Ancillarity—Sufficiency or not

Interweaving to improve MCMC estimation of the local level model

Matthew Simpson*, Jarad Niemi and Vivekananda Roy

*Iowa State University, Departments of Statistics and Economics

December 16, 2013 EFaB @ Bayes250 Duke University

Model

For
$$t=1,2,\cdots,T$$
:
$$y_t|\theta_{0:T} \overset{ind}{\sim} N(\theta_t,V)$$
 $\theta_t|\theta_{0:t-1} \sim N(\theta_{t-1},W)$

Data Augmentations (DAs)

- lacksquare States (standard): $heta_{0:T}$
 - ightharpoonup Sufficient augmentation (SA) for W given V
 - lacktriangle Ancillary augmentation (AA) for $oldsymbol{V}$ given $oldsymbol{W}$
- lacksquare Scaled disturbances: $\gamma_0= heta_0$ and for $t=1,2,\cdots,T$

$$\gamma_t = (heta_t - heta_{t-1})/\sqrt{W}$$

- ightharpoonup Ancillary augmentation for (V, W)
- lacksquare Scaled errors: $\psi_0= heta_0$ and for $t=1,2,\cdots,T$

$$\psi_t = (y_t - heta_t)/\sqrt{V}$$

lacktriangleright Ancillary augmentation for (V, W)

Interweaving vs Base

lacksquare GIS: let $\phi = (V, W)$

$$[heta|\phi^{(k)},y] o [\phi^{(k+0.5)}| heta,y] o [\gamma| heta,\phi^{(k+0.5)},y] o [\phi^{(k+1)}|\gamma,y]$$

- lacktriangle ASIS: GIS, but require heta to be a SA and γ an AA for (V,W), or vice versa
- lackbox CIS: GIS for $V^{(k+1)}|W^{(k)}$, then for $W^{(k+1)}|V^{(k+1)}$ (similar to Gibbs steps)
- Let effective sample proportion $\equiv ESP \equiv ESS/n$

GIS vs Hybrid

Alternating: let $\phi = (V, W)$

$$[heta|\phi^{(k)},y] o [\phi^{(k+0.5)}| heta,y] o [\gamma|\phi^{(k+0.5)},y] o [\phi^{(k+1)}|\gamma,y]$$

Random Kernel: randomly select a DA at every iteration.

Conclusions

- lacksquare Hard to find a SA for (V, W), so ASIS is elusive
- ► GIS gives no better mixing than alternating algorithms
- ► Full CIS gives no better mixing than non-ASIS GIS
- GIS is computationally cheaper than full CIS and hybrid algorithms
- ▶ GIS improves mixing over base DA algorithms, but trade-off with computation
- ► New "scaled" DAs generalize easily to most DLMs

References

Chris K Carter and Robert Kohn. On Gibbs sampling for state space models. *Biometrika*, 81(3):541–553, 1994.

Sylvia Frühwirth-Schnatter. Data augmentation and dynamic linear models. *Journal of Time Series Analysis*, 15(2):183–202, 1994.

Sylvia Frühwirth-Schnatter. Efficient Bayesian parameter estimation for state space models based on reparameterizations. *State Space and Unobserved Component Models: Theory and Applications*, pages 123–151, 2004.

Yaming Yu and Xiao-Li Meng. To center or not to center: That is not the question - an ancillarity—sufficiency interweaving strategy (ASIS) for boosting MCMC efficiency. *Journal of Computational and Graphical Statistics*, 20(3):531–570, 2011.