รถไฟ (Train)

โอ๊ะ เด็กชายคนหนึ่งกำลังเล่นเกมรถไฟอยู่ โดยเกมนี้จะมีสถานีทั้งหมด N สถานีมีรางรถไฟทั้งหมด M เส้น โดยทั้ง เส้นเป็นรางรถไฟทางคู่สามารถวิ่งได้ทั้งไปและกลับ ในแต่ละเส้นทางจะมีความยาวไม่เหมือนกันทำใช้พลังงานใน การเดินทางไม่เท่ากัน โดยเกมนี้รถไฟจะเริ่มวิ่งจากสถานี i ไปยังสถานี j (มีสถานีตั้งแต่ 1-N) แต่ในโลกของเกมก็ มีการกลั่นแกล้งโดยนายสถานีของสถานีเลขคู่จะไม่ชอบรถไฟที่วิ่งมาจากสถานีเลขคี่ และนายสถานีของสถานีเลขคู่ ทำให้นายสถานีแกล้งปล่อยพลังงานทำให้เสียพลังงานเท่ากับจำนวน พลังงานที่วิ่งมา จงคำนวนพลังงานที่น้อยที่สุดในการเดินทางของรถไฟ

ข้อมูลนำเข้า:

ข้อบรรทัดแรก เป็นจำนวนเต็ม 4 จำนวน คือ จำนวนสถานที่ (N) จำนวนรางรถไฟ (M) สถานีต้นทาง (i) และ สถานีปลายทาง (j) โดย $2 \le N \le 100$, $2 \le M \le 10000$ และ $1 \le i,j \le N$ M บรรทัดถัดไปเป็นข้อมูลเส้นทางระหว่างสถานที่คือ สถานที่ต้นทาง (a), สถานที่ปลายทาง (b), พลังงานที่ใช้ใย การเดินทาง (c) โดย $1 \le a,b \le N$, และ $0 \le c \le 1000$

ข้อมูลนำออก:

จำนวนหนึ่งบรรทัดแสดงจำนวนพลังงานที่ใช้น้อยที่สูดู

	Input	Output
Bran Bran	4624	12
	1 2 1 ארי אל איז א	
	1 3 2	
	3 2 3	
	3 4 4	
	2 4 50	
	1 4 6	2->1->3->4 =1*2+2+4*2 = 12

Modulo Shortest Path

กราฟแบบมีทิศทางขนาด N โหนด มีชื่อเรียกเป็นโหนด 1, โหนด 2, ..., โหนด N โดยแต่ละคู่ของโหนด i และ j ที่ $1 \leq I \leq N; i \neq j$ จะมีเส้นเชื่อมจากโหนด i ไปโหนด j เท่ากับ $(A_i + B_j) \mod M$ ให้เขียนโปรแกรมแสดง ระยะทางที่สั้นที่สุดที่เป็นไปได้

ข้อมูลนำเข้า:

ข้อบรรทัดแรก เป็นจำนวนเต็ม 2 จำนวน คือ จำนวนโหนด (N) ตัวแปร M โดย $2 \leq N \leq 200,000$ และ $2 \leq M \leq 1,000,000$ บรรทัดที่สอง เป็นจำนวนเต็ม N จำนวน แสดงเป็น A_i ของโหนด i บรรทัดที่สาม เป็นจำนวนเต็ม N จำนวน แสดงเป็น B_i ของโหนด i

ข้อมูลนำออก:

จำนวน 1 บรรทัด แสดงระยะทางที่สั้นที่สุดจากโหนด 1 ไปยังโหนด *N*

Input	Output
4 12	3
10 11 6 0	
8 7 4 1	
10 1000	462
785 934 671 520 794 168 586 667 411 332	
363 763 40 425 524 311 139 875 548 198	

วิธีคิด case 1

- Edge 1 o 3 weighs $(A_1+B_3) mod M = (10+4) mod 12 = 2$,
- Edge 3 o 2 weighs $(A_3+B_2) mod M = (6+7) mod 12 = 1$,
- Edge 2 o 4 weighs $(A_2+B_4) mod M = (11+1) mod 12 = 0$

