

microSDXC Speicherkarte Flash-Speichermedium

1. Einführung

microSDXC Karten für Industriegeräte wurden zum Standhalten extremer Umweltbedingungen konzipiert, hergestellt und getestet. Für Außenanwendungen, wie in Kiosken, am Zapfsäulen, bei Geldautomaten, Media Gateways, sowie in der Automobilbranche und im Schiffsbau. Zudem sind sie ideal für die neuesten industriellen Anwendungen im Internet der Dinge (IoT).

Die Extended Capacity microSD Speicherkarte entspricht in ihrer Funktionsfähigkeit den Spezifikationen einer SD-Speicherkarte, ist jedoch kleiner im Format. Diese microSDXC Speicherkarte kann auch in einen microSD Speicherkartenadapter eingelegt und als Secure Digital Speicherkarte im Normalformat eingesetzt werden.

2. Artikelnummer

SDHC-Klasse	UHS	Kapazität	Artikelnummer
Klasse 10	U1	64GB	SDCIT/64GB

3. microSDXC Speicherkarte – Funktionalitäten

Tabelle 1: microSDXC Karte – Funktionalitäten

Design	Standard	
Inhalt	Ohne (OEM-Design möglich)	
Sicherheitsfunktionen	Konform mit SD-Spezifikation Ver. 3.00, Sicherheit	
	(CPRM-Basis)	ID, MKB
	*CPRM: Content Protection for Recordable Media	programmiert
Logisches Format	Konform mit SD-Dateisystem-Spezifikation Ver. 3.00	
	(exFAT32-formatiert)	
Energiedaten	Betriebsspannung: 2,7 V bis 3,6 V (Speicherbetrieb)	
	Schnittstellen: SD-Kartenschnittstelle (SD: 4 oder 1 Bit)	
	Kompatibel mit SPI-Modus	
	Konform mit SD-Spezifikation Ver. 3.01, Physische Schicht	
Technische Daten	L: 15 mm, B: 11 mm, H: 1,0 mm, Gewicht: 0,5 g (Typ.)	
	Konform mit microSD Speicherkarte, Spezifikation	
	Ver. 3.01.	
	(Detaillierte Abmessungen siehe: Anhang.)	
Lebensdauer	Konform mit SD-Spezifikation Physische Schicht, Ver. 3.01.	
	Konform mit microSD Speicherkarte, Spezifikation	
	Ver. 3.01.	
ROHS	ROHS-kompatibel	

- Sowohl statisches als auch dynamisches Wear-Leveling implementiert.
- MLC NAND für Langlebigkeit

4900181-001.A00 Seite 1 von 21

4. Kompatibilität

Spezifikationskonform

SD Speicherkarte Spezifikationen

- Konform mit SPEZIFIKATION PHYSISCHE SCHICHT, Ver. 3.01. (Teil1)
- Konform mit SPEZIFIKATION DATEISYSTEM, Ver. 3.00. (Teil2)
- Konform mit SPEZIFIKATION SICHERHEIT, Ver. 3.00. (Teil3)
- Konform mit microSD Speicherkarte, Spezifikation Ver. 3.01

5. Technische Merkmale

5.1. Temperaturen

1) Betriebsbedingungen

Temperaturbereich: T_a = -40° C bis 85° C

2) Lagerbedingungen

Temperaturbereich: T_{stq} = -40° C bis 85° C

5.2. Feuchtigkeit (Zuverlässigkeit)

1) Betriebsbedingungen Temperatur 25° C / 95% rel. Feuchtigkeit

2) Lagerbedingungen

Temperatur 40° C / 93% rel. Feuchtigkeit / 500h

5.3 Anwendung

- 1) Heiß einstecken oder entnehmen
 - a. Kingstons microSDXC Speicherkarte kann ohne Abschalten des Hostsystems entnommen bzw. eingesteckt werden.
- 2) Mechanischer Schreibschutzschalter
 - a. Die microSDXC Speicherkarte hat keinen mechanischen Schreibschutzschalter.

5.4 Konfiguration

Controller: PS8210DF

NAND: Toshiba 15nm MLC 64Gb

4900181-001.A00 Seite 2 von 21

6. Überblick elektrische Schnittstellen

6.1. microSD Karte Pins

In Tabelle 2 sind die Pin-Zuordnungen der microSD Karte definiert.

In Abb. 1 sind die Pin-Zuordnungen der microSD Karte beschrieben.

Entnehmen Sie bitte die detaillierten Beschreibungen den SD-Spezifikation der Physischen Schicht.

Abb. 1: microSD Karte Pin-Zuordnung (Rückansicht der Karte)

SD Mode SPI Mode Pins Name IO type 1 Description Name IO Type Description DAT2 I/O /PP **RSV** Data Line[Bit2] 1 2 Ī CD/ I/O/PP Card Detect / Data CS Chip Select (neg true) DAT3 Line[Bit3] 3 CMD PP Command/Response DI Data In 4 V_{dd} S Supply Voltage V_{dd} S Supply Voltage

Supply voltage ground

Data Line[Bit0]

Data Line[Bit1]

Clock

S

I/O /PP

I/O /PP

Tabelle 2: microSD Karte Pin-Zuordnung

SCLK

 V_{SS}

DO

RSV

Clock

Data Out

Reserved (*)

Supply voltage ground

S

O/PP

6.2 microSD Karte Bus-Topologie

5

6

7

CLK

 V_{SS}

DAT0

DAT1

Die microSD Speicherkarte unterstützt zwei alternative Kommunikationsprotokolle: Den SDund den SPI-Busmodus. Das Hostsystem kann einen der beiden Modi wählen. In beiden Modi können dieselben Daten auf der microSD Karte gelesen und geschrieben werden.

