$\mathbf{\acute{I}ndice}$

1	Intr	oducción 3
	1.1	Modelo ideal
	1.2	Otros modelos
	1.3	Alimentación y saturación
	1.4	Otros parámetros del op amp
2	Car	acterización de amplificadores operacionales
	2.1	Análisis matemático con modelo de polo dominante
	2.2	Método de medición
	2.3	Análisis de resultados
		2.3.1 Respuesta en frecuencia
		2.3.2 Impedancia de entrada
	2.4	Conclusiones
	73. AT	1''' '
3	3.1	dición corriente de bias y tensión de offset Modelo de amplificador operacional con corrientes de bias y tensión de offset
	3.2	Importancia de las corrientes de bias y la tensión de offset
	3.3	Circuitos con realimentación
	3.4	Funcionamiento del circuito
	0.1	3.4.1 Funcionamiento en DC: mediciones de V_{IO} y I_B
		3.4.2 Funcionamiento en AC
	3.5	Estabilidad en diferentes configuraciones
	3.3	3.5.1 Consigna
		3.5.2 Uno invertido
		3.5.3 Ambos invertidos
	3.6	Medición de V_{IO} y I_B^{\pm}
4	C:	
4	4.1	cuitos integradores y derivadores 22 Análisis matemático 22
	4.1	Analisis matematico 23
		$A_{0} = A_{0} = A_{0$
		$4.1.2 A_0 \text{ limbo}$
	4.2	Derivador
	4.2	4.2.1 Análisis matemático: respuesta en frecuencia
		4.2.2 Análisis matemático: impedancia de entrada
		4.2.3 Análisis de resultados: respuesta en frecuencia
		4.2.4 Análisis de resultados: impedancia de entrada
		4.2.5 Análisis de resultados: respuesta transitoria
	4.3	Derivador compensado
	4.5	4.3.1 Análisis matemático: respuesta en frecuencia
		4.3.2 Análisis matemático: respuesta en frecuencia
		4.3.2 Analisis matematico: impedancia de entada
		4.3.4 Análisis de resultados: impedancia de entrada
		4.3.4 Analisis de resultados: impedancia de entrada
		TIOIO TIMOMINI GO LONGIUGGON, ICNDUCNIG UGMINUUM , , , , , , , , , , , , , , , , , ,

		4.4.1 Análisis matemático: respuesta en frecuencia	37 38
		4.4.3 Análisis de resultados: respuesta en frecuencia	39
		4.4.4 Análisis de resultados: impedancia de entrada	40
		4.4.5 Análisis de resultados: respuesta transitoria	41
	4.5	Integrador compensado	41
		4.5.1 Análisis de matemático	42
		4.5.2 Análisis de resultados: respuesta en frecuencia	43
		4.5.3 Análisis de resultados: impedancia de entrada	44
		4.5.4 Análisis de resultados: respuesta transitoria	45
	4.6	Conclusiones	46
5	Ped:	al de Distorsión	47
•	5.1	Introducción	47
	5.2	Consideraciones de diseño	49
	5.3	Diseño del circuito	49
		5.3.1 Características del amplificador	50
		5.3.2 Sección de alimentación	50
		5.3.3 Sección de clipping	52
		5.3.4 Sección de amplificación	53
	5.4	Implementación del circuito y valores elegidos	54
	5.5	Simulaciones	55
	5.6	Mediciones y contraste con simulación	56
6	Sens	sor de Temperatura	57
	6.1	Introducción	57
	6.2	Análisis del LM35 y condiciones a tener en cuenta	58
	6.3	Cambio de rango operacional	58
	6.4	Protección del circuito a conectar	60
	6.5	Calibración del sensor	62
	6.6	Implementación del circuito	64
	6.7	Mediciones y conclusión	64
	6.8	Datasheet	65
7	Ane	exo	68

1 Introducción

En el presente informe se busca caracterizar el comportamiento de los amplificadores operacionales, tanto de forma analítica como empírica y con la ayuda de *software* de simulación. Se estudiará cómo su presencia afecta la respuesta en frecuencia e impedancia de entrada de varios circuitos, así como sus parámetros característicos. Por último, se diseñarán dos circuitos de aplicación que hacen uso de operacionales: un pedal de distorsión y un sensor de temperatura.

El amplificador operacional, comúnmente denominado op amp, es un componente activo que cumple la función de amplificar en su salida lo máximo posible la diferencia de potencial entre sus entradas positiva y negativa. Retroalimentando la salida al terminal positivo o negativo, pueden construirse circuitos que realicen operaciones matemáticas de gran utilidad como por ejemplo suma, multiplicación por una constante, derivación e integración. Otra aplicación que se puede mencionar de este componente es en diseño de filtros.

Figura 1: Amplificador operactional con entrada inversora V^- , entrada no inversora V^+ , salida V_{out} , alimentación positiva V_{CC}^+ y alimentación negativa V_{CC}^-

La ecuación fundamental de un operacional ideal es:

$$V_{out} = A_0 \cdot (V^+ - V^-)$$

Como el propósito de este componente es amplificar la diferencia de potencial $V^+ - V^-$, la ganancia a circuito abierto del operacional A_0 debe ser lo más grande posible.

1.1 Modelo ideal

Si el objetivo de tener un op amp en un circuito es amplificar lo máximo posible la diferencia de potencial entre la entrada positiva y la negativa, entonces la primera aproximación que se puede hacer de su comportamiento es que la amplificación que se produce es infinita, es decir que $A_0 = \infty$. Para que V_{out} no diverja, surge de esta consideración que $V^- = V^+$.

Si bien en la mayoría de los casos estudiados en este trabajol este modelo no será suficiente para realizar un análsis en profundidad, puede resultar útil para tener una idea básica del comportamiento del circuito, que en la práctica se cumplirá en un cierto rango de frecuencias (por consideraciones que se mencionarán luego).

Una consecuencia interesante de esta suposición es que si una de las entradas está conectada a tierra, en la otra entrada se replicará este potencial de referencia. De esta forma, se tendrá en el circuito lo que se conoce como tierra virtual, ya que existirá un punto que si bien no está conectado con tierra, tiene su mismo potencial.

Figura 2: Circuito con tierra virtual

Otra de las suposiciones necesarias para considerar al operacional como ideal es que no hay corriente entre V^+ y V^- , es decir, que la impedancia entre esos dos puntos es infinita. En general, esta suposición no se dejará de lado incluso cuando se admita que la diferencia de potencial no es nula, ya que el valor de esta impedancia está típicamente en el orden de los $M\Omega$.

1.2 Otros modelos

Si se quisiese mejorar el modelo anterior, la primera corrección que se podría hacer es tener en cuenta que la ganancia efectivamente no es infinita, si bien su valor suele ser considerablemente grande (típicamente alrededor de los 100dB).

En algunos casos (por ejemplo, cuando se trabaja en frecuencias de cientos de kHz o superiores, o circuitos retroalimentados con ganancia alta), considerar a A_0 constante no llevará a resutados satisfactorios. Es más conveniente recurrir en este caso al modelo de polo dominante.

Si bien la respuesta en frecuencia de un op amp no presenta un único polo sino varios, en general existirá uno en particular que será el que más visiblemente altere el comportamiento del circuito. Si se quiere tener en cuenta el filtro pasabajos que impone el operacional, entonces se deberá reemplazar A_0 por $\frac{A_0}{s+\omega_p}$. En esta expresión, ω_p es la frecuencia angular del polo dominante. El valor que se puede encontrar en la hoja de datos es usualmente el del $bandwidth\ product$: $BWP = A_0 \cdot \omega_p$. Este parámetro permite obtener para una ganancia ideal G constante cuál será el valor de la frecuencia de corte ω_p' que imponga el operacional, ya que también se cumplirá que $G \cdot \omega_p' = BWP$.

Esto último es, sin embargo, una aproximación proveniente de asumir que el valor de A_0 es constante para todas las frecuencias, lo cual no siempre puede considerarse cierto. Esto se debe a que lo suele preocupar al fabricante de un operacional no es que este valor sea constante, si no que se mantenga lo suficientemente elevado como para que pueda considerarse infinito.

1.3 Alimentación y saturación

Como ya se mencionó, el amplificador operacional es un componente activo. Para que funcione se lo debe alimentar por V_{CC}^+ y V_{CC}^- con una tensión continua indicada en la hoja de datos del componente,

que suele ser de alrededor de $\pm 15V$. En función del valor de V_{CC} , se deteminará el rango de tensiones que puede tener V_{out} , fuera del cual el comportamiento del operacional deja de ser lineal. Este intervalo suele tomarse como (V_{CC}^-, V_{CC}^+) , con un cierto margen en ambos extremos (por ejemplo, si $V_{CC} = 15V$, no debería considerarse que el circuito tendrá un comportamiento lineal más allá de 12V o 13V).

1.4 Otros parámetros del op amp

Si bien el modelo tratado hasta ahora es de gran utilidad para simplificar el comportamiento de un operacional, este componente posee también otras características que no están consideradas en el mismo, y que en ciertas circunstancias pueden afectar visiblemente la respuesta de un circuito.

Uno de ellos es el slew rate o velocidad de subida. Este parámetro indica la máxima $\frac{\partial V_{out}}{\partial t}$ que soporta el operacional. Si la señal que entra exige una tasa de cambio mayor que el SR del op~amp, la salida estará deformada y no podrá considerarse que se cumple el comportamiento lineal del circuito. Si consideramos que V_{out} es una función senoidal de amplitud V_{max} y frecuencia f, derivando obtenemos que debemos asegurar en todo momento que se cumpla $SR > V_{max} \cdot 2\pi f$.

Otra información que proporciona el fabricante y que en algunos casos puede resultar relevante son la corriente de bias y la tensión de offset. Estos parámetros indican respectivamente la corriente que circula entre V^+ y V^- y la tensión entre ellos. Sus valores normalmente se encuentran en el orden de los nA y de los mV.

2 Caracterización de amplificadores operacionales

En esta sección se estudiará cómo la presencia del operacional afecta a un circuito que sin él es puramente resistivo, lo cual permite apreciar los cambios introducidos por los polos propios de este componente. El circuito en cuestión es el siguiente:

Figura 3: Circuito no inversor

Los componentes utilizados fueron:

Componente	Valor de la consigna	Valor comercial $(\pm 5\%)$	Valor medido
R_1	2	2.2	2.19
R_2	160	150	145
R_3	100	100	98

Table 1: Valores de resistencias en $k\Omega$

El operacional utilizado fue el LM833, y el circuito fue armado en una protoboard.

2.1 Análisis matemático con modelo de polo dominante

Como el único componente de este circuito que puede introducir polos en este circuito es el *op amp* (dejando de lado capacidades e inductancias parásitas), la única forma de obtener una respuesta en frecuencia para este circuito que no sea una constante es considerando modelos de operacionales que tomen en cuenta las singularidades de los mismos.

Asumiendo que entre V^+ y V^- no circula corriente, y aplicando un divisor de tensión obtenemos que:

$$\begin{cases} V^+ = V_{in} \\ V^- = \frac{R_1}{R_1 + R_2} \cdot V_{out} \end{cases}$$

Aplicando la ecuación fundamental del operacional y simplificando, resulta que la ganancia ideal (con A_0 infinito) es:

$$G = 1 + \frac{R_2}{R_1} = 67.21 \sim 36.5dB \tag{1}$$

Como el A_0 del operacional (según su hoja de datos) es de $110dB \sim 3.16 \times 10^5 \gg G$, entonces podemos utilizar el modelo explicado en la introducción para obtener la ω_p' a esta ganancia, con lo cual la función transferencia del circuito queda:

$$H(s) = \frac{G}{\frac{s}{\omega_p'} + 1} \tag{2}$$

Habiendo obtenido el valor del bandwidth product de la data sheet del operacional, el valor de la frecuencia de corte es $f_p' = \frac{BWP}{G} \sim 238kHz$, de donde se puede completar la transferencia 2 con $\omega_p' = 2\pi f_p'$. El circuito tiene, entonces, un único polo que se encuentra en esta frecuencia, y para $f \ll f_p'$, la ganancia debería ser igual a la ideal.

Por otro lado, como consideramos que no circula corriente entre las entradas inversora y no inversora del operacional, la impedancia de entrada según este modelo es infinita.

