AD____

PHYSICAL AND CHEMICAL CHARACTERIZATION OF MILITARY SMOKES

(12)

Part II - Fog Oils and Oil Fogs Final Report

Ву

Sidney Katz Alan Snelson Ronald Butler Raleigh Farlow Roger Welker Stephen Mainer

June 1980

Supported by

US Army Medical Research and Development Command Fort Detrick, Frederick, Maryland 21701

Contract No. DAMD17-78-C-8085

IIT Research Institute 10 West 35th Street Chicago, Illinois 60616

Contract Officer's Technical Representative: J. J. Barkley, Jr. US Army Medical Bioengineering Research and Development Laboratory Fort Detrick, Frederick, Maryland 21701

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Arity position unless so designated by other authorized documents.

FILE COPY,

80 12 29 062

EXECUTIVE SUMMARY

The present inventory of military obscuration smokes includes the oil fogs generated by the thermal evaporation and condensation of SGF-2 hydrocarbon oils. The field operation employs a gasoline powered M3-A3 fog generator which uses about 1 gallon of oil per minute to generate a dense aerosol cloud. The present study has been concerned with the characterization of the fog oil and the product fogs to determine the particle size and physical stability of the product fog and also to identify both oil and oil fog composition of possible biological significance.

Fog oils from three different sources and three fog generators were used in the tests. Oil fogs were generated with all nine oil-generator combinations and samples were collected for particle size determination, aerosol aging and chemical composition.

The physical appearances of the three oils varied considerably from clear light amber to dark black-brown. All three oils contained very small traces of copper and zinc at the parts per billion level, 40 ppb of zinc and 20-100 ppb of copper. The oil densities were in the 0.89-0.93 g-ml⁻¹ range.

The oil fogs were generated using the recommended military procedure. A fraction of the aerosol in the exhaust was collected for chemical analysis. A second fraction was led into a 14 cu.m. (512 cf) cubical holding tank for aging studies. The remainder of the aerosol was incinerated.

Varying the generators appeared to have little effect on either the physical or chemical properties of the aerosols; additionally the physical properties of the aerosols were not greatly altered from one oil to the next. An average initial mass diameter for all oil fogs was 1.16 μm with a standard deviation of 0.14 μm . The size distributions were all close to log normal and the particle content above the 10 μm size was negligible. A number count assessment indicated a bimodal distribution caused by a high level of very small

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

This report describes a study of U.S. Army SGF-2 Fog Oils and the corresponding Oil Fogs using the Army M3-A3 Fog Generator to produce the fogs. The investigation included studies of the generation process, physical and chemical analysis of the oils and their fogs, and observations of the fog stability and persistence. It was noted that fog oil compositions varied from source to source and that this was reflected in the fog compositions. The generators did not appear to contribute significantly to fog variations.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Charles Charle

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Dots Entered)

Block 20 (cont.)

cont.

The fog oils and the fogs contained almost equal amounts of aliphatic and aromatic hydrocarbons with acids, alcohols and esters at the legereent level or less and nitrogen derivatives in the parts per million range. Both the oils and their fogs proved to be too complex for complete chemical resolution by gas chromatography and mass spectrometry. Of the several hundred identifiable chemical species, aliphatic hydrocarbons were in the Car - Com range. The observed aromatics included one-through four-membered ring structures.

The fogs were examined to determine size and stability. Size determinations indicated a mass median diameter of 1.16 m with a standard deviation of 0.14 m. On the basis of single particle counting, a bimodal distribution was observed with high levels of submicron particles. The aerosols were relatively stable; after aging for one hour, typical systems showed median particle size increases of the order of 12 percent with a decrease in the mass of suspended particles of about 30 percent.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

particles in the low submicron region. Aerosol aging consistently involved particle growth caused by collision, accompanied by a decrease in particle concentration, although median particle growths rarely exceeded 10% over a one-hour interval.

Chemical analysis of the oil fogs was based on liquid and gas chromatography fractionation and gas chromatography and mass spectrometry identification. The gas chromatography traces consistently indicated the presence of very large numbers of unresolved components with a relatively small number of identifiable structures. Initially the oils and oil fogs were separated into class fractions of aliphatics, aromatics, alcohols, acids and esters. The aliphatic and aromatic fractions predominated in both the oils and the fogs, at 95-99% of the total, with aromatics and aliphatics in near equal amounts. In general, the aliphatic, aromatic and ester fractions of the oil fogs appear to parallel the parent oil compositions, suggesting only moderate alteration in the fog-forming processes, with however, a tendency toward a slightly increased aromatic content in the oil fogs.

The aliphatic fractions contain identifiable straight and branched chain saturated hydrocarbons in the C_{14} - C_{22} range. The aromatic fractions were in a similar molecular weight range but many more species were identified including substituted benzenes, naphthalenes, anthracenes, phenanthrenes, fluorenes, phenalenes, ionols and others. No cyclic structures beyond tetracyclic groups were observed among the identifiable compounds.

A considerable number of nitrogen base materials was identified in the oils and oil fogs, including quinoline, benzoquinoline and indole derivatives. It should be noted that these nitrogen compounds are present at parts per million levels.

It must again be stated that the several hundred species identified with reasonable assurance are only a small fraction of the total number which were resolved but not identified or which could not be detected against the massive background of unresolved material.

The high aromatics contents of both oils and oil fogs, approximately 50% of the total, may represent a potential hazard.

FOREWORD

This report on the physical and chemical characterization of oil fogs and their precursor oils is the second in a series of investigations of military smokes. This investigation was started on October 1, 1978 and the experimental work was completed on February 29, 1980.

Other studies in the series include the Physical and Chemical Characterization of Hexachloroethane Smokes, completed on May 31, 1979 and the Physical and Chemical Characterization of White Phosphorus Smoke, presently in progress. These studies are phases of a program titled "Physical and Chemical Characterization of Military Smokes," U.S. Army Contract No. DAMD-17-78-C-8085.

Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such items.

The close cooperation of Mr. Jesse J. Barkley, Jr. of the U.S. Army Medical Bioengineering Research and Development Laboratory is gratefully acknowledged.

TABLE OF CONTENTS

<u>Pag</u>	ge
EXECUTIVE SUMMARY	į
FOREWORD	٧
LIST OF FIGURES	i
LIST OF TABLES	ii
SYMBOLS AND ABBREVIATIONS	ji
1. INTRODUCTION	1
2. CONCLUSIONS	2
	2
3. OIL FOG GENERATION	3
	3
3.3 Experiment Designation	
4. CHEMICAL ANALYSIS	5
4.1 Discussion	5
4.4 Chemical Separation, Liquid Chromatography - Heavy Aromatics	
4.5 Chemical Separation - Nitrogen Bases	0
4.6 High Resolution Gas Chromatography	
4.8 Gas Chromatography/Mass Spectrometry	4
5. RESULTS	6
5.1 Class Fractionation	6
5.2 Gel Permeation Liquid Chromatography	
5.4 High Resolution Gas Chromatography	9
5.5 Gas Chromatography/Mass Spectrometry	
6.1 Procedure and Instrumentation	
7. RESULTS AND DISCUSSION	
APPENDIX B: Gas Chromatography Data	
APPENDIX D: Aerosol Data from Experiments 3 through 12	

LIST OF FIGURES

<u>Number</u>		Page
1	Oil Fog Generator, Generator Controls	. 4
2	Oil Fog Generator, Fog Exhaust Ports	. 5
3	Oil Fog Generation	. 8
4	Fog Generation and Sampling System	. 11
5	Flow Chart of Chemical Analysis	. 16
6	HPLC Class Fractionation of Fog Oil No. 3	. 27
7	Aerosol Sampling Line and Dilution System	. 34
8	Histogram of Mass Median Particle Size Distribution	. 41
9	Log Probability Plot for Experiment No. 6	. 42
10	Log Probability Plot for Experiment No. 11	. 43
11	Experiment No. 4. Oil Fog Particle Size (dm) and Concentration (TSP) Variation with Time	. 45
12	Experiment No. 4. Particle Number Concentration Change vs. Time	. 48
13	Experiment No. 5 (C-2) Particle Size Distribution by ASAS Aerosol Spectrometer	
14	Experiment No. 11 (B-1, HT) Particle Size Distribution by ASAS Aerosol Spectrometer	
D-1	Histogram of Mass Median Particle Size Distribution Experiment No. 3. 30 minutes after to	
D-2	Histogram of Mass Median Particle Size Distribution Experiment No. 4. 10 minutes after t ₀	
D-3	Histogram of Mass Median Particle Size Distribution Experiment No. 5. 13 minutes after t_0	
D-4	Histogram of Mass Median Particle Size Distribution Experiment No. 6. 9 minutes after t _o	
D-5	Histogram of Mass Median Particle Size Distribution Experiment No. 7. 10 minutes after t _c	
D-6	Histogram of Mass Median Particle Size Distribution Experiment No. 8. 12 minutes after t ₀	
D-7	Histogram of Mass Median Particle Size Distribution Experiment No. 9. 9 minutes after t	

LIST OF FIGURES (CONT.)

Number		Page
D-8	Histogram of Mass Median Particle Size Distribution Experiment No. 10. 8 minutes after t_0	.D-20
D-9	Histogram of Mass Median Particle Size Distribution Experiment No. 11. 8 minutes after t_0	.0-21
D-10	Histogram of Mass Median Particle Size Distribution Experiment No. 12. 12 minutes after t_0	.D-22

LIST OF TABLES

Number		Page
1	Physical and Chemical Requirements for Type SGF-2 Fog Oil	. 6
2	SGF-2 Fog Oil Source Identification	. 6
3	M3A3 Oil Gog Generators	. 6
4	Aerosol Generator Exhaust Temperatures. Thermocouple Probe Inserted About 6 in. Into Generator Exhaust	. 12
5	Fog Cil Experiments	. 14
6	Compositions of Standard Mixtures Used in GC Instrument Calibration	. 22
7	Gel Permeation Standard Test Mixture	. 24
8	Results of HPLC Class Fractionation	. 26
9	Results of Gel Permeation Liquid Chromatography	. 28
10	Results of Metal Analysis	. 29
11	Piezoelectric Counter Stages	. 35
12	ASAS Size Range Data	. 37
13	Summary of Initial Particle Size and Concentration Measurements.	
14	Dependence of TSP, dm and n on Time t	. 43
15	Calculated Values of Agglomeration Coefficient	. 46
C-1	Oil No. 1, Aliphatic Fraction	. C-4
C-2	Oil No. 2, Aliphatic Fraction	. C-6
C-3	Oil No. 3, Aliphatic Fraction	. C-9
C-4	Oil No. 1, First Aromatic Fraction	. C-12
C-5	Oil No. 2, First Aromatic Fraction	. C-18
C-6	Oii No. 3, First Aromatic Fraction	. C-21
C-7	Oil No. 1, Middle Aromatic Fraction	. C-26
8-0	Oil No. 2, Middle Aromatic Fraction	. C-30
C-9	Oil No. 3, Middle Aromatic Fraction	. C-34
C-10	Oil No. 1, Heavy Aromatic Fraction	. C-39
C-11	Oil Fog Run No. 2 (B-1), Heavy Aromatic Fraction	. C-41
C-12	Gil Fog Run No. 11 (B-1[HT]), Heavy Aromatic Fraction	. C-45
C-13	Oil No. 2, Heavy Aromatic Fraction	. C-47
C-14	Gil Fog Run No. 4 (B-2), Heavy Aromatic Fraction	. C-50
C-15	Oil Fog Run No. 11 (B-1[HT]), Heaviest Aromatic Fraction	. C-53

LIST OF TABLES (CONT.)

Number																			Page
C-16	Oil No. 2, Nitrog	en E	Bas	es	F	rac	tic	n											.C-54
C-17	Oil Fog Run No. 9	(A-	-2)	,	Ni	tro	ger	ı E	as	es	F	rac	tic	n					.C-57
D-1	Experiment No. 3																		.D-3
D-2	Experiment No. 4								•		•								.D-4
D-3	Experiment No. 5										•						•		.D-5
D-4	Experiment No. 6																		.D-6
D-5	Experiment No. 7																		.D-7
D-6	Experiment No. 8																		8-d.
D-7	Experiment No. 9																		.D-9
D-8	Experiment No. 10									•									.D-10
D-9	Experiment No. 11																		.D-11
D-10	Experiment No. 12																		.D-12

GAS CHROMATOGRAPHY CHARTS

			Page
Chart	1.	Gas Chromatography Standards	B-4
Chart	2.	Aliphatic Fraction: Oil No. 1 and Corresponding Oil Fogs	B-6
Chart	3.	Aliphatic Fraction: Oil No. 2 and Corresponding Oil Fogs	B-8
Chart	4.	Aliphatic Fraction: Oil No. 3 and Corresponding Oil Fogs	B-10
Chart	5.	First Aromatic Fraction: Oil No. 1 and Corresponding Oil Fogs	B-12
Chart	6.	First Aromatic Fraction: Oil No. 2 and Corresponding	B-14
Chart	7.	First Aromatic Fraction: Oil No. 3 and Corresponding Oil Fogs	B-16
Chart	8.	Middle Aromatic Fraction: Oil No. 1 and Corresponding Oil Fogs	B-18
Chart	9.	Middle Aromatic Fraction: Oil No. 2 and Corresponding Oil Fogs	B-20
Chart	10.	Middle Aromatic Fraction: Oil No. 3 and Corresponding Oil Fogs	B-22
Chart	11.	Heavy and Heaviest Aromatic Fractions: Oil No. 1 and Corresponding Oil Fogs	B-24
Chart	12,	Heavy and Heaviest Aromatic Fractions: Oil No. 2 and Corresponding Oil Fogs	B-26
Chart	13.	Heavy and Heaviest Aromatic Fractions: Oil No. 3 and Corresponding Oil Fogs	B-27
Chart	14.	Ester Fraction: Oil No. 1 and Corresponding Oil Fogs	B-28
Chart	15.	Ester Fraction: Oil No. 2 and Corresponding Oil Fogs	B-29
Chart	16.	Ester Fraction: Oil No. 3 and Corresponding Oil Fogs	B-30
Chart	17.	Alcohol Fraction: Oil No. 1 and Corresponding Oil Foys	B-31
Chart	18.	Alcohol Fraction: Oil No. 2 and Corresponding Oil Fogs	B-32
Chart	19.	Alcohol Fraction: Oil No. 3 and Corresponding Oil Fogs	B-33
Chart	20.	Acid Fraction: Oil No. 1 and Corresponding Oil Fogs	B-34
Chart	21.	Acid Fraction: Oil No. 2 and Corresponding Oil Fogs	B-35
Chart	22.	Acid Fraction: Oil No. 3 and Corresponding Oil Fogs	B-36
Chart	23.	Nitrogen Base Fraction: Oil No. 2 and Corresponding Oil Fogs	B-38
Chart	24.	Aliphatic Fraction: Oil No. 1, Normal Run, High Temperature Run	B-40

GAS CHROMATOGRAPHY CHARTS (CONT.)

			Page
Chart	25.	First Aromatic Fraction: Oil No. 1, Normal Run, High Temperature Run	
Chart	26.	Middle Aromatic Fraction: Oil No. 1, Normal Run, High Temperature Run	B-44
Chart	27.	Heavy Aromatic Fraction: Oil No. 1, Normal Run, High Temperature Run	B-46
Chart	28.	Heaviest Aromatic Fraction: Oil No. 1, Normal Run, High Temperature Run	B-48
Chart	29.	Ester Fraction: Oil No. 1, Normal Run, High Temperature Run	B-49
Chart	30.	Alcohol Fraction: Oil No. 1, Normal Run, High Temperature Run	B-50
Chart	31.	Acid Fraction: Oil No. 1, Normal Run, High Temperature Run .	B-51

SYMBOLS AND ABBREVIATIONS

0	
Ă	Angstrom unit; (10 ⁻¹⁰ meter)
AREA	area under a MS chart peak
ASAS	Active Scattering Aerosol Spectrometer
Ь	constant term in the linear regression equation, $y = mt + b$
вти	British Thermal Unit
Bz	benzene
С	intercept in aerosol growth correlation equation
c _i	aerosol mass concentration in Stage i (P/Z counter)
C, °C	Celsius, degrees Celsius
cf	cubic feet
Cm	centimeter
cc	cubic centimeter
ďi	midrange diameter (ASAS particle counter)
\overline{d}_{m}	mass median diameter
DMSO	dimethyl sulfoxide
d _p	particle diameter
D _p 50	50% cutoff size (diameter) for a P/Z counter
et ac	ethyl acetate
F, °F	Fahrenheit, degrees Fahrenheit
F/D	flame ionization detection (GC)
Δfi	frequency shift for stage i (P/Z counter)
ft	foot
g	gram
GC	gas chromatography
GC/MS	gas chromatograph-mass spectrometer
HPLC	high prossure liquid chromatograph
hr	hour
I.D.	internal diameter compound identification (MS)

SYMBOLS AND ABBREVIATIONS (cont.)

```
in
                   inches
 K, K*
                   particle agglomeration coefficient
   k,
                   P/Z counter stage constant
                   natural logarithm
   1 n
   m
                  meter
                   slope in linear regression equation Y = mt + b
  M,
                   between-stage midpoint particle diameter (P/Z counter)
  min
                  minutes
                  milliliter
  m]
   MS
                  mass spectrometer
                  aerosol number concentration per ml
   n
                   normal (concentration)
   N
                   number of particles in the i th level
   ni
                   nanometer (10<sup>-9</sup> m)
   nm
                   aerosol number concentration at to.
   n
                  nitrogen-phosphorus selective detection (GC)
  N/P
  PK #
                  arbitrary peak number (MS)
                   parts per billion
  ppb
                   Piezo-electric Particle Cascade Impactor Counter
  P/Z
   R
                   correlation coefficient
                   second
  sec
  SPEC
                   spectrum number (MS)
                   time in aerosol time history correlation
   t
                   time zero of an experiment
   to
   Δt
                   sampling time (P/Z counter)
  TIC
                   total ion current (MS)
TICRAT
                  percentage peak after correction for background (MS)
  TSP
                   total suspended particles
  U٧
                   ultraviolet
  ٧
                   volume rate of air flow
                  mass fraction per stage (PZ counter)
 Х;
                  micrometer (10^{-6} \text{ m})
 \mu m
                  sensitivity factor for stage i (P/Z counter)
 σi
```

1. INTRODUCTION

This investigation is a study of a number of military obscuration smokes currently in the inventory of the U.S. Army. The investigation consisted of the examination of the generating materials, the generating process and the physical and chemical properties of the product smokes. Since physiological consequences of smoke exposure are believed to be primarily a result of inhalation, interest in the product smoke has been limited to particle sizes below 10 μm .

Part 1 of this series, dated January 1, 1980, was a report on smokes produced by the Army HC smoke generator in a process involving the thermal interaction of hexachloroethane, zinc oxide and aluminum.

The present report, Part 2 of the series, describes an investigation of oil fogs.

Oil fogs are formed by the thermal evaporation of hydrocarbon oils and the subsequent condensation of the vapor to form a fog. Physical characterization of the fog involved its generation followed by successive sampling to determine the size distribution and the number concentration of the smoke particles as well as the effects of aging, concentration and variations in the generation process. Chemical studies were used in attempts to identify representative members of the vast number of constituents of both the oil and the fog and where possible, to identify possible hazardous materials. As noted above, sampling was limited to particle sizes below 10 μ m.

The standard oil fog generator yields a very large volume of oil fog. Initial experiments were conducted in a remote rural area. Several problems arose including the severe environmental consequences of the generation even far from the urban environment. In addition, the heated vapor and smoke rose rapidly in a manner that made sampling very difficult and almost certainly

of dubious reproducibility. It was therefore decided to conduct all subsequent experiments in a controllable laboratory environment.

2. CONCLUSIONS

2.1 Fog Oil Compositions

The fog oils were all almost pure hydrocarbons, predominantly mixtures of aliphatic and aromatic components in almost equal amounts with small amounts of alcohols, organic acids and esters and very small traces of organic nitrogen derivatives. Aliphatic hydrocarbons were in the C_{12} - C_{22} range and aromatics consisted of one- through four-member rings, also in the C_{12} - C_{22} range. All oils contained traces of copper and zinc, the former near 40 ppb and the latter varying between 20 and 100 ppb.

The oils were physically distinct ranging from light yellow to almost black with densities between 0.89 and 0.93 g ml.

2.2 Reaction Products

The generated aerosols were very similar in composition to their parent oils and indicated very little dependence on the different generators.

The aerosols from all sources and generators were closely similar on a weight distribution basis with a log normal distribution and a mass mean size of 1.16 μ m and a standard deviation of 0.14 μ m. Over a period of about one hour, the median sizes increased very slightly, ranging from virtually no increase to as much as 50%, and averaging about 12%.

On a number basis, the size distributions were bimodal with very large numbers of particles in the submicron range below 0.08 μm , the lower limit of the counter. These large numbers represented a very small fraction of the total aerosol weight.

3. OIL FOG GENERATION

3.1 Fog Oils

The fog oils used in this study are designated as "petroleum oil for use in mechanical smoke generators" of the class Type SGF-2. They are described in Military Specification MIL-F-12070A*. The chemical and physical standards are given in Table 1.

Three lots of fog oil were used in the investigation. Each lot was delivered in two steel drums. They were identified initially as SGF-No. 2 Lots No. 1, 2 and 3. Initially each drum in a lot was characterized by the designation 1-1, 1-2, etc., but this differentiation was discontinued when the oils from each source were found to be indistinguishable in all tests. The oils are identified by producer and identification code in Table 2.

3.2 Oil Fog Generators and Fog Generation

Three U.S. Army M3A3 fog generators were supplied to IIT Research Institute. They are listed and described by serial number in Table 3. Each generator was equipped with a tool kit and spare parts, principally replacement butterfly valves. Figure 1 shows the fog generator and Figure 2 shows the generator controls and the three exhaust nozzles from which the smoke emerges.

The M3A3 smoke generator consists of a small gasoline powered ram jet engine. The fog oil is metered into the exhaust manifold of this engine at a predetermined rate partially controlled by a manually operated valve. The heat of the exhaust vaporizes the oil and ejects it through the three nozzles shown in Figure 2 into the atmosphere where rapid condensation of the oil to dense fog occurs. The U.S. Army demonstrated the operation of the smoke generator to IITRI personnel and provided copies of the "Operator and Organizational Maintenance Manual Generator, Smoke, Mechanical, Pulse Jet, M3A3,"

^{*}Appendix 1. Fog Oil Military Specifications

Figure 1. Army M3A3 Oil Fog Generator

Figure 2. Oil Fog Generator
Generator Controls (above)
Fog Exhaust Ports (below)

TABLE 1. PHYSICAL AND CHEMICAL REQUIREMENTS FOR TYPE SGF-2 FOG OIL

Property	Maximum	Minimum
Flash point, °F (°C)	_	320 (160)
Viscosity, Saybolt Universal, at 100°F (38°C), sec.	110	100
Carbon residue, Conradson, %	0.1	-
Neutralization number	0.1	-
Pour point, °F (°C)	-40 (-40)	-

TABLE 2. SGF-2 FOG OIL SOURCE IDENTIFICATION

IITRI Lot No.	1	2	3
Source	Delta Petroleum Co.	Witco Chemical Co.	Phipps Product Corp.
Source Lot No.	-	DLA 600-78-C1088	DLA 800-78-C-1087
Batch	3580	8050	78208
Date	May 1978	May 1978	May 1978

TABLE 3. M3A3 OIL FOG GENERATORS

IITRI Iden	tification	Government Id	entity Number
Generator	Serial No.	Tag	Serial No.
Α	US 1500 4	M3A3-1722	EUR 800 535
В	US 1500 5	M3A3-1305	EUR 800 364
С	US 1500 6	M3A3-1278	EUR 800 472

Department of the Army Technical Manual, TM-3-1040-202-12. Except where otherwise noted in this report, the M3A3 generators were operated in the designated "normal mode", using about 40 gallons of fog oil and 3 gallons of gasoline per hour.

3.3 Experiment Designation

The experimental program required a comparison of the oil fogs formed by each oil in conjunction with each generator. Thus a minimum of 9 cil-fog generator combinations were required. Each run was designated by a sequential run number and was further identified by the oil batch number and the generator letter. For example, the run designated No. 1 (B-2) was the first run of the series, and involved Fog Oil No. 2 and Generator B.

Oil Fog Generation Field Test

Preliminary field tests were conducted at IIT Research Institute's Kingsbury "field" facility to evaluate equipment performance, to study the smoke cloud and, hopefully, to obtain some preliminary data.

The field tests were made using Fog Oil Lot No. 1 and Generator B. The first test was on December 18, 1979, a winter day with overcast sky and 2° C temperature. The cloud was very large but it lifted rapidly and attempts to sample at a station about 200 yards downwind failed.

The following day the test was repeated and the cloud was sampled with a Royco notical particle counter and an Anderson impactor. A small amount of 5 am fee material was detected but nothing larger. It was evident that the particle content of the fee in the 10 um and larger range was negligible.

The oil fog cloud formed during the December 18 field test, is shown in Figure 3.

Oil Fog Dispersed

It was not considered feasible to conduct the experimental program in open terrain because of the instability of the field environment, both for scole generation and sampling. The large quantities of fog produced in the field emphasized the magnitude of the fog disposal problem that would be encountered in the laboratory.

Figure 3. Oil Fog Generation

Under normal operating conditions the M3A3 generator converts about 2/3 gallon of oil fog per minute into a highly visible dense white cloud. In order to sample a typical fog for analytical purposes, it was deemed desirable to allow the smoke generators to attain thermal equilibrium. Preliminary tests in which a thermocouple was inserted a distance of about 8 in. into one of the fog generating nozzles indicated steady temperature conditions after approximately 10 minutes of operation. Assuming that an analytical sampling period of 10 to 15 minutes was necessar—, a minimum of about 13 gallons of oil would be converted to fog and would have to be disposed of in an acceptable manner.

The oil fog disposal problem was the subject of a detailed study. The preliminary particle size measurements made on the oil fog generated at the Kingsbury Ordnance facility indicated a mean particle size considerably less than 5 mm and theoretical considerations led to similar conclusions.

The possibility that a filter/impaction collection technique might be suitable was considered even though the sheer volume of material involved might present a problem. Discussions with several industrial suppliers of particle air filtration systems indicated that this approach might be viable. Arrangements were made to obtain on loan, pending proof of satisfactory operation, of a large capacity industrial Balston Filter Unit. A few short duration trial runs with this unit connected to the smoke generator showed less than satisfactory operation and after a total running time of less than 5 minutes the filter units were plugged, restricting air flow through the unit almost completely.

