CSE 512: Midterm review

1. Nomenclature Define the following terms

- (a) model vs loss function vs data
- (b) prior vs posterior vs likelihood
- (c) MLE vs MAP
- (d) Expected risk vs empirical risk
- (e) prediction, forecasting
- (f) PAC learning
- (g) biased vs unbiased estimator
- (h) Bayes risk, minimax risk

2. Linear models for classification

(a) Given the following datasets, would you propose a linear, generalized linear, or neither model to predict y given x? Jusify your answer.

i		Temperature (x)	10°F	$25^{\circ}\mathrm{F}$	50°F	70°F	100°F
	1.	Wear a sweater? (y)	yes $(+1)$	(+1) yes $(+1)$	no (-1)	no (-1)	no (-1)
ii.		Time of day (x)	7h00	10h00	12h00	15h00	20h00
1.	1.	Wear a sweater? (y)	yes (+1	no (-1)	no (-1)	no (-1)	yes (+1)
i.	C	Chance of earthquake (x	() 0.01	1% 0.1%	1%	10%	6 100%
		Wear a sweater? (u)	ves (+1) no (-1	ves (+	1) no (-	1) no (-1)

		iv.			
Commute speed (km/hr) (x)	walking (1)	jogging (5)	biking (20)	horse and buggy (30)	driving (60)
Wear a sweater? (y)	yes (+1)	yes (-1)	yes (+1)	no (-1)	no (-1)

- (b) For the task of predicting whether you should wear a sweater, using the features from the previous problem, propose a way of using logistic regression to construct a model. Construct some fake data for yourself, train the model, and use it to predict whether you should wear a sweater in the following scenarios
 - i. Warm day 70°F, early morning 8h00, no chance of earthquake (0%), bringing the horse and buggy
 - ii. Cold day 20°F, late afternoon 16h00, medium chance of earthquake (25%), jogging

3. Linear regression

(a) Describe a convex loss function where, when minimized, returns θ that maximizes the likelihood of the following model:

$$y_i - x_i^T \theta \sim \mathcal{N}(\mu_1, \sigma_1), \qquad \theta \sim \mathcal{N}(\mu_2, \Sigma_2)$$

where μ_1, σ_1 are scalars, μ_2 is a vector, and Σ_2 is a PSD matrix; all 4 of these constants are known.

- (b) A is a symmetric positive semidefinite matrix, and the condition number of A is $\bar{\kappa}$. The maximum eigenvalue of A is λ_{\max} . Write an expression $\kappa(\rho)$ that returns the condition number of $A + \rho I$.
- (c) $B = XX^T$ and the singular value decomposition of X is

$$X = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Write an expression $\kappa(\rho)$ that returns the condition number of $B + \rho I$. What happens when $\rho = 0$?

1

- (d) $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Write an expression $\kappa(\rho)$ that returns the condition number of $C + \rho I$
- (e) Consider the linear regression problem

minimize
$$f(x) = ||Ax - b||_2^2 + \rho ||x||_2^2$$

- i. First consider $\rho = 0$. What are the normal equations? Write them down.
- ii. Now consider general ρ . Write down the normal equations again, and describe how they relate to the gradient of the objective.
- iii. Describe how you would solve for the solution x when
 - A. A is a wide matrix (more columns than rows) and $\rho = 0$
 - B. A is a tall matrix (more rows than columns) and has full column rank, and $\rho = 0$
- iv. Are either case made easier of $\rho > 0$?
- v. Write down the condition number for f(x).
- (f) Suppose that I was given a set of feature/label pairs x_i, y_i for i = 1, ..., m, and I wish to do linear regression to find a model that, for a new vector x, well-approximates its corresponding value y.

But, for hardware reasons, I cannot hold onto the values x_i ; instead, I hold onto the Fourier transform of x_i ; that is, II have access to $u_i = Fx_i$ where F is the DFT matrix.

The DFT matrix is in general super efficient to apply (it doesn't really require a full matrix-vector multiplication). Additionally, it is a unitary matrix, so that $FF^T = F^TF = I$.

