Hindawi International Journal of Dentistry Volume 2018, Article ID 5656189, 5 pages https://doi.org/10.1155/2018/5656189

Corrigendum

Corrigendum to "Biological Effects of Medicinal Plants on Induced Periodontitis: A Systematic Review"

Jefferson Soares de Oliveira, Moara e Silva Conceição Pinto, Lucas de Araújo de Bastos Santana, Antonione Santos Bezerra Pinto, David di Lenardo, and Daniel Fernando Pereira Vasconcelos,

¹Laboratory of Biology and Biochemistry Plants (BIOqPLANT), Federal University of Piaui, Parnaiba, PI, Brazil

Correspondence should be addressed to Daniel Fernando Pereira Vasconcelos; vasconcelos@ufpi.edu.br

Received 3 December 2017; Accepted 10 December 2017; Published 27 February 2018

Copyright © 2018 Jefferson Soares de Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the article titled "Biological Effects of Medicinal Plants on Induced Periodontitis: A Systematic Review" [1], it is stated in Table 1 that Hosadurga et al., cited as references 4 and 16 in the article, examined the anti-inflammatory action of 2% curcumin and *Ocimum sanctum* gel in a separate model. However, the authors of these articles informed us that they studied the gingival index, which is an indirect measure of inflammation in the gingival tissues. They also assessed the antimicrobial activity but did not publish the data, since they encountered a problem with the solubility and did not get a well-defined clear zone of inhibition. Corrected information about references [4] and [16] in Table 1 is as follows.

²Laboratory of Histological Analysis and Prepare (LAPHIS), Federal University of Piaui, Parnaiba, PI, Brazil

³Department of Morphology, LABICONTE, Federal University of Ceara, Fortaleza, CE, Brazil

TABLE 1: List of medicinal plants, experimental methods, and their biological effects on induced periodontitis.

Plant species	Plant material	Route of administration	Animal used (gender)	Type of induction/time of analysis	Antibacterial effect ¹	Bone loss/method ²	Anti-inflammatory activity³	Reference
Panax notoginseng and Rehmannia radis	Mixture of extracts (9:1 weight)	Oral	Rattus norvegicus (male)	Injecting E. coli endotoxin (LPS)/28 days	Not evaluated	Reduced ABC/µCT	Reduced the <i>in vitro</i> release of TNF- α from human monocytic cells and hGF cells	Almeida et al. [2]
Ocimum sanctum	Tulsi extract	Topical	Rattus norvegicus (male and female)	Silk ligature/ 9 days	Not evaluated	Not reduced ABC/Stereo	Presented anti- inflammatory activity in a separate model (paw edema)	Hosadurga et al. [4]
Scutellaria baicalensis	Baicalin	Oral	Rattus norvegicus (male)	Nylon ligature/ 7 days	Not evaluated	Reduced ABC/histology	Not evaluated	Cai et al. [6]
Rhizoma coptidis, Hydrastis canadensis, and Cortex phellodendri	Berberine	Oral	Rattus norvegicus (male)	Silk ligature/ 8 days	Not evaluated	Reduced ABC/ μ CT	Not evaluated	Tu et al. [7]
Cucurbita pepo, Mentha piperita, Crataegus spp., Rosmarinus officinalis, Capsicum annuum, Achillea millefolium	LongoVital®	Oral	Rattus norvegicus (male and female)	Injecting A. viscosus and P. gingivalis/63 days	Not evaluated	Reduced ABC/Radio	Not evaluated	Klausen et al. [8]
Mangifera indica	Mangiferin (Sigma- Aldrich Co.)	Oral	Rattus norvegicus (male)	Cotton ligature/ 1, 4, 7 days	Not evaluated	Reduced ABC/histology	Inhibited COX-2 expression, the rolling, and adhesion of leukocytes in the periodontal tissue	Carvalho et al. [9]
Curcuma longa	Curcumin (Sigma- Aldrich Co.)	Gavage	Rattus norvegicus (male)	Nylon ligature/ 30 days	Not evaluated	Reduced ABC/histology	Reduced the expression of TNF- α in gingival tissues	Zhou et al. [10]
Magnolia officinalis	Magnolol (Sigma-Aldrich Co.)	Oral	Rattus norvegicus (male)	Silk ligature/ 9 days	In vitro activity against P. gingivalis and A. actinomycetemcomitan	Reduced AB $C/\mu CT$	Inhibited neutrophil migration, MPO activity, and COX-2 and iNOS expression in gingival tissues	Lu et al. [11]
Rhizoma drynariae and Rehmannia glutinosa	Bu-Shen-Gu-Chi-Wan (JiuZhiTang Pharmaceutical)	Oral	Rattus norvegicus (female)	Injecting P. gingivalis and ligature/28 days	Not evaluated	Improved the mineral density of the bone/ μCT	Reduced levels of IL-1 β TNF- α , and inflammatory cell infiltration in the periodontal tissues	Yang et al. [12]
Pinus pinaster	Pycnogenol® (Tradepia Co.)	Oral	Balb/c (male)	Injecting P. gingivalis/34 days	Antibacterial activity against P. gingivalis	Reduced ABC/Stereo	Not evaluated	Sugimoto et al. [13]

