Applied Cryptography Spring Semester 2023 Lectures 4, 5 and 6

Kenny Paterson (@kennyog), Felix Günther

Applied Cryptography Group

https://appliedcrypto.ethz.ch/

Overview of Lectures 4, 5 and 6

- Motivation for modes of operation
- ECB mode
- CBC mode
- CTR mode
- Other modes
- IND-CPA security for symmetric encryption
- The PRP-PRF switching lemma
- (Proof of security for CTR mode)

Motivation for modes of operation

Motivation for modes of operation

- A block cipher encrypts a message of exactly n bits.
 - What if the message is not a multiple of n bits?
 - What if the message is not of a fixed length but actually a TCP-like stream?

- Modes of operation provide different ways of using a block cipher to encrypt flexible amounts of data.
 - Different performance characteristics.
 - Different error-propagation properties.
 - Different suitability for different applications .

Main modes of operation

- NIST SP 800-38A specifies 5 modes
 - ECB Electronic Code Book.
 - CBC Cipher Block Chaining.
 - CFB Cipher Feedback.
 - OFB Output Feedback
 - CTR Counter Mode.
- NIST SP 800-38C and NIST SP 800-38D
 - Authenticated Encryption modes: AES-CCM and AES-GCM.
- Most common modes now in use: CBC mode, CTR mode, AES-GCM.
- Details of all modes via: https://csrc.nist.gov/projects/block-cipher-techniques/bcm/current-modes

ECB mode

Electronic Code Book (ECB)

 ECB is the simplest way to use a block cipher to encrypt longer messages.

- Split message into blocks, may need to pad last block.
- Encryption can be parallelized.
- Any error in a ciphertext block affects the decryption of a single block.

ECB information leakage

- For a fixed key K, a given block of plaintext is always encrypted in the same way to produce the same ciphertext block.
- Encryption is deterministic.
- Leads to serious information leakage in many applications.
- ECB mode is very rarely the correct mode to use.
- Exceptions exists: e.g., searchable encryption for high entropy plaintext spaces.

ECB information leakage

HACKERS RECENTLY LEAKED 153 MILLION ADOBE USER EMAILS, ENCRYPTED PASSWORDS, AND PASSWORD HINTS.

ADOBE ENCRYPTED THE PASSWORDS IMPROPERLY, MISUSING BLOCK-MODE 3DES. THE RESULT IS SOMETHING WONDERFUL:

USER PASSWORD	HINT	
4e18acc1ab27a2d6 4e18acc1ab27a2d6	WEATHER VANE SWORD	
4e18acc1ab27a2d6 aDa2876eblealfica	NAME1	
8babb6299e06eb6d	DUH	
8babb6299e06eb6d aOa2876eblealfca		
8babb6299e06eb6d 85e9da8la8a78adc	57	
4e18acc1ab27a2d6	FAVORITE OF 12 APOSTLES	
1ab29ae86da6e5ca 7a2d6a0a2876eb1e	WITH YOUR OWN HAND YOU HAVE DONE ALL THIS	
a1F96266299e7626 eadec1e606797397	SEXY EARLOBES	
a1f96266299e762b 617ab0277727ad85		
3973867adb068af7 617ab0277727ad85	, p m y-	
1ab29ae86da6e5ca	NAME + JERSEY #	
877a178893386211	ALPHA	
8774178893386211		
877ab7889d3862b1	00.00.10	
877ab7889d3862b1	OBVIOUS	
877ab7889d3862b1	MICHAEL JACKSON	
38a7c9279cadeb44 9dcald79d4dec6d5	HE OID THE MACH HE DIO THE	
38a7c9279cadeb44 9dcald79d4dec6d5		
38a7c9279cadeb44 080e574507b70f70 9dc01d79d4dec645	PURLOINED	

THE GREATEST CROSSWORD PUZZLE
IN THE HISTORY OF THE WORLD

ECB information leakage

CBC mode

Cipher Block Chaining (CBC) mode

- Randomized mode of encryption, aims to hinder information leakage of ECB mode.
- Uses previous ciphertext block (or IV for first block) to randomise the input to the block cipher at each application.
- Encryption not easily parallelisable.

