Network motifs

Social networks

Collaboration networks

Protein networks

Trolls/spam

Predict success

Motif = subgraph that appears more often than expected

Which motifs are significant?

Network	Number of triangles	Number of claws	Number of 4 - cycles
David copperfield adjacent nouns	284	39.977	2.579
Catster social network	185.462.177	50.615.774.277	427.574.757.984
ArXiv collaborations	1.478.735	8.172.939.577	63.698.507

Which motifs are significant?

Network	n	Avg. degree	Max degree	Number of triangles	Number of claws	Number of 4 - cycles
David copperfield adjacent nouns	112	7	29	284	39.977	2.579
Catster social network	149.700	72	80.635	185.462.177	50.615.774.277	427.574.757.984
ArXiv collaborations	27.770	25	2.468	1.478.735	8.172.939.577	63.698.507

Z-score

$$\frac{N_{H,data} - E[N_{H,null\ model}]}{\sqrt{Var}(N_{H,null\ model})}$$

How many standard deviations is $N_{H,data}$ away from the mean?

Significance is often measured assuming the normal distribution

Subgraph sampling

What if your network data is large?

- 'Naïve counting': $O(n^k)$ time for motifs of size k
- Better algorithms exist of $O(n^{1.5})$ for triangles
- Counting vs listing

Combinatorial explosion

tech-as-skitter graph: 11M edges, but 2 trillion 5-cycles

Listing is not possible

Count

Infer

Count

 $o_i(x)$: Number of times node x has role i

Every 4-vertex subgraph can be created from a 3-vertex subgraph by adding a node

Relating orbits

$$2o_9 + 2o_{12} = \sum_{y,z:G[x,y,z] \cong G_1} c(y,z)$$

c(y, z) = Number of triangles including edge y, z

Relating orbits

$$2o_9 + 2o_{12} = \sum_{y,z:G[x,y,z] \cong G_1} c(y,z)$$

c(y, z) = Number of triangles including y, z

Relate o_6 and o_9

p(x,y): Number of paths (G_1) that start with nodes x,y

Now try it yourself! (Exercise 1 + bonus)

With Jupyter Notebooks:

github.com/clarastegehuis/Complex_Networks_applications_school Download folder and run Jupyter notebook

Without Jupyter Notebooks (with google account)

https://colab.research.google.com/github/clarastegehuis/Complex_Networks_applications_school

log in with Google account and run notebook

Relate o_6 and o_9

p(x,y): Number of paths (G_1) that start with nodes x,y

Relate o_6 and o_9

p(x,y): Number of paths (G_1) that start with nodes x,y

$$2o_{13} + 6o_{14} = \sum_{y,z:x,y,z=G_2} c(x,y) - 1 + c(x,z) - 1$$

$$2o_{13} + 6o_{14} = \sum_{y,z:x,y,z=G_2} c(x,y) - 1 + c(x,z) - 1$$

$$2o_{13} + 6o_{14} = \sum_{y,z:x,y,z=G_2} c(x,y) - 1 + c(x,z) - 1$$

$$2o_{13} + 6o_{14} = \sum_{y,z:x,y,z=G_2} c(x,y) - 1 + c(x,z) - 1$$

Obtain per-node orbit counts

Equations involving 3-node subgraphs

To get size-4 orbits, compute:

- p(x, y) and c(x, y)
- one orbit count.

Worst-case time complexity: $O(nd + nd^3)$

11 orbits (unknown)

$$\begin{aligned} o_{12} + 3o_{14} &= \sum_{y,z:\ y < z, G[\{x,y,z\}] \cong G_2} c(y,z) - 1 \\ 2o_{13} + 6o_{14} &= \sum_{y,z:\ y < z, G[\{x,y,z\}] \cong G_2} (c(x,y) - 1) + (c(x,z) - 1) \\ o_{10} + 2o_{13} &= \sum_{y,z:\ y < z, G[\{x,y,z\}] \cong G_2} p(y,z) + p(z,y) \\ 2o_{11} + 2o_{13} &= \sum_{y,z:\ y < z, G[\{x,y,z\}] \cong G_2} p(y,x) + p(z,x) \\ 6o_7 + 2o_{11} &= \sum_{y,z:\ y < z,y,z \in N(x), G[\{x,y,z\}] \cong G_1} (p(y,x) - 1) + (p(z,x) - 1) \\ o_5 + 2o_8 &= \sum_{y,z:\ y < z,y,z \in N(x), G[\{x,y,z\}] \cong G_1} p(x,y) + p(x,z) \\ 2o_6 + 2o_9 &= \sum_{y,z:\ x,z \in N(y), G[\{x,y,z\}] \cong G_1} p(x,y) - 1 \\ 2o_9 + 2o_{12} &= \sum_{y,z:\ x,z \in N(y), G[\{x,y,z\}] \cong G_1} c(y,z) \\ o_4 + 2o_8 &= \sum_{y,z:\ x,z \in N(y), G[\{x,y,z\}] \cong G_1} p(y,z) \\ 2o_8 + 2o_{12} &= \sum_{y,z:\ x,z \in N(y), G[\{x,y,z\}] \cong G_1} c(x,z) - 1 \end{aligned}$$

