

Determinants of Credit Ratings of State-Owned-Enterprises

8,276 - Foundations in Data Science and Machine Learning

Very Short Introduction: "What is the current weight of S-O-Es in today's economy?"

Global Presence	In 2023, SOEs accounted for approximately 12% of global market capitalization.
Revenue and Assets	Between 2000 and 2023, the number of SOEs among the largest 500 enterprises by revenue worldwide increased from 34 to 126.
Regional Variations	In the OECD area , the market capitalization of listed firms with more than 25% public sector ownership is just 2% . In contrast, this figure is 16% in Latin America and over 40% in some markets .
Developing Countries	In developing countries, revenues from businesses with at least 10% state ownership are equivalent to 17% of GDP on average.
China's SOEs	China's SOEs are particularly prominent, accounting for over 60% of the country's market capitalization and generating about 23-28% of its GDP.

Agenda: we want to check whether state-ownership influences the rating, depending on the localization of the state or the industry.

Getting the data: large DataFrames from Bloomberg® containing 35 columns of data for the 3500 rated firms across the 3 main credit rating agencies.

Main assumption behind the data clustering across the 3 agencies: the rating correlating between the 3 is high and they all have the same number of notches (22).

In 90% of the cases where Moody's, S&P, and Fitch all rated the same bond, Fitch gave the same letter rating as at least one of the other agencies.

Mean rating differences: Fitch's ratings were, on average, 0.3 notches higher than Moody's and S&P in the 3-agency sample; in larger samples, the difference can reach 0.74 notches vs Moody's and 0.56 vs S&P.

Jewell, J. J., & Livingston, M. (1999). A Comparison of Bond Ratings from Moody's, S&P, and Fitch IBCA.

A Comparison of Bond Ratings from Moody's S&P and Fitch IBCA

BY JEFF JEWELL AND MILES LIVINGSTON

Previous research has found that the bond market values the ratings of Moody's and Standard & Poor's. This paper extends earlier research by comparing the ratings of Moody's, Standard and Poor's, and Fitch IBCA. The authors examine a very large database with monthly observations of bonds and bond ratings over a five-year time period. The analysis focuses on comparing rating levels, rating changes, and the impact of ratings on bond yields. The results show that firms with publicly available Fitch IBCA ratings have higher ratings from Moody's and S&P than firms without Fitch IBCA ratings. The typical firm releasing a Fitch IBCA rating has a lower yield (controlling for Moody's and S&P rating), a more stable rating, and is more likely to receive an upgrade. For split-rated bonds (Moody's vs. S&P), Fitch IBCA serves as a tiebreaker. This evidence is consistent with the bond market valuing the ratings of all three raters—Moody's, Standard & Poor's, and Fitch IBCA.

12–14% of firms had ratings **one notch higher** from S&P.

1–2% had **two or more** notches higher

Caridad, J. M., Arencibia, O., & Seda, P. (2020). Do Moody's and S&P Firm's Ratings Differ?

Data Management

Modeling (ML)

In addition, we solve the problem by regrouping the ratings in 6 categories such that the likelihood of companies being in different groups among credit raters falls drastically.

Grade	Moody's	Fitch	S&P
Investment grade: Prime	Aaa	AAA	AAA
High Grade	Aa1	AA+	AA+
	Aa2	AA	AA
	Aa3	AA-	AA-
Upper Medium Grade	A1	A+	A+
	A2	Α	Α
	A3	Α-	Α-
	Baa1	BBB+	BBB+
	Baa2	BBB	BBB
Lower Medium Grade	Baa3 (India)*	BBB- (India)*	BBB- (India)*
Non-Investment Grade: Speculative	Ba1	BB+	BB+
	Ba2	BB	BB
	Ba3	BB-	BB-
Highly Speculative	B1	B+	B+
	B2	В	В
	B3	B-	B-
Substantial Risk	Caa1	CCC+	CCC+
	Caa2	CCC	ccc
	— Caas	-000-	-CCC
Extremely speculative	Ca	CC	CC
	С	c	С

Data Management

Modeling (ML)

Extracting the SOE from the large sample using 47 batches of 50 companies sent to ChatGPT client through API key. Cost: ± \$2, we lose 5 companies ► 2317

Using OpenAI Classifying "Yes" or "No", splitting in 47 batches Results: 10.16% of the companies are identified as SOE

• Critic: Quite precise, also catches companies with state minority stakes

Where are the SOE's located?

Extracting the 236 SOEs from the rest of the companies

Observation:
many SOE's are
located in China, and
the majority of them are
in the financial sector,
this could result in a
model calibrated on the
non-SOE firms (which
are less skewed
towards financials) and
reduce the precision
because the financial
ratios of banks are
highly influenced by
regulations

Using Keywords

"holding", "state", "government" ...

- Results: 14.99% of the companies are identified as SOE
- Critic: Not precise, also many private companies are "holdings"

What are the SOE's sectors?

Data Management

Modeling (ML)

Model: Logistic Regression with k-Fold Cross-Validation, why did we choose this model?

