहेत व  $\beta$  हा द्रवाचा प्रसरणांक आहे



#### जरा डोके चालवा.

द्रवाच्या प्रसरणाचा दैनंदिन जीवनात होणारा कोणता उपयोग तुम्हांला माहित आहे?

उष्णतेचा पाण्यावर होणारा परिणाम हा इतर द्रवांवर होणाऱ्या परिणामांपेक्षा थोडा भिन्न असतो याला पाण्याचे असंगत आचरण म्हणतात ह्याविषयी आपण पुढील इयत्तांत शिकणार आहोत

# वायूचे प्रसरण (Expansion of gases)

वायूला ठराविक आकारमानहीं नसते वायूला उष्णता दिल्यावर त्याचे प्रसरण होते, परंतु वायू एका ठराविक आकाराच्या बाटलीत बंदिस्त केलेला असल्यास त्याचे आकारमान वाढू शकत नाही व त्याचा दाब वाढतो हे आकृती 14 7 मध्ये दाखविले आहे



14.7 उष्णतेचा वायूवरील परिणाम

आकृती 14 7 पाहून खालील प्रश्नांची उत्तरे शोधा

- 1 घनता = वस्तुमान/आकारमान या सूत्रानुसार बंदिस्त बाटलीतील वायूचे तापमान वाढविल्यावर त्याच्या घनतेवर काय परिणाम होईल?
- 2 बाटली बंदिस्त नसल्यास व त्यात एक सरकणारा दट्ट्या बसविलेला असल्यास वायूच्या घनतेवर काय परिणाम होईल?
  - त्यामुळे दाब स्थिर ठेवून वायूचे प्रसरण मोजले जाते अशा प्रसरणांकास स्थिर दाब प्रसरणांक म्हणतात तो खालील सूत्राने दिला जातो

 $V_2 = V_1 (1 + \beta \Delta T)$ -----(12) येथे  $\Delta T$  हा तापमानातील बदल असून  $V_2$  व  $V_1$  ही वायूची समान दाबावरील अंतिम व आरंभीची आकारमाने आहेत व  $\beta$  हा वायूचा स्थिर दाब प्रसरणांक आहे



वायूस उष्णता दिल्यास त्याची घनता कमी होते याचा उपयोग चित्र 14 1 मधील कुठल्या चित्रात दिसतो?

#### स्वाध्याय

#### 1. A. माझी जोडी कोणाशी?

# **'अ' गट**अ. निरोगी मानवी शरीराचे तापमान 296 K आ. पाण्याचा उत्कलन बिंदू 98.6 °F इ. कक्ष तापमान 0 °C ई. पाण्याचा गोठण बिंदू 212 °F

#### B. कोण खरं बोलतोय?

- अ. पदार्थाचे तापमान ज्यूलमध्ये मोजतात.
- आ. उष्णता उष्ण वस्तूकडून थंड वस्तूकडे वाहते.
- इ. उष्णतेचे एकक ज्यूल आहे.
- ई. उष्णता दिल्याने वस्तू आकुंचन पावतात.
- उ. स्थायूचे अणू स्वतंत्र असतात.
- ऊ. उष्ण वस्तूच्या अणूंची सरासरी गतिज ऊर्जा थंड वस्तूंच्या अणूंच्या सरासरी गतिज ऊर्जेपेक्षा कमी असते.

#### C. शोधाल तर सापडेल.

- अ. तापमापी हे उपकरण ..... मोजण्यास वापरतात.
- आ. उष्णता मोजण्यास ..... हे उपकरण वापरतात.
- इ. तापमान हे वस्तूतील अणूंच्या ..... गतिज ऊर्जेचे प्रमाण असते.
- ई. एखाद्या वस्तूतील उष्णता ही त्यातील अणूंच्या ......गतिज ऊर्जेचे प्रमाण असते.
- 2. निशिगंधाने चहा बनविण्यासाठी चहाचे घटक टाकून भांडे सौरचुलीत ठेवले. शिवानीने तसेच भांडे गॅसवर ठेवले. कोणाचा चहा लवकर तयार होईल व का?

#### 3. थोडक्यात उत्तरे द्या.

- अ. वैद्यकीय तापमापीचे वर्णन करा. त्यात व प्रयोगशाळेत वापरल्या जाणाऱ्या तापमापीत कोणता फरक असतो?
- आ. उष्णता व तापमानात काय फरक आहे ? त्यांची एकके कोणती ?
- इ. कॅलरीमापीची रचना आकृतीसह समजवा.
- ई. रेल्वेच्या रुळांत ठराविक अंतरावर फट का ठेवली जाते हे स्पष्ट करा.
- वायूचा, व द्रवाचा प्रसरणांक म्हणजे काय हे सूत्रांद्वारे स्पष्ट करा.

#### 4. खालील उदाहरणे सोडवा.

अ. फॅरेनहाईट एककातील तापमान किती असल्यास ते सेल्सिअस एककातील तापमानाच्या दुप्पट असेल?

(उत्तर : 320 °F)

आ. एक पूल 20 m लांबीच्या लोखंडाच्या सळईने तयार केला आहे. तापमान 18 °C असताना दोन सळयांत 4 cm अंतर आहे. किती तापमानापर्यंत तो पूल सुस्थितीत राहील?

(उत्तर : 35.4 ⁰C)

इ. आयफेल टॉवरची उंची  $15\,^{\circ}$ C वर  $324\,\mathrm{m}$  असल्यास, व तो टॉवर लोखंडाचा असल्यास,  $30\,^{\circ}$ C ला त्याची उंची किती  $\mathrm{cm}$  ने वाढेल?

(उत्तर: 5.6 cm)

ई. अ व ब पदार्थांचा विशिष्ट उष्मा क्रमशः c व 2c आहे. अ ला Q व ब ला 4Q एवढी उष्णता दिली गेल्यास त्यांच्या तापमानात समान बदल होतो. जर अ चे वस्तुमान m असेल तर ब चे वस्तुमान किती असेल?

(उत्तर: 2 m)

3. एक  $3~{\rm kg}$  वस्तुमानाची वस्तू 600 कॅलरी ऊर्जा प्राप्त करते तेव्हा तिचे तापमान  $10~{\rm ^{\circ}C}$  पासून  $70~{\rm ^{\circ}C}$  पर्यंत वाढते. वस्तूच्या पदार्थाचा विशिष्ट उष्मा किती आहे?

#### उपक्रम:

द्विधातू पट्टी (bimetallic strip) बद्दल माहिती मिळवा व ती वापरून अग्निसूचक यंत्र कसा बनवतात याबद्दल वर्गात चर्चा करा.

(उत्तर : 0.0033 cal /(gm ⁰C))





ध्वनी कसा निर्माण होतो ?



## ध्वनीची निर्मिती (Production of Sound)

एखादी वस्तू कंप पावत असेल तर त्यापासून ध्वनीची निर्मिती होऊ शकते हे आपण शिकलो आहोत अशा कंपनामुळे ध्वनी कसा निर्माण होतो हे आपण नादकाट्याचे (Tuning Fork) उदाहरण घेऊन समजून घेऊ या नादकाट्याचे चित्र खालील आकृती 15 1 मध्ये दाखविले आहे

एक आधार व दोन भुजा असलेला, धातूपासून बनलेला हा नादकाटा आहे

आकृती  $15\ 2$  (अ) मध्ये स्थिर नादकाटा दाखवला आहे नादकाट्याच्या सभोवतालच्या हवेची स्थिती दाखविण्यासाठी उभ्या रेषांचा वापर केला आहे इथे उभ्या रेषांमधील अंतर समान आहे याचा अर्थ हवेतील वायूचे रेणू एकमेकांपासून सरासरी सारख्याच अंतरावर आहेत आणि त्यामुळे हवेचा सरासरी दाब A, B आणि C या तीनही ठिकाणी सारखाच आहे

आधाराच्या मदतीने नादकाटा कडक रबरी तुकड्यावर आपटल्यावर भुजा कंप पावायला सुरुवात होते म्हणजेच त्यांची मागे-पुढे अशी नियतकालिक (periodic) हालचाल सुरू होते या हालचालीमुळे काय होते ते आता टप्प्याटप्प्याने पाहूया

कंप पावताना, आकृती 15 2 (ब) मध्ये दाखविल्याप्रमाणे, नादकाट्याच्या भुजा एकमेकांपासून दूर गेल्यास भुजांलगतची बाहेरील हवा दाबली जाते व तेथील हवेचा दाब तुलनेने वाढतो

आकृतीत हवेतील भाग A याठिकाणी अशी उच्च दाबाची स्थिती निर्मिती होते उच्च दाब आणि उच्च घनतेच्या या भागाला संपीडन (Compression) म्हणतात कंपनाच्या पुढील स्थितीत नादकाट्याच्या भुजा एकमेकांच्या जवळ आल्यास, आकृती 15 2 (क) मध्ये दाखिवल्याप्रमाणे, भुजांलगतची बाहेरील हवा विरळ होते व तिथला (भाग A मधला) हवेचा दाब कमी होतो कमी दाब आणि कमी घनतेच्या या भागाला विरलन (Rarefaction) असे म्हणतात



15.2 : नादकाट्याद्वारे ध्वनीची निर्मिती

परंतु याच वेळेला आधीच्या संपीडन स्थितीतील हवेतील रेणूंनी (आकृती 15 2(ब), भाग A) आपली ऊर्जा पुढील भागातील रेणूंना (भाग B) दिल्यामुळे तेथील हवा संपीडन स्थितीत जाते (पहा आकृती 15 2(क), भाग B) भुजांच्या अशा प्रकारच्या सतत अतिशय वेगाने होणाऱ्या नियतकालिक हालचालीमुळे हवेत संपीडन व विरलन यांची मालिका निर्माण होते व नादकाट्यापासून दूरपर्यंत पसरत जाते यालाच आपण ध्वनी तरंग (sound wave) असे म्हणतो हे ध्वनीतरंग कानावर पडल्यास कानातील पडदा कंपित होतो व त्याद्वारे विशिष्ट संदेश मेंदूपर्यंत पोहोचून आपल्याला ध्वनी ऐकल्याची जाणीव होते



हवेत ध्वनीतरंग निर्माण झाल्यास हवा पुढे पुढे जाते की हवेचे रेणू जागच्या जागी पुढे-मागे होत राहून फक्त संपीडन व विरलन स्थिती पुढील हवेत निर्माण होत जाते? असे का होते ?



ध्वनी प्रसारण आणि माध्यम (Propagation of Sound and Medium): मागील इयत्तेमध्ये आपण शिकलो आहोत की हवा, पाणी किंवा स्थायूसारख्या एखाद्या माध्यमातून लहरींच्या रूपाने प्रवास करून ध्वनी आपल्या कानांपर्यंत पोहोचतो परंतु ध्वनीचा स्रोत आणि आपला कान यांच्यामध्ये याप्रकारचे माध्यम नसेल तर काय होईल ?

ध्वनीच्या निर्मितीसाठी आणि प्रसारणासाठी हवेसारख्या माध्यमाची आवश्यकता असते, हे प्रयोगाने सिद्ध करता येते प्रयोगाची रचना आकृती 15 3 मध्ये दाखिवली आहे या रचनेत काचेची एक हंडी (Bell jar) सपाट पृष्ठभागावर ठेवली आहे एका नळीमार्फत ही हंडी एका निर्वात पंपाला (Vacuum-pump) जोडली आहे निर्वात-पंपाच्या साहाय्याने आपण हंडीतील हवा बाहेर काढू शकतो आकृतीत दाखिवल्याप्रमाणे, हंडीमध्ये एक विद्युत-घंटी (Electric bell) असून तिची जोडणी हंडीच्या झाकणाद्वारे केलेली आहे

प्रयोगाच्या सुरवातीला निर्वात पंप बंद असताना काचेच्या हंडीत हवा असेल यावेळी, विद्युत घंटीची कळ दाबली असता, तिचा आवाज हंडीच्या बाहेर ऐकू येईल आता निर्वात-पंप सुरू केल्यास, हंडीतील हवेचे प्रमाण कमी कमी होत जाईल हवेचे प्रमाण जसे जसे कमी होईल, तशी तशी विद्युत-घंटीच्या आवाजाची पातळीही कमी कमी होत जाईल निर्वात पंप बऱ्याच वेळ चालू ठेवल्यास हंडीतील हवा खूपच कमी होईल अशा वेळी विद्युतघंटीचा आवाज अत्यंत क्षीण असा ऐकू येईल या प्रयोगावरून हे सिध्द होते की ध्वनीच्या निर्मितीसाठी आणि प्रसारणासाठी माध्यमाची आवश्यकता असते आपण जर हंडीतील हवा पूर्णपणे बाहेर काढू शकलो, तर विद्युतघंटीचा आवाज आपल्याला ऐकू येईल का ?



चंद्रावर गेलेले दोन अंतराळवीर अगदी एकमेकांच्या जवळ उभे राहून बोलले तरी त्यांना एकमेकांचे बोलणे ऐकू येणार नाही चंद्रावर हवा नाही ध्वनी प्रसारणासाठी आवश्यक माध्यम दोन अंतराळवीरांमध्ये नसल्याने त्यांच्यामध्ये माध्यमामार्फत होणारे ध्वनी प्रसारण होऊ शकत नाही यामुळे ते अंतराळवीर भ्रमणध्वनीसारखे तंत्रज्ञान वापरून एकमेकांशी संवाद साधतात भ्रमणध्वनीमध्ये वापरण्यात येणाऱ्या विशिष्ट लहरींना प्रसारणासाठी कुठल्याही माध्यमाची गरज नसते

## ध्वनी तरंगांची वारंवारिता (Frequency of Sound Waves)

आकृती 15 2 मध्ये नादकाट्याच्या कंपनामुळे हवेत संपीडन व विरलन कसे निर्माण होतात हे आपण पाहिले अधिक सुक्ष्म रीतीने पाहिल्यास हवेची घनता आणि दाबातील बदल खालील आकृती 15 4 मध्ये दाखविल्याप्रमाणे असेल कुठलीही वस्तू हवेत कंप पावल्यास हवेत अशा प्रकारचे ध्वनीतरंग निर्माण होतात



15.4 : ध्वनीतरंगातील विरलन आणि संपीडन यांची आवर्तने व हवेच्या दाबातील बदल

आकृती 15 4 मध्ये दाखविल्याप्रमाणे विरलन आणि संपीडन मिळून तरंगाचे एक आवर्तन (Cycle) होते एका सेकंदात नादकाट्याच्या भूजा जितक्या वेळा पढ़े-मागे होतील तितकी आवर्तने एका सेकंदात हवेत तयार होतील

एका सेकंदात हवेत (किंवा इतर माध्यमात) निर्माण होणाऱ्या एकूण आवर्तनांची संख्या म्हणजेच त्या ध्वनितरंगाची वारंवारिता (Frequency) वारंवारिता हर्ट्झ (Hz) या एककात मोजली जाते जर एका सेकंदात एक कंपन झाले तर त्या कंपनाची वारंवारिता 1 Hz एवढी असते उदाहरणार्थ, आकृतीत दाखिवलेला नादकाटा एका सेकंदात 512 वेळा कंप पावतो या नादकाट्याच्या कंपनामुळे एका सेकंदात 512 आवर्तने निर्माण होतील त्यामुळे त्यापासून निर्माण होणाऱ्या ध्वनीची वारंवारिता 512 Hz एवढी असेल एखादा नादकाटा किती वारंवारितने कंप पावेल हे त्याच्या भुजांचा आकार (लांबी, जाडी) आणि तो नादकाटा कोणत्या पदार्थापासून बनला आहे यांवर अवलंबून असते



काचेचे 6-7 ग्लास घ्या ते ओळीत मांडून, त्यांमध्ये क्रमाक्रमाने वाढत्या पातळीचे पाणी भरा एक पेन्सिल घेऊन त्यांच्यावर क्रमाक्रमाने आघात करा प्रत्येक ग्लासपासून निर्माण होणारा ध्वनी वेगवेगळा असेल असे का ?

प्रत्येक ग्लासावर आघात केल्यावर त्यात असलेल्या हवेच्या स्तंभात तरंग निर्माण होतात हवेच्या स्तंभाच्या उंचीनुसार या तरंगाची वारंवारिता बदलते प्रत्येक ग्लासात पाण्याची पातळी वेगवेगळी असल्याने त्यामधील हवेच्या स्तंभाची उंचीही वेगवेगळी असते यामुळे तो ग्लास कंप पावल्यावर निर्माण होणाऱ्या ध्वनीची वारंवारिता विशिष्ट असते त्यामुळे त्यांपासून निर्माण होणारा ध्वनीही वेगवेगळा असतो

#### जोड माहिती संप्रेषण तंत्रज्ञानाची

यू-ट्यूब वरून जलतरंगाचे व्हिडिओ डाऊनलोड करा व इ-मेलद्वारे तुमच्या मित्रांना पाठवा



ध्वनीची वारंवारिता मोजणारे ॲप (App) भ्रमणध्वनीवर उपलब्ध होऊ शकते आपल्या शिक्षकांच्या साहाय्याने त्याचा वापर करून वेगवेगळ्या ग्लासापासून निघणाऱ्या ध्वनीची वारंवारिता मोजा ग्लासातील हवेच्या स्तंभाची उंची आणि ध्वनीची वारंवारिता यांचा काही संबंध दिसतो का ? हे झाले तुमचे सोपे जलतरंग वाद्य ! वेगवेगळ्या आकाराची स्टीलची भांडी घेऊनही हा प्रयोग करता येईल का ?

