DAVIER, SOFIA ANDELIUAS. BSIT 2-2

1) I objective:

Minim120 W = 6x, +2x2 +3x3

I. Constraints

$$3 \times 1 + 2 \times 2 + \times 3 \approx 28$$

 $6 \times 1 + \times 3 \approx 24$
 $3 \times 1 + \times 2 + 2 \times 3 \approx 40$
 $\times 1 \times 2 \times 3 \approx 0$

Matrix

$$\begin{bmatrix} 3 & 2 & 1 & 2 & 2 \\ 6 & 0 & 1 & 2 & 4 \\ \hline & 1 & 2 & 4 & 0 \\ \hline & & 2 & 3 & 1 & 0 \end{bmatrix}$$

Transpose matrix

$$\begin{bmatrix}
 3 & 6 & 3 & 6 \\
 2 & 0 & 1 & 2 \\
 \frac{1}{28} & \frac{1}{24} & \frac{2}{40} & 0
 \end{bmatrix}$$

Dual:

I. Objective:

Maximize 2 = 20, +24y2 +40y3 → -28y, -24y2-40y3 +2 =0

I. contraints

$$3y, +6y_2 + 3y_3 \le 6$$
 $\rightarrow 3y, +6y_2 + 3y_3 + 6, = 6$
 $2y, + y_3 \le 2$ $\rightarrow 2y, + y_3 + 6, = 2$
 $y, + y_2 + 2y_3 \le 3$ $\rightarrow y, + y_2 + 2y_3 + 6, = 3$

3)
$$\begin{bmatrix} 3 & 6 & 3 & 1 & 0 & 0 & 0 & 16 \\ 2 & 6 & 1 & 0 & 1 & 0 & 0 & 2 \\ \frac{1}{2} & \frac{1}{2} & 1 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} : R_2 - R_3 \\ -28 & -24 & -40 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix} R_4': R_4 + 40R_5$$

Ŋ		0	*Nepadoption			0.1150		State.
1 1/2	41	42	ζ,	52	5 3	7.	C	
3/2	12	0	1		-1/2	0	3/2)
13	1/2	0	0		-1/2	0	1/2	
r - 8	-11	<u> </u>			1/2	0	1.5	,
	9	Q	0	Q	20	1	60	

$$\begin{bmatrix}
3/7 & 9/2 & 0 & 1 & 0 & -1/2 & 0 & 3/2 \\
9/2 & -1/2 & 0 & 0 & 1 & -1/2 & 0 & 1/2 \\
1/2 & 1/2 & 1 & 0 & 0 & 1/2 & 0 & 1/5 \\
-8 & -4 & 0 & 0 & 0 & 20 & 1 & 60
\end{bmatrix}$$

$$\begin{bmatrix} 3/2 & 9/2 & 0 & 1 & 0 & -1/2 & 0 & 3/2 \\ -1/3 & 0 & 0 & 2/3 & -1/3 & 0 & 3/3 \\ -1/2 & 1 & 0 & 0 & 1/2 & 0 & 1.5 \\ -8 & -4 & 0 & 0 & 0 & 20 & 1 & 60 \end{bmatrix} R_1': R_1 - \frac{3}{2}R_2$$

$$R_2': R_3 - \frac{1}{2}R_2$$

$$R_4': R_4 + 8R_2$$

$$\begin{bmatrix} 0 & 5 & 0 & 1 & -1 & 0 & 0 & 1 \\ 1 & -1/3 & 0 & 0 & 2/3 & -1/3 & 0 & 1/2 \\ 0 & 1/4 & 1 & 0 & -1/3 & 2/3 & 0 & 4/3 \\ \hline 0 & -2/3 & 0 & 0 & 1/2/3 & 68/3 & 1 & 173/3 \end{bmatrix} \frac{1/5}{3/16}$$

$$\begin{bmatrix}
0 & 5 & 0 & 1 & -1 & 0 & 0 & 1 \\
1 & -1/3 & 0 & 0 & 2/3 & 1/3 & 0 & 1/2 \\
0 & 1 & 4 & 0 & -4/3 & 8/3 & 0 & 16/3 \\
\hline
0 & -20/3 & 0 & 0 & 16/3 & 68/3 & 1 & 73/3
\end{bmatrix}
R_1: R_1 - 5R_3
R_2: R_1 + 1/3R_3$$

$$R_4: R_4 + 20/3R_3$$