

Check for updates

# Strong Electronic Interactions of the Abundant Cu/Ce Interfaces Stabilized $Cu_2O$ for Efficient $CO_2$ Electroreduction to $C_{2+}$ Products under Large Current Density

Yuanrui Li, Jinshuo Zou, Lidan Sun, Siqi Liu, Huiqi Li, Zhongxin Song, Jun Yu,\* Lei Zhang,\* and Zaiping Guo\*

Copper-based nanocatalysts, represented by Cu<sub>2</sub>O nanocubes, are crucial for electrocatalytic CO<sub>2</sub> conversion to C<sub>2+</sub> products but face significant stability challenges. Structural reconstruction from Cu dissolution and reduction under negative potentials undermines their long-term stability. Herein, a novel Cu<sub>2</sub>O@CeO<sub>2</sub> core-shell nanocatalyst is introduced, featuring a Cu<sub>2</sub>O nanocube core encapsulated by an amorphous CeO, shell. Due to the facilitated electron transfer of abundant Cu/Ce interfaces, the CeO, shell layer simultaneously prevents the agglomeration and maintains the oxidation state of Cu<sub>2</sub>O nanocubes, bringing in significantly improved stability. Unlike conventional coating layers, the defective CeO, shell uniquely avoids obstructing mass transfer while effectively promoting the activation of CO2 and optimizing the electronic structure of Cu. The Cu<sub>2</sub>O@CeO<sub>x</sub> nanocatalyst delivers a remarkable C<sub>2+</sub> Faradaic efficiency exceeding 80% at 300 mA cm<sup>-2</sup> under a low applied potential of -0.98 V, with exceptional durability lasting over 50 h, compared to just 2 h for Cu<sub>2</sub>O alone. This work presents an effective strategy to enhance catalyst stability without sacrificing activity, advancing the design of durable catalysts for electrocatalytic applications.

## 1. Introduction

Electrocatalytic carbon dioxide reduction reaction ( $CO_2RR$ ) offers a sustainable approach to closing the carbon cycle by converting  $CO_2$  into value-added products such as CO, HCOOH,  $CH_4$ ,  $C_2H_5OH$ ,  $C_2H_4$ , etc. Among these products, multi-carbon ( $C_{2+}$ ) products, including  $C_2H_4$ , a vital chemical feedstock, and  $C_2H_5OH$ , a high-energy-density fuel, are particularly desirable.<sup>[1]</sup>

Y. Li, L. Sun, S. Liu, H. Li, Z. Song, J. Yu, L. Zhang College of Chemistry and Environmental Engineering Shenzhen University

Shenzhen 518060, P. R. China

E-mail: yujun@szu.edu.cn; lei.zhang@szu.edu.cn

 $J.\,Zou,\,Z.\,Guo$ 

School of Chemical Engineering Faculty of Sciences Engineering and Technology

The University of Adelaide Adelaide, SA 5005, Australia

E-mail: zaiping.guo@adelaide.edu.au

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adfm.202509899

DOI: 10.1002/adfm.202509899

A key step in producing  $C_{2+}$  products is the C-C coupling process, which only takes place on Cu. Furthermore, the Cu<sup>+</sup> site is widely recognized for possessing lower energy for C-C coupling, in comparison to zero-valent or higher-valent Cu. Therefore, many researchers have focused on the optimization of Cu<sup>+</sup> sites in Cu-based catalysts for improving the faradaic efficiency of  $C_{2+}$  products.<sup>[2]</sup>

Cu<sub>2</sub>O nanoparticles with abundant Cu<sup>+</sup> sites have been widely used for C<sub>2+</sub> production.<sup>[3]</sup> Compared to polycrystalline Cu<sub>2</sub>O, the Cu<sub>2</sub>O nanocube exhibited superior C<sub>2+</sub> selectivity because of the enhanced C-C coupling reaction on their (100) facets.<sup>[3c]</sup> However, the stability of the Cu<sub>2</sub>O nanocube is compromised by Cu<sup>+</sup> reduction at the negative potentials of CO<sub>2</sub>RR and the dissolution of Cu ions, leading to aggregation and degradation of the reactive (100) facets.<sup>[3a,b]</sup> The instability of Cu<sub>2</sub>O nanocubes, especially in flow-type devices, is a significant challenge. The

 $C_{2+}/C_{1+}$  product ratio drops dramatically from  $\approx 3.5$  to  $\approx 1$  accompanied by the current density declining from 300 to 150 mA cm<sup>-2</sup> within 100 mins. Current modification strategies, such as creating heterointerfaces, help preserve the  $Cu^+$  valence state in polycrystalline  $Cu_2O$ .<sup>[4]</sup> However, these methods are unable to maintain the crucial (100) facets of  $Cu_2O$  nanocubes. Moreover, both the Faradaic efficiency for  $C_{2+}$  products and the stability (close to 60% for 25 h) must be significantly improved for industrial applications. This underscores the urgent need for strategies to stabilize  $Cu_2O$  nanocubes for higher  $C_{2+}$  production.

