ISSN: 1693-8615 EISSN: 2302-4291

Aktivitas Antiparkinson Ekstrak Gambir (*Uncaria Gambir* Roxb.) Pada Tikus Putih (Rattus Norvegicus) Galur Sprague Dawley yang Diinduksi Haloperidol

Antiparkinsonism Activity Of Gambir Extract (Uncaria Gambir Roxb.) In White Male (Rattus Norvegicus) Sparague Dawley Rats **Induced By Haloperidol**

Lutfi Nofitasari¹, Jason Merari Peranginangin¹, dan Sri Rejeki Handayani¹ ¹Fakultas Farmasi Universitas Setia Budi Jl. Letdjen Sutoyo No. 5A, Mojosongo-Solo lutfi.nofitasari94@gmail.com

ABSTRAK

Parkinson merupakan penyakit yang terjadi akibat adanya kerusakan sel saraf dopaminergik pada bagian otak yang mengakibatkan terjadinya penurunan produksi dopamin. Gambir adalah ekstrak kering yang dibuat dari daun tumbuhan Uncaria gambir Roxb. Gambir mengandung flavonoid berupa katekin tidak kurang dari 90%, alkaloid dan terpenoid. Penelitian ini bertujuan untuk mengetahui aktivitas ekstrak gambir yang dapat mengurangi gejala parkinson pada tikus putih jantan galur Sprague dawley yang diinduksi haloperidol.

Hewan uji sebanyak 35 ekor tikus dibagi menjadi 7 kelompok. Kelompok I (kontrol sehat) diberi aquadest secara per oral, kelompok II (kontrol negatif) diberi larutan CMC-Na 0,5 % p.o, kelompok III (kontrol positif I) diberi levodopa 27 mg/kgbb p.o, kelompok IV (kontrol positif II) diberi vitamin E 180 IU/kgbb p.o. Kelompok V, VI, dan VII diberi ekstrak gambir dosis berturut-turut 70; 140: 280 mg/kgbb. Seluruh kelompok diinduksi haloperidol 2 mg/kgbb i.p pada menit ke-45 setelah perlakuan kecuali pada kelompok sehat. Kemudian kelompok diuji dengan *catalepsy bar* test, dicatat waktu latensi yang dinyatakan dalam skor dan rota rod test, dicatat waktu latensi dalam detik pada hari ke 0, 4, 7, 11, dan 14.

Hasil penelitian menggunakan metode catalepsy bar test menunjukkan % penurunan katalepsi pada ekstrak gambir dosis 70; 140; 280 mg/kgbb mempunyai aktivitas yang berturutturut sebesar 22,53; 52,50; 57,12 %. Sedangkan hasil dengan metode rota rod test menunjukkan % kenaikan waktu latensi ekstrak gambir berturut-turut sebesar 27,69; 35,75; 39,61 %.

Kata kunci: antiparkinson, ekstrak gambir, catalepsy bar test, rota rod test.

ABSTRACT

Parkinson disease is a disease that occurs due to damage to dopaminergic nerve cells in the brain which resulted in decreased dopamine production. Gambir is a dry extract made from the leaves of Uncaria gambier Roxb plant. Gambir contains flavonoids in the form of catechins not less than 90%, alkaloids and terpenoids. This study aims to determine the activity of gambir extract that can reduce the symptoms of Parkinson's in the male rats Sprague dawley induced haloperidol.

Test animals of 35 rats divided into 7 groups. Group I (healthy control) was given aquadest orally, group II (negative control) was given a 0.5% CMC-Na solution, group III (positive control I) was given levodopa 27 mg / kgbb po, group IV (positive control II) Were given vitamin E 180 IU / kgbb po Groups V, VI, and VII were given a dose of 70 consecutive gambir extracts; 140; 280 mg / kgbb. The whole group induced haloperidol 2 mg / kgbb i.p at the 45th minute after treatment except in the healthy group. Then the group was tested with a catalepsy bar test, recorded time latency expressed in scores and rota test rods, recorded time of latency in seconds on days 0, 4, 7, 11, and 14.

The result of the research using catalepsy bar test method showed a decrease of catalepsy in gambir extract dose 70; 140; 280 mg / kgbb has a successive activity of 22.53; 52.50; 57.12%. While the results with rota rod test method showed% increase in time latency extract gambir respectively of 27.69; 35.75; 39.61%.

Keywords: antiparkinson, gambier extract, catalepsy bar test, rota rod test.

PENDAHULUAN

Penyakit parkinson merupakan suatu kelainan degeneratif sistem saraf pusat yang disebabkan oleh aktivitas neuron dopaminergik yang sangat berkurang, terutama di daerah pars compacta substansia nigra (Grantika et al. 2015). Dampak penyakit parkinson bila tidak terobati dapat memperpendek usia harapan hidup, mengganggu aktivitas, menurunkan kualitas hidup, menghabiskan biaya serta untuk perawatan pasien (Bakrie 2016).

Gejala fisik yang seringkali muncul pada penderita parkinson di antaranya *bradykinesia* (sulit memulai pergerakan), gerakan vang kaku (katalepsi), dan tremor, Sementara gejala non motorik yang muncul pada penderita Parkinson meliputi depresi, psikosis, serta autonomic disfunction (Kim et al. 2012). Beberapa teori mengemukakan bahwa usia lanjut, keturunan (genetik), lingkungan, pola konsumsi bahan makanan konsumsi obat merupakan faktor resiko vang tidak dapat diabaikan (Perdossi 2003). Salah satu contoh penggunaan obat yang memiliki efek neurologis yaitu gejala ekstrapiramidal berupa sindrom adalah parkinson haloperidol. Haloperidol dapat menghambat reseptor D2 khususnya di jalur mesolimbik. Hal ini menimbulkan efek berkurangnya hiperaktivitas dopamin pada jalur ini, yang dibuktikan sebagai penyebab simtom positif pada psikosis (Maslim 2003). Menurut berbagai penelitian mengemukakan bahwa haloperidol banyak digunakan sebagai induksi parkinson dan memberikan hasil mampu menurunkan gejala katalepsi (Fajri 2014).

Pada umumnya pengobatan penyakit parkinson menggunakan obatsintetis seperti levodopa. carbidopa, apomorphine, amantadine, dan selegenine. Salah satu contoh adalah levodopa yang berperan sebagai prekursor dopamine pada otak sehingga dapat meningkatkan kadar dopamin pada otak. Penggunaan obat-obatan sintetis menimbulkan efek samping seperti kerusakan fungsi hati, kerusakan ginjal, dan halusinasi (Kuldeep 2013). Oleh karena itu diperlukan obat alternatif dengan kadar resiko yang lebih rendah dibandingkan obat sintetis.

Salah satu yang dapat dijadikan yang alternatif adalah tanaman mempunyai kandungan antioksidan. Antioksidan merupakan komponen penting yang mampu menyelamatkan sel-sel tubuh manusia dari bahaya radikal bebas untuk mencegah terjadinya stres oksidatif (Youngson 2005; Winarsi 2007). Penelitian Saravanan et al (2016) mengemukakan bahwa vitamin E merupakan antioksidan yang sudah diteliti dan dapat digunakan mengatasi gejala penyakit parkinson. Sifat antioksidan vitamin E merupakan pertahanan melawan radikal bebas (Lamid 1995). Gambir adalah ekstrak kering dari ranting dan daun tanaman *Uncaria gambir* Roxb. Gambir memiliki manfaat untuk menyamak kulit, sebagai perangsang yang dikunyah bersama daun pinang, kapur, dan daun sirih (Lammens 1999).

Menurut Heitzman et al. (2005), gambir mengandung golongan polifenol seperti senyawa alkaloid, terpenoid, flavonoid dan senyawa polifenol lainnya. Flavonoid merupakan senyawa fenol yang terbesar di alam. Komponen flavonoid yang terkandung dalam gambir antara lain katekin (7-33%), pirokatekol (20-30%) dan kuersetin (2-4%) (Thorpe and Whiteley, 1921). Katekin termasuk dalam golongan antioksidan yang dapat menembus memiliki kemampuan gambir menghambat radikal bebas (Apea Bah et al. 2009), dan gambir sebagai imunomodulator (Ismail dan Asad 2009) sehingga dapat mencegah kerusakan sel saraf dopaminergik akibat stres oksidatif. Stres oksidatif di otak memiliki peranan penting pada onset penyakit Parkinson dan menyebabkan peningkatan kerusakan oksidatif di substansia nigra (Prasad et al. 1999).

Aktivitas antioksidan pada gambir berkaitan dengan kandungan katekin. Katekin yang terdapat dalam gambir merupakan salah satu golongan antioksidan yang dapat menembus sawar darah otak (Kailaku et al. 2012). Oleh karena itu, penelitian mengenai aktivitas ekstrak gambir mengurangi gejala penyakit parkinson perlu dilakukan dengan menggunakan model tikus parkinson yang diinduksi haloperidol. Hasil penelitian diharapkan dapat dijadikan salah satu alternatif pengobatan penyakit parkinson untuk mengurangi efek samping dari obat-obatan sintetis.

