基于 TOPS IS 法的信用卡客户违约风险度量

中央财经大学 司徒雪颖

一、研究目的

信用卡客户的违约风险向来是银行等金融机构关注的重点之一,然而如何衡量客户违约风险往往是信用卡业务中的重要问题。本文使用违约发生时间和违约严重程度来构建违约风险度量,并按照该度量模式对各类客户的违约风险从高到低进行排序,可为金融机构提供一些参考。

二、数据预处理及数据介绍

数据集为信用卡违约数据,包括人口学变量(性别、年龄、受教育程度、职业)和违约发生时间和违约严重程度。由于其他变量如年龄,有诸多与事实不相符之处,因此直接删除,只使用违约发生时间和违约严重程度来构建违约风险度量,并按照该度量模式对各类客户进行排序。

1. 违约发生时间的处理

仅选取违约发生时间在 2016-1-1 到 2017-12-31 之间的样本,其他样本视为异常值删除。然后对这两年的数据以月为单位设定月份序列,2016 年 1 月为第 1 个月,2016 年 2 月为第 2 个月,以此类推,2017 年 12 月为第 24 个月。违约发生时间距今越近,违约风险越高。

2. 违约严重程度的处理

原数据的违约严重程度使用"轻度","中度","重度"三个水平来描述,本文为量化违约严重程度,令"轻度"为1,"中度"为1,"重度"为3。

3. 处理后的数据介绍

处理后的数据集由65368条数据,3个变量构成,含缺失值的10行已删除。

列变量如下表 1 所示:

表 1 构建违约风险度量的指标

变量名	说明	取值范围
顾客代码	定性变量	1~12
	共 12 类顾客	
违约发生时间	定序变量	从 2016-1-1 到
	单位: 月	2017-12-31,
		1 代表 2016-1,
		2 代表 2016-2,
		•••••,
		14 代表 2017-12
违约严重程度	定序变量	1 代表轻度
	共3个水平	2代表中度
		3 代表重度

三、描述统计

1.单变量描述统计

如图 1 (A) 所示, 轻度违约的人数最多, 为 52610 人, 占总数 80.48%, 约 是中度违约人数(11643 人)的 4.5 倍, 重度违约人数为 1115 人, 占总数 1.71%。

如图 1 (B) 所示, 违约时间集中在 2016. 12-2017. 2 这三个月, 这三个月发生的违约发生数占 2016-2017 两年违约发生数的 79. 58%; 2016. 01-2016. 06 期间, 每月违约发生数不超过 1000, 2016. 07-2016. 11 期间, 每月违约发生数在 1000~2000 之间; 2017. 02 以后, 每月违约发生数除 2017. 12 为 11 例外, 都不超过 10 例。

如图 1 (C) 所示,"顾客 2"类别人数最多,为 34894 人,是人数第二多的"顾客 1" (8063 人) 的 4.3 倍,"顾客 9""顾客 6""顾客 7""顾客 11"人数很少,在 300^2200 人之间。

图 1 (A) 违约严重程度的条形图

图 1 (C) 顾客代码数目条形图

图 1(B) 违约发生时间分布直方图

图 1 (D) 违约严重程度与违约发生时间的热图

2.双变量交互描述统计

(1) 违约严重程度与违约发生时间

如图 1 (D) 所示, 绝大多数的违约的发生时间集中在 2016.12 和 2017.01, 违约程度为轻度居多。

(2) 顾客代码与违约发生时间

图 2 同样表明, 违约发生时间集中在第 12、13、14 个月(即 2016. 12-2017. 02), 其中"顾客 6"、"顾客 9"、"顾客 11","顾客 4","顾客 5"在第 15 个月(2017.03) 后无违约人数。而"顾客 11"在 2016. 12-2017. 02 违约的人数仅仅占"顾客 11" 总数的 41.5%, 相比于整体和其他顾客类别,"顾客 11"的违约时间分布较为分 散,且违约时间均距今较长。从违约时间上看,"顾客11"将会是违约风险最低 的一组。

