Regional Principal Color Based Saliency Detection

(PLoS ONE, 2014)

楼**竞,任明武,王欢** 南京理工大学计算机科学与工程学院

http://www.loujing.com/rpc-saliency/

Outline

显著性简介

2

基于全局对比度的显著性区域检测 程明明 (CVPR 2011)

我们的工作

Outline

显著性简介

2

基于全局对比度的显著性区域检测 程明明 (CVPR 2011)

我们的工作

显著性简介

- 显著性(Saliency)
 - 物体在一幅场景中的特殊性或吸引视觉注意的能力
 - 通常来自于物体与周围的差异性,或物体在整个场景中的稀缺性
- ●显著性检测(Saliency Detection)
 - 从图像中检测出最能引起人的视觉注意的物体区域

原始图像

显著图(Saliency Map)

Ground Truth

显著性简介

- •显著性(Saliency)
 - 物体与周围的差异性

普遍认为分为两类

- 眼动预测(Fixation Prediction)
 - ITTI [Itti et al. PAMI 98]
 - AIM [Bruce et al. NIPS 06]
 - GBVS [Harel et al. NIPS 07]
 - DVA [Hou et al. NIPS 08]
 - SUN [Zhang et al. NIPS 08]
 - SIG [Hou et al. PAMI 12]

- 显著物体分割(Saliency Object Segmentation)
 - FT [Achanta et al. CVPR 09]
 - GC [Cheng et al. CVPR 11]
 - SF [Perazzi et al. CVPR 12]
 - PCA-S [Margolin et al. CVPR 13]

• 眼动预测评价(Fixation Prediction)

[Yin Li et al., CVPR 2014]

显著物体分割评价(Saliency Object Segmentation)

[Ming-Ming Cheng et al., CVPR 2011]

• 常见数据集

显著性检测的应用

- 图像/视频分割
- 图像/视频压缩
- 目标识别
- 图像缩放
- 感兴趣区域检测
- 图像拼接

理想很美好~~~

目标识别

基于内容感知的 图像缩放

非真实感渲染

Outline

显著性简介

2

基于全局对比度的显著性区域检测 程明明 (CVPR 2011)

我们的工作

- •(1) 颜色量化
 - 在RGB颜色空间,左图中包含62,743种颜色,但其中75.2%的颜色只出现了一次(即仅占一个像素),这些像素的总和占整个图像面积的39.32%
 - 采用均匀量化方式,将每个通道量化为12级 (12^3=1728)

12

- •(2) 基于颜色直方图的全局显著性检测
 - 统计颜色直方图并抛弃低频出现的颜色(只保留95%)

- 颜色差异度量(Lab空间)

$$D(c_i, c_j) = \|(L_i, a_i, b_i) - (L_j, a_j, b_j)\|_{2}$$

- 全局颜色显著性计算-----即:对颜色c的显著性值而言,颜色差异大、数量多的颜色对c的贡献越大

$$S(c_{\scriptscriptstyle \parallel}) = \sum_{j=1}^n f_j D(c_{\scriptscriptstyle \parallel}, c_j)$$

- •(3) 颜色显著性平滑
 - 噪声:相似颜色量化为不同的值→需要去除

$$S'(c) = \frac{1}{(m-1)T} \sum_{i=1}^{m} (T - D(c, c_i)) S(c_i)$$

- 其中, $T = \sum_{i=1}^m D(c, c_i)$
- 即: c的显著性是由与它最相似的m个颜色平滑得到 (m = n/4)。 颜色越相似,被赋予的权值越大 (权值的 Σ =1)。

- 基于颜色直方图对比 (HC) 方法结束!

- •(4) 区域对比 (RC)
 - 区域比像素更能引起人的关注、图像内蕴着空间关系
 - Graph-based segmentation (IJCV 2004)

$$S(r_k) = \sum_{r_k \neq r_i} \exp(-D_s(r_k, r_i)/\sigma_s^2) w(r_i) D_r(r_k, r_i)$$

- 其中, $D_r(r_1, r_2) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} f(c_{1,i}) f(c_{2,j}) D(c_{1,i}, c_{2,j})$
- 即:对区域 r_k 的显著性而言,颜色差异大、像素多、距离近的区域对 r_k 的贡献越大。 σ_s 越大,越远的区域贡献越大。

RC方法结束!

