INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNIN

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

An introduction to

Reinforcement Learning (with Neural Networks and Causality)

Spyros Samothrakis Research Fellow, IADS University of Essex

November 14, 2016

Introduction & Motivation

Markov Decision Process (MDPs)

Planning

Model Free Reinforcement Learning

2/7

STRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING

What is Reinforcement Learning?

- ➤ Reinforcement learning is the study of how animals and artificial systems can learn to optimize their behavior in the face of rewards and punishments Peter Dyan, Encyclopedia of Cognitive Science
- ► Not supervised learning the animal/agent is not provided with examples of optimal behaviour, it has to be discovered!
- ▶ Not unsupervised learning either we have more guidance than just observations

Links to other fields

- \blacktriangleright It subsumes most artificial intelligence problems
- ► Forms the basis of most modern intelligent agent frameworks
- ► Ideas drawn from a wide range of contexts, including psychology (e.g., Skinner's "Operant Conditioning"), philosophy, neuroscience, operations research, Cybernetics
- ► Modern Reinforcement Learning research has fused with Neural Networks research

3 / 70

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING

Examples of Reinforcement Learning closer to CS

- ► Play backgammon/chess/go/poker/any game (at human or superhuman level)
- ► Helicopter control
- ► Learn how to walk/crawl/swim/cycle
- ► Elevator scheduling
- ► Optimising a petroleum refinery
- ► Optimal drug dosage
- ► Create NPCs

THE MARKOV DECISION PROCESS

- ► The primary abstraction we are going to work with is the Markov Decision Process (MDP).
- ► MDPs capture the dynamics of a mini-world/universe/environment
- ▶ An MDP is defined as a tuple $\langle S, A, T, R, \gamma \rangle$ where:
 - ▶ S, $s \in S$ is a set of states
 - ightharpoonup A, $a \in A$ is a set of actions
 - ▶ $R: S \times A$, R(s, a) is a function that maps state-actions to rewards
 - ▶ $T: S \times S \times A$, with T(s'|s, a) being the probability of an agent landing from state s to state s' after taking a
 - \blacktriangleright γ is a discount factor the impact of time on rewards

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT LEARNING

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT LEARNIN

THE MARKOV PROPERTY AND STATES

▶ States represent sufficient statistics.

- ► Markov Property ensures that we only care about the present in order to act we can safely ignore past states
- ➤ Think Tetris all information can be captured by a single screen-shot

AGENTS, ACTIONS AND TRANSITIONS

- ► An agent is an entity capable of actions
- ► An MDP can capture any environment that is inhabited either by
 - ► Exactly one agent
 - ▶ Multiple agents, but only one is adaptive
- ► Notice how actions are part of the MDP notice also how the MDP is a "world model"
- ► The agent is just a "brain in a vat"
- ► The agent perceives states/rewards and outputs actions
- ► Transitions specify the effects of actions in the world (e.g., in Tetris, you push a button, the block spins)

7 / 70

8 /

RNING INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT LEARNI

TION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT

- ► Pick a game
- ▶ What would be state in the game?
 - ► Do agents/NPCs have access to it?
- ▶ Do agents/NPCs have access to actions
- ▶ Do agents/NPCs have access to transitions?

More on States, agents and actions

 \blacktriangleright We will come back to these questions later

REWARDS AND THE DISCOUNT FACTOR

- ▶ Rewards describe state preferences
- ► Agent is happier in some states of the MDP (e.g., in Tetris when the block level is low, a fish in water, pacman with a high score)
- Punishment is just low/negative reward (e.g., being eaten in pacman)
- \blacktriangleright $\gamma,$ the discount factor,
 - \blacktriangleright Describes the impact of time on rewards
 - \blacktriangleright "I want it now", the lower γ is the less important future rewards are
- ▶ There are no "springs/wells of rewards" in the real world
 - ► What is "human nature"?

10
INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT LEAR

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

Examples of Reward Schemes

- ► Scoring in most video games
- \blacktriangleright The distance a robot walked for a bipedal robot
- ▶ The amount of food an animal eats
- ► Money in modern societies
- ► Army medals ("Gamification")
- ► Vehicle routing
 - ► (-Fuel spent on a flight)
 - ► (+ Distance Covered)
- ► Cold/Hot
- Do you think there is an almost universal reward in modern societies?

