Analízis III

Vizsga jegyzet

Szabó Krisztián

Tartalom

1	Met	rikus-, normált-, euklidesz-terek. Környezet, belső pont, nyílt halmaz.	2
	1.1	Metrika, metrikus tér fogalma	2
	1.2	Diszkrét metrikus tér	3
	1.3	(\mathbb{K}^n,ϱ) metrikus tér	3
	1.4	$(C[a, b], \varrho_p)$ metrikus tér	3
	1.5	Metrikák ekvivalenciája	4
	1.6	Normált terek	4
	1.7	Normák ekvivalenciája	5
	1.8	Euklideszi terek	6
2	Konvergens sorozatok metrikus terekben. Halmazok zártságának jellemzése		
	konv	vergens sorozatokkal. Banach- és Hilbert-tér.	8
	2.1	Konvergencia metrikus térben	8
	2.2	Határérték egyértelműsége	8
	2.3	Vektorsorozatok	9
	2.4	Koordináta-sorozatok konvergenciája	9
	2.5	Függvényterek konvergenciája	11
	2.6		11
	2.7	Cauchy-sorozat fogalma	12
	2.8	Banach- és Hilbert-tér fogalma	12
	2.9	Bolzano-Weierstrass-kiválasztási tétel	13
	2.10	Függvénytér teljessége	14
3	A koordináta-függvények szerepe a differenciálhatóságban. A $Jacobi$ -mátrix		
			16
	3.1	Koordináta-függvények és a differenciálhatóság kapcsolata	16
4	Többször differenciálható függvények. Young-tétel.		18
	4.1		18
	4.2		18
	4.3	Többváltozós-vektorfüggvények függvények magasabb rendű differenciálhatósága	
	4.4		19

1 Metrikus-, normált-, euklidesz-terek. Környezet, belső pont, nyílt halmaz.

Eredeti vizsgacím: Metrikus-, normált-, euklideszi-terek. Környezet, belső pont, nyílt halmaz. Torlódási pont, zárt halmaz. Nyílt (zárt) halmazok uniója, metszete. A $(\mathbb{K}^n, \varrho_p)$, $(\mathbb{K}^n, ||.||_p)$, $(\mathbb{K}^n, \langle . \rangle)$, $(C[a, b], \varrho_p)$, $(C[a, b], ||.||_p)$ $(0 < n \in \mathbb{N}, 1 \le p \le +\infty)$ terek.

1.1 Metrika, metrikus tér fogalma

Definíció. (Axióma) Legyen az $X \neq \emptyset$ egy nem üres halmaz, és tegyük fel, hogy a

$$\varrho: X^2 \to [0, +\infty)$$

függvény a következő tulajdonságokkal rendelkezik:

- 1. minden $x \in X$ esetén $\varrho(x, x) = 0$;
- 2. ha $x, y \in X$ és $\varrho(x, y) = 0$, akkor x = y;
- 3. bármely $x, y \in X$ válaszással $\varrho(x, y) = \varrho(y, x)$;
- 4. tetszőleges $x, y, z \in X$ elemekkel $\varrho(x, y) \leq \varrho(x, z) + \varrho(y, z)$.

Azt mondjuk, hogy ekkor a ϱ egy távolságfüggvény (vagy idegen szóval metrika). Ha $x, y \in X$, akkor $\varrho(x, y)$ az x, y elemek távolsága. Az (X, ϱ) rendezett párt metrikus térnek nevezzük. Az X-beli elemek távolsága tehát nemnegatív szám. Bármely elem önmagától vett távolsága nulla, továbbá két különböző elem távolsága mindig pozitív. A távolság szimmetrikus, azaz két elem távolsága független az illető eleme sorrendjétől. A 4. tulajdonságot háromszög-egyenlőtlenségként fogjuk idézni.

Mutassuk meg, hogy a háromszög-egyenlőtlenségből annak az alábbi változata is következik:

$$|\varrho(x, z) - \varrho(y, z)| \le \varrho(x, y) \quad (x, y, z \in X).$$

Ui. a 4. axióma miatt

$$\varrho(x, z) \le \varrho(x, y) + \varrho(y, z),$$

tehát

$$\varrho(x, z) - \varrho(y, z) \le \varrho(x, y).$$

Ha itt az x-et és az y-t felcseréljük, akkor a

$$-\big(\varrho(x,\,z)-\varrho(y,\,z)\big)=\varrho(y,\,z)-\varrho(x,\,z)\leq\varrho(y,\,x)=\varrho(x,\,y)$$

egyenlőtlenséghez jutunk. Az utóbbi két becslés egybevetésével kapjuk a jelzett egyenlőtlenséget.

1.2 Diszkrét metrikus tér

Bármely $X \neq \emptyset$ halmaz esetén megadható

$$\varrho: X^2 \to [0, +\infty)$$

távolságfüggvény, ui. pl. a

$$\varrho(x, y) := \begin{cases} 0 & (x = y) \\ 1 & (x \neq y) \end{cases} ((x, y) \in X^2)$$

leképezés nyilván eleget tesz a fenti, a metrikát meghatározó axiómáknak. Az így definiált (X, ϱ) terek a diszkrét jelzővel illetjük.

1.3 (\mathbb{K}^n, ϱ) metrikus tér

Legyen $1 \le n \in \mathbb{N}$, 0 , és

$$x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{K}^n$$

esetén definiáljuk az (x, y)-ban a

$$\varrho_p: \mathbb{K}^n \times \mathbb{K}^n \to [0, +\infty)$$

függvény helyettesítési értékét a következőképpen:

$$\varrho_p(x, y) := \begin{cases} \sum_{i=1}^n |x_i - y_i|^p & (p \le 1) \\ \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p} & (p > 1). \end{cases}$$

Terjesszük ki a ϱ_p értelmezését $p=\infty:=+\infty$ -re is az alábbiak szerint:

$$\varrho_{\infty}(x, y) := \max\{|x_i - y_i| : i = 1, \dots, n\}.$$

Belátható, hogy (\mathbb{K}^n , ϱ_p) metrikus tér.

