订单簿研究

吴子达

2017年3月19日

目录

1	订单簿介绍													1				
	1.1	1.1 订单簿的统计性质											1					
		1.1.1	新增订单的	到达	分布													1
2	做市商模型											3						
3	Han	nilton-	Jacobi-Bellı	nan	方科	2												5

iv

Chapter 1

订单簿介绍

- 1.1 订单簿的统计性质
- 1.1.1 新增订单的到达分布

根据 Avellaneda(2008), 市价单的大小分布符合 Power Law 的分布。

Chapter 2

做市商模型

假设订单到达符合泊松点过程,bid 和 ask 两边分别为 N_b 和 N_a ,则做市商的的存货为

$$q_t = N_t^b - N_t^a$$

做市商报价为 S^b_t 和 S^a_t ,因为订单簿的到达过程和距离中间价的距离有关,即 $\delta^b_t=S_t-S^b_t$, $\delta^a_t=S^a_t-S_t$ 。则点过程的参数 λ 为:

$$\lambda^b(\delta^b) = Ae^{-k\delta^b}$$

$$\lambda^a(\delta^a) = Ae^{-k\delta^a}$$

令做市商现金为X,则

$$dX_t = (S_t + \delta_t^a)dN_t^a - (S_t - \delta_t^b)dN_t^b$$

令做市商满足 CARA 效用函数,则做市商优化问题为:

$$\sup E[-\exp(-\gamma(X_T + q_T S_T))]$$

Chapter 3

Hamilton-Jacobi-Bellman 方程