bool empty_set(Rect R, Disk D)

Description:

The function detects the intersection of a rectangle and a circle.

Input parameters:

The function receives two parameters:

- \bullet **R** is the rectangle, the element of class **Rect** with characteristics:
 - x0, y0 are coordinates of the bottom left corner;
 - x1, y1 are coordinates of the top right corner.

To access these characteristics using the methods get_x0(), get_y0(), get_x1(), get_y1(), implemented in the class Rect.

- **D** is the circle, the element of class **Disk** with characteristics:
 - **c1**, **c2** is the center of the circle;
 - **r** is the radius of the circle.

To access these characteristics using the methods $\mathbf{get_c1}()$, $\mathbf{get_c2}()$, $\mathbf{get_r}()$, implemented in the class \mathbf{Disk} .

Output parameters:

- The function returns the boolean value of the parameter **empty**.
 - -empty = true the rectangle and circle do not intersect;
 - -empty = false the rectangle and circle have an intersection.

Algorithm

First of all, we check the condition: the center of the circle is inside the rectangle.

If this condition is satisfied, the figure intersect.

Else we consider four half-planes formed by the rectangle:

- left half-plane (c1 < x0);
- right half-plane (c1 > x1);
- top half-plane (c2 > y1);
- bottom half-plane (c2 < y0).

In the equation of the circle, we substitute the equations of the boundaries of each half-plane and find the discriminants of the obtained square equations.

A circle does not intersect with a straight line if the equation has no solutions, i.e. the discriminant is negative. We check the intersection of the circle with the half-plane boundary. If there is no intersection, then the parameter empty = true. In case there is an intersection, we also check the intersection of the circle with the straight lines passing through the sides of the rectangle orthogonal to the half-plane boundary. In the case of an intersection, the parameter empty = false.

Rect intersection (Rect R, Disk D)

Description:

The function approximates the area of intersection of the rectangle and the circle with orthogonal lines. Based on the intersection points of these lines, we construct a rectangle with a minimum area, which contains the intersection area of the rectangle and the circle.

Input parameters:

The function receives two parameters:

- R is the rectangle, the element of class **Rect** with characteristics:
 - **x0**, **y0** are coordinates of the bottom left corner;

- x1, y1 are coordinates of the top right corner.

To access these characteristics using the methods $get_x0()$, $get_y0()$, $get_x1()$, $get_y1()$, implemented in the class Rect.

- **D** is the circle, the element of class **Disk** with characteristics:
 - **c1**, **c2** is the center of the circle;
 - $-\mathbf{r}$ is the radius of the circle.

To access these characteristics using the methods get_c1(), get_c2(), get_r(), implemented in the class Disk.

Note: The rectangle and the circle must intersect.

Output parameters:

• The function returns new rectangle **newR** (the element of class **Rect**) with a minimum area, which contains the intersection area of the rectangle **R** and the circle **D**.

The rectangle is formed as a result of the intersection of orthogonal lines that approximate the intersection area of the rectangle and the circle.

Algorithm

Preprocessing

We define two variables (t1, t2) for the potential intersection points of the orthogonal line and the circle. We consider four half-planes formed by the rectangle:

- left half-plane (c1 < x0);
- right half-plane (c1 > x1);
- top half-plane (c2 > y1);
- bottom half-plane (c2 < y0).

In the equation of the circle, we substitute the equations of the boundaries of each half-plane and find the discriminants (dx0, dx1, dy0, dx1) of the obtained square equations.

Approximation

We need to consider the following cases:

- the center of the circle is inside the rectangle:
 - If the center of the disk inside the rectangle we define the characteristics of rectangle **newR** as:

```
x0 = \max\{x0, c1 - r\};

x1 = \min\{x1, c1 + r\};

y0 = \max\{y0, c2 - r\};

y1 = \min\{y1, c2 + r\};
```

- the center of the circle lies in one of the half-planes and the circle and the rectangle have only one point of the intersection (discriminant is equal 0):
 - If the center of the circle lies in one of the half-planes and the circle and the rectangle have only one point of the intersection (discriminant is equal 0) we define the characteristics of rectangle **newR** as the point:

```
(x0, c2) – for left the half-plane;

(x1, c2) – for the right half-plane;

(c1, y1) – for top half-plane;

(c1, y0) – for bottom half-plane.
```

• the center of the circle lies in one of the half-planes and intersects the boundary of the half-plane at two points (discriminant is greater 0):

- If the center of the circle lies in one of the half-planes and intersects the boundary of the half-plane at two points (discriminant is greater 0) we consider half-plane corresponding to center of circle and solve the problem of finding local extremum of a function (circle) in a bounded domain $(x0 \le x \le x1, y0 \le y \le y1)$.

Note: We consider the procedure in more detail using an example of the bottom half-plane.

The bottom half-plane

For the bottom half-plane we need consider the top half of the circle.

First, we find the points of intersection of the circle and the border of the half-plane. If the points lie on the side of rectangle, then we redefine x0 and x1 as:

```
x0 = \max\{x0, t1\};

x1 = \min\{x0, t2\}.
```

If boundary point (c1, c2+r) of the circle is inside the rectangle we can redefine y1 = c2+r, else we need to find the points of intersection (in our code t1, t2) of the circle with the sides orthogonal to the boundary of the half-plane and redefine y1 as:

```
y1 = \min\{y1, \max\{t1, t2\}\}.
```

Note: $x1 = \min\{x1, \max\{t1, t2\}\}\$ for the left half-plane; $x0 = \max\{x0, \min\{t1, t2\}\}\$ for right half-plane; $y0 = \max\{y0, \min\{t1, t2\}\}\$ for top half-plane; $y1 = \min\{y1, \max\{t1, t2\}\}\$ for bottom half-plane.

Output:

After we have updated all the characteristics, we form the required rectangle **newR**.