

第十七届上海大学程序设计联赛夏季赛 试题册

2019年7月10日

注意事项:

- 比赛网址: http://202.120.117.160/domjudge
- 不熟悉比赛系统的选手请务必认真阅读主页的选手须知。
- 本试题册包含 11 题, 共 15 页 (包括此页)。
- 题目难度与排列顺序无关,请合理安排做题顺序。

Problem A. 小喵的表达式

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

小喵刚学完编译原理,兴致勃勃的它准备给大家表演怎么写表达式求值。由于小喵水平有限,所以只能够对最简单的表达式进行求值。

表达式的形式如下: a op b,其中 op $\in \{+,-,*,/\}$,其中 / 表示下取整的除法,a, b 都是十进制正整数,且不含前导零。聪明的你觉得这太简单了,于是你对小喵说你五分钟就可以写出来。现在,请开始你的表演。

Input

仅一行字符串 $a \text{ op } b \ (0 \le a, b \le 10^4, \text{ op } \in \{+, -, *, /\})$ 。

Output

在一行输出表达式的值。特别地,如果表达式无意义(除数为 0),则输出 "divided by ZERO" (不包括引号)。

standard input	standard output
2*3	6
3/0	divided by ZERO

Problem B. 小喵找东西

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

森林中有这么一条规则,所有人都会被分配一个 4 位的独有 ID,这个号码只由大写字母和数字组成。每个动物都要给自己的东西一个 8 位的编号,编号的前 4 位一定是自己的 ID,后 4 位可以自己定。编号也只由大写字母和数字组成。小喵的 ID 是 0830。

今天粗心的小喵又去失物招领局了,工作人员给了它一个号码簿,你能帮小喵找出有多少是小喵的东西吗?

Input

第一行一个整数 n $(1 \le n \le 20)$,表示号码簿上号码的数量。接下来 n 行,每行一个 8 位的字符串,表示号码簿上的号码。

Output

在一行输出一个整数,表示小喵的东西的数量。

standard output							
2							

Problem C. 小喵的游戏

Input file: standard input
Output file: standard output

Time limit: 3 seconds Memory limit: 512 megabytes

小喵和小汪喜欢在树上玩游戏。它们有一棵 n 个点,n-1 条边的树。对于每一条边 i 有一个权值 w_i 。 在游戏开始前,小喵会选择两个不同的点 (u,v) (u < v),并将 u 和 v 路径上所有的边权取出构造一个数组。例如下图,小喵用路径 (2,6) 上的边权构造数组。

接着小喵要使用这个数组和小汪玩游戏,游戏的规则如下:

- 两个人轮流取走数组中的一个数;
- 小喵先手;
- 当前的玩家只能取走小于等于数组中最后一个被取走的数;
- 第一个不能取数的玩家输。

例如,如果数组是 $\{1,1,2,3,3,4\}$,小喵先取走3,数组变为 $\{1,1,2,3,4\}$;接着,在小汪取数时,它只能取走剩下的数中小于等于3的(即1,1,2,3)。

小喵想要知道,在双方都足够聪明的情况下,它有多少种无序对(u,v)的选择方案可以保证它能够取胜。

Input

第一行一个整数 n $(1 \le n \le 5 \times 10^5)$,表示点的数量。

接下来 n-1 行,每一行三个整数,分别为 u_i, v_i, w_i $(1 \le u_i, v_i \le n, 0 \le w_i \le 10^9)$,表示第 i 条边连接点 u_i 和 v_i ,边权为 w_i 。

数据保证构成一棵树。

Output

在一行输出一个整数,表示小喵可以获胜的方案数。

Examples

standard input	standard output	Notes
5	9	
1 2 2		(1)
1 3 1		2 1
3 4 1		(2) (3)
3 5 2		1 2
		4) 5
		• •
5	8	
1 2 0		0 2 3
2 3 2		\circ
3 4 2		
4 5 0		(5) (4)
		0 0 0
5	10	
1 2 0		ا ا
1 3 1		1
3 4 0		(2) (3)
3 5 2		0/2
		(4) (5)

Note

第一个样例: 一共有 $\frac{5\cdot(5-1)}{2}=10$ 种 (u,v),只有选择 (1,4) 时,数组是 $\{1,1\}$: 小喵先拿走 1,小汪拿走 剩下的 1; 此时小喵没有数可以拿了。其它 10-1=9 种情况下,小喵都能获胜。

第二个样例: 一共有 $\frac{5\cdot(5-1)}{2}=10$ 种 (u,v), 有 2 种情况小喵会输:

