REAL ANALYSIS TOPICS PYQs

- 1. LIMIT, CONTINUITY & DIFFERENTIABILITY
- 2. UNIFORM CONTINUITY
- 3. SEQUENCES
- 4a. SERIES
- 4b. ALTERNATING SERIES
- 4c. REARRANGEMENT OF TERMS
- **5. RIEMANN'S INTEGRATION**
- 6. UNIFORM CONVERGENCE
- 7. DIFFERENTIATION UNDER INTEGRAL SIGN
- 8. THEORY OF REAL NUMBERS

1. LIMIT, CONTINUITY & DIFFERENTIABILITY

1. 2c 2018

Show that if a function f defined on an open interval (a, b) of \mathbb{R} is convex, then f is continuous. Show, by example, if the condition of open interval is dropped, then the convex function need not be continuous.

2. 4a 2018

Suppose \mathbb{R} be the set of all real numbers and $f: \mathbb{R} \to \mathbb{R}$ is a function such that the following equations hold for all $x, y \in \mathbb{R}$:

(i)
$$f(x + y) = f(x) + f(y)$$

(ii)
$$f(xy) = f(x) f(y)$$

Show that $\forall x \in \mathbb{R}$ either f(x) = 0, or, f(x) = x.

20

10

3. 1b 2018 IFoS

(b) A function $f:[0, 1] \rightarrow [0, 1]$ is continuous on [0, 1]. Prove that there exists a point c in [0, 1] such that f(c) = c.

4. 1c 2017

Find the supremum and the infimum of $\frac{x}{\sin x}$ on the interval $\left[0, \frac{\pi}{2}\right]$.

5. 1b 2017 IFoS

1.(b) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined as below:

$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 1 - x & \text{if } x \text{ is irrational} \end{cases}$$

Prove that f is continuous at $x = \frac{1}{2}$ but discontinuous at all other points in \mathbb{R} . 10

6. 1b 2016

For the function $f:(0,\infty)\to\mathbb{R}$ given by

$$f(x) = x^2 \sin \frac{1}{x}, 0 < x < \infty,$$

show that there is a differentiable function $g: \mathbf{R} \to \mathbf{R}$ that extends f.

7. 3b 2016 IFoS

Examine the continuity of
$$f(x, y) = \begin{cases} \frac{\sin^{-1}(x+2y)}{\tan^{-1}(2x+4y)} &, (x, y) \neq (0, 0) \\ \frac{1}{2} &, (x, y) = (0, 0) \end{cases}$$
 at the point $(0, 0)$.

8

8. 1a 2012 IFoS

- 1. Answer the following:
 - (a) Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & , & x \text{ is irrational} \\ -1 & , & x \text{ is rational} \end{cases}$$

is discontinuous at every point in R.

9, 2c 2010

(c) Define the function

$$f(x) = x^2 \sin \frac{1}{x}, \text{ if } x \neq 0$$
$$= 0, \text{ if } x = 0$$

Find f'(x). Is f'(x) continuous at x = 0? Justify your answer.

10. 1c 2010 IFoS

(c) If $f: \mathbb{R} \to \mathbb{R}$ is such that

$$f(x+y)=f(x)f(y)$$

for all x, y in \mathbb{R} and $f(x) \neq 0$ for any x in \mathbb{R} , show that f'(x) = f(x) for all x in \mathbb{R} given that f'(0) = f(0) and the function is differentiable for all x in \mathbb{R} .

11. 2d 2009

Show that if $f : [a, b] \to \mathbb{R}$ is a continuous function then f([a, b]) = [c, d] for some real numbers c and d, $c \le d$.

2. UNIFORM CONTINUITY

1. 2b 2020

Prove that the function $f(x) = \sin x^2$ is *not* uniformly continuous on the interval $[0, \infty[$.

2. 1b 2019 IFoS

Show that the function $f(x) = \sin\left(\frac{1}{x}\right)$ is continuous and bounded in $(0, 2\pi)$, but it is not uniformly continuous in $(0, 2\pi)$.

3.4b 2016

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ exist and are finite. Prove that f is uniformly continuous on \mathbb{R} .

4. 2b 2015 IFoS

(b) Let X = (a, b]. Construct a continuous function f : X → ℝ (set of real numbers) which is unbounded and not uniformly continuous on X. Would your function be uniformly continuous on [a + ε, b], a + ε < b? Why?</p>

5. 2b IFoS 2014

14

(b) Show that the function $f(x) = \sin \frac{1}{x}$ is continuous but not uniformly continuous on $(0, \pi)$.

