Lecture#

4.4.2 Space Vector Modulation?

4.4.2 Space Vector Modulation

 Space vector modulation (SVM) is one of real-time modulation techniques.

• It is widely used for digital control of voltage source inverters.

a) Switching States

 Operating status of switches in 2-level inverter in Fig. can be represented by switching states.

Switching		Leg a			Leg b			Leg c	
State	S_1	S_4	v_{aN}	S_3	S_6	v_{bN}	S_5	S_2	v_{cN}
P	On	Off	V_{dc}	On	Off	V_{dc}	On	Off	V_{dc}
О	Off	On	0	Off	On	0	Off	On	0

When $v_{ma} > v_{cr}$, upper switch S1 in inverter leg a is turned on. Lower switch S4 operates in a complementary manner & thus is switched off.

Switching	Leg a			Leg b			Leg c		
State	S_1	S_4	v_{aN}	S_3	S_6	v_{bN}	S_5	S_2	v_{cN}
P	On	Off	V_{dc}	On	Off	V_{dc}	On	Off	V_{dc}
0	Off	On	0	Off	On	0	Off	On	0

Resultant inverter terminal voltage $v_{\alpha N}$, which is voltage at phase- α terminal w.r.t -ve dc bus N_r =dc voltage Vdc, viz. $v_{\alpha N} = Vdc$

Switching	Leg a			Leg b			Leg c		
State	S_1	S_4	v_{aN}	S_3	S_6	v_{bN}	S_5	S_2	v_{cN}
P	On	Off	V_{dc}	On	Off	V_{dc}	On	Off	V_{dc}
0	Off	On	0	Off	On	0	Off	On	0

From table , switching state 'P' denotes that upper switches(S₁,S₃ & S₅) in an inverter leg is on

• Inverter terminal voltage (v_{aN} , v_{bN} or v_{cN}) is +ve (+Vdc)

• 'O' indicates that inverter terminal voltage is 0 due to conduction of

lower switch.

Switching	Leg a			Leg b			Leg c		
State	S_1	S_4	v_{aN}	S_3	S_6	v_{bN}	S_5	S_2	v_{cN}
P	On	Off	V_{dc}	On	Off	V_{dc}	On	Off	V_{dc}
0	Off	On	0	Off	On	0	Off	On	0

Q. Two-level inverter has 3 phases so how many possible combinations of switching states?

Answer. There can be 8 possible combinations(2³) of switching states in 2-level inverter as listed in Table

Space Vector		Switching State (Three Phases)	On-state Switch	Vector Definition	
Zero	\vec{V}_0	[PPP]	S_1, S_3, S_5	$\vec{V}_0 = 0$	
Vector	V 0	[000]	S_4, S_6, S_2	V ₀ = 0	
	$ec{V_1}$	[POO]	S_1, S_6, S_2	$\vec{V_1} = \frac{2}{3} V_{dc} e^{j0}$	
	$ec{V}_2$	[PPO]	S_{1}, S_{3}, S_{2}	$\vec{V}_2 = \frac{2}{3} V_{dc} e^{j\frac{\pi}{3}}$	
Active	\vec{V}_3	[OPO]	S_4, S_3, S_2	$\vec{V_3} = \frac{2}{3} V_{dc} e^{j\frac{2\pi}{3}}$	
Vector	$ec{V}_4$	[OPP]	S_4, S_3, S_5	$\vec{V}_4 = \frac{2}{3} V_{dc} e^{j\frac{3\pi}{3}}$	
	\vec{V}_5	[OOP]	S_4, S_6, S_5	$\vec{V}_5 = \frac{2}{3} V_{dc} e^{j\frac{4\pi}{3}}$	
	\vec{V}_6	[POP]	S_1, S_6, S_5	$\vec{V}_6 = \frac{2}{3} V_{dc} e^{j\frac{5\pi}{3}}$	

Switching state [POO] corresponds to conduction of *S*1, *S*6 & *S*2 in inverter legs *a*, *b* and *c*, respectively.

tor	Switching State (Three Phases)	On-state Switch	Vector Definition	
\vec{v}	[PPP]	S_1, S_3, S_5	$\vec{V}_0 = 0$	
V 0	[000]	S_4, S_6, S_2	$V_0 = 0$	
$ec{V}_1$	[POO]	S_1, S_6, S_2	$\vec{V}_1 = \frac{2}{3} V_{dc} e^{j0}$	
$ec{V}_2$	[PPO]	S_{1}, S_{3}, S_{2}	$\vec{V}_2 = \frac{2}{3} V_{dc} e^{j\frac{\pi}{3}}$	
\vec{V}_3	[OPO]	S_4, S_3, S_2	$\vec{V}_3 = \frac{2}{3} V_{dc} e^{j\frac{2\pi}{3}}$	
\vec{V}_4	[OPP]	S_4, S_3, S_5	$\vec{V}_4 = \frac{2}{3} V_{dc} e^{j\frac{3\pi}{3}}$	
\vec{V}_5	[OOP]	S_4, S_6, S_5	$\vec{V}_5 = \frac{2}{3} V_{dc} e^{j\frac{4\pi}{3}}$	
\vec{V}_6	[POP]	S_{1}, S_{6}, S_{5}	$\vec{V}_6 = \frac{2}{3} V_{dc} e^{j\frac{5\pi}{3}}$	
	\vec{V}_0 \vec{V}_1 \vec{V}_2 \vec{V}_3 \vec{V}_4	$egin{array}{cccc} { m tor} & ({ m Three\ Phases}) & & & & & & & & & & & & & & & & & & &$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	

Among 8 switching states, which states are zero states?

Space Vec	ctor	Switching State (Three Phases)	On-state Switch	Vector Definition	
Zero	$ec{v}_{ m o}$	[PPP]	S_1, S_3, S_5	$\vec{\mathcal{V}}_0 = 0$	
Vector	V 0	[000]	S_4, S_6, S_2	$V_0 = 0$	
	$ec{\mathcal{V}}_1$	[POO]	S_1, S_6, S_2	$\vec{V_1} = \frac{2}{3} V_{dc} e^{j0}$	
	$ec{\mathcal{V}}_2$	[PPO]	S_{1}, S_{3}, S_{2}	$\vec{V}_2 = \frac{2}{3} V_{dc} e^{j\frac{\pi}{3}}$	
Active	$ec{V}_3$	[OPO]	S_4, S_3, S_2	$\vec{V}_3 = \frac{2}{3} V_{dc} e^{j\frac{2\pi}{3}}$	
Vector	$ec{V}_4$	[OPP]	S_4, S_3, S_5	$\vec{V}_4 = \frac{2}{3} V_{dc} e^{j\frac{3\pi}{3}}$	
	$ec{\mathcal{V}}_{5}$	[OOP]	S_4, S_6, S_5	$\vec{V}_5 = \frac{2}{3} V_{dc} e^{j\frac{4\pi}{3}}$	
	\vec{V}_6	[POP]	S_{1}, S_{6}, S_{5}	$\vec{V}_6 = \frac{2}{3} V_{dc} e^{j\frac{5\pi}{3}}$	

Among 8 switching states, [PPP] & [OOO] are 0 states(lies in center) & others are active states.

Space Vector		Switching State (Three Phases)	On-state Switch	Vector Definition
Zero	$ec{V}_{ extsf{o}}$	[PPP]	S_1, S_3, S_5	$\vec{V}_0 = 0$
Vector	0	[000]	S_4, S_6, S_2	V ₀ = 0
	$ec{V}_1$	[POO]	S_1, S_6, S_2	$\vec{V}_1 = \frac{2}{3} V_{dc} e^{j0}$
	$ec{V}_2$	[PPO]	S_1, S_3, S_2	$\vec{V}_2 = \frac{2}{3} V_{dc} e^{j\frac{\pi}{3}}$
Active	\vec{V}_3	[OPO]	S_4, S_3, S_2	$\vec{V}_3 = \frac{2}{3} V_{dc} e^{j\frac{2\pi}{3}}$
Vector	$ec{V}_4$	[OPP]	S_4, S_3, S_5	$\vec{V}_4 = \frac{2}{3} V_{dc} e^{j\frac{3\pi}{3}}$
	$ec{V}_{5}$	[OOP]	S_4, S_6, S_5	$\vec{V}_5 = \frac{2}{3} V_{dc} e^{j\frac{4\pi}{3}}$
	\vec{V}_6	[POP]	S_{1}, S_{6}, S_{5}	$\vec{V}_6 = \frac{2}{3} V_{dc} e^{j\frac{5\pi}{3}}$

Space vectors, switching states & on-state switches

Space Vector		Switching State (Three Phases)	On-state Switch	Vector Definition
Zero	$ec{ u}_{ m o}$	[PPP]	S_1, S_3, S_5	$\vec{V}_0 = 0$
Vector	V 0	[000]	S_4, S_6, S_2	$\nu_{\rm o} = 0$
	$ec{\mathcal{V}}_{1}$	[POO]	S_1, S_6, S_2	$\vec{V_1} = \frac{2}{3} V_{dc} e^{j0}$
	$ec{V}_2$	[PPO]	S_{1}, S_{3}, S_{2}	$\vec{V}_2 = \frac{2}{3} V_{dc} e^{j\frac{\pi}{3}}$
Active	$ec{V}_3$	[OPO]	S_4, S_3, S_2	$\vec{V}_3 = \frac{2}{3} V_{dc} e^{j\frac{2\pi}{3}}$
Vector	$ec{V}_{4}$	[OPP]	S_4, S_3, S_5	$\vec{V}_4 = \frac{2}{3} V_{dc} e^{j\frac{3\pi}{3}}$
	$ec{V}_{5}$	[OOP]	S_4, S_6, S_5	$\vec{V}_5 = \frac{2}{3} V_{dc} e^{j\frac{4\pi}{3}}$
	$ec{V}_{6}$	[POP]	S_{1}, S_{6}, S_{5}	$\vec{V}_6 = \frac{2}{3} V_{dc} e^{j\frac{5\pi}{3}}$

b) Space Vectors

- Active & 0 switching states can be represented by active & 0 space vectors, respectively.
- A typical space vector diagram for 2-level inverter is shown in Fig., where 6 active vectors V_1 to V_6 form a regular hexagon with 6 equal sectors (I to VI).
- 0 vector *V*₀ lies on the centre of the hexagon.

To derive relationship between space vectors & switching states, refer to 2-level inverter in Fig.

Assuming that operation of inverter is 3-phase balanced, we have

$$v_a(t) + v_b(t) + v_c(t) = 0$$

where va, vb & vc are instantaneous load phase voltages.

From mathematical point of view, one of phase voltages is redundant since given any 2 phase voltages, 3rd one can be readily calculated.

$$v_a(t) + v_b(t) + v_c(t) = 0$$

Therefore, it is possible to transform 3-phase variables to 2-phase variables through the $abc/\alpha\theta$ transformation:

$$\begin{bmatrix} v_{\alpha}(t) \\ v_{\beta}(t) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_{a}(t) \\ v_{b}(t) \\ v_{c}(t) \end{bmatrix}$$

A space vector can be generally expressed in terms of 2-phase voltages in α - θ frame

$$\vec{v}(t) = v_{\alpha}(t) + j v_{\beta}(t)$$

From

$$\begin{bmatrix} v_{\alpha}(t) \\ v_{\beta}(t) \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} v_{a}(t) \\ v_{b}(t) \\ v_{c}(t) \end{bmatrix}$$

$$V_{\alpha}(t) = \frac{2}{3} \left\{ V_{a}(t) - \frac{1}{2} V_{b}(t) - \frac{1}{2} V_{c}(t) \right\}$$

$$V_{\beta}(t) = \frac{2}{3} \left\{ \frac{\sqrt{3}}{2} V_b(t) - \frac{\sqrt{3}}{2} V_c(t) \right\}$$

Substituting

$$V_{\alpha}(t) = \frac{2}{3} \left\{ V_{a}(t) - \frac{1}{2} V_{b}(t) - \frac{1}{2} V_{c}(t) \right\}$$

$$V_{\beta}(t) = \frac{2}{3} \left\{ \frac{\sqrt{3}}{2} V_{b}(t) - \frac{\sqrt{3}}{2} V_{c}(t) \right\}$$

into

$$\vec{v}(t) = V_{\alpha}(t) + jV_{\beta}(t)$$

Try to simplify:

$$V_{\alpha}(t) + jV_{\beta}(t) = \frac{2}{3} \left[V_{a}(t) + \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)V_{b}(t) + \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right)V_{c}(t) \right]$$

$$a = \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)$$

$$V_{\alpha}(t) + jV_{\beta}(t) = \frac{2}{3} \left[V_{a}(t) + \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2} \right) V_{b}(t) + \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2} \right) V_{c}(t) \right]$$

$$a = \left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right) = e^{j\frac{2\pi}{3}}$$

$$a^2 = \left(-\frac{1}{2} - j\frac{\sqrt{3}}{2}\right) = e^{j\frac{4\pi}{3}}$$

$$\vec{v}(t) = \frac{2}{3} \left[V_a(t)e^{j0} + V_b(t)e^{j\frac{2\pi}{3}} + V_c(t)e^{j\frac{4\pi}{3}} \right]$$

For active switching state [POO], generated load phase voltages are $\frac{2}{2}V_{dc} = V_a(t)$

ate [POO], generated load phase voltages are
$$\frac{1}{3}V_{dc} = V_b(t) = V_c(t)$$

Corresponding space vector, denoted as \vec{V}_1 can be obtained by substituting these equations:

$$\vec{v}(t) = \frac{2}{3} \left[V_a(t)e^{j0} + V_b(t)e^{j\frac{2\pi}{3}} + V_c(t)e^{j\frac{4\pi}{3}} \right]$$

$$\vec{v}(t) = \frac{2}{3} \left[\frac{2}{3} V_{dc} e^{j0} - \frac{1}{3} V_{dc} e^{j\frac{2\pi}{3}} - \frac{1}{3} V_{dc} e^{j\frac{4\pi}{3}} \right]$$

$$\vec{v}(t) = \frac{2}{3} \left[\frac{2}{3} V_{dc} e^{j0} - \frac{1}{3} V_{dc} (e^{j\frac{2\pi}{3}} + e^{j\frac{4\pi}{3}}) \right]$$

$$a+a^2+1=0$$
 $a+a^2=-1$

$$\vec{v}(t) = \frac{2}{3} \left[\frac{2}{3} V_{dc} e^{j0} - \frac{1}{3} V_{dc} (e^{j\frac{2\pi}{3}} + e^{j\frac{4\pi}{3}}) \right] \qquad a + a^2 = -1$$

$$a + a^2 = -1$$

$$\vec{v}(t) = \frac{2}{3} \left[\frac{2}{3} V_{dc} e^{j0} + \frac{1}{3} V_{dc} \right]$$

$$\vec{v}_1 = \left[\frac{2}{3}V_{dc}e^{j0}\right]$$

$$\vec{v}_{k} = \begin{bmatrix} \frac{2}{3} V_{dc} e^{j(k-1)\frac{\pi}{3}} \\ k = 1, 2, \dots 6 \end{bmatrix}$$

Following the same procedure, all 6 active vectors can be derived $\vec{v}_k = \left[\frac{2}{3}V_{dc}e^{j(k-1)\frac{\pi}{3}}\right]_{k=1,2,....6}$

$$\vec{V}_{1} = \frac{2}{3} V_{dc} e^{j0}$$

$$\vec{V}_{2} = \frac{2}{3} V_{dc} e^{j\frac{\pi}{3}}$$

$$\vec{V}_{3} = \frac{2}{3} V_{dc} e^{j\frac{2\pi}{3}}$$

$$\vec{V}_{4} = \frac{2}{3} V_{dc} e^{j\frac{3\pi}{3}}$$

$$\vec{V}_{5} = \frac{2}{3} V_{dc} e^{j\frac{4\pi}{3}}$$

$$\vec{V}_{6} = \frac{2}{3} V_{dc} e^{j\frac{5\pi}{3}}$$

Redundant vector

•0 vector \vec{V}_0 has 2 switching states [PPP] & [OOO], one of which seems redundant.

 Redundant switching state can be utilized to minimize switching frequency of inverter or perform other useful functions. Relationship between space vectors & their corresponding switching states is given in Table

Space Vector		Switching State (Three Phases)	On-state Switch	Vector Definition	
Zero	$ec{v}_{ m o}$	[PPP]	S_1, S_3, S_5	$\vec{V}_0 = 0$	
Vector	V 0	[000]	S_4, S_6, S_2	$V_0 = 0$	
	$ec{V}_1$	[POO]	S_1, S_6, S_2	$\vec{V}_1 = rac{2}{3} V_{dc} e^{j0}$	
	$ec{V}_2$	[PPO]	S_1, S_3, S_2	$\vec{V}_2 = \frac{2}{3} V_{dc} e^{j\frac{\pi}{3}}$	
Active	$ec{V}_3$	[OPO]	S_4, S_3, S_2	$\vec{V}_3 = \frac{2}{3} V_{dc} e^{j\frac{2\pi}{3}}$	
Vector	$ec{V}_4$	[OPP]	S_4, S_3, S_5	$\vec{V}_4 = \frac{2}{3} V_{dc} e^{j\frac{3\pi}{3}}$	
	$ec{oldsymbol{V}}_{5}$	[OOP]	S_4, S_6, S_5	$\vec{V}_5 = \frac{2}{3} V_{dc} e^{j\frac{4\pi}{3}}$	
	\vec{V}_6	[POP]	S_{1}, S_{6}, S_{5}	$\vec{V}_6 = \frac{2}{3} V_{dc} e^{j\frac{5\pi}{3}}$	

0 & active vectors do not move in space, & thus are referred to as stationary vectors.

- On the contrary, reference vector \vec{v}_{ref} rotates in space at an angular velocity $\omega = 2\pi f$
- where *f* is fundamental frequency of inverter output voltage.
- Angular displacement (θ) betweer \bar{v}_{ref} & α -axis of α - θ frame can be obtained:

$$\theta(t) = \int_0^t \omega(t) dt + \theta_0$$

For a given magnitude (length) and position, \vec{v}_{ref} can be synthesized by 3 nearby stationary vectors,

- Based on which switching states of inverter can be selected and
- Gate signals for active switches can be generated.

When me passes through sectors one by one, different sets of switches will be turned on or off.

- As a result, when \vec{v}_{ref} rotates 1 revolution in space,
- inverter output voltage varies 1 cycle over time.

Inverter output frequency

• Inverter output frequency corresponds to the rotating speed of \bar{v}_{ref}

• while its output voltage can be adjusted by the magnitude of \vec{v}_{ref}

c) Dwell Time Calculation

• Reference very can be synthesized by 3 stationary vectors.

Dwell time for stationary vectors represents:

• Duty-cycle time (on-state or off-state time) of chosen switches during a sampling period *Ts*.

Dwell time calculation is based on 'volt-second balancing' principle:

• i.e, product of reference voltage \vec{v}_{ref} with sampling period Ts = Sum of voltage multiplied by time interval of chosen space vectors.

$$\begin{cases} \vec{v}_{ref} \; T_s = \vec{V_1} \, T_a \; + \; \vec{V_2} \, T_b \; + \; \vec{V_0} \, T_0 \\ T_s \; = \; T_a + T_b + T_0 \end{cases}$$

Assumption: Sampling period Ts is sufficiently small, reference vector \overrightarrow{v}_{ref} can be considered constant during Ts.

- v_{ref} can be approximated by 2 adjacent active vectors & one 0 vector.
- e.g, \vec{v}_{ref} when falls into sector I as shown in Fig, it can be synthesized by \vec{V}_1 , \vec{V}_2 and \vec{V}_0

Volt-second balancing equation is:

$$\begin{cases} \vec{v}_{ref} T_s = \vec{V_1} T_a + \vec{V_2} T_b + \vec{V_0} T_0 \\ T_s = T_a + T_b + T_0 \end{cases}$$

where T_a , T_b and T_0 are dwell times for vectors

 $\vec{V_1}$, $\vec{V_2}$ and $\vec{V_0}$, can be obtained by

$$\vec{v_k} = \left[\frac{2}{3} V_{dc} e^{j(k-1)\frac{\pi}{3}} \right] k = 1, 2, \dots 6$$

$$\vec{V}_1 = \frac{2}{3}V_{dc}$$
, $\vec{V}_2 = \frac{2}{3}V_{dc}e^{j\frac{\pi}{3}}$ and $\vec{V}_0 = 0$

vref represents length of reference vector

$$\vec{v}_{ref} = v_{ref} \, e^{j\theta}$$

Substituting $\vec{v}_{ref} = v_{ref} e^{j\theta}$, $\vec{V}_1 = \frac{2}{3} V_{dc}$, $\vec{V}_2 = \frac{2}{3} V_{dc} e^{j\frac{\hbar}{3}}$ and $\vec{V}_0 = 0$

into
$$\begin{cases} \vec{v}_{ref} T_s = \vec{V_1} T_a + \vec{V_2} T_b + \vec{V_0} T_0 \\ T_s = T_a + T_b + T_0 \end{cases}$$

& then splitting resultant equation into real (α -axis) & imaginary (β -axis) components in α - β frame, we have

$$\begin{cases} \operatorname{Re}: & v_{ref}(\cos\theta)T_s = \frac{2}{3}V_{dc}T_a + \frac{1}{3}V_{dc}T_b \\ \operatorname{Im}: & v_{ref}(\sin\theta)T_s = \frac{1}{\sqrt{3}}V_{dc}T_b \end{cases}$$

Solving
$$\begin{cases} \operatorname{Re}: \ v_{ref}(\cos\theta)T_{s} = \frac{2}{3}V_{dc}T_{a} + \frac{1}{3}V_{dc}T_{b} \\ \operatorname{Im}: \ v_{ref}(\sin\theta)T_{s} = \frac{1}{\sqrt{3}}V_{dc}T_{b} \end{cases}$$

together with
$$T_s = T_a + T_b + T_0$$
 yields

$$\begin{cases} T_a = \frac{\sqrt{3} T_s v_{ref}}{V_{dc}} \sin(\frac{\pi}{3} - \theta) \\ T_b = \frac{\sqrt{3} T_s v_{ref}}{V_{dc}} \sin \theta \end{cases} \qquad \text{for } 0 \le \theta < \pi/3$$

$$\begin{cases} T_a = \frac{\sqrt{3} T_s v_{ref}}{V_{dc}} \sin \theta \\ T_b = \frac{\sqrt{3} T_s v_{ref}}{V_{dc}} \sin \theta \end{cases}$$

To visualize relationship between location of \vec{v}_{ref} and dwell times, let us examine some special cases.

If \vec{v}_{ref} lies exactly in middle between

$$\vec{V}_1$$
 and \vec{V}_2 (i.e., $\theta = \pi/6$),

- Dwell time T_a of $\vec{V_1}$ will be equal to dwell time T_b of $\vec{V_2}$
- i.e *Ta=Tb*
- Because:

$$\frac{T_b}{T_s} \overrightarrow{v} = \frac{T_a}{T_s} \overrightarrow{v}_1$$

With head of \vec{v}_{ref} located right on central point Q, Ta = Tb = T0

Relationship between \vec{v}_{ref} location & dwell times is summarized in Table

\vec{v}_{ref} Location	$\theta = 0$	$0 < \theta < \frac{\pi}{6}$	$\theta = \frac{\pi}{6}$	$\frac{\pi}{6} < \theta < \frac{\pi}{3}$	$\theta = \frac{\pi}{3}$
Dwell Times	$T_a > 0$ $T_b = 0$	$T_a > T_b$	$T_a = T_b$	$T_a < T_b$	$T_a = 0$ $T_b > 0$

for $0 \le \theta < \pi/3$

$$\text{Although equation} \begin{cases} T_a = \frac{\sqrt{3} \, T_s \, v_{ref}}{V_{dc}} \sin{(\frac{\pi}{3} - \theta)} \\ T_b = \frac{\sqrt{3} \, T_s \, v_{ref}}{V_{dc}} \sin{\theta} \\ T_o = T_s - T_a - T_b \end{cases}$$

- is derived when \vec{v}_{ref} is in sector I,
- it can also be used when \vec{v}_{ref} is in other sectors?

Answer: Yes

Although equation
$$\begin{cases} T_a = \frac{\sqrt{3} T_s \, v_{ref}}{V_{dc}} \sin{(\frac{\pi}{3} - \theta)} \\ T_b = \frac{\sqrt{3} T_s \, v_{ref}}{V_{dc}} \sin{\theta} \\ T_o = T_s - T_a - T_b \end{cases}$$

• is derived when \vec{v}_{ref} is in sector I, it can also be used when \vec{v}_{ref} is in other sectors provided that a multiple of $\pi/3$ is subtracted from actual angular displacement θ such that modified angle θ' falls into range between 0 & $\pi/3$ for use in equation, i.e,

$$\theta' = \theta - (k-1)\pi/3 \qquad \text{for } 0 \le \theta' < \pi/3$$

• where k = 1, 2, ..., 6 for sectors I, II, ..., VI, respectively.

d) Modulation Index

• Equation
$$\begin{cases} T_a = \frac{\sqrt{3} \, T_s \, v_{ref}}{V_{dc}} \sin{(\frac{\pi}{3} - \theta)} \\ T_b = \frac{\sqrt{3} \, T_s \, v_{ref}}{V_{dc}} \sin{\theta} \\ T_0 = T_s - T_a - T_b \end{cases}$$

$$\begin{cases} T_a = T_s m_a \sin(\frac{\pi}{3} - \theta) \\ T_b = T_s m_a \sin \theta \\ T_0 = T_s - T_a - T_b \end{cases}$$

• can also be expressed in terms of modulation index $m_a = \frac{\sqrt{3} v_{ref}}{V_{da}}$

Length of reference vector \vec{v}_{ref} represents peak value of fundamental-frequency component in inverter output phase voltage, i.e, $v_{ref} = \hat{V}_{a1} = \sqrt{2}V_{a1}$

where V_{al} is rms value of fundamental component in inverter output phase (phase-a) voltage.