METODE PENELITIAN

Bahan

Bahan yang digunakan dalam penelitian ini adalah ekstrak gambir (Uncaria gambir Roxb.) didapat dari pasaran yang berasal dari Medan sawar darah otak sehingga dapat memperbaiki kerusakan oksidatif akibat radikal bebas (Kailaku et al. 2012). Penelitian yang berkaitan dengan ekstrak gambir telah banyak dilakukan diantaranya ekstrak

Sumatera Utara. Etanol 96%, CMC 0,5%, haloperidol, levodopa, vitamin E, dan aquadest.

Alat

Alat yang digunakan dalam penelitian ini adalah peralatan maserasi, kain flanel, corong glas, *rotary evaporator*. Alat penimbang digunakan timbangan listrik AEG-120 Shimadzu, beaker glass, batang pengaduk, erlemeyer, spuit injeksi. Alat uji katalepsi dan alat *rota rod*.

Jalannya Penelitian Pembuatan ekstrak gambir

Metode ekstraksi pada penelitian adalah menggunakan ini dengan metode remaserasi. Serbuk gambir ditimbang sebanyak 1200 gram diremaserasi menggunakan pelarut etanol 96% dengan perbandingan 1:10. Remaserasi dilakukan selama 6 hari sambil sesekali digojog. Setelah 3 hari perendaman, maserat disaring menggunakan kain flanel dan dipisahkan dengan ampasnya. Sisa ampas kemudian direndam lagi selama 3 hari sambil sesekali digojog. Hasil bilasan kemudian disaring dengan kain flanel dan dicampur dengan maserat pertama dan dipekatkan yang menggunakan rotary evaporator sampai diperoleh ekstrak kental.

Uji catalepsy bar test

Katalepsi diukur dengan menggunakan tes bar standar. Lamanya waktu hewan uji bertahan pada besi yang dicatat dengan posisi dengan kedua kaki depan diangkat dan beristirahat pada alat katalepsi (diameter 0,7 cm) 8 cm diatas permukaan. Titik akhir katalepsi dianggap selesai apabila kedua kaki depan telah berpindah posisi dari besi (alat katalepsi) atau jika posisi kepala hewan berpindah. Pengukuran katalepsi dilakukan 1 jam setelah pemberian haloperidol. Lamanya waktu katalepsi(mengalami kekakuan otot) diukur dan dimulai saat kaki depan hewan uji di sandarkan pada batang

besi sampai berpindah tempat atau bergerak. Pengujian pada metode katalepsi ini dilakukan pada hari ke 0, 4, 7, 11, 14. Waktu yang digunakan untuk pengukuran katalepsi maksimal 180 detik. Lama waktu dimana hewan uji mempertahankan posisinya dinyatakan dalam skor (Sanberg PR et al 1988).

Tabel 1. Skor catalepsy bar test

Lama waktu	Skor
0 - 10 detik	0
10 – 30 detik	1
30 – 60 detik	2
60 – 120 detik	3
120 – 180 detik	4
180 ∞ detik	5

Uji rota rod test

Hewan uji ditempatkan pada batang silinder horizontal vang berputar dengan kecepatan 4-40 rpm. Sebelum dilakukan pengujian, pada hari ke 0 hewan uji diberikan waktu beberapa menit untuk beradaptasi. Hewan uji ditempatkan pada roller (sillinder horizontal) selama 3 menit. Lamanya waktu tikus bertahan pada alat rota rod tersebut di catat. Hewan yang normal (kelompok sehat) dapat menjaga keseimbangan dalam waktu yang tidak terbatas, sedangkan hewan yang sakit (kelompok negatif) tidak dapat menjaga keseimbangan dalam waktu yang cukup singkat.

Penurunan gerakan ditunjukkan oleh ketidakmampuan hewan untuk bertahan pada roller selama masa uji 3 menit tersebut. Pengujian metode uji rota rod ini dilakukan setelah menunggu 1 jam dari penginduksian. Pengujian pada metode rota rod ini dilakukan pada hari ke 0, 4, 7, 11, 14. Hewan yang normal dapat menjaga keseimbangan dalam

waktu yang tidak terbatas walaupun dilakukan akselerasi kecepatan. Penurunan ditunjukkan oleh ketidakmampuan hewan untuk tetap bertahan pada batang roller dengan masa uji 300 detik dengan akselerasi kecepatan (standart operating process) (Bagewadi HG et al. 2015).

HASIL DAN PEMBAHASAN Hasil uji katalepsi

Uji katalepsi pada penelitian ini bertujuan untuk mengetahui kekakuan otot pada hewan uji, dimana kekakuan otot merupakan salah satu gejala dari penyakit parkinson (Kim et al. 2012). Pengujian pada metode katalepsi dilakukan pada hari ke-0, 4, 7, 11, 14. digunakan untuk Waktu yang pengukuran katalepsi maksimal 180 detik. Lama waktu dimana hewan uji mempertahankan posisinya dinyatakan dalam skor (Sanberg et al. 1988). Hasil uji katalepsi yang didapatkan pada penelitian antiparkinson dapat dilihat pada gambar 4.