2.2 Método de medición

Hasta este punto, parecería que la resistencia R_3 no tiene ninguna influencia en el comportamiento del circuito. Sin embargo, si consideramos que el valor de esta resistencia es de $98k\Omega$, se debería tener en cuenta que incluso una corriente del orden de los nA podría provocar una caída de tensión de varios mV. Siendo que según la hoja de datos del operacional, la corriente de bias del circuito es típicamente de 300nA, esperaríamos observar un offset en esta resistencia de $R_3 \cdot I_b = 29.4mV$. Siendo que además el circuito tiene una ganancia elevada, esta pequeña diferencia de potencial podría resultar en la salida de un offset de aproximadamente 1.98V, lo cual podría afectar considerablemente la saturación del circuito.

Para verificar que este análisis tiene mérito, se midió la diferencia de potencial entre la entrada y la salida cuando la fase entre ellas era de 0° , que se cumplía en f = 1kHz.

Figura 4: Offset entre la salida y la entrada cuando $/H(f)| = 0^{\circ}$

Efectivamente, se obtuvo un offset de 2.15V en esta medición. La discrepancia entre lo calculado y lo obtenido podría provenir de una corriente de bias superior a la típica: una corriente de 327nA explicaría perfectamente el resultado obtenido, y la información aportada por el fabricante indica que este valor puede llegar hasta los 750nA, con lo cual parecería un valor razonable. A su vez, parte de la tensión continua que se ve amplificada podría deberse a una V_{DC} parásita del generador utilizado, ya que 2.5mV extra en la entrada también explicarían el resultado obtenido. Cualquiera de estos dos factores, o una combinación de ambos, podría estar influyendo en el resultado.

Debido a este fenómeno, se debió trabajar con un offset de alrededor de -30mV a la hora de medir la respuesta en frecuencia y la impedancia de entrada del circuito (aproximadamente porque no en todas las

mediciones se usó exactamente el mismo valor). No considerarlo llevaba a una asimetría en la saturación del operacional que limitaba la tensión de entrada aún más que lo que lo hacía la gran ganancia del circuito y el slew rate.

Figura 5: Saturación producto del offset entre la salida y la entrada

En cuanto a la impedancia de entrada, la misma se midió asumiendo que la resistencia R_3 podía considerarse constante y con fase 0° para todas las frecuencias, de forma tal que midiendo V_{R_3} , se puede obtener la corriente como $I = \frac{V_{R_3}}{R_3}$.

2.3 Análisis de resultados

2.3.1 Respuesta en frecuencia

Superponiendo las mediciones de respuesta en frecuencia, lo calculado con la fórmula 2 y la simulación del circuito en LTspice, se elaboraron los diagramas de Bode de la figura 8 1 .

Tanto el modelo utilizado para llegar a la función transferencia analíticamente como el utilizado por el simulador predicen que en la frecuencia de corte debe observarse un polo de primer orden. Sin embargo, las mediciones indican la presencia de un polo de segundo orden, donde los dos polos son complejos conjugados debido al sobrepico que se presenta.

¹Los diagramas de bode se encuentran al final de esta sección

Efectivamente este circuito está presentando otro polo además del dominante del capacitor. Una explicación que se podría ofrecer yace en la capacidad entre V^+ y V^- , o differential input capacitance, que el fabricante estima en 12pF. Planteado con la presencia de este capacitor, las ecuaciones del circuito resultan:

Figura 6: Circuito considerando la differential input capacitance

$$\begin{cases} V_{in} = V^{+} + I_{3} \cdot R_{3} \\ V^{+} = V^{-} + I_{3} \cdot \frac{1}{sC} \\ V_{out} = I_{2} \cdot R_{2} + V^{-} \\ V_{out} = A_{vol}(s) \cdot (V^{+} - V^{-}) \\ V^{-} = I_{1} \cdot R_{1} \\ I_{1} = I_{2} + I_{3} \end{cases}$$

Resolviendo el sistema, la nueva función transferencia se obtiene como:

$$H(s) = \left(\frac{A_0 \cdot (R_1 + R_2)}{R_2 + A_0 \cdot (R_1 + 1)}\right) \cdot \left(\frac{1}{\frac{K}{\omega_p \cdot (R_2 + A_0 \cdot (R_1 + 1))} \cdot s^2 + \frac{(\omega_p \cdot K + R_1 + R_2)}{\omega_p \cdot (R_2 + A_0 \cdot (R_1 + 1))} \cdot s + 1}\right)$$
(3)

En la expresión anterior, llamamos $K = C \cdot (R_1 \cdot R_2 + R_3(R_1 + R_2))$. Notamos que el término constante es idéntico al que habíamos obtenido sin considerar el capacitor, que aproximadamente la ganancia ideal del circuito.

Simulando con C = 12pF, se obtienen los resultados de la figura 9.

El modelo predice la presencia de un sobrepico, pero sin embargo no se llega a ajustar exactamente a lo que se midió. Esto puede deberse a que para un valor tan bajo de C, cualquier capacidad parásita presente en el circuito puede influir en el resultado obtenido. Por ejemplo, si considerásemos que podemos tener otros 10pF provenientes de la protoboard, y que la capacidad del operacional es de 14pF en lugar de 12pF (ya que el fabricante indica que son 12, pero no aporta valores máximos ni con cuánto error ni en qué condiciones fueron medidos), la capacidad podría llegar a resultar incluso el doble.

Estudiaremos el efecto de los errores de aproximación con un análisis Montecarlo. Simulando el circuito con las puntas del osciloscopio, el capacitor de 12pF con tolerancia 5% para todos los componentes del circuito, el resultado que se obtiene es:

Figura 7: Análsis de Montecarlo de la respuesta en frecuencia

Siendo que se observan picos de hasta 42dB, concluimos que los resultados obtenidos pueden explicarse con el modelo utilizado si tenemos en cuenta el error en el valor de los componentes.

Cabe destacar que en la función 3, si $R_3 = 50\Omega$ (del generador), la función no sólo no presenta un sobrepico, sino que el segundo polo no se aprecia en absoluto en este rango de frecuencias. Esto quiere decir que la presencia de una resistencia de $100k\Omega$ a la entrada, que según los modelos estudiados no debería afectar el comportamiento del circuito, ocasiona que un factor que de otra forma sería despreciable lleve la respuesta en frecuencia observable de primer orden a segundo orden.

2.3.2 Impedancia de entrada

Si consideramos que la impedancia entre la entrada inversora y la no inversora del operacional es infinita, entonces también debería serlo la impedancia de entrada del circuito. Sin embargo, al estar midiendo una impedancia tan grande, debemos considerar que ya comienza a afectar las mediciones considerablemente la presencia de las puntas del osciloscopio. Como se utizaron en configuración x10, conectarlas al circuito implica poner en paralelo un capacitor de $C_{osc} \sim 10pF$ y una resistencia de $R_{osc} \sim 10 M\Omega$. A su vez, con impedancias de este orden tampoco es razonable considerar que no entra ninguna corriente por el operacional. Deben tenerse en cuenta también, pues, los C=12pF que informa el fabricante que hay entre V^+ y V^- , que quedarán en serie con R_1 .

La impedancia de entrada que utilizaremos es entonces:

$$Z_{in}(s) = \frac{C_{osc}CR_{osc}R_{1}R_{3} \cdot s^{2} + [R_{3} \cdot (C_{osc}R_{osc} + CR_{1} + CR_{osc}) + R_{osc}CR_{1}] \cdot s + R_{3} + R_{osc}}{C_{osc}CR_{osc}R_{1} \cdot s^{2} + (C_{osc}R_{osc} + CR_{1} + CR_{osc}) \cdot s + 1}$$
(4)

Con esta función, simulando en *Spice* con las tres puntas utilizadas (antes R_3 , después de R_3 y en la salida para controlar que no se sature), se obtiene el diagrama de bode de la figura 10

El modelo utilizado por el simulador se asemeja más a los resultados obtenidos que el que respresenta la ecuación 4, sobre todo en la fase. Esto podría indicar que en Spice se están teniendo en cuenta parámetros adicionales del operacional, como por ejemplo el segundo polo de $A_{vol}(s)$, que sabemos que existe porque la $unity\ gain\ frequency\ (9MHz)$ no es igual al $bandwidth\ product\ (16MHz)$. Sin embargo, la forma de la función medida se respeta en ambos casos.

2.4 Conclusiones

Si bien los modelos de operacional discutidos en la introducción resultan útiles en muchos casos, es importante tener presente qué suposiciones se están haciendo cuando se los utiliza y si las mismas son válidas en cada circuito que se utiliza en particular. En este caso, la presencia de una resistencia de $100k\Omega$ a la entrada provocó que no se pudiese despreciar el efecto de la corriente de bias, que producía un offset de 2V a la salida, así como que el efecto de la capacidad parásita del operacional fuera apreciable, resultando que el circuito presentara dos polos complejos conjugados en lugar de primer orden. No conocer la existencia de un sobrepico en un circuito podría ocasionar garrafales errores en ganancia en la frecuencia de corte y overshoot en el transitorio, con lo cual es importante tener en cuenta estos parámetros a la hora de diseñar circuitos.

Figura 8: Respuesta en frecuencia según modelo ${\cal A}_{vol}(s)$

Figura 9: Respuesta en frecuencia considerando la $\it differential~input~capacitance$

Figura 10: Impedancia de entrada

3 Medición corriente de bias y tensión de offset

3.1 Modelo de amplificador operacional con corrientes de bias y tensión de offset

Figura 11: Modelo de amplificador operacional con corrientes de bias y tensión de offset

Que es corriente de bias y tension de offset. fijarme que puso roch en la intro

3.2 Importancia de las corrientes de bias y la tensión de offset

Las corrientes de bias $(I_B^+ \ y \ I_B^-) \ y$ la tensión de offset (V_{IO}) pueden generar efectos que no concuerdan con el modelo ideal de un amplificador operacional. Se presentan a continuación tres ejemplos:

Figura 12: Modelo de amplificador con configuración inversora con V_{IO} no despreciable

Efecto de V_{IO}

El circuito de la figura 12 representa un amplificador operacional en configuración inversora con tensión de offset no despreciable modelado por un op-amp ideal y una fuente de tensión continua V_{IO} . De ignorarse la tensión de offset, puede obtenerse la función transferencia:

$$\frac{V_{OUT}}{V_{IN}} = \frac{-R_F}{R_G}$$

Sin embargo, si se considera la tensión de offset, no es posible obtener obtener la función transferencia ya que el sistema no es lineal:

$$\begin{split} V_{OUT} &= V_{IN} \frac{-R_F}{R_G} + V_{IO} \left(1 + \frac{R_F}{R_G} \right) \\ \text{Si } V_{IN} &= 0, V_{OUT} = V_{IO} \left(1 + \frac{R_F}{R_G} \right) \neq 0 \\ \Rightarrow \text{El sistema no es lineal} \end{split}$$

Dependiendo el orden de V_{IN} y de V_{IO} y de la precisión necesaria, el efecto de V_{IO} en V_{OUT} no puede ser despreciado.

Efecto de I_B^+ y I_B^-

El amplificador operacional no puede funcionar si se impide el paso de las corrientes de bias. Si se decide poner un capacitor en serie con una de las entradas, I_B no podrá circular, haciendo que el amplificador no funcione correctamente. Ver ejemplo en figura 13.

Por otro lado, si hay una resistencia R en serie con la entrada del operacional, habrá una caída de tensión $V=I_B^\pm\cdot R$ que puede o no ser despreciable dependiendo de la relación entre I_B^\pm y R y las características del circuito. Este efecto es usado en el circuito de medición explicado en la siguiente sección para medir I_B^+ y I_B^-

"impide el paso" suena medio choto pero no sé como decirlo más mejor

redaccion

Figura 13: Circuito GIC. Si Z_2 y Z_3 fueran capacitores, no podriían circular las corrientes de bias. Una posible solución consiste en poner una resistencia en paralelo que permita la circulación y que sea lo suficientemente grande como para que la impedancia resultante sea aproximadamente capacituva pura.

