5.40 Digital Signal Processing

**Example 5.11** For the analog transfer function  $H(s) = \frac{2}{(s+1)(s+2)}$  determine H(z) using impulse invariance method. Assume T = 1 sec.

### Solution

Given 
$$H(s) = \frac{2}{(s+1)(s+2)}$$

Using partial fraction we can write

$$H(s) = \frac{A}{s+1} + \frac{B}{s+2}$$

$$H(s) = \frac{2}{s+1} - \frac{2}{s+2}$$

$$= \frac{2}{s-(-1)} - \frac{2}{s-(-2)}$$

$$A = (s+1) \frac{2}{(s+1)(s+2)} \Big|_{s=-1}$$

$$= 2$$

$$B = (s+2) \frac{2}{(s+1)(s+2)} \Big|_{s=-2}$$

$$= -2$$

Using impulse invariance technique we have, if

$$H(s) = \sum_{k=1}^{N} \frac{c_k}{s - p_k}$$
 then  $H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}$ 

i.e.,  $(s - p_k)$  is transformed to  $1 - e^{p_k T} z^{-1}$ .

There are two poles  $p_1 = -1$  and  $p_2 = -2$ . So

$$H(z) = \frac{2}{1 - e^{-T}z^{-1}} - \frac{2}{1 - e^{-2T}z^{-1}}$$

For  $T = 1 \sec$ 

$$\begin{split} H(z) &= \frac{2}{1 - e^{-1}z^{-1}} - \frac{2}{1 - e^{-2}z^{-1}} \\ &= \frac{2}{1 - 0.3678z^{-1}} - \frac{2}{1 - 0.1353z^{-1}} \\ H(z) &= \frac{0.465z^{-1}}{1 - 0.503z^{-1} + 0.04976z^{-2}} \end{split}$$

Example 5.12 Using impulse invariance with T=1 sec determine H(z) if  $H(s)=\frac{1}{s^2+\sqrt{2}s+1}$ 

Solution

Given 
$$H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$$

$$h(t) = L^{-1}[H(s)] = L^{-1} \left[ \frac{1}{s^2 + \sqrt{2}s + 1} \right]$$

$$= L^{-1} \left[ \frac{1}{\left(s + \frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} \right]$$

$$= L^{-1} \left[ \sqrt{2} \cdot \frac{\frac{1}{\sqrt{2}}}{\left(s + \frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} \right]$$

$$= \sqrt{2}L^{-1} \left[ \frac{\frac{1}{\sqrt{2}}}{\left(s + \frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} \right] = \sqrt{2}e^{-t/\sqrt{2}}\sin(t/\sqrt{2})$$
Let  $t = nT$ 

$$h(nT) = \sqrt{2}e^{-nT/\sqrt{2}}\sin\frac{nT}{\sqrt{2}}$$
If  $T = 1$  sec
$$h(n) = \sqrt{2}e^{-n/\sqrt{2}}\sin\frac{n}{\sqrt{2}}$$

$$H(z) = Z[h(n)] = \sqrt{2} \left[ \frac{e^{-1/\sqrt{2}}z^{-1}\sin 1/\sqrt{2}}{1 - 2e^{-1/\sqrt{2}}z^{-1}\cos\frac{1}{\sqrt{2}} + e^{-\sqrt{2}}z^{-2}} \right]$$

Example 5.13 Design a third order Butterworth digital filter using impulse invariant technique. Assume sampling period  $T=1\,\mathrm{sec}$ .

 $= \frac{0.453z^{-1}}{1 - 0.7497z^{-1} + 0.2432z^{-2}}$ 

#### Solution

From the table 5.1, for N=3, the transfer function of a normalised Butterworth filter is given by

$$H(s) = \frac{1}{(s+1)(s^2+s+1)}$$

$$= \frac{A}{s+1} + \frac{B}{s+0.5+j0.866} + \frac{C}{s+0.5-j0.866}$$

5.42 Digital Signal Processing

$$A = (s+1)\frac{1}{(s+1)(s^2+s+1)}\Big|_{s=-1} = \frac{1}{(-1)^2 - 1 + 1} = 1$$

$$B = (s+0.5+j0.866)\frac{1}{(s+1)(s+0.5+j0.866)}\Big|_{s=-0.5-j0.866}$$

$$= \frac{1}{(-0.5-j0.866+1)(-j0.866-j0.866)}$$

$$= \frac{1}{-j1.732(0.5-j0.866)} = \frac{1}{-j0.866-1.5}$$

$$= \frac{-1.5+j0.866}{3} = -0.5+j0.288$$

$$C = B^* = -0.5-j0.288$$

Hence

$$H(s) = \frac{1}{s+1} + \frac{-0.5 + 0.288j}{s+0.5+j0.866} + \frac{-0.5 - 0.288j}{s+0.5-j0.866}$$
$$= \frac{1}{s-(-1)} + \frac{-0.5 + 0.288j}{s-(-0.5-j0.866)} + \frac{-0.5 - 0.288j}{s-(-0.5+j0.866)}$$

In impulse invariant technique

if 
$$H(s)=\sum_{k=1}^N\frac{c_k}{s-p_k}$$
, then  $H(z)=\sum_{k=1}^N\frac{c_k}{1-e^{p_kT}z^{-1}}$  Therefore,

$$H(z) = \frac{1}{1 - e^{-1}z^{-1}} + \frac{-0.5 + j0.288}{1 - e^{-0.5}e^{-j0.866}z^{-1}} + \frac{-0.5 - j0.288}{1 - e^{-0.5}e^{j0.866}z^{-1}}$$
$$= \frac{1}{1 - 0.368z^{-1}} + \frac{-1 + 0.66z^{-1}}{1 - 0.786z^{-1} + 0.368z^{-2}}$$

Example 5.14 Apply impulse invariant method and find H(z) for  $H(s) = \frac{s+a}{(s+a)^2+b^2}$ .

Solution The inverse Laplace transform of given function is

$$h(t) = \begin{cases} e^{-at} \cos(bt) & \text{for } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Sampling the function produces

$$h(nT) = \begin{cases} e^{-anT} \cos(bnT) & \text{for } n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H(z) = \sum_{n=0}^{\infty} e^{-anT} \cos(bnT) z^{-n}$$

$$= \sum_{n=0}^{\infty} \left[ e^{-anT} z^{-n} \left( \frac{e^{jbnT} + e^{-jbnT}}{2} \right) \right]$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \left[ (e^{-(a-jb)T} z^{-1})^n + (e^{-(a+jb)T} z^{-1})^n \right]$$

$$= \frac{1}{2} \left[ \frac{1}{1 - e^{-(a-jb)T} z^{-1}} + \frac{1}{1 - e^{-(a+jb)T} z^{-1}} \right]$$

$$= \frac{1 - e^{-aT} \cos(bT) z^{-1}}{1 - 2e^{-aT} \cos(bT) z^{-1} + e^{-2aT} z^{-2}}$$

Example 5.15 An analog filter has a transfer function  $H(s) = \frac{10}{s^2 + 7s + 10}$ . Design a digital filter equivalent to this using impulse invariant method for T = 0.2 sec.

#### Solution

Given

$$H(s) = \frac{10}{s^2 + 7s + 10}$$

$$= \frac{-3.33}{s+5} + \frac{3.33}{s+2} = \frac{-3.33}{s-(-5)} + \frac{3.33}{s-(-2)}$$

Using Eq. (5.81b) we have

$$H(z) = T \left[ \frac{-3.33}{1 - e^{-5T}z^{-1}} + \frac{3.33}{1 - e^{-2T}z^{-1}} \right] = 0.2 \left[ \frac{-3.33}{1 - e^{-1}z^{-1}} + \frac{3.33}{e^{-0.4}z^{-1}} \right]$$

$$= \left[ \frac{-0.666}{1 - 0.3678z^{-1}} + \frac{0.666}{1 - 0.67z^{-1}} \right]$$

$$= \frac{0.2012z^{-1}}{1 - 1.0378z^{-1} + 0.247z^{-2}}$$

Practice Problem 5.7 An analog filter has a transfer function

$$H(s) = \frac{5}{s^3 + 6s^2 + 11s + 6}$$

Design a digital filter equivalent to this using impulse invariant method for T=1 sec.

where  $\{z_k\}$  are the zeros and  $\{p_k\}$  are the poles of the filter, then the system function of the digital filter is

$$H(z) = \frac{\prod_{k=1}^{M} (1 - e^{z_k T} z^{-1})}{\prod_{k=1}^{N} (1 - e^{p_k T} z^{-1})}$$
(5.97)

where T is the sampling interval. Thus each factor of the form (s-a) in H(s) is mapped into the factor  $1-e^{aT}z^{-1}$ . This mapping is called the matched z-transform.

Example 5.16 Apply bilinear transformation to  $H(s) = \frac{2}{(s+1)(s+2)}$  with T=1 sec and find H(z).

