Билет 15. Некоторые физические задачи, приводящие к уравнениям Лапласа и Пуассона.

1. Стационарное тепловое поле

Рассмотрим стационарное тепловое поле. Ранее было показано что температура нестационарного теплового поля удовлетворяет диференциальному уравнению теплопроводности $u_t = a^2 \Delta u + f$. Если процесс стационарен, то устанавливается распределение температуры, не меняющееся с течением времени $u_t = 0$, и следовательно удовлетворяющее уравнению $\Delta u = -f$ - уравнение Пуассона ($\Delta u = 0$ - уравнение Лапласса)

2. Потенциальное течение жидкости

Пусть внутри некоторого объема T с границей Σ имеет место стационарное течение несжимаемой жидкости (плотность $\rho = const$), характеризуемое скоростью v(x,y,z). Если течение жидкости не вихревое, то скорость v является потенциальным вектором, т.е.

$$v = -grad \varphi \tag{1}$$

, где φ - скалярная функция, называемая потенциалом скорости. Если отсутствуют источники, то $div\ v=0$. Подставляя сюда выражение (1) для v, получим $div\ grad\varphi=0$, или $\Delta\varphi=0$, т.е. потенциал скорости удовлетворяет уравнению Лапласа.

3. Потенциал стационарного тока

Пусть в однородной проводящей среде имеется стационарный ток с объемной плотностью j(x,y,z), если в среде нет объемных источников тока, то

$$div j = 0 (2)$$

Электрическое поле E определяется через плотность тока из диференциального закона Ома

$$E = j/\lambda \tag{3}$$

где λ - проводимость среды. Поскольку процесс стационарный, то электрическое поле является безвихревым, или потенциальным, т.е. существует такая скалярная функция $\varphi(x,y,z)$, для которой $E=grad\varphi$ $(j=-\lambda\;grad\varphi)$. Отсюда на основании формул (2) и (3) заключаем, что $\Delta\varphi=0$, т.е потенциал электрического поля стационарного тока удовлетворяет уравнению Лапласа.

4. Потенциал электростатического поля

Рассмотрим электрическое поле стационарных зарядов. Из стационарности процесса следует, что rot E=0, т.е. поле является потенциальным и $E=-grad\varphi$. Пусть $\rho(x,y,z)$ - объемная плотность зарядов, имеющихся в среде, характеризуемой диэлектрической постоянной $\varepsilon=1$. Исходя из основного закона электродинамики

$$\iint_{S} E_n dS = 4\pi \sum_{i} e_i = 4\pi \iiint_{T} \rho d\tau \tag{4}$$

(где T - некоторый объем, S - поверхность, его ограничивающая, $\sum e_i$ - сумма всех зарядов внутри T) и пользуясь теоремой Остроградского-Гаусса

$$\iint_{S} E_n dS = \iiint_{T} div E d\tau \tag{5}$$

получаем $div~E=4\pi\rho$. Подставив сюда выражение (3) для E, будем иметь $\Delta\varphi=-4\pi\rho$, т.е. электростатический потенциал φ удовлетворяет уравнению Пуассона. Если объемных зарядов нет $(\rho=0)$, то потенциал φ должен удовлетворять уравнению Лапласа $\Delta\varphi=0$.

Теормин. Сопряженный дифференциальный оператор в двумерном случае.

$$Lu = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} B_{i}(x) \frac{\partial u}{\partial x_{i}} + cu, u = u(x_{1}, ..., x_{n}) = u(x)$$

Считаем, что $A_{ij} = A_{ji}, n = 2$

$$Mv = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} (A_{ij}v) - \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} (B_{i}v) + cv$$

M - сопряженный для L; L - сопряженный для M