Sensoren

Parameter	Kursinformationen
Veranstaltung:	Softwareprojekt Robotik
Semester	Wintersemester 2021/22
Hochschule:	Technische Universität Freiberg
Inhalte:	Überblick Sensorsysteme
Link auf GitHub:	https://github.com/TUBAF-IfI- LiaScript/VL Softwareentwicklung/blob/master/08 ROS Kommunk ation.md
Autoren	Sebastian Zug & Georg Jäger

Einordnung

Wie weit sind wir bisher gekommen? Dank ROSn können wir beliebige Knoten in unterschiedlichen Funktionen entwerfen und miteinander verknüpfen. Welche Elemente brauchen wir aber und wie verknüpfen wir diese?

Im weiteren Verlauf der Veranstaltung werden wir uns auf den letzte Ebene fokussieren und die elementare Verarbeitungskette verschiedener Sensorsysteme analysieren.

Beginnen wir also mit der Sensorik ...

Sensorik des Menschen

Aufgabe: Gewinnung von Information über internen ("Propriozeption") bzw. externen Zustand ("Exterozeption") = "Wahrnehmung" von Eigenzustand und Umwelt;

Zielstellung: Möglichkeit zur Reaktion auf innere und äußere Einflüsse

Klassifikation	Umsetzung
Modalitäten	+ Sehen, Hören, Riechen, Schmecken, Fühlen
	+ Temperatur, Gleichgewicht
	+ Hunger, Durst
Qualitäten	+ rot, grün, blau
	+ süß, sauer, salzig, bitter
	+ ungefähr 7 Grundgerüche
Intensität	Amplitude

Und wie funktioniert das? Sogenannten Rezeptoren ...

... sind spezialisierte Zellen, die von bestimmten inneren oder äußeren Reizen angeregt werden und sie dann in Form von elektrischen Impulsen oder chemischen Reaktionen weiterleiten.

.. ein ausreichend starker Reiz bewirkt eine Veränderung des Membranpotentials (Generatorpotential)

... lösen ab einer gewissen Intensität des Reizes ein Schmerzempfinden aus.

Rezeptoren	Reiz
Mechanorezeptoren	mechanische Deformation
Thermorezeptoren	Temperaturänderung
Photorezeptoren	Licht
Chemorezeptoren	Geschmäcker und Gerüche

Technische Sensoren

Sensoren (lateinisch "fühlen") transformieren physikalische, chemische oder biologische Messgrößen in elektrische Signale und stellen damit das unmittelbare Interface eines Messsystems zur Umgebung dar.

Fliehkraftregler [Kino]

Achtung, die einschlägige deutsche Norm DIN 1319 1-4 vermeidet den Begriff und spricht stattdessen in Abschnitt 2 vom "Messaufnehmer" als dem Beginn der Messkette. Entsprechend ist die Abgrenzung des eingentlichen Sensorbegriffes auch domainspezifisch und individuell unterschiedlich.

Integrationsebenen von Sensoren (eigene Darstellung)

Klassifikation von Sensoren

- intern/extern ... bezogen auf den Messgegenstand (Radencoder vs. Kamera)
- aktiv/passiv () ... mit und ohne Beeinflussung der Umgebung (Ultraschall vs. Kamera)
- Ergebnisdimension ... 1, 2, 2.5, 3D
- Modalitäten ... physikalische Messgröße

Parameter eines Sensors

Parameter	Bedeutung
Messbereich	Ausdehnung erfassbaren physikalischen Messgröße (DIN 1319)
Auflösung	Vermögen physikalische Größen zu trennen und definiert über Granularitäten in Bezug auf Winkel, Entfernungen, Pixel usw.
Linearität	Abbildungsverhalten in Bezug auf den Zusammenhang zwischen Eingangsgröße und Ausgabewert. Im linearen Fall gilt $y=mx+n$
Meßfrequenz	Häufigkeit der Abtastung
Querempfindlichkeit	Abhängigkeit der Ausgabe von weiteren Parametern als der eigentlichen Messgröße
Ausgabeprotokoll	Ausgabeschnittstelle für die weitere Verarbeitung
Öffnungswinkel	Erfassungsbereich des Sensors bei gerichteter Datenerfassung
Energieaufnahme, Bauraum,	

Hinweis: Die Dämpfung eines Signals wird in "dB" angegeben und mittels $L=20\cdot log(\frac{U_2}{U_1})$ beschrieben. Auf die Aspekte der Sensorfehler wird in der nächstfolgenden Veranstaltung eingegangen.

