

ISO3080, ISO3082, ISO3086, ISO3088

SLOS581H - MAY 2008 - REVISED DECEMBER 2015

ISO308x Isolated 5-V Full- and Half-Duplex RS-485 Transceivers

Features

- Meets or Exceeds TIA/EIA RS-485 Requirements
- Signaling Rates up to 20 Mbps
- 1/8 Unit Load Up to 256 Nodes on a Bus
- Thermal Shutdown Protection
- Low Bus Capacitance 16 pF (Typical)
- 50 kV/µs Typical Transient Immunity
- Fail-safe Receiver for Bus Open, Short, Idle
- 3.3-V Inputs are 5-V Tolerant
- **Bus-Pin ESD Protection**
 - 12 kV HBM Between Bus Pins and GND2
 - 6 kV HBM Between Bus Pins and GND1
- Safety and Regulatory Approvals
 - 4000-V_{PK} Basic Insulation, 560 V_{PK} V_{IORM} per DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 and DIN EN 61010-1
 - 2500 V_{RMS} Isolation per UL 1577
 - 4000 V_{PK} Isolation per CSA Component Acceptance Notice 5A and IEC 60950-1

2 Applications

- Security Systems
- **Chemical Production**
- **Factory Automation**
- Motor and Motion Control
- **HVAC** and Building Automation Networks
- **Networked Security Stations**

3 Description

The ISO3080 and ISO3086 devices are isolated fullduplex differential line drivers and receivers while the ISO3082 and ISO3088 devices are isolated halfduplex differential line transceivers for TIA/EIA 485/422 applications.

These devices are ideal for long transmission lines because the ground loop is broken to allow for a much larger common-mode voltage range. The symmetrical isolation barrier of the device is tested to provide 2500 Vrms of isolation for 60s per UL 1577 between the bus-line transceiver and the logic-level interface.

Any cabled I/O can be subjected to electrical noise transients from various sources. These noise transients can cause damage to the transceiver and/or nearby sensitive circuitry if they are of sufficient magnitude and duration. These isolated devices can significantly increase protection and reduce the risk of damage to expensive control circuits.

The ISO3080, ISO3082, ISO3086, and ISO3088 are qualified for use from -40°C to 85°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
ISO3080		10.20 mm 7.50 mm		
ISO3082	SOIC (46)			
ISO3086	SOIC (16)	10.30 mm × 7.50 mm		
ISO3088				

(1) For all available packages, see the orderable addendum at the end of the data sheet.

ISO3080, IOS3086 Function Diagram

ISO3082, IOS3088 Function Diagram

Table of (Contents
------------	----------

1	Features 1		9.1 Overview	14
2	Applications 1		9.2 Functional Block Diagrams	14
3	Description 1		9.3 Feature Description	15
4	Revision History2		9.4 Device Functional Modes	17
5	Device Comparison Table	10	Application and Implementation	19
6	Pin Configuration and Functions 4		10.1 Application Information	19
7	_		10.2 Typical Application	19
′	Specifications 5 7.1 Absolute Maximum Ratings 5	11	Power Supply Recommendations	21
	· · · · · · · · · · · · · · · · · · ·	12	Layout	21
	7.2 ESD Ratings		12.1 Layout Guidelines	
	7.4 Thermal Information		12.2 Layout Example	22
	7.5 Electrical Characteristics: Driver	13	Device and Documentation Support	23
	7.6 Electrical Characteristics: Receiver		13.1 Documentation Support	23
	7.7 Supply Current		13.2 Related Links	23
	7.8 Switching Characteristics: Driver		13.3 Community Resources	23
	7.9 Switching Characteristics: Receiver		13.4 Trademarks	23
	7.10 Typical Characteristics		13.5 Electrostatic Discharge Caution	23
8	Parameter Measurement Information		13.6 Glossary	23
9	Detailed Description	14	Mechanical, Packaging, and Orderable Information	23

