Analiza danych ankietowych Raport 1

Klaudia Janicka 262268, Natalia Iwańska 262270

2023-04-12

Część I Tablice liczności dla zmiennej A1

A1	n	prop
-2	14	0.070
-1	17	0.085
0	40	0.200
1	100	0.500
2	29	0.145

A1	n	prop
-2	5	0.1219512
-1	6	0.1463415
0	8	0.1951220
1	19	0.4634146
2	3	0.0731707

Tab. 1: Tablica liczności dla A1.

Tab. 2: Tablica liczności dla A1 ze względu na Wyk=1.

A1	n	prop
-2	5	0.0357143
-1	10	0.0714286
0	26	0.1857143
1	75	0.5357143
2	24	0.1714286

A1	n	prop
-2	4	0.2105263
-1	1	0.0526316
0	6	0.3157895
1	6	0.3157895
2	2	0.1052632

Tab. 3: Tablica liczności dla A1 ze względu na Wyk=2. Tab. 4: Tablica liczności dla A1 ze względu na Wyk=3.

A1	n	prop
-2	2	0.0645161
-1	2	0.0645161
0	5	0.1612903
1	19	0.6129032
2	3	0.0967742

A1	n	prop
-2	9	0.0918367
-1	10	0.1020408
0	17	0.1734694
1	51	0.5204082
2	11	0.1122449

Tab. 5: Tablica liczności dla A1 ze względu na D=Z. Tab. 6: Tablica liczności dla A1 ze względu na D=P.

A1	n	prop
-2	3	0.0666667
-1	3	0.0666667
0	14	0.3111111
1	15	0.3333333
2	10	0.2222222

A1	n	prop
-1	2	0.0769231
0	4	0.1538462
1	15	0.5769231
2	5	0.1923077

Tab. 7: Tablica liczności dla A1 ze względu na D=S. Tab. 8: Tablica liczności dla A1 ze względu na D=O.

A1	n	prop
-2	3	0.0422535
-1	7	0.0985915
0	14	0.1971831
1	36	0.5070423
2	11	0.1549296

A1	n	prop
-2	11	0.0852713
-1	10	0.0775194
0	26	0.2015504
1	64	0.4961240
2	18	0.1395349

Tab. 9: Tablica liczności dla A1 ze względu na P=k. Tab. 10: Tablica liczności dla A1 ze względu na P=m.

Tablice liczności dla zmiennnej W1

A1	n	prop
-2	14	0.070
-1	17	0.085
0	40	0.200
1	100	0.500
2	29	0.145

A1 n prop -2 5 0.1219512-1 6 0.14634150 8 0.19512201 19 0.46341462 3 0.0731707

Tab. 11: Tablica liczności dla W1.

Tab. 12: Tablica liczności dla W1 ze względu na Wyk=1.

A1	n	prop
-2	5	0.0357143
-1	10	0.0714286
0	26	0.1857143
1	75	0.5357143
2	24	0.1714286

A1	n	prop
-2	4	0.2105263
-1	1	0.0526316
0	6	0.3157895
1	6	0.3157895
2	2	0.1052632

Tab. 13: Tablica liczności dla W1 ze względu na
Tab. 14: Tablica liczności dla W1 ze względu na Wyk=2. Wyk=3.

A1	n	prop
-2	2	0.0645161
-1	2	0.0645161
0	5	0.1612903
1	19	0.6129032
2	3	0.0967742

A1	n	prop
-2	9	0.0918367
-1	10	0.1020408
0	17	0.1734694
1	51	0.5204082
2	11	0.1122449

Tab. 15: Tablica liczności dla W1 ze względu na D=Z.Tab. 16: Tablica liczności dla W1 ze względu na D=P.