Long Term Thinking

- ightharpoonup It might be better to delay satisfaction
- ▶ Immediate reward is not always the maximum reward
- ► In some settings there are no immediate rewards at all (e.g., most solitaire games)
- \blacktriangleright MDPs and RL capture this
- $\,\blacktriangleright\,$ "Not going out to night, study"
- ► Long term investment

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT LEARNING

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING

Policy

- ► The MDP (the world) is populated by an agent (an actor)
- ► You can take actions (e.g., move around, move blocks)
- ► The type of actions you take under a state is called the *policy*
- ▶ $\pi: S \times A$, $\pi(s, a) = P(a|s)$, a probabilistic mapping between states and actions
- ► Finding an optimal policy is *mostly* what the RL problem is all about

THE FULL LOOP

- ► See how the universe described by the MDP defines actions, not just states and transitions
- ▶ An agent needs to act upon what it perceives
- ▶ Notice the lack of body "brain in a vat". Body is assumed to be part of the world.

13 / 70

TOTAL PROPERTY MADE AND THE PROPERTY PROPERTY I DADNING MODEL FOR REINFORDERS I DADNING MODEL

FISHING TOON

- ► Assume a non-player character (let's call her toon)
- ► Toon is Hungry!
- \blacktriangleright Eating food is rewarding

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PI

- ► Has to choose between going fishing or going to the restaurant (to eat fish)
 - ► Fishing can get you better quality of fish (more reward), but you might also get no fish at all (no reward)!
 - ▶ Going to the restaurant is a low-risk, low-reward alternative

FISHING TOON: PICTORIAL DEPICTION

15 / 70

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT LEARNING

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

SUM OF EXPECTED REWARDS

- ▶ Our toon has to choose between two different actions
- ► Go-To-Restaurant or Go-Fishing
- \blacktriangleright We assume that to on is interested in maximising the expected sum of happiness/reward
- \blacktriangleright Let's first see what happens if we start with a random policy

Policy	Policy Value	Q-Values
$\pi(Start, Go\text{-}Fishing)$	0.5	
$\pi(Start, Go\text{-}to\text{-}Restaurant)$	0.5	
$\pi(Restaurant, Eat\text{-1-}fish)$	1	
$\pi(Pond, Eat\text{-}0\text{-}fish)$	1	
$\pi(Pond, Eat\text{-}10\text{-}fish)$	1	

RANDOM POLICY (1)

RANDOM POLICY (2)

Table

Policy	Policy Value	Q-Values
$\pi(Start, Go\text{-}Fishing)$	0.5	1
$\pi(Start, Go\text{-}to\text{-}Restaurant)$	0.5	1.9
$\pi(Restaurant, Eat$ -1- $fish)$	1	1
$\pi(Pond, Eat\text{-}0\text{-}fish)$	1	0
$\pi(Pond, Eat\text{-}10\text{-}fish)$	1	10

The V-Value of state Start is V(Start) = 0.5 * 1 + 0.5 * 1.9 = 1.45

19 / 70

20 / 70

NTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT LEARNING

RODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT LEARNING

WHAT IF WE ARE ASKED TO FIND OUT THE OPTIMAL POLICY?

Policy	Policy Value	Q-Values
$\pi(Start, Go\text{-}Fishing)$?	1
$\pi(Start, Go\text{-}to\text{-}Restaurant)$?	1.9
$\pi(Restaurant, Eat$ -1- $fish)$	1	1
$\pi(Pond, Eat\text{-}0\text{-}fish)$	1	0
$\pi(Pond, Eat\text{-}10\text{-}fish)$	1	10

Reasoning Backwards (1)

21 / 70

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

Reasoning Backwards (2)

Table

Policy	Policy Value	Q-Values
$\pi(Start, Go\text{-}Fishing)$	0	1
$\pi(Start, Go\text{-}to\text{-}Restaurant)$	1	1.9
$\pi(Restaurant, Eat$ -1- $fish)$	1	1
$\pi(Pond, Eat\text{-}0\text{-}fish)$	1	0
$\pi(Pond, Eat\text{-}10\text{-}fish)$	1	10

The V-Value of state Start is $V^*(Start) = max\{1, 1.9\} = 1.9$

24 / ′

Introduction & Motivation	Markov Decision	Process (MDPs)	PLANNING	Model Free Reinforcement Learning	

CORRECT ACTION

- ► Toon should go Go-Fishing
- ► Would you do the same?
- ► Would a pessimist toon do the same?
- ▶ We just went through the following equation:

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) \max_{a' \in A} Q^*(s', a')$$

- ▶ Looks intimidating but it's really simple
- ▶ Let's have a look at another example
 - ► How about toon goes to the restaurant after failing to fish?
 - ▶ How would that change the reward structure?

