1. Algebra

Lemma 1.0.1. Let R be a ring. Let M be an R-module. The following are equivalent.

- (1) M is faithfully flat.
- (2) M is flat, and for every R-module map $\alpha: N \to N'$ we have $\alpha = 0$ if and only if $\alpha \otimes_R \mathrm{id}_M = 0$.

Proof. Proof of (1) \Rightarrow (2). Suppose $\alpha \otimes_R \operatorname{id}_M : N \otimes_R M \to N \otimes_R M'$ is zero. The exact sequence

$$0 \to \ker(\alpha) \to N \to N'$$

gives an exact sequence

$$0 \to \ker(\alpha) \otimes_R M \to N \otimes_R M \to N' \otimes_R M'$$

since M is flat. Then we have an exact sequence

$$0 \to \ker(\alpha) \otimes_R M \to N \otimes_R M \to 0$$
,

which implies that

$$0 \to \ker(\alpha) \to N \to 0$$

is exact, i.e. $\alpha = 0$.

Proof of (2) \Rightarrow (1). Let $N_1 \rightarrow N_2 \rightarrow N_3$ be a complex of R-modules. Suppose that

$$N_1 \otimes_R M \to N_2 \otimes_R M \to N_3 \otimes_R M$$

is exact. \Box

Lemma 1.0.2. Let $A \to B$ be a flat ring map. The following are equivalent.

- (1) $A \to B$ is faithfully flat.
- (2) $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is surjective.
- (3) The image of $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ contains every closed point.

Lemma 1.0.3. Let $R \to S$ be a flat ring map. Then it satisfies going down. In other words,

- (1) For every $x' \rightsquigarrow x \in \operatorname{Spec}(R)$ (i.e. x is a generalization of x', or equivalently, $\mathfrak{p}_x \subset \mathfrak{p}_{x'}$) and $y' \in \operatorname{Spec}(S)$ mapping to x', there exists $y \in \operatorname{Spec}(S)$ mapping to x such that $y' \rightsquigarrow y$.
- (2) For every primes $\mathfrak{p} \subset \mathfrak{p}'$ of R and \mathfrak{q}' of S mapping to \mathfrak{p}' , there exists a prime $\mathfrak{q} \subset \mathfrak{q}'$ mapping to \mathfrak{p} .

The situation is illustrated in the following diagram

Lemma 1.0.4. Let A be a ring. Let $I \subset A$ be an ideal. Let A' be the localization of A along V(I). Then

$$\operatorname{Spec}(A') = \bigcup_{\mathfrak{p} \in V(I)} \operatorname{Spec}(A_{\mathfrak{p}}).$$

Lemma 1.0.5. Let $A \to B$ be a ring map. Let $I \subset A$ be a principal ideal. Then IB is a principal ideal of B.

Proof. Suppose I = dA with $d \in I \subset A$. Then

$$IB = dAB \subset dB$$
,

and

$$dB \subset IB$$
.

Hence IB = dB.

Lemma 1.0.6. Let $A \to B$ be a ring map. Let $I \subset A$ be a locally principal ideal. Then $IB \subset B$ is a locally principal ideal.

Proof. This is a direct corollary of the previous lemma.

2. Prisms

Lemma 2.0.1. Let A be a δ -ring. Let $d \in A$. Suppose $(d, p) \in \text{jrad}(A)$. Then d is distinguished if and only if $p \in (d, \phi(d))$.

Recall the following result.

Lemma 2.0.2. Let A be a δ -ring. Let $I \subset A$ be a locally principal ideal with

- (1) $(p, I) \subset \operatorname{jrad}(A)$.
- (2) $p \in I + \phi(I)A$.

Then there exists a faithfully flat map $A \to A'$ of δ -rings that is an ind Zariski localization such that IA' is generated by a distinguished element $d \in A'$ with $(p, d) \subset \operatorname{jrad}(A')$.

