DCIT105 Mathematics for IT Professionals

Session 1 – Number Systems I: Radix

By
Solomon Mensah (PhD)
Dept. of Computer Science
smensah03@ug.edu.gh

UNIVERSITY OF GHANA

Session Outline

The key topics to be covered in the session are as follows:

- Analog vs. Digital signals
- Electronic Translators
- Decimal Number System
- Binary Number System
- Advantages of Binary Number System
- Decimal to Binary Conversion
- Binary to Decimal Conversion
- Hexadecimal to Binary Conversion
- Application Example
- Binary Coded Decimal

Topic One

NUMBER SYSTEMS I: RADIX

Introduction

- Humans use base ten (or decimal)
- The computer uses base-two (binary)
 - Because it only understands two states
 - High and Low voltage
 - -1 (+5V) and 0 (0V)
 - ON and OFF
- Need for converting numbers between these two number systems

Analog versus Digital

- Two ways of representing numerical values
 - Analog
 - Digital
- Analog system
 - The physical quantities or signals may vary continuously over a specified range.
 - Gives a continuous output
- Digital system
 - The physical quantities or signals can assume only discrete values.
 - Gives a discrete output.
 - Greater accuracy

Electronic Translators

- Devices that convert from decimal to binary numbers and from binary to decimal numbers.
- Encoders translates from decimal to binary
- <u>Decoders</u> translates from binary to decimal

Decimal {0 1 2 3 4 5 6 7 8 9}

- Decimal (base 10) {0 1 2 3 4 5 6 7 8 9}
 - Place value gives a logarithmic representation of the number
 - Eg. 4378 means
 - $4 \times 10^3 = 4000$
 - $3 \times 10^2 = 300$
 - $7 \times 10^1 = 70$
 - $8 \times 10^0 = 8$
 - The place also gives the exponent of the base

Example

432,600

Powers of ten:

$$10^0 = 1$$
 $10^4 = 10000$ $10^1 = 10$ $10^3 = 1000$ $10^5 = 100000$

Binary (base 2) {0 1}

Binary	Decimal
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10

Example

Decimal Equivalent

♦ 1101 1001
$$1 \times 2^7 = 128$$

$$+ 1 \times 2^6 = 64$$

$$+ 0 \times 2^5 = 0$$

$$+ 1 \times 2^4 = 16$$

$$+ 1 \times 2^3 = 8$$

$$+ 0 \times 2^2 = 0$$

$$+ 0 \times 2^{1} = 0$$

$$+ 1 \times 2^0 = 1$$

217

Notice how powers of two stand out:

$$2^0 = 1$$

$$2^1 = 10$$

$$2^2 = 100$$

$$2^3 = 1000$$

Example

- Write the first 16 numbers in the binary number system?
- Consider an arbitrary number system with the independent digits as 0, 1 and X. What is the radix of this number system? List the first 10 numbers in this number system.
- Solution

Will be solved in class

Advantages of Binary Number System

- Reduction of logic mathematics to binary notation.
- All kinds of data can be represented in 0s and 1s.
- Electronic devices operate in 2 distinct different modes.
- Performing arithmetic operations is simplified.

Decimal to Binary Conversion

- Example: 575
 - Step 1. Find the largest power of two less than the number
 - $2^9 = 512$
 - Step 2. Subtract that power of two from the number
 - 575 512 = 63
 - Step 3. Repeat steps 1 and 2 for the new result until you reach zero.

