

L Core Project OT2OD030544

O Details

Projects	Name	Award	Publications	Repositories	Analytics
3OT2OD030544-01S4	Biomedical Data Commons	\$3,229,346.00	69 publications	0 repositories	0 properties
3OT2OD030544-01S2	Workbench (BDCW)				
3OT2OD030544-01S3					
3OT2OD030544-01S1					
1OT2OD030544-01					

Publications

Published works associated with this project.

ID	Title	Authors	R C R	SJ R	Cit ati ons	Cit. /ye ar	Journal	Pub lish ed	Upd ated
39143213 🖸 DOI 🗗	Mitochondrial complex l promotes kidney cancer metastasis.	Bezwada, Divya 36 more DeBerardi nis, Ralph J	9. 28 1	18. 28 8	39	39	Nature	202 4	Sep 22, 2025 (just now)
38844817 🖸 DOI 🗗	Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunos	Scolaro, Tommaso 36 more Mazzone, Massimili ano	6. 41 8	0	26	26	Nat Cancer	202 4	Sep 22, 2025 (just now)
34862502 🗗 DOI 🗗	GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser.	Petras, Daniel33 more Wang, Mingxun	5. 59 7	0	49	16. 333	Nat Methods	202 2	Sep 22, 2025 (just now)

38636516 ♂ DOI ♂	Mannose controls mesoderm specification and symmetry breaking in mouse gastruloids.	Dingare, Chaitanya 3 more Steventon , Benjamin	3. 91 1	0	16	16	Dev Cell	202 4	Sep 22, 2025 (just now)
37798473 🗗 DOI 🗗	Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate	Miller, Anne 7 more Yellen, Gary	3. 81 7	0	24	12	Nat Metab	202 3	Sep 22, 2025 (just now)
39420002 🗗	Methionine-SAM metabolism- dependent ubiquinone synthesis is crucial for ROS accumulation in ferro	Xia, Chaoyi 13 more Wang, Yang	3. 62	0	12	12	Nat Commun	202 4	Sep 22, 2025 (just now)
37349305 🗗	Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and tem	Fame, Ryann M 21 more Lehtinen, Maria K	3. 61 9	0	23	11. 5	Nat Commun	202 3	Sep 22, 2025 (just now)

38165806 ☑ DOI ☑	Metabolic reprogramming by histone deacetylase inhibition preferentially targets NRF2-activated t	Karagiann is, Dimitris11 more Lu, Chao	3. 44 2	0	12	12	Cell Rep	202 4	Sep 22, 2025 (just now)
38286827 ♂ DOI ♂	Loss of Pip4k2c confers liver- metastatic organotropism through insulin-dependent PI3K-AKT pathway	Rogava, Meri 43 more Izar, Benjamin	3. 05 4	0	12	12	Nat Cancer	202 4	Sep 22, 2025 (just now)
39305905 🖸 DOI 🖸	DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-sig	Kong, Shuyao 10 more Roeder, Adrienne H K	2. 59 5	0	9	9	Dev Cell	202 4	Sep 22, 2025 (just now)
38172157 (² DOI (²	Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice.	Norris, Adriana C 7 more Graham, Todd R	2. 21 5	0	7	7	Sci Rep	202 4	Sep 22, 2025 (just now)

37441265 🗹 DOI 🗹	Contribution of Circulating Host and Microbial Tryptophan Metabolites Toward Ah Receptor Activation.	Morgan, Ethan W 12 more Perdew, Gary H	2. 08 6	0	13	6.5	Int J Tryptophan Res	202 3	Sep 22, 2025 (just now)
37452018 🗹 DOI 🗹	Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis.	Takata, Nozomu 16 more Oliver, Guillermo	2. 04 2	0	17	8.5	Nat Commun	202 3	Sep 22, 2025 (just now)
38714664 🗹 DOI 🗹	FGFR inhibition blocks NF-κB- dependent glucose metabolism and confers metabolic vulnerabilities i	Zhen, Yuanli 11 more Bardeesy, Nabeel	1. 99 3	0	7	7	Nat Commun	202 4	Sep 22, 2025 (just now)
34721400 ♂ DOI ♂	Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: A Mechani	Mukund, Kavitha 6 more Subrama niam, Shankar	1. 81	0	32	8	Front Immunol	202 1	Sep 22, 2025 (just now)

