

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 078 985 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 28.02.2001 Bulletin 2001/09

(51) Int CI.7: **C12N 15/11**, C12N 9/12, C12N 15/63, C12N 15/87

(21) Application number: 00307362.4

(22) Date of filing: 25.08.2000

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 27.08.1999 US 384162

(71) Applicant: Her Majesty In Right of Canada, represented by The Minister of Agriculture and Agri-Food Canada Ottawa, Ontario K1A OC6 (CA) (72) Inventors:

Xing, Ti
 Ottawa, Ontario K2B 6S6 (CA)

 Malik, Kamal Ottawa, Ontario K1S 5AS (CA)

Martin-Heller, Teresa
 Gloucester, Ontario K1J 6X2 (CA)

Miki, Brian L
 Ottawa, Ontarlo K1H 5V1 (CA)

(74) Representative: Maschio, Antonio D Young & Co, 21 New Fetter Lane London EC4A 1DA (GB)

(54) Map kinase kinases (MEK)

(57) A mitogen-activated protein (MAP) kinase kinase gene, tMEK2, was isolated from tomato cv. Bonny Best. By mutagenesis, a permanently-active variant, tMEK2^{MUT}, was created. Both wild type tMEK2 and mutant tMEK2^{MUT} were driven by a strong constitutive promoter, tCUP Δ , in a tomato protoplast transient expression system. Pathogenesis-related genes, PR1bl and PR3, and a wound-inducible gene, ER5, were activated by tMEK2^{MUT} expression revealing the convergence of

the signal transduction pathways for pathogen attack and mechanical stress at the level of MAPKK. Activation of biotic and abiotic stress response genes downstream of tMEK2 occurred through divergent pathways involving at least two classes of mitogen-activated protein kinase. This study shows that tMEK2 may play an important role in the interaction of signal transduction pathways that mediate responses to both biotic (eg disease) and abiotic (wound responsiveness) stresses.

Description

5

10

15

25

35

40

45

55

[0001] The present invention relates to a derivative of a mitogen-activated protein (MAP) kinase kinase and the use of said derivative for increasing disease resistance and enhanced stress tolerance in plants.

BACKGROUND OF THE INVENTION

[0002] Signaling mechanisms that mediate plant defense responses may be strongly conserved among plants. This is supported by the observation that several classes of R genes confer disease resistance when expressed in heterologous plant species. For instance, the tomato disease resistance gene, *Cf-9*, was shown to confer responsiveness to the fungal avirulence gene product *Avr9* in transgenic tobacco and potato (Hammond-Kosack *et al.*, 1998). Although *Cladosporium fulvum* is exclusively a fungal pathogen of tomato, a rapid hypersensitive response (HR) was induced in transgenic tobacco and potato by experimentally allowing these specific interactions to occur which then induced signaling pathways that could be common to the plants. Furthermore, the tomato disease resistance gene, *Pto*, which specifies race-specific resistance to the bacterial pathogen *Pseudomonas syringae pv tomato* carrying the *avrPto* gene, also increased the resistance of tomato to *Xanthomonas campestris pv vesicatoria* and *Cladosporium fulvum* when over expressed (Tang *et al.*, 1999). Clearly, it is the recognition of the pathogen that is unique to most plant species; whereas, the defense response is similar among them.

[0003] Considerable progress has now been made in understanding the signal transduction pathways following perception of biotic and abiotic stresses and the information is being used to develop strategies for modifying transgenic plants. Separate manipulations of the G protein pathway (Xing et al., 1996, 1997) may elevate pathogen resistance or induce defense reactions in transgenic tobacco (Beffa et al., 1995) and increase resistance to tobacco mosaic virus infection (Sano et al., 1994). Multiple roles for MAPK (mitogen-activated protein kinase) in plant signal transduction have also been shown, including responsiveness to pathogens, wounding and other abiotic stresses, as well as plant hormones such as ABA, auxin and ethylene (Hirt, 1997; Kovtun et al., 1998). MAPKK (mitogen-activated protein kinase kinase) from Arabidopsis (AtMEK1) and tomato (LeMEK1) have been shown to be induced by wounding (Morris et al., 1997; Hackett et al., 1998), and the maize (ZmMEK1) gene was induced by high salinity and cold (Hardin and Wolniak, 1998). These enzymes interact within MAP kinase pathways that are extensively used for transcytoplasmic signaling to the nucleus. In the MAPK signal transduction cascade, MAPKK (MAP kinase kinase) is activated by upstream MAP-KKK (mitogen-activated protein kinase kinase kinase) and in turn activates MAPK. The transcription of specific genes is induced by MAPK through phosphorylation and activation of transcription factors. This pathway has not yet been manipulated in plants.

SUMMARY OF THE INVENTION

[0004] The present invention relates to a derivative of a mitogen-activated protein (MAP) kinase kinase and the use of said derivative for increasing disease resistance and enhanced stress tolerance in plants.

[0005] According to the present invention it was determined that mutagenesis of a core phosphorylation site of a member of the MAPK cascade can create a permanently-active form, which stimulates both pathogen- and wound-inducible genes when introduced into plant cells.

[0006] Thus, according to the present invention there is provided a nucleic acid sequence encoding a derivative of a mitogen-activated protein kinase kinase gene from plants, wherein said derivative contains a negative charge in a core phosphorylation site of said protein kinase kinase gene.

[0007] Further according to the present invention there is provided a derivative of a mitogen-activated protein kinase kinase gene from plants, wherein said derivative contains a negative charge in a core phosphorylation site of said protein kinase kinase gene.

[0008] In a further embodiment of the present invention there is provided a cloning vector comprising a nucleic acid sequence encoding a derivative of a mitogen-activated protein kinase kinase gene from plants, wherein said derivative contains a negative charge in a core phosphorylation site of said protein kinase kinase gene.

[0009] The present invention also includes a transgenic plant comprising a nucleic acid sequence encoding a derivative of a mitogen-activated protein kinase kinase gene, wherein said derivative contains a negative charge in a core phosphorylation site of said protein kinase kinase gene.

[0010] Further, according to the present invention there is provided a method of increasing disease resistance or enhancing stress tolerance in a plant by introducing into said plant a nucleic acid sequence encoding a derivative of a mitogen-activated protein kinase kinase gene, wherein said derivative contains a negative charge in a core phosphorylation site of said protein kinase kinase gene.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

20

30

35

40

45

50

[0011] These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:

[0012] FIGURE 1 shows sequence analysis of tMEK2. FIGURE 1a shows the DNA (SEQ ID NO:1) and deduced amino acid sequence (SEQ ID NO: 2). Roman numerals under the sequence indicate the 11 subdomains found in protein kinases. The asterisk indicates stop codon. FIGURE 1b shows the alignment of the deduced amino acid sequences from catalytic domains of MAPKK subfamily members (SEQ ID NO: 3 to 21). FIGURE 1c shows the alignment of amino acid sequences of tMEK2 with other MAPKKs between subdomain VII and VIII. Dashes represent gaps introduced for maximum matching. The amino acid residues in bold and italics between subdomain VII and VIII show putative phosphorylation sites.

[0013] FIGURE 2 shows the autophosphorylation and substrate phosphorylation activity of tMEK2. FIGURE 2a shows the autophosphorylation of tMEK2^{WT} and tMEK^{MUT}. Recombinant GST-tMEK2^{WT} or GST-tMEK2^{MUT} proteins were incubated *in vitro* without any protein kinase substrate followed by SDS-PAGE and autoradiography. FIGURE 2b shows the phosphorylation of myelin basic protein (MBP) by tMEK2^{WT} and tMEK^{MUT}. Recombinant GST-tMEKW^T or GST-tMEK2^{MUT} proteins were incubated *in vitro* with MBP followed by SDS-PAGE and transfer to nitrocellulose. The upper panel is the autoradiography of the nitrocellulose filter. The lower panel is the immunoblot with anti-GST antibody. [0014] FIGURE 3 shows the constructs of tMEK2^{WT} or tMEKM^{UT} driven by the constitutive promoter tCUPΔ or control plasmid showing GUS gene driven by the constitutive promoter tCUPΔ.

[0015] FIGURE 4 shows the expression of tMEK2 in tomato leaf mesophyll protoplasts. The effect was analysed by quantitative RT-PCR following transient expression of tMEK2 in protoplasts. C1, no electroporation; C2, electroporation of control plasmid; MEK2^{WT}, electroporation of plasmid with tMEK2^{WT} driven by the tCUPA promoter, electroporation of plasmid with tMEK2^{MUT} driven by tCUPA promoter. The pathogenesis-related genes PR1b1, PR3 and Twil were tested. Tomato actin was used as an internal standard.

[0016] FIGURE 5 shows the activation of ER5 by tMEK2. FIGURE 5a shows RNA gel blot analysis of total RNA (15 µg) from leaves following wounding for the indicated time in hours, showing wound-induced activation of tMEK2 and ER5 genes. FIGURE 5b shows the activation of ER5 gene by tMEK2. The effect was analysed by quantitative RT-PCR following transient expression of tMEK2 in protoplasts: Lane settings are as described in Figure 4. Tomato actin was used as an internal standard.

[0017] FIGURE 6 shows the effect of MAPK inhibitors on tMEK2^{MUT}-induced gene activation. Kinase inhibitors at the concentration of 1 μ M for staurosporine, 350 nM for SB 202190 and 1 μ M for PD 98059, SB 203580 and SB 202474 were included in the proteoplast incubation buffer.

[0018] FIGURE 7 shows the comparison of disease symptoms on a leaf from a wild type plant and on a leaf from tMEK2^{MUT} transformed plant.

DESCRIPTION OF PREFERRED EMBODIMENT

[0019] According to the present invention there is provided a derivative of a mitogen-activated protein kinase kinase (MAPKK). The present invention also relates to a method for increasing disease resistance and enhanced stress tolerance in plants using said derivative.

[0020] When used herein the term derivative means a modified MAPKK protein, wherein said modification includes the replacement of one or more amino acids of the wild type MAPKK with one or more other amino acids. Therefore said derivative is a non-naturally occurring variant of the wild type MAPKK.

[0021] MAPK signaling cascades are ubiquitous among eukaryotes from yeast to human (Guan, 1994) and mediate a large array of signal transduction pathways in plants (Hirt, 1997; Mizoguchi et al., 1997). The cascades utilize the reversible phosphorylation of regulatory proteins to achieve rapid biochemical responses to changing external and internal stimuli. A specific MAPK is rapidly activated by pathways responding to cold, drought, mechanical stimuli and wounding (Bogre et al., 1997; Jonak et al., 1996; Seo et al., 1995; Usami et al., 1995). MAPKs are also rapidly activated by pathways responding to pathogen elicitors (Ligterink et al., 1997; Suzuki and Shinshi, 1995). Other factors such as salicylic acid which is a signaling molecule in the pathogen response, may intervene in the signal cascade by transiently activating a MAPK in tobacco cells (Zhang and Klessig, 1997). MAPKK, which activates MAPK by phosphorylation in the signal cascade has been identified in Arabidopsis, tobacco, maize and tomato (Mizoguchi et al., 1997; Shibata et al., 1995; Hardin and Wolniak, 1998). Although phosphorylation of MAPKK by MAPKKK is the primary mechanism for initiating the signal cascade, regulation at the level of gene expression has also been implied. For instance, transcriptional activity of an Arabidopsis MAPKK, MEK1 (Morris et al., 1997), and a tomato MAPKK, tMEKI (Hackett et al., 1998), was increased by wounding. Transcriptional activity of ZmMEK1, a maize MAPKK, was slightly increased in roots by high salinity and was substantially decreased by cold (Hardin and Wolniak, 1998). In this study, tomato tMEK2 mRNA accumulation was also induced by wounding of leaves but transient expression in protoplasts did not result in

the activation of the target gene ERS. This observation supported the view that biochemical activation of MAPKK by phosphorylation was the primary factor in signal transduction and that transcriptional control plays a secondary role. [0022] Yeast and animal MAPKK are activated when serine and serine/threonine residues in the SxAxS/T motif, located upstream of the subdomain VIII are phosphorylated by MAPKKK. The putative consensus motif for characterised plant MAPKK is a S/TxXXxxS/T signature. This motif contains two additional residues when compared with the motif SxAxS/T detected in other eukaryotes. Thus, according to the present invention the use of a plant gene encoding the MAPKK is preferred to that of the yeast and animal genes, as the plant gene provides additional sites for manipulation. The plant genes also provide additional combinations of sites that can be modified according to the present invention. Thus, according to the present invention one or multiple sites of the plant gene can be modified.

10 [0023] According to the present invention, by creating a negative charge around a core phosphorlyation site the activation by MAPKKK was not needed for MAPKK activity.

[0024] According to the present invention possible core phosphorlyation sites include: serine and/or threonine sites located upstream of the subdomain VIII.

[0025] According to the present invention the creation of a negative charge around one of said core phosphorlyation sites includes replacement of one or more amino acids with an amino acid selected from the group consisting of: any negatively charged amino acids. In one embodiment of the present invention said negatively charged amino acids include glutamic acid and aspartic acid.

[0026] In one embodiment of the present invention MAPKK gene, from various sources can be modified, as described above. As noted earlier MAPK signalling cascades are ubiquitous among eukaryotes from yeast to human. Suitable examples of a suitable gene that can be used according to the present invention include *Lycopersicum esculentum* cv Bonny Best, tMEK2, together with other genes available in the art, as exemplified by the following:

Arabidopsis thaliana, AtMAP2Kα, (Jouannic S., Hamal A., Kreis M., Henry Y. 1996, Molecular cloning of an Arabidopsis thaliana MAP kinase kinase-related cDNA. Plant Physiol. 112:1397)

A. thaliana, AtMKK4, (Genbank accession number AB015315)

A. thaliana, AtMEK1, (Morris P.C., Cuerrier D., Leung L., Giraudat J. 1997, Cloning and characterisation of MEK1, an Arabidopsis gene encoding a homologue of MAP kinase kinase. Plant Mol. Biol. 35: 1057-1064)

L. esculentum tomato c.v. Alisa Craig, LeMEK1, (Genbank accession number AJ000728)

Zea mais, ZmMEK1, (Genbank accession number U83625)

A. thaliana, AtMAP2Kβ, (Genbank accession number AJ006871)

N. tabucum, NPK2, (Shibata W., Banno H., Hirano YIK., Irie K. Machida SUC., Machida Y. 1995, A tobacco protein kinase, NPK2, has a domain homologous to a domain found in activators of mitogen-activated protein kinasis (MAPKKs). Mol. Gen. Genet. 246: 401-410)

A. thaliana, AtMKK3, (Genbank accession number AB015314)

D. discoideum, DdMEK1, (Nakai K., Kanehisa M. 1992, A knowledge base for predicting protein localisation sites in eukaryotic cells. Genomics 14:897-911.)

Leischmania donovani, LPK, (Li S., Wilson ME., Donelson JE. 1996, Leishmania chagasi: a gene encoding a protein kinase with a catalytic domain structurally related to MAP kinase kinase. Exp. Parasitol. 82: 87-96.)

Drosophila melanogaste, HEP, (Glise B., Bourbon H., Noselli S. Hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. 1995, Cell 83: 451-461.)

Homo sapiens, MEK1, (Zheng C., Guan K. 1993, Cloning and characterisation of two distinct human extracellular signal-regulated kinase activator kinases MEK1 and MEK2. J. Biol. Chem. 268: 11435-11439)

R. norvegicus, MEK5, (English JM., Vanderbilt CA., Xu S., Marcus S., Cobb MH. 1995, Isolation of MEK5 and differential expression of alternatively spliced forms. J. Biol. Chem. 270: 28897-28902.)

H. sapiens, MKK3, (Derijard B., Raingeaud J., Barrett T., Wu IH., Han J., Ulevitch RJ., Davis RJ. 1995, Independent

15

20

25

30

35

40

45

50

human MAPkinase signal transduction pathways difined by MEK and MKK isoforms. Science 267:682-685.)