A1	n	prop
-2	3	0.0666667
-1	3	0.0666667
0	14	0.3111111
1	15	0.3333333
2	10	0.2222222

A1	n	prop
-1	2	0.0769231
0	4	0.1538462
1	15	0.5769231
2	5	0.1923077

Tab. 17: Tablica liczności dla W1 ze względu na D=S. $^{\rm Tab}$. 18: Tablica liczności dla W1 ze względu na D=O.

A1	n	prop
-2	3	0.0422535
-1	7	0.0985915
0	14	0.1971831
1	36	0.5070423
2	11	0.1549296

A1	n	prop
-2	11	0.0852713
-1	10	0.0775194
0	26	0.2015504
1	64	0.4961240
2	18	0.1395349

Tab. 19: Tablica liczności dla W1 ze względu na P=k.Tab. 20: Tablica liczności dla W1 ze względu na P=m.

Tabele wielodzielcze

Tab. 21: Tabela wielodzielcza uzwlgędniająca zmienną W1 i P.

	-2	-1	1	2	Sum
K	25	10	1	35	71
M	49	10	1	69	129
Sum	74	20	2	104	200

Tab. 22: Tabela wielodzielcza uzwlgędniająca zmienną W1 i S.

	-2	-1	1	2	Sum
0	64	18	0	91	173
1	10	2	2	13	27
Sum	74	20	2	104	200

Tab. 23: Tabela wielodzielcza uzwlgędniająca zmienną A1 i D.

	-2	-1	0	1	2	Sum
O	0	2	4	15	5	26
P	9	10	17	51	11	98
S	3	3	14	15	10	45
Z	2	2	5	19	3	31
Sum	14	17	40	100	29	200

Wykres słupkowy

```
daneW1 <- personel %>% count(W1) %>% data.frame()

ggplot(daneW1, aes(x=W1, y=n)) +
    geom_bar(stat = "identity", fill="hotpink") +
    ggtitle("Wykres słupkowy dla oceny wynagrodzenia przed wyjazdem") +
    xlab('Ocena wynagrodzenia przed wyjazdem') +
    ylab('ilość')
```

Wykres slupkowy dla oceny wynagrodzenia przed wyjazdem

Jakieś dwa zdanie tak jak mówiła, ale jej nie słuchałam, więc nie wiem.

Wykres kołowy

```
ggplot(daneW1, aes(x="", y=n, fill=W1)) +
    geom_bar(stat="identity", width=1) +
    coord_polar("y", start=0) +
    theme_void() +
    scale_fill_brewer(palette="RdPu") +
    ggtitle("Wykres kołowy dla oceny wynagrodzenia przed wyjazdem") + guides(fill=guide_legend(title='0))
```

Wykres kolowy dla oceny wynagrodzenia przed wyjazdem

Wykres kolowy dla oceny wynagrodzenia po wyjezdzie

Wykresy mozaikowe

```
mosaic(~D+A1, personel, labeling = vcd::labeling_border(rot_labels = c(90, 90)))
```


Większość pracownicy każdego z działów jest co najmniej zadowolona z atmosfery panującej w miejscu pracy. W dziale sprzedaży obserwujemy sporą, w stosunku do liczby pracowników, liczbę osób, które nie potrafią określić, czy są zadowolone, czy też nie.

Jeśli chodzi o ocenę zadowolenia ze swojego wynagrodzenia, liczby są bardziej wyrównane. W dziale zaopatrzenia przeważają pozytywne odpowiedzi, w pozostałych trudniej zauważyć, które stanowią większość.

 ${\bf W}$ firmie większość na stanowiskach kierowniczych stanowią mężczyźni. Jednak widać też, że w firmie pracuje

ich więcej, zatem stosunek kierowniczek do kobiet i kierowników do mężczyzn może być podobny.

Kobiety w firmie mają podzielone zdania na temat swojego wynagrodzenia, jednak jeśli już są zadowolone, to zdecydowanie. Natomiast mężczyźni są minimalnie bardziej zadowoleni niż nie, jednak liczby te również nie są od siebie mocno odległe.

