

Dipartimento di Matematica e Fisica Corso di Laurea Triennale in Fisica

Modellizzazione con Geant4 di rivelatori a scintillazione

Relatore:

Prof.ssa

Domizia Orestano

Candidato:

Pietro Meloni

Matricola 498252

- 1. Finalità
- 2. Rivelatori a scintillazione
- 3. Metodi Monte Carlo e Geant4
- 4. La simulazione
- 5. I risultati
- 6. Conclusioni

Finalità

- Approfondire il funzionamento dei **rivelatori a scintillazione** usati nel corso di *Laboratorio di Fisica Nucleare e Subnucleare*
- Acquisire le conoscenze di base sui **metodi di simulazione** in fisica delle particelle, simulando la risposta del rivelatore al passaggio della radiazione (**raggi cosmici**)

Rivelatori a scintillazione

[http://quarknet.fnal.gov]

Scintillatori

- Fluorescenza e fosforescenza
- Lunghezza di assorbimento
- Output di luce (o efficienza)

Fosforescenza nella vita quotidiana

Fotomoltipicatori (PMT)

Funzionamento

(https://www.sense-pro.org)

Principali parametri

- Efficienza quantica
- Guadagno
- Numero di dinodi
- Tensione di alimentazione

Metodi Monte Carlo e Geant4

Metodi Monte Carlo

Estrazione di numeri **pseudo-casuali**

Algoritmo

Risoluzione numerica di un problema

Problema degli n-corpi

[Millennium Simulation]

S

[Simulazione di una collisione pp a LHC]

Elementi essenziali:

- Rivelatore
- Generatore dei primari
- Modelli fisici

Gestione della simulazione:

- Tracking e step
- Eventi
- Run

[Book For Application Developers (Geant4)]

Rivelatore

- 122cm x 20cm x 1cm
- Polistirene (n = 1.60)
- Output di luce $\varepsilon = 5 \cdot 10^3 \ \mathrm{MeV}^{-1}$
- Lunghezza di assorbimento: 360 cm
- Guadagno $G = 5 \cdot 10^7$
- 12 dinodi

Approssimazioni

- NO rumore
- NO guide di luce
- Parametri indipendenti dall'energia dei fotoni

Fisica

- Particelle: $n, p, e^-, e^+, \nu, \bar{\nu}, \gamma, \mu^-, \mu^+$
- Processi ionizzazione e diffusione multipla, decadimenti.

Schema di un evento (1)

Schema di un evento (2)

Distanza percorsa

Calcolo geometrico

Calcolo con Geant4

$$\Delta \ell_{G4} = \sum_{i}^{step} \delta \ell_{i}$$

Perdita d'energia

$$\Delta E_{G4} = \sum_{i}^{step} \delta E_{i}$$

$$\Delta E_{BB} = \left\langle \frac{dE}{dx} \right\rangle \Delta \ell$$

Verifica della simmetria (1)

• Per μ passanti lungo \hat{z} deve valere:

$$\langle n_{\gamma_{PMT_1}} \rangle = \langle n_{\gamma_{PMT_2}} \rangle$$

(Muone incidente lungo l'asse z)

Verifica della simmetria (2)

Segnali luminosi

- Intensità luminosa al fotocatodo in funzione del tempo
- **Ritardo** del segnale al variare di *L*
- **Durata** del segnale in funzione di *L*
- Stima della **velocità** del segnle

 $v \simeq 18.5 \text{ cm/ns} \simeq 0.62c \quad (n = 1.60 \rightarrow v_{th} = 0.625c)$

Elettromoltiplicazione

Segnale all'anodo

Conclusioni

I risultati sono generalmente concordi con la teoria e con i risultati del laboratorio:

- Effetto della diffusione multipla
- Fluttuazioni del dE/dx
- Simmetria del rivelatore
- Comportamento dei segnali temporali al variare di *L*
- Stima della velocità del segnale (0.62 *c*)

Grazie per l'attenzione

Backup

Raggi Cosmici

Al livello del mare:

- Muoni ~ 70 %
- Energia media ~ 3 GeV
- Flusso differenziale:

$$I(\theta, \phi) = \frac{dN}{dAdtd\Omega} = I(0)\cos^2(\theta)$$

29

Il generatore

$$x \sim cost$$
 con $x \in (-10 \text{ cm}, 10 \text{ cm})$
 $y \sim cost$ con $y \in (-61 \text{ cm}, 61 \text{ cm})$
 $\phi \sim cost$ con $\phi \in (0, 2\pi)$
 $\theta \sim cos^3 \theta \sin \theta$ con $\theta \in (0, \pi/2)$
 $E \sim \delta(E - E_0)$ con $E_0 = 3 \text{ GeV}$

Effetto fotoelettrico

• Efficienza quantica: 0.25 (costante)

Fotoni emessi e riassorbiti

Simulazioni in fisica delle particelle

Le **simulazioni** in fisica delle particelle hanno un ruolo fondamentale:

- **Progettazione** di rivelatori
- Confronto tra risultati sperimentali e previsioni teoriche

36

Perdita d'energia (teoria)

$$-\left\langle \frac{dE}{dx}\right\rangle = 4\pi N_e r_e^2 m_e c^2 \frac{z^2}{\beta^2} \left(\ln \frac{2m_e c^2 \beta^2 \gamma^2}{I} - \beta^2 - \frac{\delta(\gamma)}{2}\right)$$
 (Formula di Bethe-Block)

