CS1231S TUTORIAL #5

Relations & Partial orders

Learning objectives of this tutorial

Partial orders

- Determining whether a relation is antisymmetric
- Determining whether a relation is asymmetric
- Reasoning about partial orders
- Drawing Hasse diagrams of partial orders
- Knowing about comparability and compatibility of elements in a partial order
- Distinguishing minimal/maximal elements from smallest/largest elements
- Understanding linearizations

Lexicographic order of strings.

Let $A = \{a, b\}$. Define a relation R on A by: x R y iff x = y or x comes before y for all $x, y \in A$. S to be the set of all strings over alphabet A. Define the partial order \leq on S to be the lexicographic order specified in Theorem 8.5.1.

For any two strings in S, $a_1a_2\cdots a_m$ and $b_1b_2\cdots b_n$, where $m,n\in\mathbb{Z}^+$,

- 1. If $m \le n$ and $a_i = b_i$ for all $i = 1, 2, \dots, m$, then $a_1 a_2 \cdots a_m \le b_1 b_2 \cdots b_n$.
- 2. If for some integer k with $1 \le k \le m$ and $1 \le k \le n$, $a_i = b_i$ for all $i = 1, 2, \dots, k-1$, and $a_k \ne b_k$, but $a_k R b_k$, then $a_1 a_2 \dots a_m \le b_1 b_2 \dots b_n$.
- 3. If ε is the null string and s is any string in S, then $\varepsilon \leqslant s$.
- (a) $aab \leq aaba$ (a) True by (1).

(e) $bbab \leq bbaa$ (e) False.

(b) $bbab \leq bba$ (b) False.

(f) $ababa \leq ababaa$ (f) True by (1).

(c) $\varepsilon \leq aba$ (c) True by (3).

(g) $bbaba \leq bbabb$ (g) True by (2).

(d) $ababb \leq abb$ (d) True by (2).

Let R be a binary relation on a non-empty set A. Let $x, y \in A$. Define a relation S on A by: $x S y \Leftrightarrow x = y \lor x R y$ for all $x, y \in A$. Show that (a) S is reflexive; (b) $R \subseteq S$; and (c) if S' is another reflexive relation on A and $R \subseteq S'$, then $S \subseteq S'$. What is this relation S called?

(a)

- 1. Let $x \in A$.
- 2. x = x, so x S x by the definition of S.
- 3. Therefore, *S* is reflexive.

Let R be a relation on a set A. R is **reflexive** iff $\forall x \in A (xRx)$. Let R be a binary relation on a non-empty set A. Let $x, y \in A$. Define a relation S on A by: $x \in S$ $y \Leftrightarrow x = y \lor x \in R$ y for all $x, y \in A$. Show that (a) S is reflexive; (b) $R \subseteq S$; and (c) if S' is another reflexive relation on A and $R \subseteq S'$, then $S \subseteq S'$. What is this relation S called?

(b)

- 1. Suppose $(x, y) \in R$, that is, x R y. Aim: To arrive at $(x, y) \in S$.
- 2. So *x S y* by the definition of *S*.
- 3. So $(x, y) \in S$.
- 4. Therefore, $R \subseteq S$ by the definition of \subseteq .

- Let R be a binary relation on a non-empty set A. Let $x, y \in A$. Define a relation S on A by: $x S y \Leftrightarrow x = y \lor x R y$ for all $x, y \in A$. Show that (a) S is reflexive; (b) $R \subseteq S$; and (c) if S' is another reflexive relation on A and $R \subseteq S'$, then $S \subseteq S'$. What is this relation S called?
 - (c) 1. Suppose $(x, y) \in S$.
 - 2. Then x S y, which means $x = y \lor x R y$ by the defn of S.
 - 3. Case 1: x = y3.1. Then x S' y since S' is reflexive.
 - 3.2. So $(x, y) \in S'$.
 - 4. Case 2: x R y4.1. Then $(x, y) \in R \subseteq S'$. 4.2. Then $(x, y) \in S'$.
 - Aim: 5. In all cases, $(x, y) \in S'$.
 - 6. Therefore, $S \subseteq S'$.

S is called the **reflexive closure** of R. It is the smallest relation on A that is reflexive and contains R as a subset.

Q3. Consider the "divides" relation on the following set. Draw a Hasse diagram, and find all minimal, maximal, smallest and largest elements.

(a)
$$A = \{1,2,4,5,10,15,20\}.$$

Minimal: 1

Maximal: 15, 20

Smallest: 1

Largest: None

Let a set A be partially ordered with respect to a relation \leq and $c \in A$.

