

* 0 :

Question No. 6. Given prior probability, posterior probability for positive forecast, posterior probability (+) = 0.58° , Σ Joint Probability (+) To 42 and EREV = 140 Expected Value of Sample Information (EVSI), for the following payoff table?

Occision	States of Nature Large Rise Small Rise No Change Small fall Large Fall								
	Large Rise	Small Rise		No Change		Small fall		Srow Coll	
Gold	300	2	00		150	1	-100		150
Bond	500		250	+	100	+	-200	+	-600
Prior Prob	92		0.3	1	0.3	+	0.1	+	0.1
Posterior Prob (-) 0.276		0.362	1	0.259	1	0.06	9	0.034
Posterior Prob.	(6) (0.09)		0.21	1	035	7	0.1	43	0.19

AND THE PROPERTY OF THE PROPER Question No. 4. Consider the following forecasting technique applied to stationary time series Vind forecast and errors applied to stationary time series for 4-period weighted moving average technique with * B * Data Series 4-period weighted moving average Error for 4-Period WMA (a) Performance measure using MSE for 4-period WMA technique is _____ (b) Performance measure using MAPE for 4-period WMA technique is __ Question No. 5. Find the Expected Value of Perfect Information (EVPI), for the following payoff table? Show your calculation. Note: Some blank rows and columns are given for your convenience Large Rise States of Nature Small Rise Gold No Change Stock Probability A V D de manana a here to search

cstion No

Chestion No. 3. Data series for the week 1 to 7 is given in the following. The initial forecast at week p is a series for \(\alpha = 0.2\). Show all calculations.

Week	Series	10.2. Show all calculations exponential smoothing technique applied to
	272	Forecast
3	280	
	395	
	438	
S	431	
6	446	
	354	
8		
9		
10		

le Drive						
& drive.o	× +					
	oogle.com/drive/totae					
		and Cys	bEdnw	whodwikili		
	Atternative Gold	SI	Payoff		State	
L	Bond	9000		S2 4000	S3 T	
L	Stock	4500	and the second	3000	-5000	3000
	Prob	3000		3000	-4000 -1500	-1500
-		1 0.2	1	0.3	0.2	4500
				Men		1 03
	Alternative		Si		ty Table	
	Cold			1 25		S4 T
	Bond					
	Stock					

- a) The optimal decision under EU =
- b) Its expected utility =
- c) Worth of its utility (in payoff) =

Question No. 3. Data series for the week 1 to 7 is given in the figure as 272. Find the forecast for week 1 to 10 using extrationary time series for a = 0.2. Show all calculations.

Ħ

one on as 277. Find the force

re to search

* 0

是 人口如 N/

The Annual West year demand Dank Park Park Haz Question No. 1: Circle the appropriate answer for the following MCQs For the weight values used in the weighted moving average technique (m)the highest weightage is allocated to the most recent value. I 2. In order to use Bayes' Theorem to calculate the P(A/B), it is necessary to know which of the A joint probability is: (i) P(B). (u) P(B A) The EVPI is calculated by subtracting (1) The maximum EREV from the ERPL (u) EVSI from the ERPL (iii) The maximum EREV from the joint probability. (iv) None of above The EVSI is always (i)less than EV of best decision without SL (11) equal to the minimum EREV When making a decision under risk, which of the following is a valid decision-making enterior? (i)Maximum expected value Which of the following occurs in decision making under uncertainty? (i) Conditional probabile e 📜 🧿 <table-cell-rows> **D** ere to search