## ध्वनी आणि संगीत (Sound and Music)

वरील कृतीतून हे समजते की ध्वनीतरंगांची वारंवारिता बदलली की निर्माण होणारा ध्वनी वेगवेगळा असतो ध्वनीतरंगांच्या वेगवेगळ्या वारंवारितेमुळे वेगवेगळ्या स्वरांची निर्मिती होते संगीतामध्ये स्वरनिर्मितीसाठी वेगवेगळ्या प्रकारच्या वाद्यांचा उपयोग केला जातो यामध्ये सतार, व्हायोलीन, गिटार यांसारख्या तंतुवाद्यांचा, त्याचप्रमाणे बासरी, सनई यांसारख्या फुंकवाद्यांचा वापर होतो गळ्यामधूनही वेगवेगळे स्वर निर्माण करता येतात

तंतुवाद्यांमध्ये वापरलेल्या तारांवरचा ताण कमी-जास्त करून तसेच तारेच्या कंप पावणाऱ्या भागाची लांबी बोटांनी कमी-जास्त करून कंपनांची वारंवारिता बदलली जाते यामुळे निरनिराळ्या स्वरांची निर्मिती होते

बासरीसारख्या फुंकवाद्यात बोटांनी बासरीवरची छिद्रे दाबून किंवा मोकळी करून, बासरीतील कंप पावणाऱ्या हवेच्या स्तंभाची लांबी कमी-जास्त केली जाते त्यामुळे कंपनाच्या वारंवारितेमध्ये बदल होऊन निरिनराळ्या स्वरांची निर्मिती होते याचप्रमाणे बासरीवादनासाठी वापरलेली फुंक बदलूनही वेगळ्या स्वरांची निर्मिती होते



# माहीत आहे का तुम्हांला?

मध्य सप्तकातील सा, रे, ग, म, प, ध, नि या सप्त सुरांच्या वारंवारिता काय आहेत ?

स्वर	वारंवारिता (Hz)
सा	256
रे	280
ग	312
म	346
प	384
ध	426
नि	480





वेगवेगळ्या स्वरांची निर्मिती करणारे ॲप (Sound note generator app) भ्रमणध्वनीवर उपलब्ध होऊ शकते आपल्या शिक्षकांच्या साहाय्याने त्याचा वापर करून वेगवेगळ्या स्वरांची निर्मिती करा

## मानवनिर्मित ध्वनी (Sound Produced by Human)

थोडे मोठ्याने बोला किंवा गाणे म्हणा किंवा मधमाशीसारखा गुंजारव काढा आणि आपल्या एका हाताची बोटे घशावर ठेवा तुम्हांला काही कंपने जाणवतात का ?

मानवामध्ये ध्वनी हा स्वरयंत्रामध्ये निर्माण होतो घास गिळताना आपल्या हाताची बोटे घशावर ठेवल्यास काहीसा हालणारा एक उंचवटा तुम्हांला जाणवेल हेच ते स्वरयंत्र (Larynx) आकृती 15 5 मध्ये दाखिवल्याप्रमाणे हे श्वासनिलकेच्या वरच्या बाजूस असते त्यामध्ये दोन स्वरतंतू (Vocal Cords) असतात या स्वरतंतूंमध्ये असलेल्या जागेतून हवा श्वासनिलकेत जाऊ शकते फुफ्फुसातील हवा जेव्हा या जागेतून जाते तेव्हा स्वरतंतू कंप पावतात व ध्वनीची निर्मिती होते स्वरतंतूंना जोडलेले स्नायू या तंतूंवरील ताण कमी जास्त करू शकतात स्वरतंतूंवरील ताण वेगवेगळा असल्यास निर्माण होणारा ध्वनीही वेगळा असतो

सायकलच्या निरुपयोगी ट्यूबपासून रबराचे दोन सारख्या आकाराचे तुकडे कापा दोन्ही तुकडे एकमेकांवर ठेवून त्यांची दोन टोके विरुद्ध बाजूस ताणा त्यांच्यामध्ये असलेल्या जागेतून फुंका ताणलेल्या रबराच्या तुकड्यांमधून हवा वाहू लागताच ध्वनी निर्माण होतो मानवी स्वरयंत्राचे कार्य अशाच प्रकारे चालते



15.5 : मानवी स्वरयंत्र

पुरुषांचे स्वरतंतू जवळपास 20 mm लांब असतात स्त्रियांमध्ये त्यांची लांबी 15 mm असते लहान मुलांमध्ये तर ते अजून लहान असतात यामुळेच पुरुष, स्त्रिया आणि लहान मुले यांचा आवाज वेगवेगळ्या पट्टीचा असतो



कुत्र्याचा भुंकण्याचा 'भो भो' असा आवाज मांजरीचा 'म्यावं म्यावं' असा आवाज काढा; परंतु हे आवाज काढताना स्वरतंतूंवर पडत असलेल्या ताणाकडेही लक्ष द्या हे दोन वेगवेगळे आवाज काढताना स्वरतंतूंवर पडत असलेला ताण बदलतो, हे तुम्हांला जाणवते का ?

# ध्वनिक्षेपकापासून ध्वनी निर्मिती

# (Sound generation by loudspeaker)

ध्वनिक्षेपकापासूनही आवाजाची निर्मिती होते हे तुम्हाला माहित आहे ध्वनिक्षेपकाची अंतर्गत रचना आडव्या छेदाच्या रूपात (Cross section) आकृती 15 6 मध्ये दाखिवली आहे यामध्ये एक कायमचुंबक (Permanent magnet) असतो त्याच्याभोवती गुंडाळलेल्या कुंतलातून (Coil) विद्युतप्रवाह प्रवाहित झाल्यास, त्यामुळेही चुंबकीय क्षेत्र तयार होते, हे तुम्ही मागील पाठात जाणले आहे

दोन चुंबक एकमेकांजवळ आणल्यास त्यांच्या स्थितीनुसार त्यांची हालचाल होते, हे तुम्ही पाहिलेच असेल अशाच प्रकारे, इथे कुंतलाद्वारे निर्माण झालेल्या चुंबकीय क्षेत्रानुसार ते कुंतल मागे-पुढे हलू लागते कुंतलाचे हे हलणे, म्हणजेच त्याची वारंवारिता आणि आयाम, त्यातून वाहणारा विद्युत प्रवाह कशाप्रकारे बदलत आहे, त्यावर अवलंबून असते याच कुंतलाला जोडलेल्या ध्वनिक्षेपकाच्या पडद्याची मागे पुढे हालचाल होवू लागते



15.6 ध्वनिक्षेपकाची अंतर्गत रचना

आपण यापूर्वी पाहिले आहे की, नादकाट्याच्या भुजांच्या मागे-पुढे होणाऱ्या हालचालीमुळे हवेत ध्वनीतरंग निर्माण होतात याचप्रकारे, येथे ध्वनिक्षेपकाच्या पडद्याच्या मागे-पुढे अशा होणाऱ्या हालचालीमुळे हवेत ध्वनीतरंग निर्माण होतात

ध्वनी निर्मिती करत असलेल्या एखाद्या ध्वनिक्षेपकाच्या पडद्याला हलकासा स्पर्श करून या पडद्याच्या कंपनांचा अनुभव तुम्ही घेऊ शकता

ध्वनिक्षेपकाचा वापर करून खूप मोठ्या पातळीचा आवाज निर्माण केला जाऊ शकतो म्हणून सार्वजनिक ठिकाणी ध्वनिक्षेपकाचा वापर केला जातो परंतु आपण मागील इयत्तेत शिकलो आहोत की ध्वनीची पातळी सुमारे 100 डेसिबेल पेक्षा जास्त असल्यास तो ध्वनी आपल्याला त्रासदायक ठरू शकतो म्हणूनच ध्वनिक्षेपकाची क्षमता जरी उच्च पातळीचा ध्वनी निर्माण करण्याची असली तरी त्यावर मर्यादा ठेवणे आवश्यक ठरते



भ्रमण ध्वनीवर ध्वनीची पातळी डेसिबेल या एककात मोजण्यासाठी ॲप उपलब्ध होऊ शकते त्याचा वापर करून, आपल्या शिक्षकांच्या सहाय्याने सार्वजनिक ठिकाणी वापरण्यात येत असलेल्या एखाद्या ध्वनिक्षेपकातून येणाऱ्या आवाजाची पातळी मोजून पाहा ध्वनिक्षेपकापासून वेगवेगळ्या अंतरावर उभे राहून आवाजाची पातळी मोजा ध्वनिक्षेपकापासून अंतर आणि आवाजाची पातळी यांचा काही संबंध तुम्हांला आढळतो



ध्वनी व ध्वनी निर्मितीच्या अभ्यास करताना निर्माण होणाऱ्या ध्वनीचा इतरांना त्रास होऊ नये याची आपण काळजी घेतली पाहिजे पर्यावरणाला हानी पोहोचवणाऱ्या व सामाजिक आरोग्य बिघडवणाऱ्या प्रमुख कारणांमध्ये ध्वनी प्रदूषणाचा समावेश होतो त्यामुळे ध्वनी प्रदूषण टाळण्यासाठी प्रयत्न केले पाहिजे

# स्वाध्याय

#### 1. रिकाम्या जागी योग्य शब्द भरा.

- अ. ध्वनी तरंगातील उच्च दाब आणि घनतेच्या भागाला ...... महणतात. तर कमी दाब व घनतेच्या भागाला ......महणतात.
- आ. ध्वनीच्या निर्मितीला माध्यमाची गरज .....
- इ. एका ध्वनीतरंगात एका सेकंदात तयार होणाऱ्या विरलन आणि संपीडन यांची एकूण संख्या १००० इतकी आहे. या ध्वनीतरंगाची वारंवारिता .............. Hz इतकी असेल.
- ई. वेगवेगळ्या स्वरांसाठी ध्वनी तरंगाची ..... वेगवेगळी असते.
- ध्वनिक्षेपकामध्ये ...... ऊर्जेचे रूपांतर ...... ऊर्जेमध्ये होते.

#### 2. शास्त्रीय कारणे सांगा.

- अ. तोंडाने वेगवेगळे स्वर काढताना स्वरतंतूंवरचा ताण बदलणे आवश्यक असते.
- आ. चंद्रावरील अंतराळवीरांचे बोलणे एकमेकांना प्रत्यक्ष ऐकू येऊ शकत नाही.
- इ. ध्वनीतरंगाचे हवेतून एका ठिकाणाहून दुसऱ्या ठिकाणाकडे प्रसारण होण्यासाठी त्या हवेचे एका ठिकाणाहून दुसऱ्या ठिकाणी वहन होण्याची आवश्यकता नसते.
- गिटारसारख्या तंतूवाद्यातून आणि बासरीसारख्या फुंकवाद्यातून वेगवेगळ्या स्वरांची निर्मिती कशी होते ?
- मानवी स्वरयंत्रापासून आणि ध्वनिक्षेपकापासून ध्वनी कसा निर्माण होतो?
- 5. 'ध्वनीच्या प्रसारणासाठी माध्यमाची गरज असते.' हे सिद्ध करण्यासाठी प्रयोग आकृतीसह स्पष्ट करा.

## 6. योग्य जोड्या जुळवा.

मानवी स्वरयंत्र	धातूच्या भुजांची कंपने
ध्वनिवर्धक	हवेच्या स्तंभातील कंपने
जलतरंग	स्वरतंतुंची कंपने
नादकाटा	तारेची कंपने
तानपुरा	पडद्याची कंपने

#### उपक्रम :

- 1. प्लॅस्टिकचे दोन ग्लास घेऊन त्यांच्यामध्ये दोरी बांधून खेळातला फोन बनवा. आपल्या मित्र/मैत्रिणीचा आवाज दोरीमार्फत आपल्यापर्यंत पोहोचतो का ? दोरीच्या ऐवजी लोखंडी तार घेऊन आणि दोरी / तार यांची लांबी कमी/ जास्त करून हा प्रयोग करा व निष्कर्ष काढा. याविषयी एकमेकांत व शिक्षकांशी चर्चा करा.
- 2. एक प्लॅस्टिक अथवा पत्र्याचा उभा ग्लास घेऊन त्याचा तळ काढा. एका उघड्या बाजूबर रबरच्या साहाय्याने फुग्याचे रबर ताणून घट्ट बसवा व त्यावर नाचणी, बाजरीसारखे छोटे दाणे ठेवा. दुसऱ्या उघड्या बाजूकडून आपल्या मित्राला 'हुरेंऽऽ…हुरेंऽऽ' असे ओरडायला सांगा. रबरावरचे दाणे खाली/वर उड्या मारताना दिसतात का ? असे का होते याबाबत चर्चा करा.





# 16. प्रकाशाचे परावर्तन



आपणाला संवेदनांच्या साहाय्याने वेगवेगळ्या जाणीवा होतात दृष्टीची संवेदना ही सर्वांत महत्त्वाची संवेदना आहे या संवेदनेमुळेच आपण आपल्या सभोवतालचे डोंगर, नदी, झाडे, व्यक्ती आणि इतर वस्तू पाहू शकतो सृष्टीचे सुंदर रूप जसे – ढग, इंद्रधनुष्य, उडणारे पक्षी, चंद्र, तारे, हेही आपण दृष्टीच्या संवेदनेमुळेच पाहू शकतो



रात्रीच्या वेळी तुमच्या खोलीतील दिवा काही काळ बंद करा व नंतर चालू करा

दिवा बंद केल्यानंतर खोलीतील वस्तू तुम्हांस स्पष्टपणे दिसतात का ? पुन्हा दिवा चालू केल्यानंतर तुम्हांस काय जाणवते ?

वरील कृतीतून तुमच्या लक्षात येते की दृष्टीची संवेदना होणे व प्रकाश यामध्ये काहीतरी संबंध आहे रात्रीच्या वेळी दिवा बंद केल्यास लगेच तुम्हांला खोलीतील वस्तू दिसेनाशा होतील, तर दिवा पुन्हा चालू केल्यास वस्तू पूर्ववत दिसतील म्हणजेच वस्तूंपासून येणारा प्रकाश जेव्हा आपल्या डोळ्यांमध्ये प्रवेश करतो तेव्हा वस्तू आपणांस दिसू लागतात डोळ्यांमध्ये प्रवेश करणारा प्रकाश हा त्या वस्तूने उत्सर्जित केलेला असेल किंवा त्या वस्तूपासून परावर्तित झालेला असेल वस्तूपासून परावर्तित झालेला प्रकाश म्हणजे काय ? हे समजून घेण्यासाठी प्रकाशाचे परावर्तन समजून घेऊया प्रकाशाचे परावर्तन (Reflection of light): एखाद्या पृष्ठभागावर प्रकाशकिरणे पडली, तर त्यांची दिशा बदलते व ते परत फिरतात यालाच प्रकाशाचे परावर्तन म्हणतात



साहित्य: विजेरी, आरसा, आरसा अडकविण्याचे स्टँड, काळा कागद, कंगवा, पांढरा कागद, ड्रॉईंग बोर्ड

# कृती

- 1 पांढरा कागद टेबलावर किंवा ड्रॉईंग बोर्डवर घट्ट बसवून घ्या
- 2 कंगव्याचा मधील भाग सोडून इतर सर्व भाग काळ्या कागदाने झाकून घ्या, जेणेकरून प्रकाश हा त्या मोकळ्या भागातूनच जाऊ शकेल (आकृती 16 1)
- 3 कंगवा पांढऱ्या कागदावर लंबरूप पकडून विजेरीच्या साहाय्याने कंगव्याच्या उघड्या भागावर प्रकाश टाका
- 4 बॅटरी व कंगवा यांची योग्य मांडणी करून पांढऱ्या कागदावर प्रकाशिकरण मिळवा वया प्रकाशिकरणाच्या मार्गामध्ये आकृतीत दाखिवल्याप्रमाणे आरसा ठेवा
- 5 तुम्हांला काय आढळते ?



