CS738: Advanced Compiler Optimizations Data Flow Analysis

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur

Intraprocedural Data Flow Analysis: Classical Examples

- Intraprocedural Data Flow Analysis: Classical Examples
 - Last lecture: Reaching Definitions

- Intraprocedural Data Flow Analysis: Classical Examples
 - Last lecture: Reaching Definitions
 - ▶ Today: Available Expressions

- Intraprocedural Data Flow Analysis: Classical Examples
 - Last lecture: Reaching Definitions
 - Today: Available Expressions
 - Discussion about the similarities/differences

► An expression *e* is available at a point *p* if

- ► An expression *e* is available at a point *p* if
 - Every path from the Entry to p has at least one evaluation of e

- An expression e is available at a point p if
 - Every path from the Entry to p has at least one evaluation of e
 - There is no assignment to any component variable of e after the last evaluation of e prior to p

- An expression e is available at a point p if
 - Every path from the Entry to p has at least one evaluation of e
 - ► There is no assignment to any component variable of e after the last evaluation of e prior to p
- Expression e is *generated* by its evaluation

- An expression e is available at a point p if
 - Every path from the Entry to p has at least one evaluation of e
 - ► There is no assignment to any component variable of e after the last evaluation of e prior to p
- Expression e is *generated* by its evaluation
- Expression e is killed by assignment to its component variables

$$\mathsf{OUT}(s_1) = \mathsf{IN}(s_1) - \mathsf{KILL}(s_1) \cup \mathsf{GEN}(s_1)$$

$$OUT(s_1) = IN(s_1) - KILL(s_1) \cup GEN(s_1)$$

 $GEN(s_1) =$

$$OUT(s_1) = IN(s_1) - KILL(s_1) \cup GEN(s_1)$$
$$GEN(s_1) = \{y + z\}$$


```
\begin{array}{lcl} \mathsf{OUT}(s_1) & = & \mathsf{IN}(s_1) - \mathsf{KILL}(s_1) \cup \mathsf{GEN}(s_1) \\ \mathsf{GEN}(s_1) & = & \{y+z\} \\ \mathsf{KILL}(s_1) & = & \end{array}
```


$$\begin{array}{rcl}
\mathsf{OUT}(s_1) &=& \mathsf{IN}(s_1) - \mathsf{KILL}(s_1) \cup \mathsf{GEN}(s_1) \\
\mathsf{GEN}(s_1) &=& \{y + z\}
\end{array}$$

 $KILL(s_1) = E_X$

where E_x : set of all expression having x as a component

$$OUT(s_1) = IN(s_1) - KILL(s_1) \cup GEN(s_1)$$

$$GEN(s_1) = \{y + z\}$$

$$KILL(s_1) = E_x$$

where E_x : set of all expression having x as a component This may not work in general – WHY?

$$\begin{aligned} \mathsf{OUT}(s_1) &=& \mathsf{IN}(s_1) - \mathsf{KILL}(s_1) \cup \mathsf{GEN}(s_1) \\ \mathsf{GEN}(s_1) &=& \{x+z\} \\ \mathsf{KILL}(s_1) &=& E_x \\ && \mathsf{Incorrectly\ marks}\ x+z\ \text{as\ available\ after}\ s_1 \end{aligned}$$

$$\begin{array}{c|c}
& IN(s_1) \\
\hline
x = x + z & s_1 \\
& OUT(s_1)
\end{array}$$

```
\begin{array}{lcl} \mathsf{OUT}(s_1) &=& \mathsf{IN}(s_1) - \mathsf{KILL}(s_1) \cup \mathsf{GEN}(s_1) \\ \mathsf{GEN}(s_1) &=& \{x+z\} \\ \mathsf{KILL}(s_1) &=& E_x \\ &&& \mathsf{Incorrectly\ marks\ } x+z \ \mathsf{as\ available\ after\ } s_1 \\ \mathsf{GEN}(s_1) &=& \emptyset \ \mathsf{for\ this\ case} \end{array}
```

