2023 JC1 H1 REVISION SET A-1 COMPLETE SOLUTIONS

Qn	EXPONENTIAL & LOGARITHMIC FUNCTIONS
1(a)	VJC 2011 MYE Q2
	$\lg(x-8) + \lg\left(\frac{9}{2}\right) = 1 + \lg\left(\frac{x}{4}\right)$
	$\lg(x-8) - \lg\left(\frac{x}{4}\right) = \lg 10 - \lg\left(\frac{9}{2}\right)$
	$\lg\left(\frac{x-8}{\frac{x}{4}}\right) = \lg\left(\frac{10}{\frac{9}{2}}\right)$
	$\frac{4x-32}{x} = \frac{20}{9}$
	36x - 288 = 20x
	$\therefore x = 18$
(b)	$\log_5(2x+1) - \log_5(3x-5) = 1$
	$\log_5 \frac{(2x+1)}{(3x-5)} = 1$
	$\frac{(2x+1)}{(3x-5)} = 5$
	(2x+1) = 5(3x-5)
	2x+1=15x-25
	13x = 26 $x = 2$
2	SRJC 2016 PROMO Q3
	(a) $\ln (pe^{25}) = \ln p + \ln(e^{25})$ = $k + 25 \ln(e)$
	= k + 25
	(b) $3e^{x} - 4e^{-x} = 11$
	$3e^{2x} - 4 = 11e^x$
	Let $y = e^x$
	$3y^2 - 4 = 11y$ $3y^2 - 11y - 4 = 0$
	(3y+1)(y-4) = 0
	$y = -\frac{1}{3}$ or $y = 4$
	$e^x = -\frac{1}{3}$ (rejected :: $e^x > 0$ for all x)
	or $e^x = 4$
	$x = \ln 4$
3	CJC 2012 PROMO Q3
	(a) $2e^{3x} - 5e^x = 3e^{-x}$
	$\Rightarrow 2e^{4x} - 5e^{2x} = 3$
	$\Rightarrow 2e^{4x} - 5e^{2x} - 3 = 0$

Qn	EXPONENTIAL & LOGARITHMIC FUNCTIONS
	Let $y = e^{2x}$.
	$\therefore 2y^2 - 5y - 3 = 0$
	(2y+1)(y-3) = 0
	$y = -\frac{1}{2} \text{or} y = 3$
	$\therefore e^{2x} = -\frac{1}{2} \text{ (rejected, since } e^{2x} > 0 \text{) or } e^{2x} = 3$
	$\frac{1}{2}$ (rejected, since $e > 0$) or $e = 3$
	$S_{0}, x = \frac{\ln 3}{2}$
	(b) $\log_a(ax^2) = \log_a a + 2\log_a x = 1 + 4\log_a \sqrt{x} = 1 + 4(3) = 13$
4	RI 2012 PROMO Q 2
	$ x = \ln(y+1) \Rightarrow y+1 = e^{x} $ $ \therefore y = (1+y+1)(1-y-1) \Rightarrow y^{2} + 3y = 0 $
	$\begin{vmatrix} y - (1 + y + 1)(1 - y - 1) \Rightarrow y + 3y - 0 \\ \Rightarrow y (y + 3) = 0 \Rightarrow y = 0 \text{ or } y = -3 \end{vmatrix}$
	When $y = -3$, $x = \ln(-2)$ (N.A.)
	When $y = 0$, $x = \ln(1) = 0$
5	$\frac{4^{3x}}{64} = 4^y \Rightarrow \frac{2^{6x}}{2^6} = 2^{2y}$
	$\begin{vmatrix} 64 & 2^{\circ} \\ i.e. & 6x - 6 = 2y \Rightarrow y = 3x - 3 \end{vmatrix}$
	1.e. $6x - 6 = 2y \implies y = 5x - 5$ $\lg(y - x) = 1 - \lg(x - 1)$
	$ \lg(y-x) = 1 - \lg(x-1) \lg(2x-3) = 1 - \lg(x-1) $
	$ \lg(2x-3) - \lg(x-1) \\ \lg(2x-3) + \lg(x-1) = 1 $
	$ \lg(2x-3) + \lg(x-1) = 1 \\ \lg[(2x-3)(x-1)] = \lg 10 $
	(2x-3)(x-1) = 10
	$2x^{2} - 5x - 7 = 0$
	$ \begin{vmatrix} 2x - 3x - 7 - 0 \\ (2x - 7)(x + 1) = 0 \end{vmatrix} $
	x = -1 or 3.5
	Reject $x = -1$ since $\lg(x-1)$ is undefined.
	When $x = 3.5$, from $y = 3x - 3 = 10.5 - 3 = 7.5$
	Therefore $x = 3.5$ and $y = 7.5$
6	TJC 2016 PROMO Q3
	For $\log_4 q^2 - \log_4 q - p = 0$
	$\log_4 q^2 - \log_4 q - p = 0 \Rightarrow \log_4 \frac{q^2}{q} = p \Rightarrow \log_4 q = p \text{ or}$
	$2\log_4 q - \log_4 q = p \Longrightarrow \log_4 q = p$
	then $q = 4^p$
	For $\sqrt{\log_p q} = 2 \Rightarrow \log_p q = 4 \Rightarrow p^4 = q$
	$\therefore q = 4^p = p^4 \text{ (shown)}$

Qn EXPONENTIAL & LOGARITHMIC FUNCTIONS

[G1] Shape and intersections From graph, p = 2 or 4 (since p > 0) $\therefore q = 16$ or 256

7 JJC 2013 Promo Q4

(i)
$$P = -45e^{At} + B$$

Given $t = 0, P = 5$,

en
$$t = 0$$
, $P = 5$,

$$5 = -45e^{A(0)} + B$$

$$B = 5 + 45(1)$$

$$= 50 \text{ (Shown)}$$

Hence,
$$P = -45e^{At} + 50$$

Given
$$t = 10$$
, $P = 35$,

$$35 = -45e^{A(10)} + 50$$

$$-15 = -45e^{10A}$$

$$e^{10A} = \frac{-15}{-45}$$

$$e^{10A} = \frac{1}{3}$$

$$10A = \ln\left(\frac{1}{3}\right)$$

$$10A = -\ln 3$$

$$A = -\frac{1}{10} \ln 3$$
 where $k = -\frac{1}{10}$

(ii)
$$P = -45e^{-\frac{1}{10}(\ln 3)t} + 50$$

When t = 20,

$$P = -45e^{-\frac{1}{10}(\ln 3)(20)} + 50 = 45$$

Population = $45\ 000$

(iii)
$$P = -45e^{-\frac{1}{10}(\ln 3)t} + 50$$

After a very long time,

$$e^{-\frac{1}{10}(\ln 3)t} \to 0, P \to 50.$$

Population = $50\ 000$

(iv) No.

Suggested reason:

Boiling point of water is 100°C but the graph is an increasing curve, so the model will be inaccurate once the temperature rises above 100° C as $t \rightarrow \infty$.