Глава 13. МЕТОДЫ РЕШЕНИЯ ТРАНСПОРТНЫХ ЗАДАЧ

13.1. ПОСТАНОВКА ЗАДАЧИ И СТРАТЕГИЯ РЕШЕНИЯ

Предположим, что в пунктах $A_1, A_2, ..., A_m$ хранится однородный груз в количестве $a_1, a_2, ..., a_m$ единиц. Этот груз следует доставить в n заданных пунктов назначения $B_1, B_2, ..., B_n$, причем в каждый из них требуется завезти соответственно $b_1, b_2, ..., b_n$ единиц этого груза. Обозначим через c_{ij} стоимость перевозки единицы груза из пункта A_i в пункт B_j .

Транспортные задачи делятся на две группы.

1. Задачи, удовлетворяющие условию баланса

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j ,$$

означающему, что общий запас груза на всех пунктах хранения равен суммарной потребности всех пунктов назначения.

2. Задачи с нарушенным балансом, среди которых выделяются два случая:

а)
$$\sum_{i=1}^{m} a_i > \sum_{j=1}^{n} b_j$$
 (суммарные запасы больше суммарных потребностей);

б)
$$\sum_{i=1}^{m} a_{i} < \sum_{i=1}^{n} b_{j}$$
 (суммарные запасы меньше суммарных потребностей).

Рассмотрим формализацию транспортной задачи, удовлетворяющей условию баланса.

Обозначим x_{ij} – количество груза, перевозимого из пункта A_i в пункт B_j . Тогда суммарная стоимость перевозок имеет вид

$$f(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} .$$
 (13.1)

Ограничения представляются уравнениями вывоза и привоза груза:

$$x_{i1} + x_{i2} + ... + x_{in} = a_i, \quad i = 1, 2, ..., m;$$
 (13.2)

$$x_{1j} + x_{2j} + ... + x_{mj} = b_j, \quad j = 1, 2, ..., n;$$
 (13.3)

$$x_{ij} \ge 0, \quad i = 1, 2, ..., m; \quad j = 1, 2, ..., n.$$
 (13.4)

Уравнение (13.2) означает, что из каждого пункта хранения A_i вывозится весь груз, а уравнение (13.3) описывает факт удовлетворения всех потребностей в пункте B_j . Условие (13.4) свидетельствует о том, что груз либо вывозится из пункта A_i в пункт B_j , и тогда $x_{ij} > 0$, либо нет, и в этом случае $x_{ij} = 0$.

Решение x_{ij} , i=1,2,...,m; j=1,2,...,n, системы (13.2) — (13.4) называется *планом* перевозок.

Требуется найти такой план перевозок, чтобы их суммарная стоимость была минимальной, т.е.

$$f(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij} \to \min.$$
 (13.5)

Условия задачи удобно записывать в виде матрицы перевозок (табл. 13.1).

Таблица 13.1

Пункты	B_1	B_2	 B_{j}	 B_n	Запасы
A_1	c_{11}	c_{12}	c_{1j}	c_{1n}	a_1
A_2	c_{21}	c_{22}	c_{2j}	c_{2n}	a_2
÷					÷
A_i	c_{i1}	c_{i2}	c_{ij}	c_{in}	a_i
÷					÷
A_m	c_{m1}	c_{m2}	c_{mj}	c _{mn}	a_m
Потребности	b_1	b_2	 b_j	 b_n	Сумма

Заметим, что с помощью линейных преобразований можно показать зависимость одного из уравнений в системе (13.2),(13.3) от остальных, т.е. в этой системе имеется (m+n-1) независимых уравнений. Лишнее уравнение может быть исключено из системы уравнений-ограничений.

В матрице перевозок хранится текущий план перевозок x_{ij} , i=1,2,...,m; j=1,2,...,n.

Стратегия решения задачи

Так как поставленная задача является частным случаем задачи линейного программирования, то стратегия решения аналогична:

- 1) находится начальный план перевозок;
- 2) производится улучшение начального плана, т.е. последовательный переход от одного плана к другому, связанный с уменьшением суммарной стоимости перевозок. Процесс перехода от одного плана к другому завершается, когда уменьшение суммарной стоимости перевозок станет невозможным.

13.2. МЕТОДЫ НАХОЖДЕНИЯ НАЧАЛЬНОГО ПЛАНА ПЕРЕВОЗОК

Клетки матрицы перевозок, где $x_{ij} > 0$, называются базисными, а остальные, где $x_{ij} = 0$, — csofodными. В матрице имеется (m+n-1) базисных клеток. Их число совпадает с числом независимых уравнений-ограничений.

Значение x_{ij} в матрице перевозок находится по формуле

$$x_{ij} = \min \begin{cases} \text{остаток груза в пункте } A_i, \\ \text{неудовлетворенные потребности в пункте } B_j. \end{cases}$$
 (13.6)

Значение $x_{ij}=0\,$ в свободной клетке не пишется явно, а вместо этого в ней ставится точка.

13.2.1. Метод северо-западного угла

Вычисления осуществляются по формуле (13.6), начиная с элемента x_{11} , стоящего в северо-западном углу матрицы перевозок.

Пример 13.1. Найти начальный план перевозок в транспортной задаче, заданной матрицей перевозок (табл. 13.2).

Таблица 13.2

Пункты	B_1	B_2	B_3	Запасы
A_1	2 10	3 10	4	20
A_2	1	2 10	5 30	40
Потребности	10	20	30	60

 \square Начнем с северо-западного угла, т.е. $x_{11} = \min [20, 10] = 10$. Тогда в пункте B_1 потребности удовлетворены и, следовательно, $x_{21} = 0$ (в табл. 13.2 ставится точка). Первый столбец выбывает из рассмотрения.

