EULERIAN REPRESENTATIONS FOR COINCIDENTAL REFLECTION GROUPS

SARAH BRAUNER

University of Minnesota braun622@umn.edu

Based on arXiv:2005.05953

UMN COMBINATORICS SEMINAROCTOBER 9, 2020

OUTLINE

Big Idea:

Generalize a beautiful Type A story connecting combinatorics, representation theory and topology to a broader class of reflection groups

Outline:

- 1 Motivating Story: Type A
- 2 Coincidental reflection groups
- 3 Eulerian idempotents
- 4 The Varchenko-Gelfand ring
- 5 Main Results

MOTIVATING STORY: TYPE A

DESCENTS

The story of the Eulerian idempotents begins with descents...

For $w = (w_1, \dots, w_n) \in S_n$, the **descent set** of w is

$$Des(w) := \{i \in [n-1] : w_i > w_{i+1}\}$$

The **descent number** of w is des(w) := # Des(w).

Example: If w = (1, 4, 2, 5, 3), then $Des(w) = \{2, 4\}$ and des(w) = 2.

Equivalently, in the language of Coxeter groups:

$$\mathsf{Des}(w) := \Big\{\underbrace{s_i}_{\substack{\text{transposition}\\ (i,i+1)}} \in \underbrace{S}_{\substack{\text{Coxeter}\\ \text{generators}}} : \underbrace{\ell(ws_i) < \ell(w)}_{\substack{\text{Coxeter length}}} \Big\}.$$

Remark: Des and des can be defined for any Coxeter group.

SOLOMON'S DESCENT ALGEBRA

Let $\mathbb{R} S_n$ be the group algebra of S_n and $w = (w_1, w_2, \dots w_n) \in S_n$.

Surprising fact: (Solomon, 1976)

There is a *subalgebra* of $\mathbb{R} S_n$ generated by sums of elements with the same descent set:

$$\mathcal{D}(S_n) := \left\langle Y_T := \sum_{\substack{w \in S_n \\ \mathsf{Des}(w) = T}} c_T w : c_T \in \mathbb{R}, T \subset [n-1] \right\rangle$$

called Solomon's descent algebra.

Example: When n = 3, the descent algebra $\mathcal{D}(S_3)$ has basis:

$$Y_{\emptyset} = (1, 2, 3)$$

 $Y_1 = (2, 1, 3) + (3, 1, 2)$
 $Y_2 = (1, 3, 2) + (2, 3, 1)$
 $Y_{1,2} = (3, 2, 1)$.

Remark: In fact, $\mathcal{D}(W)$ is a subalgebra for any Coxeter group.

EULERIAN IDEMPOTENTS, DEFINITION 1

Theorem (Garsia-Reutenauer, 1989).

There is a family of idempotents in $\mathbb{R} S_n$ defined by

$$\sum_{k=0}^{n-1} t^{k+1} \mathfrak{e}_k = \sum_{w \in S_n} \binom{t-1+n-\operatorname{des}(w)}{n} w.$$

Call this family the **Eulerian idempotents**.

Remark:

By construction, the e_k are in the Descent algebra $\mathcal{D}(S_n)$

In fact, the e_k generate a commutative subalgebra of $\mathcal{D}(S_n)$ spanned by sums of elements with the same descent number

This subalgebra is known as the **Eulerian subalgebra**.

IDEMPOTENTS FOR n=3

Example: When n = 3,

$$\begin{split} \mathfrak{e}_0 &= \frac{1}{6} \big((1,2,3) - (2,1,3) - (3,1,2) - (1,3,2) - (2,3,1) + 2(3,2,1) \big) \\ &= \frac{1}{6} \big(Y_{\emptyset} - Y_1 - Y_2 + 2Y_{1,2} \big) \end{split}$$

$$e_1 = \frac{1}{2} ((1, 2, 3) - (3, 2, 1))$$

= $\frac{1}{2} (Y_{\emptyset} - Y_{1,2})$

$$\begin{aligned} \varepsilon_2 &= \frac{1}{6} \big((1,2,3) + (2,1,3) + (3,1,2) + (1,3,2) + (2,3,1) + (3,2,1) \big) \\ &= \frac{1}{6} \big(Y_{\emptyset} + Y_1 + Y_2 + Y_{1,2} \big) \end{aligned}$$

EULERIAN IDEMPOTENTS, DEFINITION 2

Definition (Barr, 1968).

