การทดสอบสมมติฐาน (hypothesis testing)

เป็นกระบวนการที่มีระบบและมีกฎเกณฑ์สำหรับการตัดสินใจว่า จะยอมรับหรือปฏิเสธ สมมติฐานที่ตั้งขึ้น เพื่อการสรุปอ้างอิงค่าสถิติไปสู่พารามิเตอร์

สมมติฐานทางสถิติ (statistical hypothesis)

เป็นข้อสมมติเกี่ยวกับค่าพารามิเตอร์หนึ่งตัวหรือมากกว่า ของหนึ่งประชากร หรือหลาย ประชากร ซึ่งข้อสมมติดังกล่าวอาจเป็นจริงหรือไม่ก็ได้

สมมติฐานที่จะทคสอบ จะเรียกว่าสมมติฐานเพื่อการทคสอบหรือสมมติฐานหลัก (null hypothesis) และแทนด้วย \mathbf{H}_0 ส่วนสมมติฐานที่แย้งกับสมมติฐานหลัก เรียกว่าสมมติฐานแย้งหรือ สมมติฐานรอง (alternative hypothesis) แทนด้วย H_1

ในการทดสอบสมมติฐานเกี่ยวกับก่าพารามิเตอร์ $oldsymbol{ heta}$ เมื่อ $oldsymbol{ heta}_{_0}$ คือก่าของพารามิเตอร์ที่จะ พิจารณาใน \mathbf{H}_0 และ \mathbf{H}_1 ซึ่งขัดแย้งกันกันเสมอ หาก \mathbf{H}_0 เป็นจริงแล้ว \mathbf{H}_1 จะ ไม่จริง และ ในทาง กลับกัน หาก $\mathbf{H}_{_{0}}$ ไม่จริงแล้ว $\mathbf{H}_{_{1}}$ จะเป็นจริงเสมอ การขัดแย้งกันมี 3 ลักษณะ

1)
$$H_0: \theta = \theta_0$$
 $H_1: \theta > \theta_0$

2)
$$H_0$$
: $\theta = \theta_0$ H_1 : $\theta < \theta_0$

3)
$$H_0: \theta = \theta_0$$

 $H_1: \theta \neq \theta_0$

การทดสอบสมมติฐานแบบทางเดียว (One - tailed Test)

จากสมมติฐานที่ตั้งขึ้น โดยอาศัยตัวสถิติทดสอบ (test statistic) ซึ่งอาจจะเป็น Z, T, χ^2 หรือ F แล้วนำข้อมูลหลักฐานที่เก็บรวบรวมได้จากตัวอย่างที่สุ่มมา เป็นเกณฑ์ในการตัดสินใจที่จะ ยอมรับหรือปฏิเสธสมมติฐาน H_0 ด้วยเหตุนี้จะเห็นว่ามีการแบ่งการแจกแจงของตัวสถิติทดสอบ ออกเป็น 2 ส่วน คือ บริเวณยอมรับและปฏิเสธ โดยค่าที่แบ่งบริเวณทั้งสองนี้เรียกว่า ค่าวิกฤติ (critical value)

การทดสอบสมมติฐานแบบสองทาง (Tow - tailed Test)

บริเวณยอมรับ (acceptance region)

คือบริเวณที่ทำให้เกิดการยอมรับ \mathbf{H}_0 ส่วนบริเวณปฏิเสช (rejection region) หรือบริเวณ วิกฤติ (critical region) คือบริเวณที่ทำให้เกิดการปฏิเสช \mathbf{H}_0

ความคลาดเคลื่อนในการตัดสินใจ

เนื่องจากการตัดสินใจที่จะยอมรับหรือปฏิเสธสมมติฐาน ขึ้นอยู่กับข้อมูลที่เก็บรวบรวมมา จากกลุ่มตัวอย่าง จึงไม่อาจตัดสินใจด้วยความมั่นใจได้ มีโอกาสที่จะตัดสินใจผิดได้เสมอ ดังตาราง ต่อไปนี้

สมมติฐานหลัก	การตัดสินใจ						
(H_0)	ปฏิเสธ $\mathbf{H}_{_{\! 0}}$	ยอมรับ $\mathbf{H}_{_{\! 0}}$					
เป็นจริง /	ความคลาดเคลื่อนประเภท	ตัดสินใจถูกต้อง					
ព្លូก	ที่ 1	(ระดับความเชื่อมั่น = 1-α)					
	$P(Type\ I\ Error) = \alpha$						
ไม่เป็นจริง /	ตัดสินใจถูกต้อง	ความคลาดเคลื่อนประเภท					
ไม่ถูก	(อำนาจการทดสอบ = 1-β)	ที่ 2					
		P(Type II Error) = β					

