Math 4242 Homework 3

(1) Let $V = \mathbb{R}^3$ and $W = \mathbb{R}_{\leq 2}[x]$. Let $T(a, b, c) = a + b(x - 1) + c(x - 1)^2$. Is T linear? If so, identify a basis for V and W and write down the matrix $\mathcal{M}(T)$.

Proof. T is linear because $T((a_1, b_1, c_1) + (a_2, b_2, c_2)) = (a_1 + a_2) + (b_1 + b_2)(x - 1) + (c_1 + c_2)(x - 1)^2 = T(a_1, b_1, c_1) + T(a_2, b_2, c_2)$. And $T(ka, kb, kc) = k(a + b(x - 1) + c(x - 1)^2) = kT(a, b, c)$.

Consider e_1, e_2, e_3 the standard basis for V, and let $w_1 = 1, w_2 = (x - 1), w_3 = (x - 1)^2$, which form a basis for W. (Can check that they are linearly independent, and the number of vectors is equal to the dimension of W, so they must form a basis).

Now we calculate $\mathcal{M}(T)$.

$$T(e_1) = 1 = w_1, T(e_2) = (x - 1) = w_2, \text{ and } T(e_3) = (x - 1)^2 = w_3, \text{ thus } \mathcal{M}(T) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

If we use the usual basis $1, x, x^2$ for W, then since $T(e_1) = 1, T(e_2) = x-1$, and $T(e_3) = x^2-2x+1$,

we have that
$$\mathcal{M}(T) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

(2) Consider the linear map $T: M_{2,2}(\mathbb{R}) \to \mathbb{R}^2$ given by

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a - b, c + d)$$

Find a basis for Ker(T) and Img(T).

Proof. The kernal is $\ker(T) = \{ \begin{bmatrix} a & a \\ c & -c \end{bmatrix} : a, c \in \mathbb{R} \}$ Note that any matrix in $\ker(T)$ can be written uniquely as

$$\begin{bmatrix} a & a \\ c & -c \end{bmatrix} = a \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}.$$

Therefore $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$ for a basis for $\ker(T)$.

We know that $\dim(\operatorname{Img}(T)) = \dim(M_{2,2}) - \dim(\ker(T)) = 4 - 2 = 2$. Note that this is the same dimension as \mathbb{R}^2 , but $\operatorname{img}(T) \subseteq \mathbb{R}^2$, we must have that $\operatorname{Img}(T) = \mathbb{R}^2$. Thus a basis is (1,0), (0,1). \square

(3) Suppose $T \in \text{End}(V)$ is an invertible map. Prove that if v_1, \dots, v_n is a basis, then Tv_1, \dots, Tv_n is also a basis.

Proof. Know that $\dim(V) = n$. It suffices to show that Tv_1, \dots, Tv_n is linearly independent.

Suppose $0 = a_1 T v_1 + \cdots + a_n T v_n$, we need to show that the only possibility is that $a_1 = \cdots = a_n = 0$. Left multiply both sides by T^{-1} (since T is invertible), we have

$$T^{-1}0 = T^{-1}(a_1Tv_1 + \dots + a_nTv_n)$$

This is equivalent to

$$0 = a_1 v_1 + \dots + a_n v_n$$

Using the fact that v_1, \dots, v_n are linearly independent, we conclude that the choice of a_1, \dots, a_n is unique. This completes the proof.

(4) Prove that (a) $(U+W)^0 = U^0 \cap W^0$ (b) $(U \cap W)^0 = U^0 + W^0$.

Proof. (a) A linear function annihilates U+W if and only if it annihilates both U and W.

(b) We first show that $(U \cap W)^0 \subset U^0 + W^0$. Take any $f \in (U \cap W)^0$, i.e. f satisfy the property f(v) = 0 for all $v \in U \cap W$. We want to write f = g + h where $g \in U^0$ and $h \in W^0$. We can simply define g(v) = f(v) for all $v \in U$ and g(v) = 0 otherwise, and h(v) = f(v) for all $v \in W$ and h(v) = 0 otherwise. It can be easily checked that f = g + h and $g \in U^0$, $h \in W^0$. Thus $(U \cap W)^0 \subset U^0 + W^0$.

We next prove the other direction. Suppose f = g + h with $g \in U^0$ and $h \in W^0$, we need to show that $f \in (U \cup W)^0$. It suffices to show that f(v) = 0 if $v \in U \cup W$. Suppose $v \in U \cup W$, then f(v) = g(v) + h(v) = 0 + 0 = 0, meaning that $f \in (U \cup W)^0$. we are done.

(5) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x,y,z) = (2x+3y+4z,3x+4y+5z). Let e_1,e_2,e_3 denote the standard basis of \mathbb{R}^3 and f_1,f_2 denote the standard basis of \mathbb{R}^2 . (a) Describe the linear functionals $T^*(f_1^*)$ and $T^*(f_2^*)$. (b) Write $T^*(f_1^*)$ and $T^*(f_2^*)$ as linear combinations of e_1^*,e_2^*,e_3^* .

(Note: There was a typo in the original problem, doing this problem in either way is fine.)

```
Proof. (a) T^*(f_1^*)(x, y, z) = f_1^*T(x, y, z) = f_1 * (2x + 3y + 4z, 3x + 4y + 5z) = 2x + 3y + 4z.

T^*(f_2^*)(x, y, z) = f_2^*T(x, y, z) = f_2 * (2x + 3y + 4z, 3x + 4y + 5z) = 3x + 4y + 5z.

(b) T^*(f_1^*)(x, y, z) = 2x + 3y + 4z = 2e_1^* + 3e_2^* + 4e_3^*

T^*(f_2^*)(x, y, z) = 3x + 4y + 5z = 3e_1^* + 4e_2^* + 5e_3^*
```

(6) Suppose U is a subspace of V, and $\pi: V \to V/U$ the quotient map. Consider the dual of the quotient map $\pi^* \in \text{Hom}((V/U)^*, V^*)$. Show that $\text{Img}(\pi^*) = U^0$ and π^* is an isomorphism $(V/U)^* \cong U^0$.

Proof. Recall that the map π is defined as $\pi(v) = v + U$, and $\pi^*(f) = f \circ \pi$ for $f : V/U \to \mathbb{F}$. Moreover $\pi^*(f)(v) = f \circ \pi(v) = f(v+U)$ which equals to 0 when v + U = U i.e. $v \in U$. Thus $\operatorname{img}(\pi^*) = U^0$. Therefore π^* is surjective map from $(V/U)^*$ to U^0 .

To prove it's an isomorphism, we only need that it's injective, i.e. $\ker(\pi^*) = 0$.

Let f be a linear functional on V/U. Suppose $\pi^*(f) = 0$, then f(v+U) = 0 for all v, which means that $f = \mathbf{0}$ (the zero vector in $(V/U)^*$), therefore $\ker(\pi^*) = \{0\}$, hence π^* is injective.

Therefore π^* is a bijective linear map from $(V/U)^*$ and U^0 , thus an isomorphism.

- (7) OS 3.1.9
- (8) OS 3.1.17