Спектральная метрика и спектральный тест для некоторых генераторов случайных чисел

Сабитов Рамис Рафаэлевич, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — к.ф.-м.н. В.В. Некруткин Рецензент — к.ф.-м.н. Н.Э. Голяндина

Санкт-Петербург 2007г.

Постановка задачи: общая постановка

ОБЩАЯ ЗАДАЧА:

Изучение некоторых генераторов случайных чисел с помощью спектрального теста.

ТЕХНИКА:

Спектральная метрика.

Постановка задачи: теоретические основы

ИЗВЕСТНО:

• Спектральная метрика

$$\sigma(\mathcal{P}, \mathcal{Q}) = \sup_{\ell \in \mathbb{Z}^d, \, \ell \neq \mathbf{0}} | \varphi_{\mathcal{P}}(2\pi\ell) - \varphi_{\mathcal{Q}}(2\pi\ell) | / \|\ell\|_2,$$

где $\mathcal P$ и $\mathcal Q$ — распределения, сосредоточенные на $\mathbb I^d=[0,1)^d$;

• σ — метрика на множестве распределений;

ИЗВЕСТНО:

Предложение

Пусть $\mathcal{P}_n,\mathcal{P}$ — распределения, сосредоточенные на единичном гиперкубе $\mathbb{I}^d=[0,1)^d$, причем $\mathcal{P}((0,1)^d)=1$. Тогда для слабой сходимости $\mathcal{P}_n\Longrightarrow\mathcal{P}$ необходимо и достаточно, чтобы $\sigma(\mathcal{P}_n,\mathcal{P})\to 0$.

Если ${\bf U}^d$ — равномерное распределение в $[0,1)^d$, то $w_d=1/\sigma(\mathcal{P},{\bf U}^d)$ — волновое число распределения $\mathcal{P}.$

Постановка задачи: изучение стохастических моделей генераторов

- Генераторы: МГ (мультипликативный); ЛКГ (линейный конгруэнтный); ЛКГПМ (линейный конгруэнтный с переменным мультипликатором). Всегда периодическая последовательность $\{a_n\}_{n\geq 0}$ с некоторым периодом T;
- ullet переход к стохастической модели генератора $(\{\delta_n\}_{n\geq 0})$:
 - рандомизация начального значения: δ_0 равномерна распределена на множестве H, где H состав периода генератора $\{a_n\}_{n\geq 0}$;
 - рандомизация по периоду: $\delta_n=a_{n+ au}$, где au равномерно распределена на множестве $\{0,\dots,T-1\}$, T период генератора;

Обе рандомизации для МГ и ЛКГ — одно и тоже распределение, а для ЛКГПМ — нет.

Для МГ, ЛКГ и ЛКГПМ при рандомизации по периоду $\{\delta_n\}_{n\geq 0}$ — стационарная последовательность.

Для ЛКГПМ при рандомизации начального значения — нет.

Постановка задачи: изучение стохастических моделей генераторов

Если последовательность стационарная, то

$$\mathcal{P}^{(d)} \stackrel{\text{def}}{=} \mathcal{L}(\delta_0, \dots, \delta_{d-1}) = \mathcal{L}(\delta_k, \dots, \delta_{d-1+k})$$

для любого $k \in \mathbb{N}$ и задача состоит в изучении спектрального расстояния

$$\sigma(\mathcal{P}^{(d)}, \mathbf{U}_d) = \sup_{\ell \in \mathbb{Z}^d, \ \ell \neq \mathbf{0}} |\varphi^{(d)}(2\pi\ell)| / \|\ell\|_2,$$

где $arphi^{(d)}$ — характеристическая функция распределения $\mathcal{P}^{(d)}.$

Нужно, чтобы $\sigma(\mathcal{P}^{(d)},\mathbf{U}_d)$ было мало при всех d: $2\leq d\leq d_0$, где d_0 задается априорно.