In light of the above experience the filtering concept was abandoned and a decision was made to burn off the excess oil fog in a large incinerator rated at 7×10^6 BTU/hr situated in an open area 30 meters from the aerosol chamber laboratory. The room air conditioning ducting system was modified to carry the oil fog from the generator to the incinerator. Some preliminary tests involving about 5 minutes of generator operation indicated that the incinerator was able to burn off completely the smoke generator's output.

Unfortunately, on the first full scale test an explosion occurred causing moderate damage to the ducting system and blowers. The cause of the explosion

was not ascertained with certainty but considerable fog was observed swirling around the heated parts of the smoke generator and it seemed possible that the exhaust blower capacity may have been inadequate for its removal, and that the ignition might have started in this way. It was established that ignition had not occurred at the incinerator with the flame front travelling back down the ducting to the generator area.

Although the incineration approach itself was feasible, modification of the building's air conditioning system to increase its blower capacity to ensure that no oil fog would contact the hot parts of the smoke generator would have been a substantial undertaking. Based on cost and safety considerations it was deemed preferable to move the smoke generator with its own blower and ducting system as close to the incinerator as possible. A blower of 450 cu ft min⁻¹ was found adequate to handle the generator's smoke output. This approach was implemented successfully. A schematic drawing of the arrangement is shown in Figure 4.

Fog Collection for Analytical Procedures

a. General

With the arrangement for disposal of the oil fog aerosol from the M3A3 generator resolved, it was possible to run the generators for an indefinite period of time. To collect oil fog samples for the chemical and physical characterization of the aerosol, the generators were run under standard operating conditions until steady temperature conditions were attained in the exhaust manifold of the generators as indicated by a thermocouple inserted into one of the three fog exhaust nozzles. A total of twelve runs were made. In all experiments but one, Experiment 11, thermal equilibrium was attained in less than 10 minutes with a mean operating temperature of 375°C. All temperatures are included in the tabulation of all runs in Table 4.

In Experiment No. 11, a generator was deliberately run under conditions designed to increase the normal operating temperature. This was done with the object of magnifying any effects that the generator operating temperature might have on oil degradation or aerosol size characteristics. The increase in operating temperature was achieved by reducing the rate of fog oil feed to

Fig. 4 FOG GENERATION AND SAMPLING SYSTEM

TABLE 4. AEROSOL GENERATOR EXHAUST TEMPERATURES. THERMOCOUPLE PROBE INSERTED ABOUT 6 IN INTO GENERATOR EXHAUST

Experiment No.	Generator - Oil	Time to equilibrium, min.	Average temperature, C
1	B-2	712	350
2	E-1	8	375
3	B-3	9	360
4	· B-2	$6^{rac{1}{2}}$	359
5	C-2	4	390
6	C-1	312	371
7	C-3	4	370
8	A-3	$6\frac{1}{2}$	399
9	A-2	6	380
10	A-1	6	366
11*	B-1	5	572
12	B-1	5	410

^{*} High temperature experiment

the generator, and reducing the gasoline supply to the ram jet motor. The resulting operating temperature was 572° C, almost 200° higher than the average of the other 11 "normal" runs.

b. Sampling for Chemical Analysis

To obtain analytical samples, the oil fog was collected using a simple impaction filter technique. A "high volume" filter pump (approximately 50 cu ft min ⁻¹) was used to draw a sample of oil fog from the manifold on the low pressure side of the blower connected to the incinerator, (Fig. 4) through a 5 liter glass flask packed with glass wool. To keep the collection flask cool it was set in a bucket filled with ice. With this arrangement, between 50 and 100 cm³ of the oil was collected in 10 minutes. The oil in the flask was then subjected to the analytical procedures to be described shortly.

c. <u>Sampling for Aerosol Analyses</u>

The original intent in the program was to use IITRI's 6 meter (18 ft) diameter spherical chamber to contain the oil fog aerosol for particle size measurements. However, the arrangements necessary for disposal of the excess oil fog precluded use of this facility. Instead a "mobile" aerosol holding tank was constructed, consisting essentially of a 2 meter cubic wooden structure mounted on casters. This holding tank was moved close to the smoke generator and was connected to the up stream side of the blower unit for collection of the aerosol sample via a valved duct of 5 cm diameter. A small suction blower attached to the chamber provided the necessary negative pressure required for sample collection. As in sample collection for chemical analysis, aerosol was sampled after attainment of thermal equilibrium in the smoke generator exhaust manifold. An aerosol sample was collected by opening the sampling valve for about 1 sec. The holding tank was then disconnected from the generator and was moved into an adjacent building for derosol particle size analyses. Elapsed time from sample collection to the start of aerosol measurement was approximately 3 minutes.

Table 5 is a generator-fog oil matrix correlating the experiments with the corresponding M3A3 generator and fog oil.

TABLE 5. FOG OIL EXPERIMENTS

M3A3	Fog Oil		
Generator	1	2	3
Α	#10	#9	#8
В	#2; #11; #12	#1, #4	#3
С	#6	#5	#7

4. CHEMICAL ANALYSIS

4.1 Discussion

The chemical analysis of natural hydrocarbon oils is a problem of extreme complexity. Even relatively simple oil fractions may be composed of many thousands of species. In the present investigation it was of interest to identify potentially toxic or hazardous constituents. These might be, for example, polycyclic aromatic hydrocarbons or their derivatives.

The analytical procedures were similar for both the oils and their derivative fogs. The methods used are described as follows:

- separate the oil or oil fog sample into classes using either chemical separation or liquid chromatography or a combination of both,
- 2) analyze the resulting fractions using high resolution gas chromatography,
- analyze selected fractions by gas chromatography/mass spectrometry, and
- 4) subject the oils and fogs to gel permeation liquid chromatography to determine size distribution.

This method is summarized as a flow chart in Figure 5. The details of the chemical analysis are presented in the following sections.

4.2 Sample Preparation

The oils were withdrawn from their metal containers and were delivered to the laboratory with no prior preparation.

The oil fogs were received for analysis as liquid condensates on glass wool in 5 liter glass round bottom flasks. Each oil fog was separated from the glass wool by three successive extractions with 300 ml aliquots of methylene dichloride, CH_2Cl_2 . The extracts were combined and the solvents were removed with a rotary evaporator. Prior to liquid chromatographic fractionation the oils and oil fogs were filtered using a Millipore Corporation filter with 0.2 μm pore size.

FIG 5 FLOW CHART OF CHEMICAL ANALYSIS

4.3 High Pressure Liquid Chromatography Class Fractionation

Compound class fractionation was performed by normal phase high pressure liquid chromatography (HPLC). This was accomplished by utilizing the Waters Associates Liquid Chromatograph, described in Table 6. The mobile phase flow rate was 2 ml/min at ambient temperature. The mobile phase, Burdick and Jackson solvent, was initially n-hexane but after 8 minutes a linear gradient was established with the second solvent consisting of ethyl acetate/methanol/benzene in the volume ratio 50/25/25. The gradient was set so as to achieve 80% of the second solvent in 1 hour, however, after 31.5 minutes the gradient was interrupted and the mobile phase was switched to 100% of the second solvent.

For each run 200 μ l of oil or oil fog were injected into the HPLC using a 250 μ l Precision Sampling Pressure Lock syringe. 2 μ l fractions of the elutant were continually collected up to a total of 30 fractions. The 31st fraction was collected until it totalled 20 ml. At that point each run was terminated. During the run, the elutant was monitored by both the absorbance detector (set at 254 nm) and the refractometer. The detectors were connected in series, with the absorbance detector being the first to "see" the elutant. Using this system the chemical classes were separated and given initial classification as follows:

Fraction	Class	
4-6	Aliphatic	
4-10	Aromatic	
19-22	Ester	
26-28	Alcoho?	
31	Acid	

After fractionation and collection, each fraction was blown down with a nitrogen stream until all of the solvent was evaporated. At this point the fractions were weighed using the following method. First, the fractions were examined visually and those containing the largest amounts of material were

TABLE 6. HIGH PRESSURE LIQUID CHROMATOGRAPH (HPLC)

Units: Waters Associates Model 244 HP Liquid Chromatograph.

Model 6000A Solvent Delivery System (2 units). Modules:

> Model 660 Solvent Programmer. Model 440 Absorbance Detector.

Model R401 Differential Refractometer.

Columns: 25 cm x 6.2 mm I.D., 10 μm particle size and 60 Å pore size Lichtrosorb column.

diluted with 1.0 ml of CH $_2$ Cl $_2$. The remaining fractions were diluted with 100 μ l of CH $_2$ Cl $_2$. Second, weighing pans were constructed cut of one inch square sections of aluminum foil. The pans were rinsed with CH $_2$ Cl $_2$ and dried thoroughly before use. Third, a pan was selected and weighed on a Mettler balance. Immediately after weighing, one quarter of the volume (either 25 or 250 μ l) of the fraction to be weighed was removed with a Hamilton syringe and placed in the pan. The CH $_2$ Cl $_2$ was allowed to evaporate, the pan was weighed again and the weight was determined by differences. Lastly, the measured weight was multiplied by four to give the total weight of the fraction.

In Fractions 4, 5 and 6 both the aliphatic and aromatic components eluted. In order to separate the two classes it was necessary to repeat the separation. To accomplish this the liquid chromatograph was set up as before with the following two exceptions: First, no gradient was necessary and the separation was accomplished isocratically using hexane as the mobile phase. Second, the chromatograph was operated in the recycle mode in order to pass the components through the column as many times as necessary to achieve separation. For these runs $20\,\mu\text{l}$ volumes were injected using a $100\,\mu\text{l}$ Precision Sampling syringe. In the case of Fraction 6, not enough material was present to provide for a $20\,\mu\text{l}$ injection so the fraction was diluted to $20\,\mu\text{l}$ using hexane. To achieve separation of the aliphatic and aromatic components it was never necessary to recycle the samples through the column more than twice. Once the components were deemed separated they were collected, blown down, and weighed as described previously. The aliphatic and aromatic components of Fractions 4-6 were designated -A and -B, respectively (e.g., 4-A, 4-B).

4.4 Chemical Separation, Liquid Chromatography - Heavy Aromatics

The liquid chromatography technique described previously did not yield a large enough quantity of heavy aromatics to provide for good chemical characterization. To correct this situation it was necessary to extract the aromatics chemically from a comparatively large volume of oil or condensed oil fog, and then separate the heavy aromatics using preparatory liquid chromatography.

To initiate the chemical separation, 30 ml of the oil or condensed oil fog was dissolved in 75 ml of n-pentane and then extracted three times with

105 ml portions of dimethyl sulfoxide. The dimethyl sulfoxide extracts were then combined in a large separating funnel followed by the addition of 300 ml of Millipore Milli-Q purified $\rm H_2O$. The aromatics were then extracted twice from the dimethyl sulfoxide/aqueous mixture using two 600 ml portions of n-hexane. The extracts were combined, concentrated to ~5 ml using a rotary evaporator, washed three times with 5 ml portions of Milli-Q water and dried over anhydrous $\rm Na_2SO_4$. The resulting aromatic fraction was then blown down with nitrogen to remove the solvent and filtered with a Millipore 0.2 $\rm \mu m$ pore filter. This extraction procedure would typically yield an aromatic extract with a volume of 1 to 3 ml, the volume depending on both initial aromatic content and extraction efficiency.

At this point, the extract was subjected to preparatory liquid chromatography in which two late fractions were collected to obtain the heavy aromatics. For this purpose the Dupont Liquid Chromatograph described in Table 7 was used. The chromatograph was run isocratically with n-hexane as the mobile phase. The flow rate was 28 ml/min. For each run 400 µl of extract was injected using a Precision Sampling 1.0 ml syringe. Collection was begun 21 minutes into the run. At an elapsed time of 27 minutes collection of the first fraction was terminated and collection of the second fraction was initiated. Collection was stopped at the end of the run which was allowed to proceed until the detector trace showed a flat baseline (usually about 60 min elapsed time). The collected fractions were concentrated using a rotary evaporator and were then blown down with nitrogen to evaporate the remaining solvent. Unlike previous fractions, these fractions were not weighed as uncertainties in both extraction efficiency and reproducibility precluded meaningful quantitative significance. The first fraction in each run was designated DMSO-1 and the second fraction DMSO-2.

A mixture of benzene/napthalene/anthracene in the approximate ratio of 1:1:1 was injected into the chromatograph under the same conditions as the oils and oil fogs. Anthracene was the last component to elute with a retention time of 19.5 minutes. This indicated that fraction DMSG-1 contained aromatics with more than three rings with DMSO-2 containing even larger aromatic groups.

TABLE 7. PREPARATORY LIQUID CHROMATOGRAPH

Unit: DuPont Model 830 Liquid Chromatograph.

254 μm UV absorbance detector. Modules:

> 50 cm x 20 mm i.d. packed with 10 μm Spherosil. (2 columns in series) Columns:

4.5 Chemical Separation - Nitroyen Bases

Chemical separation of the nitrogen bases was achieved using the following extraction technique. 10 ml of oil or condensed oil fog were dissolved in 250 ml of CHCl $_3$ and were extracted three times with 200 ml of 0.5 N HCl. The extracts were combined and washed once with 250 ml of CHCl $_3$. The aqueous acidic extracts were then made basic to pH 11 with 2.5 N NaOH and extracted three times with 250 ml of CH $_2$ Cl $_2$. The combined extracts were dried over Na $_2$ CO $_3$, filtered, concentrated with a rotary evaporator and finally the solvent was evaporated using a stream of dry nitrogen. As with the heavy aromatics these fractions were not weighed because of the many uncertainties in separation reproducibility.

4.6 <u>High Resolution Gas Chromatography</u>

All fractions obtained from liquid chromatographic and chemical separations were analyzed using high resolution capillary column gas chromatography. This was accomplished with a Hewlett-Packard Model 5840 A chromatograph equipped with a flame ionization detector and a capillary column carrier gas inlet system described in Table 8. The inlet system was operated in the "splitless" mode for greater sensitivity. In this mode the dissolved sample is injected into a hot (180°C) injector block from which the column protrudes into a cool (30°C) column oven. After injection the components of the sample with high boiling points condense into the column while most of the solvent remains in the vapor phase in the injector block. After a designated time period valves are switched to allow the vaporized solvent to be flashed from the injector into the atmosphere. During this time the carrier gas pressure is maintained at the head of the column to insure that carrier gas flow down the column remains continuous and stable. With this system virtually all of the sample ends up in the column while a large portion of the solvent is purged away. The "splitless" system was particularly suitable for the oil/fog analysis as all of the components were high boiling oils.

The aromatic, aliphatic, nitrogen base and ester fractions were analyzed under the conditions described in Table 8-A and the polar alcohols and acids as described in Table 8-B.

TABLE 8. HIGH RESOLUTION GAS CHROMATOGRAPHY UNIT HEWLETT-PACKARD MODEL 5840 CAS CHROMATOGRAPH

A. Analytical Procedures for Aliphatics, Aromatics, Nitrogen Base and Ester Fractions

Column = 12 meter x 0.25 mm I.D. glass capillary column

coated with SE-30 (chrompak)

Carrier Flow = 1.0 ml/min (He)
Purge Flow = 30 ml/min (He)
Make-up Flow = 24 ml/min (He)

Injector Temp. = 180°C
Detector Temp. = 280°C

Oven Temp. = 30°C for 7 min, program at 30°C/min for 3 mins,

then program at 6°C/min to 270°C, hold until

elapsed time reaches 60 mins.

Purge Initiation = 2 mins after injection

8. Analytical Procedures for Polar Alcohol and Acid Fractions

Column = 25 meter x 0.2 mm I.D. fused quartz capillary

column coated with Carbowax 20M (Hewlett-Packard)

Carrier Flow = 1.0 mi/min (He)
Purge Flow = 30 ml/min (He)
Make-up Flow = 24 ml/min (He)

Injector Temp. = 180°C
Detector Temp. = 275°C

Oven Temp. = 30°C for 7 mins, program at 30°C for 3 mins then

program at 5°C/min to 225°C, hold until elapsed

time reaches 60 mins.

Purge Initiation = 1 min after injection

Three standard mixtures were prepared for the purpose of determining the retention times of characteristic compounds under the analytical conditions employed. These standards also served the purpose of periodically checking instrument performance and reporducibility. The compositions of these standards are listed in Table 9. The normal hydrocarbon standard was used in conjunction with the SE-30 column while the alcohol and acid standards were used with the Carbowax 20M column.

Before gas chromatographic analysis, the ester fractions were combined into one fraction as were the alcohol fractions. Although both the esters and alcohols were collected over several fractions, no resolution was observed

TABLE 9. COMPOSITIONS OF STANDARD MIXTURES USED IN GC INSTRUMENT CALIBRATION

Standard Hydrocarbo	n Mixture in n-hexane
n-C ₁₀ H ₂₂	104 µg/ml
n-C12H26	101 µg/ml
n-C14H30	$104 \mu g/ml$
n-C ₁₆ H ₃₄	103 µg/ml
n-C ₁₃ H ₃₈	78 ug/ml
n-C ₂₀ H ₄₂	95 μg/ml
n-C _{2.2} H _{4.6}	104 µg/ml
n-C24H50	100 բց/ml
n-C ₂₈ H ₅₈	100 µg/ml
n-C _{2.9} H _{6.0}	94 μg/ml
n-C ₃₂ H ₆₆	101 μg/ml
Standard Alcohol	Mixture in CH ₂ Cl ₂
$C_{11}H_{23}OH$	84.5 ug/ml
$C_{12}H_{25}OH$	73.5 µg/ml
$C_{14}H_{29}OH$	74.0 μg/ml
C16H330H	89.5 μg/ml
C ₁₈ H ₃₇ OH	101.5 μg/ml
Standard Acid!	Mixture in CH ₃ OH
C7H13COOH	71.5 μ g/ml
C3H19C00H	54. 5 μg/ml
C ₁₁ H ₂₃ COOH	46.5 μ g/m!
C ₁₃ H ₂₇ COOH	85.5 μg/ml
$C_{15}H_{31}CGOH$	88.0 µg/ml
C17H35COOH	107.0 μg/ml
С19Н39СООН	70.0 µg/ml

among fractions of the same class. Therefore, the fractions were combined to provide a larger amount of material for analysis.

Prior to injection, the fractions were diluted with solvent. The aliphatic and aromatic fractions were diluted with n-hexane while the remaining fractions were diluted with CH_2Cl_2 . The fractions obtained from the liquid chromatographic separations were diluted with either 50 or 100 μI of solvent depending on the amount of material collected in the fraction. Those fractions collected during chemical separation required up to 3 ml of solvent as some of those fractions contained considerably larger amounts of material.

Injection was accomplished using a 1.0 μ l Hamilton syringe. The size of each injection varied from 0.1 to 0.5 μ l depending on the concentration of material in the fraction being analyzed. In some cases two or three injections were necessary before the gas chromatogram was acceptable for visual inspection and comparison with chromatograms of other oils and oil fogs. To be acceptable, the chromatogram had to exhibit peaks well above the baseline but not run off the top of the chart.

In addition to flame ionization detection, the nitrogen bases were subjected to GC analysis using a nitrogen/phosphorus selective detector. Conversion to the N/P mode required only replacement of the F/D collector with the N/P collector and an adjustment in the hydrogen and air flow rates. All other run parameters were retained.

4.7 Gel Permeation Chromatography

Gel permeation chromatography was utilized to determine the size-molecular weight distribution of the components making up the unfractionated oils and oil fogs. The Waters Associates HPLC described in Table 6 was used for this purpose. The chromatograph was fitted with a Waters 30 cm x 0.78 cm I.D. Styragel column with a particle size of 10 μ m and a pore size of 100 Λ . Analysis was performed isocratically with $CH_2\,Cl_2$ used as the mobile phase. Flow rate was 1.0 ml/min at ambient temperature. Prior to injection the sample was filtered through the 0.2 μ m filter previously described. A Precision Sampling 1.0 μ l syringe was used to inject from 0.1 to 0.4 μ l of sample. The actual volume of injection was adjusted so that the peak Ψ .V.

absorbance had a value between one and two absorbance units. Before each analysis $10~\mu l$ of a standard test mixture was injected. The standard mixture had the composition listed in Table 10~and it also was used with CH_2Cl_2 as the solvent phase.

TABLE 10. GEL PERMEATION STANDARD TEST MIXTURE

Component	Molecular Weight	Concentration
polyethylene 23 lauryl ether	1200	10 mg/ml
cholesteryl stearate	653	10 mg/ml ·
eicosanoic acid	313	10 mg/ml
choles terol	386	10 mg/ml
ei cosane	285	10 mg/ml
decane	142	10 mg/ml
anthracene	178	1 mg/ml

4.8 Gas Chromatography/Mass Spectrometry

For GC/MS analysis of selected fractions, the following system was used. A Varian MAT 311A mass spectrometer was used featuring a double-focusing analyzer system with Nier-Johnson geometry and a differentially pumped vacuum system utilizing two high-speed turbomolecular pumps. For sample introduction the system used a Varian Aerograph Model 2740 gas chromatograph equipped with a Hewlett-Packard Model 18835A injection system for splitless capillary column analysis. The capillary column was directly interfaced with the mass spectrometer via a microneedle valve regulator and glass lined tube.

The ion source of the mass spectrometer consisted of a combined electron impact/electron impact ionization detector for simultaneous registration of electron impact mass spectra and total ion current (TIC) gas chromatograms. The TIC signal was fed to an electronic integrator to monitor the progress of the chromatogram in real time.

The capillary column and the gas chromatographic parameters were identical to those used earlier in the high resolution gas chromatographic analysis. As in the earlier analysis, the column and parameters were matched to the particular class being analyzed.

In a typical analysis run, the magnet of the mass spectrometer was set to scan repetitively over a preset mass range. Data were acquired on a disk by the data system and stored on magnetic tape for subsequent examination. The raw GC/MS data was then routinely processed through a data-enhancement algorithm. Program "Clean-up"* automatically extracted mass spectra free of background and of contributions of unresolved (overlapping) GC peaks by the application of a tabular peak-modeling technique to mass chromatograms in the data file (Rindfleisch deconvolution). The resolved spectra were then identified by means of a library-matching search algorithm. Compounds which did not yield acceptable identifications in this way were sought manually by comparison of their spectra with published compendia of mass spectral data.

^{*} Developed at Stanford University Medical School and modified at IITRI

5. RESULTS

5.1 Class Fractionation

A representation of a typical HPLC class fractionation run is shown in Figure 6. The severe overlap of the aromatic and aliphatic fractions is quite clear and demonstrates the need of the recycling technique used to separate these two classes. For completeness, the mobile phase gradient profile is presented at the top of the page.

The complete results of the HPLC class fractionation are presented in Table 11. The calculated percentages are based on the total amount of material eluted from the HPLC. For 0i1 #2, three identical runs were performed to determine the reproducibility. From these three runs the means and standard deviations were calculated. The error quoted in Table 11 represents one

TABLE 11. RESULTS OF HPLC CLASS FRACTIONATION

Sample	% Aliphatics	% Aromatics	% Esters	% Alcohols	% Acids
Oil #1	58.2	40.0	0.7	1.1	0.0
Run #10 (1-A)	55.1	42.0	1.1	1.2	0.6
Run #2 (1-B)	59.7	37.5	0.9	1.0	8.0
Run #6 (1-C)	57.8	39.4	1.0	1.3	0.6
Run #11 (1-BHT)	57.7	39.8	0.9	1.1	0.4
0il #2	42.7 ± 5.7	50.0 ± 6.4	4.1 ± 0.7	2.7 ± 1.2	0.5 ± 0.3
Run #9 (2-A)	43.1	52 <i>.</i> 5	2.8	1.3	0.4
Run #4 (2-B)	54.6	41.0	2.9	1.1	0.3
Run #5 (2-C)	44.4	50.9	3.3	1.0	0.4
Oil #3	54.1	43.5	0.9	0.7	0.7
Run #8 (3-A)	42.4	55.2	1.4	0.6	0.4
Run #3 (3-B)	47.5	50.4	1.0	0.6	0.6
Run #7 (3-C)	54.5	43.8	1.1	0.3	0.2

Figure 6. HPLC Class Fractionation of Fog Oil No. 3.

standard deviation. The primary source of error in the aliphatic and aromatics fractions was probably the failure to separate absolutely the two classes. Although the three oils vary in composition, the production of the fogs seemed to have very little significance on the oils'class compositions.

5.2 Gel Permeation Liquid Chromatography

The results of the gel permeation chromatography are presented in Table 12. The results are presented in two ways, as a ratio between absorbance units and refractive index units and as the retention time of the peak maximum using the refractive index detector. The data presented as a ratio give an indication of the relative quantities of U.V. absorbing materials (aromatics) in the oils and fogs. An increase in the value of the ratio could indicate a real increase in the relative concentration of aromatics or it could indicate an increase in the sizes of the aromatics or both. The peak maximum column is an indication of the average size of the compounds contained in the oils. For comparison, the retention times of decane and eicosane are presented at the bottom of the table. As with the HPLC fractionation, 0il #2 was run

TABLE 12. RESULTS OF GEL PERMEATION LIQUID CHROMATOGRAPHY

Samp le	Absorbance/Refractive Index Units	Peak Maximum fo Refractive Inde (minutes)
Oil #1	1.96 ± 0.09 x 10 ⁴	7.7
Run #10 (1-A)	2.26 x 10 ⁴	7.7
Run #2 (1-B)	2.31 × 10 ⁴	7.8
Run ±6 (1-0)	2.33 x 10 ⁴	7.8
Run #11 (1-BHT)	7.54×10^4	7.9
Gil #2	3.88 ± 0.02 x 10 ⁴	8.4 ± 0.1
Run #9 (2-A)	3.95 x 10 ⁴	છ.3
Run #4 (2-B)	4.08 x 10 ⁴	8.3
Run #4 (2-C)	$3.94 \times 10^{\circ}$	8.4
Dil #3	2.56 x 10 ⁴	3.1
Run #8 (3-A)	3.16×10^4	3.1
Run #3 (3-A)	2 97 x 10 ⁴	9.1
Run #7 (3-C)	2.98 x 10 ⁴	8.1
	Eicosar	ne (M.W.295) 7.6
	Decane)

three times to determine the reproducibility with the quoted error being equal to one standard deviation.

All of the oil fog runs show a slight increase in the ratio column over the values for the corresponding oils with the exception of run #11 which shows a dramatic increase. These increases are not reflected in the peak maximum column.

5.3 Metal Analysis

Trace metals in the oils were determined by atomic absorption using a Perkin Elmer Model 403 Spectrometer. The analysis is summarized in Table 13 which includes the detection limits for each metal.

TABLE 13. RESULTS OF METAL ANALYSIS

	Oil #1 (PPB)	0il #2 (PPB)	0il #3 (PPB)	Detection Limit (PPB)
Cd	ND	ND	ND	9
Cr	ND	ND	ND	9
Со	` ND	ND	ND	9
Cu	46 (± 25%)	46	48	
РЬ	, do	ИD	ND	93
Mn	ND	ND	ND	9
Мо	ND	ND	ND	95
Ni	ND	ND	ND	9
Sr	ND	ND	ND	9
Sn	ND	ND	ND	93
٧	ND	ND	ND	95
Zn	55 (± 25%)	19	104	
As	ND	ND	ND	95
Hg	ND	ND	ND	2

ND - Not Detected

5.4 High Resolution Gas Chromatography

The gas chromatographic data are presented in Appendix B in Charts No. 2-31. Charts No. 2-23 present gas chromatograms of each class fraction of each oil along with those of the corresponding oil foas. In most cases three oil fog chromatograms appear with each oil chromatogram, corresponding to the three generators used in the study. In the case of the heavy aromatics, heaviest aromatics, and nitrogen bases, only one oil fog chromatogram appears

with that of the oil. This results from the fact that the chemical extraction techniques were applied to only one fog from each oil. In the case of the heavy and heaviest aromatics, the fog from generator B was used and in the case of the nitrogen bases only the fog from generator A was used. For the nitrogen bases fraction only the chromatogram from 0il #2 is included in the data as it was the only one of the three oils to contain enough nitrogen bases to produce a meaningful chromatogram.

The second section of Appendix B, Charts No. 24 to 31, contains chromatograms of oil fogs obtained from high temperature Run #11. Along with each of these chromatograms is a chromatogram obtained from a normal run (#2) and a chromatogram obtained from the starting oil. No nitrogen bases fractions were included in the section because of the lack of material (condensed oil fog) to make the necessary chemical extraction.

Preceding the two sections is Chart No. 1 containing three typical qualitative calibration runs, one for each of the calibration standards described previously.

Portions of the class fractions from each oil and many of the oil fogs were selected for gas chromatograph/mass spectrometry (CC/MS) analysis. Where possible the results were used to make positive identification of some of the larger peaks present in the chromatograms. Complete matching of mass spectrometric data to gas chromatographic data was not possible because of sample complexity and some loss of resolution in the GC/MS interface. However, where identification was positive it is indicated with alphabetically labelled peaks and accompanying compound listings.

In the section of Appendix B containing the normal runs it is clear that the chromatogram of the aliphatic, aromatic and ester fractions of the oil fogs differ very little if any from their corresponding oil chromatograms. The chromatograms of the alcohol and acid fractions of the oil fogs show some difference from those of the starting oils, particularly in the early section of the chromatograms. To a large degree these differences are characterized by sharp individual peaks rather than a gross change in chromatographic pattern. Because of this it is probable that these peaks represent inpurities concentrated from the solvents used in separation rather than representing

real differences. The acid and alcohol fractions were particularly vulnerable to contamination because of their relatively small masses compared to the other fractions. The nitrogen base fraction from the fog shows some difference from the oil and can be presumed to be real.

In the section of Appendix B devoted to the high temperature run (#11) many differences appear in comparing the aromatic fractions to the corresponding oil and the corresponding normal run (#2). These differences are almost certainly real and may represent changes in concentrations, composition or both.

5.5 Gas Chromatography/Mass Spectrometry

The 17 Tables presented in Appendix C are summaries of all the GC/MS data for the aliphatic, aromatic and nitrogen bases fractions selected for analysis. Several ester, alcohol and acid fractions were selected and analyzed, but failed to provide useful data. The class identification of these three groups must still be regarded as tentative.

The tables themselves contain an arbitrary peak number (PK#), an arbitrary spectrum number (SPEC), the compound identification (ID), the total ion current (TIC) which is equivalent to peak height in gas chromatography, the area under each peak in arbitrary units (AREA) (this column is not always included), and the percentage of each peak remaining after computer subtraction of the background (TICRAT). The last three columns (RELCON, RETIND, and TYPE) were not used in this study.

The ID column contains both the formula and the compound name of peaks which have been positively identified. Identifications enclosed in parenthesis indicate tentative identification. Those compounds identified as "silanated" are the result of GC column bleed and are not components of the sample itself. In some cases broad obvious peaks are missed by the clean-up program as they fail to meet peak model criteria. These compounds identified as "silanated" are noted at the end of each Table. Additional explanations of some of the data are also noted at the ends of the corresponding Table.

It should be stressed that the absence of any compound in the Tables does not preclude its presence in the sample. Low concentrations or lack of GC separation may mask a peak and make its identification impossible.

6. OIL FOG AEROSOL CHARACTERIZATION

6.1 Procedure and Instrumentation

Oil fog generation and collection were described in Section 3 with tabulations of the experimental runs in Tables 4 and 5. During both Experiments No. 1 and 2, aerosol collection was prolonged for 2 to 3 minutes, resulting in an excessively dense aerosol in the holding chamber. Experiment No. 11 was run at a low oil feed rate to observe the effects of high temperatures on the chemical and physical characteristics of the aerosol.

The aerosol was drawn from the holding chamber with dilution at successive intervals to observe particle size and concentration and the effects of aging on the aerosols. The aerosol dilution system is shown in Figure 7. An important function of this system was the reduction of the chamber aerosol concentration to a level suitable for measurement by the two aerosol monitors. A dilution of $1000(\pm 10)$:1 was used with a total transit time from chamber to detector of somewhat less than 1 min. A feature of the system is the use of recirculated air for dilution to preserve the physical characteristics of the sample. The aerosol particles were analyzed using the two instruments described below.

A California Measurements, Inc. Piezo Electric (P/Z) Particle Cascade Impactor Model PC-Z was used for the direct measurement of the mass concentration of air-suspended particles between 0.05 and 25 um. The aerosol-laden air stream, sampled at 240 ml/min, is impacted sequentially on 10 quartz crystal impactor stages. The mass accumulated by each stage causes a proportional frequency shift on each impactor crystal, which is electronically compared to a matching clean reference crystal. Table 14 lists the 50 cutoff sizes ($D_{\rm p}$ 50) for the ten stages for a particle density of 2 g cm⁻¹. The values of M_{$\rm p}$ are the between-stage midpoint diameters used to compute the aerodynamic equivalent mass median diameters for each distribution.</sub>

Figure 7. Aerosol sampling line and dilution system.

TABLE 14. PIEZOELECTRIC COUNTER STAGES

Stage	D _p 50 _Լ յпյ	^M i µm
1	25.0	
2	12.5	18.75
3	6.4	9.6
4	3.2	4.8
5	1.6	2.4
6	0.80	1.20
7	0.40	0.60
8	0.20	0.30
9	0.10	0.15
10	0.05	0.07

After passing through the 10th, lowest, stage, the air flows through a flowmeter to a pump where it is exhausted to the atmosphere. The rate of frequency shift in each stage is related to the mass concentration of aerosol particles captured in that stage, and can be expressed by the following equation:

$$\frac{\Delta f_{i}}{\Delta t} = \sigma_{i} VC_{i}$$

where

 Δf_i = frequency shift for stage i, Hz

 Δt = sample time, min

 σ_i = sensitivity factor for stage i

V = volume flow rate of air sample, 240 ml/min

 C_i = aerosol mass concentration in stage i, $\mu g/m^3$

The sensitivity factor, σ_i , depends on the resonant frequency of the crystal and the area of the sensitive portion of the crystal compared to the area of the impinging air jet, but is otherwise a constant for each stage. The concentration may therefore be calculated from the measured frequency shift by the equation:

$$C_{i} = k_{i} \frac{\Delta f_{i}}{\Delta t}$$

where

k; = stage constant

The data reported from the P/Z cascade impactor are the total suspended particles (TSP) in mg/m^3 and the mass median diameter, dm, in um. The TSP is determined by adding the masses per stage and multiplying by the dilution factor:

$$TSP = 1000 EC_i$$

The \overline{dm} are computed by summing the products of the mass fractions per stage. X_i , times the midpoint cutoff size between stages, M_i :

$$\bar{d}m = \Sigma X_i M_i$$

where

$$X_i = C_i/\Sigma C_i$$

 $M_i = as indicated in Table 14$

The Particle Measuring Systems, Inc. Active Scattering Aerosol Spectrometer (ASAS) Model ASAS-300-PMT was used for sizing particles within the size range of 0.088 to 3.00 µm. Particles passing through the laser cavity of a continuous He-Ne laser produce pulses of light proportional only to their size and position in the beam. A pair of photomultiplier detectors image the light impulses and select pulses produced by particles in the correct sample space. A pulse height analyzer then determines the particle sizes.

The output of the ASAS is grouped into size classes as shown in Table 15.

TABLE 15. ASAS SIZE RANGE DATA

	SAS Channel	Size Interval	Interval Width	d _i , Midrange
Range	Channe i	μ m	μ m	Diameter, µm
3	1-7 •	0.088-0.144	0.056	0.116
3	8-15	0.144-0.208	0.064	0.176
2	4-15	0.210-0.390	0.180	0.300
1	4-8	0.388-0.503	0.115	0.445
1	9-15	0.508-0.676	0.168	0.592
0	2	0.690-0.855	0.165	0.772
0	3	0.855-1.020	0.165	0.938
0	4	1.020-1.185	0.165	1.102
-	-	-	-	-
0	15	2.835-3.000	0.165	2.918

7. RESULTS AND DISCUSSION

A summary of the analysis data is given in Table 16. In experiments 1 and 2 the dense smoke concentrations overloaded both the P/Z cascade impactor and the aerosol spectrometer and the data are not reliable. Even with a dilution of approximately 10,000 to 1 the smoke samples were still too concentrated for the aerosol spectrometer, making the number concentration measurements erroneous. Since large numbers of particles are present in the lower range, Range 3, of the spectrometer, counting errors are most severe in the lower channels. However the mass contribution from particles in lower ranges to the total mass distribution is small and the error is also minimal. Therefore the data from the aerosol spectrometer are presented as a mass distribution. From the rest of the data the following conclusions can be made:

- 1) The use of different generators or different oils does not affect the particle size characteristics of the oil fogs. The average mass mean diameter as determined by the P/Z cascade impactor for Runs No. 3 through 10 and 12 is 1.16 μm with a standard deviation of 0.14 μm .
- 2) Running the oil fog generator at the low oil feed rate of 0.5 gpm, half the normal rate (Experiment No. 11) decreases the TSP and also the particle size. Reduction in TSP is attributed simply to the reduction in oil feed rate and is in approximately the same ratio to oil feed as in the TSP of oil fogs generated under normal operating conditions (Experiment No. 12). The smaller particle size is probably due to less agglomeration at the reduced particle concentration.
- 3) Very little effect on the fog characteristics seems attributable to the bil. For a given generator, for example generator B, changing the bil from 0il 3 to bil 1 changed the TSP from 0.52 gm/m 3 to 0.70 gm/m 3 and the mean diameter from 1.42 μ m to 1.05 μ m.
- 4) Generator C produces fewer \mathbb{R}^n compared to the other two generators for all three oils. The particle size goes not show any trend.

TABLE 16. SUMMARY OF INITIAL PARTICLE SIZE AND CONCENTRATION MEASUREMENTS

Experiment	Generator	011	Time at:	TSP	(mi) b wotometh uson som	(m ¹)
No.			Measurement	(mg/m³)	וומסס וווכמן: חומוווברבו	(IIII) W
			(min)		P/Z Impactor**	ASAS
*	æ	2	10	740	1.68	1.10
2*	В	-	10	650	1.64	0.99
ო	B	က	30	620	1.42	1.24
4	83	2	10	740	1.25	0.81
ഗ	S	2	13	240	1.21	0.93
9	ပ		6	430	0.98	0.87
7	ပ	က	9	460	1.14	0.99
Φ	A	က	12	750	1.14	0.83
o	A	2	4	380	1.00	0.90
10	A		4	590	1.25	0.92
11	В		4	300	0.74	0.75
12	В	~ 4	9	700	1.05	0.88

fine samples were too concentrated and the monitoring instruments were overloaded.

** P/Z impactor diameters are calculated using Table 11
corrected for the oil density (0.9 g/cm³)

5) The mass mean diameter d_m , calculated from light scattering measurements by the ASAS is consistently lower than the measured value by the P/Z cascade impactor.

The following assumptions involved in the transformation of number distribution to mass distribution may be the causes of the difference.

- The particles are assumed to be spherical.
- · The refractive index of the oil fog particles is presumed to be uniform.
- All the particles are of uniform density. The coarseness in the cutpoints of the impactor stages also may contribute to error in mass mean diameter measurements.

Figures 8 and 9 show typical histogram and cumulative log probability plots of the particle size distribution obtained in Experiment 6. Except for the extreme ends of the distribution the data follow log normal behavior very well. This was true for all experimental runs.

Figure 10 shows the cumulative plot for the high temperature run (Experiment 11). The mass median diameter for this run (0.70 $\mu\text{m})$ is smaller than the mass median diameter obtained under normal operating conditions.

Time histories of mass mean diameter and TSP were obtained for Experiments 3 through 12. As an example, the complete data obtained up to one hour after the generation of smoke in Experiment 4 are given in Table 17. The decrease in mass concentration and the growth in particle mass mean diameter are plotted versus time in Figure 11. The mean diameter increases and the mass concentration decreases linearly. Table 17 also gives the slope, m, intercept b, and correlation coefficient R for the equation

$$y = mt + b$$

where

$$y = \bar{d}_m$$
 in um or TSP in mg/m³ as appropriate
t = time

Table 14 and the corresponding data for Experiments 3-14 are given in Appendix D.

Figure 8. Histogram of Mass Median Particle Size Distribution. Experiment No. 6. 16 minutes after \mathbf{t}_0

Figure 3. Log Probability Plot for Experiment No. 6.

Figure 10. Log Probability Plot for Experiment No. 11.

TABLE 17. DEPENDENCE OF TSP, dm AND n ON TIME t.

EXPERIMENT NO. 4

P/2	Impactor	•		ASAS		
Time (t) min	TSP mg/m³	dm̄ (μm)	Time (t) min	dm dm	No. of Particles	(n)
2	144	.686	2	.776	45622	
10	739	.842	4	.853	52368	
18	667	.876	10	.813	46992	
36	634	.824	15	.823	42884	
44	566	.831	36	.846	33718	
52	598	.878	44	.850	31352	
60	506	1.00	52	.888	22506	
			60	.893	13774	Υ.
STATISTICAL A		FOR	STATISTICAL CURVE n			
1) TSP vs t	slope =	- 30	ļ	n	= 55826	
in correlatio	tercept =	763	correlatio	K	= .0184	
2) dm vs t in correlatio	tercept =		1		0184t 0184t	
Equation:			95% sign			
y =	nit + c					
m = slope and	c = inte	ercept				

Figure 11. Experiment No. 4. Oil Fog Particle Size (dm) and Concentration (TSP) Variation With Time.

The number concentration n of the aerosols in the holding chamber will decrease exponentially due to coagulation. The rate of change of n is governed by the equation

$$\frac{dn}{dt} = -Kn \tag{1}$$

where K is the effective agglomeration coefficient. Integration of Equation 1 yields

$$ln n = ln n_0 - Kt$$

where n_0 is the number concentration at time t=0. Use of regression equations of the above type to correlate the data obtained from the aerosol spectrometer provided good correlation coefficients. The regression coefficient, K, has a physical significance and denotes the effective agglomeration constant of the polydispersed aerosol under study. In order to compare the agglomeration constants obtained from various experiments it is necessary to normalize K with respect to initial concentration. The normalized constant K*, determined by

$$K^* = vol \cdot n^{-1} \cdot t^{-1}$$

is given for all experiments in Table 18.

Figure 12 shows the particle concentration change with time for Experiment 4.

TABLE 18. CALCULATED VALUES OF AGGLOMERATION COEFFICIENT

Experiment	Agglomeration Coefficient, K^* cm $n^{-1} \times 10^{-7}$
3	1.4
4	3.29
6	4.38
7	5.98
8	12.0
9	3.37
10	12.0
11	1.03
12	5.82

Because of the overloading of the aerosol spectrometer the fine details of the number distribution were not observed. From those experimental runs which involved aerosol concentrations within the operating limit of the spectrometer it appears that the size distribution is bimodal with fine and coarse modes. The fine mode extends below the low limit of the spectrometer. Figures 13 and 14 show the number distributions of fog in Experiments 5 and 11. The bimodal nature of the aerosol is due to the dual fog forming processes of combusion and condensation. The fine mode corresponds to the excess condensation nuclei and the coarse mode corresponds to the nucleated aerosol. Under normal generator operation the modal value of the coarse mode is approximately 0.93 μm . For high temperature runs the modal diameter of the coarse mode decreases to 0.45 μm .

Figure 12. Experiment No. 4. Particle Number Concentration Change vs. Time.

Figure 13. Experiment No. 5 (C-2) Particle Size Distribution by ASAS Aerosol Spectrometer.

Figure 14. Experiment No. 11 (D-1, HT) Particle Size Distribution by ASAS Aerosol Spectrometer.

APPENDIX A
FOG OIL
MILITARY SPECIFICATION MIL-F-12070A

6 JANUARY 1954

SUPERSEDING MIL-Y-12970(CmlC) 5 June 1952 Navy 14F3 1 June 1946

MILITARY SPECIFICATION

FOG OIL

This specification has been approved by the Department of Defense for use by the Departments of the Army, the Navy, and the Air Force

1. SCOPE

- 1.1 Scope.—This specification covers petroleum oil for use in mechanical smoke generators.
- 1.2 Classification.—Fog oil shall be of the following types, as specified (see 6.1):

Type SGF1—For use at temperatures above 40° F.

Type SGF2-For vee at 40° F. or lower.

2. APPLICABLE DOCUMENTS

2.1 The following specifications and standard, of the issue in effect or date of invitation for bids, form a part of this specification:

SPECIFICATIONS

FEDERAL

FF-W-556-Wool; Steel.

VV-L-791—Lubricants, Liquid Fuels, and Related Products; Methods of Sampling and Testing.

STANDARDS

MILITARY

MIL-STD-129-Marking of Shipments.

(Copies of specifications, standards, drawings, and publications required by contractors in connection with specific procurement functions should be obtained from the procuring agency or as directed by the contracting officer.)

2.2 Other publications.—The following document forms a part of this specification; unless otherwise indicated, the issue in effect on date of invitation for bids shall apply.

INTERSTATE COMMERCE COMMISSION

Regulations for Transportation of Explosives and Other Dangerous Articles. etc.

(Application for copies should be addressed to the Superintendent of Documents, Government Printing Office, Washington 25, D. C.)

3. REQUIREMENTS

- 3.1 Material.—The material shall be an overhead petroleum fraction and shall contain no additives. The material shall be free from water, sediment, grit, or other foreign matter.
- 3.2 Chemical and physical.—The material shall conform to Table I.

4 QUALITY ASSURANCE PROVISIONS

- 4.1 Lot.—A lot shall consist of the fog oil produced by one manufacturer with no change in process or materials in no more than 24 consecutive hours.
- 4.2 Sampling.—The Government inspector shall take a representative one-liter specimen from each of 5 containers selected at random or 5 representative one-liter specimens during the filling operations. The specimens shall be placed in clean, dry containers and labeled to identify the container with the lot represented. Each specimen shall be separately tested as specified in 4.4.

4.3 Inspection.

- 43.1 Packing and marking.—The inspector shall inspect the packing and marking for compliance with Section 5.
- 4.3.2 Certificate.—The inspector shall ascertain by certification or other approved means that the oil is an overhead petroleum fraction containing no additives.
- 4.3.3 Impurities.—The inspector shall inspect the material for the presence of water, sediment, grit, or other foreign matter.

Table 1.—Chemical and physical

•	Туре	8GF1	Туре	BGF2
Property	Maximum	Minimum	Maximum	Minimum
Flash point, *F.				320
Viscosity, Saybolt Universal	ļ			_
At 100° F. (seconds)			110	100
At 210° F. (seconds)	•60			
Carbon residue (Conradson), percent	0.1		0.1	
Neutralization number	0.1		0.1	
Pour point, °F	O	 	-40	
Vapor temperature, °F. at:			!	
10 percept distillation	}	390	l	
50 percent distillation	i	490		
90 percent distillation	1			

^{*}A viscosity of 65 sec., at 210° F. will be the maximum permissible for oils having a viscosity index of 50 or more.

4.4 Tests.

4.4.1 Methods.—The following tests shall be conducted in accordance with the applicable method of Specification VV-L-791 specified in Table II.

Table II.—Test methods

Test	Method
Flash point	110. 3. 4
Viscosity, Saybolt Universal	30. 4. 5
Carbon residue (Conradson)	
Neutralization number	510. 4 . 1 20 . 1. 7

4.4.2 Distillation.

4.4.21 Apparatus.—The apparatus shall conform to this paragraph and ligures 1 and 2.

4.4.2.1.1 Distillation flask.—The distillation flask shall be a 250-milliliter (ml.), Saybolt flask, of borosilicate glass, conforming to Specification VV-L-791, Method 100.2.1, except that the outlet tube internal diameter shall be 3.0 = 0.5 millimeter (mm.).

4.4.2.1.2 Shield.—The flask shall be encased in a shield constructed of "Sil-O-Cel" brick as shown in figure 2 (see 6.3).

4.4.2.1.3 Board or support.—The flask shall rest on a transite or hard asbestos board. 5

inches by 5 inches by ¼ inch, having a hole in the center 2¾ inches in diameter.

4.4.2.1.4 Condenser.—The condenser (a Friederichs- or Hopkins-type condenser is satisfactory) shall be as shown in figure 2.

4.4.21.5 Receiver.—The receiver shall be a 100-ml. graduated cylinder constricted at the top to receive a stopper. The cylinder shall be calibrated at all points to within \pm 0.5 ml.

4.4.2.1.6 Suction flask.—The suction flask shall be a 1000-ml., borosilicate glass flask.

4.4.2.17 Pressure gauge.—The pressure gauge shall be a Dubrovin Vacuum Gaugs, or equivalent.

4.4.2.1.8 Vacuum pump.—The vacuum pump may be of any design capable of securing and maintaining the reduced pressure desired.

4.4.2.1.9 Vacuum control apparatus.—An automatic vacuum control apparatus or a hand-controlled bleeder valve shall be used to maintain a steady pressure.

4.4.2.1.10 Thermometer.—The thermometer shall be an ASTM High Distillation Thermometer, 30° to 760° F, or 0° to 400° C.

4.4.2.1.11 Heater.—An electric heater shall be used for the distillation (see 6.4).

4.4.2.1.12 Connections. — The connections shall be made by means of metal or glass tubing having an inside diameter of 8 to 9 mm. All joints shall be tight and shall be sealed with a

Figure 1. Distillation apparatus.

cement such as water glass (sodium silicate) or a mixture of 75 percent collodion and 25 percent castor oil.

4.4.2.2 Procedure.—Place approximately 10 gram (gm.) of dry, clean, grade No. 1 steel wool conforming to Specification FF-W-556 in the bulb of the distillation flask, and spread to nearly fill the bulb. Measure exactly 100 ml. of the specimen into the graduated cylinder. Pour the specimen from the graduated cylinder into the distillation flask. Allow the specimen to drain from the cylinder into the flask until not more than 1 ml .of oil remains in the cylinder. The same graduated cylinder, without being cleaned, shall be used for receiving the distitlate. Assemble the apparatus as shown on figure 1. Fit the thermometer tightly into the flusk, center properly in the neck with the lower end of the capillary tube on a level with the inside of the bottom of the vapor outlet tube where it joins the neck of the flask. Evacuate the apparatus and maintain the absolute pressure at 10 ± 2 mm, by means of the vacuum control apparatus. Apply heat to the distillation flask at a rate sufficient to start the distillation within 20 to 30 minutes. Thereafter distillation should proceed at a uniform rate of 4 to 5 ml, per minute. Record the temperatures registered by the distillation thermometer when the quantity of distillate in the receiving flask amounts to 10, 50, and 90 percent respectively of the charge (see 6.5). With proper care and attention to detail, duplicate results should check within 10° F.

4.5 Rejection and resubmission.—If any specimen fails to conform to this specification, the lot shall be rejected. The contractor, at no expense to the Government, shall have the option of having an analysis made on each container in the lot, removing the nonconforming

Shield

Condenser

material, and resubmitting the remaining portion of the lot for acceptance testing. If any specimen taken from the resubmitted portion of the lot fails to conform to this specification, the lot shall be finally rejected.

5. PREPARATION FOR DELIVERY

5.1 Packing.

- 5.1.1 For domestic shipment.—Fog oil shall be packed in drums conforming to Specification 37E of the Interstate Commerce Commission Regulations for Transportation of Explosives and Other Dangerous Articles, etc.
- 5.1.2 For overseas shipment. Fog oil shall be packed in drums conforming to Specification 37D of the Interstate Commerce Commission Regulations for Transportation of Explosives and Other Dangerous Articles, etc.
- 5.2 Marking.-In addition to any special marking required by the contract or order, all shipping containers shall be marked in accordance with Standard MIL-STD-129.

6. NOTES

- 6.1 Ordering data.—Procurement documents should specify the following:
 - (a) Title, number, and date of this specification.
 - (b) Type of material required (see 1.2 and 3.2).
 - (c) Type of packing required (see 5.1).
- 6.2 Sampling and testing.—When the contractor consistently produces high-quality material and operates under a system of quality control acceptable to the Government, the Government, at its discretion, may modify, in whole or in part, the sampling and testing procedures specified herein. However, the 6ior ernment reserves the right to return at any time, without previous notice to the contractor, to the sam-

pling and testing procedures specified in this specification.

- 6.3 Shield brick.-The brick is obtainable from Johns Manville Co., New York.
- 6.4 Electric heater.—The 500-watt electric heater of the Precision Scientific Co., or equivalent, is satisfactory.
- 6.5 Distillation.—The distillation should not be continued beyond 620° F. because of the danger involved to the apparatus and the operator due to the possible softening of the bcttom of the distillation flask and the existing low pressure in the apparatus.
- 6.6 Stock numbers.—SGF1 and SGF2 are Quartermaster Corps items of supply and carry the following Quartermaster Corps stock numbers:

Туре	16-Gage drum	18-Gage drum	
SGF1	14-0-875-50 14-0-880-50	14-0-875-55 14-0-889-55	

Notice.—When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Custodians:

Army-Chemical Corps Navy-Bureau of Ordnance Air Force Other interest:

Army-M

Navy-Sh S.

MILITARY SPECIFICATION

FOG OIL

This amendment forms a part of Military Specification MIL-F-12070A, 8 January 1954, and has been approved by the Department of Defense and is mandatory for use by the Departments of the Army, the Navy, and the Air Force.

Page 3, paragraph 4.4.2.2, line 20: Delete "10 \pm 2 mm." and substitute "10 \pm 0.2 mm."

Custodians:

Army—Chemical Corps
Navy—Bureau of Ordnance
Air Force

Other interests:

Army—M Navy—ShS

FED. SUP. CLASS. 9150

APPENDIX B
GAS CHROMATOGRAPHY DATA

GAS CHROMATOGRAPHY DATA

Gas chromatograms of 27 oil fractions and their related oil fogs are included in this section. Preceding the oil/oil fog charts is a "Chromatographic Standards" chart, obtained with synthetic mixtures of alcohols, acids and hydrocarbons.

The standard chart is preceded by a Table describing the compositions of the three mixtures.

Oil/oil fog Chart Nos. 2-23 show the GC's of the oil fractions together with charts of the corresponding oil fog fraction. Where compositions have been identified, they are indicated on the chart and listed on the accompanying Table.

Chart Nos. 24-31 show representative oil fractions compared with corresponding normal and high temperature generated oil fog fractions.

CHART 1. GAS CHROMATOGRAPHY STANDARDS

Key

Alcohol	Standard	
Α.	$C_{11}H_{23}OH$	l-undecanol
В.	C ₁₂ H ₂₅ OH	1-dodecanol

C. $C_{14}H_{29}OH$ I-tetradecanol D. $C_{16}H_{33}OH$ I-hexadecanol

E. C₁₈H₃₇OH 1-octadecanol

Acid Standard

Α.	C7H15COOH	octanoic acid	(caprylic acid)
В.	С ₉ Н ₁₉ СООН	decanoic acid	(capric acid)
С.	C ₁₁ H ₂₃ COOH	dodecanoic acid	(lauric acid)
٥.	C ₁₃ H ₂₇ COOH	tetradecanoic acid	(myristic acid)
Ε.	C ₁₅ H ₃₁ COOH	hexadecanoic acid	(palmitic acid)
F.	C ₁₇ H ₃₅ COOH	octadecanoic acid	(stearic acid)

Hydrocarbon Standard

Α.	C ₁₀ H ₂₂	n-decane
В.	C ₁₂ H ₂₆	n-dodecane
٥.	C ₁₄ H ₃₀	n-tetradecane
٥.	C ₁₆ H ₃₄	n-hexadecane
Ε.	C ₁₇ H ₃₆	n-heptadecane
۶.	C 18 H 38	n-octadecane
û.	C19H40	n-nonadecane
Н.	C20H42	n-eicosane
1.	C21H44	n-heneicosane
J.	C ₂₂ H ₄₆	n-docosane
К.	C ₂₃ H ₄₈	n-tricosane
L.	C24H50	n-tetracosane
Μ.	C28H58	n-octacocane
Ν.	C23H60	n-nonacosane

)
- CHART 1. GAS CHROMATOGRAPHY STA

8-4

N.

SRAPHY STANDARDS

N

Alleman Villa

CHART 2. ALIPHATIC FRACTION; OIL NO. 1 AND CORRESPONDING OIL FOGS

Key

Α.	$C_{14}H_{30}$	n-tetradecane
В.	C ₁₆ H ₃₄	n-hexadecane
С.	C ₁₇ H ₃₆	branched alkane
D.	C ₁₈ H ₃₈	n-octadecane
Ε.	C ₁₉ H ₄₀	n-nonadecane
F.	C20H42	n-eicosane

G. $C_{21}H_{44}$ branched alkane H. $C_{21}H_{44}$ n-heneicosane

The second second

OIL FOG RUN No. 2 (B-1)

OIL FOG RUN No. 6 (C-1)

CHART 3. ALIPHATIC FRACTION; OIL NO. 2 AND CORRESPONDING OIL FOGS

Key

A. n-C₁₉H₄₀ n-nonadecane

01L Fog Run No. 4 (B-2)

CHART 3. ALIPHATIC FRACTION: OIL NO. 2 AM

OIL FOG RUN No. 5 (C-2)

IL NO. 2 AND CORRESPONDING OIL FOGS

B-8

CHART 4. ALIPHATIC FRACTION; OIL NO. 3 AND CORRESPONDING OIL FOGS

Key

A. C₁₄H₃₀ n-tetradecane

B. C₁₇H₃₆ n-heptadecane

C. $C_{20}H_{42}$ n-eicosane

D. C₂₁H₄₄ n-heneicosane

OIL FOG RUN No. 3 (B-3)

OIL FOG RUN No. 8 (A-3)

TION: OIL NO. 3 AND CORRESPONDING OIL FOGS

B-10

•

CHART 5. FIRST AROMATIC FRACTION: OIL NO. 1 AND CORRESPONDING OIL FOGS

- A. $C_{12}H_{16}$ 2,6-dimethyl-1,2,3,4-tetrahydronaphthalene
- B. C₁₃H₁₆
- $C. \quad C_{13}H_{14} + C_{14}H_{20} + C_{15}H_{24}$
- D. $C_{13}H_{16}O$ or $C_{14}H_{20}$

OIL FOG RUN No. 2 (B-1)

CHART 5. FIRST AROMATIC FRACTION:

OIL FOG RUN No. 6 (C-1)

ON: OIL NO. 1 AND CORRESPONDING OIL FOGS

112

CHART 6. FIRST AROMATIC FRACTION: OIL NO. 2 AND CORRESPONDING OIL FOCS

- A. $C_{20}H_{24}$ 3,6,9,9,10,10-hexamethyl-9,10-dihydrophenanthrene
- B. C₂₀H₃₂
- C. C₁₆H₁₈

OIL FOG RUN No. 4 (B-2)

CHART 6. AROMATIC FRACTION: OIL NO. 2 AND

B-14

L NO. 2 AND CORRESPONDING OIL FOGS

CHART 7. FIRST AROMATIC FRACTION; OIL NO. 3 AND CORRESPONDING OIL FOGS

- A. C₁₅H₂₂
- B. $C_{15}H_{18}$ dimethyl isopropylnaphthalene
- C. C₁₄H₁₆

NIL FOG RUN No. 3 (R-3)

CHART 7. FIRST AROMATIC FRACTION: 0

B-16

OIL FOG RUN No. 7 (C-3)

OIL NO. 3 AND CORRESPONDING OIL FOGS

-16

CHART 8. MIDDLE AROMATIC FRACTION; OIL NO. 1 AND CORRESPONDING DIL FORS

A.	C ₁₅ H ₂₄ O	methyl-di-tert-butylphenol
В.	C ₁₆ H ₃₄	n-hexadecane
C.	C14H14	dimethylbiphenyl + $C_{15}H_{16}$ dimethylbenzylbenzene
D.	C ₁₄ H ₁₂	methylfluorene
Ε.	C ₁₅ H ₁₄	dimethylfluorene
F.	$C_{15}H_{12}$	methy1 phenanthrene
G.	$C_{15}H_{12}O$	9-methoxyanthracene or C ₁₈ H ₁₆
н.	C ₁₆ H ₁₄	dimethylphenanthrene
ī.	C ₂₀ H ₃₂	n-butyl-n-hexyl tetrahydronaphthalene

01L Fog Run No. 2 (B-1)

CHART 8. MIDDLE AROMATIC FRACTION: OIL NO.

OIL FOG RUN No. 10 (A-1)

OIL FOG RUN No. 6 (C-1)

IL NO. 1 AND CORRESPONDING OIL FOGS

2

CHART 9. MIDDLE AROMATIC FRACTION; OIL NO. 2 AND CORRESPONDING OIL FOGS

- A. $C_{16}H_{14}$ dimethylphenanthrene + $C_{15}H_{14}$ dimethylfluorene
- B. $C_{17}H_{16}$ trimethylphenanthrene
- C. $C_{18}H_8$ alkylphenanthrene

CHART 9. MIDDLE AROMATIC FRACTION: OIL MI 8-20

OIL NO. 2 AND CORRESPONDING OIL FOGS

CHART 10. MIDDLE AROMATIC FRACTION; GIL NO. 3 AND CORRESPONDING OIL FORS

Α.	C14H12	methylfluorene
В.	C ₁₄ H ₁₀	phenanthrene or anthracene
C.	C ₁₅ H ₁₄	dimethylfluorene
D.	C ₁₅ H ₁₂	methylphenanthrene or methylanthracene
Ε.	C ₁₅ H ₁₂	methylphenanthrene or methylanthracene
F.	$C_{15}H_{12}O$	9-methoxyanthracene
G.	C ₁₈ H ₁₈	<pre>1-methy1-7-isopropylphenanthrene</pre>
Н.	C ₂₀ H ₃₂	<pre>probably n-butyl-n-hexyltetrahydronaphthalene</pre>

OIL FOG RUN NO. 3 (B-3)

CHART 10. MIDDLE AROMATIC FRACTION: OIL

B-22

OIL NO. 3 AND CORRESPONDING OIL FOGS

CHART 11. HEAVY AND HEAVIEST AROMATIC FRACTIONS: OIL NO. 1 AND CURRESPONDING OIL FUGS

۸.	$C_{12}H_{12}$	dimethylnaphthalene
В.	C ₁₂ H ₈	acenaphthalene
С.	C ₁₅ H ₂₄ O	2,6-di-t-butyl-4-methylphenol (ionol)
D.	C ₁₃ H ₁₄	trimethylnaphthalene
Ε.	C ₁₃ H ₁₀	fluorene or phenalene
F.	C14H12	l-methyl fluorene
G.	C ₁₄ H ₁₆	C ₄ -alkylnaphthalene
Н.	C ₁₄ H ₁₀	anthracene or phenanthrene
I.	C ₁₅ H ₁₄	dimethylfluorene
J.	C ₁₅ H ₁₄	alkenyl dibenzene
Κ.	$C_{15}H_{12}$	methylphenanthrene or methylanthracene
L.	C ₁₅ H ₁₂	methylphenanthrene or methylanthracene
M.	$C_{15}H_{12}O$	methoxyanthracene or $C_{16}H_{16}$ isomer
N.	C16H14	dimethylphenanthrene
0.	C16H14	ethyl or dimethylanthracene
Р.	C ₁₈ H ₁₈	C_4 -alkylphenanthrene or C_4 -alkylanthracene
Q.	C ₁₈ H ₁₈	C_4 -alkylphenanthrene or C_4 -alkylanthracene
R.	C ₁₉ H ₃₀	2-n-butyl-5-hexylindan

CHART 11. HEAVY AND HEAVIEST AROMATIC FRACTIONS: (

S: OIL NO. 1 AND CORRESPONDING OIL FOGS

CHART 12. HEAVY AND HEAVIEST AROMATIC FRACTIONS; OIL NO. 2 AND CORRESPONDING OIL FOGS

Key

Α.	$C_{13}H_{10}$	fluorene or phenalene
В.	C ₁₄ H ₁₂	l-methylfluorene
С.	C ₁₄ H ₁₀	phenanthrene or anthracene
D.	C ₁₅ H ₁₄	dimethylfluorene
Ε.	$C_{15}H_{12}$	methylphenathrene or methylanthracene
F.	C ₁₅ H ₁₂ O	methoxyanthracene or $C_{17}H_{16}$ trimethylphenanthrene
G.	$C_{15}H_{12}O$	methoxyanthracene or other isomer
Н.	C ₁₀ H ₁₄	C ₂ -alkylphenanthrene or C ₂ -alkylanthracene
I.	C ₁₇ H ₁₆	C_3 -alkyphenanthrene or C_3 -alkylanthracene
J.	C ₁₇ H ₁₄	2-benzylnaphthalene or $C_{18}H_{18}C_4$ -alkylphenanthrene
Κ.	CiaHia	C ₄ -alkylphenanthrene or C ₄ -alkylanthracene

OIL FOG RUN NO. 4 (B-2) HEAVY FRACTION

CHART 12. HEAVY AND HEAVIEST AROMATIC FRACTION:

8.

•

FRACTION: OIL NO. 2 AND CORRESPONDING OIL FOGS

8-26

OIL No. 3 HEAVY FRACTION

OIL FOG RUN NO. 3 (B-3) HEAVY FRACTION

CHART 13. HEAVY AND HEAVIEST AROMATIC FRACTIONS

OIL No. 3 HEAVIEST FRACTION

OIL FOG RUN No. 3 (B-3) HEAVIEST FRACTION

FIONS: OIL NO. 3 AND CORRESPONDING OIL FOGS

B-27

0

ſ

CHART 14. ESTER FRACTION: OIL NO. 1

D. 1 AND CORRESPONDING OIL FOGS

01L No. 2

OIL FOG RUN No. 4 (B-2)

OIL FOG RUN No. 9 (A-2)

OIL FOG RUN No. 5 (C-2)

01L No. 3

OIL FOG RUN No. 3 (B-3)

CHART 16. ESTER FRACTION: OIL NO.

OIL FOG RUN No. 8 (A-3)

01L FOG RUN NO. 7 (C-3)

NO. 3 AND CORRESPONDING OIL FOGS

0

OIL FOG RUN No. 2 (B-1)

CHART 17. ALCOHOL FRACTION: DIL NO. 1

8-31

OIL FOG RUN No. 10 (A-1)

OIL FOG RUN No. 6 (C-1)

DIL NO. 1 AND CORRESPONDING OIL FOGS

OIL FOG RUN NO. 4 (B-2)

OIL FOG RUN No. 5 (C-2)

0. 2 AND CORRESPONDING OIL FOGS

DIL FOG RUN No. 3 (B-3)

CHART 19. ALCOHOL FRACTION: OIL NO.

OIL FOG RUN No. 8 (A-3)

OIL FOR RUN No. 7 (C-3)

3 AND CORRESPONDING OIL FOGS

01L No. 1

OIL FOG RUN No. 2 (B-1)

OIL FOG RUN No. 10 (A-1)

OIL FOG RUN No. 6 (C-1)

OIL NO. 1 AND CORRESPONDING OIL FOGS

M

1

Control of the Contro

OIL FOS RUN No. 4 (B-2)

CHART 21. ACID FRACTION: OIL NO. 2 AND 8-35

NIL FOG RUN No. 9 (A-2)

OIL FOG RUN No. 5 (C-2)

OIL FOG RUN No. 3 (B-3)

CHART 22. ACID FRACTION: OIL NO. 3 /

OIL FOG RUN No. 8 (A-3)

OIL FOG RUN No. 7 (C-3)

NO. 3 AND CORRESPONDING OIL FOGS

C

3

CHART 23. NITROGEN BASE FRACTION; OIL NO. 2 AND CORRESPONDING OIL FOGS

Key

A.	$C_{10}H_{9}N$	methylquinoline
В.	$C_{11}H_{11}N$	dimethylquinoline
С.	$C_{11}H_{11}N$	dimethylquinoline
Đ.	$C_{12}H_{13}N$	trimethylquinoline
E.	$C_{13}H_{15}N$	probably tetramethylquinoline
F.	$C_{13}H_{15}N$	probably tetramethylquinoline
G.	C ₁₄ H ₁₇ N	probably pentamethylquinoline
Н.	$C_{15}H_{19}N$	probably hexamethylquinoline
I.	C ₁₅ H ₁₉ N	probably C6-alkylquinoline with at least one ethyl group
J.	$C_{15}H_{15}N$	probably dimethy1-9,10-dimethy1benzoquinoline
K.	C ₁₅ H ₁₃ N	methylphenylindole or dimethylbenzoquinoline
L.	C ₁₆ H ₁₅ N	or C ₁₅ H ₁₁ NO

CHART 23. NITROGEN BASE FRACTION: OIL NO. 2 AND CORRESPONDING OIL FOGS

CHART 24. ALIPHATIC FRACTION; OIL NO. 1, NORMAL RUN, HIGH TEMPERATURE RUN

Key

Α.	C ₁₄ H ₃₀	n-tetradecane
В.	C ₁₆ H ₃₄	n-hexadecane
С.	C ₁₇ H ₃₆	branched alkane
D.	C ₁₈ H ₃₈	n-octadecane
Ε.	C ₁₉ H ₄₀	n-nonadecane
F.	C ₂₀ H ₄₂	n-eicosane
G.	C21H44	branched alkane
Н.	C ₂₁ H ₄₄	n-heneicosane

I. $C_{22}H_{46}$ branched alkane

01L No. 1

OIL FOG RUN No. 11 (B-11)

CHART 24. ALIPHATIC FRACTION: OIL NO. 1, NORMAL

OIL FOG RUN No. 2 (B-1)

NORMAL RUN, HIGH TEMPERATURE RUN

CHART 25. FIRST AROMATIC FRACTION; OIL NO. 1, NORMAL RUN, HIGH TEMPERATURE RUN

Key

- A. 2,6-dimethy1-1,2,3,4-tetrahydronaphthalene
- B. C₁₃H₁₆
- $C. \quad C_{13} + C_{14}H_{20} + C_{15}H_{24}$
- D. $C_{13}H_{16}O$ or $C_{14}H_{20}$

OIL FOG RUN No. 11

CHART 25. FIRST AROMATIC FRACTION: OIL NO.

OIL FOG RUN No. 2 (B-1)

No. 11 (B-1(HT))

OIL NO. 1, NORMAL RUN, HIGH TEMPERATURE RUN

••

CHART 26. MIDDLE AROMATIC FRACTION; OIL NO. 1, NORMAL RUN, HIGH TEMPERATURE RUN

Key

Α.	C ₁₅ H ₂₄ O	methyl-di-tert-butylphenol
В.	C ₁₆ H ₃₄	n-hexadecane
С.	C ₁₄ H ₁₄	dimethylbiphenyl + $C_{15}H_{16}$ dimethylbenzylbenzene
D.	C ₁₄ H ₁₂	methyl fluorene
E.	C ₁₅ H ₁₄	dimethyl fluorene
F.	$C_{15}H_{12}$	methylphenanthrene
G.	$C_{15}H_{12}O$	9-methoxyanthracene or C ₁₆ H ₁₈
Н.	C ₁₆ H ₁₄	dimethylphenanthrene
I.	C23H32	n-butyl-n-hexyltetrahydronanhthalene?

18:66 19:66 19:28 19

OIL FOG RUN NO. 11 (B-11HT

CHART 27. HEAVY AROMATIC FRACTION: DIL NO. 1, NORMAL

OIL FOG RUN No. 2 (B-1)

(B-1(HT))

MORMAL RUN, HIGH TEMPERATURE RUN

CHART 27. HEAVY AROMATIC FRACTION; OIL NO. 1, NORMAL RUN, HIGH TEMPERATURE RUN

Key

A.	$C_{12}H_{12}$	dimethylnaphthalene
В.	$C_{12}H_{\theta}$	acenaphthalene
С.	C ₁₅ H ₂₄ O	2,6-di-t-butyl-4-methyl phenol (ionol)
Đ.	C ₁₃ H ₁₄	trimethylnaphthalene
Ε.	C ₁₃ H ₁₀	fluorene or phenalene
F.	C ₁₄ H ₁₂	l-methylfluorene
G.	C ₁₄ H ₁₆	C ₄ -alkylnaphthalene
Н.	C14H10	anthracene or phenanthrene
I.	C ₁₅ H ₁₄	dimethylfluorene
J.	C ₁₅ H ₁₄	alkenyl dibenzene
Κ.	C ₁₅ H ₁₂	methylphenanthrene or methylanthracene
L.	C ₁₅ H ₁₂	methylphenanthrene or methylanthracene
Μ.	C ₁₅ H ₁₂ O,	methoxyanthracene or C ₁₆ H ₁₆ isomer
N.	C ₁₆ H ₁₄	dimethylphenanthrene
0.	C ₁₆ H ₁₄	ethyl or dimethylanthracene
Ρ.	C ₁₇ H ₁₆	C ₃ -alkylphenanthrene or C ₃ -alkylanthracene
Q.	C ₁₇ H ₁₂	methylpyrene or benz $[lpha]$ anthracene
R.	C ₁₈ H ₁₈	C4-alkylphenanthrene or C4-alkylanthracene
S.	C ₁₈ H ₁₈	C4-alkylphenanthrene or C4-alkylanthracene
τ.	C ₁₉ H ₃₀	2-n-buty1-5-n-hexyl indan?

01L No. 1

OIL FOG RUN No. 11

CHART 28. HEAVIEST AROMATIC FRACTION: OIL NO. 1

B-46

OIL FOG RUN NO. 2 (B-1)

m No. 11 (B-11HT))

DIL NO. 1, NORMAL RUN, HIGH TEMPERATURE RUN

46

CHART 28. HEAVIEST AROMATIC FRACTION; OIL NO. 1, NORMAL RUN, HIGH TEMPERATURE RUN

Key

Α.	$C_{10}H_8$	naphthalene
в.	$C_{11}H_{10}$	methylnaphthalene
С.	$C_{11}H_{10}$	me thylnaphthalene
D.	$C_{12}H_{12}$	dimethylnaphthalene

E. $C_{14}H_{10}$ phenanthrene or anthracene

01L No. 1

OIL FOG RUN NO. 11 1

CHART 26. MIDDLE AROMATIC FRACTION: OIL NO. 1,

8-48

OIL FOG RUN No. 2 (B-1)

s Run No. 11 (B-1[HT])

1: OIL NO. 1, NORMAL RUN, HIGH TEMPERATURE RUN

-48

AT ...

01L No. 1

*

OIL FOG RUN NO. 11 (B)

CHART 29. ESTER FRACTION: OIL NO. 1, NO.

OIL FOG RUN No. 2 (B-1)

Run No. 11 (B-1(HT))

OIL NO. 1, NORMAL RUN, HIGH TEMPERATURE RUN

•

-

01L No. 1

Ŷ,

The state of the s

OIL FOG RUN No. 11

CHART 30. ALCOHOL FRACTION. OIL NO. 1.

OIL FOG RUN No. 2 (B-1)

1. NORMAL RUN, HIGH TEMPERATURE RUN

B-50 /

01L No. 1

OIL FOG RUN NO. 11 (B-1

CHART 31. ACID FRACTION: OIL NO. 1, NORMAL

B-51

OIL FOG RUN No. 2 (B-1)

m No. 11 (B-1[HT])

0. 1, NORMAL RUN, HIGH TEMPERATURE RUN

8-51

s agentia

APPENDIX C
MASS SPECTROMETRY DATA

MASS SPECTROMETRY DATA

Seventeen oil and oil fog fractions were analyzed using gas chromatography separation followed by mass spectrometry (GC/MS). The fractions are listed below and are followed by the MS tabulations of the identifiable components.

As noted in the text, the tables show the following headings, an arbitrary peak number (PK#), an arbitrary spectrum number (SPEC), the compound identification (ID), the total ion current (TIC) which corresponds to the peak height in gas chromatography and is a qualitative indication of relative concentration, the area under each peak (AREA) (this column is not always included) and the percentage of each peak remaining after computer subtraction of the background (TICRAT). The last three columns of the table were not used in this study.

"Silanated" compounds are of column origin rather than from the compound.

Where additional compounds were identified by further processing of the data, they are listed on data sheets accompanying many of the charts.

A number of characteristic families of ion peaks whose identities were not established are also listed on the data sheets.

OIL AND OIL FOG FRACTIONS SELECTED FOR MASS SPECTROMETRY

Table C-1	Oil No. 1, Aliphatic Fraction
Table C-2	Oil No. 2, Aliphatic Fraction
Table C-3	Oil No. 3, Aliphatic Fraction
Table C-4	Oil No. 1, First Aromatic Fraction
Table C-5	Oil No. 2, First Aromatic Fraction
Table C-6	Oil No. 3, First Aromatic Fraction
Table C-7	Oil No. 1, Middle Aromatic Fraction
Table C-8	Oil No. 2, Middle Aromatic Fraction
Table C-9	Oil No. 3, Middle Aromatic Fraction
Table C-10	Oil No. 1, Heavy Aromatic Fraction
Table C-11	Oil Fog Run No. 2 (B-1), Heavy Aromatic Fraction
Table C-12	Oil Fog Run No. 11 (B-1[HT]), Heavy Aromatic Fraction
Table C-13	Oil No. 2, Heavy Aromatic Fraction
Table C-14	Oil Fog Run No. 4 (B-2), Heavy Aromatic Fraction
Table C-15	Oil Fog Run No. 11 (B-1[HT]), Heaviest Aromatic Fraction
Table C-16	Oil No. 2, Nitrogen Bases Fraction
Table C-17	Oil Fog Run No. 9 (A-2), Nitrogen Bases Fraction

MILFOG MAS

TABLE C-1. HS OF OIL NO. 1, ALIPHATIC FRACTION

: ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	0101	CNIDENTIFIED	10271	28	-733	4.
;	1013	UNIDENTIFIED	***	92	-706	1582
	1016	VI KAPIE	169209	50	089	238
4	1025	UNIDENTIFIED	509627	43	666-	629
	1026	M KANE	****	6.60	. 591	2905
	_		1840		1145	2
F.	1224	,	3500	2	1172	5 0
:	123	٠ ر	7222	#n	1228	10
!		(1A H70 BP ALKANE + (193, 123)	8796	9	1265	127
1	1240	(193, 133, 137, 109)	3578	:	1295	n
11	1247	14 H26 DICYCLOHEXYLALKANE + (193, 123, 137, 107)	17512	11	1346	6
	1251	C14 H30 BR ALKANE + C14 H28 CYCLOHFXYLOCTANE + (193, 123)	10014		1376	4
13	1254	G14 H30 N-TETRADECANE	73874	40	1398	100
	1263	(15 H72 BR ALKANE + (97)	3433	i Cui	1437	4
5.	1264	UNIDENTIFIED	2214	-	1441	m
	1267	C15 H28 DICYCLOHEXYLPROFANE + SILANATED	4175	, ! m !	1454	
	1277	C15 H32 N PENTADECANE + C15 H2B DICYCLOALKYLALKANE + (123)	34245	-	1497	6
, ,	1281	CIG H34 ER ALKANE	7145	4	1514	01
č.	1264	PUTYKATED COMPOUND	4936	Cu	1527	^
02	0621	CISH14 BP ALK + CI6H32 ALKYLCYCLOALK + CI5 H30 DICYCLOHEXYLALK	5803	C	1552	æ
7.7	2021	CIG H34 BR ALKANE	44.33	Cu	1361	7
25	£6.31	CIG HIR ALCYCLOALKANE	4715	Ci	1565	^
	1295	CIE H3A BP ALKANE	2734	-	1374	n
4.	7021	CIA 474 N-HEXADECANE : CIS +32 ALFYLCYCLOALKANE	886261	9.5	1621	148
!	1.812	(Ai_C)(N-0]	21731	0	1639	Ē
	- 	THE STATE OF THE S	4000	· ~.	1664	
	•			. :	- 2: :	

'able	÷	28.8.1	Galleriff led	4500	-	1,09	6	
 	6.	4661	C1B H39 BR ALKANE	67.79	· -	1735	. r	
	1 0	1340	CIB H36 ALAYLCYCLDALKANE DR CIR H74 DICYCI DH XYLHEXANE	12315	; (1)	1 14	17	
		1345	UNIDENTIFIED	3766	: -	1751	'n	
•	35	1361	C18 H38 N-DC1ADECANE	297632	47	1803	422	
•	33	1370	SILANATED	6466	0	1932	4	!
	Ť	1373	SILAMATED	4645	6	1845	i n	!
	8	1375	C19 H38 ALKYLCYCLQALKANG OR C19 H16 DICYCLOUTXYLALKANE	3541	-	1948		i v
• !	36	0661	N-C13 H40	69024	13	16.01	1,72	
	37	1419	N-C20 H4\$	10676	, - Cu	1001		:
-	38	1423	C21 H44 BR ALKANE	4373		2004	•	;
1	ĥ	1425	SILANATED	6601	. 0	20:1		
• '	0.	1438	C21 H44 BR ALKANE	5951		2054	10	
' '	41	1450	V-C21 H44	15574	en :	2094	27	
	45	1468	C22 H46 BR ALKANE	18275	. •	2154	, 6	
	.	1495	ALKANE	1353	0	2247	i ru	!
	44	1499	ALKANE	12226	į	2262	502	
. :	45	1522	SILANATED	1094	0	2345	į (d	
	4	1523	ALKANE	2498	0	346	'n	
	7 t	1575	ALKANE	3826	: -		10	,

TABLE C-2 Off NO. 2, ACTPHABLE FRACTION

					; I I I
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1	
		1107	12	- 549	0
4013	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	812343	78	906	0
4019		20119		-472	0
4027		****	69	-403	0
4028		496622	91	-342	0
4024			8	-386	0
4041		245422	39	-284	0
4243	UNX.	4707	•	1400	0
4224	SILANATED + UNK+	1559	-	1449	0
4264		4354	3	1486	0
4274		284C	i n	1527	0
4323	N-C17 H36 + (125 ALKYLCYCLDALKANE)	27.75	0	1706	0
4330	ř	1306	0	1726	0
;	1	1064	0	1771	c
4348	UNIDENTIFIED	1278	0	1784	0
4366	ALKANE	3163	0	1840	0
4367	1	2510	0	1843	0
69€#	1	1244	0	1849	0
4396	UNIDENTIFIED	1639	0	1933	0
4402		2232	0	1952	0
4411	i	35554	00	1979	0
! 	SILANATED	1218	0	\$10₹	0
4475	N-C20 H47	24697	•	2024	0
4426	PART OF ABOVE PEAK	2414	0	2027	0
4437	ALKANE	1286	0	2005	0
4447	UNIDERTIFIED	1772	0	2094	0
4453	TAT ICO-X	110896	55	2113	0
4674	《日本传》日本《日本》,《日本》,《日本》,《日本》,《日本》,《日本》,《日本》,《日		:		

1		1		! ! ! !		1 1 1 1	
1	0	}	0		0	1 1 1 1 1	0
	2221	1 1	2275	1	2324	1	2691
-	0		0	1 1 1 1	-		CN)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1416		1313		1303		1761
OHIELE OF THE CONTROL		03	1313 0 2279 0		1303 1 2324 0	建基本 电子系统 医甲基甲状态 医自己性 医甲基乙酰胺甲基二丁二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	
UNIDENTIFIED		UNIDENTIFIED		ALKANE	1 : : : : : : : : : : : : : : : : : : :	ALMANE	
4486		4302	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4571		4613	
٠ <u>٠</u>	1	င်ဗ	1 1 1	ű	, , , , , , , , , , , , , , , , , , , ,	33	
	i C	ą					

C-7

TABLE C-2. OIL NO. 2, ALIPHATIC FRACTION

Key

UNK* Spectra with this designation contain some or all of the runs of the followings masses whose parent structures have not been resolved: 41, 42, 55, 67, 69, 81, 83, 95, 109, 123, 137, 165, 179, 193.

