Sistemi di numerazione e rappresentazione binaria dei numeri interi

CORSO DI ARCHITETTURA DEGLI ELABORATORI E LABORATORIO (F-N) — MODULO LABORATORIO

GABRIELLA VERGA

Il Sistema Decimale

E' un sistema di numerazione posizionale in base 10

10 SIMBOLI: 0,1,2,3,4,5,6,7,8,9

E' posizionale: ha importanza la posizione assunta da ogni cifra all'interno di un numero.

ESEMPIO: 102

2 unità

0 decina

1 centinaia

Sistemi di numerazione Additivo

La Numerazione romana non è posizionale ma **ADDITIVA** perché il valore complessivo del numero è dato dalla somma dei valori dei simboli, indipendentemente dalla loro posizione.

Notiamo...

Sistema Posizionale:

- > Con un numero LIMITATO DI SIMBOLI (10) è possibile rappresentare QUALUNQUE QUANTITA'
- ► Il sistema è estremamente economico e flessibile

Sistema Addizionale

Al crescere della quantità hanno sempre bisogno di NUOVI SIMBOLI

Sistemi di numerazione posizionali

Un sistema di numerazione è definito da:

- Un intero **B** detto **base**;
- Un insieme di B simboli $S_B = \{s_0, ..., s_{B-1}\}$ ognuno dei quali rappresenta le quantità 0,1,2,....,B-1

Un numero a n cifre $p_{(n-1)}p_{(n-2)}$ p_1 p_0 con $p_{(i)} \in S_B$ e i = 0,....,n-1 può essere rappresentato come SOMMA DI POTENZE DELLA BASE:

$$\sum_{i=0}^{n-1} (p_{(i)} \cdot B^i)$$

Esempi

BASE 2 (binaria)

$$(\mathbf{1100})_2 = 1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 0 * 2^0 = 8 + 4 + 0 + 0 = (\mathbf{12})_{10}$$

 $(\mathbf{00110010})_2 = 0 * 2^7 + 0 * 2^6 + 1 * 2^5 + 1 * 2^4 + 0 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 = 1 * 2^5 + 1 * 2^4 + 1 * 2^1 = 32 + 16 + 2 = (\mathbf{50})_{10}$

BASE 8 (ottale)

$$(121)_8 = 1 * 8^2 + 2 * 8^1 + 1 * 8^0 = 64 + 16 + 1 = (81)_{10}$$

BASE 16 (esadecimale)

$$(128)_{16} = 1 * 16^2 + 2 * 16^1 + 8 * 16^0 = 256 + 32 + 8 = (296)_{10}$$

Conversione da base 10 a base B

La conversione di un numero da base 10 a base B usa la tecnica delle divisioni successive:

- 1) Sia N il numero (in base 10) da convertire;
- 2) Si calcola la divisione intera N = N / B e si mette da parte il resto R della divisione;
- 3) Se N > 0 si va al passo 2;
- 4) Se N = 0 si riportano i vari RESTI da destra verso sinistra: essi rappresentano il numero convertito in base B.

Esempio: conversione in base 2

CONVERTIRE 13 in base 2 (da numero decimale a numero binario)

Operazione	Quoziente	Resto
13		
/2	6	1
/2	3	0
/2	1	1
/2	0	1

$$(1101)_2 = 1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 8 + 4 + 0 + 1 = 13$$

Esempio: conversione in base 8

CONVERTIRE 1158 in base 8 (da numero decimale a numero ottale)

Operazione	Quoziente	Resto
1158		
/8	144	6
/8	18	0
/8	2	2
/8	0	2

$$(2206)_8 = 2 * 8^3 + 2 * 8^2 + 0 * 8^1 + 6 * 8^0 =$$

2 * 512 + 2 * 64 + 6 = 1024 + 128 + 6 = $(1158)_{10}$

Metodo alternativo

CONVERSIONE IN BASE 2

CONVERTIRE 112 in base 2 (da numero decimale a numero binario)

POTENZA	Risultato
20	1
2 ¹	2
2 ²	4
2 ³	8
2 ⁴	16
2 ⁵	32
2 ⁶	64
2 ⁷	128
2 ⁸	256

$$(112)_{10} = 64 + 32 + 16 =$$

$$= 1 * 2^{6} + 1 * 2^{5} + 1 * 2^{4} =$$

$$= (1110000)_{2}$$

Esempio: conversione in base 2

CONVERTIRE 112 in base 2 (da numero decimale a numero binario)

Operazione	Quoziente	Resto
112		
/2	56	0
/2	28	0
/2 /2 /2 /2 /2	14	0
/2	7	0
/2	3	1
/2 /2	1	1
/2	0	1

$$(112)_{10} = (1110000)_2$$

Dall'elettricità all'aritmetica (1)

Il calcolatore è una macchina composta da CIRCUITI e COLLEGAMENTI ELETTRICI.

Immaginiamo di poter connettere delle lampadine ai vari collegamenti presenti dentro un computer.

Effettuando delle «istantanee» per valutare la luminosità delle lampadine si nota che la lampadina o E' ACCESA o SPENTA. **Non esistono luminosità parziali!**

I concetti **ON/OFF** possono essere rappresentati tramite NUMERI:

- > OFF = 0
- \rightarrow ON = 1

Dall'elettricità all'aritmetica (2)

Il sistema di numerazione binaria è la soluzione perfetta per rappresentare valori ON/OFF.

Individuata una tipologia di informazione, si possono inserire delle regole non ambigue per rappresentare l'informazione come sequenze binarie.

Il modo più naturale per rappresentare un numero in un calcolatore è tramite una stringa di bit, chiamato numero binario.