ขั้นตอนการทดสอบสมมติฐาน

- ตั้งสมมติฐานทางสถิติ
- เลือกสถิติที่เหมาะสมสำหรับการทคสอบสมมติฐาน
- กำหนดระดับนัยสำคัญหรือระดับความคลาดเคลื่อน และขนาดของกลุ่มตัวอย่าง
- กำหนดเขตวิกฤต ในการปฏิเสธสมมติฐาน โดยอาศัยการแจกแจงของตัวอย่างของสถิติที่
 ใช้ทดสถา
- คำนวณค่าสถิติ
- ทำการตัดสินใจ และสรุปผล

การทดสอบสมมติฐานค่าเฉลี่ยของหนึ่งประชากร

ตัวอย่าง:

จากการศึกษาคุณภาพอากาศในกรุงเทพฯ ก่อนที่จะมีการออกมาตรการแก้ไข พบว่า มีปริมาณก๊าซการ์บอนมอนนอกไซด์โดยเฉลี่ย 9.4 ส่วนต่อล้านส่วน (ppm) เพื่อตรวจสอบว่ามาตรการดังกล่าวช่วยลดปริมาณก๊าซการ์บอนมอนนอกไซด์ได้จริง โดยการสุ่มอากาศจุดต่างๆ ทั่วกรุงเทพฯ รวม 18 จุด

วัดปริมาณก๊าซการ์บอนมอนนอกไซด์ได้ ดังนี้ หน่วย : ppm

8.6 6.4 7.2 10.5 8.7 10.7 5.4 5.7 3.9 7.6 6.8 10.9 10.2 4.5 3.6 7.9 9.4 7.9

ที่ระดับนัยสำคัญ 0.05 มาตรการดังกล่าวได้ผลหรือไม่

วิธีการทคสอบ

ให้ μ เป็นปริมาณก๊าซคาร์บอนมอนนอกไซค์โดยเฉลี่ยของอากาศใน กรุงเทพฯ

ขั้นตอนที่ 1 ตั้งสมมติฐานทางสถิติ

$$H_0: \mu = 9.4$$
 $H_1: \mu < 9.4$

$$H_1 : \mu < 9.4$$

ขั้นตอนที่ 2 เลือกสถิติทดสอบที่เหมาะสม

$$t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} \qquad , \quad V = n - 1$$

ขั้นตอนที่ 3 กำหนคระดับนัยสำคัญ

$$\alpha = .05$$

ขั้นตอนที่ 4 กำหนดเขตวิกฤต ในการปฏิเสธสมมติฐาน

t≤ -1.74

ขั้นตอนที่ 5 คำนวณค่าสถิติทคสอบ

จาก ข้อมล คำนวณค่าเฉลี่ย ได้ 7.55 และ ค่าเบี่ยงเบนมาตรฐาน ได้ 2.32

$$t = \frac{7.55 - 9.4}{\frac{2.32}{\sqrt{18}}} = -3.38$$

ขั้นตอนที่ 6 ตัดสินใจ และสรปผล

ปฏิเสช H0

นั่นคือ ปริมาณก๊าซคาร์บอนมอนนอกไซด์โดยเฉลี่ยมีค่า น้อยกว่า 9.4 ppm

การทดสอบสมมติฐานเกี่ยวกับความแตกต่างของค่าเฉลี่ยของสองประชากรที่มีอิสระต่อกัน

เมื่อ μ_1 , μ_2 เป็นค่าเฉลี่ยของประชากรที่ 1 และ 2 และ d_0 คือค่าของผลต่าง ของค่าเฉลี่ยของสองประชากร สมมติฐานที่จะทคสอบมีลักษณะคังต่อไปนี้

H_0	$\mathbf{H}_{_{1}}$
$\mu_1 - \mu_2 = d_0$	$\mu_{1} - \mu_{2} < d_{0}$
$\mu_1 - \mu_2 = d_0$	$\mu_{1} - \mu_{2} > d_{0}$
$\mu_1 - \mu_2 = d_0$	$\mu_1 - \mu_2 \neq d_0$