Encryption equation:

$$C_o = IV$$

$$C_i = E_K(P_i \oplus C_{i-1})$$

Decryption equation:

So:

$$D_K(C_i) = P_i \oplus C_{i-1}$$

and hence:

$$P_i = D_K(C_i) \oplus C_{i-1}$$

CBC mode decryption

Encryption equation:

$$C_o = IV$$

$$C_i = E_K(P_i \oplus C_{i-1})$$

Decryption equation:

So:

$$D_K(C_i) = P_i \oplus C_{i-1}$$

and hence:

$$P_i = D_K(C_i) \oplus C_{i-1}$$

Error propagation in CBC

• Suppose an error arises in ciphertext block $C_2: C_2 \to C_2 \oplus \Delta$.

- Then the error propagates to P_3 , and P_2 becomes garbage.
- More formally: if we replace C_i with $C_i \oplus \Delta$, then after decryption, P_{i+1} is replaced by $P_{i+1} \oplus \Delta$, and P_i gets randomized.

Further remarks on CBC mode

- IV is needed for decryption so must be included as part of ciphertext.
 - Often written as C_o to emphasize this.
 - Leading to ciphertext expansion: ciphertext will be at least one block larger than plaintext.
- IV should be uniformly random for each message encrypted (requires a good source of randomness).
 - Use of non-random IVs leads to practical attacks.
- CBC mode processes complete blocks so padding is needed to make plaintext bit-length a multiple of the block size *n*.
 - Improper handling of padding during decryption leads to practical attacks.

Further remarks on CBC mode

- CBC mode is problematic if block size (n) is too small.
 - Many encryptions under same key leads to ciphertext block collisions.
 - These start to occur after approx. $2^{n/2}$ blocks are encrypted under one key, by a birthday bound analysis.
 - Recall: $C_i = E_K(P_i \oplus C_{i-1})$
 - Hence, if $C_i = C_j$, then $P_i \oplus C_{i-1} = P_j \oplus C_{j-1}$, so

$$P_i = P_j \oplus C_{j-1} \oplus C_{i-1}$$

- For example, if P_j is known, now P_i can be recovered: a partially known plaintext attack, realistic for lots of network protocols, e.g. HTTP.
- Sweet32 attack applies this idea to DES/3DES in TLS, requiring encryption of about 2³⁴ blocks under the same key.
- More at: https://sweet32.info/

CTR mode

Counter (CTR) mode encryption

- An incrementing counter is used to generate pseudo-random blocks of output (think of bit-string *ctr* as being an integer, do the addition mod 2ⁿ).
- Parallelisable, can also pre-compute encryption masks R_i before plaintext is known.

Counter (CTR) mode encryption

- CTR is effectively a stream cipher mode.
 - It turns a block cipher into a stream cipher.
 - Encryption is just XORing plaintext *P* with keystream obtained from output of block cipher operating on an incrementing counter.
 - Block ciphers are usually slower than dedicated stream cipher designs in general, so there is still a place for stream ciphers in applications, e.g. A5, Snow in mobile telecoms.
- Error propagation: a bit-flip in the ciphertext leads to a bit-flip in the plaintext.
 - More generally, XOR of a mask Δ with the ciphertext leads to the same mask Δ being XORed onto the plaintext.
 - So CTR mode does not provide any integrity, as with any other stream cipher.
 - Did CBC mode provide integrity?

Counter (CTR) mode encryption: Practicalities

- No padding is needed since the last block of output (R_{l-1}) can be truncated to the exact length of P_{l-1} .
- Usually transmit ctr as part of the ciphertext:

$$C = ctr, C_o, C_1, ..., C_{l-1}.$$

- We can omit ctr if the decryption process can recover it by other means, e.g. due to synchronization.
- Encryption uses E_K , so does decryption.
 - Hence no need to implement D_K .
 - In fact no need for E_K to even be invertible!
 - Technically, this means that CTR mode can be implemented using a pseudorandom *function* rather than a pseudorandom *permutation*.

Counter (CTR) mode encryption: Selecting counters

- Key security requirement: for a fixed key *K*, all counter values used (across all encryptions) must be distinct.
 - If a counter is repeated, then XOR of ciphertext blocks yields XOR of plaintext blocks.
 - Similar to reuse of one-time pad/keystream repeat issue for a stream cipher (recall from exercise sheet 1).

