ISMT S-136 Time Series Analysis with Python

Harvard Summer School

Dmitry Kurochkin

Summer 2021 Lecture 1

Contents

- Course Information
 - Prerequisites and Textbooks
 - Grading: Assignments, Quizzes, Exams
 - Dates of Interest
- Basic Concepts of Probability Theory
 - Events and Probability
 - Definition of Probability
 - Properties of Probability
 - Conditional Probability
 - Random Variables
 - Random Variables: Definition
 - Distribution Functions (cdf, pdf)
 - Joint Distributions
- Introduction to Time Series
 - Definition of Time Series
 - Autocorrelation Function (ACF)
 - Stationarity
 - Autocovariance & Autocorrelation Functions of a Stationary Time Series
 - Sample ACF of a Stationary Time Series

Contents

- Course Information
 - Prerequisites and Textbooks
 - Grading: Assignments, Quizzes, Exams
 - Dates of Interest
- 2 Basic Concepts of Probability Theory
 - Events and Probability
 - Definition of Probability
 - Properties of Probability
 - Conditional Probability
 - Random Variables
 - Random Variables: Definition
 - Distribution Functions (cdf, pdf)
 - Joint Distributions
- Introduction to Time Series
 - Definition of Time Series
 - Autocorrelation Function (ACF)
 - Stationarity
 - Autocovariance & Autocorrelation Functions of a Stationary Time Series
 - Sample ACF of a Stationary Time Series

Textbooks

Required text:

Robert H. Shumway and David S. Stoffer,

Time Series Analysis and Its Applications: With R Examples,

Springer Texts in Statistics, 4th ed., 2017

ISBN: 978-3-319-52451-1

Electronic copy of the book is available at:

https://www.stat.pitt.edu/stoffer/tsa4/tsa4.pdf

Required text:

Aurélien Géron,

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts. Tools, and Techniques

to Build Intelligent Systems,

O'Reilly Media, 2nd ed., 2019

ISBN: 978-1-492-03264-9

Prerequisites

Multivariate Calculus

Multivariate calculus equivalent to MATH E-21:

- Derivatives
- Chain Rule
- Partial derivatives
- Multivariate Chain Rule
- Geometric series
- Integrals etc.

Prerequisites

Probability and Statistics

Probability and statistics equivalent to STAT E-110:

- Random variables
- Probability distributions
- Expectations
- Joint distributions
- Conditional expectations etc.

Prerequisites

Python

Python programming equivalent to CSCI E-7:

- Data types
- For loops
- If...elif ...else
- Functions
- Classes/Objects etc.

Contents

- Course Information
 - Prerequisites and Textbooks
 - Grading: Assignments, Quizzes, Exams
 - Dates of Interest
- 2 Basic Concepts of Probability Theory
 - Events and Probability
 - Definition of Probability
 - Properties of Probability
 - Conditional Probability
 - Random Variables
 - Random Variables: Definition
 - Distribution Functions (cdf, pdf)
 - Joint Distributions
- Introduction to Time Series
 - Definition of Time Series
 - Autocorrelation Function (ACF)
 - Stationarity
 - Autocovariance & Autocorrelation Functions of a Stationary Time Series
 - Sample ACF of a Stationary Time Series

Grading

Assignments, Quizzes, Exams

```
\begin{aligned} \mathsf{Grade} &= 0.25 \cdot \mathsf{Homework} \text{ (two per week, starting June 25)} \\ &+ 0.20 \cdot \mathsf{Quizzes} \text{ (two per week, starting June 23)} \\ &+ 0.25 \cdot \mathsf{Midterm} \text{ (due TBA, 11:59 pm ET)} \\ &+ 0.30 \cdot \mathsf{Final} \text{ (due August 6, 11:59 pm ET)} \end{aligned}
```

Contents

- Course Information
 - Prerequisites and Textbooks
 - Grading: Assignments, Quizzes, Exams
 - Dates of Interest
- 2 Basic Concepts of Probability Theory
 - Events and Probability
 - Definition of Probability
 - Properties of Probability
 - Conditional Probability
 - Random Variables
 - Random Variables: Definition
 - Distribution Functions (cdf, pdf)
 - Joint Distributions
- Introduction to Time Series
 - Definition of Time Series
 - Autocorrelation Function (ACF)
 - Stationarity
 - Autocovariance & Autocorrelation Functions of a Stationary Time Series
 - Sample ACF of a Stationary Time Series

Dates of Interest

- Harvard Extension School classes begin, June 21
- Pretest is due, June 22
- Last day to change the credit status, June 23
- Course drop deadline for full-tuition refund, June 23
- Quiz 1 is due, June 23
- Assignment 1 is due, June 25
- Course drop deadline for half-tuition refund, June 30
- Midterm Exam is due, TBA, 11:59 pm (Eastern Time)
- Withdrawal deadline, July 23
- Final Exam is due, August 6, 11:59 pm (Eastern Time)

Contents

- - Prerequisites and Textbooks
 - Grading: Assignments, Quizzes, Exams
 - Dates of Interest.
- Basic Concepts of Probability Theory
 - Events and Probability
 - Definition of Probability
 - Properties of Probability
 - Conditional Probability
 - Random Variables
 - Random Variables: Definition
 - Distribution Functions (cdf, pdf)
 - Joint Distributions
- - Definition of Time Series
 - Autocorrelation Function (ACF)
 - Stationarity
 - Autocovariance & Autocorrelation Functions of a Stationary Time Series
 - Sample ACF of a Stationary Time Series

Events and Probability: Example

<u>Ex.</u>:

Axioms of Probability

Def.

Let Ω be a set (called *sample space*) of all possible outcomes ω . Probability P is a function defined on subsets (called *events*) of Ω such that

- For any event $A \subseteq \Omega$, $P(A) \ge 0$.
- **2** $P(\Omega) = 1$.
- If events A_1, A_2, \ldots are pairwise disjoint, then

$$P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) +$$

Properties:

$$P(\varnothing) = 0$$

<u>Proof</u>: Let $A_1 = \Omega, A_2 = \emptyset, A_3 = \emptyset, \ldots$, then by Axiom 3:

$$P(\underbrace{\Omega \cup \varnothing \cup \varnothing \cup \dots}) = P(\Omega) + P(\varnothing) + P(\varnothing) + \dots$$

because $\Omega,\varnothing,\varnothing,\ldots$ are pairwise disjoint.

Properties (continued):

2
$$P(A^{c}) = 1 - P(A)$$
.

<u>Proof</u>: We notice that $\Omega = A \cup A^{c}$ with $A \cap A^{c} = \emptyset$, then

$$P(\underbrace{A \cup A^{c}}_{=\Omega}) = P(A) + P(A^{c}).$$

Properties (continued):

 $\textbf{ § For any events } A \text{ and } B, \ P(A) = P(A \cap B) + P(A \cap B^{\mathsf{c}}).$

 $\underline{\operatorname{Proof:}} \ \ \text{We notice that} \ A = (A \cap B) \cup (A \cap B^{\operatorname{c}}) \ \text{with} \ (A \cap B) \cap (A \cap B^{\operatorname{c}}) = \varnothing, \ \text{then}$

$$P(\underbrace{(A \cap B) \cup (A \cap B^{\mathsf{c}})}_{=A}) = P(A \cap B) + P(A \cap B^{\mathsf{c}}).$$

Properties (continued):

 $\underline{\mathsf{Proof}} \text{: Notice that } B = A \cup \left(B \cap A^{\mathsf{c}} \right) \text{ with } A \cap \left(B \cap A^{\mathsf{c}} \right) = \varnothing \text{, then}$

$$P(\underbrace{A \cup (B \cap A^{c})}_{B}) = P(A) + P(B \cap A^{c}) \ge P(A).$$

Properties (continued):

 $\textbf{ 5} \ \, \text{For any events} \,\, A \,\, \text{and} \,\, B, \,\, P(A \cup B) = P(A) + P(B) - P(A \cap B).$

<u>Proof</u>: We notice that $A \cup B = A \cup (B \cap A^c)$ with $A \cap (B \cap A^c) = \emptyset$, then

$$P(A \cup B) = P(A) + P(B \cap A^{\mathsf{c}}) \stackrel{\mathsf{by 3.}}{=} P(A) + P(B) - P(A \cap B)$$

Properties (continued):

ullet For any events A, B, and C,

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) - P(A \cap C) - P(B \cap C)$$
$$+P(A \cap B \cap C).$$

Conditional Probability: Definition

Def.