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision G (July 2015) to Revision H	Page
•	Changed the CDM value in ESD Ratings From: ±200 To: ±1000	5
•	Changed the MON value of L(IO1) in Table 1 From: 8.34 To: 8 mm	15
•	Changed the MON value of L(IO2) in Table 1 From: 8.1 To: 8 mm	15
•	Moved the last list item " Routing the high-speed traces" to the second list items in Layout Guidelines section	<mark>21</mark>
Cł	nanges from Revision F (May 2015) to Revision G	Page
_	nanges from Revision F (May 2015) to Revision G	
CI	Deleted "Rated mains voltage ≤ 400 V _{RMS} " from Table 3	15
_		15
•	Deleted "Rated mains voltage ≤ 400 V _{RMS} " from Table 3	15
•	Deleted "Rated mains voltage ≤ 400 V _{RMS} " from Table 3	15

Changes from Revision E (September 2011) to Revision F

Page

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

Cr	ranges from Revision D (January 2011) to Revision E
•	Changed Features list item From: 16 kV HBM To: 12 kV HBM
•	Changed ESD HBM spec value from ±16 to ±12 in ESD Ratings
Cr	nanges from Revision C (October 2009) to Revision D
•	Added T _{STG} row to the <i>Absolute Maximum Ratings</i> ⁽¹⁾
•	Added "Dynamic" conditions to <i>Recommended Operating Conditions</i> V _{ID} spec with reference to Figure 9
•	Changed for 3 V to 3.3 V in note 1 of the Recommended Operating Conditions table
•	Deleted V _I = V _{CCI} or 0 V from CMTI spec. Conditions statement. Added "Figure 13" in <i>Electrical Characteristics: Driver</i> 6
•	Changed top row, UNIT column, split into 2 rows, top row µs and second row ns in Switching Characteristics: Driver
•	Added Figure 9
•	Added note to bottom of first page of the Parameter Measurement Information
•	Changed File Number from '1698195' to '220991 in Table 4
•	Changed θ _{JA} from 212 ° C/W to 168 ° C/W in conditions statement for I _S spec.; and MAX current from 210 mA to 157 mA in Table 5
•	Changed graph for " DW-16 θ _{IC} Thermal Derating Curve per IEC 60747-5-2 " , Figure 25
•	Added Footnotes to the Table 6 and Table 7
Cr	nanges from Revision B (December 2008) to Revision C Page
•	Changed <i>Recommended Operating Conditions</i> table note From: For 3-V operation, V _{CC1} or V _{CC2} is specified from 3.15 V to 3.6V. To: For 3-V operation, V _{CC1} is specified from 3.15 V to 3.6V
Cr	anges from Revision A (June 2008) to Revision B
•	Changed <i>Features</i> bullet From: 4000-V _{PEAK} Isolation, To: 4000-V _{PEAK} Isolation,, 560-V _{PEAK} V _{IORM}
•	Added the CSA column to Table 4
Ch	nanges from Original (May 2008) to Revision A Page
•	Deleted the CSA column from Table 4
•	Changed the file number in the VDE column in Table 4 From: 40014131 To: 40016131

5 Device Comparison Table

DEVICE	RATED ISOLATION ⁽¹⁾	TYPE	DATA RATE
ISO3080	4000 V_{PK} / 2500 V_{RMS}	Full-duplex	200 kbps
ISO3086	4000 V _{PK} / 2500 V _{RMS}	Full-duplex	20 Mbps
ISO3082	4000 V _{PK} / 2500 V _{RMS}	Half-duplex	200 kbps
ISO3088	4000 V _{PK} / 2500 V _{RMS}	Half-duplex	20 Mbps

⁽¹⁾ See the *Table 4* table for detailed isolation ratings.

