Mark Scheme (Results) Summer 2008

GCE Mathematics (6663/01)

GCE

June 2008 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks
1.	$2x + \frac{5}{3}x^3 + c$	M1A1A1
		(3)
		3
	M1 for an attempt to integrate $x^n \to x^{n+1}$. Can be given if $+c$ is only correct tends	rm.
	$1^{\text{st}} \text{ A1 for } \frac{5}{3}x^3 \text{ or } 2x + c \text{. Accept } 1\frac{2}{3} \text{ for } \frac{5}{3} \text{. Do } \underline{\text{not}} \text{ accept } \frac{2x}{1} \text{ or } 2x^1 \text{ as final}$	answer
	2^{nd} A1 for as printed (no extra or omitted terms). Accept $1\frac{2}{3}$ or $1.\dot{6}$ for $\frac{5}{3}$ but not	1.6 or 1.67 etc
	Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.6	67, the 1.67 is
	treated as ISW	
	NB M1A0A1 is not possible	

Question number		Scheme	Marks	
2.	$x(x^2 -$	-9) or $(x\pm 0)(x^2-9)$ or $(x-3)(x^2+3x)$ or $(x+3)(x^2-3x)$	B1	
	x(x-	(3)(x+3)	M1A1	(3)
				3
	B1	for first factor taken out correctly as indicated in line 1 above. So $x(x^2 +$	9) is B0	
	M1	for attempting to factorise a relevant quadratic.	,,1020	
		"Ends" correct so e.g. $(x^2 - 9) = (x \pm p)(x \pm q)$ where $pq = 9$ is OK.		
		This mark can be scored for $(x^2-9)=(x+3)(x-3)$ seen anywhere.		
	A1	for a fully correct expression with all 3 factors.		
		Watch out for $-x(3-x)(x+3)$ which scores A1		
		Treat any working to solve the equation $x^3 - 9x$ as ISW.		

Question number	Scheme	Marks
3	(a) 10 (7, 3) (b)	B1B1B1 (3)
	(3.5, 0)	5
(a)	Allow "stopping at" (0, 10) or (0, 7) instead of "cutting" 1 st B1 for moving the given curve up. Must be U shaped curve, minimum in first quadrant, not touching <i>x</i> -axis but cutting positive <i>y</i> -axis. Ignore any values on axes. 2 nd B1 for curve cutting <i>y</i> -axis at (0, 10). Point 10(or even (10, 0) marked on positive <i>y</i> -axis is OK) 3 rd B1 for minimum indicated at (7, 3). Must have both coordinates and in the right order.	
	If the curve flattens out to a turning point like this penalise once at first offence ie 1st B1 in (a) or in (b) but not in both.	
	The U shape mark can be awarded if the sides are fairly straight as long as the v	ertex is rounded.
(b)	1 st B1 for U shaped curve, touching positive x-axis and crossing y-axis at (0, 7)[commarked on positive y axis] or 7 marked on y-axis	
	2^{nd} B1 for minimum at (3.5, 0) or 3.5 or $\frac{7}{2}$ marked on x-axis. Do <u>not</u> condone (0, 3)	3.5) here.
	Redrawing $f(x)$ will score B1B0 in part (b).	
	Points on sketch override points given in text/table. If coordinates are given elsewhere (text or table) marks can be awarded if t compatible with the sketch.	hey are