Продолжим с северо-западного угла, т.е. $x_{12} = \min[(20-10), 20] = \min[10, 20] = 10$. Тогда запасы в пункте A_1 исчерпаны и $x_{13} = 0$ (в табл. 13.2 ставится точка). При этом первая строка выбывает из рассмотрения.

Продолжим с северо-западного угла:

$$x_{22} = \min [40, (20 - 10)] = \min [40, 10] = 10$$
.

Потребности в пункте B_2 удовлетворены, и второй столбец выбывает из рассмотрения.

Заполним последний элемент, находящийся в северо-западном углу: $x_{23} = \min[(40-10), 30] = 30$. Таким образом, получен начальный план перевозок:

$$x_{11} = 10,$$
 $x_{12} = 10,$ $x_{13} = 0,$ $x_{21} = 0,$ $x_{22} = 10,$ $x_{23} = 30$

с суммарной стоимостью $f = 2 \cdot 10 + 3 \cdot 10 + 4 \cdot 0 + 1 \cdot 0 + 2 \cdot 10 + 5 \cdot 30 = 220$. Число базисных клеток, очевидно, составит m + n - 1 = 2 + 3 - 1 = 4.

 ${f 3}$ а м е ч а н и е ${f 13.1.}$ При нахождении начального плана перевозок возможен случай вырождения, когда в результате вычислений значения x_{ij} получается, что потребности в пункте B_j удовлетворены, а запасы в пункте A_i исчерпаны. Тогда одновременно из рассмотрения выбывают строка и столбец. В этом случае рекомендуется поставить в одну из клеток выбывающих строки и столбца (лучше в клетку с наименьшей стоимостью) так называемый базисный нуль. Клетка с базисным нулем считается базисной (в ней пишется 0), а общее число базисных клеток остается равным (m+n-1).

Пример 13.2. Методом северо-западного угла найти начальный план перевозок в транспортной задаче, заданной матрицей перевозок (табл. 13.3).

Таблица 13.3

Пункты	B_1	B_2	B_3	B_4	Запасы
A_1	1 30	2 20	3	5	50
A_2	4	¹ 0	1 40	2	40
A_3	1 •	2	5 10	¹⁰ 50	60
Потребности	30	20	50	50	150

□ Начнем заполнение таблицы с северо-западного угла:

$$x_{11} = \min [50, 30] = 30;$$
 $x_{21} = x_{31} = 0$ (ставится точка).

Далее снова продолжим с северо-западного угла:

 $x_{12} = \min[(50 - 30), 20] = \min[20, 20] = 20$ (это случай вырождения, так как выбывают первая строка и второй столбец: $x_{13} = x_{14} = x_{22} = x_{32} = 0$.

Базисный нуль поставим в клетку (2,2) с наименьшей стоимостью, равной min [3;5;1;2]=1. В остальных выбывающих клетках ставятся точки.

Продолжим с северо-западного угла:

$$x_{23} = \min [40, 50] = 40; x_{24} = 0$$
 (ставится точка).

Из рассмотрения выбывает вторая строка.

Продолжим с северо-западного угла:

$$x_{33} = \min[60, (50 - 40)] = 10$$
 и $x_{34} = \min[(60 - 10), 50] = 50$.

Таким образом, получен начальный план перевозок

$$x_{11} = 30$$
, $x_{12} = 20$, $x_{13} = x_{14} = 0$,
 $x_{21} = x_{22} = 0$, $x_{23} = 40$, $x_{24} = 0$,
 $x_{31} = x_{32} = 0$, $x_{33} = 10$, $x_{34} = 50$

с суммарной стоимостью

$$f = 30 + 40 + 40 + 50 + 500 = 660$$
.

Число базисных клеток с учетом базисного нуля, очевидно, составит m+n-1=3+4-1=6 .

Пример 13.3. Методом северо-западного угла найти начальный план перевозок в транспортной задаче, заданной матрицей перевозок (табл. 13.4).

Таблица 13.4

Пункты	B_1	B_2	B_3	B_4	B_5	Запасы
A_1	3 40	4	5	¹ 0	1 •	40
A_2	2	5 30	6 10	1 10	¹ 0	50
A_3	3	1	2	3	4 50	50
A_4	2	3	5	6	¹⁰ 10	10
Потребности	40	30	10	10	60	150

□ Решим аналогично примеру 13.2:

а) $x_{11} = \min [40, 40] = 40$ (случай вырождения);

 $x_{12} = x_{13} = x_{14} = x_{15} = x_{21} = x_{31} = x_{41} = 0$ (базисный нуль ставится в клетку (1,4) с наименьшей стоимостью, а в остальные ставятся точки);

б)
$$x_{22} = \min [50, 30] = 30$$
, $x_{32} = x_{42} = 0$ (ставятся точки);

в)
$$x_{23} = \min[(50-30), 10] = 10$$
, $x_{33} = x_{43} = 0$ (ставятся точки);

г)
$$x_{24} = \min [(50 - 30 - 10), 10] = \min [10, 10] = 10$$
 (случай вырождения);

 $x_{25} = 0$ (ставится базисный нуль, так как это клетка с наименьшей стоимостью среди выбывающих клеток), $x_{34} = x_{44} = 0$ (ставятся точки);

д)
$$x_{35} = \min [50, 60] = 50$$
;

e)
$$x_{45} = \min [10, (60 - 50)] = 10$$
.

Таким образом, начальный план перевозок содержит два базисных нуля, следовательно, число базисных клеток составит m + n - 1 = 4 + 5 - 1 = 8.