1.4 $(C[a, b], \rho_p)$ metrikus tér

Valamilyen [a, b] korlátos és zárt intervallum $(a, b \in \mathbb{R}, a < b)$ esetén jelöljük C[a, b]-vel az [a, b]-n értelmezett, valós értékű és folytonos függvények halmazát. Ha $0 , akkor tekintsük az előbbi példa "folytonos" változatát: ha <math>f, g \in C[a, b]$, akkor

$$\varrho_{p}(f, g) := \begin{cases} \int_{a}^{b} |f - g|^{p} & (0$$

Az előbbi példákhoz hasonlóan látható be, hogy $(C[a,\,b],\,\varrho_p)$ is metrikus tér.

1.5 Metrikák ekvivalenciája

Definíció. Azt mondjuk, hogy valamilyen $X \neq \emptyset$ halmaz és az X^2 -en értelmezett

$$\varrho, \, \sigma: X^2 \to [0, +\infty)$$

metrikák esetén a ϱ és a σ ekvivalens, ha alkalmas c, C pozitív számokkal

$$c \cdot \varrho(x, y) \le \sigma(x, y) \le C \cdot \varrho(x, y) \quad (x, y \in X).$$

Könnyű belátni, hogy ha \mathcal{M} jelöji az előbb említett metrikák halmazát, és a ϱ , $\sigma \in \mathcal{M}$ elemekre $\varrho \sim \sigma$ azt jelenti, hogy a ϱ és σ ekvivalens, akkor az így értelmezett (\mathcal{M}^2 -beli) \sim reláció ekvivalencia.

Pl. a fenti $(\mathbb{K}^n, \varrho_p)$ metrikus terekre a ϱ_p metrikák közül $p \geq 1$ esetén bármelyik kettő ekvivalens. A továbbiakban az

$$X := \mathbb{K}^n \quad (1 \le n \in \mathbb{N})$$

esetben a $\varrho_1, \, \varrho_2, \, \varrho_\infty$ metrikák valamelyikét fogjuk használni.

1.6 Normált terek

Definíció. (Axióma) Tegyük fel, hogy a szóban forgó $X \neq \emptyset$ halmaz vektortér a \mathbb{K} felett. Azt mondjuk, hogy a

$$||.||: X \to [0, +\infty)$$

leképezés *norma*, ha

- 1. ||0|| = 0;
- 2. ha $x \in X$ és ||x|| = 0, akkor x = 0;
- 3. bármely $\lambda \in \mathbb{K}, x \in X$ esetén $||\lambda \cdot x|| = |\lambda| \cdot ||x||$;
- 4. tetszőleges $x, y \in X$ elemekre $||x + y|| \le ||x|| + ||y||$.

A 4. axiómát szintén háromszög-egyenlőtlenségként említjük a későbbiekben. Ha pl. X jelöli a

$$\mathbb{K}^n \ (0 < n \in \mathbb{N}), \, C[a, \, b] \ (-\infty < a < b < +\infty)$$

halmazok bármelyikét, akkor a vektorok (függvények) szokásos összeadására és számmal való szorzására nézve az X lineáris tér a \mathbb{K} , ill. az \mathbb{R} felett. Az említett terekben a nulla-elemet 0-val felölve azzt kapjuk továbbá, hogy $1 \le p \le +\infty$ esetén

$$||x||_p := \varrho(x, 0) \quad (x \in X)$$

norma, azaz ilyen p-kre

$$(\mathbb{K}^n, ||.||_p), (C[a, b], ||.||_p)$$

normált terek. Tehát

$$||x||_p = \begin{cases} \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} & (1 \le p < +\infty) \\ \max\{|x_i| : i = 1, \dots, n\} & (p = +\infty) \end{cases} \quad (x = (x_1, \dots, x_n) \in \mathbb{K}^n),$$

speciálisan az n=1 esetben

$$||x||_p = |x| \quad (x \in \mathbb{K}, \ 1 \le p \le +\infty),$$

valamint

$$||f||_{p} = \begin{cases} \left(\int_{a}^{b} |f|^{p}\right)^{1/p} & (1 \le p < +\infty) \\ \max\{|f(x)| : x \in [a, b]\} & (p = +\infty) \end{cases} \quad (f \in C[a, b]).$$

Világos, hogy a most mondott példákban

$$\varrho_p(x, y) = ||x - y||_p \quad (x, y \in X).$$

Sőt, ha most (X, ||.||) egy tetszőleges normált teret jelöl, akkor a

$$\varrho(x, y) := ||x - y|| \quad ((x, y) \in X^2)$$

függvény metrika, azaz (X, ϱ) metrikus tér:

$$(X, \varrho) \equiv (X, ||.||).$$

1.7 Normák ekvivalenciája

Definíció. Azt mondjuk, hogy az X (\mathbb{K} -feletti) vektortéren értelmezett

$$||.||, ||.||_{\star} : X \to [0, +\infty)$$

normák ekvivalensek (erre is a ||.|| \sim ||.|| $_{\star}$ jelölést fogjuk használni), ha alkalmas $c,\,C$ pozitív számokkal

$$c \cdot ||x|| \leq ||x||_{\star} \leq C \cdot ||x|| \quad (x \in X).$$

1.8 Euklideszi terek

A fent bevezetett $||.||_p$ norma a p=2 esetben speciális esete egy tágabb normaosztálynak.

Definíció. (Axióma) Legyen X egy vektortér a \mathbb{K} felett, az

$$\langle . \rangle : X \to \mathbb{K}$$

függvényről pedig tegyük fel, hogy

- 1. minden $x, y \in X$ mellett $\langle x, y \rangle = \overline{\langle x, y \rangle}$ (ahol a $\overline{\xi}$ szimbólum a $\xi \in \mathbb{K}$ szám komplex konjugáltját jelöli);
- 2. bármely $x \in X \setminus \{0\}$ esetén $\langle x, x \rangle \in \mathbb{R}$ és $\langle x, x \rangle > 0$;
- 3. ha $x,\,y\in X$ és $\lambda\in\mathbb{K},$ akkor $\langle\lambda\cdot x,\,y\rangle=\lambda\cdot\langle x,\,y\rangle;$
- 4. tetszőleges $x, y, z \in X$ elemekre fennáll a következő egyenlőtlenség:

$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle.$$

Ha $x, y \in X$, akkor az

$$\langle x, y \rangle$$

számot az x, y elemek skaláris szorzatának, az $(X, \langle . \rangle)$ párt pedig skaláris szorzat-térnek (vagy euklideszi térnek) nevezzük.

