SRINIVASA INSTITUTE OF ENGINEERING AND TECHNOLOGY

(UGC - Autonomous Institution)

(Approved by AICTE, Permanently affiliated to JNTUK, Kakinada, ISO 9001: 2015 certified Institution) (Accredited by NAAC with 'A' Grade; Recognised by UGC under sections 2(f) & 12(B)) NH-216, Amalapuram-Kakinada Highway, Cheyyeru (V), AMALAPURAM -533216.

AIML

A.Y: 2024-25

YEAR: III

SEMESTER: II

COURSE SCHEDULE - AT A GLANCE

Name of the Faculty : K VIJAY BABU

Name of the Course : AI&ML

Course Code ::21P61602

Branch : MECH

The Schedule for the whole Course is: 23/12/2024 To 26/04/2025

Unit	Description		n (Date)	Total No.
Unit	•	From	То	of Periods
1	Interduction: Definition of Artificial Intelligence, Evolution, Need, and applications in real world. Intelligent Agents, Agents and environments; Good Behavior -The concept of rationality the nature of environments, structure of agents. Neural Networks and Genetic Algorithms; Neural network representation, problems perceptrons, multilayer networks and back propagation algorithms, Genetic algorithms	23/12/2024	18/01/2025	15
2	Knowledge-Representation and Reasoning: Logical Agents: Knowledge based agents, the Wumpus world, logic. Patterns in propositional Logic, inference in Fist-Order Logic propositional vs fist order inference unification and lifting.	20/01/2025	10/02/2025	15
3	Bayesian and computational learning: Bayes theorem concept learning, maximum likelihood, minimum description length principle, Gibbs Algorithm. Naive Bayes Classifier, Instance Based Learning- K-Nearest neighbour learning Introduction to Machine Learning (ML): Definition, Evolution, Need applications of ML in industry and real world, classification; differences between supervised and unsupervised learning paradigms.	11/02/2025	06/03/2025	13
4	Basic Methods in Supervised Learning: Distance -based methods, Nearest- Neighbors, Decision Trees, Support Vector Machines, Nonlinearity and Kernel Methods. Unsupervised Learning: Clustering, K-means, Dimensionality Reduction. PCA and kernel	10/03/2025	29/04/2025	15
5	Machine Learning Algorithm Analytics: Evaluating Machine Learning algorithms, Model, Selection, Ensemble Methods (Boosting, Bagging, and Random Forest). Modeling Sequence/Time-Series Data and Deep Learning: deep generative models, Deep Boltzmann Machines, Deep autoencoders, Applications of Deep Networks.	01/04/2025	26/04/2025	16

LESSON PLAN

COURSE: AI&ML

	Topic	Plan		Actual		Teaching	Signature
Unit No.		No of hours	Date	No of hours	Date	Methodol ogy	of the faculty
	Introduction to Artificial Intelligence (AI) A general overview of AI. And AI as a branch of computer science aimed at building systems capable of performing tasks that normally require human intelligence.	1	23/12/24			Chalk & Talk	
UINIT-1	Definition of Artificial Intelligence Defining AI in the context of problem- solving, learning, reasoning, and decision- making. And Key areas of AI (e.g., machine learning, natural language processing, robotics).	1	24/12/24			Chalk & Talk	
	Evolution of Artificial Intelligence Historical development of AI from its inception to modern advancements. And Milestones like Turing test, early neural networks, expert systems, and modern AI breakthroughs.	1	26/12/24			Chalk & Talk	
	The Need for Artificial Intelligence The demand for AI in addressing complex problems and tasks. And AI's role in automating tasks, improving efficiency, and enhancing decision-making.	1	28/12/24			Chalk & Talk	
	Applications of Artificial Intelligence in the Real World Examples of AI applications in various industries: healthcare, automotive, finance, retail, education, etc. and AI's role in virtual assistants, robotics, autonomous vehicles, and AI-powered software.	1	30/12/24			Chalk & Talk	
	Introduction to Intelligent Agents What intelligent agents are and how they behave autonomously. And Components of an intelligent agent system (perception, reasoning, action).	1	31/12/24			Chalk & Talk	
	Agents and Environments The concept of agents and their environments. And Types of environments (e.g., fully observable vs partially observable, deterministic vs nondeterministic).	1	02/01/25			Chalk & Talk	
	Good Behavior in AI Defining what constitutes good behavior for an intelligent agent. And How an agent's	1	03/01/25			PPT	