The **Shuffle (Barr) element** in $\mathbb{R} S_n$ is

$$\mathcal{S} := \sum_{i=1}^{n-1} \sum_{\substack{w \in \mathcal{S}_n : \\ \mathsf{Des}(w) \subset \{i\}}} w \in \mathcal{D}(\mathcal{S}_n) \subset \mathbb{R} \, \mathcal{S}_n.$$

Example: When n = 3,

$$\begin{split} \mathcal{S} &= \underbrace{\left(\textbf{1},\textbf{2},\textbf{3}\right) + \left(\textbf{2},\textbf{1},\textbf{3}\right) + \left(\textbf{3},\textbf{1},\textbf{2}\right)}_{\text{Des}(w) \subset \{1\}} + \underbrace{\left(\textbf{1},\textbf{2},\textbf{3}\right) + \left(\textbf{1},\textbf{3},\textbf{2}\right) + \left(\textbf{2},\textbf{3},\textbf{1}\right)}_{\text{Des}(w) \subset \{2\}} \\ &= 2\big(\textbf{1},\textbf{2},\textbf{3}\big) + \big(\textbf{2},\textbf{1},\textbf{3}\big) + \big(\textbf{3},\textbf{1},\textbf{2}\big) + \big(\textbf{1},\textbf{3},\textbf{2}\big) + \big(\textbf{2},\textbf{3},\textbf{1}\big). \end{split}$$

EULERIAN IDEMPOTENTS, DEFINITION 2

Theorem (Gerstenhaber-Schack, 1987).

S acts semisimply on $\mathbb{R} S_n$

S has eigenvalues $\sigma_k := 2^{k+1} - 2$ for $0 \le k \le n-1$.

Corollary.

By Lagrange interpolation, the idempotent projecting onto the σ_k -th eigenspace of S is

$$e_k := \prod_{j \neq k} \frac{S - \sigma_j}{\sigma_k - \sigma_j}.$$

Theorem (Loday, 1989).

These idempotents are precisely the Eulerian idempotents

EULERIAN IDEMPOTENTS FOR n=3

Example: When n = 3, the Barr element S has eigenvalues 0, 2, 6:

$$\begin{split} \mathfrak{e}_0 &= \frac{(\mathcal{S}-2)(\mathcal{S}-6)}{(0-2)(0-6)} \qquad \qquad \sigma_0 = 0 \text{-eigenspace projector} \\ &= \frac{1}{6} \big((1,2,3) - (2,1,3) - (3,1,2) - (1,3,2) - (2,3,1) + 2(3,2,1) \big) \end{split}$$

$$e_1 = \frac{(S-0)(S-6)}{(2-0)(2-6)}$$
 $\sigma_1 = 2$ -eigenspace projector
$$= \frac{1}{2}((1,2,3)-(3,2,1))$$

$$\varepsilon_2 = \frac{(S-0)(S-2)}{(6-0)(6-2)} \qquad \sigma_2 = 6$$
= $\frac{1}{6}$ ((1,2,3) + (2,1,3) + (3,1,2) + (1,3,2) + (2,3,1) + (3,2,1))

EULERIAN REPRESENTATIONS

 S_n acts on acts on $\mathbb{R} S_n$ and $\mathbb{R} S_n e_k$ by left multiplication...

