Markova procesi

Definīcija. Gadījuma procesu $\xi = \xi(t)$ sauc par Markova procesu, ja jebkuram laika momentam u pie fiksētas vērtības $\xi(u) = x$ (jebkurai x vērtībai) gadījuma lielumi $\xi(t)$ visiem $t \ge u$ nav atkarīgi no lielumiem $\xi(s)$ visiem s < u.

$$\forall t \ge u, \quad \forall s < u, \quad P(\xi(t) \in B | \xi(u) = x) =$$

$$= P(\xi(t) \in B | \xi(u) = x, \xi(s) = x_s, s < u)$$

Gadījuma procesam ir nepārtraukta trajektorija. Procesam izpildās Markova īpašība.

Vai trajektorija var būt gluda, t.i., katrā punktā t eksistē atvasinājums $\frac{d\xi(t)}{dt}$?

$$\frac{d\xi(t)}{dt} = \lim_{\Delta t \to 0} \frac{\xi(t + \Delta t) - \xi(t)}{\Delta t}$$

Piemēri.

1. Spēle "cirks".

Pieņemsim, ka $\xi(n) = i$. Tad $\xi(n+1)$ ir atkarīgs tikai no $\xi(n)$, bet nav atkarīgs no $\xi(1), \xi(2), ..., \xi(n-1)$.

2. Gadījuma klejošana pa skaitļu ass veselajiem punktiem.

$$q=1-p$$
 \longrightarrow p

Var atrast varbūtību no (.)i nonākt (.)j pa n soļiem. Atkarīga tikai no i un j savstarpējā izvietojuma un soļu skaita n.

3. Radioaktīvā sabrukšana.

 $F(t) = P(\tau < t)_{-\text{katra atoma sabrukšanas laika sadalījuma funkcija},$

kur au – laiks no novērošanas sākuma t_0 līdz sabrukšanas brīdim.

Pieņēmums. Šī varbūtība nav atkarīga no t_0 . T.i., ja mēs novērojam atomu laiku t_1 un tas nav sabrucis, tad laika intervālā $(t_1, t_1 + t)$ tas atkal sabruks ar varbūtību F(t).

$$p(t) = 1 - F(t) = P(\tau \ge t).$$

$$P(\tau \ge s + t | \tau \ge s) = P(\tau \ge t) = p(t)$$

Var rakstīt:

$$p(s+t) = P(\tau \ge s+t) = P(\tau \ge s+t | \tau \ge s) P(\tau \ge s) =$$
$$= P(\tau \ge t) P(\tau \ge s) = p(s) p(t)$$

$$p(s+t) = p(s)p(t) \implies e^{s+t} = e^{s}e^{t}$$

$$p(t)=e^{-\lambda t}$$
 $F(t)=1-e^{-\lambda t}$ - varbūtība, ka līdz laikam t notiks sabrukšana

Apzīmēsim $\xi(t)$ laikā t sabrukušo Ra atomu skaitu. Pieņemsim, ka sākumā ir n atomu un $\xi(0) = 0$.(Binomiālais sadalījums $\mathbf{M}\xi = np$)

$$\mathbf{M}\xi(t) = nF(t) = n(1 - e^{-\lambda t}) \triangleq a(t)_{-\text{tik atomu vidēji sabruks}}$$

Atomu skaits ir liels. Puasona sadalījums — robežsadalījums binomiālajam sadalījumam, ja $n \to \infty$.

$$P(\xi(t) = m) = \frac{a(t)^m}{m!} e^{-a(t)}$$
 $m = 0, 1, 2, ...$

Definīcija. Procesu, kurā laiks starp katrām divām stāvokļa nomaiņām ir sadalīts eksponenciāli, bet stāvokļu nomaiņu skaits laika vienībā ir sadalīts pēc Puasona sadalījuma, sauc par vienkāršu notikumu plūsmu jeb Puasona procesu.

 $\xi(t)$ - Markova process.

Pieņemsim, ka $\xi(u) = j$, tad neatkarīgi no $\xi(s)$, s < u, laika intervālā [u, t] sabruks m atomi ar varbūtību

$$P(\xi(t-u)=m) = \frac{(jF(t-u))^m}{m!} e^{-jF(t-u)}, \text{ t.i., tālākā}$$

procesa trajektorija atkarīga tikai no pašreizējā stāvokļa (skaitlis j), bet ne no priekšvēstures.

Markova procesa pārejas varbūtības

Process ar diskrētu stāvokļu telpu (ne vairāk kā sanumurējams skaits vērtību)

Process ar nepārtrauktu stāvokļu telpu (nesanumurējams vērtību skaits)

a) diskrēta telpa

$$\forall s < t, \ P(s, x, t, y) = P(\xi(t) = y | \xi(s) = x)$$

b) nepārtraukta telpa

$$\forall B \in \mathbf{X}, \ P(s, x, t, B) = P(\xi(t) \in B | \xi(s) = x)$$

Ja sadalījumam eksistē blīvums

$$P(s, x, t, B) = \int_{B} p(s, x, t, y) dy$$

Pārejas varbūtības uzdod procesa $\xi(t)$ pieaugumu $\xi(t) - \xi(s)$ sadalījuma likumu pie fiksēta $\xi(s) = x$.

Apzīmēsim
$$B_x = \{ y \in \mathbf{X} : y - x \in B \}_{\text{, tad}}$$

$$P(\xi(t) - \xi(s) \in B | \xi(s) = x) = P(s, x, t, B_x)$$

Var apskatīt svarīgu procesu ar neatkarīgiem pieaugumiem klasi, kuriem $\xi(t) - \xi(s)$ nav atkarīgs no $\xi(u)$ visiem $u \le s$. Piemērs – Puasona process.

Definīcija. Markova procesu sauc par stacionāru (homogēnu), ja tā pārejas varbūtības intervālā (s, t) nav atkarīgas no šī intervāla nobīdes pa laika asi:

$$P(s, x, t, B) = P(s+h, x, t+h, B) \triangleq P(t-s, x, B)$$