EREIGNISDISKRETE SYSTEME

Praktikum Blatt 2 - Simulink

Jan Kristel, Alexandra Moritz

Aufsicht von Frau Rembold

Inhaltsverzeichnis

1	\mathbf{Gru}	ındlagen	2				
	1.1	Welcher Übertragungstyp?	2				
		a)	2				
		b)	2				
		c)	2				
		m d)	2				
	1.2	Relevante Parameter	2				
		a)	2				
		b)	2				
		c)	2				
		d)	3				
	1.3	Überprüfung durch Simulink	4				
		a)	4				
		b)	4				
		c)	5				
		d)	5				
_			_				
2	-	otimierung eines einfachen Regelkreises 6					
	2.1	Übertragungsverhalten	6				
	2.2	1.Näherung	6				
		a) Lageregelkreis in Simulink	6				
		b) Optimierung des Regelkreises - durch ausprobieren	7				
	0.0	c) $K_{P,opt}$	11				
	2.3	Lageregelkreis als PT_2 -Glied	12				
		a) Simulink	12				
		b) K_P ermitteln durch probieren	12				
		c)	19				
3	Opt	timierung nach Zielger/Nichols	20				
•	3.1		20				
	3.2	Ziegler-Nichols-Einstellkriterium	20				
	3.3	Blockschaltbild	21				
	3.4	Unterschiede zwischen den Übertragungsfunktionen	25				
		0.100.000.000.000.000.000.000.000.000.0					
4	Reg	gelverhalten von P-, I- und PID-Reglern	27				
	4.1	8	27				
	4.2	I-Regler	28				
	4.3	PID-Regler	29				
	4.4	Störübertragungsfunktionen	30				

1 Grundlagen

1.1 Welcher Übertragungstyp?

a)

$$h_1(t) = \frac{\frac{1}{4}}{s}$$

Es handelt sich um die Sprungfunktion eines I-Glied

b)

$$h_2(t) = \frac{s}{s+1}$$

Die Sprungfunktion ist von einem DT_1 -Glied.

c)

$$h_3(t) = \frac{2}{0,95s^2 + 0,19s + 1}$$

Das Bild zeigt die Sprungfunktion eines PT_2 -Glieds an.

d)

$$h_4(t) = \frac{1}{s+1}$$

Hierbei sieht man den Graphen der Sprungfunktion eines verzögerten PT_1 -Glieds.

1.2 Relevante Parameter

a)

• $K_I = \frac{1}{4} \rightarrow$ dient der Steigung. Dies lässt sich aus dem Bild/Graph ablesen.

b)

- $K_D = \frac{1}{1} = 1$. Dies sorgt für ein bestehendes s im Zähler.
- $T_1 = 1$, was für ein vorhandenes s im Nenner sorgt.

c)

- $K_P = 2$, durch ablesen bestimmt.
- T_2 und T_1 müssen berechnet werden:

$$\vartheta = ln\left(\frac{\Delta_1}{\Delta_2}\right) = ln\left(\frac{1,5}{1}\right) = 0,3$$

 $\to \Delta_1 und\Delta_2$ sind die ersten beiden Schwingungen der Sprungfunktion, nachdem diese den $K_P=2$ gekreuzt haben.

$$d = \frac{\vartheta}{\sqrt{\pi^2 + \vartheta^2}} = \frac{0.3}{\sqrt{\pi^2 + 2}} = 0.098$$

$$\omega_e = \frac{2 \cdot \pi}{T_e} = \frac{2 \cdot \pi}{6} = 1,047$$

 $\to T_e$ lässt sich aus dem Graphen abschätzen. Das ist die Dauer für die ersten vollständige Schwingung nachdem K_P erreicht wurde.

$$\omega_0 = \frac{\omega_e}{\sqrt{1 - d^2}} = \frac{1,047}{\sqrt{1 - 0,098^2}} = 1,052$$

$$T_2 = \frac{1}{\omega_0} = \frac{1}{1,052} = 0,95$$

$$T_1 = 2 \cdot d \cdot T_2 = 2 \cdot 0,098 \cdot 0,95 = 0,19$$

d)

- $K_P = \frac{1}{1} = 1$ Dies lässt sich wieder aus dem Graph ablesen.
- $T_1 = 1$
- $t=1 \to \text{die Verzögerung}\ t$ lässt sich ablesen und in Simulink durch ein extra Verzögerungsglied einstellen.

