Principles of Model Checking

Book · January 2008				
Source: DBLP				
CITATIONS		READS		
4,751		9,192		
2 authors:				
4	Christel Baier		Joost-Pieter Katoen	
	Technische Universität Dresden		RWTH Aachen University	
	293 PUBLICATIONS 13,011 CITATIONS		560 PUBLICATIONS 20,430 CITATIONS	
	SEE PROFILE		SEE PROFILE	

Chapter 4: Regular Properties

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

Overview

- Automata on finite words
 - Regular safety property's bad prefixes constitute a regular language that can be recognized as a finite automaton (NFA or DFA)
- Model-checking regular safety properties
 - Reduce the safety property check problem to the invariantchecking problem in a product construction of TS with a finite automaton that recognized the bad prefixes of the safety property
- Automata on infinite words
 - Generalize the verification algorithm to a larger class of linear time properties: ω-regular properties
- \square Model-checking ω -regular properties
 - ω-regular properties can be represented by Buchi automata that is the key concept to verify ω-regular properties via a reduction to persistence checking

Overview

- Automata on finite words
 - Regular safety property's bad prefixes constitute a regular language that can be recognized as a finite automaton (NFA or DFA)
- Model-checking regular safety properties
 - Reduce the safety property check problem to the invariantchecking problem in a product construction of TS with a finite automaton that recognized the bad prefixes of the safety property
- Automata on infinite words
 - Generalize the verification algorithm to a larger class of linear time properties: ω-regular properties
- \square Model-checking ω -regular properties
 - ω-regular properties can be represented by Buchi automata that is the key concept to verify ω-regular properties via a reduction to persistence checking

Automata on Finite Words

- Definition 4.1. Nondeterministic Finite Automaton (NFA)
- A nondeterministic finite automaton (NFA) A is a tuple A = $(Q,\Sigma,\,\delta,Q0,\,F)$ where
- Q is a finite set of states,
- \square Σ is an alphabet,
- \square δ : Q × $\Sigma \rightarrow 2^Q$ is a transition function,
- \square Q0 \subseteq Q is a set of initial states, and
- \Box F \subseteq Q is a set of accept (or: final) states.

An Example of a Finite-State Automaton

- \square Q = { q0, q1, q2 }, Σ = {A,B},
- \square Q0 = { q0 }, F = { q2 },
- The transition function δ is defined by $\delta(q0,A) = \{q0\}, \ \delta(q0,B) = \{\ q0,\ q1\ \},$ $\delta(q1,A) = \{q2\}, \ \delta(q1,B) = \{\ q2\ \},$ $\delta(q2,A) = \emptyset, \ \delta(q2,B) = \emptyset$

Automata on Finite Words

Definition 4.3. Runs, Accepted Language of an NFA

Let $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be an NFA and $w = A_1 \dots A_n \in \Sigma^*$ a finite word. A run for w in \mathcal{A} is a finite sequence of states $q_0 q_1 \dots q_n$ such that

- $q_0 \in Q_0$ and
- $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \le i < n$.

Run $q_0 q_1 \dots q_n$ is called *accepting* if $q_n \in F$. A finite word $w \in \Sigma^*$ is called *accepted* by \mathcal{A} if there exists an accepting run for w. The *accepted language* of \mathcal{A} , denoted $\mathcal{L}(\mathcal{A})$, is the set of finite words in Σ^* accepted by \mathcal{A} , i.e.,

 $\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \text{ there exists an accepting run for } w \text{ in } \mathcal{A} \}.$

Runs and Accepted Words

Runs	Words
q0	ε
q0 q0 q0 q0	ABA, BBA, ABA, BBB, AAA
q0 q1 q2	BA, BB
q0 q0 q1 q2	ABB, ABA, BBA, BBB

Runs and Accepted Words

- ☐ Accepting runs: runs that finish in the final state. (e.g., q0q1q2)
- Accepting words: words that can be represented by accepting runs. (e.g., ABA, BBB)
- \square Accepting words belong to the accepted language L(A) that is given by the regular expression (A+B)*B(A+B).