Let $B \subseteq \Omega$ be an event with P(B) > 0.

Conditional probability of A, given B, is defines as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Claim

Given $B\subseteq\Omega$ with P(B)>0, conditional probability $P(\cdot|B)$ is a probability.

Claim

Given $B\subseteq \Omega$ with P(B)>0, conditional probability $P(\cdot|B)$ is a probability.

Proof:

We just need to show that all Axioms of Probability hold:

(1)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \ge 0$$
 for any $A \subseteq \Omega$.

Claim

Given $B\subseteq \Omega$ with P(B)>0, conditional probability $P(\cdot|B)$ is a probability.

Proof:

We just need to show that all Axioms of Probability hold:

(1)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \ge 0$$
 for any $A \subseteq \Omega$.

(2)
$$P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

Claim

Given $B\subseteq \Omega$ with P(B)>0, conditional probability $P(\cdot|B)$ is a probability.

Proof:

We just need to show that all Axioms of Probability hold:

(1)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} \ge 0$$
 for any $A \subseteq \Omega$.

(2)
$$P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

(3) For any pairwise disjoint events A_1, A_2, \ldots we have

$$\begin{split} P(A_1 \cup A_2 \cup \ldots | B) &= \frac{P((A_1 \cup A_2 \cup \ldots) \cap B)}{P(B)} & \text{(by def.)} \\ &= \frac{P((A_1 \cap B) \cup (A_2 \cap B) \cup \ldots)}{P(B)} \\ &= \frac{P(A_1 \cap B) + P(A_2 \cap B) + \ldots}{P(B)} & \text{(by Axiom 3.)} \\ &= P(A_1 | B) + P(A_2 | B) + \ldots \end{split}$$

Corollary

All properties of $P(\cdot)$ are applicable to conditional probability $P(\cdot|C)$

(assuming the conditional probability is well defined, i.e. P(C) > 0):

- $P(\varnothing|C) = 0$
- 2 $P(A^{c}|C) = 1 P(A|C)$.
- **3** $P(A|C) = P(A \cap B|C) + P(A \cap B^{c}|C).$
- $P(A \cup B|C) = P(A|C) + P(B|C) P(A \cap B|C).$

etc.

$$P(A \cap B) = P(A|B)P(B)$$

$$P(A \cap B) = P(A|B)P(B)$$

2
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

2
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A) = P(A|B)P(B) + P(A|B^{c})P(B^{c})$$

$$P(A \cap B) = P(A|B)P(B)$$

2
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

3
$$P(A) = P(A|B)P(B) + P(A|B^{c})P(B^{c})$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

Other Properties (assuming all conditional prob. below are well defined):

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

3
$$P(A) = P(A|B)P(B) + P(A|B^{c})P(B^{c})$$

•
$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$$

More generally:

let A_1, A_2, \ldots be partition of Ω , then

$$P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots}$$

Independence: Definition

Def.

Events A and B are independent if $P(A \cap B) = P(A)P(B)$.

Independence: Definition

Def.

Events A and B are independent if $P(A \cap B) = P(A)P(B)$.

Note: If A, B are independent, then P(A|B) = P(A), given the conditional prob. is defined.

Contents

- Course Information
 - Prerequisites and Textbooks
 - Grading: Assignments, Quizzes, Exams
 - Dates of Interest
- Basic Concepts of Probability Theory
 - Events and Probability
 - Definition of Probability
 - Properties of Probability
 - Conditional Probability
 - Random Variables
 - Random Variables: Definition
 - Distribution Functions (cdf, pdf)
 - Joint Distributions
- Introduction to Time Series
 - Definition of Time Series
 - Autocorrelation Function (ACF)
 - Stationarity
 - Autocovariance & Autocorrelation Functions of a Stationary Time Series
 - Sample ACF of a Stationary Time Series

Random Variables: Definition

Def.

A real-valued function $X(\omega)$ from sample space Ω to $\mathbb R$ is called *random variable*.

Cumulative Distribution Function

Def.

Given a random variable X,

$$F_X(x) = P(X \le x)$$

is called *cumultive distribution function* (cdf) of X.

