Análise de Credit Score

Trabalho Final - Digital House Coding School

Modelos de classificação - Credit Score

Grupo 1 - Augusto Ribeiro, Eduardo Henrique, Felipe Ferraz, Lucas Ribeiro, Thiago Ferro, Inês Dantas

Sumário

Introdução: problema, pertinência e dados

EDA e Data Cleaning

Feature Engineering

Modelos

Conclusões e StreamLit

Avaliação de risco e Inadimplência

- Serasa: nº inadimplentes cresce desde 2016. 66,6mi nomes negativados por dívidas;
- 28,2% das dívidas são com bancos e cartões, seguido de 22,7% com contas essenciais;
- Como os bancos definem qual limite de crédito devem liberar para os clientes? E em relação aos empréstimos, quantos, a quantia e **SE** os concedem?
- Avaliação de Riscos: capacita a identificação de onde investir/emprestar → evitar inadimplência, ou seja, perder o dinheiro

O que é o credit score?

Credit Score é uma pontuação resultante dos hábitos de pagamento e relacionamento do consumidor com o mercado de crédito. Fatores como pagar contas em dia, histórico de dívidas negativadas, saldo devedor etc, representam o risco de inadimplência e saúde financeira geral de uma pessoa.

O score vai de O a 1.000 pontos. Esses pontos foram divididos em nosso dataset dentre três classes (classificação multiclasse):

- Poor (ruim) alto risco de inadimplência;
- Standard (padrão) médio risco;
- Good (bom) baixo risco.

Dados

Os dados escolhidos foram obtidos no Kaggle e são fictícios. O objetivo é construir um sistema inteligente para segregar as pessoas em faixas de pontuação de crédito para reduzir os esforços manuais.

- ID Identificador único de entrada (observação)
- Customer_ID ID único de cliente
- Month Mês do ano
- Name nome do cliente
- Age Idade do cliente
- SSN Social Security Number (CPF no Brasil)
- Occupation Ocupação do cliente
- Monthly_Inhand_Salary Salário mensal do cliente
- Num_Bank_Accounts Quantidade de contas em bancos
- Num_Credit_Card Quantidade de cartões de crédito
- Interest_Rate Taxa de juros do cartão de crédito
- Num_of_Loan Quantidade de empréstimos feitos no banco
- Type_of_Loan Tipo de empréstimo feito pelo cliente
- Num_Credit_Inquiries Quantidade de "cobranças" no cartão
- Total_EMI_per_month Parcela mensal de empréstimo

- Outstanding_Debt Restante da dívida a ser paga
- Delay_from_due_date Qtd. de dias de atraso no pagamento do cartão
- Changed_Credit_Limit Variação percentual de limite do cartão de crédito
- Credit_History_Age Tempo de histórico de crédito do cliente
- Monthly_Inhand_Salary Salário mensal do cliente
- Credit_Mix Qualidade da variedade de crédito do cliente (crédito rotativo e parcelado)
- Num_of_Delayed_Payment Média de pagamentos atrasados pelo cliente
- Credit_Utilization_Ratio Taxa de utlização do cartão de crédito
- Payment_of_Min_Amount Se o cliente pagou ou não o mínimo da dívida
- Monthly_Balance Saldo mensal do cliente
- Payment_Behaviour Comportamento de pagamento do cliente
- Credit Score Pontuação da credibilidade do cliente

- Drop de todos os NaN
- Idade de 18 a 100 anos;
- Drop de Outliers com intervalo interquartil;

Distribuição de variáveis - Sem limpeza de Intervalo Interquartil

200

Valor investido mensalmente

300

500

200

Saldo mensal

- 50% das idades estão na faixa de [26; 41];
- 75% das pessoas ganham menos de 4 mil;
- Em média, as pessoas tem 6 cartões e 4 empréstimos feitos;
- Em média, as pessoas tem saldo devedor de 1600;
- 50% das pessoas investem mensalmente na faixa de [62; 181].

Distribuição de variáveis - Com limpeza de Intervalo Interquartil

100

200

Idade de Histórico de Crédito

• Pessoas com Credit Score mais baixo tem uma média de atraso no pagamento das parcelas maior. Assim como uma maior quantia de atrasos.

