

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin maturalny	
Przedmiot:	Matematyka	
Poziom:	Poziom podstawowy	
Formy arkusza:	MMAP-P0-100, MMAP-P0-200, MMAP-P0-300, MMAP-P0-400, MMAP-P0-Q00	
Termin egzaminu:	4 czerwca 2024 r.	
Data publikacji dokumentu:	28 czerwca 2024 r.	

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2024¹		
Wymaganie ogólne	Wymaganie szczegółowe	
I. Sprawność rachunkowa.	Zdający:	
Wykonywanie obliczeń na liczbach	I.1) wykonuje działania ([] potęgowanie) w	
rzeczywistych, także przy użyciu	zbiorze liczb rzeczywistych;	
kalkulatora, stosowanie praw działań	I.4) stosuje [] prawa działań na potęgach	
matematycznych przy przekształcaniu	[].	
wyrażeń algebraicznych oraz		
wykorzystywanie tych umiejętności przy		
rozwiązywaniu problemów w kontekstach		
rzeczywistych i teoretycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

¹ Rozporządzenie Ministra Edukacji i Nauki z dnia 10 czerwca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu maturalnego przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (Dz.U. 2022, poz.1246).

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: I.1) wykonuje działania ([] logarytmowanie) w zbiorze liczb rzeczywistych; I.9) [] posługuje się wzorem na logarytm iloczynu [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 3. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
I. Sprawność rachunkowa. Wykonywanie obliczeń na liczbach rzeczywistych, także przy użyciu kalkulatora, stosowanie praw działań matematycznych przy przekształcaniu wyrażeń algebraicznych oraz wykorzystywanie tych umiejętności przy rozwiązywaniu problemów w kontekstach rzeczywistych i teoretycznych.	Zdający: I.3) stosuje własności pierwiastków []; II.1) stosuje wzory skróconego mnożenia na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 .	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 4. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
2. Używanie języka matematycznego do	I.8) wykorzystuje własności potęgowania
tworzenia tekstów matematycznych, w tym	i pierwiastkowania w sytuacjach
do opisu prowadzonych rozumowań	praktycznych, w tym do obliczania
i uzasadniania wniosków, a także do	procentów składanych z kapitalizacją
przedstawiania danych.	roczną i zysków z lokat.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 5. (0-2)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	I.2) przeprowadza proste dowody dotyczące
kilkuetapowych, podawanie argumentów	podzielności liczb całkowitych i reszt
uzasadniających poprawność rozumowania,	z dzielenia nie trudniejsze niż dowód
odróżnianie dowodu od przykładu.	podzielności przez 24 iloczynu czterech
	kolejnych liczb naturalnych.

Zasady oceniania

2 pkt – przekształcenie wyrażenia $5n^3 - 5n$ do postaci 5n(n-1)(n+1) oraz zapisanie, że wśród trzech kolejnych liczb całkowitych n-1, n, n+1 co najmniej jedna jest podzielna przez 2 i dokładnie jedna jest podzielna przez 3.

1 pkt – przekształcenie wyrażenia $5n^3 - 5n$ do postaci 5n(n-1)(n+1).

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

Jeżeli zdający sprawdza prawdziwość tezy tylko dla wybranych wartości n, to otrzymuje ${f 0}$ punktów za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Przekształcamy wyrażenie $5n^3-5n\,$ do postaci iloczynu

$$5n^3 - 5n = 5n(n^2 - 1) = 5n(n - 1)(n + 1)$$

Jeden z czynników w rozkładzie jest równy 5, więc liczba 5n(n-1)(n+1) jest podzielna przez 5. Wśród każdych trzech kolejnych liczb całkowitych n-1, n, n+1 co najmniej jedna jest podzielna przez 2 i dokładnie jedna jest podzielna przez 3.

Zatem liczba 5n(n-1)(n+1) dzieli się przez 5 oraz przez 2 oraz przez 3.

Ponadto liczby 2, 3, 5 są parami względnie pierwsze.

Zatem liczba $5n^3 - 5n = 5n(n^2 - 1) = 5n(n - 1)(n + 1)$ jest podzielna przez 30. To kończy dowód.

Zadanie 6. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: III.3) rozwiązuje nierówności liniowe z jedną niewiadomą.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 7. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: IV.1) rozwiązuje układy równań liniowych z dwiema niewiadomymi [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: II.1) stosuje wzory skróconego mnożenia na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 ; II.5) mnoży [] wyrażenia wymierne.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 9. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	II.2) [] mnoży wielomiany jednej i wielu
1. Stosowanie obiektów matematycznych	zmiennych.
i operowanie nimi, interpretowanie pojęć	V.2) oblicza wartość funkcji zadanej wzorem
matematycznych.	algebraicznym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

1

Zadanie 10. (0-3)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	III.5) rozwiązuje równania wielomianowe
rozwiązywaniu zadań, również w sytuacjach	postaci $W(x) = 0$ dla wielomianów []
nietypowych.	takich, które dają się doprowadzić do
	postaci iloczynowej [] metodą
	grupowania.

Zasady oceniania

3 pkt – poprawna metoda rozwiązania równania i obliczenie wszystkich rozwiązań równania:

$$\left(-\frac{1}{2}\right), \frac{1}{2}, 3$$

- wyznaczenie wszystkich rozwiązań równania: $\left(-\frac{1}{2}\right)$, $\frac{1}{2}$, 3, **oraz** stwierdzenie, że są to jedyne rozwiązania równania.
- 2 pkt przekształcenie lewej strony równania do postaci iloczynu wielomianów stopnia co najwyżej drugiego **oraz** rozwiązanie jednego z równań wynikającego z tego rozkładu, np.:

$$(x-3)(4x^2-1) = 0$$
 i $x = 3$, $(x-3)(4x^2-1) = 0$ i $x = -\frac{1}{2}$ oraz $x = \frac{1}{2}$ ALBO

– przekształcenie równania $4x^3-12x^2-x+3=0$ do postaci alternatywy dwóch równań: kwadratowego i liniowego **oraz** rozwiązanie jednego z nich, np.:

$$(x-3=0, 4x^2-1=0)$$
 oraz $x=3,$ $(x-3=0, 4x^2-1=0)$ oraz $(x=-\frac{1}{2}, x=\frac{1}{2}),$

