

தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு முதலாம் தவணைப் பரீட்சை - 2024 National Field Work Centre, Thondaimanaru.

1st Term Examination - 2024

இணைந்த கணிதம் - (B)

Combined mathematics - (B)

Gr -12 (2025)

10

T

В

பகுதி - B

- 11) (a) $b \in \mathbb{R}$ எனவும் $f(x) = x^2 bx + 1$ எனவும் கொள்வோம்.
 - f(x)=0 இன் பிரித்துக்காட்டியை b சார்பில் எழுதி, இதிலிருந்து சமன்பாடு f(x)=0 இந்கு மெய்மூலங்கள் இருப்பதற்கான b இன் பெறுமானங்களின் வீச்சைக் காண்க.
 - (ii) சமன்பாடு f(x)=0 இன் மூலங்கள் lpha, eta எனக் கொள்வோம். lpha+eta, lphaeta ஆகியவற்றை b சார்பில் எழுதுக.

 $\alpha(\alpha+1)+\beta(\beta+1)=b^2+b-2$ எனக் காட்டுக.

lpha(lpha+1)+eta(eta+1) ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $x^2-(b^2+b-2)\,x+(b+2)=0$ எனக் காட்டுக.

மேலும் பொருத்தமான உருமாற்றத்தைப் பயன்படுத்தி $\alpha(\alpha+\beta+1)$, $\beta(\alpha+\beta+1)$ என்பவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $\alpha(\alpha+\beta+1)$ என்பதை உய்த்தறிக.

- (b) $a \neq b$ இந்கு $x^2 + ax + b = 0$, $x^2 + bx + a = 0$ ஆகிய சமன்பாடுகளுக்கு ஒரு பொதுமூலம் இருப்பின் 1 + a + b = 0 எனக் காட்டுக. a = 0 மற்றைய மூலங்கள் a = 0 எனும் சமன்பாட்டை திருப்தி செய்யும் எனவும் காட்டுக.
- 12) (a) $a, b \in \mathbb{R}$ இந்கு $f(x) = 2x^3 + ax^2 + bx 6$ எனக் கொள்வோம். (x-1), (x-2) என்பன f(x) இன் காரணிகள் எனத் தரப்படின் a = -9, b = 13 எனக் காட்டுக. a, b இன் இப்பெறுமானங்களுக்கு f(x) ஐ ஏகபரிமாணக் காரணிகளின் பெருக்கமாகத் தருக. இதிலிருந்து f(x) ஐ $\left(x-\frac{3}{2}\right)^2$ இனால் வகுக்க வரும் ஈவையும் மீதியையும் காண்க.
 - (b) $y = \frac{x^2 + 5}{x 2}$ எனத் தரப்படின் x இன் மெய்ப்பெறுமானங்களுக்கு y ஆனது -2 இற்கும் 10 இற்கும் இடையிலுள்ள எந்தவொரு பெறுமானத்தையும் எடுக்காது எனக்காட்டுக.

(All Rights Reserved/ முழுப்பதிப்புரிமை உடையது)

- (c) a>0 ஆகவும் $b^2-4ac<0$ ஆகவும் இருப்பின் x இன் எல்லா மெய்ப்பெறுமானங்களுக்கும் $ax^2+bx+x>0$ ஆகும் எனக் காட்டுக. மேலேயுள்ள முடிவைப் பயன்படுத்தி $2x^2+4x-22+m(x+5)>0$ எனத் தரப்படின் 8< m<24 என்பதை நிறுவுக.
- 13) (a) பின்வரும் சர்வசமன்பாடுகளை நிறுவுக.
 - (i) $\frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta} = 2\csc^2\theta$
 - (ii) $\tan \theta + \cot \theta = \sec \theta \csc \theta$
 - (b) $\cos\theta+\sin\theta=a$, $\cos2\theta+\sin2\theta=b$ எனத் தரப்படின் $\cos2\theta=b+1-a^2$ எனக்காட்டி $a^2(2-a^2)=(b+1-a^2)^2$ என்பதை நிறுவுக.
 - (c) $\sin(A-B)$ இன் விரிவை $\sin A$, $\cos A$, $\sin B$, $\cos B$ சார்பில் எழுதுக. இதிலிருந்து $\frac{\sin 5\theta}{\sin \theta} \frac{\cos 5\theta}{\cos \theta} = \frac{\sin 4\theta}{\sin \theta \cos \theta} = 4\cos 2\theta$ என நிறுவுக. $\theta = 18^\circ$ என இடுவதன் மூலம் $4\sin 18^\circ\cos 36^\circ = 1$ எனக் காட்டுக. $\sin 18^\circ$ ஆனது $8x^3 4x + 1 = 0$ எனும் சமன்பாட்டின் மூலமென நிறுவுக. மேலும் $8x^3 4x + 1 = (2x 1)(4x^2 + 2x 1)$ எனத் தரப்படும் போது $\sin 18^\circ = \frac{-1+\sqrt{5}}{4}$ என்பதை உய்த்தறிக.
- 14) (a) $\sin(A+B)$ இன் விரிவை $\sin A$, $\cos A$, $\sin B$, $\cos B$ சார்பில் எழுதுக. இதிலிருந்து $\cos(A+B)$ இற்கான விரிவை உய்த்தறிக. A, B இற்குப் பொருத்தமான பெறுமானங்களை இடுவதன் மூலம் $\sin 2\theta$, $\cos 2\theta$ என்பவற்றை θ சார்பில் கண்டு $\cos 3\theta = 4 \cos^3 \theta 3 \cos \theta$ எனக் காட்டுக. மேலேயுள்ள முடிவுகளைப் பயன்படுத்தி $\cos 3\theta 4 \cos 2\theta + 2 \cos \theta 2 = 0$ என்ற சமன்பாட்டைத் தீர்க்க.
 - (b) $2\sqrt{2}\cos\theta~(\cos\theta+\sin\theta)=\sqrt{2}+1$ எனத் தரப்படின் $\cos2\theta+\sin2\theta=\frac{1}{\sqrt{2}}$ எனக் காட்டுக. $\cos\left(2\theta-\frac{\pi}{4}\right)=K$ ஆகுமாறு மாறிலி K ஐக் கண்டு சமன்பாட்டைத் தீர்க்க.
 - (c) $\frac{1-\cos 2A+\cos 2B-\cos (2A+2B)}{1+\cos 2A-\cos 2B-\cos (2A+2B)}=\cot B \tan A$ என நிறுவுக.

