Transformaciones afines

A. Gavilanes
Departamento de Sistemas Informáticos y Computación
Facultad de Informática
Universidad Complutense de Madrid

Transformaciones

- Imágenes virtuales vs modelado físico:
 - La matriz de modelado se aplica a los vértices.
- Aplicación de las transformaciones:
 - Replicar imágenes virtuales de un mismo modelo físico: escenas complejas.
 - Explorar la escena: mover objetos vs mover la cámara.
 - Animar objetos: se mueve la imagen virtual.
- En OpenGL: GL_MODELVIEW, GL_PROJECTION, matriz del puerto de vista.

Transformaciones afines

Están definidas por matrices de la forma:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Coordenada homogénea: ■ ∈ {0, 1}

Puntos (1) y vectores (0) se transforman de forma análoga!

- Propiedades de las transformaciones afines:
 - Las combinaciones afines de puntos se transforman en combinaciones afines de los puntos transformados
 - Las líneas y planos se transforman en líneas y planos, respectivamente
 - Líneas y planos paralelos se transforman en líneas y planos paralelos

Transformaciones afines

 Las transformaciones afines preservan las proporciones, pero no los ángulos. $T(A) \xrightarrow{t} T(B)$

 Aplicación de una transformación afín T a una rejilla.

Traslaciones

$$\begin{pmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x+T_x \\ y+T_y \\ z+T_z \\ 1 \end{pmatrix}$$

- \square El vector de traslación es $\mathbf{t} = (Tx, Ty, Tz, 0)$.
- El comando de OpenGL:

post-multiplica la matriz de modelado-vista por la matriz de traslación asociada al vector determinado por los tres parámetros.

☐ Cuando Tz=0.0 se obtienen las traslaciones 2D.

Escalaciones

$$\begin{pmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x \cdot S_x \\ y \cdot S_y \\ z \cdot S_z \\ 1 \end{pmatrix}$$

- Los factores de escalación son Sx, Sy, Sz en los ejes X, Y, Z, respectivamente.
- El comando de OpenGL:

post-multiplica la matriz de modelado-vista por la matriz de escalación asociada a los factores determinados por los parámetros.

 \square Cuando Sz=1.0 se obtienen las escalaciones 2D.

■ Rotaciones elementales alrededor de los ejes

- Las rotaciones se miden en sentido anti-horario, cuando se mira el origen desde la parte positiva del eje respectivo.
- □ Rotaciones elementales $Rx(\theta)$, $Ry(\theta)$, $Rz(\theta)$.

$$R_{x}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_{y}(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$R_z(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0\\ \sin \theta & \cos \theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- □ Rotación alrededor de un eje que pasa por el origen
- Una rotación alrededor de una recta que pasa por el origen y tiene vector director u, de β grados medidos en sentido anti-horario, tomado éste cuando se mira desde el punto señalado por u al origen, se puede expresar como una composición de 5 rotaciones elementales alrededor de los ejes coordenados

$$R\mathbf{u}(\beta) = Ry(-\theta) \cdot Rz(\phi) \cdot Rx(\beta) \cdot Rz(-\phi) \cdot Ry(\theta)$$

■ El comando de OpenGL:

glRotated(
$$\beta$$
, x, y, z);

post-multiplica la matriz de modelado-vista por la matriz correspondiente a una rotación con respecto a una recta que pasa por el origen y tiene vector director $\mathbf{u}=(x, y, z, 0)$, de β grados en sentido anti-horario, tomado éste cuando se mira desde el punto (x, y, z, 1), al origen.

■ La matriz correspondiente a esta rotación es:

donde $c=cos(\beta)$, $s=sen(\beta)$, y = (x, y, z).

□ Cuando la rotación es con respecto al eje Z de coordenadas se obtienen las rotaciones 2D.

Transformaciones de objetos

- Las transformaciones afines vistas como transformaciones de objetos transforman puntos y vectores en un marco de coordenadas fijo.
- $\square M \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ son las coordenadas del punto/vector ($\blacksquare \in \{0, 1\}$) transformado.
- \square Composición de transformaciones: primero M_1 y luego M_2

- \square La transformación afín resultante es M_2M_1
- Pre-multiplicación de matrices.
- El producto de matrices no es conmutativo ⇒ ¡el orden en una sucesión de transformaciones importa!

