Precalculus: Functions and Their Graphs - Homework Solutions

Instructor

July 14, 2024

Solutions

- 1. The slope is $m = \frac{8-4}{3-1} = \frac{4}{2} = 2$. Using point-slope form with (1, 4): y 4 = 2(x 1) y = 2x 2 + 4 y = 2x + 2
- 2. Given $f(x) = x^2 2x + 3$ and g(x) = x + 1:

(a)
$$(f \circ g)(x) = f(g(x)) = (x+1)^2 - 2(x+1) + 3 = x^2 + 2x + 1 - 2x - 2 + 3 = x^2 + 2$$

(b)
$$(g \circ f)(x) = g(f(x)) = (x^2 - 2x + 3) + 1 = x^2 - 2x + 4$$

(c)
$$(f \circ g)(2) = 2^2 + 2 = 6$$

- 3. Starting with f(x) = |x|, to get g(x) = |x-1| + 2: 1. Shift 1 unit right: |x-1| 2. Shift 2 units up: |x-1| + 2
- 4. Let $f(x) = x^2 + 1$ and g(x) = 2x 3.

(a)
$$(f+g)(x) = f(x) + g(x) = (x^2+1) + (2x-3) = x^2 + 2x - 2$$

(b)
$$(f \cdot g)(x) = f(x) \cdot g(x) = (x^2 + 1)(2x - 3) = 2x^3 - 3x^2 + 2x - 3$$

(c)
$$(f+q)(3) = 3^2 + 2(3) - 2 = 9 + 6 - 2 = 13$$
 $(f \cdot q)(3) = (3^2 + 1)(2(3) - 3) = 10 \cdot 3 = 30$

5. For
$$f(x) = 3x + 4$$
: $y = 3x + 4$ $x = \frac{y-4}{3}$ $f^{-1}(x) = \frac{x-4}{3}$ $f^{-1}(10) = \frac{10-4}{3} = \frac{6}{3} = 2$

- 6. For $h(x) = x^2 4x 5$:
 - (a) y-intercept: $h(0) = 0^2 4(0) 5 = -5$, so (0, -5)
 - (b) x-intercepts: $x^2 4x 5 = 0$ (x 5)(x + 1) = 0 x = 5 or x = -1
 - (c) Vertex: x = -b/(2a) = -(-4)/(2(1)) = 2 $y = 2^2 4(2) 5 = 4 8 5 = -9$ Vertex is (2, -9)
 - (d) The parabola opens upward because the coefficient of x^2 is positive.
- 7. For $f(x) = \frac{x+2}{x-1}$:
 - (a) Domain: All real numbers except 1 (where denominator equals zero)

- (b) Vertical asymptote: x = 1 Horizontal asymptote: As $x \to \infty$, $y \to 1$
- (c) [Graph would be sketched here]
- 8. $f(x) = x^3 x$ is one-to-one. Proof: If f(a) = f(b), then $a^3 a = b^3 b$. $a^3 b^3 = a b$ $(a-b)(a^2+ab+b^2) = a-b$ $(a-b)(a^2+ab+b^2-1) = 0$ Either a-b=0 or $a^2+ab+b^2-1=0$. The second equation has no real solutions for $a \neq b$. Therefore, a = b, proving the function is one-to-one.
- 9. For $f(x) = \sqrt{x+2}$: Domain: $x+2 \ge 0$, so $x \ge -2$ Range: $y \ge 0$, so $[0,\infty)$
- 10. For $f(x) = 2^x$, to get $g(x) = 2^{x+1} 1$: 1. Shift 1 unit left: 2^{x+1} 2. Stretch vertically by a factor of 2: $2 \cdot 2^x$ 3. Shift 1 unit down: $2^{x+1} 1$
- 11. $\log_2(x+3) = 4 \ 2^4 = x+3 \ 16 = x+3 \ x = 13$
- 12. $x^2 2x 3 = 2x + 1$ $x^2 4x 4 = 0$ (x 4)(x + 0) = 0 x = 4 or x = 0
- 13. Given f(x) = 3x 1 and $g(x) = \frac{x}{2} + 1$: $(f \circ g)(x) = f(g(x)) = 3(\frac{x}{2} + 1) 1 = \frac{3x}{2} + 3 1 = \frac{3x}{2} + 2$ $(g \circ f)(x) = g(f(x)) = \frac{3x 1}{2} + 1 = \frac{3x 1 + 2}{2} = \frac{3x + 1}{2}$
- 14. $y = |x^2 4|$ has: y-intercept at (0, 4) x-intercepts at (-2, 0) and (2, 0) Vertex at (0, 4) Minimum points at (-2, 0) and (2, 0)
- 15. The graph of $f(x) = \frac{1}{x-2}$ is the graph of $y = \frac{1}{x}$ shifted 2 units to the right.