

3. Determinan

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Prof. DR. Kasiyah Junus, M.Sc. Dr. Eng Lia Sadita

Capaian pemelajaran

Setelah mengikuti pembelajaran, mahasiswa mampu:

- 1. apabila diberikan matriks persegi, mahasiswa mampu menghitung determinannya dengan ekspansi baris (kolom), kombinatorik dan dengan menerapkan operasi baris elementer;
- 2. apabila diberikan spl dengan matriks koefisien nonsingular, mahasiswa dapat menentukan solusi spl dengan Aturan Cramer

Cakupan materi

Pre-test

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Pre-test

- Jawablah pertanyaan-pertanyaan berikut ini:
 - 1. Tentukan diagram venn mana yang merepresentasikan fungsi.

2. Tentukan determinan matriks 2x2 berikut ini.

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$

Kunci jawaban pre-test

1. Berikut yang fungsi an bukan fungsi:

2. Perhatikan matriks A, B, C

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$

 $\det(A) = \det(B) = \det(C) = 0$

Apa dugaannmu? Matriks seperti apa yang determinannya 0?

3.1 Pengertian determinan

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Pentingnya Determinan

- 1. Mengindikasikan bahwa suatu matriks memiliki inverse atau tidak.
- 2. Mengindikasikan bahwa suatu spl memiliki solusi tunggal atau tidak.
- 3. Berperan penting dalam penentuan nilai dan vektor eigen.
- 4. Digunakan untuk mengingat perhitungan cross product.
 Rumus cross product dapat dinyatakan dalam determinan sehingga lebih sederhana.
- 5. Ukuran area dimana bidang nya di bentuk oleh vektor-vektor baris pada matriks.

Contoh:
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 2
$$det(A) = 4$$

Latihan 1: Menghitung determinan

Marilah kita menghitung determinan matriks berikut ini

$$A = \begin{pmatrix} 3 & 1 \\ 4 & -2 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$D = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 2 & 3 \\ 4 & 4 & 5 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 20 & 40 & -10 \end{pmatrix}$$

Cocokkan hasilnya:

$$Det(A) = -10$$

$$Det(B) = 0$$

$$Det(D) = 0$$

$$Det(E) = 0$$

Aturan Sarrus

A₁ matriks berukuran 2x2

$$A_{1} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + Det(A_{1}) = (a_{11}.a_{22}) - (a_{12}.a_{21})$$

A₂ matriks berukuran 3x3

$$A_{2} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \rightarrow \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{13} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \xrightarrow{a_{11}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{31} & a_{32} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{31} & a_{32} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{31} & a_{32} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{31} & a_{32} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{31} & a_{32} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{31} & a_{32} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{31} & a_{32} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{31} & a_{32} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \end{pmatrix} \xrightarrow{a_{12}} \begin{pmatrix} a_{12} & a_{12} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \end{pmatrix} \xrightarrow{a_{23}} \begin{pmatrix} a_{12} & a_{22} \\ a_{23} & a_{23} \\ a_{24} & a_{22} \end{pmatrix}$$

$$Det(A_2) = a_{11}.a_{22}.a_{33} + a_{12}.a_{23}.a_{31} + a_{13}.a_{21}.a_{32} - (a_{13}.a_{22}.a_{31} + a_{11}.a_{23}.a_{32} + a_{12}.a_{21}.a_{33})$$

Contoh 1: penerapan Aturan Sarrus

$$M = \begin{pmatrix} 3 & 1 \\ 4 & -2 \end{pmatrix}$$

$$Det(M) = 3.-2 - (1.4) = -10$$

$$K = \begin{pmatrix} 3 & 2 & 2 & 3 & 2 \\ 1 & 2 & 3 & 1 & 2 \\ 4 & 4 & 5 & 4 & 4 \\ & & & & + & + \end{pmatrix}$$

$$Det(K) = 3.2.5 + 2.3.4 + 2.1.4 - (2.2.4 + 3.3.4 + 2.1.5)$$

$$= 30 + 24 + 8 - (16 + 36 + 10)$$

$$= 62 - 62$$

$$= 0$$

Pertanyaan: apakah metode di atas dapat diterapkan pada matriks 4x4, 5x5 dst?

3.2 Menghitung determinan dengan ekspansi baris atau kolom

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Minor dan kofaktor

Baris ke i kolom

ke j matriks A dihapus,

Minor M_{ii} adalah determinan matriks A setelah dihapus baris ke-i kolom ke-j.

Kofaktor C_{ij} adalah $(-1)^{i+j} M_{ij}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & & a_{ij} & & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{pmatrix}$$

$$M_{ij} = \det \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & & a_{ij} & & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{pmatrix}$$

$$C_{ij} = (-1)^{i+j} M_{ij}$$

Contoh 2: Minor dan kofaktor

Minor M_{ii} adalah determinan matriks A setelah dihapus baris ke-i kolom ke-j. Kofaktor C_{ii} adalah $(-1)^{i+j} M_{ii}$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \quad M_{13} = \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \quad C_{13} = (-1)^{1+3} M_{13}$$

$$M_{21} = \det \begin{pmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{pmatrix}$$
 $C_{21} = (-1)^{2+1} M_{21}$

$$C_{21} = (-1)^{2+1} M_{21}$$

Latihan 2:

Hitunglah semua kofaktor matriks berikut ini:

$$\begin{pmatrix}
3 & 0 & 0 \\
1 & 2 & 0 \\
4 & 4 & 5
\end{pmatrix}$$

$$\begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$

$$C_{11} = \det \begin{pmatrix} 2 & 0 \\ 4 & 5 \end{pmatrix} = 10$$

$$C_{12} = -\det\begin{pmatrix} 1 & 0 \\ 4 & 5 \end{pmatrix} = -5$$

$$C_{13} = \det \begin{pmatrix} 1 & 2 \\ 4 & 4 \end{pmatrix} = -4$$

$$C_{21} = ? 0$$

$$C_{23} = ? -12$$

$$C_{31} = ?$$

$$C_{32} = ? 0$$

$$C_{33} = ? 6$$

Menghitung determinan: ekspansi baris/kolom

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\begin{split} \det(A) &= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} \\ &= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} \\ &= a_{11}(-1)^{1+1}\underbrace{\left(a_{22}a_{33} - a_{23}a_{32}\right)}_{M_{11}} + a_{12}(-1)^{1+2}\underbrace{\left(a_{21}a_{33} - a_{23}a_{31}\right)}_{M_{12}} + a_{13}(-1)^{1+3}\underbrace{\left(a_{21}a_{32} - a_{22}a_{31}\right)}_{M_{13}} \\ &= \det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} \end{split}$$

Ekspansi baris pertama

$$\det(A) = a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23}$$

Ekspansi baris kedua

Determinan dengan ekspansi baris/kolom

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

ekspansi baris pertama

$$= a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23}$$

ekspansi baris kedua

ekspansi baris ketiga

$$= a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31}$$

ekspansi kolom pertama

ekspansi kolom kedua

ekspansi kolom ketiga

Contoh 3:

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 4 & 2 & 0 \\ 4 & 4 & 5 \end{pmatrix}$$

Ada sebanyak 9 (= 3x3) kofaktor, yaitu:

$$C_{11} = 10$$

$$C_{21} = 0$$

$$C_{31} = 0$$

$$C_{12} = -5$$

$$C_{22}$$
= 15

$$C_{32} = 0$$

$$C_{13} = -4$$

$$C_{23} = -12$$

$$C_{33} = 6$$

Determinan A dihitung dengan ekspansi baris ketiga:

$$det(A) = 4x0 + 4x0 + 5x6 = 30$$

Determinan A dengan ekspansi kolom ketiga: det(A) = 5x6 = 30

Menghitung determinan matriks 4x4 dengan kofaktor

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{44} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

 $\det(A) = a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33} + a_{34}C_{34}$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{24} \end{pmatrix} \qquad M_{34} = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{41} & a_{42} & a_{43} \end{pmatrix} \qquad C_{34} = (-1)^{3+4} M_{34}$$

ekspansi

Ada berapa banyak kofaktor? Ada 16 kofaktor
$$C_{ij}$$
, $i, j = 1, 2, 3, 4$
$$\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}$$

$$\det(A) = a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13} + a_{14} C_{14}$$
 ekspansi baris pertama, $i = 1$

8

baris ke tiga

Ada cara menghitung determinan A dengan kofaktor

Definisi determinan matriks dengan ekspansi kofaktor

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{pmatrix}$$

 M_{ij} determinan matriks yang diperoleh dengan menghapus baris ke i kolom ke j matriks A_i entri lain tetap.