3.3 Circuitos con realimentación

Un circuito realimentado es aquel en el que una proporcion de la salida se redirige a la entrada con el propósito de controlar el comportamiento del sistema. Se muestra un diagrama de un sistema realimentado típico en la figura 14^{-2}

 A_{OL} : ganancia a lazo abierto del sistema (open-loop)

 A_{CL} : ganancia a lazo cerrado del sistema (closed-loop)

 $A_{CL\,ideal}$: ganancia a lazo cerrado ideal del sistema. $lim_{T\to\infty}A_{CL}=A_{CL\,ideal}$

 β : ganancia de realimentación

 $T = A_{OL} \cdot \beta$: ganancia de lazo

La función transferencia del sistema H(s) equivale a su ganancia a lazo cerrado:

$$x_{d} = x_{i} + x_{f}$$

$$x_{f} = \beta x_{f}$$

$$x_{o} = A_{OL}x_{d} = A_{OL}(x_{i} + x_{f}) = A_{OL}(x_{i} + \beta x_{o})$$

$$x_{o} - A_{OL}\beta x_{o} = A_{OL}x_{i}$$

 $^{^2}$ Es común encontrar el mismo modelo con la diferencia que a la entrada se le resta una señal en vez de sumarse. Ambos modelos pueden representar los mismos sistemas (alcanza con cambiar la fase de β en 180° para pasar de uno a otro). En este caso se decidió usar la opición con suma ya que es más simple encontrar la similitud con el circuito analizado (ver siagrama de flujo de senñal en la figura 19b

Figura 14: Diagrama de flujo de señal de sistemas realimentados.

$$\Rightarrow H(s) = A_{CL} = \frac{x_o}{x_i} = \frac{A_{OL}}{1 - A_{OL}\beta} \tag{5}$$

Suponiendo que $T \gg 1$ se obtiene la ganancia a lazo cerrado ideal:

$$A_{CL\,ideal} = \frac{-1}{\beta} \tag{6}$$

Un sistema tiene realimentación negativa si la fase de la ganancia de lazo está entre 180° (inclusive) y 360° (no inclusive), y realimentación positiva en caso contrario.

Figura 15: Ejemplo de realimentación negativa y positiva en un op-amp.

3.4 Funcionamiento del circuito

La función del circuito es medir la tensión de offset y las corrientes de bias. La corriente de bias se obtiene midiendo la caída de tensión que genera sobre una resistencia de $1M\Omega$. En la tabla ?? se observan los valores que se esperan medir.

	TL081		m LF356			
	$V_{IO}(\mathrm{mV})$	$I_B(pA)$	$I_O(pA)$	$V_{IO}(\mathrm{mV})$	$I_B(pA)$	$I_O(pA)$
Valor típico	3	30	5	3	30	3
Valor máximo	6	200	100	10	200	50

Todas las tensiones a determinar son amplificadas para así aumentar la precisión en la medición. Una posibilidad sería amplificar a lazo abierto. Este método cuenta con dos desventajas:

- La ganancia a lazo abierto A_{vol} típica de ambos amplificadores es 200 V/mV. Con los valores de la tabla ??, el amplificador saturaría.
- Incluso si no hubiera saturación,

Por estos motivos se utiliza amplificación a lazo cerrado. En la figura 16 se muestra un circuito de medición de V_{IO} con ganancia lazo cerrado. Sabiendo que la ganancia de un circuito de amplificación no inversor es $1 + \frac{R_2}{R_1}$, se obtiene $V_{IO} = \frac{R_1}{R_1 + R_2} \cdot V_{OUT}$.

(b) Con op-amp ideal y fuente de tensión modelando el op-amp real y su tensión de offset

(a) Con op-amp real

Figura 16: Circuito de medición de V_{IO} simplificado. $V_{OUT} = V_{IO} \cdot \left(1 + \frac{R_2}{R_1}\right)$. No mide corrientes de bias y amplifica todas las frecuencias por igual.

Ya que las señales que se quieren medir tienen una amplitud comparable con el ruido que pueda llegar a inducirse en el circuito, es conveniente reducir la amplificación para las frecuencias mayores a cero. Esto se logra en el circuito presentado en la consigna (figura 17)

redaccion

redaccion: avol es super

impreciso

bocha entonces el resultado seria muy impreciso

cambia una

Figura 17: Circuito de medición de V_{IO} , I_B^+ y I_B^- . El dispositivo cuyas características se miden es el DUT, o device under test, el cual es un amplificador con V_{IO} y I_B no despreciables.

grafico de consigna con los valores posta

Figura 18: Mismo circuito que en la figura 17 cambiando el DUT por el modelo de la figura 11

Se utiliza un diagrama de flujo de señal (figura 19b) para obtener la función de transferencia del sistema. Se tomaron la siguiente consideraciones:

- $\Delta V_{R1} = I_b^- \cdot 10\Omega \approx 0$
- $I_{R2} \approx I_{R3}$
- La ganancia a lazo abierto de ambos amplificadores es A_{vol}^3

- (a) Diagrama de flujo de señal para el circuito de la (b) Simplificación del diagrama de flujo de señal. La esconsigna usando el modelo de la figura para el DUT
 - tructura coincide con la de un circuito con realimentacion (ver figura 14).

El diagrama de flujo de señal coincide con el de un sistema realimentado descripto en la secci'on 3.3. La única diferencia es que en este caso la entrada no es una única señal sino una suma:

$$V_{in} = V_{IO} + I_B^+ \cdot R6 - I_B^- \cdot R5 \tag{7}$$

Cabe destacar V_{in} es una forma abstracta de agrupar los efectos generados por tres señales reales distintas, y no corresponde necesariamente con una diferencia de potencial real entre dos puntos.

Se puede obtener entonces la ganancia de lazo cerrado y la ganancia de realimentación del circuito:

$$\beta = \frac{1}{561}$$

 $^{^3}$ Es importante distinguir la ganancia a lazo abierto de un $\mathit{op\text{-}amp}\ A_{vol}$ de la ganancia a lazo abierto del circuito total A_{OL}

$$A_{OL} = -\frac{A_{vol}^2}{1 + sRC \cdot A_{vol}}$$

Con estos valores y teniendo en cuenta la ecuación 5 se obtiene la función transferencia del sistema:

$$H(s) = \frac{-\frac{A_{vol}^2}{1 + sRC \cdot A_{vol}}}{1 + \frac{A_{vol}}{1 + sRC \cdot A_{vol}}\beta} = -\frac{1}{\frac{1}{A_{vol}^2} + \beta} \cdot \frac{1}{\frac{s}{1 + A_{vol}^2\beta}} + 1$$
(8)

Si se considera que $A_{vol}^2 \beta \gg 1 \Rightarrow \beta \gg \frac{1}{A_{vol}^2}$ se puede simplificar la expresión:

$$H(s) = -\frac{1}{\beta} \cdot \frac{1}{\frac{s}{\frac{A_{vol}\beta}{BC}} + 1} \tag{9}$$

Sabiendo que $\lim_{T\to\infty} A_{CL} = A_{CL \, ideal}$:

$$A_{CL\,ideal} = -\frac{1}{\beta} = -561\tag{10}$$

3.4.1 Funcionamiento en DC: mediciones de V_{IO} y I_B

Cuando f=0, evaluando en la función transferencia (ecuación 8) se obtiene que la ganancia del circuito es $-\frac{1}{\beta}=-561$, por lo que $V_{in}=-\frac{V_{out}}{561}$

Medición de V_{IO} : Cortocircuitando las resistencias R5 y R6 se obtiene que $V_{in} = V_{IO}$, valor que se puede obtener midiendo V_{OUT} :

$$V_{IO} = -\frac{V_{OUT}}{561}$$

Medición de I_B^{\pm} y I_B : Cortocircuitando R5 se obtiene $-\frac{V_{OUT}}{561} = V_{IO} + I_B^+ \cdot R6$. Despejando:

$$I_B^+ = \frac{1}{R6} \cdot \left(-\frac{V_{OUT}}{561} - V_{IO} \right)$$

Análogamente,

$$I_B^- = -\frac{1}{R5} \cdot \left(V_{IO} + \frac{V_{OUT}}{561} \right)$$

Una vez obtenidas I_B^{\pm} , se calcula I_B definida como $\frac{I_B^+ + I_B^-}{2}$

Las mediciones que son acordes a lo especificado en la hoja de datos son V_{IO} y I_B en los dos amplificadores. Por otro lado, se midieron valores de I_O mayores al máximo especificado por el fabricante, también en los dos casos.

	$\mathrm{TL}($	081	LF356		
Parámetro a calcular	$V_{OUT}(mV)$	Resultado	$V_{OUT}(mV)$	Resultado	
V_{IO}	255	$-0.455\mathrm{mV}$	135	-0.241 mV	
I_B^+	0,675	$453 \mathrm{pA}$	$0,\!179$	$241\mathrm{pA}$	
I_B^-	202	$-94.5\mathrm{pA}$	207	$-143 \mathrm{pA}$	
I_{IO}		584 pA		$384 \mathrm{pA}$	
I_B		$179~\mathrm{pA}$		$49 \mathrm{pA}$	

Table 2: Resultados

3.4.2 Funcionamiento en AC

3.5 Estabilidad en diferentes configuraciones

La estabilidad del sistema se analiza viendo la posición de los polos en el plano complejo

En la figura 15 se muestran ejemplos de realimentación negativa y positiva en un amplificador operacional.

3.5.1 Consigna

3.5.2 Uno invertido

3.5.3 Ambos invertidos

3.6 Medición de V_{IO} y I_B^{\pm}

- estabilidad
- inversion de los opamps

4 Circuitos integradores y derivadores

Algunas aplicaciones útiles de circuitos con amplificadores operacionales implican realizar operaciones matemáticas entre las señales involucradas en un circuito. En esta sección estudiaremos los casos particulares de derivación e integración con op amps. En ambos circuitos, se utilizará el operacional LM833, así como una resistencia de $R=15k\Omega$ y un capacitor de C=6.8nF.

4.1 Análisis matemático

Dado que todos los circuitos estudiados en esta sección presentan la misma topología general, analizaremos el caso general para cada modelo de operacional, y para obtener los resultados particulares bastará reemplazar en el resultado final con los valores de Z_1 y Z_2 que corresponda.

Figura 20: Circuito inversor

4.1.1 A_0 infinito

Si consideramos que $V^- = V^+$, entonces este circuito presenta una tierra virtual en ese punto, y por lo tanto puede resolverse trivialmente, obtieniendo:

$$H(s) = -\frac{Z_2(s)}{Z_1(s)} \tag{11}$$

$$Z_{in}(s) = Z_1(s) \tag{12}$$

4.1.2 A_0 finito

Al considerar que la ganancia no es infinita, ya no se cumple que $V^-=0$, aunque mientras que sigamos admitiendo que la impedancia del operacional es infinita, existe una sola corriente en el circuito. Por lo tanto las ecuaciones quedan planteadas como:

$$\begin{cases} V_{in} - V_{out} = I \cdot (Z_1 + Z_2) \\ V^- = V_{out} + I \cdot Z_2 \\ V_{out} = -A_0 \cdot V^- \end{cases}$$

En este caso, el resultado obtenido es:

$$H(s) = -\frac{A_0 \cdot Z_2}{Z_2 + (A_0 + 1) \cdot Z_1} \sim -\frac{A_0 \cdot Z_2}{Z_2 + A_0 \cdot Z_1}$$
(13)

$$Z_{in}(s) = \frac{Z_2}{A_0 + 1} + Z_1 \sim \frac{Z_2}{A_0} + Z_1 \tag{14}$$

Podemos verificar la validez de estas expresiones notando que $\lim_{A_0\to\infty}$ llegamos, en ambos casos, a los resultados de la sección anterior.

Para el operacional utilizado, el valor de A_0 es 110dB.

4.1.3 $A_{vol}(s)$

Para obtener la fórmula del modelo de polo dominante aplicado a este circuito, basta reemplazar A_0 por $A_{vol}(s) = \frac{A_0}{\frac{s}{v_{ol}}+1}$ en las ecuaciones 13 y 14. Se obtiene entonces:

$$H(s) = -\frac{A_0 \cdot Z_2}{\left(\frac{s}{\omega_p} + 1\right)(Z_2 + Z_1) + A_0 \cdot Z_1} \sim -\left(\frac{A_0 \cdot Z_2}{A_0 \cdot Z_1 + Z_2}\right) \cdot \left(\frac{1}{\left(\frac{Z_1 + Z_2}{A_0 \cdot Z_1 + Z_2} \cdot \frac{1}{\omega_p}\right) \cdot s + 1}\right)$$
(15)

$$Z_{in}(s) = \frac{\left(\frac{s}{\omega_p} + 1\right)(Z_2 + Z_1) + A_0 \cdot Z_1}{\frac{s}{\omega_p} + A_0 + 1} \sim \left(\frac{Z_2 + A_0 \cdot Z_1}{A_0}\right) \cdot \left(\frac{\left(\frac{Z_1 + Z_2}{Z_2 + A_0 \cdot Z_1}\right) \cdot \frac{1}{\omega_p} \cdot s + 1}{\frac{1}{A_0 \cdot \omega_p} \cdot s + 1}\right)$$
(16)

En este caso también se verifica que el término que no depende de ω_p tiende a la ganancia cuando A_0 tiende a infinito. Sin embargo, se agrega un polo a la transferencia, y un polo y un cero a la impedancia.

