Chapter 12: Linear Maps $_{\text{March 28, 2023}}$

Contents

1	Ger	neral approach	
	1.1	Definition	
	1.2	Notation	
	1.3	Specific Linear Maps	
		1.3.1 Definition	
	1.4	Necessary Condition	
		1.4.1 Proof	
2	Ker	nel and Images	
	2.1	Definition	
	2.2	Graphics representation	
	2.3	Example	
	2.4	Proposition	
3	Projects and Symmetries		
	3.1	Reminder:	
		3.1.1 Definition of supllementary subspaces	
	3.2	Proposition	
	3.3	Definition	
4	Rank Nullity Theorem (RNT)		
	4.1	Definition of Rank	
	4.2	Proposition	
	4.3	Theorem (Rank Nullity Theorem)	
	4.4	Corollary	
	4.5	Involvement	
	4.6	Proof of corollary	
5	Important Proof		
	5.1	Proposition (Kernel and image)	
		5.1.1 Proof:	
	5.2	Proposition (Characterizing injective and surjective linear maps)	

1 General approach

1.1 Definition

Let E, F two $\mathbb{K} - VS$, and f a mapping from E to F. We say that f is a linear (or f is a linear map) if:

$$\forall (\alpha, X, Y) \in \mathbb{K} \times E \times E, f(\alpha \cdot X + Y) = \alpha \cdot f(X) + f(Y)$$

$$\iff$$

$$\forall (\alpha, \beta, X, Y) \in \mathbb{K} \times \mathbb{K} \times E \times E, f(\alpha \cdot X + \beta \cdot Y) = \alpha \cdot f(X) + \beta \cdot f(Y)$$

1.2 Notation

We denote L(E, F) the set of all linear maps from E to F.

1.3 Specific Linear Maps

1.3.1 Definition

- 1. Let $f \in \mathcal{L}(E, F)$: we say f is an endomorphism if E = F we then denote $\mathcal{L}(E)$ the set of all endomorphism of E.
- 2. Let $f \in \mathcal{L}(E, F)$: we say f is an isomorphism if f is bijective.
- 3. Let $f \in \mathcal{L}(E, F)$: we say f is an automorphism if f is an endomorphism and an isomorphism. (E = F and bijective)

1.4 Necessary Condition

$$f \in \mathcal{L}(E, F) \Longrightarrow f(0_E) = 0_F$$

1.4.1 **Proof**

Let
$$X \in E$$
 Let $X \in E$
$$f(0_E) = f(0_E \times X)$$

$$f(0_E) = 0_F \times f(X)$$

$$f(0_E) = 0_F$$

$$f(0_E) = 0_F$$

$$f(0_E) = 0_F$$

2 Kernel and Images

2.1 Definition

Let E and F two $\mathbb{K} - VS$ and $f \in \mathcal{L}(E, F)$. Then:

1. We call kernel of f and denote Ker(f) the subset of E defined as follows:

$$Ker(f) = \{X \in E, f(X) = 0_F\} = f^{-1}(\{0_F\})$$

Note: $f^{-1}()$ is NOT the inverse of f beacause f is not necessarily bijective.

2. We call image of f and denote Im(f) the subset of F defined as follows:

$$Im(f)=\{f(X),X\in E\}=\{Y\in F,\exists X\in E,f(X)=Y\}$$

2.2 Graphics representation

Ker(f): Vector Space of A

2.3 Example

$$f: R^{2} \longrightarrow R^{3}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x \\ 0 \\ y \end{pmatrix}$$

$$(1) f \in \mathcal{L}(R^{2}, R^{3})?$$

$$(2) \text{ Kerf} = ?$$

$$(3) \text{ Imf} = ?$$

1 Necessary condition:
$$f(0_E) = 0_F : f(0_{R^2}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
?

$$\forall (\alpha, X, Y) \in \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2, X = \begin{pmatrix} x \\ y \end{pmatrix} \text{ and } Y = \begin{pmatrix} x' \\ y' \end{pmatrix}, x, y, x', y' \in \mathbb{R}$$

$$f(\alpha \cdot X + Y) = \begin{pmatrix} \alpha \cdot x + x' \\ \alpha \cdot y + y' \end{pmatrix} = \begin{pmatrix} \alpha \cdot x + x' \\ 0 \\ \alpha \cdot y + y' \end{pmatrix} = \alpha \cdot \begin{pmatrix} x \\ 0 \\ y \end{pmatrix} + \begin{pmatrix} x' \\ 0 \\ y' \end{pmatrix} = \alpha \cdot f(X) + f(Y)$$

so
$$\widehat{1}$$
 $f \in \mathcal{L}(R^2, R^3)$ \checkmark

2.4 Proposition

1. Let $f \in \mathcal{L}(E, F)$ and $g \in \mathcal{L}(F, G)$. Then:

$$g \circ f \in \mathcal{L}(E,G)$$

- 2. If f is bijectif then f^{-1} is bijective and $f^{-1} \in \mathcal{L}(F, E)$
- 3. $\mathcal{L}(E, F)$ is a $\mathbb{K} VS$:

$$\mathcal{L}(E,F)$$
: $E \longrightarrow F$
 $X \mapsto B_F \in \mathcal{L}(F,E)$ $\forall (\alpha, f, g) \in \mathbb{K} \times \mathcal{L}^2(E,F)$
 $\alpha \cdot f + g \in \mathcal{L}(E,F)$

- 4. Let $f \in \mathcal{L}(A, B)$:
 - f is injective $\iff Ker(f) = \{0_A\}$
 - f is surjective $\iff Im(f) = B$

3 Projects and Symmetries

3.1 Reminder:

3.1.1 Definition of supllementary subspaces

Let E a \mathbb{K} - VS. Let F and G two supllementary \mathbb{K} - VSS of E:

$$E = F \oplus G \iff \forall X \in E, \exists ! (X_F, X_G) \in F \times G, X = X_F + X_G$$

3.2 Proposition

Let us consider:

$$p: \qquad E \xrightarrow{\qquad \qquad } F \subset E$$

$$X \longmapsto^{p} X_{F} \stackrel{E}{\longmapsto} X_{F}$$

- 1. $p \in \mathcal{L}(E)$
- 2. $p \circ p \ (= p^2) = p$
- $3. \quad \bullet \ Ker(p) = G$
 - Im(p) = F

3.3 Definition

We call projector from \mathbb{K} - VS E over \mathbb{K} - VS F, any endomorphism p of E such that $p \circ p = p$. (We often say that p is a projector over F parallel of/alongside G.)

$$Im(p) \oplus Ker(p) = E$$

Let us consider:

$$S:$$
 $E \xrightarrow{} E$ $X \longmapsto (2P - Id_E)(X) = 2p(x) - X$

- 1. $S \in \mathcal{L}(E)$
- 2. $\forall X \in E, S(X) = X_E X_G$
- 3. $S \circ S = Id_E$

4 Rank Nullity Theorem (RNT)

4.1 Definition of Rank

Let E and F two finite dimensional vector spaces. We call rank of any mapping f from $\mathcal{L}(E,F)$ and denote rank(f) the dimension of Im(f):

$$rank(f) = dim(Im(f))$$

4.2 Proposition

Let E a finite dimensional \mathbb{K} - VS such that $B = (U_1, U_2, \dots, U_n)$ a basis of E. Let F a \mathbb{K} - VS. Then let $f \in \mathcal{L}(E, F)$. We have:

$$Im(f) = sp(\{f(U_1), f(U_2), \dots, f(U_n)\})$$

We then deduce the following theorem:

4.3 Theorem (Rank Nullity Theorem)

Let E a finite dimensional VS and $f \in \mathcal{L}(E, F)$. Then:

$$dim(\underline{E}) = dim(Ker(\underline{f})) + \underbrace{rank(\underline{f})}_{dim(Im(\underline{f}))}$$

Mathematics 5 Important Proof

4.4 Corollary

Let $f \in \mathcal{L}(E, F)$ where E and F two finite dimensional vector spaces.

If
$$dim(E) = dim(F) (\iff dim(Ker(f)) = 0 \text{ or } dim(Im(f)) = 0)$$
 \implies

f injective \iff f surjective \iff f bijective

4.5 Involvement

$$f \text{ injective} \iff Ker(f) = \{0_E\}$$

$$[f \text{ injective} \implies dim(E) \leq dim(F)] \iff [dim(E) > dim(F) \implies \text{f not injective}]$$

$$f \text{ surjective} \iff Im(f) = F$$

$$[f \text{ surjective} \implies dim(E) \geq dim(F)] \iff [dim(E) < dim(F) \implies \text{f not surjective}]$$

4.6 Proof of corollary

Hypothesis: dim(E) = dim(F)

f injective
$$\iff Ker(f) = \{0_E\}$$

 $\iff dim(Ker(f)) = 0$
 $\iff dim(E) = dim(Ker(f)) + dim(Im(f))$
 $\iff dim(E) = dim(Im(f))$
 $\iff dim(F) = dim(Im(f))$
f surjective $\iff Im(f) = F$

5 Important Proof

5.1 Proposition (Kernel and image).

Let E and F be two vector spaces over \mathbb{R} and $f \in \mathcal{L}(E, F)$.

- 1. Ker(f) is a linear subspace of E.
- 2. Im(f) is a linear subspace of F.

5.1.1 **Proof**:

- 1. Ker(f) is a linear subspace of E.
 - By definition, $Ker(f) \subset E$. Since f is a linear map from E to F, we know that $f(0_E) = 0_F$, that is, $0_E \in Ker(f)$.

• Let $(u, v) \in (Ker(f))^2$ and $\alpha \in \mathbb{R}$.

$$f(\alpha u + v) = \alpha f(u) + f(v)$$
 because f is a linear map
= $\alpha(0_F) + (0_F)$
= 0_F

Thus, $\alpha u + v \in Ker(f)$. Ker(f) is hence a linear subspace of E.

- 2. Im(f) is a linear subspace of F.
 - By definition, $Im(f) \subset F$. Since f is a linear map from E to F, we know that $0_F = f(0_E)$. Thus, $0_F \in Im(f)$.
 - Let $(v, v') \in (Im(f))^2$ and $\alpha \in \mathbb{R}$. Then:

$$v \in Im(f) \Leftrightarrow \exists w \in E, v = f(w) \text{ and } v' \in Im(f) \Leftrightarrow \exists w' \in E, v' = f(w')$$

We hence get:

$$\alpha v + v' = \alpha f(w) + f(w')$$

= $f(\alpha w + w)$ since f is a linear map

This proves that $\alpha v + v' \in Im(f)$. Im(f) is hence a linear subspace of F.

5.2 Proposition (Characterizing injective and surjective linear maps).

Let E and F be two vector spaces over \mathbb{R} and $f \in \mathcal{L}(E, F)$.

- 1. f is injective if and only if $Ker(f) = \{0_E\}$.
- 2. f is surjective if and only if Im(f) = F.

5.2.1 **Proof:**

1. \implies Assume that f is injective. We hence know that

$$\forall (u, u') \in E^2, f(u) = f(u') \Rightarrow u = u'$$

- Let $u \in Ker(f)$. $f(u) = 0_F$ and $0_F = f(0_E)$. (because f is a linear map) $\Rightarrow f(u) = f(0_E) \Rightarrow u = 0_E$ using the injectivity definition. This proves that $Ker(f) \subset \{0_E\}$.
- Since $\{0_E\} \subset Ker(f)$, we get $Ker(f) = \{0_E\}$.

 \iff Assume that $Ker(f) = \{0_E\}.$

Let $(u, u') \in E^2$ such that f(u) = f(u'). Then

$$f(u) = f(u') \Rightarrow f(u) - f(u') = 0_F$$

$$\Rightarrow f(u - u') = 0_F \text{ because } f \text{ is a linear map}$$

$$\Rightarrow u - u' \in Ker(f)$$

$$\Rightarrow u - u' = \{0_E\} \text{ because } Ker(f) = \{0_E\}$$

$$\Rightarrow u - u' = 0_E$$

$$\Rightarrow u = u'$$

f is hence injective.

2. For the surjectivity, we have:

$$f$$
 surjective $\iff \forall v \in F, \exists u \in E, v = f(u)$
 $\iff \forall v \in F, v \in Im(f)$
 $\iff F \subset Im(f)$
 $\iff Im(f) = F$ since the inclusion $Im(f) \subset F$ is always true