Convex Hull

▶ A point set S is convex if for all points p and q in S the line segment \overline{pq} is in S.

Polygons

- ► The convex hull of a polygon is the convex hull of its vertices.
- ▶ It is the smallest polygon that contains all the vertices.
- ▶ More precisely, it is the intersection of all such polygons.
- Intuition: shrink wrap the polygon.

Problem Statement

input = set of points: $p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9$ output = representation of the convex hull: p_4, p_5, p_8, p_2, p_9

Hull Edge

- pq is a hull edge if every other point r lies on the same side of its line.
- $ightharpoonup \operatorname{circ}(p,q,r)$ is negative if the hull is listed in clockwise order and is positive otherwise.

Upper Hull

- ► The upper hull is the edges whose supporting lines are above all the other points.
- It consists of a polygonal curve from the leftmost point to the rightmost point.
- ► The lower hull is the edges whose supporting lines are below all the other points.
- ▶ It consists of a polygonal curve from the rightmost point to the leftmost point.
- Algorithm: construct the two hulls then append them.

Upper Hull Algorithm

- 1. Sort the points in increasing x order: p_1, \ldots, p_n .
- 2. Initialize an empty hull h = ().
- 3. For i = 1 to n
 - 3.1 Append p_i to h.
 - 3.2 While h contains $m \ge 3$ points and $\operatorname{circ}(h_{m-2}, h_{m-1}, h_m) > 0$
 - 3.2.1 Set h_{m-1} to h_m .
 - 3.2.2 Remove the last element of h.

Degenerate Cases

- Degeneracy 1: points with equal x coordinates.
- ► Handling: sort by *y* coordinate.
- Degeneracy 2: collinear points.
- Handling: treat as left turn.

Correctness

Inductive proof of correctness for *i* points.

- i=1 is trivial.
- ▶ Assume i-1.
- ▶ The update creates a curve h from p_1 to p_i with right turns.
- ▶ Consider a point p_j with j < i that is not in h.
- ▶ p_j is not above the i-1 hull by inductive hypothesis.
- ▶ The curve h is above the i-1 hull.
- ▶ Hence, p_i is not above h.

Complexity

- ▶ Sorting the points takes $O(n \log n)$ time.
- Each point is removed at most once from *h*.
- ▶ Hence, the time spent on updating the hull is O(n).
- ▶ Thus, the running time is $O(n \log n)$.
- ▶ The space complexity is O(n).
- These bounds are optimal.

Improved Version

Construct the entire hull with one subroutine.

- 1. Set p_1 to the lowest point.
- 2. Sort the other points counterclockwise around p_1 .
- 3. Construct the hull as before, but keeping left turns.

Gift Wrapping Algorithm

- 1. Initialize the hull to h = (p) with p the lowest point.
- 2. Initialize v to (1,0).
- 3. Repeat
 - 3.1 Let $h = (h_1, \ldots, h_i)$.
 - 3.2 Find the point q that minimizes the angle $\angle(v, q h_i)$.
 - 3.3 Append q to h.
 - 3.4 Set v to $q h_i$.
 - 3.5 If $h_1 = q$ return h.

Analysis

- ▶ All *n* points can be on the hull.
- ▶ Adding a point to the hull takes O(n) time.
- ▶ Hence, the running time is $O(n^2)$.
- ▶ The running time is also O(nm) with m the size of the hull.
- ▶ Gift wrapping is faster than the $O(n \log n)$ algorithms when most of the points are in the interior of the hull.
- ► An algorithm whose running time depends on the output size is called output sensitive.