Classical Mechanics: Plane Pendulum [=T-V===m(1+20)+mglws0=1 Po= 35 = mlo = 10 = 12 H= & Po-L= = 2 Po - 2 mi - mglcos0 = H] b) E= 7+V= 2 m(i2+e22) -mgloso= H+me 7H dH = DH +0 if ito =) His not conserved dE = d# +2mll = - Po l + mll -mgl cos 8 ≠ 0 ingeneral

The south conserved, either. (Work must be done to change I given the tension in the string c) 0 = 2H = Po | Po = -2H = mglsind -> gt (mero) + mgl sind=0, (0 + 2 ! 0 + 2 sind=0 1=0-) 0 + 9 sind=0 ~ 0 + 9 0. For o'ccl, 0 or cos(wt+0), (w= (2) d) For (e) cew, To= & Podo is an adiabatic invariant Io= Smerodo ~ mer front Ty 0 = A(t) cos(wt+0) where (A) ccw - slowly verying

I = mer Acor 1 27 = Time w A2 = Time? (F) AP = 21/4) A(t) Alter e it) Com also obtain this result by applying the WKB method to the differential equation. Note: I warry that this problem is too easy. Any ideas for how to whate it a little harder? May be let the mass sing in a circle I the page:

OI Doel IA les Ties C'alons
 Classical Mechanics: Catenary
 a) The equilibrium shape is the one
 that minimizes the potential
energy
 T5= a (NA) = "00" ("10") ("1-dy)
 5=9 Spidl= Mg Say SI+HIP dx (4= dx)
 subject to the constraint
 S-a dl = S-a VIHVP2 dx = l.
 Using a Lagrange multiplier to enforce the constraint,
 I [y(x)]= U->l= [(ugy-x) (1+(4)) dx
 b) let L(Y, Y', x) = (ugy-x) (1+(y')=!
 Then SI=0 > d (2L) - DL =0, or
 d (ugy-7)y' ugvity's=0.
 I will be determined by enforcing the constraint.
 Check the given solution: y= A cosh (KX+p) +B.
 Y'= KA Sinh (XX+0), VI+(1)? = (1+ K2A2sinh2(KX+0))
 d (cust cost/xx+0) + ug R-2 (KAsimh(xx+0))
 dx [(ugAcosh(xx+0) + ug 8-2) KAsinh(xx+0)]=ug (1+ x2A2sinh2(xx+0))
 Requires KA=1 and MgB=>, Hen (THU12= cosh(KX+4)
 and of (ngAsmh(xx+0))= ngcosh(xx+0)~
 · [A=K-] [B-] where K, & remain to be determined.

	Catenary- continued parts
	Enforcing boundary conditions at x=±a: y=0
	=> 0= kt cosh (± ka+0) + 1 ing => (\$==0), [x cosh (ka)=-B==
	Now get it by enforcing constraint! 1/2sinh(ka) L= Sa cosh(xx)dx = (ZX sinh(ka)=l) Kl
	The last equation is an implicit equation for k(e); as the sketch shows it has a unique positive not.
	Duce K- 15 Known, B & A follow from B= 2 = Kcosh(ka)
	and H=K.
	fo the chain at some location (x, y). The potential energy of
	the chain increases by ugydl and making a gap of sizedl
	releases energy Toll. This the change in potential energy of the chain is Sugy-Toll. But if the chain remains a
	catenary (minimum potential energy), then
	dI = (sImin) dl = 7 dl = (ugy-T) dl
	vising result of part a)
	T(x) = Mgy(x) - \ - Mg [y(x)-B]= Mg cosh(xx).
9)	Adding a mass: either apply Newton's Law EF=0 at the mass, or modify the voicational principle. I'll show the latter:
	the mass, or modify the voicational principle. ("I show the latter:
	I [4(x)] = 50 L(4) dx + Mg y(0), L(4)=(ugy->/\ 1+41/2.
	We expect y' to be discontinuous at x=0, 50 the variational
	1 x=10 promable must exercise core at x=0.
	TYT
	M

