UNIVERSITY OF BERGEN

Flow Cytometry Core Facility

Discovery and Functional Profiling with Mass Cytometry

High order multiplexing of biological samples - from suspension to tissue

Jørn Skavland, PhD

Helios Mass Cytometer

Channels

Mass range

Abundance sensitivity

Instrument response

Detection limit

Dynamic range

Calibration

Operating system

Data storage

Sample introduction

Peak throughput

Flow rate

Replicate sample CV (normalized)

135

75-209 amu

0.3% for ¹⁵⁹Tb

600,000 counts/pg 159Tb

350 antibodies/cell

4.5 orders of magnitude

Automated

Windows® 7 Pro 64-bit

7.2TB HDD RAID (mirrored)

Pneumatic single tube loader with agitation, up to 5 ml volume

2,000 (events/sec)

30-45 (µL/min)

<3%

uib.no

CyTOF Research

Applications

Phenotyping

Signaling and transcription

Cytokines and growth factors

Cell death and apoptosis

Cell cycle and proliferation

Research areas

Antibody-mediated multiparameter protein detection

Today's gold standard

Fluorochrome-conjugated antibodies are widely used but have limited utility for high-parameter studies. These limitations impart significant complexities in experimental design and interpretation.

Fluorescence 'spillover' | Variable staining intensities | Background signal

Emission: fluorescence spillover

Staining intensities and background

CyTOF Technology

The new standard for high-parameter protein detection

CyTOF° technology overcomes the limitations of fluorescence-based detection modalities by separating signals based on differences in mass instead of wavelength.

Separate and distinct signals | Uniform staining | No background

Highly pure, rare metal isotope labels that minimize background

Helios™ and Hyperion™ Imaging System

Powered by CyTOF technology

Helios™ Mass Cytometry

Hyperion™ Imaging Mass Cytometry

CyTOF Workflow

1

Select

Maxpar® panel and prepare mixture from individual antibodies.

2

Stain

cells using protocols and buffers validated by Fluidigm.

)

Acquire

high-parameter data for millions of cells with the Helios™ mass cytometer.

Analyze

data using proven analytical tools.

Mass Cytometry – Method

Bendall S et al. Trends in Immunology 2012

uib.no

Introduction – Mass Cytometry

uib.no

Many high-impact papers with breakthrough findings

"An immune clock of human pregnancy."

Science Immunology (2017)

Aghaeepour, N. et al.

A Training cohort

(n = 18)

Validation cohort
(n = 10)

Delivery

INF-o IL LPS baseline

Early Mid Lake PP

Single-cell immune features

Endogenous separately (720)

Signaling response capacity (720)

"High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy."

Nature Medicine (2018)

Krieg, C. et al.

Summary - Suspention

Mass cytometry:

- Increases the number of measurements possible on single cells (up to 54 currently)
- Possible because of metal conjugated antibodies and the resolution of the mass spectrometer
- Generates complex data: Need data visualization tools/algorithms, like ViSNE

Hyperion Imaging System

Highly multiplexed immunohistochemistry from FFPE, frozen tissue sections or cell smears

Comprehensive

Highly multiplexed IHC enables simultaneous detection >37 protein markers.

Simple

Stain samples with all antibodies simultaneously using conventional IHC protocols

Contextual

Get subcellular resolution while preserving information about tissue architecture and cellular morphology.

Powerful

Preserve precious samples and reduce variability by eliminating dependence on serial sections.

Capture

Hyperion[™] Tissue Imager

Detection

CyTOF technology

Hyperion Imaging System Workflow

1

Design

panels using IHC-validated antibodies conjugated to metal tags.

2

Stain

tissues (FFPE and frozen) or fixed cells with metalconjugated antibodies.

3

Image

biomarkers using precise laser-directed protein capture and detection with CyTOF technology.

4

Analyze

using post-analytical imaging and secondary analysis software tools.

How Imaging with the Hyperion Imaging System works

Load the sample into the Hyperion Imaging System

Precise laser imaging of the region of interest

Laser beam focuses on $1\,\mu\text{m}^2$ spots in the selected region Collects metal-tagged proteins Sends for CyTOF analysis

Image and single cell segmentation

Cross-platform registration experiment: immunofluorescence vs. Hyperion in same tissue section

-- Courtesy of Dr. Bernd Bodenmiller, University of Zurich

Hyperion Imaging analysis pipeline

A three step workflow using MCD Viewer and histoCAT™

View and Validate

Detect presence of protein(s) of interest, produce high quality plots with chosen combinations of markers and confirm experimental success. Export files in various formats.

Image segment

Segment specific cell populations of interest. Quantify differential expression of the epitope within the cells and across cell population.

3

Higher order analysis

Differential expressions within a cell and between cell populations with statistical significance and in spatial context.