- 如果小喵选择 (2,4) 数组是 {2,2};
- 如果小喵选择 (0,4) 数组是 {0,2,2,0}。

其它 10-2=8 种情况下, 小喵都能获胜。

第三个样例: 一共有 $\frac{5\cdot(5-1)}{2}=10$ 种 (u,v), 所有情况下, 小喵都能获胜。

Problem D. 小喵的函数

Input file: standard input
Output file: standard output

Time limit: 3 seconds
Memory limit: 512 megabytes

小喵当然是希望出的题目看起来并非毫无意义,于是想方设法给题目配上一些背景故事,使得它看起来不那么无趣。但有时候适得其反,比如当你读到这道一看就是套路的题时,很可能就会感到索然无味。

定义函数 D(x) 表示 x 的十进制表示下不包括前导零的各数位乘积。例如:

D(0) = 0

 $D(234) = 2 \times 3 \times 4$

 $D(104) = 1 \times 0 \times 4 = 0$

计算 D(x) 对你来说实在是太简单了,所以现在你想知道在 [a,b] 中有多少个数的数位乘积等于 k。换句话说,你需要求出 D(x) = k 在 $a \le x \le b$ 内不同的整数解的个数。

Input

第一行一个整数 T ($T \le 10000$),表示测试数据的个数。

接下来 T 行,每行三个整数,分别为 a,b,k $(1 \le a \le b \le 10^{100},1 \le k \le 10^{18})$,含义如题所述。

Output

对每组数据,在一行输出一个整数,表示 [a,b] 内数位乘积为 k 的数的个数。由于答案会很大,你只需要输出答案对 $10^9 + 7$ 取模的结果即可。

Example

standard input	standard output
2	1
1 9 3	3
7 37 6	

Note

第一个测试数据中,符合条件的数是(3)。

第二个测试数据中,符合条件的数是 (16,23,32)

Problem E. 小喵的晚会

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

一年一度的森林大会又开始了,今年一共邀请了 n 位嘉宾,小喵就是其中之一。晚会给大家每人准备了数量不同的柠檬,但是晚会开始之前,大家并不知道会收到多少个柠檬。小喵是个柠檬精,特别喜欢吃柠檬,所以它在晚会开始之前偷偷溜进了后厨,从**其他人**的柠檬中偷了一些放到**自己**那份中。因为晚会规定了每个人都会收到柠檬,且柠檬的数量都不相同。如果小喵在做手脚的同时改变了这些规则,那么小喵就会被发现,并且受到惩罚。小喵不想受到惩罚,但又想得到最多的柠檬,你能告诉他应该怎么偷吗?

Input

第一行一个整数 n ($2 \le n \le 10^6$),表示嘉宾的数量。

第二行 n 个整数 a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^6)$,分别表示晚会开始前每个人应该收到的柠檬数量。小喵是第 n 号嘉宾。

Output

在一行输出 n 个整数 b_1, b_2, \ldots, b_n ,以空格分隔,分别表示晚会开始后每个人收到的柠檬数量。(如果有多种结果,输出任意一种合法的即可)

standard input	standard output
3	1 2 6
2 3 4	

Problem F. 小喵看斯诺克

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

小喵正在观看一场斯诺克比赛的直播。由于直播技术落后,它无法区分现在是谁在击球以及当前双方的得分。它只知道每次进袋的球的颜色或没有球人袋。它想知道比赛的胜负何时能确定。

斯诺克是一个两人游戏,使用 15 个红球 (每个 1 分),黄球、绿球、棕球、蓝球、粉球和黑球各一个 (分别为 2,3,4,5,6,7 分)。玩家需要依次击球入袋得分,直到没有得分则轮到对方击球。对于每个玩家,轮到自己击球时,最初都要先击打红球入袋,成功后则需要选择一个非红球 (彩球)击打,之后它需要再一次击打红球,然后再击打彩球……彩球入袋后会再一次放回到桌面上。当玩家打入最后一个红球后,它必须 (尝试)击打彩球,并且在打进后会被放回到桌面。

在这之后,需要按分数从小到大击打彩球,并且打进后不会放回桌面。一局游戏在打进最后一个球 (黑球)后结束。显然,一局合法的斯诺克至少需要 36 次击球。

得分较高的玩家取得胜利。如果出现平局,则需要再放一颗黑球在桌上,第一个打进的玩家获胜。我们认为,在这场比赛中,玩家唯一会出现的失误是没有打进球而不会出现击球错误(实际情况中可能发生)。 当一位玩家**超分**时,游戏的胜负即可确定,即如果双方的分差已经很大,较低得分的玩家无法取胜。

