Algoritmos Numéricos 2^a edição

Capítulo 7: Equações diferenciais ordinárias

Capítulo 7: Equações diferenciais ordinárias

- 7.1 Solução numérica de EDO
- 7.2 Métodos de Runge-Kutta
- 7.3 Métodos de Adams
- 7.4 Comparação de métodos para EDO
- 7.5 Sistemas de equações diferenciais ordinárias
- 7.6 Exemplos de aplicação: controle de poluição e deflexão de viga
- 7.7 Exercícios

Equações diferenciais ordinárias

- Ferramentas fundamentais para modelagem matemática de vários fenômenos físicos, químicos, biológicos etc.
- Fenômenos descritos em termos de taxa de variação.
- ullet Taxa de variação da corrente i em função do tempo t em circuito RL

$$\frac{di(t)}{dt} = \frac{V - i(t)R}{L},\tag{1}$$

onde V: tensão entre dois pontos do circuito, R: resistência e L: indutância.

- Equação diferencial ordinária de primeira ordem.
- Equação diferencial é ordinária porque corrente i é função apenas de uma variável independente, o tempo t.

Ordem de uma EDO

- Se função fosse definida em termos de duas ou mais variáveis, ter-se-ia uma equação diferencial parcial.
- Equação de Laplace

$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0.$$

- A EDO (1) é de primeira ordem, pois a derivada de maior ordem, di(t)/dt, é de ordem 1.
- \bullet Quando a equação contiver uma derivada de ordem n, ela é dita EDO de ordem n

$$L\frac{d^2i(t)}{dt^2} + R\frac{di(t)}{dt} + \frac{1}{C}i(t) = \frac{dV(t)}{dt}$$

é EDO de segunda ordem, sendo C a capacitância do circuito.

Solução de EDO

- Solução de EDO é uma função que satisfaz à equação diferencial.
- Também satisfaz certas condições iniciais na função.
- Resolver uma EDO, analiticamente, é encontrar uma solução geral contendo constantes arbitrárias.
- Determinar essas constantes de modo que a expressão combine com as condições iniciais.

Solução numérica de EDO

- Métodos analíticos são restritos apenas à algumas formas especiais de função.
- Nem toda EDO tem solução analítica.
- Métodos numéricos não possuem tal limitação.
- Solução numérica obtida como tabela de valores da função em vários valores da variável independente.
- Solução analítica é uma relação funcional.
- Praticamente, qualquer EDO pode ser resolvida numericamente.
- Se as condições iniciais forem alteradas então toda tabela deve ser recalculada.
- Métodos numéricos para solução de equações diferenciais ordinárias sujeitas às condições iniciais.

Problema de valor inicial

• Problema de valor inicial (PVI) de primeira ordem

$$\begin{cases} y' = f(x, y), \\ y(a) = \eta, \\ a \le x \le b \text{ e} - \infty \le y \le \infty. \end{cases}$$
 (2)

- Solução do PVI é uma função y = y(x) contínua e diferenciável que satisfaz a (2).
- Teorema 1 estabelece condições suficientes para existência de solução única do PVI.

Teorema de Lipschitz

Teorema 1 (Lipschitz) Seja f(x,y) uma função definida e contínua para todo (x,y) na região D definida por $a \le x \le b$ $e -\infty \le y \le \infty$, sendo a e b números finitos, e seja uma constante L tal que

$$||f(x,y) - f(x,y^*)|| \le L||y - y^*|| \tag{3}$$

seja válida para todo $(x,y), (x,y^*) \in D$. Então, para algum η , existe uma única solução y(x) do PVI (2), onde y(x) é contínua e diferenciável para todo $(x,y) \in D$.

- Inequação (3) conhecida como condição de Lipschitz.
- L: constante de Lipschitz.

Métodos numéricos para EDO

• Calcular uma aproximação y_i da solução exata $y(x_i)$ do PVI nos pontos

$$x_i = a + ih, \ h = \frac{b-a}{m}, \ i = 0, 1, 2, \dots, m,$$

onde m: número de subintervalos de [a,b] e h: incremento ou passo.

• Solução numérica do PVI é uma tabela contendo os pares (x_i, y_i) , sendo

$$y_i \approx y(x_i)$$
.

Método de Euler

 \bullet Expansão da solução exata y(x), em série de Taylor, em torno do valor inicial x_0

$$y(x_0 + h) = y(x_0) + hy'(x_0) + \frac{h^2}{2}y''(x_0) + \frac{h^3}{6}y'''(x_0) + \dots$$

• Truncando a série após derivada primeira, sendo $x_1 = x_0 + h$, y_1 : uma aproximação de $y(x_1)$ e y' = f(x,y)

$$y_1 = y_0 + hf(x_0, y_0).$$

ullet Sucessivas aproximações y_i de $y(x_i)$ obtidas pela fórmula de recorrência

$$y_{i+1} = y_i + h f(x_i, y_i)$$
. (4)

- Fórmula conhecida como método de Euler.
- Leonhard Euler propôs este método em 1768.

Algoritmo de Euler para solução de problema de valor inicial

```
Algoritmo Euler
{ Objetivo: Resolver um PVI pelo método de Euler }
parâmetros de entrada a, b, m, y0
 { limite inferior, limite superior, número de subintervalos e valor inicial }
parâmetros de saída VetX, VetY { abscissas e solução do PVI }
 h \leftarrow (b-a)/m; x \leftarrow a; y \leftarrow y0
 Fxy \leftarrow f(x,y)  { avaliar f(x,y) \text{ em } x = x_0 \text{ e } y = y_0 }
  VetX(1) \leftarrow x; VetY(1) \leftarrow y
 para i \leftarrow 1 até m faça
   x \leftarrow a + i * h
   y \leftarrow y + h * Fxy
    Fxy \leftarrow f(x,y) { avaliar f(x,y) em x = x_i e y = y_i }
   escreva i, x, y, Fxy
    VetX(i+1) \leftarrow x; VetY(i+1) \leftarrow y
 fimpara
fimalgoritmo
```

||←

% Os parametros de entrada

Exemplo de uso do algoritmo

Exemplo 1 Calcular a solução do PVI

$$y' = x - 2y + 1$$
, com $y(0) = 1$, (5)

no intervalo [0, 1], com m = 10 subintervalos, utilizando o algoritmo de Euler.

```
a = 0
b = 1
m = 10
y0 = 1
% produzem os resultados
            Metodo de Euler
                              f(x,y)
          X
                     У
        0.00000
                  1.00000
                            -1.00000
    0
        0.10000
                  0.90000
                            -0.70000
        0.20000
                  0.83000
                            -0.46000
        0.30000
                  0.78400
                            -0.26800
        0.40000
                  0.75720
                            -0.11440
    5
        0.50000
                  0.74576
                             0.00848
        0.60000
                  0.74661
                             0.10678
    6
        0.70000
                             0.18543
                  0.75729
    8
        0.80000
                   0.77583
                             0.24834
        0.90000
    9
                   0.80066
                             0.29867
        1.00000
   10
                   0.83053
                             0.33894
```

©2009 FFCf

Comparação da solução pelo método de Euler

• Solução exata do PVI (5)

$$y(x) = \frac{1}{4}(3e^{-2x} + 2x + 1).$$

i	x_i	y_i	$ y_i - y(x_i) $		i	x_i	y_i	$ y_i - y(x_i) $
0	0,0	1,0000	0,0000		0	0,0	1,0000	0,0000
1	0,1	0,9000	0,0140		10	0,1	0,9128	0,0012
2	0,2	0,8300	0,0227		20	0,2	0,8507	0,0020
3	0,3	0,7840	0,0276		30	0,3	0,8091	0,0025
4	0,4	0,7572	0,0298		40	0,4	0,7843	0,0027
5	0,5	0,7458	0,0301		50	0,5	0,7731	0,0028
6	0,6	0,7466	0,0293		60	0,6	0,7732	0,0027
7	0,7	0,7573	0,0277		70	0,7	0,7823	0,0026
8	0,8	0,7758	0,0256		80	0,8	0,7990	0,0024
9	0,9	0,8007	0,0233		90	0,9	0,8217	0,0022
10	1,0	0,8305	0,0210		100	1,0	0,8495	0,0020
	(a) m	n = 10 - 10	$\rightarrow h = 0.1.$	'	(b)) <i>m</i> =	= 100 ->	h = 0.01.