ALBO

- rozłożenie wielomianu $W(x)=4x^3-12x^2-x+3\,$ na czynniki liniowe, np. $W(x)=(x-3)(2x-1)(2x+1)\,,$ ALBO
- przekształcenie równania $4x^3-12x^2-x+3=0$ do postaci alternatywy trzech równań liniowych: $(x-3=0,\ 2x-1=0,\ 2x+1=0),$ *ALBO*
- obliczenie jednego z pierwiastków wielomianu $W(x) = 4x^3 12x^2 x + 3$ oraz poprawne podzielenie wielomianu W przez odpowiedni dwumian, np. x = 3 i $(4x^3 12x^2 x + 3)$: $(x 3) = 4x^2 1$,
- 1 pkt zapisanie wielomianu $W(x)=4x^3-12x^2-x+3\,$ w postaci iloczynu wielomianów stopnia co najwyżej drugiego, np. $W(x)=(x-3)(4x^2-1)$ *ALBO*

- przekształcenie równania $4x^3-12x^2-x+3=0$ do postaci alternatywy dwóch równań: $(x-3=0,\ 4x^2-1=0),$
- przekształcenie równania $4x^3-12x^2-x+3=0$ do postaci $4x^2(x-3)-(x-3)=0$ lub do postaci $4x^2(x-3)=x-3$ oraz zapisanie rozwiązania x=3, *ALBO*
- zapisanie jednego z rozwiązań równania $4x^3 12x^2 x + 3 = 0$ oraz zapisanie sprawdzenia, że ta liczba spełnia to równanie.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający zapisze tylko trzy poprawne rozwiązania równania, to otrzymuje **1 punkt** za całe rozwiązanie.
- **2.** Jeżeli zdający uzyska trzy poprawne pierwiastki wielomianu, lecz traktuje równanie jako nierówność (podaje zbiór rozwiązań w postaci przedziału / sumy przedziałów), to otrzymuje **2 punkty** za całe rozwiązanie.
- **3.** Jeżeli przy przekształcaniu lewej strony równania do postaci iloczynu zdający zapisuje czynnik (x-3) z wykładnikiem 2, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie (**1 punkt** za rozwiązanie równania $(x-3)^2=0$ i **1 punkt** za rozwiązanie równania $4x^2-1=0$).
- **4.** Jeżeli zdający zamiast równania $(x-3)(4x^2-1)=0$ zapisze $(x-3)\pm(4x^2-1)=0$, ale z dalszego rozwiązania wynika, że traktuje lewą stronę równania jak iloczyn i rozwiąże zadanie do końca, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie (**1 punkt** za rozwiązanie równania x-3=0 i **1 punkt** za rozwiązanie równania $4x^2-1=0$).
- **5.** Jeżeli zdający przy przekształcaniu równania do postaci $(x-3)(4x^2-1)=0$ popełni błąd i zapisze:

$$4x^{2}(x+3) - (x-3) = 0$$
 lub
$$4x^{2}(x-3) + (x-3) = 0$$
 lub
$$4x^{2}(x-3) - (x+3) = 0$$
 lub
$$x(4x^{2} + 1) - 3(4x^{2} - 1) = 0$$
 lub
$$x(4x^{2} - 1) + 3(4x^{2} - 1) = 0$$
 lub
$$x(4x^{2} - 1) - 3(4x^{2} + 1) = 0$$
 a nastepnie

- **5.1.** zapisze równanie $(x-3)(4x^2-1)=0$ lub poprawną alternatywę (x-3=0) lub $4x^2-1=0$) i konsekwentnie rozwiąże zadanie do końca, to otrzymuje co najwyżej **2 punkty** za całe rozwiązanie (**1 punkt** za rozwiązanie równania x-3=0 i **1 punkt** za rozwiązanie równania $4x^2-1=0$).
- **5.2.** zapisze równanie $(x-3)(4x^2+1)=0$ lub błedna alternatywe

 $(x-3=0 \text{ lub } 4x^2+1=0)$ i zapisze rozwiązanie x=3, to otrzymuje **1 punkt** za całe rozwiązanie.

- **5.3.** zapisze równanie $(x+3)(4x^2-1)=0$ lub błędną alternatywę (x+3=0) lub $4x^2-1=0$) i zapisze oba rozwiązania równania $4x^2-1=0$: $x=-\frac{1}{2}$ oraz $x=\frac{1}{2}$ to otrzymuje **1 punkt** za całe rozwiązanie.
- **5.4.** zapisze błędne równanie (w którym jedna ze stron jest równa 0, a druga jest iloczynem wielomianów stopni dodatnich), inne niż w uwagach 5.2 oraz 5.3, np. $(x-3)(x+3)(4x^2\pm 1)=0$ lub błędną alternatywę inną niż w uwagach 5.2 oraz 5.3, np. (x-3=0) lub x+3=0 lub $4x^2\pm 1=0$, to otrzymuje **0 punktów** za całe rozwiązanie.
- **6.** Jeżeli zdający, przekształcając równanie $4x^3 12x^2 x + 3 = 0$, popełni jeden błąd (który nie jest błędem znaku) albo dwa błędy znaku i otrzyma równanie trzeciego stopnia, które ma trzy rozwiązania rzeczywiste, oraz konsekwentnie rozwiąże zadanie do końca, to otrzymuje **1 punkt** za całe rozwiązanie.
- 7. Jeżeli zdający dzieli obustronnie równanie $4x^2(x-3)=x-3$ przez dwumian (x-3) z podaniem odpowiedniego założenia i uzyska tylko dwa poprawne rozwiązania $x=-\frac{1}{2}$ oraz $x=\frac{1}{2}$, to otrzymuje **2 punkty** za całe rozwiązanie, a jeżeli uzyska tylko jedno z tych rozwiązań, to otrzymuje **1 punkt** za całe rozwiązanie.
- **8.** Jeżeli zdający dzieli obustronnie równanie $4x^2(x-3) = x-3$ przez dwumian (x-3) bez podania odpowiedniego założenia i uzyska tylko dwa poprawne rozwiązania $x=-\frac{1}{2}$ oraz $x=\frac{1}{2}$, to otrzymuje **1 punkt** za całe rozwiązanie, a jeżeli uzyska tylko jedno z tych rozwiązań, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Przekształcamy równanie równoważnie i stosujemy metodę grupowania wyrazów:

$$4x^{3} - 12x^{2} - x + 3 = 0$$

$$4x^{2}(x - 3) - (x - 3) = 0$$

$$(x - 3)(4x^{2} - 1) = 0$$

$$(x - 3)(2x - 1)(2x + 1) = 0$$

$$x - 3 = 0 \quad \text{lub} \quad 2x - 1 = 0 \quad \text{lub} \quad 2x + 1 = 0$$

$$x = 3 \quad \text{lub} \quad x = \frac{1}{2} \quad \text{lub} \quad x = -\frac{1}{2}$$

Rozwiązaniami równania są liczby: $\left(-\frac{1}{2}\right)$, $\frac{1}{2}$, 3.

