Chapitre 9

Tests d'hypothèse sur deux moyennes

Tests sur deux moyennes

Comparer deux groupes:

Hommes vs femmes

Placebo vs médicament

Groupe contrôle vs groupe avec thérapie

Etc...

Deux moyennes: notations

\mathbf{X}_1	\mathbf{X}_2
\overline{X}_1	\overline{X}_2
S_1	\mathbf{S}_2
μ_1	μ_2
σ_1	σ_2

Echantillons pairés / non pairés

Choisir le bon test d'hypothèse

Test t pour

échantillons appariés

Ch. 9

Ch. 7

Identifier les variables et déterminer leurs natures V.I. & V.D. V.I. dichotomique Pas de V.I 2 V. nominales V.D. métrique ou ordinale métriques ou ordinales Métrique Nominale Prédiction Lien d'indépendance Ch. 7 Test sur 1 b $H_0: \rho = 0$? d'ajustement Pairés? σ connu? Ch. 11 OUI NON OUI NON NON OUI Test t sur une Test Z sur une Test Z Test t corrélation corrélation Ch. 8 Ch. 8 Ch. 11 Ch. 11 Normalité? Normalité? OUI NON OUI NON

 $\sigma 1 = \sigma 2$?

OUI

Test t pour échantillons

indépendants

Ch. 9

Test de la somme des

rangs de Wilcoxon

Ch. 10

NON

Test de

Behrens-Fisher

Ch. 9

Test des rangs pour

échantillons appariés (T)

Ch. 10

Chaque score du premier échantillon est lié à un score du second échantillon

Souvent mesures répétées sur mêmes sujets

	Avant	Après
Sujet 1	100	120
Sujet 2	35	45
Sujet 3	141	139
Sujet 4	45	56
Sujet 5	18	25
• • • •	• • •	•••

	Mari	Epouse
Couple 1	100	120
Couple 2	35	45
Couple 3	141	139
Couple 4	45	56
Couple 5	18	25
••••	•••	•••

Hommes	Femmes
100	120
35	45
141	139
45	56
18	25
•••	•••

Hommes	Femmes
100	120
35	45
141	25
45	56
18	139
•••	•••

Etude de Nurcombe et al. (1984):

Enfants PRN: mesure du développement mental à 6 mois et à 24 mois

Y a-t-il un changement significatif?

Hypothèse nulle

$$H_0: \mu_1 = \mu_2$$

$$H_A: \mu_1 \neq \mu_2$$

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_A : \mu_1 - \mu_2 \neq 0$$

Calcul des différences

	6 mois	24 mois	Différence		
	124	114	-10		
	94	88	-6		
	115	102	-13		
	110	127	17		
	•••	•••	•••		
Moyenne	111,0	106,71	-4,29		
Ecart-type	13,85	12,95	16,04		
N	31	31	31		

Scores D

Calcul des scores de différence (D)

Score + = amélioration

Score - = détérioration

Hypothèse nulle

Si les deux échantillons sont semblables: moyenne des D = zéro

Si $\mu_D = \mu_1 - \mu_2$ alors:

 $H_0: \mu_D = 0$

Formule

On se retrouve dans un test sur une moyenne avec H_0 : $\mu = 0$

$$t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{N}}}$$

devient

$$t = \frac{D - \mu_D}{\frac{S_D}{\sqrt{N}}}$$

6 mois	24 mois	Différence		
124	114	-10		
94	88	-6		
115	102	-13		
110	127	17		
• • •	•••	• • •		
111,0	106,71	-4,29		
13,85	12,95	16,04		
31	31	31		
	124 94 115 110 111,0 13,85	124 114 94 88 115 102 110 127 111,0 106,71 13,85 12,95		

 $H_0 : \mu_D = 0$

 $H_A: \mu_D \neq 0$

$$\overline{D}$$
 = -4,29 $S_D = 16,04$
N = 31 $dl = 31 - 1 = 30$

 $\alpha = 0.05$ (par défaut)

$$t_{obs} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{N}}} = \frac{-4,29 - 0}{\frac{16,04}{\sqrt{31}}} = \frac{-4,29}{2,88} = -1,49$$

 $t_{0.025} = 2,042$ (test bilatéral et 30 dl)

