

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017597

International filing date: 26 November 2004 (26.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2003-404271
Filing date: 03 December 2003 (03.12.2003)

Date of receipt at the International Bureau: 27 January 2005 (27.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁
JAPAN PATENT OFFICE

29.11.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2003年12月 3日
Date of Application:

出願番号 特願2003-404271
Application Number:
[ST. 10/C] : [JP2003-404271]

出願人 共同印刷株式会社
Applicant(s):

2005年 1月 13日

特許長官
Commissioner,
Japan Patent Office

小川

【書類名】 特許願
【整理番号】 P03078-KP
【提出日】 平成15年12月 3日
【あて先】 特許庁長官 今井 康夫 殿
【国際特許分類】 G01D 7/00
 G01K 11/12

【発明者】
 【住所又は居所】 東京都文京区小石川4丁目14番12号 共同印刷株式会社内
 【氏名】 千葉 英輔

【発明者】
 【住所又は居所】 東京都文京区小石川4丁目14番12号 共同印刷株式会社内
 【氏名】 小川 達也

【発明者】
 【住所又は居所】 東京都文京区小石川4丁目14番12号 共同印刷株式会社内
 【氏名】 小泉 真一

【発明者】
 【住所又は居所】 東京都文京区小石川4丁目14番12号 共同印刷株式会社内
 【氏名】 高橋 抄織

【特許出願人】
 【識別番号】 000162113
 【氏名又は名称】 共同印刷株式会社

【代理人】
 【識別番号】 100097021
 【弁理士】
 【氏名又は名称】 藤井 紘一
 【電話番号】 03-3508-0593

【選任した代理人】
 【識別番号】 100090631
 【弁理士】
 【氏名又は名称】 依田 孝次郎

【手数料の表示】
 【予納台帳番号】 039930
 【納付金額】 21,000円

【提出物件の目録】
 【物件名】 特許請求の範囲 1
 【物件名】 明細書 1
 【物件名】 図面 1
 【物件名】 要約書 1

【書類名】特許請求の範囲**【請求項 1】**

ゼオライトを5～80重量%含有する樹脂層の少なくとも一面側に文字、柄、絵等からなる印刷層を配し、吸湿による該樹脂層の透明化により該印刷層を発現することを特徴とするインジケータ機能付き吸湿材。

【請求項 2】

前記樹脂層の少なくとも一面には熱可塑性樹脂層が積層されていることを特徴とする請求項1記載のインジケータ機能付き吸湿材。

【請求項 3】

少なくとも一面にはバリアフィルムが積層されていることを特徴とする請求項1又は2記載のインジケータ機能付き吸湿材。

【請求項 4】

前記樹脂層が飽和吸湿状態になったときに光の透過率が70%以上となることを特徴とする請求項1～3の何れか1項記載のインジケータ機能付き吸湿材。

【請求項 5】

少なくとも一面に反射フィルムを積層したことを特徴とする請求項1～4の何れか1項記載のインジケータ機能付き吸湿材。

【請求項 6】

前記印刷に用いるインキは、樹脂に対する顔料あるいは染料の重量比が、0.05～50重量%であることを特徴とする請求項1～5の何れか1項記載のインジケータ機能付き吸湿材。

【請求項 7】

前記印刷層のインキ膜厚は、1μm～100μmであることを特徴とする請求項1又は6記載のインジケータ機能付き吸湿材。

【請求項 8】

前記樹脂層の白濁した状態と透明化した状態との光学濃度数値の差が0.05以上になると印刷したパターンが発現する構成にしたことを特徴とする請求項1～7の何れか1項記載のインジケータ機能付き吸湿材。

【書類名】明細書

【発明の名称】インジケータ機能付き吸湿材

【技術分野】

【0001】

本発明は、水分を吸収したときに文字、柄、絵等からなるパターンを発現させるようにしたインジケータ機能付き吸湿材に関するものである。

【背景技術】

【0002】

従来から、インジケータ機能を有する吸湿材（乾燥剤）としてシリカゲルが知られている。シリカゲル自体は白色の物質であるが、吸湿状態を表示するために塩化コバルトを混合させて、乾燥状態では青色を呈示し、大気中の湿気（水分）を吸収すると桃色を呈示するようにしている。

【0003】

しかしながら、現在、21世紀は環境とエネルギーの世紀といわれ、コバルトのような重金属の使用は環境面への配慮から極力避けたいという情勢にある。そこで、脱コバルトを目指したインジケータ機能を有する部材の開発が進められている。

【0004】

例えば、吸湿機能を提供するものではないが、インジケータ機能を有するものとして、例えばpH指示薬とアルカリ性物質を含みアルカリ性物質の蒸散による変色を利用するものが知られている（特許文献1、特許文献2参照）。

また、可変性色素とアルカリ性物質を含み、大気中の酸素又は湿気による変色を利用するものも知られている（特許文献3参照）。

さらにまた、色素と有機溶媒を含み、有機溶媒の揮散による発色を利用するもの（特許文献4、特許文献5参照）、あるいは光により変色する物質を利用するものなどが知られている（特許文献6参照）。

【0005】

また、環境判定インジケータとして、次の発明も提案されている。

これらは、変色層として示温インキ、pH指示薬、フォトクロミックインキなどがもちいられ、温度、湿度、紫外線照射量、アンモニア濃度、pH値などの環境変化に対応するものである。環境の変化によって、変色層が有色から無色、薄色から濃色に変化することによってインジケータ機能を表すとされている（特許文献7参照）。

【特許文献1】特開昭56-131684号公報（明細書全文）

【特許文献2】特開昭62-179640号公報（明細書全文）

【特許文献3】特開昭57-104884号公報（明細書全文）

【特許文献4】特開平01-161081号公報（明細書全文）

【特許文献5】特開平02-290591号公報（明細書全文）

【特許文献6】特公平02-033385号公報（明細書全文）

【特許文献7】特開2003-192908号公報（明細書全文）

【発明の開示】

【発明が解決しようとする課題】

【0006】

しかしながら、これらインジケータは、いずれも低分子有機物が含まれているため、高温（150°C～200°C）で成形すると、黒化するか、あるいは分解して性能が低下してしまう。また毒性の問題もある。

【0007】

本発明の課題は、重金属である塩化コバルトや、あるいは低分子有機物等を用いないでインジケータ機能を有する吸湿材（乾燥材）の提供にある。

【課題を解決するための手段】

【0008】

上記課題に鑑み、本発明は次のような手段を採用した。

請求項1記載のインジケータ機能付き吸湿材は、ゼオライトを5～80重量%含有する樹脂層の少なくとも一面側に文字、柄、絵等からなる印刷層を配し、吸湿による該樹脂層の透明化により該印刷層を発現することを特徴としている。

水分を吸収して白濁から透明に変化するので、吸収性能の限界点に達したことを示すインジケータとして作用する。

【0009】

請求項2記載のインジケータ機能付き吸湿材は、請求項1記載の発明において、前記樹脂層の少なくとも一面には熱可塑性樹脂層が積層されていることを特徴としている。

請求項3記載のインジケータ機能付き吸湿材は、請求項1又は2記載の発明において、前記樹脂層の少なくとも一面にはバリアフィルムが積層していることを特徴としている。

請求項4記載のインジケータ機能付き吸湿材は、請求項1～3の何れか1項記載の発明において、前記樹脂層が飽和吸湿状態になったときに光の透過率が70%以上となることを特徴としている。

請求項5記載のインジケータ機能付き吸湿材は、請求項1～4の何れか1項記載の発明において、前記樹脂層の印刷を行った印刷層面に反射フィルムを積層したことを特徴としている。

請求項6記載のインジケータ機能付き吸湿材は、請求項1～5の何れか1項記載の発明において、前記印刷に用いるインキは、樹脂に対する顔料あるいは染料の重量比が、0.05～50重量%であることを特徴としている。

請求項7記載のインジケータ機能付き吸湿材は、請求項1～6の何れか1項記載の発明において、前記印刷層のインキ膜厚は、1μm～100μmであることを特徴としている。

請求項8記載のインジケータ機能付き吸湿材は、請求項1～7の何れか1項記載の発明において、前記樹脂層の白濁した状態と透明化した状態との光学濃度数値の差が0.05以上になると印刷したパターンが発現する構成にしたことを特徴としている。

【発明の効果】

【0010】

本発明は、上記のように構成したので、脱コバルトを実現した環境対応型のインジケータ機能付き吸湿材を提供することができる。また、従来技術で示したような変色層を層として挿入する必要がなく、パターン印刷を行うのみなので製品コストを軽減させることができるとなる。また、発現する文字の光学濃度と吸湿量との関係から、包装袋としたときに内部を開けて吸湿能力を確認する必要がなくなる。

また、ゼオライト含有したフィルムにポリオレフィン等の種々のフィルムを積層することで、その厚さにより飽和到達時間を制御することができる。また、ゼオライトを含有した樹脂層の厚さを変えることで、吸湿量を調整することができる。

【発明を実施するための最良の形態】

【0011】

図1に、本発明に係るインジケータ機能付き吸湿材の実施の形態を示す。

インジケータ機能付き吸湿材10は、図に示すように、ゼオライトを含有した有機樹脂組成物を成形したゼオライトフィルム11を有しており、該フィルム11を成形の際に、その両面にポリオレフィン（例えばLLDPE）12, 12を共押し出しで積層し、更に一方のポリオレフィン面にはバリアフィルム13としてポリエチレン（この例ではPET）を積層している。また、バリアフィルム13の表面には文字、柄、絵等からなるパターン14が印刷されている。

【0012】

上記ゼオライトフィルム11は、次のようにして製造する。

先ず、ベース樹脂にゼオライトを5～80%混合し、さらにこれらの親和性を高めるため添加剤としてエチレン・アクリル酸エステル・無水マレイン酸共重合体等を混合比1～20%を添加してフィルム状に成形する。なお、ゼオライトの混合比は、好ましくは、重

量比で約40～80重量%と、さらに好ましくは重量比で約50～80重量%とする。

【0013】

ベース樹脂としては、例えばLDPE（低密度ポリエチレン）、LLDPE（直鎖状低密度ポリエチレン）、PP（ポリプロピレン）、各種共重合体（コポリマー）として、アイオノマー、EAA、EMAA、EVA、EEA、EMA、EMMA等から1種又は複数種を混合して用いられ、このような樹脂の中から高MFR（メルトフローレート）、好ましくは温度190℃、荷重21.18Nの条件下で測定したMFR（g／10分）が10以上のものを含むように適宜選んで使用する。

【0014】

ゼオライトは、3Åから10Åの細孔径を有する粉末状の無機多孔性物質であり、好適な吸着剤として用いられる。その平均粒子径は、例えば10μm前後のものが好適に用いられる。

【0015】

ゼオライトは、極性を有し、分子の大きさの違いによって物質を分離するのに用いられる多孔質の粒状物質であり、均一な細孔をもつ構造であり、細孔の空洞に入る小さな分子を吸収して一種のふるいの作用をする。

【0016】

このようにして形成したゼオライトフィルム11は、吸湿して飽和するとフィルム11は白濁から透明への変化が起こるので、視認する側から見てフィルム11の裏側にパターンを印刷しておけば、フィルム11が吸湿することによってパターンが視認できるようになる。

【0017】

ここで、ゼオライトフィルム単独ではフィルム表面が樹脂とゼオライトが混じり合っている状態であるため荒く、光の透過率が低くなる。また、ゼオライトフィルムのみでは大気中の水分の吸収速度は非常に速く、飽和到達時間の制御が困難であり、かつフィルム強度は劣る。

【0018】

そこで、ポリオレフィン12のような材質のフィルムを積層することによって、フィルム全体の強度を高め、かつフィルム表面の粗さを減少させ、かつゼオライト結晶凝集体の離脱を押さえ、更に吸湿による透明化をより際だたせる効果を発揮する。また、フィルムを貼り合わせることによって吸湿速度をフィルムの材質や厚さにより制御することも可能になる。なお、ここで用いるポリオレフィン12は透明のものである。

【0019】

積層用樹脂としては、LDPE（低密度ポリエチレン）、LLDPE（直鎖状低密度ポリエチレン）、PP（ポリプロピレン）、PS（ポリスチレン）、PMMA（ポリメチルメタクリレート）、ナイロン、ポリエステル（PET、PBT、PEN）、PAN（ポリアクリロニトリル）、各種共重合体（コポリマー）としてアイオノマー、EAA、EMA、EVA、EVOH、EEA、EMA、EMMAが用いられる。また、PTFE等のフッ素系樹脂も使用できる。

【0020】

また、バリアフィルム13であるポリエステルは、水分の透過に対するバリア性を有しているため、これを貼ることにより片面あるいは両面からの吸湿を制御することが更に可能となる。

なお、バリア層としては、ガスバリア性フィルムのものが好ましく、例えばアルミラミネートフィルム、アルミ蒸着フィルム、無機蒸着フィルム、Kコートフィルム（塩化ビニリデンー塩化ビニル共重合体ラックスを塗布したフィルム）、OPPフィルム（二軸延伸ポリプロピレンフィルム）、OPEフィルム（延伸ポリエチレンフィルム）等が用いられる。

また、共押出フィルム、ポリイミド、ポリカーボネート、PPS（ポリフェニレンサルファイド）、PES（ポリエーテルサルファイド）等のエンジニアプラスチック系フィル

ム、PTFE等のフッ素系樹脂フィルム等も使用できる。

これによって、フィルムの飽和到達時間を、例えば1日から100日以上も制御が可能となる。また、ポリオレフィン系フィルムの上に貼り合わせることで、より透明感を際だたせるという利点がある。

【0021】

また、パターン14印刷に用いるインキは、樹脂に対する顔料あるいは染料の重量比が、0.05～50重量%で、その膜厚は、 $1\mu\text{m}$ ～ $100\mu\text{m}$ の範囲で使用すると都合がよい。

【0022】

なお、上記例では、パターン14をバリアフィルム13の外側面に印刷しているが、ゼオライトフィルム11の反対側に積層されているポリオレフィン12の表面に印刷する場合もある。例えば、包装袋として使用し、内部に湿気を吸湿しようとする食品等の物質を入れる場合には、外側をバリアフィルム13にして、大気中の湿気が内部に侵入しにくくいうにする必要が生じるからである。

【0023】

また、上記例では、インジケータ機能付き吸湿材10のフィルム部分を、ゼオライトを含有した有機樹脂組成物を成形したゼオライトフィルム11と、該フィルム11を成形の際に、その両面に共押し出しで積層したポリオレフィン(LLDPE)12, 12と、更に一方のポリオレフィン面に積層したバリアフィルム13としてのポリエステル(この例ではPET)とで構成しているが、これ以外にも、多数の層構成があり、例えば場合によつては、図3(a)に示すように、ゼオライトフィルム11のみでも良い。

【0024】

また、図3(b)に示すように、ゼオライトフィルム11の片面にのみポリオレフィン12を積層したものでも良く、(c)に示すように、ゼオライトフィルム11の片面にのみポリエステル13を積層したものでも良い。

また、図3(d)に示すように、ゼオライトフィルム11の両面にポリオレフィン12を積層したものでも良く、(e)に示すように、ゼオライトフィルム11の両面にポリエステル13を積層したものでも良い。

またさらに、図3(f)に示すように、ゼオライトフィルム11の片面にはポリオレフィン12を、他の面にはポリエステル13を積層したものでも良く、(g)に示すように、ゼオライトフィルム11の両面にポリエステル13を積層して、一方のポリエステル13の上にのみポリオレフィン12を積層したものでも良い。

また、図3(h)に示すように、ゼオライトフィルム11の両面にポリオレフィン12を積層し、さらにその両面にポリエステル13を積層したもの良く、あるいは(i)に示すように、ゼオライトフィルム11の両面にポリエステル13を積層し、その上にポリオレフィン12を積層したものでも良い。

また、ゼオライトフィルムに積層させる熱可塑性樹脂、バリアフィルムの層構成はこれに限定されるものではない。

【0025】

上記何れのフィルムを使用するにしても、インジケータとしてのパターン14は、これを視認する側から見て、ゼオライトフィルム11の裏側に印刷するのが通常である。なお、パターン14の色をゼオライトフィルム11の白濁した色と同じ色にするならば、視認する側から見て、ゼオライトフィルム11の表側に印刷して利用することも可能である。ゼオライトフィルム11が白濁状態ではパターン14は背景の色に同化して見えず、ゼオライトフィルム11が透明になると、見えてくることになる。

また、印刷層はその目的や用途に応じて上記積層フィルムの任意の場所に設けることが可能である。

【0026】

なお、ゼオライトフィルム11が飽和吸湿状態になったときに、パターン14が視認しにくいという場合には、図2(a)に示すように、インジケータ機能付き吸湿材10のパ

ターン14印刷面にアルミニウム（A1）箔16を接着剤15にて貼り付けて使用すると反射率が上がり、より白濁状態が濃くなる。

図2（b）に示すように、ゼオライトフィルム11が水分を吸湿する前は、白濁して白く見えていたものが、吸湿することにより透明化して、アルミニウムによる反射光の中にパターンが14（図ではKPの文字）が浮かび上がった状態で視認することができる。

【0027】

この場合、内部に収納した物質の吸湿乾燥用として包装袋とするのは難しい。内部が視認できなくなるからである。従って、このインジケータ機能付き吸湿材10を一枚のシートにして、目的の吸湿乾燥用の物質とともに透明袋に入れて、外部から視認するようする方法がある。

【0028】

なお、上記ゼオライトフィルム11は、低分子有機物が分解する温度において成形しても、インジケータ機能の劣化がない。

【実施例】

【0029】

A. インジケータ機能付き吸湿材10のフィルム部分の吸湿テストを行った。

フィルムは、図1に示す構成のもので、経時による吸湿量、透明化に伴う可視光の透過率について測定した。テストは25℃、相対湿度20%下で行った。その結果を表1に示す。フィルムの吸湿量が18%を超えると、可視光の透過率は70%を超え、フィルムの透明化が顕著となる。

この場合、吸湿量の計算式は、

$$(水分増加量 / フィルム中のゼオライトの量) \times 100$$

である。

なお、水分増加量=計測時のフィルムの重量-計測初期のフィルムの重量

フィルム中のゼオライトの量=最初のフィルムの重量-樹脂の重量

とする。

【0030】

【表1】

吸湿テスト

	吸湿率 (%)	透過率 (%)	フィルムの状態
実験開始直後	0	30	白濁
3日経過後	12.0	60	白濁
6日経過後	18.8	70	フィルムの透明化顕著
8日経過後	21.5	80	フィルム飽和

【0031】

B. インジケータテストを行った。

図2（a）に示すような構成のものであるが、フィルムはゼオライトフィルム11のみである。ゼオライトフィルム11に直接パターンを印刷し、これに接着剤を塗布し反射フィルムとしてアルミニウム箔（A1）を貼り付けた。パターン印刷に用いたインキは、樹脂に対する顔料あるいは染料の重量比が、0.05～50重量%で、その膜厚は、1μm～100μmの範囲でおこなった。その結果を表2に示す。