Question number	Scheme	Marks	
4. (a)	$[f'(x) =] 3 + 3x^2$	M1A1	(2)
(b)	$3+3x^2 = 15$ and start to try and simplify $x^2 = k \rightarrow x = \sqrt{k}$ (ignore \pm) x = 2 (ignore $x = -2$)	M1 M1 A1	(3)
	x = 2 (ignore $x = -2$)	Al	(3) 5
(a)	M1 for attempting to differentiate $x^n \to x^{n-1}$. Just one term will do. A poor integration attempt that gives $3x^2 +$ (or similar) scores M0A0 A1 for a fully correct expression. Must be 3 not $3x^0$. If there is a + c they score	re A0.	
(b)	1 st M1 for forming a correct equation and trying to rearrange their $f'(x) = 15$ e.g. of e.g. $3x^2 = 15 - 3$ or $1 + x^2 = 5$ or even $3 + 3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1} + 3x^2 = 15 \rightarrow$ (i.e algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ equations of the equation of the equation $f'(x) = 15$ equations of $f'(x) = $	6x = 15	
	2 nd M1 this is dependent upon their $f'(x)$ being of the form $a + bx^2$ and attempting to solve $a + bx^2 = 15$ For correct processing leading to $x =$ Can condone arithmetic slips but processes should be correct so e.g. $3 + 3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow 3x = \sqrt{12} \rightarrow x = \frac{\sqrt{12}}{3}$ scores M1M0A0		

Question number	Scheme	Marks	
5. (a)	$[x_2 =]a-3$	B1	(1)
	$[x_3 =] ax_2 - 3 \text{ or } a(a-3) - 3$	M1	
	$= a(a-3)-3$ $= a^2-3a-3 (*)$ both lines needed for A1		
	$= a^2 - 3a - 3 (*)$	Alcso	(2)
(c)	$a^2 - 3a - 3 = 7$		
	$a^2 - 3a - 10 = 0$ or $a^2 - 3a = 10$	M1	
	$a^2 - 3a - 10 = 0$ or $a^2 - 3a = 10$ (a-5)(a+2) = 0	dM1	
	a = 5 or -2	A1	(3)
			6
(a) (b) (c)	 B1 for a×1-3 or better. Give for a-3 in part (a) or if it appears in (b) they must state x₂ = a-3 This must be seen in (a) or before the a(a-3)-3 step. M1 for clear show that. Usually for a(a-3)-3 but can follow through their x₂ and even allow ax₂-A1 for correct processing leading to printed answer. Both lines needed and no incorrect working seen. 1st M1 for attempt to form a correct equation and start to collect terms. It must be a quadratic but need not lead to a 3TQ=0 		n.
	2^{nd} dM1 This mark is dependent upon the first M1. for attempt to factorize their 3TQ=0 or to solve their 3TQ=0. The "=0"car $(x\pm p)(x\pm q)=0$, where $pq=10$ or $(x\pm \frac{3}{2})^2\pm \frac{9}{4}-10=0$ or correct use of quadratic They must have a form that leads directly to 2 values for a . Trial and Improvement that leads to only one answer gets M0 here. A1 for both correct answers. Allow $x=$	c formula with	

.

Question Number	Scheme	Marks
6. (a)	5	B1M1A1 (3)
	-2.5	
(b)	$2x+5 = \frac{3}{x}$ $2x^{2} + 5x - 3 [=0] \qquad \text{or} \qquad 2x^{2} + 5x = 3$ $(2x-1)(x+3) [=0]$ $x = -3 \text{ or } \frac{1}{2}$	M1 A1 M1 A1
	$y = \frac{3}{-3}$ or $2 \times (-3) + 5$ or $y = \frac{3}{\frac{1}{2}}$ or $2 \times (\frac{1}{2}) + 5$	M1
	Points are $(-3,-1)$ and $(\frac{1}{2},6)$ (correct pairings)	A1ft 9
(a)	B1 for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughly	the correct shape
	and no touching or intersections with axes. Condone up to 2 inward bends but there must be some ends that are roughly asym	nntotic
	M1 for a straight line cutting the positive y -axis and the negative x -axis. Ignore	_
	A1 for (0,5) and (-2.5,0) or points correctly marked on axes. Do not give for v	
	Condone mixing up (x, y) as (y, x) if one value is zero and other value corre	ect.
(b)	1^{st} M1 for attempt to form a suitable equation and multiply by x (at least one of $2x$ or $+5$) multiplied.	should be
	1^{st} A1 for correct 3TQ - condone missing = 0	
	2^{nd} M1 for an attempt to solve a relevant 3TQ leading to 2 values for $x =$	
	2^{nd} A1 for both $x = -3$ and 0.5.	
	T&I for x values may score 1st M1A1 otherwise no marks unless both values corre	ect.
	Answer only of $x = -3$ and $x = \frac{1}{2}$ scores 4/4, then apply the scheme for the	final M1A1ft
	3^{rd} M1 for an attempt to find at least one y value by substituting their x in either $\frac{3}{x}$	or $2x + 5$
	3^{rd} A1ft follow through both their x values, in either equation but the same for each	ch, correct
	pairings required but can be $x = -3$, $y = -1$ etc	

