Exercises

- 1. A population of organisms consists of both male and female members. In a small colony any particular male is likely to mate with any particular female in any time interval of length h, with probability $\lambda h + o(h)$. Each mating immediately produces one offspring, equally likely to be male or female. Let $N_1(t)$ and $N_2(t)$ denote the number of males and females in the population at t. Derive the parameters of the continuous-time Markov chain $\{N_1(t), N_2(t)\}$, i.e., the v_i , P_{ii} .
- *2. Suppose that a one-celled organism can be in one of two states—either A or B. An individual in state A will change to state B at an exponential rate α ; an individual in state B divides into two new individuals of type A at an exponential rate β . Define an appropriate continuous-time Markov chain for a population of such organisms and determine the appropriate parameters for this model.
- 3. Consider two machines that are maintained by a single repairman. Machine i functions for an exponential time with rate μ_i before breaking down, i=1,2. The repair times (for either machine) are exponential with rate μ . Can we analyze this as a birth and death process? If so, what are the parameters? If not, how can we analyze it?
- *4. Potential customers arrive at a single-server station in accordance with a Poisson process with rate λ . However, if the arrival finds n customers already in the station, then he will enter the system with probability α_n . Assuming an exponential service rate μ , set this up as a birth and death process and determine the birth and death rates.
- 5. There are N individuals in a population, some of whom have a certain infection that spreads as follows. Contacts between two members of this population occur in accordance with a Poisson process having rate λ . When a contact occurs, it is equally likely to involve any of the $\binom{N}{2}$ pairs of individuals in the population. If a contact involves an infected and a noninfected individual, then with probability p the noninfected individual becomes infected. Once infected, an individual remains infected throughout. Let X(t) denote the number of infected members of the population at time t.
 - (a) Is $\{X(t), t \ge 0\}$ a continuous-time Markov chain?
 - (b) Specify its type.
 - (c) Starting with a single infected individual, what is the expected time until all members are infected?
- 6. Consider a birth and death process with birth rates $\lambda_i = (i+1)\lambda, i \ge 0$, and death rates $\mu_i = i\mu, i \ge 0$.
 - (a) Determine the expected time to go from state 0 to state 4.
 - (b) Determine the expected time to go from state 2 to state 5.
- *7. Individuals join a club in accordance with a Poisson process with rate λ. Each new member must pass through *k* consecutive stages to become a full member of the club. The time it takes to pass through each stage is exponentially distributed with rate

 μ . Let $N_i(t)$ denote the number of club members at time t who have passed through exactly i stages, i = 1, ..., k-1. Also, let $\mathbf{N}(t) = (N_1(t), N_2(t), ..., N_{k-1}(t))$.

- (a) Is $\{N(t), t \ge 0\}$ a continuous-time Markov chain?
- (b) If so, give the infinitesimal transition rates. That is, for any state $\mathbf{n} = (n_1, \dots, n_{k-1})$ give the possible next states along with their infinitesimal rates.
- 8. Consider two machines, both of which have an exponential lifetime with mean $1/\lambda$. There is a single repairman that can service machines at an exponential rate μ . Set up the Kolmogorov backward equations; you need not solve them.
- 9. The birth and death process with parameters $\lambda_n = 0$ and $\mu_n = \mu, n > 0$ is called a pure death process. Find $P_{ii}(t)$.
- 10. Consider two machines. Machine i operates for an exponential time with rate λ_i and then fails; its repair time is exponential with rate μ_i , i = 1, 2. The machines act independently of each other. Define a four-state continuous-time Markov chain that jointly describes the condition of the two machines. Use the assumed independence to compute the transition probabilities for this chain and then verify that these transition probabilities satisfy the forward and backward equations.
- *11. Consider a Yule process starting with a single individual—that is, suppose X(0) = 1. Let T_i denote the time it takes the process to go from a population of size i to one of size i + 1.
 - (a) Argue that T_i , i = 1, ..., j, are independent exponentials with respective rates $i\lambda$.
 - (b) Let $X_1, ..., X_j$ denote independent exponential random variables each having rate λ , and interpret X_i as the lifetime of component i. Argue that $\max(X_1, ..., X_i)$ can be expressed as

$$\max(X_1,\ldots,X_j) = \varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_j$$

where $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_j$ are independent exponentials with respective rates $j\lambda$, $(j-1)\lambda, \dots, \lambda$.

Hint: Interpret ε_i as the time between the i-1 and the *i*th failure.

(c) Using (a) and (b) argue that

$$P\{T_1 + \dots + T_j \leqslant t\} = (1 - e^{-\lambda t})^j$$

(d) Use (c) to obtain

$$P_{1j}(t) = (1 - e^{-\lambda t})^{j-1} - (1 - e^{-\lambda t})^j = e^{-\lambda t} (1 - e^{-\lambda t})^{j-1}$$

and hence, given X(0) = 1, X(t) has a geometric distribution with parameter $p = e^{-\lambda t}$.