Alternative Characterization of the Accepted Language

Lemma 4.5. Alternative Characterization of the Accepted Language
Let A be an NFA. Then:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \varnothing \text{ for some } q_0 \in Q_0 \}.$$

An equivalent alternative characterization of the accepted language of an NFA \mathcal{A} is as follows. Let \mathcal{A} be an NFA as above. We extend the transition function δ to the function $\delta^*: Q \times \Sigma^* \to 2^Q$ as follows: $\delta^*(q, \varepsilon) = \{q\}, \ \delta^*(q, A) = \delta(q, A), \ \text{and}$

$$\delta^*(q, A_1 A_2 \dots A_n) = \bigcup_{p \in \delta(q, A_1)} \delta^*(p, A_2 \dots A_n).$$

Stated in words, $\delta^*(q, w)$ is the set of states that are reachable from q for the input word w. In particular, $\bigcup_{q_0 \in Q_0} \delta^*(q_0, w)$ is the set of all states where a run for w in A can end.

Properties in NFA

Definition 4.6. Equivalence of NFAs

Let \mathcal{A} and \mathcal{A}' be NFAs with the same alphabet. \mathcal{A} and \mathcal{A}' are called equivalent if $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Theorem 4.7. Language Emptiness is Equivalent to Reachability

Let $A = (Q, \Sigma, \delta, Q_0, F)$ be an NFA. Then, $\mathcal{L}(A) \neq \emptyset$ if and only if there exists $q_0 \in Q_0$ and $q \in F$ such that $q \in Reach(q_0)$.

Definition 4.8. Synchronous Product of NFAs

For NFA $A_i = (Q_i, \Sigma, \delta_i, Q_{0,i}, F_i)$, with i=1, 2, the product automaton

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = (Q_1 \times Q_2, \Sigma, \delta, Q_{0,1} \times Q_{0,2}, F_1 \times F_2)$$

where δ is defined by

$$\frac{q_1 \xrightarrow{A}_1 q'_1 \land q_2 \xrightarrow{A}_2 q'_2}{(q_1, q_2) \xrightarrow{A} (q'_1, q'_2)}.$$

Deterministic Finite Automaton (DFA)

Let $A=(Q,\Sigma,\delta,Q0,F)$ be an NFA. A is called deterministic if |Q0|<=1 and $|\delta(q,A)|<=1$ for all states $q\in Q$ and all symbols $A\in \Sigma$. We will use the abbreviation DFA for a deterministic finite automaton. DFA A is called total if |Q0|=1 and $|\delta(q,A)|=1$ for all $q\in Q$ and all $A\in \Sigma$.

Powerset Construction

Overview

- Automata on finite words
 - Regular safety property's bad prefixes constitute a regular language that can be recognized as a finite automaton (NFA or DFA)
- Model-checking regular safety properties
 - Reduce the safety property check problem to the invariantchecking problem in a product construction of TS with a finite automaton that recognized the bad prefixes of the safety property
- Automata on infinite words
 - Generalize the verification algorithm to a larger class of linear time properties: ω-regular properties
- \square Model-checking ω -regular properties
 - ω-regular properties can be represented by Buchi automata that is the key concept to verify ω-regular properties via a reduction to persistence checking

Regular Safety Properties

Every trace that violates a safety property has a bad prefix that causes a refutation.

The set of bad prefixes constitutes a language of finite words over the alphabet $\Sigma = 2^{AP}$.

The input symbols $A \in \Sigma$ of the NFA are now sets of atomic propositions AP.

E.g.,
$$AP = \{a, b\}$$
, then $\Sigma = \{\{\}, \{a\}, \{b\}, \{a, b\}\}$

Regular Safety Property

Definition 4.11. Regular Safety Property

Safety property P_{safe} over AP is called regular if its set of bad prefixes constitutes a regular language over 2^{AP} .

