- We use statistics to confirm effects, estimate parameters, and predict outcomes
- It usually rains when Im in Cape Town, but mostly on Sunday
- *Confirmation:* In Cape Town, it rains more on Sundays than other days
- *Estimation:* In Cape Town, the *odds* of rain on Sunday are 1.62.2 times higher than on other days
 - *Prediction:* I am confident that it will rain at least one Sunday the next time I go

C

- How we interpret data like this necessarily depends on assumptions:
- Is it likely our observations occured by chance?
- Is it likely they *didnt*?

 $![image](my_i mages/eight.jpg)height = "0.8]$

jspan; *Tessa Wessels, jspan; *Faces on a Train*;/span; *j/span;

- We measure the average heights of children raised with and without vitamin A supplements
 - *Estimate:* how much taller (or shorter) are the treated children on average?
 - *Confirmation:* are we sure that the supplements are helping (or hurting)?
 - *Range of estimates:* how much do we think the supplement is helping?

Estimation ========

- We use *P values* to say how sure we are that we have seen some effect
- We use *confidence intervals* to say what we think is going on (with a certain level of confidence)
 - P values are *over-rated*
 - *Never* use a high P value as evidence for anything, e.g.:
 - that an effect is small
 - that two quantities are similar
 - We want to know if vitamin A supplements improve the health of village children
 - Is height is a good measure of general health?
 - How will we know height differences are due to our treatment?
- We want the two groups to start from the same point independent randomization of each individual
 - We may measure *changes* in height
 - Or *control for* other factors
 - Is vitamin A good for these children?
 - How sure are we?
 - How good do we think it is?
 - How sure are we about that?
 - What does it mean if I find a significant P value for some effect in this experiment?
 - The difference is unlikely to be due to chance
- So what! I already know vitamin A has strong effects on metabolism If Im certain that the true answer isnt exactly zero, why do I want the P value anyway?

c

- What do these results mean?
- Which are significant?

c

![image](vitamins.Rout-1.pdf)width="100.00000%"

- A high P value means we cant see the sign of the effect clearly
- A low P value means we can

 $![image](Lecture_i mages/fog.jpg)height = "0.8"$

 $![image](Lecture_i mages/clear.jpg)height = "1"$

- More broadly, a P value measures whether we are seeing *something* clearly
- Its usually the sign (\pm) of some quantity, but doesn't need to be
- Type I (*False positive:*) concluding there is an effect when there isnt one
- This doesn't happen in biology. There is always an effect. Type II (*False negative:*) concluding there is no effect when there really is
 - This *should* never happen, because we should never conclude there is no effect
- Type I (*False positive:*) in the hypothetical case that the effect is exactly zero, what is the probability of falsely finding an effect
- Should be less than or equal to my significance value Type II (*False negative:*) what is the probability of failing to find an effect that is there?
- Useful, but can only be asked for a specific hypothetical effect *size* These are useful to analyze **power** and **validity** of a statistical design
 - You should do these analyses *before* you collect data, not after

c

- *Sign error:* if I think an effect is positive, when its really negative (or vice versa)
- *Magnitude error:* if I think an effect is small, when its really large (or vice versa)
- Confidence intervals clarify all of this

 $![\mathrm{image}](\mathrm{Lecture}_{i} mages/error.jpg)width = "100.00000\%"$

c

- If I have a low P value I can see something clearly
- But its usually better to focus on what I see than the P value $![image](Lecture_i mages/clear.jpq)width = "100.00000%"$

c

- If I have a high P value, there is something I *dont* see clearly
- It *may be* because this effect is small
- High P values should *not* be used to advance your conclusion $![image](Lecture_i mages/fog.jpg)width = "100.00000%"$
- Small differences
- Less data
- More noise
- An inappropriate model

- Less model resolution
- A lower P value means that your evidence for difference is better
- A higher P value means that your evidence for similarity is better or worse!

c

![image](flu.Rout-0.pdf)width="100.00000%"

- Why is weather not causing deaths at this time scale?

