1		1.	A fight temperature superconducting rotor, comprising.
2		a high	temperature superconducting field winding,
3		a field	winding support concentrically arranged about the high temperature
4	supercond	uctor fi	eld winding, and
5		a therr	nal reserve concentrically arranged about the field winding support and
6	thermally	couple	to the field winding to maintain a temperature differential between the
7	thermal re	serve ar	nd the field winding not greater than about 10 K.
1		2.	The rotor of claim 1 wherein the thermal reserve comprises a material
2	that is ther	mally c	onductive.
1		3.	The rotor of claim 2 wherein the thermal reserve comprises a material
2	that is elec	trically	nonconductive.
1		4.	The rotor of claim 3 wherein the thermal
2	reserve co	mprises	a ceramic material.
1		5.	The rotor of claim 3 wherein the thermal reserve comprises Alumina.
1		6.	The rotor of claim 3 wherein the thermal reserve comprises ATTA®.
1		7.	The rotor of claim 3 wherein the thermal reserve comprises Beryllium
2	Oxide.		
			/
1		8.	The rotor of claim 2 wherein the thermal reserve comprises an

- 11 -

1

16.

2	electrically condu	ctive material.
1	9.	The rotor of claim 8 wherein the electrically conductive material
2	includes segmenta	ation in a direction normal to the axis of the rotor.
	10	The rotor of claim 8 wherein the electrically conductive material
1	10.	The rotor of claim 8 wherein the electrically conductive material
2	includes segmentation in a direction along the axis of the rotor.	
1	11.	The rotor of claim 8 wherein the electrically conductive material
2	comprises alumin	um shrunk fit over the field winding support.
		*
1	12.	The rotor of claim 1 further comprising a banding concentrically
2	arranged about the	e thermal reserve.
1	13.	The rotor of claim 12 wherein the banding comprises an electrically
2	conductive materi	al.
1.	14.	The rotor of claim 13 wherein the electrically conductive material
2	includes segmenta	ation in a direction normal to the axis of the rotor.
		,
1	15.	The rotor of claim 12 wherein the banding comprises an electrically
^	nonconductive me	stavial

The rotor of claim 15 wherein the banding comprises Kevlar.

1

25.

1	17.	The rotor of claim 15 wherein the banding comprises glass fiber.
1	18.	The rotor of claim 1 further comprising an outer layer concentrically
2	arranged about th	the thermal reserve, the outer layer comprising a thermally non-conductive
3	material	
1	19.	The rotor of claim 18 wherein the outer layer comprises an electrically
2	nonconductive m	aterial.
1	20.	The rotor of claim 18 wherein the outer layer comprises an electrically
2	conductive mater	ial.
1	21.	The rotor of claim 20 wherein the electrically conductive material is
2	configured to pre	vent the flow of eddy currents within the electrically conductive material.
1	22.	The rotor of claim 21 wherein the outer layer comprises multiple layers
2	of aluminum coa	ted mylar.
1	23.	The rotor of claim 22 wherein the aluminum coating includes segments
2	whereby electric	current does not flow in a direction along the axis of the rotor.
		The rotor of claim 18 further comprising a banding concentrically
1	24.	The rotor of claim 18 further comprising a banding concentrically
2	arranged about th	e outer layer.

A machine comprising:

	2	a rotor, said rotor comprising			
	3	a high temperature superconducting field winding,			
	4	a field winding support concentrically arranged about the field winding			
	5	for securing the field winding, the support being electrically isolated from the field winding			
	6	an AC flux shield concentrically arranged about the field winding, and			
	7	a thermal reserve concentrically arranged about the AC flux shield and			
	8	thermally coupled to the field winding to maintain a temperature differential between the			
	9	thermal reserve and the field winding not greater than about 10 K; and			
1	.0	a stator concentrically arranged about the rotor.			
	1	26. The machine of claim 25 further comprising a cryogenic refrigeration			
	2	system thermally coupled to the rotor.			
	/	buh			
	1	27. A method of limiting the rate of increase in the temperature of a			
	2	superconducting winding, comprising:			
	3	concentrically arranging a thermal reserve about and in thermal contact with the			
	4	superconducting winding, and			
	5	maintaining a temperature diferrential between the thermal reserve and the field			
	6	winding no greater than about 10 K.			
	1	28. The method of claim 27 wherein the thermal reserve comprises a			
	2	thermally conducting material.			
	1	29. The method of claim 28 further comprising:			
4	2	concentrically arranging a thermally nonconductive material about the			

3	thermally conductive material.		
1	30. The method of claim 27 further comprising:		
2	configuring the thermal reserve to suppress electric eddy currents from		
3	flowing about the superconducting winding.		
1	31. A high temperature superconducting rotor, comprising:		
2	a high temperature superconducting field winding,		
3	a field winding support concentrically arranged about the high temperature		
4	superconductor field winding, and		
5	a thermal reserve concentrically arranged about the field winding support, the		
6	thermal reserve including ATTA® which is thermally conductive and electrically		
7	nonconductive.		