Exercice 1: Résoudre une inéquation du second degré

Résoudre dans R les inéquations suivantes :

1.
$$-5x^2 + 10x - 8 \ge 0$$

2.
$$-2x^2 - 4x + 16 \ge 0$$

1. Soit P le polynôme défini pour tout x de $\mathbb R$ par $P(x)=-5x^2+10x-8$. On cherche à résoudre $P(x)\geqslant 0$.

Pour cela, on cherche ses racines éventuelles.

$$\Delta = 10^2 - 4 \times (-5) \times (-8) = -60$$

 $\Delta < 0$ donc le polynôme ${\cal P}$ n'admet pas de racine.

Il est toujours du signe de a = -5 < 0, donc P(x) < 0 pour tout x de \mathbb{R} .

On en déduit $S = \emptyset$.

2. Soit P le polynôme défini pour tout x de \mathbb{R} par $P(x) = -2x^2 - 4x + 16$.

On cherche à résoudre $P(x) \geqslant 0$.

Pour cela, on cherche ses racines éventuelles.

$$\Delta = (-4)^2 - 4 \times (-2) \times 16 = 144$$

 $\Delta>0$ donc le polynôme admet deux racines : $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$.

$$x_1 = \frac{4 - \sqrt{144}}{-4} = 2$$

$$x_2 = \frac{4 + \sqrt{144}}{-4} = -4$$

On sait qu'un polynôme du second degré est du signe de a à l'extérieur de ses racines.

Comme a=-2<0, on peut dire que $P(x)\geq 0$ sur $S=]-\infty;-4]\cup [2;+\infty[$

On peut résumer le signe du polynôme dans un tableau de signes :

x	$-\infty$		-4		2		$+\infty$
$-2x^2 - 4x + 16$		_	0	+	0	_	

Finalement S = [-4; 2].