ตัวสถิติทคสอบขึ้นอยู่กับการแจกแจงของประชากรที่เกี่ยวข้อง ขนาคตัวอย่างที่ สุ่มมา และความแปรปรวนของประชากรทั้ง 2 ชุด ซึ่งแบ่งได้ 3 กรณี ดังนี้

กรณีที่ 1

เมื่อสุ่มตัวอย่างขนาดประชากร \mathbf{n}_1 และ \mathbf{n}_2 มาโดยอิสระกัน จาก 2 ประชากร ที่มีการแจกแจงแบบปกติ ที่มีค่าเฉลี่ย $\boldsymbol{\mu}_1$ และ $\boldsymbol{\mu}_2$ ความแปรปรวน σ_1^2 และ σ_2^2 ซึ่งทราบค่า

ตัวสถิติที่ใช้ทุดสอบ คือ

$$Z = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - d_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

กรณีที่ 2

เมื่อสุ่มตัวอย่างขนาดประชากร \mathbf{n}_1 และ \mathbf{n}_2 มาโดยอิสระกัน จาก 2 ประชากร ที่มีการแจกแจงแบบปกติ ที่มีค่าเฉลี่ย $\boldsymbol{\mu}_1$ และ $\boldsymbol{\mu}_2$ ความแปรปรวน $\boldsymbol{\sigma}_1^2$ และ $\boldsymbol{\sigma}_2^2$ ซึ่งไม่ทราบค่า แต่ทราบว่า $\boldsymbol{\sigma}_1^2 = \boldsymbol{\sigma}_2^2$

ตัวสถิติที่ใช้ทุดสอบ คือ

$$T = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - d_0}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

มืองศาแห่งความอิสระ $\mathbf{V}=\mathbf{n}_1+\mathbf{n}_2$ - 2

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

กรณีที่ 3

เมื่อสุ่มตัวอย่างขนาดประชากร \mathbf{n}_1 และ \mathbf{n}_2 มาโดยอิสระกัน จาก 2 ประชากร ที่มีการแจกแจงแบบปกติ ที่มีค่าเฉลี่ย $\boldsymbol{\mu}_1$ และ $\boldsymbol{\mu}_2$ ความแปรปรวน $\boldsymbol{\sigma}_1^2$ และ $\boldsymbol{\sigma}_2^2$ ซึ่งไม่ทราบค่า แต่ทราบว่า $\boldsymbol{\sigma}_1^2 \neq \boldsymbol{\sigma}_2^2$

ตัวสถิติที่ใช้ทุดสอบ คือ

$$T = \frac{(\overline{x}_{1} - \overline{x}_{2}) - d_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

มืองศาแห่งความเป็นอิสระ

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} = \frac{\left(\frac{S_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}$$

ตัวอย่าง

นักธรณีวิทยาผู้หนึ่งได้ศึกษาค่าความร้อนที่ได้จากแหล่งถ่านหิน 2 แหล่ง โดยสุ่มถ่านหินครั้งละ 1 ตัน จากแหล่งที่ 1 รวม 5 ครั้ง และจากแหล่งที่ 2 รวม 6 ครั้ง พบว่ามีค่าความร้อนดังนี้ หน่วย : ล้านคาลอรี/ตัน

แหล่งที่ 1 : 8260 8130 8350 8070 8340

แหล่งที่ 2: 7950 7890 7900 8140 7920 7840

ถ้าค่าความร้อนของถ่านหินทั้ง 2 แหล่ง มีความแปรปรวนเท่ากัน ที่ระดับนัยสำคัญ 0.05 นักธรณีวิทยาผู้นี้จะกล่าวได้หรือไม่ว่า ถ่านหินจากแหล่งที่ 1 ให้ค่าความร้อนสูงกว่า แหล่งที่ 2 มากกว่า 150 ล้านคาลอรี/ตัน

วิธีทุคสอบ

ให้ $\mu_{\scriptscriptstyle 1}$ และ $\mu_{\scriptscriptstyle 2}$ เป็นค่าความร้อนเฉลี่ยของถ่านหินจากแหล่งที่ 1 และ 2

