

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

KMK

IUS

C.9/4.8c, 853

Av 10/038

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/82, 15/84, 15/82, 5/04, A01H 4/00		A1	(11) International Publication Number: WO 99/07865 (43) International Publication Date: 18 February 1999 (18.02.99)
(21) International Application Number: PCT/US98/16267			(81) Designated States: AL, AM, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 5 August 1998 (05.08.98)			
(30) Priority Data: 60/054,836 5 August 1997 (05.08.97) US			
(71) Applicant: KIMERAGEN, INC. [US/US]; 300 Pheasant Run, Newtown, PA 18940 (US).			(Published) <i>With international search report.</i>
(72) Inventors: ARNTZEN, Charles, J.; 1005 Highland Road, Ithaca, NY 14850 (US). KIPP, Peter, B.; Apartment 11-3E, 700 Warren Road, Ithaca, NY 14850 (US). KUMAR, Ramesh; 60 Yard Road, Pennington, NJ 08534 (US). MAY, Gregory, D.; 303 The Parkway, Ithaca, NY 14850 (US).			
(74) Agents: HANSBURG, Daniel; Kimeragen, Inc., 300 Pheasant Run, Newtown, PA 18940 (US) et al.			

(54) Title: THE USE OF MIXED DUPLEX OLIGONUCLEOTIDES TO EFFECT LOCALIZED GENETIC CHANGES IN PLANTS

(57) Abstract

The invention concerns the use of duplex oligonucleotides about 25 to 30 base pairs to introduce site specific genetic alterations in plant cells. The oligonucleotides can be delivered by mechanical (biostatic) systems or by electroporation of plant protoplasts. Thereafter plants having the genetic alteration can be generated from the altered cells. In specific embodiments the invention concerns alteration in the gene that encodes acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, ACC synthase and ACC oxidase or *etr-1* or a homolog of *etr-1*, and plants having isolated point mutations in such genes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

**THE USE OF MIXED DUPLEX OLIGONUCLEOTIDES TO EFFECT
LOCALIZED GENETIC CHANGES IN PLANTS**

1. FIELD OF THE INVENTION

The field of the present invention relates to methods for the improvement of existing lines of plants and to the development of new lines having desired traits. The previously available methods of obtaining genetically altered plants by recombinant DNA technology enabled the introduction of preconstructed exogenous genes in random, atopic positions, so-called transgenes. In contrast the present invention allows the skilled practitioner to make a specific alteration of a specific pre-existing gene of a plant. The invention utilizes duplex oligonucleotides having a mixture of RNA-like nucleotides and DNA-like nucleotides to effect the alterations, hereafter "mixed duplex oligonucleotides" or MDON.

2. BACKGROUND TO THE INVENTION

2.1 MDON and Their Use to Effect Specific Genetic Alterations

Mixed duplex oligonucleotides (MDON) and their use to effect genetic changes in eukaryotic cells are described in United States patent No. 5,565,350 to Kmiec (Kmiec I). Kmiec I discloses *inter alia* MDON having two strands, in which a first strand contains two segments of at least 8 RNA-like nucleotides that are separated by a third segment of from 4 to about 50 DNA-like nucleotides, termed an "interposed DNA segment." The nucleotides of the first strand are base paired to DNA-like nucleotides of a second strand. The first and second strands are additionally linked by a segment of single stranded nucleotides so that the first and second strands are parts of a single oligonucleotide chain. Kmiec I further teaches a method for introducing specific genetic alterations into a target gene. According to Kmiec I, the sequences of the RNA segments are selected to be homologous, i.e., identical, to the sequence of a first and a second fragment of the target gene. The sequence of the interposed DNA segment is homologous with the sequence of the target gene between the first and second fragment except for a region of difference, termed the "heterologous region." The heterologous region can effect an insertion or deletion, or can contain one or

more bases that are mismatched with the sequence of target gene so as to effect a substitution. According to Kmiec I, the sequence of the target gene is altered as directed by the heterologous region, such that the target gene becomes homologous with the sequence of the MDON. Kmiec I specifically teaches that ribose and 2'-Omethylribose, i.e., 2'-methoxyribose, containing nucleotides can be used in MDON and that naturally-occurring deoxyribose-containing nucleotides can be used as DNA-like nucleotides.

United States patent application Serial No. 08\664,487, filed June 17, 1996, now U.S. patent No. 5,731,181 (Kmiec II) does specifically disclose the use of MDON to effect genetic changes in plant cells and discloses further examples of analogs and derivatives of RNA-like and DNA-like nucleotides that can be used to effect genetic changes in specific target genes.

Scientific publications disclosing uses of MDON having interposed DNA segments include Yoon, et al., 1996, *Proc. Natl. Acad. Sci.* 93:2071-2076 and Cole-Straus, A. et al., 1996, *SCIENCE* 273 :1386-1389. The scientific publications disclose that rates of mutation as high as about one cell in ten can be obtained using liposomal mediated delivery. However, the scientific publications do not disclose that MDON can be used to make genetic changes in plant cells.

The present specification uses the term MDON, which should be understood to be synonymous with the terms "chimeric mutation vector," "chimeric repair vector" and "chimeroplast" which are used elsewhere.

2.2 Transgenic Plant Cells and the Generation of Plants from Transgenic Plant Cells

Of the techniques taught by Kmiec I and II for delivery of MDON into the target cell, the technique that is most applicable for use with plant cells is the electroporation of protoplasts. The regeneration of fertile plants from protoplast cultures has been reported for certain species of dicotyledonous plants, e.g., *Nicotiana tabacum* (tobacco), United States Patent 5,231,019 and Fromm, M.E., et al., 1988, *Nature* 312, 791, and soybean variety *Glycine max*, WO 92/17598 to Widholm, J.M. However, despite the reports of isolated successes using non-transformed cells, Prioli, L.M., et al., Bio/Technology 7, 589, Shillito, R.D., et al., 1989, Bio/Technology 7, 581, the regeneration of fertile monocotyledonous plants from transformed protoplast

cultures is not regarded as obtainable with application of routine skill. Frequently, transformed protoplasts of monocotyledonous plants result in non-regenerable tissue or, if the tissue is regenerated the resultant plant is not fertile.

Other techniques to obtain transformed plant cells by introducing kilobase-sized plasmid DNA into plant cells having intact or partially intact cell walls have been developed. United States patent No. 4,945,050, No. 5,100,792 and No. 5,204,253 concern the delivery of plasmids into intact plant cells by adhering the plasmid to a microparticle that is ballistically propelled across the cell wall, hereafter "biolistically transformed" cell. For example U.S. patent No. 5,489,520 describes the regeneration of a fertile maize plant from a biolistically transformed cell. Other techniques for the introduction of plasmid DNA into suspensions of plant cells having intact cell walls include the use of silicon carbide fibers to pierce the cell wall, see U.S. patent No. 5,302,523 to Coffee R., and Dunwell, J.M.

A technique that allows for the electroporation of maize cells having a complex cell wall is reported in U.S. patent No. 5,384,253 to Krzyzek, Laursen and P.C. Anderson. The technique uses a combination of the enzymes endopectin lyase (E.C. 3.2.1.15) and endopolygalacturonase (E.C. 4.2.2.3) to generate transformation competent cells that can be more readily regenerated into fertile plants than true protoplasts. However, the technique is reported to be useful only for F1 cell lines from the cross of line A188 x line B73.

3. SUMMARY OF THE INVENTION

The present invention provides new methods of use of the MDON that are particularly suitable for use in such plant cells.

Thus one aspect of the invention is techniques to adhere MDON to particles which can be projected through the cell wall to release the MDON within the cell in order to cause a mutation in a target gene of the plant cell. The mutations that can be introduced by this technique are mutations that confer a growth advantage to the mutated cells under appropriate conditions and mutations that cause a phenotype that can be detected by visual inspection. Such mutations are termed "selectable mutations."

In a further embodiment the invention encompasses a method of introducing a

mutation other than a selectable mutation into a target gene of a plant cell by a process which includes the steps of introducing a mixture of a first MDON that introduces a selectable mutation in the plant cell and a second MDON that causes the non-selectable mutation.

The invention further encompasses the culture of the cells mutated according to the foregoing embodiments of the invention so as to obtain a plant that produces seeds, henceforth a "fertile plant," and the production of seeds and additional plants from such a fertile plant.

The invention further encompasses fertile plants having novel characteristics which can be produced by the methods of the invention.

4. DETAILED DESCRIPTION OF THE INVENTION

4.1 Recombinagenic Oligonucleobases and Mixed Duplex OligoNucleotides

The invention can be practiced with MDON having the conformations and chemistries described in Kmiec I or in Kmiec II, which are hereby incorporated by reference. The MDON of Kmiec I and/or Kmiec II contain two complementary strands, one of which contains at least one segment of RNA-type nucleotides (an "RNA segment") that are base paired to DNA-type nucleotides of the other strand.

Kmiec II discloses that purine and pyrimidine base-containing non-nucleotides can be substituted for nucleotides. Commonly assigned U.S. patent applications Serial No. 09/078,063, filed May 12, 1998, and Serial No. 09/078,064, filed May 12, 1998, which are each hereby incorporated in their entirety, disclose additional molecules that can be used for the present invention. The term "recombinagenic oligonucleobase" is used herein to denote the molecules that can be used in the present invention. Recombinagenic oligonucleobases include MDON, non-nucleotide containing molecules taught in Kmiec II and the molecules taught in the above noted commonly assigned patent applications.

In a preferred embodiment the RNA-type nucleotides of the MDON are made RNase resistant by having replacing the 2'-hydroxyl with a fluoro, chloro or bromo functionality or by placing a substituent on the 2'-O. Suitable substituents include the

substituents taught by the Kmiec II, C₁₋₆ alkane. Alternative substituents include the substituents taught by U.S. Patent No. 5,334,711 (Sproat) and the substituents taught by patent publications EP 629 387 and EP 679 657 (collectively, the Martin Applications), which are hereby incorporated by reference. As used herein a 2'-fluoro, chloro or bromo derivative of a ribonucleotide or a ribonucleotide having a 2'-OH substituted with a substituent described in the Martin Applications or Sproat is termed a "2'-Substituted Ribonucleotide." As used herein the term "RNA-type nucleotide" means a 2'-hydroxyl or 2'-Substituted Nucleotide that is linked to other nucleotides of a MDON by an unsubstituted phosphodiester linkage or any of the non-natural linkages taught by Kmiec I or Kmiec II. As used herein the term "deoxyribo-type nucleotide" means a nucleotide having a 2'-H, which can be linked to other nucleotides of a MDON by an unsubstituted phosphodiester linkage or any of the non-natural linkages taught by Kmiec I or Kmiec II.

A particular embodiment of the invention comprises MDON that are linked solely by unsubstituted phosphodiester bonds. Alternatively embodiments comprise linkage by substituted phosphodiesters, phosphodiester derivatives and non-phosphorus-based linkages as taught by Kmiec II. A further particular embodiment comprises MDON wherein each RNA-type nucleotide is a 2'-Substituted Nucleotide. Particular preferred embodiments of 2'-Substituted Ribonucleotides are 2'-fluoro, 2'-methoxy, 2'-propyloxy, 2'-allyloxy, 2'-hydroxylethyloxy, 2'-methoxyethyloxy, 2'-fluoropropyloxy and 2'-trifluoropropyloxy substituted ribonucleotides. In more preferred embodiments of 2'-Substituted Ribonucleotides are 2'-fluoro, 2'-methoxy, 2'-methoxyethyloxy, and 2'-allyloxy substituted nucleotides. In one embodiment the MDON oligomer is linked by unsubstituted phosphodiester bonds.

Although MDON having only a single type of 2'-substituted RNA-type nucleotide are more conveniently synthesized, the invention can be practiced with MDON having two or more types of RNA-type nucleotides. The function of an RNA segment may not be affected by an interruption caused by the introduction of a deoxynucleotide between two RNA-type trinucleotides, accordingly, the term RNA segment encompasses such an "interrupted RNA segment." An uninterrupted RNA segment is termed a contiguous RNA segment. In an alternative embodiment an RNA segment can contain alternating RNase-resistant and unsubstituted 2'-OH nucleotides.

The MDON of the invention preferably have fewer than 100 nucleotides and more preferably fewer than 85 nucleotides, but more than 50 nucleotides. The first and second strands are Watson-Crick base paired. In one embodiment the strands of the MDON are covalently bonded by a linker, such as a single stranded hexa, penta or tetranucleotide so that the first and second strands are segments of a single oligonucleotide chain having a single 3' and a single 5' end. The 3' and 5' ends can be protected by the addition of a "hairpin cap" whereby the 3' and 5' terminal nucleotides are Watson-Crick paired to adjacent nucleotides. A second hairpin cap can, additionally, be placed at the junction between the first and second strands distant from the 3' and 5' ends, so that the Watson-Crick pairing between the first and second strands is stabilized.

The first and second strands contain two regions that are homologous with two fragments of the target gene, i.e., have the same sequence as the target gene. A homologous region contains the nucleotides of an RNA segment and may contain one or more DNA-type nucleotides of connecting DNA segment and may also contain DNA-type nucleotides that are not within the intervening DNA segment. The two regions of homology are separated by, and each is adjacent to, a region having a sequence that differs from the sequence of the target gene, termed a "heterologous region." The heterologous region can contain one, two or three mismatched nucleotides. The mismatched nucleotides can be contiguous or alternatively can be separated by one or two nucleotides that are homologous with the target gene. Alternatively, the heterologous region can also contain an insertion or one, two, three or five or fewer nucleotides. Alternatively, the sequence of the MDON may differ from the sequence of the target gene only by the deletion of one, two, three, or five or fewer nucleotides from the MDON. The length and position of the heterologous region is, in this case, deemed to be the length of the deletion, even though no nucleotides of the MDON are within the heterologous region. The distance between the fragments of the target gene that are complementary to the two homologous regions is identically the length of the heterologous region when a substitution or substitutions is intended. When the heterologous region contains an insertion, the homologous regions are thereby separated in the MDON farther than their complementary homologous fragments are in the gene, and the converse is applicable.

when the heterologous region encodes a deletion.

The RNA segments of the MDON are each a part of a homologous region, i.e., a region that is identical in sequence to a fragment of the target gene, which segments together preferably contain at least 13 RNA-type nucleotides and preferably from 16 to 25 RNA-type nucleotides or yet more preferably 18-22 RNA-type nucleotides or most preferably 20 nucleotides. In one embodiment, RNA segments of the homology regions are separated by and adjacent to, i.e., "connected by" an intervening DNA segment. In one embodiment, each nucleotide of the heterologous region is a nucleotide of the intervening DNA segment. An intervening DNA segment that contains the heterologous region of a MDON is termed a "mutator segment."

Commonly assigned U.S. patent application Serial No. 09/078,063, filed May 12, 1998, and Serial No. 09/078,064, filed May 12, 1998, disclose a type of duplex recombinagenic oligonucleobase in which a strand has a sequence that is identical to that of the target gene and only the sequence of the "complementary" strand contains a heterologous region. This configuration results in one or more mismatched bases or a "heteroduplex" structure. The heterologous region of the heteroduplex recombinagenic oligonucleobases that are useful in the present invention is located in the strand that contains the deoxynucleotides. In one embodiment, the heterologous region is located on the strand that contains the 5' terminal nucleotide.

4.2 The Location and Type of Mutation Introduced by a MDON

Frequently, the design of the MDON for use in plant cells must be modified from the designs taught in Kmiec I and II. In mammalian and yeast cells, the genetic alteration introduced by a MDON that differs from the target gene at one position is the replacement of the nucleotide in the target gene at the mismatched position by a nucleotide complementary to the nucleotide of the MDON at the mismatched position. By contrast, in plant cells there can be an alteration of the nucleotide one base 5' to the mismatched position on the strand that is complementary to the strand that contains the DNA mutator segment. The nucleotide of the target gene is replaced by a nucleotide complementary to the nucleotide of the DNA mutator segment at the mismatched position. Consequently, the mutated target gene differs from the MDON at two positions.

The mutations introduced into the target gene by a MDON are located between the regions of the target gene that are homologous with the ribonucleotide portion of the homology regions of the MDON, henceforth the "RNA segments." The specific mutation that is introduced depends upon the sequence of the heterologous region. An insertion or deletion in the target gene can be introduced by using a heterologous region that contains an insertion or deletion, respectively. A substitution in the target gene can be obtained by using a MDON having a mismatch in the heterologous region of the MDON. In the most frequent embodiments, the mismatch will convert the existing base of the target gene into the base that is complementary to the mismatched base of the MDON. The location of the substitution in the target gene can be either at the position that corresponds to the mismatch or, more frequently, the substitution will be located at the position on the target strand immediately 5' to the position of the mismatch, i.e., complementary to the position of the MDON immediately 3' of the mismatched base of the MDON.

The relative frequency of each location of the mismatch-caused substitution will be characteristic of a given gene and cell type. Thus, those skilled in the art will appreciate that a preliminary study to determine the location of substitutions in the gene of particular interest is generally indicated, when the location of the substitution is critical to the practice of the invention.

4.3 The Delivery of MDON by Microcarriers and Microfibers

The use of metallic microcarriers (microspheres) for introducing large fragments of DNA into plant cells having cellulose cell walls by projectile penetration is well known to those skilled in the relevant art (henceforth biolistic delivery). United States patents No. 4,945,050, No. 5,100,792 and No. 5,204,253 concern general techniques for selecting microcarriers and devices for projecting them.

The conditions that are used to adhere DNA fragments to the microcarriers are not suitable for the use of MDON. The invention provides techniques for adhering sufficient amounts of MDON to the microcarrier so that biolistic delivery can be employed. In a suitable technique, ice cold microcarriers (60 mg/ml), MDON (60 mg/ml) 2.5 M CaCl₂ and 0.1 M spermidine are added in that order; the mixture gently agitated, e.g., by vortexing, for 10 min and allowed to stand at room temperature for

10 min, whereupon the microcarriers are diluted in 5 volumes of ethanol, centrifuged and resuspended in 100% ethanol. Good results can be obtained with a concentration in the adhering solution of 8-10 $\mu\text{g}/\mu\text{l}$ microcarriers, 14-17 $\mu\text{g}/\text{ml}$ MDON, 1.1-1.4 M CaCl_2 and 18-22 mM spermidine. Optimal results were observed under the conditions of 8 $\mu\text{g}/\mu\text{l}$ microcarriers, 16.5 $\mu\text{g}/\text{ml}$ MDON, 1.3 M CaCl_2 and 21 mM spermidine.

MDON can also be introduced into plant cells for the practice of the invention using microfibers to penetrate the cell wall and cell membrane. U.S. Patent No. 5,302,523 to Coffee et al. describes the use of 30x0.5 μm and 10x0.3 μm silicon carbide fibers to facilitate transformation of suspension maize cultures of Black Mexican Sweet. Any mechanical technique that can be used to introduce DNA for transformation of a plant cell using microfibers can be used to deliver MDON for transmutation.

A suitable technique for microfiber delivery of MDON is as follows. Sterile microfibers (2 μg) are suspended in 150 μl of plant culture medium containing about 10 μg of MDON. A suspension culture is allowed to settle and equal volumes of packed cells and the sterile fiber/MDON suspension are vortexed for 10 minutes and plated. Selective media are applied immediately or with a delay of up to about 120 hours as is appropriate for the particular trait.

