МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №1 по курсу «Программирование графических процессоров»

Освоение программного обеспечения для работы с технологией **CUDA**.

Примитивные операции над векторами.

Выполнил: К.О.Вахрамян

Группа: 8О-406Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

1. Цель работы, общая постановка задачи (один абзац).

Ознакомление и установка программного обеспечения для работы с программно-аппаратной архитектурой параллельных вычислений(CUDA). Реализация одной из примитивных операций над векторами.

2. Вариант задания.

Входные данные. На первой строке задано число n -- размер векторов. В следующих 2-х строках, записано по n вещественных чисел -- элементы векторов. **Выходные данные.** Необходимо вывести n чисел -- результат сложения исходных векторов.

Программное и аппаратное обеспечение

GPU:

--- General Information for device ---Name: NVIDIA GeForce GTX 1650

Compute capability: 7.5 Clock rate: 1560000

Device copy overlap: Enabled

Kernel execution timeout : Enabled --- Memory Information for device ---

Total global mem: 4100521984 Total constant Mem: 65536 Max mem pitch: 2147483647

Texture Alignment: 512

--- MP Information for device ---

Multiprocessor count: 16 Shared mem per mp: 49152 Registers per mp: 65536 Threads in warp: 32

Max threads per block: 1024

Max thread dimensions: (1024, 1024, 64)

Max grid dimensions: (2147483647, 65535, 65535)

CPU:

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian

Address sizes: 39 bits physical, 48 bits virtual

CPU(s): 8

On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6 Model: 158

Model name: Intel(R) Core(TM) i5-9300HF CPU @ 2.40GHz

Stepping: 13

CPU MHz: 1274.759 CPU max MHz: 2400.0000 CPU min MHz: 0000.008 BogoMIPS: 4800.00 Virtualization: VT-x L1d cache: 128 KiB L1i cache: 128 KiB L2 cache: 1 MiB L3 cache: 8 MiB

OS:

Linux Mint 20

Compiler:

nvcc

Code Editor:

VS Code

Метод решения

Сложение векторов происходит на девайсе. Число блоков и количество потоков в них можно представить в виде сетки. В каждом потоке индекс суммируемых элементов рассчитывается как произведение номера блока на размерность блока + номер потока. (idx = threadIdx.x + blockIdx.x * blockDim.x). Индекс инкрементируется произведением размеронсти блока на число блоков.

Описание программы

Т.к. это первая л.р., вся программа реализована в одном фале. Код ядра принимает в качестве аргументов векторы в виде указателей на тип double и размерность векторов. Сумма записывается в 3-й указатель.

Результаты

Все время представлено в миллисекундах.

	n=2**8	n=2**15	n=2**24
<<<1,32>>>	0.01597	0.23776	205.43732
<<<32,32>>>	0.01405	0.01936	7.66051
<<<1,128>>>	0.01466	0.07078	52.83277
<<<128,128>>>	0.01462	0.01421	3.67539
<<<1,1024>>>	0.01424	0.02474	8.76506
<<<1024,1024>>>	0.02867	0.03034	3.60547
<<<65535,1024>>>	0.91270	0.91482	4.33424
CPU	0.00810	0.21299	111.85571

Выводы

Из приведенных результатов мы видим, что с увеличением размерности векторов вычисления на устройстве происходят намного быстрее вычислений на СРU. Кроме того слишком большое число блоков и потоков не дает самый быстрый результат. Такое значительное ускорение арифметических действий позволяет решать очень сложные задачи вычислительной математики. А простота CUDA С делает это очень доступным.