			T	1	1	
	actions are judged based on outcomes, efficiency, and goals.					
	The Concept of Rationality in AI					
	Rational behavior in AI: an agent is rational if it acts to maximize its expected utility given its knowledge. And Balancing	1	04/01/25		Chalk & Talk	
	rationality and practicality in decision-making. Nature of Environments in AI					
	Understanding the various characteristics of environments (static vs dynamic, discrete vs continuous). And How environments impact agent behavior and design.	1	06/01/25		Chalk & Talk	
	Structure of Agents in AI Discussing different types of agent structures (simple reflex agents, model-based reflex agents, goal-based agents, utility-based agents). And Understanding how these structures influence agent's decision-making and interaction with the environment.	1	07/01/25		Chalk & Talk	
	Introduction to Neural Networks Overview of neural networks and their inspiration from the human brain. And Types of neural networks and how they are used to process complex data inputs.	1	08/01/25		Chalk & Talk	
	Neural Network Representation How data is represented in neural networks: neurons, layers, and weights. And The process of learning and adjusting weights in a neural network.	1	09/01/25		Chalk & Talk	
	Perceptrons, Multilayer Networks, and Backpropagation Algorithms Explaining the perceptron model and its limitations. And Introduction to multilayer networks (deep learning) and the backpropagation algorithm for training neural networks.	1	16/01/25		PPT	
	Introduction to Genetic Algorithms Overview of genetic algorithms as optimization techniques. And The concept of natural selection, reproduction, mutation, and crossover in algorithmic design.	1	18/01/25		Chalk & Talk	
UNIT-2	Introduction to Knowledge Representation and Reasoning Overview of knowledge representation and reasoning in AI. And Importance of	1	20/01/25		Chalk & Talk	

representing knowledge for intelligent agents to process and make decisions.				
Logical Agents Understanding logical agents and their role in AI. And How logical agents use logic to represent and reason about knowledge.	1	21/01/25	Chalk & Talk	
Knowledge-Based Agents What a knowledge-based agent is and how it functions. And How these agents use a knowledge base and inference mechanisms to make decisions.	1	22/01/25	Chalk & Talk	
The Wumpus World Introduction to the Wumpus world as a classic AI problem. And How knowledge representation and reasoning are applied to navigate and solve the Wumpus world.	1	23/01/25	Chalk & Talk	
Logic in AI The role of logic in AI, particularly in reasoning and decision-making. And Types of logic used in AI systems (propositional logic, first-order logic).	1	25/01/25	Chalk & Talk	
Propositional Logic Overview Introduction to propositional logic (also known as Boolean logic). And Basic components: propositions, logical connectives (AND, OR, NOT, etc.).	1	27/01/25	Chalk & Talk	
Patterns in Propositional Logic Recognizing and using common logical patterns (e.g., tautologies, contradictions, equivalences). And How patterns in propositional logic help simplify inference processes	1	28/01/25	Chalk & Talk	
Inference in Propositional Logic Understanding how reasoning or inference works in propositional logic. And Methods for deriving new knowledge, such as truth tables, rules of inference, and deduction.	1	29/01/25	Chalk & Talk	
First-Order Logic (FOL) Overview Introduction to First-Order Logic (FOL) and how it extends propositional logic. And Explanation of quantifiers (existential and universal) and predicates	1	30/01/25	Chalk & Talk	
Propositional Logic vs. First-Order Logic Comparison of propositional logic and first- order logic. And Key differences in expressiveness, syntax, and inference capabilities.	1	01/02/25	PPT	

	Inference in First-Order Logic (FOL) How inference works in First-Order Logic. And Techniques for FOL inference, including forward and backward chaining.	1	03/02/25	Chalk & Talk	
	Unification in Logic Explanation of the unification process in logic. And How unification is used to match terms and variables in First-Order Logic and its role in reasoning.	1	04/02/25	Chalk & Talk	
	Lifting in Logic The concept of lifting in logic, particularly in terms of generalizing knowledge. And How lifting helps in creating more powerful logical agents by expanding the range of inferences.	1	05/02/25	Chalk & Talk	
	The Role of Knowledge Representation in AI Reasoning How different methods of knowledge representation affect reasoning. And The importance of efficient knowledge representation for effective inference in AI systems.	1	06/02/25	Chalk & Talk	
	Combining Knowledge Representation and Reasoning Integrating knowledge representation techniques with reasoning mechanisms. And Real-world examples of how knowledge-based systems use logic for reasoning (e.g., expert systems, automated theorem proving).	1	10/02/25	Chalk & Talk	
	Bayesian and Computational Learning Overview Introduction to Bayesian learning and computational approaches in machine learning.	1	11/02/25	Chalk & Talk	
	Bayes Theorem in Concept Learning Explanation of Bayes' Theorem and its application in concept learning.	1	12/02/25	Chalk & Talk	
UNIT-3	Maximum Likelihood Estimation (MLE) Detailed exploration of Maximum Likelihood Estimation, its principles, and usage in learning.	1	13/02/25	Chalk & Talk	
	Minimum Description Length Principle Overview of the Minimum Description Length (MDL) principle and how it relates to model selection and complexity.	1	15/02/25	Chalk & Talk	
	Gibbs Algorithm Introduction to the Gibbs sampling algorithm and its role in Bayesian computation.	1	17/02/25	Chalk & Talk	

			1	
	Naive Bayes Classifier Explanation of the Naive Bayes classifier, assumptions, and its application in classification tasks.	1	18/02/25	Chalk & Talk
	Instance-Based Learning (IBL)			Challe 0
	Introduction to instance-based learning and	1	19/02/25	Chalk & Talk
	its concept.			
	K-Nearest Neighbor Learning (K-NN) Explanation of the K-Nearest Neighbor (K-NN) algorithm, how it works, and its applications in classification.	1	20/02/25	Chalk & Talk
	Introduction to Machine Learning (ML) A comprehensive definition of Machine Learning, its significance, and its role in modern AI.	1	22/02/25	Chalk & Talk
	Evolution of Machine Learning			Chalk &
	Historical evolution and milestones in the field of machine learning.	1	03/03/25	Talk
	Need for Machine Learning			
	Discussion on the necessity of ML in solving real-world problems and its increasing importance.	1	04/03/25	Chalk & Talk
	Applications of ML in Industry and the Real World Overview of real-world applications of machine learning across various industries.	1	05/03/25	Chalk & Talk
	Supervised vs. Unsupervised Learning			
	Paradigms Comparative analysis between supervised and unsupervised learning, with examples of both.	1	06/03/25	Chalk & Talk
	Introduction to Supervised Learning Overview of supervised learning, its definition, and types of tasks involved (e.g., classification, regression).	1	07/03/25	Chalk & Talk
	Distance-Based Methods in Supervised			
UNIT-4	Learning Explanation of distance-based approaches in supervised learning, focusing on the use of distance metrics (e.g., Euclidean distance).	1	10/03/25	Chalk & Talk
	K-Nearest Neighbors (K-NN) Algorithm Detailed exploration of the K-Nearest Neighbors (K-NN) algorithm, its working principles, and applications.	1	11/03/25	PPT
	Decision Trees in Supervised Learning Introduction to decision tree algorithms, how they are built, and their role in classification and regression tasks.	1	12/03/25	Chalk & Talk

Support Vector Machines (SVM) Explanation of Support Vector Machines, the concept of hyperplanes, and their use in classification tasks.	1	13/03/25	Chalk & Talk	
Nonlinearity in Supervised Learning Discussion on how nonlinearity arises in supervised learning and the methods used to address it.	1	15/03/25	Chalk & Talk	
Kernel Methods in Supervised Learning Overview of kernel methods, including how they enable the transformation of data into higher-dimensional spaces to handle nonlinearity.	1	18/03/25	Chalk & Talk	
Introduction to Unsupervised Learning Definition and key concepts in unsupervised learning, including clustering and dimensionality reduction.	1	19/03/25	Chalk & Talk	
Clustering in Unsupervised Learning Explanation of clustering techniques and how they group similar data points without labeled outcomes.	1	20/03/25	Chalk & Talk	
K-Means Clustering Algorithm				
Detailed exploration of the K-Means clustering algorithm, its steps, and its practical applications.	1	22/03/25	Chalk & Talk	
Dimensionality Reduction Techniques				
Overview of dimensionality reduction methods in unsupervised learning, aimed at reducing the feature space.	1	24/03/25	Chalk & Talk	
Principal Component Analysis (PCA)				
In-depth discussion of PCA, its mathematical foundation, and its use in reducing data dimensionality.	1	25/03/25	Chalk & Talk	
Kernel PCA for Nonlinear Dimensionality Reduction				
Explanation of Kernel Principal Component Analysis (Kernel PCA) and how it extends PCA to handle nonlinearity.	1	26/03/25	Chalk & Talk	