1,49 < 2,042, ne pas rejeter H_0 NB: p = 0,0733 > 0,025

Nous ne pouvons pas affirmer que les scores de développement mental des enfants PRN évoluent entre 6 et 24 mois

Technique de l'intervalle de confiance

Intervalle de confiance pour µ_D

$$IC_{0,95} = \overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{N}}$$

devient

$$IC_{0,95} = \overline{D} \pm t_{\alpha/2} \frac{S_D}{\sqrt{N}}$$

Technique de l'intervalle de confiance

Intervalle de confiance pour notre exemple des enfants PRN

$$IC_{0,95} = -4,29 \pm 2,042 \frac{16,04}{\sqrt{31}} = -4,29 \pm 5,88$$

$$-10,17 < \mu_D < 1,59$$

Technique de l'intervalle de confiance

$$-10,17 < \mu_D < 1,59$$

Puisque zéro se trouve à l'intérieur de l'intervalle de confiance, nous ne pouvons exclure que le score de développement mental n'évolue pas entre 6 et 24 mois.

Tester une différence autre que zéro

Hypothèse: les enfants PRN présentent une détérioration de leur développement mental de plus de 15 points

 $H_0: \mu_D = -15$

 $H_A : \mu_D < -15$

Tester une différence autre que zéro

$$H_0: \mu_D = -15$$

$$H_A : \mu_D < -15$$

$$t_{obs} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{N}}} = \frac{-4,29 - (-15)}{\frac{16,04}{\sqrt{31}}} = \frac{10,71}{2,88} = 3,72$$

Tests unilatéraux et bilatéraux

Quand faut-il rejeter H₀:

Test t unilatéral $\mu_{\underline{D}} > : t_{obs} > t_{0,05}$

Test t unilatéral μ_{D} < : t_{obs} < - $t_{0,05}$

<u>Test t bilatéral</u>: valeur absolue de $t_{obs} > t_{0,025}$

Données manquantes

1. Pourquoi données manquantes?

2. Eliminer la paire

3. Tests alternatifs possibles

Conditions d'application du test t sur échantillons pairés

Les scores de différence proviennent d'une population normalement distribuée

Choisir le bon test d'hypothèse

Identifier les variables et déterminer leurs natures

Tests sur deux moyennes pour échantillons non pairés

Hommes	Femmes	Différences	
100	120	20	
35	45	10	
141	139	-2	
45	56	11	
18	25	7	
	Moyenne	9,2	
	SD 7,92		

Hommes	Femmes	Différences
100	56	-44
35	25	-10
141	120	-21
45	45	0
18	139	121
	Moyenne	9,2
	SD	64,6

A distinguer:

Variances homogènes
Test t classique

Variances hétérogènes Test de Behrens-Fisher

Exemple avec variances homogènes

Etude sur la mémoire de sujets jeunes ou âgés (Eysenck, 1974)

Liste de mots à mémoriser

VI: Sujets jeunes ou âgés

VD: Nombre de mots rappelés

Exemple avec variances homogènes

	Sujets jeunes			Suj	ets â	gés			
21	19	17	15	22	10	19	14	5	10
16	22	22	18	21	11	14	15	11	11

$$\overline{X}_1 = 19,3$$
 $\overline{X}_2 = 12,0$ $S_1^2 = 7,122$ $S_2^2 = 14,000$ $N_1 = 10$ $N_2 = 10$

Exemple avec variances homogènes

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_A : \mu_1 - \mu_2 \neq 0$$

Nous avons obtenu $\overline{X}_1 - \overline{X}_2 = 7,3$

Erreur d'échantillonnage ou véritable différence ?

7,3 peut-il appartenir à cette distribution?

Pour calculer les probabilités, il faut connaître les paramètres de cette distribution

Moyenne = $\mu_1 - \mu_2$

Loi de la somme des variances :

« la variance d'une somme ou d'une différence de deux variables indépendantes est égale à la somme de leurs variances »

Moyenne = $\mu_1 - \mu_2$

La variance d'une distribution d'échantillonnages de moyennes est égale à σ^2/N

 σ_1^2/N_1 pour la population X_1 σ_2^2/N_2 pour la population X_2

Moyenne =
$$\mu_1 - \mu_2$$

$$\sigma_{X_1-X_2}^2 = \frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}$$

La somme ou la différence de deux variables indépendantes normalement distribuées est elle aussi normalement distribuée

Dernier problème : Les variances des populations sont généralement inconnues

Il faut les estimer par S_1^2 et S_2^2

$$t = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}}}$$

La formule peut encore être améliorée

Nous testons deux groupes avec variances homogènes.