Мультипликативные генераторы

Мультипликативные генераторы: $a_{n+1} \stackrel{\mathrm{def}}{=} \{\lambda a_n\},\ a_0 = x_0/m$ исследовались при:

m — простое число, λ — первообразный элемент, $x_0 \neq 0$;

 $m = 10^p$, x_0 — нечетное и не кратное 5;

 $m=2^p$.

ИЗВЕСТНО, что при $\lambda \equiv 5 \, ({
m mod} \, 8)$ и x_0 нечетном

$$\sigma(\mathcal{P}_p^{(d)}, \mathbf{U}_d) = \sup_{\ell \neq \mathbf{0}} \left\{ 1/\|\ell\|_2 : \ g(\ell) \equiv 0 \, (\text{mod } 2^{p-2}) \right\},$$

где $g(\ell) = \sum_{s=0}^{d-1} l_s \lambda^s.$ Есть эффективные алгоритмы вычисления.

Свойство волновых чисел:

$$w_d^{(p)}\stackrel{\mathrm{def}}{=} 1/\sigma(\mathcal{P}_p^{(d)},\mathrm{U}_d) \leq \sqrt{\gamma_d}\ 2^{p-2}$$
 (неравенство Эрмита)

Нормированные волновые числа.

Мультипликативный генератор с $m=2^p$ и $\lambda\equiv 3\,({\sf mod}\,8)$

Предложение

1. Если $\lambda \equiv 3 \, (\mathsf{mod} \, 8)$ и x_0 — нечетное, то

$$\sigma(\mathcal{P}_p^{(d)}, \mathbf{U}_d) = \sup_{\ell \neq \mathbf{0}} \frac{1}{\|\ell\|_2} \left\{ \begin{array}{l} 1/\sqrt{2}, & \operatorname{ecли} g(\ell) \equiv 0 \, (\operatorname{mod} 2^{p-3}) \, \operatorname{u} g(\ell) \not\equiv 0 \, (\operatorname{mod} 2^{p-2}), \\ 1, & \operatorname{ecлu} g(\ell) \equiv 0 \, (\operatorname{mod} 2^{p-1}), \end{array} \right.$$

где
$$g(\ell) = \sum_{s=0}^{d-1} l_s \lambda^s$$
.

2. Пусть p>3, $\lambda\equiv 5\ ({\it mod}\,8)$, $\lambda<2^{p-2}$ и $\lambda^*=2^{p-2}-\lambda$. Тогда

$$\sigma(\mathcal{P}_p^{(d)}(\lambda), \mathcal{U}_d) \ge \sigma(\mathcal{P}_{p+1}^{(d)}(\lambda^*), \mathcal{U}_d) \ge \sigma(\mathcal{P}_{p+2}^{(d)}(\lambda), \mathcal{U}_d).$$

3. Пусть $\lambda \equiv 3 \, ({\sf mod} \, 8)$ и $\gamma_d^* = \gamma_d 2^{2/d}$. Тогда

$$w_p^{(d)}(\lambda) \le \sqrt{\gamma_d^*} \, 2^{(p-2)/d}.$$

Есть алгоритм оценки волновых чисел сверху и снизу. Примерно в 80% случаев — точные значения.

МГ: численные эксперименты - 1

Таблица: Оптимальные мультипликаторы при d=2.

m	λ_5	σ_5	nw_5	λ_3	σ_3	nw_3
2^{16}	$5 + 8 \cdot 1261$	7.278e-3	9.988e-1	$3 + 8 \cdot 710$	6.470e-3	1.123e+0
2^{17}	$5 + 8 \cdot 1867$	5.197e-3	9.891e-1	$3 + 8 \cdot 958$	4.562e-3	1.126e+0
2^{18}	$5 + 8 \cdot 2900$	3.667e-3	9.910e-1	$3 + 8 \cdot 7229$	3.206e-3	1.133e+0
2^{19}	$5 + 8 \cdot 8521$	2.576e-3	9.978e-1	$3 + 8 \cdot 4004$	2.256e-3	1.139e+0

$$nw_5 = \frac{w_5}{\gamma_d^{1/2} m^{1/d}}, \quad nw_3 = \frac{w_3}{\gamma_d^{1/2} m^{1/d}};$$

