21-127 Homework 11

Christian Broms Section J

Monday 16th April, 2018

Complete the following problems. Fully justify each response.

- 1. Let $(X, 0, 1, +, \cdot)$ be a field, where X is a finite set. Prove that there is no ordering \leq on X under which X is an ordered field.
- 2. Let $(X, 0, 1, +, \cdot, \leq)$ be an ordered field. Prove each of the following basic ordered field properties, from axioms.
 - (a) For all $x \in X$, $x^2 > 0$.
 - (b) For all $w, x, y, z \in X$, if $w \le x$ and $y \le z$, then $w + y \le x + z$.
 - (c) For all $x, y, z \in X$, if $x \ge 0$ and $y \le z$, then $xy \le xz$.
 - (d) For all $x, y, z \in X$, if $x \le 0$ and $y \le z$, then $xy \ge xz$.
- 3. Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$. Prove that $||\vec{x} \vec{z}|| \le ||\vec{x} \vec{y}|| + ||\vec{y} \vec{z}||$.
- 4. Let $x_n = \frac{n+2}{n+1}$. Prove that x_n converges to 1.

Proof. Let
$$\epsilon>0$$
 and let $N\in\mathbb{N}$ with $N>\frac{1}{\epsilon}-1$. Let $n\geq N$. Then $|\frac{n+2}{n+1}-1|=\frac{1}{n+1}<\frac{1}{N+1}<\frac{1}{\frac{1}{\epsilon}-1+1}=\epsilon$. Therefore, by definition, $(\frac{n+2}{n+1})\to 1$

- 5. Let (x_n) and (y_n) be sequences of real numbers, with $(x_n) \to a$ and $(y_n) \to b$. Let $z_n = x_n y_n$ for all $n \in \mathbb{N}$. Prove that $(z_n) \to ab$.
- 6. Prove that if (x_n) is a monotonically decreasing sequence, having a lower bound, then (x_n) converges.