[3] Sensorkeulen verschiedener Ultraschallsensoren <u>robot electronics faq</u>

[Kino] Fliehkraftregler als Beispiel für die nicht elektrische Ausgabe von Messungen (Drehzahl) [Wikipedia Commons, Nutzer: Kino]

Inertialsensorik

Ein Trägheitsnavigationssystem ermöglicht die Messung der Bewegungen über insgesamt sechs kinematische Freiheitsgrade. Über die physikalischen Beziehungen (Trägheits- und Impulsgesetze) der Größen

- Kraft,
- Beschleunigung,
- Winkelgeschwindigkeit (Drehrate),
- Geschwindigkeit

werden Positionsaussagen bestimmt. Hauptvorteil ist die Unabhängig von jeglichen Ortungssignalen aus der Umgebung ist.

Beschleunigungssensoren

Funktionsprinzip

Prinzip	Sensor	
Dehnungsmesstreifen	Bestimmung der Kraft auf die Testmasse, indem die Verformung der Befestigung (z.B. eines Stabes) mittels Dehnungsmessstreifen bestimmt wird.	
Piezoelektrische Beschleunigungssensoren	ein piezokeramisches Sensorplättchen wandelt Druckschwankungen in elektrische Signale um. Die Druckschwankung wird durch eine an der Piezokeramik befestigte (seismische) Masse erzeugt und wirkt bei einer Beschleunigung des Gesamtsystems auf die Piezokeramik.	
Mikro-elektro-mechanische Systeme (MEMS)	Feder-Masse-Systeme, bei denen die "Federn" nur wenige µm breite Silicium-Stege sind und auch die Masse aus Silicium hergestellt ist. Durch die Auslenkung bei Beschleunigung kann zwischen dem gefedert aufgehängten Teil und einer festen Bezugselektrode eine Änderung der elektrischen Kapazität gemessen werden.	

Konzentrieren wir uns auf das letztgenannte Konzept.

Beispiel: Bewegung eines Fahrstuhles

Aus den Samples des Beschleunigungssensors lässt sich mittels $v=v_0+\sum a_i\cdot t_i$ die Geschwindigkeit des Fahrstuhles bestimmen.

Aus der "Integration" der Samples über der Zeit folgt eine mangelnde Langzeitstabilität, daher koppelt man ein INS beispielsweise liefert eine Kombination mit einem Global Positioning System (GPS).

[InvenSense] Handbuch MPU 9255 InvenSense]

[Kling] Aufzeichung einer Fahrstuhlfahrt mit der IMU des Mobiltelefones [Jordi Kling, Zurückgelegter Weg einer Fahrstuhlfahrt mit Handysensorik]

Gyroskope

[Kling]

Drehraten-Sensoren messen die Rotationsgeschwindigkeit eines Körpers. Durch Integration lässt sich daraus ableiten, um welchen Winkel sich ein Körper innerhalb einer Zeit gedreht hat. Die Drehraten um die drei Raumachsen bezeichnet man meist als

- Gierrate (Drehung um Hochachse, engl. yaw)
- Nickrate (Drehung um Querachse, engl. pitch)
- Rollrate (Drehung um Längsachse, engl. roll)

Wie kann man das Ganze anwenden?

Kompasssensoren

Das Erdmagnetfeld wird seit 1800 Jahren zur Orientierung verwendet. Der Kompass wird in Europa erstmals im 13. Jahrhundert erwähnt.

Die Abweichung zwischen geografischem und magnetischem Pol beträgt für Dresden im Januar 2021 ca. 4,1° in westliche Richtung.