Agent Goals

▶ The agent's goal is to maximise its long term reward $\mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s^{t}, a^{t}\right) \right]$

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learn

- ▶ Risk Neutral Agent think of the example above
- ► Rewards can be anything, but most agents receive rewards only in a very limited amount of states (e.g., fish in water)
- ▶ What if your reward signal is only money?
 - ► Sociopathic, egotistic, greed-is-good Gordon Gekko (Wall Street,
 - ▶ No concept of "externalities" agents might wreak havoc for marginal reward gains
 - $\blacktriangleright\,$ Same applies to all "compulsive agents" think Chess

Searching for a good Policy

- ▶ One can possibly search through all combinations of policies until she finds the best
- ► Slow, does not work in larger MDPs
- ► Exploration/Exploitation dilemma
 - ▶ How much time/effort should be spend exploring for solutions?
 - ► How much time should be spend exploiting good solutions?

PLANNING

- ► An agent has access to model, i.e. has a copy of the MDP (the outside world) in its mind
- ▶ Using that copy, it tries to "think" what is the best route of action
- ▶ It then executes this policy on the real world MDP
- You can't really copy the world inside your head, but you can copy the dynamics
- "This and that will happen if I push the chair"
- ► Thinking, introspection...
- ▶ If the model is learned, sometimes it's called "Model Based RL"

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Rein

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINI

Bellman Expectation Equations / Bellman BACKUPS

- ▶ The two most important equations related to MDP
- ► Recursive definitions
- $\begin{array}{l} \blacktriangleright \quad V^\pi(s) = \sum\limits_{a \in A} \pi(s,a) \left(R(s,a) + \gamma \sum\limits_{s' \in S} T(s'|s,a) \, V^\pi(s') \right) \\ \blacktriangleright \quad Q^\pi(s,a) = R(s,a) + \gamma \sum\limits_{s' \in S} T(s'|s,a) \sum\limits_{a' \in A} \pi(s',a') \, Q^\pi(s',a') \end{array}$
- ► Called V-Value(s) (state-value function) and Q-Value(s) (state-action value function) respectively
- ▶ Both calculate the expected rewards under a certain policy

Link between V^{π} and Q^{π}

- V and Q are interrelated
- $V^{\pi}(s) = \sum_{a \in A} \pi(s, a) Q^{\pi}(s, a)$ $Q^{\pi}(s, a) = R(s, a) + \sum_{s' \in S} T(s'|s, a) V^{\pi}(s')$
- ► V-values are defined on states, Q-values on policies!

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learn

OPTIMAL POLICY AND THE BELLMAN OPTIMALITY EQUATION

► An optimal policy can be defined in terms of Q-values

- ightharpoonup It is the policy that maximises Q values

$$V^*(s) = \max_{a \in A} R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) V^*(s')$$

$$V^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) \max_{a' \in A} Q^*(s', a')$$

$$\pi^*(s, a) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in A} Q^*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

Link between V^* and Q^*

- ► Again, they are interrelated
- $V(s)^* = \max_{a \in A} Q^*(s, a)$
- $\qquad \qquad \mathbf{P} \quad Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) \, V^*(s')$
- ▶ Let's assume that toon has another option
- ▶ She can go and buy and eat some meat with a reward of 1.5
- ▶ Or go down the fish route
- ► Write down the MDP
 - ► Find out the new Q and V values with:
 - ▶ Toon acting randomly on choosing a decision point
 - ► Toon choosing action Go-Fishing
 - ► Toon choosing action Go-to-Restaurant

Agents Revisited

- ▶ An Agent can be composed of a number of things
- ► A policy
- ► A Q-Value/and or V-Value Function
- ► A Model of the environment (the MDP)
- ► Inference/Learning Mechanisms
- ► An agent has to be able to discover a policy either on the fly or using Q-Values
- ► The Model/Q/V-Values serve as intermediate points towards constructing a policy
- Not all RL algorithms use that (but most do)...

