Introduction à l'informatique Automates cellulaires

Portail René Descartes Luminy

Université d'Aix-Marseille

Plan du cours

- 1 Machines de Turing
- 2 Automates cellulaires Généralités
- 3 Automates cellulaires Dimension 1
 - Automates cellulaires élémentaires
 - Exemples de "calcul"
- 4 Automates cellulaires Dimension 2 et ouvertures

Machines de Turing Plan du cours

- 1 Machines de Turing
- 2 Automates cellulaires Généralités
- 3 Automates cellulaires Dimension 1
 - Automates cellulaires élémentaires
 - Exemples de "calcul"
- 4 Automates cellulaires Dimension 2 et ouvertures

Machines de Turing

Automates finis (chèvre, loup, salade)

Machines de Turing (une machine en lego)

Machines de Turing Peut-on tout calculer?

- Étant donné un problème bien formulé d'un point de vue mathématique...
- avec des entrées sous la forme de séquences de symboles et des sorties oui ou non...
- existe-t-il toujours une machine de Turing (ou un algorithme) qui peut résoudre le problème ?

Pour tout problème, existe-t-il une machine de Turing le résolvant?

avec des entrées sous forme de séquences de symboles et des sorties du type "oui / non"

Machines de Turing Le problème de l'arrêt

Supposons qu'il existe une machine qui réponde à cette question?

Machines de Turing Le problème de l'arrêt

Construisons la machine réalisant :

Fonction diagonale(*M* : machine)

Si (*M* s'arrête sur le ruban contenant le pseudo-code de *M*) **alors**

Tant que (1) faire; **Sinon**

retour (oui);

Finsi

Fin

Machines de Turing Le problème de l'arrêt

H : existe-t-il un algorithme qui, étant donné n'importe quel algorithme en paramètre, décide s'il s'arrête?

Démonstration

Par l'absurde.

Supposons qu'un tel algorithme, noté A_H , existe et est tel que :

$$\forall A, A_H(A) = \begin{cases} 1 & \text{si } A \text{ s'arrête,} \\ 0 & \text{sinon.} \end{cases}$$

Puisque A_H existe, on peut construire $\overline{A_H}$ tel que :

$$\forall A, \overline{A_H}(A) = \begin{cases} \text{boucle } \infty & \text{si } A_H(A) = 1, \\ \text{s'arrête} & \text{sinon.} \end{cases}$$

Or, par définition, l'exécution de $\overline{A_H}(\overline{A_H})$ s'arrête si $\overline{A_H}$ ne s'arrête pas et ne s'arrête pas si $\overline{A_H}$ s'arrête, ce qui est une contradiction. Donc $\overline{A_H}$ n'existe pas, ce qui implique que A_H n'existe pas.

Automates cellulaires – Généralités Plan du cours

- 1 Machines de Turing
- 2 Automates cellulaires Généralités
- 3 Automates cellulaires Dimension 1
 - Automates cellulaires élémentaires
 - Exemples de "calcul"
- 4 Automates cellulaires Dimension 2 et ouvertures

Automates cellulaires - Généralités La 2nde guerre mondiale

- Nombreuses techniques informatiques développées à cette période, autour :
 - de l'arithmétique (cryptographie, cryptanalyse)
 - des systèmes dynamiques (radars et cibles)
 - des probabilités (méthode de Monte-Carlo)
- Volonté de comprendre les relations mathématiques entre les comportements observés chez les êtres vivants et les machines
 - ► Analogies entre les couples (radar cible) et (prédateur proie)
- Alan Turing et John von Neumann :
 - → Décrire les machines (artificielles) comme des "êtres vivants"
- John von Neumann pose la question :
 - → Peut-on construire une machine capable de s'auto-reproduire?

Formalisation

Idées générales pour créer une telle machine :

- 1. Se munir d'un espace mathématique simple qui est une métaphore du monde réel $(e.g., \mathbb{Z}^2)$
- 2. Placer régulièrement dans cet espace des éléments qui possèdent tous un état qui leur est propre
- 3. Affecter à l'ensemble des éléments une unique fonction de transition.

