# **Bellabeat Case Study**

Love Kumar 09/05/2021



### Introduction

In this case study, I will perform real world analyses for Bellabeat, a high-tech manufacturer of health-focused smart devices for women. In order to answer the key business questions of the company I would follow the steps of data analysis process i.e Ask, Prepare, Process, Analyze, Share and Act.

#### Key StakeHolders:

str(fit data)

- · Urška Sršen: Bellabeat's cofounder and Chief Creative Officer
- Sando Mur: Mathematician and Bellabeat's cofounder; key member of the Bellabeat executive team

### **Business task**

- To Analyze non Bellabeat (FitBit) smart devices data to gain insights and trends about user's usage of the smart devices
- To give high level recommendations for marketing strategy based on the analyses done.

## **Data Preparation**

I was provided with a dataset of Thirty FitBit users which is publically available at https://www.kaggle.com/arashnic/fitbit

Dataset consists of 18 csv files about the activities of users like Distance covered , Total Steps , Sleep , Active Minutes . This data was collected in the period of 03/12/2016 - 05/12/2016 .

I started with "dailyActivity merged.csv" file.

## Lets have a look at the dataset and different attributes in this file using R.

```
fit data<-read.csv("dailyActivity merged.csv")</pre>
colnames(fit data)
## [1] "Id"
                                  "ActivityDate"
## [3] "TotalSteps"
                                  "TotalDistance"
## [5] "TrackerDistance"
                                  "LoggedActivitiesDistance"
## [7] "VeryActiveDistance"
                                  "ModeratelyActiveDistance"
## [9] "LightActiveDistance"
                                  "SedentaryActiveDistance"
## [11] "VeryActiveMinutes"
                                  "FairlyActiveMinutes"
## [13] "LightlyActiveMinutes"
                                  "SedentaryMinutes"
## [15] "Calories"
```

```
## 'data.frame': 940 obs. of 15 variables:
                    : num 1.5e+09 1.5e+09 1.5e+09 1.5e+09 1.5e+09 ...

: chr "4/12/2016" "4/13/2016" "4/14/2016" "4/15/2016" ...

: int 13162 10735 10460 9762 12669 9705 13019 15506 10544 9819 ...
## $ Id
## $ ActivityDate
## $ TotalSteps
                               : num 8.5 6.97 6.74 6.28 8.16 ...
## $ TotalDistance
## $ TrackerDistance : num 8.5 6.97 6.74 6.28 8.16 ...
## $ LoggedActivitiesDistance: num 0 0 0 0 0 0 0 0 0 0 ...
## $ VeryActiveDistance : num 1.88 1.57 2.44 2.14 2.71 ...
## $ ModeratelyActiveDistance: num 0.55 0.69 0.4 1.26 0.41 ...
## $ LightActiveDistance : num 6.06 4.71 3.91 2.83 5.04 ...
\#\# $ SedentaryActiveDistance : num 0 0 0 0 0 0 0 0 0 0 ...
   $ VeryActiveMinutes : int 25 21 30 29 36 38 42 50 28 19 ...
   $ FairlyActiveMinutes : int 13 19 11 34 10 20 16 31 12 8 ...
$ LightlyActiveMinutes : int 328 217 181 209 221 164 233 264 205 211 ...
   $ SedentaryMinutes : int
                                        728 776 1218 726 773 539 1149 775 818 838 ...
                                : int 1985 1797 1776 1745 1863 1728 1921 2035 1786 1775 ...
## $ Calories
```

```
head(fit data)
```

```
Id ActivityDate TotalSteps TotalDistance TrackerDistance
## 1 1503960366 4/12/2016 13162 8.50
## 2 1503960366 4/13/2016 10735
## 3 1503960366 4/14/2016 10460
## 4 1503960366 4/15/2016 9762
                                        6.97
6.74
                                                      6.74
                                        6.28
                            9762
                                                      6.28
## 5 1503960366 4/16/2016 12669 8.16
## 6 1503960366 4/17/2016 9705 6.48
                                                      8.16
                                                      6.48
   LoggedActivitiesDistance VeryActiveDistance ModeratelyActiveDistance
##
## 1
                      0 1.88
## 2
                      0
                                    1.57
## 3
                      0
                                    2.44
                                                         0.40
                       0
## 4
                                    2.14
                                                         1.26
                            2.71
3.19
## 5
                       0
                                                          0.41
                       0
## 6
                                                          0.78
## LightActiveDistance SedentaryActiveDistance VeryActiveMinutes
## 1
     6.06
                                      0
## 2
                4.71
                3.91
                                      0
## 3
               2.83
                                      0
## 4
               5.04
## 5
                                      0
                                                     36
              2.51
                                      0
## FairlyActiveMinutes LightlyActiveMinutes SedentaryMinutes Calories
## 1 13 328 728 1985
## 2
                 19
                                  217
                                                 776 1797
                                               1218 1776
## 3
                 11
                                  181
                                                726 1745
## 4
                 34
                                  209
                                   221
## 5
                  10
                                                 773 1863
##
                  20
                                   164
                                                 539
```