Lemma 2.0.3. Let $(A, I) \to (B, J)$ be a map of prisms. Then the natural map $I \otimes_A B \to B$ induces an isomorphism

$$I \otimes_A B \to J$$

of B-modules. In particular, IB = J.

Proof. Choose faithfully flat maps $A \to A'$ and $B \to B'$ such that

$$IA' = (d), \quad JB' = (e)$$

with $(p,d) \subset \operatorname{jrad}(A')$ and $(p,e) \subset \operatorname{jrad}(B')$. Consider the following faithfully flat maps

$$B \to B' \to A' \otimes_A B'$$
.

((TODO: δ -structure on tensor product))

Let B'' be the Zariski localization of $A' \otimes_A B'$ along $V(p, J(A' \otimes_A B'))$. We shall apply the previous lemma to the ring B'' and the ideal JB''. For this, we need

- (1) The ideal JB'' is locally principal.
- (2) $(p, J) \subset \operatorname{jrad}(B'')$.
- (3) $p \in JB'' + \phi(JB'')B''$.

The first condition is clear as $J \subset B$ is locally principal. The second condition is ensured by the localization along $V(p, J(A' \otimes_A B'))$. The third one is also clear. Hence we obtain a faithfully flat map $B'' \to B'''$ of δ -rings that is an ind Zariski localization, and JB''' = (e''') with $(p, e''') \subset \operatorname{jrad}(B''')$. Note that the ring map

$$B' \to A' \otimes_A B' \to B''$$

is flat. The image of $\operatorname{Spec}(B'') \to \operatorname{Spec}(A' \otimes_A B')$ contains $V(p, J(A' \otimes_A B'))$ by the localization. The restriction of $\operatorname{Spec}(A' \otimes_A B') \to \operatorname{Spec}(B')$ to

$$V(p, J(A' \otimes_A B')) \to V(p, JB')$$

is surjective, as it is the base change of the faithfully flat map $A \to A'$ along

$$A \to B \to B' \to B'/JB'$$
.

Hence $B' \to B''$ is faithfully flat, and thus the composition $B \to B'''$ is faithfully flat.

Replacing B' with B''', we have reduced to the following situation. We have a commutative diagram

$$\begin{array}{ccc} A & \longrightarrow & A' \\ \downarrow & & \downarrow \\ B & \longrightarrow & B' \end{array}$$

where rows are faithfully flat, and we have

$$IA' = (d), \quad IB' = (e)$$

with $(p,d) \subset \operatorname{jrad}(A')$ and $(p,d) \subset \operatorname{jrad}(B')$. Note that the image of $d \in A'$ under $A' \to B'$ lies in (e), i.e. d = ef for some $f \in B'$. We shall apply the lemma below to show that f is a unit in B'. It suffices to show that d is distinguished in A', which is clear as we have

- (1) $(p,d) \subset \operatorname{jrad}(A')$.
- (2) $p \in IA' + \phi(IA')A' = dA' + \phi(dA')A'$.

Hence

$$dA' \otimes_{A'} B' \simeq eB'.$$

Therefore we conclude that $I \otimes_A B \simeq J$ as the two ring maps $A \to A'$ and $B \to B'$ are faithfully flat.

Lemma 2.0.4. Let A be a δ -ring. Let $d \in A$ be an distinguished element. Suppose d = fg with $f, g \in A$ and $(p, f) \subset \operatorname{jrad}(A)$. Then f is distinguished and g is a unit.

Proof. We have

$$\delta(d) = \delta(fg) = f^p \delta(g) + \delta(f)g^p + p\delta(f)\delta(g).$$

The left hand side is a unit, and the first and the third element in the right hand side lie in $\operatorname{jrad}(A)$. Hence $g^p\delta(f)$ is a unit. Therefore f is distinguished and g is a unit.

Remark 2.0.5. The condition $p \in I + \phi(I)A$ in the definition of a prism (A, I) says that the closed subschemes $\phi^{-1}(V(I))$ and V(I) of $\operatorname{Spec}(A)$ meet only in characteristic p.

Definition 2.0.6. A prism (A, I) is called

(1) bounded, if A/I has bounded p^{∞} -torsion.

