# Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings

#### Ivan Vulić and Marie-Francine Moens

KU Leuven Department of Computer Science

**KU LEUVEN** 

ivan.vulic@cs.kuleuven.be marie.francine.moens@cs.kuleuven.be SIGIR 2015, Santiago de Chile; August 11, 2015



#### I. Learning Bilingual Word Embeddings (BWEs)

- Dense word representations, word embeddings, bilingual word embeddings
- Monolingual and bilingual embedding spaces
- ullet Multilingual text data o why document-aligned data?
- ullet New BWE learning model: BWESG o learning monolingual and bilingual embedding spaces

#### II. BWEs in IR

- Semantically-aware representations in the ad-hoc retrieval process?
- From word representations to query and document representations
- ullet Monolingual embeddings o monolingual retrieval; Bilingual embeddings o cross-lingual retrieval
- The same conceptual model of retrieval for MoIR and CLIR with bilingual embeddings spaces!
- Results and discussion

# Part I: Learning BWEs

#### **Learning Word Representations**



#### Key idea

Distributional hypothesis  $\rightarrow$  words with similar meanings are likely to appear in similar contexts

#### [Harris, Word 1954]



shouts:

"Meaning as use!"



calmly states:

"You shall know a word by the company it keeps."



**Dense representations**  $\rightarrow$  real-valued low-dimensional vectors (seen already? LSI?)

#### Word embedding induction

- $\rightarrow$  learn word-level features which generalize well across tasks and languages
- → bilingual word embeddings (this talk)

Word embeddings capture interesting and universal features:





## Embedding Spaces = Semantic Spaces





Monolingual vs. Bilingual

[Image courtesy of Stephan Gouws]

Representation of a word  $w_1^S \in V^S$ :

$$vec(w_1^S) = [f_1^1, f_2^1, \dots, f_{dim}^1]$$

Exactly the same representation for  $w_2^T \in V^T$ :

$$vec(w_2^T) = [f_1^2, f_2^2, \dots, f_{dim}^2]$$

Language-independent word representations in the same shared semantic (or *embedding*) space!

Word representation  $\rightarrow$  A dense real-valued dim-dimensional vector, these dimensions are no longer interpretable (unlike with other semantic representations).

#### Skip-gram with negative sampling (SGNS)

[Mikolov et al.: NIPS 2013]



#### Back to Monolingual...



#### Skip-gram with negative sampling (SGNS)

[Mikolov et al.; NIPS 2013]





### Back to Monolingual...

#### Skip-gram with negative sampling (SGNS)

[Mikolov et al.; NIPS 2013]

Learning from the set D of (word, context) pairs observed in a corpus:  $(w,v)=(w(t),w(t\pm i));\ i=1,...,cs;\ cs=$  context window size

SG learns to predict the context of the pivot word

John saw a cute gray huhblub running in the field.

D = (huhblub, cute), (huhblub, gray), (huhblub, running), (huhblub, in)  $vec(huhblub) = [-0.23, 0.44, -0.76, 0.33, 0.19, \dots]$ 



### Back to Monolingual...

**Negative sampling** = learning using both positive ("observed") examples (set D), and negative ("unobserved") examples (set D')

SGNS is actually doing something very similar to the older approaches  $\rightarrow$  factorizing the traditional word-context matrix! [Levy et al., NIPS 2014, TACL 2015]

More research focused on learning monolingual WEs:

- Full-fledged neural-net approaches [Bengio et al., JMLR 2003; Collobert and Weston, ICML 2008]
- Other factorization methods (e.g., Hellinger PCA) [Lebret and Collobert, EACL 2014]
- GloVe [Pennington et al., EMNLP 2014]
- ...

Probability for one word-context pair (w, v):

$$P(D=1|w,v,\theta) = \frac{1}{1 + \exp(-\vec{w} \cdot \vec{v_c})}$$

General objective:

$$J = \arg\max_{\theta} \sum_{(w,v) \in D} \log \frac{1}{1 + \exp(-\vec{w} \cdot \vec{v_c})}$$

General objective with negative sampling:

$$J = \arg\max_{\theta} \sum_{(w,v) \in D} \log \frac{1}{1 + \exp(-\vec{w} \cdot \vec{v_c})} + \sum_{(w,v') \in D'} \log \frac{1}{1 + \exp(\vec{w} \cdot \vec{v_c'})}$$

### And Now Back to Bilingual...

Generalizing the WE learning in bilingual settings using the similar principles...



