LinAlgDM II. 4-5. gyakorlat: lineáris leképezés mátrixa; magtér-képtér, sajátérték-sajátvektor kiszámítása

2024. március 14.

1 Gyorstalpaló tippek

A tippek önmagukban nem elegendő definíciók/tételek, a megértést és emlékezést segítik, és a feladatmegoldáshoz mutatnak utat!

1. Hint. Leképezés mátrixának megadása

A leképezés mátrixa a bázisvektorok képét tartalmazza a megfelelő sorrendben. (A kiindulási tér bázisvektorainak képeit oszlopvektorként egymás mellé pakoljuk.)

2. Hint. Képtér kiszámítása

A leképezés mátrixának oszlopvektorai által generált alteret kell megadni. \Rightarrow Gauss-Jordan elimináció után azon eredeti oszlopvektorok feszítik ki a képteret, melyekben van vezéregyes. (Mert ezek lesznek a független oszlopvektorok.) jelölése: Im(A).

3. Hint. Magtér kiszámítása

Zérushely. Az $A\underline{x} = \underline{0}$ homogén egyenletrendszert kell megoldani. Jelölése: Ker(A)

4. Hint. Sajátérték kiszámítása

Karakterisztikus polinom gyökei. $det(A - \lambda E) = 0$

5. Hint. Sajátaltér kiszámítása

 $(A - \lambda_i E)\underline{x} = 0$ homogén egyenletrendszer megoldása. $(Ker(A - \lambda_i E))$

2 Elméleti összefoglaló

Definition 6. Leképezés mátrixa

Legyenek V és W vektorterek, dim(V)=n, dim(W)=k, és legyen $[\mathbf{b}]=\{\underline{b}_1,\underline{b}_2,\dots\underline{b}_n\}$ a V egy bázisa. Az $L:V\to W$ lineáris leképezés mátrixa:

$$A_{[\mathbf{b}],[\mathbf{c}]} = \left[L(\underline{b}_1)_{[\mathbf{c}]} \middle| L(\underline{b}_2)_{[\mathbf{c}]} \middle| \dots \middle| L(\underline{b}_n)_{[\mathbf{c}]} \right]$$

A leképezés mátrixa a [b] bázis vektorainak képvektorait tartalmazza a képtér egy [c] bázisára vonatkozó koordinátákban felírva.

Megjegyzés 1. Az $L(\underline{b}_i)$ oszlopvektor koordinátáit a k elemű [**c**] bázisban írjuk fel, így ez egy k elemból álló vektor, aminek következtében A sorainak száma k. Tudjuk azt is, hogy a [**b**] bázis n db bázisvektorból áll, vagyis n db oszlopvektor szerepel az A-ban. Így a leképezés mátrixa ($k \times n$)-es.

Megjegyzés 2. A leképezés mátrixának alsó indexében először a kiindulási térbeli, majd a képtérbeli bázist tüntetjük fel. A leképezés mátrixa nem csak attól függ, hogy mit csinál az adott leképezés, hanem ettől a két bázistól is - hiszen más bázisban mások a koordináták is. Nagyon fontos az is, hogy a kiindulási tér bázsivektorainak sorrendje rögzített legyen!

Megjegyzés 3. Lineáris *transzformáció* mátrixa esetén, ha a kiindulási és a képtérben ugyanazt a [b] bázist használjuk, ezt az alsó indexben elég egyszer feltüntetnünk:

 $A_{[\mathbf{b}]}$

Megjegyzés 4. Ha lineáris leképezés mátrixának felírásakor a kiindulási és a képtérben is a kanonikus bázist használjuk, ezt az alsó indexben nem kell feltüntetnünk!

Theorem 7. Hozzárendelési szabály és a leképezés mátrixa

Ha $A \in \mathbb{R}^{k \times n}$ az $L: V \to W$ lineáris leképezés mátrixa, $x \in V$, $y \in W$ és y = L(x), akkor a leképezés hozzárendelési szabálya felírható a leképezés mátrixának és a változóvektornak a szorzatával:

$$y = A \cdot x$$

Definition 8. Képtér

Legyenek V és W vektorterek, $L:V\to W$ lineáris leképezés. Azon W-beli vektorok összességét, amelyek valamely V-beli vektor (L melletti) képei, az L leképezés képterének nevezzük. Jelölése: Im(L). Vagyis:

$$Im(L) = \{ y \in W | \exists \underline{x} \in V, y = L(\underline{x}) \}.$$

 $\mathbf{Megjegyz}$ és 5. A definícióból adódóan az L leképezés képtere pontosan az L leképezés értékkészlete.

Megjegyzés 6. Im(L) egy W-beli altér.

