GAUGE REPEATABILITY AND REPRODUCIBILITY DATA SHEET VARIABLE DATA RESULTS

Part Number	umber 23421-K0NA-D000		OBD MICROMETER	Appraiser A	PRAKASH		
Part Name	Part Name C1 K0NA		Gauge Number C07L01BR0011-005		ISMILE		
Characteristic QBD	Specification 72.860 - 72.890	Gauge Type	VARIABLE	Appraiser C	PRASANNA		
Characteristic Class	sification CRITICAL	Trials 3	Parts 10	Appraisers 3	Date Performed 25/06/2019	6	

APPRA	ISER/	PART							AVERAGE				
TRIAL #	#	1	2	3	4	5	6	7	8	9	10		
1. A	1	72.862	72.863	72.865	72.869	72.872	72.882	72.884	72.878	72.881	72.888		72.874
2.	2	72.862	72.862	72.865	72.869	72.873	72.883	72.883	72.879	72.882	72.887		72.875
3.	3	72.861	72.863	72.866	72.871	72.874	72.882	72.883	72.879	72.881	72.889		72.875
4.	AVE	72.862	72.863	72.865	72.870	72.873	72.882	72.883	72.879	72.881	72.888	X _a =	72.875
5.	R	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.002	r _a =	0.001
6. B	1	72.864	72.863	72.865	72.869	72.873	72.881	72.884	72.878.	72.881	72.888		72.875
7	2	72.863	72.861	72.865	72.869	72.872	72.883	72.883	72.878	72.882	72.889		72.875
8.	3	72.861	72.863	72.865	72.871	72.874	72.882	72.883	72.879	72.881	72.888		72.875
9.	AVE	72.863	72.862	72.865	72.870	72.873	72.882	72.883	72.878	72.881	72.888	X _b =	72.875
10.	R	0.003	0.002	0.000	0.002	0.002	0.002	0.001	0.001	0.001	0.001	r _b =	0.001
11. C	1	72.863	72.863	72.865	72.869	72.873	72.881	72.884	72.878	72.881	72.888		72.875
12.	2	72.862	72.861	72.865	72.869	72.872	72.883	72.883	72.880	72.882	72.887		72.874
13.	3	72.861	72.863	72.865	72.871	72.874	72.882	72.883	72.879	72.881	72.889		72.875
14.	AVE	72.862	72.862	72.865	72.870	72.873	72.882	72.883	72.879	72.881	72.888	x _c =	72.875
15.	R	0.002	0.002	0.000	0.002	0.002	0.002	0.001	0.002	0.001	0.002	r _c =	0.002
16. PAF AVE	RT E (x p)	72.862	72.862	72.865	72.870	72.873	72.882	72.883	72.879	72.881	72.888	X= R _p =	72.875 0.026
17. $(\Gamma_a + \Gamma_b + \Gamma_c) / (\# \text{ OF APPRAISERS}) =$								R=	0.0015				
18. (Max x - Min x) =								X _{DIFF} =	0.0000				
19. R x D ₄ * =								UCL _R =	0.0038				
20. $R \times D_3^* =$								LCL _R =	0.0000				
Reference	ce Values	72.862	72.862	72.865	72.870	72.873	72.882	72.883	72.879	72.881	72.888		

^{*} D_4 =3.27 for 2 trials and 2.58 for 3 trials; D_3 = 0 for up to 7 trials. UCL_R represents the limit of individual R's. Circle those that are beyond this limit. Identify the cause and correct. Repeat these readings using the same appraiser and unit as originally used or discard values and re-average and recompute R and the limiting value from the remaining observations.

Notes:

PREPARED BY IST-QA-016 CHECKED BY

APPROVED BY

GAUGE REPEATABILITY AND REPRODUCIBILITY DATA SHEET VARIABLE DATA RESULTS

Part Numbe 23421-K0NA-D000	Gauge Name	OBD MICROMETER	Appraiser A PRAKASH		
Part Name C1 K0NA	Gauge Number	C07L01BR0011-005	Appraiser B ISMILE		
Characteristic OBD	Gauge Type	VARIABLE	Appraiser C PRASANNA	Α.	
Characteristic Classification	Trials 3	Parts 10	Appraisers 3	Date Performed 25/06/2019	

Measurement Unit Analysis						% Total Variation (TV)				
Repeata	bility -	Equipment Variatior	(EV)							
EV	=	R x K ₁		Trials	K1	% EV	=	100 (EV/TV)		
	=	0.001 x 0.5908		2	0.8862		=	100(0.0009/0.0082)		
		0.0009		3	0.5908		=	10.53		
Reprodu	cibility	- Appraiser Variatio	n (AV)							
AV = $\{(X_{DIFF} \times K_2)^2 - (EV^2/nr)\}^{1/2}$					% AV	=	100 (AV/TV)			
	=	{(0.000 x 0.5231)^2	2 - (0.001	^2/(10 x 3))}^1/2		= :	100(0.0000/0.0082)		
	=	0.0000	Appraisers	2	3		=	0.00		
			K ₂	0.7071	0.5231	n = numbe	er of part	s		
Repeatability & Reproducibility (R & R)			& R)			r = number of trials				
R&R	=	${(EV^2 + AV^2)}^{1/2}$		Parts	K ₃					
	=	{(0.001^2 + 0.000^	2)}^1/2	2	0.7071	% R&R	=	100 (R&R/TV)		
	=	0.0009		3	0.5231		=	100(0.0009/0.0082)		
Part Var	iation (PV)		4	0.4467		=	10.53		
PV	=	$R_P \times K_3$		5	0.4030	Gage	system i	may be acceptable		
	=	0.026 x 0.3146		6	0.3742					
	=	0.0082		7	0.3534	% PV	=	100 (PV/TV)		
Total Variation (TV)			8	0.3375		=	100(0.0082/0.0082)			
TV	=	${(R&R^2 + PV^2)}^{1/2}$		9	0.3249		=	99.44		
	=	{(0.001^2 + 0.008^	2)}^1/2	10	0.3146					
	=	0.0082		-		ndc	=	13.3		

All calculations are based upon predicting 5.15 sigma (99.0% of the area under the normal distribution curve).

 K_1 is $5.15/d_2$, where d_2 is dependent on the number of trials (m) and the number if parts times the number of operators (g) which is assumed to be greater than 15.

AV - If a negative value is calculated under the square root sign, the appraiser variation (AV) defaults to zero (0).

 K_2 is $5.15/d_2$, where d_2 is dependent on the number of operators (m) and (g) is 1, since there is only one range calculation.

 K_2 is $5.15/d_{2_1}$ where d_2 is dependent on the number of parts (m) and (g) is 1, since there is only one range calculation.

d₂ is obtained from Table D₃, "Quality Control and Industrial Statistics", A.J. Duncan.