MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 - NOVEMBER 2016 SOLUTION KEY

Round 6

- A) $x + 2x + 4x + 8x = 360 \Leftrightarrow 15x = 360 \Rightarrow x = 24$. Thus, the 4 angle measures are 24°, 48°, 96° (obtuse) and 192° (reflexive). The required sum is **288**.
- B) $178 < \frac{180(n-2)}{n} < 179 \Rightarrow 178n < 180n 360 \text{ and } 180n 360 < 179n$ $\Rightarrow n > 180 \text{ and } n < 360 \Rightarrow (m, M) = (181, 359).$
- C) The minute hand moves 12 times as fast as the hour hand. In one hour, the minute hand makes a complete revolution, i.e. turns through an angle of 360° or, equivalently, 6° every minute. The hour hand turns through $\frac{360^{\circ}}{12} = 30^{\circ}$ every hour, or, equivalently, $\frac{1}{2}^{\circ}$ every minute.

<u>In x minutes</u>, the minute hand turns through $(6x)^{\circ}$ and the hour hand turns through $\left(\frac{x}{2}\right)^{\circ}$.

Assume the first 110° angle occurs at x minutes past 5:00, i.e. $m\angle MOH = 110^{\circ}$

At 5:00,
$$m \angle AOB = 5(30^{\circ}) = 150^{\circ}$$

At x minutes past 5:00, $m\angle AOM = (6x)^{\circ}$ and

$$m\angle BOH = \left(\frac{x}{2}\right)^{\circ}$$
.

Equating two different expressions for $\angle AOH$,

$$6x + 110 = 150 + \frac{x}{2} \Rightarrow x = \frac{40}{11}.$$

For the second occurrence the diagram looks like the clock below:

Equating two different expressions for $\angle AOM$,

$$6x = 150 + \frac{x}{2} + 110 \Rightarrow x = \frac{520}{11}$$

The difference $\frac{520-80}{11} = \frac{440}{11} = \frac{40}{11}$ minutes.