Im SD-Modus ist hochleistungsfähige 4-Bit-Datenübertragung möglich. Der SPI-Modus ermöglicht eine einfache, allgemeine Schnittstelle für den SPI-Kanal. Der Nachteil dieses Modus ist ein Leistungsverlust im Verhältnis zum SD-Modus.

4900181-001.A00 Seite 3 von 21

¹⁾ S: Stromversorgung, I: Eingang, O: Ausgang, I/O: Bidirektional, PP: IO Verwenden von Push-Pull Treibern

^(*) Diese Signale müssen hostseitig mit 10 - 100K Ohm Widerstand im SPI-Modus angezogen werden. Keine NC-Pins verwenden.

6.2.1. SD Busmodus-Protokoll

Der SD-Bus erlaubt die dynamische Konfiguration der Anzahl Datenleitungen, von 1bis 4 bidirektionalen Datensignalen. Nach dem standardmäßigen Hochfahren verwendet die microSD Karte nur DATO. Der Host kann die Busbreite nach der Initialisierung ändern.

Dem Host stehen microSD Karten-Mehrfachverbindungen zur Verfügung. In der Mehrfachverbindung sind allgemeingängige V_{dd} , V_{ss} und CLK Signalverbindungen verfügbar. Jedoch muss der Host Befehle, Frequenzen und Datenleitungen (DAT0-DAT3) je Karte aufgliedern.

Diese Funktion ermöglicht das einfache Abwägen zwischen den Hardware-Kosten und der Systemleistung. Die Kommunikation über den microSD-Bus basiert auf Befehlen und dem Strom aus Datenbits, der mit dem Startbit ausgelöst und mit dem Stoppbit beendet wird.

Befehl:

Befehle werden seriell über die CMD-Leitung übertragen. Ein Befehl ist ein Token, das einen Vorgang vom Host zur Karte startet. Befehle werden an eine adressierte Einzelkarte (adressierte Befehl) oder an alle angeschlossenen Karten (Sammelbefehl) gesendet.

Rückmeldung:

Rückmeldungen werden seriell über die CMD-Leitung übertragen. Eine Rückmeldung ist ein Token zur Beantwortung eines zuvor erhaltenen Befehls. Rückmeldungen werden von einer adressierten Einzelkarte oder von allen angeschlossenen Karten gesendet.

Daten:

Daten können von der Karte zum Host und umgekehrt übertragen werden. Daten werden über Datenleitungen übertragen.

CLK: Clock-Signal Host zu Karte

CMD: Bidirektionaler Befehl / Rückmeldesignal DAT0 - DAT3: 4 Bidirektionales Datensignal

V_{DD}: Stromversorgung

Vss: GND

Abb. 2: microSD Karte (SD-Modus) Verbindungsdiagramm

4900181-001.A00 Seite 4 von 21

Tabelle 3: SD-Modus Befehlssatz (+: Implementiert, -: Nicht implementiert)

CMD-	Abkürzung	Implementiert	Anmerkungen
Index		mpiomontion	Annierkungen
CMD0	GO_IDLE_STATE	+	
CMD2	ALL_SEND_CID	+	
CMD3	SEND_RELATIVE_ADDR	+	
CMD4	SET_DSR	-	DSR-Register ist nicht implementiert.
CMD6	SWITCH_FUNC	+	
CMD7	SELECT/DESELECT_CARD	+	
CMD8	SEND_IF_COND	+	
CMD9	SEND_CSD	+	
CMD10	SEND_CID	+	
CMD11	VOLTAGE_SWITCH	+	
CMD12	STOP_TRANSMISSION	+	
CMD13	SEND_STATUS	+	
CMD15	GO_INACTIVE_STATE	+	
CMD16	SET_BLOCKLEN	+	
CMD17	READ_SINGLE_BLOCK	+	
CMD18	READ_MULTIPLE_BLOCK	+	
CMD19	READ_MULTIPLE_BLOCK	+	
CMD20	SPEED_CLASS_CONTROL	+	For SDHC/SDXC
CMD23	SET_BLOCK_COUNT	+	For UHS104 (CMD23 does not support)
CMD24	WRITE_BLOCK	+	
CMD25	WRITE_MULTIPLE_BLOCK	+	
CMD27	PROGRAM CSD	+	
CMD28	SET_WRITE_PROT	-	Interner Schreibschutz ist nicht implementiert.
CMD29	CLR_WRITE_PROT	-	Interner Schreibschutz ist nicht implementiert.
CMD30	SEND_WRITE_PROT	-	Interner Schreibschutz ist nicht implementiert.
CMD32	ERASE_WR_BLK_START	+	
CMD33	ERASE_WR_BLK_END	+	
CMD38	ERASE	+	
CMD42	LOCK_UNLOCK	+	
CMD55	APP_CMD	+	
CMD56	GEN_CMD	-	Dieser Befehl ist nicht festgelegt.
ACMD6	SET_BUS_WIDTH	+	
ACMD13	SD_STATUS	+	
ACMD22	SEND_NUM_WR_BLOCKS	+	
ACMD23	SET WR BLK ERASE COUNT	+	
ACMD41	SD_APP_OP_COND	+	
ACMD42	SET_CLR_CARD_DETECT	+	
ACMD51	SEND_SCR	+	
ACMD18	SECURE READ MULTI BLOCK	+	
ACMD25	SECURE_WRITE_MULTI_BLOCK	+	
ACMD26	SECURE_WRITE_MKB	+	
ACMD38	SECURE_ERASE	+	
ACMD43	GET_MKB	+	
ACMD43	GET_MID	+	
ACMD44	SET_CER_RN1		
ACMD45	SET_CER_RN1	+	
ACMD46 ACMD47	SET_CER_RES2	+	
ACMD47 ACMD48	SET_CER_RES1	+	
ACMD48 ACMD49		+	
ACIVID49	CHANGE_SECURE_AREA	+	

- CMD28, 29 und CMD30 sind optionale Befehle.
- CMD4 ist nicht implementiert aufgrund DSR-Register (optionales Register)
- CMD56 ist für herstellerspezifische Befehle. In der Standardkarte nicht definiert.

