

Künstliche Intelligenz (Sommersemester 2024)

Kapitel 04: Entscheidungsbäume

Prof. Dr. Adrian Ulges

1

Entscheidungsbäume: Popularität Bild: [5]

Entscheidungsbäume wurden als der meistverwendete ML-Modelltyp bezeichnet [6].

Outline

1. Grundlagen

2. Exkurs: Informationstheorie und Information Gair

Training und Pruning

4. Random Forests

Entscheidungsbäume: Einführung

Ansatz

► Treffe Vorhersage $f_{\theta}(\mathbf{x})$ basierend auf einfachen rekursiven Entscheidungen (oder Regeln).

Vorteile

- Einfachheit und Geschwindigkeit.
- ► Transparenz der Entscheidungen des Modells.

Hauptfrage

► Lernen: Wie bauen wir einen "guten" Baum basierend auf einem (gelabelten) Trainingsdatensatz?

Beispiel: Autopreis-Klassifikator

Rekursives Training

- gegeben: ein Trainingsdatensatz $\mathcal{D} = \{(\mathbf{x}_1, y_1), ...(\mathbf{x}_n, y_n)\}.$
- ▶ Wir beginnen mit der Wurzel des Baums, und dem kompletten Datensatz D.
- ▶ In jedem Knoten teilen wir den aktuellen Datensatz nach einer Dimension *i* des Merkmalsvektors und einer Schwelle *t* auf.
- ▶ Wir erhalten zwei Kindknoten (mit zwei Teilmengen $\mathcal{D}_1, \mathcal{D}_2 \subseteq \mathcal{D}$) und verfahren rekursiv weiter.

Wie finden wir "gute" Splits?

- ▶ Der Schlüsselteil des Trainings besteht darin, die Knoten "gut" zu splitten, so dass wir möglichst kleine Bäume erhalten ⑤.
- ▶ Übliche Strategie: Split so wählen, dass die Labels *y* in den beiden Kindknoten möglichst homogen werden!
- ► Es existieren viele Split-Kriterien (engl. "Gains") die diese Homogenität messen. Je höher der Gain, desto besser der Split.
- ► Hier: Der sogenannte Information Gain.

Outline

1. Grundlager

2. Exkurs: Informationstheorie und Information Gain

Training und Pruning

4. Random Forests

Split-Kriterium für Klassifikation: Informationsgewinn Bild: [3]

Um unser Split-Kriterium *Information Gain* herzuleiten, machen wir einen Ausflug in die Informationstheorie.

Informationstheorie¹: Anwendungsbereiche

- ► Kompression: Wie stark kann zip einen englischsprachigen Text komprimieren?
- ► Kryptographie: Wie leicht ist es, eine verschlüsselte Nachricht zu entziffern?
- Statistische Inferenz: Wie messen wir die "Unsicherheit" in einem Zufallsprozess?

¹Claude E. Shannon: "A Mathematical Theory of Communication" (1948)

Präfix-Codes²

- ► Stellen Sie sich eine Sprache mit vier Buchstaben a,b,c,d vor. Eine Nachricht in dieser Sprache könnte lauten: "abaadbaabcabacda".
- ► Stellen Sie sich vor, diese Nachricht in Bits zu übertragen. Wir kodieren jedes Zeichen separat:

Zeichen x				
Code $c(x)$	00	01	10	11

- Dadurch wird die Nachricht zu: 00.01.00.00.11.01.00.00.01.10.00.01.01.11.00
- ▶ Dieser Code ist ein sogenannter Präfixcode. In einem Präfixcode ist kein Codewort ein Präfix eines anderen Codewortes. Dadurch benötigen wir keine zusätzlichen Trennzeichen zwischen den codierten Zeichen.
- ▶ Die Nachricht ist 32 Bits lang. Dies macht im Durchschnitt 2 Bits je Zeichen.

²**Sehr lesenswert:** Christopher Olah: "Visuelle Informationstheorie". https://colah.github.io/posts/2015-09-Visual-Information/

Präfix-Codes (cont'd)

► Idee: Häufige Elemente sollten kürzere Codes erhalten!