Gambar 1. Hasil uji katalepsi.

Berdasarkan gambar di atas menunjukkan grafik uji katalepsi bahwa kenaikan skor katalepsi menandai dengan adanya kekakuan otot. Hasil pengamatan katalepsi pada hari ke-4 dan ke-7 setelah 45 menit pemberian haloperidol selama 7 hari menunjukkan kenaikan skor katalepsi pada masingmasing kelompok. Hal ini disebabkan hewan uji mengalami katalepsi (kekakuan otot) sedangkan pada hari

ke-11 dan ke-14 tanpa pemberian haloperidol menunjukkan penurunan skor katalepsi pada masing-masing kelompok. Namun berbeda dengan kelompok negatif yang mengalami kenaikan skor. Hal ini diketahui efek jangka panjang dari haloperidol yang menyebabkan stres oksidatif sehingga terjadi kerusakan sel yang dapat mengakibatkan berkurangnya produksi dopamin.

Tabel 1. Data uji katalepsi ekstrak gambir

Kelompok	Hari				
Reioilipok	0	4	7	11	14
kontrol sehat	$0,00\pm0,00$	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,00 ±0,00	$0,00 \pm 0,00$
kontrol (-)					
haloperidol	$0,00\pm0,00$	4,20±0,45a	4,60 ±0,89 ^a	4,00 ±0,00	4,20±0,45a
Kontrol (+)					
levodopa	$0,00\pm0,00$	$2,00\pm0,00^{b}$	3,00 ±0,71a,b	1,00±0,71 ^b	1,00±0,71 ^b
kontrol (+) vit.					
E	$0,00\pm0,00$	2,00 ±1,00	$2,40 \pm 0,55^{a,b}$	1,20±0,45 ^b	0,60±0,55 ^b
dosis 70					
mg/Kgbb	$0,00\pm0,00$	3,20±0,45a	4,20±0,45a,c,d	$3,00\pm0,00^{d}$	2,00±0,00 ^b
dosis 140					
mg/Kgbb	$0,00\pm0,00$	2,40±0,55a,b	2,60±0,55a,b	1,60±0,55 ^b	0,80±0,45 ^b
dosis 280					
mg/Kgbb	$0,00\pm0,00$	$2,00 \pm 0,00^{b}$	2,60±0,55a,b	1,45±0,55 ^b	$0,60\pm0,55^{b}$

Keterangan:

- a. Berbeda signifikan dengan kelompok sehat (p<0,05)
- b.Berbeda signifikan dengan kelompok negatif (p<0,05)
- c. Berbeda signifikan dengan kelompok positif levodopa (p<0,05)
- d. Berbeda signifikan dengan kelompok positif vitamin E (p<0,05)

Berdasarkan data analisa statistik uji katalepsi diatas diperoleh hasil bahwa kelompok sehat dengan pemberian aquadest pada hari ke-0, 4, 7, 11 dan 14 menunjukkan tidak ada perbedaan secara signifikan sehingga

dianggap sebagai kelompok normal. Hal ini dikarenakan pemberian aquadest yang tidak mempunyai efek terhadap hewan uji (netral).

Pada hari ke-4 dan ke-7 kelompok negatif (CMC 0,5%) menunjukkan bahwa ada perbedaan signifikan (p<0,05) terhadap kelompok sehat, kelompok positif levodopa, positif kelompok vitamin E. kelompok ekstrak gambir dosis 70, 140, dan 280 mg/kgbb. Namun pada hari ke-11 kelompok negatif menunjukkan penurunan katalepsi akan tetapi pada hari ke-14 kelompok negatif kembali mengalami katalepsi (kekakuan otot). Hal ini menunjukkan bahwa pemberian CMC berfungsi yang sebagai

suspending dapat agent tidak menurunkan katalepsi (kekakuan otot) sehingga terjadi efek samping dari induksi dari haloperidol. Mekanisme dari dapat menyebabkan haloperidol katalepsi (kekakuan otot) karena haloperidol menghambat reseptor dopamin di post sinaptik striatal sehingga menimbulkan efek samping yaitu gejala ekstrapiramidal berupa sindrom parkinson dan mempunyai efek iangka panjang vang dapat menyebabkan stres oksidatif (Bagewadi et al. 2015).

Hasil uji pada hari ke-11 dan 14 kelompok positif vitamin E dan levodopa juga menunjukkan perbedaan secara signifikan (p<0,05). Hal ini dikarenakan

kelompok ekstrak gambir dosis 70, 140, dan 280 mg/kgbb terhadap kelompok negatif. Hal ini menunjukkan bahwa kelompok ekstrak gambir dapat kekakuan otot karena mengurangi kandungan mempunyai flavonoid berupa katekin yang dapat menembus sawar darah otak dan dapat mencegah terjadinya stres oksidatif vang disebabkan oleh induksi haloperidol (Heitzman et al. 2005).