13.2.2. Метод минимального элемента

Получаемый методом северо-западного угла начальный план перевозок не зависит от их стоимости и поэтому в общем случае далек от наилучшего. В методе минимального элемента учитываются затраты на перевозку, следовательно, соответствующий начальный план, как правило, позволяет обеспечить меньшую суммарную стоимость, более близкую к оптимальной.

В этом методе по формуле (13.6) последовательно заполняются клетки с наименьшей стоимостью перевозок. Если имеется несколько клеток с наименьшей стоимостью, то из них выбирается любая.

Пример 13.4. Найти начальный план перевозок в транспортной задаче, заданной матрицей перевозок (табл. 13.5).

Таблица 13.5

Пункты	B_1	B_2	B_3	Запасы
A_1	2	3	4 20	20
A_2	1 10	2 20	5 10	40
Потребности	10	20	30	60

□ Заполним клетку с наименьшей стоимостью, равной 1:

$$x_{21} = \min[40, 10] = 10$$
.

Тогда потребности в пункте B_1 удовлетворены и $x_{11} = 0$ (в табл. 13.5 ставится точка), первый столбец выбывает из рассмотрения.

Из оставшихся клеток найдем клетку с наименьшей стоимостью и заполним ее: $x_{22} = \min \left[(40 - 10), 20 \right] = 20$. Тогда $x_{12} = 0$ (в табл. 13.5 ставится точка), потребности в пункте B_2 удовлетворены и выбывает второй столбец.

Из оставшихся двух клеток заполним клетку с наименьшей стоимостью: $x_{13} = \min[20, 30] = 20$. Тогда первая строка выбывает (запасы в пункте A_1 исчерпаны) и $x_{23} = \min[(40 - 30), (30 - 20)] = 10$.

Таким образом, получен начальный план перевозок

$$x_{11} = 0$$
, $x_{12} = 0$, $x_{13} = 20$, $x_{21} = 10$, $x_{22} = 20$, $x_{23} = 10$

$$x_{21} = 10, \quad x_{22} = 20, \quad x_{23} = 10$$

с суммарной стоимостью

$$f = 2 \cdot 0 + 3 \cdot 0 + 4 \cdot 20 + 1 \cdot 10 + 2 \cdot 20 + 5 \cdot 10 = 180$$
.

Заметим, что она меньше полученной с помощью метода северо-западного угла (см. пример 13.1). Число базисных клеток, очевидно, составит m+n-1=2+3-1=4. В примере 13.6 будет показано, что найденный план перевозок оптимален.

13.3. МЕТОД ПОТЕНЦИАЛОВ

Метод обеспечивает улучшение начального плана перевозок. При этом происходит переход от одного плана перевозок к другому (от одной матрицы перевозок к другой) до тех пор, пока уменьшение суммарной стоимости перевозок станет невозможным.

Введем следующие понятия.

- 1. Цикл замкнутая ломаная с вершинами в клетках и звеньями, расположенными вдоль строк и столбцов матрицы перевозок. В каждой вершине встречаются два звена, причем одно из них располагается по строке, а другое – по столбцу. Число вершин цикла четно. Циклом может быть самопересекающаяся ломаная, но точки ее самопересечения не могут быть вершинами цикла.
- 2. Означенный цикл цикл, в котором некоторой вершине приписан знак "+", а затем при обходе цикла в каком-либо направлении знаки чередуются.
- 3. Сдвиг по циклу на число $\theta \ge 0$. При этом значения x_{ij} , стоящие в положительных вершинах цикла, увеличиваются на число θ , а стоящие в отрицательных вершинах, уменьшаются на число θ .
- 4. Потенциалы числа α_i , i=1,2,...,m; β_i , j=1,2,...,n. Каждому пункту хранения A_i ставится в соответствие число α_i , пункту потребления B_i – число β_i .

Алгоритм

Шаг 1. Найти начальный план перевозок методом северо-западного угла или методом минимального элемента.

Шаг 2. Для каждой базисной клетки составить уравнение

$$\alpha_i + \beta_i = c_{ij}$$
.

Так как эти уравнения образуют систему (m+n-1) уравнений с (m+n) неизвестными (она имеет бесконечное множество решений), то для определенности следует положить $\alpha_1 = 0$. Тогда все остальные потенциалы находятся однозначно.

Шаг 3. Для каждой свободной клетки вычислить относительные оценки:

$$\Delta_{ij} = c_{ij} - (\alpha_i + \beta_j).$$

Шаг 4. Проанализировать относительные оценки:

а) если все относительные оценки неотрицательные, т.е. выполняется условие

$$\Delta_{ii} \geq 0$$
,

то задача решена, и следует выписать полученный оптимальный план перевозок из последней матрицы, подсчитать его стоимость;

б) если среди оценок Δ_{ij} есть отрицательные, найти среди них наименьшую отрицательную оценку и пометить знаком \otimes .

Шаг 5. Для свободной клетки (i,j) с выбранной оценкой Δ_{ij} , помеченной \otimes , по строить означенный цикл. Все его вершины, кроме расположенной в клетке (i,j), должны находиться в базисных клетках. Свободная клетка берется со знаком "+".

Шаг 6. Выполнить сдвиг по построенному на шаге 5 циклу на величину θ , равную наименьшему из чисел, стоящих в отрицательных вершинах. При этом числа, стоящие в положительных вершинах, увеличить на θ , а числа, стоящие в отрицательных вершинах, уменьшить на θ .

