<u>Тема 1 Грамматики и регулярные выражения</u>

Задачи

- **1.** Какие из перечисленных тождеств истинны для любых произвольных цепочек символов, а какие нет?
 - a) $|\alpha\beta|=|\alpha|+|\beta|=|\beta\alpha|$;

d) $(\alpha^2 \beta^2)^R = (\beta^R \alpha^R)^2$ e) $(\alpha^2 \beta^2)^R = (\beta^R)^2 (\alpha^R)^2$

- b) $\alpha\beta = \beta\alpha$;
- c) $|\alpha^{R}| = |\alpha|$;
- **2.** Какие из следующих языков обладают префиксным (суффиксным) свойством: 1) $\{a^n \cdot b^n \mid n \ge 1\}$;
 - 2) L*, если L обладает префиксным свойством;
 - 3) $\{w \mid w \in \{a,b\}^*$ и количество символов 'a' и'b' одинаково $\}$.
 - 4) $\{a \cdot b \mid n \ge 1\}$; 5) $\{a \cdot b^n \mid n \ge 1\}$;
- **3.** Дана грамматика $G = (\Sigma, N, P, S)$, где $\Sigma = \{a, b\}$, $N = \{S, A\}$, P: $(1) S \rightarrow aA \mid bS$; $(2) A \rightarrow aA \mid a$. Выписать несколько цепочек, задаваемых данной грамматикой, в порядке возрастания их длин, начиная с цепочки минимальной длины. К какому типу относится грамматика G?
- **4.** Построить регулярную грамматику: а) в форме Бэкуса-Наура; b) с использованием метасимволов; c) в графическом виде для генерации следующих языков:
 - 1) Множество всех цепочек из $\{0,1,a,b,c\}^*$, начинающихся с 0 или 1.
 - 2) Множество всех цепочек из $\{0,1\}^*$, длины которых делятся на три.
 - 3) Множество всех цепочек из $\{0,1\}^*$, содержащих подцепочку '101'.
 - 4) Множество цепочек из $\{0,1,a,b\}^*$, заканчивающихся цепочкой '01a'.
 - 5) Множество всех цепочек из $\{0,1\}^*$, содержащих четное число нулей и четное число единиц;
- **5.** Пусть поездом называется произвольная последовательность локомотивов и вагонов, начинающаяся с локомотива. Построить грамматику для понятия <поезд> в форме Бэкуса-Наура, считая, что понятия <локомотив> и <вагон> являются терминальными символами. Изменить грамматику так, чтобы выполнялись следующие условия:
 - 1) Все локомотивы должны быть сосредоточены в начале поезда.
 - 2) Поезд начинается с локомотива и заканчивается локомотивом (построить регулярную грамматику).
 - 3) Поезд не должен содержать два локомотива или два вагона подряд.
- **6.** Дана грамматика $G = (\Sigma, N, P, S)$, где $\Sigma = \{a, b\}$, $N = \{S, A, B, C, D\}$, правила вывода P имеют вид:
 - $(1) S \rightarrow CD$ $(3) AD \rightarrow aD$ $(5) Aa \rightarrow aA$ $(7) Ba \rightarrow aB$ $(9) C \rightarrow \lambda$
 - (2) C \rightarrow aCA | bCB (4) BD \rightarrow bD (6) Ab \rightarrow bA (8) Bb \rightarrow bB (10) D \rightarrow λ

Определить, какого вида цепочки порождаются данной грамматикой. Записать полученный язык. Какого типа эта грамматика?