4900181-001.A00 Seite 5 von 21

6.2.2. SD Busmodus-Protokoll

Der SPI-Bus erlaubt 1 Bit Datenleitung je 2-Kanal (Datenein- und -ausgang). Der mit SPI kompatible Modus erlaubt MMC-Hostsystemen, SD Karten mit geringfügigen Änderungen zu verwenden.

Das SPI-Busmodus-Protokoll besteht aus Byte-Übertragungen.

Alle Datentoken sind ein Vielfaches der Bytes (8-Bit) und immer am CS-Signal Byte-ausgerichtet.

Der Vorteil des SPI-Modus liegt im niedrigeren Konstruktionsaufwand des Hostes. Insbesondere kann der MMC-Host mit nur geringfügigen Änderungen modifiziert werden.

Der Nachteil des SPI-Modus ist ein Leistungsverlust gegenüber dem SD-Modus. Achtung: Verwenden Sie bitte die SD Kartenspezifikationen. Verwenden Sie KEINE MMC-Spezifikationen.

Beispielsweise erfolgt die Initialisierung mit ACMD41. Achten Sie auf das Register. Die Registerdefinition unterscheiden sich von der MMC-Spezifikation, speziell im CSD Register.

CS: Card Select Signal

CLK: Clock-Signal Host zu Karte

Dateneingang: Datenleitung Host zu Karte Datenausgang: Datenleitung Karte zu Host

V_{DD}: Stromversorgung V_{SS}: Bezugspotenzial

Abb. 3: microSD Karte (SPI-Modus) Verbindungsdiagramm

4900181-001.A00 Seite 6 von 21

Tabelle 4: SPI-Modus Befehlssatz

(+: Implementiert, -: Nicht implementiert)

CMD-Index	Abkürzung	Implementiert	Anmerkungen
CMD0	GO_IDLE_STATE	+	
CMD1	SEND_OP_CND	+	HINWEIS: NICHT VERWENDEN (SIEHE Abb. 6 und 9.2)
CMD6	SWITCH_FUNC	+	
CMD8	SEND_IF_COND	+	
CMD9	SEND_CSD	+	
CMD10	SEND_CID	+	
CMD12	STOP_TRANSMISSION	+	
CMD13	SEND_STATUS	+	
CMD16	SET_BLOCKLEN	+	
CMD17	READ_SINGLE_BLOCK	+	
CMD18	READ_MULTIPLE_BLOCK	+	
CMD24	WRITE_BLOCK	+	
CMD25	WRITE_MULTIPLE_BLOCK	+	
CMD27	PROGRAM_CSD	+	
CMD28	SET_WRITE_PROT	-	Interner Schreibschutz ist nicht implementiert.
CMD29	CLR_WRITE_PROT	-	Interner Schreibschutz ist nicht implementiert.
CMD30	SEND_WRITE_PROT	-	Interner Schreibschutz ist nicht implementiert.
CMD32	ERASE_WR_BLK_START_ADD	+	·
CMD33	ERASE_WR_BLK_END_ADDR	+	
CMD38	ERASE	+	
CMD42	LOCK_UNLOCK	+	
CMD55	APP_CMD	+	
CMD56	GEN_CMD	-	Dieser Befehl ist nicht festgelegt.
CMD58	READ_OCR	+	
CMD59	CRC_ON_OFF	+	
ACMD6	SET_BUS_WIDTH	+	
ACMD13	SD_STATUS	+	
ACMD22	SEND_NUM_WR_BLOCKS	+	
ACMD23	SET_WR_BLK_ERASE_COUNT	+	
ACMD41	SD_APP_OP_COND	+	
ACMD42	SET_CLR_CARD_DETECT	+	
ACMD51	SEND_SCR	+	
ACMD18	SECURE_READ_MULTI_BLOC	+	
ACMD25	SECURE_WRITE_MULTI_BLO	+	
ACMD26	SECURE_WRITE_MKB	+	
ACMD38	SECURE_ERASE	+	
ACMD43	GET_MKB	+	
ACMD44	GET_MID	+	
ACMD45	SET_CER_RN1	+	
ACMD46	SET_CER_RN2	+	
ACMD47	SET_CER_RES2	+	
ACMD48	SET_CER_RES1	+	
ACMD49	CHANGE_SECURE_AREA	+	

- CMD28, 29 und CMD30 sind optionale Befehle.
- > CMD56 ist für herstellerspezifische Befehle. In der Standardkarte nicht definiert.

4900181-001.A00 Seite 7 von 21

6.3. microSD Karte Initialisierung

Abbild 4-1 zeigt das Initialisierung-Funktionsschema für UHS-I Hosts und Abbild 4-2 zeigt die Befehlsfolge für die Umschaltung der Signalspannung. Die rot und gelb unterlegten Felder sind neue Verfahren zur Initialisierung der UHS-I Karte.

Abb. 4-1: Funktionsschema UHS-I Hostinitialisierung

4900181-001.A00 Seite 8 von 21

Abb. 4-2: ACMD41-Timing gefolgt von einer Umschaltsequenz der Signalspannung

1) EINSCHALTEN: Liefert Spannung für die Initialisierung.

Das Hostsystem wendet die Betriebsspannung auf die Karte an.

