LECTURE NOTES Linear Problems and Graphical Solutions

Learning Objectives

- 1. Differentiate a general optimization problem from a linear problem
- 2. Solve a 2-decision variable linear problem with the graphical technique

1. Differentiate general optimization problem from a linear one

a	P 1	4 •
General	tormu	lation

Maximize Z = f(x) or: Minimize Z = f(x) [x under Max to ID controls]

Subject to: $g_m(x) \le b_m, \forall m$ [for each instance m]

Linear formulation

Maximize Z = (or minimize)

such that:

$$\begin{array}{l} c_1,\,c_2,\,\ldots\,c_n=\\ a_{11},\,a_{12},\,\ldots\,a_{1n},\,a_{21},\,a_{22},\,\ldots\,a_{2n},\,\ldots,\,a_{m1},\,a_{m2},\,\ldots\,a_{mn}=\\ n=\\ m= \end{array}$$

More concisely:

Maximize (of minimize) Z = Such that $Ax \le b$

c = [1 n] vector of A = [m x n] matrix of b = [1 x m] vector of

2. Graphical Solution Technique

- 1. Formulate as a linear problem
- 2. Plot each decision variable on an axis
- 3. Plot each constraint
- 4. Identify the feasible region from the constraints
- 5. Plot contours of the objective function until reach maximum within the feasible region

Example 1. (Chapter 2, Problem 1).

How many acres of eggplants and tomatoes to plant?