Labor Demand

Econ 3470 Lecture 2

Labor Economics

2015-2016 Term 1

Outline

- Short-Run Labor Demand
 - Firm Labor Demand
 - Competitive Market
 - Monopolist Product Market
 - Monopsony Factor Market
 - Industry Labor Demand
- 2 Long-Run Labor Demand
 - Firm Labor Demand (Competitive Case)
 - Industry Labor Demand

Factors affecting Demand for Labor

- Technology of production
- Supply of other factors of production
- Oemand for the final product
 - Firm vs. industry
- Short-run vs. long-run

Assumptions

- **1** Production function: q = f(K, L).
- All factors homogeneous
- All firms are profit maximizing

Marginal Product

Marginal product of labor MP_L

$$MP_L = \Delta Q/\Delta L$$
 (holding capital constant)

Marginal product of capital MP_K

$$MP_K = \Delta Q/\Delta K$$
 (holding labor constant)

- Marginal revenue
 - Competitive product market: MR = P (product price)
 - Differentiated product market (some monopoly power): MR < P
 (extra units can be sold only if product price is reduced)

Marginal Product

• Value of Marginal product of labor

$$VMP_L = MP_L \cdot MR$$

- Marginal expense
 - Competitive labor market: $ME_L = W$ (market wage, flat labor supply curve)
 - Monopsony labor market: upward sloping labor supply curves

Competitive - take all prices (P, W, r) as given, i.e. price takers - faces a horizontal product demand curve and a horizontal supply factor curve.

Firm maximize

$$\max_{L} \pi = Pf(\bar{K}, L) - r\bar{K} - WL$$

Only 1 degree of freedom, i.e. only able to change L to max π .

FOC

$$\frac{\partial \pi}{\partial L} = 0$$
$$= Pf_L - W$$

where $Pf_L = VMP_L$

$$Pf_{L}(\bar{K}, L) = W$$

$$VMP_{L} = W$$

$$f_{L}(\bar{K}, L) = \frac{W}{P}$$

SOC

$$\frac{\partial^2 \pi}{\partial L^2} = P f_{LL} < 0 \Rightarrow V M P_L$$
 negatively slope

Value of average product of labor is $VAP_L = P \cdot AP_L$ Value of marginal product of labor is $VMP_L = P \cdot MP_L$

 \Rightarrow The competitive firm's labor demand curve is simply that part of the value of marginal product curve which is below the average product curve.

Proof.

$$TVC \le TR$$
 $WL \le Pf$
 $W \le \frac{Pf}{L} = VAP_L$

FOC implies that $Pf_L(\bar{K}, L) = W$.

Take total derivative of FOC

$$Pf_{LL}dL + Pf_{LK}dK + f_LdP = dW$$

Effect of an increase in wage

$$\frac{\partial L}{\partial W} = \frac{1}{Pf_{LL}} < 0$$

Effect of an increase in demand (P)

$$\frac{\partial L}{\partial P} = -\frac{f_L}{Pf_{LL}} > 0$$

P increase, VMP and VAP curves shift up. L increases.

$$Pf_{LL}dL + Pf_{LK}dK + f_LdP = dW$$

Since P and W will not change we get

$$Pf_{LL}dL = -Pf_{LK}dK$$
$$\frac{\partial L}{\partial K} = -\frac{f_{LK}}{f_{LL}}$$

where $f_{LL} < 0$ by SOC.

 $f_{LK} > 0 \Rightarrow$ complements. i.e. $\uparrow K \rightarrow \uparrow L$. $f_{LK} < 0 \Rightarrow$ substitutes. i.e. $\uparrow K \rightarrow \downarrow L$.

Short-Run Demand (Product Market Monopolist)

Monopolist - only seller in the market, i.e. price setter P is also a function of q = f(K, L).

$$\max_{L} \pi = P(q)f(\bar{K}, L) - r\bar{K} - WL$$
$$= P(f(\bar{K}, L))f(\bar{K}, L) - r\bar{K} - WL$$

Still 1 degree of freedom, price depends on output

Short-Run Demand (Product Market Monopolist)

FOC

$$Pf_L + f \frac{\partial P}{\partial f} f_L - W = 0$$

 $P(1 + \frac{1}{\eta}) f_L = W$

where $\eta = \frac{P}{f} \frac{\partial f}{\partial P} < 0$ is price elasticity of product demand. $MR = P(1 + \frac{1}{n}) < P$.