Menurut Mercer LD *et al.* (2005) katekin merupakan golongan flavonoid yang mempunyai aktivitas antioksidan dan memberikan efek perlindungan pada sel neuron dari neurotoksisitas akibat stres oksidatif. Menurut penelitian Shimada *et al.* (2001) membuktikan bahwa katekin dapat memberikan efek perlindungan terhadap kematian neuron.

Selanjutnya data hasil uji katalepsi dihitung AUC untuk mengetahui persen (%) penurunan vitamin E merupakan antioksidan yang mencegah teriadinya oksidatif sehingga dapat memperbaiki kerusakan sel dan produksi dopamin tetap sesuai yang dibutuhkan. Menurut Vatassery et al. (1999) pengobatan jangka panjang dengan Ε dapat meningkatkan konsentrasi vitamin E di dalam otak dan dapat meningkatkan efektivitas vitamin E sebagai antioksidan dalam penyakit neurodegenerative salah contohnya adalah penyakit parkinson. Sedangkan peran levodopa adalah meningkatkan kadar dopamin, sehingga dapat mengurangi gejala parkinson. Perbedaan signifikan (p<0,05) pada uji katalepsi juga terlihat pada katalepsi dari kelompok positif sampai dengan kelompok dosis dapat dilihat

dengan kelompok dosis dapat dilihat pada tabel 10.

Untuk menghitung AUC digunakan rumus sebagai berikut :

$$AUC_{tn-1}^{tn} = \frac{K_{tn-1+K_{tn}}}{2} \times (t_n - t_{n-1})$$

Keterangan:

 t_n = hari ke n

K_{tn} _■ skor katalepsi pada hari ke n

% penurunan katalepsi =
$$\frac{{}^{AUC_{kn+}}{}^{AUC_{uji}}}{{}^{AUC_{kn}}} \times 100$$

Keterangan:

 $AUC_{kn} = AUC$ kontrol negatif $AUC_{uji} = AUC$ kelompok uji

% penurunan katalepsi ± Rata-rata AUC ± SD Kelompok Kontrol sehat Kontrol negatif haloperidol 51.10 ± 3.96 Kontrol positif levodopa $21,90 \pm 4,93$ 56,42 ± 13,48a Kontrol positif vit. E $20,50 \pm 6,85$ $59,88 \pm 12,80^{a}$ Dosis 70 mg/Kgbb $39,40 \pm 3,13$ $22,53 \pm 8,34^{b}$ Dosis 140 mg/Kgbb $24,30 \pm 3,91$ 52,50 ±6,42^a Dosis 280 mg/Kgbb $21,90 \pm 3,94$ $57,12 \pm 7,02^{a}$

Tabel 2. Data rata-rata AUC dan persen penurunan katalepsi

Keterangan:

- a. menunjukkan berbeda signifikan terhadap dosis 70 mg/Kgbb
- b. menunjukkan berbeda signifikan terhadap dosis 140 mg/Kgbb, 280 mg/Kgbb, dan kelompok positif

Berdasarkan tabel diatas % daya penurunan katalepsi pada kelompok positif vitamin E sebesar 59,88% sedangkan levodopa yaitu sebesar 56,42%. Hal ini dikarenakan vitamin E yang adalah antioksidan dapat mencegah stres oksidatif sehingga dapat memperbaiki sel-sel tubuh manusia dari bahaya radikal bebas.

Pada kelompok ekstrak etanol gambir pada dosis 70, 140, dan 280 mg/kgbb yang memiliki persen penurunan yang berturut-turut yaitu 22,53, 52,50, dan 57,12%. Hal ini menunjukkan bahwa dosis I sebesar 70 mg/Kgbb berbeda signifikan (p<0,05)terhadap dosis 140mg/kgbb dan 280 mg/kgbb, kelompok positif levodopa dan vitamin E. Hal ini menunjukkan bahwa dosis 140mg/kgbb dan 280 mg/kgbb,

kelompok positif levodopa dan vitamin E terdapat pada satu kelompok yang dapat mengurangi gejala parkinson ditandai dengan kekakuan otot. Namun pada dosis 70 mg/Kgbb menunjukkan efek yang lebih kecil.