Den Missweisungsrechner des GFZ Potsdam finden Sie unter Link

Messprinzip

Magnetfeldsensoren beruhen auf Wirkungen des magnetischen Feldes in hart- oder weichmagnetischen Werkstoffen, Halbleitern, ultradünnen Schichten, Lichtleitern, Flüssigkeiten oder deren Oberflächen.

Prinzip	Sensor
Hall-basiert	evaluiert die elektrischen Spannung in einem stromdurchflossenen Leiter, der sich in einem Magnetfeld befindet. Die Spannung fällt dabei senkrecht sowohl zur Stromfluss- als auch zur Magnetfeldrichtung am Leiter ab.
Magnetoresistiv	basierend auf dem magnetoresistiven Effekt ändert sich der Widerstand eines Leiters, sofern er von einem Magnetfeld umgeben ist.

Letztgenanntes Messprinzip basiert auf den 1857 von Lord Kelvin beschriebenen magnetoresistiven Effekt.

$$R = R_0 \cdot (1 + \frac{\Delta R}{R} \cdot cos^2 \alpha)$$

Der elektrische Widerstand hängt von der Ausrichtung α einer ferromagnetischen Dünnschichtlegierung innerhalb eines äußeren Magnetfeldes ab. In der Regel kommen dafür gemischte Legierungen zum Einsatz, beispielsweise Eisen und Nickel. Die Sensoren sind ausgesprochen klein.

Magnetoresistiver Sensor

Interne Struktur eines KMZ52 Sensors Honeywell Electronics 1996]

Hall Sensor

Achtung: Insbesondere bei Innenraumanwendungen unterliegen Kompasse starken Störungen.

Klassen von Störungen für Kompasssensoren Philips Electronic Compass Designusing KMZ51 and KMZ52

Robotersystem mit einem Array von Magnetfeldsensoren zur Datenerfassung [Dissertation Filip Filipow]

Flächige Aufnahme der Richtungsinformationen des Magnetfeldes [Dissertation Filip Filipow]

Odometrie

Wie erfassen wir die Position eines rotierenden Elements, zum Beispiel eines Motors, um davon auf die Bewegung zu schließen?

- Schleifdrähte (unterschiedliche Leitfähigkeit)
- magnetische Sensoren (Nord-Südpol-Wechsel)
- photoelektrische Abtastung
- induktive System mit entsprechenden Triggern (zum Beispiel größeres Zahnrad)

[2]

Die Zahl der Zustands-/Flankenwechsel pro Zeiteinheit ist direkt proportional zur Rotationsgeschwindigkeit.

Inkrementelle Kodierung: zur Bestimmung der relativen Lage/Drehgeschwindigkeit anhand einer Impulsfolge, Abwägung der Impulszahl pro Drehung von der

- Leistungsfähigkeit der Auswertehardware
- Drehzahlen
- Störgrößen

Absolute Kodierung: Lageermittlung gegenüber einem Fixpunkt, aufwendige Drehimpulsgeber bis hunderttausenden Impulsen pro Umdrehung, häufigste Codierung: Gray-Code (nur auf einem Ausgangssignal findet eine Signaländerung)

Ein inkrementeller Encoder kann durch eine externe Beschaltung als absolute Kodierung genutzt werden. Über einen Nullschalter, wird ein Zähler resetet, der dann im Treiber die aktuelle Position durch Dekrementierung oder Inkrementierung bestimmt.

Das Konzept eines einfachen Einkanal-Drehimpulsgeber (nur 1 Bit (Hell - Dunkel Übergang)) wird in der Praxis in zwei Richtungen erweitert:

- Die Integration einer weiteren Spur, des Nullindex erweitert die Fehlertoleranz. Er ist auf dem Umlauf nur einmal aktiv. Der Nullindex kann zur Definition eines Schaltpunktes, zur Zählung der Umdrehungen oder zur Synchronisation eines nachgeschalteten elektronischen Zählers eingesetzt werden.
- 2. Zweikanal-Drehimpulsgeber erweitern das Konzept mit einem weiteren optischen Schrankensysteme, das um 90 Grad phasenverschoben ist. Damit kann sowohl die Drehrichtung, als auch eine Vervielfachung der Impulse realisiert werden.