例 1: 比分为 60-44,桌上还剩下一个粉球和一个黑球,双方分差为 16 分,但桌面上只剩下了 13 分。此时已经**超分**。

例 2: 一个玩家打完彩球后,还剩下两个红球 (和所有彩球),他能在剩下的球中得到的最高分是 $1(\underline{x}) + 7(\underline{x}) + 1(\underline{x}) + 7(\underline{x}) + 2 + 3 + 4 + 5 + 6 + 7 = 43$,因此如果当前的比分为 70 - 26,则认为已经超分。但是如果比分是 70 - 28 甚至 70 - 27,我们都不能认为已经超分。

Input

第一行一个整数 n (36 $\leq n \leq$ 1000),表示击球序列的长度。

第二行 n 个整数 v_i ($0 \le v_i \le 7$),分别表示每次击球打进的球的分数,其中 $v_i = 0$ 表示玩家没有打进球。数据保证是完整的、合法的一局斯诺克。

Output

在一行输出一个整数 i $(1 \le i \le n)$,表示游戏的胜负可以确定的时刻。

																S	taı	nda	aro	i :	inj	out	5																
40)																																						٦
1	6	1	2	1	7	0	1	7	1	5	1	6	1	7	1	7	1	2	1	0	1	7	1	3	1	5	1	4	1	7	2	0	3	0	4	5	6	0	7
	standard output								٦																														
3	7																																						
	standard input								٦																														
36	3																																						٦
1	7	1	3	1	7	1	5	1	7	1	7	1	7	1	7	1	7	1	7	1	7	1	7	1	7	1	7	1	7	2	3	4	5	6	7				
	standard output									٦																													
20)																																						

standard input							
37							
17	6 7						
standard output							
21							

Note

第一个样例如题目描述中的例 1 所述,第 37 次击球后分数为 60-44。

Problem G. 小喵的超神之路

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

在召唤师峡谷中存在这么一种珍贵的能量,它可以大大的增加小喵的战斗力。这种能量散落在召唤师峡谷的一些地方,我们可以把召唤师峡谷想象成二维平面,其中 # 表示墙壁, . 表示空地, A 表示这种能量, S 表示小喵的起始点。

每次小喵可以选择上下左右四个方向的其中一个方向走一格(不能走到墙壁)或者停留原地,每走一格小喵会消耗 1 点自身的体力,停留原地则不消耗体力。

小喵希望尽快的收集完所有能量,于是它决定使用自己的技能。小喵的技能是无限分身,即小喵释放技能后就会有很多分身,这些分身会听小喵的操控。但是这些分身走路所消耗的体力也会算在小喵的身上。 比如下面这种情况:

#####

A.S.A

#####

如果小喵不使用分身,则小喵需要从 S 先走到其中的一个 A,再走到另一个 A,消耗的体力是 2+4=6;而如果小喵在 S 点使用分身,则小喵可以控制另一个分身往一个方向走,自己往另一个方向走,消耗的体力是 2+2=4。

因为小喵的分身和小喵本体并无差别,因此小喵的分身也可以继续使用分身,最后的体力也是算在小喵本体。

需要注意的是:小喵只能在起始点或得到能量的瞬间使用技能。

你的任务是求出小喵收集完所有能量后所消耗的最少的体力。

Input

第一行两个整数 $n, m (1 \le n, m \le 1000)$, 分别表示地图的长和宽。

接下来 n 行,每行一个长度为 m 的字符串,表示召唤师峡谷的地形。其中 # 表示墙壁,. 表示空地,A 表示这种能量,S 表示小喵的起始点。

数据保证有且仅有一个起始点,且一定能收集到所有的能量。

Output

在一行输出一个整数、表示小喵收集完所有能量后所消耗的最少的体力。

Examples

standard input	standard output
5 6	8
#####.	
#A#A##	
#.#.A#	
#S##	
#####.	
7 7	11
#####	
#AAA###	
#A#	
#.S.###	
##	
#AAA###	
#####	

Note

对于第一个样例:设左上角的坐标为 (0,0),小喵在 S 点时使用分身后,小喵向坐标为 (1,1) 的 A 点出发,分身向坐标为 (1,3) 的 A 点出发。等到分身到达 (1,3),它可以选择分身,让分身去走到坐标为 (2,4) 的 A 点;也可以选择不分身,直接走到 (2,4),这两种方式所消耗的体力是一样的 2+4+2=8。