16.1 प्रकाशाचे परावर्तन

वरील कृतीत प्रकाशिकरण आरशावर आदळल्यानंतर परावर्तित होतात व वेगळ्या दिशेने जातात जे प्रकाशिकरण कोणत्याही पृष्ठभागावर पडतात, त्यांना आपाती किरण (Incident ray) म्हणतात आपाती किरण पृष्ठभागावर ज्या बिंदूवर पडतात, त्या बिंदूला आपतन बिंदू म्हणतात तर पृष्ठभागावरून परत किरणाऱ्या किरणास परावर्तित किरण (Reflected ray) म्हणतात परावर्तित किरणांची दिशा काही नियमांनुसार ठरते या नियमांस परावर्तनाचे नियम म्हणतात हे नियम समजून घेण्यापूर्वी काही संज्ञा समजून घेऊ

# (आकृती 16.2 मध्ये दाखविल्याप्रमाणे)

- 1 आरशाची स्थिती दर्शविणारी रेषा PQ काढा
- 2 आपाती किरण AO व परावर्तित किरण OB काढा
- 3 आरशाची स्थिती दर्शविणाऱ्या रेषेस  $90^\circ$  चा कोन करणारी रेषा ON ही O येथे काढा ह्या रेषेस स्तंभिका म्हणतात रेषा ON ही PQ ला लंबवत असल्याने  $\angle$  PON =  $\angle$  QON =  $90^\circ$



## परावर्तनाचे नियम

प्रकाश परावर्तनाचे तीन नियम खालीलप्रमाणे आहेत

- 1 आपतन कोन व परावर्तन कोन समान मापाचे असतात
- 2 आपाती किरण, परावर्तित किरण व स्तंभिका एकाच प्रतलात असतात
- आपाती किरण व परावर्तित किरण स्तंभिकेच्या विरूद्ध बाजूस असतात

16.2 प्रकाशाचे परावर्तन

# परावर्तनाशी संबंधित विभिन्न संज्ञा खालीलप्रमाणे आहेत.

- i किरण AO आपाती किरण, ii बिंदु O आपात बिंदू
- iii किरण OB परावर्तित किरण iv रेषा ON स्तंभिका
- v आपाती किरण व स्तंभिकेमधील कोन  $\angle$  AON आपतन कोन (i) vi परावर्तित किरण व स्तंभिकेमधील कोन  $\angle$  BON परावर्तन कोन (r)

111



साहित्य: आरसा, ड्रॉईंग बोर्ड, टाचण्या, पांढरा कागद, कोनमापक, पट्टी, पेन्सिल

## कृती:

- 1 पांढरा कागद ड्रॉईंग बोर्डवर टाचण्यांच्या साहाय्याने नीट बसवून घ्या
- 2 कागदावर एका बाजूस आरशाची स्थिती दर्शविणारी रेषा PQ काढा (आकृती 16 3)
- 3 रेषा PQ वर O बिंद् घेऊन त्या बिंद्शी रेषा ON हा लंब काढा
- 4 रेषा ON शी  $30^{\circ}$  चा कोन करणारा किरण AO काढा
- 5 किरण AO वर दोन टाचण्या S व R रोवून घ्या
- 6 आरसा स्टॅंडला अडकवून PQ रेखेवर आकृतीत दाखविल्याप्रमाणे लंब स्थितीत ठेवा
- 7 आरशात पाहून आरशामध्ये दिसणाऱ्या टाचण्यांच्या प्रतिमांच्या खालच्या टोकांच्या सरळरेषेत T व U या टाचण्या रोवा
- 8 आरसा बाजूला काढा व बिंदू T व U जोडून ती रेषा O पर्यंत वाढवा
- 9 ∠ TON मोजा
- 10 कृती 4 ते 9, 45° व 60° आपतन कोनासाठी पुन्हा करा व तक्त्यामध्ये कोनांची मापे लिहा



16.3: परावर्तनाच्या नियमांचे सत्यापन

अ.क्र.	आपतन कोन	परावर्तन कोन
	(∠ i)	(∠ r)
1	$30^{0}$	
2	45°	
3	60°	

आपतन कोन व परावर्तन कोन यांमध्ये कोणता संबंध आढळतो ? तुम्ही कृती जर काळजीपूर्वक केली असेल तर तुम्हांस आढळेल की तिन्ही वेळेस आपतन कोन व परावर्तन कोन समान असतात म्हणजेच परावर्तनाच्या नियमांचे सत्यापन होते



प्रकाशिकरण आरशावर लंबरूप स्थितीत पडल्यास काय होईल ?

### प्रकाश परावर्तनाचे प्रकार

आकृती 16 4 (अ) व (आ) मध्ये सपाट व खडबडीत पृष्ठभागावर समांतर पडणारे तीन आपाती किरण निळ्या रंगात दाखिवले आहेत परावर्तनाचे नियम वापरून आपतन बिंदूवर परावर्तित किरण लाल रंगात दाखिवले आहेत

- 1 कोणत्या पृष्ठभागावरील परावर्तित किरण एकमेकांस समांतर आहेत ?
- 2 आकृतीवरून काय निष्कर्ष काढता येईल ?
- 1. प्रकाशाचे नियमित परावर्तन (Regular reflection) : सपाट व गुळगुळीत पृष्ठभागावरून होणाऱ्या प्रकाशाच्या परावर्तनास 'नियमित परावर्तन' म्हणतात नियमित परावर्तनास समांतर पडणाऱ्या आपाती किरणांचे आपतन कोन व परावर्तन कोन समान मापाचे असतात त्यामुळे परावर्तित किरण हे परस्परांना समांतर असतात जर आपाती किरणांचे आपाती कोन  $i_1$ ,  $i_2$ ,  $i_3$  असतील व त्यांचे परावर्तन कोन क्रमशः  $r_1$ ,  $r_2$ ,  $r_3$  असतील, तर  $i_1=i_2=i_3----$ ,  $r_1=r_2=r_3=-----$





16.4 सपाट व खडबडीत पृष्ठभागावरील प्रकाशाचे परावर्तन

(आकृती 16 4 अ)

2. प्रकाशाचे अनियमित परार्तन (Irregular reflection) : खडबडीत पृष्ठभागावरून होणाऱ्या प्रकाशाच्या परावर्तनास 'अनियमित परावर्तन' म्हणतात अनियमित परावर्तनामध्ये समांतर पडणाऱ्या आपाती किरणांचे आपतन कोन समान मापाचे नसतात व म्हणून त्यांचे परावर्तन कोनही समान नसतात म्हणजे  $\mathbf{i}_1 \neq \mathbf{i}_2 \neq \mathbf{i}_3 - -, \quad \mathbf{r}_1 \neq \mathbf{r}_2 \neq \mathbf{r}_3 \neq -$ त्यामुळे परावर्तित किरण परस्परांना समांतर असत नाहीत, ते विस्तृत पृष्ठभागावर विखुरले जातात असे का घडते हे आकृती 16 4 (आ) मधून स्पष्ट होते



# [']हे नेहमी लक्षात ठेवा.

- 1 नियमित व अनियमित या दोन्ही परावर्तनांमध्ये प्रकाश परावर्तनाचे नियम पाळले जातात
- 2 अनियमित परावर्तनामध्ये होणारे प्रकाशाचे परावर्तन हे परावर्तनाचे नियम पाळले गेले नाहीत म्हणून मिळालेले परावर्तन नसून ते परावर्तित पृष्ठभाग अनियमित (खडबडीत) असल्याने मिळालेले आहे
- 3 अनियमित परावर्तनामध्ये प्रत्येक आपतन बिंदूशी होणारा आपतन कोन वेगळा असतो परंतु एकाच आपतन बिंदूशी होणारे आपतन कोन व परावर्तन कोन समान मापाचेच असतात, म्हणजे  $i_1=r_1,\,i_2=r_3,\,i_3=r_4$

# परावर्तित प्रकाशाचे परावर्तन (Reflection of reflected light)



- 1 केशकर्तनालयात तुमच्या मानेवरचे केस कारागिराने व्यवस्थित कापले आहेत का हे तुम्ही कसे पाहता ?
- 2 आरशामध्ये आपली प्रतिमा कशी दिसते ? उजव्या व डाव्या बाजूंचे काय होते ?
- 3 पाण्यामध्ये चंद्राचे प्रतिबिंब कशामुळे दिसते ?

केशकर्तनालयात तुमच्या मागे आणि पृढे आरसा असतो तुमच्या पाठीमागील भागाची प्रतिमा मागील आरशात निर्माण होते प्रतिमेची प्रतिमा पुढील आरशामध्ये दिसते त्यामुळे केशकर्तनालयात मानेवरील केस व्यवस्थित कापले आहेत का ते तुम्हांला पाहता येते

आपण चंद्राचे पाण्यातील प्रतिबिंब कशाप्रकारे पाहतो? चंद्र स्वयंप्रकाशित नसल्याने सूर्याचा प्रकाश चंद्रावर पडून त्याचे परावर्तन होते त्यानंतर पाण्यातून परावर्तित प्रकाशाचे पुन्हा परावर्तन होते व आपल्याला चंद्राचे प्रतिबिंब दिसते याच पद्धतीने परावर्तित प्रकाशाचे अनेक वेळा परावर्तन होऊ शकते



16.5 कॅलिडोस्कोप



# कृती:

- 1 तीन समान आकाराचे आयताकृती आरसे घ्या
- 2 परावर्तक पृष्ठभाग आतमध्ये येईल अशा रीतीने तीनही आरसे एकमेकांना त्रिकोणी स्वरूपात चिकटपट्टीने चिकटवा (आकृती 16 5 पहा)
- 3 एक पांढरा कागद घेऊन तो त्रिकोणी स्वरूपात चिकटपट्टीने चिकटवा व एक बाजू बंद करा
- 4 काचेचे 4-5 वेगवेगळ्या रंगाचे तुकडे घेऊन ते आरशांच्या पोकळीत टाका
- 5 दुसरी बाजूही कागदाने बंद करून त्या कागदास एक छिद्र पाडा
- 6 त्या छिद्रातून उजेडामध्ये पहा तुम्हांला काचेच्या तुकड्यांच्या असंख्य प्रतिमा तयार झालेल्या पहायला मिळतील या प्रतिमा तिन्ही आरशांत निर्माण झालेल्या परावर्तनांमुळे तयार होतात

तुम्ही कॅलिडोस्कोपमध्ये पाहिल्यास वेगवेगळ्या रचना तयार झालेल्या पाहायला मिळतील कॅलिडोस्कोपचे खास वैशिष्ट्य म्हणजे यामध्ये एकदा तयार झालेली रचना पुन्हा सहजपणे तयार होत नाही प्रत्येक वेळी दिसणारी रचना ही वेगवेगळी असते खोलीच्या भिंती स्शोभित करण्यासाठी वापरला जाणारा नक्षीदार कागद तयार करणारे व वस्त्रोद्योग व्यवसायामधील अभिकल्पक (designers)कॅलिडोस्कोपचा उपयोग वेगवेगळ्या रचना शोधण्यासाठी करतात

# परिदर्शी (Periscope)

# कृती:

- 1 एक पुठ्ठ्याचे खोके घ्या खोक्याच्या वरच्या व खालच्या बाजूला खाचा करून त्यामध्ये खोक्याच्या बाजूला 450 चा कोन करणारे आणि एकमेकांना समांतर असणारे दोन आरसे आकृतीत दाखवल्याप्रमाणे बसवा व ते चिकटपट्टीने घट्ट चिकटवून घ्या (आकृती 16 6 पहा)
- 2 वरच्या व खालच्या आरशाजवळ एकमेकांच्या विरुद्ध बाजूस साधारणत: 1-1 इंचाच्या दोन खिडक्या करा आता खालच्या खिडकीतून पहा
- 3 तुम्हांला काय दिसते याचे निरीक्षण करा





खालच्या खिडकीतून तुम्हांस वरील खिडकीच्या समोरील दृश्य दिसतील या तयार झालेल्या उपकरणास परिदर्शी असे म्हणतात परिदर्शीचा उपयोग पाणब्डीमध्ये समुद्रावरील वस्तू बघण्यास व तसेच बंकर्समध्ये भूपृष्ठ भागाच्या खाली राहून भूपृष्ठावरील वस्तूंची टेहळणी करण्यासाठी केला जातो कॅलिडोस्कोप व परिदर्शी ही दोन्ही उपकरणे परावर्तित प्रकाशाचे परावर्तन या गुणधर्मावर कार्य करतात



16.7 पाणबुडीवरील परिदर्शी

# सोडवलेली उदाहरणे

**उदाहरण** 1. जर परावर्तित किरण स्तंभिकेशी  $60^{\circ}$  चा कोन करत असेल, तर आपाती किरण स्तंभिकेशी किती अंशाचा कोन करेल ?

**दिलेल्या बाबी** : परावर्तन कोन =  $\angle r = 60^{\circ}$ , आपतन कोन =  $\angle i$  = ?

$$\angle i = \angle r$$
,  $\forall i \in \mathbb{Z}$   $\mathbf{r} = 60^{\circ}$   $\therefore$   $\angle i = 60^{\circ}$ 

उदाहरण 2. आपाती किरण व परावर्तित किरण यांमधील कोन 900 असेल, तर आपतन कोन व परावर्तन कोन यांचे माप काढा

दिलेल्या बाबी: 1 आपाती किरण व परावर्तित किरण यांमधील कोन 900 आहे

$$i \in \angle i + \angle r = 90^{\circ} ---- (1)$$

परंतु प्रकाश परावर्तनाच्या नियमानुसार,

$$\angle i = \angle r ---- (2)$$

 $\angle i + \angle i = 90^{\circ}$  समीकरण (1) व (2) वरून

 $2 \angle i = 90^{\circ} \therefore \angle i = 45^{\circ} \therefore$  आपतन कोन व परावर्तन कोन हे 450 आहेत

प्रकाश परावर्तनाच्या नियमानुसार,  $\angle i = \angle r$ ,  $\forall i \in \mathbb{Z}$   $\angle r = 60^{\circ}$   $\therefore \angle i = 60^{\circ}$ ं आपाती किरण स्तंभिकेशी 60⁰ चा कोन करेल

35° आहे तर परावर्तन कोन व आपतन कोन काढा

उदाहरण 3. सपाट आरसा व आपती किरण यांमधील कोन

दिलेल्या बाबी: आकृती 16 2 वरून रेषा PQ = आरसा, किरण AO = आपाती किरण, रेषा ON = स्तंभिका, किरण OB = परावर्तित किरण

$$\angle POA = 35^{\circ}$$

$$\angle PON = 90^{\circ} --- ($$
स्तंभिका $)$ 

$$\angle$$
POA +  $\angle$ AON =  $\angle$ PON

$$\therefore 35^{\circ} + \angle AON = 90^{\circ}$$

$$\therefore$$
  $\angle$ AON = 90° - 35° = 55°

म्हणजे आपतन कोन =  $\angle AON = \angle i = 55^{\circ}$ 

प्रकाश परावर्तनाच्या नियमानुसार,  $\angle i = \angle r$ 

 $\angle r = 55^{\circ}$  आपतन कोन व परावर्तन कोन हे  $55^{\circ}$  आहेत **उदाहरण 4.** 40° आपतन कोन असलेला प्रकाशिकरण आरशापासून परावर्तित होत असताना आरशाशी किती

अंशाचा कोन करेल ?

दिलेल्या बाबी : आकृती  $16\ 2$  वरून  $\angle QON = 90^{\circ}$ --- (स्तंभिका), आपतन कोन =  $\angle i = 40^{\circ}$ 

 $\therefore$   $\angle$ NOB =  $\angle$ r = 40 $^{\circ}$  ---- (प्रकाश परावर्तनाच्या नियमानुसार)

$$\angle$$
NOQ =  $\angle$ QOB +  $\angle$ BON

$$\therefore 40^{\circ} + \angle QOB = 90^{\circ}$$

$$\therefore \angle QOB = 90^{\circ} - 40^{\circ} = 50^{\circ}$$

∴परावर्तित किरण आरशाशी 50° इतका कोन करेल

# स्वाध्याय

## 1. रिकाम्या जागी योग्य शब्द लिहा.

- अ. सपाट आरशावर आपतन बिंदूला लंब असलेल्या रेषेला ......म्हणतात.
- इ. कॅलिडोस्कोपचे कार्य ...... गुणधर्मावर अवलंबून असते.

## 2. आकृती काढा.

दोन आरशांचे परावर्तित पृष्ठभाग एकमेकांशी 90° चा कोन करतात. एका आरशावर आपाती किरण 30° चा आपतन कोन करत असेल तर त्याचा दुसऱ्या आरशावरून परावर्तित होणारा किरण काढा.

- 3. 'आपण अंधाऱ्या खोलीतील वस्तू स्पष्टपणे पाहू शकत नाही', या वाक्याचे स्पष्टीकरण सकारण कसे कराल ?
- नियमित व अनियमित परावर्तन यांमधील फरक लिहा.
- खालील संज्ञा दर्शविणारी आकृती काढा व संज्ञा स्पष्ट करा
  - आपाती किरण
- परावर्तन कोन
- स्तंभिका
- आपात बिंदू
- आपतन कोन
- परावर्तित किरण

## 6. खालील प्रसंग अभ्यासा.

स्वरा व यश पाण्याने भरलेल्या मोठ्या भांड्यात पाहत होते. संथ पाण्यात त्यांची प्रतिमा त्यांना स्पष्टपणे दिसत होती. तेवढ्यात यशने पाण्यात दगड टाकला, त्यामुळे त्यांची प्रतिमा विस्कळीत झाली. स्वराला प्रतिमा विस्कळीत होण्याचे कारण समजेना.

