T7

1. Considera la función f(x,y) = xy. Usando solamente la definición, prueba que para todo punto (x_0, y_0) , f es diferenciable en (x_0, y_0)

Hint: para la parte de la definición que involucra límite, primero prueba

$$f(x,y) - f(x_0, y_0) - (\partial_x f(x_0, y_0))(x - x_0) - (\partial_y f(x_0, y_0))(y - y_0) = (x - x_0)(y - y_0)$$

- 2. Para cada una de las siguientes funciones calcula el gradiente.
 - (a) $f(x,y) = \frac{xy}{(x^2+y^2)^{1/2}}$
 - (b) $f(x,y) = \log(x^2 + y^2)$
 - (c) $f(x,y) = \frac{x}{y} + \frac{y}{x}$
- 3. Para cada una de las siguientes superficies encuentra la ecuación del plano tangente en el punto indicado.
 - (a) $z = x^2 + y^3$ en (1, 2, 9).
 - (b) $z = e^{x^2 + xy}$ en (0, 1, 1).
 - (c) $x^2 + y^2 + z^2 = 1$ en $(1/\sqrt{3}, 1/\sqrt{3}), 1/\sqrt{3})$.
 - (d) $x^2 + y^2 z^2 = 1$ en (1, 2, -2).
- 4. Usando la notación p=(x,y) y $p_0=(x_0,y_0)$, prueba que el límite de la definición de derivada es equivalente a

$$\lim_{p \to p_0} \frac{f(p) - f(p_0) - T(p - p_0)}{\|p - p_0\|} = 0.$$

donde T es la función lineal asociada al vector $(\partial_x f(x_0, y_0), \partial_y f(x_0, y_0))$.

Definición 1. Sea U un abierto de \mathbb{R}^n y $F: U \to \mathbb{R}^m$ una función. Escribe las funciones coordenadas de F como $F(p) = (f_1(p), \ldots, f_m(p))$, donde cada f_i es una función que toma valores en \mathbb{R} . Supon que todas las derivadas parciales de todas la f_i existen. La matriz de derivadas parciales es la matriz de $m \times n$ cuya entrada (i, j) es $\partial_{p_i} f_i$.

- 5. Para cada una de las siguientes funciones encuentra la matriz de derivadas parciales
 - (a) $F(x,y) = (xe^y, ye^x)$
 - (b) $F(x,y) = (xy\cos(x), xy\sin(y))$
 - (c) $F(x,y) = (xy + x^2, x^2 + y^2, x^3 + xy + y^3)$
 - (d) $F(x, y, z) = (xyz, x^2y^2z^2)$
- 6. Supongamos que $F: \mathbb{R}^n \to \mathbb{R}^m$ es una función lineal. Usando la definición demuestra que, para todo $p_0 \in \mathbb{R}^n$, F es diferenciable en p_0 y $D_{p_0}F = F$.

7. Sea U un abierto de \mathbb{R}^n , $p_0 \in U$ y $f, g: U \to \mathbb{R}$ dos funciones diferenciables en p_0 . Demuestra que

$$\nabla_{p_0}(fg) = f(p_0)\nabla_{p_0}g + g(p_0)\nabla_{p_0}f$$

8. Se
aUun abierto de $\mathbb{R}^2,\,p_0\in U$ y
 $F:U\to\mathbb{R}^2$ una función. Escribamos las funciones coordenadas

$$F(x,y) = (f_1(x,y), f_2(x,y)).$$

Supon que las derivadas parciales de f_1 y f_2 existen en (x_0, y_0) .

(a) Demuestra que, para i = 1, 2

$$\frac{|f_i(x,y) - f_i(x_0,y_0) - (\partial_x f_i(x_0,y_0))(x - x_0) - (\partial_y f_i(x_0,y_0))(y - y_0)|}{\|(x - x_0, y - y_0)\|} \le \frac{\|F(x,y) - F(x_0,y_0) - T(x - x_0, y - y_0)\|}{\|(x - x_0, y - y_0)\|}$$

donde T es la matriz de darivadas parciales evaluadas en (x_0, y_0) .

Hint: primero prueba que, para todo vector (a, b)

$$|a| \le ||(a,b)||, \quad |b| \le ||(a,b)||$$

- (b) Usando el inciso anterior demuestra que, si suponemos que F es diferenciable en (x_0, y_0) , entonces f_1 y f_2 son diferenciables en (x_0, y_0) .
- (c) Demuestra que

$$\frac{\|F(x,y) - F(x_0, y_0) - T(x - x_0, y - y_0)\|}{\|(x - x_0, y - y_0)\|}$$

$$\leq \frac{|f_1(x,y) - f_1(x_0, y_0) - (\partial_x f_1(x_0, y_0))(x - x_0) - (\partial_y f_1(x_0, y_0))(y - y_0)\|}{\|(x - x_0, y - y_0)\|}$$

$$+ \frac{|f_2(x,y) - f_2(x_0, y_0) - (\partial_x f_2(x_0, y_0))(x - x_0) - (\partial_y f_2(x_0, y_0))(y - y_0)\|}{\|(x - x_0, y - y_0)\|}$$

Hint: primero prueba que, para todo vector (a, b)

$$||(a,b)|| \le |a| + |b|.$$

(d) Usando el inciso anterior prueba que, si suponemos que f₁ y f₂ son diferenciables en p₀, entonces F también es diferenciable en p₀. Nota: este ejercicio prueba que una función, con valores vectoriales, es diferenciable si y sólo si, todas sus funciones coordenadas son diferenciables.