Cerium dioxide ( $CeO_2$ ) is widely recognized as an effective modifier in heterogeneous catalysis because of the reversible  $Ce^{4+}/Ce^{3+}$  redox transition. The easy switch between  $Ce^{4+}$  and  $Ce^{3+}$  in  $CeO_2$  has the potential to maintain the oxidation state of Cu. Additionally, the frustrated-Lewis pairs could be constructed in the defect-rich surface of  $CeO_x$ , which promoted the adsorption and activation of  $CO_2$  for  $CO_2$  conversion. Thus, using  $CeO_x$  as the protection layer is promising to stabilize the inner  $Cu_2O$  nanocube without hindering  $CO_2$  mass transfer or compromising activity. However, creating a thin, defective  $CeO_x$  shell on the surface of the  $Cu_2O$  nanocube to optimize  $CO_2RR$  performance is challenging.

16163028, 0, Downloaded from https://advanced

onlinelbrary.wiley.com/do/101.1002/adfm.202509899 by Tsinghua University Library, Wiley Online Library on [1606/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

www.afm-journal.de



Figure 1. The design and advantages of Cu<sub>2</sub>O@CeO<sub>x</sub> core-shell nanocatalyst supported on carbon paper for CO<sub>2</sub>RR.

In this work, we successfully synthesized a core-shell structure of  $\mathrm{Cu_2O}$  nanocube core covered with an amorphous  $\mathrm{CeO}_x$  shell via a simple hydrothermal method by optimizing the adding ratio of  $\mathrm{Ce}$  salt. As shown in **Figure 1**, the ultrathin  $\mathrm{CeO}_x$  shell layer can inhibit the leaching of inside  $\mathrm{Cu}$  ions and activate  $\mathrm{CO}_2$  for further reduction on the  $\mathrm{Cu}_2\mathrm{O}$  core. Meanwhile, the easy shift between  $\mathrm{Ce}^{4+}$  and  $\mathrm{Ce}^{3+}$  in  $\mathrm{CeO}_x$  can facilitate the electron transfer and regulate the electronic structure of  $\mathrm{Cu}$  for maintaining the oxidation state of  $\mathrm{Cu}_2\mathrm{O}$  in  $\mathrm{Cu}_2\mathrm{O}$   $\mathrm{CeO}_x$ . Thus, the stability of  $\mathrm{Cu}_2\mathrm{O}$   $\mathrm{CeO}_x$  has been greatly improved while maintaining its high efficiency. The  $\mathrm{Cu}_2\mathrm{O}$   $\mathrm{CeO}_x$  catalyst delivers a high  $\mathrm{C}_{2+}$  Faradaic efficiency (FE) of above 80% at 300 mA cm<sup>-2</sup> under a low applied potential of -0.98 V, and the durability enhances from 2 h of  $\mathrm{Cu}_2\mathrm{O}$  to more than 50 h under the large current density of 300 mA cm<sup>-2</sup> for  $\mathrm{Cu}_2\mathrm{O}$   $\mathrm{CeO}_x$ .

### 2. Results and discussion

#### 2.1. Synthesis and Structural Characterization of Cu<sub>2</sub>O@CeO,

The CuCe samples with varied Ce ratios were synthesized via a one-step hydrothermal process (details shown in the experimental part), and the morphology of CuCe3% is uniformly dispersed nanocubes (named as Cu<sub>2</sub>O@CeO<sub>x</sub> in Figure 2a; Figure S1, Supporting Information). The high-resolution transmission electron microscope (HR-TEM) image of the nanocube is shown in Figure 2b. The lattice fringe of 0.21 nm corresponding to the (111) plane of Cu<sub>2</sub>O was observed in the inner part, while no lattice fringes were detected in the thin surface layer ( $\approx$ 1.5 nm). The high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM) image (Figure 2c; Figure S2a, Supporting Information) further confirms that the nanocube is covered with a thin semitransparent layer. The corresponding energy dispersive spectroscopy (EDS) mapping images (Figure 2c; Figure S2b, Supporting Information) show that only the signal of Ce and O were detected in the surface semitransparent layer, and the signal of Cu was distributed uniformly in the inner part. These results indicate that the CuCe3% sample is a uniform nanocube structure with a crystal  $Cu_2O$  core covered with an amorphous  $CeO_x$  shell. So, the CuCe3% sample was named as  $Cu_2O@CeO_x$ . When increasing the adding content of Ce, the aggregated  $CeO_2$  nanoparticles appeared beside the nanocube morphology in CuCe5% and CuCe8% (Figures S3, S4, Supporting Information). The reference sample of  $Cu_2O$  (Figure S5, Supporting Information) was synthesized using the same method with  $Cu_1O@CeO_x$  without adding cerium salt.

The X-ray diffraction (XRD) patterns and the Raman spectroscopy of  $\text{Cu}_2\text{O}$  and  $\text{Cu}_2\text{O} \otimes \text{CeO}_x$  are shown in Figure 2d,e. Only the peaks ascribed to  $\text{Cu}_2\text{O}$  were observed in both  $\text{Cu}_2\text{O}$  and  $\text{Cu}_2\text{O} \otimes \text{CeO}_x$ , further confirming the amorphous structure of  $\text{CeO}_x$  in  $\text{Cu}_2\text{O} \otimes \text{CeO}_x$ . Also, nearly no angle shifts for  $\text{Cu}_2\text{O}$  diffraction peaks in  $\text{Cu}_2\text{O} \otimes \text{CeO}_x$  were detected compared with those of  $\text{Cu}_2\text{O}$ , consistent with the core-shell structure of  $\text{Cu}_2\text{O} \otimes \text{CeO}_x$  instead of Ce doping  $\text{Cu}_2\text{O}$ . This finding is further corroborated by the extended X-ray absorption fine structure (EXAFS) spectra shown in Figure 2f. Similar to pure  $\text{Cu}_2\text{O}$ , only the Cu—O bond (≈1.5 Å) and Cu—O—Cu bond (≈3.1 Å) have existed in  $\text{Cu}_2\text{O} \otimes \text{CeO}_x$ .

