Consider the following network:

We can write the following equations.

$$V_1 = (R_1 + R_2)I_1 + R_2I_2$$

 $V_2 = R_2I_1 + R_2I_2$

It is not always possible to write 2 equations in terms of the V's and I's Of the parameter set.

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} \frac{R_1 + R_2}{R_2} & R_1 \\ \frac{1}{R_2} & 1 \end{bmatrix} \begin{bmatrix} \frac{R_1 + R_2}{R_2} & R_1 \\ \frac{1}{R_2} & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

Interconnection Of Two Port Networks

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} \frac{R_1 + R_2}{R_2} & R_1 \\ \frac{1}{R_2} & 1 \end{bmatrix} \begin{bmatrix} \frac{R_1 + R_2}{R_2} & R_1 \\ \frac{1}{R_2} & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

Multiply out the first row:

$$V_{1} = \left[\left[\left(\frac{R_{1} + R_{2}}{R_{2}} \right)^{2} + \frac{R_{1}}{R_{2}} \right] V_{2} + \left[\left(\frac{R_{1} + R_{2}}{R_{2}} \right) R_{1} + R_{1} \right] (-I_{2}) \right]$$

Set $I_2 = 0$ (as in the diagram)

$$\frac{V_2}{V_1} = \frac{R_2^2}{R_1^2 + 3R_1R_2 R_2^2}$$

Can be verified directly by solving the circuit

Given $Z_0 = 50\Omega$, what is S_{11} ?

$$Z_{in}|_{Z_L=Z_0} = 54\Omega$$

$$S_{11} = \frac{54 - 50}{54 + 50} = \frac{4}{104}$$

Similar arguments give $S_{22} = \frac{4}{104}$.

Find S₂₁

$$S_{21} = \frac{b_2}{a_1} |_{a_2=0}$$

$$Z_S = Z_0$$

$$V_{gen} \stackrel{A_1}{\leftarrow} \stackrel{A_2}{\leftarrow} Z_L = Z_0$$

Say the **power** of this input signal is P_s^{in} . The output of the amplifier will therefore include **both** a signal with power P_s^{out} , and noise with power P_n^{out} :

where:

$$P_s^{out} = G P_s^{in}$$

and:

$$P_n^{out} = N_{in} + G k T_e B$$

= $G k (T_{in} + T_e) B$

In order to accurately demodulate the signal, it is important that signal power be large in comparison to the noise power. Thus, a fundamental and important measure in radio systems is the Signal-to-Noise Ratio (SNR):

$$SNR \doteq \frac{P_s}{P_n}$$

The larger the SNR, the better!

At the output of the amplifier, the SNR is:

$$SNR_{out} = \frac{P_s^{out}}{P_n^{out}}$$

$$= \frac{GP_s^{in}}{Gk(T_{in} + T_e)B}$$

$$= \frac{P_s^{in}}{k(T_{in} + T_e)B}$$

Moreover, we can define an input noise power as the total noise power across the bandwidth of the amplifier:

$$P_n^{in} = N_{in} B = k T_{in} B$$

And thus the input SNR as:

$$SNR_{in} = \frac{P_s^{in}}{P_n^{in}} = \frac{P_s^{in}}{kT_{in}B}$$

Now, let's take the ratio of the input SNR to the output SNR:

$$\frac{SNR_{in}}{SNR_{out}} = \frac{P_s^{in}}{kT_{in}B} \left(\frac{k(T_{in} + T_e)B}{P_s^{in}} \right)$$

$$= \frac{T_{in} + T_e}{T_{in}}$$

$$= 1 + \frac{T_e}{T_{in}}$$

Thus, the Noise Figure (F) of a device is defined as:

 $P_{AVS} = \max$ power output from a source with impedance $Z_{\mathcal{E}}$ that can be absorbed into a load.

let
$$Z_S = Z_0$$
, $Z_L = Z_S^* = Z_0$ (in this case)

because maximum power transfer occurs when we have a conjugate match

Or, in terms of a and b:

So,

$$P_{load} = P_{AVS} = \frac{1}{2} a_1 a_1^* = \frac{V_{gen}^2}{8Z_0}$$

Actual Load Power

$$P_{Load} = \frac{1}{2}|a_1|^2 - \frac{1}{2}|b_1|^2 = \frac{1}{2}\operatorname{Re}\left[I_1V_1^*\right]$$
or
$$P_{Load} = P_{AVS}(1 - |S_{11}|^2)$$

