Probability Theory Notes

December 6, 2021

Contents

1	Числові характеристики випадкових величин	2
	1.1 Попередні зауваження	2
	1.2 Definition and examples of expected value	
	1.3 Dispersion	
2	Covariance of random variables. Correlation coefficient.	10
	2.1 Covariance of random variables	10
	2.2 Correlation coefficient	12
	2.3 Equation of full probability for expectation	13
	2.4 Inequalities related to moments of random values	
	2.4.1 Chebyshev inequality	
3	Inequalities. The law of large numbers in the form of Chebyshev. Borel-	-
	Cantelli lemma	16

Chapter 1

Числові характеристики випадкових величин

1.1 Попередні зауваження

Розглянемо дискретну випадкову величину ξ

$$\xi(\omega) = \sum_{i=1}^{n} x_i \mathbb{1}_{A_i}(\omega)$$

 $\{A_1, \ldots, A_n\}$ - повна група подій

Проведено n незалежних випробувань в кожному з яких спостерігається

$$\xi_n(\omega) = \sum_{i=1}^m x_i \cdot \mathbb{1}_{A_i}^n(\omega)$$

Розглянемо

$$\hat{\xi} = \frac{\xi_1 + \dots + \xi_n(\omega)}{n} = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^m x_j \cdot \mathbb{1}_{A_j}^i(\omega) =$$
$$= \sum_{i=1}^m x_j \cdot \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{A_j}^i(\omega)$$

 $rac{1}{n}\sum_{i=1}^n\mathbb{1}^i_{A_j}(\omega)$ - частота появи A_j в n випробуваннях $\to_{n\to\infty} P(A_j).$

$$\hat{\xi} = \frac{\xi_1 + \dots + \xi_n}{n} \to_{n \to \infty} \sum_{j=1}^m x_j \cdot P(A_j).$$

Припустимо $\Omega[0,1]; \ \mathcal{F} = \mathcal{B}([0,1]), \ P$ міра Лебега, P((a,b]) = b-a для дискретної ймовірності:

$$S_1 = x_1 \cdot P(A_1) = x_1 \cdot |A_1|$$
 $S_2 = x_2 \cdot P(A_2) = x_2 \cdot |A_2|$
 $S \sim \sum_{i=1}^m x_i P(A_i)$ - площа

для неперевного випадку:

$$\hat{\xi} \sim \int_{\Omega} \xi(\omega) P(d\omega).$$

1.2 Definition and examples of expected value

Нехай (ω, \mathcal{F}, P) - ймовірністний простір. ξ - випадкова величина на цьому просторі.

Definition 1. Математичним сподіванням випадкової величини ξ називається число

$$M\xi = \int_{\Omega} \xi(\omega) P(d\omega).$$

(expectation)
$$E\xi = \int_{\Omega} \xi(\omega)P(d\omega)$$
.

 ξ індукує міру P_{ξ} на \mathbb{R} :

$$P_{\xi}((a,b]) = F_{\xi}(b) - F_{\xi}(a).$$

Заміна $\xi(\omega)=x$ приводить до інтеграла Лебега-Стілтьєса:

$$M\xi = \int_{\mathbb{R}} x P_{\xi}(dx).$$

Звідси маємо інтеграл Стілтьєса:

$$M\xi = \int_{\mathbb{R}} x dF_{\xi}(x).$$

Для дискретної випадкової величини ξ :

$$E\xi = \sum_{i=1}^{\infty} x_i \cdot P(\xi = x_i)$$
(1.1)

Якщо ξ має щільність $f_{\xi}(x)$:

$$E\xi = \int_{\mathbb{R}} x f_x(x) dx \tag{1.2}$$

Remark. It is considered that expectation exists if series (1.1) or integral (1.2) is absolutely convergent.

Example. *If* $A \in \mathcal{F}$ *then* $\xi(\omega) = \mathbb{1}_A(\omega)$

$$E\xi = 0 \cdot P(\xi = 0) + 1 \cdot P(\xi = 1) = P(A).$$

Example.

$$P(\xi = i) = \frac{1}{i(i+1)}, i = 1, 2, \dots$$

$$\sum_{i=1}^{\infty} i \cdot P(\xi = i) = \sum_{i=1}^{\infty} \frac{1}{i+1} = +\infty \Rightarrow E\xi \text{ does not exist.}$$

Example.

$$\xi \sim U(a,b); \ f_{\xi}(x) = \frac{1}{b-a} \mathbb{1}(x \in (a,b]).$$

$$E\xi = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2}.$$

For uniform distribution the expectation is the middle of the segment.

