Herein we will outline some review content for the exam.

Definition 1. Let $\{X_i\}_{i\in I}$ be a collection of sets indexed by I. A set P together with functions $\pi_i: P \to X_i$ for each $i \in I$ is said to have the **universal property of the product** if, for any set Z and functions $f_i: Z \to X_i$ for each $i \in I$. Then there exists a unique function $f: Z \to P$ such that

$$Z \downarrow f \qquad f_i \downarrow f \qquad X_i$$

$$P \xrightarrow{\pi_i} X_i$$

Example 1. A standard sort of product: Take $X_1 = \mathbb{R}, X_2 = \mathbb{R}, P = \mathbb{R}^2$, and $\pi_1 : P \to X_1$, $(x, y) \mapsto x$, and $\pi_2 : P \to X_2$ taking $(x, y) \mapsto y$. then

$$X_{1} \xleftarrow{f_{1}} P \xrightarrow{\pi_{2}} X_{2}$$

And in fact we can see that such an f does exist, as $z \mapsto (f_1(z), f_2(z))$.

Example 2. Here's a bit of a weirder one. $X_1 = \mathbb{R}$, $X_2 = \mathbb{R}$, $P' = \mathbb{R}^2$, and the functions $\pi'_1: P' \to X$ a projection on the first coordinate, and $\pi'_2: P' \to X_2$ takes $(x, y) \mapsto x + y$.

$$X_{1} \xleftarrow{f_{1}} P' \xrightarrow{g_{1}} X_{2}$$

Notice that to get the f that we desire, we require that $f(z) = (f_1(z), f_2(z) - f_1(z))$

Theorem 1. If (P, π_i) has the universal property of the product and (P', π'_i) has universal property of the product, then there exists a unique bijection $f: P \to P'$ such that $\pi_i = \pi'_i$ for all $i \in I$

$$P \xrightarrow{f} \pi_{i}$$

$$P' \xrightarrow{\pi'_{i}} X_{i}$$

This theorem was proved in class, so we omit the proof here.

Definition 2. Let X be a set, \sim be an equivalence relation on X. A function $f: X \to Y$ is said to **respect the equivalence relation** if $x_1 \sim x_2 \Rightarrow f(x_1) = f(x_2)$ for $x_1, x_2 \in X$. A set \overline{X} together with a function $\pi: X \to \overline{X}$ is said to have the universal property of quotients if:

- 1. $\pi: X \to \overline{X}$ respects the equivalence relation.
- 2. For any function $f:X\to Y$ such that f respects the equivalence relation, $\exists !\overline{f}:\overline{X}\to Y$ such that

$$\begin{array}{c} X \xrightarrow{f} Y \\ \downarrow^{\pi} & \overline{f} \end{array}$$

Example 3. in general, $\pi: X \to X/\sim$ taking $x \mapsto [x]$ has the universal property.

Example 4. $X = \mathbb{Z}$, $a \sim b \Leftrightarrow a - b \equiv 0 \pmod{6}$. Then X/\sim is called the integers modulo 6, written $\mathbb{Z}/6$ (or more commonly $\mathbb{Z}/6\mathbb{Z}$).

Let's define "multiplying by 2".

$$\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/6$$

$$\downarrow^{\pi}$$

$$\mathbb{Z}/6$$

well notice that what we really need here is

So the thing that we really want is $\mathbb{Z} \to \mathbb{Z}/6$ that takes $a \mapsto [2a]$. Does this respect the equivalence relation?

If $a \sim b$, is it true that [2a] = [2b]?

$$a \sim b \Rightarrow a - b \equiv 0 \pmod{6}$$

 $\Rightarrow a - b = 6n \ (n \in \mathbb{Z})$
 $\Rightarrow 2a - 2b = 6(2n)$
 $\Rightarrow 2a \sim 2b$
 $\Rightarrow [2a] = [2b].$

So we have what we want.

Definition 3. Let $Z \subseteq \mathbb{R}^n$. A point $\mathbf{x} \in \mathbb{R}6n$ is a **limit point of** Z if for all $\varepsilon > 0$,

$$(B(\mathbf{x}, \varepsilon) - {\mathbf{x}}) \cap Z \neq \emptyset.$$

A point $\mathbf{x} \in \mathbb{R}^n$ is said to be an **adherent point of** Z if for all $\varepsilon > 0$,

$$B(\mathbf{x}, \varepsilon) \cap Z \neq \emptyset$$
.

Equivalently, \mathbf{x} is adherent if \mathbf{x} is a limit point or $\mathbf{x} \in \mathbb{Z}$.

Example 5. Let

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \begin{cases} 0 & x < 0 \\ 20 & x \ge 0 \end{cases}.$$

Obviously, this should not be continuous. Recall the definition of continuity. Namely that $\forall \varepsilon > 0$, $\forall x \; \exists \delta > 0 \; \forall y \; |x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon$. Furthermore, non-continuity entails that $\exists \varepsilon > 0 \; \exists x \; \forall \delta > 0 \; \exists y \; |x-y| < \delta \; \text{and} \; |f(x)-f(y)| \geq \varepsilon$.

So let $x=0, \varepsilon=10$. now let $\delta>0$. Let $y=\frac{-\delta}{2}$. Then $|x-y|=\frac{\delta}{2}<\delta$, but $|f(x)-f(y)|=|20-0|=20>10=\varepsilon$

Now let's take $\frac{g:\mathbb{R}\to\mathbb{R}}{x\mapsto 3x}$. So we can get $\forall \varepsilon>0 \ \forall x, \ \exists \delta>0, \ \forall y \ |x-y|<\delta\Rightarrow |g(x)-g(y)|<\varepsilon$. Now let $\varepsilon>0$, and $x\in\mathbb{R}$. Take $\delta=\frac{\varepsilon}{3}$. Then for all $y\in\mathbb{R}$ with $|x-y|<\frac{\varepsilon}{3}$,

$$|g(x) - g(y)| = |3x - 3y|$$

$$= 3|x - y|$$

$$< 3\left(\frac{\varepsilon}{3}\right)$$

$$= \varepsilon.$$

So g is continuous.