The techniques that can be used to deliver MDON to transmute nuclear genes can also be used to cause transmutation of the genes of a plastid of a plant cell. Plastid transformation of higher plants by biolistic delivery of a plasmid followed by an illegitimate recombinatorial insertion of the plasmid is well known to those skilled in the art. Svab, Z., et al., 1990, Proc. Natl. Acad. Sci. **87**, 8526-8530. The initial experiments showed rates of transformation that were between 10-fold and 100-fold less than the rate of nuclear transformation. Subsequent experiments showed that rates of plasmid transformation comparable to the rate of nuclear transformation could be achieved by use of a dominant selectable trait such as a bacterial aminoglycoside 3'-adenosyltransferase gene, which confers spectinomycin resistance. Svab, Z., & Maliga, P., 1993, Proc. Natl. Acad. Sci. **90**, 913-917.

According to the invention MDON for the transmutation of plastid genes can be introduced into plastids by the same techniques as above. When the mutation

desired to be introduced is a selectable mutation the MDON can be used alone. When the desired mutation is non-selectable the relevant MDON can be introduced along with a MDON that introduces a selectable plastid mutation, e.g., a mutation in the psbA gene that confers triazine resistance, or in combination with a linear or circular plasmid that confers a selectable trait.

The foregoing techniques can be adapted for use with recombinagenic oligonucleobases other than MDON.

4.4 Protoplast Electroporation

In an alternative embodiment the recombinagenic oligonucleobase can be delivered to the plant cell by electroporation of a protoplast derived from a plant part. The protoplasts are formed by enzymatic treatment of a plant part, particularly a leaf, according to techniques well known to those skilled in the art. See, e.g., Gallois et al., 1996, in *Methods in Molecular Biology* 55, 89-107 (Humana Press, Totowa, NJ). The protoplasts need not be cultured in growth media prior to electroporation.

Suitable conditions for electroporation are 3×10^5 protoplasts in a total volume of 0.3 ml with a concentration of MDON of between 0.6 - 4 $\mu\text{g}/\text{mL}$.

4.5 The Introduction of Mutations

The invention can be used to effect genetic changes, herein "transmute," in plant cells. In an embodiment the plant cells have cell walls, i.e., are other than protoplasts.

The use of MDON to transmute plant cells can be facilitated by co-introducing a trait that allows for the ready differentiation and separation of cells (hereafter "selection") into which MDON have been introduced from those that have not. In one embodiment of the invention the selection is performed by forming a mixture of MDON and a plasmid that causes the transient expression of a gene that confers a selectable trait, i.e., one that permits survival under certain conditions, e.g., a kanamycin resistance gene. Under these circumstances elimination of cells lacking the selectable trait removes the cells into which MDON were not introduced. The use of a transient expression plasmid to introduce the selectable trait allows for the successive introduction of multiple genetic changes into a plant cell by repeatedly

using a single standardized selection protocol.

In an alternative embodiment transmutation can be used to introduce a selectable trait. A mixture of a first MDON that causes a selectable mutation in a first target gene and a second MDON that causes a non-selectable mutation in a second target gene is prepared. According to the invention, at least about 1% of the cells having the selectable mutation will be found to also contain a mutation in the second target gene that was introduced by the second MDON. More frequently at least about 10% of the cells having the selectable mutation will be found to also contain a mutation in the second target gene.

One use of this embodiment of the invention is the investigation of the function of a gene-of-interest. A mixture is provided of a MDON that causes a selectable mutation and a MDON that causes a mutation that would be expected to "knock-out" the gene-of-interest, e.g., the insertion of a stop codon or a frameshift mutation. Cells in which one or more copies of the gene-of-interest have been knocked out can be recovered from the population having the selectable mutation. Such cells can be regenerated into a plant so that the function of the gene-of-interest can be determined.

A selectable trait can be caused by any mutation that causes a phenotypic change that can produce a selective growth advantage under the appropriate selective conditions or a phenotypic change that can be readily observed, such as change in color of the plant cells growing in a callus. The selectable trait can itself be a desirable traits, e.g., herbicide resistance, or the selectable trait can be used merely to facilitate the isolation of plants having a non-selectable trait that was introduced by transmutation. A desired nonselectable trait can be introduced into a cell by using a mixture of the MDON that causes the desired mutation and the MDON that causes the selectable mutation, followed by culture under the selecting conditions. Selection according to this scheme has the advantage of ensuring that each selected cell not only received the mixture of MDONs, but also that the cell which received the mixture was then susceptible to transmutation by a MDON.

A mutation that causes a lethal phenotypic change under the appropriate conditions, termed a negatively selectable mutation, can also be used in the present invention. Such mutations cause negatively selectable traits. Negatively selectable

traits can be selected by making replica plates of the transmuted cells, selecting one of the replicas and recovering the transmuted cell having the desired property from the non-selected replica.

4.6 Specific Genes That Can Be Transmuted to Create Selectable Traits

In one embodiment of the invention a MDON is used to introduce a mutation into an Acetolactate synthase (ALS) gene, which is also termed the aceto-hydroxy amino acid synthase (AHAS) gene. Sulfonylurea herbicides and imidazoline herbicides are inhibitors of the wild type ALS enzymes. Dominant mutations that render plants resistant to the actions of sulfonylureas and imidazolines have been described. See U.S. Patent Nos. 5,013,659 and 5,378,824 (Bedbrook) and Rajasekaran K., et al., 1996, Mol. Breeding 2, 307-319 (Rajasekaran). Bedbrook at Table 2 describes several mutations (hereafter, a "Bedbrook Mutation") that were found to render yeast ALS enzymes resistant to sulfonylurea herbicides. Bedbrook states that each of the Bedbrook mutations makes a plant resistant to sulfonylurea and imidazoline herbicides when introduced into a plant ALS gene. It is understood that in most plants the gene encoding ALS has been duplicated. A mutation can be introduced into any allele of either ALS gene.

Three of the Bedbrook mutations were, in fact, shown to confer herbicide resistance in a plant, namely the substitutions Pro→Ala¹⁹⁷, Ala→Asp²⁰⁵ and Trp→Leu⁵⁹¹. Rajasekaran reports that mutations Trp→Ser⁵⁹¹ caused resistance to sulfonylurea and imidazoline and that Ser→Asn⁶⁶⁰ caused resistance to imidazoline herbicides. The results of Rajasekaran are reported herein using the sequence numbering of Bedbrook. Those skilled in the art will understand that the ALS genes of different plants are of unequal lengths. For clarity, a numbering system is used in which homologous positions are designated by the same position number in each species. Thus, the designated position of a mutation is determined by the sequence that surrounds it. For example, the mutation Trp→Ser⁵⁹¹ of Rajasekaran is at residue 563 of the cotton ALS gene but is designated as position 591 of Bedbrook because the mutated Trp is surrounded by the sequence that surrounds Trp⁵⁹¹ in Table 2 of Bedbrook. According to the invention any substitution for the naturally occurring amino acid at position 660 or one of the positions listed in Table 2 of Bedbrook, which is hereby incorporated by

reference, can be used to make a selectable mutation in the ALS gene of a plant.

In a further embodiment of the invention the selectable mutation can be a mutation in the chloroplast gene psbA that encodes the D1 subunit of photosystem II, see Hirschberg, J., et al., 1984, Z. Naturforsch. **39**, 412-420 and Ohad, N., & Hirschberg, J., The Plant Cell **4**, 273-282. Hirschberg et al. reports that the mutation Ser-Gly²⁶⁴ results in resistance to triazine herbicides, e.g., 2-Cl-4-ethylamino-6-isopropylamino-s-triazine (Atrazine). Other mutations in the psbA gene that cause Atrazine herbicide resistance are described in Erickson J.M., et al., 1989, Plant Cell **1**, 361-371, (hereafter an "Erickson mutation"), which is hereby incorporated by reference. The use of the selectable trait caused by an Erickson mutation is preferred when it is desired to introduce a second new trait into a chloroplast.

The scientific literature contains further reports of other mutations that produce selectable traits. Ghislain M., et al., 1995, The Plant Journal **8**, 733-743, describes a Asn-Ile¹⁰⁴ mutation in the *Nicotiana sylvestris* dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) gene that results in resistance to S-(2-aminoethyl)L-cysteine. Mourad, G., & King, J., 1995, Plant Physiology **109**, 43-52 describes a mutation in the threonine dehydratase of *Arabidopsis thaliana* that results in resistance to L-O-methylthreonine. Nelson, J.A.E., et al., 1994, Mol. Cell. Biol. **14**, 4011-4019 describes the substitution of the C-terminal Leu of the S14/rp59 ribosomal protein by Pro, which causes resistance to the translational inhibitors crytopluerine and emetine. In further embodiments of the invention, each of the foregoing mutations can be used to create a selectable trait. Each of Ghislain, Mourad and Nelson are hereby incorporated by reference.

4.7 Genes That Can Be Mutated to Create Desirable Non-selectable Traits

Example 1

MALE STERILITY

Certain commercially grown plants are routinely grown from hybrid seed including corn (maize, *Zea maize*), tomatoes and most other vegetables. The production of hybrid seed requires that plants of one purebred line be pollinated only by pollen from another purebred line, i.e., that there be no self pollination. The removal of the pollen-producing organs from the purebred parental plants is a

laborious and expensive process. Therefore, a mutation that induces male-sterility i.e., suppresses pollen production or function, would obviate the need for such process.

Several genes have been identified that are necessary for the maturation or function of pollen but are not essential for other processes of the plant. Chalcone synthase (*chs*) is the key enzyme in the synthesis of flavonoids, which are pigments found in flowers and pollen. Inhibition of *chs* by the introduction of a *chs* antisense expressing gene in the petunia results in male sterility of the plant. Van der Meer, I.M., et al., 1992, *The Plant Cell* **4**, 253-262. There is a family of *chs* genes in most plants. See, e.g., Koes, R.E., et al., 1989, *Plant Mol. Biol.* **12**, 213-226. Likewise disruption of the chalcone synthase gene in maize by insertion of a transposable element results in male sterility. Coe, E.H., *J. Hered.* **72**, 318-320. The structure of maize chalcone synthase and a duplicate gene, *whp*, is given in Franken, P., et al., 1991, *EMBO J.* **10**, 2605-2612. Typically in plants each member of a multigene family is expressed only in a limited range of tissues. Accordingly, the present embodiment of the invention requires that in species having multiple copies of chalcone synthase genes, the particular *chs* gene or genes expressed in the anthers be identified and interrupted by introduction of a frameshift, and one or more in-frame termination codons or by interruption of the promoter.

A second gene that has been identified as essential for the production of pollen is termed *Lat52* in tomato. Muschietti, J., et al., 1994, *The Plant Journal* **6**, 321-338. *LAT52* is a secreted glycoprotein that is related to a trypsin inhibitor. Homologs of *Lat52* have been identified in maize (termed *Zm13*, Hanson D.D., et al., 1989 *Plant Cell* **1**, 173-179; Twell D., et al., 1989, *Mol. Gen. Genet.* **217**, 240-245), rice (termed *Ps1*, Zou J., et al., 1994 *Am. J. Bot.* **81**, 552-561 and olive (termed *Ole e 1*, Villalba, M., et al., 1993, *Eur. J. Biochem.* **276**, 863-869). Accordingly, the present embodiment of the invention provides for a method of obtaining male sterility by the interruption of the *Lat52/Zm13* gene or its homologs by the introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

A third gene that has been identified as essential for the production of pollen is the gene that encodes phenylalanine ammonium lyase (PAL, EC 4.3.1.5). PAL is an essential enzyme in the production of both phenylpropanoids and flavonoids.

Because phenylpropanoids are a precursor to lignins, which can be an essential for the resistance to disease in the preferred embodiment a PAL isozyme that is expressed only in the anther is identified and interrupted to obtain male sterility.

Example 2 ALTERATION OF CARBOHYDRATE METABOLISM OF TUBERS

Once harvested, potato tubers are subject to disease, shrinkage and sprouting during storage. To avoid these losses the storage temperature is reduced to 35-40° F. However, at reduced temperatures, the starch in the tubers undergoes conversion to sugar, termed "cold sweetening", which reduces the commercial and nutritional value of the tuber. Two enzymes are critical for the cold sweetening process: acid invertase and UDP-glucose pyrophosphorylase. Zrenner, R., et al., 1996, *Planta* **198**, 246-252 and Spychalla, J.P., et al., 1994, *J. Plant Physiol.* **144**, 444-453, respectively. The sequence of potato acid invertase is found in EMBL database Accession No. X70368 (SEQ ID NO. 1) and the sequence of the potato UDP Glucose pyrophosphorylase is reported by Katsume, T. et al., 1991, *Biochem.* **30**, 8546-8551. Accordingly, the present embodiment of the invention provides for a method of preventing cold sweetening by the interruption of the acid invertase or the UDP glucose phosphorylase gene by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

Example 3 REDUCTION IN POST HARVEST BROWNING DUE TO PPO

Polyphenol oxidase (PPO) is the major cause of enzymatic browning in higher plants. PPO catalyzes the conversion of monophenols to o-diphenols and of o-dihydroxyphenols to o-quinones. The quinone products then polymerize and react with amino acid groups in the cellular proteins, which results in discoloration. The problem of PPO induced browning is routinely addressed by the addition of sulfites to the foods, which has been found to be associated with some possible health risk and consumer aversion. PPO normally functions in the defense of the plant to pathogens or insect pests and, hence, is not essential to the viability of the plant. Accordingly, the present embodiment of the invention provides for a method of preventing enzymatic browning by the interruption of the PPO gene by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

in apple, grape, avocado, pear and banana.

The number of PPO genes in the genome of a plant is variable; in tomatoes and potatoes PPO forms a multigene family. Newman, S.M., et al., 1993, Plant Mol. Biol. **21**, 1035-1051, Hunt M.D., et al., 1993, Plant Mol. Biol. **21**, 59-68; Thygesen, P.W., et al., 1995, Plant Physiol. **109**, 525-531. The grape contains only a single PPO gene. Dry, I.B., et al., 1994, Plant Mol. Biol., **26**, 495-502. When the plant species of interest contains multiple copies of PPO genes it is essential that the PPO gene that is normally expressed in the commercial product be interrupted. For example, only one PPO gene is expressed in potatoes of harvestable size, which gene is termed POT32 and its sequence is deposited in GENBANK accession No. U22921 (SEQ ID NO. 2), which sequence is incorporated by reference. The other potato PPO isozymes have been sequenced and the sequences deposited so that one skilled in the art can design a MDON that specifically inactivates POT32.

Example 4 REDUCTION OF LIGNIN IN FORAGE CROPS AND WOOD PULP

Lignin is a complex heterogeneous aromatic polymer, which waterproofs higher plants and strengthens their cell walls. Lignin arises from the random polymerization of free radicals of phenylpropanoid monolignins. Lignins pose a serious problem for the paper industry because their removal from wood pulp involves both monetary and environmental costs. Similarly, the lignin content of forage crops limits their digestibility by ruminants. Indeed, naturally occurring mutations, termed "brown mid-rib" in sorghum, Porter, K.S., et al., 1978, Crop Science **18**, 205-218, and maize, Lechtenberg, V.L., et al., 1972, Agron. J. **64**, 657-660, have been identified as having reduced lignin content and tested as feed for cattle.

The brown mid-rib mutation in maize involves the O-methyl transferase gene. Vignol, F., et al., 1995, Plant Cell **7**, 407-416. The O-methyltransferase genes of a number of plant species have been cloned: Burgos, R.C., et al., 1991, Plant Mol. Biol. **17**, 1203-1215 (aspen); Gowri, G., et al., 1991, Plant Physiol. **97**, 7-14 (alfalfa, *Medicago sativa*) and Jaек, E., et al., 1992, Mol. Plant-Microbe Interact. **4**, 294-300 (tobacco) (SEQ ID No. 3 and SEQ ID No. 4). Thus, one aspect of the present embodiment is the interruption of the O-methyltransferase gene to reproduce a brown mid-rib phenotype in any cultivar of maize or sorghum and in other species of forage

crops and in plants intended for the manufacture of wood pulp.

A second gene that is involved in lignin production is the cinnamyl alcohol dehydrogenase (CAD) gene, which has been cloned in tobacco. Knight, M.E., 1992, Plant Mol. Biol. **19**, 793-801 (SEQ ID No. 5 and SEQ ID No. 6). Transgenic tobacco plants making a CAD antisense transcript have reduced levels of CAD and also make a lignin that is more readily extractable, apparently due to an increase in the ratio of syringyl to guaiacyl monomers and to the increased incorporation of aldehyde monomers relative to alcohol residues. Halpin, C., et al., 1994, The Plant Journal **6**, 339-350. Accordingly, an embodiment of the invention is the interruption of the CAD gene of forage crops such as alfalfa, maize, sorghum and soybean and of paper pulp trees such as short-leaf pine (*Pinus echinata*) long-leaf pine (*Pinus palustris*) slash pine (*Pinus elliottii*), loblolly pine (*Pinus taeda*), yellow-poplar (*Liriodendron tulipifera*) and cotton wood (*Populus sp.*) by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

Example 5 THE REDUCTION IN UNSATURATED AND POLYUNSATURATED LIPIDS IN OIL SEEDS

The presence of unsaturated fatty acids, e.g., oleic acid, and polyunsaturated fatty acids, e.g., linoleic and linolenic acids, in vegetable oil from oil seeds such as rape, peanut, sunflower and soybean causes the oils to oxidize, on prolonged storage and at high temperatures. Consequently, vegetable oil is frequently hydrogenated. However, chemical hydrogenation causes transhydrogenation, which produces non-naturally occurring stereo-isomers, which are believed to be a health risk.

Fatty acid synthesis proceeds by the synthesis of the saturated fatty acid on an acyl carrier protein (ACP) followed by the action of desaturases that remove the hydrogen pairs. Consequently, it would be desirable to inhibit the activity of these desaturase enzymes in oil seeds.

The first enzyme in the synthesis of oleic acid is stearoyl-ACP desaturase (EC 1.14.99.6). The stearoyl-ACP desaturases from safflower and castor bean have been cloned and sequenced. Thompson, G.A., et al., 1991, Proc. Natl. Acad. Sci. **88**, 2578-2582 (SEQ ID No. 7); Shanklin, J., & Somerville, C., 1991, Proc. Natl. Acad. Sci. **88**, 2510-2514 (SEQ ID No. 8); Knutzon, D.S., et al., 1991, Plant Physiology **96**, 344-

345. Accordingly, one embodiment of the present invention is the interruption of the stearoyl-ACP desaturase gene of oil seed crops such as soybean, safflower, sunflower, soy, maize and rape by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

A second enzyme that can be interrupted according to the present invention is ω -3 fatty acid desaturase (ω -3 FAD) the enzyme that converts linoleic acid, a diene, to linolenic acid, a triene. There are two ω -3 FAD isozymes in *Arabidopsis thaliana* and, those skilled in the art expect, in most other plants. One isozyme is specific for plastids and is the relevant isozyme for the synthesis of the storage oils of seeds. The other is microsome specific. The cloning of the *Arabidopsis thaliana* plastid ω -3 FAD is reported by Iba., K. et al., 1993, J. Biol. Chem. **268**, 24099-24105 (SEQ ID No. 9). Accordingly an embodiment of the invention is the interruption of the plastid ω -3 FAD gene of oil seed crops such as soybean, safflower, sunflower, soy, maize and rape by introduction of a frameshift, an in-frame termination codon or by interruption of the promoter.