$$C_{ij} = (-1)^{i+j} M_{ij}$$

 ${ ilde{\mathcal D}}$ efinisi 3.1.a: Determinan

Determinan matriks A (dengan ekspansi baris ke i, atau ekspansi kolom ke j)

adalah:
$$det(A) = \sum_{j=1}^{n} a_{ij}C_{ij} = \sum_{j=1}^{n} a_{ij}C_{ij}$$

Contoh 4: menghitung determinan matriks 4x4 dengan kofaktor

Hitung determinan matriks 4x4 berikut:

$$A = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & -1 & 3 & 2 \\ 4 & 2 & 1 & 3 \\ 3 & 1 & 1 & -4 \end{pmatrix}$$

• Ekspansi baris 1: $\det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14}$

$$\begin{vmatrix} -1 & 3 & 2 \\ 2 & 1 & 3 \\ 1 & 1 & -4 \end{vmatrix} = (-1).(-4-3)-3.(-8-3)+2.(2-1)=42 \qquad C_{13} = \begin{vmatrix} 1 & -1 & 2 \\ 4 & 2 & 3 \\ 3 & 1 & -4 \end{vmatrix} = -40$$

$$\begin{vmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 3 & 1 & -4 \end{vmatrix} = -(1.(-4-3)-3.(-16-9)+2.(4-3))=-70 \qquad C_{14} = -\begin{vmatrix} 1 & -1 & 3 \\ 4 & 2 & 1 \\ 3 & 1 & -4 \end{vmatrix} = 4$$

$$\det(A) = 1.42+(-1).-70+1.-40+(-1).4=68$$

3.3. Determinan: dengan kombinatorial

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Definisi determinan secara kombinatorik

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Hasil kali elementer bertanda negatif

$$\underbrace{a_{11}a_{22}a_{33}}_{} - \underbrace{a_{11}a_{23}a_{32}}_{} + \underbrace{a_{12}a_{21}a_{33}}_{} - \underbrace{a_{12}a_{23}a_{31}}_{} + \underbrace{a_{13}a_{21}a_{32}}_{} - \underbrace{a_{13}a_{22}a_{31}}_{}$$

hasil kali elementer

Hasil kali elementer dari matriks nxn adalah hasil kali n entri masing-masing dari kolom dan baris berbeda (tidak ada yang berasal dari kolom sama atau baris sama).

 ${\mathscr D}$ efinisi 3.1.b: Determinan

Determinan matriks A adalah jumlahan **semua** hasil kali elementer **bertanda** dari A.

Menentukan hasil kali elementer

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{18} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

a₃₃

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Terdapat 6 hasil kali elementer

Permutasi

Permutasi *n* bilangan 1, 2, 3, ..., *n* adalah susunan terdiri dari *n* bilangan tersebut tanpa pengulangan

Contoh:

Permutasi dari 1, 2 adalah

1, 2

2, 1

Ada 2 permutasi

Permutasi dari 1, 2, 3 adalah

1, 2, 3

1, 3, 2

2, 1, 3

2, 3, 1

3, 1, 2

3, 2, 1

Ada 6 (= 3 x 2 x 1) permutasi

Permutasi

Permutasi dari 1, 2, 3, 4 adalah

Ada 24 (= $4x3 \times 2 \times 1$) permutasi

Latihan

Tentukan berikut ini hasil kali elementer atau bukan

1.
$$a_{11} a_{23} a_{31}$$
BUKAN

2.
$$a_{12}$$
 a_{23}

BUKAN

3.
$$a_{12} a_{23} a_{31} a_{33}$$

BUKAN

YA

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Ada dua entri berasal dari kolom yang sama

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Tidak ada entri dari baris ke 3 atau kolom pertama

Hasil kali elementer matriks *nxn* terdiri atas *n* entri

Menentukan jenis permutasi

Inversi terjadi jika bilangan lebih besar mendahului lebih kecil

Genap atau ganjilnya permutasi didefinisikan dengan genap atau ganjilnya jumlah inversi

