Титульный лист материалов по дисциплине

ДИСЦИПЛИНА Структуры и алгоритмы обработки данных (ч. 2) (полное наименование дисциплины без сокращений) институт ит Математического обеспечения и стандартизации КАФЕДРА информационных технологий полное наименование кафедры) ВИД УЧЕБНОГО Практические работы МАТЕРИА ПА (в соответствии с пп.1-11) МАТЕРИАЛА ПРЕПОДАВАТЕЛЬ Муравьёва Екатерина Андреевна (фамилия, имя, отчество)

СЕМЕСТР <u>3 семестр, 2023-2024 уч. год</u> (указать семестр обучения, учебный год)

Практическая работа №1

«Поразрядные операции. Сортировка числового файла с помощью битового массива»

Цель работы: освоить приёмы работы с битовым представлением беззнаковых целых чисел, реализовать эффективный алгоритм сортировки на основе битового массива.

1. Битовое представление целых чисел и множеств чисел. Битовые операции в С++.

В языке программирования С++ предусмотрено несколько целочисленных типов данных: bool (он же логический), char (он же символьный), short int (чаще просто short), long int (он же int или long) и long long int (или просто long long). Числа этих типов занимают в памяти компьютера по 1, 2, 4 и 8 байт соответственно (см. табл. 1).

Тип данных	Диапазон значений	Размер (байт)
bool	true, false (1, 0)	1
signed char	-128127	1
unsigned char	0255	1
signed short int	-3276832767	2
unsigned short int	065535	2
signed long int	-2 147 483 6482 147 483 647	4
unsigned long int	04 294 967 295	4
signed long long int	-9 223 372 036 854 775 808	8
	9 223 372 036 854 775 807	
unsigned long long int	018 446 744 073 709 551 615	8
float	3.4e-383.4e+38	3
double	1.7e-3081.7e+308	8
long double	3.4e-49323.4e+4932	10

Таблица 1. Диапазоны значений числовых типов данных в языке С++.

Значения всех этих типов бывают знаковые (signed) и беззнаковые (unsigned). В первом случае диапазон допустимых значений каждого из названных типов включает в себя как положительные, так и отрицательные числа. Во втором случае — только неотрицательные.

Разница диапазонов является следствием способа хранения целых чисел в памяти ЭВМ современных архитектур. Конечно, целое число в памяти хранится как битовая последовательность той длины, которая предусмотрена тем или иным типом.

В беззнаковом типе все двоичные разряды (биты) отведены под абсолютное значение (модуль) числа (рис. 1).

Рис. 1. Беззнаковое двухбайтовое целое число в памяти ЭВМ.

В числе со знаком под модуль отведены все двоичные разряды, кроме старшего (рис. 2). Одно из значений старшего бита интерпретируется как знак «плюс», противоположное – как «минус». Т.к. разрядов под модуль числа на 1 меньше, то и наибольшее допустимое значение в типе со знаком вдвое меньше такового в беззнаковом типе.

Рис. 2. Двухбайтовое целое число со знаком в памяти ЭВМ.

При работе с битовыми представлениями чисел можно использовать *битовые операции*, определённые в языке C++ (см. табл. 2).

Таблица 2. Битовые операции в С++.

~	Инверсия (0 заменяет на	x=0x0F;
	1, а 1 на 0)	~X;
	, ,	результат 0хF0
x< <n< td=""><td>Сдвиг влево двоичного</td><td>unsigned int $x=7$; $x=x<<2$;</td></n<>	Сдвиг влево двоичного	unsigned int $x=7$; $x=x<<2$;
	кода (умножение на 2 ⁿ)	результат 0х000001С
x>>n	Сдвиг вправо двоичного	unsigned int x=28; x=x>>2;
	кода (деление на 2 ⁿ)	результат =0х00000007
x & maska	Поразрядное И	Правило выполнения операции
	(применяется для	111
	записи в указанный	<u>& 100</u>
	разряд 0)	= 100
		Пример. Установить в двоичном коде
		переменной х только 9-ый справа бит в 0
		Способы определения маски и решение
		//Способ 1. Маска создана явно
		unsigned short int x1=0xAEFF;
		unsigned short int maska=0xFDFF;
		x1=x1 & maska;
		//Способ 2. Маска формируется
		инициализируется 1
		maska=1;
		x1=0xFFFF
		x1=x1 & (~ (maska<<9));
		//Способ 3. Маска создается из 1 в
		выражении
		x1=0xFFFF
		x1=x1 & (~ (1<<9));
		или
		x=x & (~ (1<<9));

