Modélisation Géométrique TD - Courbes de Bézier.

Exercice 1. On considère la cubique plane de Bézier $\mathcal C$ définie par les points de contrôle suivants :

$$P_0 = (0,0), P_1 = (1,2), P_2 = (2,-1), P_3 = (3,1).$$

de telle sorte que la paramétrisation de \mathcal{C} est donnée par $\sum_{i=0}^{3} P_i B_i^3(t)$, $t \in [0;1]$.

1. Donner les points de contrôle, comme courbe de Bézier cubique, de l'arc de courbe de \mathcal{C} correspondant à $t \in [0; 1/3]$.

Exercice 2. Propriétés de raccord.

- 1. Donner et démontrer les conditions de raccord \mathcal{C}^1 et \mathcal{C}^2 pour deux courbes de Bézier.
- 2. Expliquer ce qu'est un raccord G^1 et donner la condition géométrique correspondante sur les points de contrôle.

Exercice 3.

1. Montrer que la courbure d'une courbe de Bézier de degré $n \geq 2$, $P(t) = \sum_{i=0}^{n} P_i B_i^n(t)$, au point $P(0) = P_0$ est donnée par la formule $\frac{n-1}{n} \cdot \frac{h}{a^2}$, où les quantités h et a sont définies par le dessin ci-dessous

- 2. Expliquer comment utiliser cette même formule pour calculer la courbure en n'importe quel autre point de cette courbe de Bézier.
- N.B. : on rappelle que la courbure d'une courbe plane paramétrée $\alpha(t)$ est donnée par $\frac{\det(\alpha'(t), \alpha''(t))}{\|\alpha'(t)\|^3}$.