Таблица: Оценки снизу для оптимальных волновых чисел, d=3 и 4.

m	$w_5^{(3)}$	$w_3^{(3)} \ge$	$w_5^{(4)}$	$w_3^{(4)} \ge$
2^{14}	1.62e+01	1.84e+01	8.60e+00	9.27e+00
2^{15}	2.17e+01	2.25e+01	1.05e+01	1.11e+01
2^{16}	2.70e+01	3.07e+01	1.21e+01	1.34e+01
2^{17}	3.49e+01	3.82e+01	1.51e+01	1.59e+01

МГ: численные эксперименты - 2

Таблица: Нормированные волновые числа (L'Ecuyer). $2 \leq d \leq 8, \ m=2^{32}$, $\lambda \equiv 5 (\bmod \, 8)$

λ	$nw^{(2)}$	$nw^{(3)}$	$nw^{(4)}$	$nw^{(5)}$	$nw^{(6)}$	$nw^{(7)}$	$nw^{(8)}$	min
438293613	0.76	0.83	0.83	0.79	0.75	0.83	0.76	0.75
741103597	0.87	0.80	0.80	0.80	0.76	0.76	0.77	0.76

Полный перебор.

Таблица: Нормированные волновые числа. $2 \leq d \leq 8, \ m=2^{32}, \ \lambda \equiv 3 (\operatorname{mod} 8)$

λ	$nw^{(2)}$	$nw^{(3)}$	$nw^{(4)}$	$nw^{(5)}$	$nw^{(6)}$	$nw^{(7)}$	$nw^{(8)}$	min
26788971	0.91	0.84	0.84	0.81	0.81	0.79	0.77	0.77
573964635	0.94	0.88	0.81*	0.88	0.81	0.83	0.77	0.77

Случайный перебор.

ВЫВОД: согласно спектральному тесту, случай $\lambda \equiv 3 \, ({\sf mod} \, 8)$ предпочтительнее.

Линейный конгруэнтный генератор

Линейный конгруэнтный генератор (ЛКГ):

$$a_{n+1} \stackrel{\text{def}}{=} \{\lambda a_n + c\},\$$

где $a_0 = x_0/m$, c = r/m;

Для $m=2^p$ максимальный период $T=2^p$ при $\lambda \equiv 1 \, ({\rm mod} \, 4)$, $r \neq 0$.

ИЗВЕСТНО, что при $\lambda \equiv 1 \, (\mathsf{mod} \, 4)$

$$\sigma(\mathcal{P}_p^{(d)}, \mathbf{U}_d) = \sup_{\ell \neq \mathbf{0}} \{1/\|\ell\|_2 : g(\ell) \equiv 0 \pmod{2^p} \},$$

где $g(\ell) = \sum_{s=0}^{d-1} l_s \lambda^s.$ Есть эффективные алгоритмы вычисления.

Линейный конгруэнтный генератор с переменным мультипликатором

Линейный конгруэнтный генератор с переменным мультипликатором (ЛКГПМ):

$$a_{n+1} \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{ll} \{\lambda_1 a_n + c_1\}, & \mathrm{если} & n - \mathrm{четноe}, \\ \{\lambda_2 a_n + c_2\}, & \mathrm{если} & n - \mathrm{нечетноe}, \end{array} \right.$$

где $a_0=x_0/m$, $c_1=r_1/m$, $c_2=r_2/m$.

Предложение

Пусть $m=2^p$, $\lambda_1\equiv 1\ (\mathsf{mod}\,4)$, $\lambda_2\equiv 1\ (\mathsf{mod}\,4)$.

Если r_1 и r_2 имеют разную четность, то генератор обладает максимальным периодом $T=2^{p+1}.$

Состав периода — $\{0, 1..., 2^p - 1\}$.

