بسم الله الرحمن الرحيم

نظریه علوم کامپیوتر

نظریه علوم کامپیوتر - بهار ۱۴۰۰ - ۱۴۰۱ - جلسه هفدهم: محاسبات تصادفی
Theory of computation - 002 - S17 - BPP

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Pr[branch b] = 2^{-k} where b has k coin flips

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Pr[branch
$$b$$
] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{b \text{ accepts}} Pr[branch b]$$

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Pr[branch b] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{b \text{ accepts}} Pr[branch b]$$

Pr[M rejects w] = 1 - Pr[M accepts w]

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Pr[branch
$$b$$
] = 2^{-k} where b has k coin flips

$$\Pr[M \text{ accepts } w] = \sum_{\substack{b \text{ accepts}}} \Pr[b \text{ ranch } b]$$

$$Pr[M \text{ rejects } w] = 1 - Pr[M \text{ accepts } w]$$

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A$] $\leq \epsilon$

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Pr[branch
$$b$$
] = 2^{-k} where b has k coin flips

$$\Pr[M \text{ accepts } w] = \sum_{\substack{b \text{ accepts}}} \Pr[b \text{ ranch } b]$$

$$Pr[M \text{ rejects } w] = 1 - Pr[M \text{ accepts } w]$$

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A \] \leq \epsilon$ i.e., $w \in A \to \Pr[M]$ rejects $w \] \leq \epsilon$ $w \notin A \to \Pr[M]$ accepts $w \] \leq \epsilon$.

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Pr[branch
$$b$$
] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{b \text{ accepts}} Pr[branch b]$$

$$Pr[M \text{ rejects } w] = 1 - Pr[M \text{ accepts } w]$$

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A \] \leq \epsilon$ i.e., $w \in A \to \Pr[M]$ rejects $w \] \leq \epsilon$ $w \notin A \to \Pr[M]$ accepts $w \] \leq \epsilon$.

The Class BPP

Defn: BPP = $\{A \mid \text{ some poly-time PTM decides } A \text{ with error } \epsilon = \frac{1}{3} \}$

Amplification lemma: If M_1 is a poly-time PTM with error $\epsilon_1 < \frac{1}{2}$ then,

for any $0<\epsilon_2<\frac{1}{2}$, there is an equivalent poly-time PTM M_2 with error ϵ_2 .

Can strengthen to make $\epsilon_2 < 2^{-\text{poly}(n)}$.

Proof idea: $M_2 =$ "On input w

1. Run M_1 on \overline{w} for k times and output the majority response."

Details: Calculation to obtain k and the improved error probability.

Significance: Can make the error probability so small it is negligible.

The Class BPP

Defn: BPP = $\{A \mid \text{ some poly-time PTM decides } A \text{ with error } \epsilon = \frac{1}{3} \}$

Amplification lemma: If M_1 is a poly-time PTM with error $\epsilon_1 < \frac{1}{2}$ then,

for any $0<\epsilon_2<\frac{1}{2}$, there is an equivalent poly-time PTM M_2 with error ϵ_2 .

Can strengthen to make $\epsilon_2 < 2^{-\text{poly}(n)}$.

Proof idea: $M_2 =$ "On input w

1. Run M_1 on \overline{w} for k times and output the majority response."

Details: Calculation to obtain k and the improved error probability.

Significance: Can make the error probability so small it is negligible.

Check-in 23.1

Which of these are known to be true? Check all that apply.

- (a) BPP is closed under union.
- (b) BPP is closed under complement.
- (c) $P \subseteq BPP$
- (d) $BPP \subseteq PSPACE$

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes x_1, \ldots, x_m describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes x_1, \ldots, x_m describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For $x_1 = 1$, $x_2 = 0$, $x_3 = 1$

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes x_1, \ldots, x_m describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For $x_1 = 1$, $x_2 = 0$, $x_3 = 1$ we have f(101) = 0 = 0 output.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes x_1, \ldots, x_m describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For $x_1 = 1$, $x_2 = 0$, $x_3 = 1$ we have f(101) = 0 = 0 output.

BPs are equivalent if they describe the same Boolean function.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes $x_1, ..., x_m$ describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$ we have $f(101) = 0 = 0$ output.

BPs are equivalent if they describe the same Boolean function.

Defn:
$$EQBP = \{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent BPs (written } B_1 \equiv B_2) \}$$

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes $x_1, ..., x_m$ describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$ we have $f(101) = 0 = 0$ output.

BPs are equivalent if they describe the same Boolean function.

Defn:
$$EQBP = \{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent BPs (written } B_1 \equiv B_2) \}$$

Theorem: EQBP is coNP-complete (on pset 6)

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes $x_1, ..., x_m$ describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$ we have $f(101) = 0 = 0$ output.

BPs are equivalent if they describe the same Boolean function.

Defn:
$$EQBP = \{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent BPs (written } B_1 \equiv B_2) \}$$

Theorem: EQBP is coNP-complete (on pset 6)

$$EQBP \in BPP$$
?

