Shadows

Production Computer Graphics
Professor Eric Shaffer

Shadows

- Easy to implement, can be computationally expensive
- Lights
 - Point light has a position, emits light isotropically
 - Directional lights have direction but no position
- For idealized lights (point and directional) shadows are hard-edged

Real Lights...Soft Shadows

Real lights have a finite area

Umbra is the shadow where no light is visible

Penumbra is partial light

Real Lights...Soft Shadows

Shadows Provide a Lot of Information

How far are the objects above the plane?

What is their distance from the cameras and relative sizes?

How many lights are there?

Shadows

What are the relative positions of the light and eyepoint?

Implementation

- Determine visibility of light by ray-casting
 - Shadow ray origin is a object-primary ray hit point
 - Direction is the light direction
 - For point lights, use light position hit point

What Went Wrong?

What Went Wrong?

What Went Wrong?

Rays from Objects

- Need to add an ε value to ray origin
 - Move it slightly in direction of ray...
 - Otherwise, numerical issues can result in hitting the object surface
 - To be more robust, define a constant for each geometric object type
 - ...dependent on surface area

Shadows Can Be Expensive

