Ajay Kumar Garg Engineering College, Ghaziabad

COURSE: B.TECH. SEMESTER: II SUBJECT: ENGINEERING MATHEMATICS II SUBJECT CODE: KAS-203T

MODITE 4

MODULE-4 COMPLEX VARIABLE – DIFFERENTIATION MULTIPLE CHOICE QUESTIONS
1. The conjugate harmonic function of $e^x \cos y$ is
(a) $e^x \cos y + c$ (b) $e^x \sin y + c$ (c) $e^x + c$ (d) None of these
2. The harmonic conjugate of $e^{-y}sinx$ is
(a) $e^{-y}cosx + c$ (b) $e^{-y}sinx + c$ (c) $e^{-x}cosy$ (d) None of these
3. If $f(z) = u + iv$ is an analytic function then u and v both satisfy Laplace's
equation. (a) Statement is correct (b) Statement is false (c) None
4. A function $f(z) = e^z$ is
(a) Analytic everywhere (b) Analytic nowhere (c) only differentiable (d) None
5. If $f(z) = u + iv$ is an analytic fn. in the z-plane, then the C-R equations are satisfied by it's real and imaginary parts i.e
(a) $u_x = v_y, u_y = -v_x$ (b) $u_x = -v_y, u_y = v_x$
(c) $u_y = -v_x$, $u_y = -v_x$ (d) $u_x = v_x$, $u_y = -v_y$
6. Milne- Thomson method is used to construct
a) analytic function b) Continuous function
c) differentiable function d) None of these.
7. Write the Milne-Thomson's method to construct an analytic function $F(z) = u + iv$ when the real part u is given:
a) $\int \{\emptyset_1(z,0) + i\emptyset_2(z,0)\} dz + c$ b) $\int \{\emptyset_1(z,0) - i\emptyset_2(z,0)\} dz + c$
c) $\int \{\emptyset_2(z,0) - i\emptyset_1(z,0)\} dz + c$ d) None of these. 8. Let $f(z) = u + iv$ be a complex valued function. Where $v = 3xy^2$, then f is analytic for any value of u

a) f is analytic for suitable value of u

9 The v		•	or any value of u $z = \frac{1}{2} log(x^2 + \frac{1}{2})$		is an analytic function.
					is an analytic ranction.
;	a) 1	b) 2	c) $\pi/2$	d) $\frac{1}{2}$	
		f(z) is continu			
		is differentiable			
			ly differentiable	at z_0	
	-	is analytic at z_0)•		
	,	of the above.			
			e following that'		<i>c</i> ()
			= Im(z) c) f	$f(z) = \bar{z}$ d)	$f(z) = \sin z4.$
	-	function is tely differential	hla		
	*	•			
		ecessarily differ ly differentiable			
		of these.	.		
	,		or all real rand	v then the imagin	ary part of u, such that
			(y) is analytic, is		ary part or a, such that
		$(y-1)^2$, y) is analytic, is		
	,	$(1)^2 - y^2$			
	-	$(1)^2 + v^2$			
	/	$(y-1)^2$			
		•	not be the real pa	art of an analytic f	unction.
		v^2 b)	=	=	$\sinh y$ d) $\frac{1}{2} \log(x^2 + y)$
		,		$(x^2 - 3xy^2 + 3y^2)$	L
13. 1110	iidi iiioiii	e conjugate of t	u(x,y) = (x - 1)	$3\lambda y + 3y$	15
:	a) $3y(1)$	$+ x^2) - y^3$			
1	3x(1)	$+y^{2}$)			
(c) (y –	$(1)^{-3} + 3xy^2 -$	$-3y^2$		
(d) $(x -$	$1)^3i + 3xy^2i -$	$-3y^2i$		
16. The	invarian	t points of the tr	ransformation w	$=\frac{1+z}{1-z}$ are	
				1+i	
				e of line $y = 0$ is,	
:	a) <i>Im</i> (w	y) = 1 b)	Im(w) = -1	c) $Re(w) = 1$	d) Re(w) = -1
18. The	mapping	$gf(z) = \bar{z}$ is			
a)	Confor	mal b) isog	gonal c) nei	ther conformal no	r isogonal d) analy
		-	-		in the z –plane onto the
		∞ , 1 in $w-p$, ,	1
		b) $\frac{z-i}{z+1}$. z+1	

20. A function $f(z)$ may be differentiable in a domain except for a finite number of points, these points are called
a) Isolated points b) Invariant points c) Singular points d) Conjugate points
21. The points which coincide with their transformations are calledand can be obtained by the condition
a) Singular points, f(z)=w b) Isolated points, f'(z)=z
c) Conjugate points, $f(z)=0$ d) Invariant points, $f(z)=z$
22. A transformation $w = \frac{az+b}{cz+d}$ is known as
a) Mobius transformation b) Linear transformation
c) Inverse transformation d) Mapping
23. The image of the circle $ z - 1 = 1$ in complex plane under the transformation wz=1 is
a) $v = \frac{1}{2}$ b) $v = \frac{-1}{2}$ c) $u = \frac{1}{2}$ d) $u \neq \frac{1}{2}$
24. The transformation $w = e^{i\theta}$ represents
a) Magnification b) Rotation c) Translation d) Inversion
25. Angle of rotation and coefficient of magnification are given by
a) $amp. f'(a-ib) , f'(a+ib) $ b) $amp. f'(a+ib) , f'(a-ib) $ c) $amp. f'(a+ib) , f(a+ib) $ d) $amp. f'(a+ib) , f'(a+ib) $
26. "If function $f(z)$ & $g(z)$ are analytic within & on a closed curve C and $ g(z) < f(z) $ on C then $f(z)$ & $f(z)+g(z)$ have same number of zeros inside C" this statement is known as
a) Liouville's theorem b) Cauchy's theorem
c) fundamental theorem of algebra d) Rouche's theorem
27. A transform $w = \frac{az+b}{cz+d}$ is called Bilinear Transformation, if
(a) $ac - bd \neq 0$ (b) $ad - bc \neq 0$ (c) $ad - bc = 0$ (d) $ab - cd \neq 0$
28. Under the transformation $w = \frac{1}{z}$, the image of the line $y = \frac{1}{4}$ in z-plane is

(a) $u^2 + v^2 = 2$

(b)
$$u^2 + v^2 + 4v = 0$$

(c)
$$u^2 + v^2 = 4$$

29. Under the transformation w = z + 1 - i the image of the line y=0 in the z-plane is

(a)
$$v=-1$$

(b)
$$v=1$$

(c)
$$u = 1$$

(d)
$$u = -1$$

30. A mobius transformation maps circle into

31. The Bilinear Transformation that maps the points $(\infty, i, 0)$ into the points $(0.i.\infty)$ is

(a)
$$wz = 1$$

(b)
$$w = z$$

(c)
$$w = -z$$

(d)
$$wz = -1$$

32. The condition of a conformal mapping in terms of Jacobian is given by

(a)
$$J\left(\frac{u,v}{x,y}\right) \neq 0$$

(b)
$$J\left(\frac{u,v}{x,y}\right) = 0$$

(c) $J\left(\frac{x,y}{u,v}\right) \neq 0$

(c)
$$J\left(\frac{x,y}{u,v}\right) \neq 0$$

33. The Bilinear Transformation which carries 0, i,-i into 1,-1,0 respectively is given by

(a)
$$w = \frac{z+i}{3z+i}$$
(b)
$$w = \frac{z+i}{i-3z}$$
(c)
$$w = \frac{z-i}{3z-i}$$
(d)
$$w = \frac{z-i}{3z+i}$$