- 1. ตั้งสมมติฐาน $H_0: \mu_1 \mu_2 = 150$ $H_1: \mu_1 \mu_2 > 150$
- 2. สถิติที่ใช้ทดสอบ T-test แบบ 2 กลุ่มที่มีอิสระต่อกัน ความแปรปรวน เท่ากัน
- 3. ระดับนัยสำคัญ $\alpha = 0.05$
- 4. บริเวณปฏิเสช H_0 คือ $t \ge 1.833$
- 5. คำนวณค่าสถิติ

$$\begin{split} \overline{x}_1 &= 8230 \qquad \qquad S_1^2 = 15750 \\ \overline{x}_2 &= 7940 \qquad \qquad S_1^2 = 10920 \\ S_p^2 &= \frac{(5-1)(15750) + (6-1)(10920)}{5+6-2} = 13066.67 \\ T &= \frac{(8230-7940)-150}{\sqrt{13066.67\left(\frac{1}{5} + \frac{1}{6}\right)}} = 2.02 \end{split}$$

6. ตัดสินใจ ปฏิเสธ H0 นั่นคือ ถ่านหินจากแหล่งที่ 1 ให้ค่าความร้อนสูงกว่า แหล่งที่ 2 มากกว่า 50 ล้านคาลอรี/ตัน

การทดสอบสมมติฐานเกี่ยวกับความแตกต่างของค่าเฉลี่ยของสองประชากร ที่มีที่มีความสัมพันธ์กัน

ในบางครั้งสิ่งที่ต้องการศึกษามีลักษณะเป็นคู่กัน เช่น ฝาแฝด หรือกลุ่มเดียว แต่มีการ ทคสอบสองครั้ง เช่น ทคสอบก่อนการทคลองและทคสอบหลังการทคลอง

คนที่	ก่อนทดลอง : x ₁	หลังทดลอง : x ₂	$\mathbf{D} = \mathbf{x}_2 - \mathbf{x}_1$
1	178	181	3
2	172	172	0
3	185	190	5
4	184	187	3
5	201	210	9

ข้อมูลคะแนนทั้ง 2 กลุ่มได้มาจากคนกลุ่มเคียวกัน ถือว่าเป็นประชากร 2 กลุ่มที่มี ความสัมพันธ์กัน อยู่กันเป็นคู่ๆ มีค่าเฉลี่ยเป็น μ_1 และ μ_2 ตามลำดับ ถ้ากลุ่มตัวอย่างขนาด n ถูกสุ่มมาจากประชากรที่มีการแจกแจงแบบปกติ ที่มีความแตกต่างของ ค่าเฉลี่ยของคะแนน 2 ชุด เป็น $\mu_D = \mu_1 - \mu_2$ ถ้าให้ D_0 เป็นค่าผลต่างของค่าเฉลี่ย

สมมติฐานที่จะทดสอบเป็นดังนี้

H_0	H_1
$\mu_{\rm D} = D_0$	$\mu_{\scriptscriptstyle D} < D_{\scriptscriptstyle 0}$
$\mu_{\rm D} = D_0$	$\mu_{\rm D} > D_{\rm 0}$
$\mu_{\rm D} = D_0$	$\mu_{D} \neq D_{0}$

ตัวสถิติที่ใช้ทดสอบคือ

$$T = \frac{\overline{D} - D_0}{\frac{S_D}{\sqrt{n}}}$$

ค่าองศาแห่งความอิสระ V = n - 1

ตัวอย่าง

ผู้จัดการฝ่ายการตลาดแชมพูตราหนึ่งต้องการศึกษาอิทธิพลของระดับชั้นวางสินค้าที่มีต่อยอดขาย ผลิตภัณฑ์ ของตน โดยเชื่อว่าผลิตภัณฑ์ของตนที่วางบนชั้นระดับสายตาจะมียอดขายสูงกว่าที่วาง บนชั้นระดับต่ำกว่าสายตา จากการสุ่มห้างสรรสินค้ามารวม 10 แห่ง แล้วบันทึกยอดขายในช่วง 2 สัปดาห์ของผลิตภัณฑ์ตราดังกล่าว ที่สัปดาห์หนึ่งวางบนชั้นระดับสายตา และอีกสัปดาห์หนึ่งวาง บนชั้นระดับต่ำกว่าสายตา ปรากฏผลดังนี้

หน่วย : พันบาท/สัปดาห์

ห้างสรรพสินค้าที่	1	2	3	4	5	6	7	8	9	10
ระดับสายตา :X1	181	172	190	187	210	202	166	173	183	184
ระดับต่ำกว่าสายตา :X2	178	172	185	184	201	201	160	168	180	179