Hasil uji Rotarod

Uji rotarod digunakan untuk mengetahui gangguan keseimbangan motorik pada hewan uji. Pengujian pada metode rota rod ini dilakukan pada hari ke 0, 4, 7, 11, 14. Hewan normal dapat menjaga keseimbangan dalam waktu yang tidak terbatas walaupun dilakukan akselerasi kecepatan. Penurunan ditunjukkan oleh ketidakmampuan hewan untuk tetap bertahan pada batang roller dengan masa uji 3 menit dengan akselerasi kecepatan (Bagewadi et al. 2015). Hasil uji rotarod didapatkan pada penelitian vang antiparkinson dapat dilihat pada gambar

Gambar 2. Hasil persen daya kenaikan waktu latensi rotarod.

Berdasarkan gambar di atas grafik hasil uji rota rod menunjukkan perbedaan dengan uji katalepsi bahwa penurunan skor rotarod ditandai dengan gangguan keseimbangan motorik. Uji rota rod ini dilakukan setelah pengujian katalepsi, hal ini dimaksudkan untuk menjaga keseimbangan dari hewan uji supaya tidak mengalami kelelehan pada saat diputar pada batang roller.

Hasil pengamatan rotarod pada hari ke-4 dan ke-7 setelah 45 menit pemberian haloperidol selama 7 hari menunjukkan penurunan skor rota rod pada masing-masing kelompok. Hal ini disebabkan hewan uji mengalami keseimbangan motorik gangguan sedangkan pada hari ke-11 dan ke-14 tanpa pemberian haloperidol menunjukkan peningkatan skor rota rod pada masing-masing kelompok. Namun hal ini berbeda dengan kelompok negatif

yang mengalami penurunan skor *rota rod.* Hal ini diketahui efek jangka panjang dari haloperidol yang menyebabkan stres oksidatif sehingga terjadi kerusakan sel yang dapat mengakibatkan berkurangnya produksi dopamin.

Berdasarkan data analisa statistik uji rotarod diatas diperoleh hasil yang berbeda dengan uji katalepsi bahwa kelompok sehat pada hari ke-0, 4, 7, 11 14 menunjukkan tidak perbedaan secara signifikan sehingga dianggap kelompok normal. Sedangkan pada hari ke-7 dan ke-11 pada kelompok negatif menunjukkan bahwa ada perbedaan signifikan (p<0,05) terhadap kelompok sehat, kelompok positif levodopa dan vitamin kelompok ekstrak gambir pada dosis 70, 140, dan 280 mg/kgbb.

Kalampak	Hari				
Kelompok	0	4	7	11	14
kontrol sehat	124,00±25,34	100,20±24,02	100,80±20,09	94,40 ± 7,37	85,60 ±9,50
kontrol (-)					
haloperidol	131,60±17,62	60,40 ±9,24 ^a	20,40 ±4,98 ^a	28,20 ±4,66 ^a	24,60±4,16 ^a
kontrol (+)					
levodopa	117,80 ±7,95	64,00 ±8,92 ^a	34,80 ±5,59 ^a	82,00 ±4,12 ^b	98,20±6,83 ^b
kontrol (+) vit.					
Е	116,60±18,43	83,40 ±7,60	63,20±6,80 ^{a,b,c}	77,80 ±8,53 ^b	103,00±15,60 ^b
Dosis 70					
mg/Kgbb	106,80 ±6,50	71,60 ±7,33a	36,40 ±9,02 ^{a,d}	65,80±11,30 ^{a,b}	83,90 ±13,85 ^b
Dosis 140					
mg/Kgbb	111,20 ±9,07	66,60 ±6,73 ^a	40,20±11,37 ^{a,d}	92,20 ±8,32 ^b	99,00 ±8,46 ^b
dosis 280					
mg/Kgbb	111,40 ±9,63	69,60 ±8,73 ^a	55,20 ±4,92a,b	93,00±12,29 ^b	101,80±13,18 ^b

Tabel 3. Data rata-rata AUC dan persen kenaikan waktu latensi rota rod

Keterangan:

- a. Berbeda signifikan dengan kelompok sehat (p<0,05)
- b. Berbeda signifikan dengan kelompok negatif (p<0,05)
- c. Berbeda signifikan dengan kelompok positif levodopa (p<0,05)
- d. Berbeda signifikan dengan kelompok positif vitamin E (p<0,05)

Hal ini dikarenakan waktu latensi kelompok negatif mengalami penurunan sehingga hewan uji tidak dapat menyeimbangkan motorik yang disebabkan induksi oleh dari haloperidol. Demikian juga pada hari ke-14, hal ini dapat dilihat bahwa efek jangka panjang dari haloperidol yang dapat menyebabkan gangguan keseimbangan motorik sehingga dapat mengakibatkan berkurangnya produksi dopamin akibatnya semua fungsi neuron di sistem saraf pusat menurun sehingga menyebabkan parkinson (Sudoyo et al. 2009). Menurut Jibson dan Tandon (1998)haloperidol merupakan antipsikotik yang terkenal karena kecenderungannya menyebabkan gejala ekstrapiramidal salah satu contohnya adalah kekakuan, efek yang dimediasi oleh blokade reseptor D2 striatal.

