Intro to Machine Learning

About me

Ricardo Neves

- Sr. Data Scientist @ DareData Engineering
- 6 years working with data, 4 as DS
- Bsc Physics
- Aveiro, Portugal
- Email: ricardo.asm.neves@gmail.com

Definitions

Artificial Intelligence (AI): it's a branch of computer science that aims to create systems capable of performing tasks that would normally require human intelligence.

Machine learning: Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed.

ML models

Function

Traditional Programming

Traditional Programming

Machine Learning

Predicting stock price

Predicting stock price

Image Classification

Image Classification

Types of learning

Supervised

Training data + Final result

Semi-Supervised

Training data + Some results

Unsupervised

Training data

Reinforcement learning

Training data + Reward/penalty

Supervised Learning

Classification

Models to predict discrete outcomes

- Image classification
- Fraud detection
- Spam detection

Classification

Algorithms

- Decision Tree
- Random Forest
- Logistic Regression
- Gradient Boosting (XGBoost, LightGBM, etc.)

Regression

Models to predict continuous outcomes

- Stock price
- Sales forecast
- House prices

Regression

Algorithms

- Linear Regression
- Polynomial Regression
- Decision Tree Regression
- Gradient Boosting Regression

Unsupervised Learning

Clustering

Models that group data points based on how

similar they are

Customer segmentation

- Image Segmentation
- Document Clustering

Clustering

Models that group data points based on how similar they are

- K-means Clustering
- Hierarchical Clustering

Anomaly detection

Models find data points that are outside expected behaviour

- Health Monitoring
- Intrusion detection
- Image Recognition
- Network Traffic Analysis

Anomaly detection

Algorithms

- Isolation Forest
- Local Outlier Factor
- ARIMA

Deep Learning

What is Deep Learning

Deep Learning is a subfield of machine learning that focuses on algorithms inspired by the structure and function of the brain, called artificial neural networks. It's "deep" because the neural networks have many layers, which allows for more complex and abstract representations of data.

Neural Network

Training models

Data Preparation

- Cleaning
 - Remove null values
 - Treat outliers
 - Remove unacceptable values
- Normalization
- Encoding
- Feature engineering

Model Training

- Define the problem
 - What is the output
- Split train and test data
 - Test data is never seen by the training algorithm
 - o If model is time-dependent split time based
- Test multiple algorithms

Model Evaluation Metrics - Classification

ChatGPT

GPT4 vs ChatGPT

GPT4

- Neural Network
 - Large Language Model (LLM)
 - Predict next word
- Supervised learning
- Trained on Millions of text data points

ChatGPT

- Application that uses an LLM
- GPT4 + fine tuning
 - Reinforcement learning from human feedback (RLHF)

GPT

Thank you

Find out more about us daredata.engineering

Or read one of our Articles at **blog.daredata.engineering**

Email

contact@daredata.engineering

Phone

(PT) +351 932174951

Address

Rua da Prata, n.º 80. 1700-051, Lisbon, PT