The **Eulerian representations** are defined as the family of representations $\mathbb{R} S_n \varepsilon_k$ induced by this action

By construction, $\mathbb{R} S_n e_k$ is the σ_k -eigenspace of S

Example: When n = 3 for any $\tau \in S_3$,

$$\tau \cdot \mathfrak{e}_2 = \tau \cdot \frac{1}{6} \sum_{\sigma \in S_3} \sigma = \frac{1}{6} \sum_{\sigma \in S_3} \tau \sigma = \frac{1}{6} \sum_{\sigma' \in S_3} \sigma' = \mathfrak{e}_2.$$

EXAMPLE: n = 3

k	Eulerian representation	Irreducible Decomposition
2	\mathbb{R} $S_3 \mathfrak{e}_2 = \sigma_2$ -eigenspace	
1	$\mathbb{R} S_3 \mathfrak{e}_1 = \sigma_1$ -eigenspace	
0	$\mathbb{R} S_3 \mathfrak{e}_0 = \sigma_0$ -eigenspace	

CONNECTIONS TO TOPOLOGY

Question:

Where do these representations naturally appear?

The answer is closely related to the braid arrangement,

$$\mathcal{A}_{S_n} := \{H_{ij} : 1 \le i < j \le n\}$$

where

$$H_{ij} := \{(x_1, \cdots, x_n) \in \mathbb{R}^n : x_i = x_i\}.$$

Example. When n=3, the essentialized braid arrangement A_{S_3} is

COMPLEMENT OF THE BRAID ARRANGEMENT

The braid arrangement has complement

$$\mathcal{M}(\mathcal{A}_{S_n}) := \mathbb{R}^n \setminus \mathcal{A} = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_i \neq x_j \text{ for } i, j \in [n]\}$$

$$= \text{the } n\text{-th ordered configuration space of } \mathbb{R}$$

$$= \text{Conf}_n(\mathbb{R}).$$

We are interested in the d-thickened complement

$$\mathcal{M}^{d}(\mathcal{A}_{S_{n}}) := \mathcal{M}(\mathcal{A}) \otimes \mathbb{R}^{d} = \mathbb{R}^{dn} \setminus \left(\bigcup_{1 \leq i < j \leq n} H_{ij} \otimes \mathbb{R}^{d} \right)$$
$$= \left\{ (x_{1}, \dots, x_{n}) \in \mathbb{R}^{dn} : x_{i} \neq x_{j} \text{ for } i, j \in [n] \right\}$$
$$= \text{the } n\text{-th ordered configuration space of } \mathbb{R}^{d}$$
$$= \text{Conf}_{n}(\mathbb{R}^{d}).$$

Example: When d=2, this is equivalent to the complement of the complexified arrangement $\mathcal{M}(\mathcal{A})\otimes\mathbb{C}$

COHOMOLOGY PRESENTATION

A natural question:

what is
$$H^*(Conf_n(\mathbb{R}^d), \mathbb{R})$$
?

Theorem (Arnol'd (1969): d = 2, F. Cohen (1976): $d \ge 2$).

The ring $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ has presentation

$$\mathbb{R}\langle e_{ij}: 1 \leq i \neq j \leq n \rangle / \mathcal{J}$$

where each e_{ii} is in degree d-1 and \mathcal{J} is generated by

- 1. e_{ii}^2
- 2. $e_{ii} = (-1)^d e_{ii}$
- 3. $e_{ij}e_{j\ell} + e_{j\ell}e_{\ell i} + e_{\ell i}e_{ij}$ for any $1 \le i \ne j \ne \ell \le n$.

This implies that $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ is

concentrated in degrees k(d-1) for $0 \le k \le n-1$

commutative when *d* is **odd**

anti-commutative when d is even

REPRESENTATIONS?

The symmetric group S_n acts on

$$\mathsf{Conf}_n(\mathbb{R}^d) = \{(x_1 \cdots, x_n) \in \mathbb{R}^{dn} : x_i \neq x_j \text{ for } i, j \in [n]\},$$

$$\mathsf{making} \ H^* \, \mathsf{Conf}_n(\mathbb{R}^d) \text{ into an } S_n\text{-module...}$$

Known fact: When *d* is **odd**,

$$H^* \operatorname{Conf}_n(\mathbb{R}^d) \cong_{S_n} \mathbb{R} S_n$$
.

A more refined question:

What representation does $H^{k(d-1)}$ Conf_n(\mathbb{R}^d) carry for **each** k?

Example: $H^{o} \operatorname{Conf}_{n}(\mathbb{R}^{d})$ is always the trivial representation.

KEY CONNECTION

Key connection:

When $d \ge 3$ is **odd**, for $0 \le k \le n-1$,

$$H^{k(d-1)}\operatorname{Conf}_n(\mathbb{R}^d) \cong_{S_n} \mathbb{R} S_n \mathfrak{e}_{n-1-k}.$$

How do we know?

- **1990** Hanlon computes the characters of $\mathbb{R} S_n e_{n-1-k}$
- **1997** Sundaram-Welker prove an equivariant formulation of the Goresky-MacPherson formula relating

cohomology of a subspace arrangement
$$\longleftrightarrow$$
 homology of its intersection lattice

As a special case:

they compute the characters of $H^{k(d-1)}$ Conf_n(\mathbb{R}^d)

Example: n = 3

Example: When n = 3 and d is odd,

Eulerian representation	Configuration space cohomology	Irreducible decomposition
\mathbb{R} $S_3 \mathfrak{e}_2 = \sigma_2$ -eigenspace	$H^{0}\operatorname{Conf}_{3}(\mathbb{R}^{d}) = \mathbb{R}\{1\}$	
\mathbb{R} $S_3 \mathfrak{e}_1 = \sigma_1$ -eigenspace	$H^{1(d-1)} \operatorname{Conf}_3(\mathbb{R}^d)$ $= \mathbb{R}\{e_{12}, e_{23}, e_{13}\}/\mathcal{J}_1$	
\mathbb{R} $S_3 \varepsilon_0 = \sigma_0$ -eigenspace	$H^{2(d-1)} \operatorname{Conf}_{3}(\mathbb{R}^{d})$ = $\mathbb{R}\{e_{12}e_{23}, e_{12}e_{13}\}/\mathcal{J}_{2}$	

TYPE A SUMMARY

Summary: For $0 \le k \le n-1$, the following are equivalent as S_n -representations:

- 1. $H^{k(d-1)} \operatorname{Conf}_n(\mathbb{R}^d)$ for odd $d \geq 3$;
- 2. The k-th graded piece of Cohen's algebra for odd $d \ge 3$:

$$\mathbb{R} \langle e_{ij} : 1 \leq i < j \leq n \rangle / \mathcal{J}$$

- 3. The $\sigma_{n-1-k} = \{2^{n-k} 2\}$ -eigenspace of the Barr's shuffle element $S \in \mathbb{R}$ S_n ;
- 4. The representation $\mathbb{R} S_n e_{n-1-k}$, where e_{n-1-k} is defined by

$$\sum_{k=0}^{n-1} t^{k+1} \mathfrak{e}_k = \sum_{w \in S_n} \binom{t-1+n-\operatorname{des}(w)}{n} w.$$

Goal:

Generalize this statement to coincidental reflection groups, i.e. reflection groups whose exponents form an arithmetic progression

$$1, 1+g, 1+2g, 1+3g, \cdots$$

COINCIDENTAL ANALOG

Recall the rising factorial $(t)_k := (t)(t+1)...(t+k-1)$ and let

$$\beta_{W,k}(t) := \frac{\left(\frac{t+g-1}{g} - k\right)_k \cdot \left(\frac{t+1}{g}\right)_{r-k}}{\left(\frac{2}{g}\right)_r}.$$

Theorem (B-, 2020).

Let W be a real coincidental reflection group of rank r. For $0 \le k \le r$, the following are equivalent as W-representations:

- 1. $H^{k(d-1)}\mathcal{M}^d(\mathcal{A}_W)$ for odd $d \geq 3$
- 2. $V^k(A_W)$, the k-th graded piece of the associated graded Varchenko-Gelfand ring
- 3. The σ_{r-k} -th eigenspace of the shuffle element $\mathcal{S}(W) \in \mathbb{R} W$
- 4. The representation $\mathbb{R} W e_{r-k}$ where e_{r-k} is defined by

$$\sum_{k=0}^{r} t^{k} e_{k} = \sum_{w \in W} \beta_{W, des(w)}(t) \cdot w.$$

OUTLINE

- 1 Motivating Story: Type A
- 2 Coincidental reflection groups
- 3 Eulerian idempotents
- 4 The Varchenko-Gelfand ring
- 5 Main Results

COINCIDENTAL REFLECTION GROUPS

REFLECTION ARRANGEMENTS

Every Coxeter group has a **reflection arrangement** A_W where

reflections $s \in W \longleftrightarrow \text{hyperplanes } H_s \in \mathcal{A}_W$.

Example: The symmetric group S_3 acts on

The transposition $(ij) \in S_n$ reflects over the hyperplane H_{ij}

EXPONENTS

Every Coxeter group W of rank r has a unique set of integers

Statistic

$$e_1 = 1 \le e_2 \le \cdots \le e_r$$

called the **exponents** of *W*, which satisfy many **product formulas**:

c - 1

1//

37

Statistic	$S_n = A_{n-1}$	VV
exponents	1, 2, · · · , <i>n</i> − 1	e_1, e_2, \cdots, e_r
# W	$n! = 2 \cdot 3 \cdots n$	$\prod_{i=1}^r (1+e_i)$
$\sum_{w \in W} q^{\ell(w)}$	$[n]_q! = [2]_q \cdot [3]_q \cdots [n]_q$	$\prod_{i=1}^r \frac{q^{1+e_i}-1}{q-1}$
$\sum_{w \in W} q^{\dim(V^w)}$	$(q+1)(q+2)\cdots(q+n-1)$	$\textstyle\prod_{i=1}^r (q+e_i)$
$\sum_{X \in \mathcal{L}(\mathcal{A}_W)} \mu(V, X) q^{\dim(X)}$	$(q-1)(q-2)\cdots(q-n+1)$	$\prod_{i=1}^r (q - e_i)$

COINCIDENTAL REFLECTION GROUPS

W has exponents $e_1, e_2, ..., e_r$.

Definition

A reflection group is **coincidental** if its exponents form an arithmetic progression:

$$1, 1+g, 1+2g, \cdots, 1+(r-1)g.$$

for some integer g.

The real coincidental reflection groups are:

W	<i>r</i> := rank	exponents	g:= progression
Sn	n – 1	$1, 2, 3, \cdots, n-1$	1
B_n	n	$1, 3, 5, \cdots, 2n-1$	2
H_3	3	1, 5, 9	4
$I_2(m)$	2	1, <i>m</i> − 1	m - 2

OUTLINE

- 1 Motivating Story: Type A
- 2 Coincidental reflection groups
- 3 Eulerian idempotents
- 4 The Varchenko-Gelfand ring
- 5 Main Results

EULERIAN IDEMPOTENTS

EULERIAN IDEMPOTENTS

Recall that $e_k \in \mathbb{R} S_n$ were defined in two ways:

- 1. As the idempotent projectors onto the eigenspaces of the shuffle element \mathcal{S} , and
- 2. Via the generating function

$$\sum_{k=0}^{n-1} t^{k+1} \varepsilon_k = \sum_{w \in S_n} \binom{t-1+n-\operatorname{des}(w)}{n} w.$$

The Eulerian idempotents have been extensively studied and generalized since then!

