1. What are all the points in the representational space \mathbb{R}^3 that are the homogeneous coordinates of the origin in the physical space \mathbb{R}^2 ?

Name: Nikita Ravi (ravi30)

Answer: The origin represented in the \mathbb{R}^2 space can be expressed as

$$k \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

where $k \in \mathbb{R}$ and k > 0 in the \mathbb{R}^3 space.

2. Are all points at infinity in the physical plane \mathbb{R}^2 the same? Justify your answer

Answer: The intersection of two parallel lines

$$l_1 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 and $l_2 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

is $\begin{bmatrix} b & -a & 0 \end{bmatrix}^T$. The third coordinate is equal to zero because the intersection point is at infinity in \mathbb{R}^2 along a specific direction dependent on the pair (a,b). However, not all the points at infinity in the \mathbb{R}^2 space will be the same because two ideal points $\begin{bmatrix} \mathbf{x}_1 & \mathbf{y}_1 & 0 \end{bmatrix}^T$ and $\begin{bmatrix} \mathbf{x}_2 & \mathbf{y}_2 & 0 \end{bmatrix}^T$ for example, will approach infinity in different directions if $x_1 \neq x_2$ and $y_1 \neq y_2$ and slopes $\frac{y_1}{x_1} \neq \frac{y_2}{x_2}$

3. Argue that the matrix rank of a degenerate conic can never exceed 2

Answer: The matrix of a degenerate conic is given by

$$C = lm^T + ml^T$$

And the rank of the above equation will always definitely be two because the rank of an outer product (e.g. lm^T or ml^T) will be equal to one due to the fact that every column is a constant times the first column. As a result, the sum of two outer product matrices such as that of C will always have a rank of two.

4. A line in \mathbb{R}^2 is defined by two points. That raises the question – how many points define a conic in \mathbb{R}^2 ? Justify your answer.

Answer: The implicit form of a conic in the physical plane \mathbb{R}^2 is $ax^2 + bxy + cy^2 + dx + ey + f = 0$. To rephrase this in the form of matrices:

$$\begin{bmatrix} \mathbf{x}^2 & \mathbf{x}\mathbf{y} & \mathbf{y}^2 & \mathbf{x} & \mathbf{y} & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix}$$

Since there are six unknowns (i.e. $(a, b, c, d, e, f)^T$), we require five systems of linear equations to solve for these unknowns. These equations represent points so there must be five points.

5. (a) Derive in just 3 steps the intersection of two lines l_1 and l_2 with l_1 passing through the points (0,0) and (1,2), and with l_2 passing through the points (3,4) and (5,6).

Answer: The first step is to compute the homogeneous vector of l_1 given that we know the two points it passes through as shown below

$$l_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

The second step is to compute the homogeneous vector of l_2 given that we know the two points it passes through as shown below

$$l_2 = \begin{bmatrix} 3\\4\\1 \end{bmatrix} \times \begin{bmatrix} 5\\6\\1 \end{bmatrix} = \begin{bmatrix} -2\\2\\-2 \end{bmatrix}$$

Finally the third step is to find the intersection of lines l_1 and l_2 using the cross product of the two vectors as shown below

$$l_1 \times l_2 = \begin{bmatrix} -2\\1\\0 \end{bmatrix} \times \begin{bmatrix} -2\\2\\-2 \end{bmatrix} = \begin{bmatrix} -2\\-4\\-2 \end{bmatrix}$$

Therefore lines l_1 and l_2 intersect at coordinate $(\frac{-2}{-2}, \frac{-4}{-2}) = (1, 2)$

(b) How many steps would take you if the second line passed through (7, -8) and (-7, 8)?

Answer: The first step is to calculate the homogeneous vector for l_2 given the new points as shown below

$$l_2 = \begin{bmatrix} 7 \\ -8 \\ 1 \end{bmatrix} \times \begin{bmatrix} -7 \\ 8 \\ 1 \end{bmatrix} = \begin{bmatrix} -16 \\ -14 \\ 0 \end{bmatrix}$$

The second and final step is to calculate the intersection of the new line l_2 with the already calculated l_1 as shown below

2

$$l_1 \times l_2 = \begin{bmatrix} -2\\1\\0 \end{bmatrix} \times \begin{bmatrix} -16\\-14\\-0 \end{bmatrix} = \begin{bmatrix} 0\\0\\44 \end{bmatrix}$$

The point of intersection is at the origin. Therefore, there are **two** steps.