Sposób II

Przekształcamy równanie równoważnie i stosujemy metodę grupowania wyrazów:

$$4x^{3} - 12x^{2} - x + 3 = 0$$

$$x(4x^{2} - 1) - 3(4x^{2} - 1) = 0$$

$$(4x^{2} - 1)(x - 3) = 0$$

$$(2x - 1)(2x + 1)(x - 3) = 0$$

$$2x - 1 = 0 \quad \text{lub} \quad 2x + 1 = 0 \quad \text{lub} \quad x - 3 = 0$$

$$x = \frac{1}{2} \quad \text{lub} \quad x = -\frac{1}{2} \quad \text{lub} \quad x = 3$$

Rozwiązaniami równania są liczby: $\left(-\frac{1}{2}\right)$, $\frac{1}{2}$, 3.

Sposób III

Obliczamy W(3) = 0 i stwierdzamy, że liczba 3 jest pierwiastkiem wielomianu $W(x) = 4x^3 - 12x^2 - x + 3$.

Zatem wielomian W jest podzielny przez dwumian (x-3). Dzielimy wielomian W przez dwumian (x-3) i otrzymujemy

$$(4x^3 - 12x^2 - x + 3) : (x - 3) = 4x^2 - 1$$

Zatem
$$W(x) = (x-3)(4x^2-1) = (x-3)(2x-1)(2x+1)$$
.

Obliczamy pierwiastki wielomianu W(x):

$$(x-3)(2x-1)(2x+1) = 0$$

 $x-3=0$ lub $2x-1=0$ lub $2x+1=0$
 $x=3$ lub $x=\frac{1}{2}$ lub $x=-\frac{1}{2}$

Rozwiązaniami równania są liczby: $\left(-\frac{1}{2}\right)$, $\frac{1}{2}$, 3.

Sposób IV

Obliczamy W(3) = 0 i stwierdzamy, że liczba 3 jest pierwiastkiem wielomianu $W(x) = 4x^3 - 12x^2 - x + 3$.

Obliczamy $W\left(\frac{1}{2}\right)=0$ i stwierdzamy, że liczba $\frac{1}{2}$ jest pierwiastkiem wielomianu $W(x)=4x^3-12x^2-x+3$.

Obliczamy $W\left(-\frac{1}{2}\right)=0$ i stwierdzamy, że liczba $\left(-\frac{1}{2}\right)$ jest pierwiastkiem wielomianu $W(x)=4x^3-12x^2-x+3$.

Ponieważ W jest wielomianem stopnia trzeciego, więc ma co najwyżej trzy pierwiastki rzeczywiste. Oznacza to, że jedynymi rozwiązaniami równania $4x^3-12x^2-x+3=0$ są liczby: $\left(-\frac{1}{2}\right)$, $\frac{1}{2}$, 3.

Zadanie 11.1. (0-1)

Wymagania egzaminacyjne 2024		
Wymaganie ogólne Wymaganie szczegółowe		
II. Wykorzystanie i tworzenie informacji.	Zdający:	
1. Interpretowanie i operowanie	V.4) odczytuje z wykresu funkcji: []	
informacjami przedstawionymi w tekście,	przedziały, w których funkcja przyjmuje	
zarówno matematycznym, jak	wartości [] nie większe od danej liczby	
i popularnonaukowym, a także w formie wykresów, diagramów, tabel.	[].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

[0, 4]

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci [4, 0], to otrzymuje **1 punkt**.

Zadanie 11.2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.4) odczytuje z wykresu funkcji: dziedzinę,
informacjami przedstawionymi w tekście,	zbiór wartości […];
zarówno matematycznym, jak	V.12) na podstawie wykresu funkcji
i popularnonaukowym, a także w formie	y = f(x) szkicuje wykresy funkcji
wykresów, diagramów, tabel.	y = f(x - a) [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

A2

Zadanie 12. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.3) odczytuje i interpretuje wartości funkcji
informacjami przedstawionymi w tekście,	określonych za pomocą tabel [].
zarówno matematycznym, jak	
i popularnonaukowym, a także w formie	
wykresów, diagramów, tabel.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

FF

Zadanie 13. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: V.6) wyznacza wzór funkcji liniowej na podstawie informacji [] o jej własnościach.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 14. (0-2)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia.	V.9) wyznacza wzór funkcji kwadratowej na podstawie informacji o tej funkcji lub o jej wykresie.

Zasady oceniania

- 2 pkt poprawna metoda i zapisanie wzoru funkcji f z poprawnymi wartościami współczynników, np.: $f(x) = 2(x-3)^2$, $f(x) = 2x^2 12x + 18$.
- 1 pkt zapisanie wzoru funkcji f w postaci kanonicznej z uwzględnieniem, że punkt N jest wierzchołkiem paraboli będącej wykresem funkcji f: $f(x) = a(x-3)^2$ ALBO
 - zapisanie wartości wyrazu wolnego funkcji f, np.: c=18, $f(x)=ax^2+bx+18$, ALBO
 - zapisanie równania $b^2 4ac = 0$, ALBO
 - zapisanie równania $-\frac{b}{2a} = 3$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Ponieważ punkt N=(3,0) jest jedynym punktem wspólnym wykresu funkcji f i osi Ox, więc jest to wierzchołek paraboli będącej wykresem funkcji f.

Zapisujemy wzór funkcji f w postaci kanonicznej:

$$f(x) = a(x-3)^2$$
, gdzie $a \neq 0$

Punkt M = (0, 18) leży na wykresie funkcji f, zatem

$$f(0) = 18$$
$$a(0-3)^2 = 18$$
$$9a = 18$$
$$a = 2$$

Zatem $f(x) = 2(x-3)^2$.