[2] Encoder mit Gabellichtschranke Wikipedia Commons, Autor Tycho

Entfernungsmessung

Entfernungen lassen sich unabhängig von der Modalität mit vier grundlegenden Verfahren erfassen.

- Amplitudenbasiert
- Laufzeitbasiert
- Phasenbasiert oder
- Trigonometisch

Amplitudenmessung

Die Größe eines Messsignals wird als Indikator für die Entfernung zum Objekt genutzt.

Infrarot Distanzsensor auf Reflexionsbasis [AVAGO]

Analoge Konzepte finden sich auch für berührungslose Schalter auf kapazitiver Basis.

Nachteile:

- Starke Abhängigkeit des Ausgabewertes vom Objekt und der Umgebungssituation
- Totbereich

Laufzeitmessung

Das Laufzeitverfahren basiert auf der Messung des Zeitversatzes zwischen dem Aussenden eines Impulses und dem Empfang von dessen Reflexion.

Prominentestes Beispiel für Laufzeitsensoren sind ultraschallbasierte Systeme.

Aussenden eines Schallimpulses und Messung der Laufzeit des Echos Entfernung (in m) d=1/2 c t aus Laufzeit t (in s) des Übliche Frequenzen: 40kHz bis 200kHz

Herausforderung 1: Identifikation des Impulses

[3]

Herausforderung 2: Querabhängigkeiten

Neben den Reflexionsmechanismen sind auch die Ausbreitungsparameter des Schallimpulses von der Umgebung abhängig. Die Schallgeschwindigkeit ist abhänig von

- Temperatur
- Luftdruck
- Luftzusammensetzung (Anteil von CO₂, Luftfeuchte)

Schallgeschwindigkeit in Abhängigkeit von der Temperatur und dem Luftdruck

Welchen Einfluss haben diese Größen? Für zwei Konfigurationen, die zwei unterschiedliche Wetterlagen repräsentieren ergibt sich bereits ein Fehler von 8%.

$$egin{aligned} v_1(980hPa,0°) &= 325rac{m}{s} \ v_2(1040hPa,30°) &= 355rac{m}{s} \end{aligned}$$

Das Konzept lässt sich aber auch auf höherfrequente Signale (Licht, Radar) übertragen. Mit der höheren Frequenz sinkt die Dämpfung in der Luft. Damit lassen sich dann größere Reichweiten umsetzen.

TOF-Kameras (englisch: time of flight) verwendeten PMD (Photonic Mixing Device)-Sensor, die Szenen mittels eines Lichtpulses ausleuchten. Die Kamera misst für jeden Bildpunkt die Zeit, die das Licht bis zum Objekt und wieder zurück braucht. Die benötigte Zeit ist direkt proportional zur Distanz. Für 2.5 Meter bedeutet dies eine Zeitdauer von:

$$t_D = 2 \cdot rac{D}{c} = rac{2.5m}{300.000.000m/s} = 16.66ns(!)$$

Für einen 50ns breiten Impuls bedeutet dies, dass die maximale Distanz

$$D_{max} = \frac{1}{2} \cdot c \cdot t_0 = 7.5m$$

Allerdings sind die Systeme in starkem Maße von der Hintergrundbeleuchtung abhängig. Trotz Filtern stören irreguläre Beleuchtungsanteile die Messung. Eine Lösungsmöglichkeit ist die redundante Messung über zwei phasenverschobene Elemente. Im Bild werden zwei Speicherelemente S1 und S2 durch zwei Schalter G1 und G2 aktiviert. S1 integriert die Spannung über dem photosensitiven Element auf, bis die Aussendung abgeschlossen ist. Danach wird G2 aktiviert und S2 zeichnet den verbleibenen Impulsanteil auf. Der Distanzwert ergibt sich zu:

$$D = rac{1}{2} \cdot c \cdot t_0 \cdot rac{S2}{S1 + S2}$$

Schematische Darstellung der Funktionalität eines TOF Pixels [4]

Die Kamera liefert somit für jeden Bildpunkt die Entfernung des darauf abgebildeten Objektes. Das Prinzip entspricht dem Laserscanning mit dem Vorteil, dass eine ganze Szene auf einmal aufgenommen wird und nicht abgetastet werden muss.