Example.

$$\xi \sim C(0,1); \ f_{\xi}(x) = \frac{1}{\pi(a+x^2)}.$$

Whereas $\int\limits_{-\infty}^{\infty} \frac{xdx}{\pi(1+x^2)}$ - divergent then $E\xi$ does not exist.

Let g - Borel function. Then $g(\xi)$ - stochastic variable. For $Mg(\xi)$ have:

$$Eg(\xi) = \int_{\Omega} g(\xi(\omega))P(d\omega) = \int_{\mathbb{R}} g(x)P_{\xi}(dx) = \int_{\mathbb{R}} g(x)dF_{\xi}(x).$$

For discrete stochastic variable:

$$Eg(\xi) = \sum_{i=1}^{+\infty} g(x_i) \cdot P(\xi = x_i).$$

For absolutely continuous:

$$Eg(\xi) = \int_{\mathbb{R}} g(x) f_{\xi}(x) dx.$$

If $\xi=(\xi_1,\ldots,\xi_n)$ with density $f_\xi(x_1,\ldots,x_n),\ g:\mathbb{R}^n\to\mathbb{R}$ - Borel function.

$$Eg(\xi_1,\ldots,\xi_n)=\int\cdots\int_{\mathbb{R}^n}g(x_1,\ldots,x_n)f_{\xi}(x_1,\ldots,x_n)dx_1\ldots dx_n.$$

Theorem 1. Properties of expectation

- 1. Ec = c, c = const
- 2. $E(a\xi + b) = a \cdot E\xi + b$, a, b = const
- 3. $E(\xi_1 + \xi_2) = E\xi_1 + E\xi_2$
- 4. $E[\xi_1 \cdot \xi_2] = E\xi_1 \cdot E\xi_2$ ξ_1, ξ_2 are independent stochastic variables
- 5. $\xi \ge 0 \Rightarrow M\xi \ge 0$ $\xi \le \eta \Rightarrow E\xi \le E\eta$
- 6. $|E\xi| \le E|\xi|$

4. Let ξ_1, ξ_2 - absolutely continuous stochastic variables with densities Proof.

$$f_{\xi_1}(x), f_{\xi_2}(y).$$

$$E[\xi_{1}, \xi_{2}] = \iint_{\mathbb{R}^{2}} x \cdot y \cdot f_{(\xi_{1}, \xi_{2})}(x, y) dx dy =$$

$$= \iint_{\mathbb{R}^{2}} x \cdot y \cdot f_{\xi_{1}}(x) \cdot f_{\xi_{2}}(y) dx dy =$$

$$= \int_{\mathbb{R}} x f_{\xi_{1}}(x) dx \int_{\mathbb{R}} y f_{\xi_{2}}(y) dy = E\xi_{1} \cdot E\xi_{2}.$$

1.3. DISPERSION

Remark. For arbitrary number of stochastic variables:

$$E(\xi_1 + \dots + \xi_n) = \sum_{i=1}^n E\xi_i.$$

$$E(\xi_1 \cdot \dots \cdot \xi_n) = \prod_{i=1}^n E\xi_i.$$

for ξ_1, \ldots, ξ_n that are independent together.

Example. *let* $\xi \sim Bin(n, p)$; $E\xi - ?$

$$P(\xi = k) = C_n^k p^k (1 - p)^{n-k}, \ k = \overline{0, n}.$$

$$M\xi = \sum_{k=0}^{n} k \cdot C_n^k p^k (1-p)^{n-k}.$$

Using:

$$\xi = \sum_{i=1}^n \xi_i$$
 where $\xi_i \sim B(p)$:.

$$P(\xi_i = 1) = p; P(\xi_i = 0) = 1 - pM\xi_i = 1 \cdot p + 0 \cdot (1 - p) = p.$$

Then:

$$M\xi = \sum_{i=1}^{n} M\xi_i = n \cdot p.$$

Dispersion 1.3

Definition 2. Dispersion of stochastic variable is called a number

$$\mathcal{D}\xi = M(\xi - M\xi)^2.$$

Remark.

$$\mathcal{D}\xi = M(\xi^2 - 2M\xi \cdot \xi + (M\xi)^2) = M\xi^2 - 2M\xi \cdot M\xi + (M\xi)^2 = M\xi^2 - (M\xi)^2.$$

$$\mathcal{D}\xi = M\xi^2 - (M\xi)^2 \tag{1.3}$$

Definition 3. Number $M\xi^2$ is called second momentum os stochastic variable ξ . **Example.**

 $\xi \sim B(p); \ M\xi = p;$ $M\xi^2 = 1 \cdot P(\xi = 1) + 0 \cdot P(\xi = 0) = p\mathcal{D}\xi = p - p^2 = p(1 - p).$