- 1. c is a maximal element of A iff $\forall x \in A \ (c \le x \Rightarrow c = x)$
- 2. c is a minimal element of A iff $\forall x \in A \ (x \le c \Rightarrow c = x)$.
- 3. c is the **largest element** of A iff $\forall x \in A \ (x \le c)$.
- 4. c is the **smallest element** of A iff $\forall x \in A \ (c \le x)$.

O3. Consider the "divides" relation on the following set. Draw a Hasse diagram, and find all minimal, maximal, smallest and largest elements.

(b) $A = \{2, 3, 4, 6, 8, 9, 12, 18\}$

(b)
$$A = \{2,3,4,6,8,9,12,18\}.$$

Minimal: 2,3

Maximal: 8,12, 18

Smallest: None

Largest: None

Let a set A be partially ordered with respect to a relation \leq and $c \in A$.

- 1. c is a maximal element of A iff $\forall x \in A \ (c \le x \Rightarrow c = x.)$
- 2. c is a **minimal element** of A iff $\forall x \in A \ (x \le c \Rightarrow c = x)$.
- 3. c is the **largest element** of A iff $\forall x \in A \ (x \le c)$.
- 4. c is the **smallest element** of A iff $\forall x \in A \ (c \le x)$.

Q₄. Let A be a set and $\wp(A)$ the power set of A. Prove that the binary relation \subseteq on $\wp(A)$ is a partial order.

- 1. (Reflexivity) Take any $S \in \wp(A)$,
 - **1.1.** $S \subseteq S$ by the definition of subset.
 - 1.2. Hence \subseteq is reflexive.
- 2. (Antisymmetry) Take any $S, T \in \wp(A)$,
 - 2.1. Suppose $S \subseteq T$ and $T \subseteq S$.
 - 2.2. Then S = T by the definition of set equality.
 - 2.3. Hence \subseteq is antisymmetric.
- 3. (Transitivity)
 - 3.1. \subseteq is transitive by Theorem 6.2.1.
- 4. Therefore \subseteq on $\wp(A)$ is a partial order.

Theorem 6.2.1.

For all sets A, B, C, $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$.

Let R be a relation on a set A.

- 1. R is **reflexive** iff $\forall x \in A (xRx)$.
- 2. R is **antisymmetric** iff $\forall x, y \in A \ (x R y \land y R x \Rightarrow x = y)$.
- 3. R is **transitive** iff $\forall x, y, z \in A \ (xRy \land yRz \Rightarrow xRz)$.

- Q5. Let $B = \{0,1\}$ and define the binary relation R on $B \times B$ as follows: $\forall (a,b), (c,d) \in B \times B \ \big((a,b) \ R \ (c,d) \Leftrightarrow (a \leq c) \land (b \leq d) \big).$
 - (a) Prove that R is a partial order.
 - 1. (Reflexivity) Take any $(a, b) \in B \times B$, 1.1. $a \le a$ and $b \le b$.

Let R be a relation on a set A.

- 1. R is **reflexive** iff $\forall x \in A (xRx)$.
- 2. R is antisymmetric iff $\forall x, y \in A \ (x R \ y \land y R \ x \Rightarrow x = y)$.
- Aim: 1.2. So (a,b) R (a,b) by the definition of R.
 - **1.3.** Hence *R* is reflexive.
 - 2. (Antisymmetry) Take any (a, b), $(c, d) \in B \times B$,
 - 2.1. Suppose (a,b) R (c,d) and (c,d) R (a,b).
 - 2.2. Then $a \le c, b \le d, c \le a$ and $d \le b$ by the definition of R.
 - 2.3. Then $\underline{a} = \underline{c}$ and $\underline{b} = \underline{d}$ by the antisymmetry of \leq .
- Aim: 2.4. So (a,b)=(c,d) by equality of ordered pairs.
 - 2.5. Hence *R* is antisymmetric.

- Q5. Let $B = \{0,1\}$ and define the binary relation R on $B \times B$ as follows: $\forall (a,b), (c,d) \in B \times B \ \big((a,b) \ R \ (c,d) \Leftrightarrow (a \leq c) \land (b \leq d) \big).$
 - (a) Prove that R is a partial order.
 - 3. (Transitivity) Take any $(a, b), (c, d), (e, f) \in B \times B$,
 - 3.1. Suppose (a,b) R (c,d) and (c,d) R (e,f).
 - 3.2. Then $a \le c, b \le d, c \le e$ and $d \le f$ by the definition of R.
 - 3.3. Then $\underline{a \leq e}$ and $\underline{b \leq f}$ by the transitivity of \leq .
 - Aim: 3.4. So (a,b) R (e,f) by the definition of R .
 - 3.5. Hence R is transitive.
 - 4. Therefore R on $B \times B$ is a partial order.

Let R be a relation on a set A.