1.3 Überprüfung durch Simulink

a)

Abbildung 1: Graph einer Sprungfunktion eines I-Glieds.

b)

Abbildung 2: Graph einer Sprungfunktion eines DT_1 -Glieds.

c)

Abbildung 3: Graph einer Sprungfunktion eines PT_2 -Glieds.

d)

Abbildung 4: Graph einer Sprungfunktion eines um 1 Zeiteinheit verzögertes $PT_1\text{-}\mathrm{Glieds}.$

2 Optimierung eines einfachen Regelkreises

2.1 Übertragungsverhalten

Die Übertragsfunktion/Übertragungsverhalten für die Geschwindigkeit $v_x(t)$ lautet:

$$G_u(s) = \frac{X(s)}{v_x(s)} = \frac{1}{s}$$

2.2 1.Näherung

a) Lageregelkreis in Simulink

Abbildung 5: Aufbau des Regelkreises

b) Optimierung des Regelkreises - durch ausprobieren

Abbildung 6: $K_P = 1$

Abbildung 7: $K_P = 2$

Abbildung 8: $K_P = 3$

Abbildung 9: $K_P = 4$

Abbildung 10: $K_P = 5$

Abbildung 11: $K_P = 7$

Abbildung 12: $K_P = 10$

Abbildung 13: $K_P = 20$

Abbildung 14: $K_P = 30$

c) $K_{P,opt}$

Bei $K_{P,opt}$ handelt es sich um den optimalen Wert für den Faktor. Damit will man erreichen, dass das Signal ein minimales Überschwingen hat. Hier zu sehen in Abb. 4.

Abbildung 15: $K_{P,opt}=4$ mit einem minimalen Überschwinger

2.3 Lageregelkreis als PT_2 -Glied

a) Simulink

Abbildung 16: Lageregelkreis in Simulink als PT_2 -Glied

b) K_P ermitteln durch probieren

Abbildung 17: $K_P = 1$

Abbildung 18: $K_P = 2$

Abbildung 19: $K_P = 3$

Abbildung 20: $K_P = 4$

Abbildung 21: $K_P = 5$

Abbildung 22: $K_P = 6$

Abbildung 23: $K_P = 7$

Abbildung 24: $K_P = 8$

Abbildung 25: $K_P = 9$

Abbildung 26: $K_P = 10$

Abbildung 27: $K_P = 11$

Abbildung 28: $K_P = 12$

Abbildung 29: $K_P = 15$

Abbildung 30: $K_P = 20$

c)

 $K_{P,krit}$ verhält sich folgender Maßen:

- $\bullet\,$ bis $K_P=10$ nimmt das Schwingen ab, zu sehen in den Abb.25
- \bullet bei $K_P=10$ ist der optimale Wert erreicht. Das Signal schwingt gleichbleibend auf einer Höhe, zu sehen in Abb.27
- \bullet über $K_P=10$ nimmt das Schwingen, zu sehen in Abb.29

$$K_{P,opt} = \frac{K_{P,krit}}{2} = \frac{10}{2} = 5$$

$$K_{P,krit} = 2 \cdot K_{P,opt} == 2 \cdot 5 = 10$$

3 Optimierung nach Zielger/Nichols

3.1

Abbildung 31: Regelkreis für die Sprungantwort

Graphische Ermittlung der Werte aus der gegebenen Grafik:

- $K_s = 2$
- $T_g = 5$
- $T_u = 0, 5$

3.2 Ziegler-Nichols-Einstellkriterium

Regler	K_P	T_n	T_v
Р	$\frac{T_g}{(K_s \cdot T_u)}$		
PI	$0.9 \cdot \frac{T_g}{(K_s \cdot T_u)}$	$3.3 \cdot T_u$	
PID	$1.2 \cdot \frac{T_g}{(K_s \cdot T_u)}$	$2.0 \cdot T_u$	$0.5 \cdot T_u$

Mit den oben definierten Werten für K_s , T_u und T_v bekommt man für die benötigten Zellen der Tabelle, P und PI, folgende Werte:

Regler	K_P	T_n	T_v
Р	2,08		
PI	4,5	1,65	

3.3 Blockschaltbild

Abbildung 32: Schalter in Ausgangsposition.

