Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Computadores

Fundamentos de Arquitectura de Computadores Grupo #1

Estudiante: Kevin Josué Ruiz Rodríguez

Carné: 2018170538

Bitácora

20/3/2025

Se realizó la tabla de verdad 1 para interpretar las entradas, en la cual se le asigna un valor a cada una de las 4 combinaciones posibles.

Cuadro 1: Tabla de verdad de las entradas.

A	В	С	D	X_1	X_0
1	0	0	0	0	1
1	1	0	0	1	0
1	1	1	0	1	1
1	1	1	1	0	0

Teniendo estos valores asignados, se encontraron las siguientes ecuaciones booleanas para cada dígito utilizando los mintérminos para encontrar la suma de productos.

$$X_1 = AB\overline{CD} + ABC\overline{D}$$

$$X_0 A \overline{BCD} + ABC \overline{D}$$

Estas ecuaciones se simplificaon utilizando álgebra booleana para facilitar la implementación del circuito.

$$X_1 = AB\overline{D}$$

$$X_0 A \overline{D} \overline{(B \bigoplus C)}$$

Además se realizó la tabla para el decodificador de suma

Cuadro 2: Tabla de verdad del decodificador de suma.

X_1	X_0	Y_1	Y_0	Z_1	Z_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	1	0	1
1	1	0	0	1	1
1	1	0	1	0	0
1	1	1	0	0	1
1	1	1	1	1	0

Para simplificar la tabla 2 se realizaron los siguientes mapas de Karnaugh

Cuadro 3: Mapa K para Z_1 .

$X_1X_0 Y_1Y_0$	00	01	11	10
00	0	0	1	1
01	0	1	0	1
11	1	0	1	0
10	1	1	0	0

Cuadro 4: Mapa K para Z_0 .					
$X_1X_0 Y_1Y_0$	00	01	11	10	
00	0	1	1	0	
01	0	0	0	1	
11	1	0	1	0	
10	1	1	0	0	