Example.

$$\xi \sim U(a,b); \ M\xi = \frac{a+b}{2}$$

$$M\xi^2 = \int_a^b x^2 \frac{1}{b-a} dx = \frac{b^2 - a^2}{3(b-a)} = \frac{a^2 + ab + b^2}{3}$$

$$\mathcal{D}\xi = \frac{a^2 + ab + b^2}{3} - \frac{(a+b)^2}{4} = \frac{4(a^2 + ab + b^2) - 3(a+b)^2}{12} = \frac{(b-a)^2}{12}$$

Theorem 2 (properties of dispersion). *1*.

$$\mathcal{D}\xi \ge 0$$

$$\mathcal{D}\xi = 0 \iff \xi = c = const$$

2.

$$\mathcal{D}(a\xi + b) = a^2 \cdot \mathcal{D}\xi$$

3. If ξ_1 and ξ_2 are independent, then

$$\mathcal{D}(\xi_1 + \xi_2) = \mathcal{D}\xi_1 + \mathcal{D}\xi_2$$

Proof. 1.

$$\mathcal{D}\xi = M(\xi - M\xi)^2$$
$$(\xi - M\xi)^2 \ge 0 \Rightarrow M(\xi - M\xi)^2 \ge 0$$
$$M(\xi - M\xi)^2 = 0 \iff (\xi - M\xi)^2 = 0 \iff \xi = M\xi = const$$

2.

$$\mathcal{D}(a\xi + b) = M((a\xi + b) - m(a\xi + b))^2 = M(a\xi + b - aM\xi - b)^2 = Ma^2(\xi - m\xi)^2 = a^2 \cdot M(\xi - M\xi)^2 = a^2 \cdot \mathcal{D}\xi.$$

3. Let ξ_1 and ξ_1 independent.

$$\mathcal{D}(\xi_1 + \xi_2) = M(\xi_1 + \xi_2 - M(\xi_1 + \xi_2))^2 = M((\xi_1 - M\xi_1) + (\xi_2 - M\xi_2))^2 =$$

$$= M((\xi_1 - M\xi_1)^2 + 2(\xi_1 - M\xi_1)(\xi_2 - M\xi_2) + (\xi_2 - M\xi_2)^2) =$$

$$= \mathcal{D}\xi_1 + 2 \cdot M[(\xi_1 - M\xi_1)(\xi_2 - M\xi_2)] + \mathcal{D}\xi_2.$$

$$\xi_1, \xi_2 \text{ independent } \Rightarrow \mathcal{D}\xi_1 + \mathcal{D}\xi_2 + 2M(\xi_1 - M\xi_1) \cdot M(\xi_2 - M\xi_2) = \mathcal{D}\xi_1 + \mathcal{D}\xi_2.$$

Example.

$$\xi \sim Bin(n,p); \ M\xi = n \cdot p; \ \mathcal{D}\xi = ?$$

$$M\xi^2 = \sum_{k=0}^n k^2 \cdot C_n^k \cdot p^k \cdot (1-p)^{n-k}$$

$$\xi = \sum_{i=1}^n \xi_i, \ \xi_i \sim B(p), \ \xi_2, \dots, \xi_n \text{ - independent}$$

$$\mathcal{D}\xi = \sum_{i=1}^n \mathcal{D}\xi_i = \sum_{i=1}^n p \cdot (1-p) = np(1-p).$$

Remark.

$$M\xi = \underset{a}{\operatorname{argmin}} M(\xi - a)^{2}.$$

$$M(\xi - a)^{2} = M((\xi - M\xi) + (M\xi - a))^{2} =$$

$$M(\xi - M\xi)^{2} + 2(M\xi - a)M(\xi - M\xi) + (M\xi - a)^{2} =$$

$$\mathcal{D}\xi + (M\xi - a)^{2} \geq \mathcal{D}\xi$$

$$\operatorname{moreover} M(\xi - a)^{2} = \mathcal{D}\xi \iff (M\xi - a)^{2} = 0$$

$$\Rightarrow a = M\xi.$$

Example. Numerical characteristics of the main probability distributions

1.
$$\xi \sim B(p), M\xi = p, \mathcal{D}\xi = p(1-p)$$

2.
$$\xi \sim Bin(n, p), M\xi = np, \mathcal{D}\xi = np(1-p)$$

3.
$$\xi \sim Poiss(\lambda)$$

$$M\xi = \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \cdot \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} = \lambda e^{-\lambda} \cdot \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = \lambda e^{-\lambda} \cdot e^{\lambda} = \lambda$$