## **Data Cleaning and Manipulation**

For data cleaning and manipulation I use spreadsheet software (Google sheets)

## data cleaning procedure

- Changed the format of specific columns to have only 2 decimal points in observations
- Filtered the data to find rows with all zeros observations.
- · Deleted the rows with all zeros obsevations .
- Deleted the blanks rows .

## data manipulation

 $There\ are\ attributes\ named\ Total Distance, Light Active Distance, Moderately Active Distance\ and\ Very Active Distance$ 

| ld            |                       |                                      |                          |                     |
|---------------|-----------------------|--------------------------------------|--------------------------|---------------------|
| D             | E                     | F                                    | G                        | Н                   |
| TotalDistance | LoggedActivitie       | VeryActiveDistance                   | ModeratelyActiveDistance | LightActiveDistance |
| 8.50          | 0                     | 1.88                                 | 0.55                     | 6.06                |
| 6.97          | 0                     | 1.57                                 | 0.69                     | 4.71                |
| 6.74          | 0                     | 2.44                                 | 0.40                     | 3.91                |
| 6.28          | 0                     | 2.14                                 | 1.26                     | 2.83                |
| 8.16          | 0                     | 2.71                                 | 0.41                     | 5.04                |
| 6.48          | 0                     | 3.19                                 | 0.78                     | 2.51                |
| 8.59          | 0                     | 3.25                                 | 0.64                     | 4.71                |
| 9.88          | 0                     | 3.53                                 | 1.32                     | 5.03                |
| 6.6           | TotalDic              | tanco=(VoryActi                      | voDictanco) +            | 4.24                |
| 6.3           |                       | TotalDistance=(VeryActiveDistance) + |                          | 4.65                |
| 8.1           | (Mc                   | (ModeratelyActiveDistance)+          |                          |                     |
| 9.0           | (LightActiveDistance) |                                      |                          | 5.36                |
| 6.4           | -                     |                                      | <u> </u>                 | 3.28                |
| 9.80          | 0                     | 5.29                                 | 0.57                     | 3.94                |
| 8.79          | 0                     | 2.33                                 | 0.92                     | 5.54                |

I Created Calculated Fields that contains percentage values of LightActiveDistance , ModeratelyActiveDistance And VeryActiveDistance over the TotalDistance covered

|                              | /                       |                           |  |
|------------------------------|-------------------------|---------------------------|--|
| N                            | • о                     | P                         |  |
| PercentLightDistance         | PercentModerateDistance | PercentVeryActiveDistance |  |
| 58.01                        | 5.93                    | 36.20                     |  |
| 45.06                        | 20.06                   | 34.08                     |  |
| 61.76                        | 5.02                    | 33.21                     |  |
| 38.73                        | 12.04                   | 49.23                     |  |
| 54.83                        | 7.45                    | 37.83                     |  |
| 50.91                        | 13.36                   | 35.73                     |  |
| 63.47                        | 7.19                    | 29.34                     |  |
|                              | PercentLightDistar      | ce = 21.14                |  |
|                              | (LightlyActiveDista     | 58 55                     |  |
|                              |                         | 31.00                     |  |
|                              | TotalDistance) * 100    | 100 45.55                 |  |
|                              |                         | 53.98                     |  |
| 63.03                        | 10.47                   | 26.51                     |  |
| 44.31                        | 3.36                    | 52.42                     |  |
| 44.43                        | 13.60                   | 41.50                     |  |
| 78.04                        | 6.99                    | 14.83                     |  |
| 46.16 Calculated percentages | 15.35                   | 38.49                     |  |