Credit Score e Uso do Crédito

- Maioria do Credit Score é Standard (54%), target desbalanceada;
- Idades entre 35 e 45 anos usam mais o Cartão de Crédito;

- Pessoas com alta dívida tendem a ter pior Credit Score;
- Idades entre 25 e 45 anos possuem mais dívida, provavelmente pelo maior uso do crédito.

- O quanto a pessoa ganha não implica diretamente no Credit Score, mas sim o quão bem ela gerencia suas finanças;
- Pessoas com bom Credit Score costumam guardar mais dinheiro ao final do mês.

Profissão

- Apresenta distribuição uniforme em atrasos e Dívida;
- Acompanham a distribuição desbalanceada de Credit Score, ou seja, não influencia na target.

Feature Engineering

Data Wrangling, Feature Importance e Feature Selection

Encoding e Normalização

Variáveis Dropadas

Customer_ID, Name, SSN, Type_of_Loan,
Type_of_Loan_ajustado, Credit_History_Age,
Credit_Score, Month, Monthly_Balance, Occupation,
Payment_Behaviour

Categóricas (pd.DataFrame.factorize())

• Credit_Mix (mix de crédito) e Payment_of_Min_Amount (pagamento do mínimo da dívida)

Numéricas (Standard Scaler)

• Utilizamos o Standard Scaler nas variáveis numéricas restantes (média 0 e desvio padrão 1)

Factorize de Credit Mix

```
Standard 10882
```

Good 5781

Bad 5255

Name: Credit_Mix, dtype: int64

1 10882

0 5781

2 5255

Name: Credit_Mix, dtype: int64

Target multiclasse → 0 = Good, 1 = Poor, 2 = Standard

Feature Selection

Tabela StatsModels Summary

Passam no teste e tem coeficiente relevante:

- Salário Mensal (Monthly_Inhand_Salary);
- Dias de atraso de pagamento do cartão (Delay_from_due_date);
- Fator de troca de limite do cartão (Changed_Credit_Limit);
- Saldo devedor (Outstanding_Debt);
- Mix de Crédito (Credit_Mix);
- Tempo de histórico com cartão (Credit_History_Age); e
- Pagamento do montante mínimo (Payment_of_Min_Amount).

	coef	std err	t	P> t	[0.025	0.975]
Annual_Income	-0.0015	0.006	-0.255	0.799	-0.013	0.010
Monthly_Inhand_Salary	0.0630	0.006	10.299	0.000	0.051	0.075
Interest_Rate	0.0009	0.006	0.156	0.876	-0.010	0.012
Delay_from_due_date	-0.2421	0.007	-33.600	0.000	-0.256	-0.228
Num_of_Delayed_Payment	-0.0053	0.006	-0.932	0.351	-0.017	0.006
Changed_Credit_Limit	0.0516	0.007	7.516	0.000	0.038	0.065
Num_Credit_Inquiries	-0.0014	0.006	-0.244	0.807	-0.012	0.010
Outstanding_Debt	-0.3321	0.009	-38.266	0.000	-0.349	-0.315
Credit_Utilization_Ratio	0.0104	0.006	1.792	0.073	-0.001	0.022
Total_EMI_per_month	-0.0064	0.006	-1.121	0.262	-0.018	0.005
Amount_invested_monthly	0.0032	0.006	0.554	0.580	-0.008	0.014
Credit_History_age	0.1942	0.008	24.861	0.000	0.179	0.210
Credit_Mix	1.0444	0.013	82.097	0.000	1.019	1.069
Payment_of_Min_Amount	0.3845	0.019	20.404	0.000	0.348	0.421

Testes de Hipóteses das Features

Feature Selection

ExtraTreesClassifier.feat_importance_ (Coef. Gini)

PCA

- Análise de componentes principais nos permite visualizar quais das variáveis tem maior influência no comportamento dos dados com a target;
- No caso, pelo menos 70% da variância é explicada pelas 6 primeiras PCs.