Example 6 INACTIVATION OF S ALLELES TO PERMIT INBRED LINES

Certain plant species have developed a mechanism to prevent self-fertilization. In these species, e.g., wheat and rice, there is a locus, termed S, which has multiple alleles. A plant that expresses an S allele cannot be fertilized by pollen expressing the same S allele. Lee, H-K., et al., 1994, Nature **367**, 560-563; Murfett, J., et al., 1994, Nature **367**, 563. The product of the S locus is an RNase. McClure, B.A., et al., 1989, Nature **342**, 955-957. The product of the S locus is not essential for the plant. Accordingly, an embodiment of the invention is the interruption of genes of the S locus to permit the inbreeding of the plant by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

Example 7 ETHYLENE INSENSITIVITY

Ethylene is a gaseous plant hormone that is involved in plant growth and development. An unwanted aspect of ethylene's action is the over-ripening of fruit, vegetables and the wilting of flowers that results in rotting and loss. The ethylene

receptor of *Arabidopsis thaliana* has been cloned and is termed ETR-1. Chang, C., et al., 1993, Science 262, 539-544 (SEQ ID No. 10). A mutant, Cys-Tyr⁶⁵, results in a dominant insensitivity to ethylene. Transgenic tomato plants expressing the *Arabidopsis thaliana* mutant ETR-1 also showed an insensitivity to ethylene, indicating that the Cys-Tyr⁶⁵ mutation would be a dominant suppressor of ethylene action in most plant species. Accordingly one aspect of the present embodiment of the invention is the insertion of the Cys-Tyr⁶⁵ mutation into the ETR-1 gene so as to extend the life span of the mutated fruit vegetable or flower.

In a further aspect of the present embodiment, the preservation of the fruit or flower can be achieved by interrupting one of the genes that encode the enzymes for ethylene synthesis: namely 1-aminocyclopropane-1-carboxylic acid synthase (ACC synthase) and ACC oxidase. For this embodiment of the invention the amount of ethylene synthesis can be eliminated entirely, so that ripening is produced by exogenous ethylene or some amount of ethylene production can be retained so that the fruit ripens spontaneously, but has a prolonged storage life. Accordingly, it is anticipated that the interruption of one allele of either the ACC synthase or the ACC oxidase gene can result in a useful reduction in the level of ethylene synthesis. Alternatively, the invention provides for the interruption of one allele along with the introduction of a mutation that results in a partial loss of activity in the uninterrupted allele.

The sequences of the *Arabidopsis thaliana* ACC synthase and ACC oxidase genes are reported in Abel., S., et al., 1995, J. Biol. Chem. 270, 19093-19099 (SEQ ID No. 12) and Gomez-Lim, M.A., et al., 1993, Gene 134, 217-221 (SEQ ID No. 11), respectively, which are incorporated by reference in their entirety.

Example 8

REVERSION OF KANAMYCIN RESISTANCE

Recombinant DNA technology in plants allows for the introduction of genes from one species of plant and bacterial genes into a second species of plant. For example, Kinney, A.J., 1996, Nature Biotech. 14, 946, describes the introduction of a bay laural ACP-thioesterase gene into the rape seed to obtain a vegetable oil rich in lauric acid. Such transgenic plants are normally constructed using an antibiotic resistance gene, e.g., kanamycin resistance, which is coinserted into the transgenic

plant as a selectable trait. The resultant transgenic plant continues to express the antibiotic resistance gene, which could result in large amounts of the resistance product and the gene entering the food supply and/or the environment, which introduction may represent an environmental or health risk. An embodiment of the invention obviates the risk by providing for the interruption of the kanamycin gene by introduction of a frameshift, one or more in-frame termination codons or by interruption of the promoter.

Example 9 MODIFICATION OF STORAGE PROTEIN AMINO ACID CONTENT

Seeds and tubers contain a family of major storage proteins, e.g., patatins in potato and zeins in maize. The amino acid composition of such storage proteins is often poorly suited to the needs of the human and animals that depend on these crops, e.g., corn is deficient in lysine and methionine and potato is deficient in methionine. Accordingly, one embodiment of the invention is the mutation of a storage protein of a food crop to increase the amount of low abundance amino acids. Patatins are encoded by a multigene family which are characterized in Mignery, G.A., et al., 1988, Gene **62**, 27-44, and the structure of zeins is reported by Marks, M.D., et al., 1985, J. Biol. Chem. **260**, 16451459, both of which are hereby incorporated by reference. Alternatively, the anticodon of a methionine or lysine specific tRNA can be mutated to that of a more common amino acid.

Example 10 THE USE OF MDON TO DETERMINE THE FUNCTION OF A GENE

The presently available techniques for the cloning and sequencing of tissue specific cDNAs allow those skilled in the art to obtain readily the sequences of many genes. There is a relative paucity of techniques for determining the function of these genes. In one embodiment of the invention, MDON are designed to introduce frameshift or stop codons into the gene encoding a cDNA of unknown function. This allows for the specific interruption of the gene. Plants having such specific "knock-outs" can be grown and the effects of the knock-out can be observed in order to investigate the function of the unknown gene.

4.8 Fertile Plants of the Invention

The invention encompasses a fertile plant having an isolated selectable point mutation, which isolated selectable mutation is not a rare polymorphism, i.e., would not be found in population of about 10,000 individuals. As used herein a point mutation is mutation that is a substitution of not more than six contiguous nucleotides, preferably not more than three and more preferably one nucleotide or a deletion or insertion from one to five nucleotides and preferably of one or two nucleotides. As used herein an isolated mutation is a mutation which is not closely linked genetically to any other mutation, wherein it is understood that mutations that are greater than 100 Kb and preferably greater than 40 Kb and more preferably greater than 23 Kb are not closely linked.

BIOSTATIC WORKING EXAMPLES

In the following working examples the media and protocols found in Gelvin, S.B., et al., (eds) 1991, PLANT MOLECULAR BIOLOGY MANUAL (Kluwer Acad. Pub.) were followed. Gold particles were coated with MDON according the following protocol. The microprojectiles are first prepared for coating, then immediately coated with the chimeroplast. To prepare the microprojectiles, suspend 60 mg of gold particles in 1 ml of 100% ethanol (see Note 4). Sonicate the suspension for three, 30 s bursts to disperse the particles. Centrifuge at 12,000 xg for 30 s, discard supernatant. Add 1 ml of 100% ethanol, vortex for 15 s, centrifuge at 12,000 xg for 5 min, then discard the supernatant. A 25 μ l suspension of washed gold particles (1.0 μ m diameter, 60 mg/ml) in H₂O are slowly vortexed, to which 40 μ l MDON (50 μ g/ml), 75 μ l of 2.5 M CaCl₂, 75 μ l 0.1M spermidine are sequentially added. All solutions are ice cold. The completed mixture is vortexed for a further 10 min and the particles are allowed to settle at room temperature for a further 10 min. The pellet is washed in 100% EtOH and resuspended in 50 μ l. of absolute ethanol. Biostatic delivery is performed using a Biorad Biostatic gun with the following settings: tank pressure 1100 psi, rupture disks x2 breaking at 900 psi, particle suspension volume 5 μ l.

NT-1 (TOBACCO), A DICOT CELL SUSPENSION: Lawns of NT-1 of approximately 5 cm diameter, containing 5 million cells, were grown for 3 days on standard media at

28°C. Gold particles were coated with ALS-1 or ALS-2 and were shot as above. The cells were cultured a further 2.5 days, suspended and transferred to solid medium supplemented with 15-50 ppb chlorosulfuron (GLEAM™). Resistant colonies emerged after 7-14 days.

The sequences of the MDON used are as follows: (The nucleotides not homologous with the target gene are underlined and bold. Lower case letters denote 2'-Omethyl ribonucleotides.)

ALS-1

TGCGCG-guccaguuca <u>CG</u> T TGcauccaacuaT	T
T	T
TCGCGC CAGGTCAAGTG <u>C</u> A ACGTAGGATGATT	(SEQ ID No. 13)
3' 5'	

ALS-2

TGCGCG-guccaguuca <u>CG</u> A TGcauccaacuaT	T
T	T
TCGCGC CAGGTCAAGTG <u>G</u> T ACGTAGGATGATT	(SEQ ID No. 14)
3' 5'	

ALS-1 and ALS-2 have single base mismatches with the ALS gene at the second nucleotide of the Pro¹⁹⁷ (CCA) codon: ALS-1 is CAA and ALS-2 is CTA. Following PCR amplification and sequencing of the gene of the ALS-1 and ALS-2 transmuted, resistant cell lines, a mutation was in the targeted codon which was found to be Thr (ACA) and Ser (TCA), respectively. The observed mutation was shifted one nucleotide 5' of the location that would have been expected based on the action of MDON in mammalian cells on the coding strand and one nucleotide 3' of the expected location on the non-coding strand. A total of 3 ALS-1 and 5 ALS-2 transmutants having these mutations were identified. No resistant calli were obtained from ALS-1 DNA treated cells.

For selection of chlorsulfuron resistant cells, cells were transferred from each bombarded plate to 15 ml containing 5 ml of liquid CSM 2 d after bombardment. The tubes were inverted several times to disperse cell clumps. The cells were then transferred to solidified CSM medium containing 15 ppb chorsulfuron (Dupont, Wilmington, DE). After approximately 3 - 5 wk, actively growing cells (raised, light

colored colonies) are selected and transferred to solidified CSM containing 50 ppb chlorsulfuron. Three to four weeks later, actively growing cells are selected, then transferred to solidified CSM containing 200 ppb chlorsulfuron. Cells that survive this treatment are then analyzed.

MEDIA

1. NT-1 cell suspension medium (CSM): Murashige and Skoog salts (Gibco BRL, Grand Island, NY), 500 mg/l MES, 1 mg/l thiamine, 100 mg/l myoinositol, 180 mg/l KH₂PO₄, 2.21 mg/L 2,4-diclorophenoxyacetic acid (2,4-D), 30g/L sucrose. Adjust pH to 5.7 with 1M KOH or HCl and autoclave. For solidified medium add 8g/l Agar-agar (Sigma, St. Louis, MO) prior to autoclaving.
2. Plating out medium (POM): 80% (v/v) CSM, 0.3M mannitol, 20% (v/v) supernatant from the initial centrifugation of the NT-1 cell suspension prior to protoplast isolation.

TOBACCO LEAF, A DICOT: *Nicotiana tabacum v. Samsun* leaf disks were co-transformed by *Agrobacterium tumefaciens* LBA 4404 harboring bin 19-derived plasmids containing a nptII expression cassette containing two genes: a gene for kanamycin resistance and one of two mutants of a gene encoding a Green Fluorescence Protein (GFP, Chui, W., 1996, Current Biol. 6, 325-330). Neither mutant GFP gene produces a GFP product. The mutants contain either a G→T substitution in the sixth codon resulting in a stop codon or a deletion of one nucleotide at the same position, which are termed, respectively, G-stop and G-Δ. After culture on selective MS 104 medium, leaves were recovered and the presence of a GFP gene confirmed by northern blot.

Sequence of first eight codons of GFP:

GFP	ATG GTG AGC AAG GGC GAG GAG CTG	(SEQ ID No. 15)
G-stop	—T—	(SEQ ID No. 16)
G-Δ	—AGG AGC TGT	(SEQ ID No. 17)

The sequences of the MDON used were as follows: (The nucleotides not homologous with G-stop are underlined and bold. Lower case letters denote 2'-Omethyl ribonucleotides.)

GFP-1

TGCGCG-cacucguucc**CGCT**CcucgacaaguT
 T T T (SEQ ID NO. 18)
 TCGCGC **GTGAGCAAGGGC**GAGGAGCTGTTCAT
 3' 5'

GFP-2

TGCGCG-acucguuccc**GAGC**CucgacaagugT
 T T T (SEQ ID NO. 19)
 TCGCGC **TGAGCAAGGGCT**CGGAGCTGTTCACT
 3' 5'

Leaf disks of the G-stop and G-Δ transgenic plants were incubated on MS 104 selective media and G-1 or G-1 introduced biolistically by two successive deliveries as above. Approximately 10 days after the introduction of the MDON, calli exhibiting GFP-like fluorescence were seen in the G-1 and G-2 treated cultures of both the G-stop and G-Δ leaf disks. Larger and more rapidly growing callusing pieces were subdivided by scalpel to obtain green fluorescent cell-enriched calli. The fluorescent phenotype remained stable for the total period of observation, about 30 days. The presence of green fluorescent cells in the G-1 treated G-stop culture indicates that G-1 does not cause mutations exclusively one base 5' of the mismatched nucleotide.

Green fluorescence was observed using a standard FITC filter set using an IMT-2 Olympus microscope.

ELECTROPORATION WORKING EXAMPLE

CONVERSION OF GFP IN TOBACCO MESOPHYLL PROTOPLASTS

Plant Material

1. Tobacco plant transformant (Delta6) harboring a deletion mutant of GFP.
2. Leaves were harvested from 5 to 6-week-old *in vitro*-grown plantlets

Protoplast Isolation

1. Basically followed the procedure of Gallois, et al., 1996, Electroporation of tobacco leaf protoplasts using plasmid DNA or total genomic DNA. Methods in Molecular Biology, Vol. 55: Plant Cell Electroporation and Electrofusion Protocols Edited by: J. A.

Nickoloff Humana Press Inc., Totowa, NJ. pp.89 - 107.

2. Enzyme solution: 1.2 % cellulase R-10 "Onozuka" (Karlan, Santa Rosa, CA), 0.8% macerozyme R-10 (Karlan, Santa Rosa, CA), 90 g/l mannitol, 10 mM MES, filter sterilize, store in 10 ml aliquots at -20°C.

3. Leaves were cut from the mid-vein out every 1 - 2 mm. They were then placed abaxial side down in contact with 10 ml of enzyme solution in a 100 x 20 mm petri plate. A total of 1 g of leaves was placed in each plate.

4. The plates were incubated at 25°C in the dark for 16 hr.

5. The digested leaf material was pipetted and sieved through a 100 µm nylon screen cloth (Small Parts, Inc., Miami Lakes, FL). The filtrate was then transferred to a centrifuge tube, and centrifuged at 1000 rpm for 10 min. All centrifugations for this protocol were done at these conditions.

6. The protoplasts collected in a band at the top. The band of protoplasts was then transferred to a clean centrifuge to which 10 ml of a washing solution (0.4 M sucrose and 80 mM KCl) was added. The protoplasts were gently resuspended, then centrifuged.

7. Repeated step 6 twice.

8. After the last wash, the protoplast density was determined by dispensing a small aliquot onto a hemocytometer. Resuspend the protoplasts to a density of 1×10^6 protoplasts/ml in electroporation buffer (80 mM KCl, 4 mM CaCl₂, 2mM potassium phosphate, pH 7.2, 8% mannitol, autoclave. The protoplasts were allowed to incubate at 8°C for 2 hr.

9. After 2 hr, 0.3 ml (3×10^5 protoplasts) were transferred to each 0.4 cm cuvette, then placed on ice. GFP-2 (0.6 - 4 µg/mL) was added to each cuvette except for an unelectroporated control. The protoplasts were electroporated (250V, capacitance 250 µF, and time constant 10 - 14 ms).

10. The protoplasts were allowed to recover for 10 min on ice, then transferred to petri

plates (100 x 20 mm). After 35 min, 10 ml of POM, see above, was added to each plate. The plates were transferred to the dark at 25°C for 24 hr, then transferred to the light.

11. The protoplast cultures were then maintained according to *Callois supra*.

Fluorescence Microscopy

1. Under UV light, we observed 8 GFP converted protoplasts out of 3×10^5 protoplasts.

We Claim:

1. A method of making a localized mutation in a target gene in a plant cell comprising the steps of:
 - a. adhering to a particle a recombinagenic oligonucleobase, which contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of the target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region;
 - b. introducing the particle into a cell of a population of plant cells;
 - c. identifying a cell of the population cell having a mutation located between the first and second fragments of the target gene.
2. The method of claim 1, wherein the recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-type nucleotides.
3. The method of claim 2, wherein the intervening region is at least 3 nucleotides in length.
4. The method of claim 2, which further comprises the step of culturing the identified cell so that a plant is generated.
5. The method of claim 2, wherein the first RNA segment contains at least 8 contiguous 2'-Substituted Ribonucleotides.
6. The method of claim 5 wherein the second RNA segment contains at least 8 contiguous 2'-Substituted Ribonucleotides.
7. The method of claim 2, wherein the sequence of the mutated target gene is homologous with the sequence of the MDON.
8. The method of claim 2, wherein the adhering step is performed in a solution

comprising 1.1-1.4 M NaCl and 18-22 μ M spermidine and at least 14 μ g/ml MDON.

9. The method of claim 2, wherein the target gene is a first ALS gene, a second ALS gene, a psbA gene, a threonine dehydratase gene, a dihydروdipicolinate synthase gene, or an S14/rp59 gene
10. The method of claim 9, wherein the plant cell is a maize, wheat, rice or lettuce cell.
11. The method of claim 9, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.
12. The method of claim 2, wherein the target gene selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, etr-1 or a homolog thereof, ACC synthase and ACC oxidase.
13. The method of claim 12, where the plant cell is from a maize, wheat, rice or lettuce plant.
14. The method of claim 12, where the plant cell is from a potato, tomato, canola, soybean or cotton plant.
15. The method of claim 2, which further comprises making seeds from the plant or from progeny of the plant.
16. A method of making a localized mutation in a target gene in a plant cell having a cell wall comprising the steps of:
 - a. perforating the cell walls of a population of plant cells;
 - b. introducing a recombinagenic oligonucleobase, which contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of the target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region

and the second homologous region;

- c. identifying a cell of the population having a mutation located between the first and second fragments of the target gene.

17. The method of claim 16, wherein the recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-Type nucleotides.
18. The method of claim 17, which further comprises the step of culturing the identified cell so that a plant is generated.
19. The method of claim 17, wherein the sequence of the target gene between the first and the second fragments differs from the sequence of the intervening region of the MDON at a mismatched nucleotide and the mutation of the target gene is located adjacent to the mismatched nucleotide.
20. The method of claim 17, wherein the sequence of the target gene between the first and the second fragments differs from the sequence of the mutator segment of the MDON at a mismatched nucleotide and the mutation of the target gene is located at the mismatched nucleotide.
21. The method of claim 17, wherein the target gene is a first ALS gene, a second ALS gene, a psbA gene, a threonine dehydratase gene, a dihydrodipicolinate synthase gene, or an S14/rp59 gene
22. The method of claim 21, wherein the plant cell is a maize, wheat, rice or lettuce cell.
23. The method of claim 21, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.
24. The method of claim 17, wherein the target gene is selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, etr-1 or a homolog thereof, ACC synthase and ACC oxidase.
25. The method of claim 24, where the target gene is a gene from a maize, wheat, rice or lettuce plant.

