

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (currently amended) A compound having the Formula I Formula II(a):

wherein:

ring B and ring F, independently, and each together with the carbon atoms to which they are attached, are selected from the group consisting of:

- C /
C /
Officel*
- a) ~~an unsaturated 6-membered carbocyclic aromatic ring in which from 1 to 3 carbon atoms may be replaced by nitrogen atoms;~~
 - b) ~~an unsaturated 5-membered carbocyclic aromatic ring, in which, optionally, either~~
 - 1) ~~one carbon atom is replaced with an oxygen, nitrogen, or sulfur atom;~~
 - 2) ~~two carbon atoms are replaced with a sulfur and a nitrogen atom, an oxygen and a nitrogen atom, or two nitrogen atoms; or~~
 - 3) ~~three carbon atoms are replaced with three nitrogen atoms;~~

R^1 is selected from the group consisting of:

- a) H, substituted or unsubstituted alkyl having from 1 to 4 carbons, substituted or unsubstituted aryl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroaryl, or substituted or unsubstituted heteroarylalkyl;
- b) $-C(=O)R^9$, where R^9 is selected from the group consisting of alkyl, aryl and heteroaryl;
- c) $-OR^{10}$, where R^{10} is selected from the group consisting of H and alkyl having from 1 to 4 carbons;
- d) $-C(=O)NH_2$, $-NR^{11}R^{12}$, $-(CH_2)_pNR^{11}R^{12}$, $-(CH_2)_pOR^{10}$, $-O(CH_2)_pOR^{10}$ and $-O(CH_2)_pNR^{11}R^{12}$, wherein p is from 1 to 4; and wherein either
 - 1) R^{11} and R^{12} are each independently selected from the group consisting of H and alkyl having from 1 to 4 carbons; or
 - 2) R^{11} and R^{12} together form a linking group of the formula - $(CH_2)_2-X^1-(CH_2)_2-$, wherein X^1 is selected from the group consisting of - O-, -S-, and -CH₂-;

R^2 is selected from the group consisting of H, alkyl having from 1 to 4 carbons, -OH, alkoxy having from 1 to 4 carbons, $-OC(=O)R^9$, $-OC(=O)NR^{11}R^{12}$, $-O(CH_2)_pNR^{11}R^{12}$, $-O(CH_2)_pOR^{10}$, substituted or unsubstituted arylalkyl having from 6 to 10 carbons, and substituted or unsubstituted heteroarylalkyl;

R^3 , R^4 , R^5 and R^6 are each independently selected from the group consisting of:

- a) H, aryl, heteroaryl, F, Cl, Br, I, -CN, CF₃, -NO₂, -OH, -OR⁹,

- O(CH₂)_pNR¹¹R¹², -OC(=O)R⁹, -OC(=O)NR¹¹R¹², -O(CH₂)_pOR¹⁰, -CH₂OR¹⁰, -NR¹¹R¹², -NR¹⁰S(=O)₂R⁹, -NR¹⁰C(=O)R⁹,
- b) -CH₂OR¹⁴, wherein R¹⁴ is the residue of an amino acid after the hydroxyl group of the carboxyl group is removed;
- c) -NR¹⁰C(=O)NR¹¹R¹², -CO₂R², -C(=O)R², -C(=O)NR¹¹R¹², -CH=NOR², -CH=NR⁹, -(CH₂)_pNR¹¹R¹², -(CH₂)_pNHR¹⁴, or -CH=NNR²R^{2A} wherein R^{2A} is the same as R²;
- d) -S(O)_yR², -(CH₂)_pS(O)_yR⁹, -CH₂S(O)_yR¹⁴ wherein y is 0, 1 or 2;
- e) alkyl having from 1 to 8 carbons, alkenyl having from 2 to 8 carbons, and alkynyl having 2 to 8 carbons, wherein
- 1) each alkyl, alkenyl, or alkynyl group is unsubstituted; or
 - 2) each alkyl, alkenyl or alkynyl group is substituted with 1 to 3 groups selected from the group consisting of aryl having from 6 to 10 carbons, heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxylalkoxy, alkyloxy-alkoxy, hydroxyalkylthio, alkoxy-alkylthio, F, Cl, Br, I, -CN, -NO₂, -OH, -OR⁹, -X²(CH₂)_pNR¹¹R¹², -X²(CH₂)_pC(=O)NR¹¹R¹², -X²(CH₂)_pOC(=O)NR¹¹R¹², -X²(CH₂)_pCO₂R⁹, X²(CH₂)_pS(O)_yR⁹, -X²(CH₂)_pNR¹⁰C(=O)NR¹¹R¹², -OC(=O)R⁹, -OCONHR², -O-tetrahydropyranyl, -NR¹¹R¹², -NR¹⁰CO₂R⁹, -NR¹⁰C(=O)NR¹¹R¹², -NHC(=NH)NH₂, NR¹⁰C(=O)R⁹, -NR¹⁰S(O)₂R⁹, -S(O)_yR⁹, -CO₂R², -C(=O)NR¹¹R¹², -C(=O)R², -CH₂OR¹⁰, -CH=NNR²R^{2A}, -CH=NOR², -CH=NR⁹, -CH=NNHCH(N=NH)NH₂, -S(=O)₂NR²R^{2A}, -P(=O)(OR¹⁰)₂, -OR¹⁴, and a monosaccharide having from 5 to 7 carbons wherein each hydroxyl group of the monosaccharide is independently either unsubstituted or is replaced by H, alkyl having from 1 to 4 carbons, alkylcarbonyloxy having from 2 to 5 carbons, or alkoxy having from 1 to 4 carbons;