Numeri binari

- Numeri binari
- Operazioni Aritmetiche (addizione e sottrazione)
- Numeri in virgola mobile

Numeri interi in BINARIO

$$\mathbf{B} = \mathbf{b}_{n-1} \, \mathbf{b}_{n-2} \, \dots \, \mathbf{b}_1 \, \mathbf{b}_0 \, \text{con } \mathbf{b}_i \in \{0,1\} \, \text{e i} = 0, \dots, n-1$$

La stringa B può rappresentare un valore **numerico intero** casuale val(B) compreso nell'intervallo $[0,2^n)$ che si calcola con la seguente formula:

val(B) =
$$b_{n-1} * 2^{n-1} + b_{n-2} * 2^{n-2} + \dots + b_1 * 2^1 + b_0 * 2^0 = \sum_{i=0}^{n-1} b_i 2^i$$

Rappresentazione di numeri interi relativi

Le tre tecniche più importanti sono

- 1. Segno e valore assoluto
- 2. Complemento a uno
- 3. Complemento a due

PROPRIETA' IN COMUNE: il bit più a sinistra rappresenta il segno

Se b_{n-1} vale $0 \rightarrow val(B)$ è positivo o nullo.

Se b_{n-1} vale 1 \rightarrow val(B) è negativo o nullo.

 b_{n-1} è detto bit di segno

Le tre tecniche

In tutti e tre i casi i valori positivi si distribuiscono nello stesso modo rispetto alle stringhe di bit che li codificano, mentre per i valori negativi si differenziano.

- 1. Segno e valore assoluto: si commuta il bit di segno b_{n-1} da 0 a 1, mentre gli altri bit restano invariati.
- 2. Complemento a uno: si commuta qualsiasi bit da 0 a 1 e da 1 a 0.
- 3. Complemento a due: si aggiunge 1 al complemento a uno.

La tecnica di complemento a due anche se sembra la meno intuitiva è quella più usata universalmente nei calcolatori e risulta più efficiente nel calcolo della addizione e sottrazione.

Esempi

	Stri	nga (B)		Segno e valore	Complemento a 1	Complemento a 2
b ₃	b_2	b_1	b_0	assoluto		
0	1	0	0	+4	+4	+4
0	0	1	1	+3	+3	+3
0	0	1	0	+2	+2	+2
0	0	0	1	+1	+1	+1
0	0	0	0	0	0	0
1	0	0	0	-0	-7	-8
1	0	0	1	-1	-6	-7
1	0	1	0	-2	-5	-6
1	0	1	1	-3	-4	-5

Addizione di numeri naturali

Il **riporto in uscita** della cifra precedente viene assegnato come **RIPORTO IN ENTRATA** alla successiva

Addendi da un bit

Addizione e sottrazione di numeri naturali

REGOLE per calcolare addizione e sottrazione algebrica di numeri relativi codificati in complemento a due (con n bit):

- per calcolare l'addizione algebrica si applica l'algoritmo di addizione in aritmetica binaria naturale, ma si TRASCURA il riporto in uscita dalla posizione dei bit più significativi degli addendi;
- 2. supponendo che A e B siano minuendo e sottraendo, rispettivamente si calcola la sottrazione algebrica A B nel seguente modo:
 - prima si complementa a 2 il sottraendo B (B' \rightarrow -B).
 - si calcola l'addizione algebrica A + B' seconda la regola 1.

Esempi

(a)
$$\begin{array}{ccc} 0 & 0 & 1 & 0 & + & (+2) \\ 0 & 0 & 1 & 1 & = & (+3) \\ \hline 0 & 1 & 0 & 1 & (+5) \end{array}$$

(b)
$$0100 + (+4)$$

$$1010 = (-6)$$

$$1110 (-2)$$

(c)
$$1011 + (-5)$$

$$1110 = (-2)$$

$$1001 (-7)$$

(d)
$$0111 + (+7)$$

 $1101 = (-3)$
 0100 (+4)

Estensione e riduzione del segno

Accade spesso che si debba aumentare o diminuire il numero di bit usati per codificare un numero relativo in complemento a due (ad esempio per adattarlo a una parola di memoria o a un registro di processore avente dimensione differente).

Le regole sono:

AUMENTARE o ESTENDERE:

- se n > 0 (inizia con 0) → aggiungere altri bit 0 a sinistra.
- se n < 0 (inizia con 1) → aggiungere altri bit 1 a sinistra.

DIMINUIRE o RIDURRE:

- se n > 0 (inizia con 0) → si possono togliere bit 0
 a sinistra (smettere PRIMA che emerge in testa 1)
- Se n < 0 (inizia con 1) → si possono togliere bit 1
 a sinistra (smettere PRIMA che emerge in testa 0)

ESTENSIONE	RIDUZIONE
011 (3) -> 0011	00011 → 011
101 (-3) → 1101	11101 → 101

Evento di Trabocco (overflow)

Il risultato di addizione e sottrazione in complemento a due è corretto se è COMPRESO nell'intervallo $[-2^{n-1}, 2^{n-1})$

In caso contrario avviene un evento di TRABOCCO.

REGOLA

- SI PUO' VERIFICARE (non necessariamente) TRABOCCO SOLO SE GLI ADDENDI SONO CONCORDI IN SEGNO
- SI VERIFICA TRABOCCO **SE E SOLO** SE I DUE ADDENDI SONO CONCORDI IN SEGNO E IL BIT DI SEGNO DELLA SOMMA E' DIVERSO DA QUELLO DEGLI ADDENDI

ESEMPIO: +7+4 con n = 4 si ottiene 1011 (-5)