Formalisation

Idées générales pour créer une telle machine :

- Se munir d'un espace mathématique simple qui est une métaphore du monde réel (e.g., Z²)
- 2. Placer régulièrement dans cet espace des éléments qui possèdent tous un état qui leur est propre
- 3. Affecter à l'ensemble des éléments une unique fonction de transition.

Formalisation

Idées générales pour créer une telle machine :

- Se munir d'un espace mathématique simple qui est une métaphore du monde réel (e.g., Z²)
- 2. Placer régulièrement dans cet espace des éléments qui possèdent tous un état qui leur est propre
- 3. Affecter à l'ensemble des éléments une unique fonction de transition.

$\begin{bmatrix} x_{0,0} \\ f \end{bmatrix}$	$x_{0,1}$	$x_{0,2}$	$x_{0,3}$	$x_{0,4}$	$x_{0,5}$	$x_{0,6}$	$x_{0,7}$
f	$\begin{bmatrix} x_{1,1} \\ f \end{bmatrix}$	$\begin{bmatrix} x_{1,2} \\ f \end{bmatrix}$	$\begin{bmatrix} x_{1,3} \\ f \end{bmatrix}$	f	$\begin{array}{c} x_{1,5} \\ f \end{array}$	$\begin{bmatrix} x_{1,6} \\ f \end{bmatrix}$	$\begin{array}{c} x_{1,7} \\ f \end{array}$
$\begin{array}{c} x_{2,0} \\ f \end{array}$	$\begin{array}{c} x_{2,1} \\ f \end{array}$	$\begin{bmatrix} x_{2,2} \\ f \end{bmatrix}$	$\begin{bmatrix} x_{2,3} \\ f \end{bmatrix}$	f	$x_{2,5}$	$\begin{array}{c} x_{2,6} \\ f \end{array}$	$\begin{array}{c} x_{2,7} \\ f \end{array}$
<i>x</i> _{3,0} <i>f</i>	$\begin{array}{c} x_{3,1} \\ f \end{array}$	<i>x</i> _{3,2} <i>f</i>	<i>x</i> _{3,3} <i>f</i>	<i>x</i> _{3,4} <i>f</i>	<i>x</i> _{3,5} <i>f</i>	$\begin{bmatrix} x_{3,6} \\ f \end{bmatrix}$	<i>x</i> _{3,7} <i>f</i>
f	$\begin{bmatrix} x_{4,1} \\ f \end{bmatrix}$	$\begin{bmatrix} x_{4,2} \\ f \end{bmatrix}$	$\begin{bmatrix} x_{4,3} \\ f \end{bmatrix}$	f	f	<i>x</i> _{4,6} <i>f</i>	$\begin{bmatrix} x_{4,7} \\ f \end{bmatrix}$

Automates cellulaires – Généralités Formalisation

Définition

Une cellule est un quadruplet (d, \mathcal{Q}, V, f) où :

- ► d est la dimension
- ▶ 2 est un ensemble fini d'états, i.e., son alphabet
- $V \subseteq \mathbb{Z}^d$ est son voisinage
- $f: \mathcal{Q}^a \to \mathcal{Q}$ est sa fonction de transition, avec a = |V| son arité

Définition

Un automate cellulaire $\mathscr{A} \subseteq \mathbb{Z}^d$ est un sous-ensemble de l'espace discret de dimension d dont chaque point de \mathscr{A} est une cellule de fonction f.

Automates cellulaires – Généralités Formalisation Exemple

$$c_k$$

$$d = 1$$

$$\mathcal{Q} = \{0, 1\}$$

$$V = \{c_{k-1}, c_k, c_{k+1}\}$$

$$f(c_k) = c_{k-1} + 2c_k + 2c_{k+1}$$

ACE 150

Diagramme espace-temps $(t\uparrow)$

Automates cellulaires – Généralités Récapitulatif

- Localité :
 - · ne dépend que du voisinage
- Homogénéité (invariance par translation) :
 - toutes les cellules évoluent en suivant la même règle et ont le même voisinage
- Parallélisme massif :
 - · à chaque étape de temps, toutes les cellules mettent à jour leur état
- Manières de voir l'espace (cellulaire) :
 - infini
 - fini borné
 - fini périodique (tore de dimension d)

