《概率论与数理统计》试题A参考答案

一. 毕坝远拜题(母小题 4 分,共 20 分)	
1. B 2. C 3. D 4. B 5. A 二. 填空题(每小题 4 分,共 20 分)	
1. 0.18 2. $P(N=k) = \frac{2k-1}{36}$, $k=1,\dots,6$ 3. 3.2 4. 0 5. $\hat{\mu}_2$;	$\hat{\mu}_{_{1}}$
三. 解答题 (每小题 10 分, 共 60 分)	
1. (10 分)解:记 B 为"最终成绩合格", B 为"第一次考试超过	55 分", B ₂ "第二
次考试超过 55 分"。依题意, $B_2 \subset \overline{B}_1$ 且 $P(B_1) = 0.68$, $P(B_2 \mid \overline{B}_1) = 0.7$	7
$P(B) = P(B \mid B_1)P(B_1) + P(B \mid \overline{B}_1)P(\overline{B}_1)$ = $P(B \mid B_1)P(B_1) + P(B_2 \mid \overline{B}_1)P(\overline{B}_1) = 0.68 + 0.32 \times 0.7 = 0.904$	3分
(1) 所求概率为 $P(B_1 B)$ 。由贝叶斯公式	
$P(B_1 B) = \frac{P(B_1)P(B B_1)}{P(B)} \approx 0.75$	······6分
(2) 显然 $P(X=1) = P(B) = 0.904$, $P(X=0) = 0.096$, 故	
$P(\frac{1}{X+1}=1) = P(X=0) = 0.096$, $P(\frac{1}{X+1}=\frac{1}{2}) = P(X=1) = 0.904$	8分
$ \text{With } F(x) = \begin{cases} 0, & x < \frac{1}{2} \\ 0.904, & \frac{1}{2} \le x < 1 \text{ o} \\ 1, & x \ge 1 \end{cases} $	····10分
2. (10 分) 解:由条件概率与x无关知随机变量X,Y相互独立	2分
于是	
(1) $f_{Y}(y) = \begin{cases} 1, & 1 \le y \le 2 \\ 0, & 其他 \end{cases}$	6分
(2)由于 X,Y 期望都存在,独立必不相关,从而 $cov(X,Y)=0$	10 分
3. (10 分) 解: 似然函数: $L(\theta) = \prod_{i=1}^{n} e^{\theta - x_i} = e^{n(\theta - \overline{x})}$ $(x_i \ge \theta, i = 1)$	l,…,n)3 分
由于 $\theta \le x_i \ (i=1,\dots,n) \Leftrightarrow \theta \le \min\{x_1,x_2,\dots,x_n\}$,又 $L(\theta)$ 为	关于θ单增,故当
$\theta = \min\{x_1, x_2, \dots, x_n\}$ 时 $L(\theta)$ 取到最大值。	8分
因此 $\hat{\theta} = \min\{X_1, X_2, \dots, X_n\}$ 。	10 分
	第1页 共 2 页

4. (10 分) 解:由于方差 $\sigma^2=1$ 已知,故数学期望 μ 的置信水平为 0.95 的置信区间为

将 $n=100, \overline{x}=5, \ \sigma=1, \ \alpha=0.05$ 及 $z_{0.025}=1.96$ 代入得所求区间为

5. (10分) 解:设这9个数据对应的简单样本为 X_1, \dots, X_g 。

(III) 给定 $\alpha = 0.005$,临界值 $\chi^2_{\alpha}(9) = 23.59$,从而接受域为: (0, 23.59) ……6 分

(IV) 检验统计量的值:因
$$\sum_{i=1}^{9} (x_i - 5.35)^2 = 0.3969 = 0.63^2$$
,故 $\chi^2 = 39.69 > 23.59$,故 拒绝原假设,即在 0.5%的显著性水平下,股票价格波动显著地增大了。10 分

6. (10分) 解: 记 X, 为第 i 只 Led 灯的寿命, 则

由中心极限定理,总寿命 $\sum_{i=1}^{36} X_i$ 近似服从正态分布,从而近似地有

$$\frac{\sum_{i=1}^{36} X_i - 36EX_i}{\sqrt{36DX_1}} \sim N(0,1) \qquad \cdots 6 \, 2$$

于是所求概率为

$$P\left(\sum_{i=1}^{36} X_i \ge 1.92 \times 10^6\right) = P\left(\frac{\sum_{i=1}^{36} X_i - 36 E X_i}{\sqrt{36 D X_1}} \ge \frac{1.92 \times 10^6 - 36 \times 5 \times 10^4}{6 \times 5 \times 10^4}\right)$$

$$\approx 1 - \Phi(0.4) = 0.34$$