Hasil uji pada hari ke-11 dan 14 kelompok positif vitamin E dan levodopa juga menunjukkan perbedaan secara (p<0,05). Perbedaan signifikan signifikan (p<0,05) pada uji katalepsi juga terlihat pada kelompok ekstrak gambir dosis 70 mg/Kg bb, 140 mg/Kg bb, dan 280 mg/Kg bb terhadap kelompok negatif. Hal ini menunjukkan bahwa kelompok ekstrak gambir dapat mengurangi kekakuan otot karena gambir mempunyai kandungan golongan polifenol seperti senyawa flavonoid berupa katekin yang dapat menembus sawar darah otak dan dapat mencegah terjadinya stres oksidatif disebabkan oleh induksi yang haloperidol (Heitzman et al. 2005).

Stres oksidatif diketahui sebagai mekanisme penghubung antara berbagai dasar terhadap penyakit neurodegeneratif ini. Berbagai penelitian telah membuktikan adanya aktivitas neuroprotektif pada katekin,

suatu senyawa polifenol dari gugus flavonoid, melalui perannya sebagai antioksidan (Hou et al. 2005; Mercer LD et al. 2005). Selain itu, katekin juga menunjukkan sifat neuroprotektif dalam model in vivo. Katekin dapat menipiskan aktivitas monoamine oxidase B (MAO-B) di otak tikus yang memberikan perlindungan terhadap kerusakan oksidatif (Hou et al. 2005).

Data hasil uji rota rod dihitung AUC untuk mengetahui persen (%) kenaikan waktu latensi dari kontrol positif sampai kontrol dosis. Untuk menghitung AUC digunakan rumus:

$$AUC_{tn-1}^{tn} = \frac{K_{tn-1+K_{tn}}}{2} \times (t_n - t_{n-1})$$

Keterangan:

t_n = hari ke n

K_{tn} = waktu latensi pada hari ke n

%kenaikan waktu latensi=

$$\frac{AUC_{kn-AUC_{uji}}}{AUC_{kn}} \times 100$$

Keterangan:

 $AUC_{kn} = AUC$ kontrol negatif $AUC_{uii} = AUC$ kelompok uji

Hasil perhitungan AUC dan persen daya kenaikan waktu latensi dapat dilihat pada tabel 5.

Tabel 4. Data rata-rata AUC dan persen kenaikan waktu latensi rota rod

Kelompok	Rata-rata AUC ± SD	% kenaikan waktu latensi ± SD
kontrol sehat	-	_
kontrol negatif haloperidol	681,60 ± 54,76	-
kontrol positif levodopa	$1067,70 \pm 75,65$	32,50 ± 8,08
kontrol positif vit. E	1163,10 ± 135,83	40,49 ± 10,25
dosis I	$947,60 \pm 75,70$	27,69 ± 8,51
dosis II	1067,40 ± 88,87	35,75 ± 7,81
dosis III	$1137,80 \pm 104,80$	$39,61 \pm 7,80$

Berdasarkan tabel diatas kenaikan rotarod pada kelompok ekstrak etanol gambir pada dosis 70, 140, dan 280 mg/kgbb yang memiliki persen kenaikan waktu latensi yang berturut-turut 27,69, 35,75, dan 39,61%. Hal ini menunjukkan bahwa kenaikan dosis dapat mempengaruhi persen kenaikan waktu latensi. Kelompok ekstrak gambir pada dosis 70, 140, 280 mg/kgbb dan kelompok positif levodopa dan vitamin E menunjukkan dalam satu kelompok dan tidak ada perbedaan signifikan sehingga mengurangi gejala parkinson ditandai dengan gangguan keseimbangan motorik.

KESIMPULAN

Hasil penelitian dengan menggunakan metode *catalepsy bar test* menunjukkan % penurunan katalepsi pada ekstrak gambir dosis 70; 140; 280 mg/kgbb berturut-turut sebesar 22,53; 52,50; 57,12%. Sedangakan hasil dengan metode *rota rod test* menunjukkan % kenaikan waktu latensi ekstrak gambir beturut-turut ssebesar 27,69; 35,75; 39,61%.

