Università di Ttento - Dip. di Ingegneria e Scienta dell'Informazione CdL in Information, Ingegneria dell'Informazione e delle comunicationi e Ingegneria dell'informazione e Organizzazione d'inimesa a.a. 2017-18 - PIAZZA 4 - "... Ora passi più lunghi ..."

1.1) a)
$$8\pi i(2\times) > \frac{13}{2}$$
 $\Rightarrow \frac{\pi}{3} + 2\pi \pi < 2\times < \frac{2\pi}{3} + 2\pi \pi < \approx \mathbb{Z}$
 $\Rightarrow \frac{\pi}{6} + \pi < \times < \frac{\pi}{3} + \pi \pi$ $\Rightarrow \pi < \pi$

possiomo anche scrivere
$$S = \bigcup_{\substack{k \in \mathbb{Z} \\ k \in \mathbb{Z}}} \sqrt{\frac{1}{6}} + k \mathbb{I}, \mathbb{I} + k \mathbb{I}$$

b) $0 \le \cos(x+1) < 1$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$
 $1 + 2k \mathbb{I} \le x + 2k \mathbb{I}$

$$\begin{array}{lll}
+ \sqrt{-17} - 1 + 2kT \le X \le II - 1 + 2kT & keZ \\
\times \neq 2kT - 1 & keZ;
\end{array}$$

possizmo anche scrivere

S = U [-I -1 + 2kT, I -1 + 2kT] {2kT-1}.

KeZL [2 -1 + 2kT] [-1 + 2kT] [-1 + 2kT] [-1 + 2kT].

c) $28n^2x - 8inx > 1$ 4P $28n^2x - 8nix - 1 > 0$.

Poruamo t = 8nix e dobbranio ripolvere $2t^2 - t - 1 > 0$. Si ha $t < -\frac{1}{2}$ o t > 1. Nohamo che 6nix > 1 won è mai venficato, mentre $8nx < -\frac{1}{2}$ si ha $4x : \frac{1}{6} + 2kT \times 4kT$, $k \in \mathbb{Z}$.

Aboramo S= U] 7TT + 2kTT, MIT + 2kTT.

Kezz J 6 + 2kT, MIT + 2kTT.

Va bene anche] - 5TT + 2kTT.

Va bene anche] - 5TT + 2kTT.

 $d) \int 8\pi i^2 x + \sin x + \cos^2 x < \frac{\pi}{2}.$ $\sin x \ge 0$

Notamo che $5\sin^2 x + \sin x + \cos^2 x < \frac{5}{2}$ $45 \cdot 5\sin^2 x + \sin x + 1 - \sin^2 x < \frac{5}{2}$ $1 \cdot \cos^2 x + \sin^2 x = 1$ $1 \cdot \cos^2 x + \sin^2 x = 1$ $1 \cdot \cos^2 x + \sin^2 x = 1$ $1 \cdot \cos^2 x + \sin^2 x + 2\sin x - 3 < 0$.

Pomiamo $t = \sin x$; allow la diseq. & riscure $8t^2 + 2t - 3 < 0$. Risultar $-\frac{3}{4} < t < \frac{1}{2}$. Abbramo allow the il sistema dato ha come soluzioni tutti gli XeR: $0 \le \sin x < \frac{1}{2}$. Abbramo $S = \bigcup_{k \in \mathbb{Z}} \left[2kT, T + 2kT \right] \cup J_{5T} + 2kT, T + 2kT \right]$

$$1.2)$$
 $2^{2}+|z|(z+1) = \overline{z}^{2}+|z|(\overline{z}+1)$

Pomamo
$$Z = X + iy$$
, allow $Z^2 + |Z|(Z + 1) = (X + iy)^2 + \sqrt{x^2 + y^2}(X + 1) + iy$

$$= X^2 + 2xyi - y^2 + \sqrt{x^2 + y^2}(X + 1) + iy =$$

$$= X^2 - y^2 + \sqrt{x^2 + y^2}(X + 1) + (2xy + \sqrt{x^2 + y^2}y)^{i}$$

$$= X^2 - y^2 + \sqrt{x^2 + y^2}(X + 1) - (2xy + \sqrt{x^2 + y^2}y)^{i}$$

$$= X^2 - y^2 + \sqrt{x^2 + y^2}(X + 1) - (2xy + \sqrt{x^2 + y^2}y)^{i}$$

$$= X^2 - y^2 + \sqrt{x^2 + y^2}(X + 1) - (2xy + \sqrt{x^2 + y^2}y)^{i}$$

D'altre parle
$$\overline{Z}^2 + |z|(\overline{z}+1) = (x-iy)^2 + \sqrt{x^2+y^2}(x-iy+1)$$

= $\chi^2 - y^2 + \sqrt{x^2+y^2}(x+1) - (2xy + \sqrt{x^2+y^2}y)$.

