Problem 1

1.
$$A = \{-1, 5.2, 1, 3.7\}$$

Upper bounds: 5.2, 6

 $\forall a \in A, a \leq 5.2$. Thus, 5.2 is an upper bound for A.

A is a finite set with 4 elements. Thus, the maximum element must also be the LUB(A). There cannot be another least upper bound because any number n less than the maximum element, 5.2 would mean that $\exists a \in A, a > n$, where that a is 5.2.

2.
$$B = [2,3) = \{x \in \mathbb{R} : 2 \le x < 3\}$$

Upper bounds: 3, 4

 $\forall b \in B, b < 3$ because B approaches 3 but does not actually contain 3. Thus, 3 is an upper bound for B.

There is no LUB(B) < 3 because the elements of the set B approach 3 infinitely close. Thus, $\forall b \in B$, $b + \epsilon < 3$ meaning that there is always an element of B that is more than another element but still less than 3. Thus, 3 must be the lub(B).

3.
$$C = (-\infty, 4.2]$$

Upper bounds: 4.2, 5

 $\forall c \in C, c < 4.2$. Thus, 4.2 is an upper bound for C.

C is an infinite set with a defined maximum element. Thus, the maximum element must also be the LUB(C). There cannot be another least upper bound because any number n less than the maximum element, 4.2 would mean that $\exists c \in C, c > n$, where that c is 4.2.

4.
$$D = \{\frac{(-1)^n}{n} : n \in \mathbb{N}\}$$

Upper bounds: $\frac{1}{2}$, 1

 $\forall d \in D, d < \frac{1}{2}$. Thus, $\frac{1}{2}$ is an upper bound for D.

We know $\frac{1}{2} \in D$ because when n=2, $\frac{(-1)^2}{2}=\frac{1}{2}$. Let's assume there exists another least upper bound e=LUB(D) defined as $\frac{1}{2}-\epsilon$. By definition, $\frac{1}{2}-\epsilon$ must be greater than all elements in D, but we know $\frac{1}{2}$ is an element and greater than $\frac{1}{2}-\epsilon$. Thus, e contradicts our assumption and $\frac{1}{2}$ is the LUB(D).

5.
$$E = \{ -\frac{1}{n} : n \in \mathbb{N} \}$$

Upper bounds: 0, 1

 $\forall e \in E, e < 0$. Thus, 0 is an upper bound for E.

Let's choose another upper bound f. Assume f < 0. Find a $k \in \mathbb{N}$ so that $-\frac{1}{k} < |f|$. Then $\frac{1}{k} > f$. Since $\frac{1}{k} \in E$, f cannot be a LUB(E). Then, f is an upper bound and $f \ge 0$. Thus, f is the f is an upper bound and f is an upper bound and f is the f is an upper bound and f is an upper bound and f is the f is an upper bound and f is an upper bound an upper bound and f is an upper bound and f is an upper bound an upper bound

6.
$$F = \{\sum_{k=1}^{n} \frac{1}{k} : n \in \mathbb{N}\}$$

Upper bounds: DNE

F is an infinite set with no upper bound. Since it is not bounded above, it cannot have a LUB.

7.
$$G = \{cos(n) : n \in \mathbb{N}\}$$

Upper bounds: 1, 2

 $\forall g \in G, d < 1$. Thus, 1 is an upper bound for G.

The finite range of the cosine function is defined as [-1,1]. The maximum element must also be the LUB(G) because $\forall g \in G$, such that g < 1, g is not even an upper bound of G and therefore cannot be a LUB(G).

8.
$$H = \{100n - n^2 : n \in \mathbb{N}\}\$$

Upper bounds: 2500, 2501

 $\forall h \in H, h < 2500$. The $\frac{d}{dn}100n - n^2$ shows us that there is a maxima at n = 50. When n = 50, the function takes the value 2500. Thus, 1 is an upper bound for H.

We know 2500 is the maximum element in the defined range of the function $100n - n^2 : n \in \mathbb{N}$. The maximum element must also be the LUB(H) because $\forall h \in H$, such that h < 2500, h is not even an upper bound of H and therefore cannot be a LUB(H).

Problem 2

If $S \subset \mathbb{R}$ has a *least upper bound*, then it is unique.