Phosphate availability conditions caspofungin tolerance, capsule attachment and titan cell format Petal growth delay caused by loss of non-canonical imprinting is resolved late in pregnancy and c MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate can Celeste DQu, Xianya7 1. 71 71 71 71 71 71 71 71 71 71 71 71 71	39535921 🖸	Cancer-associated fibroblasts maintain critical pancreatic cancer cell lipid homeostasis in the t	Han, Xu 13 more Simon, M	1. 78 1	0	7	7	Cell Rep	202 4	Sep 22, 2025 (just
James W Fetal growth delay caused by loss of non-canonical imprinting is resolved late in pregnancy and c MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate MYC is a regulator of androgen metabolic requirements in prostate MYC is a regulator of androgen metabolic requirements in prostate James W Oberin, Ruby 1. 54 0 6 6 Elife Western, Patrick S Crowell, Preston D 1. 29 0 12 6 Cell Rep MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate		caspofungin tolerance, capsule	Qu, Xianya 7 more		0	5	5	Front Fungal Biol		Sep 22, 2025
Patrick S Crowell, Preston D receptor inhibition-induced metabolic requirements in prostate more Patrick S Crowell, Preston D 1. 29 0 12 6 Cell Rep 3 202 3 (just		non-canonical imprinting is resolved	Oberin, Ruby 14 more	54	0	6	6	Elife		Sep 22, 2025
		MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate	Patrick S Crowell, Preston D23 more	29	0	12	6	Cell Rep		Sep 22, 2025

38161977 ☑ DOI ☑	Gut microbiota and metabolites in estrus cycle and their changes in a menopausal transition rat m	Dai, Ruoxi 5 more Sun, Yan	1. 07	0	5	2.5	Front Endocrinol (Lausanne)	202 3	Sep 22, 2025 (just now)
38001239 ☑ DOI ☑	IL-1β-mediated adaptive reprogramming of endogenous human cardiac fibroblasts to cells with immun	Siamwala, Jamila H 11 more Gilbert, Richard J	0. 83	0	6	3	Commun Biol	202 3	Sep 22, 2025 (just now)
37515770 🗹 DOI 🖸	The stability of the myelinating oligodendrocyte transcriptome is regulated by the nuclear lamina.	Pruvost, Mathilde 16 more Casaccia, Patrizia	0. 78 3	0	7	3.5	Cell Rep	202 3	Sep 22, 2025 (just now)
37849634 🗷 DOI 🗹	Endotype Characterization Reveals Mechanistic Differences Across Brain Regions in Sporadic Alzhei	Patel, Ashay O2 more Subrama niam, Shankar	0. 47 6	0	3	1.5	J Alzheimers Dis Rep	202 3	Sep 22, 2025 (just now)

35448980 ♂ DOI ♂	Modular and mechanistic changes across stages of colorectal cancer.	Rahiminej ad, Sara 2 more Subrama niam, Shankar	0. 46 4	0	6	2	BMC Cancer	202 2	Sep 22, 2025 (just now)
37983749 亿 DOI 亿	MetGENE: gene-centric metabolomics information retrieval tool.	Srinivasan , Sumana 3 more Subrama niam, Shankar	0. 16 3	0	2	0.6 67	Gigascience	202 2	Sep 22, 2025 (just now)
37398141 🗹 DOI 🗹	Deficiency of the lipid flippase ATP10A causes diet-induced dyslipidemia in female mice.	Norris, Adriana C 7 more Graham, Todd R	0. 15	0	1	0.5	bioRxiv	202 3	Sep 22, 2025 (just now)
37546759 🗗 DOI 🗗	Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate	Miller, Anne 7 more Yellen, Gary	0	0	0	0	Res Sq	202 3	Sep 22, 2025 (just now)