Если наименьшее значение θ достигается в нескольких отрицательных вершинах цикла, то при сдвиге следует поставить базисный нуль во всех таких вершинах, кроме одной. Тогда число базисных клеток сохранится и будет равно (m+n-1), что необходимо проверять при расчетах. Базисный нуль рекомендуется ставить в клетку (клетки) с наименьшей стоимостью перевозок.

Элементы матрицы, не входящие в цикл, остаются без изменений. Перейти к шагу 2.

Замечания 13.2.

- 1. При решении задач может возникнуть ситуация, когда $\theta = 0$. Тогда при сдвиге свободная клетка становится базисной (точка заменяется на базисный нуль).
- 2. Значения суммарной стоимости перевозок при переходе от одной матрицы к другой связаны соотношением

$$f^{k+1} = f^k + \theta \cdot \Delta_{ij},$$

где k – номер итерации, f^k – текущее значение суммарной стоимости перевозок, значения θ и Δ_{ij} находятся на шагах 3 и 6 соответственно.

Пример 13.5. Решить транспортную задачу (табл. 13.6).

Таблина 13 6

			таолица 15.0	
Пункты	B_1	B_2	Запасы	
A_1	1 \ominus 30	10 ⊕	40	$\alpha_1 = 0$
A_2	3	30	30	$\alpha_2 = 0$
A_3	1 +	30 ⊝	30	$\alpha_3 = 2$
Потребности	30	70	100	

$$\beta_1 = 1$$

$$\beta_2 = 2$$

□ Решим задачу согласно алгоритму.

1. Найдем начальный план перевозок методом северо-западного угла:

$$x_{11}=\min$$
 [40, 30] = 30 ; $x_{21}=x_{31}=0$ (в табл. 13.6 ставятся точки);
$$x_{12}=\min$$
 [(40 – 30), 70] = 10 ,
$$x_{22}=\min$$
 [30, (70 – 10)] = 30 ,
$$x_{32}=\min$$
 [30, (70 – 10 – 30)] = 30 .

Его стоимость f = 30 + 20 + 60 + 120 = 230.

 2^1 . Найдем потенциалы, составляя для каждой базисной клетки уравнение $\alpha_i + \beta_i = c_{ii}$.

Положим $\alpha_1 = 0$. Тогда для базисных клеток (1,1) и (1,2) получим

$$\alpha_1 + \beta_1 = 1$$
,
 $\alpha_1 + \beta_2 = 2$.

Отсюда $\beta_1 = 1$, $\beta_2 = 2$.

Далее для базисных клеток (2,2) и (3,2) имеем

$$\alpha_2 + \beta_2 = 2$$

$$\alpha_3 + \beta_2 = 4.$$

Отсюда $\alpha_2 = 0$, $\alpha_3 = 2$.

31. Для каждой свободной клетки вычислим относительные оценки:

$$\Delta_{21} = c_{21} - (\alpha_2 + \beta_1) = 3 - (0+1) = 2 > 0,$$

 $\Delta_{31} = c_{31} - (\alpha_3 + \beta_1) = 1 - (2+1) = -2 < 0.$

 $4^{1}.$ Проанализируем относительные оценки. Так как условие окончания $\Delta_{ij}\geq 0$ не выполнено, то найдем наименьшую отрицательную оценку: Δ_{31} .

- 51. Для клетки (3,1) построим означенный цикл. Все его вершины, кроме данной, находятся в базисных клетках. Знак "+" ставится в свободной клетке (3,1).
- 6^1 . Найдем число $\theta = min \, [\, 30, \, 30 \,] = 30 \, ,$ равное наименьшему из чисел, стоящих в отрицательных вершинах цикла. Выполним сдвиг по циклу на число $\theta = 30$: числа, стоящие в положительных вершинах, увеличиваются на 30, а числа, стоящие в отрицательных вершинах, уменьшаются на 30. Так как наименьшее значение $\theta = 30$ достигается в двух отрицательных вершинах, то в клетку (3,2) ставится точка, а в клетку (1,1) с наименьшей стоимостью – базисный нуль. Элементы матрицы, не входящие в цикл, остаются без изменений. Результат сдвига представлен в табл. 13.7. Перейдем к шагу 2.

Таблица 13.7

				_
Пункты	B_1	B_2	Запасы	
A_1	¹ 0	2 40	40	$\alpha_1 = 0$
A_2	3	2 30	30	$\alpha_2 = 0$
A_3	1 30	4	30	$\alpha_3 = 0$
Потребности	30	70	100	

$$\beta_1 = 1$$

$$\beta_1 = 1$$
 $\beta_2 = 2$

 2^2 . Найдем потенциалы. Для базисных клеток (1,1) и (1,2) получим

$$\alpha_1 + \beta_1 = 1,$$

$$\alpha_1+\beta_2=2\,.$$

Поскольку $\alpha_1 = 0$, то $\beta_1 = 1$, $\beta_2 = 2$.

Для базисной клетки (2,2) имеем $\alpha_2 + \beta_2 = 2$, откуда $\alpha_2 = 0$. Для базисной клетки (3, 1) получим $\alpha_3 + \beta_1 = 1$, отсюда $\alpha_3 = 0$.

 3^2 . Для каждой свободной клетки вычислим относительные оценки:

$$\Delta_{21} = c_{21} - (\alpha_2 + \beta_1) = 3 - (0 + 1) = 2 > 0,$$

 $\Delta_{32} = c_{32} - (\alpha_3 + \beta_2) = 4 - (0 + 2) = 2 > 0.$

 4^2 . Поскольку условие окончания $\Delta_{ij} \geq 0$ выполнено, задача решена. Оптимальный план перевозок

$$x_{11} = 0,$$
 $x_{12} = 40,$ $x_{21} = 0,$ $x_{22} = 30,$ $x_{31} = 30,$ $x_{32} = 0$

имеет суммарную стоимость f = 80 + 60 + 30 = 170. Согласно п.2 замечаний 13.2 это же значение может быть найдено по формуле $f^1 = f^0 + \theta \cdot \Delta_{31} = 230 + 30 \cdot (-2) = 170$.

