Data-X Spring 2019: Homework 06

Name: Zhang Jiaheng

SID: 3034453700

Course (IEOR 135/290): IEOR 135

Machine Learning

In this homework, you will do some exercises with prediction. We will cover these algorithms in class, but this is for you to have some hands on with these in scikit-learn. You can refer -

https://github.com/ikhlaqsidhu/data-x/blob/master/05a-tools-predicition-titanic/titanic.ipynb (https://github.com/ikhlaqsidhu/data-x/blob/master/05a-tools-predicition-titanic/titanic.ipynb)

Display all your outputs.

In [1]:

```
import numpy as np
import pandas as pd
```

In [2]:

```
# machine learning libraries
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.linear_model import Perceptron
from sklearn.tree import DecisionTreeClassifier
```

- 1. Read diabetesdata.csv file into a pandas dataframe. About the data:
 - 1. TimesPregnant: Number of times pregnant
 - 2. glucoseLevel: Plasma glucose concentration a 2 hours in an oral glucose tolerance test
 - 3. **BP**: Diastolic blood pressure (mm Hg)
 - 4. insulin: 2-Hour serum insulin (mu U/ml)
 - 5. **BMI**: Body mass index (weight in kg/(height in m)^2)
 - 6. pedigree: Diabetes pedigree function
 - 7. Age: Age (years)
 - 8. IsDiabetic: 0 if not diabetic or 1 if diabetic)

In [3]:

```
#Read data & print the head
df = pd.read_csv('diabetesdata.csv')
df.head()
```

Out[3]:

	TimesPregnant	glucoseLevel	ВР	insulin	ВМІ	Pedigree	Age	IsDiabetic
0	6	148.0	72	0	33.6	0.627	50.0	1
1	1	NaN	66	0	26.6	0.351	31.0	0
2	8	183.0	64	0	23.3	0.672	NaN	1
3	1	NaN	66	94	28.1	0.167	21.0	0
4	0	137.0	40	168	43.1	2.288	33.0	1

2. Calculate the percentage of Null values in each column and display it.

In [5]:

```
for column in df:
    ratio = df[column].isna().sum()/len(df[column])
    print("{}: {}%".format(column, ratio*100))
```

TimesPregnant: 0.0%

glucoseLevel: 4.42708333333333334%

BP: 0.0% insulin: 0.0% BMI: 0.0%

Pedigree: 0.0% Age: 4.296875% IsDiabetic: 0.0%

3. Split data into train_df and test_df with 15% as test.

In [6]:

```
from sklearn.model_selection import train_test_split
train_df, test_df = train_test_split(df, test_size=0.15)
print(train_df)
print(test_df)
```