Solution

Given 
$$H(s) = \frac{2}{(s+1)(s+2)}$$
  
Substitute  $s = \frac{2}{T} \left[ \frac{1-z^{-1}}{1+z^{-1}} \right]$  in  $H(s)$  to get  $H(z)$ 

$$H(z) = H(s) \Big|_{s = \frac{2}{T} \left( \frac{1-z^{-1}}{1+z^{-1}} \right)}$$

$$= \frac{2}{(s+1)(s+2)} \Big|_{s = \frac{2}{T} \left( \frac{1-z^{-1}}{1+z^{-1}} \right)}$$

Given T=1 sec

$$H(z) = \frac{2}{\left\{2\left(\frac{1-z^{-1}}{1+z^{-1}}\right)+1\right\}\left\{2\left(\frac{1-z^{-1}}{1+z^{-1}}\right)+2\right\}}$$

$$= \frac{2(1+z^{-1})^2}{(3-z^{-1})(4)}$$

$$= \frac{(1+z^{-1})^2}{6-2z^{-1}}$$

$$= \frac{0.166(1+z^{-1})^2}{(1-0.33z^{-1})}$$

Example 5.17 Using the bilinear transform, design a highpass filter, monotonic in passband with cutoff frequency of 1000 Hz and down 10 dB at 350 Hz. The sampling frequency is 5000 Hz.

Solution

Given 
$$\alpha_p=3\,\mathrm{dB};\ \omega_c=\omega_p=2\times\pi\times1000=2000\pi$$
 rad/sec  $\alpha_s=10\,\mathrm{dB};\ \omega_s=2\times\pi\times350=700\pi$  rad/sec  $T=\frac{1}{f}=\frac{1}{5000}=2\times10^{-4}sec$ 



The characteristics are monotonic in both passband and stopband. Therefore, the filter is Butterworth filter.

Prewarping the digital frequencies we have

$$\Omega_p = \frac{2}{T} \tan \frac{\omega_p T}{2} = \frac{2}{2 \times 10^{-4}} \tan \frac{(2000\pi \times 2 \times 10^{-4})}{2}$$

$$= 10^4 \tan(0.2\pi) = 7265 \text{ rad/sec}$$

$$\Omega_s = \frac{2}{T} \tan \frac{\omega_s T}{2} = \frac{2}{2 \times 10^{-4}} \tan \frac{(700\pi \times 2 \times 10^{-4})}{2}$$

$$= 10^4 \tan(0.07\pi) = 2235 \text{ rad/sec}$$

First we design a lowpass filter for the given specifications and use suitable transformation to obtain transfer function of highpass filter.

The order of the filter

$$N = \frac{\log \sqrt{\frac{10^{0.1\alpha_s} - 1}{10^{0.1\alpha_p} - 1}}}{\log \frac{\Omega_s}{\Omega_p}} = \frac{\log \sqrt{\frac{10^{0.1(10)} - 1}{10^{0.1(3)} - 1}}}{\log \frac{7265}{2235}} = \frac{\log 3}{\log 3.25} = \frac{0.4771}{0.5118} = 0.932$$

Therefore, we take N=1.

The first-order Butterworth filter for 
$$\Omega_c = 1$$
 rad/sec is  $H(s) = \frac{1}{1+s}$ .

Infinite Impulse Response Filters 5.51

The highpass filter for  $\Omega_c=\Omega_p=7265$  rad/sec can be obtained by using the

$$s \to \frac{\Omega_c}{s}$$
i.e.,  $s \to \frac{(7265)}{s}$ 

The transfer function of highpass filter

$$H(s) = \frac{1}{s+1} \Big|_{s=\frac{7265}{s}}$$
$$= \frac{s}{s+7265}$$

Using bilinear transformation

$$H(z) = H(s) \Big|_{s = \frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)}$$

$$= \frac{s}{s + 7265} \Big|_{s = \frac{2}{2 \times 10^{-4}} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)}$$

$$= \frac{10000 \left(\frac{1-z^{-1}}{1+z^{-1}}\right)}{10000 \left(\frac{1-z^{-1}}{1+z^{-1}}\right) + 7265}$$

$$= \frac{0.5792(1-z^{-1})}{1 - 0.1584z^{-1}}$$

Example 5.18 Determine H(z) that results when the bilinear transformation is applied to  $H_a(s)=\frac{s^2+4.525}{s^2+0.692s+0.504}$ 

#### Solution

In bilinear transformation

$$H(z) = H(s)\Big|_{s=\frac{2}{T}\left[\frac{1-z^{-1}}{1+z^{-1}}\right]}$$

Assume T = 1 sec. Then

$$H(z) = \frac{\left[2\left(\frac{1-z^{-1}}{1+z^{-1}}\right)\right]^2 + 4.525}{4\left[\frac{1-z^{-1}}{1+z^{-1}}\right]^2 + 0.692 \times 2 \times \left[\frac{1-z^{-1}}{1+z^{-1}}\right] + 0.504}$$
$$= \frac{1.4479 + 0.1783z^{-1} + 1.4479z^{-2}}{1 - 1.18752z^{-1} + 0.5299z^{-2}}$$

Infinite Impulse Response Filters 5.79

$$c_0 = b_0 - \sum_{i=1}^{3} c_i a_i (i - m)$$

$$= b_0 - [c_1 a_1(1) + c_2 a_2(2) + c_3 a_3(3)]$$

$$= 1 - \left[ 0.8281 \left( \frac{1}{4} \right) + 1.4583 \left( \frac{1}{2} \right) + \frac{1}{3} \right] = -0.2695.$$

The lattice ladder structure for the given pole-zero filter is shown in Fig. 5.61.



Lattice-ladder form for the example 5.29.

To convert a lattice-ladder form into a direct form, we first use Eq. (5.159) to determine  $\{a_N(k)\}\$  and then use Eq. (5.168) recursively to obtain  $b_M(k)$ .

Practice Problem 5.16 Convert the following pole-zero IIR filter into a lattice-ladder structure

$$H(z) = \frac{1 + z^{-1} + z^{-2}}{1 + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}}$$

Additional Examples

Example 5.30 Design a digital Butterworth filter satisfying the constraints

$$|0.707 \le |H(e^{j\omega})| \le 1$$
 for  $0 \le \omega \le \frac{\pi}{2}$  
$$|H(e^{j\omega})| \le 0.2$$
 for  $\frac{3\pi}{4} \le \omega \le \pi$ 

with T = 1 sec using (a) The bilinear transformation (b) Impulse invariance. Realize the filter. the filter in each case using the most convenient realization form.

(AU ECE May'07) (AU ECE Nov'06)

## 5.80 Digital Signal Processing

## Solution

# (a) Bilinear transformation

Given data 
$$\frac{1}{\sqrt{1+\varepsilon^2}}=0.707; \quad \frac{1}{\sqrt{1+\lambda^2}}=0.2; \omega_p=\frac{\pi}{2}; \omega_s=\frac{3\pi}{4}.$$
 The analog frequency ratio is

$$\frac{\Omega_s}{\Omega_p} = \frac{\frac{2}{T} \tan \frac{\omega_s}{2}}{\frac{2}{T} \tan \frac{\omega_p}{2}} = \frac{\tan \frac{3\pi}{8}}{\tan \frac{\pi}{4}} = 2.414$$

The order of the filter  $N \geq \frac{\log \frac{\lambda}{\varepsilon}}{\log \frac{\Omega_s}{\Omega_p}}$ .

From the given data  $\lambda = 4.898$   $\varepsilon = 1$ .

So 
$$N \ge \frac{\log 4.898}{\log 2.414} = 1.803.$$

Rounding N to nearest higher value we get N=2. We know

$$\Omega_c = \frac{\Omega_p}{(\varepsilon)^{1/N}} = \Omega_p \quad (\because \varepsilon = 1)$$

$$= \frac{2}{T} \tan \frac{\omega_p}{2} = 2 \tan \frac{\pi}{4} = 2 \frac{\text{rad/sec}}{2}$$

The transfer function of second order normalized Butterworth filter is

$$H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$$

 $H_a(s)$  for  $\Omega_c=2$  rad/sec can be obtained by substituting  $s\to s/2$  in H(s)

i.e., 
$$H_a(s) = \frac{1}{(s/2)^2 + \sqrt{2} \cdot (s/2) + 1}$$
$$= \frac{4}{s^2 + 2.828s + 4}$$

By using bilinear transformation H(z) can be obtained as

$$H(z) = H(s) \Big|_{s = \frac{2}{T}} \left( \frac{1 - z^{-1}}{1 + z^{-1}} \right)$$
Thus  $H(z) = \frac{4}{s^2 + 2.828s + 4} \Big|_{s = 2} \left( \frac{1 - z^{-1}}{1 + z^{-1}} \right)$  ( $\therefore T = 1 \sec$ )
$$= \frac{4(1 + z^{-1})^2}{4(1 - z^{-1})^2 + 5.656(1 - z^{-2}) + 4(1 + z^{-1})^2}$$

$$= \frac{0.2929(1 + z^{-1})^2}{1 + 0.1716z^{-2}}$$

The above system function can be realized in direct form II as shown in Fig. 5.62.



# (b) Impulse Invariant Method

## Solution

The relationship between analog & digital frequencies in Impulse invariant method is  $\omega = \Omega T$ .