Menentukan tanda hasil kali elementer bertanda

Determinan matriks 3x3

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

3 mendahului 2 dan 1: 2 inversi 2 mendahului 1: 1 inversi Jumlah: 3 inversi

Perkalian Elementer	Permutasi dari kolom	Jumlah inversi dari 1,2,3	Jenis Permutasi	Tanda
a ₁₁ a ₂₂ a ₃₃	1,2,3	0	Genap	+
a ₁₁ a ₂₃ a ₃₂	1,3,2	1	Ganjil	-
a ₁₂ a ₂₁ a ₃₃	2,1,3	1	Ganjil	-
a ₁₂ a ₂₃ a ₃₁	2,3,1	2	Genap	+
a ₁₃ a ₂₁ a ₃₂	3,1,2	2	Genap	+
a ₁₃ a ₂₂ a ₃₁	3,2,1	3	Ganjil	-

$$\det(A) = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} - a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

Definisi determinan secara kombinatorik

 \mathcal{D} efinisi 3.1.b: Determinan

Determinan matriks A adalah **jumlahan semua hasil kali elementer bertanda** dari A. Hasil kali elementer dari matriks nxn adalah hasil kali n entri masing-masing dari kolom dan baris yang berbeda.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ a_{i1} & a_{i2} & & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{pmatrix}$$

 $\det(A) = \sum a_{1j_1} a_{1j_2} a_{1j_3} \cdots a_{nj_n}$ untuk semua permutasi $j_1, j_2, j_3, ... j_n$

Contoh: determinan matriks 2x2

$$A_2 = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$$

Hasil kali elementer	Kombinasi dari indeks kolom	Jumlah transposisi dari 1,2	Jenis permutasi	Tanda
a ₁₁ .a ₂₂ = 1.2 = 2	1, 2	0	genap	+
$a_{12}.a_{21} = 3.3 = 9$	2, 1	1	ganjil	-

Determinan matriks 3x3

$$A = \begin{vmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 4 & 4 & 5 \end{vmatrix}$$

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 4 & 4 & 5 \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Perkalian Elementer	Kombinasi dari Kolom	Jumlah transposi si dari 1,2,3	Jenis Permutasi	Tanda
a ₁₁ a ₂₂ a ₃₃ =3.2.5 = 30	1,2,3	0	Genap	+
$a_{11}a_{23}a_{32} = 3.0.4 = 0$	1,3,2	1	Ganjil	-
$a_{12}a_{21}a_{33} = 0.1.5 = 0$	2,1,3	1	Ganjil	-
$a_{12}a_{23}a_{31} = 0.0.4 = 0$	2,3,1	2	Genap	+
$a_{13}a_{21}a_{32} = 0.1.4 = 0$	3,1,2	2	Genap	+
$a_{13}a_{22}a_{31} = 0.2.4 = 0$	3,2,1	1	Ganjil	-

$$\det(A) = (30)-(0)-(0)+(0)+(0)-(0) = 30$$

Determinan matriks 4x4

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

24 = 4x3x2x1 = 4!

Ada berapa hasil kali elementer matriks A 4x4? Jawab: 24

Tentukan salah satu hasil kali elementer dan tandanya.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

Permutasi: 2314

Jumlah inversi: 1 + 1 + 0 + 0 = 2

Jenis permutasi: genap

Hasil kali elementer bertanda: (+) a₁₂ a₂₃ a₃₁ a₄₄

determinan matriks 4x4

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 4 & 4 & 5 & 0 \\ 1 & 4 & 5 & 1 \end{pmatrix}$$

Perkalian Elementer	Kombinasi dari Kolom	Jumlah inversi	Jenis Permutasi	Tanda Permutasi
$a_{11} a_{22} a_{33} a_{44} = 3.2.5.1 = 30$	1,2,3,4	0	genap	+
$a_{11} a_{22} a_{34} a_{43} = 3.2.0.1 = 0$	1,2,4,3	1	Ganjil	-
$a_{11} a_{23} a_{32} a_{44} = 3.0.4.1 = 0$	1,3,2,4	1	Ganjil	-
$a_{11} a_{23} a_{34} a_{42} = 3.0.0.4 = 0$	1,3,4,2	2	genap	+
$a_{11} a_{24} a_{32} a_{43} = 3.0.4.5 = 0$	1,4,2,3	2	genap	+
$a_{11} a_{24} a_{33} a_{42} = 3.0.5.4 = 0$	1,4,3,2	1	Ganjil	-
$a_{12} a_{21} a_{33} a_{44} = 0 = 0$	2,1,3,4	1	Ganjil	-
a ₁₂ a ₂₁ a ₃₄ a ₄₃ = 0 = 0	2,1,4,3	2	genap	+
a ₁₂ a ₂₃ a ₃₁ a ₄₄ = 0 = 0	2,3,1,4	2	genap	+
$a_{12} a_{23} a_{34} a_{41} = 0 = 0$	2,3,4,1	3	Ganjil	-
$a_{12} a_{24} a_{31} a_{43} = 0 = 0$	2,4,1,3	2	genap	+
$a_{12} a_{24} a_{33} a_{41} = 0 = 0$	2,4,3,1	3	Ganjil	-