Counter (CTR) mode encryption: Selecting counters

- Can achieve distinctness by using one of the following methods:
 - Start with ctr = o and change key for each plaintext (often impractical, key derivation can be expensive).
 - 2. Start with a fresh, random value for *ctr* for each plaintext (requires a good source of randomness, need to limit key use to prevent colliding counters arising by chance).
 - 3. Keep track of the last value of *ctr* used, start from *ctr*+1 in next plaintext (requires maintenance of state).
 - 4. Construct ctr by concatenating a fixed size per plaintext nonce N supplied by the calling application and an internal counter (starting from zero for each new plaintext), i.e.:

$$ctr = N \parallel 0...00$$
, $ctr+1 = N \parallel 0....01$, $ctr+2 = N \parallel 0....10$,

(requires per plaintext nonce to not repeat, hence some kind of state needed in application; also requires limit on plaintext size to prevent internal counter wrap).

This approach is used in GCM (see later, in AE lectures).

Counter (CTR) mode encryption: Security

- Security of CTR mode relies on pseudo-randomness of block cipher.
 - CTR mode was initially viewed with suspicion by practitioners as demanding "too much" security from the block cipher, due to "closely related inputs", i.e. counter values.
 - But pseudo-randomness is now generally accepted as a reasonable design target for a block cipher.
- Intuition for security analysis (to be formalized):
 - If the block cipher is a PRP, then we can replace its output with output from random permutation Π (no efficient adversary can tell the difference).
 - We can then replace the outputs from random permutation Π with outputs from a random function F.
 - Only difference here is that π has no repeating outputs, but F may; this will only become apparent after many calls to Π/F .
 - Finally, replace outputs of F with truly random strings this is fine because outputs of F
 are independent random strings, assuming all of the ctr inputs to F are distinct.
 - But now we just have one-time pad encryption!

Other modes

Other modes

- CFB turns a block cipher into a stream cipher.
 - Not as efficient as a dedicated stream cipher.
 - CFB gives a *self-synchronising* stream cipher.
- OFB also turns a block cipher into a stream cipher.
 - OFB does not automatically resynchronise.
 - External markers are needed for synchronisation.
- These modes sometimes pop up in applications, but you're unlikely to see or need them.
- We'll see authenticated modes (GCM) later.
- Yet more esoteric modes exist, e.g. IGE in Telegram.

Formalising Symmetric Encryption

A symmetric encryption scheme consists of a triple of efficient algorithms: SE = (KGen, Enc, Dec), with the following characteristics:

<u>KGen</u>: key generation, typically selects a key K uniformly at random from a set \mathcal{K}_i ; we assume $\mathcal{K} = \{0,1\}^k$.

Enc: encryption, takes as input key K, plaintext $m \in \mathcal{M} \subseteq \{0, 1\}^*$ and produces output $c \in C \subseteq \{0, 1\}^*$.

<u>Dec</u>: decryption, takes as input key K, ciphertext $c \in C \subseteq \{0, 1\}*$ and produces output $m \in \mathcal{M}$ or an error, denoted \bot .

<u>Correctness</u>: we require that for all keys *K*, and for all plaintexts *m*,

$$Dec_{\kappa}(Enc_{\kappa}(m)) = m.$$

Definitional notes

- ${\mathcal K}$ is called the key space.
- ${\mathcal M}$ is called the message space.
- *C* is called the ciphertext space.
- Enc is typically randomised (cf. CBC mode, CTR mode); later Enc will have additional inputs allowing it to be made deterministic.
- Dec is assumed to be deterministic.
- In reality, there will be a maximum plaintext length L that can be encrypted by a given scheme, we might then set \mathcal{M} to $\{0,1\}^{\leq L}$.
- Ciphertexts are typically (slightly) longer than plaintexts; we would like to minimize the expansion.