$$M\xi^2 = \sum_{k=0}^{\infty} k^2 \cdot \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^k}{(k-1)!} =$$

$$e^{-\lambda} \sum_{k=1}^{\infty} ((k-1)+1) \cdot \frac{\lambda^k}{(k-1)!} = e^{-\lambda} (\lambda^2 \sum_{k=2}^{\infty} \frac{\lambda^{k-1}}{(k-2)!} + \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}) =$$

$$= \lambda^2 e^{-\lambda} e^{\lambda} + \lambda \cdot e^{-\lambda} \cdot e^{\lambda} = \lambda^2 + \lambda$$

$$\mathcal{D}\xi = \lambda^2 + \lambda - \lambda^2 = \lambda$$

4. $\xi \sim Geom(p) : p(\xi = k) = (1 - p)^k, \ k = 0, 1, \dots$

$$M\xi = \sum_{k=0}^{\infty} k \cdot (1-p)^k \cdot p$$

$$\sum_{k=0}^{\infty} (1-p)^k = \frac{1}{p}$$

$$\sum_{k=0}^{\infty} k(1-p)^{k-1} = \frac{1}{p^2} | p \cdot (1-p)$$

$$\sum_{k=0}^{\infty} k(1-p)^k \cdot p = \frac{1-p}{p}$$

$$M\xi^2 = \sum_{k=0}^{\infty} k^2 (1-p)^k \cdot p$$

$$\sum_{k=0}^{\infty} k(1-p)^k = \frac{1-p}{p^2} = \frac{1}{p^2} - \frac{1}{p}$$

$$\sum_{k=0}^{\infty} k^2 (1-p)^{k-1} = \frac{2}{p^3} - \frac{1}{p^2} | (1-p) \cdot p$$

$$\sum_{k=0}^{\infty} k^2 (1-p)^k \cdot p = \frac{2(1-p)}{p^2} - \frac{1-p}{p}$$

$$\mathcal{D} = \frac{2(1-p)}{p^2} - \frac{1-p}{p} - \left(\frac{1-p}{p}\right)^2 = \frac{2(1-p)}{p^2} - \frac{1-p}{p} \left(1 + \frac{1-p}{p}\right) = \frac{2(1-p)}{p^2} - \frac{1-p}{p^2};$$

$$\mathcal{D}\xi = \frac{1-p}{p^2}; \quad M\xi = \frac{1-p}{p}$$

5.
$$\xi \sim U(a,b)$$
; $M\xi = \frac{a+b}{2}$; $\mathcal{D}\xi = \frac{(b-a)^2}{12}$

6.
$$\xi \sim Exp(\lambda)$$
: $f_{\xi}(x) = \lambda e^{-\lambda x} \cdot \mathbb{1}(x \ge 0)$

$$M\xi = \int_{0}^{\infty} x\lambda e^{-\lambda x} dx = -\int_{0}^{\infty} x de^{-\lambda x} = -x \cdot e^{-\lambda x} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda x} dx = \frac{1}{\lambda}.$$

$$M\xi^{2} = \int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} dx = \int_{0}^{\infty} x^{2} de^{-\lambda x} = \int_{0}^{\infty} 2x e^{-\lambda x} dx = \frac{2}{\lambda} \int_{0}^{\infty} x \lambda e^{-\lambda x} dx = \frac{2}{\lambda^{2}}.$$

$$\mathcal{D}\xi = \frac{2}{\lambda^{2}} - \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}} \quad M\xi = \frac{1}{\lambda}$$

7.
$$\xi \sim N(a, \sigma^2);$$

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}}$$

$$M\xi = a; \quad \mathcal{D}\xi = \sigma^2$$

$$M\xi = \int_{\mathbb{R}} x \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-a)^2}{2\sigma^2}} dx = \frac{x-a}{\sigma} = z$$

$$dx = \sigma dz$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (\sigma z + a) e^{-z^2/2} dz = = \frac{\sigma}{\sqrt{2\pi}} \cdot \int_{\mathbb{R}} z e^{-z^2/2} dz + \frac{a}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-z^2/2} dz = a$$

$$\mathcal{D}\xi = M(\xi - M\xi)^2 = M(\xi - a)^2 = \int_{\mathbb{R}} (x-a)^2 \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \frac{x-a}{\sigma} = z$$

$$dx = \sigma dz$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \sigma^2 z^2 \cdot e^{-z^2/2} dz = \frac{2\sigma^2}{\sqrt{2\pi}} \int_0^{\infty} z^2 e^{-z^2/2} dz = -\frac{2\sigma^2}{\sqrt{2\pi}} \int_0^{\infty} z de^{-z^2/2} =$$

$$= -\frac{2\sigma^2}{\sqrt{2\pi}} z \cdot e^{-z^2/2} \Big|_0^{\infty} + \frac{2\sigma^2}{\sqrt{2\pi}} \int_0^{\infty} e^{-z^2/2} dz = \sigma^2$$

$$= \sigma^2 \cdot \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} e^{-z^2/2} dz = \sigma^2$$

9 1.3. DISPERSION

Chapter 2

Covariance of random variables. Correlation coefficient.

