

- LEO-II -

A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic¹

Christoph E. Benzmüller

Microsoft Research, Redmond, October 2, 2008

thanks to: L. Paulson, F. Theiss and A. Fietzke

¹Funded by EPSRC grant EP/D070511/1 at Cambridge ⊌niversity. → → → ∞ ∞

Overview

Higher-Order Logic (HOL)
 The Good Thing: Expressivitity
 The Bad Thing: Automation is a Challenge

2 The LEO-II Prover Motivation and Architecture Solving Lightweight Problems: Sets

Less Lightweight Problems: Multimodal Logics
More Example Problems: Access Control Logic

More Example Problems: Access Control Logics

3 Conclusion and Outlook

Higher-Order Logic (HOL)

Some people say that HOL is like this:

I don't!

- Semantics (extensionality)
- Proof theory
- ATPs LEO and LEO-II

[PhD-99,JSL-04]

[IJCAR-06,LMCS-08]

[CADE-98,IJCAR-08]

Higher-Order Logic (HOL) - on one slide -

Property	FOL	HOL	Example
Quantification over - individuals - functions - predicates/sets/relations	√ - -	\checkmark	$\forall x P(F(x))$ $\forall F P(F(x))$ $\forall P P(F(x))$
Unnamed - functions - predicates/sets/relations	<u>-</u>	√ √	$(\lambda x_{\bullet} x) \\ (\lambda x_{\bullet} x \neq 2)$
Statements about - functions - predicates/sets/relations		√ √	$continuous(\lambda x_{\bullet}x)$ reflexive(=)

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{1} x \in A \lor x \in B)$$

$$\cup := \lambda A_{1} \lambda B_{1} (\lambda x_{1} x \in A \lor x \in B)$$

$$symmetric := \lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{\bullet} x \in A \lor x \in B)$$

$$\cup := \lambda A_{\bullet} \lambda B_{\bullet} (\lambda x_{\bullet} x \in A \lor x \in B)$$

$$symmetric := \lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{\scriptscriptstyle B} x \in A \lor x \in B)$$

$$U := \lambda A_{\scriptscriptstyle B} \lambda B_{\scriptscriptstyle B} (\lambda x_{\scriptscriptstyle B} x \in A \lor x \in B)$$

$$symmetric := \lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{\scriptscriptstyle \parallel} x \in A \lor x \in B)$$

$$\cup := \lambda A_{\scriptscriptstyle \parallel} \lambda B_{\scriptscriptstyle \parallel} (\lambda x_{\scriptscriptstyle \parallel} x \in A \lor x \in B)$$

$$symmetric := \lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{\scriptscriptstyle \parallel} x \in A \lor x \in B)$$

$$\cup := \lambda A_{\scriptscriptstyle \parallel} \lambda B_{\scriptscriptstyle \parallel} (\lambda x_{\scriptscriptstyle \parallel} x \in A \lor x \in B)$$

$$symmetric := \lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

Sets and Relations in HOL

```
:= \lambda x \lambda A A(x)
\in
0
                         = \lambda x_{-} \mid
                         := \lambda A \lambda B (\lambda x x \in A \land x \in B)
                         := \lambda A \lambda B (\lambda x x \in A \lor x \in B)
                         := \lambda A \lambda B (\lambda x x \in A \land x \notin B)
                         := \lambda A \lambda B (\forall x x \in A \Rightarrow x \in B)
\mathcal{P}
                         := \lambda A (\lambda B B \subseteq A)
reflexive := \lambda R (\forall x R(x,x))
transitive := \lambda R_{\bullet}(\forall x, y, z_{\bullet}(R(x, y) \land R(y, z)) \Rightarrow R(x, z))
```


Types are Needed

Typed Sets and Relations in HOL

```
\begin{array}{lll}
\in & := & \lambda x_{\alpha} \lambda A_{\alpha \to o} A(x) \\
\emptyset & := & \lambda x_{\alpha} \bot \\
\cap & := & \lambda A_{\alpha \to o} \lambda B_{\alpha \to o} (\lambda x_{\alpha} x \in A \land x \in B) \\
\cup & := & \lambda A_{\alpha \to o} \lambda B_{\alpha \to o} (\lambda x_{\alpha} x \in A \lor x \in B) \\
\setminus & := & \lambda A_{\alpha \to o} \lambda B_{\alpha \to o} (\lambda x_{\alpha} x \in A \land x \notin B)
\end{array}
```

Polymorphism is a Challenge for Automation

► Another source of indeterminism / blind guessing

[TPHOLs-WP-07]

Undecidable and Infinitary Unification

$$\exists F_{\iota \to \iota} F(g(x)) = g(F(x))$$

$$(1)$$
 $F \leftarrow \lambda y_i y$

$$(2)$$
 $F \leftarrow \lambda y_i g(y)$

$$(3)$$
 $F \leftarrow \lambda y_i g(g(y))$

(4) ...

