[BAC] ETUDE D'UNE FONCTION AVEC LOGARITHME (1)

Soit la fonction f définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = \frac{1 + \ln(x)}{x^2}$$
 et C sa courbe représentative dans un repère du plan.

1)
$$\lim_{x \to 0} [1 + \ln(x)] = -\infty$$

$$\lim_{x \to 0} \left(\frac{1}{x^2} \right) = +\infty$$

$$\Rightarrow \lim_{x \to 0} f(x) = -\infty \times +\infty = -\infty$$

1.b) On sait que $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ (théorème des croissances comparées).

$$f$$
 peut s'écrire : $f(x) = \frac{1}{x^2} + \frac{1}{x} \frac{\ln(x)}{x}$ d'où l'on tire immédiatement : $\lim_{x \to +\infty} f(x) = 0$

- 1.c) On en déduit que les axes des abscisses et des ordonnées sont des asymptotes de C.
- 2) Dans tout ce qui suit, on considère que $x \in I = [0; +\infty[$ et, en particulier, $x \neq 0$.

2.a) Calculons
$$f'(x) = \left(\frac{u'v - uv'}{v^2}\right)$$
 avec

$$u = 1 + \ln(x)$$
 et $v = x^2$, et donc $u' = \frac{1}{x}$ et $v' = 2x$.

On obtient:

$$f'(x) = \frac{x[-1-2\ln(x)]}{x^4}$$
. Puisque $x \neq 0$, on peut simplifier :

$$f'(x) = \frac{-1 - 2\ln(x)}{x^3}.$$

2.b)
$$-1 - 2\ln(x) > 0 \Rightarrow \ln(x) < -\frac{1}{2} \Rightarrow x < e^{-\frac{1}{2}}$$
.

 x^3 étant strictement positif sur I, f'(x) a le signe de $-1 - 2\ln(x)$.

ln(x) étant une fonction monotone croissante sur I, on en déduit que :

$$f'(x) > 0$$
 pour $0 < x < e^{-\frac{1}{2}}$,

$$f'(x) = 0 \text{ pour } x = e^{-\frac{1}{2}},$$

$$f'(x) < 0 \text{ pour } x > e^{-\frac{1}{2}}.$$

2.c) En remarquant que $f\left(e^{-\frac{1}{2}}\right) = \frac{e}{2}$, on peut dresser le tableau de variations de f:

3.a) f est monotone croissante sur l'intervalle]0; $e^{-\frac{1}{2}}]$ et varie $de -\infty$ à $\frac{e}{2}$ sur cet intervalle. C coupe donc l'axe des abscisses en un point unique d'abscisse x_0 tel que : $f(x_0) = 0$, ce qui est réalisé lorsque $1 + \ln(x) = 0$. On obtient facilement : $x_0 = e^{-1}$ et bien sûr $y_0 = 0$.

3)

3.b) On remarque que le signe de f(x) est celui de $1 + \ln(x)$, ce qui nous donne : f(x) < 0 pour $0 < x < e^{-1}$, f(x) = 0 pour $x = e^{-1}$, f(x) > 0 pour $x > e^{-1}$.