

CVE Details

The ultimate security vulnerability datasource

Log In Register Reset Password Activate Account

Home

Browse:

Vendors

Products

Vulnerabilities By Date

Vulnerabilities By Type

Reports:

CVSS Score Report CVSS Score Distribution

Search:

Vendor Search

Product Search

Version Search

Vulnerability Search

By Microsoft References

PRIVACY SCORE D Linux » Linux Kernel : Security Vulnerabilities (

CVSS Scores Greater Than: 0 1 2 3 4 5 6 7 8 9 Sort Results By: CVE Number Descending CVE Number Ascending

Total number of vulnerabilities: 268 Page: 1 (This Page) 2

Copy Results Download Results Select Table

	0.2.2	ID	Exploits	Type(s)		ATIAUST?
1	CVE-2015-5364	399		DoS	2015-08-31	2015-08-31 7.8

Vulnerability

The (1) udp recvmsq and (2) udpv6 recvmsq functions in the Linux kernel before 4.0.6 do not proper service (system hang) via incorrect checksums within a UDP packet flood.

2 CVE-2015-5157 264

CVF ID

+Priv

2015-08-31 2015-08-31

CVSS

arch/x86/entry/entry 64.S in the Linux kernel before 4.1.6 on the x86 64 platform mishandles IRET

2015-08-31 2015-09-01

7.2

drivers/vhost/scsi.c in the Linux kernel bef-HOST_SCSI_SET_ENDPOINT ioctl call. NOTI

2015-06-07 2015-06-08

7.8

zwpan/ozusbsvc1.c in the OZWPAN driver i ket.

2015-08-31 2015-08-31

7.2

6 on the x86_64 platform improperly relies

2015-08-08 2015-08-25

7.2

's/pipe.c in the Linux kernel before 3.16 do s to cause a denial of service (system cras

A technician

An administrator

A system programmer

Also you can make the system

00011110 00011110 00011110 00011110 000111

Why talking about UNIX?

 Linux* is a member of the large family of Unix-like operating systems

Relationship between UNIX and Linux

Unix Like OSes

What's common on the UNIX like OSes? – Similar philosophy

"Unix is simple and coherent, but it takes a genius (or at any rate a programmer) to understand and appreciate the simplicity."

— Dennis Ritchie

"Note from the authors: Yes, we have lost our minds. Be forewarned: You will lose yours too."

— Benny Goodheart & James Cox

What's common on the UNIX like OSes? – Similar philosophy

 Characterized by a modular design that is sometimes called the

"Unix philosophy":

- the operating system provides a set of simple tools that each perform a limited, well-defined function
- with a unified filesystem as the main means of communication
- and a shell scripting and command language to combine the tools to perform complex workflows.

What are differences?

Monolithic Kernel (modular)

Microkernel

Examples: UNIX/Linux

Pro: Better performance

Con: Large and complex kernel

Example: Windows

"Hybrid kernel" based Operating System

Example: MINIX
Pro: Demand
very small set
of functions
Easily ported to
another system

Con: Slower

Linux Kernel Architecture

Linux Kernel Architecture

Linux Kernel Architecture

What's going on?

When application try to get its process id

What's going on?

• Let's see in much lower level.

OS Privilege Mode

Let's take a look at the Linux kernel

Process Management

- Process management is focused on the execution of processes.
- In the kernel, these are called threads and represent an individual virtualization of the processor (thread code, data, stack, and CPU registers).

Process Management

 Process information structure for Linux

Process Management

Process states transitions

- For efficiency, given the way that the hardware manages virtual memory, memory is managed in what are called pages (4KB in size for most architectures).
- Linux includes the means to manage the available memory, as well as the hardware mechanisms for physical and virtual mappings.

So Kernel + User Spaces add for 256 TiB which is a tiny part of the 16 777 216 TiB addressable over 64 bit!

64 bit virtual memory address layout

Virtual memory structures

File System

• At the bottom of the VFS are the file system abstractions that define how the upper-layer functions are implemented. These are plug-ins for the given file system (of which over 50 exist).

