Approximation Algorithms

NP-completeness

"I can't find an efficient algorithm, I guess I'm just too dumb."

NP-completeness

"I can't find an efficient algorithm, but neither can all these famous people."

Million dollar open problem: Is P=NP?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Scenario

Your boss gives you a computationally hard problem

- No knowledge about approximation:
 - Spend a few months looking for an optimal solution
 - Come to their office and confess that you cannot do it
 - Get fired
- Knowledge about approximation
 - Show your boss that this is a NP-complete (NP-hard) problem. There does not exist any polynomial time algorithm to find an exact solution
 - Propose a good algorithm (either heuristic or approximation) to find a near-optimal solution
 - Better yet, prove the approximation ratio

Coping With NP-Compleness

Stick with small problems

- Develop clever enumeration strategies.
- Guaranteed to find optimal solution.
- No guarantees on running time, but problem is small.

Special Cases

- Look at specific types of input
- Find an algorithm that runs in polynomial time
- Gives correct solution.
 - Example: vertex cover in bipartite graphs, perfect graphs.

Heuristics.

- Develop intuitive algorithms.
- Guaranteed to run in polynomial time.
- No guarantees on quality of solution.

Coping With NP-Compleness

Approximation algorithms.

- Guaranteed to run in polynomial time.
- Guaranteed to find "high quality" solution, say within 1% of optimum. Obstacle: need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Unwilling to relax correctness.

- Solve in exponential time but faster than brute force...
- Example:
 - Dynamic Programming for Knapsack O(nW)
 - Brute Force O(2ⁿ)

Average Case.

- Find an algorithm which works well on average.
- Average running time is polynomial.

Approximation Algorithm

- Up to now, the best algorithm for solving an NPcomplete problem requires exponential time in the worst case. It is too time-consuming.
- To reduce the time required for solving a problem, we can relax the problem, and obtain a feasible solution "close" to an optimal solution
- One compromise is to use heuristic solutions.
- The word "heuristic" may be interpreted as "educated guess."

Approximation Algorithm

 An algorithm that returns near-optimal solutions is called an approximation algorithm.

 We need to find an approximation ratio bound for an approximation algorithm.

Approximation Ratio bound

We say an approximation algorithm for the problem has a ratio bound of $\rho(n)$ if for any input size n, the cost C of the solution produced by the approximation algorithm is within a factor of $\rho(n)$ of the C^* of the optimal solution:

$$\max\{\frac{C}{C^*}, \frac{C^*}{C}\} = \rho(n)$$

This definition applies for both minimization and maximization problems.

Rho-α-ρ-approximation algorithm

• An approximation algorithm with an approximation ratio bound of ρ is called a ρ -approximation algorithm or a $(1+\epsilon)$ -approximation algorithm.

- Note that ρ is always larger than 1 and $\epsilon = \rho 1$.
- Note some books may use α "alpha" instead of "rho"

Approximate Ratio

- C* is the cost of optimal solution and C is the cost of an approximate algorithm
- ρ(n)=max(C/C*, C*/C) where n is size of problem input
- If $\rho(n)=1$, then the algorithm is an optimal algorithm
- The larger $\rho(n)$, the worse the algorithm

Greedy Approximations

- Use a greedy algorithm to solve the given problem
 - Repeat until a solution is found:
 - Among the set of possible next steps:
 Choose the current best-looking alternative and commit to it
- Usually fast and simple
- Works in some cases...(always finds optimal solutions)
 - Dijsktra's single-source shortest path algorithm
 - Prim's and Kruskal's algorithm for finding MSTs
- but not in others...(may find an approximate solution)
 - TSP always choosing current least edge-cost node to visit next

Vertex-cover problem

- Vertex cover: given an undirected graph G=(V,E), then a subset V'∈V such that if (u,v)∈E, then u∈V' or v∈V' (or both).
- Size of a vertex cover: the number of vertices in it.
- Vertex-cover problem: find a vertex-cover of minimal size.