Every invariant is a regular safety property. If Φ is the state condition (propositional formula) of the invariant that should be satisfied by all reachable states, then the language of bad prefixes consists of the words $A_0 A_1 \dots A_n$ such that $A_i \not\models \Phi$ for some $0 \leqslant i \leqslant n$. Such languages are regular, since they can be characterized by the (casually written) regular notation

$$\Phi^*(\neg \Phi)$$
 true*.

Here, Φ stands for the set of all $A \subseteq AP$ with $A \models \Phi$, $\neg \Phi$ for the set of all $A \subseteq AP$ with $A \not\models \Phi$, while true means the set of all subsets A of AP. For instance, if $AP = \{a, b\}$ and $\Phi = a \lor \neg b$, then

- Φ stands for the regular expression $\{\} + \{a\} + \{a,b\},\$
- ¬Φ stands for the regular expression consisting of the symbol { b },
- true stands for the regular expression $\{\} + \{a\} + \{b\} + \{a,b\}$.

Regular Safety Property

$$\Phi^*(\neg \Phi) \text{ true}^*. \qquad \Phi = a \vee \neg b$$

- Φ stands for the regular expression $\{\} + \{a\} + \{a,b\},\$
- $\neg \Phi$ stands for the regular expression consisting of the symbol $\{b\}$,
- $\bullet \,$ true stands for the regular expression $\{\} + \{\, a\, \} + \{\, b\, \} + \{\, a, b\, \}.$

The bad prefixes of the invariant over condition $a \vee \neg b$ are given by the regular expression:

$$\mathsf{E} = \underbrace{(\{\} + \{a\} + \{a,b\})^*}_{\Phi^*} \underbrace{\{b\}}_{\neg \Phi} \underbrace{(\{\} + \{a\} + \{b\} + \{a,b\})^*}_{\text{true}^*}.$$

Thus, $\mathcal{L}(\mathsf{E})$ consists of all words $A_1 \dots A_n$ such that $A_i = \{b\}$ for some $1 \leq i \leq n$. Note that, for $A \subseteq AP = \{a,b\}$, we have $A \not\models a \vee \neg b$ if and only if $A = \{b\}$. Hence, $\mathcal{L}(\mathsf{E})$ agrees with the set of bad prefixes for the invariant induced by the condition Φ .

Example: Regular Safety Property for Mutual Exclusion Algorithms

Consider a mutual exclusion algorithm such as the semaphore-based one or Peterson's algorithm. The bad prefixes of the safety property P_mutex ("there is always at most one process in its critical section") constitute the language of all finite words A0 A1 . . . An such that

$$\{ \text{ crit1, crit2} \} \subseteq \text{Ai}$$

for some index i with $0 \le i \le n$.

A regular expression representing all bad prefixes is (~(crit1^crit2))*(crit1^crit2).

Example: Regular Safety Property for the Traffic Light

Consider a traffic light with three possible colors: red, yellow and green. The property "a red phase must be preceded immediately by a yellow phase" is specified by the set of infinite words $\sigma = A0\ A1\ldots$ with $Ai \subseteq \{red, yellow\}$ such that for all i >= 0 we have that

red \in Ai implies i > 0 and yellow \in Ai-1.

A NFA recognizing all bad prefixes of the property is shown as below:

A Nonregular Safety Property

Not all safety properties are regular. As an example of a nonregular safety property, consider:

"The number of inserted coins is always at least the number of dispensed drinks."

Let the set of propositions be { pay, drink }. Minimal bad prefixes for this safety property constitute the language

$$\{ pay^n drink^{n+1} \mid n \geqslant 0 \}$$

which is not a regular, but a context-free language.

Verifying Regular Safety Properties

Let P_{safe} be a regular safety property over the atomic propositions AP and A an NFA recognizing the bad prefixes of P_{safe} .

Lemma 3.25. Satisfaction Relation for Safety Properties

For transition system TS without terminal states and safety property P_{safe} :

$$TS \models P_{safe}$$
 if and only if $Traces_{fin}(TS) \cap BadPref(P_{safe}) = \varnothing$.