Sposób II

Zapisujemy wzór funkcji f w postaci ogólnej:

$$f(x) = ax^2 + bx + c$$
, gdzie $a \neq 0$ oraz $b, c \in \mathbb{R}$

Punkt M = (0, 18) leży na wykresie funkcji f, zatem

$$f(0) = 18$$

$$a \cdot 0^2 + b \cdot 0 + c = 18$$

$$c = 18$$

Ponieważ punkt N=(3,0) jest jedynym punktem wspólnym wykresu funkcji f i osi Ox, więc liczba 3 jest jedynym miejscem zerowym tej funkcji. Stąd otrzymujemy:

$$\Delta = b^2 - 4ac = 0$$
 oraz $x_0 = -\frac{b}{2a} = 3$
 $b^2 - 4a \cdot 18 = 0$ oraz $b = -6a$

Zatem

$$(-6a)^2 - 4a \cdot 18 = 0$$

 $36a^2 - 72a = 0$
 $36a(a-2) = 0$
 $a = 0$ lub $a = 2$

Funkcja f jest kwadratowa, więc a=2 i wówczas b=-6a=-12 . Zatem $f(x)=2x^2-12x+18$.

Zadanie 15.1. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	V.7) szkicuje wykres funkcji kwadratowej
1. Stosowanie obiektów matematycznych	zadanej wzorem.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 15.2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	V.2) oblicza wartość funkcji zadanej wzorem
1. Stosowanie obiektów matematycznych	algebraicznym;
i operowanie nimi, interpretowanie pojęć	V.8) interpretuje współczynniki występujące
matematycznych.	we wzorze funkcji kwadratowej w postaci
	ogólnej, kanonicznej i iloczynowej (jeśli
	istnieje).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

FΡ

Zadanie 16.1. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VI.1) oblicza wyrazy ciągu określonego wzorem ogólnym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 16.2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.2) w prostych przypadkach bada, czy
1. Stosowanie obiektów matematycznych	ciąg jest rosnący, czy malejący;
i operowanie nimi, interpretowanie pojęć	VI.3) sprawdza, czy dany ciąg jest []
matematycznych.	geometryczny.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

FF

Zadanie 17. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.4) stosuje wzór na n -ty wyraz [] ciągu
2. Dobieranie i tworzenie modeli	arytmetycznego.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 18. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.6) wykorzystuje własności ciągów, w tym
2. Dobieranie i tworzenie modeli	arytmetycznych i geometrycznych, do
matematycznych przy rozwiązywaniu	rozwiązywania zadań [].
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 19. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VII.2) korzysta z wzorów $\sin^2 \alpha + \cos^2 \alpha = 1$, $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 20. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	VII.4) oblicza kąty trójkąta [].
rozwiązywaniu zadań, również w sytuacjach	
nietypowych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 21. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja. 1. Przeprowadzanie rozumowań, także kilkuetapowych, podawanie argumentów	Zdający: VIII.5) stosuje własności kątów wpisanych i środkowych.
uzasadniających poprawność rozumowania, odróżnianie dowodu od przykładu.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 22. (0-2)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach	VIII.8) korzysta z cech podobieństwa trójkątów.
nietypowych.	

Zasady oceniania

2 pkt – poprawna metoda i obliczenie długości odcinka BP: $|BP| = \frac{12\sqrt{5}}{5}$.

- 1 pkt obliczenie długości odcinka AS: $|AS| = 6\sqrt{5}$ ALBO
 - obliczenie sinusa lub cosinusa jednego z kątów ostrych w trójkącie ABP lub BSP,
 ALBO
 - zapisanie równości |AP| = 2|BP|, ALBO
 - zapisanie równości $|PS| = \frac{1}{2}|BP|$, ALBO
 - obliczenie długości odcinka MB (gdzie M jest rzutem prostokątnym punktu P na odcinek AB): $|MB|=\frac{12}{5}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Punkt S jest środkiem odcinka BC, więc |BS| = 6.

Trójkąt ABS jest prostokątny. Odcinek BP jest wysokością trójkąta ABS poprowadzoną na przeciwprostokątną AS (jak na rysunku).

Z twierdzenia Pitagorasa obliczamy długość odcinka AS

$$|AS|^2 = 12^2 + 6^2$$

 $|AS|^2 = 180$
 $|AS| = \sqrt{180} = 6\sqrt{5}$

Ponieważ odcinek *BP* jest wysokością trójkąta prostokątnego poprowadzoną na przeciwprostokątną, więc

$$|BP| = \frac{|AB| \cdot |BS|}{|AS|} = \frac{12 \cdot 6}{6\sqrt{5}} = \frac{12}{\sqrt{5}} = \frac{12\sqrt{5}}{5}$$

Długość odcinka BP jest równa $\frac{12\sqrt{5}}{5}$.

Sposób II

Punkt S jest środkiem odcinka BC, więc |BS| = 6.

Trójkąt ABS jest prostokątny. Odcinek BP jest wysokością trójkąta ABS poprowadzoną na przeciwprostokątną AS (jak na rysunku).

Z twierdzenia Pitagorasa obliczamy długość odcinka AS

$$|AS|^2 = 12^2 + 6^2$$

 $|AS|^2 = 180$
 $|AS| = \sqrt{180} = 6\sqrt{5}$

Pole trójkata ABS jest równe

$$P_{ABS} = \frac{1}{2} \cdot 6\sqrt{5} \cdot |BP|$$

Ponadto pole trójkąta ABS można obliczyć jako połowę iloczynu długości przyprostokątnych

$$P_{ABS} = \frac{1}{2} \cdot 12 \cdot 6 = 36$$

Zatem

$$\frac{1}{2} \cdot 6\sqrt{5} \cdot |BP| = 36$$
$$|BP| = \frac{72}{6\sqrt{5}} = \frac{12\sqrt{5}}{5}$$

Długość odcinka BP jest równa $\frac{12\sqrt{5}}{5}$.

Sposób III

Punkt S jest środkiem odcinka BC, więc |BS| = 6.

Trójkąt ABS jest prostokątny. Odcinek BP jest wysokością trójkąta ABS poprowadzoną na przeciwprostokątną AS.