$$|N(s_1)|$$

$$|S_1|$$

$$|OUT(s_1)|$$

```
\begin{array}{lcl} \mathsf{OUT}(s_1) &=& \mathsf{IN}(s_1) - \mathsf{KILL}(s_1) \cup \mathsf{GEN}(s_1) \\ \mathsf{GEN}(s_1) &=& \{\mathsf{rhs} \mid \mathsf{lhs} \; \mathsf{is} \; \mathsf{not} \; \mathsf{part} \; \mathsf{of} \; \mathsf{rhs} \} \\ \mathsf{KILL}(s_1) &=& E_{\mathsf{lhs}} \end{array}
```


$$GEN(S) =$$

$$\mathsf{GEN}(S) \ = \ \mathsf{GEN}(s_1) - \mathsf{KILL}(s_2) \cup \mathsf{GEN}(s_2)$$

$$GEN(S) = GEN(s_1) - KILL(s_2) \cup GEN(s_2)$$

 $KILL(S) =$

$$\mathsf{GEN}(S) \ = \ \mathsf{GEN}(s_1) - \mathsf{KILL}(s_2) \cup \mathsf{GEN}(s_2)$$

$$\mathsf{KILL}(S) = \mathsf{KILL}(s_1) - \mathsf{GEN}(s_2) \cup \mathsf{KILL}(s_2)$$

$$\begin{array}{lcl} \mathsf{GEN}(S) & = & \mathsf{GEN}(s_1) - \mathsf{KILL}(s_2) \cup \mathsf{GEN}(s_2) \\ \mathsf{KILL}(S) & = & \mathsf{KILL}(s_1) - \mathsf{GEN}(s_2) \cup \mathsf{KILL}(s_2) \\ \mathsf{IN}(s_1) & = & \end{array}$$

$$\begin{aligned} \mathsf{GEN}(S) &=& \mathsf{GEN}(s_1) - \mathsf{KILL}(s_2) \cup \mathsf{GEN}(s_2) \\ \mathsf{KILL}(S) &=& \mathsf{KILL}(s_1) - \mathsf{GEN}(s_2) \cup \mathsf{KILL}(s_2) \\ \mathsf{IN}(s_1) &=& \mathsf{IN}(S) \end{aligned}$$

$$\begin{aligned} \mathsf{GEN}(S) &=& \mathsf{GEN}(s_1) - \mathsf{KILL}(s_2) \cup \mathsf{GEN}(s_2) \\ \mathsf{KILL}(S) &=& \mathsf{KILL}(s_1) - \mathsf{GEN}(s_2) \cup \mathsf{KILL}(s_2) \\ \mathsf{IN}(s_1) &=& \mathsf{IN}(S) \\ \mathsf{IN}(s_2) &=& \end{aligned}$$

$$\begin{aligned} \mathsf{GEN}(S) &=& \mathsf{GEN}(s_1) - \mathsf{KILL}(s_2) \cup \mathsf{GEN}(s_2) \\ \mathsf{KILL}(S) &=& \mathsf{KILL}(s_1) - \mathsf{GEN}(s_2) \cup \mathsf{KILL}(s_2) \\ \mathsf{IN}(s_1) &=& \mathsf{IN}(S) \\ \mathsf{IN}(s_2) &=& \mathsf{OUT}(s_1) \end{aligned}$$


```
\begin{aligned} \mathsf{GEN}(S) &=& \mathsf{GEN}(s_1) - \mathsf{KILL}(s_2) \cup \mathsf{GEN}(s_2) \\ \mathsf{KILL}(S) &=& \mathsf{KILL}(s_1) - \mathsf{GEN}(s_2) \cup \mathsf{KILL}(s_2) \\ \mathsf{IN}(s_1) &=& \mathsf{IN}(S) \\ \mathsf{IN}(s_2) &=& \mathsf{OUT}(s_1) \\ \mathsf{OUT}(S) &=& \end{aligned}
```


$$\begin{aligned} \mathsf{GEN}(S) &=& \mathsf{GEN}(s_1) - \mathsf{KILL}(s_2) \cup \mathsf{GEN}(s_2) \\ \mathsf{KILL}(S) &=& \mathsf{KILL}(s_1) - \mathsf{GEN}(s_2) \cup \mathsf{KILL}(s_2) \\ \mathsf{IN}(s_1) &=& \mathsf{IN}(S) \\ \mathsf{IN}(s_2) &=& \mathsf{OUT}(s_1) \\ \mathsf{OUT}(S) &=& \mathsf{OUT}(s_2) \end{aligned}$$

$$GEN(S) =$$

$$GEN(S) = GEN(s_1) \cap GEN(s_2)$$

$$GEN(S) = GEN(s_1) \cap GEN(s_2)$$

 $KILL(S) =$

$$\mathsf{GEN}(S) = \mathsf{GEN}(s_1) \cap \mathsf{GEN}(s_2)$$

$$\mathsf{KILL}(S) = \mathsf{KILL}(s_1) \cup \mathsf{KILL}(s_2)$$

$$GEN(S) = GEN(s_1) \cap GEN(s_2)$$

 $KILL(S) = KILL(s_1) \cup KILL(s_2)$
 $IN(s_1) = IN(s_2) = IN(S)$

$$\begin{array}{lcl} \mathsf{GEN}(S) & = & \mathsf{GEN}(s_1) \cap \mathsf{GEN}(s_2) \\ \mathsf{KILL}(S) & = & \mathsf{KILL}(s_1) \cup \mathsf{KILL}(s_2) \\ \mathsf{IN}(s_1) & = & \mathsf{IN}(s_2) & = & \mathsf{IN}(S) \\ \mathsf{OUT}(S) & = & \end{array}$$

$$GEN(S) = GEN(s_1) \cap GEN(s_2)$$

 $KILL(S) = KILL(s_1) \cup KILL(s_2)$
 $IN(s_1) = IN(s_2) = IN(S)$
 $OUT(S) = OUT(s_1) \cap OUT(s_2)$

$$GEN(S) =$$

$$GEN(S) = GEN(s_1)$$

$$GEN(S) = GEN(s_1)$$

$$KILL(S) =$$

$$GEN(S) = GEN(s_1)$$

$$KILL(S) = KILL(s_1)$$

$$\mathsf{GEN}(S) = \mathsf{GEN}(s_1)$$

$$KILL(S) = KILL(s_1)$$

$$\mathsf{OUT}(S) =$$

$$\mathsf{GEN}(S) = \mathsf{GEN}(s_1)$$

$$KILL(S) = KILL(s_1)$$

$$OUT(S) = OUT(s_1)$$


```
GEN(S) = GEN(s_1)
KILL(S) = KILL(s_1)
OUT(S) = OUT(s_1)
IN(s_1) =
```



```
\begin{aligned} \mathsf{GEN}(S) &=& \mathsf{GEN}(s_1) \\ \mathsf{KILL}(S) &=& \mathsf{KILL}(s_1) \\ \mathsf{OUT}(S) &=& \mathsf{OUT}(s_1) \\ \mathsf{IN}(s_1) &=& \mathsf{IN}(S) \cap \mathsf{GEN}(s_1) \end{aligned}
```



```
\begin{aligned} \mathsf{GEN}(S) &=& \mathsf{GEN}(s_1) \\ \mathsf{KILL}(S) &=& \mathsf{KILL}(s_1) \\ \mathsf{OUT}(S) &=& \mathsf{OUT}(s_1) \\ \mathsf{IN}(s_1) &=& \mathsf{IN}(S) \cap \mathsf{GEN}(s_1) ? \\ \mathsf{IN}(s_1) &=& \mathsf{IN}(S) \cap \mathsf{OUT}(s_1) ? ? \end{aligned}
```


Is x + y available at OUT(S)?

Assumption: All paths are feasible.

- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```


- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```


- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```

```
\begin{array}{cccc} \textbf{Fact} & \textbf{Computed} & \textbf{Actual} \\ \textbf{GEN}(S) & = & \textbf{GEN}(s_1) \cap \textbf{GEN}(s_2) & \subseteq & \textbf{GEN}(s_1) \end{array}
```


- Assumption: All paths are feasible.
- Example:

```
if (true) s1;
else s2;
```

Fact		Computed		Actual
GEN(S)	=	$GEN(s_1) \cap GEN(s_2)$	\subseteq	$GEN(s_1)$
KILL(S)	=	$KILL(s_1) \cup KILL(s_2)$	\supseteq	$KILL(s_1)$

► Thus, true $GEN(S) \supseteq analysis GEN(S)$

► Thus,

true $GEN(S) \supseteq$ analysis GEN(S) true $KILL(S) \subseteq$ analysis KILL(S)

► Thus,

```
true GEN(S) \supseteq analysis GEN(S) true KILL(S) \subseteq analysis KILL(S)
```

Fewer expressions marked available than actually do!


```
true GEN(S) \supseteq analysis GEN(S) true KILL(S) \subseteq analysis KILL(S)
```

- Fewer expressions marked available than actually do!
- ► Later we shall see that this is SAFE approximation


```
true GEN(S) \supseteq analysis GEN(S) true KILL(S) \subseteq analysis KILL(S)
```

- Fewer expressions marked available than actually do!
- Later we shall see that this is SAFE approximation
 - prevents optimizations


```
true GEN(S) \supseteq analysis GEN(S) true KILL(S) \subseteq analysis KILL(S)
```

- Fewer expressions marked available than actually do!
- Later we shall see that this is SAFE approximation
 - prevents optimizations
 - but NO wrong optimization

Expr e is available at the start of a block if

$$\mathsf{IN}(B) = \bigcap_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

- Expr e is available at the start of a block if
 - It is available at the end of all predecessors

$$\mathsf{IN}(B) = \bigcap_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

- Expr e is available at the start of a block if
 - lt is available at the end of all predecessors

$$\mathsf{IN}(B) = \bigcap_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

Expr e is available at the end of a block if

$$OUT(B) = IN(B) - KILL(B) \cup GEN(B)$$

- Expr e is available at the start of a block if
 - lt is available at the end of all predecessors

$$\mathsf{IN}(B) = \bigcap_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

- Expr e is available at the end of a block if
 - Either it is generated by the block

$$\mathsf{OUT}(B) = \mathsf{IN}(B) - \mathsf{KILL}(B) \cup \mathsf{GEN}(B)$$

- Expr e is available at the start of a block if
 - lt is available at the end of all predecessors

$$\mathsf{IN}(B) = \bigcap_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

- Expr e is available at the end of a block if
 - Either it is generated by the block
 - Or it is available at the start of the block and not killed by the block

$$OUT(B) = IN(B) - KILL(B) \cup GEN(B)$$

Solving AvE Constraints

KILL & GEN known for each BB.

Solving AvE Constraints

- KILL & GEN known for each BB.
- ► A program with *N* BBs has 2*N* equations with 2*N* unknowns.

Solving AvE Constraints

- KILL & GEN known for each BB.
- A program with N BBs has 2N equations with 2N unknowns.
 - Solution is possible.

Solving AvE Constraints

- KILL & GEN known for each BB.
- A program with N BBs has 2N equations with 2N unknowns.
 - Solution is possible.
 - Iterative approach (on the next slide).

for each block \boldsymbol{B} {

```
for each block B { OUT(B) = U; U = "universal" set of all exprs
```

```
for each block B { OUT(B) = \mathcal{U}; \mathcal{U} = "universal" set of all exprs } OUT(Entry) = \emptyset; // remember reaching defs?
```

```
for each block B {
    OUT(B) = U; U = "universal" set of all exprs
}
OUT(Entry) = \emptyset; // remember reaching defs?
change = true;
while (change) {
    change = false;
```

```
for each block B {
    OUT(B) = U; U = "universal" set of all exprs
}
OUT(Entry) = \emptyset; // remember reaching defs?
change = true;
while (change) {
    change = false;
    for each block B other than Entry {
```

```
for each block B { OUT(B) = \mathcal{U}; \mathcal{U} = "universal" set of all exprs } OUT(Entry) = \emptyset; // remember reaching defs? change = true; while (change) { change = false; for each block B other than Entry { IN(B) = \bigcap_{P \in PRED(B)} OUT(P);
```

```
for each block B {
    OUT(B) = U; U = "universal" set of all exprs
}
OUT(Entry) = \emptyset; // remember reaching defs?
change = true;
while (change) {
    change = false;
    for each block B other than Entry {
    IN(B) = \bigcap_{P \in PRED(B)} OUT(P);
    oldOut = OUT(B);
    OUT(B) = IN(B) - KILL(B) \cup GEN(B);
```

```
for each block B {
     OUT(B) = \mathcal{U}; \mathcal{U} = "universal" set of all exprs
OUT(Entry) = \emptyset; // remember reaching defs?
change = true;
while (change) {
     change = false;
     for each block B other than Entry {
          \mathsf{IN}(B) = \bigcap_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P);
          oldOut = OUT(B);
          OUT(B) = IN(B) - KILL(B) \cup GEN(B);
          if (OUT(B) \neq oldOut) then {
                change = true;
```

Some Issues

▶ What is \mathcal{U} – the set of *all* expressions?

Some Issues

- ▶ What is \mathcal{U} the set of *all* expressions?
- ► How to compute it efficiently?

Some Issues

- ▶ What is \mathcal{U} the set of *all* expressions?
- ▶ How to compute it efficiently?
- ▶ Why Entry block is initialized differently?

Pass#	Pt	B1	B2	B3	B4
Init	IN	-	-	-	-
	OUT	\mathcal{U}	\mathcal{U}	U	\mathcal{U}

Pass#	Pt	B1	B2	B3	B4
Init	IN	-	-	-	-
	OUT	\mathcal{U}	\mathcal{U}	\mathcal{U}	U
1	IN	Ø	a*b, c+d	c+d	c+d
			c+d		
	OUT	a*b, c+d	c+d	a*b, c+d	a*b
		c+d		c+d	

Pass#	Pt	B1	B2	В3	B4
Init	IN	-	-	-	-
	OUT	\mathcal{U}	\mathcal{U}	\mathcal{U}	U
1	IN	Ø	a*b,	c+d	c+d
			c+d		
	OUT	a*b, c+d	c+d	a*b,	a*b
		c+d		c+d	
2	IN	Ø	a*b	c+d	c+d
	OUT	a*b, c+d	c+d	a*b,	a*b
		c+d		c+d	

Pass#	Pt	B1	B2	В3	B4
Init	IN	-	-	-	-
	OUT	\mathcal{U}	\mathcal{U}	\mathcal{U}	\mathcal{U}
1	IN	Ø	a*b,	c+d	c+d
			c+d		
	OUT	a*b,	c+d	a*b,	a*b
		c+d		c+d	
2	IN	Ø	a*b	c+d	c+d
	OUT	a*b,	c+d	a*b,	a*b
		c+d		c+d	
3	IN	Ø	a*b	c+d	c+d
	OUT	a*b,	c+d	a*b,	a*b
		c+d		c+d	

a bit for each expression: a*b c+d

Pass#	Pt	B1	B2	В3	B4
Init	IN	-	-	-	-
	OUT	11	11	11	11
1	IN	00	11	01	01
	OUT	11	01	11	10
2	IN	00	10	01	01
	OUT	11	01	11	10
3	IN	00	10	01	01
	OUT	11	01	11	10

Set-theoretic definitions:

$$\mathsf{IN}(B) = \bigcap_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$
 $\mathsf{OUT}(B) = \mathsf{IN}(B) - \mathsf{KILL}(B) \cup \mathsf{GEN}(B)$

Set-theoretic definitions:

$$\mathsf{IN}(B) = \bigcap_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$
 $\mathsf{OUT}(B) = \mathsf{IN}(B) - \mathsf{KILL}(B) \cup \mathsf{GEN}(B)$

Bitvector definitions:

$$\mathsf{IN}(B) = \bigwedge_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

$$\mathsf{OUT}(B) = \mathsf{IN}(B) \land \neg \mathsf{KILL}(B) \lor \mathsf{GEN}(B)$$

Set-theoretic definitions:

$$\mathsf{IN}(B) = \bigcap_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$
 $\mathsf{OUT}(B) = \mathsf{IN}(B) - \mathsf{KILL}(B) \cup \mathsf{GEN}(B)$

Bitvector definitions:

$$\mathsf{IN}(B) = \bigwedge_{P \in \mathsf{PRED}(B)} \mathsf{OUT}(P)$$

$$\mathsf{OUT}(B) = \mathsf{IN}(B) \land \neg \mathsf{KILL}(B) \lor \mathsf{GEN}(B)$$

▶ Bitwise ∨, ∧, ¬ operators

Common subexpression elimination in a block B

- Common subexpression elimination in a block B
 - Expression *e* available at the entry of *B*

- Common subexpression elimination in a block B
 - Expression e available at the entry of B
 - e is also computed at a point p in B

- Common subexpression elimination in a block B
 - Expression *e* available at the entry of *B*
 - e is also computed at a point p in B
 - Components of e are not modified from entry of B to p

- Common subexpression elimination in a block B
 - Expression *e* available at the entry of *B*
 - e is also computed at a point p in B
 - Components of e are not modified from entry of B to p
- e is "upward exposed" in B

Available Expressions: Application

- Common subexpression elimination in a block B
 - Expression *e* available at the entry of *B*
 - e is also computed at a point p in B
 - Components of e are not modified from entry of B to p
- e is "upward exposed" in B
- Expressions generated in B are "downward exposed"

► Some vs. All path property

- Some vs. All path property
- ▶ Meet operator: Uvs. ∩

- Some vs. All path property
- ► Meet operator: Uvs. ∩
- ► Initialization of *Entry*: ∅

- Some vs. All path property
- ► Meet operator: Uvs. ∩
- ► Initialization of Entry: ∅
- ▶ Initialization of other BBs: \emptyset vs. \mathcal{U}

- Some vs. All path property
- ► Meet operator: Uvs. ∩
- ► Initialization of Entry: ∅
- ▶ Initialization of other BBs: \emptyset vs. \mathcal{U}
- Safety: "More" RD vs. "Fewer" AvE

$$OUT(B) = \emptyset, \forall B \text{ including } Entry$$

What if we Initialize:

$$\mathsf{OUT}(B) = \emptyset, \forall B \text{ including } \textit{Entry}$$

Would we find "extra" available expressions?

$$OUT(B) = \emptyset, \forall B \text{ including } Entry$$

- ▶ Would we find "extra" available expressions?
 - More opportunity to optimize?

$$OUT(B) = \emptyset, \forall B \text{ including } Entry$$

- Would we find "extra" available expressions?
 - More opportunity to optimize?
- OR would we miss some expressions that are available?

$$OUT(B) = \emptyset, \forall B \text{ including } Entry$$

- Would we find "extra" available expressions?
 - More opportunity to optimize?
- OR would we miss some expressions that are available?
 - Loose on opportunity to optimize?

A variable x is live at a point p if

- A variable x is live at a point p if
 - ► There is a point *p'* along some path in the flow graph starting at *p* to the *Exit*

- A variable x is live at a point p if
 - ► There is a point p' along some path in the flow graph starting at p to the Exit
 - Value of x could be used at p'

- A variable x is live at a point p if
 - ► There is a point *p'* along some path in the flow graph starting at *p* to the *Exit*
 - Value of x could be used at p'
 - There is no definition of x between p and p' along this path

- A variable x is live at a point p if
 - ► There is a point p' along some path in the flow graph starting at p to the Exit
 - Value of x could be used at p'
 - ▶ There is no definition of x between p and p' along this path
- Otherwise x is dead at p

Live Variables: GEN

- GEN(B): Set of variables whose values may be used in block B prior to any definition
 - ► Also called "use(B)"
- "upward exposed use" of a variable in B

Live Variables: KILL

- ► KILL(*B*): Set of variables defined in block *B* prior to any use
 - ► Also called "def(B)"
- "upward exposed definition" of a variable in B

Live Variables: Equations

Set-theoretic definitions:

$$\mathsf{OUT}(B) = \bigcup_{S \in \mathsf{SUCC}(B)} \mathsf{IN}(S)$$

 $\mathsf{IN}(B) = \mathsf{OUT}(B) - \mathsf{KILL}(B) \cup \mathsf{GEN}(B)$

Live Variables: Equations

Set-theoretic definitions:

$$\mathsf{OUT}(B) = \bigcup_{S \in \mathsf{SUCC}(B)} \mathsf{IN}(S)$$
 $\mathsf{IN}(B) = \mathsf{OUT}(B) - \mathsf{KILL}(B) \cup \mathsf{GEN}(B)$

Bitvector definitions:

$$\mathsf{OUT}(B) = \bigvee_{S \in \mathsf{SUCC}(B)} \mathsf{OUT}(S)$$

$$\mathsf{IN}(B) = \mathsf{OUT}(B) \land \neg \mathsf{KILL}(B) \lor \mathsf{GEN}(B)$$

Live Variables: Equations

Set-theoretic definitions:

$$\mathsf{OUT}(B) = \bigcup_{S \in \mathsf{SUCC}(B)} \mathsf{IN}(S)$$

$$\mathsf{IN}(B) = \mathsf{OUT}(B) - \mathsf{KILL}(B) \cup \mathsf{GEN}(B)$$

Bitvector definitions:

$$\mathsf{OUT}(B) = \bigvee_{S \in \mathsf{SUCC}(B)} \mathsf{OUT}(S)$$

$$\mathsf{IN}(B) = \mathsf{OUT}(B) \land \neg \mathsf{KILL}(B) \lor \mathsf{GEN}(B)$$

 \triangleright Bitwise \vee, \wedge, \neg operators

Expression e is very busy at a point p if

- Expression e is very busy at a point p if
 - Every path from p to Exit has at least one evaluation of e

- Expression e is very busy at a point p if
 - Every path from p to Exit has at least one evaluation of e
 - On every path, there is no assignment to any component variable of e before the first evaluation of e following p

- Expression e is very busy at a point p if
 - Every path from p to Exit has at least one evaluation of e
 - On every path, there is no assignment to any component variable of e before the first evaluation of e following p
- Also called Anticipable expression

- Expression e is very busy at a point p if
 - Every path from p to Exit has at least one evaluation of e and there is no assignment to any component variable of e before the first evaluation of e following p on these paths.
- Set up the data flow equations for Very Busy Expressions (VBE). You have to give equations for GEN, KILL, IN, and OUT.
- Think of an optimization/transformation that uses VBE analysis. Briefly describe it (2-3 lines only)
- Will your optimization be safe if we replace "Every" by "Some" in the definition of VBE?