静宜大學資訊工程學系畢業專題計畫書

一、封面內容包括:

專題名稱:無人機高空偵蒐

指導教師:陸子強老師

專題學生: <資工三 B><410528460><張庭韶><s1052846@gm. pu. edu. tw>

<資工三 B><410715546><郭科顯><s1071554@gm. pu. edu. tw>

<資工三 B><410703476><劉冠禹><s1070347@gm. pu. edu. tw>

<資工三 B><410715588><吳政穎><s1071558@gm. pu. edu. tw>

繳交日期:2021/03/08

二、內容包括:

● 摘要

(請專題內容作一概述,作品的背景資料,完成此作品的動機,敘述專題作品的目的)

有鑑於現在深度學習有許多的進展,訓練模型這件事情漸漸地開始效率化,用人力蒐集資料的時間減少,整件事情開始方便許多,以及 pixhawk 開源無人機也陸續的開始有了一些實際的應用,有能夠取代人力達成任務的潛力,且還有許多的發展空間,故本團隊便想到將他們結合在一起執行任務。 深度學習有人應用,pixhawk 無人機的自動飛行有人應用,但將兩者結合並且讓無人機達到智慧飛行的功能,在現在的發展下還是少之又少,所以並沒有太多能夠參照的資料可以運用,這是一大困難挑戰。 但本團隊懷抱著很大的企圖心,想要挑戰這個艱難的目標,這就是我們選擇這次專題的動機以及目的。

• 進行方法及步驟

1.請細述本計畫採用之方法與原因。

結合 jetson nano 與 pixhawk 以實現深度學習,其目的在於透過 jetson nano 上的深度學習模型來達成自動判斷並駕駛無人機

2.預計可能遭遇之困難及解決途徑。

遭遇問題	目前作法
如何讓訓練好的影像辨識模型,在 Jetson nano 上運作	MATLAB 程式碼透過 GPU Coder 產生 CUDA 代碼,在 Jetson 上用 C
	語言執行
如何讓無人機進行自動飛行	預先設定好巡邏路徑,再透過 autopilot 的輔助進行自動飛行
Jetson nano 與 pixhawk 無法確定是否連接成功	參考相關文獻並且嘗試在 jetson nano 終端機來攔截數據流

● 設備需求 (硬體及軟體需求)

開發主機能夠運行 MATLAB, Jetson Nano 可以執行深度學習的程式碼,必須選擇能支援 Autopilot 功能的 Copter

● 經費預算需求表 (執行中所需之經費項目單價明細)

編列預算

項目名稱	說 明	單位	數量		小計	. 備 註
				臺幣(元)	臺幣(元)	
個人電腦	專案之進行	部	1	26000	26000	由系上實驗室
						提供
開源無人機	專案之進行	部	1	15000	15000	由系上實驗室
						提供
Jetson nano	深度學習運算使用	部	1	3500	3500	由系上實驗室
						提供
電池	無人機動力來源	個	5	1200	6000	由系上實驗室
						提供

遙控器	操作無人機使用	個	1	5000	5000	由系上實驗室
						提供
	共	計			55500	

• 工作分配 (詳述參與人員分工)

張庭韶與劉冠禹負責熟練無人機的操控、設定,以及搞定 pixhawk 與 jetson nano 方面的連結。 郭科顯與吳政穎負責熟練 jetson nano 的軟體部分,如何把深度學習模型放進去 jetson nano 且成功運作是他們的課題。

● 預期完成之工作項目及具體成果

預計能夠透過 jetson nano 操縱 pixhawk,再搭配無人機載具達到智慧降落的成果。

中階目標為:建立 jetson nano 與 pixhawk 之間的數據流,以及在 jetson nano 上確認「辨識降落點」的深度學習模型能夠成功。

- (★書面審查文件至少為2頁。不含封面,請依上述格式撰寫。)
- (* 字型: 「本文」使用「標楷體及 Times 12 點」; 行距 1.5。

「標題」使用「**粗體標楷體及 Times14 點」**;行距 1.5。)

(*上下左右的邊界至多2.5公分,至少1公分。