- 1. Align pretrained monolingual embedding spaces (offline) using dictionaries [Mikolov et al., arXiv 2013; Lazaridou et al., ACL 2015]
- 2. Jointly learn and align embeddings **(online)** using *parallel-only data* [Hermann and Blunsom, ACL 2014; Chandar et al., NIPS 2014]
- 3. Jointly learn and align embeddings **(online)** using *mono* **and** *parallel data* [Gouws et al., ICML 2015; Soyer et al., ICLR 2015, Shi et al., ACL 2015]

### And Now Back to Bilingual...

Generalizing the WE learning in bilingual settings using the similar principles...



- 1. Align pretrained monolingual embedding spaces (offline) using dictionaries [Mikolov et al., arXiv 2013; Lazaridou et al., ACL 2015]
- 2. Jointly learn and align embeddings (online) using parallel-only data [Hermann and Blunsom, ACL 2014; Chandar et al., NIPS 2014]
- 3. Jointly learn and align embeddings **(online)** using *mono* **and** *parallel data* [Gouws et al., ICML 2015; Soyer et al., ICLR 2015, Shi et al., ACL 2015]
- 4. Can we do it without readily available dictionaries and parallel data?  $\rightarrow$  Using document-aligned data (e.g., Wikipedia) [our model: BWESG]









 $\rightarrow$  Merge & Shuffle: Training a SGNS (or any other monolingual model!) on shuffled "pseudo-bilingual" documents  $\rightarrow$ 

 $\rightarrow$  Our model: **BWESG** 





- $\rightarrow$  Merge & Shuffle: Training a SGNS (or any other monolingual model!) on shuffled "pseudo-bilingual" documents  $\rightarrow$
- $\rightarrow$  Our model: **BWESG**
- $\rightarrow$  1. dumb shuffling: random (this work); 2. slightly more intelligent: length ratio-based (after this work); 3. even more intelligent: future work





 $\rightarrow$  shuffling ensures bilingual (instead of monolingual) contexts  $\rightarrow$  learning a bilingual embedding space jointly **(online)** 





- $\rightarrow$  shuffling ensures bilingual (instead of monolingual) contexts  $\rightarrow$  learning a bilingual embedding space jointly **(online)**
- $\rightarrow$  **No longer a local model**: Window size controls the number of **document-level** positive samples

#### BWEs with BWESG - Examples



| Spanish-English (ES-EN)                                                 |                                                                           |                                                                       | Italian-English (IT-EN)                                                                        |                                                                          |                                                                          | Dutch-English (NL-EN)                                                                                                                 |                                                                                     |                                                                                                      |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| (1)<br>reina                                                            | (2)<br>reina                                                              | (3)<br>reina                                                          | (1)<br>madre                                                                                   | (2)<br>madre                                                             | (3)<br>madre                                                             | (1)<br>schilder                                                                                                                       | (2)<br>schilder                                                                     | (3)<br>schilder                                                                                      |
| (Spanish)                                                               | (English)                                                                 | (Combined)                                                            | (Italian)                                                                                      | (English)                                                                | (Combined)                                                               | (Dutch)                                                                                                                               | (English)                                                                           | (Combined)                                                                                           |
| rey trono monarca heredero matrimonio hijo reino reinado regencia duque | queen(+) heir throne king royal reign succession princess marriage prince | queen(+) rey trono heir throne monarca heredero king matrimonio royal | padre<br>moglie<br>sorella<br>figlia<br>figlio<br>fratello<br>casa<br>amico<br>marito<br>donna | mother(+) father sister wife daughter son friend childhood family cousin | mother(+) padre moglie father sorella figlia figlio sister fratello wife | kunstschilde<br>schilderij<br>kunstenaar<br>olieverf<br>olieverfschil<br>schilderen<br>frans<br>nederlands<br>componist<br>beeldhouwe | painting<br>portrait<br>artist<br>deaijvas<br>impressionis<br>cubism<br>art<br>poet | painter(+) kunstschilde painting schilderij kunstenaar stportrait olieverf olieverfschilderen artist |

$$\overrightarrow{reina} - \overrightarrow{woman} + \overrightarrow{man} \approx \overrightarrow{rey}$$

$$\overrightarrow{queen} - \overrightarrow{mujer} + \overrightarrow{hombre} \approx \overrightarrow{king}$$

$$\overrightarrow{reina} - \overrightarrow{mujer} + \overrightarrow{hombre} \approx \overrightarrow{rey}$$

Useful in bilingual lexicon extraction!