Durch Ändern von ${\cal K}_P$ werden folgende Signalbilder erzeugt:

Abbildung 33: $K_P = 5$

Abbildung 36: Blockschaltbild eines P-Regler

Durch Umlegen des Schalters lassen sich die Sprung- $\epsilon(t)$ und Stoßanregung $\delta(t)$ erzeugen:

Abbildung 37: Sprung- in blau und Stoßanregung in gelb; mit dem errechneten $K_P=2.08\,$

Die Übertragungsfunktion lautet dafür dann:

$$h(t) = \frac{2.08 \cdot 2}{3s^2 + 4s + 1}$$

Die Gewichtsfunktion g(t) ist die rücktransformierte der Übertragungsfunktion.

Diese lautet dann:

$$G(s) = \frac{2.453}{s + 0.33} - \frac{0.453}{s + 1}$$

$$g_1(t) = 2.453 \cdot e^{-0.33t}$$

$$g_2(t) = -0.453 \cdot e^{-t}$$

Die gesamte Rücktransformation lautet dann:

$$g(t) = g_1(t) + g_2(t) = 2.453 \cdot e^{-0.333t} - 0.453 \cdot e^{-t}$$

Für einen PI-Regler sieht das ganze folgender Maßen aus:

Abbildung 38: Sprung- in blau und Stoßanregung in gelb; mit dem errechneten $K_P=1.87\,$

3.4 Unterschiede zwischen den Übertragungsfunktionen

Ein P-Regler im Regelkreis sorgt für eine begrenzte Steuerungsgenauigkeit. Dabei kann es zu einem Überschwingen, einem langsamen Einschwingverhalten und einer Abweichung von der Sollwert-Position kommen. Ein PI-Regler kann

das System genauer regeln. Dadurch kann schneller auf Veränderungen reagiert werden, Überschwingen minimal halten und eine stabilere Regelung erreichen. Die Übergangsfunktion eines PI-Regler ist also schneller und stabiler als bei einem P-Regler.

4 Regelverhalten von P-, I- und PID-Reglern

4.1 P-Regler

Aus der Regelstrecke

$$G_S(s) = \frac{K_s}{(1 + T \cdot S)^4}$$

lässt sich dieser Regelkreis bilden: Der Graph/das Signal dazu hat folgende

Abbildung 39: Regelkreis mit P-Regler

Form:

Abbildung 40: Das Signal zu oben angegebenen Regelkreis

4.2 I-Regler

Aus der Regelstrecke

$$G_S(s) = \frac{K_s}{(1 + T \cdot S)^4}$$

lässt sich dieser Regelkreis bilden: Der Graph/das Signal dazu hat folgende

Abbildung 41: Regelkreis mit I-Regler

Form:

Abbildung 42: Das Signal zu oben angegebenen Regelkreis

4.3 PID-Regler

Aus der Regelstrecke

$$G_S(s) = \frac{K_s}{(1T \cdot S)^4}$$

lässt sich dieser Regelkreis bilden: Der Graph/das Signal dazu hat folgende

Abbildung 43: Regelkreis mit P-Regler

Form:

Abbildung 44: Das Signal zu oben angegebenen Regelkreis

4.4 Störübertragungsfunktionen

Der Zusammengeführte Regelkreis:

Abbildung 45: Regelkreis der Zusammengeführten Funktionen aus b), c) un d).

Abbildung 46: Alle Graphen zusammen in ein Bild.