Prob & Stats Review

STSCI/INFO/ILRST 3900: Causal Inference

September 4, 2024

Agenda for Today

- Reminders and Announcements
- Probability and Statistics Review
- R/RStudio Intro
- Homework Check-in and Questions

Reminders and Announcements

- HW 1 due Tuesday (September 10) by 5pm
 - Submit a PDF from RMarkdown via Canvas
- Office Hours throughout the week (see Syllabus or website)
 - Filippo: Monday 11am-12pm in Comstock 1187
 - Shira: Wednesday 3-4pm in in Comstock 1187
 - See Ed Discussion for Zoom links/info

Probability and Statistics Review

- Expectation
- Variance
- Conditional Expectation
- Independence
- Bernoulli Random Variables
- Law of Total Expectation
- Confidence Intervals
- Regression (OLS, logistic)

Expectation

(Expected Value, Population Mean, Average)

- Notation: E(X), μ
- The expected value of a finite random variable

$$\mu = E(X) := \sum_{i=1}^{N} x_i \cdot P(x_i) \text{ where } P(x_i) := \text{Prob}(X = x_i)$$

Expectation

(Expected Value, Population Mean, Average)

• The expected value of a countable random variable, i.e. the (long run) average

$$E(X) = \sum_{i=1}^{\infty} x_i \cdot P(x_i)$$

• For n independent and identically distributed (i.i.d.) random variables X_1, \cdots, X_N

the sample mean is
$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

- Law of Large Numbers (LLN): the sample mean converges to the expected value (population mean) as $N \to \infty$
- Example: R (compute the sample mean for larger and larger N)

Expectation

- X_i are random draws from $\sim \mathcal{N}(2,5)$ (a Normal r.v. with mean 2, variance 5)
- How quickly does the sample mean converge to the population mean?

Variance

Describes the spread of the data

- Notation: V(X), Var(X), σ^2
- Variance is the average of the squared differences from the mean
- For a random variable X with expected value $\mu := E(X)$, the variance is

$$\sigma^2 = Var(X) := E[(X - \mu)^2] = E[X^2] - \mu^2$$

More explicitly,
$$Var(X) = \sum_{i=1}^{n} P(x_i) \cdot (x_i - \mu)^2$$
 where $P(x_i) := \text{Prob}(X = x_i)$

Sample (Empirical) Variance

For a finite dataset or finite sample

In practice, you can compute the variance of a finite dataset as

$$\sigma^{2} = \left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}\right) - \bar{X}^{2} \text{ where } \bar{X} := \frac{1}{N} \sum_{i=1}^{N} x_{i}$$

- You don't need to have the formula memorized, just be aware of it
- Likely you'll never have to explicitly compute it this way, just use an R function

Sample Variance

- X_i are random draws from $\sim \mathcal{N}(2,5)$ (a Normal r.v. with mean 2, variance 5)
- How quickly does the sample variance converge to the population variance?

Conditional Expectation

- Notation: E(X | Y)
- The expected value given a set of "conditions"
- ullet Read as "the expectation of X given (or conditioned on) Y"

$$E(X \mid Y) = \sum_{i=1}^{n} x_i \cdot P(X = x_i \mid Y)$$

where
$$P(X = x_i | Y) = \frac{P(X = x_i \text{ and } Y)}{P(Y)}$$

Conditional Expectation

Example: Roll a fair dice

- Let A=1 if you roll an even number, 0 otherwise.
- Let B=1 if you roll a prime number, 0 otherwise. Then,

$$E[A] = \sum_{i=1}^{6} a_i \cdot P(a_i) = \frac{0+1+0+1+0+1}{6} = \frac{1}{2}$$

and the conditional expectation of A given B=1 (i.e. we rolled 2, 3, or 5)

$$E[A \mid B = 1] = \sum_{i=1}^{3} a_i \cdot P(a_i \mid B = 1) = \frac{1+0+0}{3} = \frac{1}{3}$$

Conditional Expectation - Visualized

$$E[X] = 25$$

 $E[X | group 1] = 20$
 $E[X | group 2] = 30$

Group

- Group 1
- Group 2

Independence

- Notation: \bot , $X \bot Y$
- Two random variables are **independent** if the outcome of one does not give any information about the outcome of the other
- Events A and B are independent if $P(A \cap B) = P(A)P(B)$
- Recall: $P(A \cap B) = P(A \mid B)P(B)$
- If $A \perp B$, then $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$

Independence

Example: Dice

- Suppose you roll two fair dice. Let A be the value of the first die and let B be the value of the second die.
- If I say that A=3, does that give you any info about what the value of B is?
- We can show that the events $\{A=3\}$ and $\{B=3\}$ are independent:

$$P(\{A = 3\} \cap \{B = 3\}) = P(\{A = 3\} | \{B = 3\}) \cdot P(\{B = 3\})$$

$$= \frac{1}{6} \cdot \frac{1}{6}$$

$$= P(\{A = 3\}) \cdot P(\{B = 3\})$$

• To show $A \perp B$, you would show this holds for all values of A and B

Independence

Example: Dice

• If we simulate 100k dice rolls, we see that the joint probability of each combination is equal to the individual probabilities multiplied.