# खालील प्रश्नांच्या उत्तरातून प्रसंगामधील स्वराला प्रतिमा विस्कळीत होण्याचे कारण समजावून सांगा.

- अ. प्रकाश परावर्तन व प्रतिमा विस्कळीत होणे, यांचा काही संबंध आहे का ?
- आ. यातून प्रकाश परावर्तनाचे कोणते प्रकार तुमच्या लक्षात येतात ते प्रकार स्पष्ट करून सांगा.
- इ. प्रकाश परावर्तनाच्या प्रकारांमध्ये परावर्तनाचे नियम पाळले जातात का ?

## 7. उदाहरणे सोडवा.

अ. सपाट आरसा व परावर्तित किरण यांच्यातील कोन  $40^{\circ}$  चा असेल, तर आपतन कोन व परावर्तन कोनांची मापे काढा.

(उत्तर :  $50^{\circ}$ )

आ. आरसा व परावर्तित किरण यांमधील कोन 23° असल्यास आपाती किरणाचा आपतन कोन किती असेल ?

(उत्तर :  $67^{\circ}$ )

#### उपक्रम :

अपोलोतून चंद्रावर उतरलेल्या अवकाश यात्रींनी चंद्रावर मोठे आरसे ठेवलेले आहेत. त्यांचा वापर करून चंद्राचे अंतर कसे मोजता येते याविषयी माहिती मिळवा.







# 17. मानवनिर्मित पदार्थ



तुमच्या घरात, शाळेत, सभोवती आढळणाऱ्या वीस मानवनिर्मित वस्तूंची यादी तयार करा व चर्चा करा

आपण दैनंदिन व्यवहारात अनेक प्रकारच्या वस्तू वापरतो त्या लाकूड, काच, प्लॅस्टिक, धागे, माती, धातू, रबर अशा अनेक पदार्थांपासून बनलेल्या असतात त्यापैंकी लाकूड, खडक, खनिजे, पाणी यांसारखे पदार्थ नैसर्गिकरीत्या उपलब्ध होतात म्हणून त्यांना निसर्गनिर्मित पदार्थ म्हणतात मानवाने नैसर्गिक पदार्थांवर प्रयोगशाळेत संशोधन केले या संशोधनाचा उपयोग करून कारखान्यात वेगवेगळ्या पदार्थांचे उत्पादन करण्यात आले अशा प्रकारे तयार करण्यात आलेल्या पदार्थांना मानवनिर्मित पदार्थ म्हणतात उदा काच, प्लॅस्टिक, कृत्रिम धागे, थर्मोकोल इत्यादी आता आपण काही मानवनिर्मित पदार्थांची माहिती मिळवूया



आपल्या घरातील वस्तूंमध्ये वापरण्यात आलेले पदार्थांचे खालील तक्त्यात वर्गीकरण करा विविध वस्तूंचा संदर्भ घेऊन तक्ता वाढवा

वस्तूचे नाव	त्यात वापरले गेलेले पदार्थ	
	मानवनिर्मित पदार्थ	निसर्गनिर्मित पदार्थ
लाकडी खुर्ची	<u></u>	लाकूड
कंगवा	प्लॅस्टिक	

## प्लॅस्टिक (Plastic)

आकार्यता गुणधर्म असणारे व सेंद्रिय बहुवारिकांपासून बनवलेले मानवनिर्मित पदार्थ म्हणजे प्लॅस्टिक होय सगळ्याच प्लॅस्टिकची रचना एकसारखी नसते काहींची रचना रेखीय तर काहींची चक्राकार असते

उष्णतेच्या होणाऱ्या परिणामाच्या आधारावर प्लॅस्टिकचे दोन प्रकारात विभाजन करतात येईल ज्या प्लॅस्टिकला हवा तसा आकार देता येतो त्यास थर्मोप्लॅस्टिक (उष्मामृदू) म्हणतात उदा पॉलीथीन, PVC यांचा उपयोग खेळणी, कंगवे, प्लॅस्टिकचे ताट, द्रोण इत्यादी दुसरे प्लॅस्टिक असे आहे की ज्यास एकदा साच्यात टाकून एक विशिष्ट आकार प्राप्त झाल्यानंतर पुन्हा उष्णता देऊन त्याचा आकार बदलता येत नाही त्यास थर्मोसेटिंग (उष्मादृढ) प्लॅस्टिक म्हणतात याचे उपयोग म्हणजे घरातील विद्युत उपकरणांची बटणे, कुकरचे हॅंडलवरील आवरण इत्यादी



17.1 प्लॅस्टिकच्या वस्तू

# जोड माहिती संप्रेषण तंत्रज्ञानाची

प्लॅस्टिक निर्मिती प्रक्रियेसंदर्भात विविध व्हिडीओंचा संग्रह करा त्यांच्या आधारे शिक्षकांच्या मदतीने एक सादरीकरण तयार करून इ-मेल तसेच इतर ॲप्लीकेशन सॉफ्टवेअरच्या मदतीने इतरांना पाठवा



17.2 थर्मोप्लॅस्टिक





17.3 थर्मोसेटिंग प्लॅस्टिक

प्लॅस्टिकचे गुणधर्म: प्लॅस्टिक गंजत नाही प्लॅस्टिकचे विघटन होत नाही त्याच्यावर हवेतील आर्द्रता, उष्णता, पाऊस यांचा परिणाम सहजासहजी होत नाही त्यापासून कोणत्याही रंगाच्या वस्तू बनविता येतात आकार्यता या गुणधर्मामुळे कोणताही आकार देता येतो उष्णता आणि विद्युतचा दुर्वाहक आहे वजनाने हलके असल्यामुळे वाहून नेण्यास सोयीचे आहे

### प्लॅस्टिकचे प्रकार आणि उपयोग

थर्मोप्लॅस्टिक		
1 पॉलीविनाईल क्लोराइड	बाटल्या, रेनकोट, पाईप, हँडबॅग, बूट, विद्युतवाहक तारांची आवरणे, फर्निचर,	
(PVC)	दोरखंड, खेळणी इत्यादी	
2 पॉलीस्टाइरीन (PS)	रेफ्रिजरेटरसारख्या विद्युत उपकरणांचे उष्मारोधक भाग, यंत्रांचे गिअर, खेळणी,	
	वस्तूंची संरक्षक आवरणे उदा सी डी , डिव्हिडींचे कव्हर, इत्यादी	
3 पॉलीइथिलीन (PE)	दुधाच्या पिशव्या, पॅकिंगच्या पिशव्या, मऊ गार्डन पाईप, इत्यादी	
4 पॉलीप्रोपिलीन (PP)	लाऊडस्पीकर व वाहनांचे भाग, दोरखंड, चटया, प्रयोगशाळेतील उपकरणे इत्यादी	

थर्मोसेटिंग		
1 बॅकेलाईट	रेडिओ, टीव्ही, टेलिफोन यांचे कॅबिनेट, इलेक्ट्रिक स्विच, खेळणी, गृहोपयोगी वस्तू,	
	कुकरचे हॅंडलवरील आवरण इत्यादी	
2 मेलेमाईन	कपबश्या, प्लेट, ट्रे यांसारख्या गृहोपयोगी वस्तू, विमानाच्या इंजिनचे काही भाग,	
	विद्युतरोधक व ध्वनिरोधक आवरणे, इत्यादी	
3 पॉलीयुरेथेन	सर्फबोर्ड, छोट्या बोटी, फर्निचर, वाहनांच्या सीट्स, इत्यादी	
4 पॉलीइस्टर	तंतूकाच बनविण्यासाठी वापर, लेझर प्रिंटर्सचे टोनर्स, कापड उद्योग इत्यादी	



- 1 रासायनिक पदार्थांच्या साठवणुकीसाठी प्लॅस्टिकच्या टाक्यांचा उपयोग का केला जातो ?
- 2 घरगुती वापराच्या विविध वस्तूंची जागा प्लॅस्टिकने का घेतली आहे ?

## प्लॅस्टिक आणि पर्यावरण

- 1 तुमच्या घरात दररोज पॉलिथिनच्या कॅरी बॅग किती येतात? त्यानंतर त्यांचे काय होते?
- 2 वापर करून फेकून दिलेल्या कॅरी बॅग, पाण्याच्या बाटल्या, दुधाच्या रिकाम्या पिशव्या यांचे पुढे पुनर्चक्रीकरण (Recycle) कसे होते?

काही पदार्थांचे नैसर्गिकरीत्या विघटन होते, त्यांना विघटनशील पदार्थ म्हणतात, तर काही पदार्थांचे नैसर्गिकरीत्या विघटन होत नाही, त्यांना अविघटनशील पदार्थ असे म्हणतात पुढील तक्त्यावरून आपणांस असे दिसून येईल की, प्लॅस्टिक अविघटनशील आहे आणि त्यामुळे ते पर्यावरणाच्या दृष्टीने प्रदूषक आहे यावर काय उपाय करता येईल?



# माहीत आहे का तुम्हांला?

- 1 प्लॅस्टिकचा उपयोग आरोग्यसेवा क्षेत्रात केला जातो, जसे की सिरिंज, इत्यादी
- 2 मायक्रोवेव्ह ओव्हनमध्ये अन्न शिजविण्यासाठी वापरली जाणारी भांडी ही प्लॅस्टिकपासून बनवलेली असतात
- 3 वाहनांचे ओरखड्यांपासून संरक्षण होण्यासाठी गाडीवर टेफ्लॉन कोटींग (Teflon coating) करण्यात येते टेफ्लॉन हा एक प्लॅस्टीकचाच प्रकार आहे
- 4 प्लॅस्टिकचे 2000 पेक्षा जास्त प्रकार आहेत
- 5 विमानाचे काही भाग जोडण्यासाठी काही प्रकारच्या प्लॅस्टिकचा उपयोग होतो
- 6 भिंगे, कृत्रिम दात बनविण्यासाठी पॉलीॲक्रेलिक प्लॅस्टिकचा वापर होतो

पदार्थ	विघटनाचा	पदार्थांचा प्रकार
	कालावधी	
भाजी	1 ते 2 आठवडे	विघटनशील
सुती कपडा	1 वर्ष	विघटनशील
लाकूड	10 ते 15 वर्षे	विघटनशील
प्लॅस्टिक	हजारो वर्षे	अविघटनशील

प्लॅस्टिकच्या ऐवजी आपण विघटनशील पदार्थांचा उपयोग करून तयार केलेल्या वस्तू वापरावयास हव्यात उदाहरणार्थ, सूतळीच्या पिशव्या, कापडी पिशव्या, कागदी पिशव्या इ



प्रत्येक सुजाण नागरिकाने 4R सिध्दांताचा उपयोग करणे गरजेचे आहे ते म्हणजे,

Reduce - कमीत कमी वापर

Reuse - पुन्हा उपयोग करणे

Recycle - पुनर्चक्रीकरण

Recover - पुन्हा प्राप्त करणे

तरच पर्यावरण प्रदूषणापासून बचाव होऊ शकतो



यादी करा व चर्चा करा.

तुमच्या घरी तुम्ही प्लॅस्टिकच्या ऐवजी अन्य विघटनशील पदार्थांपासून तयार केलेल्या वस्तू कोठे कोठे वापरू शकता एक यादी तयार करा त्याविषयी वर्गात चर्चा करा



सांगा पाहू!

वाहतूक करताना काचसमान किंवा तत्सम वस्तू फुटू नये म्हणून त्यांभोवती कोणत्या पदार्थाचे आवरण घातलेले असते?

थमोंकोल (Thermocol): तुमच्या घरी आणलेली सहज फुटू शकेल अशी एखादी नवीन वस्तू ज्या खोक्यामध्ये बंद केलेली असते ते खोके हाताळतांना त्या वस्तूला इजा पोहचू नये म्हणून ती आणखी एका आवरणात असते, ते आवरण म्हणजे थर्मोकोल बऱ्याच ठिकाणी जेवणावळीसाठी जी प्लेट वापरतात, ती थर्माकोल पासून बनवलेली असते

थर्मोकोल म्हणजे पॉलीस्टायरीन या संश्लिष्ट पदार्थाचे एक रूप होय 100 °C पेक्षा अधिक तापमानावर ते द्रव अवस्थेत जाते आणि थंड केल्यानंतर स्थायू अवस्थेत रुपांतिरत होते त्यामुळे आपण त्याला हवा तसा आकार देऊ शकतो ते धक्काशोषक असल्याने नाजूक (Delicate) वस्तूंच्या संरक्षक आवरणात त्याचा वापर होतो

तुमच्या दैनंदिन वापरात थर्मोकोलचा वापर कोठे केला जातो त्याची यादी तयार करा

# थर्मोकोलच्या अतिवापराचे पर्यावरण व मानवावर होणारे दुष्परिणाम

- 1 स्टाइरिनमध्ये कर्करोगजन्य घटक असल्यामुळे थर्मोकोलच्या सतत सान्निध्यात असणाऱ्या व्यक्तींना रक्ताचा (Leukemia) व लिम्फोमा (Lymphoma) याप्रकारचा कर्करोग होण्याची शक्यता असते
- 2 जैवअविघटनशील: नैसर्गिक पद्धतीने थर्मोकोलचे विघटन होण्यासाठी खूप मोठा कालावधी लागतो, म्हणून बरेचसे लोक त्याला जाळून नष्ट करणे हाच उपाय समजतात परंतु तो तर पर्यावरणीय दृष्टीने अधिकच घातक उपाय आहे थर्मोकोलच्या ज्वलनामुळे विषारी वायू हवेत सोडले जातात
- 3 समारंभांमध्ये जेवण, पाणी, चहा यासाठी लागणाऱ्या पत्रावळी व कप / ग्लास थर्माकोलपासून बनवलेले असतात त्याचा परिणाम, आरोग्यावर होतो जर थर्माकोलच्या भांड्यात ठेवलेले पदार्थ पुन्हा गरम केले तर स्टायरीनचा काही अंश त्या अन्नपदार्थांमध्ये विरघरळण्याची शक्यता असते त्यामुळे अपाय होण्याची शक्यता असते





17.4 थर्मोकोल ज्वलन व त्यातून प्रदुषण



4. थर्मोकोल बनविणाऱ्या कंपनीत काम करणाऱ्या व्यक्तींच्या शरीरावर होणारा परिणाम: खूप अधिक कालावधीसाठी स्टायरीनच्या संपर्कात असणाऱ्या व्यक्तींना डोळे, श्वसनसंस्था, त्वचा, पचनसंस्थेचे आजार संभवण्याची शक्यता असते गर्भवती महिलांना गर्भपात होण्याचाही धोका संभवतो द्रवरुप स्टायरीनमुळे त्वचा भाजण्याचा धोका असतो



काचेपासून बनविल्या जाणाऱ्या नित्योपयोगी वस्तूंची यादी तयार करा त्या वस्तूंमध्ये कोणकोणत्या रंगाची काच वापरली गेली आहे?