TICHAT RETIND RELCON TYPE	26	3. 4 -597 0	17 -544 0			12 1246 0	11	6	84	04	10 1	-	3. 2 1446 0	0 0041 4	S.	1	31 1509 0		0 1881 1		0 1669 0	11	0 1717 0		0	4881	· · · · · · · · · · · · · · · · · · ·	
OIL	る」ともと言うます。」まりらまではようでもようでは、これではなっていましましましていることでは、「とうできずましましていないではないであった。 これが 日本の 中央の 中央の 中央の からかい しんしん しんしん しんしん しんしん しんしん しんしん しんしんしん しんしんしん しんしんしん しんしんしん しんしん しんしんしん しんしん しんしん しんしんしん しんしん しんしんしん しんしん しんしんしん しんしんしん しんしんしん しんしんしんしん しんしんしんしん しんしんしん しんしんしんしん しんしんしんしん しんしんしん しんしんしんしんしんしんしんしん しん	20233	4215G1	****		72827	707	1479	3C + UNK*	+ UNK+	PART OF ABOVE PEAK	I 296	2468	3544	+ (125.69 CYCLDALKYLALKANE) + SILANATED A221	4626	45364	NTIFIFD	NT IF IED	6C92	1509	27710	UNIDENTIFIED	H38)	UNIDENTIFIED	NTIFIED	23537	《《···································
SPEC	5015	5019	5625	5026	5027	5229 UNK+	SESS ONK+	5239 UNK+	5245 N-C14H30	3254 ALKANE +	5233 PART (9259 UNIDENT	5261 UNK#	3262 ALKANE (C15)	5266 ALKANE	ni ni	3276 UNK*	5279 UNIDENT	5293 UNIDENT	5307 ALKANE	,	5325 N-C17 H36	IINU ICCO	5360 (N-C18 H38)	5382 UNII	5383 UNIDENT	5389 N-C19 H40	
PEAK #		C.	.	4		•				10		12	13	#	13	9.	17	Ē	, t	08	4	43.3	23	4	7	26		

							1 1 1
\$	2401		38	2877	0	1941	0
9	5403	UNIDENTIFIED	3	1821	0	1948	0
ie.	5413	UNIDENTIFIED	31	1880	0	0861	0
æ	5422	N-C20 H42	(62	23728	ID.	2009	0
55	1437	UNIDENTIFIED)	1012	0	2039	0
Ř	5447	N-C21 H44	28	2039	0	2002	0
ñ	3454	UNIDENTIFIED		1054	0	2115	0
గ	3433	UNIDENTIFIED	55	1927	0	2118	0
37	5466	UNIDENTIFIED		1550	٥	2135	0
8	5466	UNIDENTIFIED	2	2209	٥	2155	0
ક્ષ	5496	UNIDENTIFIED); 	1015	0	2258	0
0	5312	UNIDENTIFIED)I	1083	0	2315	0
7	5518	UNIDENTIFIED	X	2016	0	2337	0
42	5997	UNIDENTIFIED	31	1054	-	2638	0

The second second

TABLE C-3. OIL NO. 3, ALIPHATIC FRACTION

Key

UNK* Spectra with this designation contain some or all the runs of the following masses whose parent structures have not been resolved: 41, 43, 55, 67, 69, 81, 83, 95, 109, 123, 137, 165, 179, 193.

Additional alkanes (not found by the cleanup) were present at spectra numbers 5352 and 5417.

TABLE OF A MS OF UTLINDED, HERST APPMATIC FRACTION

PEAK *	SPEC	aı	710	TICRAT	RETIND	RELCON	TYPE
				1 1		1 1	
-	10035	C H2 CL2 DICHLURDMETHANE	16938	٥	0	0	
Cri		C10 H22 N-DECANE	6640.	33	0	0	i : : :
n	10218	N-C12H26 + C11H14 (2)-METHYL-1, 2, 3, 4-TETRAHYDRONAPHTHALENE	17235	8	0	0	1
4	10226	C11H14 (5 OR 6)METHYL-1, 2, 3, 4-TETRAHYDRONAPHTHALENE + SILANATED	2535.	60	0	0	
n	10230	C11H14 METHYL-1, 2, 3, 4-TETRAHYDRONAPHTHALENE	2280.	9	0	0	
4	10231	CIZHIS (DR CIIHIZ D) 2,6-DIMETHYL-1,2,3,4-TETRAHYDRONAPHTHALENE	30449	33	0	0	•
7	10233		2408	40	0	0	 - - -
6 0	10234		11497.	61	0	0	
D	10242		3493	'n	0	0	•
10	10243		20993	23	0	0	•
1.1	10244		2011	a	0	0	•
1 4	10246	N-C14H30 + C12H12 DIMETHYLNAPHTHALENE	19709.	16	0	0	
£1	1		36653	27	0	0	•
₩	10253	C13H(6 SFE 10233	29177.	22	0	0	
21	10234		20062	13	0	ဂ	•
	10238		7134.	•	0	0	•
17	10251	C13H18 TRIMETHYL-1, 2, 3, 4-TETRAHYDRONAPHTHALENE + (C15H32)ALKANE	20436	* 1	0	0	
19	10264	CICHIB SEE ABOVE + CIAHIA BUTYLNAPHTHALENE	9466	9	0	0	! ! !
19	10265	C14H20 TETRAMETHYL-1, Z, 3, 4-TETRAHYDRONAPHTHALENE	3313	n	0	0	
	10266	C13H160 OR C14H20 (145,173,188,143) + C15H22 (187,202,129)	28332	16	0	٥	•
21	10257	•	4080	CI	0	0	•
22	10268	C13H14 ISDPROPYLNAPHTHALENE + C14HIB (186)+ C15H22 (106, 129, 202)	5475	e	0	0	
53	16270	(132, 131, 120)	4800	Cu .	٥	0	•
24	:	C14H2O OR C13H16O (173,188,174,158) SEE 10243	24860	£3	٥	0	
1 1	10274		37791	61	0	0	
36	10275	C13414 TRIMETHY: NAPHTHALENE + C14H20 CR C13H160 (173, 188)	13674	,	C	٥	
	10276	C14 HIB (171, 186)	2503		0	0	
:	10277	C15H22 OR C14H180 (143,146,141,167,202) + C15H24 (133,134,119,20	13700	7	0	0	•

Jable C-4	29	10280	C15 H22 HEXAMETHYLINDAN	8502	4	0	C	
,	30	10282	C13H14 (155, 170) + C14H20 (173, 188) + C15H24 (133, 119, 134, 204)	29469	13	0		•
	3;	10284	C14 H16 1-NETHYL-7-ISOPRUPYLNAPHTHALENE	6716		0		!
	35	10285	UNIDENTIFIED (95, 109, 123)	4034	24	0	0	!
	33	10287	(CI3H160 QR C14H20) (173, 145, 174)	24231	11	0	0	! ! !
	34	10288		14792	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	0	
	ec C	10289	C13 H14 + C15 H22 (187, 202)	6112	e e	0	0	! !
	36	10292	BUTYRATED COMPOUND (71, 43) + (C14 H16) (155, 184)	1812	0	0	0	
	37	10295	C14H20 OR C13H160 (145, 173, 188) + (143, 157, 171, (200))	7841	e e	0	0	
	38	10296		9421	4	0		
	39	10297	C14H2O DR C13H16D (173, 188, 174, (155))	3659	-	6	0	! !
	! !	10300	ALKANE (N-C16 H34)	23277	10	0		!
	41	10301		9899	6	0	0	
	24	10302	C14H16 (169, 184) + (C16H24) (133, 160, (216), 199)	2364	-	0	0	
	t 3	10305	C15 H18 (183, 198) + C15 H22 (187, 202)	2761.	-	0	0	
	7	10310	C14 H16 OR C13 H18 (155, 198, 169, 184)	12848	.	0	0	
		10315	C16 H26 OR C15 H22 O (133, 134, 218)	5828	6	0	0	•
	46	10316	ALKANE + (C16 H22) (214)	6423.	່ເຄ	0	0	! !
	47	10318	C15 H18 DIMETHYL ISOPROPYLNAPHTHALENE	12904.	m i	0	0	
	46	10321	C14H16 OR C15H18 (169, 184) + C16H26 (105, 119, 106, 91, 92, 218)	11875	4	0	0	•
	40	10327	SILANATED	8146	E	0	0	1
	OF.	10333	UNIDENTIFIED	1314	0			1
		10336	ALKANE	15984	i ic	0	0	! !
	35	10344	C17 H28 (119, 120, 232, 91, 92)	1892	C	0		•
	E 6	10346	C16 H26 (133, 134, 218)	1269	0	0	0	
	54	10349	(CIB H2B) (159, 244)	1650	0	0	0	
	33	10350	(C18 H26) (106, 242)	3008	o	0	0	
	96	10336	C17 H28 (105, 106, 92, 232)	3937	-	0	0	
	57	10360	CIB H30 (119, 120, 246)	2002		0	0	! !
	86	10365	CNIDENTIFIED	1003	0	0	0	
	5 6	10371	ALKANE	7456	1 1 1 (w 1	0		! !
	90	10379	CIB H30 (120, (241), 246)	3442	0	, ,	0	
	61	10382	SILANATED	8013	-	С	٥	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	: : : :	1	1
1e 62	10384	C19 H30 (145.139.131.258)	4082	-	0	o	•
63	10386	C19 H30 (106, 105, 202, 298)	1240	0	0		•
49	16291	C19 H32 (133, 134, (210), 260)	4453	-	0	0	! !
69	76001		5944		0	0	
99	10393	C20 H34 (119, 274)	7343	 	0	0	! ! !
67	10400	ALKANE (N-C19H40 2)	1097	0	0	0	! !
89		C19 H32 (134, 133, 119, 260)	1661	0	0	0	
69	10407	C20 H32 (145,131,159,272)	9953	-	o	0	•
70	10414	C19 H32 (120, 260)	2502	0	0	0	! !
7.1	10420	(C19 H32)	1747	0	0	0	
72	10425	C20 H32 (145, 146)	9689	-	0	0	
73	10427	C19 H32 OR C20 H34 (106, 260)	2575	0	0	0	
74	10430	C21 H34 (159, 181, 171) + (C17 H20) (224, 238)	3577	0	0	0	•
7.9	10431	UNIDENTIFIED	1394	0	0	0	1
7.6	10436	SILANATED	5400	-	0	0	! !
7.1	10438	C21 H36 (134, 288)	1178.	0	0	0	
76	10442	(255, 69, 159, 173, 185, (270))	6309	a	0	0	•
79	10447	C21 H36 (119, 120, 92, (241), 288)	5177	-	0	0	
8	10401	UNIDENTIFIED	1139	0	0	0	
189	10459	C20 H28 N-BUTYL N-HEXYL NAPHTHALENE	4985		0	ဂ	•
28	10460	UNIDENTIFIED	1267	o	0	0	
83	10464	UNIDENTIFIED	1126	0	0	0	
6 0		(237, 195, 292)	6130		٥	0	•
88	10469	UNIDENTIFIED	1380	٥	0	0	
98	10476	UNIDENTIFIED	1373	0	0	O	
87	10473	CATDENTIFIED	1817	0	0	0	
68	10486	SILANATED	4604		0	0	
99	10817	UNIDENTIFIED	1108	0	٥	٥	
06	10523	LAIDENTIFIED	1983	0	0	0	
91	10528	UNIDENTIFIED	1402	0	0	c	
35	10530	UNIDENTIFIED	8554	0	C	o	
66	10532	SILANATED	1168	0	0	0	
94	10534	(NIDENTIFIED	1547	0	Ç)	С	

93	10540	145, 146, 157, 296, 3103	1.602		ټ	• .
96	10343	(159, 160, 185)	44.7	-	ċ	• :
16	16501	UNIDENTIFIED	3878	-	,	· · · · · · · · · · · · · · · · · · ·
86	10557	(213, 295, 310, (326))	26€4		٤.	• 0
66	10558	PART OF ABOVE PEAK	5560	fy	0	0
100	10501	UNIDENTIFIED	1466	3	0	0
;	! !	UNIDENTIFIED	1764	0	0	0
102	10574	CNIDENTIFIED	2117		0	0
103	10375	SILANATED	1905	0	٥	0
!	B/601	(189, 171)	2923	-	C	•
105	10584	UNIDENTIFIED	1365	٥	0	0
106	10592	UNIDENTIFIED	1042	0	0	0
107	10394	(106, 103, 91)	1812	-	0	•
108	19397	UNIDENTIFIED	1746	0	0	0
109	10598	UNIDENTIFIED	1601	0	0	0
011	10603	(MIDENTIFIED	1061	0	0	0
111	10605	UNIDENTIFIED	1061	٥	0	0
	10609	UNIDENTIFIED	1572	0	0	0
113	10610	UNIDENTIFIED	16:3	0	0 !	0
1 	10413	UNIDENTIFIED	1452	0	C	0
113	10417	UNIDENTIFIED	1245	0	0	0
!	10630	CMIDENTIFIED	1913		٥	0
117	10640	CAIDENTIFIED	1079	٥	0	0
118	10642	UNIDENTIFIED	1360	-	0	0
119	10646	UNIDENTIFIED	1335		0	0
120	10664	UNIDENTIFIED	1188		0	0

TABLE C-4. MS OF OIL NO. 1, FIRST AROMATIC FRACTION

Key

 $\ensuremath{\text{0}}$ in the ID column are identified below by the Spectrum No. Structures shown are compounds with similar spectra

10233	C ₁₃ H ₁₆ (such as 2-heptynyl benzene)
10234	$C_{12}H_{16}$ $C_{12}H_{16}$ $C_{13}H_{16}$ $C_{14}H_{16}$ $C_{15}H_{16}$
	C ₁₁ H ₁₂ O 3-methyl-3,4-dihydro naphthalenone
	C ₁₃ H ₁₈ Trimethyl tetralin
10242	$C_{13}H_{16}$ (similar to 10233)
10243	$C_{12}H_{16}$ Dimethyl tetralin
	and
	C ₁₂ H ₁₂ Dimethyl naphthalene
	and C ₁₄ H ₂₀
	or CH ₃ CH ₃
	C _{1 3} H ₁₆ O H ₃ C O
10244	C ₁₂ H ₁₆ O Cyclohexyl phenol
10249	C ₁₂ H ₁₂ Dimethyl naphthalene and
	$C_{14}H_{20}$ or $C_{13}H_{16}0$ (see 10243)

TABLE C-5. MS OF OIL NO. 2, FIRST AROMATIC FRACTION

11		1 1		1		1	1
1	1	,	100555	0.	0	0	-
Ci.	11199	C10 H22 N-DECANE	3159	56	0	0	1
	:	C12 HZ6 N-DODECANE	3106	25	0	0	i ! !
	11247	C14 H30 N-TETRADECANE	7093	37	0	0	i 1
n	11274	BILANATED	2638	11	0	0	! !
40	1:284	1	2785	0	0	0	
	1129;	BUTYRATED COMPOUND + C14 H20 (173, 188, 138, 174)	8006	18	0	0	
6	11298	C16 H34 N-HEXADECANE	7052.	19	0	0	
•	11300	C17 H20 (209, 224)	1709.	4	0	0	! !
	11308		6672.	13	0	0	i !
	11316	C15 H16 (DIMETHYL BENZYLBENZENE)	1927.	3	0	0	1
31	11317	C15 HZO (171, 186, 138, 132, 200)	2134.	9	0	0	`
	11319	:C14 H16 SEE 11308	3114	47	0	0	
1.4	11326	SILAMATED	12512.	5	0	0	1
15	11328		1583	a	0	0	
15	11530	ALKANE + C16 H18 (195, 210) + C14 H20 (173, 188)	1781	a	6	0	
17			3564	***	0	0	
8;	11338		3787.	्। •	0	0	1
!	11340	. C16 HIB (195, 210) + C15 HI6 (181, 196) + C15 HIB (183, 198)	1776	8	0	0	1
 !	11344		1129	1	0	O	
23	11345	C16 HIB (195, 210) + (C13 HIB) (159)	183+	=	0	0	
22	1:347	C15 H18 (183, 198)	1489	-	0	0	! !
23	11349	(197, 213, 228, (242))	1612	#	0	0	
;	:1393	C18 H26 SEE 11332 + C15 H20 (183,212)	2208	Ĉi.	0	٥	
 6	11356		47.44	•	0	0	
26	11360	UNIDENTIFIED	1781	-	0	0	
27	11362	C19 H30 (173, 139, 238)	2177	-	0	0	
28	11343	C14 H18 (195,010) + C14 H00 (183,010) (145)) + (A148NE)		1		!	l

20	11366	ALKANE + (13 HIB (181, 183, 198, (254, C19 H26 2))	2012			,	
OF.	11369	(CI9 H30) (145, 146)	1779	-	0	0	
31	11370	مدأ	3039.	a	0	0	•
32	11373	(213, 228, 242) SEE 11349	1660	-	0	0	!
. E	9/611		2006	-	0	0	i
34	11377	UNIDENTIFIED	1143	0	0		!
66	11378	(C19 H30) (145, 159, 146) + C16 H1B (195, 210)	1512	-	- C	0	*
8	11380	SILANATED	14893	10	0	0	!
37	11385	C20 H24 3, 6, 9, 9, 10.10-HEXAMETHYL-9, 10-DIHYDROPHENANTHRENE	10945	7	10	0	
38	11387	C19 H32 (133, 134, 260)	1128	0	0	0	! !
39	11389	(119)	2169	-	0	0	!
ပ္	11396	(C20 H32) (145, 146, 272) + (263, 264, 278) SEE 11411	3884	2	0	0)
1.4	11397	ALKANE	1374	-	0	0	
54	11398	C19 H32 (133, 134, 260)	1181	0	0		
£.	1	(145, 146) + (263, 264, 278) SEE 11411	1577.	=	0	0	! !
7	11404	UNIDENTIFIED	1466	-	0	0	
4	11411	(C16 H18) (199,210) + C18 H14 G3 (263,278,249,235,264,250)	10628	7	٥	0	
45	11416	UNIDENTIFIED	1787	-	0	C	
47	11420	(C20 H30) (133) + (224)	1865	-	0	٥	
48	11421	(145, 146)	2041	-	0	0	
A	11423	(C20 H30) (119, 133, 126)	1722	-	0		l l
	: 1	UNIDENTIFIED	1444	-	0		:
31	(1433	SILANATED	12577	6	0	0	: ! •
	11444	(CIB H24 02) (162, 161, 272, 256, (35, 187)	2427	~		0	
<u></u>	11454	(119, 187, 120, 298)	2144	C 1	0	0	
1) 4	11458		C771		c	0	
5	:1464	UNIDENTIFIED	1075		0	0	
8	11484	SILANATED	7646	8		0	1
57	11493	(C23 H40) (120, 119, [33, 316)	1039	-		0	1
88	1.930	SILAWATED	4689	6	0	0	1
6	11374	BILANATED	3660	CD	0	0] }
09	11615	BILAMATED	2204	6		5	

Aligna John C.

TABLE C-5. MS OF OIL NO. 2, FIRST AROMATIC FRACTION

KEY

- 1) Numbers in parentheses indicate ions which seem to beak simultaneously.
- 2) @ in the ID column are explained below according to Spectrum Number. The structures shown are compounds which exhibit similar spectra.

11332. alkane + $C_{14}H_{18}(171,186)$ or $C_{15}H_{20}(186,200)$ + $C_{14}H_{16}(169,184)$ +

11335. $C_{19}H_{20}(209,224) + C_{16}H_{18}(195,210) + C_{14}H_{16}(177,186) + C_{18}H_{12}(195,210) +$

$$C_{19}H_{22}$$
, Me $CH_2 - CH_2$ Me $(223,238,193)$ Me

11356. $C_{15}H_{18}(195,210) + C_{13}H_{30}$

Me -
$$(CH_2)_{\epsilon}$$
 (145,119,146,258) + (228)
Me - $(CH_2)_{\epsilon}$

F011 5 1945

TABLE C-6. MS OF OIL NO. 3, FIRST AROMATIC FRACTION

				000	1 1		1
	12036	C H2 CL2 DICHLORDMETHANE	102556	•	0	0	
	12245	C13 H18 OR C12 H14 D (10234)	3262.	17	0	9	*
C	12253	C13 H16 + C12 H16 D [10242]	1955.	6	0	0	1
4	12256	Ci2 HI2 + C12 MI6 + C14 H20 DR C13 HI6 D [10243]	3810	E1	0	0	
•	12258	N-C14 H30 + C12 H12 [10246]	4405	E1	0	0	
9	15261	C12 H12 + C15 H22 (187, 202) [10249]	8030	19	0	0	! !
,	12262	C14 H20 OR C13 H16 U [10249]	3494	60	0	0	1
1 00	12264	C13 His [10253] + C12 Hi2 + UAK*	11666	25	0	0	1
0	12266	C13 H18 [102043	12404	23	0	0	\ !
10	12267	C14 H18 + C15 H22 [10254] + C14 H22 (119, 190, 120)	4603.	21	0	0	1
11	12273	C13 H18 + ALKANE [19261] + UNK*	8686	18	0	0	}
1.2	12276	C14 H20 1102653	5633.	6	0	0	*
£1	12278	C14 H20 + C15 H22 [10266]	6425	0	0	0	*
•	12281	C13 H14 + C15 H22 + (132) [10268, 10275]	2360	n		0	1 1
ŭ	12284	C14 H20 DR C13 H16 D (10271)	10462	13	0	0	
15	12286	C15 H22 (10274)	19059	028	0		i L
17	12287	C13 H14 + C14 H20 OR C13 H16 O [10275]	5072	•	0	0	
81	12289	C15 H22 3102773	6728	,	0	0	*
1.3	12293	C15 H22 (10280)	6732	an .	0	0	
S.	12295	C15 H24 [10282]	9267	0	0		•
21	12296	C13 H14 [10282] + C14 H16 [10284] + C15 H22	9094	0	0	0	
22	12297	UI#(* 110285)	3201	40	0	0	
Ę	12300	CIAMZO OR CIGHIGO [10287] + CIAMIBO +(157, 200, 126, 142) [10288]	18616	91	0	0	•
24	12302	C13 H14 (19289) + C14 H16 (169, 184)	13650	13	0	0	¦ 1
ຄຸ	12203	CIS H22 OR CI4 H18 0 [10289]	6769	.	0		•
20	12306	BUTYRATED COMPOUND + C14 His [10292]	2061	-			† ● 1
27	12307	C13 416 0 0R C14 H20 + (143, 157, 200, 171) (10295)	8848				. *
28	12309	(16 H26 [10296]	5276	 T	c	٥	