Część II

Funkcja losująca ze zwracaniem i bez

```
f <- function(x='bez'){
  if (x=='zwracanie'){
    s <- sample(1:nrow(mtcars),3,replace=TRUE)
} else{
    s <- sample(1:nrow(mtcars),3)
}
mtcars[s, ]
}
f('zwracanie') %>% kable
```

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Duster 360	14.3	8	360.0	245	3.21	3.57	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.19	20.00	1	0	4	2
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.25	17.98	0	0	3	4

Funkcja likert

```
df <- data.frame(personel$`Atmosfera przed wyjazdem`,personel$`Atmosfera po wyjeździe`)
colnames(df) <- c('Atmosfera przed wyjazdem', 'Atmosfera po wyjeździe')
likt_atmo <- likert(df)
summary(likt_atmo) %>% kable
```

	Item	low	neutral	high	mean	sd
2	Atmosfera po wyjeździe	27.0	6	67.0	3.830	1.456609
1	Atmosfera przed wyjazdem	28.5	7	64.5	3.775	1.447359

```
likert.bar.plot(likt_atmo) +
guides(fill=guide_legend(nrow=2,byrow=TRUE,title='Odpowiedź')) +
theme(axis.text.y=element_text(angle=45,hjust=1)) +
ylab("Procent")
```



```
plot(likt_atmo,type='heat') +
  theme(axis.text.x=element_text(angle=90,hjust=1),axis.text.y=element_text(angle=45,hjust=1)) +
  guides(fill=guide_legend(title='Odpowiedź'))
```


likert.density.plot(likt_atmo)

Podgrupa ze względu na dział

Group	Item	low	neutral	high	mean	sd
Obsługa kadrowo-płacowa	Atmosfera przed wyjazdem	23.07692	0.000000	76.92308	4.038462	1.399450
Obsługa kadrowo-płacowa	Atmosfera po wyjeździe	23.07692	0.000000	76.92308	4.076923	1.324329
Produkcja	Atmosfera przed wyjazdem	27.55102	9.183673	63.26531	3.775510	1.482062
Produkcja	Atmosfera po wyjeździe	24.48980	10.204082	65.30612	3.836735	1.476230
Sprzedaż	Atmosfera przed wyjazdem	37.77778	6.666667	55.55556	3.444444	1.407053
Sprzedaż	Atmosfera po wyjeździe	33.33333	4.44444	62.22222	3.622222	1.466116
Zaopatrzenia	Atmosfera przed wyjazdem	22.58065	6.451613	70.96774	4.032258	1.401995
Zaopatrzenia	Atmosfera po wyjeździe	29.03226	0.000000	70.96774	3.903226	1.513381

Podgrupa ze względu na płeć

Group	Item	low	neutral	high	mean	sd
Kobieta	Atmosfera przed wyjazdem	29.57746	4.225352	66.19718	3.774648	1.485138
Kobieta	Atmosfera po wyjeździe	26.76056	4.225352	69.01408	3.873239	1.472894
Mężczyzna	Atmosfera przed wyjazdem	27.90698	8.527132	63.56589	3.775194	1.432002
Mężczyzna	Atmosfera po wyjeździe	27.13178	6.976744	65.89147	3.806202	1.452786

Przedział ufności Cloppera-Pearsona

```
p.lower <- function(x, n, a){</pre>
  if(x == 0){
    return(0)
  }
  else{
    return(qbeta(a/2,x,n-x+1))
}
p.upper <- function(x, n, a){</pre>
  if(x == n){
    return(1)
  else{
    return(qbeta(1-a/2, x+1, n-x))
}
clopper_pearson_ci <- function(x, n=NULL, a=0.05){</pre>
  if(is.null(n)){
    n <- length(x)
    x \leftarrow sum(x==1)
    return(c(p.lower(x, n, a), p.upper(x, n, a)))
  else{
    return(c(p.lower(x, n, a), p.upper(x, n, a)))
}
clopper_pearson_ci2 <- function(x, n=NULL, a=0.05){</pre>
  if(is.null(n)){
    n \leftarrow length(x)
    x \leftarrow sum(x==1)
    return(data.frame(x=x, n=n, lower=p.lower(x, n, a), upper=p.upper(x, n, a)))
  else{
    return(data.frame(x=x, n=n, lower=p.lower(x, n, a), upper=p.upper(x, n, a)))
}
```

