Algorithms

Definim. Një spanning tree i *G* është një nëngraf *T* i cili:

- është i lidhur.
- aciklik.
- përfshinë të gjitha kulmet.

Definim. Një spanning tree i *G* është një nëngraf *T* i cili:

- është i lidhur.
- aciklik.
- përfshinë të gjitha kulmet.

Nuk është lidhur

Definim. A spanning tree i G është një nëngraf T i cili :

- është i lidhur.
- aciklik.
- përfshinë të gjitha kulmet.

Nuk është aciklik

Definim. Një spanning tree i *G* është një nëngraf *T* i cili:

- është i lidhur.
- aciklik.
- përfshinë të gjitha kulmet.

Nuk është spanning

E dhënë. Undirected graph G me vlera pozitive të segmenteve (të lidhura). Qëllimi. Të gjindet një min weight spanning tree.

edge-weighted graph G

E dhënë. Undirected graph G me vlera pozitive të segmenteve (të lidhura). Qëllimi. Të gjindet një min weight spanning tree.

minimum spanning tree T (cmimi = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7)

Brute force. Provo të gjitha spanning trees?

Network design

MST of bicycle routes in North Seattle

Models of nature

MST of random graph

Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Medical image processing

MST dithering

http://www.flickr.com/photos/quasimondo/2695389651

Applications

MST is fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- · Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, computer, road).

http://www.ics.uci.edu/~eppstein/gina/mst.html

Supozim i thjeshtësuar

- Grafi është i lidhur.
- Pesha e segmenteve është e veçantë.

Rezultati. MST ekziston dhe është unik.

Cut - vetitë

Definim. Një cut në një graf është ndarja e kulmeve në dy bashkësi (jo boshe). Definim. Një crossing edge lidhë një kulm në njërën bashkësi me një kulm në tjetrën.

Cut vetitë. Për çdo cut, crossing edge i min weight është në MST.

Cut – vetitë: correctness proof

Definim. Një cut në një graf është ndarja e kulmeve në dy bashkësi (jo boshe). Definim. Një crossing edge lidhë një kulm në njërën bashkësi me një kulm në tjetrën.

Cut - vetitë. Për çdo cut, crossing edge i min weight është në MST. Vërtetim. Supuzo që min-weight crossing edge *e* nuk është në MST.

- Shtimi i *e* në MST krijon një cikël.
- Një tjetër segment f në cikël duhet të jetë një crossing edge.
- Fshirja e *f* dhe shtimi i *e* është gjithashtu një spanning tree.
- Pasi që pasha e e është më e vogël sesa ajo e f, ai spanning tree është me peshë më të ulët.
- Kontradiktë.

Greedy MST algorithm demo

- Fillo kur të gjitha segmented janë të përhimta.
- Gjej cut pa crossing edges të zeza; ngjyrose min-weight edge në të zezë.
- Përsërit derisa V-1 segmente janë të ngjyrosura zi.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58

 $6-4 \quad 0.93$

Greedy MST algorithm demo

- Fillo kur të gjitha segmented janë të përhimta.
- Gjej cut pa crossing edges të zeza; ngjyrose min-weight edge në të zezë.
- Përsërit derisa V-1 segmente janë të ngjyrosura zi.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7 4-5

Greedy MST algorithm:

Teoremë. greedy algoritmi llogaritë MST.

Vërtetim.

- Cilido segment i zi është në MST (bazuar në vetitë e cut).
- Më pak se V-1 segmente të zeza \Rightarrow cut pa crossing edges të zi.

a cut with no black crossing edges

fewer than V-1 edges colored black

Removing two simplifying assumptions

Pyetje. Çka nëse pashat e segmenteve nuk dallojnë?

Përgjigje. Greedy MST algoritmi është i saktë nëse peshat janë të barabarta.

1 2 1.00 1 3 0.50 2 4 1.00 3 4 0.50

1 2 1.00 1 3 0.50 2 4 1.00 3 4 0.50

- Q. Çka nëse grafi nuk është i lidhur?
- A. Llogaritet minimum spanning forest = MST i secilit përbërës.

