Esercizi di Teoria di Galois 3.

Roma Tre, 8 Aprile 2003

1. Sia $E = \mathbf{Q}(\zeta_{13})$. Dimostrare che se $\eta = \zeta_{13} + \zeta_{13}^3 + \zeta_{13}^9$, allora il polinomio minimo f_{η} di η su \mathbf{Q} ha grado 4. Dopo averne evidenziato le radici, mostrare (calcolando) che

$$f_n(x) = x^4 + x^3 + 2x^2 - 4x + 3.$$

Qual'è la dimensione del campo di spezzamento di f_{η} su \mathbf{Q} ?

Suggerimento: Usare il gruppo $Gal(\mathbf{Q}(\zeta_{13})/\mathbf{Q})$ e la corrispondenza di Galois.

2. Dimostrare $\mathbf{Q}(\zeta_p)$ (dove p > 2 è primo) ha sempre esattamente un sottocampo quadratico. Dedurre che ogni campo ciclotomico ammette sempre un sottocampo che è un estensione quadratica di Q.

Suggerimento: Usare il gruppo $Gal(\mathbf{Q}(\zeta_p)/\mathbf{Q})$ e la corrispondenza di Galois.

3. (per che soffre di insonnia) Mostrare la seguente identità:

$$\sum_{j=1}^{p} \left(\frac{j}{p}\right) \zeta_{p}^{j} = \pm \sqrt{(-1)^{(p-1)/2}p}$$

(N.B. $\left(\frac{j}{p}\right)$ è il classico simbolo di Legendre). Dedurre che ogni campo quadratico è sempre contenuto in un campo ciclotomico.

4. Si descrivano tutti i campi intermedi tra $E \in \mathbf{Q}$ in ciascuno dei seguenti casi:

- a. $E = \mathbf{Q}(\zeta_{16})$
- b. $E = \mathbf{Q}(\zeta_{24})$

c. $E = \mathbf{Q}_f$ il campo di spezzamento di $x^4 - 2$

- d. $E = \mathbf{Q}(\zeta_{13})$
- e. $E = \mathbf{Q}_f$ il campo di spezzamento di $(x^2 2)(x^2 3)(x^2 5)$.

Suggerimento: Usare la corrispondenza di Galois.

- 5. Per ciascuno degli esercizi del punto 4. si descrivano gli elementi del gruppo di Galois Gal(E/F).
- 6. In cisacuno dei seguenti casi si dica se si tratta di estensioni separabili, normali o di Galois (nel qual caso descrivere il gruppo di Galois):
 - i. $\mathbf{F}_{7}(T)/\mathbf{F}_{7}(T')$;

iii. $\mathbf{F}_{11}(T)/\mathbf{F}_{11};$

- ii. $\mathbf{Q}(3^{1/5})/\mathbf{Q};$ iv. $\mathbf{Q}(3^{1/5}, \zeta_{30})/\mathbf{Q}(\zeta_{30});$ vi. $\mathbf{Q}(\pi, \sqrt{\pi})/\mathbf{Q}(\pi).$

v. $\mathbf{Q}(\sqrt{-1}, 5^{1/4})/\mathbf{Q}$;

- 7. Mostrare che, $\operatorname{Gal}(\mathbf{Q}(\zeta_{n^2})/\mathbf{Q}(\zeta_n)) \cong \mathbf{Z}/n\mathbf{Z}$ esibendo un isomorfismo esplicito. (Sugg: considerare $\sigma_j: \zeta_{n^2} \mapsto \zeta_{n^2}^{nj+1}$.)
- 8. Risolvere i problemi sulle note di Milne a pagina 41.
- 9. Sia $E \subset \mathbf{C}$ un estensione algebrica di \mathbf{Q} . Mostrare che esiste un unico sottocampo \overline{E} di C contenente Etale che:
- a. \overline{E}/\mathbf{Q} e di Galois;
- b. \overline{E} è contenuto in tutte le estensioni di Galois L di \mathbf{Q} tali che $E \subseteq L \subseteq \mathbf{C}$.

Oss. \overline{E} si chiama chiusura di Galois di E in \mathbb{C} .