CISCO

OpenC2 and Distributed Network Security Policy Convergence

Eric Voit Principal Engineer evoit@cisco.com

29-Sep-2016

Jyoti Verma Technical Leader

jyoverma@cisco.com

Routing Protocols and Network Convergence

- IP address forwarding table state
- Hundreds of trusted control plane devices
- Well known state machines
- Dozens of protocols

 $10^{-6} \rightarrow 10^2$ second convergence times

Network Policy Convergence

- Distributed ownership and reconciliation
- Inter-dependent abstractions
- Custom & decoupled Mgmt systems
- Consistency enforcement a function of convergence speed

What it is $10^1 \rightarrow 10^5$ second convergence times

← 3 orders of magnitude improvement needed

Network Subscriptions

CRUDS (Create, Read, Update, Delete, Subscribe)

Solves known cost/scale limits of polling

- **Propagation latency**
- CPU, Bandwidth

Up-to-date objects delivered faster

Subscription Security Use Case: Integrity Verification

Immediate push of specific changes

- Unauthorized Hardware insertion
- Software Integrity Verification checksum
- Config change
- Current environmental fingerprint

5+ orders of magnitude improvement in recognition speed

Network Element as Subscriber

Device doesn't have authoritative ownership. Instead the primary copy is explicitly elsewhere.

Frees up the authoritative source from continuously tracking config everywhere

Single, central device config

Reduces logical copies of actively managed info

Can be for subset of config

Use Case: Perimeter & Internal Blocking

Changing Enclave Policy immediately reflected with Ephemeral config over a set of devices

Use Case: Perimeter & Internal Blocking

OpenC2 Alternatives for Network Actuation

Alternatives for Network Element

- **Existing Network Element CLI/API**
- Subscribed Network OS API
- Subscribed OpenC2 to Network Element

OpenC2 Alternative Selection Criteria

	Convergence Speed	Scale	Controller State?	Auto-config / Self-healing	End-to-end Encryption	Embedded base	Local NE Application
1 NOS CLI/API	Slow	Low	Yes	No	No	Yes	No
2 Subscribed NOS API	Fast	High	No	Yes	No	No	No
3 Subscribed OpenC2	Fast	High	No	Yes	Viable	No	Yes

Takeaways

- Changes to Network Policy convergence will be relevant to end-to-end OpenC2 deployments, even if these changes are under-the-covers
- Edge/leaf based subscription to Policy (however it is expressed) improves scale and simplifies management

11|111|11 CISCO

Layered Subscription Framework

Network Subscription Specification Progression

Dampening Period & Suppressed Periodic Behavior

Subscription to Access Control List

Mount One Authoritative Copy

Excerpt of Network-wide Datastore assembled on device

Coding occurs without developer knowing protocols

Questions as we try to figure what to prototype

https://github.com/OpenC2-org/docs-pub/blob/master/use-cases/mitigate-evil-domain.md

OpenC2 Use Cases

- Block on Indicators
- Email Phishing
- HBSS Signature
- Host Remediation Actions
- Host Remediation
- Update Sensor Signatures
- Mitigate Evil Domain

<u>Mitigate Evil Domain</u> actions DENY with Step 18 method = "sinkhole" or Step 20 method "ACL", plus applicable RESPONSE in Step 19/23.

Work through how the policy is withdrawn. I have been assuming that the applied policy would time-out of the network. But I would like to revisit the pros & cons.