Question number	Scheme	Marks	
7. (a)	5, 7, 9, 11 or $5+2+2+2=11$ or $5+6=11$ use $a=5$, $d=2$, $n=4$ and $t_4=5+3\times 2=11$	B1	(1)
(b)	$t_n = a + (n-1)d$ with one of $a = 5$ or $d = 2$ correct (can have a letter for the other)	M1	
	= 5 + 2(n-1) or $2n+3$ or $1+2(n+1)$	A1	(2)
(c)	$S_n = \frac{n}{2} \left[2 \times 5 + 2(n-1) \right] $ or use of $\frac{n}{2} \left(5 + \text{"their } 2n + 3 \text{"} \right) $ (may also be scored in (b))	M1A1	
	$= \{n(5+n-1)\} = n(n+4) (*)$	Alcso	(3)
(d)	43 = 2n + 3	M1	
	[n] = 20	A1	(2)
(e)	$S_{20} = 20 \times 24$, $= 480$ (km)	M1A1	(2)
		10	
(a)	B1 Any other sum must have a convincing argument		
(b)	 M1 for an attempt to use a + (n - 1)d with one of a or d correct (the other can be Allow any answer of the form 2n + p (p ≠ 5) to score M1. A1 for a correct expression (needn't be simplified) [Beware 5+(2n-1) score Expression must be in n not x. Correct answers with no working scores 2/2. 	,	
(c)	M1 for an attempt to use S_n formula with $a = 5$ or $d = 2$ or $a = 5$ and their " $2n + 3$ " 1^{st} A1 for a fully correct expression 2^{nd} A1 for correctly simplifying to given answer. No incorrect working seen. Must see S_n used.		
(d)	Do not give credit for part (b) if the equivalent work is given in part (d) M1 for forming a suitable equation in n (ft their (b)) and attempting to solve leading to $n =$ A1 for 20 Correct answer only scores $2/2$. Allow 20 following a restart but check working. eg $43 = 2n + 5$ that leads to $40 = 2n$ and $n = 20$ should score M1A0.		
(e)	M1 for using their answer for n in $n(n+4)$ or S_n formula, their n must be a vale for 480 (ignore units but accept 480 000 m etc)[no matter where their 20 cm.		
	NB "attempting to solve" eg part (d) means we will allow sign slips and slips in ari		
			,
	but not in processes. So dividing when they should subtract etc would lead to Listing in parts (d) and (e) can score 2 (if correct) or 0 otherwise in each parts (d) and (e) can score 2 (if correct) or 0 otherwise in each parts (d) and (e) and (e) and (e)). If you see work to get $n(n + 1)$	rt.)

