Achref El Mouelhi

Docteur de l'université d'Aix-Marseille Chercheur en programmation par contrainte (IA) Ingénieur en génie logiciel

elmouelhi.achref@gmail.com

Ordinateur

- Unité centrale = { processeur + mémoire + ... }
- Périphériques d'entrée, de sortie ou d'entrée/sortie

Système informatique : codage binaire

- absence ou présence (d'électricité)
- faux ou vrai
- 0 ou 1

La plus petite unité de mesure (mémoire)

bit : binary digit

La plus petite unité de mesure (mémoire)

bit : binary digit

La plus petite unité de mesure (mémoire)

bit: binary digit

Octet (Byte en anglais)

1 octet = 8 bits

1 octet \longrightarrow 2⁸ combinaisons

Autres unités

- 8 bits = 1 octet
- 1 kilo octet = 1 024 octets $\equiv 10^3$ octets
- 1 méga octet $\equiv 10^6$ octets
- 1 giga octet $\equiv 10^9$ octets
- 1 téra octet $\equiv 10^{12}$ octets
- 1 péta octet $\equiv 10^{15}$ octets
- 1 exa octet $\equiv 10^{18}$ octets
- 1 zéta octet $\equiv 10^{21}$ octets
- 1 yotta octet $\equiv 10^{24}$ octets
- 1 bronto octet $\equiv 10^{27}$ octets
- 1 geop octet $\equiv 10^{30}$ octets

Quelques codages utilisés en informatique

• binaire: 0 ou 1

octal: 0, 1, ... 7

• décimal: 0, 1, ... 9

• hexadécimal: 0, 1, ... 9, A, B, C, D, E, F

...

La conversion d'un nombre d'une base à une autre est possible

Exemple: 11010

 $(11010)_2$

$$= 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0$$

$$= 2^4 + 2^3 + 2^1$$

$$= 16 + 8 + 2$$

$$= (26)_{10}$$

Exemple: 11010

 $(11010)_2$

$$= 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0$$

$$= 2^4 + 2^3 + 2^1$$

$$= 16 + 8 + 2$$

$$=(26)_{10}$$

Exercice: montrez que

- $(100010010)_2 = (274)_{10}$
- \bullet (10111010)₂ = (186)₁₀

$$\begin{array}{c|c} 80 & 2 \\ \hline 0 & 40 \end{array}$$

Exercice : trouvez le codage binaire de

←□ > ←□ > ←□ > ←□ >

- **(50)**₁₀
- (257)₁₀

Exemple: 11010

(AFE2)₁₆

=40960+3840+224+2

=
$$A * 16^3 + F * 16^2 + E * 16^1 + 2 * 16^0$$

= $10 * 16^3 + 15 * 16^2 + 14 * 16^1 + 2 * 16^0$

$$= (45\ 026)_{10}$$

Exemple: 11010

(AFE2)₁₆

$$= A * 16^3 + F * 16^2 + E * 16^1 + 2 * 16^0$$

$$= 10 * 16^3 + 15 * 16^2 + 14 * 16^1 + 2 * 16^0$$

$$=40960+3840+224+2$$

$$= (45\ 026)_{10}$$

Exercice : trouvez le codage décimal de

- (EF3)₁₆
- (A2B9)₁₆

 $\begin{array}{c|c} 250 & 16 \\ \hline 10 & 15 \end{array}$

 $\begin{array}{c|c} 250 & 16 \\ \hline A & 15 \end{array}$

 $\begin{array}{c|c} 250 & 16 \\ \hline A & F \end{array}$

sens de la lecture $(250)_{10} = (FA)_{16}$

Exercice : trouvez le codage hexadécimal de

- (1615)₁₀
- (2495)₁₀

11010010

1 1 0 1 0 0 1 0

$$\begin{array}{ccc} 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ D & & 2 & & & \\ (11010010)_2 & = & (D2)_{16} \end{array}$$

$$\begin{array}{ccc} 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ D & & 2 & & & \\ (11010010)_2 & = & (D2)_{16} & & & \end{array}$$

Exercice : trouvez le codage hexadécimal de

- **(1001011)**₂
- **(1001001000)**₂

Règle

Remplacer chaque caractère hexadécimal par son codage binaire sur 4 bits

$$(F8D)_{16}$$

- = 1111 + 1000 + 1101 (+ ⇒ concaténation)
- $= (1111110001101)_2$

Règle

Remplacer chaque caractère hexadécimal par son codage binaire sur 4 bits

$$(F8D)_{16}$$

$$= (1111110001101)_2$$

Exercice: trouvez le codage binaire de

- (23A)₁₆
- (C17)₁₆

Question

Pourquoi un octet = 8 bits et pas 10, 100 ou 1 000?

Question

Pourquoi un octet = 8 bits et pas 10, 100 ou 1 000?

Réponse

L'octet est le plus petit nombre de bits pouvant contenir un seul caractère (son code **ASCII**).

Code ASCII: American Standard Code for Information Interchange

- Standardisé dans les années 60
- Première version permettant de coder les caractères sur 7 bits (soit 128 caractères possibles)
 - 0 à 31 : pour les caractères de contrôle (retour à la ligne, tabulation, escape...)
 - 48 à 57 : pour les caractères numériques
 - 65 à 90 : pour les lettres en majuscule
 - 97 à 122 : pour les lettres en minuscule
- Deuxième version permettant de coder les caractères sur 8 bits (soit 256 caractères possibles) pour ajouter les lettres accentuées

Pour plus de détails, voir

```
https://fr.wikibooks.org/wiki/Les_ASCII_de_0_%C3%A0_ 127/La_table_ASCII
```

Autres codages

- **EBCDIC** (Extended Binary-Coded Decimal Interchange Code) : proposé par **IBM** et permettant de coder des caractères sur 8 bits.
- **Unicode**: permettant le codage de tous les alphabets (arabe, hébreu...) sur 16 bits (Documentation officielle).