FOC indicates that at any given level of P and W, f_L is greater and L is smaller under monopolistic condition as compared to perfect competition in the output market.

Short-Run Demand (Labor Market Monopsony)

Monopsony - a market with only one buyer.

In the labor market we are talking about there is only one employer in the labor market.

The employer faces the market supply curve.

Marginal expense of labor, ME_L - the extra expenditures associated with hiring one additional unit of labor

$$\max_{L} \pi = Pf(\bar{K}, L) - r\bar{K} - W(L)L$$

Short-Run Demand (Labor Market Monopsony)

FOC

$$Pf_L(\bar{K}, L) - [W(L) + W'(L)L] = 0$$

$$Pf_L(\bar{K}, L) = W(1 + \frac{1}{\epsilon})$$

$$VMP_L = ME_L$$

where $\epsilon = \frac{dL}{dW} \frac{W}{L}$ is the price elasticity of labor supply

Short-Run Demand (Labor Market Monopsony)

Assume that

- there are *n* identical firms in the industry;
- there are no technological externalities in production in the industry.

If product price is constant (i.e. the product demand is perfectly elastic) \Rightarrow the industry labor demand curve will simply be the horizontal summation of the labor demand curves of all n firms.

If product demand is not perfectly elastic.

When firms expand output

- $\rightarrow\downarrow$ product price
- $\rightarrow \downarrow VMP_L$
- $\rightarrow \downarrow$ demand for labor and output

Therefore, the industry factor demand curve is less elastic than the horizontal aggregation of the VMP_L curves of the individual firms.

$$\max_{K,L} \pi = Pf(K,L) - WL - rK$$

FOC

$$\frac{\partial \pi}{\partial L} = 0 \Rightarrow Pf_L - W = 0$$
$$\frac{\partial \pi}{\partial K} = 0 \Rightarrow Pf_K - r = 0$$

FOC for π imply

$$\frac{W}{f_L} = \frac{r}{f_K} = P$$

 $\frac{1}{f_L}$ is the number of units of labor required to produced an additional unit of output

 $\Rightarrow \frac{W}{f_L}$ is the cost of producing an additional unit of output when only labor input is increased.

- Isoquant: possible combinations of K and L that produce the same level of output
 - Isoquants must be downward sloping.
 - Isoquants do not intersect.
 - Higher isoquants are associated with higher levels of output.
 - Isoquants are convex to the origin.
- Isocost: all combinations of K and L that are equally costly

$$C = WL + rK$$

The isocost line is

$$K = \frac{C}{r} - \frac{W}{r}L$$

with intercept C/r and slope -W/r.

Slope of isocost line $=-\frac{W}{r}=-\frac{f_L}{f_K}=$ slope of isoquant Marginal rate of substitution: $\frac{dK}{dL}=-\frac{MP_L}{MP_K}$

FOC

$$Pf_L = W$$
$$Pf_K = r$$

SOC

$$Pf_{LL}dL + Pf_{LK}dK = dW$$

$$Pf_{KL}dL + Pf_{KK}dK = dr$$

Assume
$$dr=0$$

Define $\Delta=P(f_{LL}f_{KK}-f_{LK}^2)$

$$\frac{dL}{dW}=\frac{f_{KK}}{\Delta}<0$$

$$\frac{dK}{dW}=-\frac{f_{KL}}{\Delta}\geqslant 0$$

where $\Delta > 0$ by the SOC.

Compare with SR where K is fixed, i.e. $\frac{\partial L}{\partial W} = \frac{1}{Pf_{LL}}$

$$\frac{\partial L}{\partial W}|_{K} = \frac{1}{Pf_{LL}} > \frac{f_{KK}}{P(f_{LL}f_{KK} - f_{LK}^{2})} = \frac{1}{Pf_{LL} - \frac{Pf_{LK}^{2}}{f_{KK}}} = \frac{\partial L}{\partial W}$$

Thus, labor demand is more elastic in the long run than in the short run (i.e. LR is flatter than SR).

