

Luiz Gustavo Lourenço Moura luiz.gustavo@gsuite.iff.edu.br

Redes neurais convolucionais (Convolutional Neural Networks (CNNs / ConvNets)

REDES NEURAIS

- O neurônio coleta sinais do canal de entrada (dendritos), processa a informação no núcleo e gera uma saída pelo axônio
- O aprendizado humano ocorre adaptativamente por meio da variação da força de ligação entre os neurônios

$$n = P_1W_1 + P_2W_2 + P_3W_3 + b$$

$$a = f(n)$$

Fonte da imagem: https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
Fonte da imagem: https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg

O Que São Redes Neurais Artificiais Profundas ou Deep Learning?

Rede neural profunda

Rede feedforward com muitas camadas ocultas.

Quantas camadas uma rede deve ter para se qualificar como profunda?

Arquiteura de Conexões

Arquitetura de Conexões

Deep Neural Networks Dimensões

- 1D Vector Entrada clássica para uma rede neural, semelhante a linhas em uma planilha. Comum em modelagem preditiva
- 2D Matrix Entrada de imagem em escala de cinza
- 3D Matrix Entrada de imagem colorida
- **nD Matrix** Entrada de ordem superior

Deep Neural Networks Classificação e Regressão

- Regressão Você espera um número como sua previsão da rede neural.
- Classificação Você espera uma classe / categoria como sua previsão da rede neural.

Uma rede neural típica

Input Layer

- A camada de entrada aceita vetores de recursos do conjunto de dados.
- As camadas de entrada geralmente têm um neurônio de bias.

Output Layer

- O resultado da rede neural.
- A camada de saída não possui um neurônio de bias.

Hidden Layers

- Camadas que ocorrem entre as camadas de entrada e saída.
- Cada camada oculta geralmente terá um neurônio de bias.

Input Layer

Hidden Layer #1

Hidden Layer #2

Output Layer

Cálculo no Neurônio

$$f(x, heta) = \phi(\sum_i (heta_i \cdot x_i))$$

Funções de Ativação

A função ReLU é calculada da seguinte forma:

$$\phi(x) = \max(0,x)$$

O Softmax é calculado da seguinte forma:

$$\phi_i(z) = rac{e^{z_i}}{\sum\limits_{j \in group} e^{z_j}}$$

A função de ativação Softmax é útil apenas com mais de um neurônio de saída. Mostra a probabilidade de cada uma das classes como sendo a escolha correta.

A função de ativação linear é essencialmente uma função de ativação usada para problemas de regressão:

$$\phi(x) = x$$

Normalização

- Uma transformação usual durante o treinamento de uma RNA é normalizar o conjunto de dados de treinamento de acordo com a distribuição normal padrão (i.e., média igual a zero e variância igual a 1) para evitar problemas de comparação devido às diferentes escalas usadas nos dados.
- A Normalização em Lote (Batch Normalization) é aplicada em cada mini-lote, para aumentar a eficiência durante a aplicação da transformação
- Tecnicas:
 - One Hot Encoding
 - Range
 - Escore Z

$$z = \frac{x - \mu}{\sigma}$$

Conjunto de Validação e Early Stopping

Conjunto de Validação e Early Stopping

Treinamento com Cross Validation

Redes neurais convolucionais (CNN)

- Usado para visão computacional
- Carros autônomos, detecção de pedestres
- Em geral, melhor do que SVM (support vector machines)

Aplicações

- WaveNet
- QuickDraw
- Convolutional Neural Networks (CNNs / ConvNets)

Aplicações

Aplicações

MLxDL

VISÃO GERAL DAS REDES NEURAIS CONVOLUCIONAIS

Fonte da imagem: https://commons.wikimedia.org/wiki/File:Artificial neural network.svg

Camadas de Convolução

DETECTORES DE CARACTERÍSTICAS

- As convoluções usam uma matriz para varrerem a imagem e aplicar um filtro para obter certo efeito
- Kernel é uma matriz para aplicar efeitos como embaçamento
- Selecionam as características mais importantes da imagem (pixels mais importantes)
- As convoluções preservam a relação espacial entre os pixels FEATURE MAPS

DETECTORES DE CARACTERÍSTICAS

Exemplo on-line: http://setosa.io/ev/image-kernels/

Padding

0	0	0	0	0	0			0	0	0	0	0	0		0	0	0	0	0	0						
0	156	155	156	158	158			0	167	166	167	169	169		0	163	162	163	165	165	••••					
0	153	154	157	159	159			0	164	165	168	170	170		0	160	161	164	166	166						
0	149	151	155	158	159			0	160	162	166	169	170		0	156	158	162	165	166						
0	146	146	149	153	158			0	156	156	159	163	168		0	155	155	158	162	167						
0	145	143	143	148	158			0	155	153	153	158	168		0	154	152	152	157	167						
		V																								
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)																										
		-1 0 0	-1 1	1 -1 1						1 1 1	0 -1 0	0 -1 -1					0 0 1	1 1 -1	1 0 1							
	Ke			nel #] 1 1				L Ke	200		nel #	<u>†</u> 2			Ke	rnel			ta						
	ICC	THE		iiici t	, 				ice	inci		iiici i	T Z			I.C	THE	П	ilici 7	,5			(Outp	ut	
			$\downarrow \downarrow$								Û							Ţ				-25				
		3	80			+	-Si			-	49	8			+		-	164	+	1 =	-25	· ·			8 (0	
																				$\hat{\parallel}$		- E				2704
																			Ri	∐ ias =	1				X	
																			5	45						