SIMPLIFYING ASSUMPTIONS

- ► Assume deterministic transitions
- ► Thus, taking an action on a state will lead only to ONE other possible state for some action a_c
 - $\begin{array}{l} \blacktriangleright \ T(s'|s,a_i) = \left\{ \begin{array}{l} 1 \quad \text{if } a_i = a_c \\ 0 \quad \text{otherwise} \end{array} \right. \\ \blacktriangleright \ V^*(s) = \max_{a \in A} \left[R(s,a) + \gamma \, V^*(s') \right] \\ \blacktriangleright \ Q^*(s,a) = R(s,a) + \gamma \max_{a' \in A} Q(s',a') \end{array}$
- ▶ It is easier now to solve for problems that have loops in them
- ▶ We can also attempt to learn Q-Values without a model!
- \blacktriangleright All we need in order to find the optimal policy is Q(s,a)

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

DETERMINISTIC Q-LEARNING (1)

- ▶ The policy is deterministic from start to finish
- ▶ We will use $\pi(s) = \arg \max Q(s, a)$ to denote the optimal policy ► The algorithm now is:
- - ▶ Initialise all Q(s, a) to low values
 - ► Repeat:
 - \blacktriangleright Select an action a using an exploration policy
 - $PQ(s,a) \leftarrow R(s,a) + \gamma \max_{a' \in A} Q(s',a')$
 - ► Also known as "Dynamic Programming", "Value Iteration"

An Example (1)

R(HALL, To-CAVE) = 0Q(CAVE, a) = 0 for all actions a

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

An Example (2)

Next suppose the agent, now in state CAVE, selects action To-GOAL

 $R(CAVE, To\text{-}GOAL) = 100, \ Q(GOAL, a) = 0 \text{ for all actions (there})$ are no actions)

Hence $Q(CAVE, To\text{-}GOAL) = 100 + \gamma * 0 = 100$

An Example (3)

Let's start at hall again and select the same action To-CAVE

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING

$$R(HALL, To - CAVE) = 0, Q(CAVE, GOAL) = 100$$

Q(CAVE, a) = 0 for all other actions a

Hence $\max_{a} Q(CAVE, a) = 100$, if $\gamma = 0.8$,

 $Q(HALL, To - CAVE) = 0 + \gamma * 100 = 80$

EXPLORATION / EXPLOITATION

- ▶ How do we best explore?
- ▶ Choose actions at random but this can be very slow
- $\epsilon greedy$ is the most common method
- ▶ Act ε-greedily
 - $\pi^{\epsilon}(s, a) = \begin{cases} a = \underset{a \in A}{\arg\max} \ Q(s, a) & \text{if } 1 \epsilon + \epsilon/|A| \\ U_a & \text{otherwise} \end{cases}$
 - ϵ -greedy means acting greedily with probability 1ϵ , random otherwise
- ▶ When you are done, act greedily $\pi(s) = \arg \max Q(s, a)$

Algorithms for non-deterministic settings

- ▶ What can we do if the MDP is not deterministic?

$$\blacktriangleright \ Q(s,a) \leftarrow Q(s,a) + \eta \left[R(s,a) + \gamma \max_{a' \in A} Q(s',a') - Q(s,a) \right]$$

- - $Q(s, a) \leftarrow Q(s, a) + \eta \left[R(s, a) + \gamma Q(s', a') Q(s, a) \right]$
- ► SARSA(1)/MC,

 - $\begin{array}{l} \blacktriangleright \ Q(s,a) \leftarrow Q(s,a) + \eta \left[\mathbf{v}_{\tau} Q(s,a) \right] \\ \blacktriangleright \ \mathbf{v}_{\tau} \leftarrow R(s,a) + \gamma R(s',a') + ... \gamma^2 R(s'',a'') + \gamma^{\tau-1} R(s^{\tau},a^{\tau}) \end{array}$
- η is a small learning rate, e.g., $\eta = 0.001$

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

SARSA VS Q-LEARNING VS MC

- ▶ MC: updated using the whole chain
 - ▶ Possibly works better when the markov property is violated
- ► SARSA: update based on the next action you actually took
 - ► On Policy learning
- ▶ Q-Learning: update based on the best possible next action
 - ▶ Will learn optimal policy even if acting off-policy

Monte Carlo Control (1)