### **Summary of Contributions**



• A novel model for learning bilingual word embeddings (BWEs) from non-parallel document-aligned data

 A simple framework for constructing query and document embeddings

 A unified framework for MoIR and CLIR based on (bilingual) word embeddings

# Part II: BWEs in IR

#### We learn word embeddings:

$$vec(\mathsf{huhblub}) = [-0.23, 0.44, -0.76, 0.33, 0.19, \ldots] \\ vec(\mathsf{fluffy}) = [0.31, 0.02, -0.11, -0.28, 0.52, \ldots]$$

 $\rightarrow$  How to build document and query embeddings? vec(huhblup is fluffy) = ??

Adapting the framework from *compositional distributional* semantics: [Mitchell and Lapata, ACL 2008; Socher et al., EMNLP 2011; Milajevs et al., EMNLP 2014] and many more...

A generic composition with a **bag-of-words** assumption:

$$(d = \{w_1, w_2, \dots, w_{|N_d|}\})$$

$$\overrightarrow{d} = \overrightarrow{w_1} \star \overrightarrow{w_2} \star \ldots \star \overrightarrow{w_{|N_d|}}$$

 $\star =$  compositional vector operator (addition, multiplication, tensor product,..)



## **Document and Query Embeddings**

A general framework  $\rightarrow$  in this work the simple and effective additive composition:

[Mitchell and Lapata, ACL 2008]

$$\overrightarrow{d} = \overrightarrow{w_1} + \overrightarrow{w_2} + \ldots + \overrightarrow{w_{|N_d|}}$$

The dim-dimensional **document embedding** in the same bilingual word embedding space:

$$\overrightarrow{d} = [f_{d,1}, \dots, f_{d,k}, \dots, f_{d,dim}]$$

ightarrow the ADD-BASIC composition model

# **Document and Query Embeddings**

A slightly more intelligent idea  $\rightarrow$  weighting the summands using their **self information** computed in the target collection:

$$si_w = -\ln \frac{freq(w, \mathcal{DC})}{|N_{\mathcal{DC}}|}$$

 $freq(w,\mathcal{DC}) = \text{frequency of } w \text{ in the collection}$ 

A SI-weighted sum:

$$\overrightarrow{d} = si_{w_1} \cdot \overrightarrow{w_1} + si_{w_2} \cdot \overrightarrow{w_2} + \ldots + si_{w_{|N_d|}} \cdot \overrightarrow{w_{|N_d|}}$$

ightarrow the ADD-SI composition model

- $\rightarrow$  The same principles with queries
- $\rightarrow$  Using only ADD-BASIC

$$\overrightarrow{Q} = \overrightarrow{q_1} + \overrightarrow{q_2} + \ldots + \overrightarrow{q_m}$$

The dim-dimensional query embedding in the same bilingual word embedding space:

$$\overrightarrow{Q} = [f_{Q,1}, \dots, f_{Q,k}, \dots, f_{Q,dim}]$$

- **1 Induce** a bilingual word embedding space using any BWE induction model  $\rightarrow$  in this work: BWESG
- ② Given is a target document collection  $\mathcal{DC} = \{d'_1, \ldots, d'_{N'}\}$ . Compute dim-dimensional document embeddings  $\overrightarrow{d'}$  for each  $d' \in \mathcal{DC}$  using the dim-dimensional WEs from the set  $\mathcal{BWE}$  obtained in the previous step and a semantic composition model (ADD-BASIC or ADD-SI something anything else).
- $\textbf{ After the query } Q = \{q_1, \dots, q_m\} \text{ is issued in language } L_S, \\ \textbf{compute a } dim\text{-dimensional query embedding using the} \\ \textbf{ADD-BASIC composition model}.$