Primitive Substitution

Example Theorem: $\exists S_{\bullet} reflexive(S)$

Negation and Expansion of Definitions:

$$\neg \exists S (\forall x_{\iota} S(x,x))$$

Clause Normalisation (a(S) Skolem term):

$$\neg S(a(S), a(S))$$

Guess some suitable instances for *S*

$$S \leftarrow \lambda y_{\bullet} \lambda z_{\bullet} \top$$

$$S \leftarrow \lambda y_{\bullet} \lambda z_{\bullet} V(y, z) = W(y, z)$$

$$\rightsquigarrow V(a(S), a(S)) \neq W(a(S), a(S))$$

$$S \leftarrow$$

Cut rule

$$\frac{A \Rightarrow \mathbf{C} \quad \mathbf{C} \Rightarrow B}{A \Rightarrow B}$$

considered as bad in ATP

- Axiom of excluded middle
- Comprehension axioms
- Functional and Boolean extensionality
- ▶ Leibniz and other definitions of equality ✓ [CADE
- Axiom of induction
- Axiom of choice
- Axiom of description

Cut rule

$$\frac{A \Rightarrow \mathbf{C} \quad \mathbf{C} \Rightarrow B}{A \Rightarrow B}$$

considered as bad in ATP

[LMCS-08]: Axioms that imply Cut Calculi that avoid axioms

- Axiom of excluded middle
- Comprehension axioms
- ► Functional and Boolean extensionality √[CADE-98,PhD-99]
- ▶ Leibniz and other definitions of equality √ [CADE-99,PhD-99]
- Axiom of induction
- Axiom of choice
- Axiom of description

Cut rule

$$\frac{A \Rightarrow \mathbf{C} \quad \mathbf{C} \Rightarrow B}{A \Rightarrow B}$$

considered as bad in ATP

Calculi that avoid axioms

$\sum_{i=0}^{n-1} s(x, y) \cos \left(\frac{\pi(2x+1)}{2} \right)$

LEO-II employs FO-ATPs:

E, Spass, Vampire

◆ロ → ◆団 → ◆ 圭 → ◆ 章 → りへ○

Architecture of LEO-II

Solving Lightweight Problems

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x_{\bullet}(x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\blacksquare}(B = C \Leftrightarrow \forall x_{\blacksquare} x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATP

- % SPASS---3.0
 - , Problem : SET171+3
- % SPASS beiseite: Ran out of time.
- % E---0.999
- % Problem : SET171+3
- % railure: Resource limit exceeded (time)
- % Vampire---9.0
- % Problem : SET171+3
- % Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x_{\bullet}(x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATP

- % SPASS---3.0
 - , Problem : SET171+3
- % SPASS beiseite: Ran out of time.
 - % E---0.999
- % Problem : SET171+3
- % Failure: Resource limit exceeded (time)
- % Vampire---9.0
- % Problem : SET171+3
- % Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina!

Total Reasoning Time: 0.03s

LEG-II (Proof Found!)

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x \mid (x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.0

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---0.999

% Problem : SET171+3

% Failure: Resource limit exceeded
(time)

% Vampire---9.0

% Problem : SET171+3

% Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s LEO-II (Proof Found!)

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x \mid (x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C \cdot (B \subseteq C \Leftrightarrow \forall x \cdot x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.0

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---0.999

% Problem : SET171+3

% Failure: Resource limit exceeded

(time)

% Vampire---9.0

% Problem : SET171+3

% Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s LEO-II (Proof Found!)

Results

Results

Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E	Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E
014+4	114.5	2.60	0.300	648+3	98.2	0.12	0.037
017 + 1	1.0	5.05	0.059	649 + 3	117.5	0.25	0.037
066 + 1	_	3.73	0.029	651+3	117.5	0.09	0.029
067 + 1	4.6	0.10	0.040	657+3	146.6	0.01	0.028
076 + 1	51.3	0.97	0.031	669+3	83.1	0.20	0.041
086 + 1	0.1	0.01	0.028	670+3	_	0.14	0.067
096 + 1	5.9	7.29	0.033	671 + 3	214.9	0.47	0.038
143+3	0.1	0.31	0.034	672+3	_	0.23	0.034
171+3	68.6	0.38	0.030	673+3	217.1	0.47	0.042
580+3	0.0	0.23	0.078	680+3	146.3	2.38	0.035
601 + 3	1.6	1.18	0.089	683+3	0.3	0.27	0.053
606+3	0.1	0.27	0.033	684+3	_	3.39	0.039
607 + 3	1.2	0.26	0.036	716+4	_	0.40	0.033
609+3	145.2	0.49	0.039	724+4	_	1.91	0.032
611+3	0.3	4.00	0.125	741 + 4	_	3.70	0.042
612+3	111.9	0.46	0.030	747+4	_	1.18	0.028
614+3	3.7	0.41	0.060	752+4	_	516.00	0.086
615 + 3	103.9	0.47	0.035	753+4	_	1.64	0.037
623+3	_	2.27	0.282	764+4	0.1	0.01	0.032
624+3	3.8	3.29	0.047				
630+3	0.1	0.05	0.025				
640+3	1.1	0.01	0.033			1GB memory, 600	
646 + 3	84.4	0.01	0.032	LEO+Va	mp.: 2.40GHz,	4GB memory, 120)s time limit
647 + 3	98.2	0.12	0.037	LEO-	II+E: 1.60GHz	, 1GB memory, 60	s time limit

Less Lightweight Problems

Multimodal Logics

Logic Systems Interrelationships

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/ \$100 Modal Logic Challenge:

www.tptp.org

Example

$$S4 = K$$

$$+ M(T): \square_R A \Rightarrow A$$

$$+ 4: \square_R A \Rightarrow \square_R \square_R A$$

Theorems:

$$S4 \not\subseteq K \tag{1}$$

Experiments

Logic Systems Interrelationships

Modal Logics Challenge

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/

\$100 Modal Logic Challenge:

www.tptp.org

Example

$$54 = K$$

$$+ M(T): \square_R A \Rightarrow A$$

$$+ 4: \square_R A \Rightarrow \square_R \square_R A$$

Theorems:

$$S4 \quad \not\subseteq \quad K \tag{1}$$
$$(M \land 4) \quad \Leftrightarrow \quad (refl.(R) \land trans.(R)) \tag{2}$$

$$\begin{array}{ccc} & \text{FO-ATPs} & \text{LEO-II} + \text{E} \\ \textbf{[SutcliffeEtal-07]} & \textbf{[BePa-08]} \end{array}$$

