MICHEAL BEAR, HW2, 9/13/25

 \square **Problem 1** [Cartesian Products and Solution Sets] In our preliminary L0, we encountered the *digit set* $\mathbb{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ commonly used to express numbers in base 10. Alternatively, the *bit set* $\mathbb{B} = \{0, 1\}$ from L3 can be used to express numbers in base 2. Note: $|\mathbb{B}| = 2$. The set of *bit strings of length* 3 is the set of 3-tuples as defined in L3:

$$\mathbb{B}^{3} = \{0, 1\}^{3}$$

$$= \{(b_{1}, b_{2}, b_{3}) : b_{1} \in \{0, 1\} \land b_{2} \in \{0, 1\} \land b_{3} \in \{0, 1\}\}$$

$$= \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}$$

with $|\mathbb{B}^3|=2^3=8$. For each set below (i) present it explicitly and (ii) find its cardinality.

- 1.1 [5 points] $W = \{(b_1, b_2, b_3) \in \mathbb{B}^3 : b_1 = 0\}$
- 1.2 [5 points] $Y = \{(b_1, b_2, b_3) \in \mathbb{B}^3 : b_1 + b_2 + b_3 = 2\}$
- 1.3 [5 points] $W \cap Y$
- 1.4 [5 points] $(W \cup Y) \cap W$
- 1.5 [5 points] $(W \cap Y) \cup W$

solution

1. i) the set of bit strings for which the first element is 0 is:

$$W = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1)\}$$

- ii) |W| = 4
- 2. i) the set of bit strings for which b1, b2, and b3, add up to 2:

$$Y = \{(0, 1, 1), (1, 0, 1), (1, 1, 0)\}$$

- ii) |Y| = 3
- 3. i) the set of bit strings in the intersection of W and Y, or the set containing the bit strings that exisit in both the set W and the set Y:

1

$$W \cap Y = (0, 1, 1)$$

ii) $|W \cap Y| = 1$

4. i) the set of bitstrings in the union of W and Y is:

$$W \cup Y = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,1), (1,1,0)\}$$

the set of bit strings in $(W \cup Y) \cap W$ is the set of bit strings in $W \cup Y$ and in W:

$$(W \cup Y) \cap W = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1)\}$$

since this containes all values of \boldsymbol{W} and only values of \boldsymbol{W} , this is equal to \boldsymbol{W}

$$(W \cup Y) \cap W = W$$

- ii) $|(W \cup Y) \cap W| = 4$
- 5. i) as shown above:

$$W \cap Y = \{(0, 1, 1\}$$

the set of bit strings in $(W \cap Y)$ and/or in W:

$$(W\cap Y)\cup W=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1)\}$$

$$(W \cap Y) \cup W = W$$

ii)
$$||(W \cap Y) \cup W| = 4$$

 \square **Problem 2** [Nested Quantifiers] Recall $\mathbb{D} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and \mathbb{N} from L0. Determine the truth value of each proposition. Careful: just like we used 3 different variables x_1, x_2, x_3 in our discussion of ordered triples in L3, here n and n_0 are 2 different variables.

- 2.1 [5 points] $\forall d \in \mathbb{D} \exists m \in \mathbb{D} \ (|d-m| < 5)$
- 2.2 [5 points] $\exists m \in \mathbb{D} \ \forall d \in \mathbb{D} \ (|d-m| < 5)$
- 2.3 [5 points] $\forall n_0 \in \mathbb{N} \ \exists n \in \mathbb{N} \ (n_0 \leq n)$
- 2.4 [5 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n_0 \leq n)$
- 2.5 [5 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n_0 \le n \Rightarrow 4 < n)$

Solution

- 1) $\forall d \in \mathbb{D} \ \exists m \in \mathbb{D}(|d-m<5|)$ for all d in \mathbb{D} there exists an m in \mathbb{D} such that |d-m<5| for all d \leq 5, if m = 1, then $|d-m| \leq 5$ is \boxed{true} for all d > 5, if m = 5, then then $|d-m| \leq 5$ is \boxed{true}
- 2) $\exists m \in \mathbb{D} \ \forall d \in \mathbb{D} \ (|d-m| < 5)$ there exists an m in \mathbb{D} for all d in \mathbb{D} such that (|d-m| < 5) if m = 1 for all d \leq 5, then $|d-m| \leq 5$ is \boxed{true} if m = 5 for all d > 5, then then $|d-m| \leq 5$ is \boxed{true}
- 3) $\forall n_0 \in \mathbb{N} \ \exists n \in \mathbb{N} \ (n_0 \le n)$ for all n_0 in \mathbb{N} there exists an n in \mathbb{N} such that $(n_0 \le n)$ this statment is true because you can pick n to be equal to $n_0 \ | true |$
- 4) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n_0 \le n)$ there exists n_0 in \mathbb{N} for all n in \mathbb{N} such that $(n_0 \le n)$ let $n_0 = n$ $n_0 \le n$ is true
- 5) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n_0 \le n \Rightarrow 4 < n)$ there exists n_0 in \mathbb{N} for all n in \mathbb{N} such that $(n_0 \le n \Rightarrow 4 < n)$ this is not true because if $n_0 = 5$ and n = 5 $n_0 \le n$ is true but 4 < n is false. there being an $n_0 \le n$ does not imply that $4 < n \ | true |$