2.1 Covariance of random variables

Consider $\xi = (\xi_1, \xi_2)$ - random vector.

Definition 4. Covariation of stochastic variables ξ_1, ξ_2 is a number:

$$cov(\xi_1, \xi_2) = M[(\xi_1 - M\xi_1) \cdot (\xi_2 - M - \xi_2)]$$
(2.1)

(assuming that $M\xi_i$ exist)

If ξ_1, ξ_2 are discrete random variables, then

$$cov(\xi_1, \xi_2) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (x_i - M\xi_1) \cdot (y_j - M\xi_2) \cdot P(\xi_1 = x_i, \xi_2 = y_j).$$
 (2.2)

If ξ_1, ξ_2 have common distribution density $f_{\xi}(x, y)$, then

$$cov(\xi_1, \xi_2) = \int \int_{\mathbb{R}^2} \int (x - M\xi_1)(y - M\xi_2) f_{\xi}(x, y) dx dy$$
 (2.3)

From definition Rightarrow:

$$\begin{aligned}
\cos(\xi_1, \xi_2) &= M[\xi_1 \cdot \xi_2 - \xi_1 \cdot M\xi_2 - \xi_2 \cdot M\xi_1 + M\xi_1 \cdot M\xi_2] = \\
M[\xi_1 \cdot \xi_2] &- M\xi_2 \cdot M\xi_1 - M\xi_1 \cdot M\xi_2 + M\xi_1 \cdot M\xi_2 = M[\xi_1 \cdot \xi_2] - M\xi_1 \cdot M\xi_2. \\
\cos(\xi_1, \xi_2) &= M[\xi_1 \cdot \xi_2] - M\xi_1 \cdot M\xi_2
\end{aligned} (2.4)$$

Proposition 3. *If* ξ_1, ξ_2 *are independent, then*

$$cov(\xi_1, \xi_2) = 0.$$

It is said, that ξ_1, ξ_2 are uncorrelated.

Indeed, if ξ_1, ξ_2 *are independent, then from the properties of expectation:*

$$M[\xi_1 \cdot \xi_2] = M\xi_1 \cdot M\xi_2.$$

then

$$cov(\xi_1, \xi_2) = M\xi_1 \cdot M\xi_2 - M\xi_1 \cdot M\xi_2 = 0.$$

Inverse statement is not true: from uncorrelated does not Rightarrow independency.

Remark.

$$\mathcal{D}(\xi_1 + \xi_2) = \mathcal{D}\xi_1 + \mathcal{D}\xi_2 + 2M(\xi_1 - M\xi_1)(\xi_2 - M\xi_2) = \mathcal{D}\xi_1 + \mathcal{D}\xi_2 + 2\operatorname{cov}(\xi_1, \xi_2).$$

Theorem 4. *Main properties of variation:*

1.

$$cov(\xi, \xi) = \mathcal{D}\xi$$

2.

$$cov(a_1\xi_2 + b_1, a_2\xi_2 + b_2) = a_1 \cdot a_2 cov(\xi_1, \xi_2)$$

3.

$$|\operatorname{cov}(\xi_1, \xi_2)| \leq \sqrt{\mathcal{D}\xi_1 \cdot \mathcal{D}\xi_2}$$

4. Equality $|\cos(\xi_1, \xi_2)| = \sqrt{\mathcal{D}\xi_1 \cdot \mathcal{D}\xi_2}$ is true if and only if ξ_1 and ξ_2 and linearly dependent.

$$\exists a, b = const : \xi_2 = a\xi_2 - b.$$

Proof. 1.

$$cov(\xi,\xi) = M[\xi \cdot \xi] - M\xi \cdot M\xi = M\xi^2 - (M\xi)^2 = \mathcal{D}\xi$$

2.

$$cov(a_1\xi_1 + b_1, a_2\xi_2 + b_2) = M(a_1\xi_2 + b_1 - (a_1M\xi_1 + b_1)) \cdot (a_2\xi_2 + b_2 - (a_2M\xi_2 + b_2)) =
= M(a_1(\xi_1 - M\xi_1) \cdot a_2(\xi_2 - M\xi_2)) = a_1 \cdot a_2 \cdot M((\xi_1 - M\xi_1)(\xi_2 - M\xi_2)) =
= a_1 \cdot a_2 \cdot cov(\xi_1, \xi_2)$$

