4. Višestruka diskriminantna analiza (Multiple Discriminant Analysis)

Problem c-razreda:

$$D_1, D_2, \cdots, D_c$$
 odnosno $\omega_1, \omega_2, \cdots, \omega_c$

Generalizirana FLD uključuje (c-1) diskriminantnih funkcija: Projekcija d-dimenzionalnog prostora u (c-1)-dimenzionalni prostor ($d \ge c$).

Generalizirana matrica raspršenosti unutar razreda (engl. within-class scatter matrix):

$$S_W = \sum_{i=1}^{c} S_i$$

gdje je

$$S_i = \sum_{\vec{a} \in D_i} (\vec{x} - \vec{m}_i) (\vec{x} - \vec{m}_i)^T$$

i

$$\overrightarrow{m}_i = \frac{1}{n_i} \sum_{\overrightarrow{x} \in D_i} \overrightarrow{x}$$
.

Matrica S_B kao generalizirana ne dobiva se tako očigledno.

Ukupan vektor srednje vrijednosti \overrightarrow{m}

$$\overrightarrow{m} = \frac{1}{n} \sum_{\overrightarrow{x} \in D_i} \overrightarrow{x} = \frac{1}{n} \sum_{i=1}^{c} n_i \overrightarrow{m}_i$$

gdje je n_i broj uzoraka u razredu D_i odnosno ω_i , a \overrightarrow{m}_i vektor srednje vrijednosti vektora iz razreda ω_i .

Ukupna matrica raspršenosti S_{T}

$$\begin{split} \boldsymbol{S}_T &= \sum_{\overrightarrow{x} \in D_i} (\overrightarrow{x} - \overrightarrow{m}) (\overrightarrow{x} - \overrightarrow{m})^T \\ \boldsymbol{S}_T &= \sum_{i=1}^c \sum_{\overrightarrow{x} \in D_i} (\overrightarrow{x} - \overrightarrow{m}_i + \overrightarrow{m}_i - \overrightarrow{m}) (\overrightarrow{x} - \overrightarrow{m}_i + \overrightarrow{m}_i - \overrightarrow{m})^T \end{split}$$

$$S_T = \sum_{i=1}^c \sum_{\vec{x} \in D_i} (\vec{x} - \vec{m}_i) (\vec{x} - \vec{m}_i)^T + \sum_{i=1}^c \sum_{\vec{x} \in D_i} (\vec{m}_i - \vec{m}) (\vec{m}_i - \vec{m})^T$$

$$S_T = S_W + \sum_{i=1}^c n_i (\vec{m}_i - \vec{m}) (\vec{m}_i - \vec{m})^T.$$

Drugi član

$$\sum_{i=1}^{c} (\vec{m}_i - \vec{m}) (\vec{m}_i - \vec{m})^T$$

je poopćena matrica raspršenosti između razreda S_{B}

$$S_B = \sum_{i=1}^{c} n_i (\vec{m}_i - \vec{m}) (\vec{m}_i - \vec{m})^T$$
$$S_T = S_W + S_B.$$

Projekcija iz d-dimenzionalnog prostora u (c-1)-dimenzionalni prostor uporabom (c-1) diskriminantnih funkcija

$$y_i = \overrightarrow{w}_i^T \overrightarrow{x}, i = 1, 2, \cdots, c-1.$$

Ako \mathcal{Y}_i promatramo kao komponentu vektora \overrightarrow{Y} i težinske vektore \overrightarrow{w}_i kao stupce $d\times (c-1)$ matrice W tada je projekcija:

$$\vec{Y} = W^T \vec{x}$$

Uzorci $\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_n$ projiciraju se u odgovarajući skup uzoraka $\vec{Y}_1, \vec{Y}_2, \cdots, \vec{Y}_n$ koji mogu biti opisani svojim srednjim vektorima i matricama raspršenosti:

$$\begin{split} \widetilde{m}_i &= \frac{1}{n_i} \sum_{\overrightarrow{y} \in Y_i} \overrightarrow{y} \\ \overrightarrow{m} &= \frac{1}{n} \sum_{i=1}^c n_i \widetilde{m}_i \\ \widetilde{S}_W &= \sum_{i=1}^c \sum_{\overrightarrow{y} \in Y_i} (\overrightarrow{y} - \widetilde{m}_i) (\overrightarrow{y} - \widetilde{m}_i)^T \\ \widetilde{S}_B &= \sum_{i=1}^c n_i (\widetilde{m}_i - \overrightarrow{m}) (\widetilde{m}_i - \overrightarrow{m})^T \\ \widetilde{S}_W &= W^T S_W W \end{split}$$

$$\widetilde{S}_B = W^T S_B W$$

$$y_i = \overrightarrow{w}_i^T \overrightarrow{x}, i = 1, 2, \cdots, c-1.$$
 Dodatak 1.

