杭州电子科技大学学生考试(模拟)题解

- 一、填空题(每空格2分)
- 1. 设事件 A, B 相互独立, P(A) = 0.4 , P(B) = 0.6 ,则概率 $P(A \cup B) = 0.76$ 。
- 2. 袋内装有6个白球,4个黑球。从中任取三个,取出的三个球都是白球的概率=1/6。
- 3. 设 $X \sim N(10, \sigma^2)$, $P\{10 < X < 20\} = 0.3$, 则 $P\{0 < X < 10\}$ 的值为0.3。
- 4. 设随机变量 X 服从(0,2)上的均匀分布,则随机变量 $Y = X^2$ 在(0,4)上概率密度 $f_Y(y) = X^2$

$$\frac{1}{4\sqrt{y}}$$
 °

5. 设随机变量 X 服从二项分布b(10,0.3),随机变量 Y 服从正态分布 N(2,4),且 X,Y 相

- 二、试解下列各题
- 1. (8%) 设随机变量 X 的分布律为:

X	-1	2	3
概率	0. 3	0. 5	0. 2

求 (1) X 的分布函数 F(x); (2) 概率 $P\{X \le 0.25\}$, $P\{X > 2\}$; (3) E(X), D(X) 。

解:
$$F(x) = \begin{cases} 0, x < -1 & \dots 1 \\ 0.3, -1 \le x < 2 \\ 0.8, 2 \le x < 3 & \dots 1 \\ 1, x \ge 3 & \dots 1 \end{cases}$$

$$E(X) = -0.3 + 2 \times 0.5 + 3 \times 0.2 = 1.3$$

$$E(X^2) = (-1)^2 \times 0.3 + 2^2 \times 0.5 + 3^2 \times 0.2 = 4.1$$

∴
$$D(X) = E(X^2) - [E(X)]^2 = 2.41$$
 1 $\%$

2、(16%) 设二维随机变量(
$$X,Y$$
)的概率密度为 $f(x,y) = \begin{cases} \frac{1}{\pi}, x^2 + y^2 < 1 \\ 0, 其它$

试问: (1) X,Y 是否相互独立? (2) X,Y 是否相关? (3) 求概率 $P\{Y > X\}$ 。

解 (1)
$$\Theta$$
 $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ 1 分

显然
$$x^2 + y^2 < 1$$
 时 $f(x, y) \neq f_X(x) f_Y(y)$ 分

因此 *X*,*Y* 不相关1 分

$$(\mathbb{E}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}d\theta \int_{0}^{1}\frac{1}{\pi}\rho d\rho = \frac{1}{2})$$

三、(10%) 设总体 X 的概率密度为 $f(x) = \begin{cases} (\theta+1)x^{\theta}, 0 \le x \le 1 \\ 0, else \end{cases}$, 其中 $\theta > -1$ 是未知参数,

 x_1, x_2, Λ , x_n 是 X 的一个样本 X_1, X_2, Λ , X_n 的观察值,试求参数 θ 的矩估计量和最大似然估计值。

解得参数
$$\theta$$
 的矩估计量为: $\hat{\theta} = \frac{2\overline{X} - 1}{1 - \overline{X}}$ 1 分

解得参数
$$\theta$$
 的最大似然估计值 $\hat{\theta} = -\frac{n}{\displaystyle\sum_{i=1}^{n} \ln x_i} - 1$ 1 分

四、(8%) 有一大批糖果,现从中随机地抽取 16 袋,计算得平均重量x=502.5 (以克计),样本方差为 $S^2=4.2$,求总体方差 σ^2 的置信水平为 0.95 的置信区间。(设袋装糖果的重量近似地服从正态分布)

解: 由题意 $n = 16, \alpha = 0.05$

$$\sigma^2$$
 的置信区间为: $(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)})$ 4 分

即
$$(\frac{15\times4.2}{27.488}, \frac{15\times4.2}{6.262})$$
2 分

所以:总体方差 σ^2 的置信水平为 0.95 的置信区间(2.292,10.061)2 分

五、(8%) 某种电子元件的寿命 X (以小时计) 服从正态分布 $N(\mu, \sigma^2)$, μ, σ^2 均未知,

现测 16 只元件,计算得平均寿命 $\bar{x}=231.5$,标准差为s=92.6,问是否有理由认为元件的平均寿命是 225(小时)(取 $\alpha=0.05$)。

