

Análisis Predictivo

Final

Juan Ignacio Scorza

Profesores:

Ezequiel Martín Eliano Sombory Leonardo Andrés Caravaggio Francisco Valentini

2023 1Q

Presión Arterial alta

- 1 Observaciones generales
- 2 Nulls/Missings
- 3 Target y Correlaciones
- 4 Creacion de Variables/ Encoding

EDA

- 1 Observaciones generales
 - Creación del dataset ______
 - Alcance y limitaciones
 - Dimensiones: (4983, 27)
 - Procesamiento
 - Selección
 - Rename
 - Replace

EDA

2 Nulls / Missings

seqn	0
age	0
race_ethnicity	0
gender	0
education_child	3735
education_adult	1249
household_income	179
country_birth	0
energy_intake	0
DR1DRSTZ	0
sodium_prep	0
sodium_table	0
water_intake	0
alcohol_intake	0
energy_intake_dr2	0
sugar_intake	0
sodium_table_dr2	0
alcohol_intake_dr2	0
water_intake_dr2	0
weight	33
systolic_bp	0
diastolic_bp	0
total_percent_fat	2277
health_insurance	0
monthly_income	244
alcohol_ever	1155
alcohol_past_12mo	1551

- Education_gral
- household_income ---> media
- monthly_income ---> media
- weight --> media por edad
- total_percent_fat --> regresion x var relacionadas
- alcohol --> ceros.

3 Target y correlaciones

Número de filas con systolic_bp > 135: 1045 Número de filas con systolic_bp < 135: 3938

Se crea high_systolic_bp binaria

EDA

3 Target y Correlaciones

(correlación de la variable target con el resto de variables)

4

Creación de Variables/Encoding

Variables

Categóricas

```
race_ethnicity

country_birth

sodium_prep

sodium_table

sodium_table_dr2

health_insurance

alcohol_ever

alcohol_past_12mo
```

Categórica

Numérica

Creación de Variables/Encoding

Frequency Encoding race_ethnicity

Ordinal Encoding sodium_prep y alcohol_past_12mo

- 1 Particiones Utilizadas.
- 2 Métodos de Ajuste.
- 3 Modelos Utilizados.
- 4 Mejores Modelos.

Modelos Predictivos


```
from sklearn.model_selection import train_test_split

model_num_columns = df.select_dtypes(include=['float64', 'int64']).columns.to_list()
model_num_columns.remove('diastolic_bp')
model_num_columns.remove('systolic_bp')
model_num_columns.remove('high_systolic_bp')

X = df[model_num_columns]
Y = df['high_systolic_bp']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.20, random_state = 1704)
```

```
0.10

Test Size

0.15

0.20

Utilizados

0.30
```

Modelos Predictivos

2 Métodos de Ajuste

Blackbox optimization

from sklearn.model_selection import GridSearchCV

from skopt import BayesSearchCV

Modelos Predictivos

2 Métodos de Ajuste

```
from skopt import BayesSearchCV
from catboost import CatBoostClassifier
from sklearn.metrics import confusion_matrix, recall_score
from sklearn.model selection import train test split
# Definir los hiperparámetros a ajustar
param grid = {
    'iterations': (100, 1000),
    'depth': (3, 10),
    'learning rate': (0.01, 0.1, 'log-uniform')
# Crear el clasificador CatBoost
catboost = CatBoostClassifier(loss_function='Logloss', eval_metric='Accuracy', random_seed=1704)
# Crear el objeto BayesSearchCV
bayes_search = BayesSearchCV(catboost, param_grid, scoring='recall')
                                                                     cv=5, n_jobs=-1, refit=True)
# Ajustar el modelo con los datos de entrenamiento
bayes_search.fit(X_train, Y_train)
# Obtener las predicciones en el conjunto de prueba
y_pred = bayes_search.predict(X_test)
# Calcular la matriz de confusión
confusion = confusion_matrix(Y_test, y_pred)
# Calcular el recall del modelo
recall = recall_score(Y_test, y_pred)
# Calcular la accuracy del modelo
accuracy = accuracy_score(Y_test, y_pred)
# Imprimir la matriz de confusión y el recall
print("Matriz de Confusión:")
print(confusion)
print("Recall del modelo:", recall)
print("Accuracy del modelo:", accuracy)
print("best_params: ",bayes_search.best_params_)
```


3 Modelos Utilizados

Top 3 modelos

- 1. LGBM // bayes recall
- 2. RandomForest // bayes recall
- 3. Extra Trees // bayes recall

- 3 Modelos Utilizados
 - 3. Extra Trees Regressor

from skopt import BayesSearchCV

Accuracy

Best Params:

```
max_depth: 10
```

max_features: 1.0

min_samples_leaf: 1

min_samples_split: 10

n_estimators: 100

```
Matriz de Confusión:
[[749 48]
[125 75]]
Accuracy del modelo: 0.8264794383149449
Recall del modelo: 0.375
```


- 3 Modelos Utilizados
 - 2. RandomForest Regressor

from skopt import BayesSearchCV

Best Params:

```
max_depth: 19
min_samples_leaf: 1
min_samples_split: 10
n estimators: 10
```

```
Matriz de confusión:
[[740 57]
[123 77]]
Precisión: 0.8194583751253761
```


3 Modelos Utilizados

1. LGBM

from skopt import BayesSearchCV

Accuracy

Best Params:

colsample_bytree: 0.926055022505385

learning_rate: 0.299999999999993

max_depth: 7

min_child_samples: 21

min_child_weight: 9

n_estimators: 179

num_leaves: 25

reg_alpha: 0

reg lambda: 0

subsample: 0.8844228649546503

```
Matriz de Confusión:
```

[[706 91]

[113 87]]

Accuracy del modelo: 0.7953861584754263

Recall del modelo: 0.435

Muchas Gracias