ЛКГПМ: рандомизация начального значения

Последовательность $\{\delta_n\}_{n\geq 0}$ не стационарная: $(\delta_0,\dots,\delta_{d-1})$, $(\delta_1,\dots,\delta_d)$;

Предложение

1.

$$\sigma(\mathcal{P}_1^{(d)}, \mathbf{U}_d) = \max_{\ell \in \mathbb{Z}^d} \{1/\|\ell\|_2 : \ell \neq \mathbf{0}, g_1(\ell) \equiv 0 \, (mod \, 2^p) \},$$

где $\mu = \lambda_1 \lambda_2$ и

$$g_1(\ell) = \sum_{j=0}^{\lceil d/2 - 1 \rceil} \mu^j \ell_{2j} + \sum_{j=0}^{\lfloor d/2 - 1 \rfloor} \mu^j \lambda_1 \ell_{2j+1},$$

2.
$$\sigma(\mathcal{P}_2^{(d)}, \mathcal{U}_d)(\lambda_1, \lambda_2) = \sigma(\mathcal{P}_1^{(d)}, \mathcal{U}_d)(\lambda_2, \lambda_1).$$

Мера отклонения от равномерности: $\sigma_d = \max\{\sigma(\mathcal{P}_1^{(d)}, \mathbf{U}_d), \sigma(\mathcal{P}_2^{(d)}, \mathbf{U}_d)\}.$

Волновое число: $w_d = 1/\sigma_d$.

Алгоритм — такой же как у ЛКГ.

ЛКГПМ, рандомизация начального значения: численные эксперименты

Таблица: Примеры мультипликаторов для моделей ЛКГ и ЛКГПМ, $2 \le d \le 7$

Nº	λ	m	$nw^{(2)}$	$nw^{(3)}$	$nw^{(4)}$	$nw^{(5)}$	$nw^{(6)}$	$nw^{(7)}$	min
1	8749, 13413	2^{15}	0.84	0.75	0.76	0.77	0.75	0.75	0.75
2	1765, 19865	2^{15}	0.77	0.81	0.71	0.73	0.75	0.71	0.71
3	21049	2^{15}	0.92	0.91	0.75	0.72	0.73	0.75	0.72
4	8749	2^{15}	0.84	0.80	0.71	0.70	0.73	0.71	0.70
5	149, 16113	2^{14}	0.80	0.73	0.79	0.74	0.78	_	0.73
6	1085, 9425	2^{14}	0.80	0.74	0.77	0.74	0.75	_	0.74
7	2649	2^{14}	0.83	0.72	0.83	0.77	0.78	_	0.72
8	1325	2^{14}	0.96	0.71	0.78	0.72	0.75	_	0.71

ВЫВОД: ЛКГПМ с рандомизацией по начальному значению не хуже ЛКГ, но перебор очень большой.

ЛКГПМ: рандомизация по периоду

Предложение

- 1. Последовательность $\{\beta_n\}_{n\geq 0}$ стационарная.
- 2. Пусть $\lambda_1 = \lambda_2 = \lambda$, тогда

$$\sigma(\mathcal{P}^{(d)}, \mathbf{U}_d) = \max_{\ell \in \mathbb{Z}^d} \frac{1}{\|\ell\|_2} \left\{ \left| \cos \left(\pi a \, \frac{g(\ell) - A}{2^p(\lambda + 1)} \right) \, \right| : \, \ell \neq \mathbf{0}, \, g(\ell) \equiv 0 \, (mod \, 2^p) \right\},$$

где
$$g(\ell) = \sum_{k=0}^{d-1} \lambda^k l_k$$
, $a = r_2 - r_1$ и

$$A = \sum_{j=0}^{\lceil d/2-1 \rceil} \ell_{2j} - \sum_{j=0}^{\lfloor d/2-1 \rfloor} \ell_{2j+1}.$$

Лучше, чем при рандомизации по начальному значению для модели ЛКГ.

