We claim:

1. A compound of the formula

or a pharmaceutically acceptable salt thereof wherein:

R₁ is H; C₁₋₂

H; C_{1-4} alkyl; C_{2-4} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$;

Pic

H; C_{1-8} alkyl; C_{2-8} alkyl substituted with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, C_{2-4} alkoxy C_{1-4} alkoxy, $OC(=0)R_7$, or $C(=0)R_7$; C_{3-7} alkenyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{3-7} alkynyl unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, NR_5R_6 , or C_{1-4} alkoxy; C_{1-3} alkyl substituted with phenyl or R_{10} either of which can be unsubstituted or substituted opt/onally with C_1-C_3 alkyl, C_1-C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0 - 2 and n is 0 - 2; C_{2-4} alkoxy substituted optionally with NR_5R_6 , halogen, C_{1-4} alkoxy, or $C(=0)R_7$; phenyl or R_{10} either of which/can be unsubstituted or substituted optionally with OH, $(CH_2)_n NR_5 R_6 / halogen$, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_m R_8$ or $SO_2NR_5R_6$, wherein m is 0 - 2 and n is 0 - 2; provided that R_1 and R, cannot both be H; or R, and R, can be joined to form a saturated ring of 5/or 6 atoms selected from 0, S, C or N, such as, pyrrolidiné, oxazolidine, thiomorpholine, thiomorpholine 1,1 dioxide, dioxide, thiazolidine 1,1 piperazine, morpholiné,

20

tetrahydrooxazine, which can be unsubstituted or substituted optionally on carbon with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} alkyl, C_{1-6} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, $C(=0)R_7$ or on nitrogen with NR_5R_6 , C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} alkyl or C_{2-6} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$;

 R_3 is H; halogen; C_{1-4} alkyl; C_{1-8} alkoxy; C_{1-8} alkylthiol; C_{2-8} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkyl substituted optionally with R_4 ; or R_1 and R_3 can be joined together with carbon atoms to form a ring of from 5 to 7 members in which said carbon atoms can be unsubstituted or substituted optionally with R_4 ;

5 -

10

25

30

 R_4 is OH; C_{1-4} alkyl unsubstituted or substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; NR_5R_6 ; phenyl or R_{10} either of which can be unsubstituted or substituted optionally with OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m/is O - 2 and n is O - 2;

Provided that when G is SO_2 and R_3 /is in the 4 position and is H or halogen then R_1 and R_2 are not H, C_{1-6} alkyl substituted optionally with OH, C_{1-6} alkoxy, C_{2-6} alkoxycarbonyl, C_{2-6} alkenyl, phenyl, phenoxy, pyridyl, tetrahydrofuryl, C_{2-6} alkanoyl, C_{2-6} alkenyl, nor are they joined to form a 5, 6 or 7 member ring, saturated or unsaturated, comprised of atoms selected optionally from C, O, S, N in which said nitrogen, when saturated, is substituted optionally with H or C_{1-6} alkyl or in which said carbon is substituted optionally with C_{1-6} alkyl, C_{1-6} alkoxy or OH; and when R_3 is in the 5 position and is H, C_{1} , Br, or C_{1-3} alkyl then neither R_1 nor R_2 can be H or C_{1-4} alkyl; and when G is C(-1)0 and in the 5- position and R_3 1 is H, then R_1 1 and R_2 2 cannot both be CH_3 3;

 R_5 & R_6 are the same of different and are H; C_{1-4} alkyl; C_{2-4} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, halogen, C_{1-4} alkoxy

or $C(=0)R_7$; C_{3-7} alkenyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{3-7} alkynyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{1-2} alkyl C_{3-1} ₅cycloalkyl; $C(=0)R_7$ or R_5 and R_6 can be joined to form a ring of 5 or 6 atoms selected from O, S, C or N, such as, pyrrolidine, thiomorpholine, thiomorpholine 1,1 morpholine, piperazine, or thiazolidine 1,1-dioxide, which can be unsubstituted or substituted optionally on carbon with OH, (=0), halogen, C_{1-4} alkoxy, $C(=0)R_{7}$, C_{1-6} alkyl, C_{1-6} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy, $C(=0)R_7$ or on nitrogen with C_{1-4} alkoxy, $C(=0)R_7$, $S(=0)_mR_8$, C_{1-6} alkyl or C_{2-6} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy, $C(=0)R_7$ or on sulfur by $(=0)_m$, wherein m is 0 - 2;