Saccharomyces cerevisiae, PBS2, (Boguslawaki G., Polazzi JO. 1987, Complete nucleotide sequence of a gene conferring polymyxin B resistance on yeast: similarity of the predictied polypeptide to protein kinases. Proc. Natl. Acad. Sci. USA 84: 5848-5852.)

S. cerevisiae, STE7, (Teague MA., Chaleff DT., Errede B. 1986, Nucleotide sequence of the yeast regulatory gene STE7 predicts a protein homologous to protein kinases. Proc. Natl. Acad. Sci. USA 83: 7371-7375.)

Candida albicans, FIST 7, (Clark KL., Feldmann PJ. Dignard D. 1995, Constitutive activation of the Saccharomyces cerevisiae mating response pathway by a MAP kinase kinase from Candida albicans. Mol. Gen. Genet. 249: 609-621.)

S. cerevisiae, MKK1, (Irie T., Takase MKS., Lee KS., Levin DE., Araki H., Matsumoto K., Oshima Y. 1993, MKK1 and MKK2, encoding Saccharomyces cerevisiae MAP kinase kinase homologues function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 13:3076-3083.)

[0027] In a further embodiment of the present invention putative phosphorylation activation sites are selected from the group consisting of:

Lycopersicum esculentum c:v. Bonny Best, tMEK 2: 219serine, 220threonine, 221serine and 226threonine;

Arabidopsis thaliana, AtMAP2Ka: 220threonine, 226serine and 227serine;

A. thaliana. AtMKK4: 220threonine, 226serine and 227serine;

A. thaliana, AtMEK1: 219serine, 220threonine, 221serine, 222serine and 226serine;

L. esculentum, LeMEK1: 219serine, 220threonine, 221serine and 226threonine;

Zea mais, ZmMEK1: 219serine, 220serine and 226threonine;

A. thaliana. At MAP2Kβ: 218threonine, 220threonine and 226threonine;

N. tabucum, NPK2: 219serine, 220serine and 226threonine;

A. thaliana, AtMKK3: 220serine and 226threonine;

D. discoideum, DdMEK1, 220threonine, 222serine and 226threonine;

Leischmania donovani, LPK: 220threonine, 224serine, 225serine and 226threonine;

Drosophila melanogaste, HEP: 220serine and 226threonine;

Homo sapiens, MEK1: 220serine and 226serine;

R. norvegicus, MEK5: 220serine and 226threonine;

H. sapiens, MKK3: 220serine and 226threonine;

Saccharomyces cerevisiae, PBS2: 220serine and 226threonine;

S. cerevisiae, STE7: 220serine and 226threonine;

Candida albicans. HST 7: 220serine and 226threonine; and

S. cerevisiae, MKK1: 220serine, 225threonine and 226threonine;

wherein the amino acid numbering system is based on the tomato gene tMEK2.

[0028] In one further embodiment of the present invention, there is provided a derivative of a mitogen-activated protein kinase kinase gene from tomato cv. Bonny Best, wherein the amino acids serine221 and threonine226 have been replaced with aspartic acid.

[0029] Methods of modifying amino acid sequences are well known in the art. In general terms two primers, one for the 3' end and one for the 5' end are used to amplify the coding region. PCR-based site-directed mutagenesis was then done using the procedure as described by Higuchi (1989). Based on the sequence of the PCR product two PCR reactions are used for its mutagenesis. In PCR reaction 1, a primer containing the appropriate base substitution was used together with the 5' primer to amplify the 5' end of the coding region. In PCR reaction 2, a further primer with the appropriate base substitution was used together with the 3' primer to amplify the 3' end of the coding region. Products from both reactions were then purified and combined for 3' extension. The resulting mutant was then amplified with the original 3' and 5' primers.

[0030] The present invention also includes a suitable cloning vector containing the nucleic acid sequence encoding the derivative of the MAPK gene for transforming suitable plant recipients to increase disease resistance and enhance stress tolerance in plants. Suitable cloning vectors include any cloning vectors, Ti plasmid-derived and standard viral vectors well known in the art.

[0031] The cloning vectors can include various regulatory elements well known in the art. For example the cloning vector of the present invention can further comprise a 3' untranslated region. A 3' untranslated region refers to that

5

10

15

20

25

30

35

40

45

50

portion of a gene comprising a DNA segment that contains a polyadenylation signal and any other regulatory signals capable of effecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by effecting the addition of polyadenylic acid tracks to the 3' end of the mRNA precursor. Polyadenylation signals are commonly recognized by the presence of homology to the canonical form 5' AATAAA-3' although variations are not uncommon.

[0032] Examples of suitable 3' regions are the 3' transcribed non-translated regions containing a polyadenylation signal of *Agrobacterium* tumor inducing (Ti) plasmid genes, such as the nopaline synthase (*Nos* gene) and plant genes such as the soybean storage protein genes and the small subunit of the ribulose-1, 5-bisphosphate carboxylase (ss-RUBISCO) gene.

[0033] The cloning vector of the present invention can also include further enhancers, either translation or transcription enhancers, as may be required. These enhancer regions are well known to persons skilled in the art, and can include the ATG initiation codon and adjacent sequences. The initiation codon must be in phase with the reading frame of the coding sequence to ensure translation of the entire sequence. The translation control signals and initiation codons can be from a variety of origins, both natural and synthetic. Translational initiation regions may be provided from the source of the transcriptional initiation region, or from the structural gene. The sequence can also be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA.

[0034] To aid in identification of transformed plant cells, the constructs of this invention may be further manipulated to include plant selectable markers. Useful selectable markers include enzymes which provide resistance to chemicals such as an antibiotic such as gentamycin, hygromycin, kanamycin, or herbicides such as phosphirothycin, glyphosate, chlorsulturam and the like. Similarly, enzymes providing for production of a compound identifiable by colour change such as *GUS* (β-glucuronidase), or luminescence, such as luciferase are useful.

[0035] A promoter, included in the cloning vector of the present invention, can include a constitutive promoter, which will ensure continued expression of the gene. The nucleic acid sequence encoding the derivative of the MAPK gene can also be under the control of a inducible promoter. Said inducible promoter is triggered by an induction response.

[0036] Generally speaking, an inducible promoter is a promoter that is capable of directly or indirectly activating transcription of one or more DNA sequences or genes in response to an inducer. In the absence of an inducer the DNA sequences or genes will not be transcribed. Typically the protein factor, that binds specifically to an inducible promoter to activate transcription, is present in an inactive form which is then directly or indirectly converted to the active form by the inducer. The inducer can be a chemical agent such as a protein, metabolite, growth regulator, herbicide or phenolic compound or a physiological stress imposed directly by heat, cold, salt, or toxic elements or indirectly through the action of a pathogen or disease agent such as a virus. A plant cell containing an inducible promoter may be exposed to an inducer by externally applying the inducer to the cell or plant such as by spraying, watering, heating or similar methods.

[0037] A constitutive promoter directs the expression of a gene throughout the various parts of a plant and continuously throughout plant development. Examples of known constitutive promoters include those derived from the CaMV 35S and *Agrobacterium* Ti plasmid opine synthase gene (Sanders *et al.*, 1987) or ubiquitin (Christensen *et al.*, 1992). Additionally the constitutive promoter described in WO 97/28268 published August 7, 1997.

[0038] Also considered part of this invention are transgenic plants containing the variant of the present invention. Methods of regenerating whole plants from plant cells are known in the art, and the method of obtaining transformed and regenerated plants is not critical to this invention. In general, transformed plant cells are cultured in an appropriate medium, which may contain selective agents such as antibiotics, where selectable markers are used to facilitate identification of transformed plant cells. Once callus forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be used to establish repetitive generations, either from seeds or using vegetative propagation techniques.

[0039] Besides viral cloning vectors, transformation can also be accomplished by particle bombardment using the nucleic acid sequence encoding the derivative of the MAPK gene. Bondardment is a DNA delivery technique using foreign DNA particles delivered to various plant cells, tissues and species using biolistic device such as gun powder-driven biolistic device (Dupont, Wilmington, DE), gas-driven particle delivery system, microtargeting particle accelator, an air gun apparatus (Daniell, 1997), helium blasting (Pareddy et al., 1997) and instruments based on electric discharge. Transformation can also be achieved by direct uptake of Agrobacterium that contained foreign DNA sequence into plants via stomato in the leaves of stem or roots (Clough et al., 1998).

[0040] A further aspect of the present invention is directed to the use of said nucleic acid sequence encoding the derivative of the MAPK gene to increase disease resistance or to enhance stress tolerance in plants. In this aspect of the invention the nucleic acid is introduced into the plant using any of the methods described above.

[0041] Pathogenesis-related (PR) proteins are intra- and extracellular proteins that accumulate in plant tissues or cultured cells after pathogen attack or elicitor treatment (Bowles, 1990). Using PR gene expression as a marker for the plant defence response, both PR1b1 and the chitinase gene were induced by the derivative of the MAPK gene of

5

10

15

20

25

30

40

the present invention.

[0042] Furthermore, according to the present invention, the transcription of the tomato ER5 gene, ZG (ABA). drought and wounding (Zegzouti *et al.*, 1997) was induced by the derivative of the MAPK gene of the present invention.

[0043] Thus, according to the present invention the derivative of the MAPK gene of the present invention can activate both pathogen- and wound-related genes.

[0044] The use of said nucleic acid sequence encoding the derivative of the MAPK gene can also be used in combination with other methods to increase disease resistance or to enhance stress tolerance in plants. These other methods could include modification of downstream components for example transcription factors and transcriptional activators. The modification of transcription factors was proven to be an effective means to improve plant stress tolerance. Overexpression of a single stress-inducible transcription factor DREB1A isolated from Arabidopsis improved plant drought, salt, and freezing tolerance (Masuga et al., 1999). Overexpression of CBF1, an Arabidopsis transcriptional activator, enhanced freezing tolerance (Jaglo-Ottosen et al., 1998). There is potential that modification of transcription factors or transcriptional activators downstream of MAPK in our system will enhance disease resistance and stress tolerance.

[0045] In addition there are some parallel pathways that could contribute to increased disease resistance or to enhanced stress tolerance in plants if used in combination with the modified MAPK pathway of the present invention. An example of another parallel pathway would be calcium dependent protein kinase (CDPK) (Sheen, 1996). CPDK has also been shown to act as a key mediator for cold, salt, drought, dark and ABA stresses. In addition CDPK is involved in primary defence response to pathogen attack. Overexpression of either of two different CDPKs (ATCDPK1 and ATCDPK1a) in maize protoplasts active stress signalling (Sheen, 1996). Thus the co-manipulation of the two pathways should further strengthen the defence ability of the plant.

[0046] The present invention is illustrated by the following examples, which are not to be construed as limiting.

EXAMPLES

20

25

30

40

50

Example 1: Isolation and Modification of tMEK2.

[0047] RNA was extracted with Extact-A-Plant™ RNA Isolation Kit (CloneTech Laboratories, Inc.) from four-week-old tomato leaves. Reverse transcription was as described in Sambrook *et al.* (1989). Cloning was carried out by PCR using Taq DNA polymerase (Life Technologies Inc.). A MAPKK gene, tMEK2, was isolated from tomato cv. Bonny Best by PCR (Figure Ia) using published MAPKK gene sequences of tomato cv. Ailsa Craig and other plant species. It shares a high level of sequence homology with MAPKKs from other species and tomato cultivars (Figure 1b) but compared with MAPKKs from mammals and yeast, tMEK2 and other plant MAPKKs have two more potential core phosphorylation sites between subdomains VII and VIII (Figure 1c).

[0048] Using PCR-assisted, site-directed mutagenesis, amino acids serine221 and threonine226 were replaced with aspartic acid (Figure 1c) creating a negative charge around the core phosphorylation site so that phosphorylation of MAPKK by upstream MAPKKK is no longer necessary for activity. Two primers (5'-end and 3'-end) that span the coding region of tomato cv Ailsa Craig LeMEK1 were used for the amplification of the MAPKK coding sequence in tomato cv Bonney Best. PCR-based site-directed mutagenesis was carried out as described before (Higuchi, 1989). Based on the sequence of the PCR product, two PCR reactions were run for its mutagenesis. In PCR reaction 1. a primer containing the substitutions (5'GTATGTGCCGACAAA GTCATTGGCCAGTCCATCTGTGCTT-GCTAGTACTGCACTCACAC3'.SEQ ID NO: 22) was used together with 5'-end primer to amplify a 692 bp fragment corresponding to the 5' region of the cloned MAPKK. In PCR reaction 2, a primer containing the base substitutions (5'GTACTAGCAAGCACAGATGGACTGGCCA ATGACTTTGTCGGCACATACAACTATATGTC3', SEQ ID NO:23) was used together with 3'-end primer to amplify a 429 bp fragment corresponding to the 3' region of the cloned MAPKK. Products from PCR reaction 1 and 2 were then purified and combined for 3' extension. Mutant tMEK2 was amplified with the original 5'-end primer containing BamHI and Ncol restriction sites, and 3'-end primer containing Sall and Smal restriction sites. The wild type and mutagenized PCR products were purified from an agarose gel using Elu-Quik DNA Purification Kit (Schleicher & Schuell) and ligated into pre-digested pGEM-T Easy vector. The inserts were digested using Ncol/Smal and ligated into pTZ19 tCUPA-GUS-nos3'. This derivative of tCUP promoter was created by the following modifications to the original tCUP: mutation of the sequence, 3' deletion of the sequence, nucleotide addition to the sequence, deletion of an upstream out-of-frame ATG methionine initiator codon from the sequence, deletion of the fusion protein encoded by the tobacco genomic DNA from the sequence, addition of restriction sites to the sequence. In detail, exact nucleotide changes are (numbered relative to the tCUP sequence or to the tCUPA (sequence as noted): 2084 CATATGA 2090 (Ndel recognition site beginning at 2084 underlined) in the tCUP sequence mutated to 2084 CATAGATCT 2092 (BgIII recognition site beginning at 2087 underlined) in the tCUP∆ sequence deleting one restriction site and one upstream out-of-frame ATG methionine initiator codon while adding another restriction site and two nucleotides; 2171 AATACATGG 2179 in the tCUP sequence mutated to 2173 CCACCATGG 2181 in the tCUP∆ sequence

adding a Kozak consensus motif for translational initiation and an Ncol recognition site at 2176 underlined); 2181 to 2224 (relative to tCUP sequence) of tobacco genomic DNA removed from tCUPA (2183 to 2226 relative to tCUPA), deleting the 3' end of the tCUP sequence and the N-terminal fusion peptide encoded by the tobacco genomic DNA. The tCUPΔ-GUS-nos construct was created by fusion of the tCUPA sequence with a GUS gene and nos terminator having the sequence 2183 CTCTAGAGGAT CCCCGGGTGGTCAGTCCCTT 2213 3' (SEQ ID NO:24) to the GUS ATG at 2214 on the tCUPΔ sequence (see Figure 3).

Example 2: Expression and Phosphorylation Analysis of Recombinant tMEK2

[0049] For in-frame cloning with GST into the BamHI/Sall sites in the pGEX-4T-3 vector (Amersham Pharmacia) subcloned PCR products in pGEM-T Easy vector were digested by BamHI/Sall and ligated into pGEX-4T-3 cut with the same enzymes. Sequences of cloned products were confirmed by DNA sequencing. The proteins were expressed as glutathione-S-transferase fusions (GST) and purified by glutathione-agarose (Sigma) affinity chromatography essentially as described in manufacturer's protocol. Protein concentration was determined with a Bio-Rad detection system (Bio-Rad).

[0050] Autophosphorylation assay contained 1 μ g of GST-tMEK2^{WT} or GST-tMEK2^{MUT} in 30 mM Hepes (pH 7.5), 5 mM of MgSO₄, 5 mM of MnSO₄, and 1mM CaCl₂, 10 mM ATP, and 3 μ Ci γ -³²P-ATP (specific activity 222 TBq/mmol) in a total volume of 15 μ l. The reaction mixture was incubated at 30°C for 45 min and the reaction was stopped by boiling 3 min in SDS sample buffer. As shown in Figure 2a, both wild type and mutant forms of the tMEK2 enzyme showed autophosphorylation activity.