TABLE 1: Continued.

Plant species	Plant material	Route of administration	Animal used (gender)	Type of induction/time of analysis	Antibacterial effect ¹	Bone loss/method²	Anti-inflammatory activity³	Reference
V ассіпіит тастосагроп	Aqueous extract containing tannin and phenolic compounds	Oral	Mus musculus (female)	Injecting P. gingivalis and F. nucleatum/ 42 days	Antiadhesive properties against P. gingivalis and F. nucleatum. Increased the phagocytosis of P. gingivalis	Not evaluated	Reduced <i>in vivo</i> levels of TNF-α	Polak et al. [15]
Curcuma longa	Curcumin	Topical	Rattus norvegicus	Silk ligature/28 days	Not evaluated	Did not reduce ABC/Stereo	Exhibited anti- inflammatory activity in a separate model (paw edema)	Hosadurga et al. [16]
Camellia sinensis	Extract containing catechin	Topical	Rattus norvegicus (male)	Injecting E. coli (LPS) and S. griseus (proteases)/56 days	Not evaluated	Did not reduce ABC/histology	Reduced inflammatory cell infiltration and levels of TNF- α in the periodontal lesion	Maruyama et al. [19]
Spatholobus suberectus	Aqueous extract	Oral	Mus musculus (male)	Injecting P. gingivalis/42 days	In vitro antibacterial activity against P. gingivalis	Reduced ABC/Stereo	Not evaluated	Toyama et al. [20]
Carapa guianensis	Andiroba oil	Oral	Rattus norvegicus (male)	Cotton ligature/50 days	Not evaluated	Did not reduce ABC/histology	Reduced the quantity of inflammatory cells in histology	Carmona et al. [21]
Protium heptaphyllum	lpha-Amyrin and eta -amyrin	Oral	Rattus norvegicus (male)	Nylon ligature/1 day	Not evaluated	Not evaluated	Reduced gingival TNF- α levels and MPO activity	Holanda Pinto et al. [22]
Camellia sinensis	Extract containing catechin	Oral	Rattus norvegicus (male)	Nylon ligature/7, 14, 28 days	Not evaluated	Reduced ABC/histology	Reduced in vivo levels of TNF- α	Cho et al. [23]
Ipomoea alba	Mixture of dichloromethane and methanol extract	Topical	Rattus norvegicus (male)	Cotton ligature/ 11 days	In vitro antibacterial activity against S. mutans, S. and E. faecalis	Did not reduce ABC/Stereo	Not evaluated	Barrella et al. [24]
Lippia sidoides and Myracroduon urundeuva	Mixture of leaf essential oil and hydroalcoholic solution from bark	Topical	Rattus norvegicus (male)	Nylon ligature/ 11 days	Prevented the growth of oral microorganisms from gingival tissue	Reduced ABC/histology	Reduced MPO activity and inhibited TNF- α and IL-1 β production in gingival tissue	Botelho et al. [25]
Lippia sidoides	Carvacrol	Topical	Rattus norvegicus (male)	Nylon ligature/11 days	Prevented the growth of oral microorganisms from gingival tissue	Reduced ABC/AFM	Reduced MPO activity in gingival tissue	Botelho et al. [26]

TABLE 1: Continued.