Vertex-cover problem

- Vertex-cover problem is NP-complete. (See section 34.5.2).
 - Vertex-cover belongs to NP.
 - Vertex-cover is NP-hard (CLIQUE≤_Pvertex-cover.)
 - Reduce <G,k> where G=<V,E> of a CLIQUE instance to <G',|V|-k> where G'=<V,E'> where E'= $\{(u,v): u,v\in V, u\neq v \text{ and } < u,v>\notin E\}$ of a vertex-cover instance.
- So find an approximate algorithm.

Approximate vertex-cover algorithm

APPROX-VERTEX-COVER(G)

The vertex-cover problem

2-approximate vertex-cover

- Theorem 35.1 (page 1026).
 - APPROXIMATE-VERTEX-COVER is a poly time 2-approximate algorithm, i.e., the size of returned vertex cover set is at most twice of the size of optimal vertex-cover.

Proof:

- It runs in poly time
- The returned C is a vertex-cover.
- Let A be the set of edges picked in line 4 and C* be the optimal vertex-cover.
 - Then C* must include at least one end of each edge in A and no two edges in A are covered by the same vertex in C*, so |C*|≥|A|.
 - Moreover, |C|=2|A|, so |C|≤2|C*|.

The Grocery Bagging Problem

- You are an environmentally-conscious grocery bagger at Fred Meyers
- You would like to minimize the total number of bags needed to pack each customer's items.

Items (mostly junk food)

Sizes $a_1, a_2, ..., a_n (0 < a_i \le 1)$

Grocery bags

Size of each bag = 1

Optimal Grocery Bagging: An Example

- Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3
 - How may bags of size 1 are required?

- Can find optimal solution through exhaustive search
 - Search all combinations of N items using 1 bag, 2 bags, etc.
 - Takes exponential time!

Greedy Grocery Bagging

- Greedy strategy #1 "First Fit":
 - 1. Place each item in first bin large enough to hold it
 - 2. If no such bin exists, get a new bin
- **Example**: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3

Greedy Grocery Bagging

- Greedy strategy #1 "First Fit":
 - 1. Place each item in first bin large enough to hold it
 - 2. If no such bin exists, get a new bin
- **Example**: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3

Better Greedy Grocery Bagging

- Greedy strategy #2 "First Fit Decreasing":
 - 1. Sort items according to decreasing size
 - 2. Place each item in first bin large enough to hold it
- Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1,
 0.3

Better Greedy Grocery Bagging

- Greedy strategy #2 "First Fit Decreasing":
 - 1. Sort items according to decreasing size
 - 2. Place each item in first bin large enough to hold it
- Example: Items = 0.5, 0.2, 0.7, 0.8, 0.4, 0.1, 0.3

Uses 3 bins Optimal in this case Not optimal in general

 Approximation Result: If OPT is the optimal number of bins, First Fit Decreasing never uses more than 1.20PT + 4 bins

Bin Packing—Dec. is NP-complete

Bin Packing problem: Given n items of sizes a_1 , a_2 ,..., a_n (0 < $a_i \le 1$), pack these items in the <u>at</u> most k bins of size 1.

- Bin packing in in NP
 - To verify a solution
 - Add the weights of the items in each bin.
 - Each bin must contain < 1unit.
 - Check that each item is in a bin
 - There are at most k bins used.
 - This can be done in O(n).
- SET-PARTITION reduces to Bin Packing

Bin Packing—Dec. is NP-complete

<u>SET-PARTITION</u>: Given a set of numbers $X = \{x_1, x_2, ..., x_k\}$. Is there a subset of X, B, such that the sum of the elements in B is equal to the sum of the elements in S-B.

Bin Packing: Given n items of sizes $a_1, a_2, ..., a_n$ (0 < $a_i \le 1$), pack these items in the at most k bins of size 1.

SET-PARTITION ≤_p Bin Packing

Let sum = $\sum_{i=1}^k x_i$. Define S = $\{s_1, s_2, \dots s_k\}$ where $s_i = \frac{2x_i}{sum}$ for i = 1, ..k. Then if $\{s_1, s_2, \dots s_k\}$ can be packed into 2 bins, X can be partitioned into 2.

Thus Bin Packing is NP-Complete

Bin packing

- Input:
 - n items with sizes $a_1, \ldots, a_n \ (0 < a_i \le 1)$.
- Task:
 - Find a packing in unit-sized bins that minimizes the number of bins used.