X maska	Поразрядное ИЛИ	Правило выполнения операции
	(применяется для	111
	записи в указанный	<u> 100</u>
	разряд 1)	111
		Пример. Установить в двоичном коде
		переменной х 9-ый справа бит в 1.
		Решение.
		unsigned short int x=0xACFF;
		unsigned short int maska=0x0200;
		x=x maska результат 0хАЕFF;
		maska=1;
		x=x ((maska<<9));
		или
		x=x ((1<<9));
X ^ maska	Исключающее ИЛИ для	Правило выполнения операции
	поразрядных операций.	1111
	Используется для	<u>^ 0001</u>
	проверки	= 1110
	соответствующих битов	unsigned int x=0xF, a=1;
	двух переменных, если	a=x^a;
	они имеют разные	Результат: в переменной а значение
	значения, то результат	0x0000000E
	1, а если равны, то 0.	

Задание 1.

Выполнить упражнения по применению битовых операций по изменению значений битов в ячейке оперативной памяти, созданию маски для изменения значения ячейки.

В таблице 3 приведены варианты индивидуальных заданий. Номер варианта соответствует номеру студента в журнале учета посещений. В каждом варианте 5 упражнений.

Таблица 3. Варианты упражнений.

$N_{\underline{0}}$	1	2	3	4	5
	Номер бита	Номер бита	множитель	делитель	Задание для
					выражения
1	5-ый и 7-ой	С 9-ого	8	8	Установить п-ый
	справа	четыре бита			бит в 1,
		слева			используя маску
					(Bap 1)
2	Три	12-ый, 14-ый,	4	4	Установить п-ый
	старших	3-ий			бит в 1,

					используя маску (вар2)
3	Только с четными номерами	7-ой, 9-ый, 11- ый	16	16	Обнулить n-ый бит, используя маску (вар 1)
4	Только с не четными номерами	С 5-ого бита четыре слева	32	32	Установить п-ый бит в 1, используя маску (вар 2)
5	17-ый, 15- ый, 1-ый	С 5-ого бита три справа	64	64	Обнулить n-ый бит, используя маску (вар 2)
6	3-ий, 11-ый, 5-ый	Четыре младших бита	128	128	Установить п-ый бит в 1, используя маску (вар 2)
7	Четыре старших бита	9-ый, 11-ый, 3-ий	512	512	Обнулить n-ый бит, используя маску (вар 1)
8	1-ый, 6-ой, 9-ый	1-ый, 6-ой, 9- ый	8	8	Установить п-ый бит в 1, используя маску (вар 1)
9	0-ый, 11-ый, 3-ий	Четыре старших бита	4	4	Обнулить n-ый бит, используя маску (вар 2)
10	Четыре младших бита	3-ий, 11-ый, 5-ый	16	16	Установить п-ый бит в 1, используя маску (вар 2)
11	С 5-ого бита четыре слева	5-ый, 7-ой справа	32	32	Обнулить n-ый бит, используя маску (вар 1)
12	С 3-ого бита три справа	Три старших	64	64	Установить п-ый бит в 1, используя маску (вар 1)
13	7-ой, 9-ый, 11-ый	Только с четными номерами	128	128	Обнулить п-ый бит, используя маску (вар 1)
14	12-ый, 14- ый, 3-ий	Только с нечетными номерами	512	512	Установить п-ый бит в 1, используя маску (вар 2)

