

HM-380F64 透传模块 应用指南

HM-380F64 透传模块应用指南 v1.0

文档版本	更新日期	修改内容
v1.0	2024. 2. 28	初版

目录

1.	产品概述	4
2.	莫块特点	4
3.	1气特性	5
4.	莫块应用连接图	6
5.	莫块引脚	6
6.	日口透传协议说明	8
7.		8
8.	莫块参数配置	9
9.	关系方式	2

1. 产品概述

HM-380F64 是一款基于 CMT2380F64 超低功耗 sub-1GHz 无线收发 SoC 芯片实现的无线数据透传模块。具有超低功耗、灵敏度强、通讯距离远、高性价比的优势。同时模块拥有透传功能,用户无需了解复杂的射频配置,可快速实现无线数据传输,节省开发时间。

内核为32位ARM Cortex-MO, 高达64KByte 片内Flash和8KByte 片内SRAM, 最高主频可达48M。同时集成了丰富的外设功能,支持标准的UART、I2C和SPI 接口,RTC、定时器、DMA以及12位高速ADC等。支持多种无线数据包格式及编 解码方式、最多64-byte Tx/Rx FIFO、功能丰富的射频GPIO、多种低功耗运行 模式和快速启动机制、高精度RSSI、手动快速跳频,为二次开发提供无限可能。

2. 模块特点

- 使用简单,无需任何 sub-1Ghz 射频芯片应用经验。
- 可以做诱传模块使用,并支持二次开发。
- 用户接口采用串口通讯,全双工双向通讯,波特率支持范围可达 1200bps-115200bps (详细波特率选项请参考 AT 指令部分)。
- 数据包长度最大可支持254字节,超出自动分包发送。
- 提供丰富的 AT 指令用于配置模块参数(串口速率、通讯信道、数据速率、发射功率、休眠周期等),且支持参数掉电保存。
- 串口缓存大,可一次性往串口输入 1K 字节数据。
- 支持低功耗模式,休眠/接收自动工作,可配置休眠时长。
- 睡眠模式下,功耗低至 1.5ua。

3. 电气特性

测试条件:基于默认透传固件,供电电源 3.3V,工作温度 25℃

参数	符号	状态	最小值	典型值	最大值	单位
		RFM380F64-433S2	426	434	442	MHz
工作频率	$F_{\rm c}$	RFM380F64-868S2	860	868	876	MHz
		RFM380F64-915S2	907	915	923	MHz
调制方式	MOD			GFSK		
		434MHz, DR=2kbps, F _{DEV} =10KHz		-118		dBm
接收灵敏度	SENS	868MHz, DR=2kbps, F _{DEV} =10KHz		-116		dBm
		915MHz, DR=2kbps, F _{DEV} =10KHz		-115		dBm
串口数据率	DR		1200	9600	115200	bps
工作电压	VDD		1.8	3.3	3.6	V
		434MHz		10	15	mA
接收工作电流	I_{Rx}	868MHz		10	15	mA
		915MHz		10	15	mA
		434MHz +20dbm		73	85	mA
发射工作电流	I_{Tx}	868MHz +20dbm		71	85	mA
		915MHz +20dbm		71	85	mA
睡眠电流	I_{Sleep}			1.4		uA
		F _{RF} =433 MHz		35		dBc
镜频抑制	IMR	F _{RF} =868 MHz		33		dBc
		$F_{RF}=868 \text{ MHz}$		33		dBc
工作温度	Top		-40		+85	$^{\circ}$ C

4. 模块应用连接图

模块基本应用一般连接六个引脚。TXD 和 RXD 为串口数据的通讯引脚,PB13/PB14 用于切换模块工作模式,PA2 用于模块进入配置模式以及模块进入休眠模式后的唤醒,PA4 用于输出模块状态信号。

如果使用中不需要切换工作模式,可将PB13/PB14引脚外部拉至对应的工作模式电平,不需要进入配置模式和模块状态信号指示,PA2/PA4可直接悬空。以节省上位机 MCU 的 IO 资源。