3. Consider stochastic variable:

$$\eta(x) = x \cdot \xi_1 - \xi_2, \ x \in \mathbb{R}$$

$$\mathcal{D}\eta(x) = \mathcal{D}(x\xi_1 - \xi_2) = x^2 \cdot \mathcal{D}\xi_1 + \mathcal{D}\xi_2 - 2x \cdot \mathbf{cov}(\xi_1, \xi_2)$$

As $\mathcal{D}\eta(x) \geq 0 \ \, \forall x \in \mathbb{R}$, so discriminant in the right part is not positive.

$$\mathcal{D} = (2\operatorname{cov}(\xi_1, \xi_2))^2 - 4\operatorname{disp}\xi_1 \cdot \mathcal{D}\xi_2 \le 0$$
$$\Rightarrow |\operatorname{cov}(\xi_1, \xi_2)| \le \sqrt{\mathcal{D}\xi_1 \cdot \mathcal{D}\xi_2}$$

4.

$$|\operatorname{cov}(\xi_1, \xi_2)| = \sqrt{\mathcal{D}\xi_1 \cdot \mathcal{D}\xi_2} \iff \mathcal{D} = 0 \iff \operatorname{equation} \mathcal{D}\eta(x) = 0 \text{ has solution } a \iff \mathcal{D}\eta(a) = 0 \iff \eta(a) = b = const \iff a\xi_1 - \xi_2 = b \iff \xi_2 = a\xi_1 - b.$$

Remark. Covariation of stochastic variables shows how much their dependency is close to linear.

2.2 Correlation coefficient

Definition 5. Correlation coefficient of random variables ξ_1, ξ_2 is a number:

$$\rho(\xi_1, \xi_2) = \frac{\text{cov}(\xi_1, \xi_2)}{\sqrt{\mathcal{D}\xi_1 \cdot \mathcal{D}\xi_2}}$$

considering that $\mathcal{D}\xi_i > 0$.

Theorem 5. *Properties of covariation coefficient:*

- 1. $\rho(\xi, \xi) = 1$
- 2. ξ_1 and ξ_2 are independent and $\mathcal{D}\xi_i > 0 \Rightarrow \rho(\xi_1, \xi_2) = 0$
- 3. $|\rho(\xi_1, \xi_2)| = 1 \Rightarrow \xi_1$ and ξ_2 have linear dependency:

$$\xi_2 = a\xi_1 - b$$

for any constants a, b.

4. $\rho(a_1\xi_1+b_1,a_2\xi_2+b_2)=\pm\rho(\xi_1,\xi_2)=$

$$= \begin{cases} \rho(\xi_1, \xi_2) & a_1 \cdot a_2 > 0 \\ -\rho(\xi_1, \xi_2) & a_1 \cdot a_2 < 0 \end{cases}$$

Proof. DO IT YOURSELF

Example. Let ξ_1, ξ_2 air temperature of some two consistent days of the year. Consider that:

$$M\xi_1 = m_1, \ M\xi_2 = m_2; \ \sigma_1^2 = \mathcal{D}\xi_1, \ \sigma_2^2 = \mathcal{D}\xi_2; \ \rho(\xi_1, \xi_2) = \rho...$$

Consider linear prediction:

$$\widetilde{\xi_2} = a\xi_1 + b.$$

where a, b are some constants. Find a, b from the condition of minimization of standard deviation $\widetilde{\xi}_2$ and ξ_2 , otherwords:

$$M(\widetilde{\xi_2} - \xi_2)^2 \to min$$

Calcualte $M(\widetilde{\xi_2} - \xi_2)^2$:

$$M(\widetilde{\xi}_{2} - \xi_{2}) = \mathcal{D}(\widetilde{\xi}_{2} - \xi_{2}) + (M(\widetilde{\xi}_{2} - \xi_{2}))^{2} = \mathcal{D}\widetilde{\xi}_{2}\mathcal{D}\xi_{2} - 2\operatorname{cov}(\widetilde{\xi}_{2}, \xi_{2}) + (M\widetilde{\xi}_{2} - M\xi_{2})^{2} =$$

$$= a^{2} \cdot \mathcal{D}\xi_{1} + \mathcal{D}\xi_{2} - 2a \cdot \operatorname{cov}(\xi_{1}, \xi_{2}) + (aM\xi_{1} + b - M\xi_{2})^{2} =$$

$$(a^{2} \cdot \sigma_{1}^{2} + \sigma_{2}^{2} - 2a\rho\sigma_{1} \cdot \sigma_{2}) + (am_{1} + b - m_{2})^{2}$$

$$(am_1 + b - m_2)^2 \ge 0$$

Consider $am_1+b-m_2=0; \ b=m_2-am_1$ Minimize first part $a^2\cdot\sigma_1^2+\sigma_2^2-2a\rho\sigma_1\cdot\sigma_2$:

$$2a \cdot \sigma_1^2 - 2\rho\sigma_1\sigma_2 = 0$$
$$a = \rho \frac{\sigma_2}{\sigma_2}$$
$$2\sigma_1^2 > 0$$

