第 3 节 向量的分解与共线性质 (★★★)

内容提要

本节归纳与平面向量基底表示有关的题型,下面先梳理涉及到的一些知识和结论.

1. 平面向量基本定理:设a,b是平面内两个不共线的向量,则它们可以作为平面的一组基底(其中a,b叫做基向量),对平面内任意一个向量p,都存在唯一的一对实数x,y,使p = xa + yb.

2. 三点共线的充要条件: 如图, A, B 是直线 l 上不同的两点, O 是直线 l 外一点, 对于平面内任意的点 P, 若 OP = xOA + yOB,则 A, B, P 三点共线的充要条件是 x + y = 1.

①特别地,当P为AB中点时, $x=y=\frac{1}{2}$,即 $\overrightarrow{OP}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}$,我们把这一结论称为向量中线定理.

②若已知 A, B, P 共线,且 $\overrightarrow{AP} = y\overrightarrow{AB}$,则 $\overrightarrow{OP} = (1-y)\overrightarrow{OA} + y\overrightarrow{OB}$,用此结论可快速找到把 \overrightarrow{OP} 用 \overrightarrow{OA} 和 \overrightarrow{OB} 表示的系数.

典型例题

类型 1: 平面向量的基底表示

【例 1】在 $\triangle ABC$ 中, D 在边 BC 上, 且 BD=2CD ,则 $\overrightarrow{AD}=$ ()

(A)
$$\frac{1}{2}\overrightarrow{AB} + \frac{2}{2}\overrightarrow{AC}$$

(B)
$$\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$

(C)
$$\frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}$$

(A)
$$\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$$
 (B) $\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$ (C) $\frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}$ (D) $\frac{3}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$

解析: A 到 D, 与基向量 \overrightarrow{AB} , \overrightarrow{AC} 关联较强的路径可以为 $A \to B \to D$,

如图,因为BD = 2CD,所以 $\overrightarrow{BD} = \frac{2}{3}\overrightarrow{BC}$,

故 $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AB} + \frac{2}{3}\overrightarrow{BC} = \overrightarrow{AB} + \frac{2}{3}(\overrightarrow{AC} - \overrightarrow{AB}) = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$.

答案: A

【变式 1】已知矩形 ABCD 中,E 为边 AB 的中点,线段 AC 和 DE 交于点 F,则 $\overrightarrow{BF} = ($)

(A)
$$-\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD}$$
 (B) $\frac{1}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AD}$ (C) $\frac{2}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AD}$ (D) $-\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}$

(B)
$$\frac{1}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AD}$$

(C)
$$\frac{2}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AL}$$

(D)
$$-\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AL}$$

解析: 如图, $\overline{BF} = \overline{BA} + \overline{AF} = -\overline{AB} + \overline{AF}$ ①,

要进一步把AF化为基底,需分析F在AC上的位置,

由 $\triangle AEF \hookrightarrow \triangle CDF$ 可得 $\frac{|AF|}{|FC|} = \frac{|AE|}{|CD|} = \frac{1}{2}$, 所以 $\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AC} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AD})$,

代入①得 $\overrightarrow{BF} = -\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}$.

答案:D

【反思】向量按基底分解的原则是尽量往容易化基底的向量转化,例如 BF还可按 $\overline{BC} + \overline{CF}$ 等方式来化.

【变式 2】如图,在平行四边形 *ABCD* 中,*E*,*F* 分别为 *BC*,*CD* 上的点, $\overline{CE} = 2\overline{EB}$, $\overline{CF} = 2\overline{FD}$,若线 段 EF 上存在一点 M,使 $\overrightarrow{AM} = x\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}(x \in \mathbf{R})$,则 $x = \underline{\hspace{1cm}}$.

