Dérivées des fonctions de référence 1

1	ſ	_	
	<	<u>~</u>	
	\ <u>~</u>	•-	
		رات	Ť
	11	9	

Fonctions usuelles

Fonction f	Fonction f'	Domaine de
		dérivabilité
k	0	\mathbb{R}
ax + b	a	\mathbb{R}
x^n	nx^{n-1}	\mathbb{R} , avec $n \in \mathbb{N}^*$
1	1	ℝ*
$\frac{\overline{x}}{x}$	$-\frac{1}{x^2}$	11/2
$\sin(x)$	$\cos(x)$	\mathbb{R}
$\cos(x)$	$-\sin(x)$	\mathbb{R}
$\sin(\omega t + \varphi)$	$\omega\cos(\omega t + \varphi)$	\mathbb{R}
$\cos(\omega t + \varphi)$	$-\omega\sin(\omega t + \varphi)$	\mathbb{R}

$\mathbf{2}$ Opération sur les dérivées

Dans le tableau suivant, u et v désignent deux fonctions dérivables sur un intervalle I, k désigne un nombre réel et n est un entier relatif non nul.

Opérations et dérivation

Fonction f	Fonction dérivée f'	Domaine de dérivabilité	exemples
u + v	u' + v'	I	
uv	u'v + v'u	I	1
ku	ku'	I	3
$\frac{1}{v}$	$\frac{-v'}{v^2}$	tout $x \in I$ tel que $v(x) \neq 0$	5
$\frac{u}{v}$	$\frac{u'v - v'u}{v^2}$	tout $x \in I$ tel que $v(x) \neq 0$	4

3 **Tangente**

Equation de la tangente en un point de la courbe

Soit f une fonction, de courbe représentative \mathscr{C}_f , dérivable en $a \in \mathbb{R}$ et A le point d'abscisse a de \mathscr{C}_f . L'équation réduite de la tangente à \mathcal{C}_f au point d'abscisse a est :

$$y = f'(a)(x - a) + f(a)$$

Le nombre dérivé f'(a) est le coefficient directeur de la tangente à \mathscr{C}_f au point d'abscisse a.

Exemples 4

1. Produit de deux fonctions

Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \left(2 + \frac{x^2}{3}\right)\left(1 - \frac{2}{x}\right)$. Calculer f'(x).

f est de la forme uv d'où f' = u'v + uv' avec

$$u(x) = 2 + \frac{x^2}{3} = 2 + \frac{1}{3}x^2 \qquad v(x) = 1 - \frac{2}{x} = 1 - 2 \times \frac{1}{x}$$

$$u'(x) = \frac{2x}{3} \qquad v'(x) = -2(-\frac{1}{x^2}) = \frac{2}{x^2}$$

Donc f est dérivable sur $]0;+\infty[$ et pour tout réel x appartenant à l'intervalle $]0;+\infty[$,

$$f'(x) = \frac{2x}{3} \times \left(1 - \frac{2}{x}\right) + \frac{2}{x^2} \times \left(2 + \frac{x^2}{3}\right) = \frac{2x}{3} - \frac{4}{3} + \frac{4}{x^2} + \frac{2}{3} = \frac{2x^3 - 2x^2 + 6}{3x^2}$$

Ainsi, f' est la fonction définie sur $]0; +\infty[$ par $f'(x) = \frac{2x^3 - 2x^2 + 6}{2x^2}]$

2. Inverse d'une fonction

Soit f la fonction définie sur $]0,5;+\infty[$ par $f(x)=\frac{5}{2x-1}$. Calculer f'(x).

f est de la forme $5\times\frac{1}{u}$ d'où $f'=5\times(-\frac{u'}{u^2})$ avec :

$$u(x) = 2x - 1 \text{ avec } u(x) \neq 0 \text{ sur } [0, 5; +\infty[$$

$$u'(x) = 2$$

Donc f est dérivable sur $]0,5;+\infty[$ et pour tout réel x appartenant à l'intervalle $]0,5;+\infty[$,

$$f'(x) = 5 \times \left(-\frac{2}{(2x-1)^2}\right) = -\frac{10}{(2x-1)^2}$$

3. Quotient de deux fonctions

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{4x-3}{r^2+1}$. Calculer f'(x).

f est de la forme $\frac{u}{v}$ avec :

$$u(x) = 4x - 3$$
 $v(x) = x^2 + 1$
 $v(x) \neq 0 \text{ sur } \mathbb{R}$
 $u'(x) = 4$ $v'(x) = 2x$

Donc
$$f$$
 est dérivable sur \mathbb{R} et pour tout réel x appartenant à l'intervalle \mathbb{R} ,
$$f'(x) = \frac{4(x^2+1) - 2x(4x-3)}{(x^2+1)^2} = \frac{4x^2+4-8x^2+6x}{(x^2+1)^2} = \frac{-4x^2+6x+4}{(x^2+1)^2}$$

Ainsi, f' est la fonction définie sur \mathbb{R} par $f'(x) = \frac{-4x^2 + 6x + 4}{(x^2 + 1)^2}$