Introduction to Scientific Computing I

Amir Farbin

Amir Shahmoradi

What is Data Science?

- From Wikipedia: Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms...
- There are concepts that unify statistics, data analysis, machine learning,
 ...
- Take techniques from mathematics, statistics, information science, and computer science
- Apply it to a domain:
 - science: biology, physics, psychology, ...
 - marketing, business analytics, ...

Data Science

Data Science @ UTA

- College of Science is in the process of getting approval for undergraduate BA and BS degrees in Data Science.
- Minor in Data Science possible now.
- Tentative New Courses:
 - DATA 1301: Introduction to Data Science
 - DATA 1401/2: Introduction to Scientific Computing 1 and 2
 - DATA 3401: Data Mining, Management, and Curation
 - DATA 34xx: Statistical Modeling
 - DATA 34xx: Simulation
 - DATA 34xx: Machine Learning
 - DATA 43xx: Data Problems
 - DATA 43xx: Data Capstone Project 1 and 2

•

Degree Goals

- If you are heading to industry: BS degree → join a data science team.
- If you are heading to grad school: BS degree → enable research.

Logistics

- **Lectures**: Monday/Wednesday/Friday
 - No official Textbook. Unique class. Not following an existing paradigm.
 - Lecture and labs are essential.
 - Welcome to use any python book as a reference.
 - We will learn to use online docs as resource.
 - Quizzes (10%): Short and Easy. "Pop": Randomly scheduled. Serves as attendance tool. Quiz will often
 integrate with the lecture.
 - Drop 2 lowest grades (including being sick, unless previously made arrangements).
- **Lab** (50%) Friday
 - Hands-on: I'll walk through something.
 - Lab: (15%) has to be accomplished in during the session (maybe end of day).
 - Homework (35%): Remainder is general is "Homework". Due by following lab session.
- Midterm (20%) / Final (20%): Comprehensive... similar to homework. Take home. 24-48 hours. No makeups.

Logistics (2)

- Homework Policy
 - You can work with others, but do not copy/paste code from another student.
 - Submitted via git (Version Control System).
- Help
 - Clinic: We usually run a clinic where students can ask for help... wasn't effective virtually.
 - Will run a poll to determine optimal time for an additional help session.
 - Office Hours: I'll generally be available after every classes session.
 - Google group... https://groups.google.com/forum/#!forum/uta-data-1401-fall-2020
- Laptop (with a physical keyboard).
 - Highly recommended to have a laptop for this class
 - Doesn't matter what OS you run... all you need is a browser.
 - If you don't have a laptop, you can rent one. Details ...
- First lab will be NEXT Friday (9/4), will be to get setup.

Style

- Really a Python Programming Class taught from a Data Science perspective.
- Introduce and then reinforce data science concepts through successively more advanced implementations each introducing new programming techniques and culminating in use of advanced libraries.
- For example,
 - Learn about distributions and histogram
 - Example: Construct histograms
 - by hand
 - procedurally
 - write histogramming functions
 - write histogramming object oriented classes
 - use standard libraries that provide histogramming

Course Plan

- Class Intro
- •What is Data Science?
- Conceptual Understanding of Computing
 - •From Transistor to the iPhone (Hardware)
 - •From Machine Language to Python (Programming)
 - •From Operating Systems to Apps (Software)
- Fundamentals
 - •Git
 - Basic Unix
 - Jupyter
- •Python Introduction → Build your first game:

Checkers / Tic-Tac-Toe

- Data types / Syntax
- Loops / Control Flow
- Abstraction: Functions
- Basic I/O
- Modules / Libraries
- •→ Build your first game: Checkers / Tic-Tac-Toe
- Linear Algebra
 - Basic algorithms
 - → Matrix Operations

- Object Oriented Programming (take 1)
 - •→ Matrix Class
- Probability Theory
 - Understanding Distributions
 - → Histograms and Monte Carlo / Functional Programming
- Object Oriented Programming (take 2)
 - Scripting vs Building Software
 - •OO Design Patterns / UML
 - → Gradebook Software
- Data Analysis
 - Introduction to: numpy, Pandas, matplotlib
 - Representing Data
 - Visualization
 - → Basic Data Analysis
- Machine Learning
 - •scikit
 - •→ LHC Data Analysis