

METHODS 12 Mathematics SPOT TEST 3, 2019

Week 8 Term 1
Time allowed: 20 minutes
No Calculator – Page 1 12 mks
Calculator – Page 2 8 mks

Name			
	٠	 *****	

1. [12 mks -2,2,2,3,3]

Determine each of the following

(a)
$$\frac{d}{dx}(e^{3x+1}\cos 2x)$$
 (do not simplify)

(b)
$$\int \sin(\frac{\pi - 3x}{2}) dx$$

$$\int xe^{x^2} \left(1 + e^{x^2}\right)^4 dx$$

(d)
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1 - \sin x) dx$$

(e)
$$f(\frac{\pi}{4})$$
 if $f'(x) = \cos(2x)\sin^2(2x)$ and $f(0) = 0$

2. (a) [4 marks - 1,1,2]

Certain medical tests require the patient to be injected with a solution containing 0.5 micrograms (μ g) of the radioactive material Technetium-99. This material decays according to the rule:

 $T = T_0 e^{-0.1155t}$ where t is the time (in hours) from injection.

(i) The rate of change of the amount of Technetium is proportional to the amount of Technetium remaining. That is ,

$$\frac{dT}{dt} = kT$$

What is the value of k?

- (ii) What is the value of T_0 ?
- (iii) What is the half-life of Technetium-99?

(b) [4 marks]

Determine to an accuracy of 3 sig figures, the area enclosed by $y = e^{2x}$ and $y = 2\cos^3 x$

METHODS 12 Mathematics SPOT TEST 3, 2019

Week 8 Term 1
Time allowed: 20 minutes
No Calculator – Page 1 12 mks
Calculator – Page 2 8 mks

Name: Soldioni

1. [12 mks -2,2,2,3,3]

Determine each of the following

(a)
$$\frac{d}{dx}(e^{3x+1}\cos 2x)$$
 (do not simplify)
$$= e^{3x+1} (-\sin 2x) + \cos 2x \cdot e \cdot 3$$

(b)
$$\int \sin(\frac{\pi - 3x}{2}) dx$$

$$= \frac{2}{3} \int \frac{2}{3} \cdot \sin(\frac{\pi - 3x}{2}) dx$$

$$= \frac{2}{3} \cos(\frac{\pi - 3x}{2}) + C$$

(c)
$$\int xe^{x^{2}} (1 + e^{x^{2}})^{4} dx$$

$$= \int_{10}^{1} \int 5 (1 + e^{x^{2}})^{4} e^{x^{2}} 2x dx$$

$$= \int_{10}^{1} (1 + e^{x^{2}})^{5} + C$$

(d)
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1 - \sin x) dx = \left[\chi + \cos \chi \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$$
$$= \left[\frac{\pi}{2} + 0 \right] - \left[\frac{\pi}{3} + \frac{1}{2} \right]$$
$$= \frac{\pi}{6} - \frac{1}{2}$$

(e)
$$f\left(\frac{\pi}{4}\right)$$
 if $f'(x) = \cos(2x)\sin^2(2x)$ and $f(0) = 0$

$$\int_{0}^{2} (x) = \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) \cdot \sin^2(2x) dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) dx dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) dx dx dx dx$$

$$= \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \cos(2x) dx dx dx dx dx$$

Try y= (1+ex) =
$$\frac{dy}{dx} = 5(1+e^{x^2})^{\frac{4}{5}}e^{x^2}$$
. 2nd

2. (a) [4 marks - 1,1,2]

Certain medical tests require the patient to be injected with a solution containing 0.5 micrograms (μg) of the radioactive material Technetium-99. This material decays according to the rule:

 $T = T_0 e^{-0.1155t}$ where t is the time (in hours) from injection.

(i) The rate of change of the amount of Technetium is proportional to the amount of Technetium remaining. That is ,

$$\frac{dT}{dt} = kT$$
 What is the value of k ?

- (ii) What is the value of T_0 ?
- (iii) What is the half-life of Technetium-99? $0.5 = e^{-0.1155t}$ = t = 6.001 $\therefore t = 6.001$

(b) [4 marks]

Determine to an accuracy of 3 sig figures, the area enclosed by $y = e^{2x}$ and $y = 2\cos^3 x$

