Группа	Студент	Дата	
	Лабораторная работа № 4		
	Рабочее задание		

1. Проверка работоспособности каскада **в режиме холостого хода**, R_r =0. Сохранить осциллограммы в электронном виде.

Добавить обработанные осциллограммы в протокол.

Конденсатор $C_{\mathfrak{I}}$ включен		Конденсатор $C_{\mathfrak{I}}$ выключен			
$U_{\scriptscriptstyle m BX},~{ m B}$	$U_{\scriptscriptstyle m BMX},~{ m B}$	$K_{u \text{ xx}}$	$U_{\scriptscriptstyle m BX},\;{ m B}$	$U_{\scriptscriptstyle m BMX},~{ m B}$	$K_{u \text{ xx}}$
	$K_{u \text{ xx pacq}} =$		I	$X_{u \text{ xx pac}} =$	

2. Амплитудная характеристика каскада ОЭ (режим X-Y). $R_{\rm H}$ = $R_{\rm r}$ = 1 кОм.

Характеристики снимать на средней частоте, ручкой плавной регулировки подобрать такую частоту, при которой характеристика не двоится. Сохранить характеристики в электронном виде, обозначить оси, нанести масштабы.

Добавить обработанные характеристики в протокол.

	Конденсатор $C_{\mathfrak{I}}$ включен		Конденсатор $C_{\mathfrak{I}}$ выключен		
Параметр	K_{u0}	$U_{ m BX\ max},{ m B}$	K_{u0}	$U_{ m BX\ max},{ m B}$	
Эксперимент					
Расчет		***		***	

3. Амплитудно-частотная характеристика усилительного каскада ОЭ. $R_{\rm H} = R_{\rm r} = 1 \ {
m kOm}, \ C_{\rm H} = 10 \ {
m h\Phi}.$

Сохранить результаты измерений и построений в электронном виде.

Добавить обработанные характеристики в протокол.

		K_{u0} , дБ	K_{u0}	$f_{\scriptscriptstyle m H}$, Гц	$f_{\scriptscriptstyle m B}$, к Γ ц
Конденсатор C_3 включен	Расчет				
	Эксперимент				***
Конденсатор C_3 выключен	Расчет				
	Эксперимент				***

4. Определение входного сопротивления каскада.

Расчетная формула (при одном и том же значении $E_{\rm r}$):

$$R_{\rm BX} =$$

Входное сопротивление каскада ОЭ (конденсатор C_{9} – включен).

$R_{\rm r}=0$	$R_{\Gamma} = 1_{\rm K}O_{\rm M}$	$R_{\scriptscriptstyle m BX}=$	=	Ом
$U_{\scriptscriptstyle m BMX\ l} = { m B}$	$U_{\scriptscriptstyle m Bbix\ 2} = { m B}$	$R_{\text{Bx pac}_{\text{H}}} = O_{\text{M}}$		

Входное сопротивление каскада ОЭ (конденсатор C_{3} – выключен).

$R_{\rm r}=0$	$R_{\rm r}=1{\rm kOm}$	$R_{ ext{BX}} =$		=	Ом
$U_{\scriptscriptstyle m BbIX}$ $_1=$	$U_{\scriptscriptstyle m BMX\ 2} \!=$	$R_{\rm BX\ pac ext{\tiny q}} =$	Ом		