解析: 由题意,我们需将 \overline{AM} 用 \overline{AB} 和 \overline{AD} 表示,由图知与基向量关联较强的路径是 $\overline{A} \to B \to E \to M$,

因为M在EF上,所以可设 $\overrightarrow{EM} = \lambda \overrightarrow{EF}$,则 $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{EM} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD} + \lambda \overrightarrow{EF}$

$$= \overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD} + \lambda(\overrightarrow{EC} + \overrightarrow{CF}) = \overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD} + \lambda(\frac{2}{3}\overrightarrow{AD} - \frac{2}{3}\overrightarrow{AB}) = (1 - \frac{2\lambda}{3})\overrightarrow{AB} + \frac{1 + 2\lambda}{3}\overrightarrow{AD} \quad \textcircled{1},$$

由题意, $\overrightarrow{AM} = x\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}$ ②,对比①②系数得: $x = 1 - \frac{2\lambda}{3}$, $\frac{1}{2} = \frac{1 + 2\lambda}{3}$,解得: $x = \frac{5}{6}$.

答案: $\frac{5}{6}$

【变式 3】在平行四边形 ABCD 中, $\overrightarrow{BE} = \frac{1}{2}\overrightarrow{EC}$, $\overrightarrow{DF} = 2\overrightarrow{FC}$, 设 $\overrightarrow{AE} = a$, $\overrightarrow{AF} = b$, 则 $\overrightarrow{AC} = 0$

(A)
$$\frac{6}{7}a + \frac{3}{7}b$$
 (B) $\frac{3}{7}a + \frac{6}{7}b$ (C) $\frac{3}{4}a + \frac{1}{3}b$ (D) $\frac{1}{3}a + \frac{3}{4}b$

(B)
$$\frac{3}{7}a + \frac{6}{7}b$$

(C)
$$\frac{3}{4}a + \frac{1}{3}b$$

(D)
$$\frac{1}{3}a + \frac{3}{4}b$$

解析:如图,直接用a,b 表示 \overrightarrow{AC} 较难,考虑换基底,注意到用 \overrightarrow{AB} , \overrightarrow{AD} 容易表示其它向量,故若设 $\overrightarrow{AC} = xa + yb$,则只要把 a 和 b 也用 \overrightarrow{AB} , \overrightarrow{AD} 表示,就能与 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$ 比较系数,求出 x, y,

设
$$\overrightarrow{AC} = x\boldsymbol{a} + y\boldsymbol{b}$$
, 由题意, $\boldsymbol{a} = \overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BE} = \overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}$, $\boldsymbol{b} = \overrightarrow{AF} = \overrightarrow{AD} + \overrightarrow{DF} = \overrightarrow{AD} + \frac{2}{3}\overrightarrow{AB}$,

所以
$$\overrightarrow{AC} = x(\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}) + y(\overrightarrow{AD} + \frac{2}{3}\overrightarrow{AB}) = (x + \frac{2y}{3})\overrightarrow{AB} + (\frac{x}{3} + y)\overrightarrow{AD}$$
 ①,

又因为 ABCD 为平行四边形,所以 $\overline{AC} = \overline{AB} + \overline{AD}$,

与①比较可得
$$\begin{cases} x + \frac{2y}{3} = 1 \\ \frac{x}{3} + y = 1 \end{cases}$$
, 解得:
$$\begin{cases} x = \frac{3}{7} \\ y = \frac{6}{7} \end{cases}$$
, 所以 $\overrightarrow{AC} = \frac{3}{7} \boldsymbol{a} + \frac{6}{7} \boldsymbol{b}$.

答案:B

【反思】选择相同基底,按两种方法表示同一向量,通过对比系数构造方程是向量分解问题的一种手段.

类型 II: 三点共线定理的应用

【例 2】如图,在 $\triangle ABC$ 中,AD为BC边上的中线,E为AD的中点,则EB=(

(A)
$$\frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC}$$

(B)
$$\frac{1}{4}\overrightarrow{AB} - \frac{3}{4}\overrightarrow{AC}$$

(C)
$$\frac{3}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$$

(A)
$$\frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC}$$
 (B) $\frac{1}{4}\overrightarrow{AB} - \frac{3}{4}\overrightarrow{AC}$ (C) $\frac{3}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$ (D) $\frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}$

解析:由题意, $\overrightarrow{EB} = \overrightarrow{EA} + \overrightarrow{AB} = -\frac{1}{2}\overrightarrow{AD} + \overrightarrow{AB}$ ①,其中 \overrightarrow{AD} 为中线向量,可用内容提要 2 的向量中线定理,

因为D为BC中点,所以 $\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$,代入①得: $\overrightarrow{EB} = -\frac{1}{2}(\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}) + \overrightarrow{AB} = \frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC}$.

