Algorithms and Data Structures 2 13 - Trees

Dr Michele Sevegnani

School of Computing Science University of Glasgow

michele.sevegnani@glasgow.ac.uk

Outline

- **'Binary trees**
 - Properties
 - Traversals
- Rooted trees with unbounded branching
- **Other tree representations**

Binary trees

- A binary tree is a linked data structure in which each node x has an attribute key and three pointer attributes
 - x.p points to its parent
 - x.left points to its left child
 - x.right points to its right child
- If a child or the parent is missing, the appropriate attribute is set to NIL
- The root of the three is the only node whose
 ADS 2, 2021
 - Node x is a leaf when x.left = x.right = NIL

Root pointer

An attribute T.root points to the root element of tree T

If T.root = NIL, the tree is empty

Properties

- A binary tree can be defined recursively
 - Empty
 - A single node r (the root) whose left and right subtrees are binary trees
- For any two nodes n_1 and n_k , a path from n_1 to n_k is a sequence of nodes n_1, n_2, \ldots, n_k such that n_i is the parent of n_i+1 for $1 \le i < k$
 - For any path, the length is the number of edges on the path
- The height (h) of a tree is the length of the longest path from the root

Left subtree

Left subtree

Right subtree

Right subtree

- Path from 3 to 6
- -3,7,1,6
- Length 3

- Path from 5 to 4
- 5,2,4
- Length 2

- Longest path from 5 leads to 6
 - 5,3,7,1,6
 - Length 4
 - Height of the tree is 4

Duplicate keys

- A binary tree in which no key occurs in more than one node is injective
 - We will mostly deal with injective binary trees

Balanced trees

- A balanced binary tree is a binary tree in which the left and right subtrees of every node differ in height by no more than 1
 - Height O(log n)
- An extremely unbalanced tree might have no right/left pointers
 - It looks almost like a linked list
 - Height O(n)
- The worst case running time of most tree operations is proportional to the height of the tree
 - Generally tree-based algorithms work most efficiently on balanced trees

Is this tree balanced?

- Is this tree balanced?
- We need to check the height of the right and left subtrees of every node
 - Height of leaves is 0
 - Consider 3: height of left = height right = 0
 - Consider 8: height left = 1 and height right = 0

Yes

Is this tree balanced?

Is this tree balanced?

- Consider root 5
- Height of left = 3
- Height of right = 0
- Not balanced

- How many different binary trees with n nodes is it possible to construct?
 - We ignore key attribute

- Consider different values of n
 - n=0One tree, the empty tree

- How many different binary trees with n nodes is it possible to construct?
 - We ignore key attribute

- Consider different values of n
 - n=0One tree, the empty tree
 - n=1 One tree (a root with no children)

- How many different binary trees with n nodes is it possible to construct?
 - We ignore key attribute

- Consider different values of n
 - n=0One tree, the empty tree
 - n=1 One tree (a root with no children)
 - n=2 2 trees (a root and either a left or right child)

- How many different binary trees with n nodes is it possible to construct?
 - We ignore key attribute

- Consider different values of n
 - n=0One tree, the empty tree
 - n=1 One tree (a root with no children)
 - n=2 2 trees (a root and either a left or right child)
 - n=3
 5 trees (a root and combination of left/right subtrees from size 0 to 2)

Define C_n as the number of binary trees with n nodes

-
$$C_0 = C_1 = 1$$

- $C_2 = C_0C_1 + C_1C_0 = 1 + 1 = 2$
- $C_3 = C_0C_2 + C_1C_1 + C_2C_0 = 2 + 1 + 2 = 5$
- $C_4 = C_0C_3 + C_1C_2 + C_2C_1 + C_3C_0 = 5 + 2 + 2 + 5 = 14$

- The following recurrence emerges (with $C_0=1$)
 - with $n \ge 0$

This is the recurrence for the Catalan numbers

Traversals

 A binary tree traversal (or walk) is the process of visiting each node of the tree, exactly once

- We study three special traversals
 - Inorder traversal
 - Preorder traversal
 - Postorder traversal

They are all defined recursively

Inorder traversal

 To print all the elements we call INORDER(T.root)

Example

Inorder traversal

```
INORDER(x)
  if x != NIL
    INORDER(x.left)
    print x.key
    INORDER(x.right)
```

 To print all the elements we call INORDER(T.root)

Example

- 8,3,7,6,1,5,2,4

- Theorem: If x is the root of a binary tree with n nodes, then INORDER(x)
 - takes ⊖(n) time
- Proof: We need to prove
 - 1. $T(n) = \Omega(n)$
 - 2. T(n) = O(n)

```
INORDER(x)
  if x != NIL
    INORDER(x.left)
    print x.key
    INORDER(x.right)
```

