Name:		
rainc.		

UNIT 2 ASSESSMENT OF LEARNING: DERIVATIVES-DAY 2

Instructions: You MUST use concepts covered in this unit/course. Show all steps for full marks. The use of cellphones, audio or video recording devices, digital music players or email or text-messaging devices during the assessment is prohibited.

Application	Comm.	
/20	/5	

Application - [20 marks]

1. Determine the equation of the normal to the function $f(x) = \frac{4}{\sqrt{x^2 - 2x + 1}}$ at x = 4. [4 marks]

$$f(x) = \frac{4}{x-1}$$

$$f'(x) = \frac{-4}{(x-1)^2}$$

$$m_t = \frac{-4}{9}$$

$$m_{\wedge} = \frac{9}{4}$$

Equation of normal at $(4, \frac{4}{3})$ is:

$$y-\frac{4}{3}=\frac{9}{4}(x-4)$$

- 2. A particle moves along a horizontal line so that its position is given by the function $s(t) = t^3 6t^2 + 9t$, $0 \le t \le 4$ where s is the position in meters and t is the time in seconds.
 - (a) When is the particle at rest? [2 marks]

v(t) =
$$s'(t)$$
 = $3t^2$ - $12t$ + 9 , $0 \le t \le 4$
v(t) = 0
 $3(t^2$ - $4t$ + $3)$ = 0
 $3(t$ - $3)(t$ - $1)$ = 0
 t = 1 sec , t = 3 sec

(b) What is the position of the particle when the acceleration is 12 m/s²? [3 marks]

$$a(t) = s''(t) = 6t-12, 0 \le t \le 4$$

 $6t-12 = 12$
 $6t = 24$
 $t = 4sec$
 $s(4) = 4^3 - 6(4)^2 + 9(4)$
 $= 4m$

3. Find the values of the real numbers a and b if y = ax + b is a tangent to the curve $f(x) = 2x + (3x - 2)^3$ at the point (1,3). [4 marks]

$$f(1)=3:$$
 $a+b=3$ (1)
 $f'(1)=a$
 $f'(x)=2+9(3x-2)^2$
 $f'(1)=2+9(3(1)-2)^2=a$
 $a=11$
sub. $a=8$ into (1), we get: $b=-8$

4. Given $h(x) = f(x^2)[g(x)]^3$, where h'(1) = 24, f(1) = 2, f'(1) = 3 and g(1) = -2, determine the value of g'(1). [4 marks]

$$h'(x) = 2xf'(x^{2})[g(x)]^{3} + 3[g(x)]^{2}g'(x)f(x^{2})$$

$$h'(1) = 2f'(1)[g(1)]^{3} + 3[g(1)]^{2}g'(1)f(1)$$

$$24 = 2(3)(-2)^{3} + 3(-2)^{2}(2)g'(1)$$

$$24 = -48 + 24g'(1)$$

$$g'(1) = 3$$

5. Using **Leibniz's notation**, find the **exact** value of $\frac{dy}{dx}\Big|_{x=4}$ given: $y = u - \frac{50}{u}$, and $u = x - \sqrt[3]{2x}$. [3 marks]

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= \left[1 + \frac{50}{u^2}\right] \times \left[1 - \frac{2}{3}(2x)^{\frac{-2}{3}}\right]$$

$$\frac{dy}{dx}\Big|_{x=4} = \left[1 + \frac{50}{u^2}\right]_{u=2} \times \left[1 - \frac{2}{3}(2x)^{\frac{-2}{3}}\right]_{x=4}$$

$$= (\frac{27}{4})(\frac{5}{6})$$

$$= \frac{45}{4}$$

Communication – [5 marks]

1. Given $f(x) = (x+1)(x^2-3)(2x^3+7)$, **clearly explain** using the rules of differentiation **how** to determine f'(x). **Do not solve for** f'(x). [3 marks]

We can see that the original function is a product of three functions, and its derivative is the sum of three products. We have :

$$f'(x) = \frac{d(x+1)}{dx}(x^2-3)(2x^3+7) + \frac{d(x^2-3)}{dx}(x+1)(2x^3+7) + \frac{d(2x^3+7)}{dx}(x^2-3)(x+1)$$

We take the derivative using product rule, we take the derivative of one function at a time, multiplying by the other two original functions. To be more specific, we take the derivative of (x+1), and multiply it by $(x^2-3)(2x^3+7)$, then we add to that the derivative of (x^2-3) multiplied by $(x+1)(2x^3+7)$. Then we take the derivative of $(2x^3+7)$, and multiplying by multiplied by $(x^2-3)(x+1)$.

*** 2 marks will be awarded in the Communication Category for proper mathematical form. ***