En el LM833, dado que el valor del BWP = 16MHz, $\omega_p = 2\pi \frac{BWP}{A_0} \sim 2\pi \cdot 50.6Hz$.

4.2 Derivador

Para armar un circuito derivador con los componentes mencionados, la conexión debe realizarse de la siguiente manera:

Figura 21: Circuito derivador

4.2.1 Análisis matemático: respuesta en frecuencia

Si consideramos el modelo ideal para el op amp, al tener una tierra virtual en V^- , la entrada y la salida están aisladas entre sí, reemplazando en ?? $Z_1 = \frac{1}{sC}$ y $Z_2 = R$:

$$H(s) = -RC \cdot s$$

Antitransformando esta expresión, obtenemos que $v_{out}(t) = -RC \cdot \frac{\partial}{\partial t} v_{in}(t)$, con lo cual analíticamente podemos ver que cumple la función planteada inicialmente, si bien la salida estará invertida y multiplicada por una constante.

Con el modelo de A_0 constante, en cambio, la ecuación resultante es:

$$H(s) = -\left(\frac{A_0 \cdot RC}{1 + A_0}\right) \cdot \left(\frac{s}{\left(\frac{RC}{A_0 + 1}\right) \cdot s + 1}\right)$$

Dado que $A_0+1\sim A_0$, la constante es prácticamente idéntica a la del modelo ideal, pero en este caso se agrega a la transferencia un polo en $f=\frac{A_0+1}{2\pi\cdot RC}\sim 493MHz$. Por lo tanto, sus efectos no serían apreciables hasta llegar a frecuencias en el orden de los MHz, con lo cual hasta frecuencias de kHz el circuito debería derivar correctamente.

Por último, teniendo en cuenta el polo dominante del operacional, la función transferencia queda reducida a:

$$H(s) = -\left(\frac{A_0 \cdot RC}{1 + A_0}\right) \cdot \left(\frac{s}{\left(\frac{RC}{(1 + A_0) \cdot \omega_p}\right) \cdot s^2 + \left(\frac{RC \cdot \omega_p + 1}{(1 + A_0) \cdot \omega_p}\right) \cdot s + 1}\right)$$

En este caso, el polo queda de segundo orden, con $f_0 = \frac{1}{2\pi} \sqrt{\frac{(1+A_0)\cdot \omega_p}{RC}} = 158kHz$, con $\xi = \frac{\omega_0\cdot (RC\cdot \omega_p+1)}{2\omega_p\cdot (1+A_0)} = 0.005$. La respuesta en frecuencia, entonces, presentará un sobrepico considerable en esta frecuencia, y un salto abrupto de -180° en la fase. Sin embargo, aquí no se están teniendo en cuenta los 50Ω de impedancia del generador de funciones que quedarán en serie con el circuito, que provocarían que el sobrepico no sea tan pronunciado. Esto se tratará más en detalle en la sección 4.3.

Como el último modelo introduce un cambio tan grande en el comportamiento del circuito, será el que contrastaremos con los resultados. Se espera que el circuito derive señales con frecuencia menor a la del polo. El alto factor de calidad sugeriría que no se empezarían a observar cambios hasta frecuencias del mismo orden que ella.

4.2.2 Análisis matemático: impedancia de entrada

Idealmente, la impedancia de entrada del circuito sería solo la del capacitor. Si utilizázemos la expresión 14, deberíamos además sumar $\frac{R}{A_0} \sim 0.05\Omega$, pero esto sería comparable con la impedancia del capacitor sólo en frecuencias del orden de los 100MHz, con lo cual despreciaremos su aporte.

Con el modelo de $A_{vol}(s)$, la función que se obtiene es:

$$Z_{in}(s) = \frac{1}{sC} \cdot \left(\frac{\frac{RC}{(1+A_0) \cdot \omega_p} \cdot s^2 + \frac{1+RC \cdot \omega_p}{(A_0+1) \cdot \omega_p} \cdot s + 1}{\frac{1}{(1+A_0) \cdot \omega_p} \cdot s + 1} \right)$$

Al igual que la transferencia, esta función tiene $f_0 = 158kHz$ con un $\xi = 0.05$, pero en este caso en un cero en lugar de un polo. El polo que sí presenta esta función está en 16MHz.

4.2.3 Análisis de resultados: respuesta en frecuencia

Figura 22: Respuesta en frecuencia del derivador

En la figura anterior, se observa que el modelo logró precedir correctamente la frecuencia del polo de segundo orden, así como la presencia de un sobre pico. Sin embargo, no se pudo medir en frecuencias muy cercanas a este punto, debido a limitaciones del slew rate de $7\frac{V}{\mu s}$ del operacional. A $158k\Omega$, si estimamos

que la ganancia sería de 50dB como calcula el simulador, la máxima tensión de entrada admisible sería de $V_{in} = \frac{7\frac{V}{\mu s}}{2\pi \cdot 150kHz \cdot 10^{50/20}} \sim 22mV$, lo cual es del orden del ruido del osciloscopio y por lo tanto no sería una medición confiable.

Observando el comportamiento de la fase, podemos estimar que la predicción del simulador es mejor que la analítica. El hecho de que la fase continúa decreciendo más allá de los 90° sugeriría que hay otra singularidad en el sistema, que proviene de algún parámetro del operacional que el simulador tiene en cuenta y nosotros no. Puesto que la data sheet informa que la frecuencia en la cual el operacional tiene ganancia unitaria es 9MHz, en lugar de los 16 que indicaría el bandwidth product, es razonable suponer que el operacional tiene otro polo de frecuencia mucho mayor a la del primero, que llega a apreciarse debido a que se está trabajando a frecuencia y ganancia elevadas.

Otra información que se puede extraer de la fase es el rango de frecuencias donde el circuito deriva. La fase se mantuvo en el rango $(-90 \pm 3)^{\circ}$ hasta f = 20kHz. Más allá de ese punto, se considera que no se puede utilizar el circuito como derivador.

4.2.4 Análisis de resultados: impedancia de entrada

Figura 23: Impedancia de entrada del derivador compensado

Estas mediciones se realizaron colocando una resistencia de $10k\Omega$ en serie con el circuito, y asumiendo que la misma no introduce cambios de fase en el rango de frecuencias donde se trabajó.

Para el rango de frecuencias medido, el comportamiento es prácticamente idéntico al ideal: la fase se

mantiene constante en -90° , y la magnitud baja 20dB por década. No se pudieron hacer mediciones más allá de los 120kHz debido a las limitaciones explicadas en la sección anterior. En la última medición se llega a apreciar que el descenso en magnitud es más abrupto, lo cual coincidiría con la presencia del cero de orden dos que se observa en la teoría y en Spice.

Si asumimos que la impedancia medida es puramente capacitiva, podemos calcular para cada medición $C=(2\pi\cdot f\cdot 10^{|H|/20})^{-1}$. Salvo para el útimo punto, se obtienen valores de C entre 6.9 y 9nF. Siendo que el valor del capacitor utilizado era $6.8nF\pm 5\%$, estos valores indicarían que una parte de la impedancia proviene de otros elementos, pero de todas formas el orden de magnitud es el adecuado. Para la última medición, sin embargo, se obtiene C=12.4pF. Esto refuerza la idea de que en esta medición influye el cero de segundo orden proveniente del polo del operacional.

4.2.5 Análisis de resultados: respuesta transitoria

Según lo medido en la sección 4.2.3, deberían poder derivarse señales de $f \leq 20kHz$.

Figura 24: Respuesta del derivador (verde) a una entrada triangular (amarilla) de 1kHz

Aquí se observa que el circuito deriva correctamente la señal de entrada. Cabe aclarar que la salida se muestra invertida para que se aprecie el efecto derivador, pues como ya se mencionó la salida está multiplicada por (-1).

Algo que llama la antención en esta foto son los picos cuando la pendiente de la entrada cambia de signo.

Figura 25: Respuesta transitoria del derivador (verde) a una entrada triangular (amarilla) de 1kHz

Se observa que el circuito oscila antes de estabilizarse. Esto es consistente con el hecho de que los polos del sistema son complejos conjugados, es decir, con que el sistema es subamortiguado.

Cuando observamos, en cambio, la respuesta de una frecuencia donde la fase ya no es cercana a -90° , la salida no coincide con la derivada de la entrada. Esto también puede explicarse con que, como se observa en la figura ??, el circuito no llega a estabilizarse en un período y sólo se observa la respuesta transitoria.

Figura 26: Respuesta del derivador (verde) a una entrada triangular (amarilla) de 50kHz

4.3 Derivador compensado

En la sección anterior, la elevada ganancia del sistema en la frecuencia del polo impidió que se pudiesen tomar mediciones en un gran rango de frecuencia. Por lo tanto, procederemos a continuación a compensar este comportamiento.

Si observamos la función transferencia ideal del circuito derivador, observamos que la ganancia se hace infinita cuando la frecuencia también tiende a infinito. Esto se debe a que el sistema presenta un cero en el origen, que proviene de que para frecuencias altas la impedancia del capacitor disminuye y tiende a cero. Esto puede solucionarse imponiendo una impedancia mínima independiente de la frecuencia, lo cual se puede lograr colocando un resistor en serie con el capacitor.

Figura 27: Circuito derivador compensado

4.3.1 Análisis matemático: respuesta en frecuencia

El análisis de este circuito es equivalente al efectuado en la sección 4.1, efectuando las sustituciones $Z_1 = R_C + \frac{1}{sC}$ y $Z_2 = R$.

La función transferencia que se obtiene es:

$$H(s) = -\left(\frac{A_0 \cdot RC \cdot s}{1 + A_0}\right) \cdot \left(\frac{1}{\frac{(R + R_C) \cdot C}{(1 + A_0) \cdot \omega_p} \cdot s^2 + \left[\frac{1}{\omega_p} + C \cdot (R + R_C \cdot (1 + A_0))\right] \cdot \frac{1}{1 + A_0} \cdot s + 1}\right)$$
(17)

Por lo tanto, para eliminar el sobrepico debemos obtener el valor de R_C tal que $xi \ge 0.707$. Esto se resolvió con el siguiente código en Matlab:

```
r = 15e3; c = 6.8e-9;
Ao = 10(110/20); % de la hoja de datos: Ao=110dB
BWP = 16e6;
wp = 2*pi*BWP/Ao;
syms r2;
w0 = sqrt(wp*(1+Ao)/c/(r+r2));
```

```
xi = w0/2*(c*(r+r2*(1+Ao))+1/wp)/(1+Ao);
r2 = eval(solve(xi == 0.707, r2));
```

Se obtiene así que $R_C \ge 210\Omega$. Sin embargo, si se tomase la mínima indispensable para quitar el sobrepico, se tendría una ganancia de aproximadamente 40dB en la frecuencia del polo. Por lo tanto, se utilizó $R_C = 470\Omega$, con la cual la magnitud no debería superar los 30dB.

Como ahora el sistema esta sobreamortiguado, los polos ya no son complejos conjugados sino dos polos reales distintos. Calculando ω_0 y ξ con el valor elegido de R_2 , las frecuencias de corte que se obtienen son

4.3.2 Análisis matemático: impedancia de entada

En este caso, la impedancia de entrada ideal es R_C en serie con el capacitor:

$$H(s) = \frac{1}{C} \cdot \frac{R_C C \cdot s + 1}{s}$$

Esta transferencia cuenta con un polo en el origen y un cero en $f = \frac{1}{2\pi \cdot R_C C} \sim 50 kHz$.

De igual manera que el caso anterior, se desprecian los 0.05Ω que se suman en el modelo de A_0 constante.