答案: A

【变式】设O为 ΔABC 的外心,若 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OM}$,则 $M \neq \Delta ABC$ 的()

- (A) 重心
- (B) 内心 (C) 垂心
- (D) 外心

解析:等式涉及的向量起点都是O,可两两组合减少项数,例如可将 \overrightarrow{OA} 与 \overrightarrow{OB} 合并, \overrightarrow{OC} 与 \overrightarrow{OM} 合并,

如图,设D为AB中点,则 $OD \perp AB$,且 $\overline{OA} + \overline{OB} = 2\overline{OD}$,

因为 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OM}$,所以 $2\overrightarrow{OD} + \overrightarrow{OC} = \overrightarrow{OM}$,

故 $2\overrightarrow{OD} = \overrightarrow{OM} - \overrightarrow{OC} = \overrightarrow{CM}$, 结合 $OD \perp AB$ 可得 $CM \perp AB$,

同理可得 $AM \perp BC$, $BM \perp AC$, 所以 M 是垂心.

答案: C

【总结】①图形有中点可考虑使用向量中线定理(如例2);②当两个向量共起点时,可以考虑用向量中线 定理合并向量,减少向量的个数(如例2的变式).

【例 3】在 $\triangle ABC$ 中, $\overrightarrow{AN} = \frac{1}{2}\overrightarrow{NC}$, P 是 BN 上的一点,若 $\overrightarrow{AP} = m\overrightarrow{AB} + \frac{1}{9}\overrightarrow{AC}$, 则实数 m = ()

$$(A) \frac{1}{9}$$

(B)
$$\frac{2}{9}$$

(C)
$$\frac{2}{3}$$

(A)
$$\frac{1}{9}$$
 (B) $\frac{2}{9}$ (C) $\frac{2}{3}$ (D) $\frac{1}{3}$

解析:注意到第二个等式共起点A,故若将其中的 \overrightarrow{AC} 换成 \overrightarrow{AN} ,就可用B,P,N三点共线构造方程,

因为
$$\overrightarrow{AN} = \frac{1}{2}\overrightarrow{NC}$$
,所以 $\overrightarrow{AC} = 3\overrightarrow{AN}$,代入 $\overrightarrow{AP} = m\overrightarrow{AB} + \frac{1}{9}\overrightarrow{AC}$ 可得 $\overrightarrow{AP} = m\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AN}$,

因为 B, P, N 三点共线,由内容提要 2, $m+\frac{1}{3}=1$, 解得: $m=\frac{2}{3}$.

答案: C

【反思】向量问题中,可用三点共线的系数和为1构造方程,有时需通过转化,让起点相同终点共线.

【变式】如图,在平行四边形 ABCD 中,M 是 BC 的中点,若 $\overrightarrow{AC} = \lambda \overrightarrow{AM} - \mu \overrightarrow{BD}$,则 $\lambda + \mu =$ _____.

解析: \overrightarrow{AC} , \overrightarrow{AM} , \overrightarrow{BD} 不共起点, 可平移 \overrightarrow{BD} , 使其共起点, 再看能否用三点共线结论求系数和,

如图,延长 $CB \subseteq E$,使 CB = BE,则 BE 和 AD 平行且相等,

所以四边形 ADBE 是平行四边形,

故 $\overrightarrow{BD} = -\overrightarrow{AE}$, 代入 $\overrightarrow{AC} = \lambda \overrightarrow{AM} - \mu \overrightarrow{BD}$ 可得 $\overrightarrow{AC} = \lambda \overrightarrow{AM} + \mu \overrightarrow{AE}$,

因为 C, M, E 三点共线,所以 $\lambda + \mu = 1$.

答案: 1

【反思】例3是由长度比例化为终点共线,而变式是通过平移使共起点,进而可用共线系数和结论.