(All Rights Reserved/ முழுப்பதிப்புரிமை உடையது)

- 15) (a) O என்ற உற்பத்தி குறித்து ஒரே நேர்கோட்டில் இல்லாத புள்ளிகள் A, B, C இன் தானக்காவிகள் முறையே \underline{a} , \underline{b} , $|b|\underline{a}+|a|\underline{b}$ ஆகும். AB மீது D என்பது $|\underline{a}|:|\underline{b}|$ ஆகுமாறுள்ள புள்ளிகளாகும். O, D, C என்பன ஒரே நேர்கோட்டுப்புள்ளிகளாகும் எனக் காட்டுக.
 - (b) ABCDEF ஒழுங்கான அறுகோணி.

 $\overrightarrow{AB} = \underline{a}$, $\overrightarrow{BC} = \underline{b}$ எனக் காண்க.

பின்வருவனவற்றை \underline{a} , \underline{b} சார்பாகக் காண்க.

- (i) \overrightarrow{AD} , \overrightarrow{AC}
- (ii) \overrightarrow{AF} , \overrightarrow{BE}
- (iii) $AD,\ BE$ என்பன O வில் வெட்டினால் எண்ணிப் பெருக்கத்தைப் பயன்படுத்தி AO=OB எனக் காட்டுக.
- 16) (a) O என்ற உந்பத்தி குறித்து A, B, C என்ற புள்ளிகளின் தானக் காவிகள் முறையே \underline{a} , \underline{b} , \underline{a} + \underline{b} ஆகும்.
 - (i) \overrightarrow{AC} , \overrightarrow{BC} , \overrightarrow{AB} என்பவற்றை \underline{a} , \underline{b} சார்பாகக் காண்க.
 - (ii) AB = OC எனின் $\left|\underline{a} \underline{b}\right|$, $\left|\underline{a} + \underline{b}\right|$ என்பவற்றை கருதுவதன் மூலம் $OA \perp AC$ எனக் காட்டுக.
 - (b) \underline{a} , \underline{b} என்பவற்றுக்கிடையான கோணம் 120° ஆகவும் $|\underline{a} + \underline{b}| = |\underline{a}|$ ஆகவும் இருப்பின் எண்ணிப்பெருக்கத்தின் மூலம் $|\underline{a}| = |\underline{b}|$ எனக் காட்டுக.
- 17) (a) 8 cm, 15 cm நீளமான இலேசான நீளா இழைகளால் 17 kg திணிவுள்ள துணிக்கை கட்டப்பட்டு மறு நுனிகள் ஒரே மட்டத்தில் 17cm இடைத்தூரத்தில் கட்டப்பட்டுள்ளன. சமனிலையில் உள்ளன ஒரு விசை முக்கோணி வரைந்து இழைகளில் இழுவைகளைக் காண்க.
 - (b) $2, 2\sqrt{3}, 2, 4\sqrt{3}$ பருமனுள்ள விசைகள் முறையே AB, AC, AD, AE வழியே ஒரே தளத்தில் தாக்குகின்றன. இங்கு $B\hat{A}C = 30^\circ, C\hat{A}D = 30^\circ, D\hat{A}E = 30^\circ$. இவ்விசைத் தொகுதியின் விளையுளின் பருமனையும் விளையுள் AB யுடன் அமைக்கும் கோணத்தையும் காண்க.