

Sensorschaltungen mit OPV

Name: Rahm
Datum: 18.02.2021
1_3_2_PT100_Sensor_mit_Brueckenschaltung.docx

Brückenschaltung mit Subtrahierverstärker

1.3.2.1

Um die Begrenzung des Messbereichs des ADC aufzuheben, muss die Spannung U_a um den nicht benötigten Bereich von U_t vermindert werden. Eine gebräuchliche Möglichkeit ist die Verwendung einer Brückenschaltung. Die Brücke wird so abgeglichen, dass beim unteren Messbereichsende (-25°C) U_a = 0V beträgt und beim oberen Messbereichsende (100°C) U_a = 5V ist. Mittels eines Subtrahierverstärkers wird die Brückenspannung U_{ab} ermittelt und anschließend verstärkt.

Sensorschaltung:

Erstellen Sie die abgebildete Sensorschaltung mit Messbrücke und Subtrahierverstärker in Multisim oder öffnen Sie die Schaltung in MultisimLive: https://kurzelinks.de/1xkf

Arbeitsauftrag 3:

- Stellen Sie R₄ so ein, dass die Brücke bei -25°C abgeglichen ist.
 (<u>Zusatzaufgabe</u>: Berechnen Sie den Wert für R₄. Vernachlässigen Sie dabei die Leiterwiderstände.)
- 2. Mit R_{q2} wird die Verstärkung V_{U2} so eingestellt, dass U_a bei 100°C genau 5V beträgt. (Zusatzaufgabe: Berechnen Sie den Wert für R_{q2} .)
- 3. Prüfen Sie die Linearität der Schaltung mit einem Parameter-Sweep von R_T über den Messbereich. (Alternativ: Messen Sie U_a für -25°C, 0°C, 25°C, 50°C und 100°C und erstellen Sie eine Kennlinie U_a = $f(R_T)$ in Excel.)
- 4. Wie wirkt sich die Verlängerung der Messleitung auf 100m aus?

Dokumentieren Sie Ihre Ergebnisse im Versuchsprotokoll.