3 Minimizarea DFA

1. Echivalență pe cuvinte:

Pentru $L \subseteq \Sigma^*$ un limbaj definim \equiv_L astfel:

$$x \equiv_L y \iff \forall z \in \Sigma^* \text{ avem } xz \in L \iff yz \in L.$$

 \equiv_L este relație de echivalență.

2. Invarianța la dreapta la concatenare:

O relație se numește invariantă la dreapta față de concatenare dacă $xRy \implies \forall z \in \Sigma^*, xzRyz.$

3. Echivalenta dată de un automat:

Fie $M = (Q, \Sigma, \delta, q_0, F)$ un DFA. Definim \equiv_M :

$$x \equiv_M y \iff \delta(q_0, x) = \delta(q_0, y).$$

 \equiv_M este relație de echivalentă si invariantă la dreapta.

4. Indicele unei relații de echivalență:

 $|\Sigma^*/R|$ = numărul de clase de echivalență ale relației.

 \equiv_M este de indice finit (numarul de stări din M care sunt accesibile). Evident in clasa unei stări $q \in Q$ avem cuvintele $x \in \Sigma^*$ cu $\delta(q_0, x) = q$.

Teorema Myhill-Nerode:

Următoarele trei propozții sunt echivalente:

- 1. $L \subseteq \Sigma^*$ este regulat
- 2. L este reuniunea unor clase de echivalență ale unei relații de echivalență invariantă la dreapta de indice finit
- 3. Relația \equiv_L definită pentru L este de indice finit

Demonstrația teoremei:

 $1 \implies 2$: L'este regulat \implies există un DFA $M = (Q, \Sigma, \delta, q_0, F)$ astfel incât L(M) = L.

Construim M' din M eliminând stările inaccesibile și îl facem pe automat complet.

Relația $\equiv_{M'}$ este relație de echivalență invariantă la dreapta de indice finit.

Folosim $\equiv_{M'}$ pentru 2: $L = \bigcup_{q \in F} [q'] = \{x \in \Sigma^* \mid \delta(q_0, x) = f \in F\}$ pentru ca L(M') = L.

Deci L se poate scrie ca reuniune de clase de echivalență ale relației $\equiv_{M'}$.

 $2 \implies 3$: Demonstrăm că orice relație R care satisface 2 este o rafinare a relației \equiv_L .

Adică $xRy \implies x \equiv_L y$, cu alte cuvinte: clasele de echivalență ale lui R sunt incluse în clasele lui \equiv_L . În acest caz $|\Sigma^*/R| \ge |\Sigma^*/\equiv_L|$, deci am avea că \equiv_L este de indice finit.

Fie $xRy \stackrel{invarianta}{\Longrightarrow} \forall z \in \Sigma^* \ xzRyz.$

Pentru că L este reuniunea unor clase de echivalență ale lui R si pentru că $\forall z, xzRyz \implies xz$ si yz sunt în aceeasi clasă de echivalență $\implies xz \in L \iff yz \in L \implies x \equiv_L y$.

 $3 \implies 1$: Demonstrăm că \equiv_L este invariantă la dreapta : Fie $x \equiv_L y$ și fie $z \in \Sigma^*.$ $xz \equiv_L yz$?

 $\forall w \in \Sigma^*, (xz)w \in L \iff (yz)w \in L \text{ pentru că } x(zw) \in L \iff y(zw) \in L \text{ (din } \equiv_L).$

Deci $xz \equiv_L yz \implies \equiv_L$ este invariantă la dreapta.

Fie [x] clasa lui $x : [x] = \{w \mid w \equiv_L x\}.$

 \equiv_L are clasele : $[\lambda], [x_1], [x_2], ..., [x_n]$ (indice finit).

 $\overline{Q} = \{ [\lambda], [x_1], [x_2], ..., [x_n] \}.$

Observație : dacă $x \in L \implies \forall y \in [x]$ avem $y \in L$ pentru că $y \equiv_L x, \lambda \in \Sigma^* \implies y\lambda \in L \iff x\lambda \in L$,

 $x \in L$

 $\implies y \in L$

Definim automatul: $A = (\overline{Q}, \overline{\Sigma}, \overline{\delta}, [\lambda], \overline{F})$ cu

 $\overline{Q} = \{ [\lambda], [x_1], [x_2], ..., [x_n] \}$ finita.

 $\overline{F} = \{ [x] \mid x \in L \}$

 $\overline{\delta}([x], a) = [xa]$ este bine definită pentru că \equiv_L este invariantă la dreapta (adică pentru $x \equiv_L y, \overline{\delta}([x], a) = \overline{\delta}([y], a)$).

Din definiția lui $\overline{\delta}$ avem $\overline{\delta}([\lambda], x) = [x]$, deci $x \in L(A) \iff [x] \in \overline{F} \iff x \in L$. Deci L este regulat q.e.d.

Teoremă! Minimizarea DFA:

Automatul DFA cu număr minim de stări care acceptă L este unic abstracție de un izomorfism și este dat de automatul A de mai sus.

Demonstrație:

Am văzut că pentru orice DFA $M = (Q, \Sigma, \delta, q_0, F)$ cu L(M) = L, automatul M definește \equiv_M echivalență invariantă la dreapta de indice finit $(1 \implies 2)$.

Din 2 \Longrightarrow 3 am văzut că \equiv_M rafinează \equiv_L .

Numărul de stări din $M \geq |\Sigma^*/\equiv_M|$ (egalitate dacă M nu are stări inaccesibile) și $|\Sigma^*/\equiv_M| \geq |\Sigma^*/\equiv_L| \implies$ orice automat M cu L(M) = L are cel puțin atâtea stări ca automatul A din $3 \implies 1$.