10 equations

State of the art

Counting 4-vertex subgraphs:

For 117M edge social graph 22m on laptop (ESCAPE)

Counting 5-vertex subgraphs:

For graphs with 10M edges, less than 30 minutes

For 117M edge social graph, 30 hours

Algorithm converts graph to directed, and uses fewer subgraphs

What if your network data is large?

- Approximate counting: subsample your network data
- Simplest method: keep every node with probability p
- Then count subgraphs

What is the probability that a subgraph remains in the sampled data?

Try it yourself!

Now try it yourself! (Part 2)

With Jupyter Notebooks:

github.com/clarastegehuis/Complex_Networks_applications_school Download folder and run Jupyter notebook

Without Jupyter Notebooks (with google account)

https://colab.research.google.com/github/clarastegehuis/Complex_Networks_applications_school

log in with Google account and run notebook

Any triangle remains a triangle in subsample with probability p^3 Thus, on average,

$$N_{\Delta}p^3 = N_{\Delta,subsample}$$

Disadvantage: many isolated nodes

More advanced sampling methods

More advanced sampling methods

Original graph

Random neighborhood sampling

'Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs', Kashtan et al, 2004

What is the probability of sampling this triangle in this order?

Original graph

Original graph

Is this probability the same for all triangles?

Total probability to observe this triangle is averaged over all orderings

Original graph

Random neighborhood sampling

Total probability to observe this triangle is averaged over all orderings

Original graph


```
Input: A graph G = (V, E) and an integer 2 \le k \le |V|.

Output: Vertices of a randomly chosen size-k subgraph in G.

01 \{u, v\} \leftarrow random edge from E

02 V' \leftarrow \{u, v\}

03 while |V'| \ne k do

04 \{u, v\} \leftarrow random edge from V' \times N(V')

05 V' \leftarrow V' \cup \{u\} \cup \{v\}

06 return V'
```

Generate list L of sampled size-k subgraphs

Estimated density of
$$H = \frac{\sum_{G \in L \mid G = H} P(G \text{ is sampled by } ESA)^{-1}}{\sum_{G \in L} P(G \text{ is sampled by } ESA)^{-1}}$$

Now try it yourself! (Part 3)

With Jupyter Notebooks:

github.com/clarastegehuis/Complex_Networks_applications_school Download folder and run Jupyter notebook

Without Jupyter Notebooks (with google account)

https://colab.research.google.com/github/clarastegehuis/Complex_Networks_applications_school

log in with Google account and run notebook

Total probability to observe triangle averaged over all orderings

$$\frac{1}{|E|} \left(\frac{2}{|N(u)| + |N(v)| - 2} + \frac{2}{|N(u)| + |N(w)| - 2} + \frac{2}{|N(v)| + |N(w)| - 2} \right)$$

$$u \qquad v$$

Original graph

Total probability to observe wedge averaged over all orderings

$$\frac{1}{|E|} \left(\frac{1}{|N(u)| + |N(v)| - 2} + \frac{1}{|N(v)| + |N(w)| - 2} \right)$$

$$u$$

$$v$$

$$W$$

Random neighborhood sampling

Z-score

$$\frac{N_{H,data} - E[N_{H,null\ model}]}{\sqrt{Var}(N_{H,null\ model})}$$

How many standard deviations is $N_{H,data}$ away from the mean?

Significance is often measured assuming the normal distribution

Erdos-Renyi

n nodes, every pair connects with probability p.

Configuration model

n nodes, with degrees d_1, \dots, d_n . Connect 'stubs' randomly

Geometric random graph

n nodes with uniform location in $[0,1]^2$ box. Connect all nodes

within radius r.

Different random graph models give different conclusions

Different random graph models give different conclusions

Conclusions

Counting is often faster than listing

 Smart sampling techniques approximate counts in large networks