- Método de Euler com h = 0,1 fornece só uma decimal exata para o PVI (5).
- Redução do passo h para 0,01 melhora solução numérica do PVI.
- Exatidão da solução melhorada quando o valor do passo for reduzido.

Definições

Definição 1 (Passo simples) Um método será de passo simples quando a aproximação y_{i+1} for calculada a partir somente do valor y_i do passo anterior. Sendo ϕ a função incremento, um método de passo simples é definido na forma

$$y_{i+1} = y_i + h\phi(x_i, y_i; h).$$

Definição 2 (Passo múltiplo) Sejam os p valores $y_i, y_{i-1}, y_{i-2}, \ldots$, y_{i-p+1} previamente calculados por algum método. Um método é de passo múltiplo se estes p valores $y_i, y_{i-1}, y_{i-2}, \ldots, y_{i-p+1}$ forem utilizados para calcular y_{i+1} , para $i = p-1, p, p+1, \ldots, m-1$.

Definições

Definição 3 (Erro local) Supondo que o valor calculado por um método de passo k seja exato, isto \acute{e} , $y_{i+j} = y(x_{i+j})$ para $j = 0, 1, \ldots, k-1$, então o erro local em x_{i+k} \acute{e} definido por

$$e_{i+k} = y(x_{i+k}) - y_{i+k}.$$

Definição 4 (Ordem) Um método de passo simples terá ordem q se a função incremento ϕ for tal que

$$y(x+h) = y(x) + h\phi(x, y; h) + O(h^{q+1}).$$

Definição 5 (Consistência) Um método numérico é dito consistente com o PVI (2) se a sua ordem $q \ge 1$.

Definições

Definição 6 (Convergência) Um método de passo k é convergente se, para o PVI (2),

$$\lim_{h \to 0} y_i = y(x_i), \ ih = x - a$$

é válido para todo $x \in [a, b]$, e os valores iniciais são tais que

$$\lim_{h \to 0} y_j(h) = \eta, \ j = 0, 1, \dots, k - 1.$$

- Consistência significa que a solução numérica corresponde à solução do PVI.
- Consistência de um método limita a magnitude do erro local cometido em cada passo.
- Estabilidade controla a propagação do erro durante os cálculos.
- Um método é convergente se ele for consistente e estável.
- Por (4) e pelas Definições 1 e 4, o método de Euler é de passo simples e tem ordem 1.

Métodos de Runge-Kutta

- ullet Exatidão dos resultados melhorada se passo h for reduzido.
- Se exatidão requerida for elevada redução do passo pode acarretar grande esforço computacional.
- Melhor exatidão obtida mais eficientemente pela formulação denominada métodos de Runge-Kutta.
- C. D. T. Runge desenvolveu o primeiro método em 1895.
- M. W. Kutta elaborou a formulação geral em 1901.
- Runge-Kutta são métodos de passo simples de acordo com Definição 1.

Métodos de Runge-Kutta explícitos

ullet Forma geral dos métodos explícitos de s estágios

$$y_{i+1} = y_i + h\phi(x_i, y_i; h)$$
, onde $\phi(x, y; h) = b_1k_1 + b_2k_2 + \ldots + b_sk_s$, com (7)
 $k_1 = f(x, y)$,

$$k_2 = f(x + c_2h, y + a_{21}hk_1),$$

$$k_3 = f(x + c_3h, y + h(a_{31}k_1 + a_{32}k_2)),$$

. . .

$$k_s = f(x + c_s h, y + h(a_{s1}k_1 + a_{s2}k_2 + \dots + a_{s,s-1}k_{s-1})),$$

sendo $a, b \in c$ constantes definidas para cada método particular.

Constantes na notação de Butcher

Métodos de Runge-Kutta de segunda ordem

• Expansão em série de Taylor, com derivadas em y escritas em termos de f, a partir de dy/dx = f(x,y)

$$y_{i+1} = y_i + hf(x_i, y_i) + \frac{h^2}{2}f'(x_i, y_i) + \dots$$

• Como

$$f'(x,y) \equiv \frac{df}{dx} = \frac{\partial f}{\partial x}\frac{dx}{dx} + \frac{\partial f}{\partial y}\frac{dy}{dx} \to f'(x,y) = \frac{\partial f}{\partial x} + f\frac{\partial f}{\partial y}.$$

- Simplificando a notação: $f_i = f(x_i, y_i)$.
- Sendo

$$\frac{\partial f_i}{\partial x} = \frac{\partial f}{\partial x}(x_i, y_i) e^{i\frac{\partial f_i}{\partial y}} = \frac{\partial f}{\partial y}(x_i, y_i),$$

$$y_{i+1} = y_i + hf_i + h^2 \left(\frac{1}{2}\frac{\partial f_i}{\partial x} + \frac{1}{2}f_i\frac{\partial f_i}{\partial y}\right). \tag{8}$$

Métodos de Runge-Kutta de segunda ordem cont.

• Escrevendo (7) em termos de k_1 e k_2

$$y_{i+1} = y_i + b_1 h f(x_i, y_i) + b_2 h f(x_i + c_2 h, y_i + a_{21} h f(x_i, y_i)).$$

- Expandindo f(x, y), em série de Taylor, em termos de (x_i, y_i) .
- Retendo somente os termos de derivada primeira

$$f(x_i + c_2h, y_i + a_{21}hf(x_i, y_i)) \approx f_i + c_2h\frac{\partial f_i}{\partial x} + a_{21}hf_i\frac{\partial f_i}{\partial y}.$$

• Substituindo na equação anterior

$$y_{i+1} = y_i + b_1 h f_i + b_2 h \left(f_i + c_2 h \frac{\partial f_i}{\partial x} + a_{21} h f_i \frac{\partial f_i}{\partial y} \right).$$

Rearranjando

$$y_{i+1} = y_i + h(b_1 + b_2)f_i + h^2 \left(b_2 c_2 \frac{\partial f_i}{\partial x} + b_2 a_{21} f_i \frac{\partial f_i}{\partial y}\right). \tag{9}$$

Métodos de Runge-Kutta de segunda ordem cont.

- Comparando (8) e (9).
- Sistema não linear com 3 equações e 4 incógnitas

$$b_1 + b_2 = 1,$$

 $b_2c_2 = 1/2,$
 $b_2a_{21} = 1/2.$

• Variedade de métodos de segunda ordem.