29	12312	ALKANE (10300) + C14 H16	4981	-	0	0	1
S	12314	C15 H22 DR C14 H18 O [10301]	4483	n	0	i 0	
10	12315	C14 H16 + C16 H24 (10302)	9005	n	0	0	
32	123.8	C15 H22 + C19 H18 (10309)	4337	e.	0	0	1
æ	12323	C14 H15 UR C15 H18 (10310)	7403	ะก	0	0	\ ! !
₹.	12324	C17 H22 (187, 145, 202)	3421	C)	0	0	
S E	12325	C16 H24 (173,145,187,216) + (C17 H22) (157,171,226)	1502	-	0	0	
క	12328	C16 H26 OR C15 H22 O (103151 + C16 H22 (199, 214, (155))	3760	n .	0	0	
37	15331	C15 H18 (103181)	39341	22	0	0	4 []
8	12334	C14 H16 + C16 H26 [10321]	12680	7	0	0	
86	12339	UNIDENTIFIED	1926	-	0	0)
07	12341	SILANATED (10327)	7972	10	0	a	
**	12346	(CIB H29) (159, (229, 244))	2616		0	o	•
42	12349	UNIDENTIFIED	2785	-	0	٥	
£.	12352	UNIDENTIFIED	1862	-	0	0	
44	12338	C17 H28 [10344]	1904.	-	0	0	,
6.4		: C16 H26 [10346]	1470	o	c	0	
46	12363	(C18 H28) (159) [10349]	1481	0	C		
4.7	12371	C17 H28 [10356]	1141	0	0		
46	12375	C18 H3C [10360] + (149)	6871	Ю	0	i c	,
67	12379	UNIDENTIFIED (10365)	1292	o	0	٥	
Q	12084	C18 H30 (134, 246)	1086	0	0	0	
	12387	(145, 146)	2137.	c	0	0	
S	12391	UNIDENTIFIED	1336.	0	o	0	
6	12395	(131, 120)	3023		0	٥	•
7	12399	91LANATED 1103821	6512	(H	0	0	
E.	12400	(C19 H30) (145,146) (10384]	9069	N	O	מ	•
9	12403	UNIDENTIFIED	2461.	O	o	0	•
37	12408	(C;0 H30) (167, (06, 105, 195, 246)	3536	-	O	0	• 1
#	12409	C20 H34 + (C20 H34) (145, 131, 199, (272)) (10393)	7789	Ωŧ	٥	c	•
\$	124:5	119, 123,	1034	C	٥	0	•
96	12416	(145, 199)	2394	0	0	0	•
6.1	12420	C17 H20 (209, 224) + (133, 134) [10404]	2538	0	С	٥	•

		· 16 · 17 · 18 · 18 · 18 · 18 · 18 · 18 · 18		111111			1
(*) (*)	1.2425	m	7413	a	٥	0	•
1 1 1 1 1	12426	UNIDENTIFILD	1158	0	10	G	! ! !
4 (9)	12430	(C19 H32) (120, 119) (10414)	2483	0	. 0	0	! ! *
E ¢	1	UNIDENTIFIED	1502	0	0	0	!
66	12438	(195, 119, 210, 270) [10420]	1361	0	0	10	1 1
67			8528	a	0	0	
89	12446	(120, 104)	2415	0	0	0	! ! !
69	12449	(224, 155, 156, 181) [10430, 10431]	7161	a	0	0	! ! •
70	12455	SILANATED [10436]	2884	0	0	0	! } !
7.1	12466	(C21 H36) (119, 120, 106, 288) [10447]	3242.	-	0	0	•
72	12458	(159, 183)	2542	0	0	0	•
73	12473	UNIDENTIFIED	1223.	0	0	0	
4 %	12474	UNIDENTIFIED	1094	0	0	0	
6.	13479	C20 H28 [10459]	5079.	-	0	0	
9,	12485	C19 H26 (183, 254) [10464]	4004	-	0	0	•
, j	12486	(C13 HI6 05) (237, 252, 175) [10466]	4989		0	0	•
	12489	C18 H22 DR C16 H14 D2 (223,238) [10469]	4162	-	0	0	•
	12491	(239, 253, 267, 285) [10470]	2667		0	O	•
08	12495	(267)	2379.	0	၁	0	•
;	-	. C.20 H26 U2 (283, 298)	1467.	0	0	٥	•
8	12503	PART OF ABOVE PEAK	4361	-	0	0	
66	12508	SILANATED (10486)	5432	~	٥	c	
84	0152:	UNIDENTIFIED	1174.	0	0	٥	
S.	125.2	UNIDENT:F1ED	1339	0	c ;	0	
P6	12319	UNIDENTIFIED	2117	0	C	c	1
67	1232	UNIDENTIFIED	1646	0	0	٥	
98	12524	UNIDENTIFIED	1807	0	ن	0	1
66	12526	(145, 146, 131)	4387	-	0	0	•
06	12329	(623 H40) (119, 120, 133, 134)	4958	۲۰	0	0	•
0	12537	(C20 HR4) (249)	1792	C	c	ပ	
24	12543	(309-294-252) [10517]	1767	C	0	C .	:
5.5	12344	UNIDENTIFIED	1166	0	o ,	6	
34	12549	UNIDENTIFIED	2133	-	ن	0	

و الله الله	93	12551	(294, 322, 326, 29R) (10323)	3928		1 6		0	
	96	12992	UNIDENTIFIED	2907	!		0	0	
i	47	12555	(CIB H14 05 0R C21 H26 02) (10530)	3551		: -	٥	0	*
i	86	12356	SILANATED (10332)	3664	;	! -	0	0	;
i	8	12562	CAIDENTIFIED	2360			0	0	; ; ;
i	100	12564	(145, 157, 146) [10540]	13128			0	0	•
i	101	12570	CANDENTIFIED	1297.			0	0	i ! !
i	105	12573	9EE 12383 [10531]	2874.			0	0	i ! !
i	103	12582	(195, 304, 134) [10557]	2211			0	0	; ; ;
i	104	12583	(C21 H26 G2) (213, 295, 225, 214, 310) [10558]	16334.		6	0	0	
•	105	12586	(229, 230, 241) + (159, 160) [10561]	3682			0	0	i :
i	106	12690	UNIDENTIFIED (10374)	2715.			0	0	; ! ! !
i	107	12602	SILANATED (10573)	4817.	!	3	0	0	
i	108	12604	(159) [10578]	3966.	''		! 0	0	•
i	109	12623	(204) (10579)	1924.		! ! !	0	0	1
i	110	12625	(193) [10398]	1259			0	0	i 1 1
i	111	12638	(187,143,171,189,189) (10640)	20215	,	5	3	Ġ	•
i	112	12645	SILAMTED [10617]	1668	:		. 0	0	; ; ;

TABLE C-6. MS OF OIL NO. 3, FIRST AROMATIC FRACTION

KEY

- 1) UNK* These spectra contain some or all of the following ions: 41, 43, 55, 67, 69, 81, 83, 95, 109, 123, 137, 165, 179, 193, 207 structures have not been determined.
- 2) Numbers in brackets [] indicate the corresponding spectra numbers in Table C-4, Oil No. 1, First Aromatic Fraction.
- 3) Numbers in parentheses indicate ions which seem to peak together.
- 4) Additional peaks not included by the Cleanup program are:

12243 $C_{12}H_{16}$ or $C_{11}H_{12}O$ [10234]

12291 C₁₃H₁₄

12347 C₁₅H₁₈

TABLE C-7. MS OF OIL NO. 1, MIDDLE AROMATIC FRACTION

A STATE OF THE PARTY OF THE PAR

	:		1			
		(A)DENTIFIED	107446		- 283	5.1
		CIO HOS N DECANE	56723	85	1006	0.0
		C12 H26 N DODECANE	42951	: 1 8	1211	59
		14 H30 N TETRADECANE	66213	29	1401	001
:		(17 HIZ METHYLRIPHENYL + C12 HIZ DIMETHYLNAPHTHALENE	8089	י ניו י ניו	1413	10
		ALKAMÉ	4399	17	1457	; ·
		CL3 HID RETHYLBIPHENYL OR C14 H14 DIMETHYLBIPHENYL	9232	41	1465	. =
		(15) ACA) METHYL DI-TERT-BUTYLPHENOL	93234	84	1485	4
		PARTICIAL KANE (91,92)	3549		1489	1
		14 HI + DIM THY BIPHENYL	4496	6	1447	
		CL3 H14 FRIME THYL NAPHTHALENE + PHENYLAI XANE	2914	11	1551	
•		CLI HIA IPINETHYLNAPHTHALENE	5435	1.2	1537	1
		CIS AIS DINETHYLBUNZYLBENZENE	3354	: } o	1546	
		(13 HIQ FLUHRENE) CIS HIA DIMETHYLFI UGRENE	2629	: : <u>:</u> :		-
		CLA HIA DIMETHYL BIPHENY, + CL3 HIA TRIMETHYLNAPHTHALENE	12732	. 55	1566	رن ۲۰ ۱
		C14 +44 DIPST4.1 RIPHENYL + BUTYRATED COMPOUND	17645	30	1578	85
1.7	7507	PHENYLALVANE	3874	: •	1596	
		SEPTEMBERGAT BENZALBENZENZENZENZENZENZENZENZENZENZENZENZENZE	15301		0251	; -
		116 H34 N HCRAUCCANE	6231	56	8651	2
		CLA HOLD DIMETRY BENEENED + 115 HIA DIMETHYLBENZY BENZENG + (119)	12216		1605	ت دع ا
		C16 D19 (FIPHENALALMAN)	10154	101	1624	. <u></u>
		ALKAN	7180		1646	1
		CIS HIR DIPHERVIALKANE	492c	7	1650	. 📆
		CIVILLA CP C15 H12 C	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4	0.91	
		CIV HIGH STONE FILL AN WAVE	264+	-,	1000	:
		JOHN BLAZINE BEAZALEA NEW JOHN TO THE SHIP OF THE SHIP	18.53	<u></u>	7	•

	*	나는 사람들이 얼마나 되었다.			•		r
*	5.	and producted to produce the product of the part of th	13 pt. 14 t.				
÷	; ;		1, . 7	4			,
,	. 4(.,	The set of the energy of the set of	. 0000		-		
£.	. 36.	Balling and a body sector of	: 67.3	:	·		÷
7	,35B	that a control to the first field	.; ;		:		
	3r		. 256.6		, , , (2	•
3.5	0964	(421FF 371F 1ED	1611		* -	7	
, m	7364		2800	٠,	-	,	•
T. C	7366	ONIDENTIFIE	\$682 	~	•	٠.	
		CIS HIA DIMETHYLFLUCRENE	 544.1	Ţ	tval	100	
	7	C16 H1A (A (15 H1P 0 (SEE 7329)	1646	4	1806	<u>:</u>	
. ;	.387	ALKANE ALKANE	15394		्राष्ट्रा	4	
		C16 H'? FIDENZDHEPLAFULVENE	2198		181	ſ	•
4.3	7.381	C16 H10 S ME HYLDIDENZDIHIDPHENE	10.34		9.94	. ~	
•	7364		18017		1937	·	4
}	7386	UNIDERTIFIED	2046		1840	,	•
46	7391		3478	, -			•
47	7402		2994	. ru	1808	. 01	ט
	7403	C15 H12 METHYLPHENANTHRENE	18514		1.4	. v	
	7406	(N-CIF HAD ALKANE)	49.17	~,	: CG	. <u>.</u>	
50	7411	C15 H12 U 9 METHDXYANTHRACENE OF C16 H16	15331	2	#121		•
!	3	UNIDENTIFIED	1746		: dCc1	: :	
52.	7423		1501	¹	1 284	. ¥	
53	7436	FALS: PEAK	3040	1 24	1 66	11	
į	7442	CI6 H14 DIMETHYL PHENANTHRENE	44295	ं स् ।'प	5005	162	:
;	7445	UNIDERTIFIED	33.9%	i ru	. T. c.		
į	3.5		1206	. 0	2005	un !	:
		UNIDENTIFIED	2390	! 			:
	7468		2914	: : ()			
:	7470	UNIDERTIFIED	1,500	: 0 :	3002	. T	
00	7483	C17 H16 TRIMETHY_PHENAUTHNENE	2045	-	. 2€ 		:
19	7455	UNIDENTIFIED	2211		, , , ,		

	7 - 4	TO HIS TORGHAM OF TOURDING BHENNIGHENS	1820	-	2183	13	•
**	Lyan.	CALIFERENT IF TED	1342	0	2145		
7	34.	SIH 51)	2667	: ! (u !	2277	11	•
`.	i E	120 HIGH IN BUTY NINEXYLTETRAHYDRONAPHTHALEND	7370	4	1325	. E	•
90	7541	-	567	4	2332	17	
. 9	7548	UNIDENTIFIED	1129	0	2356	r	
&9	7568	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1195	-	2425	6	•
	7603	UNIDENTIFIED	1282	-	2553		!
20			3027		2595		•
	7620	17.	1166		2516	i	
			1364		2648	. 4	:

TABLE C-7. MS OF OIL NO. 1, MIDDLE AROMATIC FRACTION

KEY

Peaks	not	included	by	CLEANUP	program:
-------	-----	----------	----	---------	----------

7246	C_{11} H_{10}	Methylnaphthalene
7247	C ₁₂ H ₁₅	
7257	C_{12} H_{10}	Biphenyl
7258	C ₁₃ H ₁₂	Methylbiphenyl + C ₁₂ H ₁₈
7267	C ₁₂ H ₁₂	Dimethylnaphthalene
7287	C ₁₃ H ₁₄	Trimethylnaphthalene
7419	C ₁₅ H ₁₂ or	C16 H15
7479	C ₁₇ H ₁₆	Trimethylphenanthrene

If the "Identification" slot is empty, then no specific compound could be identified, although a definite peak exists.

A STATE OF THE PARTY OF THE PAR

1 1 1							
:	:		•				
	8027	CH2 TL2 DICHEDRUMETHANK	317305	₹ •	. .		
	8036	UNIDENTIFIED	76566	4	291		
	8,00	CTO HEE N-DEGRAE	24783	্ব	:: ::	4.	
. 4	2128	CLP HPA N DODECAME	4.5.1	ŝ	56.	.:	
	8240	C14 H30 N-TETPADECAME	11618	î,	1.44.1	ā	
	8267		9,2,1	**	1.14	ų	
	9284		11.6	v'			
00	8292	CIG H30 04 TRIMETHYLPENTADIOLUSISOBUTYPATE			<i>:</i>	7	
	8298	CIG HIS N-HEXADECANE	58731	4	***	**	*
10	8320		101	'a	1500	r.	•
	6353	C14 H12 METHYLEL COMENE	5052	Ş	1675		•
	6327	SILAMATER	5024	?		Ê	
13	8337		1103			ت	٠
14	B340	CIS HIS DIMETHYL PHENANTHPENE	2150	æ .		n	• !
15	8345		16.58	r _u	.4.	,	•
16	B347	O PHENANTHRENE	5405		- -	÷	
7	9354	CIT HIS TRIMETHYLPHENANTHRENE	4758	4	₹ •	31	
1.8	8356		624.	4)		ħ.	•
51	8364	CLG HIR DIMETHYLPHENNIHRENE + CIS HIR BIMETHYLFLUORPHE	55962	ř.	0	, ä	
20	1908		1446	-	1408	4	
21	8368	CIT HIS TRIMETHYLPHENANTHRENE	>659	ď)	1811	¥.	•
22	8371	CNIDENTIFIED	1705	-	5181	4	,
53	9376	ALKANE	2173	ea ·	18,34		
24	8331	SILANATED	2.396		1048	a :	
25	8.36/	C20 H24 (TENT)	24.0	rų .	C981	9	
26	9397	CIS HIZ METHYLPHENANTHRENE OF METHYLANTHRACENE	2944	רע ;	1984	•	
27	938¢	CIG HIR TETPAMETHYL OR ALXYLPHENANTHPENE	2270	ri :	1.81		
1							

2	8393	C15 H12 METHYLPHENANTHRENE	6178.	•	1862	15	
8	6368	C17 H16 ALKYLDIHYDRONAPHTHALENE	2203	-	1888	an an	
31	6608	PART OF PEAK BELOW	2970.	a	1899	7	
g	8401	C17 H16 TRIMETHYLPHENANTHRENE	10575.	7	1909	5 8	
33	6402	CI6 HI6 + UNIDENTIFIED	2564	-	1908	7	
7	8405	C18 H20	1281.	0	1917	6	
60	8406	C17 H16 ISOMER(S)	3142.	2	1920	0	
8	8407	UNIDENTIFIED	1468	-	1923	•	!
37	8409	C16 H16	2040	-	1929	n	!
8	8415	C16 H16	3934.	2	1947	10	
96	8418	C16 H16 + C18 H16	2237.	-	1935	n	}
0	8422	UNIDENTIFIED	2193	-	1967	6	
1.	8423	C20 H42 ALKANE + UNIDENTIFIED	2635	-	1970	7	
42	8434	UNIDENTIFIED	1217	0	2002	9	
€4	8433	UNIDENTIFIED	1831.	-	2005	80	
*	8436	C18 H18 ALKYLPHENANTHRENE + C16 H14	2306.	-	2008	11	!
49	8437	C16 H10 FLUDRANTHENE (TENT.)	3699	a	2011	17	
4	8441	UNIDENTIFIED	1827	-	2023	60	
47	8442	C18 H18 ALKYLPHENANTHRENE	2185	-	2026	0	
48	8448	UNIDENTIFIED	1439.	-	2044	7	
46	8452	UNIDENTIFIED	1489	-	2035	,	
0 6	8455	C16 H12 DIBENZOHEPTAFULVENE	3416	~	2064	16	
31	8460	UNIDENTIFIED	1403		2079	•	
35	8462	UNIDENTIFIED	1401		2085	-0	
93	8467	C21 H44 ALKANE	3442	æ	2100	16	
96	8470	C17 H16 TRIMETHYLPHENANTHRENE	1981	-	2109	o-	
in Th	8478	UNIDENTIFIED	1983	-	2132	0	
9	6481	UNIDENTIFIED	1511	-	2141	7	
57	8484	C17 H12 BENZOFLUORENE OR METHYLPYRENE	5714	•	2130	27	
98	6490	UNIDENTIFIED	1223	0	2167	-0	
60	9300	C17 H12 BENZOFLUORENE OR METHYLPYRENE	3037	Cr.	2197	13	
09	9516	UNIDENTIFIED	2926	a	2248	4	
19	8521	CIB HIB (TENT.)	2504	2	2265	=	1

	=	1	•
1 1 1 1	2291	112111	900C
1 1 1	æ		-
	3252		1723
140 C2 BCC C2	8-9	CO THE THREADY DESCRIPTION OF THE PROPERTY OF	C.C. TITULINE THE THE THE THE THE THE THE THE THE TH
•	د د		

TABLE C-8. MS OF OIL NO. 2, MIDDLE AROMATIC FRACTION

KEY

Peaks not included by CLEANUP program

3431 $C_{16} H_{14}$ Dimethylphenanthrene

8563 C₁₉ H₁₅ Isomer

If the "Identification" slot is empty, then no specific compound could be identified, although a definite peak exists.

TABLE C-9. MS OF MIDDLE AROMATIC FRACTION, OIL NO. 3

The second second

MF011 5 MAS

PEAK .	SPEC	411	110	TICRAT	HET IND	RELCON	TYPE
			! !		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1
1	9010	UNIDENTIFIE	2467	45	-367	45	
;	9016	(NITE NITE III)	812484	74	- 322	14783	1
c	9023	UNIDENTIFIED	435892	73	-269	8214	!
4	9036	UNIDENTIFIED	12017	. 6	-172	226	1
	9194	CTO HES N DECANE	1786	20	1016	56	i. i i
	9216	C12 HGA N-DOBECANT	27:30	22.	1204	35	; ; t
7	9247	C19 HDD N IT IRADE CANI	648F	43	1400	100	
8	9274	SHANATED	7079	1 E	1503	61	! ! !
0-	9283	C13 H14 TRIMETHYLNAPHTHALINE	2862	15	1538	300	
	9288	C13 HIO FLUDIGNE	9621	33	1557	101	
1.1	9290	C13 H14 TRIMETHYLNAPHTHALENE + C14 H14 DIMETHYLRIPHENYL	5011	. E	1565	1 E	t
	9291	BULYRATED COMPOUND	15164	42	1569	159	! ! !
13	4297	C15 H16 DIMETHYLBENZYLBENZINE + PHENYLALKANE	2664	. 6	1592) 1 30 1 (4	: : :
14	6299	C16 Han N HEXADECANE	8780	97	1599	P4	!
15	9301	4	2383	7	1605	30	# 1 *
16	4302	C15 H16 DINETHYLBFNZYLBFNZFNE	5886	17	1608	61	(† ()
17	9304	PART UF ARIVE PEAK	2045	. so	1615		! ! !
	4307	CIG HIB DICHENYLALKANE	0675	(t	1624	335	
19	9308		2044	7	1627	21	•
	4304	PART OF AHIVE PEAK	3334	===	1630	35	
	9316	C16 HIB DIPHENYLAI KANF	7032	1.3	1691	7.4	*
22	9318	C16 H16 (4, 5) DIMETHYL (9, 10) DIHYDROPHENANTHRENE	3486	7	1637	3.7	*
23	0.256	Cis His or Cit His	6361	•	1663	99	•
24		PI# NYLAI KANF	3738	ın ı	1667	ę.	•
23	9324	C14 HIS MMETHYL FLUDRENE	45590	32	1676	487	•
36	9326	PART OF AHIVE PEAK	12150	15	1682	126	

					-		-	1
Table	27	4327	SILANATED	19772	45	1683	211	
<u>'</u>	28	9331		6836	•	1697	7.1	•
. '	53	9334	C14 H16 1-ME1HYL-7-ISOPROPYLNAPHTHALENE	33689	36	1706	443	
	30	9336		4961	9	1712	- 29	•
	ıc	9338	PHE NYLAI KANE	2871	4	1719	546	1
	æ	9342		6137	6	1731	611	
. '	33	9345	UNIDENTIFIED	3171	4	1740	, Ç	† † †
. '	*	9347	C14 H10 PHENANTHRENE OR ANTHRACENE	56666	43	1746	1033	
. ,	 60	9349	UNIDENTIFIED	3028	3	1752	94	1
•	36	9351	S1L ANATED	1243.		1758	1 22	1
. 1	37	9354		6081	9	1767	111	! ! *
, ,	98	9357	(INIDENTIFIED	2299	5	1777	43	! ! !
. 1	65	9339	CIS H14 DIMTHYLFLUORFNE	7568	7	1783	138	
	40	9365	CIS HI4 DIMFTHYLFLURRENE	19722	12	1801	374	
,	141	9368		4432	C	1810	83	•
. 1	42	4964	ALKANF	5013	3	1812	96	
'	43	9371	CIA HIZ I -PHENYLNAPHTHALENF OR DIBENZOHEPTAFULVINE	4436	. C	1818	83	*
C-35	44	9373	UNIDEN 11 1FD	3829	i es	1824	71	(() (
'	43	9376	CIÓ HIB DIPHENYLALKANE	16873	13	1833	337	
	46	9380	(MIDENTIFIED	2584	2	1844	49	! ! !
'	47	9382	SILANATED	23044	5.	1850	440	
'		9383		12451	0-	1853	232	
'	49	9389	CIS HIZ METHYLPHENANTHRENE (IR METHYLANTHRACENE	18473	0	1870	344	
,	50	0666	(MIDEN) FIED	6211	4	1873	148	
,	31	6362	(INIDENTIFIED	3;85	-	1887	56	
'	20.5	9376	CIS HIZ METHYL'HENANTHRENE UR METHYLANTHRACENE	73921	33	1890	1320	
1	53	9398	ALKANE. (N-C19 H40)	12304	\$	1896	229	
;	!	9400	(INIDENTIFIED	2037	-	1902	38	
ı	955	9404	CIS HIP O 9 METHOXYANTHRACINE	38111	18	1914	711	•
,	96	9406	UNIDENITE II D	3631		1920	£	
,	587	9407	UNTERNITED	1967	-	1922	36	! !
	58	9408	O H I I I D	8601	: 	1925	02	! ! !
	26	9410	u II	7 P. C.	:	1631	22	

Table C-9	909	9412	UNIDENTIFIED	2437	-	1937		1
	61	9414	UNIDENTIFE	1551	. 0	1943	7.4	
	6.0	9417	(NITE NITE II D	2408	:	1 1961	65	i 1 1
. !	63	9421	(MEDEN) JETD	1194	0	1704	33	
. 1		9422	C15 H12 0 (SFF 9404)	13068	• •	1967	357	
ı	65	9475	(NIN)F NI II II IV	1059			72	1
1	!	1	INITERACTOR	507.1	. 0	!	65	1
1	67	9479		6641	Cal	1 23.6	188	: : •
1	† !	9431	(NIDENI) FIFD	1144	0	1994	27)
	69	9433	(CH O.) Z	1027	0	5000	i Light	1 1 1 :
,	0/	9405	STI ANAIT D	13637	: 4	2005	434	
1	† † †	1	(2.7.) DTMCTRY PHENANTHRY	5924	re		183	! ! ! =
1	7.5	9441	PART OF ARINE PEAK	33.70	-	2023	H / H	
ı		9444	UNIOFNIE	4219	: 		121	! !
:	İ		NITERITOR	3824	:	2035	122	·
1	75	9449	CALCH CONTRACTOR	1791	0	2047	46	†
	!		(IIII)	4603	: : (u	2050	126	1
C-3	!	9452	C12 H14 2 H4NZYLNAPHHAIFNI	4131		5036	511	: : *
	1	1	(NNIDENTIES)	2611	-	2065	65	
1		9457	C16 11(0 PYHINE OR FLUORANTHENE	4637	ru.	!	118	
1	80	9459		2000		! !	\$2	
r	1	9460	(NIDFAL)	1583	0		Q	
,	! !	9443		15636	•	2089	410	* 1 * 1
,	! !	9465	UNIDENTIFED	1577	0	2004	37	
•	1	9466	N (CT 1-C) N	2340		2002	6.1	
	85	9472	C17 HIG INIMETHYLPHENANIHRINF	3727	-	2115	5	•
•	98	9477	C17 HIG TRIMETHYLPHENANTHRINF	7423	6	2130	246	
	87	9481	SIL ANATLD	5857	: (*) 	2142	198	
	98	9483	UNIDENTIFIED	4613	-	2148	133	
	e e	9486	SH ANATE	7.901		2157	2,66	
	; ;	9488	UNIDENTIFIED	2756	-	2163	 D	
		9491	CIR HIB 1 METHYL -7-ISOPROPYLPHENANTHRENE	110011	4	2172	368	
		76.43		17426	٠	21Bh	58H	•

-								:
. .	2	8676	ALKANE	2934.	 -	2192	6	
	7	4903	UNIDENTIFIED	6476	 10	2214	184	
	6	4064	UNIDENTIFIED	1681.	0	2218	96	
1	96	9066	UNIDENTIFIED	2198.	-	2224	71	
1		9510	UNIDENTIFIED	1556.	0	2231	20	
•	86	9518	UNIDENTIFIED	4916.	2	2257	140	
}	8	9520	UNIDENTIFIED	3840	2	2263	130	!
	81	9522	UNIDENTIFIED	1786.	-	2270	9	
	101	9525	UNIDENTIFIED	2915.	-	2280	46	
l	102	9531	C20 H32 (N-BUTYL N-MEXYL TETRAHYDRONAPHTHALENE)	8834.	•	2299	£	•
	103	9533	SILANATi.)	5470.	8	2306	184	
	104	9534	C20 H32 (N-BUTYL N-HEXYL TETRAHYDRONAPHTHALENE)	12660.	_	2309	408	
!	105	9538	UNIDENTIFIED	1614	0	2322	40	
	106	6236	UNIDENTIFIED	2910.	-	2325	96	
:	107	9541	CNIDENTIFIED	2106.	-	2332	89	
1	108	9545	UNIDENTIFIED	2775	O.	2345	92	
	109	9552	UNIDENTIFIED	2808.	CN .	2368	8	
	110	9553	UNIDENTIFIED	1786.	-	2371	33	
		9539	UNIDENTIFIED	2861.	a	2390	83	
			UNIDENTIFIED	4476.	m	2394	130	
	113	9361		3473	G	2397	110	•
	114	9563	UNIDENTIFIED	1670	-	2404	8	
	115	6926	(NIDENTIFIED	1878.	-	2424	9	- 1
	116	9576	SII ANATED	7815.		2448	132	
	117	9579	(NIDENTIF JFD)	3081	en en	2458	72	
l	118	9582	UNIDENTIFIED	2063	a	2468	9	
	119	956		2688	n	2516	32	•
	120	9604	UNIDENTIFIED	2501	т	2545	86	
	121	9096		2050.	٨	2532	8	*
	122	9611	UNIDENTIFIED	1078.	-	2570	ĩ.	. ,
	123	9617	SII ANATED	4287	•	2592	E01	,
	124	9665	SII ANATI:1)	2740	^	2743	23	

TABLE C-9. MS OF MIDDLE AROMATIC FRACTION, OIL NO. 3

Key

Peaks not included by CLEANUP program

9253 $C_{12}H_{12}$ Dimethylnaphthalene

9262 $C_{13}H_{12}$ (2)Methylbiphenyl

If the "identification" slot is empty, then no specific compound could be identified from the data.