Bernoulli Random Variables

A binary/dichotomous random variable

- Notation: B(p), Bernoulli(p), $\mathcal{B}(p)$
- Takes the value 1 with probability (w.p.) p, and the value 0 w.p. q:=1-p
- Let $X \sim B(p)$
 - "Let X be a Bernoulli random variable with mean p"
 - E(X) = p and Var(X) = p(1 p) = pq
- Cool fact: E(X) = P(X = 1) = p

Law of Total Expectation

(i.e. law of iterated expectations, tower rule)

Useful property (or "trick) that will be used in class

$$E(X) = E(E(X | Y))$$

Don't worry too much about the technical details, just add to your toolbox:)

Confidence Intervals

- A set of values that contains the real parameter with probability 1-lpha
- Define CI = [L, U] then $P(L \le \mu \le U) = 1 \alpha$
- Usually $1-\alpha$ is $95\,\%$ or $99\,\%$
- Example: X_i are random draws from $\sim \mathcal{N}(2,5)$
- Estimating expectation of a random variable using sample mean:

$$\hat{E}(X) = \hat{\mu} = \bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Confidence Intervals

• $ar{X}$ is an estimate for μ with some uncertainty

•
$$P(\mu \le \bar{X} - c) = P(\mu \ge \bar{X} + c) = \frac{\alpha}{2}$$

$$P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{N}} \le \frac{\mu - c - \mu}{\sigma/\sqrt{N}}\right) \Rightarrow -c = Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{N}}$$

• $Z_{\frac{\alpha}{2}}$ is the the critical value of the Normal distribution (For example in R: qnorm(0.025))

$$CI = \bar{X} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{N}}$$

- ullet Estimates the relationships between X and Y where
- Y- the dependent variable, outcome/response
- X- independent variable, regressor/explanatory
- Main types of regression: Linear and Logistic

Linear Regression

- Assume data was generated: $Y_i = \alpha + \beta X_i + \varepsilon_i$ for $i=1,\ldots,N$
- α, β are the coefficients where α is the intercept and β the slope

Linear Regression

- Using ordinary least squares (OLS) to estimate $\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$
- Minimizes sum of squared errors: $(\hat{\alpha}, \hat{\beta}) = \operatorname{argmin}_{a,b} \sum_{i=1}^{N} (Y_i (a + bX_i))^2$

$$\cdot \frac{\partial}{\partial a} SSE = \sum_{i=1}^{N} -2(Y_i - a - bX_i) \qquad \Rightarrow \qquad \hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$$

Logistic Regression

- Y_i the outcome variable is binary for $i=1,\ldots,N$
- Use a link function to estimate $P(Y_i = 1) := p_i$ that satisfies $\mathbb{R} \to (0,1)$
 - ° Most common- logistic function: $\sigma(t) = \frac{1}{1 + e^{-t}}$
- In a linear model we estimate $\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$
- . In logistic model we estimate $\hat{p}_i = \frac{1}{1 + e^{-(\hat{\alpha} + \hat{\beta} X_i)}}$

$$\alpha + \beta X_i = \ln\left(\frac{p_i}{1 - p_i}\right)$$

Logistic Regression

• Odds ratio:
$$\frac{p_i}{1 - p_i} = \frac{P(Y_i = 1)}{P(Y_1 = 0)}$$

- ° For example: $\frac{P(\text{Passing exam})}{P(\text{Not passing})} = \frac{3/4}{1/4}$ the odds ratio is 3 : 1
- To estimate $\hat{\alpha}, \hat{\beta}$ we use maximum likelihood estimates (MLE)

• Likelihood function:
$$L(a,b;y) = \prod_{i=1}^{N} P(Y_i = y_i) = \prod_{i=1}^{N} p_i^{y_i} (1-p_i)^{(1-y_i)}$$

• Log likelihood:
$$l(a,b;y) = \sum_{i=1}^{N} y_i \ln(p_i) + (1-y_i) \ln(1-p_i) = \sum_{i=1}^{N} \ln(1-p_i) + y_i \ln\left(\frac{p_i}{1-p_i}\right)$$

Logistic Regression

Log likelihood:
$$l(a, b; y) = \sum_{i=1}^{N} \ln(1 - p_i) + y_i \ln\left(\frac{p_i}{1 - p_i}\right) = \sum_{i=1}^{N} -\ln(1 + e^{a + bX_i}) + y_i(a + bX_i)$$

- . To find MLE we solve $\frac{\partial}{\partial(a,b)}l(a,b;y)=0$
- No close form solution iterative method such as: gradient descent or Newton–Raphson

R

- R is an open-source programming language
- Used for statistical computing and creating plots
- Download and install R

https://cran.r-project.org/

RStudio

- RStudio is an open-source IDE (integrated development environment)
- Download and install RStudio (scroll down for earlier versions)

https://posit.co/download/rstudio-desktop/

RStudio

RStudio Quick Demo

- Console- calculator, create variable
- Environment
- Files
- Plots
- Help
- Script

R Markdown

- install.packages("rmarkdown")
- install.packages("knitr")
- Download HW 1 and open in RStudio
- R Markdown tutorial

Questions

- Homework Check-in
- R/RStudio