X² is O, S, or NR¹⁰;

R⁷ is

Ch
Offib

wherein:

m is 0-4;

G is a bond; or alkylene having 1 to 4 carbons, wherein the alkylene group is unsubstituted, or substituted with NR^{11A}R^{12A} or OR¹⁹;

R^{11A} and R^{12A} are the same as R¹¹ and R¹²;

R¹⁹ is selected from the group consisting of H, alkyl, acyl, and C(=O)NR^{11A}R^{12A};

R⁸ is selected from the group consisting of O(C=O)NR¹¹R¹², -CN, acyloxy, alkenyl, -O-CH₂-O-(CH₂)₂-O-CH₃, halogen and R^{1A} wherein R^{1A} is the same as R¹;

~~A and B are independently selected from the group consisting of O, N, S, CHR¹⁷, C(OH)R¹⁷, C(=O), and CH₂=C; or A and B together can form CH=CH;~~

~~C and D are independently selected from the group consisting of a bond, O, N, S, CHR¹⁷, C(OH)R¹⁷, C(=O) and CH₂=C;~~

~~E and F are independently selected from the group consisting of a bond, O, N, S, C(=O), and CH(R¹⁷);~~

~~R¹⁷ is selected from the group consisting of H, substituted or unsubstituted alkyl, alkoxycarbonyl, and substituted or unsubstituted alkoxy;~~

~~wherein:~~

~~1) ring J contains 0 to 3 ring heteroatoms;~~

~~2) any two adjacent hydroxyl groups of ring J can be joined in a dioxolane ring;~~

~~3) any two adjacent ring carbon atoms of ring J can be joined to form a fused aryl or heteroaryl ring;~~

~~4) any two adjacent ring nitrogen atoms of ring J can be joined to form a fused heterocyclic ring which can be substituted with 1 to 3 alkyl or aryl groups;~~

~~provided that:~~

~~1) ring J contain at least one carbon atom that is saturated;~~

~~2) ring J not contain two adjacent ring O atoms;~~

~~3) ring J contains a maximum of two ring C(=O) groups;~~

~~4) when G is a bond, ring J can be heteroaryl;~~

A, B, C, D, E, and F are, independently, selected from the group consisting of a bond, O, and CH₂, and ring J is a 3 to 7 membered ring that does not contain two adjacent O atoms;

~~Q is selected from the group consisting of O, S, NR¹³, NR^{7A}, wherein R^{7A} is the same as R⁷, CHR¹⁵, X³CH(R¹⁵), and CH(R¹⁵)X³, wherein X³ is selected from the group consisting of BO, S, CH₂, NR^{7A}, and NR¹³;~~

~~W is selected from the group consisting of CR¹⁸R⁷ and CHR⁵⁰, where R⁵⁰ is alkyl having from 1 to 4 carbons, OH, alkoxy having from 1 to 4 carbons, OC(=O)R⁹, OC(=O)NR¹¹R¹², O(CH₂)_pNR¹¹R¹², O(CH₂)_pOR¹⁰, substituted or unsubstituted arylalkyl having from 6 to 10 carbons, and substituted or unsubstituted heteroarylalkyl;~~