ที่ระคับนัยสำคัญ 0.05 ความเชื่อของผู้จัดการฝ่ายการตลาดผู้นี้ถูกต้องหรือไม่

วิธีทดสอบ

ให้ $\mu_{\scriptscriptstyle
m D}$ เป็นค่าเฉลี่ยของผลต่างของยอดขายผลิตภัณฑ์ตราดังกล่าวที่วางบนชั้น ระดับสายตาและระดับต่ำกว่าสายตา

- 1. สมมติฐาน $H_0: \mu_D = 0$
- $H_1: \mu_D > 0$
- 2. สถิติทคสอบ คือ T-test กรณี 2 กลุ่มสัมพันธ์
- 3. ระดับนัยสำคัญ $\alpha = 0.05$
- 4. บริเวณปฏิเสช H_0 คือ $t \ge 1.833$
- 5. คำนวณค่าสถิติ

ห้างสรรพสินค้าที่	1	2	3	4	5	6	7	8	9	10
ระดับสายตา :X1	181	172	190	187	210	202	166	173	183	184
ระดับต่ำกว่าสายตา :X2	178	172	185	184	201	201	160	168	180	179
D = X1 - X2	3	0	5	3	9	1	6	5	3	5

 $\overline{D} = 4$ $D_0 = 0$ $S_D = 2.58$ n = 10

T = 4.9

6. ตัดสินใจ ปฏิเสธ H0 นั่นคือ ยอดขายแชมพูบนชั้นระดับสายตาสูงกว่า บนชั้นระดับต่ำกว่าสายตา

การทดสอบสมมติฐานความแปรปรวนของหนึ่งประชากร

เมื่อ σ_0^2 คือ ค่าของความแปรปรวนของประชากรที่มีการแจกแจงแบบปกติ สมมติฐานที่จะทดสอบคือ

H_0	H_1
$\sigma^2 = \sigma_0^2$	$\sigma^2 > \sigma_0^2$
$\sigma^2 = \sigma_0^2$	$\sigma^2 < \sigma_0^2$
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$

สถิติที่ใช้ทดสอบ คือ

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

มีค่าองศาแห่งความอิสระ V = n - 1

ตัวอย่าง

โรงงานผลิตหลอดภาพโทรทัศน์แห่งหนึ่งทราบว่า อายุการใช้งานของหลอดภาพมีการแจกแจงแบบ ปกติ มีความแปรปรวน 10000 ช.ม.² ในการตรวจสอบคุณภาพครั้งหนึ่ง โดยการสุ่มหลอดภาพมา 20 หลอด พบว่าความแปรปรวนของอายุการใช้งานของหลอดภาพเท่ากับ 12000 ช.ม.² ที่ระดับ นัยสำคัญ 0.05 จะกล่าวได้หรือไม่ว่า ความแปรปรวนของอายุการใช้งานของหลอดภาพไม่เท่ากับ 10000 ช.ม.²

วิธีทดสอบ

ให้ σ^2 คือความแปรปรวนของอายุการใช้งานของหลอดภาพที่ผลิตโดยโรงงานแห่งนี้ หน่วย : ช.ม. 2

1.
$$H_0: \mathbf{\sigma}^2 = 10000$$

$$H_1: \sigma^2 \neq 10000$$

2.
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

3.
$$\alpha = 0.05$$

4. บริเวณปฏิเสช $\mathbf{H}_{\scriptscriptstyle 0}$ คือ $\mathbf{\chi}^{\scriptscriptstyle 2} \leq 8.91\,$ หรือ $\mathbf{\chi}^{\scriptscriptstyle 2} \geq 32.9\,$

5.
$$\chi^2 = \frac{(20-1)(12000)}{10000} = 22.8$$

ยอมรับ H₀

นั่นคือ ความแปรปรวนของอายุการใช้งานของหลอดภาพเท่ากับ $10000~{
m g}$. ม. 2

การทดสอบสมมติฐานความแปรปรวนของสองประชากร

เมื่อ σ_1^2 และ σ_2^2 คือความแปรปรวนของประชากรที่ 1 และ 2 ซึ่งเป็นอิสระ ต่อกัน และทั้งสองประชากรต่างมีการแจกแจงแบบปกติ

สมมติฐานที่จะทดสอบ คือ

H_0	H_1
$\sigma_1^2/\sigma_2^2=1$	$\sigma_1^2/\sigma_2^2 > 1$
$\sigma_1^2/\sigma_2^2=1$	$\sigma_1^2/\sigma_2^2 < 1$
$\sigma_1^2/\sigma_2^2=1$	$\sigma_1^2/\sigma_2^2 \neq 1$