 C_{1-8} alkyl; C_{1-8} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_9$; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, NR_5R_6 , halogen of C_{1-4} alkoxy; NR_5R_6 ; or phenyl or R_{10} either of which can be unsubstituted or substituted optionally with OH, halogen, C_{1-3} alkyl, C_{1-3} halogikoxy, $(CH_2)_nNR_5R_6$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein n is 0 or 1 and m is \emptyset -2;

 R_8 is C_{1-4} alkyl; Q_{2-4} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $\mathcal{L}(=0)R_7$;

 R_9 is C_{1-4} alkyl; C_{1-4} alkoxy; amino, C_{1-3} alkylamino, or di- C_{1-3} alkylamino;

a/monocyclic ring system of 5 or 6 atoms composed of C, N, O, and/or \pm , such as furan, thiophene, pyrrole, pyrazole, imidazole, triazole, tetrazole, oxazole, isoxazole, isothiazole, thiazole, thiadiazole, pyridine, pyrimidine, pyridazine, and pyrazine; and

C(=0) or SO_2 .

- The compound of Claim 1 wherein: R_3 is in the 4-position and GNR_1R_2 is 2. in the 5-position.
- The compound of Claim 2 wherein: 3.

30

5

10

20

- R_1 is H; C_{1-4} alkyl; C_{2-4} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$;
 - H; C_{1-8} alkyl; C_{2-8} alkyl substituted with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, C_{2-4} alkoxy C_{1-4} alkoxy, $OC(=0)R_7$, or $C(=0)R_7$; C_{3-7} alkenyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{3-7} alkynyl unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, NR_5R_6 or C_{1-4} alkoxy; C_{1-3} alkyl substituted with phenyl or R_{10} either of which can be unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0 - 2 and n is 0 - 2; C_{2-4} alkoxy substituted optionally with NR_5R_6 , halogen, C_{1-4} alkoxy, or $C(=0)R_7$; phenyl or R_{10} either of which can be unsubstituted or substituted optionally with OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m/is 0 - 2 and n is 0 - 2; provided that R_1 and R_2 cannot both be H_2 or R_1 and R_2 can be joined to form a saturated ring of 5 or 6 /atoms selected from 0, S, C or N, such as, pyrrolidine, oxazólidine, thiomorpholine, thiomorpholine 1,1 dioxide, piperazine, thiazolidine 1,1 dioxide, morpholine, tetrahydrooxazine, which can be unsubstituted or optionally on carbon with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} alkyl, C_{1-6} /alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, $C(=0)R_7$ or on nitrogen with NR_5R_6 , C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} alkyl oy C_{2-6} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-6} ₄ alkoxy or $C(=0)R_7$;
- R_3 is H; halogen; C_{1-4} alkyl; C_{1-8} alkoxy; C_{1-8} alkylthiol; C_{2-8} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkyl substituted optionally with R_4 .
- 4. The compound of Claim 2 wherein:

5

20

25

 $\rm R_1$ and $\rm R_3$ are joined together with carbon atoms to form a ring of from 5 to 7 members in which said carbon atoms are unsubstituted or substituted with $\rm R_4$.

5. The compound of Claim 4 wherein:

10

 R_2 is H; C_{1-4} alkyl; C_{2-4} alkyl substituted with OH, NR_5R_6 , halogen, C_{1-2} alkoxy, C_{2-4} alkoxy C_{1-4} alkoxy, $OC(=0)R_7$, or $C(=0)R_7$; phenyl, or R_{10} , unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is O-2 and n is O-2; C_{1-3} alkyl substituted with phenyl or R_{10} either of which can be unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 , C_3 halo alkyl OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is O-2 and n is O-2.

6. The compound of Claim 5 wherein: $G = SO_2$ and

 R_4 is OH; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; or NR_5R_6 ; phenyl, or R_{10} unsubstituted or substituted optionally with OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is O-2 and n is O-2

7. A compound of the formula

 R_1 is

H; C_{1-4} alkyl; C_{2-4} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$;

