LAPORAN PRAKTIKUM SISTEM INSTRUMENTASI ELEKTRONIKA MODUL IV

Nama/NRP Mahasiswa: Gabriel Sebastian Hidayat / 5103018003

Hari & jam Prakt.: Rabu, 8 September 2021

Dosen / Asisten: Lanny Augustine **Paraf:**

Tugas awal (jawaban diletakkan di Lampiran II):

Jika amplitudo input adalah 5Vpeak, hitunglah Amplitudo output pada Gain -3dB, -40dB, -60dB!

A. Highpass Filter Orde 2

Screenshoot rangkaian (3 rangkaian filter identik, hanya berbeda nilai komponen)

Perhitungan desain rangkaian:

Highposs Filter Orde I (
$$f_c = 1000 \text{ Hz}$$
)

(a) Butterworth ($a_1 = \sqrt{2}$; $b_1 = 1$; $C = 0.01 \text{ AF}$)

(R₁ = $\frac{1}{\text{T.f.}} Ca_1$ = $\frac{1}{\text{T.f.}} (1000)(0.01.10^{-6})(\sqrt{2})$ = 22507.52

(R₂ = $\frac{a_1}{4\text{T.f.}} Cb_1$ = $\frac{5\text{T.f.}}{4\text{T.f.}} (1000)(0.01.10^{-6})(1)$ = 11253.52

(b) Bessel ($a_1 = 1,3617$; $b_1 = 0.618$; $C = 0.01 \text{ AF}$)

(c) R₁ = $\frac{1}{\text{T.f.}} Ca_1$ = $\frac{1}{\text{T.f.}} (1000)(0.01.10^{-6})(1.5617)$ = 23375.52

(d) R₂ = $\frac{a_1}{4\text{T.f.}} Cb_1$ = $\frac{1}{4\text{T.f.}} (1000)(0.01.10^{-6})(0.618)$ = 17534.52

(e) R₁ = $\frac{1}{\text{T.f.}} Ca_1$ = $\frac{1}{\text{T.f.}} (1000)(0.01.10^{-6})(0.618)$ = 29888 & $\frac{1}{4\text{T.f.}} Cb_1$ = $\frac{1}{\text{T.f.}} Ca_1$ = $\frac{1}{\text{T.f.}} C$

Hasil percobaan:

Vcc = 9 volt;
$$f_{cutoff} = 1000 \text{ Hz}$$
; $C1 = C2 = C = 0.01 \mu\text{F}$

Tabel 4.1

Vin	Fin	Fout	Vout (Vpeak)		
(Vpeak	(Hz)	(Hz)	Butterworth	Bessel	Chebychev
)			$R_1 = 22507 \Omega$	$R_1 = 23375 \Omega$	R_1 = 29888 Ω
			R_2 = 11253 Ω	R_2 = 17534 Ω	$R_2 = 4390 \Omega$
5 V	10	10	-0.00449706	-0.00418491	-0.00474113
	100	100	0.0463392	0.772873	0.0217318
	1000	1000	3.55269	3.55056	3.65289
	10000	10000	5.01627	4.99587	5.06595

Catatan: Sama seperti modul 3, saya akan export hasil simulasi dahulu agar gambar sinyalnya lebih baik. Plotting dilakukan dengan Python & R, untuk dokumen source plot & file hasil export akan disertakan di google drive:

https://drive.google.com/drive/folders/1VPh25QU0d0TTBIjMc40O82AMlhxL1AsK?usp=sharing

• Grafik respon frekuensi terhadap gain dalam skala logaritmik (diagram Bode) HPF orde 2:

Butterworth High Pass Filter - Orde 2

Frekuensi (Hz)

Bessel High Pass Filter Orde 2

HPF Filter Chebychev Orde 2

Cutoff = 1000 Hz

• Puncak *ripple* HPF Chebychev pada frekuensi input = 1584.893 Hz, amplitudo output HPF:

$$Gain = 2.96181 dB = 1.406340552 \ kali$$

$$V_{out} = 5*1.406340552 = 7.031702762 V$$

• Gambarkan bentuk gelombang input dan output (time domain) HPF saat frekuensi cutoff:

Butterworth

Butterworth HPF Orde 2

frekuensi input = 1 kHz

Zoom in Vout

Bessel

Bessel HPF @F = 1000 Hz

Orde 2

Zoom In Vout Bessel HPF Orde 2

Chebychev

Chebychev 3-dB HPF orde 2

Vout Chebychev HPF orde 2

Gambarkan bentuk gelombang input dan output (time domain) HPF saat Gain = -40dB:

Butterworth

Butterworth HPF Orde 2

frekuensi input = 100 Hz

Bessel

Bessel HPF @F = 100 Hz

Orde 2

Zoom In Vout Bessel HPF Orde 2

Chebychev 3-dB

Chebychev 3-dB HPF orde 2

Frekuensi input = 100 Hz

Vout Chebychev HPF orde 2

B. Highpass Filter Orde 3

Screenshoot rangkaian (3 rangkaian filter identik, hanya berbeda di nilai komponen)

Perhitungan desain rangkaian:

Highpeass Filter orde: 3 (
$$f_c = 1000 \text{ Hz}$$
)

@ Butterworth ($a_1 = 1$; $a_2 = 1$; $b_2 = 1$; $C = 0.01 \text{ AF}$)

@ Stage 1

 $R_0 = \frac{1}{\tan \frac{1}{2} a_1 C} = \frac{1}{2\pi (1000)(1)(0.01.10^{-6})} = 15915 \text{ JZ}$

@ Stage 2

 $R_1 = \frac{1}{\pi f_c C a_2} = \frac{1}{\pi (1000)(0.01.10^{-6})(1)} = 31830 \text{ JZ}$
 $R_2 = \frac{a_1}{4\pi f_c C b_2} = \frac{1}{4\pi (1000)(0.01.10^{-6})(1)} = 7957 \text{ JZ}$

(b) Bessel (
$$a_1 = 0.756$$
; $a_2 = 0.996$; $b_2 = 0.4772$; $C = 0.0144$)

(c) Starge 1

 $R_0 = \frac{1}{2\pi f_c Q_c C} = \frac{1}{2\pi (1000)(0.756)(0.01.10^{-6})} = 21052.8$

(d) Starge 2

 $R_1 = \frac{1}{\pi f_c C a_2} = \frac{1}{\pi (1000)(0.01.10^{-6})(0.996)} = 31958.8$
 $R_2 = \frac{a_1}{4\pi f_c C b_2} = \frac{0.996}{4\pi (1000)(0.01.10^{-6})(0.9772)} = 16609.8$

© 3-dB Chebychev

(a1 = 3,3496; a2 = 0,3559; b2 = 1,1923; C = 0,01 MF)

Stage 1

Ro =
$$\frac{1}{2\pi f_c Ca_1} = \frac{1}{2\pi C(1000)(0,01.10^{-6})(3,3496)}$$

= 4751 52

© Stage 2

R1 = $\frac{1}{\pi f_c Ca_2} = \frac{1}{\pi C(1000)(0,01.10^{-6})(0,3559)} = 89938 \text{ R}$

R2 = $\frac{\alpha_2}{4\pi f_c Cb_2} = \frac{0,3559}{4\pi C(1000)(0,01.10^{-6})(1,1923)} = 23755$

Hasil percobaan:

Vcc = 9 volt;
$$f_{cutoff} = 1000 \text{ Hz}$$
; $C0 = C1 = C2 = C = 0.01 \mu\text{F}$

Tabel 4.2

Vin	Fin	Fout	Vout (Vpeak)		
(Vpeak)	(Hz)	(Hz)	Butterworth	Bessel	Chebychev
			$R_0 = 15915 \Omega$	$R_0 = 21052 \Omega$	$R_0 = 4751 \Omega$
			$R_1 = 31830 \Omega$	$R_1 = 31958 \Omega$	$R_1 = 89438 \Omega$
			R_2 = 7957 Ω	R_2 = 16609 Ω	R_2 = 2375 Ω
5 V	10	10	0.1523273	0.153918	0.439579
	100	100	0.157482	0.168192	0.440882
	1000	1000	3.72844	3.70712	4.09061
	10000	10000	5.11806	5.17626	5.26553

• Grafik respon frekuensi terhadap gain dalam skala logaritmik (diagram Bode) HPF orde 3:

Butterworth

Butterworth HPF orde 3

Cutoff = 1000 Hz

Bessel

Bessel HPF Orde 3

Cutoff = 1000 Hz

Chebychev 3-dB

Chebychev HPF Orde 3

Cutoff = 1000 Hz

• Puncak *ripple* HPF Chebychev pada frekuensi input = 1995.262 Hz, amplitudo output HPF:

$$Gain = -3.10983 = 0.699050418 \ kali$$

 $V_{out} = 5 V \times 0.699050418 = 3.495252092 V$

• Gambarkan bentuk gelombang input dan output (time domain) HPF saat frekuensi cutoff :

HPF Butterworth Orde 3

Zoom in Vout Butterworth HPF Orde 3

Frekuensi input = 1000 Hz

HPF Bessel Orde 3

Zoom in Vout Bessel HPF Orde 3

Frekuensi input = 1000 Hz

Chebychev HPF Orde 3

Zoom in Vout Chebychev HPF Orde 3

Frekuensi input = 1000 Hz

• Gambarkan bentuk gelombang input dan output (time domain) HPF saat Gain = -60dB:

HPF Butterworth Orde 3

Zoom in Vout Butterworth HPF Orde 3

HPF Bessel Orde 3

Zoom in Vout Bessel HPF Orde 3

Frekuensi input = 100 Hz

Chebychev HPF Orde 3

Zoom in Vout Chebychev HPF Orde 3

Analisa

dari grafik perbandingan filter berikut:

Perbandingan HPF orde 2

Maka dapat terlihat bahwa Chebychev memberikan roll-off dB yang lebih cepat, sedangkan Bessel yang paling lambat

Demikian juga berlaku untuk filter orde 3. Namun pada filter orde 3, roll-off dB/decade adalah sebesar -60dB / decade, sedangkan pada filter orde 2, roll-off adalah -40 dB/decade. Dengan kata lain, setiap penurunan frekuensi-bagi-10 (misalnya 1000 Hz ke 100 Hz), peredamannya sudah -60 dB, sedangkan pada filter orde 2, peredamannya masih -40 dB.

Kesimpulan

- Filter tipe Chebychev memberikan peredaman yang paling cepat dibandingkan jenis filter lain
- High Pass Filter berfungsi untuk menyaring sinyal dengan frekuensi dibawah parameter *cutoff frequency* agar teredam
- Besarnya peredaman bergantung dengan orde filter yang digunakan, untuk orde 2 adalah -40dB / decade dan -60dB / decade untuk filter orde 3.
- Walaupun filter Chebychev memiliki peredaman yang paling tajam, namun pada daerah *passband* terdapat *ripple* sehingga gain pada *passband* tidak 0 dB, melainkan berdeviasi sebesar n-dB, dimana **n** adalah tipe Chebychev yang digunakan, dan menentukan besarnya ripple maksimum pada daerah *passband* (dalam praktikum yang digunakan adalah 3-dB)

Lampiran (Tugas Awal)

```
Directahur: - Vpeak = 5V

Ditanya: - Output untik: -3dB, -90dB, -60dB

-3dB

Gain (dB) = 20 log (Gain)

Gain = 10 (Som (dB)) = 10 (-10) = 0,7079

Vout = (5V).(0,7079) = 3,59 V

-40dB

Gain = 10 (-10) = 0,05 V

-60dB

Gain = 10 (-50) = 0,005 V = 5mV
```