



## Tema 3-1: Representación de los Problemas del Mundo Real

Gonzalo Cerruela ISCBD



#### **Objetivos:**

- Los Problemas del Mundo real: la abstracción, representación, análisis de los problemas.
- Los Modelos de Datos: modelos de datos y SGBD. El Modelo Entidad—Interrelación.
- El Modelo Entidad--Interrelación extendido (EE-R): tipos de interrelaciones jerárquicas. Sintaxis del Modelo EE--R. Ejemplos.
- Aplicaciones del modelo EE-R. El catastro Municipal



#### Bibliografía

- 1. Bases de Datos: Desde Chen hasta Codd con Oracle-i, Luque Ruiz, I., Gómez-Nieto, M.A., López Espinosa, E., Cerruela García, G., Ra-Ma, 2001. (Capítulo 2)
- C. BATINI, S. CERI, B. NAVATHE (1994). Diseño Conceptual de Bases de Datos. Un Enfoque de Entidades Interrelaciones. Addison-Wesley/Maz de Santos. Traducción de Conceptual Database Design: An EntityRelationship Approach 1992. (Capítulos 2 y 3)
- 2. C.J. Date (2001). Introducción a los Sistemas de Bases de Datos, Addison-Wesley, 2001. (Capítulo 12)
- 1. R. A. Elmasri, S. B. Navathe. Fundamentos de Sistemas de Bases de Datos, Addison-Wesley, 2002. (Capítulo 3)



#### Introducción

#### El Modelo de Datos

- Es una unidad de abstracción mediante la cual puede describirse un fenómeno real o abstracto.
- Mediante el uso de un modelo de datos se describen:
  - las propiedades que caracterizan el fenómeno y que lo diferencian de otros fenómenos que se puedan o no describir
  - las relaciones entre estas propiedades, y cómo las propiedades y las relaciones pueden evolucionar con el tiempo.
- En definitiva, mediante un modelo de datos se describen las características estáticas y dinámicas de un fenómeno.

Un modelo de datos es, por tanto, un conjunto de reglas de acuerdo a las cuales puede ser descrito un fenómeno.



#### LOS PROBLEMAS DEL MUNDO REAL

- •Mediante el uso de un modelo de datos puede ser representado cualquier *problema* sobre el que se desea obtener información para su conocimiento y/o solución.
- •El primer paso es la determinación de los límites del problema.
- •Este proceso de simplificación es innato al proceso mental del ser humano y está basado en la capacidad de abstracción.



#### La abstracción

- La abstracción es la capacidad mediante la cual una serie de objetos se categorizan en un nuevo objeto mediante una función de pertenencia.
  - Al nuevo objeto se le denomina clase o tipo de objeto, y todos los elementos categorizados en esta clase tienen propiedades comunes, las cuales caracterizan la clase.
- En la definición de los datos, la abstracción es utilizada de dos formas: generalización y agregación.





- La generalización es la abstracción por la cual un conjunto de clases de objetos puede ser visto como una nueva clase de objetos más general.
  - La generalización de objetos simples en una clase (por ejemplo, cada una de las sillas en la clase Silla) es denominada clasificación, y se les denomina especialización e instanciación a los procesos inversos a la generalización y clasificación.
- La agregación, por otra parte, es la capacidad de considerar un objeto basándose en los elementos que lo constituyen.
  - El proceso inverso a la agregación se denomina *refinamiento*, mediante el cual se puede representar a aquellos objetos simples o propiedades que caracterizan a una clase de objetos.
- La generalización puede asociarse con el concepto es\_un ...
- La agregación puede asociarse con el concepto parte\_de ...



# Representación de los Problemas del Mundo Real

- La representación de un problema puede llevarse a cabo haciendo uso de la abstracción de forma ascendente o descendente en complejidad (normalmente se utilizan las dos).
- En la descripción de un problema es necesario también representar las interdependencias entre los elementos del mismo.





#### Análisis de los problemas

De forma general, la representación de un problema requiere el seguimiento de los siguientes pasos:

- La definición del problema, mediante una descripción simple.
- 1. La *definición de la arquitectura del problema*, mediante una descripción de las *partes* importantes del sistema.
- 1. La definición de la estructura del problema, mediante la descripción de los elementos del sistema.
  - 1. definición del objeto
  - 2. medida del objeto
  - 3. relaciones entre los objetos
  - 4. restricciones



#### Modelos de datos y Sistemas de Gestión de Bases de Datos

•Cada SGBD está basado en el uso de un modelo de datos y en el uso de su teoría y, por tanto, heurística, para la descripción y manipulación de los datos.

| SGBD                                                       | <b>Modelo Datos</b>    |
|------------------------------------------------------------|------------------------|
| Jerárquicos                                                | Jerárquicos            |
| En Red                                                     | plex                   |
| Relacionales                                               | Relacional             |
| Orientados a<br>Objeto<br>(O2,Gemstone,G-<br>Base,Statice) | Orientados a<br>Objeto |



#### EL MODELO ENTIDAD-INTERRELACIÓN

El *Modelo Entidad-Interrelación* (E-R) fue propuesto por *Peter Chen* para la representación conceptual de los problemas y como un medio para representar la visión de un sistema de forma global.

- Permiten la representación de cualquier tipo de sistema y a cualquier nivel de abstracción o refinamiento.
- Está soportado en la representación de los datos haciendo uso de grafos y de tablas.
- Son representados los elementos que forman parte del sistema y las relaciones existentes entre ellos.



#### Conceptos básicos:

**Conjunto:** se denomina *conjunto*, a la agregación de una serie de objetos elementales mediante una función de pertenencia.