Theorem: If x is the root of a binary tree with n nodes, then INORDER(x)

takes ⊖(n) time

Proof: We need to prove

```
1. T(n) = \Omega(n)
```

2.
$$T(n) = O(n)$$

3. Trivial. The running time $T(n) = \Omega(n)$ as all n nodes are visited

INORDER(x)
 if x != NIL
 INORDER(x.left)
 print x.key
 INORDER(x.right)

Theorem: If x is the root of a binary tree with n nodes, then INORDER(x)

takes ⊖(n) time

Proof: We need to prove

```
1. T(n) = \Omega(n) [2. T(n) = O(n)
```

```
2. With the iterative method
```

```
- T(0) = O(1) to test x != NIL

- T(n) = T(k) + T(n-k-1) + O(1)
```

- The left subtree has k nodes and the right subtree has n - k - 1 nodes

INORDER(x)
 if x != NIL
 INORDER(x.left)
 print x.key
 INORDER(x.right)

- Theorem: If x is the root of a binary tree with n nodes, then INORDER(x)
 - takes **O**(n) time
- Proof: We need to prove

```
1. T(n) = \Omega(n)
```

```
if x != NIL
                                               INORDER(x.left)
                                               print x.key
2. T(n) = O(n)
```

2. With the iterative method

```
- T(0) = O(1) to test x != NIL
- T(n) = T(k) + T(n-k-1) + O(1)
       = T(0) + T(n-1) + O(1)
       = O(1) + T(n-1) + O(1)
       = T(n-1) + O(1)
```

Set k=0 to hit the base case on the left subtree

INORDER(x.right)

INORDER(x)

Theorem: If x is the root of a binary tree with n nodes, then INORDER(x)

takes **O(n)** time

Proof: We need to prove

```
1. T(n) = \Omega(n) [
```

- 2. T(n) = O(n)
- 2. With the iterative method

```
- T(0) = O(1) to test x != NIL
- T(n) = T(n-1) + O(1)
```

if x != NIL
 INORDER(x.left)
 print x.key
 INORDER(x.right)

We have already seen this equation

INORDER(x)

- Theorem: If x is the root of a binary tree with n nodes, then INORDER(x)
 - takes ⊖(n) time
- Proof: We need to prove
 - 1. $T(n) = \Omega(n)$
 - 2. T(n) = O(n)
 - 2. With the iterative method

```
- T(0) = c_1

- T(n) = T(n-1) + c_2

= T(n-2) + 2c_2

= ...

= T(n-j) + jc_2 = T(0) + nc_2 = c_1 + nc_2 = O(n)
```

Set j = n to hit the base case

Preorder traversal

To print all the elements we call
 PREORDER(T.root)

Example

Preorder traversal

 To print all the elements we call PREORDER(T.root)

Example

- 5,3,8,7,1,6,2,4

Postorder traversal

To print all the elements we call
 POSTORDER(T.root)

Example

Postorder traversal

POSTORDER(x) if x != NIL POSTORDER(x.left) POSTORDER(x.right) print x.key

 To print all the elements we call POSTORDER(T.root)

Example

- 8,6,1,7,3,4,2,5

K-ary trees

 Trees with a bounded number of children (k-ary trees) can be easily represented with additional pointer attributes child₁, ..., child_k

Limitations

- A lot of NIL values if many nodes have less than k children
- k is fixed (it needs to be known in advance)

Rooted trees with unbounded branching

- Trees with an unbounded number of children can easily be represented with additional attributes
 - x.left-child points to the leftmost child of x
 - x.right-sibling points to the sibling of x immediately to its right
- If x has no children x.left-child = NIL
- If x is the rightmost child x.right-sibling = NIL
- Limitations
 - Accessing a child is O(k) as we need to scan all the list of children to access the rightmost child
 - k is the maximum branch degree

Attribute p is not shown

Other tree representations

- Some algorithms only need to traverse the tree bottom up
 - Only the parent pointers are present; no pointers to children
- Computing the size of a tree with n nodes is O(n)
 - Include a size attribute in each node: x.size = 1 + x.left.size + x.right.size
- Strategies to handle duplicate keys
 - Keep a list of nodes with equal keys at x
 - More examples in Lab 4

Array based representation (see Lecture 8)

A max-heap is represented as an array by assigning index 0 starting from the root and then increasing the index while going downwards from left to right on each tree level

Summary

- **'Binary trees**
 - Properties
 - Traversals
- Rooted trees with unbounded branching
- **Other tree representations**