$$\begin{split} \widetilde{S}_W &= \sum_{i=1}^c \sum_{\overrightarrow{y} \in Y_i} (\overrightarrow{y} - \widetilde{m}_i) (\overrightarrow{y} - \widetilde{m}_i)^T \\ \overrightarrow{y} &= W^T \overrightarrow{x} \quad \widetilde{m}_i = W^T \overrightarrow{m}_i \\ \widetilde{S}_W &= \sum_{i=1}^c \sum_{\overrightarrow{y} \in Y_i} (W^T \overrightarrow{x} - W^T \overrightarrow{m}_i) (W^T \overrightarrow{x} - W^T \overrightarrow{m}_i)^T \\ \widetilde{S}_W &= \sum_{i=1}^c \sum_{\overrightarrow{y} \in Y_i} W^T (\overrightarrow{x} - \overrightarrow{m}_i) (\overrightarrow{x} - \overrightarrow{m}_i)^T W \\ \widetilde{S}_W &= W^T \sum_{i=1}^c \sum_{\overrightarrow{y} \in Y_i} (\overrightarrow{x} - \overrightarrow{m}_i) (\overrightarrow{x} - \overrightarrow{m}_i)^T W \\ S_W &= \sum_{i=1}^c S_i \\ S_i &= \sum_{\overrightarrow{x} \in D_i} (\overrightarrow{x} - \overrightarrow{m}_i) (\overrightarrow{x} - \overrightarrow{m}_i)^T \\ \widetilde{S}_W &= W^T S_W W \\ \widetilde{S}_B &= W^T S_W W \\ \widetilde{S}_W &= W^T S_W W \end{split}$$

Gornje jednadžbe pokazuju kako se tzv. within-class i between-class matrice raspršenja transformiraju projekcijom u nižedimenzionalni prostor.

Tražimo transformacijsku matricu W koja maksimizira omjer between-class i within-class raspršenosti. Jednostavna skalarna mjera raspršenosti je determinanta matrice raspršenosti:

$$J(W) = \frac{\left|\widetilde{S}_{B}\right|}{\left|\widetilde{S}_{W}\right|}.$$

Determinanta je produkt svojstvenih vrijednosti matrice. Problem traženja (i nalaženja) pravokutne matrice W koja maksimizira $J(\cdot)$ je težak problem.

Rješenje:

Stupci optimalne matrice W su generalizirani svojstveni vektori koji odgovaraju najvećim svojstvenim vrijednostima u

$$S_B \vec{w}_i = \lambda_i S_W \vec{w}_i$$

Ako je ${\cal S}_W$ nesingularna onda se problem može pretvoriti u konvencionalni problem svojstvenih vrijednosti. Međutim, to zahtijeva računanje inverzne matrice ${\cal S}_W$:

$$S_{\vec{W}}^{-1}S_{\vec{B}}\vec{w} = \lambda \vec{w}$$

Umjesto toga možemo naći svojstvene vrijednosti kao korijene karakterističnog polinoma:

$$|S_B - \lambda_i S_W| = 0$$

$$J(W) = \frac{\left|\widetilde{S}_{B}\right|}{\left|\widetilde{S}_{W}\right|} = \frac{\left|W^{T}S_{B}W\right|}{\left|W^{T}S_{W}W\right|}$$

Naći W koja maksimizira J(W) .

$$S_B \vec{w}_i = \lambda_i S_W \vec{w}_i$$

Naći svojstvene vrijednosti kao korijene karakterističnog polinoma:

$$|S_B - \lambda_i S_W| = 0$$

i zatim riješiti:

$$(S_B - \lambda_i S_W) \vec{w}_i = \vec{0}$$

Primjer za 3D:

3D distribucija se projicira na 2D podprostore koji su opisani normalnim vektorima \vec{w}_1 i \vec{w}_2 . MDA traži podprostor u kojem je odvojivost projekcija najveća.

Dodatak 2.

Stupci optimalne (pravokutne) matrice W (koja maksimizira J(W)) su generalizirani svojstveni vektori koji odgovaraju najvećim svojstvenim vrijednostima u

$$S_B \overrightarrow{w}_i \!=\! \lambda_i S_W \overrightarrow{w}_i$$

Ako je S_W nesingularna onda se problem pretvara u konvencionalan problem svojstvenih vrijednosti. Međutim, umjesto računanja inverzne matrice S_W^{-1} mogu se naći svojstvene vrijednosti karakterističnog polinoma

$$|S_B - \lambda_i S_W| = 0$$

i riješiti

$$(S_B - \lambda_i S_W) \vec{w}_i = \vec{0}$$

izravno po \overrightarrow{w}_i .

$$J(W) = \frac{\left|\widetilde{S}_{B}\right|}{\left|\widetilde{S}_{W}\right|} = \frac{\left|W^{T}S_{B}W\right|}{\left|W^{T}S_{W}W\right|}$$

Problem nalaženja (pravokutne) matrice W koja maksimizira $J(\cdot)$ je složen. Stupci optimalne matrice W su generalizirani svojstveni vektori koji odgovaraju najvećim svojstvenim vrijednostima u

$$S_B \vec{w}_i = \lambda_i S_W \vec{w}_i$$

Ako je S_W nesingularna onda se problem može transformirati u konvencionalan problem svojstvenih vrijednosti. Međutim, umjesto toga možemo naći svojstvene vrijednosti kao korijene karakterističnog polinoma

$$|S_B - \lambda_i S_W| = 0$$

i onda riješiti

$$(S_B - \lambda_i S_W) \vec{w}_i = \vec{0}$$

izravno za svojstvene vektoren \vec{w}_i .