				TABLE 1. Commiss	j			
Plant species	Plant material	Route of administration	Animal used (gender)	Type of induction/time of analysis	Antibacterial effect ¹	Bone loss/method ²	Anti-inflammatory activity³	Reference
Hypericum perforatum	Methanolic extract	Oral	Rattus norvegicus (male)	Silk ligature/8 days	Not evaluated	Reduced ABC/Stereo	Reduced inflammatory cell infiltration, vascular permeability, expression of NF- κ B and MPO activity in gingivomucosal tissue	Paterniti et al. [27]
Cordia verbenaea	Essential oil	Topical	Rattus norvegicus (male)	Cotton f ligature/11 days	Reduced in vivo frequency of <i>P. gingivalis</i> and <i>A. actinomycetemcomitans</i>	Reduced ABC/histology	Increment in the in vivo levels of IL-10	Pimentel et al. [28]
Camellia sinensis	Extract containing catechin	Topical	Rattus norvegicus (male)	Injecting <i>E. coli</i> (LPS)/10 and 20 days	Not evaluated	Reduced ABC/histology	Reduced inflammatory cell infiltration	Yoshinaga et al. [29]
Тнеовтота сасао	Cocoa extract containing flavonoids	Oral	Rattus norvegicus (male)	Cotton ligature/28 days	Not evaluated	Reduced ABC/histology	Reduced/oxidized glutathione ratio and neutrophil infiltration	Tomofuji et al. [30]
Mikania laevigata	Ethanol extract	Subcutaneous	Rattus norvegicus (male)	Nylon ligature/30 days	Not evaluated	Reduced the furcation region/histology	Reduced neutrophil accumulation in the gingival tissue	Benatti et al. [31]
Pimpinella anisum, Illicium verum, Anethum foeniculum	Anethole	Intraperitoneal	Rattus norvegicus (male)	Injecting E. coli (LPS)/10 days	Not evaluated	Not evaluated	Reduced serum levels of IL-1 eta and TNF- $lpha$	Moradi et al. [32]
Curcuma spp.	Modified curcumin	Gavage	Rattus norvegicus (male)	Injecting E. coli (LPS)/14 days	Not evaluated	Reduced ABC/Stereo, and μ CT	Reduced serum level of IL-1 eta	Elburki et al. [33]
Syringa vulgaris	Product of fermentation	Oral	Rattus norvegicus (male)	Silk ligature/8 days	Not evaluated	Reduced ABC/Stereo	Reduced NF-κB and iNOS expression, MPO activity, and other inflammatory parameters in gingivonucosal tissue	Paola et al. [34]
Ginkgo biloba	Ginkgo biloba extract	Oral	Rattus norvegicus (male)	Silk ligature/11 days	Not evaluated	Reduced ABC/histology	Not evaluated	Sezer et al. [35]
Curcuma spp.	Curcumin	e	Rattus norvegicus (male)		Not evaluated	Did not reduce ABC/μCT	Reduced the inflammatory cell infiltrate to gingival tissue	Guimarães et al. [36]
Dornhuromonae ainainal	Dornhyromonas ainaivalis Agaregatihacter actinomycetemcomitan		Stroptococcus mutans		nic Enterococcus faecalis	and Fuscharterium muc	Streptococcus cananinis Enterococcus faecalis and Europacterium nucleatum 2ABC. alveolar bone creet	o crost "CT.

¹Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitan, Streptococcus mutans, Streptococcus sanguinis, Enterococcus faecalis, and Fusobacterium nucleatum. ²ABC: alveolar bone crest, μCT: microcomputed tomography, AFM: atomic force microscopy, Stereo: stereomicroscopy, Radio: radiography. ³TNF-α: tumor necrosis factor α, hGF: hepatocyte growth factor, MPO: myeloperoxidase activity, IL-1β: interleukin-10, NF-κΒ: nuclear factor kappa-β, COX-2: cyclooxygenase-2, and iNOS: inducible nitric oxide synthase.

References

[1] J. Soares de Oliveira, M. S. Conceição Pinto, L. A. B. Santana, A. S. B. Pinto, D. Lenardo, and D. F. P. Vasconcelos, "Biological effects of medicinal plants on induced periodontitis: a systematic review," *International Journal of Dentistry*, vol. 2016, Article ID 3719879, 10 pages, 2016.