

First-principles study of point defects and doping limits in CaO

Zhenkun Yuan and Geoffroy Hautier

Dartmouth Engineering

APS March Meeting 2024, Minneapolis

CaO as a new quantum-defect host

- Ultra-wide band gap (7.09 eV)
- Low density of spinful nuclei \Longrightarrow long electron spin coherence times (T_2)
 - beats most known materials

- Computational evidence of NV-like centers
 - $X_{Ca}V_O$ (X = Sb, Bi, and I)
 - Y. Xiong et al., Mater. Quantum. Technol. 4, 013001 (2024)
 - S. Kanai et al., PNAS 119, e2121808119 (2022)
 - J. Davidsson et al., arXiv preprint, 2023

What is range of Fermi levels in CaO?

NV center in Diamond

J. Weber et al., PNAS 107, 8513 (2010)

NV-like center in CaO

J. Davidsson et al., arXiv preprint, 2023

Doping bottlenecks prevail in wide-band-gap materials, often caused by intrinsic defect compensation

First-principles calculations of point defects

Plot by Seán Kavanagh

- HSE screened hybrid functional with $\alpha = 0.498$
 - reproduce experimental band gap (7.09 eV)
 - lattice constant a = 4.78 Å (Expt. 4.78 4.808 Å)
- 512-atom supercell, Γ -only **k**-point sampling

Intrinsic defects and doping in CaO

O-poor conditions

O-rich conditions

- Formation energies change significantly when Fermi level moves over the band gap
- Dominant defects: V_{Ca} , V_{O} , and O_i

Intrinsic defects and doping in CaO

 Under the intrinsic defect doping, the Fermi level is far from the band edges

Compensation and doping limits in CaO

Compensation and doping limits in CaO

 For a given growth condition, the allowed range of Fermi levels is quite limited

Compensation and doping limits in CaO

- Overall doping-limit energy range: VBM+0.49 eV to CBM-0.27 eV
- Extrinsic dopants needed to reach the doping limits
- O-poor (O-rich) conditions for n-type (p-type) doping

Impact of hydrogen impurities

O-poor conditions & H-rich limit ($\mu_H = 0 \text{ eV}$)

O-poor conditions H_2 atmosphere at $T=1000~\mathrm{K}$

- H_i always a compensation center
- Under O-poor and H-rich conditions, H_O severely restricts the p-type doping limit
- H_O can shift the Fermi level closer to the conduction band

Conclusions

- CaO has a wide doping-limit energy range
- Varying growth condition and extrinsic dopants needed to approach the doping limits
- Hydrogen impurities should be avoided not to cause extra limits to p-type doping

Acknowledgments

