

FCC TEST REPORT

For

General Procurement, Inc Hyundai Koral 7W4

Model No.: Koral_7W4

Prepared For : General Procurement, Inc

Address : 800 E Dyer Road, Santa Ana, California, United States 92705

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW181025005-02

Date of Receipt : Oct. 10, 2018

Date of Test : Oct. 10~Dec. 07, 2018

Date of Report : Dec. 07, 2018

Contents

1. General Information			Majoren	Anbe		wotek	5
1. General Information	ootek	Anbo	h. Wotel	(ميو	00te.	Vun 19k	5
1.2. Description of Device (EUT)	-notek	Anbore	Anv		"potek	Anbor	5
1.3. Auxiliary Equipment Used Durin	ng Test	, hote	Anb		b. Hotek	Pupote.	5
1.4. Description of Test Modes	Anbu	//	otek	Upore	Anv		6
1.5. List of channels	Anbor		Ya/	botek	Anbo		7
1.6. Description Of Test Setup	Ve ₂₀₁	oter	YUD.		^N NA N	ore V	8
1.7. Test Equipment List	V	400tek	Vupor	<i>b</i> ₁₁₁ .	1990	,boten	9
1.1. Client Information	,o	wiek.	Anboter	Ani		- Dotek	10
2 C							1.1
3. Conducted Emission Test	Mootek	Anbo		~otek	Raboter	Anb	12
3.1. Test Standard and Limit		k mp	ore. N		ote	k Vupo	12
3.2. Test Setup	Pu.		Wootek	Anbo	br	rek Ho	12
3.3. Test Procedure	k Anb	, , , , , , , , , , , , , , , , , , ,	tek	, nbote	Anv		12
3.4. Test Data	otek l	mbote	An Jok		otek p	,nbo ak	12
3.4. Test Data	Edge	Aupotek	Anbo	ok.	-botek	Papote.	17
4.1. Test Standard and Limit	'upon		r 5000		ius Jak		17
4.2. Test Setup	- Aupor	. bo.	, Aor,	boter	Aupo	······························	17
4.3. Test Procedure	Anbote'	Anb.		botek	Pupore	N. Mills	18
4.4. Test Data	(otek p	Upor	b.,,	24,,,	ter An	19
5. Maximum Peak Output Power Test		- Yek	Anboten.	Amb		botek	28
5.1. Test Standard and Limit	ote. P	Up.	, , , , , otek		Dr. V		28
5.2. Test Setup	"Potek	Anbo.	Pr. 100	e _K	hoter	Anb	28
5.3. Test Procedure 5.4. Test Data	, , , , , , , , , , , , , , , , , , ,	Hupore,	Anu		potek	- Anbor	28
5.4. Test Data	Yun Viel		te _K Vu	00,	b. hotel	····odna	28
6. 6DB Occupy Bandwidth Test	Anbo		novek-	Kupo _{fe} ,	Anv		32
6.1. Test Standard and Limit	, propo	200. P.			4,000	. A	32
6.2. Test Setup 6.3. Test Procedure	, eV	HOOFE IN	Anbo	16.	40K	pofe,	32
6.3. Test Procedure	10/6	-botek	- Kupore	An		- Hotek	32
6.4. Test Data	Vpor	All otok	10 am	P	ypo.	Novek	32
7. Power Spectral Density Test	Anhoten	Anbe		otek	Ropore	Vo.	38
7.1. Test Standard and Limit	, botek	AUPO,	P22			Anbo	38
7.2. Test Setup	br.,	, d	poter	Vup.		iek hap	38
7. Power Spectral Density Test	And		- abotek	Pupore	briss	- Ne)/o	38
7.4. Test Data	re _{je}	lpor.	by.	bo	ie. Vi	100	38
8. 100kHz Bandwidth of Frequency Band l	Edge Requi	irement	Anb.		pote _k	Pupora K	44
8.1. Test Standard and Limit	''''''''''''''''''''''''''''''''''''''	botek	Vupor.			Allpoter	44
7.4. Test Data 8. 100kHz Bandwidth of Frequency Band I 8.1. Test Standard and Limit	Anbor	by.	ok <u>"""</u>	ote.	Ann	- Note	44
8.3. Test Procedure	Aupoter.	Anu		npotek	Anbors	Y 211.	44
8.4. Test Data		ek An	DO. 1	x. rotek	, dodna	S. Vup.	44
9. Antenna Requirement 9.1. Test Standard and Requirement	ok.	ndrek	Kepoter.	Ann	8/4	oote ^k p	53
9.1. Test Standard and Requirement	~ An	- Otek	Amotek	Aupo	rok bu	-potek	53