Transformaciones de marcos

■ Las transformaciones afines vistas como transformaciones de marcos transforman marcos de coordenadas.

- \square El marco $\langle i, j, 0 \rangle$ se transforma en el marco $\langle i', j', 0' \rangle$
- $i' = M \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} m_{11} \\ m_{21} \\ 0 \end{pmatrix} \text{ es el eje x}$ transformado (primera columna de M).
- $\begin{array}{ll} \blacktriangleright & \mathbf{0}' = \mathbf{M} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{m_{13}} \\ \mathbf{m_{23}} \\ \mathbf{1} \end{pmatrix} \text{ es el origen} \\ \text{transformado (última columna de } \mathbf{M}). \end{array}$

Coordenadas de → en el marco↓	i'	j'	0'
$\langle \pmb{i}, \pmb{j}, \pmb{O} \rangle$	$\begin{pmatrix} m_{11} \\ m_{21} \\ 0 \end{pmatrix}$	$\begin{pmatrix} m_{12} \\ m_{22} \\ 0 \end{pmatrix}$	$egin{pmatrix} m_{13} \ m_{23} \ 1 \end{pmatrix}$
$\langle i', j', O' \rangle$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Transformaciones de marcos

Dado un punto/vector de coordenadas $\begin{pmatrix} x \\ y \end{pmatrix}$ expresadas en el marco transformado $\langle i', j', O' \rangle$, $M\begin{pmatrix} x \\ y \end{pmatrix}$ calcula las coordenadas de ese punto/vector en el marco original $\langle i, j, O \rangle$:

M es la matriz del cambio de coordenadas desde el marco transformado al marco original: $M: \langle i', j', 0' \rangle \rightarrow \langle i, j, 0 \rangle$

- Consecuencia en el modelado:
 - 1. Modelamos localmente.

OpenGL trabaja así!!

- 2. Colocamos el marco local en el marco global.
- 3. M resuelve el cambio de coordenadas de locales a globales!

Transformaciones de marcos

 \square Composición de transformaciones: primero M_1 y luego M_2

- □ La transformación afín resultante es M_1M_2
- Post-multiplicación de matrices.
- □ El producto de matrices no es conmutativo ⇒ ¡el orden en una sucesión de transformaciones importa!

■ Las transformaciones afines no conmutan. ¿En qué orden se aplican?

■ Ejemplo:

```
t = new TriangleRGB(10);
dmat4 m(1.0);
t->setModelMat(m);
grObjects.push_back(t);
```

- Se quiere dejar el triángulo en esta posición realizando una traslación sobre la diagonal y una rotación.
- ☐ ¿En qué orden?

Primera posibilidad:

```
m = rotate(m, 0.5, dvec3(0, 0, 1));
m = translate(m, dvec3(10, 10, 0));
```

Segunda posibilidad:

```
m = translate(m, dvec3(10, 10, 0));
m = rotate(m, 0.5, dvec3(0, 0, 1));
```

■ Primera posibilidad (incorrecta):

```
m = rotate(m, 0.5, dvec3(0, 0, 1));
m = translate(m, dvec3(10, 10, 0));
```


■ Segunda posibilidad (correcta):

```
m = translate(m, dvec3(10, 10, 0));
m = rotate(m, 0.5, dvec3(0, 0, 1));
```


Regla:

LA TRANSFORMACIÓN QUE PRIMERO SE QUIERE APLICAR ES LA ÚLTIMA QUE APARECE

- En el ejemplo:
 - Primero se gira el triángulo
 - Después se traslada
- Explicación. La matriz de modelado-vista que se aplica es:
 - V*(T*R) (por postmultiplicación de matrices, en el caso correcto)
 - □ V*(R*T) (en el "incorrecto")

donde V es la matriz de vista

Ejercicio. Explica por qué el caso incorrecto lo es.