Cumulative Distribution Function

Def.

Given a random variable X,

$$F_X(x) = P(X \le x)$$

is called *cumultive distribution function* (cdf) of X.

 $\underline{\text{Note:}}\ \{X \leq x\} = \{\omega: X(\omega) \leq x\} \text{ is an event (i.e. a subset of } \Omega\text{)}.$

Cumulative Distribution Function

Def.

If there exists a non-negative function f(x) such that for any $a \leq b$ the probability

$$P(a < X \le b) = \int_{a}^{b} f(x)dx,$$

then f(x) is called the *probability density function* (pdf).

The random variable X in that case is called *continuous random variable*.

Cumulative Distribution Function

Similarly to the cdf in the univariate case, we define the joint distribution of n random variables as follows:

Def.

Given random variable X_1, X_2, \dots, X_n ,

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P(X_1 \le x_1,X_2 \le x_2,...,X_n \le x_n)$$

is called joint cumulative distribution function of X_1, X_2, \ldots, X_n .

Def.

If there exists a non-negative function $f(x_1, \ldots, x_n)$ such that for any $a_1 \leq b_1, \ldots a_n \leq b_n$ the probability

$$P(a_1 < X_1 \le b_1, \dots, a_n < X_n \le b_n)$$

$$= \int_{a_n}^{b_n} \dots \int_{a_1}^{b_1} f(x_1, \dots, x_n) dx_1 \dots dx_n,$$

then f(x) is called the *joint probability density function*.

Contents

- Course Information
 - Prerequisites and Textbooks
 - Grading: Assignments, Quizzes, Exams
 - Dates of Interest
- 2 Basic Concepts of Probability Theory
 - Events and Probability
 - Definition of Probability
 - Properties of Probability
 - Conditional Probability
 - Random Variables
 - Random Variables: Definition
 - Distribution Functions (cdf, pdf)
 - Joint Distributions
- Introduction to Time Series
 - Definition of Time Series
 - Autocorrelation Function (ACF)
 - Stationarity
 - Autocovariance & Autocorrelation Functions of a Stationary Time Series
 - Sample ACF of a Stationary Time Series

Definition of Time Series

Def.

Time series is defined as a collection of jointly distributed random variables: x_1, x_2, \ldots, x_n .

Def.

Time series model is a specification of the joint distribution of x_1, x_2, \ldots, x_n .

Contents

- Course Information
 - Prerequisites and Textbooks
 - Grading: Assignments, Quizzes, Exams
 - Dates of Interest
- Basic Concepts of Probability Theory
 - Events and Probability
 - Definition of Probability
 - Properties of Probability
 - Conditional Probability
 - Random Variables
 - Random Variables: Definition
 - Distribution Functions (cdf, pdf)
 - Joint Distributions
- Introduction to Time Series
 - Definition of Time Series
 - Autocorrelation Function (ACF)
 - Stationarity
 - Autocovariance & Autocorrelation Functions of a Stationary Time Series
 - Sample ACF of a Stationary Time Series

Autocovariance Function

Def.

Given a time series x_t ,

$$\gamma(s,t) = \operatorname{Cov}(x_s, x_t) = \operatorname{E}\left[(x_s - \mu_s)(x_t - \mu_t)\right]$$

is called *autocovariance function* of x_t .

Autocorrelation Function (ACF)

Def.

Given a time series x_t ,

$$\rho(s,t) = \operatorname{Corr}(x_s, x_t)$$

$$= \frac{\operatorname{Cov}(x_s, x_t)}{\sqrt{\operatorname{Var}(x_s)\operatorname{Var}(x_t)}}$$

$$= \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}$$

is called autocorrelation function (ACF) of x_t .

Contents

- Course Information
 - Prerequisites and Textbooks
 - Grading: Assignments, Quizzes, Exams
 - Dates of Interest
- 2 Basic Concepts of Probability Theory
 - Events and Probability
 - Definition of Probability
 - Properties of Probability
 - Conditional Probability
 - Random Variables
 - Random Variables: Definition
 - Distribution Functions (cdf, pdf)
 - Joint Distributions
- Introduction to Time Series
 - Definition of Time Series
 - Autocorrelation Function (ACF)
 - Stationarity
 - Autocovariance & Autocorrelation Functions of a Stationary Time Series
 - Sample ACF of a Stationary Time Series

Strict Stationarity

Def.

