第一章 数列极限

1.1 参考题

1.1.1 第一组

解 设 $\{a_{2k-1}\}$, 收敛到 $p,\{a_{2k}\}$ 收敛到 $q, \in \{a_{3k}\}$ 中可以选出全属于 $\{a_{2k-1}\}$ 或 $\{a_{2k}\}$ 的子列 (事 实上 $\{a_{3k}\}$ 中的项交替地从 $\{a_{2k-1}\}$ 和 $\{a_{2k}\}$ 中取出), 由于收敛数列子列收敛于同一极限, 也即 p = q, 而前证得 $\{a_{2k-1}\}, \{a_{2k}\}$ 收敛于同一极限则 $\{a_n\}$ 也收敛于同一极限知 $\{a_n\}$ 收敛.

练习 1.1.2 设 $\{a_n\}$ 有界, 且满足条件 $a_n \leq a_{n+2}, a_n \leq a_{n+3}, n \in \mathbb{N}_+$, 证明: $\{a_n\}$ 收敛.

解 由题知 $\{a_{2k-1}\}$, $\{a_{2k}\}$, $\{a_{3k}\}$ 收敛, 由上一小题知命题成立.

练习 1.1.3 设 $\{a_n + a_{n+1}\}$ 和 $\{a_n + a_{n+2}\}$ 都收敛, 证明: $\{a_n\}$ 收敛. 解 由题知 $\{a_{n+2}-a_{n+1}\}$ 也收敛, 而实质上这与 $\{a_{n+1}-a_n\}$ 没有区别, 与 $\{a_{n+1}+a_n\}$ 相减即得

 $\{a_n\}$ 收敛. 练习 1.1.4 设数列 $\{a_n\}$ 收敛于 0, 又存在极限 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = a$. 证明: $a \le 1$.

首先 $a_n \neq 0$, 否则 $\frac{a_{n+1}}{a_n}$ 某项没有意义. 若 a>1, 则 $\exists a'$ 使得 1< a'< a, 而取 $\varepsilon< a-a'$, 无论多大的 N, 总 $\exists n>N, a_n\geqslant a_N\cdot a^{n-N}>$ ε ,与 $\{a_n\}$ 收敛到 0 矛盾

练习 1.1.5 设 $a_n = \sum_{n=0}^{\infty} \left(\sqrt{1 + \frac{k}{n^2}} - 1 \right), n \in \mathbb{N}_+,$ 计算 $\lim_{n \to \infty} a_n$.

解 放缩.

令 n 趋向 ∞ 由夹逼定理即知 $\lim_{n\to\infty} a_n = \frac{1}{2}$.

说明: 直接放缩会放过
$$\Longrightarrow n \cdot \left(\sqrt{1 + \frac{1}{n^2}} - 1\right) = \frac{n \cdot \frac{1}{n^2}}{\sqrt{1 + \frac{1}{n^2}} + 1} \to 0$$

则
$$\frac{\stackrel{i=1}{p(n)}}{n} \leqslant \frac{\stackrel{i=1}{k}}{p_1p_2\cdots p_k} < \frac{k}{k!}$$
, 由夹逼定理知原极限为 0 .

说明: 事实上这就是一个对p(n)的一个估计,换个角度考虑,就是怎么使 $\frac{p(n)}{n}$ 尽可能大,也就 是变相估计上界吧.

练习 1.1.7 设 a_0, a_1, \dots, a_p 是 p+1 个给定的数, 且满足条件 $a_0 + a_1 + \dots + a_p = 0$. 求 $\lim_{n\to\infty} \left(a_0 \sqrt{n} + a_1 \sqrt{n+1} + \dots + a_p \sqrt{n+p} \right).$

解

$$\left| a_0 \sqrt{n} + \dots + a_p \sqrt{n+p} - 0 \right| =$$

$$\begin{split} &\left|a_0(\sqrt{n}-\sqrt{n})+a_1(\sqrt{n+1}-\sqrt{n})+\dots+a_p(\sqrt{n+p}-\sqrt{n})\right|\leqslant\\ &\left|a_0(\sqrt{n}-\sqrt{n})\right|+\left|a_1(\sqrt{n+1}-\sqrt{n})\right|+\dots=\\ &\left|a_0\cdot 0\right|+\left|a_1\cdot\frac{1}{\sqrt{n+1}+\sqrt{n}}\right|+\dots+\left|\frac{a_p}{\sqrt{n+p}+\sqrt{n}}\right|\to 0 \end{split}$$
 故极限为 0.