Therefore, we need to check whether $Traces_{fin}(TS) \cap \mathcal{L}(A) = \emptyset$

To check whether the NFAs A1 and A2 do intersect, it suffices to consider their product automaton, so

$$\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2) = \emptyset$$
 if and only if $\mathcal{L}(\mathcal{A}_1 \otimes \mathcal{A}_2) = \emptyset$.

Verifying Regular Safety Properties

Definition 4.16. Product of Transition System and NFA

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ an NFA with the alphabet $\Sigma = 2^{AP}$ and $Q_0 \cap F = \emptyset$. The product transition system $TS \otimes \mathcal{A}$ is defined as follows:

$$TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L')$$

where

- $S' = S \times Q$,
- $\bullet \to '$ is the smallest relation defined by the rule

$$\frac{s \xrightarrow{\alpha} t \land q \xrightarrow{L(t)} p}{\langle s, q \rangle \xrightarrow{\alpha}' \langle t, p \rangle},$$

- $I' = \{ \langle s_0, q \rangle \mid s_0 \in I \land \exists q_0 \in Q_0. \ q_0 \xrightarrow{L(s_0)} q \},$
- AP' = Q, and
- $L': S \times Q \to 2^Q$ is given by $L'(\langle s, q \rangle) = \{q\}.$

Example: a product automaton

Consider a German traffic light, AP = { red, yellow } indicating the corresponding light phases.

The labeling is defined as follows: $L(red) = \{ red \}, L(yellow) = \{ yellow \}, L(green) = \emptyset = L(red+yellow).$

The language of the minimal bad prefixes of the safety property "each red light phase is preceded by a yellow light phase" is accepted by the DFA A indicated here.

Example: a product automaton

Verifying Regular Safety Properties

The following theorem shows that the verification of a regular safety property can be reduced to checking an invariant in the product.

Let TS and A be as before. Let $P_{inv(A)}$ be the invariant over $AP' = 2^Q$ which is defined by the propositional formula

$$\bigwedge_{q \in F} \neg q.$$

In the sequel, we often write $\neg F$ as shorthand for $\bigwedge_{q \in F} \neg q$. Stated in words, $\neg F$ holds in all nonaccept states.

Example: a product automaton

Verifying Regular Safety Properties

Algorithm 5 Model-checking algorithm for regular safety properties

Input: finite transition system TS and regular safety property P_{safe} Output: true if $TS \models P_{safe}$. Otherwise false plus a counterexample for P_{safe} .

Let NFA \mathcal{A} (with accept states F) be such that $\mathcal{L}(\mathcal{A}) = \text{bad prefixes of } P_{safe}$

```
Construct the product transition system TS \otimes \mathcal{A}
Check the invariant P_{inv(\mathcal{A})} with proposition \neg F = \bigwedge_{q \in F} \neg q on TS \otimes \mathcal{A}.

if TS \otimes \mathcal{A} \models P_{inv(\mathcal{A})} then return true else

Determine an initial path fragment \langle s_0, q_1 \rangle \dots \langle s_n, q_{n+1} \rangle of TS \otimes \mathcal{A} with q_{n+1} \in F return (false, s_0 s_1 \dots s_n)
fi
```

Overview

- Automata on finite words
 - Regular safety property's bad prefixes constitute a regular language that can be recognized as a finite automaton (NFA or DFA)
- Model-checking regular safety properties
 - Reduce the safety property check problem to the invariantchecking problem in a product construction of TS with a finite automaton that recognized the bad prefixes of the safety property
- Automata on infinite words
 - Generalize the verification algorithm to a larger class of linear time properties: ω-regular properties
- \square Model-checking ω -regular properties
 - ω-regular properties can be represented by Buchi automata that is the key concept to verify ω-regular properties via a reduction to persistence checking

ω-Regular Languages and Properties

Infinite words over the alphabet Σ are infinite sequences A0 A1 A2 . . . of symbols Ai $\in \Sigma$.

 Σ^{ω} denotes the set of all infinite words over Σ .

Any subset of Σ^{ω} is called a language of infinite words, called an ω -language.