**①** For each  $d' \in \mathcal{DC}$ , compute the semantic similarity score sim(d',Q) which quantifies each document's relevance to the query Q:

$$sim(d',Q) = SF(d',Q) = \frac{\overrightarrow{d'} \cdot \overrightarrow{Q}}{|\overrightarrow{d'}| \cdot |\overrightarrow{Q}|}$$

**3** Rank all documents from  $\mathcal{DC}$  according to their similarity scores from the previous step.

WE-VS: WE-based MoIR and CLIR models (using ADD-BASIC)

# Part IIb: Experiments

## **BWESG Training Setup**

- Stochastic gradient descent with a default global learning rate 0.025
- ullet Other default word2vec parameters: subsampling rate 1e-4, negative sampling with 25 negative samples, 15 epochs
- 10 random corpora shuffles, although we advocate the use of a more intelligent shuffling procedure (developed after the paper was released)
- $\bullet$  d = 100 800 in steps of 100
- cs = 10 100 in steps of 10

#### $\textbf{[English|Dutch]} \rightarrow \textbf{[English|Dutch]} \text{ retrieval}$

Exactly the same setup as in: [Vulić et al., Information Retrieval 2013, ECIR 2013]

Training data Europarl 6,206 documents (parallel) Wikipedia 7,612 documents (comparable)

Vocabulary size English 76, 555 words
Dutch 71, 168 words

- ightarrow Stop words removed
- ightarrow We exploit document-level alignments as the only bilingual signal (even for Europarl)

 $[English|Dutch] \rightarrow [English|Dutch]$  retrieval (using CLEF 2001-2003 campaigns)

| Monolingual              |                |          |                |           |  |  |  |  |
|--------------------------|----------------|----------|----------------|-----------|--|--|--|--|
| Direction                | $\mathcal{DC}$ | # Docs   | Query Set      | # Queries |  |  |  |  |
| EN→EN 2001               | LAT            | 110, 861 | EN'01: 41-90   | 47        |  |  |  |  |
| EN→EN 2002               | LAT            | 110, 861 | EN'02: 91-140  | 42        |  |  |  |  |
| EN→EN 2003               | LAT+GH         | 166, 753 | EN'03: 141-200 | 53        |  |  |  |  |
| $NL \rightarrow NL 2001$ | NC+AD          | 190, 604 | NL'01: 41-90   | 50        |  |  |  |  |
| $NL \rightarrow NL 2002$ | NC+AD          | 190, 604 | NL'02: 91-140  | 50        |  |  |  |  |
| $NL \rightarrow NL 2003$ | NC+AD          | 190, 604 | NL'03: 141-200 | 56        |  |  |  |  |



[English|Dutch] → [English|Dutch] retrieval (using CLEF 2001-2003 campaigns)

| Cross-lingual            |                |          |                |           |  |  |  |  |
|--------------------------|----------------|----------|----------------|-----------|--|--|--|--|
| Direction                | $\mathcal{DC}$ | # Docs   | Query Set      | # Queries |  |  |  |  |
| $NL \rightarrow EN 2001$ | LAT            | 110, 861 | NL'01: 41-90   | 47        |  |  |  |  |
| $NL \rightarrow EN 2002$ | LAT            | 110, 861 | NL'01: 91-140  | 42        |  |  |  |  |
| $NL \rightarrow EN 2003$ | LAT+GH         | 166, 753 | NL'03: 141-200 | 53        |  |  |  |  |
| EN→NL 2001               | NC+AD          | 190, 604 | EN'01: 41-90   | 50        |  |  |  |  |
| EN→NL 2002               | NC+AD          | 190, 604 | EN'02: 91-140  | 50        |  |  |  |  |
| EN→NL 2003               | NC+AD          | 190, 604 | EN'03: 141-200 | 56        |  |  |  |  |

- → Queries extracted from the *title* + *description* fields
- $\rightarrow$  Stop words removed  $\rightarrow$  Measuring MAP

#### Single models:

- 1. WE-VS: Our WE-based retrieval model
- 2. **LM-UNI**: Unigram query likelihood language model with standard Dirichlet smoothing
- 3. LDA-IR: Semantically-aware (Bi)LDA-based QL model [Wei and Croft, SIGIR 2006; Vulić et al, IR 2013]

A detailed description of all the models along with their parameter setup in the paper!