- 7. Дана грамматика $G = (\Sigma, N, P, S)$, где $\Sigma = \{a, b, c\}$, $N = \{S, B, C\}$, $P: (1) S \rightarrow aSBC \mid abC; (2) CB \rightarrow BC; (3) bB \rightarrow bb; (4) bC \rightarrow bc; (5) cC \rightarrow cc. Определить, какого вида цепочки порождаются данной грамматикой, записать полученный язык. Какого типа эта грамматика?$
- **8.** Построить грамматику, порождающую множество строк из нулей и единиц, т.е. язык $\{0,1\}^*$: 1) праволинейную; 2) контекстно-свободную.
- **9.** Построить КС-грамматики, порождающие следующие языки: 1) $\{0^n \mid n \ge 0\}$; 2) $\{0^n \mid n \ge 1\}$; 3) $\{0^{3n} \mid n \ge 1\}$; 4) $\{a^n b^n \mid n \ge 1\}$; 5) $\{w \mid w \in \{0,1\}^*$ и количество нулей и единиц одинаково $\}$; 6) $\{w \mid w \in \{0,1\}^*$ и количество как нулей, так и единиц четно $\}$; 7) $\{w \mid w \in \{0,1,a,b\}^*$ и начинающиеся с 'a' или 'b' $\}$; 8) Всевозможные последовательности правильно расставленных скобок.
- **10.** Определить тип Хомского грамматики $G = (\Sigma, N, P, S)$, где $\Sigma = \{x, y, z\}$, $N = \{S, A, B, T\}$, а правила вывода имеют вид: $P: (1) S \to xB \mid xTB;$ (2) $T \to xA \mid xTA;$ (3) $B \to yz;$ (4) $Ay \to yA;$ (5) $Az \to yzz$. Принадлежат ли L(G) цепочки x^2yxz , $x^2y^2z^2$, xyxz?
- **11.** Описать язык, порождаемый грамматикой $S \to bSS \mid a$.
- **12.** Построить K3-грамматики, порождающие: (1) {ww | w ∈ {a,b}⁺ }; (2) {a ^m b ⁿ a ^m b ⁿ | m,n≥1}; (3) {w | w ∈ {a, b, c} и количество букв 'a', 'b' и 'c' одинаково.}
- 13. Построить регулярные выражения для множеств из задачи №4.
- **14.** Выписать несколько конечных сентенциальных форм грамматики, построенной: а) в задаче №9 (7), используя только левосторонний вывод; б) в задаче №9 (8), используя только правосторонний вывод. Для каждой цепочки вывода построить дерево вывода.

Задание на лабораторную работу

Обработка ошибок обязательна!!!

- 1. Написать программу, которая по заданной КС-грамматике будет генерировать цепочки языка. Использовать только левосторонний или правосторонний вывод! Диапазон длин генерируемых цепочек должен задаваться пользователем при запуске программы. Предусмотреть возможность выбора использовать заданную в программе грамматику или вводить свою с клавиатуры.
- 2. Дополнить предыдущую программу таким образом, чтобы для одной или нескольких цепочек (цепочки выбирает пользователь из числа построенных на предыдущем этапе работы) строилось дерево вывода.

Тема 2

<u>Регулярные языки. Конечные автоматы и</u> регулярные выражения

Задачи

15. Построить графы переходов для следующих конечных автоматов (ДКА и НКА): а) ДКА: $M = (\{p, q, r\}, \{0, 1\}, \delta, p, \{r\})$, где функция переходов δ задана таблицей. Данный автомат допускает все цепочки, состоящие из нулей и единиц и содержащие подцепочку '00'.

Входы Сост	0	1
p	q	p
q	r	p
r	r	r

б) НКА:

 $M = (\{q_0,q_1,q_2,q_3,q_f\},\{1,2,3\},\delta,q_0,\{q_f\}),$ где функция переходов δ задана таблицей. Данный автомат допускает все цепочки, состоящие из символов '1', '2', '3', в которых последний символ цепочки уже встречался в ней ранее.