For instance, the infinite repetition of the finite word AB yields the infinite word ABABABABAB. . . (ad infinitum) and is denoted by $(AB)^{\omega}$.

For the special case of the empty word, we have $\varepsilon^{\omega} = \varepsilon$. For an infinite word, infinite repetition has no effect, that is, $\sigma^{\omega} = \sigma$ if $\sigma \in \Sigma^{\omega}$.

ω-Regular Expression

Definition 4.23. ω -Regular Expression

An ω -regular expression G over the alphabet Σ has the form

$$\mathsf{G} = \mathsf{E}_1.\mathsf{F}_1^\omega + \ldots + \mathsf{E}_n.\mathsf{F}_n^\omega$$

where $n \ge 1$ and $E_1, \ldots, E_n, F_1, \ldots, F_n$ are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(F_i)$, for all $1 \le i \le n$.

The semantics of the ω -regular expression G is a language of infinite words, defined by

$$\mathcal{L}_{\omega}(\mathsf{G}) = \mathcal{L}(\mathsf{E}_1).\mathcal{L}(\mathsf{F}_1)^{\omega} \cup \ldots \cup \mathcal{L}(\mathsf{E}_n).\mathcal{L}(\mathsf{F}_n)^{\omega}$$

where $\mathcal{L}(\mathsf{E}) \subseteq \Sigma^*$ denotes the language (of finite words) induced by the regular expression E (see page 914).

Examples for ω -regular expressions over the alphabet $\Sigma = \{A, B, C\}$ are

$$(A+B)^*A(AAB+C)^{\omega}$$
 or $A(B+C)^*A^{\omega}+B(A+C)^{\omega}$.

ω-Regular Language

Definition 4.24. ω -Regular Language

A language $\mathcal{L} \subseteq \Sigma^{\omega}$ is called ω -regular if $\mathcal{L} = \mathcal{L}_{\omega}(\mathsf{G})$ for some ω -regular expression G over Σ .

For instance, the language consisting of all infinite words over $\{A,B\}$ that contain infinitely many A's is ω -regular since it is given by the ω -regular expression $(B^*A)^{\omega}$. The language consisting of all infinite words over $\{A,B\}$ that contain only finitely many A's is ω -regular too. A corresponding ω -regular expression is $(A+B)^*B^{\omega}$. The empty set is ω -regular since it is obtained, e.g., by the ω -regular expression \varnothing^{ω} . More generally, if $\mathcal{L} \subseteq \Sigma^*$ is regular and \mathcal{L}' is ω -regular, then \mathcal{L}^{ω} and $\mathcal{L}.\mathcal{L}'$ are ω -regular.

ω-Regular Properties

Definition 4.25. ω -Regular Properties

LT property P over AP is called ω -regular if P is an ω -regular language over the alphabet 2^{AP} .

For instance, for $AP = \{a, b\}$, the invariant P_{inv} induced by the proposition $\Phi = a \vee \neg b$ is an ω -regular property since

$$P_{inv} = \left\{ A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \forall i \ge 0. (a \in A_i \text{ or } b \notin A_i) \right\}$$
$$= \left\{ A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \forall i \ge 0. (A_i \in \{\{\}, \{a\}, \{a, b\}\}) \right\}$$

is given by the ω -regular expression $\mathsf{E}=(\{\}+\{a\}+\{a,b\})^\omega$ over the alphabet $\Sigma=2^{AP}=\{\{\},\{a\},\{b\},\{a,b\}\}$.