Пример 13.6. Решить транспортную задачу, заданную матрицей перевозок (табл. 13.8).

Таблица 13.8

Пункты	B_1	B_2	B_3	Запасы
A_1	2	3	4	20
A_2	1	2	5	40
Потребности	10	20	30	60

□ Решим задачу согласно алгоритму аналогично примеру 13.5.

Начальный план перевозок методом северо-западного угла найден в примере 13.1 (табл. 13.2).

Последовательный переход от матрицы к матрице отображен в табл. 13.9 – 13.11.

Таблица 13.9

Пункты	B_1	B_2	B_3	Запасы	
A_1	² 10	³ \ominus 10	<u>4</u> ⊕	20	$\alpha_1 = 0$
A_2	1 •	2 + 10	<u>5</u> 30 ⊝	40	$\alpha_2 = -1$
Потребности	10	20	30	60	

$$\beta_1 = 2 \qquad \qquad \beta_2 = 3 \qquad \qquad \beta_3 = 6$$

Получим: f = 20 + 30 + 20 + 150 = 220; $\Delta_{13} = c_{13} - (\alpha_1 + \beta_3) = 4 - (0 + 6) = -2 < 0$; $\Delta_{21} = c_{21} - (\alpha_2 + \beta_1) = 1 - (-1 + 2) = 0$. Для клетки (1,3) построим означенный цикл и найдем значение $\theta = \min[10, 30] = 10$. Выполним сдвиг по циклу на число 10.

Таблица 13.10

Пункты	B_1	B_2	B_3	Запасы	
A_1	² \odot 10	3	10 ⊕	20	α_1
A_2	1 ⊕	2 20	5 20 O	40	α_2
Потребности	10	20	30	60	

$$\alpha_1 = 0$$

$$\alpha_2 = 1$$

$$\beta_1 = 2 \qquad \qquad \beta_2 = 1 \qquad \qquad \beta_3 = 4$$

Получим: f = 20 + 40 + 40 + 100 = 200; $\Delta_{12} = 3 - (0+1) = 2 > 0$, $\Delta_{21} = 1 - (1+2) = -2 < 0$. Для клетки (2,1) построим означенный цикл и найдем значение $\theta = \min[10, 20] = 10$. Выполним сдвиг по циклу на число 10.

Таблица 13.11

Пункты	B_1	B_2	B_3	Запасы	
A_1	2 •	3	4 20	20	$\alpha_1 = 0$
A_2	1 10	² 20	5 10	40	$\alpha_2 = 1$
Потребности	10	20	30	60	

$$\alpha_2 = 1$$

$$\beta_1 = 0 \qquad \qquad \beta_2 = 1 \qquad \qquad \beta_3 = 4$$

Получим:
$$f = 80 + 10 + 40 + 50 = 180$$
; $\Delta_{11} = 2 - (0 + 0) = 2 > 0$;

$$\Delta_{12} = 3 - (0 + 1) = 2 > 0$$
.

Условие окончания $\Delta_{ij} \geq 0$ выполнено, получен оптимальный план перевозок

$$x_{11} = x_{12} = 0$$
, $x_{13} = 20$, $x_{21} = 10$, $x_{22} = 20$, $x_{23} = 10$

с суммарной стоимостью 180.

Заметим, что этот же план получен методом минимального элемента в примере 13.4.■

Замечания 13.3.

1. Задачи с нарушенным балансом решаются путем сведения к задачам, удовлетворяющим условию баланса. Далее применяется метод потенциалов. Оптимальный план перевозок новой задачи содержит оптимальный план перевозок исходной задачи.

Как отмечено в разд. 13.1, здесь могут быть два случая.

Первый случай. Суммарные запасы больше суммарных потребностей, т.е.

$$\sum_{i=1}^m a_i > \sum_{j=1}^n b_j.$$

В этом случае следует:

1) ввести фиктивный пункт потребления B_{n+1} с потребностью

$$b_{n+1} = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j$$
;

2) положить стоимости перевозок единицы груза в фиктивный пункт потребления равными нулю: $c_{i,n+1}=0,\ i=1,2,...,m$.

Второй случай. Суммарные запасы меньше суммарных потребностей, т.е.

$$\sum_{i=1}^m a_i < \sum_{j=1}^n b_j.$$

В данном случае следует:

1) ввести фиктивный пункт хранения A_{m+1} с запасом груза, равным

$$a_{m+1} = \sum_{j=1}^{n} b_j - \sum_{i=1}^{m} a_i$$
;

- 2) положить стоимости перевозок единицы груза из фиктивного пункта хранения равными нулю: $c_{m+1,\,j}=0,\ j=1,2,...,n$.
- 2. В задачах с нарушенным балансом может встречаться дополнительное требование к оптимальному плану перевозок. В первом случае: полностью вывезти продукцию из заданного пункта хранения, а во втором полностью удовлетворить потребности заданного пункта потребления. В обоих случаях действия при решении аналогичны описанным в п.1 замечаний 13.3, только стоимости перевозок единицы груза для заданных пунктов следует положить равными M, где M достаточно большое положительное число. Однако следует заметить, что такие задачи могут не иметь решения, например, в следующих случаях:

- суммарные запасы больше суммарных потребностей, требуется полностью вывезти груз из заданного пункта хранения, но запасы в нем превышают суммарные потребности;
- суммарные запасы меньше суммарных потребностей, требуется полностью обеспечить потребности данного пункта потребления, но потребности в нем превышают суммарные запасы.

