Notes

Assignments

4.14, **4.25**, **4.31**, **4.33**, **4.35**

Tutorial problems

- Basic Problems wish Answers 4.10, 4.16
- Basic Problems 4.26, 4.30

Mid-term examination

- Time: Nov. 10 (Saturday) 7:00-9:00 pm
- Venue: TBD
- Range: Chapters 1-4
- Allow: one (A4) page note
- Problem language: English
- Final examination: 40% for Chapters 1-4

Chapter 4 The Continuous-Time Fourier Transform

(cont.)

Review

So, on the derivation of FT ...

As $T \to \infty$, $x(t) = \tilde{x}(t)$ for all t

The CT Fourier Transform Pair

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt \qquad -FT$$
Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \quad \text{Inverse FT}_{Inverse Fourier Transform}$$

$$\mathcal{F}(x(t)) = X(j\omega)$$

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

$$x(t) = \mathcal{F}^{-1}(X(j\omega))$$

With CTFT, now the frequency response of an LTI system makes complete sense

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k \longrightarrow \underbrace{H(jk\omega_0)}_{"gain"} a_k$$

$$H(j\omega_0) = \int_{-\infty}^{+\infty} h(t) e^{-j\omega t} dt$$

Impulse response Frequency response

$$x[n] = \sum_{k = < N >} a_k e^{jk\omega_0 n} \longrightarrow h[n] \longrightarrow y[n] = \sum_{k = -\infty}^{\infty} H(e^{jk\omega_0}) a_k e^{jk\omega_0 n}$$

$$a_k \longrightarrow \underbrace{H(e^{jk\omega_0})}_{"gain"} a_k$$

$$H(e^{j\omega}) = \sum_{n = -\infty}^{+\infty} h[n] e^{-j\omega n}$$
Fransform
Signals and Systems

Review

Fourier Transform for Periodic Signals – Unified Framework

CTFT Properties (cont.)

6) Duality

inverse
relationship
between signal
"width" in
time/frequency
domains

$$x(t) \longleftrightarrow X(j\omega)$$

CTFT Properties (cont.)

- Time reversal

$$x(-t) \longleftrightarrow X(-j\omega)$$

- Conjugate Symmetry

$$x(t) \text{ real} \longleftrightarrow X(-j\omega) = X^*(j\omega)$$

$$X(-j\omega) = X(j\omega)$$

Or
$$\operatorname{Re}\{X(-j\omega)\} = \operatorname{Re}\{X(j\omega)\}$$
 Even

$$\angle X(-j\omega) = -\angle X(j\omega)$$

$$\operatorname{Im}\{X(-j\omega)\} = -\operatorname{Im}\{X(j\omega)\}$$

Odd

a)

$$x(t)$$
 real and even $x(t) = x(-t) = x*(t)$

$$\Rightarrow X(j\omega) = X(-j\omega) = X*(j\omega)$$
 — Real & even

b)

$$x(t)$$
 real and odd $x(t) = -x(-t) = x * (t)$

$$\Rightarrow X(j\omega) = -X(-j\omega) = -X*(j\omega)$$
 — Purely imaginary & odd

c) $X(j\omega) = \text{Re}\{X(j\omega)\} + j\text{Im}\{X(j\omega)\}$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

