The order of a divides
$$|G|=P$$
, a prime (and is not equal to 1 because $a \neq e$).

So a has ade
$$p$$
, i.e., $|\langle a \rangle| = p$, so $\langle a \rangle = 6$

and
$$\mathbb{Z}_{p\mathbb{Z}} \xrightarrow{\sim} \langle a \rangle = 6$$

(aner ba =
$$\begin{cases} e = 7 & b=a^{-1} \\ a = 1 & b=e \\ b = 7 & a=e \end{cases}$$

3. We follow the hint

$$A = \begin{pmatrix} 100 & -310 \\ 340 & \cos \theta \end{pmatrix} \qquad b = \begin{pmatrix} 10 \\ 0-1 \end{pmatrix}$$

$$b \wedge b = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} (00 -)100 \\ -3.00 - 000 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 - 1 \end{pmatrix} = \begin{pmatrix} (00 3 3 0 0) \\ -3.00 & 000 \end{pmatrix} = a^{-1}$$

4. a. We follow the hint:

Rick ger?, consider
$$0 = \{g,g \mid g \in G\}$$
 $4 = \frac{1}{161} \cdot \sum_{\geq eG} = \frac{1}{n} (p_1 + \dots + p_n)$

$$= \{p_1,\dots,p_n\}$$

¥ geG , g.p = P.

Every isometry of \mathbb{R}^2 has the form $g(\underline{x}) = A \cdot \underline{x} + \underline{b}$ Pack: where A is a 2x2 ashugued mater of \$ FRZ I this is pared in MATHESS (linear algebra) for the case g(0)=0. In great, one can compose with a houstation to reduce to this case.)

Thus
$$g(P) = A \cdot (\frac{1}{\lambda} \stackrel{\circ}{\underset{i=1}{\sum}} P_i) + \frac{1}{\lambda}$$

 $= (\frac{1}{\lambda} \cdot \stackrel{\circ}{\underset{i=1}{\sum}} A_{i}, \frac{1}{\lambda}) + \frac{1}{\lambda} = \frac{1}{\lambda} \cdot \stackrel{\circ}{\underset{i=1}{\sum}} (A_{i}, \frac{1}{\lambda})$
 $= \frac{1}{\lambda} \cdot \stackrel{\circ}{\underset{i=1}{\sum}} g(P_i)$

But, she O= (Firifa) is an arbit of G, gets permuter 6.

Thus $\frac{1}{2} \sum_{i=1}^{n} g(p_i) = \frac{1}{2} \sum$

b. Let go & G be the rotation w/ smallest possible nonzero angle Oo (neasured con, say) T geb is a sotation of angle 0, we can write 0=q.00 +r, 0<redo 4 g.go + 6 is a station through r. So r=0 by date of Ou, g = gor, thus (go) & G is the subgray of abordions. (t: Lere we assure I rational potation in G; otherwise we're done.)

The subgrap 6' < 6 of relation :> the kend of the hom. det: 6-1 <=11 (glz)=Ax) -> detA (where we have chose rough so that the fixed paint = 0!

Thus either G'=6 (4 we're done) or G'< G has index 7, A G is greated by 6'4 a single element g = 6 1 6', necessarily a reflection in a line passing through p (recall from 735: a 7x7 orthogonal matrix A sortifies det A = +1 or -1 4 delines a retata a reflection respectively).

```
Now it follows that G is the dihedral group of symmetries of the regular n-gan whole G'
 with refiees the orbit of a paint q \in l \setminus \{p\} / nhae lis the line
  of reflection and n = 16^{\circ}1.
The cases n=1 AZ need to be treated separately as described in the parametrical Rmark).
      D4 = {e, a, a?, a, a, ab, a26, a3b,
                                                                a = relation by 271/1 ccm
                                                                    what certe of mass of reg. n-gan.
             reflections
                                                               b = reflection in an axis of symetry
           adus: 1,4,2,4,2,7,7
                                                              (here 1=4.)
     (8 = /=1, =i, =j, =k)
          cales 1,2, 9,4,4,4,4,4
     Thus D_4 \not\cong Q_8 e.g. because D_4 \mid has \mid 5 elements of order 2.
      O: Z/nz -> Z/nz × Z/nz
       \overline{x} \longmapsto (x \operatorname{nod} n, x \operatorname{nod} n)
\ker 0 = \left\{ \overline{x} \in \mathbb{Z}_{nn\mathbb{Z}} \mid n \mid x \triangleleft n \mid x \right\} = \left\{ \overline{x} \in \mathbb{Z}_{nn\mathbb{Z}} \mid n \mid x \right\}
       Tans O injective. ..., by pigeonhole principle, O is sujective, so O is an isom.
      f is higher f=7 s=0.
      he show the tactors are uniquely determined by counting elevates of different ardes.
      We order the fourther so that 115... < pr, say PI=Pz=..= Pr, / Prni=..=Prz, etz
                             and x18..8x1, x1418..8x2 , etc.
               # elevants of order each power of P1 is the some as for 2/2/2 x. * 1/4, Z, etc.
      So we can reduce to the case P_1 = \cdots = P_r = :P_1 = r = r_1.
       Observe: #(elements of order dividing p^{\infty}) = p^{d(\alpha)} where f(\alpha) = \sum_{i=1}^{n} \min(\alpha_i, \alpha_i)
```