IND-CPA security for Symmetric Encryption: Intuition

- Recall the notion of perfect security: the ciphertext leaks nothing about the plaintext except what was previously known about it from the plaintext distribution.
- A computational version of this: we cannot efficiently compute anything useful about plaintexts from ciphertexts.
- This can be formalised via a simulation-based security notion called *semantic security*:

For any efficient adversary A given access to encryptions of plaintexts of its choice, whatever A can output can also be output by a simulator S that has access only to the code of A and the lengths of the ciphertexts (but not to the ciphertexts).

 We will use an equivalent but easier to work with game-based definition, IND-CPA security:

For any efficient adversary A, given the encryption of one of two equal-length messages of its choice, A is unable to distinguish which one of the two messages was encrypted.

NB: Boneh-Shoup refers to both notions as semantic security.

IND-CPA security for Symmetric Encryption

IND-CPA security for Symmetric Encryption

- Challenger selects a key K by running KGen, and a random bit b.
- The adversary is given repeated access to Left-or-Right (LoR) encryption oracle.
- In each query, the adversary A submits pairs of equal length plaintexts (m_0, m_1) to the challenger.
 - A can set $m_o = m_1$, so it gets an encryption oracle "for free".
- The adversary A gets back $c \leftarrow \operatorname{Enc}_{\kappa}(m_b)$.
- After all queries are made, A outputs its estimate b' for bit b.
- A is successful if b' = b.

```
IND = Indistinguishability
- = under
CPA = Chosen Plaintext Attack
```

Formal definition of IND-CPA security

Game IND-CPA
$$(A, SE)$$

Oracle LoR (m_0, m_1) :

- 1 $b \leftarrow \$ \{0,1\}$ 5 $c \leftarrow \$ \operatorname{Enc}_{\mathsf{K}}(m_b)$ 6 Return c 3 $b' \leftarrow \$ \mathcal{A}^{\operatorname{LoR}(\cdot,\cdot)}()$ 4 Return (b'=b)

Figure 1: Game formalizing IND-CPA security of symmetric encryption scheme SE = (KGen, Enc, Dec) with key-space $\{0,1\}^k$. By $\mathcal{A}^{LoR}(\cdot,\cdot)$ we mean that adversary \mathcal{A} can query the oracle LoR on (multiple) pairs of inputs of its choice. Each pair of inputs must consist of a pair of equal-length messages from the scheme's message space.

We define the advantage of an adversary \mathcal{A} in this game as follows:

$$\mathbf{Adv}^{\mathrm{IND\text{-}CPA}}_{\mathrm{SE}}(\mathcal{A}) = 2 \cdot \left| \mathrm{Pr} \left[\mathrm{Game} \; \mathbf{IND\text{-}CPA}(\mathcal{A}, \mathrm{SE}) \Rightarrow \mathsf{true} \right] - \frac{1}{2} \right|.$$

IND-CPA security for Symmetric Encryption

Definition

A symmetric encryption scheme SE is said to be (t, q, ε) -secure if, for all adversaries A running in time at most t and making at most q encryption queries, the advantage $Adv_{SE}^{IND-CPA}(A)$ is at most ε .

IND-CPA security for Symmetric Encryption: Properties

- IND-CPA security captures message recovery attacks: any attacker that can recover m from c can be converted into an attacker that break IND-CPA security.
- IND-CPA security captures key recovery attacks: any attacker that, given some pairs (m,c) can recover the key K, can be converted into an attacker that breaks IND-CPA security.
- IND-CPA security ensures that every bit of the plaintext is hidden.
- etc....
- It can be proved that schemes like CBC mode and CTR mode meet the IND-CPA security definition if used properly and if they are built using a good block cipher.
 - We will prove this for CTR mode next.

IND-CPA security for Symmetric Encryption: Limitations

- The IND-CPA definition says nothing about security when the messages in a pair do *not* have equal length.
 - Ciphertext length often leaks information about plaintext length cf. CTR mode.
 - This leakage can be fatal in real-world applications.
 - Addressed if desired by various forms of padding, traffic shaping, etc.
- The definition says nothing about integrity and we already know that modes like CBC and CTR do not offer it.
- The definition does not give the adversary access to any kind of decryption capability: no chosen ciphertext attacks are modelled.
- The definition says nothing about attacks based on side-channel leakage, implementation vulnerabilities,...

