GATE 2023[IN]-36

EE23BTECH11066 - Yakkala Amarnath Karthik

Question:

The impulse response of an LTI system is $h(t) = \delta(t) + 0.5\delta(t-4)$, where $\delta(t)$ is continuous-time unit impulse signal if the input signal $x(t) = \cos\left(\frac{7\pi t}{4}\right)$, the output is (GATE IN 2023)

Solution:

Variable	Description	value
$\delta\left(t\right)$	continuous-time unit impulse signal	1 if t=0;
		0 in other cases
$h\left(t\right)$	impulse response	$\delta\left(t\right) + 0.5\delta\left(t - 4\right)$
x(t)	input signal	$x(t) = cos\left(\frac{7\pi t}{4}\right)$
$y\left(t\right)$	output signal	x(t)* h(t)
$\mathcal{F}(\cos\omega_0 t)$	Fourier transform of $\cos \omega t$	$\pi \left[\delta \left(\omega - \omega_0 \right) + \delta \left(\omega + \omega_0 \right) \right]$
Y(f)	Fourier transform of $y(t)$	$0.5\pi \left[\delta \left(\omega - \frac{7\pi}{4}\right) + \delta \left(\omega + \frac{7\pi}{4}\right)\right]$
X(f)	Fourier transform of $x(t)$	$\pi \left[\delta \left(\omega - rac{7\pi}{4} ight) ight] + \delta \left(\omega + rac{7\pi}{4} ight)$

TABLE I

A TABLE WITH INPUT PARAMETERS

from Table I

y(t) = x(t) * h(t)

$$= x(t) * (\delta(t) + 0.5\delta(t - 4))$$
(2)

$$= x(t) + 0.5x(t - 4)$$
(3)

$$= \cos\left(\frac{7\pi t}{4}\right) + 0.5\cos\left(\frac{7\pi(t - 4)}{4}\right)$$
(4)

$$= \cos\left(\frac{7\pi t}{4}\right) + 0.5\cos\left(\frac{7\pi t}{4} - 7\pi\right)$$
(5)

$$= 0.5\cos\left(\frac{7\pi t}{4}\right)$$
(6)

Fig. 1. Graph showing x(t) and y(t)

Transfer function
$$(H(f)) = \frac{Y(f)}{X(f)}$$
 (7)

$$= \frac{0.5\pi \left[\delta \left(\omega - \frac{7\pi}{4}\right) + \delta \left(\omega + \frac{7\pi}{4}\right)\right]}{\pi \left[\delta \left(\omega - \frac{7\pi}{4}\right) + \delta \left(\omega + \frac{7\pi}{4}\right)\right]}$$
(8)
= 0.5 (9)