Zeichen x	а	b	С	d
Wahrscheinlichkeit $P(x)$	1/2	1/4	1/8	1/8
Code $c(x)$	0	10	110	111

- Dies verwandelt die Nachricht in: 0.10.0.0.111.10.0.0.10.110.0.10.0.110.111.0
- ▶ Die Nachricht ist 28 Bits lang. Im Durchschnitt macht das je Zeichen 1.75 Bits. ©
- ▶ Offensichtlich hängt das Potenzial zum "Bits sparen" davon ab, wie unausgewogen die Verteilung *P* ist...

Die Entropie

- ► Könnten wir im Beispiel der letzten Folie eine effizientere Codierung wählen?
- ▶ Dies beantwortet das zentrale Konzept der Informationstheorie, die Entropie!

Definition (Entropie)

Seien $x_1,...,x_m$ die Realisierungen (Zeichen, Ereignisse, Klassen, ...) einer diskreten Zufallsvariablen X mit Verteilung $P = (p_1,...,p_m)$. Wir nennen

$$H(X)(=H(P)) = -\sum_{i} p_{i} \cdot log_{2}(p_{i})$$

die Entropie von X (oder P).

Beispiel

Zeichen $x_1,, x_4$	а	b	С	d
Wahrscheinlichkeiten $p_1,, p_4$	1/2	1/4	1/8	1/8
$-log_2(p_i)$	1	2	3	3

→ Entropie
$$H(P) = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$

Entropie: Bemerkungen

- ▶ In der obigen Definition ist $0 \cdot log_2(0) = 0$ (d.h., ein nie auftretendes Zeichen trägt nicht zur Gesamtcode-Länge bei).
- ▶ Die Entropie ist eine untere Schranke für die durchschnittliche Zeichencode-Länge, die durch einen beliebigen Präfixcode c erreichbar ist (Beweis: [1]):

$$H(X) \le \sum_{i} p_i \cdot length(c(x_i))$$
 für alle Präfixcodes c

- ▶ Die Entropie ist ein Maß für die Zufälligkeit einer Wahrscheinlichkeitsverteilung:
 - $P = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \rightarrow H(P) = 2$
 - $P = (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}) \rightarrow H(P) = 1.75$
 - $P = (\bar{1}, 0, 0, 0) \rightarrow H(P) = 0$

Anwendung auf Entscheidungsbäume ...?

- Wichtige Beobachtung: Die Entropie der Klassenverteilung eines Knotens ist niedrig, wenn der Knoten "pure" ist (d.h. eine bestimmte Klasse dominiert)!
- ▶ Der Split mit maximalem Informationsgewinn reduziert die Entropie der Kindknoten am stärksten. ②

Informationsheorie für das Lernen von Entscheidungsbäumen

Zurück zu **Entscheidungsbäumen** – wir vergleichen die beiden Splits nach ihrer **Reinheit der Klassenlabels**!

- ▶ Wir überprüfen die Klassenverteilung im obersten Knoten und den Kindknoten
- ► Welcher Split führt zum **stärkeren Rückgang der Entropie**?

Beispiel: Aufteilung nach PS

- oben: $H^{oben} = H(p_{guenstig}, p_{mittel}, p_{teuer}) = H(\frac{2}{5}, \frac{1}{5}, \frac{2}{5}) = 1.52$
- ▶ links: $H^{links} = H(p_{guenstig}, p_{mittel}, p_{teuer}) = H(0, 0, 1) = 0$
- rechts: $H^{rechts} = H(p_{guenstig}, p_{mittel}, p_{teuer}) = H(\frac{2}{3}, \frac{1}{3}, 0) = 0.92$
- ▶ Informationsgewinn: $H^{oben} \left(\frac{2}{5} \cdot H^{links} + \frac{3}{5} \cdot H^{rechts}\right) = 0.968$