Example: Mutual Exclusion

An example of an ω -regular property is the property given by the informal statement "process P visits its critical section infinitely often" which, for AP = { wait, crit }, can be formalized by the ω -regular expression:

$$((\underbrace{\{\} + \{ \operatorname{wait} \}}_{\operatorname{negative literal} \ \neg \operatorname{crit}})^*.(\underbrace{\{ \operatorname{crit} \} + \{ \operatorname{wait}, \operatorname{crit} \}}_{\operatorname{positive literal} \ \operatorname{crit}}))^\omega.$$

Starvation freedom in the sense of "whenever process P is waiting then it will enter its critical section eventually later" is an ω -regular property as it can be described by

```
((\neg wait)^*.wait.\mathrm{true}^*.crit)^\omega \ + \ ((\neg wait)^*.wait.\mathrm{true}^*.crit)^*.(\neg wait)^\omega
```

Nondeterministic Buchi Automata

Definition 4.27. Nondeterministic Büchi Automaton (NBA)

A nondeterministic Büchi automaton (NBA) \mathcal{A} is a tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ where

- Q is a finite set of states,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function,
- $Q_0 \subseteq Q$ is a set of initial states, and
- F ⊆ Q is a set of accept (or: final) states, called the acceptance set.

A run for $\sigma = A_0 A_1 A_2 \dots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \dots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \geqslant 0$. Run $q_0 q_1 q_2 \dots$ is accepting if $q_i \in F$ for infinitely many indices $i \in \mathbb{N}$. The accepted language of \mathcal{A} is

 $\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{A} \}.$

NFA v.s. NBA

Syntax differences between NFA and NBA: None

Semantics differences between NFA and NBA: the accepted language of an NFA A is a language of **finite words**, whereas the accepted language of NBA A is an ω -language.

The intuitive meaning of the acceptance criterion named after Buchi is that the accept set of A has to be visited infinitely often. Thus, the accepted language $L\omega(A)$ consists of all infinite words that have a run in which some accept state is visited infinitely often.

Example: Infinitely Often Green

Let AP = { green, red } or any other set containing the proposition green. The language of words $\sigma = A0 \ A1 \dots \in 2^{AP}$ satisfying the LT property "infinitely often green" is accepted by the NBA A depicted below.

Accepting runs: $(q0q1)^{W}$, $(q0q1)^{n}q1^{w}$...

Non accepting runs: $q1^W$, $q0^W$...

NBA Properties

Theorem 4.32. NBAs and ω -Regular Languages

The class of languages accepted by NBAs agrees with the class of ω -regular languages.

Lemma 4.33. Union Operator on NBA

For NBA A_1 and A_2 (both over the alphabet Σ) there exists an NBA A such that:

$$\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cup \mathcal{L}_{\omega}(\mathcal{A}_2)$$
 and $|\mathcal{A}| = \mathcal{O}(|\mathcal{A}_1| + |\mathcal{A}_2|).$

Lemma 4.34. ω -Operator for NFA

For each NFA \mathcal{A} with $\varepsilon \notin \mathcal{L}(\mathcal{A})$ there exists an NBA \mathcal{A}' such that

$$\mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega}$$
 and $|\mathcal{A}'| = \mathcal{O}(|\mathcal{A}|)$.

Constructing a NBA from a NFA

Add a new initial (nonaccept) state q_{new} to Q with the transitions $q_{new} \xrightarrow{A} q$ if and only if $q_0 \xrightarrow{A} q$ for some initial state $q_0 \in Q_0$. All other transitions, as well as the accept states, remain unchanged.

Constructing a NBA from a NFA

In the sequel, we assume that $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ is an NFA such that the states in Q_0 do not have any incoming transitions and $Q_0 \cap F = \varnothing$. We now construct an NBA $\mathcal{A}' = (Q, \Sigma, \delta', Q'_0, F')$ with $\mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega}$. The basic idea of the construction of \mathcal{A}' is to add for any transition in \mathcal{A} that leads to an accept state new transitions leading to the initial states of \mathcal{A} . Formally, the transition relation δ' in the NBA \mathcal{A}' is given by

$$\delta'(q, A) = \begin{cases} \delta(q, A) & \text{if } \delta(q, A) \cap F = \emptyset \\ \delta(q, A) \cup Q_0 & \text{otherwise.} \end{cases}$$

The initial states in the NBA \mathcal{A}' agree with the initial states in \mathcal{A} , i.e., $Q'_0 = Q_0$. These are also the accept states in \mathcal{A}' , i.e., $F' = Q_0$.

