Wireshark Network Traffic Analysis Report

Name: Aryan Vats ,ROLL: 2301MC52

Objective

The goal of this assignment was to capture, filter, and analyze live network traffic using Wireshark. The objective was to identify different network protocols and interpret packet-level details to understand fundamental network communication patterns.

Task 1: Packet Capture

Live network traffic was captured for approximately two minutes using Wireshark. During the capture, traffic was generated by browsing websites (https://example.com, https://wikipedia.org) and using the ping 8.8.8.8 command. The resulting capture was saved as capture_lab1.pcapng.

Task 2: Protocol Identification

Display filters were used to isolate and inspect traffic for specific protocols.

- ICMP: The icmp filter successfully isolated the echo request and reply packets generated by the ping command.
- DNS: The dns filter revealed the Domain Name System queries used to resolve website names into IP addresses.
- HTTP: The http filter was used to view unencrypted web traffic.

Task 3: Detailed Packet Analysis

A representative packet from each of the filtered protocols was selected for detailed analysis.

Protocol	Source IP	Destination IP	ΠL	Packet Length	Flags
ICMP	192.170.9.73	8.8.8.8	64	74 bytes	N/A
DNS	192.170.9.73	192.170.0.1	64	79 bytes	0x0100 (Standard Query)
НТТР	193.228.3.43	192.170.9.73	49	1326 bytes	0x018 (PSH, ACK)

Task 4: Custom Filter Creation

A custom display filter was created to show only packets sent from the source system (192.170.9.73) over standard web ports (80 for HTTP and 443 for HTTPS).

```
Filter Used: ip.src == 192.170.9.73 && (tcp.port == 80 || tcp.port == 443)
```

This filter effectively isolated all outgoing web traffic originating from the local machine.

Summary and Key Insights

- Most Active Protocols: An analysis of the protocol hierarchy showed that TCP and TLSv1.2/1.3 (Transport
 Layer Security for HTTPS) were the most active protocols, accounting for the majority of the traffic due to
 web browsing. UDP was also prominent, primarily used for DNS queries.
- Suspicious Traffic: No suspicious or unusual traffic was detected during the capture. All observed communications were directly related to the user-initiated actions of web browsing and network diagnostics.
- Key Network Insights:
- DNS Precedes Connection: The capture clearly shows that for every new website visited, a DNS query is
 first sent to resolve the domain name into an IP address. The TCP connection to the web server only begins
 after a successful DNS reply is received.
- 2. **HTTPS is Dominant:** The vast majority of web traffic was encrypted using TLS over TCP port 443. This highlights the modern web's reliance on secure communication.
- 3. **Communication is a Conversation:** A single click on a webpage does not generate one packet, but rather a long "conversation" of packets, including the TCP 3-way handshake, TLS negotiation, and multiple HTTP requests and responses to load all page elements.