Systemy Agentowe

Projekt 2018 L

Sprawozdanie

Paweł Walczak Kamil Gabryjelski Igor Markiewicz

Spis treści

1	Opis zadania
2	Realizacja zadania
	2.1 Założenia
	2.2 Wybór narzędzi
	2.3 Architektura
	2.3.1 Diagram UML
	2.3.2 Opis plików
	2.4 GUI
3	Badania
	3.1 Badanie wpływu współczynnika szybkości uczenia α i dyskontowania γ
	3.2 Badanie wartości Q
	3.3 Wnioski
4	Bibliografia

1 Opis zadania

W trakcie realizacji projektu ustalono ostateczny zakres i cel projektu. Stworzony został system niezależnego wyuczania agnetów ścieżki do celu (nagrody) na planszy z przeszkodami algorytmemt uczenia ze wzmocnieniem (krytykiem). Tak uszczegółowiony temat projektu pozwala na założenie o statyczności środowiska i wykorzystanie klasycznego algorytmu typu Q – learning.

2 Realizacja zadania

2.1 Założenia

- ullet mapa ma kształt kwadratu wypełnionego polami o liczności n
- \bullet istnieje k < n agentów, z których każdy wyuczany jest niezależnie
- na mapie istnieje $l_1 < n$ przeszkód oraz $l_2 < n l_1$ pól z nagrodami (statycznych stanów absorbujących)
- każdy agent wyucza się niezależnie strategii maksymalizującej wartości funkcji Q wyznaczając swoje ścieżki do nagrody (nagród) i starajac się unikać pól z przeszkodami :

$$Q(s_t, a_t) \longleftarrow (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot \left(r_t + \gamma \cdot \max_{a} \left[Q(s_{t+1}, a)\right]\right)$$

$$\alpha, \gamma \in [0, 1]$$

- zbiór stanów S zawiera liczby naturalne : $1, 2, \ldots, n$, oznaczające numerowanie kolejnych komórek (wierszami) począwszy od górnego, lewego rogu mapy (Rys. 1)

0	1		n-1
n	n+1		2n-1
:	٠	٠	÷
n(n-1)			$n^2 - 1$

Rys. 1: Schemat numerowania pól mapy.

-zbi
ór akcji ${\cal A}$ jest połączony po przez przypisanie (mapowanie)
ze biorem ${\cal S}$ w następuujący sposób :

$$f(s_t) = S_{t+1}^{approved}$$

co oznacza że w stanie s_t możemy wykonać prawidłowe przejście do jednego ze stanów w $S_{t+1}^{approved}$. Jako prawidłowe przejście definiuje się przesunięcie do dowolnej komórki przylegającej do danej w schemacie miejskim (prostopadłe drogi), z wyłączeniem sytuacji pozwalających na wyjście poza mapę (Rys. 2)

- pogodzenie sporu eksploracja vs
 eksploatacja zostało zaproponowane jako wykorzystanie alogrytmu
 ϵ zachłannego przy wyborze kierunku ruchu :
 - 1. $\epsilon = const + \frac{\epsilon_{dropoff}}{\text{numer_iteracji} + \epsilon_{dropoff}}$
 - 2. jeśli wartość rnd z generatora losowego o rozkładzie jednostajnym na przedziale [0,1] jest mniejsz niż ϵ to :
 - (a) wybierz losową akcję
 - (b) w przeciwnym razie wybierz losowo akcję ze zbioru akcji o największjej wartości funkcji ${\cal Q}$
- nad wszystkimi agentami czuwa agent środowiskowy nadający nagrody (kary) za ruch (-1
 za wejście na pole z przeszkodą, 2 za wejście na pole z nagrodą, 0 w pozostałych
 przypadkach)

Rys. 2: Na żółto – pole z nagrodą, na niebiesko – agenci, na czerwono – statyczne przeszkody, zielone strzałki – dozwolone ruch, czerwona strzałka – niedozwolone wyjście poza mapę.