26. The method of claim 24, where the target gene is a gene from a potato, tomato, canola, soybean or cotton plant.
27. The method of claim 17, which further comprises making seeds from the plant or from progeny of the plant.
28. A method of making a localized mutation in a target gene of a plastid of a plant cell which comprises the steps of:
 - a. Introducing a recombinagenic oligonucleobase, which contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of the target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region;
 - b. Identifying a cell having a mutation in the region between the first and second fragments of the target gene.
29. The method of claim 28, wherein the recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-Type nucleotides.
30. The method of claim 29, which further comprises culturing the identified cell so that a plant is generated.
31. A method of making a localized, non-selectable mutation in a target gene in a plant cell comprising the steps of:
 - a. introducing into the cells of a population of cells a mixture of a first recombinagenic oligonucleobase and a second recombinagenic oligonucleobase wherein:
 - i. the first recombinagenic oligonucleobase contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of a first target gene and a second homologous

region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the first target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region, and

- ii. the second recombinagenic oligonucleobase contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of a second target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the second target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region;

- b. selecting cells from the population having a selectable mutation located between the first and the second fragments of the first target gene from the population; and
- c. identifying a selected cell having a non-selectable mutation located between the first fragment and the second fragment of the second target cell.

32. The method of claim 31, wherein the each recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-Type nucleotides.
33. The method of claim 32, wherein the first target gene is a first ALS gene, a second ALS gene, a psbA gene, a threonine dehydratase gene, a dihydrodipicolinate synthase gene, or an S14/rp59 gene.
34. The method of claim 33, wherein the plant cell is a maize, wheat, rice or lettuce cell.
35. The method of claim 33, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.

36. The method of claim 32, wherein the second target gene is selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, etr-1 or a homolog thereof, ACC synthase and ACC oxidase.
37. The method of claim 36, wherein the plant cell is a maize, wheat, rice or lettuce cell.
38. The method of claim 36, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.
39. The method of claim 32, which further comprises culturing the identified cell such that a plant is generated.
40. The method of claim 39, which further comprises making seeds from the plant or from progeny of the plant.
41. The method of claim 31, wherein the second recombinagenic oligonucleobase is a heteroduplex recombinagenic oligonucleobase and each of the homologous regions of the second recombinagenic oligonucleobase contains an RNA segment of at least 6 RNA-Type nucleotides.
42. The method of claim 41, wherein the first target gene is a first ALS gene, a second ALS gene, a psbA gene, a threonine dehydratase gene, a dihydrodipicolinate synthase gene, or an S14/rp59 gene.
43. The method of claim 42, wherein the plant cell is a maize, wheat, rice or lettuce cell.
44. The method of claim 42, wherein the plant cell is a potato, tomato, canola, soybean or cotton cell.
45. The method of claim 41, wherein the second target gene is selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, etr-1 or a homolog thereof, ACC synthase and ACC oxidase..
46. The method of claim 36, 45, wherein the second target gene is from a maize, wheat, rice or lettuce plant.

47. The method of claim 36, 45, wherein the second target gene is from a potato, tomato, canola, soybean or cotton plant.
48. The method of claim 41, which further comprises culturing the identified cell such that a plant is generated.
49. The method of claim 48, which further comprises making seeds from the plant or from progeny of the plant.
50. A method of making a localized mutation in a target gene in a plant cell comprising the steps of:
 - a. digesting a plant part with cellulase such that plant cell protoplasts are formed;
 - b. suspending the protoplasts in a solution comprising a recombinagenic oligonucleobase which contains a first homologous region which has a sequence identical to the sequence of at least 6 base pairs of a first fragment of the target gene and a second homologous region which has a sequence identical to the sequence of at least 6 base pairs of a second fragment of the target gene, and an intervening region which contains at least 1 nucleobase heterologous to the target gene, which intervening region connects the first homologous region and the second homologous region;
 - c. electroporating the suspension such that the recombinagenic oligonucleobase enters a protoplast of the suspension;
 - d. culturing the protoplast; and
 - e. identifying a progeny of the protoplast having a mutation located between the first and second fragments of the target gene.
51. The method of claim 50, which further comprises the step of culturing the identified progeny such that a plant is generated.
52. The method of claim 50, wherein the recombinagenic oligonucleobase is a MDON and each of the homologous regions contains an RNA segment of at least 6 RNA-Type nucleotides.

53. The method of claim 50, wherein the recombinagenic oligonucleobase is an heteroduplex recombinagenic oligonucleobase.
54. A plant or seed having a point mutation in a gene is in its wild type genetic position, which gene is selected from the group consisting of the genes encoding acid invertase, UDP-glucose pyrophosphorylase, polyphenol oxidase, O-methyl transferase, cinnamyl alcohol dehydrogenase, ACC synthase and ACC oxidase or *etr-1* or a homolog of *etr-1*, and the sequence of the genomic DNA within 23 KB of the mutation is the sequence of the wild type DNA, and the point mutation forms a stop codon or is a frameshift mutation.
55. The plant or seed of claim 54, in which the point mutation forms a stop codon.
56. The plant or seed of claim 55, in which the sequence of the genomic DNA within 40 KB of the selectable mutation is the sequence of the wild type DNA.
57. The plant or seed of claim 55, in which the sequence of the genomic DNA within 100 KB of the selectable mutation is the sequence of the wild type DNA.
58. The plant or seed of claim 55, in which the point mutation is a single base pair mutation.
59. The plant or seed of claim 55, which is a maize, wheat, rice or lettuce plant or seed.
60. The plant or seed of claim 55, which is a potato, tomato, canola, soybean or cotton plant or seed.
61. The plant or seed of claim 55, further having a selectable point mutation in a second gene and the sequence of the genomic DNA within 23 KB of the selectable point mutation is the sequence of the wild type DNA.
62. The plant or seed of claim 61, in which the sequence of the genomic DNA within 40 KB of the selectable mutation is the sequence of the wild type DNA.
63. The plant or seed of claim 61, in which the sequence of the genomic DNA within 100 KB of the selectable mutation is the sequence of the wild type DNA.
64. The plant or seed of claim 54, in which the point mutation is a frameshift

mutation.

65. The plant or seed of claim 64, in which the sequence of the genomic DNA within 40 KB of the selectable mutation is the sequence of the wild type DNA.
66. The plant or seed of claim 64, in which the sequence of the genomic DNA within 100 KB of the selectable mutation is the sequence of the wild type DNA.
67. The plant or seed of claim 64, in which the point mutation is a single base pair mutation.
68. The plant or seed of claim 64, which is a maize, wheat, rice or lettuce plant or seed.
69. The plant or seed of claim 64, which is a potato, tomato, canola, soybean or cotton plant or seed.
70. The plant or seed of claim 64, further having a selectable point mutation in a second gene and the sequence of the genomic DNA within 23 KB of the selectable point mutation is the sequence of the wild type DNA.
71. The plant or seed of claim 70, in which the sequence of the genomic DNA within 40 KB of the selectable mutation is the sequence of the wild type DNA.
72. The plant or seed of claim 70, in which the sequence of the genomic DNA within 100 KB of the selectable mutation is the sequence of the wild type DNA.

SEQUENCE LISTING

<110> 1. Arntzen, Charles
2. Kipp, Peter B.
3. Kumar, Ramesh
4. May, Gregory D.

<120> The Use of Mixed Duplex Oligonucleotides
to Effect Localized Genetic Changes in Plants

<130> 7991-023-999

<150> 60/054,386
<151> 1997-08-05

<160> 19

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 2063
<212> DNA
<213> Solanum tuberosum

<220>

<221> CDS
<222> (3) . . . (1907)

<400> 1

agtaccattc cagttatgac ccggaaaact ccgcctccca ttacacattc ctcccgatc	60
aaccttgcattc cggccaccgg aagtccctta aaatcatctc cgccattttc ctctctcttt	120
tccttttgct ttctgttagcc ttctttccga tcctcaacaa ccagtcacccg gacttgcaga	180
gtaactcccg ttccggccgg ccgtcaagag gtgtttctca gggagtctcc gataagactt	240
ttcgagatgt cgtcaatgtt agtcacattt cttatgcgtg gtccaatgtt atgcttagct	300
ggcaaagaac tgcttaccat ttcaacccctc aaaaaaattt gatgaacgtt cctaattggtc	360
cattgtacca caagggtatgg tttatctttttttaata caatccagat tcagctat	420
ggggaaatat cacatggggc catgccgtat ccaaggactt gatccactgg ctctacttgc	480
cttttgcattt ggttccgtat caatggtacg atattaacgg tgtctggact gggtcgcct	540
ccatccctacc cgatggtcag atcatgatgc tttataccgg tgtctctgtat gattatgtac	600
aagtgcaaaa tcttgcgtac cccaccaact tatctgatcc tctccttcta gactgggtca	660
agtacaaagg caacccgggtt ctgttccctc caccggcat tggatcaag gacttttagag	720
acccgaccac tgcttggacc ggaccccaaa atgggcattt gcttttaaca atcgggtcta	780
agattggtaa aacgggtatt gcacttgtt atgaaacttc caacttcaca agctttaagc	840
tattggatga agtgctgcat gcggttccgg gtacgggtat gtggagtgat gtggactttt	900
acccggatc gactgaaaaa acaaacgggt tggacacatc atataacggc ccgggtgtaa	960
agcatgtgtt aaaagcaagt ttatgtaca ataagcaaga tcactatgtt attggacgt	1020
atgacttgac aaagaacaaa tggacacccg ataacccggaa attggattgt ggaattgggt	1080
tgaagctgga ttatggaaaa tattatgcat caaagacatt ttatgacccg aagaacaaac	1140
gaagagatct gtggggatgg attggggaaa ctgatagtga atctgctgac ctgcagaagg	1200
gtatggcatc tgtacagat attccaaggaa cagtgcttta cgacaagaag acagggacac	1260
atctacttca gtggccagtt gaagaaattt aaagcttaag agtgggtat cctattgtta	1320
agcaagtcaa tcttcaacca ggttcaattt agtactcca tggactca gctgcagat	1380
tggatataga agcctcattt gaagtggaca aagtgcgcgtt ccagggataa attgaagcag	1440

atcatgttagg tttcagctgc tctactagtgc gaggtgctgc tagcagaggc atttgggac	1500
catttggtgt cgttgttaatt gctgtcaaa agctatctga gctaaccgcca gtttacttct	1560
acatttctaa aggagctgat ggtcgagctg agactcaatt ctgtgctgat caaactagat	1620
cctcagaggg tccgggagtt gctaaacaag ttatggtag ttcagtagcc gtgttagacg	1680
gtgaaaaaca ttcatgatgaga ttatggagg accactcaat tggagagac tttgcccaag	1740
gaggaagaac agtcataaca tcgcaattt acccaacaaa ggcaatgtaat ggagcagcac	1800
gactcttcgt tttcaacaat gccacagggg ctagcgtgac tgcttccgtc aagatttgg	1860
cacttgatgc ggctaataatt cgatccttcc cttgcaaga cttgtatcc atcaagccat	1920
atcttcttca ttctttttt cattgtatgg ttatccacc gatgtcccat caagaaagg	1980
aagagagggaa gaatatgtatgg tggatataactc tacttattcg ccatttttagt gatTTTcta	2040
ctggactttt gctattcgca aaa	2063

<210> 2
<211> 1958
<212> DNA
<213> Solanum tuberosum

<220>
<221> CDS
<222> (22)...(1815)

<400> 2

tcttttgcgt tttgagcaat aatggcaagc ttgtgcaata gtagtagtac atctctcaaa	60
actcctttta cttcttcctc cacttctta tcttccactc ctaagccctc tcaactttc	120
atccatggaa aacgtAACCA aatgttcaaa gtttcatgca aggttaccaa taataacgg	180
gaccaaaacc aaaacgttga aacaaattct gttgatcgaa gaaatgttct tcttggctta	240
gggtgtcttt atgggtgttc taatgtata ccattagctg catccgctgc tccagctcca	300
cctcctgatc tctcgtctt tagtataccg aggattaacg aaaatcagg ggtgcgtac	360
agttgttgcg cgccctaaggc tgatgatatg gagaaagtgc cgattacaa gttcccttct	420
atgactaage tccgtgttcg tcagcctgatc catgaagcta atgaggagta tattgccaag	480
tacaatctgg cgattagtcg aatgaaagat cttgataaga cacaaccttt aaaccctatt	540
ggtttaaggc aacaagctaa tatacattgt gcttattgtc acgggtctt tagaatttgg	600
ggcaaaaggt tacaagttca taattcttgg cttttcttcc cggtccatag atggtaatgg	660
tacttccacg agagaatctg gggaaaattc attgatgatc caactttcgc tttaccat	720
tggaaatttggg accatccaaa aggtatgcgt tttcctgcca tttatgtatcg tgaaggact	780
tccctttcgt atgtacacacg tgaccaaaatg caccgaaatg gggcgtatcgatcttgg	840
tttttccggca atgaagttga aacaactcaa atgtaccgtc aatgtgttaac taatgtccca	900
gatctcgggg ttaacactga actcccggga actatagaaa acatccctca cggcctgtc	960
cacatctggt ctggtagatc gagagggtca actttccccaa atggtgcata atcaaacgg	1020
gagaatatgg gtcatttttta ctcagctggt ttggacccgg tttcttttgc ccatcacagc	1080
aatgtggatc ggtatgtggag cgaatggaaa ggcacaggag ggaaaagaac ggatatcaca	1140
cataaagatt ggttgaactc cgagttctt ttctatgtatg aaaatgaaaa cccttaccgt	1200
gtgaaagtca gagactgttt ggacacgaa gggatggat acgattacaa accaatttgc	1260
acaccatggc gtaacttcaa gcccctaaca aaggcttcag ctggaaaatg gaatacagct	1320
tcacttccgc cagctagcaa tgtattccca ttggctaaac tcgacaaaggc aatttcgttt	1380
tccatcaata ggcggacttc gtcaaggact caacaagaga aaaatgcaca agaggagatg	1440
ttgacattca ttagcataag atatgataac agagggtaca taagggtcgat tttgtttcg	1500
aacgtggaca ataatgtgaa tgcgtatggat cttgacaagg cggagttgc ggggagttat	1560
acaaggttgc cacatgttca tagagctgtt gggactaattc atatcgac tttgtatcc	1620
cagctggcga taacggaaact gttggaggat attgggttgg aagatgaaga tactattgc	1680
gtgactctgg tgccaaagag aggtggatggaa ggtatctcca ttgaagggtgc gacgatcgt	1740
cttgcagatt gttaaatttgc ttctattgaa tctgtatggat tttacactttt atggatgtat	1800
ctctgtttt gttttcttgc tctgtttttt cctctgttca aatcagcttt gttgtttgtat	1860
ttcattgtatgg tttgttattca agaataaaatc agttacaa	1920
	1958

<210> 3
<211> 1460
<212> DNA
<213> Nicotiana tabacum

<220>
<221> CDS
<222> (84) ... (1178)

<400> 3

tctgtttctt caactcacct	taatttgc	aattgagtca	ttgtaaaatc	tgaaacagaa	60
ccaagagaga	agagaaaaaa	aatatgggtt	caacaagcc	gagccagagt	120
ctcacacaga	agacgaagcg	ttcttattt	ccatgcaatt	ggctagtgt	180
ctatggtcct	aaaatcagcg	ttagaactt	accttctt	actcatggct	240
caggtgcagc	catttctc	tctgaattt	ctgctcagct	ctcaacc	300
cacccgttat	tcttgatcgg	atgcttaggc	tacttgc	ttaactctgtt	360
ctcttagaac	actgtctgt	ggcagtgtt	agaggctt	ctcaattgt	420
agttcttgc	taagaatgt	gatgtgtt	ctgtgc	ccgttgg	480
ataaaagtct	tatggagagc	tggttacc	taaaagatgc	atgtactat	540
cattcaacaa	gccc	tatgtt	ttgatc	ttggcac	600
acaaagttt	caaccgtt	atgtctgt	actccactat	ccaagatt	660
aggactacaa	aggattt	ggcc	gtcaatgaaa	aagattctt	720
ctactgtt	aaat	ccattgtt	ttgtgg	ggactgg	780
cacatgtt	tggagatgt	ccagtt	ctgg	ggc	840
ttgccagtgt	gcca	gatgcc	tcatgaa	gttgc	900
acgagcattt	ttt	ttt	gttgc	gatgg	960
tgataatagc	ggagtgcata	cttcc	gttgc	actac	1020
cagtacatgt	tgtat	tttgc	actat	actaaga	1080
aggaatttga	ggctt	aggcg	tttact	tttgc	1140
ttacaacact	tgg	cttcc	tttact	tttgc	1200
caatatactg	tca	tttgc	tttact	tttact	1260
aataaaagaa	atata	tttac	tttact	tttact	1320
aggaagatga	atatt	tttac	tttact	tttact	1380
attttgaatt	ttt	tttact	tttact	tttact	1440
cgaccaatca	tattt	tttact	tttact	tttact	1460

<210> 4
<211> 1418
<212> DNA
<213> Nicotiana tabacum

<220>
<221> CDS
<222> (59) ... (1153)

<400> 4

atcccttcaa	cttacccaa	taagtcat	aaaaatct	aacagaact	aaagtaaaat	60
gggttcaaca	agcgagagcc	agagtaacag	tctcact	acagaagacg	aagcttctt	120
atttgccat	caattgt	gtgttctgt	acttcc	gtcctaaaat	cagccgt	180
acttgacctt	tttgat	tggctaa	ttgtcc	ttgtcc	ttgtcc	240
attatgt	cagctct	ctcagaaccc	agaagcac	gttatgtt	atcgatgt	300
taggttactt	gttttact	ctgttct	ttgtact	agaacact	ctgatagc	360
tgtttagagg	ctttat	ttggctcc	ttgtact	ttgacta	atgtat	420
tgttctgtt	ggccca	ttgtt	ttgtt	ttgtt	ttgtt	480
ccacttaaaa	gatgc	ttgtt	ttgtt	ttgtt	ttgtt	540

agcatttgag taccatggca cagatccaag attcaacaaa gtgttcaacc gtggaatgtc	600
tgatcaactcc actatgtcaa tgaagaagat tcctgaggac tacaaaggat ttgaaggcct	660
aaattccatt gttatgttg gtgggaaac ggggtctact gttaacatga ttgtctctaa	720
atatccctct attaaggcga ttaacttga ttgcacat gtaattggag atgctccaac	780
ttaccccggt gtcgagcacg ttggggcga catgttgct agtgtgccaa aagcagatgc	840
cattttcatg aagtggattt gtcatgattt gagcgatgag cattgcctaa aattcttgaa	900
gaatttgctat gaagcactac ctgcaaattgg gaagggtata attgcagagt gcataacttcc	960
agaggccccca gatacatcac ttgcactaa gaatacaga catgttgata ttgttatgtt	1020
agcacataaac ccaggaggca aagaaaggac tgagaaggaa ttgaggcctt tggctaaggg	1080
cgctgtttt actggattcg caagcattgt tgcgcttaca acacttgggt catggaattc	1140
aacaagtaat taatcgattc cttatttga aggattaagc aataactgt tcgtttgca	1200
tttggaaatt ctactttct cagagtggct tgactgtgaa ataaaagaaa tatagctttt	1260
aacttgaaaaa gattgatgtt caaaagaaaaa aaaggaagat gaaataatttgc ctctcagaaa	1320
agcaatgtgt tagggaaaag cttttttagc tggattttga attttactgt atgtatttct	1380
gttatacaca tgtatttgaag gaataactgtt ttgcacc	1418