DAFTAR PUSTAKA

- Apea-Bah FB. et al. 2009. Assessment of the DPPH and á-glucosidase inhibitory potential of gambier and qualitative identification of major bioactive compound. Journal of Medicinal Plants Research 3 (10): 736-757.
- Bagewadi HG et al. 2015. Evaluation of antiparkinson activity of Elaeocarpus ganitrus on haloperidol induced parkinson's disease in mice. International Journal of Basic and Clinical Pharmacology 4 (1): 102-106.
- Bakrie, M. 2016. Terapi Nikotin pada Rokok terhadap Penyakit Parkinson. Palembang. Universitas PGRI Palembang Vol.1 No.1
- Bhangale, JO & Acharya. 2015. Anti Parkinson Activity of Petroleum Ether Extract of Ficus religiosa (L.) Leaves. Hindawi Publising Corporation Advances in Pharmacological Sciences. Volume 2016. ID ID 9436106. pages http://dx.doi.org/10.1155/2016/94 36106
- Dalimartha, Setiawan. 2008. *Atlas Tumbuhan Obat Indonesia* **5**. <u>Depok</u>: Puspa Swara.
- Dhanasekaran M, Tharakan B, Manyam BV. 2008. Antiparkinson Drug Mucuna pruriens Shows Antioxidant and Metal Chelating Activity. Phytother.Res: 22, 6 11
- Dhalimi, A. 2006. Permasalahan Gambir (Uncaria gambir L) di Sumatera Barat dan AlternatifPemecahannya.

 Perspektif. Volume 5 Nomor 1, Juni 2006: 46 59.
- Fajri N.A. 2014. Uji potensi ektrak biji jinten hitam (nigella sativa L.) asal

- indonesia sebagai obat aniparkinson. Bandung : Universitas Pendidikan Indonesia
- Grantika PA, Westa W, Samatra P. 2015. Aspek psikiatri pada penyakit parkinson. *Jurnal Ilmiah Kedokteran*. Denpasar. Universitas Udayana
- Heitzman, M. E., C. C. Neto, E. Winiarz, A. J. Vaisberg dan G. B. Hammond. 2005. Ethnobotany, Phytochemistry and Pharmacology of Uncaria (Rubiaceae). Phytochemistry 66: 5-29.
- Hou WC et al. 2005. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria. Jurnal Etnofarmakologi. 100 (1-2):216–220
- Kim TH *et al.* 2012. Herbal medicines for parkinson's disease: a systematic review of randomized controlled trials. *Journal Plos One*. 7 (5).
- Kuldep, Ganju, Pathak A.K. 2013.
 Pharmacognostic and
 Phytochemical Evaluation of
 Tridax procumbens Linn. Journal
 of Pharmacognosy and
 Phytichemisrty Vol. 01 No.5
- Kuldepp SS, Rana AC. 2013.
 Evaluation of Anti Parkinson's
 Activity of Nigella sativa (Kalonji)
 Seeds in Chlorpromazine Induced
 Experimental Animal Model.
 Internasional Journal of Pharmacy
 and Pharmaceutical Science. Vol
 5, Suppl 3. 884-888
 - Lammens EHRR. 1999. The Central Role of Fish in Lake Restoration and Management. Hydrobiologia. (395): 191&198.

Online: http://ejurnal.setiabudi.ac.id/ojs/index.php/farmasi-indonesia

- Maslim R. 2003. Panduan Praktis Penggunaan Klinis dan Kebijakan Obat Psik otropik (Psychotropic Medication). Ed 3. Jakarta: Penerbit Bagian Ilmu Kedokteran Jiwa FK Unika Atma Jaya. hlm 1-2, 7-8, 31-32.
- Mercer LD et al. 2005. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochemical Pharmacology . 69 (2):339–345
- Joesoef AA. 2007. Parkinson's Disease : Basic Science dalam *Parkinson's Disease & Other Movement Dissorder,* Pustaka Cendikia Press.
- [PERDOSSI] Persatuan Dokter Saraf Indonesia 2003. Diagnosis Epilepsi. Jakarta :PERDOSSI
- Prasad NK, Cole WC, Kumar B. 1999.

 Multiple antioxidantsin the prevention and treatment of

- parkinson's disease: Review. Journal of the America College of Nutrition. hlm. 413- 423.
- Sanberg PR *et al.* 1998. The catallepsy test: its ups and down. *Journal of Pharmacology*. Hlm 752-754.
- Thorpe JF, Whiteley MA. 1921. Thorpe's Dictionary of Applied Chemistry. Fourth Edition. London: Longman, Green and Co. Hlm. 434 438.
- Vatassery GT *et al.* 1999. Vitamin E: neurochemistry and implications for Parkinson's disease. *Ann N Y Acad Sci.* 669: 97–110.
- Winarsi H. 2007. *Antioksidan Alami dan Radikal Bebas*. Yogyakarta: Penerbit Kanisius. hlm 11-15, 17, 19-21, 78-82, 86-88, 122, 137-143.
- Youngson R. 2005. Antioksidan:

 Manfaat Vitamin C dan E bagi
 Kesehatan, Purwoko S,
 penerjemah; Penerbit Arcan,
 Jakarta. Hlm. 36, 46, 78-81.