Входы	1	2	3
q_0	$\{q_0,q_1\}$	$\{q_{0,}q_{2}\}$	$\{q_0,q_3\}$
q_1	$\{q_1,q_f\}$	$\{q_1\}$	$\{q_1\}$
q_2	$\{q_2\}$	$\{q_2,q_f\}$	$\{q_2\}$
q_3	$\{q_3\}$	$\{q_3\}$	$\{q_3,q_f\}$
q_{f}	Ø	Ø	Ø

- **16.** Проверить описанные множества, являются ли они регулярными. Построить ДКА для регулярных множеств:
- а) Множество всех цепочек из $\{0, 1, a, b, c\}^*$, начинающихся с 0 или 1.
- б) Множество всех цепочек из $\{0,1\}^*$, длины которых кратны трем.
- в) Множество всех цепочек из $\{0,1\}^*$ с четным количеством нулей и нечетным количеством единиц.
- г) Множество цепочек из $\{0, 1, a, b\}^*$, заканчивающихся цепочкой '01a'.
- д) Множество всех цепочек из $\{0,1\}^*$, содержащих подцепочку '101'.
- е) Множество всех цепочек из $\{0,1\}^*$, содержащих четное число нулей и четное число единиц.
- **17.** Построить для множества цепочек, указанного в задании, ДКА, допускающий эти цепочки; регулярное выражение и праволинейную грамматику, порождающие эти цепочки.
- а) Цепочки из $\{0, 1, a\}^*$ четной длины, начинающиеся с '0'.
- б) Цепочки из $\{0, 1, a\}^*$, начинающиеся с '0' и заканчивающиеся '1'.
- в) Цепочки из $\{0, 1, a\}^*$, начинающиеся с '0' и заканчивающиеся '1', имеющие длину, кратную трем.
- г) Цепочки из $\{a, b, c\}^*$, содержащие подцепочку 'bb'.
- д) Цепочки из {a, b, c}*, заканчивающиеся парой 'bb'.
- е) Цепочки из {a, b}* четной длины, содержащие подцепочку 'aa'.

- ж) Цепочки из $\{0, 1, a, b, c\}^*$, количество нулей в которых четно.
- з) Цепочки из $\{0, 1, a, b, c\}^*$ четной длины с четным количеством нулей.
- и) Цепочки из $\{0, 1\}^*$ четной длины, содержащие подцепочку '101'.
- к) Цепочки из $\{0, 1, a, b\}^*$, начинающиеся с цепочки 'aa' и имеющие длину, кратную трем.
- л) Цепочки из $\{a,b,c\}^*$, начинающиеся и заканчивающиеся символом 'a' и содержащие подцепочку 'aa'.
- **18.** Задан КА: $M=(\{S,R,Z\},\{a,b\},\delta,S,\{Z\}), \delta(S,a)=\{S,R\}, \delta(R,b)=\{R\}, \delta(R,a)=\{Z\}.$ Построить граф переходов данного автомата. Преобразовать автомат к детерминированному виду, построить граф переходов полученного ДКА.

Задание на лабораторную работу

3. Пусть регулярный язык задается конечным автоматом (ДКА). Написать программу, которая будет проверять для некоторой цепочки, принадлежит ли она заданному регулярному языку. В случае отрицательного ответа необходимо давать пояснение, по какой причине цепочка не принадлежит языку — например, «в цепочке присутствуют посторонние символы» и т.п. Исходный автомат загружать из файла и/или вводить с клавиатуры в соответствии с определенным форматом. Ввод цепочек производить с клавиатуры; выполняя его до тех пор, пока не возникнет желание закончить работу. Процесс проверки в виде последовательной смены конфигураций отображать на экране.

Проверить работу программы на нескольких примерах задач 16, 17.

Тема 3 Контекстно-свободные языки

Задачи

- **19.** Определить и записать язык, допускаемый следующим МПА: $P = (\{q_0, q_1, q_2\}, \{a, b\}, \{Z, a, b\}, \delta, q_0, Z, \{q_2\}),$ где функция переходов δ :
 - 1) $\delta(q_0, a, Z) = \{(q_0, aZ)\}$
- 6) $\delta(q_0, b, b) = \{(q_0, bb), (q_1, \epsilon)\}$
- 2) $\delta(q_0, b, Z) = \{(q_0, bZ)\}$
- 7) $\delta(q_1, a, a) = \{(q_1, \epsilon)\}$
- 3) $\delta(q_0, a, a) = \{(q_0, aa), (q_1, \epsilon)\}$
- 8) $\delta(q_1, b, b) = \{(q_1, \epsilon)\}$
- 4) $\delta(q_0, a, b) = \{(q_0, ab)\}$
- 9) $\delta(q_1, \varepsilon, Z) = \{(q_2, \varepsilon)\}$
- 5) $\delta(q_0, b, a) = \{(q_0, ba)\}$