From the given data  $T=1\,\mathrm{sec}$  i.e.,  $\omega=\Omega$ 

$$\Rightarrow \quad \Omega_p = \omega_p; \quad \Omega_s = \omega_s$$

We know  $\lambda = 4.898$ ;  $\varepsilon = 1$ .

The order of the filter

$$N \ge \frac{\log \frac{\lambda}{\varepsilon}}{\log \frac{\Omega_s}{\Omega_p}} = \frac{\log 4.989}{\log \frac{3\pi/4}{\pi/2}}$$
$$N \ge 3.924$$

i.e., N = 4

The transfer function of a fourth order normalized Butterworth filter is

$$H(s) = \frac{1}{(s^2 + 0.76537 + 1)(s^2 + 1.8477s + 1)}$$

$$As \varepsilon = 1; \quad \Omega_p = \Omega_c = 0.5\pi = 1.57$$

$$H_a(s) = H(s)|_{s \to \frac{s}{1.57}}$$

$$= \frac{(1.57)^4}{(s^2 + 1.202s + 2.465)(s^2 + 2.902s + 2.465)}$$

# 5.82 Digital Signal Processing

 $H_a(s)$  in the partial fraction form is given by

$$H_{a}(s) = \frac{A}{(s+1.45+j0.6)} + \frac{A^{*}}{(s+1.45-j0.6)} + \frac{B^{*}}{(s+0.6-j1.45)} + \frac{B^{*}}{(s+0.6-j1.45)}$$

$$A = (s+1.45+j0.6) \frac{(1.57)^{4}}{(s+1.45+j0.6)(s+1.45-j0.6)}$$

$$= \frac{(1.57)^{4}}{(-j0.6-0.6)[(-1.45-j0.6)^{2}+1.202(-1.45-j0.6)+2.465]}$$

$$= \frac{(1.57)^{4}}{-j(1.2)[1.7425+1.74j-1.7429-j0.7212+2.465]}$$

$$= \frac{(1.57)^{4}}{-j(1.2)(2.465+j1.0188)}$$

$$= \frac{5.063}{1.0188-j2.465} = \frac{5.063(1.0188+j2.465)}{7.114}$$

$$= 0.7116(1.0188+j2.465) = 0.7253+j1.754$$

$$B = (s+0.6+j1.45) \frac{(1.57)^{4}}{(s+0.6+j1.45)(s+0.6-j1.45)} \Big|_{s=-0.6-j1.6}$$

$$= \frac{(1.57)^{4}}{-j(2.9)[(-0.6-j1.45)^{2}+2.902(-0.6-j1.45)+2.465]}$$

$$= \frac{(1.57)^{4}}{-j(2.9)[-1.7425+j1.74-1.7412-j4.208+2.465]}$$

$$= \frac{2.095}{-j[-1.0187-j2.468]}$$

$$= \frac{2.095}{-2.468+j1.0187} = \frac{2.095[-2.468-j1.0187]}{7.1287}$$

$$= 0.29388[-2.468-j1.0187] = -0.7253-0.3j$$

$$H_{a}(s) = \frac{0.7253+j1.754}{s-(-1.45-j0.6)} + \frac{0.7253-j1.754}{s-(-0.6-j1.45)} + \frac{0.7253-j1.754}{s-(-1.65+j0.6)}$$

$$+ \frac{-0.7253-0.3j}{s-(-0.6-j1.45)} + \frac{-0.7253+0.3j}{s-(-0.6+j1.45)}$$

We know for  $T = 1 \sec$ 

$$H(z) = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k} z^{-1}}$$

Therefore

$$H_a(s) = \frac{0.7253 + j1.754}{1 - e^{-1.45}e^{-j0.6}z^{-1}} + \frac{0.7253 - j1.754}{1 - e^{-1.45}e^{j0.6}z^{-1}} + \frac{-(0.7253 + 0.3j)}{1 - e^{-0.6}e^{-j1.45}z^{-1}} + \frac{-0.7253 + 0.3j}{1 - e^{-0.6}e^{j1.45}z^{-1}} = \frac{1.454 + 0.1839z^{-1}}{1 - 0.387z^{-1} + 0.055z^{-2}} + \frac{-1.454 + 0.2307z^{-1}}{1 - 0.1322z^{-1} + 0.301z^{-2}}$$

This can be realized using parallel form as shown in Fig. 5.63.



Fig. 5.63

Example 5.31 Design a Chebyshev lowpass filter with the specifications  $\alpha_p=1\,\mathrm{dB}$  ripple in the passband  $0\leq\omega\leq0.2\pi$ ,  $\alpha_s=15\,\mathrm{dB}$  ripple in the stopband  $0.3\pi\leq\omega\leq\pi$ , using (a) bilinear transformation (b) Impulse invariance.

### Solution

Given data  $\alpha_p = 1 \, \mathrm{dB}$ ;  $\omega_p = 0.2\pi$ ;  $\alpha_s = 15 \, \mathrm{dB}$ ;  $\omega_s = 0.3\pi$ .

Prewarped frequency values: Since we intend to employ the bilinear transformation method, we must prewarp these frequencies. The prewarped values are given by (Assume T = 1 sec);

$$\Omega_p = \frac{2}{T} \tan \frac{\omega_p}{2} = 2 \tan \frac{0.2\pi}{2} = 0.65$$

$$\Omega_s = \frac{2}{T} \tan \frac{\omega_s}{2} = 2 \tan \frac{0.3\pi}{2} = 1.02$$

Value of N

$$N \ge \frac{\cosh^{-1}\sqrt{\frac{10^{0.1\alpha_s} - 1}{10^{0.1\alpha_p} - 1}}}{\cosh^{-1}\frac{\Omega_s}{\Omega_p}} \ge \frac{\cosh^{-1}\sqrt{\frac{10^{1.5} - 1}{10^{0.1} - 1}}}{\cosh^{-1}\frac{1.02}{0.65}} = 3.01$$

Let us take N=4.

Axis of the ellipse

We know 
$$\varepsilon = \sqrt{10^{0.1\alpha_p} - 1} = 0.508$$

$$\mu = \varepsilon^{-1} + \sqrt{1 + \varepsilon^{-2}} = 4.17$$

$$a = \Omega_p \left[ \frac{\mu^{1/N} - \mu^{-1/N}}{2} \right] = 0.65 \left[ \frac{(4.17)^{1/4} - (4.17)^{-1/4}}{2} \right]$$

$$= 0.237$$

$$b = \Omega_p \left[ \frac{\mu^{1/N} + \mu^{-1/N}}{2} \right] = 0.65 \left[ \frac{(4.17)^{1/4} + (4.17)^{-1/4}}{2} \right]$$
$$= 0.6918$$
$$\phi_k = \frac{\pi}{2} + \frac{(2k-1)\pi}{2N} k = 1, 2, 3, 4$$

$$\phi_1=112.5^\circ; \phi_2=157.5^\circ, \phi_3=202.5^\circ; \phi_4=247.5^\circ.$$
 The poles are

$$\begin{aligned} s_k &= a\cos\phi_k + jb\sin\phi_k; \quad k = 1, 2, 3, 4 \\ s_1 &= a\cos\phi_1 + jb\sin\phi_1 = 0.237\cos112.5^\circ + j0.6918\sin112.5^\circ \\ &= -0.0907 + j0.639 \\ s_2 &= a\cos\phi_2 + jb\sin\phi_2 = 0.237\cos157.5^\circ + j0.6918\sin157.5^\circ \\ &= -0.2189 + j0.2647 \\ s_3 &= a\cos\phi_3 + jb\sin\phi_3 = 0.237\cos202.5^\circ + j0.6918\sin202.5^\circ \\ &= -0.2189 - j0.2647 \\ s_4 &= a\cos\phi_4 + jb\sin\phi_4 = 0.237\cos247.5^\circ + j0.6918\sin247.5^\circ \\ &= -0.0907 - j0.639 \end{aligned}$$

The denominator polynomial of

$$H(s) = [(s + 0.0907)^{2} + (0.639)^{2}][(s + 0.2189)^{2} + (0.2647)^{2}]$$
$$= (s^{2} + 0.1814s + 0.4165)(s^{2} + 0.4378s + 0.118)$$

As 
$$N$$
 is even, the numerator of  $H(s) = \frac{(0.4165)(0.118)}{\sqrt{1+\varepsilon^2}} = 0.04381$ . The transfer function  $H(s) = \frac{0.04381}{(s^2+0.1814s+0.4165)(s^2+0.4378s+0.1180)}$ . The  $z$ -transform of the digital filter

$$\begin{split} H(z) &= H(s) \bigg|_{s = \frac{2}{T}} \bigg[ \frac{1-z^{-1}}{1+z^{-1}} \bigg] \\ H(z) &= \frac{0.04381}{(s^2 + 0.1814s + 0.4165)(s^2 + 0.4378s + 0.1180)} \bigg|_{s = 2} \bigg[ \frac{1-z^{-1}}{1+z^{-1}} \bigg] \\ &= \frac{0.04381(1+z^{-1})^4}{\{4(1-z^{-1})^2 + 0.1814 \times 2(1-z^{-2}) + 0.4165(1+z^{-1})^2\}} \\ &= \frac{0.04381(1+z^{-1})^4}{\{4(1-z^{-1})^2 + 0.4378 \times 2(1-z^{-2}) + 0.1180(1+z^{-1})^2\}} \\ &= \frac{0.04381(1+z^{-1})^4}{(4.7794 - 7.1668z^{-1} + 4.0538z^{-2})(4.9936 - 7.764z^{-1} + 3.2424z^{-2})} \\ &= \frac{0.001836(1+z^{-1})^4}{(1-1.499z^{-1} + 0.8482z^{-2})(1-1.5548z^{-1} + 0.6493z^{-2})} \end{split}$$

