3 - Data Exploration

Felipe Melo

Nottingham Trent University - UK

You should know today

- Make questions to your data?
- Explore the basic features of your data
- Make simple exploratory graphics

Before we begin

- R and Rstudio installed
- Don't panic
- Everything is reproducible
- You'll have to train to fix the content

What questions should I make to the data?

Back to Spreadsheets

The Penguins file

```
1 penguins_df<-read.csv("https://raw.githubusercontent.com/fplmelo/ecoaplic/r</pre>
```

penguins_df

	Χ	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm
1	1	Adelie	Torgersen	39.1	18.7	181
2	2	Adelie	Torgersen	39.5	17.4	186
3	3	Adelie	Torgersen	40.3	18.0	195
4	4	Adelie	Torgersen	NA	NA	NA
5	5	Adelie	Torgersen	36.7	19.3	193
6	6	Adelie	Torgersen	39.3	20.6	190
7	7	Adelie	Torgersen	38.9	17.8	181
8	8	Adelie	Torgersen	39.2	19.6	195
9	9	Adelie	Torgersen	34.1	18.1	193
10	10	Adelie	Torgersen	42.0	20.2	190
11	11	Adelie	Torgersen	37.8	17.1	186
12	12	Adelie	Torgersen	37.8	17.3	180
13	13	Adelie	Torgersen	41.1	17.6	182
14	14	Adelie	Torgersen	38.6	21.2	191
1 E	1 E	^ d ~ 1 d ~	Targaraan	24 6	01 1	100

Planning a data visualization

source: Andrew Gard

https://www.youtube.com/@EquitableEquations

We know this data

```
library(tidyverse)
    library(palmerpenguins)
 3
    data("penguins")
    penguins %>%
      select(1:5)
# A tibble: 344 × 5
                     bill_length_mm bill_depth_mm flipper_length_mm
   species island
   <fct>
           <fct>
                               <dbl>
                                             <dbl>
                                                                <int>
 1 Adelie Torgersen
                                39.1
                                              18.7
                                                                  181
 2 Adelie Torgersen
                                39.5
                                              17.4
                                                                  186
 3 Adelie Torgersen
                                40.3
                                              18
                                                                  195
 4 Adelie Torgersen
                               NA
                                              NA
                                                                   NA
 5 Adelie Torgersen
                                              19.3
                                                                  193
                                36.7
 6 Adelie
          Torgersen
                                39.3
                                              20.6
                                                                  190
 7 Adelie Torgersen
                                38.9
                                              17.8
                                                                  181
 8 Adelie Torgersen
                                39.2
                                              19.6
                                                                  195
 9 Adelie Torgersen
                                34.1
                                              18.1
                                                                  193
10 Adelie
           Torgersen
                                42
                                              20.2
                                                                  190
# i 334 more rows
```


How to visually check continuous variables?

Histograms

```
library(tidyverse)
library(palmerpenguins)

data("penguins")
penguins %>%
group_by(species) %>%
ggplot(aes(x=bill_length_mm, color=species, fill=species))+
geom_histogram()
```


Boxplots

```
library(tidyverse)
   library(palmerpenguins)
 3
   data("penguins")
   penguins %>%
   group_by(species) %>%
     ggplot(aes(x=species,
 8
                 y=bill_length_mm,
                 color=species,
 9
                 fill=species))+
10
     geom_boxplot(alpha=0.5)+
11
     theme(axis.text=element_text(siz
12
            axis.title=element_text(si
13
```


Your turn

- Try to reproduce with any other continuous variable
- Do a Historgram and a Boxplot

Checking categorical varibles

Species of penguin

```
1 library(tidyverse)
2 library(palmerpenguins)
3
4 penguins %>%
5 ggplot(aes(x=species,
6 color=species,
7 fill=species))+
8 geom_bar(alpha=0.5)+
9 theme(axis.text=element_text(siz)
10 axis.title=element_text(siz)
```


Observations per year

```
1 library(tidyverse)
2 library(palmerpenguins)
3
4 penguins %>%
5 ggplot(aes(x=year,
6 color=species,
7 fill=species))+
8 geom_bar()+
9 theme(axis.text=element_text(siz)
axis.title=element_text(siz)
```


Observations per island

```
1 library(tidyverse)
2 library(palmerpenguins)
3
4 penguins %>%
5 ggplot(aes(x=island,
6 color=species,
7 fill=species))+
8 geom_bar()+
9 theme(axis.text=element_text(siz)
axis.title=element_text(siz)
```


Visualising correlations

Visualising correlations per species

Body mass per sex

Body mass per sex (iverting groups)

Your turn

- Can boby mass predict bill length?
- Do sex explain flipper length

Exploring data is asking relevant questions

- This is not mining
- Don't just correlate random things
- Start to imagine before coding

Check distributions

```
penguins %>%
     na.omit() %>%
     pivot_longer(bill_length_mm:body
     ggplot(aes(x=value,
            group=species,
 5
            fill=species,
 6
             color=species))+
     geom_density(alpha=0.7)+
     facet_grid(~trait, scales = "fre
 9
     theme(axis.text=element_text(siz
10
           axis.title=element_text(si
11
     theme_minimal()
12
```


The importance of distributions

Figure 1. Beta, normal, exponential, gamma, Bernoulli, and Poisson distributions, each with a total mass of one.

source:https://gregorygundersen.com/blog/2020/04/11/moments/

Moments of centrality

Mean, median and mode

Moments of dispersion

- Variance
- Standard deviation
- Standard Error
- Range
- Quantiles

Checking via histogram

```
1 set.seed(999)
2 normal<-rnorm(100)
3 normal %>%
4    as.tibble() %>%
5    ggplot(aes(value))+
6    geom_histogram(color="#DD4A48",
7    geom_vline(xintercept=c(mean(nor linetype="dashed"))
```


Checking via bokplot

```
1 set.seed(999)
2 normal<-rnorm(100)
3 normal %>%
4    as.tibble() %>%
5    ggplot(aes(value))+
6    geom_boxplot(fill="#DD4A48",alph
```


Workflow

Program

End of session on DA

