

Data Science Bootcamp Hyperiondev

Gradient Descent

Your Lecturer for This Session

Alfred Ndlovu

Lecture - Housekeeping

- ☐ The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all please engage accordingly.
- □ No question is daft or silly ask them!
- ☐ There are Q/A sessions midway and at the end of the session, should you wish to ask any follow-up questions.
- ☐ You can also submit questions here: hyperiondev.com/sbc4-ds-guestions
- ☐ For all non-academic questions, please submit a query: <a href="https://doi.org/10.2016/j.jup.20
- Report a safeguarding incident:
 hyperiondev.com/safeguardreporting
- □ We would love your feedback on lectures: https://hyperionde.wufoo.com/forms/zsgv4m40ui4i0g/

Lecture - Code Repo

Go to: github.com/HyperionDevBootcamps

Then click on the "C4_DS_lecture_examples" repository, do view or download the code.

Objectives

- 1. Understand gradient descent
- 2. How it works in linear regression

Gradient Descent?

- Gradient descent is an optimization algorithm used in machine learning to find the minimum (or maximum) of a function.
- It is used to train models by minimizing the error between predicted and actual values.
 - Predicted what the model returns
 - Actual Values what was meant to be returned

So what happens during training?

 The model takes the input data "x_train" and makes predictions.

 The predictions are compared with the corresponding true values in "y_train" to calculate the error or loss.

 The model adjusts its parameters using an optimization algorithm such as gradient descent to minimize the loss.

Example

- Linear Regression we assume that there's a linear relationship between the independent variables and the dependent variable
- The goal is to find the best-fit line that minimizes the difference between the predicted values and the actual values in the dataset(cost function)
- Example : Marketing vs Sales

Example

How do we know which of these lines is the best fit line?

COST FUNCTION?

- Its a function used in machine learning and optimization algorithms to measure how well a model or algorithm performs on a given dataset
- It quantifies the discrepancy between the predicted outputs of the model and the actual observed values.

Linear Regression COST FUNCTION

Mean Squared Error

- measure the average squared difference between the predicted and actual values
- Quantifies the average "error" or "deviation" of the model's predictions from the true values.

Mean Squared Error

T'S ALL ABOUT MINIMIZING THE COST FUNCTION

Linear Regression - minimize the cost function

MSE as much as possible in order to find the best fit line

EQUATION OF A STRAIGHT LINE

$$y = mx + c$$

M is the gradient of the line (how steep the line is)

C is the y -intercept (the point in which the line crosses the y -axis).

X represents the input or independent variable

DEEP DIVE

- Plot 'm' and 'c' against MEAN SQUARED ERROR
- For some combination of m and c, we will get the least Error (MSE)

HOW DOES GRADIENT DESCENT WORK?

- 1. Let **M** = 0 and **C** = 0
- Calculate the partial derivative of the Cost function with respect to M and C

- 1. Update the current values of **M** and **C**
- 1. Repeat this process until our **Cost function** is very small (ideally 0).

Derivative with respect to m and

- A derivative represents the slope or steepness of a function at any point on its graph.
- It tells us how quickly the function is increasing or decreasing.
- To find the derivative with respect to m (slope), we differentiate the MSE equation with respect to m d(MSE)/dm
- To find the derivative with respect to c (intercept), we differentiate the MSE equation with respect to c d(MSE)/dc

UPDATING M AND C!!

Learning Rate:

- It controls how quickly or slowly the model learns from the data.
- If the learning rate is too large, let's say 0.1, the parameter updates will be significant, you risk diverging
- If the learning rate is too small, let's say 0.0001, the parameter updates will be tiny, and the model will take longer to converge to the optimal values
- range of 0.1 to 0.001 are commonly used as a starting point.
 This range provides a reasonable balance between convergence speed and stability.

STILL UPDATING!

- $m = m \alpha * d(MSE)/dm$
- $c = c \alpha * d(MSE)/dc$
- ullet α is our learning rate
- After updating, we just repeat till the COST function has been minimized

CODING TIME !!!!

Hyperiondev

Q & A Section

Please use this time to ask any questions relating to the topic explained, should you have any

Hyperiondev

Thank you for joining us