Z warunków zadania otrzymujemy:

- $| \not \triangleleft BAP | = | \not \triangleleft PBS |$
- $| \not ABP | = | \not ABSP |$

Zatem trójkąty ABS, APB, BPS są podobne na podstawie cechy kąt-kąt.

Oznaczmy:

$$x = |PS|$$

$$\alpha = |\sphericalangle BAP| = |\sphericalangle PBS|$$

$$\beta = 90^{\circ} - \alpha = \, | \sphericalangle ABP | = | \sphericalangle BSP |$$

Egzamin maturalny z matematyki na poziomie podstawowym – termin dodatkowy 2024 r.

Wtedy

$$tg \alpha = \frac{1}{2}, |BP| = 2x, |AP| = 4x, |AS| = 5x.$$

Z twierdzenia Pitagorasa (dla trójkąta ABS) obliczamy długość odcinka AS

$$|AS|^2 = 12^2 + 6^2$$

 $|AS| = \sqrt{180} = 6\sqrt{5}$

Zatem

$$5x = 6\sqrt{5}$$

$$x = \frac{6\sqrt{5}}{5}$$

$$|BP| = 2x = \frac{12\sqrt{5}}{5}$$

Długość odcinka BP jest równa $\frac{12\sqrt{5}}{5}$.

Sposób IV

Punkt S jest środkiem odcinka BC, więc |BS| = 6.

Trójkąt ABS jest prostokątny. Odcinek BP jest wysokością trójkąta ABS poprowadzoną na przeciwprostokątną AS.

Z warunków zadania otrzymujemy:

- $| \not \triangleleft BAP | = | \not \triangleleft PBS |$
- $| \not \triangleleft ABP | = | \not \triangleleft BSP |$

Zatem trójkąty ABS i BPS są podobne na podstawie cechy kąt-kąt.

Oznaczmy:

$$x = |BP|$$

$$\alpha = | \sphericalangle BAP | = | \sphericalangle PBS |$$

$$\beta = 90^{\circ} - \alpha = | \angle ABP | = | \angle BSP |$$

Wtedy

$$tg \alpha = \frac{1}{2}$$

$$|PS| = \frac{1}{2}x$$

Z twierdzenia Pitagorasa (dla trójkąta BPS) obliczamy długość odcinka BP

$$|BP|^2 + |PS|^2 = 6^2$$

$$x^2 + \left(\frac{1}{2}x\right)^2 = 36$$

$$\frac{5}{4}x^2 = 36$$

$$x^2 = \frac{144}{5}$$

$$x = \frac{12\sqrt{5}}{5}$$

Długość odcinka BP jest równa $\frac{12\sqrt{5}}{5}$.

Sposób V

Punkt S jest środkiem odcinka BC, więc |BS| = 6.

Trójkąt ABS jest prostokątny. Odcinek BP jest wysokością trójkąta ABS poprowadzoną na przeciwprostokątną AS.

Poprowadźmy odcinek *PM* prostopadły do odcinka *AB* (jak na rysunku).

Z warunków zadania otrzymujemy:

- $| \sphericalangle BAP | = | \sphericalangle BPM |$
- $| \angle ASB | = | \angle APM | = | \angle PBM |$

Zatem trójkaty ABS, AMP, PMB są podobne na podstawie cechy kat-kat.

Egzamin maturalny z matematyki na poziomie podstawowym – termin dodatkowy 2024 r.

Oznaczmy:

$$x = |MB|$$

$$\alpha = | \sphericalangle BAP | = | \sphericalangle BPM |$$

$$\beta = 90^{\circ} - \alpha = | \angle ASB | = | \angle APM | = | \angle PBM |$$

Wtedy

$$tg \alpha = \frac{1}{2}, |MP| = 2x, |AM| = 4x, |AB| = 5x = 12.$$

Zatem
$$x = \frac{12}{5}$$

Z twierdzenia Pitagorasa (dla trójkąta MBP) obliczamy długość odcinka BP

$$|BP|^{2} = |MB|^{2} + |MP|^{2}$$

$$|BP|^{2} = \left(\frac{12}{5}\right)^{2} + \left(\frac{24}{5}\right)^{2}$$

$$|BP|^{2} = \frac{720}{25}$$

$$|BP| = \sqrt{\frac{720}{25}} = \frac{12\sqrt{5}}{5}$$

Długość odcinka BP jest równa $\frac{12\sqrt{5}}{5}$.

Sposób VI

Punkt S jest środkiem odcinka BC, więc |BS| = 6.

Trójkąt ABS jest prostokątny. Odcinek BP jest wysokością trójkąta ABS poprowadzoną na przeciwprostokątną AS (jak na rysunku).

Oznaczmy: $\alpha = |\sphericalangle BAS|$. Wtedy $\lg \alpha = \frac{1}{2}$, zatem $\frac{\sin \alpha}{\cos \alpha} = \frac{1}{2}$. Stąd $\cos \alpha = 2 \cdot \sin \alpha$.

Wykorzystując tę zależność oraz tożsamość $\sin^2 \alpha + \cos^2 \alpha = 1$ otrzymujemy

$$\sin^2 \alpha + (2 \cdot \sin \alpha)^2 = 1$$
$$5 \sin^2 \alpha = 1$$
$$\sin^2 \alpha = \frac{1}{5}$$

Stąd $\sin \alpha = \frac{1}{\sqrt{5}}$, ponieważ α jest kątem ostrym.

Zatem

$$\frac{|BP|}{|AB|} = \frac{1}{\sqrt{5}}$$
$$\frac{|BP|}{12} = \frac{1}{\sqrt{5}}$$
$$|BP| = \frac{12}{\sqrt{5}} = \frac{12\sqrt{5}}{5}$$

Długość odcinka BP jest równa $\frac{12\sqrt{5}}{5}$.

Zadanie 23.1. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.4) posługuje się równaniem okręgu
1. Stosowanie obiektów matematycznych	$(x-a)^2 + (y-b)^2 = r^2$.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

PF

Zadanie 23.2. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.6) wyznacza obrazy okręgów […]
2. Dobieranie i tworzenie modeli	w symetrii środkowej (o środku w początku
matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	układu współrzędnych).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 24. (0-4)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja. 3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia.	Zdający: IX.1) [] znajduje wspólny punkt dwóch prostych []; IX.2) posługuje się równaniem prostej na płaszczyźnie w postaci kierunkowej, w tym wyznacza równanie prostej o zadanych własnościach []; IX.3) oblicza odległość dwóch punktów w układzie współrzędnych.