~~R¹³ is selected from the group consisting of H, -SO₂R⁹, -CO₂R⁹, -C(=O)R⁹, -C(=O)NR¹¹R¹², alkyl of 1-8 carbons, alkenyl having 2-8 carbons, and alkynyl having 2-8 carbons; and either~~

~~1) the alkyl, alkenyl, or alkynyl group is unsubstituted; or~~

~~2) the alkyl, alkenyl, or alkynyl group independently is~~

~~substituted with 1 to 3 groups selected from the group consisting of aryl having from 6 to 10 carbons, heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxylalkoxy, alkyloxy-alkoxy, hydroxyalkylthio, alkoxy-alkylthio, F, Cl, Br, I, -CN, -NO₂, -OH, -OR⁹, -X²(CH₂)_pNR¹¹R¹², -X²(CH₂)_pC(=O)NR¹¹R¹², -X²(CH₂)_pOC(=O)NR¹¹R¹², -X²(CH₂)_pCO₂R⁹, X²(CH₂)_pS(O)_yR⁹, -~~

C
Office

$X^2(CH_2)_pNR^{10}C(=O)NR^{11}R^{12}$, $-OC(=O)R^9$, $-OCONHR^2$, $-O-$
tetrahydropyranyl, $-NR^{11}R^{12}$, $-NR^{10}CO_2R^9$, $-NR^{10}C(=O)NR^{11}R^{12}$,
 $NHC(=NH)NH_2$, $NR^{10}C(=O)R^9$, $-NR^{10}S(O)_2R^9$, $-S(O)_yR^9$, $-CO_2R^2$,
 $C(=O)NR^{11}R^{12}$, $-C(=O)R^2$, $-CH_2OR^{10}$, $-CH=NNR^2R^{2A}$, $-CH=NOR^2$,
 $CH=NR^9$, $-CH=NNHCH(N=NH)NH_2$, $-S(=O)_2NR^2R^{2A}$, $-P(=O)(OR^{10})_2$, $-OR^{14}$,
and a monosaccharide having from 5 to 7 carbons wherein each hydroxyl
group of the monosaccharide is independently either unsubstituted or is
replaced by H, alkyl having from 1 to 4 carbons, alkylcarbonyloxy having
from 2 to 5 carbons, or alkoxy having from 1 to 4 carbons;

R^{15} is selected from the group consisting of H, OR^{10} , SR^{10} , R^{7A} , and R^{16} ;

R^{16} is selected from the group consisting of alkyl of 1 to 4 carbons; phenyl; naphthyl;
aryalkyl having 7 to 15 carbons, SQ_2R^9 , CO_2R^9 , $C(=O)R^9$, alkyl having 1-8
carbons; alkenyl having 2 to 8 carbons, and alkynyl having 2 to 8 carbons,
wherein

1) each alkyl, alkenyl, or alkynyl group is unsubstituted; or
2) each alkyl, alkenyl, or alkynyl group is substituted with 1 to
3 groups selected from the group consisting of aryl having from 6 to 10
carbons, heteroaryl, arylalkoxy, heterocycloalkoxy, hydroxylalkoxy, alkyloxy-
alkoxy, hydroxylalkylthio, alkoxyalkylthio, F, Cl, Br, I, CN, NO_2 , OH,
 OR^9 , $X^2(CH_2)_pNR^{11}R^{12}$, $X^2(CH_2)_pC(=O)NR^{11}R^{12}$,
 $X^2(CH_2)_pOC(=O)NR^{11}R^{12}$, $X^2(CH_2)_pCO_2R^9$, $X^2(CH_2)_pS(O)_yR^9$,
 $X^2(CH_2)_pNR^{10}C(=O)NR^{11}R^{12}$, $OC(=O)R^9$, $OCONHR^2$, $O-$
tetrahydropyranyl, $NR^{11}R^{12}$, $NR^{10}CO_2R^9$, $NR^{10}C(=O)NR^{11}R^{12}$,
 $NHC(=NH)NH_2$, $NR^{10}C(=O)R^9$, $NR^{10}S(O)_2R^9$, $S(O)_yR^9$, CO_2R^2 ,
 $C(=O)NR^{11}R^{12}$, $C(=O)R^2$, CH_2OR^{10} , $CH=NNR^2R^{2A}$, $CH=NOR^2$,
 $CH=NR^9$, $CH=NNHCH(N=NH)NH_2$, $S(=O)_2NR^2R^{2A}$, $P(=O)(OR^{10})_2$, OR^{14} ,
and a monosaccharide having from 5 to 7 carbons wherein each hydroxyl
group of the monosaccharide is independently either unsubstituted or is
replaced by H, alkyl having from 1 to 4 carbons, alkylcarbonyloxy having
from 2 to 5 carbons, or alkoxy having from 1 to 4 carbons;

