1 Auswertung

1.1 Bestimmung der maximalen Kraftflussdichte

Die gemessenen Werte sind relativ zum Mittelpunkt der Helmholtzspulen aufgenommen. An diesem Punkt ist das Magnetfeld am größten. Die Werte sind in Tabelle 1 zu finden.

Tabelle 1: gemessene Kraftflussdichte

B(z)/ mT	$\rm z_{rel}$ / cm
68	14
136	12
254	10
350	8
407	6
436	4
450	2
464	0
458	-2
451	-4
437	-6
404	-8
335	-10
210	-12
98	-14

Um die maximale Kraftflussdichte zu ermitteln wird B(z) gegen z aufgetragen. Dies ist in Abbildung 1 zu sehen. Die lineare Regression wird mit der Formel

$$B(z) = m \cdot (z - a)^2 + n \tag{1}$$

durchgeführt. So ergeben sich die Parameter

$$m = (-2, 01 \pm 0, 08) \frac{\text{mT}}{\text{cm}^2}$$
 (2)

$$a = (-0.62 \pm 0.16) \,\mathrm{cm}$$
 (3)

$$n = (481, 17 \pm 8, 13) \,\mathrm{mT} \tag{4}$$

$$\Rightarrow S = (-0, 62, 481, 17) \tag{5}$$

Somit liegt das Maximum bei

$$B_{\text{max}} = (481, 17 \pm 8, 13) \,\text{mT}.$$
 (6)

Abbildung 1: gemessene Kraftflussdichte

1.2 Messung der Faraday-Rotation

Die Messergebnisse des n-dotierten GaAs sind in Tabelle 4 aufgetragen. Die Probe hat eine Dicke von D=1,36 mm und N=1, $2 \cdot 10^{18}$ cm³.

Tabelle 2: n-dotiertes GaAs

$\lambda/\mu\mathrm{m}$	$\theta_1/^\circ$	$\theta_2/^\circ$	$\theta_{\rm reell}/^{\circ}$	$\Delta \theta_{ m norm}/rac{\circ}{ m m}$
1,06	189	186	1,5	1102,94
1,29	190	188	1,0	$735,\!29$
2,34	211	210	0,5	$367,\!64$
$2,\!51$	213	210	1,5	1102,94
2,9	306	283	11,5	8455,88
3,18	223	208	7,5	5514,70
3,985	320	312	4,0	2941,18
5,3	231	216	7,5	5,51

Die Messergebnisse der hochreinen Probe mit einer Dicke von $D=5,1\,\mathrm{mm}$ sind in Tabelle 3 aufgetragen.

Tabelle 3: hochreines GaAs

$-\lambda/\mu m$	$\theta_1/^\circ$	$\theta_2/^\circ$	$\theta_{\rm reell}/^{\circ}$	$\Delta\theta_{ m norm}/\frac{\circ}{ m m}$
1,06	208	207	0,5	0,10
1,29	200	198	1,0	0,20
2,34	208	206	1,0	0,20
$2,\!51$	209	207	1,0	$0,\!20$
2,9	234	228	4,0	$0,\!59$
3,18	238	220	9,0	1,76
3,985	223	215	4,0	0,78
5,3	259	250	4,5	0,88

 $\theta_{\rm reel}$ entspricht hierbei der halbierten Differenz von θ_1 und θ_2 . $\theta_{\rm norm}$ ist der längennormierte Winkel. In Abbildung 2 wurde der längennormierte Winkel gegen das quadrat der Wellenlänge aufgetragen

1.3 Bestimmung der effektiven Masse

Zur Bestimmung der effektiven Masse wird die Differenz der beiden normierten Winkel der n-dotierten und der hochreinen Probe gebildet. Die Ergebisse sind in Tabelle ?? zu finden. Diese Winkel, aufgetragen gegen die Wellenlänge zum Quadrat, werden in Abbildung 3 dargestellt.

Abbildung 2: Der Winkel gegen λ^2

Tabelle 4: n-dotiertes GaAs

$\lambda/\mu\mathrm{m}$	$\theta_{ ext{diff}}/rac{\circ}{m}$
1,06	1005,09
1,29	$539,\!60$
$2,\!34$	171,95
$2,\!51$	$907,\!25$
2,9	7868,80
3,18	$3753,\!45$
3,985	2158,40
5,3	4634,08

Abbildung 3: Die Winkeldifferenz gegen λ^2

Die linerare Regression wurde mit

$$\theta(\lambda^2) = a \cdot \lambda^2 + b \tag{7}$$

durchgeführt. Die Parameter lauten:

$$a = (1, 0 \pm 0, 7) \cdot 10^3 \, \frac{1}{\text{m}^3} \tag{8}$$

$$b = (-0, 1 \pm 2, 1) \cdot 10^3 \, \frac{1}{\text{m}} \tag{9}$$

Mit Formel ?? ergibt sich

$$a = \frac{e_0^3}{8\pi^2 \epsilon_0 c^2} \frac{1}{m^{*2}} \frac{NB}{n} \tag{10}$$

Dabei ist n der Brechungsindex und liegt bei n=3,6.[Brechungsindex] Nach der effektiven Masse umgestellt ergibt sich:

$$m* = \sqrt{\frac{e_0^3}{8\pi^2 \epsilon_0 c^2} \frac{1}{a} \frac{NB}{n}}$$
 (11)

Der Wert für B wird aus ?? übernommen und der für N liegt, wie oben bereits erwähnt, bei $N=1, 2\cdot 10^{18}\,\mathrm{cm}^3$. Somit ergibt sich für die effektive Masse:

$$m* = ()$$

Der Fehler berechnet sich mit

$$\Delta m * = \sqrt{\left(\frac{dm*}{dB} \cdot \Delta B\right) + \left(\frac{dm*}{da} \cdot \Delta a\right)^2}$$
 (12)

2 Diskussion

2.1 Bestimmung der maximalen Kraftflussdichte

Die Messung der Kraftflussdichte hat gut fun