Vorteile	Nachteile
Einfacher Aufbau ohne bewegliche Teile (vgl. konventioneller Laserscanner)	Einfluß von Hintergrundlicht
Synchrones Abbildungsverhalten	Gegenseitige Störung
Musterunabhängigkeit (vgl. Stereokameras)	Mehrfachreflexionen

- [3] Sendeimpuls und Echo eines Ultraschallsensors aus G. Schober et al., Degree of Dispersion Monitoring by Ultrasonic Transmission Technique and Excitation of the Transducer's Harmonics, Link
- [4] Schematische Darstellung der Funktionalität eines TOF Pixels Wikimedia Commons, Autor Captaindistance

Phasenverschiebung

Die Phasenverschiebung des reflektierten Laserstrahls oder dessen Modulation gegenüber dem ausgesandten Strahl ist entfernungsabhängig.

[5]

Der zentrale Nachteil des Verfahrens besteht darin, dass die Messung des Phasenunterschieds oberhalb einer Phasendifferenz von mehr als 360 Grad wegen des periodischen Charakters keine eindeutige Aussage zum Abstand mehr zulässt.

 $c=f\cdot\lambda$ für f=5Mhz ergibt sich eine Wellenlänge von 60m.

Eine Lösung besteht darin verschiedene Frequenzen unterschiedlicher Wellenlänge durchzuschalten und durch logische Vergleiche der Messwerte eine große Reichweite und zudem eine hohe Genauigkeit erreichen.

[5] Phasenverschiebung zwischen einem ausgesandten und dem empfangenen Signal Wikimedia Commons, Autor Guy Muller

Triangulation

Triangulationsverfahren setzen auf einem bekannten Abstand zwischen von Empfänger und Sender auf. Die sogenannte *Baseline* ist dann Ausgangspunkt für die Bestimmung des Abstandes. An dieser Stelle seien zwei Beispiele gezeigt:

Funktionsweise eines einfachen IR-Distanzsensors nach dem Triangulationsprinzip [6]

Anwendung findet dieses Konzept auch bei RGB-D Kameras, sowohl bei Infrarotbasierten Systemen als auch bei Stereokameras.

[6] Funktionsweise eines einfachen IR-Distanzsensors nach dem Triangulationsprinzip Link

Exkurs - Vorteile des Infrarotspektrums

- Fremdlichtunabhängigkeit
- Diodenspezifika
- Nicht sichtbar

[Infrared] Spektrum der Strahlungsintensität Wikipedia Commons

Anwendung der Messverfahren in 3D Kameras

Zielstellung: Darstellung der Umgebung in mit einem Sensor in einer mehrdimensionalen Darstellung

Eine Punktwolke *Point Cloud* ist eine Menge von Punkten eines Vektorraums, die eine unorganisierte räumliche Struktur aufweist. Die Kontur eines Objektes wird durch die in der Punktwolke enthaltenen Einzelpunkte beschrieben, die jeweils durch ihre Raumkoordinaten erfasst sind. Zu den Punkten können zusätzlich Attribute, wie z. B. geometrische Normalen, Farbwerte, Aufnahmezeitpunkt oder Messgenauigkeit, erfasst sein.

Umsetzung

- Time of Flight (TOF)
- Structured Light
- Passiv Stereo (Triangulation)
- Active Stereo

Nachteile

- *Time of Flight-*Systeme leiden unter Bewegungsartefakten und Mehrwege-Interferenzen.
- Structured Light ist anfällig für Umgebungsbeleuchtung und Interferenzen mehrerer Geräte.
- *Passiv-Stereo* kämpft in texturlosen Regionen, wo teure globale Optimierungstechniken erforderlich sind

Beispielanwendung in ROS1 - Ultraschall

Als Anwendungsbeispiel sollen die grundlegenden Herausforderungen anhand zweier Sensoren verdeutlicht werden:

Sensor	HC-SR04	GP2D12
Modalität	Ultraschall	Infrarotes Licht
Funktionsprinzip	Laufzeit	Trigonometrie
Reichweite	400cm	10-80cm
Schnittstelle	Digital	Analog

Diese spezifischen Sensortypen spielen, obwohl die Reichweiten mit bis zu 400cm für den Ultraschallsensor angegeben werden nur in der unmittelbaren Nahfeldüberwachung eine Rolle. Häufig werden sie aber durch Laserscanner ersetzt.

