Quartiles: Quartiles are the three cut points that will divide a dataset into four equal-sized groups.

- 1) 1st quartile/lower quartile
- 2) 2nd quartile/Median
- 3) 3rd quartile/Upper quartile
- 1) 1^{st} quartile: 1^{st} quartile (Q_1) is known as lower quartile and 25% of the data lies below this point.

For 1^{st} quartile, F(x) = 0.25

2) 2^{nd} quartile: 2^{nd} quartile (Q_2) is the median of a data set and 50% of the data lies below this point.

For median, F(x) = 0.5

3) 3^{rd} quartile: 3^{rd} quartile (Q_3) is known as upper quartile and 75% of the data lies below this point.

For 3^{rd} quartile, F(x) = 0.75

Interquartile range: Interquartile range is the difference between upper quartile and lower quartile. $IQR = Q_3 - Q_1$

Example: Suppose that the diameter of a metal cylinder has a probability density function $f(x) = 1.5 - 6(x - 50.0)^2$ for $49.5 \le x \le 50.5$

- i) Show that total area under the probability density function = 1 or Prove that this is a valid PDF.
- ii) Calculate The probability that a metal cylinder has a diameter between 49.8 and 50.1 mm.
- iii) Find cumulative distribution function.

iv) Calculated the expected diameter of a metal cylinder

v) Find 1st, 2nd and 3rd quartile of a metal cylinder diameter.

vi) Find interquartile range

Solution: 1^{st} quartile: F(x) = 0.25

$$\Rightarrow$$
1.5*x - 2(x-50)³ - 74.5 = 0.25 [from solution iii]

$$\Rightarrow$$
1.5x - 2(x³ - 150x² + 7500x - 125000) -74.5 - 0.25 = 0

$$\Rightarrow$$
1.5x - 2x³ + 300x² - 15000x + 250000 -74.75 = 0

$$\Rightarrow$$
 - 2x³ + 300x² - 14998.5x + 249925.25 = 0

$$X = 50.9 \text{ or } 49.8 \text{ or } 49.2$$

Since
$$49.5 \le x \le 50.5$$

So
$$1^{st}$$
 quartile = 49.8

(Note: Mode set up
$$\Rightarrow$$
5:EQN \Rightarrow 4 \Rightarrow (-2) \Rightarrow = \Rightarrow (300) \Rightarrow = \Rightarrow (-14998.5) \Rightarrow = \Rightarrow 249925.25 \Rightarrow =)

2^{nd} quartile: F(x) = 0.50

$$\Rightarrow$$
1.5*x - 2(x -50)³ - 74.5 - 0.50 =0

$$\Rightarrow$$
1.5x - 2(x³ - 150x² + 7500x - 125000) -74.5 - 0.50 = 0

$$\Rightarrow$$
 - 2x³ + 300x² - 14998.5x + 249925 = 0

$$X = 49.1 \text{ or } 50.8 \text{ or } 50$$

Since
$$49.5 \le x \le 50.5$$

So
$$2^{nd}$$
 quartile = 50

3^{rd} quartile: F(x) = 0.75

$$\Rightarrow$$
1.5*x - 2(x -50)³ - 74.5 - 0.75 =0

$$\Rightarrow 1.5x - 2(x^3 - 150x^2 + 7500x - 125000) -74.5 - 0.75 = 0$$

$$\Rightarrow -2x^3 + 300x^2 - 14998.5x + 249924.75 = 0$$

$$X = 49 \text{ or } 50.7 \text{ or } 50.2$$

Since
$$49.5 \le x \le 50.5$$

So
$$3^{rd}$$
 quartile = 50.2

Interquartile range = 3^{rd} quartile = 50.2 - 49.8 = 0.4