Método de Euler modificado

- Método de Runge-Kutta de segunda ordem é chamado método de Euler modificado.
- Constantes do método de Euler modificado

$$\begin{array}{c|c}
0 \\
1/2 & 1/2 \\
\hline
 & 0 & 1
\end{array}$$

• Método de Euler modificado

$$y_{i+1} = y_i + hf\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}f(x_i, y_i)\right).$$
 (10)

Método de Euler melhorado

- Método de Runge-Kutta de segunda ordem.
- Constantes do método de Euler melhorado

$$\begin{array}{c|c}
0 \\
1 & 1 \\
\hline
 & 1/2 & 1/2
\end{array}.$$

• Método de Euler melhorado

$$y_{i+1} = y_i + \frac{h}{2}(f(x_i, y_i) + f(x_i + h, y_i + hf(x_i, y_i))).$$
(11)

Comparação dos métodos de Euler

Exemplo 2 Comparar a solução do PVI $y' = -2xy^2$, com y(0) = 0.5, no intervalo [0, 1], com m = 10 subintervalos, utilizando os métodos de Euler, Euler modificado e Euler melhorado, sabendo que a solução exata é

$$y(x) = \frac{1}{x^2 + 2}.$$

i	x_i	$ y_i^{\scriptscriptstyle m E}-y(x_i) $	$ y_i^{ m Emod} - y(x_i) $	$ y_i^{ ext{Emel}} - y(x_i) $
0	0,0	0	0	0
1	0,1	$2,49 \times 10^{-3}$	$1,24 \times 10^{-5}$	$1,24 \times 10^{-5}$
2	0,2	$4,80 \times 10^{-3}$	$4,76 \times 10^{-5}$	$2,32 \times 10^{-5}$
3	0,3	$6,73 \times 10^{-3}$	$9,83 \times 10^{-5}$	$2,97 \times 10^{-5}$
4	0,4	$8,11 \times 10^{-3}$	$1,55 \times 10^{-4}$	$2,89 \times 10^{-5}$
5	0,5	$8,88 \times 10^{-3}$	$2,06 \times 10^{-4}$	$1,91 \times 10^{-5}$
6	0,6	$9,04.10^{-3}$	$2,45 \times 10^{-4}$	$2,60 \times 10^{-8}$
7	0,7	$8,69 \times 10^{-3}$	$2,67 \times 10^{-4}$	$2,70 \times 10^{-5}$
8	0,8	$7,94 \times 10^{-3}$	$2,71 \times 10^{-4}$	$5,96 \times 10^{-5}$
9	0,9	$6,93 \times 10^{-3}$	$2,59 \times 10^{-4}$	$9,48 \times 10^{-5}$
10	1,0	$5,77 \times 10^{-3}$	$2,35 \times 10^{-4}$	$1,30.10^{-4}$

Métodos de quarta ordem

- Mesmo desenvolvimento utilizado para obter métodos de Runge-Kutta de ordem mais elevada.
- No caso de quarta ordem: sistema não linear com 11 equações e 13 incógnitas.
- Um dos métodos mais comuns desta ordem é o método clássico de Runge-Kutta.
- Constantes do método de Runge-Kutta de quarta ordem

Algoritmo de Runge-Kutta de ordem 4 para a solução de PVI

```
Algoritmo RK4
{ Objetivo: Resolver um PVI pelo método de Runge-Kutta de ordem 4 }
parâmetros de entrada a, b, m, y0
  { limite inferior, limite superior, número de subintervalos e valor inicial }
parâmetros de saída VetX, VetY
  { abscissas e solução do PVI }
  h \leftarrow (b-a)/m; xt \leftarrow a; yt \leftarrow y0; VetX(1) \leftarrow xt; VetY(1) \leftarrow yt
 escreva 0, xt, yt
  para i \leftarrow 1 até m faça
    x \leftarrow xt; y \leftarrow yt; k1 \leftarrow f(x, y)  { avaliar f(x, y) }
    x \leftarrow xt + h/2; y \leftarrow yt + h/2 * k1; k2 \leftarrow f(x, y) { avaliar f(x, y) }
    \mathbf{v} \leftarrow \mathbf{v}\mathbf{t} + \mathbf{h}/2 * \mathbf{k}2; \ \mathbf{k}3 \leftarrow f(x,y) \ \{ \text{ avaliar } f(\mathbf{x},\mathbf{v}) \}
    x \leftarrow xt + h; y \leftarrow yt + h * k3; k4 \leftarrow f(x, y) { avaliar f(x, y) }
    xt \leftarrow a + i * h; yt \leftarrow yt + h/6 * (k1 + 2 * (k2 + k3) + k4)
    escreva i, xt, yt
    VetX(i+1) \leftarrow xt; \ VetY(i+1) \leftarrow yt
  fimpara
fimalgoritmo
```

©2009 FFCf

||⇐

Exemplo de uso do algoritmo

Exemplo 3 Calcular a solução do PVI do Exemplo 1, y' = x - 2y + 1, com y(0) = 1, no intervalo [0, 1], com m = 10 subintervalos, pelo algoritmo de Runge-Kutta de ordem 4.

```
% Os parametros de entrada
a = 0
b = 1
m = 10
y0 = 1
% fornecem os resultados
Metodo de Runge-Kutta - ordem 4
    i
          X
                      У
        0.00000
                    1.00000
        0.10000
                    0.91405
        0.20000
                    0.85274
    3
        0.30000
                    0.81161
        0.40000
                    0.78700
        0.50000
                    0.77591
        0.60000
                    0.77590
    6
        0.70000
                    0.78495
        0.80000
                    0.80143
    9
        0.90000
                    0.82398
        1.00000
                    0.85150
   10
```

Comparação da solução pelo método de Runge-Kutta

• Diferença entre o valor aproximado y_i dado pelo método de Runge-Kutta de ordem 4 e a solução exata $y(x_i)$ dada por (6).

i	x_i	y_i	$ y_i - y(x_i) $	
0	0,0	1,0000	0	
1	0,1	0,9141	$1,94.10^{-6}$	
2	0,2	0,8527	$3,17.10^{-6}$	
3	0,3	0,8116	$3,89 \times 10^{-6}$	
4	0,4	0,7870	$4,25 \times 10^{-6}$	
5	0,5	0,7759	$4,35 \times 10^{-6}$	
6	0,6	0,7759	$4,27.10^{-6}$	
7	0,7	0,7850	$4,08 \times 10^{-6}$	
8	0,8	0,8014	$3,82 \times 10^{-6}$	
9	0,9	0,8240	$3,52 \times 10^{-6}$	
10	1,0	0,8515	$3,20.10^{-6}$	
(a) $m = 10 \to h = 0,1$.				

i	x_i	y_i	$ y_i - y(x_i) $	
0	0,0	1,0000	0	
10	0,1	0,9140	$1,66 \times 10^{-10}$	
20	0,2	0,8527	$2,73 \times 10^{-10}$	
30	0,3	0,8116	$3,35 \times 10^{-10}$	
40	0,4	0,7870	$3,66 \times 10^{-10}$	
50	0,5	0,7759	$3,74 \times 10^{-10}$	
60	0,6	0,7759	$3,68 \times 10^{-10}$	
70	0,7	0,7849	$3,51 \times 10^{-10}$	
80	0,8	0,8014	$3,28 \times 10^{-10}$	
90	0,9	0,8240	$3,03.10^{-10}$	
100	1,0	0,8515	$2,75 \times 10^{-10}$	
(b) $m = 100 \rightarrow h = 0.01$.				

Método de Runge-Kutta-Fehlberg

- Verificar se um método de Runge-Kutta produz valores dentro da exatidão desejada.
- Recalcular o valor de y_{i+1} no final de cada intervalo, utilizando o passo h dividido ao meio.
- Valor aceito se houver apenas uma pequena diferença entre os dois resultados.
- Passo h dividido ao meio até que a exatidão desejada seja alcançada.
- Esta estratégia pode requerer grande esforço computacional.
- Processo proposto por E. Fehlberg, no final da década de 1960, utiliza dois métodos de ordens diferentes, um de ordem 4 e outro de ordem 5.
- Compara os valores de y_{i+1} obtidos nos dois casos.
- Método de Runge-Kutta-Fehlberg é considerado um método de ordem 4.

Método de Dormand-Prince

- No início da década de 1980, J. R. Dormand e P. J. Prince propuseram um método similar ao de Runge-Kutta-Fehlberg, porém de ordem 5.
- Constantes do método de Dormand-Prince

- Constantes $a_{7i} = b_i, i = 1, 2, \dots, 6.$
- Linha e_i contém coeficientes para calcular erros globais: diferenças entre y_{i+1} obtido pelo processo de ordem 5 e o de ordem 4.