#### Combined models:

1. **LM-UNI+LDA-IR**: A linear combination of the two single models:

[Wei and Croft, SIGIR 2006; Vulić et al, IR 2013]

$$P(q_i|d) = \lambda P_{lda}(q_i|d) + (1-\lambda)P_{lm}(q_i|d)$$

- 2. **LM-UNI+WE-VS**: A linear combination of LM-UNI and WE-VS (to directly compare the "quality of semantic awareness" in the retrieval process)
- x. **GT+LM+LDA** (only for CLIR): Translating a query using *Google Translate*, and then employing LM-UNI+LDA-IR on the translated query

Again, a detailed description of all the models along with their parameter setup in the paper!

|                                           | $EN { ightarrow} E$ | .N    |       | $NL \rightarrow N$ | IL    |       |
|-------------------------------------------|---------------------|-------|-------|--------------------|-------|-------|
| Model                                     | 2001                | 2002  | 2003  | 2001               | 2002  | 2003  |
| LM-UNI                                    | .381                | .360  | .359  | .256               | .323  | .357  |
| LDA-IR                                    | .279                | .216  | .241  | .131               | .143  | .130  |
| dim:300; cs:60<br>WE-VS<br>dim:600; cs:60 | .324x               | .258x | .257y | .203x              | .237x | .224× |
| WE-VS                                     | .329x               | .281x | .262y | .204x              | .262x | .231x |
| LM+LDA<br>dim:300; cs:60                  | .399                | .360  | .379  | .260               | .326  | .357  |
| LM+WE ( $\lambda$ =0.3)                   | .412y               | .381x | .401y | .271x              | .349× | .372x |
| LM+WE ( $\lambda$ =0.5)                   | .429x               | .394x | .407× | .279x              | .370x | .382x |
| LM+WE $(\lambda=0.7)$                     | .451×               | .392y | .389  | .270               | .364x | .373y |
| dim:600; cs:60                            |                     |       |       |                    |       |       |
| LM+WE ( $\lambda$ =0.3)                   | .419y               | .382x | .403y | .274x              | .350x | .373x |
| LM+WE ( $\lambda$ =0.5)                   | .436x               | .391x | .408x | .282x              | .371x | .383x |
| LM+WE $(\lambda=0.7)$                     | .430×               | .392y | .381  | .268               | .367× | .374y |

|                                           | $EN{	o}EN$ |       |       | $NL \rightarrow N$ |       |       |
|-------------------------------------------|------------|-------|-------|--------------------|-------|-------|
| Model                                     | 2001       | 2002  | 2003  | 2001               | 2002  | 2003  |
| LM-UNI                                    | .381       | .360  | .359  | .256               | .323  | .357  |
| LDA-IR                                    | .279       | .216  | .241  | .131               | .143  | .130  |
| dim:300; cs:60<br>WE-VS<br>dim:600; cs:60 | .324x      | .258x | .257y | .203×              | .237× | .224x |
| WE-VS                                     | .329x      | .281x | .262y | .204×              | .262x | .231x |
| LM+LDA<br>dim:300; cs:60                  | .399       | .360  | .379  | .260               | .326  | .357  |
| LM+WE ( $\lambda$ =0.3)                   | .412y      | .381× | .401y | .271×              | .349× | .372x |
| LM+WE ( $\lambda$ =0.5)                   | .429×      | .394x | .407× | .279x              | .370× | .382x |
| LM+WE ( $\lambda$ =0.7) dim:600; cs:60    | .451×      | .392y | .389  | .270               | .364× | .373y |
| LM+WE ( $\lambda$ =0.3)                   | .419y      | .382x | .403y | .274x              | .350× | .373x |
| LM+WE ( $\lambda$ =0.5)                   | .436×      | .391x | .408× | .282x              | .371x | .383x |
| LM+WE ( $\lambda$ =0.7)                   | .430×      | .392y | .381  | .268               | .367× | .374y |