Logic Systems Interrelationships

Modal Logics Challenge

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/ \$100 Modal Logic Challenge:

www.tptp.org

Example

$$S4 = K$$

$$+ M(T): \square_R A \Rightarrow A$$

$$+ 4: \square_R A \Rightarrow \square_R \square_R A$$

Theorems:

$$S4 \quad \not\subseteq \quad K \tag{1}$$
$$(M \land 4) \quad \Leftrightarrow \quad (refl.(R) \land trans.(R)) \tag{2}$$

Experiments

FO-ATPs	LEO-II + E
[SutcliffeEtal-07]	[BePa-08]

Even simpler: Reasoning within Multimodal Logics

Problem	$LEO ext{-II} + E$
$\operatorname{valid}(\square_r \top)$	0.025s
$\mathtt{valid}(\square_ra \Rightarrow \square_ra)$	0.026s
$\mathtt{valid}(\square_ra \Longrightarrow \square_sa)$	_
$\operatorname{valid}(\square_s(\square_r a \Rightarrow \square_r a))$	0.026s
$\mathtt{valid}(\square_r(a \land b) \Leftrightarrow (\square_r a \land \square_r b))$	0.044s
$\mathtt{valid}(\lozenge_r(a \Rightarrow b) \Rightarrow \square_r a \Rightarrow \lozenge_r b)$	0.030s
$\mathtt{valid}(\neg \lozenge_r a \Rightarrow \Box_r (a \Rightarrow b))$	0.029s
$\mathtt{valid}(\square_rb \Rightarrow \square_r(a \Rightarrow b))$	0.026s
$valid((\lozenge_r a \Rightarrow \square_r b) \Rightarrow \square_r (a \Rightarrow b))$	0.027s
$valid((\lozenge_r a \Rightarrow \square_r b) \Rightarrow (\square_r a \Rightarrow \square_r b))$	0.029s
$valid((\Diamond_r a \Rightarrow \Box_r b) \Rightarrow (\Diamond_r a \Rightarrow \Diamond_r b))$	0.030s

30

Simple, Straightforward Encoding of Multimodal Logic

- base type ι : set of possible worlds certain terms of type $\iota \to o$: multimodal logic formulas
- multimodal logic operators:

$$\neg A_{\iota \to o} = (\lambda x_{\iota} \neg A(x))$$

$$A_{\iota \to o} \lor B_{\iota \to o} = (\lambda x_{\iota} \bullet A(x) \lor B(x))$$

$$\Box_{R} A_{\iota \to o} = (\lambda x_{\iota} \bullet \forall y_{\iota} \bullet R(x, y) \Rightarrow A(y))$$

Related Work

[Gallin-73], [Carpenter-98], [Merz-99], [Brown-05], [Hardt&Smolka-07], [Kaminski&Smolka-07]

Simple, Straightforward Encoding of Multimodal Logic

- base type ι : set of possible worlds certain terms of type $\iota \to o$: multimodal logic formulas
- multimodal logic operators:

$$\neg_{(\iota \to o) \to (\iota \to o)} = \lambda A_{\iota \to o^{\bullet}}(\lambda x_{\iota \bullet} \neg A(x))
\lor_{(\iota \to o) \to (\iota \to o) \to (\iota \to o)} = \lambda A_{\iota \to o}, B_{\iota \to o^{\bullet}}(\lambda x_{\iota \bullet} A(x) \lor B(x))
\square_{(\iota \to \iota \to o) \to (\iota \to o) \to (\iota \to o)} = \lambda R_{\iota \to \iota \to o}, A_{\iota \to o^{\bullet}}
(\lambda x_{\iota \bullet} \forall y_{\iota \bullet} R(x, y) \Rightarrow A(y))$$

Related Work

[Gallin-73], [Carpenter-98], [Merz-99], [Brown-05], [Hardt&Smolka-07], [Kaminski&Smolka-07]

Encoding of Validity

$$\operatorname{valid} A_{\iota \to o} = (\forall w_\iota A(w))$$

Encoding of Validity

$$valid = \lambda A_{\iota \to o^{\bullet}} (\forall w_{\iota^{\bullet}} A(w))$$

Example Proof:

$$valid(\square_s (\square_r a \Rightarrow \square_r a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\square_s (\square_r a \Rightarrow \square_r a))$$

Definition expansion

$$\neg(\forall x_{\iota^{\blacksquare}} \forall y_{\iota^{\blacksquare}} \neg s(x,y) \lor ((\neg(\forall u_{\iota^{\blacksquare}} \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota^{\blacksquare}} \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

Translation to first-order logic [Kerber-94], [Hurd-02], [MengPaulson-04]

Example Proof:

$$\mathsf{valid}(\square_s (\square_r \, a \Rightarrow \square_r \, a))$$

Initialisation of problem

$$\neg valid(\square_s (\square_r a \Rightarrow \square_r a))$$

Definition expansion

$$\neg(\forall x_{\iota} \blacksquare \forall y_{\iota} \blacksquare \neg s(x,y) \lor ((\neg(\forall u_{\iota} \blacksquare \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota} \blacksquare \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

