Numérisation d'une tension - TP

Caractérisation d'un CAN

Présentation

La carte microcontrôleur Arduino Uno R3 offre la possibilité d'acquérir des tensions analogiques.

L'objectif de ce TP est de déterminer expérimentalement les caractéristiques du Convertisseur Analogique Numérique (CAN) de ce microcontrôleur.

Montage

En langage Arduino, la lecture d'une tension se fait comme ci-dessous :

```
int N = analogRead(pin);
```

- Q1. Quelles sont les broches dédiée à la conversion analogique numérique?
- **Q2.** Quel est le type de la variable N?

Un programme Arduino réalisant la conversion analogique numérique sur un afficheur LCD est donné en annexe.

Q3. Mettre en oeuvre un protocole expérimental permettant de tracer la caractéristique du CAN de l'Arduino Uno R3.

Etude

- **Q4.** Tracer la courbe donnant la caractéristique du CAN.
- Q5. Cette conversion analogique numérique est-elle satisfaisante? Justifier
- **Q6.** Quel est le nombre maximal N_{max} obtenu en sortie du CAN.
- **Q7.** En déduire le nombre de bits n utilisé par cette conversion?
- **Q8.** Quelle est la valeur pleine échelle V_{PE} ?
- **Q9.** En déduire est la valeur du quantum?

Modifier l'instruction de la ligne 18 comme suit :

```
int N = analogRead(A0); // Conversion de la tension
```

Q10. Quelles sont les nouvelles caractéristiques du CAN? Compléter le tableau.

Application

Q11. Modifier le programme en annexe pour afficher la valeur de la tension en volt sur l'afficheur LCD.

Annexes

Programme Arduino

```
/*
Conversion Analogique Numérique d'un Arduino Uno R3
Affichage sur un afficheur Grove 16x2 LCD I2C
Installer la librairie Grove - LCD RGB Backlight si pas déjà installer !
*/
#include <Wire.h>
#include "rgb_lcd.h"
rgb_lcd lcd;
              // Déclation de l'afficheur LCD branché sur un port I2C
void setup()
 lcd.begin(16, 2); // Initialisation de l'afficheur LCD sur 2 lignes à 16 caractères
void loop()
{
 int N = analogRead(A0)/128; // Conversion de la tension
 lcd.setCursor(0, 0);
                                // Placement du curseur
 lcd.print(N);
                                // Affichage de la valeur de la tension
  delay(1000);
                                // Pause de 1000 ms
}
```

Mesures

	Cas 1	Cas 2
n (bits)		
N _{max}		
V_{PE} (V)		
q (V)		