Machine learning based models for rarefied gas flow: Physics of interfaces.

Application fields:

Aerospace and EUV lithography

•In all these applications gas flows are highly rarefied. This implies that the molecular mean free path (λ) of gas molecules is large compared to the characteristic length scale (L) of the system. The degree of rarefaction is characterized by the Knudsen number as $Kn = \lambda/L$. Phase boundaries, physics of interfaces becomes dominant!

Simulation models and techniques

1) Continuum: Navier Stokes equation

Shear stress Heat flux $\tau_{xy} = \mu \frac{dV_x}{dy} \qquad q_x = -k \frac{dT}{dx}$ Newton Fourier

2) Boltzmann/ Enskog equation

velocity Collision term $\frac{\partial F}{\partial T} + \xi \circ \nabla F = J_E(F, F)$ $E(x, \xi, t) = \text{One-particle distribution}$

 $\frac{\partial T}{\partial T} = \int_{E} (T, T) dt dt$ $F(x, \xi, t) = \text{One-particle distribution function of velocity}$ dense 0.001 0.01 0.Microck

Molecular Dynamics Monte Carlo Methods Boltzmann/Enskog equation Euler Navier-Stokes equations dense 0.001 0.01 0.1 1.0 10 100 dilute Microchannels Kn=λ/L

3) Monte Carlo Methods:

Disadvantages: stochastic collisions,

less accurate

Advantages: computational faster, large

systems, larger time intervals

4) Molecular Dynamics: solve Newton's equations of

motion $(\vec{F} = m\vec{a})$

Disadvantages: computational demanding, limited space and

time scale

Advantages: Accurate Deterministic, Gas, liquid, solid

Modelling fluid-wall interactions

Specular wall / reflecting wall

No energy exchange with wall

Diffusive-specular wall

=

α Diffusive wall

+ (1-α) Specular wall Thermal wall / diffusive wall

Energy exchange from wall to particle

Explicit MD wall

 $F = -\nabla V$

Energy exchange between wall and particle

Turble Technische Universiteit
Eindhoven
University of Technolog

Existing Gas-surface interaction models

Maxwell model

$$P(\boldsymbol{v}'|\boldsymbol{v}) = \boldsymbol{\alpha_K} \frac{1}{2\pi} (\frac{m_g}{kT_w})^2 v_n \exp\left(\frac{-m_g v^2}{2kT_w}\right) + (1 - \boldsymbol{\alpha_K}) \delta(\boldsymbol{v}' - \boldsymbol{v} + 2v_n \boldsymbol{N})$$
Diffusive reflection Specular reflection

Cercignani-Lampis-Lord (CLL) model

$$P(v_t'|v_t) = \sqrt{\frac{m_g}{2\pi k T_w \alpha_{TM}} (2 - \alpha_{TM})} \exp\left[-\frac{m_g}{2k T_w} \frac{(v_t - (1 - \alpha_{TM})v_t'))^2}{\alpha_{TM} (2 - \alpha_{TM})}\right] v_n' v_n$$

Specular reflection

$$P(v_n'|v_n) = \frac{m_g v_n}{k T_w \boldsymbol{\alpha_{NE}}} \exp\left[-\frac{m_g}{2k T_w} \frac{v_n^2 + (1 - \boldsymbol{\alpha_{NE}}) v_n'^2}{\boldsymbol{\alpha_{NE}}}\right] I_0\left(\frac{m_g}{k T_w} \frac{\sqrt{1 - \boldsymbol{\alpha_{NE}}} v_n' v_n}{\boldsymbol{\alpha_{NE}}}\right)$$

Challenge

- Accommodation Coefficient (α_K) is a measure to quantify the momentum or energy exchange at the gas-solid interface
 - Experimental determination of α_K is a very challenging task

- α_K depends on many factors:
- i. Temperature (gas & surface)
- ii. Surface condition (cleanness & roughness)
- iii. Gas-solid mass ratio
- iv. Elastic module of the solid

MD scattering for computing thermal accommodation coefficients

Lennard Jones (12,6) potential

"Lennard-Jones (n,6) potential";

Mostly n=12 (for mathematical reasons)

$$V = 4\varepsilon_E \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$$

With ϵ depth of well and σ molecular diameter

Force:
$$F = -\frac{\partial V}{\partial r} = \frac{24\varepsilon_E}{r} \left[2 \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$$

Minimum at
$$\frac{\partial V}{\partial r} = 0 \implies r_e = \sqrt[6]{2} \ \sigma = 1.12 \ \sigma$$