GENERALIZING THE EULERIAN IDEMPOTENTS

1992: Bergeron-Bergeron define a Type *B* analog:

$$\sum_{k=0}^{n} t^{k} \mathfrak{e}_{k} = \sum_{w \in B_{n}} {t-1 \choose 2} + n - \operatorname{des}(w) \choose n} w.$$

- **1992:** Bergeron-Bergeron-Howlett-Taylor define a finer family of idempotents in $\mathcal{D}(W)$ for any reflection group W The idempotents are indexed by descent sets; summing over idempotents with the same descent size recovers the \mathfrak{e}_k
- **2009:** Saliola constructs for any central arrangement \mathcal{A} , a family of idempotents \mathfrak{e}_X for each flat $X \in \mathcal{L}(\mathcal{A})$ In the case that \mathcal{A} is a reflection arrangement, the \mathfrak{e}_X can be realized in \mathbb{R} W
- **2017:** Aguiar-Mahajan further develop the theory of \mathfrak{e}_X , particularly for coincidental reflection groups

GENERALIZING THE EULERIAN IDEMPOTENTS

Upshot:

For any reflection group, these definitions all recover the same family of idempotents $\varepsilon_k \in \mathbb{R}$ W for $0 \le k \le r...$

Call this family the **Eulerian idempotents**.

A GENERALIZED SHUFFLE ELEMENT

Recall how Barr's shuffle element was defined:

$$\mathcal{S} := \sum_{i=1}^{n-1} \sum_{\substack{w \in S_n: \\ \mathsf{Des}(w) \subset \{i\}}} w \in \mathcal{D}(S_n) \subset \mathbb{R} \, S_n.$$

Definition (B—, 2020). For any reflection group W with generators s_1, \dots, s_r , the **shuffle element** S(W) is defined by

$$\mathcal{S}(W) := \sum_{i=1}^r \sum_{\substack{W \in W: \\ \mathsf{Des}(W) \subset \{s_i\}}} w \in \mathcal{D}(W) \subset \mathbb{R} \, W.$$

Example: In B_2 with Coxeter generators s and t,

$$\mathcal{S}(B_2) = \underbrace{1+s+ts+sts}_{\mathsf{Des}(w)\subset \{s\}} + \underbrace{1+t+st+tst}_{\mathsf{Des}(w)\subset \{t\}}$$

A GENERALIZED SHUFFLE ELEMENT

Proposition (B—, 2020).

S(W) acts semisimply on \mathbb{R} W for any reflection group W.

When W is coincidental,

S(W) has r+1 distinct, non-negative, integer eigenvalues $\sigma_0 < \sigma_1 < \cdots < \sigma_r$ and,

the projector onto the σ_k -th eigenspace of S(W) recovers the Eulerian idempotents.

This allows us to generalize the Eulerian subalgebra:

Theorem (B—, 2020).

There is an **Eulerian subalgebra** of $\mathcal{D}(W)$ generated by sums of elements with the same descent number if and only if W is coincidental. This subalgebra is always commutative.

28

OUTLINE

- 1 Motivating Story: Type A
- 2 Coincidental reflection groups
- 3 Eulerian idempotents
- 4 The Varchenko-Gelfand ring
- 5 Main Results

HEAVISIDE FUNCTIONS

Varchenko and Gelfand define **Heaviside functions** on $\mathcal{M}(\mathcal{A})$ by

$$e_{H_i}(v) = \begin{cases} 1 & v \in H_i^+ \\ 0 & v \in H_i^- \end{cases}$$

Example: In Type A, when n = 3:

Multiplication is point-wise:

THE VARCHENKO-GELFAND RING

Definition/Theorem (Varchenko-Gelfand, 1987).