练习 1.1.8 证明: 当 0 < k < 1 时, $\lim_{n \to \infty} [(1+n)^k - n^k] = 0$.

解 显然
$$0 \leqslant (1+n)^k - n^k = n^k \left[(1+\frac{1}{n})^k - 1 \right] \leqslant n^k \left[(1+\frac{1}{n}) - 1 \right] = \frac{n^k}{n} \to 0.$$

笔记 另一思路也可以是证明单调有界, 但是没想到怎么证明单调减...

▲ 练习1.1.9

(1) 设 $\{a_n\}$ 收敛, 令 $y_n = n(x_n - x_{n-1}), n \in \mathbb{N}_+$, 问 $\{y_n\}$ 是否收敛? 解 不一定.

$$y_n = \begin{cases} x_{n-1} + \frac{1}{n}, & n \neq n \leq x_n \leq x_n$$

可知 $\{x_n\}$ 不超过 $\sum_{n=1}^{\infty} \frac{1}{n^2}$, 前证它收敛. 而对于 $\varepsilon < 1$, 无论多大的 N 总 $\exists n > N$ 且 $y_n = 1$, 即 $\{y_n\}$ 发散.

(2) 在上一小题中, 若 $\{y_n\}$ 也收敛, 证明: $\{y_n\}$ 收敛于 0. 解 设 $\{y_n\}$ 收敛到 a, 由 Stolz 知 $\left\{\frac{x_n-x_{n-1}}{\frac{1}{n}}\right\}$ 极限若存在则与 $\frac{x_n}{\sum_{i=1}^{\infty}\frac{1}{i}}$ 相同, 显然此数列 收敛到 $0(分母 \to \infty)$, 而由题知 $\left\{\frac{x_n - \overset{"}{x_{n-1}}}{\underline{1}}\right\}$ 收敛, 也即 a = 0.

▲ 练习 1.1.10

(1) 设正数列 $\{a_n\}$ 满足条件 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}} = 0$, 证明: $\{a_n\}$ 是正无穷大量.

解 事实上, 当
$$n$$
 足够大时 $\left| \frac{a_n}{a_{n+1}} \right| = \frac{a_n}{a_{n+1}} < \varepsilon < 1$.

解 事实上, 当 n 足够大时 $\left|\frac{a_n}{a_{n+1}}\right| = \frac{a_n}{a_{n+1}} < \varepsilon < 1$. 则当 n > N 时, $\frac{1}{a_n} < \frac{1}{a_N} \cdot \varepsilon^{n-N}$, 即 $a_n > \frac{a_N}{\varepsilon^{n-N}} > M$ 成立,(M 为一给定的任意大的数), 也 即 {a_n} 为无穷大量.

(2) 设正数列 $\{a_n\}$ 满足条件 $\lim_{n\to\infty} \frac{a_n}{a_{n+1}+a_{n+2}}=0$, 证明: $\{a_n\}$ 无界.

解 反证. 假设 $\{a_n\}$ 有上界 M; 而因为 $\lim_{n\to\infty}\frac{a_n}{a_{n+1}+a_{n+2}}=0$ ⇒ 对 $\varepsilon=\frac14,\exists\,N$ 使得当 n>N时 $\frac{a_n}{a_{n+1}+a_{n+2}}<\varepsilon=\frac{1}{4}$. 那么可以推出 $4a_N< a_{N+1}+a_{N+2}, 16a_N< a_{N+2}+2a_{N+3}+a_{N+4},\cdots$

 a_{N+4},\cdots . 因为 M 固定, 故 $\exists m$ 使得 $2^m a_N>M$, 即 $2^m M<4^m a_N<\underbrace{\cdots}_{2^m \uparrow \{a_n\} \pitchfork \emptyset ar{y}}$.

由抽屉原理知,至少有一个项 > M,与假设矛盾.故原命题成立.

说明: 只说无界是正确的, 不一定是正无穷大量. $\{a_n\}$ 可以是 $1!,1,2!,1,3!,1,\cdots$, 这也满足题

- **练习 1.1.11** 证明: $\left(\frac{n}{3}\right)^n < n! < \left(\frac{n}{2}\right)^n$, 其中右边的不等式当 $n \ge 6$ 时成立.

解与 2.5 练习题 7. 证法完全类化

解 也即证
$$\frac{1}{2!}+\cdots+\frac{1}{n!}+\frac{1}{n!n}=1-\frac{1}{2!1\cdot 2}-\cdots-\frac{1}{n!(n-1)n}.$$
用数归, 显然 $n=2$ 时 $\frac{1}{2!}+\frac{1}{2!2}=1-\frac{1}{2!1\cdot 2};$
假设 $n=k$ 时成立,即 $\frac{1}{2!}+\cdots+\frac{1}{k!}+\frac{1}{k!k}=1-\frac{1}{2!1\cdot 2}-\cdots-\frac{1}{k!(k-1)k},$
当 $n=k+1$ 时, $\frac{1}{2!}+\cdots+\frac{1}{k!}+\frac{1}{(k+1)!}+\frac{1}{(k+1)!(k+1)}=1-\frac{1}{2!1\cdot 2}-\cdots-\frac{1}{k!(k-1)k}+\frac{1}{(k+1)!}+\frac{1}{(k+1)!(k+1)}-\frac{1}{k!k}.$
而通分后知 $\frac{1}{(k+1)!}+\frac{1}{(k+1)!(k+1)}-\frac{1}{k!k}=-\frac{1}{(k+1)!k(k+1)},$
即 $\frac{1}{2!}+\cdots+\frac{1}{k!}+\frac{1}{(k+1)!}+\frac{1}{(k+1)!(k+1)}=1-\frac{1}{2!1\cdot 2}-\cdots-\frac{1}{k!(k-1)k}-\frac{1}{(k+1)!k(k+1)},$
也即命题对 $n=k+1$ 也成立,由数归知对所有 $n\geqslant 2$ 都成立。
 $e=3-\lim_{n\to\infty}\sum_{k=0}^n\frac{1}{(k+2)!(k+1)(k+2)};$

(2)
$$e = 3 - \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{(k+2)!(k+1)(k+2)};$$

解由(1) 知
$$3 - \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{(k+2)!(k+1)(k+2)} = \lim_{n \to \infty} \left(\sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{n!n} \right)$$

而前已证 $\lim_{n\to\infty}\sum_{k=0}^{\infty}\frac{1}{k!}=e$, 且显然 $\lim_{n\to\infty}\frac{1}{n!n}=0$, 由极限的四则运算知等式成立.

(3) 用
$$\sum_{k=0}^{n} \frac{1}{k!} + \frac{1}{n!n}$$
 计算 e 要比不加上最后一项好得多.

解由(1)的右边可以看出
$$\lim_{n\to\infty}\left(\sum_{k=0}^n\frac{1}{k!}+\frac{1}{n!n}\right)$$
 是大于 e 的.

也就是说,
$$\lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!}$$
 单调增从下方逼近 e , $\lim_{n \to \infty} \left(\sum_{k=0}^n \frac{1}{k!} + \frac{1}{n!n} \right)$ 单调减从上方逼近 e .

而他们和
$$e$$
 的误差为 $\alpha_n = e - \sum_{k=0}^n \frac{1}{k!} = \sum_{k=n+1}^\infty \frac{1}{k!}, \beta_n = \sum_{k=0}^n \frac{1}{k!} + \frac{1}{n!n} - e = \sum_{k=n+1}^\infty \frac{1}{k!(k-1)k}.$

练习 1.1.14 设
$$a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n}, n \in \mathbb{N}_+$$
, 证明: $\{a_n\}$ 收敛.

显然
$$\beta_n < \alpha_n$$
 也就是说后者收敛得更快.

练习 1.1.14 设 $a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} - 2\sqrt{n}, n \in \mathbb{N}_+,$ 证明: $\{a_n\}$ 收敛.

