Inhaltsverzeichnis

Vorwort V			
Abbild	ungsverzeichnisXV		
Tabelle	nverzeichnis XXIII		
Abkürz	Abkürzungsverzeichnis XXV		
1	Einleitung		
1.1	Ziel des Buches		
1.2	Begriffe und Notationen		
2	Wissenswertes über FlexRay		
2.1	Entwicklungsziele5		
2.1.1	Ökonomische Ziele		
2.1.2	Technische Ziele		
2.2	Eigenschaften von FlexRay		
2.3	Einsatzgebiete		
2.4	Einordnung des Protokolls		
2.5	Netzwerkprotokolle im Automobil		
2.5.1	CAN		
2.5.2	LIN		
2.5.3	Multimediaprotokolle13		
2.5.4	Kommunikationsnetzwerk im Automobil		
2.6	Das FlexRay-Konsortium und die FlexRay-Historie		
3	Prinzipielle Funktionsweise des Protokolls		
3.1	Aufbau eines Kommunikationsknotens		
3.2	Topologien		
3.3	Das Zugriffsverfahren		
3.3.1	Zugriffsverfahren im Überblick		
3.3.2	Der Kommunikationszyklus in FlexRay		
3.3.3	Das TDMA-Verfahren		
3.3.4	Das Minislot-Verfahren		
3.4	Die Zeitbasis		
3.5	Die Protokollzustandsmaschine		

VIII	Inhaltsverzeichnis
3.6	Das Starten des Protokolls
3.7	Das Frame-Format
3.8	Das Coding
3.9	Der Physical Layer
4	Funktionsweise des Protokolls im Detail
4.1	Das Zugriffsverfahren
4.1.1	Der Kommunikationszyklus43
4.1.2	Aufbau eines statischen Slots
4.1.3	Dynamische Slots
4.1.4	Das Symbol Window
4.1.5	Die Network Idle Time (NIT)
4.2	Uhrensynchronisation
4.2.1	Uhrenabweichungen und Korrekturmethoden
4.2.2	Die Messung der Zeitabweichung
4.2.3	Die Berechnung der Korrekturwerte
4.2.4	Die Verteilung der Korrekturwerte
4.2.5	Die Anwendung der Korrekturwerte
4.2.6	Externe Uhrensynchronisation
4.2.7	Präzision und Genauigkeit
4.3	Die Protokollmaschine
4.3.1	Besondere Zustandsübergänge in der Protokollmaschine
4.3.2	Single Slot Mode
4.4	Wecken eines Clusters
4.4.1	Betriebszustände eines Knotens
4.4.2	Das Wakeup Pattern
4.4.3	Überlagerung von zwei Wakeup Pattern
4.4.4	Gleichzeitiges Wecken mehrerer Knoten
4.4.5	Ablauf des Weckens in einem Cluster
4.5	Starten des Clusters
4.5.1	Clusterstart durch einen Knoten
4.5.2	Die Startup-Timer85
4.5.3	Gleichzeitiger Clusterstart durch zwei Knoten
4.5.4	Start des Clusters bei einem fehlerhaften Knoten
4.6	Frame-Format93
4.6.1	Der Header93
4.6.2	Die Nutzdaten
4.6.3	Der Trailer
4.6.4	Nullframes

	Inhalt	sverzeichnis	IX
4.6.5	Der Netzwerk-Management-Vektor		99
4.6.6	Message Identifier		
4.7	Symbole		
4.8	Die Frame-Übertragung		
4.8.1	Die Frame-Codierung		
4.8.2	Die Frame-Decodierung		105
4.8.3	Das Senden von Frames		107
4.8.4	Der Frame-Empfang		109
4.9	Cliquen und Cliquenbildung		113
5	Physical Layer		117
5.1	Signale		117
5.1.1	Signaldefinition		117
5.1.2	Kollisionen		119
5.2	Physikalische Effekte		120
5.2.1	Signallaufzeit		120
5.2.2	Asymmetrische Verzögerung		121
5.2.3	Signalverkürzung		121
5.2.4	Elektromagnetische Verträglichkeit		123
5.3	Netzwerkkomponenten		124
5.3.1	Kabel und Stecker		124
5.3.2	Terminierung		124
5.4	Topologien		127
5.4.1	Physikalische Topologie		127
5.4.2	Längen bei Bus- und Sterntopologien		129
5.4.3	Ungültige Topologien		132
5.5	Elektrischer Bustreiber		135
5.5.1	Aufbau und Funktion		135
5.5.2	Zustände und Übergänge		136
5.5.3	Schnittstellen und Ausgangsverhalten		139
5.5.4	Wakeup		141
5.6	Aufbau und Verhalten eines aktiven Sternkopplers		142
5.6.1	Funktion		142
5.6.2	Aufbau		144
5.6.3	Zustände und Übergänge		146
5.6.4	Zeitverhalten		149
5.6.5	Verhalten bei gleichzeitigem Signalempfang auf mehreren	Zweigen	152
5.7	Fehlerausbreitung		153
5.8	Asymmetrien		155