Intuitively, in the SR when there is a change in market wage, labor input will adjust along the $VMP_L(\bar{K})$.

Given time, capital input can adjust.

 \Rightarrow shift the VMP_L curve (even if \bar{P} is constant for a competitive firm) Effect of wage on capital in the LR, depends on the sign of f_{KL}

$$\frac{\partial K}{\partial W} = -\frac{f_{KL}}{\Delta} \left\{ \begin{array}{l} < 0 \text{ if } f_{KL} > 0 \text{ (complements)} \\ > 0 \text{ if } f_{KL} < 0 \text{ (substitutes)} \end{array} \right.$$

When K and L are complements

$$f_{KL} > 0$$
$$\frac{\partial K}{\partial W} < 0$$

As wage decrease

- labor increase
- shift VMP_K curve to right, same r, K increase
- shift VMP_L curve to right, L increase further
- both curves will shift until it converges to new equilibrium

LR response in this case is stronger than the SR case.

When K and L are substitutes

$$\frac{f_{KL} < 0}{\frac{\partial K}{\partial W}} > 0$$

As wage decrease

- labor increase
- shift VMP_K curve to left, same r, K decrease

Long-Run Demand (Competitive Market)

Will SR labor demand shift to the left and LR labor demand be steeper?

Long-Run Demand (Competitive Market)

No! $f_{KL} < 0, MP_L$ increase, labor demand shift out at a lower K

Long-Run Demand

Labor demand function have a negative slope implies: wage increase, quantity demand for labor must decrease.

This observation can be decomposed into 2 effects:

- Substitution effect
- Scale effect

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial W}|_{\bar{q}} + \frac{\partial L}{\partial W}_{(q \text{ variable})}$$

$$\frac{\partial L}{\partial W}|_{\bar{q}} < 0$$

Effect of a factor price change where output is held constant must be negative.

In other words, at constant output (along a given isoquant), an increase in wage must reduce demand for labor.

$$\frac{\partial L}{\partial W}$$
 (q variable)

When W changes, it will affect the scale of production.

$$W \uparrow \rightarrow \uparrow MC$$
 shift supply curve upwards/left $\rightarrow \downarrow Q$ (i.e. \downarrow in scale) $\rightarrow \downarrow L$

Same direction as substitution effect.

Substitution and Scale Effects of a Wage Increase

Substitution and Scale Effects of a Wage Increase

Overall response L_z to L_Z''

• Substitution effect: L_Z to L_Z'

• Scale effect: L'_Z to L''_Z

Both are negative effect \Rightarrow LR labor demand curve slopes downward

Substitution and Scale Effects

Components of the Own-Wage Elasticity of Demand for Labor: Empirical Estimates Using Plant-Level Data

Estimates Using Plant-Level Data	
	Estimated Elasticity
Short-Run Scale Effect	
British manufacturing firms, 1974–1982	-0.53
Substitution Effect	
32 studies using plant or narrowly defined	Average: -0.45
industry data	(typical range: -0.15 to -0.75)
Overall Labor Demand Elasticity	
British plants, 1984	-0.93
British coal mines, 1950–1980	−I.0 to −I.4

Long-Run Industry Labor Demand

Industry demand for labor \neq horizontal summation of firm's demand, because

- Pecuniary externalities (the price of the product will adjust as each firm changes its output in response to an exogenous change in wage)
- Technological externalities
- Exit and entry ⇒ zero economic profit

So these factors must be incorporated into our analysis when deriving the LR industry labor demand.

Labor Demand Elasticity

Straight-line demand curve: a unit change in wages induces the same response in units of employment at each point along the curve.

Same responses in unit changes along the demand curve do not imply equal percentage changes.