	Comparison between Supervised and				
	Unsupervised Learning				
	A brief comparison of supervised and unsupervised learning methods, highlighting their differences and use cases.	1	27/03/25	PPT	
	Applications of Supervised and Unsupervised Learning				
	Overview of real-world applications of both supervised and unsupervised learning in various fields such as healthcare, finance, and marketing.	1	01/04/25	Chalk & Talk	
	Introduction to Machine Learning				
	Algorithm Analytics				
	Overview of the importance of evaluating machine learning algorithms and understanding model performance.	1	02/04/25	Chalk & Talk	
	Evaluating Machine Learning Algorithms				
	Detailed discussion on the metrics and techniques for evaluating machine learning algorithms, such as accuracy, precision, recall, F1-score, and ROC curves.	1	03/04/25	Chalk & Talk	
	Model Selection in Machine Learning				
UNIT-5	Exploration of methods used to select the best model, including cross-validation, grid search, and performance comparison.	1	07/04/25	Chalk & Talk	
0111-3	Introduction to Ensemble Methods				
	Overview of ensemble methods in machine learning, and their role in improving model accuracy and robustness.	1	08/04/25	Chalk & Talk	
	Boosting in Ensemble Methods				
	Explanation of boosting techniques, such as AdaBoost, Gradient Boosting, and XGBoost, and how they improve model performance.	1	09/04/25	Chalk & Talk	
	Bagging in Ensemble Methods				
	Introduction to bagging techniques, including the concept of bootstrap sampling and its role in reducing variance.	1	10/04/25	Chalk & Talk	

Random Forest in Ens	emble Methods				
Detailed exploration of algorithm, its structure, decision trees for better	and how it combines	1	15/04/25	Chalk & Talk	
Modeling Sequence Series I Overview of sequence and the unique chall modeling such data.	O Sequence/Time- Data and time-series data,	1	16/04/25	РРТ	
Time-Series Forecastin	ng Techniques				
Exploration of techniq series forecasting, s SARIMA, and state-spa	such as ARIMA,	1	17/04/25	Chalk & Talk	
Recurrent Neural Netv	works (RNNs) for				
Introduction to Recurre (RNNs), their architecture for sequence modeling.		1	19/04/25	Chalk & Talk	
Long Short-Term Men	nory (LSTM)				
Networks Detailed explanation of their ability to dependencies, and their prediction.	capture long-term	1	21/04/25	Chalk & Talk	
Introduction to Deep I	earning				
A comprehensive int learning, explaining its and key concepts like ba		1	22/04/25	Chalk & Talk	
Deep Generative Mode	els				
Overview of deep gener GANs (Generative Ad and VAEs (Variational their role in data generation	versarial Networks) Autoencoders), and	1	23/04/25	Chalk & Talk	
Deep Boltzmann Mach	ines				
Explanation of Deep E (DBMs), their structure used in unsupervised lea	e, and how they are	1	24/04/25	Chalk & Talk	

Deep Autoencoders					
Detailed exploration of deep autoencoders, their architecture, and their applications in data compression and feature extraction.	1	26/04/25		Chalk & Talk	
Applications of Deep Networks Overview of the various applications of deep learning in fields like computer vision, natural language processing, healthcare, and more.	1	25/04/25		Chalk & Talk	

Text Books:

- 1. Deep Learning- Ian Goodfellow, Yoshua Bengio and Aaron Courvile, MIT Press, 2016
- 2. Deep Learning with Python Francois Chollet, Released December 2017, Publisher(s): Manning Publications,ISBN: 9781617294433
- 3. Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence Jon Krohn, Grant Beyleveld, Aglaé Bassens, Released September 2019, Publisher(s): Addison-Wesley Professional, ISBN: 9780135116821

Reference Books:

- 1. Deep Learning from Scratch Seth Weidman, Released September 2019, Publisher(s): O'Reilly Media, Inc.,ISBN: 9781492041412
- 2. Artificial Neural Networks, Yegnanarayana, B., PHI Learning Pvt. Ltd, 2009.
- 3. Matrix Computations, Golub, G.,H., and Van Loan,C.,F, JHU Press,2013 4. Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education, 2004.

Faculty	HOD	Dean-Academics	Principal
. avaity	1105	Boarr / todacimico	i illioipai