 \square **Problem 3** [Functions]. Recall the infinite set of natural numbers $\mathbb{N}=\{0,1,2,3,\ldots\}$ and the infinite set of integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ both introduced in L0. Recall also from L0 in our review of *divisibility* that a natural number $n\in\mathbb{N}$ is *even* or *odd* if the existential proposition " $\exists k\in\mathbb{N}$ n=2k" is true or false, respectively. For example, if we take n=0, we can conclude that 0 is even since $\exists k\in\mathbb{N}$ 0=2k is true. The piecewise-formula

$$\lambda(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ -\frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$$

defines a function $\lambda: \mathbb{N} \to \mathbb{Z}$ as in L4 with domain \mathbb{N} and codomain \mathbb{Z} . In L4, I called this the *interleaving function*. Make sure you know why $\lambda(5) = -3$, then fill in the table below:

$\lambda(n)$	0	-1	1	-2	2	-3	3	-4	4	-5	5	-6	6	-7	7	-8	8
n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

- 3.1 [10 points] Prove that $n \in \mathbb{N}$ is even if and only if $\lambda(n)$ is nonnegative.
- 3.2 [10 points] Prove that $n \in \mathbb{N}$ is odd if and only if $\lambda(n)$ is negative.
- 3.3 [15 points] Prove that $\lambda : \mathbb{N} \to \mathbb{Z}$ is surjective.
- 3.4 [15 points] Prove that $\lambda : \mathbb{N} \to \mathbb{Z}$ is injective.

Hint 1: Reread the discussion in L4 of this "interleaving function" $\lambda : \mathbb{N} \to \mathbb{Z}$. Hint 2: To prove $P \Leftrightarrow Q$, you must prove $P \Rightarrow Q$ and also prove $Q \Rightarrow P$. solution

1) let n be some even number. then: $\lambda(n) = \frac{n}{2}$. since n is even $\lambda(n)$ is a whole number and it isnt negative. then let $\lambda(n)$ be a non negative number since $\lambda(n)$ is a piece wise function it must be using the $\frac{n}{2}$ since its the only non negative option and that part of the peicewise fxn only happens when n is even

2) let n be some odd number. then: $\lambda(n) = -\frac{n+1}{2}$. since n is odd $\lambda(n)$ is a whole number and it is negative. then let $\lambda(n)$ be a negative number since $\lambda(n)$ is a piece wise function it must be using the $-\frac{n+1}{2}$ since its the only negative option and that part of the peicewise fxn only happens when n is odd

- 3) a function $f: X \to Y$ is surjective if $\forall y \in Y \ \exists x \in X \ y = f(x)$ let n be an even number, then $\lambda(x) = \frac{n}{2}$ since it divides by 2 it increments by 1 as n increases by 2. $\frac{n}{2} = \{0, 1, 2, 3...\}$ let n be an odd number. then then $\lambda(x) = -\frac{n+1}{2}$ since it divides by 2 it decrements by 1 as n increases by 2. $-\frac{n+1}{2} = \{-1, -2, -3...\}$ if we take the union of the two sets (which is itself the piecewise function $\lambda(x)$ it goes to all elements of the integers since every x in the natural numbers eventually go to every y in the integers, $\lambda(x)$ is surjective \Box
- 4) a function $f: X \to Y$ is injective if $\forall a \in X \ \forall b \in X \ (f(a) = f(b) \Rightarrow a = b)$ let a be even.
 - $(\frac{a}{2} = \lambda(b))$ if they are equal to eachother then b must also be even
 - $(\frac{a}{2} = \frac{b}{2})$ if you multiply both sides by two you get:

$$a = b$$

let a be odd.

 $(-rac{a+1}{2}=\lambda(b))$ if they are equal to eachother then b must also be odd $(-rac{a+1}{2}=-rac{b+1}{2})$ if you multiply both sides by two you get:

$$a + 1 = b + 1$$

subtract both sides by 1:

$$a = b$$

 \square **Bonus** [X points] For any non-empty set S, finite or infinite, the *power* set $\mathcal{P}(S)$ is

$$\mathcal{P}(S) = \{A : A \subset S\}$$

 $\mathcal{P}(S) = \{A \ : \ A \subseteq S\}$ the set of all subsets of $S.\ f : S \to \mathcal{P}(S).$ solution