ÁLGEBRA ABSTRACTA Y CODIFICACIÓN: EJERCICIOS SEMANA 12

MAURO ARTIGIANI

Estos ejercicios no serán calificados

EJERCICIOS

- 1. Sea G un grupo. Fijamos un elemento $g \in G$ y definamos $I = \{n \in \mathbb{Z}, g^n = e\}$, donde e es la identidad en G. Demuestre que I es un ideal en \mathbb{Z} .
- 2. Sea F un campo. Definamos

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, a, b \in F, a \neq 0 \right\}.$$

Sean $N \subseteq G$ el subconjunto formado por las matrices con a=1 y $H \subseteq G$ el subconjunto formado por las matrices con b=0. Demuestre que

- a) G es un grupo;
- b) N es un subgrupo normal de G, isomorfo al grupo aditivo del campo F;
- c) H es un subgrupo de G isomorfo al grupo multiplicativo del campo F. ¿Es normal?;
- d) $G/N \cong H$.
- 3. Sean N un subgrupo normal de un grupo G y H un subgrupo cualquiera. Definamos $NH = \{nh, n \in N, h \in H\}$. Demuestre que NH es un subgrupo de G. Además demuestre o falsifique los siguientes enunciados:
 - a) Si H es un subgrupo normal, entonces NH es un subgrupo normal.
 - b) Si NH es un subgrupo normal, entonces H es un subgrupo normal.
- 4. Se
amun entero positivo. Acuérdese que la función
 φ de Euler es definida como

$$\varphi(m) = \{0 \le n \le m - 1, \gcd(m, n) = 1\}.$$

Hemos visto que hay $\varphi(m)$ unidades en \mathbb{Z}_m . Demuestre

- a) Si gcd(n, m) = 1 entonces $n^{\varphi(m)} \equiv 1 \pmod{m}$;
- b) En particular, si p es un número primo y $p \nmid n$ tenemos $n^{p-1} \equiv 1 \pmod{m}$:
- c) Si p es un primo $n^p \equiv n$ para todos n. Esto resultado se conoce como el $Peque\~no$ teorema de Fermat.
- 5. Sea G un grupo. Para cada elemento $g \in G$ definamos la aplicación

$$\iota_g \colon G \to G$$

$$x \mapsto gxg^{-1}.$$

a) Demuestre que, para todos $g \in G$, la aplicación ι_g es un automorfismo de G. Este automorfismo se llama automorfismo interno inducido por g.

Date: 22 Octubre 2020.

 $^{^{1}}$ Es decir: un homomorfismo invertible de G en sí.

- b) Demuestre que el conjunto $\{\iota_g, g \in G\}$ es un subgrupo de Aut(G), el grupo de los automorfismos de G. Este subgrupo se llama el subgrupo de los automorfismos internos y se denota Inn(G).
- c) Demuestre que la aplicación $g \mapsto \iota_g$ es un homomorfismo desde G en $\operatorname{Aut}(G)$ cuya imagen es $\operatorname{Inn}(G)$ y cuyo núcleo es el conjunto de los elementos de G que conmutan con todos los elementos en G:

$$Z(G) = \{g \in G, gh = hg \text{ para todos } h \in G\}.$$

Este subgrupo se llama el centro de G.

d) Deduzca desde el punto precedente que $\operatorname{Inn}(G) \cong G/Z(G)$. Demuestre ahora que $\operatorname{Inn}(G)$ es un subgrupo normal de $\operatorname{Aut}(G)$. Por definición el cociente $\operatorname{Aut}(G)/\operatorname{Inn}(G)$ es el grupo de los *automorfismos externos* y se denota $\operatorname{Out}(G)$.