Problem H. 小喵与机器学习

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

小喵最近想转行机器学习,可是它的数学不太好,一上来就遇到了一个难题。

SVM (Support Vector Machine, 支持向量机) 中的核函数有多种形式:

例如 $f(x,y) = ax^2 + bxy + cy^2 + dx + ey + f$ 的二元二次函数。通过将变量项与新变量对应,如 $x^2 \leftrightarrow u$, $xy \leftrightarrow v, y^2 \leftrightarrow w$,可将 $f(x,y) = ax^2 + bxy + cy^2 + dx + ey + f$ 写成 g(u,v,w,x,y) = au + bv + cw + dx + ey + f, 变成 5 维空间中的线性函数。

现在你需要帮小喵来解决这个问题。

Input

仅一行 6 个整数, 分别为 a, b, c, d, e, f ($0 \le |a|, |b|, |c|, |d|, |e|, |f| < 10$), 依次为 $ax^2 + bxy + cy^2 + dx + ey + f$ 的 6 个系数。

Output

在一行输出5维空间中的线性函数,略去系数为0的项,同时系数为1但非常数时系数应不写。

standard input	standard output
2 3 4 5 1 7	2u+3v+4w+5x+y+7
-1 0 0 0 0 -1	-u-1
0 1 5 6 0 0	v+5w+6x

Problem I. 小喵的飞行器

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

小喵今天心情不错,想要去外面看看风景。但是小喵不想走路,于是就买了一个飞行器。小喵在飞之前 加满了油,但是粗心的小喵飞了一段时间之后才发现没有记录之前飞了多远,因此小喵也就不知道现在 剩下的油够不够返航。聪明的你能否帮助小喵计算已经飞了多远呢?

可以将小喵的飞行轨迹想象成二维平面。小喵从坐标(0,0)出发,接下来会有n对坐标 $(1,y_1),(2,y_2),(3,y_3)...(n,y_n)$,表示下一个时刻小喵会飞到的位置。为了简化问题,默认小喵在两点之间都是直线飞行。

Input

第一行一个整数 n $(1 \le n \le 10^5)$,表示坐标的个数。

第二行 n 个整数,分别表示 $y_1, y_2, y_3, \ldots, y_n (0 \le y_i \le 10^5)$ 。

Output

在一行输出一个实数,表示小喵飞行的距离。你的答案的相对或绝对误差不超过 10^{-6} 会被判为正确。形式化地说:令你的答案为 a,标准答案为 b,你的答案会被判为正确当且仅当 $\frac{|a-b|}{\max(1,|b|)} \le 10^{-6}$ 。

standard input	standard output	Notes
3	3.828427125	
1 1 2		1 -1 0 1 2 3 4

Problem J. 小喵的门框

Input file: standard input
Output file: standard output

Time limit: 1 second

Memory limit: 512 megabytes

小喵有一些长度为 n 的木棍,它要给它的两扇门做门框。每个门框由 2 根长度为 a 的垂直木棍和 1 根长度为 b 的水平木棍组成。每根木棍都必须是连续坚固的。

你需要帮助小喵确定造两个门框所需的最少木棍的数量。你可以任意切割木棍,但是门框上的每根木棍都应该是连续坚固的(或者完整的)。

Input

仅一行三个整数, 分别为 n, a, b ($1 \le n \le 1000$, $1 \le a$, $b \le n$) 含义如题所述。

Output

在一行输出一个整数,表示小喵造两个门框所需的最少木棍数量。

Examples

standard input	standard output
8 1 2	1
5 3 4	6
6 4 2	4

Note

第一个样例中,需要1根木棍,因为两个门框所需要的6根木棍长度总和为8。

第二个样例中,需要6根木棍,因为两个门框的每一根木棍都需要使用一根新的木棍。

Problem K. 小喵的新朋友

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 512 megabytes

小喵最近认识了一些新的朋友。可是有些朋友的名字很长,小喵只记得它们名字的前一半。而小汪则记得它们名字长度都为偶数且都是回文的。所谓回文,就是正着读和反着读是一样的。现在小喵写下了所有名字的前一半。你能写出它们的全名吗?

Input

仅一行一个只包含英文字母和数字的字符串 $s(|s| \le 15)$, 表示名字的前一半。

Output

在一行输出一个字符串,表示朋友的全名。

standard input	standard output						
AA	AAAA						