[0051] Substrate phosphorylation assays contained 1 μg of GST-tMEK2^{WT} or GST-tMEK2^{MUT}, 2 μg of myelin basic protein (MBP, Life Technologies Inc.), 30 mM Hepes (pH 7.5), 5 mM MgSO₄ and 5 mM MnSO₄. Reactions were carried out at 30°C for 30 min. Phosphorylated products were separated by 10% SDS-PAGE, transferred to nitrocellulose and autoradiographed. Both the wild type and mutant forms of the tMEK2 enzyme phosphorylated myelin basic protein (MPB) *in vitro* (Figure 2b). Protein immunoblotting was performed as described previously (Xing *et al.*, 1996) using antiGST antibody (Amershan Pharmacia) and alkaline phosphatase-conjugated secondary antibody.

Example 3: Activation of pathogen- and wound-related genes by tMEK2

[0052] To examine the effects of tMEK2^{WT} and tMEK2^{MUT} on the activation of pathogenesis-related (PR) or other pathogen-inducible genes a tomato protoplast transient expression system was developed. Chimeric genes, tCUPA-tMEK2^{WT}-nos and tCUPΔ-tMEK2^{MUT}-nos, were constructed using the strong constitutive promoter, tCUPΔ, which was derived from the tCUP promoter as by modification of the mRNA leader sequence described above. After electroporation, transient expression of potential target genes was detected by quantitative RT-PCR. The genes analysed included PR1b1, which is activated by tomato mosaic virus (Tornero et al., 1997); PR3 (chitinase), which is activated during an incompatible C. fulvam-tomato interaction (Danhash et al., 1993); and Twi, which is a pathogen- and would-inducible gene recently identified in tomato (O'Donnell, et al., 1998).
 [0053] The following procedures were used.

40 Protoplast isolation and transformation

[0054] Tomato (Lycopersicon esculentum cv Bonny Best) were grown at 80% relative humidity in peat soil in growth cabinets programmed for 16 hr days at 25°C and 8 hr nights at 22°C. Light intensity was controlled at 25 pE m-2 S-1 emitted from "cool white" fluorescent lamps (Philip Canada, Scarborough, Ontario). The youngest fully expanded leaves were surface sterilized for 5 min in 4% sodium hypochlorite and rinsed three times with sterile water. The lower epidermis was gently rubbed with Carborundum, rinsed with sterile water and leaf fragments of ca. 1cm² were floated with exposed surface facing an enzyme solution containing 0.15% macerozyme R₁₀ (Yakult Honsha Co., Japan), 0.3% Cellulase "Onozuka" Rio (Yakult Honsha Co., Japan), 0. 4 M sucrose in K3 medium (Maliga et.al., 1973). After overnight incubation at 30 °C, the enzyme-protoplast mixture was filtered through a 100 μm nylon sieve, centrifuged at 500 g for 5 min. and floated protoplasts were collected and washed twice with W5 medium (Maliga et.al., 1973). The protoplasts were kept on ice in W5 medium for 2 hr before transformation.

[0055]. The protoplasts were resuspended in electroporation buffer containing 150mM MgCl₂ and 0.4 M mannitol at a density of $1x10^6$ protoplasts/ml and co-electroporated with 12-15 g of pTZ19 carrying tMEK2 gene and pJD300 carrying luciferase gene in a total volume of 500 μ l as described by Leckie (1994) with some modifications. Electroporation was performed at 200 volts and 100 μ F (Gene Pulser II, Bio-Rad). Protoplasts were then allowed to recover on ice in the dark for 10 min followed by centrifugation at 500 g for 5 min. After removal of the supernatant, the protoplast pellet, with about 500 μ l of buffer, was supplemented with another 500 μ l protoplast incubation buffer. Protoplasts were incubated in the dark at 30°C for 24 hr.

20

25

[0056] Kinase inhibitors (CalBiochem, San Diego, CA) at the concentration of 1 μ M for staurosporine, 350 nM for SB 202190 and 1 μ M for PD 98059, SB 203580 and SB 202474, when applicable, were included in the protoplast incubation buffer. The inhibitors did not change protoplast viability (data not shown).

Luciferase assay

5

10

20

25

40

45

[0057] Luciferase activity in protoplasts co-electroporated with the constructs under study and luciferase DNA as an internal control were determined for evaluation of transformation efficiency. Protoplasts were lysed in 200 μ L of LUC extraction buffer (100 mM KPO₄, 1mM EDTA, 10% glycerol, 0.5% Triton X-100 and 7 mM β -merceptoethanol, pH 7.8). After microfuge centrifugation, the supernatant was collected and a 200 μ L aliquot of LUC assay buffer (25mM Tricine, 15 mM MgCl₂, 5mM ATP, BSA 1mg/ml, and 5 μ l β -merceptoethanol, pH 7.8) was added to each 20 μ L aliquot followed by 100 μ L of luciferin (0.5 mM) as substrate. The reaction was assayed in a luminometer as described (Matthews *et. al.*, 1995).

15 Quantitative RT-PCR

[0058] RT-PCR was as described above. The number of PCR cycles corresponded to the high end of the range in which a linear increase in products could be detected (generally 14-16 cycles were used). Reaction products were separated on 1.0 % agarose gels. Southern blot analysis was used to estimate levels of specific amplified products. Equivalence of cDNA in different samples was verified using PCR reactions for actin. Primers were designed for PCR according to published sequences for tomato PR-lbl, chitinase, Twit, ER5 and actin (Tornero et al., 1997; Danhash et al., 1993; O'Donnell et al., 1998; Zegzouti et al. 1997; Moniz de Sa and Drouin, 1996).

[0059] Our results indicated that tomato PR1b1, chitinase and Twil genes were activated by tMEK2^{MUT}. This indicates that tMEK2 can mediate both pathogen and wound signals. Transient expression of the native tMEK2^{WT} gene had no effect on the expression of the three target genes (Figure 4), indicating that it is not errantly activated in the protoplast system.

Example 4: Induction of the Wound-Inducible Gene ER5

[0060] Since MAPK may be the point of convergence of the signal transduction pathways for fungal elicitors and mechanical stress (Romeis et al., 1999) we also examined the induction of the wound-inducible gene, ER5 (Zegzouti et al., 1997). Wounding was carried out by crushing leaves across the lamina and mid-vein using a blunt forceps. RNA was extracted after wounding for the indicated period of time. Fifteen μg of RNA was separated per lane on a denaturing formaldehyde gel. Following transfer to nylon membranes, the blot was hybridized with radio labeled fragment of tMEK2 coding region or fragment of ER5 coding region. Autoradiography was applied to visualize the hybridization signals (Sambrook et al., 1989).

[0061] Wounding of tomato leaves induced both resident tMEK2 and ER5 genes, mRNA accumulation was detectable in 30 min and lasted for at least 4 hrs (Figure 5a). Transient expression of the mutant tMEK2^{MUT} gene in tomato protoplasts also activated ER5 (Figure 5b); however, tMEK2^{WT} did not (Figure 5b), showing that elevated transcription of tMEK2 alone was not sufficient for transmitting the wound signal to ER5.

Example 5: Different MAPKs downstream of tMEK2

[0062] To study divergence of the signal pathways downstream of tMEK2 the influence of tMAPK2^{MUT} expression in tomato protoplasts was examined in the presence of a broad protein kinase inhibitor (staurosporine) and inhibitors specific to the p38 class MAPK (SB 202190 or SB 203580). Staurosporine inhibited all four genes that were previously activated by tMEK2^{MUT}; whereas, inhibitors of p38 class MAPK inhibited the PR3 and ER5 genes but not PR1b1 or Twi1. Furthermore, no effects were observed with SB202474, an inert compound acting as a negative control for MAP kinase inhibition studies, or PD 98059, an inhibitor of the MAP kinase cascade which binds to MAPKKK at a site that blocks access to activating enzymes (Alessi *et al.*, 1995). The results, shown in Figure 6, are consistent with the divergence of signal pathway downstream of tMEK2. One of these pathways could include a p38 class MAPK.

Example 6: Disease Resistance

[0063] Tomato bacterial pathogen *Pseudomonas syringae* pv *tomato* was infiltrated into tomato leaves and the effect of inoculation was recorded 7 days after inoculation. A representative comparison of disease symptoms on a leaf from a wild-type plant and on a leaf from tMEK2^{MUT} transformed plant is shown in Figure 7.

References

10'

25

30

35

- [0064] Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T, and Saltiel, A.R. (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo *J. Biol. Chem.* 270, 27489-27494.
- ⁵ [0065] Beffa, R., Szell, M., Menwly, P., Pay, A., Vogeli-Lange, R., Metraux, J.P., Meins, F. and Nagy, F. 1995. Cholera toxin elevates pathogen resistance and induces defense reactions in transgenic tobacco plants. *EMBO Journal* 14, 5753-5761.
 - [0066] Bogre, L., Zwerger, K., Meskiene, I., Binarova, P., Csizmadia, V., Planck, C., Wagner, E., Hirt, H. and Heberle-Bors, E. (1997) The cdc2Ms kinase is differently regulated in the cytoplasm and the nucleus. *Plant Physiol.* 113, 841-852.
 - [0067] Bowles, D.J. (1990) Defense-related proteins in higher plants. Annul Rev. Biochem. 59, 873907.
 - [0068] Christensen AH., Sharrock RA., Quail PH. 1992, Maize polyubiquitin genens: Structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675-689.
- 15 [0069] Clough SJ. Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16,735-743.
 - [0070] Danhash, N., Wagemakers, C.A., van Kan, J.A. and De Wit, P.J. (1993) Molecular characterizatin of four chitinase cDNAs obtained from cladosporium fulvum-infected tomato. *Plant Mol. Biol.* 22, 1017-1029.
- [0071] Daniell H. 1997. Transformation and foreign gene expression in plants mediated by microprojectile bombard-ment. Methods in Mol. Biol. 62 Recombinant Gene Expression Protocols (Tuan R., Ed), Humana Press Inc. Tolowa NJ. [0072] Guan, K.L. (1994) The nitogen activated protein kinase signal transduction pathway: From the cell surface to the nucleus. Cell. Signal. 6, 581-589.
 - [0073] Hackett, R.M., Oh, S.A., Morris, P.C. and Grierson, D. (1998) A tomato MAP kinase kinase gene (Accession No AJ000728) differentially regulated during fruit development, leaf senescence and wounding (PGR98-151). *Plant Physiol.* 117, 1526-1526.
 - [0074] Hammond-Kosack, K.E., Tang, S., Harrison, K. and Jones J.D.G. (1998) The tomato *Cf*-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the fungal avirulence eene Product Avr9. *Plant Cell* 10. 1251-1266.
 - [0075] Hardin, S.C. and Wolniak, S.M. (1998) Molecular cloning and characterization of maize ZmMEK1, a protein kinase with a catalytic domain homologous to mitogen- and streeactivated protein kinase kineses. *Planta* 206, 577-584.
 - [0076] Higuchi, R. (1989) Using PCR to engineer DNA. In: PCR Technology: Principles and Applications for DNA Amplification (ea. Erlich HA). Stockton Press, New York.
 - [0077] Hirt, H. (1997) Multiple roles of MAP kineses in plant signal transduction. Trends Plant Sci. 2, 11-15.
 - [0078] Jaglo-Ottosen KR., Glimour SJ., Zarka DG., Schabenberger O., Thomashow MF. 1998, Arabidopsis CBF1 overexpression induced COR genes and enhances freezing tolerance. Science 280, 104-106.
 - [0079] Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S. and Hirt, H. (1996)
 - [0080] Stress signaling in plants: A mitoegen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA 93, 11274-11279.
- [0081] Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., and Shinozaki K. 1999, Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17, 287-291.
 - [0082] Kovtun, Y., Chiu, W-L., Zeng W. and Sheen J. (1998) Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395, 716-720.
 - [0083] Ligterink, W., Kroj, T., Nieden, U.Z., Hirt, H. and Scheel D. (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. *Science* 276, 2054-2057.
 - [0084] Maliga, P.S., Breznovitis, A. and Marton, L. (1973) Streptomycin-resistant plants from callus culture of haploid tobacco. *New Biol.* 244, 29-30.
 - [0085] Matthews, B.F., Saunders, J.A., GeLhardt, J.S., Lin, J.J. and Koehle, S.M. (1995) Reporter genes and transient assays for plants. *Methods Mol. Biol.* 55, 147-162.
- 50 [0086] Mizoguchi, T., Ichimura, K., and Shinozaki, K. (1997) Environmental stress response in plants: the role of mitogen-activated protein kineses. *Trends Biotech.* 15, 15-19.
 - [0087] Moniz de Sal, M., and Drouin, G. (1996) Phylogeny and substitution rates of angiosperm actin genes. *Mol. Biol. Evol.* 13, 1198-1212.
 - [0088] Morris, P.C., Guerrier, D., Leung, J., and Giraudat J. (1997) Cloning and characterisation of MEK1, an Aarabidopsis gene encoding a homologue of MAP kinase kinase. *Plant Mol. Biol. 35*, 1057-1064.
 - [0089] O'Donnell, PJ., Truesdale, M.R., Calvert, C.M., Dorans, A., Roberts, M.R., and Bowles, D.J. (1998) A novel tomato gene that rapidly responds to wound- and pathogenrelated signals. *Plant J.* 14, 137-142.
 - [0090] Pareddy D., Petolino J., Skokut T., Hopkins N., Miller M., Welter M., Smith K., Clayton D., Pescitelli S.,

- Gould A. 1997. Maize transformation via helium blasting. Maydica 42, 143-154.
- [0091] Romeis, T., Piedras, P., Zhang, S., Klessig, D., Hirt, H., and Jones, J.D.G. (1999) Rapid Avr9- and Cf9-dependent activation of MAP kineses in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. *Plant Cell II*, 273287.
- [0092] Sambrook, J., Fristch, E.F., and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
 - [0093] Saunder, P.R., Winter, J.A., Barnason, A.R., Rogers, S.G., Fraley, R.T. (1987), Comparison of cauliflower mosaic virus 35S and noplaline synthase promoters in transgenic plants. *Nucleic Acids Res.* 25, 15, 1543-1558.
- [0094] Sano, H., Seo, S., Orudgev, E., Youssefian, S., Ishizuka, K., and Ohashi, Y. (1994) Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding and increases resistance to tobacco mosaic virus infection. *Proc. Natl. Acad. Sci.* 91, 1055610560.
 - [0095] Seo, S., Okamoto, M., Seto, H., Ishizaka, K., Sano, H., and Ohashi, Y. (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways, *Science* 270, 19881992.
- [0096] Sheen, J. (1996) Ca2+-Dependent Protein Kinases and Stress Signal Transduction in plants. Science 274, 1900-1902.
 - [0097] Shibata, W., Banno H., Ito Y., Hirano K., Irie K., Usami S., Machida C., and Machida, Y. (1995) A tobacco protein kinase, NPK2, has a domain homologous to a domain found in activators of mitogen-activated protein kineses (MAPKKs). *Mol. Gen. Genet.* **246**, 401-410.
- 20 [0098] Suzuki, K., and Shinshi, H. (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor. Plant Cell 7, 639-647.
 - [0099] Tang, X., Xie, M., Kin, Y.J., Zhou, J., Klessig, D.F., and Martin, G.B. (1999) Overexpression of Pto activates defense responses and confers broad resistance. *Plant Cell* 11, 15-29.
 - [0100] Teague, M.A., Chaleff, D.T., and Errede, B. (1986) Nucleotide sequence of the yeast regulatory gene *STE7* predicts a protein homologous to protein kineses. *Proc. Natl. Acad. Sci.* USA 83, 7371-7375.
 - [0101] Tornero, P., Gadca, J., Coejero, V., and Vera, P. (1997) Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression of a pathogenesis-related gene during the hypersensitive response and development. Mol. Plant-Microbe Interact. 10, 624634.
 - [0102] Usami S., Banno H., Ito Y., Nishiha~na R., Machida Y. (1995) Cutting activates a 46-kilodalton protein kinase in plants. *Proc. Natl. Acad. Sci.* USA 92, 8660-8664.
 - [0103] Xing, T., Higgins, V.J., Blumwald, E. (1996) Regulation of plant defense responses to fungal pathogens: two types of protein kineses in the reversible phosphorylation of the hostplasma membrane H+-ATPase. *Plant Cell* 8, 555-564.
 - [0104] Xing, T., Higgins, V.J., and Blumwald, E. (1997) Identification of G proteins in mediating elicitor-induced dephosphorylation of plasma membrane H+-ATPase in host plant. J. Exp. Bot. 48, 229-238.
 - [0105] Zegzouti, H., Jones, B., Marty, C., Lelièvre, J-M., Latché, A., Pech, J-C., and Bonzayen, M. (1997) ER5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. *Plant Mol. Biol. 35*, 847-854.
 - [0106] Zhang, S., and Klessig, D.F. (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. *Plant Cell* 9, 809-824.
 - [0107] Zheng, C.F., and Guan, K.L. (1993) Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kineses MEK1 and MEK2. J. *Biol. Chem.* 268, 11435-11439.
 - [0108] Zheng, C.F, and Guan, K.L. (1994) Activation of MEK family kineses requires phosphorylation of two conserved Ser/Thr residues. *EMBO J 13*, 1123-1131.
- 45 [0109] All scientific publications and patent documents are incorporated herein by reference.
 - [0110] The present invention has been described with regard to preferred embodiments. However, it will be obvious to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as described in the following claims.

