Question 4.

1. Consider a family of probability mass functions $\mathcal{F} = \{f_{\theta}(x) : \theta \in \Theta \subset \mathbb{R}\}$ on a sample space \mathcal{X} . Suppose $f_{\theta}(x)$ is twice differentiable with respect to θ , for all $x \in \mathcal{X}$. Let $X_i \stackrel{iid}{\sim} f_{\theta}(x)$, for $i = 1, 2, \dots, n$. Suppose $T_n = T(X_1, \dots, X_n)$ is a sufficient statistic for θ . Show that the Fisher information of T_n is equal to the Fisher information contained in the whole sample $\vec{X} = (X_1, \dots, X_n)$.

Solution: (8 marks)

2. Let $I(\eta)$ be the amount of information in X about $\eta = h(\theta)$. Using the Chain Rule and the derivative of an inverse function show that

$$I(\eta) = \mathbb{E}_{\theta} \left\{ \left[\frac{\partial}{\partial \eta} \ln f_{\theta}(X) \right]^{2} \right\} = \frac{I(\theta)}{[h'(\theta)]^{2}}$$
 (7 marks)