Jelentse pl. X a

$$\mathbb{K}^n, \ (1 \leq n \in \mathbb{N}), \ C[a, \, b] \ (-\infty < a < b < +\infty)$$

halmazok valamelyikét, és

$$\langle x, y \rangle := \begin{cases} \sum_{i=1}^{n} x_i \overline{y_i} & (x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{K}^n) \\ \int_{a}^{b} xy & (x, y \in C[a, b]). \end{cases}$$

Ekkor $(X, \langle . \rangle)$ euklideszi tér, továbbá

$$||x||_2 = \sqrt{\langle x, x \rangle} \quad (x \in X)$$

norma. Ez utóbbi egyenlőségnek sokkal általánosabb háttere van, ui. tetszőleges $(X, \langle . \rangle)$ euklideszi teret véve

$$||x|| := \sqrt{\langle x, x \rangle} \quad (x \in X)$$

norma. Itt a háromszög-egyenlőtlenség igazolásában fontos szerep jut a

$$|\langle x, y \rangle| \le ||x|| \cdot ||y|| \quad (x, y \in X)$$

Cauchy-Bunyakovszkij-egyenlőtlenségnek. Ezt "lefordítva" az előbbi említett euklideszi terekre az alábbi egyenlőtlenségeket kapjuk:

$$\left| \sum_{i=1}^{n} x_i \overline{y_i} \right| \le \sqrt{\sum_{i=1}^{n} |x_i|^2} \cdot \sqrt{\sum_{i=1}^{n} |y_i|^2} \quad (x, y \in \mathbb{K}^n),$$

$$\left| \int_{a}^{b} fg \right| \le \sqrt{\int_{a}^{b} f^2} \cdot \sqrt{\int_{a}^{b} g^2} \quad (f, g \in C[a, b]).$$

2 Konvergens sorozatok metrikus terekben. Halmazok zártságának jellemzése konvergens sorozatokkal. Banach- és Hilbert-tér.

Eredeti vizsgacím:

Konvergens sorozatok metrikus terekben. Konvergencia \mathbb{K}^n -ben, a koordináta-sorozatok szerepe. Bolzano-Weierstrass-kiválasztási tétel. Konvergencia a $(C[a, b], ||.||_{\infty})$ térben (függvénysorozatok, az egyenletes, ill. a pontonkénti konvergencia fogalma). Halmazok zártságának a jellemzése konvergens sorozatokkal. A teljesség fogalma, Banach-tér, Hilber-tér. A $(C[a, b], ||.||_{\infty})$ tér teljessége.

2.1 Konvergencia metrikus térben

Definíció. Legyen (X, ϱ) metrikus tér, és legyen az

$$(x_n): \mathbb{N} \to X$$

egy, az X elemeiből álló sorozat. Az (x_n) sorozatot konvergensnek nevezzük, ha van olyan $\alpha \in X$, amelyre bármely $\varepsilon > 0$ "hibakorlát" mellett egy alkalmas $N \in \mathbb{N}$ indexszel igaz a

$$\varrho(x_n, \alpha) < \varepsilon \quad (n \in \mathbb{N}, n > N)$$

becslés. Ha ilyen α nincs, akkor azt mondjuk, hogy az (x_n) sorozat divergens.

Például a diszkrét metrikus térben valamely (x_n) sorozat akkor és csak akkor konvergens, ha kvázikonstasn, azaz létezik olyan $M \in \mathbb{N}$ természetes szám, hogy

$$x_n = x_M \quad (n \in \mathbb{N}, n \ge M).$$

Ha ui. egy sorozat ilyen, akkor a konvergencia definíciójában az α helyébe az x_M -et, tetszőleges $\varepsilon>0$ mellett pedig N helyébe M-et írva triviálisan fennáll a

$$\varrho(x_n, \alpha) = \varrho(x_n, x_M) = \varrho(x_M, x_M) = 0 < \varepsilon \quad (n \in \mathbb{N}, n \ge M)$$

egyenlőtlenség.

2.2 Határérték egyértelműsége

Tétel. Legyen valamilyen (X, ϱ) metrikus tér esetén az

$$x = (x_n) : \mathbb{N} \to X$$

sorozat konvergens. Ekkor a konvergencia definíciójában szereplő $\alpha \in X$ elem egyértelműen létezik.

Bizonyítás. Tegyük fel, hogy a tételben említett $X \ni \alpha$ -n kívül egy $\beta \in X$ elemre is igaz a konvergencia definíciója: bármilyen $\varepsilon > 0$ számhoz megadható olyan $M \in \mathbb{N}$, hogy

$$\varrho(x_n, \beta) < \varepsilon \quad (n \in \mathbb{N}, n > M).$$

Ekkor a ϱ metrikára vonatkozó háromszög-egyenlőtlenség miatt tetszőlegesen választott

$$n \in \mathbb{N}, n > \max\{N, M\}$$

indexre

$$\varrho(\alpha, \beta) \le \varrho(\alpha, x_n) + \varrho(x_n, \beta) < 2 \cdot \varepsilon.$$

Következésképpen

$$0 \le \varrho(\alpha, \beta) < 2 \cdot \varepsilon$$
.

Mivel itt az $\varepsilon > 0$ bármilyen (pozitív) szám lehet, ezért csak $\varrho(\alpha, \beta) = 0$ lehetséges. A metrika axiómái szerint innen viszont $\alpha = \beta$ adódik.