I calculated Total Active Minutes by adding the columns named VeryActiveMinutes ,fairlyActiveMinutes and LightlyActiveMinutes



|                   | J                   | К                    |
|-------------------|---------------------|----------------------|
| VeryActiveMinutes | FairlyActiveMinutes | LightlyActiveMinutes |
| 25                | 13                  | 328                  |
| 21                | 19                  | 217                  |
| 30                | 11                  | 181                  |
| 29                | 34                  | 209                  |
| 36                | 10                  | 221                  |
| 38                | 20                  | 164                  |
| 42                | 16                  | 233                  |
| 50                | 31                  | 264                  |
| 28                | 12                  | 205                  |
| 19                | 8                   | 211                  |
| 66                | 27                  | 130                  |
| 41                | 21                  | 262                  |

Then I created a column containing Percentage values of LightlyActiveMinutes and VeryActiveMinutes as follows

| Q               | R                        | S                     |
|-----------------|--------------------------|-----------------------|
| TotalActiveMins | PercentLightlyActiveMins | PercentVeryActiveMins |
| 222             | 81.53                    | 13.51                 |
| 272             | 76.84                    | 10.66                 |
| 267             | 82.77                    | 13.48                 |
| 222             | 73.87                    | 17.12                 |
| 291             | 80.07                    | 14.43                 |
| 345             | 76.52                    | 14.49                 |
| 245             | 83.67                    | 11.43                 |
| 238             | 88.66                    | 7.98                  |
| 223             | 58.30                    | 29.60                 |
| 324             | 80.86                    | 12.65                 |
| 282             | 84.40                    | 13.83                 |
| 303             | 71.29                    | 24.09                 |
| າາາ             | 02.70                    | 0.24                  |

Now in the "sleepDay\_merged.csv" file I converted the Total Minutes of Sleep to the Total Hours of sleep

| D                  | Е              | F                |
|--------------------|----------------|------------------|
| TotalMinutesAsleep | TotalTimeInBed | TotalHoursAsleep |
| 327                | 346            | 8.175            |
| 384                | 407            | 9.6              |
| 412                | 442            | 10.3             |
| 340                | 367            | 8.5              |
| 700                | 712            | 17.5             |
| 304                | 320            | 7.6              |
| 360                | 377            | 9                |
| 325                | 364            | 8.125            |
| 361                | 384            | 9.025            |
| 430                | 449            | 10.75            |
| 277                | 323            | 6.925            |
| 245                | 274            | 6.125            |
| 366                | 393            | 9.15             |
| 341                | 354            | 8.525            |
| 404                | 425            | 10.1             |

# Analyses and Visualizations

Installing Tidyverse package and loading ggplot

```
instaling Noyerse package and loading ggplot

install.packages("tidyverse", repos = "http://cran.us.r-project.org")

## Installing package into 'C:/Users/shiva/OneDrive/Documents/R/win-library/4.0'
## (as 'lib' is unspecified)

## Warning: unable to access index for repository http://cran.us.r-project.org/src/contrib:
## cannot open URL 'http://cran.us.r-project.org/src/contrib/PACKAGES'

## Warning: package 'tidyverse' is not available (for R version 4.0.2)

## Warning: unable to access index for repository http://cran.us.r-project.org/bin/windows/contrib/4.0;
## cannot open URL 'http://cran.us.r-project.org/bin/windows/contrib/4.0/PACKAGES'

library(ggplot2)

## Warning: package 'ggplot2' was built under R version 4.0.5
```

## Analysis and visualizations based on Distance covered:

• Using Cleaned version of "dailyActivity\_merged.csv"