8. The regular 1-gan is inscribed in the regular 21-gan.

those a vertex of the regular a-gan de let be the reflection in the axis of symmetry throughout votex.

Then $D_n = \langle a', b \rangle \leq D_{2n} = \langle a, b \rangle$ where a is retakin about the cate of name than $\frac{2\pi}{2n}$ con $4 = a^2$.

The element $a^{\Lambda} \in D_{2n}$ is central (i.e. commutes with all elements of D_{2n} (e.g. because it corresponds to $-I \in GL_2(IR)$ under the injective hore $D_{2n} \hookrightarrow GL_2(IR)$).

It follows that the map $q: D_n \times \mathbb{Z}_{22} \longrightarrow D_{2n}$ $(g,i) \longmapsto g \cdot (g^n)^i$

is a hon. of groups. Now suppose n is odd.

The kernel of φ is frivial, for $\varphi = \{e\}$, because $D_n \cap \{a\} = \{e\}$ f (using n odd): $\varphi(g_i) = e \iff g \cdot a^{ni} = e \iff g = (a^n)^{-i} \iff g = e$.

Since $|D_n \times \mathcal{H}_{ZZ}| = |D_{Zn}| = 4n$, Q is an isomorphism.

(conversely: if A is even the D_x = 1/22 \$ D_2 because e.g. Dz. contains an element of order ZA and D_x = 1/22 does not. [] (* Note: The order of $(a_1b) \in G \times H$ equals the 1cm of the order of $a \in G$)

4 the order of $b \in H$.

9. a) Recall for day:
$$(17...2) = 0$$

~, (12.. l) = (12)(23) .. (1-1,1)

Smilarly,

(a, az-ag) = (a, az)(azaz) .. (ag, ag)

So, it now or has cycle type $(l_{11}-1l_r)$ it can be written as a product of $(l_{1}-1)+...+(l_{r}-1)$ transpositions, so sgn(r)=l-1) $(l_{r}-1)+...+(l_{r}-1)$

 $S_3 = \langle e (12), (13), (23), (173), (172) \rangle$ $A_3 = \langle e, (123), (132) \rangle$

 $S_{4} = \langle e, (121, [13], [14], (23), (241, (34), (123), (132), (124), (142), (134), (143), (123), (124),$

(1234), (1243), (1324), (1342), (1423), (1432),

A4 = Le, (1231, [132], (124], [142], (184), (143), (134), (13) (14) (23), (13) (24), (13) (24), (14) (23)).

c). o(i)= j <=> gog'(y|i|) = g(j)

Thus, if $\sigma = (a_1 \cdot \cdot \cdot g_1)(b_1 \cdot \cdot b_m)(c_1 \cdot \cdot \cdot c_m) \cdot \cdot$ is the cycle decemp. of a permutation only the

grg-= (g(a,)...g(ag)) (g(b,)...g(b,)) (g(c)...g(c))...

Thus gog' 4 or have the sare cycle Type.

A convendy, if I do have the same cycle type, $\exists g \in S_N : J. \ = g \circ g^{-1}$

³ 1

1=+0 >+ 0. + = 0

Divide $1R \times [U_1]$ into strips $1R \times [t_{i-1}, t_{i}]$ $i=1, 7 \text{ M}_{i}$ and that there is a unique vorsing in the interior of each strip labelling the endpoints of the paths in each strip from Left to right, we see that the paths define a transposition C_{i} in the iK strip (in fact $C_{i} = (jij+1)$ for some j).

Thus σ is the product of m transpositions, $\sigma = Z_m Z_{mn} \cdots Z_1$ Let example pithwell above (n=4) $\sigma = (13)(24)$ = (23)(34)(12)(23)

10a (onside the action of the group 173 a the set of vertices of the triangle (labelled 1,7,3); this gives a group hor.