Przykład użycia

• funkcja wbudowana

method	X	n	mean	lower	upper
exact	11	20	0.55	0.3152781	0.7694221

• funkcja clopper_pearcon_ci

X	n	lower	upper
11	20	0.3152781	0.7694221

Zadowolenie z wynagrodzenia w całej badanej grupie

• funkcja clopper_pearson_ci

X	n	lower	upper
106	200	0.4583305	0.6007671

• funkcja wbudowana

method	X	n	mean	lower	upper
exact	106	200	0.53	0.4583305	0.6007671

Zadowolenie z wynagrodzenia ze względu na dział

• funkcja clopper_pearson_ci

X	n	lower	upper
14	26	0.3337082	0.7341288
50	98	0.4071736	0.6126014
23	45	0.3577404	0.6629663
19	31	0.4218696	0.7815004

• funkcja wbudowana

method	X	n	mean	lower	upper
exact	14	26	0.5384615	0.3337082	0.7341288
exact	50	98	0.5102041	0.4071736	0.6126014
exact	23	45	0.5111111	0.3577404	0.6629663
exact	19	31	0.6129032	0.4218696	0.7815004

Zadowolenie z wynagrodzenia ze względu na stanowisko

• funkcja clopper_pearson_ci

X	n	lower	upper
91	173	0.4488278	0.6022889
15	27	0.3532642	0.7452012

• funkcja wbudowana

method	X	n	mean	lower	upper
exact	91	173	0.5260116	0.4488278	0.6022889
exact	15	27	0.555556	0.3532642	0.7452012

Część III

Generowanie rozkładu dwumianowego

Do wygenerowania liczb z rozkładu dwumianowego wykorzystamy poniższy algorytm:

- 1. Ustal n i p.
- 2. Generuj Y_i z rozkładu $P(Y_i = 1) = p = 1 P(Y_i = 0)$.
- 3. Powtórz krok 2. n razy.
- 4. Wrtaw $X = \sum_{i=1}^{n} Y_i$.
- 5. Powtórz kroki 2-4 N razy.

Korzystamy z faktu, że suma zmiennych losowych z rozkładu Bernoulliego jest zmienną z rozkładu dwumianowego.

Aby to udowodnić, użyjemy funkcji charakterystycznych obu rozkładów.

Niech X będzie zmienną losową z rozkładu dwumianowego z parametrami n i p, a Y_i zmienną z rozkładu Bernoulliego $(P(Y_i = 1) = p = 1 - P(Y_i = 0))$.

Funkcja charakterystyczna rozkładu Bernoulliego dana jest wzorem $\phi_{Y_i}(t) = \mathbb{E}(e^{itY_i}) = 1 - p + pe^{it}$.

Możemy zapisać funkcję charakterystyczną jako:

$$\phi_{\sum_{i}^{n} Y_{i}}(t) = \mathbb{E}(e^{it\sum_{i}^{n} Y_{i}}) = \mathbb{E}(e^{it(Y_{1} + Y_{2} + \dots + Y_{n})}) = \mathbb{E}(e^{itY_{1}}e^{itY_{2}} \dots e^{itY_{n}}).$$

Korzystając z niezależności zmiennych:

$$\phi_{\sum_{i=1}^{n}Y_{i}}(t) = \mathbb{E}(e^{itY_{1}})\mathbb{E}(e^{itY_{2}})\dots\mathbb{E}(e^{itY_{n}}) = (\mathbb{E}e^{itY_{1}})^{n} = (1-p+pe^{it})^{n}.$$

