EXPERIMENT 6

Implement program to apply moving average smoothing for data preparation and time series forecasting

AIM:

To implement program to apply moving average smoothing for data preparation and time series forecasting

PROCEDURE:

mport Libraries – Load numpy, pandas, matplotlib, and google.colab.files.

- 2 Upload Dataset Use files.upload() to upload a CSV file dynamically.
- **3Load & Preview Data** Read the CSV using pd.read_csv() and inspect using df.head().
- 4 Select Time Series Column Choose a numerical column (e.g., "rainfall", "temperature").
- **5** Plot Original Data Use plt.plot() to visualize raw time series trends.
- **6** Apply Moving Average:
 - Simple Moving Average (SMA) → rolling(window).mean()
 - Exponentially Weighted Moving Average (EWMA) \rightarrow ewm(span).mean()
- **Plot Smoothed Data** Compare SMA & EWMA with original data using matplotlib.
- **B**Display Final Results Print last few values of original, SMA, and EWMA series.
- **Interpret & Adjust** Fine-tune window/span values for better smoothing.

CODE:

import numpy as np import pandas as pd import matplotlib.pyplot as plt from google.colab import files

Step 1: Upload the CSV File

```
uploaded = files.upload()
#Get the uploaded file name dynamically
file_name = list(uploaded.keys())[0]
# Step 2: Load the Dataset
df = pd.read_csv(file_name)
#Display first few rows
print("\nFirst few rows of the dataset:")
print(df.head())
# Step 3: Select a Time Series Column
column_name = "rainfall" # Change this to the column you want
if column name not in df.columns:
  raise ValueError(f"Column '{column_name}' not found in dataset. Available columns:
{df.columns}")
time_series = df[column_name]
# Step 4: Plot Original Data
plt.figure(figsize=(10, 4))
plt.plot(time_series, label="Original Data", color='blue')
plt.title(f"Original Time Series Data: {column_name}")
plt.xlabel("Index")
plt.ylabel("Value")
plt.legend()
plt.show()
# Step 5: Apply Simple Moving Average (SMA)
window_size = 5 # Modify the window size as needed
sma = time_series.rolling(window=window_size).mean()
# Step 6: Apply Exponentially Weighted Moving Average (EWMA)
ewma = time_series.ewm(span=window_size, adjust=False).mean()
# Step 7: Plot Smoothed Data
plt.figure(figsize=(10, 4))
plt.plot(time_series, label="Original Data", color='blue', alpha=0.5)
```

```
plt.plot(sma, label=f"SMA (Window={window_size})", color='red')
plt.plot(ewma, label=f"EWMA (Span={window_size})", color='green')
plt.title(f"Moving Average Smoothing of {column_name}")
plt.xlabel("Index")
plt.ylabel("Value")
plt.legend()
plt.show()

# Step 8: Display the Last Few Values
print("\nOriginal Data Sample:\n", time_series.tail())
print("\nSMA Data Sample:\n", sma.tail())
print("\nEWMA Data Sample:\n", ewma.tail())
```

OUTPUT:

F.	ırst	iew	rows	or the datas	set:			
	N	Р	K	temperature	humidity	ph	rainfall	label
0	90	42	43	20.879744	82.002744	6.502985	202.935536	rice
1	85	58	41	21.770462	80.319644	7.038096	226.655537	rice
2	60	55	44	23.004459	82.320763	7.840207	263.964248	rice
3	74	35	40	26.491096	80.158363	6.980401	242.864034	rice

Origi	nal Data Sampl	.e :
2195	177.774507	7
2196	127.924610	
2197	173.322839	
2198	127.175293	
2199	140.937041	
Name:	rainfall, dty	pe: float64

SMA Data Sample:

2195	179.493152
2196	168.794657
2197	165.749094
2198	154.490436
2199	149.426858

Name: rainfall, dtype: float64

EWMA	Data	Sa	mpl	e:	
2195	-	174	.29	29	38
2196	15	58.	836	82	9
2197	16	63.	665	49	9
2198	15	51.	502	09	7
2199	14	47.	980	41	2

Name: rainfall, dtype: float64