6 Pin Configuration and Functions

Pin Functions

PIN NAME ISO3080, ISO3082, ISO3088						
		I/O	DESCRIPTION			
Λ	14		I	Receiver noninverting input on the bus-side		
Α		12	I/O	Transceiver noninverting Input or Output (I/O) on the bus-side		
13			- 1	Receiver inverting Input on the bus-side		
B 13		13	I/O	Transceiver inverting Input or Output (I/O) on the bus-side		
D	6	6	I	Driver Input		
DE	5	5	I	Enables (when High) or Disables (when Low or Open) Driver output of ISO308x		
GND1	2, 7, 8	2, 7, 8	_	Ground connection for V _{CC1}		
GND2	9, 10, 15	9, 10, 15	_	Ground connection for V _{CC2}		
NC		11, 14	_	No Connect		
R	3	3	0	Receiver Output		
RE	4	4	I	Disables (when High or Open) or Enables (when Low) Receiver Output of ISO308x		
V _{CC1}	1	1	_	Power supply, V _{CC1}		
V _{CC2}	16	16	_	Power supply, V _{CC2}		
Υ	11		0	Driver noninverting output		
Z	12		0	Driver inverting output		

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

MIN	MAX	UNIT
-0.3	6	V
-9	14	V
-50	50	V
-0.5	7	V
	±10	mA
	150	°C
-65	150	°C
	-0.5	-0.5 7 ±10 150

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values

7.2 ESD Ratings

				VALUE	UNIT
		Human body model (HRM), per ANSI/ESDA/JEDEC JS 001, all	Bus pins and GND1	±6000	
			Bus pins and GND2	±12000	V
$V_{(ESD)}$	Electrostatic discharge		All pins	±4000	·
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	All pins	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

			MIN	TYP MA	X UNIT
V _{CC1}	Logic-side supply voltage (1)		3.15	5	.5 V
V _{CC2}	Bus-side supply voltage ⁽¹⁾		4.5	5 5	.5 V
V _{oc}	Voltage at either bus I/O terminal	А, В	-7		12 V
V _{IH}	High-level input voltage	D, DE, RE	2	VC	C V
V _{IL}	Low-level input voltage	D, DE, RE	0	C	.8
	Differential input voltage	A with respect to B	-12		12 V
V_{ID}		Dynamic (ISO3086)	see	Figure 9	V
R _L	Differential input resistance		54	60	Ω
	Output surrent	Driver	-60	1	50
Io	Output current	Receiver	-8		8 mA
T _A	Ambient temperature		-40	;	35 °C

⁽¹⁾ For 5-V operation, V_{CC1} or V_{CC2} is specified from 4.5 V to 5.5 V. For 3.3-V operation, V_{CC1} is specified from 3.15 V to 3.6 V.

7.4 Thermal Information

			ISO308x				
	THERMAL METRIC ⁽¹⁾						
D	Junction-to-ambient thermal resistance	Low-K thermal resistance ⁽²⁾	168	°C/W			
$R_{\theta JA}$	High-K thermal resistance		79.6	C/VV			
R _{0JC(top)}	Junction-to-case (top) thermal resistance	39.7	°C/W				
$R_{\theta JB}$	Junction-to-board thermal resistance		44.7	°C/W			
ΨЈТ	Junction-to-top characterization parameter		11.8	°C/W			
ΨЈВ	Junction-to-board characterization parameter		44.0	°C/W			
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance		n/a	°C/W			

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.