Considerando, en cambio, el modelo de polo dominante, la impedancia de entrada que se obtiene es:

$$Zin(s) = \frac{1}{s \cdot C} \cdot \left(\frac{\frac{(R + R_C) \cdot C}{\omega_p} \cdot s^2 + \left[\frac{1}{\omega_p} + C \cdot (R + R_C \cdot (1 + A_0)) \right] \cdot \frac{1}{1 + A_0} \cdot s + 1}{\frac{1}{(1 + A_0) \cdot \omega_p} \cdot s + 1} \right)$$
(18)

Los ceros de esta función están en los polos de la transferencia, es decir que tiene un , y se agrega además un polo en $f_1 = 56kHz$ y $f_2 = 432kHz$. Teniendo en cuenta que se realizarán mediciones en ese rango, se utilizará este modelo para comparar con las mediciones.

4.3.3 Análisis de resultados: respuesta en frecuencia

En este caso sí se pudieron efectuar mediciones en un rango continuo de mediciones gracias a la ausencia del sobrepico. Los resultados obtenidos fueron:

Figura 28: Respuesta en frecuencia del derivador compensado

El modelo predice adecuadamente el comportamiento del circuito. El hecho de que la magnitud máxima medida no coincida con la calculada ni la simulada podría atribuirse a que las mediciones se realizaron con tasas de cambio de V_{out} cercanas, si bien inferiores, al slew rate del operacional. Este efecto se habría visto exacerbado de haber elegido una resistencia de compensación menor.

En base a los resultados obtenidos para la fase, el nuevo circuito integra hasta $f=2k\Omega$, es decir un

orden de magnitud menos que el derivador no compensado.

4.3.4 Análisis de resutlados: impedancia de entrada

Figura 29: Impedancia de entrada del derivador compensado

Las mediciones cumplen las predicciones del simulador y las analíticas, que esta vez coinciden entre ellas. Se logró satisfactoriamente lograr limitar el mínimo de impedancia de entrada.

4.3.5 Análisis de resultados: respuesta transitoria

Repetiremos la medición que realizamos para el circuito no compensado en f = 1kHz.

Figura 30: Respuesta del derivador compensado (verde) a una entrada triangular (amarilla) de 1kHz

Figura 31: Respuesta del derivador compensado (verde) a una entrada triangular (amarilla) de 1kHz

El sistema conserva su comportamiento de derivador para frecuencias menores a 2kHz como se esperaba. En este caso, además, ya no se produce un overshoot en el transitorio, si no que ahora corresponde al de un circuito de segundo orden sobreamortiguado, que es lo que pretendíamos al compensar el circuito.

Para frecuencias altas, sin embargo, el circuito ya no se comporta como un derivador. Esto sucede porque el período de la señal es menor que el tiempo del transitorio del circuito.

Figura 32: Respuesta del derivador compensado (verde) a una entrada triangular (amarilla) de 1kHz

4.4 Integrador

Colocando los componentes en el orden inverso al derivador se obtiene el circuito integrador:

Figura 33: Circuito integrador

4.4.1 Análisis matemático: respuesta en frecuencia

Reemplazando Z_1 por R y Z_2 por $\frac{1}{sC}$ en la ecuación 11, obtenemos:

$$H(s) = -\frac{1}{RC \cdot s}$$

Efectuando la antitransformada de Laplace a esta expresión, resulta que $v_{out}(t) = -\frac{1}{RC} \int_{-\infty}^{t} v(u) du$, es decir que a la salida se obtiene la integral de la señal de la entrada, invertida y multiplicada por la constante $\frac{1}{RC}$. Así planteado, este sistema tiene ganancia infinita para corriente continua. Esto podría ser un problema debido a que cualquier ruido de frecuencias bajas se verá enormemente amplificado.

Utilizando la ecuación 13, la nueva transferencia que obtenemos es:

$$H(s) = -\frac{A_0}{(A_0+1) \cdot RC \cdot s + 1}$$

Aquí el polo se traslada del origen a $f = \frac{1}{2\pi \cdot RC \cdot (A_0 + 1)} \sim 5mHz$. Esto establece un máximo de ganancia para continua, pero en una frecuencia tan baja que sería razonable esperar que sea un problema de todas maneras.

Por último, considerando el polo del operacional la transferencia final queda en:

$$H(s) = -\frac{A_0}{\frac{RC}{\omega_p} \cdot s^2 + \left(\frac{1}{\omega_p} + (A_0 + 1) \cdot RC\right) \cdot s + 1}$$

$$\tag{19}$$

Esta función tiene también un polo en 0.005Hz, pero tiene un segundo en 16MHz. Sin embargo, para esta frecuencia la atenuación probablemente sea tal que no se pueda medir la salida, puesto que los

generadores de funciones utilizados para medir sólo pueden entregar hasta $20V_{pp}$. Por lo tanto, no podría en principio apreciarse un polo en esa frecuencia.

4.4.2 Análisis matemático: impedancia de entrada

Idealmente, debido a la tierra virtual en V^- , la entrada sólo se carga con $Z_1 = R$, con lo cual la impedancia sería constante:

$$Z_{in}(s) = R$$

Si consideramos la expresión ??, obtenemos en cambio que:

$$Z_{in}(s) = \frac{(A_0 + 1) \cdot RC \cdot s + 1}{(A_0 + 1) \cdot C \cdot s}$$

Según esta expresión, tendríamos un polo en el origen y un cero en 0.005Hz. La ganancia que tendría el sistema en esas frecuencias sería, sin embargo, tan elevada que impidiría medir la entrada sin que la salida sature, con lo cual sólo se podría medir en frecuencias donde los efectos del polo y el cero ya fueron neutralizados entre sí, y la expresión se vería nuevamente reducida a $Z_{in} = R$.

Finalmente, con el modelo de A_{vol} la impedancia de entrada resulta ser:

$$Z_{in}(s) = \frac{\frac{RC}{\omega_p} \cdot s^2 + \left(\frac{1}{\omega_p} + (A_0 + 1) \cdot RC\right) \cdot s + 1}{sC \cdot (A_0 + 1) \cdot \left(\frac{1}{\omega_p(A_0 + 1)} \cdot s + 1\right)}$$
(20)

Los polos de la transferencia mencionados en 19 son ahora ceros de la impedancia. Esta función cuenta también con un polo en $f=\frac{omega_p(A_0+1)}{2\pi}\sim BWP=16MHz$, que es la misma frecuencia de uno de los ceros. Esto implica que sus efectos se ven cancelados entre sí, quedando sólo el cero en 0.005Hz.

4.4.3 Análisis de resultados: respuesta en frecuencia

Figura 34: Respuesta en frecuencia del integrador

El circuito se comporta como un integrador ideal en el rango de frecuencias donde se midió. Para frecuencias más bajas la saturación del operacional debido a la alta ganancia del circuito impidió realizar más mediciones. No se explica por qué el simulador obtiene resultados tan dispares con los obtenidos

teóricamente, si bien a partir de los 100Hz el comportamiento de la magnitud es el de un polo simple.

4.4.4 Análisis de resultados: impedancia de entrada

Figura 35: Impedancia de entrada del integrador

Hasta aproximadamente 100kHz, el comportamiento del circuito se corresponde con el modelo ideal, es decir, una resistencia de aproximadamente $15k\Omega$ con fase 0°. En frecuencias más elevadas, sin embargo, aparece un polo de primer orden en 500kHz cuya presencia no se explica ni con el modelo de $A_{vol}(s)$, ni agregando la capacidad parásita entre V^+ y V^- de 12pF, ni agregando las puntas del osciloscopio.

4.4.5 Análisis de resultados: respuesta transitoria

Según lo osbservado en la respuesta en frecuencia, el circuito debería poder integrar señales de todas las frecuencias que se midieron. Efectivamente, no se logró medir ninguna señal que no se integrara dentro del rango de frecuencias donde la salida no estaba demasiado atenuada para ser medida ni demasiado amplificada como para no poder medir la entrada. A continuación se ilustra uno de los casos medidos, donde se observa que la salida de una constante es una lineal, es decir su integral:

Figura 36: Respuesta del integrador (verde) a una entrada de tren de pulsos (amarilla) de 1kHz

4.5 Integrador compensado

Como ya se mencionó, el circuito integrador ideal tiene un polo en el cero. Esto implica que el circuito tiene, en teoría, ganancia infinita en continua. Efectivamente, cuanto más disminuía la frecuencia en el caso anterior más difícil se hacía medir, puesto que entradas de amplitud muy pequeñas saturaban el op amp. A su vez, constantemente se debía ajustar el offset del generador para compensar la corriente continua parásita que aparecía en el circuito, pues esto ocasionaba que la señal de salida saturara hasta quedar continua en $V_{out} \sim V_{cc}$.

Para compensar esta situación, se busca correr el polo del origen lo suficiente como para que en frecuencias bajas llegue a un máximo razonable. Como se explicará analíticamente a continuación, esto puede lograrse colocando una resistencia en paralelo con el capacitor. A grandes rasgos, esto evita que el

circuito funcione en *open loop* cuando el capacitor se abre por la baja frecuencia, ya que hay un mínimo de impedancia constante.

Figura 37: Circuito integrador compensado

4.5.1 Análisis de matemático

La configuración de este circuito es $Z_1 = R$ y $Z_2 = (s \cdot C + \frac{1}{R_C})^{-1} = \frac{R_C}{s \cdot R_C C + 1}$, donde llamaremos R_C a la resistencia de compensación. Puesto que el circuito integrador quedaba aptamente descripto por el modelo ideal para su respuesta en frecuencia, calcularemos el valor de R_C según este modelo.

Reemplazando en la ecuación genérica por los valores mencionados, la transferencia ideal del circuito resulta:

$$H(s) = -\frac{R_C}{R_1} \cdot \left(\frac{1}{s \cdot RC + 1}\right)$$

La ganancia se obtiene, entonces, tomando $\lim_{f\to 0^+} |H(i2\pi f)| = \frac{R_C}{R_1}$. Teniendo en cuenta que esta será la amplificación del ruido de señales de baja frecuencia, donde el sistema no podrá integrar, tomaremos como criterio que esta ganancia sea 6dB, es decir que $R_C \sim 2 \cdot R_1 = 30k\Omega$. El valor comercial elegido es entonces $R_C = 27k\Omega$. El cero queda posicionado entonces en $f = \frac{1}{2\pi \cdot R_C C} \sim 870 Hz$.

La impedancia de entrada ideal es la misma que se obtiene en el integrador no compensado.

Las fórmulas de H(s) y $Z_{in}(s)$ para el modelo A_0 finito y con polo dominante se obtienen de forma análoga a como se operó hasta el momento: reemplazando los valores de Z_1 y Z_2 en la expresiones genéricas por los de este circuito. Sin embargo, como no aportaron información que afectara lo medido en el caso del integrador (y como se verá más adelante, tampoco en este), no se incluirán.

4.5.2 Análisis de resultados: respuesta en frecuencia

Figura 38: Respuesta en frecuencia del integrador compensado

Los resultados obtenidos con el simulador y con la teoría son tan similares que no logran distinguirse en el gráfico. Las mediciones también quedaron en línea con lo predicho por ambos modelos. Cabe aclarar que la función utilizada para el cálculo teórico es la de utiliza $A_{vol}(s)$, pero sin embargo el comportamiento

no se distingue de un sistema con un polo simple en $f \sim 900 Hz$.

4.5.3 Análisis de resultados: impedancia de entrada

Figura 39: Impedancia de entrada del integrador compensado

En este caso, se observa un polo de primer orden en f = 500kHz. Esto no corresponde con ninguno de los modelos planteados ni se puede explicar agregando las puntas ni la differential input capacitance. Sin embargo, el comportamiento inicial es el de una resistencia de $\sim 15k\Omega$, que era lo que se esperaba obtener. También en este caso se está utilizando la expresión de Z(s) con $A_{vol}(s)$ para el cálculo teórico.

4.5.4 Análisis de resultados: respuesta transitoria

Al correr el polo del origen a 900Hz, el circuito deja de integrar en señales de frecuencia de este orden de magnitud o menores, puesto que hasta ese punto se comporta como constante (predomina la resistencia).

Figura 40: Respuesta del integrador compensado (verde) a una entrada de tren de pulsos (amarilla) de 1kHz

Cuando la frecuencia es mucho mayor que la de corte, en cambio, el término constante se hace despreciable y la transferencia se puede aproximar con la de un integrador ideal. Entonces, podemos observar en la salida la integral de la entrada.

Figura 41: Respuesta del integrador compensado (verde) a una entrada de tren de pulsos (amarilla) de 50kHz

4.6 Conclusiones

Si bien los circuitos no compensados cumplen su función de integrador y derivador en un amplio rango de frecuencias, ambos traen problemas a la hora de utilizarlos.