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes $x_1, ..., x_m$ describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$ we have $f(101) = 0 = 0$ output.

BPs are equivalent if they describe the same Boolean function.

Defn:
$$EQBP = \{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent BPs (written } B_1 \equiv B_2) \}$$

Theorem: EQBP is coNP-complete (on pset 6)

 $EQBP \in BPP$? Unknown. That would imply $NP \subseteq BPP$ and would be surprising!

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes $x_1, ..., x_m$ describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$ we have $f(101) = 0 = 0$ output.

BPs are equivalent if they describe the same Boolean function.

Defn:
$$EQBP = \{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent BPs (written } B_1 \equiv B_2) \}$$

Theorem: EQBP is coNP-complete (on pset 6)

 $EQBP \in BPP$? Unknown. That would imply NP \subseteq BPP and would be surprising! Instead, consider a restricted problem.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

BP B with query nodes $x_1, ..., x_m$ describes a Boolean function

$$f: \{0,1\}^m \to \{0,1\}:$$

Follow the path designated by the query nodes' outgoing edges from the start note until reach an output node.

Example: For
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$ we have $f(101) = 0 = 0$ output.

BPs are equivalent if they describe the same Boolean function.

Defn:
$$EQBP = \{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent BPs (written } B_1 \equiv B_2) \}$$

Theorem: EQBP is coNP-complete (on pset 6)

 $EQBP \in BPP$? Unknown. That would imply NP \subseteq BPP and would be surprising! Instead, consider a restricted problem.

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP = $\{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \}$

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP = $\{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \}$

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP = $\left\{ \langle B_1, B_2 \rangle \middle| B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \right\}$

Theorem: $EQROBP \in BPP$

Not read-once

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP = $\{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \}$

Theorem: $EQROBP \in BPP$

Not read-once

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP = $\{\langle B_1, B_2 \rangle \mid B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \}$

Theorem: $EQROBP \in BPP$

Check-in 23.2

Assuming (as we will show) that EQROBP \in BPP, can we use that to show $EQBP \in BPP$ by converting branching programs to read-once branching programs?

- (a) Yes, there is no need to re-read inputs.
- (b) No, we cannot do that conversion in general.
- No, the conversion is possible but not in polynomial-time.

Theorem: $EQROBP \in BPP$

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2 \rangle$

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

1. Pick k random input assignments and evaluate B_1 and B_2 on each one.

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

- 1. Pick k random input assignments and evaluate $oldsymbol{B}_1$ and $oldsymbol{B}_2$ on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then *accept*."

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

- 1. Pick k random input assignments and evaluate ${\it B}_{1}$ and ${\it B}_{2}$ on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then *accept*."

What k to chose?

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2 \rangle$

- 1. Pick k random input assignments and evaluate B_1 and B_2 on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then *accept*."

What *k* to chose?

If $B_1 \equiv B_2$ then they always agree so $\Pr[\ M \ {
m accepts} \ \langle B_1, B_2
angle \] = 1$

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

- 1. Pick k random input assignments and evaluate B_1 and B_2 on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then *accept*."

What *k* to chose?

If $B_1 \equiv B_2$ then they always agree so Pr[M accepts $\langle B_1, B_2 \rangle$] = 1

If $B_1 \not\equiv B_2$ then want Pr[M accepts $\langle B_1, B_2 \rangle$] $\leq \frac{1}{3}$

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

- 1. Pick k random input assignments and evaluate B_1 and B_2 on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then *accept*."

What *k* to chose?

If
$$B_1 \equiv B_2$$
 then they always agree so $\Pr[\ M \ {
m accepts} \ \langle B_1, B_2
angle \] = 1$

If
$$B_1 \not\equiv B_2$$
 then want $\Pr[M \text{ accepts } \langle B_1, B_2 \rangle] \leq \frac{1}{3}$ so want $\Pr[M \text{ rejects } \langle B_1, B_2 \rangle] \geq \frac{2}{3}$.

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

- 1. Pick k random input assignments and evaluate $oldsymbol{B}_1$ and $oldsymbol{B}_2$ on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then *accept*."

What *k* to chose?

If
$$B_1 \equiv B_2$$
 then they always agree so $\Pr[\ M \ ext{accepts} \ \langle B_1, B_2
angle \] = 1$

If
$$B_1 \not\equiv B_2$$
 then want $\Pr[M \text{ accepts } \langle B_1, B_2 \rangle] \leq \frac{1}{3}$ so want $\Pr[M \text{ rejects } \langle B_1, B_2 \rangle] \geq \frac{2}{3}$.

But B_1 and B_2 may disagree rarely, say in 1 of the 2^m possible assignments.

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

- 1. Pick k random input assignments and evaluate B_1 and B_2 on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then accept."

What *k* to chose?

