Tecnologias Hacker Aula Sistemas Operacionais Insper

Objetivos da aula

Retomar conceitos fundamentais na administração de um sistema operacional GNU/Linux, abordando pontos importantes para a proteção e exploração de sistemas.

Processos e Daemons

Organização do sistema operacional

The organisation of the kernel. Processes the kernel is running live in userspace, and the kernel talks both directly to hardware and through drivers.

Processos

Cada sistema tem um objetivo específico que deseja alcançar. Esse objetivo poderia ser fornecer um site para visitantes anônimos em todo o mundo. Para permitir isso, deve haver algo que escute as solicitações individuais do site, processe-as e, finalmente, envie de volta a página do site relacionado. Chamamos isso de processo e consiste em código de máquina. Estas são instruções individuais sobre o que o sistema deve fazer. Essas instruções incluem a leitura de uma imagem do disco rígido, o envio de dados pela interface de rede ou a gravação de uma mensagem de erro em um arquivo de log.

Listando os processos

<u>pstree</u>

```
avelino@matrix:/proc/22$ pstree
systemd—_ModemManager—_{gdbus}
                          {gmain}
         -NetworkManager——dhclient
                           —{qdbus}
                           -{gmain}
         —accounts-daemon——{gdbus}
                            -{gmain}
         —anydesk——{gdbus}
                   -{gmain}
                    -{proc}
         -avahi-daemon--avahi-daemon
         -bluetoothd
         —chromium——chrome-gnome-sh——{gdbus}
                    -chrome-sandbox-chromium-chromium-13*[chromium-
                                                                            —{Chrome ChildIOT}]
                                                                             -3*[{CompositorTileW}]]
                                                                             -{Compositor}]
                                                                             -{Font Proxy Thre}]
                                                                             -{GpuMemoryThread}]
                                                                             -2*[{TaskSchedulerFo}]]
                                                                             -{TaskSchedulerSe}]
                                                             -24*[chromium——{Chrome ChildIOT}]
                                                                            -3*[{CompositorTileW}]]
                                                                            -{Compositor}]
                                                                            -{Font Proxy Thre}]
                                                                             -{GpuMemoryThread}]
                                                                             -{MemoryInfra}]
```


ps e top

- são processos no nível do usuário (executamos por meio do shell -nível de usuário)
- eles exibem informações sobre processos que exigem uma visão de todo o sistema.
- No caso de top, essas informações são atualizadas dinamicamente, sendo assim, muitas estruturas no nível do SO precisam expor informações aos programas do usuário.

/proc

Como os sistemas fornecem esse tipo de informação aos processos no nível do usuário?

- Log de eventos armazenados em disco e sobrecarga para criar arquivos de log.
- Acesso direto à memória do kernel requer que os programadores de nível de usuário tenham conhecimento das estruturas de dados do kernel.

/proc

Os sistemas Linux optam por fornecer essas informações por meio de uma estrutura hierárquica semelhante a um arquivo, chamada de "sistema de arquivos virtual" /proc.

Este sistema permite que programas no nível do usuário acessem informações sobre processos e outras informações do sistema de maneira conveniente e padronizada.

Daemons

Alguns processos têm o objetivo de serem executados por um longo tempo no sistema em segundo plano.

Isso pode ser para atender a solicitações como verificar um e-mail recebido ou enviar uma página de um site.

Esses processos são chamados daemons. Além da duração, outra grande diferença é que os daemons não precisam de interação com o terminal.

Daemons

Normalmente não enviam nenhuma informação por meio da saída padrão e sim realizam seus registros em arquivos de log.

Geralmente são iniciados diretamente após o início do sistema operacional. A maioria tem um 'd' no final do nome do processo, para indicar que eles são um processo daemon.

Um daemon é sempre um processo, mas nem todos os processos são um daemon

Normalmente, o termo 'serviço' era usado em sistemas Windows. Com a introdução do systemd, esse termo agora é mais aplicável também ao Linux.

Um serviço é uma combinação de recursos para fornecer alguma funcionalidade. Por exemplo, um serviço SSH, que consiste em executar o daemon relacionado e quaisquer dependências como rede.

```
root@matrix:/proc/23127# ps -ef
                                             TIME CMD
UID
           PID PPID
                      C STIME TTY
root
                       0 ago06 ?
                                         00:00:02 /sbin/init
                       0 ago06 ?
                                         00:00:00 [kthreadd]
root
                                         00:00:00 [ksoftirgd/0]
root
                      0 ago06 ?
                       0 ago06 ?
                                         00:00:00 [kworker/0:0H]
root
                                         00:00:32 [rcu sched]
                       0 ago06 ?
root
                                         00:00:00 [rcu bh]
root
                      0 ago06 ?
             9
root
                      0 ago06 ?
                                         00:00:02 [migration/0]
            10
                      0 ago06 ?
                                         00:00:00 [lru-add-drain]
root
            11
                      0 ago06 ?
                                         00:00:00 [watchdog/0]
root
            12
                                         00:00:00 [cpuhp/0]
root
                      0 ago06 ?
            13
                                         00:00:00 [cpuhp/1]
                      0 ago06 ?
root
            14
                      0 ago06 ?
                                         00:00:00 [watchdog/1]
root
            15
                                         00:00:00 [migration/1]
root
                      0 ago06 ?
            16
root
                      0 ago06 ?
                                         00:00:00 [ksoftirqd/1]
            18
                       0 ago06 ?
                                         00:00:00 [kworker/1:0H]
root
            19
                                         00:00:00 [cpuhp/2]
                       0 ago06 ?
root
            20
root
                       0 ago06 ?
                                         00:00:00 [watchdog/2]
                                         00:00:00 [migration/2]
root
                       0 ago06 ?
                       0 ago06 ?
                                         00:00:00 [ksoftirqd/2]
root
            24
root
                      0 ago06 ?
                                         00:00:00 [kworker/2:0H]
```

1

Shadow

```
root@_ebian:/tmp# cat /etc/shadow
root:$6$SOU3Vn/G$QOaV9d/f8PNBAG3BqnOubKdnPSHtI27vXs6m8qnbsyx8/5otyxQ6s1uYEITp1
.jJkzRTDp2SO7IV7X3ed6p0:17864:0:999999:7:::
daemon:*:17847:0:99999:7:::
bin:*:17847:0:99999:7::: 2 3 4 6
sync:*:17847:0:999999:7:::
```

Identificador 1 hash senha e algoritmo (\$6)

\$1 = Algoritmo de hash MD5.

\$2 = Algoritmo de hash Blowfish.

\$2a= Algoritmo de hash eksblowfish.

\$5 = Algoritmo de hash SHA-256.

\$6 = Algoritmo de hash SHA-512.

Identificador 2 > Última alteração de senha (última alteração) : dias desde 1º de janeiro de 1970 em que a senha foi alterada pela última vez.

Identificador 3 > Mínimo : O número mínimo de dias necessários entre as alterações de senha, ou seja, o número de dias restantes para que o usuário possa alterar sua senha.

Identificador 4 > Máximo : o número máximo de dias em que a senha é válida (depois que o usuário é forçado a alterar sua senha).

Identificador 5 > Aviso : o número de dias antes da senha expirar, o usuário é avisado de que sua senha deve ser alterada.