5. 模块引脚

模块正面图

模块背面图

引脚名称	引脚特性	描述/复用功能	
RFOUT	0		
GND		电源负	
VCC		电源正:1.8V-3.6V	
GPI03	0	接收模式下映射DOUT输出	
PC13	10	RTC_TAMP1/RTC_TS/RTC_OUT/WKUP1	
PC14	10	OSC32_IN	
PC15	10	OSC32_OUT	
RST	I	硬复位引脚, 低电平有效	
PA6	10	SPI1_MISO/TIM3_CH1/TIM1_BKIN/TIM8_CH1/EVENT_OUT/LPUART_CTS /LPUART_TX/I2C2_SCL/LPTIM_ETR/BEEPER_OUT/COMP_OUT/ADC_IN6/ OPAMP_VOUT	
PB13	I	模块工作模式选择口0(电平组合参照7章节)	
PB14	I	模块工作模式选择口1(电平组合参照7章节)	
PB15	10	SPI1_MOSI/SPI2_MOSI/I2S_SD/TIM1_CH3N/TIM8_CH3N/TIM8_CH4/ RTC_REFIN	
PA8	10	USART1_CK/TIM1_CH1/EVENT_OUT/MCO/SPI2_NSS/TIM8_CH2N	
PA9	0	串口TXD	
PA10	I	串口RXD	
PA11	10	USART1_CTS/TIM1_CH4/EVENT_OUT/I2C2_SCL/SPI2_MOSI/COMP_OUT	
PA4	0	模块处于运行和唤醒模式下常态输出高电平,进入配置模式时输出 低电平/模块处于低功耗和休眠模式时输出低电平	
PA3	10	USART1_RX/USART2_RX/TIM8_CH4/TIM1_CH2/SPI1_MISO/I2S_MCLK/L PUART_RX/COMP_INP/ADC_IN3	
PA2	I	模块处于运行和唤醒模式下拉低PA2进入模块配置/模块处于低功耗 和休眠模式下往PA2提供一个负脉冲信号唤醒模块	
PA1	10	USART1_RTS/EVENT_OUT/SPI1_NSS/I2S_WS/I2C1_SMBA/LPTIM_IN2/L PUART_TX/TIM8_CH2/TIM3_ETR/COMP_INP/ADC_IN1/OPAMP_VINP	
PAO ^[1]	10	USART1_CTS/USART2_CTS/USART2_RX/LPUART_TX/LPUART_RX/SPI1_CK/I2S_CLK/LPTIM_IN1/TIM8_CH1/RTC_TAMP2/WKUP0/COMP_INM/CCP_OUT/ADC_IN0/OPAMP_VINP	
SWDIO(PA13)	SWD调试数据接口	USART1_TX/USART1_RX/USART2_RX/I2C1_SDA/SPI1_SCK/I2S_CLK	

SWCLK (PA14)	SWD调试时钟接口	USART1_TX/USART2_TX/I2C1_SMBA/SPI1_MISO
GPI01	RF的GPI01	可通过AT指令配置映射功能

注意:

[1]模块出厂自带产测固件,通过外部拉低PAO进入,进入产测后会关闭调试接口。如果需要对模块进行二次开发,第一次烧录时请注意外部不要拉低PAO,避免导致烧录失败。

模块引脚说明

6. 串口透传协议说明

用户 MCU 通过串口和模块相连,建立用户 MCU 和其他透传模块之间的无线双向通讯。用户可以通过串口在模块进入配置模式后使用指定的 AT 指令对串口波特率、通讯信道等参数进行设置,默认串口配置为 9600bps 8N1。

无线数据透传时,模块的串口 Rx 一次最大可输入 1K 字节,模块会根据数据长度进行分包或者发送完整包(一包最大支持 254 字节)。

7. 工作模式

模块有四种工作模式,通过给引脚 PB13、PB14 不同的电平组合来选择工作模式:

PB14	PB13	模式	描述
1	1	运行模式	该模式下 MCU 和 RF 将一直处于工作状态,常态
			下RF一直处于接收状态,收到数据后立刻从串
			口发出,若从串口接收到数据,RF 会转为发射
			状态将数据发出。
0	1	唤醒模式	该模式和运行模式相似,区别在于发送时会有
			超长的 preamble 用于唤醒处于低功耗模式的
			模块,所以一包数据会耗费较长的时间,该时
			间取决于用户设置的低功耗周期。此模式主要
			用于和低功耗模式下的模块进行通讯。
1	0	低功耗模式	该模式下 MCU 会进入休眠状态,即模块串口无
			法接收数据。RF 则会处于休眠和接收的循环工
			作状态,休眠和接收的时长取决于用户设置的
			低功耗周期。该模式下接收到数据会从 PA4 引
			脚输出 5ms 高电平后从串口输出数据。
0	0	休眠模式	该模式下 MCU 和 RF 均进入休眠状态,功耗达
			到最低。

四种模式可相互切换,但是低功耗模式和休眠模式下无法立即响应模式变更。需要先设定好模式引脚(PB13、PB14)电平再给唤醒引脚(PA2)一个负脉冲才能将模块唤醒并切换到对应的工作模式。

模块状态指示引脚 PA4 在运行模式和唤醒模式下保持高电平,在低功耗模式和休眠模式下保持低电平,用户可以检测该引脚状态来得知模块是否已经切换模式。

另外需要注意从运行模式切换到休眠模式时,要先切换到唤醒模式再切换 至休眠模式。因为先切换到低功耗模式时模块进入休眠状态无法响应后续的模 式电平信号。

8. 模块参数配置

模块支持在线配置,当模块处于运行或唤醒模式时通过拉低 PA2 引脚进入配置模式,可通过检测 PA4 是否为低电平来确定有无进入配置模式。在配置模式下串口波特率固定为 9600bps 8N1,所有参数支持掉电保存。