X	Inhaltsverzeichnis	
5.8.1	Wesen und Auswirkungen von Asymmetrien	155
5.8.2	Ursachen und Effekte von Asymmetrien	
5.8.3	Auswirkungen von Asymmetrien auf den Cluster	
5.9	Praktische Hinweise für eine robuste FlexRay-Topologie	
6	Die Konfigurierung eines Clusters	169
6.1	Berechnungsregeln	169
6.1.1	Zeitdiskretisierung	169
6.1.2	Bestimmen der Minimalzeit eines Signals	170
6.1.3	Bestimmen der Maximalzeit eines Signals	172
6.1.4	Notation der Formeln	173
6.2	Microtick und Macrotick	173
6.2.1	Der Microtick	173
6.2.2	Der Macrotick	175
6.3	Die Präzision	178
6.4	Startup-Parameter	180
6.4.1	Toleranzbereich beim Startup	180
6.4.2	Parameter zur Initialisierung der Uhr	181
6.4.3	Maximale Drift	183
6.4.4	pdListenTimeout	184
6.5	Der statische Slot	185
6.5.1	Der Actionpoint-Offset	185
6.5.2	Die statische Slotgröße	187
6.6	Das dynamische Segment	189
6.6.1	Der Minislot-Actionpoint-Offset	189
6.6.2	Der Minislot	190
6.6.3	Dynamic-Slot-Idle-Phase	192
6.6.4	Anzahl an Minislots	193
6.6.5	Spätester Frame-Beginn im dynamischen Segment	196
6.7	Symbol-Window und NIT	197
6.7.1	Das Symbol-Window	197
6.7.2	Network Idle Time	198
6.8	Uhrensynchronisation	203
6.8.1	Steigungskorrekturwert	
6.8.2	Offset-Korrekturwerte	
6.8.3	Dämpfungsparameter für die Uhrenkorrektur	
6.8.4	Externe Uhrensynchronisation	
6.9	Physical Layer abhängige Parameter.	
6.9.1	Maximale Signallaufzeit	

~/
¥
^

6.9.2	Korrektur der Zeitmesswerte	208
6.9.3	Kompensation der Laufzeit	209
6.9.4	Transmission Start Sequence	210
6.10	Parametrierung der Symbole	211
6.10.1	Das Collision Avoidance Symbol	212
6.10.2	Konfigurierung des Wakeup-Symbols beim Sender	214
6.10.3	Konfigurierung des Wakeup-Symbols beim Empfänger	215
6.11	Clusterkonfigurierung	217
6.12	Zuordnung der Gleichungen zu den Konfigurationsregeln der	
	Protokollspezifikation	221
7	Der Busguardian	223
7.1	Prinzip des Busguardians	223
7.2	Lokaler Busguardian	225
7.3	Zentraler Busguardian	228
7.4	Weitere Aspekte des Busguardians	230
7.4.1	Test des Busguardians	230
7.4.2	Weitere Funktionen	231
7.4.3	Vergleich der Konzepte	231
7.4.4	Auswirkung des Busguardians auf die Clusterkonfiguration	232
8	Die Implementierung des FlexRay-Protokolls	235
8.1	Nachrichtenpufferkonzept	235
8.1.1	Aufteilung in Register und Speicher	235
8.1.2	Message Buffer-Typen	
8.2	Message Buffer Konfigurierung	
8.2.1	Message Buffer Control Register	239
8.2.2	Frame-Header-Konfigurierung	242
8.2.3	Beispiel für die Konfigurierung eines Sendepuffers	244
8.2.4	Beispiel für die Konfigurierung eines Empfangspuffers	245
8.2.5	Beispiel für die Konfigurierung eines Receive Shadow Buffers	246
8.3	Protokollkonfigurationsregister	246
8.4	Filterkonfigurierung	249
8.5	Interrupts	252
8.5.1	Individuelle Interruptquellen	
8.5.2	Kombinierte Interruptquellen	
8.5.3	Protokoll-Interruptbits	254
8.5.4	CHI-Fehler-Interruptbits	257
8.6	FIFO-Puffer	259

XII	Inhaltsverzeichnis	
9	Aspekte der Anwendung von FlexRay	263
9.1	Die Wahl der Frame-Größe	
9.2	Die Gestaltung der Payload innerhalb von Frames	265
9.3	Das Prinzip der Sendezeitfenster	267
9.4	Ein Beispiel	
9.4.1	Topologie	269
9.4.2	Sende-Schedule	270
9.4.3	Kommunikationsmatrix	271
9.4.4	Bestimmung der FlexRay-Protokollparameter	272
9.5	Realisierungsvarianten für das Multiplexen im dynamischen Segment	277
9.5.1	Aufgabenstellung	277
9.5.2	Steuerung des Sendezeitpunktes durch den Host	279
9.5.3	Verwendung von Zykluszählerfiltern	280
9.5.4	Pufferumkonfigurierung	282
9.5.5	Vergleich der Realisierungsvarianten	285
10	Ausblick	287
10.1	Protokollentwicklung	287
10.2	AUTOSAR	287
10.2.1	Motivation und Ziele von AUTOSAR	288
10.2.2	Technisches Konzept	289
10.2.3	FlexRay und AUTOSAR	291
10.3	Einsatz von FlexRay	292
Anhang	g A: Einführung in SDL	295
A.1	Philosophie von SDL	295
A.2	Die grafischen Elemente	296
A.3	Grundelemente	299
A.4	Austauschen von Signalen	299
A.5	Die Zeit in SDL	300
A.6	Einschränkungen von SDL	300
A.7	Beispiel	300
Anhang	g B: FlexRay Konstanten und Parameter	304
Anhang	g C: Beispielprogramm	311
C.1	Das Header-File	
C.2	Das FlexRay-Konfigurationsfile	314
Anhang	g D: Übersicht FlexRay-Schaltkreise	338

	Inhaltsverzeichnis	XIII
Literaturverzeichnis		339
Stichwortverzeichnis		341