7.5 Electrical Characteristics: Driver

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITION	NS	MIN	TYP	MAX	UNIT
		$I_O = 0$ mA, no load			3	4.3	V_{CC}	
1.77	Differential output voltage	$R_L = 54 \Omega$,	See Figure 10		1.5	2.3		V
V _{OD}	magnitude	$R_L = 100 \Omega$	(RS-422), See Figure 1	10	2	2.3		
		V _{test} from -	7 V to +12 V, See Figur	e 11	1.5			
$\Delta V_{OD} $	Change in magnitude of the differential output voltage	See Figure	10 and Figure 11		-0.2	0	0.2	V
V _{OC(SS)}	Steady-state common-mode output voltage	See Figure 12			1	2.6	3	
$\Delta V_{OC(SS)}$	Change in steady-state common- mode output voltage				-0.1		0.1	V
V _{OC(pp)}	Peak-to-peak common-mode output voltage	See Figure 12				0.5		V
I	Input current	D, DE, V _I a	t 0 V or V _{CC1}		-10		10	μΑ
		ISO3082 ISO3088	See receiver input current					
I _{OZ}	High-impedance state output current	ISO3080	V_{Y} or $V_{Z} = 12 \text{ V}$, $V_{CC} = 0 \text{ V}$ or 5 V, DE = 0 V	Other input at 0 V			1	
		ISO3086	V_{Y} or $V_{Z} = -7$ V. $V_{CC} = 0$ V or 5 V, DE = 0 V		-1			μА
	Short aircuit autout aurrant	V_A or V_B at -7 V Other input at 0 V V_A or V_B at 12 V		-200		200	m Λ	
I _{OS}	Short-circuit output current			Other input at 0 V	-200		200	mA
CMTI	Common-mode transient immunity	See Figure	21 and Figure 22		25	50		kV/μs

7.6 Electrical Characteristics: Receiver

over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IT(+)}	Positive-going input threshold voltage	I _O = -8 mA			-85	-10	mV
V _{IT(-)}	Negative-going input threshold voltage	I _O = 8 mA		-200	-115		mV
V_{hys}	Hysteresis voltage (V _{IT+} – V _{IT-})				30		mV
V	Lligh lovel output voltage	$V_{ID} = 200 \text{ mV}, I_{O} = -8 \text{ mA},$	3.3-V V _{CC1}	V _{CC1} -0.4	3.1		V
V _{OH}	High-level output voltage	See Figure 16	5-V V _{CC1}	4	4.8		V
\/	Low lovel output voltage	$V_{ID} = -200 \text{ mV}, I_{O} = 8 \text{ mA},$	3.3-V V _{CC1}		0.15	0.4	V
V _{OL}	Low-level output voltage	See Figure 16	5-V V _{CC1}		0.15	0.4	V
$I_{O(Z)}$	High-impedance state output current	$V_I = -7$ to 12 V, Other input = 0 V		-1		1	μA
		V _A or V _B = 12 V			0.04	0.1	
	Due input sument	V_A or $V_B = 12 V$, $V_{CC} = 0$	Other input		0.06	0.13	A
l _l	Bus input current	V_A or $V_B = -7 V$	at 0 V	-0.1	-0.04		mA
		V_A or $V_B = -7 V$, $V_{CC} = 0$		-0.05	-0.03		
I _{IH}	High-level input current, RE	V _{IH} = 2 V		-10		10	μΑ
I _{IL}	Low-level input current, RE	V _{IL} = 0.8 V		-10		10	μΑ
R _{ID}	Differential input resistance	A, B		48			kΩ
C _D	Differential input capacitance	Test input signal is a 1.5 MHz sine wa amplitude. C _D is measured across A a			7		pF

Submit Documentation Feedback

Copyright © 2008–2015, Texas Instruments Incorporated

7.7 Supply Current

over recommended operating condition (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			TYP	MAX	UNIT
	Logio oido oupply ourrent	RE at 0 V or V _{CC} , DE at 0 V or V _{CC1}	3.3-V V _{CC1}			8	A
ICC1	I _{CC1} Logic-side supply current	RE at 0 V or V _{CC} , DE at 0 V or V _{CC1}	5-V V _{CC1}			10	mA
I_{CC2}	Bus-side supply current	RE at 0 V or V _{CC} , DE at 0 V, No load				15	mA

7.8 Switching Characteristics: Driver

over recommended operating conditions (unless otherwise noted)