|                                           | $EN{	o}EN$ |       |       | $NL \rightarrow N$ | IL    |                |
|-------------------------------------------|------------|-------|-------|--------------------|-------|----------------|
| Model                                     | 2001       | 2002  | 2003  | 2001               | 2002  | 2003           |
| LM-UNI                                    | .381       | .360  | .359  | .256               | .323  | .357           |
| LDA-IR                                    | .279       | .216  | .241  | .131               | .143  | .130           |
| dim:300; cs:60<br>WE-VS<br>dim:600; cs:60 | .324x      | .258x | .257y | .203x              | .237x | .224x          |
| WE-VS                                     | .329x      | .281x | .262y | .204x              | .262x | .231x          |
| LM+LDA                                    | .399       | .360  | .379  | .260               | .326  | .357           |
| dim:300; cs:60                            |            |       |       |                    |       |                |
| LM+WE ( $\lambda$ =0.3)                   | .412y      | .381x | .401y | .271x              | .349x | .372x          |
| LM+WE ( $\lambda$ =0.5)                   | .429×      | .394x | .407× | .279x              | .370x | .382x          |
| LM+WE ( $\lambda$ =0.7)                   | .451x      | .392y | .389  | .270               | .364x | .373y          |
| dim:600; cs:60                            |            |       |       |                    |       |                |
| LM+WE ( $\lambda$ =0.3)                   | .419y      | .382x | .403y | .274x              | .350x | .373x          |
| LM+WE $(\lambda=0.5)$                     | .436×      | .391x | .408× | .282x              | .371× | .383x          |
| LM+WE $(\lambda=0.7)$                     | .430×      | .392y | .381  | .268               | .367× | .37 <u>4</u> y |

#### Testing the influence of dimensionality...







(b) LM-UNI+WE-VS, cs = 60

#### ..and window size... (controlling the data dropout)







(d) LM-UNI+WE-VS, dim = 300

## Results - CLIR



|                                                                         | $NL{ ightarrow}EN$ |                |              | EN→N         |              |              |
|-------------------------------------------------------------------------|--------------------|----------------|--------------|--------------|--------------|--------------|
| Model                                                                   | 2001               | 2002           | 2003         | 2001         | 2002         | 2003         |
| LM-UNI                                                                  | .094               | .108           | .092         | .078         | .125         | .112         |
| LDA-IR                                                                  | .197               | .139           | .123         | .145         | .137         | .171         |
| dim:300; cs:60<br>WE-VS<br>dim:600; cs:60                               | .187               | .204x          | .120         | .174         | .185y        | .157         |
| WE-VS                                                                   | .222y              | .230x          | .127         | .178y        | .219x        | .181         |
| LM+LDA<br>GT+LM+LDA<br>dim:300; cs:60                                   | .267<br>.307       | .225<br>.275   | .199<br>.248 | .225<br>.230 | .268<br>.240 | .278<br>.244 |
| LM+WE ( $\lambda$ =0.3)                                                 | .189               | .273           | .197         | .101         | .159         | .150         |
| LM+WE ( $\lambda$ =0.5)                                                 | .218               | .283y          | .220         | .113         | .184         | .167         |
| LM+WE ( $\lambda$ =0.7)                                                 | .255               | .307×          | .219         | .180         | .209         | .208         |
| dim:600; $cs$ :60<br>LM+WE ( $\lambda$ =0.3)<br>LM+WE ( $\lambda$ =0.5) | .205<br>.236       | .281y<br>.299x | .198<br>.215 | .107<br>.123 | .167<br>.203 | .154<br>.183 |
| LM+WE ( $\lambda$ =0.7)                                                 | .286               | .317×          | .222         | .190         | .249         | .225         |