เมื่อ \mathbf{S}_1^2 และ \mathbf{S}_2^2 คือความแปรปรวนของตัวอย่างที่สุ่มมาจากประชากรที่ 1 และ

ขนาด $\mathbf{n}_{_{1}}$ และ $\mathbf{n}_{_{2}}$ ตามลำดับ

ตัวสถิติทดสอบ คือ F test

$$F = \frac{S_1^2}{S_2^2}$$
 ທີ່ນີ້ $V_1 = n_1 - 1$ ແລະ $V_2 = n_2 - 1$

ตัวอย่าง

ในการศึกษาประสิทธิภาพของโปรแกรมบทเรียนคอมพิวเตอร์ 2 โปรแกรม ผู้วิจัยได้สุ่มเลือก นักเรียนมา 2 กลุ่ม ให้แต่ละกลุ่มเรียนรู้ด้วยตนเองจากโปรแกรมบทเรียนคอมพิวเตอร์ กลุ่มละ 1 โปรแกรม จากนั้นทำการทดสอบวัดผลสัมฤทธิ์ ได้ผลดังนี้

โปรแกรม 1	33	37	35	41	34	35	40	38	32	37
โปรแกรม 2	32	36	31	34	30	34	28	31	33	

ที่ระดับนัยสำคัญ 0.05 ผู้วิจัยจะสรุปได้หรือไม่ว่าโปรแกรม 1 มีประสิทธิภาพดีกว่าโปรแกรม 2

วิธีทดสอบ

ให้ σ_1^2 และ σ_2^2 คือความแปรปรวนของคะแนนผลสัมฤทธิ์ของประชากร นักเรียนที่เรียนจากโปรแกรมที่ 1 และ 2

1.
$$H_0: \sigma_1^2/\sigma_2^2 = 1$$

$$H_1: \sigma_1^2/\sigma_2^2 \neq 1$$

2.
$$F = \frac{S_1^2}{S_2^2}$$

3.
$$\alpha = 0.05$$

4. บริเวณปฏิเสช คือ
$$F \le 0.24$$
 หรือ $F \ge 4.36$

5.
$$F = 1.458$$

6. ยอมรับ $\mathbf{H}_{_{0}}$ นั่นคือประสิทธิภาพโปรแกรม 1 และ 2 เท่ากัน

108

การทดสอบสมมติฐานสัดส่วนของประชากร

ข้อมูลมีการแจกแจงเป็น 2 ลักษณะ เช่น ใช่-ไม่ใช่ ถูก-ผิด จริง-เท็จ เป็นต้น เรียกว่าการแจก แจงแบบทวินาม สัดส่วนของจำนวนสมาชิกที่มีลักษณะ 2 จำพวก ในประชากรเป็น \mathbf{p} และสัดส่วน ของตัวอย่าง เป็น $\hat{\mathbf{p}}$ เมื่อ \mathbf{p}_0 คือค่าสัดส่วนที่กำหนดหรือคาดหวังของประชากร สมมติฐานที่จะ ทดสอบมีลักษณะดังนี้

H_0	H_1
$p = p_0$	$p > p_0$
$\mathbf{p} = \mathbf{p}_0$	$p < p_0$
$\mathbf{p} = \mathbf{p}_0$	$p \neq p_0$

ตัวสถิติที่ใช้ทุดสอบ คือ Z test

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} \qquad เมื่อ \qquad q_0 = 1 - p_0 \quad \text{และ} \quad n \ge 30$$

ตัวอย่าง

ผู้อำนวยการโรงเรียนแห่งหนึ่ง ทราบข้อมูลจากการประเมินของ สมศ. ว่านักเรียนในโรงเรียนของ ตนเองมีความสามารถคิดวิเคราะห์ ไม่เกินร้อยละ 3 ของนักเรียนทั้งหมด ผู้อำนวยการจึงสุ่มเลือก ตัวอย่างนักเรียนมา 500 คน และทดสอบความสามารถในการคิดวิเคราะห์ และพบว่ามีนักเรียนที่มี ความสามารถในการคิดวิเคราะห์ 22 คน ที่ระดับนัยสำคัญ 0.05 ผู้อำนวยการโรงเรียนท่านนี้ จะเชื่อ ผลการประเมินของ สมศ.หรือไม่