 $\varphi: D_3 \longrightarrow S_3$ $\varphi \longmapsto (x \mapsto g \cdot x)$

It is clearly injective (e.g. because, classing cardinates so that the certre of mass is the origin, g is a linear transformation, 4 two distinct vertices of the thionyle town a hair of IR?, so g is determined by gv 4 gw.)

Now 1731=1531=6, so Q 3 an var.

b. Reasoning as in a., we obtain an injective ham. P:G -> S4

 Alx_0 $|G| = |G_x| \cdot |G_x| = 4 \cdot 6 = 24 = 1541$

taking x a rotter of the tetrahedia (>0 that Ox is the set of retires of the tetrahedra 4 Gx is the subgroup of 6 isomorphiz to Dz give by otrahians about the axis through x 4 the cate of mans 4 reflections in the planes containing this axis.)

So q is an isomorphism.

e identify

(12) reflection

plane of reflection, haded

(123) retadia thru + 27 3 what air jahing center of nows 4 a weter

(12)(34) relation than Ti about ax:> July midpoints of two apposite edges

(1234) rotary reflecta W/angle + Tiz what axis joining midporets of two upposite edges

In particular,

The subgrame of ortations corresponds to A4

The 3-wycles in Af from two ranjugacy clanes of size 4, corresponding to con/our rotations through the vicewed from the lixed votex

11. With whatian as in 65, D6 = { e, a, a, a, a, a, a, a, b, ab, --, asb } vides 1,6,3,2,3,6,2,2,... 2 $A_4 = \frac{1}{2} e_1 (12)(34), (13)(74), (14)(23), (123), (132), (134), (142), (134), (143), (134), ($ orden 1 3 72/472 < G => 3 elevent g = G of order 4 =1 67 D6, 67 A4. Also D6 7 A4 because e.g. D6 has an element of order 6 while A4 has Fulai, griPF no sul element. 17. a. The horse is give by F>Z \ \[(z,1)] d +> [(1,0)] (chak: 1: PF-1 Fula), [(x,y)] - 1"/y y=0 is well defined, 4 fg=id, gf=id. (details omitted).) b. Smilarly P= > F^U P= [(x01.7 x1] +> (x1/x01.7 x1/x0) (F1/x0 +0 $[(x_1, x_n)] \in \mathbb{P}_{\varepsilon}^{n} | x_0 = 0.$ is a hijerta, w/ inverse Fruit --- PF F > (y11-) yn) - [(1,411-,41)] P= >[(2,,-72)] -> [(0,2,,-12)].

(. Recall GCX ~, \$\tag{\text{granp hom.}}

g \int (x \int g \cdot x)

In owner,
$$|P_F^1| = |Fv(a)| = 9+1$$
.
So $S_{P_F^1} \simeq S_{9^{+1}}$

(NB. GLATIF) (FAT),
$$g \cdot x = nation - verter product.$$

$$P_F^{\Lambda} = F^{\Lambda 11} \setminus \{0\}$$

$$= \sum_{i=1}^{N} \frac{1}{N} = \sum_{i=1}^{N} \frac$$

The induced action is
$$[g] \cdot [z] = [g \cdot z]$$
. (Leck well defined) here $[a]$ denotes the equiv. class of a.

- the hist two determines the cds of g up to independent scale factors,

4 the third the determines g up to an oreall scale factor, i.e., determines IgJ+P64z1F).

Alternative agreet: We show ker q= le; -

If
$$g \in kr (q, \dot{q} = [(a = 1)], \text{ the } g \cdot [(\dot{q})] = [(\dot{q})] = 0$$

 $g \cdot [(\dot{q})] = [(\dot{q})] = 0$

$$9 \cdot [[1]] = [[2]] = [1]] = 1 \quad a = d.$$

7 has $g = [(\alpha \alpha)] = e \in P(L_2/F)$.

$$P(G|Z|F|) = \frac{(q^2-1)(q^2-q)}{(q-1)} = \frac{(q-1)(q-1)\cdot q}{(q-1)\cdot q} = \frac{(6-1)(q-1)\cdot q}{(q-1)} = \frac{(6-1)(q-1)\cdot q}{(60-1)} = \frac{(6-1$$

Pray: H:= Q(P6L21F1) < S5 , |H1 = 1/21S51 =1 H & S5 Thus H=kw0, 0:55 -> 55/H = 7/22.

Now restricting to As, yet Y: As -> ZZZ, Ker Y = As NH & As Either As CH & Vis Minal

W V is swjecture 4 | ker Y | = \frac{1}{2} |A_5| = 30, ker Y d A_5 * A_5 is simple. So As CH ,41As = 141 => As = H 1.