//03/2019				nw6_s	p2019		
,	TimesPregnant	glucoseLevel	BP	insulin	BMI	Pedigree	Age
\							
69	4	146.0	85	100	28.9	0.189	27.0
364	4	147.0	74	293	34.9	0.385	30.0
558	11	103.0	68	0	46.2	0.126	42.0
741	3	102.0	44	94	30.8	0.400	26.0
170	6	102.0	82	0	30.8	0.180	36.0
699	4	118.0	70	0	44.5	0.904	26.0
123	5	132.0	80	0	26.8	0.186	69.0
451	2	134.0	70	0	28.9	0.542	23.0
159	17	163.0	72	114	40.9	0.817	47.0
75	1	0.0	48	0	24.7	0.140	NaN
223	7	142.0	60	190	28.8	0.687	61.0
336	0	117.0	0	0	33.8	0.932	44.0
						0.138	
609	1	111.0	62	182	24.0		23.0
247	0	165.0	90	680	52.3	0.427	23.0
532	1	86.0	66	65	41.3	0.917	29.0
155	7	152.0	88	0	50.0	0.337	36.0
636	5	104.0	74	0	28.8	0.153	48.0
283	7	161.0	86	0	30.4	0.165	47.0
410	6	102.0	90	0	35.7	0.674	28.0
338	9	152.0	78	171	34.2	0.893	33.0
241	4	91.0	70	88	33.1	0.446	22.0
591	2	112.0	78	140	39.4	0.175	24.0
279	2	108.0	62	278	25.3	0.881	22.0
474	4	114.0	64	0	28.9	0.126	24.0
316	3	99.0	80	64	19.3	0.284	30.0
665	1	112.0	80	132	34.8	0.217	24.0
404	5	168.0	64	0	32.9	0.135	41.0
	3						
588		176.0	86	156	33.3	1.154	52.0
164	0	131.0	88	0	31.6	0.743	32.0
266	0	138.0	0	0	36.3	0.933	25.0
• •	• • •	• • •	• •	• • •	•••	• • •	• • •
425	4	184.0	78	277	37.0	0.264	31.0
491	2	89.0	90	0	33.5	0.292	42.0
12	10	139.0	80	0	27.1	1.441	57.0
51	1	101.0	50	36	24.2	0.526	26.0
169	3	111.0	90	78	28.4	0.495	29.0
753	0	181.0	88	510	43.3	0.222	26.0
59	0	105.0	64	142	41.5	0.173	22.0
713	0	NaN	58	291	26.4	0.352	21.0
321	3	112.0	74	0	31.6	0.197	25.0
417	4	144.0	82	0	38.5	0.554	37.0
729	2	92.0	52	0	30.1	0.141	22.0
312	2	155.0	74	96	26.6	0.433	27.0
526	1	97.0	64	82	18.2	0.299	21.0
380	1	107.0	72	82	30.8	0.821	24.0
	5						
286		155.0	84	545	38.7	0.619	34.0
252	2	90.0	80	55	24.4	0.249	24.0
743	9	140.0	94	0	32.7	0.734	45.0
539	3	129.0	92	155	36.4	0.968	32.0
429	1	95.0	82	180	35.0	0.233	43.0
457	5	86.0	68	71	30.2	0.364	24.0
293	1	128.0	48	194	40.5	0.613	24.0
196	1	105.0	58	0	24.3	0.187	21.0
528	0	117.0	66	188	30.8	0.493	22.0
37	9	102.0	76	0	32.9	0.665	46.0
301	2	144.0	58	135	31.6	0.422	25.0
485	0	135.0	68	250	42.3	0.365	24.0
471	0	137.0	70	0	33.2	0.170	22.0
165	6	104.0	74	156	29.9	0.722	41.0
100	U	104.0	/ =	130	2000	0.122	41.0

47	2	71.0 70	0 28.0	0.586 22.0
617	2	68.0 62	15 20.1	0.257 23.0

	IsDiabetic
69	0
364	0
558	0
741	0
170 699	1
123	0
451	1
159	1
75	0
223	0
336	0
609	0
247	0
532	0
155	1
636	0
283	1
410 338	0 1
241	0
591	0
279	0
474	0
316	0
665	0
404	1
588	1
164	1
266	1
425	1
423	0
12	0
51	0
169	0
753	1
59	0
713	0
321	1
417	1
729	0
312 526	1
380	0
286	0
252	0
743	1
539	1
429	1
457	0
293	1
196	0
528	0
37 301	1 1
485	1
	-

