Phenotype prediction from single-cell RNA-seq data using attention-based neural networks

https://academic.oup.com/bioinformatics/article/40/2/btae067/7613064

ARTIFICIAL INTELLIGENCE AND DATA ANALYTICS LAB 명지대학교 융합소프트웨어학부 김민

Introduction

- Accurate prediction of phenotypes is critical in advancing diagnosis, prognosis, and therapy.
- Bulk tissue samples gene expression profiles are measured by averaging cells across the whole tissue, which often do not reveal the full complexity of diverse cell types within patients.

1. Sample mixup

$$x^{\sim} = \lambda x_i + (1 - \lambda) x'_i$$

 $y^{\sim} = \lambda y + (1 - \lambda) y'$

* given two scRNA-seq samples S and S' $\lambda \in [0, 1]$

* x_i and x '_i are gene expression profile of cells drawn from S and S'

* y and y' are corresponding one-hot phenotype label encodings

- 2. Attention layer : 입력 데이터 내에서 서로 얼마나 중요한 관계를 가지는지 계산
- 각 세포의 임베딩 c;에 대해 변환

$$Q_i = W_q c_i$$
, $K_j = W_k c_j$, $V_j = W_v c_j$
 $* W_q c_i$: 현재 기준이 되는 세포 c_i 의 Query 벡터 (질문 역할)
 $* W_k c_j$: 다른 세포 c_j 의 Key 벡터 (대답할 정보)
 $* W_v c_i$: 다른 세포 c_i 의 Value 벡터 (최종 가져올 정보)

• Self-Attention : 입력 C_i 가 다른 C_i 에게 얼마나 중요한지를 계산

$$s_{ij} = \frac{dot \ product(\ Q_i, K_j)}{\sqrt{d_{kqv}}}, \qquad a_{ij} = softmax_j(s_{ij})$$

* d_{kay} is the dimensionality of key, query and value

 \star 내적 결과를 **벡터 차원의 제곱근** $\sqrt{d_{kqv}}$ 으로 나눠서 정규화

* a_{ii} : Attention 가중치

- 2. Attention layer
- 새로운 임베딩 생성 (Weighted Sum)

$$h_i = \sum_{j=1}^N a_{ij} V_j$$

• Multi-Head Attention : Self-Attention을 K개의 독립적인 공간에서 동시에 수행

$$Attention(c_i) = Concat(h_i^1, ..., h_i^K) W_0$$

* K different groups

* W₀ : 최종 출력을 조합하는 가중치 행렬

- 2. Attention layer
- Randomly select NC cells as one fixed-size sample
- Generate **NS fixed-size samples** for each sample

- During the **training** process, each fixed-size sample (NC) is calculated a loss.
- Majority vote to assign the predicted label to each sample.

- 3. Phenotype classifier
- The **cell embeddings** for each sample by computing the **average value** along each dimension.
- The aggregated embedding is passed to the phenotype classifier, a one-layer MLP, which outputs the predicted phenotype for the input sample.

Experiment

- For COMBAT and Haniffa datasets, we perform the task of disease diagnosis
 - COVID versus Non-COVID
- For SC4 which includes mostly COVID samples
 - mild/moderate versus severe/critical (경증/중등증 vs. 중증/위중증)
 - convalescence versus progression (회복 vs. 진행)

Results


```
(scrat) kim89@ailab-System-Product-Name:~/ScRAT$ bash run.sh
Namespace(seed=100, batch_size=256, learning_rate=0.01, weight_decay=0.0001, epochs=100, task='stage', emb_dim=128
 h_dim=128, dropout=0.3, layers=1, heads=8, train_sample_cells=500, test_sample_cells=500, train_num_sample=20, test_sample_cells=500, train_num_sample=20, test_sample_cells=500, train_num_sample=20, test_sample_cells=500, train_num_sample=20, test_sample_cells=500, train_num_sample=20, test_sample_cells=500, train_num_sample=20, test_sample_cells=500, test_sample_cells=500, train_num_sample=20, test_sample_cells=500, train_sample_cells=500, test_sample_cells=500, train_sample_cells=500, train_sample_cells=500, train_sample_cells=500, test_sample_cells=500, train_sample_cells=500, train_sample_cells=
t_num_sample=50, model='Transformer', dataset=None, inter_only=True, same_pheno=-1, augment_num=300, alpha=0.5, re
eat=1, all=0, min_size=10000, n_splits=2, pca=True, mix_type=1, norm_first=False, warmup=False, top_k=1)
/home/kim89/ScRAT/main.py:317: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a fu
ure version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value
by position, use `ser.iloc[pos]
  train_ids.append(patient_id[p_idx[i][0]])
====== sample mixup ... ========
                                                                                                                                                                    | 300/300 [00:10<00:00, 28.28it/s
100%1
cuda
Epoch 1, Train Loss 0.571833, Valid_loss 0.530167
Epoch 2, Train Loss 0.449786, Valid_loss 0.544938
Epoch 3, Train Loss 0.429900, Valid_loss 0.553128
Epoch 4, Train Loss 0.426761, Valid_loss 0.537434
Epoch 5, Train Loss 0.420368, Valid_loss 0.533833
Epoch 6, Train Loss 0.420763, Valid loss 0.447389
Epoch 7, Train Loss 0.420172, Valid_loss 0.462088
Epoch 8, Train Loss 0.418298, Valid loss 0.500830
Epoch 9, Train Loss 0.418716, Valid loss 0.541476
Epoch 10, Train Loss 0.419321, Valid_loss 0.551993
Epoch 11, Train Loss 0.415724, Valid loss 0.569280
Epoch 12, Train Loss 0.418716, Valid loss 0.590767
Epoch 13, Train Loss 0.418113, Valid_loss 0.516893
Epoch 14, Train Loss 0.420671, Valid_loss 0.574628
Epoch 15, Train Loss 0.417082, Valid loss 0.521970
Epoch 16, Train Loss 0.420968, Valid loss 0.527980
Epoch 17, Train Loss 0.414995, Valid_loss 0.550276
Epoch 18, Train Loss 0.415600, Valid_loss 0.587127
Epoch 19, Train Loss 0.416977, Valid loss 0.518725
Epoch 20, Train Loss 0.416525, Valid_loss 0.560900
```

Conclusion

- ScRAT is designed to learn from limited samples without prior knowledge and provides accurate phenotype predictions.
- ScRAT has the potential that suggest novel molecular mechanisms and/or targeted therapies.