Reflected Power

$$b_1 = a_1 S_{11}$$

$$P_{R} = \frac{1}{2} |b_{1}|^{2} = \frac{1}{2} |a_{1}|^{2} |S_{11}|^{2} = P_{AVS} |S_{11}|^{2}$$

$$|S_{11}|^{2} = \frac{\text{Power reflected from input}}{\text{Power incident on input}} = \frac{|b_{1}|^{2}}{|a_{1}|^{2}}$$

$$|S_{22}|^{2} = \frac{\text{Power reflected from network output}}{\text{Power incident on output}} = \frac{|b_{2}|^{2}}{|a_{2}|^{2}}$$

Similarly,

$$\frac{1}{2}|a_2|^2$$
 = Power incident on output
= Reflected power from load

$$\frac{1}{2}|b_1|^2$$
 = Power reflected from input port

$$\frac{1}{2}|b_2|^2$$
 = Power incident on load from the network

Terminated Transmission Line

Where do we assign z = 0?

The usual choice is at the load.

Note: The length / measures distance from the load:

Terminated Transmission Line (cont.)

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}$$

What if we know

 V^+ and V^- @ z = -1

Can we use z = - / as a reference plane?

$$V_0^+ = V^+(0) = V^+(-1)e^{-\gamma 1}$$

$$V^{-}(-1) = V^{-}(0)e^{-\gamma 1}$$

Terminating impedance (load)

I(z)

$$\Rightarrow V_0^- = V^-(0) = V^-(-1)e^{\gamma 1}$$

Hence

$$V(z) = V^{+}(-1)e^{-\gamma(z+1)} + V^{-}(-1)e^{\gamma(z+1)}$$

Terminated Transmission Line (cont.)

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}$$

What if we know

 V^+ and V^- @ z = -1

Can we use z = - / as a reference plane?

$$I(z)$$

$$V(z)$$

$$z = 0$$

Terminating impedance (load)

$$V_0^+ = V^+(0) = V^+(-1)e^{-\gamma 1}$$

$$V^{-}\left(-1\right) = V^{-}\left(0\right)e^{-\gamma 1}$$

$$\Rightarrow V_0^- = V^-(0) = V^-(-1)e^{\gamma 1}$$

Hence

$$V(z) = V^{+}(-1)e^{-\gamma(z+1)} + V^{-}(-1)e^{\gamma(z+1)}$$

34

Terminated Transmission Line (cont.)

The current at z = -1 is then

$$I(-1) = \frac{V_0^+}{Z_0} e^{\gamma 1} - \frac{V_0^-}{Z_0} e^{-\gamma 1}$$

/ ≡ distance away from load

Terminated Transmission Line (cont.)

Similarly,

position (z = 0).

from the load

$$I(-1) = \frac{V_0^+}{Z_0} e^{\gamma 1} (1 - \Gamma_L e^{-2\gamma 1})$$

37

Terminated Transmission Line (cont.)

Terminated Transmission Line (cont.)

At the load (/=0):

$$Z(0) = Z_0 \left(\frac{1+\Gamma_L}{1-\Gamma_L}\right) \equiv Z_L$$
 $\Longrightarrow \Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$

Recall
$$Z(-1) = Z_0 \left(\frac{1 + \Gamma_L e^{-2\gamma 1}}{1 - \Gamma_L e^{-2\gamma 1}} \right)$$

Thus,
$$Z(-1) = Z_0 \left(\frac{1 + \left(\frac{Z_L - Z_0}{Z_L + Z_0} \right) e^{-2\gamma 1}}{1 - \left(\frac{Z_L - Z_0}{Z_L + Z_0} \right) e^{-2\gamma 1}} \right)$$

39

Terminated Transmission Line (cont.)

