Определение 1. Пусть (x_n) и (y_n) — две последовательности. Говорят, что $x_n = O(y_n)$ (читается как «икс-эн есть о большое от игрек-эн»), если существуют константа C такая, что $|x_n| \leqslant C \cdot |y_n|$ при $n \gg 0$. Говорят, что $x_n = o(y_n)$ (читается как «икс-эн есть о малое от игрек-эн»), если для любого числа $\varepsilon > 0$ неравенство $|x_n| \leqslant \varepsilon \cdot |y_n|$ выполнено при $n \gg 0$.

Используя асимптотические обозначения очень удобно выделять самую «весомую» часть последовательности. Например, пишут $(n+1)^2 = n^2 + o(n^2)$ или $(n+1)^2 = n^2 + O(n)$, имея в виду, что заменив каждое асимптотическое выражение на подходящую последовательность, удовлетворяющую этой асимптотике, можно получить тождество. В нашем примере в качестве такой последовательности выступает (2n+1), ведь $2n+1=o(n^2)$ и 2n+1=O(n).

Задача 1. Докажите, что **a)** $x_n = O(1)$ тогда и только тогда, когда последовательность (x_n) ограничена; б) $x_n = o(1)$ тогда и только тогда, когда последовательность (x_n) бесконечно малая; в) если в последовательности (y_n) нет нулевых членов, то $x_n = O(y_n)$ тогда и только тогда, когда (x_n/y_n) ограничена, а $x_n = o(y_n)$ равносильно тому, что (x_n/y_n) — бесконечно малая.

Задача 2. Какой смысл у тождеств: $o(1) + o(1) = o(1), \quad o(1) \cdot O(1) = o(1),$ o(1) + O(1) = O(1)?

Задача 3. Какие из следующих утверждений верны: **a)** $\sin n = O(1)$; $\sin n = o(1)$;

6)
$$n^2 = O(n^3)$$
; $n^2 = o(n^3)$; $n^2 = O(n)$; $n^2 = o(n)$; $1/n^2 = O(1/n^3)$; $1/n^2 = o(1/n)$.

Задача 4. Докажите, что **a)** $(n+1)^3 = n^3 + o(n^3)$; **б)** $(n+1)^4 = n^4 + 4n^3 + O(n^2)$;

B) $1+2+\ldots+n=n^2/2+O(n);$ **r)** $1^2+2^2+\ldots+n^2=n^3/6+O(n^2);$

Задача 5°. (основные асимптотики) Докажите, что а) $n^k = o(n^l)$ при k < l, где $k, l \in \mathbb{Z}$;

б) $n^k = o(a^n)$ при a > 1; **в)** $a^n = o(n^k)$ при 0 < a < 1; **г)** $a^n = o(n!)$; **д)** $n! = o(n^n)$;

Задача 6. Можно ли утверждать, что $x_n = o(z_n)$, если **a)** $x_n = o(y_n)$ и $y_n = o(z_n)$;

6)
$$x_n = O(y_n)$$
 и $y_n = O(z_n)$; **в)** $x_n = o(y_n)$ и $y_n = O(z_n)$; **г)** $x_n = O(y_n)$ и $y_n = o(z_n)$.

Задача 7. Известно, что $x_n = O(n^4)$ и $y_n = o(n^3)$. Что можно сказать про $x_n + y_n$ и $x_n \cdot y_n$?

Определение 2. Используют также обозначения вида $n\cdot (1+O(1/n))+2^{o(1)}=n+O(1),$ где асимптотические обозначения есть с обеих сторон равенства. В этом случае имеют в виду следующее: если заменить каждое асимптотическое выражение в левой части на любую последовательность, удовлетворяющую этой асимптотике, то в правой части можно заменить каждое асимптотическое выражение на подходящую последовательность так, чтобы получить тождество.

Задача 8°. Докажите, что **a)** $x_n \cdot O(y_n) = O(x_n y_n); \quad O(x_n) \cdot O(y_n) = O(x_n y_n);$

- **6)** $x_n \cdot o(y_n) = o(x_n) \cdot o(y_n) = o(x_n) \cdot O(y_n) = O(x_n) \cdot o(y_n) = o(x_n y_n);$
- в) если $x_n = O(y_n)$, то $O(x_n) + O(y_n) = O(y_n)$ и $o(x_n) + o(y_n) = o(y_n)$;

Задача 9. а) Предполагая, что формула $\sqrt{1+1/n}=1+1/2n+a/n^2+O(1/n^3)$ верна для некоторой константы a, найдите значение a. **б)*** Докажите, что при этом a формула действительно верна.

Задача 10. Укажите такие числа a и b, что $\sqrt[3]{1+1/n}=1+a/n+b/n^2+O(1/n^3)$, считая что для некоторых a и b эта формула действительно верна.

Задача 11. Пусть $k \in \mathbb{N}$. Укажите такое число a, что $\sqrt[k]{1+1/n} = 1 + a/n + O(1/n^2)$.

Задача 12. а) При анализе алгоритма выяснилось, что время его работы T(n) на входе длины nудовлетворяет соотношению T(n) = T([n/2]) + T([n/3]) + O(n). Докажите, что T(n) = O(n). **б)*** Что можно сказать о T(n), если T(n) = 2T([n/2]) + O(n)?

Задача 13*. Считая, что при неких a и b верна формула $1+1/2^2+1/3^2+\ldots+1/n^2=a+b/n+O(1/n^2)$, найдите b. (Найти a гораздо сложнее, $a = \pi^2/6$.)

Задача 14°. (асимптотика факториала)

а) Докажите, что для любого натурального числа n выполнены неравенства $\left(\frac{n}{4}\right)^n \leqslant n! \leqslant \left(\frac{n+1}{2}\right)^n;$

б)** (формула Стирлинга) Докажите, что $n! = \sqrt{2\pi n} \left(\frac{n}{-}\right)^n \cdot \left(1 + O\left(\frac{1}{-}\right)\right)$.

		$\langle e \rangle$												1		_ /	n_{J}	/													
1 a	1 6	1 B	2	3 a	3 6	4 a	4 б	4 B	4 Γ	5 a	5 6	5 B	5 Г	5 Д	6 a	6	6 B	6 Г	7	8 a	8 6	8 B	9 a	9 6	10	11	12 a	12 б	13	14 a	14 6