## (b) Impulse Invariance Method

Given data 
$$\omega_p=0.2\pi$$
;  $\omega_s=0.3\pi$ ;  $\alpha_p=1\,\mathrm{dB}$ ;  $\alpha_s=15\,\mathrm{dB}$ . The Analog frequency ratio  $\frac{\Omega_s}{\Omega_p}=\frac{\omega_s}{\omega_p}=\frac{0.3\pi}{0.2\pi}=1.5$ 

$$(: \omega = \Omega T \text{ and } T = 1 \text{ sec})$$

Value of N

$$N \ge \frac{\cosh^{-1}\sqrt{\frac{10^{0.1\alpha_s} - 1}{10^{0.1\alpha_p} - 1}}}{\cosh^{-1}\frac{\Omega_s}{\Omega_p}} = \cosh^{-1}\frac{\sqrt{\frac{10^{1.5} - 1}{10^{0.1} - 1}}}{\cosh^{-1}(0.5)} = 3.2$$

Rounding the value of N to a higher value, we get N=4. Axis of ellipse

$$\phi_k = \frac{\pi}{2} + \frac{(2k-1)\pi}{2N}; \quad k = 1, 2, \dots N$$

$$\phi_1 = 112.5^\circ; \phi_2 = 157.5^\circ; \phi_3 = 202.5^\circ$$

### 5.86 Digital Signal Processing

$$\phi_4 = 247.5^{\circ}$$

$$\varepsilon = \sqrt{10^{0.1\alpha_p} - 1} = \sqrt{10^{0.1} - 1} = 0.508$$

$$\mu = \varepsilon^{-1} + \sqrt{1 + \varepsilon^{-2}} = 4.17$$

$$a = \Omega_p \left[ \frac{\mu^{1/N} - \mu^{-1/N}}{2} \right] = 0.2\pi \left[ \frac{4.17^{1/4} - 4.17^{-1/4}}{2} \right] = 0.229$$

$$b = \Omega_p \left[ \frac{\mu^{1/N} + \mu^{-1/N}}{2} \right] = 0.2\pi \left[ \frac{4.17^{1/4} + 4.17^{-1/4}}{2} \right] = 0.67$$

The poles of the filter

$$s_k = a\cos\phi_k + jb\sin\phi_k; \quad k = 1, 2, \dots 4$$
  
 $s_1 = a\cos\phi_1 + jb\sin\phi_1 = -0.0876 + j0.619$   
 $s_2 = a\cos\phi_2 + jb\sin\phi_2 = -0.2115 + j0.2564$   
 $s_3 = a\cos\phi_3 + jb\sin\phi_3 = -0.2115 - j0.2564$   
 $s_4 = a\cos\phi_4 + jb\sin\phi_4 = -0.0876 - j0.619$ 

The denominator polynomial of

$$H(s) = \{(s+0.0876)^2 + (0.619)^2\}\{(s+0.215)^2 + (0.2564)^2\}$$
  
=  $(s^2+0.175s+0.391)(s^2+0.423s+0.11)$ 

For Neven

The numerator of 
$$H(s) = \frac{(0.391)(0.11)}{\sqrt{1+\epsilon^2}} = 0.03834$$
.

$$H(s) = \frac{0.03834}{(s^2 + 0.175s + 0.391)(s^2 + 0.423s + 0.11)}$$

$$= \frac{A}{s - (-0.0876 + j0.619)} + \frac{A^*}{s - (-0.0876 - j0.619)} + \frac{B}{s - (-0.2115 + j0.2564)} + \frac{B^*}{s - (-0.2115 - j0.2564)}$$

Solving for  $A, A^*, B, B^*$  and using

$$A = -0.0413 + j0.0814$$
$$B = 0.0413 - j0.2166$$

Impulse invariant transform

i.e., 
$$\sum_{k=1}^{N} \frac{c_k}{s - p_k} = \sum_{k=1}^{N} \frac{c_k}{1 - e^{p_k T} z^{-1}}.$$

we can obtain

$$H(z) = \frac{-0.083 - 0.0245z^{-1}}{1 - 1.49z^{-1} + 0.839z^{-2}} + \frac{0.083 + 0.0238z^{-1}}{1 - 1.56z^{-1} + 0.655z^{-2}}$$

Example 5.32 Design a Butterworth filter using the impulse variance method for the following specifications

$$0.8 \le |H(e^{j\omega})| \le 1$$
  $0 \le \omega \le 0.2\pi$   
 $|H(e^{j\omega})| \le 0.2$   $0.6\pi \le \omega \le \pi$ 

Given 
$$\frac{1}{\sqrt{1+\varepsilon^2}}=0.8$$
 from which  $\varepsilon=0.75, \frac{1}{\sqrt{1+\lambda^2}}=0.2$  from which  $\lambda=4.899$  
$$\omega_s=0.6\pi \, \mathrm{rad}; \quad \omega_p=0.2\pi \, \mathrm{rad}$$
 
$$\frac{\omega_s}{\omega_p}=\frac{\Omega_s T}{\Omega_p T}=\frac{\Omega_s}{\Omega_p}=\frac{0.6\pi}{0.2\pi}=3$$
 
$$N=\frac{\log \lambda/\varepsilon}{\log 1/k}=\frac{\log \frac{4.899}{0.75}}{\log 3}=1.71$$

Approximating to nearest higher values we have N=2.

For N=2 the transfer function of normalized Butterworth filter is

$$H(s) = \frac{1}{s^2 + \sqrt{2s} + 1}$$

$$\Omega_c = \frac{\Omega_p}{(\varepsilon)^{1/N}} = \frac{0.2\pi}{(0.75)^{1/2}} = 0.231\pi$$

$$H_a(s) = H(s) \Big|_{s \to s/0.231\pi}$$

$$= \frac{0.5266}{s^2 + 1.03s + 0.5266}$$

$$= \frac{0.516j}{s + 0.51 + j0.51} - \frac{0.516j}{s + 0.51 - j0.51}$$

$$= \frac{0.516j}{s - (-0.51 - j0.51)} - \frac{0.516j}{s - (-0.51 + j0.51)}$$

$$H(z) = \frac{0.516j}{1 - e^{-0.51T}e^{-j0.51T}z^{-1}} - \frac{0.516j}{1 - e^{-0.51T}e^{j0.51T}z^{-1}} \quad (\because T = 1 \text{ sec})$$

$$= \frac{0.3019z^{-1}}{1 - 1.048z^{-1} + 0.36z^{-2}}$$

Practice Problem 5.17 Repeat example 5.32 using bilinear transformation

Ans: 
$$\frac{0.084[1+z^{-1}]^2}{1-1.028z^{-1}+0.3651z^{-2}}$$

Practice Problem 5.18 Design a Chebyshev lowpass filter with the specifications  $\alpha_p = 0.5 \, \mathrm{dB}$  ripple in the passband  $0 \le \omega \le 0.25\pi$ ,  $\alpha_s = 20 \, \mathrm{dB}$  ripple in the stopband  $0.4\pi \le \omega \le \pi$  using (a) bilinear transformation (b) Impulse invariance.

Practice Problem 5.19 Repeat practice problem 5.18 to design a Butterworth lowpass filter.

Example 5.33 Determine the system function H(z) of the lowest order Chebyshev and Butterworth digital filter with the following specification

- (a) 3db ripple in pass band  $0 \le \omega \le 0.2\pi$
- (b) 25db attenuation in stop band  $0.45\pi \le \omega \le \pi$

JNTU Nov'05 (set 3)

## Butterworth filter

Using bilinear transformation

$$\Omega_{p} = 0.2\pi; \quad \omega_{s} = 0.45\pi; \quad \alpha_{p} = 3db; \quad \alpha_{s} = 25db; \quad T = 1$$

$$\Omega_{p} = \frac{2}{T} \tan \frac{\omega_{p}}{2} = \frac{2}{T} \tan(0.1\pi) = 0.65$$

$$\Omega_{s} = \frac{2}{T} \tan \frac{\omega_{s}}{2} = \frac{2}{T} \tan \left(\frac{0.45\pi}{2}\right) = 1.71$$

$$N \ge \frac{\log \sqrt{\frac{10^{2.5} - 1}{10^{0.3} - 1}}}{\log \frac{\Omega_{s}}{\Omega_{p}}} = 2.97$$

$$N = 3$$

$$\Omega_{p} = \Omega_{c} = 0.65$$

For 
$$N=3$$

$$H(s) = \frac{1}{(s+1)(s^2+s+1)}$$

$$H_a(s) = H(s)\Big|_{s \to \frac{s}{0.65}} = \frac{(0.65)^3}{(s+0.65)(s^2+0.65s+0.4225)}$$

$$H(z) = H_a(s)\Big|_{s=\frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)}$$

$$=\frac{(0.65)^3(1+z^{-1})^3}{[2(1-z^{-1})+0.65(1+z^{-1})][4(1-z^{-1})^2+0.65(1-z^{-2})+0.4225(1+z^{-1})^2]}{(0.65)^3(1+z^{-1})^3}$$

$$=\frac{(0.65)^3(1+z^{-1})}{(2.65-1.35z^{-1})(4-8z^{-1}+4z^{-2}+0.65-0.65z^{-2}+0.4225+0.4225z^{-2}+0.845z^{-1})}$$

$$= \frac{(0.65)^3(1+z^{-1})^3}{(2.65-1.35z^{-1})(5.0725-7.155z^{-1}+3.7725z^{-2})}$$
$$= \frac{0.02066(1+z^{-1})^3}{(1-0.51z^{-1})(1-1.41z^{-1}+0.751z^{-2})}$$