Translation to first-order logic [Kerber-94], [Hurd-02], [MengPaulson-04]

$$\begin{array}{ll} \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(s,x),y) & \neg \mathbb{Q}_{(\iota o),\iota}(a,u) \\ \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(r,y),u) & \mathbb{Q}_{(\iota o),\iota}(a,V) \vee \neg \mathbb{Q}_{(io),i}(\mathbb{Q}_{(i(io)),i}(r,y),V) \end{array}$$

Example Proof:

$$valid(\square_s (\square_r a \Rightarrow \square_r a))$$

Initialisation of problem

$$\neg valid(\square_s (\square_r a \Rightarrow \square_r a))$$

Definition expansion

$$\neg(\forall x_{\iota} \exists \forall y_{\iota} \exists \neg s(x,y) \lor ((\neg(\forall u_{\iota} \exists \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota} \exists \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

Translation to first-order logic [Kerber-94], [Hurd-02], [MengPaulson-04

Example Proof:

$$valid(\square_s (\square_r a \Rightarrow \square_r a))$$

Initialisation of problem

$$\neg \mathsf{valid}(\square_s (\square_r \ a \Rightarrow \square_r \ a))$$

Definition expansion

$$\neg(\forall x_{\iota} \neg \forall y_{\iota} \neg s(x,y) \lor ((\neg(\forall u_{\iota} \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota} \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

Translation to first-order logic [Kerber-94], [Hurd-02], [MengPaulson-04]

Architecture of LEO-II

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) = (\Box_R (B \vee A))$$

initialisation, definition expansion and normalisation:

$$(\lambda X_{\iota}.\forall Y_{\iota^{\bullet}}\neg((rX)Y)\lor(aY)\lor(bY))$$

$$\neq$$

$$(\lambda X_{\iota}.\forall Y_{\iota^{\bullet}}\neg((rX)Y)\lor(bY)\lor(aY))$$

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) = (\Box_R (B \vee A))$$

functional extensionality :

$$(\forall Y_{\iota^{\bullet}} \neg ((r w) Y) \lor (a Y) \lor (b Y))$$

$$\neq$$

$$(\forall Y_{\iota^{\bullet}} \neg ((r w) Y) \lor (b Y) \lor (a Y))$$

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) = (\Box_R (B \vee A))$$

functional extensionality and Boolean extensionality:

$$(\forall Y_{\iota^{\bullet}} \neg ((r w) Y) \lor (a Y) \lor (b Y)) \Leftrightarrow (\forall Y_{\iota^{\bullet}} \neg ((r w) Y) \lor (b Y) \lor (a Y))$$

A simple equation between modal logic formulas

$$\forall R \forall A \forall B (\Box_R (A \lor B)) = (\Box_R (B \lor A))$$

normalisation:

$$40: (b\ V) \lor (a\ V) \lor \neg((r\ w)\ V) \lor \neg((r\ w)\ W) \lor (b\ W) \lor (a\ W)$$

$$41: ((r w) z) \vee ((r w) v)$$

$$42:\neg(az)\vee((rw)v)$$

$$43:\neg(bz)\vee((rw)v)$$

44:
$$((r w) z) \vee \neg (a v)$$

$$45: \neg(az) \lor \neg(av)$$

$$46: \neg(bz) \lor \neg(av)$$

$$47:((\dot{r}\,w)\,z)\,\vee\,\neg(\dot{b}\,v)$$

$$47:((FW)Z)\vee\neg(BV)$$

$$48:\neg(az)\vee\neg(bv)$$

$$49:\neg(bz)\vee\neg(bv)$$

total proving time (notebook with 1.60GHz, 1GB): 0.071s

Architecture of LEO-II

A simple equation between modal logic formulas

$$\forall R \forall A \forall B (\square_R (A \vee B)) \doteq (\square_R (B \vee A))$$

where \doteq is defined as $\lambda X, Y. \forall P_{\bullet}(PX) \Rightarrow (PY)$

initialisation, definition expansion and normalisation:

$$(p(\lambda X_{\iota}.\forall Y_{\iota\bullet}\neg((rX)Y)\vee(aY)\vee(bY)))$$
$$\neg(p(\lambda X_{\iota}.\forall Y_{\iota\bullet}\neg((rX)Y)\vee(bY)\vee(aY)))$$

A simple equation between modal logic formulas

$$\forall R. \forall A. \forall B. (\Box_R (A \vee B)) \doteq (\Box_R (B \vee A))$$

where \doteq is defined as $\lambda X, Y. \forall P_{\bullet}(PX) \Rightarrow (PY)$

resolution:

$$(p(\lambda X_{\iota}.\forall Y_{\iota^{\bullet}}\neg((rX)Y)\lor(aY)\lor(bY)))$$

$$\neq$$

$$(p(\lambda X_{\iota}.\forall Y_{\iota^{\bullet}}\neg((rX)Y)\lor(bY)\lor(aY)))$$

A simple equation between modal logic formulas

$$\forall R. \forall A. \forall B. (\square_R (A \vee B)) \doteq (\square_R (B \vee A))$$

where \doteq is defined as $\lambda X, Y. \forall P_{\bullet}(PX) \Rightarrow (PY)$

decomposition:

$$(\lambda X_{\iota}.\forall Y_{\iota^{\blacksquare}}\neg((rX)Y)\vee(aY)\vee(bY))$$

$$\neq$$

$$(\lambda X_{\iota}.\forall Y_{\iota^{\blacksquare}}\neg((rX)Y)\vee(bY)\vee(aY))$$