For real $x(t) = Ev\{x(t)\} + Od\{x(t)\}$

Table 4.2 Basic Fourier Transform Pairs

		Fourier series coefficients
Signal	Fourier transform	(if periodic)
	12	
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
		u _k = 0, otherwise
$\cos \omega_0 t$ $\pi [\delta(\omega - \omega_0) + \delta(\omega + \epsilon)]$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$
		$a_k = 0$, otherwise
din a	$\frac{\pi}{2} [8(\alpha - \alpha_0) - 8(\alpha + \alpha_0)]$	$a_1 = -a_{-1} = \frac{1}{2i}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_k = 0$, otherwise
		$a_0 = 1, a_k = 0, \ k \neq 0$
x(t) = 1	$2\pi \delta(\omega)$	(this is the Fourier series representation for any choice of $T > 0$
Periodic square wave		
$x(t) = \begin{cases} 1, & t < T_1 \end{cases}$	$\stackrel{+\infty}{\sim} 2 \sin k\omega_0 T_1$	$\frac{\omega_0 T_1}{\pi}$ sinc $\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$[0, T_1 < t \le \frac{r}{2}]$	$\sum_{k=-\infty} \frac{1}{k} \delta(\omega - k\omega_0)$	$\frac{1}{\pi}$ sinc $\left(\frac{1}{\pi}\right) = \frac{1}{k\pi}$
x(t+T) = x(t)		
**	2 +% (2 1)	
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$ t < T_1$	$2 \sin \omega T_1$	
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_
$\sin Wt$	$ \omega < W$	
πt	$X(j\boldsymbol{\omega}) = \begin{cases} 1, & \boldsymbol{\omega} < W \\ 0, & \boldsymbol{\omega} > W \end{cases}$	_
$\delta(t)$	1	_
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	_
	1	
$e^{-at}u(t)$, $\Re e\{a\}>0$	$\overline{a+j\omega}$	_
$te^{-at}u(t)$, $\Re e\{a\} > 0$	1	_
att, oreias = 0	$(a+j\omega)^2$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$	1	
$\Re e\{a\} > 0$	$(a+j\omega)^n$	_
A - 44 USA - 100 -		The state of the s

$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+j\omega}$$
 $e^{-at}u(t) \longleftrightarrow \frac{1}{(a+i\omega)}$

- Let x(t) be a signal with Fourier transform $X(j\omega)$. Suppose we are given the following facts:
 - \diamond x(t) is real
 - $x(t) = 0 \text{ for } t \le 0$
 - $\frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{Re}\{X(j\omega)\} e^{j\omega t} d\omega = |t| e^{-|t|}$

Determine a closed-form expression for x(t).

Problem 4.24 (a)

- Determine which, if any, of the real signals in (a)-(f) have Fourier transforms that satisfy each of the following condition:
 - Re $\{X(j\omega)\}=0$
 - $\operatorname{Im}\{X(j\omega)\}=0$
 - There exists a real a such that $e^{ja\omega}X(j\omega)$ is real
 - $\int_{-\infty}^{\infty} X(j\omega)d\omega = 0$
 - $\int_{-\infty}^{\infty} \omega X(j\omega) d\omega = 0$
 - $X(j\omega)$ is periodic

8) Convolution Property

$$y(t) = h(t) * x(t) \longleftrightarrow Y(j\omega) = H(j\omega)X(j\omega)$$

where $h(t) \longleftrightarrow H(j\omega) \quad x(t) \longleftrightarrow X(j\omega)$

Basically a consequence of the eigenfunction property

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \longrightarrow x(t) = \int_{-\infty}^{+\infty} \left(\frac{1}{2\pi} X(j\omega) d\omega \right) e^{j\omega t}$$

$$coefficient$$

$$a e^{j\omega t} \longrightarrow h(t) \longrightarrow H(j\omega) a e^{j\omega t}$$

$$\Downarrow \text{ superposition}$$

$$y(t) = \int_{-\infty}^{+\infty} \left(H(j\omega) \cdot \frac{1}{2\pi} X(j\omega) d\omega \right) e^{j\omega t}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \underbrace{H(j\omega)X(j\omega)}_{Y(j\omega)} e^{j\omega t} d\omega$$

New coefficient

The Frequency Response Revisited

$$x(t) \longrightarrow h(t) \longrightarrow y(t) = h(t) * x(t)$$

$$Y(j\omega) = H(j\omega)X(j\omega)$$

$$\downarrow$$

The frequency response $H(j\omega)$ of a CT LTI system is simply the Fourier transform of its impulse response h(t)

Example #1:

$$x(t) = e^{j\omega_o t} \longrightarrow H(j\omega)$$

Recall

$$e^{j\omega_o t} \longleftrightarrow 2\pi\delta(\omega - \omega_o)$$

$$Y(j\omega) = H(j\omega)X(j\omega) = H(j\omega)2\pi\delta(\omega-\omega_0) = 2\pi H(j\omega_0)\delta(\omega-\omega_0)$$