Budući da je S_B suma c matrica ranga jedan ili manje i budući da su samo (c-1) od njih nezavisne S_B je ranga (c-1) ili manje. Najviše je (c-1) svojstvenih vrijednosti različito od 0.

$$\widetilde{S}_{B} = \sum_{i=1}^{c} n_{i} (\widetilde{m}_{i} - \overline{m}) (\widetilde{m}_{i} - \overline{m})^{T}$$

$$S_B = n_1(\overrightarrow{m}_1 - \overrightarrow{m})(\overrightarrow{m}_1 - \overrightarrow{m})^T + n_2(\overrightarrow{m}_2 - \overrightarrow{m})(\overrightarrow{m}_2 - \overrightarrow{m})^T + \dots + n_c(\overrightarrow{m}_c - \overrightarrow{m})(\overrightarrow{m}_c - \overrightarrow{m})^T$$

Matrica S_B je suma c matrica. Matrice su ranga jedan ili manje i samo (c-1) od njih su nezavisne. S_B je ranga (c-1) ili manje. To znači da je najviše (c-1) svojstvenih vrijednosti različito od 0 i da (željeni) svojstveni vektori odgovaraju tim svojstvenim vrijednostima različitima od 0.

Skup uzoraka za učenje i skup uzoraka za ispitivanje - metode ispitivanja

Skup uzoraka za učenje je skup uzoraka s poznatom klasifikacijom (označeni uzorci). **Važna pretpostavka:** U uzorcima za učenje sadržana je većina informacija o svojstvima razreda kojima uzorci pripadaju.

1. Holdout metoda

Ako imamo dovoljno velik skup uzoraka s poznatom klasifikacijom.

 S_u – skup uzoraka za ucenje ($|S_u| = N$)

 \boldsymbol{S}_i- skup uzoraka za ispitivanje

$$S = S_u \cup S_i$$

$$S_u \cap S_i = \emptyset$$

S = skup uzoraka s poznatom klasifikacijom

Nedostaci Holdout metode:

- smanjuje se veličina skupa za učenje i skupa za ispitivanje; kako podijeliti skup ${\cal S}$ na ${\cal S}_u$ i ${\cal S}_i$?
- vjerojatnost greške klasifikatora koji se oblikuje uporabom konačnog skupa za učenje Nje

uvijek veća negoli odgovarajuća asimptotska vjerojatnost pogreške ($N
ightarrow \infty$).

2. Leave-One-Out metoda

Metoda pokušava zaobići problem podijele skupa označenih uzoraka. Učenje se obavlja uporabom (N-1) uzoraka, a ispitivanje se izvodi uporabom onog jednog preostalog uzorka. Ako je taj uzorak pogrešno razvrstan inkrementira se brojilo pogreške. postupak se ponavlja N puta, ali tako da je svaki put isključen drugi uzorak. Ukupan broj pogrešaka nas upućuje na procjenjenu vjerojatnost pogreške klasifikatora. Nedostatak metode je velika računska složenost.

3. Resubstitution metoda (Metoda ponovne zamjene)

Isti se skup uzoraka koristi prvo za učenje, a zatim za ispitivanje. Optimistička procjena vjerojatnosti pogreške klasifikatora.

Od skupa uzoraka za učenje zahtijeva se (za svaki uzorak):

- dovoljnost informacije;
- postojanost značajki;
- geometrijska postojanost (mala udaljenost među uzorcima u prostoru značajki znači i mali

razliku u svojstvima objekta).

N?

Idealno $N \to \infty$.

Preporuka za N:

Barem 3 do 5 puta više uzoraka za učenje po razredu od broja značajki (dimenzionalnost vektora značajki).

Primjer:

Sustav za autorizaciju osoba na temelju lica 580 korisnika - 110-komponentni vektor značajki.

$$M = 580$$

$$N = 5 \times 110 \times 580 = 319000$$
 slika lica.

Primjer:

Klasifikacija brojčano-slovčanih znakova.

$$M = 30 + 10 = 40$$

$$\omega_1, \omega_2, \cdots, \omega_{40}$$

Dimenzionalnost vektora značajki n = 18.

$$N = 5 \times 18 \times 40 = 3600$$
 slika brojcano – slovcanih znakova.