Nombres complexes: la fin

Dans tout le chapitre, on se place dans un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

- I. Interprétation du module et de l'argument de $\frac{c-a}{b-d}$
- 1. Module de $\frac{c-a}{b-d}$

Propriétés.

Soit trois points distincts A, B et C et D d'affixes respectives a, b, c et d. On a :

- $\bullet ||c a| = |a c| = AC.$
- $\bullet \ \left| \frac{c-a}{d-b} \right| = \frac{AC}{BD}.$
- 2. Argument de $\frac{c-a}{b-d}$

Propriété.

Soit trois points distincts A, B et C et D d'affixes respectives a, b, c et d. On a :

$$\arg\left(\frac{c-a}{d-b}\right) = (\overrightarrow{BD}, \overrightarrow{AC}) [2\pi]$$

Exercice 1.10.

- 1. Soit A, B et C d'affixes respectives a = 1 + 2i, b = 2 et c = -1 + i.
 - (a) Calculer AB et AC.
 - (b) Calculer $(\overrightarrow{AB}, \overrightarrow{AC})$.
 - (c) En déduire la nature du triangle ABC.
- ${f 2.}$ Dans chaque cas, déterminer l'ensemble des points M d'affixe z vérifiant la condition :

(a)
$$\left| \frac{z+4+i}{z+5} \right| = 1.$$

(b)
$$\arg\left(\frac{z-3\mathrm{i}}{z-4}\right) = \frac{\pi}{2} [\pi].$$

(c)
$$\arg\left(\frac{z+3}{z-3+5i}\right) = \pi \ [2\pi].$$

Racines n-ièmes de l'unité II.

Définition.

Soit $n \in \mathbb{N}^*$.

On appelle racine n-ième de l'unité, tout nombre complexe z tel que :

$$z^n = 1$$

Propriété.

Pour tout entier naturel n non nul, l'équation $z^n = 1$ admet exactement n racines distinctes : ce sont les nombres complexes de la forme $\omega_k = e^{i\frac{2k\pi}{n}}, k \in [0; n-1]$.

Remarques.

- Pour tout entier naturel n non nul, 1 est solution de $z^n = 1$.
- Les racines n-ièmes de l'unité sont les **racines** du polynôme $z^n 1$.

Exercice 2.10. Résoudre dans $\mathbb C$ les équations suivantes :

- 1. $(z+3)^5=1$.
- **2.** $z^3 = -64$.

Définition.

On note \mathbb{U}_n l'ensemble des racines n--ièmes de l'unité :

$$\mathbb{U}_n = \{ e^{i\frac{2k\pi}{n}}, \ k \in [0; n-1] \}$$

Exemple. Préciser les racines 2-ièmes de l'unité.

Propriété.

- Les points images de \mathbb{U}_n , pour $n \in \mathbb{N}^*$, appartiennent au cercle trigonométrique.
- Les points images de \mathbb{U}_n , pour $n \geqslant 3$, sont les sommets d'un polygone régulier à n sommets.

Exemple. n=3: les racines 3-ièmes de l'unité sont les affixes des sommets d'un triangle équilatéral.