c

![image](flu.Rout-1.pdf)width="100.00000%"

- **Never** say: A is significant and B isnt, so A > B
- **Instead:** Construct a statistic for the hypothesis A > B
- May be difficult

c

- All men are mortal
- Jacob Zuma is mortal
- Therefore, Jacob Zuma is a man

![image](Lecture_images/zuma.jpg)width = "100.00000%"

c

- All men are mortal
- Fanny the elephant is mortal
- Therefore, Fanny is a man

![image](Lecture_i mages/fanny.jpq)width = "100.00000%"

- A lot of statistical practice works this way:
- bad logic in service of conclusions that are (usually) correct This sort of statistical practice leads in the aggregate to bad science
 - The logic can be fixed:
 - Estimate a difference, or an interaction
 - We cant build statistical confidence that something is small by failing to see it clearly
 - We must instead see clearly that it is small
 - This means we need a standard for what we mean by small

![image](Lecture_i mages/N95.jpg)height = "0.8

![image](Lecture_i mages/surgical.jpg)height = "0.7"

- People who work in respiratory clinics sometimes have to wear bulky, uncomfortable, expensive masks
 - They would like to switch to simpler masks, if those will do the job
 - How can this be tested statistically? We don't want the masks to be different.
 - Use a confidence interval
- Decide how big a level is acceptable, and construct a P value for the hypothesis that this level is excluded!

![image](masks.Rout-2.pdf)height="0.8"

![image](masks.Rout-0.pdf)width="100.00000%"

- Is the new mask good enough?
- Whats our standard for that?

c

![image](masks.Rout-1.pdf)width="100.00000%"

- We can even attach a P value by basing it on the right" statistic.
- The right statistic is the thing whose sign we want to know:
- The difference between the observed effect and the standard we chose

Frequentist paradigm

- Make a null model
- Test whether the effect you see could be due to chance
- What is the probability of seeing exactly a 1.52 cm difference in average heights? Test whether the effect you see <code>jspan;*or</code> a larger effect*;/span; could be due to chance
 - This probability is the P value

![image](vitamins_plot.Rout -0.pdf)height = "0.8

![image](vitamins_plot.Rout -1.pdf)height = "0.8"

![image](vitamins_plot.Rout -2.pdf)height = "0.8"

 $[[image](vitamins_nlot.Rout - 3.pdf)height = "0.8"$

![image](vitamins_plot.Rout -4.pdf)height = "0.8

![image](vitamins**cramble.Rout.pdf)height = "0.8

Bayesian paradigm

c

- Make a complete model world
- ${\operatorname{\mathsf{-}}}$ Use conditional probability to calculate the probability you want

![image](Lecture, mages/shanghai.jpq)width = "100.00000%"

c

- More assumptions \implies more power
- With great power comes great responsibility

![image](Lecture_i mages/spider man.jpg)width = "100.00000%"

- We want to go from a *statistical model* of how our data are generated, to a probability model of parameter values
- Requires *prior* distributions describing the assumed likelihood of parameters before these observations are made
- Use Bayes theorem to calculate posterior distribution likelihood after taking data into account

- A frequentist can do a clear analysis right away
- A Bayesian needs a ton of assumptions will try to make uninformative assumptions $\lceil (vitamins_p lot.Rout 0.pdf)width = "100.00000%"$

c

- Frequentist: how unlikely is the observation, from a random perspective?
- Bayesian: whats my model world? What is my prior belief about weather-weekday interactions.

Conclusion ========

- Statistics are not a magic machine that gives you the right answer
- If you are to be a serious scientist in a noisy world, you should have your own philosophy of statistics
 - Be pragmatic: your goal is to do science, not get caught by theoretical considerations
 - Be honest: its harder than it sounds.
 - You can always keep analyzing until you find a significant result
- If you do this you will make a lot of mistakes You may also keep analyzing until you find a result that you already know is true.
- This is confirmation bias; youre probably right, but your project is not advancing science Good practice
 - Keep a data-analysis journal
 - Start *before* you look at the data