8

S

Question number	Scheme	Marks
8. (a)	[No real roots implies $b^2 - 4ac < 0$.] $b^2 - 4ac = q^2 - 4 \times 2q \times (-1)$	M1
	So $q^2 - 4 \times 2q \times (-1) < 0$ i.e. $q^2 + 8q < 0$ (*)	A1cso (2)
(b)	$q(q+8) = 0$ or $(q\pm 4)^2 \pm 16 = 0$	M1
	(q) = 0 or -8 (2 cvs) $-8 < q < 0 \text{ or } q \in (-8, 0) \text{ or } q < 0 \text{ and } q > -8$	A1 A1ft (3) 5
(a)	M1 for attempting $b^2 - 4ac$ with one of b or a correct. < 0 not needed for M1 This may be inside a square root.	
	A1cso for simplifying to printed result with no incorrect working or statements se	en.
	Need an intermediate step	
	e.g. $q^28q < 0$ or $q^2 - 4 \times 2q \times -1 < 0$ or $q^2 - 4(2q)(-1) < 0$ or $q^2 - 8q(-1) < 0$	or $q^2 - 8q \times -1 < 0$
	i.e. must have \times or brackets on the $4ac$ term	
	< 0 must be seen at least one line before the final answer.	
(b)	M1 for factorizing or completing the square or attempting to solve $q^2 \pm 8q = 0$.	
	would lead to 2 values for q . The "= 0" may be implied by values appear in 1^{st} A1 for $q = 0$ and $q = -8$	ig later.
	2^{nd} A1 for $-8 < q < 0$. Can follow through their cvs but must choose "inside" reg	ion
		1011.
	q < 0, q > -8 is A0, $q < 0$ or $q > -8$ is A0, (-8, 0) on its own is A0 BUT " $q < 0$ and $q > -8$ " is A1	
	BOT $q < 0$ and $q > -0$ is AT	
	Do not accept a number line for final mark	

Question number	Scheme	Marks	
9. (a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \right] 3kx^2 - 2x + 1$	M1A1	(2)
(b)	Gradient of line is $\frac{7}{2}$	B1	
	When $x = -\frac{1}{2}$: $3k \times (\frac{1}{4}) - 2 \times (-\frac{1}{2}) + 1, = \frac{7}{2}$	M1, M1	
	$\frac{3k}{4} = \frac{3}{2} \Longrightarrow k = 2$	A1	(4)
(c)	$x = -\frac{1}{2} \Rightarrow y = k \times \left(-\frac{1}{8}\right) - \left(\frac{1}{4}\right) - \frac{1}{2} - 5, = -6$	M1, A1	(2)
		8	
(a)	M1 for attempting to differentiate $x^n \to x^{n-1}$ (or -5 going to 0 will do)		
	A1 all correct. A "+ c " scores A0		
(b)	B1 for $m = \frac{7}{2}$. Rearranging the line into $y = \frac{7}{2}x + c$ does not score this mark	until you are	sure
	they are using $\frac{7}{2}$ as the gradient of the line or state $m = \frac{7}{2}$		
	1 st M1 for substituting $x = -\frac{1}{2}$ into their $\frac{dy}{dx}$, some correct substitution seen		
	2^{nd} M1 for forming a suitable equation in k and attempting to solve leading to $k = 1$.		
	Equation must use their $\frac{dy}{dx}$ and their gradient of line. Assuming the gradient	ent is 0 or 7	scores
	M0 unless they have clearly stated that this is the gradient of the line.		
	A1 for $k = 2$		
(c)	M1 for attempting to substitute their k (however it was found or can still be a least of the substitute of the substi	etter) and	
	$x = -\frac{1}{2}$ into y (some correct substitution)		
	A1 for - 6		