Mehr als 74 Zyklen der Dummy-Clock auf die microSD Karte anwenden.

2) Betriebsmodus wählen (SD-Modus oder SPI-Modus)

Im SPI-Betriebsmodus muss der Host 1 Pin (CD/DAT3) der SD Karte I/F auf "Niedrig" setzen. Danach CMD0 ausgeben.

Im SD-Betriebsmodus muss der Host 1 Pin der SD Karte I/F (Pull-up-Register mit 1 Pin ist normalerweise Pull-up auf "High") setzen oder erkennen.

Die Karte behält den gewählten Betriebsmodus bei, außer bei CMD0-Neuausgabe, oder nachfolgendes Einschalten ist Initialisierung des SD-Modus.

3) Befehl Schnittstellenbedingung senden (CMD8).

Wenn sich die Karte im Idle-Status befindet, muss der Host CMD8 vor ACMD41 ausgeben. Im Argument ist "Spannung geliefert" auf die Host-Spannungsversorgung eingestellt und "Kontrollmuster" ist auf ein beliebiges 8-Bit Muster eingestellt.

Die Karte, die die gelieferte Spannung akzeptiert hat, schickt die R7 Rückmeldung zurück. In der Rückmeldung sendet die Karte den im Argument eingestellten Spannungsbereich und das Kontrollmuster als Echo zurück.

Wenn die Karte die Host-Versorgungsspannung nicht unterstützt, sendet sie keine Rückmeldung zurück und bleibt im Idle-Status.

4) Initialisierungsbefehl senden (ACMD41).

Wenn die Signalebene 3,3 V ist, wiederholt der Host die Ausgabe von ACMD41 mit HCS=1 und S18R=1 bis die Rückmeldung "fertig" anzeigt.

Das Argument (HCS und S18R) des ersten ACMD41 ist effektiv, und alle folgenden ACMD41 müssen mit demselben Argument ausgegeben werden.

Wenn Bit 31 fertig anzeigt, muss der Host CCS und S18A überprüfen.

Die Karte zeigt S18A=0 an, was bedeutet, dass kein Spannungswechsel erlaubt ist und der Host die aktuelle Signalebene verwenden muss.

Current Signaling Level	18R	S18A	Comment
	0	0	1.8V signaling is not requested
3.3V	1	0	The card does not support 1.8V signaling
	1	1	Start signal voltage switch sequence
1.8V	Х	0	Already switched to 1.8V

Tabelle 5: S18R und S18A Kombinationen

4900181-001.A00 Seite 9 von 21

5) Befehl Spannungswechsel senden (CMD11).

S18A=1 bedeutet, dass der Spannungswechsel erlaubt ist und der Host CMD11 ausgibt, um die Sequenz für den Spannungswechsel aufzurufen.

Wenn die Karte CMD11 erhalten hat, sendet sie die R1 Rückantwort und Startsequenz für den Spannungswechsel zurück.

Wenn keine CMD11 Rückantwort erfolgt, bedeutet dies, dass S18A auf 0 stand und der Host keine CMD11 hätte senden dürfen.

Die Fertigstellung der Sequenz für den Spannungswechsel wird durch hohe DAT [3:0] Ebene geprüft.

Je nach Möglichkeiten des Hosts kann jedes Bit in DAT [3:0] überprüft werden. Die Karte startet den UHS-I-Modus, und die Eingangs- und Ausgangs-Timings werden geändert (standardmäßig SDR12), sobald die Sequenz für den Spannungswechsel erfolgreich abgeschlossen wurde.

- 6) Befehl ALL_SEND_CID (CMD2) senden und Karten-ID (CID) erhalten.
- 7) SEND_RELATIVE_ADDR (CMD3) senden und RCA erhalten.

Der RCA-Wert wird durch den Zugang zufallsmäßig geändert und ist nicht gleich Null.

8) Befehl SELECT / DESELECT_CARD (CMD7) senden und weiter zum Status Übertragen.

Beim Aufrufen des Übertragen-Status muss der Status CARD_IS_LOCKED in der R1 Rückantwort überprüft werden (wird in der Rückantwort von CMD7 angezeigt). Wenn der Status CARD_IS_LOCKED in der Rückantwort von CMD7 auf 1 steht, ist zum Entsperren der Karte CMD42 vor ACMD6 erforderlich.

(Wenn die Karte gesperrt ist, muss sie mit CMD42 entsperrt werden.))

Wenn die Karte entsperrt ist, kann CMD42 übersprungen werden.

9) Befehl SET_BUS_WIDTH senden (ACMD6).

UHS-I unterstützt nur den 4-Bit-Modus Der Host muss den 4-Bit-Modus mit ACMD6 auswählen.

Wenn die Karte gesperrt ist, muss der Host sie mit CMD42 im 1-Bit-Modus entsperren und danach durch Ausgabe von ACMD6 in den

4-Bit-Busmodus ändern. Der Betrieb im 1-Bit-Modus ist nicht garantiert.

10) Treiberstärke einstellen.

Mit dem CMD6 Modus 0 wird abgefragt, welche Funktionen die Karte unterstützt, und um den maximalen Stromverbrauch der Karte mit den gewählten Funktionen zu ermitteln.

Bei einer UHS-I Karte wird die angemessene Treiberstärke (standardmäßig ist Typ-B-Buffer) durch die CMD6 Funktionsgruppe 3 ausgewählt.

11) Strombegrenzung im UHS-I-Modus festlegen.

Die UHS-I-Modi (Busgeschwindigkeit-Modus) werden durch die CMD6 Funktionsgruppe 1 ausgewählt.

