Lecture 17

Quantitative Political Science

Prof. Bisbee

Vanderbilt University

Lecture Date: 2023/11/07

Slides Updated: 2023-11-05

Agenda

- 1. Estimating Error Variance
- 2. Hypothesis Testing
- 3. Controls

Estimating Error Variance

- ullet Ended last lecture talking about $VAR(\hat{eta}_1)=rac{\sigma^2}{SST_x}$
 - This is a conceptual quantity
- How do we actually calculate it?
 - \circ Recall from the univariate case where we wrote $VAR(ar{Y}) = rac{\sigma^2}{n}$
 - \circ We said it is rare that we actually know σ^2 , but we still estimate it with $S_u^2=rac{\sum (y_i-ar{y})^2}{n-1}$
- Here, we do something very similar: $\hat{\sigma}^2 = \frac{\sum (u_i)^2}{n-2} = \frac{SSR}{n-2}$
 - \circ Why n-2?

Estimating Error Variance

• Thus we plug this into our two formulas for $VAR(\hat{\beta}_0)$ and $VAR(\hat{\beta}_1)$

$$egin{align} \widehat{VAR}(\hat{eta}_0) &= rac{\hat{\sigma}^2 rac{\sum x_i^2}{n}}{SST_x} \ &= rac{rac{SSR}{n-2} rac{\sum x_i^2}{n}}{SST_x} \ \widehat{VAR}(\hat{eta}_1) &= rac{\hat{\sigma}^2}{SST_x} \ &= rac{rac{SSR}{n-2}}{SST_x} \end{aligned}$$

Estimating Error Variance

- As we discussed last week in the theoretical case, $\hat{\sigma}^2$ is a very interesting quantity, because $\sqrt{\hat{\sigma}^2}=\hat{\sigma}\stackrel{p}{ o}\sigma$
 - \circ $\hat{\sigma}$ is expressed in units of y
 - \circ Tell us how far the typical fitted value of y is from the observed value
 - \circ Theoretically, the extent to which unexplained factors are affecting the value of y
 - VERY INFORMATIVE STATISTIC THAT NO ONE REALLY PAYS ATTENTION TO
- Terms for $\hat{\sigma}$:
 - Wooldridge: "standard error of regression" (SER)
 - Root MSE or RMSE
 - Standard error of the estimate (SEE)
 - R: Residual standard error

• Remember all these fun times we had?

- We now have the tools to do this with $\hat{\beta}_1!$ (And $\hat{\beta}_0$, although that is rarely the quantity of interest.)
- Note that we typically are interested in whether \hat{eta}_1 is zero:
 - \circ Null H_0 : $\beta_1 = 0$
 - \circ Alternative H_A : $\beta_1 \neq 0$
 - \circ Test statistic: Critical t value for Student's T-test for our estimator \hat{eta}_1
 - $\circ \ \ \text{Rejection Region:} \ \hat{\beta}_1 < 0 t_{\alpha/2,\nu} * \sqrt{\widehat{VAR}(\hat{\beta}_1)} \ \text{or} \ \hat{\beta}_1 > 0 + t_{\alpha/2,\nu} * \sqrt{\widehat{VAR}(\hat{\beta}_1)}$

- What is $\sqrt{\widehat{VAR}(\hat{\beta}_1)}$?
 - \circ The **standard error** of the estimator \hat{eta}_1 , or $se(\hat{eta}_1)$, (or often just $se_{\hat{eta}_1}$)
- What is ν ?
 - \circ The **degrees of freedom**: This will be n-k-1. n observations minus k parameters (in this case just one: $\hat{\beta}_1$) 1 (for the intercept $\hat{\beta}_0$)


```
require(tidyverse)
set.seed(123)
n <- 100
X \leftarrow rnorm(n)
Y \leftarrow rnorm(n, mean = X)
summary(lm(Y~X))
```

```
##
## Call:
## lm(formula = Y \sim X)
##
## Residuals:
##
     Min 1Q Median 3Q Max
## -1.9073 -0.6835 -0.0875 0.5806 3.2904
##
  Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.10280 0.09755 -1.054
## X
             ## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9707 on 98 degrees of freedom
## Multiple R-squared: 0.4451, Adjusted R-squared: 0.4394
## F-statistic: 78.6 on 1 and 98 DF, p-value: 3.497e-14
```