10

S

Question number	Scheme	Marks	
10. (a)	$QR = \sqrt{(7-1)^2 + (0-3)^2}$ = $\sqrt{36+9}$ or $\sqrt{45}$ (condone \pm) = $3\sqrt{5}$ or $a = 3$ ($\pm 3\sqrt{5}$ etc is A0)		
(b)	Gradient of QR (or l_1) = $\frac{3-0}{1-7}$ or $\frac{3}{-6}$, = $-\frac{1}{2}$	A1 (3) M1, A1	
	Gradient of l_2 is $-\frac{1}{-\frac{1}{2}}$ or 2	M1	
(c)	Equation for l_2 is: $y-3=2(x-1)$ or $\frac{y-3}{x-1}=2$ [or $y=2x+1$] P is $(0, 1)$ (allow " $x=0, y=1$ " but it must be clearly identifiable as P	M1 A1ft (5) B1 (1)	
(d)	$PQ = \sqrt{(1 - x_P)^2 + (3 - y_P)^2}$ Determinant Method e.g(0+0+7) - (1+21+0)	M1	
	$PQ = \sqrt{1^2 + 2^2} = \sqrt{5}$ = -15 (o.e.)	A1	
	Area of triangle is $\frac{1}{2}QR \times PQ = \frac{1}{2}3\sqrt{5} \times \sqrt{5}, = \frac{15}{2}$ or 7.5 Area = $\frac{1}{2} -15 $, = 7.5	dM1, A1 (4)	
(a)	Rules for quoting formula: For an M mark, if a correct formula is quoted and <u>some</u> correct then M1 can be awarded, if no values are correct then M0. If no correct formula is seen to scored for a fully correct expression. M1 for attempting QR or QR^2 . May be implied by $6^2 + 3^2$ 1st A1 for as printed or better. Must have square root. Condone \pm		
(b)	1^{st} M1 for attempting gradient of QR 1^{st} A1 for - 0.5 or $-\frac{1}{2}$, can be implied by gradient of $l_2 = 2$ 2^{nd} M1 for an attempt to use the perpendicular rule on their gradient of QR . 3^{rd} M1 for attempting equation of a line using Q with their changed gradient. 2^{nd} A1ft requires all 3 Ms but can ft their gradient of QR .	y = 2x + 1 with no working. Send to review.	
(d)	1 st M1 for attempting PQ or PQ ² follow through their coordinates of P 1 st A1 for PQ as one of the given forms. 2 nd dM1 for correct attempt at area of the triangle. Follow through their value of a and their PQ. This M mark is dependent upon the first M mark 2 nd A1 for 7.5 or some exact equivalent. Depends on both Ms. Some working must be seen.		
ALT	Use QS where S is $(1, 0)$ 1 st M1 for attempting area of $OPQS$ and QSR and OPR . Need all 3. 1 st A1 for $OPQS = \frac{1}{2}(1+3) \times 1 = 2$, $QSR = 9$, $OPR = \frac{7}{2}$ A1 if corrections	inant Method apt -at least one bracket correct. act (± 15) ect area formula	
MR	Misreading x-axis for y-axis for P. Do NOT use MR rule as this oversimplifies the They can only get M marks in (d) if they use PQ and QR .	e question.	

s 11

Question number	Scheme	Marks	$\overline{\ }$
11. (a)		M1	
	$\frac{\left(x^2+3\right)^2}{x^2} = \frac{x^4+6x^2+9}{x^2} = x^2+6+9x^{-2} \qquad (*)$	A1cso (2	2)
(b)	$y = \frac{x^3}{3} + 6x + \frac{9}{-1}x^{-1}(+c)$	M1A1A1	
	$20 = \frac{27}{3} + 6 \times 3 - \frac{9}{3} + c$	M1	
	c = -4	A1	
	$c = -4$ $[y =] \frac{x^3}{3} + 6x - 9x^{-1} - 4$	A1ft (6	5)
	(2)2	8	_
(a)	M1 for attempting to expand $(x^2 + 3)^2$ and having at least 3(out of the 4) correct	et terms.	
	A1 at least this should be seen and no incorrect working seen.		
	If they never write $\frac{9}{x^2}$ as $9x^{-2}$ they score A0.		
(b)	1^{st} M1 for some correct integration, one correct x term as printed or better		
	Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second.		
	1^{st} A1 for two correct x terms, un-simplified, as printed or better 2^{nd} A1 for a fully correct expression. Terms need not be simplified and $+c$ is not represented by No $+c$ loses the next 3 marks	equired.	
	2^{nd} M1 for using $x = 3$ and $y = 20$ in their expression for $f(x) \left[\neq \frac{dy}{dx} \right]$ to form a line	ar equation for c	
	$3^{\text{rd}} \text{ A1 for } c = -4$		
	4 th A1ft for an expression for y with simplified x terms: $\frac{9}{x}$ for $9x^{-1}$ is OK.		
	Condone missing " $y =$ " Follow through their numerical value of c only.		
1			

S