|        |                                     | $NL{ ightarrow}EN$ |       |      | EN→N  |       |      |
|--------|-------------------------------------|--------------------|-------|------|-------|-------|------|
| Model  |                                     | 2001               | 2002  | 2003 | 2001  | 2002  | 2003 |
| LM-UI  | VI                                  | .094               | .108  | .092 | .078  | .125  | .112 |
| LDA-II | R<br>00; <i>cs</i> :60              | .197               | .139  | .123 | .145  | .137  | .171 |
| WE-V   | •                                   | .187               | .204× | .120 | .174  | .185y | .157 |
| WE-V   | 5                                   | .222y              | .230x | .127 | .178y | .219× | .181 |
| LM+L   |                                     | .267               | .225  | .199 | .225  | .268  | .278 |
|        | M+LDA<br>00; <i>cs</i> :60          | .307               | .275  | .248 | .230  | .240  | .244 |
| LM+V   | VE ( $\lambda$ =0.3)                | .189               | .273  | .197 | .101  | .159  | .150 |
| LM+V   | VE ( $\lambda$ =0.5)                | .218               | .283y | .220 | .113  | .184  | .167 |
| •      | VE $(\lambda = 0.7)$<br>00; $cs:60$ | .255               | .307× | .219 | .180  | .209  | .208 |
| LM+V   | VE ( $\lambda$ =0.3)                | .205               | .281y | .198 | .107  | .167  | .154 |
| LM+V   | VE ( $\lambda$ =0.5)                | .236               | .299× | .215 | .123  | .203  | .183 |
| LM+V   | VE $(\lambda=0.7)$                  | .286               | .317× | .222 | .190  | .249  | .225 |

### Results - CLIR



|                                           | $NL{ ightarrow}EN$ |       |      | EN→NL |       |      |
|-------------------------------------------|--------------------|-------|------|-------|-------|------|
| Model                                     | 2001               | 2002  | 2003 | 2001  | 2002  | 2003 |
| LM-UNI                                    | .094               | .108  | .092 | .078  | .125  | .112 |
| LDA-IR dim:300; cs:60                     | .197               | .139  | .123 | .145  | .137  | .171 |
| wE-VS<br>dim:600; cs:60                   | .187               | .204× | .120 | .174  | .185y | .157 |
| WE-VS                                     | .222y              | .230× | .127 | .178y | .219× | .181 |
| LM+LDA                                    | .267               | .225  | .199 | .225  | .268  | .278 |
| GT+LM+LDA<br>dim:300; cs:60               | .307               | .275  | .248 | .230  | .240  | .244 |
| LM+WE ( $\lambda$ =0.3)                   | .189               | .273  | .197 | .101  | .159  | .150 |
| LM+WE ( $\lambda$ =0.5)                   | .218               | .283y | .220 | .113  | .184  | .167 |
| LM+WE ( $\lambda$ =0.7)<br>dim:600; cs:60 | .255               | .307× | .219 | .180  | .209  | .208 |
| LM+WE ( $\lambda$ =0.3)                   | .205               | .281y | .198 | .107  | .167  | .154 |
| LM+WE $(\lambda=0.5)$                     | .236               | .299× | .215 | .123  | .203  | .183 |
| LM+WE ( $\lambda$ =0.7)                   | .286               | .317× | .222 | .190  | .249  | .225 |

### Results - CLIR



|                                           | $NL{ ightarrow}EN$ |       |      | EN→NL |       |      |
|-------------------------------------------|--------------------|-------|------|-------|-------|------|
| Model                                     | 2001               | 2002  | 2003 | 2001  | 2002  | 2003 |
| LM-UNI                                    | .094               | .108  | .092 | .078  | .125  | .112 |
| LDA-IR                                    | .197               | .139  | .123 | .145  | .137  | .171 |
| dim:300; cs:60<br>WE-VS<br>dim:600; cs:60 | .187               | .204× | .120 | .174  | .185y | .157 |
| WE-VS                                     | .222y              | .230× | .127 | .178y | .219× | .181 |
| LM+LDA                                    | .267               | .225  | .199 | .225  | .268  | .278 |
| GT+LM+LDA<br>dim:300; cs:60               | .307               | .275  | .248 | .230  | .240  | .244 |
| LM+WE ( $\lambda$ =0.3)                   | .189               | .273  | .197 | .101  | .159  | .150 |
| LM+WE ( $\lambda$ =0.5)                   | .218               | .283y | .220 | .113  | .184  | .167 |
| LM+WE ( $\lambda$ =0.7)<br>dim:600; cs:60 | .255               | .307× | .219 | .180  | .209  | .208 |
| LM+WE ( $\lambda$ =0.3)                   | .205               | .281y | .198 | .107  | .167  | .154 |
| LM+WE $(\lambda=0.5)$                     | .236               | .299× | .215 | .123  | .203  | .183 |
| LM+WE $(\lambda=0.7)$                     | .286               | .317× | .222 | .190  | .249  | .225 |