[652	rows x 8 colum	ıns]					
	TimesPregnant	glucoseLevel	BP	insulin	BMI	Pedigree	Age
\	_						
377	1	87.0	60	75	37.2	0.509	22.0
465	0	124.0	56	105	21.8	0.452	21.0
619	0	119.0	0	0	32.4	0.141	24.0
662	8	167.0	106	231	37.6	0.165	43.0
675	6	195.0	70	0	30.9	0.328	31.0
512	9	91.0	68	0	24.2	0.200	58.0
589	0	73.0	0	0	21.1	0.342	25.0
261	3	141.0	0	0	30.0	0.761	27.0
398	3	82.0	70	0	21.1	0.389	25.0 22.0
346 433	2	139.0	46 75	83 0	28.7	0.654	29.0
433 46	1	139.0 146.0	75 56	0	25.6 29.7	0.167	29.0
420	1	119.0	88	170	45.3	0.564 0.507	26.0
622	6	183.0	94	0	40.8	1.461	45.0
407	0	101.0	62	0	21.9	0.336	25.0
573	2	98.0	60	120	34.7	0.198	22.0
245	9	184.0	85	0	30.0	1.213	49.0
258	1	193.0	50	375	25.9	0.655	24.0
464	10	115.0	98	0	24.0	1.022	34.0
635	13	104.0	72	0	31.2	0.465	38.0
146	9	57.0	80	0	32.8	0.096	41.0
453	2	119.0	0	0	19.6	0.832	72.0
544	1	88.0	78	76	32.0	0.365	29.0
34	10	122.0	78	0	27.6	0.512	NaN
565	2	95.0	54	88	26.1	0.748	22.0
616	6	117.0	96	0	28.7	0.157	NaN
615	3	106.0	72	0	25.8	0.207	27.0
652	5	123.0	74	77	34.1	0.269	NaN
402	5	136.0	84	88	35.0	0.286	35.0
472	0	119.0	66	0	38.8	0.259	22.0
• •	• • •	•••		•••	•••	•••	•••
167	4	120.0	68	0	29.6	0.709	34.0
519	6	129.0	90	326	19.6	0.582	60.0
590	11	111.0	84	0	46.8	0.925	45.0
127	1	118.0	58	94	33.3	0.261	23.0
631	0	102.0	78	90	34.5	0.238	24.0
495	6	166.0	74	0	26.6	0.304	66.0
6	3	78.0	50	88	31.0	0.248	26.0
725	4	NaN	78	0	39.4	0.236	38.0
288	4	96.0	56	49	20.8	0.340	NaN
458	10	148.0	84	237	37.6	1.001	51.0
682	0	95.0	64	105	44.6	0.366	22.0
756	7	137.0	90	0	32.0	0.391	39.0
64	7	114.0	66	0	32.8	0.258	42.0
611	3	174.0	58	194	32.9	0.593	36.0
343	5	122.0	86	0	34.7	0.290	33.0
535	4	132.0	0	0	32.9	0.302	23.0
376	0	98.0	82	84	25.2	0.299	22.0
607	1	92.0	62	41	19.5	0.482	25.0
610	3	106.0	54	158	30.9	0.292	24.0
595	0	188.0	82	185	32.0	0.682	22.0
603	7	150.0	78	126	35.2	0.692	54.0
751	1	121.0	78	74	39.0	0.261	28.0

07/03/2019				hw6_sp2	019		
600	1	108.0	88	0	27.1	0.400	24.0
639	1	100.0	74	46	19.5	0.149	28.0
390	1	100.0	66	196	32.0	0.444	42.0
549	4	189.0	110	0	28.5	0.680	37.0
62	5	44.0	62	0	25.0	0.587	36.0
677	0	93.0	60	0	35.3	0.263	25.0
210	2	81.0	60	0	27.7	0.290	25.0
177	0	129.0	110	130	67.1	0.319	26.0

210 177	
	IsDiabetic
377	0
465	0
619	1
662	1
675	1
512	0
589	0
261	1
398 346	0
433	0
46	0
420	0
622	0
407	0
573	0
245	1
258	0
464	0
635	1
146 453	0
544	0
34	0
565	0
616	0
615	0
652	0
402	1
472	0
•• 167	•••
167 519	0
590	1
127	0
631	0
495	0
6	1
725	0
288	0
458	1
682	0
756 64	0 1
611	1
343	0
535	1
376	0
607	0
610	0
595	1

603 1 751 0 600 0 639 0	
600 0 639 0	
639 0	
390 0	
549 0	
62 0	
677 0	
210 0	
177 1	

4. Display the means of the features in train and test sets. Replace the null values in train_df and test_df with the mean of EACH feature column separately for train and test. Display head of the dataframes.