Algoritmo de Dormand-Prince para a solução de PVI

```
Algoritmo DOPRI(5,4)
{ Objetivo: Resolver um PVI pelo método de Dormand-Prince }
parâmetros de entrada a, b, m, y0 { limite inferior, limite superior, número de subintervalos e valor inicial }
parâmetros de saída VetX, VetY, EG { abscissas, solução do PVI e erro global }
   { parâmetros do método }
   a21 \leftarrow 1/5; a31 \leftarrow 3/40; a32 \leftarrow 9/40; a41 \leftarrow 44/45; a42 \leftarrow -56/15; a43 \leftarrow 32/9
   a51 \leftarrow 19372/6561; a52 \leftarrow -25360/2187; a53 \leftarrow 64448/6561; a54 \leftarrow -212/729
   a61 \leftarrow 9017/3168; a62 \leftarrow -355/33; a63 \leftarrow 46732/5247; a64 \leftarrow 49/176
   a65 \leftarrow -5103/18656; a71 \leftarrow 35/384; a73 \leftarrow 500/1113; a74 \leftarrow 125/192
   a75 \leftarrow -2187/6784; a76 \leftarrow 11/84
   c2 \leftarrow 1/5; c3 \leftarrow 3/10; c4 \leftarrow 4/5; c5 \leftarrow 8/9; c6 \leftarrow 1; c7 \leftarrow 1
   e1 \leftarrow 71/57600; e3 \leftarrow -71/16695; e4 \leftarrow 71/1920; e5 \leftarrow -17253/339200; e6 \leftarrow 22/525; e7 \leftarrow -1/40
   h \leftarrow (b-a)/m; xt \leftarrow a; yt \leftarrow y0; VetX(1) \leftarrow xt; VetY(1) \leftarrow yt; EG(1) \leftarrow 0; escreva 0, xt, yt
   para i \leftarrow 1 até m faça
     x \leftarrow xt; y \leftarrow yt; \quad k1 \leftarrow h * f(x,y) \quad \{ \text{ avaliar } f(x,y) \}
     x \leftarrow xt + c2 * h; y \leftarrow yt + a21 * k1; k2 \leftarrow h * f(x, y) { avaliar f(x, y) }
     x \leftarrow xt + c3 * h; y \leftarrow yt + a31 * k1 + a32 * k2; k3 \leftarrow h * f(x, y) { avaliar f(x, y) }
     x \leftarrow xt + c4 * h; y \leftarrow yt + a41 * k1 + a42 * k2 + a43 * k3; k4 \leftarrow h * f(x, y) { avaliar f(x, y) }
     x \leftarrow xt + c5 * h; y \leftarrow yt + a51 * k1 + a52 * k2 + a53 * k3 + a54 * k4; k5 \leftarrow h * f(x, y) { avaliar f(x, y) }
     x \leftarrow xt + c6 * h; y \leftarrow yt + a61 * k1 + a62 * k2 + a63 * k3 + a64 * k4 + a65 * k5; k6 \leftarrow h * f(x, y) { avaliar f(x, y) }
     x \leftarrow xt + c7 * h; y \leftarrow yt + a71 * k1 + a73 * k3 + a74 * k4 + a75 * k5 + a76 * k6; k7 \leftarrow h * f(x, y) { avaliar f(x, y) }
     xt \leftarrow a + i * h; \quad yt \leftarrow yt + a71 * k1 + a73 * k3 + a74 * k4 + a75 * k5 + a76 * k6
     ErroGlobal \leftarrow e1 * k1 + e3 * k3 + e4 * k4 + e5 * k5 + e6 * k6 + e7 * k7
     VetX(i+1) \leftarrow xt; \ VetY(i+1) \leftarrow yt; \ EG(i+1) \leftarrow ErroGlobal; \ escreva\ i, xt, yt, ErroGlobal
  fimpara
fimalgoritmo
```

©2009 FFCf

l⊭

% Os parametros de entrada

Exemplo de uso do algoritmo

Exemplo 4 Calcular a solução do PVI do Exemplo 1, y' = x - 2y + 1, com y(0) = 1, no intervalo [0, 1], com m = 10 subintervalos, pelo algoritmo de Dormand-Prince.

```
a = 0
b = 1
m = 10
y0 = 1
% produzem os resultados
          Metodo de Dormand-Prince
                                 Erro
          X
        0.00000
                    1.00000
    0
        0.10000
                    0.91405
                              2.100e-07
        0.20000
                    0.85274
                              1.719e-07
                              1.408e-07
        0.30000
                    0.81161
        0.40000
                    0.78700
                              1.153e-07
    5
        0.50000
                    0.77591
                              9.436e-08
    6
        0.60000
                    0.77590
                              7.725e-08
        0.70000
                    0.78495
                              6.325e-08
    8
        0.80000
                    0.80142
                              5.179e-08
        0.90000
                    0.82397
                              4.240e-08
    9
   10
        1.00000
                    0.85150
                              3.471e-08
```

©2009 FFCf

Comparação da solução pelo método de Dormand-Prince

 \bullet Diferença entre valor aproximado y_i dado pelo método de Dormand-Prince e solução exata $y(x_i)$ dada por (6).

i	x_i	y_i	$ y_i - y(x_i) $
0	0,0	1,0000	0
1	0,1	0,9140	$1,52 \cdot 10^{-8}$
2	0,2	0,8527	$2,49 \times 10^{-8}$
3	0,3	0,8116	$3,05 \times 10^{-8}$
4	0,4	0,7870	$3,33.10^{-8}$
5	0,5	0,7759	$3,41.10^{-8}$
6	0,6	0,7759	$3,35.10^{-8}$
7	0,7	0,7849	$3,20.10^{-8}$
8	0,8	0,8014	$3,00.10^{-8}$
9	0,9	0,8240	$2,76.10^{-8}$
10	1,0	0,8515	$2,51.10^{-8}$
(a)	m	= 10 su	bintervalos.

i	x_i	y_i	$ y_i - y(x_i) $
0	0,0	1,0000	0
10	0,1	0,9140	$1,13 \times 10^{-13}$
20	0,2	0,8527	$1,86 \times 10^{-13}$
30	0,3	0,8116	$2,27 \times 10^{-13}$
40	0,4	0,7870	$2,48 \times 10^{-13}$
50	0,5	0,7759	$2,54.10^{-13}$
60	0,6	0,7759	$2,49 \times 10^{-13}$
70	0,7	0,7849	$2,38 \times 10^{-13}$
80	0,8	0,8014	$2,23 \times 10^{-13}$
90	0,9	0,8240	$2,05 \times 10^{-13}$
100	1,0	0,8515	$1,87.10^{-13}$
(b)	m -	<u> </u>	hintervalos

(b) m = 100 subintervalos.

Métodos lineares de passo múltiplo

- Classe de métodos para resolver o problema de valor inicial (Definição 2).
- Método de passo k na forma

$$\alpha_k y_{i+k} + \alpha_{k-1} y_{i+k-1} + \ldots + \alpha_0 y_i = h(\beta_k f_{i+k} + \beta_{k-1} f_{i+k-1} + \ldots + \beta_0 f_i),$$
 (12) onde α e β são constantes específicas de um método particular, sujeitas às condições

$$\alpha_k = 1 \ e \ |\alpha_0| + |\beta_0| \neq 0.$$

- Quando $\beta_k = 0$, método é dito explícito e para $\beta_k \neq 0$ ele é implícito.
- Explícitos são chamados métodos de Adams-Bashforth.
- J. C. Adams e F. Bashforth propuseram, em 1883, um método para resolver um problema de ação capilar.
- Implícitos são conhecidos como métodos de Adams-Moulton.
- F. R. Moulton melhorou o método de Adams para calcular trajetórias balísticas na Primeira Guerra Mundial.

