

planetmath.org

Math for the people, by the people.

Galois-theoretic derivation of the quartic formula

 ${\bf Canonical\ name} \quad {\bf Galoistheoretic Derivation Of The Quartic Formula}$

Date of creation 2013-03-22 12:34:35 Last modified on 2013-03-22 12:34:35

Owner djao (24) Last modified by djao (24)

Numerical id 9

Author djao (24) Entry type Proof Classification msc 12D10

Related topic GaloisTheoreticDerivationOfTheCubicFormula

Defines resolvent cubic

Let $x^4 + ax^3 + bx^2 + cx + d$ be a general polynomial with four roots r_1, r_2, r_3, r_4 , so $(x - r_1)(x - r_2)(x - r_3)(x - r_4) = x^4 + ax^3 + bx^2 + cx + d$. The goal is to exhibit the field extension $\mathbb{C}(r_1, r_2, r_3, r_4)/\mathbb{C}(a, b, c, d)$ as a radical extension, thereby expressing r_1, r_2, r_3, r_4 in terms of a, b, c, d by radicals.

Write N for $\mathbb{C}(r_1, r_2, r_3, r_4)$ and F for $\mathbb{C}(a, b, c, d)$. The Galois group $\mathrm{Gal}(N/F)$ is the symmetric group S_4 , the permutation group on the four elements $\{r_1, r_2, r_3, r_4\}$, which has a composition series

$$1 \lhd \mathbb{Z}/2 \lhd V_4 \lhd A_4 \lhd S_4$$
,

where:

- A_4 is the alternating group in S_4 , consisting of the even permutations.
- $V_4 = \{1, (12)(34), (13)(24), (14)(23)\}$ is the Klein four-group.
- $\mathbb{Z}/2$ is the two-element subgroup $\{1, (12)(34)\}$ of V_4 .

Under the Galois correspondence, each of these subgroups corresponds to an intermediate field of the extension N/F. We denote these fixed fields by (in increasing order) K, L, and M.

We thus have a tower of field extensions, and corresponding automorphism groups:

Subgroup	Fixed field
1	$N \ $
$\mathbb{Z}/2$	$M \ \ M$
V	$\stackrel{ }{L}$
A_4	$K \ \ K$
S_4	F

By Galois theory, or Kummer theory, each field in this diagram is a radical extension of the one below it, and our job is done if we explicitly find what the radical extension is in each case.

We start with K/F. The index of A_4 in S_4 is two, so K/F is a degree two extension. We have to find an element of K that is not in F. The easiest such element to take is the element Δ obtained by taking the products of the differences of the roots, namely,

$$\Delta := \prod_{1 \le i < j \le 4} (r_i - r_j) = (r_1 - r_2)(r_1 - r_3)(r_1 - r_4)(r_2 - r_3)(r_2 - r_4)(r_3 - r_4).$$

Observe that Δ is fixed by any even permutation of the roots r_i , but that $\sigma(\Delta) = -\Delta$ for any odd permutation σ . Accordingly, Δ^2 is actually fixed by all of S_4 , so:

- $\Delta \in K$, but $\Delta \notin F$.
- $\Delta^2 \in F$.
- $K = F[\Delta] = F[\sqrt{\Delta^2}]$, thus exhibiting K/F as a radical extension.

The element $\Delta^2 \in F$ is called the *discriminant* of the polynomial. An explicit formula for Δ^2 can be found using the reduction algorithm for symmetric polynomials, and, although it is not needed for our purposes, we list it here for reference:

$$\Delta^{2} = 256d^{3} - d^{2}(27a^{4} - 144a^{2}b + 128b^{2} + 192ac) - c^{2}(27c^{2} - 18abc + 4a^{3}c + 4b^{3} - a^{2}b^{2}) - 2d(abc(9a^{2} - 40b) - 2b^{3}(a^{2} - 4b) - 3c^{2}(a^{2} - 24b)).$$