1.3)
$$Z = \left(\frac{2 + 2\sqrt{3}i}{|1 - \sqrt{3}i|}\right)^{i} = \frac{2(1 + \sqrt{3}i)}{2} \cdot i = 2\left(\frac{1}{2}i - \frac{\sqrt{3}}{2}i\right) = 2\left(\frac{\sqrt{3}}{2}i + \frac{1}{2}i\right)$$

$$= 2\left(\frac{1}{2}i - \frac{\sqrt{3}}{2}i\right) \cdot i = 2\left(\frac{1}{2}i - \frac{\sqrt{3}}{2}i\right) = 2\left(\frac{\sqrt{3}}{2}i + \frac{1}{2}i\right)$$

$$= 2\left(\frac{\sqrt{3}}{2}i + \frac{1}{2}i\right) \cdot i = 2\left(\frac{\sqrt{3}}{2}i - \frac{\sqrt{3}}{2}i\right) = 2\left(\frac{\sqrt{3}}{2}i + \frac{1}{2}i\right)$$

$$= 2\left(\frac{\sqrt{3}}{2}i + \frac{1}{2}i\right) \cdot i = 2\left(\frac{\sqrt{3}}{2}i - \frac{\sqrt{3}}{2}i\right) = 2\left(\frac{\sqrt{3}}{2}i + \frac{1}{2}i\right)$$

Quindi
$$Z^3 = 8 \left(\cos \frac{5\pi}{8}, \frac{3}{4} + i \sin \frac{5\pi}{8}, \frac{3}{4} \right) = \frac{8i}{83}$$

$$Z^4 = 16 \left(\cos \frac{5\pi}{8}, \frac{4^2}{4} + i \sin \frac{5\pi}{8}, \frac{4^2}{8} \right) = 16 \left(-\frac{1}{2} - \frac{13}{2}i \right) = 8(-1 - \sqrt{3}i).$$

14) 2)
$$zz - z + 4 = 0$$
 : polition $z = x + iy$; altonio che $zz - z + i = 0$ $(x^2 + y^2 - (x - iy) + i = 0)$ $(x^2 + y^2 - x) + i(y + 1) = 0$ $(x^2 + y^2 - x) + i(y + 1) = 0$ $(x^2 - x + y^2 = 0)$ $(x^2 - x + y^2 = 0)$ $(x^2 - x + y^2 = 0)$

L'insieme delle soluzioni è dabo da
$$\left\{\frac{1}{2} - \frac{13}{4} - \frac{1}{4}^{\circ}\right\}$$
, $\left[\frac{1 \pm \sqrt{3}}{2} + \frac{1}{4} + \frac{1}{4}^{\circ}\right]$,

b)
$$2|z|-3z+2i=0$$
: powismo $z=x+iy$; aldramo che $z|z|-3z+2i=0$ $(x+iy)\sqrt{x^2+y^2}-3(x+iy)+2i=0$ $(x+iy)\sqrt{x^2+y^2}-3x=0$ $(y\sqrt{x^2+y^2}-3y+2=0)$

0882
$$\left\{ \begin{array}{l} X \left(\sqrt{x^2 + y^2} - 3 \right) = 0 \\ 4 \end{array} \right. \quad \left. \begin{array}{l} 4 = 0 \\ \sqrt{x^2 + y^2} = 3 \end{array} \right.$$

Se X=0, la seconda eq. di iniduce a y |y|-3y+2=0:

Se y>0 miha $y^2-3y+2=0 \Leftrightarrow (x-2)(x-1)=0$ $\Rightarrow y=1$, y=2e quindi $z_1=i$, $z_2=2i$.

Se y<0 miha $-y^2-3y+2=0 \Leftrightarrow y^2+3y-2=0$ $\Rightarrow y=-3\pm\sqrt{9+8}=-3\pm\sqrt{47}$ e quindi $z_3=-3-\sqrt{17}i$.