- i. Describe the inverse DFT matrix, e.g. what does F^{-1} look like?
- ii. Write down the least squares system we need to solve such that we retrieve u = Fx, where $Ax \approx b$. This system should look like

$$\underset{u}{\text{minimize}} \quad \|\hat{A}u - \hat{b}\|_{2}^{2}.$$

What are \hat{A} and \hat{b} ?

iii. Given κ the condition number of A^TA , what is the condition number of $\hat{A}^T\hat{A}$?

4. Binary classification

(a) Consider the following dataset

x[1]	x[2]	y
-1.0	-1.0	+1
-0.25	2.0	-1
-2.0	-0.25	+1
-0.5	0.5	-1
0.5	-1.25	-1
0.25	2.0	+1
3.0	-0.25	-1
2.5	1.0	+1

- i. In words, can you describe the rule being used to generate y from $x \in \mathbb{R}^2$? (Hint: start by plotting the points)
- ii. Is this dataset linearly separable? Why or why not?
- iii. Propose a generalized linear model using 2-order polynomials (where the highest degree is 2) that can separate this data. For this model, compute the margin for each datapoint and report the minimum margin.
- 5. Gradient descent Consider the following generalized loss function

$$f(\theta) = \frac{1}{m} \sum_{i=1}^{m} g(y_i x_i^T \theta)$$

where $g: \mathbb{R} \to \mathbb{R}$ is convex and differentiable everywhere, and $\theta \in \mathbb{R}^n$.

- (a) What is the gradient and Hessian of f? What are their dimensions?
- (b) Would f be convex if g were not convex? If g were concave? Why or why not?
- (c) What would be good qualities to impose on g such that minimizing f produces a margin maximizing classifier?
- (d) Now consider $F(\theta) = f(\theta) + \rho \|\theta\|_2^2$ for some $\rho > 0$. What is the condition number of F (in terms of properties of x_i , y_i , and g?
- (e) Write out pseudocode implementing gradient descent for both the regularized and unregularized form. Specifically, fill in the gaps, and include how I would go about computing a step size given y_i , x_i , and g.

```
def grad_desc_unreg(X,y):
    <fill me in >
    return theta
def grad_desc_reg(X,y,rho):
    <fill me in >
    return theta
Assume that you have access to functions on g, namely
def g(theta):
    <computes z = g(theta)>
    return z
def g_grad(theta):
    <computes zp = g'(theta)>
    return zp
def g_hess(theta):
    <computes zpp = g''(theta)>
    return zpp
```

6. Margins. I have 6 datapoints, plotted below.

You should interpret each feature vector as

$$x_A = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \qquad x_B = \begin{bmatrix} -3 \\ 1 \end{bmatrix}, \qquad x_C = \begin{bmatrix} -2 \\ -1 \end{bmatrix}, \qquad x_D = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \qquad x_E = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \qquad x_F = \begin{bmatrix} -3 \\ 0 \end{bmatrix}.$$

The labels correspond to blue points (-1) and red points (+1), e.g.

$$y_A = y_B = y_C = -1,$$
 $y_D = y_E = y_F = 1.$

(a) Draw some decision boundaries. On the plot above, draw a line (solid) corresponding to the set

$$\mathcal{S}_1 = \{x : x^T \theta_1 = 0\}$$

where $\theta_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Also, draw a line (dashed) corresponding to the set

$$\mathcal{S}_2 = \{x : x^T \theta_2 = 0\}$$

where
$$\theta_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
.

(b) Fill in the table below with each datapoint's margin, e.g. the distance from each feature vector to the margin:

	dist to S_1	dist to S_2
A		
В		
\mathbf{C}		
D		
\mathbf{E}		
\mathbf{F}		

(c) I use the usual linear predictor to deal with new points:

$$y = \mathbf{sign}(\theta^T x)$$

i. If I pick $\theta = \theta_1$, which points (A,B,C,D,E,F) are my support vectors? What is this predictor's minimum margin?