A time series x_t is said to be *strictly stationary* if the following two (ordered) collections of random variables

$$x_{t_1}, x_{t_2}, \dots, x_{t_k}$$
 and $x_{t_1+h}, x_{t_2+h}, \dots, x_{t_k+h}$

have identical joint distributions for all $k=1,2,\ldots$ and any choice of

$$t_1, t_2, \dots, t_k$$
 and $h \in \{1, 2, \dots\}$.

Strict Stationarity

Def.

A time series x_t is said to be *strictly stationary* if the following two (ordered) collections of random variables

$$x_{t_1}, x_{t_2}, \dots, x_{t_k}$$
 and $x_{t_1+h}, x_{t_2+h}, \dots, x_{t_k+h}$

have identical joint distributions for all $k=1,2,\ldots$ and any choice of

$$t_1, t_2, \dots, t_k$$
 and $h \in \{1, 2, \dots\}$.

<u>Remark</u>

If x_t is strictly stationary, then for any $\mathbf{h} \in \{0, \pm 1, \pm 2, \ldots\}$

(Weak) Stationarity

Def.

A time series x_t is said to be (weakly) stationary if

 \bullet for all t,

$$\mu_t \doteq \mathrm{E}(x_t) = \mu,$$

i.e. does not depend on t

 \bullet for all s, t,

$$\gamma(s,t) = \gamma(s-t,0),$$

i.e. depends on the difference s-t only

Autocovariance & Autocorrelation Functions of a Stationary Time Series

If a time series x_t is stationary, we can drop the second argument, that is,

- (1) $\gamma(h)$ will mean $\gamma(t+h,t)=\gamma(h,0)$
- (2) $\rho(h)$ will mean $\rho(t+h,t)=\rho(h,0)$

Autocovariance & Autocorrelation Functions of a Stationary Time Series

If a time series x_t is stationary, we can drop the second argument, that is,

- (1) $\gamma(h)$ will mean $\gamma(t+h,t) = \gamma(h,0)$
- (2) $\rho(h)$ will mean $\rho(t+h,t)=\rho(h,0)$

We notice that

$$\gamma(h) = \gamma(t+h,t) = \operatorname{Cov}(x_{t+h}, x_t) = \operatorname{E}((x_{t+h} - \mu)(x_t - \mu))$$
$$\rho(h) = \rho(t+h,t) = \frac{\gamma(t+h,t)}{\sqrt{\gamma(t+h,t+h)\gamma(t,t)}} = \frac{\gamma(h)}{\gamma(0)}$$

Sample Autocovariance Function

We notice that for any choice of real numbers $a_1, a_2, \ldots, a_n \in \mathbb{R}$,

$$0 \le \operatorname{Var}\left(\sum_{j=1}^{n} a_{j} x_{j}\right)$$

$$= \operatorname{Cov}\left(\sum_{j=1}^{n} a_{j} x_{j}, \sum_{k=1}^{n} a_{k} x_{k}\right)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} \operatorname{Cov}(x_{j}, x_{k})$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{n} a_{j} a_{k} \gamma(j - k),$$

i.e. $\gamma(j-k)$ is non-negative definite.

Sample Autocovariance Function

In order ensure non-negative results for estimated variances, we then would need to get an estimate $\hat{\gamma}(j-k)$ of the autocovariance function that is also non-negative definite:

$$0 \le \sum_{j=1}^n \sum_{k=1}^n a_j a_k \hat{\gamma}(j-k).$$

Thus, we define the sample autocovariance as follows:

Def.

Given a realization x_1, x_2, \ldots, x_n of a stationary time series x_t , the sample autocovariance function is defined as follows:

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x})$$

for $h = 0, 1, \dots, n - 1$.

Sample Autocorrelation Function (Sample ACF)

Then the sample ACF is defined as follows:

Def.

Given $\hat{\gamma}(h)$ for $h=0,1,\ldots,n-1$ for a realization x_1,x_2,\ldots,x_n of a stationary time series x_t , the corresponding sample ACF is

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$