Machines de Turing vs automates cellulaires

Théorème (Smith, 1971)

Toute machine de Turing $\mathscr{T}=(Q_{\mathscr{T}},\Sigma,\delta)$ peut être simulée par un automate cellulaire $\mathscr{A}=(\mathbb{Z},V_0=(-1,0,1),Q_{\mathscr{A}},f).$

Idée générale

 \mathscr{A} est capable de simuler \mathscr{T} si :

- l'alphabet de \mathscr{A} est $\Sigma \times (Q \cup \{*\})$: l'état d'une cellule est (σ,q) où σ est le contenu du ruban et q indique la présence ou l'absence de la tête de \mathscr{T} et l'état de \mathscr{T} le cas échéant
- son voisinage est $\{-1,0,1\}$
- \mathscr{A} reproduit les mouvements de la tête de \mathscr{T} et les changements d'états avec q et les modifications de ruban avec σ

Automates cellulaires – Dimension 1 Plan du cours

- 1 Machines de Turing
- 2 Automates cellulaires Généralités
- 3 Automates cellulaires Dimension 1
 - Automates cellulaires élémentaires
 - Exemples de "calcul"
- 4 Automates cellulaires Dimension 2 et ouvertures

Automates cellulaires - Dimension 1

Définition

- États : $\mathcal{Q} = \{0, 1\}$
- Voisinage : $V = \{-1, 0, 1\}$
- ► Configuration au temps *t* :

x(t) : vecteur qui associe un état de $\mathcal Q$ à chaque cellule

• Question : combien existe-t-il de tels automates cellulaires ?

Automates cellulaires - Dimension 1

Définition

- États : $\mathcal{Q} = \{0, 1\}$
- Voisinage : $V = \{-1, 0, 1\}$
- Configuration au temps *t* :

x(t): vecteur qui associe un état de \mathcal{Q} à chaque cellule

- Question : combien existe-t-il de tels automates cellulaires?
 - Combien de configurations de voisinage possibles ? $2^3 = 8$

Combien de nouveaux états possibles ? 2

- Objectif: donner un code unique à chaque automate cellulaire élémentaire
- ► Idée de Stephen Wolfram → leur associer un nombre entre 0 et 255, à savoir une somme de puissances de 2

- Objectif: donner un code unique à chaque automate cellulaire élémentaire
- Idée de Stephen Wolfram → leur associer un nombre entre 0 et 255, à savoir une somme de puissances de 2
- 1. Chaque configuration de voisinage correspond à un nombre binaire entre $0 \text{ et } 2^3 - 1 = 7$

14/29

- Objectif: donner un code unique à chaque automate cellulaire élémentaire
- Idée de Stephen Wolfram → leur associer un nombre entre 0 et 255, à savoir une somme de puissances de 2
- 1. Chaque configuration de voisinage correspond à un nombre binaire entre 0 et $2^3 1 = 7$
- 2. On associe "trivialement" à chacune une puissance de 2

- Objectif : donner un code unique à chaque automate cellulaire élémentaire
- ► Idée de Stephen Wolfram → leur associer un nombre entre 0 et 255, à savoir une somme de puissances de 2
- 1. Chaque configuration de voisinage correspond à un nombre binaire entre 0 et $2^3 1 = 7$
- 2. On associe "trivialement" à chacune une puissance de 2
- 3. On affecte un coefficient 0 ou 1 à chaque puissance de 2 en fonction du nouvel état obtenu après application de la règle

- Objectif: donner un code unique à chaque automate cellulaire élémentaire
- Idée de Stephen Wolfram → leur associer un nombre entre 0 et 255, à savoir une somme de puissances de 2
- 1. Chaque configuration de voisinage correspond à un nombre binaire entre 0 et $2^3 1 = 7$
- 2. On associe "trivialement" à chacune une puissance de 2
- 3. On affecte un coefficient 0 ou 1 à chaque puissance de 2 en fonction du nouvel état obtenu après application de la règle
- 4. On fait la somme de tout ça