In [7]:

```
for column in train df:
    print("%s, %f"%(column, train_df[column].mean()))
print('\ntrain df complete')
print('starting mean for test_df\n')
for column2 in test df:
    print("%s, %f"%(column2, test df[column2].mean()))
###We can see which columns have null values in the above qn(2)
train df.fillna(value={'glucoseLevel':120.849359}, inplace=True)
train df.fillna(value={'Age':33.410543}, inplace=True)
test df.fillna(value={'glucoseLevel':121.963636}, inplace=True)
test_df.fillna(value={'Age':33.027523}, inplace=True)
###Double Check
print('\nDouble Check\n')
for column in train df:
    ratio = train df[column].isna().sum()/len(train df[column])
    print("{}: {}%".format(column, ratio*100))
print('\ntrain df complete')
print('starting mean for test df\n')
for column in test_df:
    ratio = test df[column].isna().sum()/len(test df[column])
    print("{}: {}%".format(column, ratio*100))
```

TimesPregnant, 3.838957 glucoseLevel, 121.329053 BP, 69.012270 insulin, 80.354294 BMI, 32.098620 Pedigree, 0.475106 Age, 33.435897 IsDiabetic, 0.365031 train df complete starting mean for test df TimesPregnant, 3.879310 glucoseLevel, 119.261261 BP, 69.629310 insulin, 76.681034 BMI, 31.396552 Pedigree, 0.453724 Age, 32.891892 IsDiabetic, 0.258621 Double Check TimesPregnant: 0.0% glucoseLevel: 0.0% BP: 0.0% insulin: 0.0% BMI: 0.0% Pedigree: 0.0% Age: 0.0% IsDiabetic: 0.0% train df complete starting mean for test df TimesPregnant: 0.0% glucoseLevel: 0.0% BP: 0.0% insulin: 0.0% BMI: 0.0% Pedigree: 0.0% Age: 0.0% IsDiabetic: 0.0% /Users/jiahengzhang/anaconda3/lib/python3.7/site-packages/pandas/cor e/generic.py:5434: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/panda s-docs/stable/indexing.html#indexing-view-versus-copy

5. Split train_df & test_df into X_train, Y_train and X_test, Y_test. Y_train and Y test should only have the column we are trying to predict, IsDiabetic.

self. update inplace(new data)

In [8]:

```
X_train = train_df['IsDiabetic']
Y_train = train_df['IsDiabetic']
X_test = test_df.iloc[:,:7]
Y_test = test_df['IsDiabetic']

print('\nX_train\n')
print(X_train)
print('\nY_train\n')
print(Y_train)
print('\nX_test\n')
print(X_test)
print('\nY_test\n')
print(Y_test)

print(Y_test)
print(Y_train.shape, Y_train.shape, X_test.shape, Y_test.shape)
```