Shenzhen Anbotek Compliance Laboratory Limited FCC ID:2AIOHHT0704W08 Page 3 of 62 Report No.: SZAWW181025005-02

9.2. Antenna Connected Construction	16K	*upoter.	Anu	hotek	
APPENDIX I TEST SETUP PHOTOGRAPH	Vo	botek	Anbore	Vu., Vek	54
APPENDIX II EXTERNAL PHOTOGRAPH	'po.	bi. motel	k anbot	And	56
APPENDIX III INTERNAL PHOTOGRAPH					60

TEST REPORT

Applicant : General Procurement, Inc

Manufacturer : Shen Zhen Cheng Fong Digital-Tech Limited

Product Name : Hyundai Koral 7W4

Model No. : Koral 7W4

Trade Mark : Hyundai

Rating(s) Input: DC 5V, 2A(Via adapter Input: AC 100~240V, 50/60Hz, Max: 0.35A;

with DC 3.7V, 2400mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test	Oct. 10~Dec. 07, 2018
Compliance Labo	Anbotek Anbotek Anbotek Anbotek Anbotek
K Ambote &	olivay larg
Prepared by	S Andrew Andrew Andrew Andrew
*Approved	(Engineer / Oliay Yang)
Anbotek Anbo	Anbotek Anbotek
	Snavy Mery
Reviewer	Joseph Anbotek Anbr Stung To March Minorek
	(Supervisor / Snowy Meng)
	Sally Zhang
Approved & Authorized Signer	Anbotek Anbotek Anbotek Anbotek
Anbore And abotek Anh	(Manager / Sally Zhang)
	Thoter And Lok hotek Anbote Ant tek abot

1. General Information

1.1. Client Information

(0	Applicant	:	General Procurement, Inc
625	Address	:	800 E Dyer Road , Santa Ana, California, United States 92705
	Manufacturer	:	Shen Zhen Cheng Fong Digital-Tech Limited
0	Address	÷	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua, Shen Zhen, China
O'	Factory	:	Shen Zhen Cheng Fong Digital-Tech Limited
P	Address	:	Building A, ChengFong Industrial Area, Huaxing road, Dalang, Longhua,
			Shen Zhen, China

1.2. Description of Device (EUT)

	b D. *			My My My				
0	Product Name	•	Hyundai Koral_7W4	nbotek Anbotek Anbotek Anbotek An				
X	Model No.	:	Koral_7W4	Anbotek Anbotek Anbotek Anbotek				
	Trade Mark	•	Hyundai	Anbotek Anbotek Anbotek Anbotek				
1/4	Test Power Supply	:	AC 240V, 60Hz for adapter	/ AC 120V, 60Hz for adapter/ DC 3.7V Battery inside				
0	Test Sample No.		S1(Normal Sample), S2(En	S1(Normal Sample), S2(Engineering Sample)				
3		Number : Modul	Operation Frequency:	802.11b/ g/ n(HT20) 2412-2462MHz				
			Number of Channel:	11 Channels for 802.11b/ g/ n(HT20)				
2	Product Description		Modulation Type:	802.11b CCK; 802.11g/n OFDM				
o [*]			Antenna Type:	PIFA Antenna				
10			Antenna Gain(Peak):	2.5 dBi				
	K//	(%	WO. No.	10.				

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2) This report is for Wifi 2.4G module.

1.3. Auxiliary Equipment Used During Test

Adapter	:	Manufacturer: Shenzhen Jihongda Powe	er Co., Ltd.	botek
		M/N: JHD-AP013U-050200BB-B	abotek Anbot k	"Otek
		Input: 100-240V~ 50/60Hz, 0.35A		And
		Output: DC 5V, 2000mA	An tek anbotek	Aupor

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

D'	Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)	
P	802.11b	1 to 11	k 1 botek	CCK	DBPSK	M1.0	

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)	
802.11b	1 to 11	1, 6, 11	CCK	DBPSK	nek 1.0 mbo	
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0	
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5	

POWER LINE CONDUCTED EMISSION TEST:

The EUT was tested with the following mode

EUT configure mode	Test Mode
ofek Anbote And	Keeping TX mode

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)	
802.11b	1 to 11	1, 11	CCK	DBPSK	Anbotan	
802.11g	1 to 11	M1, 11	OFDM	BPSK	6.0	
802.11n HT20	1 to 11	1, 11	OFDM	BPSK	6.5	

ANTENNA PORT CONDUCTED MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	otek 1 to 11 hote	1, 6, 11	CCK	DBPSK	otek 1.0 mbote
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5

1.5. List of channels

	- OF		V 140"	D'1.	60.7	~~~	- N	270
V	Channel	Freq.	Channel	Freq.	Channel	Freq.	Channel	Freq.
		(MHz)		(MHz)		(MHz)		(MHz)
0	01 And	2412	04	2427	07	2442	10	2457
	02	2417	05	2432	08	2447	bote 11 Ar	2462
Š	03	2422	06	2437	09	2452	hotel	

1.6. Description Of Test Setup

CE

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1. botek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 05, 2018	1 Year
2.00	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 19, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 19, 2018	1 Year
10.	Horn Antenna	A-INFO	LB-180400-KF	J211060628	Nov. 20, 2018	1 Year
ATI.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	otek N/A Anbot	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	IVYTECH	IV3605	1804D360510	Apr. 02, 2018	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	Nov. 01, 2018	1 Year

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Test Item	Result
Antenna Requirement	PASS
Conducted Emission	PASS
Spurious Emission	PASS
Conducted Peak Output Power	PASS
6dB Occupied Bandwidth	PASS
Power Spectral Density	PASS
Band Edge	PASS
	Antenna Requirement Conducted Emission Spurious Emission Conducted Peak Output Power 6dB Occupied Bandwidth Power Spectral Density

3. Conducted Emission Test

3.1. Test Standard and Limit

	T.	Maximum RF	Line Voltage (dBuV)	
	Frequency	Quasi-peak Level	Average Level	
Γest Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
	500kHz~5MHz	56	46	
	5MHz~30MHz	60	50 botto	

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

Test Site: 1# Shielded Room Operating Condition: Keeping TX Mode

Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.: 24.1°C Hum.: 40%

Test Site: 1# Shielded Room Operating Condition: Keeping TX Mode

Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

Tem.: 24.1°C Hum.: 40%

Test Site: 1# Shielded Room Operating Condition: Keeping TX Mode

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 24.1°C Hum.: 40%

Test Site: 1# Shielded Room Operating Condition: Keeping TX Mode

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 24.1°C Hum.: 40%

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.2	209 and 15.205	Am	Anbotek P	"upo, stek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	obotek - Anbo	re Pur	300
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Ar	pore, Aug	30
	1.705MHz-30MHz	30	Anbatek	Aupor P	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3
	88MHz~216MHz	150	43.5	Quasi-peak	3 otek
	216MHz~960MHz	200	46.0	Quasi-peak	a subotek
	960MHz~1000MHz	500	54.0	Quasi-peak	otek 3 nobo
	Above 1000MHz	500	54.0	Average	3
	AUOVE TOUDIVITIZ	botek - Anbot	74.0	Peak	3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for

maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

All the modes have been tested, only the worst mode(802.11 b low channel) was recorded in the report.

Test Results (30~1000MHz)

Job No.: SZAWW181025005-01 Temp.(°C)/Hum.(%RH): 24.6°C/53%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: CH01 Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW181025005-01 Temp.(°C)/Hum.(%RH): 24.6°C/53%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: CH01 Polarization: Vertical

Test Results (Above 1000MHz)

Test Mode:	802.11b Mod	e		Test	channel: Lowe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	40.28	34.13	6.61	34.09	46.93	74.00	-27.07	poter V
7236.00	34.21	37.14	7.74	34.51	44.58	74.00	-29.42	Anbore
9648.00	32.71	39.35	9.26	34.80	46.52	74.00	-27.48	V
12060.00	tek *	otek A	Upor b	mbotek	Anbotek	74.00	Anbotek	V
14472.00	wotel *	nbotek	Anbote	An abotek	Anborek	74.00	k Anbot	V
16884.00	*	Anbotek	Anbore	, nbot	ek Aupoli	74.00	otek An	otek
4824.00	38.95	34.13	6.61	34.09	45.60	74.00	-28.40	Anb H dnA
7236.00	33.96	37.14	7.74	34.51	44.33	74.00	-29.67	PH.
9648.00	32.29	39.35	9.26	34.80	46.10	74.00	-27.90	H
12060.00	*	nbotek	Anboto	Ann	Anbotek	74.00	k abot	Н Ж
14472.00	*	Anbotek	Anbotte	Arrabot	K Anbote	74.00	fok val	ote ^K H
16884.00	* * * *	Anbotek	Aupor	rek si	otek Ant	74.00	stek.	nb H
10.5	-00-		A	verage Valu	e		NAV.	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	29.37	34.13	6.61	34.09	36.02	54.00	-17.98	ote V
7236.00	23.08	37.14	7.74	34.51	33.45	54.00	-20.55	V
9648.00	23.06	39.35	9.26	34.80	36.87	54.00	-17.13	V
12060.00	*	ek A	potek Ar	poter	inpo potek	54.00	Aupote.	V
14472.00	* 4,000	otek A.	Anbotek	Anboten	Ann	54.00	Vupor	V
16884.00	poter * An	porotek	Anbotek	Anbote	k And hotel	54.00	Pupor	V
4824.00	28.49	34.13	6.61	34.09	35.14	54.00	-18.86	H
7236.00	22.54	37.14	7.74	34.51	32.91	54.00	-21.09	H
9648.00	22.04	39.35	9.26	34.80	35.85	54.00	-18.15	H
12060.00	* *	rek bu	abotek	Anbotek	Anbo	54.00	Anboten	Н
14472.00	otek * An	Do.	nbotek	Anbotek	Anbe	54.00	Anbote	н У
16884.00	nbote*	Vupo.	Anbotek	Anbote	Aug	54.00	CER AND	Н

Test Results (Above 1000MHz)

Test Mode:	802.11b Mod	e		Test	channel: Mide	lle		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4874.00	39.34	34.35	6.67	34.09	46.27	74.00	-27.73	botek V
7311.00	34.28	37.21	7.77	34.53	44.73	74.00	-29.27	AnbVel
9748.00	33.73	39.45	9.33	34.80	47.71	74.00	-26.29	V
12185.00	tek *	otek A	upoter P	modek	Anbotek	74.00	Amabotek	V
14622.00	*	nbotek	Aupoten	Anhotek	Anbotek	74.00	k abot	v V
17059.00	**	Anbotek	Anbore.	And	ek Anbot	74.00	Yek by	ooteV
4874.00	39.82	34.35	6.67	34.09	46.75	74.00	-27.25	Anb Hely
7311.00	32.93	37.21	7.77 And	34.53	43.38	74.00	-30.62	Ho
9748.00	33.62	39.45	9.33	34.80	47.60	74.00	-26.40	H
12185.00	*	botek	Anbotek	Anbo	Anbotek	74.00	Anb hot	H H
14622.00	*	Anbotek	Anbotek	Aupo	ek anbote	74.00	Pur Pur	H ^{lay} o
17059.00	Anbo*	Anbotek	Anbotes	Aupo	otek Ant	74.00	tek Mu	"M
	WO.	80	A	verage Valu	e	- V	- 010	201
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4874.00	30.82	34.35	6.67	34.09	37.75	54.00	-16.25	, vek V
7311.00	23.02	37.21	7.77	34.53	33.47	54.00	-20.53	V
9748.00	23.28	39.45	9.33	34.80	37.26	54.00	-16.74	V
12185.00	*100101	ok bun	potek Ar	botek	inbore A	54.00	Anbotok	V
14622.00	* 1/100	rek bu	nbotek	Anbotek	Aupo	54.00	Anboten	V
17059.00	poter * An	Dore Stek	Anbotek	Anbotek	Anbo	54.00	Anbote	V
4874.00	30.47	34.35	6.67	34.09	37.40	54.00	-16.60	H
7311.00	22.38	37.21	7.77	34.53	32.83	54.00	-21.17	H
9748.00	23.61	39.45	9.33	34.80	37.59	54.00	-16.41	Aupor
12185.00	* Anbot	er. Vu	notek	Anbotek	Anbore	54.00	Anbotek	H
14622.00	otek * An	pote.	anbotek	Anbotek	Anbore	54.00	Anboto	Н
17059.00	abote*	Aupoter	Ann stek	Anbotel	Anboro	54.00	V 101	Н

Test Results (Above 1000MHz)