RELU (RECTIFIED LINEAR UNIT)

Usado para adicionar não linearidade no mapa de características Aprimora a dispersão do mapa de características T-SHIRT/TOP **TROUSER** Hidden Input **PULLOVER** Output CONVOLUTION **DRESS FLATTENING POOLING** COAT SANDAL **SHIRT SNEAKER KERNELS/** BAG **POOLING FEATURE FILTERS** ANKLE BOOT $f(y) \uparrow$ **DETECTORS** f(y) = yf(y) = 0**CONVOLUTIONAL LAYER POOLING LAYER** (DOWNSAMPLING)

RELU (RECTIFIED LINEAR UNITS)

• O gradiente não desaparece se comparado com a função sigmoide

7	10	-5	2	1		
1	0	2	3	-6		
1	17	-5	0	0		
0	1	1	1	0		
0	0	-8	12	1		

	7	10	0	2	1
	1	0	2	3	0
>	1	17	0	0	0
	0	1	1	1	0
	0	0	0	12	1

Camadas de Max Pooling

POOLING (DOWNSAMPLING)

- Reduz a dimensionalidade do mapa de características
- Aumenta a eficiência computacional, preservando as características
- Ajuda o modelo a generalizar melhor, prevenindo o overfitting
- · Se um pixel muda de lugar, o mapa será o mesmo

1	1	3	4					6	Hidden Input
3	6	2	8	MAX POOLING	6	8	FLATTENING	8	Output
3	9	1	0	2x2	9	4		9	
1	3	3	4	STRIDE = 2				4	

ARQUITETURA LENET

- Arquitetura desenvolvida por Yann LeCun
- Artigo original: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
- C: Convolution layer, S: subsampling layer, F: Fully Connected layer

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

ARQUITETURA LENET

STEP 1: THE FIRST CONVOLUTIONAL LAYER #1

- \cdot Input = 32x32x1
- •Output = 28x28x6
- •Output = (Input-filter+1)/Stride* => (32-5+1)/1=28
- ·Used a 5x5 Filter with input depth of 3 and output depth of 6
- ·Apply a RELU Activation function to the output
- •pooling for input, Input = 28x28x6 and Output = 14x14x6

STEP 2: THE SECOND CONVOLUTIONAL LAYER #2

- \cdot Input = 14x14x6
- •Output = 10x10x16
- ·Layer 2: Convolutional layer with Output = 10x10x16
- •Output = (Input-filter+1)/strides => 10 = 14-5+1/1
- ·Apply a RELU Activation function to the output
- •Pooling with Input = 10x10x16 and Output = 5x5x16

STEP 3: FLATTENING THE NETWORK

•Flatten the network with Input = 5x5x16 and Output = 400

STEP 4: FULLY CONNECTED LAYER

·Layer 3: Fully Connected layer with Input = 400 and Output = 120 ·Apply a RELU Activation function to the output

STEP 5: ANOTHER FULLY CONNECTED LAYER

·Layer 4: Fully Connected Layer with Input = 120 and Output = 84 ·Apply a RELU Activation function to the output

STEP 6: FULLY CONNECTED LAYER

·Layer 5: Fully Connected layer with Input = 84 and Output = 43

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

* Stride is the amount by which the kernel is shifted when the kernel is passed over the image.

FrameWorks

Framework	Plataforma	Escrito em	Interface em	Suporte ao CUDA	Suporte ao OpenCL	Suporte a RNN's	Suporte a CNN's	Processamento Paralelo	
Tensorlow	Linux, MacOSx e Windows	C++ e Python	Python, C, C++	Sim	Em desenvolvimento	Sim	Sim	Sim	
Theano	Diversas Plataformas	Python	Python	Sim	Em desenvolvimento	Sim	Sim	Sim	
Caffe	Linux, MacOSx e Windows	C++	Python e Matlab	Sim	Em desenvolvimento	Sim	Sim	Parcial	
Torch	Linux, MacOSx, Windows, Android, iOS	C, Lua	Lua, C, C++, PyTorch	Sim	Em desenvolvimento	Sim	Sim	Sim	
Keras	Linux, MacOSx e Windows	Python	Python	Sim	Em desenvolvimento	Sim	Sim	Sim	
CNTK	Windows, Linux, MacOSx (via docker)	C++	Python, C++ (.NET em breve)	Sim	Não	Sim	Sim	Sim	
Deeplearning4j	Linux, MacOSx, Windows e Android	C, C++	Java, Scala, Clojure, Python (Keras)	Sim	Em desenvolvimento	Sim	Sim	Sim	
MXNet	Linux, MacOSx, Windows, Android, iOS e Amazon AWS	C++	Python, C++, R, Matlab, Scala, Julia, Go, Perl e Java Script	Sim	Em desenvolvimento	Sim	Sim	Sim	

PROJETO CLASSIFICAÇÃO DE ROUPAS

PROJETO CLASSIFICAÇÃO DE ROUPAS

- Imagens 28x28 em escala de cinza com valores na faixa de 0 até 255
- '0' representa o preto e '255' representa o branco
- Cada imagem é representada por uma linha com 784 posições