R₂ is

H; C_{1-8} alkyl; C_{2-8} alkyl substituted with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, C_{2-4} alkoxy C_{1-4} alkoxy/ $OC(=0)R_7$, or $C(=0)R_7$; C_{3-7} alkenyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{3-7} alkynyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; $C_{1-3}/a!kyl$ substituted with phenyl or R_{10} either of which can be unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(\not=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0 - 2 and n is 0 - 2; C_{2-4} alkoxy substituted optionally with NR_5R_6 , halogen, C_{1-4} alkoxy, or $C(=0)R_7$; phenyl or R_{10} either of which can be unsubstituted or substituted opt/onally with C_1-C_3 alkyl, C_1-C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen/ C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m/is 0 - 2 and n is 0 - 2; provided that R_1 and R_2 cannot both be H; pr R₁ and R₂ can be joined to form a saturated ring of 5 or 6 atoms \$elected from 0, S, C or N, such as, pyrrolidine, oxazolidine, thiqmorpholine, thiomorpholine 1,1 dioxide, morpholine,

20

15

piperazine, thiazolidine 1,1 dioxide, or tetrahydrooxazine, which can be unsubstituted or substituted optionally on carbon with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} alkyl, C_{1-6} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, $C(=0)R_7$ or on nitrogen with NR_5R_6 , C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} alkyl or C_{2-6} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy of $C(=0)R_7$;

 R_3 is H; halogen; C_{1-4} alkyl; C_{1-8} alkoxy; C_{1-8} alkylthiol; C_{2-8} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkyl substituted optionally with R_4 ; or R_1 and R_3 can be joined together with carbon atoms to form a ring of from 5 to 7 members in which said carbon atoms can be unsubstituted or substituted optionally with R_4 ;

5

10

25

30

 R_4 is OH; C_{1-4} alkyl unsubstituted or substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, NR_5R_6 , halogen, $C_{1/4}$ alkoxy or $C(=0)R_7$; NR_5R_6 ; phenyl or R_{10} either of which can be unsubstituted or substituted optionally with OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is O-2 and n is O-2;

Provided that when G is SO_2 and R_3 is in the 4 position and is H or halogen then R_1 and R_2 are not H, C_{1-6} alkyl substituted optionally with OH, C_{1-6} alkoxy, C_{2-6} alkoxycarbonyl, C_{2-6} alkenyl, phenyl, phenoxy, pyridyl, tetrahydrofuryl, C_{2-6} alkanoyl, C_{2-6} alkenyl, nor are they joined to form a 5, 6 or 7 member ring, saturated or unsaturated, comprised of atoms selected optionally from C, O, S, N in which said nitrogen, when saturated, is substituted optionally with H or C_{1-6} alkyl or in which said carbon is substituted optionally with C_{1-6} alkyl, C_{1-6} alkoxy or OH; and when R_3 is in the 5 position and is H, Cl, Br, or C_{1-3} alkyl then neither R_1 nor R_2 can be H or C_{1-4} alkyl; and when G is C(=0) and in the 5 position and R_3 is is H then R_1 and R_2 cannot both be CH_3 ;

 R_5 & R_6 are the same or different and are H; C_{1-4} alkyl; C_{2-4} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{3-7} alkenyl unsubstituted or substituted optionally

with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{3-7} alkynyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{1-2} alkyl C_{3-1} $_{5}$ cycloalkyl; C(=0)R $_{7}$ or R $_{5}$ and R $_{6}$ can be joined to form a ring of 5 or 6 atoms selected from O, S, C or N, sych as, pyrrolidine, thiomorphøline 1,1 thiomorpholine, oxazolidine, thiazolidine 1,1-dioxide, piperazine, morpholine, tetrahydrooxazine, which can be unsubstituted or substituted optionally on carbon with OH, (=0), halogen, C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} alkyl, C_{1-6} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy, $C(=0)R_7$ or on nitrogen with C_{1-4} alkoxy, $C(=0)R_7$, $S(=0)_mR_8$, C_{1-6} alkyl or C_{2-6} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy, $C(=0)R_7$ or on sulfur by $(=0)_m$, wherein m is 0 - 2;

is C_{1-8} alkyl; C_{1-8} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_9$; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, NR_5R_6 , halogen or C_{1-4} alkoxy; NR_5R_6 ; or phenyl or R_{10} either of which can be unsubstituted or substituted optionally with OH, halogen, C_{1-3} alkyl, C_{1-3} haloalkoxy, $(CH_2)_nNR_5R_6$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein n is 0 or 1 and m is 0-2;

 R_8 is C_{1-4} alkyl; C_{2-4} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$;

 R_9 is C_{1-4} alkyl; C_{1-4} alkoxy; amino, C_{1-3} alkylamino, or di- C_{1-3} alkylamino;

R₁₀ is a monocyclic/ring system of 5 or 6 atoms composed of C, N, O, and/or S, such as furan, thiophene, pyrrole, pyrazole, imidazole, triazole, tetrazole, oxazole, isoxazole, isothiazole, thiazole, thiadiazole, pyridine, pyrimidine, pyridazine, and pyrazine; and

G is SO_2 and c=0 provided that when G is C=0 then R_1 and R_3 are not joined together in a six member ring.