Theorem 9. Képtér kiszámítása

Ha A az $L:V\to W$ lineáris leképezés (adott bázispárra vonatkozó) mátrixa, akkor a leképezés képtere (Im(A)) megegyezik az A oszlopvektorai által generált altérrel:

$$Im(A) = \langle \underline{a}_i, \dots \underline{a}_n \rangle = span\{\underline{a}_1, \dots \underline{a}_n\}$$

ahol $A = [\underline{a}_1 | \dots | \underline{a}_n]$

Megjegyzés 7. Kiszámítása: Gauss elmininációt alkalmazunk, ugyanis nem feltétlenül szükséges az A összes oszlopvektorát felhasználni a generátumban, hanem elég csak a lineárisan függetleneket. Az eredeti mátrix azon oszlopai, amelyekben a Gauss elmináció után van vezérelem, lineárisan függetlenek lesznek, és ezek kifeszítik (generálják) Im(A)-t.

A kiszámításnál alkalmazhatunk Gauss-Jordan eliminációt is: ekkor a *vezéregyeseket* tartalmazó oszlopok eredetijét kell figyelembe venni.

Definition 10. Magtér

Legyenek V és W vektorterek, $L:V\to W$ lineáris leképezés. Azon V-beli vektorok összességét, amelyek (L melletti) képe a W vektortér nullvektora, az L leképezés magterének nevezzük. Jelölése: Ker(L). Vagyis:

$$Ker(L) = \{\underline{x} \in V | L(\underline{x}) = \underline{0}_W \}.$$

Megjegyzés 8. Ker(L) egy V-beli altér, amely az L zérushelyeit tartalmazza.

Definition 11. Mátrix magtere

Az $A \in \mathbb{R}^{k \times n}$ mátrix magtere az $A \cdot \underline{x} = \underline{0}$ homogén lineáris egyenletrendszer megoldáshalmaza. Jelölése: Ker(A)

Megjegyzés 9. A fenti megoldáshalmaz alteret alkot \mathbb{R}^n -ben.

Theorem 12. A két magtérfogalom kapcsolata

Legyen A az L lineáris leképezés mátrixa. Ekkor az A mátrix magtere és az L leképezés magtere megegyezik: mivel a hozzárendelési szabály $L(\underline{x}) = A\underline{x}$, ezért az $L(\underline{x}) = \underline{0}$ és az $A\underline{x} = \underline{0}$ ugyanazt az egyenletrendszert definiálják.

Theorem 13. Dimenziótétel

Legyenek V és W vektorterek, $L:V\to W$ (homogén) lineáris leképezés. Ekkor

$$dim(ker(L)) + dim(im(L)) = dim(V)$$

Megjegyzés 10. Ismétlés: Adott vektortér dimenziója a vektortér valamely bázisának az elemszáma. (Adott vektortérben minden bázis ugyanannyi vektorból áll).

Megjegyzés 11. dim(V) a kiindulási tér dimenziója, dim(im(L)) mutatja meg, hogy a leképezés ebből hány dimenziót

"tart meg" (vagyis mennyit sikerül "átvinni" a képtérbe), míg dim(ker(L)) a leképezés során "elvesztett" dimenziók száma.

Megjegyzés 12. Ha dim(V) = dim(im(L)) (vagy másképpen: dim(ker(L)) = 0), akkor a lineáris leképezés kölcsönösen egyértelmű (azaz minden képtérbeli vektorhoz pontosan egy kiindulási térbeli vektor tartozik).

Definition 14. Sajátértékek kiszámítása

A sajátértékek-sajátvektorok az alábbi egyenletrendszert teljesítik:

$$L(\underline{v}) = A \cdot \underline{v} = \lambda \underline{v}, \quad \underline{v} \neq 0$$

Ezt alakítjuk:

$$A \cdot \underline{v} = (\lambda E) \cdot \underline{v},$$

majd egy oldalra rendezzük:

$$(A - \lambda E) \cdot v = 0. \tag{1}$$

Ez egy homogén lineáris egyenletrendszer a $\underline{v} \in \mathbb{R}^n$ változóvektorral, amelynek a nemtriviális ($\underline{v} \neq 0$) megoldásait keressük. Tudjuk, hogy ennek az egyenletrendszernek pontosan akkor van $\underline{v} = 0$ -tól különböző megoldása, ha

$$det(A - \lambda E) = 0.$$

Ez a \underline{v} -től független, csak λ -tól függő skalár egyenlet az ún. **karakterisztikus egyenlet**. melynek bal oldalán a **karakterisztikus polinom** áll, ami n-edfokú polinomja a λ -nak. Az egyenlet megoldásával megkaphatjuk a karakterisztikus polinom n db gyökét, vagyis az A sajátértékeit: $\lambda_1, \ldots, \lambda_n$.

Definition 15. Adott sajátértékhez tartozó sajátvektorok és sajátaltér kiszámítása

Adott λ_i sajátértékhez tartozó sajátvektorok halmazát meghatározhatjuk úgy, hogy az (1) egyenletbe visszahelyettesítjük a $\lambda = \lambda_i$ sajátértéket. Ez a homogén lineáris egyenletrendszer már csak \underline{v} -től függ, megoldása pedig megadja a λ_i sajátértékhez tartozó sajátvektorokat. (Arra figyeljünk, hogy definíció szerint a sajátvektor nem lehet nullvektor!)