XPS and X-ray absorption near edge structure (XANES) were employed to analyze the electronic structure of  $\mathrm{Cu_2O@CeO_x}$ . The Cu 2p XPS spectrum (**Figure 3a**) shows that the peak of Cu  $2p_{3/2}$  at 932.7 eV is attributed to  $\mathrm{Cu^0}$  or  $\mathrm{Cu^+}$ .[9] The Cu LMM Auger spectrum (Figure S6, Supporting Information) further demonstrates the existence of  $\mathrm{Cu^+}$ .[10] Significantly, the  $\mathrm{Cu_2O@CeO_x}$  exhibits an obvious shift in the  $\mathrm{Cu^0}$  or  $\mathrm{Cu^+}$  peak of the  $\mathrm{Cu}$   $2p_{3/2}$  to the negative direction by 0.3 eV when compared with  $\mathrm{Cu_2O}$ , suggesting the strong electronic interactions between  $\mathrm{Cu_2O}$  and  $\mathrm{CeO_x}^{[5b,c]}$  The XPS spectra of  $\mathrm{CuCe5\%}$  and  $\mathrm{CuCe8\%}$  (Figure S7, Supporting Information) reveal a consistent negative shift of 0.3 eV in the Cu  $2p_{3/2}$  peak compared to pristine  $\mathrm{Cu_2O}$ . This suggests that increasing the adding content of Ce does not induce additional electron transfer, and the

16163028, 0, Downloaded from https://advanced

onlinelibrary.wiley.com/doi/10.1002/adfm.202509899 by Tsinghua University Library, Wiley Online Library on [16/06/2025]. See the Terms

xonditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

www.afm-journal.de



Figure 2. Morphological and structural characterizations of  $Cu_2O@CeO_x$ . a) SEM image, b) HR-TEM image, and c) HAADF-STEM image and the corresponding EDS mapping images of  $Cu_2O@CeO_x$ . d) XRD patterns and e) Raman spectra of  $Cu_2O@CeO_x$  and  $Cu_2O$ . f) Cu FT  $k^3$ -weighted EXAFS spectra of  $Cu_2O@CeO_x$ , CuO,  $Cu_2O$ , and  $Cu_2O$  and  $Cu_2O$ . for interpolation is the corresponding to the corresponding EDS mapping images of  $Cu_2O@CeO_x$ . d) XRD patterns and e) Raman spectra of  $Cu_2O@CeO_x$ , and  $Cu_2O$ . for its constant is the corresponding EDS mapping image.

electron redistribution mainly occurs at the interface of CeO<sub>x</sub> and Cu<sub>2</sub>O. The XANES spectra (Figure 3b) also confirm this. The preedge line of Cu<sub>2</sub>O@CeO<sub>x</sub> is between Cu foil and Cu<sub>2</sub>O, indicating that the average valence state of Cu was between the metallic state and the cuprous state.[11] The Ce L<sub>3</sub>-edge XANES spectrum (Figure 3c) shows that the Ce pre-edge line of Cu<sub>2</sub>O@CeO<sub>x</sub> positions between CeCl<sub>3</sub> and CeO<sub>2</sub>. The linear combination fitting (LCF) further shows that the ratio of  $Ce^{3+}$  is  $\approx$ 48% (Figure S8 and Table S1, Supporting Information).[12] This is in excellent agreement with the  $\approx$ 49% Ce<sup>3+</sup> ratio determined from the Ce 3d XPS spectrum (Figure 3d), confirming the consistency and accuracy of our analysis. The much higher ratio of Ce<sup>3+</sup> is from the amorphous structure of CeO<sub>x</sub> and the electronic interactions between Cu<sub>2</sub>O and CeO<sub>x</sub> in Cu<sub>2</sub>O@CeO<sub>x</sub>. [5b,c,13] We then calculated the charge density difference of the optimized Ce<sub>4</sub>O<sub>7</sub>/Cu<sub>2</sub>O model (Figures S9, S10, Supporting Information) to investigate the interfacial electronic effect between Cu<sub>2</sub>O and CeO<sub>x</sub>. As shown in Figure 3e, the charge is transferred from Ce<sub>4</sub>O<sub>7</sub> to Cu<sub>2</sub>O. Bader charge analysis further suggests that the overall Ce<sub>4</sub>O<sub>7</sub> transfers  $0.87 e^-$  to  $Cu_2O$ . The O 1s XPS spectra of  $Cu_2O$ @ $CeO_x$  and  $Cu_2O$ are shown in Figure 3f. Compared with Cu<sub>2</sub>O, a large number of oxygen vacancy defects are observed for Cu<sub>2</sub>O@CeO<sub>x</sub>, which result from its high ratio of Ce<sup>3+</sup>. The abundant Ce<sup>3+</sup> and oxygen vacancies of the CeO<sub>x</sub> shell are beneficial for the activation of  $CO_2$ ,<sup>[7,14]</sup> and the  $Cu^+$  sites from the  $Cu_2O$  core of  $Cu_2O$ @ $CeO_x$  can promote C-C coupling to  $C_{2+}$  products.<sup>[2]</sup>

