International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 2

sorting

Language: hu-HU

Rendezés

Aizhannak van egy N elemű $S[0], S[1], \ldots, S[N-1]$ számsorozata, amely elemei mind különböző 0 és N-1 közötti számok. Növekvő sorrendbe szeretné rendezni a sorozatot, elemek cseréjével. A barátja, Ermek is cserélget néhány elempárt, de ezzel nem biztos hogy segít neki.

 $m{M}$ menetet hajtanak végre, minden menetben először Ermek, utána Aizhan cserél. Aizhan előre tudja, hogy Ermek mely elempárokat fogja megcserélni, az i-edik menetben az $m{X}[i]$ -t és az $m{Y}[i]$ -t,

 $i=0,\ldots,M-1$ -re. Ha Aizhan egy forduló előtt azt látja, hogy már rendezett a sorozat, akkor be kell fejeznie a folyamatot!

A feladatod megkeresni Aizhan cseresorozatát. Néhány részfeladatnál ennek a cserék számának minimálisnak kell lenni! Feltehető, hogy az S sorozat rendezhető M vagy kevesebb lépésben. Megjegyzendő, hogy ha Aizhan azt látja, hogy a sorozat rendezett Ermek cseréje után, akkor azonos elemeket cserélhet (pl. a 0-t a 0-val). Ha a sorozat már kezdetben is rendezett, akkor a menetek minimális száma 0.

1. példa

Legyen:

- a kezdő sorozat S = 4, 3, 2, 1, 0.
- Ermek cseréi maximális száma M = 6.
- Az X és Y sorozat írja le Ermek cseréit, X = 0, 1, 2, 3, 0, 1 és Y = 1, 2, 3, 4, 1, 2. Azaz Ermek cseréi a (0, 1), (1, 2), (2, 3), (3, 4), (0, 1) és (1, 2) indexű elempárok.

Ebben az esetben Aizhan az S sorozatot a kívánt 0, 1, 2, 3, 4 sorrendbe 3 menetben rendezheti. Aizhan cseréi: (0, 4), (1, 3) és (3, 4) indexű elempárok.

A táblázat mutatja a cserék hatását.

Menet	Játékos	csereindexek	sorozat
kezdetben			4, 3, 2, 1, 0
0	Ermek	(0,1)	3, 4, 2, 1, 0
0	Aizhan	(0,4)	0, 4, 2, 1, 3
1	Ermek	(1, 2)	0, 2, 4, 1, 3
1	Aizhan	(1,3)	0, 1, 4, 2, 3
2	Ermek	(2,3)	0, 1, 2, 4, 3
2	Aizhan	(3,4)	0, 1, 2, 3, 4

2. példa

Legyen:

- \blacksquare a kezdősorozat S=3,0,4,2,1.
- Ermek M = 5 cserét akar végrehajtani.
- Ermek tervezett cseréi (1,1), (4,0), (2,3), (1,4) és (0,4).

Ekkor Aizhan három menetben rendezheti a sorozatot, pl. (1,4), (4,2) és (2,2). A táblázat mutatja a cserék hatását.

Menet	Játékos	csereindexek	sorozat
kezdetben			3, 0, 4, 2, 1
0	Ermek	(1,1)	3, 0, 4, 2, 1)
0	Aizhan	(1,4)	3, 1, 4, 2, 0
1	Ermek	(4,0)	0, 1, 4, 2, 3
1	Aizhan	(4,2)	0, 1, 3, 2, 4
2	Ermek	(2,3)	0, 1, 2, 3, 4
2	Aizhan	(2,2)	0, 1, 2, 3, 4

Feladat

Adott S, M, X és Y esetén számítsd ki, hogy Aizhan milyen elempárok cseréjével éri el a rendezést! Az S - G. részfeladat esetén a cserék számának minimálisnak kell lenni!

A findSwapPairs függvényt kell megvalósítanod:

- findSwapPairs (N, S, M, X, Y, P, Q) Az értékelő pontosan egyszer hívja.
 - lacktriangle N: a rendezendő S sorozat hossza.
 - \blacksquare S: a rendezendő \boldsymbol{S} sorozat.
 - M: Ermek tervezett cseréi száma.
 - lacksquare X, Y: M elemű tömbök. Minden $0 \le i \le M-1$ -re, az i. menetben Ermek tervezett cseréje X[i] és Y[i].
 - lacktriangledown P, Q: egész számok tömbjei, amellyel Aizhan megoldását közlöd. Jelölje $m{R}$ Aizhan megoldásához szükséges menetek számát, minden $m{i}$ -re $m{0}$ és $m{R}-m{1}$ között az $m{i}$. menetben Aizhan a $m{P}[m{i}]$ és $m{Q}[m{i}]$ indexű elemeket cseréli. Feltehető, hogy a P és Q tömbök $m{M}$ eleműek.
 - A függvény visszaadott értéke *R* legyen (lásd fent)!

Részfeladatok

részfeladat	pont	N	M	korlátok X, Y-ra	feltételek R-re
1	8	$1 \le N \le 5$	$M=N^2$	X[i]=Y[i]=0	$R \leq M$

<u> részfeladat</u>	pont	$1 < N < N_{100}$	$M \stackrel{M}{=} 30N$	korlátok X. Y-ra	keltetelek R-re
3	16	$1 \le N \le 100$	M = 30N	X[i]=0, Y[i]=1	$R \leq M$
4	18	$1 \le N \le 500$	M = 30N	nincs	$R \leq M$
5	20	$1 \le N \le 2000$	M=3N	nincs	minimális
6	26	$1 \leq N \leq 200,000$	M=3N	nincs	minimális

Feltehető, hogy az S sorozat rendezhető M vagy kevesebb lépésben.

Megvalósítás

A sorting.c, sorting.cpp, sorting.pas, or sorting.java file-t kell beküldened, ami a megoldásod tartalmazza.

C/C++ program (include sorting.h legyen a file elején)

int findSwapPairs(int N, int S[], int M, int X[], int Y[], int P[], int (

Pascal programs (implement the described method in the unit sorting)

function findSwapPairs (N: longint; var S: array of longint, var M: longir

Java programs (implement the described method in the public class sorting)

public int findSwapPairs(int N, int S[], int M, int X[], int Y[], int P[]

Minta értékelő

A minta értékelő a sorting.in file-t olvassa:

- Az 1. sor: N
- A 2. sor: S[0] ... S[N 1]
- A 3. sor: M
- A 4, ..., M + 3. sorok: X[i] Y[i]

A mintaértékelő kiírja a findSwapPairs értékét.