Donc:
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$

Puisque
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$

La moyenne de S_1^2 et S_2^2

serait une meilleure estimation de σ²

Estimation combinée de la variance

Calcul d'une moyenne pondérée de la variance selon les dl

$$S_P^2 = \frac{(N_1 - 1)}{N_1 + N_2 - 2} S_1^2 + \frac{(N_2 - 1)}{N_1 + N_2 - 2} S_2^2$$

$$S_P^2 = \frac{(N_1-1)S_1^2 + (N_2-1)S_2^2}{N_1+N_2-2}$$

Test t sur deux échantillons indépendants

$$t = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_P^2 + S_P^2}{N_1 + N_2}}} = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_P^2 + S_P^2}{N_1 + N_2}}}$$

Les degrés de liberté

$$t = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{S_{P}^{2} \left(\frac{1}{N_{1}} + \frac{1}{N_{2}}\right)}}$$

$$dI = N_1 + N_2 - 2$$

Sujets jeunes					Sujets âgés					
21	19	17	15	22	10	19	14	5	10	
16	22	22	18	21	11	14	15	11	11	

$$\overline{X}_1=19,3$$
 $\overline{X}_2=12,0$ $S_1^2=7,122$ $S_2^2=14,000$ $N_1=10$ $N_2=10$

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_A : \mu_1 - \mu_2 \neq 0$$

$$dl = 10 + 10 - 2 = 18$$

$$\alpha = 0.05$$
 (par défaut)

$$S_P^2 = \frac{(N_1 - 1)S_1^2 + (N_2 - 1)S_2^2}{N_1 + N_2 - 2} = \frac{(9 \times 7, 122) + (9 \times 14)}{18} = 10,561$$

$$t_{obs} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - (\mu_{1} - \mu_{2})}{\sqrt{S_{P}^{2} \left(\frac{1}{N_{1}} + \frac{1}{N_{2}}\right)}} = \frac{19,3 - 12}{\sqrt{10,561 \left(\frac{1}{10} + \frac{1}{10}\right)}} = \frac{7,3}{1,4533} = 5,02$$

$$t_{0.025} = 2,101$$
 (test bilatéral et 18 dl)

Puisque 5,02 > $\overline{2}$,101, rejeter H₀

Les sujets âgés se rappellent en moyenne moins de mots que les sujets jeunes.

Tests unilatéraux et bilatéraux

Quand faut-il rejeter H₀:

Test t unilatéral > : t_{obs} > t_{0,05}

Test t unilatéral < : t_{obs} < -t_{0,05}

<u>Test t bilatéral</u>: valeur absolue de $t_{obs} > t_{0.025}$

Technique de l'intervalle de confiance

Intervalle de confiance pour μ_1 - μ_2

$$IC_{0,95} = \overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{N}}$$

devient

$$IC_{0,95} = (\overline{X}_1 - \overline{X}_2) \pm t_{\alpha/2} \sqrt{\frac{S_P^2}{N_1} + \frac{S_P^2}{N_2}}$$

Technique de l'intervalle de confiance

Intervalle de confiance pour l'exemple des sujets jeunes et âgés

$$\overline{X}_1 - \overline{X}_2 = 19,3-12=7,3$$

$$S_P^2 = 10,561$$

$$N_1 = 10$$
 $N_2 = 10$

 $t_{0.025}$ pour un test bilatéral et 18 dl = 2,101

Technique de l'intervalle de confiance

$$IC_{0,95}=7,3\pm2,101\sqrt{\frac{10,561}{10}+\frac{10,561}{10}}=7,3\pm3,05$$

$$4,25 < \mu_1 - \mu_2 < 10,35$$

Puisque zéro ne se trouve pas dans l'intervalle de confiance, nous pouvons conclure que les jeunes retiennent significativement plus de mots que les

sujets âgés

Conditions d'application

1) Normalité de la distribution Sinon: test non paramétrique

2) Homogénéité des variances
 Test robuste
 Si inégalité des variances + N₁ ≠ N₂ :
 Solution de Behrens-Fisher

Le test de Behrens-Fisher

A utiliser si:

- Hétérogénéité des variances

 $-N_1 \neq N_2$

Puisque variances hétérogènes:

On ne peut plus calculer S_P^2

Le test de Behrens-Fisher

On revient à:

$$t' = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}}}$$

Le test de Behrens-Fisher

t' n'est pas distribué comme le t avec N₁ + N₂ – 2 dl

$$dl' = \frac{\left(\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}\right)^2}{\frac{\left(\frac{S_1^2}{N_1}\right)^2}{N_1 - 1} + \frac{\left(\frac{S_2^2}{N_2}\right)^2}{N_2 - 1}}$$

Arrondir dl' à l'entier le plus proche

Gross (1984) a étudié l'évolution du poids chez les personnes victimes de boulimie

Deux groupes: - Boulimie simple

- Boulimie avec vômissements

VD: écart, en pour cent, du poids par rapport à des sujets normaux

Boulimie simple:

$$\overline{X}_1 = 4,61$$

$$S_1^2 = 219,04$$

$$N_1 = 49$$

Boulimie avec vomissements:

$$\overline{X}_2 = -0.83$$

$$S_2^2 = 79,21$$

$$N_2 = 32$$

 $H_0: \mu_1 - \mu_2 = 0$

 $H_A : \mu_1 - \mu_2 \neq 0$

 $\alpha = 0.05$ (par défaut)

$$t'_{obs} = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}}} = \frac{4,61 - (-0,83)}{\sqrt{\frac{219,04}{49} + \frac{79,21}{32}}} = \frac{5,44}{\sqrt{6,9455}} = 2,064$$

$$dl' = \frac{\left(\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}\right)^2}{\left(\frac{S_1^2}{N_1}\right)^2 + \left(\frac{S_2^2}{N_2}\right)^2} = \frac{\left(\frac{219,04}{49} + \frac{79,21}{32}\right)^2}{\left(\frac{219,04}{N_1-1} + \frac{\left(\frac{S_2^2}{N_2}\right)^2}{N_2-1}\right)} = \frac{\left(\frac{219,04}{49} + \frac{79,21}{32}\right)^2}{48}$$

$$= \frac{48,2400}{0,4163+0,1976} = 78,58$$

$$t'_{obs} = 2,064$$

$$dl' = 79$$

$$t_{0,025} = ?$$

 $t'_{obs} = 2,064$

 $t_{0,025} = 2,009$ (arrondi à 50, la valeur inférieure la plus proche de 79)

Puisque 2,064 > 2,009, rejeter H_0

Il existe une différence significative entre les poids des deux types de boulimie

Tester l'égalité des variances

Comment savoir si on est confronté à un problème d'hétérogénéité des variances puisque nous ne connaissons pas les variances des populations ?

Recours à un test statistique

Tester l'égalité des variances

Le test F d'égalité des variances

$$F = \frac{S_1^2}{S_2^2}$$
 ou $F = \frac{S_2^2}{S_1^2}$

Plus grande des deux variances au numérateur

Test d'égalité des variances pour l'exemple sur les boulimies

$$S_1^2 = 219,04$$
 $N_1 = 49$

$$S_2^2 = 79,21$$
 $N_2 = 32$

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$\mathbf{H_A}: \ \sigma_1^2 \neq \sigma_2^2$$

$$\alpha = 0.05$$
 (par défaut)

$$F_{obs} = \frac{S_1^2}{S_2^2} = \frac{219,04}{79,21} = 2,765$$

$$dl_{\text{numérateur}} = 49 - 1 = 48$$

$$dI_{num\acute{e}rateur} = 49 - 1 = 48$$

$$dI_{d\acute{e}nominateur} = 32 - 1 = 31$$

Degrés de liberté du numérateur											
	9	10	15	20	25	30	40	50			
28	2.24	2.19	2.04	1.96	1.91	1.87	1.82	1.79			
30	2.21	2.16	2.01	1.93	1.88	1.84	1.79	1.76			
40	2.12	2.08	1.92	1.84	1.78	1.74	1.69	1.66			
50	2.07	2.03	1.87	1.78	1.73	1.69	1.63	1.60			

$$F_{0,05;50;30} = 1,76$$

Puisque 2,765 > 1,76, rejeter H_0

Les deux échantillons proviennent de population dont les variances sont différentes

Choisir le bon test d'hypothèse

Identifier les variables et déterminer leurs natures