The associated graded Varchenko-Gelfand ring $\mathcal{V}(\mathcal{A})$ has presentation

$$\mathbb{R}[e_{H_i}: H_i \in \mathcal{A}]/\mathcal{J}$$

where \mathcal{J} is generated by:

- 1. **Idempotent relation**: $e_{H_i}^2$ for each $H_i \in A$;
- 2. **Circuit relation**: For every circuit (e.g. minimal linear dependency) $C = (H_1, H_2, \cdots, H_m)$ in \mathcal{A} such that $C = C^+ \sqcup C^-$,

$$\sum_{i=1}^{m} c(i)e_{H_1} \cdots \widehat{e_{H_i}} \cdots e_{H_m}$$

where

$$c(i) = \begin{cases} 1 & \text{if } H_i \in C^-, \\ -1 & \text{if } H_i \in C^+. \end{cases}$$

EXAMPLE

Example: In Type A, when n = 3:

There is one circuit: $C = \{H_{12}, H_{23}, H_{13}\}$, which can be partitioned uniquely into $C^+ = H_{12}$, H_{23} and $C^- = H_{13}$ so that

$$H_{12}^+ \cap H_{23}^+ \cap H_{13}^- = \emptyset.$$

Hence

$$\begin{split} \mathcal{V}(\mathcal{A}_{S_3}) &= \mathbb{R}[e_{H_{12}}, e_{H_{23}}, e_{H_{13}}] / \left\langle e_{H_{12}}^2, e_{H_{23}}^2, e_{H_{13}}^2, \right. \\ &\left. e_{H_{12}} e_{H_{23}} - e_{H_{12}} e_{H_{13}} - e_{H_{23}} e_{H_{13}} \right\rangle \end{split}$$

Note: This matches Cohen's presentation of H^* Conf₃(\mathbb{R}^d), d odd

HYPERPLANE COMPLEMENTS

Claim:

 $\mathcal{V}(\mathcal{A}_W)$ generalizes $H^* \operatorname{Conf}_n(\mathbb{R}^d)$ for odd $d \geq 3...$

Recall:

$$\mathsf{Conf}_n(\mathbb{R}^d) = \mathbb{R}^{dn} \setminus \big(\bigcup_{1 \leq i < j \leq n} H_{ij} \otimes \mathbb{R}^d\big)$$

Definition:

For any central hyperplane arrangement A of rank r,

$$\mathcal{M}^d(\mathcal{A}) := \mathbb{R}^{rd} \setminus \big(\bigcup_{H_i \in \mathcal{A}} H_i \otimes \mathbb{R}^d \,\big)$$

As in Type A, consider $H^*\mathcal{M}^d(\mathcal{A})$.

The cohomology of $\mathcal{M}^d(\mathcal{A})$

The cohomology of $\mathcal{M}^d(\mathcal{A}_W)$ depends on the **parity** of **d!**

Even case:

Theorem (Orlik-Solomon, 1980). When $d \ge 2$ is **even**, there is a W-equivariant ring isomorphism

$$H^*\mathcal{M}^d(\mathcal{A}_W)\cong_W \mathcal{OS}(\mathcal{A}_W),$$

where $OS(A_W)$ is the Orlik-Solomon algebra of A_W .

Odd case:

Theorem (Moseley, 2017). When d > 3 is **odd**, there is a W-equivariant ring isomorphism

$$H^*\mathcal{M}^d(\mathcal{A}_W)\cong_W \mathcal{V}(\mathcal{A}_W),$$

where $\mathcal{V}(A_W)$ is the associated-graded Varchenko-Gelfand ring of A_W .

A COMPARISON OF THE ODD AND EVEN CASES

	even <i>d</i> ≥ 2	odd <i>d</i> ≥ 3
$H^*\mathcal{M}^d(\mathcal{A}_W)$ is isomorphic to	$\mathcal{OS}(\mathcal{A}_{W})$	$\mathcal{V}(\mathcal{A}_{W})$
multiplication in $H^*\mathcal{M}^d(\mathcal{A}_W)$	anti-commutative	commutative
presentation of $H^*\mathcal{M}^d(\mathcal{A}_W)$	$\mathbb{R}\langle e_{H} : H \in \mathcal{A} \rangle /$	$\mathbb{R}[e_H:H\in\mathcal{A}]/$
	idempotent &	idempotent &
	circuit relations	circuit relations
Special cases		
Cohen's presentation	$\mathcal{OS}(\mathcal{A}_{S_{n}})$	$\mathcal{V}(\mathcal{A}_{S_n})$
of $H^* \operatorname{Conf}_n(\mathbb{R}^d)$		
Xicotencatl's presentation of $H^*\operatorname{Conf}_n^{\mathbb{Z}_2}(\mathbb{R}^d)$	$\mathcal{OS}(\mathcal{A}_{\mathcal{B}_n})$	$\mathcal{V}(\mathcal{A}_{B_n})$