<210> 5

<211> 1419

<212> DNA

<213> Nicotiana tabacum

<220>

<221> CDS

<222> (92) ... (1165)

<400> 5

atttcttctt cttcccttg aactgtgttt tcatttttc tgctctgaaa caatagtgtt	60
ttcctttagt atttttagtt aaaagaaaac catggtagc ttggatgttg aaaaatcagc	120
tattggttgg gctgcttagag accccttctgg tctacttca ccttataacct atactctcag	180
aaacacagga cctgaagatg tgcaagtcaa agttttgtat tgtggacttt gccacagtga	240
tcttcaccaa gttaaaaatg atcttggcat gtccaaactac cctctgggtc ctggacatga	300
agtggggaa aaagtagtgg aggtaggagc agatgtgtca aaattcaaaag tgggggacac	360
agttggagtt ggattactcg ttggaaattt taggaactgt ggcccttgca agagagaat	420
agagcaatat tgcaacaaga agattttggaa ttgcaatgt gtctacactg atggcaaacc	480
cacccaaagggt gttttgcta attctatgtt tggtgatcaa aactttgtgg tggaaattcc	540
agagggtatg gcaccagaaac aagcagcacc tctattatgt gctggcataa cagtatacag	600
tccattcaac cattttgggt ttaatcagag tggattttaga ggaggaattt tggatttagg	660
aggagttgga catatgggag tgaaaatagc aaaggcaatg ggacatcatg ttactgtcat	720
tagttcttca aataagaaga gacaagaggc attggaaatc ctgggtgcag atgattatct	780
tgttagttca gacactgata aaatgcaaga agctgctgtat tcactgtact atattattga	840
tactgtccct gttggccatc ctcttgcact ttatctttt ttgtttaaaa ttgtggcaa	900
acttatcttgc atcggagttca tcaacacccc cttgcattt atctctccca tggatgtgt	960
cgggagaaag agcatcactg gaagctttat tggtagcatg aagaaacag agaaatgtct	1020
agacttctgc aaagagaaag gtgtgacttc acagatttggat atagtggaaaa tggatttat	1080
caacactgca atggagaggt tggagaaaaa tgatgtgagc tacagatttgc ttgttgcgt	1140
tgctgaaagc aagcttgcacc agtaattgca caagaaaaac aacatggaaat gtttcaactat	1200
tatacaacaa ggctatgaga aaaatagtac tcctcaactt tgatgtcattt tttgttacct	1260
ttgttttattt ttccacctgtt attatcatat ttgggtggcgt agagtgcgtt ttatgtat	1320
tttcttctt caaaacaatc ttaaatgaaat ttggatgttg gtgcgtt gtaaatatac	1380
caaccatgca aacttacttt ggtagaaaaa aaaaaaaaaa	1419

<210> 6

<211> 1398

<212> DNA

<213> Nicotiana tabacum

<220>
 <221> CDS
 <222> (88) ... (1161)

<400> 6

atccctttt	cccttgaact	gtgtttcg	ttttctgct	ctaaaacaat	cgtgttcc	60
ttctagattt	taagttaaa	gaacatcatg	ggggcttgg	aagttgagaa	aacaactatt	120
gggtgggctg	ctagagacc	ttctgggt	cttcac	atacctatac	tctcagaaac	180
acaggac	aatgtgg	agtcaaagt	ttgtattgt	ggctctgtca	cactgatctt	240
caccaagtta	aaaatgatct	tggcatgtcc	aactacc	tggttcctgg	acatgaagtg	300
gtgggagaag	tggtgagg	aggaccagat	gtgtcaaaat	tcaaagtgg	ggacacagtt	360
ggagttggat	tactcg	aagtgcagg	aactgtgcc	cttgc	agatata	420
caatattgca	acaagaagat	ttggaa	aatgtgtct	acactgatgg	caaacc	480
caagggtt	ttgctaaatc	catgtt	gatcaaagt	ttgtgg	attccagag	540
ggtatggcac	cagaacaagc	agcac	ttatgtgt	gtataac	atacagtcca	600
ttgaaccatt	ttgg	acagagtgg	ttaagagg	gaattt	attaggagga	660
gtgggacaca	tgggagtg	aatagcaa	gcaatgg	atcatgtt	tgtcatt	720
tcttcaaata	agaagagaca	agaggcatt	gaacat	gtgc	ttatcttgc	780
agttcagaca	ctgataaaat	gcaagagg	tctgatt	ttgactat	tattgata	840
gtcccttgg	gccatct	tgaac	cttgc	ttaaaattg	tggcaaa	900
atctt	gatgg	gagttat	caat	ccccat	tatgctc	960
agaaaagagca	tcacagga	cttatt	agcat	aaac	agatg	1020
ttctgcaaa	agaaagg	gtact	attgagat	tggaa	ttat	1080
actgcaatgg	agagg	aaaaatg	gtgagg	attt	tgatgtt	1140
ggaagcaagc	ttgacc	attat	acaagaaaa	caacat	tgg	1200
ttatacaagg	ctgt	actaa	gatgt	tatc	ttt	1260
ttgccac	tat	ttt	ttt	ttt	ttt	1320
ttcaaa	ttt	atgt	gat	ttt	ttt	1380
aaaaaaaaaa	aaaa	aaaa	aaaa	aaaa	aaaa	1398

<210> 7
 <211> 1533
 <212> DNA
 <213> Carthamus tinctorius

<220>
 <221> CDS
 <222> (106) ... (1296)

<400> 7

gctcactt	gtgg	ggagg	agaaaaac	aactcaca	aagcttgc	actgcca	60
acaaca	caaca	agatc	aagaaga	agaaga	caaaaatgg	tcttc	120
actcc	c	ttgc	atc	ggag	at	cgatc	180
ctc	caaa	att	cg	ggag	at	ccac	240
aat	ccaa	ttt	cc	ttt	cc	gggtt	300
ccacc	cc	ttt	cc	ttt	cc	gac	360
gtt	cc	ttt	cc	ttt	cc	at	420
tct	cc	ttt	cc	ttt	cc	ttt	480
gat	cc	ttt	cc	ttt	cc	ttt	540
acaat	cc	ttt	cc	ttt	cc	ttt	600
gct	cc	ttt	cc	ttt	cc	ttt	660
tat	cc	ttt	cc	ttt	cc	ttt	720
atg	cc	ttt	cc	ttt	cc	ttt	780
tcg	cc	ttt	cc	ttt	cc	ttt	840
cat	cc	ttt	cc	ttt	cc	ttt	900

gagaccgctt atacaaagat agtcgaaaag ctattcgaga tcgatcctga tggcaccgtt	960
cttgctttg ccgacatgtat gaggaaaaag atctcgatgc ccgcacactt gatgtacgt	1020
gggcgtgatg acaacctt cgaacatttc tcggcggtt cccaaagact cggcgtctac	1080
accgccaag actacgcccatactggaa ttctcggtcg ggcggtggaa agtggcggat	1140
ttgaccggcc tatctggta agggctaaa ggcgaagatt atgtttcggtt gttgccacca	1200
agaatcagaa ggctggagga gagagctcaa gggcgagcaa aggaaggacc tggtttcca	1260
ttcagctgga ttctcgatag acaggtgaag ctgtgaagaa aaaaaaaaaacg agcagtgagt	1320
tcggtttctg ttggcttatt gggtagaggt taaaacctat tttagatgtc tggttctgt	1380
aatgtggttt tttttcttctt aatcttgaat ctggattgt gtcgttggat tcgcgtgtgt	1440
gtaaacttgtt gtggctgtgg acatattata gaactcggtt tgccaattttt gatgacgggt	1500
gttacgtct cccctgggtt ttttttattt gtt	1533

<210> 8
<211> 1643
<212> DNA
<213> Ricinus communis

<220>
<221> CDS
<222> (1)...(1239)

<400> 8

ttccggcaaa taacaaaaaa ccaaaagaaa aaggtaagaa aaaaaacaat ggctctcaag	60
ctcaatcctt tcctttctca aacccaaaag ttaccttctt tcgctcttcc accaatggcc	120
agtaccagat ctccataagtt ctacatggcc tctaccctca agtctggttc taaggaagtt	180
gagaatctca agaagcctt catgcctcct cgggagggtac atgttcaggt tacccattct	240
atgccacccc aaaagattga gatcttaaa tccctagaca attgggctga ggagaacatt	300
ctgggtcatac tgaagccagt tgagaaatgt tggcaaccgc agatttttt gccagatccc	360
gcctctgatg gatttgcata gcaagtgcagg gaactcagg agagagcaaa ggagattcct	420
gatgattatt ttgtgtttt ggttggagac atgataacgg aagaagccct tcccacttat	480
caaacaatgc tgaataccctt ggttggagtt cgggatgaaa caggtgcaag tccctacttct	540
tggcaattt ggacaagggc atggactgcg gaagagaata gacatggtga cctcctcaat	600
aagtatctt acctatctgg acgagtggac atgaggcaaa ttgagaagac aattcaatat	660
ttgattggtt caggaatgga tccacggaca gaaaacagtc cataccttgg gttcatctat	720
acatcattcc aggaaagggc aacccatttcttcttccatggca acactgccc accaagccaaa	780
gagcatggag acataaagtt ggctcaaata tggatgtacaa ttgctgcaga tgagaagcgc	840
catgagacag cttcacacaaa gatagtggaa aaactctttt agattgtatcc tgatggact	900
gttttggctt ttgctgatgat gatgagaaag aaaatttcta tgcctgcaca cttgatgtat	960
gatggccgag atgataatct ttttgcaccat tttcagctg ttgcgcagcg tcttggagtc	1020
tacacagcaa aggattatgc agatataattt gaggcttgg tggcagatg gaaggtggat	1080
aaactaacgg gccttcagc tgagggacaa aaggctcagg actatgtttc tcggttaccc	1140
ccaagaatta gaaggctgga agagagagct caaggaaggg caaaggaagc acccaccatg	1200
cctttcagct ggattttcga taggcaagtg aagctgttagg tggctaaagt gcaggacgaa	1260
accgaaaatgg ttagttcac tcttttcat gcccattccct gcagaatcag aagtagaggt	1320
agaattttgt agttgtttt ttattacaag tccagtttag ttaaggctt gtggaaaggaa	1380
gttagttgag gagtgaattt agtaagttt tgatactgtt gtgttcttgc tttgtcatga	1440
gtctgttttga tagtgatgtt ctttttttcc ctttttttgc ttttttttgc ttttttttgc	1500
tctctcttc tctctttttt tcttttccatcc caagtgtctc aagtataata agcaaacgt	1560
ccatgtggca attttgcata tggatgttgc tctcacaact tgatcttttgc tcttcttgc	1620
gaaacacacgc ctgcttgc gaa	1643

<210> 9
<211> 2569
<212> DNA
<213> Arabidopsis thaliana

```

<220>
<221> exon
<222> (236) ... (729)
<223> Exon 1

<221> exon
<222> (1030) ... (1119)
<223> Exon 2

<221> exon
<222> (1201) ... (1267)
<223> Exon 3

<221> exon
<222> (1358) ... (1450)
<223> Exon 4

<221> exon
<222> (1530) ... (1715)
<223> Exon 5

<221> exon
<222> (1809) ... (1889)
<223> Exon 6

<221> exon
<222> (1993) ... (2130)
<223> Exon 7

<221> exon
<222> (2212) ... (2403)
<223> Exon 8

```

<400> 9

cacaccatca ctaataaaatt tccttctcct ttcaagttgt agctaactta tataagacat	60
aaggcggtcgca accagagaca gagatagaaa ttgagagacg ataagcaaag tagaaaaacac	120
aagtttctct cacacacatt atcttttctt ctattaccac cactcattca taacagaaac	180
ccacaaaaaa ataaaaagag agactttca ctctggggag agagctcaag ttctaatggc	240
gaacttggtc ttatcagaat gtggatacg acctctcccc agaatctaca caacaccag	300
atccaatttc ctctccaaca acaacaaatt cagaccatca ctttcttctt cttttacaa	360
aacatcatca tctcctctgt ctttggctc gaattcacga gatgggttca cgaggaattg	420
ggcggtgaat gtgagcacac cattaacgc accaatattt gagggagtctc cattggagga	480
agataataaa cagagattcg atccagggtgc gcctcctccg ttcaatttag ctgatattag	540
agcagctata cctaaggcatt gttgggttaa gaatccatgg aagtcttga gttatgtcgt	600
cagagacgtc gctatcgctt ttgcattggc tgctggagct gcttacctca acaattggat	660
tgtttggcct ctctattggc tcgcgtcaagg aaccatgttt tgggtctctt ttgttcttgg	720
tcatgactgg taaaacttaaa aaccctaact ttttcttctt ttcttctct gcttttagtct	780
ccttagcct ttgatttggt caacatttggta tgattccaaa gaaccaatcg aacaaattgg	840
tctttatcca tatctttca aatagcttta ggacataatt ggtctctcag gtaacaagct	900
gtcattatca tcataactcat catgttgcta gtagaccaac ccaattggca actgtttgtt	960
ggttttgcaa ctgtgtaaatc tgcttgaat tgtgaacaaa attattgatt tatgttgatt	1020
acattgcagt ggacatggta gtttctcaaa tgatccgaag ttgaacagtg tggtcgggtca	1080
tcttcttcat tcctcaattc tggtccata ccatggctgg tgagtttgc tttcagacca	1140
ttcttctcta aaaccacttg cagaatctca tcttcttcat gtaaaaatat gactttgcag	1200
gagaattagt cacagaactc accaccagaa ccatggacat gttgagaatg acgaatcttgc	1260

gcatcctgta agtcaaaaac gtatttttt ggtttatcttg ttttagtcct gtgggtttc	1320
ttagatgcag tttttattaac tgtttctgta actgcagatg tctgagaaaa tctacaatac	1380
tttggacaag ccgactagat tccttagatt tacactgcct ctcgtatgc ttgcatacc	1440
tttctacttg gtaagaactc ctctatttg tatggtaact taagctgcc accaagtaa	1500
aaaagctcat gtcttatttt ctgttcaagt gggctcgaaag tccggggaaa aagggttctc	1560
attaccatcc agacagtgac ttgttccctcc cttaaagagag aaaggatgtc ctcacttcta	1620
ctgcttgtt gactgcaatg gctgctctgc ttgtttgtct caacttcaca atcggtccaa	1680
ttcaaattgtc caaactttat ggaattccctt actgggtaat gcgcgcgtgt tactcccctg	1740
tttcagcctg agcaatttg gtattatttc ctctgcctta ctcaaaaagg ttttatgtc	1800
aaatacagat aaatgtaatg tgggtggact ttgtgactta cctgcatcac catggtcatg	1860
aagataaagct tccttggtaac cggtgcagg taaaatacat attctctgtct tccactgttc	1920
tttgactaca tcgcttttc tttaagggtt aaagccaact ggtgtgtaaa tctcatgatt	1980
ctccccaaaac aggagtggag ttacctgaga ggaggactta caacatttggaa tcgtgactac	2040
ggattgatca ataacatcca tcatacatattt ggaactcatg tgatacatca tctttcccg	2100
cagatccccac attatcatct agtagaagca gtaagtaat tgaaaggtaaa gactgtttgt	2160
gttttggta tcatgtctag ttccctgac tcttgcctca ctgttatgca gacagaagca	2220
gctaaaccag tattaggaa gtattacagg gagcctgata agtctggacc gttgcattta	2280
catttactgg aaattcttagc gaaaagtata aaagaagatc attacgtgag cgacgaagga	2340
gaagttgtat actataaagc agatccaaat ctctatggag aggtcaaaat aagagcagat	2400
tgaaatgaag caggcttgag attgaagttt ttcttatattc agaccagctg attttttgct	2460
tactgtatca atttatttg tcaccacca gagagttgt atctctgaat acgatcgatc	2520
agatggaaac aacaaatttg tttgcgatac tgaagctata tataaccata	2569

