PBPの学習の流れ パラメータの初期化

W, γ_wのパラメータの学習 (正則化のようなことを行っているように思う。) 5.2.5.3の8行目から。 実際はEP法を使っている。本では インデックスがないことに注意。 Supplementary materialの(35)-(39)参照。 途中にあるように、その間で(5.59)(5.60) (5.61)(5.62)を利用する。

P.130 1-8行目。
Prior.pyで各種変数初期化。
ただし、wと\tilde{f}に関して、
Supplementary material 6の(33),(34)で
初期化。実用上はnatがつくもので初期化。

W, γ_yのパラメータの学習 各教師データごとにパラメータを更新 1, 順伝播で尤度を計算。 計算式はpbp.pyの__init__で設定。 (Network.pyのlogZ_Z1_Z2で(5.65)が、 output probabilisticで呼ばれる、 network layer.pyのoutput probabilisticで (5.66)-(5.73)を利用している。 2. それを微分。 Pbp.pyのadf_updateで微分、更新。 (実際はnewwork.pyのgenerate_updates) 微分はtheanoを使ってやっているので 逆伝播がわかりにくい。 おそらく、c版では supplementary material 1の(1)-(22)を 利用していると思われる。 (21),(22)が逆伝播で求めたい微分。 (21),(22)のδが逆伝搬している情報。

各パラメータW, γ_y,γ_w の平均と分散が求まれば、入力に対して、出力の平均、分散が求められる (test_PBP_new.py)。検証データで平均を求めて、2乗誤差、尤度を評価。

PBPの学習の流れ

 $P(y_i|X_i,W,\gamma_y,\gamma_w)$

q(W, γ_y,γ_w) (各変数が独立)

EP法	ADF	W,γ_yの学習	W,γ_wの学習
θ	θ	W, γ_y(, γ_w) γ_wは積分して定数になる	W, γ_w(, γ_y) γ_yは積分して定数になる
f_n(θ) (n≧0)	尤度として 書けるとき f_0(θ)=p(θ) f_i(θ)∝p(D_i θ)	$f_0(\theta)=q(W, \gamma_w, \gamma_y)$ $f_{W,\gamma_y}(W, \gamma_y) =$ $p(y_i W, \gamma_y)$	$f_{\gamma_w(\theta)=p(\gamma_w)}$ $f_{\gamma_y(\theta)=p(\gamma_y)}$ $f_{w_i,j,l(\theta)=p(w_i,j,l 0,\gamma)}$
これに対して、	$p(\theta) = \prod_{i=1}^{n} p(\theta)$		
tilde{f}_n(θ) (n≧1)	tilde{f_i}_n(θ) ただし、初期は tilde{f_i}_n(θ)=1 →割っても 変わらない	$tilde\{f_W\}_n(\theta)=q(W)$ $=N(W)$ $tilde\{f_\gamma_y\}_n(\theta)=q(\gamma_y)$ $=N(\gamma_y)$	tilde{f_γ_w} =q(γ_w) =Gam(γ_w) tilde{f_γ_y} =q(γ_y) =Gam(γ_y) w_i,j,lを含む部分につい tilde{f_w_i,j,l}(θ)
これに対して、q(6	θ)=Πtilde{f}_n(θ)		=N(w_i,j,l)Gam(γ _w)