

A Very Brief Introduction to the Localization and SLAM Problems Part 1

Alberto Pretto

Thanks to Wolfram Burgard, Giorgio Grisetti, Davide Scaramuzza and Cyrill Stachniss for some slides!

Outline

- Motivations and problems definition
- Probabilistic tools
- Main ingredients: Motions, observations and maps
- Localization: main paradigms
- SLAM: main paradigms
- Hints on Visual SLAM and current trends

Localization

The problem of estimating the **robot's position given a map** of the environment and a sequence of sensor readings.

Problem classes:

Position tracking

Global localization

Kidnapped robot problem (recovery)

Robot: a device that moves through the environment, and modify it

State: collection of all aspects of the robot and the environment that may have

some impact on the behavior of the robot

Robots and State

The SI AM Problem

SLAM (acronym for Simultaneous Localization and Mapping) is the problem of computing the robot's pose and the map of the environment at the same time.

(Mapping: building a map given the robot's

location)

The SLAM Problem

- Localization: estimating the robot's position given a map of the environment and a sequence of sensor readings.
- Mapping: building a map given the robot's locations
- SLAM is a chicken-or-egg problem!

Localization Example

Estimate the robot's poses given landmarks

Mapping Example

Estimate the landmarks given the robot's poses

SLAM Example

Estimate the robot's poses and the landmarks at the same time

SLAM is Relevant

Definition of the Localization Problem

Given

- The robot controls
- Observations

Wanted

 Path (or current position) of the robot

$$u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$$

 $z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$

$$x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$$

Definition of the SLAM Problem

Given

- The robot controls
- Observations

Wanted

- Map of the environment
- Path of the robot

$$u_{1:T} = \{u_1, u_2, u_3 \dots, u_T\}$$

 $z_{1:T} = \{z_1, z_2, z_3 \dots, z_T\}$

m

$$x_{0:T} = \{x_0, x_1, x_2 \dots, x_T\}$$

What are Robot Controls?

In localization and SLAM, motion controls are used:

- From controls sent to the actuators (e.g., wheel motors) estimate the angular and translational velocity
- Or, when wheel econders are available: use odometry, that is actually an output, as an input control

What are Observations?

Landmarks

What are Observations?

Range scans

(Source: Wikipedia)

What are Observations?

3D scans/Point clouds

Maps

Volumetric (e.g., grid-based)

Landmark-based

Probabilistic Approach

Uncertainty in the robot's motions and observations

Use the probability theory to **explicitly** represent the uncertainty

A simple localization example

Discrete Random Variables

A discrete random variable X can take on a countable number of values, e.g. $\{x_1, x_2, ..., x_n\}$.

 $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i , e.g. $\{0.1, 0.3, ..., 0.05\}$.

P(.) is called probability mass function, with:

$$\sum_{x} P(x) = 1$$

Continuous Random Variables

A continuous random variable X can take values in a continuous space.

 $p(X=x_i)$, or $p(x_i)$, is a probability density function.

$$\Pr(x \in (a,b)) = \int_{a}^{b} p(x)dx \qquad \qquad \int p(x) dx = 1$$

Discrete vs Continuous RV

Joint and Conditional Probability

- P(X=x and Y=y) = P(x,y)
- If X and Y are independent then
 - P(x,y) = P(x) P(y)
- P(x | y) is the probability of x given y
 - $-P(x \mid y) = P(x,y) / P(y)$
 - $P(x,y) = P(x \mid y) P(y)$ (chain rule)
- If X and Y are independent then
 - $P(x \mid y) = P(x)$

Marginalization

Discrete case

Continuous case

$$P(x) = \sum_{y} P(x, y)$$

$$p(x) = \int_{y} p(x, y) dy$$

$$P(x) = \sum_{y} P(x \mid y) P(y)$$

$$p(x) = \int_{y} p(x \mid y) p(y) dy$$

The second equations represent a variant of the marginalization rule, called **Law of Total Probability**.

Marginalization

Bayes Formula

Intuition: obtain an unknown target probability density in terms of other, **possibly known**, probability densities

$$P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)$$

$$\Rightarrow$$

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Normalization

Remove the evidence via normalization

$$P(x | y) = \frac{P(y | x) P(x)}{P(y)} = \eta P(y | x) P(x)$$
$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y | x) P(x)}$$

More conditions? No problem!

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

Recursive Bayesian Updating

Given a stream of **observations** $z = \{z_1, ..., z_t\}$, how can we estimate $P(x \mid z_1, ..., z_t)$?

Use the Bayes rule:

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,...,z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov Assumption

 z_n is independent of z_1, \dots, z_{n-1} if we know x

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

$$= \eta P(z_n \mid x) P(x \mid z_1, ..., z_{n-1})$$

Recursive update
$$= \eta_{1...n} \prod_{i=1}^{n} P(z_i \mid x) P(x)$$

Actions

- The robot turns its wheels to move, uses its manipulator to grasp an object, ...
- How can we incorporate such actions $u = \{u_1, ..., u_t\}$, i.e. $\mathbf{p}(\mathbf{x} \mid \mathbf{u})$?
 - Define a new probability density (also called **state transition**) p(x | u, x') (e.g., x' previous state).

Actions: use marginalization

Continuous case

$$P(x \mid u) = \int P(x \mid u, x') P(x') dx'$$

Discrete case

$$P(x \mid u) = \sum P(x \mid u, x') P(x')$$

Reminder: the Localization Problem

Given

- The robot controls
- Observations

Wanted

 Path (or current position) of the robot

$$u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$$

 $z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$

$$x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$$

Probabilistic Localization Problem

Given a stream of observations z and action data u:

$$d_t = \{u_1, z_1, \dots, u_t, z_t\}$$

Estimate of the robot position X as:

$$P(x_t | u_1, z_1 \dots, u_t, z_t)$$

This posterior of the state is also called **Belief**

Markov Assumption (Cont)

A variable x_t depends only on its direct predecessor state x_{t-1} and on the latest action u_t

Another very important assumption: static world

Bayes Filters with actions and observations

$$\begin{array}{ll} \textbf{Bel}(x_t) = P(x_t \mid u_1, z_1 \dots, u_t, z_t) \\ \textbf{Bayes} &= \eta \ P(z_t \mid x_t, u_1, z_1, \dots, u_t) \ P(x_t \mid u_1, z_1, \dots, u_t) \\ \textbf{Markov} &= \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_1, \dots, u_t) \\ \textbf{Total prob.} &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \dots, u_t, x_{t-1}) \\ P(x_{t-1} \mid u_1, z_1, \dots, u_t) \ dx_{t-1} \\ \textbf{Markov} &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \dots, u_t) \ dx_{t-1} \\ \textbf{Markov} &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \dots, z_{t-1}) \ dx_{t-1} \\ \hline &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1} \\ \hline \end{array}$$

Bayes Filter Algorithm

- 1. Algorithm **Bayes_filter(** *Bel(x)*, *y* **)**:
- 2. $\eta = 0$
- 3. If y is an **observation** z then
- 4. For all x do
- 5. Bel'(x) = P(z | x) Bel(x)
- 6. $\eta = \eta + Bel'(x)$
- 7. For all x do
- 8. Bel'(x) = η Bel'(x)
- 9. Else if d is an action u then
- 10. For all x do
- 11. $Bel'(x) = \int P(x | u, x') Bel(x') dx'$
- 12. Return Bel'(x) For all x'

We are considering a discrete case

Integrate observations

Normalize

Integrate actions

Action and Sensor Model

In the Bayes filter algorithm, we used two probabilites densities to update the Belief:

- Observation, or Sensor Model $P(z_t \mid x_t)$
- Action Model $P(x_t | u_t, x_{t-1})$
- When the action is the movement of the robot, the action model is called **Motion Model**

Observation Model

Model the uncertainty of the observations, i.e., the probability of a measurement z_t given that the robot is at position x_t .

Sensors for Mobile Robots

- Contact sensors
 - Bumpers
- Internal sensors
 - Accelerometers (spring-mounted masses)
 - Gyroscopes (spinning mass, laser light)
 - Compasses, inclinometers (earth magnetic field, gravity)
- Proximity (distacen) sensors
 - Sonar (time of flight)
 - Radar (phase and frequency)
 - Laser range-finders (triangulation, tof, phase)
- Visual sensors: Cameras
- Global reference sensors: GPS

And many others...

Example: Beam-based Proximity Model

How to estimate the sensor model density?

- Put the sensor at several known distances from some obstacles
- Collect sensor measurements

Example: Estimate the Model from Real Data

Laser sensor

Sonar sensor

Example: Beam-based Proximity Model

Measurement noise

Unexpected obstacles

Example: Beam-based Proximity Model

Resulting Mixture Density

$$P(z \mid x, m) = \begin{pmatrix} \alpha_{\text{hit}} \\ \alpha_{\text{unexp}} \\ \alpha_{\text{max}} \\ \alpha_{\text{rand}} \end{pmatrix}^{T} \cdot \begin{pmatrix} P_{\text{hit}}(z \mid x, m) \\ P_{\text{unexp}}(z \mid x, m) \\ P_{\text{max}}(z \mid x, m) \\ P_{\text{rand}}(z \mid x, m) \end{pmatrix}$$

Robot Motion

Motion Model

Model the uncertainty of the motion

Motion Model

How to estimate the motion model density?

- 1) Move the robot from position A to position B, and collect the relative motion from the odometry.
- 2) Measure and collect the actual travelled distance with a meter, and repeat 2) for several trials.
- 3) Estimate the density parameters given the estimated and travelled distances

Summary

- Localization means estimating the robot's pose, mapping is the task of modeling the environment
- SLAM does both the previous tasks simultaneously
- Solve such problems in a probabilistc way: not a single solution, but a probability "value" for each possible solution.
- Obtain the unknown target probability densities in terms of other, experimentally estimated, probability densities (e.g., motion and sensor model)