

CYCLE

MODÉLISER LE COMPORTEMENT LINÉAIRE ET NON LINÉAIRE DES SYSTÈMES MULTIPHYSIQUES

TP

PSI

AMÉLIORATION DE LA FIABILITÉ DU MODÈLE

CHEVILLE DU ROBOT NAO, MAXPID, CORDEUSE DE RAQUETTE, DIRECTION ASSISTÉE ÉLECTRIQUE, COMAX, CONTROL'X

1 DÉCOUVRIR - DÉCRIRE LE SYSTÈME

1.1 Coordination

- ☐ Identifier la problématique.
- ☐ Décrire le système en utilisant la chaine fonctionnelle.
- ☐ Identifier quelles peuvent être les non linéarités du système.

Rappel: chaîne fonctionnelle

1.2 Modélisation

- Découvrir le modèle linéaire et associé les blocs aux composants technologiques.
- □ Proposer un protocole pour vérifier les exigences de précision et de rapidité (page 8). Mettre en œuvre ce protocole.
- Quelles sont les différences entre le système réel et le système modélisé.

1.3 Expérimentation

- Découvrir le système.
- ☐ Proposer un protocole pour vérifier les exigences de précision et de rapidité (page 8). Mettre en œuvre ce protocole.
- Réaliser un essai en mode de fonctionnement non linéaire.

1	.4	SV	nt	hà	60
Ш	. 🕇	Эу	4ШП		2 C

Sur un même graphe réalisé avec Python, tracer la réponse du système réel et du système modélisé en modé
linéaire.

- Quantifier les trois écarts.
- ☐ Montrer par un essai au moins que les performances sont dégradées en régime non linéaire.
- ☐ Lister les phénomènes non linéaires.

2 IDENTIFICATION DES NON LINÉARITÉS

2.1 Coordination

- ☐ Assurer la coordination entre expérimentateur et modélisateur :
 - o s'assurer que les essais sont réalisés dans les mêmes conditions expérimentales ;
 - o faire le bilan des méthodes utilisées pour déterminer les paramètres non linéaires.

2.2 Modélisation

- □ Comment intégrer un frottement sec ? un frottement visqueux ? Quels sont les paramètres à renseigner ?
- Quels sont les branches du système qui peuvent saturer ? Comment intégrer une saturation ?
- □ Comment intégrer des jeux ?

2.3 Expérimentation

- ☐ Réaliser des essais permettant de caractériser le frottement sec.
- ☐ Réaliser des essais permettant de caractériser le frottement visqueux.
- Réaliser des essais permettant de caractériser les saturations du système.
- Réaliser des essais permettant de caractériser les jeux dans le fonctionnement du système.

3 SYNTHÈSE

- Comparer les résultats de la simulation avec le modèle non linéaire et le système réel.
- Quantifier les écarts.