A1を吸湿フィルムの下部に貼ることによって、光の反射率を上昇させ、透明化による印字パターンの発現をより際だたせている。実験は白色、イエロー、マゼンタ、シアン、黒色にて実施し、それぞれのパターンの発現時間について測定を行った。表2は白色パターンのインジケータテストである。

吸湿方向は、フィルム上面からのみである。

環境によって、飽和到達時間は異なるが、パターンが発現するのに要する吸湿率はほぼ一致している。

表1の経過時間と、インジケータの発現時間は異なるものの吸湿率は、ほぼ同じである。

【0032】

【表2】

インジケータテスト

試験環境	23°C、50%RH	25°C、20%RH
パターン発現までの 経過日数	5日	8日
吸湿率	17.8%	17.4%

【0033】

C. 印刷パターンの光学濃度数字化テストを行った。

フィルム構成は、図2に示す構成であり、ゼオライトフィルム11の厚さは60μm、ポリオレフィンの厚さは両面とも20μm、ポリエステルの厚さは15μmである。印刷パターンは白色である。

試験環境は、温度23°C、相対湿度50%である。結果を表3に示す。

測定器: Macbeth RD918

4日目にフィルムが透明化してきた。すなわち、このように構成すると、フィルムの白濁した状態と透明化した状態との光学濃度数値の差が0.05以上になると印刷したパターンが発現することになる。

【0034】

【表3】

光学濃度数字化テスト

	パターン濃度	A1基材濃度	パターン発現
1日目	0.18	0.18	×
2日目	0.20	0.20	×
3日目	0.23	0.21	×
5日目	0.27	0.22	○
6日目	0.31	0.22	○

パターン濃度は図2の符号12、A1基材濃度は図2の符号16

注：×はフィルムが白濁状態でパターンが目視できず、○はフィルムが透明化してパターンが目視できる状態を示す。

【産業上の利用可能性】

【0035】

本発明に係るインジケータ機能付き吸湿材は、フィルム状にすることで、機能性包装材として電子部材や食品医薬品等の乾燥剤（吸湿材）付き包装袋として利用可能であり、またこれらに制限されるものではない。

【図面の簡単な説明】

【0036】

【図1】本発明に係るインジケータ機能付き吸湿材の実施の形態の断面図である。

【図2】本発明に係るインジケータ機能付き吸湿材の他の実施の形態の断面図で、(a)は断面図、(b)はその作用の説明図である。

【図3】本発明に係るインジケータ機能付き吸湿材のうちフィルム部分の変形型を示す図である。

【符号の説明】

【0037】

- 10 インジケータ機能付き吸湿材
- 11 ゼオライトフィルム
- 12 熱可塑性樹脂
- 13 バリアフィルム
- 14 パターン
- 15 接着剤
- 16 アルミニウム箔

【書類名】 図面
【図 1】

【図 2】

【図3】

【書類名】要約書

【要約】

【課題】 重金属である塩化コバルトや、あるいは低分子有機物等を用いないでインジケータ機能を有する吸湿材（乾燥材）の提供することにある。

【解決手段】 ゼオライトを5～80重量%含有する樹脂層11の少なくとも一面にポリオレフィン12を積層し、その少なくとも一面にバリアフィルム13を積層して、さらにその上に文字、柄、絵等からなるパターン14を印刷し、該フィルム11の吸湿による透明化により該パターンを発現させるようにした。

【選択図】 図1

特願 2003-404271

出願人履歴情報

識別番号

[000162113]

1. 変更年月日

[変更理由]

住 所

氏 名

1990年 8月28日

新規登録

東京都文京区小石川4丁目14番12号

共同印刷株式会社