3. Iwasawa Theory

3.1. Review of Class Field Theory.

Lemma 3.1.1. Let K be a non-Archimedean local field with residue field k. Choose a uniformizer ϖ_K . Let G_K be the absolute Galois group of K. Let $I_K \subset G_K$ be the inertia subgroup, i.e. $I_K \simeq \operatorname{Gal}(K^s/K^{ur})$ where K^s is the separable closure and K^{ur} is the maximal unramified extension. We have an exact sequence

$$0 \to I_K \to G_K \to \operatorname{Gal}(\overline{k}/k) \to 0.$$

Note that k is a finite field, and hence $\operatorname{Gal}(\overline{k}/k) \simeq \widehat{\mathbb{Z}}$, and is generated by the Frobenius σ . The Frobenius gives a degree map $\operatorname{deg}: \operatorname{Gal}(\overline{k}/k) \to \widehat{Z}$. Let $W_K \subset G_K$ be the inverse image of $\mathbb{Z} \subset \widehat{\mathbb{Z}}$. Then there exists a unique map, called the reciprocity map, or the Artin map, denoted by $\operatorname{Art}_K: K^\times \to W_K^{\operatorname{ab}}$ such that

- (1) $\operatorname{ord}_{\varpi_K}(\operatorname{Art}_K^{-1}(g)) = \operatorname{ord}(g)$ for all $g \in W_K^{\operatorname{ab}}$.
- (2) For every Abelian extension L/K, we have a commutative diagram

$$\begin{array}{ccc}
L^{\times} & \longrightarrow W_L^{\text{ab}} \\
\downarrow & & \downarrow \\
K^{\times} & \longrightarrow W_K^{\text{ab}}
\end{array}$$

where $L^{\times} \to K^{\times}$ is the norm map, and $W_L^{ab} \to W_K^{ab}$ is the natural map.

Lemma 3.1.2 (local Kronecker-Weber). The maximal Abelian extension of \mathbb{Q}_p is obtained by adjoining all the roots of unity, i.e. $\mathbb{Q}_p^{ab} = \mathbb{Q}_p(\mu_\infty)$. The Artin map

$$\operatorname{Art}_{\mathbb{Q}_p}: \mathbb{Q}_p^{\times} \to W_{\mathbb{Q}_p}^{\operatorname{ab}}$$

can be described explicitly as follows. ((TODO))

Remark 3.1.3. For general K, we need Lubin–Tate formal group to describe K^{ab} explicitly. In the case $K = \mathbb{Q}_p$, this is $LT_{\mathbb{Q}_p} = \mathbb{G}_m$.

Lemma 3.1.4. Let F be a number field with adele ring \mathbb{A}_F . Then there exists a unique map, called the global Artin map, denoted by Art_F ,

$$\operatorname{Art}_F: \lim F^{\times} \backslash \mathbb{A}_F^{\times} / K \to G_F^{\operatorname{ab}}$$

where $K \subset \mathbb{A}_F^{\times}$ ranges through all the compact subgroups. It is characterized by the local-global compatibility

$$\begin{array}{cccc} F_v^\times & \longrightarrow W_{F_v}^{\mathrm{ab}} \\ \downarrow & & \downarrow \\ \mathbb{A}_F^\times & \longrightarrow G_F^{\mathrm{ab}} \end{array}$$

for each place v of F.

Lemma 3.1.5 (global Kronecker-Weber). The maximal Abelian extension of \mathbb{Q} is $\mathbb{Q}^{ab} = \mathbb{Q}(\mu_{\infty})$.

Remark 3.1.6. For genearl F, this is Hilbert's 12-th problem. For F a imaginery quadratic field, we know (by the work of Shimura) that $F^{ab} = F(j_E, E_{tor})$ where E is a CM elliptic curve over F, and j_E is the j-invariant of E. Note that $F(j_E)$ is the Hilbert class field of F, i.e. maximal Abelian extension that is unramified everywhere (including Archimedean places), usually denoted by H_F . The elliptic curve E is an analogy of \mathbb{G}_m .

For recent progress, see Dasqupta-Kakde.

Lemma 3.1.7. Let H_F be the Hilbert class field of F. Then

- (1) $Gal(H_F/F) \simeq Cl_F$.
- (2) Every fractional ideal of F becomes principal in H_F .

3.2. Introduction.

Lemma 3.2.1. Let F be a number field. Let ζ_F be the Dedekind zeta function of F. Then

$$\lim_{s \to 1} (s - 1)\zeta_F(s) = \frac{2^{r_1} (2\pi)^{r_2} R_F h_F}{w_F \sqrt{|D_F|}}$$

where r_1 (resp. r_2) is the number of real (resp. complex) places of F, R_F is the regulator of F, h_F is the class number of F, w_F is the number of roots of unity of F, and D_F is the discriminant of F. Using the functional equation for ζ_F , we have

$$\lim_{s \to 0} \frac{\zeta_F(s)}{s^{r_1 + r_2 - 1}} = -\frac{R_F h_F}{w_F}.$$

Remark 3.2.2. Let E/\mathbb{Q} be an elliptic curve with conductor N. Define an L-series by Euler product

$$L(E,s) = \prod_{\ell} P_{\ell}(\ell^{-s})^{-1}$$

where

$$P_{\ell} = \begin{cases} 1 - a_{\ell} \ell^{-s} + \ell^{1-2s} & \ell \mid / N \\ 1 - a_{\ell} \ell^{-s} & \ell \mid N \end{cases}$$

Here $a_{\ell} = 1 + \ell - |\widetilde{E}_{\rm ns}(\mathbb{F}_{\ell})|$, where \widetilde{E} is the mod ℓ reduction of E, and $(-)_{\rm ns}$ denotes the non-singular locus. By Weil bound, we have $|a_{\ell}| \leq 2\sqrt{\ell}$. Hence L(E,s) is absolutely convergent on $\Re(s) >> 0$. By the Taniyama–Shimura conjecture (which is a theorem by Wiles, Taylor, Breuil–Conrad–Diamond–Taylor), L(E,s) is an entire function on \mathbb{C} . The BSD conjecture is

- (1) $\operatorname{ord}_{s=1}L(E,s) = \operatorname{rank}_{\mathbb{Z}}(E(\mathbb{Q}))$. This rank is denoted by r.
- (2) The refined BSD formula

$$\frac{L^{(r)}(E,s)}{r!} = \frac{|\operatorname{Sha}(E)|\Omega_E R_E \prod_{\ell} c_{\ell}(F)}{|E(\mathbb{Q})_{\text{tor}}|^2}$$

where Ω_E is the period, R_E is the regulator, $\operatorname{Sha}(E)$ is the Shafarevich group, and c_ℓ is the Tamagawa number.

((TODO: definition of Shafarevich group))

Remark 3.2.3. We have the following analogies. number field; elliptic curves \mathcal{O}_F^{\times} ; $E(\mathbb{Q})$ $r_1 + r_2 - 1$; $r(\mathcal{O}_E^{\times})_{\text{tor}}$; $E(\mathbb{Q})_{\text{tor}}$; R_F ; R_E $2^{r_1}(2\pi)^{r_2}$; Ω_E Cl_F ; Sha_E

Remark 3.2.4. Class group and Shafarevich group. Let \mathfrak{a} be a fractional ideal of F. There exists an extension L/F such that $\mathfrak{a}\mathcal{O}_L = (a)$ for some $a \in L^{\times}$. We can construct an isomorphism

$$\operatorname{Cl}_F \to \ker \left(H^1(F, \mathcal{O}_{F^s}^{\times}) \to \prod_v H^1(F_v, \mathcal{O}_{F_v^s}^{\times}) \right)$$

with

$$\mathfrak{a} \mapsto (\sigma \mapsto \sigma(a)/a).$$

See [Buzzard, "Why is an ideal class group a Tate-Shafarevich group"].

