НИУ ИТМО

Факультет программной инженерии и компьютерной техники

Курсовая работа №1 по дисциплине "Дискретная математика" "Синтез комбинационных схем" Вариант №27

Выполнила:

Студентка группы Р3110

Бегинина Анастасия Алексеевна

Преподаватель:

Поляков Владимир Иванович

Санкт-Петербург

Оглавление

Задание для варианта 27	3
Решение заданий	4
1. Составление таблицы истинности:	4
2. Представление булевой функции в аналитическом виде	5
3. Минимизация булевой функции методом Квайна-Мак-Класки	6

Задание для варианта 27

Построить комбинационные схемы в различных базисах, реализующие не полностью определенную булеву функцию

 $(x_4 x_5 + x_1 x_2 x_3) = 2, 5, 8, 10$ которая принимает значение 1 и неопределенное значение на наборах, для которых $x_1 x_2 x_3 = 0$.

- 1. Составить таблицу истинности заданной булевой функции.
- 2. Представить булеву функцию в аналитическом виде с помощью КДНФ и ККНФ.
- 3. Найти МДНФ и/или МКНФ методом Квайна Мак-Класки.
- 4. Найти МДНФ и МКНФ на картах Карно.
- 5. Преобразовать МДНФ и МКНФ к форме, обеспечивающей минимум цены схемы.
- 6. По полученной форме построить комбинационную схему в булевом базисе. Определить задержку схемы.
- 7. Построить схемы с минимальной ценой в универсальных базисах и сокращенных булевых базисах. Определить задержку каждой из схем.
- 8. Построить схему в базисе Жегалкина. Определить цену и задержку.
- 9. Построить схему в универсальном базисе с учетом заданного коэффициента объединения по входам. Определить цену и задержку схемы.
- 10. Выполнить анализ построенных схем, определив их реакцию на заданные комбинации входных сигналов.

Решение заданий

1. Составление таблицы истинности:

N	$X_1 X_2 X_3 X_4 X_5$	X_4X_5	$(X_4X_5)_{10}$	$X_1X_2X_3$	$(X_1X_2X_3)_{10}$	+	f
0	0 0 0 0 0	0 0	0	0 0 0	0	0	d
1	00001	0 1	1	0 0 0	0	1	d
2	00010	1 0	2	0 0 0	0	2	d
3	0 0 0 1 1	1 1	3	0 0 0	0	3	d
4	0 0 1 0 0	0 0	0	0 0 1	1	1	0
5	0 0 1 0 1	0 1	1	0 0 1	1	2	1
6	0 0 1 1 0	1 0	2	0 0 1	1	3	0
7	0 0 1 1 1	11	3	0 0 1	1	4	0
8	0 1 0 0 0	0 0	0	010	2	2	1
9	0 1 0 0 1	0 1	1	010	2	3	0
10	0 1 0 1 0	10	2	010	2	4	0
11	0 1 0 1 1	1 1	3	010	2	5	1
12	0 1 1 0 0	0 0	0	0 1 1	3	3	0
13	0 1 1 0 1	0 1	1	0 1 1	3	4	0
14	0 1 1 1 0	10	2	0 1 1	3	5	1
15	0 1 1 1 1	1 1	3	0 1 1	3	6	0
16	10000	0 0	0	100	4	4	0
17	1 0 0 0 1	0 1	1	100	4	5	1
18	10010	1 0	2	100	4	6	0
19	10011	11	3	100	4	7	0
20	10100	0 0	0	1 0 1	5	5	1
21	10101	0 1	1	1 0 1	5	6	0
22	10110	1 0	2	1 0 1	5	7	0
23	10111	11	3	1 0 1	5	8	1
24	1 1 0 0 0	0 0	0	110	6	6	0
25	1 1 0 0 1	0 1	1	110	6	7	0
26	1 1 0 1 0	1 0	2	110	6	8	1
27	1 1 0 1 1	11	3	110	6	9	0
28	1 1 1 0 0	0 0	0	111	7	7	0
29	1 1 1 0 1	0 1	1	111	7	8	1
30	11110	1 0	2	111	7	9	0
31	11111	1 1	3	111	7	10	1