D'où la règle 2 + 4 + 16 + 64 = 86

Automates cellulaires – Dimension 1 Évolution de la règle 86

Automates cellulaires – Dimension 1 Évolution de la règle 86

Automates cellulaires – Dimension 1 Évolution de la règle 86

Automates cellulaires - Dimension 1

Classification

- Stephen Wolfram, 1984 :
 - Simulations numériques "large échelle" des automates cellulaires élémentaires
 - Mise en évidence que certains automates ont des caractéristiques comportementales proches
 - · Attention aux biais de simulation lié à un échantillonnage peu rigoureux
- → Classification selon leur "complexité" comportementale

т	Uniformité	L'automate atteint une configuration homo-
1	Cimonnie	gène
II	Périodicité	L'automate aboutit à une phase de répétition
		périodique de configuration.s
III	Chaos	L'automate mène à des motifs chaotiques non
		périodiques
IV	Complexité	L'automate fait apparaître des particules "ani-
		mées d'une existence propre"

Automates cellulaires – Dimension 1 Classe des automates uniformes

ACE 8

ACE 32

Automates cellulaires – Dimension 1 Classe des automates uniformes

Simuler en live l'ACE 128

Automates cellulaires – Dimension 1 Classe des automates périodiques

Automates cellulaires – Dimension 1 Classe des automates périodiques

Simuler en live l'ACE 57 avec différentes densités

Automates cellulaires – Dimension 1 Classe des automates chaotiques

ACE 45

Automates cellulaires – Dimension 1 Classe des automates chaotiques

ACE 60

Automates cellulaires – Dimension 1 Classe des automates chaotiques

Regardons ça de plus près

- "L'automate mène à des motifs chaotiques non périodiques"
- Ressemble à des comportements aléatoires
- On peut structurer mathématiquement l'espace des configurations et décrire certaines propriétés de leur évolution
 - → à tel point qu'on peut avoir des comportements fractals
- En résumé, c'est compliqué

Automates cellulaires – Dimension 1 Classe des automates chaotiques Triangle de Sierpiński

Méthode nº1 : évider itérativement un triangle équilatéral

Automates cellulaires – Dimension 1 Classe des automates chaotiques Triangle de Sierpiński

- Méthode nº1 : évider itérativement un triangle équilatéral
- Méthode n°2 : dessiner le triangle de Pascal

Automates cellulaires – Dimension 1 Classe des automates chaotiques Triangle de Sierpiński

- Méthode nº1 : évider itérativement un triangle équilatéral
- ► Méthode n°2 : dessiner le triangle de Pascal
- ▶ Méthode n°3 : simuler (en live) la règle 90 que voici (avec densité 0,5)

Automates cellulaires – Dimension 1 Classe des automates complexes ACE 54

Automates cellulaires – Dimension 1 Classe des automates complexes

Regardons ça de plus près

- "L'automate fait apparaître des particules animées d'une existence propre"
- Présence de "particules" vraiment spéciales
- Étonnante forme d'ordre local surgissant de façon imprévisible qui est plus que compliquée et reste non décrite mathématiquement dans le cas général
- En résumé, c'est complexe

Automates cellulaires – Dimension 1 Classe des automates complexes

Simuler en live l'ACE 110

Automates cellulaires – Dimension 1 Parabole discrète

Automates cellulaires – Dimension 1 Firing squad

- Problème proposé par John Myhill en 1957 : construire un AC qui, en partant d'une unique cellule active, finit dans une configuration où toutes les cellules sont actives simultanément.
- Largement étudié par la suite :
 - 1ère solution (non optimale en temps) donnée par John McCarthy et Marvin Minsky, 1962
 - Solutions optimales (2n 2 étapes de temps):
 - Eiichi Goto, 1962 (plus de 1000 états)
 - Abraham Waksman, 1966 (16 états)
 - ♦ Robert Balzer, 1967 (8 états)
 - ⋄ Jacques Mazoyer, 1986 (7 états), 1987 (6 états)

Automates cellulaires – Dimension 1 Firing squad

Nombre d'états	Temps optimal	Temps non optimal
3	Pas de solution	Pas de solution
	(Balzer, 1967)	(Yunes, 1993)
4	Pas de solution	Question ouverte
	(Sanders, 1994)	
5	Question ouverte	Question ouverte
6	Oui	_
	(Mazoyer, 1987)	
7	Oui	_
	(Mazoyer, 1986)	
8	Oui	_
	(Balzer, 1967)	