Test Mode:	802.11b Mod	e	123	Test	channel: High	iest		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	44.86	34.57	6.74	34.09	52.08	74.00	-21.92	boteV
7386.00	34.95	37.29	7.80	34.55	45.49	74.00	-28.51	AnbVek
9848.00	37.02	39.55	9.41	34.81	51.17	74.00	-22.83	Vool
12310.00	*	otek p	upotek P	"upor	Abotek .	74.00	Aupo	V
14772.00	*	wotek.	Anbotek	Vupor rek	An abotek	74.00	Anbo	e ^V V
17234.00	nbote * P	inn	Anbotek	Anbor	ek spot	74.00	Anbo	V
4924.00	44.17	34.57	6.74	34.09	51.39	74.00	-22.61	HK
7386.00	33.86	37.29	7.80	34.55	44.40	74.00	-29.60	Anbu H
9848.00	33.19	39.55	9.41	34.81	47.34	74.00	-26.66	H
12310.00	tek * Anb	Yes V	lon tek	anbotek	Anbote	74.00	Anbotek	$H^{\lambda n_k}$
14772.00	hotek *	obotek	Anbu	nbotek	Anbote	74.00	Anbot	Н
17234.00	**	Anbotek	Anbo	, nbot	K Aupore	74.00	tek vu	o ^{tek} H
		, A(A	verage Valu	e		1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	35.78	34.57	6.74	34.09	43.00	54.00	-11.00	V
7386.00	24.87	37.29	7.80	34.55	35.41	54.00	-18.59	, tekV
9848.00	25.52	39.55	9.41	34.81	39.67	54.00	-14.33	V
12310.00	*	Anbo	ek nbo	iek Wur	Or Vin	54.00	botek	V tel
14772.00	*	Aup	otek or	potek	inpose b	54.00	Anbotek	V
17234.00	ek * Anbo	ie, Vu	otek (s.	Anbotek	Anbote	54.00	Anbotek	Vnbs
4924.00	34.54	34.57	6.74	34.09	41.76	54.00	-12.24	Н Р
7386.00	23.25	37.29	7.80	34.55	33.79	54.00	-20.21	o ^{tek} H
9848.00	22.45	39.55	9.41	34.81	36.60	54.00	-17.40	\mathbf{H}^{odn}
12310.00	* * notek	Anbot	Sk Vupo,	rek by.	obotek A	54.00	-otek	AnH tek
14772.00	*	ek Anl	potek An	bor b	abotek	54.00	Anna	Habo
17234.00	*	otek	unbotek	Anbor	Anbotek	54.00	And	Н

Remark:

- 1. During the test, pre-scan the 802.11b, g, n(HT20N) mode, and found the 802.11b mode is worse case, the report only record this mode.
- 2. Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Radiated Band Edge:

Test Mode:	802.11b Mod	e		Test	channel: Low	est		
			:	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	52.27	29.15	3.41	34.01	50.82	74.00	-23.18	boteH
2400.00	61.49	29.16	3.43	34.01	60.07	74.00	-13.93	AnbHek
2390.00	54.00	29.15	3.41	34.01	52.55	74.00	-21.45	Voote
2400.00	63.46	29.16	3.43	34.01	62.04	74.00	-11.96	Vanto
			A	verage Valu	e		233	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	38.85	29.15	3.41	34.01	37.40	54.00	-16.60	Hote
2400.00	47.21	29.16	3.43	34.01	45.79	54.00	-8.21	H
2390.00	40.72	29.15	3.41	34.01	39.27	54.00	-14.73	V
2400.00	48.39	29.16	3.43	34.01	46.97	54.00	-7.03	oteNV

T () ()	000 111 34 1			T	1 1 1 1 1 1	4		
Test Mode: 3	802.11b Mode			Test	channel: High	nest		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	53.19	29.28	3.53	34.03	51.97	74.00	-22.03	nboH ^k
2500.00	48.82	29.30	3.56	34.03	47.65	74.00	-26.35	An Hote
2483.50	55.58	29.28	3.53	34.03	54.36	74.00	-19.64	Vnb
2500.00	51.45	29.30	3.56	34.03	50.28	74.00	-23.72	6 V
			A	verage Valı	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	39.31	29.28	3.53	34.03	38.09	54.00	-15.91	H
2500.00	35.30	29.30	3.56	34.03	34.13	54.00	-19.87	Н
2483.50	41.31	29.28	3.53	34.03	40.09	54.00	-13.91	vek V
2500.00	37.20	29.30	3.56	34.03	36.03	54.00	-17.97	V

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Radiated Band Edge:

Test Mode:	802.11g Mod	e		Test	channel: Low	est		
]	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	51.35	27.53	5.47	33.92	50.43	74.00	-23.57	boteH
2400.00	60.27	27.55	5.49	29.93	63.38	74.00	-10.62	AnbHek
2390.00	53.02	27.53	5.47	33.92	52.10	74.00	-21.90	Voote
2400.00	61.99	27.55	5.49	29.93	65.10	74.00	-8.90	$V_{\mathbb{A}^{n/2}}$
	153		A	verage Valu	e		233	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	38.20	27.53	5.47	33.92	37.28	54.00	-16.72	Hotel
2400.00	46.46	27.55	5.49	29.93	49.57	54.00	-4.43	H
2390.00	40.00	27.53	5.47	33.92	39.08	54.00	-14.92	V
2400.00	47.56	27.55	5.49	29.93	50.67	54.00	-3.33	oteNV

				D 1 17 1				
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	51.88	29.28	3.53	34.03	50.66	74.00	-23.34	nbo'H ^k
2500.00	47.81	29.30	3.56	34.03	46.64	74.00	-27.36	Hote
2483.50	54.08	29.28	3.53	34.03	52.86	74.00	-21.14	V
2500.00	50.26	29.30	3.56	34.03	49.09	74.00	-24.91	6 V
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	38.52	29.28	3.53	34.03	37.30	54.00	-16.70	Anba H
2500.00	34.68	29.30	3.56	34.03	33.51	54.00	-20.49	Ĥ
2483.50	40.44	29.28	3.53	34.03	39.22	54.00	-14.78	V
2500.00	36.55	29.30	3.56	34.03	35.38	54.00	-18.62	V

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Radiated Band Edge:

Test Mode:	802.11n20 M	ode		Test	channel: Low	est		
]	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	50.84	27.53	5.47	33.92	49.92	74.00	-24.08	bo _{tek}
2400.00	59.58	27.55	5.49	29.93	62.69	74.00	-11.31	AnbHek
2390.00	52.46	27.53	5.47	33.92	51.54	74.00	-22.46	Voote
2400.00	61.16	27.55	5.49	29.93	64.27	74.00	-9.73	VAND
			A	verage Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	37.83	27.53	5.47	33.92	36.91	54.00	-17.09	Hote
2400.00	46.04	27.55	5.49	29.93	49.15	54.00	-4.85	H
2390.00	39.59	27.53	5.47	33.92	38.67	54.00	-15.33	v V
2400.00	47.10	27.55	5.49	29.93	50.21	54.00	-3.79	oteVV

Test Mode: 802.11n20 Mode					Test channel: Highest				
				Peak Value	;				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2483.50	51.15	29.28	3.53	34.03	49.93	74.00	-24.07	$^{nbo}\mathbf{H}^{k}$	
2500.00	47.23	29.30	3.56	34.03	46.06	74.00	-27.94	Hotel	
2483.50	53.24	29.28	3.53	34.03	52.02	74.00	-21.98	V	
2500.00	49.59	29.30	3.56	34.03	48.42	74.00	-25.58	V	
			A	verage Val	ue	1.01			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2483.50	38.07	29.28	3.53	34.03	36.85	54.00	-17.15	And H	
2500.00	34.33	29.30	3.56	34.03	33.16	54.00	-20.84	H	
2483.50	39.95	29.28	3.53	34.03	38.73	54.00	-15.27	V	
2500.00	36.18	29.30	3.56	34.03	35.01	54.00	-18.99	V	
0/2	- 24	~0 ²	0.11		107	100	1	130	

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.2	247 (b)(3)	Ann	Anbotek	Anbor	VI.
Test Limit	30dBm	Anbotek .	Anbore.	Ann	Anbotek	Anbor	k- b

5.2. Test Setup

5.3. Test Procedure

- 1. The Transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the power value.
- 3. Repeat above procedures on all channels needed to be tested.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.4. Test Data

Test Item :	Max. peak output power	Test Mode :	CH Low ~ CH High
Test Voltage :	DC 3.7V Battery inside	Temperature :	24 °C
Test Result :	PASS	Humidity :	55%RH