Пример 13.7. Решить транспортную задачу, заданную матрицей перевозок (табл. 13.12).

Таблица 13.12

Пункты	B_1	B_2	B_3	Запасы
A_1	1	2	3	20
A_2	2	3	3	40
Потребности	30	30	20	80 \ 60

 \square Поставленная задача является задачей с нарушенным балансом. Поскольку суммарные запасы меньше суммарных потребностей, то введем фиктивный пункт хранения A_3 с запасами, равными 80-60=20 единиц груза. Стоимость перевозок из фиктивного пункта хранения положим равной нулю (см. п.1 замечаний 13.3). В результате перейдем к задаче, в которой выполняется условие баланса.

Начальный план перевозок найдем методом минимального элемента:

$$x_{31}=\min \left[20,30\right]=20\,;\;\;x_{32}=x_{33}=0\;\;(\mathrm{B}\;\mathrm{табл.}\;13.13\;\mathrm{здесь}\;\mathrm{u}\;\mathrm{далее}\;\mathrm{ставятся}\;\mathrm{точки});$$
 $x_{11}=\min \left[20,\left(30-20\right)\right]=10\,,\;\;x_{21}=0\,;$ $x_{12}=\min \left[\left(20-10\right),30\right]=10\,,\;\;x_{13}=0\,;$ $x_{22}=\min \left[40,\left(30-10\right)\right]=20\,;\;\;x_{23}=\min \left[20,\left(40-20\right)\right]=20\,.$

Его стоимость составляет f = 10 + 20 + 60 + 60 = 150.

Решим полученную задачу методом потенциалов. Результаты решения приведены в табл. 13.13 – 13.15.

Таблица 13.13

				тионнци тэтгэ	_
Пункты	B_1	B_2	B_3	Запасы	
A_1	1	10 ⊝	3	20	$\alpha_1 = 0$
A_2	2	3 20	3 20	40	$\alpha_2 = 1$
A_3	0 © 20	0	0	20	$\alpha_3 = -1$
Потребности	30	30	20	80	
	$\beta_1 = 1$	$\beta_2 = 2$	$\beta_3 = 2$		

Получим: $\Delta_{13}=3-(0+2)=1$, $\Delta_{21}=2-(1+1)=0$, $\Delta_{32}=0-(-1+2)=-1\otimes$, $\Delta_{33}=0-(-1+2)=-1$. Для клетки (3,2) построим означенный цикл и найдем значение $\theta=\min \left[10,20\right]=10$. Выполним сдвиг по циклу на число $\theta=10$.

Таблица 13.14

					_
Пункты	B_1	B_2	B_3	Запасы	
A_1	1 20	2	3	20	$\alpha_1 = 0$
A_2	2 ⊕ •	3 200	3 20	40	$\alpha_2 = 2$
A_3	0 🖯 10	010 ⊕	0	20	$\alpha_3 = -1$
Потребности	30	30	20	80	

$$\beta_1 = 1$$
 $\beta_2 = 1$ $\beta_3 = 1$

Получим: f=20+60+60=140; $\Delta_{12}=2-(0+1)=1$, $\Delta_{13}=3-(0+1)=2$, $\Delta_{21}=2-(2+1)=-1\otimes$, $\Delta_{33}=0-(-1+1)=0$. Для клетки (2,1) построим означенный цикл и найдем значение $\theta=\min [10,20]=10$. Выполним сдвиг по циклу на число $\theta=10$.

Таблица 13.15

Пункты	B_1	B_2	B_3	Запасы	
A_1	1 20	2	3	20	$\alpha_1 = 0$
A_2	² 10	3 10	3 20	40	$\alpha_2 = 1$
A_3	0 •	0 20	0	20	$\alpha_3 = -2$
Потребности	30	30	20	80	
`			_		=

$$\beta_1 = 1 \qquad \qquad \beta_2 = 2 \qquad \qquad \beta_3 = 2$$

Получим:
$$f=20+20+30+60=130$$
; $\Delta_{12}=2-(0+2)=0$, $\Delta_{13}=3-(0+2)=1$,
$$\Delta_{31}=0-(-2+1)=1$$
, $\Delta_{33}=0-(-2+2)=0$.

Поскольку все $\Delta_{ij} \geq 0$, условие окончания выполнено. Оптимальный план перевозок исходной задачи содержится в найденном оптимальном плане:

$$x_{11} = 20$$
, $x_{12} = x_{13} = 0$, $x_{21} = 10$, $x_{22} = 10$, $x_{23} = 20$.

Значение $x_{32} = 20$ свидетельствует о том, что в п. B_2 на эту величину не удовлетворены потребности.

Пример 13.8. Решить транспортную задачу, заданную матрицей перевозок (табл. 13.16).

Таблица 13.16

Пункты	B_1	B_2	Запасы
A_1	9	7	20
A_2	6	9	80
A_3	1	2	20
Потребности	50	20	70 \ 120

- □ Так как в поставленной задаче нарушен баланс и суммарные запасы больше суммарных потребностей, то согласно п.1 замечаний 13.3:
 - 1) введем фиктивный пункт потребления B_3 с потребностью, равной 120-70=50;
- 2) положим стоимости перевозки единицы груза в фиктивный пункт потребления равными нулю.

В результате перейдем к задаче, в которой выполняется условие баланса.