Die Strombegrenzung wird durch die CMD6 Funktionsgruppe 4 ausgewählt. Maximale Zugriffseinstellungen:

SDR50 = (CMD6 Funktionsgruppe 1 = 2-h, CMD6 Funktionsgruppe 4 = 1-h)

4900181-001.A00 Seite 10 von 21

Hinweis:

Die Funktionsgruppe 4 wird als Strombegrenzungs-Signalgeber für SDR50 definiert. In SDR12 und SDR25 bewirkt die Strombegrenzung keine Aktion auf der Karte. Der Standardwert für die Strombegrenzung ist 200mA (Mindesteinstellung). Wenn die Funktionsgruppe 1 einen der Modi SDR50 ausgewählt hat, muss der Host die Strombegrenzung ändern, damit die Karte mit mehr Leistung arbeiten kann. Dieser Wert wird durch die Stromversorgungskapazität eines Hosts, die Methode der Wärmeabgabe eines Hosts und die maximale Stromstärke eines Anschlusses, bestimmt.

12) Abstimmen des Sampling-Punkts

Zum Bestimmen des Sampling-Punkts sendet CMD19 einen Tuning-Block zum Host.

Wenn in den Modi SDR50 und SDR104 das Abstimmen des Sampling-Punkts erforderlich ist, wird CMD19 wiederholt ausgegeben, bis die Abstimmung abgeschlossen ist.

Dann hat der Host als Speichergerät Zugriff auf die Daten der SD Karte.

6.4. microSD Karte, elektrische Kenndaten

Abb. 5: microSD Karte Verbindungsdiagramm

4900181-001.A00 Seite 11 von 21

6.4.1. Gleichstrom-Kenndaten

Tabelle 6-1: Gleichstrom-Kenndaten (Grenzwert für Hochspannungsbereich)

Position		Symbol	Bedingung	Min.	Тур	Max.	Einh.	Hinweis
Netzspannung		V_{DD}	-	2.7	-	3.6	V	
Eingengeeneng	Hoch	V_{IH}	-	V _{DD} *0.625	-	-	V	
Eingangsspanng	Niedrig	V_{IL}	-	-	ı	V _{DD} *0.25	V	
Auganggananng	Hoch	V _{OH}	$I_{OH} = -2mA$	V _{DD} *0.75	-	-	V	
Ausgangsspanng	Niedrig	V_{OL}	$I_{OL} = 2mA$	-	-	V _{DD} *0.125	V	
Einschaltdau	ıer		-	-	-	250	ms	OV to V _{DD} min

^{*)} Spitzenstrom: RMS-Wert in einem Zeitraum von 10 usec

Tabelle 6-2: Spitzenspannung und Kriechstrom

Parameter	Symbol	Min.	Max.	Einh.	Hinweis
Spitzenspannung auf allen Leitungen		-0.3	V _{DD} +0,3	V	
Alle Eingänge					
Eingangs-Kriechstrom		-10	10	uA	
Alle Ausgänge					
Ausgangs-Kriechstrom		-10	10	uA	

Tabelle 6-3: Gleichstrom-Kenndaten (Grenzwert für 1,8 V Signalgebung)

Position		Symbol	Min.	Max.	Einh.	Bedingung
Netzspannung		V_{DD}	2.7	3.6	V	
Reglerspannung		V_{DDIO}	1.7	1.95	V	Erzeugt aus V _{DD}
Eingengeeneng	Hoch	V_{IH}	1.27	2.00	V	
Eingangsspanng	Niedrig	V_{IL}	V _{SS} -0.3	0.58	V	
Auegangeenanng	Hoch	V_{OH}	1.4	-	V	
Ausgangsspanng	Niedrig	V_{OL}	-	0.45	V	

Tabelle 6-4: Eingangs-Grenzwert für 1,8 V Signalgebung

Parameter	Symbol	Min.	Max.	Einh.	Hinweis
Eingangs-Kriechstrom		-2	2	uA	DAT3 Pull-Up ist abgeschaltet

4900181-001.A00 Seite 12 von 21

Tabelle 6-5: Stromverbrauch

Position	Symbol	Bedingung	Min.	Тур	Max.	Ein	Hinwei
						h.	S
Standby-Strom	I _{ccs}	3,0 V Clock-Stopp	-	-	950	uA	@ 25° C
		Strombegrenzung = 400 mA V _{DD} =3,6 V	-	-	300		
Betriebsstrom (Spitze)	I _{CCOP1} *1)	Strombegrenzung = 200 mA V _{DD} =3,6 V	-	-	300	mA	@ 25° C
,		(HS oder DS) V _{DD} = 3,6 V	-	-	300		
		Strombegrenzung = 400 mA V _{DD} = 3,6 V	-	-	250		
Betriebsstrom (Durchschnitt)		Strombegrenzung = 200 mA V _{DD} = 3,6 V	-	-	200	A	@
	I _{CCOP2} *2)	(SDR25 oder HS) V _{DD} = 3,6 V	-	-	200	mA	25° C
		(SDR12.5 oder DS) V _{DD} = 3,6 V	-	-	100		

^{*1)} Spitzenstrom: RMS-Wert in einem Zeitraum von 10 usec

Tabelle 6-6: Signalkapazität

Bus-Gesamtkapazität = $C_{HOST} + C_{BUS} + N^*C_{Karte}$

Position	Symbol	Min.	Max.	Einh.	Hinweis
Pull-Up-Widerstand	R _{CMD} R _{DAT}	10	100	K Ohm	
Bus-Gesamtkapazität je Signalleitung	C _L	ı	40	pF	1 Karte C _{HOST} +C _{BUS} Darf 30pF nicht übersteigen
Kartenkapazität je Signal-Pin	C _{KARTE}	1	10	рF	
Signalleitung, max. Induktivität		-	16	nΗ	
Pull-Up-Widerstand in der Karte (Pin 1)	R _{DAT3}	10	90	K Ohm	Kann zur Kartenerkenng. verw. werden
An Stromleitung angeschl. Kapazität	C _C	1	5	uF	Verhindert Einschaltstoßstrom

Hinweis: WP Pull-Up-Wert (R_{wp}) hängt vom Steuerkreis der Host-Schnittstelle ab.

4900181-001.A00 Seite 13 von 21

^{*2)} Durchschnittsstrom: Wert in einem Zeitraum von 1Sek.

6.4.2. Wechselstrom-Kenndaten (Standard)

Abb. 6-1: Diagramm Wechselstrom-Timing (Standard)

Tabelle 7-1: Wechselstrom-Kenndaten (Standard)

Position	Symbol	Min.	Max.	Einh.	Hinweis
Clock-Frequenz (In jedem Status)	f _{STP}	0	25	MHz	
Clock-Frequenz (Modus Datenübertragung)	f _{PP}	0	25	MHz	
Clock-Frequenz (Modus Kartenerkennung)	f _{OD}	0/100(*1)	400	KHz	C _{KARTE} ≤ 10pF
Clock-Frequenz niedrig	t _{WL}	10	1	ns	(1 Karte)
Clock-Frequenz hoch	t _{WH}	10	1	ns	
Clock-Frequenz steigend	t _{TLH}	-	10	ns	
Clock-Frequenz fallend	t _{THL}	-	10	ns	
Eingang-Aufbauzeit	t _{ISU}	5	-	ns	
Eingang-Haltezeit	t _{IH}	5	-	ns	
Ausgang-Verzugszeit (Modus Datenübertragung)	t _{ODLY}	0	14	ns	C _L ≤ 40pF
Ausgang-Verzugszeit (Erkennungsmodus)	t _{ODLY}	0	50	ns	(1 Karte)

^{(*1) 0}Hz bedeutet, dass der Takt gestoppt wird. Der gegebene Mindest-Frequenzbereich ist für Fälle, in denen kontinuierliche Taktung erforderlich ist.

4900181-001.A00 Seite 14 von 21

6.4.3. Wechselstrom-Kenndaten (High-Speed)

Abb. 6-2: Diagramm Wechselstrom-Timing (High-Speed)

Tabelle 7-2: Wechselstrom-Kenndaten (High-Speed)

Position	Symbol	Min.	Max.	Einh.	Hinweis
Clock-Frequenz					
(Modus	f_PP	0	50	MHz	C _{KARTE} ≤ 10pF (1 Karte)
Datenübertragung)					
Clock-Frequenz niedrig	t _{WL}	7		ns	C _{KARTE} ≤ 10pF (1 Karte)
Clock-Frequenz hoch	t _{WH}	7	•	ns	C _{KARTE} ≤ 10pF (1 Karte)
Clock-Frequenz steigend	t _{TLH}	ı	3	ns	C _{KARTE} ≤ 10pF (1 Karte)
Clock-Frequenz fallend	t _{THL}	-	3	ns	C _{KARTE} ≤ 10pF (1 Karte)
Eingang-Aufbauzeit	t _{ISU}	6	-	ns	C _{KARTE} ≤ 10pF (1 Karte)
Eingang-Haltezeit	t _{IH}	2		ns	C _{KARTE} ≤ 10pF (1 Karte)
Ausgang-Verzugszeit					
(Modus	t _{ODLY}	-	14	ns	C _{KARTE} ≤ 10pF (1 Karte)
Datenübertragung)					
Ausgang-Haltezeit	T _{OH}	2.5	-	ns	C _{KARTE} ≤ 10pF (1 Karte)
System-Gesamtkapazität	C_L	-	40	pF	C _{KARTE} ≤ 10pF (1 Karte)

4900181-001.A00 Seite 15 von 21

6.4.4 Wechselstrom-Kenndaten (Modi SDR12, SDR25, SDR50 und SDR104)

Abb. 6-3: Wechselstrom-Kenndaten (Eingang, Modi SDR12, SDR25, SDR50 und SDR104)

Tabelle 7-3: Wechselstrom-Kenndaten (Eingang, Modi SDR12, SDR25, SDR50 und SDR104)

Symbol	Min.	Max.	Einh.	Anmerkung
t _{CLK}	4.80	-	ns	208 MHz (max.), zw. Anstiegsflanke,
				$V_{CT} = 0.975 \text{ V}$
t _{CR} , t _{CF}	-	0.2*t _{CLK}	ns	t _{CR} , t _{CF} < 2.00ns (max.) bei 100 MHz,
				C _{KARTE} = 10pF
Clock-Zyklus	30	70	%	

7. Karteninterne Angaben

7.1. Sicherheitshinweise

Kingstons Standardangaben sind MKB (Media Key Block) und Media ID. Diese Angaben entsprechen CPRM.

Hinweis: Die Sicherheitshinweise sind KEINE Entwicklungshinweise zur Bewertung. Das Host-System darf die Sicherungsfunktion nur gemäß CPRM verwenden.

Diese Daten werden aus Sicherheitsgründen vertraulich behandelt.

7.2. SD Kartenregister

Der Speicher verfügt über sechs Register und zwei Statusinformationen: OCR, CID, CSD, RCA, DSR, SCR und Kartenstatus. Der SD-Status ist mit dem Kartenstatus identisch. In dieser Karte wird DSR NICHT UNTERSTÜTZT.

Es gibt zwei Arten Registergruppen.

