Supplementary Table 4 Utilization of various carbon sources by Mannheimia

succiniciproducens MBEL55E ^a.

Compounds	In silico prediction		Carbon source utilization ^b
	Transport	Catabolic pathway	— Carbon source utilization
Xylitol	Negative	Negative	-
Inositol	Negative	Negative	-
Mannitol	Positive	Positive	+
Sorbitol	Negative	Negative	-
Glucose	Positive ^c	Positive	+
Fructose	Positive	Positive	+
Xylose	Positive	Positive	+
Sucrose	Positive	Positive	+
Maltose	Positive	Positive	+
Lactose	Positive	Positive	+
Trehalose	Negative ^d	Negative ^d	+
Xylan	Negative	Negative	-
Celullose	Negative	Negative	-

^a Cells were grown anaerobically at 37°C for 24 h in MH medium (100 ml) containing a specified carbon source (10 g Γ^1), polypeptone (10 g Γ^1), yeast extract (5 g Γ^1), K₂HPO₄ (3 g Γ^1), NaCl (2 g Γ^1), (NH₄)₂SO₄ (3 g Γ^1), CaCl₂·2H₂O (0.2 g Γ^1), MgCl₂·6H₂O (0.2 g Γ^1), and MgCO₃ (10 g Γ^1) with CO₂ as the gas phase.

^b Utilization of carbon sources was examined by monitoring the decrease of the concentrations of carbon sources during the cultivation.

^c Annotation results by COG database search, which we used throughout this study, suggested that there are two *ptsG* genes, which led us to assume that glucose is transported by the PTS system in this study. However, it should be noted that the annotation results for these genes by non-redundant database search were different; they were predicted as *treB* and *ptsB* by non-redundant database search. Identifying the true mechanism of glucose transport in *Mannheimia succiniciproducens* requires further study.

^d This prediction was based on the annotation results obtained by COG database search, which were different from those obtained by non-redundant database search as well as cultivation experiment.