Chebyshev filter

$$N \ge \frac{\cosh^{-1} \sqrt{\frac{10^{2.5} - 1}{10^{0.3} - 1}}}{\cos h^{-1} \frac{\Omega_s}{\Omega_p}}$$

$$\Rightarrow N = 3$$

$$\epsilon = \sqrt{10^{0.3} - 1} = 1$$

$$\mu = \epsilon^{-1} + \sqrt{1 + \epsilon^{-2}} = 2.414$$

$$a = \Omega_p \left[ \frac{\mu^{1/N} - \mu^{-1/N}}{2} \right] = 0.65 \left[ \frac{(2.414)^{1/3} - (2.414)^{-1/3}}{2} \right] = 0.1935$$

$$b = \Omega_p \left[ \frac{\mu^{1/N} + \mu^{-1/N}}{2} \right] = 0.65 \left[ \frac{(2.414)^{1/3} + (2.414)^{-1/3}}{2} \right] = 0.678$$

$$\phi_k = \frac{\pi}{2} + \frac{(2k - 1)\pi}{2N} \qquad k = 1, 2, 3$$

$$\phi_1 = 120^\circ; \quad \phi_2 = 180^\circ; \quad \phi_3 = 240^\circ$$

$$s_1 = a \cos \phi_1 + jb \sin \phi_1$$

$$= 0.1935 \cos(120^\circ) + j0.678 \sin(120^\circ)$$

$$= -0.09675 + j0.587$$

$$s_2 = a \cos \phi_2 + jb \sin \phi_2$$

$$= 0.1935 \cos(180^\circ) + j0.678 \sin(180^\circ)$$

$$= -0.1935$$

$$s_3 = a \cos \phi_3 + jb \sin \phi_3$$

$$= 0.1935 \cos(240^\circ) + j0.678 \sin(240^\circ)$$

The denominator polynomial of 
$$H(s) = (s + 0.1935) [(s + 0.09675)^2 + 0.587^2]$$
  
=  $(s + 0.1935) [(s^2 + 0.1935s + 0.354)]$ 

=-0.09675-j0.587

The transfer of H(s) = (0.1935)(0.354) = 0.0685

## 5.90 Digital Signal Processing

The transfer function 
$$H(s) = \frac{0.0685}{(s+0.1935)(s^2+0.1935s+0.354)}$$

$$H(z) = H(s) \Big|_{s = \frac{2(1-z^{-1})}{1+z^{-1}}}$$

$$= \frac{0.0685(1+z^{-1})^3}{(2.1935 - 1.8065z^{-1})(4.5475 - 7.292z^{-1} + 4.1605z^{-2})}$$

$$= \frac{0.00687(1+z^{-1})^3}{(1-0.823z^{-1})(1-1.6z^{-1} + 0.915z^{-2})}$$

Example 5.34 Design a Chebyshev filter for the following specification using (a) bilinear transformation (b) impulse invariance Method.

$$0.8 \le |H(e^{j\omega})| \le 1$$
  $0 \le \omega \le 0.2\pi$   
 $|H(e^{j\omega})| \le 0.2$   $0.6\pi \le \omega \le \pi$ 

#### Solution

(a) Given 
$$\omega_s = 0.6\pi$$
,  $\omega_p = 0.2\pi$ 

$$\frac{1}{\sqrt{1+\lambda^2}} = 0.2 \Rightarrow \lambda = 4.899$$

$$\frac{1}{\sqrt{1+\varepsilon^2}} = 0.8 \Rightarrow \varepsilon = 0.75$$

$$\Omega_p = \frac{2}{T} \tan \frac{\omega_p}{2} = 0.6498 \quad (\because T = 1 \text{ sec})$$

$$\Omega_s = \frac{2}{T} \tan \frac{\omega_s}{2} = 2.752$$

$$N = \frac{\cosh^{-1} \lambda/\varepsilon}{\cosh^{-1} 1/k} = 1.208$$

$$\Rightarrow N = 2$$

$$\mu = \varepsilon^{-1} + \sqrt{1+\varepsilon^{-2}} = 3$$

$$a = \Omega_p \left[ \frac{\mu^{1/N} - \mu^{-1/N}}{2} \right] = 0.3752$$

$$b = \Omega_p \left[ \frac{\mu^{1/N} + \mu^{-1/N}}{2} \right] = 0.75$$

$$\phi_k = \frac{\pi}{2} + \frac{(2k-1)\pi}{2N} \quad k = 1, 2$$

$$s_k = a \cos \phi_k + jb \sin \phi_k$$

$$s_1 = -0.2653 + j0.53$$

$$s_2 = -0.2653 - j0.53$$

Denominator of

$$H(s) = (s + 0.2653)^{2} + (0.53)^{2}$$
$$= s^{2} + 0.5306s + 0.3516$$

For N even, Numerator of H(s) is  $\frac{0.3516}{[1+(0.75)^2]^{1/2}} = 0.28$ 

$$H(s) = \frac{0.28}{s^2 + 0.5306s + 0.3516}$$

Using bilinear transformation

$$H(z) = H(z) \Big|_{s = \frac{2}{T}} \left( \frac{1 - z^{-1}}{1 + z^{-1}} \right) \frac{T = 1 \sec}{1 + z^{-1}}$$

$$H(z) = \frac{0.28(1 + z^{-1})^2}{5.4128 - 7.298z^{-1} + 3.29z^{-2}}$$

$$= \frac{0.052(1 + z^{-1})^2}{1 - 1.3480z^{-1} + 0.608z^{-2}},$$

# (b) By using impulse invariance method

$$\omega = \Omega T \Rightarrow \omega_p = \Omega_p T$$
 and  $\omega_s = \Omega_s T$ 

For T=1 sec

$$\frac{\omega_s}{\omega_p} = \frac{\Omega_s}{\Omega_p} = \frac{0.6\pi}{0.2\pi} = 3$$

$$N = \frac{\cosh^{-1}\frac{\lambda}{\varepsilon}}{\cosh^{-1}\frac{1}{k}} = \frac{\cosh^{-1}\frac{4.899}{0.75}}{\cosh^{-1}3} = 1.45$$

Approximating N to next higher integer, we get N=2. We know  $\mu=3$ 

$$a = \Omega_p \left[ \frac{\mu^{1/N} - \mu^{-1/N}}{2} \right] = 0.3627$$

$$b = \Omega_p \left[ \frac{\mu^{1/N} + \mu^{-1/N}}{2} \right] = 0.7255$$

$$\phi_1 = 135^\circ; \phi_2 = 225^\circ$$

$$s_1 = -0.2564 + j0.513$$

$$s_2 = -0.2564 - j0.513$$

Numerator of H(s) = 0.264

$$H(s) = \frac{0.264}{s^2 + 0.513s + 0.33} = \frac{(0.5146)(0.513)}{(s + 0.2564)^2 + (0.513)^2}$$

# 5.92 Digital Signal Processing

Taking inverse Laplace transform we obtain

$$h(t) = 0.5146e^{-0.2564t} \sin 0.513t$$

Let t = nT. Then  $h(nT) = 0.5146e^{-0.2564nT} \sin 0.513nT$ . The z-Transform

$$H(z) = \frac{0.5146e^{-0.2564T}z^{-1}\sin 0.513T}{1 - 2e^{-0.2564T}z^{-1}\cos 0.513T + e^{-0.513T}z^{-2}}$$

Assume T = 1 sec

$$H(z) = \frac{0.1954z^{-1}}{1 - 1.3483z^{-1} + 0.5987z^{-2}}$$

(or)

$$H(s) = \frac{0.264}{s^2 + 0.513s + 0.33} = \frac{0.257j}{s + 0.256 - j0.513} - \frac{0.257j}{s + 0.256 + j0.513}$$

$$H(z) = \frac{0.257j}{1 - e^{-0.256T}e^{j0.513T}z^{-1}} - \frac{0.257j}{1 - e^{-0.256T}e^{-j0.513T}z^{-1}}$$

$$= \frac{0.1954z^{-1}}{1 - 1.3483z^{-1} + 0.5987z^{-2}}$$

Example 5.35 Design a bandstop Butterworth and Chebyshev type-I filter to meet the following specifications

- (a) Stopband 100 to 600 Hz.
- (b) 20 dB attenuation at 200 and 400 Hz.
- (c) The gain at  $\omega = 0$  is unity.
- (d) The passband ripple for the chebyshev filter is 1.1 dB.
- (e) The passband attenuation for Butterworth filter is 3 dB.