MSTs of components

Weighted edge API

Edge abstraction needed for weighted edges.

Idiom for processing an edge e: int v = e.either(), w = e.other(v);

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge>
   private final int v, w;
   private final double weight;
   public Edge(int v, int w, double weight)
                                                                   constructor
      this.v = v;
      this.w = w;
      this.weight = weight;
   public int either()
                                                                   either endpoint
   { return v; }
   public int other(int vertex)
      if (vertex == v) return w;
                                                                   other endpoint
      else return v;
   public int compareTo(Edge that)
               (this.weight < that.weight) return -1;</pre>
      if
                                                                   compare edges by weight
      else if (this.weight > that.weight) return +1;
      else
                                             return 0;
```

Edge-weighted graph API

public class	EdgeWeightedGraph	
	EdgeWeightedGraph(int V)	create an empty graph with V vertices
	EdgeWeightedGraph(In in)	create a graph from input stream
void	addEdge(Edge e)	add weighted edge e to this graph
Iterable <edge></edge>	adj(int v)	edges incident to v
Iterable <edge></edge>	edges()	all edges in this graph
int	V()	number of vertices
int	E()	number of edges
String	toString()	string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph
   private final int V;
                                                         same as Graph, but adjacency
   private final Bag<Edge>[] adj;
                                                         lists of Edges instead of integers
   public EdgeWeightedGraph(int V)
                                                         constructor
      this.V = V;
      adj = (Bag<Edge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Edge>();
   public void addEdge(Edge e)
      int v = e.either(), w = e.other(v);
                                                         add edge to both
      adj[v].add(e);
                                                         adjacency lists
      adj[w].add(e);
   public Iterable<Edge> adj(int v)
      return adj[v]; }
```

Q. How to represent the MST?

Q. How to represent the MST?

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST(G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.printf("%.2f\n", mst.weight());
}
```

```
% java MST tinyEWG.txt

0-7 0.16

1-7 0.19

0-2 0.26

2-3 0.17

5-7 0.28

4-5 0.35

6-2 0.40

1.81
```


Kruskal's algorithm demo

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

graph edges sorted by weight

an edge-weighted graph

6-0

0.58

6-4 0.93

Kruskal's algorithm demo

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

a minimum spanning tree

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
<i>C</i> 1	0 02

Kruskal's algorithm: visualization

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.

- Suppose Kruskal's algorithm colors the edge e = v w black.
- Cut = set of vertices connected to v in tree T.
- No crossing edge is black.
- No crossing edge has lower weight. Why?

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v–w to tree T create a cycle? If not, add it.

How difficult?

- E + V
- V run DFS from v, check if w is reachable (T has at most V 1 edges)
- $\log V$
- $\log^* V$ use the union-find data structure !
- 1

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding v—w would create a cycle.
- To add v–w to T, merge sets containing v and w.

Case 2: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST
{
   private Queue<Edge> mst = new Queue<Edge>();
   public KruskalMST(EdgeWeightedGraph G)
                                                                   build priority queue
                                                                   (or sort)
      MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
      UF uf = new UF(G.V());
      while (!pq.isEmpty() && mst.size() < G.V()-1)
         Edge e = pq.delMin();
                                                                   greedily add edges to MST
         int v = e.either(), w = e.other(v);
         if (!uf.connected(v, w))
                                                                   edge v-w does not create
                                                                   cycle
             uf.union(v, w);
                                                                   merge sets
            mst.enqueue(e);
                                                                   add edge to MST
   }
   public Iterable<Edge> edges()
      return mst; }
}
```

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

operation	frequency	time per op	
build pq	1	E	
delete-min	E	$\log E$	
union	V	log* V †	
connected	E	log* V†	

[†] amortized bound using weighted quick union with path compression

recall: $log^* V \leq 5in this universe$

Remark. If edges are already sorted, order of growth is $E \log^* V$.