50

25

30

35

40

SEQUENCE LISTING

5 <110> Her Majesty in Right of Canada as Represented by the Minister of Argiculture and Argi-Food Canada 10 <120> Novel Plant-Derived Map Kinase Kinase <130> O8-884280EP <140> 15 <141> <150> US 09/384,162 <151> 1999-08-27 20 <160> 24 <170> PatentIn Ver. 2.0 <210> 1 25 <211> 1074 <212> DNA <213> Lycopersicon esculentum <220> 30 <221> CDS <222> (1)..(1074) <400> 1 35 · atg aag aaa gga tet tit gea eet aat ett aaa ete tet eet eet 48 Met Lys Lys Gly Ser Phe Ala Pro Asn Leu Lys Leu Ser Leu Pro Pro 1 cct gat gaa gtt gct ctc tcc aaa ttc ctg act gaa tca gga aca ttt 40 Pro Asp Glu Val Ala Leu Ser Lys Phe Leu Thr Glu Ser Gly Thr Phe 20 aag gat gga gat ctt ctg gtg aat aga gat gga gtt cga att gtt tcg 144 Lys Asp Gly Asp Leu Leu Val Asn Arg Asp Gly Val Arg Ile Val Ser 45 35 40 45 cag agt gaa gtt gca gct cct tca gtt ata cag cca tca gac aac cag 192 Gln Ser Glu Val Ala Ala Pro Ser Val Ile Gln Pro Ser Asp Asn Gln 50 55 50 tta tgc tta gct gat ttt gaa gca gta aaa gtt att gga aag gga aat Leu Cys Leu Ala Asp Phe Glu Ala Val Lys Val Ile Gly Lys Gly Asn

70

55

5		ggt Gly															288
		ctc Leu															336
10		gct Ala															384
15		ata Ile 130															432
20		gag Glu														gtc . Val 160	480
25	Lys	aca Thr	Ile	Pro	Glu 165	Arg	Phe	Leu	Ala	Val 170	Fle	Cys	Lys	Gln	Val 175	Leu	528
<i>30</i>	Lys	ggc Gly	Leu	Trp 180	Tyr	Leu	His	His	Glu 185	Lys	His	Ile	Ile	His 190	Arg	Asp	576
35	Leu	aaa Lys	Pro 195	Ser	Asn	Leu	Leu	Ile 200	Asn	His	Arg	Gly	Asp 205	Val	Lys	Ile	624
40	Thr	gac Asp 210	Phe	Gly	Val	Ser	Ala 215	Val	Leu	Ala	Ser	Thr 220	Ser	Gly	Leu	Ala	672
45	Asn 225	acc Thr	Phe	Val	Gly	Thr 230	Tyr	Āsn	Tyr	Met	Ser 235	Pro	Glu	Arg	Ile	Ser 240	720
50	Gly	ggt Gly	Ala	Туг	Asp 245	Tyr	Lys	Ser	Asp	Ile 250	Trp	Ser	Leu	Gly	Leu 255	Val	768
55	ttg Leu	ete Leu .	gag Glu	tgt Cys 260	gca Ala	aca Thr	ggt Gly	His	Phe 265	cca Pro	tat Tyr	aaa Lys	eca Pro	Pro 270	gag Glu	gga Gly	816

												gaa Glu					864
_			275					280					285				
5										•							010
												tct					912
	Gin			Pro	Cys	Ala			Asp	Gin	Pne	Ser 300	PIO	GIII	rne	Cys	
40		290					295					300					
10	tica	ttc	ata	tct	aca	tat	arc	cad	aaa	cac	cad	aag	gac	aga	cta	tca	960
												Lys					
	305					310			•		315		•	-		320	
15																	
75												atg					1008
	λla	Asn	Asp	Leu	Met	Ser	His	Pro	Phe	Ile	Thr	Met	Tyr	Asp		Gln	
					325					330					335	,	
20																	1056
20												gga					1056
	Asp	Tle	Asp	140	Gly	Ser	Tyr	. Pne	345	Ser	Ala	Gly	PIO	350	Leu	AIG	
				340					343					330			
25	aca	ctt	act	gag	cta	taa											1074
			Thr			-,-											
			355														
30																•	•
		0 > 2															
		1> 35 2> PF															
			vcope	rsic	on e	יברוו	ent:	ım									
35	`~ .	رد در	усорс		.0 0												
	<400)> 2										•					
	Met	Lys	Lys	Gly	Ser	Phe	Ala	Pro	Asn	Leu	Lys	Leu	Ser	Leu	Pro	Pro	
	1				5					10					15		
40								_		_			_	- 1			
	Pro	Asp	Glu		Ala	Leu					Thr	Glu	Ser		Thr	Phe	
				20					25					30			
		365	Clv	Aco	Lan	Leu	Va l	Asn	Ara	Asp	Glv	Val	Ara	Tle	Val	Ser	
45	Lys	พรอ	35	นวภ	Leu	Бец	*41	40	112 9	· · · · · ·	GI,		45				
			33														
	Gln	Ser	Glu	Vai	Ala	Ala	Pro	Ser	Val	Ile	Gln	Pro	Ser	Asp	Asn	Gln	
•		50					55					60					
50																	
	Leu	Cys	Leu	Ala	Asp	Phe	Glu	Ala	Val	Lys	Vaĺ	Ile	Gly	Lys	Gly		
	65					70					75					80	
										_	-	m.	6 1	<i>(</i> 1)	PM-	D	
55	Gly	Gly	Ile	Val		Leu	Vaì	Gln	H15		Trp	Thr	GTÀ	GIU	os os		
	1				85					90					95	•	

5	Ala	Leu	Lys	Val 100	Ile	Gln	Met	Asn	Ile 105		Glu	Ser	Met	Arg 110		His
	lle	Ala	G1n 115	Glu	Leu	Arg	Ile	Asn 120	Gin	Ser	Ser	Gln	Cys 125	Pro	Tyr	Val
10	Va.l	Iie 130	Cys	Tyr	Gln	Ser	Phe 135	Phre	Asp	Asn	Gly	Ala 140	Ile	Ser	Leu	Ile
15	Leu 145	Glu	Tyr	Met	Asp	Gly 150	Gly	Ser	Leu	Ala	Asp 155	Phe	Leu	Lys	Lys	Val 160
	Lys	Thr	lle	Pro	Glu 165	Arg	Phe	Leu	Ala	Val 170	Ile	Cys	Lys	Gln	Val 175	Leu
20	Lys	Gly	Leu	Trp 180	Туr	Leu	His	His	Glu 185	Lys	His	Ile	Ile	His 190	Arg	Asp
25	Leu	Lys	Pro 195	Ser	Asn	.Leu	Leu	Ile 200	Asn	His	Arg	Gly	Asp 205	Val	Lys	Ile
	Thr	Asp 210	Phe	Gly	Val	Ser	Ala 215	Val	Leu	Ala	Ser	Thr 220	Ser	Gly	Leu	Ala
<i>30</i>	Asn 225	Thr	Phe	Val	Gly	Thr 230	Tyr	Asn	Туr	Met	Ser 235	Pro	Glu	Arg	Ile	Ser 240
35	Gly	Gly	Ala	Ťyr	Asp 245	Tyr	Lys	Ser	Asp	Ile 250	Trp	Ser	Leu	Gly	Leu 255	Val
	Leu	Leu	Glu	Cys 260	Ala	Thr	Gly	His	Phe 265	Pro	Tyr	Lys	Pro	Pro 270	Glu	Gly
40	Asp	Glu	Gly 275	Trp	Val	Asn		Tyr 280	Glu	Leu	Met	Glu	Thr 285	Ile	Val	Asp
45	Gln	Pro 290	Glu	Pro	Cys	Ala	Pro 295	Pro	Asp	Gla	Phe	Ser 300	Pro	Gln	Phe	Cys
50	Ser 305	Phe	Ile	Ser	Ala	Cys 310	Val	Gln	Lys	His	Gln 315	Lys	Asp	Arg	Leu	Ser 320
30	Ala	Asn	Asp	Leu	Met 325	Ser	His	Pro	Phe	Ile 330	Thr	Met	Tyr	Asp	Asp 335	Gln
55	Asp	Ile	Asp	Leu 340	Gly	Ser	Туr		Thr 345	Ser`	Ala	Gly	Pro	Pro 350	Leu	Ala

Thr Leu Thr Glu Leu

	: 11 [Leu	355		Leu											
5																
10	<21 <21	0> 3 1> 2 2> P 3> A	25	dops	is t	hali	ana									
		û> 3														
15	Leu	Asp	Met	Val	Lys 5	Vaì	Ile	Gly	Lys	Gly 10	Ser	Ser	Gly	Val	Val 15	Gln
	Leu	Val	Gln	His 20	Lys	Trp	Thr	Gly	Gln 25	Phe	Phe	Ala	Leu	Lys 30	Val	ſle
20	Gln	Leu	Asn 35	Ile	Asp	Glu	Ala	Ile 40	Arg	Lys	Ala	Ile	Ala 45	Gln	Glu	Leu
25	Lys	Ile 50	Asn	Gln	Ser	Ser	Gln 55	Cys	Pro	Asn	Leu	Val 60	Thr	Ser	Tyr	Gln
30	Ser 65	Phe	Tyr	Asp	Asn	Gly 70	Ala	Ile	Ser	Leu	Ile 75	Leu	Glu	Tyr	Met	Asp 80
	Gly	Gly	Ser	Leu	Ala 85	Asp	Phe	Leu	Lys	Ser 90	Val	Lys	Arg	His	11e .95	Ile
35	His	Arg	Asp	Leu 100	Lys	Pro.	Ser	Asn ·	Leu 105	Leu	Ile	Asn	His	Arg 110	Gly	Glu
40	Val	Lys	Ile 115	Thr	Asp	Phe	Gly	Val 120	Ser	Thr	Val	Met	Thr 125	Asn	Thr	Ala
	Gly	Leu 130	Ala	Asn	Thr	Phe	Val 135	Gly	Thr	Tyr	Asn	Tyr 140	Met	Ser	Pro	Glu
45	Arg 145	Ile	Val	Gly	Asn	Lys 150	Tyr	Gly	Asn		Ser 155	Asp	Ile	Trp	Ser	Leu 160
50	Gly	Leu	Val	Val	Leu 165	Glu	Cys	Ala	Thr	Gly 170	Lys	Phe	Pro	Tyr	Ala 175	Pro
	Pro	Asn	Gln	Glu 180	Glu	Thr	Trp	Thr	Ser 185	Val	Phe	Glu	Leu	Met 190	Glu	Ala
55 .	Ile	Val	Asp	Gln	Pro.	Pro	Pro	Ala	Leu	Pro	Ser	Gly	Asn	Phe	Ser	Pro

			195					200	ı				205	ı		
5	Glu	Leu 210		Ser	Phe	Ile	Ser 215		Cys	Leu	Gln	Lys 220		Pro	Asn	Ser
10	Arg 225															
		0> 4 1> 2	21													
15		2> P 3> N		iana	tab	acum										
20		0> 4 Arg	Val	Phe	Gly 5	Ala	Ile	Gly	Ser	Gly 10	Ala	Ser	Ser	Val	Val 15	Gln
25	Arg	Ala	Ile	His 20	Ile	Pro	Thr	His	Arg 25	Ile	Ile	Ala	Leu	Lys 30	Lys	Ile
	Asn	Ile	Phe 35	Glu	Lys	Glu	Lys	Arg 40	Gln	Gln	Leu	Leu	Thr 45	Glu	Ile	Arg
3 0	Thr	Leu 50	Cys	Glu	Ala	Pro	Cys 55	Cys	Gln	Gly	Leu	Val 60	Glu	Phe	Tyr	Gly
35	Ala 65	Phe	Tyr	Thr	Pro	Asp 70	Ser	Gly	Gln	Ile	Ser 75	Ile	Ala	Leu	Glu	Tyr 80
	Met	Asp	Gly	Gly	Ser 85	Leu	Ala	Asp	Ile	Ile 90	Lys	Val	Aṛg	Lys	Arg 95	His
40	Leu	Val	His	Arg	Asp	Ile	Lys	Pro	Ala 105	Asn	Leu	Leu	Val	Asn 110	Arg	Lys
45	Gly	Glu	Pro 115	Lys	Ile	Thr	Asp	Phe 120	Gly	Ile	Ser	Ala	Gly 125	Leu	Glu	Ser
·	Ser	11e 130	Ala	Met	Cys	Ala	Thr 135	Phe	Val	Gly	Thr	Val 140	Thr	Туг	Met	Ser
50	Pro 145	Glu	Arg	Ile	Arg	Asn 150	Glu	Asn	Tyr	Ser	Tyr 155	Pro	Ala	Asp	Ile	Trp 160
55	Ser	Leu	Gly	Leu	Ala 165	Leu	Phe	Gļu	Cys	Gly 170	Thr	Gly	Glu	Phe	Pro 175	Туг

	Th	r Al	a Aşı	n Glu 180		/ Pro	o Va.	l Ası	n Le		t Le	u Gl	n Ile	e Le		p Asp
5	Pr	o Sei	r Pro		Leu	. Ser	Gly	y His 200		u Ph	e Sei	r Pr	o Glu 209		e Cy:	s Ser
10	₽h∙	210	e Asp	Ala	Cys	Leu	215	_	s Ası	n Pro	o Asp	220		3		
15	<23 <23	10> 5 .1> 2 .2> E	21	dops	is t	hali	ana									
20				Phe	Gly 5	Ala	Ile	Gly	Ser	Gl <i>y</i>		Ser	Ser	Val	. Val 15	Gln
25	Arg	Ala	Ile	His 20	Ile	Pro	Asn	His	Arg 25		Leu	Ala	Leu	Lys 30		Ile
30			Phe 35 Cys		-			40				•	45			
. 35	Ala 65	Phe	Tyr	Ser	Pro	Asp 70	Ser	Gly	Gln	Ile	Ser 75	Ile	Ala	Leu	Glu	Туг 80
40	Met	Asn	Gly	Gly	Ser 85	Leu	Ala	Asp	Ile	Leu 90	Lys	Val	Thr	Lys	Arg 95	His
~	Leu	Val	His	Arg 100	Asp	Ile	Lys	Pro	Ala 105	Asn	Leu	Leu	Ile	Asn 110	His	Lys
45	Gly	Glu	Pro 115	Lys	Ile	Thr	Asp	Phe 120	Gly	Ile	Ser	Ala	Gly 125	Leu	Glu	Asn
50	Ser	Меt 130	Ala	Met	Cys	Ala	Thr 135	Phe	Val	Gly	Thr	Val 140	Thr	Tyr	Met	Ser
	Pro 145	Glu	Arg	Ile		Asn 150	Asp	Ser	Tyr	Ser	Tyr 155	Pro	Ala	Asp	Ile	Trp 160
55	Ser	Leu	Gly		Ala 155	Leu	Phe	Glu	Cys	Gly 170	Thr	Gly	Glu	Phe	Pro 175	Tyr