#### 2.2. CO2 RR Performances and Reaction Mechanism

The electrochemical performances of Cu<sub>2</sub>O and Cu<sub>2</sub>O@CeO<sub>a</sub> toward the CO₂RR were evaluated in a flow cell with 1.0 M KOH solution as the electrolyte, and the carbon paper was used as the gas diffusion electrode (GDE). The polarization curves (without iR compensation) of Cu<sub>2</sub>O and Cu<sub>2</sub>O@CeO, were obtained in an Ar or CO<sub>2</sub> atmosphere (**Figure 4a**). The Cu<sub>2</sub>O@CeO<sub>x</sub> catalyst exhibits a more positive onset potential and higher current densities in both environments, highlighting the positive contribution of the CeO<sub>x</sub> layer to the overall electron transfer. Furthermore, in a CO<sub>2</sub> atmosphere, Cu<sub>2</sub>O@CeO<sub>2</sub> achieves even higher current densities and a more positively shifted onset potential compared to Ar, demonstrating its efficiency for CO<sub>2</sub> reduction. To clarify the higher CO2RR activity of Cu2O@CeOx, we conducted electrochemical impedance spectroscopy (EIS) measurements to assess the charge-transfer capacity of the catalysts.<sup>[15]</sup> As shown in Figure 4b, Cu<sub>2</sub>O@CeO<sub>x</sub> has a smaller charge transfer resistance than Cu<sub>2</sub>O. This indicates that the CeO<sub>x</sub> with abundant Ce<sup>3+</sup> and oxygen vacancies facilitates the electron transfer in Cu<sub>2</sub>O@CeO<sub>x</sub>.

16163028, 0, Downloaded from https://advanced

onlinelibrary.wiley.com/doi/10.1002/adfm.202509899 by Tsinghua University Library, Wiley Online Library on [16.06/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

www.afm-journal.de



Then we discuss the effect of the CeO, shell on the selectivity of CO2RR products. We utilized a 30-min constant current method for testing purposes. Gas chromatography effectively detected the resulting gas phase products (Figure S11, Supporting Information), and nuclear magnetic resonance (NMR) spectroscopy was employed to detect the liquid phase products (Figure S12, Supporting Information). As shown in Figure 4c and Figure S13 (Supporting Information), the CO2RR products for Cu<sub>2</sub>O and Cu<sub>2</sub>O@CeO<sub>x</sub> are nearly the same. The CO<sub>2</sub>RR products are dependent on current density due to the increasing applied potentials.[11] The FE of the C<sub>2+</sub> products of Cu<sub>2</sub>O@CeO<sub>x</sub> (Figure 4d) is higher than that of Cu<sub>2</sub>O starting from the large current density of 200 mA cm<sup>-2</sup>. Cu<sub>2</sub>O@CeO<sub>x</sub> exhibits the highest FE of 81.8% at a current of 300 mA cm<sup>-2</sup>. Moreover, the applied potentials of Cu<sub>2</sub>O@CeO<sub>x</sub> (Figure 4d) are much lower to reach the same current densities than those of Cu<sub>2</sub>O. This indicates that the ultrathin CeO, shell does not hinder the mass transfer of CO2RR, but rather has the potential to enhance the adsorption and activation of CO<sub>2</sub> (discussed below). For CuCe5% and CuCe8%, the presence of a thicker CeO, shell leads to the declined FE of C2+ products as shown in Figure \$14 (Supporting Information). Notably, the CuCe8% sample exhibits a marked reduction in FE for C<sub>2+</sub> products to 50.6% at 300 mA cm<sup>-2</sup>, accompanied by an increase in the FE of  $\mathrm{CH}_4$ . This selectivity shift may originate from the enhanced hydrogenation capacity of the thicker CeO<sub>2</sub> nanoparticle shell, which disrupts the C-C coupling pathway while promoting the sequential hydrogenation of \*CO intermediates toward the formation of methane. <sup>[14]</sup> The long-term stability performance of  $Cu_2O@CeO_x$  is shown in Figure 4f. The potential remains steady and the FE of  $C_{2+}$  products maintains above 80% under the large current density of 300 mA cm<sup>-2</sup> for 50 h, demonstrating the excellent stability of  $Cu_2O@CeO_x$ . The high  $C_{2+}$  FE and long durability time under the large current density of 300 mA cm<sup>-2</sup> make  $Cu_2O@CeO_x$  comparable with those of the state-of-the-art  $CO_2RR$  electrocatalysts (Figure 4e).

To further elucidate the key intermediates and gain a deeper understanding of the CO<sub>2</sub>RR mechanism, we collected in situ surface enhanced Raman scattering (SERS, Figure \$15, Supporting Information) spectra and in situ attenuated total reflectance surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). As shown in Figure 5a, the peak at 373 cm<sup>-1</sup> is attributed to the Cu—CO stretching, [16] which represents a strong interaction between Cu and \*CO.[17] This indicates that CO<sub>2</sub>RR occurs on the surface of the Cu<sub>2</sub>O inner core, and the CeO<sub>x</sub> shell does not inhibit the mass transfer for the reaction. As the potential becomes more negative, the peak at 529 cm<sup>-1</sup> ascribed to \*CH<sub>2</sub>CHO becomes obvious while the peak at 1064 cm<sup>-1</sup> ascribed to carbonate decreases remarkably.[18] This indicates the CO<sub>2</sub>RR progresses vigorously for the generation of C<sub>2+</sub> products over Cu<sub>2</sub>O@CeO<sub>x</sub>. In situ ATR-SEIRAS spectroscopy (Figure 5b) further detects peaks around 1245, 1190 and 1589 cm<sup>-1</sup> corresponding to \*CHO, the C≡O stretching band of \*COCHO and symmetric \*COCHO, respectively.[19] The \*OCCHO is the key intermediate revealing the pathway of C-C coupling between \*CO

16163028, 0, Downloaded from https://advancec

elibrary.wiley.com/doi/10.1002/adfm.202509899 by Tsinghua University Library, Wiley Online Library on [16/06/2025]. See the Terms

conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

www.afm-journal.de



Figure 4. Electrochemical  $CO_2RR$  performances. a) LSV curves in different atmospheres and b) Nyquist plots of  $Cu_2O$  and  $Cu_2O@CeO_x$ . c) The measured FEs of  $Cu_2O@CeO_x$  under different current densities. d) The  $C_{2+}$  FEs (left Y-axis) and potentials (right Y-axis) of  $Cu_2O@CeO_x$  under different current densities. e) Comparisons of FE of  $C_{2+}$ , the current density, and stability test time over  $Cu_2O@CeO_x$  and typical Cu-based catalysts reported. Detailed data are shown in Table S2, Supporting Information. f) Time-dependent potentials (left Y-axis) and  $C_{2+}$  FEs (right Y-axis) for  $Cu_2O@CeO_x$  and  $Cu_2O@CeO_x$  a

and \*CHO.<sup>[20]</sup> The intensity of \*CHO for Cu<sub>2</sub>O@CeO<sub>x</sub> is obviously higher than that of Cu<sub>2</sub>O (Figure \$16, Supporting Information), indicating the greater hydrogenation capacity due to the water-splitting ability of CeO<sub>x</sub> as reported previously.<sup>[8b,21]</sup> Peaks at 1165 and 1310 cm<sup>-1</sup> attributed to the \*OC<sub>2</sub>H<sub>5</sub> are also observed for Cu<sub>2</sub>O@CeO<sub>x</sub>, which are generally considered to be the crucial intermediate for ethanol.<sup>[22]</sup>

As shown in Figure 5c, the peak at 2350  $\text{cm}^{-1}$  attribute to the activated \*CO<sub>2</sub> is more pronounced over Cu<sub>2</sub>O@CeO<sub>x</sub>

than over  $Cu_2O$ , indicating the better ability of  $Cu_2O@CeO_x$  for the activation of  $CO_2$ . The DFT calculations in Figure 5d show that the adsorption energy for  $CO_2$  adsorption is markedly lower over  $CeO_x$  than over  $Cu_2O$  (Figures S17–S19, Supporting Information). This further demonstrates the  $CeO_x$  shell in  $Cu_2O@CeO_x$  can promote the activation and adsorption of  $CO_2$ . The free energy diagrams from  $^*CO_2$  to  $^*OCCHO$  over Cu sites of the optimized  $Cu_2O(100)$  model (Figure S20, Supporting Information) and  $Ce_4O_7/Cu_2O(100)$  model (Figure S9, Supporting

16163028, 0, Downloaded from https

elibrary.wiley.com/doi/10.1002/adfm.202509899 by Tsinghua University Library. Wiley Online Library on [16.06/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/term

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

www.afm-journal.de



Figure 5.  $CO_2RR$  mechanism investigation. In situ a) SERS spectra collected at different potentials over  $Cu_2O@CeO_x$  and b) ATR-SEIRAS spectra. c) The peak for the adsorption of  $CO_2$  from the in situ ATR-SEIRAS spectra of  $Cu_2O@CeO_x$  and  $Cu_2O$ . Calculated d) adsorption energy for the  $CO_2$  adsorption and e) free energy diagrams from  $CO_2$  to  $CO_2RO$ 0 over  $CO_2RO$ 100 (Red line) and  $CO_2RO$ 100 (Green line). The yellow, blue, grey, red, and white balls represent  $CO_2RO$ 100,  $CO_2RO$ 100 (Green line).

Information) are also compared as shown in Figure 5e and Figure S21 (Supporting Information). The corresponding DFT models are shown in Figures S22 and S23 (Supporting Information). The formation energy of the key \*CHO intermediate is much lower over  $Ce_4O_7/Cu_2O(100)$  than over  $Cu_2O$ , consistent with the in situ ATR-SEIRAS results. The easier formation of \*CHO can promote the next C-C coupling step for  $C_{2+}$  products (Figure S21, Supporting Information). Thus, the  $CeO_x$  shell can not only promote the activation of  $CO_2$  but also benefit the  $Cu_2O$  core the hydrogen step for the key \*CHO intermediate of C-C coupling.

## 2.3. Discussion on the High Stability of Cu<sub>2</sub>O@CeO<sub>x</sub>

In this section, we will discuss the exceptional stability of  $Cu_2O@CeO_x$ . The 4.5-h constant  $CO_2RR$  tests at 300 mA cm<sup>-2</sup> was performed for  $Cu_2O$  (Figure 6a) and  $Cu_2O@CeO_x$  (Figure 6b). For  $Cu_2O$ , The FE of  $C_2H_4$  decreases drastically starting from 2 h along with the increase of the FE of  $H_2$ . In the end, the FE of  $C_2H_4$  decreases to below 10% and the FE of  $H_2$  reaches above 70%. In contrast, the FEs of  $C_2H_4$  and  $H_2$  only fluctuate slightly within the 4.5 h for  $Cu_2O@CeO_x$  (Figure 6b). These results demonstrate the positive effect of the  $CeO_x$  shell on the stability of  $Cu_2O$  for  $CO_2RR$ .

