TP5 Thermodynamique

Partie 1 : Rayonnement

BERREDO DE LA COLINA Lucas MARTIN Lola

Rappel théorique

- Corps noir / corps gris
- Radiation dans le vide

EXPLICATION THÉORIQUE

- Analogue électrocinétique
- Résolution exacte
- Résolution approchée

DISPOSITIF EXPÉRIMENTAL

- Deux échantillons (gris, noir)
- Deux chambres :
 - ► Four (200° *C*)
 - ► Refroidessement à l'eau
- Elles peuvent être mises sous vide
- Mesures de temperature analogiques (100 points, 15 min)

EXPERIENCES

- 1. Corps gris, chauffage, vide
- 2. Corps gris, refroidissement, vide
- 3. Corps gris, chauffage, sans vide
- 4. Corps gris, refroidissement, sans vide
- 5. Corps noir, chauffage, vide
- 6. Corps noir, chauffage, sans vide

Organisation des données

- tp5-gris-vide-chauff.csv
 tp5-gris-vide-refroid.csv
- 3. tp5-gris-air-chauff.csv
- 4. tp5-gris-air-refroid.csv
- 5. tp5-noir-vide-chauff.csv

Temps	Thermocouple	EA0
0	43,2356657	0,209796296
9	50,75927386	0,214779578
18	57,27973427	0,214779578
27	64,80334243	0,219762859
36	71,32380283	0,219762859
45	77,84426324	0,22474614
54	84,36472365	0,219762859
63	90,88518405	0,22474614
72	96,90407058	0,219762859
81	102,9229571	0,22474614
90	108,4402698	0,219762859
99	113,9575824	0,214779578

APPROXIMATION GRAPHIQUE 1ER ORDRE

Il ne faut que vérifier les valeur initiales, finales et approcher au de façon qu'on trouve des courbes proches

Figure – Example representation graphique : Vert : points experimentaux, Bleu : courbe théorique

APPROXIMATION GRAPHIQUE 1ER ORDRE

Nous obtenons les prochains valeurs :

- 1. Corps gris, chauffage, vide au =
- 2. Corps gris, refroidissement, vide au =
- 3. Corps gris, chauffage, sans vide $\tau =$
- 4. Corps gris, refroidissement, sans vide $\tau =$
- 5. Corps noir, chauffage, vide au =
- 6. Corps noir, chauffage, sans vide au =

Approximation graphique 2ème ordre

- 1. Corps gris, chauffage, vide au =
- 2. Corps gris, refroidissement, vide $\tau =$
- 3. Corps gris, chauffage, sans vide au =
- 4. Corps gris, refroidissement, sans vide $\tau =$
- 5. Corps noir, chauffage, vide au =
- 6. Corps noir, chauffage, sans vide au =

Approximation numérique avec Python

Comme nous avons la résolution pour τ , nous pouvons donner ça vers un curve_fit dans Python.

```
def theoretical_model(t, tau):
    term1 = np.arctan(np.exp(2) * arccoth(T_kelvin_data / T_f))
    term2 = np.arctan(np.exp(2) * arccoth(T_i / T_f))
    term3 = arccoth(T_kelvin_data / T_f)
    term4 = arccoth(T_i / T_f)
    return 2 * tau * (term1 - term2 + term3 - term4)

# Use curve_fit to find the optimal tau
popt, pcov = curve_fit(theoretical_model, t_data, T_kelvin_data, p0=[1.0])
optimal_tau = popt[0]
print(optimal_tau)
```

Figure – Exemple refroidissement. Il y a aussi un fichier pour chauffement.

0 | 18

Comparaison des résultats

Expérience	1er ordre	2ème ordre	Python
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0

Table – Valeurs du paramètre au

EXPLICATION DES RÉSULTATS

Approximation numérique avec Python

Résultats:

1. Corps gris, chauffage, vide $\tau = 96.0399...$

2. Corps gris, refroidissement, vide $\tau = 86.1429...$

3. Corps gris, chauffage, sans vide $\tau = 99.2634...$

4. Corps gris, refroidissement, sans vide $\tau = 84.5618...$

5. Corps noir, chauffage, vide au=111.8591...

6. Corps noir, chauffage, sans vide au = 90.5110...

TP5 Thermodynamique

Partie 2 : Loi de Stefan

BERREDO DE LA COLINA Lucas MARTIN Lola

Avertissement

Bien que nous ayons travaillé avec l'équipement et observé des résultats avec Mme Nom, nous n'avons pas enregistré de résultats numériques.

15

Rappel théorique

■ Deduction Loi Stefan

Dispositif experimental

- Deux parties :
 - Côté emmisive Boule à cuivre "corps noir"
 - Côté receptive Thermopile CA2 (filtre en option) et multimètre

- Emmisivité fixé mesure du puissance avec le multimètre
- Il faut attendre après chaque changement vers la stabilisation
- Mesures a plusieurs distances (0,3; 0,4; 0,8; 1,2m) et temperatures (20, 60, 90, 120 °C)

APPROXIMATION DES RÉSULTATS

Comme rappel, nous n'avons pas fait cette expérience avec tous les points nécessaires. Donc, on fera un approche théoretique, puis une simulation avec l'aide de R, et finalement, nous traiterons ces données au lieu des expérimentales.

- Fixons la distance d
- Avec le datasheet, trouvons la quantité qu'on attend comme paramètre
- Simulation de la v.a. avec bruit normal
- Analyse des données