Relatorio Exercicio Computacional 4

Leonardo Heidi Almeida Murakami - NUSP: 11260186 leonardo.murakami@usp.br Instituto de Matemática e Estatística - Universidade de São Paulo

Neste trabalho utilizaremos de um modelo estatístico multinomial para aproximarmos uma função que possuímos alta dificuldade em calcular, sendo esta, neste exercício, a função verdade do modelo estatístico que sera mais profundamente descrito abaixo.

I. Introdução e Conceitos

A. Modelo Estatístico

Consideraremos o modelo estatístico m-dimensional (para este exercício, utilizaremos m=3) Multinomial, com observações x, priori y e parâmetro θ , onde

$$x, y \in N^m \tag{1}$$

$$\theta \in \Theta = S_m = \{ \theta \in R_m^+ | \theta \cdot 1 = 1 \}$$
 (2)

$$m = 3 \tag{3}$$

Com função de densidade potencial igual a

$$f(\theta|x,y) = \prod_{i=1}^{m} \theta_i^{x_i + y_i - 1}$$
(4)

Que prova-se extremamente semelhante a uma distribuição de Dirichlet, com x+y tornando-se o alpha da distribuição, que sera a aproximação que utilizaremos para obtermos valores aleatórios desta distribuição.

Além disso, também temos a função que define o conjunto de corte de nosso modelo, tal que

$$T(v) = \{ \theta \in \Theta | f(\theta|x, y) \le v \}, v \ge 0 \tag{5}$$

que sera utilizada para calcularmos a função verdade (objetivo desse exercício computacional)

$$W(v) = \int_{T(v)} f(\theta|x, y) d\theta \tag{6}$$

Onde W(v) é a massa da probabilidade a posteriori dentro de T(v), ou seja, a massa de probabilidade onde a densidade de probabilidade $f(\theta|x,y)$, não excede o limite v

B. Método de Aproximação

Para aproximarmos a função W, utilizaremos k pontos de corte, que variam entre 0 e o limite superior de $f(\theta)$ e geraremos n pontos θ aleatórios distribuídos de acordo com nossa função definida acima e utilizaremos isto para definir k-1 "bins"de corte com pesos semelhantes (ou seja, que possuem mesma fração de pontos gerados, de modo que a fração de pontos dentro deste intervalo seja $\frac{1}{k}$

 \tilde{U} tilizaremos a fração de pontos ate aquele intervalo como uma aproximação para W(v)

C. Aproximação de W(v)

1. Gerando o espaço de thetas aleatórios

Assim como pedido pelo professor, utilizaremos uma distribuição Gamma para gerarmos números aleatórios distribuídos baseados na distribuição da nossa função potencial, que se assemelha fortemente a uma Dirichlet. Para isso amostraremos 3 pontos independentes de 3 distribuições Gamma com densidade

$$Gamma(\alpha_i, 1) = \frac{y_i^{\alpha_i - 1} e^{-y_i}}{\Gamma(\alpha_i)}$$
 (7)

onde α_i é cada parâmetro da distribuição de Dirichlet, no nosso caso, usaremos $\alpha_i = x_i + y_i$ e então normalizamos os 3 valores gerados para cada componente de theta, Seja x_i o valor aleatório de uma das componentes de theta

$$x_i = \frac{y_i}{\sum_{j=1}^K y_j} \tag{8}$$

Teremos então nosso theta aleatório, para gerar todo o nosso espaço rodaremos esse algoritmo n vezes

2. Ajustando as bordas dinamicamente

Para que tenhamos bins com peso semelhantes, ou seja, todos próximos a 1/k ajustaremos dinamicamente as bordas de cada bin. Para isso, ordenaremos todo o nosso espaço de $f(\theta|x,y)$ em ordem crescente e realizaremos k cortes nesse array, de modo que cada pedaço possuirá n/k membros do vetor de $f(\theta|x,y)$, pegamos então as bordas direitas destes vetores e igualamos a cada ponto v. Deste modo teremos todos os bins balanceados.

3. Calculando uma aproximação para W(v)

Dado que temos todos os bins ajustados e os seus limites calculados precisamos agora criar uma função que corretamente simula o comportamento de W(v).

Como indicado no enunciado do exercicio, a fração de $f(\theta)$ presentes até um ponto v_j é uma aproximação de $W(v_j)$, chamaremos essa função aproximada de U(v), o que fazemos, para um dado ponto v, será somar as frações, ou seja, somar os bins (com suas fração de pontos) até que a borda de um bin seja maior que o v passado para a função

II. Implementação e Testes

O algoritmo foi implementado na linguagem Python na versão 3.8.8, organizado em 1 arquivo: statisticalModel.py.

A álgebra com vetores, assim como a geração de números aleatórios a partir de uma distribuição (no caso a Gamma) foi feita através da biblioteca *NumPy*. O esqueleto do código pode ser encontrado na seção abaixo

A. Arquivos do Projeto

Abaixo segue um breve resumo do conteúdo dos códigos fonte e interfaces. statisticalModel.py: Implementa todo o algoritmo. Separado em duas classes principais. Apresentarei apenas os métodos públicos das classes neste documento.

```
class Dirichlet(alpha: List[int]):
    def sample() -> List[float]:

class StatisticalModel(
    observations: List[int],
    prior: List[int],
    cut_off_points: int,
    theta_n_size: int=30000,
):
    def calculate_fraction_of_sets() ->
        Dict[(str, float)]:

    def U(v) -> float:
```

B. Algoritmo

Explicando um pouco melhor cada método mais relevante do programa.

- Dirichlet()
 - .sample(): retorna uma lista com os valores de theta da distribuição de Dirichlet que modela

nosso problema baseado no algoritmo explicado anteriormente (I.C.2)

\bullet StatisticalModel()

- .calculate_fraction_of_sets(): calcula a fração de pontos do espaço de theta criado em cada bin do nosso modelo e retorna um dicionario que mostra o limite inferior e superior de cada bin como chave e a fração nele presente como valor.
- _adjust_bounds_for_balanced_bins(): método protegido que é chamado na instanciação da classe. Ele é responsável pelo ajuste dinâmico dos sets de corte.
- -. U(v): método que aproxima W(v) dado um valor de ve retorna o valor aproximado

III. Conclusão

Após diversos testes com diversos valores diferentes de k e n, obtivemos um valor agradável de erro por volta de k=30000 e n=300000.

Para estes valores o desvio padrão de um mesmo valor rodado diversas vezes com um modelo instanciado com variáveis aleatórias diferentes e independentes entre modelos, atingimos um desvio padrão menor que 0.05, desejado pelo enunciado do exercício.

Além disso, para iniciar o modelo estatístico (com o set dinâmico dos limites de cada bin) temos uma demora de aproximadamente 11.29 segundos, onde, após a instanciação da classe, demoramos um tempo infimamente menor (2.57 nano segundos, calculando usando o Google Colabs com a utilidade %timeit) para obtermos um valor de $U(v) \approx W(v)$, isso utilizando variáveis de teste que não necessariamente representam o real valor a ser testado.