Total No. of Printed Pages:2

F.E. Semester- II (Revised Course 2016-17) EXAMINATION FEBRUARY 2021 Engineering Mathematics-II

[Duration : Two Hours]		wo Hours] Total Mar.	Total Marks (60	
Instructions:		 Answer THREE FULL QUESTIONS with ONE QUESTION FRO EACH PART. Assume suitable data, if necessary. Figures to the right indicate full marks. Part – A	M	
Q.1	a)	Evaluate the following integral by using differentiation under integral sign. $\int_0^\infty \frac{\tan^{-1} px}{x(1+x^2)} dx$	(7)	
	b)	Evaluate $\int_0^2 \int_0^{\sqrt{2x}} xy dy dx$	(6)	
		Find the length of the cardioid $r = 2(1 + \cos\theta)$ which lies outside the circle $r + 2\cos\theta = 0$	(7)	
Q.2	a)	A particle moves along the curve $x = t^3 + 2t$, $y = -3e^{-2t}$, $z = 2\sin 5t$. Find the velocity and acceleration vectors and their magnitudes at $t = 0$.	(6)	
	b)	Change the order of integration and solve.	(8)	
	c)	$\int_0^1 \int_0^{\sqrt{1-y^2}} \frac{\cos^{-1} x}{\sqrt{1-x^2}\sqrt{1-x^2-y^2}} dxdy$ State and prove Serret- Frenet formulas.	(6)	
Q.3		Calculate $\iint r^3 dr d\theta$ over the area included between the circles $r = 3\sin\theta$ and $r = 6\sin\theta$	(7)	
	b)	Evaluate $\int_0^{\frac{\pi}{2}} \int_0^a \sin\theta \int_0^{\frac{(a^2-r^2)}{a}} r d\theta dr dz$	(7)	
	c)	Find the volume of tetrahedron bounded by the planes $x=0$, $y=0$, $z=0$ and $x+y+z=4$.	(6)	
		Part- B		
Q.4	a)	Solve the following differential equations. i) $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0$	(10)	
		$ii) \qquad \frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$		
	b)	Verify Green's Theorem $\int_c (2xy - x^2) dx + (x + y^2) dy$ where C is a closed curve in xy plane bounded by $x = y^2$ and $y = x^2$	(10)	
Q.5	a)	Solve the following differential equations.	(10)	

i)
$$D^2y + 9y = e^x - \cos^2 x$$

ii) $(D^3 + 2D^2 + D)y = x^2 + x$

ii)
$$(D^3 + 2D^2 + D)y = x^2 + x$$

- b) In what direction from the point (2, 1,-1) is the directional derivative of $\emptyset = x^2yz^3$ a (6) maximum? What is its magnitude?
- (4) c) Prove that $\nabla \cdot (\overline{a} \times \overline{r}) = 0$
- a) Solve the following differential equation. Q.6 (6) $x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 5y = \sin(\log x)$
 - b) Verify Stoke's theorem for $\overline{F} = x^2i + xyj$ integrated round the square in the plane z=0 and (10)bounded by x=0, y=0, x=a, y=a.
 - c) Find value of p if $\overline{F} = (x + 3y)i + (y 2z)j(pz + x)k$ is solenoidal. (4)

Part- C

- Q. 7 a) Solve the following differential equation. (6) $\tan y \frac{dy}{dx} + \tan x = \cos y \cdot \cos^3 x$
 - (7) b) Find the length of the loop of the curve $12y^2 = x^2(4-x)$
 - (7) c) Change into polar coordinates and evaluate. $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} e^{-(x^{2}+y^{2})} dy dx$
- a) Find the total work done in the moving particle in the force field. $\overline{F} = 3xyi 5zj + 10xk$ Q. 8 (7) along $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2
 - (6) b) Solve the differential equation $(x + 2y^3) \frac{dy}{dx} = y$
 - c) Given the space curve = t, $y = t^2$, $z = \frac{2}{3}t^3$. Find the curvature K. (7)