•
$$2^5 = 32$$
 $63 - 32 = 31$

•
$$2^4 = 16$$

•
$$2^4 = 16$$
 $31 - 16 = 15$

•
$$2^3 = 8$$
 $15 - 8 = 7$

$$15 - 8 = 7$$

•
$$2^2 = 4$$
 $7 - 4 = 3$

$$7 - 4 = 3$$

•
$$2^1 = 2$$
 $3 - 2 = 1$

$$3 - 2 = 1$$

•
$$2^0 = 1$$

•
$$2^0 = 1$$
 $1 - 1 = 0$

- Step 4. Construct the number
 - 1000111111

Decimal to Binary Conversion

• Example: 144

$$-2^{7} = 128$$
 $144 - 128 = 16$ $-2^{4} = 16$ $16 - 16 = 0$

Result 10010000

Decimal to Binary Conversion

• 53

=
$$32 + 16 + 4 + 1$$

= $2^5 + 2^4 + 2^2 + 2^0$
= 110101 in binary
= 0011 0101 as a full byte in binary

• 211

$$= 128 + 64 + 16 + 2 + 1$$

$$= 27 + 26 + 24 + 21 + 20$$

$$= 1101 0011 in binary$$

Decimal (fraction) to Binary Conversion

- ◆ Multiply the number by the 'Base' (=2)
- ◆ Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Example: $(0.625)_{10}$

Integer Fraction Coefficient
$$0.625 * 2 = 1 . 25 a_{-1} = 1 \ 0.25 * 2 = 0 . 5 a_{-2} = 0 \ 0.5 * 2 = 1 . 0 a_{-3} = 1$$

Answer:
$$(0.625)_{10} = (0.a_{-1} \ a_{-2} \ a_{-3})_2 = (0.101)_2$$

MSB LSB.

Binary to Decimal Conversion

What is 10011010 in decimal?

```
10011010 = 1*2^7 + 0*2^6 + 0*2^5 + 1*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0
= 2^7 + 2^4 + 2^3 + 2^1
= 128 + 16 + 8 + 2
= 154
```

What is 00101001 in decimal?

$$00101001 = 0*2^{7} + 0*2^{6} + 1*2^{5} + 0*2^{4} + 1*2^{3} + 0*2^{2} + 0*2^{1} + 1*2^{0}$$

$$= 2^{5} + 2^{3} + 2^{0}$$

$$= 32 + 8 + 1$$

$$= 41$$

Octal Number System

- Has a radix of 8 and therefore 8 distinct digits.
- The independent digits are

- The place values for the different digits in the octal number system are
 - -8^{0} , 8^{1} and so on (for the integer part) and
 - -8^{-1} , 8^{-2} , and so on (for the fractional part).
- Exercise:
 - Write the next 10 numbers that follow '7'

Decimal to Octal Conversion

Example: $(175)_{10}$

Quotient Remainder Coefficient
$$175 / 8 = 21$$
 7 $a_0 = 7$ $21 / 8 = 2$ 5 $a_1 = 5$ $2 / 8 = 0$ 2 $a_2 = 2$

Answer: $(175)_{10} = (a_2 a_1 a_0)_8 = (257)_8$

Example: $(0.3125)_{10}$

Integer Fraction Coefficient
$$0.3125 * 8 = 2 . 5$$
 $a_{-1} = 2$ $0.5 * 8 = 4 . 0$ $a_{-2} = 4$

Answer: $(0.3125)_{10} = (0.a_{-1} a_{-2} a_{-3})_8 = (0.24)_8$

Binary - Octal Conversion

$$8 = 2^3$$

Each group of 3 bits represents an octal digit

Example:

Octal	Binary
0	0 0 0
1	0 0 1
2	0 1 0
3	0 1 1
4	1 0 0
5	1 0 1
6	1 1 0
7	1 1 1

Works both ways (Binary to Octal & Octal to Binary)

Hexadecimal (base 16)

- ◆ {0123456789ABCDEF}
- Decimal to Hexadecimal equivalents shown in Table

Dec	Hex	Dec	Hex
0	0	8	8
1	1	9	9
2	2	10	Α
3	3	11	В
4	4	12	С
5	5	13	D
6	6	14	Е
7	7	15	F

Example: Hexadecimal to Decimal

Hexadecimal to Binary Conversion

16 = 2⁴
Each hexadecimal digit will be represented by 4 bits (nibble)