Zasady oceniania

- 4 pkt poprawna metoda obliczenia współrzędnych punktu P oraz długość odcinka AP oraz poprawne wyniki: $P=\left(\frac{9}{4},0\right),\;|AP|=\frac{5\sqrt{41}}{4}.$
- 3 pkt obliczenie współrzędnych punktu $P: P = \left(\frac{9}{4}, 0\right)$.
- 2 pkt wyznaczenie równania symetralnej odcinka $AB: y = \frac{4}{3}x 3$ ALBO
 - zapisanie układu równań z dwiema niewiadomymi, np.

$$\sqrt{(x_p - 2)^2 + (y_p - 8)^2} = \sqrt{(x_p - 10)^2 + (y_p - 2)^2} \quad \text{i} \quad y_p = 0$$

- zapisanie równania, w którym niewiadomą jest pierwsza współrzędna wierzchołka $\,P\,$, wynikającego z prostopadłości odpowiednich wektorów, np.

$$(-4) \cdot (x_p - 6) + 3 \cdot (-5) = 0$$

- 1 pkt zapisanie współrzędnych środka M odcinka AB: M=(6,5) ALBO
 - wyznaczenie współczynnika kierunkowego prostej AB: $a_{AB} = -\frac{3}{4}$,
 - zapisanie równania prostej AB w postaci ogólnej: 3x + 4y 38 = 0, ALBO
 - zapisanie drugiej współrzędnej punktu P np.: $y_p = 0, P = (x_p, 0),$
 - zapisanie równości |AP|=|BP| w zależności od współrzędnych punktu $P=\left(x_{p},y_{p}\right)$, np.

$$P = (x_p, y_p)$$
, np.
$$\sqrt{(x_p - 2)^2 + (y_p - 8)^2} = \sqrt{(x_p - 10)^2 + (y_p - 2)^2}$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaqi:

- **1.** Jeżeli zdający rozważa punkt P leżący na osi Ox i w rozwiązaniu popełnia tylko błędy rachunkowe, które nie przekreślają poprawności rozumowania, to za całe rozwiązanie może otrzymać co najwyżej **3 punkty**.
- 2. Jeżeli zdający rysuje w układzie współrzędnych symetralną odcinka AB i odczytuje współrzędne punktu P i zapisuje $P=\left(\frac{9}{4},0\right)$ oraz sprawdzi rachunkowo, że |AP|=|BP|, to za tę część rozwiązania otrzymuje 3 punkty (jeżeli tego sprawdzenia nie wykona, to otrzymuje za tę część rozwiązania 2 punkty, a gdy odczyta błędne współrzędne punktu P, to otrzymuje 0 punktów).
- **3.** Jeżeli zdający nie sporządzi rysunku i zapisze tylko $P = \left(\frac{9}{4}, 0\right)$, to otrzymuje **0 punktów**; jeżeli zdający nie sporządzi rysunku, lecz zapisze $P = \left(\frac{9}{4}, 0\right)$ i dalej kontynuuje rozwiązanie, to może otrzymać co najwyżej **1 punkt**.
- 4. Jeżeli jedynym błędem zdającego jest:
 - a) zastosowanie niepoprawnego wzoru na współczynnik kierunkowy prostej
 - b) zastosowanie niepoprawnego związku między współczynnikami kierunkowymi prostych prostopadłych
 - c) zastosowanie niepoprawnego wzoru na współrzędne środka odcinka
 - d) zastosowanie niepoprawnego warunku prostopadłości wektorów
 - e) zastosowanie niepoprawnego wzoru na odległość dwóch punktów w kartezjańskim układzie współrzędnych
 - f) zastosowanie niepoprawnych własności symetralnej
 - g) przyjęcie, że wierzchołek P leży poza osią Ox,

i rozwiązanie zostanie doprowadzone konsekwentnie do końca, to zdający może otrzymać **2 punkty** za całe rozwiązanie, o ile nie nabył prawa do innej liczby punktów. Jeżeli zdający popełni więcej niż jeden z wymienionych błędów a)–g), to otrzymuje **0 punktów** za całe rozwiązanie, o ile nie nabył prawa do innej liczby punktów.

5. Jeżeli zdający rozważa dwa różne położenia punktu P na osi Ox i nie odrzuca niewłaściwego rozwiązania, to otrzymuje co najwyżej **3 punkty**.

Przykładowe pełne rozwiązania

Sposób I

Obliczamy współczynnik kierunkowy prostej AB:

$$a_{AB} = \frac{2-8}{10-2} = -\frac{3}{4}$$

Zatem współczynnik kierunkowy symetralnej k odcinka AB jest równy

$$a_k = \frac{4}{3}$$

Symetralna k przechodzi przez środek M odcinka AB. Obliczamy współrzędne punktu M:

$$M = \left(\frac{2+10}{2}, \frac{8+2}{2}\right) = (6,5)$$

Zatem prosta k ma równanie postaci

$$y = \frac{4}{3}(x - 6) + 5$$

$$y = \frac{4}{3}x - 3$$

Punkt P jest punktem przecięcia symetralnej k z osią Ox, więc współrzędne punktu $P=(x_p,y_p)$ spełniają równania

$$y_p = \frac{4}{3}x_p - 3 \quad \text{oraz} \quad y_p = 0$$

Stąd otrzymujemy:

$$0 = \frac{4}{3}x_p - 3 \quad \text{oraz} \quad y_p = 0$$

$$x_p = \frac{9}{4} \quad \text{oraz} \quad y_p = 0$$

Zatem
$$P = \left(\frac{9}{4}, 0\right)$$

Obliczamy długość odcinka AP:

$$|AP| = \sqrt{\left(\frac{9}{4} - 2\right)^2 + (0 - 8)^2} = \sqrt{\left(\frac{1}{4}\right)^2 + (-8)^2} = \sqrt{\frac{1}{16} + 64} = \sqrt{\frac{1025}{16}} = \frac{5\sqrt{41}}{4}$$

Egzamin maturalny z matematyki na poziomie podstawowym – termin dodatkowy 2024 r.

