Bonus

Reimplement your design using T flip-flops instead of JK flip-flops:

• Determine the inputs, outputs, number of flip-flops needed and their type:

Input

• Direction (we can call it x)

Output

 $4\ \mathsf{LED}$ lights, we can call them:

- LED A
- LED B
- LED C
- LED **D**

The number of flip-flops

- $\circ~4$ T flip-flops, we call them $T_A,\,T_B,\,T_C,\,T_D$ respectively.
- Base on the naming convention mentioned in the previous step, we derive the excitation table for the state machine as below:

A(t)	B(t)	C(t)	D(t)	x	A(t+1)	B(t+1)	C(t+1)	D(t+1)	T_A	T_B	T_C	T_D
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	1	1	0	0	0	1	0	0	0
0	0	0	1	0	0	0	1	1	0	0	1	0
0	0	0	1	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	1	0	0	0	0	1
0	0	1	1	1	0	0	0	1	0	0	1	0

0	0	1	0	0	0	1	1	0	0	1	0	0
0	0	1	0	1	0	0	1	1	0	0	0	1
0	1	1	0	0	0	1	1	1	0	0	0	1
0	1	1	0	1	0	0	1	0	0	1	0	0
0	1	1	1	0	0	1	0	1	0	0	1	0
0	1	1	1	1	0	1	1	0	0	0	0	1
0	1	0	1	0	0	1	0	0	0	0	0	1
0	1	0	1	1	0	1	1	1	0	0	1	0
0	1	0	0	0	1	1	0	0	1	0	0	0
0	1	0	0	1	0	1	0	1	0	0	0	1
1	1	0	0	0	1	1	0	1	0	0	0	1
1	1	0	0	1	0	1	0	0	1	0	0	0
1	1	0	1	0	1	1	1	1	0	0	1	0
1	1	0	1	1	1	1	0	0	0	0	0	1
1	1	1	1	0	1	1	1	0	0	0	0	1
1	1	1	1	1	1	1	0	1	0	0	1	0
1	1	1	0	0	1	0	1	0	0	1	0	0
1	1	1	0	1	1	1	1	1	0	0	0	1

1	0	1	0	0	1	0	1	1	0	0	0	1
1	0	1	0	1	1	1	1	0	0	1	0	0
1	0	1	1	0	1	0	0	1	0	0	1	0
1	0	1	1	1	1	0	1	0	0	0	0	1
1	0	0	1	0	1	0	0	0	0	0	0	1
1	0	0	1	1	1	0	1	1	0	0	1	0
1	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	1	1	0	0	1	0	0	0	1

• Since the circuit output function of A, B, C, D are obtained from Page 3 to Page 6, we have:

$$A(t+1)=AD+AC+B'C'D'x+BC'D'x'$$

$$B(t+1)=BC'+BD+A'CD'x'+ACD'x$$

$$C(t+1)=CD'+A'B'Dx'+A'BDx+AB'Dx+ABDx'$$

$$D(t+1)=A'B'C'x'+A'B'Cx+A'BC'x+A'BCx'+AB'C'x+AB'Cx'+ABC'x'+ABC$$

- ullet Now we derive all $4\ {
 m T}$ flip-flop input functions using the map method:
 - $\circ~$ For K-Map of T_A , we have
 - lacksquare When A=0

$ABC \backslash Dx$	00	01	11	10
000	0	1	0	0
001	0	0	0	0
011	0	0	0	0
010	1	0	0	0

 $\quad \blacksquare \ \, \text{When} \, A=1$

$ABC \backslash Dx$	00	01	11	10
100	1	0	0	0
101	0	0	0	0
111	0	0	0	0
110	0	1	0	0

Thus, we have

$$T_A = A'B'C'D'x + A'BC'D'x' + AB'C'D'x' + ABC'D'x$$

- $\circ~$ For K-Map of T_{B} , we have
 - $\quad \blacksquare \ \, \text{When} \, A = 0$

$ABC \backslash Dx$	00	01	11	10
000	0	0	0	0
001	1	0	0	0
011	0	1	0	0
010	0	0	0	0

 $\quad \blacksquare \ \, \text{When} \, A=1$

$ABC \backslash Dx$	00	01	11	10
100	0	0	0	0
101	0	1	0	0
111	1	0	0	0
110	0	0	0	0

Thus, we have

$$T_B = A'B'CD'x' + A'BCD'x + AB'CD'x + ABCD'x'$$

- $\circ~$ For K-Map of $T_{C},$ we have
 - $\bullet \ \ \mathsf{When} \ A=0$

$ABC \backslash Dx$	00	01	11	10
000	0	0	0	1
001	0	0	1	0
011	0	0	0	1
010	0	0	1	0

 $\quad \blacksquare \quad \text{When } A=1$

$ABC \backslash Dx$	00	01	11	10
100	0	0	1	0
101	0	0	0	1
111	0	0	1	0
110	0	1	0	1

Thus we have

$$T_C = A'B'C'Dx' + A'B'CDx + A'BC'Dx + A'BCDx' + AB'C'Dx + AB'CDx' + ABC'Dx' + ABCDx$$

- $\circ~$ For K-Map of $T_D,$ we have
 - $\quad \blacksquare \ \, \text{When} \, A = 0$

$ABC \backslash Dx$	00	01	11	10
000	1	0	1	0
001	0	1	0	1
011	1	0	1	0
010	0	1	0	1

$\quad \blacksquare \quad \text{When } A=1$

$ABC \backslash Dx$	00	01	11	10
100	0	1	0	1
101	1	0	1	0
111	0	1	0	1
110	1	0	1	0

Thus we have

$$T_D = A'B'C'D'x' + A'B'C'Dx + A'B'CD'x + A'B'CDx'$$

 $+A'BC'D'x + A'BC'Dx' + A'BCD'x' + A'BCDx$
 $+AB'C'D'x + AB'C'Dx' + AB'CD'x' + AB'CDx$
 $+ABC'D'x' + ABC'Dx + ABCD'x + ABCDx'$

• Draw the logic diagram for the circuit

NOTE The file *assign2.circ* has been uploaded to D2L dropbox. And diagrams for T_A , T_B , T_C , T_D and the diagram for the whole circuit are shown below by hand-written: