

How can we use Al agents to make better trading decisions?

Brendan Fay, Icaro Bacelar, Yvon Lu

TABLE OF CONTENTS

Moving average strategies - particularly a golden cross - are extremely popular trading strategies.

We want to explore how a trading agent can optimize a moving average strategy.

Short window - moving average over a short period of time

Long window - moving average over a long period of time

When the short-term average crosses the long-term average, that indicates a signal

Adversarial game between two Al agents with critical feedback after short periods

Pros: tight feedback loop, small number of parameters to optimize

Cons: highly stock specific, prone to premature convergence

Highly stock specific → compare approaches of multiple stocks

Premature convergence → introduce randomness to preempt convergence

02 - THE PROCESS

02 - GETTING DATA

- Using Yahoo Finance Python package
- Evaluating on 'Close' prices
- Appx 2600 days

```
import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np
import random
# Choose the tickerand time window
ticker = "AAPL"
startD = "2015-01-01"
# Get historical market data for that ticker (Yahoo)
stock data = yf.download(ticker, start=startD)
```

import pandas as pd

02 - TRADING WITH GOLDEN CROSS

- Use moving averages to establish Hold and exit signals
- Compute compound return based on periods wil non 0 signal

```
def calculate strategies(start, end, results):
   for agent in agents:
        short w = agents[agent]['short window']
       long w = agents[agent]['long window']
        # Calculate Moving Averages using the entire dataset
        sma short = stock data['Close'].rolling(window=short w, min periods=1).mean()
        sma long = stock data['Close'].rolling(window=long w, min periods=1).mean()
        # Stabilish Hold or exit signals
        signals = np.where(sma short.iloc[start:end+1] > sma long.iloc[start:end+1], 1.0, 0.0)
       # Handle returns calculation to include the previous closing for accurate return calculation
        if start == 0:
           returns = stock data['Close'].iloc[start:end+1].pct change()
           strategy returns = signals[1:] * returns.values[1:] # Skip the first NaN
        else:
           returns = stock data['Close'].iloc[start-1:end+1].pct change()
           strategy returns = signals[0:] * returns.values[1:]
       if start == 0:
           cumulative returns = np.insert((1 + strategy returns).cumprod(), 0, 1)
           previous cumulative = results[agent][-1]
           cumulative returns = (1 + strategy returns).cumprod() * previous cumulative
        results[agent].extend(cumulative returns.tolist())
```

02 - THE AGENTS

```
# Initialize agents with different windows
agents = {
    'A': {'short_window': 60, 'long_window': 240},
    'B': {'short_window': 40, 'long_window': 160}
}
```

- Initial windows chosen to be close to Golden Cross "ideal" Windows - 50 and 200
- Rounds of 10 days
 - Total of ~260 rounds

```
# Store results in a dictionary
results = {'A': [], 'B': []}
original results = {'A': [], 'B': []}
segment length = 10 # Duration of each round
delta = len(stock data)-round(len(stock data)/segment length)*segment length
# Calculate original strategies without adjustment
calculate strategies(0, len(stock data) - 1-delta, original results)
start = 0
while start + segment_length <= len(stock_data):</pre>
    end = start + segment length - 1
    calculate strategies(start, end, results)
    if not np.isnan(results['A'][-1]) and not np.isnan(results['B'][-1]):
        cumulative A = results['A'][-1]
        cumulative B = results['B'][-1]
        if start > 0:
            cumulative A = results['A'][-1]/results['A'][-segment length]
            cumulative B = results['B'][-1]/results['B'][-segment length]
        if cumulative A > cumulative B:
            adjust windows('A', 'B')
        elif cumulative A < cumulative B:
            adjust windows('B', 'A')
    start = end + 1
```

02 - AI STRATEGIES

- Heuristics:
 - Loser closes gap
 - Avoid converging
 - Random change
 - Keep short:long ratio 1:4
 - Short window > 1 month
- Ideally needs tuning for each stock

```
def adjust windows(winner, loser):
 for key in ['short window', 'long window']:
      if agents[winner][key] > agents[loser][key]:
          agents[loser][key] += round(agents[loser][key]/5)
      elif agents[winner][key] < agents[loser][key]:</pre>
          agents[loser][key] -= round(agents[loser][key]/5)
     else:
          # If the window sizes are the same, randomly increase or decrease by 20%
          if random.choice([True, False]): # Randomly choose True or False
              agents[loser][key] += max(round(agents[loser][key] * 0.03),1) #3% change
          else:
              agents[loser][key] -= max(round(agents[loser][key] * 0.03),1)
      if key == 'short window' and agents[loser][key] < 35:</pre>
          agents[loser][key] = 35
      if key == 'short window' and agents[loser][key] > 65:
          agents[loser][key] = 65
      if key == 'long window' and agents[loser][key] < 140:
          agents[loser][key] = 140
      if key == 'long window' and agents[loser][key] > 260:
          agents[loser][key] = 260
```


03 - HOW WE OBTAINED RESULTS

- Simulated 50 runs for 3 tickers
 - Due to stochastic strategies, each simulation has a different result
 - High variance
 - Appx. 260 rounds per simulation