Test Channel	Frequency (MHz)	Maximum Peak Conducted Output Power (PK) (dBm)	Limit dBm	Results
oten Anbo	k abotek	TX 802.11b Mode	Aupor	bu. Potek
CH01	2412	9.29	30	PASS
CH06	2437	9.18	30	PASS
CH11	2462	9.56	Anbotek 30 Anbot	PASS
Anbotek	Anbox All	TX 802.11g Mode	anbotek Ant	Ofe. Vin
CH01	2412	8.00	30	PASS
CH06	2437	8.36	30	PASS
CH11	2462	8.10	30	PASS
Anboatek	hotek Anbot	TX 802.11n(20) Mode	bo tek abote	K Anbote.
CH01	2412	7.16	30	PASS
CH06	2437	7.35	30	PASS
CH11	2462	6.64	30	PASS

Note: For power test the duty cycle is 100% in continuous transmitting mode. Please see the plot of next page

Duty Cycle

802.11b mode

802.11g mode

802.11n(HT20) mode

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.2	247 (a)(2)	An botek	Anbotek	Anbo	p.
Test Limit	>500kHz	Anbotek	Anboro	All. botek	Anbotek	Anboatek	

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW= 100kHz, VBW\ge23*RBW =300kHz

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item	:	6dB Bandwidth	Test Mode :	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature :	24°C
Test Result	:	PASS	Humidity :	55%RH

Mode	Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
	Low	2412	10.10	anbotek Anb	PASS
802.11b	Middle	2437	10.11	>500	PASS
	High	2462	10.10	Air	PASS
k hotek	Low	2412	16.42	K MOTEK	PASS
802.11g	Middle	2437	16.40	>500	PASS
	High	2462	16.38	otek Anbo	PASS
Anbotek Ar	Low	2412	17.60	Anbotek Anbo	PASS
802.11n20	Middle	2437	17.64	>500	PASS
	High	2462	17.63	Potek	PASS

802.11b mode: Lowest

802.11b mode: Middle

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Middle

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Middle

802.11n20 mode: Highest

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.	247 (e)	An botek	Anbotek	Anbo	2.
Test Limit	8dBm/3KHz	Anbotek	Anbote	Arr.	Anbotek	Anboatek	P

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item : Power Spectral Density Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 24 ℃

Test Result : PASS Humidity : 55%RH

Mode	Channel	Frequency (MHz)	PPSD (dBm/3KHz)	Limit (dBm/3KHz)	Results
lek Aupore	Low	2412	-17.020	8.00	PASS
802.11b	Middle	2437	-16.599	8.00	PASS
Anbotek A	High	2462	-16.363	8.00	PASS
Anbotek	Low	2412	-24.318	8.00	PASS
802.11g	Middle	2437	-23.149	8.00	PASS
tek Anbotek	High	2462	-24.012	8.00	PASS
botek Anbo	Low	2412	-24.425	8.00	PASS
802.11n20	Middle	2437	-24.900	8.00	PASS
Anbotek	High	2462	-23.557	8.00	PASS

802.11b mode: Lowest

802.11b mode: Middle

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Middle

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Middle

802.11n20 mode: Highest

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
 - 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item : Band edge : CH Low ~ CH High Test Voltage : DC 3.7V Battery inside : Temperature : 24°C Test Result : PASS : Humidity : 55%RH

Mode	Frequency Band (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Results
002 111	2412	56.565	>20	PASS
802.11b	2462	58.182	>20	PASS
002.11	2412	48.664	>20	PASS
802.11g	2462	50.061	>20	PASS
002.11.20	2412	46.882	>20	PASS
802.11n20	2462	49.861	>20	PASS

802.11b mode: Lowest

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Highest

Conducted Emission Method

802.11b mode: Lowest

802.11b mode: Middle

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Middle

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Middle

802.11n20 mode: Highest

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished
	by the responsible party shall be used with the device. The use of a permanently
	attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the
	manufacturer may design the unit so that a broken antenna can be replaced by the user, but
Requirement	the use of a standard antenna jack or electrical connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.
	Point-to-point operations may employ transmitting antennas with directional gain greater
	than 6dBi provided the maximum conducted output power of the intentional radiator is
	reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

9.2. Antenna Connected Construction

The antenna is a PIFA Antenna which permanently attached, and the best case gain of the antenna is 2.5 dBi It complies with the standard requirement.

Code: AB-RF-05-a

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

Code: AB-RF-05-a

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited Tel:(86)755-26066440 Fax:(86)755-26014772 www.anbotek.com

-- End of Report ----