Математическая Статистика

4 марта 2014 г.

Глава 1

Основы

1.1 Методы оценок характеристик распределения наблюдаемых случайных величин

 x_1, \dots, x_n — независимые одинаково распределённые случайные величины с неизвестной функцией распределения F.

Цель — найти F или сказать что-то о её свойствах.

Определение 1.1.1. Эмпирической (выборочной) функцией распределения, построенной по выборке x_1, \ldots, x_n называется функция

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}_{\{x_k \le x\}}$$

$$F(x) = \mathbb{P}\{x_1 \le x\} = M \mathbb{1}_{\{x_1 \le x\}}$$

Теорема 1.1.1.

$$\mathbb{P}\left(F_n\left(x\right) \Longrightarrow F\left(x\right)\right) = 1$$

Как можно попытаться отследить плотность распределения? Постараемся найти функцию распределения, а потом и плотность.

Допустим, F имеет хорошую (непрерывную) плотность. Тогда как из F получить p?

Мы знаем, что F'=p, но это никому не нужно, так как F'_n — производная ступенчатой функции, которая почти везде будет равна нулю.

Но также мы помним, что

$$F(b) - F(a) = \int_{a}^{b} p(x) dx$$

Тогда, положив a=x, взяв некую Δ , и постановив $b=x+\Delta$, получаем следующее

$$F(x + \Delta) - F(x) = \int_{x}^{x+\Delta} p(y) dy$$

4 Глава 1. Основы

Делим обе части на Δ и при достаточно малых его значениях получаем

$$\frac{1}{\Delta} \cdot \int_{x}^{x+\Delta} p(y) dy = \frac{F(x+\Delta) - F(x)}{\Delta} \approx \frac{dF(x)}{dx} = p(x)$$

Значит, можем заменить p(x) не производной, а такой разностью.

$$p(x) \approx \frac{F(x + \Delta) - F(x)}{\Delta}$$

Возьмём выборку из m случайных величин в порядке возрастания a_1, \ldots, a_m , обозначим отрезки $I_j = [a_{j-1}, a_j]$ и введём функцию q(y)

$$q(y) = \sum_{j=1}^{m} \frac{F(a_{j}) - F(a_{j-1})}{a_{j} - a_{j-1}} \cdot \mathbb{1}_{I_{j}}(y)$$

Теперь введём последовательность функций $q_n\left(y\right)$ и видим, что она сходится к $q_n\left(y\right)$ почти наверное согласно закону больших чисел, а та в свою очередь имеет сходимость порядка $\frac{1}{n}$ к плотности распределения $p\left(y\right)$

$$q_{n}\left(y\right) = \sum_{j=1}^{m} \frac{F_{n}\left(a_{j}\right) - F_{n}\left(a_{j-1}\right)}{a_{j} - a_{j-1}} \cdot \mathbb{1}_{I_{j}}\left(y\right) \xrightarrow[n \to \infty]{a.s.} q\left(y\right) \xrightarrow[n \to \infty]{} p\left(y\right)$$

 q_n — гистограмма. И вот конечная формула

$$q_n(y) = \sum_{i=1}^{m} \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{\{x_k \in I_j\}} \frac{1}{|I_j|} \cdot \mathbb{1}_{I_j}(y)$$

1.2 Оценка неизвестных параметров

Снова у нас есть x_1, \dots, x_n — выборка из распределения F_{θ} , где θ — неизвестный параметр из множества Θ

Пример 1.2.1. Нормальное распределение с известным $CKO\ \sigma=1\ u$ неизвестным математическим ожиданием, тогда θ — математическое ожидание

Пример 1.2.2. Нормальное распределение, в котором неизвестны оба параметра. Тогда θ будет парой (a,σ)

Главный вопрос — определение основных параметров.

Определение 1.2.1. Функцию от выборки, значение которой заменяет неизвестный параметр, назвают оценкой

Пример 1.2.3. Предположим, что выборка сделана из распределения Бернулли, то есть $\{x_i\}$ — набор одинаково распределённых случайных величин, причём

$$x_i = \begin{cases} 1, & p \\ 0, & 1-p \end{cases}$$

Tогда неизвестный параметр — величина p (вероятность удачного эксnepuмента)

$$\theta = p \in [0; 1] = \Theta$$

Оглавление

L	Осн	ЮВЫ	3
	1.1	Методы оценок характеристик распределения наблюдаемых	
		случайных величин	3
	1.2	Оценка неизвестных параметров	4