Die Messdaten beider Sensoren werden über einen Mikrocontroller erfasst und mit einem ROS-spezifischen Protokoll (rosserial) über die serielle Schnittstelle kommuniziert. Rosserial eröffnet die Möglichkeit Publish/Subscribe Methoden auch mit Geräten ohne Ethernetverbindung "nachzubilden".

Entfernungen werden unter ROS als sensor_msgs/Range.msg dargestellt.

ROS handhabt die Messdaten für die Länge, Masse, Zeit und den Strom in SI Einheiten. In einigen Fällen weicht man davon ab (Temperaturangaben in Grad Celsius)! Link

```
Header header
                        # timestamp in the header is the time the ranger
                        # returned the distance reading
# Radiation type enums
# If you want a value added to this list, send an email to the ros-users li
uint8 ULTRASOUND=0
uint8 INFRARED=1
                        # the type of radiation used by the sensor
uint8 radiation_type
                        # (sound, IR, etc) [enum]
float32 field_of_view
                        # the size of the arc that the distance reading is
                        # valid for [rad]
                        # the object causing the range reading may have
                        # been anywhere within -field_of_view/2 and
                        # field of view/2 at the measured range.
```

```
# 0 angle corresponds to the x-axis of the sensor.
float32 min_range
                         # minimum range value [m]
float32 max_range
                         # maximum range value [m]
                         # Fixed distance rangers require min_range==max_range
                         # range data [m]
float32 range
                         # (Note: values < range_min or > range_max
                         # should be discarded)
                         # Fixed distance rangers only output -Inf or +Inf.
                         # -Inf represents a detection within fixed distance
                         # (Detection too close to the sensor to quantify)
                         # +Inf represents no detection within the fixed dis
                         # (Object out of range)
                            USB Serielle!
                                                     R<sub>0</sub>S
     Sensor
                 Arduino
                                           rosserial
                            Verbindung
                                                     Messages
```

Starten Sie rosserial mit

rosrun rosserial_python serial_node.py /dev/ttyACM0

Das Programm für den Arduino-Knoten stellt sich wie folgt dar:

+ ReadUSValue.ino

```
#define USE_USBCON
#include <ros.h>
#include <ros/time.h>
#include <sensor_msgs/Range.h>
#include <sensor_msgs/Imu.h>
ros::NodeHandle nh;
sensor_msgs::Range range_msg;
sensor_msgs::Imu imu_msg;
ros::Publisher pub_range( "range_data", &range_msg);
const int trigger_pin = 6;
const int echo_pin = 7;
unsigned long range_timer;
char frameid[] = "/us_ranger";
// 333 m/s = 0.333 m/ms = 0.000333 m/mus
const float sonic_speed = 0.000333;
unsigned long getDuration(int tPin,int ePin){
  // Run-time measurment between activation of tPin and ePin
  // Used for ultrasonic measurements here.
  // returns Duration in [ns]
  digitalWrite(tPin, LOW); // Reset the trigger pin.
  delayMicroseconds(2);
  digitalWrite(tPin, HIGH); // Start a measurement.
  delayMicroseconds(10); //
  digitalWrite(tPin, LOW); // Complete the pulse.
  // https://www.arduino.cc/reference/de/language/functions/advanced-io/pu
  return pulseIn(ePin, HIGH); // Wait for a reflection pulse [ms]
}
void setup()
  nh.initNode();
  nh.advertise(pub_range);
  range_msg.radiation_type = sensor_msgs::Range::ULTRASOUND;
  range_msg.header.frame_id = frameid;
  range_msg.field_of_view = 0.3;
  range_msg.min_range = 0.03;
  range_msg.max_range = 1.0;
  pinMode(trigger_pin, OUTPUT);
```

```
pinMode(echo_pin, INPUT);
}

void loop()
{
    // publish the range value every 50 milliseconds
    // since it takes that long for the sensor to stabilize
    if ( (millis()-range_timer) > 50) {
        long duration = getDuration(trigger_pin, echo_pin);
        range_msg.range = (float)duration/2*sonic_speed;
        range_msg.header.stamp = nh.now();
        pub_range.publish(&range_msg);
        range_timer = millis() + 50;
    }
    nh.spinOnce();
}
```

Beispielanwendung - Intel Realsense

Im Beispiel wird eine Intel Realsense 435 verwendet. Dieser Sensor implementiert das Active Stereo Verfahren Link.

