Introduction to Financial Engineering

Week 43: Constraints and Estimation Methods

Nina Lange

Management Science, DTU

Week 43

- 1 Risky-assets only
 - Notation (Lando-Poulsen)
 - Efficient Frontier
- 2 Adding a risk-free asset
- 3 Short selling constraints
- 4 Interesting portfolios
- 5 Single Index Models

Notation

- Assume that $\boldsymbol{\mu} = [\mu_1, \mu_2, \dots, \mu_n]'$ is a vector of expected returns on different assets
- Assume that $\boldsymbol{w} = [w_1, w_2, \dots, w_n]'$ are the fractions of the investors wealth invested in each asset
- lacktriangle Assume that Σ is the covariance matrix of the returns
- By definition, a covariance matrix is always positive semidefinite, but now it is assumed that it is positive definite and thus invertible
- lacksquare Further, not all coordinates of μ are equal
- For a given expected return μ_P , the objective is to find the portfolio with the lowest variance (or standard deviation)

Optimal portfolios

For convenience, the matrix \boldsymbol{A} was defined when the optimization problem was solved:

$$A = \begin{bmatrix} \mu & \mathbf{1} \end{bmatrix}' \Sigma^{-1} \begin{bmatrix} \mu & \mathbf{1} \end{bmatrix}$$
$$= \begin{bmatrix} \mu' \Sigma^{-1} \mu & \mu' \Sigma^{-1} \mathbf{1} \\ \mu' \Sigma^{-1} \mathbf{1} & \mathbf{1}' \Sigma^{-1} \mathbf{1} \end{bmatrix} := \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

so the inverse of A is

$$\mathbf{A}^{-1} = \frac{1}{ac - b^2} \left[\begin{array}{cc} c & -b \\ -b & a \end{array} \right]$$

Optimal portfolios

The minimum variance (or standard deviation) for a given return μ_P can then be expressed in terms of a,b and c:

$$\sigma_P^2 = \frac{c\mu_P^2 - 2b\mu_P + a}{ac - b^2}$$
 or $\sigma_P = \sqrt{\frac{c\mu_P^2 - 2b\mu_P + a}{ac - b^2}}$ ([1])

with corresponding portfolio weights:

$$\hat{\boldsymbol{w}} = \boldsymbol{\Sigma}^{-1} \begin{bmatrix} \boldsymbol{\mu} & \mathbf{1} \end{bmatrix} \boldsymbol{A}^{-1} \begin{bmatrix} \mu_P \\ 1 \end{bmatrix}$$
 ([2])

Efficient frontier

Using the expression for σ_P as a function of μ_P , it's easy to find the portfolio with the smallest variance possible:

$$\frac{d\sigma_P^2}{d\mu_P} = \frac{2c\mu_P - 2b}{ac - b^2} = 0 \Rightarrow$$

$$\mu_{gmv} = b/c \text{ with } \sigma_{gmv}^2 = 1/c$$

The portfolio weights can be expressed as

$$\hat{\boldsymbol{w}}_{gmw} = \frac{1}{c} \boldsymbol{\Sigma}^{-1} \mathbf{1}$$

In a (standard deviation, mean)-space or in a (variance, mean)-space, the **efficient frontier** or efficient portfolios is the upper half of the curve expressed by [1]. The efficient frontier will have expected specific returns greater than b/c and variances greater than 1/c.

- 1 Risky-assets only
- Adding a risk-free assetCapital Market Line
- 3 Short selling constraints
- 4 Interesting portfolios
- 5 Single Index Models

More notation

- lacksquare Assume that a risk free asset exists with return μ_0
- Express returns as excess returns $\boldsymbol{\mu}^e = \left[\mu_1 \mu_0, \mu_2 \mu_0, \dots, \mu_n \mu_0\right]'$
- Assume that $\boldsymbol{w} = [w_1, w_2, \dots, w_n]'$ are the fractions of the investors wealth invested in each risky asset
- Assume that $w_0 = 1 w'\mathbf{1}$ is invested in the risk free asset
- For a given expected excess return μ_P^e , the objective is to find the portfolio with the lowest variance (or standard deviation)

◆ロト ◆部ト ◆意ト ◆意ト · 意 · からで

Capital Market Line

The link between σ_P and of μ_P^e is:

$$\sigma_P = \frac{\mu_P^e}{\sqrt{(\boldsymbol{\mu}^e)' \, \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}^e}}$$

or equivalently

$$\mu_P = \sigma_P \sqrt{(\boldsymbol{\mu}^e)' \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}^e} + \mu_0$$
 ([3])

with portfolio weights:

$$w = \Sigma^{-1} \mu^e \frac{\mu_P^e}{(\mu^e)' \Sigma^{-1} \mu^e}$$
 ([4])

Tangent Portfolio

The portfolio where everything is invested in risky assets is called the tangent portfolio. The excess return of the tangent portfolio is

$$\mu_{tan}^{e} = \frac{(\mu^{e})' \Sigma^{-1} \mu^{e}}{1' \Sigma^{-1} \mu^{e}}$$
 ([5])

with

$$\sigma_{tan} = \frac{\sqrt{(\boldsymbol{\mu}^e)' \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}^e}}{\mathbf{1}' \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}^e}$$
 ([6])

The tangent portfolio touches the risky assets-only efficient frontier in exactly one point. The CML lies above the risky assets-only efficeint frontier.