- No es importante el orden de los elementos dentro del conjunto, ni duplicación de los mismos.
- Así, el conjunto {1, 2, 3} es igual al conjunto {2, 2, 1, 3, 1}.

**Relación:** se denomina *relación* a un conjunto que representa una correspondencia entre dos o más conjuntos.

- El orden de la relación es importante, por lo que el par <c1, c2> no tiene por qué ser igual al par <c2, c1>.
- Las relaciones pueden ser binarias, ternarias o n-arias, y pueden ser definidas como el *producto cartesiano* de los conjuntos que intervienen en la relación (*R* ⊆ *C1* ×*C2* ×... *Cn*).



**Intención y extensión:** tanto los conjuntos como las relaciones pueden ser descritos en términos de *intención* y *extensión*.

- ✓ La intención es la descripción del tipo o clase de objeto (conjunto o relación)
- ✓ La extensión es la descripción de los elementos individuales o instancias de objetos (los elementos del conjunto).

Consideremos, por ejemplo, los conjuntos C1 y C2

$$C1 = \{c \mid c = letra\}\ C2 = \{c \mid c = 0,1\}$$

$$R \subseteq C1 \times C2$$

Esta definición describe las propiedades intencionales de la relación *R*, que consiste en un conjunto cuyos elementos están formados por la agregación de una letra y un cero o un uno.

$$C3 = \{ < a, 1>, < b, 0>, < c, 1> \}$$

Representa una extensión de la relación *R* 



**Dominio:** se denomina *dominio* a los conjuntos homogéneos; es decir, a aquellos conjuntos cuyos elementos son homogéneos.

Un dominio, en términos de abstracción, es una especialización de un conjunto

Ej: el conjunto de los números comprendidos entre el 10 y el 99 (los números de dos cifras), es un dominio del conjunto infinito de los números enteros

**Atributo:** se denomina *atributo* de un dominio a la intención de ese dominio, y el valor del atributo será la extensión del dominio.



Por ejemplo, el atributo *edad* considerado en un determinado problema en el que se trate la edad de una serie de objetos *Personas*, puede ser definido sobre la base del dominio de los números enteros de dos cifras.



**Entidad:** una *entidad* es un tipo de objeto (un conjunto) definido en base a la agregación de una serie de atributos.



Una entidad corresponde a la caracterización de objetos del mundo real, los cuales son definidos y diferenciados del resto de los objetos, sobre la base del conjunto de atributos que se agregan.

 Las entidades tienen, como los conjuntos, intenciones y extensiones.

#### Persona

Nombre Edad Ciudad Estado Civil José, 28, Madrid, casado

Antonio, 34, Lugo, soltero

Pedro, Córdoba, 25, soltero



Interrelación: la interpretación dada para las entidades puede ser igualmente propuesta para las interrelaciones.

✓ Así, una *interrelación* representa la relación existente entre entidades, denominándose *tipo de interrelación* a la intención de la relación existente entre dos tipos de entidad



Dueño de ...



✓ La extensión de un tipo de interrelación es denominada Conjunto de Interrelaciones y representa a cada una de las posibles correspondencias entre los conjuntos de entidades que intervienen en el tipo de interrelación.



## Entidades e Interrelaciones en el Modelo E-R

- En el modelo *E-R* se considera que una entidad es un objeto real o abstracto que cumple las siguientes propiedades:
  - 1. Tiene existencia propia.
  - 2. Es distinguible del resto de las entidades (objetos) que intervienen en el sistema.
  - 3. Las entidades de un mismo tipo están definidas en base a un mismo conjunto de atributos, cada uno de ellos definido en un mismo dominio.



Un tipo de interrelación es definido como una relación matemática entre *n* tipos de entidades. Así, el tipo de interrelación *R* puede ser definida como:

$$R = \{[e_1, e_2, ..., e_n] \mid e_1 \subseteq E_1, e_2 \subseteq E_2, ..., e_n \subseteq E_n\},\$$

donde  $E_1$ ,  $E_2$ , ...  $E_n$  son tipos de entidad que intervienen en el tipo de interrelación.

**Tipo de entidades fuertes**: cuya existencia no depende de la existencia de ningún otro tipo de entidad en la consideración del problema

Tipos de entidad En el modelo E-R Tipo de entidades débiles: cuya existencia depende de la existencia de un tipo de entidad fuerte.

**Debilidad por identificación**: por lo que una entidad débil no puede ser identificada (reconocida y diferenciada del resto de las entidades del mismo u otro tipo) a no ser que se identifique una entidad fuerte por cuya existencia está presente la debilidad.

**Debilidad por existencia**: por lo que una entidad débil puede ser identificada sin necesidad de identificar la entidad fuerte por la cual existe



### Cardinalidad de la Asignación





1:N







N:N



Nombre del tipo de entidad fuerte Nombre del tipo de entidad débil

significado o acción

Nombre del tipo de interrelación Nombre del tipo de interrelación



Figura . Esquemas simbólicos utilizados en el modelo E-R



### Ejemplo de un Diagrama E-R





# Descripción de los tipos de entidad e interrelación



- A los atributos que pueden tomar un conjunto de valores se les denomina *atributos múltiples*.
- Nombre único
- Se denomina identificador de un tipo de entidad al conjunto de atributos (tal vez uno sólo) que no toma el mismo valor para dos entidades diferentes del mismo tipo.

- Un atributo asociado a un tipo de interrelación tiene la función de caracterizar la relación entre dos entidades, aportando información a la correspondencia entre los tipos de entidad.



### **Ejemplo**





### Ejemplo (Refinando)