图 2 顾客代码与月份序列的小提琴图

(3) 顾客代码与违约严重程度

由图 3 可以看出,"顾客 4"中轻度违约的人数占比最小(58.08%),且重度 违约人数占比最大(8.67%)的一类,而"顾客 6"和"顾客 11" 轻度违约的人 数占比最大,分别为 92.5%、94%,。结合前述,轻度违约占总数 80.48%,重度违约占总数 1.71%,可知从违约严重程度上看,"顾客 6"将是违约风险最低的一组。

图 3 顾客代码与违约严重程度的堆积柱状图

四、违约程度量化方法

1.按顾客代码分组汇总的数据透视表

如表 2 所示,按顾客代码分组,求出违约发生时间和违约严重程度的均值和方差。可以看出,"顾客 11"在违约发生时间和违约严重程度上均值最小(分别为 9.72 和 1.08),因此,它一定是违约风险最小的一类。而违约发生时间均值最大的是"顾客 3",违约严重程度均值最大的是"顾客 4",因此这两类顾客可能是违约风险最大的两组。

表 2 按顾客代码分组汇总的数据透视表

顾客代码	违约发生时	间	违约严重和	星度	
	均值	均值(标	均值	均值(标	计数
		准化)		准化)	
顾客1	11.65	0.39	1.24	0.11	8063
顾客 10	11.59	0.29	1.25	0. 17	2657
顾客 11	9.72	-2.76	1.08	-1.34	200
顾客 12	11. 25	-0.25	1. 25	0.16	7372
顾客2	11.57	0.27	1.16	-0.58	34894
顾客3	12. 19	1. 27	1.34	0.95	5975
顾客4	11.50	0.16	1.51	2.40	1775
顾客 5	11.55	0.24	1.21	-0.19	863
顾客6	11.93	0.86	1.08	-1.30	267
顾客7	11. 34	-0.19	1. 19	-0.35	234
顾客8	11.63	0.36	1.18	-0.40	2736
顾客9	11.02	-0.64	1.27	0.36	332

把表 2 的两组均值标准化后,绘制违约严重程度与违约发生时间的散点图, X 轴表示违约严重程度, Y 轴表示违约发生时间。可以看出顾客 11 毫无悬念地成为违约风险最低的一类顾客, 而顾客 3 或者顾客 4 将会是违约风险最高的两类顾客, 剩下的顾客 1, 10, 8, 5, 2, 7, 12, 9 违约风险将会比较接近, 对于顾客 6, 如果应用一个重点关注违约发生时间的风险衡量方法里, 顾客 6 的违约风险将很高, 反之则很低。

图 4 违约严重程度与违约发生时间散点图(标准化后)

2.指标综合

(1) 主观赋权法

指标 1: 违约严重程度均值,指标 2: 违约发生时间均值。

Score = $\alpha * 指标 1 + (1 - \alpha) * 指标 2$ $\alpha \in (0,1)$ 令 α 等于 0.5, 得到如下排名:

表 3 主观赋权法排名

顾客代码	Score	排名
顾客 4	1.27	1
顾客3	1.11	2
顾客1	0.25	3
顾客 10	0.23	4
顾客 5	0.02	5
顾客8	-0.02	6
顾客 12	-0.05	7
顾客 9	-0.14	8

顾客 2	-0.16	9
顾客6	-0.23	10
顾客7	-0.23	11
顾客 11	-2.05	12

该方法简单,但主观性太强,α的值选取缺乏依据,排名结果难以使人信服。 该排序方法适合于专家给出α权重的情况。

(2) TOPSIS 法

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)法, 直译为"逼近于理想解的排序方法",是多指标决策问题中十分常用的一种方法。这种方法通过构造多指标问题的最优点和最差点,并以靠近理想解和远离最差点两个评价判据为基准,对各可行方案进行排序。

TOPSIS 法评价的基本步骤如下:

①设 X 为用于评价的矩阵,第一列为违约发生时间均值,第二列为违约严重程度均值。X 经过标准化后得到 Z,即以上两个均值标准化后的值。

$$X = \begin{pmatrix} 11.65 & 1.24 \\ 11.59 & 1.25 \\ \dots & \dots \\ 11.02 & 1.27 \end{pmatrix} \qquad Z = \begin{pmatrix} 0.39 & 0.11 \\ 0.29 & 0.17 \\ \dots & \dots \\ -0.64 & 0.36 \end{pmatrix}$$

②由各项指标最优值和最劣值分别构成最优值向量 Z+ 和最劣值向量 Z-。由于 Z 值越小越好,因此最优点正好是顾客 11 的样本点坐标(即 Z 两列的最小值),而最差点是顾客 4 的横坐标和顾客 3 的纵坐标组成的点(即 Z 两列的最大值)。

$$Z^-=(1.27,2.40)$$
 , $Z^+=(-2.76,-1.34)$

③计算各评价单元与最优值和最劣值的距离。

$$D_i^+ = \sum_{i=1}^{12} (Z_i - Z^+)^2$$
 $D_i^- = \sum_{i=1}^{12} (Z_i - Z^-)^2$

④计算各评价单元与最优值的相对接近度。

$$C_i = \frac{D_i^-}{D_i^- + D_i^+}$$
 $i = 1, 2, 3, ..., 12$

⑤按相对接近度大小排序, C, 越大, 表明第 i 个评价单元越接近最优水平。

A TOTOIO ZIFF		
顾客代码	Score	排名
顾客 4	0.19	1
顾客3	0.24	2
顾客1	0.41	3
顾客 10	0.42	4
顾客5	0.46	5
顾客8	0.47	6
顾客 12	0.48	7
顾客 2	0.50	8
顾客 9	0.51	9
顾客 6	0.51	10
顾客7	0.52	11
顾客 11	1.00	12

表 4 TOPSIS 法排名

该方法同时考虑到了各个样本到最优点、最差点的距离,看似完美地对本问题进行了完美的排序,但仍然存在问题。观察到表 4 中顾客 2,顾客 9,顾客 6 的 score 均接近于 0.5,说明这三个点离最优点与最差点连线的中垂线非常近,这一点从图 4 也看得出来,因此难以评定这三个点的优劣。由此我们看到 TOPSIS 法用于综合评价还存在一定的问题, 不能得到合理的排序结果。

(3)改进的 topsis 法

①取最优点(A)最差点(B)连线 AB 的延长线上点 H 使得|BA| = |HB|,则 H 点称其为虚拟最差点,H 的向量值为 $Z^* = 2Z^- - Z^+ = (5.30,6.13)$ 。如此一来经过 B 点的 AH 的垂线成为 AH 的中垂线,不会出现顾客 2,顾客 9,顾客 6 无法评判的问题。

②计算 D_i^+ 和 D_i^*

$$D_i^+ = \sum_{i=1}^{12} (Z_i - Z^+)^2$$
 $D_i^* = \sum_{i=1}^{12} (Z_i - Z^*)^2$

③计算
$$C_i^* = \frac{D_i^*}{D_i^* + D_i^+}$$
 $i = 1, 2, 3, ..., 12$

④用 C_i^* 排序, C_i^* 越大表明第 i 个评价单元越接近最优水平。

表 5 TOPSIS 法改进版排名

顾客代码	Score	排名
顾客 4	0.57	1
顾客3	0.59	2
顾客1	0.69	3
顾客 10	0.70	4
顾客 6	0.71	5
顾客8	0.72	6
顾客 5	0.72	7
顾客 2	0.73	8
顾客 12	0.74	9
顾客7	0.75	10
顾客 9	0.75	11
顾客 11	1.00	12

如表 5 所示,显然这样改进后,顾客 2,顾客 9,顾客 6 的 score 差别拉大,可避免以上不合理结果的出现。

参考文献

[1] 胡永宏. 对 TOPSIS 法用于综合评价的改进[J]. 数学的实践与认识, 2002, 32(4):000572-575.