X_train

_							
3	TimesPregnant	glucoseLevel	BP	insulin	BMI	Pedigree	
Age 69	4	146.000000	85	100	28.9	0.189	27.00
0000 364	4	147.000000	74	293	34.9	0.385	30.00
0000	-			273			
558 0000	11	103.000000	68	0	46.2	0.126	42.00
741	3	102.000000	44	94	30.8	0.400	26.00
0000 170	6	102.000000	82	0	30.8	0.180	36.00
0000							
699 0000	4	118.000000	70	0	44.5	0.904	26.00
123	5	132.000000	80	0	26.8	0.186	69.00
0000 451	2	134.000000	70	0	28.9	0.542	23.00
0000							
159 0000	17	163.000000	72	114	40.9	0.817	47.00
75	1	0.000000	48	0	24.7	0.140	33.41
0543 223	7	142.000000	60	190	28.8	0.687	61.00
0000	·						
336 0000	0	117.000000	0	0	33.8	0.932	44.00
609	1	111.000000	62	182	24.0	0.138	23.00
0000	0	165 000000	0.0	600	E2 2	0 427	22.00
247 0000	U	165.000000	90	680	52.3	0.427	23.00
532	1	86.000000	66	65	41.3	0.917	29.00
0000 155	7	152.000000	88	0	50.0	0.337	36.00
0000	F	104 00000	7.4	0	20.0	0 153	40.00
636 0000	5	104.000000	74	0	28.8	0.153	48.00
283	7	161.000000	86	0	30.4	0.165	47.00
0000 410	6	102.000000	90	0	35.7	0.674	28.00
0000							
338 0000	9	152.000000	78	171	34.2	0.893	33.00
241	4	91.000000	70	88	33.1	0.446	22.00
0000 591	2	112.000000	78	140	39.4	0.175	24.00
0000	2	100 00000	60	270	25 2	0 001	22.00
279 0000	2	108.000000	62	278	25.3	0.881	22.00
474	4	114.000000	64	0	28.9	0.126	24.00
0000 316	3	99.000000	80	64	19.3	0.284	30.00
0000	1	112 00000	0.0	122	24.0	0 217	24 00
665 0000	1	112.000000	80	132	34.8	0.217	24.00
404 0000	5	168.000000	64	0	32.9	0.135	41.00
588	3	176.000000	86	156	33.3	1.154	52.00
0000 164	0	121 00000	0.0	0	31.6	0 742	32 00
104	U	131.000000	88	U	21.0	0.743	32.00

68.000000 0.257 23.00 20.1

[652 rows x 7 columns]

Y_train

. .

Name: IsDiabetic, Length: 652, dtype: int64

X_test

	TimesPregnant	glucoseLevel	BP	insulin	BMI	Pedigree	
Age							
377	1	87.000000	60	75	37.2	0.509	22.0
000	00						
465	0	124.000000	56	105	21.8	0.452	21.0
000	00						
619	0	119.000000	0	0	32.4	0.141	24.0
000						-	
662		167.000000	106	231	37.6	0.165	43.0
000		107.000000	100	231	37.0	0.103	13.0
675		195.000000	70	0	30.9	0.328	31.0
		193.000000	70	U	30.9	0.320	31.0
000		01 000000	60	0	0.4.0	0 000	50 0
512		91.000000	68	0	24.2	0.200	58.0
000							
589		73.000000	0	0	21.1	0.342	25.0
000							
261	3	141.000000	0	0	30.0	0.761	27.0
000	00						
398	3	82.000000	70	0	21.1	0.389	25.0
000	00						
346	1	139.000000	46	83	28.7	0.654	22.0
000							
433		139.000000	75	0	25.6	0.167	29.0
000			, 0	· ·		00207	
46	1	146.000000	56	0	29.7	0.564	29.0
000		140.000000	30	U	27.1	0.304	27.0
420		119.000000	0.0	170	45.3	0.507	26.0
		119.000000	88	170	45.5	0.307	20.0
000		100 00000	0.4	•	40.0	1 461	45.0
622		183.000000	94	0	40.8	1.461	45.0
000							
407		101.000000	62	0	21.9	0.336	25.0
000							
573	2	98.000000	60	120	34.7	0.198	22.0
000	00						
245	9	184.000000	85	0	30.0	1.213	49.0
000	00						
258	1	193.000000	50	375	25.9	0.655	24.0
000	00						
464		115.000000	98	0	24.0	1.022	34.0
000				-			
635		104.000000	72	0	31.2	0.465	38.0
000		104.000000	, 2	Ū	31.2	0.403	30.0
146		57.000000	80	0	32 0	0.096	/1 O
		57.000000	80	0	32.8	0.096	41.0
000		110 00000	^	^	10 6	0 000	70.0
453		119.000000	0	0	19.6	0.832	72.0
000				_			
544		88.000000	78	76	32.0	0.365	29.0
000	00						