Métodos de Adams

• Obtidos por integração do PVI (2)

$$y_{i+1} - y_i = \int_{x_i}^{x_{i+1}} f(t, y(t)) dt.$$

- Função integrando f(x, y(x)) aproximada por polinômio interpolador.
- Polinômio P(x) passa pelos pontos de coordenadas $(x_j, f(x_j, y_j))$

$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} P(x) dx. \tag{13}$$

Métodos explícitos de passo dois

• Polinômio de Lagrange de grau 1 que passa por (x_0, f_0) e (x_1, f_1)

$$P_1(x) = f_0 \frac{x - x_1}{x_0 - x_1} + f_1 \frac{x - x_0}{x_1 - x_0}.$$
 (14)

- Valor de $f_0 = f(x_0, y_0)$ obtido a partir de y_0 (condição inicial).
- Valor de y_1 para $f_1 = f(x_1, y_1)$ calculado por método de passo simples.
- Fazendo

$$u = \frac{x - x_0}{h} \to x - x_0 = hu \text{ e } x - x_1 = x - x_0 - h = h(u - 1).$$

• Substituindo as expressões em (14)

$$P_1(x) = f_1 \frac{hu}{h} + f_0 \frac{h(u-1)}{-h} \longrightarrow P_1(x) = f_1 u + f_0 (1-u).$$

Integrando

$$y_2 = y_1 + \int_{x_1}^{x_2} P_1(x) dx.$$

Método explícito de Adams-Bashforth de passo dois

• Mudança de variável: $x \to u$ e sendo dx = hdu

$$y_{2} = y_{1} + \int_{1}^{2} [f_{1}u + f_{0}(1 - u)]hdu,$$

$$= y_{1} + h \left[f_{1} \left(\frac{u^{2}}{2} \right) + f_{0} \left(u - \frac{u^{2}}{2} \right) \right]_{1}^{2},$$

$$= y_{1} + h \left(\frac{3}{2} f_{1} - \frac{1}{2} f_{0} \right),$$

$$y_{2} = y_{1} + \frac{h}{2} (3f_{1} - f_{0}).$$

• Fórmula explícita de Adams-Bashforth de passo k=2

$$y_{i+1} = y_i + \frac{h}{2}(3f_i - f_{i-1}). \tag{15}$$

Métodos implícitos de passo dois

- Método explícito obtido pela integração do polinômio no intervalo $[x_1, x_2]$.
- Polinômio P(x) determinado a partir dos pontos em $[x_0, x_1]$.
- Extrapolação não produz bons resultados.
- Se polinômio for construído usando pontos no intervalo $[x_0, x_2]$ consegue-se método mais exato.
- ullet Polinômio de Lagrange de grau 2 que passa por $(x_0,f_0),\,(x_1,f_1)$ e (x_2,f_2)

$$P_2(x) = f_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}.$$

• Definindo variável auxiliar

$$u = \frac{x - x_0}{h} \to x - x_0 = hu, \ x - x_1 = h(u - 1) \ e \ x - x_2 = h(u - 2),$$

$$P_2(x) = f_2 \frac{u(u - 1)}{2} - f_1 u(u - 2) + f_0 \frac{(u - 1)(u - 2)}{2}.$$
(16)

Métodos implícitos de passo dois cont.

• Substituindo (16) em (13)

$$y_2 = y_1 + \int_{x_1}^{x_2} P_2(x) dx.$$

• Mudança de variável: $x \to u$

$$y_{2} = y_{1} + \int_{1}^{2} \left[f_{2} \frac{u(u-1)}{2} - f_{1} u(u-2) + f_{0} \frac{(u-1)(u-2)}{2} \right] h du,$$

$$= y_{1} + h \left[f_{2} \left(\frac{u^{3}}{6} - \frac{u^{2}}{4} \right) - f_{1} \left(\frac{u^{3}}{3} - u^{2} \right) + f_{0} \left(\frac{u^{3}}{6} - \frac{3u^{2}}{4} + u \right) \right] \Big|_{1}^{2},$$

$$y_{2} = y_{1} + \frac{h}{12} (5f_{2} + 8f_{1} - f_{0}).$$

Método implícito de Adams-Moulton de passo dois

• Fórmula implícita de Adams-Moulton de passo k=2

$$y_{i+1} = y_i + \frac{h}{12}(5f_{i+1} + 8f_i - f_{i-1}). \tag{17}$$

- Valor de $f_{i+1} = f(x_{i+1}, y_{i+1})$ necessário para obter o próprio y_{i+1} .
- Valor de y_{i+1} obtido por Adams-Bashforth usado em Adams-Moulton para avaliar f_{i+1} e calcular valor melhor de y_{i+1} .
- Método do tipo preditor-corretor
 - preditor: Adams-Bashforth
 - corretor: Adams-Moulton.

Comparação da solução pelo método preditor-corretor de passo dois

Exemplo 5 Calcular a solução do PVI do Exemplo 1, y' = x - 2y + 1, com y(0) = 1, no intervalo [0, 1] utilizando o método preditor-corretor de passo dois.

- Diferença entre valor aproximado y_i e solução exata $y(x_i)$ dada por (6).
- Valores de f_1 calculados pelo método de Dormand-Prince.

i	x_i	y_i	$ y_i - y(x_i) $	i	x_i	y_i	$ y_i - y(x_i) $
0	0,00	1,0000	0	0	0,00	1,0000	0
1	0,10	0,9140	$1,52 \times 10^{-8}$	10	0,10	0,9140	$1,19 \times 10^{-7}$
2	0,20	0,8526	$1,35 \times 10^{-4}$	20	0,20	0,8527	$2,06 \times 10^{-7}$
3	0,30	0,8114	$2,19 \times 10^{-4}$	30	0,30	0,8116	$2,58 \times 10^{-7}$
4	0,40	0,7867	$2,68 \times 10^{-4}$	40	0,40	0,7870	$2,84 \times 10^{-7}$
5	0,50	0,7756	$2,92 \times 10^{-4}$	50	0,50	0,7759	$2,92 \times 10^{-7}$
6	0,60	0,7756	$2,99 \times 10^{-4}$	60	0,60	0,7759	$2,88 \times 10^{-7}$
7	0,70	0,7847	$2,94 \times 10^{-4}$	70	0,70	0,7849	$2,75 \times 10^{-7}$
8	0,80	0,8011	$2,80.10^{-4}$	80	0,80	0,8014	$2,58 \times 10^{-7}$
9	0,90	0,8237	$2,62 \times 10^{-4}$	90	0,90	0,8240	$2,38 \times 10^{-7}$
10	1,00	0,8513	$2,41.10^{-4}$	100	1,00	0,8515	$2{,}17{,}10^{-7}$
$\overline{(s)}$	$\overline{a}) m =$	= 10 sub	ointervalos.	$\overline{\text{(b)}}$	m =	100 sub	ointervalos.

Método explícito de Adams-Bashforth de passo três

- Integração do polinômio de Lagrange de grau 2 no intervalo $[x_2, x_3]$.
- Substituindo na expressão de y_{i+1}

$$y_{3} = y_{2} + \int_{x_{2}}^{x_{3}} P_{2}(x)dx,$$

$$= y_{2} + \int_{2}^{3} \left[f_{2} \frac{u(u-1)}{2} - f_{1}u(u-2) + f_{0} \frac{(u-1)(u-2)}{2} \right] h du,$$

$$= y_{2} + h \left[f_{2} \left(\frac{u^{3}}{6} - \frac{u^{2}}{4} \right) - f_{1} \left(\frac{u^{3}}{3} - u^{2} \right) + f_{0} \left(\frac{u^{3}}{6} - \frac{3u^{2}}{4} + u \right) \right] \Big|_{2}^{3},$$

$$y_{3} = y_{2} + \frac{h}{12} (23f_{2} - 16f_{1} + 5f_{0}).$$

$$y_{i+1} = y_i + \frac{h}{12}(23f_i - 16f_{i-1} + 5f_{i-2}). \tag{18}$$

• f_0 avaliada a partir de y_0 e, f_1 e f_2 obtidos por método de passo simples.