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

Prim's algorithm: visualization

Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959]

Prim's algorithm computes the MST.

- Pf. Prim's algorithm is a special case of the greedy MST algorithm.
 - Suppose edge $e = \min$ weight edge connecting a vertex on the tree to a vertex not on the tree.
 - Cut = set of vertices connected on tree.
 - No crossing edge is black.
- No crossing edge has lower weight.

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in *T*.

Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in *T*.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-min to determine next edge e = v w to add to T.
- Disregard if both endpoints v and w are marked (both in T).
- Otherwise, let w be the unmarked vertex (not in T):
 - add to PQ any edge incident to w (assuming other endpoint not in T)
 - add e to T and mark w

Prim's algorithm (lazy) demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
)-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Prim's algorithm (lazy) demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

Prim's algorithm: lazy implementation

```
public class LazyPrimMST
   private boolean[] marked; // MST vertices
   private Queue<Edge> mst; // MST edges
   private MinPQ<Edge> pq; // PQ of edges
    public LazyPrimMST(WeightedGraph G)
        pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
                                                                   assume G is connected
        visit(G, 0);
        while (!pq.isEmpty() && mst.size() < G.V() - 1)
                                                                   repeatedly delete the
                                                                   min weight edge e = v-w from
           Edge e = pq.delMin();
           int v = e.either(), w = e.other(v);
                                                                   PO ignore if both endpoints in T
           if (marked[v] && marked[w]) continue;
                                                                   add edge e to tree
           mst.enqueue(e);
           if (!marked[v]) visit(G, v);
                                                                   add v or w to
                                                                   tree
            if (!marked[w]) visit(G, w);
```

Prim's algorithm: lazy implementation

```
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> mst()
{    return mst; }
add v to
T
for each edge e = v-w, add to
PQ if w not already in T
```

Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

operation	frequency	binary heap
delete min	E	$\log E$
insert	E	$\log E$

Prim's algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in *T*.

```
pq has at most one entry per vertex
```

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of shortest edge connecting v to T.

- Delete min vertex v and add its associated edge e = v w to T.
- Update PQ by considering all edges e = v x incident to v
 - ignore if x is already in T
 - add x to PQ if not already on it
 - decrease priority of x if v-x becomes shortest edge connecting x to T

Prim's algorithm (eager) demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.

• Repeat until V-1 edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Prim's algorithm (eager) demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

V	edgeTo[]	distTo[]
0	-	_
7	0-7	0.16
1	1-7	0.19
2	0–2	0.26
3	2–3	0.17
5	5-7	0.28
4	4-5	0.35
6	6–2	0.40

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

Indexed priority queue

Associate an index between 0 and N-1 with each key in a priority queue.

- Supports insert and delete-the-minimum.
- Supports decrease-key given the index of the key.

public class	<pre>IndexMinPQ<key extends<="" pre=""></key></pre>	Comparable <key>></key>
	<pre>IndexMinPQ(int N)</pre>	create indexed priority queue with indices 0, 1,, N – 1
void	<pre>insert(int i, Key key)</pre>	associate key with index i
void	decreaseKey(int i, Key	key) decrease the key associated with index i
boolean	contains(int i)	is i an index on the priority queue?
int	delMin()	remove a minimal key and return its associated index
boolean	<pre>isEmpty()</pre>	is the priority queue empty?
int	size()	number of keys in the priority queue

Indexed priority queue implementation

Binary heap implementation. [see Section 2.4 of textbook]

- Start with same code as MinPQ.
- Maintain parallel arrays keys[], pq[], and qp[] so that:
 - keys[i] is the priority of i
 - pq[i] is the index of the key in heap position i
 - qp[i] is the heap position of the key with index i
- Use swim(qp[i]) to implement decreaseKey(i, key).

Prim's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1 †	$\log V^\dagger$	1 †	$E + V \log V$

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- · 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.