2.2 Wybór narzędzi

Jako język programowania została wybrana Scala z biblioteką Akka służącą do modelowania systemów aktorowych/agentowych. Algorytm Q – learning został zaimplementowany ręcznie. Do wizualizacji poruszających się agentów została użyta biblioteka graficzna ScalaFX, a jako system zarządzania projektem został wybrany framework Maven.

2.3 Architektura

2.3.1 Diagram UML

Rys. 3: Diagram UML

2.3.2 Opis plików

- $\bullet \ src.main.scala.qlearning.common$
 - Evaluator trait deklarujący funkcję obliczającą wartości Q
 - QLearner klasa definiująca obiekty służące do uczenia agentów
 - QTable klasa definiująca tabelę wartości Q z metodami do wywoływania na niej
 - State trait deklarujący funkcje dostępne dla stanu
- $\bullet \ src.main.scala.qlearning.actor System$
 - $-\ App$ obiekt implementujący trait JFXApp,uruchomianie programu oraz reprezentacja graficzna

- LegalTransitions obiekt zawierający funkcję do generowania stanów i dozwolonych przejść
- SagBoard klasa implementująca trait State i definiująca wymaganie funkcje służące do obsługi agentów i zleceń
- SagPlayer klasa implementująca trait Actorzawierająca definicje funkcji służące do nauki i wykonywania ruchów
- $Utils\,-$ obiekt zawierający parametry startowe oraz definicje klas będących podstawowymi typami danych
- src.test.scala.tests obiekt z testami jednostkowymi

2.4 GUI

Rys. 4: Wygląd panelu symulacji

3 Badania

Założenia ogólne co do badań:

- plansza ma wymiar 5×5
- w badaniu bierze udział trzech agentów (białe pola)

- na planszy istnieje 6 przeszkód (czerwone pola) oraz 1 cel (żółte pole)
- romieszczenie poszczególnych elementów (w tym początkowe agentów) przedstawione jest na Rys. 3
- const = 0.01
- $\epsilon_{dropoff} = 5, 0$
- liczba iteracji = 1000

3.1 Badanie wpływu współczynnika szybkości uczenia α i dyskontowania γ

Badania w tej części zostały wykonane przy następujących założeniach :

- badaną cechą jest suma wartość funkcjQdla wszystkich wykonanych kroków w ostatniej iteracji uczenia
- wynik są zbierane od każdego agenta osobno a następnie uśredniane
- ustalono arbitralnie że pierwszym badaniem będzie testowanie parametru α przy $\gamma=0,5$
- następnie dla najlepszej wartości parametru α przeprowadzono testowanie parametru γ

Rys. 5: Wyniki dla współczynnika α

Rys. 6: Wyniki dla współczynnika γ

Możemy zauważyć że najlepsze efekty otrzymujemy dla $\alpha \approx 0, 1$ oraz $\gamma \approx 0, 9$.

3.2 Badanie wartości Q

W tej części dla ustalonych wartości parametrów α, γ został przeprowadzony test skuteczności :

- badaną cechą jest suma wartość funkcjQdla wszystkich wykonanych kroków w kolejnych iteracjach uczenia
- wynik są zbierane od każdego agenta osobno a następnie uśredniane

Rys. 7: Wyniki dla $\alpha = 0, 1$ oraz $\gamma = 0, 9$

3.3 Wnioski

- najlepsze efekty uzyskane zostały dla $\alpha\approx0,1$ co oznacza że preferowane jest wolniejsze uczenie, zapobiegające zapewne znacznym przeskom
- duża wartość $\gamma=0,9$ świadczy że zdecydowanie bardziej preferowane są sytuacje w których system może polegać na wartościach wybiegających w "przyszłość"
- wartość funkcji z Rys. 6 nasyca się na poziomie $Q\approx 9$ dla ok 300 iteracji

4 Bibliografia

- [1] materiały wykładowe z Systemów Agentowych 2018 L
- [2] https://akka.io/
- [3] "Systemy uczące się" $P.\mathit{Cichosz},$ WNT Warszawa 2000, 2007 wyd. drugie
- [4] https://en.wikipedia.org/wiki/Q-learning