วิธีทดสอบ

1. สมมติฐานที่ต้องการทดสอบ $H_0: p = 0.03$ $H_1: p > 0.03$

2. สถิติที่ใช้ทุดสอบ Z test

 α 3. ระดับนัยสำคัญ α α = 0.05

4. บริเวณปฏิเสธ H_0 คือ $Z \ge 1.645$

5. คำนวณค่าสถิติ

$$Z = \frac{\frac{22}{500} - 0.03}{\sqrt{\frac{(0.03)(0.97)}{500}}} = 1.84$$

6. ปฏิเสธ \mathbf{H}_0 นั่นคือ สัดส่วนของนักเรียนที่มีความสามารถคิดวิเคราะห์ มีมากกว่าร้อยละ 3 ของจำนวนนักเรียน

ในกรณีที่ข้อมูลมีการแจกแจงมากกว่า 2 ลักษณะ สัดส่วนของประชากร จะเป็น \mathbf{p}_1 , \mathbf{p}_2 , ... , \mathbf{p}_k เมื่อ \mathbf{k} คือจำนวนลักษณะหรือประเภทของประชากรที่จำแนก \mathbf{p}_{10} , \mathbf{p}_{20} , ... , \mathbf{p}_{k0} เป็นสัดส่วนที่กำหนดหรือคาดหวังของประชากรในแต่ละประเภท สมมติฐานที่จะทดสอบมีลักษณะดังนี้

$H_0: p_i = p_{i0}$	สำหรับทุกค่าของ i = 1, 2,, k สัคส่วนหรือความน่าจะ
	เป็นของประชากรในแต่ละประเภท มีค่าเท่ากันทั้งหมด คือ
	เท่ากับค่าคงที่ตัวหนึ่งที่คาดหวัง (Pio)
$H_1: p_i \neq p_{i0}$	สัดส่วนหรือความน่าจะเป็นของประชากรในบางประเภท
	มีค่าไม่เท่ากับค่าคงที่ที่คาดหวัง (Pio) หรือความน่าจะเป็น
	ของประชากรในแต่ละประเภทมีค่าเท่ากันไม่ทั้งหมด

หรือ

$H_0: O_i = E_i$	ความถี่ที่สังเกตได้ (O) เท่ากับความถี่ที่คาดหวัง (E)ในทุก
	ประเภท
$H_1: O_i \neq E_i$	ความถี่ที่สังเกตได้และความถี่ที่คาดหวังในแต่ละประเภท
	มีค่าไม่เท่ากันทั้งหมดหรือมีบางประเภทที่ความถี่สังเกตได้
	แตกต่างไปจากความถี่คาดหวัง

ตัวสถิติที่ใช้ในการทดสอบ คือ χ^2 test (Chi-square)

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$
 ແລະ $\nu = k - 1$

 \mathbf{O}_{i} = ความถี่ที่สังเกตได้ หรือจำนวนข้อมูลของตัวอย่างประเภทที่ \mathbf{i}

 $\mathbf{E}_{i}=$ ความถี่ที่คาดหวัง หรือ จำนวนข้อมูลที่ควรจะเกิดขึ้นในประเภทที่ \mathbf{i} ภายใต้ $\mathbf{H}_{_{0}}$ เป็นจริง = $\mathbf{np}_{_{i}}$

 $\mathbf{p}_{\mathrm{i}} =$ ความน่าจะเป็นที่จะเกิดเหตุการณ์ในประเภทที่ i

k = จำนวนประเภทของประชากร

n = จำนวนความถี่ทั้งหมด หรือขนาดตัวอย่าง

V = องศาความเป็นอิสระ (Degree of freedom)

ตัวอย่าง

ในการวิจัยเพื่อติดตามผลการรับนักเรียนเข้าศึกษาต่อในวิทยาลัยแห่งหนึ่ง ว่าเป็นไปตามนโยบาย การรับนักเรียนกระจายตามจังหวัดต่างๆ อย่างเป็นสัดส่วนกับจำนวนนักเรียนที่มาสมัครและเข้า สอบหรือไม่ ผลการเก็บข้อมูล เป็นดังนี้

จังหวัด	จำนวนผู้มา	จำนวนผู้สอบได้			
	สมัคร	(O_i)			
	และเข้าสอบ (N _i)				
1	35	19			
2	130	50			
3	60	35			
4	38	20			
5	122	50			
6	55	26			
รวม	N=440	n=200			