6. 3a (13m) 2013 IFoS

Show that the function $f(x) = x^2$ is uniformly continuous in (0, 1) but not in \mathbb{R} .

7. 1b 2011

(b) Let S = (0, 1] and f be defined by $f(x) = \frac{1}{x}$ where $0 < x \le 1$ (in [R). Is f uniformly continuous on S? Justify your answer.

3. SEQUENCES

1. 1c 2020

Prove that the sequence (a_n) satisfying the condition $|a_{n+1}-a_n| \le \alpha |a_n-a_{n-1}|$, $0 < \alpha < 1$ for all natural numbers $n \ge 2$, is a Cauchy sequence.

2. 1a 2017

Let $x_1 = 2$ and $x_{n+1} = \sqrt{x_n + 20}$, n = 1, 2, 3, Show that the sequence $x_1, x_2, x_3, ...$ is convergent.

3. 1c 2016

Two sequences $\{x_n\}$ and $\{y_n\}$ are defined inductively by the following :

$$\begin{split} &x_1 = \frac{1}{2}, \ y_1 = 1 \ \text{and} \ x_n = \sqrt{x_{n-1} \ y_{n-1}} \ , \ n = 2, 3, 4, \dots \\ &\frac{1}{y_n} \ = \ \frac{1}{2} \left(\frac{1}{x_n} + \frac{1}{y_{n-1}} \right), \quad n = 2, 3, 4, \dots \end{split}$$

Prove that

$$x_{n-1} < x_n < y_n < y_{n-1}$$
, $n = 2, 3, 4, ...$

and deduce that both the sequences converge to the same limit l, where $\frac{1}{2} < l < 1$.

10

4. 1c 2010

(c) Discuss the convergence of the sequence $\{x_n\}$

where
$$x_n = \frac{\sin\left(\frac{n\pi}{2}\right)}{8}$$
.

5. 1d 2010

(d) Define
$$\{x_n\}$$
 by $x_1 = 5$ and $x_{n+1} = \sqrt{4 + x_n}$ for $n > 1$.

Show that the sequence converges to $\frac{\left(1+\sqrt{17}\right)}{2}$.

4a. SERIES

1. 1d 2018

Find the range of p(>0) for which the series:

$$\frac{1}{(1+a)^p} - \frac{1}{(2+a)^p} + \frac{1}{(3+a)^p} - \dots, \ a > 0, \text{ is}$$

(i) absolutely convergent and (ii) conditionally convergent.

10

2. 1e 2012

Show that the series $\sum_{n=1}^{\infty} \left(\frac{\pi}{\pi+1}\right)^n n^6$ is convergent.

3. 2c 2009

Show that the series:

$$\left(\frac{1}{3}\right)^2 + \left(\frac{1\cdot 4}{3\cdot 6}\right)^2 + \dots +$$

$$\left(\frac{1\cdot 4\cdot 7.....(3n-2)}{3\cdot 6\cdot 9.....3n}\right)^2 +$$

converges.

15

4b. ALTERNATING SERIES

1. 2a 2016

Show that the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$$

is conditionally convergent. (If you use any theorem(s) to show it, then you must give a proof of that theorem(s).)

15

2. 1c 2015

Test the convergence and absolute convergence of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 1}$.

4c. REARRANGEMENT OF TERMS

1.4c 2017

Let $\sum_{n=1}^{\infty} x_n$ be a conditionally convergent series of real numbers. Show

that there is a rearrangement $\sum_{n=1}^\infty x_{\pi(n)}$ of the series $\sum_{n=1}^\infty x_n$ that converges to 100.

2. 1b 2015 IFoS

20

(b) Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series of real numbers.

Suppose
$$\sum_{n=1}^{\infty} a_{2n} = \frac{9}{8}$$
 and $\sum_{n=0}^{\infty} a_{2n+1} = \frac{-3}{8}$. What is $\sum_{n=1}^{\infty} a_n$?

Justify your answer. (Majority of marks is for the correct justification).

5. RIEMANN'S INTEGRATION

1. 1c 2019 IFoS

Test the Riemann integrability of the function f defined by

$$f(x) = \begin{cases} 0 & \text{when } x \text{ is rational} \\ 1 & \text{when } x \text{ is irrational} \end{cases}$$

on the interval [0, 1].