If
$$B_1 \equiv B_2$$
 then they always agree so $\Pr[\ M \ ext{accepts} \ \langle B_1, B_2
angle \] = 1$

If
$$B_1\not\equiv B_2$$
 then want $\Pr[M \text{ accepts }\langle B_1,B_2\rangle\,] \leq \frac{1}{3}$ so want $\Pr[M \text{ rejects }\langle B_1,B_2\rangle\,] \geq \frac{2}{3}$.

so want
$$\Pr[M \text{ rejects } \langle B_1, B_2 \rangle] \geq \frac{2}{3}$$

But B_1 and B_2 may disagree rarely, say in 1 of the 2^m possible assignments. That would require exponentially many samples to have a good chance of

finding a disagreeing assignment and thus would require
$$k > \left(\frac{2}{3}\right)2^m$$
.

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

- 1. Pick k random input assignments and evaluate B_1 and B_2 on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then accept."

What *k* to chose?

If
$$B_1 \equiv B_2$$
 then they always agree so $\Pr[\ M \ ext{accepts} \ \langle B_1, B_2
angle \] = 1$

If
$$B_1\not\equiv B_2$$
 then want $\Pr[M \text{ accepts }\langle B_1,B_2\rangle\,] \leq \frac{1}{3}$ so want $\Pr[M \text{ rejects }\langle B_1,B_2\rangle\,] \geq \frac{2}{3}$.

so want
$$\Pr[M \text{ rejects } \langle B_1, B_2 \rangle] \geq \frac{2}{3}$$

But B_1 and B_2 may disagree rarely, say in 1 of the 2^m possible assignments. That would require exponentially many samples to have a good chance of

finding a disagreeing assignment and thus would require
$$k > \left(\frac{2}{3}\right)2^m$$
.

But then this algorithm would use exponential time.

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

- 1. Pick k random input assignments and evaluate B_1 and B_2 on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then accept."

What *k* to chose?

If
$$B_1 \equiv B_2$$
 then they always agree so $\Pr[\ M \ ext{accepts} \ \langle B_1, B_2
angle \] = 1$

If
$$B_1\not\equiv B_2$$
 then want $\Pr[M \text{ accepts }\langle B_1,B_2\rangle\,] \leq \frac{1}{3}$ so want $\Pr[M \text{ rejects }\langle B_1,B_2\rangle\,] \geq \frac{2}{3}$.

so want
$$\Pr[M \text{ rejects } \langle B_1, B_2 \rangle] \geq \frac{2}{3}$$

But B_1 and B_2 may disagree rarely, say in 1 of the 2^m possible assignments. That would require exponentially many samples to have a good chance of

finding a disagreeing assignment and thus would require
$$k > \left(\frac{2}{3}\right)2^m$$
.

Try a different idea: Run B_1 and B_2 on <u>non-Boolean inputs</u>.

But then this algorithm would use exponential time.

Theorem: $EQROBP \in BPP$

Proof attempt: Let M= "On input $\langle B_1,B_2\rangle$

- 1. Pick k random input assignments and evaluate B_1 and B_2 on each one.
- 2. If B_1 and B_2 ever disagree on those assignments then *reject*. If they always agree on those assignments then accept."

What *k* to chose?

If
$$B_1 \equiv B_2$$
 then they always agree so $\Pr[\ M \ ext{accepts} \ \langle B_1, B_2
angle \] = 1$

If
$$B_1\not\equiv B_2$$
 then want $\Pr[M \text{ accepts }\langle B_1,B_2\rangle\,] \leq \frac{1}{3}$ so want $\Pr[M \text{ rejects }\langle B_1,B_2\rangle\,] \geq \frac{2}{3}$.

so want
$$\Pr[M \text{ rejects } \langle B_1, B_2 \rangle] \geq \frac{2}{3}$$

But B_1 and B_2 may disagree rarely, say in 1 of the 2^m possible assignments.

That would require exponentially many samples to have a good chance of

finding a disagreeing assignment and thus would require $k > \left(\frac{2}{3}\right)2^m$.

Try a different idea: Run B_1 and B_2 on <u>non-Boolean inputs</u>.

But then this algorithm would use exponential time.

Alternative way to view BP computation

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label edges from nodes

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label edges from nodes

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label edges from nodes

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label edges from nodes

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label edges from nodes

Label nodes from incoming edges

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label edges from nodes

Label nodes from incoming edges

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label edges from nodes

Label nodes from incoming edges

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label edges from nodes

Label nodes from incoming edges

$$a \wedge b \rightarrow a \times b = ab$$

$$a \wedge b \rightarrow a \times b = ab$$

 $\overline{a} \rightarrow (1-a)$

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Start node labeled 1

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Start node labeled 1

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Start node labeled 1

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Start node labeled 1

Works because the BP is acyclic. The execution path can enter a node at most one time.

Method: Simulate \wedge and \vee with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Start node labeled 1

Works because the BP is acyclic. The execution path can enter a node at most one time.