0.01.100	ommended operating conditions (unless o	J. 101 W 100 11010	<i>-</i>					
	PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} ,	Drongation dolor	ISO3080/82				0.7	1.3	μs
t _{PHL}	Propagation delay	ISO3086/88				25	45	ns
PWD ⁽¹⁾	Dulas alsour (It at 1)	ISO3080/82		Can Figure 40		20	200	
PWD	Pulse skew (t _{PHL} - t _{PLH})	ISO3086/88		See Figure 13		3	7.5	ns
	Differential output signal rice and fall time	ISO3080/82				0.9	1.5	μs
t _r , t _f	Differential output signal rise and fall time	ISO3086/88				7	15	ns
	Propagation delay, high-impedance-to-high-	1002000/02	50% Vo			2.5	7	
t _{PZH} ,	level output Propagation delay, high-impedance-to-low-	ISO3080/82	90% Vo			1.8		μs
t _{PZL}	level output	ISO3086/88		See Figure 14 and		25	55	
	Propagation delay, high-level-to-high-	ISO3080/82		Figure 15, DE at 0 V		95	225	
t _{PHZ} , t _{PLZ}	impedance output Propagation delay, low-level to high- impedance output	ISO3086/88				25	55	ns

⁽¹⁾ Also known as pulse skew

7.9 Switching Characteristics: Receiver

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$t_{\text{PLH}},t_{\text{PHL}}$	Propagation delay			90	125	no
PWD ⁽¹⁾	Pulse width distortion t _{PHL} - t _{PLH}	See Figure 17		4	12	ns
t _r , t _f	Output signal rise and fall time			1		ns
t _{PHZ} , t _{PZH}	Propagation delay, high-level-to-high-impedance output Propagation delay, high-impedance-to-high-level output	See Figure 18, DE at 0 V			22	ns
t _{PZL} , t _{PLZ}	Propagation delay, high-impedance-to-low-level output Propagation delay, low-level-to-high-impedance output	See Figure 19, DE at 0 V			22	ns

(1) Also known as pulse skew.

7.10 Typical Characteristics

Typical Characteristics (continued)

8 Parameter Measurement Information

Figure 10. Driver V_{OD} Test and Current Definitions Figure 11. Driver V_{OD} With Common-Mode Loading Test Circuit

Note: Unless otherwise stated, test circuits are shown for half-duplex devices, ISO3082 & ISO3088. For full-duplex devices, driver output pins are Y and Z.

Figure 12. Test Circuit and Waveform Definitions For The Driver Common-Mode Output Voltage

Figure 13. Driver Switching Test Circuit and Voltage Waveforms

Parameter Measurement Information (continued)

Figure 14. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

Figure 15. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveform

Figure 16. Receiver Voltage and Current Definitions

Figure 17. Receiver Switching Test Circuit and Waveforms

Parameter Measurement Information (continued)

Figure 18. Receiver Enable Test Circuit and Waveforms, Data Output High

Figure 19. Receiver Enable Test Circuit and Waveforms, Data Output Low

Note: This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 20. Transient Overvoltage Test Circuit

Parameter Measurement Information (continued)

Figure 21. Half-Duplex Common-Mode Transient Immunity Test Circuit

Figure 22. Full-Duplex Common-Mode Transient Immunity Test Circuit

9 Detailed Description

9.1 Overview

The ISO3080, and ISO3086 are isolated full-duplex differential line drivers and receivers while the ISO3082, and ISO3088 are isolated half-duplex differential line transceivers for TIA/EIA 485/422 applications. They are rated to provide galvanic isolation of up to 2500 V_{rms} for 60 sec as per the standard. They have active-high driver enables and active-low receiver enables to control the data flow. They are available in two speed grades suitable for data transmission up to 200 kbps and 20 Mbps.

When the driver enable pin, DE, is logic high, the differential outputs Y and Z follow the logic states at data input D. A logic high at D causes Y to turn high and Z to turn low. In this case the differential output voltage defined as $V_{OD} = V_{(Y)} - V_{(Z)}$ is positive. When D is low, the output states reverse, Z turns high, Y becomes low, and V_{OD} is negative. When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin has an internal pulldown resistor to ground, thus when left open the driver is disabled (high-impedance) by default. The D pin has an internal pullup resistor to V_{CC} , thus, when left open while the driver is enabled, output Y turns high and Z turns low.

