Lesson 5: Uncertainty principle

Clara E. Alonso Alonso

December 20, 2011

Heisenberg uncertainty relations	2
Implications and applications of the uncertainty principle	
The two-slit experiment. Principle of complementarity	13
Demonstration that $\Delta A \Delta B \geq \frac{1}{2} \mid <[A,B]>\mid$	18
= 2 \ [2,5] \	
	2/

Uncertainty (or **indeterminacy**) of an observable \hat{Q} is related to fluctuations or dispersion around $<\hat{Q}>$

Uncertainty

$$\Delta \hat{Q}_{\Psi} \; = \; \sqrt{<\hat{Q}^2>_{\Psi} - <\hat{Q}>_{\Psi}^2} \; = \; \sqrt{<(\hat{Q} - <\hat{Q}>_{\Psi})^2>_{\Psi}}$$

ullet If Ψ is eigenstate of $\hat{Q} \,
ightarrow \,\hat{Q}\Psi \,=\, q\,\Psi$

$$<\hat{Q}>_{\Psi} = q \; ; \; <\hat{Q}>_{\Psi}^2 = q^2 \to \Delta \hat{Q}_{\Psi} = 0$$

3 / 24

• Uncertainties of a pair of Hermitian operators \hat{P} and \hat{Q} are correlated by uncertainty (or indeterminacy) relations

$$\left(\Delta\hat{Q}_{\Psi}\right)^{2}\ \left(\Delta\hat{P}_{\Psi}\right)^{2}\geq\frac{1}{4}< i[\hat{Q},\hat{P}]>_{\Psi}^{2}$$

↓ Heisenberg uncertainty principle

- $[\hat{x}, \hat{p}_x] = i\hbar \rightarrow \Delta \hat{x} \Delta \hat{p}_x \geq \frac{\hbar}{2}$
- $[\hat{H}, t] = i\hbar \rightarrow \Delta \hat{H} \Delta t \geq \frac{\hbar}{2}$

 Δt characteristic time of the system

The two previous inequalities are the ones of Heisenberg

The two previous inequalities are the ones of Heisenberg

- $\Delta \hat{x}=0 \to \Delta \hat{p}_x=\infty$ Confinement in space \to indeterminacy of associated momentum and vice versa
- ullet $\Delta \hat{p}_x = 0$ (plane wave) $o \Delta \hat{x} = \infty$

$$\hat{p}_x \left(e^{i(k_x x - \omega t)} \right) = \hbar k_x e^{i(k_x x - \omega t)}$$

eigenstate of $\,\hat{p}_x\,
ightarrow\, \Delta\hat{p}_x\,=\,0\,$

 Wave-particle duality → leaves the idea of having position and associated momentum accurately defined simultaneously

5 / 24

Implications and applications of the uncertainty principle

6/24

• 1) **Estimate** of radius and energy of the ground state of a hydrogen atom (p-e⁻) μ is the reduced mass of the system ; r is the p-e⁻ distance

 $E=rac{p^2}{2\mu}-rac{e^2}{r}$ (using the Gaussian system of units,where $4\pi~\epsilon_0=1)$

$$\Delta r \Delta p \sim \hbar$$

↓ approximation

$$r p = \hbar \rightarrow p = \frac{\hbar}{r} \rightarrow E = \frac{\hbar^2}{2\mu r^2} - \frac{e^2}{r}$$

 $r \to \infty \implies E \to 0$

bound system $\implies E < 0$

We seek $r = r_0$ that minimizes E

$$\frac{dE}{dr}\Big|_{r_0} = -\frac{\hbar^2}{\mu r_0^3} + \frac{e^2}{r_0^2} = 0$$

 $r_0 = rac{\hbar^2}{\mu e^2}$ Bohr radius (most probable radius in the G.S.)

 $r_0 \approx 0.5 \text{ Å}$

8 / 24

• cont. 1)

$$E_{min} \, = \, \frac{\hbar^2}{2\mu} \frac{\mu^2 e^4}{\hbar^4} \, - \, e^2 \frac{\mu e^2}{\hbar^2} \, = \, - \frac{\mu e^4}{2\hbar^2} \, = \, -13.6 \, \text{eV} \, \rightarrow$$

G.S. energy of the hydrogen atom

- \circ atoms do not collapse $\ \to\ E_c+V+$ uncertainty relations They collapse clasically; r for minimum energy is 0 and binding energy is ∞
- \circ classical orbits are incompatible with the wave theory $\Delta r \sim r$