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2, x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$ Output = -7

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example:
$$x_1 = 2$$
, $x_2 = 3$ Output = -7

Recall labeling rules:

Revised M for EQROBP: "On input $\langle B_1, B_2
angle$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example:
$$x_1 = 2$$
, $x_2 = 3$ Output = -7

Recall labeling rules:

Revised M for EQROBP: "On input $\langle B_1, B_2
angle$

1. Pick a random non-Boolean input assignment.

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example:
$$x_1 = 2$$
, $x_2 = 3$ Output = -7

Recall labeling rules:

Revised M for EQROBP: "On input $\langle B_1, B_2
angle$

- 1. Pick a random *non-Boolean* input assignment.
- 2. Evaluate B_1 and B_2 on that assignment.

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example:
$$x_1 = 2$$
, $x_2 = 3$ Output = -7

Recall labeling rules:

Revised M for EQROBP: "On input $\langle B_1, B_2
angle$

- 1. Pick a random *non-Boolean* input assignment.
- 2. Evaluate B_1 and B_2 on that assignment.
- 3. If B_1 and B_2 disagree then *reject*. If they agree then *accept*."

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example:
$$x_1 = 2$$
, $x_2 = 3$ Output = -7

Recall labeling rules:

Revised M for EQROBP: "On input $\langle B_1, B_2
angle$

- 1. Pick a random *non-Boolean* input assignment.
- 2. Evaluate B_1 and B_2 on that assignment.
- 3. If B_1 and B_2 disagree then *reject*. If they agree then *accept*."

Correctness proof...

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example:
$$x_1 = 2$$
, $x_2 = 3$ Output = -7

Recall labeling rules:

Revised M for EQROBP: "On input $\langle B_1, B_2
angle$

- 1. Pick a random *non-Boolean* input assignment.
- 2. Evaluate B_1 and B_2 on that assignment.
- 3. If B_1 and B_2 disagree then *reject*. If they agree then *accept*."

Correctness proof...

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$ Output = -7

Recall labeling rules:

Check-in 23.3

What is the output for this branching program using the arithmetized interpretation if $x_1 = 1, \ x_2 = y$?

- (a) (1 y)
- (b) (y+1)
- (c) y

Quick review of today

- 1. Defined probabilistic Turing machines
- Defined the class BPP
- 3. Sketched the amplification lemma
- 4. Introduced branching programs and read-once branching programs
- 5. Started the proof that $EQROBP \in BPP$
- Introduced the arithmetization method

Quick review of today

- 1. Defined probabilistic Turing machines
- Defined the class BPP
- 3. Sketched the amplification lemma
- 4. Introduced branching programs and read-once branching programs
- 5. Started the proof that $EQROBP \in BPP$
- Introduced the arithmetization method

Review: Probabilistic TMs and BPP

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Pr[branch b] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{\text{b accepts}} Pr[\text{branch } b]$$

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A$] $\leq \epsilon$.

Pr[branch b] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{\text{b accepts}} Pr[\text{branch } b]$$

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A$] $\leq \epsilon$.

Defn: BPP = $\{A \mid \text{ some poly-time PTM decides } A \text{ with error } \epsilon = \frac{1}{3} \}$

Pr[branch b] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{\text{b accepts}} Pr[\text{branch } b]$$

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A$] $\leq \epsilon$.

Defn: BPP = $\{A \mid \text{ some poly-time PTM decides } A \text{ with error } \epsilon = \frac{1}{3} \}$

Amplification lemma: $2^{-\text{poly}(n)}$

Pr[branch b] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{\text{b accepts}} Pr[\text{branch } b]$$

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A] \leq \epsilon$.

Defn: BPP = $\{A \mid \text{ some poly-time PTM decides } A \text{ with error } \epsilon = \frac{1}{3} \}$

Amplification lemma: $2^{-\text{poly}(n)}$

Pr[branch b] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{\text{b accepts}} Pr[\text{branch } b]$$

$$Pr[M \text{ rejects } w] = 1 - Pr[M \text{ accepts } w]$$

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A] \leq \epsilon$.

Defn: BPP = $\{A \mid \text{ some poly-time PTM decides } A \text{ with error } \epsilon = \frac{1}{3} \}$

Amplification lemma: $2^{-\text{poly}(n)}$

Pr[branch b] = 2^{-k} where b has k coin flips

$$Pr[M \text{ accepts } w] = \sum_{\text{b accepts}} Pr[\text{branch } b]$$

$$Pr[M \text{ rejects } w] = 1 - Pr[M \text{ accepts } w]$$

Defn: A <u>probabilistic Turing machine</u> (PTM) is a variant of a NTM where each computation step has 1 or 2 possible choices.

Defn: For $\epsilon \geq 0$ say PTM M decides language A with error probability ϵ if for every w, $\Pr[M]$ gives the wrong answer about $w \in A$] $\leq \epsilon$.

Defn: BPP = $\{A \mid \text{ some poly-time PTM decides } A \text{ with error } \epsilon = \frac{1}{3}$

Amplification lemma: 2^{-p}

Check-in 24.1

Actually using a probabilistic algorithm presupposes a source of randomness. Can we use a standard pseudo-random number generator (PRG) as the source?

