Defin: Asymptotic Normality

We say
$$\hat{O}_{N}$$
 is asymptotically normal

W (1) asymptotic wear $T(\theta)$

2) asymptotic variance $V(\theta)$

if

 $\int N (\hat{O}_{N} - T(0)) \xrightarrow{d} N(0, V(\theta))$

and write

 $\hat{O}_{N} \sim AN(T(\theta), V(\theta)_{N})$

Defin: Asymptotic Relative Efficiency (ARE)

Let T_{N} and W_{N} be estimates for $T(\theta)$

and

 $T_{N} \sim AN(T(\theta), \tilde{O}_{T}^{2}(\theta))$
 $W_{N} \sim AN(T(\theta), \tilde{O}_{N}^{2}(\theta))$

then the ARE of $W_{N} = \frac{\tilde{O}_{T}^{2}(\theta)}{\tilde{O}_{N}^{2}(\theta)}$
 $ARE(W_{N}, T_{N}) = \frac{\tilde{O}_{T}^{2}(\theta)}{\tilde{O}_{N}^{2}(\theta)}$

Lecture Notes Page 1

Idea: If AREXI then we prefer T_N if ARE>I ""

Ex. Let $X_n \stackrel{iid}{\sim} Pois(x)$ and let $T(x) = P(X_n = 0) = \frac{\lambda^2 e^{-\lambda}}{0!} = e^{-\lambda}$

Know: X is the MLE of λ so $\left[e^{-X}\right]$ is the MLE of $e^{-\lambda} = T(\lambda)$ are vary

Alt: Let 1/2 = 1 (1/2 = 0) ~ Bein (1/2 = 0) ~ Bein (1/2 = 0) = 1/2 = 0 So 1/2 = 0 = 1/2 = 0

So $\mathbb{E}[\overline{Y}] = e^{-\lambda}$ another way of est $T(\lambda)$

Q: Which is better (asymptoticality?)
(1) e , (2) 7.

$$\overline{\mathbb{E}} X = \lambda$$

$$\sqrt{a}(\overline{x}) = \lambda$$

Var $(\bar{x}) = 1$ N

So what about $e^{-\bar{x}}$ $f(\bar{x}) = e^{-\bar{x}}$ $g(\bar{x}) = e^{-\bar{x}}$ $g(\bar{x}) = e^{-\bar{x}}$ $g(\bar{x}) = e^{-\bar{x}}$ $g(\bar{x}) = e^{-\bar{x}}$ Use Δ -wethed:

$$e^{-X} \sim AN(e^{-\lambda} [g(\lambda)]^2 \rangle)$$
 $e^{-X} \sim AN(e^{-\lambda} e^{-2\lambda})$

(2)
$$\overline{Y}$$
?

 $\overline{Y} = \frac{1}{N} \sum_{n} \frac{1}{N} \frac{1}{N} \sim \operatorname{Bern}(e^{-\lambda})$
 $\overline{Y} \sim AN(p, \frac{P(1-p)}{N})$
 $\overline{Y} \sim AN(e^{-\lambda}, \frac{e^{-\lambda}(1-e^{-\lambda})}{N})$

Calculate ARE

$$ARE(Y, e^{-X}) = \frac{asymp. var e^{-X}}{asymp. var Y}$$

) = asymp. var y AKE(Y, E $= \frac{\lambda e^{-2\lambda}}{e^{-\lambda}(1-e^{-\lambda})}$ Q-1=X+ 1 + 2 + 3 + --- $= \frac{\lambda e^{-\lambda} e^{\lambda}}{1 - e^{\lambda}} \frac{e^{\lambda}}{e^{\lambda}}$ = $\frac{\lambda}{\lambda}$ $= \frac{1}{\lambda \left(\frac{\lambda^2 + \lambda^3 + \lambda^4}{2! + \cdots } \right)}$ $= \frac{\lambda}{\lambda + Servethily} < 1$ asympt. var Y > asymp. var e So we prefer e^{-x} .

Defn: Asymptotic Efficiency
We say On is asymptotically efficient

Cinfinde sample UMVUE

$$B(0) = \frac{\left(2\tau\right)^2}{NI(0)}$$

Prev. Ex.

$$e^{-x} \sim AN(e^{-x} (e^{-x})^2 \lambda)$$

Q: is this asymp. efficient?

CRIB:
$$f(x) = \frac{x}{x!}$$

$$lgf = x lg \lambda - \lambda - lg(X')$$

$$\frac{\partial^2(ogf)}{\partial \lambda^2} = -\chi_2^2$$

$$T(\lambda) = -E\left[\frac{\lambda^{2}(ost)}{2\lambda^{2}}\right] = \lambda \qquad T(\lambda) = e^{-\lambda}$$

$$\left(\frac{\partial T}{\partial x}\right)^{2} = \sqrt{\lambda \rho^{-2\lambda}}$$

$$^{1}B(\lambda) = \frac{(2\tau)^{2}}{NI(\lambda)} = \frac{\lambda e^{-2\lambda}}{N}$$

Yes! Asugup. efficient b/c asyump var = (RLB.

Theorem: MLEs are asymptotically efficient.

$$\theta$$
 \sim AN($\tau(0)$, $\frac{(\partial 7/\partial 0)^2}{NI(0)}$) under τ some condition.

Conditions

Defu: Hypothesis

a hypothesi is a statement about a parameter,

$$H_0: 0 \in C$$
 v. $H_a: 0 \in C$

Constraint:

(1)
$$(-)$$
 $(-)$

EX. Let 0 be the proph of defective items in some production process

$$G = [0, 1]$$

might test:

Ho: 0 < . 1 v. Ha: 0 > . 1

 $H_0: \theta \in [0,.1]$ v. $H_a: \theta \in (.1,1]$

Ex. Let 0 denste change in 13P affer faking some medicine.

Might test

$$H_0: \theta=0$$
 v. $H_a: \theta\neq 0$

If O is a I-d parameter (e.g. OER)
then a test of the form

PHO: 0 & C V. Ha: 0 > C Tir called or Ho: 0 > C V. Ha: 0 > C one-sided hypothesis

or Ho: 0 > C V. Ha: 0 < C hypothesis

2) Ho: O= C V. Ha: O ≠ C) is called a two or Ho: O ≠ C V. Ha: O= c Sided hypothesis

(3) Ho: $\theta = c_0$ V. Ha: $\theta = c_a$ Lowe value in Θ_o ad Θ_a is called a simple hypothesi)

Defn: Hypothesis Testing Procedure

Idea! want to determine if $\theta \in (-)$ or
O E Co is more plausible/consistent w/ the data I see.
Let X be the support of X [typically X CRN]
A HT procedure is simply a rule that partitions IC into
$\mathcal{C}_{\mathcal{L}} = A \cup R$
acceptonce, null plausible région implausible région
data is in consistat consistant rul
We "reject Ho" if X ER
We "fail to reject Ho" of XEA