解 : $\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} < \frac{2}{\sqrt{k} + \sqrt{k-1}} = 2\left(\sqrt{k} - \sqrt{k-1}\right) \Rightarrow a_n < \left(-\sqrt{0} + \sqrt{1}\right) + \dots + \left(-\sqrt{n-1} + \sqrt{n}\right) - 2\sqrt{n} = 0.$

而考虑 $a_{n+1}-a_n$, 有差值为 $\frac{1}{\sqrt{n+1}}+2(\sqrt{n+1}-\sqrt{n})>0$, 故 a_n 单调递增有上界, 即 $\{a_n\}$

练习 1.1.15 设已知存在极限
$$\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n}$$
, 证明: $\lim_{n\to\infty} \frac{a_n}{n}=0$.

解 (有点取巧?)
$$\lim_{\substack{n\to\infty\\n\to\infty}}\frac{a_1+\cdots+a_n}{n}=\lim_{\substack{n\to\infty\\n\to\infty}}\frac{a_1+\cdots+a_{n-1}}{n-1}\cdot\frac{n-1}{n}+\frac{a_n}{n}=\lim_{\substack{n\to\infty\\n\to\infty}}\frac{a_1+\cdots+a_{n-1}}{n-1}\cdot\frac{n-1}{n}+\lim_{\substack{n\to\infty\\n\to\infty}}\frac{a_1}{n}$$

$$\iint_{\substack{n\to\infty\\n\to\infty}}\frac{a_1+\cdots+a_{n-1}}{n-1}\cdot\frac{n-1}{n}=\lim_{\substack{n\to\infty\\n\to\infty}}\frac{a_1+\cdots+a_n}{n}$$

$$\lim_{\substack{n\to\infty\\n\to\infty}}\frac{a_n}{n}=0.$$

△ 练习 1.1.16 证明: $\lim_{n\to\infty} (n!)^{1/n^2} = 1$.

 $\mathbf{m} \sqrt[n]{n!} < \sqrt[n]{n^n} = n$, 而前已证 $\lim_{n \to \infty} \sqrt[n]{n} = 1$, 又显然 $(n!)^{1/n^2} > 1$, 由夹逼定理得命题成立.

练习 1.1.17 设对每个 n 有 $x_n < 1$ 和 $(1-x_n)x_{n+1} \geqslant \frac{1}{4}$, 证明 $\{x_n\}$ 收敛, 并求其极限.

解(解法类似 2.6 练习题 7.)

先证 $n \ge 2$ 时 x_n 都为正数.

因为 $x_n < 1$, 所以 $(1 - x_n) > 0$ 恒成立, 故 $x_{n+1} > 0$, 也就是说从 n = 2 开始 $\{x_n\}$ 都为正数. 再证 $\{x_n\} \leqslant \frac{1}{2}$

$$(1-x_{n-1})x_n\geqslant \frac{1}{4}\Rightarrow x_n\geqslant \frac{1}{4(1-x_{n-1})},\ \ dx_n<1,\ \ \text{所以}\ \frac{1}{4(1-x_{n-1})}<1\Rightarrow x_{n-1}<\frac{3}{4};\ \ \text{同}$$
 理 $x_{n-1}<\frac{3}{4}\Rightarrow x_{n-2}<\frac{2}{3}\cdots,\ \ \vec{x}\ x_n< m,\ \ \text{则}\ x_{n-1}<1-\frac{1}{4m},\ \ \text{易证这是个单调减趋向}\ \frac{1}{2}\ \ \text{的序列},$ 令 n 趋向无穷便得到 $\{x_n\}$ 每一项都 $\leqslant \frac{1}{2}.$

 $x_1 < 1 \Rightarrow (1 - x_1) > 0 \Rightarrow x_2 > 0 \Rightarrow (1 - x_2) < 1 \Rightarrow x_3 > \frac{1}{4} \Rightarrow x_4 > \frac{1}{3} \cdots$, 同样可证这是一 个单调增趋向 $\frac{1}{2}$ 的序列, 由夹逼定理知 $\{x_n\}$ 收敛且极限为 $\frac{1}{2}$.

