	TP2 Debit2 - Touita Bayssac	Pt		Α	В	: D	Note	
I.	Rappels sur le schéma fonctionnel							
1	Mettre en évidence sur ce schéma fonctionnel les éléments suivants : X, W, Y, vanne, régulateur	1	Α		1		1	
	Quel doit être le sens d'action du régulateur. Justifiez votre réponse.	1	Α		T	T	1	
II.	Prédéterminations							
1	Mesurer Amax, 11 et 12 pour un fonctionnement sans perturbation. On donnera la methode dinisée et des copies	2	С	П			0,7	Mangua V1 at V2
2	Même question pour un fonctionnement avec perturbations.	2	С				0,7	Manque Y1 et Y2
3	Déterminer la valeur du gain K du schéma fonctionnel pour le point de fonctionnement considéré (W), pour un système sans perturbation.	1	Α				1	
4	Même question pour un système avec perturbation.	1	Α				1	
5	Rappeler la relation entre le gain du régulateur A et la bande proportionnelle Xp du régulateur.	1	Α				1	
•	Déterminer la valeur algébrique de la mesure X pour une consigne W en fonction de A et K et Y1.	1	Α				1	
III.	Réglage du régulateur							
1	Régler l'affichage du régulateur en %.	1	Α				1	
2	Régler le régulateur pour un fonctionnement en régulation proportionnelle. On n'oubliera pas d'annuler les actions intégrale et dérivée.	1	Α				1	
3	Régler la consigne à W. Placer le régulateur en mode automatique. On précisera la méthode utilisée.	1	D	П			0,05	
IV.	La bande proportionnelle et l'erreur statique							
1	À l'aide de la formule trouvée à la question II.6, prédéterminer la valeur de X pour les bandes proportionnelles suivantes : 40% et 60%. Le système fonctionne sans perturbation.	2	С				0,7	Calculs à revoir
2	Vérifier les valeurs précédentes de manière expérimentale.	1	D				0,05	Vous confondez consigne et bande
3	Comparer les résultats théoriques avec les résultats pratiques. Expliquer s'il y a lieu leur différence.	1	С				0,35	proportionnelle.
V.	La bande proportionnelle et la perturbation							
1	À l'aide de la formule trouvée à la question II.6, prédéterminer l'influence de la perturbation sur la mesure X pour les valeurs suivantes de la bande proportionnelle : 40% et 60%.	2	Х				0	
2	Vérifier les valeurs précédentes de manière expérimentale.	1	Х	\prod			0	
3	Comparer les résultats théoriques avec les résultats pratiques. Expliquer s'il y a lieu les différences.	1	Х	\prod			0	

Note: 10,55/21

I. Rappels sur le schéma fonctionnel

1. Mettre en évidence sur ce schéma fonctionnel les éléments suivants :

2. Quel doit être le sens d'action du régulateur. Justifiez votre réponse.

Quand on augmente la <u>commende</u> du régulateur, la vanne s'ouvre donc le débit augmente donc la mesure du transmetteur augmente donc le procédé est direct, il faut donc régler le régulateur avec une action inverse.

II. Prédéterminations

1. Mesurer X_{max}, Y1 et Y2 pour un fonctionnement sans perturbation. On donnera la méthode utilisée et des copies d'écran.

On met la consigne a 100% et on note le valeur X qui est de 73,63 et Y2 vaut 100%

Nom	Description	Adresse	Valeur	Connexion de
PV	[LP1 PV] Valeur de Process	1	73.63	STANDARD_IO.PV_Input.Val
wSP	[SP Travail] Consigne de Tra	5	100.00	
tSP	[Consigne Cible] Consigne v	2	100.00	
T_OP	[Cible OP] Puissance de Sor	3	65.94	(non connecté)
w0P	[OP Travail] Puissance de S	4	65.94	
m-A	[Mode Manuel] Mode Manu	273	Auto (0) 💌	

2. Même question pour un fonctionnement avec perturbations.

On met la consigne a 100% on met une perturbation et on note le valeur X qui est de 59,96 et Y2 vaut 100%

Nom	Description	Adresse	Valeur	Connexion de
PV	[LP1 PV] Valeur de Process	1	59.96	STANDARD_IO.PV_Input.Val
wSP	[SP Travail] Consigne de Tra	5	100.00	
tSP	[Consigne Cible] Consigne v	2	100.00	
T_OP	[Cible OP] Puissance de Sor	3	100.00	(non connecté)
wOP	[OP Travail] Puissance de S	4	100.00	
m-A	[Mode Manuel] Mode Manue	273	Auto (0) 💌	

On choisi une consigne W égale à Xmax avec perturbation divisé par 2.