R^{18} is selected from the group consisting of R^2 , thioalkyl of 1-4 carbons, and halogen;

A¹ and A² are selected from the group consisting of H, H; H, OR²; H, -SR²; H, N(R²)₂; and a group wherein A¹ and A² together form a moiety selected from the group consisting of =O, =S, and =NR²;

B¹ and B² are selected from the group consisting of H, H; H, -OR²; H, -SR²; H, N(R²)₂; and a group wherein B¹ and B² together form a moiety selected from the group consisting of =O, =S, and =NR²; with the proviso that at least one of the pairs A¹ and A², or B¹ and B², form =O;
~~with the proviso that when Q is NH or NR^{7A}, and in any R⁷ or R^{7A} group m is 0 and G is a bond, R⁸ is H, and R⁷ or R^{7A} contains one ring hetero oxygen atom at position A in a 5- or 6-membered ring, then B cannot be CHR¹⁷ where R¹⁷ is substituted or unsubstituted alkyl; and~~
~~with the further proviso that the compound of Formula I contains one R⁷ or R^{7A} group or both an R⁷ and R^{7A} group.~~

2. (currently amended) The compound of claim 1 wherein:

~~A and B are independently selected from the group consisting of O, N, S, CHR¹⁷, C(OH)R¹⁷, C(=O), and CH₂=C;~~

~~R¹⁷ is selected from the group consisting of H, substituted or unsubstituted alkyl, and substituted or unsubstituted alkoxy; wherein:~~

- ~~1) ring J contains 0 to 3 ring heteroatoms;~~
- ~~2) any two adjacent hydroxyl groups of ring J can be joined in a dioxolane ring;~~
- ~~3) any two adjacent ring carbon atoms of ring J can be joined to form a fused aryl or heteroaryl ring;~~

~~provided that:~~

- ~~1) ring J contain at least one carbon atom that is saturated;~~
- ~~2) ring J not contain two adjacent ring O atoms;~~
- ~~3) ring J contains a maximum of two ring C(=O) groups;~~
- ~~4) when G is a bond, ring J can be heteroaryl; and~~

~~R⁸ is selected from the group consisting of O(C=O)NR¹¹R¹², acyloxy, alkenyl, -O-CH₂-O-(CH₂)₂-O-CH₃, halogen and R^{1A} where R^{1A} is the same as R¹.~~

DOCKET NO.: CEPH-0939
Application No.: 09/500,849
Office Action Dated: December 19, 2002

PATENT
REPLY FILED UNDER EXPEDITED
PROCEDURE PURSUANT TO
37 CFR § 1.116

3. (currently amended) The compound of ~~claim 2~~ claim 1 wherein R¹, R⁴ and R⁶ are H.
4. (canceled)
5. (original) The compound of claim 3 wherein one of A₁,A₂ or B₁,B₂ is H,H and the other is =O.
6. (currently amended) The compound of ~~claim 2~~ claim 1 wherein R¹, R⁴, R⁵, R⁶ and R⁸ are H.
7. (currently amended) The compound of ~~claim 2~~ claim 1 wherein R³ and R⁵ are independently selected from the group consisting of H, alkoxy, halogen, alkoxyalkyl, alkoxy-alkoxyalkyl and alkoxy-alkoxycarbonyl.
8. (canceled)
9. (canceled)
10. (currently amended) The compound of ~~claim 9~~ claim 1 wherein R¹³ is H.
11. (canceled)
12. (canceled)
13. (currently amended) The compound of ~~claim 12~~ claim 1 wherein R¹⁸ is H or lower alkyl.
14. (currently amended) The compound of ~~claim 2~~ claim 1 wherein R⁷ J is a 3-, 4-, 5- or 6-membered carbocyclic ring, or a 5- or 6-membered heterocyclic ring which contains one or two ring O, N, or S atoms.

