异常检测接口说明

文件结构

1	AnomalyDetection	
2	— data	# 样例数据
3	Dataset1	
4	└── Node1.csv	# 样例数据
5	— clustering	# 聚类相关结果目录
6	│ ├── classify_result	# 聚类结果目录
7	— feature_center	# 簇中心和特征向量目录
8	— model_sharing	# 模型及检测结果目录
9	— model	# 模型存储目录
LO		# 检测结果目录
L1	— detecting.py	# 异常检测接口代码
L2	├── TransformerAndMoe.py	# 模型定义代码
L3	│ └─ utils.py	# 实用函数
L4	—— config.yml	# 配置文件
L5	— detect.sh	# 异常检测运行命令
L6	— metric.json	# 指标文件
L7	— requirements.txt	# 环境包

输入/输出

输入

一个表示多维时间序列数据的DataFrame,或者存为csv的文件(将通过pd.read_csv读取)

文件格式为:第一行为列索引,代表指标名,每一列都是一个指标的时间序列,每一行是当前这个节点某一刻的各个指标的观测值,如下:

metric1	metric2	metric3	
1.0	0.8	1.9	
0.9	0.9	1.8	
0.8	1.0	1.7	

可参考样例数据文件 Anomaly Detection/data/Dataset1/Node1.csv

数据需包含 AnomalyDetection/metric.json 文件中的所有指标

算法将会对数据进行预处理、异常检测等操作,最终输出异常点列表

输出

一个元素为int的list列表,其中每一个元素代表检测出的异常点的下标

例如: [1,33,1024,...] 表示下标为1,33,1024的时刻为异常点

运行

1. 安装环境

代码块

- 1 cd AnomalyDetection
- conda create -n XXX python=3.8
- 3 pip install -r requirements.txt

2. 准备数据与运行算法

有两种方法:

a. 将DataFrame数据作为函数输入,运行 AnomalyDetection/model_sharing/detecting.py 中的 run_detect 函数,例如:

代码块

- node_df = pd.read_csv("../data/Dataset1/Node1.csv", index_col=0, header=0)
- 2 run_detect(node_df)
- b. 修改配置文件 AnomalyDetection/config.yml 中的 data_file 路径至待检测数据路径,随后在AnomalyDetection 目录下运行 **sh detect.sh** 命令