En el caso del derivador, debido a la interacción entre los polos del operacional con el resto del circuito se formó un sistema de segundo orden subamortiguado. Esto provoca picos de tensión en la respuesta transitoria y ganancia de más de 40dB en la frecuencia del polo, lo cual lo hace inutilizable en este rango de frecuencias. Al compensar este efecto con una resistecia en serie, limitando la impedancia de entrada para que no se haga 0 cuando el capacitor pasa a comportarse como un cable, el sistema pasó de estar subamortiguado a sobreamortiguado, con lo cual estos problemas se vieron solucionados. Sin embargo, el rango de frecuencias donde el circuito derivaba se redujo al de mucho menores que la frecuencia de corte. Elegir una resistencia de compensación menor habría ampliado este rango unos kHz más, pero a costo de tener más ganancia entre el primer polo y el segundo.

En cuanto al integrador, fue necesario limitar la ganancia en frecuencias bajas para que offsets de unos pocos milivolt en la entrada de continua no deseada saturaran el operacional. Al compensar este problema, sin embargo, el circuito dejó de integrar para frecuencias menores o del mismo orden que la del nuevo polo.

5 Pedal de Distorsión

5.1 Introducción

Se busca implementar un pedal de distorsión para guitarra eléctrica. La distorsión a implementar será de tipo clipping, utilizando diodos para efectuar tal distorsión. Las señales de audio se manejan con niveles de tensión, que representan directamente la onda de entrada, en nuestro caso proveniente de una guitarra eléctrica. Es luego de la conversión de esta onda sonora a una eléctrica que se realizan los cambios de tensión que darán los efectos distorsionantes deseados al sonido. La señal eléctrica será nuevamente convertida a audio y será la salida de cualquier dispositivo reproductor de audio de elección que caiga dentro de las consideraciones que se enumerarán en la subsección Diseño del circuito.

A modo de delimitar un marco teórico y notacional a partir del cual se presentarán con mayor claridad y precisión los efectos del pedal, se procede a definir el concepto de distorsión a través de la ausencia de la misma:

• Un sistema con entrada x(t) y salida y(t) no distorsiona cuando $y(t) = A x(t+\tau)$, con A y τ dos constantes. En caso de que esta relación entre entrada y salida no se cumpla, se dice que el sistema en cuestión distorsiona.

De la definición anterior se desprende que un amplificador operacional ideal cuya entrada $V_d = V^+$ - V^- no supere los valores de saturación característicos y que tenga comportamiento lineal en amplitud y en fase podrá ser clasificado como un amplificador puro y por lo tanto comprenderá un sistema no distorsionante.

La distorsión de tipo clipping consiste en el establecimiento de un valor de tensión "techo" o límite, el cual la señal de entrada no podrá sobrepasar en su forma original (sufrirá distorsión). En general, la distorsión será en amplitud, de modo que la salida del sistema y(t) tenderá a valores de tensión cercanos a los del valor techo en aquellos casos en los que la entrada x(t) supere dicho valor. Cabe destacar que en el caso del pedal implementado, el valor techo utilizado será una cota del módulo de la señal de entrada tal que si T es el valor techo, $|x(t)| \leq T$. Este tipo de clipping se llama clipping simétrico. De esta forma, se puede diferenciar entre dos tipos de clipping, a saber:

1. **Hard-Clipping**: El valor techo del clipping no podrá ser excedido por la señal de salida, y en caso de que la señal de entrada sea superior al valor techo, la señal de salida adoptará el valor constante del techo. Matemáticamente:

$$y(t) = \begin{cases} T & \text{si } x(t) \ge T \\ x(t) & \text{si } -T \le x \le T \\ -T & \text{si } x(t) \le -T \end{cases}$$
 (21)

De esta definición se muestra el efecto de clipping sobre una senoidal:

Figura 42: Ejemplo de hard-clipping

2. Soft-Clipping: El valor techo del clipping podrá ser levemente excedido de manera tal que la transición entre el valor que adoptaría la señal de entrada sin distorsión y el que deberá adoptar la señal de salida sea más suave.

Figura 43: Ejemplo de soft-clipping

Figura 44: Soft-clipping vs. Hard-clipping

5.2 Consideraciones de diseño

Antes de comenzar con el diseño, se definen las asumpciones iniciales sobre las zcuales se comenzará con el diseño del circuito. Estas asumpciones son elegidas de forma tal que se pueda abarcar un gran espectro de las guitarras y aplificadores comerciales.

- La entrada será una señal de audio (20Hz a 20KHz) de amplitud menor o igual a 300mV pico a pico (dentro de esta categoria caen la mayoría de los micrófonos de guitarra eléctrica). La entrada en principio tendrá offset nulo.
- La salida debe ser adecuada para un equipo de audio, por lo que tampoco tendrá tensión de offset continuo.
- La fuente de alimentación debe ser de 9V no partida. De usar un AC ADAPTER, se debe considerar que suele tener un ripple no deseado producto de la conversión no ideal de alterna a continua.
- La salida se conectará a un amplificador de guitarra con impedancia de entrada Z_{in} mayor o igual a $200K\Omega$. Esto es el caso en la mayoría de los amplificadores de guitarra, como por ejemplo la serie Mustang GT de Fender y la serie Cube de Roland, los cuales tienen $Z_{in} = 1M\Omega$, o el Fender Rumble para bajo, con $Z_{in} = 202K\Omega$

5.3 Diseño del circuito

El circuito con el cual se impondrá la distorsión, con los valores todavía sin definir, es:

Figura 45: Circuito de distorsión de clipping a implementar para el pedal de guitarra.

Se identifica a la resistencia del principio del circuito R8 como un pull-down resistor, que se procederá a explicar a continuación:

El capacitor C1 se cargará y descargará según la señal de entrada en el momento en que el circuito se prenda (se conecte una entrada). Pero luego de que el circuito se vuelva a desconectar, el capacitor

C1 tendrá ahora un nivel de carga fijo no nulo. Este a su vez podrá comenzar a descargarse lentamente por no ser un capacitor ideal, pero en principio tendrá un valor de carga al momento de ser reconectado. Cuando es reconectado, el capacitor deberá volverse a cargar o descargar apropiadamente según la nueva señal de entrada, teniéndose en cuenta la carga que ya estaba acumulada previamente en C1, por lo que podrá haber cambios abruptos no deseados en la demanda y el flujo de corriente de entrada a su vez como también en la tensión.

Como solución a este problema se inserta la resistencia R8, que tendrá el objetivo de proveer un contacto directo con tierra cuando la entrada está desconectada, de esta manera descargando el capacitor C1 y así evitando los efectos de rebote no deseados al reconectar.

Se elige un valor grande de resistencia (1 M Ω) para R8 de forma tal que cuando el circuito esté conectado, la demanda de corriente a tierra sea poca y no afecte al correcto funcionamiento del equipo.

Este circuito cuenta además con tres secciones notables a saber:

- 1. Alimentación.
- 2. Amplificación.
- 3. Clipping.

La numeración de las secciones se corresponde con la imagen anterior. Cada una puede analizarse independientemente tomando los recaudos necesarios.

5.3.1 Características del amplificador

5.3.2 Sección de alimentación

Con el objetivo de minimizar tanto el espacio ocupado por el pedal como la cantidad de baterías requeridas por el usuario para utilizarlo, se busca que el amplificador operacional (opamp) requerido para amplificar la señal de entrada sea alimentado únicamente por una batería en el extremo Vcc+, mientras que el otro extremo de alimentación esté conectado directamente a tierra, de esta manera se "ahorra" una batería, que en este caso en particular será de 9 volts por el tipo de señal con el que se trata.

El problema de este tipo de alimentación es que si la señal de entrada oscila alrededor del 0V, el opamp saturará cuando se rodee estos valores, por lo que la señal será completamente distorsionada de una manera no deseada. Como solución, se plantea montar a la señal de entrada sobre una continua de 4.5 V, por lo que si la señal original cumple con las consideraciones de diseño mencionadas en la sección anterior, el opamp no se saturará si se lograse evitar amplificar la continua sobre la cual se la monta.

Es así como para la alimentación se propone el siguiente sub-circuito:

Figura 46: Esquemático sección de alimentación

En el caso en que $R_1 = R_2$, las dos resistencias crean un divisor resistivo con el cual se obtienen nodos 9V, 4.5V, y 0V. Esto funciona correctamente siempre que la corriente que circula por ambas resistencias no sea significativamente distinta, ya que en caso contrario la tensión que debería ser de 4.5V va a tomar otro valor.

La función del capacitor es eliminar cualquier ruido o ripple presente en la tensión de entrada. El ripple es producto del método de funcionamiento de los transformadores de alterna a continua.

Otra causa de ripple para la fuente de continua se dará en aquellos casos en los que el opamp demande corriente abruptamente, para lo cual, dado que la batería no es ideal, no podrá mantener la tensión completamente constante. Este problema se soluciona con el agregado del capacitor C_5 , que acumulará carga podrá aportar tensión cuando aparezca el riple, manteniendo la tensión continua. Es claro ver que la impedancia del camino a tierra que produce C_5 disminuye cuanta más alta sea la frecuencia, por lo que fluctuaciones más grandes en tensión irán directamente a tierrra en vez de influir en el resto del circuito.

Dado que los cambios en la demanda de corriente por parte del opamp pueden ser significativamente abruptos, se busca un capacitor que pueda acumular una carga acorde (alta capacitancia, en nuestro caso $1\mu F$).

5.3.3 Sección de clipping

Figura 47: Esquemático sección de clipping

Esta sección del circuito distorsiona la señal recortando abruptamente cualquier pico que se exceda del rango $\pm 0.6 \mathrm{V}$ (si no se excede, no se modifica). Este proceso, explicado en al introducción, se conoce como clipping (ver figura 49). El efecto de clipping genera un aumento en los armónicos de alta frecuencia ya que la señal tiende a la forma de una cuadrada en sus picos más altos. Como se mencionó en la introducción, se decidió usar clipping simétrico al elegir acotar el módulo de la señal de entrada por $T=0.6 \mathrm{V}$.

Los diodos suelen ser representados por su curva característica:

Figura 48: Curva característica del diodo

De esta curva se hace notar que al superar el valor de tensión V_f o al llegar a un nivel de tensión menor a V_R , la demanda de corriente por parte del diodo aumentará exponencialmente y, por no poder suplirla, el circuito mantendrá la tensión a ese nivel en caso de recibir una señal que deba sobrepasar los límites antes mencionados. Es así como los diodos suelen utilizarse para realizar clipping. En particular, la configuración elegida en el circuito es tal que el clipping será en los valores de V_f y $-V_f$, por lo que el clipping resultará simétrico.

Figura 49: Dos tipos de clipping con diodos: simétrico (49a) y asimétrico (49b)

5.3.4 Sección de amplificación

Figura 50: Esquemático sección de amplificaión

Dado que la alimentación no es partida, se alimenta el amplificador con $Vcc^- = 0V$ y $Vcc^+ = 9V$, lo cual genera la necesidad de montar la señal de audio sobre una continua de 4.5V para evitar que el opamp sature. Para lograr esto, se conecta la entrada a 4.5V, poniendo el capacitor C_1 para que solo pase la tensión alterna de la señal y no la continua de entrada. Dado que se quiere que este capacitor afecte lo mínimo posible a cualquier frecuencia que no sea continua(filtro pasa-altos de frecuencia de corte menor a $20 \mathrm{Hz}$), se eligió un valor alto de capacidad: $1\mu F$.

Para no amplificar la componente continua agregada de la señal, se utiliza el capacitor C_2 . Se puede ver el efecto analizando la función transferencia del no inversor resultante: $H(s) = 1 + \frac{R4}{R3 + \frac{1}{S \cdot C_2}} = 1 + \frac{R4 \cdot S \cdot C_2}{R3 \cdot S \cdot C_2 + 1}$, que en S = 0 resulta ser una ganancia H(s) = 1, es decir la continua no se amplifica.

En cambio, cuandos $\Rightarrow \infty$, $H(s) \approx 1 + \frac{R4}{R3}$, por lo que la transferencia sería independiente de la frecuencia a partir de cierto valor.