15. (currently amended) The compound of claim 14 wherein R^7 J is a heterocyclic ring having one ring O, N, or S hetero atom.

16. (canceled)

17. (currently amended) The compound of ~~claim 2~~ claim 1 wherein G is a bond or CH₂.

18. (currently amended) The compound of ~~claim 2~~ claim 1 wherein m is 0 or 1.

19. (currently amended) The compound of ~~claim 2~~ claim 1 wherein R⁸ is H, OH, halogen, ethenyl, acyloxy, alkoxy, substituted or unsubstituted phenyl, substituted or unsubstituted heteroaryl, or hydroxyalkyl.

20. (original) The compound of claim 19 wherein R⁸ is H or OH.

21. (canceled)

22. (canceled)

23. (canceled)

24. (canceled)

25. (canceled)

26. (canceled)

27. (canceled)

28. (canceled)

29. (currently amended) The compound of claim 21 claim 1 wherein R¹, R⁴ and R⁶ are H; one of A₁,A₂ or B₁,B₂ is H,H and the other is =O; R³ and R⁵ are, independently selected from the group consisting of H, alkoxy, halogen, alkoxyalkyl, alkoxy-alkoxyalkyl and alkoxy-alkoxycarbonyl; G is a bond or CH₂; W is ~~CH₂ or CR¹⁸R⁷~~; and R⁸ is selected from the group consisting of H, OH, halogen, ethenyl, acyloxy, alkoxy, substituted or unsubstituted phenyl, substituted or unsubstituted heteroaryl, and hydroxyalkyl; and Q is NR¹³ or NR^{7A}.

30. (original) The compound of claim 29 wherein R⁸ is H or OH.

31. (currently amended) The compound of claim 21 claim 1 wherein Q is NR¹³ where R¹³ is H, G is a bond; W is ~~CR¹⁸R⁷~~ where R¹⁸ is H or lower alkyl; and R³ and R⁵ are independently selected from the group consisting of H, alkoxy, and alkoxy-alkoxycarbonyl.

32. (currently amended) The compound of claim 31 wherein R⁷ J is a 3-, 4-, 5- or 6-membered carbocyclic ring, or a 5- or 6-membered heterocyclic ring which contains one or two ring O,N, or S atoms.

33. (currently amended) The compound of claim 31 wherein R⁷ J is a heterocyclic ring having one ring O,N, or S hetero atom.

34. (canceled)

35. (currently amended) The compound of claim 31 wherein the constituent variables of the compounds of Formula II are selected in accordance with Table 7 the following table:

A1A2	B1B2	R3	R5	R18	m	R8	A	B	C	D	E	F
H2	O	H	H	H	0	OH	CH2	CH2	N(Bn)	bond	CH2	CH2
H2	O	H	H	H	0	OH	CH2	CH2	O	bond	CH2	CH2
H2	O	H	H	H	1	H	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	0	H	O	C(=O)	CH2	CH2	CH2	bond

DOCKET NO.: CEPH-0939
Application No.: 09/500,849
Office Action Dated: December 19, 2002

PATENT
REPLY FILED UNDER EXPEDITED
PROCEDURE PURSUANT TO
37 CFR § 1.116

H ₂	O	H	H	H	O	H	O	C(=O)	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	O	O	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	O	(p)-F-phenyl	O	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	O	2-thienyl	O	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	O	OH	<u>CH₂</u>	<u>CH₂</u>	N(Me)	<u>bond</u>	CH ₂	<u>CH₂</u>
H ₂	O	H	H	H	H	O	H	<u>CH₂</u>	S	<u>CH₂</u>	CH(OH)	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	1	H	O	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>
H ₂	O	H	H	H	H	0	H	O	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>
H ₂	O	H	H	H	H	0	OH	<u>CH₂</u>	<u>CH₂</u>	S	<u>bond</u>	<u>CH₂</u>	<u>CH₂</u>
H ₂	O	H	H	H	H	0	OH	<u>CH₂</u>	1,6-benzo-fused		<u>bond</u>	<u>CH₂</u>	<u>CH₂</u>
H ₂	O	H	H	H	H	0	OH	CH ₂	<u>N(Et)</u>	<u>CH₂</u>	<u>bond</u>	CH ₂	<u>CH₂</u>
H ₂	O	H	H	H	H	0	OH	CH[CH ₂ CH ₂ -N(CH ₂) ₂ O]	<u>bond</u>	<u>bond</u>	<u>CH₂</u>	<u>CH₂</u>	
H ₂	O	H	H	H	H	0	OH	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	3	Cl	O	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	1	O(C=O)-t-Bu	O	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	1	OH	O	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	1	O(C=O)CH ₃	O	<u>CH₂</u>	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	0	H	O	CH(OH)	<u>CH₂</u>	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	0	OH	<u>CH₂</u>	<u>CH₂</u>	N[(C=O)CH ₃] ₁	<u>bond</u>	CH ₂	<u>CH₂</u>
H ₂	O	H	H	H	H	1	H	O	<u>CH₂</u>	-C(=CH ₂)-	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	1	H	O	<u>CH₂</u>	-C(OH)(CH ₂ OH)-	<u>CH₂</u>	<u>bond</u>	<u>bond</u>
H ₂	O	H	H	H	H	1	H	O	<u>CH₂</u>	-C(=O)-	<u>CH₂</u>	<u>bond</u>	<u>bond</u>