Проверить, принадлежат ли этому языку цепочки: 'abab', 'aabaa', 'aabaa', 'aabaa', 'baab', 'baba'.

- **20.** Построить ДМП-автоматы, допускающие следующие языки: а) $\{0^k 1^n \mid k \ge n > 0\}$; б) $\{0^k 1^n \mid 0 < k \le n\}$; в) $\{w \mid w \in \{a, b\}^* \text{ и количество символов 'a' и 'b' одинаково}\}$; г) $\{0^n 1^n 0^k 1^k\}$; д) $\{w \mid w \in \{a, b\}^* \text{ и количество символов 'a' и 'b' одинаково и четно}\}$.
- **21.** Построить МПА, допускающий язык $L(P) = \{wcw^R \mid w \in \{a,b\}^+\}.$
- 22. Построить ДМП-автоматы, допускающие следующие языки, и КСграмматики для их генерации:
- 1) $L = \{a^n \ b^k c^{2n} \ | \ k \ge 0, \ n > 0\};$ 2) $L = \{a^{2k} \ b^n c^{2k+1} \ | \ k \ge 0, \ n > 0\};$ 3) $L = \{a^{k+1} \ b^{2k} \ c^{2n+1} \ | \ k > 0, \ n \ge 0\};$ 4) $L = \{w \ | \ w \in \{a,b,c\}^*, \$ количество символов «а» и «b» одинаково, количество «с» произвольно, порядок любой $\};$ 5) $L = \{w \ | \ w \in \{a,b,c\}^*, \$ количество символов «а» и «b» одинаково, количество «с» чётно, порядок любой $\};$ 6) $L = \{c^{2k} \ \beta \ | \ \beta \in \{a,b\}^+, \$ количество символов «а» и «b» одинаково, порядок любой $\{a,b\}^+, \$ количество символов «а» и «b» одинаково, порядок любой $\{a,b\}^+, \$ толичество символов «а» и «b» одинаково, порядок любой $\{a,b\}^+, \$ толичество символов «а» и «b» одинаково, порядок любой $\{a,b\}^+, \$ толичество символов «а» и «b» одинаково, порядок любой $\{a,b\}^+, \$ толичество символов «а» и «b» одинаково, порядок любой $\{a,b\}^+, \$ толичество символов «а» и «b» одинаково $\{a,b\}^+, \$ толичество символов $\{a,b\}^+, \$ толичество $\{a,b\}^+, \$ толи

Задание на лабораторную работу

4. Пусть контекстно-свободный язык задается детерминированным автоматом с магазинной памятью (ДМПА). Написать программу, которая будет проверять для некоторой цепочки, принадлежит ли она заданному КС-языку. В случае отрицательного ответа необходимо давать пояснение, по какой причине цепочка не принадлежит языку — например, «в цепочке присутствуют посторонние символы» и т.п.

Исходный автомат загружать из файла и/или вводить с клавиатуры в соответствии с определенным форматом. Ввод цепочек производить с клавиатуры; необходимо иметь возможность выполнять его до тех пор, пока не возникнет желание закончить работу. Процесс проверки в виде последовательной смены конфигураций отображать на экране.

Проверить работу программы на нескольких примерах (задачи 20, 21, 22).