Source: http://www.atomsinmotion.com

The velocity-Verlet algorithm

```
Step 1:

r(t + Delta*t) = r(t) + v(t) * Delta*t + 1/2 * a(t) * Delta * t ^ 2

v(t + (Delta*t)/2) = v(t) + 1/2 * a(t) * Delta*t

Step 2:

a, (t+At) = m_1 - V_1 U(r(t+At))

v(t + Delta*t) = v(t + (Delta*t)/2) + 1/2 * a(t + Delta*t) *

Delta*t
```


Theoretical background

 Different approaches for computing accommodation coefficients from MD simulations

Theoretical background

• Different approaches for computing accommodation coefficients from MD simulations

Specular reflection ($\alpha_k \approx 0$)

$$\alpha_k = 1 - \frac{\sum_i (K_I^i - \langle K_I \rangle) (K_O^i - \langle K_O \rangle)}{\sum_i (K_I^i - \langle K_I \rangle)^2}$$

Goal: Deriving a gas-wall interaction model using Machine Learning

University of Technology

Deriving a gas-wall interaction model using Machine Learning

 We use the Gaussian mixture model (GM)[1], which is an unsupervised machine learning technique

Main Features

- It uses linear combination of multiple
 multidimensional Gaussians to estimate the
 probability density function of collision data
- ii. The **correlation** between gas molecules velocity components is considered
- iii. Presence of many **fitting parameters** makes the model very flexible

[1] M.Liao, et. al, Physical Review E 98, no. 4 (2018): 042104

Assignment

Develop Machine Learning (ML) models to construct a statistical gas-surface scattering model based on the collisional data obtained from Molecular Dynamics (MD) simulations for hydrogen-nickel interactions in a micro/nano-system.

Goal: To study the isothermal and non-isothermal Couette flow of a diatomic gas (Hydrogen) confined between two parallel infinite Nickel walls.

d Fixed layers

Hot wall

Structure:

- Part A: ML for isothermal/non-isothermal H2-Ni interactions
- Part B:ML model for isothermal-non-isothermal Couette flow
- Part C: ML model for predicting the atomic angular velocity distributions and translational/rotational energy accommodation coefficients.
- •Part D: Compare GM and Bayesian model/DNN on ACC predictions.

Q&A: Next: Tuesday (10.30h) and Thursday (14.30h), location: Vector. -> discuss on challenge, scripts, data, examples and documentation

$$\mathbf{x}_{I} = (v_{t1}^{I}, v_{t2}^{I}, v_{n}^{I}, \omega_{1}^{I}, \omega_{2}^{I})$$

$$\mathbf{x}_{R} = (v_{t1}^{R}, v_{t2}^{R}, v_{n}^{R}, \omega_{1}^{R}, \omega_{2}^{R})$$

Incoming Outgoing

Wall surface

 T_{\bullet}

 T_h

Goal: Deriving a gas-wall interaction model using Machine Learning

Deriving a gas-wall interaction model using Machine Learning

Application of the GM model in the case of monoatomic gas

$$\mathcal{T}(U) = \sqrt{2\theta} \operatorname{erf}^{-1} \left[1 - 2 \exp\left(-\frac{U^{2}}{2\theta}\right) \right]$$

$$\mathcal{T}^{-1}(U) = \sqrt{-2\theta} \ln\left[\frac{1}{2} - \frac{1}{2}\operatorname{erf}\left(\frac{U}{\sqrt{2\theta}}\right)\right]}$$

$$\boldsymbol{x}_{R} = \begin{bmatrix} c_{x} \\ c_{y} \\ \mathcal{T}(c_{z}) \end{bmatrix}, \quad \boldsymbol{x}_{I} = \begin{bmatrix} c'_{x} \\ c'_{y} \\ \mathcal{T}(c'_{z}) \end{bmatrix}$$

$$\boldsymbol{c} = \begin{bmatrix} x_{R1} \\ x_{R2} \\ \mathcal{T}^{-1}(x_{R3}) \end{bmatrix}, \quad \boldsymbol{c}' = \begin{bmatrix} x_{I1} \\ x_{I2} \\ -\mathcal{T}^{-1}(x_{I3}) \end{bmatrix}$$

$$\theta = \frac{k_B T_g}{m_g}$$

Either for Incoming or Outgoing gas molecules temperature

$$T_g = \frac{\langle v^2 \rangle m_g}{4k_B}$$