Let p be an odd prime.

Definition 3.2.5. Let $\mathbb{Q}_{\infty}/\mathbb{Q}$ be an \mathbb{Z}_p extension. Since

$$\operatorname{Gal}(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q}) \simeq \mathbb{Z}_{p}^{\times} \simeq \mathbb{F}_{p}^{\times} \times (1 + p\mathbb{Z}_{p}) \simeq \mathbb{F}_{p}^{\times} \times \mathbb{Z}_{p},$$

we have $\mathbb{Q}_{\infty} \subset \mathbb{Q}(\mu_{p^{\infty}})$. Let $\Gamma = \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q}) \simeq \mathbb{Z}_p$. Let \mathbb{Q}_n be the subextension of $\mathbb{Q}_{\infty}/\mathbb{Q}$ such that

$$\Gamma_n = \operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n\mathbb{Z}.$$

Definition 3.2.6. The Iwasawa module is

$$\Lambda = \mathbb{Z}_p[[\Gamma]] = \lim_n \mathbb{Z}_p[[\Gamma_n]].$$

Lemma 3.2.7. There exists an isomorphism

$$\mathbb{Z}_p[[x]] \to \Lambda$$

sending x to a topological generator $\gamma \in \Gamma$.

Definition 3.2.8. Let $N \ge 1$ not divisible by p. Let $Q_{N,\infty}$ be $Q_{\infty}Q(\mu_N)$, and $Q_{N,n} = Q_nQ(\mu_N)$.

Lemma 3.2.9 (Iwasawa's theorem). There exist integers λ , μ , and $c \geq 0$, and some n_0 such that for all $n > n_0$, the *p*-part of the class number of $Q_{N,n}$ is of *p*-order $\lambda n + \mu p^n + c$.

Remark 3.2.10. Write $A_{N,n}$ for the kernel of

$$\operatorname{Hom}_{\operatorname{cts}}(G_{Q_{N,n}},\mathbb{Q}_p/\mathbb{Z}_p) \to \prod_v \operatorname{Hom}_{\operatorname{cts}}(I_v,\mathbb{Q}_p/\mathbb{Z}_p).$$

Here cts means continuous. By class field theory, we have

$$A_{N,n} \simeq \operatorname{Hom}(\operatorname{Gal}(H_{N,n}/Q_{N,n}), \mathbb{Q}_p/\mathbb{Z}_p) \simeq \operatorname{Hom}(\operatorname{Cl}_{Q_{N,n}}, \mathbb{Q}_p/\mathbb{Z}_p).$$

Define $A_{N,\infty} = \operatorname{colim}_n A_{N,n}$. Define $M_{N,\infty}$ as the Pontryagin dual $A_{N,\infty}^* = \operatorname{Hom}_{\operatorname{cts}}(A_{N,\infty}, \mathbb{Q}_p/\mathbb{Z}_p)$. It carries an action of Γ , and thus it is a module over Λ .

Lemma 3.2.11 (Control theorem). (1) $M_{N,\infty}$ is a finitely generated torsion Λ -module.

(2) There exists a submodule Y of $M_{N,\infty}$ generated by

$$(xM_{N,\infty},a_1,\ldots,a_s)$$

for some $a_1, \ldots, a_s \in M_{N,\infty}$ such that for every n,

$$\frac{M_{N,\infty}}{(((1+x)^{p^n}-1)/x)Y} \simeq M_{N,n}.$$

Lemma 3.2.12 (Structure theorem). Let M be a finitely generated Λ -module. Then there exists a homomorphism

$$\iota_M: M \to \Lambda^r \oplus \bigoplus_{i=1}^m \Lambda/(f_i(x))^{b_i} \oplus \bigoplus_{j=1}^s \Lambda/(p^{n_i}\Lambda)$$

with kernel and cokernel both have finite cardinality, where $f_i(x)$ are distinguished polynomials (i.e. monic polynomials with non-leading coefficients divisible by p).

Remark 3.2.13. An old reference: GTM83.