2. 1b 2018

Prove the inequality: $\frac{\pi^2}{9} < \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} dx < \frac{2\pi^2}{9}.$

3. 2a 2017

Let

$$f(t) = \int_0^t [x] dx,$$

where [x] denotes the largest integer less than or equal to x.

- (i) Determine all the real numbers t at which f is differentiable.
- (ii) Determine all the real numbers t at which f is continuous but not differentiable.

4. 2b 2015

Is the function

$$f(x) = \begin{cases} \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n} \\ 0, & x = 0 \end{cases}$$

Riemann integrable? If yes, obtain the value of $\int_0^1 f(x) dx$.

15

10

5. 2b 2014

Integrate $\int_0^1 f(x) dx$, where

$$f(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x} &, & x \in]0, 1] \\ 0 &, & x = 0 \end{cases}$$

6. 4a 2014 IFoS P-1

Let f be a real valued function defined on [0, 1] as follows:

$$f(x) = \begin{cases} \frac{1}{a^{r-1}}, & \frac{1}{a^r} < x \le \frac{1}{a^{r-1}}, & r = 1, 2, 3 \dots \\ 0 & x = 0 \end{cases}$$

where a is an integer greater than 2. Show that $\int_{0}^{1} f(x) dx$ exists and is equal to $\frac{a}{a+1}$. 10

7. 1b 2014 IFoS

(b) Let f be defined on [0, 1] as

$$f(x) = \begin{cases} \sqrt{1 - x^2}, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational} \end{cases}$$

8

Find the upper and lower Riemann integrals of f over [0, 1].

8. 4a 2014 IFoS

(a) Show that the function $f(x) = \sin x$ is Riemann integrable in any interval [0, t] by taking the partition $P = \left\{0, \frac{t}{n}, \frac{2t}{n}, \frac{3t}{n}, \dots, \frac{nt}{n}\right\}$ and $\int_0^t \sin x \, dx = 1 - \cos t$.

9. 1c 2013

Let
$$f(x) = \begin{cases} \frac{x^2}{2} + 4 & \text{if } x \ge 0 \\ \frac{-x^2}{2} + 2 & \text{if } x < 0 \end{cases}$$

Is f Riemann integrable in the interval [-1, 2]? Why? Does there exist a function g such that g'(x) = f(x)? Justify your answer.

10. 3d 2013

Let [x] denote the integer part of the real number x, i.e., if $n \le x < n + 1$ where n is an integer, then [x] = n. Is the function $f(x) = [x]^2 + 3$ Riemann integrable in [-1, 2]? If not, explain why. If it is integrable, compute $\int_{-1}^{2} ([x]^2 + 3) dx$.

11. 3b 2012

(b) Let f(x) be differentiable on [0, 1] such that f(1) = f(0) = 0 and $\int_{0}^{1} f^{2}(x) dx = 1$. Prove that $\int_{0}^{1} x f(x) f'(x) dx = -\frac{1}{2}.$ 15

12.4b 2012

(b) Give an example of a function f(x), that is not Riemann integrable but |f(x)| is Riemann integrable. Justify.

13. 1c 2011 IFoS

(c) Determine whether

$$f(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

is Riemann-integrable on [0, 1] and justify your answer.

14. 2b 2011 IFoS

(b) Let the function f be defined by

$$f(x) = \frac{1}{2^t}$$
, when $\frac{1}{2^{t+1}} < x \le \frac{1}{2^t}$
 $(t = 0, 1, 2, 3, ...)$

$$f(0) = 0$$

Is f integrable on [0, 1]? If f is integrable, then evaluate $\int_0^1 f \, dx$.

15. 1f 2010 P-1

(f) Show that the function

$$f(x) = [x^2] + |x - 1|$$

is Riemann integrable in the interval [0, 2], where $[\alpha]$ denotes the greatest integer less than or equal to α . Can you give an example of a function that is not Riemann integrable on [0, 2]? Compute $\int_0^2 f(x) dx$, where f(x) is as above.

6. UNIFORM CONVERGENCE

1. 2b 2020 IFoS

Show that the sequence of functions $\{f_n(x)\}\$, where $f_n(x) = nx(1-x)^n$, does not converge uniformly on [0,1].

