

M. Hohle:

Physics 77: Introduction to Computational Techniques in Physics

syllabus:	- Introduction to Unix & Python	(week 1 - 2)
	- Functions, Loops, Lists and Arrays	(week 3 - 4)
	- Visualization	(week 5)
	Parsing, Data Processing and File I/O	(week 6)
	- Statistics and Probability, Interpreting Measurements	(week 7 - 8)
	- Random Numbers, Simulation	(week 9)
	- Numerical Integration and Differentiation	(week 10)
	- Root Finding, Interpolation	(week 11)
	- Systems of Linear Equations	(week 12)
	- Ordinary Differential Equations	(week 13)
	- Fourier Transformation and Signal Processing	(week 14)
	- Capstone Project Presentations	(week 15)

finding the intersection of two lines:

$$y_1 = a_1 x_1 + c_1$$

$$y_2 = a_2 x_2 + c_2$$

$$x_1 = x_2$$

$$y_1 = y_2$$

$$a_2 x + c_2 = a_1 x + c_1$$

$$x = \frac{c_2 - c_1}{a_1 - a_2}$$

 $\rightarrow \chi$

$$y = a_1 \frac{c_2 - c_1}{a_1 - a_2} + c_1$$

finding the intersection of three planes:

$$y_1 = a_{11}x_{11} + a_{12}x_{12} + c_1$$

$$y_2 = a_{21}x_{21} + a_{22}x_{22} + c_2$$

$$y_2 = a_{31}x_{31} + a_{32}x_{32} + c_2$$

$$x_{11} = x_{21} = x_{31} = x_1$$

$$x_{12} = x_{22} = x_{32} = x_2$$

$$y_1 = y_2 = y_3 = y$$

more general:

$$x_{11} = x_{21} = x_{31} = x_1$$

$$x_{12} = x_{22} = x_{32} = x_2$$

$$y_1 = y_2 = y_3 = y$$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + ... + a_{1n}x_n = c_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + ... + a_{2n}x_n = c_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = c_3$$

•••

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + ... + a_{mn}x_n = c_m$$

 \vec{x}

more general:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \end{bmatrix}$$

 $A\vec{x} = \vec{c}$

more general:

$$A\vec{x} = \vec{c}$$

general set of solutions

for $n = m \rightarrow solution$ is unique: a point

more general:

$$A\vec{x} = \vec{c}$$

for $n = m \rightarrow solution$ is unique: a point

for n > m (more variables than equations)

→ solution is not unique: line, hyperplane

for n < m (more equations than variables)

→ no solution

more general:

general set of solutions

for n = m → solution is unique: a point

for n > m (more variables than equations)

→ solution is not unique: line, hyperplane

for n < m (more equations than variables)

→ no solution

exceptions!

y

x

more general:

general set of solutions

for $n = m \rightarrow solution$ is unique: a point

for n > m (more variables than equations)

→ solution is not unique: line, hyperplane

for n < m (more equations than variables)

→ no solution

more general:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \end{bmatrix}$$

$$A\vec{x} = \vec{c}$$

$$\vec{\chi} = ?$$

for n = m

$$A^{-1}A\vec{x} = A^{-1}\vec{c}$$

$$\vec{x} = A^{-1}\vec{c}$$

$$A = [a_{ij}]$$

inverse: identity:

transpose:

symmetry:

I M = M $[a_{ij}]^T = [a_{ji}]$ $[a_{ij}] = [a_{ji}]$

 $A^{-1}A = I$

conjugate transpose: A

unitary: $A^{-1} = A^+$

idempotency: $AA = A \rightarrow A^n = A$

normal: $A^+A = AA^+$

linear equations

solving for x:

 $A\vec{x} = \vec{c}$

- \rightarrow need to calculate A^{-1}
- → need to calculate a quantity called

determinant of A, det(A)

$$A^{-1} \sim \frac{1}{\det(A)}$$

- if $det(A) = 0 \rightarrow \text{no solution}$
- | det(A) |: volume spanned by the vectors in A

normal:

 $A^{-1}A = I$ inverse: IM = Midentity: $[a_{ij}]^T = [a_{ji}]$ transpose: $[a_{ij}] = [a_{ji}]$ symmetry: conjugate transpose: $A^{-1} = A^+$ unitary: $AA = A \rightarrow A^n = A$ idempotency: $A^+A = AA^+$

solving for x:

 $A\vec{x} = \vec{c}$

- \rightarrow need to calculate A^{-1}
- → need to calculate a quantity called

determinant of A, det(A)

$$A^{-1} \sim \frac{1}{\det(A)}$$

inverse:
$$A^{-1}A = I$$
 identity: $I M = M$ transpose: $[a_{ij}]^T = [a_{ji}]$ symmetry: $[a_{ij}] = [a_{ji}]$ conjugate transpose: A^+ unitary: $A^{-1} = A^+$ idempotency: $AA = A \rightarrow A^n = A$ normal: $A^+A = AA^+$

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

linear equations

solving for x:

- \rightarrow need to calculate A^{-1}
- → need to calculate a quantity called

determinant of A, det(A)

$$A^{-1} \sim \frac{1}{\det(A)}$$

$A\vec{x} = \vec{c}$

inverse:

 $A^{-1}A = I$

identity:

IM = M

transpose: symmetry: $[a_{ij}]^T = [a_{ii}]$ $[a_{ij}] = [a_{ji}]$

conjugate transpose:

 $A^{-1} = A^+$

unitary: idempotency:

 $AA = A \rightarrow A^n = A$

normal:

 $A^+A = AA^+$

N x N matrix:

$$\det(A) = \sum_{i_1, i_2, \dots, i_n} \varepsilon_{i_1 \dots i_n} \, a_{1, i_1} \dots a_{n i_n} \qquad \text{where} \qquad \varepsilon_{i_1 \dots i_n} = \prod_{1 \leq \mu < \vartheta \leq n} \operatorname{sgn}(i_\vartheta - i_\mu)$$

$$\varepsilon_{i_1\dots i_n} = \prod_{1 \le \mu < \vartheta \le n} \operatorname{sgn}(i_\vartheta - i_\mu)$$

(Levi-Civita symbol)

changing indices does not change | det(A) |

linear equations

 $A^+A = AA^+$

determinant of A, det(A)

$$A\vec{x} = \vec{c}$$

inverse: $A^{-1}A = I$ identity: IM = Mtranspose: $[a_{ij}]^T = [a_{ji}]$ symmetry: $[a_{ij}] = [a_{ji}]$ conjugate transpose: A^+ unitary: $A^{-1} = A^+$ idempotency: $AA = A \rightarrow A^n = A$

$$\varepsilon_{i_1\dots i_n} = \prod_{1 \le \mu < \vartheta \le n} \operatorname{sgn}(i_{\vartheta} - i_{\mu})$$

normal:

$$V = \left| \det \begin{pmatrix} 230 & 0 & 115 \\ 0 & 230 & 115 \\ 0 & 0 & 140 \end{pmatrix} \right| \frac{1}{3} = \frac{230 * 230 * 140 + 0 + 0 - 0 - 0 - 0}{3} = 2,468,666 m^3$$

determinant of A, det(A)

$$\varepsilon_{i_1...i_n} = \prod_{1 \le \mu < \vartheta \le n} \operatorname{sgn}(i_{\vartheta} - i_{\mu})$$

volume does not depend on where I put my coord origin...

$$V = \left| \det \begin{pmatrix} 230 & 0 & 115 \\ 0 & 230 & 115 \\ 0 & 0 & 140 \end{pmatrix} \right| \frac{1}{3} = \frac{230 * 230 * 140 + 0 + 0 - 0 - 0 - 0 - 0}{3} = 2,468,666 m^3$$

$$V = \left| \det \begin{pmatrix} 0 & 230 & 115 \\ 230 & 0 & 115 \\ 0 & 0 & 140 \end{pmatrix} \right| \frac{1}{3} = \left| \frac{0 + 0 + 0 - 140 * 230 * 230 - 0 - 0}{3} \right| = 2,468,666 \, m^3$$

$$V = \left| \det \begin{pmatrix} 115 & 230 & 0 \\ 115 & 0 & 230 \\ 140 & 0 & 0 \end{pmatrix} \right| \frac{1}{3} = \left| \frac{0 + 230 * 230 * 140 + 0 - 0 - 0 - 0}{3} \right| = 2,468,666 m^3$$

$$V = \begin{vmatrix} \det \begin{pmatrix} 140 & 0 & 0 \\ 115 & 230 & 0 \\ 115 & 0 & 230 \end{vmatrix} \begin{vmatrix} 1 \\ 3 \end{vmatrix} = \begin{vmatrix} 140 * 230 * 230 + 0 + 0 - 0 - 0 - 0 \\ 3 \end{vmatrix} = 2,468,666 m^3$$

eigen coordinates & eigenvalues

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix}$$

A maps x to c

→ off-diagonal: turns x

→ diagonal: stretches x

 \rightarrow goal: finding eigenvectors/values of A

 \rightarrow trick: we assume, we have a set of eigenvectors \vec{v}_i

 \rightarrow transforming A with $B = (\vec{v}_1, \vec{v}_2, ... \vec{v}_N)$ should turn A into a **diagonal matrix** D

$$D = B^T A B$$

after some algebra:

$$A\vec{v}_i = \lambda_i \vec{v}_i$$

which can be solved with: $det(A - \lambda_i I) = 0$

$$\det(A - \lambda_i I) = 0$$

eigen coordinates & eigenvalues

$$A\vec{v}_i = \lambda_i \vec{v}_i$$

characteristic equation

$$\det(A - \lambda_i I) = 0$$

solves for eigenvalues λ_i

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix}$$

simple example:

$$x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$\det(A - \lambda_i I) = 0 = \det\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - \begin{pmatrix} \lambda_i & 0 \\ 0 & \lambda_i \end{bmatrix} = \det\begin{bmatrix} 2 - \lambda_i & -1 \\ -1 & 2 - \lambda_i \end{bmatrix}$$

eigen coordinates & eigenvalues

simple example:

$$x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$

$$\det(M) = \sum_{i_1, i_2, \dots, i_n} \varepsilon_{i_1 \dots i_n} \, m_{1, i_1} \dots m_{n \, i_n}$$

$$\det(A - \lambda_i I) = 0 = \det\left[\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} - \begin{pmatrix} \lambda_i & 0 \\ 0 & \lambda_i \end{pmatrix}\right] = \det\left[\begin{pmatrix} 2 & \lambda_i & 1 \\ -1 & 2 & \lambda_i \end{pmatrix}\right] = (2 - \lambda_i)^2 - 1$$

$$= 3 - 4\lambda_i + {\lambda_i}^2 = 0$$

characteristic polynomial

N eigenvalues and N eigenvectors for N coordinates

$$\lambda_1 = 1$$
 $\lambda_2 = 3$

$$(A - \lambda_i I) \overrightarrow{v_i} = 0$$

eigen coordinates & eigenvalues

simple example:

$$x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ $\lambda_1 = 1$ $\lambda_2 = 3$

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$\lambda_1 = 1$$
 $\lambda_2 = 3$

$$(A - \lambda_i I) \overrightarrow{v_i} = 0$$

for λ_1

$$\begin{bmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} \begin{pmatrix} v_{1x} \\ v_{1y} \end{pmatrix} = \begin{pmatrix} v_{1x} & -v_{1y} \\ -v_{1x} & v_{1y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad v_{1x} = v_{1y}$$

e.g.
$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

for λ_2

$$\begin{bmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \end{bmatrix} \begin{pmatrix} v_{2x} \\ v_{2y} \end{pmatrix} = \begin{pmatrix} -v_{2x} & -v_{2y} \\ -v_{2x} & -v_{2y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad v_{2x} = -v_{2y}$$

e.g.
$$\overrightarrow{v_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

eigen coordinates & eigenvalues

simple example:

$$x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$\lambda_1 = 1$$
 $\lambda_2 = 3$

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \overrightarrow{v_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

recall:
$$B = (\overrightarrow{v_1} \overrightarrow{v_2})$$
 and $D = B^T A B$

$$\Rightarrow$$
 A in the new coordinates is $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^T \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ $\lambda_2 = 3$

eigen coordinates & eigenvalues

simple example:

$$x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad \lambda_1 = 1 \qquad \lambda_2 = 3 \qquad \overrightarrow{v_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$\lambda_1 = 1$$
 $\lambda_2 = 3$

$$\overrightarrow{v_2} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

the old coordinates

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 $x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

the new coordinates

$$A_{new} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

linear regression

data point y_k in N dimensional space <u>idea:</u>

$$\rightarrow y_k = f(x_1, \dots x_n, \dots x_N) + \epsilon$$

for each data point k

ansatz:

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

linear combination

y: response

regressors (assumed to be independent)

β: factors (how a regressor contributes to the response)

 β_0 : intercept

error (stochasticity of the data, assumed to be

normally dist.)

general: linear refers to the **factors**

$$y_k = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

2D plane in 3D space

$$y_k = \beta_0 + \beta_1 x_1^2 + \beta_2 x_2^2$$

2D parabolic

$$y_k = \beta_0 + \beta_1 x_1^2 - \beta_2 x_2^2$$

2D hyperbolic

...and many more...

all linear

$$y_k = \beta_0 + \sum_{n=1}^N \beta_n x_n + \epsilon$$

linear equations

for *K* data points in *N* dimensional space

$$y_k = \beta_0 + \sum_{n=1}^{N} \beta_n x_n + \epsilon$$

$$\begin{pmatrix} y_1 \\ \dots \\ y_k \\ \dots \\ y_K \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1n} & \dots & x_{1N} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{k1} & x_{k1} & x_{k2} & \dots & x_{kn} & \dots \\ 1 & x_{K1} & x_{K2} & \dots & x_{Kn} & \dots & x_{KN} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_n \\ \dots \\ \beta_N \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_k \\ \dots \\ \varepsilon_K \end{pmatrix}$$

$$Y = X\beta + \varepsilon$$

$$Y = X\beta + \varepsilon$$

<u>fitting:</u> finding the best β in terms of minimizing the errors

$$(Y - X\beta)^{T}(Y - X\beta) = \sum_{k} \varepsilon_{k}^{2}$$

$$\frac{\partial}{\partial \beta} \sum_{k} \varepsilon_{k}^{2} = 0$$
 \longrightarrow

$$\frac{\partial}{\partial \beta} \sum_{k} \varepsilon_{k}^{2} = 0 \quad \longrightarrow \quad \beta_{best} = \hat{\beta} = (X^{T}X)^{-1}X^{T}Y \quad \longrightarrow \quad \widehat{Y} = X\widehat{\beta} = X(X^{T}X)^{-1}X^{T}Y$$

$$\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = X(X^TX)^{-1}X^TY$$

M. Hohle:

Thank you for your attention!