Definition: Informationsgewinn

Gegeben ein Datensatz $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}$, sei $H(\mathcal{D})$ die Entropie der Verteilung der Labels $y_1, ..., y_n$. Wir definieren den Information Gain eines Splits als:

$$Gain = \mathbf{H}(\mathcal{D}) - \left(\frac{\#\mathcal{D}_1}{\#\mathcal{D}} \cdot \mathbf{H}(\mathcal{D}_1) + \frac{\#\mathcal{D}_2}{\#\mathcal{D}} \cdot \mathbf{H}(\mathcal{D}_2)\right)$$

wobei $\mathcal D$ die Menge des Elternknotens und $\mathcal D_1,\mathcal D_2$ die Mengen der Kindknoten sind.

Bemerkungen

▶ Der Informationsgewinn ist immer ≥ 0 .

Outline

- 1. Grundlager
- 2. Exkurs: Informationstheorie und Information Gair
- 3. Training und Pruning
- 4. Random Forests

Entscheidungsbaum-Classifier: Pseudo-Code

Ein Knoten im Baum ist ein Tupel (Wert, Split, Kinder), wobei

- ► Wert die Prognose des Modells ŷ ist (nur definiert für Blattknoten)
- ▶ Split Dimension und Schwellenwert, an dem geteilt wird, sind (nur für innere Knoten)
- ▶ Kinder sind Referenzen auf die beiden Kindknoten (nur definiert für innere Knoten)

```
function build_tree(\mathcal{D}):
        # check *all* dimensions i and thresholds t, and
        # pick the one with highest information gain
        i^*, t^* := argmax_{i,t} \ Gain(\mathcal{D}, i, t)
        # no improvement? -> build a leaf node
        if Gain(D, i^*, t^*) == 0:
             let y_1, ..., y_n be the labels in \mathcal{D}
            \hat{y} := \mathsf{mode}(y_1, y_2, \dots, y_n) # prediction = the leaf's most frequent label
            return (\hat{y}, -, \{\}) # value=\hat{y}, no split, no children
13
        # else -> build an inner node
        use i^*, t^* to split \mathcal{D} into subsets \mathcal{D}_1, \mathcal{D}_2
14
        return (-, (i^*, t^*), {build_tree(\mathcal{D}_1),
15
                                    build_tree(\mathcal{D}_2) )} # recursion!
16
```

Split-Kriterium für Regression: Varianzreduktion

Gute Splits finden: Beispiel (Varianzreduktion)

Gegeben sei ein Datensatz $\mathcal{D} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}$, wobei $Var(\mathcal{D})$ die Varianz der Labels $y_1, ..., y_n$ von \mathcal{D} ist. Wir definieren den Gain eines Splits als:

$$Gain = Var(\mathcal{D}) - \left(\frac{\#\mathcal{D}_1}{\#\mathcal{D}} \cdot Var(\mathcal{D}_1) + \frac{\#\mathcal{D}_2}{\#\mathcal{D}} \cdot Var(\mathcal{D}_2)\right)$$

wobei \mathcal{D} die Menge des Elternknotens und $\mathcal{D}_1, \mathcal{D}_2$ die Mengen der Kindknoten sind.

Entscheidungsbäume und Overfitting

Herausforderung: Kleine Bäume neigen zu **Underfitting**, vollständig expandierte Bäume zu **Overfitting**.

Pruning: Die optimale Baumgröße finden

- 1. Wir teilen unseren Datensatz in einen Trainingsdatensatz und einen Validierungsdatensatz auf.
- 2. Wir trainieren einen vollständig expandierten Baum mit dem Trainingsdatensatz.
- 3. Wir entfernen sukzessive Blattknoten, solange der Fehler auf dem Validierungsdatensatz abnimmt.

Entscheidungsbäume: Quiz

Sind Entscheidungsbäume gut für unsere Bag-of-Words-Nachrichtenklassifizierung?