Determinan kombinatorik untuk matriks 4x4 (lanjutan)

Perkalian Elementer Bertanda	Kombinasi dari Kolom	Jumlah transposisi dari 1,2,3,4	Jenis Permutasi	Tanda
a ₁₃ . a ₂₁ . a ₃₂ . a ₄₄ = 0 = 0	3,1,2,4	2	genap	+
a ₁₃ . a ₂₁ . a ₃₄ . a ₄₂ = 0 = 0	3,1,4,2	3	Ganjil	-
a ₁₃ . a ₂₂ . a ₃₁ . a ₄₄ = 0 = 0	3,2,1,4	1	Ganjil	-
a ₁₃ . a ₂₂ . a ₃₄ . a ₄₁ = 0 = 0	3,2,4,1	2	genap	+
a_{13} . a_{24} . a_{31} . $a_{42} = 0$ = 0	3,4,1,2	2	genap	+
a_{13} . a_{24} . a_{32} . $a_{41} = 0$ = 0	3,4,2,1	3	Ganjil	-
a ₁₄ . a ₂₁ . a ₃₂ . a ₄₃ = 1.1.4.5 = 20	4,1,2,3	3	Ganjil	-
a_{14} . a_{21} . a_{33} . $a_{42} = 1.1.5.4 = 20$	4,1,3,2	2	genap	+
a_{14} . a_{22} . a_{31} . $a_{43} = 1.2.4.5 = 40$	4,2,1,3	2	genap	+
a_{14} . a_{22} . a_{33} . $a_{41} = 1.2.5.1 = 10$	4,2,3,1	1	Ganjil	-
a_{14} . a_{23} . a_{31} . $a_{42} = 1.0.4.4 = 0$	4,3,1,2	3	Ganjil	-
a_{14} . a_{23} . a_{32} . $a_{41} = 1.0.4.1 = 0$	4,3,2,1	2	genap	+

$$\det(A) = +(30)-20+20+40-10=60$$

Kesalahan yang sering dilakukan

$$\det \begin{bmatrix} 3 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 4 & 4 & 5 & 0 \\ 1 & 4 & 5 & 1 \end{bmatrix} = 60$$

Perhitungan det matriks 4x4 dengan Aturan Sarrus

Hanya melibatkan 8 perkalian elementer, seharusnya 24

Dengan aturan Sarrus: $a_{14} a_{21} a_{32} a_{43} = 1.1.4.5 = 20$ (bertanda +)

a₁₄ a₂₁ a₃₂ a₄₃

Seharusnya bertanda negatif, karena 4123 adalah permutasi ganjil

$$A_{4} \begin{bmatrix} 3 & 0 & 0 & 1 & 3 & 0 & 0 \\ 1 & 2 & 0 & 0 & 1 & 2 & 0 \\ 4 & 4 & 5 & 0 & 4 & 4 & 5 \\ 1 & 4 & 5 & 1 & 1 & 4 & 5 \end{bmatrix}$$

Latihan

- Sebutkan dua jenis kesalahan menghitung determinan dengan membuat 8 garis diagonal (Aturan Sarrus)
 - Hanya melibakan 8 hasil kali elementer (padahal seharusnya 24)
 - (2) Tanda hasil kali elementer ada yang salah
- Berapa hasil kali elementer matriks 5x5? Jika dengan Aturan Sarrus, berapa hasil kali diagonalnya?

Matriks 5x5 memiliki 5! (= 120) hasil kali elementer.

Dengan membuat diagonal, hanya diperoleh 10 hasil kali elementer

Aturan Sarrus hanya bisa diterapkan untuk matriks ukuran 2x2 dan 3x3.