Deterministic schemes are not IND-CPA secure

The PRP-PRF Switching Lemma

Recall: Pictorial definition of PRP security

Pictorial definition of PRF security

PRF security and the PRP-PRF switching lemma

- Difference in definitions: sampling from random function f instead of random permutation Π .
- We have just defined PRF security for block ciphers:

$$E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$$

• But it can more generally be defined for **any** keyed function:

$$F: \{0,1\}^k \times \{0,1\}^l \to \{0,1\}^l$$
.

The PRP-PRF switching lemma essentially says that any PRP is also a PRF:

<u>Lemma</u>

Let *E* be a block cipher. Then for any adversary *A* making *q* queries:

$$\left|\operatorname{Adv}_{E}^{PRP}(A) - \operatorname{Adv}_{E}^{PRF}(A)\right| \leq q^{2}/2^{n+1}.$$

The Advantage Rewriting Lemma

Let b be a uniformly random bit; let b' be the output of some algorithm. Then

$$2 | Pr[b'=b] - \frac{1}{2} | = | Pr[b'=1 | b=1] - Pr[b'=1 | b=0] |.$$

Proof:

$$Pr[b'=b] - \frac{1}{2} = Pr[b'=b \mid b=1] \cdot Pr[b=1] + Pr[b'=b \mid b=0] \cdot Pr[b=0] - \frac{1}{2}$$

$$= Pr[b'=1 \mid b=1] \cdot \frac{1}{2} + Pr[b'=0 \mid b=0] \cdot \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} (Pr[b'=1 \mid b=1] + Pr[b'=0 \mid b=0] - 1)$$

$$= \frac{1}{2} (Pr[b'=1 \mid b=1] - (1 - Pr[b'=0 \mid b=0]))$$

$$= \frac{1}{2} (Pr[b'=1 \mid b=1] - Pr[b'=1 \mid b=0])$$

NB1: This kind of rewriting can be done for any distinguishing-style game and advantage expression.

NB2: By a similar argument, we can also show:

$$2 | Pr[b'=b] - \frac{1}{2} | = | Pr[b'=o | b=o] - Pr[b'=o | b=1] |$$

The Difference Lemma

Let Z, W_1 , W_2 be (any) events defined over some probability space. Suppose that:

$$Pr[W_1 \wedge \neg Z] = Pr[W_2 \wedge \neg Z].$$

(In typical uses, we have: $(W_1 \land \neg Z)$ occurs if and only if $(W_2 \land \neg Z)$ occurs.)

Then we have:

$$|Pr[W_2] - Pr[W_1]| \le Pr[Z].$$

Proof:

$$|Pr[W_{2}] - Pr[W_{1}]| = |Pr[W_{2} \wedge Z] + Pr[W_{2} \wedge \neg Z] - Pr[W_{1} \wedge Z] - Pr[W_{1} \wedge A]|$$

= $|Pr[W_{2} \wedge Z] - Pr[W_{1} \wedge Z]|$
 $\leq Pr[Z].$

(The last step follows on noting that both $Pr[W_1 \land Z]$ and $Pr[W_2 \land Z]$ lie between o and Pr(Z).)

Using the Difference Lemma

The Difference Lemma (restatement)

Let Z, W_1 , W_2 be (any) events defined over some probability space. Suppose that:

$$Pr[W_1 \wedge \neg Z] = Pr[W_2 \wedge \neg Z].$$

Then we have:

$$\left| \Pr[W_2] - \Pr[W_1] \right| \le \Pr[Z].$$

- In security proofs, we will often face the situation where Z is some "bad" event of bounded, low probability.
- W_1 might be A's success probability in game G_1 ; W_2 in some modified game G_2 .
- This lemma shows that if the lemma's required condition holds and Z is "rare" then A's success probabilities in the two games are close.
- Then, in a security proof, we can move from G_1 to G_2 without introducing too much difference in success probabilities.
- This lemma is one the main tools that we will use in game hopping proofs.

