Formulas from Geometry

Rectangle

b = base, h = heightArea: A = bhIf b = h, the rectangle is a *square*.

Square

s = sideArea: $A = s^2$

Parallelogram

b = base; h = height; a = sideArea: A = bhIf a = b, the parallelogram is a *rhombus*.

Rhombus

b = side; d, d' = diagonals

Area: $A = \frac{1}{2}dd'$

Triangle

b = base; h = height; a, c = sides

Area:
$$A = \frac{1}{2}bh$$

Heron's formula: $A = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$

Equilateral triangle: $A = \frac{a^2\sqrt{3}}{4}$, where a = side of triangle

Trapezoid

b, b' = base; h = heightArea: $A = \frac{1}{2}(b + b')h$

Circle

r = radius; d = diameterDiameter: d = 2rCircumference: $C = 2\pi r = \pi d$ Area: $A = \pi r^2$

Regular Polygon

b= side; a= apothem; p= perimeter of polygon Area: $A=\frac{1}{2}ap$

Right Prism

h = height; p = perimeter of base;

B = area of base

Lateral area: LA = ph

Surface area: SA = LA + 2B

Volume: V = Bh

Cube

e = edge

Surface area: $SA = 6e^2$

Volume: $V = e^3$

Right Circular Cylinder

r = radius; h = height

Lateral area: LA = ph or $2\pi rh$

p = perimeter (circumference)

B =area of base

Surface area: SA = LA + 2B or $2\pi rh + 2\pi r^2$

Volume: V = Bh or $\pi r^2 h$

Sphere

r = radius

Surface area: $SA = 4\pi r^2$

Volume: $V = \frac{4}{3}\pi r^3$

Regular Pyramid

h = height; p = perimeter of base;

 ℓ = slant height; B = area of base

Lateral area: $LA = \frac{1}{2}p\ell$

Surface area: $SA = LA + B \text{ or } \frac{1}{2}p\ell + B$

Volume: $V = \frac{1}{3}Bh$

Right Circular Cone

 $r = \text{radius}; h = \text{height}; \ell = \text{slant height}$

p = perimeter (circumference)

B =area of base

Lateral area: $LA = \frac{1}{2}p\ell$ or $\pi r\ell$

Surface area: SA = LA + B or $\pi r\ell + \pi r^2$

Volume: $V = \frac{1}{3}Bh$ or $\frac{1}{3}\pi r^2h$

Formulas and Basic Relationships

Angle Formulas

1. complement of x° : $90^{\circ} - x^{\circ}$

2. supplement of x° : $180^{\circ} - x^{\circ}$

3. sum of angles of a triangle: sum = 180°

4. sum of measures of interior angles of polygon with *n* sides: $S = 180^{\circ}(n-2)$

5. measure of each interior angle of regular polygon with *n* sides: $\frac{180^{\circ}(n-2)}{n}$

6. measure of each exterior angle of regular polygon with *n* sides: $\frac{360^{\circ}}{n}$

7. measure of angle inscribed in semicircle: 90°

Angle and Segment Relationships in a Circle

	Diagram	Angle Relationships	Segment Relationships
8.	O(1)	$m \angle 1 = m\widehat{A}\widehat{B}$	OA = OB
9.	$B \bigoplus_{C}^{A}$	$m \angle 1 = \frac{1}{2}\widehat{AC}$	no segment relationship
10.	$A = \begin{bmatrix} E & C \\ D & D \end{bmatrix}$	$m \angle 1 = \frac{1}{2}(m\widehat{AB} + m\widehat{CD})$	(AE)(EC) = (BE)(ED)
11.	$C \xrightarrow{D} E$ A	$m \angle 1 = \frac{1}{2}(m\widehat{AE} - m\widehat{BD})$	(CA)(CB) = (CE)(CD)
12.	$A \xrightarrow{B} C$	$m \angle 1 = \frac{1}{2}(m\widehat{BC})$	no segment relationship
13.	B C D	$m \angle 1 = \frac{1}{2}(m\widehat{AD} - m\widehat{AC})$	$\frac{BD}{AB} = \frac{AB}{BC}$
14.	A I E	$m \angle 1 = \frac{1}{2} (m\widehat{BCD} - m\widehat{BED})$	AB = AD

15. area of sector with arc measuring m° : $A = \frac{m}{360}\pi r^2$ 16. length of arc measuring m° : $L = \frac{m}{360}2\pi r$ or $\frac{m}{180}\pi r$ Right Triangle Formulas

1.
$$a^2 + b^2 = c^2$$

2. $\frac{AD}{CD} = \frac{CD}{DB}$
3. $\frac{BD}{CB} = \frac{CB}{AB}$

Analytic Geometry Formulas

1. distance formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 4. equation of line, general form: ax + by + c = 0

2. midpoint formula: $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 5. equation of line, point-slope form: $y - y_1 = m(x - x_1)$

3. slope formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$ 6. equation of line, slope-intercept form: y = mx + b