Automates cellulaires – Dimension 1 $Firing \ squad$

 Solution non optimale à 15 états

Solution optimale à 6 états de Mazoyer

Automates cellulaires – Dimension 2 et ouvertures Plan du cours

- 1 Machines de Turing
- 2 Automates cellulaires Généralités
- 3 Automates cellulaires Dimension 1
 - Automates cellulaires élémentaires
 - Exemples de "calcul"
- 4 Automates cellulaires Dimension 2 et ouvertures

Automates cellulaires – Dimension 2 et ouvertures Auto-réplication

- ▶ von Neumann y est parvenu
- Conception du constructeur universel
- Automate cellulaire à 29 états

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

- Mais c'est "compliqué" comme réplication...
- ... et Edward Friedkin a montré qu'il y avait plus simple (bien que non universel) avec le compteur de parité (règle XOR, voisinage de Moore)
- ► Théorème : les réplicats sont distants de la puissance de 2 immédiatement supérieure à la plus grande des longueurs du motif initial

Automates cellulaires – Dimension 2 et ouvertures Majorité et minorité

- Automate majorité
 - Voisinage de Moore ou de von Neumann
 - À chaque étape de temps, chaque cellule prend l'état majoritaire dans son voisinage
- Automate minorité
 - Voisinage de Moore ou de von Neumann
 - À chaque étape de temps, chaque cellule prend l'état minoritaire dans son voisinage
- Attention à l'intuition pouvant amener à penser que les comportements de ces 2 automates sont symétriques
- Simulation en live

Automates cellulaires – Dimension 2 et ouvertures Jeu de la vie Bases

- Inventé par John Conway en 1970
- Automate à 2 états (vivant ou mort) à voisinage de Moore à huit voisins
- Les règles sont (très) simples :
 - Une cellule morte possédant exactement trois voisines vivantes devient vivante (elle naît)
 - Une cellule vivante possédant deux ou trois voisines vivantes le reste, sinon elle meurt
- ► Simuler le jeu de la vie sur une grille 100×100

Automates cellulaires – Dimension 2 et ouvertures Jeu de la vie Stabilités et périodicités

Motifs stables

Motifs périodiques

Automates cellulaires – Dimension 2 et ouvertures Jeu de la vie Motifs remarquables

Gliders: motifs oscillants se déplaçant

Puffers: motifs oscillants laissant des "débris" derrière eux (voir aussi https://www.youtube.com/watch?v=oHgLOOJ0mnY)

Automates cellulaires – Dimension 2 et ouvertures Jeu de la vie Motifs remarquables

• Guns : générateurs de gliders

Fourmi de Langton

- Introduit par Christopher Langton en 1986
- Généralités :
 - Une grille unicolore
 - On place une "fourmi" sur une case arbitraire qui peut tourner gauche ou droite et changer les états des cases (les faire passer de blanc à noir et vice-versa)
- Règles :
 - · Si sur une case blanche, met la case en noir et va sur la case située à sa droite.
 - · Si sur une case noire, met la case en blanc et va sur la case située à sa gauche.

Automates cellulaires – Dimension 2 et ouvertures Ségrégation

- Introduit par Sakoda en 1949 et repris par Schelling en 1971
- Généralités :
 - 2 (ou plusieurs) communautés
 - Chaque individu veut vivre à côté d'individu de sa propre communauté
- Règles :
 - Communautés distribuées sur la grille de manière équiprobable sur une grille 2D
 - À chaque membre d'une communauté est donné un même "taux de similarité".
 - À chaque étape de temps, les membres qui ne satisfont pas leur taux de similarité rejoignent une case vide

S. Sené

Feux de forêt

Généralités :

- Modéliser la propagation de feux dans les forêts
- · Arbres placés aléatoirement sur une grille
- Feu lancé sur le côté gauche de la grille

Règles :

- Le feu se propage sur les arbres voisins
- Le voisinage est défini dans le sens de von Neumann
- Le vent n'est pas pris en compte (s'il n'y a pas d'arbre, le feu s'arrête)

S Sené