2.3 Vektorsorozatok

Legyen most

$$1 \le s \in \mathbb{N}, \ 0$$

és tekintsünk egy

$$x = (x_n) : \mathbb{N} \to \mathbb{K}^s$$

sorozatot. Ha

$$x_n = (x_{n1}, \ldots, x_{ns}) \in \mathbb{K}^s \quad (n \in \mathbb{N}),$$

akkor minden $i = 1, \ldots, s$ mellett definiálhatjuk az

$$x^{(i)} := (x_{ni})$$

számsororatot, az x sorozat i-edik koordináta-sorozatát. Ekkor az x vektorsorozat konvergenciája az alábbiak szerint "kezelhető" a koordináta-sorozatainak a konvergenciája révén.

2.4 Koordináta-sorozatok konvergenciája

Tétel. Az

$$x = (x_n) : \mathbb{N} \to \mathbb{K}^s$$

sorozat akkor és csak akkor konvergens az előbbi ($\mathbb{K}^s,\,\varrho_p$) metrikus térben, ha minden $x^{(i)}$ $(i=1,\,\ldots,\,s)$ koordináta-sorozata konvergens. Továbbá

$$\mathbb{K}^s \ni (\alpha_1, \ldots, \alpha_s) = \lim_{n \to +\infty} (x_n) \quad \Longleftrightarrow \quad \alpha_i = \lim_{n \to +\infty} (x^{(i)}) \quad (i = 1, \ldots, s).$$

Bizonyítás. Tegyük fel először, hogy a tételbeli x sorozat konvergens, legyen

$$\alpha = (\alpha_1, \ldots, \alpha_s) \in \mathbb{K}^s$$

a határértéke. A ϱ_p metrikak definíciója szerint ez azt jelenti, hogy tetszőleges $\varepsilon > 0$ számot megadva van olyan $N \in \mathbb{N}$, amellyel az $n \in \mathbb{N}$, n > N indexekre

$$\varepsilon > \varrho_{p}(x_{n}, \alpha) = \begin{cases} \sum_{i=1}^{s} |x_{ni} - \alpha_{i}|^{p} & (p < 1) \\ \left(\sum_{i=1}^{s} |x_{ni} - \alpha_{i}|^{p}\right)^{1/p} & (1 \leq p < +\infty) \\ \max\{|x_{ni} - \alpha_{i} : i = 1, \dots, s\} & (p = +\infty). \end{cases}$$

Világos, hogy bármely $i = 1, \ldots, s$ esetén

$$\varrho(x_n, \alpha) \ge \begin{cases} |x_{ni} - \alpha_i|^p & (0$$

ezért

$$|x_{ni} - \alpha_i| < \varepsilon \quad (n \in \mathbb{N}, n > \mathbb{N}, p \ge 1)$$

és

$$|x_{ni} - \alpha_i| < \sqrt[p]{\varepsilon} \quad (n \in \mathbb{N}, n > N, 0$$

Mindez pontosan azt jelenti, hogy az $x^{(i)}$ koordináta-sorozat konvergens és

$$\lim_{n \to +\infty} (x^{(i)}) = \alpha_i \quad (i = 1, \dots, s).$$

Fordítva, ha minden $\boldsymbol{x}^{(i)}$ koordinátat-sorozat konvergens, akkor legyen

$$\alpha_i := \lim_{n \to +\infty} \left(x^{(i)} \right) \quad (i = 1, \dots, s)$$

és

$$\alpha := (\alpha_1, \ldots, \alpha_s) \in \mathbb{K}^s.$$

Ha $\varepsilon > 0$ tetszőleges, akkor minden i = 1, ..., s mellett létezik olyan $N_i \in \mathbb{N}$ küszöbindex, hogy

$$|x_{ni} - \alpha_i| < \varepsilon \quad (n \in \mathbb{N}, n > N_i).$$

Legyen $N := \max \{N_1, \ldots, N_s\}$, ekkor

$$|x_{ni} - \alpha_i| < \varepsilon \quad (n \in \mathbb{N}, n > N, i = 1, \dots, s).$$

Ezért

$$\varrho_p(x_n, \alpha) = \sum_{i=1}^s |x_{ni} - \alpha_i|^p < s \cdot \varepsilon^p \quad (n \in \mathbb{N}, n > N, 0$$

$$\varrho_p(x_n, \alpha) = \left(\sum_{i=1}^s |x_{ni} - \alpha_i|^p\right)^{1/p} < s^{1/p} \cdot \varepsilon \quad (n \in \mathbb{N}, n > N, 1 \le p < +\infty),$$

$$\varrho_p(x_n, \alpha) = \max\{|x_{ni} - \alpha_i| : i = 1, \dots, s\} < \varepsilon \quad (n \in \mathbb{N}, n > N, 1 \le p = \infty).$$

Így minden $0 esetén az <math>(x_n)$ sorozat konvergens a $(\mathbb{K}^s, \varrho_p)$ metrikus térben, és $\lim_{n \to +\infty} (x_n) = \alpha$.

2.5 Függvényterek konvergenciája

Valamely $-\infty < a < b < +\infty$ mellett tekintsük az X := C[a, b] halmazt és a ϱ_{∞} metrikát. Ha az

$$f_n \in C[a, b] \quad (n \in \mathbb{N})$$

(függvény)sorozat konvergens és

$$f := \lim_{n \to +\infty} (f_n) \in C[a, b],$$

akkor tetszőleges $\varepsilon>0$ számhoz van olyan $N\in\mathbb{N},$ hogy minden $n\in\mathbb{N},$ n>N esetén

$$\varrho_{\infty}(f_n, f) < \varepsilon,$$

azaz

$$\max \{|f_n(x) - f(x)| : a \le x \le b\} < \varepsilon.$$

Azt mondjuk, hogy az (f_n) függvénysorozat egyenletesen konvergens. Az f az (f_n) határfüggvénye.

Nyilvánvaló, hogy ekkor az előbbi n indexekre bármelyik $x \in [a, b]$ helyen

$$|f_n(x) - f(x)| < \varepsilon$$

igaz. Más szóval ez azt jelenti, hogy az $(f_n(x))$ (szám)sorozat konvergens és a határértéke f(x). Röviden: az (f_n) függvénysorozat pontonként konvergens.