When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage defined as $V_{ID} = V_{(A)} - V_{(B)}$ is positive and higher than the positive input threshold, V_{IT_+} , the receiver output, R, turns high. When V_{ID} is negative and less than the negative and lower than the negative input threshold, V_{IT_-} , the receiver output, R, turns low. If V_{ID} is between V_{IT_+} and V_{IT_-} the output is indeterminate. When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of V_{ID} are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is disconnected from the bus (open-circuit), the bus lines are shorted (short-circuit), or the bus is not actively driven (idle bus).

9.2 Functional Block Diagrams

Figure 23. ISO3080, IOS3086 Functional Diagram

Figure 24. ISO3082, IOS3088 Functional Diagram

9.3 Feature Description

Table 1. Insulation and Safety-Related Package Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (Clearance) (1)	Shortest terminal-to-terminal distance through air	8			mm
L(102)	Minimum external tracking (Creepage) ⁽¹⁾	Shortest terminal-to-terminal distance across the package surface	8			mm
СТІ	Tracking resistance (Comparative Tracking Index)	DIN IEC 60112 / VDE 0303 Part 1	≥400			٧
	Minimum internal gap (Internal Clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, $V_{IO} = 500 \text{ V}$, $TA = 25^{\circ}\text{C}$, all pins on each side of the barrier tied together creating a 2-terminal device		>10 ¹²		Ω
C _{IO}	Barrier capacitance input to output	VI = 0.4 sin (4E6πt)		2		pF
Cı	Input capacitance to ground	VI = 0.4 sin (4E6πt)		2		pF

⁽¹⁾ Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit-board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a PCB are used to help increase these specifications.

Table 2. DIN V VDE V 0884-10 Insulation Characteristics ⁽¹⁾ over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	SPECIFICATION	UNIT
V_{IOTM}	Transient overvoltage	Method a, t = 60 s, Qualification test	4000	V
V _{IORM}	Maximum working insulation voltage		560	V
V _{PR}	Input to output test voltage	Method b1, V _{PR} = V _{IORM} × 1.875, 100% Production test with t = 1 s, Partial discharge < 5 pC	1050	V
R_S	Insulation resistance	$V_{IO} = 500 \text{ V at T}_{S}$	>10 ⁹	Ω
	Pollution degree		2	

⁽¹⁾ Climatic Classification 40/125/21

Table 3. IEC 60664-1 Ratings Table

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group Material group		II
In stallation plansification	Rated mains voltage ≤ 150 V _{RMS}	I-IV
Installation classification	Rated mains voltage ≤ 300 V _{RMS}	1-111

Table 4. Regulatory Information

VDE	CSA	UL
Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12	Approved under CSA Component Acceptance Notice 5A and IEC 60950-1	Recognized under UL 1577 Component Recognition Program ⁽¹⁾
Basic insulation, 4000 V _{PK} Maximum transient overvoltage, 560 V _{PK} Maximum working voltage	4000 V _{PK} Isolation rating, 560 V _{PK} Basic working voltage per CSA 60950-1-07 and IEC 60950-1 (2nd Ed)	Single Protection, 2500 V _{RMS}
Certificate number: 40016131	Master contract number: 220991	File number: E181974

(1) Production tested \geq 3000 V_{RMS} for 1 second in accordance with UL 1577.

9.3.1 Safety Limiting Values

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.