- ► Remember Q is just a mean/average
- ► MC (Naive Version)
 - Start at any state, initialise $Q_0(s,a)$ as you visit states/actions
 - ▶ Act ε-greedily
- \blacktriangleright Add all reward you have seen so far to $\mathbf{v}_{\tau}^{\mathbf{i}} = R(s',a') + \gamma R(s'',a'') + \gamma^2 R(s''',a''') + \gamma^{\tau-1} R(s^{\tau},a^{\tau}) \text{ for }$
- $Q_n(s,a) = E_{\pi^e}[\mathbf{v}_{\tau}^i] = \frac{1}{n}\sum_{i=1}^n \mathbf{v}_{\tau}^i$, where n is the times a state is visited

Monte Carlo Control (2)

- ϵ -greedy means acting greedily 1ϵ , random otherwise
- ▶ Better to calculate mean incrementaly

$$\begin{split} Q_n(s,a) &= E_{\pi_n}[\mathbf{v}_{\tau}^{\mathbf{i}}] \\ Q_n(s,a) &= \frac{1}{n} \sum_{i=1}^n \mathbf{v}_{\tau}^{\mathbf{i}} \\ Q_n(s,a) &= \frac{1}{n} \left(\mathbf{v}_{\mathbf{t}}^{\mathbf{1}} + \mathbf{v}_{\tau}^2 \mathbf{v}_{\tau}^{\mathbf{n}-1} + \mathbf{v}_{\tau}^{\mathbf{n}} \right) \\ Q_n(s,a) &= \frac{1}{n} \left(\sum_{i=1}^{n-1} \mathbf{v}_{\tau}^{\mathbf{i}} + \mathbf{v}_{\tau}^{\mathbf{n}} \right) \end{split}$$

Monte Carlo Control (3)

by definition

$$Q_{n-1}(s, a) = \frac{1}{n-1} \sum_{i=1}^{n-1} \mathbf{v}_{\tau}^{i} \implies (n-1) Q_{n-1}(s, a) = \sum_{i=1}^{n-1} \mathbf{v}_{\tau}^{i}$$

$$Q_n(s, a) = \frac{1}{n} \left((n - 1) Q_{n-1}(s, a) + \mathbf{v}_{\tau}^{\mathbf{n}} \right)$$

$$Q_n(s, a) = \frac{1}{n} \left(Q_{n-1}(s, a) n - Q_{n-1}(s, a) + \mathbf{v}_{\tau}^{\mathbf{n}} \right)$$

$$Q_n(s, a) = \frac{Q_{n-1}(s, a) n}{n} + \frac{-Q_{n-1}(s, a) + \mathbf{v}_{\tau}^{\mathbf{n}}}{n}$$

$$Q_n(s, a) = Q_{n-1}(s, a) + \underbrace{\overbrace{\mathbf{v}_{\tau}^{\mathbf{n}} - Q_{n-1}(s, a)}^{\mathbf{MC-Error}}}_{n}$$

$$Q_n(s, a) = Q_{n-1}(s, a) + \underbrace{\frac{\mathbf{v}_{\tau}^n - Q_{n-1}(s, a)}{\mathbf{v}_{\tau}^n - Q_{n-1}(s, a)}}_{n}$$

Monte Carlo Control (4)

▶ But π^n changes continuously, so the distribution of rewards is non-stationary

$$Q_n(s,a) = Q_{n-1}(s,a) + \frac{1}{n} [\mathbf{v}_{\tau}^n - Q_{n-1}(s,a)] \to \mathbf{Bandit} \ \mathbf{case}$$

$$Q_n(s,a) = Q_{n-1}(s,a) + \eta [\mathbf{v}_{\tau}^n - Q_{n-1}(s,a)] \to \mathbf{Full} \ \mathbf{MDP} \ \mathbf{case}$$

► A Bandit can be seen as MDP with a chain of length one (i.e. s) - η is a learning rate (e.g., 0.001)

Monte Carlo Control (5)

- ▶ Start at any state, initialise $Q_0(s, a)$ as you visit states/actions
- Act ϵ -greedily
- Wait until episode ends, i.e. a terminal state is hit ϵ set to some low value, e.g., 0.1
- ▶ Add all reward you have seen so far to $\mathbf{v}_{\tau}^{\mathbf{i}}=R(s,a)+\gamma R(s',a')+...\gamma^2 R(s'',a'')+\gamma^{\tau-1}R(s^{\tau},a^{\tau})$ for
- $Q_n(s, a) = Q_{n-1}(s, a) + \eta \left[v_{\tau}^n Q_{n-1}(s, a) \right]$