Own Wage Elasticity

$$\epsilon_{ii} = rac{\% \Delta L_i}{\% \Delta W_i}$$
 $\leq 1 ext{ elastic}$ $= 1 ext{ unitary elastic}$ $< 1 ext{ inelastic}$

Cross Wage Elasticity

$$\epsilon_{jk} = rac{\% \Delta L_j}{\% \Delta W_k}$$
 $\epsilon_{jk} \left\{ egin{array}{l} > 0 ext{ substitutes} \\ < 0 ext{ complements} \end{array}
ight.$

Industry Long-Run Demand

Assume

- No technology externalities
- Constant returns to scale

Example: $q = \min(aL, bK)$

Leontief - no substitution effect

Each firm

$$L = \frac{q}{a}$$
$$K = \frac{q}{b}$$

Industry (assume there are n identical firms)

$$L = \frac{Q}{a} = \frac{nq}{a}$$
$$K = \frac{Q}{b} = \frac{nq}{b}$$

Cost to individual firm

$$c = WL + rK$$
$$= W\frac{q}{a} + r\frac{q}{b}$$

Average cost and marginal cost

$$AC = MC = \frac{c}{q}$$
$$= \frac{W}{a} + \frac{r}{b} = P$$

Product demand is g()

$$Q = g(P) = g(\frac{W}{a} + \frac{r}{b})$$
$$L = \frac{Q}{a} = \frac{g(\frac{W}{a} + \frac{r}{b})}{a}$$

Take In on both side

$$\ln L = \ln g(\frac{W}{a} + \frac{r}{b}) - \ln a$$

then differentiate

$$d \ln L = d \ln g - d \ln a$$

$$= \frac{\partial \ln g}{\partial \ln P} d \ln P - d \ln a$$

$$= \eta_Q^D d \ln P - d \ln a$$

where η_Q^D is elasticity of product demand.

$$d \ln P = d \ln \left(\frac{W}{a} + \frac{r}{b}\right)$$

$$= \frac{\frac{W}{a}}{\left(\frac{W}{a} + \frac{r}{b}\right)} d \ln \frac{W}{a} + \frac{\frac{r}{a}}{\left(\frac{W}{a} + \frac{r}{b}\right)} d \ln \frac{r}{b}$$

Let $v_L = \frac{\frac{W}{a}}{(\frac{W}{a} + \frac{r}{b})}$, where v_L is the factor share of labor

$$\begin{split} d \ln P = & v_L (d \ln W - d \ln a) + (1 - v_L) (d \ln r - d \ln b) \\ d \ln L = & \eta_Q^D [v_L (d \ln W - d \ln a) + (1 - v_L) (d \ln r - d \ln b)] - d \ln a \\ = & \eta_Q^D v_L d \ln W + (1 - v_L) \eta_Q^D d \ln r - (1 + v_L \eta_Q^D) d \ln a \\ & - (1 - v_L) \eta_Q^D d \ln b \end{split}$$

Elasticity of Labor Demand

$$\epsilon_{LL}^{\text{scale}} = \frac{d \ln L}{d \ln W}$$
$$= \eta_Q^D v_L < 0$$

$$W \uparrow, MC \uparrow, P \uparrow \Rightarrow Q \downarrow \Rightarrow L \downarrow$$

Example

Given
$$d \ln W = 0.1$$

capital intensive
$$v_L=0.1$$

$$\% \Delta AC=0.01$$

labor intensive
$$v_L = 0.8$$

$$\% \Delta AC = 0.08$$

Technology Progress

$$\frac{d \ln L}{d \ln b} = -(1 - v_L)\eta_Q^D > 0$$

Technology Progress

$$b\uparrow, MC\downarrow, P\downarrow \Rightarrow Q\uparrow \Rightarrow L\uparrow$$

Technology Progress

$$rac{d \ln L}{d \ln a} = -(1 + v_L \eta_Q^D) \gtrless 0$$
 $\uparrow MP_L \left\{ egin{array}{l} \Rightarrow \downarrow L \ \Rightarrow \uparrow Q \Rightarrow \uparrow L \end{array}
ight\} ext{ uncerta}$

Cross Wage Elasticity

 $\uparrow r$. Assume that capital supply is elastic.