8. The compound of Claim 7 wherein R_3 is in the 4-position and ${\rm GNR_1R_2}$ is in the 5-position.

9. The compound of Claim 8 wherein:

5

10

20

25

 R_1 is H; C1-4 alkyl; or C_{2-4} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$;

 R_2 is H; C_{1-8} alkyl; C_{2-8} alkyl substituted with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, C_{2-4} alkoxy C_{1-4} alkoxy, $OC(=0)R_7$, or $C(=0)R_7$; C_{3-7} alkenyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{3-7} alkynyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{1-3} alkyl substituted with phenyl or R_{10} which can be unsubstituted or substituted optionally with C_1-C_3 alkyl, \mathcal{L}_1-C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0 - 2 and n is 0 - $\frac{2}{3}$ C_{2-4} alkoxy substituted optionally with NR_5R_6 , halogen, C_{1-4} alkoxy, or $C(=0)R_7$; phenyl, or R_{10} unsubstituted or substituted optionally with C_1-C_3 alkyl, C_1-C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0-2 and n is 0 - 2; provided that R_1 and R_2 cannot both be H; or R_1 and R_2 can be joined to form a saturated ring of 5 or 6 atoms selected from 0, S, C or N which can be unsubstituted or substituted optionally on carbon with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} alkyl, C_{1-6} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} koxy, $C(=0)R_7$ or on nitrogen with NR_5R_6 , C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} /alkyl or C_{2-6} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{4-4} alkoxy or $C(=0)R_{7}$;

 R_3 is H; halogen; C_{1-4} alkyl; C_{1-8} alkoxy, C_{1-8} alkylthiol, C_{2-8} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; or C_{1-4} alkyl substituted optionally with R_4 .

10. The compound of Claim 8 wherein:

5

20

25

 R_1 and R_3 are joined together with cambon atoms to form a ring of from 5 to 7 members in which said carbon atoms are unsubstituted or substituted with R_4 .

11. The compound of Claim 10 wherein:

 R_2 is H; C_{1-4} alkyl; C_{2-4} alkyl substituted with OH, NR_5R_6 , halogen, C_{1-2} alkoxy, C_{2-4} alkoxy C_{1-4} alkoxy, $OC(=0)R_7$, or $C(=0)R_7$; C_{1-3} alkyl substituted with

phenyl or R_{10} group either of which can be unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is O-2 and n is O-2; phenyl or a R_{10} either of which can be unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is O-2 and n is O-2.

- 12. The compound of Claim 11 wherein: $G/Jis/SO_2$ and
- R_4 is OH; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; or NR_5R_6 ; phenyl, or R_{10} , unsubstituted or substituted optionally with OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0-2 and n is 0
- 13. A compound of the formula

10

15

R₂ is

or a pharmaceutically acceptable salf thereof wherein:

R₁ is H; C_{1-4} alkyl; C_{2-4} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$;

H; C_{1-8} alkyl; C_{2-8} alkyl substituted with OH, NR_5R_6 , halogen, C_{1-4} alkoxy, C_{2-4} alkoxy C_{1-4} alkoxy, $OC(=0)R_7$, or $C(=0)R_7$; C_{3-7} alkenyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{3-7} alkynyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{1-3} alkyl substituted with phenyl or R_{10} either

of which can be unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is O-2 and n is O-2; C_{2-4} alkoxy substituted optionally with NR_5R_6 , halogen, C_{1-4} alkoxy, or $C(=0)R_7$; phenyl or R_{10} either of which can be unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_1 - C_3 haloalkoxy, C_1 -

 R_3 is H; halogen; C_{1-4} alkyl; C_{1-8} alkoxy; C_{1-8} alkylthiol; C_{2-8} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkyl substituted optionally with R_4 ; or R_1 and R_3 can be joined together with carbon atoms to form a ring of from 5 to 7 members in which said carbon atoms can be unsubstituted or substituted optionally with R_4 ;