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

From monte carlo control to SARSA and Q-Learning

- \blacktriangleright With MC we update using the rewards from the whole chain
- ▶ Can we update incrementally?

$$\begin{split} Q_n(s,a) &= Q_{n-1}(s,a) + \eta \left[\mathbf{v}_{\tau}^n - Q_{n-1}(s,a) \right] \\ Q_n(s,a) &= Q_{n-1}(s,a) + \eta \left[R(s,a) + \gamma R(s',a') + ... \gamma^2 R(s'',a'') + \gamma^{\tau-1} R(s^{\tau},a^{\tau}) - Q_{n-1}(s,a) \right] \\ Q_n(s,a) &= Q_{n-1}(s,a) + \eta \left[R(s,a) + \gamma (R(s',a') + ... \gamma R(s'',a'') + \gamma^{\tau-2} R(s^{\tau},a^{\tau})) - Q_{n-1}(s,a) \right] \\ Q_n(s,a) &= Q_{n-1}(s,a) + \eta \left[R(s,a) + \gamma (\mathbf{v}_{\tau}^{n,(s',a')}) - Q_{n-1}(s,a) \right] \\ Q_n(s,a) &= Q_{n-1}(s,a) + \eta \left[R(s,a) + \gamma Q_{n-1}(s',a') - Q_{n-1}(s,a) \right] \end{split}$$

N-STEP RETURNS

Let's go over the toon example, without a MODEL

• $\epsilon - greedy$, with $\epsilon = 0.1$

Model free toon

Model Free Reinforcement Learning

PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING

FUNCTION APPROXIMATION (1)

- ▶ There is usually some link between states
- ▶ We can train function approximators incrementally to model
- We now have $Q(s, a; \theta)$, where θ are the parameters

Function approximation (2)

- ▶ What are the links in states in Toon?
- ► Can we write down the Q-values in a more compact way?
 - \blacktriangleright Let's devise a method to do this
- ► Examples include linear function approximators, neural networks, n-tuple networks
- ► Not easy to do, few convergence guarantees
 - \blacktriangleright But with some effort, this works pretty well

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning

POLICY WITH FEATURES

▶ What if after catching fish there was another action to choose from ("how many should I eat?")

Policy	Policy Value	Q-Values
$\pi(Start, Go\text{-}Fishing)$?	?
$\pi(Start, Go\text{-}to\text{-}Restaurant)$?	?
$\pi(Restaurant, Eat\text{-}\phi\text{-}fish)$	1	ϕ

WHAT DO WE ACTUALLY LEARN?

- \blacktriangleright X are our features
- ► Targets are
 - ► Q-learning
 - $y = R(s, a) + \gamma \max_{s' \in A} Q(s', a')$
 - ► SARSA(0)
 - $\blacktriangleright \ y = R(s,a) + \gamma \, Q(s',a')$
 - ► SARSA(1)/MC,
 - $\mathbf{v}_{\tau} \leftarrow R(s, a) + \gamma R(s', a') + ... \gamma^{2} R(s'', a'') + \gamma^{\tau 1} R(s^{\tau}, a^{\tau})$
 - ► N-Step versions
 - $\blacktriangleright\,$ Same as MC version, but stop prematurely and take a ${\rm SARSA/Q\text{-}learning\ target}$

