з: $return\ (pk, sk)$	$3 \colon s \leftarrow r + sk \cdot e \mod p$	3: return 1
$2 \colon pk \leftarrow g^{sk}$	$e \leftarrow H(pk I m)$	2: if $H(pk R m)=e$
1: $sk \leftarrow \mathbb{Z}_p$	1 : $r \overset{\$}{\leftarrow} \mathbb{Z}_p$; $I \leftarrow g^r$	1: $R \leftarrow g^s \cdot pk^{-e}$
$Kg(1^k)$	Sign(sk,m)	$Vfy(pk, m, \sigma)$

Answer 2: Yes, key-prefixed short Schnorr signatures are secure!

Summary of Our Results

Research Questions

Are short Schnorr signatures secure against preprocessing attacks?

Signature Length:

Schnorr

Short Schnorr

$3k + \log S$ bits (with preprocessing)

e.g., if $S = 2^{k/2}$ then we have a 3.5k-bit signature

Summary of Our Results

Research Questions

Are short Schnorr signatures secure against preprocessing attacks?

▶ Answer 2: Yes, key-prefixed short Schnorr signatures are secure!

$Kg(1^k)$	Sign(sk,m)	$Vfy(pk, m, \sigma)$
1: $sk \leftarrow \mathbb{Z}_p$	1 : $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$; $I \leftarrow g^r$	$1 \colon R \leftarrow g^s \cdot pk^{-e}$
$2 \colon pk \leftarrow g^{sk}$	$a: e \leftarrow H(pk I m)$	2: if $H(pk R m) = e$
з $:$ return (pk,sk)	$3 \colon s \leftarrow r + sk \cdot e \mod p$	3: return 1
	4 : return $\sigma = (s,e)$	4: else return 0

Signature Length:

Summary of Our Results

Research Questions

Are short Schnorr signatures secure against preprocessing attacks?

▶ Answer 2: Yes, key-prefixed short Schnorr signatures are secure!

$Kg(1^k)$	Sign(sk,m)	$Vfy(pk,m,\sigma)$
1: $sk \leftarrow \mathbb{Z}_p$	1 : $r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$; $I \leftarrow g^r$	$1 \colon R \leftarrow g^s \cdot pk^{-e}$
$2 \colon pk \leftarrow g^{sk}$	$a: e \leftarrow H(pk I m)$	2: if $H(pk\ R\ m)=e$
з $:$ return (pk,sk)	$3 \colon s \leftarrow r + sk \cdot e \mod p$	3: return 1
	4 : return $\sigma = (s, e)$	4: else return 0

Caveats:

- Not a standardized implementation
- Preprocessing attacker is time-bounded (large enough for practical attacks)
- Complex proof technique: compression argument