

Human Activity Recognition BMVC 2018 with Pose-driven Attention to RGB

Fabien Baradel¹, Christian Wolf^{1,2}, Julien Mille³ 1 Univ. Lyon, INSA-Lyon, CNRS, LIRIS, F-69621, Villeurbanne, France.

2 INRIA, CITI Laboratory, Villeurbanne, France.

Main challenges

- High dimensional data
- Spatio-Temporal information
- Noise in the human pose
- Video Understanding Human Action Recognition
- Captured by Microsoft Kinect3D (3D human pose - RGB - Depth)

Pose

√3D skeleton coordinates

- Convolution features over space-time
- Long range dependencies are modeled with multiple layers of abstraction instead of a flat hidden RNN state

Two modalities

✓ RGB frames

Two stream model

RGB

- Spatial attention mechanism over RGB hands crops
- Spatial attention adjusted at each timestep
- Conditioned on pose features
- Temporal Attention on LSTM features

TWO STREAM MODEL

- v_t : Output of the Spatial Attention framework Input of the LSTM
- f_h : LSTM
- $\mathcal{I}u$: MLP
- p^{\cdot} : Temporal Attention weights for each LSTM features
- Jy: Classifier $u_{:,t}$: LSTM features

VISUALIZATION OF THE ATTENTION PROCESS L1 R1 L2 R2 L1 R1 L2 R2 p_t 24 23 37 20 t = 19t = 0t = 13t=9

Comparison

- State of the art on NTU RGB+D (NTU) (~57'000 videos 60 classes)
- First to combine 3D skeleton data and RGB frames on NTU
- Representations learned on NTU are transferable ✓ Transfer learning on smaller datasets
 - ✓ State of the art on SBU Kinetics Interaction
 - ✓ Close to state of the art on MSR Daily Activity

Ablation Study

- Topological ordering matters for skeleton data
- Attention mechanism has a high impact on RGB only stream √ Spatial Attention: + ~ 4 points
 - √ Spatio-Temporal Attention: + ~ 13 points
- Still a significant impact on the two stream model √ Spatial Attention: + ~ 1.8 points ✓ Spatio-Temporal Attention: + ~ 2.5 points

Effect of joint ordering on NTU

Methods	CS	CV	Av
Random joint order	75.5	83.2	79.
Topological order w/o	76.2	83.9	80.
double entries			
Topological order	77.1	84.5	80.

EXPERIMENTAL RESULTS

NTU-RGB+D							
Methods	Pose	RGB	CS	CV	Avg	_	
Lie Group	✓	-	50.1	52.8	51.5	_	
Skeleton Quads	✓	-	38.6	41.4	40.0		
Dynamic Skeletons	✓	-	60.2	65.2	62.7		
HBRNN	✓	-	59.1	64.0	61.6		
Deep LSTM	✓	-	60.7	67.3	64.0		
Part-aware LSTM	✓	-	62.9	70.3	66.6		
ST-LSTM + TrustG.	✓	-	69.2	77.7	73.5		
STA-LSTM	✓	-	73.2	81.2	77.2	_	
Ensemble LSTM	✓	-	74.6	81.3	78.0		
GCA-LSTM	✓	_	74.4	82.8	78.6		
JTM	✓	_	76.3	81.1	78.7	_	
MTLN	✓	-	79.6	84.8	82.2		
VA-LSTM	✓	_	79.4	87.6	83.5		
View-invariant	✓	-	80.0	87.2	83.6		
DSSCA-SSLM	√	✓	74.9	_	_		
STA-Hands	✓	✓	82.5	88.6	85.6		
Hands Attention	✓	✓	84.8	90.6	87.7		
C3D	-	✓	63.5	70.3	66.9		
Resnet50+LSTM	-	✓	71.3	80.2	75.8		
Ours (pose only)	✓	-	77.1	84.5	80.8		
Ours (RGB only)	-	✓	75.6	80.5	78.1		
Ours (pose + RGB)	✓	✓	84.8	90.6	87.7		

Methods	Pose	RGB	Depth	Acc.
Raw skeleton	✓	-	_	79.4
Joint feature	✓	-	-	86.9
Co-occurence RNN	✓	-	-	90.4
STA-LSTM	✓	-	-	91.5
ST-LSTM + TrustG.	✓	-	-	93.3
DSPM	✓	✓	✓	93.4
VA-LSTM	✓	-	✓	97.5
Ours (pose only)	✓	-	-	90.5
Ours (RGB only)	-	✓	✓	72.0
Ours (pose + RGB)	✓	✓	✓	94.1

MSR Daily Interaction						
Methods	Pose	RGB	Depth	Acc.		
Action Ensemble	✓	-	-	68.0		
Efficient Pose-Based	✓	-	-	73.1		
Moving Pose	✓	-	-	73.8		
Moving Poselets	✓	-	-	74.5		
MP	✓	-	-	79.9		
Depth Fusion	_	-	✓	88.8		
MMMP	✓	-	✓	91.3		
DL-GSGC	✓	-	✓	95.0		
DSSCA-SSLM	-	✓	✓	97.5		
Ours (pose only - no FT)	✓	-	-	72.2		
Ours (pose only)	✓	-	-	74.6		
Ours (RGB only)	-	✓	✓	75.3		
Ours (pose + RGB)	✓	✓	✓	90.0		

	Ablation study on NTU								
	Methods	Pose	RGB		Attention		CS	CV	Avg
				Spatial	Temporal	Pose			
A	Pose only	✓	-	-	-	-	77.1	84.5	80.8
В	RGB only, no attention (sum of features)	-	✓	-	-	-	61.5	65.9	63.7
С	RGB only, no attention (concat of features)	-	✓	-	-	-	63.2	67.2	65.2
E	RGB only + spatial attention	0	✓	✓	-	✓	67.4	71.2	69.3
G	RGB only + spatial-temporal attention	0	✓	✓	✓	✓	75.6	80.5	78.1
Η	Multi-modal, no attention (A+B)	✓	✓	-	-	-	83.0	88.5	85.3
	Multi-modal, spatial attention (A+E)	✓	✓	✓	-	✓	84.1	90.0	87.1
K	Multi-modal, spatial-temporal attention (A+E)	✓	✓	✓	✓	✓	84.8	90.6	87.7