38318337 🖸 DOI 🖸	Exploring the interplay between running exercises, microbial diversity, and tryptophan metabolism	Vazquez- Medina, Alejandra 6 more Chorna, Nataliya	0	0	4	4	Front Microbiol	202 4	Sep 22, 2025 (just now)
40052831 🗗	Human adenovirus serotype 5 infection dysregulates cysteine, purine, and unsaturated fatty acid m	Sanchez, Bailey-J C 1 more Grasis, Juris A	0	0	1	1	FASEB J	202 5	Sep 22, 2025 (just now)
39395792 ♂ DOI ♂	Modeling enzyme competition in eicosanoid metabolism in macrophage cells using a cybernetic frame	Khanum, Sana5 more Ramkrish na, Doraiswa mi	0	0	0	0	J Lipid Res	202 4	Sep 22, 2025 (just now)
39448026 乙	Untargeted metabolomics of 3xTg-AD neurotoxic astrocytes.	Carvalho, Diego 9 more Arredond	0	0	0	0	J Proteomics	202 5	Sep 22, 2025 (just now)

		o, Florencia							
39307306 🗗 DOI 🗹	Integrated multi-omics unveil the impact of H-phosphinic analogs of glutamate and α-ketoglutarate	Giovanne rcole, Fabio 4 more De Biase, Daniela	0	0	1	1	J Biol Chem	202 4	Sep 22, 2025 (just now)
39328933 乙 DOI 乙	Deletion of <i>Kcnj16</i> altered transcriptomic and metabolomic profiles of Dahl salt-sensitive	Xu, Biyang4 more Starusche nko, Alexander	0	1.3 63	1	1	iScience	202 4	Sep 22, 2025 (just now)
38826219 ♂ DOI ♂	Single-cell transcriptomics reveals stage- and side-specificity of gene modules in colorectal can	Rahiminej ad, Sara 2 more Subrama niam, Shankar	0	0	0	0	Res Sq	202 4	Sep 22, 2025 (just now)
40166866	Severe Cognitive Decline in Long- term Care Is Related to Gut	Shoubrid ge, Andrew P	0	0	0	0	J Gerontol A Biol Sci Med Sci	202 5	Sep 22, 2025

	Microbiome Production of Metabolites	17 more Rogers, Geraint B							(just now)
40932625 ☑ DOI ☑	Autoimmune disease risk gene ANKRD55 promotes TH17 effector function through metabolic modulation.	Xu, Jinjin 14 more Xavier, Ramnik J	0	0	0	0	J Exp Med	202 5	Sep 22, 2025 (just now)
40759793 ☑ DOI ☑	Left ventricular myocardial molecular profile of human diabetic ischaemic cardiomyopathy.	Hunter, Benjamin 16 more Lal, Sean	0	0	0	0	EMBO Mol Med	202 5	Sep 22, 2025 (just now)
40600951 🗗	Histidine decarboxylase inhibition attenuates cancer-associated muscle wasting.	Dasgupta, Aneesha 11 more Doles, Jason D	0	0	0	0	J Exp Med	202 5	Sep 22, 2025 (just now)
38226418 🗗	Fatty acid metabolism promotes TRPV4 activity in lung microvascular endothelial cells in pulmonar	Philip, Nicolas 20 more Suresh, Karthik	0	0	2	2	Am J Physiol Lung Cell Mol Physiol	202 4	Sep 22, 2025 (just now)

38102827 ② DOI ②	Modeling transcriptional regulation of the cell cycle using a novel cybernetic-inspired approach.	Raja, Rubesh 5 more Ramkrish na, Doraiswa mi	0	0	0	0	Biophys J	202 4	Sep 22, 2025 (just now)
38018851 🗹 DOI 🗹	Lipidomic Analysis Reveals Differences in the Extent of Remyelination in the Brain and Spinal Cord.	De Silva Mohotti, Nishama 5 more Hartley, Meredith D	0	0	2	2	J Proteome Res	202 4	Sep 22, 2025 (just now)
38187579 ♂ DOI ♂	Matrix Linear Models for connecting metabolite composition to individual characteristics.	Farage, Gregory 5 more Sen, Śaunak	0	0	0	0	bioRxiv	202 3	Sep 22, 2025 (just now)