2. Представление булевой функции в аналитическом виде

КДНФ:

$$f = \overline{x_1} \overline{x_2} x_3 \overline{x_4} x_5 \vee \overline{x_1} x_2 \overline{x_3} \overline{x_4} \overline{x_5} \vee \overline{x_1} x_2 \overline{x_3} \overline{x_4} x_5 \vee \overline{x_1} x_2 \overline{x_3} \overline{x_4} \overline{x_5} \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} x_5 \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} x_5 \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline$$

ККНФ:

$$f = (x_{1} \lor x_{2} \lor \overline{x_{3}} \lor \overline{x_{4}} \lor x_{5})(x_{1} \lor x_{2} \lor \overline{x_{3}} \lor \overline{x_{4}} \lor \overline{x_{5}})(x_{1} \lor \overline{x_{2}} \lor x_{3} \lor x_{4} \lor \overline{x_{5}})(x_{1} \lor \overline{x_{2}} \lor \overline{x_{3}} \lor x_{4} \lor x_{5})$$

$$(x_{1} \lor \overline{x_{2}} \lor \overline{x_{3}} \lor x_{4} \lor x_{5})(x_{1} \lor \overline{x_{2}} \lor \overline{x_{3}} \lor x_{4} \lor \overline{x_{5}})(x_{1} \lor \overline{x_{2}} \lor \overline{x_{3}} \lor \overline{x_{4}} \lor \overline{x_{5}})$$

$$(\overline{x_{1}} \lor x_{2} \lor x_{3} \lor \overline{x_{4}} \lor x_{5})(\overline{x_{1}} \lor x_{2} \lor x_{3} \lor \overline{x_{4}} \lor \overline{x_{5}})(\overline{x_{1}} \lor \overline{x_{2}} \lor x_{3} \lor x_{4} \lor \overline{x_{5}})$$

$$(\overline{x_{1}} \lor x_{2} \lor \overline{x_{3}} \lor \overline{x_{4}} \lor x_{5})(\overline{x_{1}} \lor \overline{x_{2}} \lor x_{3} \lor x_{4} \lor x_{5})(\overline{x_{1}} \lor \overline{x_{2}} \lor x_{3} \lor \overline{x_{4}} \lor \overline{x_{5}})$$

$$(\overline{x_{1}} \lor \overline{x_{2}} \lor x_{3} \lor \overline{x_{4}} \lor x_{5})(\overline{x_{1}} \lor \overline{x_{2}} \lor \overline{x_{3}} \lor x_{4} \lor x_{5})(\overline{x_{1}} \lor \overline{x_{2}} \lor \overline{x_{3}} \lor \overline{x_{4}} \lor x_{5})$$

3. Минимизация булевой функции методом Квайна-Мак-Класки

Нахождение простых импликант (максимальных кубов):

K ⁰ U N(f)		K ¹ (f)	K ² (f)	Z(f)
1. 00000	√	1. 0X000 (1-2)	1. 000XX (2-4) (3-5)	1. 000XX
2. 01000	√	2. 0000X (1−3) ✓		2. 0X000
3. 00001	\checkmark	3. 000X0 (1−4) ✓		3. 00X01
4. 00010	✓	4. 0001X (4−5) ✓		4. X0001
5. 00011	\checkmark	5. 000X1 (3−5) ✓		5. 0X011
6. 00101	\checkmark	6. 00X01 (3-6)		6. 1X111
7. 10001	\checkmark	7. X0001 (3–7)		7. 111X1
8. 10100		8. 0X011 (5–9)		8. 10100
9. 01011	✓	9. 1X111 (12–14)		9. 01110
10. 01110		10. 111X1 (13–14)		10. 11010
11. 11010				
12. 10111	\checkmark			
13. 11101	✓			
14. 11111	√			

Импликантная таблица

		0-кубы									
Простые		0	0	0	0	1	1	1	1	1	1
импликанты		0	1	1	1	0	0	0	1	1	1
	ксимальн	_	0	0	1	0	1	1	0	1	1
ые кубы)		0	0	1	1	0	0	1	1	0	1
		1	0	1	0	1	0	1	0	1	1
		1	2	3	4	5	6	7	8	9	10
1	000XX										
2	0X000		*								
3	00X01	*									
4	X0001					*					
5	0X011			*							
6	1X111							*			*
7	111X1									*	*
8	10100						*				
9	01110				*						
10	11010								*		