Método implícito de Adams-Moulton de passo três

- Fórmula explícita obtida por extrapolação
 - Integração no intervalo $[x_i, x_{i+1}]$.
 - Polinômio construído a partir de pontos em $[x_{i-2}, x_i]$.
- Método implícito de Adams-Moulton de passo k=3

$$y_{i+1} = y_i + \frac{h}{24}(9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2}).$$
(19)

Método de Adams-Bashforth-Moulton de quarta ordem

- Um dos métodos mais populares de passo múltiplo.
- Preditor explícito: Adams-Bashforth de passo k=4

$$y_{i+1} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3}), \tag{20}$$

• Corretor implícito: Adams-Moulton de passo k=3

$$y_{i+1} = y_i + \frac{h}{24}(9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2}).$$

• Corretor aplicado mais de uma vez para melhorar ainda mais o resultado.

Algoritmo de Adams-Bashforth-Moulton de ordem 4 para a solução de PVI

```
Algoritmo ABM4
{ Objetivo: Resolver PVI pelo método de Adams-Bashforth-Moulton de ordem 4 }
parâmetros de entrada a, b, m, y0
  { limite inferior, limite superior, número de subintervalos e valor inicial }
parâmetros de saída VetX, VetY, Erro
  { abscissas, solução do PVI e erro }
  h \leftarrow (b-a)/m; [VetX, VetY, Erro] \leftarrow DOPRI(a, a+3*h, 3, y0) (ver algoritmo)
  { parâmetros de saída de DOPRI retornam em VetX, VetY, Erro }
  para i \leftarrow 1 até 4 faça; escreva i - 1, VetX(i), VetY(i), Erro(i); fimpara
  para i \leftarrow 4 até m faça
    x \leftarrow VetX(i-3); v \leftarrow VetY(i-3); t0 \leftarrow f(x,y) { avaliar f(x,y) }
    x \leftarrow VetX(i-2); y \leftarrow VetY(i-2); f1 \leftarrow f(x,y)  { avaliar f(x,y) }
                                                                                                        ||←
    x \leftarrow VetX(i-1); y \leftarrow VetY(i-1); f2 \leftarrow f(x,y)  { avaliar f(x,y) }
    x \leftarrow VetX(i); y \leftarrow VetY(i); f3 \leftarrow f(x,y) { avaliar f(x,y) }
    Ypre \leftarrow h * (55 * f3 - 59 * f2 + 37 * f1 - 9 * f0)/24 + VetY(i)
    VetY(i+1) \leftarrow Ypre; \ VetX(i+1) \leftarrow a+i*h; \ x \leftarrow VetX(i+1)
    para i \leftarrow 1 até 2 faca
      \mathbf{v} \leftarrow \mathbf{Vet}\mathbf{Y}(\mathbf{i}+1); \mathbf{f4} \leftarrow f(x,y) { avaliar f(\mathbf{x},\mathbf{v}) }
       Ycor \leftarrow h * (9 * f4 + 19 * f3 - 5 * f2 + f1)/24 + VetY(i); VetY(i+1) \leftarrow Ycor
    fimpara
    Erro \leftarrow abs(Ycor - Ypre) * 19/270; escreva i, VetX(i + 1), VetY(i + 1), Erro
  fimpara
fimalgoritmo
```

Exemplo de uso do algoritmo

Exemplo 6 Calcular a solução do PVI do Exemplo 1, y' = x - 2y + 1, com y(0) = 1, no intervalo [0, 1], utilizando o algoritmo de Adams-Bashforth-Moulton de ordem 4.

```
% Os parametros de entrada
a = 0
b = 1
m = 10
y0 = 1
% produzem os resultados
Metodo de Adams-Bashforth-Moulton - ordem 4
   i
         X
                               Erro
       0.00000
                  1.00000
                             0.00000e+00
   0
       0.10000
                  0.91405
                             2.10000e-07
       0.20000
                  0.85274
                             1.71933e-07
       0.30000
                  0.81161
                             1.40767e-07
       0.40000
                  0.78699
                             4.23161e-06
       0.50000
                  0.77590
                             3.51703e-06
       0.60000
                  0.77589
                             2.82201e-06
       0.70000
                  0.78494
                             2.33307e-06
       0.80000
                  0.80142
                             1.90865e-06
       0.90000
                  0.82397
                             1.56299e-06
   9
       1.00000
                  0.85150
                             1.27961e-06
  10
```

Comparação da solução pelo método preditor-corretor de ordem 4

• Diferença entre resultado exato, dado por (6), e os obtidos pelo método preditor-corretor de Adams-Bashforth-Moulton de ordem 4.

i	x_i	y_i	$ y_i - y(x_i) $
0	0,00	1,0000	0
1	$ 0,\!10 $	0,9140	$1,52 \times 10^{-8}$
2	0,20	0,8527	$2,49 \times 10^{-8}$
3	0,30	0,8116	$3,05 \times 10^{-8}$
4	0,40	0,7870	$3,07 \times 10^{-6}$
5	0,50	0,7759	$4,94.10^{-6}$
6	0,60	0,7759	$6,07.10^{-6}$
7	0,70	0,7849	$6,62 \times 10^{-6}$
8	0,80	0,8014	$6,77 \times 10^{-6}$
9	0,90	0,8240	$6,65 \times 10^{-6}$
10	1,00	0,8515	$6,35 \times 10^{-6}$

i	x_i	$ y_i - y(x_i) $
0	0,00	0
10	$0,\!10$	$3,69 \times 10^{-10}$
20	0,20	$7,33.10^{-10}$
30	0,30	$9,53 \times 10^{-10}$
40	0,40	$1,07.10^{-9}$
50	0,50	$1,11 \times 10^{-9}$
60	0,60	$1{,}10{,}10^{-9}$
70	0,70	$1,06 \times 10^{-9}$
80	0,80	$9,99 \times 10^{-10}$
90	0,90	$9,25 \times 10^{-10}$
100	1,00	$8,44.10^{-10}$

 $|i||y_i-y(x_i)|$ $5,02 \times 10^{-14}$ 100 $8,39 \times 10^{-14}$ 200 $1,03 \times 10^{-13}$ 300 $1,14 \times 10^{-13}$ 400 $1,16 \times 10^{-13}$ 500 $1,15 \times 10^{-13}$ 600 $1,10.10^{-13}$ 700 $1,03 \times 10^{-13}$ 800 $9,43.10^{-14}$ 900 $1000 \mid 8,56 \cdot 10^{-14}$

(a) 10 subintervalos.

(b) 100 subintervalos.

(c) 1000 subintervalos.

Comparação de métodos para EDO

- Métodos de passo simples (Runge-Kutta).
- Métodos de passo múltiplo (Adams).

Métodos de Runge-Kutta

- Vantagens:
 - 1. Auto-iniciáveis não dependendo do auxílio de outros métodos.
 - 2. Fácil alteração do incremento h para reduzir esforço computacional.
- Desvantagens:
 - 1. Número elevado de avaliações da função f(x, y), por passo.
 - 2. Escolha de *h* pequeno para limitar erro de discretização pode causar aumento do erro de arredondamento.

Métodos de Adams

• Vantagens:

- 1. Número pequeno de avaliações da função f(x,y), a cada iteração i: uma vez nas fórmulas explícitas e i+1 vezes nas implícitas.
- 2. Fórmulas simples podendo ser utilizadas com calculadora.

• Desvantagens:

- 1. Não são auto-iniciáveis causando dependência de outro método.
- 2. Mudança do incremento h mais difícil.