- 1. R is **reflexive** iff $\forall x \in A (xRx)$.
- 2. R is antisymmetric iff $\forall x, y \in A \ (x R \ y \land y R \ x \Rightarrow x = y)$.
- 3. R is **transitive** iff $\forall x, y, z \in A \ (xRy \land yRz \Rightarrow xRz)$.

O5. Let $B = \{0,1\}$ and define the binary relation R on $B \times B$ as follows: $\forall (a,b), (c,d) \in B \times B ((a,b) R (c,d) \Leftrightarrow (a \leq c) \land (b \leq d)).$

- (b) Draw the Hasse diagram for R.
- (c) Find the maximal, largest, minimal and smallest elements.
- (d) Is $(B \times B, R)$ well-ordered?

Maximal: (1,1)

Largest: (1,1)

Minimal: (0,0)

Smallest: (0,0)

No well-ordered.

Reason: It is not even a total order, as (0,1) and (1,0) are not comparable.

Let a set A be partially ordered with respect to a relation \leq and $c \in A$.

- 1. c is a maximal element of A iff $\forall x \in A \ (c \le x \Rightarrow c = x.)$
- 2. c is a minimal element of A iff $\forall x \in A \ (x \le c \Rightarrow c = x)$.
- 3. c is the **largest element** of A iff $\forall x \in A \ (x \le c)$.
- 4. c is the **smallest element** of A iff $\forall x \in A \ (c \le x)$.

Let R be a binary relation on a set A.

- R is antisymmetric iff $\forall x, y \in A \ (x R y \land y R x \Rightarrow x = y)$.
- R is asymmetric iff $\forall x, y \in A \ (x R y \Rightarrow y \cancel{R} x)$.

Find a binary relation on A that is ...

- both asymmetric and antisymmetric.
- not asymmetric but antisymmetric.
- asymmetric but not antisymmetric.

Let
$$A = \{a, b, c\}$$
.

neither asymmetric nor antisymmetric.

(a)
$$R = \{(a, b), (a, c)\}$$
.

b)
$$R = \{(a, a), (b, c)\}.$$

(a)
$$R = \{(a,b), (a,c)\}.$$
 (b) $R = \{(a,a), (b,c)\}.$ (c) (d) $R = \{(a,b), (b,a), (a,c)\}.$

- \bigcirc 6. Let R be a binary relation on a set A.
 - R is antisymmetric iff $\forall x, y \in A \ (x R y \land y R x \Rightarrow x = y)$.
 - R is asymmetric iff $\forall x, y \in A \ (x R y \Rightarrow y \cancel{R} x)$.

Find a binary relation on A that is ...

To prove:

(c) asymmetric but not antisymmetric.

Every asymmetric relation is antisymmetric.

- 1. Take any binary relation R on a set A.
- 2. Suppose R is asymmetric.,
 - 2.1. Then $\forall x, y \in A \ (x R y \Rightarrow y \cancel{R} x)$ by the definition of asymmetry.
 - 2.2. $\equiv \forall x, y \in A \ (x \not R \ y \lor y \not R \ x)$ by the implication law.
 - 2.3. $\Rightarrow \forall x, y \in A((x \cancel{R} y \lor y \cancel{R} x) \lor x = y)$ by generalization.
 - 2.4. $\equiv \forall x, y \in A \ (\sim (x R y \land y R x) \lor x = y)$ by the De Morgan's law.

Aim:

- 2.5. $\equiv \forall x, y \in A \ (x R y \land y R x \Rightarrow x = y)$ by the implication law.
- 3. Line 2.5 is the definition of antisymmetry, hence R is antisymmetric.

O7. Consider a set A and a total order \leq on A. Show that all minimal elements are smallest.

A relation R on a set A is a **total order** iff R is a partial order and $\forall x, y \in A (x R y \lor y R x)$.

Let \leq be a partial order on a set A, and $c \in A$.

- c is a minimal element iff $\forall x \in A \ (x \le c \Rightarrow c = x)$.
- c is a smallest element iff $\forall x \in A \ (c \leq x)$.

Totality: Everything is either below or above.

O7. Consider a set A and a total order \leq on A. Show that all minimal elements are smallest.

A relation R on a set A is a **total order** iff R is a partial order and $\forall x, y \in A (x R y \lor y R x)$.

- 1. Let $c \in A$ that is minimal with respect to \leq
- 2. Pick any $x \in A$.
- 3. As \leq is a total order, either $x \leq c$ or $c \leq x$.
- 4. Case 1: $x \leq c$.
 - 4.1. Then x = c by the minimality of c.
 - 4.2. So $c \le x$ by the reflexibility of \le .
- 5. Case 2: $c \leq x$. 5.1. Then $c \leq x$.

Aim:

6. So $c \leq x$ in all cases, i.e., c is the smallest element.

Let \leq be a partial order on a set A, and $c \in A$.