Se $\sqrt{x^2+y^2}=3$, la secondo eq. di@ rividuce a $y\sqrt{3}-3y+2=0$ che \overline{z} miposovoile.

Le poluzioni dell'eq. data poono quindi $\frac{1}{2}, \frac{1}{2}$ e $\frac{1}{2}$.

 $4.5) a) 42^{2} - 42 + 2 - \sqrt{3}i = 0$ $= 4 \pm 4\sqrt{1 - 2 + \sqrt{3}i}$ $= \frac{1}{2} \pm \sqrt{-1 + \sqrt{3}i}$

Ossernamo che $-1+\sqrt{3}i = 2\left(-\frac{1}{2}+\sqrt{3}i\right) = 2\left(\cos 2\sqrt{3}+i\sin 2\sqrt{3}\right)$ e una ma radice quadrata è data da $\sqrt{2}\left(\cos \sqrt{3}+i\sin \sqrt{3}\right)$ $=\sqrt{2}\left(\frac{1}{2}+\sqrt{3}i\right)$.

Infine $\pm \frac{1}{2} = \frac{1}{2} \pm \frac{\sqrt{2}}{2} \left(\frac{1}{2} + \frac{\sqrt{3}}{2} \right) = \left(\frac{1}{2} \pm \frac{\sqrt{2}}{4} \right) \pm \frac{\sqrt{6}}{4}$.

b)
$$z^2 + 2iz - 1 - i = 0$$
 $\Rightarrow z_{12} = \frac{-2i \pm \sqrt{4 + 4(1 + i)}}{2}$ $= -i \pm \sqrt{i}$

Ore i = coo I + i sni I e una ma vadre quadrata è deta

da cos
$$\frac{\pi}{4}$$
 + i row $\frac{\pi}{4}$ e quivali $\frac{\pi}{2} = -i \pm \left(\frac{\pi}{2} + i \frac{\pi}{2}\right)$.

$$\frac{\pi}{2} = \pm \frac{\pi}{2} + \left(-1 \pm \frac{\pi}{2}\right)i$$

1.6) a)
$$\begin{cases} |2+1+i| = 1 \\ |2+1+i| = 1 \end{cases}$$
 $\begin{cases} |2+1+i|^2 = 1 \\ |2+1+i| = 1 \end{cases}$ $\begin{cases} |2+1+i|^2 = 1 \end{cases}$ $\begin{cases} |2+1+i|^$

Poniamo z = x + iy; allow leq. In source come

Re $(3(x + iy) + 5(x - iy) - (x + iy)^2 - x^2 - y^2) = 2y$ Re $(3x + 5x - x^2 + y^2 - x^2 - y^2 + (3y - 5y - 2xy)i) = 2y$ $8x - 2x^2 = 2y$

 $Z = X + (AX - X^{2})i$ al varrie di $X \in \mathbb{R}$.

Quindi le copprie vicercate sous (2,W) = (1-i, -1-i) $(2, w) = (-1+i) \cdot 1+i \cdot .$

1.8) Sia $P(n) = \frac{n}{2} \frac{1}{4k^2-1} = \frac{n}{2n+2}$, per $n \in \mathbb{N}$, $n \ge 1$.

base indutival OSS. the P(1) V

Oss. che P(1) $\sqrt{\frac{1}{3} = \frac{1}{3}}$ $\sqrt{\frac{1}{3}}$ $\sqrt{\frac$ che vera. Abbazmo

$$\frac{1}{4k^{2}-1} = \frac{1}{4k^{2}-1} + \frac{1}{4(n+1)^{2}-1} = \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} = \frac{1}{(2n+3)+1} + \frac{1}{(2n+3)(2n+3)} = \frac{1}{(2n+3)+1} + \frac{1}{(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3)} + \frac{1}{(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3)(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3)(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3)(2n+3)(2n+3)(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3)(2n+3)(2n+3)(2n+3)(2n+3)(2n+3)} = \frac{1}{(2n+3)(2n+3$$

 $=\frac{n\left(2n+3\right)+1}{\left(2n+3\right)\left(2n+3\right)}\frac{\left(2n+1\right)\left(n+n\right)}{\left(2n+1\right)\left(2n+3\right)}\frac{induthva}{induthva} equindi <math>\mathcal{B}(n+1)$ è vero. Per il principai di induzione possiono concludere che $\mathcal{F}(n)$ è vero $\forall n\in\mathbb{N}, n\geq 1$.