Начальный план перевозок найдем методом минимального элемента:

$$x_{13}=\min{[\,20,50\,]}=20\,;\;\;x_{11}=x_{12}=0\;\;(\mathrm{B}\ \mathrm{табл}.\;13.17\ \mathrm{здесь}\ \mathrm{u}\ \mathrm{далеe}\ \mathrm{ставятся}\ \mathrm{точки});$$
 $x_{23}=\min{[\,80,\,(50-20)\,]}=30\,,\;\;x_{33}=0\,;$ $x_{31}=\min{[\,20,50\,]}=20\,,\;\;x_{32}=0\,;$ $x_{21}=\min{[\,(80-30),(50-20)\,]}=30\,;$ $x_{22}=\min{[\,20,20\,]}=20\,.$

Его стоимость составляет f = 180 + 180 + 20 = 380.

Решим полученную задачу методом потенциалов. Результаты решения приведены в табл. 13.17, 13.18.

Таблина 13.17

				таолица тэ.т	_
Пункты	B_1	B_2	B_3	Запасы	
A_1	9	7 • •	-020 O	20	$\alpha_1 = 0$
A_2	6 30	9 🔾 20	0 30 ⊕	80	$\alpha_2 = 0$
A_3	1 20	2	0	20	$\alpha_3 = -5$
Потребности	50	20	50	120	
	0 (0 0	0 0		-

$$\beta_1 = 6 \qquad \qquad \beta_2 = 9 \qquad \qquad \beta_3 = 0$$

Получим:
$$\Delta_{11}=3-(0+6)=3,$$
 $\Delta_{12}=7-(0+9)=-2,$ \otimes
$$\Delta_{32}=2-(-5+9)=-2,$$
 $\Delta_{33}=0-(-1+2)=-1.$

Для клетки (1,2) построим означенный цикл и найдем значение $\theta = \min[20, 20] = 20$. Выполним сдвиг по циклу на число $\theta = 20$. Поскольку наименьшее значение $\theta = 20$ достигается сразу в двух отрицательных клетках, то согласно шагу 6 алгоритма в одной из этих клеток ставится базисный нуль (выбрана клетка (1,3) с наименьшей стоимостью).

Таблина 13 18

				тионнци тэ.то	_
Пункты	B_1	B_2	B_3	Запасы	
A_1	9	7 20	0 0	20	$\alpha_1 = 0$
A_2	6 30	9 •	0 50	80	$\alpha_2 = 0$
A_3	1 20	2	0	20	$\alpha_3 = -5$
Потребности	50	20	50	120	

$$\beta_1 = 6 \qquad \qquad \beta_2 = 7 \qquad \qquad \beta_3 = 0$$

Получим:
$$\Delta_{11} = 3 - (0+6) = 3$$
, $\Delta_{22} = 9 - (0+7) = 2$,

$$\Delta_{32} = 2 - (-5 + 7) = 0$$
, $\Delta_{33} = 0 - (-5 + 0) = 5$, $f = 140 + 180 + 20 = 340$.

Поскольку $\Delta_{ij} \geq 0$, условие окончания выполнено. Оптимальный план перевозок исходной задачи содержится в найденном оптимальном плане:

$$x_{11} = 0$$
, $x_{12} = 20$, $x_{21} = 30$, $x_{22} = 0$, $x_{31} = 20$, $x_{32} = 0$.

Значение $x_{23} = 50$ свидетельствует о том, что в п. A_2 остается неперевезенным груз в количестве 50 единиц. ■

Пример 13.9. Решить транспортную задачу, заданную матрицей перевозок (табл. 13.19), при дополнительном требовании полного вывоза груза из п. A_2 .

Таблица 13.19

Пункты	B_1	B_2	Запасы
A_1	1	2	25
A_2	3	4	15
Потребности	10	20	30 \ 40

- □ Так как в поставленной задаче нарушен баланс и суммарные запасы больше суммарных потребностей, то согласно п.1 и п.2 замечаний 13.3:
 - 1) введем фиктивный пункт потребления B_3 с потребностью, равной 40 30 = 10;
- 2) положим стоимости перевозки единицы груза в фиктивный пункт потребления равными: $c_{13} = 0$ (из пункта A_1), $c_{23} = M$ (из пункта A_2 , из которого требуется обеспечить полный вывоз груза).

В результате получим задачу, удовлетворяющую условию баланса. Решим ее методом потенциалов. Начальный план перевозок найдем методом северо-западного угла (табл. 13.20). Последовательный переход от матрицы к матрице приведен в табл. 13.20 и 13.21.

Таблица 13.20

Пункты	B_1	B_2	B_3	Запасы	
A_1	1 10	2 ©15	0	25	$\alpha_1 = 0$
A_2	3	4 ⊕ 5	<i>M</i> 10 ⊝	15	$\alpha_2 = 2$
Потребности	10	20	10	40	

 $\beta_1 = 1$ $\beta_2 = 2$ $\beta_3 = M - 2$

Получим: $\Delta_{13}=0-(0+M-2)=-M+2<0\otimes$ (поскольку M — достаточно большое положительное число), $\Delta_{21}=3-(2+1)=0$. Для клетки (1,3) построим означенный цикл и найдем значение $\theta=\min{[10,15]}=10$. Выполним сдвиг по циклу на число $\theta=10$.