Outline

显著性简介

2

基于全局对比度的显著性区域检测 程明明 (CVPR 2011)

我们的工作

大致如下

- •(1) 采用最小方差量化
- •(2)每个区域仅使用一个主色表示
- •(3) 修改了区域显著性计算方法
- •(4)增加了中心偏置(Center bias)
- •(5) 实验及参数选择

(1) 采用最小方差量化

- 将原图最小方差量化为256色
 - 动机: 弥补均匀量化对相似颜色量化为不同值的不足; 最小方差量化

Table 2. Numeric comparison for various colors used in uniform quantization (%). 27 Colors 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375 4096 P_{s} 81.1 62.6 66.7 70.5 74.1 77.2 78.9 80.4 81.8 82.1 82.7 82.7 82.9 83.2 83.1 P68.4 71.1 74.0 79.0 80.0 81.1 81.4 81.9 82.4 82.6 82.9 82.9 76.6 65.4 R58.2 58.5 61.1 63.3 66.8 67.7 68.6 69.4 69.9 70.2 70.3 70.5 70.7 79.8 F65.7 67.7 70.6 73.1 75.4 76.5 77.6 78.0 78.7 79.1 79.4 79.6 79.6 Table 3. Numeric comparison for various colors in minimum variance quantization (%). 16 32 128 512 1024 Colors 64 256 1728 2048 4096 P_{s} 81.88 82.67 83.13 83.45 83.59 83.86 83.85 83.89 83.97 83.94 P 81.99 81.85 82.31 82.44 82.66 83.07 83.47 83.29 83.30 81.98 R 71.36 71.76 72.04 71.95 71.89 71.93 72.05 72.06 71.99 71.89 F79.26 79.45 79.66 79.74 80.24 80.53 80.36 79.28 79.91 80.38 C В Α 0.85 0.8 0.8 0.8 F-measure Precision 0.6 0.6 0.75 ---u64 0.4**ŀ** m64 P_s (m) 0.7 u343 ---P_s (u) Precision m256 0.2 0.65 F-measure (m) u1728 Recall F-measure (u) m1728

0.6 10¹

10²

Colors

10³

-measure

m64

u343

m256 u1728 m1728

u64

0.2

0.4

0.6

Recall

8.0

(2) 每个区域仅使用一个主色表示

- 动机:
 - ① 基于"颜色对"比较的执行效率较低(MATLAB中的多层嵌套循环)
 - ② 每个区域具有高度的颜色一致性

• 计算每个区域的时间复杂度: $O(kn^2) \longrightarrow O(k)$

(3) 改进了区域显著性计算方法

- 动机:
 - ① 对于原显著性区域而言,自身的显著性应予以保留
 - ② 对于原非显著性区域,显著性值不应被其它显著性区域间接影响

$$S'(r_i) = f_i S(r_i) + \sum_{j \neq i} f_j \phi(r_i, r_j) \exp\{-D(r_i, r_j)^2\}$$

$$\phi(r_i, r_j) = \begin{cases} S(r_i) - S(r_j) & \text{if } S(r_i) > S(r_j) \\ 0 & \text{otherwise} \end{cases}$$

- 优点: 抑制了原非显著性区域的值
- 缺点: 原显著性区域的显著性值也受到一定程度的抑制

(4) 增加了中心偏置(Center bias)

- 动机: 显著性区域更可能位于图像的中心(抑制非中心区域)
- 将所有区域中心与图像中心的距离归一化到[0,1]
 - 即: 距离中心越远,权值越小; σ越小, 权值越小, 越远的区域受 抑制程度越大(越集中于图像中心)

$$S''(r_i) = \frac{S'(r_i)}{\exp\{D(r_i, C)^2 / \sigma\}}$$

(5) 实验及参数选择

- 数据集: MSRA-1000
 - Learning to Detect A Salient Object, CVPR 2007
 - Frequency-tuned Salient Region Detection, CVPR 2009

(5) 实验及参数选择

• 我们的结果

(5) 实验及参数选择

• (1) 固定阈值分割:将每张显著图在阈值范围[0,255]做256次分割,针对每

个阈值,计算1000张图的平均的Precision、Recall、F-measure

- (3)对F-measure的两种计算方式
 - 2*P*R/(P+R) $F = \frac{(1+\beta^2)P \times R}{\beta^2 \times P + R}$

(5) 实验及参数选择

- 动机:对PR曲线的定量评估
- 在Recall区间 [R_{min} , R_{max}]对Precision做插值并求均值 (N/A表示去除Center bias)

Table 1. Numeric comparison on data set MSRA-1000 (%, N/A represents without center-bias).