File System Layout

Disk Inode

- Performance tuning
 - Change memory paging size
 - Recompile the kernel with a proper page size options
 - Change disk block size
 - Create a new file system with different options

Block Size	Cached Normal	Cached Direct	Uncached Normal	Uncached Direct	
1	5.887	(n/a)	8306	(n/a)	D "
27	6.135	(n/a)	8479	(n/a)	Results: no bs= 78s 144584+0 records
512	8.713	2498	8742	2579	bs=512 78s 144584+0 records
2048	9.733	2422	8670	2721	bs=1k 38s 72292+0 records bs=2k 38s 36146+0 records
4096	10.350	2514	25.039	2560	bs=2k 38s 36146+0 records bs=4k 38s 18073+0 records bs=5k 39s 14458+1 records bs=50k 38s 1445+1 records bs=500k 39s 144+1 records bs=512k 39s 144+1 records bs=1M 39s 72+1 records bs=5M 39s 14+1 records bs=10M 39s 7+1 records

- Performance tuning
 - Use customizable Linux distro

- Performance tuning
 - Unload unnecessary modules

Module Commands

depmod - handle dependency descriptions for loadable kernel modules.

insmod - install loadable kernel module.

Ismod - list loaded modules.

modinfo - display information about a kernel module.

modprobe - high level handling of loadable modules.

rmmod - unload loadable modules.

- Performance tuning
 - Unload unnecessary modules

```
$ Ismod
Module
                Size Used by
pci stub
               12622 1
joydev
               17381 0
hid_generic
                 12548 0
               52659 0
usbhid
            106148 2 hid generic, usbhid
hid
                  13151 0
eeepc wmi
parport pc
                 32701 0
```

How this knowledge 51

Secure Systems

1 <u>CVE-2015-5364</u> <u>399</u> DoS 2015-08-31 2015-08-31 **7.8**

The (1) udp_recvmsg and (2) udpv6_recvmsg functions in the Linux kernel before 4. attackers to cause a denial of lervice (system (a) g) via incorrect checksums within

arch/x86/entry/entry_64.S in the Linux kernel before 4.1.6 on the x86_64 platform resecution, which might allow local users to gain privileges by triggering an NMI.

execution, which might allow local users to gain privileges by triggering an NMI.

3 CVE-2015-4036 119 DoS Overflow 2015-08-31 2015-09-01 7.2

Array index error in the tcm_vhost_make_tpg function in drivers/vhost/scsi.c in the I service (memory corruption) or possibly have unspecified other impact via a crafted renamed to vhost scsi make tpg before the vulnerability was announced.

Mem. Corr.

4 CVE-2015-4003 189 DoS 2015-06-07 2015-06-08 7.8

The oz_usb_handle_ep_data function in drivers/staging/ozwpan/ozusbsvc1.c in the C cause a denial of service (divide-by-zero error and system crash) via a crafted pack

5 <u>CVE-2015-3290</u> <u>264</u> +Priv 2015-08-31 2015-08-31 **7.2**

arch/x86/entry/entry_64.S in the Linux kernel before 4.1.6 on the x86_64 platform i users to gain privileges by triggering an NMI within a certain instruction window.

6 <u>CVE-2015-1805</u> <u>17</u> DoS +Priv 2015-08-08 2015-08-25 **7.2**

The (1) pipe_read and (2) pipe_write implementations in fs/pipe.c in the Linux kerne __copy_to_user_inatomic and __copy_from_user_inatomic calls, which allows local u via a crafted application, aka an "I/O vector array overrun."

7 <u>CVE-2015-1465</u> <u>17</u> DoS 2015-04-05 2015-04-09 **7.8**

The IPv4 implementation in the Linux kernel before 3.18.8 does not properly conside lookups in the absence of caching, which allows remote attackers to cause a denial c

8 <u>CVE-2015-1212</u> DoS 2015-02-06 2015-03-11 **7.5**

Multiple unspecified vulnerabilities in Google Chrome before 40.0.2214.111 on Windc cause a denial of service or possibly have other impact via unknown vectors.

9 <u>CVE-2015-1211</u> <u>264</u> +Priv 2015-02-06 2015-03-11 **7.5**

The OriginCanAccessServiceWorkers function in content/browser/service_worker/ser Windows, OS X, and Linux and before 40.0.2214.109 on Android does not properly remote attackers to gain privileges via a filesystem: URI.

10 CVE-2015-1209 DoS 2015-02-06 2015-03-11 **7.5**

Use-after-free vulnerability in the VisibleSelection::nonBoundaryShadowTreeRootNoc Blink, as used in Google Chrome before 40.0.2214.111 on Windows, OS X, and Linux denial of service or possibly have unspecified other impact via crafted JavaScript coc

11 <u>CVE-2015-0274</u> <u>19</u> DoS +Priv 2015-03-16 2015-03-26 **7.2**

The XFS implementation in the Linux kernel before 3.15 improperly uses an old size a denial of service (transaction overrun and data corruption) or possibly pain priviled

- Kernel hardening
 - Disable and blacklist Linux modules

Ghost in the Machine: Linux Zero-Day Vulnerability Opens Door for Attack

BY PAMELA COBB • JANUARY 29, 2015

Questions?

Thank you