Annual_Income	-0.01	0.17	-0.27	0.03	0.48	0.69
Monthly_Inhand_Salary	-0.48	0.46	-0.03	-0.05	0.07	-0.03
Interest_Rate	0.01	0.01	0.83	-0.46	0.13	0.29
Delay_from_due_date	0.76	0.08	0.01	-0.03	0.00	-0.02
Num_of_Delayed_Payment	0.03	0.07	0.16	-0.12	0.40	-0.51
Changed_Credit_Limit	0.63	0.13	-0.01	0.02	0.02	-0.01
Num_Credit_Inquiries	0.03	-0.05	-0.10	-0.03	0.09	0.31
Outstanding_Debt	0.85	0.11	-0.01	-0.01	0.01	-0.01
Credit_Utilization_Ratio	-0.14	0.75	-0.10	-0.12	0.22	-0.20
Total_EMI_per_month	-0.01	0.15	0.46	0.87	0.13	0.04
Amount_invested_monthly	-0.02	0.45	0.09	-0.01	-0.72	0.20
Credit_History_age	-0.81	-0.09	0.02	0.00	-0.02	-0.01
Credit_Mix	0.63	0.04	-0.01	-0.01	0.00	-0.00
Payment_of_Min_Amount	0.36	0.01	-0.00	0.00	0.00	-0.00
	PC1	PC2	PC3	PC4	PC5	PC6

PCA

• Correlação das 3 primeiras componentes principais com as features:

Mutual Information Score

A pontuação de Informação Mútua expressa até que ponto a frequência observada de coocorrência entre duas variáveis difere do que seria de esperar, ou seja, o quanto elas se explicam mutuamente.

Melhores Features

Dos métodos, as melhores features são:

- Saldo devedor (Outstanding_Debt);
- Salário Mensal (Monthly_Inhand_Salary) e Renda Anual (Annual_Income);
- Mix de Crédito (Credit_Mix);
- Razão de uso do Cartão de Crédito (Credit_Utilization_Ratio);
- Dias de atraso de pagamento do cartão (Delay_from_due_date);
- Fator de troca de limite do cartão (Changed_Credit_Limit);
- Montante investido mensalmente (Amount_invested_monthly);
- Tempo de histórico com cartão (Credit_History_Age); e
- Pagamento do montante mínimo (Payment_of_Min_Amount).

• 3 Métodos de Feature Selection que conversam entre si, o que trás maior confiança na seleção

Modelos

Extra Trees

Random Forest

XGBoost

Multi-layer Perceptron

Stacking: XGBoost e SVC

Características Gerais

- Target multi-classe (Poor, Standard, Good);
- Splits com Stratify = y, lida com assimetria da target;
- Todos os modelos foram treinados com features selecionadas;
- Otimização de hiperparâmetros pelo método Bayesiano e com foco em Acurácia e F1-Score (média harmônica entre precision e recall).

$$F_1$$
-score = 2 × $\frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} = \frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$

Comparativo para seleção de Modelos (SKLearn)

 Através do método Cross Val Score do SKLearn, testamos 7 modelos para escolher os modelos a treinar realmente.

* Comparação	Cross-Validation-Score	entre vários	modelos:
--------------	------------------------	--------------	----------

	Modelo	Score
0	LogisticRegression	0.6108
1	KNeighbors Classifier	0.6647
2	Decision Tree Classifier	0.6529
3	Random Forest Classifier	0.7470
4	XGBClassifier	0.7248
5	ExtraTreeClassifier	0.6248
6	MLPClassifier	0.6749

Modelo Baseline: Dummy Classifier

- Modelo que chuta todas as predições como Standard e serve de benchmark na performance dos outros modelos;
- Acurácia: 0.5301;
- OBS.: Não é possível calcular seu Recall e F1-Score, já que teríamos divisão por zero.