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(j\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi H(j\omega_0) \delta(\omega - \omega_0) e^{j\omega t} d\omega$$

$$y(t) = H(j\omega_0)e^{j\omega_0 t}$$

Frequency Response Examples

Example 4.16 A differentiator

$$y(t) = \frac{dx(t)}{dt}$$
 — an LTI system

From differentiation property $\Rightarrow \frac{d}{dt} \stackrel{FT}{\longleftarrow} j\omega$

- 1) Amplifies high frequencies (enhances sharp edges)
- 2) $+\pi/2$ phase shift $(j = e^{j\pi/2})$ Larger at high ω_0 phase shift $\frac{d}{dt}\sin\omega_0 t = \omega_0\cos\omega_0 t = \omega_0\sin(\omega_0 t + \frac{\pi}{2})$

$$\frac{d}{dt}\cos\omega_0 t = -\omega_0 \sin\omega_0 t = \omega_0 \cos(\omega_0 t + \pi/2)$$

Impulse Response of an *Ideal* Lowpass Filter **Example 4.18**:

Questions:

- Is this a causal system?
- What is h(0)?

Example #4: Cascading filtering operations

Y(jω)

 -4π

Example 4.20

$$\frac{\sin 4\pi t}{\pi t} * \frac{\sin 8\pi t}{\pi t} = ?$$

$$e^{-at^{2}} * e^{-bt^{2}} = ?$$

$$\updownarrow \qquad \qquad \uparrow$$

$$\sqrt{\frac{\pi}{a}} e^{-\frac{\omega^{2}}{4a}} \times \sqrt{\frac{\pi}{b}} e^{-\frac{\omega^{2}}{4b}} = \frac{\pi}{\sqrt{ab}} e^{-\frac{\omega^{2}}{4} \left(\frac{1}{a} + \frac{1}{b}\right)}$$

Gaussian × Gaussian = Gaussian, Gaussian * Gaussian = Gaussian

Review from the last lecture, right-sided exponential

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt = \int_{0}^{+\infty} \underbrace{e^{-at}e^{-j\omega t}}_{e^{-(a+j\omega)t}}dt$$

$$= -\left(\frac{1}{a+j\omega}\right)e^{-(a+j\omega)t}\Big|_0^\infty = \frac{1}{a+j\omega}$$

Example 4.19

$$h(t) = e^{-t}u(t) , x(t) = e^{-2t}u(t)$$

$$y(t) = h(t) * x(t) = ?$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$Y(j\omega) = H(j\omega)X(j\omega) = \frac{1}{(1+j\omega)} \cdot \frac{1}{(2+j\omega)}$$

Partial fraction expansion
$$Y(j\omega) = \frac{1}{1+j\omega} \frac{a=1}{-2} \frac{1}{2+j\omega}$$

$$\forall \text{ inverse } FT$$

$$y(t) = \left[e^{-t} - e^{-2t}\right]u(t)$$

CTFT Properties 9) Multiplication Property

Since *FT* is highly symmetric,

$$x(t) = \mathcal{F}^{-1}\{X(j\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \, e^{j\omega t} d\omega, \quad X(j\omega) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \, e^{-j\omega t} dt$$

thus if

then the other way around is also true

$$x(t) * y(t) \longleftrightarrow X(j\omega) \cdot Y(j\omega)$$

$$x(t) \cdot y(t) \longleftrightarrow \frac{1}{2\pi} X(j\omega) * Y(j\omega)$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$$

 $\frac{1}{2\pi}$ — A consequence of *Duality*

Examples of the Multiplication Property: Modulation Property

Frequency shift

$$e^{j\omega_0 t} x(t) \longleftrightarrow F X(j(\omega - \omega_0))$$

$$e^{j\omega_0 t} \cdot x(t) \longleftrightarrow \frac{1}{2\pi} [2\pi\delta(\omega - \omega_0) * X(j\omega)]$$

$$= X(j(\omega - \omega_0))$$

Example 4.21

$$r(t) = s(t) \cdot p(t) \iff R(j\omega) = \frac{1}{2\pi} [S(j\omega) * P(j\omega)]$$

For
$$p(t) = \cos \omega_0 t \iff P(j\omega) = \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$$

$$R(j\omega) = \frac{1}{2}S(j(\omega - \omega_0)) + \frac{1}{2}S(j(\omega + \omega_0))$$

(cont.)

