

Term End Examination - May 2013

Course : MAT101 - Multivariable Calculus and Differential Slot: C1+TC1

Equations

Class NBR : 2843 / 2849 / 3452

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer <u>ALL</u> Questions

1. If u = xy + yz + zx, where $x = e^t$, $y = e^{-t}$ and $z = \frac{1}{t}$, find $\frac{du}{dt}$.

- 2. Examine if u = xy + yz + zx, $v = x^2 + y^2 + z^2$ and w = x + y + z are functionally dependent.
- 3. Evaluate $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy$, using polar coordinates.
- 4. Evaluate $\int_0^\infty x^6 e^{-3x} dx$ using Gamma function.
- 5. Obtain the directional derivative of $\varphi = x^2yz + 4xz^2$ at the point (1, -2 1) in the direction of $2\hat{\imath} \hat{\jmath} \hat{k}$.
- 6. Using Stoke's theorem, prove that $\int_C \varphi \nabla \varphi \cdot \overrightarrow{dr} = 0$, where C is a simple closed curve and φ is a scalar point function.
- 7. Find the particular integral of $(D^2 + D + 1)y = \sin 2x$.
- 8. Solve $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = 0$.
- 9. Find the Laplace transform of $\frac{1-e^t}{t}$.
- 10. Find the inverse Laplace transform of $log \left(1 + \frac{\omega^2}{s^2}\right)$.

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

11. a) Using Taylor's series expansion expand $\tan^{-1} \frac{y}{x}$ in the neighbourhood of (1, 1). [7]

b) Examine $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ for extreme values. [7]

- 12. a) By changing the order of integration, evaluate $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy$. [7]
 - b) Using Gamma function, prove that $\left(\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}}\right) \left(\int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} \ d\theta\right) = \pi.$ [7]
- 13. a) Prove that $\vec{F} = (z^2 + 2x + 3y)\hat{\imath} + (3x + 2y + z)\hat{\jmath} + (y + 2zx)\hat{k}$ is irrotational vector. Hence find its scalar potential φ .
 - b) Verify Green's theorem in the plane for $\int_C (2x y) dx + (x + y) dy$ where C is the boundary of the circle $x^2 + y^2 = a^2$.
- 14. a) Solve the differential equation $\frac{d^2y}{dx^2} + y = cosec x$, by the method of variation of [7] parameters.
 - b) Solve the differential equation, $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 3y = x^2$ by the method of [7] undetermined coefficients.
- a) Find the Laplace transform of the periodic function [7]

$$f(t) = \begin{cases} t & \text{in } 0 < t < 1 \\ 2 - t & \text{in } 1 < t < 2 \end{cases}$$
 given that $f(t + 2) = f(t)$.

- b) Using convolution theorem, find the inverse Laplace transform of $\frac{s}{(s^2+a^2)^2}$. [7]
- 16. a) By transforming into cylindrical coordinates, evaluate the integral $\iint \int \int (x^2 + y^2 + z^2) dx dy dz$ taken over the region of space defined by $x^2 + y^2 \le 1$ and $0 \le z \le 1$.
 - b) If $= |\vec{r}|$, where \vec{r} is the position vector of the point (x, y, z), prove that [7] $\nabla^2(r^n) = n(n+1)r^{n-2}$ and hence deduce that $\frac{1}{r}$ satisfies Laplace equation.
- 17. a) Solve the differential equation $x^2 \frac{d^2y}{d^2x} + 4x \frac{dy}{dx} + 2y = x^2 + \frac{1}{x^2}$. [7]
 - b) Using Laplace transform, solve the integral equation [7]

$$\frac{dy}{dx} + 2y + \int_0^t y \, dt = 2 \cos t$$
, $y(0) = 1$.

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$