काच (Glass): दैनंदिन वापरात आपण काचेचा उपयोग खूप मोठ्या प्रमाणात करतो काचेचा शोध मानवाला अचानकपणे लागला काही फेनेशियन व्यापारी वाळवंटात रेतीवर स्वयंपाक करत असताना स्वयंपाकाच्या भांड्याला त्यांनी चुन्याच्या दगडाचा आधार दिला होता स्वयंपाकाचे भांडे दगडावरून खाली उतरवल्यानंतर त्यांना एक पारदर्शक पदार्थ तयार झालेला आढळला हा पारदर्शक पदार्थ वाळू व चुनखडी एकत्र तापवल्यामुळे झाला असावा असा तर्क केला गेला त्यातूनच पुढे काच तयार करण्याची कृती विकसित झाली काच म्हणजे सिलिका आणि सिलिकेट यांच्या मिश्रणातून तयार झालेला अस्फटिकी, टणक पण ठिसूळ घनपदार्थ सिलिका अर्थात SiO्र त्यालाच आपण वाळु असे संबोधतो काचेमध्ये असणाऱ्या सिलिकाच्या व इतर घटकांच्या प्रमाणावरून सोडा लाईम काच, बोरोसिलिकेट काच, सिलिका काच, अल्कली सिलिकेट काच असे प्रकार आहेत



17.5 काचेचे तावदान निर्मिती प्रक्रिया

काच निर्मिती: काच बनविण्यासाठी वाळू, सोडा, चुनखडी आणि अल्प प्रमाणात मॅग्नेशिअम ऑक्साईड यांचे मिश्रण भट्टीमध्ये तापवतात वाळू म्हणजेच सिलिकॉन डायॉक्साईड वितळण्यास सुमारे  $1700\,^{\circ}$ C तापमानाची गरज असते कमी तापमानावर मिश्रण वितळण्यासाठी मिश्रणात टाकाऊ काचेचे तुकडे घालतात त्यामुळे सुमारे  $850\,^{\circ}$ C तापमानावर वितळते मिश्रणातील सर्व पदार्थ द्रवरूपात गेल्यानंतर ते  $1500\,^{\circ}$ C पर्यंत तापवून एकदम थंड केले जातात एकदम थंड केल्याने मिश्रण स्फटिक रूप घेत नाहीत, तर एकजिनसी अस्फटिक पारदर्शक रूप प्राप्त होते यालाच सोडा लाईम काच म्हणतात

इंटरनेट माझा मित्र: बांगडी कशी बनवली जाते याचा इंटरनेटवर व्हिडिओ पहा व त्याची माहिती लिहून वर्गात वाचा

# काचेचे गुणधर्म :

- 1 काच तापवल्यानंतर मऊ होते व तिला हवा तो आकार देता येतो
- 2 काचेची घनता तिच्यामधील घटकतत्त्वांवर अवलंबून असते
- 3 काच उष्णतेची मंद वाहक आहे तिला जलद उष्णता दिल्यास किंवा उष्ण काच जलद थंड केल्यास ती तडकते किंवा फुटते
- 4 काच विजेची दुर्वाहक आहे, म्हणून विद्युत उपकरणात विद्युत विसंवाहक म्हणून काचेचा उपयोग करतात
- 5 काच पारदर्शक असल्याने प्रकाशाचा बराचसा भाग काचेतून पारेषित होतो तथापि काचेमध्ये क्रोमिअम, व्हेनेडिअम किंवा आयर्न ऑक्साइडचा अंतर्भाव झाल्यास अशा काचेत मोठ्या प्रमाणात प्रकाश शोषला जातो



## काचेचे प्रकार व उपयोग :

- 1. सिलिका काच : सिलिकाचा वापर करून तयार केली जाते सिलिका काचेपासून तयार केलेल्या वस्तू उष्णतेमुळे अत्यल्प प्रसरण पावतात आम्ल, आम्लारीचा त्यावर काही परिणाम होत नाही म्हणून प्रयोगशाळेतील काचेच्या वस्तू तयार करण्यासाठी सिलिका काच वापरली जाते
- 2. बोरोसिलिकेट काच: वाळू, सोडा, बोरिक ऑक्साइड आणि ऑल्युमिनिअम ऑक्साइड यांचे मिश्रण वितळवून बोरोसिलिकेट काच तयार केली जाते औषधांवर या काचेचा परिणाम होत नाही म्हणून औषधनिर्मिती उद्योगात औषधे ठेवण्यासाठी बोरोसिलिकेट काचेपासून तयार केलेल्या बाटल्या वापरतात
- 3. अल्कली सिलिकेट काच: वाळू आणि सोड्याचे मिश्रण तापवून अल्कली सिलिकेट काच तयार केली जाते अल्कली सिलिकेट काच पाण्यात विद्राव्य असल्याने तिला जलकाच किंवा वॉटरग्लास म्हणतात
- 4. शिसेयुक्त काच: वाळू, सोडा, चुनखडी आणि लेड ऑक्साइडचे मिश्रण वितळवून शिसेयुक्त काच तयार केली जाते चकचकीत असल्यामुळे या काचेचा उपयोग विजेचे दिवे, ट्यूबलाईट बनविण्यासाठी केला जातो
- 5. प्रकाशीय काच: वाळू, सोडा, चुनखडी, बेरिअम ऑक्साइड आणि बोरॉन यांच्या मिश्रणातून प्रकाशीय काच तयार केली जाते चष्मे, दुर्बिणी, सूक्ष्मदर्शी यांची भिंगे बनविण्यासाठी शुद्ध काचेची गरज असते
- 6. रंगीत काच: सोडा लाईम काच रंगहीन असते तिला विशिष्ट रंग येण्यासाठी काच तयार करताना मिश्रणात विशिष्ट धातूचे ऑक्साइड मिसळले जाते उदा निळसरिहरवी काच मिळण्यासाठी फेरस ऑक्साइड, लाल रंगाची काच मिळवण्यासाठी कॉपर ऑक्साइड इ
- 7. संस्कारित काच : काचेची उपयुक्तता आणि गुणवत्ता वाढविण्यासाठी तिच्यावर काही विशिष्ट संस्कार केले जातात त्यातूनच स्तरित काच, प्रबलित काच (Reinforced Glass), सपाट काच (Plain Glass), तंतुरूप काच (Fiber Glass), फेन काच, अपारदर्शक काच तयार केली जाते





# काचेचा पर्यावरणावर होणारा परिणाम

- 1 काच तयार करताना मिश्रण 1500 °C पर्यंत तापवावे लागते यासाठी लागणाऱ्या इंधनांच्या ज्वलनातून सल्फर डाय ऑक्साइड, नायट्रोजन डायऑक्साइड, कार्बन डायऑक्साइड असे हरितगृह वायू बाहेर टाकले जातात त्याचा परिणाम पर्यावरणावर होतो काचेचे पुनर्चक्रीकरण चांगल्या प्रकारे होऊ शकते ते केल्यास हा धोका टाळला जाऊ शकतो
- 2 काच अविघटनशील असल्यामुळे काचेच्या टाकाऊ वस्तूंचे तुकडे पाण्याबरोबर जलाशयात वाहून गेल्यास तेथील अधिवासावर याचा प्रतिकूल परिणाम होऊ शकतो तसेच या तुकड्यांमुळे सांडपाण्याची गटारे तुंबून समस्या निर्माण होऊ शकतात

# माहिती मिळवा.

- 1 सूर्यप्रकाशामुळे अपघटन होऊ नये म्हणून काही विशिष्ट पदार्थ कोणत्या प्रकारच्या काचेच्या बाटलीमध्ये साठवतात?
- २ रस्ता अपघातामध्ये इजा होऊ नये म्हणून वाहनांमध्ये कोणत्या प्रकारची काच वापरतात ?



## करून पहा

प्रयोगशाळेत वक्रनलिका तयार करण्याची कृती शिक्षकांच्या निरीक्षणाखाली करा





# स्वाध्याय

## 1. शोधा म्हणजे सापडेल.

- अ. प्लॅस्टिकमध्ये ..... हा गुणधर्म आहे, म्हणून त्याला हवा तो आकार देता येतो.
- आ. मोटारगाड्यांना ..... चे कोटिंग करतात.
- इ. थर्मोकोल ...... तापमानाला द्रव अवस्थेत जातो.
- ई. ..... काच पाण्यात विरघळते.

## 2. माझा जोडीदार कोण ?

#### अ स्तंभ

#### ब स्तंभ

- 1. शिसेयुक्त काच
- अ. प्लेट्स
- 2. बॅकेलाईट
- ब. चटया
- 3. थर्मोकोल
- क.विद्युत बल्ब
- 4. प्रकाशीय काच
- ड. इलेक्ट्रिक स्विच
- 5. पॉलिप्रोपिलीन
- इ. दुर्बीण

## 3. खालील प्रश्नांची उत्तरे लिहा.

- अ. थर्मोकोल कोणत्या पदार्थापासून तयार करतात?
- आ. PVC चे उपयोग लिहा.
- इ. पुढे काही वस्तूंची नावे दिली आहेत त्या कोणत्या निसर्गनिर्मित अथवा मानवनिर्मित पदार्थांपासून तयार होतात ते लिहा. (चटई, पेला, बांगडी, खुर्ची, गोणपाट, खराटा,
  - सुरी, लेखणी) काचेमधील प्रमुख घटक कोणते आहेत?
- फायमयाल प्रमुख यटक कागत आ
   प्लॅस्टिक कसे तयार करतात?

#### 4. फरक स्पष्ट करा.

- अ. मानवनिर्मित पदार्थ व निसर्गनिर्मित पदार्थ
- आ. उष्मा मृदू प्लॅस्टिक व उष्मादृढ प्लॅस्टिक

## 5. खालील प्रश्नांची तूमच्या शब्दांत उत्तरे लिहा.

- अ. पर्यावरण व मानवी आरोग्यावर खालील पदार्थांचा होणारा परिणाम व उपाययोजना स्पष्ट करा.
  - 1. प्लॅस्टिक
  - 2. काच
  - 3 थर्मोकोल
- आ. प्लॅस्टिक अविघटनशील असल्याने पर्यावरणाला समस्या निर्माण झाल्या आहेत, या समस्या कमी करण्यासाठी तुम्ही कोणते उपाय कराल?

## 6. टीपा लिहा.

- अ. काचनिर्मिती
- आ. प्रकाशिय काच
- इ. प्लॅस्टिकचे उपयोग

#### उपक्रम

- 1. Micro-wave Oven मध्ये वापरली जाणारी भांडी कोणत्या प्रकारच्या प्लॅस्टिकपासून तयार करतात याची माहिती मिळवा.
- 2. दातांची कृत्रिम कवळी कशापासून तयार करतात याची माहिती मिळवा.





क्षेत्रभेट : तुमच्या परिसरातील प्लॅस्टिक / काचिनिर्मिती करणाऱ्या कारखान्यास भेट देऊन निर्मिती प्रक्रियेबद्दल माहिती गोळा करा व अहवाल तयार करा.

# 18. परिसंस्था



- 1 तुमच्या सभोवताली कोणकोणते घटक आढळतात?
- 2 तुमचा या घटकांशी काही प्रत्यक्ष-अप्रत्यक्ष संबंध येतो का विचार करा



निसर्गात आढळणारे काही घटक खाली दिले आहेत त्यांचे सजीव व निर्जिव या गटात वर्गीकरण करा (सूर्यप्रकाश, सूर्यफूल, हत्ती, कमळ, शैवाल, दगड, गवत, पाणी, मुंगी, माती, मांजर, नेचे, हवा, सिंह)

परिसंस्था (Ecosystem): आपल्या सभोवतालचे जग हे दोन प्रकारच्या घटकांनी बनलेले आहे सजीव आणि निर्जिव सजीवांना जैविक (Biotic) घटक आणि अजैविक (Abiotic) घटक असे म्हणतात या सजीव आणि निर्जिव घटकांमध्ये सतत आंतरिक्रया घडून येत असते सजीव आणि त्यांचा अधिवास िकंवा पर्यावरणीय घटक यांच्यात परस्पर संबंध असतो या अन्योन्य संबंधातूनच जो वैशिष्ट्यपूर्ण आकृतीबंध निर्माण होतो त्यास परिसंस्था असे म्हणतात जैविक व अजैविक घटक तसेच त्यांची परस्परांशी होणारी आंतरिक्रया हे सर्व मिळून परिसंस्था बनते



#### 18.1 परिसंस्थेचे घटक



# माहीत आहे का तुम्हांला?

सूक्ष्मजीव हे मृत वनस्पती व प्राण्यांच्या अवशेषांतील सेंद्रिय पदार्थांचे (प्रथिने, कर्बोदके, स्निग्ध पदार्थ) पुन्हा असेंद्रिय (हायड्रोजन, ऑक्सिजन, कॅल्शिअम, लोह, सोडिअम, पोटॅशिअम) पोषक द्रव्यांमध्ये रूपांतर करतात, म्हणून त्यांना विघटक म्हणतात

परिसंस्थेची रचना (Structure of Ecosystem): सजीवांना जगण्यासाठी निरिनराळ्या अजैविक घटकांची गरज असते तसेच त्यांची निर्जिव घटकांशी जुळवून घेण्याची क्षमता वेगवेगळी असते एखाद्या सूक्ष्म जीवाला ऑक्सिजनची गरज असते, तर दुसऱ्याला नसते काही झाडांना जास्त सूर्यप्रकाश आवश्यक असतो तर काही वनस्पती कमी सूर्यप्रकाशात म्हणजेच सावलीत चांगल्या वाढतात

परिसंस्थेतील प्रत्येक अजैविक घटक उदाहरणार्थ, हवा, पाणी, माती, सूर्यप्रकाश, तापमान, आर्द्रता इत्यादींचा त्यातील सजीवांवर किंवा जैविक घटकांवर परिणाम होत असतो एखाद्या परिसंस्थेत कोणते सजीव जगू शकतील आणि त्यांची संख्या किती असावी हे त्या परिसंस्थेतील अजैविक घटकांवर ठरते

सजीव परिसंस्थेतील हे अजैविक घटक सतत वापरत असतात किंवा उत्सर्जित करत असतात म्हणून परिसंस्थेतील जैविक घटकांमुळे अजैविक घटकांचे प्रमाण कमी-जास्त होत असते परिसंस्थेतील प्रत्येक सजीव घटकाचा सभोवतालच्या अजैविक घटकावर परिणाम होत असतो त्यामुळे त्याचा परिणाम परिसंस्थेतील इतर सजीवांवरही होतो

परिसंस्थेतील प्रत्येक सजीव त्या परिसंस्थेत राहताना, कार्य करताना विशिष्ट भूमिका बजावत असतो या सजीवाचे परिसंस्थेतील इतर सजीवांच्या संदर्भातील स्थान व तो बजावत असलेली भूमिका याला 'निश' (Niche) म्हणतात उदा बागेत वाढणारे सूर्यफुलाचे झाड ऑक्सिजन हवेत उत्सर्जित करते व मधमाशा, मुंग्या इत्यादी कीटकांसाठी अन्न व आसरा प्रविते



18.2 परिसंस्थेतील घटकांमधील आंतरक्रिया



- 1 वरील आंतरक्रियेत सूक्ष्मजीवांची भूमिका काय आहे ?
- 2 अजैविक घटक उत्पादकांना कसे मिळतात ?
- 3 भक्षक कोठून अन्न मिळवतात ?

बहुतेक परिसंस्था अत्यंत गुंतागुंतीच्या असतात आणि त्यामध्ये विविध जीवजातींचे संख्यात्मक व गुणात्मक असे प्रचंड वैविध्य आढळते आपल्या भारत देशासारख्या उष्णकिटबंधीय भागातील परिसंस्थांमध्ये केवळ काही मोजक्या जातीचे सजीव सर्वत्र मोठ्या संख्येने आढळून येतात उरलेल्या बहुतेक वनस्पती व प्राण्यांच्या जातीची बरीच कमी संख्या असते काही जातींमध्ये तर संख्या फारच कमी असते पृथ्वीवर विविध प्रकारच्या परिसंस्था आहेत प्रत्येक ठिकाणची परिसंस्था वेगवेगळी असते उदा जंगल, तळे, सागर, नदी इत्यादी परिसंस्थेचा आकार, स्थान, हवेची स्थिती, वनस्पती व प्राणीप्रकार या वैशिष्ट्यांनुसार परिसंस्थांचे काही प्रकार आहेत

जीवावरणात अनेक परिसंस्था कार्यान्वित असतात त्यांच्या सभोवतालच्या पर्यावरणानुसार त्यांचे वैशिष्ट्यपूर्ण कार्य चालत असते पृथ्वीवर अशा अनेक परिसंस्था निर्माण झाल्या आहेत पृथ्वीवरील या परिसंस्था जरी ढोबळ मानाने स्वतंत्र व वेगळ्या दिसत असल्या तरी प्रत्यक्ष व अप्रत्यक्षरीत्या त्या एकमेकांशी बांधीलच असतात यामुळे या छोट्या-छोट्या परिसंस्था आपण पूर्णपणे एकमेकांपासून वेगळ्या करू शकत नाही, परंतु वैशिष्ट्यानुसार त्यांच्या कार्यप्रणालीनुसार तसेच वैज्ञानिक दृष्टिकोनानुसार परिसंस्थेचे वेगवेगळे प्रकार पडतात

# मागे वळून पाहताना....

विज्ञानाच्या प्रगतीबरोबरच नवनवीन शब्दांची निर्मिती होत असते 'Ecosystem' या शब्दाचे असेच आहे परिसंस्था असे या शब्दाचे आपण मराठी रूपांतर केले आहे 1930 सालची गोष्ट, पर्यावरणाच्या भौतिक आणि जीवशास्त्रीय घटकांच्या परस्परसंबंधांचा विचार एका शब्दात कसा व्यक्त करता येईल? असा प्रश्न रॉय क्लॅफाम या शास्त्रज्ञाला विचारण्यात आला होता या प्रश्नावर त्याचे उत्तर होते, Ecosystem हा शब्द पुढे ए जी टान्सले या क्लॅफामच्या सहकाऱ्याने 1935 साली सर्वप्रथम प्रचारात आणला Ecosystem ला जैविक समुदाय (Biotic community) असेही नाव आहे

