Análisis complejo

Taller 3

Teorema de Cauchy y sus corolarios.

Fecha de entrega: 29 de agosto de 2024, 12 m

- 1. (a) Calcule $\oint_{|z-1|=2} z^n \sin(z) dz$ para $n \in \mathbb{Z}$.
 - (b) Para $n \in \mathbb{N}_0$ demuestre que

$$\int_{|z+2i|=3} \frac{1}{(z^2+\pi^2)^{n+1}} dz = \frac{-(2n)!}{(n!)^2} (2\pi)^{-2n}.$$

2. Sea $f: \mathbb{C} \to \mathbb{C}$ una función entera. Suponga que existen M, r > 0 y $n \in \mathbb{N}$ tales que $|f(z)| < M|z|^n$ para todo $z \in \mathbb{C}$ con $|z| \ge r$. Muestre que f es un polinomio de grado a lo más n.

Observe que el caso n = 0 es el teorema de Liouville.

- 3. Sea $f: \mathbb{C} \to \mathbb{C}$ una función entera.
 - (a) Muestre que el rango de f es denso en \mathbb{C} o f es constante.
 - (b) Suponga que Re(f) es acotada. Demuestre que f es constante.
- 4. Sea $U \subseteq \mathbb{C}$ una región, $z_0 \in U$ y R > 0 tal que $B_R(z_0) \subseteq U$. Sea $f: U \to \mathbb{C}$ holomorfa con serie de Taylor $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ centrada a z_0 . Para 0 < r < R defina $M(r) := \sup_{|z-z_0|=r} |f(z)|$.
 - (a) Demuestre que para todo $n \in \mathbb{N}_0$ y 0 < r < R

$$c_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) e^{-int} dt.$$

(b) Demuestre que para todo 0 < r < R

$$\sum_{n=0}^{\infty} |c_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})|^2 dt \le M(r)^2.$$