<210> 10
<211> 3879
<212> DNA
<213> *Arabidopsis thaliana*

<220>
<221> exon
<222> (780) ... (1685)
<223> Exon 1

<221> exon
<222> (1761) ... (2129)
<223> Exon 2

<221> exon
<222> (2207) ... (2461)
<223> Exon 3

<221> exon
<222> (2544) ... (2671)
<223> Exon 4

<221> exon
<222> (2762) ... (2959)
<223> Exon 5

<221> exon
<222> (3088) ... (3448)
<223> Exon 6

<400> 10
aaagatagta ttgttgcata aatatgggaa tatttatcct atattatctg tattttctt 60

accattttta ctctattcct ttatctacat tacgtcatta cactatcata agatatttga 120
atgaacaat tcatgcaccc accagctata ttacccttt ttattaaaaaa aaaacatctg 180
ataataataa caaaaaaatt agagaaatga cgtcaaaaaa aaaagtaaga acgaagaaga 240
agtgttaaac ccaaccaatt ttgacttgaa aaaaagcttc aacgctcccc ttttcctt 300
ctccgtcgct ctccgcccgcg tcccaaattcc ccaattcctc ctcttcctcg atcaattctt 360
ccaaagtaag ctcttccttc ctgcattctc tcctcagatt gttcgtgac ttcttataat 420
atattctca ctcccacagt ttcttcgt tggtgtcgac gatctcaaat catagagatt 480
gattaaccta attggcttt atcttagtcta atgcacatcgat attaggaaact taaaattaag 540
attnaattcgt taatttcattt attcggattc gaattttact gttctcgaga ctgaaatatg 600
caacctattt ttctcgtaatc gttgtgatcg aattcgattc ttctcagaattt atagcaattt 660
tgcgtcattt gatctgtctc cgctacgttc tcgtcgtaaa tcgaagttga taatgtatg 720
tggttttac acagggtgtgt gtatgtgtga gagaggaact atagtgaaa aaattcataa 780
tggaaagtctg caattgtattt gaaccgcaat ggccagcgga tgaattgtta atgaaatacc 840
aatacatctc cgatttcattt attgcgatttgc cgtatccctt gattccttctt gagttgattt 900
actttgtgaa gaaaatcagcc gtgttccgt atagatgggt acttgttcaag tttgggtctt 960
ttatcggttctt ttgtggagca actcatcttta ttaacttatg gacttcaact acgcattcga 1020
gaaccgtggc gtttgcgttacttccgcgatc ctgcgttgcgttatttcttgcgatc 1080
ctgcgttgcgttatttcttgcgatc 1140
tcttggaaaaaa taaagctgttacttccgcgatc 1200
aaaccggaag gcatgtgaga atgttgcatttgcgatc 1260
ctatattttaaa gactacactt gttgagcttgcgatc 1320
tgtggatgcc tactagaacttccgcgatc 1380
atccccgttgcgatc 1440
gtatacgggtt cctattcaat ttaacttatg gacttcaact acgcattcga 1500
gtagggtctgttacttccgcgatc 1560
aatataatgttacttccgcgatc 1620
agattaatgttacttccgcgatc 1680
cttcagatag tgcaaggccaa tggcatgtcc tctttgttatg gttcatgatc ttgtctataa 1740
atcagggtttt acattgttacttccgcgatc 1800
cttttcttcttacttccgcgatc 1860
cgatgcgagc tagggacccctt ctcattttccgcgatc 1920
aaggcagaac acgaaatccgttccgcgatc 1980
gaacaccgttacttccgcgatc 2040
ctgaacaaag actgtatgggttacttccgcgatc 2100
tgaatgtatgttacttccgcgatc 2160
cattcaatcttacttccgcgatc 2220
tttataactat ttgtgtactt gatttcttacttccgcgatc 2280
aaaggcttata gcggttgcgttacttccgcgatc 2340
agaatttgcgttacttccgcgatc 2400
tgctgtgaaa ttctccaaac aaggtagtat cacacgagcttacttccgcgatc 2460
ggttatttacttccgcgatc 2520
ttttgtatgttacttccgcgatc 2580
tattcaatataa taggtttacttccgcgatc 2640
ttccaaagat tttcaacttccgcgatc 2700
gtatgggttacttccgcgatc 2760
ccaaacttttcttacttccgcgatc 2820
ggtttgcgttacttccgcgatc 2880
gcacggcttat tttgtatgttacttccgcgatc 2940
cgggcataacc gaaaggcttccgcgatc 3000
ttgtcatggatgttacttccgcgatc 3060
gccttacttccgcgatc 3120
agaaaccgttacttccgcgatc 3180
acacccttggg tgcgaagttacttccgcgatc 3240
ccatgagcac aaagtgggttacttccgcgatc 3300
cgctctccgttacttccgcgatc 3360
actcagttacttccgcgatc 3420
aacactgaca aatccacaaa 3480
agagaaatgttacttccgcgatc 3540
atgagcttttgcgatc 3600
gtcttagacccgggttacttccgcgatc 3660
gtgcgttacttccgcgatc 3720
gttctcgaga 3780
atgaaatacc 3840
gatctcaaat 3900
catagagattt 3960
tttgggtcttacttccgcgatc 4020
ttaacttatg gacttcaact acgcattcga 4080
aggtgttacttccgcgatc 4140
atcttttgcgttacttccgcgatc 4200
gagaaatggg attgatttgcgatc 4260
atgagatttgcgatc 4320
gttggacatttccgcgatc 4380
tacagcttccgcgatc 4440
ttatataacttccgcgatc 4500
taccgggtatgtaaccatgttacttccgcgatc 4560
ctgtggcttagtgcgttacttccgcgatc 4620
gggttccgttacttccgcgatc 4680
agagatatgttacttccgcgatc 4740
tttgcgttacttccgcgatc 4800
atgagtttgcgttacttccgcgatc 4860
tctttgttatg gttcatgatc ttgtctataa 4920
ctctctcaca tgctgcgtatc 4980
agaatgttgcgttacttccgcgatc 5040
atttccttagtgcgttacttccgcgatc 5100
cttccttacttccgcgatc 5160
ttaaaaatgttacttccgcgatc 5220
aagatggatgttacttccgcgatc 5280
taacttttgcgttacttccgcgatc 5340
ttgaatcttgcgttacttccgcgatc 5400
catcacactat aatcttgcgttacttccgcgatc 5460
aatgcagata atattaaata tagttgttacttccgcgatc 5520
ctccgtaaacc gctcttgcgttacttccgcgatc 5580
aactgggttacttccgcgatc 5640
ccatagctgttacttccgcgatc 5700
actctgggttacttccgcgatc 5760
cacaatcttccgcgatc 5820
ggtttgcgttacttccgcgatc 5880
aagtttacttccgcgatc 5940
ggatttgcgttacttccgcgatc 6000
tctcagaacg ttcacaaacgaa 6060
gacattcaaa ttcaacttgcgttacttccgcgatc 6120
cttctcacct ttctcttgcgttacttccgcgatc 6180
gttttagaaaaaa aacgcacaaat 6240
aagtagaaatg gtgacgaaagg 6300
ttcaaaacgat gacttcttgcgttacttccgcgatc 6360
gtgcgttacttccgcgatc 6420
acaacgcccac caacggccac tacttgcgttacttccgcgatc 6480
agagaaatgttacttccgcgatc 6540

tgtgttgc	aaacccgtat	cactagacaa	cataagagat	gttctgtctg	atcttcgc	3420
gccccgggta	ctgtacgagg	gcatgtaaag	gcgtggatg	ccccatgccc	cagaggagta	3480
atcccgctcc	cgcccttctt	tcccgtaaaa	catcggaaagc	tgatgttctc	tggtttatt	3540
gtgtacatat	cagagattgt	cgagcggtt	tggatgat	cttaaaacag	aaaggaaata	3600
acaaaataga	aactctaaac	cggtatgtt	ccgtggcgat	ttcggttata	gaggaacaag	3660
atggtggtgg	tataatcata	ccatttcaga	ttacatgtt	gactaatgtt	gtatccttat	3720
atatgttagtt	acattcttat	aagaatttgg	atcgagtat	ggatgcttgt	tgcgtgc	3780
tatgacattt	atgcagtatt	atggcgtcag	cttgcggcg	cttagtagaa	caacaacaat	3840
ggcgttactt	agtttctcaa	tcaacccgat	ctccaaaac			3879

<210> 11
 <211> 1200
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> CDS
 <222> (53) ... (1024)

<400> 11						
cgttgctgtc	gaagtttaggc	caagaaaccc	atttaaaaaaaa	aaagagagag	agatggagag	60
tttcccgtatc	atcaatctcg	agaagcttaa	tggagaagag	agagcaatca	ctatggagaa	120
gatcaaagac	gottgtgaaa	actggggctt	ctttgaggtt	gtgaaccatg	ggatttcact	180
cgagctttt	gacaaaagtgg	agaagatgac	caaggaacat	tacaagaagt	gcatgaaaga	240
gagattcaag	gaatcgatta	agaacagagg	tcttgactct	cttcgctctg	aagtcaacga	300
cgttgactgg	gaatccactt	tctaccta	gcaccttccc	gtctctaata	tctccgatgt	360
ccctgatctc	gacgacgatt	acagaacgtt	aatgaaagac	ttcgcccggaa	agatagagaa	420
gttgcggag	gagctactgg	atctgctgtt	cgagaatctc	ggtttagaga	agggttattt	480
aaaaaaagggt	ttttacgggt	cgaaaagacc	gacttttgg	acccaaagtca	gcaattatcc	540
accttgcctt	aatccggacc	tagtcaaggg	tctccgagcc	cacaccgacg	ccggccggcat	600
catccctctc	ttccaagacg	acaaagtctag	tggacttcag	cttcttaaag	acggcgagtg	660
gttcgtatgtt	cctccggta	agcattcaat	cttcgttaat	ctcggcgatc	aacttgaggt	720
gataaccaat	ggaaagtaca	agagtgttga	acatagagt	ctatctcaga	cagacggaga	780
aggaagaatg	tcgatcgcat	cattctataa	tccggaaagc	gactctgtt	ttttccgggt	840
gccggagctg	atcgaaaaag	aagcagagaa	ggagaagaaa	gagaactatc	cgagatttgt	900
gtttgaagat	tacatgaaac	tctactctgc	tgtcaagttt	caggccaagg	aaccaaggtt	960
tgaagccatg	aaagctatgg	agacaactgt	ggccaacaat	gttggaccat	tggccactgc	1020
gtgaatgata	tgtaacttgt	taataaataat	atatatata	atatatata	tctttatata	1080
atgtctaga	aacttgat	ttcactatac	gaataatttt	gttcatgtt	ttgtatgttt	1140
aagtgggtgaa	tgtttatata	atgggat	atgtttctg	ttcgaaaaaa	aaaaaaa	1200

<210> 12
 <211> 3438
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> exon
 <222> (1212) ... (1358)
 <223> Exon 1

<221> exon
 <222> (1461) ... (1592)
 <223> Exon 2

```

<221> exon
<222> (1660) ... (1820)
<223> Exon 3

<221> exon
<222> (1909) ... (2893)
<223> Exon 4

<400> 12
gttactttc aaatctccc tcataattata tagccattga tatcatagag gatgtgagtt      60
ttaacttaat atttacccgt ttgaaactag ctatttactt aaatatgaat tataatctag    120
ttaactacc aaaaacatca tatggggaca agaaaaagta ataaaaacgta tggaaaattt    180
tgttagatgtt ataaatggat aattattcaa gtgataatct atcactttga tcttatctct  240
ttatccaatt taattacttt gtctctaagt gatttgcttc caaaatctaa gtgttagtcta  300
tcctatttct atcttacccat atcatataat cttctatata tatgtgagtc cgatgtgta  360
aagcgtacga gagagagtaa tgaagagtga agtgttatat tggctctcg tccacttcca  420
ctctctctt tatctttcac ttacttcttc gtaagatcat tacatataat aaataatatt  480
atttatgttt gtgttatatt taataacagt aaaaagttt aaaaacgta aaaaattagc  540
cgacatagaa taaaaaagag gtttagatc gggggagaaa cgtggaccaa catgatacac  600
cctccaaaat agtccccaaag ttgaaacatt gacatgttgc gcttttctt ttctgtgtat  660
acttttttt tctgtgggtc acattattta atatttgat acaaggagct atttacatg  720
gagatttcct gtcggatatacg cgtcctcatt tctccatcgc ttccactttt ttccatact  780
aatttgcatt aattaattca tatgtcaaaa cattaagaaa atgaaactcg taattcatac  840
ttgaatttaa tagattaatt aaaatgctat ttattggcaa aataaactcg gtttatatct  900
aaattttaga atcactaaaaa ctttttgcac aaaaaaaaaat aaaaataaaat cactaaaaca 960
aaaaacaatc aaaagaaaaac ccattttggt aaatcgata atgaaaataa tttagatccc 1020
cgtccttgcgtt gtattttggc gtagcatgaa actatataat aaacatgcat tcattcttag 1080
acttctcgta gcttatcaac aacaacgcgc tcgatctctc tcagcctgtc tgacaactct 1140
ttctcttagtt ctagagttt caatttatttgc ttgagccctt tattaaaaaa aaaaaaaaaacaa 1200
gaacaaaaaga aatggttcaa ttgtcaagaa aagctacatg caacagccat ggccaagtt 1260
cttcgtattt ctttgggtgg gaagagtacg agaagaatcc ttacgacgtt accaagaacc 1320
ctcaaggcat tatccagatg ggtttgcgg aaaaatcggt aaacaaaatatt tattcaacag 1380
catgtgatataatataactt atgtatataca tgacagagag actaatttta agttagttt 1440
attttattgg atttctgttag ctatgttttgc atctactatgat gtcattggctt gcacaaaaca 1500
cagacgcgcg ctgtttcaag agagatggcc agtctgtttt ccgggaactc gctcttttc 1560
aagactacca tggcctctct tccttcaaaa atgtaagattt attaatttgc ttatcaaat 1620
ttatttgcattt gttgtgtatc ttgtcgtatc gattttcagg cccttgctga tttcatgtca 1680
gaaaatagag gaaatcgagt ttctttgtat tcaaacaacc ttgtgctcac tgctggagcc 1740
acttccgcaa acgagactt aatgtttgtt cttgcagatc ccggtgacgc tttcttgctt 1800
cccacgcccatttattccagg gttgtccac tggcttgcattt cacgtaaaat ttccatcatt 1860
cctacgaact tgacttaact aaaactcatg ttatatttttgc tacttcagggt ttgataggga 1920
tctaaaatgg cgaaccgggg ttgagattgtt accaatccaa agctcaagta ctaacgggtt 1980
tcgcataacg aaacttgcac tcgaagaagc ctacgagcaa gccaagaagc ttgacccat 2040
cgtcaaagga atactcatca ccaacccatc taaccctttgc ggtacgacaa caacccaaac 2100
cgaactcaac attctatttgc atttcatcacttcaagaaat aatatacatt tagtaagtga 2160
cgagatataat tcgggcacag tattcaactc ttcaacttgc atcagcgtca tggagattct 2220
aaaaaataat caactcgaaa acaccgatgt ttgaaccga gtcacatttgc tttgttagctt 2280
atctaaagat ctggcctcc ctggtttttag agttggagcc attactccatc atgacaaaaga 2340
tgtcatctct gcccgtacaa aaatgtcaag ttccggcctt gtctctcccg agacacaata 2400
cctactatcc tcatttattat ctgacaagaa gttcaactaag aactacccatc gagagaacca 2460
aaaacggctc aagaacagac agagaaagct cgtgttgggt cttagaggcca tcgggatcaa 2520
atgtctgaag agtaatgcgg gactcttttgc ttgggtcgtac atgagacccctc tccttagatc 2580
aaaaacgttc gaagcggaaa tggatctttgc gaagaagatt gttacgaag tgaagctcaa 2640
catctctctt gttcgtcgt gcccattgtca agaaccgggt tggtttagag tttgttgc 2700
gaacatgattt gatgagacat taaagcttgc tttaaagaga ttgaagatgt tgggttgc 2760

```

12

tgaaaactca agtagaagat gccaaaagag taaaagcgaa agactaaacg gttcgaggaa	2820
gaagacgatg tcaaattgtct ctaactgggt ttccgacta tcgttcacg accgtgaggc	2880
tgaggaacga tagtccgggt ttgtttga agttctttt tttgtttcc cacacattgc	2940
aagtgattct gtaattttttt ttatcacgag agagagtgt aaaaaatgga aatgcaacgt	3000
gttactctg atccctagatt ttagaaaacc gttgaagact tcttagagca agtccatcg	3060
cagttttaa tgggttcta atgggttct agctaattaa aagtccaaaa tttaatgaaa	3120
acccaactaa ataatttagga tccatccaa tattaggtt ttggatggg ttttagacg	3180
gcgacgtggc cgactgttag tcgtcgaaa aaaaaaaaaa tcacaacact catgtttcc	3240
ttttctctt cgttttccac tttttgtt tgcgcacgg ccggcgattc gaatcgattt	3300
gatctccggc gtatcgaaca tgaaatcggtt agagaagagc caaatcatcg acgacttggt	3360
tcaccaattc cattctcga accatactca tataagagtt tctggcttc tctctaaaac	3420
tcttctaatt ttctgata	3438

<210> 13

<211> 68

<212> DNA

<213> Artificial Sequence

<220>

<223> Beneficial Oligonucleotide-Contains both DNA and RNA

<400> 13

caggtcaagt gcaacgttagg atgattttta ucaaccuacg ttgcacuuga ccuggcgcgt	60
tttcgcgc	68

<210> 14

<211> 68

<212> DNA

<213> Artificial Sequence

<220>

<223> Beneficial Oligonucleotide-Contains Both DNA and RNA

<400> 14

caggtcaagt gctacgttagg atgattttta ucaaccuacg tagcacuuga ccuggcgcgt	60
tttcgcgc	68

<210> 15

<211> 24

<212> DNA

<213> Jelly Fish

<400> 15

atggtagca agggcgagga gctg	24
---------------------------	----

<210> 16

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutation

<400> 16
atggtagca agggctagga gctg 24

<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Mutation

<400> 17
atggtagca agggcaggag ctgt 24

<210> 18
<211> 68
<212> DNA
<213> Artificial Sequence

<220>
<223> Beneficial Oligonucleotide-Contains Both DNA and RNA

<400> 18
gtgagcaagg gcgaggagct gttcatttu gaacagcucc tcgcccugc ucacgcgcgt 60
tttcgcgc 68

<210> 19
<211> 68
<212> DNA
<213> Artificial Sequence

<220>
<223> Beneficial Oligonucleotide-Contains Both DNA and RNA

<400> 19
tgagcaaggg ctcggagctg ttcactttt ugaacagcuc cgagccuug cucagcgcgt 60
tttcgcgc 68

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/16267

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : C12N 15/82, 15/84, 15/82, 5/04; A01H 4/00

US CL : 536/23.6; 435/172.1; 800/278

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/23.6; 435/172.1; 800/278

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

BIOSIS, MEDLINE, AGRICOLA, CAPLUS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	SPRINGER et al. Gene Trap Tagging of PROLIFERA, An Essential MCM2-3-5-Like Gene in Arabidopsis. Science. 12 May 1995, Vol. 268, pages 877-880. See the entire documentation.	1-45, 48-72
Y	SUNDARESAN et al. Patterns of Gene Action in Plant Development Revealed by Enhancer Trap and Gene Trap Transposable Elements. Genes Development. 1995, Vol. 9, No. 14, pages 1797-1810. See the entire documentation.	1-45, 48-72

Further documents are listed in the continuation of Box C.

See patent family annex.

- Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"B" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

13 OCTOBER 1998

Date of mailing of the international search report

30 OCT 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Faxsimile No. (703) 305-3230

Authorized officer

OUSAMA M-FAIZ ZAGHMOUT

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/16267

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 46-47 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/16267

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I. Claims 1-4, 8-30, 50-53 are drawn to a method of making localized mutation in a target gene.

Group II. Claims 5 -7 are drawn to a method for making mutation using RNA segment contains at least 8 contiguous 2'-substituted Ribonucleotides.

Group III. Claims 31-45, 48-49 are drawn to a method of making localized, non-selectable mutation in a target gene.

Group IV. Claims 54-72 are drawn to a method of making specific mutation such as point mutation or frameshift mutation.

The inventions listed as groups I-IV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The specific technical feature of group 1 is a method of making localized mutation in a target gene. Second product does not require the special technical features of group 1 because it entails to a method for making mutation using RNA segment contains at least 8 contiguous 2'-substituted Ribonucleotides, other than the ones claimed in group 1 and it does not require the particular DNA molecules of group 1. The third is a method of making localized, non-selectable mutation in a target gene, not required by group 1. The fourth is entails the making of point or frameshift mutation, does not require the special technical features of group I because it is drawn to specific rather than random mutation. The claims are not so linked by a special technical feature within the meaning of the PCT Rule 13.2 so as to form a single inventive concept, accordingly, the unity of invention is lacking among all groups.

SEQUENCE LISTING

<110> 1. Arntzen, Charles
 2. Kipp, Peter B.
 3. Kumar, Ramesh
 4. May, Gregory D.