So the best predition:

$$\widetilde{\xi}_{2} = \rho \frac{\sigma_{2}}{\sigma_{1}} \cdot \xi_{1} + (m_{2} - \rho \frac{\sigma_{2}}{\sigma_{1}} m_{1}) = \rho \frac{\sigma_{2}}{\sigma_{1}} (\xi_{1} - m_{1}) + m_{2};$$

$$M(\widetilde{\xi}_{2} - \xi_{2})^{2} = \sigma_{2}^{2} (1 - \rho^{2})..$$

If $|\rho| = 1$ then $M(\widetilde{\xi}_2 - \xi_2)^2 = 0 \Rightarrow$ min prediction

$$\widetilde{\xi}_2 = \rho \frac{\sigma_2}{\sigma_1} (\xi_1 - m_1) + m_2.$$

is precise.

If $|\rho|=0\Rightarrow M(\widetilde{\xi_2}-\xi_2)^2=\sigma^2$ and $\widetilde{\xi_2}=m_2$ does not depend on ξ_1 .

2.3 Equation of full probability for expectation

Example. Firstly, dices are rolled, then a coin is flipped times the points on dice. How to find expectation of tails number?

Let ξ - number of points of dice rolled.

 η - number of tails within ξ flips.

$$\eta = \sum_{i=1}^{\xi} \mathbb{1}(\text{tail within i-th flip}).$$

- number of tails.

Number of additions is random. (will continue soon...)

Definition 6. *Probability distribution*:

$$P(\xi = x_i \mid H), i \ge 1.$$

is conditional distribution of discrete random value ξ within H, where H is random event, P(H) > 0.

Definition 7. *Conditional expectation of random value* ξ *within* H *is*

$$M(\xi \mid H) = \sum_{i=1}^{\infty} x_i \cdot P(\xi = x_i \mid H).$$

Theorem 6 (formula of full probability). Let ξ random value; $\{H_1, \ldots, H_n\}$ - full group of events. Then:

$$M\xi = \sum_{i=1}^{n} P(H_i) \cdot M(\xi \mid H_i).$$

Proof.

$$\sum_{i=1}^{n} P(H_i) \cdot M(\xi \mid H_i) = \sum_{i=1}^{n} P(H_i) \cdot \sum_{j=1}^{m} x_j \cdot P(\xi = x_j \mid H_i) =$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} x_j \cdot P(H_i) \cdot \frac{P(\xi = x_i, H_i)}{P(H_i)} = \sum_{j=1}^{m} x_j \cdot \sum_{i=1}^{n} P(\xi = x_i, H_i) =$$

$$\sum_{j=1}^{n} x_j \cdot P(\xi = x_j) = M\xi$$

Example (continuation).

 $\eta = \sum_{i=1}^{\xi} \mathbb{1}(\textit{tails in i-th attempt})$ $M\eta = \sum_{k=1}^{6} P(\xi = k) M[\eta \mid \xi = k] = \sum_{k=1}^{6} \frac{1}{6} \cdot M \sum_{i=1}^{k} \mathbb{1}(\textit{tail on i-th attempt}) = \sum_{k=1}^{6} \frac{1}{6} \cdot \sum_{i=1}^{k} P(\textit{tails on i-th attempt}) = \frac{1}{6} \sum_{k=1}^{6} k \cdot \frac{1}{2} = \frac{1}{6} \cdot \frac{1}{2} \cdot \frac{1+6}{2} \cdot 6 = \frac{7}{4} = 1.75.$

Example. Let $\xi \sim Poiss(\lambda)$; x_1, x_2, \ldots - independent equally distributed, $x_i \sim Exp(\alpha)$.