(e) Now conclude that

$$P_{ij}(t) = {j-1 \choose i-1} e^{-\lambda t i} (1 - e^{-\lambda t})^{j-i}$$

12. Each individual in a biological population is assumed to give birth at an exponential rate λ , and to die at an exponential rate μ . In addition, there is an exponential rate

- of increase θ due to immigration. However, immigration is not allowed when the population size is N or larger.
- (a) Set this up as a birth and death model.
- (b) If N=3, $1=\theta=\lambda$, $\mu=2$, determine the proportion of time that immigration is restricted.
- 13. A small barbershop, operated by a single barber, has room for at most two customers. Potential customers arrive at a Poisson rate of three per hour, and the successive service times are independent exponential random variables with mean $\frac{1}{4}$ hour.
 - (a) What is the average number of customers in the shop?
 - (b) What is the proportion of potential customers that enter the shop?
 - (c) If the barber could work twice as fast, how much more business would he do?
- 14. Potential customers arrive at a full-service, one-pump gas station at a Poisson rate of 20 cars per hour. However, customers will only enter the station for gas if there are no more than two cars (including the one currently being attended to) at the pump. Suppose the amount of time required to service a car is exponentially distributed with a mean of five minutes.
 - (a) What fraction of the attendant's time will be spent servicing cars?
 - (b) What fraction of potential customers are lost?
- 15. A service center consists of two servers, each working at an exponential rate of two services per hour. If customers arrive at a Poisson rate of three per hour, then, assuming a system capacity of at most three customers,
 - (a) what fraction of potential customers enter the system?
 - (b) what would the value of part (a) be if there was only a single server, and his rate was twice as fast (that is, $\mu = 4$)?
- *16. The following problem arises in molecular biology. The surface of a bacterium consists of several sites at which foreign molecules—some acceptable and some not—become attached. We consider a particular site and assume that molecules arrive at the site according to a Poisson process with parameter λ. Among these molecules a proportion α is acceptable. Unacceptable molecules stay at the site for a length of time that is exponentially distributed with parameter μ₁, whereas an acceptable molecule remains at the site for an exponential time with rate μ₂. An arriving molecule will become attached only if the site is free of other molecules. What percentage of time is the site occupied with an acceptable (unacceptable) molecule?
- 17. Each time a machine is repaired it remains up for an exponentially distributed time with rate λ . It then fails, and its failure is either of two types. If it is a type 1 failure, then the time to repair the machine is exponential with rate μ_1 ; if it is a type 2 failure, then the repair time is exponential with rate μ_2 . Each failure is, independently of the time it took the machine to fail, a type 1 failure with probability p and a type 2 failure with probability p and a type 2 failure with probability p and a type 1 failure? What proportion of time is it down due to a type 2 failure? What proportion of time is it up?
- 18. After being repaired, a machine functions for an exponential time with rate λ and then fails. Upon failure, a repair process begins. The repair process proceeds sequentially through k distinct phases. First a phase 1 repair must be performed, then a

- phase 2, and so on. The times to complete these phases are independent, with phase i taking an exponential time with rate μ_i , i = 1, ..., k.
- (a) What proportion of time is the machine undergoing a phase i repair?
- (b) What proportion of time is the machine working?
- *19. A single repairperson looks after both machines 1 and 2. Each time it is repaired, machine *i* stays up for an exponential time with rate λ_i, *i* = 1, 2. When machine *i* fails, it requires an exponentially distributed amount of work with rate μ_i to complete its repair. The repairperson will always service machine 1 when it is down. For instance, if machine 1 fails while 2 is being repaired, then the repairperson will immediately stop work on machine 2 and start on 1. What proportion of time is machine 2 down?
 - 20. There are two machines, one of which is used as a spare. A working machine will function for an exponential time with rate λ and will then fail. Upon failure, it is immediately replaced by the other machine if that one is in working order, and it goes to the repair facility. The repair facility consists of a single person who takes an exponential time with rate μ to repair a failed machine. At the repair facility, the newly failed machine enters service if the repairperson is free. If the repairperson is busy, it waits until the other machine is fixed; at that time, the newly repaired machine is put in service and repair begins on the other one. Starting with both machines in working condition, find
 - (a) the expected value and
 - (b) the variance of the time until both are in the repair facility.
 - (c) In the long run, what proportion of time is there a working machine?
- 21. Suppose that when both machines are down in Exercise 20 a second repairperson is called in to work on the newly failed one. Suppose all repair times remain exponential with rate μ . Now find the proportion of time at least one machine is working, and compare your answer with the one obtained in Exercise 20.
- 22. Customers arrive at a single-server queue in accordance with a Poisson process having rate λ . However, an arrival that finds n customers already in the system will only join the system with probability 1/(n+1). That is, with probability n/(n+1) such an arrival will not join the system. Show that the limiting distribution of the number of customers in the system is Poisson with mean λ/μ .
- 23. A job shop consists of three machines and two repairmen. The amount of time a machine works before breaking down is exponentially distributed with mean 10. If the amount of time it takes a single repairman to fix a machine is exponentially distributed with mean 8, then
 - (a) what is the average number of machines not in use?
 - (b) what proportion of time are both repairmen busy?
- *24. Consider a taxi station where taxis and customers arrive in accordance with Poisson processes with respective rates of one and two per minute. A taxi will wait no matter how many other taxis are present. However, an arriving customer that does not find a taxi waiting leaves. Find
 - (a) the average number of taxis waiting, and
 - (b) the proportion of arriving customers that get taxis.