Introduction to Digital Systems Part III (Sequential Components) 2020/2021

Sequential Logic Fundamentals and Basic Circuits

Lecture Contents

- Sequential logic circuits fundamentals
 - Motivation and concepts
- Sequential logic basic circuits (memory elements built with ordinary gates and feedback loops)
 - S-R Latch
 - D Latch
 - D Flip-flop

Figures and most content extracted from: John F. Wakerly, "Digital Design – Principles and Practices", 4 ed., Pearson – Prentice Hall, 2006 (chapter 7). Reading chapter 7 (4th ed.) or chapter 10 (5th ed.) is highly recommended.

Sequential Circuit Example

Introduction

- **Combinatorial** logic circuit
 - Is one whose outputs depend only on its current inputs
- **Sequential** logic circuit
 - Is one whose outputs depend <u>not</u> only on its current inputs, but also on the past sequence of inputs, possibly far back in time
- **State** of a sequential circuit
 - Is a collection of state variables whose values at any one time contain all the information about the past, necessary to account for the circuit's future behavior
- N-bit state variable: 2^N maximum number of states

Clock Signals

- State changes of most sequential circuits occur at times specified by a free-running clock signal
- Active high / active low clock signals

Bistable Element (Basic Structure)

- No inputs and therefore no way of controlling or changing its state (random set at power up)
- Only illustrative but serves the basis for more complex and useful memory elements

Bistable Element (Analog Analysis)

Figure 7-3

Transfer functions for inverters in a bistable feedback loop.

Transfer function:

$$V_{\text{outl}} = T(V_{\text{inl}})$$

$$V_{\text{out2}} = T(V_{\text{in2}})$$

$$V_{\text{in1}} = V_{\text{out2}}$$

$$= T(V_{\text{in2}})$$

$$= T(V_{\text{out1}})$$

$$= T(T(V_{\text{in1}}))$$

3 equilibrium points: 2 stable and 1 metastable

Metastability

Figure 7-3

Transfer functions for inverters in a bistable feedback loop.

Transfer function:

$$V_{\text{out1}} = T(V_{\text{in1}})$$

$$V_{\text{out2}} = T(V_{\text{in2}})$$

Figure 7-4

Ball and hill analogy for metastable behavior.

Effects of noise and circuit impairments on metastability

S-R Latch (Structure and Function Table)

S-R Latch (Operation/Timing Diagrams)

(b)

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

Figure 7-5 S-R latch: (a) circuit design using NOR gates; (b) function table.

Figure 7-6 Typical operation of an S-R latch: (a) "normal" inputs; (b) S and R asserted simultaneously.

S-R Latch (State Diagram)

Theoretical

Real

S-R Latch (Characteristic Equation)

$$Q^{\dagger} = S + \overline{Q}.R$$

S-R Latch (Symbol)

S-R Latch (Timing Parameters)

- t_{pLH} propagation time LOW-to-HIGH
- t_{pHL} propagation time HIGH-to-LOW
- T_{pw(min)} minimum pulse width

Non-determinism/metastability due to violation of $T_{pw(min)}$

S-R Latch (with NAND Gates)

Figure 7-9 \overline{S} - \overline{R} latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.

S-R Latch with Enable (C)

Figure 7-10 S-R latch with enable: (a) circuit using NAND gates; (b) function table; (c) logic symbol.

S-R Latch with Enable (Operation)

Figure 7-11 Typical operation of an S-R latch with enable.

D Latch (Structure and Operation)

Figure 7-12 D latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.

Figure 7-13 Functional behavior of a D latch for various inputs.

D Latch

(State Diagram and Characteristic Equation)

D Latch (Timing Parameters)

- t_{pLH} propagation time LOW-to-HIGH
- t_{pHL} propagation time HIGH-to-LOW
- t_{setup} setup time
- t_{hold} hold time

Non-determinism/metastability due to violation of t_{setup} and/or t_{hold}

Figure 7-14 Timing parameters for a D latch.

Application Example of an S-R Latch

Debounce mechanical switches

Latch Limitations/Issues

Possible Solution? Unfeasible!

A Feasible Solution

Periodic updates triggered by one of the edges (rising or falling) of a clock signal

Positive-edge-triggered D Flip-flop

Latches are not used frequently standalone but are a fundamental building block for flip-flops

Figure 7-15 Positive-edge-triggered D flip-flop: (a) circuit design using D latches; (b) function table; (c) logic symbol.

Clock Signals (revisited)

Positive-edge-triggered D Flip-flop (Functional Behavior / Operation)

Figure 7-16 Functional behavior of a positive-edge-triggered D flip-flop.

Positive-edge-triggered D Flip-flop (Timing Behavior)

- t_{pLH} propagation time LOW-to-HIGH
- t_{pHL} propagation time HIGH-to-LOW
- t_{setup} setup time
- t_{hold} hold time

Non-determinism/metastability due to violation of t_{setup} and/or t_{hold}

Negative-edge-triggered D Flip-flop

Figure 7-18 Negative-edge triggered D flip-flop: (a) circuit design using D latches; (b) function table; (c) logic symbol.

Positive-edge-triggered D Flip-flop with Preset and Clear

Figure 7-19 Positive-edge-triggered D flip-flop with preset and clear: (a) logic symbol; (b) circuit design using NAND gates.

Positive-edge-triggered D Flip-flop (7474 Commercial Integrated Circuit)

- 6 gates instead of 8 gates + inverters
- To be analyzed later...

Figure 7-20 Commercial circuit for a positive-edgetriggered D flip-flop such as 74LS74.

Positive-edge-triggered D Flip-flop with Enable

Figure 7-21 Positive-edge-triggered D flip-flop with enable: (a) circuit design; (b) function table; (c) logic symbol.

Exercise

- Design the complete logic diagram of the volume control system based on positive-edge-triggered D Flipflops with enable (assume 16 levels of volume).
- Component budget
 - Flip-flops
 - Adder
 - Mux 2:1
 - Logic gates
- From the usability point of view, what could be the clock frequency?
- How to force a predefined volume level (e.g. half scale) at power up?

Periodic updates triggered by one of the edges (rising or falling) of a clock signal

Conclusion

- At the end of this lecture and corresponding lab, it is fundamental to know and understand the structure, operation and timing behavior of basic sequential logic circuits (latches and flip-flops)
- Plan for the next lectures
 - Analysis of sequential circuits (Finite State Machines) and timing aspects
 - Synthesis of sequential circuits (Finite State Machines)
 - Standard sequential circuits
 - Registers and shift registers
 - Counters
 - Iterative vs. sequential circuits

Reading chapter 7 (4th ed.) or chapter 10 (5th ed.) of *John F. Wakerly,* "Digital Design – Principles and Practices", Pearson – Prentice Hall, is highly recommended.