(b)
$$w = \frac{z+i}{i-3z}$$

(c)
$$w = \frac{z-i}{3z-i}$$

(d)
$$w = \frac{z-i}{2z+i}$$

34. The transformation $w = \frac{az+b}{cz+d}$ transform the unit circle in the w-plane into straight line in z-plane if

(a)
$$a = c$$

(b)
$$|a| = |c|$$

(c)
$$|a| = |b|$$

- (d) None
- 35. The transformation $w = \frac{az+b}{cz+d}$ is said to be normalized if ad-bc is equal to
 - (a) 0
 - (b) 1
 - (c) ∞
 - (d) None
- 36. $z = \frac{2w+5}{4(w+1)}$ under the transformation |z| = 1 transform into
 - (a) $u^2 + v^2 = 4$
 - (b) $u^2 + v^2 + u \frac{3}{4} = 0$
 - (c) $u^2 + v^2 = 1$
 - (d) None
- 37. The Bilinear transformation $w = \frac{ax+b}{cx+d}$ having only one fixed point then it is called
 - (a) Parabolic
 - (b) Hyperbolic
 - (c) circle
 - (d) none
- 38. A Bilinear transformation having two fixed point as p and q then which is true
 - $(a) \frac{w-p}{w-q} = \frac{z-p}{z-q} k$
 - (b) $\frac{w-p}{q-w} = \frac{z-p}{p-w} k$
 - (c) w = pqz
 - (d) None
- 39. A Bilinear transformation $\frac{w-p}{w-q} = \frac{z-p}{z-q} k$ is called Elliptic if
 - (a) |k| = 1
 - (b) |k| < 1
 - (c) |k| > 1
 - (d) None
- 40. A Bilinear transformation $\frac{w-p}{w-q} = \frac{z-p}{z-q} k$ is called Hyperbolic if

- (a) |k| = 1
- (b) |k| < 1
- (c) |k| > 1
- (d) k is Real
- 41. A Bilinear transformation is neither hyperbolic nor Elliptic or parabolic is called
 - (a) Orthogonal
 - (b) Normalized
 - (c) loxodromic
 - (d) none
- 42. Which is not meaning to an Analytic function.
 - (a) Regular Function
 - (b) Harmonic Function
 - (d) Holomorphic Function
 - (d) Monogenic Function
- 43. which are the correct C-R equations

(a)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 & $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

(b)
$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \& \frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$$

(c)
$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}$$
 & $\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x}$

- (d) None
- 44. C-R equation are the condition of an analytic function
 - (a) Sufficient
 - (b) Necessary
 - (c) a & b
 - (d) None
- 45. if $V = \tan^{-1} \frac{y}{x}$ is a part of an analytic function then f(z) will be
 - (a) logz +c

- (b) $\log |z| + c$
- (c) $\sin z + c$
- (d) None
- 46. At which point for $f(z) = \sqrt{|xy|}$ is satisfied C-R equation
 - (a)(0,0)
 - (b)(1,1)
 - (c)(0,1)
 - (d)(1,0)
- 47. for what value of a and b $f(z) = a \log(x^2 + y^2) + i \tan^{-1} \frac{by}{x}$ is an analytic function
 - (a) $\frac{1}{2}$, 1
 - (b) $\frac{1}{2}$, -1
 - (c) $-\frac{1}{2}$, 1
 - (d) None
- 48. Find image of |z i| = 1 under the mapping wz=1
 - (a) 2v+1=0
 - (b) 2v-1=0
 - (c) u=v
 - (d) None
- 49. Which of the following is a Bilinear transformation
 - (a) w = z
 - (b) $w = \frac{2z+1}{4z+2}$
 - (c) $w = \frac{z(1+i)+1}{2z+(1-i)}$
 - (d) None
- 50. If f(z) is analytic then f'(z) is:

 - a) $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ b) $\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}$

c)
$$\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$$

$$d) \quad \frac{\partial u}{\partial y} - i \frac{\partial v}{\partial y} \, .$$

51. CR equations for w = u + i v are:

a)
$$u_x = v_x, u_y = v_y$$
.

b)
$$u_x = v_y$$
, $u_y = -v_x$

c)
$$u_x = v_y, u_y = v_x$$
.

$$d) \quad u_x = -v_v, \ u_v = v_x$$

52. Which is correct for w=f(z):

a)
$$\frac{dw}{dz} = \frac{\partial w}{\partial x}$$

b)
$$\frac{\mathrm{d}w}{\mathrm{d}z} = -\frac{\partial w}{\partial x}$$

$$c) \quad \frac{dw}{dz} = \frac{\partial w}{\partial y} \; .$$

d)
$$\frac{dw}{dz} = -\frac{\partial w}{\partial y}$$

53.A function u(x,y) is harmonic if:

a)
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} = 0$$

b)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

c)
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = 0$$

d) None

54. A derivative of $f(z) = \log z$ is:

- a) z
- b) $\frac{1}{z}$
- c) 0
- d) none.