Y(x) = y(x) = y(x) + (2) d = y(x) d x		Catenary - part d, continued.
= \frac{1}{a} \left\{ \frac{3}{2} \left\{ \frac{1}{2} \right\{ \frac{1}{		1 (V) 3 ((V) (x))
+ \$\int_{0}^{\alpha} \big[\frac{\gamma_{\beta}}{2\gamma_{\gamma}} \frac{\gamma_{\gamma_{\gamma}}}{2\gamma_{\gamma_{\gamma}}} \frac{\gamma_{\gamma_{\gamma}}}{2\gamma_{\gamma_{\gamma}}} \frac{\gamma_{\gamma_{\gamma_{\gamma}}}}{2\gamma_{\ga		SI = 50 [31 34(x) + (31) \$ 54(x)] dx
= \(\left[\frac{2}{2} \left[\frac{2} \left[\frac{2}{2} \left] \left[\frac{2}{2} \left[\frac{2}{2} \left[\frac{2}{2} \lef		+ (3) (3) Sylx) + (3) of Sylx) dx + Mg Sylo)
He of (21, 54(x)) dx + fo fx (34, 64(x)) dx + Mg64(0) = Sa (21, 54(x)) Sy(x) dx + for (34, 54(x)) dx + Mg64(0) = Sa (21, 54(x)) Sy(x) dx + for (21, 54(x)) dx + Mg64(0) and Mg = [31, 54(x)] for (at x + 0) and Mg = [31, 54(x)] for (at x + 0) Now, we know from b) that y(x) = A wsh (xx+0) + B satisfies the Extender towards expection if [A=x] B= 1/4 [B= 1/4] But now \$\phi\$ is different for x < 0 (\$\phi=\phi\$) and x > 0 (\$\phi=\phi=\phi=1) But now \$\phi\$ is different for x < 0 (\$\phi=\phi\$) and x > 0 (\$\phi=\phi=1) Sc: y=0 at x = 2a at x \tangle cosh (\pmi x at + \phi at) = B [21, 3, 2, Mg = \pmi \text{ [Sinh \$\phi_0 - Sinh(-\phi_0)]} \frac{1}{2} [S		= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
= \(\begin{align*} \left* \frac{1}{2} \right*	-	V ≠ 0
Ax (31) 31 = 0 as before (at ** +0) and Mg = [3L] the jump at x = 0 Now, we know from b) that y(x) = A wsh (xx+\$\psi) + B satisfies the Extendegrounge equation if [A= K B= \frac{1}{2}] (B) But now \$\phi\$ is different for x & (\$\phi=\$\phi-\$) and x > 0 (\$\phi=\$\phi_4\$) BC: Y=D at x = 2a => K \(\cosh(\frac{1}{2}\pi + \phi_4) = B\) \[\Rightarrow \phi_1 = -\$\phi_2 = \phi_0 \(\frac{1}{2}\pi + \phi_0 \) = -B = -\frac{1}{20} \(\frac{1}{2}\pi + \phi_0 \) = \(\frac{1}{2}		
Now, we know from b) that $y(x) = A cosh(xx+\phi) + B$ Satisfies the Ever-tagrange exaction if $A = K' = B = \frac{1}{2}$ But now ϕ is different for $x < co$ ($\phi = \phi_{-}$) and $x > 0$ ($\phi = \phi_{-}$) BC: $y = D$ at $x = \pm a$ as $K' = cosh(\pm x + \phi_{\pm}) = B$ $\Rightarrow \phi_{+} = -\phi_{-} = \phi_{0}$, $K' = cosh(x + \phi_{0}) = -B = -\frac{1}{2}$. B Finally, $J = \int_{0}^{a} dx \int (-\phi')^{2} = \int_{0}^{a} cosh(\pm x + \phi_{0}) dx \neq K' = \frac{1}{2}$ Solve Q and Q simultaneously for K , ϕ_{0}		1 3 7 0 1 9 1
Satisfies the Ever-tagrounge equation if [A=K' S= ing] (But now \$ 13 different for \$\times \tau (\phi = \phi) and \$\times \tau (\phi = \phi) \\ SC: Y=D at \$\times \tau a \times \times \tau \tau \tau \tau \times \times \tau \tau \tau \tau \tau \tau \tau \tau		and Mg = [2L] the jump at x = 0
Satisfies the Ever-tagrounge equation if [A=K' S= ing] (But now \$ 13 different for \$\times \tau (\phi = \phi) and \$\times \tau (\phi = \phi) \\ SC: Y=D at \$\times \tau a \times \times \tau \tau \tau \tau \times \times \tau \tau \tau \tau \tau \tau \tau \tau		Now, we know from b) that y(x)= A cosh(xx+o)+B
BC: Y=D at x= ta => k (cosh (± xa + \$\delta \) = B > \$\phi_{+} = -\phi_{-} = \phi_{0}, \(\times \text{Losh}(\text{Xa} + \phi_{0}) = -\text{B} = -\frac{\partial}{a}.\) [2t] = Mg = Mg [sinh \$\phi_{0} - \sinh(\phi_{0})] \(\text{Sinh}(\phi_{0}) =		satisfies the Eder-lagrouge equation if A= Kd R= 2 10
3) φ+ = -φ- = φο, [x-cosh(xa+φο) = -B=-ing) 3 [24] = Mg = Mg [sinhφο - sinh(-φο)] = 2sinhφο = KM Finally, L = Sodx (1+(4))2 = (9wsh(xx+φο)dx = x [sinh(xa+φο)-sinh(xa+φο)-sinh(xa+φο)] = 2l2 Solve Dand @ similareosy for x, φο = 2l2		But now of is different for XCO (\$=\$-) and X>O(\$=\$4)
Finally, L= Sodx SI+(41)2 = Sowsh (xx+do)dx & Sinh(xa+do)-sinh Solve Dand & Simultaneously for K, po		
Finally, L= Sodx SI+(41)2 = Sowsh (xx+do)dx & Sinh(xa+do)-sinh Solve Dand & Simultaneously for K, po		>> 0+=-9-= 00, x - (osh(xa+00) =-B=-20.) 3
Finally, L= Sodx VI+(41)2 = Sowsh (xx+do)dx & K [Sinh(xa+do)-si Solve Dand @ Simultaneously for K, po = 2/2 @		
Solve Dand @ similtaneously for K, po [= 2/2 @		Finally, = Sodx JI+(41)2 = Sowsh (xx+do)dx & Esinh(ka+do)-sinh
Then 3 3 B and D 3 A.		
		Then 3 & B and D & A.