To further investigate the mechanism of stability enhancement in Cu<sub>2</sub>O@CeO<sub>x</sub>, the morphologies of Cu<sub>2</sub>O and Cu<sub>2</sub>O@CeO<sub>x</sub> after stability tests were obtained first. The uniform distributed nanoparticles in fresh Cu<sub>2</sub>O (Figure S24, Supporting Informa-

tion) aggregate and form the porous honeycomb structure for Cu<sub>2</sub>O-4.5h (Figure 6c), indicating a significant structural reconstruction has occurred for Cu<sub>2</sub>O during the constant CO<sub>2</sub>RR. For Cu<sub>2</sub>O@CeO<sub>x</sub>-4.5h (Figure 6d), the morphology of the uniformly distributed nanoparticles is still present. This significant difference demonstrates that the CeO<sub>x</sub> shell layer can prevent Cu<sub>2</sub>O from dissolution (Figure \$25, Supporting Information) and reconstruction. To obtain the chemical state of Cu after the stability tests, we collected both XRD (Figure 6e) and Cu LMM (Figure 6f) patterns. The XRD pattern shows that the peaks of Cu at 43° and 50° corresponding to the (111) and (200) planes of metal Cu appear in Cu<sub>2</sub>O-4.5h. Moreover, the intensity of the Cu(111) peak at 43° is basically the same as the peak of Cu<sub>2</sub>O(111) at 36°, indicating that a large number of Cu ions are reduced to metal Cu for Cu2O-4.5h. While for Cu2O@CeO2-4.5h, the intensity of the Cu(111) peak is very low and the peak of Cu(200) can hardly be seen, illustrating most of Cu in Cu<sub>2</sub>O@CeO<sub>x</sub> remains oxidation state. Also, the Cu LMM Auger spectra exhibit that the peak of Cu<sup>+</sup> in Cu<sub>2</sub>O (Figure 6e) is significantly shifted toward Cu<sup>0</sup> (918.6 eV) in Cu<sub>2</sub>O-4.5h, while Cu<sub>2</sub>O@CeO<sub>x</sub>-4.5h remains in Cu<sup>+</sup> (916.7 eV). To verify the protective effect of the CeO<sub>x</sub> shell on the valence state more intuitively, we compared the CV curves under the Ar atmosphere (Figure \$26, Supporting Information), and the copper redox of Cu<sub>2</sub>O@CeO<sub>x</sub> is obviously inhibited.

To make a short summary, the  ${\rm CeO}_x$  shell, on one hand, can prohibit the  ${\rm Cu}_2{\rm O}$  nanoparticle core from aggregation and structural reconstruction by stable Cu ions from leaching and

16163028, 0, Downloaded from https

elibrary.wiley.com/doi/10.1002/adfm.202509899 by Tsinghua University Library, Wiley Online Library on [16/06/2025]. See the Terms

and Conditi

are governed by the applicable Creative Commons



Figure 6. Stability improvement investigation. 4.5-h constant  $CO_2RR$  tests at 300 mA cm<sup>-2</sup> for a)  $Cu_2O$  and b)  $Cu_2O@CeO_x$ . SEM images after 4.5 h tests of c)  $Cu_2O$  and d)  $Cu_2O@CeO_x$ . e)  $Cu_2O@CeO_x$ . e)  $Cu_2O@CeO_x$  and  $Cu_2O@CeO_x$  and  $Cu_2O@CeO_x$ . e)  $Cu_2O@CeO_x$ .

dissolution. On another hand, the  $CeO_x$  shell can maintain the oxidation state of Cu due to the facilitated electron transfer and the easy shift between  $Ce^{4+}$  and  $Ce^{3+}$ .[5a,23]

#### 3. Conclusion

In summary, we developed a highly efficient and stable core-shell structure electrocatalyst composed of Cu<sub>2</sub>O nanocube core and CeO, shell for CO<sub>2</sub>RR. In situ, spectroscopy and DFT calculations demonstrate that the CeO<sub>x</sub> shell promotes the activation of CO<sub>2</sub> and optimizes the electronic structure of the Cu<sub>2</sub>O core for the decreasing energy barrier of \*CHO, which is the key intermediate for C-C coupling. The Cu<sub>2</sub>O@CeO<sub>x</sub> catalyst shows an enhanced C<sub>2</sub> FE of 81.8% and a decreased applied potential of -0.98 V at 300 mA cm<sup>-2</sup> compared with 72% and -1.2 V of Cu<sub>2</sub>O. More importantly, Cu<sub>2</sub>O@CeO<sub>x</sub> delivers long-term stability of 50 h under the larger current density of 300 mA cm<sup>-2</sup>, while the Cu<sub>2</sub>O catalyst only lasts 2 h. The greatly improved stability of Cu<sub>2</sub>O@CeO<sub>x</sub> resulted from the CeO<sub>x</sub> shell that maintains the morphology and valence state of the Cu<sub>2</sub>O core. This work paves the way for improving the activity and stability of unstable metal electrocatalysts at the same time toward various energy applications.

## **Supporting Information**

Supporting Information is available from the Wiley Online Library or from the author.