Comparação de métodos para EDO para solução de cinco PVI's

- Métodos: Euler, Dormand-Prince e Adams-Bashforth-Moulton.
- Solução exata do j-ésimo PVI é dada por $y_j(x)$.

$$f_{1}(x,y) = -2x^{2}y^{2}, \ y(0) = 2, \ x \in [0,2], \ y_{1}(x) = \frac{6}{4x^{3} + 3},$$

$$f_{2}(x,y) = 3x^{2}y, \ y(1) = 1, \ x \in [1,2], \ y_{2}(x) = e^{x^{3} - 1},$$

$$f_{3}(x,y) = -2xy^{3}, \ y(0) = 1, \ x \in [0,5], \ y_{3}(x) = \frac{1}{\sqrt{2x^{2} + 1}},$$

$$f_{4}(x,y) = \cos(x)y, \ y(0) = 1, \ x \in [0,10], \ y_{4}(x) = e^{\sin(x)},$$

$$f_{5}(x,y) = \sin(x) - y, \ y(0) = 0, \ x \in [0,\pi], \ y_{5}(x) = \frac{e^{-x} + \sin(x) - \cos(x)}{2}.$$

- Erro: maior diferença, em valor absoluto, entre solução numérica e exata.
- \bullet t_{rel}: razão entre tempo gasto pelo método e pelo método de Euler.

$$f_1(x,y) = -2x^2y^2, \ y(0) = 2, \ x \in [0,2]$$

m = 10			m = 100			m = 1000		
Método	Erro	$ \mathbf{t}_{rel} $	Método	Erro	$oxed{t_{rel}}$	Método	Erro	$oxed{t_{rel}}$
Euler	$1,43.10^{-1}$	1,0	Euler	$1,26.10^{-2}$	1,0	Euler	$1,24.10^{-3}$	1,0
DOPRI	$3,51 \times 10^{-5}$	4,7	DOPRI	$7,26.10^{-11}$	6,4	DOPRI	$3,33 \times 10^{-15}$	6,1
ABM4	$2,48 \times 10^{-3}$	4,3	ABM4	$3,62 \times 10^{-7}$	5,3	ABM4	$3,75 \times 10^{-11}$	4,9

$$f_2(x,y) = 3x^2y, \ y(1) = 1, \ x \in [1,2]$$

m = 10			m = 100			m = 1000		
Método	Erro	$oxed{t_{rel}}$	Método	Erro	$oxed{t_{rel}}$	Método	Erro	$oxed{t_{rel}}$
Euler	$9,59 \times 10^2$	1,0	Euler	$2,\!89_{\scriptscriptstyle \times}10^2$	1,0	Euler	$3,48 \times 10^{1}$	1,0
DOPRI	$1,54.10^{-1}$	7,0	DOPRI	$1,18 \times 10^{-5}$	6,4	DOPRI	$1,34.10^{-10}$	6,0
ABM4	$4,96,10^{1}$	6,5	ABM4	$2,82 \times 10^{-2}$	5,2	ABM4	$3,17.10^{-6}$	4,8

$$f_3(x,y) = -2xy^3, \ y(0) = 1, \ x \in [0,5]$$

m = 10			m = 100			m = 1000		
Método	Erro	$ \mathbf{t}_{rel} $	Método	Erro	$oxed{t_{rel}}$	Método	Erro	$oxed{t_{rel}}$
Euler	$1,84 \times 10^{-1}$	1,0	Euler	$1,05 \times 10^{-2}$	1,0	Euler	$9,97 \times 10^{-4}$	1,0
DOPRI	$1,51 \times 10^{-4}$	6,2	DOPRI	$1,99 \times 10^{-10}$	6,4	DOPRI	$3,00.10^{-15}$	6,1
ABM4	$3,99 \times 10^{-3}$	5,6	ABM4	4.89×10^{-6}	5,3	ABM4	$6,23$ _* 10^{-10}	4,9

$$f_4(x,y) = \cos(x)y, \ y(0) = 1, \ x \in [0,10]$$

m=10			m = 100			m = 1000		
Método	Erro	t_{rel}	Método	Erro	$ \mathbf{t}_{rel} $	Método	Erro	$oxed{\mathrm{t}_{rel}}$
Euler	$2,66 \times 10^{0}$	1,0	Euler	$3,90.10^{-1}$	1,0	Euler	$4,15.10^{-2}$	1,0
DOPRI	$7,25 \times 10^{-4}$	6,8	DOPRI	$1,02 \times 10^{-8}$	6,6	DOPRI	$1,06 \times 10^{-13}$	6,0
ABM4	$5,65 \times 10^{-1}$	6,0	ABM4	4.82×10^{-5}	5,3	ABM4	$3,65.10^{-9}$	4,6 $ $

$$f_5(x,y) = \operatorname{sen}(x) - y, \ y(0) = 0, \ x \in [0,\pi]$$

m = 10					
Método	Erro	t_{rel}			
Euler	$7,73 \times 10^{-2}$	1,0			
DOPRI	$4,90.10^{-7}$	7,0			
ABM4	$5,63.10^{-5}$	6,0			

m = 100					
Método	Erro	t_{rel}			
Euler	$7,18 \times 10^{-3}$	1,0			
DOPRI	$4,05 \times 10^{-12}$	6,6			
ABM4	$8,72 \times 10^{-9}$	5,3			

m = 1000				
Método	Erro	t_{rel}		
Euler	$7,13.10^{-4}$	1,0		
DOPRI	$1,22 \times 10^{-15}$	6,1		
ABM4	$8,75 \times 10^{-13}$	4,6		

Sistemas de equações diferenciais ordinárias

- Uso de sistemas de EDO é comum na modelagem de problema real.
- Equação diferencial de ordem n > 1 resolvida por um sistema de ordem n.
- ullet Sistema de p equações diferenciais ordinárias com p incógnitas

$$y'_1 = f_1(x, y_1, \dots, y_p),$$

 $y'_2 = f_2(x, y_1, \dots, y_p),$
 \dots
 $y'_p = f_1(x, y_1, \dots, y_p),$

- $-f_i$: função dada do problema e
- $-y_i(a) = \eta_i, i = 1, 2, \dots, p$: condições iniciais.

Algoritmo de Runge-Kutta de ordem 4 para sistema de ordem 2

```
Algoritmo RK4sis2
{ Objetivo: Resolver sistema de EDO pelo método de Runge-Kutta de ordem 4 }
parâmetros de entrada a, b, m, y10, y20
  { limite inferior, limite superior, número de subintervalos e valores iniciais }
parâmetros de saída VetX, VetY1, VetY2
  { abscissas e soluções do PVI }
  h \leftarrow (b-a)/m; xt \leftarrow a; y1t \leftarrow y10; y2t \leftarrow y20; VetX(1) \leftarrow xt; VetY1(1) \leftarrow y1t; VetY2(1) \leftarrow y2t
  escreva 0, xt, y1t, y2t
  para i \leftarrow 1 até m faça
     x \leftarrow xt; y1 \leftarrow y1t; y2 \leftarrow y2t
     k11 \leftarrow f_1(x, y_1, y_2)  { avaliar f_1(x, y_1, y_2) }; k12 \leftarrow f_2(x, y_1, y_2) { avaliar f_2(x, y_1, y_2) }
     x \leftarrow xt + h/2; y1 \leftarrow y1t + h/2 * k11; y2 \leftarrow y2t + h/2 * k12
                                                                                                                                            ||←
     k21 \leftarrow f_1(x, y_1, y_2) \ \{ \text{ avaliar } f_1(x, y_1, y_2) \}; \quad k22 \leftarrow f_2(x, y_1, y_2) \ \{ \text{ avaliar } f_2(x, y_1, y_2) \}
     y1 \leftarrow y1t + h/2 * k21; y2 \leftarrow y2t + h/2 * k22
     k31 \leftarrow f_1(x, y_1, y_2) \  { avaliar f_1(x, y_1, y_2) }; k32 \leftarrow f_2(x, y_1, y_2) \  { avaliar f_2(x, y_1, y_2) }
     x \leftarrow xt + h; y1 \leftarrow y1t + h * k31; y2 \leftarrow y2t + h * k32
     k41 \leftarrow f_1(x, y_1, y_2) \  { avaliar f_1(x, y_1, y_2) }; k42 \leftarrow f_2(x, y_1, y_2) \  { avaliar f_2(x, y_1, y_2) }
     xt \leftarrow a + i * h
     y1t \leftarrow y1t + h/6 * (k11 + 2 * (k21 + k31) + k41); \quad y2t \leftarrow y2t + h/6 * (k12 + 2 * (k22 + k32) + k42)
     escreva i, xt, y1t, y2t
     VetX(i+1) \leftarrow xt; \ VetY1(i+1) \leftarrow y1t; \ VetY2(i+1) \leftarrow y2t
  fimpara
fimalgoritmo
```