Sin embargo, este resultado viene de asumir un modelo de amplificador ideal en el cual no se considera el slew rate (SR), o máxima taza de cambio de tensión de salida. Se considera el que amplificador tiene un comportamiento lineal si

$$SR \geqslant G \cdot A \cdot 2\pi \cdot f$$

siendo G la ganancia (en este caso $1 + \frac{R_4}{R_3 + R_9}$ si despreciamos los efectos de C_2), A la amplitud de la señal, y f su frecuencia. Para considerar el peor caso, basta tomar $G = 1 + \frac{R_4}{R_3} = 11$ y A = 0.3V (ver sección

5.2), y sabiendo que $SR = 0.5V/\mu s$ se puede obtener la máxima frecuencia en la cual el comportamiento se considera lineal:

$$5 \cdot 10^5 V/s \geqslant 11 \cdot 0.3V \cdot 2\pi f$$
$$\Rightarrow 24.1KHz \geqslant f$$

El SR no afecta el desempeño del pedal como instrumento ya que sus efectos se notan solo en frecuencias fuera del rango audible.

 R_4 y R_3 controlan la máxima ganancia del amplificador. La función del potenciómetro R_9 es permitirle al usuario tener control sobre el nivel de distorsión variando la ganancia (explicado en profundidad más adelante) pero sin permitirle aumentarla tanto que el amplificador sature.

Figura 51: Transferencia a la salida del amplificador

5.4 Implementación del circuito y valores elegidos

Figura 52: Circuito Final con valores

Donde pote es un potenciómetro que varía entre 0 y 50k, afectando la ganancia. De esta manera el usuario podrá regular el nivel de distorsión a utilizar.

5.5 Simulaciones

Se busca la respuesta en frecuencia del circuito cuando la amplificación antes de la distorsión es máxima. La amplificación o atenuación de las distintas frecuencias nos darán así una idea de qué tan cuadrada la onda resultante resultará. Esto se debe a que a mayor amplificación, el corte en tensión (que es a un valor fijo determinado por los diodos) se realizará en la parte más baja de la senoidal y por ende la parte con mayor pendiente.

En principio, el pedal debería tener una respuesta en frecuecia característica de un filtro pasabanda, siendo las frecuencias mayormente amplificadas aquellas que se encuentran dentro del rango audible (entre 20Hz y 20kHz).

Debe hacerse notar, sin embargo, que el rango de frecuencias fundamentales para una guitarra eléctrica es de 80 Hz a 1.2kHz, pero que sus armónicos más importantes llegan a los 8kHz. Es por esto que la prioridad del circuito diseñado para el pedal será la de amplificar completamente hasta los 10kHz y luego ya se podrá comenzar a atenuar. La frecuencia de corte del pasa-bajos de nuestro circuito, por ende, estará cerca de este último valor.

Para el pasa-altos, la frecuencia de corte estará dada por los 20Hz.

Figura 53: Bode simulado para la salida del circuito

Se hace notar que la fase permanece aproximadamente constante en todo el rango de frecuencias de trabajo, por lo que no habrá desfasaje con la señal original para distintas frecuencias y el sonido se conservará "puro". Es decir, el sistema no distorsionará sin los diodos a las frecuencias que caen dentro del rango operativo de una guitarra.

Por otro lado, la salida del opamp antes de pasar por el pasabajos está dada por:

Figura 54: Bode simulado para la salida del opamp

5.6 Mediciones y contraste con simulación

Los datos a partir de los cuales se construyó el siguiente bode pueden encontrarse en el anexo. Estos últimos fueron tomados sin los diodos y con el potenciómetro que controla la ganancia configurado de manera tal que la ganancia del circuito sea máxima (la señal resultante al realizar el clipping será lo más parecida a una cuadrada que se pueda de esta manera).

Figura 55: Bode medido en el rango audible

Se aprecia una respuesta en frecuencia muy similar a la simulada, con una ganancia máxima de 21 dB y un ancho de pasabanda que se corresponde con la simulación, pudiéndose notar que la frecuencia de corte del pasa-altos resulta ser efectivamente un valor no superior a los 80 Hz y para el pasa-bajos la frecuencia de corte está claramente en 10kHz o en un valor superior a esta.

Se realiza un análisis de montecarlo para verificar que los datos medidos concuerdan con lo esperado de los componentes y sus tolerancias.

Figura 56: Análisis de Montecarlo en el rango audible

De aquí se observa que lo medido concuerda con lo esperado y por ende la confección del pedal resultó exitosa en cuanto a su respuesta en frecuencia. Para analizar el efecto de los diodos sobre la señal de entrada al realizar el clipping, se puede ver el siguiente video (o visitar https://www.youtube.com/watch? v=qEJGnhPvxUg)en donde se visualizará en el osciloscopio la señal de entrada (en amarillo) y la salida del pedal (en verde), modificándose el potenciómetro que maneja la ganancia para poder observar los distintos niveles de distorsión que ofrece el pedal.

6 Sensor de Temperatura

6.1 Introducción

Se implementará un sensor de temperatura utilizando el circuito integrado LM35, un circuito integrado cuya tensión de salida varía linealmente con la temperatura.

Según la datasheet del integrado mencionado anteriormente del fabricante Texas Instruments "LM35 Precision Centigrade Temperature Sensors", con última revisión en diciembre de 2017, el integrado ofrece un rango de medición asegurada de entre -55°Cy 150°C, con una variación de $10 \text{mV}/^{\circ}\text{C}$, siendo el 0°Ccorrespondiente a 0 V.

Se busca implementar a partir de estos valores, un sensor de temperatura capaz de medir con máxima excursión entre 35°C y 45°C, con 0V correspondiendo a 35°C y 5V a 45°C.

A partir del circuito se podrá utilizar un conversor analógico-digital para lograr manipular la información de temperatura como se requiera.

Se tuvo como prioridad minimizar la cantidad de componentes utilizados, garantizar la confiabilidad y precisión de los valores que el circuito devuelva. Se tuvo en cuenta la protección del circuito receptor de la señal, haciendo que la señal de salida no sobrepase el intervalo [-1;6] volts.

6.2 Análisis del LM35 y condiciones a tener en cuenta

Según la datasheet mencionada anteriormente, deben mencionarse ciertas consideraciones a tener en cuenta:

- El error máximo del LM35 para medir temperatura es de 0.5°C, por lo que el circuito derivado a partir de él no podrá asegurar un error menor a este mismo.
- La tensión de alimentación para el LM35 será de entre -0.2 V y 35 V como valores máximos, 4V y 30 V como valores típicos.
- La máxima temperatura de juntura es 150°C, la cual no se contradice con el rango de valores elegidos para el circuito implementado. La máxima temperatura de juntura es la máxima temperatura que la juntura del semiconductor interno puede tolerar manteniendo al LM35 en estado operativo.
- La corriente de entrada del LM35 será baja, de 60μ A máximo.
- La corriente de salida del LM35 tomará un valor máximo de 10mA.
- El LM35 tiene una impedancia de salida baja, de 0.1Ω .

Es importante hacer notar que una baja impedancia de salida se corresponde con un circuito emisor de señal como es el caso de un sensor de temperatura. Esto es así porque si la señal emitida en tensión deberá ser recibida por otro circuito que interpretará o modificará la señal recibida, y si la impedancia de entrada del circuito receptor fuera más baja que la de salida del emisor, entonces siendo z1 la impedancia de salida del emisor y z2 la impedancia de entrada del receptor, basándonos en el teorema de Thevenin, se realiza un divisor de tensión: $V_o = \frac{z_2}{z_1 + z_2} V_i$

Donde V_i es la tensión de entrada y V_o la de salida. Si se asume que la potencia se mantiene constante en el traspaso entre los dos circuitos, se aprecia de aquí que si $|z1| \ll |z2|$ y $1 \ll |z2|$, entonces $\frac{z_2}{z_1 + z_2} \approx 1$, con lo cual la tensión de salida del circuito emisor original sería equivalente a la tensión de entrada del circuito receptor, por lo que la señal sería recibida correctamente en valor.

Es por esto que se intentará obtener una impedancia de entrada de nuestro circuito adaptador mucho mayor a la impedancia de salida de 0.1Ω del LM35.

6.3 Cambio de rango operacional

El comportamiento del LM35 puede ser representado matemáticamente con una transformación lineal de grados celsius a tensión en volts

 TL_{35} : c ϵ [-55; 150] -> v ϵ [-0.55; 1.5] / TL_{35} (c) = 0.01·c. El circuito a implementar pretende utilizar una transformación lineal

 TL_{cambio} : $v_1\epsilon$ [0.35;0,45] -> $v_2\epsilon$ [0;5] de forma tal que $TL_{cambio}(TL_{35}(c)) = TL_{sensor}(c)$ donde TL_{sensor} : $c\epsilon$ [0.35;0,45] -> $v_2\epsilon$ [0;5] será la transformación total del circuito.

Así, se deberá resolver el siguiente sistema de ecuaciones:

$$\begin{cases} 0 = m \cdot 0.35 + b \\ 5 = m \cdot 0.45 + b \end{cases}$$
 (22)

Que tiene como solución m=50 \cap b = -17.5.

Para realizar la transformación lineal sobre la salida del LM35, se decidió utilizar un opamp con realimentación negativa, dispuesto de la siguiente manera:

Figura 57: Cambio de rango operacional en circuito

El cual se resolverá por superposición (suponemos que el opamp está operando en su zona lineal) para mostrar que efectivamente realiza la transformación requerida:

• Pasivamos la fuente Vi1, dejando un no inversor:

Figura 58: Vi1 pasivada

Entonces Vout' = $\left(1 + \frac{R2(R1+R3)}{R1R3}\right)$ ·Vi2

• Pasivamos la fuente Vi2, dejando un inversor:

Figura 59: Vi2 pasivada

Entonces Vout" = $-\frac{R2}{R1}$ ·Vi1

• Obtenemos la salida como la superposición de los dos estados calculados anteriormente:

Vout = Vout' + Vout" =
$$(1 + \frac{R2(R1+R3)}{R1R3}) \cdot \text{Vi}2 - \frac{R2}{R1} \cdot \text{Vi}1$$

Si Vi1 es una entrada continua positiva de valor Vs+ y Vi2 es la salida del LM35, entonces, para cumplir tanto con y = mx + b como con la solución al sistema de ecuaciones mencionada anteriormente:

$$\begin{cases}
50 = 1 + \frac{R2(R1+R3)}{R1R3} \\
-17, 5 = -\frac{R2}{R1} \cdot V s +
\end{cases}$$
(23)

Por lo que si Vs+ es la alimentación del LM35 y, dado que el mismo se podrá alimentar con cualquier valor de tensión que caiga en el rango recomendado de entre 4V y 30V, si se elige Vs+ = 7V,

El sistema queda definido como:

$$\begin{cases}
R2 = \frac{35R1}{2V_{S+}} = \frac{5 \cdot R1}{2} \\
R3 = \frac{5R1}{14V_{S+} - 5} = \frac{5 \cdot R1}{93}
\end{cases}$$
(24)

6.4 Protección del circuito a conectar

Dado que el nuevo sensor a implementar será utilizado para alguna aplicación en concreto, deberá ser conectado a un segundo circuito "receptor" que utilice la información de la temperatura actual, por ejemplo un conversor analógico-digital. Es por esta razón que se prohibirán tensiones de salida que puedan resultar peligrosas para el receptor. Se garantiza que la salida, por ende, no será superior a 6V ni inferior a -1V.

Para lograr lo anterior, se utilizará un diodo Zener, que hará clipping asimétrico a la señal de salida (ver pedal de distorsión o ej5 para mayor información sobre clipping).

Los <u>diodos Zener</u> suelen usarse para protección de circuitos y pueden ser representados por su curva característica:

Figura 60: Curva característica del diodo Zener

De esta curva se hace notar que al superar el valor de tensión V_f o al llegar a un nivel de tensión menor a V_z , la demanda de corriente por parte del diodo aumentará exponencialmente. Es aquí cuando recordamos una de las condiciones de la subsección Análisis del LM35 y condiciones a tener en cuenta: La corriente de salida del LM35 tomará un valor máximo de 10mA. Esto y la corriente máxima de salida del opamp amplificador deberán ser tenidos en cuenta cuando se presente la implementación final del circuito, junto con la salida de corriente máxima del opamp a utilizar para la transformación lineal.

