Versuch Nr.V48

Dipolrelaxation in Ionenkristallen

Niklas Düser niklas.dueser@tu-dortmund.de

Benedikt Sander benedikt.sander@tu-dortmund.de

Durchführung: 16.05.2022 Abgabe: .05.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie 2.1 Dipole in dotierten Ionenkristallen 2.2 Depolarisationseffekte 2.3 Polarisationsansatz 2.4 Stromdichtenansatz	3 3
3	Aufbau	5
4	Durchführung	5
5	Auswertung 5.1 Fehlerrechnung	6
6	Diskussion	7

1 Zielsetzung

Dipole durch dotierung Anregungsenergie Relaxationszeit

2 Theorie

2.1 Dipole in dotierten Ionenkristallen

regelmäßiges Gitter aus Ionen insgesamt elektrisch neutral dotierung führt zu dipol bei raumtemperatur in summe kein dipolmoment

2.2 Depolarisationseffekte

Anfangsbedingung: Dipole sind in eine Richtung ausgerichtet und eingefroren Beim aufwärmen der Probe wird der Strom gemessen Reorientierung der Dipole

unter 500C Leerstellendiffusion, dazu materialspezifische Aktivierungsenergie W Energie im Kristall durch Blotzmann-Statistik $\exp\left(\frac{-W}{k_{\rm B}T}\right)$

$$\tau(T) = \tau_0 \exp\left(\frac{-W}{k_{\rm B}T}\right) \tag{1}$$

 $\tau_0 = \tau(\infty)$

2.3 Polarisationsansatz

Depolarisationsstrom:

$$I(T) = -\frac{\mathrm{d}P(t)}{\mathrm{d}t} \tag{2}$$

Polarisationsrate:

$$\frac{\mathrm{d}P(t)}{\mathrm{d}t} = \frac{P(t)}{\tau(T)} \tag{3}$$

ergibt:

$$I(T) = \frac{P(t)}{\tau(T)} \tag{4}$$

Seperation der Variabeln von 3:

$$P(t) = P_0 \exp\left(-\frac{t}{\tau(T)}\right) \tag{5}$$

Es egibt sich

$$I(T) = \frac{P_0}{\tau(T)} \exp\left(-\frac{t}{\tau(T)}\right) \tag{6}$$

Hier gibt t die Zeit an, die benötigt wurde um T zu erreichen, sie lässt sich auch als Integral schreiben:

$$I(T) = \frac{P_0}{\tau(T)} \exp\left(-\int_0^t \frac{\mathrm{d}t}{\tau(T)}\right) \tag{7}$$

mittels einer konstanten Heizrate

$$b := \frac{\mathrm{d}T}{\mathrm{d}t} = const \tag{8}$$

lässt sich der Depolarisationsstrom als

$$I(T) = \frac{P_0}{\tau(T)} \exp\left(\frac{-1}{b\tau_0} \int_{T_0}^T \frac{\mathrm{d}T'}{\tau(T')}\right)$$
(9)

ausdrücken.

2.4 Stromdichtenansatz

mittlere Polarisation:

$$\bar{P}(T) = \frac{N}{N_V} \frac{p^2 E}{3k_B T} \tag{10}$$

mit dem Dipol
moment p, der elektrischen Feldstärke E, der Temperatur T und der Dipol
dichte N_V . Die Geschwindigkeit der relaxierenden Dipole ist

$$\frac{\mathrm{d}N(T)}{\mathrm{d}t} = -\frac{N}{\tau(T)}\tag{11}$$

Analog zum vorherigen Kapitel egibt sich die Lösung der Differentialgelich zu:

$$N = N_{\rm P} \exp\left(\frac{-1}{b} \int_{T_0}^T \frac{\mathrm{d}T'}{\tau(T')}\right) \tag{12}$$

Weiterhin gilt

$$I(T) = \bar{P}(T)\frac{\mathrm{d}N}{\mathrm{d}t} \qquad \text{und} \qquad I(T) = -\bar{P}(T)\frac{N}{\tau(T)}$$
 (13)

Zusammensetzten aller dieser Terme egibt dann

$$I(T) = \frac{p^2 E}{3k_{\rm B}T} \frac{N_{\rm P}}{\tau_0} \exp\left(\frac{-1}{b\tau_0} \int_{T_0}^T \frac{\mathrm{d}T'}{\tau(T')}\right) \exp\left(-\frac{W}{k_{\rm B}T}\right) \tag{14}$$

- 3 Aufbau
- 4 Durchführung

5 Auswertung

5.1 Fehlerrechnung

Die Fortpflanzung von Messungenauigkeiten für mehrere unabhängige Fehler wird durch die Gaußsche Fehlerfortpflanzung

$$\Delta f = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \Delta x_i\right)^2}$$

beschrieben. Dabei gibt Δx die Unsicherheit des arithmetischen Mittelwerts \bar{x} einer Observablen x an:

$$\Delta x = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\bar{x} - x_i)^2}.$$

Die Zahl n gibt die Anzahl der unabhängigen Messungen an.

Die Messwerte, die bei Messungen mit der Turbopumpe aufgenommen wurden, besitzen im Bereich $1\cdot 10^{-8}$ mbar bis 100 mbar eine Ungenauigkeit von 30%. Im Bereich von 100 mbar bis 1000 mbar sind es sogar 50 %.

Für die Messungen mit der Drehschieberpumpe sind es für Werte kleiner als $2 \cdot 10^{-3}$ mbar ein Faktor 2 vom Messwert. Zusätzlich sind es von $2 \cdot 10^{-3}$ mbar bis 10 mbar \pm 120 mbar und von 10 mbar bis 1200 mbar \pm 3,6 mbar.

genutzt. Des Weiteren wird für die relative Abweichung berechneter Werte vom Theoriewert die Formel x

 $\Delta x = \frac{x - x_{theo}}{x_{theo}}$

genutzt.

6 Diskussion