2. 3a 2019

Discuss the uniform convergence of

$$f_n(x) = \frac{nx}{1 + n^2 x^2}, \ \forall x \in \mathbb{R} \ (-\infty, \ \infty)$$
$$n = 1 : 2, 3, \dots$$

15

3. 3b 2019 IFoS

(b) Show that the sequence $\{\tan^{-1} nx\}$, $x \ge 0$ is uniformly convergent on any interval [a, b], a > 0 but is only pointwise convergent on [0, b].

4. 4b 2018 IFoS

Let $f_n(x) = \frac{x}{n+x^2}$, $x \in [0, 1]$. Show that the sequence $\{f_n\}$ is uniformly convergent on [0, 1].

5. 1b 2016 IFoS

Examine the Uniform Convergence of

$$f_n(x) = \frac{\sin(nx+n)}{n}, \forall x \in \mathbb{R}, n = 1, 2, 3, ...$$

6. 3a 2016 IFoS

If $f_n(x) = \frac{3}{x+n}$, $0 \le x \le 2$, state with reasons whether $\{f_n\}_n$ converges uniformly on [0, 2] or not.

7. 3b 2015

Test the series of functions $\sum_{n=1}^{\infty} \frac{nx}{(1+n^2x^2)}$ for uniform convergence. 15

8. 3b 2015 IFoS

(b) Let $f_n(x) = \frac{x}{1 + nx^2}$ for all real x. Show that f_n converges uniformly to a function f. What is f? Show that for $x \neq 0$, $f'_n(x) \rightarrow f'(x)$ but $f'_n(0)$ does not converge to f'(0). Show that the maximum value $|f_n(x)|$ can take is $\frac{1}{2\sqrt{n}}$. 13

9.2c 2013 Show that the series $\sum_1^{\infty} \frac{(-1)^{n-1}}{n+x^2},$ is uniformly convergent but not 13 absolutely for all real values of x.

10. 1b 2012

$$f_n(x) = \begin{cases} 0, & \text{if } x < \frac{1}{n+1}, \\ \sin \frac{\pi}{x}, & \text{if } \frac{1}{n+1} \le x \le \frac{1}{n}, \\ 0, & \text{if } x > \frac{1}{n}. \end{cases}$$

Show that $f_n(x)$ converges to a continuous function but not uniformly, 12

11.4b 2012 IFoS

(b) Examine the series

$$\sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \left[\frac{nx}{1+n^2x^2} - \frac{(n-1)x}{1+(n-1)^2x^2} \right]$$

for uniform convergence. Also, with the help of this example, show that the condition of uniform

convergence of $\sum_{n=1}^{\infty} u_n(x)$ is sufficient but not necessary for the sum S(x) of the series to be continuous.

12. 2b 2011

(b) Let f_n(x) = nx(1 - x)ⁿ, x ∈ [0, 1]
 Examine the uniform convergence of {f_n(x)} on [0, 1].

13.3b 2011

(b) Show that the series for which the sum of first n terms

$$f_n(x) = \frac{nx}{1 + n^2 x^2}, \ 0 \le x \le 1$$

cannot be differentiated term-by-term at x = 0. What happens at $x \neq 0$?

14.4b 2011

(b) Show that if $S(x) = \sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2}$, then its derivative

$$S'(x) = -2x \sum_{n=1}^{\infty} \frac{1}{n^2 (1 + nx^2)^2}$$
, for all x. 20

15. 2d 2010

(d) Consider the series $\sum_{n=0}^{\infty} \frac{x^2}{(1+x^2)^n}$.

Find the values of x for which it is convergent and also the sum function.

Is the convergence uniform? Justify your answer.

16. 3c 2010

(c) Let $f_n(x) = x^n$ on $-1 < x \le 1$ for n = 1, 2, ...Find the limit function. Is the convergence uniform? Justify your answer.

17. 3c 2009

Show that:

$$\label{eq:local_local_problem} \lim_{x \to 1} \; \sum_{n=1}^{\infty} \; \frac{n^2 x^2}{n^4 + x^4} = \sum_{n=1}^{\infty} \; \frac{n^2}{n^4 + 1} \; \; .$$

Justify all steps of your answer by quoting the theorems you are using.

7. DIFFERENTIATION UNDER INTEGRAL SIGN

1. 1c 2019

8. THEORY OF REAL NUMBERS

1. 2d 2013

14

Show that every open subset of $\mathbb R$ is a countable union of disjoint open intervals.

2. 3d 2009

Show that a bounded infinite subset of R must have a limit point.