Распознаватели

23. Дана грамматика для построения арифметических выражений $G(\{+,-,/,*,a,b,(,)\}, \{S,R,T,F,E\},P,S)$, где правила P имеют вид:

$$S \rightarrow T [S_1] \mid TR [S_2],$$

$$R \rightarrow +T [R_1] | -T [R_2] | +TR [R_3] | -TR [R_4].$$

$$T \rightarrow E[T_1] \mid EF[T_2],$$

$$F \to *E /F_{1} /E /F_{2} /*EF /F_{3} /EF /F_{4}$$
.

$$E \rightarrow (S) [E_1] | a [E_2] | b [E_3].$$

Выполнить нисходящий разбор с возвратами для следующих цепочек:

а)
$$\alpha_1$$
='a*(b+a)'; б) α_2 ='a(b+a)'; в) α_3 ='(a-b)/a'; г) α_4 ='a/b+a)'; д) α_5 ='a+a*b'.

24. Дана грамматика для построения арифметических выражений $G(\{+,-,/,*,a,b,(,)\}, \{S,T,E\},P,S)$, где правила P имеют вид:

$$S \to S+T$$
 [1] $S-T$ [2] $T*E$ [3] T/E [4] (S) [5] a [6] b [7]

$$T \to T^*E$$
 [8] $|T/E$ [9] $|S|$ [10] $|a|$ [11] $|b|$ [12]

$$E \to (S)$$
 [13] | a [14] | b [15].

Выполнить восходящий разбор с возвратами для следующих цепочек:

а)
$$\alpha_1$$
='a*(b+a)'; б) α_2 ='a(b+a)'; в) α_3 ='(a-b)/a'; г) α_4 ='a/b+a)'; д) α_5 ='a+a*b'.

25. Дана грамматика операторного предшествования $G(\{+,-,*,a,(,)\},\{S,R,T\},P,S)$, где правила P заданы ниже. Построить для нее таблицу отношений предшествования; исследовать, как ее внутренняя семантика отличается от обычных соглашений и выполнить разбор нескольких цепочек по своему выбору. Переменная х может быть заменена любым целым числом.

a)
$$P_1$$
: $S \rightarrow S*T \mid T$; $T \rightarrow T+R \mid R$; $R \rightarrow (S) \mid x$

6)
$$P_2$$
: $S \rightarrow T+S \mid T-S \mid T$; $T \rightarrow T*R \mid R$; $R \rightarrow (S) \mid x$

Тема 4 Теория перевода

Задачи

26. Дана простая схема Т СУ-перевода арифметических выражений из языка $L(G_0)$: $T = ({E, T, F}, {a, +, *, (,)}, {a, +, *}, R, E)$, где правила вывода R заданы в виде таблицы:

Правило	Элемент перевода
1) $E \rightarrow E+T$	E = ET +
$2) E \rightarrow T$	E = T
3) T \rightarrow T*F	T = TF*
$4) T \rightarrow F$	T = F
$5) \text{ F} \rightarrow \text{(E)}$	F = E
6) $F \rightarrow a$	F = a

Выполнить перевод следующих цепочек:

- a) w = 'a + a'
- б) w = 'a*a'
- B) w = '(a+a)*a' $\Gamma) w = 'a+a*a'$

 - д) w = 'a*a+a'
- **27.** Рассмотреть перевод для СУ-схемы $T = (\{S\}, \{a, +\}, \{a, +\}, R, S),$ где R состоит из правил: (1) $S \to +S^{(1)} S^{(2)}, S^{(1)} + S^{(2)};$ (2) $S \to a, a$. Верхний индекс показывает соответствие нетерминальных символов в правиле вывода и элементе перевода. Выполнить перевод цепочек: x = '+aa'; y = '++aaa'.
- **28.** Дана СУ-схема $T = (\{S, A\}, \{0, 1\}, \{a, b\}, R, S)$, где R состоит из правил: (1) S \to 0AS, SAa; (2) A \to 0SA, ASa; (3) S \to 1, b; (4) A \to 1, b. Выполнить перевод цепочек: a) x = '011', б) y = '00111'.
- **29.** Дан МП-преобразователь: $P = (\{q\}, \{a, +, *\}, \{+, *, E\}, \{a, +, *\}, \delta, q, E, \{q\}),$ где δ определяется равенствами:

 - (1) $\delta(q, *, E) = \{(q, EE*, \epsilon)\}\$ (4) $\delta(q, +, E) = \{(q, EE+, \epsilon)\}$
 - (2) $\delta(q, \varepsilon, +) = \{(q, \varepsilon, +)\}$ (5) $\delta(q, \varepsilon, *) = \{(q, \varepsilon, *)\}$
 - (3) $\delta(q, a, E) = \{(q, \varepsilon, a)\}$

Выполнить перевод цепочек: а) '+аа'; б) '*аа'; в) '*+ааа'; г) '+*ааа'; д) '+a*aa'; e) '++aaa'.

- **30.** Построить МП-преобразователь, реализующий простой перевод, определяемый СУ-схемой $T = (\{S\}, \{a, +\}, \{a, +\}, R, S),$ где R состоит из правил: (1) $S \to +S^{(1)} S^{(2)}$, $S^{(1)}+S^{(2)}$; (2) $S \to a$, a.
- 31. Построить простую СУ-схему, эквивалентную преобразователю магазинной памятью $P = (\{q\}, \{a, +, *\}, \{+, *, E\}, \{a, +, *\}, \delta, q, E, \{q\}),$ где δ определяется равенствами:
 - (1) $\delta(q, *, E) = \{(q, EE*, \varepsilon)\}\$ (4) $\delta(q, +, E) = \{(q, EE+, \varepsilon)\}\$
- - (2) $\delta(q, \varepsilon, +) = \{(q, \varepsilon, +)\}$
- (5) $\delta(q, \epsilon, *) = \{(q, \epsilon, *)\}$
- (3) $\delta(q, a, E) = \{(q, \varepsilon, a)\}$

- **32.** Построить схему СУ-перевода и МП-преобразователь для заданного перевода. Выполнить перевод нескольких цепочек.
 - 1. $\tau = \{(x,y) \mid x = 0^n 1^{2n+1}, y = 0^{2n} 1^n \mid n > 0\}.$
 - 2. $\tau = \{(x,y) \mid x = a^{2n} b^k c^{n+1}, y = a^{2k} b^n \mid n>0, k>0\}.$
 - 3. $\tau = \{(x,y) \mid x = a^{k+1} b^{2k} c^n, y = a^{2k+1} c^{2n} \mid n > 0, k \ge 0\}.$
 - 4. $\tau = \{(x,y) \mid x = a^{n+1} b^k c^{2k}, y = a^{k+1} c^n \mid n \ge 0, k > 0\}.$
 - 5. $\tau = \{(x,y) \mid x \in \{a,b\}^* \mid \text{количество «а» и «b» одинаково и равно п, порядок любой, <math>y = (ab)^n \mid n \ge 0\}.$

Задание на лабораторную работу

5. Дана схема СУ-перевода. Написать программу, которая будет выполнять перевод цепочек в соответствии с этой схемой. При невозможности выполнить перевод (цепочка не строится по правилам заданной грамматики) необходимо выводить на экран соответствующее сообщение.

Правила СУ-схемы считывать из файла (предоставлять пользователю возможность редактировать их на экране); цепочки вводить с клавиатуры, процесс перевода отображать на экране. Предусмотреть возможность выполнения перевода любого количества цепочек для заданной схемы. Проверить работу программы на примерах задач 25-27.

6. Пусть дан МП-преобразователь; написать программу, которая будет выполнять перевод цепочек, вводимых с клавиатуры. При невозможности выполнить перевод (цепочка не принадлежит заданному языку) необходимо выводить на экран соответствующее сообщение.

Исходный преобразователь загружать из файла и/или вводить с клавиатуры в соответствии с определенным форматом. Процесс перевода цепочки в виде последовательной смены конфигураций отображать на экране. Предусмотреть возможность выполнения перевода любого количества цепочек для заданного преобразователя.

Проверить работу программы на нескольких примерах (задачи 28, 29).