Exercise 16.2

Q.1

Show that

Given

 \triangle ABC,O is the mid point of

 $\overline{\mathrm{BC}}$

 $\overline{OB} \cong \overline{OC}$

To prove

Area $\triangle ABO = area \triangle ACO$

Construction

Draw $\overline{DE} \parallel \overline{BC}$

 $\overline{CP} \parallel \overline{OA}$

 $\overline{BQ} \parallel \overline{OA}$

Proof

Prooi	
Statements	Reasons
$\overline{BQ} \parallel \overline{OA}$	Construction
$\overline{OB} \parallel \overline{AQ}$	Construction
■ BOAQ	Base of same
gm COAP	Parallel line of \overrightarrow{DE}
$\overline{OB} \cong \overline{OC}$	O is the mid point of \overline{BC}
Area of $\ ^{gm}$ BOAQ= Area of $\ ^{gm}$ COAP (i)	
Area of $\triangle ABO = \frac{1}{2}$ Area of BOAQ	
Area of $\triangle ACO = \frac{1}{2}$ Area of \parallel^{gm} COAP	

So median of a triangle divides it into two triangles of equal area.

Q.2 Prove that a parallelogram is divided by its diagonals into four triangles of equal area.

Given:

Area of $\triangle ABO = Area of \triangle ACO$

In parallelogram ABCD, \overline{AC} and \overline{BD} are its diagonals, which meet at I

To prove:

Triangles ABI, BCI CDI and ADI have equal areas.

Proof:

Triangles ABC and ABD have the same base \overline{AB} and are between the same parallel lines \overline{AB} and \overline{DC} ... they have equal areas.

Or area of \triangle ABC = area of \triangle ABD

Dividing equation (i) both side by (ii)

Or area of \triangle ABI + area of \triangle BCI= area of \triangle ABI+ area of \triangle ADI

 \Rightarrow Area of \triangle BCI = area of \triangle ADI ... (i)

Similarly area of \triangle ABC = area of \triangle BCD

- \Rightarrow Area of \triangle ABI +area of \triangle BCI = area of \triangle BCI + area of \triangle CDI
- \Rightarrow Area of \triangle ABI = area of \triangle CDI... (ii)

As diagonals of a parallelogram bisect each other I is the midpoint of \overline{AC} so \overline{BI} is a median of Δ ABC

 \therefore Area of \triangle ABI = area of \triangle BCI... (iii)

 $\Delta CDI \cong \Delta AOI$

 $\overline{BI} \simeq \overline{DI}$

Area of \triangle ABI = area of \triangle BCI = area of \triangle CDI= area of \triangle ADI

Q.3 Divide a triangle into six equal triangular parts

Given

 ΔABC

To prove

To divide $\triangle ABC$ into six equal part triangular parts

Construction

Take \overrightarrow{BP} any ray making an acute angle with \overrightarrow{BC} draw six arcs of the same radius on

 \overrightarrow{BP} i.e $m\overrightarrow{Bd} = mde = mef = mfg = mgh = mhc$

Join c to C and parallel line segments as

Join A to O,E,F,G,H

Proof

Base \overline{BC} of \triangle ABC has been divided to six equal parts.

We get six triangles having equal base and same altitude

Their area is equal

Hence $\Delta BOA = \Delta OEA = \Delta EFA = \Delta FGA = \Delta GHA = \Delta HCA$

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 2 OF 2]