$$\left(\begin{array}{c} \left[\begin{array}{c} 1 & -1 \\ 6 & -4 \end{array} \right] \left[\begin{array}{c} 1 \\ 3 \end{array} \right] = \left[\begin{array}{c} 1-3 \\ 6-12 \end{array} \right] = \left[\begin{array}{c} -2 \\ -6 \end{array} \right] = \left[-2 \left[\begin{array}{c} 1 \\ 3 \end{array} \right] \quad \text{So, yes} \quad \lambda = -2.$$

(3) a)
$$\begin{bmatrix} 2-\lambda & 0 & -2 \\ 1 & 3-\lambda & 2 \\ 0 & 0 & 3-\lambda \end{bmatrix} \rightarrow dee(A-\lambda I) = 3-\lambda \cdot \begin{vmatrix} 2-\lambda & -2 \\ 0 & 3-\lambda \end{vmatrix}$$

$$\rightarrow (3-\lambda)[(2-\lambda)(3-\lambda)-0] = (3-\lambda)^2(2-\lambda) \rightarrow \lambda=2 \text{ and } \lambda=3 \text{ multiplicity } 2.$$

b) For
$$\lambda = 2$$
:
$$\begin{bmatrix} 0 & 0 & -2 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 &$$

For
$$\lambda = 3$$
: $\begin{bmatrix} -1 & 0 & -2 \\ 1 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\rightarrow \begin{bmatrix} x_1 + 2x_3 = 0 \\ y_2 = x_2 \\ y_3 \end{bmatrix}$ $\rightarrow \begin{bmatrix} -2x_3 \\ x_2 \\ x_3 \end{bmatrix}$ $\rightarrow \begin{bmatrix} -2x_3 \\ x_2 \\ x_3 \end{bmatrix}$

a)
$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, $P = \begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$