

Definición y función fundamental

El sistema de archivos es el elemento del sistema operativo responsable de la administración de los archivos del almacenamiento secundario. Constituye un mecanismo de abstracción esencial.

Funciones principales

- Visión uniforme para todos los sistemas de almacenamiento
- Define una unidad lógica de almacenamiento: archivo
- Gestiona estructura, nombres, acceso y protección
- Manejo fácil y lógico, ocultando particularidades físicas

Requisitos esenciales

- Acceso directo a información
- Gestión eficiente de bloques de memoria
- Manejo de archivos grandes
- Información permanente y actualizada

- Control de acceso concurrente
- Protección contra accesos no autorizados
- Permitir crear, modificar y borrar archivos

Tipos de sistemas de archivos

Sistemas clásicos

FAT / FAT16

- Particiones< 2 GB
- Compatible con MS-DOS, Windows
- No distingue mayúsculas/minúsculas

NTFS

- Nombres hasta 256 caracteres
- Journaling, cifrado y compresión
- Volúmenes hasta 16 TB

ext3fs

FAT32

• Volumen máximo: 32 TB

• Particioneshasta 2 TB

• Unidades de asignación: 4 KB

Archivos hasta 4 GB

- Registro de diario para recuperación
- Distingue mayúsculas/minúsculas

Sistemas modernos

ext4fs

- Volumen máximo:1 EB
- Journaling mejorado
- Soporte para timestamps al nanosegundo

Btrfs

- Copy-on-write
- · Autocuración mediante checksums
- RAID integrado

APFS

- Optimizado para SSD y flash
- Snapshotsy clones eficientes
- Encriptación nativa

ZFS / ReFS

- Protección contra corrupción
- Pools de almacenamiento
- Compresión transparente

Estructura y componentes

Directorios y árbol jerárquico

- Directorio raíz : contiene todos los demás directorios y archivos
- Organización de archivos en categorías lógicas
- Facilita la localización de archivos
- Implementa permisos a nivel de directorio
- Crea espacios de nombres separados

{} Metadatos y atributos

- Identificación
- Nombre: identificador único
- Tipo: texto, imagen, ejecutable
- Propietario: usuario o grupo

- Características
- Fecha/Hora: creación, modificación
- Tamaño: espacio ocupado
- Permisos: lectura, escritura, ejecución

Tablas de asignación

• Estructuras para gestionar la asignación de bloques

III FAT: Tabla de asignación

III NTFS: MFT con metadatos

= ext4: "extents" para bloques

▼ ZFS/Btrfs: Árboles B

Operaciones básicas con archivos

Los usuarios y aplicaciones realizan diversas operaciones fundamentales con los archivos:

Creación

Añadir un **nuevo archivo** al sistema

Apertura

Localizar e identificar un archivo existente

Lectura

Obtener **datos** desde un archivo

Escritura

Almacenar datos en un archivo

Renombrado

Modificar el identificador del archivo

Copia

Duplicar un archivo en otra ubicación

Movimiento

Transferir un archivo a otra ubicación

Eliminación

Borrar un archivo del sistema

Gestión de espacio y optimización

Fragmentación

Bloques dispersos en el disco

- Los bloques de un archivo están dispersos en el disco
- Ralentiza el acceso a los datos
- Técnicas para minimizarla:

Asignación contigua

Bloques adyacentes

⇔

Listas enlazadas

Cada bloque apunta al siguiente

1 2 3

Asignación por índices

Estructura de mapeo

>> Desfragmentación

Reorganización de bloques

- Sistemas modernos han **reducido la necesidad** de desfragmentación
- Mediante:

Algoritmos inteligentes

Asignación óptima

Soporte para SSD

No se benefician de desfragmentación

Herramientas automatizadas

Operación en segundo plano

‡ Compresión transparente

Reducción de espacio

- NTFS, APFS, Btrfs, ZFS soportan compresión transparente
- Reduce espacio sin intervención del usuario
- Mejora rendimiento con CPU potente y almacenamiento lento

Seguridad y protección

Permisos de acceso

- Listas de Control de Acceso
- Permisos detallados por usuario/grupo

Permisos Unix

- Lectura, escritura, ejecución
- Para usuario, grupo y otros

Integridad del sistema

- Protección contra modificaciones no autorizadas
- Ej: SIP en macOS

Encriptación

Completa del volumen

- BitLocker (Windows)
- FileVault (macOS)
- LUKS (Linux)

Por archivo/directorio

- Encriptación selectiva
- Mayor flexibilidad

Transparente

- Sistema maneja encriptación/desencriptación
- Sin intervención del usuario

"La seguridad de los sistemas de archivos es fundamental para proteger la integridad y confidencialidad de los datos almacenados."

Protección contra corrupción

Checksums

- Verificación de integridad
- Sumas de comprobación

Autocuración

- ZFS y Btrfs
- Corrección usando redundancia

Snapshots

- Recuperación de versiones anteriores
- Puntos de restauración

Tendencias actuales en sistemas de archivos

Optimización para SSD/NVMe

- Reducción de escrituras innecesarias
- Soporte para TRIM/UNMAP
- Gestión eficiente del wear leveling

Integración con nube

- Sincronización transparente
- Espacios de nombres unificados
- Gestión inteligente de caché

Protección contra ransomware

- Versionado automático de archivos
- Snapshots inmutables
- Detección de patrones de ataque

Almacenamiento no volátil

- Integración con Intel **Optane**
- Algoritmos de journaling optimizados
- Acceso a nivel de byte en lugar de bloque

"Los sistemas de archivos modernos evolucionan para adaptarse a nuevas tecnologías y necesidades, desde SSD hasta IA y almacenamiento en la nube."

Inteligencia artificial

- Predicción de patrones de acceso
- Optimización automática de localización
- Gestión inteligente de caché
- Detección de anomalías en acceso

Comparación de sistemas de archivos modernos

Sistema	Plataforma	Tamaño máximo	Características destacadas	Casos de uso
□ NTFS	Windows	16 TB (volumen)	Permisos avanzados Cuotas de disco Compresión Encriptación	Sistemas Windows Almacenamiento local
□ APFS	macOS/iOS	8 ZB (teórico)	Optimizado para SSD Snapshots Encriptación nativa Clones eficientes	Dispositivos Apple Almacenamiento flash
■ ext4	Linux	1 EB (volumen)	Alta compatibilidad Journaling Soporte extendido Estabilidad probada	Sistemas Linux Servidores
Btrfs	Linux	16 EB (teórico)	Copy-on-write Snapshots avanzados RAID integrado Autocuración	Sistemas Linux avanzados Datos críticos
∷ ZFS	Unix/Linux	16 EB (teórico)	Protección contra corrupción Snapshots Pools de almacenamiento Compresión eficiente	Almacenamiento empresarial NAS Servidores de datos
■ ReFS	Windows Server	35 PB (teórico)	Resistencia Storage Spaces Protección automática	Entornos empresariales Almacenamiento crítico

Features		Ext4	XFS	BtrFS	ZFS
Resize	Online Grow	Yes	Yes	Yes	Yes
	Online Shrink	No	No	Yes	No
Capabilities	Offline Grow	Yes	Yes	No	No
	Offline Shrink	Yes	No	No	No
RAID Solution Provided		No	No	Yes	Yes
Volume Manager		LVM/MD	LVM/MD	LVM/MD or BtrFS	ZFS
RBD support		Yes	Yes	Yes	Yes

Comparación de características entre sistemas de archivos modernos