- c is a minimal element iff $\forall x \in A \ (x \le c \Rightarrow c = x)$.
- c is a smallest element iff $\forall x \in A \ (c \le x)$.

O8. Consider the "divides" relation on $A = \{1, 2, 4, 5, 10, 15, 20\}$. List out the pairs of distinct elements in A that are (a) comparable; (b) compatible.

Let \leq be a partial order on a set A, and $a, b \in A$.

- a, b are comparable if $a \le b$ or $b \le a$.
- a, b are compatible if there is $c \in A$ such that $a \le c$ and $b \le c$.
- (a) Comparable: {1,2}, {1,5}, {1,4}, {1,10}, {1,15}, {1,20}, {2,4}, {2,10}, {2,20}, {5,10}, {5,15}, {5,20}, {4,20}, {10,20}.
- (b) Compatible: {1,2}, {1,5}, {1,4}, {1,10}, {1,15}, {1,20}, {2,4}, {2,5}, {2,10}, {2,20}, {5,4}, {5,10}, {5,15}, {5,20}, {4,10}, {4,20}, {10,20}.

State whether the following is true or false and justify your answer.

Let \leq be a partial order on a set A, and $a, b \in A$.

- a, b are comparable if $a \le b$ or $b \le a$.
- a, b are compatible if there is $c \in A$ such that $a \le c$ and $b \le c$.
- (a) In all partially ordered set, any two comparable elements are compatible.

Yes

The 2 cases are symmetrical, so may just use WLOG to prove one of the cases.

- 1. Let $a, b \in A$ such that a, b are comparable.
- 2. Then either $a \le b$ or $b \le a$ by the definition of comparability.
- 3. Case 1: $a \leq b$.

3.1. Let
$$c = b$$
.

3.2. Then
$$a \le b = c$$
 by assumption and $b \le b = c$ by reflexivity.

3.3. So
$$a$$
, b are compatible by the definition of compatibility.

4. Case 2: $b \leq a$.

4.1. Let
$$c = a$$
.

4.2. Then
$$b \le a = c$$
 by assumption and $a \le a = c$ by reflexivity.

- 4.3. So a, b are compatible by the definition of compatibility.
- 5. So a, b are compatible in any case.

State whether the following is true or false and justify your answer.

Let \leq be a partial order on a set A, and $a, b \in A$.

- a, b are comparable if $a \le b$ or $b \le a$.
- a, b are compatible if there is $c \in A$ such that $a \le c$ and $b \le c$.
- (b) In all partially ordered set, any two compatible elements are comparable.

No

- 1. Consider the "divides" relation | on \mathbb{Z}^+ , which is a partial order.
- 2. Then 2 and 3 are compatible as $2 \mid 6$ and $3 \mid 6$.
- 3. But 2 and 3 are not comparable as $2 \nmid 3$ and $3 \nmid 2$.

Q10. Let
$$A = \{a, b, c, d\}$$
. Consider the following partial order on A : $R = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (c, c), (d, d)\}$.

Hasse diagram of R

Hasse diagrams of all the linearizations of R

Let \leq be a partial order on a set A. A *Hasse diagram* of \leq satisfises the following condition for all $x, y \in A$: If x < y and no $z \in A$ is such that x < z < y, then $x \in A$ is placed below $x \in A$ and there is a line joining $x \in A$ to $x \in A$ to $x \in A$.

A relation R on a set A a *total order* iff R is a partial order and $\forall x, y \in A (x R y \lor y R x)$.

A *linearization* of a partial order \leq on a set A is a total order \leq * on A such that $\forall x, y \in A \ (x \leq y \Rightarrow x \leq^* y)$.

Kahn's Algorithm. Pick out a minimal element and place it at the bottom of the total order. Repeat until nothing is left.

Q10. Let
$$A = \{a, b, c, d\}$$
. Consider the following partial order on A : $R = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (c, c), (d, d)\}$.

Hasse diagram of *R*

Hasse diagrams of all the linearizations of R

Let \leq be a partial order on a set A. A *Hasse diagram* of \leq satisfises the following condition for all $x, y \in A$: If x < y and no $z \in A$ is such that x < z < y, then $x \in A$ is placed below $y \in A$ and there is a line joining $x \in A$ to y, else no line joins $x \in A$.

A relation R on a set A a *total order* iff R is a partial order and $\forall x, y \in A \ (x R y \lor y R x)$.

A *linearization* of a partial order \leq on a set A is a total order \leq * on A such that $\forall x, y \in A \ (x \leq y \Rightarrow x \leq^* y)$.

Kahn's Algorithm. Pick out a minimal element and place it at the bottom of the total order. Repeat until nothing is left.

END OF FILE