Outline

- 1. Grundlagen
- 2. Exkurs: Informationstheorie und Information Gair
- Training und Pruning
- 4. Random Forests

Overfitting und Ensembles

- Wie wir gesehen haben, kann Overfitting eine große Herausforderung bei Entscheidungsbäumen sein.
- ▶ Ein Ansatz ist, den Baum auf eine begrenzte Größe zu beschneiden.
- ► Ein weiterer üblicher Ansatz ist, mehrere Bäume zu einem sogenannten Ensemble zu kombinieren.

Ensembles

- Es gibt viele Ansätze, um Ensembles zu erstellen.
- Sehr beliebt sind Boosting-Methoden, insbesondere Gradient Boosting (z.B. XGBoost).
- Wir werden uns eine einfachere Methode ansehen, sogenannte Random Forests.

Random Forests: Beispiel

► Entscheidungsbäume werden zu einem Random Forest kombiniert, indem man ihre Entscheidungen mittelt.

 Durch die Kombination der Bäume wird die Klassifikation stabiler. Wir haben die Varianz verringert!

Random Forests Bild: [2]

► Einfacher Ansatz: Der Input wird mit jedem Baum klassifiziert und die Ergebnisse der einzelnen Bäume werden mittels Mehrheits-Voting oder Mittlung kombiniert.

Wieso sind die Bäume des Random Forests nicht identisch? Wir randomisieren die Bäume:

- 1. Die Bäume werden auf zufälligen Teilmengen der Trainingsmenge trainiert.
- 2. Beim Aufteilen jedes Knotens im Training verwenden wir nur eine zufällig ausgewählte Teilmenge von Merkmalen!

Random Forests: Evaluation Bild: [2]

*

Beispiel-Evaluation [4]: Fehlerquoten auf einer Vielzahl von Standarddatensätzen aus dem bekannten *UCI Machine Learning Repository*.

Data set	Adaboost	Selection	Forest-RI single input	One tree	
Glass	22.0	20.6	21.2		
Breast cancer	3.2	2.9	2.7	6.3	
Diabetes	26.6	24.2	24.3	33.1	
Sonar	15.6	15.9	18.0	31.7	
Vowel	4.1	3.4	3.3	30.4	
Ionosphere	6.4	7.1	7.5	12.7	
Vehicle	23.2	25.8	26.4	33.1	
German credit	23.5	24.4	26.2	33.3	
Image	1.6	2.1	2.7	6.4	
Ecoli	14.8	12.8	13.0	24.5	
Votes	4.8	4.1	4.6	7.4	
Liver	30.7	25.1	24.7	40.6	
Letters	3.4	3.5	4.7	19.8	
Sat-images	8.8	8.6	10.5	17.2	
Zip-code	6.2	6.3	7.8	20.6	
Waveform	17.8	17.2	17.3	34.0	
Twonorm	4.9	3.9	3.9	24.7	
Threenorm	18.8	17.5	17.5	38.4	
Ringnorm	6.9	4.9	4.9	25.7	

Random Forests: Beispiel Bild: [2]

Kinekt Body Part Recognition³

 $^{^3}$ Shotton et al.: Real-Time Human Pose Recognition in Parts from Single Depth Images (Microsoft Research), CVPR 2011.

References I

- Michael Langer: Entropy is a lower bound on average code length (lecture slides, Jan 2008). http://www.cim.mcgill.ca/~langer/423/lecture5.pdf (retrieved: Oct 2016).
- [2] RandomForest. http://randomforest2013.blogspot.de/2013/05/randomforest-definicion-random-forests.html (retrieved: Oct 2016).
- [3] USA mathematician and electronic engineer Claude Shannon. https://commons.wikimedia.org/wiki/File:Claude_Shannon_graffiti.jpg (retrieved: Oct 2016).
- [4] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.
- [5] M. Rosenthal.
 Computer Repair with Diagnostic Flowcharts: Troubleshooting PC Hardware Problems from Boot Failure to Poor Performance.
 Foner Books, 2003.
- [6] G. Seni and J. Elder.
 Ensemble Methods in Data Mining: Improving Accuracy through Combining Predictions.

 Morgan and Claypool, 2010.