5	11	≘ Ala	ı Asn	Glu 180	-	Pro	val	Asn	195		: Leu	Gļr	ıle	Leu 190	_	Asp
J	Pro	ser	Pro		Pro	Pro	Lys	G1n 200		ı Phe	e Ser	Pro	Glu 205		Cys	Ser
10	Pho	210		Ala	Cys	Leu	Gln 215		Asp	Prc	Asp	Ala 220				
15	<21 <21	.0> 6 .1> 2 .2> P .3> D	86 RT	oste.	lium	dis	coid	eum								
20		0> 6 Lys		Ile	Ara	Val	I.e.u	Glv	Ara	Glv	Δla	Glv	Glv	Val	Val	I.ve
	1		116	110	5	481	Deu.	GIY	ALG	10	AIG	Gry	Oly	V 01	15	цуз
25	Leu	Ala	Tyr	His 20	Glu	Thr	Ser	Gly	Thr 25	Тyr	Ile	Ala	Leu	Lys 30	Val	Ile
20	Thr	Leu	Asp 35	Ile	Gln	Glu	Asn	Ile 40	Arg	Lys	Gln	Ile	Ile 45	Leu	Glu	Leu
30	Lys	Thr 50	Leu	His	Lys	Thr	Ser 55	Tyr	Pro	Tyr	Ile	Val 60	Ser	Phe	Туг	Asp
<i>35</i>	Ala 65	Phe	Туr	Thr	Glu	Gly 70	Ser	Ile	Phe	Ile	Ala 75	Leu	Glu	Phe	Met	Glu 80
40	Leu	Gly	Ser	Leu	Ser 85	Asp	Ile	Met	Lys	Lys 90	Thr	Ser	Leu	His	Leu 95	Ile
	His	Arg	Asp	Ile 100	Lys	Pro	Ser	Asn	Ile 105	Leu	Val	Asn	Asn	Lys 110	Gly	Glu
45	Ala	Lys	Ile 115	Ala	Asp	Phe	Gly	Val 120	Ser	Gly	Gln	Leu ·	Gln 125	His	Thr	Leu
50	Ser	Lys 130	Ala	Val	Thr	Trp	Val 135	Gly	Thr	Val	Thr	Tyr 140	Met	Ser	Pro	Glu
	Arg 145	Ile	Ser	Gly		Ser 150	Tyr	Ser	Phe	Asp	Ser 155	Asp	Ile	Trp	Ser	Leu 160
55	Gly	Leu	The	Ile	Leu	Glu	Cys	Ala	Ile	Gly	Lys	Phe	Pro	Tyr	Gly	Ser

	Ile	e Ala	Asn	Glu 180	_	Pro	Val	Asn	Leu 185		. Leu	Gln	Ile	Leu 190		Asp
5	Pro	ser	Pro 195	The	Pro	Pro	Lys	Gln 200	Glu	Phe	Ser	Pro	Gl u 205		Cys	Ser
10	Phe	11e 210		Ala	Cys	Leu	Gln 215		Asp	Pro	Asp	Ala 220	Arg			
15	<21 <21	0> 6 1> 2 2> P 3> D	36 RT	oste.	lium	dis	coid	eum			,					
20		0> 6 Eys	Ile	Ile	Arg 5	Val	Leu	Gly	Arg	Gly 10	Ala	Gly	Gly	Val	Val 15	Lys
<u>2</u> 5	Leu	Ala	Tyr	His 20	Glu	Thr	Ser	Gly	Thr 25	Tyr	Ile	Ala	Leu	Lys 30	Val	Ile
<i>30</i>	Thr	Leu	Asp 35	Ile	Gln	Glu	Asn	Ile 40	Arg	Lys	Gln	Ile	11e 45	Leu	Glu	Leu
	Lys	Thr 50	Leu	His	Lys	Thr	Ser 55	Tyr	Pro	Tyr	Ile	Val 60	Ser	Phe	Tyr	Asp
35	65	Phe				70					75		•			80
40		Gly			85					90					95	
	His	Arg	Asp	Ile 100	Ly.s	Pro	Ser	Asn	Ile 105 _.		Val	Asn	Asn	Lys 110	Gly	Glu
45	Ala	Lys	11e 115	Ala	Asp	Phe	Gly	Val 120	Ser	Gly	Gln	Leu	Gln 125	His	Thr	Leu
50	Ser	Lys 130	Ala	Val	Thr	Trp	Val 135	Gly	Thr	Val	Thr	Tyr 140	Met	Ser	Pro	Glu
	Arg 145	Ile	Ser	Gly	Arg	Ser 150	Tyr	Ser	Phe	Asp	Ser 155	Asp	Ilę	Trp	Ser	Leu 160
55	Gly	Leu	Thr	Ile	Leu	Glu	Cys	Ala	Ile	Gly	Lys	Phe	Pro	Tyr	Gly	Ser

						165	5				170)		•		175	•
5		Ası	n Lei	ı Pro	0 His		Gl:	n Gla	Glr	Pro 185		Gln	Gln	Glr	Leu 190		. Asn
10		Lé	a Asp	195		n Asn	Sei	r Asn	200		Ile	Arg	Asn	Ser 205		Asn	Asn
		Asr	Asr 210		. Asn	Asn	· Asr	Asn 215		Asn	Asn	Asn	Asn 220		Asn	Asn	Asn
15	•	Asr 225		ı Vai	Leu	Asp	Ile 230	ser	Asn	Gly	Gly	Leu 235	Val	Asp	Ser	Gly	Ser 240
20		Ser	: Val	. Pro	Glu	Gly 245	Met	Gly	Phe	Trp	Val 250	Leu	Leu	Asp	Cys	Ile 255	Val
		Lys	Glu	Glu	Val 260	Pro	Ile	Leu	Pro	Ser 265	Thr	Phe	Ser	Lys	Glu 270	Phe	Arg
25		Ser	Phe	Ile 275	Ser	Glu	Cys	Leu	Gln 280	Lys	Glu	Pro	Thr	Glu 285	Arg		
30		<21 <21	0> 7 1> 2 2> P 3> L	22	mania	a dor	nova	ni									
35		< 40	ი> 7													·	
		Tyr 1	Ser	Ser	Lys	Arg 5	Asn	Val	Gly	Ala	Gly 10	Ala	Ser	Gly	Asp	Val 15	Phe
40		Phe	Ala	Arg	Leu 20	Lys	Asn	Gly	Thr	Ser 25	Ile	Ala	Leu	Lys	Arg 30	Ile	Pro
45		īle	Ser	Ser 35	Lys	Ala	His	.Arg	Asp 40	Glu	Val	Asp	Arg	Glu 45	Leu	Gln	Val
		₽he	Met 50	Ala	Arg	Ala	Asp	Ser 55	Pro	Tyr	Val	Met	Asn 60	Asn	Туг	Gly	Ala
50		Phe 65	Trp	Asp	Ala	Glu	Asp 70	Asp	Ala	Ile	Val	Ile 75	Pro	Met	Glu	Trp	Met 80
55		Pro	Tyr	Thr	Val	Lys 85	Asp	Leu	Gly	Leu	Phe 90	Trp	Gly	Gly	Lys .	Arg 95	Val

5	Lei	ı His	λrg	Asp 100		Lys	Pro	Ser	Asr 105		. Leu	Ile	Ser	Glu 110		Gly
5	His	s Val	Lys 115	Ile	Ala	Asp	Phe	Gly 120		Ser	Lys	Leu	Ile 125		Thr	Leu
10	Ala	Val 130		Ser	Thr	Tyr	Val 135	Ala	Thr	Met	Cys	Phe	Met	Ala	Pro	Glu
15	Arg 145		Glu	Gln	Gly	Met 150	Tyr	Gly	Phe	Ser	Ser 155	Asp	Val	Trp	Ser	Leu 160
•	Gly	Leu	Thr	Met	Ile 165	Gly	Ala	Val	Thr	Gly 170	Lys	Asn	Pro	Trp	Ala 175	Pró
20	Pro	Glu	Glu	Met 180	Asn	Leu	Tyr	Gln	Leu 185	Leu	Gly	Lys	Met	Ala 190	Asn	Gly
25	Ser	Thr	Pro 195	Thr	Leu	Pro	Lys	Ser 200	Gly	Ala	Phe	Ser	Asp 205	Asp	Val	Lys
	Asp	Phe 210	Va.l	Lys	Gln	Cys	Leu 215	Glu	Arg	Asp	Pro	Asp 220	Thr	Arg		
30	<21	0> 8 1> 22 2> PF														
35			osop	hila	mel	anog	jast∈	er								
	<403 Leu 1		His	Leu	Gly 5	Asp	Leu	Gly	Asn	Gly 10	Thr	Ser	Gly	Asn	Val 15	Val
40	Lys	Met	Met	His 20	Leu	Ser	Ser	Asn	Thr - 25	Ile	Ile	Ala	Val	Lys 30	Gln	Met
45	Arg	Arg	Thr 35	Gly	Asn	Ala	Glu	Glu 40	Asn	Lys	Arg	Ile	Leu 45	Met	Asp	Leu
50	qsA	Val 50	Val	Leu	Lys	Ser	His 55	Asp.	Cys	Lys	Tyr	Ile 60	Val	Lys	Cys	Leu
	Gly 65	Cys	Phe	Val	Arg	Asp 70	Pro	Asp	Val	Trp	Ile 75	Cys	Met	Glu	Leu	Met 80
55	Ser	Met	Cys	Phe	Asp 85	Lys	Leu	Leu	Lys	Leu :	Ser	Lys	His	Gly	Val 95	Ile

	His	Arg	Asp	Val 100	Lys	Pro	Ser	Asn	Ile 105	Leu	Ile	Asp	Glu	Arg 110	Gly	Asn
5	Ile	Lys	Leu 115	Cys	Asp	Phe	Gly	Ile 120	Ser	Gly	Arg	Leu	Val 125	Asp	Ser	Lys
10	Ala	Asn 130	Thr	Arg	Ala	Gly	Cys 135	Ala	Ala	Tyr	Met	Ala 140	Pro	Glu	Arg	Ile
15	Asp 145	Pro	Lys	Lys		Lys 150	Tyr	Asp	Ile		Ala 155	Asp	Val	Trp	Ser	Leu 160
	Gly	Ile	Thr	Leu	Val 165	Glu	Leu	Ąla	Thr	Ala 170	Arg	Ser	Pro	Tyr	Glu 175	Gly
20	Cys	Asn	Thr	Asp 180	Phe	Glu	Val	Leu	Thr 185	Lys	Val	Leu	Asp	Ser 190	Glu	Pro
25		Cys	195			•		200					205		Phe	Arg
	Asp	Phe 210	Val	Ile	Lys	Cys	Leu 215	Thr	Lys	Asn	His	Gln 220	Asp	Arg		
		•														
30	<210)> 9														
30	<21)> 9 L> 23														
30	<213 <213		RT	sapie	ens					·						
	<213 <213 <213	L> 23 2> PE 3> Ho 0> 9	RT omo s												·	
	<211 <211 <211 <400 Phe	L> 23 2> PI 3> Ho 0> 9 Glu	RT omo s Lys	Ile	Ser 5					10					15	
35	<211 <211 <211 <400 Phe	L> 23 2> PE 3> Ho 0> 9	RT omo s Lys	Ile	Ser 5					10					15	
35	<211 <212 <213 <400 Phe 1 Lys	L> 23 2> PI 3> Ho 0> 9 Glu	RT Domo s Lys Ser	Ile His 20	Ser 5 Lys	Pro	Ser	Gly	Leu 25	10 Val	Met	Ala	Arg	Lys 30	15 Leu	Ile
35 40	<211 <211 <211 <400 Phe 1 Lys	l> 23 2> PT 3> Ho 0> 9 Glu Val	Lys Ser Glu 35	Ile His 20	Ser 5 Lys Lys	Pro	Ser Ala	Gly Ile 40	Leu 25 Arg	10 Val Asn	Met	Ala Ile	Arg Ile 45	Lys 30 Arg	15 Leu Glu	Ile Leu
35 40 45	<211 <211 <400 Phe 1 Lys	l> 23 2> PE 3> Ho 0> 9 Glu Val Leu Val	Lys Ser Glu 35	Ile His 20 Ile	Ser 5 Lys Lys	Pro Pro Cys	Ser Ala Asn 55	Gly Ile 40 Ser	Leu 25 Arg Pro	Val Asn	Met Gln Ile	Ala Ile Val 60	Arg Ile 45 Gly	Lys 30 Arg	15 Leu Glu Tyr	Ile Leu Gly

					8 5	•				90)				95	,
5	Hi	s Arg	, Asp	Val		Pro	Ser	Asr	11e		ı Val	Asr	ser	Arç		/ Glu
10	116	≥ Lys	Leu 115	-	Asp	Phe	Gly	Val 120		Gly	Gln	Leu	11e	-	Ser	Met
	Ala	130		Phe	Val	Gly	Thr 135	Arg	Ser	Tyr	Met	Ser 140		Glu	Arg	Lec
15	Gln 145	Gly	Thr	His	Tyr	Ser 150	Val	Gln	Ser	Asp	Ile 155	ľrp	Ser	Met	Gly	Leu 160
20	Ser	Leu	Val	Glu	Met 165	Ala	Val	Gly	Arg	Tyr 170	Pro	Ile	Pro	Pro	Pro 175	Asp
	Ala	Lys	Glu	Leu 180	Glu	Leu	Met	Phe	Gly 185	Gly	Met	Asp	Ser	Arg 190	Pro	Prc
25	Met	Ala	Ile 195	Phe	Glu	Leu	Leu	Asp 200	Tyr	Ile	Val	Asn	Glu 205	Pro	Pro	Pro
30	Lys	Leu 210	Pro	Ser	Gly	Val	Phe 215	Ser	Leu	Glu	Phe	Gln 220	Asp	Phe	Val	Asn
35	Lys 225	Cys	Leu	Ile	Lys	Asn 230	Pro	Ala	Glu	Arg			•			
33	-21															
		0> 10 l> 17						•								
10		2> PR 3> Ra		nor	vegi	cus										
)> 10														
15	Ile	Arg	Tyr	Arg	Asp 5	Thr	Leu	Gly	His	Gly 10	Asn	Gly	Gly	Thr	Val 15	Tyr
	Lys	Ala	Tyr	His 20	Val	Pro	Ser	Gly	Lys 25	Ile	Leu	Ala	Val	Lys 30	Val	Ile
o	Leu	Leu	Asp 35	Ile	Thr	Leu	Glu	Leu 40	Gln	Lys .	Gln	Ile	Met 45	Ser	Glu	Leu
<i>5</i>	Glu	11e 50	Leu	Tyr	Lys	Cys	Asp 55	Ser	Ser '	Tyr	Ile	11e 60	Gly	Phe	Tyr	Gly

	Ala i 65	Phe Phe	. Val	Glu	Asn 70	Arg	Ile	Ser	Ile	Cys 75	Thr	Glu	Phe	Met	Asp 80
5	Gly (Gly Ser	Leu	Asp 85	Val	Tyr	Arg	Lys	Ile 90	Leu	Lys	Ile	Leu	His 95	Arg
10	Asp V	al Lys	Pro 100	Ser	Asn	Met	Leu	Val 105	Asn	Thr	Ser	GÌy	Gln 110	Val	Lys
	Leu C	lys Asp 115		Gly	Val	Ser	Thr 120	Gln	Leu	Val	Asn	Ser 125	Ile	Ala	Lys
15		yr Val 30	Gly	Thr	Asn	Ala 135	Tyr	Met	Ala	Pro	Glu 140	Λrg	Ile	Ser	Gly
20	Glu G 145	ln Tyr	Gly	Ile	His 150	Ser	Asp	Val	Trp	Ser 155	Leu	Gly	Ile	Ser	Phe 160
<i>25</i>	Met G	lu Leu	Ala	Leu 165	Gly	Arg	Phe	Pro	Tyr 170	Pro	Gln	Ile	Gln	Lys 175	Asn
	Gln						•								
30															
	<210> <211> <212>	185 PRT													
<i>35</i>	<211> <212> <213> <400>	185 PRT Homo													
	<211> <212> <213> <400> Leu V	185 PRT Homo Il al Thr	Ile	Ser 5					10					15	
35	<211> <212> <213> <400> Leu V 1 Lys V	185 PRT Homo Il al Thr	Ile His 20	Ser 5 Ala	Gl'n	Ser	Gly	Thr 25	10	Met	Ala	Val	Lys 30	15 Arg	Ile
35	<211><212><212><213><400> Leu V 1 Lys V Arg A	185 PRT Homo il al Thr al Arg la Thr 35	His 20	Ser 5 Ala Asn	Gln Ser	Ser Gln	Glu 40	Thr 25 Gln	10 Ile Lys	Met Λrg	Ala Leu	Val Leu 45	Lys 30 Met	15 Arg Asp	Ile Leu
35 40	<211> <212> <213> <400> Leu V 1 Lys V Arg A	185 PRT Homo Il al Thr al Arg la Thr 35 le Asn	His 20 Val	Ser 5 Ala Asn Arg	Gln Ser Thr	Ser Gla Val 55	Glu 40 Asp	Thr 25 Gln Cys	10 Ile Lys Phe	Met Λrg Tyr	Ala Leu Thr	Val Leu 45 Val	Lys 30 Met	15 Arg Asp Phe	Ile Leu Tyr
35 40 45	<211> <212> <213> <400> Leu V 1 Lys V Arg A	185 PRT Homo Il al Thr al Arg la Thr 35	His 20 Val	Ser 5 Ala Asn Arg	Gln Ser Thr	Ser Gla Val 55	Glu 40 Asp	Thr 25 Gln Cys	10 Ile Lys Phe	Met Λrg Tyr	Ala Leu Thr	Val Leu 45 Val	Lys 30 Met	15 Arg Asp Phe	Ile Leu Tyr

5	Le	u Se	r Va	1 110		s Arc	g As	o Va	1 Ly 10		o Se	r As	n Va	l Le ll		e Asn
	Ly	s Gl	u Gl:		Val	. Lys	Met	Cy:		p Ph	e Gly	y Il	e Se 12		у Ту	r Leu
10	Va.	1 Ası		r Val	Ala	Lys	135		. Ası	o Ala	a Gly	y Cy:		s Pro	э Ту	r Met
15	Ala 145		o Glu	ı Arç	Ile	Asn 150		Gl.	ı Let	ı Asr	155		s Gly	ү Туі	Ası	n Val 160
	Lys	s Ser	Asp	Val	Trp 165		Leu	Gly	, Ile	170		: Ile	e Glu	ı Met	: Ala 175	a Ile
20	Leu	Arç	Phe	Pro 180	Tyr	Glu	Ser	Trp	Gly 185							
25	<21 <21	0> 1 1> 1 2> P 3> S	84 RT	arom	yces	cer	evis	iae	٠							
30		0> 1		Loui	Asp	Clu	Lou	Clv	uic	C) v	λερ	Т.,,,	Cl v	Λερ	V-1	Sor
	1		1110	Deu	5	Gru	Deu	Gly	1113	10	ASII	Tyl	GLY	7311	15	
35	Lys	Val	Leu	His 20	Lys	Pro	Thr	Asn	Val 25	Ile	Met	Ala	Thr	Lys 30	Glu	Val
40	Arg	Leu	Glu 35	Leu	Asp	Glu	Ala	Lys 40	Phe	Arg	Gln	lle	Leu 45	Met	Glu	Leu
	Glu	Val 50	Leu	His	Lys	Cys	Asn 55	Ser	Pro	Tyr	Ile	Val 60	Asp	Phe	Tyr	Gly
45	Ala 65	Phe	Phe	Ile	Glu	Gly 70	Ala	Val	Tyr	Met	Cys 75	Met	Glu	Tyr	Met	Asp 80
50	Gly	Gly	Ser	Leu	Asp 85	Lys	Ile	Tyr	Asp	Glu 90	Ser	Ser	Glu	Ile	Gly 95	His
	Asn	Ile	Ile	His 100	Arg	Asp	Val	Lys	Pro 105	Thr	Asn	Ile	Leu	Cys 110	Ser	Ala
55	Asn	Gln	Gly	Thr	Val	Lys	Leu	Cys	Asp	Phe	Gly	Val	Ser	Gly	Asn	Leu

	115		120	125
5	Val Ala Ser 130	Leu Ala Lys	Thr Asn Ile Gly	Cys Gln Ser Tyr Met Ala 140
10	Pro Glu Arg 145	Ile Lys Ser	·	Arg Ala Thr Tyr Thr Val
	Gln Ser Asp	Ile Trp Ser 165	Leu Gly Leu Ser 170	Ile Leu Glu Met Ala Leu 175
15	Gly Arg Tyr	Pro ·Tyr Pro 180	Pro Glu	
20	<210> 13 <211> 189 <212> PRT			
25	<213> Saccha <400> 13 Leu Val Gln 1	-		Asn Ser Gly Thr Val Val
30				Val Ala Lys Lys Thr Ile 30
35	Pro Val Glu (35	Gln Asn Asn	Ser Thr Ile Ile	Asn Gln Leu Val Arg Glu 45
	Leu Ser Ile ' 50	Val Lys Asn	Val Lys Pro His 55	Glu Asn Ile Ile Thr Phe 60
40	Tyr Gly Ala 1 65	Tyr Tyr Asn 70	Gln His Ile Asn	Asn Glu Ile Ile Ile Leu 75 80
45	Met Glu Tyr S	Ser Asp Cys 85		Lys Ile Leu Ser Val Tyr 95
50	•	/al Gln Arg	Gly Thr Val Tyr 105 .	Lys Ile Ile His Arg Asp 110
50	lle Lys Pro S	Ser Asn Val	Leu Ile Asn Ser 120	Lys Gly Gln Ile Lys Leu ` 125
55	Cys Asp Phe 0		Lys Lys Leu Ile . 135	Asn Ser Ile Ala Asp Thr 140

	Phe 145		l Gly	/ Thi	Ser	Th:	_	c Met	: Se	r Pro) Glu		ı Ile	e Glr	Gly	/ Asn 160
5	Va l	Tyr	Ser	Ile	. Lys		/ Asp	o Val	Trp	Ser 170		Gly	Leu	ı Met	175	e Ile
10	Glu	Leu	Val	Thr 180	_	Glu	Ph∈	e Pro	185	ı Gly	Gly	His	Asn	1		
15	<21 <21	0> 1 1> 1 2> P 3> C	89	da a	lbic	ans							,			
20		0> 1 Leu		Leu	Lys 5	Gln	Leu	Gly	Ser	Gly 10	Asn	Ser	Gly	Ser	Val 15	
25	Lys	Ile	Leu	His 20	Ile	Pro	Thr	Gln	Lys 25	Thr	Met	Ala	Lys	Lys 30	Ile	Ile
	His	Ile	Asp 35	Ser	Lys	Ser	Val	11e 40	Gln	Thr	Gln	Ile	Ile 45	Arg	Glu	Leu
30	Arg	Ile 50	Leu	His	Glu	Cys	His 55	Ser	Pro	Туr	Ile	Ile 60	Glu	Phe	Туr	Gly
35	Ala 65	Cys	Leu	Asn	Asn	Asn 70	Asn	Thr	Ile	Val	Ile 75	Cys	Met	Glu	Tyr	Cys 80
40	Asn	Cys	Gly	Ser	Leu 85	Asp	Lys	Ile	Leu	Pro 90	Leu	Cys	Glu	Asn	His 95	Lys
40	Ile	Ile		Arg 100	Asp	Ile	Lys		Asn 105	Asn	Val	Leu	Met	Thr 110	His	Lys
45 .	Gly (Glu	Phe 115	Lys	Leu	Cys	Asp	Phe 120	Сlу	Val	Ser		Glu 125	Leu	Thr	Asn
50	Ser	Leu 130	Ala	Met	Ala	Asp	Thr 135	Þhe	Val	Gly		Ser 140	Met	Tyr	Met	Ser
	Pro (Glu	Arg	Ile		Gly 150	Leu	Asp	Tyr	-	Val 155	Lys	Ser	Asp	Val	Trp 160
55	Ser 1	Thr	G1γ		Met 165	Leu	Ile	Glu	Leu	Ala : 170	Ser	Gly '	Val		Val 175	Trp

	Ser	Glu	Asp	Asp 180	Asn	Asn	Asn	Asp	Asp 185	Asp	Glu	Asp	Asp			
5																
	-21	0> 1	c													
		1> 1														
		2> P														
10				arom	yces	cer	evis	iae								
		0> 1					_		_,	۵,		61	G1	C	1/- 1	Ca.
4.5		Glu	Thr	Leu		He	Leu	Gly	Glu	10	АТА	GIA	GIÀ	ser	15	ser
15	1				5					10					1.7	
	Lvs	Cvs	Lys	Leu	Lys	Asn	Gly	Ser	Lys	Ile	Phe	Ala	Leu	Lys	Val	Ile
	•		1	20			-		25					30		
20																
	Asn	Thr		Asn	Thr	Asp	Pro		Tyr	Gln	Lys	Gln	11e 45	Phe	Arg	Glu
			35					40					43			
	Leu	Gln	Phe	Asn	Arg	Ser	Phe	Gln	Ser	Glu	Tyr	Ile	Val	Arg	Tyr	Tyr
25		50					55					60				
																- 1
		Met	Phe	Thr	Asp		Glu	Asn	Ser	Ser	11e 75	Tyr	Ile	Ala	Met	80
<i>30</i>	65					70					, 3			•	•	00
	Tyr	Met	Gly	Gly	Arg	Ser	Leu	Asp	Ala	Ile	Tyr	Lys	Asn	Leu	Leu	Glu
	-		_	-	85					90	,				95	
		·							_		_,		_	61 .	3	T 1 -
35	Arg	Gly	G1 y	Lys	Lys	Val	Ile	His	Arg 105	Asp	Ile	Lys	Pro	110	Asn	11e
				100					103					110		
	Leu	Leu	Asn	Glu	Asn	Gly	Gln	Val	Lys	Leu	Cys	Asp	Phe	Gly	Val	Ser
40			115					120					125			
40						_	_				6 1	m.	61	m\	C	Db.a
	Gly		Ala	Val	Asn	Ser		Ala	Thr	Thr	Pne	140	GIY	Thr	ser	rne
•		130				•	135					1.10				
45	Tyr	Met	Ala	Pro	Glu	Arg	Ile	Gln	Ģly	Gln	Pro	Tyr	Ser	Val	Thr	Ser
	145					150					155					160
												,			C1	T
	Asp	Val	Trp	Ser		Gly	Leu	Thr	Ile		Glu.	Val	Ala	Asn	175	rys
50					165				•	170					1 , 2	
•	Phe	Pro	Cys	Ser	Ser	Glu	Lys	Met	Ala	Ala	Asn					
			-	180			-		185							
55																

5	<21 <21	0> 1 i> 1 2> P 3> A	33 RT	dops	is t	hali	ana									·
10				Val	His 5	Arg	Asp	Ile	Lys	Pro 10	Ser	Asp	Leu	Leu	Ile 15	Asn
	Ser	Ala	Lys	Asn 20	Val	Lys	Ile	Ala	Asp 25	Phe	Gly	Val	Ser	Arg 30		Leu
15	Ala	Gln	Thr 35	Met	Asp	?ro	Cys	Asn 40	Ser	Ser	Val	Gly	Thr 45	Ile	Ala	Tyr
20	Met	Ser 50	Pro	Glu	Arg	Ile	Asn 55	Thr	Asp	Leu	Asn	His 60	Gly	Arg	Tyr	Asp
25	Gly 65	туг	Ala	Gly	Asp	Val 70	Trp	Ser	Leu	Gly	Val 75	Ser	Ile	Leu	Glu	Phe 80
25	Ťyr	Leu	Gly	Arg	Phe 85	Pro	Phe	Ala	Val	Ser 90	Arg	Gln	Gly	Asp	Trp 95	Ala
30	Ser	Leu	Met	Cys 100	Ala	Ile	Cys	Met	Ser 105	Gln	Pro	Pro	Glu	Ala 110	Pro	Ala
<i>35</i>	Thr	Ala	Ser 115	Gln	Glu	Phe	Arg	His 120	Phe	Val	Ser	Cys	Cys 125	Leu	Gln	Ser
-	Asp	Pro 130	Pro	Lys	Arg	(
40	<211	> 17 > 13 > PR	3									_				
45 ·				lopsi	s th	alia	ına									
		> 17 His		Val	His 5	Arg	Asp	Ile	Lys	Pro 10	Ser	Asn	Leu	Leu	Ile 15	Asn
50	Ser	Ala	Lys	Asn 20	Val	Lys	Ile	Ala	Asp 25	Phe	Gly	Val	Ser	Arg . 30	.Ile	Leu
55	Ala	Gln	Thr 35	Met	Asp	Pro	Cys	Asn 40	Ser	Ser	Val	Gly	Thr 45	Ile	Ala	Tyr

. 5		Met	Ser 50		Glu	Arg	Ile	Asn 55		Asp	Leu	ı Asn	Glr 60		/ Lys	Туг	Asp
		Gly 65		Ala	Gly	Asp	70		Ser	Leu	Gly	Val 75		· Ile	e Leu	Glu	Phe 80
10		Tyr	Leu	Gly	.Arg	Phe 85		Phe	Pro	Val	Ser 90		Gln	Gly	Asp	Trp 95	Ala
15		Ser	Leu	Меt	Cys 100	Ala	Ile	Cys	Met	Ser 105	Gln	Pro	Pro	Glu	Ala 110	Pro	Ala
		Thr	Ala	Ser 115	Pro	Glu	Phe	Arg	His 120	Phe	Ile	Ser	Cys	Cys 125		Gln	Arg
20		Glu	Pro 130	Gly	Lys	Arg		•									
25	,	<213 <213	0> 10 1> 1: 2> PE 3> Ly	33 RT	ersio	con e	escu	lenti	ım								
30		< 400)> 18	3													
					Ile	His 5	Arg	Asp	Leu	Lys	Pro 10	Ser	Asn	Leu	Leu	Ile 15	Asn
35		His	Arg	Gly	Glu 20	Val	Lys	Ile	Thr	Asp 25	Phe	Gly	Val	Ser	Lys 30	Ile	Leu
40		Thr	Ser	Thir 35	Ser	Ser	Leu	Ala	Asn 40	Ser	Phe	Val	Gly	Thr 45	Tyr	Pro	Tyr
		Met	Ser 50	Pro	Glu	Arg	Ile	Ser 55	Gly	Ser	Leu	Tyr	Ser 60	Asn	Lys	Ser	Asp
45		Ile 65	Trp	Ser	Leu	Gly	Leu 70	Val	Leu	Leu	Glu	Cys 75	Ala	Thr	Gly	Lys	Phe 80
50		Pro	Tyr	Thr	Pro	Pro 85	Ģlu	His	Lys	Lys	Gly 90	Trp	Ser	Ser	Val	Tyr 95	Glu
		Leu	Val	Asp	Ala 100	Ile	Val	Glu		Pro 105	Pro	Pro	Cys	Ala	Pro 110	Ser	Asn
55		Leu	Phe	Ser	Pro	G1 u	Phe	Cys	Ser	Phe	Ile	Ser	Gln	Cys	Val	Gln	Lys

		115			120						125				
5	Asp Pro		Asp	Arg											
. 10	<210> 1 <211> 1 <212> P <213> L	33 RT	rsic	on e	escu.	lenzi	um								
15	<400> 1 Lys His		Ile	His 5	Arg	Asp	Leu	Lys	Pro 10	Ser	Asn	Leu	Leu	Ile 15	Asn
20	His Arg	Gly	Asp 20	Val	Lys	Ile	Thr	Asp 25	Phe	Gly	Val	Ser	Ala 30	Val	Leu
25	Ala Ser	Thr 35	Ser	Gly	Leu	Ala	Asn 40	Thr	Phe	Val	Gly	Thr 45	Tyr	Asn	Tyr
	Met Ser 50	Pro	Glu	Arg	Ile	Ser 55	Gly	Gly	Ala	Tyr	Asp 60	Tyr	Lys	Ser	Asp
30	Ile Trp	Ser	Leu	Gly	Leu 70	Val	Leu	Leu	Glu	Cys 75	Ala	Thr	Gly	His	Phe 80
35	Pro Tyr	Lys	Pro	Pro 85	Glu	Gly	Asp	Glu	Gly 90	Trp	Val	Asn	Vai	Туг 95	Glu
	Leu Met		Thr 100	Ile	Val	Asp	Gln	Pro 105	Glu	Pro	Cys		Pro 110	Pro	Asp
40	Gln Phe	Ser 1	Pro (Gln	Phe	Cys	Ser 120	Phe	Ile	Ser	Ala	Cys 125	Val	Gln	Lys
45	His Gln 130	Lys /	Asp ,	Arg											
50	<210> 20 <211> 11 <212> PB <213> Z6	32 RT	ys												
55	<400> 20 Arg His 1		Ile 1	His 5	Λrg	Asp	Ile	Lys	Pro 10	Ser	Asn	Leu	Leu	Val 15	Asn

5	Lys Lys Gly Glu Val Lys Ile Thr Asp Phe Gly Val Ser Ala Val Lei 20 25 30	u
	Ala Ser Ser Ile Gly Gln Arg Asp Thr Phe Val Gly Thr Tyr Asn Ty: 35 40 45	c
10	Met Ala Pro Glu Arg Ile Ser Gly Ser Thr Tyr Asp Tyr Lys Ser Asp	>
15	Ile Trp Ser Leu Gly Leu Val Ile Leu Glu Cys Ala Ile Gly Arg Phe 65 70 75 80	
	Pro Tyr Ile Pro Ser Glu Gly Glu Gly Trp Leu Ser Phe Tyr Glu Leu 85 90 95	t
20	Leu Glu Ala Ile Val Asp Gln Pro Pro Pro Ser Ala Pro Ala Asp Gln 100 105 110	ı
25	Phe Ser Pro Glu Phe Cys Ser Phe Ile Ser Ser Cys Ile Gln Lys Asp 115 120 125	1
	Pro Ala Gln Arg 130	
30		
	<210> 21	
	<211> 88	
<i>35</i>	<212> PRT	
	<213> Unknown	
-	<220>	
	<223> Description of Unknown Organism: another MAPKK	
40	gene	
	<400> 21	
	Asp Thr Phe Thr Gly Thr Tyr Asn Tyr Met Ala Pro Glu Arg Ile Ser	
45	1 5 10 15	
	Gly Gln Lys His Gly Tyr Met Ser Asp Ile Trp Ser Leu Gly Leu Val 20 25 30	
50	Met Leu Glu Leu Ala Thr Gly Glu Phe Pro Tyr Pro Pro Arg Glu Ser 35 40 45	
	Phe Tyr Glu Leu Leu Glu Ala Val Val Asp His Pro Pro Pro Ser Ala	
55	50 55 60	

```
Pro Ser Asp Gln Phe Ser Glu Glu Phe Cys Ser Phe Val Ser Ala Cys
              65
                                   70
                                                        75
 5
             Ile Gln Lys Asn Ala Ser Asp Arg
                              85
 10
            <210> 22
            <211> 59
            <212> DNA
            <213> Artificial Sequence
 15
            <220>
            <223> Description of Artificial Sequence:primer
            <400> 22
20
            gtatgtgccg acaaagtcat tggccagtcc atctgtgctt gctagtactg cactcacac 59
            <210> 23
25
            <211> 59
            <212> DNA
            <213> Artificial Sequence
30
            <220>
            <223> Description of Artificial Sequence:primer
            <400> 23
           gtactagcaa gcacagatgg actggccaat gactttgtcg gcacatacaa ctatatgtc 59
35
           <210> 24
           <211> 31
40
           <212> DNA
           <213> Artificial Sequence
           <220>
45
           <223> Description of Artificial Sequence:nucleic acid
                 sequence
           <400> 24
                                                                                31
           ctctagagga tccccgggtg gtcagtccct t
50
```

Claims

55

1. A nucleic acid sequence encoding a derivative of a plant mitogen-activated protein kinase kinase, wherein said

⁴ EP 1 078 985 A2

derivative contains a negative charge at a core phosphorylation site of said protein kinase kinase.

- The nucleic acid sequence of claim 1, wherein said derivative comprises replacement of one or more amino acids with an amino acid selected from the group consisting of aspartic acid and glutamic acid.
- 3. The nucleic acid sequence of claim 2, wherein said derivative comprises replacement of one or more serine or threonine amino acids with an amino acid selected from the group consisting of: aspartic acid and glutamic acid.
- The nucleic acid sequence of claim 3, wherein said nucleic acid sequence is isolated from the group consisting
 of: Arabidopsis thaliana, Lycopersicum esculentum, Zea mais, N tabucum, D discoideum and Leischmania donovani.
 - 5. The nucleic acid sequence of claim 4, wherein said one or more threonine or serine amino acids are selected from the group consisting of:

Lycopersicum esculentum c.v. Bonny Best, tMEK 2: 219serine, 220threonine, 221 serine and 226threonine; Arabidopsis tháliana, AtMAP2Ka: 220threonine, 226serine and 227serine;

A. thaliana, AtMKK4: 220threonine, 226serine and 227serine;

A. thaliana, AtMEK1: 219serine, 220threonine, 221serine, 222serine and 226serine;

L. esculentum, LeMEK1: 219serine, 220threonine, 221serine and 226threonine;

Zea mais, ZmMEK1: 219serine, 220serine and 226threonine;

A. thaliana, At MAP2Kβ: 218threonine, 220threonine and 226threonine;

N tabucum, NPK2: 219serine, 220serine and 226threonine;

A. thaliana, AtMKK3: 220serine and 226threonine;

D discoideum, DdMEK1, 220threonine, 222serine and 226threonine; and

Leischmania donovani, LPK: 220threonine, 224serine, 225serine and 226threonine;

wherein the amino acid numbering system is based on the tomato gene tMEK2.

- 30 6. The nucleic acid sequence of claim 5, wherein the nucleic acid is from tomato cv. Bonny Best, and wherein in the encoded derivative amino acids serine221 and threonine226 have been replaced with aspartic acid.
 - 7. A derivative of a plant mitogen-activated protein kinase kinase, wherein said derivative contains a negative charge in a core phosphorylation site of said protein kinase kinase.
 - 8. The derivative of claim 7, wherein said derivative comprises replacement of one or more amino acids with an amino acid selected from the group consisting of: aspartic acid and glutamic acid.
 - 9. The derivative of claim 8, wherein said derivative comprises replacement of one or more serine or threonine amino acids with an amino acid selected from the group consisting of: aspartic acid and glutamic acid.
 - 10. The derivative of claim 9, wherein the mitogen-activated protein kinase kinase is derived from plants selected from the group consisting of: Arabidopsis thaliana, Lycopersicum esculentum, Zea mais, N tabucum, D discoideum and Leischmania donovani.
 - 11. The derivative of claim 10, wherein one or more of said serine or threonine amino acids are selected from the group consisting of:

Lycopersicumi esculentum c.v. Bonny Best, tMEK 2: 219serine, 220threonine, 221serine and 226threonine; Arabidopsis thaliana, AtMAP2Ka: 220threonine, 226serine and 227serine;

A. thaliana, AtMKK4: 220threonine, 226serine and 227serine;

A. thaliana, AtMEK1: 219serine, 220threonine, 221serine, 222serine and 226serine;

L. esculentum, LeMEK1: 219serine, 220threonine, 221serine and 226threonine;

Zea mais, ZmMEK1: 219serine, 220serine and 226threonine;

A. thaliana, At MAP2KB: 218threonine, 220threonine and 226threonine;

N tabucum, NPK2: 219serine, 220serine and 226threonine;

A. thaliana, AtMKK3: 220serine and 226threonine;

D discoideum, DdMEK1, 220threonine, 222serine and 226threonine; and

5

15

20

25

35

40

45

50

Leischmania donovani, LPK: 220threonine, 224serine, 225serine and 226threonine;

wherein the amino acid numbering system is based on the tomato gene tMEK2.

- 12. The derivative of claim 11, wherein the derivative of a mitogen-activated protein kinase kinase is derived from tomato cv. Bonny Best, and wherein the amino acids serine221 and threonine226 have been replaced with aspartic acid.
 - 13. A cloning vector comprising the nucleic acid sequence of claim 1.
 - 14. A transgenic plant comprising the cloning vector of claim 13.
 - 15. A transgenic plant comprising the nucleic acid sequence of claim 1.
- 16. A method of increasing disease resistance or enhancing stress tolerance in a plant by introducing into said plant a nucleic acid sequence encoding a derivative of a mitogen-activated protein kinase kinase, wherein said derivative contains a negative charge at a core phosphorylation site of said protein kinase kinase.
 - 17. The method of claim 16, wherein said derivative comprises replacement of one or more amino acids with an amino acid selected from the group consisting of: aspartic acid and glutamic acid.
 - 18. The method of claim 17, wherein said derivative comprises replacement of one or more serine or threonine amino acids with an amino acid selected from the group consisting of : aspartic acid and glutamic acid.
- 19. The method of claim 18, wherein said nucleic acid is isolated from the group consisting of: Arabidopsis thaliana, Lycopersicum esculentun, Zea mais, N tabucum, D discoideum, Leischmania donovani, Drosophila melanogaste, Homo sapiens, R norvegicus, Saccharomyces cerevisiae and Candida albicans.
- 20. The method of claim 19, wherein said one or more serine or threonine amino acids are selected from the group consisting of:

Lycopersicum esculentum, tMEK 2: 219serine, 220threonine, 221serine and 226threonine;

Arabidopsis thaliana, AtMAP2Ka: 220threonine, 226serine and 227serine;

A. thaliana, AtMKK4: 220threonine, 226serine and 227serine;

A. thaliana, AtMEK1: 219serine, 220threonine, 221serine, 222serine and 226serine;

L. esculentum, LeMEK1: 219serine, 220threonine, 221serine and 226threonine;

Zea mais, ZmMEK1: 219serine, 220serine and 226threonine;

A. thaliana, At MAP2Kβ: 218threonine, 220threonine and 226threonine;

N tabucum, NPK2: 219serine, 220serine and 226threonine;

A. thaliana, AtMKK3: 220serine and 226threonine;

D discoideum, DdMEK1, 220threonine, 222serine and 226threonine;

Leischmania donovani, LPK: 220threonine, 224serine, 225serine and 226threonine;

Drosophila melanogaste, HEP: 220serine and 226threonine; human, MEK1: 220serine and 226serine;

R norvegicus, MEK5: 220serine and 226threonine;

Homo sapiens, MKK3: 220serine and 226threonine;

Saccharomyces cerevisiae, PBS2: 220serine and 226threonine;

S. cerevisiae, STE7: 220serine and 226threonine;

Candida albicans, HST 7: 220serine and 226threonine; and

S. cerevisiae, MKK1: 220serine. 225threonine and 226threonine;

wherein the amino acid numbering system is based on the tomato gene tMEK2.

- 21. The method of claim 20, wherein the nucleic acid is from tomato cv. Bonny Best, and wherein in the encoded derivative amino acids serine221 and threonine226 have been replaced with aspartic acid.
- 22. The method of claim 16, wherein said nucleic acid is introduced by a method selected from transformation and particle bombardment.

36

10

20

35

40

45

50

EP 1 078 985 A2

```
1 ATSAAGAAAGGATCTTTTGCACCTAATÇTTAAACTCTCTTCTTCCTCCTCCTGATGAAGTT
                                                             60
                                                             20
    1 M K K G S F A P N L K L S L P P P O E V
   61 GCTCTCTCCAAATTCCTGACTGAATCAGGAACATTTAAGGATGGAGATCTTCTSGTSAAT
   ZI A L S K F L T E S G T F K O G O L L V N
  121 AGAGATGGAGTTCGAATTGTTTCGCAGAGTGAAGTTGCAGCTCCTTCAGTTATACAGCCA
   41 ROG'VRIVSQSEVAAPSVEQP
  191 TCAGACAACCAGTTATGCTTAGCTGATTTTGAAGCAGTAAAAGTTATTGGAAAGGGAAAT
   SISCNOLCLAOFEAVKVIGKG
  211 GGTGGTATAGTGCGGCTGGTTCAGCATAAATGGACAGGGCAATTTTTCGCTCTCAAGGTT
  SICCIVRLVQHX NTGQ F F A L X V
  JO: ATTENGATGAATATTGATGAGTETATGCGCAAACATATTGCTCAAGAACTGAGAATTAAT
  101 : 3 M N I D E S M R K H I A Q E L R I N
  361 CAGTCATCCCAGTGTCCATATGTTGTCATATGCTATCAGTCGTTCTTCGACAATGGTGCT
                                                            420
                                                            140
  121 2 S S Q C P Y V V I C Y Q S F F O N G A
  421 ATATCCTTGATTTTGGAGTATATGGATGGTGGTTCCTTAGCAGATTTTCTGAAAAAGGTC
                                                            480
  14L T S L T L E Y N O G G S L A D F L K K V
                                                            160
481 AAAACAATACCTGAACGATTTCTTGCTGTTATCTGCAAACAGGTTCTCAAAGGCTTGTGG
161 K T I P E R F L A V I C K Q V L K G L W
VIA
                                                            540
                                                            180
 541 TATCTTCATCATGAGAAGCATATTATTCACAGGGATTTGAAACCTTCGAATTTGCTAATC
181 Y L H H E K H I I H R D L K P S N L L I
VID
                                                            200
  660
 201'N'H R G D V K I T D F G V S A V L A S T
 661 TCTGGACTGGCCAATACCTTTGTCGGCACATACAACTATATGTCTCCAGAGAGAATTTCA
                                                            720
 221 S G L A N T F V G T Y N Y H S P E R I S
                                                            240
 721 GGAGGTGCCTATGATTACAAAAGCGACATTTGGAGCTTGGGTTTAGTCTTGCTCGAGTGT
                                                            780
 241 G G A Y D Y K S D I H S L G L V L L E C
                                                            260
 781 GCAACAGGTCATTTCCCATATAAACCACCCGAGGGAGATGAAGGATGGGTCAATGTCTAT
                                                            840
 261 A T G H F P T K P P E G D E G W V N V Y
                                                           280
 941 GAACTTATGGAAACCATAGTTGACCAACCAGAACCTTGTGCACCTCCTGACCAATITTCT
 281 E L N E T I V D Q P E P C A P P D Q F 3
                                                           960
 901 CCACAATTCTGCTCÄTTCATATCTGCATGTGTCCAGAAGCACCAGAAGGACAGACTGTCG
 JOI P Q F C S F I S A C V Q K H Q K D R L S
 961 GCAAATGATCTCATGAGTCACCCTTTCATCACCATGTACGATGACCAGGATATCGATCTT
                                                          1020
 321 A N O L H S H P F I T H Y D D Q O I O L
                                                           340
                                                          1074
1021 GGATCTTACTTCACTTCCGCAGGACCTCCATTGGCAACACTTACTGAGCTATAA
 341 G S Y F T S A G P P L A T L T C L .
                                                           358
```