A B C D E F

DOCKET NO.: CEPH-0939
Application No.: 09/500,849
Office Action Dated: December 19, 2002

PATENT
REPLY FILED UNDER EXPEDITED
PROCEDURE PURSUANT TO
37 CFR § 1.116

H2	O	H	H	H	O	-CH=CH2	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	O	-CH(OH)CH2-	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	1	H	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	1	H	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	1	-OCH2OCH2-	O	C(=O)-	CH2	CH2	bond	bond
H2	O	H	H	Et	1	-O(C=O)CH2-	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	1	OH	O	C(=O)-	CH2	CH2	bond	bond
H2	O	H	H	Et	1	OH	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	1	OH	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	1	OH	O	CH2	CH2	CH2	bond	bond
O	H2	H	H	H	1	H	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	O	H	O	CH(OH)	CH2	CH2	bond	bond
H2	O	H	H	H	O	H	O	CH(OEt)	CH2	CH2	bond	bond
H2	O	H	H	H	O	H	O	CH(OEt)	CH2	CH2	bond	bond
H2	O	H	H	H	O	OH	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	O	OH	O	CH2	CH2	CH(OH)	bond	bond
H2	O	H	H	H	1	Cl	O	CH2	CH2	CH2	bond	bond
H2	O	H	H	H	O	H	O	1,6-[2,4-(OMe)2]-benzo-fused	CH2	CH2	bond	bond
H2	O	H	H	H	O	H	O	1,6-[2,4-(OMe)2]-benzofused	CH2	CH2	bond	bond
H2	O	H	H	Et	O	H	O	1,6-[2,4-(OMe)2]-benzofused	CH2	CH2	bond	bond
H2	O	H	H	H	O	OH	C(=O)	O	CH2	-C(CH3)2	bond	bond

DOCKET NO.: CEPH-0939
Application No.: 09/500,849
Office Action Dated: December 19, 2002

PATENT
REPLY FILED UNDER EXPEDITED
PROCEDURE PURSUANT TO
37 CFR § 1.116

H2	Q	H	H	H	o	OH	O	-CH[O(CMe2)O]CH-	CH2	bond	bond
H2	o	H	H	H	o	OH	CH2	CH2	CH2	CH2	bond
H2	o	H	H	H	1	H	O	CH(OEt)	CH2	O	CH2 bond
H2	o	H	H	H	1	H	O	CH(OEt)	CH2	O	CH2 bond
H2	o	H	H	H	1	H	O	CH(OEt)	CH2	O	CH2 bond
H2	o	<u>3-C(=O)O-</u> <u>CH2CH2-OCH3</u>	H	H	o	H	O	CH(OCH2- CH2OCH3)	CH2	CH2	bond bond
H2	o	H	<u>10-O-</u> <u>Me</u>	H	1	OH	O	CH2	CH2	CH2	bond bond
H2	o	H	<u>10-O-</u> <u>Me</u>	H	1	OH	O	CH(OEt)	CH2	CH2	bond bond
H2	o	H	H	H	o	H	CH(CO OEt)	C(=O)	CH2	CH2	bond bond
O	o	H	H	H	o	H	CH(CO OEt)	C(=O)	CH2	CH2	bond bond
H2	o	H	H	H	o	H	CH2	CH2	CH2	CH2	bond bond
H2	o	H	H	H	o	H	C(=O)	O	CH2	CH2	bond bond
H2	o	H	H	H	1	<u>OC(=O)NHEt</u>	O	CH2	CH2	CH2	bond bond
H2	o	H	H	H	1	OH	O	CH2	CH2	CH2	bond bond.

