sine basis 04

Statistics: p-values adjusted for search volume

set-level		cluster-level			peak-level					mm mm mm		
р	С	$p_{\text{FWE-corr}\text{FDR-corr}} k p_{\text{uncorr}}$			p g T			$(Z_{\equiv}) p_{\text{uncorr}}$		11111111		111
			0.011 15		0.815 0.501 1.000	0.044 0.023 0.143	4.26 4.50 3.74	4.22 4.45 3.71	0.000 0.000 0.000	16 50 46	28 4 4	-6 12 32
		0.281	0.025 12	7 0.001	1.000 0.714 1.000	0.275 0.035 0.309	3.40 4.34 3.33	3.38 4.30 3.31	0.000 0.000 0.000	42 -32 -24	4 -76 -62	0 34 20
		0.998	0.195 52	0.027	1.000 0.955 1.000	0.656 0.070 0.329	2.81 4.09 3.29	2.80 4.05 3.27	0.003 0.000 0.001	-30 24 30	-68 40 34	26 10 8
		0.476	0.040 10	8 0.003	0.989 1.000 1.000	0.329 0.091 0.322 0.363	3.29 3.98 3.30 3.24	3.24 3.28 3.22	0.001 0.001 0.001	-38 -46 -50	-32	-10 -12 -8
		1.000 0.997	0.371 29 0.195 54	0.086 0.024	0.998 0.999 1.000	0.112 0.116 0.407	3.89 3.86 3.15	3.86 3.83 3.13	0.000 0.000 0.001	-64 54 48	-42 -60 -50	30 10 12
		0.998 1.000 1.000	0.195 52 0.218 46 0.551 17	0.035 0.179	0.999 0.999 0.999	0.117 0.121 0.121	3.85 3.82 3.82	3.82 3.79 3.79	0.000 0.000 0.000	40 54 -26	-64 -56 -38	10 -18 10
		1.000 1.000	0.385 27 0.218 46 0.259 41		1.000 1.000 1.000 1.000	0.140 0.150 0.199 0.152	3.75 3.71 3.58 3.70	3.72 3.69 3.56 3.68	0.000 0.000 0.000 0.000	-34 36 34 32	-70 56 56 -40	-4 24 12 -50