MTL6400U

SINGLE CHANNEL OPTOCOUPLER (Electrically similar to 6N140)

Features:

High Reliability

High Current Ration: 300% TypicalRugged surface mount package

• Low Input current requirement: 0.5mA

+1.5kV electrical isolation

Applications:

- Military and Space
- Level shifting
- Line receiver
- Switching power supplies
- · Communication Systems

DESCRIPTION

The *MTL6400U* contains a gallium aluminum arsenide LED optically coupled to a silicon photodarlington detector. The optocoupler is built in a 6-pin leadless chip carrier. This optocoupler is capable of transmitting signals between two galvanic sources. The potential difference between transmitter and receiver should not go over the maximum isolation voltage. Also available screened to MIL-STD-883.

ABSOLUTE MAXIMUM RATINGS

Input Diode

input brode		
Peak Forward Input Current (Value applies for tw ≤ 1ms, 500 pps)	20m	Α
Average Input Current, I _F (Note 1)	10mA	
Reverse Input Voltage, V _R		
Output Photodetector		
Output Current, Io	40mA	
Output Voltage, Vo	0.5V to 18V	
Supply Voltage, V _{CC}	0.5V to 20V	
Output Power Dissipation (Note 2)		
Storage Temperature	65°C to +150°C	С
Operating Free-Air Temperature Range	55°C to +125°C	С
Lead Solder Temperature (vapor phase reflow for 30 sec.)		

Notes:

- Derate I_F at 0.66mA/°C above 110°C
- Output power is collector output power plus one half of the total supply power. Derate at 5mW/°C above 110°C.

RECOMMENDED OPERATING CONDITIONS:

PARAMETER	SYMBOL	MIN	MAX	UNITS
Input Current, Low Level	I _{FL}	0	1	μΑ
Input Current, High Level	I_{FH}	0.5	5	mA
Supply Voltage	V_{CE}	5	18	V
Operating Temperature	T _A	-55	125	°C

SELECTION GUIDE

PART NUMBER	PART DESCRIPTION
MTL64X0U.001. <u>X</u>	Single Channel optocoupler, commercial (0° to+70°C operating temperature range)
MTL64XOU.002. <u>X</u>	Single Channel optocoupler, commercial (-40° to +85°C operating temperature range)
MTL64X0U.003. <u>X</u>	Single Channel optocoupler, commercial (-55° to +125 operating temperature range)
MTL64X0U.004. <u>X</u>	Single Channel optocoupler, w/100% device screening -55° to +125°Coperating temperature range)

NOTE: Replace first \underline{X} with 0 or 2 to indicate type of part required

X at end of part number represents lead finish. Replace with A for gold or S for solder.

ELECTRICAL CHARACTERISTICS INPUT DIODE

T_A= 25°C unless otherwise specified.

PARAMETER		SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Reverse Breakdown Voltage		BVR	5			٧	I _R = 10μA
Input Diode Static Forward Voltage		VF			1.8	٧	I _F = 1.6mA
Input Diode Static Forward Voltage	-55°C	VF		1.5	1.8	٧	I _F = 1.6mA
Input Diode Static Forward Voltage	+100°C	VF		1.2	1.8	V	I _F = 1.6mA

COUPLED CHARACTERISTICS

T_A= 25°C unless otherwise specified.

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Current Transfer Ration	CTR	300	1500		%	$I_F = 0.5 \text{mA}, V_O = 0.4 \text{V}, V_{CC} = 4.5 \text{V}$
		300	1000		%	I _F = 1.6mA, V _O = 0.4V, V _{CC} = 4.5V
		200	500		%	I _F = 5.0mA, V _O = 0.4V, V _{CC} = 4.5V
Logic Low Output Voltage	V _{OL}		0.1	0.4	V	I _F = 0.5mA, I _{OL} = 1.5mA, V _{CC} = 4.5V
Logic Low Output Voltage	V _{OL}		0.2	0.4	V	I _F = 0.5mA, I _{OL} = 10mA, V _{CC} = 4.5V
Logic High Output Current	ГОН		0.01	250	μΑ	V _O = V _{CC} = 18V
Logic Low Supply Current	Iccl		0.4	1.0	mA	I _F = 1.6mA, V _{CC} = 18V
Logic High Supply Current	Icch		0.01	10	μΑ	I _F = 0mA, V _{CC} = 18V
Input-Output Insulation Leakage Current	I _{I-O}			1.0	μΑ	45% Relative Humidity, $T_A = 25$ °C t = 5 sec, $V_{EO} = 1500$ Vdc
Resistance (Input-Output)	R _{I-O}	10 ¹²			Ω	V _{IN-OUT} = 500V
Input to Output Capacitance	Cio		1.5		pF	f = 1MHz, T _A = 25°C
Propagation Delay Time to High Output Level	tplH		6.0	60	μs	$V_{CC} = 5V$, $I_F = 0.5mA$, $R_L = 4.7k\Omega$
			4.0	20	μs	$V_{CC} = 5V$, $I_F = 5mA$, $R_L = 680\Omega$
Propagation Delay Time to Low Output Level	t _{PHL}		30	100	μs	V_{CC} = 5V, I _F = 0.5mA, R _L = 4.7k Ω
			2.0	5.0	μs	$V_{CC} = 5V$, $I_F = 5mA$, $R_L = 680\Omega$
Common Mode Transient Immunity At High Output Level	СМн	500	1000		V/μs	$V_{CM} = 50V_{P-P}, V_{CC} = 5.0V$ $R_L = 1.5K\Omega, I_F = 0mA$
Common Mode Transient Immunity At Low Output Level	CM _L	500	1000		V/µs	$V_{CM} = 50V_{P-P}, V_{CC} = 5.0V$ $R_L = 1.5K\Omega, I_F = 1.69mA$