Next up is the extension L/K, which has degree 3 since $[A_4 : V_4] = 3$. We have to find an element of N which is fixed by V_4 but not by A_4 . Luckily, the form of V_4 almost cries out that the following elements be used:

$$t_1 := (r_1 + r_2)(r_3 + r_4)$$

 $t_2 := (r_1 + r_3)(r_2 + r_4)$
 $t_3 := (r_1 + r_4)(r_2 + r_3)$

These three elements of N are fixed by everything in V_4 , but not by everything in A_4 . They are therefore elements of L that are not in K. Moreover, every permutation in S_4 permutes the set $\{t_1, t_2, t_3\}$, so the cubic polynomial

$$\Phi(x) := (x - t_1)(x - t_2)(x - t_3)$$

actually has coefficients in F! In fancier language, the cubic polynomial $\Phi(x)$ defines a cubic extension E of F which is linearly disjoint from K, with the composite extension EK equal to E. The polynomial E is called the resolvent cubic of the quartic polynomial E is a cubic coefficients of E or E in E is a cubic disjoint from E in E

$$\Phi(x) = x^3 - 2bx^2 + (b^2 + ac - 4d)x + (c^2 + a^2d - abc).$$
 (1)

Using the cubic formula, one can find radical expressions for the three roots of this polynomial, which are t_1 , t_2 , and t_3 , and henceforth we assume radical expressions for these three quantities are known. We also have $L = K[t_1]$, which in light of what we just said, exhibits L/K as an explicit radical extension.

The remaining extensions are easier and the reader who has followed to this point should have no trouble with the rest. For the degree two extension M/L, we require an element of M that is not in L; one convenient such element is $r_1 + r_2$, which is a root of the quadratic polynomial

$$(x - (r_1 + r_2))(x - (r_3 + r_4)) = x^2 + ax + t_1 \in L[x]$$
(2)

and therefore equals $(-a + \sqrt{a^2 - 4t_1})/2$. Hence $M = L[r_1 + r_2] = L[(-a + \sqrt{a^2 - 4t_1})/2]$ is a radical extension of L.

Finally, for the extension N/M, an element of N that is not in M is of course r_1 , which is a root of the quadratic polynomial

$$(x - r_1)(x - r_2) = x^2 - (r_1 + r_2)x + r_1r_2.$$
(3)

Now, $r_1 + r_2$ is known from the previous paragraph, so it remains to find an expression for r_1r_2 . Note that r_1r_2 is fixed by (12)(34), so it is in M but not in L. To find it, use the equation $(t_2 + t_3 - t_1)/2 = r_1r_2 + r_3r_4$, which gives

$$(x - r_1 r_2)(x - r_3 r_4) = x^2 - \frac{(t_2 + t_3 - t_1)}{2}x + d$$

and, upon solving for r_1r_2 with the quadratic formula, yields

$$r_1 r_2 = \frac{(t_2 + t_3 - t_1) + \sqrt{(t_2 + t_3 - t_1)^2 - 16d}}{4}$$
 (4)

$$r_3 r_4 = \frac{(t_2 + t_3 - t_1) - \sqrt{(t_2 + t_3 - t_1)^2 - 16d}}{4}$$
 (5)

We can then use this expression, combined with Equation (??), to solve for r_1 using the quadratic formula. Perhaps, at this point, our poor reader needs a summary of the procedure, so we give one here:

- 1. Find t_1 , t_2 , and t_3 by solving the resolvent cubic (Equation (??)) using the cubic formula,
- 2. From Equation (??), obtain

$$r_1 + r_2 = \frac{(-a + \sqrt{a^2 - 4t_1})}{2}$$

 $r_3 + r_4 = \frac{(-a - \sqrt{a^2 - 4t_1})}{2}$

3. Using Equation (??), write

$$r_{1} = \frac{(r_{1} + r_{2}) + \sqrt{(r_{1} + r_{2})^{2} - 4(r_{1}r_{2})}}{2}$$

$$r_{2} = \frac{(r_{1} + r_{2}) - \sqrt{(r_{1} + r_{2})^{2} - 4(r_{1}r_{2})}}{2}$$

$$r_{3} = \frac{(r_{3} + r_{4}) + \sqrt{(r_{3} + r_{4})^{2} - 4(r_{3}r_{4})}}{2}$$

$$r_{4} = \frac{(r_{3} + r_{4}) - \sqrt{(r_{3} + r_{4})^{2} - 4(r_{3}r_{4})}}{2}$$

where the expressions r_1+r_2 and r_3+r_4 are derived in the previous step, and the expressions r_1r_2 and r_3r_4 come from Equation (??) and (??).

4. Now the roots r_1, r_2, r_3, r_4 of the quartic polynomial $x^4 + ax^3 + bx^2 + cx + d$ have been found, and we are done!