

Computational Imaging and Spectroscopy: Deep learning for imaging: introduction

Thierry SOREZE DTU July 2024

DTU Fotonik
Department of Photonics Engineering

Artificial intelligence

Artificial Neural Network: The neuro model

Artificial Neural Network: Activation functions

Artificial Neural Network: Activation functions

Artificial Neural Network: Activation functions

Artificial Neural Network: Multilayer perceptron

Artificial Neural Network: Deep Neural Networks

- Convolutional Layers
- Pooling layers
- Flattening layers
- Dense layers

Deep Neural Network: Convolutions

30	3	22	1	0
02	0_2	1_0	3	1
30	1,	2_2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Deep Neural Network: Stride and padding

$$\label{eq:output_size} \text{Output size} = \frac{\text{Input size} + 2 \times \text{Padding} - \text{Kernel size}}{\text{Stride}} + 1$$

Deep Neural Network: Pooling

Deep Neural Network: flattening

DTU FotonikDepartment of Photonics Engineering

A Convolution Layer

Deep Neural Network: Dwise and Pwise Conv

Training: Backpropagation

Training: Backpropagation

Training: Loss functions

Task	Error type	Loss function	Note
Regression	Mean-squared error	$\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$	Easy to learn but sensitive to outliers (MSE, L2 loss)
	Mean absolute error	$\frac{1}{n}\sum_{i=1}^{n} y_i-\hat{y}_i $	Robust to outliers but not differentiable (MAE, L1 loss)
Classification	Cross entropy = Log loss	$\frac{-\frac{1}{n}\sum_{i=1}^{n}[y_{i}\log(\hat{y}_{i}) + (1-y_{i})\log(1-\hat{y}_{i})] =}{}$	Quantify the difference between two probability

Training: ADAM Optimizer

$$egin{split} m_w^{(t+1)} &\leftarrow eta_1 m_w^{(t)} + (1-eta_1) \,
abla_w L^{(t)} \ v_w^{(t+1)} &\leftarrow eta_2 v_w^{(t)} + (1-eta_2) \left(
abla_w L^{(t)}
ight)^2 \ \hat{m}_w &= rac{m_w^{(t+1)}}{1-eta_1^t} \ \hat{v}_w &= rac{v_w^{(t+1)}}{1-eta_2^t} \ w^{(t+1)} &\leftarrow w^{(t)} - \eta rac{\hat{m}_w}{\sqrt{\hat{v}_w} + \epsilon} \end{split}$$

Training: data split

Training

Evaluation

Training: Overfitting

Training: Overfitting

Training: Overfitting

Training: Vanishing and Exploding gradients

Training: Data augmentation

Training: Dropout

DTU FotonikDepartment of Photonics Engineering

Training: Regularization

Training: Hyperparameters search

Hands on: Online step by step tutorials

Deep learning tutorial:

https://www.kaggle.com/learn/intro-to-deep-learning

Hands on:

- https://www.tensorflow.org/tutorials/images/cnn
- https://machinelearningmastery.com/building-a-convolutional-neural-network-inpytorch/

Online resources for going further

https://medium.com/thedeephub/convolutional-neural-networks-a-comprehensive-guide-5cc0b5eae175

https://viso.ai/deep-learning/convolution-operations/

https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c

https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141