6. Let l_1 be the line passing through points (4, 0) and (2, 8) and l_2 be the line passing through points (0, 2) and (4, 14). Find the intersection between these two lines. Comment on your answer.

Answer:
$$l_1 = \begin{bmatrix} -4\\0\\1 \end{bmatrix} \times \begin{bmatrix} -2\\8\\1 \end{bmatrix} = \begin{bmatrix} -8\\2\\-32 \end{bmatrix}$$

$$l_2 = \begin{bmatrix} 0\\-2\\1 \end{bmatrix} \times \begin{bmatrix} 4\\14\\1 \end{bmatrix} = \begin{bmatrix} -16\\4\\8 \end{bmatrix}$$

$$l_1 \times l_2 = \begin{bmatrix} -8\\2\\-32 \end{bmatrix} \times \begin{bmatrix} -16\\4\\8 \end{bmatrix} = \begin{bmatrix} 144\\576\\0 \end{bmatrix}$$

 l_1 and l_2 are parallel to each other since the intersection is an ideal point

7. Find the intersection of two lines whose equations are given by x = 1 and y = .

Answer: A line in \mathbb{R}^2 is a set of points $(x,y) \in \mathbb{R}^2$ that obey ax + by + c = 0. Given that x = 1 and y = -1, let a = 1 and b = 1.

To find the homogeneous coordinates of the line whose equation is x=1, we need to figure out what the third coordinate c will be. This is done by substituting x=1 and a=1 and y=0 into the linear equation as shown: (1)(1)+c=0, so c=-1. Similarly, to find the homogeneous coordinates of the line whose equation is y=-1, the third coordinate c is calculated to be: c=-(1)(-1)=1.

Therefore
$$l_1=\begin{bmatrix}1\\0\\-1\end{bmatrix}$$
 and $l_2=\begin{bmatrix}0\\1\\1\end{bmatrix}$

The intersection of these two lines is as follows:

$$l_1 \times l_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

So the point of intersection is (1, -1)

8. As you know, when a point p is on a conic C, the tangent to the conic at that point is given by l = Cp. That raises the question as to what Cp would correspond to when p was outside the conic. As you'll see later in class, when p is outside the conic, Cp is the line that joins the two points of contact if you draw tangents to C from the point p. This line is referred to as the polar line. Now let our conic C be an ellipse that is centered at the coordinates (2, 3), with a = 1/2 and b = 1, where a and b, respectively, are the lengths of semi-minor

3

and semi-major axes. For simplicity, assume that the minor axis is parallel to x-axis and the major axis is parallel to y-axis. Let p be the origin of the \mathbb{R}^2 physical plane. Find the intersections points of the polar line with x- and y-axes.

Answer: The equation of an ellipse whose major axis is parallel to the y-axis and whose minor axis is parallel to the x-axis with its center at 2,3 is $\frac{(x-2)^2}{1^2}+\frac{(y-3)^2}{\frac{1}{2}^2}=1$. Which can be further simplified to $(x-2)^2+4(y-3)^2=1$. Expanding this equation will result it to be $x^2-4x-24y+4y^2+39=0$.

Let a point have coordinates of $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ so $x=\frac{x_1}{x_3}$ and $y=\frac{x_2}{x_3}$. Substituting this x and y

expressions into the expanded form of the ellipse equation gives $x_1^2 - 4x_1x_3 + 24x_2x_3 + 4x_2^2 + 39x_3^2 = 0$. Therefore, the homogeneous representation of a conic is

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 4 & 12 \\ -2 & 12 & 39 \end{bmatrix}$$

The homogeneous coordinates of the polar line is therefore calculated to be

$$l_{polar} = Cp = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 4 & 12 \\ -2 & 12 & 39 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 12 \\ 39 \end{bmatrix}$$

4

(a) Intersection with the x-axis

Answer:
$$l_{polar} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -39 \\ 0 \\ -2 \end{bmatrix}$$

(b) Intersection with the y-axis

Answer:
$$l_{polar} \times \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 39 \\ -12 \end{bmatrix}$$