पृथ्वीवरील काही भागांत बऱ्याच मोठ्या क्षेत्रातील हवामान व अजैविक घटक सर्वसाधारणपणे सारखे असतात त्या भागात राहणाऱ्या सजीवांमध्ये सारखेपणा आढळतो त्यामुळे एका विशिष्ट स्वरूपाची परिसंस्था बऱ्याच मोठ्या क्षेत्रात तयार होते अशा मोठ्या परिसंस्थांना 'बायोम्स' (Biomes) असे म्हणतात या बायोम्समध्ये अनेक छोट्या परिसंस्थांचा समावेश असतो पृथ्वी ही स्वतः एक विस्तीर्ण परिसंस्था आहे पृथ्वीवर दोन मुख्य प्रकारच्या 'बायोम्स' आढळतात 1 भू-परिसंस्था (Land Biomes) व 2 जलीय परिसंस्था (Aquatic Biomes)

भू-परिसंस्था: ज्या परिसंस्था फक्त भू-भागावरच म्हणजे जिमनीवरच असतात किंवा अस्तित्वात येतात त्यांना भू-परिसंस्था असे म्हणतात अजैविक घटकांचे वितरण भूतलावर असमान आहे त्यामुळे वेगवेगळ्या प्रकारच्या परिसंस्था निर्माण झाल्या आहेत उदा गवताळ प्रदेशातील परिसंस्था, सदाहरित जंगलातील परिसंस्था, उष्ण वाळवंटातील परिसंस्था, बर्फाळ प्रदेशातील परिसंस्था, तैगा प्रदेशातील परिसंस्था, विषुववृत्तीय वर्षावनांची परिसंस्था

अ. गवताळ प्रदेशातील परिसंस्था (Grassland Ecosystem) : ज्या प्रदेशात पावसाचे प्रमाण मोठमोठी झाडे वाढिविण्यासाठी पुरेसे नसते, त्या ठिकाणी गवताळ प्रदेश तयार होतात या प्रकारच्या परिसंस्थामध्ये गवताची मोठ्या प्रमाणात वाढ होत असते मोठा उन्हाळा आणि माफक पाऊस यांमुळे खुरट्या वनस्पतींची वाढ होते शेळी, मेंढी, जिराफ, झेब्रा, हत्ती, हिरण, चितळ, वाघ, सिंह इत्यादी प्राणी या प्रदेशात आढळतात त्याचप्रमाणे विविध पक्षी, कीटक व सूक्ष्मजीवसुद्धा असतात



18.3 गवताळ प्रदेश



- गवताळ प्रदेशांना कोणत्या कारणांमुळे धोके संभवतात?
- 2 आशियाई चित्ता ही प्रजाती मागील शतकात नामशेष का झाली?
- 3 'आशियाई चित्ता' इंटरनेटवरून बघा व वर्णन लिहा



उत्पादक	प्राथमिक भक्षक	द्वितीयक भक्षक	तृतीयक भक्षक	विघटक
गाजरगवत, कुसळी, हरळी,	गाय, हरिण, ससा,	साप, पक्षी,	सिंह, तरस,	फ्युजरियम,
	लिप्टीकासिया	कोल्हा, लांडगा	गिधाड, घार	अस्परजिलस
			•••••	•••••



# माहीत आहे का तुम्हांला?

'दुधवा' हे जंगल दीड शतकापूर्वी एकिशंगी गेंड्याचे मोठे वसितस्थान होते पण अनिर्बंध शिकारीमुळे विसाव्या शतकात हा प्राणी येथून नामशेष झाला 1 एप्रिल 1984 रोजी या गेंड्यांचे येथे पुनर्वसन करण्यात आले पिंजऱ्यात त्यांचे प्रजनन करून नंतर हे गेंडे निसर्गात (अधिवासात) सोडले गेले सर्वप्रथम सत्तावीस चौरस किमी, गवताळ प्रदेश व वने ज्यात बारमाही जलस्रोत आहेत, असा भूभाग या कामी निश्चित करण्यात आला तसेच दोन निरीक्षण केंद्रे बसविण्यात आली या प्रयत्नांना चांगले यश आले आहे



🎱 विचार करा.

वृक्ष ही स्वतंत्र परिसंस्था आहे का ?

# ब. जंगलातील परिसंस्था (Forest Ecosystem)

ही निसर्गनिर्मित परिसंस्था आहे जंगलामध्ये विविध प्रकारचे प्राणी, वृक्ष, एकाच ठिकाणी असतात अजैविक घटकांमध्ये जिमनीत व हवेत असणारे सेंद्रिय, असेंद्रिय घटक, हवामान, तापमान, पर्जन्यमान हे घटक वेगवेगळ्या प्रमाणात आढळतात





# तक्ता पूर्ण करा

राष्ट्रीय उद्यान / अभयारण्य	राज्य
1 गीर	
2 दाचीगाम	
3 रणथंबोर	
4 दाजीपूर	
5 काझीरंगा	
6 सुंदरबन	
7 मेळघाट	
8 पेरियार	





तक्ता पूर्ण करा

जंगल परिसंस्थेतील विविध घटकांची माहिती लिहा

उत्पादक	प्राथमिक भक्षक	द्वितीय भक्षक	तृतीयक भक्षक	विघटक
डिप्टेरोकार्पस,	मुंगी, नाकतोडा,	साप, पक्षी, सरडे,	वाघ, ससाणा,	अस्परजिलस,
साग, देवदार, चंदन	कोळी, फुलपाखरे,	कोल्हा,	चित्ता,	पॉलिकॉर्पस,



# माहीत आहे का तुम्हांला?

- भारतात सुमारे 520 अभयारण्ये व राष्ट्रीय उद्यानांमध्ये अनेक प्रकारच्या परिसंस्थांचे रक्षण होते
- पांढरा बिबट्या या अत्यंत दुर्मिळ प्राण्यांचे रक्षण करणारे सर्वांत मोठे अभयारण्य दि ग्रेट हिमालयन नॅशनल पार्क आहे
- काझीरंगा राष्ट्रीय उद्घान (आसाम) येथे हत्ती, गवा, रानडुक्कर, रानम्हैस, हरिण, वाघ, बिबटे यांसह अनेक प्राण्यांचे जतन करण्यात आले आहे जगात सापडणाऱ्या भारतीय एकशिंगी गेंड्यापैकी दोन तृतीयांश गेंडे येथे आढळतात
- भरतपूर येथे अभयारण्य पाणपक्ष्यांसाठी जगप्रसिद्ध आहे
- रणथंबोरचे अभयारण्य पट्टेदार वाघांसाठी प्रसिद्धआहे
- गुजरातमधील गीरचे जंगल म्हणजे दिमाखदार अशा आशियाई सिंहाचे जगातील एकमेव आश्रयस्थान आहे

जलीय परिसंस्था (Aquatic Biomes): पृथ्वीवर 71 % भूभाग पाण्याने व्यापला असून फक्त 29% भागावर जमीन आहे त्यामुळे जलीय परिसंस्थांचा अभ्यास अत्यंत महत्त्वाचा ठरतो नैसर्गिक परिसंस्थेत जलपरिसंस्था अभिक्षेत्रीय दृष्टीने जास्त व्यापक आहे जलपरिसंस्थेमध्ये खालील प्रकार महत्त्वाचे मानले जातात उदा गोड्या पाण्यातील परिसंस्था, खाऱ्या पाण्यातील परिसंस्था, खाडी परिसंस्था



18.5 जलीय परिसंस्था

अ. गोड्या पाण्यातील परिसंस्था : या परिसंस्थेत नदी, तळे, सरोवर यांचा समावेश होतो या परिसंस्थेत नदीद्वारे व पाण्याच्या प्रवाहाद्वारे ऊर्जा संक्रमण होते जलभागाच्या तळावर असंख्य विघटक असतात ते वनस्पती व प्राण्यांच्या मृत शरीरावर विघटनाचे कार्य करून त्याचे अजैविक घटकांत रूपांतर करतात अशा तुमच्या जवळ असणाऱ्या परिसंस्थेचे निरीक्षण करा व त्याआधारे खालील तक्ता पूर्ण करा

प्राथमिक	द्वितीय	तृतीयक भक्षक	विघटक
भक्षक	भक्षक		
पाणकीटक,	लहान मासे,	मोठे मासे,	जीवाणू, बुरशी,
गोगलगाय,	बेडूक	मगर, बगळे,	
ॲनेलिड्स,	·		
·			
	भक्षक पाणकीटक, गोगलगाय,	भक्षक         भक्षक           पाणकीटक,         लहान मासे,           गोगलगाय,         बेडूक	भक्षक         भक्षक           पाणकीटक,         लहान मासे,         मोठे मासे,           गोगलगाय,         बेडूक         मगर, बगळे,



चर्चा करा.

आपल्या परिसरातील नदी, तलाव किंवा तळे या परिसंस्था सुरक्षित आहेत का ?

ब. खाऱ्या पाण्यातील सागरी परिसंस्था (Marine Ecosystem): या परिसंस्थेत सागरी वनस्पतींची वाढ होते शैवालावर उपजीविका करणारे लहान मासे, झिंगे मोठ्या प्रमाणात उथळ भागात आढळतात सागराच्या मध्यभागी कमी प्रमाणात जलचर आढळतात मोठे मासे हे द्वितीयक भक्षक असतात समुद्रात पोषकद्रव्ये मोठ्या प्रमाणात आढळतात सागर तळावर विघटकांची संख्या जास्त असते मृत वनस्पती, मृती प्राणी व टाकाऊ पदार्थ सागर तळावर जमा होऊन त्यांच्यावर सूक्ष्मजीवाणू विघटनाचे कार्य करत असतात

इंटरनेट माझा मित्र 1 सागरी परिसंस्थेत मानवी हस्तक्षेपामुळे घडलेल्या दुर्घटनांची माहिती घ्या

2 'खाडी परिसंस्था' ही सागरी परिसंस्थेपेक्षा वेगळी कशी आहे माहिती घ्या

🎱 विचार करा.

दिविजा आज टेकडीवर फिरायला गेली होती तिथे फुलांवर मधमाश्या घोंगावत होत्या तेथील एक मधमाशी दिविजाच्या जवळ आली आणि तिच्या हाताला दंश केला त्या दंशाच्या वेदनेमुळे दिविजा कळवळली व रागारागात म्हणाली, ''जगातून सर्व मधमाश्या नष्ट होऊ दे'' नंतर तिने विचार केला, 'खरंच मधमाश्या नष्ट झाल्या तर? तर फार काय होईल मध खायला मिळणार नाही, एवढंच ना? तुम्ही दिविजाला काय सांगणार?

मानवी हस्तक्षेपामुळे होणारा परिसंस्थांचा न्हास : मानवाच्या विविध कृतींचा परिसंस्थांच्या कार्यावर घातक परिणाम होतो, त्यामुळे परिसंस्थाचा न्हास होतो उदा खाणकाम आणि मोठ्या प्रमाणावरील वृक्षतोड यांमुळे जिमनीचा वापर बदलू शकतो तसेच त्यामुळे सजीव आणि निर्जिव घटकांचे संबंधही बिघडतात

विविध मानवी प्रक्रिया व कृती, परिसंस्थांवर वेगवेगळ्या प्रकारचे परिणाम करतात एखाद्या विशिष्ट प्रकारच्या परिसंस्थेचे दुसऱ्या प्रकारच्या परिसंस्थेत रूपांतर होण्यापासून'ते एखादी प्रजाती नष्ट होण्यापर्यंत असे परिणाम होतात

परिसंस्था ऱ्हासाला कारणीभूत ठरणाऱ्या काही मानवी प्रक्रिया आणि कृती

लोकसंख्यावाढ व संसाधनाचा वाढलेला वापर: परिसंस्थेमध्ये मानवप्राणी 'भक्षक' या गटात मोडतो मानवाला सामान्य परिस्थितीत परिसंस्था त्याच्या गरजेपुरत्या गोष्टी पुरवू शकतात, परंतु लोकसंख्यावाढीमुळे मानव गरजा भागविण्यासाठी निसर्गाकडून बेसुमार साधनसंपत्ती घेत राहिला जीवनशैलीच्या नव्या बदलांमुळे मानवाची जगण्यासाठीच्या किमान गरजेच्या गोष्टीपेक्षा अधिकची मागणी वाढली त्यामुळे परिसंस्थावर ताण वाढला पण टाकाऊ पदार्थांचे प्रमाणही मोठ्या प्रमाणात



18.6 परिसंस्थेचा ऱ्हास

शहरीकरण: वाढत्या शहरीकरणाच्या सततच्या प्रक्रियेमुळे जास्तीची घरबांधणी व इतर पायाभूत सुविधांसाठी अधिकाधिक शेतजमीन, दलदलीचा भाग, पाणथळीचे क्षेत्र, जंगले व गवताळ प्रदेशाचा वापर होतो आहे यामुळे परिसंस्थांमधील मानवी हस्तक्षेपामुळे परिसंस्था पूर्णपणे बदलतात किंवा नष्ट होतात

औद्योगिकीकरण आणि वाहतूक : वाढत्या औद्योगिकीकरणासाठी लागणारा कच्चा माल नैसर्गिक जंगले तोडून मिळवला जातो यामुळे जंगलांचा नाश होतो वाहतुकीत वाढ झाल्याने त्यासाठीच्या सुविधा वाढवताना बरेचदा जंगलातून किंवा पाणथळ जागांवर रस्त्यांचे, रेल्वेमार्गांचे जाळे पसरले जाते

पर्यटन: निसर्गनिरीक्षण, मनोरंजन व देवदर्शनासाठी मोठ्या प्रमाणावर पर्यटक निसर्गरम्य परिसरात येतात या पर्यटकांकरिता अशा ठिकाणाच्या परिसरांमध्ये मोठ्या प्रमाणात पायाभूत सुविधा निर्माण केल्या जातात त्यामुळे स्थानिक परिसंस्थेवर अतिरिक्त ताण येऊन तिची मोठ्या प्रमाणावर हानी होते



आपल्या परिसरातील एखाद्या पर्यटन केंद्राला भेट द्या तेथील परिसंस्थेवर पर्यटनाचे काय परिणाम होतात ते शोधा

मोठी धरणे : धरणांमुळे मोठ्या प्रमाणात जमीन पाण्याखाली जाते त्यामुळे त्या भागातील जंगले किंवा गवताळ प्रदेशांचे जलीय परिसंस्थेत रूपांतर होते धरणांमुळे नदीचा खालच्या बाजूचा पाण्याचा प्रवाह कमी होतो याचा परिणाम म्हणजे पूर्वी वाहत्या पाण्यामध्ये तयार झालेल्या परिसंस्था नष्ट होतात



- 1 धरणामुळे कोणत्या जैविक घटकांवर परिणाम होतो ?
- 2 नदीतील वाहत्या पाण्यातील जैविक घटकांवर काय परिणाम होत असतील ?

युद्धे : जमीन, पाणी, खनिजसंपत्ती किंवा काही आर्थिक व राजकीय कारणांमुळे मानवी समूहात स्पर्धा व मतभेदांतून युद्ध होते युद्धामध्ये मोठ्या प्रमाणात बाँबवर्षाव-सुरुंग स्फोट केले जातात यामुळे फक्त जीवितहानी होते असे नाही, तर नैसर्गिक परिसंस्थांमध्ये मोठे बदल होतात किंवा त्या नष्टसुद्धा होतात

अशा प्रकारे भूकंप, ज्वालामुखी, महापूर, दुष्काळ यांसारख्या नैसर्गिक आपत्तीमुळे व मानवी हस्तक्षेपामुळे काही नैसर्गिक परिसंस्थांचे वेगळ्या प्रकारच्या परिसंस्थांत रूपांतर होते, काही परिसंस्थांचा ऱ्हास होतो, तर काही परिसंस्था समूळ नष्ट होतात

नैसर्गिक परिसंस्था जीवावरणातील संतुलन राखण्यात महत्त्वाची भूमिका बजावतात म्हणून त्यांचे संरक्षण करणे महत्त्वाचे ठरते

## स्वाध्याय

- खालील पर्यायांपैकी योग्य पर्याय निवडून रिकाम्या जागा भरा.
  - अ. हवा, पाणी, खिनजे, मृदा ही पिरसंस्थेतील..... घटक होय.(भौतिक, सेंद्रिय, असेंद्रिय)
  - आ. परिसंस्थेतील नदी, तळे, समुद्र हे ...... परिसंस्थेची उदाहरणे आहे. (भूतल, जलीय, कृत्रिम)
  - इ. परिसंस्थेमध्ये 'मानव' प्राणी..... गटात मोडतो. (उत्पादक, भक्षक, विघटक)
- 2. योग्य जोड्या जुळवा.