15	С 9-ого бита четыре слева	17-ий, 15-ый, 1-ый	1024	1024	Обнулить п-ый бит, используя маску (вар 1)
16	1-ый, 2- ой,7-ой	С 7-ого три бита слева	8	8	Обнулить п-ый бит, используя маску (вар 1)
17	С 3-ого бита четыре слева	12-ый, 11-ый, 1-ый	32	32	Обнулить п-ый бит, используя маску (вар 2)
18	3-ий, 5-ый, 8-ой	С 4-ого два бита слева	16	16	Обнулить п-ый бит, используя маску (вар 1)
19	1-ый, 5-ый, 6-ой	15-ый, 12-ый, 3-ий	128	128	Обнулить п-ый бит, используя маску (вар 1)
20	5-ый и 7-ой справа	С 7-ого четыре бита слева	16	8	Установить п-ый бит в 1, используя маску (вар 1)
21	Три младших разряда	11-ый, 12-ый, 3-ий	32	16	Установить п-ый бит в 1, используя маску (вар 2)
22	Только с не четными номерами	5-ой, 3-ый, 11- ый	8	16	Обнулить n-ый бит, используя маску (вар 1)
23	Только с четными номерами	С 15-ого бита четыре справа	16	32	Установить п-ый бит в 1, используя маску (вар 2)
24	18-ый, 22- ый, 1-ый	С 8-ого бита три слева	64	64	Обнулить n-ый бит, используя маску (вар 2)
25	7-ий, 13-ый, 5-ый	Четыре старших бита	512	128	Установить п-ый бит в 1, используя маску (вар 2)
26	Четыре старших бита	9-ый, 11-ый, 3-ий	128	512	Обнулить п-ый бит, используя маску (вар 1)
27	2-ый, 5-ой, 9-ый	2-ый,5-ой, 9- ый	16	32	Установить п-ый бит в 1, используя маску (вар 1)

28	5-ый, 11-ый,	Четыре	32	32	Обнулить n-ый
	3-ий	старших бита			бит, используя
					маску (вар 2)
29	ПЯТЬ	7-ий, 9-ый, 5-	64	64	Установить п-ый
	младших	ый			бит в 1,
	битов				используя маску
					(Bap 2)
30	С 7-ого бита	5-ый, 7-ой ,	32	32	Обнулить п-ый
	пять слева	11-ый			бит, используя
					маску (вар 1)

Разработать программу, которая продемонстрирует выполнение упражнений варианта. Результаты выполнения упражнения выводить на монитор.

Упражнения:

1) Определить переменную целого типа, присвоить ей значение, используя константу в шестнадцатеричной системе счисления.

Разработать оператор присваивания и его выражение, которое установит заданные в задании биты исходного значения переменной в значение 1, используя соответствующую маску и поразрядную операцию.

2) Определить переменную целого типа.

Разработать оператор присваивания и его выражение, которое обнуляет заданные в задании биты исходного значения переменной, используя соответствующую маску и поразрядную операцию. Значение в переменную вводится с клавиатуры.

3) Определить переменную целого типа.

Разработать оператор присваивания и выражение, которое умножает значение переменной на число, указанное в третьем столбце варианта, используя соответствующую поразрядную операцию. Изменяемое число вводится с клавиатуры.

4) Определить переменную целого типа.

Разработать оператор присваивания и выражение, которое делит значение переменной на число, указанное в четвертом столбце варианта, используя соответствующую поразрядную операцию. Изменяемое число вводится с клавиатуры.

5) Определить переменную целого типа.

Разработать оператор присваивания и выражение, в котором используются только поразрядные операции. В выражении используется маска — переменная. Маска может быть инициализирована единицей в младшем разряде (вар 1) или единицей в старшем разряде (вар 2). Изменяемое число вводится с клавиатуры.

2. Сортировка последовательности чисел с помощью битового массива.

Пусть даны не более 8 чисел со значениями от 0 до 7, например, $\{1, 0, 5, 7, 2, 4\}$.

Подобный набор чисел удобно отразить в виде 8-разрядной битовой последовательности **11101101**. В ней единичные биты показывают *наличие* в исходном наборе числа, равного номеру этого бита в последовательности (нумерация с 0 слева). Т.о.

индексы единичных битов в битовом массиве — это и есть числа исходной последовательности.

Последовательное считывание бит этой последовательности и вывод индексов единичных битов позволит естественным образом получить исходный набор чисел \boldsymbol{e} отсортированном виде $-\{0,1,2,4,5,7\}$.

В качестве подобного битового массива удобно использовать беззнаковое однобайтовое число (его двоичное представление в памяти), например, типа unsigned char. Приёмы работы с отдельными битами числа были рассмотрены в предыдущем задании.