<120> The Use of Mixed Duplex Oligonucleotides
 to Effect Localized Genetic Changes in Plants

<130> 7991-023-999

<150> 60/054,386
 <151> 1997-08-05

<160> 19

<170> FastSEQ for Windows Version 3.0

<210> 1
 <211> 2063
 <212> DNA
 <213> Solanum tuberosum

<220>

<221> CDS
 <222> (3)...(1907)

<400> 1

agtaccattc	cagttatgac	ccggaaact	ccgcctccca	ttacacattt	ctccggatc	60
aaccggatcc	cgccacccgg	aagtccctta	aaatcatctc	ccggattttc	ctctcccttt	120
tccctttgtt	ttctgttagec	ttctttccgg	ttctccacaa	ccagtcacccg	gacttgcaga	180
gtaaacctcc	tccggccggcgg	ccgtcaagag	gtgttttctca	gggagttctcc	ataaagactt	240
tccgagatgtt	ccgtcaatgtt	agtcacatttt	tttgcgttg	gtccaaatgtt	atgtttatgtt	300
ggcaaaaaac	tgcattaccat	tttcaaccc	aaaaaaaatg	gtatggatc	cttaatggtc	360
cattgttcca	caagggtatgg	tatcatctt	tttatcaata	caatcccgat	tcaatgttt	420
ggggaaatat	cacatggggc	catggcgat	ccaaaggactt	gtatccatgg	ctctacttgc	480
cttttgcatt	gttctctgtt	caatggtagc	atattaacgg	tgtctggact	gggtccgeek	540
ccatcttacc	cgatggtcag	atcatgtatc	tttataccgg	tgtctctgtat	gattatgtac	600
aaatgtcaaaa	tcttgcgtac	ccccccaaact	tatctgtatc	tctctttctca	gactgggtce	660
agtacccagg	cccccgggtt	ctgggttcc	ccccccgtat	tggatcaag	gacttttagag	720
acccggaccac	tgcgtggacc	ggaccccaaa	atgggcata	gttttacca	atccgggttca	780
agatggtaa	aacgggtatt	gcacttgc	atgaaaccc	caatccaca	agctttaaac	840
tattggatga	agtgcgtgc	gggtttccgg	gtacgggtat	gtggagttgt	gtggactttt	900
acccggatc	gactgaaaaa	acaaacgggt	tggacccat	atataacggc	ccgggtgtaa	960
agcatgttgtt	aaaagcaat	ttagatgaca	ataagcaaga	tcactatgtt	atggggacgt	1020
atgacttgcac	aaagaaacaa	ttggaccccg	ataacccgg	atggattgt	ggaatttgggt	1080
tgaatgttgg	ttatggggaa	tattatgc	caaagacatt	ttatgaccccg	aaagaaacaa	1140
gaagagttact	gtggggatgg	tttggggaa	ctgatgtgt	atctgtgc	ctgcagaagg	1200
gatgggcata	tgtacagagt	attccaagg	cagtgc	ccacaa	ccaggacac	1260
atctacttca	gtggccagtt	aaagaatgg	aaagctta	atgtgggtat	cttattgtta	1320
aaacaaatgtca	tcccaacca	ttttcaattt	atctacttca	tgttgactca	gttgccatgt	1380
ttggatata	ttttcaacca	ttttcaattt	ttttcaattt	ttttcaattt	ttttcaattt	1440

atcatgttagg	tttcagctgc	tctactagtgc	gagggtgctgc	tagcagggc	attttggac	1500
catttggtgt	cgttgttaat	gtgtatcaaa	agctatctga	gttaacgcda	gtttacttot	1560
acatttctaa	aggagctgat	ggtcgagctg	agactcaett	ctgtgtgtat	csaact>	1620
cctcagaggc	tccgggaggt	gtcaaacaag	tttatggtag	ttcagttaccc	gtgttagaog	1680
gtgaaaaaac	ttcgtatgega	ttatggagg	accactcaet	tgtggggsgc	tttgtcccaag	1740
gaggagaac	atgtataaaca	tgcgaaattt	acccaaacaaa	ggcagtgaat	ggagcagcac	1800
gactcttgt	tttcaacaat	gccacgggg	ctagcgtgac	tgcttccgtc	aagatttggt	1860
cacttggatc	ggtaastattt	cgatccctcc	ctttgcagaag	cttgttaattc	atcaagccat	1920
atctttctca	tttttttttt	catttgaagg	ttatccacc	gatgtccccat	caagaaaggg	1980
aaagagaggg	gaatatgttag	tgttatactc	tacttattcg	ccattttagt	gattttttca	2040
ctggactttt	gtatccgca	aaa				2061

<210> 2
<211> 1958

5213-2 DNA

2212. DNA
2213. Soln

2213 > SOUTHERN CALIFORNIA

2207

221 CBS

<222> (22) . . . (1815)

<400> 2

<210> 3
<211> 1460
<212> DNA
<213> Nicotiana tabacum

<220>
<221> CDS
<222> (84) ... (1178)

<400> 3

tctgttttcc	caactcacct	taatttgccc	attggagtca	ttgttccatc	tgaacacgaa	60
ccaaagagaga	agagaaaaaa	aatatgggtt	caacaaggca	gaggcagagt	aagagtctaa	120
ctcacacaga	ogacgeagcg	ttcttatttg	ccatgcattt	ggctagtgtt	tctgtacttc	180
ctatggctt	aaaatccatcg	ttagaacttg	accttcttga	actcatggct	aaagctggtc	240
cagggtccgc	catttcttct	tctgaatttag	ctgctcagct	ctcaaccccg	aaaccggaaag	300
caccggttat	tcttgcattgg	atgttaggc	tacttgcac	ttactcttgtt	ctcaattgtt	360
ctcttagaaac	actgtctgt	ggcagtgtt	agggcttta	tatgttggct	ccggtttgc	420
agtttcttgc	taagaatgtt	gtatgggttt	ctgttgcctt	acttttgtt	atgaatcaag	480
ataaaagttt	tatggagagc	ttgttccatc	taaaatgtt	atgtactatgt	ggtggatccc	540
cattcaacaa	ggccatggaa	atgcacatgt	ttgagtacca	ttggcacatgt	ccaagattca	600
acaaatgttt	caaccgtgg	atgtctgtt	actccatgt	gtcaatgaaa	aagatttttg	660
gggactacaa	aggatttgaa	ggccatattt	ccatttgtt	tgttgggtt	ggaactggcg	720
ctactgtttaa	catgattgtt	ttccaaatc	cttcttatcc	gggtattaa	tttgcattac	780
cacatgttat	tggagatgt	ccagtttacc	ctgggtgtcg	gcacgttgg	ggcgacatgt	840
ttggccagtgt	gcacaaaaggc	gtgtccat	ttatgttgc	gatttgcat	gattggagcg	900
acggacattt	cccaatattt	ttgaagaattt	gtatgttgc	actacatgc	aatggaaagg	960
tgataatagc	ggagtgcata	tttccatgg	cccdngatac	atcacttgc	actaagaata	1020
cgtatcatgt	tgtatattgt	atgttagcac	ataacccagg	aggcaasgaa	aggactgaga	1080
aggaatttga	ggctttggct	aggggcgct	gttttactgg	attcgcaagg	tttgcgtgc	1140
tttccatct	tgggtcatgg	atttcaacaa	ataatatttc	gttccctttt	gaggattaag	1200
caatatactg	ttcatttgc	atttgtttt	tctactttt	acagagtgg	tttactgcga	1260
ataaaagaa	ataatatagt	tttacatttgc	aaagatcaat	gttcaatgg	aaaaaaa	1320
aggaagatgt	aataattgtt	ctcagaaaa	ctgtgttta	ggaaaaagct	tttttagctgg	1380
attttgat	tttttgtatg	tatttctgt	atcacatgt	attgaaggaa	tacttagttt	1440
cgaccaatca	tatttcttg					1460

<210> 4
<211> 1418
<212> DNA
<213> Nicotiana tabacum

<220>
<221> CDS
<222> (59) ... (1153)

<400> 4

atcccttcaa	tttacccaaat	taatgtatcg	aaaaatctga	aacagaacta	aaagtaaaaat	60
gggttccaaa	agcggagagc	agagtaacag	tcttacttac	acggaaagcg	aaaccttttt	120
atttgccatg	caatttgtt	gtgttctgt	acttccatgt	gttccataaa	cagccgtaga	180
acttgcaccc	tttgcgtt	ttgttgcggc	ttgttccatgt	gtatgttccat	cttccatgt	240
attagctgt	cagctcttca	ctcagaaccc	sgaagcacct	gttacgttgc	atcgatgtt	300
taggttactt	gttccatgt	ctgttcttca	ttgttacttgc	agaacactgc	ctgtatgtt	360
tgttgcgggg	ttttatagtc	ttgttccatgt	ttgttccatgt	ttgttccatgt	ttgttccatgt	420
tgtttctgtt	ggccatctt	ttgttccatgt	ttgttccatgt	ttgttccatgt	ttgttccatgt	480
ccacttaaaa	gtgttccatgt	ttgttccatgt	ttgttccatgt	ttgttccatgt	ttgttccatgt	540

atccatggag	taccatggca	cagatccaa	tttcaacaaa	gggttcaccc	gtgg&atgtc	600
tgtatcactcc	actatgtcaa	tgaagaagat	tcttgaggac	tacaaaggat	ttgaaaggct	660
aaatccattt	gttgtgttg	gtgggtggaa	gggggtctact	gttacatga	ttgtctctaa	720
atatccctct	attaaggcca	ttaactttga	tttgcacat	gttaattggag	atgtccaaac	780
ttaccccggt	gtcgagcacy	ttgggtggcgt	catgtttgt	aetgtgccaa	aagcagatgc	840
cattttcatg	aagtggattt	gtcatgattt	gagcgtatgag	cattgcctaa	atcccttgaa	900
gaattgttat	gaagcactac	ctgc>aaatgg	gttaggtata	attgcagatgt	gcataactcc	960
agagggccccca	gatacatcac	ttgc>aactaa	gtatcacatgt	catgttgate	ttgtttatgtt	1020
agcacaataac	ccaggaggca	aaga>&aggac	tgagaaggaa	tttgagggtt	tggctaaagggg	1080
cgttgttttt	actggatcc	caaggttigt	tgccgttaca	acacttgggt	atggaaatcc	1140
aaaaaagtaat	taatcgatcc	cttaatttga	aggattaagg	aataactgt	tccgttttgtca	1200
tttggaaatt	ctacttttt	cagagtggct	tgactgtgas	ataaaaagaaa	tatagctttt	1260
aacttgaaaa	gattgatgtt	caaaagaaaa	aaaggaaatgt	gtatataatttgc	ctctcagaaa	1320
agcaatgtgt	taggaaaaag	cttttttgcgt	ttggattttga	attttactgt	atgtattttct	1380
tttatacaca	tgtattqaaq	qaataactgt	tttcgacc			1448

5

≤211≥ 1419

63133-111A

§213-a. *Nicotiana tabacum*

52203

€2213 505

5222 (§2) . . . (1165)

<400> 5

tttcccttc	cgtcccccttg	aaactgtgttt	tcattttttc	tgctctcgaae	caatagtgtt	60
ttccctttag	attttaagg	aaaagaaaaac	catgggttagc	ttggatgttg	aaaaatcago	120
tattgggtgg	gctgttagag	acccttctgg	tctacttcca	ccttataccct	atactctcag	180
aaacacacgga	cctgaagatg	tgcaagtcaa	agttttgtat	tgtggacttt	gcacacagtga	240
tcttcacccaa	gttaaaaaatg	atcttggcat	gtccraactac	ctctctggttc	ctggacatga	300
agttggggga	aaagtttgtg	aggtaggagc	agatgtgtc	aaattcaaaag	tgeggggacac	360
agtttgagtt	ggttttactcg	ttggaaatgtt	tggaaactgt	ggcccttgc	agagagaaat	420
agagcaat	tgcacacaaga	agatttggaa	ttgcacatgt	gtctacactg	atggccaaacc	480
cacccaaaggt	ggttttgtca	attctatgtt	tgttgatc	aaactttgtgg	tgassattee	540
agagggttatg	gcaccagaaac	aaggcagcacc	tctattatgt	gctggcataa	cagtatacas	600
tccttccaa	cattttgggt	tttattcagag	tggattttaga	ggaggaaat	tgggatattgg	660
aggaggttgg	catacgggag	tgaaaatago	aaaggcaatg	ggacatcatg	ttactgtcat	720
tagtttttca	ataaagaaga	gcacaaagggc	attggaaat	cttggatgtc	atgattatet	780
tgttagttca	gacactgata	aaatgcaaga	agctgtgtat	tcacttgact	atattattga	840
ttactgtccct	gttggccatc	ctctgtaaat	ttatctttt	ttgtttaaa	ttgtatggca	900
acttatcttgc	atcggagttt	tcaacacccc	cttgcattt	atctctccca	tggttatgt	960
cgggagaaatg	ageatctactg	gaagttttat	ttgttagcatg	aaaggaaacag	aggaaatgt	1020
agacttctgc	aaagagaaaa	gttgtactt	acagatttgag	atagtgaaa	tggattatat	1080
caacactgca	atggagaaat	ttggagaaaa	tgatgtgatc	ttacatgtt	ttgttgatgt	1140
tgtgtggaa	aaagtttgacc	agttaatttgc	caagaaaaac	aacatggaa	ggtttactat	1200
tatcacacaa	gcttatgaga	aaaatagtac	tcctcaactt	tgatgtcatt	tttggatccat	1260
ttgttttatt	tcccacatgt	attatcatat	ttgggtgtcg	agagtgacgt	ttatgtatat	1320
tttttttctt	aaaaacaaatc	ttaaatgtat	ttggatgtt	gtgacgattt	tgaatataac	1380
caacatqca	aacttacttt	ggtagaaaa	aaaaaaa	aaaaaaa	aaaaaaa	1419

<210> 5

<211> 1398

52123 DMA

213 *Nicotiana tabacum*

<220>
 <221> CDS
 <222> {88}...{1161}

<400> 6

atccctttt cccttgaact	gtgttttgt tttttctgtc	cataaacaat	cggtgtttcc	60	
ttagttttaa	aaacatcatg	gttgggttgg	aaggagaaaa	aaacaactatt	120
ggttgggtctg	ctagagaccc	ttctgggtta	ttttcacctt	ataactatac	180
acggggctg	aaatgttgg	ttgtattgtg	ggctctgtca	cactgatctt	240
caccaagtt	aaaatgtat	ttggcatgtcc	aactaccctc	ttgttcttgg	300
gtggggagaag	tggtggaggt	aggaccagat	gtgtcaaaat	tcaasagttgg	360
ggagttggat	tactctgttgg	aagtgcagg	aactgtgccc	tttgcaggag	420
caatatttgc	acaagaaat	ttggaaatgtc	aatgtatgtt	acatgtatgg	480
caagggtgg	ttgtttttatc	catgtttgtt	gatcaaaatgt	ttgtgggtgaa	540
ggtatggcc	cagaacaamgc	tgatgtgtt	gtataacatgt	atacgtcc	600
ttgaaccatt	ttggtttcaa	acagagtgg	ttaaggggg	gtatgttgg	660
gtggggacaca	tggggagtgg	aatagcaaaag	gcaatgggac	atcatgttac	720
tcttcataata	agaagagaca	agaggcatgt	gatccatctt	gtgcagatga	780
atgttcaagaca	ctgataaaat	gtcaagaggct	tctgatttcc	ttgactatata	840
gtccccgttg	gcatacctct	tgaacccatt	ttttttttgc	ttaaaattga	900
atcttgcatt	gaggatata	caccccttgc	caatttatct	ttttttttgt	960
agaaagagca	tcacagggaa	tttttttgt	agcatgttgg	ttatgtcggs	1020
tttgcacaa	agaaagggtgt	gacccacag	tttgatgtat	tgttttttgg	1080
actgtcaatgg	agagggttgg	gaaaaatgt	gtgggttaca	gattttgtgt	1140
ggaaagcaago	ttgaccagta	tttataattac	acaagaaaaa	caatgtggaa	1200
ttatacaagg	ctgttgagaa	actaaatctt	gtgtcgctt	tttgcatttt	1260
ttgcacac	tattttcca	tttgggttgc	gagagtgtac	ttttgttatt	1320
ttcaaaacea	tttaatgtat	gaatttggat	tttgggtgaaa	aaaaaaaaaa	1380
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1398

<210> 7

<211> 1533

<212> DNA

<213> *Carthamus tinctorius*

<220>

<221> CDS

<222> {106}...{1296}

<400> 7

gttcacttgt	gtgggtggagg	agaaaaaacag	aaatcacaaa	aaattttgcg	actgcacaa	60
acaacaaaca	caacaaggatc	aaaaagaaga	agaagaagat	caaaaatggc	tcttcataatc	120
actccatgt	ccttgcatac	ggagagatat	cgttcggtt	cgatccat	tttttgcataatc	180
ctcagatctc	ccaaatttgc	catggcctcc	accctccggat	catccacacc	ggagggttgcac	240
aatgcacaa	agccctttca	accccccacg	gagggttcatg	ttcagggttgc	gcactccatg	300
ccaccacaga	agatagagat	tttcaatcc	atcgagggtt	gggtctgac	caacatattg	360
gttcacccaa	agccagggttgc	gaaatgttgg	caagcaccagg	tttttttgc	ggacccttgc	420
tctgaaggat	ttgtatgttgc	gttggggca	gacccaaagg	gatccatgtat	ttttttttgt	480
gatttttttg	ttgtttttgt	ttggatgtat	tttccatgt	tttccatacc	ttttttttgt	540
acaatgttta	atacccttgc	ttgtgttgcgt	gttggatgt	gggttgcgtt	ttttttttgt	600
gtgtgttgc	cttggggcttgc	gttggatgt	ttttttttgt	ttttttttgt	ttttttttgt	660
tatcttacc	tttgcacac	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	720
attgggttgc	aatgggttgc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	780
ttgttccat	agccgttgcac	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	840
catggggacc	ttgtatgttgc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	900

gagacccgtt atacaaatgt agtcgtaaaa	ctattcgaga tgcatacttga tggcacccgtt	960
cttgcctttg ccgacatgtat gaggaaaaag	atctcgatgc ccgcacactt gatgtacgtat	1020
gggcgtgtatg acmacctttt cggacatttt	tccggcggttg cccaaagatc cggcgcttac	1080
accgcctaaag actacgcgcatactggaa	tttctggctcg ggcgggtggaa agtggcggtat	1140
ttgaccggcc tatctggtaa agggcgtaaa	gcgcacaaatgtt atgtttgcgg tttgcacca	1200
sgaatcagaa ggctggagga gagagatcas	ggggcgacaa agggaggacc ttgttttcca	1260
ttcagctgga ttctcgatag acagggtga>	ctgtgaagaa aaaaaaaaaacg >gtgtgt	1320
tccggtttctg tgggtttttt gggtaggtt	ttttttttttt tttatgttgc ttttttgtgt	1380
atgtggttt ttttttttt aatcttgaat	ctgtttttttt gtgtgtgtgt tttttttttt	1440
gtttttttgtt gtggctgtgg acatattata	gaaatcgatc ttgtttttttt gatgacgggtg	1500
gttatacgatccctgggtt ttttttttttt		1533

<210> 8

<211> 1649

<212> DNA

<213> Ricinus communis

<220>

<221> CDS

<222> {1}...{1239}

<400> 8

ttccggcataa taacaaaaaa ccacaaaaaa	ttacggtaaaaa aaaaaacaat ggctcttacg	60
ctcaatccctt tcctttctca aaccacaaag	ttaccccttt tcgtcttttc accatggcc	120
agtacccatgtt ctccatgtttt ctccatggcc	tccatccatca agtctgggtt taaggasagtt	180
gagaatctca agaagccctt catgcctct	ccggsgggatc atgttcaaggt tcccatctt	240
atgcacccccc aaaaatgtt gatctttttt	tccatagaca attgggtgtt ggagaacatt	300
ctgggttcata tgaagccagt tgagaaatgt	ttggcaaccgc aggatttttt ccggatccc	360
gcctctgtat gtttgatgtt gcaatgttgg	gaacttcaggg agagagccaa ggagatttcc	420
gtatgttattt ttgttggttt gggttggagac	atgataacgg aagaaagccct tccatctt	480
caaaacatgtt tgaatccatcc ggtggggatc	ccggatgtaaa caggtgcacg tccatctt	540
tgggcattt ggacaagggc atggactgtgt	gaagagaata gacatgggtt tccatctt	600
>tatctt acatatactgg acgtgtggac	atgaggccaa ttgagaagac aatcaataat	660
ttgtatggtt caggaatggta tccacggaca	aaaaacatgc catatcttgc ttgtatctat	720
acatcttccatcc aggaaagggtt aacatctt	tctcatggta acactgcacg acaagccaa	780
gagoatggag acataaaatgtt ggatcaaata	tgtggatcaa ttgtgtgtt tgagaagggc	840
catgagacag cctacacccaa gatgttggaa	ttatgttgcata tttgtgtgtt	900
gttttggctt ttgtgtat gatgagaaag	ttttttttttt agattgtatcc tttgtgttat	960
gtatggccgg atgtatattt ttgttgcacat	tttttgcgttgc tttgtgttat	1020
tacacagccaa aggattatgc agatataattt	tttttgcgttgc tttgtgttat	1080
aaactaacgg gccttttccgc tgagggacaa	tttttgcgttgc tttgtgttat	1140
ccaaaggatata aagggtgtgg aagagagatc	tttttgcgttgc tttgtgttat	1200
catttcagct ggattttgc tttgtgttat	tttttgcgttgc tttgtgttat	1260
acccggaaatgg ttatgttgcacat ttttttgc	tttttgcgttgc tttgtgttat	1320
tttttgcgttgc tttgtgttat	tttttgcgttgc tttgtgttat	1380
tttttgcgttgc tttgtgttat	tttttgcgttgc tttgtgttat	1440
tttttgcgttgc tttgtgttat	tttttgcgttgc tttgtgttat	1500
tttttgcgttgc tttgtgttat	tttttgcgttgc tttgtgttat	1560
tttttgcgttgc tttgtgttat	tttttgcgttgc tttgtgttat	1620
tttttgcgttgc tttgtgttat	tttttgcgttgc tttgtgttat	1643