## `geom\_smooth()` using method = 'loess' and formula 'y ~ x'

#### Total Distance Vs Overall Calories Burnt

```
fit<-read.csv("dailyActivity_merged_cleaned.csv")
ggplot(data=fit)+geom_point(mapping = aes(x=TotalDistance,y=Calories))+
geom_smooth(mapping = aes(x=TotalDistance,y=Calories),color="green")+
xlab("OverallDistance")+ylab("OverallCaloriesBurnt")</pre>
```



It clearly shows a positive correlation between Total Distance and Calories Burnt . Hence there is a upward Trendline . But! Lets dive deeper , and have a look at

### Percentage of Lightly Active distance Vs Total Calories Burnt

```
ggplot(data=fit)+geom_point(mapping = aes(x=PercentLightDistance,y=Calories))+
   geom_smooth(mapping = aes(x=PercentLightDistance,y=Calories),color="red")+
   xlab("% LightActiveDistance")+ylab("OverallCaloriesBurnt")

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```



This shows that more the percentage of lightly active covered distance in total distance covered lesser the overall calories burnt. There is a declining trendline.

##On the Other Hand

```
ggplot(data=fit)+geom_point(mapping = aes(x=PercentVeryActiveDistance, y=Calories))+
geom_smooth(mapping = aes(x=PercentVeryActiveDistance, y=Calories), color="green")+
xlab("% VeryActiveDistance")+ylab("OverallCaloriesBurnt")
```

```
## `geom_smooth()` using method = 'loess' and formula 'y \sim x'
```



This Clearly Shows that more the percentage of very actively covered distance in total distance covered more the overall calories burnt

## Analysis and visualizations based on Total Steps Taken:

#### Total Steps Vs Overall Calories Burnt

```
library (ggplot2)
ggplot (data=fit) +
  geom_point (mapping = aes(x=TotalSteps, Calories)) +
  geom_smooth (mapping = aes(x=TotalSteps, Calories), color="green")
```

```
\#\# `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```



It is clear that more steps burns more calories . But According to the data , 64.8~% of the observations are less than 10k steps .

```
fit$Steps<-fit$TotalSteps
fit$Steps<-cut(fit$Steps,breaks = c(0,9999,19999,37000),labels = c("LessThan 10k","10k-20k","MoreThan 20k"))
ggplot(data=fit)+geom_bar(mapping = aes(x=Steps,fill=Steps))</pre>
```



## Analysis based on Active Minutes

It is obvious that more the total active minutes in a day more the overall calories burnt

```
ggplot(data=fit)+geom_smooth(mapping = aes(x=TotalActiveMins,y=Calories),color="green")
```

```
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```



minutes can be Lightly Active Minutes or Very Active Minutes. Lets see , how the percentage values Very Active Minutes is Related to the overall Calories burnt

### Percentage of Very Active Minutes Vs Calories Burnt

```
ggplot(data=fit)+
  geom_smooth(mapping = aes(x=PercentVeryActiveMins,y=Calories),color="green")

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
```



Very Active Minutes in total active minutes , more the overall calories burnt . But In the data Most of the Oservations have very less "Very Active Minutes"

```
fit$Vact<-fit$VeryActiveMinutes
fit$Vact<-cut(fit$Vact,breaks = c(-1,50,100,150,250),labels = c("0 - 50","50 - 100","100 - 150 ","MoreThan
150"))
ggplot(data = fit)+geom_bar(mapping = aes(x=Vact,fill=Vact))+xlab("Active Minutes")</pre>
```



### Analysis on Sleep

On the basis of the data and my analysis, 75.5% of the observations falls under the category of "OverSleep"

```
sleep<-read.csv("sleepDay_merged.csv")
sleep$SleepCategory<-sleep$TotalHoursAsleep
sleep$SleepCategory<-cut(sleep$SleepCategory,breaks = c(1,7,9,20),labels = c("UnderSleep","IdealSleep","Over
Sleep"))
ggplot(data=sleep)+geom_bar(mapping = aes(x=SleepCategory,fill=SleepCategory))</pre>
```



## Some recommendations based on above analyses :

- Add and advertise a feature that give daily targets of steps to take to the users . (increase the target weekly by some some steps)
- Add and advertise a feature that challenge the users to walk faster while the users are walking .
- · Add and advertise a feature that categorize the user based on their sleep hours and motivates them to fall under "Ideal Sleeper"

category.