(i)	Express $x^2 - 4x + 7$ in the form $(x + a)^2 + b$.	[2
		•••••••
		•••••••
The	function f is defined by $f(x) = x^2 - 4x + 7$ for $x < k$, where k is a constant.	
(ii)	State the largest value of k for which f is a decreasing function.	[1
		•••••
		••••••
The	value of k is now given to be 1.	
	value of k is now given to be 1.	[3
	value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
	value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
	value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
	value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
	value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
	value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
	value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
	value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3
	value of k is now given to be 1. Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3

The function g is defined by $g(x) = \frac{2}{x-1}$ for $x > 1$. Find an expression for $gf(x)$ and state range of gf.