GEONETRIC INTERPRETATION

let's start with a simple example

consider 3 statistical units (us, us, us), one covariate x; and the response y;

					,		
	χį	ઝું	_	n=3	P= 1	8 1	u ₃
us	1	0				4	
u 2 u3	4	1				L.	
uz	6	6					uz
	1					o ui a	4 ć y

our platelm up to now was:

I each for the line that minimites the "vertical distances"

×iı	Xia	પ્ર દ
1	4	0
4	2	1
6	5	6
	1	1 4

n=3 points in a

(p+1)-dimensional space

(= # covariates + 1)

In the multiple linear model we have Y = X + E where $X = [X_1 \ X_2 \ ... \ X_p]$, and the columns one p n-dimensional vectors we can charge perspective on the data: units are the exes, variables one vectors.

p=2 n-dimensional vectors

einearly independent

in en n-dimensional space

the 2 vectors identify a plane (2-dim space) \Rightarrow any circal combination of $\times 1$ and $\times 1$ will be an this plane

If we call $X = [X_1 \ X_2]$, $X_1 = X_2 = X_1 + X_2 = X_2 + X_2 = X_2 + X_2 = X_1 + X_2 = X_2 + X_2 = X_2 + X_2 = X_1 + X_2 = X_2 + X_2 = X_2$

any pe= B= xx + B x2 wice eic on COX)

For a given $(\beta_1, \beta_2) = \beta$, $\times \beta$ is a vector in the subspace. When we incroduce y_1 in general it wise not lie or C(x) $y_1 - \times \beta$ is the difference between the response and that vector of C(x) $(y_1 - \times \beta)^T (y_1 - x\beta) = S(\beta)$ is the squared Enght of the difference \Rightarrow minimizing $S(\beta)$ means finding, in C(x), the vector $\times \beta$ so that $y_1 - \times \beta$ has minimum Ength.

Indeed, $\hat{\mu} = X\hat{\beta}$ is the ORTHOGONAL PROJECTION of y onto COX) $\hat{\mu} = X\hat{\beta} = X(X^TX)^{-1}X^Ty = Py \quad \text{and} \quad P = X(X^TX)^{-1}X^T \text{ is the projection matrix}$ (check: ic is symmetric and idempotent)

The vector of residuals $e = y - \mu = y - py = (I_n - p) + is also a projection of <math>y : e = i$ the projection of y : e = i on the subspace of i = i perpendicular to i = i = i (In - P) is also a projection matrix (check) of rank n-p (it projects on the space i = i = i)

 \Rightarrow the vector of fitted values μ and the vector of residuals e are perpendicular: $e^T\mu = 0$ the vector e and x are arthoponal; $e^Tx = 0$ $\Leftrightarrow x^Te = 0$ $x^T(y-x^2) =$

the least squares estimate decomposes the response vector into two orthogonal components $y = \hat{\mu} + e = \hat{y} + e = \hat{y} + (y - \hat{y})$ thanks to the orthogonality between $e = e^{-\hat{y}} + e^{-\hat{y}}$ we can unitally $||y||^2 = ||e||^2 + ||\hat{y}|| = ||y||^2 = ||e||^2 + ||\hat{y}|| = ||y||^2 = ||e||^2 + ||\hat{y}|| = ||y||^2 + ||\hat{y}|| = ||y||^2 + ||\hat{y}|| = ||y||^2 + ||\hat{y}||^2 = ||e||^2 + ||e$

Consider a model which includes the intercept: $X = [\underbrace{1}_{n} \times^{(2)} ... \times^{(p)}]$, then $\underline{1}_{n} \in C(X)$ and for the normal equations: $\underline{1}_{n} = 0 \Rightarrow \sum_{i=1}^{p} e_{i} = 0$ moreover, $\underline{1}_{n} = \underline{1}_{n} = \underline{1}_{n}$

 $\frac{1}{4} = \frac{1}{4} + \underline{e} \implies \frac{1}{2} - \underline{1}_{n} \cdot \overline{y} = \frac{1}{2} - \underline{1}_{n} \cdot \overline{y} + \underline{e}$ $\Rightarrow ||\underline{y} - \underline{1}_{n} \cdot \overline{y}||^{2} = ||\underline{\hat{y}} - \underline{1}_{n} \cdot \overline{y}||^{2} + ||\underline{e}||^{2}$ $\Rightarrow \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2} + \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} \implies \text{DEVIANCE decomposition}$