Output = 2 + 1 + 0 = 3

นกตัวหนึ่งมีแผนที่สถานที่ท่องเที่ยวต่าง ๆ โดยในแผนที่จะมีรายละเอียดของเส้นทางระหว่างสถานที่ ท่องเที่ยวเหล่านั้น จงเขียนโปรแกรมเพื่อช่วยนกตัวนี้หาว่าจะต้องใช้ระยะเวลาในการบินเท่าไรในการไปยังสถานที่ ท่องเที่ยวต่าง ๆ เหล่านั้น

ข้อมูลนำเข้า:

ข้อบรรทัดแรก เป็นจำนวนเต็ม 3 จำนวน คือ จำนวนสถานที่ท่องเที่ยว (N) จำนวนเส้นทางระหว่างสถานที่ ท่องเที่ยว (M) และที่ตั้งของบ้านนก (I) โดย $1 \leq N \leq 1{,}000$, $2 \leq M \leq 10{,}000$ และ $1 \leq I \leq M$ M บรรทัดถัดไป เป็นจำนวนเต็ม 3 จำนวน ซึ่งแสดงข้อมูลเส้นทางระหว่างสถานที่ คือ α สถานที่ต้นทาง α 0, สถานที่ปลายทาง α 1, เวลาที่ใช้ในการบิน α 2 โดย α 3 ดง α 4 และ α 5 α 5 ดง α 7 และ α 8 ดง α 9 ดง α

ข้อมูลนำออก:

จำนวน N บรรทัด ในแต่ละบรรทัดแสดงเวลาที่ใช้ในการบิน (เรียงจากน้อยไปมาก) และสถานที่ท่องเที่ยวนั้น

Input	Output
9 14 9	0 9
9 1 4	4 1
9 7 8	8 7
1 7 11	9 6
1 2 8	11 5
7 8 7	12 2
7 6 1	14 8
282	19 3
8 6 6	21 4
2 3 7	
2 5 4	
6 5 2	
3 5 14	
3 4 9	
5 4 10	

🗶 แฮมสเตอร์ (Hamster)

แฮมสเตอร์น้อยที่อยู่ในกรงมานาน อยู่มาวันหนึ่งประตูกรงเกิดเสีย ทำให้แฮมสเตอร์น้อยอยากหนีเที่ยวจึงได้ วางแผนที่จะไปเที่ยวที่สถานที่ต่าง ๆ แต่แฮมสเตอร์น้อยก็คิดถึงบ้าน จึงต้องการกลับบ้านให้เร็วที่สุดโดยในการ เดินทางของแฮมสเตอร์น้อยจะเดินทางจากสถานที่ i ไปสถานที่ j โดยไม่สามารถเดินกลับหลังได้ จงหาเส้นทาง การเดินทางที่สั้นที่สุดของแฮมเตอร์น้อย สำหรับในกรณีที่ไม่มีทางที่จะวนกลับบ้านได้ให้พิมพ์ "NO WAY"

ข้อมูลนำเข้า:

ข้อบรรทัดแรก เป็นจำนวนเต็ม 3 จำนวน คือ จำนวนสถานที่ (N) จำนวนเส้นทางระหว่างสถานที่ (M) และที่ตั้ง ของบ้าน (I) โดย $2 \le N \le 100$, $2 \le M \le 10000$ และ $1 \le I \le N$

M บรรทัดถัดไปเป็นข้อมูลเส้นทางระหว่างสถานที่คือ สถานที่ต้นทาง (a), สถานที่ปลายทาง (b), เวลาที่ใช้ในการ เดินทาง (c) โดย $1 \le a \le N$, $1 \le b \le N$ และ $0 \le c \le 1000$

ข้อมูลนำออก:

จำนวนหนึ่งบรรทัดแสดงลำดับของสถานที่ ๆ แฮมเตอร์น้อยเดินทาง

Input		Output
4 5 4	4	4 2 3 4
4 2 3	3 2	
3 4 2		
1 2 5	2 1 3	
1 3 9	9	
2 3 1		
4 6 2	80	2 3 1 4 2
1 2 80		
1 4 10	10 10 20	
2 3 10	40	
3 1 40	3 4 4	
4 2 20	90	
4 3 90		
4 5 1	4	NO WAY
4 2 3	3 4 2	
3 4 2		
1 2 5	2 1 3	
1 3 9	9	
2 3 1		