Otrzymamy wynik jest funkcją charakterystyczną rozkładu dwumianowego, co kończy dowód.

```
generuj_dwumianowy <- function(n, p, N){
    X <- rep(NA, N)
    for(i in 1:N){
        Y <- rep(NA, n)
        for(j in 1:n){
            Y[j] <- sample(c(0,1), size=1, prob=c(1-p,p))
        }
        X[i] <- sum(Y)
    }
    return(X)
}</pre>
```

Porównanie funkcji

Tab. 24: Wartości statystyk

funkcja	średnia	wariancja
rbinom	12.024	4.453878
generuj_dwumianowy	12.039	4.784263

Histogram dla próby otrzymanej przy pomocy funkcji wbudowanej

Prawdopodobieństwo pokrycia

Opis symulacji

Coś, że Monte Carlo itp.

Algorytm

- 1. Ustal n i p.
- 2. Generuj realizację zmiennej losowej z rozkładu $\mathcal{B}(n,p)$.
- 3. Wyznacz przedział ufności dla parametru p wybraną metodą.
- 4. Sprzwdź czy $p \in$ przedziału ufności. Wyznacz długość przedziału.
- 5. Powtórz 2-4 N razy.
- 6. Wyznacz procent pokrycia i średnią długość przedziału.

```
simulation <- function(n, method, name){
  N <- 1000
  p <- seq(0, 1, 0.01)
  for(j in 1:length(p)){
    len <- rep(NA, N)
    counter <- 0
    for(i in 1:N){
        x <- rbinom(1, n, p[j])
        interval <- binom.confint(x, n, conf.level = 0.95, methods = method)
        TL <- interval$lower
        TU <- interval$upper</pre>
```

```
if(between(p[j], TL, TU)){
    counter <- counter + 1
}
len[i] <- TU - TL
}

p.cover <- counter/N
p.len <- mean(len)
df <- data.frame('p' = p[j], 'pokrycie' = p.cover, 'dlugosc' = p.len)
write.table(df, name,
    append = TRUE,
    sep = ",",
    col.names = FALSE,
    row.names = FALSE,
    quote = FALSE)
}
</pre>
```

Procent pokrycia dla n = 30

Procent pokrycia dla n = 100

Procent pokrycia dla n = 1000

Część IV

Weryfikacja hipotez

Wszystkie poniższe hipotezy są weryfikowane na poziomie istotności 0.05.

- a) Testujemy hipotezę zerową H_0 : prawdopodobieństwo, że w korporacji pracuje kobieta wynosi 0.5, przeciwko hipotezie alternatywnej H_1 : prawdopodobieństwo, że w korporacji pracuje kobieta jest różne od 0.5.
- Wyniki uzyskane przy pomocy funkcji binom.test

parametr	wartość
Liczba sukcesów	71
Liczba prób	200
p-wartość	4.97297347921349e-05
Estymowane prawdopodobieństwo sukcesu	0.355

• Wyniki uzyskane przy pomocy funkcji prop. test z uzwględnieniem poprawki na ciągłość

parametr	wartość
Wartość statystyki	16.245
p-wartość	5.56562799613989e-05
Estymowane prawdopodobieństwo sukcesu	0.355

• Wyniki uzyskane przy pomocy funkcji prop. test bezz uwzględnienia poprawki na ciągłość

parametr	wartość
Wartość statystyki	16.82
p-wartość	4.10978780994588e-05
Estymowane prawdopodobieństwo sukcesu	0.355

Wnioski

Korzystając z testu dokładnego (binom.test) na poziomie istotności $\alpha=0.05$ weryfikowaną hipotezę, że prawdopodobieństwo, iż w korporacji pracuje kobieta wynosi 0.5 należy odrzucić (p-wartość w tym teście wynosi 4.9729735×10^{-5}). Podobnie w przypadku testu asymptotycznego (prop.test) na poziomie istotności $\alpha=0.05$ z zastosowaną poprawką na ciągłość (p-wartość wynosi 5.565628×10^{-5}) oraz bez uwzględniania poprawki (p-wartość 4.1097878×10^{-5}) również odrzucamy weryfikowaną hipotezę na rzecz hipotezy alternatywnej, że prawdopodobieństwo, iż w korporacji pracuje kobieta jest różne od 0.5.

