# Weather Research and Forecast (WRF) Scaling, Performance Assessment and Optimization

Comparison of Compilers and MPI Libraries on Cheyenne NCAR SIParCS Program

Akira Kyle $^1$ , Davide Del Vento  $^2$ , Brian Vanderwende  $^2$ , Negin Sobhani  $^2$ , Dixit Patel  $^3$ 

August 3, 2018

<sup>&</sup>lt;sup>1</sup>Carnegie Mellon University

<sup>&</sup>lt;sup>2</sup>National Center for Atmospheric Research

<sup>&</sup>lt;sup>3</sup>University of Colorado Boulder

# Outline

 ${\sf Background}$ 

Intro

Results

Summary

# Background

WRF is a state-of-the-art atmospheric modeling system designed for both meteorological research and numerical weather prediction. It offers a host of options for atmospheric processes and can run on a variety of computing platforms. WRF excels in a broad range of applications across scales ranging from tens of meters to thousands of kilometers, including the following.

Meteorological studies

- Meteorological studies
- Real-time NWP

- Meteorological studies
- Real-time NWP
- Idealized simulations

- Meteorological studies
- Real-time NWP
- Idealized simulations
- Data assimilation

- Meteorological studies
- Real-time NWP
- Idealized simulations
- Data assimilation
- Earth system model coupling

- Meteorological studies
- Real-time NWP
- Idealized simulations
- Data assimilation
- Earth system model coupling
- Model training and educational support

#### **Flowchart**

# **WRF Modeling System Flow Chart**



# Intro

# Test cases

- conus12km
- conus2.5km
- new\_conus12km
- new\_conus2.5km
- katrina1km
- katrina3km
- maria1km
- maria3km

# **Compilers and MPI Libraries**

- GNU Compiler Collection (GCC) versions 6.3.0, 8.1.0
  - WRF compiles with -O2 default
    - Tried -O3 and -mfma (enables FMA instruction set)
    - Use -ofast?
- Intel Compiler versions 17.0.1, 18.0.1
- MPT, MVAPICH

# Settings

#### MVAPICH

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3rc2-userguide.html#x1-19100011.15

# **Results**

# **CONUS 12km**



# NEW CONUS 12km WRFV3.8.1



# Old CONUS 12km vs New CONUS 12km WRFV3.8.1





# **New CONUS 12km**



# **New CONUS 2.5km**



# Maria 3km



# Case comparison



# Summary

# **Conclusions?**

- Brownian motion begins with a random walk
- $\langle R_N^2 \rangle = NL^2$  can be related to physical quantities through forces
  - Randomness is very helpful: it allows us to average out a terms<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>The Feynman Lectures on Physics, Vol. I