$$\frac{d \ln L}{d \ln r} = (1 - v_L) \eta_Q^D < 0$$

$$r \uparrow$$
, $MC \uparrow$, $P \uparrow \Rightarrow Q \downarrow \Rightarrow L \downarrow$

$$q_0 = f(K, L)$$

$$dq_0 = 0$$

$$= f_K \frac{dK}{dW} + f_L \frac{dL}{dW}$$

$$= f_K (\frac{dK}{dW}|_{q_0} + \frac{f_L}{f_K} \frac{dL}{dW}|_{q_0})$$

$$\begin{aligned} \frac{f_L}{f_K} \frac{dL}{dW}|_{q_0} + \frac{dK}{dW}|_{q_0} &= 0\\ \frac{W}{r} \frac{dL}{dW}|_{q_0} + \frac{dK}{dW}|_{q_0} &= 0\\ \frac{WL}{c} \frac{W}{L} \frac{dL}{dW}|_{q_0} + \frac{rK}{c} \frac{W}{K} \frac{dK}{dW}|_{q_0} &= 0\\ v_L \frac{d \ln L}{d \ln W} + (1 - v_L) \frac{d \ln K}{d \ln W} &= 0 \end{aligned}$$

$$v_L \frac{d \ln L}{d \ln W} = -(1 - v_L) \frac{d \ln K}{d \ln W}$$

Add $(1 - v_L) \frac{d \ln L}{d \ln W}$ to both sides

$$egin{aligned} \epsilon_{LL}^{c} &\equiv rac{d \ln L}{d \ln W} = -(1 - v_L) (rac{d \ln K}{d \ln W}|_{q_0} - rac{d \ln L}{d \ln W}|_{q_0}) \ &= -(1 - v_L) rac{d \ln (K/L)}{d \ln W}|_{q_0} \ &= -(1 - v_L) rac{d \ln (K/L)}{d \ln (W/r)}|_{q_0} \end{aligned}$$

Since $d \ln r = 0$ implies $d \ln W = d \ln W - d \ln r = d \ln(W/r)$.

Let S_{LK} be the direct elasticity of substitution

$$S_{LK} = \frac{d \ln(\frac{K}{L})}{d \ln(\frac{f_L}{f_K})} = \frac{d \ln(\frac{K}{L})}{d \ln(\frac{W}{r})}$$

then

$$\epsilon_{LL}^{C} = -(1 - v_L)S_{LK}$$

properties of S_{LK}

- > 0 in 2-factor case
- $S_{LK} = S_{KL}$, symmetric.

 $\downarrow S_{LK} \Rightarrow$ substitutability between factors $\downarrow \Rightarrow$ curvature of isoquants \uparrow

Total Effect

If r is constant (supply of K is perfectly elastic), then total effect = substitution effect + scale effect.

$$\epsilon_{LL} = \epsilon_{LL}^c + \epsilon_{LL}^{\text{scale}}$$

$$= -(1 - v_L)S_{LK} + v_L\eta_Q^D$$

$$|\epsilon_{LL}| = (1 - v_L)|S_{LK}| + v_L|\eta_Q^D|$$

weighted average of S_{LK} and η_Q^D

Total Effect

LR elasticity of labor demand depends on

- factor share (v_L)
- product demand elasticity (η_Q^D)
- elasticity of substitution (S_{LK})

Total Effect

Other things equal, when there is more than one factor, then the own-wage elasticity of demand for an input is high if $|\epsilon_{LL}| \uparrow$

- $|\eta_Q^D|$ is large product elasticity is high
- \bullet S_{LK} is large inputs can be easily substituted
- v_L is large factor share of labor is high

First Law

 $|\eta_Q^D|$ is large - product elasticity is high (elastic). Mainly pertains to scale effect

$$\uparrow W \to \uparrow MC$$

$$\downarrow \downarrow Q \text{ (large scale effect)}$$

$$\downarrow \downarrow L$$

Second Law

 S_{LK} is large - inputs can be easily substituted. Related to substitution effect

$$\uparrow W \to \downarrow L$$

$$\uparrow K$$

$$\downarrow \downarrow L \text{ (if highly substitutable)}$$

Third Law

 v_L is large - factor share of labor is high. Factor share affects scale effect

$$\uparrow W(50\%)
ightarrow V_L = 10\%
ightarrow ext{total cost increase by } 5\% \qquad \downarrow Q$$
 $V_L = 80\%
ightarrow ext{total cost increase by } 40\% \qquad \downarrow \downarrow Q$

Reference

- Borjas, George (2013) Labor Economics, Chapter 3 and 4
- Chiang, Alpha C. and Kevin Wainwright (2005) Fundamental Methods of Mathematical Economics, pp. 296-438
- Ehrenberg and Smith (2015) Modern Labor Economics: Theory and Public Policy, Chapter 3 and 4