MMC-kompatible Register: OCR, CID, CSD, RCA, DSR und SCR sowie SD

Kartenspezifisch: SD-Status und Kartenstatus

Tabelle 8: SD Kartenregister

Registername	Bitbreite (Bit)	Beschreibung	
CID	128	Kartenerkennung	
RCA	16	Relative Kartenadresse	
DSR	16	Treiberstufenregister	
CSD	128	Kartenspezifische Daten	
SCR	64	SD-Konfigurationsregister	
OCR	32	Betriebsbedingungen-Register	
SSR	512	SD-Status	
CSR	32	Kartenstatusregister	

4900181-001.A00 Seite 16 von 21

7.2.1 OCR-Register

In diesem 32-Bit-Register werden der Betriebsspannungsbereich und Status-Bit in der Stromversorgung beschrieben.

Tabelle 9: OCR-Registerdefinition

OCR-Bit-		OCD Folderdefinition	Ansprechwert			
Position		OCR-Felderdefinition	64GB			
0-3		Reserviert	0			
4-6		Reserviert	0			
7	<u>_</u>	Für Niedrigspannungsber. reserv.	0			
8-14	ste	Reserviert	0			
15	VDD-Spannungsfenster	2.8 ~ 2.7	1			
16	Sbu	2.9 ~ 2.8	1			
17]]	3.0 ~ 2.9	1			
18	an	3.1 ~ 3.0	1			
19	လှုံ	3.2 ~ 3.1	1			
20	Ö	3.3 ~ 3.2	1			
21		3.4 ~ 3.3	1			
22		3.5 ~ 3.4	1			
23		3.6 ~ 3.5	1			
24 ¹	Wec	nsel zu 1,8 V akzeptiert (S18A)	1			
25-29	Reserviert		0			
30	Statu	ıs-Kartenkapazität (CCS) ²	1			
31		ıs-Bit Card Power Up (Lädt) ³	"0" = Lädt "1" = Fertig			

⁽¹⁾ Bit24: Dieses Bild wird nur von UHS-I-Karten unterstützt.

4900181-001.A00 Seite 17 von 21

⁽²⁾ Bit30: Dieses Bit ist nur gültig, wenn das Status-Bit Card Power Up gesetzt ist.

⁽³⁾ Bit31: Wenn die Karte die Einschalt-Routine noch nicht abgeschlossen hat, steht dieses Bit auf NIEDRIG.

Bit 23-4: Bezeichnet die Spannung der SD Karte

Bit 31 zeigt den Power Up Status der Karte an. Der Wert "1" wird angezeigt, wenn der Startvorgang und das Initialisierungsverfahren abgeschlossen sind.

7.2.2 CID-Register

Das CID-Register (Kartenerkennung) ist 128-Bit breit. Es enthält die Daten für die Kartenerkennung. Der Wert des CID-Registers ist herstellerspezifisch.

Tabelle 10: CID-Register

Name	Feld	Breite	CID-	Anfangswert	
Name	reiu	Dieile	Slice	64GB	
Hersteller-ID	MID	8	[127:120]	41h	
OEM/Anwendungs-ID	OID	16	[119:104]	3432h	
Produktname	PNM	40	[103:64]	SDCIT	
Produktüberarbeitung	PRV	8	[63:56]	30h	
Produkt-Seriennummer	PSN	32	[55:24]	PSN ^A	
Reserviert		4	[23:20]		
Herstellungsdatum	MDT	12	[19:8]	MDT ^B	
CRC7 Prüfsumme	CRC	7	[7:1]	CRC ^C	
Nicht verwendet, immer 1	-	1	[0:0]	1	

⁽A), (B): Änderung bei Produktion für einzelne SD Karte.

4900181-001.A00 Seite 18 von 21

⁽C) Endsumme für das CID-Register.

7.2.3 CSD-Register

CSD ist ein kartenspezifisches Datenregister mit Informationen in 128Bit-Breite.

Tabelle 11: CSD-Register

	Esta	D ''	Zellen-	CSD-	Anfangswert
Name	Feld	Breite	typ	Slice	64GB
CSD-Struktur	CSD_STRUCTURE	2	R	[127:126]	0x01
Reserviert	-	6	R	[125:120]	0x00
Gelesene Daten, Zugriffszeit-1	TAAC	8	R	[119:112]	0x0E
Gelesene Daten, Zugriffszeit-2 in CLK-Zyklen (NSAC*100)	NSAC	8	R	[111:104]	0x00
Max. Datenübertragungsrate	TRAN_SPEED	8	R	[103:96]	0x5A
Karten-Befehlsklassen	CCC	12	R	[95:84]	0x5B5
Max. Blocklänge gelesene Daten	READ_BL_LEN	4	R	[83:80]	0x09
Lesen in Teilblöcken erlaubt	READ_BL_PARTIAL	1	R	[79:79]	0x00
Schreibblock-Fehlausrichtung	WRITE_BLK_MISALIGN	1	R	[78:78]	0x00
Leseblock-Fehlausrichtung	READ_BLK_MISALIGN	1	R	[77:77]	0x00
DSR implementiert	DSR_IMP	1	R	[76:76]	0x00
Reserviert	-	6	R	[75:70]	0x00
Gerätegröße	C_SIZE	22	R	[69:48]	0x01D27F
Reserviert	-	1	R	[47:47]	0x00
Löschen Einzelblock aktivieren	ERASE_BLK_EN	1	R	[46:46]	0x01
Sektorgröße löschen	SECTOR_SIZE	7	R	[45:39]	0x7F
Größe Schreibschutzgruppe	WP_GRP_SIZE	7	R	[38:32]	0x00
Schreibschutzgruppe aktivieren	WP_GRP_ENABLE	1	R	[31:31]	0x00
Reserviert (nicht verwenden)	-	2	R	[30:29]	0x00
Geschwindigkeitsfaktor Schreiben	R2W_FACTOR	3	R	[28:26]	0x02
Max. Blocklänge geschriebene Daten	WRITE_BL_LEN	4	R	[25:22]	0x09
Schreiben in Teilblöcken erlaubt	WRITE_BL_LEN	1	R	[21:21]	0x00
Reserviert	-	5	R	[20:16]	0x00
Datei-Formatgruppe	FILE_FORMAT_GRP	1	R	[15:15]	0x00
Zum Kopieren markieren	COPY	1	R/W ⁽¹⁾	[14:14]	0x00
Permanenter Schreibschutz	PERM_WRITE_PROTEC T	1	R/W ⁽¹⁾	[13:13]	0x00
Temporärer Schreibschutz	TMP_WRITE_PROTECT	1	R/W	[12:12]	0x00
Dateiformat	FILE_FORMAT	2	R	[11:10]	0x00
Reserviert	-	2	R	[9:8]	0x00
CRC	CRC	7	R/W	[7:1]	CRC
Nicht verwendet, immer "1"	-	1	-	[0:0]	0x01