19

- En el caso del triángulo anterior, si lo queremos dejar como se dice, pero haciendo una traslación sobre el eje X y después una rotación, ¿cuál de las siguientes es la opción correcta?
- Primera posibilidad:

```
m = rotate(m, 0.5, dvec3(0, 0, 1));
m = translate(m, dvec3(10, 0, 0));
```

Segunda posibilidad:

```
m = translate(m, dvec3(10, 0, 0));
m = rotate(m, 0.5, dvec3(0, 0, 1));
```

- En el caso del triángulo anterior, si lo queremos dejar como se dice, pero haciendo una traslación sobre el eje X y después una rotación, ¿cuál de las siguientes es la opción correcta?
- Primera posibilidad:

```
m = rotate(m, 0.5, dvec3(0, 0, 1));
m = translate(m, dvec3(10, 0, 0));
```


Segunda posibilidad:

```
m = translate(m, dvec3(10, 0, 0));
m = rotate(m, 0.5, dvec3(0, 0, 1));
```


Triángulo posicionado con respecto a otro triángulo. Se muestra con scene.render(camera.getViewMat()); en display(). Antes, init() de Scene se ha definido así:

```
void init() {
    (new EjesRGB(200.0))->render(cam); // Ejes
    Entity* t = new TriangleRGB(10); // Triángulo grande
    dmat4 m(1.0);
    m = scale(m, dvec3(10, 10, 1));
    t->setModelMat(m);
    t->render(cam);
    Entity* tt = new TriangleRGB(3); // Triángulo pequeño
    dmat4 mm(1.0);
    mm = scale(mm, dvec3(10, 10, 1));
    mm = translate(mm, dvec3(0, 0, 10));
    tt->setModelMat(mm);
    tt->render(cam);
```


- Supongamos que se quiere que toda transformación que se haga al triángulo grande se le haga también al triángulo pequeño (la escalación, la rotación y traslación, ...)
- Opción primera:

```
void posRel(Camera cam) { ...
    m = scale(m, dvec3(10, 10, 1));
    t->setModelMat(m);
    m = translate(m, dvec3(10, 10, 0));
    m = rotate(m, 0.5, dvec3(0, 0, 1));
    t->render(cam);
    Entity* tt = new TriangleRGB(3);
    dmat4 mm(1.0);
    mm = translate(t->getModelMat(), dvec3(0, 0, 10));
    tt->setModelMat(mm);
    tt->render(cam);
```


Ventaja

■ Desaparece la escalación del triángulo pequeño, así como la traslación y rotación, porque se heredan del grande gracias a que la matriz de modelado del triángulo grande se incorpora como matriz inicial de modelado del triángulo pequeño

Inconveniente

Es necesario conocer la modelMat del triángulo grande con respecto a la cual se posiciona y renderiza el triángulo pequeño. Una forma de hacerlo es añadir un parámetro más al render() de las entidades, pasando a haber dos parámetros. Uno es el que había, para conocer la matriz de vista (cam), y otro es nuevo, para conocer la matriz de modelado (t->getModelMat())

Opción segunda:

```
void posRel(dmat4 modelViewMat) { ...
    m = scale(m, dvec3(10, 10, 1));
    t->setModelMat(m);
    m = translate(m, dvec3(10, 10, 0));
    m = rotate(m, 0.5, dvec3(0, 0, 1));
    t->render(modelViewMat);
    Entity* tt = new TriangleRGB(3);
    dmat4 mm(1.0);
    mm = translate(mm, dvec3(0, 0, 10));
    tt->setModelMat(mm);
    tt->render(modelViewMat*t->getModelMat()); // (V*(S*T*R))*T
```

- Ventaja
 - Desaparecen la escalación, traslación y rotación del triángulo pequeño porque se heredan del grande pues la matriz de modelado del triángulo grande se incorpora en la matriz con respecto a la cual se renderiza el triángulo pequeño
- Inconveniente desaparece
 - No se necesitan dos parámetros al renderizar. Sencillamente el método render(m) se hace con respecto a una matriz m que incluye las matrices de vista y modelado, postmultiplicadas en este orden

Conclusión:

Tenéis que modificar el método render (Camera cam) de Scene y de Entity del proyecto de forma que sea de la forma:

render(dmat4 const& modelViewMat)

☐ La llamada de display() pasa a ser de la forma:

scene.render(camera.getViewMat());