Dacă numărul de stări din M= numărul de stări din $A\Longrightarrow |\Sigma^*/\equiv_M|=|\Sigma^*/\equiv_L|$ si \equiv_M era o rafinare a $\equiv_L\Longrightarrow x\equiv_M y\Longrightarrow x\equiv_L y\Longrightarrow \equiv_M=\equiv_L$.

Definim izomorfismul dintre M si A: $f:Q\to \overline{Q}$ si $f(q)=[x]\iff \delta(Q_0,x)=q$ functia f este bine definită, izomorfism.

Teorema ne dă existența și unicitatea automatului minim, dar nu și cum să îl găsim.

Dăm un algoritm de complexitate $O(|\Sigma| \cdot |Q|^2) \to \Sigma$ alfabet, Q stările

Cel mai bun algoritm cunoscut: Algoritmul lui Hopcroft $O(|\Sigma| \cdot |Q| \cdot log|Q|)$.

Pentru limbaje finite : Krinoi, Revuz $O(|\Sigma| \cdot |Q|)$.

Echivalența pe stări : pentru $M = (Q, \Sigma, \delta, q_0, F)$ un DFA fără stări inaccesibile. $p \equiv q \iff (\forall w \in \Sigma^*, \delta(p, w) \in F \iff \delta(q, w) \in F)$. \equiv este relație de echivalență și avem o bijecție φ de la clasele lui \equiv la \overline{Q} : $\varphi(\widehat{q}) = [w] \iff \delta(q_0, w) \in \widehat{q}$.

Deci, putem construi $A=(\overline{Q},\overline{\Sigma},\overline{\delta},[\lambda],\overline{F})$ dacă calculăm clasele lui \equiv . Căutăm stările neechivalente (in acest fel găsim echivalențele de stări) $p\not\equiv q\iff\exists\ x\in\Sigma^*$ cu $\delta(p,x)\in F$ și $\delta(q,x)\not\in F$ sau invers. Algoritm :

- 1. pentru $p \in F$ si $q \in Q F$ pun 1 în matricea A[p,q],0 altfel
- 2. pentru $p, q \in Q$ construiesc o listă goală
- 3. pentru orice pereche (p,q) nemarcată in A (A[p,q] == 0).
- 4. dacă $\exists a \in \Sigma$ astfel incât $(p', q') = (\delta(p, a), \delta(q, a))$ este marcată in $A(A[\delta...\delta] == 1)$
- 5. marcăm (p,q) (A[p,q]=1). (p'',q'')-(p''',q''')
- 6. marcăm toate perechile de stări din listele (p,q) și din listele perechilor marcate in acest pas.
- 7. altfel, pentru toate $a \in \Sigma$ punem (p,q) în lista lui $(\delta(p,a), \delta(q,a))$.

Structuri folosite: matrice $|Q| \times |Q|$ în care marcăm cu 1 stările neechivalente pentru fiecare pereche (p,q) o listă L_{pq} de perechi de stări : perechile neechivalente DACĂ aflăm că p și q sunt neechivalente.

Lema : pentru un DFA $A=(Q,\Sigma,\delta,q_0,F).$ $p\not\equiv q\iff$ in matricea calculată de algoritm la poziția (p,q) avem 1.

Demonstratie: inducție după lungimea șirului cel mai scurt care face diferența.

Lema : complexitatea algoritmului este $O(|\Sigma| \cdot |Q|^2)$:

Demonstrație : Liniile 1, 2 : $O(|Q|^2)$

Liniile 3-9 executate de $O(|Q|^2)$.

Linia 6 : în timp proporțional cu lungimile tuturor listelor. Fiecare pereche (p_1, p_2) apare cel mult în $O(|\Sigma|)$ liste \implies în total linia 6 se execută in $O(|\Sigma| \cdot |Q|^2)$.

Am găsit stările echivalente, cum minimizăm?

 $p \equiv q \implies \text{putem elimina } q : \forall r \in Q \text{ cu } \delta(r, a) = q \text{ definim } \delta'(r, a) = p.$

$$\widehat{M} = (Q/\equiv, \Sigma, \widehat{\delta}, \widehat{q_0}, F/\equiv)$$
 cu $Q/\equiv = \{\widehat{q} \mid q \in Q\}, \ \widehat{q} = \{p \mid p \equiv q, p \in Q\}$

$$F/ \equiv = \{\widehat{f} \mid f \in F\}$$

$$\widehat{\delta}(\widehat{q}, a) = \widehat{\delta(q, a)}.$$

acest automat este bine definit si izomorf cu automatul minimal pentru L.

Demonstrație:

$$\begin{split} q &\equiv p \implies \delta(q,a) = \delta(p,a) \; \forall q,p \in Q \; \forall a \in \Sigma \\ \widehat{\delta}(\widehat{q_0},w) &= \widehat{\delta(q_0,w)} \implies L(M) = L(\widehat{M}). \end{split}$$

Pentru minimizarea lui \widehat{M} :

Presupunem că \widehat{M} are mai multe stări decat automatul minimal $\implies \exists p,q \in M \text{ cu } \widehat{p} \neq \widehat{q}$ și $\exists x,y,\in \Sigma^* \text{ cu } x\equiv_L y \text{ și } \delta(q_0,x)=p,\ \delta(q_0,y)=q.$

Din $\widehat{p} \neq \widehat{q} \implies \exists w \in \Sigma^* \text{ cu } \delta(q, w) \in F \text{ si } \delta(p, w) \notin F \text{ sau invers } \implies \delta(q_0, xw) \in F \text{ si } \delta(q_0, yw) \notin F \text{ sau invers } \implies (xw, yw) \notin \Xi_{L(M)}$

Constradicție pentru că $\equiv_{L(M)}$ este invariantă la dreapta. q.e.d.

v0.4 21.4.2020