A simple equation between modal logic formulas

$$\forall R \cdot \forall A \cdot \forall B \cdot (\Box_R (A \vee B)) \doteq (\Box_R (B \vee A))$$

where
$$\doteq$$
 is defined as $\lambda X, Y. \forall P_{\bullet}(PX) \Rightarrow (PY)$

functional and Boolean extensionality:

$$(\forall Y_{\iota^{\bullet}} \neg ((r w) Y) \lor (a Y) \lor (b Y))$$

$$\Leftrightarrow$$

$$(\forall Y_{\iota^{\bullet}} \neg ((r w) Y) \lor (b Y) \lor (a Y))$$

A simple equation between modal logic formulas

$$\forall R \,\forall A \,\forall B \,(\Box_R \,(A \vee B)) \doteq (\Box_R \,(B \vee A))$$

where \doteq is defined as $\lambda X, Y. \forall P_{\bullet}(PX) \Rightarrow (PY)$

- normalisation: ... see previous example ...
- ▶ total proving time is 0.166*s*

Architecture of LEO-II

In modal logic K, the axioms T and 4 are equivalent to reflexivity and transitivity of the accessibility relation R

$$\forall R. (\forall A. valid(\square_R A \Rightarrow A) \land valid(\square_R A \Rightarrow \square_R \square_R A))$$

$$\Leftrightarrow (reflexive(R) \land transitive(R))$$

- processing in LEO-II analogous to previous example
- now 70 clauses are passed to E
- ▶ E generates 21769 clauses before finding the empty clause
- total proving time 2.4s
- this proof cannot be found in LEO-II alone

Architecture of LEO-II

 $\mathtt{S4} \not\subseteq \mathtt{K}$: Axioms T and 4 are not valid in modal logic \mathbf{K}

$$\neg \forall R_{\bullet} \forall A_{\bullet} \forall B_{\bullet} (\mathsf{valid}(\square_R A \Rightarrow A)) \land (\mathsf{valid}(\square_R B \Rightarrow \square_R \square_R B))$$

- ▶ LEO-II shows that axiom T is not valid
- \triangleright R is instantiated with \neq via primitive substitution
- total proving time 17.3s

Architecture of LEO-II

Representation (and the right System Architecture) Matters!

More Example Problems

Access Control Logics (thanks to: Catalin Hritcu)

Access Control Logics

Motivation

(Specialized) logics for describing, analyzing and enforcing access control policies

Example (from [GargAbadi-08]):

- ▶ If the admin says that file1 should be deleted, then this must be the case
 - $(admin says deletefile1) \supset deletefile1$
- ▶ admin trusts Bob to decide whether file1 should be deleted admin says ((Bob says deletefile1) ⊃ deletefile1)
- Bob wants to delete file1 Bob says deletefile1

More Example Problems

Deepak Garg, Martín Abadi:

A Modal Deconstruction of Access Control Logics

FoSSaCS 2008: 216-230, LNCS 4962 ©Springer

- translation of a logic of access control with "says" operator into classical modal logic S4
- sound and complete
- extends to logics with
 - "speaks for" relation (ICL⇒)
 - Boolean combinations of principals (ICL^B)
- ▶ Direct second-order modeling of ICL[⇒]

So, let's realize this quickly in LEO-II . . .

More Example Problems

Deepak Garg, Martín Abadi:

A Modal Deconstruction of Access Control Logics

FoSSaCS 2008: 216-230, LNCS 4962 ©Springer

- translation of a logic of access control with "says" operator into classical modal logic S4
- sound and complete
- extends to logics with
 - "speaks for" relation (ICL⇒)
 - Boolean combinations of principals (ICL^B)
- ▶ Direct second-order modeling of ICL[⇒]

So, let's realize this quickly in LEO-II ...

ICL Logic translated to K

$$s ::= p \mid s_1 \land s_2 \mid s_1 \lor s_2 \mid s_1 \supset s_2 \mid \bot \mid \top \mid A \text{ says } s$$

Translation a la [GargAbadi-08]

$$\begin{bmatrix} p \end{bmatrix} = \Box p \\
 \begin{bmatrix} s \wedge t \end{bmatrix} = \begin{bmatrix} s \end{bmatrix} \wedge \begin{bmatrix} t \end{bmatrix} \\
 \begin{bmatrix} s \vee t \end{bmatrix} = \begin{bmatrix} s \end{bmatrix} \vee \begin{bmatrix} t \end{bmatrix} \\
 \begin{bmatrix} T \end{bmatrix} = T \\
 \begin{bmatrix} \bot \end{bmatrix} = \bot \\
 \begin{bmatrix} A \text{ says } s \end{bmatrix} = \Box (A \vee [s])$$

ICL Logic translated to K

$$s_{\iota \to o} ::= p \mid s_1 \land s_2 \mid s_1 \lor s_2 \mid s_1 \supset s_2 \mid \bot \mid \top \mid A \text{ says } s$$

Representation/Translation of Principals and Atoms

- principals: translation of principals:
- atomic propositions: translation of atomic propositions:
- fixed accessibility relation:

$$A_{\iota \to o}, B_{\iota \to o}, C_{\iota \to o}, \dots$$

 $\operatorname{princ} A_{\iota \to o} = A_{\iota \to o}$

$$p_{\iota o o}, q_{\iota o o}, s_{\iota o o}, t_{\iota o o}, \dots$$
 atom $p_{\iota o o} = \Box_r p_{\iota o o}$

$$r_{t \to t \to o}$$

ICL Logic translated to K

$$s_{\iota \to o} ::= p \mid s_1 \land s_2 \mid s_1 \lor s_2 \mid s_1 \supset s_2 \mid \bot \mid \top \mid A \text{ says } s$$

Representation/Translation of ICL Connectives

- ▶ translation of ∧:
- ► translation of ∨:
- ▶ translation of ⊃:
- ▶ translation of ⊥ and ⊤:
- translation of says:

- $p_{\iota \to o} \wedge q_{\iota \to o} = p \wedge q$
- $p_{\iota \to o} \lor q_{\iota \to o} = p \lor q$
- $p_{\iota \to o} \supset q_{\iota \to o} = \Box_r (p \Rightarrow q)$
 - $\perp = \perp$ and $\top = \top$
- $A_{\iota \to o}$ says $s_{\iota \to o} = \Box_r (A \lor s)$

Notion of Validity (wrt K)

$$icl_valid p = valid p$$

ICL Logic translated to S4

Addition of Modal Logic Axioms for S4

$$\forall P_{\iota \to o}. \text{valid}(\Box_r P \Rightarrow P)$$

$$\forall P_{\iota \to o}. valid(\Box_r P \Rightarrow \Box_r \Box_r P)$$

Notion of Validity (wrt S4)

$$icl_valid p = valid p$$

Original Formulation

```
(admin says deletefile1) \supset deletefile1 admin says ((Bob says deletefile1) \supset deletefile1) Bob says deletefile1
```


Definition Expansion: Translation to HOL and FOL via S4

Example (ax3):

icl_valid [(princ Bob) says (atom deletefile1)]

Expansion to S4:

$$\mathsf{valid}\ [\sqcup_r (\mathsf{Bob} \lor (\sqcup_r \mathsf{deletefile1}))]$$

Expansion to HOL:

$$\forall w_{\iota^{\mathbf{n}}}((\lambda x_{\iota^{\mathbf{n}}} \forall y_{\iota^{\mathbf{n}}}(r \times y) \Rightarrow ((\mathsf{Bob}\, y) \lor ((\lambda z_{\iota^{\mathbf{n}}} \forall u_{\iota^{\mathbf{n}}}(r \times u) \Rightarrow (\mathsf{deletefile1}\, u)) \times))) \, w)$$

 \triangleright β -reduction to FO-like

$$\forall w_{\iota^{\mathbf{m}}}(\forall y_{\iota^{\mathbf{m}}}(r \ w \ y) \Rightarrow ((\mathsf{Bob} \ y) \lor \forall u_{\iota^{\mathbf{m}}}(r \ w \ u) \Rightarrow (\mathsf{deletefile1} \ u)))$$

Definition Expansion: Translation to HOL and FOL via S4

Example (ax3):

Expansion to S4:

valid
$$[\Box_r (Bob \lor (\Box_r deletefile1))]$$

Expansion to HOL:

$$\forall w_{\iota} = ((\lambda x_{\iota} \forall y_{\iota} = (r \times y) \Rightarrow ((Bob y) \vee ((\lambda z_{\iota} \forall u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = v \times u_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete = 1 \times u)) \times ((\lambda x_{\iota} = (r \times u) \Rightarrow (delete$$

 \triangleright β -reduction to FO-like

$$\forall w_{\iota^{\mathbf{m}}}(\forall y_{\iota^{\mathbf{m}}}(r \ w \ y) \Rightarrow ((\mathsf{Bob} \ y) \lor \forall u_{\iota^{\mathbf{m}}}(r \ w \ u) \Rightarrow (\mathsf{deletefile1} \ u)))$$

Definition Expansion: Translation to HOL and FOL via S4

Example (ax3):

Expansion to S4:

valid
$$[\Box_r (Bob \lor (\Box_r deletefile1))]$$

Expansion to HOL:

$$\forall w_{\iota} \blacksquare ((\lambda z_{\iota} \blacksquare \forall y_{\iota} \blacksquare (r \times y) \Rightarrow ((\mathsf{Bob}\, y) \lor ((\lambda z_{\iota} \blacksquare \forall u_{\iota} \blacksquare (r \times u) \Rightarrow (\mathsf{deletefile1}\, u)) \times))) \, w)$$

 \triangleright β -reduction to FO-like

$$\forall w_{\iota^{\mathbf{m}}}(\forall y_{\iota^{\mathbf{m}}}(r \ w \ y) \Rightarrow ((\mathsf{Bob} \ y) \lor \forall u_{\iota^{\mathbf{m}}}(r \ w \ u) \Rightarrow (\mathsf{deletefile1} \ u)))$$

Definition Expansion: Translation to HOL and FOL via S4

Example (ax3):

Expansion to S4:

valid
$$[\Box_r (Bob \lor (\Box_r deletefile1))]$$

Expansion to HOL:

$$\forall w_{\iota} \blacksquare ((\lambda x_{\iota} \blacksquare \forall y_{\iota} \blacksquare (r \times y) \Rightarrow ((\mathsf{Bob}\, y) \lor ((\lambda z_{\iota} \blacksquare \forall u_{\iota} \blacksquare (r \times u) \Rightarrow (\mathsf{deletefile1}\, u)) \times))) \, w)$$

 \triangleright β -reduction to FO-like

$$\forall w_{\iota^{\blacksquare}}(\forall y_{\iota^{\blacksquare}}(r \ w \ y) \Rightarrow ((\mathsf{Bob} \ y) \lor \forall u_{\iota^{\blacksquare}}(r \ w \ u) \Rightarrow (\mathsf{deletefile1} \ u)))$$

Definition Expansion: Translation to HOL and FOL via S4

Example (ax3):

Expansion to S4:

valid
$$[\Box_r (Bob \lor (\Box_r deletefile1))]$$

Expansion to HOL:

$$\forall w_{\iota} \blacksquare ((\lambda x_{\iota} \blacksquare \forall y_{\iota} \blacksquare (r \times y) \Rightarrow ((\mathsf{Bob}\, y) \lor ((\lambda z_{\iota} \blacksquare \forall u_{\iota} \blacksquare (r \times u) \Rightarrow (\mathsf{deletefile1}\, u)) \times))) \, w)$$

 \triangleright β -reduction to FO-like

$$\forall w_{\iota^{\blacksquare}}(\forall y_{\iota^{\blacksquare}}(r \ w \ y) \Rightarrow ((\texttt{Bob} \ y) \lor \forall u_{\iota^{\blacksquare}}(r \ w \ u) \Rightarrow (\texttt{deletefile1} \ u)))$$

After Complete Definition Expansion and Normalisation of Ex. 1

- ▶ 11 clauses, all FO-like
- ▶ example clause: $(admin \ V^5) \lor (delete file 1 \ V^8) \lor \neg (rel \ V^2 \ V^5) \lor \neg (rel \ V^5 \ V^8) \lor (rel \ V^5 \ (sk4 \ V^8 \ @\ V^2 \ @\ V^5))$
- Proof immediately found be E
- ▶ Total proving time 0.095 sec.

ICL Logic translated to K and S4

Filename	Status	LEO (s) + ATP-calls (s)	Total (s)			
ICL_unit_k.thf	-		_			
ICL_unit_s4.thf		0.008 0.023	0.031			
$s\supset (A\operatorname{says} s)$						
ICL_cuc_k.thf		0.004 0.022	0.026			
ICL_cuc_s4.thf		0.012 0.024	0.036			
$(A \operatorname{says}(s \supset t)) \supset (A \operatorname{says} s) \supset (A \operatorname{says} t)$						
ICL_idem_k.thf	-		_			
ICL_idem_s4.thf		0.040 0.050	0.090			
$(A\operatorname{says} A\operatorname{says} s)\supset (A\operatorname{says} s)$						
ICL_ex1_k.thf		0.040 0.055	0.095			
ICL_ex1_s4.thf		0.028 0.084	0.112			
$(ext{admin says deletefile1}) \supset ext{deletefile1}$						
$ ext{admin says}\left(\left(ext{Bob says deletefile1} ight)\supset ext{deletefile1} ight)$						
Bob says deletefile1						

ICL[⇒] Logic translated to K and S4

Filename	Status	LEO (s) + ATP-calls (s)	Total (s)			
ICLimp_refl_k.thf		0.008 0.045	0.053			
ICLimp_refl_s4.thf	$\sqrt{}$	0.040 0.084	0.124			
$A \Rightarrow A$						
ICLimp_trans_k.thf		0.012 0.021	0.033			
ICLimp_trans_s4.thf	$\sqrt{}$	0.012 0.020	0.032			
$(A \Rightarrow B) \supset (B \Rightarrow C) \supset (A \Rightarrow C)$						
ICLimp_speaking_k.thf		0.008 0.020	0.028			
ICLimp_speaking_s4.thf	\checkmark	0.024 0.021	0.045			
$(A \Rightarrow B) \supset (A \operatorname{says} s) \supset (B \operatorname{says} s)$						
ICLimp_handoff_k.thf	-	_	-			
ICLimp_handoff_s4.thf	\checkmark	0.028 0.047	0.075			
$(B \operatorname{says}(A \Rightarrow B)) \supset (A \Rightarrow B)$						
ICLimp_ex2_s4.thf		0.112 0.263	0.375			
$(ext{admin says deletefile1}) \supset ext{deletefile1}$						
$\mathtt{admin}\mathtt{says}ig(egin{array}{c}Bob\mathtt{says}\mathtt{deletefile1}ig)\supset\mathtt{deletefile1}ig)$						
$\texttt{Bobsays}(\texttt{Alice}\Rightarrow\texttt{Bob})$						
Alice says deletefile1						

72

ICL^B Logic translated to K and S4

Filename	Status	LEO (s) + ATP-calls (s)	Total (s)			
ICLb_trust_k.thf	-		_			
ICLb_trust_s4.thf	\checkmark	0.008 0.022	0.030			
$(\perp \operatorname{says} s) \supset s$						
ICLb_untrust_k.thf		0.004 0.020	0.024			
ICLb_untrust_s4.thf		0.028 0.046	0.074			
If $A \equiv \top$ then $\vdash A$ says s						
ICLb_cuc_k.thf		0.012 0.021	0.033			
ICLb_cuc_s4.thf		0.024 0.021	0.045			
$((A\supset B)\operatorname{says} s)\supset (A\operatorname{says} s)\supset (B\operatorname{says} s)$						
ICLb_ex3_k.thf	-		_			
ICLb_ex3_s4.thf	\checkmark	0.016 0.024	0.040			
$(exttt{admin}\supset ot)$ says deletefile1						
$\operatorname{admin}\operatorname{says}\left(\left(\operatorname{Bob}\supset\operatorname{admin}\right)\operatorname{says}\operatorname{deletefile1}\right)$						
Bob says deletefile1						

73

ICL[∀] Logic translated to K and S4

Filename	Status	LEO (s) + ATP-calls (s)	Total (s)		
ICLall_unit.thf		0.104 0.043 0.041 0.042	0.230		
		$s\supset (A\operatorname{says} s)$			
ICLall_cuc.thf		0.140 0.043 0.039 0.040 0.043	0.306		
$(A\operatorname{says}(s\supset t))\supset (A\operatorname{says}s)\supset (A\operatorname{says}t)$					
ICLall_idem.thf		0.056 0.019	0.131		
$(A \operatorname{says} A \operatorname{says} s) \supset (A \operatorname{says} s)$					
ICLall_ex1.thf		0.468 0.042	0.716		
$(ext{admin says deletefile1}) \supset ext{deletefile1}$					
$\mathtt{admin}\mathtt{says}((\mathtt{Bob}\mathtt{says}\mathtt{deletefile1})\supset\mathtt{deletefile1})$					
Bob says deletefile1					
ICLall_ex2.thf		0.000 0.062	2.081		
$(ext{admin says deletefile1}) \supset ext{deletefile1}$					
$\mathtt{admin}\mathtt{says}((\mathtt{Bob}\mathtt{says}\mathtt{deletefile1})\supset\mathtt{deletefile1})$					
$\texttt{Bob says (Alice} \Rightarrow \texttt{Bob)}$					
Alice says deletefile1					

Conclusion

What makes LEO-II strong? The combination of

- expressive higher-order representations
- reduction to first-order representations
- cooperation with first-order ATPs
- higher-order termsharing and termindexing techniques

Try LEO-II (running under Ocaml 3.10)

- ► Website: http://www.ags.uni-sb.de/~leo
 - download version, very easy to install
 - online demo
- Systems on TPTP: http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Prop. Logic, Arithmetic, ...Z3?
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Prop. Logic, Arithmetic, ... Z3?
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Prop. Logic, Arithmetic, ... Z3?
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Prop. Logic, Arithmetic, ... Z3?
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

I FO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Prop. Logic, Arithmetic, ...Z3?
- Logic Translations
- Feedback for LEO-II.
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- HOL Prover Contest

Applications

More Information on LEO-II

Website with online version of LEO-II:

http://www.ags.uni-sb.de/~leo

System description

[IJCAR-08]

► TPTP THF input syntax
Higher-Order TPTP Infrastructure

[IJCAR-THF-08] EU project THFTPTP

Reasoning in and about multimodal logic

[Festschrift-Andrews-08]

81

Term Graph for:

 $\neg \forall R. \forall A. (valid(\square_R A \Rightarrow A))$

Term graph videos: http://www.ags.uni-sb.de/~leo/art

Latest Application of LEO-II: Dancefloor Animation

Grooving to an animation of LEO-II's dynamically growing termgraph (while LEO-II is proving Cantor's theorem)

Termsharing

In LEO-II:

- ► Terms as unique instances
- Perfect Term Sharing
- Shallow data structures

Features:

- ightharpoonup eta- η -normalization
- DeBruijn indices
- local contexts for polymorphic type variables

$T \not\subseteq K$: Axiom T is not valid in modal logic K

$$\neg \forall R . \forall A . (valid(\square_R A \Rightarrow A))$$

initialisation, definition expansion and normalization generates:

$$((R W) s^{A,W,R}) \vee (A W)$$
$$\neg (A s^{A,W,R}) \vee (A W)$$

where $s^{A,W,R} = (((sA)W)R)$ is a new Skolem term

$T \not\subseteq K$: Axiom T is not valid in modal logic K

$$\neg \forall R . \forall A . (valid(\square_R A \Rightarrow A))$$

the refutation employs only the former clause

$$((R W) s^{A,W,R}) \vee (A W)$$

 $T \not\subseteq K$: Axiom T is not valid in modal logic K

$$\neg \forall R. \forall A. (valid(\square_R A \Rightarrow A))$$

- $((R W) s^{A,W,R}) \vee (A W)$
- ▶ LEO-II 'guesses' the instantiations

$$R \leftarrow \lambda X, Y.((MX)Y) \neq ((NX)Y)$$
$$A \leftarrow \lambda X.(OX) \neq (PX)$$

with primitive substitution rule (M, N, O, P) are new free variables) . . .

$T \not\subseteq K$: Axiom T is not valid in modal logic K

$$\neg \forall R \forall A (\text{valid}(\square_R A \Rightarrow A))$$

...and applies them

$$((M(RW)) s^{A,W,R}) \neq ((N(RW)) s^{A,W,R})$$

$$\vee$$

$$(OW) \neq (PW)$$

- such flex-flex unification constraints are always solvable!
- total proving time 9.0s

LEO-II cannot prove the following example:

Modal logic K4 (which adds only axiom 4 to K) is not entailed in K:

$$\neg \forall R \cdot \forall B \cdot (\text{valid}(\square_R B \Rightarrow \square_R \square_R B))$$

LEO-II also cannot prove this related example:

$\neg \forall R$ trans(R)

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X ... \forall Y ... X = Y$$

LEO-II also cannot prove this related example:

$$\neg \forall R_{\bullet} \operatorname{trans}(R)$$

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X_{\blacksquare} \forall Y_{\blacksquare} X = Y$$

LEO-II also cannot prove this related example:

$$\neg \forall R$$
 trans (R)

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- ▶ LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X . \forall Y . X = Y$$