Если количество чисел и/или их значения превосходят возможности разрядной сетки одного беззнакового целого числа, то можно организовать линейный массив (вектор) таких чисел, который в памяти ЭВМ будет представлен одной непрерывной битовой последовательностью.

Задание 2.

Реализуйте вышеописанный пример с вводом произвольного набора до 8-ми чисел (со значениями от 0 до 7) и его сортировкой битовым массивом в виде числа типа unsigned char. Проверьте работу программы.

Исправьте программу задания, чтобы для сортировки набора из 64-х чисел использовалось не одно число типа unsigned long long, а линейный массив чисел типа unsigned char

3. Быстрая сортировка числового файла с помощью битового массива.

На практике может возникнуть задача внешней сортировки, т.е. упорядочения значений, расположенных во внешней памяти компьютера, размер которых превышает допустимый объём ОЗУ (например, 1 МБ стека, выделяемый по умолчанию программе операционной системой).

Возможный способ – это алгоритм внешней сортировки слиянием, рассмотренный в одной из предыдущих практических работ. Считывание исходного файла при этом происходит один раз, но в процессе сортировки создаются и многократно считываются вспомогательные файлы, что существенно снижает быстродействие.

Второй возможный приём — считывание входного файла порциями, размер каждой из которых не превышает лимит ОЗУ. Результат записывается в выходной файл за один раз, при этом не используются вспомогательные файлы. Программа будет работать быстрее, но всё-таки есть алгоритм, существенно превосходящий перечисленные.

Реализовать высокоэффективную сортировку большого объёма числовых данных в файле можно на идее битового массива. Достаточно один раз считать содержимое файла, заполнив при этом в памяти ЭВМ битовый массив и на его основе быстро сформировать содержимое выходного файла в уже отсортированном виде.

При использовании битового массива для представления сортируемых чисел, программу можно представить как последовательность из трех подзадач:

- а) Создание битового массива с нулевыми исходными значениями.
- б) Считывание целых чисел из файла и установка в 1 соответствующих бит массива.
- в) Формирование упорядоченного выходного файла путём последовательной проверки бит массива и вывода в файл номеров (индексов) тех бит, которые установлены в 1.

Задание 3.

Постановка задачи:

Входные данные: файл, содержащий не более $n=10^7$ неотрицательных целых чисел, среди них нет повторяющихся.

Результат: упорядоченная по возрастанию последовательность исходных чисел в выходном файле.

Время работы программы: \sim 10 с (до 1 мин. для систем малой вычислительной мощности). **Максимально допустимый объём ОЗУ** для хранения данных: 1 МБ.

Очевидно, что размер входных данных гарантированно превысит 1МБ (это, к примеру, максимально допустимый объём стека вызовов, используемого для статических массивов).

Требование по времени накладывает ограничение на количество чтений исходного файла.

Реализуйте тестовый пример, демонстрирующий входные данные и заполненный битовый массив (не более 20 чисел).

Реализуйте задачу сортировки числового файла для входных данных объемом 100 и 1000 чисел. Показать время выполнения сортировки для каждого объема.

Реализуйте задачу сортировки заданного числового файла.

В отчёт внесите результаты тестирования для наибольшего количества входных чисел, соответствующего битовому массиву длиной 1МБ и программно определить объём оперативной памяти, занимаемый битовым массивом и время выполнения работы программы (сортировки) для каждого случая.

Содержание отчёта:

- 1. Титульный лист.
- 2. Цель работы.
- 3. Ход работы (по каждому заданию):
 - а. Формулировка задачи.
 - b. Математическая модель решения (описание алгоритма).
 - с. Код программы с комментариями.
 - d. Результаты тестирования.
- 4. Вывод (решены ли задачи, достигнута ли цель).

Для сдачи практической работы потребуется:

- отчёт оформляется в виде электронного документа в форматах Word или PDF, прикрепляется к соответствующему заданию в СДО;
- программные проекты, реализованные по заданиям;
- доклад по результатам выполнения практической работы (по отчёту).

Приложение 1. Пример реализации алгоритма вывода двоичного кода заданного значения

```
void coutp(unsigned int x)
{
    int n=sizeof(int)*8;
    unsigned maska=(1<<(n-1));
    for(int i=1; i<=n;i++)
    {
        cout<<((x&maska)>>(n-i));
        maska=maska>>1;
    }
}
```