3. Déterminer la valeur du gain K du schéma fonctionnel pour le point de fonctionnement considéré (**W**), pour un système sans perturbation.

X=Y*K

X/Y=K

73,63/100=0,736

4. Même question pour un système avec perturbation.

59,96/100=0,5996

5. Rappeler la relation entre le gain du régulateur A et la bande proportionnelle Xp du régulateur.

Xp=100/A

6. Déterminer la valeur algébrique de la mesure X pour une consigne **W** en fonction de A et K et Y1.

x=K*Y

x=K*A*E

x=K*A*(w-x)

x=KAw - KAx

x+KAx = KAw

x(KA+1)=KAw

x=KAw/(KA+1)

x=(0.736*3*27.42)/(0.763*3+1)=18%

III. Réglage du régulateur

1. Régler l'affichage du régulateur en %. <u>On s'aidera du document sur les paramètres des régulateurs</u>.

✓ VALL ✓ VALH ✓ VALH	[Unit Phys Bas] Point Bas er	5078	0.00
✓ VALH	[Unit Phys Haut] Point Haut	5077	100.00

2. Régler le régulateur pour un fonctionnement en régulation proportionnelle. On n'oubliera pas d'annuler les actions intégrale et dérivée.

 ✓ Ti1
 [Integral 1] Temps d'Intégra
 352
 Sans (0) ...

 ✓ Td1
 [Dérivée 1] Temps de Dérive
 353
 Sans (0) ...

3. Régler la consigne à W. Placer le régulateur en mode automatique. On précisera la méthode utilisée.

PV	[LP1 PV] Valeur de Process	1	55.30	STANDARD_IO.PV_Input.Val
wSP	[SP Travail] Consigne de Tra	5	100.00	
wOP	[OP Travail] Puissance de S	4	100.00	
ER	[Erreur] Ecart de Régulation	105	-44.70	
P_OP	[P OP] Composante Proporti	214	111.72	
I_OP	[I OP] Composante Intégrale	55	0.00	
d_OP	[D OP] Composante Dérivée	116	0.00	
SRLStA	[SRL Complete] Etat de la R	277	Non (0) 💌	
LPbrk	[Bole Brk Stat] Etat de la dél	263	Non (0) 💌	
ХFb	[Ext FBack] Feedback Exter	638	0.00	(non connecté)

IV. La bande proportionnelle et l'erreur statique

 À l'aide de la formule trouvée à la question II.6, prédéterminer la valeur de X pour les bandes proportionnelles suivantes : 40% et 60%. Le système fonctionne sans perturbation. 40%:A=100/Xp=100/40=2,5 donc cela fais x=18%

et pour 60%:A=100/Xp=100/60=1,6 x=15%

2. Vérifier les valeurs précédentes de manière expérimentale.

40%

Nom	Description	Adresse	Valeur	Connexion de
PV	[LP1 PV] Valeur de Process	1	30.84	STANDARD_IO.PV_Input.Val
wSP	[SP Travail] Consigne de Tra	5	40.00	
tSP	[Consigne Cible] Consigne v	2	40.00	
T_OP	[Cible OP] Puissance de Sor	3	22.90	(non connecté)
wOP	[OP Travail] Puissance de S	4	22.90	
m-A	[Mode Manuel] Mode Manue	273	Auto (0) 💌	

60%

Nom	Description	Adresse	Valeur	Connexion de
PV	[LP1 PV] Valeur de Process	1	46.39	STANDARD_IO.PV_Input.Val
wSP	[SP Travail] Consigne de Tra	5	60.00	
tSP	[Consigne Cible] Consigne v	2	60.00	
T_OP	[Cible OP] Puissance de Sor	3	34.02	(non connecté)
wOP	[OP Travail] Puissance de S	4	34.02	
m-A	[Mode Manuel] Mode Manu	273	Auto (0) 💌	

3. Comparer les résultats théoriques avec les résultats pratiques. Expliquer s'il y a lieu leur différence.

On ne trouve pas les même résultat en théorie que en pratique il doit y avoir une erreur de calcul

V. La bande proportionnelle et la perturbation

- 1. À l'aide de la formule trouvée à la question II.6, prédéterminer l'influence de la perturbation sur la mesure X pour les valeurs suivantes de la bande proportionnelle : 40% et 60%.
- 2. Vérifier les valeurs précédentes de manière expérimentale.
- 3. Comparer les résultats théoriques avec les résultats pratiques. Expliquer s'il y a lieu les différences.