FIGURE 1a

EP 1 078 985 A2

```
LLHOND DROSS DU DU DROGOT FALIGADO IN EDEATRIALA DELICADOSSO - CRIGATISTOS FROM - - HAZ SUL LIMITED DE SADEUX (K. - - - - - - - -
                    ******
                                                                                                                           THE TALESCASS TORAL HE PRIME LALIGUMET - EXCEPTIONAL EXPERIENCE AND EXCEPTION OF THE TALESCASS TORAL HE PRIME LALIGUMET - EXCEPTIONAL EXPERIENCE AND EXCEPTIONS - OF THE TALESCASS TORAL HE PRIME LALIGUMET - EXPERIENCE TO THE TRUTH PORTE OF THE TALESCASS TORAL HE PRIME LALIGUMET - EXPERIENCE AND EXPERIENCE 
                   NP C
                   ATMENT
                   SANCE K:
                 2 > X
                                                                                                                             DECIDIENTS DIVIDENCISM : DAVICERRI - GULENG : DELDAVISHECKY TAYOUCTURDE - - TATORIUS - KOTOLIVISK - - - - - -
                 917
                                                                                                                             FENT SELEKTROTIVETVISHERSELVMARKLIHLE-INPAIRMETIRETGYLHEEN-SPYTVEFYEAFYSD---GEISIOTEMEDESUDY, LIGHAD-------
                 XXXX.
                                                                                                                           UTI SELDRENG WENTHOUSE DANNE LED TITLEDROTHS ELECTIVED - SSY TO FROAFFIE - - - FROST CHARGO CONTRACTION OF THE CONTRACT OF THE
                 KILK S
                   XXX 3
                PB5:
                                                                                                                          DIGEORISCONORI DE PROCEDENT DIO SECUCIO DE LE COMPRESCONORI DE LA PROCEDENTA DE LA PROCEDEN
                3727
                8877
                                                                                                                           TETUS LEDBAGGS PROGUEGOS PALACI AT LATE PETOKO FRELOFINASTO - SEYTAKYOS TO - DE ISSTYTAKYOGOS LLAT PARLLEROS - - -
                KXX:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                VI::
                                                                                                                        ALMAPIK:
                                                                                                                       RETIRED DESCRIPTION DE ARTHE DE PROTEST LA COMPONISE AND DE VICTOR PROSESSION DE CONTROPPAR DE LA COMPONISE DEL COMPONISE DE LA COMPONISE DE L
          ALMEK:
          Lamexi
        IMMER:
                                                                                                                          PHILBROI KOSILLUOPIN -CEIK ITOPGVBAVLAGSICOROTĖ -VOTYNYMAPERLS-----GSTYDYKSOTMPLOLVILLECAIGREPYT PSECE-------
                                                                                                                     SKIT BROOKD SIGLATION TO THE VIEW TO THE VOLUME TO THE VOL
             REMARERS
          CHKAPIKI
                                                                                                                       MPRO
                                                                                                                     A SHEET
           DOMEST:
                                                                                                                    22X
          HEP
       MZE:
        XXX S
                                                                                                                  DESIGNATIONS OF THE CONTROL OF THE C
          XXX )
        2862
     STE 7
       8977
                                                                                                                    NEW DERD CHORN DELLINEN - CONKECTOROUS CAVINGE - ATT - TOTS FYNAMERIO - - - - COPY SUTS DIVISE DELT DEL VANCHE POSS BOUAN - - - - -
                                                                                                                  ......SQEFRIPT/SQUOSDPPI
     ATMAPIKO
                                                                                                                 CONSTITUTION SALES CONTRACTOR CON
     A CHEE 4
                                                                                                                 SSMELTUTEPRPPCASA. -- FSPETCST:SOCKDPRCE
    A CHOCK!
                                                                                                                IAMBE:
    ATMAPIES
                                                                                                           THE TREE SECTIONS OF THE PROPERTY OF THE PROPE
    COMAPEK:
  NZKZ
  ACHKK 3
LPK
                                                                                                              -----PSDOVICEPVXQCLERDPDTR
                                                                                                             STORY OF A 
BEP
```

FIGURE 16

1.tMEK2 2	214 SAVLASTSGLANTF	227 tomato cv Bonny Best
2.AtMAP2K	SRILAQ T MDPCN <i>SS</i>	Arabidopsis
3.AtMKK4	SRILAQ <i>T</i> MDPCN <i>SS</i>	Arabidopsis
4.AtMEK1	SKILT <i>STSS</i> LAN <i>S</i> F	Arabidopsis
5.LeMEKl	SAVLA <i>STS</i> GLAN <i>T</i> F	tomato cv Ailsa Craig
6.ZmMEK1	SAVLA <i>ss</i> IGQRD T F	maize
7.AtMAP2K	STVMINIAGLANIF	Arabidopsis
8.NPK2	SAGLE <i>SS</i> IAMCA <i>T</i> F	tobacco
9.AtMKK3	SAGLEN SMAMCATT	Arabidopsis
10.DdMEK1	SGQLQH <i>TLS</i> KAV <i>T</i> W	D. discoideum
11.LPK	S-KLIQ <i>T</i> LAV <i>SŠT</i> Y	leishmania donovani
12.HEP	SGRLVD <i>S</i> K-AN <i>T</i> R	Drosophila
13,MEK1	SGQLID <i>S</i> M-AN <i>S</i> F	human
14.MEK5	STQLVN <i>S</i> I-AK <i>T</i> Y	rat .
15.MKK3	SGYLVD <i>S</i> V-AK <i>T</i> M	human
16.PBS2	SGNLVA <i>S</i> L-AK <i>T</i> N	yeast
17.STE7	SKKLIN <i>S</i> I-AD <i>T</i> F	yeast
18.HST7	SRELTN <i>S</i> LAMAD <i>T</i> F	Candida albicans
19.MKK1	SGEAVN <i>S</i> L-A <i>TT</i> F	yeast

FIGURE 1c

FIGURE 2

Control Construct

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 078 985 A3**

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 20.06.2001 Bulletin 2001/25

(51) Int Cl.⁷: **C12N 15/11**, C12N 9/12, C12N 15/63, C12N 15/87

(43) Date of publication A2: 28.02.2001 Bulletin 2001/09

(21) Application number: 00307362.4

(22) Date of filing: 25.08.2000

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LY MK RO SI

(30) Priority: 27.08.1999 US 384162

(71) Applicant: Her Majesty in Right of Canada, represented by The Minister of Agriculture and Agri-Food Canada Ottawa, Ontario K1A OC6 (CA) (72) Inventors:

Xing, Ti
 Ottawa, Ontario K2B 6S6 (CA)

Malik, Kamal
 Ottawa, Ontario K1S 5AS (CA)

Martin-Heller, Teresa
 Gloucester, Ontario K1J 6X2 (CA)

Miki, Brian L
 Ottawa, Ontario K1H 5V1 (CA)

(74) Representative: Maschio, Antonio
 D Young & Co,
 21 New Fetter Lane
 London EC4A 1DA (GB)

(54) Map kinase kinases (MEK)

(57) A mitogen-activated protein (MAP) kinase kinase gene, tMEK2, was isolated from tomato cv. Bonny Best. By mutagenesis, a permanently-active variant, tMEK2^{MUT}, was created. Both wild type tMEK2 and mutant tMEK2^{MUT} were driven by a strong constitutive promoter, tCUP Δ , in a tomato protoplast transient expression system. Pathogenesis-related genes, PR1bl and PR3, and a wound-inducible gene, ER5, were activated by tMEK2^{MUT} expression revealing the convergence of

the signal transduction pathways for pathogen attack and mechanical stress at the level of MAPKK. Activation of biotic and abiotic stress response genes downstream of tMEK2 occurred through divergent pathways involving at least two classes of mitogen-activated protein kinase. This study shows that tMEK2 may play an important role in the interaction of signal transduction pathways that mediate responses to both biotic (eg disease) and abiotic (wound responsiveness) stresses.

EUROPEAN SEARCH REPORT

Application Number EP 00 30 7362

		IDERED TO BE RELEVANT		
Category	Citation of document win of relevant pa	th indication, where appropriate, assages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
x	kinase kinase DdM and is essential chemoattractant-m guanylyl cyclase" THE EMBO JOURNAL, vol. 16, no. 14, 16 July 1997 (1992) 4317-4332, XP00219 * page 4317, colur * page 4318, colur * page 4318, colur	ediated activation of 7-07-16), pages 56145 nn 2, line 5 - line 14 * nn 2, line 22-25 * nn 2, line 47-51 * nn 2, line 6 - page 4324	5 13, 16-18,22	C12N15/11 C12N9/12 C12N15/63 C12N15/87
*	kinase gene (Acces differentially reg	.: "A tomato MAP kinasesion No. AJ000728) ulated during fruit senescence, and wounding		TECHNICAL FIELDS
[·	vol. 117, 1998, pa	ge 1526 XP000971481		SEARCHED (Int.CI.7)
, Y -	nRNA for MAP kinas EMBL DATABASE ENTR	Lycopersicon esculentum e kinase (MEK1 gene)" Y LEAJ728 ACCESSION NO. r 1997 (1997-12-02),		C12N
t F T V X	the sites in MAP k chosphorylated by p HE EMBO JOURNAL, col. 13, no. 7, 199 P000887212 page 1612, column 613, column 1, lir	o74raf-1" 94, pages 1610-1619, n 2, line 33 - page	1-13	
		-/		
-7	ho present sourch report has	been drawn up for all claims		
P	ace of search	Date of completion of the search	·	Examiner
В	ERLIN	7 February 2001	Schö	nwasser, D
C: particula C: particula docume	GORY OF CITED DOCUMENTS arly relevant if taken alone arly relevant if combined with anoth nt of the same category opical background	L : document cited for	underlying the inve ument, but publishe the application other reasons	ention
) : non-wri	tten disclosure diate document	8 ; member of the san document		

EPO FORM 1503 03.82 (F04C01)

Application Number

EP 00 30 7362

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims: 1-5,7-11,13-20,22 PARTIALLY, 6,12,21 COMPLETELY

EUROPEAN SEARCH REPORT

Application Number EP 00 30 7362

	· · · · · · · · · · · · · · · · · · ·	DERED TO BE RELEVANT	7-5	
Category	Citation of document with of relevant pas	indication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
A	WO 96 36642 A (DER JOEL (FR); DAVIS R 21 November 1996 (SEQ 1D NO:11	IJARD BENOIT ;RAINGEAUD OGER J (US); GUPTA SH) 1996-11-21)	1-22	
A .	components of MAPK protein kinase) si and animal cells" PLANT AND CELL PHY	ly 1995 (1995-07), pages 68	1-22	
	· .			TECHNICAL FIELDS SEARCHED (Int.Cl.7)
	·			
<u>_</u>	The present search report has t	een drawn up for all claims		
	Place of search	Date of completion of the search	— <u>,</u> <u>—</u>	Examiner
	BERLIN	7 February 2001	Schö	inwasser, D
X : partic Y : partic docur A : techn O : non-v	TEGORY OF CITED DOCUMENTS ularly relevant if taken alone ularly relevant if combined with anoth nent of the same category dlogical background witten disclosure nediate document	T : theory or principle t E : earlier patent docur after the filing date or D : document cited in t L : document cited for	underlying the inv ment, but publish he application other reasons	vention red on, or

EPO FORM 1503 03.82 (PC4C01)

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 00 30 7362

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: 1-5,7-11,13-20,22 partially, 6,12,21 completely

A nucleic acid sequence encoding a derivative of a plant mitogen-activated protein kinase kinase, wherein said derivative contains a negative charge at a core phosphorylation site of said protein kinase kinase; said nucleic acid sequence, wherein one or more threonine or serine amino acids are selected from Lycopersicon esculentum c.v. Bonny Best, tMEK2: 219 serine, 220 threonine, 221 serine and 226 threonine; a derivative of a plant mitogen-activated protein kinase kinase, wherein said derivative contains a negative charge in a core phosphorylation site of said protein kinase kinase; said derivative, wherein one or more threonine or serine amino acids are selected from Lycopersicon esculentum c.v. Bonny Best, tMEK2: 219 serine, 220 threonine, 221 serine and 226 threonine; a cloning vector comprising above nucleic acid; a transgenic plant comprising said cloning vector; a transgenic plant comprising above nucleic acid; a method of increasing disease resistance or enhancing stress tolerance in a plant by introducing into said plant a nucleic acid sequence encoding a derivative of a mitogen-activated protein kinase kinase, wherein said derivative contains a negative charge at a core phosphorylation site of said protein kinase kinase and said method, wherein one or more serine or threonine amino acids are selected from Lycopersicon esculentum, tMEK2: 219 serine, 220 threonine. 221 serine and 226 threonine.

2. Claims: 1-5,7-11,13-22 partially

Invention no. 2 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 2 refers to AtMAP2Kalpha from Arabidopsis thaliana with the respective mutations at position 220 threonine, 226 serine and/or 227 serine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon esculentum c.v. Bonny Best.

3. Claims: 1-5,7-11,13-22 partially

Invention no. 3 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 3 refers to AtMKK4 from Arabidopsis thaliana with the respective mutations at position 220 threonine, 226 serine and/or 227 serine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon esculentum c.v. Bonny Best.

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 00 30 7362

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

4. Claims: 1-5,7-11,13-22 partially

Invention no. 4 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 4 refers to AtMEK1 from Arabidopsis thaliana with the respective mutations at position 219 serine, 220 threonine, 221 serine, 222 serine and/or 226 serine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon esculentum c.v. Bonny Best.

5. Claims: 1-5,7-11,13-22 partially

Invention no. 5 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 5 refers to LeMEK1 from Lycopersicon esculentum with the respective mutations at position 219 serine, 220 threonine, 221 serine and/or 226 threonine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon esculentum c.v. Bonny Best.

6. Claims: 1-5,7-11,13-22 partially

Invention no. 6 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 6 refers to ZmMEK1 from Zea mays with the respective mutations at position 219 serine, 220 serine and/or 226 threonine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon esculentum c.v. Bonny Best.

7. Claims: 1-5,7-11,13-22 partially

Invention no. 7 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 7 refers to AtMAP2Kbeta from Arabidopsis thaliana with the respective mutations at position 218 serine, 220 threonine and/or 226 threonine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon esculentum c.v. Bonny Best.

8. Claims: 1-5,7-11,13-22 partially

Invention no. 8 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 8 refers to NPK2 from Nicotiana tabacum with the respective mutations at position 219 serine, 220 serine and/or 226 serine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 00 30 7362

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

esculentum c.v. Bonny Best.

9. Claims: 1-5,7-11,13-22 partially

Invention no. 9 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 9 refers to AtMKK3 from Arabidopsis thaliana with the respective mutations at position 220 serine and/or 226 threonine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon esculentum c.v. Bonny Best.

10. Claims: 1-5,7-11,13-22 partially

Invention no. 10 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 10 refers to DdMEKI from Dictyostelium discoideum with the respective mutations at position 220 threonine, 222 serine and/or 226 threonine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon esculentum c.v. Bonny Best.

11. Claims: 1-5,7-11,13-22 partially

Invention no. 11 relates to subject-matter as defined above for "invention 1", with the exception, that invention no. 11 refers to LPK from Leischmania donovani with the respective mutations at position 220 threonine, 224 serine, 225 serine and/or 226 threonine (based on the amino acid numbering system of the tomato gene tMEK2) instead of tMEK2 from Lycopersicon esculentum c.v. Bonny Best.

12. Claims: 16-20,22 partially

A method of increasing disease resistance or enhancing stress tolerance in a plant by introducing into said plant a nucleic acid encoding a derivative of a mitogen-activated protein kinase kinase, wherein said derivative contains a negative charge at a core phosphorylation site of said protein kinase kinase and said method wherein said nucleic acid is isolated from the group consisting of: Drosophila melanogaster, Homo sapiens, Rattus norwegicus, Saccharomyces cerevisiae and Candida albicans.

EP 1 078 985 A3

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 30 7362

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

07-02-2001

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9636642	A	21-11-1996	US US AU AU CA EP US US	5804427 A 5736381 A 710877 B 4904696 A 2219487 A 0830374 A 6174676 B 6136596 A	08-09-19 07-04-19 30-09-19 29-11-19 21-11-19 25-03-19 16-01-20 24-10-20
		• 00			
				•	
					•
•					
nore details about this annex					