Proof of the PRP-PRF switching lemma

Lemma

Let E be a block cipher. Then for any algorithm A making q queries:

$$\left|\operatorname{Adv}_{E}^{PRP}(A) - \operatorname{Adv}_{E}^{PRF}(A)\right| \leq q^{2}/2^{n+1}.$$

Proof:

Let A be an (q, t, ε) adversary; we will run A in one of 3 different games:

- G_o : choose $f := E_K(\cdot)$, where $K \leftarrow \$ \{0,1\}^k$, and uses this f to respond to A's queries.
- G_1 : choose $f \leftarrow \$$ Perms[$\{0,1\}^n$].
- G_2 : choose $f \leftarrow \$$ Funcs[$\{0,1\}^n$, $\{0,1\}^n$].

Let W_i be the event that A outputs b' = 1 in game G_i ; set $p_i = Pr[W_i]$. Now:

- G_o corresponds to the case "b=o" in both the PRP and PRF security games, hence $p_o = \Pr[b'=1 \mid b=o]$.
- G_1 corresponds to the case "b=1" in the PRP security game, hence $p_1 = Pr[b'=1 | b=1]$.
- G_2 corresponds to the case "b=1" in the PRF security game, hence $p_2 = \Pr[b'=1 \mid b=1]$.

Proof of the PRP-PRF switching lemma

So:

$$|p_1 - p_o| = |\Pr[b'=1 \mid b=1] - \Pr[b'=1 \mid b=o]| = \operatorname{Adv}_E^{PRP}(A)$$
. (Probs in G₁ and G₀)

and:

$$|p_2 - p_o| = |\Pr[b'=1 \mid b=1] - \Pr[b'=1 \mid b=o]| = \operatorname{Adv}_E^{PRF}(A)$$
. (Probs in G_2 and G_0)

Hence:

$$|Adv_{E}^{PRP}(A) - Adv_{E}^{PRF}(A)| = ||p_{1} - p_{o}| - |p_{2} - p_{o}||$$

$$\leq |p_{2} - p_{1}|. \qquad (*)$$

Now consider games G_1 and G_2 :

In G_1 , adversary A interacts with a random permutation; in G_2 with a random function.

Games G₁ and G₂

Proof of the PRP-PRF switching lemma

 G_1 and G_2 are identical unless a repeated value occurs amongst the y_i in G_2 .

Let Z denote this event.

A basic probability analysis shows that $Pr[Z] \le q^2/2^{n+1}$:

- Sample q values y_i uniformly at random from $\{0,1\}^n$.
- $Pr[y_i = y_i] = 2^{-n}$ for each pair of indices (i,j).
- There are $q(q-1)/2 \le q^2/2$ pairs of indices.
- The events are not independent, but we can use the union bound to complete the argument:

$$Pr[Z] = Pr[y_i = y_i \text{ for some } i \neq j] \leq q^2/2 \cdot 2^{-n} = q^2/2^{n+1}.$$

• NB this analysis depends only on the number of queries made by A and is independent of A's running time.

Back to Proof of the PRP-PRF switching lemma

Recall:

 W_1 is the event that A outputs "1" in game G_1 , $Pr[W_1] = p_1$.

 W_2 is the event that A outputs "1" in game G_2 , $Pr[W_2] = p_2$.

 G_1 and G_2 are identical unless event Z (a collision amongst the y_i) occurs.

So we have: event $W_1 \wedge \neg Z$ occurs if and only if event $W_2 \wedge \neg Z$ occurs.

Now apply the difference lemma to obtain:

$$|p_2 - p_1| = |Pr[W_2] - Pr[W_1]| \le Pr[Z] \le q^2/2^{n+1}$$
.

Recall from (*):

$$|Adv_{E}^{PRP}(A) - Adv_{E}^{PRF}(A)| \le |p_{2} - p_{1}|$$

 $\le q^{2}/2^{n+1}$.

This completes the proof of the PRP-PRF switching lemma.

Homework

- Action 1: for more detail on the PRP-PRF switching lemma, read Boneh-Shoup, Theorem 4.4.
- Action 2: for more on the Difference Lemma (sometimes called the "Fundamental Lemma of Game Playing" read Boneh-Shoup, Theorem 4.7.
- Action 3: start exercise sheet 2 and prepare for lab 2.

- Next week's lectures:
 - Proof that CTR[E] is secure under the assumption that E is a PRP;
 - Attacks on CBC mode: padding oracles and the BEAST!