Simplifying, we have

$$\begin{split} Z(-1) &= Z_0 \left(\frac{1 + \left(\frac{Z_L - Z_0}{Z_L + Z_0} \right) e^{-2\gamma l}}{1 - \left(\frac{Z_L - Z_0}{Z_L + Z_0} \right) e^{-2\gamma l}} \right) = Z_0 \left(\frac{\left(Z_L + Z_0 \right) + \left(Z_L - Z_0 \right) e^{-2\gamma l}}{\left(Z_L + Z_0 \right) - \left(Z_L - Z_0 \right) e^{-2\gamma l}} \right) \\ &= Z_0 \left(\frac{\left(Z_L + Z_0 \right) e^{+\gamma l} + \left(Z_L - Z_0 \right) e^{-\gamma l}}{\left(Z_L + Z_0 \right) e^{+\gamma l} - \left(Z_L - Z_0 \right) e^{-\gamma l}} \right) \\ &= Z_0 \left(\frac{Z_L \cosh\left(\gamma l\right) + Z_0 \sinh\left(\gamma l\right)}{Z_0 \cosh\left(\gamma l\right) + Z_L \sinh\left(\gamma l\right)} \right) \end{split}$$

Hence, we have

$$Z(-1) = Z_0 \left(\frac{Z_L + Z_0 \tanh(\gamma 1)}{Z_0 + Z_L \tanh(\gamma 1)} \right)$$

40

Terminated Lossless Transmission Line

$$\gamma = \alpha + j\beta = j\beta$$

$$V(-1) = V_0^+ e^{j\beta 1} (1 + \Gamma_L e^{-2j\beta 1})$$

$$I(-1) = \frac{V_0^+}{Z_0} e^{j\beta 1} (1 - \Gamma_L e^{-2j\beta 1})$$

$$Z(-1) = Z_0 \left(\frac{1 + \Gamma_L e^{-2j\beta 1}}{1 - \Gamma_L e^{-2j\beta 1}} \right)$$

$$Z(-1) = Z_0 \left(\frac{Z_L + jZ_0 \tan(\beta 1)}{Z_0 + jZ_L \tan(\beta 1)} \right)$$

Note: $\tanh(\gamma l) = \tanh(j\beta l) = j \tan(\beta l)$

Impedance is periodic with period $\lambda_{\rm g}/2$

tan repeats when

$$\beta 1 = \pi$$

$$\frac{2\pi}{\lambda_o}1=\pi$$

$$\Rightarrow 1 = \lambda_g / 2$$

41

Ans to 4b)

Quarter-Wave Transformer

$$Z_{in} = Z_{0T} \left(\frac{Z_L + jZ_{0T} \tan \beta l}{Z_{0T} + jZ_L \tan \beta l} \right)$$

$$\beta l = \beta \frac{\lambda_g}{4} = \frac{2\pi}{\lambda} \frac{\lambda_g}{4} = \frac{\pi}{2}$$

$$\Rightarrow Z_{in} = Z_{0T} \left(\frac{jZ_{0T}}{jZ_{I}} \right)$$

$$Z_{in} = \frac{Z_{0T}^2}{Z_{I}}$$

$$\Gamma_{in} = 0 \implies Z_{in} = Z_0$$

$$\Rightarrow Z_0 = \frac{Z_{0T}^2}{Z_L}$$

This requires Z_L to be real.

Hence

$$Z_{0T} = \left[Z_0 Z_L\right]^{1/2}$$

Consider the standing wave patterns as in Figure 11.23(a). From this, we observe that

$$\frac{\lambda}{2} = 19 - 11 = 8 \text{ cm}$$
 or $\lambda = 16 \text{ cm}$

$$f = \frac{u}{\lambda} = \frac{3 \times 10^8}{16 \times 10^{-2}} = 1.875 \text{ GHz}$$

Electrically speaking, the load can be located at 16 cm or 24 cm. If we assume that the load is at 24 cm, the load is at a distance ℓ from V_{\min} , where

$$\ell = 24 - 19 = 5 \text{ cm} = \frac{5}{16} \lambda = 0.3125 \lambda$$

−90° (b)

Figure 11.23 Determining Z_L using the slotted line: (a) wave pattern, (b) Smith chart for Example 11.6.