Amplitude Modulated Signal

ironbark.xtelco.com.au

(cont.)

 ω_1 : bandwidth

 $r(t) = s(t) \cdot \cos(\omega_{o}t)$ Amplitude modulation (AM)

$$R(j\omega) = \frac{1}{2} [S(j(\omega - \omega_o))]$$

$$+ S(j(\omega + \omega_o))]$$

$$+ S(j(\omega + \omega_o))]$$

$$(-\omega_0 - \omega_1) (-\omega_0 + \omega_1)$$

$$(\omega_0 - \omega_1) (\omega_0 + \omega_1)$$

Drawn assume ω_{o} - ω_{1} >0 i.e. ω_{o} > ω_{1}

Frequency-Selective Filtering with Variable Center Frequency

Figure 4.26 Implementation of a bandpass filter using amplitude modulation with a complex exponential carrier.

Figure 4.27 Spectra of the signals in the system of Figure 4.26.

Table 4.1 Properties of the Fourier Transform

Section	Property	Aperiodic signal	Fourier transform
		x(t) y(t)	$X(j\omega)$ $Y(j\omega)$
4.3.1 4.3.2 4.3.6	Linearity Time Shifting Frequency Shifting	$ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t}x(t)$	$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$
4.3.3 4.3.5	Conjugation Time Reversal	x*(t) x(-t)	$X^*(-j\omega)$ $X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
4.3.6	Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X'(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ 4X(j\omega) = -4X(-j\omega) \end{cases}$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
4.3.3	Even-Odd Decompo- sition for Real Sig- nals	$x_e(t) = \mathcal{E}v\{x(t)\}$ [$x(t)$ real] $x_o(t) = \mathcal{O}d\{x(t)\}$ [$x(t)$ real]	$\Re\{X(j\omega)\}$ $j\Im\{X(j\omega)\}$
4.3.7		on for Aperiodic Signals $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$	

Example #8: LTI Systems Described by LCCDE's

(Linear-constant-coefficient differential equations)

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

Using the Differentiation Property

$$\frac{d^k x(t)}{dt^k} \longleftrightarrow (j\omega)^k X(j\omega)$$

Transform both sides of the equation

$$\sum_{k=0}^{N} a_k (j\omega)^k Y(j\omega) = \sum_{k=0}^{M} b_k (j\omega)^k X(j\omega)$$

$$Y(j\omega) = \underbrace{\left[\frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k}\right]}_{H(j\omega)} X(j\omega)$$

$$H(j\omega) = \underbrace{\left[\frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k}\right]}_{H(j\omega)}$$

$$H(j\omega) = \left[\frac{\sum_{k=0}^{M} b_k(j\omega)^k}{\sum_{k=0}^{N} a_k(j\omega)^k} \right]$$

• A causal and stable LTI system S has the frequency response

$$H(j\omega) = \frac{j\omega + 4}{6 - \omega^2 + 5j\omega}$$

- \diamond Determine a differential equation relating the input x(t) and output y(t) of S
- lack Determine the impulse response h(t) of S
- What is the output of S when the input is $\chi(t) = e^{-4t}u(t) te^{-4t}u(t)$

$$f(t) = u(t), f_2(t) = e^{-at}u(t) + 2 f_1(t) * f_2(t) + 2 f_2(t)$$

2. ₽

$$f_1(t) = (1+t)[u(t)-u(t-1)], f_2(t) = u(t-1)-u(t-2), \text{if } f_1(t) * f_2(t)$$