Trabajo Práctico No.5

Robótica. Primer Cuatrimestre 2019

11/06/2019

Modelo Dinámico

Para el manipulador de tipo doble péndulo montado sobre una pared, se entrega un grupo de scripts en Octave/Matlab que implementa el simulador y el modelo dinámico en variables de estado.

Son datos,

$$\begin{array}{rcl} a_1 & = & 0, 4 \mathrm{m} \\ I_{g1zz} & = & 0, 07 \mathrm{Kgm}^2 \\ \mathbf{r}_{g_1}^1 & = & [-a/2, 0, 0]^t \\ m_1 & = & 5 \mathrm{Kg} \end{array}$$

$$\begin{array}{rcl} a_2 & = & 0.3 \mathrm{m} \\ I_{g2zz} & = & 0.015 \mathrm{Kgm}^2 \\ \mathbf{r}_{g_2}^2 & = & [-a/2,0,0]^t \\ m_2 & = & 2 \mathrm{Kg} \end{array}$$

De acuerdo a la asignación habitual de ternas el vector de aceleración de la gravedad tiene la expresión

$$\mathbf{\hat{g}^0} = [0, -g, 0, 1]^t$$

Para establecer indicadores de performance se define una trayectoria de prueba como el recorrido en línea recta partiendo de reposo desde la posición $\mathbf{X}_{ini} = [-300, 300, 0]^t$ y llegando a detenerse en $\mathbf{X}_{fin} = [300, 300, 0]^t$.

Se desea completar el diseño del robot para cumplir con las siguientes especificaciones:

- Carga útil: 1Kg
- Tiempo de ciclo de 1seg para la trayectoria de prueba a carga máxima.
- Exactitud en la trayectoria 0,5mm a carga máxima

Selección del actuador

Se pide elegir del catálogo provisto un modelo de servomotor y un reductor que permitan cumplir con las especificaciones planteadas teniendo en cuenta las siguientes consideraciones:

- Los servomotores y reductores se acoplan en forma directa a los ejes; por lo tanto el conjunto del segundo eje debe ser transportado por el primero, debíendose modificar en consecuencia el modelo dinámico del robot.
- Cuidar que el robot tenga el menor peso posible.
- Considerar la carga como una masa puntual ubicada en el origen O_2 de la terna solidaria al segundo eslabón. Debe adecuarse nuevamente el modelo dinámico para incluir tal efecto.
- Incluir el modelo mecánico y el eléctrico del actuador, considerando los rozamientos y los efectos de saturación (torque máximos y mínimos que puede entregar).
- Modelizar el accionamiento electrónico (Drive). Elegir o bien controlar por corriente o por tensión.

Diseño del Control

Diseñar un controlador que cumpla con los requisitos de performance propuestos. Ensayar distintas arquitecturas (Control PD, PD+compensación de peso propio, torque computado). Contrastar los valores obtenidos contra las especificaciones para cada caso.

Evaluar el efecto de cambiar la magnitud de la carga transportada.

Nota final

Como la presentación y defensa del trabajo es presencial, no es necesario presentar un informe escrito tal como en los trabajos prácticos anteriores.

Al momento de la defensa se debe **mostrar el software en funcionamien-**to.