强化训练

- 1. $(2022 \cdot 新高考 I 卷 \cdot ★)$ 在 $\triangle ABC$ 中,点 D 在边 AB 上,BD = 2DA,记 $\overrightarrow{CA} = m$, $\overrightarrow{CD} = n$,则 $\overrightarrow{CB} = ($)

- (A) 3m-2n (B) -2m+3n (C) 3m+2n (D) 2m+3n
- 2. (2023•广东模拟•★★)在平行四边形 ABCD中, E 为 AD 中点, F 为 BE 与 AC 的交点, 则 DF = ()
- (A) $\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD}$ (B) $\frac{1}{3}\overrightarrow{AB} \frac{2}{3}\overrightarrow{AD}$ (C) $\frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AD}$ (D) $\frac{1}{4}\overrightarrow{AB} \frac{3}{4}\overrightarrow{AD}$

- 3.(2023•宁夏银川模拟•★★)已知 ABCD 为矩形,P 为平面 ABCD 外一点,M,N 分别为 PC,PD 上 的点, $\overrightarrow{PM} = \overrightarrow{MC}$, $\overrightarrow{PN} = 2\overrightarrow{ND}$, 若 $\overrightarrow{NM} = x\overrightarrow{AB} + y\overrightarrow{AD} + z\overrightarrow{AP}$, 则 x + y + z = ()
- (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $\frac{5}{6}$ (D) 1

- 4. (2022•安徽芜湖模拟•★★★)如图,O 是 $\triangle ABC$ 的重心,D 是边 BC 上一点,且 BD=3DC, $\overrightarrow{OD} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$, $y | \frac{\lambda}{\mu} = ($
- (A) $-\frac{1}{5}$ (B) $-\frac{1}{4}$ (C) $\frac{1}{5}$ (D) $\frac{1}{4}$

- 5. (2022 湖南益阳模拟 ★★)在如图所示的矩形 ABCD 中,E,F 满足 $\overrightarrow{BE} = \overrightarrow{EC}$, $\overrightarrow{CF} = 2\overrightarrow{FD}$,G 为 EF 的中点,若 $\overrightarrow{AG} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AD}$,则 $\lambda \mu = ($)
- (A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) $\frac{3}{4}$ (D) 2

- 6. (★★★) 已知 $\triangle ABC$ 内接于圆 O, $|\overrightarrow{CA} + \overrightarrow{CB}| = |\overrightarrow{CA} \overrightarrow{CB}|$, 若 P 为线段 OC 的中点,则 $\overrightarrow{OP} = ($

- (A) $\frac{1}{3}\overrightarrow{AC} \frac{1}{2}\overrightarrow{AB}$ (B) $\frac{1}{4}\overrightarrow{AC} \frac{1}{2}\overrightarrow{AB}$ (C) $\frac{1}{2}\overrightarrow{AC} \frac{1}{4}\overrightarrow{AB}$ (D) $\frac{1}{2}\overrightarrow{AC} \frac{1}{3}\overrightarrow{AB}$

- 7. (2023・陕西西安模拟・★★★) 在平行四边形 ABCD 中, $\overrightarrow{AE} = \frac{1}{3}\overrightarrow{AD}$, $\overrightarrow{CF} = \frac{1}{3}\overrightarrow{CD}$,则 $\overrightarrow{BA} = ($)

- (A) $\frac{6}{5}\overrightarrow{AF} \frac{9}{5}\overrightarrow{CE}$ (B) $\frac{2}{5}\overrightarrow{AF} \frac{3}{5}\overrightarrow{CE}$ (C) $\frac{6}{5}\overrightarrow{AF} + \frac{9}{5}\overrightarrow{CE}$ (D) $\frac{2}{5}\overrightarrow{AF} + \frac{3}{5}\overrightarrow{CE}$

8. $(2023 \cdot 天津模拟改 \cdot ★★★★)$ 已知 A, B, P 是直线 l 上不同的三点,点 O 在直线 l 外,若 $\overrightarrow{OP} = m\overrightarrow{AP} + (2m-3)\overrightarrow{OB}(m \in \mathbf{R}), \quad \emptyset \ m = \underline{\hspace{1cm}}.$

9. $(2022 \cdot \text{重庆模拟改} \cdot \star \star \star \star)$ 如图,已知点 G 是 ΔABC 的重心,过点 G 作直线分别与 AB,AC 两边交 于 M,N 两点 (M, N 与 B, C 不重合),设 $\overrightarrow{AB} = x\overrightarrow{AM}$, $\overrightarrow{AC} = y\overrightarrow{AN}$,则 $x + y = \underline{\hspace{1cm}}$.

《一数•高考数学核心方法》