<u>Deep Learning (Assignments From Video Lecture)</u>

Table Of Contents (TOC)

S.No	<u>lndex</u>	<u>Contents</u>	Pg .no
1.	CM &	Proof	2
	Classification		
	Report for		
	CNN		
2.	CNN	Summary of different types of CNN	3-5
	Architecture	<u>architectures</u>	
	Types		
	,3700		
	T C	Table	
3.	Types of	<u>Table</u>	6-7
	Pre-Trained		
	Models		
	Available		
4.	Face Mask	4a. Flow Chart For Training Part (Face	8
	Detection	<u>Mask Detection)</u>	
		4b. Flow Chart For Application Part (Face	9
		<u>Mask Detection)</u>	

1. CM & Classification Report for CNN

Proof:

2. CNN Architecture Types

Summary of different types of CNN architectures:

Architecture	Year	Key Features	Use Case
LeNet	1998	First successful applications of CNNs, 5 layers (alternating between convolutional and pooling), Used tanh/sigmoid activation functions	Recognizing handwritten and machine-printed characters
Block Diagram	C1: feature maps 6@28x28 S2: f. maps 16@10x10 S2: f. maps 16@5x5 S2: f		
AlexNet	2012	Deeper and wider than LeNet, Used ReLU activation function, Implemented dropout layers, Used GPUs for training	Large-scale image recognition tasks
	111	3 CONV 11x11, stride=4, 96 kernels 227-11)/4 +1 55 (55-3)/2 +1 27 (27+2*2-5)/1 27	Overlapping Max POOL 3x3, pad=1 384 kernels 413+2*1-3)/1 +1 = 13
Block Diagram	13 <u>Cf</u>	CONV 3x3,pad=1 384 kernels (13+2*1-3)/1 +1 = 13 (13+2*1-3)/1 13 Overlappir Max POOl 3x3,pad=1 256 kernels (13+2*1-3)/1 +1 = 13 13 9	
ZFNet	2013	Similar architecture to AlexNet, but with different filter sizes and numbers of filters, Visualization techniques for understanding the network	ImageNet classification

3. Types of Pre-Trained Models Available

There are various types of pretrained models available in deep learning, which have been trained on large datasets for specific tasks. These pretrained models are often used as a starting point for transfer learning, where you fine-tune the model on a smaller dataset for a different or related task. Here are some common types of pretrained models:

Table:

S.No.	Genre	Models Available
1.	Image Classification	 VGG (e.g., VGG16, VGG19) ResNet (e.g., ResNet50) Inception (e.g., InceptionV3) MobileNet EfficientNet DenseNet AlexNet Xception
2.	Object Detection	 YOLO (You Only Look Once) Faster R-CNN Single Shot MultiBox Detector (SSD) RetinaNet
3.	Semantic Segmentation	 U-Net FCN (Fully Convolutional Network) Deeplab
4.	Natural Language Processing (NLP)	 BERT (Bidirectional Encoder Representations from Transformers) GPT (Generative Pretrained Transformer) RoBERTa XLNet T5 (Text-to-Text Transfer Transformer) ERNIE ALBERT TextCNN DistilBERT VADER (Valence Aware Dictionary & sEntiment Reasoner) EmoReact
5.	Speech Recognition	DeepSpeechJasperWav2Vec

6.	Recommendation	 Collaborative Filtering Models
		 Matrix Factorization Models
		 Neural Collaborative Filtering
7.	Time Series	 LSTM (Long Short-Term Memory) networks
		 GRU (Gated Recurrent Unit) networks
		 TCN (Temporal Convolutional Network)
8.	Graph Neural Network	 GCN (Graph Convolutional Network)
		o GAT (Graph Attention Network)
		o GraphSAGE
9.	Reinforcement Learning	 DDPG (Deep Deterministic Policy Gradient)
		 PPO (Proximal Policy Optimization)
		 A3C (Asynchronous Advantage Actor-Critic)
10.	Generative Adversarial	 DCGAN (Deep Convolutional GAN)
		o StyleGAN
		o CycleGAN
		o BigGAN

These pretrained models can save a lot of time and computational resources, allowing developers and researchers to build and fine-tune models for specific applications more effectively.

4. Face Mask Detection

4a. Flow Chart For Training Part (Face Mask Detection):

• Load the images
• I/p preprocessing • O/p preprocessing- One Hot Encoding
• Converting preprocessed i/p & o/p to arrays
• Test Set & Training Set
• Data augmentation- data multiplication Generat
• Load pretrained model & copy the weights from it • Pretrained model o/p is given as head models i/p
• Add 5 layers which will carry out -average pooling, flatten, FCL, drop out, FCL
• Trainable layer to false
• Compile & fit the model
Testing • Predictions
• Classification report
Save model • If best

4b. Flow Chart For Application Part (Face Mask Detection):

Function	• To detect & predict faces with & w/o mask
Inputs	• Frame(Live Steaming Video), faceNet(Pretrained Model), maskNet(Our Model)
Crop	• Face from the i/p frame
For Loop	• Detect the number of faces
For Loop	• If face detected predict mask
Load	• Pretrained model & our face model
While loop	• Take i/p of face from the live video by starting on the camera
Loop	Detect face location to predict with or without mask
Quit	Break the loop when necessary by assigning a letter

----END OF THE DOCUMENT-----