解: 由题意需检验
$$H_0: \mu = 225$$
 , $H_1: \mu \neq 225$ 2 分

则拒绝域为
$$t = \left| \frac{\overline{x} - \mu_0}{\sqrt[8]{\sqrt{n}}} \right| \ge t_{\frac{\alpha}{2}}(n-1)$$
2 分

由条件
$$t = \left| \frac{\overline{x} - \mu_0}{\sqrt[8]{\sqrt{n}}} \right| = \left| \frac{231.5 - 225}{92.6 / \sqrt{16}} \right| = 0.2826 < t_{0.025}(15) = 2.1315$$
2 分

所以不在拒绝域内,故接受 H_0 ,2 分

即可以认为元件的平均寿命是 225 (小时)

六. (6%) 设随机变量 X 的概率密度 $f(x) = \frac{1}{\sqrt{\pi}} e^{-x^2 + 2x - 1}$, $-\infty < x < +\infty$, 求: E(X) ,

D(X) \circ

解:
$$\Theta$$
 $f(x) = \frac{1}{\pi} e^{-(x-1)^2} = \frac{1}{\sqrt{2\pi} \cdot \sqrt{\frac{1}{2}}} e^{-\frac{(x-1)^2}{2(\frac{1}{\sqrt{2}})^2}}$ 3 分

所以
$$E(X) = 1$$
 $D(X) = \frac{1}{2}$ 3 分

$$\Leftrightarrow u = \frac{x-1}{\sqrt{2}}, \quad E(X) = \int_{-\infty}^{\infty} (1+\sqrt{2}u) \frac{1}{\sqrt{\pi}} e^{-u^2/2} \frac{1}{\sqrt{2}} du = 1$$
1 \(\frac{1}{2} \)

类似:
$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \frac{3}{2}$$
2 分

所以:
$$D(X) = E(X^2) - [E(X)]^2 = \frac{1}{2}$$
1 分

七、(8%)设从均值为 μ ,方差为 σ^2 的总体中,分别抽取容量为 n_1,n_2 的两独立样本。 $\overline{X_1}$, $\overline{X_2}$ 分别是两样本的均值。试证,对于任意常数 $a,b(a+b=1),Y=a\overline{X_1}+b\overline{X_2}$ 都是 μ 的无偏估计,并确定常数a,b 使 D(Y) 达到最小。

解: 因为
$$E(Y) = E(a\overline{X_1} + b\overline{X_2}) = aE(\overline{X_1}) + bE(\overline{X_2})$$

$$=a\mu + b\mu = (a+b)\mu = \mu \ (\Theta \ a+b=1)$$
3 $$$$

令
$$\frac{dD(Y)}{da} = 0$$
,得 $a = \frac{n_1}{n_1 + n_2}$ 1 分

由最值理论可知当 $a=\frac{n_1}{n_1+n_2}$, $b=\frac{n_2}{n_1+n_2}$ 时 D(Y) 达到最小。

八、(8%)设产品为废品的概率为 0 .2, 求 400 件产品中废品件数不大于 60 的概率的近似值。(结果可用标准正态分布函数 $\Phi(x)$ 表示)

解:以 X_i ($i = 1 \sim 400$)表示第i 件产品为废品, $X_i \sim (0,1)$

$$p = 0.2, 1 - p = 0.8, \ \ \text{id} \ X = \sum_{i=1}^{400} X_i, \ \ n = 400$$

则所求概率
$$P\{X \le 60\} = P\{\frac{\sum_{i=1}^{400} X_i - np}{\sqrt{np(1-p)}} \le \frac{60 - np}{\sqrt{np(1-p)}}\}$$
4 分

$$\approx \Phi(\frac{60 - 400 \times 0.2}{\sqrt{400 \times 0.2 \times 0.8}}) = \Phi(-2.5) = 1 - \Phi(2.5) \qquad \dots 2 \text{ }$$

$$=1-0.9938=0.0062$$
2 $\%$

注意: 学号以 039*****(或 029*****)(或 019*****)开头的学生可选做九、十、十一、十二题中任两题,其他学生只能选做九、十两题,选错题做的一律不得分。