Extra Trees

	precision	recall	f1-score	support
0	0.62	0.68	0.65	944
1	0.76	0.74	0.75	1844
2	0.78	0.77	0.78	3145
accuracy			0.75	5933
macro avg	0.72	0.73	0.73	5933
weighted avg	0.75	0.75	0.75	5933

Random Forest

	precision	recall	f1-score	support
0	0.65	0.67	0.66	944
2	0.76 0.79	0.76 0.78	0.76 0.78	1844 3145
accuracy			0.76	5933
macro avg weighted avg	0.73 0.76	0.74 0.76	0.73 0.76	5933 5933

XGBoost

	precision	recall	f1-score	support
0 1 2	0.94 0.94 0.95	0.92 0.95 0.95	0.93 0.94 0.95	944 1844 3145
accuracy macro avg weighted avg	0.94 0.95	0.94 0.95	0.95 0.94 0.95	5933 5933 5933

Multi-Layer Perceptron (SKLearn)

	precision	recall	f1-score	support
9	0.50	0.77	0.60	944
2	0.68 0.77	0.64 0.67	0.66 0.72	1844 3145
accuracy			0.68	5933
macro avg	0.65	0.69	0.66	5933
weighted avg	0.70	0.68	0.68	5933

Stacking de XGBoost com SVC

	precision	recall	f1-score	support
0	0.66	0.63	0.65	944
1	0.76	0.73	0.74	1844
2	0.76	0.79	0.77	3145
accuracy			0.74	5933
macro avg	0.73	0.71	0.72	5933
weighted avg	0.74	0.74	0.74	5933

Performance

- XGBoost foi o melhor modelo, disparado (>AUC, Acc, F1; <FN);
- RF, ExtraTrees e Stacking tiveram performance similar, com maior AUC de RF;
- Dummy Classifier serve de referência para os demais, principalmente durante a otimização de hiperparâmetros.

	Acurácia	Recall	FN	F1-Score	AUROC
XGBoost	0.9451	0.9385	148.0	0.9414	0.9934
Random Forest	0.7566	0.7378	699.0	0.7348	0.8949
Extra Trees	0.7477	0.7313	717.0	0.7259	0.8910
Stacking	0.7423	0.7139	674.0	0.7192	0.8833
Multi Layer Perceptron	0.6776	0.6938	1037.0	0.6611	0.8949
Dummy	0.5301	0.3333	0.0	0.2310	0.5000

OBS.: Curvas ROC
 plotadas no esquema
 One vs Rest (multi classe). A variável
 referência escolhida foi a
 mais frequente,
 Standard.

Conclusões

- A classificação Multi-classe se mostrou uma tarefa à parte já que muitos dos métodos e funções de validação/métricas tiveram que ser substituídos ou reescritos. Não somente, a codificação da target seguiu outro método do que já é costumeiro (binário, OneHot etc);
- Dataset com qualidade baixa de dados, porém com quantia grande de observações. EDA, Data Wrangling e Limpeza de Dados foram pontos de foco (vide ciclo iterativo destacado em vermelho).

Conclusões

- XGBoost com dados processados, normalizados etc teve melhores resultados do que para com dados crus (fora grande tendência de overfitting neste último);
- MLP foi um modelo que trouxe o pior resultado, devido primeiramente ao desconhecimento do mesmo e seus hiperparâmetros por parte dos autores. Utilização das bibliotecas Keras+Tensorflow poderiam trazer o potencial enorme que as redes neurais apresentam;
- Stacking de XGBoost com SVC (e mesmo quando de XGBoost com MLP), também não rendeu bons resultados, já que não foi possível encontrar modelos de soluções complementares. Talvez com uma MLP melhor otimizada esse seria o melhor modelo disparado.

StreamLit

 Dashboard interativo como exemplo do funcionamento do modelo. (https://creditscore-projetofinal.streamlitapp.com/)

Fontes

O que é Score de Crédito?

https://www.serasa.com.br/score/blog/o-que-e-score-decredito/

Como definir o risco de inadimplência de clientes?

https://www.cobrefacil.com.br/blog/risco-de-inadimplencia

Número de inadimplentes no Brasil atinge recorde, aponta Serasa

https://www.cnnbrasil.com.br/business/numero-de-inadimplentes-no-brasil-atinge-recorde-da-serie-historica-aponta-serasa/

Dados

https://www.kaggle.com/datasets/parisrohan/creditscore-classification