V701

Reichweite von Alpha-Strahlung

 $\begin{array}{ccc} \text{Amelie Hater} & \text{Ngoc Le} \\ \text{amelie.hater@tu-dortmund.de} & \text{ngoc.le@tu-dortmund.de} \end{array}$

Durchführung: 30.04.2024 Abgabe: 07.05.2024

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie 2.1 Vorbereitungsaufgaben	3
	nhang Originaldaten	4

1 Zielsetzung

Das Ziel dieses Versuchs ist die Reichweite von α -Strahlung in Luft über den Energieverlust zu bestimmen.

2 Theorie

Durch elastische Stöße geben α -Teilchen beim Durchlaufen von Materie Energie ab. Somit lässt sich über den Energieverlust der α -Strahlung die Reichweite bestimmen. Außerdem verringert sich die Energie eines α -Teilchen ebenfalls durch Anregung oder Dissoziation von Molekülen. Hierbei ist der Energieverlust $-\frac{\mathrm{d}E_{\alpha}}{\mathrm{d}x}$ von Energie der α -Strahlung und der Dichte des durchlaufenden Materials ab. Je kleiner die Geschwindigkeit, desto mehr nimmt die Wahrscheinlichkeit zur Wechselwirkung zu. Mithilfe der Bethe-Bloch-Gleichung

$$-\frac{\mathrm{d}E_{\alpha}}{\mathrm{d}x} = \frac{z^2 e^4}{4\pi\epsilon_0 m_e} \cdot \frac{nZ}{v^2} \ln\left(\frac{2m_e v^2}{I}\right) \tag{1}$$

wird der Energieverlust der α -Teilchen für hinreichend große Energien beschrieben. z ist die Ladung, v die Geschwindigkeit der α -Strahlung, Z die Ordnungszahl, n die Teilchendichte und I die Ionisierungsenergie des Targetgases. Für kleine Energien ist Bethe-Bloch Gleichung allerdings nicht gültig, weil Ladungsaustauschprozessse auftauchen. Die Reichweite R eines α -Teilchens lässt sich über

$$R = \int_0^{E_\alpha} \frac{\mathrm{d}E_\alpha}{\left(-\frac{\mathrm{d}E_\alpha}{\mathrm{d}x}\right)} \tag{2}$$

berechnen. Dies ist die Wegstrecke bis zu einer vollständigen Abbremsung des α -Teilchens. Für kleine Energien werden zur Bestimmung der mittleren Reichweite R_m empirisch gewonne Kurven verwendet. Die mittlere Reichweite ist die Reichweite, die von der Hälfte der vorhandenen α -Teilchen erreicht wird. Für Strahlungen in der Luft mit einer Energie von $E_{\alpha} \leq 2,5\,\mathrm{MeV}$ gilt für die mittlere Reichweite

$$R_m = 3, 1 \cdot E_\alpha^{\frac{3}{2}}, \tag{3}$$

mit einer Größenordnung von Millimetern für R_m . Für eine α -Strahlung in Gasen bei konstanter Temperatur und konstantem Volumen ist die Reichweite eines α -Teilchens vom Druck p abhängig. Für die effektive Länge x gilt dann

$$x = x_0 \cdot \frac{p}{p_0} \,, \tag{4}$$

wobei x_0 der feste Abstand zwischen Detektor und α -Strahler und $p_0=1013\,\mathrm{mbar}$ den Normaldruck beschreiben.

- 2.1 Vorbereitungsaufgaben
- 3 Durchführung
- 4 Auswertung
- 5 Diskussion

Anhang

Originaldaten