PROCESSAMENTO DE CONSULTAS E OTIMIZAÇÃO

IFC - Prof.MSc. Leila Lisiane Rossi

PROCESSAMENTO DE CONSULTAS

 Uma linguagem de consulta expressa em uma linguagem de consulta de alto nível, tal como SQL, deve primeiro passar por uma análise léxica, uma análise sintática e ser validada.

PROCESSAMENTO DE CONSULTAS

- A análise léxica
- A análise sintática

PROCESSAMENTO DE CONSULTAS

- A consulta também deve ser validada por meio da verificação de que todos os atributos e nomes de relacionamentos são válidos, e se são nomes com significados semânticos no esquema do banco de dados específico que está sendo consultado;
- Otimização de consulta

 O SGBD deve planejar uma estratégia de execução. Em geral, uma consulta possui muitas estratégias de execução possíveis e o processo de escolha de uma estratégia adequada para o processamento de uma consulta é chamado Otimização de Consulta

 A finalidade do otimizador de um banco de dados é livrar os usuários de suas complexidades e das exigências necessárias para se conseguir consultas de forma eficiente.

 Usar técnicas para reformular consultas em outras que desempenham a mesma funcionalidade, mas com tempo de resposta menor que a consulta original é uma das principais características de um otimizador de consultas

 O otimizador faz com que reduza o esforço manual e repetitivo de identificar e corrigir comandos de SQL realizados de maneira incorreta, causando em baixos desempenhos. Isso é uma vantagem do otimizador evitando-se assim aquisição de novos hardwares muito mais poderosos para se alcançar ainda mais quanto ao desempenho

 O módulo otimizador de consulta tem a função de produzir um plano de execução e o gerador de código gera o código que executa aquele plano. O processador tem um tempo de execução do banco de dados tem a função de executar o código de consulta, quer seja no modo interpretado, quer seja no modo compilado, a fim de obter o resultado da consulta.

 O nome mais adequado para Otimização de Consulta poderia ser Planejamento de uma estratégia de execução

TRANSFORMAÇÕES DE CONSULTAS SQL PARA ÁLGEBRA

 A consulta SQL é decomposta em pequenas unidades chamadas de blocos de consulta, e estas são otimizadas um bloco por vez. Os blocos aninhados são tratados como uma chamada de uma sub-rotina, feita uma vez por uma tupla mais externa. São esses blocos que serão convertidos pela álgebra relacional

TRANSFORMAÇÕES DE CONSULTAS SQL PARA ÁLGEBRA

- Traduzir a consulta em uma expressão equivalente da álgebra relacional e representá-la em uma estrutura de dados conhecida como árvore de consulta
- O otimizador decide como avaliar a consulta transformada

• É uma tarefa importante em sistemas relacionais. É necessário compreender otimização para entender o impacto de desempenho de um projeto de banco de dados (relações, índices) em uma carga de trabalho (conjunto de consultas).

ALGORITMOS DE SELEÇÃO

- Pesquisa Linear
- Pesquisa Binária
- Usando Índice Primário
- Usando Chave Hash
- Combinado com o Índice Primário
- Usando Índice de Agrupamento
- Usando Índice Secundário

SELEÇÃO

- Conjuntiva AND Exemplo: Candidato
 Cargo de São Paulo e Solteiro
- Disjuntiva OR
- Índice
- Seletividade

Utilização de Heurísticas na Otimização de Consultas

O analisador sintático de uma consulta de alto nível primeiro gera uma representação interna inicial, que depois é otimizada de acordo com regras de heurística. Na sequência, um plano de execução de consulta é gerado para executar grupos de operações com base nos caminhos de acesso disponíveis para os arquivos envolvidos na consulta

- Utilização de Heurísticas na Otimização de Consultas
 - Informática Método de investigação baseado na aproximação progressiva de um dado problema
 - Uma das principais regras heurísticas é aplicar as operações SELECT e PROJECT antes de aplicar o JOIN ou outras operações binárias

Notação de Árvores de Consulta e de Grafos de Consulta

 Uma árvore de consulta é uma estrutura de dados de árvore que corresponde a uma expressão da álgebra relacional. Ela representa as relações de entrada de uma consulta como nós folhas da árvore e representa as operações da álgebra relacional como nós internos.