#### Solution

Given

$$f_l = 100 \text{ Hz}$$
;  $f_1 = 200 \text{ Hz}$ ;  $f_2 = 400 \text{ Hz}$ ;  $f_u = 600$ ; Hz

Then

$$\Omega_l = 2 \times \pi \times 100 = 200\pi$$
  $rad/sec$ 
 $\Omega_1 = 2 \times \pi \times 200 = 400\pi$   $rad/sec$ 
 $\Omega_2 = 2 \times \pi \times 400 = 800\pi$   $rad/sec$ 
 $\Omega_u = 2 \times \pi \times 600 = 1200\pi$   $rad/sec$ 

First we design a prototype normalized lowpass filter and then use suitable transformation to obtain the transfer function of bandstop filter.

Infinite Impulse Response Filters 5.93



Fig. 5.64

For the normalized lowpass filter

$$\Omega_r = \min\left\{|A|, |B|\right\}$$

where

$$A = \frac{\Omega_1(\Omega_u - \Omega_l)}{-\Omega_1^2 + \Omega_l \Omega_u} = \frac{400\pi [1200\pi - 200\pi]}{-(400\pi)^2 + (200\pi)(1200\pi)}$$
$$= 5$$

$$B = \frac{\Omega_2(\Omega_l - \Omega_u)}{-\Omega_2^2 + \Omega_l \Omega_u} = \frac{800\pi [1200\pi - 200\pi]}{-(800\pi)^2 + (200\pi)(1200\pi)}$$
$$= -2$$

$$\Omega_r = \min \{|5|, |-2|\} = 2.$$
(a) Butterworth filter

The order of normalized Butterworth filter is

$$N = \frac{\log \sqrt{\frac{10^{0.1\alpha_s} - 1}{10^{0.1\alpha_p} - 1}}}{\log \frac{\Omega_s}{\Omega_p}}$$

$$\alpha_p = 3 \, \mathrm{dB}, \, \alpha_s = 20 \, \mathrm{dB}$$

$$\begin{split} \frac{\Omega_s}{\Omega_p} &= \Omega_r = 2 \\ &= \frac{\log \sqrt{\frac{10^2 - 1}{10^{0.3} - 1}}}{\log 2} = \frac{0.9978}{0.3010} = 3.32 \end{split}$$

Take N=4.

For N = 4 the transfer function of Butterworth filter is

$$H(s) = \frac{1}{(s^2 + 0.765s + 1)(s^2 + 1.848s + 1)}$$

# 5.94 Digital Signal Processing

To get the transfer function of bandstop filter, use the transformation

$$s \to \frac{s(\Omega_u - \Omega_l)}{s^2 + \Omega_u \Omega_l}$$

$$i.e., s \to \frac{s(1000\pi)}{s^2 + 24 \times 10^4 \pi^2}$$

$$H(s)\Big|_{s\to\frac{1000\pi s}{s^2+24\times 10^4\pi^2}}$$

$$= \frac{(s^2 + 24 \times 10^4 \pi^2)^4}{[(1000\pi)^2 s^2 + (0.765 \times 1000\pi s)(s^2 + 24 \times 10^4 \pi^2) + (s^2 + 24 \times 10^4 \pi^2)^2]}$$

$$= \frac{[(1000\pi)^2 s^2 + 1.848 \times 1000\pi s(s^2 + 24 \times 10^4 \pi^2) + (s^2 + 24 \times 10^4 \pi^2)]}{[s^4 + 2403.32s^3 + 1.4607 \times 10^7 s^2 + 5.69 \times 10^9 s + 5.61 \times 10^{12}]}$$

$$= \frac{(s^4 + 2403.32s^3 + 1.4607 \times 10^7 s^2 + 1.375 \times 10^{10} s + 5.61 \times 10^{12}]}{[s^4 + 5.805 \times 10^3 s^3 + 1.4607 \times 10^7 s^2 + 1.375 \times 10^{10} s + 5.61 \times 10^{12}]}$$

### (b) Chebyshev filter

The order of the Chebyshev filter

$$N = \frac{\cos h^{-1} \sqrt{\frac{10^2 - 1}{10^{0.3} - 1}}}{\cos h^{-1} 2}$$
$$= 2.75$$

Take 
$$N=3$$

$$\varepsilon = (10^{0.1\alpha_p} - 1)^{0.5} = (10^{0.11} - 1)^{0.5} = 0.5368$$

$$\lambda = (10^{0.1\alpha_s} - 1)^{0.5} = (10^2 - 1)^{0.5} = 9.95$$

$$\mu = \varepsilon^{-1} + \sqrt{1 + \varepsilon^{-2}} = 3.97$$

$$a = \Omega_p \left[ \frac{\mu^{1/N} - \mu^{-1/N}}{2} \right] \quad ; \quad b = \Omega_p \left[ \frac{\mu^{1/N} + \mu^{-1/N}}{2} \right]$$

$$= 1 \left[ \frac{(3.97)^{1/3} - (3.97)^{-1/3}}{2} \right] = 1 \left[ \frac{(3.97)^{1/3} + (3.97)^{-1/3}}{2} \right]$$

$$= 0.476$$

$$(\Omega_p = 1 \text{for normalized Chebyshev filter})$$

$$\phi_k = \frac{\pi}{2} + \frac{(2k-1)\pi}{2N} \quad k = 1, 2, 3$$

$$\phi_1 = \frac{\pi}{2} + \frac{\pi}{6} = 120^{\circ}$$

$$\phi_2 = \frac{\pi}{2} + \frac{\pi}{2} = 180^{\circ}$$

Infinite Impulse Response Filters 5.95

$$\phi_{3} = \frac{\pi}{2} + \frac{5\pi}{6} = 240^{\circ}$$

$$s_{1} = a\cos\phi_{1} + jb\sin\phi_{1}$$

$$= 0.476\cos120^{\circ} + j1.107\sin120^{\circ}$$

$$= -0.238 + j0.9586$$

$$s_{2} = a\cos\phi_{2} + jb\sin\phi_{2}$$

$$= (0.476)\cos180^{\circ} + j1.107\sin180^{\circ}$$

$$= -0.476$$

$$s_{3} = a\cos\phi_{3} + jb\sin\phi_{3}$$

$$= 0.476\cos240^{\circ} + j1.107\sin240^{\circ}$$

$$= -0.238 - j0.9586$$

Denominator of the transfer function

= 
$$(s + 0.476)\{(s + 0.238)^2 + (0.9586)^2\}$$
  
=  $(s + 0.476)(s^2 + 0.476s + 0.975)$ 

Numerator of the transfer function

$$= (0.476)(0.9755) = 0.46463$$

$$H(s) = \frac{0.4643}{(s+0.476)(s^2+0.476s+0.9755)}$$

The transfer function of Bandstop filter can be obtained by using the following transformation

$$H(s)\Big|_{s \to \frac{s(1000\pi)}{s^2 + 24 \times 10^4 \pi^2}}$$

$$= \frac{0.4643(s^2 + 24 \times 10^4 \pi^2)^3}{[1000\pi s + 0.476(s^2 + 24 \times 10^4 \pi^2)][s^2(1000\pi)^2 + 0.476(1000\pi s)} (s^2 + 24 \times 10^4 \pi^2) + 0.9755(s^2 + 24 \times 10^4 \pi^2)^2]$$

$$= \frac{0.4643(s^2 + 24 \times 10^4 \pi^2)^3}{(0.476s^2 + 1000\pi s + 1.1275 \times 10^6)(0.9755s^4 + 4.621 \times 10^6 + 5.47 \times 10^{12} + 9.369 \times 10^6 \pi^2 s^2 + 1495.4s^3 + 3.5 \times 10^9 s)}$$

$$= \frac{(s^2 + 24 \times 10^4 \pi^2)^3}{(s^2 + 6600s + 2.3687 \times 10^6)} (s^4 + 1533s^3 + 1.45 \times 10^7 s^2 + 3.589 \times 10^9 s + 5.6 \times 10^{12})$$

# 5.96 Digital Signal Processing

Example 5.36 Using bilinear transformation design a digital bandpass Butterworth

filter with the following specifications

Sampling frequency F = 8 KHz

 $\alpha_p = 2 \,\mathrm{dB}$  in the passband  $800 \,\mathrm{Hz} \le f \le 1000 \,\mathrm{Hz}$  $\alpha_s = 20 \, \mathrm{dB}$  in the stopband  $0 \le f \le 400 \, \mathrm{Hz}$  and  $2000 \, \mathrm{Hz} \le f \le \infty$ 

#### Solution



$$\begin{split} \frac{\omega_1 T}{2} &= \frac{2 \times \pi \times 400}{2 \times 8000} = \frac{\pi}{20} \\ \frac{\omega_l T}{2} &= \frac{2\pi \times 800}{2 \times 8000} = \frac{\pi}{10} \\ \frac{\omega_u T}{2} &= \frac{2 \times \pi \times 1600}{2 \times 8000} = \frac{\pi}{5} \\ \frac{\omega_2 T}{2} &= \frac{2 \times \pi \times 2000}{2 \times 8000} = \frac{\pi}{4} \end{split}$$

Fig. 5.65

Prewarped analog frequencies are given by

$$\frac{\Omega_1 T}{2} = \tan \frac{\omega_1 T}{2} = \tan \frac{\pi}{20} = 0.1584$$

$$\frac{\Omega_l T}{2} = \tan \frac{\omega_l T}{2} = \tan \frac{\pi}{10} = 0.325$$

$$\frac{\Omega_u T}{2} = \tan \frac{\omega_u T}{2} = \tan \frac{\pi}{5} = 0.7265$$

$$\frac{\Omega_2 T}{2} = \tan \frac{\omega_2 T}{2} = \tan \frac{\pi}{4} = 1$$

First we design a prototype normalized lowpass filter and then use suitable transformation to obtain the transfer function of bandpass filter.