De esta manera, se buscará que los valores de V_f y V_z sean tales que la demanda de corriente sea tan alta luego de los mismos que la tensión de salida no pueda estos valores para que se logre suplir. De esta manera, se muestra gráficamente la tensión de salida en función de la tensión de entrada:

Figura 61: Efecto del diodo Zener sobre la entrada

Así es como se observa que $V_f = -0.7 \text{V}$ y $V_z \approx 6 \text{V}$. Cabe destacar que el valor de V_z es aproximado a 6V porque el valor no podrá ser excedido en absoluto como restricción de protección, por lo que $V_z < 6V$. Se elige un valor $V_z = 5.6 V$.

6.5 Calibración del sensor

Debido al uso de fuentes no ideales y a los requerimientos de corriente de los opamps que generan ripple para la fuente, la tensión Vs+ de alimentación para el LM35 no necesariamente administrará el valor fijo de tensión antes designado de 7V, sino que será un valor cercano al anterior, y por lo tanto la relación entre resistencias mencionadas en la subsección Cambio de rango operacional que se elija previamente a la implementación no será exacta.

Además, se sabe que los valores de resistencia nominales no necesariamente coinciden con los valores de resistencias reales de los componentes a la hora de realizar el circuito, y caerán dentro de un cierto rango centrado en su valor nominal definido por su tolerancia.

Es por esto que los valores de resistencias que se elijan de antemano no convergerán precisamente al offset y a la escala requeridas previamente (valores de m y b). De aquí que es necesario un proceso de calibración del sensor para su correcto funcionamiento.

El proceso de calibración, por ende, requerirá de ajustar los valores de resistencia de la subsección Cambio de rango operacional.

Se observa que no se podrá ajustar los valores de offset y de escalamiento independientemente uno del otro, ya que si bien R3 solo participa del escalamiento, tanto R2 como R1 afectan al offset como así también al escalamiento, por lo que no se podrá alterar a R2 sin alterar al offset.

Es por esta razón que el método de calibración será necesariamente iterativo. Se obtiene así un método iterativo que converja al resultado esperado con el grado de error de calibración que requiera la persona que realice el ajuste.

Para lograr el calibrado y hacer R2 y R3 variables dentro de cierto rango, R2 y R3 ahora quedarán expresadas como la combinación de un potenciómetro y un valor fijo de resistencia en serie, de la siguiente manera:

Figura 62: Expresión de R2 yR3 como combinación de potenciómetros en serie con resistencias fijas.

Una fuente externa se utilizará para calibrar el circuito, que simulará el input por parte del LM35. Se elige una fuente externa y no el LM35 para tener un rango de tensiones con el operar en vez de un único valor acorde a la temperatura actual determinada por el sensor. La señal a utilizar puede ser cualquiera que permita ajustar tanto la escala como la tensión de offset, pero se elige una rampa para la calibrar por su sencillez a la hora de determinar valor medio, amplitud y desplazamiento vertical.

Método de calibración:

Se conecta la salida del circuito a un osciloscopio. Se posiciona al switch de calibración en aquella posición que permite imponer una señal distinta a la del LM35 para calibrar. La fuente deberá generar una rampa (sawtooth signal) con duty cycle del 100%, con LoLevel de 350mV y HiLevel de 450 mV. La frecuencia de esta señal deberá ser baja, eligiéndose a comodidad en un valor del orden de los 100 Hz. Se mide con el osciloscopio la señal de entrada, ajustando el trigger a comodidad.

El método de calibración propuesto buscará lograr una suerte de cuasi-independencia entre R2 y R3. Se tratará a R2 como la resistencia que maneja al offset y R3 como la que manejará al escalamiento. Para el caso en el cual no se pueda seguir recurriendo a R2 para modificar al offset (es decir, el preset de R2 ha llegado a su límite), se podrá utilizar a R3 para acomodar a la señal.

Se seguirán los siguientes pasos:

- 1. En el osciloscopio, se ajustará la escala vertical para lograr que se logren visualizar correctamente las dos señales. Tener en cuenta que la señal de salida estará finalmente situada entre los 0V y los 5V, por lo que si se tiene que ajustar la escala en cualquier momento de la calibración, se deberá hacerlo.
- 2. Se utilizará la base temporal del osciloscopio: La rampa de entrada y de salida se posicionarán de forma tal que las señales se corten en el extremo derecho de la pantalla y tengan su continuación en el extremo izquierdo de la pantalla sin saltos. Puesto de otra forma, se busca que el intervalo temporal del display de la señal sea un múltiplo natural del período de la señal.
- 3. Se pondrá en display el average de la señal usando las opciones de Quick Measure del osciloscopio.
- 4. Se modificará R2 (ajustando el preset) de manera tal que el valor medio o average de la señal de salida sea de 2.5V. En el caso en que esto sea imposible porque se ha llegado al límite del preset, se podrá utilizar R3 para lograr que el valor medio o average de la señal de salida sea de 2.5V.
- 5. Se modificará R3 (ajustando el preset) de manera tal que o el extremo inferior de la señal de salida termine en 0V o el extremo superior termine en 5V. Si no se puede seguir modificando a R3 porque se ha llegado al límite del preset, se da por terminado el paso.
- 6. Si en el paso anterior tanto el extremo inferior coincide con los 0V y el superior con los 5V, la calibración ha terminado. De lo contrario, se volverá al paso 4.

6.6 Implementación del circuito

Figura 63: Circuito propuesto como sensor

Se hace notar que el switch físico que se utilizó es de tres posiciones en vez de dos porque el paniol no contaba con uno de dos. Además, deberá estar posicionado hacia el lado opuesto a la fuente de calibración para poder utilizarla, en el centro para apagar el circuito y en el otro extremo para utilizar al LM35 como input. El diodo zener utilizado fue uno de Vz=5.6 Volts, por lo que el circuito podrá devolver valores mayores a 5V y menores a 0V (pero que no salgan del intervalo de protección mencionado en la subsección Protección del circuito a conectar). Estos valores, que corresponderían a temperaturas fuera del intervalo [0V,5V], podrán ser interpretadas o filtradas por el conversor análogico digital que se utilice en conexión con el sensor de temperatura.

6.7 Mediciones y conclusión

Siguiendo los pasos del método de calibración de la sección Calibración del sensor, se logró ajustar al circuito:

Figura 64: Circuito calibrado. CH2:Entrada del circuito con la rampa de calibracion. CH1: Salida del circuito calibrado.

De esta manera, se demuestra que el escalamiento y=50 *x -17.5 se cumple con el circuito obtenido y el método de calibración es adecuado.

Se procedió a medir la temperatura con un tester del paniol y el LM35 con el osciloscopio y se verificó que las salidas coincidían.

Las ventajas del circuito implementado son predominantes en su bajo coste, ya que se utilizan pocas resistencias y un sólo integrado, en detrimento de la falta de independencia entre los presets y el factor que ajustan a la hora de calibrar.

6.8 Datasheet

Se proporciona una datasheet del nuevo sensor con los datos más importantes. Esta datasheet fue basada en la datasheet del LM35 de Texas Instruments mencionada anteriormente:

GRUPO 4 Sensor de Temperatura

1 Destacados

- Calibración directa a celsius (grados centígrados)
- Factor de escala lineal de + 500-mV/°C
- Sirve para un rango de 35°C a 45°C

2 Aplicaciones

Accesorios

3 Descripción

Este dispositivo es ventajoso frente a aquellos calibrados en Kelvin ya que el usuario no necesita restarle a la salida una constante grande de tensión para obtener un escalamiento conveniente en grados centígrados.

El dispositivo sí necesita calibrarse externamente antes de su uso, lo cual se hará mediante el ajuste de presets con un método específico.

Provee medida con menos de 1°C de error en un rango de temperatura de 35°C – 45°C.

The device ensures a -1V – 6V output voltage range and a 1Watt maximum power output.

Información del dispositivo:

Tamaño: 5mm x 5mm

4 Especificaciones

4.1 Rangos máximos absolutos

	<u>MÍN</u>	MÁX	UNIDAD
Tensión de alimentación Vs+	6.5	7.5	V
Tensión de alimentación Vs-	-9	-2	V
Tensión de salida	-1	6	V
Corriente de Salida		40	mA

4.2 Condiciones Recomendads de operación

	MIN	MAX	<u>UNIDAD</u>
Temperatura especificada de operación	35	45	°C

Tensión de alimentación Vs+	6.9	7.1	V
Tensión de alimentación Vs-	-4	-2	V

4.3 Características eléctricas

<u>PARÁMETROS</u>	CONDICIONES DE PRUEBA	<u>MÍN</u>	MÁX	PROMEDIO	UNIDAD
Precisión	T in [35;45]		0.7		°C
Ganancia del	T in [35;45]			0.5	V/°C
sensor					
(average slope)					

5 Método de Calibración

- 1. En el osciloscopio, se ajustará la escala vertical para lograr que se logren visualizar correctamente las dos señales. Tener en cuenta que la señal de salida estará finalmente situada entre los 0V y los 5V, por lo que si se tiene que ajustar la escala en cualquier momento de la calibración, se deberá hacerlo.
- 2. Se utilizará la base temporal del osciloscopio: La rampa de entrada y de salida se posicionarán de forma tal que las señales se corten en el extremo derecho de la pantalla y tengan su continuación en el extremo izquierdo de la pantalla sin saltos. Puesto de otra forma, se busca que el intervalo temporal del display de la señal sea un múltiplo natural del período de la señal.
- 3. Se pondrá en display el average de la señal usando las opciones de Quick Measure del osciloscopio.
- 4. Se modificará R2 (ajustando el preset) de manera tal que el valor medio o average de la señal de salida sea de 2.5V. En el caso en que esto sea imposible porque se ha llegado al límite del preset, se podrá utilizar R3 para lograr que el valor medio o average de la señal de salida sea de 2.5V.
- 5. Se modificará R3 (ajustando el preset) de manera tal que o el extremo inferior de la señal de salida termine en 0V o el extremo superior termine en 5V. Si no se puede seguir modicando a R3 porque se ha llegado al límite del preset, se da por terminado el paso.
- 6. Si en el paso anterior tanto el extremo inferior coincide con los 0V y el superior con los 5V , la calibración ha terminado. De lo contrario, se volverá al paso 4.

7 Anexo

Mediciones del pedal de distorsión (Ej5).

f(kHz)	Vin (V)	Vout (V)	fase(deg)	Vout/Vin(dB)
0.001	0.300	0.077	89	-11.8
0.01	0.300	0.725	87	7.6
0.015	0.300	1.04	80	10.8
0.02	0.300	1.36	71	13.1
0.03	0.300	1.820	60	15.6
0.05	0.300	2.44	43	18.2
0.08	0.300	2.88	32	19.6
0.1	0.300	2.98	25	19.9
0.12	0.300	3.06	19	20.1
0.14	0.300	3.14	18	20.4
0.16	0.300	3.2	16	20.6
0.18	0.300	3.21	14	20.6
0.5	0.300	3.3	0	20.8
0.8	0.300	3.27	0	20.7
1	0.300	3.27	-3	20.7
1.3	0.300	3.26	-4	20.7
1.4	0.300	3.26	-5	20.7
1.6	0.300	3.25	-6	20.7
2	0.300	3.25	-9	20.7
2.5	0.300	3.2	-10	20.5
3	0.300	3.2	-15	20.5
4.5	0.300	3.1	-20	20.28
5	0.320	3.06	-23	19.6
6	0.350	2.99	-25	18.6
7	0.350	2.9	-27	18.3
8	0.350	2.8	-30	18.1
9	0.350	2.7	-40	17.7
10	0.350	2.6	-41	17.4
10.2	0.360	2.58	-42	17.1
10.6	0.370	2.55	-47	16.7
11	0.380	2.5	-50	16.36312824
11.5	0.400	2.48	-51	15.84783379
11.7	0.400	2.44	-50	15.7065967
12	0.400	2.41	-51	15.59914102
12.5	0.400	2.35	-51	15.38015742
13	0.400	2.32	-51	15.26855987
13.5	0.400	2.28	-57	15.11749711
14	0.400	2.23	-57	14.92489743
15	0.400	2.15	-59	14.60756937
16	0.430	2.08	-62	13.69189759
17	0.430	1.9	-58	12.90570291
18	0.430	1.9	-65	12.90570291
19	0.430	1.8	-65	12.43608099
20	0.430	1.73	-64	12.09155295
21	0.430	1.65	-67	11.68030977
22	0.430	1.62	-70	11.52093118
25	0.430	1.44	-89	10.49788073