OUTLINE

- Motivating Story: Type A
- 2 Coincidental reflection groups
- 3 Eulerian idempotents
- 4 The Varchenko-Gelfand ring
- 5 Main Results

MAIN RESULTS

MAIN RESULTS

$$\text{Let } \beta_{W,k}(t) := \frac{\left(\frac{t+g-1}{g}-k\right)_k \cdot \left(\frac{t+1}{g}\right)_{r-k}}{\left(\frac{2}{g}\right)_r}.$$

Theorem (B—, 2020).

Let W be a real coincidental reflection group of rank r. For $o \le k \le r$, the following are equivalent as W-representations:

- 1. $H^{k(d-1)}\mathcal{M}^d(\mathcal{A}_W)$ for odd $d \geq 3$,
- 2. $V^k(A_W)$, the k-th graded piece of the associated graded Varchenko-Gelfand ring
- 3. The σ_{r-k} -th eigenspace of the shuffle element $\mathcal{S}(W) \in \mathbb{R} \, W$
- 4. The representation $\mathbb{R} W e_{r-k}$ where e_{r-k} is defined by

$$\sum_{k=0}^{r} t^{k} e_{k} = \sum_{w \in W} \beta_{W, \mathsf{des}(w)}(t) \cdot w.$$

Thank you for **listening**!

FUTURE DIRECTIONS

Complex Reflection Groups:

- There are complex (non-real) coincidental reflection groups These are precisely Shephard groups, which are the symmetry groups of complex polytopes
- **Question:** To what extent does the story of the real Eulerian representations generalize to Shephard groups?
- I would love to discuss any ideas in this direction!

Properties of the Eulerian representations

- Many representation theoretic properties of e_k in Type A are not known in other types!
- **Currently:** $\mathbb{R} S_n \varepsilon_k$ has a "hidden" S_{n+1} action. I am working on generalizing this to type B using configuration spaces

WHAT MAKES THE COINCIDENTAL GROUPS SPECIAL?

For $X \in \mathcal{L}(A)$, the restriction arrangement A^X is

$$\mathcal{A}^{X} := \{ H \cap X : H \in \mathcal{A}, X \not\subset H \}.$$

Theorem: (Abramenko, 1994; Aguiar-Mahajan, 2017). \mathcal{A}^X is a reflection arrangement for every $X \in \mathcal{L}(\mathcal{A})$ if and only if W is a (product of) coincidental reflection group(s)

When W is coincidental: $A^X \cong A^Y$ if and only if $\dim(X) = \dim(Y)$

RESULTS FOR ANY COXETER GROUP

Let $[X] \in \mathcal{L}(A)/W$ be the W-orbit of $X \in \mathcal{L}(A)$.

Theorem (B-, 2020).

For any finite Coxeter group W and $[X] \in \mathcal{L}(A)/W$,

$$\underbrace{\mathbb{R} \ W\mathfrak{e}_{[X]}}_{\text{idempotent indexed by flat orbits}} \cong_{W} \underbrace{\mathcal{V}(\mathcal{A})_{[X]}}_{\text{decomposition of } \mathcal{V}(\mathcal{A})} \text{ by flat orbit}$$

PROOF TECHNIQUES

Big idea:

Map $\mathcal{S}(W)$ into the Tits (face) semigroup algebra of \mathcal{A}

Relate eigenvalues of S(W) to restriction arrangements A^{X}

Use the fact that when W is coincidental, \mathcal{A}^X depends only on the dimension of X