Table 5. Safety Limiting

	PARAMETER				TYP	MAX	UNIT
Is	Safety input, output, or supply current	DW-16	θ _{JA} = 79.6°C/W, V _I = 5.5 V, T _J = 150°C, T _A = 25°C			286	mA
T _S	Maximum safety temperature	DW-16				150	°C

The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the *Thermal Information* table is that of a device installed in a High-Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

Figure 25. Thermal Derating Curve

9.4 Device Functional Modes

Table 6. Driver Function Table⁽¹⁾

V _{CC1}	V _{CC2}	INPUT (D)	ENABLE INPUT (DE)	OUTP	UTS ⁽²⁾
				Y/A	Z/B
PU	PU	Н	Н	Н	L
PU	PU	L	Н	L	Н
PU	PU	X	L	Hi-Z	Hi-Z
PU	PU	X	OPEN	Hi-Z	Hi-Z
PU	PU	OPEN	Н	Н	L
PD	PU	X	Х	Hi-Z	Hi-Z
PU	PD	X	Х	Hi-Z	Hi-Z
PD	PD	X	Х	Hi-Z	Hi-Z

PU = Powered Up; PD = Powered Down; H = Logic High; L= Logic Low; X = Irrelevant, Hi-Z = High Impedance (off) Driver output pins are Y and Z for full-duplex devices and A and B for half-duplex devices.

Table 7. Receiver Function Table⁽¹⁾

Table 11 10001101 Table 1 Table							
V _{CC1}	V _{CC2}	DIFFERENTIAL INPUT $V_{ID} = (V_A - V_B)$	ENABLE (RE)	OUTPUT (R)			
PU	PU	-0.01 V ≤ V _{ID}	L	Н			
PU	PU	$-0.2 \text{ V} < \text{V}_{\text{ID}} < -0.01 \text{ V}$	L	?			
PU	PU	V _{ID} ≤ -0.2 V	L	L			
PU	PU	X	Н	Hi-Z			
PU	PU	X	OPEN	Hi-Z			
PU	PU	Open circuit	L	Н			
PU	PU	Short Circuit	L	Н			
PU	PU	Idle (terminated) bus	L	Н			
PD	PU	X	X	Hi-Z			
PU	PD	X	L	Н			

⁽¹⁾ PU = Powered Up; PD = Powered Down; H = Logic High; L= Logic Low; X = Irrelevant, Hi-Z = High Impedance (off), ? = Indeterminate

9.4.1 Device I/O Schematics

Figure 26. Device I/O Schematics

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The ISO308x family consists of RS-485 transceivers commonly used for asynchronous data transmissions. Full-duplex implementation requires two signal pairs (four wires), and allows each node to transmit data on one pair while simultaneously receiving data on the other pair. For half-duplex transmission, only one pair is shared for both transmission and reception of data. To eliminate line reflections, each cable end is terminated with a termination resistor, R(T), whose value matches the characteristic impedance, Z0, of the cable. This method, known as parallel termination, allows for higher data rates over longer cable length.

10.2 Typical Application

b) Combined enable signals for use as directional control pin

c) Receiver always on

Figure 27. Half-Duplex Transceiver Configurations

Figure 28. Typical RS-485 Network With Full-Duplex Transceivers

Typical Application (continued)

10.2.1 Design Requirements

RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of applications with varying requirements, such as distance, data rate, and number of nodes.

Table 8. Design Parameters

PARAMETER	VALUE
Pullup and Pulldown Resistors	1 kΩ to 10 kΩ
Decoupling Capacitors	100 nF

10.2.2 Detailed Design Procedure

There is an inverse relationship between data rate and cable length, which means the higher the data rate, the shorter the cable length; and conversely, the lower the data rate, the longer the cable length. When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as the stub, should be as short as possible. Stubs present a nonterminated piece of bus line which can introduce reflections as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of a stub should be less than one-tenth of the rise time of the driver. The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (ULs), where 1 UL represents a load impedance of approximately 12 k Ω . Because the ISO308x family consists of 1/8 UL transceivers, connecting up to 256 receivers to the bus is possible.

10.2.3 Application Curves

Figure 29. ISO308x Output

Product Folder Links: ISO3080 ISO3082 ISO3086 ISO3088

11 Power Supply Recommendations

To ensure reliable operation at all data rates and supply voltages, a 0.1- μ F bypass capacitor is recommended at input and output supply pins (V_{CC1} and V_{CC2}). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Tl's SN6501. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 data sheet (SLLSEA0).

