2018-01-11

- Conversion (1) between RE and NFA; (2) from NFA to DFA; (3) between CFG and PDA.
- From CFG to PDA: Given a CFG $G = \langle \Sigma, V, R, S \rangle$, the equivalent PDA $A = \langle \Sigma, \Gamma, Q, q_0, F, \delta \rangle$, where $\Gamma = \Sigma \cup V \cup \{\bot\}$, $Q = \{p, q, r\}$, $q_0 = p$, $F = \{r\}$, and δ is the set of:
 - \circ $(p, \epsilon, pop(\epsilon)) \rightarrow (q, push(S \perp))$
 - $\circ \ (q, a, pop(a)) \to (q, push(\epsilon)) \ \forall a \in \Sigma$
 - $\circ (q, \epsilon, pop(A)) \rightarrow (q, push(w)) \forall A \rightarrow w \in R$
 - \circ $(q, \epsilon, pop(\bot)) \rightarrow (r, push(\epsilon))$
- From PDA to CFG: Given a PDA $A = \langle \Sigma, \Gamma, Q, q_0, F, \delta \rangle$, the equivalent CFG $G = \langle \Sigma, V, R, S \rangle$, where $V = \{A_{p,q} | p, q \in Q\}$, and R is the set of:
 - $A_{p,q} \to aA_{r,s}b$ for every pair of $(p, a, pop(\epsilon)) \to (r, push(z))$ and $(s, b, pop(z)) \to (q, push(\epsilon))$
 - $A_{p,r} \to aA_{q,r}$ for every $(p, a, pop(\epsilon)) \to (q, push(\epsilon))$
 - $\circ A_{p,q} \to A_{p,r}A_{r,q}$
 - $\circ A_{p,p} \to \epsilon$
- Construction of union, concatenation, Kleene star from two CFGs: Given two CFGs, $G_1 = \langle \Sigma, V_1, R_1, S_1 \rangle$ and $G_2 = \langle \Sigma, V_2, R_2, S_2 \rangle$,
 - $G = G_1 \cup G_2$ has $\Sigma = \Sigma$, $V = V_1 \cup V_2 \cup \{S\}$, $R = R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$, S = S.
 - $G = G_1G_2$ has $\Sigma = \Sigma$, $V = V_1 \cup V_2 \cup \{S\}$, $R = R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\}$, S = S.
 - $G = G_1^*$ has $\Sigma = \Sigma, V = V_1 \cup \{S\}, R = R_1 \cup \{S \to SS_1, S \to \varepsilon\}, S = S$.
- **Pumping lemma** for RL: If A is a regular language, then there is a number p (the **pumping length**) where if $s \in A$ and $|s| \ge p$, then s may be divided into three pieces, s = xyz, satisfying the following conditions: (1) $\forall i \ge 0$, $xy^iz \in A$; (2) |y| > 0; (3) $|xy| \le p$.
- Pumping lemma for CFL: If A is a context-free language, then there is a number p (the pumping length) where if $s \in A$ and $|s| \ge p$, then s may be divided into five pieces, s = uvxyz, satisfying the following conditions: (1) $\forall i \ge 0$, $uv^i xy^i z \in A$; (2) |vy| > 0; (3) $|vxy| \le p$.
- Conversion (1) from multi-tape TM to single tape TM; (2) from NTM to DTM.
- Closure:
 - RL: complement, union, intersection, concatenation, Kleene star.
 - CFL: union, concatenation, Kleene star.
 - Decidable language: complement, union, intersection, concatenation, Kleene star.
 - Recognizable language: union, intersection, concatenation, Kleene star.
- Suppose $A \leq_M B$ holds:
 - \circ $A \leq_T B$ holds.
 - If B is recognizable, then A is recognizable.
 - If A is not recognizable, then B is not recognizable.
- Suppose $A \leq_T B$ holds:
 - $A \leq_M B$ does not necessarily hold.
 - If B is decidable, then A is decidable.

- If A is undecidable, then B is undecidable.
- **Theorem**: $A \leq_M B$ if and only if $A' \leq_M B'$.
- Theorem: A language L is decidable if and only if L is recognizable and co-recognizable.
- Theorem: $A_{TM} = \{(M, w) | w \in L(M)\}$ is undecidable, recognizable, not co-recognizable.
- **Theorem**: HALT = { $\lfloor M \rfloor | M$ halts on $\lfloor M \rfloor$ } is undecidable, recognizable, not co-recognizable.
- Theorem: $HALT_0 = \{ \lfloor M \rfloor | \lfloor M \rfloor \in L(M) \}$ is undecidable, recognizable, not co-recognizable.
- **Theorem**: EMPTY_{TM} = { $\lfloor M \rfloor | L(M) = \emptyset$ } is undecidable.
 - Construct M'(M, w): On input x: Accept if M accepts w. Reject, otherwise.
- Theorem: ALL_{TM} = { $\lfloor M \rfloor | L(M) = \Sigma^*$ } is undecidable.
 - Construct M'(M, w): On input x: Accept if M accepts w. Reject, otherwise.
- Theorem: $L = \{ |M| | L(M) = s \}$ and $L = \{ |M| | L(M) \ni s \}$ are undecidable.
 - Construct M'(M, w): On input x: Accept if x = s and M accepts w. Reject, otherwise.
- **Theorem**: $RL_{TM} = \{ \lfloor M \rfloor | L(M) \text{ is regular} \} \text{ is undecidable.}$
 - Construct M'(M, w): On input x: Accept if $x = 0^n 1^n$ or M accepts w. Reject, otherwise.
- **Theorem**: $CFL_{TM} = \{ \lfloor M \rfloor | L(M) \text{ is context free} \}$ undecidable.
 - Construct M'(M, w): On input x: Accept if $x = 0^n 1^n 0^n$ or M accepts w. Reject, otherwise.