配置命令格式(HEX):

CMD 为一字节长, Parameter 长度取决于配置的命令, CheckSum 为 CMD 和 Parameter 的累加校验和,长度一字节。

0x5a	0x36	CMD	Parameter	CheckSum

每发送一条命令后模块都会回复命令的执行结果, 回复指令格式(HEX):

131 = 111 1 111 211 111 211 121 1 111 111							
0x5a	0x36	REPLY	Parameter				

	REPLY	Parameter
执行成功	0x60	版本读取: 软件版本
		其他命令: 无
执行失败	0x61	无
当前配置	0x62	用于回复读取配置的命令;
		回复顺序: 串口波特率+通讯信道+数据速率+串口速率和
		RF 速率是否独立+GPI01 输出映射+FEC 开关+低功耗周期+
		发射功率+同步字

命令名	CMD	Parameter	备注
串口波特率	0x30	1字节参数	默认设置:
		0x00: 1200bps	0x03: 9600bps
		0x01: 2400bps	
		0x02: 4800bps	
		0x03: 9600bps	
		0x04: 19200bps	
		0x05: 38400bps	
		0x06: 57600bps	

		T T	64 透传模块应用指南 v1.0
17 1- 11 1V	<u> </u>	0x07: 115200bps	MINT NO THE -
通讯信道	0x31	1字节参数	默认设置:0x10
		0x00-0x20	信道步进为 500Khz,三
			个频段的模块频率范围
			分别为:
			434M:426-442MHz
			868M:860-876MHz
			915M:907-923MHz
数据速率	0x32	1字节参数	默认设置:
从 加起中	ONOL	0x00: 1.2K	0x03: 9.6K
		0x01: 2.4K	0X00. 3. 0K
		0x02: 4.8K	数据速率与串口速率独
		0x03: 9.6K	立的情况下此参数才有
		0x04: 19.2K	效。
		0x05: 38.4K	
		0x06: 57.6K	
		0x07: 115.2K	
串口和数据速率是否独立	0x33	1字节参数	默认设置:
		>0x00: 独立	0x00: 非独立
		0x00: 非独立	
			非独立的情况下数据速
			率跟随串口速率,例如
			串口速率为 9600,则
			RF 数据速率为 9.6K。
			独立的情况下则根据
			0x32指令里设置的参数
			值。
GPI01 映射输出	0x34	1字节参数	默认设置:
0.7 7 0.7 10.7 10.7 10.7	0.1.0 1	0x00: PREAM_OK_FLG	0x01: SYNC OK FLG
		0x01: SYNC OK FLG	
		0x02: TX_DONE	
		0x03: FIFO NMTY	
		<u> </u>	
		0x04: STATE_IS_RX	
PRO TOV	0.0=	0x05: STATE_IS_TX	#1/1/1 E
FEC 开关	0x35	1字节参数	默认设置:
		>0x00: 开启	0x00: 关闭
		0x00: 关闭	
			此参数收发双方要保持
			一致才能正常通讯。
休眠周期	0x36	1字节参数	默认设置:
		0x00: 500MS	0x01: 1000MS
		0x01: 1000MS	
		0x02: 1500MS	此参数为模块进入低功
		0x03: 2000MS	耗模式时 RF 的休眠时
		0x04: 2500MS	间。
		0x05: 3000MS	
		0x06: 3500MS	
		0x07: 4000MS	
发射功率	0x38	1 字节参数	默认设置:
火剂	OXO		
	<u> </u>	0x00: ODBM	0x05: 20DBM

		1M1 00010	4.07年医坏应用1月用 VI.0
		0x01: 4DBM 0x02: 8DBM 0x03: 12DBM 0x04: 16DBM 0x05: 20DBM	
同步字	0x39	2 字节参数 0x0001~0xFFFE	默认设置: 同步字 0:0xCA 同步字 1:0xCA
恢复出厂设置	0x40	1 字节参数 0x23	所有参数回到默认值。
软复位	0x41	1 字节参数 0x25	模块执行一次软复位。
读取所有配置	0x50	1 字节参数 ANY	回复参数顺序: 串口波特率+通讯信道+ 数据速率+串口速率和 RF速率是否独立+GPI01 输出映射+FEC 开关+低 功耗周期+发射功率+同 步字
设置所有配置	0x51	9字节参数 参数顺序: 串口波特率+通讯信道+数 据速率+串口速率和RF速率 是否独立+GPI01 输出映射 +FEC 开关+低功耗周期+发 射功率+同步字	
读取版本号	0x53	1 字节参数 ANY	

9. 联系方式

深圳市华普微电子股份有限公司

地址:深圳市南山区西丽街道万科云城三期8栋A座30层

电话: +86-0755-82973805 邮箱: sales@hoperf.com 网址: http://www.hoperf.cn