### Results - CLIR II



|                                                                                                                | NL→EN                  |                         |                      | EN→N                  |                        |                       |
|----------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|----------------------|-----------------------|------------------------|-----------------------|
| Model                                                                                                          | 2001                   | 2002                    | 2003                 | 2001                  | 2002                   | 2003                  |
| LM+LDA<br>GT+LM+LDA                                                                                            | .267<br>.307           | .225<br>.275            | .199<br>.248         | .225<br>.230          | .268<br>.240           | .278<br>.244          |
| dim:600; cs:60<br>LM+WE ( $\lambda$ =0.3)<br>LM+WE ( $\lambda$ =0.5)<br>LM+WE ( $\lambda$ =0.7)                | .205<br>.236<br>.286   | .281y<br>.299×<br>.317× | .198<br>.215<br>.222 | .107<br>.123<br>.190  | .167<br>.203<br>.249   | .154<br>.183<br>.225  |
| dim:600; $cs$ :60<br>LM+LDA+WE ( $\lambda$ =0.3)<br>LM+LDA+WE ( $\lambda$ =0.5)<br>LM+LDA+WE ( $\lambda$ =0.7) | .277<br>.281y<br>.302× | .263<br>.281y<br>.302x  | .210<br>.214<br>.227 | .229<br>.240<br>.244y | .288<br>.297y<br>.311× | .283<br>.290<br>.302y |

## **Results - Composition**



|                                       | Monolingual   |               |              |              |               |              |  |  |
|---------------------------------------|---------------|---------------|--------------|--------------|---------------|--------------|--|--|
|                                       | EN→EN         |               |              |              |               |              |  |  |
| Composition                           | 2001          | 2002          | 2003         | 2001         | 2002          | 2003         |  |  |
| ADD-BASIC (300-60)<br>ADD-SI (300-60) | .324<br>.338  | .258<br>.278y | .257<br>.255 | .203<br>.212 | .237<br>.253y | .224<br>.227 |  |  |
| ADD-BASIC (600-60)<br>ADD-SI (600-60) | .329<br>.344y | .281<br>.301y | .262<br>.263 | .204<br>.215 | .262<br>.275y | .231<br>.234 |  |  |

# Results - Composition II



|                                       | Cross-lingual |               |              |               |                      |              |  |  |
|---------------------------------------|---------------|---------------|--------------|---------------|----------------------|--------------|--|--|
|                                       | NL→EN         |               |              |               | $EN { ightarrow} NL$ |              |  |  |
| Composition                           | 2001          | 2002          | 2003         | 2001          | 2002                 | 2003         |  |  |
| ADD-BASIC (300-60)<br>ADD-SI (300-60) | .187<br>.216× | .204<br>.213y | .120<br>.122 | .174<br>.189y | .185<br>.208×        | .157<br>.161 |  |  |
| ADD-BASIC (600-60)<br>ADD-SI (600-60) | .221<br>.237y | .230<br>.233  | .127<br>.130 | .178<br>.189  | .219<br>.229×        | .181<br>.184 |  |  |

# Summary of Contributions (Repeated)



 A novel model for learning bilingual word embeddings (BWEs) from non-parallel document-aligned data

 A simple framework for constructing query and document embeddings

 A unified framework for MoIR and CLIR based on (bilingual) word embeddings

### So, what's next? I



The proposed framework is very general:

Designing other shuffling procedures for BWESG

Building new BWE induction models for the same multilingual data type (remove the need for pseudo-bilingual documents?

Experimenting with other monolingual WE induction models for BWESG besides SGNS

Investigating other BWE induction models (different bilingual signals) in the same (CL)IR pipeline

### So, what's next? II



Investigating more elaborate composition models to construct document and query embeddings (what about syntax?)

Testing true paragraph and phrase embeddings in the same (CL)IR pipeline

[Le and Mikolov, ICML 2014; Soyer et al., ICLR 2015]

Other (more distant) language pairs, other queries+test collections

Combining the semantic BWE-based knowledge with other IR modeling paradigms (besides the ones mentioned here)