% Os parametros de entrada

Exemplo de uso do algoritmo

Exemplo 7 Resolver o sistema de EDO $y'_1 = y_1 + y_2 + 3x$ e $y'_2 = 2y_1 - y_2 - x$, com $y_1(0) = 0$ e $y_2(0) = -1$ no intervalo [0, 2] com 10 subintervalos, utilizando o algoritmo **RK4sis2**.

```
a = 0
b = 2
m = 10
y10 = 0
y20 = -1
% produzem os resultados
   Metodo RK4 para sistema de ordem 2
    i
          X
                     y1
                                 y2
                   0.00000
                              -1.00000
        0.00000
        0.20000
                  -0.14073
                              -0.86747
        0.40000
                  -0.16119
                              -0.82388
        0.60000
                  -0.04768
                              -0.80741
        0.80000
                   0.22970
                              -0.75950
        1.00000
                   0.72072
                              -0.61782
    6
        1.20000
                   1.50106
                              -0.30864
        1.40000
                   2.68142
                              0.26206
        1.60000
                   4.42101
                              1.22000
    9
        1.80000
                   6.94680
                               2.73780
   10
        2.00000
                  10.58102
                               5.05594
```

Equações diferenciais de segunda ordem

- \bullet Equação diferencial ordinária de ordem n>1 reduzida a sistema de EDO de primeira ordem com n equações.
- Transformação por meio de mudança de variáveis.
- PVI de segunda ordem

$$y'' = f(x, y, y')$$
 com $y(a) = \eta_1$ e $y'(a) = \eta_2$.

• Equivalente ao sistema de equações de primeira ordem

$$y'_1 = y_2,$$

 $y'_2 = f(x, y_1, y_2),$

com
$$y_1(a) = \eta_1 e y_2(a) = \eta_2$$
.

• Mudanças de variáveis

$$y_1 = y e y_2 = y_1'.$$

Exemplo de equações diferenciais de segunda ordem

Exemplo 8 Resolver o PVI de segunda ordem $y'' = y' + 2y - x^2$, com y(0) = 1 e y'(0) = 0, intervalo [0, 1] com 10 subintervalos.

- Mudanças de variáveis: $y_1 = y$ e $y_2 = y'_1$.
- Sistema de ordem dois de EDO de primeira ordem

$$y_1' = y_2,$$

 $y_2' = y_2 + 2y_1 - x^2,$

com $y_1(0) = 1$ e $y_2(0) = 0$.

Exemplo de uso do algoritmo

- Sistema de EDO de primeira ordem $y'_1 = y_2$ e $y'_2 = y_2 + 2y_1 x^2$, com $y_1(0) = 1$ e $y_2(0) = 0$, intervalo [0, 1] com 10 subintervalos.
- Usando o algoritmo **RK4sis2**

```
% Os parametros de entrada
a = 0
b = 1
m = 10
v10 = 1
v20 = 0
% produzem os resultados
   Metodo RK4 para sistema de ordem 2
          X
                     y1
                                y2
                   1.00000
        0.00000
                              0.00000
        0.10000
                   1.01035
                             0.21070
        0.20000
                  1.04295
                             0.44591
        0.30000
                   1.10053
                              0.71105
        0.40000
                  1.18638
                              1.01276
        0.50000
                   1.30456
                              1.35912
        0.60000
                   1.46002
                              1.76003
        0.70000
                   1.65878
                              2.22756
    8
        0.80000
                   1.90823
                              2.77646
        0.90000
                   2.21738
    9
                              3.42475
        1.00000
                   2.59721
                              4.19443
   10
```

Comparação da solução pelo algoritmo RK4sis2

• Resultados obtidos pelo algoritmo **RK4sis2** comparados com valor exato

$$y(x) = \frac{1}{4}(e^{2x} + 2x^2 - 2x + 3).$$

i	$ x_i $	y_i	$ y_i - y(x_i) $
0	0,0	1,0000	0
1	0,1	1,0103	$8,98 \times 10^{-7}$
2	0,2	1,0430	$2,17.10^{-6}$
3	0,3	$ 1,\!1005 $	$3,93 \times 10^{-6}$
4	0,4	1,1864	$6,32.10^{-6}$
5	0,5	1,3046	$9,54.10^{-6}$
6	0,6	$ 1,\!4600 $	$1,38.10^{-5}$
7	0,7	1,6588	$1,95 \times 10^{-5}$
8	0,8	1,9082	$2,69 \times 10^{-5}$
9	0,9	2,2174	$3,66 \times 10^{-5}$
10	1,0	2,5972	$4,93 \times 10^{-5}$
		10 aulir	ot on rolog

_		
i	x_i	$ y_i - y(x_i) $
0	0,0	0
10	0,1	$1,04 \times 10^{-10}$
20	$0,\!2$	$2,51 \times 10^{-10}$
30	0,3	$4,53$ _× 10^{-10}
40	0,4	$7,29 \times 10^{-10}$
50	0,5	$1,10.10^{-9}$
60	0,6	$1,59 \times 10^{-9}$
70	0,7	$2,25 \times 10^{-9}$
80	0,8	$3,10.10^{-9}$
90	0,9	$4,22 \times 10^{-9}$
100	1,0	$5,68 \times 10^{-9}$
<u>/1. \ 1</u>	<u> </u>	1_1

	• /
	$i y_i-y(x_i) $
	0 0
10	
20	
30	3
40	
50	-
60	
70	$0 \mid 2,29 \cdot 10^{-13}$
80	$0 \mid 3,15 \cdot 10^{-13}$
90	$0 \mid 4,29 \cdot 10^{-13}$
100	$0 5,76 \cdot 10^{-13}$
c 100	00 subintervalo

(a) 10 subintervalos.

(b) 100 subintervalos. (c) 1000 subintervalos.

Exemplo de uso do algoritmo

Exemplo 9 Resolver o PVI de segunda ordem y'' = 4y' - 5y + x - 2, com y(0) = 1 e y'(0) = -1, $x \in [0, 2]$, usando 8 subintervalos.

- Mudanças de variáveis: $y_1 = y$ e $y_2 = y'_1$.
- Sistema: $y'_1 = y_2 e y'_2 = 4y_2 5y_1 + x 2$, com $y_1(0) = 1 e y_2(0) = -1$.

```
% Os parametros de entrada
a = 0
b = 2
m = 8
v10 = 1
v20 = -1
% produzem os resultados
  Metodo RK4 para sistema de ordem 2
         Х
               y1
                              y2
       0.00000 1.00000 -1.00000
       0.25000 0.29150 -5.22233
       0.50000 -1.97300 -13.86486
       0.75000 -7.25688 -30.00220
       1.00000 -17.95859 -58.07121
       1.25000
               -37.76370 -103.89015
       1.50000
               -71.92819 -173.98777
       1.75000 -127.22682 -273.40703
       2.00000 -211.01753 -400.51082
```

Algoritmos Numéricos 2^a edição

Capítulo 7: Equações diferenciais ordinárias

 Fim