Relationship between ma & Va1

$$v_{ref} = \hat{V}_{a1} = \sqrt{2}V_{a1}$$

Substituting
$$v_{ref} = \hat{V}_{a1} = \sqrt{2}V_{a1}$$
 into $m_a = \frac{\sqrt{3} v_{ref}}{V_{dc}}$

$$m_a = \frac{\sqrt{3} \ v_{ref}}{V_{dc}} = \frac{\sqrt{6} \ V_{a1}}{V_{dc}}$$

For a given dc voltage Vdc, inverter output voltage Va1 is proportional to modulation index ma. $V_{a1} \propto m_a$

Maximum length of reference vector, $v_{ref,max}$, corresponds to radius of largest circle that can be inscribed within hexagon as shown in Fig.

• Since hexagon is formed by 6 active vectors having a length of 2Vdc/3, $v_{ref,max}$, can be found from

$$v_{ref, \text{max}} = \frac{2}{3}V_{dc} \times \frac{\sqrt{3}}{2} = \frac{V_{dc}}{\sqrt{3}}$$

Substituting
$$v_{ref, max} = \frac{V_{dc}}{\sqrt{3}}$$
into $m_a = \frac{\sqrt{3} v_{ref}}{V_{dc}}$

• Gives the maximum modulation index $m_{a, \max} = 1$

from which modulation index for SVM scheme is in range of

$$0 \leq m_{\sigma} \leq 1$$

e) Switching Sequence

- With space vectors selected & their dwell times calculated,
- next step is to arrange switching sequence.
- In general, switching sequence design for a given \vec{v}_{ref} is not unique,
- but it should satisfy following 2 requirements for minimization of device switching frequency:

1st requirement for minimization of device switching frequency

a) Transition from one switching state to next involves only 2 switches in same inverter leg, one being switched on & other switched off

2nd requirement for minimization of device switching frequency

b) Transition for \vec{v}_{ref} moving from 1 sector in space vector diagram to next requires no or minimum number of switchings.

Seven-segment switching sequence & inverter output voltage waveforms for \vec{v}_{ref} in sector I, where \vec{v}_{ref} s synthesized by \vec{V}_1 , \vec{V}_2 and \vec{V}_0

Sampling period *Ts* is divided into 7 segments for selected vectors.

It can be observed that:

• Dwell times for 7 segments add up to the sampling period (Ts = Ta + Tb + T0)

Design requirement a) is satisfied.

• For instance, transition from [OOO] to [POO] is accomplished by turning S1 on & S4 off, which involves only 2 switches;

For TO/2 segment in centre of sampling period, switching state [PPP] is selected

For 70 / 4 segments on both sides, state [OOO] is used

Case Study 4-3 Two-level Voltage Source Inverter with Space Vector Modulation

- In this case study, procedure for computer simulation & real-time digital implementation of SVM scheme is introduced.
- Simulation for 2-level voltage source inverter in performance, & harmonic performance of SVM scheme is analysed.

Block diagram for computer simulation & real-time digital implementation of SVM algorithm.

Input variables, v_a^* , v_b^* & v_c^* are 3-phase reference voltages, which are also required output phase voltages of inverter

Reference voltages v_a^* , v_b^* v_c^* are normally generated by controller in a wind energy conversion system.

- Through $abc/\alpha \theta$ transformation, 3-phase reference voltages in abc stationary frame are transformed into 2-phase variables, v_{α} & v_{β} , in α - θ stationary frame,
- from which reference vector for SVM scheme is established:

$$\vec{v}_{ref} = v_{ref} e^{j\theta}$$

With reference vector in place, modulation index *ma* and sector number can be calculated by (4.4-19) and (4.4-17),

- Dwell times can be determined by (4.4-18), and switching sequence can be designed according to Table 4.4-4.
- Finally, gate signals for 6 switches in inverter can be generated.
- With SVM scheme, fundamental frequency and magnitude of inverter output voltages va, vb, and vc are equal to those of 3-phase reference voltage v_a^* , v_b^* , and v_c^*

As result, inverter output voltage is fully controllable by its references