Sposób II

Ponieważ punkt P leży na osi Ox, więc jego współrzędne są równe $P = (x_p, 0)$.

Ponieważ punkt P leży na symetralnej odcinka AB, więc |AP| = |BP|. Stąd i ze wzoru na odległość między dwoma punktami otrzymujemy równanie

$$\sqrt{(x_p - 2)^2 + (0 - 8)^2} = \sqrt{(x_p - 10)^2 + (0 - 2)^2}$$
$$(x_p - 2)^2 + (0 - 8)^2 = (x_p - 10)^2 + (0 - 2)^2$$
$$x_p^2 - 4x_p + 4 + 64 = x_p^2 - 20x_p + 100 + 4$$
$$16x_p = 36$$
$$x_p = \frac{9}{4}$$

Zatem
$$P = \left(\frac{9}{4}, 0\right)$$
.

Obliczamy długość odcinka AP:

$$|AP| = \sqrt{\left(\frac{9}{4} - 2\right)^2 + (0 - 8)^2} = \sqrt{\left(\frac{1}{4}\right)^2 + (-8)^2} = \sqrt{\frac{1}{16} + 64} = \sqrt{\frac{1025}{16}} = \frac{5\sqrt{41}}{4}$$

Sposób III

Ponieważ punkt P leży na osi Ox, więc jego współrzędne są równe $P=\left(x_{p},0\right)$.

Obliczamy współrzędne środka M odcinka AB:

$$M = \left(\frac{2+10}{2}, \frac{8+2}{2}\right) = (6,5)$$

Obliczamy współrzędne wektorów \overrightarrow{MA} oraz \overrightarrow{MP} :

$$\overrightarrow{MA}$$
 = [2 - 6, 8 - 5] = [-4, 3]

$$\overrightarrow{MP} = [x_p - 6, 0 - 5] = [x_p - 6, -5]$$

Wektor \overrightarrow{MA} jest prostopadły do wektora \overrightarrow{MP} , zatem

$$-4 \cdot (x_p - 6) + 3 \cdot (-5) = 0$$
$$-4x_p + 24 - 15 = 0$$
$$x_p = \frac{9}{4}$$

Zatem punkt P ma współrzędne $P = \left(\frac{9}{4}, 0\right)$.

Obliczamy długość odcinka AP:

$$|AP| = \sqrt{\left(\frac{9}{4} - 2\right)^2 + (0 - 8)^2} = \sqrt{\left(\frac{1}{4}\right)^2 + (-8)^2} = \sqrt{\frac{1}{16} + 64} = \sqrt{\frac{1025}{16}} = \frac{5\sqrt{41}}{4}$$

Zadanie 25. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XI.1) zlicza obiekty w prostych sytuacjach
2. Dobieranie i tworzenie modeli	kombinatorycznych.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 26. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.	Zdający: X.4) oblicza objętości […] graniastosłupów
2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	[].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 27. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	X.4) oblicza objętości i pola powierzchni
2. Dobieranie i tworzenie modeli	graniastosłupów i ostrosłupów, również
matematycznych przy rozwiązywaniu	z wykorzystaniem trygonometrii i poznanych
problemów praktycznych i teoretycznych.	twierdzeń.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 28. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	XII.2) oblicza średnią arytmetyczną [].
rzeczywistych, także przy użyciu	
kalkulatora, stosowanie praw działań	
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 29. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XI.2) zlicza obiekty, stosując reguły
2. Dobieranie i tworzenie modeli	mnożenia i dodawania [].
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 30. (0-1)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XII.1) oblicza prawdopodobieństwo
2. Dobieranie i tworzenie modeli	w modelu klasycznym.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 31. (0-2)

Wymagania egzaminacyjne 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XII.1) oblicza prawdopodobieństwo
2. Dobieranie i tworzenie modeli	w modelu klasycznym.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

- 2 pkt zastosowanie poprawnej metody obliczenia prawdopodobieństwa zdarzenia A i uzyskanie poprawnego wyniku: $P(A)=\frac{15}{36}.$
- 1 pkt wypisanie wszystkich zdarzeń elementarnych lub obliczenie/podanie liczby tych zdarzeń: $|\Omega|=6\cdot 6$ lub sporządzenie tabeli o 36 polach odpowiadających zdarzeniom elementarnym, z których co najmniej jedno pole jest wypełnione, lub sporządzenie pełnego drzewa stochastycznego ALBO
 - wypisanie (zaznaczenie w tabeli) wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A i niewypisanie żadnego niewłaściwego,
 ALBO
 - podanie liczby wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=15, jeśli nie została otrzymana w wyniku zastosowania błędnej metody, ALBO
 - sporządzenie fragmentu drzewa stochastycznego, które zawiera wszystkie gałęzie sprzyjające zdarzeniu A oraz zapisanie prawdopodobieństwa na co najmniej jednym odcinku każdego z etapów doświadczenia, ALBO
 - podanie prawdopodobieństwa jednoelementowego zdarzenia (elementarnego): $\frac{1}{36}$,
 - zapisanie tylko $P(A) = \frac{5}{12}$,
 - zapisanie tylko $P(A) = \frac{15}{36}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeżeli zdający zapisuje tylko liczby 5 i 12 lub 15 i 36 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

W tabeli literą A zaznaczamy zdarzenia elementarne sprzyjające zdarzeniu A.

	1	2	3	4	5	6
1						
2	A					
3	Α	Α				
4	Α	Α	A			
5	A	A	A	A		
6	A	A	A	A	A	

Moc zbioru Ω jest równa 36.

Zdarzeń sprzyjających zdarzeniu A jest 15.

Zatem prawdopodobieństwo zdarzenia A jest równe $\frac{15}{36} = \frac{5}{12}$.

Sposób II (drzewo stochastyczne)

Rysujemy fragment drzewa stochastycznego rozważanego doświadczenia z uwzględnieniem wszystkich istotnych gałęzi.

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{2}{6} + \frac{1}{6} \cdot \frac{3}{6} + \frac{1}{6} \cdot \frac{4}{6} + \frac{1}{6} \cdot \frac{5}{6} = \frac{15}{36} = \frac{5}{12}$$

Zadanie 32. (0-2)

Wymagania egzaminacyjne 2024				
Wymaganie ogólne	Wymaganie szczegółowe			
III. Wykorzystanie i interpretowanie reprezentacji.2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	Zdający: XIII) rozwiązuje zadania optymalizacyjne w sytuacjach dających się opisać funkcją kwadratową.			

Zasady oceniania

2 pkt – wybranie dwóch poprawnych odpowiedzi.

1 pkt – wybranie jednej poprawnej odpowiedzi.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

32.1. A

32.2. E

Ocena prac osób ze stwierdzoną dyskalkulią

Obowiązują zasady oceniania stosowane przy sprawdzaniu prac zdających bez stwierdzonej dyskalkulii z dodatkowym uwzględnieniem:

- I. **ogólnych zasad oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią (punkty 1.–12.);
- II. dodatkowych **szczegółowych zasad oceniania** zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią egzamin maturalny z matematyki, poziom podstawowy, termin dodatkowy 2024.

Ogólne zasady oceniania zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią

- 1. Nie należy traktować jako błędy merytoryczne pomyłek, wynikających z:
 - błędnego przepisania
 - przestawienia cyfr
 - zapisania innej cyfry, ale o podobnym wyglądzie
 - przestawienia położenia przecinka
 - przestawienia położenia znaku liczby.
- 2. W przypadku błędów, wynikających ze zmiany znaku liczby, należy w każdym zadaniu oddzielnie przeanalizować, czy zdający opanował inne umiejętności, poza umiejętnościami rachunkowymi, oceniane w zadaniu. W przypadku opanowania badanych umiejętności zdający powinien otrzymać przynajmniej 1 punkt.
- 3. We wszystkich zadaniach otwartych, w których wskazano poprawną metodę rozwiązania, części lub całości zadania, zdającemu należy przyznać przynajmniej 1 punkt, zgodnie z kryteriami do poszczególnych zadań.
- 4. Jeśli zdający przedstawia nieprecyzyjne zapisy, na przykład pomija nawiasy lub zapisuje nawiasy w niewłaściwych miejscach, ale przeprowadza poprawne rozumowanie lub stosuje właściwą strategię, to może otrzymać przynajmniej 1 punkt za rozwiązanie zadania.
- 5. W przypadku zadania wymagającego wyznaczenia pierwiastków trójmianu kwadratowego zdający może otrzymać 1 punkt, jeżeli przedstawi poprawną metodę wyznaczania pierwiastków trójmianu kwadratowego, przy podanych w treści zadania wartościach liczbowych.
- 6. W przypadku zadania wymagającego rozwiązania nierówności kwadratowej zdający może otrzymać 1 punkt, jeżeli stosuje poprawny algorytm rozwiązywania nierówności kwadratowej, przy podanych w treści zadania wartościach liczbowych.
- 7. W przypadku zadania wymagającego stosowania własności funkcji kwadratowej zdający może otrzymać 1 punkt za wykorzystanie konkretnych własności funkcji kwadratowej, istotnych przy poszukiwaniu rozwiązania.

- 8. W przypadku zadania wymagającego zastosowania własności ciągów arytmetycznych lub geometrycznych zdający może otrzymać 1 punkt, jeżeli przedstawi wykorzystanie takiej własności ciągu, która umożliwia znalezienie rozwiązania zadania.
- 9. W przypadku zadania wymagającego analizowania figur geometrycznych na płaszczyźnie kartezjańskiej zdający może otrzymać punkty, jeżeli przy poszukiwaniu rozwiązania przedstawi poprawne rozumowanie, wykorzystujące własności figur geometrycznych lub zapisze zależności, pozwalające rozwiązać zadanie.
- 10. W przypadku zadania z rachunku prawdopodobieństwa zdający może otrzymać przynajmniej 1 punkt, jeśli przy wyznaczaniu liczby zdarzeń elementarnych sprzyjających rozważanemu zdarzeniu przyjmuje określoną regularność lub podaje prawidłową metodę wyznaczenia tej liczby zdarzeń elementarnych.
- 11. W przypadku zadania z geometrii zdający może otrzymać przynajmniej 1 punkt, jeżeli podaje poprawną metodę wyznaczenia długości odcinka potrzebnej do znalezienia rozwiązania.
- 12. W przypadku zadania wymagającego przeprowadzenia dowodu (z zakresu algebry lub geometrii), jeśli w przedstawionym rozwiązaniu zdający powoła się na własność, która wyznacza istotny postęp, prowadzący do przeprowadzenia dowodu, to może otrzymać 1 punkt.
- II. <u>Dodatkowe szczegółowe zasady oceniania</u> zadań otwartych w przypadku arkuszy osób ze stwierdzoną dyskalkulią

Zadanie 5.

1 pkt – przekształcenie wyrażenia $5n^3 - 5n$ do postaci $5n(n^2 - 1)$.

Zadanie 9.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 10.

1 pkt – przekształcenie wielomianu $4x^3-12x^2-x+3$ do postaci $4x^2(x-3)-(x-3)$ lub $x(4x^2-1)-3(4x^2-1)$ *ALBO*

– zapisanie jednego z rozwiązań równania $4x^3 - 12x^2 - x + 3 = 0$.

Zadanie 11.1.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 14.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 22.

- 1 pkt zapisanie, że trójkąty *ABS* oraz *APB* są podobne
 - zapisanie, że trójkąty ABS oraz BPS są podobne, ALBO
 - zapisanie, że trójkąty *APB* oraz *BPS* są podobne.

Zadanie 24.

Stosuje się zasady oceniania arkusza standardowego.

Zadanie 31.

1 pkt – zapisanie jedynie liczby 36 (należy traktować to jako wyznaczenie liczby wszystkich zdarzeń elementarnych).

Uwaqi:

- 1. W ocenie rozwiązania tego zadania (dla zdających z dyskalkulią) <u>nie stosuje się</u> uwagi 1. ze standardowych zasad oceniania.
- 2. Jeżeli zdający poprawnie wypisze/zaznaczy wszystkie zdarzenia elementarne sprzyjające zdarzeniu A, lecz popełni błąd w ich zliczeniu (np. |A|=14) i konsekwentnie zapisze wynik (np. $\frac{14}{36}$) , to otrzymuje **2 punkty**.