10

15

25

30

 R_4 is OH; C_{1-4} alkyl unsubstituted or substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; NR_5R_6 ; phenyl or R_{10} either of which can be unsubstituted or substituted optionally with OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is O(-2) and n is O(-2); provided that when O(-2) where O(-2) is in the O(-2) position and is O(-2) alkyl then neither O(-2) and O(-2) alkyl;

 R_5 & R_6 are the same or different and are H; C_{1-4} alkyl; C_{2-4} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{3-7} alkenyl unsubstituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{3-7} alkynyl unsubstituted or substituted or substituted or substituted or substituted optionally with OH, NR_5R_6 , or C_{1-4} alkoxy; C_{1-2} alkyl C_{3-5} cycloalkyl; $C(=0)R_7$ or R_5 and R_6 can be joined to form a ring of 5 or 6 atoms selected from O, S, C or N, such as, pyrrolidine, oxazolidine, thiomorpholine, thiomorpholine 1,1 dioxide, morpholine, piperazine, or thiazolidine 1,1-dioxide which can be

unsubstituted or substituted optionally on carbon with OH, (=0), halogen, C_{1-4} alkoxy, $C(=0)R_7$, C_{1-6} alkyl, C_{1-6} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy, $C(=0)R_7$ or on nitrogen with C_{1-4} alkoxy, $C(=0)R_7$, $S(=0)_mR_8$, C_{1-6} alkyl or C_{2-6} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy, $C(=0)R_7$ or on sulfur by $(=0)_m$, wherein m is $(9-2)_m$

 R_7 is C_{1-8} alkyl; C_{1-8} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_9$; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, NR_5R_6 , halogen or C_{1-4} alkoxy; NR_5R_6 ; or phenyl or R_{10} either of which can be unsubstituted or substituted optionally with OH, halogen, C_{1-3} alkyl, C_{1-3} haloalkoxy, $(CH_2)_nNR_5R_6$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein n is 0 or 1 and m is 0-2;

 R_8 is C_{1-4} alkyl; C_{2-4} alkyl substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$;

 R_{q} is C_{1-4} alkyl; C_{1-4} alkoxy; amino, C_{1-3} alkylamino, or di- C_{1-3} alkylamino;

R₁₀ is a monocyclic ring system of 5 or 6 atoms composed of C, N, O, and/or S, such as furan, thiophene, pyrrole, pyrazole, imidazole, triazole, tetrazole, oxazole, isoxazole, isothiazole, thiazole, thiadiazole, pyridine, pyrimidine, pyridazine, and pyrazine; and

20 G is SO.

5

10

14. The compound of Claim 13 wherein: R_3 is in the 4-position and GNR_1R_2 is in the 5-position.

- 15. The compound of Claim 14 wherein:
- R_1 is H; C_{1-4} alkyl; or C_{2-4} alkyl substituted optionally with OH, halogen, C_{1-4} alkoxy or $C(=0)R_7$;
- R_2 is H; C_{1-4} alkyl; C_{2-4} alkyl substituted with OH, NR_5R_6 , halogen, C_{1-2} alkoxy, C_{2-4} alkoxyC $_{1-4}$ alkoxy, $OC(=0)R_7$, or $C(=0)R_7$; phenyl, or R_{10} , unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0 2 and n is 0 2; C_{1-3} alkyl substituted with phenyl or R_{10} either of which can be unsubstituted or substituted optionally with C_1 - C_3 alkyl, C_1 - C_3 halo alkyl, OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0 2 and n is 0 2.
- R_3 is H; halogen; C_{1-4} alkyl; C_{1-8} alkoxy; C_{1-8} alkylthiol; C_{2-8} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; C_{1-4} alkyl substituted optionally with R_4 .
- 16. The compound of Claim 14 wherein:

15

20

25

30

 R_1 and R_3 are joined together with carbon atoms to form a ring of from 5 to 7 members in which said carbon atoms are unsubstituted or substituted with R_4 .