Megjegyzés 13. A λ_i -hez tartozó sajátvektorok - a nullvektorral kiegészülve - alteret alkotnak V-ben. Ezt nevezzük a λ_i -hez tartozó sajátaltérnek.

Megjegyzés 14. A λ_i -hez tartozó sajátaltér tulajdonképpen az $(A - \lambda_i E)$ mátrix magtere: $Ker(A - \lambda_i E)$.

Megjegyzés 15. Mivel különböző sajátértékekhez különböző sajátvektorok tartoznak, az (1) egyenletet minden λ_i , $i = 1, \ldots, n$ esetén külön-külön meg kell oldani.

3 Feladatok

Feladat 1. Vetítsük a tér vektorait a \underline{k} vektorral párhuzamosan az $\underline{i}, \underline{j}$ bázisvektorok síkjára (= xy-síkra történő merőleges vetítés).

- (a) Tekintsük a képvektorokat térbelinek, ekkor ez a lineáris leképezés $\mathbb{R}^3 \to \mathbb{R}^3$ típusú lineáris transzformáció. Adjuk meg a transzformáció mátrixát!
- (b) Most értelmezzük a feladatot úgy, hogy a térből a síkba "visszük" a vektorokat ekkor a lineáris leképezés $\mathbb{R}^3 \to \mathbb{R}^2$ típusú, vagyis ez már nem transzformáció. Adjuk meg a leképezés mátrixát!
- (c) Oldjuk meg a (b) feladatot úgy is, hogy a képtérben a $[\mathbf{b}] = \{\underline{b}_1, \underline{b}_2\}$ bázist használjuk, ahol $\underline{b}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\underline{b}_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$!

Feladat 2. Forgassuk el a sík vektorait pozitív irányban, rögzített ϕ szöggel! Írjuk fel a transzformáció mátrixát a kanonikus bázisban!

Feladat 3. Forgassunk el térbeli vektorokat a z tengely körül rögzített ϕ szöggel! Mi lesz a lineáris transzformáció mátrixa a kanonikus bázisban?

 $\underbrace{j=L(j)}^{y} \underbrace{x}$ $\underline{i=L(j)} \quad x$

Feladat 4. Legyen az L síkbéli transzformáció a sík vektorainak az y=x egyenesre való tengelyes tükrözése. Adjuk meg a lineáris transzformáció mátrixát a kanonikus bázisban! Adjuk meg a hozzárendelési szabályt is!

Feladat 5. Tekintsük a legfeljebb harmadfokú polinomokon értelmezett "deriválás" leképezést! Értelmezzük ezt most lineáris *transzformációként*, azaz képezzen a legfeljebb harmadfokú polinomok teréből a legfeljebb harmadfokú polinomok terébe:

$$D: P_3 \to P_3$$
, $D(p) = p'$, ahol $p'(x) = \frac{dp}{dx}$.

Adjuk meg P_3 egy bázisát, majd a transzformáció mátrixát ebben a bázisban úgy, hogy a kiindulási térben és a képtérben is ugyanazt a bázist használjuk! Adjuk meg a $q(x) = 5x^3 + 6x^2 - 4x + 9$ polinom deriváltját a hozzárendelési szabály alkalmazásával!

Feladat 6. Adjuk meg annak az $\mathbb{R}^2 \to \mathbb{R}^2$ típusú transzformációnak a magterét és képterét, melynek mátrixa $A = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$! Illusztráljuk a dimenziótételt! Igaz-e, hogy kölcsönösen egyértelmű a transzformáció?

Feladat 7. Tekintsük a következő lineáris transzformációt:

$$L: \mathbb{R}^4 \to \mathbb{R}^4, \ L(\underline{x}) = A \cdot \underline{x}, \quad \text{ahol} \quad A = \begin{bmatrix} 1 & -1 & 0 & 22 \\ 0 & 1 & -2 & 5 \\ -3 & 2 & 5 & -65 \\ -2 & 6 & 4 & 0 \end{bmatrix}.$$

Adjuk meg az L magterét, képterét! Illusztráljuk a dimenzió tételt! Igaz-e hogy kölcsönösen egyértelmű a transzformáció?

Feladat 8. Számítsuk ki az alábbi mátrix sajátértékeit, és az egyes sajátértékekhez tartozó sajátvektorokat és sajátalteret! Ellenőrizzük, hogy valóban jó sajátértékeket-sajátvektorokat kaptunk!

$$A = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$$

Feladat 9. Számítsuk ki az alábbi mátrix sajátértékeit, és az egyes sajátértékekhez tartozó sajátvektorokat és sajátalteret! Adjuk meg a mátrix magterét is!

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

4