# उत्पादक परिसंस्था

- अ निवडुंग 1 जंगल
- आ पाणवनस्पती 2 खाडी
- इ खारफुटी 3 जलीय
- ई पाईन 4 वाळवंटीय
- माझ्याविषयी माहिती सांगा.
  - अ. परिसंस्था आ. बायोम्स इ. अन्नजाळे
- 4. शास्त्रीय कारणे द्या.
  - अ. परिसंस्थेतील वनस्पतींना उत्पादक म्हणतात.
  - आ. मोठ्या धरणांमुळे परिसंस्था नष्ट होतात.
  - इ. दधवा जंगलात गेंड्यांचे पुनर्वसन करण्यात आले.
- 5. खालील प्रश्नांची उत्तरे लिहा.
  - अ. लोकसंख्या वाढीचे परिसंस्थांवर काय परिणाम झाले?
  - आ. परिसंस्थेच्या ऱ्हासास शहरीकरण कसे जबाबदार आहे?

- इ. नैसर्गिक परिसंस्थांमध्ये मोठा बदल घडवणारी युद्धे का होतात?
- ई. परिसंस्थेतील घटकांमधील आंतरक्रिया स्पष्ट करा
- सदाहरित जंगल व गवताळ प्रदेश या परिसंस्थेतील ठळक फरक सांगा.
- 6. खालील चित्रांचे वर्णन लिहा.





#### उपक्रमः

- आपल्या परिसरातील एका परिसंस्थेला भेट द्या. त्यातील असणाऱ्या जैविक-अजैविक घटक एकमेकांवर कसे अवलंबून आहेत ते सादर करा.
- 2. युद्धामुळे किंवा अणुस्फोटामुळे झालेली परिसंस्थेची हानी इंटरनेटच्या माध्यमाने शोधा व तुमच्या शब्दांत लिहा.





# Bull

# 19. ताऱ्यांची जीवनयात्रा





थोडे आठवा.

- 1 दीर्घिका (galaxy) म्हणजे काय?
- 2 आपल्या सूर्यमालेत कोणकोणते घटक आहेत?
- 3 तारे व ग्रह यांतील प्रमुख फरक कोणते?
- 4 उपग्रह म्हणजे काय?
- 5 आपल्या सर्वांत जवळ असलेला तारा कोणता?

विश्वाचे अंतरंग आपण मागील इयत्तांमध्ये जाणून घेतले आहे आपली सूर्यमाला ही एका दीर्घिकेत म्हणजेच आकाशगंगेत सामावलेली आहे दीर्घिका हा अब्जावधी तारे, त्यांच्या ग्रहमालिका व ताऱ्यांमधील रिकाम्या जागेत आढळणाऱ्या आंतरतारकीय मेघांचा (interstellar clouds) समूह असतो विश्व हे अशा असंख्य दीर्घिकांनी मिळून बनलेले आहे या दीर्घिकांचे आकार व घडण वेगवेगळी असते त्यांना आपण तीन मुख्य प्रकारांत विभागू शकतो: चक्राकार (spiral), लंबगोलाकार (elliptical) व अनियमित आकाराच्या (irregular) दीर्घिका आपली दीर्घिका ही चक्राकार असून तिला मंदािकनी हे नाव दिलेले आहे आकृती 19 1 मध्ये एक चक्राकार दीर्घिका दाखिवली आहे

19.1 एक चक्राकार दीर्घिका : आपली सूर्यमाला अशाच एका दीर्घिकेत स्थित आहे.

# A

# माहीत आहे का तुम्हांला?

आपल्या आकाशगंगेत सुमारे  $10^{11}$  तारे आहेत आकाशगंगेचा आकार मध्यभागी फुगीर असलेल्या तबकडीसारखा असून तिचा व्यास सुमारे  $10^{18}~{\rm km}$  आहे सूर्यमाला तिच्या केंद्रापासून सुमारे  $2.7~{\rm x}~10^{17}~{\rm km}$  अंतरावर स्थित आहे तबकडीला लंब असलेल्या व तिच्या केंद्रातून जाणाऱ्या अक्षावर आकाशगंगा परिवलन करत असून एका परिवलनासाठी तिला  $2.{\rm x}$   $10^{8}$  वर्षे लागतात

विश्वाबद्दल ही सगळी माहिती आपण कशी मिळवली?

आपण रात्री आकाशात पाहिले तर आपल्याला फक्त ग्रह व तारे दिसतात मग इतर घटकांविषयी माहिती कोठून मिळाली? या प्रश्नाचे उत्तर दुर्बिणी हे आहे यांपैकी अनेक दुर्बिणी पृथ्वीच्या पृष्ठभागावर ठेवलेल्या असतात तर काही दुर्बिणी मानवनिर्मित कृत्रिम उपग्रहांवर ठेवलेल्या असतात व विशिष्ठ कक्षेत पृथ्वीभोवती परिभ्रमण करत असतात पृथ्वीच्या वायुमंडलावर असल्याने त्या दुर्बिणी अधिक प्रभावीपणे खगोलीय वस्तूंचे निरीक्षण करू शकतात दुर्बिणींतून केलेल्या निरीक्षणांचा अभ्यास करून खगोलशास्त्रज्ञ विश्वाबद्दल सखोल माहिती मिळवतात या पाठात आपण ताऱ्यांचे गुणधर्म व त्यांच्या जीवनयात्रेबद्दल थोडी माहिती घेऊया

ताऱ्यांचे गुणधर्म (Properties of stars): रात्री आकाशात आपण सुमारे 4000 तारे आपल्या डोळ्चांनी पाहू शकतो सूर्य हा त्यातील एक सामान्य तारा आहे सामान्य म्हणण्याचे कारण असे की तो आपल्यापासून सगळ्चांत निकट असल्यामुळे जरी आकाशातील इतर ताऱ्यांपेक्षा खूप मोठा दिसत असला तरीही वस्तुतः त्याच्यापेक्षा कमी किंवा अधिक वस्तुमान, आकार व तापमान असलेले अब्जावधी तारे आकाशात आहेत तारे हे तप्त वायूचे प्रचंड गोल असतात सूर्याचे काही गुणधर्म खालील तक्त्यात दिले आहेत सूर्याच्या वस्तुमानाचा 72% भाग हायड्रोजन आहे, तर 26% भाग हेलिअम आहे उरलेले 2% वस्तुमान हेलिअमपेक्षा अधिक अणुक्रमांक असलेल्या मूलद्रव्यांच्या अणुंच्या रूपात आहे

सूर्याचे गुणधर्म :

वस्तुमान	2 x 10 ³⁰ kg
त्रिज्या	695700 km
पृष्ठभागावरील तापमान	5800 K
केंद्रातील तापमान	1 5 x 10 ⁷ K
वय	4 5 अब्ज वर्ष

सूर्याचे वस्तुमान पृथ्वीच्या वस्तुमानाच्या सुमारे 3 3 लक्ष पट आहे व त्याची त्रिज्या पृथ्वीच्या त्रिज्येच्या 100 पट आहे इतर ताऱ्यांचे वस्तुमान सूर्याच्या वस्तुमानाच्या ्रात जात स्वास्त्र के स्वास्त 1000 पटपर्यंत असू शकते (आकृती 19 2)



19.2 विविध ताऱ्यांच्या आकाराची तुलना

# माहीत आहे का तुम्हांला?

इतर ताऱ्यांचे वस्तुमान मोजतांना ते सूर्याच्या सापेक्ष मोजले जाते म्हणजे सूर्याचे वस्तुमान हे एकक घेतले जाते  $\ \$  यास  $\ \ M_{Sun}$  असे संबोधतात

सूर्याचे व इतर ताऱ्यांचे वय, म्हणजेच त्यांच्या निर्मितीनंतर गेलेला काळ हा काही दशलक्ष ते अब्जावधी वर्षांएवढा अजस्त्र असतो या अवधीत सूर्याच्या गुणधर्मात बदल झाला असता तर त्यामुळे पृथ्वीच्या गुणधर्मात व जीवसृष्टीत बदल घडला असता यामुळे पृथ्वीच्या गुणधर्मांचा सखोल अभ्यास करून शास्त्रज्ञांनी निष्कर्ष काढला आहे की सूर्याचे गुणधर्म त्याच्या जीवनकाळात म्हणजे गेली 4 5 अब्ज वर्षे बदलेले नाहीत खगोलशास्त्रज्ञांच्या विश्लेषणानुसार ते गुणधर्म पुढील ४ 5 अब्ज वर्षांनी हळूहळू बदलतील

# ताऱ्यांची निर्मिती (Birth of stars) :

दीर्घिकांतील ताऱ्यांच्यामध्ये असलेल्या रिक्त जागांत ठिकठिकाणी वायू व धुळीचे प्रचंड मेघ सापडतात, ज्यांना आंतरतारकीय मेघ म्हणतात आकृती 19 3 मध्ये हबल दुर्बिणीने टिपलेले अशा मेघांचे एक प्रकाशचित्र दाखवले आहे मोठी अंतरे मोजण्यासाठी शास्त्रज्ञ प्रकाशवर्ष (light year) हे एकक वापरतात एक प्रकाशवर्ष म्हणजे प्रकाशाने एका वर्षात पार केलेले अंतर. प्रकाशाचा वेग 3, 00, 000 km/s असल्याने एक प्रकाशवर्ष हे अंतर 9 5 x  $10^{12}$  km इतके असते आंतरतारकीय मेघांचा आकार काही प्रकाश वर्षे इतका असतो म्हणजे प्रकाशाला या मेघांच्या एका टोकापासून दसऱ्यापर्यंत जाण्यास काही वर्षे लागतात यावरून तुम्ही या मेघांच्या प्रचंड आकाराची कल्पना करू शकता



19.3 हबल दुर्बिणीने टिपलेले विशाल आंतरतारकीय मेघांचे प्रकाशचित्र

एखाद्या विक्षोभामुळे (disturbance) हे आंतरतारकीय मेघ आकुंचित होऊ लागतात या आकुंचनामुळे त्यांची घनता वाढत जाते व तसेच त्यांचे तापमानही वाढू लागते व त्यांमधून एक तप्त वायूचा गोल तयार होतो त्याच्या केंद्रातील तापमान व घनता पुरेसे वाढल्यावर तेथे अणुऊर्जा (अणुकेंद्रकांच्या युतीने निर्माण झालेली ऊर्जा) निर्मिती सुरू होते या ऊर्जा निर्मितीमुळे हा वायूचा गोल स्वयंप्रकाशित होतो म्हणजेच या प्रक्रियेतून एक तारा निर्माण होतो किंवा एका ताऱ्याचा जन्म होतो असे आपण म्हणू शकतो सूर्यात ही ऊर्जा हायड्रोजनच्या केंद्रकांचे एकत्रिकरण होऊन हेलिअमचे केंद्रक तयार होणे या प्रक्रियेतून उत्पन्न होते म्हणजे सूर्याच्या केंद्रभागातील हायड़ोजन हा इंधनाचे कार्य करतो



# माहीत आहे का तुम्हांला?

प्रकाशाला चंद्रापासून आपल्यापर्यंत येण्यास एक सेकंद लागतो, सूर्यापासून येण्यास 8 मिनिटे लागतात, तर सूर्यापासून सर्वांत जवळ असलेल्या अल्फा सेंटॉरीस या ताऱ्यापासून आपल्यापर्यंत येण्यास 4 2 वर्षे लागतात



# माहीत आहे का तुम्हांला?

वायूगोल आकुंचित झाल्यास वायूचे तापमान वाढते गुरुत्वीय स्थितिज उर्जेचे उष्णतेत रूपांतर झाल्याने हे होते

एका विशाल आंतरतारकीय मेघांच्या आकंचनातून एकाच वेळेस अनेक तारेही निर्माण होऊ शकतात हजारो ताऱ्यांच्या एका समूहाचे चित्र आकृती 19 4 मध्ये दाखिवले आहे यातील बहुतेक तारे एकाच प्रचंड आंतरतारकीय

मेघातन निर्माण झालेले आहेत



# थोडे आठवा

संतुलित व असंतुलित बले म्हणजे काय?

ताऱ्यांचे स्थैर्य: एखाद्या खोलीत एका कोपऱ्यात उदबत्ती पेटवली असता तिचा सुगंध क्षणार्धात खोलीभर पसरतो तसेच उकळणारे पाणी असलेल्या भांड्याचे झाकण काढल्यावर त्यातील वाफ बाहेर पडून सर्वत्र पसरते म्हणजे तप्त वायू सर्वद्र पसरतो मग ताऱ्यांतील तप्त वायू अवकाशात का पसरत नाही? तसेच सूर्याचे गुणधर्म गेली 4 5 अब्ज वर्षे स्थिर कसे राहिले आहेत?



19.4 एक विशाल तारकासमूह. यातील बहतेक तारे एकाच आंतरतारकीय मेघातून निर्माण झालेले आहेत.

या प्रश्नांचे उत्तर गुरुत्वीय बल हे आहे ताऱ्यांतील वायूच्या कणांमधील गुरुत्वीय बल हे या कणांना एकत्र ठेवण्याचे कार्य करते वायूतील कणांना एकत्र आणण्यासाठी सतत प्रयत्नशील असलेले गुरुत्वीय बल व त्याविरुद्ध कार्यरत असलेला व ताऱ्यांच्या पदार्थाला सर्वत्र पसरवण्यासाठी सतत प्रयत्नशील असलेला ताऱ्यातील तप्त वायूचा दाब या दोन्हींत संतुलन असल्यास तारा स्थिर असतो गुरुत्वीय बल ताऱ्याच्या आतील बाजूस म्हणजे केंद्राच्या दिशेत निर्देशित असते तर वायूचा दाब ताऱ्याच्या बाहेरील बाजूस म्हणजे केंद्राच्या विरुद्ध दिशेत निर्देशित असतो (आकृती 19 5 पहा)



19.5 ताऱ्याचे स्थैर्य



तुम्ही रस्सीखेच हा खेळ खेळला असाल रस्सीची दोन टोके दोन वेगवेगळे गट आपापल्याकडे खेचत असतात दोन्ही बाजुला लावलेली बले समान असतील तर ती बले संतुलित होतात व रस्सीचा मध्य स्थिर असतो जेव्हा एका बाजूचे बल दसऱ्या बाजूच्या बलापेक्षा जास्त असते तेव्हा रस्सीचा मध्य त्या बाजूला सरकतो असेच काहीसे ताऱ्यांच्या बाबतीत होते गुरुत्वीय बल व वायूचा दाब हे संतुलित असले तर तारा स्थिर असतो, पण एक बल दसऱ्यापेक्षा जास्त झाले तर ताऱ्याचे आकुंचन किंवा प्रसरण होते



# माहीत आहे का तुम्हांला?

- जर सूर्यात वायूचा दाब नसेल तर गुरुत्वीय बलामुळे तो 1 ते 2 तासांत संपूर्णपणे आकुंचित होऊन बिंदरूप होईल
- वायूचा दाब हा त्याची घनता व त्याचे तापमान यांवर अवलंबून असतो या दोन्हींची मूल्ये जितकी अधिक तितका हा दाब अधिक असतो

फेकले जाते व आतील भाग आकुंचित होतो या आतील भागाचा आकार साधारणपणे पृथ्वीच्या आकाराइतका होतो ताऱ्यांचे वस्तुमान पृथ्वीपेक्षा खूप अधिक असल्याने व आकार पृथ्वीइतका झाल्याने ताऱ्यांची घनता खूप वाढते अशा स्थितीत त्यांतील इलेक्ट्रॉनमुळे निर्माण झालेला दाब तापमानावर अवलंबून असत नाही व तो ताऱ्यांच्या गुरुत्वीय बलास अनंतकाळापर्यंत संतुलित करण्यास पुरेसा असतो या अवस्थेत तारे श्वेत दिसतात व त्यांच्या लहान आकारामुळे ते श्वेत बदू (White dwarfs) म्हणून ओळखले जातात यानंतर त्यांचे तापमान कमी होत जाते परंतु आकार व वस्तुमान अनंतकाळापर्यंत स्थिर राहतात म्हणून ही बदू अवस्था या ताऱ्यांची अंतिम अवस्था असते



19.7 श्वेत बटूच्या निर्मिती वेळेस बाहेर फेकले गेलेले वायूचे आवरण. मध्यभागी श्वेत बटू आहे.