- 17. The compound of Claim 16 wherein:
- R_2 is H; C_{1-4} alkyl; C_{2-4} alkyl substituted with OH, NR_5R_6 , halogen, C_{1-2} alkoxy, C_{2-4} alkoxy C_{1-4} alkoxy, $OC(=0)R_7$, or $C(=0)R_7$; phenyl, or R_{10} , unsubstituted or substituted optionally with C_1-C_3 alkyl, C_1-C_3 halogen, C_1 alkoxy, C_1-C_3 alkyl, C_1-C_3 alkyl, C_1-C_3 alkyl substituted with phenyl or R_{10} either of which can be unsubstituted or substituted optionally with C_1-C_3 alkyl, C_1-C_3 halo alkyl, C_1 or C_1 alkoxy, C_1 halogen, C_1 alkoxy, C_1 haloalkoxy, C_1 haloalkoxy, C_1 alkoxy, C_1 haloalkoxy, C_1 haloalkoxy, C_1 and C_1 alkoxy, C_1 haloalkoxy, C_1 haloalkoxy, C

- R_4 is OH; C_{1-4} alkoxy; C_{2-4} alkoxy substituted optionally with OH, NR_5R_6 , halogen, C_{1-4} alkoxy or $C(=0)R_7$; or NR_5R_6 ; phenyl, or R_{10} , unsubstituted or substituted optionally with OH, $(CH_2)_nNR_5R_6$, halogen, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(=0)R_7$, $S(=0)_mR_8$ or $SO_2NR_5R_6$, wherein m is 0 2 and n is 0 2.
- 19. A compound selected from the group consisting of:
 - R-(+)-4-Ethylamino-3,4-dihydro-2/(3-methoxy)propyl-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide-1/1-dioxide hydrochloride;
 - (R)-4-Ethylamino-2-(4-methoxy-phenyl)-3,4-dihydro-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride;
 - (R)-4-Ethylamino-3,4-dihydro-2-(3-methoxy-phenyl)-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride;
 - (R)-4-Ethylamino-2-(4-hydroxy-phenyl)-3,4-dihydro-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride;
 - (R)-4-Ethylamino-3,4-dihydro-2-(3-hydroxy-phenyl)-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride;
 - (R)-4-Ethylamino-3,4-dihydro-2-(4-hydroxy-phenylmethyl)-2H-thieno[3,2-e]-1,2-thiaz ne-6-sulfonamide 1,1-dioxide hydrochloride;
 - (R)-4-Ethylamino-3,4-dihydro-2-(3-methoxy-phenylmethyl)-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride;
 - R-(+)-3,4-Dihydro-2-(4-methoxybutyl)-4-propylamino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride;
 - R-(+)-4-Ethylamino-3, 4-dihydro-2-(4-methoxybutyl)-2H-thieno[3,2-methoxybutyl)

July 9

5

10

25

e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride;

R-(+)-4-Ethylamino-3,4-dihydro-2-(2-methylpropyl)-2H-thieno[3,2-

e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride;

R-(+)-4-Ethylamino-3,4-dihydro-2-(6-hydroxyhexyl)-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride;

R-3,4-Dihydro-2-(3-hydroxypropyl)-4-(2-methylpropyl)amino-2H-thieno[3,2-e]-1,2-thiazine-6-sulfonamide 1,1-dioxide hydrochloride hemihydrate.

20. A formulation for controlling intraocular pressure comprising a therapeutically effective amount of the compund of Claim 1 in a pharmaceutically acceptable carrier.

10

15

20

- 21. A formulation for controlling intraocular pressure comprising a therapeutically effective amount of the compund of Claim 7 in a pharmaceutically acceptable carrier.
- 22. A formulation for controlling intraocular pressure comprising a therapeutically effective amount of the compund of Claim 13 in a pharmaceutically acceptable carrier.

23. A formulation for controlling intraocular pressure comprising a therapeutically effective amount of the compund of Claim 19 in a pharmaceutically acceptable carrier.

The formulation of Claim 20 wherein the compound concentration is between 0.1 and 10% by weight.

- 25. The formulation of Claim 21 wherein the compound concentration is between 0.1 and 10% by weight.
- 25 26. The formulation of Claim 22 wherein the compound concentration is between 0.1 and 10% by weight.

The formulation of Claim 23 wherein the compound concentration is between 0.1 and 10% by weight.

The formulation of Claim 24 wherein the compound concentration is between 0.1 and 10% by weight.

- A method for controlling intraocular pressure which comprises topically administering to the affected eye a therapeutically effective amount of the compound of Claim 1.
 - 30. A method for controlling intraocular pressure which comprises topically administering to the affected eye a therapeutically effective amount of the compound of Claim 7.
 - 31. A method for controlling intraocular pressure which comprises topically administering to the affected eye a therapeutically effective amount of the compound of Claim 13.
- A method for controlling intraocular pressure which comprises topically administering to the affected eye a therapeutically effective amount of the compound of Claim 19.