STATISTICAL COMPUTATIONAL METHODS

Simulation of Random Variables and Monte Carlo Methods

1. <u>Discrete Methods</u> for $X \begin{pmatrix} x_1 & x_2 & \dots \\ p_1 & p_2 & \dots \end{pmatrix}$, $\sum p_i = 1$.

Algorithm 1.

1. Divide interval [0, 1] into subintervals

$$A_1 = [0, p_1)$$

 $A_2 = [p_1, p_1 + p_2)$
 $A_3 = [p_1 + p_2, p_1 + p_2 + p_3)$

Then length $(A_i) = p_i$, for a finite or countably infinite number of values x_i .

- 2. Get $U \in Unif(0,1)$.
- 3. If $U \in A_i$, then let $X = x_i$.
- **2.** <u>Inverse Transform Method</u> for a random variable X with cdf $F : \mathbb{R} \to \mathbb{R}$.

Algorithm 2.

- 1. Get $U \in Unif(0,1)$.
- 2. if X is continuous, then let $X = F^{-1}(U)$.
 - if X is discrete, then let $X = \min\{x \mid F(x) \ge U\}$.
- **3. Rejection Method** for a continuous random variable X with pdf $f: \mathbb{R} \to \mathbb{R}$.

Algorithm 3.

- 1. Find a bounding box $[a, b] \times [0, c]$, i.e. numbers $a, b \in \mathbb{R}, c \in \mathbb{R}_+$, such that $f(x) \in [0, c]$, for $x \in [a, b]$.
- 2. Get $U, V \in Unif(0, 1)$.
- 3. Let X = a + (b-a)U and Y = cV. Then $X \in Unif(a,b), Y \in Unif(0,c)$ and $(X,Y) \in Unif([a,b] \times [0,c])$.
- 4. If Y > f(X), reject the point and return to step 2. If $Y \leq f(X)$, then X is a random variable with pdf f.

4. Special Methods

- for a
$$Poiss(\lambda), \lambda > 0$$
, random variable $X \begin{pmatrix} k \\ \frac{\lambda^k}{k!} e^{-\lambda} \end{pmatrix}_{k \in \mathbb{N}}$.

Algorithm 4.

- 1. Get $U_1, U_2, \ldots \in Unif(0,1)$.
- 2. Let $X = \max\{k \mid U_1 \cdot U_2 \cdot \ldots \cdot U_k \ge e^{-\lambda}\}.$

- for a $Norm(\mu, \sigma), \mu \in \mathbb{R}, \sigma > 0$, random variable, pdf $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}$.

Box-Muller Transform

Algorithm 5.

1. Get $U, V \in Unif(0, 1)$.

2. Let

$$\begin{cases} Z_1 = \sqrt{-2\ln(U)}\cos(2\pi V), \\ Z_2 = \sqrt{-2\ln(U)}\sin(2\pi V). \end{cases}$$

Then Z_1, Z_2 are independent Norm(0,1) random variables.

3. Let $X = \sigma Z + \mu$. Then $X \in Norm(\mu, \sigma)$.

5. Accuracy of an MC Study of size N

– estimating probabilities: $p = P(X \in A)$ is estimated by $\overline{p} = \frac{\text{number of } X_1, \dots, X_N \in A}{N}$;

$$-\text{ to ensure that }P(|\overline{p}-p|>\varepsilon)\leq\alpha,\,\text{take }N\geq\frac{1}{4}\left(\frac{z_{\alpha/2}}{\varepsilon}\right)^2;$$

– estimating means: $\mu = E(X)$ is estimated by $\overline{X} = \frac{X_1 + \ldots + X_N}{N}$;

– estimating variances:
$$\sigma^2 = V(X)$$
 is estimated by $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \overline{X})^2$.