# माहीत आहे का तुम्हांला?

जेव्हा सूर्य तांबडा राक्षसी ताऱ्याच्या अवस्थेत जाईल तेव्हा त्याचा व्यास इतका वाढेल की तो बुध व शुक्र ग्रहांना गिळंकृत करेल पृथ्वीही त्याच्यात सामावून जाण्याची शक्यता आहे सूर्याला या स्थितीत येण्यास अजून सुमारे 4 ते 5 अब्ज वर्षे लागतील

2. सूर्याच्या वस्तुमानाच्या 8 ते 25 पट वस्तुमान (8 M  $_{\text{Sun}}$  <  $M_{\text{Sun}}$  < 25 M  $_{\text{Sun}}$  ) असलेल्या ताऱ्यांची अंतिम अवस्था : हे तारेदेखील वरीलप्रमाणे तांबडा राक्षसी तारा व नंतर महाराक्षसी तारा या अवस्थांमधून जातात महाराक्षसी अवस्थेत त्यांचा आकार  $1000\,\text{पटी}$ पर्यंत वाढू शकतो त्यांत शेवटी होणारा महाविस्फोट (supernova explosion) खूप शिक्तिशाली असतो व त्यांतून प्रचंड प्रमाणात बाहेर पडणाऱ्या ऊर्जेमुळे ते तारे दिवसादेखील दिसू शकतात महाविस्फोटातून



उरलेला केंद्रातील भाग आकुंचित होऊन त्याचा आकार 10 km च्या जवळपास येतो या अवस्थेत ते संपूर्णपणे न्यूट्रॉनचे बनलेले असतात यामुळे त्यांना न्यूट्रॉन तारे असे म्हटले जाते ताऱ्यातील न्यूट्रॉनमुळे निर्माण झालेला दाब तापमानावर अवलंबून नसतो व तो अनंतकालापर्यंत गुरुत्वीय बलास संतुलित करण्यास सक्षम असतो न्यूट्रॉन तारे ही या ताऱ्यांची अंतिम अवस्था असते

19.8 सन 1054 मध्ये डोळ्यांनी दिसलेल्या महाविस्फोटाच्या स्थानाचे हल्ली घेतलेले प्रकाशचित्र.



# माहीत आहे का तुम्हांला?

- 1 श्वेत बटूंचा आकार पृथ्वीइतका लहान असल्याने त्यांची घनता खूप जास्त असते त्यातील एक चमचा पदार्थाचे वजन सुमारे काही टन असेल न्युट्रॉन ताऱ्यांचा आकार श्वेत बटूपेक्षाही खूप लहान असल्याने त्यांची घनता याहून अधिक असते त्यातील एक चमचा पदार्थाचे वजन पृथ्वीवरील सर्व प्राणिमात्रांच्या वजनाएवढे असेल
- 2 आपल्या आकाशगंगेतील एका ताऱ्याचा सुमारे 7500 वर्षांपूर्वी महाविस्फोट झाला तो तारा आपल्यापासून सुमारे 6500 प्रकाश वर्षे दूर असल्याने त्या विस्फोटात बाहेर पडलेला प्रकाश आपल्यापर्यंत येण्यास 6500 वर्षे लागली व पृथ्वीवर तो चिनी लोकांनी सन 1054 मध्ये प्रथम पाहिला तो इतका तेजस्वी होता, की दिवसा सूर्याच्या प्रकाशात देखील तो सतत दोन वर्षे दिसत होता विस्फोटानंतर सुमारे 1000 वर्षे उलटल्यावरही तेथील वायू 1000 km/s हून अधिक वेगाने प्रसरण पावत आहेत



3. सूर्याच्या वस्तुमानाच्या 25 पटींहून अधिक वस्तुमान असलेल्या ताऱ्यांची (M star > 25 M sum ) अंतिम अवस्था : या ताऱ्यांची उत्क्रांती वरील दुसऱ्या गटातील ताऱ्यांप्रमाणेच होते पण महाविस्फोटानंतरही कोणताच दाब त्यांच्या प्रचंड गुरुत्वीय बलाशी समतोल राखू शकत नाही व ते नेहमीसाठी आकुंचित होत राहतात त्यांचा आकार लहान होत गेल्यामुळे त्यांची घनता व त्यांचे गुरुत्वीय बल खूप अधिक वाढते यामुळे ताऱ्याजवळील सर्व वस्तू ताऱ्याकडे आकर्षित होतात व अशा ताऱ्यातून काहीच बाहेर पडू शकत नाही, अगदी प्रकाश देखील बाहेर पडू शकत नाही तसेच ताऱ्यावर पडलेला प्रकाशही परावर्तित न होता ताऱ्याच्या आत शोषला जातो यामुळे आपण या

ताऱ्यास पाहू शकत नाही व त्याच्या स्थानावर आपल्याला फक्त एक अतिसूक्ष्म काळे छिद्र दिसू शकेल म्हणून या अंतिम स्थितीस कृष्ण विवर (black hole) हे नाव दिले आहे अशा तऱ्हेने आपण पाहिले की मूळ वस्तुमानानुसार ताऱ्यांच्या उत्क्रांतीचे तीन मार्ग असतात व त्यांच्या तीन अंतिम अवस्था असतात त्या खालील तक्त्यात दिल्या आहेत

ताऱ्याचे मूळ वस्तुमान	ताऱ्याची अंतिम अवस्था
< 8 M _{Sun}	श्वेत बटू
8 ते 25 M _{Sun}	न्युट्रॉन तारा
> 25 M _{Sun}	कृष्ण विवर

# स्वाध्याय

## 1. शोधा म्हणजे सापडेल.

- अ. आपल्या दीर्घिकेचे नाव ...... हे आहे.
- आ. प्रचंड अंतरे मोजण्यासाठी ...... हे एकक वापरतात.
- इ. प्रकाशाचा वेग ..... km/s एवढा आहे.
- ई. आपल्या आकाशगंगेत सुमारे ...... तारे आहेत.
- उ. सूर्याची अंतिम अवस्था ...... असेल.
- ऊ. ताऱ्यांचा जन्म ..... मेघांपासून होतो.
- ए. आकाशगंगा ही एक ...... दीर्घिका आहे.
- ऐ. तारे हे ..... वायूचे गोल असतात.
- ओ. ताऱ्यांचे वस्तुमान ..... वस्तुमानाच्या सापेक्ष मोजले जाते.
- औ. सूर्यापासून पृथ्वीपर्यंत प्रकाश येण्यास ...... एवढा वेळ लागतो, तर चंद्रापासून पृथ्वीपर्यंत प्रकाश येण्यास ....... एवढा वेळ लागतो.
- अं. ताऱ्याचे वस्तुमान जितके अधिक तितकी त्याची ....... जलद गतीने होते.
- अः. ताऱ्याच्या जीवनकाळात किती प्रकारची इंधने वापरली जातात हे त्याच्या ...... अवलंबून असते.

## 2. कोण खरे बोलतय?

- अ. प्रकाशवर्ष हे एकक काल मोजण्यासाठी वापरतात.
- आ. ताऱ्याची अंतिम अवस्था त्याच्या मूळ वस्तुमानावर अवलंबून असते.
- इ. ताऱ्यातील गुरुत्वीय बल त्यातील इलेक्ट्रॉनच्या दाबाशी समतोल झाल्यास तारा न्यूट्रॉन तारा होतो.

- ई. कृष्ण विवरातून केवळ प्रकाशच बाहेर पडू शकतो.
- सूर्याच्या उत्क्रांती दरम्यान सूर्य महाराक्षसी अवस्थेतून जाईल.
- ऊ. सूर्याची अंतिम अवस्था श्वेत बटू ही असेल.

## 3. खालील प्रश्नांची उत्तरे लिहा.

- अ. ताऱ्यांची निर्मिती कशी होते?
- आ. ताऱ्यांची उत्क्रांती कशामुळे होते?
- इ. ताऱ्यांच्या तीन अंतिम अवस्था कोणत्या?
- ई. कृष्ण विवर हे नाव कशामुळे पडले?
- न्युट्रॉन तारा ही कोणत्या प्रकारच्या ताऱ्यांची अंतिम स्थिती असते?
- 4. अ. तुम्ही जर सूर्य असाल तर तुमचे गुणधर्म स्वतःच्या शब्दांत लिहा.
  - ब. श्वेत बटू बद्दल माहिती द्या.

#### उपक्रम:

- कल्पकतेचा वापर करून मंदािकनी दीर्घिका व त्यातील आपल्या सूर्यमालेची प्रतिकृती तयार करा.
- 2. परिणाम लिहा: जर सूर्य नाहीसा झाला, तर ......





छायाचित्र सौजन्य : ESO व NASA

## इयत्ता आठवी सामान्य विज्ञान शब्दसूची

अणुअंक - atomic number - अ'टॉमिक् न'म्बर(र्) अण्प्रारूप - atomic model - अटॉमिक् मॉड्ल् अधातू - non-metal - नॉन् मेटल् अनुवंशिकता - heredity - हिरे'डिटी आदिजीव - protozoa - प्रो'टझोअ आपतन बिंदू - incident point - इन्सिडन्ट पॉइन्ट् आपाती किरण - incident ray - इनुसिडन्ट रेइ आंतररेण्वीय - intermolecular - इन्टर म'लेक्यल (र्) अंगके - organelles - ऑऽगनली उच्च रक्तदाब - hypertesion - हा'इपरटेन्शन उदासिनीकरण - neutrilisation - न्यूट्रलाइझ्रेशन उत्क्रांती - evolution - ईव्ह'लूश्न् कलिल - colloid - क'लाइड कवच - shell - शेल कवके - fungi - फं'गाइ केंद्रक - nucleus - 'न्यूक्लीअस् किरणोपचार - radiotherapy - रेइडीअउ'थेरपी गुरूत्वीय बल - gravitational force - ग्रॅव्हि'टेशन्ल् फॉऽस् चकाकी - lusture - लस्ट् (र्) चुंबकीय बल - magnetic force - मॅग् नेटिक् फॉऽस् जटिलता - complexity - कम्'प्लेक्सटी जडत्व - inertia - इन'र्शिआ जीवाण् - bacterai - बॅक्'टिअरीअ जीवनशैली - lifestyle - लाइफ् स्टाइल् जैवविविधता - biodiversity - बाइ.अउडाइ'व्ह ऽसटी जैवविघटनशील - bio degradable - बाइअउडि'ग्रेइडब्ल् जैव वैद्यकीय - biomedical - बाइअ' मेडिक्ल् तन्यता - ductility - डक्टिलिटी तापमापी - thermometer - थ'मॉमिट (र्) तारकासमूह - constellation - कॉन्स्ट'लेइशन् तीव्रता - frequency - फ्रीक्वन्सी दर्शक - indicator - 'इन्डिकेइट (र्) द्रवणांक - melting point - मेल्टींग पॉइन्ट् द्विनाम - binomial - बा'इनउमीअल धमनी - artery - 'आटरी धातू - metal - मेटल्

नियमित परावर्तन - regular reflection - रेग्युल (र्) रिफ्लेक्शन्

नियंत्रक - controller - क्न'ट्रउल्र निर्देशांक - index - 'इन्डेक्स निलंबन - suspension - स'स्पेन्शन परासण - osmosis - ऑझ'मउसिस् परावर्तित किरण - reflected ray - रिफ्लेक्टेड रेइ परावर्तन कोन - angle of reflection - ॲङ्ग्ल् अव्ह रिफ्लेक्शन परिपथ - circuit - 'सऽकिट परिदर्शी - periscope - 'पेरीस्कउप परिस्थितिकी तज्ज्ञ - ecologist - इ'कॉलजिस्ट् परिसंस्था - ecosystem - 'ईकउसिस्टम् पेशीश्वसन - cell respiration - सेल् रेसप्'रेइश्न् प्रकाशीय काच - optical glass - 'ऑप्टिक्ल् ग्लास् प्रसरण - expansion - इक्'स्पॅन्श्न प्रसारण - propogation - प्रॉप'गेइश्न् प्रतिबंधात्मक - preventive - प्रि'व्हेन्टिव्ह प्रतिजैविक - antibiotics - ॲन्टीबाइ'ऑटिक् प्लावक बल - upthrust force - अपृथ्रस्ट फॉऽस् भूकंपशास्त्र - seismology - साइझ्'मॉलॉजि भूस्खलन - landslide - 'लॅन्ड्स्लाइड् मिश्रण - mixture - 'मिक्सच(र्) मूलद्रव्य - elements - 'ओलिमन्ट् रक्तदाब - blood pressure - ब्लेड्'प्रेश(र्) रक्तद्रव - plasma - 'प्लॅझ्मा रक्तपराधान - blood transfusion - ब्लड् ट्रॅन्स्'फ्यूझ्न् रक्तबिंबिका - platelates - 'प्लेइट्लट्स रक्तपेढी - blood bank - ब्लेड् बॅङ्क रक्तवाहिन्या - blood vessels - ब्लड् व्हेइसऽल् रक्तशास्त्र - hematology - हिमॅटॉलॉजी रचना - structure - 'स्ट्रेक्च (र्) राजधातू - nobel metal - 'नउब्ल् 'मेट्ल् रसायनोपचार - chemotherapy - कीमउ'थेरपी रेणूसूत्र - molecular formula - मॉ'लेक्यूल (र्)फॉऽम्यूला लठ्ठपणा - obesity - अउ'बीस्टी लसीकरण - vaccination - 'व्हॅक्सि'नेइशन् वहन - conduction - कन्'डक्श्न् वर्गीकरण - classification - क्लॅसिफिकऽशन

वर्धनीयता - malleability - मॅलीअ'बिलटी सागरी - marine - म'रीन् विद्युत अग्र - electrode - इ'लेक्ट्रोड सापेक्ष घनता - Relative density - रिलेटिव्ह डेन्सटी विशिष्ट गुरूत्व - specific gravity - स्प'सिफिक् ग्रॅव्हट्री संस्कारित काच - processed glass - प्रउसेस्ड ग्लास् विषाण् - virus - व्हाइरस संसर्गजन्य - infectious - इन्'फेक्शस विषमांगी - heterogenous - हेटर'जीनीअस् संहत - concentrated - कॉन्-सन-ट्रेइटिड् विसरण - diffusion - डि'फ्यूझन् संमिश्र - alloy - ॲलॉइ विशिष्ट - specific - स्प'सिफिक् संलक्षण - syndrome - 'सिन्ड्उम् विस्फोट - explosion - इक्'स्प्लउझुन् संयुजा - valency - 'व्हेइलन्सी विघटक - decomposer - डीकम्'पउझ् (र्) संय्ग - compound - कॉमपाउन्ड् वैश्विक - universal - युनि 'व्हऽस्ल् सेंद्रिय - organic - ऑऽगॅनिक् शुद्धता - purity - 'प्युअरटी स्थिरता - stability - स्टॅ बिलीटी शिरा - veins - व्हेइन्स् स्फटिकी - crystalline - क्रिसट्लाइन् शैवाल - algae - ॲल्गी स्वयंपोषी - autotrophic - 'ऑऽटट्रउफिक् श्वासनलिका - trachea - ट्र'कीअ संचलक - moderator - 'मॉडरेइट्र स्नायू बल - muscular force - मसक्यल (र्) फॉऽस् क्षय - tuberculosis - ट्यूब (र्) क्यु'लउसिस् समस्थानिके - isotopes - आ'इसटोपस् क्षरण - corrosion - क्'रउझ्न समांगी - homogenous - हॉम'जीनीअस्

इयत्ता आठवी उच्च प्राथमिक स्तरावरील शेवटची इयत्ता आहे. पुढील शैक्षणिक वर्षासाठी माध्यमिक स्तरावर अंतर्गत मूल्यमापनामध्ये घेण्यात येणाऱ्या प्रात्यक्षिक कार्याची पूर्वतयारी व्हावी तसेच विद्यार्थ्यामध्ये प्रयोग कौशल्य विकसित होण्याच्या दृष्टीने पाऊल पडावे म्हणून नमूना दाखल प्रयोगाची यादी दिलेली आहे. शालेय स्तरावर सदर यादीप्रमाणे प्रयोग करून घेणे अपेक्षित आहे.

अ. क्र.	प्रयोगाचे शीर्षक
1	दही / ताकातील लॅक्टोबॅसिलाय जीवाणूंचे निरीक्षण करणे.
2	पावावरील बुरशीचे निरीक्षण करणे.
3	दैनंदिन जीवनातील उपलब्ध साहित्याचा वापर करून संतुलित व असंतुलित बलांचा अभ्यास करणे.
4	जडत्वाच्या प्रकारांचा अभ्यास करणे.
5	आर्किमिडीज तत्व अभ्यासणे.
6	धाराविद्युतचा चुंबकीय परिणाम पडताळून पाहणे.
7	प्रयोगशाळेत आयर्न ऑक्साइड हे संयुग तयार करून गुणधर्माचा अभ्यास करणे.
8	धातू अधातूंच्या भौतिक गुणधर्मांचा व रासायनिक गुणधर्मांचा तुलनात्मक अभ्यास करणे.
9	परिसरातील अप्रदूषित व प्रदूषित जलाशयांचा तुलनात्मक अभ्यास करणे.
10	मानवी श्वसनसंस्थेची प्रतिकृती अभ्यासणे.
11	मानवी हृदयाची रचना प्रतिकृतीच्या आधारे अभ्यासणे.
12	दर्शकांचा वापर करून आम्ल व आम्लारी ओळखणे.
13	ध्वनीच्या प्रसारणासाठी माध्यमाची गरज असते हे सिद्ध करणे.
14	सपाट आरशातून होणारे प्रकाशाचे परावर्तन व परावर्तनाचे नियम अभ्यासणे.
15	परिसरातील परिसंस्थेमध्ये आढळणारे जैविक व अजैविक घटक अभ्यासणे.