## **Acknowledgements**

Y.L. and J.Z. contributed equally to this work. This research was supported by the National Natural Science Foundation of China (22472101, 22279079), Guangdong Science and Technology Department Program (2021QN02L252, 2023A1515010021, 2024A1515011543, 2025A1515010455), Shenzhen Science and Technology Programs (20231120181703001), Research Team Cultivation Program of Shenzhen University (2023QNT007), the Natural Science Foundation of SZU (000001032086), the Australian Research Council (ARC) (CE230100017, FL210100050, DP210101486, and DP200101862) and EF Sandland Bequest\_Zou and an AINSE Ltd. Early Career Researcher Grant (ECRG-J. Zou). The authors sincerely acknowledged the Instrumental Analysis Center of Shenzhen University (Xili Campus), the Electron Microscope Center of Shenzhen University, and the Canadian Light Source for XAS measurements.

#### Conflict of Interest

The authors declare no conflict of interest.

# Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

## Keywords

 $C_{2+}$  products,  $CO_2$  electrochemical reduction,  $Cu_2O@CeO_x$  catalyst, large current density, stability

www.advancedsciencenews.com

ADVANCED Functional Materials

www.afm-journal.de

16163028, 0, Downloaded from https:

onlinelibrary.wiley.com/doi/10.1002/adfm.202509899 by Tsinghua University Library. Wiley Online Library on [16/06/2025]. See the Terms

and Conditions

conditions) on Wiley Online Library for rules of use; OA articles

are governed by the applicable Creative Commons

Received: April 19, 2025 Revised: May 15, 2025 Published online:

- a) W. Lai, Y. Qiao, J. Zhang, Z. Lin, H. Huang, Energy Environ. Sci.
  2022, 15, 3603; b) E. W. Lees, B. A. W. Mowbray, F. G. L. Parlane, C.
  P. Berlinguette, Nat. Rev. Mater. 2021, 7, 55; c) M. L. Yu, P. F. Sui, X.
  Z. Fu, J. L. Luo, S. B. Liu, Adv. Energy Mater. 2023, 13, 2203191.
- a) S. Li, J. Yu, S. Zhang, W. Qiu, X. Tang, Z. Lin, R. Cai, Y. Fang, S. Yang, X. Cai, Adv. Funct. Mater. 2023, 34, 2311989; b) L. Ding, N. Zhu, Y. Hu, Z. Chen, P. Song, T. Sheng, Z. Wu, Y. Xiong, Angew. Chem., Int. Ed. 2022, 61, 61; c) J. Feng, L. Wu, S. Liu, L. Xu, X. Song, L. Zhang, Q. Zhu, X. Kang, X. Sun, B. Han, J. Am. Chem. Soc. 2023, 145, 9857; d) P. P. Albertini, M. A. Newton, M. Wang, O. Segura Lecina, P. B. Green, D. C. Stoian, E. Oveisi, A. Loiudice, R. Buonsanti, Nat. Mater. 2024, 23, 680.
- [3] a) S. Popović, M. Smiljanić, P. Jovanovič, J. Vavra, R. Buonsanti, N. Hodnik, Angew. Chem., Int. Ed. 2020, 59, 14736; b) Q. Lei, H. Zhu, K. Song, N. Wei, L. Liu, D. Zhang, J. Yin, X. Dong, K. Yao, N. Wang, X. Li, B. Davaasuren, J. Wang, Y. Han, J. Am. Chem. Soc. 2020, 142, 4213; c) P. Grosse, D. Gao, F. Scholten, I. Sinev, H. Mistry, B. Roldan Cuenya, Angew. Chem., Int. Ed. 2018, 57, 6192; d) W. Choi, Y. Chae, E. Liu, D. Kim, W. S. Drisdell, H.-s. Oh, J. H. Koh, D. K. Lee, U. Lee, D. H. Won, Nat. Commun. 2024, 15, 8345.
- [4] a) X. Liu, T. Liu, T. Ouyang, J. Deng, Z.-Q. Liu, Angew. Chem., Int. Ed. 2024, 64, 202419796; b) Y. Sun, J. Xie, Z. Fu, H. Zhang, Y. Yao, Y. Zhou, X. Wang, S. Wang, X. Gao, Z. Tang, S. Li, X. Wang, K. Nie, Z. Yang, Y.-M. Yan, ACS Nano 2023, 17, 13974.
- [5] a) X. Zhou, J. Shan, L. Chen, B. Y. Xia, T. Ling, J. Duan, Y. Jiao, Y. Zheng, S.-Z. Qiao, J. Am. Chem. Soc. 2022, 144, 2079; b) J. Yu, J. Wang, X. Long, L. Chen, Q. Cao, J. Wang, C. Qiu, J. Lim, S. Yang, Adv. Energy Mater. 2021, 11, 2002731; c) H. Liu, J. Yu, J. Lin, B. Feng, M. Sun, C. Qiu, K. Qian, Z. Si, B. Huang, J.-J. Delaunay, Y. Ikuhara, S. Yang, EES Catal. 2023, 1, 720; d) S. Das, R. Bhaskar, K. B. Narayanan, J. Rare Earths 2024, 42, 1817.
- [6] S. Zhang, Z.-Q. Huang, Y. Ma, W. Gao, J. Li, F. Cao, L. Li, C.-R. Chang, Y. Qu, Nat. Commun. 2017, 8, 15266.
- [7] S. Zhang, Z. Xia, Y. Zou, F. Cao, Y. Liu, Y. Ma, Y. Qu, J. Am. Chem. Soc. 2019, 141, 11353.
- [8] a) W.-F. Xiong, D.-H. Si, H.-F. Li, X. Song, T. Wang, Y.-B. Huang, T.-F. Liu, T. Zhang, R. Cao, J. Am. Chem. Soc. 2023, 146, 289; b) S. Li, G. Wu, J. Mao, A. Chen, X. Liu, J. Zeng, Y. Wei, J. Wang, H. Zhu, J. Xia,