- Uma execução de árvore de consulta consiste na execução de uma operação de nó interno sempre que seus operandos estiverem disponíveis e depois da substituição do nó interno pela relação que resulta da execução da operação. A execução termina quando o nó raiz é executado e produz a relação de resultado da consulta.

- Árvore de Consulta
 - Estrutura que representa uma expressão em álgebra relacional
 - Nós-Folhas Relações
 - Nós-Internos Operações da Álgebra

π_{nomecliente}(σ_{cidadeagencia='Campinas'} (agencia |X| (conta |X| depositante)))

- Otimização Heurística de Árvores de Consulta
 - Ex: Encontre os últimos nomes dos empregados nascidos após 1957 que trabalham no projeto "Aquarius". Em SQL:
 - SELECT Unome FROM Empregado, Trabalha_em, Projeto
 WHERE P_nome = 'Aquarius' AND Pnumero = NRP AND
 ESSN = SSN AND Data_nasc > '31-12-1957';

Árvore Canônica

Operações de Seleção para baixo

- Prioridade Seleção mais Restritiva
 - Seletividade
 - Seleção em direção às folhas

 Transformação dos Produtos Cartesianos em Junção

Operações de Projeção

- Conversão de Árvores de Consulta em Planos de Execução de Consulta
 - Um plano de execução para uma expressão de álgebra relacional representada como uma árvore de consulta, inclui informações sobre os métodos de acesso disponíveis para cada relação, bem como os algoritmos a serem utilizados na computação dos operadores relacionais representados na árvore

- Ordenação Externa
 - Sort-Merge (Select)
 - Junção Hash, Junção Sort-Merge (Junção/Select mais complexo)
 - Variações Sort-Merge (Project / Conjuntos)
 - https://www.youtube.com/watch?v=JSceec-wEyw

Merge Sort Tradicional

- Utilização de Seletividade e Estimativa de Custo na Otimização de Consultas
 - Um otimizador de consultas n\u00e3o deve depender somente de regras heur\u00edsticas.

- Utilização de Seletividade e Estimativa de Custo na Otimização de Consultas
 - Custo de Armazenamento
 - Custo de Computação
 - Custo de Acesso ao Armazenamento Secundário
 - Custo do uso de Memória
 - Custo de Comunicação

- O PostgreSQL usa os seguintes comandos para a otimização de consultas:
 - EXPLAIN
 - ANALYZE
 - VACUUM

• EXPLAIN

O comando EXPLAIN exibe o Plano de Execução escolhido pelo Otimizador

ANALYSE

 O comando analyse coleta estatísticas sobre o conteúdo das tabelas do banco de dados e aramazena os resultados na tabela do sistema pg_statistic

ANALYSE

 Com base nestas estatísticas o planejador de comandos determina o plano de execução mais eficiente para os comandos. Estas estatísticas devem ser atualizadas com frequência para não comprometer o desempenho do banco de dados por uma escolha errada do plano de comandos

VACUUM

- O comando VACUUM recupera espaço em disco e otimiza o desempenho do banco e previne contra perda de dados muito antigos
 - FULL Limpeza completa
 - VERBOSE Relatório detalhado da atividade de limpeza de cada tabela

TRABALHO I

- Processamento e Otimização de Consultas
 - Vídeo

REFERÊNCIAS

- ELMASRI,NAVATHE <u>Sistemas de Banco de Dados</u> São Paulo Addison Wesley, 2011
- KORTH, SILBERSCHATZ <u>Sistemas de Banco de Dados</u> São Paulo Makron Books, 2006
- NETO, Acácio Feliciano e outros <u>Engenharia da Informação –</u> São Paulo McGraw-Hill Ltda, 1988
- http://imasters.com.br/artigo/22264/banco-de-dados/10-tecnicas-paraotimizacao-de-instrucoes-sql/
- http://wp.sigmod.org/?searchterm=query+optimization&p=1075
- https://www.youtube.com/watch?v=cqXeTlvfyk4&t=3622s
- https://www.youtube.com/watch?v=nmhjrl-aW5o
- https://wiki.postgresql.org/wiki/Introduction_to_VACUUM, ANALYZE, EXPLAI N, and COUNT
- https://www.youtube.com/watch?v=JSceec-wEyw