- ii. If I pick $\theta = \theta_2$, which points (A,B,C,D,E,F) are my support vectors? What is this predictor's minimum margin?
- iii. Which choice of θ maximizes the minimum margin?
- (d) Argue that $\theta = \theta_1$ is in fact the optimal margin maximizing choice. Do this in two steps:
 - i. Argue that changing the norm $\|\theta\|_2$ does not affect the minimum margin.
 - ii. Argue that changing the rotation of θ , (e.g. $\theta_{[1]}/\theta_{[2]}$) will always reduce the margin to one or more of the support vectors of θ_1 .
- 7. Support vector machines A common depiction of the SVM problem formulation is

$$\begin{array}{ll}
\underset{\theta \in \mathbb{R}^n, s \in \mathbb{R}^m}{\text{minimize}} & \|\theta\|_2^2 + \lambda \sum_{i=1}^m \max\{0, s_i\} \\
\text{subject to} & y_i x_i^T \theta = 1 - s_i
\end{array} \tag{1}$$

Suppose I solve (1) and I receive some optimal solutions for θ^* , s^* .

- (a) What is the margin of the classifiers I received?
- (b) Suppose m = 100 and n = 25. For my values of s, 34 of them are nonzero, and 66 of them are 0. What is an upper bound on how many misclassified training points there are?
- (c) Would you expect my number of misclassified points to increase or decrease if I increase/decrease λ ?
- (d) A cat walks across my keyboard and accidentally deletes θ^* . Am I screwed? Can I recover θ^* ?
- 8. **Convex sets** Decide if the following sets are convex. Either prove they are, or provide a counterexample to show they are not.
 - (a) $\mathbf{null}(A) = \{x : Ax = 0\}$ for some matrix A
 - (b) The set of intervals $[a, b] = \{x : a \le x \le b\}$
 - (c) The set of vectors $\{x \in \mathbb{R}^n : \prod_i x[i] = 0\}$
- 9. **Convex functions** Decide if the following functions are convex. Either prove they are, or provide a counterexample to show they are not.
 - (a) $f(x) = x^p$ for p = 1, 2, 3, ...
 - (b) $f(x) = x^p$ for $p = 1, 2, 3, \dots$ over the domain x > 0
 - (c) $f(x) = \sqrt{|x|}$
 - (d) $f(x) = \sigma(x)$ where $\sigma(x) = 1/(1 + e^{-x})$
 - (e) $f(x) = \log(x)$
 - (f) $f(x) = \log(\sigma(x))$ (for same definition of σ)
 - (g) $f(x) = \mathbb{E}_y[f(x,y)]$ where f is convex over x, for fixed y
- 10. **Optimality.** Classify x^* as a local min, local max, global min, global max, saddle point, stationary point, or none. (More than one may apply.) Justify your answer
 - (a) $f(x) = x^2$ and f'(x) = 0
 - (b) f(x) is convex and f'(x) = 0
 - (c) -f(x) is convex and f'(x) = 0
- 11. Point estimation (Use of simple calculator permitted.) Recall Hoeffding's inequality

$$\mathbf{Pr}\left(\frac{1}{m}\sum_{i=1}^{m}x_i - \mathbb{E}[X] \ge \epsilon\right) \le \exp(-2m\epsilon^2).$$

Suppose I have a fair coin (50% chance of getting heads or tails) and I flip the coin m times.

- (a) How many flips until I am 90% certain that between 25%-75% flips are heads?
- (b) If I flip the coin 100 times, how certain am I that between 45 to 55 flips are tails?
- (c) My boss does not believe that the coin is fair, and tells me to keep flipping the coin until I am 1% certain of whatever I report. I flip until I get carpal tunnel syndrome, which is about 234 flips, of which 113 are heads. What range of values for heads/tails can I report and still guarantee 99% certainty the real weighting of the coin?
- 12. Biased or unbiased? In the previous homework, you worked with the exponential distribution, defined by

$$p_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{else.} \end{cases}$$

In particular, you showed that, given samples $x_1, ..., x_m$ drawn i.i.d. from this distribution, that $\hat{\theta} = \frac{1}{m} \sum_{i=1}^m x_i$ served as both the maximum likelihood and unbiased estimator for the true mean, $\frac{1}{\lambda}$.