Proof

Let S be a subset of \mathbb{R} and assume that p = LUB(S) and therefore an upper bound for S as well. Let's also assume that there exists a number $q \in \mathbb{R}$ such that q = LUB(S) and therefore an upper bound for S as well. We know that $p \leq q$ since p is a LUB(S). Likewise, we know that $q \leq p$ since q is a LUB(S). Because both $p \leq q$ and $q \leq p$, b = c must be true. Therefore, the LUB(S) must be unique.

Problem 3

Suppose that $\lambda = lub(A)$. Let $B = \{ka | \in A\}$, where k > 0.

a) Show that $k\lambda$ is an upper bound for the set B.

If λ is lub(A), then $\forall a \in A$, $a \leq \lambda$. If k > 0 and $a \leq \lambda$, we know $ka \leq k\lambda$. Thus $k\lambda$ is an upper bound of B.

b) Show that $k\lambda$ is the least upper bound for B.

Let's assume there is another element $\gamma \in B$ such that $\gamma < \lambda$. Then,

$$\begin{aligned} ka &\leq \gamma < k\lambda \\ a &\leq \gamma/k < \lambda \\ \gamma/k &< \lambda \end{aligned}$$

We end up with γ/k as greater than $a \in A$ and smaller than λ . However, we defined λ as lub(A). No such element γ can exist, and we end up with a contradiction. Thus, $k\lambda = lub(B)$.

c) What can happen if k < 0?

If k < 0, then $a \le \lambda$ means that $ka \ge k\lambda$. In that case, the proof above does **not** hold.

Problem 4

Prove the following facts about real numbers, stating explicitly which field axioms/theorems you are using at each stage.

a) $\forall a, x \in \mathbb{R}$ if $a \neq 0$ and ax = a then x = 1.

By A10, we know we can get x alone on the left hand side of the equation ax because the existence of a multiplicative inverse defined by $a^{-1} = 1/a$. So, we have

$$a^{-1} \cdot ax = a^{-1} \cdot a$$

$$\frac{1}{a} \cdot \frac{a}{1}x = \frac{1}{a} \cdot \frac{a}{1}$$

$$\frac{a}{a} \cdot x = \frac{a}{a}$$

$$1 \cdot x = 1$$

$$x = 1$$

We know see that after multiplying both sides by the multiplicative inverse of a becomes $\frac{a}{a}$, which reduces to 1. We are left with x = 1, which is what we were trying to find.

b) $\forall a, b \in \mathbb{R}$ if ab = 0 then a = 0 or b = 0.

Again, by A10, we know we can utilize the existence of a multiplicative inverse to separate the variables a and b defined as $a^{-1} = \frac{1}{a}$ and $b^{-1} = \frac{1}{b}$, respectively.

$$a^{-1}ab = 0 b^{-1}ab = 0$$

$$\frac{1}{a} \cdot ab = 0 b^{-1}ba = 0 By A7$$

$$\frac{1}{a} \cdot \frac{a}{1}b = 0 \frac{1}{b}\frac{b}{1}a = 0$$

$$\frac{a}{a} \cdot b = 0 \frac{b}{b} \cdot a = 0$$

$$1 \cdot b = 0 1 \cdot a = 0$$
By A9 $b = 0$ $a = 0$ By A9

We know see that regardless of whether we multiply ab = 0 by the multiplicative inverse of a then b, the resulting variable is equal to 0.

c) $\forall x, y \in \mathbb{R}$ if $x^2 = y^2$ then x = y or x = -y.

Let's assume that $x \neq y$ and $x \neq -y$. Then, by definition of the square of a number a, we get $a \cdot a = a^2$.

In the case of
$$x=y$$
, $x\cdot x\neq y\cdot y$ In the case of $x=-y$, $x\cdot x\neq (-y)(-y)$
$$x^2\neq y^2$$

$$x^2\neq (-1)(y)(-1)(y)$$

$$x^2\neq (-1)(-1)(y)(y)$$

$$x^2\neq (y)(y)$$

$$x^2\neq y\cdot y$$

$$x^2\neq y^2$$

According to our assumption, we see that in either case, we get $x^2 \neq y^2$. However, that contradicts the original hypothesis. Thus, x = y or x = -y.