39707873 🖸 DOI 🗗	Salivary Metabolomic Signatures in Pediatric Eosinophilic Esophagitis.	Hiremath, Girish 6 more Locke, Andrea	0	3.6 22	2	2	Allergy: European Journal of Allergy and Clinical Immunology	202 5	Sep 22, 2025 (just now)
39985215 🗗 DOI 🗗	Stress exposure in the mdx mouse model of Duchenne muscular dystrophy provokes a widespread metab	Johnson, Erynn E Ervasti, James M	0	0	0	0	FEBS J	202 5	Sep 22, 2025 (just now)
<u>38975764</u> ℃ <u>DOI</u> ℃	Taurine modulates host cell responses to Helicobacter pylori VacA toxin.	Westland, Mandy D 5 more Cover, Timothy L	0	0	2	2	Infect Immun	202 4	Sep 22, 2025 (just now)
40441152 🗗	Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp	Tamir, Tigist Y 15 more White, Forest M	0	0	0	0	Mol Cell	202 5	Sep 22, 2025 (just now)
38761133 🖸	Differential impact of sex on regulation of skeletal muscle	Welch, Nicole 14	0	0	3	3	J Physiol	202 4	Sep 22, 2025

	mitochondrial function and protein ho	more Dasarathy , Srinivasan							(just now)
38544285 CZ DOI CZ	Repeated exposure to eucalyptus wood smoke alters pulmonary gene and metabolic profiles in male L	Cochran, Samuel J11 more Gowdy, Kymberly M	0	0	1	1	Toxicol Sci	202 4	Sep 22, 2025 (just now)
38651675 🗗 DOI 🗗	A nested case-control study of untargeted plasma metabolomics and lung cancer among neversmoking	Rahman, Mohamm ad L 12 more Lan, Qing	0	0	3	3	Int J Cancer	202 4	Sep 22, 2025 (just now)
39754192 乙 DOI 乙	Integrative multiomics reveals common endotypes across PSEN1, PSEN2, and APP mutations in familia	Valdes, Phoebe 9 more Subrama niam, Shankar	0	0	1	1	Alzheimers Res Ther	202 5	Sep 22, 2025 (just now)
39824876 C	Unveiling cellular changes in leukaemia cell lines after	Chamoso- Sanchez,	0	0	0	0	Sci Rep	202 5	Sep 22,

	cannabidiol treatment through lipidomics.	David 6 more Pellati, Federica							2025 (just now)
40074083 🗹	Pyruvate dehydrogenase kinase 1 controls triacylglycerol hydrolysis in cardiomyocytes.	Atser, Michael G 12 more Johnson, James D	0	0	1	1	J Biol Chem	202 5	Sep 22, 2025 (just now)
40791373 🗗	ndufs2 ^{-/-} zebrafish have impaired survival, neuromuscular activity, morphology, and on	Mitchell, Dana V 10 more Falk, Marni J	0	0	0	0	bioRxiv	202 5	Sep 22, 2025 (just now)
40863167 ♂ DOI ♂	Metabolomics Network Analysis of Various Genotypes Associated with Schizophrenia Gene Variant.	Rajula, Hema Sekhar Reddy 8 more Fanos, Vassilios	0	0.9 96	0	0	Metabolites	202 5	Sep 22, 2025 (just now)

Imidazole propionate is a driver and therapeutic target in atherosclerosis.	Mastrang elo, Annalaur a 37 more Sancho, David	0	18. 28 8	1	1	Nature	202 5	Sep 22, 2025 (just now)
Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp	Tamir, Tigist Y 15 more White, Forest M	0	0	0	0	bioRxiv	202 4	Sep 22, 2025 (just now)
Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes.	Sun, Xiaomei 12 more Zou, Zhen	0	0	2	2	Nat Commun	202 4	Sep 22, 2025 (just now)
Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers.	Alina, Maloyan 4 more Kumar, Sushil	0	0	0	0	Res Sq	202 4	Sep 22, 2025 (just now)
	therapeutic target in atherosclerosis. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Metabolic abnormalities in the bone marrow cells of young offspring	Imidazole propionate is a driver and therapeutic target in atherosclerosis. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers. elo, Annalaur a37 more Sancho, David Tamir, Tigist Y15 more White, Forest M Sun, Xiaomei12 more Zou, Zhen Alina, Maloyan4 more Kumar,	Imidazole propionate is a driver and therapeutic target in atherosclerosis. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers. elo, Annalaur a37 more Sancho, David Tamir, Tigist Y15 more Yhite, Forest M Sun, Xiaomei12 more Zou, Zhen Alina, Maloyan4 more Kumar, Viamar,	Imidazole propionate is a driver and therapeutic target in atherosclerosis. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers. elo, Annalaur a la. a la	Imidazole propionate is a driver and therapeutic target in atherosclerosis. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers. elo, Annalaur a 18. a 18. a 2 28 1 20 28 1 20 20 20 20 20 20 20 20 20 20 20 20 20	Imidazole propionate is a driver and therapeutic target in atherosclerosis. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers. elo, Annalaur a 18. a 18. a 1 1 1 and 18. a 19.	Imidazole propionate is a driver and therapeutic target in atherosclerosis. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers. elo, Annalaur a37	Imidazole propionate is a driver and therapeutic target in atherosclerosis. Structural and systems characterization of phosphorylation on metabolic enzymes identifies sex-sp Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Metabolic abnormalities in the bore marrow cells of young offspring born to obese mothers. eloo, 28