Таблица 13.21

Пункты	B_1	B_2	B_3	Запасы	
A_1	¹ 10	2 5	0 10	25	$\alpha_1 = 0$
A_2	3	4 15	<i>M</i> •	15	$\alpha_2 = 2$
Потребности	10	20	10	40	

 $\beta_1 = 1 \qquad \beta_2 = 2 \qquad \beta_3 = 0$

Получим: $\Delta_{21}=3-(2+1)=0$, $\Delta_{23}=M-(2+0)=M-2>0$ (поскольку M- достаточно большое положительное число). Условие окончания $\Delta_{ij}\geq 0$ выполнено, решение исходной задачи содержится в оптимальном плане решенной задачи: $x_{11}=10, x_{12}=5, x_{21}=0, x_{22}=15$. Очевидно, из пункта A_2 весь груз вывозится, а значение $x_{13}=10$ свидетельствует об остающемся грузе в пункте A_1 .

Пример 13.10. Решить транспортную задачу, заданную матрицей перевозок (табл. 13.22), при дополнительном требовании полного удовлетворения потребностей в п. B_1 .

Таблица 13.22

Пункты	B_1	B_2	Запасы
A_1	1	2	10
A_2	3	4	20
Потребности	25	15	40 \ 30

- □ Так как в поставленной задаче нарушен баланс и суммарные запасы меньше суммарных потребностей, то согласно п.1 и п.2 замечаний 13.3:
 - 1) введем фиктивный пункт хранения A_3 с запасами, равными 40-30=10;
- 2) положим стоимости перевозки единицы груза из фиктивного пункта хранения равными: $c_{11} = M$ (в пункт B_1 , потребности которого должны быть полностью удовлетворены), $c_{21} = 0$ (в пункт B_2).

В результате получим задачу, удовлетворяющую условию баланса. Решим ее методом потенциалов. Начальный план перевозок найдем методом минимального элемента (табл. 13.23).

Таблица 13.23

			1 40001111240 10120	_
Пункты	B_1	B_2	Запасы	
A_1	1 10	2	10	$\alpha_1 = 0$
A_2	³ 15	4 5	20	$\alpha_2 = 2$
A_3	M \bullet	0 10	10	$\alpha_3 = -2$
Потребности	25	15	40	

$$\beta_1 = 1$$
 $\beta_2 = 2$

Результаты нахождения начального плана перевозок методом минимального элемента: $x_{32} = \min[10, 15] = 10$, $x_{31} = 0$; $x_{11} = \min[10, 25] = 10$, $x_{12} = 0$;

$$x_{21} = \min[20, (25-10)] = 15;$$
 $x_{22} = \min[(20-15), (15-10)] = 5$

 $x_{21}=\min \left[20,(25-10)\right]=15$; $x_{22}=\min \left[(20-15),(15-10)\right]=5$. Его стоимость f=10+45+20=75. Далее получим: $\Delta_{12}=2-(0+2)=0$, $\Delta_{31} = M - (-2 + 1) = M + 1$. Поскольку M - достаточно большое положительное число, то условие окончания $\Delta_{ij} \geq 0$ выполнено, решение исходной задачи содержится в оптимальном плане решенной задачи: $x_{11} = 10$, $x_{12} = 0$, $x_{21} = 15$, $x_{22} = 5$. Очевидно, в пункте B_1 потребности полностью удовлетворены, а значение $x_{32} = 10$ свидетельствует о том, что в п. B_2 на эту величину потребности не удовлетворены.

Задачи для самостоятельного решения

Решить транспортные задачи, заданные матрицами перевозок.

1.

Пункты	B_1	B_2	B_3	B_4	Запасы
A_1	1	2	4	1	50
A_2	2	3	1	5	30
A_3	3	2	4	4	10
Потребности	30	30	10	20	90

Omsem:
$$x^* = \begin{pmatrix} 30 & 0 & 0 & 20 \\ 0 & 20 & 10 & 0 \\ 0 & 10 & 0 & 0 \end{pmatrix}$$
.

2.

Пункты	B_1	B_2	B_3	B_4	Запасы
A_1	1	7	9	5	120
A_2	4	2	6	8	280
A_3	3	8	1	2	160
Потребности	130	220	60	70	480 \ 560

Omsem:
$$x^* = \begin{pmatrix} 120 & 0 & 0 & 0 \\ 0 & 220 & 0 & 0 \\ 10 & 0 & 60 & 70 \end{pmatrix}$$
.

3.

Пункты	B_1	B_2	B_3	B_4	Запасы
A_1	2	3	4	3	90
A_2	5	3	1	2	30
A_3	2	1	4	2	40
Потребности	70	30	20	40	160

Omsem:
$$x^* = \begin{pmatrix} 70 & 0 & 0 & 20 \\ 0 & 0 & 20 & 10 \\ 0 & 30 & 0 & 10 \end{pmatrix}$$
.

4

Пункты	B_1	B_2	Запасы
A_1	1	2	40
A_2	3	2	30
A_3	1	4	30
Потребности	30	70	100

Omeem:
$$x^* = \begin{pmatrix} 0 & 40 \\ 0 & 30 \\ 30 & 0 \end{pmatrix}$$
.

5.

Пункты	B_1	B_2	B_3	Запасы
A_1	1	2	4	90
A_2	1	3	4	30
A_3	2	2	3	40
Потребности	50	60	10	120\160

Ответ:
$$x^* = \begin{pmatrix} 20 & 30 & 0 \\ 30 & 0 & 0 \\ 0 & 30 & 10 \end{pmatrix}$$
, в п. A_1 останется 40 единиц груза.

6.

Пункты	B_1	B_2	Запасы
A_1	1	2	10
A_2	3	4	20
Потребности	25	15	40 \ 30

Имеется дополнительное требование удовлетворения потребностей в п. B_2 .

Ответ: $x^* = \begin{pmatrix} 10 & 0 \\ 5 & 15 \end{pmatrix}$, в п. B_1 не удовлетворены потребности в 10 единиц.