Week 2 Program Assignment Report

Design of Network

activation function: $\sigma(x) = \tanh(x)$

Input layer: 1 input, x

second layer: $\mathbb{R}^1 \to \mathbb{R}^5$, and σ

third layer: $\mathbb{R}^5 \to \mathbb{R}^5$, and σ

output layer: $\mathbb{R}^5 \to \mathbb{R}^1$

Training Process

loss function: MSE loss

optimizer: Adam learning rate: 0.01

train times: 1000

Training Result

The results show that this model can approximate the original function very well:

- 1) The curve predicted by the model is obviously very similar to the true function. (see Figure 1)
- 2) The convergence speed of model training is very fast. In 1000 rounds of training, it basically converges to the minimum value in about 200 rounds. (see Figure 2)
 - 3) The MSE loss of test data and true function value < 0.00001
- 4) The network structure is simple, takes less time. Even if only use cpu, it only takes about 10 seconds to complete the training.

Figure 1: Comparison of prediction and function

Figure 2: Train and valid error curves