- (a) Yes, but the result isn't guaranteed.
- (b) Yes, but it will run in exponential time.
- (c) No, a TM cannot implement a PRG.
- (d) No, because that would show P = BPP.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

Theorem: EQBP is coNP-complete (on pset 6)

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

Theorem: EQBP is coNP-complete (on pset 6)

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

Theorem: EQBP is coNP-complete (on pset 6)

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP $=\left\{ \langle B_1,B_2 \rangle \,\middle|\, B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \right\}$

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

Theorem: EQBP is coNP-complete (on pset 6)

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP $=\left\{ \langle B_1,B_2 \rangle \,\middle|\, B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \right\}$

Theorem: $EQROBP \in BPP$

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

Theorem: EQBP is coNP-complete (on pset 6)

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP $=\left\{ \langle B_1,B_2 \rangle \,\middle|\, B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \right\}$

Theorem: $EQROBP \in BPP$

Proof idea: Run ${\it B}_{1}$ and ${\it B}_{2}$ on a randomly selected <u>non-Boolean input</u> and accept if get same output.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

Theorem: EQBP is coNP-complete (on pset 6)

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP $=\left\{ \langle B_1,B_2 \rangle \,\middle|\, B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \right\}$

Theorem: $EQROBP \in BPP$

Proof idea: Run ${\it B}_{1}$ and ${\it B}_{2}$ on a randomly selected <u>non-Boolean input</u> and accept if get same output.

Method: Use <u>arithmetization</u> (simulating \land and \lor with + and \times) to define BP operation on non-Boolean inputs.

Defn: A <u>branching program</u> (BP) is a directed, acyclic (no cycles) graph that has

- 1. Query nodes labeled x_i and having two outgoing edges labeled 0 and 1.
- 2. Two output nodes labeled 0 and 1 and having no outgoing edges.
- 3. A designated *start node*.

Theorem: EQBP is coNP-complete (on pset 6)

Defn: A BP is <u>read-once</u> if it never queries a variable more than once on any path from the start node to an output.

Defn: EQROBP $=\left\{ \langle B_1,B_2 \rangle \,\middle|\, B_1 \text{ and } B_2 \text{ are equivalent read-once BPs} \right\}$

Theorem: $EQROBP \in BPP$

Proof idea: Run B_1 and B_2 on a randomly selected <u>non-Boolean input</u> and accept if get same output.

Method: Use <u>arithmetization</u> (simulating \land and \lor with + and \times) to define BP operation on non-Boolean inputs.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path. Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Alternative way to view BP computation

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Alternative way to view BP computation

1 = output

 $\begin{bmatrix} x_2 \\ 1 \end{bmatrix}$

 x_3

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

Alternative way to view BP computation

1 = output

 $\begin{bmatrix} x_2 \\ 1 \end{bmatrix}$

 x_3

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$ The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

Alternative way to view BP computation

1 = output

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

Alternative way to view BP computation

1 = output

 x_2

 x_3

 x_3

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

Alternative way to view BP computation

1 = output

 x_2 1

 $\sqrt{x_3}$

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Obtain the labeling inductively by using these rules:

Label outgoing edges from nodes

Label nodes from incoming edges

Alternative way to view BP computation

1 = output

 x_2

 $\sqrt{x_3}$

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label nodes from incoming edges

Alternative way to view BP computation

1 = output

 x_2 1

 $\sqrt{x_3}$

Show by example: Input is $x_1 = \overline{0}$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label nodes from incoming edges

Alternative way to view BP computation

1 = output

 x_2 1

 $\sqrt{x_3}$

Show by example: Input is $x_1 = 0$, $x_2 = 1$, $x_3 = 1$

The BP follows its execution path.

Label all nodes and edges on the execution path with 1 and off the execution path with 0.

Output the label of the output node 1.

Label nodes from incoming edges

Method: Simulate \land and \lor with + and \times .

Method: Simulate \land and \lor with + and ×.

$$a \wedge b \rightarrow a \times b = ab$$

Method: Simulate \land and \lor with + and ×.

$$a \wedge b \rightarrow a \times b = ab$$

 $\overline{a} \rightarrow (1-a)$

Method: Simulate \land and \lor with + and \lor .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Method: Simulate \land and \lor with + and \lor .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:
Start node labeled 1

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

$$a (1 - x_i) = \begin{bmatrix} x_i \\ 0 \end{bmatrix}$$

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Start node labeled 1

Simulate ∨ with + because the BP is acyclic. The execution path can enter a node at most one time.

Method: Simulate \land and \lor with + and \times .

$$a \wedge b \rightarrow a \times b = ab$$
 $\overline{a} \rightarrow (1-a)$
 $a \vee b \rightarrow a+b-ab$

Replace Boolean labeling with arithmetical labeling Inductive rules:

Start node labeled 1

Simulate ∨ with + because the BP is acyclic. The execution path can enter a node at most one time.

