Lecture 18: t-tests

Ciaran Evans

Previously: Wald tests for a population mean

Suppose $X_1,...,X_n$ are an iid sample from a population with mean μ and variance σ^2 . We wish to test

$$H_0: \mu = \mu_0$$
 $H_A: \mu \neq \mu_0$

▶ If σ^2 is known:

▶ If σ^2 is unknown:

Issue: Wald tests with small n

The Wald test for a population mean μ relies on

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{s} \approx N(0, 1)$$

- $ightharpoonup Z_n \stackrel{d}{ o} N(0,1) \text{ as } n o \infty$
- ▶ But for small n, Z_n is not normal, even if $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$

What is the exact distribution of $\frac{\sqrt{n}(X_n-\mu)}{s}$?

t-tests

If
$$X_1,...,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2)$$
, then

$$rac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \sim \mathcal{N}(0, 1)$$

$$\frac{\sqrt{n}(\overline{X}_n-\mu)}{s}\sim t_{n-1}$$

t-distribution

— df = 1 — df=2 — df=5 —
$$N(0, 1)$$

t distribution

Definition: Let $Z \sim N(0,1)$ and $V \sim \chi_d^2$ be independent. Then

$$T = rac{Z}{\sqrt{V/d}} \sim t_d$$

Claim: If $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, then

$$\frac{\sqrt{n}(\overline{X}_n-\mu)}{s}\sim t_{n-1}$$

What we want to show

$$(n-1)\frac{s^2}{\sigma^2} \sim \chi^2_{n-1}$$
 $(n-1)\frac{s^2}{\sigma^2} \perp \perp \frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}$

Decomposing the sum of squares

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 + n \left(\frac{\overline{X} - \mu}{\sigma} \right)^2$$

Cochran's theorem

Let $Z_1,...,Z_n \stackrel{iid}{\sim} N(0,1)$, and let $Z = [Z_1,...,Z_n]^T$. Let $A_1,...,A_k \in \mathbb{R}^{n\times n}$ be symmetric matrices such that $Z^TZ = \sum\limits_{i=1}^k Z^TA_iZ$, and let $r_i = rank(A_i)$. Then the following are equivalent:

- $ightharpoonup r_1 + \cdots + r_k = n$
- ightharpoonup The Z^TA_iZ are independent
- ► Each $Z^T A_i Z \sim \chi_{r_i}^2$

Application to t-tests