练习 1.1.18 设 $a_1 = b, a_2 = c$, 再 $n \ge 3$ 时, $a_n = \frac{a_{n-1} + a_{n-2}}{2}$, 证明 $\{a_n\}$ 收敛, 并求其极限. 解 一个方法是用特征根法解出通项为 $a_n = (\frac{1}{3}b + \frac{2}{3}c) + \frac{4}{3}(c-b)(-\frac{1}{2})^n$, 令 n 趋向无穷便得到极 限为 $\frac{1}{3}b+\frac{2}{3}c$. 另外也可以像提示中那样证明奇数项和偶数项分别单调互为上下界.

绛 练习 1.1.19 设 a,b,c 是三个给定的实数, 令 $a_1 = a, b_1 = b, c_1 = c$, 并以递推公式定义

$$a_{n+1} = \frac{b_n + c_n}{2}, b_{n+1} = \frac{a_n + c_n}{2}, c_{n+1} = \frac{a_n + b_n}{2}, n \in \mathbb{N} + \mathbb{N}$$

. 求这三个数列的极限.

解 注意到有 $a_n+b_n+c_n=a+b+c$, 且 $a_{n+1}-b_{n+1}=-\frac{1}{2}(a_n-b_n)\Rightarrow a_n-b_n=\left(-\frac{1}{2}\right)^n(a-b)$, 同理 对 b_n, c_n 也可以得到类似的式子,联立可以解出 $\{a_n\}, \{b_n\}, \{c_n\}$,最后可以得到极限为 $\frac{a+b+c}{c}$

▲ 练习 1.1.20

(1) 设
$$a_1 > b_1 > 0$$
, $a_{n+1} = \frac{2a_nb_n}{a_n + b_n}$, $b_{n+1} = \sqrt{a_{n+1}b_n}$, $n \in \mathbb{N}+$, 证明: $\{a_n\}$ 和 $\{b_n\}$ 收敛于同一极限.

解解法类似例题 2.3.5, 分别证明
$$\{a_n\}$$
, $\{b_n\}$ 单调且互为上下界. $a_n > b_n > 0 \Rightarrow a_n + b_n > 2b_n \Rightarrow 1 > \frac{2b_n}{a_n + b_n} \Rightarrow a_n > \frac{2a_nb_n}{a_n + b_n}$ $a_n > b_n > 0 \Rightarrow 2a_n > a_n + b_n \Rightarrow a_{n+1} = \frac{2a_nb_n}{a_n + b_n} > b_n \Rightarrow b_{n+1} = \sqrt{a_{n+1}b_n} > b_n$ $a_n > b_n \Rightarrow a_{n+1} > \sqrt{a_{n+1}b_n} = b_{n+1}$

故两者都单调有界,也即收敛.

任取其中一个递推式,令 n 趋向无穷即得两者极限相同.

(2) 在 $a_1 = 2\sqrt{3}$, $b_1 = 3$ 时, 证明上述极限等于单位圆的半周长 π .(这里可以利用极限 $\lim_{n \to \infty} n \sin \frac{\pi}{n} =$

解若 $\{a_n\}$ 为m边单位圆外切正多边形半周长, $\{b_n\}$ 为m边单位圆内接正多边形半周长,则 $a_n = m \tan \frac{2\pi}{2m}, b_n = m \sin \frac{2\pi}{2m}.$

验证知 $\frac{2a_nb_n^{2m}}{a_n+b_n}=a_{n+1}=2m\tan\frac{2\pi}{2(2m)}, \sqrt{a_{n+1}b_n}=b_{n+1}=2m\sin\frac{2\pi}{2(2m)},$ 即下一项为 2m 边正多边形的半周长.

计算知 a_1, b_1 分别为正六边形外切 (內接) 圆半周长, 故 $a_n = 6 \cdot 2^{n-1} \tan \frac{\pi}{6 \cdot 2^{n-1}}$ $b_n = 6 \cdot 2^{n-1} \sin \frac{\pi}{6 \cdot 2^{n-1}}$, 由提示知极限为 π .

笔记 本题与例题 2.3.5 完全不同. 实际上这就是计算圆周率的 Archimedes(阿基米德)-刘徽方法的 迭代形式. 在(2) 中的两个数列 $\{a_n\}$ 和 $\{b_n\}$ 就是单位圆的外切和内接正多边形的半周长 (请求出 边数和n的关系).