MF0101 MAS

TABLE C-10. MS OF 01L NO. 1, HEAVY AROMATIC FRACTION

*	SPEC	Q1	T1C	AREA	TICRAT RELCON		RETIND
-	27282	C12 H12 DIMETHYL NAPHTHALENE	5532	15570.	19	0	0
æ	27303	C13 H12 METHYL BIPHENYL	2024	7056	0-	0	0
М	27310	C15 H24 0 2, 6-DI-T-BUTYL-4-METHYL PHENOL	11550	39837	. 	0	0
4	1	C13 H14	2197	7578	9	0	0
B	1 _ 1	C13 H14 TRIMETHYLNAPHTHALENE	5250.	16939	19	0	0
9	27333	C13 HIG FLUDRENE OR PHENALENE + C13 H14 TRIMETHYLNAPHITHALENE	6423	26106	S.	0	0
7	!		1400	5932	9	0	
00	27369	C14 H16 C4-ALKYLNAPHTHALENE	2854.	8041.	01	0	0
0	27370	C14 H12 D METHOXYFLUDRENE OR C15 H16 ISOMER	1823	7677	9	0	0
10	27372	C14 H12 1-METHYLFLUORENE	15551	60290	41	0	0
=		C14 H16 C4-ALKYLNAPHTHALENE + SILANATED	8348	41672	23	0	0
5	27386	27386 : C15 H16 ALKYL DIBENZENE	3252	17074	14	0	0
13	96	C14 HIO ANTHRACENE OR PHENANTHRENE	2362	11539.	12	0	0
7	27413	27413 C15 H14 DIMETHYLFLUDRENE	9843	48471	8	0	0
13	27423		1687.	7063	6	0	0
16	27434	C15 H18 C5-ALKYLNAPHTHALENE	1123	5368	ın	0	0
17	27440	STLANATED	4979	14964	8	0	0
18	27444	C19 H12 METHYLPHENANTHRENE OR METHYLANTHRACENE	6926	28084	8	0	0
10	27452	C13	5919	23754	ន	0	0
8	27462	UNIDENTIF	2515	8923	2	0	0
2		C16 H14 (3.6-)DIMETHYLPHENANTHRENE	9364.	30841	31	0	٥
22	27494	SILANATED	6372.	16368	%	٥	0
83	27510	27510 UNIDENTIFIED	1200	5700	en	0	0
7	27521	C17 H16 C3-ALKYLPHENANTHRENE OR ANTHRACENE	4884	21406	61	0	0
8	27540	CIS HIS C4-ALKYLPHENANTHRENE OR ANTHRACENE	5316.	19147.	17	0	0
2	27544	27544 SILANATED	6280.	17368	₹.	0	0
27	27360	27560 : C19 H30 (SUCH AS 2-N-BUTVL-5-N-HEXYL INDAN)	1106.	3746.	.	٥	0
88	27590	SILANATED	5077.	18113	8	0	9

1able C-10	8 8 8	27673	29 27632 SILANATED 4714, 14574, 22 0 0 0 30 27673 SILANATED 2719, 11223, 18 0 0 31 2771 SILANATED	2719.	4714. 14574. 22 0 0 0 2719. 11223. 18 0 0	(4574. 22 0	0 0 0	
						•	•	

PF01BS MAS

TABLE C-11. HS OF OIL FOR RUN NO. 2 (B-1), HEAVY ANOMATIC FRACTION

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	! _	C13 H12 DIPHENYLHETHANE	1738.	5634.	83	0	-
a	30276	C12 HB ACENAPHTHYLENE	8842	29339.	7.4	0	
	30300	C15 H24 G 2, 6-DI-T-BUTYL-4-METHYL PHENDL (ICNOL)	75536.	161131.	8	o	
•	ا بر ا	ALKYLBENZENE /	3369.	7243.	12	0	
s o	30303	30303 C14 H14 DIMETHYLBIPHENYL	7833.	31648.	7	0	
•	30317	C13 H14 C3-ALKYLNAPHTHALENE	3634	16588.	2	0	į
	30322	: C13 H10 FLUCRENE OR PHENALENE	22416.	84873	4,9	0	İ
•	! _	: C13 H10 METHYLACENAPHTHYLENE + UNIDENTIFIED	3262.	10996.	7.	0	į
•	30331	C14 H14 DIMETHYLBIPHENYL	1467.	4769.	9	0	
2	30333	30333 : ALKYLBENZENE	2549.	10462	01	0	
=	30338	C15, H16 (1, 2-DIMETHYL-4-BENZYLBENZENE)	8116	29942.	2	0	
12	30336	30336 UNIDENTIFIED	4401	15883	91	0	
13	30340	30340 : C14 H14 ISONER	2297.	10909.	•	0	
=	30347	9 H16 1.	8008	26614.	\$	0	
2	30391	UNIDENTIFIED	1193	5327.	0	0	
41	30339	C15 H12 D METHDXYANTHRACENE	2692	7897.		0	
17	30363	C15 H16 ALXYL DIBENZENE	19671.	77020.	8	0	
=	30366	30366 : C14 H12 1-METHYLFLUDRENE + C16 H18 (TETRAMETHYLBIPHENYL)	55127.	226798.	Ş	0	
6	30368		4053.	18487	\$	0	
8	30373		3447	15789.	2	0	
2	30377	30377 : CIS HIG ALKYL DIBENZENE + CI4 HIG C4-ALKYLNAPHTHALENE	19219	67561.	8	0	
8	30381	C16 H18 ALKYL DIBENZENE	4250.	17260.	*1	0	
R	30387	C19 H16 ALXYL DIBENZENE	2865.	10481.	80	0	
*	30384	C14 H10 ANTHRACENE OR PHENANTHRENE	28133.	99729	31	0	
2	30393	30393 ALKYLBENZENE + UNIDENTIFIED (224, 209)	4914.	17140.	7	0	
\$	30397	30397 : UNIDENTIFIED	3335	15748.	13	0	
27	30348	30398 CI4 HIO D ISOMER (TENT.)	9340	19974	5	0	
						1	!

(ab) 6 C-1 2	30410	CID HI4 ALKENYL DIBENZENE		101/0			
8	30413	C16 H16 OR C15 H12 D ISOMER	4741.	16802	7	0	0
9	30417	UNIDENTIFIED	1060	4174.	C	0	0
g	30419	C19 H14 ALKENYL DIBENZENE	13895	55279.	52	0	0
8	30421	ALKYLBENZENE + C15 H18 C5-ALKYLNAPHTHALENE	5243	24983.	12	0	0
8	30427	C19 HIB OR C14 HI4 O ISOMER + C16 HIB ALKYL DIBENZENE	6586.	21880	13	0	•
6	30431	C15 H12 METHYLPHENANTHRENE OR METHYLANTHRACENE	5014	22085	8	0	0
8	30436	ALKYLBENZE	1778.	7255	2	0	0
37	30439	C15 H12 METHYLPHENANTHRENE OR METHYLANTHRACENE	33762	142801.	7	0	0
8	30447	: C16 H16 OR C15 H12 D 180MER	17519.	80244	22	0	0
ጵ	30491	UNIDENTIFIED	2515.	10159	-	0	0
\$	30455	C16 H12 PHENYLNAPHTHALENE OR OTHER ISOMER	3906	15476	7	0	0
Ŧ	30457	::C14 H12 S + (1ENT.)	2480	8625	•	0	0
Ç.	30459	C17 H14 2-BENZYLNAPHTHALENE + UNIDENTIFIED	1885	6431	3	0	0
£	30461	CIS HIZ O METHOXYANTHRACENE	4919	14170	7	0	•
7	30468	UNIDENTIFIED	2356.	9315	-	0	0
\$	30478	C16 H14 (2,3-	26076	124566.	2	C	0
9	30480	UNIDENTIFIED	2162	9764.	6	0	0
47	30483	C16 H14 C2-ALKYLPHENANTHRENE OR ANTHRACENE	7213	28625	8	0	0
9	30485	SILANATED	1481.	5877.	C	0	0
4	30488	: C19 H20 D2 ISOMER (TENT.)	2055	9518.	6	0	0
8	30492	UNIDENTIFIED	1201	6244.		0	٥
ě	30494	C17 H14 2-BENIYLNAPHTHALENE OR OTHER ISOMER	4964	14071	7	0	0
S	30495	PART OF PEAK ABOVE	1360	7070	8	0	٥
S	30498	:: C15 H24 D2 (SUCH AS 2,6-DI-T-BUTYL-4-METHOXY PHENDL)	4643	15265.	^	0	٥
3	30300	C16 H10 PYRENE OR FLUORANTHENE	2251	11138	е	0	0
8	30908	UNIDENTIFIED	2447.	11563.	4	0	0
8	30512	CIB HI4 TERPHENYL	.7604	22904	•	0	٥
97	30914	C17 H16 C3-ALKYLPHENANTHRENE OR ANTHRACENE	11941.	45872.	51	0	0
8	30519	C17 H16 C3-ALKYLPHENANTHRENE OR ANTHRACENE	7235	33857.	9	0	٥
•	30922	UNIDENTIFIED	2242	9163	n	0	٥
3		30531 : UNIDENTIFIED	1026.	5204	-	0	0
7	60800						•

3	30837		9136	20401	~	 •	0
3	63 30542	UNIDENTIFIED	3337.	13047.	•	0	0
3	30334	64 : 30959 : CIB HIB C4-ALKYLPHENANTHRENE DR ANTHRACENE	6447.	24886.	2	0	0
2	30364	69 : 30564 : UNIDENTIFIED	1303.	5509	C	0	0
2	66 30572	66 : 30572 : C19 H30 (SUCH AS 2-N-BUTYL-5-N-HEXYL INDAN)	5784.	26969.	•	0	0
67 : 3	30377	30577 : BILANATED	2761.	6842	-	0	•
3	£8 30383	30983 : C18 H18 C4-ALKYLPHENANTHRENE OR ANTHRACENE	1773.	19261	6	0	•
\$	30398	69 30998 UNIDENTIFIED	1423.	5975.	6	0	0
02	30600	70 : 30600 : UNIDENTIFIED	1776.	7742	6	0	0
7.			1401	6499	6	0	0
72	72 30644		1207.	9338	6	0	0
73	73 30658	73 : 30658 : BILANATED	1462.	652B.	4	0	٥
*	30705	74 : 30705 : UNIDENTIFIED	2732.	12997.	1.5	0	0

TABLE C-11. MS OF OIL FOG RUN NO. 2 (B-1), HEAVY AROMATIC FRACTION

Key

2a ** 30287 $C_{13}H_{12}$ methylbiphenyl

HFDT01 MAS

TABLE C-12. MS OF OIL FOG RUN NO. 11 (8-1[HT]), HEAVY AROMATIC FRACTION

PK	בר בר בר בר בר בר בר בר בר בר בר בר בר ב			1			
-	29300	29300 :C12 MB ACENAPHTHYLENE	3789	16946	34	0	0
~	29320	C13 H24 O 2, 6-D1-T-BUTYL-4-METHYL PHENDL	5217	11091	7	0	0
6	29322	C14 H14 1.2-DIPHENYLETHANE	2446	6698	8	0	0
•	29323	C14 H14 DIMETHYL BIPHENYL	2637	10830	27	0	0
6	29340	C13 H14 TRIMETHYLNAPHTHALENE	3238	15620	01	0	0
٥	29341	C13 H10 FLUDRENE OR PHENALENE	16699	67516	72	0	0
7	29347	C13 H14 C3-ALKYLNAPHTHALENE + C14 H12 METHYLFLUDRENE	1200	4731	7	0	0
60	29353	ALXYLBENZENE	1493	5059	9	0	0
•	29354	C19 H16 ALKYL DIBENZENE	3327.	10651	1	0	0
01	29355	C13 H10 FLUDRENE OR METHYL ACENAPHTHYLENE	6151.	35473	38	0	0
			1599.	8252	15	0	0
	29384	C14 H12 METHYLFLUORENE OR 1.1-DIPHENYLETHENE	29910	133771.	29	0	0
Č.	29392	C15 H14 DIMETHYL	1949.	7843	9	0	0
1	29396	C14 H12 METHYLFLUORENE + C13 H16 ALKYL DIBENZENE	8733.	35141.	83	0	٥
13			1188	4010	4	0	٥
91	'		5250.	17599.	=	0	٥
17	29408		69043	276945.	7	0	0
62	29426	C15 H14 DIMETHYLFLUDRENE OR ALKENYL DIBENZENE	12676.	57320	56	0	٥
61	29432	C16 H16 OR C15 H12 O ISOMERR	2608	10347	m	0	٥
R	29439	C19 H14 DIMETHYLFLUORENE OR ALKENYL DIBENZENE	7777	30394	21	0	0
2	29447	C19 H14 ISOMER + C16 H18 ISOMER	1913.	9395.	•	0	٥
22	•	C19 H12 METHYLPHENANTHRENE OR METHYLANTHRACENE	7776	37277.	13	0	٥
23	29495	29499 : C19 H14 ISOMER + UNIDENTIFIED (219, 234)	2471.	9768.	4	0	٥
*	29456	PART OF	4398.	21676.	•	0	٥
53	29438	29458 : CIS HIZ METHYLPHENANTHRENE OR METHYLANTHRACENE	38340	172630.	6	0	0
*	29466	:	5524	23570.	*	O	٥
27	29471	29471 : C14 M22 O2 190MER (TENT.)	1454.	6730.	•	0	٥
5	29475	THE PROPERTY PROPERTY OF THE P					0

*	28,500	gentiej structuranten martina martina martina martina martina martina martina martina martina martina martina m 29480 : UNIDENTIFIED	3366	1938		٥	ŀ
8	20481	- TATOLINI INTERNAL DESCRIPTION OF THE PROPERTY OF THE PROPERT	1917	7.64		c	C
3			-:		,	· !.	
ē	27488	CANDENTIFIED	1709.	7683.	•	0	0
g	29498	29498 : C16 H14 DIMETHYLPHENANTHRENE OR DIMETHYLANTHRACENE	13669	74706	12	o	0
ន	24501	UNIDENTIFIED	2360.	9916.	6	0	0
,	29503	29503 : C16 H14 ETHYL OR DIMETHYLPHENANTHRENE	24887.	93437.	8	0	0
£	29504	CIS HIO PYRENE OR	6979.	24412	==	0	0
8	29512	29512 : C16 H14 DIMETHYLPHENANTHRENE + C16 H10 PYRENE OR FLUDRANTHENE	6510.	29223.	•	0	0
37	29315	WIDENTIFIED	4186.	22802.	^	0	0
8	29518	NAO18 CANDENTIFED	2074.	8205	е.	0	0
ጽ	29519	29919 : CIA HIO PYRENE OR FLUORANTHENE	8996.	41044	17	0	0
Ş	29525	29525 : C14 H22 02 ISONER	1116.	5178	a	0	0
7	29533	29533 CIB HI4 TERPHENYL	2192.	9156	₹	0	0
Ğ	29941	29941 C17 HIS C3-ALKYLPHENANTHRENE OR ANTHRACENE	1716.	7230	6	0	0
€	29550	29550 : C17 H16 C3-ALKYLPHENANTHRENE OR ANTHRACENE	2850	1608B	₹	0	0
\$	29552	29552 : C17 H12 METHYLPYRENE OR BENZIAJANTHRACENE	5938.	28079.	•	0	0
\$	29556	29556 : SILANATED	1658.	8291	a	0	0
\$	29558	29558 : C17 H12 METHYLPYRENE OR BENZIAJANTHRACENE	3958.	22666.	7	0	0
41	29560	29560 : C17 H16 C3-ALKYLPHENANTHRENE OR ANTHRACENE	1617.	9230	9	0	0
8	29365	UNIDENTIFIED	1769.	8425.	Ю	0	0
0	29367	C17 H12 METHYLPYRENE OR BENZCAJANTHRACENE	2729.	14122.	1 0	0	0
စ္တ	29583	29583 : UNIDENTIFIED	1283	6294	n.	0	0
16	29602	29602 : SILANATED	1944.	6628.	n	0	0
20	29624	UNIDENTIFIED	1838.	10625	•	0	0
S	29644	29644 : SILANATED	1072	4322	ю	٥	0
46	29684	SILANATED	1075.	3933.	•	0	0
							1

16N6 C-12 --C-46

MF0201, MAS

TABLE C-13. MS OF OIL NO. 2, HEAVY AROMATIC FRACTION

₽ *	SPEC	01	710	AREA	TICRAT B	RELCON R	RETIND
1	! _ !	C H2 CLZ DICHLOROMETHANE	642295	3948723	46	0	0
Ċ.	25030	UNIDENTIFIED	87657	504584	13		0
6	25031	UNIDENTIFIED	398383	2393974	5.0	0	
₹	25033	UNIDENTIFIED	98536	608782	13	0	0
6) (UNIDENTIFIED	2171949	5498516	82	0	0
•	!	UNIDENTIFIED	4419300	11187918	92	0	0
^		UNIDENTIFIED	1255575	3618613	69	0	0
C S)	UNIDENTIFIED	1337	3061	0	0	0
0	25332	C14 H30 N-TETRADECANE	7244	19333	£	0	0
10	25366	SILANATED	2899	14163	17	0	0
	25388	C17 H16 C3-ALKYLPHENANTHRENE OR ANTHRACENE OR C15 H24 O ISOMER	5773	16832	28	0	0
27	25398	C16 H14 48, 5, 98. 10-TETRAHYDROINDENG(2, 1-A)INDENE #1	21826	70161	8	0	0
13	('	C17 H16 C3-ALKYLPHENANTHRENE OR ANTHRACENE OR #2	4788.	15764	21	0	0
+1		SILANATED + C18 H18 C4-ALKYLPHENANTHRENE OR ANTHRACENE	12533	30998	39	0	0
13	25429	C17 H16 C3-ALKYLPHENANTHRENE OR ANTHRACENE OR #2	2002	8429	æ	0	0
16	25434	C17 H16 C3-ALKYLPHENANTHRENE OR ANTHRACENE OR *3	13431	60459	33	0	0
17	25439	C17 H16 3-BENZYL-1, 2-DIHYDRONAPHTHALENE #4	4409	9060	13	0	0
91	25447	C16 H16 DIMETHYL-9, 10-DIHYDROPHENANTHRENE OR C15 H12 O METHOXYANTHRACENE	3257.	13549.	13	0	0
19	!	:C17 H14 2-BENZYLNAPHTHALENE OR +5	3939	13526.	14	0	0
S	25462	UNIDENTIFI	1393	2860	•	0	0
2	25464	C16 H14 C2-ALKYLPHENANTHRENE OR ANTHRACENE OR OTHER ISOMER	2282.	9883		0	0
8		ALKYLBENZENE	1692	6323	•	0	0
£	25468	CIB HIB C4-ALKYLPHENANTHRENE OR ANTHRACENE	, e038.	23157.	19	0	0
\$	25471	UNIDENTIFIED	2386.	11013	•	0	٥
62	25475	SILANATED	10311.	28139.	S	0	0
*	1	CNIDENTIFIED	1170	5922	n	0	0
27	. :	C16 H12 1-PHENYLNAPHTHALENE OR 1, 4-DIHYDRO-1, 4-ETHENDANTHRACENE +6	3722	16972	11	0	0
8	25492	. C15 H20 G2 ISOMER (MW232) (TENT.)	2140	9758.	e.	0	0

	29494	29 25494 C19 HI4 9-PHENYLFLUGBENE OR METHYLTRIPHENYLENE OR METHYLBENZANTHRACOME	5051				1	•	
8	23497	29497 : C14 M22 D2 (SUCH AS 2: 6-D1-7-BUTYL-4-HYDROXY PHENCE)	7.77		2201	:	•		
31	29307	25507 : UNIDENTIFIED	1070					. . .	
g	25910	25510 : UNIDENTIFIED	BCAL	. ; .					- 1
33	25513	29513 : UNIDENTIFIED	000			, ,	•		- 1
36	25516	2351.4 C.17 H.2 METHYL PYRENE OR 11H-BENZOLATE UNDERK	7043				•		1
			9		2	4	2		- }
6	25523	29523 :UNIDENTIFIED	31%		13080.	•	٥		- 1
36	25524	25524 : SILANATED	3966		16933.	=	٥.		;
37	25933	25533 : C17 H12 METHYLPYRENE OR 11H-BENZDIAJFLUDRENE	2428.		13116.		0		i
80	25548	23548 CIB HIS CA-ALKYLPHENANTHRENE OR ANTHRACENE	9137.		37723	10	0		ì
39	25554 UNI	29554 : UNIDENTIFIED	4366.		17145.	8	0		}
2	25555	23555 CIB H14 TERPHENYL OR STYRYLNAPHTHALENE	5921.		23136.	11	0		<u> </u>
7	25561	23541 C18 H14 TERPHENYL OR STYRYLNAPHTHALENE	13126.		54438	21	0		
Ç	!		1964.		8333	6	0		.
Ĉ.	25569	23569 : SILANATED	6154.	! ! ! ! ! ! 	18458	11	0		
\$	ļ	23573 : C18 H18 C4-ALKYLPHENANTHRENE OR ANTHRACENE	3494		21280	=	0		
\$		25579 : C20 H32 OR C19 H28 O ISOMER	2358] 	11941.	6	0		i
4	25589	25589 : C18 H12 BENICAJANTHRACENE, BENIDICJPHENANTHRENE, CHRYSENE, OR TRIPHENYLENE	4132.		17719	7	0		
47	1	25599 : UNIDENTIFIED	1462.		6992	2	0		1
9	25611	23611 : SILANATED	6753.		20679.	12	0		i
\$	25622	25622 C19 H14 METHYLBENZIAJANTHRACENE	10038.		45819	19	0		i
င္တ	ŀ	25650 : SILANATED	3486.		13283	œ	0		
91	;	25687 :SILANATED	1378.		6194	S	0		í

Table C-13

- *2 CH₂ CH
- *3 Molecule with a $CH_3-Ph-CH_2-$ or Ph-CH- moiety or $C_{15}H_{24}O$ with a Ph-C- moiety O

*4 CH₂ CH₂

*6 000

HF02B1 MAS

TABLE C-14. HS OF OIL FOG RUN NO. 4 (8-2), HEAVY ARCHAITE FRACTION

ă.	SPEC		2		-		
	! ~	C12 HB ACEN	1518.	6319.	7	0	0
n	26333	C13 H10 FLUDRENE OR PHENALENE	4700	19178.	S	0	0
	26347	C13 H10 FLUDRENE OR PHENALENE	1891	9283.	12	0	0
;	26375		9232.	46607.	7	0	0
en l	26385	SILANATED	3515	10230	16	0	0
•	26387	C14 H12 METHYLFLEORENE	1055	3070	E.	0	0
7	26397	C14 H12 METHYLELUDRENE OR 1,1-DIPHENYLETHENE + C16 H18 ALKYLDIBENZENE	1498.	6373	•	0	0
0	56399	C14 H10 PHENANTHRENE OR ANTHRACENE	7300.	30506.	33	0	0
0	26409		3328.	16518	14	0	0
0	' -	H	7751	34356.	17	0	0
=	! _	: C16 H14 *1	9524	21132	13	0	0
3	26444	SILANATED	5719	14149.	1.4	0	0
£1	26447	C19 H12 METHYLPHENANTHRENE OR METHYLANTHRACENE	16441.	74220.	33	0	0
*	26457	C15 H12 D METHDXYANTHRACENE + C17 H16 TRIMETHYLPHENANTHRENE	9179.	39879	19	0	0
£3	26464	C15 H12 D	16049	96600.	¥.	0	0
16	t	CIS HIZ D METHOX	4978.	19915.	=	0	٥
17	26478	UNIDENTIFIED (219, 248, 233)	1042.	3762	Ci.	0	٥
18	26486	C15 H12 0 ISOMER	2318	10766	6	0	0
19		C16 H14 C	15357	71701	53	0	٥
S.		UNIDENTIFIED	7836.	29991	12	٥	0
2	26493	: C16 H10 PYRENE OR FLUORANTHENE + UNIDENTIFIED	12764.	48852	19	0	0
25	26494	SILANATED	2136	8415.	•	0	٥
 چ	26499	CI4 H22 O2 ISOMER + SILANATED	8674.	44836.	13	٥	0
24	26507	UNIDENTIFIED	2220.	7085	•	0	0
53	26508	SILANATED	2958	10449.	•	0	٥
\$	26511	C16 H10 PYRENE OR FLUORANTHENE	4997	20983	•	0	0
	26912	C16 H12 PHENYLNAPHTHALENE OR #2	3486.	16336	•	0	0
 K					1		