Off
$$1 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = e \cdot \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2}$$

b) initial conditions:
$$X=y=0$$
 (t=0)
 $P(t=0)=0$
Solving egs. of motion:
 $P_X(t)=ext$
 $P_X(t)=0$
from energy concernation: $mc^2=\sqrt{(mc^2)^2}$

from energy conservation: $mc^2 = \sqrt{(mc^2)^2 + c^2 p_x^2 + c^2 p_x^2} - e \times x$ $1 \times (t) = (\sqrt{(mc^2)^2 + (e \times c + c)^2} - mc^2)/e \times$

$$x(t_{*})=d$$

Solving for d:
 $(e \xi e t_{*})^{2}=(mc^{2}+e \xi d)^{2}-(mc^{2})^{2}$
 $t_{*}=\frac{1}{e \xi c}\sqrt{e \xi d}(2mc^{2}+e \xi d)$
 $e \xi d \ll me^{2}$ $t_{*}=\sqrt{\frac{2md}{e \xi}}$

$$\frac{d\vec{p}}{dt} = e\xi \hat{x} + \frac{e}{c} \vec{V} \times \vec{B}$$

$$\overrightarrow{A} = Bx \hat{y}$$

conservation laws:

canonical
$$m V_y$$
 $+ \frac{e}{e} A_y = p_y^6$)
$$p_y = \sqrt{1-V_{e}^2}$$

energy:

$$\frac{mc^2}{\sqrt{1-v_{e2}^2}} = e\xi x = mc^2$$

 $\omega_{B} = \frac{eB}{hc}$

d) Solving egs. of motion!

from energy conservation.

$$\chi = (-v_{c2}^2)^{-1/2} = 1 + \frac{e \xi x}{mc^2}$$

$$V^2 = c^2 \left(1 - \frac{1}{\left(1 - \frac{e \epsilon x}{M \epsilon^2} \right)^2} \right)$$

from momentum conservation:

$$V_y = -\frac{eB}{mc} \times \left(1 + \frac{eSx}{mc^2}\right)^{-1}$$

$$v_{x}^{2} = v^{2} - v_{y}^{2} = c^{2} \left(1 - \frac{1}{\left(1 + \frac{e \xi x}{me^{2}} \right)^{2}} \right) - \frac{\omega_{B}^{2} \chi^{2}}{\left(1 + \frac{e \xi x}{me^{2}} \right)^{2}}$$

$$v_x^2 = c^2 - \frac{c^2 + \omega_B^2 x^2}{\left(1 + \frac{e \xi x}{mc^2}\right)^2}$$

parameter
$$\frac{1}{12}$$
 from $\frac{1}{12}$ $\frac{1}{$

B /z $\frac{3}{B} = \frac{1}{8} \left[\frac{1}{8} \left(\frac{1}{8} - \frac{1}{1} \right) - \frac{1}{1} \right]$ $\frac{1}{B} = \frac{1}{1} \left[\frac{1}{8} \left(\frac{1}{1} - \frac{1}{1} \right) - \frac{1}{1} \right]$ Brormal continuous at poles => $\frac{N_0}{4\pi} \frac{2m}{\alpha^3} = B_0$ 88-10 = Nº I Btangentiu! MO M + B = NO 5 WA 211/2 FORTW 2 NOW 2 NOW 3 FORTW B= Mo GWATERON BO = 2 MO GAN $\vec{B} = \frac{mM_0}{4\pi} \frac{2\cos\theta}{r^3} \hat{r} + \frac{mM_0}{4\pi} \frac{\sin\theta}{r^3} \hat{\theta}$ Can also got n from avea dI Trasing ad pwasing 11 60tw S(1-1058)d(cos6) 13-3 M =\$ 60 W V

(b) by inspection
$$M = \frac{4\pi}{3} 604$$

(c) $S = \frac{E \times B}{M_0} \times M$
 S

-

PI solution STAT Mech

1) From
$$dF = -S dT - P dV$$

$$\frac{(53)}{50}T = \frac{(57)}{507}V = \frac{2}{52}$$
2) $C_V = \frac{(53)}{(57)} = \frac{2}{57}(\frac{55}{50}) = \frac{2}{57}(\frac{5}{50}) = 0$

$$\frac{3}{5}(\frac{5}{5}V) = \frac{5}{5}(\frac{5}{5}V) + \frac{5}{5}(\frac{5}{5}V) = 0$$
3) $\frac{5}{5}(\frac{5}{5}V) = \frac{5}{5}(\frac{5}{5}V) + \frac{5}{5}(\frac{5}{5}V) = 0$

$$\frac{7}{5}(\frac{5}{5}V) = \frac{7}{5}(\frac{5}{5}V) + \frac{5}{5}(\frac{5}{5}V) = 0$$

$$\frac{7}{5}(\frac{5}{5}V) = \frac{7}{5}(\frac{5}{5}V) + \frac{7}{5}(\frac{5}{5}V) = 0$$

$$\frac{7}{5}(\frac{5}{5}V) = \frac{7}$$

Problem 2

$$4) \langle r_{12}^2 \rangle = N d^2 \langle r_{12} \rangle = 0$$

At fd &T,
$$L=Nd\frac{3(pq)^2}{pfd}=\frac{1}{3}\frac{Nd^2f}{T}$$

At fd >T, $L=Nd$

$$S = N \ln \left(\frac{4\pi e}{\beta f d} \right) - N \beta f d = 0 \text{ or } \beta f d$$

$$S(\beta f d \ll 1) = N \ln 4\pi$$

$$S(\beta f d \gg 1) = N \ln \left(\frac{2\pi e}{\beta f d} \right)$$

d) The force applied to m-th hink	31'
d) The force applied to m-th hink is fing (N-m) Thus $Z = \prod_{m=1}^{N} \int 2\pi d\theta \sin\theta e^{\beta f_m d\cos\theta}$	£ 3
N F	6
Thus 7 = D (27 do sino estad coso	₩
m=1 0	- los bodes
$= \prod_{i=1}^{N} 4\pi \frac{8i \text{ wh } \beta d f_{m}}{\beta d f_{m}} = (4\pi)^{N} exp$	San (Bol E)
() \$ d fm	ME, PEINE
Replacing the sum by an integral.	
•	·
F=-NTIN4F-TS 48inhau du	x=mgpd
o au	<u> </u>
$L = -\frac{\partial F}{\partial mg} = \frac{1}{2} \int_{N}^{\infty} \frac{\partial}{\partial x} \ln \frac{8imh\alpha n}{\alpha n} dn$	-
$=d\int_{\partial u}^{\infty}\left(\ln\frac{8nh}{dn}\right)du=$	
o Sint AN 10 /S	uh (masda))
$= d \ln \frac{\sinh dN}{dN} = d \ln \ln$	mg&dN
	and an inclusion of the second control of the second control of the second control of the second control of the

The second secon

Solution to QMI

\$\frac{1}{4}b\)
\(\hat{H}\/\n\) = \(\mathbb{E}_K\/\n\)

$$-\frac{1}{2\Delta^{2}} \left\{ e^{i\kappa\Delta} + e^{-i\kappa\Delta} - 2 \right\} = E_{\kappa}$$

$$\frac{1}{\Delta^{2}} \left(1 - \cos \kappa \Delta \right) = E_{\kappa}$$

MOLIMI CO. CI

30) Scattering State (Sn) has energy Ex n <0 <n/sn> = einna + Re-inna ∠n/Sn> = TeinnA 1+R=T HISN = ENISN <0/14/Sn> = En <0/5/n>

-1 > <1/5/2> + <-1/5/2> -2 <0/5/2> +V <0/5/2>

En COISK>

-1 { Teins + eins + Reins -2 T} +VT= -1,2 {eins+eins-2} T

E-1/14 + (7-1) e1/14 -227 T = e-1/14 T

7 { e'n = -in = -22 v} = e'n = -ins

T {-2isinKA -2x2V} = -2isinKA

ITP = SINTRA + LYVZ

Soldin QM2

a)
$$\left[\widehat{\Pi}_{x},\widehat{\Pi}_{y}\right]$$

$$= \left[\widehat{P}_{x} + 2\widehat{P}_{x},\widehat{P}_{y} + 2\widehat{P}_{y}\right]$$

$$= 2\left(\left[\widehat{\Pi}_{x},\widehat{P}_{y}\right] + \left[\widehat{P}_{x},\widehat{\Pi}_{y}\right]\right)$$

$$= 2\left(-\frac{\pi}{2}\widehat{P}_{x} + \frac{\pi}{2}\widehat{P}_{y}\right)$$

$$= \frac{\pi}{2}\left(-\frac{\pi}{2}\widehat{P}_{x} + \frac{\pi}{2}\widehat{P}_{y}\right)$$

$$= \frac{\pi}{2}\underbrace{P}_{y} + \frac{\pi}{2}\widehat{P}_{y}$$

$$= \frac{\pi}{2}\underbrace{P}_{y} + \frac{\pi}{2}\underbrace{P}_{y}$$

$$= \frac{\pi}{2}\underbrace{P}_{y} + \frac{\pi}{2}\underbrace{P}_$$

Let
$$\hat{\pi}_x = \hat{\rho}$$
 $\hat{\pi}_y = m\omega \hat{Q}$

$$\hat{\Gamma}_{\alpha}(\hat{\rho}) = \frac{1}{m\omega} \hat{\Gamma}_{\alpha}(\hat{\pi}_y) \hat{\pi}_x = i\hbar$$

$$H = \frac{1}{2m} \hat{p}^2 + \frac{1}{2m} \hat{w}^2 \hat{\omega}^2$$

$$= \frac{1}{2m} \hat{p}^2 + \frac{m}{2m} \hat{\omega}^2 \hat{\omega}^2$$

Eigensales two (n+12)

Solution QMC $A_{x}=0 \quad A_{y}=Bx$ H= 1 bx + 1 (b, + dB x) [Py,H]=0 because no y in H Con tale Py to equality eigenvalue Py H= T bx +7 (b2+ dBx) Shift by Py.

 $\hat{H} = \frac{1}{2m} \hat{p}_{x}^{2} + \frac{1}{2m} \hat{q}_{cz}^{2} \mathbf{R}^{2}$

W= 9B Eigenvales two (n+12)