36. (original) The compound of claim 31 wherein R⁸ is H or OH.

37. (currently amended) The compound of ~~claim 21~~ claim 1 wherein Q is NR^{7A}; R⁵ and R⁸ are H; W is CH₂; m is 0; G is a bond or CH₂; and R³ is independently selected from the group consisting of H, halogen, alkoxyalkyl, and alkoxy-alkoxyalkyl.

38. (canceled)

39. (canceled)

40. (canceled)

41. (canceled)

DOCKET NO.: CEPH-0939
Application No.: 09/500,849
Office Action Dated: December 19, 2002

PATENT
REPLY FILED UNDER EXPEDITED
PROCEDURE PURSUANT TO
37 CFR § 1.116

42. (canceled)

43. (currently amended) The compound of ~~claim 42~~ claim 1 wherein R⁵ is attached to the 10-position.

*C /
Amended*

44. (original) The compound of claim 43 wherein R⁵ is alkoxy.

45. (original) The compound of claim 43 wherein R⁵ is -O-CH₃.

46. (original) The compound of claim 45 wherein R⁸ is -OH.

47. (original) The compound of claim 43 wherein R⁵ is H.

48. (original) The compound of claim 47 wherein R⁸ is -OH.

49. (original) The compound of claim 43 wherein R⁵ is H and R⁸ is -O-C(=O)-alkyl.

50. (currently amended) The compound of claim 49 wherein R⁸ is -O-(C=O)-CH₃
-O-C(=O)-CH₃.

51. (currently amended) The compound of ~~claim 21~~ claim 1 wherein R¹, R³, R⁴, R⁵ and R⁶ are each H; A₁,A₂ is H,H; and B₁,B₂ is =O.

52. (canceled)

53. (canceled)

54. (canceled)

DOCKET NO.: CEPH-0939
Application No.: 09/500,849
Office Action Dated: December 19, 2002

PATENT
REPLY FILED UNDER EXPEDITED
PROCEDURE PURSUANT TO
37 CFR § 1.116

55. (currently amended) The compound of ~~claim 54~~ claim 51 wherein R^{7A} is G is CH₂, m is 0, R⁸ is -CN, and ring J is cyclopropyl.

56. (currently amended) The compound of claim 1 wherein R¹, R³, R⁴, R⁵ and R⁶ are each H; A₁,A₂ is H,H; B₁,B₂ is =O, Q is NH, and W is CR₁₈R₇ where R¹⁸ is H.

C
C
on
57. (canceled)

58. (canceled)

59. (canceled)

60. (canceled)

61. (canceled)

62. (canceled)

63. (original) A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

64. (previously amended) A pharmaceutical composition for treating prostate disorders comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

65. (currently amended) The pharmaceutical composition of ~~claim 23~~ claim 64 wherein the prostate disorder is prostate cancer or benign prostate hyperplasia.

66. (canceled)

67. (canceled)

DOCKET NO.: CEPH-0939
Application No.: 09/500,849
Office Action Dated: December 19, 2002

PATENT
REPLY FILED UNDER EXPEDITED
PROCEDURE PURSUANT TO
37 CFR § 1.116

68. (canceled)

69. (canceled)

70. (canceled)

71. (canceled)

72. (canceled)

73. (currently amended) A method for treating prostate disorders which comprises administering to a host in need of such treatment ~~or prevention~~ a therapeutically effective amount of a compound of claim 1.

74. (original) The method of claim 73 wherein the prostate disorder is prostate cancer or benign prostate hyperplasia.

75. (canceled)

76. (canceled)

77. (canceled)

78. (canceled)

79. (canceled)

80. (canceled)

81. (canceled)

DOCKET NO.: CEPH-0939
Application No.: 09/500,849
Office Action Dated: December 19, 2002

PATENT
REPLY FILED UNDER EXPEDITED
PROCEDURE PURSUANT TO
37 CFR § 1.116

82. (canceled)

83. (canceled)

84. (canceled)

85. (canceled)

86. (canceled)

87. (canceled)

88. (canceled)

89. (canceled)

90. (canceled)

91. (canceled)

92. (canceled)

93. (canceled)

94. (canceled)

95. (canceled)