First-Fit Algorithm

- This algorithm puts each item in one of partially packed bins.
 - If the item does not fit into any of these bins, it opens a new bin and puts the item into it.

First-Fit finds 20PT solution

- OPT: # bins used in the optimal solution.
- [Proof]
 - Suppose that First-Fit uses m bins.
 - Then, at least (m-1) bins are more than half full.
 - We never have two bins less than half full.
 - If there are two bins less than half full, items in the second bin can be substituted into the first bin by First-Fit.

First-Fit finds 20PT solution

- Suppose that First-Fit uses m bins.
- Then, at least (m-1) bins are more than half full.

Since *m* and OPT are integers. \longrightarrow 2OPT $\ge m$

Knapsack

- Given: a set S of n objects with weights and values, and a weight bound:
 - $w_1, w_2, ..., w_n, W$ (weights, weight bound).
 - $-b_1, b_2, ..., b_n$ (benefit).
- Find: subset of S with total weight at most B, and maximum total value.

Formally:
$$\max \sum_{i \in T} b_i$$
 subject to $\sum_{i \in T} w_i \leq W$

Problem is known to be NP-hard

Assumptions

- $\forall i, w_i \leq W$ (every item can be added to T)
- $\forall i, b_i > 0$ (non-negative benefits)
- benefits, weights, and bound are all integers.

Note:

- This is a maximum problem.
- Define: OPT = The optimal solution.
- We will see a 2-approximation for two versions of knapsack.

Basic Greedy Algorithm 1.

Knapsack Approximation

- Greedy Algorithm

 Define ratio: $v_i = \frac{b_i}{}$ for item i
- Sort items in non-increasing order such that $V_{(1)} \ge V_{(2)} \ge ... \ge V_{(n)}$
- Greedily pick items in above order until $A = \{item(1), item(2), ..., item(j)\}$ with weight(A) \leq W and $weight(A) + w_{(i+1)} > W$

Knapsack Approximation

- Seems like a quick approximation algorithm but it can be very "bad"
- Consider the small example
 - Item 1: weight 1 and benefit 2, value v = 2/1 = 2
 - Item 2: weight W and benefit W, value = W/W = 1

The greedy algorithm picks the small Item 1with benefit 2 since it has the larger value ratio.

This leaves W-1 empty space in the backpack.

However there is no room for the large item which would have filled the entire backpack and given us total benefit W.

This is W/2 off from optimal.

Knapsack 2-Approximation

Greedy2 Algorithm

Sort items in non-increasing order such that

```
V_{(1)} \ge V_{(2)} \ge \dots \ge V_{(n)}.
```

Greedily pick items in above order until

```
A = \{item(1), item(2), ..., item(j) \} with weight(A) > W and weight(A) + w_{(i+1)} > W
```

Pick the better of

```
A = {item(1), item(2), ..., item(j_j} and {item(j+1)}
if TotalBenefits(A) > b_{(j+1)} return A
else return item(j+1)
```

Greedy2 is 2-approximation Knapsack

Proof: We used a greedy algorithm so if the solution is suboptimal then we must have some leftover space at the end. Let S be the total weight of the solution A, then the left over space is W – S. Imagine we were able to take a fraction of an item. Then by adding $\frac{W-S}{w_{j+1}}b_{j+1}$ to our knapsack's total benefit, we would either match or exceed OPT (remember OPT is unable to use fractions).

So OPT
$$\leq \sum_{i=1}^{j} b_i + \frac{W-S}{w_{j+1}} b_{j+1} \leq \sum_{i=1}^{j} b_i + b_{j+1}$$
 since we couldn't fit the entire (j+1)st item in the knapsack $\frac{W-S}{w_{j+1}} < 1$.

OPT $\leq \sum_{i=1}^{j} b_i + b_{j+1} \leq 2 \max (\sum_{i=1}^{j} b_i, b_{j+1})$ since Greedy2 solution is 2 max $(\sum_{i=1}^{j} b_i, b_{j+1})$

$$\frac{1}{2} \text{ OPT} \leq \text{Greedy2. or } \max \left\{ \frac{OPT}{Greedy2}, \frac{Greedy2}{OPT} \right\} = 2$$