Binary	Hex	Binary	Hex
0000	0	1001	9
0001	1	1010	Α
0010	2	1011	В
0011	3	1100	С
0100	4	1101	D
0101	5	1110	E
0110	6	1111	F
0111	7		
1000	8	? Nibble	UNIVERSITY OF GHA

Binary to Hex Conversion

- Group binary number by fours (nibbles)
 - $-1101\ 1001\ 0110$
- Convert each nibble into hex equivalent
 - **1101 1001 0110**
 - D 9 6

Binary to Hex Conversion

- **◆** 16 = 2⁴
- Each group of 4 bits represents a hexadecimal digit

Example:

Hex	Binary
0	0 0 0 0
1	0 0 0 1
2	0 0 1 0
3	0 0 1 1
4	0 1 0 0
5	0 1 0 1
6	0 1 1 0
7	0 1 1 1
8	1000
9	1 0 0 1
A	1010
В	1011
С	1 1 0 0
D	1 1 0 1
Е	1 1 1 0
F	1 1 1 1

Works both ways (Binary to Hex & Hex to Binary)

Octal to Hex Conversion

◆ Convert to Binary as an intermediate step Example:

Works both ways (Octal to Hex & Hex to Octal)

Decimal to Hex Conversion

• Eg. 284

$$-16^2 = 256$$
 $284 - 256 = 28$
 $-16^1 = 16$ $28 - 16 = 12$ (Hex C)

– Result: 11C

– Repeated Division Approach:

	Quotient	Remainder	Coefficient
284/ 16 =	17	12	$\mathbf{a}_0 = \mathbf{C}$
17 / 16 =	1	1	$a_1 = 1$
1/16 =	0	1	$a_2 = 1$

Answer: $(284)_{10} = (a_2 a_1 a_0)_{16} = (11C)_{16}$

Exercise: Try 1054

- Result: 41E

Hexadecimal to Decimal Conversion

Convert hexadecimal number 2DB to a decimal number

Place Value 16^2 16^1 16^0 Hexadecimal 2 D B $(16^2 \times 2) \quad (16^1 \times 13) \quad (16^0 \times 11)$ Decimal 512 + 208 + 11 = 7

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Application Example

- ASCII (American Standard Code for Information Interchange)
 - Most widely used character code.
 - The eighth bit is often used for error detection (parity bit)
 - Example: ASCII code representation of the word Digital

Character	Binary Code	Hexadecimal Code
D	1000100	44
i	1101001	69
g	1100111	67
i	1101001	69
t	1110100	74
a	1100001	61
I	1101100	6C

Binary Coded Decimal (BCD) System

- The BCD system is used to represent each of the 10 decimal digits (0-9) as a 4-bit binary code.
 - 0 1 2 3 4 5 6 7 8 9
- To form a BCD number, simply convert each decimal digit to its 4bit binary code.
 - Used to encode numbers for output to numerical displays
 - Used in processors that perform decimal arithmetic.
- Eg1. Convert 469_{ten} to BCD
- Answer:

Advantage of BCD to Binary Number System

- There is no limit to the size of a number in BCD.
 - To add another digit, you just need to add a new 4-bit sequence.
- In contrast, numbers represented in binary format are generally limited to the largest number that can be represented by 8, 16, 32 or 64 bits.
- Assignment:
 - What will be the disadvantage of using BCD system?

Example of BCD Representation

- Eg2. Convert 0110 0100 1011_{BCD} to decimal
- Answer:

- # not possible because 1011 is not a valid BCD
- Assignment:
 - Convert (9750)₁₀ to BCD

Summary

- Digital electronics use base-two (binary)
 - Because it only understands two states
 - ON and OFF
- Digital Systems operate on discrete digits ON and OFF states
- Analog Systems operate on continuously varying electrical/physical magnitudes – temperature, pressure, velocity, etc
- Number conversions
 - Binary, Octal, Hexadecimal, BCD

Thank you