3.4 Determinan matriksmatriks khusus

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Latihan 3: menghitung determinan matriks sederhana

- Matriks diagonal
- Matriks segitiga
- Matriks dengan baris nol
- Matriks dengan kolom nol
- Matriks dengan dua baris sama

$$D = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 8 \end{pmatrix} \qquad \det(D) = 504$$

$$S = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & -4 \\ 0 & 0 & 5 \end{pmatrix} \qquad \det(S) = 10$$

$$B = \begin{pmatrix} 1 & 6 & 7 \\ -9 & 7 & 2 \\ 0 & 0 & 0 \end{pmatrix} \qquad \det(B) = 0$$

$$K = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 1 & -4 \\ 0 & -9 & 1 \end{pmatrix} \quad \det(K) = 0$$

$$M = \begin{pmatrix} 4 & 1 & -4 \\ 4 & 1 & -4 \\ 0 & -9 & 1 \end{pmatrix} \quad \det(M) = 0$$

Determinan matriks sederhana

Matriks diagonal

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & & a_{ij} & & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{pmatrix}$$

$$\det(A) = a_{11}a_{22}a_{33}...a_{nn}$$

Matriks segitiga

$$B = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & & a_{ij} & & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{pmatrix}$$

$$\det(B) = a_{11}a_{22}a_{33}...a_{nn}$$

Determinan matriks segitiga sama dengan hasil kali entri diagonal utama.

Determinan matriks dengan baris/kolom nol

Matriks dengan baris / kolom nol

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & & a_{ij} & & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} a_{11} & 0 & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & 0 & & a_{ij} & & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & 0 & \cdots & a_{ni} & \cdots & a_{nn} \end{pmatrix}$$

$$det(A) = 0$$

Setiap hasil kali elementer pasti memuat entri dari baris terakhir (yaitu 0). Jadi semua hasil kali elementer adalah nol.

$$det(B) = 0$$

Pertanyaan: apakah matriks yang tidak mempunyai inverse determinannya nol?

Latihan 4

Hitunglah dengan cepat nilai determinan matriks berikut ini:

$$D = \begin{pmatrix} -19 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 18 \end{pmatrix} \qquad \det(D) = 0$$

$$det(D) = 0$$

$$K = \begin{pmatrix} 14 & 98 & 0 & 42 \\ 15 & 11 & 0 & 54 \\ 70 & 42 & 0 & 31 \\ 82 & 74 & 0 & 66 \end{pmatrix} \frac{\det(K)}{\det(K)} = 0$$

$$B = \begin{pmatrix} 12 & 27 & 56 & 11 \\ 13 & 1 & 23 & 90 \\ 11 & 35 & 11 & 41 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 $det(B) = 0$

$$det(B) = 0$$

$$M = \begin{pmatrix} 41 & 10 & -14 \\ 41 & 10 & -14 \\ 0 & -9 & 1 \end{pmatrix} \quad \det(M) = 0$$

Bahan diskusi:

- 1. Jelaskan mengapa determinan matriks dengan dua kolom sama (atau dua baris sama) adalah nol.
- 2. Bagaimana determinan matriks yang baris pertamanya merupakan dua kali baris kedua?
- 3. Semua teorema tentang determinan, jika semua kata baris diganti dengan kolom maka teorema tetap berlaku. Jelaskan.

Postinglah jawabannmu pada forum diskusi. Jangan lupa mencantumkan sumber bacaan yang dirujuk.

3.5 Determinan: dengan operasi baris elementer

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Pengaruh 'tukar baris' terhadap determinan

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} A' = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$$
$$\det(A) = -2 \qquad \det(A') = 2$$

$$B = \begin{pmatrix} 1 & -4 & 2 \\ 2 & 0 & 1 \\ 3 & 3 & 6 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} B' = \begin{pmatrix} 3 & 3 & 6 \\ 2 & 0 & 1 \\ 1 & -4 & 2 \end{pmatrix}$$
$$\det(B) = 45 \qquad \det(B') = -45$$

 menukar dua baris , maka tanda dari setiap hasil kali elementer bertanda berubah, sehingga determinannya (-1) kali determinan semula.