Zellentypen: R: Nur Lesen, R/W: Lesen und Schreiben, R/W (1): Einmal Schreiben / Lesen

Hinweis: Bei dieser Karte ist das Löschen eines ganzen Datenblocks nicht gestattet. Diese Information wird durch "ERASE_BLK_EN" angezeigt. Das Hostsystem muss diesen Wert vor dem Löschen einer Datenblockgröße zuschreiben.

7.2.4 RCA-Register

Das beschreibbare, jeweilige 16-Bit Karten-Adressregister enthält die Kartenadresse im SD-Kartenmodus.

7.2.5 DSR-Register

Dieses Register wird nicht unterstützt.

7.2.5 SCR-Register

Das SCR (SD Karten-Konfigurationsregister) enthält Daten zu den Sonderfunktionen der SD Speicherkarte. Das SCR-Register hat eine Größe von 64 Bit.

4900181-001.A00 Seite 19 von 21

Tabelle 12: SCR-Register

Basahraihung	Eald	Breite	Zellen-	SCR-	Wert
Beschreibung	Feld	Dreite	typ	Slice	64GB
SCR-Struktur	SCR_STRUCTURE	4	R	[63:60]	0x00
SD Speicherkarte Spez. Version	SD_SPEC	4	R	[59:56]	0x02
Datenstatus nach Löschen	DATA_STAT_AFTER_ERA	1	R	[55:55]	0x00
CPRM-Sicherheitsunterstützung	SD_SECURITY	3	R	[54:52]	0x04
Unterstützte DAT-Busbreiten	SD_BUS_WIDTHS	4	R	[51:48]	0x05
Spez. ab Version 3.00	SD_SPEC3	1	R	[47:47]	0x01
Erweiterte Sicherheitsunterstützung	EX_SECURITY	4	R	[46:43]	0x00
Spez. ab Version 3.00	SD_SPEC4	1	R	[42:42]	0x00
Reserviert	-	6	R	[41:36]	0x00
Unterstützung Befehlsbits	CMD_SUPPORT	4	R	[35:32]	0x03
Reserviert für Herstellernutzung	-	32	R	[31:0]	0x01 0x00 0x00 0x00

7.2.7 Kartenstatus

Tabelle 13: Kartenstatus

Fald	D::0:40	CCD Clica	T	Wert	
Feld	Breite	SCR-Slice	Тур	64GB	
OUT_OF_RANGE	1	[31:31]	ERX	0	
ADDRESS_ERROR	1	[30:30]	ERX	0	
BLOCK_LEN_ERROR	1	[29:29]	ERX	0	
ERASE_SEQ_ERROR	1	[28:28]	ER	0	
ERASE_PARAM_ERROR	1	[27:27]	ERX	0	
WP_VIOLATION:PROTECTED	1	[26:26]	ERX	0	
CARD_IS_LOCKED	1	[25:25]	SX	0	
LOCK_UNLOCK_FAIL	1	[24:24]	ERX	0	
COM_ECC_ERROR	1	[23:23]	ER	0	
ILLEGAL_COMMAND	1	[22:22]	ER	0	
CARD_ECC_FAILED	1	[21:21]	ERX	0	
CC_ERROR	1	[20:20]	ERX	0	
Allgemeiner oder unbekannter FEHLER	1	[19:19]	ERX	0	
Reserviert	1	[18:18]	-	0	
Reserviert	1	[17:17]	-	0	
CSD_OVERWRITE	1	[16:16]	ERX	0	
WP_ERASE_SKIP:PROTECTED	1	[15:15]	ERX	0	
CARD_ECC_DISABLED	1	[14:14]	SX	0	
ERASE_RESET	1	[13:13]	SR	0	
CURRENT_STATE	4	[12:9]	SX	4	
READY_FOR_DATA	1	[8:8]	SX	1	
Reserviert	1	[7:7]	-	0	
FX_EVENT	1	[6:6]	SX	0	
APP_CMD	1	[5:5]	S	0	
Reserviert	1	[4:4]	R	0	
AKE_SEQ_ERROR	1	[3:3]	ΕR	0	
Reserviert	1	[2:2]	-	0	
Reserviert	1	[1:1]	-	0	
Reserviert	1	[0:0]	-	0	

E: Fehlerbit , S: Statusbit , R: Erkannt und für Befehlsrückmeldung eingerichtet. X: Erkannt und während Befehlsausführung eingerichtet.

4900181-001.A00 Seite 20 von 21

Anhang: microSD Karte, mechanische Abmessungen (Einheit: mm)

4900181-001.A00 Seite 21 von 21