วิธีทดสอบ

1.
$$H_0: p_1 = p_{i0}$$
 $H_1: p_i \neq p_{i0}$

2.
$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$
 $V = 6-1 = 5$

3.
$$\alpha = 0.05$$

4.
$$\chi^2 \ge 11.07$$

5. คำนวณ
$$p_i = \frac{n}{N} = \frac{200}{440} = 0.46$$
 $E_i = N_i p_i$

จังหวัด	N _i	O_{i}	E _i	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
1	35	19	16	0.563
2	130	50	59	1.373
3	60	35	27	2.370
4	38	20	17	0.529
5	122	50	56	0.643
6	55	26	25	0.040
รวม	N=440	n=200	200	5.518

6. ยอมรับ $\mathbf{H}_{\scriptscriptstyle{0}}$ นั่นคือเป็นไปตามนโยบาย

แบบฝึกหัด

1. ผู้อำนวยการ โรงเรียนแห่งหนึ่งกำลังที่จะตัดสินใจเลือกรับอาจารย์ใหม่ คนใดคนหนึ่ง ระหว่าง อาจารย์ ก กับ อาจารย์ ข เพื่อประกอบการตัดสินใจจึงให้อาจารย์ทั้งสอง ทดลองสอน โดยการสุ่มนักเรียนมา 18 คน และ สุ่มแยกออกเป็น 2 กลุ่ม ๆ ละ 9 คน แล้วให้อาจารย์ทั้งสอง ทดลองสอนคนละกลุ่ม จากนั้นทดสอบวัด ผลสัมถทธิ์ทางการเรียนของนักเรียนทั้งสองกล่มได้ดังนี้

อาจารย์ก	35	31	29	25	34	40	27	32	31
อาจารย์ ข	32	37	35	28	41	44	35	31	34

ที่ระดับนัยสำคัญ 0.05 ผู้อำนวยการโรงเรียนจะตัดสินใจได้หรือไม่ว่าควรจะเลือกรับอาจารย์ใหม่คนไหน

2. ปริมาณการขายก่อนและหลังการอบรมเกี่ยวกับเทคนิกการขายของพนักงานขาย 12 คน ที่สุ่มมาได้ เป็นดังนี้ หน่วย : 1000 บาท/เดือน

พนักงานคนที่	ก่อนอบรม	หลังอบรม	พนักงานคนที่	ก่อนอบรม	หลังอบรม	
1	135	136	7	126	135	
2	142	141	8	139	138	
3	130	140	9	144	148	
4	143	148	10	152	160	
5	135	138	11	130	132	
6	159	155	12	144	150	

ที่ระคับนัยสำคัญ 0.01 จะสรุปได้หรือไม่ว่าปริมาณการขายหลังการอบรมสูงกว่าก่อนการอบรม

3. เครื่องขายน้ำอัดลมอัตโนมัติโดยวิธีหยอดเหรียญ ถูกออกแบบให้รินน้ำอัดลมในปริมาณ 16 ออนซ์ต่อถ้วย ใน การตรวจสอบการทำงานของเครื่องขายน้ำอัดลมเครื่องหนึ่ง โดยการสุ่มหยอดเหรียญ 9 ครั้ง วัดปริมาณ น้ำอัดลมได้ดังนี้ หน่วย : ออนซ์

15.6 15.8 16.2 16.3 15.9 15.5 15.9 16.0 15.8 ที่ระดับนัยสำคัญ 0.05 จงทดสอบว่าเครื่องขายน้ำอัดลมเครื่องนี้ทำงานเป็นปกติหรือไม่

4. ในการศึกษาอายุการใช้งานของถ่านไฟฉาย 2 ตรา โดยสุ่มถ่านไฟฉายตราเพชร และ ตราคาว มาจำนวน 10 และ 21 ก้อน ตามลำดับ บันทึกการใช้งานได้ดังนี้ หน่วย : นาที

ଟ	าราเพชร	218	236	178	244	148	171	198	168	160	174
ଟ	าราดาว	178	184	146	176	185	158	175	172	163	181
		162	152	164	180	157	164	182	169	178	154
		148									

ที่ระดับนัยสำคัญ 0.05 จงทคสอบว่าถ่านไฟฉายทั้งสองตรามีอายุการใช้งานแตกต่างกันหรือไม่