- X. Wang, G. Li, Y. Song, X. Dong, W. Wei, W. Chen, Angew. Chem., Int. Ed. 2024, 63, 202407612.
- [9] a) L. Sun, Z. Song, M. Lin, J. Peng, Y. Li, R. Wei, Q. Zhang, J. Yu, L. Zhang, ACS Sustainable Chem. Eng. 2024, 12, 9748; b) S. Li, H. Duan, J. Yu, C. Qiu, R. Yu, Y. Chen, Y. Fang, X. Cai, S. Yang, ACS Catal. 2022, 12, 9074.
- [10] T. T. Zhao, J. H. Li, J. D. Liu, F. M. Liu, K. Q. Xu, M. Yu, W. C. Xu, F. Y. Cheng, ACS Catal. 2023, 13, 4444.
- [11] X. K. Lu, B. Lu, H. Li, K. Lim, L. C. Seitz, ACS Catal. 2022, 12, 6663.
- [12] B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537.
- [13] H. Liu, H. Duan, J. Yu, C. Qiu, R. Yu, J. Gao, S. Li, X. Du, Z. Si, S. Yang, ACS Mater. Lett. 2022, 4, 2572.
- [14] R. Yu, C. Qiu, Z. Lin, H. Liu, J. Gao, S. Li, Y. Yao, J. Yu, S. Yang, ACS Mater. Lett. 2022, 4, 1749.
- [15] F. Dong, H. Duan, Z. Lin, H. Yuan, M. Ju, X. Du, J. Gao, J. Yu, S. Yang, Appl. Catal. B-Environ. 2024, 340, 123242.
- [16] a) R. Amirbeigiarab, J. Tian, A. Herzog, C. Qiu, A. Bergmann, B. Roldan Cuenya, O. M. Magnussen, *Nat. Catal.* 2023, 6, 837; b) Y. Cao, Z. Chen, P. Li, A. Ozden, P. Ou, W. Ni, J. Abed, E. Shirzadi, J. Zhang, D. Sinton, J. Ge, E. H. Sargent, *Nat. Commun.* 2023, 14, 2387.
- [17] J. Jiao, X. Kang, J. Yang, S. Jia, Y. Peng, S. Liu, C. Chen, X. Xing, M. He, H. Wu, B. Han, J. Am. Chem. Soc. 2024, 146, 15917.
- [18] a) Y. Zhao, X.-G. Zhang, N. Bodappa, W.-M. Yang, Q. Liang, P. M. Radjenovica, Y.-H. Wang, Y.-J. Zhang, J.-C. Dong, Z.-Q. Tian, J.-F. Li, Energy Environ. Sci. 2022, 15, 3968; b) X. Lu, C. Zhu, Z. Wu, J. Xuan, J. S. Francisco, H. Wang, J. Am. Chem. Soc. 2020, 142, 15438.
- [19] P. Wang, H. Yang, C. Tang, Y. Wu, Y. Zheng, T. Cheng, K. Davey, X. Huang, S.-Z. Qiao, *Nat. Commun.* 2022, 13, 3754
- [20] a) W. Zhang, C. Huang, Q. Xiao, L. Yu, L. Shuai, P. An, J. Zhang, M. Qiu, Z. Ren, Y. Yu, J. Am. Chem. Soc. 2020, 142, 11417; b) S. Zhu, T. Li, W.-B. Cai, M. Shao, ACS Energy Lett. 2019, 4, 682.
- [21] C. Xia, X. Wang, C. He, R. Qi, D. Zhu, R. Lu, F.-M. Li, Y. Chen, S. Chen, B. You, T. Yao, W. Guo, F. Song, Z. Wang, B. Y. Xia, J. Am. Chem. Soc. 2024, 146, 20530.
- [22] a) X. Li, S. Wang, L. Li, Y. Sun, Y. Xie, J. Am. Chem. Soc. 2020, 142, 9567; b) F. Xu, B. Feng, Z. Shen, Y. Chen, L. Jiao, Y. Zhang, J. Tian, J. Zhang, X. Wang, L. Yang, Q. Wu, Z. Hu, J. Am. Chem. Soc. 2024, 146, 0265
- [23] a) Z. Dong, C. Zhou, W. Chen, F. Lin, H. Luo, Z. Sun, Q. Huang, R. Zeng, Y. Tan, Z. Xiao, H. Huang, K. Wang, M. Luo, F. Lv, S. Guo, Adv. Funct. Mater. 2024, 34, 2400809; b) D. Pang, W. Li, N. Zhang, H. He, S. Mao, Y. Chen, L. Cao, C. Li, A. Li, X. Han, J. Rare Earth 2024, 42, 676. c) H. Liu, Q. Zhou, J. Yu, M. Nakabayashi, Y.-T. Lee, N. Shibata, Y. Li, J.-J. Delaunay, ACS Catal. 2025, 15, 8511.