Introdução ao Machine Learning com R

Modelos de Árvores

May de 2022

Conteúdo

- Árvores de decisão
- Relação Viés-Variância
- Random Forest
- Gradient Boost
- XGboost

Árvore de Decisão (Decision Trees)

Floresta Aleatória (Random Forest)

Gradient Boosting

No R


```
# árvore de decisão
modelo_tree <- decision_tree(
   min_n = tune(),
   tree_depth = tune(),
   cost_complexity = tune()
)</pre>
```

```
# Random Forest
modelo_rf <- rand_forest(
   min_n = tune(),
   mtry = tune(),
   trees = tune()
)</pre>
```

```
# XGBoost
modelo_xgb <- boost_tree(
   min_n = tune(),
   mtry = tune(),
   trees = tune(),
   tree_depth = tune(),
   learn_rate = tune(),
   loss_reduction = tune(),
   sample_size = tune()
)</pre>
```

Referências

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

	Paciente	Pressão	Glicose	Diabetes
	Alfredo	hipertensao	92	nao
	Beatriz	normal	130	sim
	Carla	normal	130	nao
	Daniela	normal	55	nao
Γ	Ernesto	hipertensao	220	sim
	Flavia	normal	195	sim

Paciente	nte Pressão	Glicose	Diabetes
Alfredo	o hipertensao	92	nao
Beatriz	z normal	130	sim
Carla	normal	130	nao
Daniela	la normal	55	nao
Ernesto	to hipertensao	220	sim
Flavia	normal	195	sim
Y	$Y \approx f$	C(X))

Árvore de Decisão - Perguntas

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Árvore de Decisão - Perguntas

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Árvore de Decisão - Impureza e Ganho de Informação

Ganho de Informação (information gain)

$$\mathrm{GI} = N.\,Imp(n \acute{\mathrm{o}}) - N(esq).\,Imp(esq) - N(dir).\,Imp(dir)$$

Medidas de Impureza mais comuns

Impureza	Tarefa	Fórmula	Descrição
GINI	Classificação	$1-\sum p_i^2$	p_i é a proporção do rótulo $i, i = 1, \dots, C$.
Entropia	Classificação	$-\sum p_i \log(p_i)$	p_i é a proporção do rótulo $i, i = 1, \dots, C$.
Variância	Regressão	$\frac{1}{N}\sum(y_k - \hat{y}_k)^2$	y_k é o observado e \hat{y}_k é a média da folha.

Fonte: spark.apache.org/docs/1.3.0/mllib-decision-tree.html

Árvore de Decisão - Impureza e Ganho de Informação

Exemplo usando o GINI

Árvore de Decisão - Hiperparâmetros e Overfitting

min_n - Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

tree_depth - Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

cost_complexity - Parâmetro de complexidade: limite mínimo de ganho de informação que a divisão tem que fornecer para concretizar a criação das folhas.

Árvore de Decisão - Hiperparâmetros e Overfitting

min_n - Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

tree_depth - Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

cost_complexity - Parâmetro de complexidade: limite mínimo de ganho de informação que a divisão tem que fornecer para concretizar a criação das folhas.

Árvore de Decisão - Hiperparâmetros e Overfitting

min_n - Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

tree_depth - Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

cost_complexity - Parâmetro de complexidade: limite mínimo de ganho de informação que a divisão tem que fornecer para concretizar a criação das folhas.

Árvore de Decisão - Cost Complexity

$$R_{cp} = R(T) + cp * |T|$$

- Quanto maior o CP, menos quebras a árvore vai ter.
- Selecionamos o tamanho de árvore ideal variando o CP (por meio de cross-validation).
- Sugere-se progressão geométrica da grade de valores.

Exemplo:
$$10^{-5}$$
, 10^{-4} , 10^{-3} , 10^{-2} , 10^{-1}

(o tune() já está programado para isso).

- O exemplo foi dado com variável resposta (diabetes) de apenas duas classes, SIM e NÃO, mas poderia ter três ou mais.
- A variável explicativa hipertensão apresentava apenas duas classes também, mas poderia apresentar mais. Nesse caso, os algoritmos de árvores têm de decidir como fazer as PERGUNTAS. Esse link da Freakonometrics apresenta a heurística mais utilizada nesse caso.
- As figuras são representações diferentes para um mesmo modelo de árvore. As regiões R_1, R_2, \ldots correspondem às folhas da árvore.