$$\eta = \sum_{i=1}^{\xi} P(\xi = k) \cdot M[\eta \mid \xi = k] = \sum_{k=0}^{\infty} P(\xi = k) \cdot M \sum_{i=1}^{k} x_i = \sum_{k=0}^{\infty} P(\xi = k) \cdot \sum_{i=1}^{k} Mx_i = Mx_i = Mx_2 = \dots = Mx_k$$

$$= \sum_{k=0}^{\infty} P(\xi_k) \cdot k \cdot Mx_1 = M\xi \cdot Mx_1$$

$$M\eta = \frac{\lambda}{\alpha}.$$

2.4 Inequalities related to moments of random values

2.4.1 Chebyshev inequality

Let ξ - integral (невід'ємна) random value. Then:

$$\forall \varepsilon > 0 : P(\xi \ge \varepsilon) \le \frac{M\xi}{\varepsilon}.$$

Proof.

$$\begin{split} \xi - \xi \cdot \mathbb{1}(\xi \geq \varepsilon) + \xi \cdot \mathbb{1}(\xi < \varepsilon) &\geq \xi \cdot \mathbb{1}(\xi \geq \varepsilon) \geq \varepsilon \cdot \mathbb{1}(\xi \geq \varepsilon) \Rightarrow \\ \Rightarrow M \xi &\geq M(\varepsilon \cdot \mathbb{1}(\xi \geq \varepsilon)) = \varepsilon \cdot P(\xi \geq \varepsilon) \Rightarrow \\ \Rightarrow P(\xi \geq \varepsilon) &\leq \frac{M \xi}{\varepsilon} \end{split}$$

Corollary 7. *1. If* ξ *- arbitrary random value, then*

$$P(|\xi| \ge \varepsilon) \le \frac{M|\xi|}{\varepsilon}.$$

2.
$$P(|\xi| \ge \varepsilon) = P(|\xi|^k \ge \varepsilon^k) \le \frac{M|\xi|^k}{\varepsilon^k}$$

3.
$$P(|\xi - M\xi| \ge \varepsilon) \le \frac{\mathcal{D}\xi}{\varepsilon^2}$$

Indeed:

$$P(|\xi - M\xi| \ge \varepsilon) = P(|\xi - M\xi|^2 \ge \varepsilon^2) \le \frac{M(\xi - M\xi)srJ}{\varepsilon^2} = \frac{\mathcal{D}\xi}{\varepsilon^2}$$

Example. 1. Rule of "three sigm"

Let ξ random value with expectation $M\xi$ and $\mathcal{D}\xi = \sigma^2$;

 $\sigma = \sqrt{\mathcal{D}\xi}$ - standard deviation of random value.

$$P(|\xi - M\xi| > 3\sigma) \le \frac{\mathcal{D}\xi}{9\sigma^2} = \frac{\sigma^2}{0\sigma^2} = \frac{1}{9} \Rightarrow P(|\xi - M\xi| < 3\sigma) \ge 1 - \frac{1}{9}.$$

If $\xi_1, \xi_2, \dots, \xi_N$ independent equally distributed random values, then at least 90% of observations will be in interval:

$$(m-3\sigma, m+3\sigma).$$

where $m = M\xi_1$.

 $\xi_1, \xi_2, \dots, \xi_N \sim N(0, 1)$ independent. Then $\approx 90\%$ will be in interval (-3, 3).

2. Let p - unknown part of population of a country support some resolution. For definition p is used social poll.

n persons are polled:

$$\sum_{i=1}^{n} \mathbb{1}(i\text{-th person support the resolution}).$$

 $rac{S_n}{n}$ - part of those, who support the resolution.

 $\frac{S_n}{n} pprox p$ - within large n.

The question is, how large must be n for the deviation $\frac{S_n}{n}$ to be quite small. For instance:

$$P\left(\left|\frac{S_n}{n} - p\right| \ge 0.1\right) \le 0.05.$$

Notice that:

$$M\left(\frac{S_n}{n}\right) = \frac{1}{n} \cdot MS_n = \frac{1}{n} \cdot np = p..$$

$$P\left(\left|\frac{S_n}{n} - M\left(\frac{S_n}{n}\right)\right| \le 0.1\right) \le \frac{\mathcal{D}\left(\frac{S_n}{n}\right)}{(0.1)^2} = \frac{\mathcal{D}S_n}{n^2 \cdot (0.1)^2} = \frac{n \cdot p \cdot (1-p)}{n^2 \cdot (0.1)^2} = \frac{p(1-p)}{n(0.1)^2} \le \frac{1}{4n(0.1)^2} \quad \text{as} \quad \forall p \in (0,1) : p(1-p) \le \frac{1}{4}.$$

Find n from the condition:

$$\frac{1}{4n(0.1)^2} \le 0.05 \Rightarrow n \ge \frac{1}{4 \cdot 0.05 \cdot (0.1)^2}.$$

Chapter 3

Inequalities. The law of large numbers in the form of Chebyshev.
Borel-Cantelli lemma