- 1 Risky-assets only
- 2 Adding a risk-free asset
- 3 Short selling constraints
 - Two assets
 - General case
- 4 Interesting portfolios
- 5 Single Index Models

Two risky assets case

- For two risky assets, both assets will be on the parabola of minimum-variance portfolios
- They will not necessarily be on the efficient frontier the upper half curve. The position will depend on the assets (correlation, expected return, standard deviation)
- If short-selling is not allowed, the possible minimum-variance portfolios is on the parabola of minimum-variance portfolios between the two assets
- The efficient and feasible portfolios consist of the upper half curve for μ -values between $\max\{\min(\mu_1, \mu_2), \mu_{amw}\}$ and $\max(\mu_1, \mu_2)$

Multiple risky assets

- For multiple risky assets, the assets will generally not be on the parabola of minimum-variance portfolios
- If short-selling is not allowed, the possible minimum-variance portfolios must be found by solving the optimization problem with the additional constraint that $w_i \geq 0$ for $i = 1, \ldots, n$
- This leads to portfolios with at least the same variance as without the additional constraint
- The highest feasible return is $\max(\mu_1, \mu_2, \dots, \mu_n)$

Adding a risk free asset

- A risk free asset with possible different interest rates can also be incorporated in the optimization problem
- Risk less lending and no borrowing could for instance be incorporated by removing constraint $\mathbf{1}'w=1$ and instead constraining $w_0\geq 0$ together with the previous condition of no short-selling of risky assets $w_i\geq 0$ for $i=1,\ldots,n$
- Borrowing with no lending, or borrowing and lending at different rates etc. can also be incorporated by varying the constraints

- 1 Risky-assets only
- 2 Adding a risk-free asset
- 3 Short selling constraints
- 4 Interesting portfolios
 - Examples
- 5 Single Index Models

Portfolios of particular interest

- The minimum variance portfolio: The portfolio with the lowest variance
- The maximum return portfolio: The portfolio with the highest expected return
- The tangent portfolio: This portfolio actually has the highest **Sharpe** Ratio $SR_P = \frac{\mu_P \mu_0}{\sigma_P}$ among the risky asset only portfolios
- Choosing according to risk aversion: Finding the portfolio that (for instance) maximizes $\mu_P \lambda \sigma_P^2$ for a given λ . If λ is high, the investor dislikes risk ("risk averse"). If λ is low, he favors return over risk.

- 1 Risky-assets only
- 2 Adding a risk-free asset
- 3 Short selling constraints
- 4 Interesting portfolios
- 5 Single Index Models
 - Reduction of parameters
 - Model setup

Simplifying data input

To choose the optimal portfolio, analysts must assess

- lacktriangle the expected returns: N variables
- lacktriangle the risk (variance/standard deviation): N variables
- **p** pairwise correlation between stocks: (N-1)N/2 variables
- \blacksquare for two assets, the total number of input is 2+2+1
- for three assets, the total number of input is 3+3+3
- \blacksquare for 100 assets, the total number of input is 100+100+4950

This must be simplified!

Single Index Model

The single index models says that the return on asset i can be explained by the market and a random factor. In other words, assume

$$R_i = \alpha_i + \beta_i R_m + e_i,$$

where:

- \blacksquare R_i is the return on asset i and R_m is the return on the market
- \bullet e_i is a random variable with mean zero
- lacksquare σ_{ei} and σ_m are corresponding standard deviations
- β_i is the sensitivity that measures the change in R_i as a response to a change in R_m .
- lacksquare α_i is expected return on asset i which is independent on the market

|ロト4回ト4重ト4重ト | 重|| 釣りで

Single Index Model

Assume further that the residual risk is uncorrelated $cov(e_i,e_j)=0$. The main implications of this setup are:

- $lackbox{$\blacksquare$} ar{R}_i = lpha_i + eta_i ar{R}_m$ is the expected return on asset i
- $\blacksquare \ \sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_{ei}^2$ is the variance of asset i
- $cov(R_i, R_j) = \sigma_{ij} = \beta_i \beta_j \sigma_m^2$
- \blacksquare This leads to a parameter reduction from $(3N+N^2)/2$ to 3N+2
- Parameters are easily obtained by linear regression
- Note: Using historical data to estimate parameters is (obviously) based on history and not necessarily a prediction of future performance.

Constructing portfolios

Consider the portfolio with weights X_i in asset i.

$$\bar{R}_{p} = \sum_{i=1}^{N} X_{i} \bar{R}_{i}$$

$$= \sum_{i=1}^{N} X_{i} (\alpha_{i} + \beta_{i} \bar{R}_{m})$$

$$= \sum_{i=1}^{N} X_{i} \alpha_{i} + \sum_{i=1}^{N} X_{i} \beta_{i} \bar{R}_{m}$$

$$\sigma_{p}^{2} = \sum_{i=1}^{N} X_{i}^{2} \beta_{i}^{2} \sigma_{m}^{2} + \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i\neq j} X_{i} X_{j} \beta_{i} \beta_{j} \sigma_{m}^{2} + \sum_{i=1}^{N} X_{i}^{2} \sigma_{ei}^{2}$$

Portfolio variance

Write $\alpha_p=\sum_{i=1}^N X_i\alpha_i$ and $\beta_p=\sum_{i=1}^N X_i\beta_i$. Then it's easily seen that $\bar{R}_p=\alpha_p+\beta_p\bar{R}_m$ $\sigma_p^2=\beta_p^2\sigma_m^2+\sum_{i=1}^N X_i^2\sigma_{ei}^2$

- When $N \to \infty$, the last term diminishes and the standard deviation of the portfolio approaches $\sigma_p = \beta_p \sigma_m$.
- Since the residual risk σ_{ei} can be eliminated by holding a large portfolio, β_i is often used as the measure for the risk of asset i.