FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN COMPLEMENTOS DE MATEMÁTICA II

Práctica 0: Relaciones

1. En el conjunto $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, considerar la relación

$$R = \{(0,1), (0,3), (1,1), (1,5), (3,2), (3,8), (4,4), (4,9), (5,1), (5,2), (5,3), (5,9), (6,2), (6,8), (7,1), (7,7), (7,9)\}.$$

- 1. Graficar R.
- 2. Determinar:
 - a) R(0), $R(\{1,2,3\})$, R(A).
 - b) $R^{-1}(0)$, $R^{-1}(\{1,2,3\})$, $R^{-1}(A)$.
- 2. Sean R y S relaciones sobre un conjunto A. Probar:
 - 1. $dom(R \cap S) \subset dom(R) \cap dom(S)$.
 - 2. $dom(R \cup S) = dom(R) \cup dom(S)$.
 - 3. $dom(R S) \supset dom(R) dom(S)$.
 - 4. $\operatorname{im}(R \cap S) \subset \operatorname{im}(R) \cap \operatorname{im}(S)$.
 - 5. $\operatorname{im}(R \cup S) = \operatorname{im}(R) \cup \operatorname{im}(S)$.
 - 6. $\operatorname{im}(R S) \supset \operatorname{im}(R) \operatorname{im}(S)$.
- 3. Sean $R \in \mathsf{Rel}(A, B)$ y $S \in \mathsf{Rel}(B, C)$ relaciones, construir una relación $R \circ S \in \mathsf{Rel}(A, C)$. Mostrar que esta construcción es asociativa.
- **4.** Mostrar que Rel(A, B) es "equivalente" a $A \to \mathcal{P}(B)$.
- 5. Sean $R, S, S_1, S_2, T, T_1, T_2$ relaciones apropiadas. Probar:
 - 1. $R \subseteq R \circ R^{-1} \circ R$
 - 2. $S_1 \subseteq S_2$ y $T_1 \subseteq T_2$ implica que $(S_1 \circ T_1) \subseteq (S_2 \circ T_2)$
 - 3. $(R \circ S) \cap T \subseteq R \circ (S \cap (R^{-1} \circ T))$
- **6.** Sea $R \in \text{Rel}(A, A)$. Probar:
 - 1. R reflexiva sii $\Delta_A \subseteq R$

- 2. R simétrica si
i $R\subseteq R^{-1}$
- 3. R antisimétrica sii $R \cap R^{-1} \subseteq \Delta_A$
- 4. R transitiva sii $R \circ R \subseteq R$

donde
$$\Delta_A = \{(a, a) : a \in A\}.$$

- 7. Sean R y S relaciones sobre un conjunto A. Determinar la validez de los siguientes enunciados:
 - 1. Si R y S son reflexivas, entonces $R \cap S$ también lo es.
 - 2. Si R y S son reflexivas, entonces $R \cup S$ también lo es.
 - 3. Si R y S son simétricas, entonces $R \cap S$ también lo es.
 - 4. Si R y S son simétricas, entonces $R \cup S$ también lo es.
 - 5. Si R y S son antisimétricas, entonces $R \cap S$ también lo es.
 - 6. Si R y S son antisimétricas, entonces $R \cup S$ también lo es.
 - 7. Si $R \vee S$ son transitivas, entonces $R \cap S$ también lo es.
 - 8. Si R y S son transitivas, entonces $R \cup S$ también lo es.
 - 9. Si R es reflexiva (simétrica, antisimétrica, transitiva), entonces R^{-1} también lo es.
- 8. Sea A un conjunto con n elementos. ¿Cuántas relaciones hay en A? ¿Cuántas relaciones tales que R(A) = A hay en A? ¿Cuántas relaciones reflexivas hay en A?
- 9. Analizar si las siguientes relaciones son o no relaciones de equivalencia:
 - 1. En \mathbb{Z} , la relación $aRb \Leftrightarrow a-b$ es par.
 - 2. En $\{f: A \to B\}$ las relaciones siguientes:
 - a) $fRq \Leftrightarrow f(A) \subset q(A)$.
 - b) $fRg \Leftrightarrow f(A) = g(A)$.
 - c) $fRq \Leftrightarrow f^{-1}(A) = q^{-1}(A)$.
 - 3. Isomorfismo de grafos.
- 10. En $\mathbb{R} \times \mathbb{R}$ se define la siguiente relación:

$$(a,b)R(c,d) \Leftrightarrow a+d=c+b.$$

Práctica 0: Relaciones Página 2

- 1. Probar que R es una relación de equivalencia.
- 2. Mostrar en un esquema la clase de equivalencia de (1,1) definida por R.
- **11.** Dada $f: A \to B$, probar que $\ker(f)$ es una relación de equivalencia sobre A:

$$\ker(f) = \{(a, a') \mid a, a' \in A, f(a) = f(a')\}$$

- **12.** Sea espar : $\mathbb{N} \to \mathbb{B}$ la función que toma valor True en los pares y valor False en los impares. Calcular $\mathbb{N}/\ker(\mathsf{espar})$.
- 13. Dar una definición de ker(f) en términos de f, la composición y la inversa de relaciones (no vale usar pertenencia, comprensión de conjuntos, etc.).
- **14.** Dada una función $f: A \to B$ y una relación de equivalencia $R \subseteq \ker(f)$, probar que existen $h: A \to A/R$ y $g: A/R \to B$ tal que $f = g \circ h$.

Práctica 0: Relaciones Página 3