What can be used as features? Anything (text, sound chunks, images) For text see here: https://github.com/facebookresearch/CommAI-env You often don't need to start from scratch, for text you have word2vec Different Neural Network architectures ** Go (10 ¹⁷⁰ states) Atari (grayscale, 110 x 84 resolution) ** Detributed of & Motivation Markov Discussor Process (MDPs) Plansing Moder Free Reinforcament Learning ** Detributed of & Motivation Markov Discussor Process (MDPs) Plansing Moder Free Reinforcament Learning ** MORE ON NEURAL NETWORKS AND Function Approximation scheme is networks ** Can approximate almost any function ** We had a series of recent advances ** Go (10 ¹⁷⁰ states) ** Atari (grayscale, 110 x 84 resolution) ** Detributed of & Motivation Markov Discussor Process (MDPs) Plansing Moder Free Reinforcament Learning ** Detributed of & Motivation Markov Discussor Process (MDPs) Plansing Moder Free Reinforcament Learning ** MORE ON NEURAL NETWORKS	56 / 70
 ► For text see here: https://github.com/facebookresearch/CommAI-env ► You often don't need to start from scratch, for text you have word2vec ► Different Neural Network architectures ► Most common modern function approximation scheme is networks ► Can approximate almost any function ► We had a series of recent advances ► Go (10¹⁷⁰ states) ► Atari (grayscale, 110 x 84 resolution) Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning MORE ON NEURAL NETWORKS	56 / 70
PLATFORMS INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING MORE ON NEURAL NETWORKS MORE ON NEURAL NETWORKS	56 / 70
PLATFORMS MORE ON NEURAL NETWORKS	EMENT LEARNING
 ► Tools ► Keras (neural networks) ► Tensorflow (neural networks, but closer to the machine) ► goo.gl/YGWSbL ► Open AI gym ► There is a phenomenal lack of windows support! ► Let's look at open AI gym ► A lot of modern work is a combination of RL with neural networks ► We have good libraries now ► A function approximator loosely based on the brain ► Global function approximator ► Catastrophic forgetting ► Multiple ways of breaking correlations ► Experience replay, asynchronous games ► Again, think of Neural Networks as a mechanism for sterile Q-Values 	oring
57/70 INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING	58 / 70 EMENT LEARNING
What are we learning? Neural Network architecture	
 ► There are certain choices that need to be made ► Number of layers ► Type of layers ► Learning algorithms ► Regularisation methods ► Many different ways of building those networks ► Let's look at some code 	
59/70	60 / 70

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING	INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING
Intuition building	SINGLE PLAYER GAMES
 ▶ Choose a game ▶ Choose a character in the game ▶ Chose the features that represent the character's state ▶ Choose the neural network to use 	 ▶ Everything we have seen is based on single player environments ▶ But from NPC perspective there is no such thing as single player ▶ The actual player is your opponent! ▶ Domain of multiple agents interacting is Game Theory (or multi-agent learning) ▶ Environment adapts back at you ▶ Needs more tricks to get things to perform sensibly
61/70	62 / 70
INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPS) PLANNING MODEL FREE REINFORCEMENT LEARNING	INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING
Relationship to the rest of Machine Learning	Causality (a very brief intro)
 ▶ How can one learn a model of the world? ▶ Possibly by breaking it down into smaller, abstract chunks ▶ Unsupervised Learning ▶ and learning what effects ones actions have the environment ▶ Supervised Learning ▶ RL weaves all fields of Machine Learning (and possibly Artificial Intelligence) into one coherent whole ▶ The purpose of all learning is action! ▶ You need to be able to recognise faces so you can create state ▶ and act on it 	 ▶ We often colloquially say "A is caused by B" ▶ Can you discuss the meaning of this?
63 / 70 Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning	64 / 70 Introduction & Motivation Markov Decision Process (MDPs) Planning Model Free Reinforcement Learning
Counterfactuals	What is the link?
 ▶ If I take action a I land on state s ▶ What if I don't take action a?' ▶ "Experimenter forced you to pick up smoking" vs ▶ "Experimenter observed that you smoked" ▶ Will you get lung disease? ▶ The experimenter takes the actions vs observes 	 ▶ Off-policy evaluation learning ▶ Let's see an example ▶ Features are colour of hair, height, smoking ▶ Reward is 0 (lung disease), 1 (healthy) ▶ This would have been supervised learning if we knew the policy!
65 / 70	66 / 70

INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING
Further study (1)
 ▶ Tom Mitchell, Chapter 13 ▶ David Silver's UCL Course: http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html ▶ Some ideas in these lecture notes taken from there ▶ Probably the best set of notes there is on the subject ▶ Online at http://www.machinelearningtalks.com/tag/rl-course/ ▶ Reinforcement Learning, by Richard S. Sutton and Andrew G. Barto ▶ Classic book ▶ Excellent treatment of most subjects
68 / 70
INTRODUCTION & MOTIVATION MARKOV DECISION PROCESS (MDPs) PLANNING MODEL FREE REINFORCEMENT LEARNING
Some modern papers
 ▶ Asynchronous Methods for Deep Reinforcement Learning https://arxiv.org/pdf/1602.01783v2.pdf ▶ A Survey of Monte Carlo Tree Search Methods http://www.cameronius.com/cv/mcts-survey-master.pdf ▶ Deep Exploration via Bootstrapped DQN https://arxiv.org/abs/1602.04621