 $X \rightarrow X'$ dengan tukar baris

$$det(X') = -det(X)$$

Pengaruh 'perkalian baris dengan skalar'terhadap nilai determinan

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \xrightarrow{R_2 \leftarrow 10R_2} A' = \begin{pmatrix} 1 & 3 \\ 20 & 40 \end{pmatrix}$$
$$\det(A) = -2 \qquad \det(A') = -20$$

$$B = \begin{pmatrix} 1 & -4 & 2 \\ 2 & 0 & 1 \\ 3 & 3 & 6 \end{pmatrix} \xrightarrow{R_3 \leftarrow \frac{1}{3}R_3} B' = \begin{pmatrix} 1 & -4 & 2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
$$\det(B) = 45 \qquad \det(B') = 15 = \frac{1}{3}\det(B)$$

• satu baris dikalikan dengan konstanta $k \rightarrow$ setiap hasil kali elementer bertandanya dikalikan $k \rightarrow$ determinannya adalah k kali determinan matriks semula.

 $X \rightarrow X'$ dengan mengalikan baris dengan k

det(X') = k.det(X)

Pengaruh 'jumlahan baris dengan kelipatan baris lain' terhadap nilai determinan

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + 2R_1} A' = \begin{pmatrix} 1 & 3 \\ 4 & 10 \end{pmatrix}$$
$$\det(A) = -2 \qquad \det(A') = -2$$

$$B = \begin{pmatrix} 1 & -4 & 2 \\ 2 & 0 & 1 \\ 3 & 3 & 6 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + \frac{1}{3}R_3} B' = \begin{pmatrix} 1 & -4 & 2 \\ 3 & 1 & 3 \\ 3 & 3 & 6 \end{pmatrix}$$
$$\det(B) = 45 \qquad \det(B') = 45 = \det(B)$$

Penjumlahan baris dengan kelipatan baris yang lain tidak mengubah hasil kali elementer bertanda, maka nilai determinannya tidak berubah.

Jika $X \rightarrow X'$ dengan menjumlahkan baris dengan kelipatan baris lain maka

$$det(X') = det(X)$$

Pengaruh operasi baris elementer terhadap nilai determinan

Kesimpulan:

Jika X' diperoleh dari matriks X dengan menerapkan satu kali operasi baris elementer, maka nilai determinan X':

Operasi baris elementer yang diterapkan	Pengaruh pada nilai determinan
$R_i \leftrightarrow R_j$	$\det(X') = -1.\det(X)$
$R_i \leftarrow kR_i, k \neq 0$	$\det(X') = k.\det(X)$
$R_i \leftarrow k.R_i + l.R_j, k, l \neq 0$	$\det(X') = \det(X)$

Menghitung determinan dengan operasi baris elementer

A mempunyai inverse

Bentuk ebt A

Α

det(A)

r kali tukar baris

det(I) = 1

s kali perkalian baris dengan skalar $(k_1, k_2, k_3, ..., k_s)$,

t kali jumlahkan baris dengan kelipatan baris lain

$$\det(I) = (-1)^r k_1 k_2 k_3 \cdots k_s \det(A)$$

1 = (-1)^r k_1 k_2 k_3 \cdots k_s \det(A)

$$\det(A) = \frac{(-1)^r}{(k_1 k_2 k_3 \cdots k_s)}$$

A mempunyai inverse maka $det(A) \neq 0$

Menghitung determinan dengan operasi baris elementer

A TIDAK mempunyai inverse

Bentuk ebt A Mempunyai baris nol

det(A') = 0

A

det(A)

r kali tukar baris

s kali perkalian baris dengan skalar $(k_1, k_2, k_3, ..., k_s)$,

t kali jumlahkan baris dengan kelipatan baris lain

$$\det(A') = (-1)^r k_1 k_2 k_3 \cdots k_s \det(A)$$
$$0 = (-1)^r k_1 k_2 k_3 \cdots k_s \det(A)$$

$$det(A) = 0$$

A TIDAK mempunyai inverse maka det(A) = 0

Contoh 5: menghitung determinan dengan operasi baris elementer

$$M = \begin{pmatrix} 0 & 4 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow \frac{1}{4}R_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

B direduksi menjadi matriks identitas dengan:

- ✓ 2 kali tukar baris,
- √ sekali mengalikan dengan konstanta ¼

$$\det(M) = (-1)^2 \frac{1}{(1/4)} = 1x4 = 4$$

Selain untuk menghitung determinan matriks, manfaat lain operasi baris elementer:

- a. menentukan invers matriks
- b. menentukan penyelesaian spl

Determinan matriks elementer

Berikan E_1 , E_2 , E_3 , hitung determinannya

Determinan matriks elementer

Diberikan A_1 , A_2 , A_3 , hitung determinannya.

$$A_{1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \det(A_{1}) = 1$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{1} \leftarrow R_{1} + R_{2}$$

$$A_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \det(A_{2}) = \frac{1}{2}$$

$$\det(I) = 1$$

$$A_{3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \det(A_{3}) = -1$$

Determinan matriks EA

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix} \qquad \qquad
\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

$$\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 2 & 0 \\
 0 & 0 & 3
 \end{bmatrix}$$

$$\det(E) = -1 \qquad \det(A) = 6$$

$$det(A) = 6$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$det(E) = 10$$

$$\det(A) = 6$$

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\det(E) = 1$$

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \qquad \qquad
\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

$$\det(A) = 6$$

$$\begin{pmatrix}
0 & 0 & 3 \\
0 & 2 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\det(EA) = -6 = \det(E) \cdot \det(A)$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 20 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

$$(0 \ 0 \ 3)$$

$$\det(EA) = 60 = \det(E).\det(A)$$

$$\begin{pmatrix}
1 & 0 & 3 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix}$$

$$det(EA) = 6 = det(E) \cdot det(A)$$

Sifat-sifat determinan

1.
$$det(AB) = det(A) det(B)$$

2.
$$det(A + B) \neq det(A) + det(B)$$

3.
$$det(A^T) = det(A)$$

4.
$$det(A) = 1/det(A^{-1})$$

5.
$$det(kA) = k^n det(A)$$
 (dengan A adalah matriks $n \times n$)

3.6 Sifat-sifat determinan

Sifat determinan

1. Jika B mempunyai baris nol, maka det(B) = 0 Bukti:

Jika det(*B*) diperoleh dengan metode ekspansi baris nol, maka:

$$\det(B) = b_{i1}C_{i1} + b_{i2}C_{i2} + \dots + b_{in}C_{in}$$
$$\det(B) = 0.C_{i1} + 0.C_{i2} + \dots + 0.C_{in}$$
$$\det(B) = 0$$

- 2. Jika B diperoleh dari A dengan mengalikan satu baris dengan k, maka det(B) = k det(A).
- 3. Jika B diperoleh dari A dengan menukar dua baris, maka det(B) = -1 det(A).

Sifat determinan

- 4. Jika B diperoleh dari A dengan menjumlahkan salah satu baris A dengan kelipatan baris yang lain, maka det(B) = det(A).
- 5. Jika B mempunyai dua baris identik maka det(B) = 0

Bukti:

B mempunyai dua baris identik maka $R_i = k.R_j$.

Bila dilakukan operasi baris elementer: $R_i \leftarrow R_i - kR_j$ pada B sehingga diperoleh matriks B' maka matriks B' akan memiliki baris nol.

Berdasarkan sifat (4) dan (1), det(B') = det(B) = 0

Sifat determinan

6.
$$det(A^T) = det(A)$$

Bukti:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
Dengan metode ekspansi baris ke - *i*, diperoleh: $\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{nn}$

Dengan metode ekspansi baris ke -
$$i$$
,
diperoleh: $det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$

dihitung dengan ekspansi kolom ke-i,
diperoleh:
$$\det(A^T) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$$

$$\mathbf{J} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

7.
$$det(A^{-1}) = 1/det(A)$$

$$\therefore \det(A) = \det(A^{\tau})$$

Bukti:
$$A^{-1}A = I$$

 $\det(A^{-1}A) = \det(I)$
 $\det(A^{-1})\det(A) = 1$, karena A mempunyai inverse maka $\det(A) \neq 0$
 $\det(A^{-1}) = \frac{1}{\det(A)}$

Refleksi

- 1. Tuliskan 5 hal baru yang Anda pelajari di modul ini.
- 2. Berikan contoh matriks yang mudah ditentukan deteminannya.
- 3. Bagaimana dugaanmu terhadap pernyataan ini: 'informasi tentang determinan dapat digunakan untuk menyeesaikan spl'

Anda telah memahami cara menentukan determinan dan sifat-sifat determinan.

Lanjutkan dengan mempelajari aplikasi determinan untuk menyelesaikan spl.