8	26526	C15 H12 N	9019	36918	£1	0	0
	26532	C12 H10 04 ISOMER (TENT) + C17 H16 C3-ALXYLPHENANTHRENE DR ANTHRACENE	12214	48930	18		0
3	26535	UNIDENTIFIED	1179	5231	-	0	0
85	26936	C17 H12 METHYL PYRENE OR2, 3-BENZOFLUGRENE	3861	18226	•	0	0
33	26542	CIT HIZ METHYLPYRENE OR 2, 3-BEWIOFLUGRENE	6142	25355	07	0	0
5	26546	UNIDENTIFIED	1851	9271	9	0	0
£	26547	UNIDENTIFIED	1861	8619	6	0	0
8	26548	SILAMATED	2492	7126	6	0	0
37	26549	C17 H14 2-BENZYLNAPHTHALENE OR #3 + C18 H18 C4-ALKYLPHENANTHRENE	9192.	23317	**	0	0
8	26333	C17 H14 ISOMER	2589	11924	6	0	0
ጵ	26957	C17 H12 METHYLPYRENE OR 2, 3-BENZOFLUGRENE + UNIDENTIFIED (232, 217)	10318	51710.	41	0	0
Ç	26569	UNIDENTIFIED	2398	8896	+	0	0
5	26574	C18 H18 C4-ALKYLPHENANTHRENE DR ANTHRACENE	8682	31173.	13	0	0
7	26576	SILANATED	3220	10829	ın	0	0
£	26587	26587 C18 H14 TERPHENYL OR STYRYLNAPHTHALENE	5835	23691	0	0	0
7	26594	SILANATED	2378.	11554.	n	0	0
Ĉ.	26599	26599 C18 H18 C4-ALKYLPHENANTHRENE OR ANTHRACENE	3954	17925	•	0	0
\$	26602	26602 CIB H14 TERPHENYL	2201	14442	n	0	0
47	26604	26604 : C20 H32 OR C19 H28 D ISOMER	1297	8507	a	0	0
8	26623	26623 : UNIDENTIFIED	1143	6283.	æ	0	0
6	26628	24628 : GILANATED	3247	13344	•	0	0
90	26636	26636 SILANATED	2153	9579.	•	0	0
5	26673	26673 : 91LANATED	2495.	12413	•	0	٥
25	26714	26714 SILANATED	2471	12592.	13	O	0

TABLE C-14. MS OF OIL FOG RUN NO. 4 (B-2), HEAVY AROMATIC FRACTION

Key

MFDT02 NAS

TABLE C-15. MS OF DIL FUG RUN NO. 11 (8-1[HT]), HEAVIEST AROMATIC FRACTION

5164 12749 3203 10240 4988 13627 3176 10154 7023 25647 1593 6253 1911 9122	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 0 0 0 0 0 0 0
	8 8 8 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0000000	0 0 0 0 0 0 0
	6 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	00000	0 0 0 0 0 0 0
	20 10 10 11 12 12 7	00000	0 0 0 0 0
	14 1 10 17	0 0 0 0	0,0,0
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 0 0	0,0,0
	Cu Cu N	0 0	, 0 ; 0
	25	0 0	
		· · · · · ·	>
		>	0
:	מן.	0	0
! ! !	12	0	0
	ED.	0	0
	13	0	0
;	•	0	0
	an .	0	c
	7	C	٥
	4	O	0
!	0	0	0
		7461 7461 11998 9395 9222 9202 9202 16070 16033 16033	6797 7461 11998 9395 14177 9262 9202 9202 16033

TABLE C-16. MS OF OIL NO. 2. NITROGEN BASES FRACTION

MFO2NO MAS

A *	SPEC		QI	110	AREA	TICRAT RELCON RETIND	ELCON R	ETIND
-	4307		ALKANE	730.	2373	17	0	0
æ	9325		(SILANATED ?)	1993	5178	52	0	0
n	9332		TYPE A	653.	2130	16	0	0
•	6236		UNIDENTIFIED	52755	127548	108	0	0
n	9347	9347 C14 H17 N	17PE 8	981.	2529	13	0	0
•	9351		ALKANE	587	2882	7	0	0
^	9353		DIETHYLPHTHALATE	856	4202	•	0	0
c	9358		TYPE B	9541.	17391	88	0	0
0	9326	9356 C14 H17 N		7238	26295.	47	0	6
. 01	9328	9358 C13 H17 N	PENTAMETHYLINDOLE	1459.	3026	13	0	0
Ξ	9368	:	TYPE B	7214.	21571.	41	0	0
21	4426	9374 C14 H17 N	TYPE A	6736.	20707	42	0	C
13	9379	9379 : C14 H17 N	TYPE 8	4979	14463	8	0	0
	9384		SILANATED	1407	4214	9	0	0
		9386 C14 H17 N	TYPE B	6354	18385	15	0	0
9	4387		ALKANE	4739	13824	10	0	0
	4384	9389 C14 H17 N	TYPE A	55334	156054	72	0	0
•	9405	9405 CIS HIP N	TVPE A	47307	132978	28	0	5
5	9413	9413 C15 H19 N	TYPE B	33106	76946	67	0	0
	9417		ALMANE	3408	8337	4	0	0
		C16 H21 N	TYPE 88	1213	5213		0	0
	9422		UNIDENTIFIED	2150	9240	60	0	0
			TYPE B	2793	10132	16		0
٠.	٠ :		UNIDENTIFIED	916	4027	8	0	0
25	9431		UNIDENTIFIED	2391	7117	13	ن	0
56	9436	C15 H15 N	(DIMETHYL 9, 10-DIHYDROACRIDINE)	9621	26576	1	ر د د	0
				•				

9638		SILAMATED	2201	••	7056	=	•
£	9443 C14 HIB 04	DI-N-PROPYLPHTHALATE	344		2286	•	
9450		N. K. A. E. C.	498C		11927	82	
434	9454 C15 H13 N	METHYLPHENYLINDOLE OR DIMETHYLBENZOGUINDLINE	4010		12668	8	
439	9459 CIS HIS N	METHYLPHENYLINDOLE OR DIMETHYLBENZOGUINOLINE	8349		30781	æ	
1463	9463 : C16 N22 D4	DI-N-BUTYLPHTHALATE	17909		93570	43	
9467	C15 HI3 N	METHYLPHENYLINDOLE OR DIMETHYLBENZOQUINDLINE	3269		11802	•	0
1876	•	ALKANE	2007		3040	*	0
9487	1	UNIDENTIFIED	4629		11624	27	0
9468		BILANATED	2296.		6057	17	0
200	9900 C16 H15 N	OR C19 H11 N O	6985		23024	42	٥
9912		ALKANE	1035		3411	0	0
9534		SILAMATED & UNIDENTIFIED	7744.		33116.	8	0
9368		BILAMATED	792		3084	=	0
4964		ALKANE OF BUTYRATE ESTER	601		2435.	2	0
9577		SILAMATED	843.		3415.	*	٥
9589		CNIDENTIFIED	2689	,	9053	8	
9631		PHTHALATE ESTER	341.		2384	97	٥
6896		SILANATED	260.		2479	13	

TABLE C-16. MS OF OIL NO. 2, NITROGEN BASES FRACTION

		Key
C ₁₃ H ₁₅ N	Type A	(184,185,157,156) -loss of H probably tetramethylquinoline
н	Туре В	(185,170,186) -loss of CH_3 probably C_5 -alkylquinoline with at least one ethyl group
C14H17N	Type A	(198,199,171,200,172) -loss of H probably pentamethylquinoline
U	Туре В	(184,199,200) -loss of CH $_2$ probably C $_5$ -alkylquinoline with at least one ethyl group
C ₁₅ H ₁₉ N	Туре А	(212,213,185,198,214) -loss of H probably hexamethylquinoline
	Type B	(198,185,213,212,199) -loss of CH_3 probably C_6 -alkylquinoline with at least one ethyl group
C ₁₆ H ₂₁ N	Type B	(212,227,226) -loss of CH_3 probably C_7 -alkylquinoline with at least one ethyl group
C ₁₅ H ₁₃ N		(207,208,206,165) Methylphenylindole or dimethylbenzoquinoline
C ₁₆ H ₁₅ N		(221,222,220,178,206) Dimethylphenylindole or trimethylbenzoquinoline or C ₁₅ H ₁₁ NO as diphenyloxazole or phenylquinoline oxide

TABLE C-17. MS OF OIL FOG RUN NO. 9(A-2), NITROGEN BASES FRACTION

MF02AN, MAS

P.X.	SPEC		01	710	AREA	TICRAT !	RELCON RETIND	ETIND
1	10181	0 8H 90	CYCLOMEX-2-ENONE	13524	68725	20	0	0
8	10191	10191 : C6 HIO D	CYCLOHEX-2-ENOL	1057	4966	9	0	0
С	10200	(C10 H1B	4-T-BUTYLCYCLOHEXENE OR OTHER CYCLOHEXENE DERIVATIVE)	13607	49823	64	0	0
•	10246		UNIDENTIFIED	821	4131	•	0	0
5	10247	C10 H9 N	METHYL GUINDL INE	1461.	7146	13	0	0
9	10264	10264 C11 H11 N	DIMETHYLQUINOLINE	2105	6713	18	0	0
7	_	C11 H11 N	DIMETHYLOUINDLINE	3566	24612	31	0	0
8	10288		UNIDENTIFIED	946	4960	•	0	0
0	10305		UNIDENTIFIED	474	2340	0	0	0
01	10309	C12 H13 N	TRIMETHYLOUINGLINE	6993	35151	31	0	0
=	10313	10313 : C12 H13 N	TRIMETHYLQUINOLINE	4123	20724	22	0	2
12	10314		UNIDENTIFIED	1726	8704	=	0	0
13	10317		ALKANE	493	2277	9	0	0
1.4	10324	10324 C13 HIS N	TYPE A	1093	3631	80		0
15	10327		(SILANATED ?)	2674	2806	17	0	0
9	10329		UNIDENTIFIED	941	1817	•	0	0
17	10332	10332 C11 H13 N	TRIMETHYLINDOLE	847	1839	•	0	0
	10333		TYPE A	6673	12886	16	0	0
19	10338		UNIDENTIFIED	474	1007	n	0	0
20	10340	10340 : C13 H15 N	TYPE A	2326	4829	12	0	0
7	10344		UNIDENTIFIED	50872	105625	77	0	0
22	10352	C13 H15 N	TYPE B	2763	7223	16	0	0
53	10353	C14 H17 N	TYPE 3	1777	6293	11	0	0
7	10357		ALKANE OR BUTYRATE ESTER	1189	4210	•	0	0
83	10359	1	UNIDENTIFIED	629	2227	6	0	0
58	19201		ALKANE (TENTATIVE)	789	2774	Q	0	0

					1	1	-	
	10369		PART OF PEAK BELCH	5817	21970	17	0	0
8	10366	10366 C13 HIS N	√PE ∧	1897	29517	2		0
×	10368	C14 H17 N	¥ ∃dAl	2474	10989	60	0	0
8	10369		UNIDENTIFIED	3000	13531	10	0	0
6	10377	C14 H17 N	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	3208	12547	18	0	0
g	10382	C13 H19 N	V BAAL	13495	37681	44	0	0
8	10384	 	ALKANE	756.	3174	*	0	0
8	10391	. T.		7966	34139	31	0	0
8	10399		SILAWATED	2639	12921	101	0	0
8	10397	C14 H17 N		9940	24853	23	0	0
9	10407	C14 H17 N	TYPE B & SILANATED	33534.	129122	04	•	0
8	10401	C14 H17 N	AAL	60373	182797.	69	0	0
8	10425	C19 HI9 N		10481	37769	1	0	•
\$	10433	• • • •		48473	1 50006	3	0	0
7	10436		CNIDENTIFIED	463	1433	=	0	0
3	10445	C15 H14 N	344	31156	83830	8	0	0
\$	10493		ALXANE & C16 K21 N TYPE B	7216.	26127	83	c	0
7	10457		UNIDENTIFIED	6194	22426.	g	0	0
\$	10499		ALKANE	2496.	10748	13	0	0
3	10467	C16 H21 N		2570.	10633		0	٥
43	10469		CALDENTIFIED	3729	14786.	61	0	0
3	10476	C19 H19 N	(DIMETHYL 9, 10-DIMYDROACRIDINE)	10491	33712	46	0	0
\$	10484		BILAWATED	8031	32311	33	0	0
2	10490		UNIDENTIFIED	342	2690	е	0	0
5	10900		ALYANE	1924	14630	16	0	0
3	10803	C19 H13 K	METHYLPHENYLINDOLE OR DIMETHYLBENZOQUINOLINE	9033	34040	7	0	0
2	10904	C18 H13 R	PETHYLPHENYLINDOLE OR DINETHYLBENZOQUINOLINE	19060	40704	35	0	0
3	10918	C16 HZ2 04	DI-N-BUTYLPHTHALATE	14975	4444	37	0	0
*	10844		UNIDENTIFIED	414	2084	•	0	0
3	10846		ALXANE	3066	4942 .	\$1	0	0
37	10896		BILAWATED	6473.	17395.	37	0	0
8	10568		OR C19 H11 N O	4307	34379.	31	0	0
\$	10381		BILAMATED	0606	34226	34	0	0
1					1 1 1 1 1 1 1 1 1 1	1 1 1	;	1 1 1

9545.	9233		3379. 10061.					5014 20660.
ALANE & UNIDENTIFIED SILANATED		ALKANE		BILANATED	ALKANE	PHTHALATE ESTER	SILANATED	70 : 10852 : SILANATED
- {		63 10633	!				69 1079B	70 10852

TABLE C-17. MS OF OIL FOG RUN NO. 9(A-2) NITROGEN BASES FRACTION

		Key
C13H15N	Type A	(184,185,157,156) -loss of H probably tetramethylquinoline
11	Туре В	(185,170,186) -loss of CH $_3$ probably C $_5$ -alkylquinoline with at least one ethyl group
C ₁₄ H ₁₇ N	Type A	(198,199,171,200,172) -loss of H probably pentamethylquinoline
))	Туре В	(184,199,200) -loss of CH_3 probably C_5 -alkylquinoline with at least one ethyl group
C ₁₅ H ₁₉ N	Type A	(212,213,185,198,214) -loss of H probably hexamethylquinoline
n	Туре В	(198,185,213,212,199) -loss of CH $_{\rm 3}$ probably C $_{\rm 6}$ -alkylquinoline with at least one ethyl group
C ₁₆ H ₂₁ N	Туре В	(212,227,226) -loss of CH_3 probably C_7 -alkylquinoline with at least one ethyl group
C ₁₅ H ₁₃ N		(207,208,206,165) Methylphenylindole or dimethylbenzoquinoline
C16H15N		(221,222,220,178,206) Dimethylphenylindole or trimethylbenzoquinoline <u>or</u> C ₁₅ H ₁₁ NO as diphenyloxazole or Phenylquinoline oxide

APPENDIX D
AEROSOL DATA FROM EXPERIMENTS 3 THROUGH 12

AEROSOL EXPERIMENTAL DATA

The following Tables D-1 to D-10 give the complete experimental data on aerosol aging as measured with the P/Z impactor and the ASAS particle spectrometer, including data analysis and correlations for Experiment Nos. 3-12. Table 17 in the body of the report appears here as Table D-2.

Figures D-1 to D-10 are histograms of the particle size distribution in Experiments 3 to 12 as measured at the initiated time after t_0 . Note the change in distribution in Experiment No. 6, from 9 min in Figure D-4 to 16 min in Figure 8 in the body of the report.

TABLE D-1

EXPERIMENT NO. 3

P/Z Impactor			ASAS			
Time (t)	TSP mg/m³	dm̄ (μm)	Time (t) min	dm̄ μm	No. of Particles (n)	
30	616	.960	5 9	1.21 1.27	37222 30886	
40	536	1.35	15 20	1.25 1.25	27956 29985	
50	664	1.33	26 29	1.26 1.24	31380 30318	
60	854	1.343	43 56	1.37 1.28	25874 26954	
STATISTICAL A LINEAR REGR		FOR	STATISTICAL ANALYSIS: FOR CURVE n = n _o e ^{-kt}			
1) TSP vs t	slope :	= 8.4	n _o = 33860			
ir correlatio	tercept on coef.		K = .005 correlation coef. = 0.747			
2) dm vs t		= .0113	Equation:		. 005+	
intercept = .7377 correlation coef. = .764			n = 33869 e ⁰⁰⁵ t			
Equation:			<pre>lnn = 10.43005t 95% significance level</pre>			
1	mt + c					
m = slope and	c = int	ercept		· 		

TABLE D-2

EXPERIMENT NO. 4

P/Z Impactor				ASAS		
Time (t)	TSP mg/m³	dm̄ (μm)	Time (t)	dm µm	No. of Particles	(n)
2	144	.686	2	.776	45622	
10	739	.842	4	.853	52368	
18	667	.876	10	.813	46992	
36	634	.324	15	.823	42884	
44	566	.831	36	.846	33718	
52	598	.878	44	.850	31352	İ
50	506	1.00	52	.888	22506	
			60	.893	13774	
STATISTICAL A		FOR	STATISTICA	_		
1) TSP vs t slope = - 3.9 intercept = 763 correlation coef. =944			CURVE $n = n_0 e^{-kt}$ $n_0 = 55826$ $K = .0184$ correlation coef. = -0.93			
2) dm vs t slope = .00313 intercept = .749 correlation coef. = .744 Equation:			Equation: n = 55826 e ^{0184t} lnn = 10.930184t 95% significance level			
y =	mt + c					
m = slope and	c = inte	ercept				

TABLE D-3

EXPERIMENT NO. 5

P/Z		ASAS				
Time (t) min	TSP mg/m³	dm̄ (μm)	Time (t) min	dm µm	No. of Particles	(n)
13	236.7	.821	2	. 899	4907	
17	184.2	.733	7	.880	4436	
28	303	.734	14	.947	4622	
37	372	.773	26	.926	5129	
46	262.8	.790	36	.900	5432	
56	283	.702	45	.906	5179	
			54	.916	5527	
STATISTICAL ANALYSIS: FOR LINEAR REGRESSION			STATISTICAL ANALYSIS: FOR CURVE n = n _o e ^{-kt}			
1) TSP vs t slope = 1.786 intercept = 214.98 correlation coef. = 0.47			n _o = 4582 K = 0.0034 correlation coef. = .8294			
2) dm vs t slope = -0.0011 intercept = 0.795 correlation coef. =425			Equation: n = 4582 e ^{.0034t} lnn = 8.43 + .0034t			
Equation:			95% significance level			
y =						
m = slope and	c = inter	rcept				

TABLE D-4

EXPERIMENT NO. 6

P/Z		ASAS					
Time (t)	TSP mg/m³	(mm)	Time (t)	dm µm	No. of Particles	(n)	
2 9 16 26 35 44 51 60	359 432 340 449 476 489 440 450	.6675 .6585 .7020 .7060 .724 .7712 .7607 .8270	4 7 13 23 32 41 58	.888 .870 .872 .873 .875 .895 .935	32737 24418 33053 26424 20506 18356 13532		
STATISTICAL AN LINEAR REGRE		FOR	STATISTICAL ANALYSIS: FOR CURVE n = n _o e ^{-kt}				
1) TSP vs t slope = 1.3 intercept = 394. correlation coef. = .5049			n _o = 34200 K = .015 correlation coef. =9212				
2) dm vs t slope = .00262 intercept = .6576 correlation coef. = .958 Equation:			Equation: n = 34200 e ^{015t} lnn = 10.44015t 99% significance level				
y = m = slope and	mt + c c = inter	cept					

TABLE D-5
EXPERIMENT NO. 7

P/Z Impactor			ASAS				
Time (t) min	TSP mg/m³	dm̄ (μm)	Time (t) min	dm µm	No. of Particles	(n)	
2	384	.796	2	1.158	6283		
6	462	.767	6	1.113	6354		
10	558	.7847	10	1.185	6810		
16	605	.8235	16	1.168	6366		
28	529	.834	24	1.185	5646		
34	503	.8512	34	1.171	5480		
44	567	.8167	44	1.071	5746		
52	597	.8374	52	1.069	5480		
60	514	.883	60	1.053	5328		
STATISTICAL AN LINEAR REGRE		FOR	STATISTICAL ANALYSIS: FOR CURVE n = n _o e ^{-kt}				
1) TSP vs t			n _o = 6687 K = .004 correlation coef. = -0.848				
2) dm vs t slope = .0014 intercept = .7821 correlation coef. =2272			Equation: n = 6687 e ^{604t} lnn = 8.8080004t				
Equation:			99% significance level				
y =	mt + c						
m = slope and	c = inter	cept					

TABLE D-6
EXPERIMENT NO. 8

P/Z		ASAS				
Time (t) min	TSP mg/m³	dm̄ (μm)	Time (t) min	dm µm	No. of Particles (n)	
12	748.2	.7726	2	.990	9046	
20	778.9	.796	6	.987	9425	
28	729.6	.792	12	.961	8116	
38	714.6	.795	19	.900	6502	
48	602.4	.792	27	.932	6677	
58	604.2	.828	36	1.00	5668	
			45	0.928	564 0	
			54	0.944	5423	
STATISTICAL AN		FOR	STATISTICAL ANALYSIS: FOR CURVE n = n _o e ^{-kt}			
1) TSP vs t			n _o = 9118 K = .011 correlation coef. = -0.941			
2) dm vs t slope = .00083 intercept = .768 correlation coef. =913			Equation: n = 9118 e ^{011t} lnn = 9.118011t			
Equation:			99% significance level			
y =	mt + c	1				
m = slope and	c = inter	cept				

TABLE D-7
EXPERIMENT NO. 9

P/Z		ASAS				
Time (t) min	TSP mg/m³	dm̄ (μm)	Time (t) min	dm m	No. of Particles	(n)
9	586.8	.739				
17	791.4	.863				
27	849.3	.799	17	.919	37207	
35	621.9	.834	26	.934	31712	
44	698.4	.797	35	.920	28020	
54	736.2	.810	44	.933	25129	
			54	.917	19551	
STATISTICAL AN LINEAR REGRE		FOR	STATISTICAL ANALYSIS: FOR CURVE n = n _o e ^{-kt}			
1) TSP vs t slope = .7894 intercept = 689.53 correlation coef. = .133			n = 49662 K = .0166 correlation coef. = .991			
2) dm vs t slope = .00056 intercept = .790 correlation coef. = .226			Equation: n = 49662 e ^{0166t} Inn = 10.8130166t			
Equation:			99% significance level			
J	mt + c					
m = slope and	c = inte	rcept				

TABLE D-8
EXPERIMENT NO. 10

P/Z	P/Z Impactor					
Time (t) min	TSP mg/m³	(mm) q <u>w</u>	Time (t) min	dm µm	No. of Particles (n)	
14	550.2	.7604	4	.928	12857	
22	580.5	.761	8	.932	14037	
32	543.9	.737	14	.921	11516	
42	538.5	.742	22	.933	9058	
51	542.7	.776	32	.936	8320	
60	629.7	.798	42	.937	5957	
		i	51	.933	5931	
}		1	60	.944	5770	
	STATISTICAL ANALYSIS: FOR LINEAR REGRESSION			L ANALYS = n _o e ^{-k}	SIS: FOR t	
1) TSP vs t ii correlatio	1) TSP vs t slope = .8216 intercept = 534.0 correlation coef. = .405			n _o = 14186 K = .017 correlation coef. = -0.9656		
2) dm vs t slope = .00072 intercept = .736 correlation coef. = .561			Equation: $n = 14186 e^{017t}$			
Equation:			Inn = 9.56017t 99% significance level			
}	mt + c d c = inte	ercept	5 % 5 TYI	·		

TABLE D-9
EXPERIMENT NO. 11

P/2		ASAS				
Time (t) min	TSP mg/m³	dm̄ (μm)	Time (t) min	dm µm	No. of Particles	(n)
14 22 32 41 51 60	377.7 299.1 328.8 345 381 327.6	.576 .563 .642 .629	5 11 18 28 37 45 54	.748 .754 .763 .767 .759 .797 .774	5751 5713 5676	
STATISTICAL ANALYSIS: FOR LINEAR REGRESSION 1) TSP vs t			1	= n _o e ^{-k†} n _o K	t = 5826 = .0006 = -0.643	
m = slope and		cept				

TABLE-D-10
EXPERIMENT NO. 12

P/Z Impactor			ASAS				
Time (t) min	TSP mg/m³	dm̄ (μm)	Time (t) min	dm µm	No. of Particles (n)		
12	805.2	.741	3	.8840	21870		
20	867	.776	8	.8815	23754		
30	888.3	.749	16	.8900	20126		
40	811.5	.777	25	.8762	18160		
50	673.8	.778	34	.912	14061		
60	797.1	.795	44	.8823	14309		
			55	.8920	10671		
	STATISTICAL ANALYSIS: FOR LINEAR REGRESSION			STATISTICAL ANALYSIS: FOR CURVE n = n _o e ^{-kt}			
slope = -2.11 intercept = .738 correlation coef. =512			n _o = 25084 K = .0146 correlation coef. =966				
2) dm vs t slope = .0009 intercept = .738 correlation coef. = .794			Equation: n = 25084 e ^{0146t}				
Equation:			Inn = 10.130146t 99% significance level				
y =	mt + c						
m = slope and	c = inte	rcept					

Figure D-1. Histogram of Mass Median Particle Size Distribution Experiment No. 3. 30 minutes after $t_{\rm o}$.

Figure D-2. Histogram of Mass Median Particle Size Distribution Experiment No. 4. 10 minutes after t_{O} .

Figure D-3. Histogram of Mass Median Particle Size Distribution Experiment No. 5. 13 minutes after t_0 .

Figure D-4. Histogram of Mass Median Particle Size Distribution Experiment No. 6. 9 minutes after t_0 .

Figure D-5. Histogram of Mass Median Particle Size Distribution Experiment No. 7. 10 minutes after \mathbf{t}_0 .

Figure D-6. Histogram of Mass Median Particle Size Distribution Experiment No. 8. 12 minutes after t_0 .

Figure D-7. Histogram of Mass Median Particle Size Distribution Experiment No. 9. 9 minutes after $t_{\rm O}$

Figure D-8. Histogram of Mass Median Particle Size Distribution Experiment No. 10. 8 minutes after $\mathbf{t_o}$.

Figure D-9. Histogram of Mass Median Particle Size Distribution Experiment No. 11. 8 minutes after t_0 .

Figure D-10. Histogram of Mass Median Particle Size Distribution Experiment No. 12. 12 minutes after $t_{\rm 0}$.

DISTRIBUTION LIST

25 copies Commander US Army Medical Bioengineering Research and Development Laboratory ATTN: SGRD-UBG Fort Detrick Frederick, MD 21701 USAMRDC (SGRD-SI) copies Fort Detrick Frederick, MD 21701 12 copies Defense Technical Information Center (DTIC) ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314 сору Dean School of Medicine Uniformed Services University of the Health Sciences 4301 Jones Bridge Road Bethesda, MD 20014 сору Commandant Academy of Health Sciences, US Army ATTN: AHS-COM

Fort Sam Houston, TX 78234