- b) Testujemy hipotezę zerową H_0 : prawdopodobieństwo, że pracownik jest zadowolony ze swojego wynagrodzenia jest większe bądź równe 0.8, przeciwko hipotezie alternatywnej H_1 : prawdopodobieństwo, że pracownik jest zadowolony ze swojego wynagrodzenia jest mniejsze od 0.8.
- Wyniki uzyskane przy pomocy funkcji binom.test

parametr	wartość
Liczba sukcesów	106
Liczba prób	200
p-wartość	9.25478699944125e-18
Estymowane prawdopodobieństwo sukcesu	0.53

• Wyniki uzyskane przy pomocy funkcji prop. test z poprawka na ciągłość

parametr	wartość
Wartość statystyki	89.4453125
p-wartość	1.57616542390591e-21
Estymowane prawdopodobieństwo sukcesu	0.53

• Wyniki uzyskane przy pomocy funkcji prop. test bez poprawki na ciągłość

parametr	wartość
Wartość statystyki	91.125
p-wartość	6.7438394468056e-22
Estymowane prawdopodobieństwo sukcesu	0.53

Wnioski

Korzystając z testu dokładnego (binom.test) na poziomie istotności $\alpha=0.05$ weryfikowaną hipotezę, że prawdopodobieństwo, iż pracownik jest zadowolony ze swojego wynagrodzenia jest większe bądź równe 0.8 należy odrzucić (p-wartość w tym teście wynosi 9.254787×10^{-18}). Podobnie w przypadku testu asymptotycznego (prop.test) na poziomie istotności $\alpha=0.05$ z zastosowaną poprawką na ciągłość (p-wartość wynosi 1.5761654×10^{-21}) oraz bez uwzględniania poprawki (p-wartość 6.7438394×10^{-22}) również odrzucamy weryfikowaną hipotezę na rzecz hipotezy alternatywnej, że prawdopodobieństwo, iż pracownik jest zadowolony ze swojego wynagrodzenia jest mniejsze od 0.8.

c) Testujemy hipotezę, że prawdopodobieństwo, iż kobieta pracuje na stanowisku kierowniczym jest równe prawdopodobieństwu, że mężczyzna paracuje na stanowisku kierowniczym.

Wyniki uzyskane przy pomocy funkcji prop.test

parametr	wartość
Wartość statystyki	0.220136236322974
p-wartość	0.638936132739115
estimate.prop 1	0.112676056338028
estimate.prop 2	0.147286821705426

Wnioski

Korzystając z testu asymptotycznego (prop.test) na poziomie istotności $\alpha=0.05$ nie ma podstaw do odrzucenia hipotezy, że prawdopodobieństwo, iż kobieta pracuje na stanowisku kierowniczym jest równe prawdopodobieństwu, że mężczyzna paracuje na stanowisku kierowniczym. Wartość poziomu krytycznego wynosi 0.6389361.

- d) Testujemy hipotezę, że prawdopodobieństwo, iż kobieta jest zadowolona ze swojego wynagrodzenia jest równe prawdopodobieństwu, że mężczyzna jest zadowolony ze swojego wynagrodzenia.
- e) Testujemy hipotezę, że prawdopodobieństwo, iż kobieta pracuje w dziale obsługi kadrowo-płacowej jest większe lub równe prawdopodobieństwu, że mężczyzna pracuje w dziale obsługi kadrowo-płacowej.