Die Instellation der Treiber ist unter

https://index.ros.org/r/ros2_intel_realsense/

beschrieben.

```
ros2 run realsense2_camera realsense2_camera_node --ros-args -p filters :=pointcloud
```

Der Point-Cloud Datentyp ist unter Link beschrieben.

Positionsbestimmung mittels GNSS

Globales Navigationssatellitensysteme dienen der Positionsbestimmung und Navigation auf der Erde und in der Luft durch den Empfang der Signale von Navigationssatelliten und Pseudoliten.

Die Systeme bestehen aus:

- Weltraumsegment (mind. 24 Satelliten auf 6 Umlaufbahnen) 4 bis 8 Satelliten sind immer sichtbar
- Kontrollsegment (Kontrollstationen)
- Benutzersegment (passive Empfänger)

Etablierte Systeme: GPS, Galileo (Europa), GLONASS (Russland), BeiDou (China),

Bewegung der GPS Satelliten um die Erde ^[WikimediaGPS]

Ausgehend vom Zeitstempel der Satellitennachrichten werden die Distanzen zu den bekannten Satellitenpositionen bestimmt. Anhand der Signale von 3 Satelliten kann eine Kugelschnitt bestimmt werden.

Die Satellitenanordnung beeinflusst Lokalisierungsgüte (schleifender Schnitt)

Qualität der Positionsbestimmung in Abhängigkeit von der Konfiguration der Satellitenpositionen [WikimediaDoP]

Fehlerquellen

- "selective availability" (SA) bis 2. Mai 2000 künstliche Verfälschung der vom Satelliten übermittelten Uhrzeit im L1 Signal. Schwankungen um ca. 50 m in schmalen Zeitfenstern
- Abblocken der Signale durch Hindernisse
- Mehrwegeeffekte wegen Reflexionen an Umgebungsobjekten
- Atmosphärische Effekte (Brechung, Geschwindigkeitsreduktion, unterschiedliche Strecken in verschiedenen Schichten)

Satellitengestützte Zusatzsysteme (Satellite-Based Augmentation Systems (SBAS)), sind das europäische EGNOS, das US-amerikanische WAAS, die die Korrektursignale über geostationäre Satelliten abstrahlen, um letztgenannten Fehlertyp zu kompensieren.

Durch stationäre Empfangsstationen kann die Positionsgenauigkeit verbessert werden. Sie übermitteln Korrektursignale (DGPS) an den eigentlichen Nutzer: + von den Landesvermessungsämtern wird das deutsche SAPOS-System betrieben. SAPOS stellt drei verschiedene Signaldienste zur Verfügung, die eine Genauigkeit von bis zu unter 1 cm erreichen. + eigene eingemessene Basisstationen im Kommunikationsbereich der mobilen Station.

Vorhersage von Signalqualitäten

[WikimediaDoP] Wikipedia, Autor Xoneca, Example of Geometric Dilution Of Precision (GDOP) for simple Triangulation. Three different situations are shown: A) Triangulation. B) Triangulation with error. C) Triangulation with error and poor GDOP. Link

[WikimediaGPS] Wikipedia, Autor El pak, Link

Aufgabe der Woche

 Die Messdaten der Distanzsensoren wurden in einem Bag-File aufgezeichnet, dass sich im Projektordner unter Examples findet. Starten Sie den Importer für ROS1 Bag-Files und visualisieren Sie den Signalverlauf. Schreiben Sie einen Knoten, der die eingehenden Messwerte anhand eines Schwellwertes prüft und ggf. einen Signalton erzeugt, wenn dieser unterschritten wurde.