Model Presentation

Logistic regression is a method that helps us predict categories (like credit ratings) based on input data. It looks at patterns in past data and estimates the probability that something belongs to each possible category.

Linear regression predicts a continuous number (like income or price), while Logistic regression predicts a category (like credit grade A, B, or C) by estimating probabilities for each option.

Objective: Classify **credit ratings** of **non-SOE** (state-independent) firms using **Logistic Regression**.

Code Explanation

We used LogisticRegressionCV, a tool that automatically tests the model's performance using internal checks (cross-validation).

Specifically, we applied 5-fold cross-validation, which means that the training data is split into 5 parts. The model is trained on 4 parts and tested on the 5th — and this process is repeated 5 times.

The solver we used, "newton-cg", supports: Multi-class predictions (since we have multiple rating categories).

Comparing two different calibrations of the model

Results with no Penalty

C_value_logit = 1e20

We tested it on a random "virgin" sample of nongovernment stake

Then we tested it on companies with government stake

AUC: 64.7098 % Acc: 38.5593 %

AUC: 79.4939 %

Acc: 52.1186 %

Results with penalty

 $C_{value} = [0.01, 0.1, 1, 10, 100]$

We tested it on a random "virgin" sample of nongovernment stake

Then we tested it on companies with government stake

AUC: 60.8330 % Acc: 38.1356 %

AUC: 80.5986 %

Acc: 49.1525 %

Logistic Regression - X_TEST_1 (Non-SOE): Centralizing effect, many companies are categorized in the Lower Medium Grade

Logistic Regression - X_TEST_2 (SOE): The model is too negative, which confirms our query, state support seems positive

Confusion Matrix Logistic Regression: in the SOE a lot of mistakes were from C to B. Without Penalty

Confusion Matrix Logistic Regression: in the SOE a lot of mistakes were from C to B. With Penalty

Model Presentation

Why it might be better?

Random forests are built from decision trees:

"Trees have one aspect that prevents them from being the ideal tool for predictive learning, namely accuracy" (The Elements of Statistical Learning)

Random Forests are **not flexible** when it comes to classifying new samples because decision rules are hard-coded during training meaning they only work well when new data looks similar to the training data. It **struggles to adapt** to new, unseen patterns.

Credit ratings are based on **rule-like decisions**Rating agencies use structured scorecards: if leverage is high, downgrade; if interest coverage is strong, upgrade. **Random Forests are well suited** to replicate this rule-based logic.

Nonlinear interactions matter in credit: A company with high debt but massive cash flow is very different from a company with the same debt and no cash. **Random Forests naturally handle nonlinear combinations** of variables without you having to specify interactions manually.

Data Management

Modeling (ML)

Random Forest: Results

Results

We tested it on a random "virgin" sample of nongovernment stake

AUC: 88.25% Acc: 57.20%

Then we tested it on companies with government stake

AUC: 72.28% Acc: 43.22%

Description of the code

We used a **pipeline**, meaning all steps (data preparation + model) were packaged together for cleaner, repeatable analysis.

We used **class_weight='balanced'**, which automatically adjusts the importance of each class based on how frequent it is in the training data. This useful because our rating classes were not evenly distributed.

It tells the model:

 "Don't treat all mistakes equally. If you misclassify a rare class like CCC, that should count as a bigger mistake than misclassifying a common class like A."

Number of trees: (n_estimators) 2,000

• Each tree is trained on a random subset of the training data (bagging).

Descriptive Analysis

· Considers a random subset of features at each decision split.

Data Management Modeling (ML)

Confusion Matrix Random Forest: here the mistakes are more balanced.

Model - Random Forest: which countries are uplifting the rating and which countries have a downgrading effect?

Data Management

Modeling (ML)

Model - Random Forest: which industries are uplifting the rating and which industries have a downgrading effect?

Modeling (ML)

Descriptive Analysis

Data Management

FLASHBACK:

Are financials less important when determining the rating of State-Owned-Enterprises?

I. Data Retrieval

- Bloomberg <EQS> we aim for 3000 companies (already have +- 2500 with only S&P) and 20 financials as well as the text of the ultimate parent, country and industry.
- ii) Cleaning data duplicates between Moody's and S&P, outliers (in terms of financials)
- iii) Text analysis (using GPT) identify S-O-Es extract the sample (say 300 companies and the same number randomly of private companies

II. Data Visualization II. Data Visualization

- i) Government related companies' distribution per country
- ii) Government related companies' distribution per company
- iii) Results where the companies have been assigned compared to the real category for government companies
- iv) Results where the companies have been assigned compared to the real category – for private companies
- => Ideas for the 4 plots

III. Data Modelling

- i) Logistic regression (multinomial (softmax) logistic regression). solver='lbfgs', 'saga' - K-th sample splitting
- ii) Results: confusion matrix
- iii) K-Means Clustering
- iv) Conclusions: Are S-O-E treated similarly as private enterprises? Are they benefitting or not from the state and then **groupby.** (the mistakes in + or -) Country and Industry. Only plotting the errors (+ or -)

Thank you!

Alessandro Fosselard Antoine Ameye

May 2025