55.f(z) = u+iv is analytic iff u and v are:

- a) harmonic.
- b) continuous.
- c) differentiable.
- d) satisfies CR equation.

56. If f is analytic in domain D, then in that domain

- a) f is continuous only.
- b) f is differentiable only.
- c) both a and b.
- d) None

57. If w = f(z) is conformal mapping in D, then f(z) is:

- a) analytic in D.
- b) not always analytic
- c) never analytic.
- d) none

58. The bilinear transformation which maps z = 1, z = 0, z = -1 onto w = i, w = 0, w = -i is

a)	W = iZ
,	$\mathbf{w} = \mathbf{z}$
c)	w=i(z+1).
,	none
	ich is analytic function?
	$\sin z$.
,	$\operatorname{Im}_{\cdot}(\overline{z})$.
	Re(iz).
60.A f	unction $f(z)$ is analytic function if
	a) Real part of $f(z)$ is analytic
	b) Imaginary part of $f(z)$ is analytic
	c) Both real and imaginary part of $f(z)$ is analytic
	d) none of the above
61.If f	$(z) = x + \alpha y + i (\beta x + \gamma y)$ is analytic then α , β , γ equals to
	$\gamma = 1$ and $\alpha = -\beta$
b)	$\beta = 1$ and $\alpha = -\gamma$
,	$\alpha = 1$ and $\gamma = -\beta$
d)	$\alpha = \beta = \gamma = 1$
62.Har	monic conjugate of $u(x,y) = e^y \cos x$ is
a)	$e^x \cos y + C$
b)	$e^x \sin y + C$
,	$e^y \sin x + C$
,	$-e^y \sin x + C$
	ne real part of an analytic function $f(z) = x^2 - y^2 - y$, then the imaginary part is
	$2xy$ b) x^2+2xy c) $2xy-y$ d) $2xy+x$
64.The	are exist no analytic function f such that
	a) Re f (z) = y - 2x b) Re f (z) = y^2 - 2x c) Re f (z) = y^2 - x^2 d)Re f (z) = y - x
65.If <i>f</i>	$f(z) = \frac{xy}{(x^2+y^2)}$, if $z \neq 0$ and $f(0) = 0$ then $f(z)$ is
ä	a) Continuous but not differentiable at $z = 0$ b) differentiable at $z = 0$
(c) Analytic everywhere except at $z = 0$ d) not differentiable at $z = 0$
66.The	e function e^x (cosy- i siny) is
	(a) Analytic (b) not analytic (c) analytic when $z=0$ (d) analytic when $z=i$
67.Har	monic conjugate of $u = \log \sqrt{x^2 + y^2}$ is
$a) \frac{x}{x}$	$\frac{y}{(x^2+y^2)}$ b) $\frac{y}{(x^2+y^2)}$ c) $\tan^{-1}(\frac{x}{y})$ d) $\tan^{-1}(\frac{y}{x})$

 $68.f(z) = |\bar{z}|^2$ is differentiable

- a) nowhere b) only at z = 0 c) everywhere d) only at z = 1
- $69.w = \frac{a+bz}{c+dz}$ is a bilinear transformation when
- a) ad bc = 0 b) $ad bc \neq 0$ c) $ab cd \neq 0$ d) None of these

70.A mapping that preserves angles between oriented curves both in magnitude and in sense is called

invay.

- a) informal b) isogonal c) conformal d) formal
- $71.f(z) = e^z$ is analytic
- a) only at z = 0 b) only at z = i c) nowhere d) everywhere
- 72. The points that coincide with their transformation are known as
- a) fixed points b) critical points c) singular points d) None of these
- 73. The fixed points of the transformation $w = z^2$ are
- a) 0,-1 b) 0,1 c) -1,1 d) -i, i
- 74. The invariant points of the mapping $w = \frac{z}{2-z}$ are
- a) 1, -1 b) 0,-1 c) 0,1 d) -1, -1