This corresponds to an angular movement of $0.3125 \times 720^{\circ} = 225^{\circ}$ on the s = 2 circle. By starting at the location of V_{\min} and moving 225° toward the load (counterclockwise), we reach the location of z_L as illustrated in Figure 11.23(b). Thus

$$z_L = 1.4 + j0.75$$

and

$$Z_L = Z_0 Z_L = 50 (1.4 + j0.75) = 70 + j37.5 \Omega$$

Solution Question 5

Solution:

1. a) compute Γ_{in} and write it in terms of Γ_{short} for a lossy transmission-line

$$\Gamma_{in} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0} = 0.915e^{-j0.675} = \Gamma_{short}e^{-2\alpha\ell}e^{-j2\beta\ell}$$

knowing that $\Gamma_{short} = -1 = e^{j\pi}$, we can match magnitudes and phases

$$e^{-2\alpha\ell} = 0.915 \implies \alpha = \frac{1}{2(1.5)} \ln\left(\frac{1}{0.915}\right) = 0.0297 \text{ Np/m}$$

 $-2\beta\ell + \pi = -0.675 \implies \beta = \frac{0.675 + \pi}{2(1.5)} = 1.27 \text{ rad/m}$

b) compute Γ_L from which you can calculate Γ_{in}

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = -0.2 + j0.4$$

$$\Gamma_{in} = \Gamma_{L} e^{-2\alpha\ell} e^{-j2\beta\ell} = \frac{\Gamma_{L}}{\Gamma_{chart}} \Gamma_{in}^{(a)} = (0.2 - j0.4)(0.915 e^{-j0.675}) = -0.0857 - j0.4$$

now convert this reflection coefficient to an impedance

$$Z_{in} = Z_0 \frac{1 + \Gamma_{in}}{1 - \Gamma_{in}} = 62.2 - j59.8 \,\Omega$$

c) we apply the same equation as in part a) but with a new ℓ and using $\lambda = 2\pi/\beta = 4.94$ m

$$\Gamma_{\mathit{in}} = \Gamma_{\mathit{short}} e^{-j2\beta\ell} e^{-2\alpha\ell} = -e^{-j2(2\pi)(0.15)} e^{-2(0.0297)(0.15)(4.94)} = 0.296 + j0.910$$

and convert to

$$Z_{in} = Z_0 \frac{1 + \Gamma_{in}}{1 - \Gamma_{in}} = 6.36 + j137 \,\Omega$$

 $f_0 = 2000 \text{ MHz}$

 $v_0 = 0.3 \text{ m/ns}$

(a) Using the Smith chart, determine the SWR on the section of line of length *l*.

$$\lambda = \frac{v_o}{f_o} = \frac{0.3}{2 \times 10^9} = 15cm$$

$$15 + j40\Omega \Rightarrow z_R = \frac{15 + j40}{50} = 0.3 + j0.8$$

From Smith chart, VSWR=5.7

$$SWR = 5.7$$

(b) Using the Smith chart find two values for the length l such that Z(l) is equal to $Z_0 \pm jX$.

 $l_1=0.186\lambda-0.112\lambda=0.074\lambda=0.074\times15=1.11$ cm

 $l_2=0.313\lambda-0.112\lambda=0.201\lambda=0.201\times15=3.015$ cm

$$Z(l_1) = Z_0 + jX$$
, $l_1 = 1.11$ cm

$$Z(l_2) = Z_0 - jX, l_2 = 3.015cm$$

(c) Determine the value of series inductance L and the proper length of the transmission line section (l_1 or l_2) that insures $Z_{in} = Z_0$

Impedance is capacitive at 12 with z=1-j1.9 or Z=50+j95 Ω . Can be compensated with inductor such that

$$L = \frac{95}{2\pi \times 2 \times 10^9} = 7.55 \, nH$$
 L = 7.55_ (nanoHenries)

Solution Question 6d

Solution:

$$z_L = \frac{z_L}{z_0} = \frac{100 + j80}{75} = 1.33 + j1.07.$$

- Enter z_L (P1) on the Smith chart.
- · Draw the SWR circle for the P1 (light blue).
- Transform into admittance y_L (P2).
- Travel towards generator until the intersection of the SWR circle and the g=1 circle.
- Intersections:

At P3:
$$y_{B1} = 1 + j0.98 \Rightarrow y_{s1} = -j0.98$$
; $d_1 = (0.161 - 0.432 + 0.5)\lambda = 0.229\lambda$
At P4: $y_{B2} = 1 - j0.98 \Rightarrow y_{s2} = +j0.98$; $d_2 = (0.339 - 0.432 + 0.5)\lambda = 0.407\lambda$

b) Using a short-circuited stub:

Match from P3: $l_{1,SC} = (0.377 - 0.25)\lambda = 0.127\lambda$; (dark blue arrow) Match from P4: $l_{2,OC} = (0.123 - 0.25 + 0.5)\lambda = 0.373\lambda$; (dark blue dashed arrow)