03 - CUMULATIVE RETURNS: TSLA

Agent A	Agent A	Agent A	Agent B	Agent B	Agent B
6.937622347	7.692675646	9.795010738	3.512398801	2.862561455	6.268808746
12.62967582	6.010273225	8.344744659	7.001095755	6.875418747	5.584129045
5.892683984	4.887781963	9.08119518	4.081752486	9.37216568	9.371384255
7.499429383	7.576435802	4.473409591	4.282521829	3.397996316	4.595632451
9.861518089	11.62238788	8.589368281	4.246432779	4.348806045	4.675736627
6.59624199	10.09743677	10.31736863	5.861816387	5.692944689	3.01541522
6.969330576	6.864884042	12.28357149	4.313594215	3.883971999	7.192369286
8.976139332	6.351333194	6.930128101	5.890959442	4.985571261	9.219653871
6.778179777	9.570014768	7.499429383	3.642429195	5.865347948	9.809285912
9.560055537	7.734019934	16.96452901	6.330022723	5.35273249	10.07888127
8.603296037	5.544759829	5.303145477	5.019470817	6.028750654	4.282521829
4.785507325	9.349205333	7.659451738	5.264133842	5.084743532	8.488936435
10.26815927	3.771557618	5.473219169	7.301424089	9.137171011	5.500238956
4. <mark>4</mark> 043180 <mark>1</mark> 3	6.955239273	4.600883483	3.657581811	4.082030275	4.953224257
10.19352776	5.416984046	4.488772739	4.781677467	7.920524042	4.283415899
10.02694239	6.655550508	5.953793729	10.0760516	5.701823649	4.559337214
6.098504211	10.21383278		4.736721117	4.030958072	

Original A	4.3780325
Original B	5.145517854
Ideal: 50 - 200	5.438144341

03 - CUMULATIVE RETURNS: AMZN

Agent A	Agent A	Agent A
8.498578838	6.800617686	6.270316298
5.846542324	6.892664429	6.382140693
9.261489106	10.30294799	8.540704841
9.20090982	7.726911223	5.681466069
7.35216597	7.358186496	7.473906067
7.225242643	8.376101189	7.216196072
10.13411302	6.978566523	5.193225501
5.91829252	7.244164088	5.738219275
6.635082006	5.443021138	8.875168741
9.463095937	8.956881397	5.765832957
6.856573402	8.329641982	8.613040499
4.345249389	6.42185538	9.20090982
7.261400871	5.023726395	7.304117263
8.299255357	9.362330705	6.742078023
9.38144584	7.930201106	6.806733072
5.176837564	5.933426918	7.673384146
8.142502086	9.054304934	

Agent B	Agent B	Agent B		
7.998587889	5.896128673	6.346837588		
4.559402435	6.583736137	7.292376463		
6.576428081	8.54627338	8.815814233		
8.816716933	7.757170756	5.403035295		
9.100949756	6.969174979	6.473747035		
7.349138513	7.631196171	7.78376258		
8.240349125	7.088036612	4.842890294		
6.160061053	6.73035677	5.321570164		
6.768835733	6.007176704	8.3847655		
8.863500005	8.111058835	6.877823333		
7.126141741	8.807651883	7.595856114		
5.068920248	5.877834851	8.816716933		
5.735725493	5.392081492	6.16779085		
8.977982327	8.983414595	6.854808601		
8.595574286	5.841398118	6.497947196		
5.698521787	6.795606961	6.959392683		
8 281182254	7 911681266			

Original A	7.375799124		
Original B	7.278906273		
Ideal: 50 - 200	7.726508486		

03 - CUMULATIVE RETURNS: AAPL

Agent A	Agent A	Agent A	
2.542591912	2.855293118	2.66457935	
3.884614802	3.522382707	3.615951046	
2.99011752	3.03472913	3.573668924	
2.480014966	3.365329493	2.678782926	
2.708581219	3.962538212	2.8543236	
2.466732356	2.243171095	3.631012253	
2.42367906	2.109874597	2.365751245	
3.733449009	2.721386474	2.729148804	
2.809999641	3.18419252	2.903047249	
2.374743833	2.603581865	2.386404143	
2.656083335	3.601063043	2.912406832	
2.534474268	2.63376728	2.723079824	
2.431833237	2.132979046	2.326538221	
2.999244062	2.763240363	2.674774757	
3.05671832	2.700273525	2.748017391	
4.047398505	2.86164723	3.296304699	
3.567534764	3.775535687		

Agent B	Agent B	Agent B	
2.651894468	2.769212885	3.962569014	
3.575154869	3.872337589	4.459747734	
3.212843796	2.730058317	2.686678249	
3.275974248	4.398203513	3.27850378	
3.459826735	2.720194262	2.647542831	
3.78945745	2.5697293	2.910401208	
4.298665979	3.298462311	2.563100041	
3.043498052	3.810891063	3.230890969	
3.318912208	3.38647157	2.601361607	
2.694291157	3.056396926	3.608751002	
1.999875141	3.62422513	2.61488377	
2.390155246	3.348739182	3.845548644	
3.003903621	4.505444808	3.763745639	
3.295299496	2.287802238	3.514041617	
3.514041617	2.725050037	2.551996855	
3.304513495	2.511616151	2.906319569	

2.731514176

Original A	3.044689304		
Original B	3.000271409		
Ideal: 50 - 200	4.182353518		

04 - HYPOTHESIS

$$H_0$$
: $\frac{Return \, w/\, Agents}{Return \, w/out \, Agents} - 1 > 0$

- Will test against:
 - Agents' original windows
 - Golden Cross Ideal windows: 50 and 200

04 - ANALYSIS OF RESULTS: TSLA

Statistically significant improvement

04 - ANALYSIS OF RESULTS: AMZN

Statistically significant improvement

04 - ANALYSIS OF RESULTS: AAPL

- Improvement is NOT statistically significant
 - Heuristics need to be adjusted for each "game"

APPLICATIONS/FUTURE:

- More optimized trading algorithms
 - High frequency / Self correcting
- In future:
 - Can adapt for different stocks
 - Complete backtesting
 - More than 2 Al agents
 - Multiple parts of the same algorithm

CONCLUSION:

- → Successfully developed a trading strategy with 2 competing Al agents implementing Golden crossover
 - Tested our method with 3 Stocks
- → Found statistically significant improvement in using our strategy

Thank you! Any questions?