Fine-structure constant: $\alpha = \frac{e^2}{4\pi\epsilon_0} \frac{1}{\hbar c} = \frac{1}{137}$

In gaussian system of units $e^2 = \frac{\hbar c}{137}$

 $\bullet~$ 2) Nuclear radius $~r~\sim~1.4~\times~10^{-13}~{\rm cm}~=~1.4~{\rm fm}$

$$p\,\sim\,rac{\hbar}{r}\,
ightarrow\,rac{E_{cin}}{ ext{nucleon}}pprox\,rac{1}{2M_p}\left(rac{\hbar}{r}
ight)^2\,pprox10$$
 MeV / nucleon

Nucleons are bound in the nucleus $\ o \ E_T < 0$

$$|< U>| \ge 10 \, \mathrm{MeV} \, / \, \mathrm{nucleon}$$

(coincides with known data)

10 / 24

• 3) Determination of the mass of the pion

Yukawa \rightarrow nuclear (strong) force \rightarrow pions exchange between nucleons

While there is the pion energy is not conserved

$$\Delta E \sim \mu c^2$$

The uncertainty principle allows non-conservation of energy in time smaller than

$$\Delta t \approx \frac{\hbar}{\Delta E} \approx \frac{\hbar}{\mu c^2}$$

it is not detectable the violation of the law of conservation of energy. It can not be measured at a time with greater precision than ΔE

Range of the particle assuming $v = v_{max} = c$

$$c \Delta t \approx \frac{\hbar c}{\mu c^2} = r_0 = 1.4 \, fm$$

(known range of the nuclear force)

$$\mu c^2 = {\hbar c \over r_0} = 141 \ {
m MeV} \ (m_\pi pprox \ 141 \ {
m MeV/c^2}) \ {
m 12 \, / \, 24}$$

The two-slit experiment. Principle of complementarity

13 / 24

6

Any attempt to **observe** which of the two slits the electron passes through results in the **disappearance of the interference pattern**. The electron is perturbed by the act of observation.

If we do not try to "see" which of the two slits the electron passes through \rightarrow appearance of the interference pattern

Because of the uncertainty principle

- 1) Particle-like behaviour \implies knowing which of the two slits the electron passes through
 - $\Delta x < d$
- 2) Wave-like behaviour (interference)

 $\theta' \rightarrow \text{outgoing angle for the e}^-$

 $\Delta\theta^\prime\,<$ angular distance between consecutive maximum and minimum

15 / 24

From central maximum to first minimum $\theta \approx \sin \theta = \frac{\lambda}{2d}$

$$\Delta \theta' \sim \Delta \sin \theta' << \frac{\lambda}{2d}$$

$$\frac{\Delta p_x}{p} << \frac{\lambda}{2d} = \frac{h}{2dp}$$

$$\Delta p_x << \frac{h}{2d}$$

1) and 2) lead to $~~\Delta x \Delta p_x ~<<~\frac{h}{2}~$ contrary to the uncertainty principle

Bohr's principle of complementarity \rightarrow The wave and particle models are complementary. If a measurement proves the **wave character** of radiation or matter, then it is impossible to prove the **particle character** in the same measurement, and conversely

- ullet Which model to use? ullet determined by the nature of the experiment
- Knowledge of radiation or matter (classical) is incomplete without measurements that reveal aspects of wave and particle
- ullet We can not make measurements more precise than the uncertainty principle allows (eq classically)
- Measurements disturb "now" the system being observed, but this perturbation can be calculated and taken into account
- When trying to accurately measure a variable belonging to a pair of canonical variables, the other changes in an amount that does not allow to be measured very accurately without interfering with the first trial

17 / 24

Demonstration that $\Delta A \Delta B \, \geq \, \frac{1}{2} \, | < [A,B] > |$

18 / 24

If A and B are Hermitian operators

$$\begin{array}{lll} A \,=\, A^{\dagger} & ; & B \,=\, B^{\dagger} \\ [A,B]^{\dagger} \,=\, (AB-BA)^{\dagger} & =\, B^{\dagger}A^{\dagger} \,-\, A^{\dagger}B^{\dagger} \,=\, \\ BA \,-\, AB \,=\, -\, [A,B] \\ \\ (i[A,B])^{\dagger} \,=\, -\, i[A,B]^{\dagger} \,=\, i[A,B] \,=\, M \,\rightarrow\, \text{Hermitian} \end{array}$$