Manual Calculation!

```
b1_hat <- cov(X,Y)/var(X)
b0_hat <- mean(Y) - (cov(X,Y)/var(X))*mean(X)

preds <- b0_hat + b1_hat*X
  resids <- Y - preds
  mean(resids)</pre>
```

```
## [1] -1.621641e-17
```

Manual Calculation!

```
SSR <- sum(resids^2)
sigma2_hat <- SSR/(n-2)
sigma_hat <- sqrt(sigma2_hat)

SST_x <- sum((X - mean(X))^2)
S_xx <- sum(X^2) - n*mean(X)^2 # Equivalent ways

VAR0_hat <- (sigma2_hat*(sum(X^2)/n))/SST_x
se0_hat <- sqrt(VAR0_hat)

VAR1_hat <- sigma2_hat/SST_x
se1_hat <- sqrt(VAR1_hat)</pre>
```

Manual Calculation!

```
cat(c(b0_hat,se0_hat),'\n',c(b1_hat,se1_hat))

## -0.1028031 0.09755118
## 0.9475284 0.1068786

summary(lm(Y~X))
```

```
##
## Call:
  lm(formula = Y \sim X)
##
  Residuals:
   Min
             1Q Median
                         3Q
                                    Max
  -1.9073 -0.6835 -0.0875 0.5806 3.2904
##
  Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
  (Intercept) -0.10280
                      0.09755 -1.054
              0.94753
                      0.10688 8.865
## X
                                       3.5e-14 ***
## Signif. codes:
```

Other output

- Regression output includes two additional columns
 - ∘ t value and Pr(>|t|)
- t value is just $\frac{\hat{eta}_1}{\widehat{se}(\hat{eta}_1)}$ (or $\frac{\hat{eta}_0}{\widehat{se}(\hat{eta}_0)}$)
 - o b1_hat / se1_hat = 8.8654627
- Pr(>|t|) is literally the probably of observing a value as large as the absolute value of the t-value
 - $\circ~$ l.e., the p-value!: "attained significance level" or "smallest level of lpha for which we would **reject** H_0

- We talked last week about OVB (Omitted Variable Bias)
 - Subset of broader conversation about bias
- We might want to "control" for z to remove OVB (preventing the $eta_2 z_i +
 u_i$ from being "buried in the u)
 - $\circ~$ But remember that failing to control for z is only a problem **if** either (1) $eta_2
 eq 0$ or (2) cov(z,x)
 eq 0
- Ceteris paribus: "all things being equal"
 - \circ Want to estimate a ceteris paribus relationship between X and Y
 - What would the relationship look like if all other aspects of our units were the same?
 - Commonly invoked for causal claims, but more on that next semester

- Let's get precise with our terminology:
 - $\circ~Z$ is a potential **confound**
 - \circ If Z "confounds" the relationship between X and Y, it renders the relationship spurious
- How about some examples?

X	Y	Z
College degree	Salary at age 25	Ability
Female	Pro-Choice	Democrat
First-born	IQ Score	Parental involvement
Asian-American	Trump Support	Vietnamese
Own a home	Participated in Women's March	Year of Birth
•••		•••

- ullet To determine whether Z renders the relationship between X and Y spurious, we...
 - \circ "control for Z"
 - \circ "condition on Z"
 - \circ "hold Z constant"
- These all mean the same thing conceptually, but there are several different ways to do this
- ullet Ideally, we would do exactly what "holding Z constant" suggests: divide our units by categories of Z and examine the relationship between X and Y within each category of Z
 - I.e., if women are more pro-choice, we want to see this among *both* Democrats and Republicans
 - \circ If the relationship persists after holding Z constant, we say it is not spurious
 - \circ If it no longer holds, we say that Z is a confound rendering the relationship between X and Y spurious
- In practice, we usually do something much less careful

- We often will make our assumptions explicit with a **D**irected **A**cyclic **G**raph (DAG)
 - o This encodes our intuition about what the population parameters of interest might be

- Let's tackle a classic: education and income
 - \circ Y: income
 - $\circ X$: education
- What is Z?
 - Parent's education?

