Forward reachability

1 Components of a control loop

Given a system where \mathcal{P} is the dynamics, π is the policy, x_t is the state at time t, u_t is the action at time t. the policy π is also called the "controller", and the dynamical system \mathcal{P} is called the "plant", in controls.

$$x_{t+1} = \mathcal{P}(x_t, u_t)$$
 open loop dynamics

$$u_t = \pi(x_t)$$
 NN / controller

example of \mathcal{P} would be $x_{t+1} = Ax_t + B\pi(x_t)$. Let's compile π, \mathcal{P} into a single f s.t. $f: x_t \to x_{t+1}$

$$x_{t+1} = f(x_t; \pi)$$
 closed loop dynamics

Why does \mathcal{P} define an open loop system, while f define a closed loop system?

 \mathcal{P} assumes the input action u_t can be some arbitrary valid action. Whereas, f defines a specific action using $\pi(x_t)$ No additional information is required by f given an initial state to recurse a loop that traces out a trajectory/ i.e: $x_{t+2} = f(f(x_t; \pi, \mathcal{P}); \pi, \mathcal{P}) = f^2(x_t; \pi, \mathcal{P})$

2 Reachable Sets

given a a state Set \mathcal{X}_t , the reachable set \mathcal{R}_t is as follows:

$$\mathcal{R}_t(\mathcal{X}_t) = \{ f(x_t; \pi, \mathcal{P}) | \forall x \in \mathcal{X}_t \}$$

single step reachable set

$$\mathcal{R}_t(\mathcal{X}_t) = \{ f^t(x_t; \pi, \mathcal{P}) | \forall x_t \in \mathcal{X}_t \}$$

t step reachability set

3 Safety

if we have avoid-region A:

$$\mathcal{R}_t(\mathcal{X}_t) \cap A = \varnothing \mid \forall t \in [0, T]$$

If your reachable set at time t = 1 ($\mathcal{R}_1(\mathcal{X}_0)$) is a subset of your input state set \mathcal{X}_0 , then $\mathcal{R}_t(\mathcal{X}_t)$ can never leave the initial input state set $\mathcal{X}_0 \ \forall t \in [0, \infty]$ (provable by induction)

4 Goal-reachability

If the G is the goal region

$$\exists t_{goal} \in [0, T]$$
s.t. $\mathcal{R}_{t_{goal}}(\mathcal{X}_{t_{goal}}) \subseteq G$

We may also wanna say that further states don't leave the goal region,

$$\mathcal{R}_{t_{goal+i}} \subseteq G \mid i \in [1, \infty]$$

5 Formulation

 $\mathcal{R}_t(\mathcal{X}_t)$ can be found by finding the output bounds, given a set of input bounds using any of the verification methods previously covered like IBP, crown, MILP, etc.

To recall, the general formulation is as follows :

$$\underset{x_t \in \mathcal{X}_t}{Max} c^T x_{t+\tau}$$

$$s.t.: x_{t+\tau} = f^{\tau}(x_t; \pi, \mathcal{P})$$