40312501 乙	Synaptic vesicle captures signate synucleinopathy	ures of aging and	Gao, Virginia 14 more Burré, Jacqueline	0	0	0	0	Nat Commun	202 5	Sep 22, 2025 (just now)
38926365 🗹 DOI 🗹	•	ed chromatin te stress granule on through metabo	Wang, Chen 17 olic more Zhang Rugang	0 sitori	o ies	3	3	Nat Commun	202 4	Sep 22, 2025 (just now)
38937647 2		Software r rmalities in the bo young offspring	Phillips, epositories asso Elysse A ne 4	ociated 0	with t	his pro 3	ject. 3	Int J Obes (Lond)	202	Sep 22, 2025
Name D	escription	Stars W	atchers Alina No d	Forks ata	ļ	ssues	l	PRs Commits	Con	trib.
Name Tara	Last Commit	Aug lasus As	Zhou, Meno		l ico-) o o el	oo Contailentia -	Danasa	Sep
Name Tags	and its associati		g PR Langu more Ma, ^{No d} Shizhan	_	Licen	ise F	Readn	ne Contributing	Depend	(just now)

Repository	For storing, tracking changes to, and collaborating on a piece of software.	
PR	"Pull request", a draft change (new feature, bug fix, etc.) to a repo.	
Closed/Open	Resolved/unresolved.	
DOI [7]	Average time issues/pull requests stay openforperpefore being closed. Proteomic and metabolomic Benjamin / default branchie comsidered for metrics like # of commits. 0 2 2 Commun Biol myocardium reveal ventricle- ncies petateled figm all manifests in repo, direct and transitive, e.g. package.json + package-lock.json. Lal, Sean	Sep 22, 2025 (just now)

Analytics

Traffic metrics of websites associated with this project.

Notes

Active Users Distinct users who visited the website 2.

New Users <u>Users who visited the website for the first time</u> **?**.

Engaged Sessions <u>Visits that had significant interaction</u> **?**.

"Top" metrics are measured by number of engaged sessions.

Built on Sep 22, 2025

Developed with support from NIH Award U54 OD036472

	OGDHL regulates nucleotide	Bernard,	0	0	0	0	bioRxiv	202	Sep
<u>DOI</u> 🔼	metabolism, tumor growth, and	Matthew J						5	22,
		19							2025

	neuroendocrine marker expression in pros	more Goldstein, Andrew S							(just now)
40308032 🗗	Integrated Multiomics Analyses of the Molecular Landscape of Sarcopenia in Alcohol-Related Liver 	Welch, Nicole13 more Dasarathy , Srinivasan	0	0	0	0	J Cachexia Sarcopenia Muscle	202 5	Sep 22, 2025 (just now)
40828023 ℃ DOI ௴	Synergistic action of specialized metabolites from divergent biosynthesis in the human oral micro	Loop Yao, McKenna 7 more Zhang, Wenjun	0	0	0	0	Proc Natl Acad Sci U S A	202 5	Sep 22, 2025 (just now)

Notes

RCR Relative Citation Ratio

SJR Scimago Journal Rank

Publications (cumulative)