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $\overline{x_1} = 2$, $\overline{x_2} = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = \overline{2}$, $x_2 = \overline{3}$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $\overline{x_1} = 2$, $\overline{x_2} = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2, x_2 = 3$

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$ Output = -7

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$ Output = -7

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$ Output = -7

Recall labeling rules:

Algorithm sketch for EQROBP: "On input $\langle B_1, B_2
angle$

1. Pick a random *non-Boolean* input assignment.

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$ Output = -7

Recall labeling rules:

Algorithm sketch for EQROBP: "On input $\langle B_1, B_2
angle$

- 1. Pick a random *non-Boolean* input assignment.
- 2. Evaluate B_1 and B_2 on that assignment.

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$ Output = -7

Recall labeling rules:

Algorithm sketch for EQROBP: "On input $\langle {\it B}_1, {\it B}_2
angle$

- 1. Pick a random *non-Boolean* input assignment.
- 2. Evaluate B_1 and B_2 on that assignment.
- 3. If B_1 and B_2 disagree then reject. If they agree then accept."

Non-Boolean Labeling

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$ Output = -7

Recall labeling rules:

Algorithm sketch for EQROBP: "On input $\langle B_1, B_2
angle$

- 1. Pick a random *non-Boolean* input assignment.
- 2. Evaluate B_1 and B_2 on that assignment.
- 3. If B_1 and B_2 disagree then *reject*. If they agree then *accept*."

More details and correctness proof to come. First some algebra...

Non-Boolean Labeling

Use the arithmetized interpretation of the BP's computation to define its operation on non-Boolean inputs.

Example: $x_1 = 2$, $x_2 = 3$ Output = -7

Recall labeling rules:

Algorithm sketch for EQROBP: "On input $\langle B_1, B_2
angle$

- 1. Pick a random *non-Boolean* input assignment.
- 2. Evaluate B_1 and B_2 on that assignment.
- 3. If B_1 and B_2 disagree then *reject*. If they agree then *accept*."

More details and correctness proof to come. First some algebra...

Let
$$p(x) = a_0 x^d + a_1 x^{d-1} + a_2 x^{d-2} + \dots + a_d$$
 be a polynomial.

Corollary 2: If $p(x) \neq 0$ has degree $\leq d$ and we pick a random $r \in \mathbb{F}_q$, then $\Pr\left[p(r) = 0\right] \leq \frac{d}{q}$.

Let
$$p(x) = a_0 x^d + a_1 x^{d-1} + a_2 x^{d-2} + \dots + a_d$$
 be a polynomial.

Corollary 2: If $p(x) \neq 0$ has degree $\leq d$ and we pick a random $r \in \mathbb{F}_q$, then $\Pr\left[p(r) = 0\right] \leq \frac{a}{q}$.

Proof: There are at most d roots out of q possibilities.

Theorem (Schwartz-Zippel): If $p(x_1, ..., x_m) \neq 0$ has degree $\leq d$ in each x_i and

Let
$$p(x) = a_0 x^d + a_1 x^{d-1} + a_2 x^{d-2} + \dots + a_d$$
 be a polynomial.

Corollary 2: If $p(x) \neq 0$ has degree $\leq d$ and we pick a random $r \in \mathbb{F}_q$, then $\Pr\left[p(r) = 0\right] \leq \frac{d}{q}$.

Proof: There are at most d roots out of q possibilities.

Theorem (Schwartz-Zippel): If $p(x_1, ..., x_m) \neq 0$ has degree $\leq d$ in each x_i and

we pick random
$$r_1, ..., r_m \in \mathbb{F}_q$$
 then $\Pr\left[p(r_1, ..., r_m) = 0\right] \leq \frac{md}{q}$

Let
$$p(x) = a_0 x^d + a_1 x^{d-1} + a_2 x^{d-2} + \dots + a_d$$
 be a polynomial.

Corollary 2: If $p(x) \neq 0$ has degree $\leq d$ and we pick a random $r \in \mathbb{F}_q$, then $\Pr\left[p(r) = 0\right] \leq \frac{d}{q}$.

Proof: There are at most d roots out of q possibilities.

Theorem (Schwartz-Zippel): If $p(x_1, ..., x_m) \neq 0$ has degree $\leq d$ in each x_i and

we pick random
$$r_1, ..., r_m \in \mathbb{F}_q$$
 then $\Pr \left[p(r_1, ..., r_m) = 0 \right] \leq \frac{md}{q}$

Proof by induction (see text).

Let
$$p(x) = a_0 x^d + a_1 x^{d-1} + a_2 x^{d-2} + \dots + a_d$$
 be a polynomial.

Corollary 2: If $p(x) \neq 0$ has degree $\leq d$ and we pick a random $r \in \mathbb{F}_q$, then $\Pr\left[p(r) = 0\right] \leq \frac{d}{q}$.

Proof: There are at most d roots out of q possibilities.

Theorem (Schwartz-Zippel): If $p(x_1, ..., x_m) \neq 0$ has degree $\leq d$ in each x_i and

we pick random
$$r_1, \ldots, r_m \in \mathbb{F}_q$$
 then $\Pr\Big[p \big(r_1, \ldots, r_m \big) = 0 \, \Big] \leq \frac{md}{q}$

Proof by induction (see text).

Leave the x_i as variables and obtain an expression in the x_i for the output of the BP.

Recall

Corresponds to the TRUE rows in the truth table of the Boolean function

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, \ldots, r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, \ldots, r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

$$(1-x_1) (x_2) (1-x_3) (x_4) \cdots (1-x_m)$$

$$+ (x_1) (x_2) (x_3) (1-x_4) \cdots (x_m)$$

$$+ (x_1) (1-x_2) (1-x_3) (x_4) \cdots (x_m)$$

$$\vdots$$

$$+ (x_4) (x_2) (1-x_3) (x_4) \cdots (x_m)$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \to \Pr[p_1(r) = p_2(r)] = 1$$

$$(1-x_1) (x_2) (1-x_3) (x_4) \cdots (1-x_m)$$

$$+ (x_1) (x_2) (x_3) (1-x_4) \cdots (x_m)$$

$$+ (x_1) (1-x_2) (1-x_3) (x_4) \cdots (x_m)$$

$$\vdots$$

$$+ (x_1) (x_2) (1-x_3) (x_4) \cdots (x_m)$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \to \Pr[p_1(r) = p_2(r)] = 1$$

(2) $B_1 \not\equiv B_2 \to \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$

$$(1-x_1) (x_2) (1-x_3) (x_4) \cdots (1-x_m)$$

$$+ (x_1) (x_2) (x_3) (1-x_4) \cdots (x_m)$$

$$+ (x_1) (1-x_2) (1-x_3) (x_4) \cdots (x_m)$$

$$\vdots$$

$$+ (x_1) (x_2) (1-x_3) (x_4) \cdots (x_m)$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \to \Pr[p_1(r) = p_2(r)] = 1$$

(2) $B_1 \not\equiv B_2 \to \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs.

$$(1-x_1) (x_2) (1-x_3) (x_4) \cdots (1-x_m)$$

$$+ (x_1) (x_2) (x_3) (1-x_4) \cdots (x_m)$$

$$+ (x_1) (1-x_2) (1-x_3) (x_4) \cdots (x_m)$$

$$\vdots$$

$$+ (x_1) (x_2) (1-x_3) (x_4) \cdots (x_m)$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \to \Pr[p_1(r) = p_2(r)] = 1$$

(2) $B_1 \not\equiv B_2 \to \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

$$(1-x_1) (x_2) (1-x_3) (x_4) \cdots (1-x_m)$$

$$+ (x_1) (x_2) (x_3) (1-x_4) \cdots (x_m)$$

$$+ (x_1) (1-x_2) (1-x_3) (x_4) \cdots (x_m)$$

$$\vdots$$

$$+ (x_1) (x_2) (1-x_3) (x_4) \cdots (x_m)$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \to \Pr[p_1(r) = p_2(r)] = 1$$

(2)
$$B_1 \not\equiv B_2 \to \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials p_1 and p_2 are identical.

$$(1-x_1) (x_2) (1-x_3) (x_4) \cdots (1-x_m)$$

$$+ (x_1) (x_2) (x_3) (1-x_4) \cdots (x_m)$$

$$+ (x_1) (1-x_2) (1-x_3) (x_4) \cdots (x_m)$$

$$\vdots$$

$$+ (x_1) (x_2) (1-x_3) (x_4) \cdots (x_m)$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \to \Pr[p_1(r) = p_2(r)] = 1$$

(2)
$$B_1 \not\equiv B_2 \to \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials p_1 and p_2 are identical.

Thus p_1 and p_2 always agree (even on non-Boolean inputs).

$$(1-x_1) (x_2) (1-x_3) (x_4) \cdots (1-x_m)$$

$$+ (x_1) (x_2) (x_3) (1-x_4) \cdots (x_m)$$

$$+ (x_1) (1-x_2) (1-x_3) (x_4) \cdots (x_m)$$

$$\vdots$$

$$+ (x_1) (x_2) (1-x_3) (x_4) \cdots (x_m)$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random *non-Boolean* input assignment $r=r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \rightarrow \Pr\left[p_1(r) = p_2(r) \right] = 1$$

(2)
$$B_1 \not\equiv B_2 \to \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials p_1 and p_2 are identical.

Thus p_1 and p_2 always agree (even on non-Boolean inputs).

Proof (2): If $B_1 \not\equiv B_2$ then $p_1 \neq p_2$ so $p = p_1 - p_2 \neq 0$.

$$(1-x_1) \quad (x_2) \quad (1-x_3) \quad (x_4) \quad \cdots \quad (1-x_m)$$

$$+ \quad (x_1) \quad (x_2) \quad (x_3) \quad (1-x_4) \quad \cdots \quad (x_m)$$

$$+ \quad (x_1) \quad (1-x_2) (1-x_3) \quad (x_4) \quad \cdots \quad (x_m)$$

$$\vdots$$

$$+ \quad (x_1) \quad (x_2) \quad (1-x_3) \quad (x_4) \quad \cdots \quad (x_m)$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random non-Boolean input assignment $r=r_1, ..., r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \rightarrow \Pr\left[p_1(r) = p_2(r) \right] = 1$$

(2)
$$B_1 \not\equiv B_2 \to \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials p_1 and p_2 are identical.