- (a) Derive the MLE for λ .
- (b) Show that this MLE is biased. Hint: f(x) = 1/x is a strictly convex function whenever x > 0.

13. Estimation and Risk analysis

I am a stock broker, and on my computer screen, I see 100 stocks. At each given day, the stocks report a return rate (e.g. if I had invested \$x\$ in stock i, my share of that stock at the end of that day would be worth $(1 + r_i)$ \$x. I record these rates over the past 100 days, and notice that they can be modeled well by a Gaussian distribution, with mean μ_i and standard deviation σ_i for the *i*th stock.

- (a) **Even investment** Let's assume that I decide to diversify my funds to the limit, and give an equal amount of money (say, \$10) to every stock.
 - i. What is the maximum likelihood estimate for my expected return that day?
 - ii. I decide to estimate the standard deviation of my return by using $\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{100} \sigma_i^2}{100}}$. Is this a good idea? bad idea? Is it a maximum likelihood estimator? of what? Is it biased/unbiased?
- (b) **Consulting** I have two clients, Alice and Bob. They both want me to recommend one stock where they will put all their funds.
 - i. Using the rate of money earned each day as the reward function, what is the Bayes reward for picking stock i?
 - ii. Using the rate of money earned each day as the reward function, what is the Minimax reward for picking stock i?
 - iii. Alice is representing a business with tons of insurance protection. Her job is to earn as much money in the long run. Should I recommend to her the fund that maximizes the Bayes reward or the minimax reward?
 - iv. Bob is investing his life savings. He really can't afford to lose a single cent. Should I recommend to her the fund that maximizes the Bayes reward or the minimax reward?
- (c) **Diversification** Suppose that on the next computer screen, there are 10 additional stocks. Each stock, on each day, has a 25% chance of doubling your investment, and a 75% chance of losing half your money. I have \$100 to invest.
 - i. What is your Bayes risk if you invest all your money in one stock?
 - ii. What is your Bayes risk if you invest your money evenly in every stock?
 - iii. Using Hoeffding's inequality, what are the chances that you will lose half or more of your money in one day if you invest in 1 stock? 10 stocks? What if there were 100 such stocks?

 Hint: It's helpful to first ask yourself if there is an implicit bound on how much money you can earn in one day.
- 14. Nearest Neighbors and Bayes for regression Suppose I want to sell my house. It's a beautiful 2 story blue house made primarily of wood, built in 1980, and located in Martha's Vinyard. I want to price this house reasonably, but I'm not really sure what a good price will be. I look around and see the following other houses

	# stories	color	construction material	distance to my house	built year	sold at price
Alice's house	2	pink	wood	5 miles	2016	\$ 1 million
Benjamin's house	4	green	straw	next door	1776	\$100
Carly's house	1	brown	concrete	2.5 miles	1980	\$ 300,000
Dasha's house	3	white	wood	100 miles	1999	\$150,000
Elliot's house	1	purple	brick	1800 miles	2010	\$500,000

- (a) Discuss how you would use a KNN regression model to pick a good price for my house. That is, design a reasonable distance function, compute the "distances" to the features of each friend's house, decide on a reasonable value for K, and give a reasonable price.
- (b) Now assume that I have $m \to +\infty$ friends. In this regime, I have at least one friend whose house is in the same location as mine and has basically the exact same features. That friend sold their house for \$25 million. Does this mean that I am guaranteed to also sell it for this price? Why or why not?
- (c) Suppose that house prices were dependent only on color and construction material. Discuss how you could form a Bayes and naive Bayes regression model to figure out the maximum likelihood price that I should use. How much training data would you need if there are 5 possible colors, 5 distinct types of construction material, the true price is between 0 and \$ million, and I want to be accurate up to the nearest \$100?