2.6 Halmazok zártságának jellemzése konvergens sorozatokkal

Tétel. Legyen (X, ϱ) metrikus tér. Az $\emptyset \neq A \subset X$ halmaz akkor és csak akkor zárt, ha minden konvergens

$$(x_n): \mathbb{N} \to A$$

sorozatra $\lim_{n \to +\infty} (x_n) \in A$.

Bizonyítás. Tegyük fel először azt, hogy az A halmaz zárt, de valamilyen

$$(x_n): \mathbb{N} \to A$$

konvergens sorozatra

$$\alpha := \lim_{n \to +\infty} (x_n) \not\in A.$$

Ekkor tehát $\alpha \in X \setminus A$, ahol az $X \setminus A$ halmaz nyílt. Így van olyan $K(\alpha)$ környezet, hogy

$$K(\alpha) \subset X \setminus A$$
.

Ugyanakkor egy $N \in \mathbb{N}$ indexszel

$$A \ni x_k \in K(\alpha) \subset X \setminus A \quad (N < k \in \mathbb{N}),$$

ami nyilván nem lehet.

Most tegyük fel azt, hogy tetszőleges konvergens

$$(x_n): \mathbb{N} \to A$$

sorozat határértékére $\lim(x_n) \in A$, és lássuk be, hogy az A halmaz zárt. Legyen ehhez $\alpha \in A'$, ekkor egy alkalmas

$$(z_n): \mathbb{N} \to A$$

sorozatra $\lim(z_n) = \alpha$. A kiinduló feltételünk szerint ezért $\alpha \in A$, azaz $A' \subset A$ és (egy korábbi tételre hivatkozva) az A zárt.

2.7 Cauchy-sorozat fogalma

Definíció. Legyen (X, ϱ) metrikus tér és

$$(x_n): \mathbb{N} \to X$$

sorozat. Ezt a sorozat Cauchy-sorozat,ha tetszőleges $\varepsilon>0$ esetén létezik olyan $N\in\mathbb{N},$ hogy

$$\varrho(x_n, x_m) < \varepsilon \quad (m, n \in \mathbb{N}, m, n > N).$$

2.8 Banach- és Hilbert-tér fogalma

Legyen adott az (X, ||.||) normált tér. Azt mondjuk, hogy ez a tér teljes (vagy Banach-tér), ha a ||.|| norma által indukált

$$\varrho(x,\,y):=||x-y||\quad (x,\,y\in X)$$

metrikával az (X, ϱ) metrikus tér teljes. Világos, hogy a

$$(\mathbb{K}^s, ||.||_p) \quad (1 \le s \in \mathbb{N}, \ 1 \le p \le +\infty)$$

terek valamennyien Banach-terek. Hasonlóan: a $(C[a, b], ||.||_{\infty})$ tér is Banach-tér.

Azt mondjuk, hogy az $(X, \langle . \rangle)$ euklideszi tér teljes (vagy Hilbert-tér), ha a $\langle . \rangle$ skaláris szorzás által meghatározott

$$||x|| := \sqrt{\langle x, x \rangle} \quad (x \in X)$$

normával (X, ||.||) Banach-tér. Így pl. a

$$(\mathbb{K}^s, \langle . \rangle) \quad (1 \le s \in \mathbb{N})$$

tér Hilbert-tér, ahol

$$\langle x, y \rangle = \sum_{i=1}^{s} x_i \overline{y_i} \quad (x = (x_1, \dots, x_s), y = (y_1, \dots, y_s) \in \mathbb{K}^s).$$

2.9 Bolzano-Weierstrass-kiválasztási tétel

Tétel. A $(\mathbb{K}^s, \varrho_p)$ $(1 \le s \in \mathbb{N}, 0 metrikus térben minden korlátos sorozatnak van konvergens részsorozata.$

Bizonyítás. Emlékeztetünk egy korábbi tételre, miszerint az

$$x = (x_n) : \mathbb{N} \to \mathbb{K}^s$$

sorozat akkor és csak akkor konvergens, ha minden $x^{(i)}$ $i=1,\ldots,s$ koordinátasorozata konvergens.

A feltételezésünk szerint most az (x_n) sorozat korlátos. Van tehát olyan r>0 szám, amellyel

$$\varrho(x_n, 0) < r \quad (n \in \mathbb{N}).$$

A ϱ_p metrika definícióját figyelembe véve innen az is rögtön adódik, hogy $1 \leq p \leq +\infty$ esetén

$$|x_{ni}| < r \quad (n \in \mathbb{N}, i = 1, \dots, s),$$

ill. 0 mellett

$$|x_{ni}| < r^{1/p} \quad (n \in \mathbb{N}, i = 1, \dots, s),$$

azaz, hogy minden $x^{(i)}$ $(i=1,\ldots,s)$ koordináta-sorozat (mint számsorozat) is korlátos. A számsorozatokra ismert Bolzano-Weierstrass-kiválasztási tétel alapján ezért létezik olyan $\nu^{(1)}$ indexsorozat, hogy az

$$x^{(1)}\circ\nu^{(1)}$$

részsorozat konvergens. Világos, hogy az $x^{(2)} \circ \nu^{(1)}$ részsorozat is korlátos, ezért van olyan $\nu^{(2)}$ indexsorozat is amelyre az

$$(x^{(2)} \circ \nu^{(1)}) \circ \nu^{(2)} = x^{(2)} \circ (\nu^{(1)} \circ \nu^{(2)})$$

részsorozat is konvergens. A konstrukciót folytatva végül olyan

$$\nu^{(i)} \quad (i = 1, \ldots, s)$$

indexsorozatokat kapunk, hogy az

$$x^{(i)} \circ (\nu^{(1)} \circ \cdots \circ \nu^{(i)}) \quad (i = 1, \ldots, s)$$

részsorozatok konvergensek. Legyen

$$\nu := \nu^{(1)} \circ \cdots \circ \nu^{(s)},$$

ekkor a ν sorozat indexsorozat, és minden

$$x^{(i)} \circ \nu \quad (i = 1, \ldots, s)$$

sorozat részsorozata a konvergens $x^{(i)} \circ (\nu^{(1)} \circ \cdots \circ \nu(i))$ sorozatnak. Így az

$$x^{(i)} \circ \nu \quad (i = 1, \ldots, s)$$

számsorozatok mindegyike konvergens. Ez azt jelenti, hogy az $x \circ \nu$ részsorozat is konvergens.

2.10 Függvénytér teljessége

Tétel. A $(C[a, b], \varrho_{\infty})$ metrikus tér teljes.

Bizonyítás. Tegyük fel, hogy az

$$(f_n): \mathbb{N} \to C[a, b]$$

(függvény)sorozat (a ϱ_{∞} metrika értelmében) Cauchy-sorozat. Ez most azt jelenti, hogy bármilyen $\varepsilon>0$ számot is adunk meg, ehhez találunk olyan $N\in\mathbb{N}$ indexet, hogy

$$\varrho_{\infty}(f_n, f_m) =$$

$$\max\{|f_n(x) - f_m(x)| : a \le x \le b\} < \varepsilon \quad (n, m \in \mathbb{N}, n, m > N).$$

Világos, hogy tetszőleges $x \in [a, b]$ esetén egyúttal

$$|f_n(x) - f_m(x)|\varepsilon \quad (n, m \in \mathbb{N}, n, m > N) \tag{*}$$

is teljesül, más szóval az $(f_n(x))$ számsorozat Cauchy-soroozat. Létezik tehát az

$$f(x) := \lim_{n \to +\infty} f_n(x) \quad (x \in [a, b])$$

("pontonkénti") határérték. Továbbá (*) miatt

$$|f_n(x) - f(x)| = \lim_{m \to +\infty} |f_n(x) - f_m(x)| \le \varepsilon \quad (x \in [a, b], n \in \mathbb{N}, n > N).$$
 (**)

Mutassuk meg, hogy az így definiált

$$f:[a, b] \to \mathbb{R}$$

függvény folytonos, azaz $f \in C[a, b]$. Legyen ehhez valamilyen $\xi \in [a, b]$ mellett $\varepsilon > 0$ tetszőleges, ekkor az előbbiek szerint bármilyen (rögzített) $n \in \mathbb{N}, n > N$ esetén

$$|f(x) - f(\xi)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(\xi)| + |f_n(\xi) - f(\xi)| \le 2 \cdot \xi + |f_n(x) - f_n(\xi)| \quad (x \in [a, b]).$$

Mivel $f_n \in C[a, b]$, így $f_n \in C\{\xi\}$ is igaz. Következésképpen létezik olyan $\delta > 0$ szám, amellyel

$$|f_n(x) - f_n(\xi)| < \varepsilon \quad (x \in [a, b], |x - \xi| < \delta).$$

Mindezeket figyelembe véve azt mondhatjuk, hogy

$$|f_n(x) - f_n(\xi)| < 2 \cdot \varepsilon + \varepsilon \quad (x \in [a, b], |x - \xi| < \delta).$$

Ez nem jelent mást, mint azt, hogy $f \in C\{\xi\}$. Az itt szereplő ξ tetszőleges eleme volt az [a, b] intervallumnak, ezért $f \in C[a, b]$. Végül, a $(\star\star)$ becslés szerint (az ottani szereplőkkel)

$$\varrho_{\infty}(f_n, f) = \max\{|f_n(x) - f(x)| : a \le x \le b\} \le \varepsilon \quad (n \in \mathbb{N}, n > N),$$

azaz

$$\varrho_{\infty}(f_n, f) \to 0 \quad (n \to +\infty).$$

Ez azzal ekvivalens, hogy a $(C[a, b], \varrho_{\infty})$ metrikus térben az (f_n) sorozat konvergál az f függvényhez. Ezzel beláttuk, hogy a szóban forgó térben minden Cauchy-sorozat konvergens, azaz a $(C[a, b], \varrho_{\infty})$ teljes metrikus tér.

3 A koordináta-függvények szerepe a differenciálhatóságban. A *Jacobi*-mátrix kiszámítása.

3.1 Koordináta-függvények és a differenciálhatóság kapcsolata

Tétel. Legyen $1 \le n, m \in \mathbb{N}$. Az

$$f = (f_1, \ldots, f_m) \in \mathbb{R}^n \to \mathbb{R}^m$$

függvény akkor és csak akkor differenciálható az $a \in \text{int } \mathcal{D}_f$ helyen, ha minden $i=1,\ldots,m$ esetén az

$$f_i \in \mathbb{R}^n \to \mathbb{R}$$

koordináta-függvény differenciálható az a-ban. Ha $f \in D\{a\}$, akkor az f'(a) Jacobi-mátrix a következő alakú:

$$f'(a) = \begin{bmatrix} \operatorname{grad} f_1(a) \\ \operatorname{grad} f_2(a) \\ \vdots \\ \operatorname{grad} f_m(a) \end{bmatrix}$$

Bizonyítás. Tegyük fel először is azt, hogy $f \in D\{a\}$, és jelöljük az $f'(a) \in \mathbb{R}^{m \times n}$ Jacobi-mátrix sorvektorait A_i -vel $(i = 1, \ldots, m)$

$$f'(a) = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix}.$$

Ekkor alkalmas

$$\eta = (\eta_1, \ldots, \eta_m) \in \mathbb{R}^n \to \mathbb{R}^m$$

függvénnyel

$$\eta(h) \to 0 \quad (||h|| \to 0)$$

és a

$$h \in \mathbb{R}^n \quad (a+h \in \mathcal{D}_f)$$

helyeken

$$f(a+h) - f(a) = (f_1(a+h) - f_1(a), \dots, f_m(a+h) - f_m(a)) =$$

$$f'(a) \cdot h + \eta(h) \cdot ||h|| =$$

$$(\langle A_1, h \rangle, \dots, \langle A_m, h \rangle) + (\eta_1(h) \cdot ||h||, \dots, \eta_m(h) \cdot ||h||).$$