Random Forest

Relação Viés-Variância (Bias-variance tradeoff)

Erro de Predição Esperado

$$egin{aligned} & \mathrm{E}[(Y-\hat{f}\left(x_o
ight))^2] = \ & \mathrm{E}[(f(x_o)+\epsilon-\hat{f}\left(x_o
ight))^2] = \ & (\mathrm{E}\hat{f}\left(x_o
ight)-f(x_o
ight))^2 + \mathrm{E}[(\hat{f}\left(x_o
ight)-\mathrm{E}\hat{f}\left(x_o
ight))^2] + Var(\epsilon) = \ & Vicute{e}^2 + Vari\^ancia + Erro\,Irredut ext{ivel} \end{aligned}$$

Ver ISL página 33 (The Bias-Variance Trade-Off).

Relação Viés-Variância (Bias-variance tradeoff)

Erro de Predição Esperado

$$egin{aligned} & \mathrm{E}[(Y-\hat{f}\left(x_o
ight))^2] = \ & \mathrm{E}[(f(x_o)+\epsilon-\hat{f}\left(x_o
ight))^2] = \ & (\mathrm{E}\hat{f}\left(x_o
ight)-f(x_o
ight))^2+\mathrm{E}[(\hat{f}\left(x_o
ight)-\mathrm{E}\hat{f}\left(x_o
ight))^2]+Var(\epsilon) = \ & Vicute{s}^2+Vari\^ancia+Erro\,Irredut ext{ivel} \end{aligned}$$

Ver ISL página 33 (The Bias-Variance Trade-Off).

Random Forest

- Random Forest é a combinação de "palpites" de um monte de árvores de decisão. É um algoritmo de uma classe especial de ENSEMBLE: BAGGING.
- ENSEMBLE: mistura de 2 ou mais modelos. (ESL p 605)
- **BAGGING**: Bootstrap AGGregation. (ESL p 282)
- Diferença para os **BAGGINGs**: Sorteia as colunas também.

Algoritmo

- 1. Sorteie **B** conjuntos de observações da base **D**
- 2. Para cada conjunto b de ${\bf B}$, sorteie m variáveis de ${\bf D}$
- 3. Para cada uma das ${f B}$ sub-bases geradas por (b,m) construa uma árvore de decisão
- 4. Para previsão final, agregue as previsões individuais de cada uma das **B** árvore.

Random Forest - Hiperparâmetros e Overfitting

min_n – Qtd mínima de observações no nó para poder dividir.

mtry – Quantidade de variáveis (colunas) sorteadas por árvore. Tem que testar via cross-validation, pois é afetado pela razão entre variáveis boas e ruído.

trees – Número de árvores (amostras bootstrap) para treinar. Não afeta muito o overfitting.

PS: random forest não usa CP. Ele permite que as árvores cresçam indeterminadamente, condicionadas apenas pelo **min_n**.

Gradient Boosting

Gradient Boosting

- Boosting também é a combinação de "palpites" de um monte de árvores de decisão.
- Porém, não existe amostras *bootstrap* dentro do algoritmo, as árvores são construídas sequencialmente (cada árvore é construída usando informação da árvore passada).

Forward Stagewise Algorithm (coração do gradient boost)

- 1) Inicialize $f_0(x) = 0$
- 2) Para $m = 1 \ a \ M$:
 - a) Calcule:

$$(\beta_m, \gamma_m) = \underset{\beta, \gamma}{\operatorname{arg \, min}} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma))$$

b) Atribua $f_m(x) = f_{m-1}(x) + \beta_m b(x_i; \gamma_m)$

EXEMPLO DE LOSS FUNCTION: $L(y_i, f(x)) = (y_i - f(x))^2$

$$L(y_i, f(x)) = (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2$$

= $(r_i - \beta b(x_i; \gamma))^2$

Ver ESL página 341 (Gradient Boosting).

Gradient Boosting

- Boosting também é a combinação de "palpites" de um monte de árvores de decisão.
- Porém, não existe amostras *bootstrap* dentro do algoritmo, as árvores são construídas sequencialmente (cada árvore é construída usando informação da árvore passada).