 512 33. 748 22. 157 33. 207 27. 269 33. 286 35. 259 22. 	.0
748 22. 157 33. 207 27. 269 33. 286 35.	.0
157 33 207 27 269 33 286 35 2	.0
207 27.269 33.286 35.	.0
207 27.269 33.286 35.	.0
269 33 286 35	.0
269 33 286 35	.0
286 35	
	.0
	. 0
259 22	
239 22	Λ
	• 0
709 34	. 0
5 00 60	•
582 60	• 0
925 45	. 0
261 23	. 0
000 04	•
238 24	• 0
304 66	. 0
248 26	.0
006 00	•
236 38	• 0
340 33	. 0
001 51	.0
266 00	•
366 22	• 0
391 39	. 0
258 42	. 0
F02 26	^
593 36	• 0
290 33	. 0
302 23	. 0
200 22	0
299 22	• 0
482 25	. 0
292 24	. 0
602 22	٥
002 22	• 0
692 54	. 0
261 28	. 0
400 24	^
	709 34 582 60 925 45 261 23 238 24 304 66 248 26 236 38 340 33 001 51 366 22 391 39 258 42 593 36 290 33 302 23 299 22 482 25 292 24 682 22 692 54 261 28

00000							
639 00000	1	100.000000	74	46	19.5	0.149	28.0
390	1	100.000000	66	196	32.0	0.444	42.0
00000 549	4	189.000000	110	0	28.5	0.680	37.0
00000 62	5	44.000000	62	0	25.0	0.587	36.0
00000 677	0	93.000000	60	0	35.3	0.263	25.0
00000 210	2	81.000000	60	0	27.7	0.290	25.0
00000	_						
177 00000	0	129.000000	110	130	67.1	0.319	26.0

[116 rows x 7 columns]

Y_test

```
07/03/2019
                                                      hw6_sp2019
   682
           0
   756
           0
   64
           1
   611
   343
           0
   535
           1
   376
           0
   607
           0
   610
           0
   595
           1
   603
           1
   751
           0
   600
           0
   639
           0
   390
           0
   549
           0
   62
           0
   677
           0
   210
   177
           1
   Name: IsDiabetic, Length: 116, dtype: int64
   (652, 7) (652,) (116, 7) (116,)
```

6. Use this dataset to train perceptron, logistic regression and random forest models using 15% test split. Report training and test accuracies. Try different hyperparameter values for these models and see if you can improve your accuracies.

```
In [9]:
```

FutureWarning)

```
# 6a. Logistic Regression
logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
Y_pred = logreg.predict(X_test)
acc_logreg = sum(Y_pred == Y_test)/len(Y_test)*100

print('Logistic Regression labeling accuracy:', str(round(acc_logreg,2)),'%')

Logistic Regression labeling accuracy: 81.9 %

/Users/jiahengzhang/anaconda3/lib/python3.7/site-packages/sklearn/li
near_model/logistic.py:433: FutureWarning: Default solver will be ch
anged to 'lbfgs' in 0.22. Specify a solver to silence this warning.
```

In [13]:

```
# 6b. Perceptron
perceptron = Perceptron(penalty='elasticnet',alpha=0.01,max_iter=100,early_stopp
ing=True,validation_fraction=0.01)
perceptron.fit(X_train, Y_train)
acc_perceptron = perceptron.score(X_test, Y_test)

print('Perceptron labeling accuracy:', str(round(acc_perceptron*100,2)),'%')
```

Perceptron labeling accuracy: 68.1 %

/Users/jiahengzhang/anaconda3/lib/python3.7/site-packages/sklearn/li near_model/stochastic_gradient.py:183: FutureWarning: max_iter and t ol parameters have been added in Perceptron in 0.19. If max_iter is set but tol is left unset, the default value for tol in 0.19 and 0.2 0 will be None (which is equivalent to -infinity, so it has no effec t) but will change in 0.21 to 1e-3. Specify tol to silence this warn ing.