<210> 9

<211> 2569

<212> DNA

<213> Arabidopsis thaliana

<220>
 <221> exon
 <222> (236) ... (729)
 <223> Exon 1

 <221> exon
 <222> (1030) ... (1119)
 <223> Exon 2

 <221> exon
 <222> (1201) ... (1267)
 <223> Exon 3

 <221> exon
 <222> (1358) ... (1450)
 <223> Exon 4

 <221> exon
 <222> (1530) ... (1715)
 <223> Exon 5

 <221> exon
 <222> (1809) ... (1889)
 <223> Exon 6

 <221> exon
 <222> (1993) ... (2130)
 <223> Exon 7

 <221> exon
 <222> (2212) ... (2403)
 <223> Exon 8

<400> 9

cacaccatca	ctataaaatc	tccttcttct	ttaaagtgtgt	agcttactta	tatasgacat	60
aaggcggtgcga	accagagaca	gagatagaaaa	tttagagagacg	ataaggcaaaag	tagaaaaacac	120
aatgtttttttt	cacacacatc	atctctttct	ctattaccac	cacttattca	taacageaaac	180
ccaccaaaaa	ataaaaaaagag	agacttttca	ctctggggag	agagctcaag	ttcttaatggc	240
gaacttggtc	ttatcagaat	gtgggtatcg	accttctccc	agaatctaca	caacaccccg	300
atccaaatcc	ctctccsaca	acaacaaaatt	cagaccatca	cttttttttt	tttcttacaa	360
aacatcatca	tcttccttgt	ctttttggct	aattcadga	gtgggttca	cgaggaaattg	420
ggcggttaat	gtgagcacac	catttaacgac	accaatattt	gaggagtc	cattggagga	480
egataataaa	ccagagatcg	atccagggtgc	gccttctccg	ttaaatttag	ctgtatattag	540
agcagctata	cctaaggatt	gttggtttaa	gaatccatgg	aaatcttgc	gttatgttgt	600
cagagacgtc	gtatatgtct	ttgtatggc	tcgtggatgt	gttacatca	acaaatggat	660
ttttttggct	ctcttattggc	tcgtcaagg	aaccatgttt	tggctctct	ttgtttttgg	720
tcatgactgg	taaactttaaa	aaaccttca	ttttttttgt	tttcttctct	gtttttagtct	780
ccctttagct	ttgattttgt	caactttgg	tgatccaaa	gaaccaatcg	acaaatgg	840
tctttatcca	tatcttctca	aatagcttta	ggacataatt	ggctcttcg	gttacaatgt	900
gtcatttata	ttatcttcat	catgttgc	gtggacccac	ccaaattggca	actgtttgtt	960
ggttttggca	ctgtgttaatc	tgcttgcatt	tgtgaacaaa	attattgtt	tatgttgatt	1020
acattgcagt	ggacatggta	gttttctcaa	tgatccggag	ttggacatgt	ttggtcgtca	1080
tcttcttcat	tcctcaattc	ttgttccata	ccatggctgg	tgagttttgc	tttcagacca	1140
ttcttctcta	aaacccacttg	cagaatctca	tcttcttcat	gtaaaaatgt	gacittgcag	1200
gegaatttgt	ccatggacat	accacccagaa	tttgcgtatc	acgtatctta	tttttttttt	1260

8

gcatccctgt	agtcaaaaac	gtattttttt	ggtttatcttg	tttttagtcct	gtgggtttc	1320
ttagatcgag	ttttatccaac	tgttttctgt	actgcagatg	tctgagaaaa	tctacaatac	1380
tttggacaaag	ccgcactagat	tcttttagatt	tacactgcct	ctcgatgtgc	ttgcatacc	1440
tttctacttg	gttagaactc	ctctatTTGT	tatgttaact	ta>gtgtca	caccgtgtaa	1500
aaaagtcat	gtctatTTCT	ctgtttcagt	gggcctcgaag	tccggggaaa	aagggttctc	1560
atbccatccc	agacagtgtcc	ttgtttctcc	ctaaagagag	aaaggatgtc	ctcaactcta	1620
ctgtttgttg	gactgtcaatg	gtctgtctgc	ttgtttgtct	cascttcacs	atcggtccaa	1680
ttcaatgtct	caaactttat	ggaatcttt	actgggtat	ggccgtgt	tactccccgt	1740
tttcagccgt	ggcaatTTGT	gtattttttc	ctctgcctt	ctcaaaaagg	ttttttatgtc	1800
aaatcacatg	aatgtatgt	tggttggact	ttgtgtactt	ctgtcatcc	catggtcatg	1860
aagataaagtt	ttcttggtaa	cgtggcaagg	taaaatacat	attctctgt	tccactgttc	1920
tttgactaca	tcgtctttt	ttttaaaggtt	aaagccaaact	ggtgtgtaaa	tctcatgatt	1980
ctcccaaaac	agggtgggg	ttccctggaa	ggggggacttia	caacattgg	tcgtgtactc	2040
ggatgtatca	ataacatcca	tcatgtatcc	ggaaactcatg	tgatatacatc	tctttttcccg	2100
cagatccccac	attatcatct	agtgaaagcc	gtcaatgtaa	tqaaatgtaa	gactgtttgt	2160
gtttttgttg	ttcatgttag	ttccctgtac	tcttgccttca	ctgttatgtca	gacagaagca	2220
gtcaaaaccag	tatttagggaa	gttacacagg	gagccctgata	agtctggacc	gttgcattt	2280
cattttactgg	aaattcttagc	gaaaatgtata	aaagaaatgtc	attacgttgag	cgacgtaaag	2340
gggggttgtat	actataaaago	agatccaaat	ctctatggag	aggtcaaaat	aagagcagat	2400
tgtttatgtat	cagggttgtgg	tttgcgtttt	ttrttatttc	agaccgtgt	attttttgc	2460
tactgtatca	tttattttgtt	tcacccatcca	gagatgttagt	atctgttaat	acgtatcgatc	2520
egatgtggaaac	aaaaattttgc	tttgcgtatc	tqaaatgtata	tatccata		2569

<210> 10
<211> 3879
<212> DNA
<213> *Arabidopsis thaliana*

```
<220>
<221> exon
<222> (780) ... (1685)
<223> Exon 1
```

<221> exon
<222> (1761)...(2129)
<223> Exon 2

<221> exon
<222> {2207} ... (2461)
<223> Exon 3

<221> exon
<222> (2544) ... (2671)
<223> Exon 4

<221> exon
<222> (2762)...(2959)
<223> Exon 5

<221> exon
<222> (3086) ... (3948)
<223> Exon 6

<400> 10

ccatggata ttgtttgata aatatggaga tatttacctt atattatctt tatttttctt

tgtgttgctc aaacccgtat cactagacaa cataaaggat gtttgtctg atcttctcg 3420
 gccccggta ctgtacgagg gcgtgtaaag gcgtatggatg ccccatgcac cagaggagta 3480
 attcggcttc cgccttcttc tcccgtaaaa cttcggaage tgatgtctc tggtttaatt 3540
 gtgtacatat cagagattgt cggagcggtt tggatgtat cttaaaaaatc aaagggaaata 3600
 acaaaaataga aactctaaac cggtagtgtt cctgtggcgat ttoggtata gaggaacaa 3660
 atggtggtgg tataatcata ccatticaga ttacatgttt gactaattgtt gtatccttat 3720
 atatgtatgtt acatitcttata aagaatttgg atcgagttat ggatgtttgt tgcgtgcattg 3780
 tatgacattt atgcagtatt atggcgctag ctttgcgcgg cttagtaga caacaacaat 3840
 ggcgttactt agttttctaa tcaaccccgat ctccaaaaac 3879

<210> 11
 <211> 1200
 <212> DNA
 <213> *Arabidopsis thaliana*

<220>
 <221> CDS
 <222> (53) ... (1024)

<400> 11

cgttgtgttc gaagtttaggc caagaaaccc atttaaaaaa aaaaaaaaaa agatggagag 60
 ttcccgatc atcaatctcg aaaaaaaaaa tggagaagag agagcaatca ctatggagaa 120
 gatcaaagac gtttgtgaaa atctggggctt ctttgatgtt gtgaaccatg ggatttcaat 180
 ctagattttg gacaaagtgg aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 240
 gagattcaag gaatcgatta agaacacagg ttttgtctt ctccgtctg aagtcaacca 300
 cgttgactgg aaaaaaaaaa tttttttttt tttttttttt tttttttttt tttttttttt 360
 ccctgatctc gacgacgatt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 420
 gtttgtgggg gatctactgg atctgtgtt cgagaatctc gttttttttt tttttttttt 480
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 540
 acctttgtttt atccggatc tagtcaaggg tttttttttt tttttttttt tttttttttt 600
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 660
 ggtcgatgtt atccggatc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 720
 gataaccaat gggaaatc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 780
 agggaaatg tcgtatcgat cttttttttt tttttttttt tttttttttt tttttttttt 840
 gcccggatgtt atccggatc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 900
 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 960
 tgaaggccatg aaagctatgg agacaaatgtt ggcraaseat gttggaccat tggccactgc 1020
 stgaatgtata tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1080
 atgtctttaga aacttgatca tttttttttt gttttttttt gttttttttt tttttttttt 1140
 aagtggatca tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1200

<210> 12
 <211> 3438
 <212> DNA
 <213> *Arabidopsis thaliana*

<220>
 <221> exon
 <222> (1212) ... (1358)
 <223> Exon 1

<221> exon
 <222> (1461) ... (1592)
 <223> Exon 2

<221> exon
 <222> (1660)...(1820)
 <223> Exon 3

<221> exon
 <222> (1909)...(2893)
 <223> Exon 4

<400> 12

gttactttt	aaatcttccc	tcatattata	tagccattga	tatcatagag	gatgtgagtt	60
ttaacttaat	atttacccgt	ttgaaaactcg	ctatttactt	aaatatgaat	tataatctag	120
ttaactacc	aaaaacatca	tatgggaca	agaaaaagtc	ataaaaacgta	tggaaaaattt	180
tgttagatgtt	ataaaatggat	attattcaa	gtgataatct	atcactttga	tcttatctct	240
ttatccaaatt	taatttactt	gtctctaagt	gatttgcttc	aaaaatctaa	gtgtatctca	300
tcctattctt	atcttatactt	atcatataat	cttctatata	tatgtgagtc	cgtatgttgc	360
aaagctgtacga	gagagagtaa	tgsagagtga	agtgttataat	tgttctctcg	tccacttcca	420
ctctctcttt	tatctctttac	ttacttcttc	gtasatctat	tacatataat	aaataatatt	480
atttatgttt	gtgttatatt	taatacactt	aaaaagttt	aaaacgttgc	aaaaatctgc	540
cgacataga	tacaaaaagag	ggtttagatc	ggggggagaaa	cgtggaccaa	catgatacac	600
cctccaaat	agtccccaa	ttgaaacatt	gacatgttcc	gttttttttt	ttctgtgtat	660
actttttttt	tcgttgggtc	acattatctt	atatttgc	aaaaagcgtt	attttacatg	720
gagatttc	gtcgggtata	cgtcccttatt	tcccatcgc	tccactttt	ttccctatct	780
atcttgcatt	atattatcc	tatgtcaaaa	cattaagaaa	atgaaactcg	taattcatac	840
ttgaatttta	tagattaatt	aaaatgtat	ttatggcga	aataaaactcg	gtttatctct	900
aaatcttgc	atcttgcataa	cttttgc	aaaaaaaat	aaaaatataat	cactaaaaaca	960
aaaaacatc	aaaagaaaaac	ccatgttgg	aaatcgata	atgaaaaataa	ttagaatccc	1020
cgtcccttgc	gtatktggc	gtggatgtaa	actatataat	aaacatgcac	tcatttctat	1080
acttctcgta	gettatcaac	aaaaegegc	tcgatcttc	tcagctgtc	tgacaactct	1140
ttctctatgtt	ctagagttt	caatttattt	ctgagcttt	tatcataaa	aaaaaaacaa	1200
gaacaaaaga	aatggttcas	ttgtcaagaa	aaatcatacg	caacagccat	ggccaaatgt	1260
cttgcgttgg	aaagagatcg	agaagaatcc	ttacgcgtt	accaagaacc	1320	
ctcaaggcat	tatccagatc	ggtcttgcgg	aaaaatcggt	aaacaaatat	tatccacag	1380
ctatgtat	atataatctt	atgtatata	tcacagagag	actatcttca	atgtatgtt	1440
attttattgg	atttttgtat	ctatgcctt	atctactaga	gtcatggctt	gcacaaaaac	1500
caagccgcgc	ctgtttcaag	agagatggcc	agtctgttt	ccggaaactc	gtctctttc	1560
aaatcttgc	tcggctctct	tcatttcaaa	atgtatgtt	atatttgcatt	tttatttcaat	1620
ttatattgtat	gttgcgtat	ttgtctgat	gattttcagg	ctttgcgtt	tttcatgtca	1680
gaatata	gaatctcgat	ttttttgtat	tcatttcaacc	ttgtgcac	tgctggagcc	1740
acttccgcac	acgagactt	aatgttttgc	tttgcagatc	ccgggtgcgc	tttattgttt	1800
cccaatggccat	atattccagg	gttgcgttac	tgtttgcatt	cacgtaaaat	tcctcttatt	1860
ccatcgaaat	tgactttaat	aaaacctat	tttatttttgc	tacttcagg	tgataggga	1920
tcattttatgg	cgatccgggg	ttgagattgt	accaatccaa	agctcaagtc	ctatcggttt	1980
tcgcataacg	aaatctgcac	tcgaagaa	ctacgcgcac	gcaagaagac	tcgacccat	2040
cgatgtat	tcgggcacat	tatccactt	ttcagaatcc	atcagcgtca	tggagattt	2220
aaaaatataat	caactcgaaa	acacgtat	tttgcacgc	gtccatcttgc	tttgcgtt	2280
atctaaagat	ctaggccatc	ctgggtttat	agttggagcc	attatctca	atgacaaaa	2340
tgtcatctt	ccgcgtatcaa	aaatgtcaag	tttgcgtt	gtctcttccc	agacacaata	2400
cttactatcc	tcatttattat	ctgcacaa	tttgcacta	aaatccat	tagtaatgt	2460
aaaaacggctc	aaaaacggat	agagaaaagct	cgtgttgggt	atagatgttca	tgggatcaa	2520
atgtctgaag	atgtatgtgg	gactttttgc	ttgggtcgac	atgagacctc	tccttagatc	2580
aaaaacgttc	aaagcggaaa	ttggatcttgc	aaagatgtt	gtttagtgc	tgaatgttca	2640
atctctctt	ggtcgtatgt	gcattgtca	agaacccgggt	ttgttttagag	tttgcgttgc	2700
aaaaatgtatt	gttgcgtatgt	tttgcgttgc	tttgcgttgc	tttgcgttgc	tttgcgttgc	2760

12

tggaaaactca agttagaaatgat gcccggaaagg taaaagcggaa agactaaacg gttcgaggaa 2620
 ggaaagatgtt tcaaatgtct cttaactgggt ttccogacta tcgtttcaacg acogtgaggc 2680
 tgaaaaacga tagtcgggtt tttgtttttt ttttgtttcc cacecatatgc 2940
 aagtgtattctt gtaattttttt ttatcacggg agagagtgtt aaaaaatggg aatgcacacgt 3000
 gtttactctg atcttagatt ttagaaaaacc gttggaaact ttttagagca agtccatcgg 3060
 cagtttttta tgggttttca atgggtttttt agctaattaa aagtccaaaaa taaaatgaaa 3120
 accccaactaa ataatttaggat tccatccaa tattagggttt ttggatggg ttttagacg 3180
 gggacgttgtt cgactgtggat tggcgaaaa aaaaaaaaaa tcacaaacact catgtttcc 3240
 tttttccctt tgggttttcaat ttgggtttttt tggcgaaagg ccggcgatcc gaatogattt 3300
 gatctccgggtt gtatcgacca tgsaatcggg agagaagagc caatctatcg acgacttgggt 3360
 tcacccatcc catttttca accataactca tataaagatgtt tttgggtttt tttttttttt 3420
 tttttttttt tttttttttt 3438

<210> 13

<211> 68

<212> DNA

<213> Artificial Sequence

<220>

<223> Beneficial Oligonucleotide-Contains both DNA and RNA

<400> 13

cagggtcaagt gcaacgttgg atgattttt ucaaccuuacg ttgcacuuuga ccuggggatgtt 60
 tttcgccgc 68

<210> 14

<211> 68

<212> DNA

<213> Artificial Sequence

<220>

<223> Beneficial Oligonucleotide-Contains Both DNA and RNA

<400> 14

cagggtcaagt gcaacgttgg atgattttt ucaaccuuacg tagcacuuga ccuggggatgtt 60
 tttcgccgc 68

<210> 15

<211> 24

<212> DNA

<213> Jelly Fish

<400> 15

atggtgagca aggccgaggg gctg 24

<210> 16

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Mutation

<400> 16
atggtgagca agggcttagga gctg 24

<210> 17
<211> 68
<212> DNA
<213> Artificial Sequence

<220>
<223> Mutation

<400> 17
atggtgagca agggcaggag ctgt 24

<210> 18
<211> 68
<212> DNA
<213> Artificial Sequence

<220>
<223> Beneficial Oligonucleotide-Contains Both DNA and RNA

<400> 18
gtsgagcaagg gcgaggagct gttcattttgc gaacaggaucc tggccuuugc ucaacggcggt 60
tttcggcg 68

<210> 19
<211> 68
<212> DNA
<213> Artificial Sequence

<220>
<223> Beneficial Oligonucleotide-Contains Both DNA and RNA

<400> 19
tggccaggc ctcggagctg ttcaacttttg ugacacgcuc cggccccuug cuccggcggt 60
tttcggcg 68