Adaboost (versão para classificação binária)

- 1) Codifique $Y \in \{-1, 1\}$.
- 2) Inicializa-se pesos $w_i = \frac{1}{N}$, i = 1, 2, ..., N
- 3) Para $m = 1 \, a \, M$:
 - a) Ajuste uma árvore $T_m(x)$ usando os pesos w_i .
 - b) Calcule o erro de m: $err_m = \frac{\sum_{i=1}^N w_i I(y_i \neq T_m(x_i))}{\sum_{i=1}^N w_i}$
 - c) Compute $\alpha_m = \log\left(\frac{1 err_m}{err_m}\right)$
 - d) Atualize os pesos: $w_i \leftarrow w_i$. $\exp(\alpha_m . I(y_i \neq T_m(x_i)))$, i = 1, ..., N
- 4) Previsão: $sinal[\sum_{m=1}^{M} \alpha_m T(x)]$

Ver ESL página 341 (Gradient Boosting).

XGBoost

XGBoost

- XGBoost é uma implementação melhorada do Gradient Boost.
- O XGBoost traz de volta reamostragem e hiperparâmetros de regularização.
- Top 2 de Algoritmos que mais ganharam Kaggle.

min_n – Qtd mínima de observações no nó para poder dividir.

mtry – Quantidade de variáveis sorteadas por árvore. Tem que testar via CV, pois é afetado pela razão entre variáveis boas e ruído.

trees – Número de árvores (de passos).

Ver Introduction to Boosted Trees do XGboost.io.

$$ext{obj}^{(t)} pprox \sum_{i=1}^n [g_i w_{q(x_i)} + rac{1}{2} h_i w_{q(x_i)}^2] + \gamma T + rac{1}{2} \lambda \sum_{j=1}^T w_j^2$$

tree_depth – Profundidade máxima da árvore.

learn_rate – Tamanho do "passo". Quanto menor, mais devagar. PS: Aumentar o número de árvores junto!

loss_reduction – Parâmetro regularizador. Análogo ao CP do rpart.

sample_size – Proporção de linhas para sortear por árvore.

Sobre os problemas nos dados

- XGBoost trata missing automaticamente dentro dele, não precisa tratar. Porém, sempre vale técnicas de imputação para tentar aprimorar o modelo!
- Multicolinearidade não é um problema grave para modelos de árvore. Mas é sempre bom filtrar variáveis explicativas muito correlacionadas. Ler esse post para exemplo.
- Variável resposta precisa ir como factor. Não pode ser character nem 0/1.
- As variáveis categóricas precisam ser "dummyficadas" antes.
- A escala das variáveis explicativas não atrapalham modelos de árvores.
- A assimetria das variáveis explicativas não atrapalham modelos de árvores.


```
modelo <- boost_tree(
  mtry = 1,
  trees = 100,
  min_n = 1,
  tree_depth = 1,
  learn_rate = 1,
  sample_size = 1,
  loss_reduction = 1
)</pre>
```



```
modelo <- boost_tree(
  mtry = 1,
  trees = 100,
  min_n = 1,
  tree_depth = 2,
  learn_rate = 1,
  sample_size = 1,
  loss_reduction = 1
)</pre>
```



```
modelo <- boost_tree(
  mtry = 1,
  trees = 100,
  min_n = 1,
  tree_depth = 1,
  learn_rate = 0.1,
  sample_size = 1,
  loss_reduction = 1
)</pre>
```



```
modelo <- boost_tree(
  mtry = 1,
  trees = 100,
  min_n = 1,
  tree_depth = 1,
  learn_rate = 1,
  sample_size = 0.5,
  loss_reduction = 1
)</pre>
```



```
modelo <- boost_tree(
  mtry = 1,
  trees = 100,
  min_n = 1,
  tree_depth = 1,
  learn_rate = 1,
  sample_size = 1,
  loss_reduction = 0.1
)</pre>
```



```
modelo <- boost_tree(
  mtry = 1,
  trees = 100,
  min_n = 1,
  tree_depth = 2,
  learn_rate = 0.1,
  sample_size = 0.5,
  loss_reduction = 0.1
)</pre>
```


Extrapolação dos modelos de árvores

No R


```
# árvore de decisão
modelo_tree <- decision_tree(
   min_n = tune(),
   tree_depth = tune(),
   cost_complexity = tune()
)</pre>
```

```
# Random Forest
modelo_rf <- rand_forest(
   min_n = tune(),
   mtry = tune(),
   trees = tune()
)</pre>
```

```
# XGBoost
modelo_xgb <- boost_tree(
   min_n = tune(),
   mtry = tune(),
   trees = tune(),
   tree_depth = tune(),
   learn_rate = tune(),
   loss_reduction = tune(),
   sample_size = tune()
)</pre>
```