九、(8%) 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, Λ , X_n 是 X 的一个样本,试确定常数 C , 使

$$C\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2$$
 为 σ^2 的无偏估计。

但
$$E[C\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2] = C\sum_{i=1}^{n-1}[E(X_{i+1}^2-2E(X_{i+1})E(X_i)+E(X_i^2)]$$
2 分

$$=2C\sum_{i=1}^{n-1}\{E(X^{2})-[E(X)]^{2}\}=2C\sum_{i=1}^{n-1}D(X)$$

$$=2C(n-1)\sigma^2 \qquad \dots 2 \mathcal{H}$$

所以
$$C = \frac{1}{2(n-1)}$$
, 此时 $C\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 为 σ^2 的无偏估计。2 分

十、(8%) 设总体 $X\sim N(0,1)$, X_1,X_2,Λ , X_{16} 是 X 的一个样本,

解: 由题意可知
$$\sum_{i=1}^{4} X_i \sim N(0,4)$$
2 分

所以
$$\frac{\sum_{i=1}^{4} X_{i}}{2} \sim N(0,1)$$
2 分

同理:
$$\frac{\sum\limits_{i=5}^{8}X_{i}}{2} \sim N(0,1)$$
, $\frac{\sum\limits_{i=9}^{12}X_{i}}{2} \sim N(0,1)$, $\frac{\sum\limits_{i=13}^{16}X_{i}}{2} \sim N(0,1)$ 且相互独立。

$$\sum_{i=1}^{4} X_{i} \sum_{i=5}^{8} X_{i} \sum_{i=9}^{12} X_{i} \sum_{i=13}^{16} X_{i}$$

$$(\frac{i-1}{2})^{2} + (\frac{i-5}{2})^{2} + (\frac{i-9}{2})^{2} + (\frac{i-13}{2})^{2} \sim \chi^{2}(4)$$
......2 \(\frac{1}{2}\)

所以
$$\frac{1}{4}Y \sim \chi^2(4)$$
,从而 $C = \frac{1}{4}$ 2分

十一、(8%) 设随机变量(X,Y) 的概率分布律为:

X	-1	0	1
0	0. 2	0. 1	0. 2
1	0. 1	0. 3	0. 1

求: (1) 关于 X 的边缘分布律; (2) 关于 $Z = X^2$ 的分布律; (3) 数学期望 $E(X^2)$, E(XY)。

解: (1) 关于 X 的边缘分布律为

X	-1	0	1
P	0.3	0.4	0.3

......3分

(2) 关于 $Z = X^2$ 的分布律为

Z	0	1
P	0.4	0.6

......3 分

$$(3)$$
易求 $E(X^2) = 0.6$

.....1分

$$E(XY) = (-1) \times 1 \times 0.1 + 1 \times 1 \times 0.1 = 0$$

.....1分

- 十二、(8%)将两信息分别编码为 A 和 B 传递出去,接收站收到时,A 被误收作 B 的概率为 0.02,而 B 被误收作 A 的概率为 0.01,信息 A 和信息 B 传送的频率程度为 1: 2,问:
 - (1) 接收站收到信息 A 的概率是多少?
 - (2) 若接收站收到的信息是 A,则原发信息是 A的概率是多少?

解:设A事件为"接收站收到信息 A",B事件为"原发信息为 A", \overline{B} 表示"原发信息为 B"

曲题意:
$$P(B) = \frac{1}{3}, P(\overline{B}) = \frac{2}{3}, P(A|B) = 0.98, P(A|\overline{B}) = 0.01$$

(2)由贝叶斯公式
$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{P(B)P(A|B)}{P(A)} = 0.98$$
4 分

以下数据备查: $\Phi(2) = 0.9772$, $\Phi(2.5) = 0.9938$,

$$t_{0.05}(15) = 1.7531, t_{0.025}(15) = 2.1315$$
, $t_{0.05}(16) = 1.7459, t_{0.025}(16) = 2.1199$,

$$\chi_{0.025}^{2}(15) = 27.488$$
, $\chi_{0.975}^{2}(15) = 6.262$, $\chi_{0.05}^{2}(15) = 24.996$, $\chi_{0.95}^{2}(15) = 7.261$