To reduce computational complexity we use above values to find  $\Omega_r$  and substitute  $s = \frac{1-z^{-1}}{1+z^{-1}}$  for bilinear transformation (: all the above frequencies contains the term  $\frac{T}{2}$ ).

We have

$$A = \frac{-\Omega_1^2 + \Omega_l \Omega_u}{\Omega_1 (\Omega_u - \Omega_l)};$$

$$= \frac{-(0.1584)^2 + (0.325)(0.7265)}{0.1584(0.7265 - 0.325)}$$

$$= 3.318$$

$$B = \frac{\Omega_2^2 - \Omega_l \Omega_u}{\Omega_2 (\Omega_u - \Omega_l)}$$

$$= \frac{1 - (0.7265)(0.325)}{1(0.7265 - 0.325)}$$

$$= 1.90258$$

$$\Omega_r = \min\{|A|, |B|\} = 1.90258$$

$$N = \frac{\log_{10} \sqrt{\frac{10^2 - 1}{10^{0.2} - 1}}}{\log_{10}(1.90258)} = 3.9889$$

Let us choose N=4.

The Fourth order normalized Butterworth lowpass filter transfer function is given

by

$$H(s) = \frac{1}{(s^2 + 0.76537s + 1)(s^2 + 1.84776s + 1)}$$

The transformation for the bandpass filter is

$$s \to \frac{s^2 + \Omega_l \Omega_u}{s(\Omega_u - \Omega_l)} = \frac{s^2 + 0.236}{s(0.402)}$$

$$H(s) = \frac{1}{(s^2 + 0.76537s + 1)(s^2 + 1.84776s + 1)} \Big|_{s \to \frac{s^2 + 0.236}{s(0.402)}}$$

$$= \frac{1}{\left[\left(\frac{s^2 + 0.236}{0.402s}\right)^2 + 0.76537\left(\frac{s^2 + 0.236}{0.402s}\right) + 1\right]}$$

$$\left[\left(\frac{s + 0.236}{0.402s}\right)^2 + 1.84776\left(\frac{s^2 + 0.236}{0.402s}\right) + 1\right]$$

$$= \frac{0.0261s^4}{(s^4 + 0.30768s^3 + 0.6336s^2 + 0.0726s + 0.055696)}$$

$$(s^4 + 0.7428s^3 + 0.6336s^2 + 0.1753s + 0.055696)$$

$$H(z) = H(s) \Big|_{s = \frac{1 - z^{-1}}{1 + z^{-1}}}$$

$$H(z) = \frac{0.0261(1 - z^{-1})^4}{5.3962 - 21.2398z^{-1} + 44.566z^{-2} - 60.512z^{-3} + 58.1635z^{-4}}$$

$$- 39.86z^{-5} + 19.28z^{-6} - 6.0087z^{-7} + 1.009z^{-8}$$

$$= \frac{0.004837(1 - z^{-1})^4}{1 - 3.936z^{-1} + 8.2587z^{-2} - 11.214z^{-3} + 10.778z^{-4}}$$

$$- 7.3866z^{-5} + 3.573z^{-6} - 1.1135z^{-7} + 0.187z^{-8}$$

Example 5.37 Design a Chebyshev type-I bandreject filter with the following specifications

passband d.c. to 275 Hz and 2 KHz to  $\infty$ 

stopband 550 Hz to 1000 Hz

$$\alpha_p = 1 \, \text{dB}$$
;  $\alpha_s = 15 \, \text{dB}$ ;  $F = 8 \text{KHz}$ 

# 5.98 Digital Signal Processing

#### Solution

The digital frequencies are given by



Fig. 5.66

$$\frac{\omega_l T}{2} = \frac{2\pi \times 275}{2(8000)} = 0.034375\pi$$

$$\frac{\omega_1 T}{2} = \frac{2\pi \times 550}{2(8000)} = 0.06875\pi$$

$$\frac{\omega_2 T}{2} = \frac{2\pi \times 1000}{2(8000)} = 0.125\pi$$

$$\frac{\omega_u T}{2} = \frac{2\pi \times 2000}{2(8000)} = 0.25\pi$$

Prewarped analog frequencies are

$$\frac{\Omega_l T}{2} = \tan \frac{\omega_l T}{2} = 0.1084$$

$$\frac{\Omega_1 T}{2} = \tan \frac{\omega_1 T}{2} = 0.2194$$

$$\frac{\Omega_2 T}{2} = \tan \frac{\omega_2 T}{2} = 0.4141$$

$$\frac{\Omega_u T}{2} = \tan \frac{\omega_u T}{2} = 1$$

First we design a prototype normalized lowpass filter and then use suitable transfer function of bandreject filter.

$$\Omega_r = \min\{|A|, |B|\} 
A = \frac{\Omega_1(\Omega_u - \Omega_l)}{-\Omega_1^2 + \Omega_l\Omega_u} = \frac{0.2194(1 - 0.1084)}{-(0.2194)^2 + (1)(0.1084)} = 3.246 
B = \frac{\Omega_2(\Omega_u - \Omega_l)}{-\Omega_2^2 + \Omega_l\Omega_u} = \frac{0.4142(1 - 0.1084)}{-(0.4142)^2 + (1)(0.1084)} = -5.847$$

$$\Omega_r = \frac{3.246}{\cos h^{-1} \sqrt{\frac{10^{0.1} \alpha_s - 1}{10^{0.1} \alpha_p - 1}}}{\cos h^{-1} \frac{\Omega_s}{\Omega_p}} = \frac{\cos h^{-1} \sqrt{\frac{10^{1.5} - 1}{10^{0.1} - 1}}}{\cos h^{-1} 3.246} = 1.666$$

$$\frac{\Omega_{\bullet}}{\Omega_{p}} = \Omega_{r}; \quad \Omega_{p} = 1$$

Choose 
$$N = 2$$

$$\varepsilon = \sqrt{10^{0.1\alpha_p} - 1} = \sqrt{10^{0.1} - 1} = 0.508$$

$$\mu = \varepsilon^{-1} + \sqrt{1 + \varepsilon^{-2}} = 4.17$$

$$a = \Omega_p \left[ \frac{\mu^{1/N} - \mu^{-1/N}}{2} \right] = \left[ \frac{(4.17)^{1/2} - (4.17)^{-1/2}}{2} \right] = 0.776$$

$$b = \Omega_p \left[ \frac{\mu^{1/N} + \mu^{-1/N}}{2} \right] = \left[ \frac{(4.17)^{1/2} + (4.17)^{-1/2}}{2} \right] = 1.266$$

For normalized chebyshev filter  $\Omega_p = 1 \text{ rad/sec}$ 

$$\phi_k = \frac{\pi}{2} + \frac{(2k-1)\pi}{2N} \quad k = 1, \dots N$$

$$s_1 = a\cos\phi_1 + jb\sin\phi_1 = -0.5487 + j0.895$$

$$s_2 = a\cos\phi_2 + jb\sin\phi_2 = -0.5487 - j0.895$$

The transfer function of lowpass filter is given by

$$H_L(s) = \frac{0.9825}{s^2 + 1.0974s + 1.102}$$

To get the transfer function of bandreject filter use the transformation

$$s \to \frac{s(\Omega_u - \Omega_l)}{s^2 + \Omega_l \Omega_u}$$

$$\Rightarrow s \to \frac{0.891 \text{ cs}}{s^2 + 0.1084}$$

$$H(s) = \frac{0.9825}{\left(\frac{0.8916s}{s^2 + 0.1084}\right)^2 + 1.0974 \left(\frac{0.8916s}{s^2 + 0.1084}\right) + 1.102}$$

$$= \frac{0.89156(s^4 + 0.2168s^2 + 0.01175)}{s^4 + 0.8878s^3 + 0.9382s^2 + 0.09618s + 0.01174}$$

The transfer function of digital bandreject filter using bilinear transformation is given by

$$H(z) = H(s) \Big|_{s = \frac{1 - z^{-1}}{1 + z^{-1}}}$$

$$= \frac{0.3732(1 - 3.2176z^{-1} + 4.588z^{-2} - 3.2176z^{-3} + z^{-4})}{1 - 1.8869z^{-1} + 1.429z^{-2} - 0.8077z^{-3} + 0.3292z^{-4}}$$