Következésképpen minden $i = 1, \ldots, m$ mellett az η függvény

$$\eta_i \in \mathbb{R}^n \to \mathbb{R}$$

koordináta-függvényeivel

$$f_i(a+h) - f_i(a) = \langle A_i, h \rangle + \eta_i(h) \cdot ||h|| \quad (h \in \mathbb{R}^n, a+h \in \mathcal{D}_f). \tag{*}$$

Mivel bármely i = 1, ..., m indexre

$$\eta_i(h) \to 0 \quad (||h|| \to 0),$$

ezért az előbbi (\star) összefüggés azt jelenti, hogy $f_i \in D\{a\}$ és $A_i = \operatorname{grad} f_i(a)$ $(i=1,\ldots,m)$. Most azt tegyük fel, hogy $f_i \in D\{a\}$ $(i=1,\ldots,m)$, amikor is valamilyen

$$\eta_i \in \mathbb{R}^n \to \mathbb{R}, \, \eta_i \to 0 \, (||h|| \to 0) \quad (i = 1, \, \dots, \, m)$$

függvényekkel

$$f_i(a+h)-f_i(a) = \langle \operatorname{grad} f_i(a), h \rangle + \eta_i(h) \cdot ||h|| \quad (h \in \mathbb{R}^n, a+h \in \mathcal{D}_f, i = 1, \dots, m).$$

Ha tehát

$$A := \begin{bmatrix} \operatorname{grad} f_1(a) \\ \operatorname{grad} f_2(a) \\ \vdots \\ \operatorname{grad} f_m(a) \end{bmatrix} \in \mathbb{R}^{m \times n},$$

akkor az

$$\eta := (\eta_1, \ldots, \eta_m) \in \mathbb{R}^n \to \mathbb{R}^m$$

függvénnyel

$$f(a+h) - f(a) = A \cdot h + \eta(h) \cdot ||h||,$$

ahol $\eta(h) \to 0$ (||h|| $\to 0$). Ezért $f \in D\{a\}$ és f'(a) = A.

4 Többször differenciálható függvények. Young-tétel.

4.1 Többváltozós-valós függvények másodrendű differenciálhatósága

Definíció. Legyen valamilyen $1 \leq n \in \mathbb{N}$ esetén $f \in \mathbb{R}^n \to \mathbb{R}$. Tegyük fel, hogy $a \in \operatorname{int} \mathcal{D}_f$. Azt mondjuk, hogy az f függvény kétszer differenciálható az a-ban ha minden $x \in K(a) \subset \mathcal{D}_f$ esetén $f \in D\{x\}$, és

$$\partial_i f \in D\{a\} \quad (i = 1, \dots, n).$$

Ha a fenti feltételek teljesülnek akkor léteznek a

$$\partial_i(\partial_i f)(a)$$
 $(i, j = 1, \ldots, n)$

parciális deriváltak. Ehhez persze nem szükséges, hogy a $\partial_i f$ $(i=1,\ldots,n)$ függvények deriválhatók legyenek az a helyen. Ha tehát a fenti

$$f \in \mathbb{R}^n \to \mathbb{R}$$

függvényre $f \in D^2\{a\}$, akkor minden i, j = 1, ..., n mellett létezik a $\partial_{ij} f(a)$ másodrendű parciális derivált. Az

$$f''(a) := (\partial_{ij} f(a))_{i,j=1}^n = \begin{bmatrix} \partial_{11} f(a) & \partial_{12} f(a) & \dots & \partial_{1n} f(a) \\ \partial_{21} f(a) & \partial_{22} f(a) & \dots & \partial_{2n} f(a) \\ \vdots & \vdots & \dots & \vdots \\ \partial_{n1} f(a) & \partial_{n2} f(a) & \dots & \partial_{nn} f(a) \end{bmatrix} \in \mathbb{R}^{n \times n}$$

mátrixot az f függvény a-beli másodrendű deriváltmátrixnának nevezzük. A későbbiekben tárgyalandó Young-tétel miatt ez egy szimmetrikus mátrix.

4.2 Többváltozós-valós függvények magasabb rendű differenciálhatósága

Definíció. Legyen valamilyen $1 \leq n \in \mathbb{N}$ esetén $f \in \mathbb{R}^n \to \mathbb{R}$. Tegyük fel, hogy $a \in \operatorname{int} \mathcal{D}_f$, $1 \leq s \in \mathbb{N}$, továbbá egy alkalmas $K(a) \subset \mathcal{D}_f$ környezettel minden $x \in K(a)$ pontban az f függvény s-szer differenciálható: $f \in D^s\{x\}$. Belátható, hogy ekkor a K(a) pontjaiban az f összes s-edrendű parciális deriváltja létezik. Azt mondjuk, hogy az f függvény az a-ban (s+1)-szer differenciálható, ha minden s-edrendű parciális deriváltfüggvénye differenciálható az a-ban.

4.3 Többváltozós-vektorfüggvények függvények magasabb rendű differenciálhatósága

Definíció. Legyen $1 \le n, m \in \mathbb{N}$ és

$$f = (f_1, \ldots, f_m) \in \mathbb{R}^n \to \mathbb{R}^m, a \in \text{int } \mathcal{D}_f,$$

ill. $1 \leq k \in \mathbb{N}$. Azt mondjuk, hogy az f függvény k-szor differenciálható az a-ban, ha

$$f_j \in D^k\{a\} \quad (j = 1, \dots, m).$$

4.4 Young-tétel

Tétel. Legyen $2 \le n \in \mathbb{N}$, $f \in \mathbb{R}^n \to \mathbb{R}$, $a \in \text{int } \mathcal{D}_f$, $2 \le s \in \mathbb{N}$ és $f \in D^s\{a\}$. Ekkor tetszőleges $k_1, \ldots, k_s \in \{1, \ldots, n\}$ indexek esetén ezek bármely j_1, \ldots, j_s permutációjára