	IT [1]	AC [13]	GB [17]	MZ [12]	SR [14]	FT [11]	CA [19]	LC [21]	HC [10]	RC [10]	N/A	Ours
P_{s}	45.3	53.1	53.1	42.8	39.9	63.2	58.9	51.4	75.4	83.2	75.0	83.6
P	59.2	56.8	58.0	45.6	44.5	69.2	59.6	55.8	74.0	84.6	72.4	82.4
R	23.7	47.1	47.6	43.2	34.1	54.2	55.9	51.2	71.4	58.1	72.6	71.9
$\boldsymbol{\mathit{F}}$	44.0	54.2	55.2	45.0	41.6	65.1	58.7	54.7	73.4	76.5	72.5	79.7

(5) 实验及参数选择

• α ={90%,95%}, δ ={1/16,1/4}, σ =[0.01,0.09] \cup [0.1,0.9]

Table 4. Numeric comparison for various combinations of parameters (%).

σ	$\alpha = 0.9, \ \delta = 1/16$				$\alpha = 0.9, \ \delta = 1/4$				$\alpha = 0.95, \ \delta = 1/16$				$\alpha = 0.95, \ \delta = 1/4$			
O	α = 0.9, θ = 1/10				$\alpha = 0.9, \ \theta = 1/4$				$\alpha = 0.95, \ \theta = 1/10$				$\alpha = 0.95, \ \theta = 1/4$			
	P_{s}	P	R	F	P_{s}	P	R	F	P_{s}	P	R	F	P_{s}	P	R	F
1.0	76.4	74.9	71.2	74.0	77.7	74.6	73.7	74.4	77.3	75.2	71.5	74.3	79.3	75.8	74.5	75.5
0.8	77.3	75.7	71.5	74.7	78.3	75.3	74.0	75.0	78.1	76.1	71.8	75.0	80.0	76.6	74.8	76.1
0.6	78.4	77.0	71.8	75.7	79.2	76.7	74.2	76.1	79.3	77.3	72.1	76.0	80.9	77.9	75.1	77.2
0.4	80.2	78.9	72.0	77.2	80.5	78.6	74.1	77.5	80.9	79.2	72.2	77.5	82.2	79.7	74.9	78.6
0.2	82.4	82.1	70.0	78.9	82.2	81.3	71.4	78.8	83.1	82.5	70.3	79.3	83.6	82.4	71.9	79.7
0.09	81.8	84.3	61.8	77.8	81.4	83.1	62.3	77.2	82.3	84.7	62.0	78.1	82.6	84.1	62.7	78.0
0.07	80.6	84.6	57.7	76.4	80.2	83.6	58.2	75.9	81.0	84.9	58.0	76.7	81.4	84.6	58.7	76.8
0.05	78.1	84.5	51.9	73.8	77.8	83.7	52.1	73.4	78.4	84.8	52.2	74.1	78.8	84.5	52.5	74.1
0.03	72.7	83.6	42.5	68.4	72.7	83.2	42.5	68.1	73.0	84.0	42.7	68.7	73.5	83.9	42.7	68.7
0.01	60.4	80.8	24.2	52.5	60.4	80.8	24.1	52.4	60.6	81.1	24.4	52.7	60.9	81.5	24.4	52.9

(5) 实验及参数选择

• α ={90%,95%}, δ ={1/16,1/4}, σ =[0.01,0.09] \cup [0.1,0.9]

实验: 76+24+1=101 组

统计: (101+<u>10</u>+<u>13*2</u>)*257*1000=35209000 张二值图

Thanks!