# 5.100 Digital Signal Processing

Example 5.38 Find pole and zero locations of an analog Chebyshev type II filter to the following digital filter specifications. Use bilinear transformation.

$$\begin{aligned} -1 &\leq |H(e^{j\omega})|_{\mathrm{dB}} \leq 0 & 0 \leq |\omega| \leq 0.2\pi \\ |H(e^{j\omega})|_{\mathrm{dB}} &\leq -20 & |\omega| \geq 0.3\pi \end{aligned}$$

#### Solution

The prewarped analog frequencies are given by

$$\frac{\Omega_p T}{2} = \tan \frac{\omega_p T}{2} = \tan \frac{0.2\pi}{2} = 0.32492$$
$$\frac{\Omega_s T}{2} = \tan \frac{\omega_s T}{2} = \tan \frac{0.3\pi}{2} = 0.50953$$

The order of the filter is given by

$$N = \frac{\cos h^{-1} \sqrt{\frac{10^{0.1\alpha_s} - 1}{10^{0.1\alpha_p} - 1}}}{\cos h^{-1} \frac{\Omega_s}{\Omega_p}} = \frac{\cos h^{-1} \sqrt{\frac{10^2 - 1}{10^{0.1} - 1}}}{\cos h^{-1} \frac{0.50953}{0.32492}} = \frac{3.66}{1.021} = 3.59$$

Choose N=4

$$\phi_k = \frac{\pi}{2} + \frac{(2k-1)\pi}{2N} \quad k = 1, 2, \dots 4$$

$$\phi_1 = 112.5^\circ; \quad \phi_2 = 157.5^\circ; \quad \phi_3 = 202.5^\circ; \quad \phi_{4} = 247.5^\circ$$

The zeros are located on the imaginary axis at the points

$$s_k = \frac{j\Omega_s}{\sin \phi_k} \quad k = 1, 2, \dots 4$$

$$s_1 = \frac{j0.50953}{\sin 112.5^{\circ}} = j0.55151$$

$$s_2 = \frac{j0.50953}{\sin 157.5^{\circ}} = j1.3314$$

$$s_3 = \frac{j0.50953}{\sin 202.5^{\circ}} = -j1.3314$$

$$s_4 = \frac{j0.50953}{\sin 247.5^{\circ}} = -j0.55151$$

$$\mu = \lambda + \sqrt{1 + \lambda^2}$$

$$\lambda = \sqrt{10^{0.10s} - 1} = \sqrt{99}$$

$$\mu = 9.9498 + 10 = 19.9498 = 19.95$$

$$a = \Omega_p \left[ \frac{\mu^{1/N} - \mu^{-1/N}}{2} \right] = 0.3249 \left[ \frac{(19.94)^{1/4} - (19.94)^{-1/4}}{2} \right]$$

$$= 0.2664$$

$$b = \Omega_p \left[ \frac{\mu^{1/N} + \mu^{-1/N}}{2} \right] = 0.3249 \left[ \frac{(19.94)^{1/4} + (19.94)^{-1/4}}{2} \right] = 0.4202$$

$$\sigma_1 = a \cos \phi_1 = -0.102; \qquad \Omega_1 = b \sin \phi_1 = 0.3882$$

$$\sigma_2 = a \cos \phi_2 = -0.2461; \qquad \Omega_2 = b \sin \phi_2 = 0.1608$$

$$\sigma_3 = a \cos \phi_3 = -0.2481; \qquad \Omega_3 = b \sin \phi_3 = -0.1608$$

$$\sigma_4 = a \cos \phi_4 = -0.102; \qquad \Omega_4 = b \sin \phi_4 = -0.3882$$

$$x_4 = \frac{\Omega_s \sigma_k}{\sigma_k^2 + \Omega_k^2} \quad k = 1, 2, 3, 4; \qquad y_k = \frac{\Omega_s \Omega_k}{\sigma_k^2 + \Omega_k^2} \quad k = 1, 2, 3, 4$$

$$x_1 = \frac{\Omega_s \sigma_k}{\sigma_1^2 + \Omega_1^2} = -0.3226 \qquad y_1 = \frac{\Omega_s \Omega_1}{\sigma_1^2 + \Omega_1^2} = -1.22775$$

$$x_2 = \frac{\Omega_s \sigma_2}{\sigma_2^2 + \Omega_2^2} = -1.45 \qquad y_2 = \frac{\Omega_s \Omega_2}{\sigma_2^2 + \Omega_2^2} = -0.948$$

$$x_3 = \frac{\Omega_s \sigma_3}{\sigma_3^2 + \Omega_3^2} = -1.45 \qquad y_3 = \frac{\Omega_s \Omega_3}{\sigma_3^2 + \Omega_3^2} = 0.948$$

$$x_4 = \frac{\Omega_s \sigma_4}{\sigma_4^2 + \Omega_4^2} = -0.3226 \qquad y_4 = \frac{\Omega_s \Omega_4}{\sigma_4^2 + \Omega_4^2} = 1.22775$$

Therefore, the zeros are at  $\pm j0.55151, \pm j1.33141$ . The poles are at  $-0.3226 \pm j1.22775$  and  $-1.45 \pm j0.948$ .

# Example 5.39 Design a digital Chebyshev filter to meet the constraints

$$\frac{1}{\sqrt{2}} \le H(e^{j\omega}) \le 1 \qquad \text{for } 0 \le \omega \le 0.2\pi$$

$$0 \le |H(e^{j\omega})| \le 0.1 \qquad \text{for } 0.5\pi \le \omega \le \pi$$

by using bilinear transformation and assume sampling period  $T=1\,\mathrm{sec.}$  (AU ECE May'05)

Solution Given 
$$\omega_s=0.5\pi$$
;  $\omega_p=0.2\pi$  
$$\frac{1}{\sqrt{1+\lambda^2}}=0.1 \Rightarrow \lambda=9.95$$
 
$$\frac{1}{\sqrt{1+\varepsilon^2}}=\frac{1}{\sqrt{2}} \Rightarrow \varepsilon=1$$

# 5.102 Digital Signal Processing

$$\Omega_p = \frac{2}{T} \tan \frac{\omega_p}{2} = 2 \tan(0.1\pi) = 0.65$$

$$\Omega_s = \frac{2}{T} \tan \frac{\omega_s}{2} = 2 \tan \left(\frac{\pi}{4}\right) = 2$$

$$N = \frac{\cos h^{-1} \frac{\lambda}{\epsilon}}{\cos h^{-1} \frac{\Omega_s}{\Omega_p}} = \frac{\cos h^{-1} 9.95}{\cos h^{-1} \left(\frac{2}{0.65}\right)} = 1.669$$

approximate N=2

$$\mu = \varepsilon^{-1} + \sqrt{1 + \varepsilon^{-2}} = 1 + \sqrt{2} = 2.414$$

$$a = \Omega_p \left[ \frac{\mu^{1/N} - \mu^{-1/N}}{2} \right] = 0.65 \left[ \frac{2.414^{1/2} - 2.414^{-1/2}}{2} \right] = 0.295$$

$$b = \Omega_p \left[ \frac{\mu^{1/N} + \mu^{-1/N}}{2} \right] = 0.65 \left[ \frac{2.414^{1/2} + 2.414^{-1/2}}{2} \right] = 0.717$$

$$\phi_k = \frac{\pi}{2} + \frac{(2k - 1)\pi}{2N} \quad k = 1, 2; \quad \phi_1 = 135^\circ; \quad \phi_2 = 225^\circ$$

$$s_k = a \cos \phi_k + j b \sin \phi_k$$

$$s_1 = 0.295 \cos 135^\circ + j 0.717 \sin 135^\circ = -0.2086 + j 0.507$$

$$s_2 = 0.295 \cos 225^\circ + j 0.717 \sin 225^\circ = -0.2086 - j 0.507$$

Denominator of

$$H(s) = (s + 0.2086)^2 + (0.507)^2 = s^2 + 0.4172s + 0.3$$

For N even, numerator of H(s) is

$$= \frac{0.3}{\sqrt{1+\varepsilon^2}} = 0.212$$

$$H(s) = \frac{0.212}{s^2 + 0.4172s + 0.3}$$

Using bilinear transformation

$$H(z) = H(s)|_{s=\frac{2}{T}\left[\frac{1-z^{-1}}{1+z^{-1}}\right]}$$

Since T=1

$$H(z) = \frac{0.212(1+z^{-1})^2}{4(1-z^{-1})^2 + 0.8344(1-z^{-2}) + 0.3(1+z^{-1})^2}$$

$$= \frac{0.212(1+2z^{-1}+z^{-2})}{4-8z^{-1}+4z^{-2}+0.8344-0.8344z^{-2}+0.3+0.6z^{-1}+0.3z^{-2}}$$

$$= \frac{0.212(1+2z^{-1}+z^{-2})}{5.1344-7.40z^{-1}+3.4656z^{-2}}$$

$$= \frac{0.0413(1+z^{-1})^2}{1-1.44z^{-1}+0.675z^{-2}}$$