FutureWarning)

In [16]:

```
# 6c. Random Forest
random_forest = RandomForestClassifier(n_estimators=700)
random_forest.fit(X_train, Y_train)
acc_rf = random_forest.score(X_test, Y_test)
print('Random Forest labelling accuracy:', str(round(acc_rf*100,2)),'%')
```

Random Forest labelling accuracy: 81.9 %

- 7. For your logistic regression model -
- a. Compute the log probability of classes in IsDiabetic for the first 10 samples of your train set and display it. Also display the predicted class for those samples from your logistic regression model trained before.

```
In [26]:
```

```
ten_samples_trainX = X_train[:10]
result_trainY = logreg.predict(ten_samples_trainX)
ten_samples_trainY = Y_train[:10]
log_likelihood_elements = logreg.predict_proba(ten_samples_trainX)
print('\nLog Probabilities\n')
print(log_likelihood_elements)
print('\nPredicted Values\n')
print(result_trainY)
```

```
Log Probabilities

[[0.64142553 0.35857447]
  [0.52323052 0.47676948]
  [0.4628212 0.5371788]
  [0.75387189 0.24612811]
  [0.79412337 0.20587663]
  [0.44732244 0.55267756]
  [0.61172379 0.38827621]
  [0.64484288 0.35515712]
  [0.06503828 0.93496172]
  [0.99072795 0.00927205]]

Predicted Values

[0 0 1 0 0 1 0 0 1 0]
```

b. Now compute the log probability of classes in IsDiabetic for the first 10 samples of your test set and display it. Also display the predicted class for those samples from your logistic regression model trained before. (using the model trained on the training set)

```
In [27]:
```

```
ten_samples_testX = X_test[:10]
result_testY = logreg.predict(ten_samples_testX)
ten_samples_testY = Y_test[:10]
log_likelihood_elements_test = logreg.predict_proba(ten_samples_testX)
print('\nLog Probabilities\n')
print(log_likelihood_elements_test)
print('\nPredicted Values\n')
print(result_testY)
```

```
Log Probabilities
```

Predicted Values

[0 0 0 1 1 0 0 1 0 0]

c. What can you interpret from the log probabilities and the predicted classes?

As long as the log probability of a certain label is above 50%, the model would choose to output the label as the predicted label

There is still a significant amount of uncertainty in the prediction, as we can see that some of the probabilities for each label is similar (50+%) to 40+%

8. Is mean imputation is the best type of imputation (as we did in 4.) to use? Why or why not? What are some other ways to impute the data?

Your answer here

```
In [29]:
```

```
Mean imputation has an advantage of keeping the same mean and
same sample size, but this could be inaccurate as this could introduce
inaccurate data if the value is actually significantly larger/lower
than the mean.
Some other methods include substitution: Impute the value from a
new individual who was not selected to be in the sample.
Hot Deck Implementation: A randomly chosen value from an individual
in the sample who has similar values on other variables.
Cold deck imputation: A systematically chosen value from an
individual who has similar values on other variables.
Regression imputation: The predicted value obtained by
regressing the missing variable on other variables.
Stochastic regression imputation: The predicted value
from a regression plus a random residual value.
Interpolation and extrapolation: An estimated value from other
observations from the same individual. It usually only works in
longitudinal data.
```

```
File "<ipython-input-29-bdfba6ebf238>", line 1
Mean imputation has an advantage of keeping the same mean and
^
```

SyntaxError: invalid syntax

Extra Credit (2 pts) - MANDATORY for students enrolled in IEOR 290

9. Implement the K-Nearest Neighbours (https://en.wikipedia.org/wiki/K-nearest neighbors algorithm)) algorithm for k=1 from scratch in python (do not use KNN from existing libraries). KNN uses Euclidean distance to find nearest neighbors. Split your dataset into test and train as before. Also fill in the null values with mean of features as done earlier. Use this algorithm to predict values for 'IsDiabetic' for your test set. Display your accuracy.

```
In [ ]:
```