Thus p_1 and p_2 always agree (even on non-Boolean inputs).

Proof (2): If $B_1 \not\equiv B_2$ then $p_1 \neq p_2$ so $p = p_1 - p_2 \neq 0$.

From Schwartz-Zippel,
$$\Pr\left[p_1(r) = p_2(r)\right] \le \frac{dm}{q} \le \frac{m}{3m} = \frac{1}{3}.$$
 $+ (x_1)$ (x_2) $(1-x_3)$ (x_4) ...

$$(1-x_1) (x_2) (1-x_3) (x_4) \cdots (1-x_m)$$

$$+ (x_1) (x_2) (x_3) (1-x_4) \cdots (x_m)$$

$$+ (x_1) (1-x_2)(1-x_3) (x_4) \cdots (x_m)$$

$$\vdots$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random *non-Boolean* input assignment $r=r_1,\;...,\;r_m$ where each $r_i\in\mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \rightarrow \Pr\left[p_1(r) = p_2(r) \right] = 1$$

(2)
$$B_1 \not\equiv B_2 \to \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials p_1 and p_2 are identical.

Thus p_1 and p_2 always agree (even on non-Boolean inputs).

Proof (2): If $B_1 \not\equiv B_2$ then $p_1 \neq p_2$ so $p = p_1 - p_2 \neq 0$.

From Schwartz-Zippel,
$$\Pr\left[p_1(r) = p_2(r)\right] \le \frac{dm}{q} \le \frac{m}{3m} = \frac{1}{3}.$$
 + (x_1) (x_2) $(1-x_3)$ (x_4)

$$(1-x_1) (x_2) (1-x_3) (x_4) \cdots (1-x_m)$$

$$+ (x_1) (x_2) (x_3) (1-x_4) \cdots (x_m)$$

$$+ (x_1) (1-x_2) (1-x_3) (x_4) \cdots (x_m)$$

$$\vdots$$

Algorithm for EQROBP = "On input $\langle B_1, B_2 \rangle$ [on variables $x_1, ..., x_m$]

- 1. Find a prime $q \ge 3m$.
- 2. Pick a random *non-Boolean* input assignment $r=r_1, \ldots, r_m$ where each $r_i \in \mathbb{F}_q$.
- 3. Evaluate B_1 and B_2 on r by using arithmetization.
- 4. If B_1 and B_2 agree on r then accept. If they disagree then reject."

Claim: (1)
$$B_1 \equiv B_2 \to \Pr[p_1(r) = p_2(r)] = 1$$

(2) $B_1 \not\equiv B_2 \to \Pr[p_1(r) = p_2(r)] \le \frac{1}{3}$

Proof (1): If $B_1 \equiv B_2$ then they agree on all Boolean inputs.

Thus their functions have the same truth table.

Thus their associated polynomials p_1 and p_2 are identical.

Thus p_1 and p_2 always agree (even on non-Boolean inputs).

Proof (2): If $B_1 \not\equiv B_2$ then $p_1 \neq p_2$ so $p = p_1 - p_2 \neq 0$.

From Schwartz-Zippel,
$$\Pr\left[p_1(r)=p_2(r)\right] \leq \frac{dm}{q} \leq \frac{m}{3m} = \frac{1}{3}$$
.

Check-in 24.2

If the BPs were not read-once, the polynomials might have exponents ≥ 1 . Where would the proof fail?

- (a) $B_1 \equiv B_2$ implies they agree on all Boolean inputs
- (b) Agreeing on all Boolean inputs implies $p_1=p_2$
- (c) Having $p_1 = p_2$ implies p_1 and p_2 always agree

 $+ (x_1) (x_2) (1-x_3) (x_4)$

$$(1 - x_1) (x_2) (1 - x_3) (x_4) \cdots (1 - x_m)$$

$$+ (x_1) (x_2) (x_3) (1 - x_4) \cdots (x_m)$$

$$+ (x_1) (1 - x_2) (1 - x_3) (x_4) \cdots (x_m)$$

Check-in 24.3

If p_1 and p_2 were exponentially large expressions, would that be a problem for the time complexity?

- (a) Yes, but luckily they are polynomial in size.
- (b) No, because we can evaluate them without writing them down.

Quick review of today

- 1. Simulated Read-once Branching Programs by polynomials
- 2. Gave probabilistic polynomial equality testing method
- 3. Showed EQROBP \in BPP

Quick review of today

- 1. Simulated Read-once Branching Programs by polynomials
- 2. Gave probabilistic polynomial equality testing method
- 3. Showed EQROBP \in BPP