1. Linear Applications 2

Exercise 1 Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}_2[X]$ be the linear application defined as:

$$f(1,0,0,0) = 1+x,$$

$$f(1,1,0,0) = 2x,$$

$$f(1,1,1,0) = -1-x,$$

$$f(0,0,0,-1) = 2+3x-x^{2}.$$

- a) Obtain the matrix of the linear transformation f referred to the standard basis of \mathbb{R}^4 and $\mathbb{R}_2[X]$, respectively.
- b) Compute the image of the vector $\vec{v} = (1, -1, 1, -2)$.
- c) Compute the Kernel of f. Is f an injective transformation?
- d) Compute the Range (image space) of f. Is f a surjective transformation?

Exercise 2 Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear transformation such as:

$$Ker(f) = \langle (1,0,0), (0,1,1) \rangle$$

and f(0,0,2) = (2,2).

Obtain the matrix of the linear transformation f referred to the standard basis of \mathbb{R}^3 and \mathbb{R}^2 , respectively. Compute the image of the vector $\vec{v} = (-1,3,5)$.