• Start by looking at all three relationships separately

```
require(tidyverse)
require(haven) # To open .dta files

dat <- read_dta('../Materials/gss7222_r1.dta')

dat <- dat %>%
   select(realinc,educ,paeduc) %>%
   sample_n(size = 10000,replace = F) %>%
   drop_na()

gc()
```

```
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1558977 83.3 2867194 153.2 2867194 153.2
## Vcells 2631858 20.1 568045588 4333.9 484482476 3696.4
```

• (gc() helps save memory after I dropped thousands of rows and columns)

```
dat %>%
  group_by(educ) %>%
  summarise(income = mean(realinc,na.rm=T))
```

```
# A tibble: 21 × 2
##
                                income
      educ
      <dbl+1b1>
                                 <dbl>
    10 [no formal schooling] 16684.
                                13372.
                                14913.
                                10643.
                                 9529.
                                12811.
                                15210.
                                13519.
                                15339.
      8
   10 9
                                19075.
   # ... with 11 more rows
```

```
dat %>%
  ggplot(aes(x = educ,y = realinc)) +
  geom_point()
```


- Clearly evidence of:
 - $\circ \beta_1 \neq 0$
 - \circ $\beta_2 \neq 0$
 - $\circ cov(educ, paeduc) \neq 0$
- I.e., OVB!
- Think through what this will mean for the following regression: $realinc_i = eta_0 + eta_1 e duc_i + u_i$

- Let's "control" for parent's education in three ways
- 1. Fewest Assumptions: Just visualize it with a local linear smoother, and subset to different values of parent's education
 - $\circ~$ No linearity assumption between X and Y
 - \circ Different relationship between X and Y for different values of Z
- 2. More Assumptions: Run multiple linear regressions, subsetting to different values of parent's education
 - \circ Linearity assumption between X and Y
 - \circ Different (linear) relationships between X and Y for different values of Z
- 3. Most Assumptions: Run single linear regression, adding Z as an additional predictor
 - $\circ \,$ Linearity assumption between X and Y
 - \circ Same linear relationship between X and Y for all values of Z

• First, let's take paeduc and transform it into a categorical measure

Controlling for a variable: Fewest assumptions

```
p <- dat %>%
  ggplot(aes(x = educ,y = realinc)) +
  geom_point() +
  geom_smooth() +
  facet_wrap(~paeduc_cat)
```

Controlling for a variable: Fewest assumptions

р

Controlling for a variable: More assumptions

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3498.564 1848.5655 -1.892583 5.855994e-02
## educ 2559.554 151.1077 16.938610 3.478382e-60
```

```
# High school dropout
summary(res$`HS dropout`)$coefficients
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -22065.206 5442.1609 -4.054494 5.626777e-05
## educ 4028.299 401.9979 10.020697 4.332182e-22
```

Controlling for a variable: More assumptions

summary(res\$`Post grad`)\$coefficients

```
summary(res$`HS degree`)$coefficients
               Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) -16113.26 4140.4210 -3.891697 1.031964e-04
## educ
         3852.58 293.9332 13.106994 1.521904e-37
summary(res$`Some college`)$coefficients
                Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) -18203.119 7684.9483 -2.368672 1.815234e-02
## educ
             3994.444 519.7771 7.684917 5.880018e-14
summary(res$`College degree`)$coefficients
##
               Estimate Std. Error t value Pr(>|t|)
  (Intercept) -1461.172 9359.9190 -0.1561095 8.759949e-01
## educ
              3262.281 607.6131 5.3690103 1.101091e-07
```

Controlling for a variable: More assumptions

Controlling for a variable: Most assumptions

```
summary(lm(realinc ~ educ + paeduc,dat))
```

```
##
## Call:
## lm(formula = realinc ~ educ + paeduc, data = dat)
##
  Residuals:
    Min
           10 Median 30
                            Max
  -56540 -17957 -6298 7800 145804
##
  Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## educ 3228.40 138.71 23.274 < 2e-16 ***
## paeduc 561.52 97.47 5.761 8.77e-09 ***
## Signif. codes:
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29090 on 6145 degrees of freedom
## Multiple R-squared: 0.1301, Adjusted R-squared: 0.1298
## F-statistic: 459.4 on 2 and 6145 DF, p-value: < 2.2e-16
```