$$\partial_{k_1 \dots k_s} f(a) = \partial_{j_1 \dots j_s} f(a).$$

Bizonyítás. Az s-szerinti teljes indukcióra gondolva elegendő az s=2 esettel foglalkoznunk. Ekkor tehát azt kell belátnunk, hogy ha $f \in D^2\{a\}$, akkor

$$\partial_{ij}f(a) = \partial_{ji}f(a) \quad (i, j = 1, \dots, n).$$

Világos, hogy csak az $i \neq j$ eset az "érdekes". Ezen túl (könnyen meggondolhatóan) azt is feltehetjük, hogy n = 2. Más szóval az

$$f \in \mathbb{R}^2 \to \mathbb{R}$$

függvényekre

$$a = (a_1, a_2) \in \text{int } \mathcal{D}_f, f \in D^2\{a\},\$$

és ennek alapján azt kell bebizonyítanunk, hogy

$$\partial_{12}f(a) = \partial_{21}f(a).$$

Legyen ehhez r>0 olyan, amellyel (\mathbb{R}^n -ben a $||.||:=||.||_{\infty}$ normát választva)

$$K(a) = \{ x \in \mathbb{R}^2 : ||x - a|| < r \} \subset \mathcal{D}_f,$$

és vezessük be az alábbi jelölést: az $u, v \in (-r, r)$ helyeken

$$\Delta(u, v) := f(a_1 + u, a_2 + v) - f(a_1 + u, a_2) + f(a_1, a_2) - f(a_1, a_2 + v).$$

Ha rögzítjük a $v \in (-r, r)$ számot, akkor a

$$\varphi(u) := f(a_1 + u, a_2 + v) - f(a_1 + u, a_2) \quad (u \in (-r, r))$$

függvénnyel

$$\Delta(u, v) = \varphi(u) - \varphi(0) \quad (u \in (-r, r)).$$

Az $f \in D^2\{a\}$ feltétel miatt az előbbi $K_r(a)$ környezettől azt is megkövetelhetjük, hogy egyrészt minden $x \in K_r(a)$ helyen $f \in D\{x\}$ (így egyúttal léteznek az $\partial_1 f(x)$, $\partial_2 f(x)$ parciális deriváltak is), másrészt

$$\partial_1 f$$
, $\partial_2 f \in D\{a\}$.

Következésképpen a most definiált

$$\varphi: (-r, r) \to \mathbb{R}$$

függvény differenciálható, ezért a Lagrange-középérték-tétel alapján

$$\varphi(u) - \varphi(0) = \varphi'(\xi) \cdot u \quad (u \in (-r, r)),$$

ahol $\xi \in (0, u)$ (vagy $\xi \in (u, 0)$). A parciális deriváltak definíciójára gondolva

$$\varphi'(u) = \partial_1 f(a_1 + u, a_2 + v) - \partial_1 f(a_1 + u, a_2) \quad (u \in (-r, r)),$$

így

$$\varphi(u) - \varphi(0) = (\partial_1 f(a_1 + \xi, a_2 + v) - \partial_1 f(a_1 + \xi, a_2)) \cdot u \quad (u \in (-1, r)).$$

A $\partial_1 f \in D\{a\}$ differenciálhatósági feltételből

grad
$$\partial_1 f(a) = (\partial_{11} f(a), \, \partial_{12} f(a)),$$

és egy alkalmas

$$\eta \in \mathbb{R}^2 \to \mathbb{R}, \, \eta(z) \to 0 \quad (||z|| \to 0)$$

függvénnyel

$$\partial_1 f(a_1 + \xi, a_2 + v) - \partial_1 f(a_1 + \xi, a_2) =$$

$$\partial_1 f(a_1 + \xi, a_2 + v) - \partial_1 f(a_1, a_2) - (\partial_1 f(a_1 + \xi, a_2) - \partial_1 f(a_1, a_2)) =$$

 $\left\langle \operatorname{grad} \partial_1 f(a), \, (\xi, \, v) \right\rangle + \eta(\xi, \, v) \cdot ||(\xi, \, v)|| - \left\langle \operatorname{grad} \partial_1 f(a), \, (\xi, \, 0) \right\rangle - \eta(\xi, \, 0) \cdot ||(\xi, \, 0)|| = 0$

$$\partial_{12} f(a) \cdot v + \eta(\xi, v) \cdot ||(\xi, v)|| - \eta(\xi, 0) \cdot |\xi|.$$

Speciálisan a $0 \neq u = v \in (-r, r)$ választással

$$\Delta(u, u) = \varphi(u) - \varphi(0) = \partial_{12} f(a) \cdot u^2 + \eta(\xi, u) \cdot ||(\xi, u)|| \cdot u - \eta(\xi, 0) \cdot |\xi| \cdot u,$$

amiből

$$\frac{\Delta(u, u)}{u^2} = \partial_{12} f(a) + \eta(\xi, u) \cdot \frac{||(\xi, u)||}{u} - \eta(\xi, 0) \cdot \frac{|\xi|}{u}$$

következik. Ezért $|\xi| < |u|$ alapján

$$\left| \frac{\Delta(u, u)}{u^2} - \partial_{12} f(a) \right| \le |\eta(\xi, u)| + |\eta(\xi, 0)| \to 0 \quad (u \to 0),$$

hiszen

$$||(\xi, u)||, ||(\xi, 0)|| \le |u| \to 0 \quad (u \to 0).$$

Azt kapjuk ezzel, hogy

$$\partial_{12}f(a) = \lim_{u \to 0} \frac{\Delta(u, u)}{u^2}.$$
 (*)

Legyen most rögzített $u \in (-r, r)$ mellett

$$\psi(v) := f(a_1 + u, a_2 + v) - f(a_1, a_2 + v) \quad (v \in (-r, r)).$$

Ekkor

$$\Delta(u, v) = \psi(v) - \psi(0) \quad (v \in (-r, r))$$

és az előbbiekkel analóg módon az adódik, hogy

$$\partial_{21} f(a) = \lim_{v \to 0} \frac{\Delta(v, v)}{v^2}.$$

Itt a jobb oldali limesz ugyanaz, mint a (\star) -ban. Így $\partial_{21} f(a) = \partial_{12} f(a)$.