We define

•
$$\widetilde{A} = A - \langle A \rangle$$

 $\widetilde{A}^{\dagger} = A^{\dagger} - \langle A \rangle^{*} = A - \langle A \rangle = \widetilde{A}$
 $\langle \widetilde{A}^{2} \rangle = \langle A^{2} - 2 \langle A \rangle A + \langle A \rangle^{2} \rangle =$
 $\langle A^{2} \rangle - 2 \langle A \rangle^{2} + \langle A \rangle^{2} = \langle A^{2} \rangle - \langle A \rangle^{2} = (\Delta A)^{2}$

•
$$\widetilde{B} = B - \langle B \rangle$$
 $\langle \widetilde{B}^2 \rangle = (\Delta B)^2$

•
$$\widetilde{B} = B - \langle B \rangle$$
 $\langle \widetilde{B}^2 \rangle = (\Delta B)^2$
• $[\widetilde{A}, \widetilde{B}] = [A - \langle A \rangle, B - \langle B \rangle] = [A, B] = \frac{M}{i}$

 $\Psi = (\alpha \widetilde{A} + i \widetilde{B}) \phi$ with $\alpha \in \mathcal{R}$

 $\int d\tau |\Psi|^2 \ge 0$ and real $\forall \alpha$

$$\int d\tau |(\alpha \widetilde{A} + i\widetilde{B})\phi|^2 = \int d\tau \left[(\alpha \widetilde{A} + i\widetilde{B})\phi \right]^* (\alpha \widetilde{A} + i\widetilde{B})\phi$$

$$= \int d\tau \phi^* (\alpha \widetilde{A} + i\widetilde{B})^{\dagger} (\alpha \widetilde{A} + i\widetilde{B})\phi$$

$$= \int d\tau \phi^* (\alpha \widetilde{A} - i\widetilde{B})(\alpha \widetilde{A} + i\widetilde{B})\phi$$

$$= \int d\tau \phi^* (\alpha^2 \widetilde{A}^2 + i\alpha \widetilde{A}\widetilde{B} - i\alpha \widetilde{B}\widetilde{A} + \widetilde{B}^2)\phi$$

20 / 24

$$\begin{split} &= \int d\tau \phi^* (\alpha^2 \widetilde{A}^2 \, + \, i\alpha [\widetilde{A}, \widetilde{B}] \, + \, \widetilde{B}^2) \phi \\ &= \int d\tau \phi^* (\alpha^2 \widetilde{A}^2 \, + \, i\alpha \frac{M}{i} \, + \, \widetilde{B}^2) \phi \\ &= \alpha^2 < \widetilde{A}^2 >_{\phi} \, + \, \alpha < M >_{\phi} \, + \, < \widetilde{B}^2 >_{\phi} \, \geq \, 0 \quad \forall \alpha \end{split}$$

The discriminant of the quadratic equation in α must be $\Delta \leq 0$ so as not to have two real roots \rightarrow in this case the expression would take negative values for a range of values of α

$$\begin{array}{lll} \Delta &=& ^2 &- 4<\tilde{A}^2><\tilde{B}^2> &\leq 0\\ &< M>^2 &\leq 4<\tilde{A}^2><\tilde{B}^2>\\ &< \tilde{A}^2> &=& (\Delta A)^2 &; &< \tilde{B}^2> &=& (\Delta B)^2\\ &(\Delta A)^2\,(\Delta B)^2\geq \frac{1}{4}< i[A,B]>^2\\ &i[A,B] &\text{ is Hermitian } &\to &< i[A,B]> &\text{ is real} \\ &\downarrow && &\downarrow \end{array}$$

$$\Delta A \, \Delta B \, \geq \, \tfrac{1}{2} | < i [A,B] > | \, = \, \tfrac{1}{2} | < [A,B] > |$$

22 / 24

Stivers 4-1-03 Heisenberg cafe.gif (GIF Image, 675... http://www.marks

1 of 1 10/05/2010 03:53 PM

- [1] A.P.French y E.F. Taylor, "Introducción a la Física Cuántica"
- [2] S. Gasiorowicz, "Quantum Physics", ed. John Wiley, 2003, Apéndice B
- [3] D.J. Griffiths, "Introduction to Quantum Mechanics", ed. Pearson Education Inc., 2005
- [4] D. Park, "Intoduction to the Quantum Theory", ed. McGraw-Hill, 1992
- [5] R.C. Greenhow, "Introductory Quantum Mechanics", IOP Publishing, 1994
- [6] J.S. Townsend, "A Modern Approach to Quantum Mechanics", ed. University Science Books, 2000. Apéndice A: Unidades electromagnéticas