12 Layout

12.1 Layout Guidelines

ON-chip IEC-ESD protection is good for laboratory and portable equipment but never sufficient for EFT and surge transients occurring in industrial environments. Therefore, robust and reliable bus node design requires the use of external transient protection devices. Because ESD and EFT transients have a wide frequency bandwidth from approximately 3-MHz to 3-GHz, high-frequency layout techniques must be applied during PCB design. A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 30).

- Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane, and low-frequency signal layer.
- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in².
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links
 usually have margin to tolerate discontinuities such as vias.
- Place the protection circuitry close to the bus connector to prevent noise transients from penetrating your board.
- Use V_{CC} and ground planes to provide low-inductance. High-frequency currents might follow the path of least inductance and not necessarily the path of least resistance.
- Design the protection components into the direction of the signal path. Do not force the transient currents to divert from the signal path to reach the protection device.
- Apply 0.1-µF bypass capacitors as close as possible to the V_{CC}-pins of transceiver, UART, and controller ICs on the board.
- Use at least two vias for V_{CC} and ground connections of bypass capacitors and protection devices to minimize effective via-inductance.
- Use 1-kΩ to 10-kΩ pullup and pulldown resistors for enable lines to limit noise currents in these lines during transient events.
- Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current into the transceiver and prevent it from latching up.
- While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient blocking units (TBUs) that limit transient current to less than 1 mA.

Layout Guidelines (continued)

If an additional supply voltage plane or signal layer is needed, add a second power and ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

NOTE

Note: For detailed layout recommendations, see Application Note *Digital Isolator Design Guide*, SLLA284.

12.2 Layout Example

Figure 30. Recommended Layer Stack

22

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

For related documentation see the following:

- Digital Isolator Design Guide, SLLSEA0
- Transformer Driver for Isolated Power Supplies, SLLA284
- Isolation Glossary, SLLA353

13.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 9. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY		
ISO3080	Click here	Click here	Click here	Click here	Click here		
ISO3082	Click here	Click here	Click here	Click here	Click here		
ISO3086	Click here	Click here	Click here	Click here	Click here		
ISO3088	Click here	Click here	Click here	Click here	Click here		

13.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OUTLINE

DW0016B

SOIC - 2.65 mm max height

NOTES:

- All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MO-013, variation AA.

www.ti.com

EXAMPLE BOARD LAYOUT

DW0016B

SOIC - 2.65 mm max height

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

www.ti.com

EXAMPLE STENCIL DESIGN

DW0016B

SOIC - 2.65 mm max height

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 9. Board assembly site may have different recommendations for stencil design.

www.ti.com

16-Dec-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
ISO3080DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3080	Samples
ISO3080DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3080	Samples
ISO3080DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3080	Samples
ISO3080DWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3080	Samples
ISO3082DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3082	Samples
ISO3082DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3082	Samples
ISO3082DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3082	Samples
ISO3082DWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3082	Samples
ISO3086DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3086	Samples
ISO3086DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3086	Samples
ISO3086DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3086	Samples
ISO3088DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3088	Samples
ISO3088DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3088	Samples
ISO3088DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3088	Samples
ISO3088DWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ISO3088	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PACKAGE OPTION ADDENDUM

16-Dec-2015

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Dec-2015

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All ullilensions are norminal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO3080DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO3082DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO3086DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO3088DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

www.ti.com 16-Dec-2015

*All dimensions are nominal

-	7 till difficilities are memilian								
	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
	ISO3080DWR	SOIC	DW	16	2000	367.0	367.0	38.0	
	ISO3082DWR	SOIC	DW	16	2000	367.0	367.0	38.0	
	ISO3086DWR	SOIC	DW	16	2000	367.0	367.0	38.0	
	ISO3088DWR	SOIC	DW	16	2000	367.0	367.0	38.0	

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity