

Prueba Práctica Unidad 1

Autor: Jonnathan Oswaldo Matute Curillo

Maestro: Diego Quisi Materia: Simulación

Universidad: Universidad Politécnica Salesiana Carrera: Ciencias de la computación

Introducción

Diseñar y desarrollar un modelo y/o script que permita describir las personas empleadas y desempleadas por año en el Ecuador.

Librerias a importar

Para lectura y análisis de datos

In [13]:

import pandas as pd
import numpy as np

```
from datetime import datetime, timedelta
```

Para la realización de gráficas

```
In [14]:
```

```
import altair as alt
import plotly.express as px
import plotly
plotly.offline.init_notebook_mode(connected=True)
import seaborn as sns
from matplotlib import pyplot as plt
from plotly.subplots import make_subplots
import plotly.graph_objects as go
```

Librerias para realizar el modelo de regresión

```
In [15]:
```

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
```

Librerias para métricas de calidad

```
In [16]:
```

```
from sklearn.metrics import mean_squared_error
```

Mejorar visualización de datos

```
In [17]:
```

```
pd.options.display.float_format='{:,.2f}'.format
import warnings
warnings.simplefilter("ignore")
```

Lectura de datos

En este proceso, realizamos la lectura de los datos que tenemos para poder realizar un análisis. En este caso, tenemos datos de la poblacion, a continuación mostramos la data.

```
In [80]:
```

```
poblacion = pd.read_csv('1.Poblaciones.csv',encoding='latin1', sep=';',skiprows=2)
sectorizacion_empleo = pd.read_csv('4. Sectorización del empleo.csv', sep = ';',encoding=
'latin1', skiprows = 1)
poblacion = poblacion.drop(poblacion.columns[[8,9,10,11,12,13,14,15,16,17,18]],axis=1)
poblacion.rename(columns = {'Unnamed: 0':'Encuesta','Unnamed: 1':'Periodo','Unnamed: 2':'I
ndicadores'}, inplace = True)
poblacion
```

```
Out[80]:
```

	Encuesta	Periodo	Indicadores	Total	Urbana	Rural	Hombre	Mujer
0	ENEMDU	dic-07	Población Total	13.682.302	9.066.209	4.616.093	6.768.646	6.913.656
1	ENEMDU	dic-07	Población menor de 15 años	4.372.812	2.723.124	1.649.688	2.226.618	2.146.194

2	ENEMDU Encuesta	dic-07 Periodo	Población en Edad de Trabajar (PET) Indicadores	9.309.490 Total	6.343.085 Urbana	2.966.404 Rural	4.542.028 Hombre	4.767.462 Mujer
3	ENEMDU	dic-07	Población Económicamente Activa	6.336.029	4.227.702	2.108.328	3.777.232	2.558.798
4	ENEMDU	dic-07	Empleo	6.019.332	3.971.040	2.048.292	3.632.314	2.387.018
			•••					
895	ENEMDU*	oct-21	Desempleo Abierto	336.101	291.606	44.495	150.276	185.824
896	ENEMDU*	oct-21	Desempleo Oculto	48.103	27.600	20.503	25.975	22.128
897	ENEMDU*	oct-21	Desempleo Cesante	298.846	257.856	40.991	140.223	158.623
898	ENEMDU*	oct-21	Desempleo Nuevo	85.358	61.351	24.007	36.028	49.330
899	ENEMDU*	oct-21	Población Económicamente Inactiva	4.330.241	3.307.420	1.022.821	1.324.745	3.005.495

900 rows × 8 columns

Datos de la población

En este conjunto de datos tenemos las siguientes características:

- periodo: fecha
- total: total de lapoblacion
- tipo de poblacion: Urbana, rural, mujer o hombre

Transformación de datos

```
In [19]:
def transform data date(df,column name):
   df[column name] = pd.to datetime(df[column name], format='%d/%m/%Y')
   return df
def _obtain_days_from_date(df,column_name,start_date):
    format date = '%Y-%m-%d'
    df['day'] = df[column name].apply(lambda x : (x - datetime.strptime(start date, format))
_date)).days +1)
   return df
def save data(df, filename):
    df.to csv('1.Poblaciones.csv'.format(filename))
In [24]:
def eliminarPuntos(x):
 return int(x.replace(".",""))
In [25]:
poblacion["Total"] = poblacion["Total"].apply(eliminarPuntos)
In [26]:
def getAnio(x):
 nu= x.split("-")
  return nu[1]
In [27]:
poblacion["Periodo"] = poblacion["Periodo"].apply(getAnio)
```

Personas con empleo y desempleo por año

```
dataPoblacion = poblacion[['Periodo','Indicadores','Total']].groupby(['Periodo','Indicado
res'], as_index=False).mean()
dataPoblacion
```

Out[28]:

	Periodo	Indicadores	Total
0	07	Desempleo	316,697.00
1	07	Desempleo Abierto	193,225.00
2	07	Desempleo Cesante	190,044.00
3	07	Desempleo Nuevo	126,653.00
4	07	Desempleo Oculto	123,472.00
			•••
266	21	Población en Edad de Trabajar (PET)	12,655,772.80
267	21	Población menor de 15 años	5,150,507.20
268	21	Subempleo	1,933,593.10
269	21	Subempleo por insuficiencia de ingresos	211,003.90
270	21	Subempleo por insuficiencia de tiempo de trabajo	1,722,589.20

271 rows × 3 columns

In [29]:

```
indicadores = dataPoblacion.query('Indicadores=="Empleo" | Indicadores=="Desempleo"')
indicadores
```

Out[29]:

	Periodo	Indicadores	Total
0	07	Desempleo	316,697.00
5	07	Empleo	6,019,332.00
18	08	Desempleo	362,084.50
23	08	Empleo	6,125,310.00
36	09	Desempleo	423,802.00
41	09	Empleo	6,125,135.00
54	10	Desempleo	365,672.50
59	10	Empleo	6,143,685.50
72	11	Desempleo	302,996.00
77	11	Empleo	6,264,709.00
90	12	Desempleo	279,372.50
95	12	Empleo	6,506,555.50
108	13	Desempleo	281,348.00
113	13	Empleo	6,695,018.00
126	14	Desempleo	304,555.00
131	14	Empleo	6,784,413.75
144	15	Desempleo	324,618.00
149	15	Empleo	7,151,139.25
162	16	Desempleo	423,871.75
167	16	Empleo	7,482,333.75
180	17	Desempleo	358,466.50
185	17	Empleo	7,766,294.00

199	Periode	Indicadores	330,2 65.†9
204	18	Empleo	7,778,951.00
217	19	Desempleo	365,105.75
222	19	Empleo	7,853,174.75
235	20	Desempleo	456,457.50
240	20	Empleo	7,673,343.25
253	21	Desempleo	431,402.70
258	21	Empleo	7,917,790.10

Personas con empleo por año

In [30]:

```
empleo = indicadores.query('Indicadores=="Empleo" ')
desempleo = indicadores.query('Indicadores=="Desempleo" ')
fig, ax = plt.subplots(figsize = (12, 7))
plt.bar( empleo["Periodo"], empleo["Total"])
try:
   plt.ticklabel_format(axis='y', style='plain')
except AttributeError:
   print('')
plt.title('Empleados por Año')
plt.xlabel('Año')
plt.ylabel('Cantidad de Empleados')
plt.grid(linestyle='--', linewidth=0.4)
for index,data in enumerate(empleo["Total"]):
   plt.text(x=index , y =data+1 , s=f"{data}" , fontdict=dict(fontsize=8), ha='center',
color='green', va='bottom')
plt.tight layout()
plt.show()
```


Personas con desempleo por año

```
fig, ax = plt.subplots(figsize =(16, 9))
plt.bar(desempleo["Periodo"], desempleo["Total"])

try:
    plt.ticklabel_format(axis='y', style='plain')
except AttributeError:
    print('')
plt.title('Personas con desempleo por Año')
plt.xlabel('Año')
plt.ylabel('Cantidad de dempleados')
plt.grid(linestyle='--', linewidth=0.4)
for index,data in enumerate(desempleo["Total"]):
    plt.text(x=index , y =data+1 , s=f"{data}" , fontdict=dict(fontsize=10), ha='center'
, va='bottom')
plt.tight_layout()
```


Generar histogramas subempleo, empleo pleno y empleo no pleno por año

```
In [32]:
```

```
indicadores = dataPoblacion.query('Indicadores=="Subempleo" | Indicadores=="Empleo Adecua
do/Pleno" | Indicadores=="Otro Empleo no pleno"')
indicadores
```

Out[32]:

	Periodo	Indicadores	Total
6	07	Empleo Adecuado/Pleno	2,737,158.00
9	07	Otro Empleo no pleno	1,504,000.00
15	07	Subempleo	1,155,872.00
24	80	Empleo Adecuado/Pleno	2,804,627.00
27	80	Otro Empleo no pleno	1,669,021.00
33	80	Subempleo	1,044,338.50
42	09	Empleo Adecuado/Pleno	2,565,691.00
45	09	Otro Empleo no pleno	1.778.578.00

-		pp	,
51	Periodo 09	Indicadores Subempleo	1,071,615.00
60	10	Empleo Adecuado/Pleno	2,795,537.50
63	10	Otro Empleo no pleno	1,788,790.50
69	10	Subempleo	965,260.50
78	11	Empleo Adecuado/Pleno	2,893,045.50
81	11	Otro Empleo no pleno	2,044,937.00
87	11	Subempleo	743,991.50
96	12	Empleo Adecuado/Pleno	3,111,499.00
99	12	Otro Empleo no pleno	2,040,986.50
105	12	Subempleo	634,436.00
114	13	Empleo Adecuado/Pleno	3,163,264.50
117	13	Otro Empleo no pleno	2,082,403.50
123	13	Subempleo	813,697.50
132	14	Empleo Adecuado/Pleno	3,391,765.25
135	14	Otro Empleo no pleno	1,983,901.75
141	14	Subempleo	890,444.50
150	15	Empleo Adecuado/Pleno	3,404,390.25
153	15	Otro Empleo no pleno	2,032,688.75
159	15	Subempleo	1,034,029.25
168	16	Empleo Adecuado/Pleno	3,188,784.00
171	16	Otro Empleo no pleno	2,070,205.75
177	16	Subempleo	1,437,778.75
186	17	Empleo Adecuado/Pleno	3,275,341.00
189	17	Otro Empleo no pleno	1,986,290.00
196	17	Subempleo	1,669,343.50
205	18	Empleo Adecuado/Pleno	3,249,694.50
208	18	Otro Empleo no pleno	2,162,808.00
214	18	Subempleo	1,493,030.00
223	19	Empleo Adecuado/Pleno	3,148,216.75
226	19	Otro Empleo no pleno	2,207,743.50
232	19	Subempleo	1,570,431.25
241	20	Empleo Adecuado/Pleno	2,395,943.75
244	20	Otro Empleo no pleno	2,253,043.75
250	20	Subempleo	1,978,116.75
259	21	Empleo Adecuado/Pleno	2,646,380.10
262	21	Otro Empleo no pleno	2,265,989.90
268	21	Subempleo	1,933,593.10

In [33]:

```
subEmpleo= indicadores.query('Indicadores=="Subempleo"')
empleoPleno= indicadores.query('Indicadores=="Empleo Adecuado/Pleno"')
empleoNopleno= indicadores.query('Indicadores=="Otro Empleo no pleno"')

barWidth = 0.3
fig = plt.subplots(figsize =(18, 8))

IT = np.array(subEmpleo["Total"])
ECE = np.array(empleoPleno["Total"])
```

```
CSE = np.array(empleoNopleno["Total"])
br1 = np.arange(len(IT))
br2 = [x + barWidth for x in br1]
br3 = [x + barWidth for x in br2]
plt.bar(br1, IT, color = 'y', width = barWidth,
        edgecolor ='grey', label ='Subempleo')
plt.bar(br2, ECE, color ='r', width = barWidth,
        edgecolor ='grey', label ='Empleo Pleno')
plt.bar(br3, CSE, color = 'b', width = barWidth,
        edgecolor ='grey', label ='Empleo No pleno')
plt.xlabel('Año', fontweight = 'bold', fontsize = 15)
plt.ylabel('Datos mostrando en millones', fontweight ='bold', fontsize = 15)
plt.title('Personas con Subempleo, Empleo pleno y empleo no pleno', fontweight = 'bold',)
plt.xticks([r + barWidth for r in range(len(IT))],
        np.array(empleoNopleno["Periodo"]))
plt.legend()
plt.show()
```


Generar un reporte parametrizado que permita ingresar los datos de las fechas inicio y fin para obtener la información de las graficas vistas en el primer punto

```
In [81]:
```

```
sectorizacion_empleo.rename(columns = {
  'Unnamed: 1': 'Sector'}, inplace = True)

sectorizacion = sectorizacion_empleo[sectorizacion_empleo['Característica'].notna()]
```

In [82]:

```
sectorizacion = sectorizacion.drop(sectorizacion.columns[[0,1]], axis=1)
```

In [83]:

```
idx=0
sectorizacion.insert(loc=idx, column='Fecha', value=['Nacional', 'Urbano', 'Rural'])
sectorizacion
```

Out[83]:

Fecha	jun- 07	sep- 07 dic-07	mar- jun- 08 08	sep- 08 dic-08	•	un- 09	sep- 09 dic-09	mar- jun- 10 10	sep- 10 dic-10
0 Nacional	-	- 41,0%	- 42,5%	- 43,9%	-	-	- 43,7%	- 44,9%	- 47,2%

```
4 Urleana 54,7% 55,7% atc 10% 54,4% 08 08 08 08 08 09 09 09 09 09 57,5% 55,5% 55,5% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8% 60.8%
```

In [84]:

```
nDfSecto = sectorizacion.T
nDfSecto.columns = nDfSecto.iloc[0]
sectoDF = nDfSecto.replace('-', 0)
sectoDF.head()
```

Out[84]:

Fecha	Nacional	Urbano	Rural	
Fecha	Nacional	Urbano	Rural	
jun-07	0	54,7%	0	
sep-07	0	55,7%	0	
dic-07	41,0%	54,1%	15,5%	
mar-08	0	54,4%	0	

In [85]:

```
sectoDF.columns = sectoDF.iloc[0]
poblacion.head(5)
```

Out[85]:

	Encuesta	Periodo	Indicadores	Total	Urbana	Rural	Hombre	Mujer
0	ENEMDU	dic-07	Población Total	13.682.302	9.066.209	4.616.093	6.768.646	6.913.656
1	ENEMDU	dic-07	Población menor de 15 años	4.372.812	2.723.124	1.649.688	2.226.618	2.146.194
2	ENEMDU	dic-07	Población en Edad de Trabajar (PET)	9.309.490	6.343.085	2.966.404	4.542.028	4.767.462
3	ENEMDU	dic-07	Población Económicamente Activa	6.336.029	4.227.702	2.108.328	3.777.232	2.558.798
4	ENEMDU	dic-07	Empleo	6.019.332	3.971.040	2.048.292	3.632.314	2.387.018

In [86]:

```
subempleo = poblacion.loc[poblacion['Indicadores'] == 'Empleo No Pleno']
subempleo.head()
```

Out[86]:

Encuesta Periodo Indicadores Total Urbana Rural Hombre Mujer

In [87]:

```
subempleoF = poblacion.loc[poblacion['Indicadores'] == 'Subempleo']
subempleoF.head()
```

Out[87]:

	Encuesta	Periodo	Indicadores	Total	Urbana	Rural	Hombre	Mujer
6	ENEMDU	dic-07	Subempleo	1.155.872	687.714	468.158	679.118	476.753
24	ENEMDU	jun-08	Subempleo	1.130.699	696.949	433.750	665.939	464.760
42	ENEMDU	dic-08	Subempleo	957.978	588.824	369.155	549.097	408.881
60	ENEMDU	dic-09	Subempleo	1.071.615	664.855	406.760	636.204	435.411
78	ENEMDU	jun-10	Subempleo	1.041.266	663.688	377.578	596.889	444.377

```
empleoPleno = poblacion.loc[poblacion['Indicadores'] == 'Empleo Adecuado/Pleno']
empleoPleno.head()
```

Out[88]:

	Encuesta	Periodo	Indicadores	Total	Urbana	Rural	Hombre	Mujer
5	ENEMDU	dic-07	Empleo Adecuado/Pleno	2.737.158	2.236.440	500.719	1.907.451	829.707
23	ENEMDU	jun-08	Empleo Adecuado/Pleno	2.750.595	2.248.018	502.577	1.937.602	812.993
41	ENEMDU	dic-08	Empleo Adecuado/Pleno	2.858.659	2.339.288	519.370	1.991.157	867.502
59	ENEMDU	dic-09	Empleo Adecuado/Pleno	2.565.691	2.100.511	465.180	1.765.402	800.289
77	ENEMDU	jun-10	Empleo Adecuado/Pleno	2.715.542	2.211.148	504.394	1.839.160	876.383

In [89]:

```
# Ver todas las ocurrencias de 'No pleno' en la columna de indicadores
empleonoPleno = poblacion.loc[poblacion['Indicadores'] == 'Otro Empleo no pleno']
empleonoPleno.head()
```

Out[89]:

		Encuesta	Periodo	Indicadores	Total	Urbana	Rural	Hombre	Mujer
	10	ENEMDU	dic-07	Otro Empleo no pleno	1.504.000	785.461	718.539	830.341	673.659
	28	ENEMDU	jun-08	Otro Empleo no pleno	1.688.693	909.254	779.439	898.349	790.344
	46	ENEMDU	dic-08	Otro Empleo no pleno	1.649.349	859.126	790.223	923.415	725.935
	64	ENEMDU	dic-09	Otro Empleo no pleno	1.778.578	951.354	827.224	1.023.151	755.428
	82	ENEMDU	jun-10	Otro Empleo no pleno	1.811.893	958.283	853.610	1.057.750	754.142

SUBEMPLEO

```
In [90]:
```

```
subEmpDF = subempleoF[['Periodo', 'Total']]
subEmpDF.rename(columns = {
    'Periodo': 'Fecha', 'Total': 'Subempleo'}, inplace = True)
```

EMPLEO ADECUADO

In [91]:

```
empAdeDF = empleoPleno [['Periodo', 'Total']]
empAdeDF.rename(columns = {
    'Periodo': 'Fecha', 'Total': 'Adecuado'}, inplace = True)
```

NO PLENO

```
In [92]:
```

```
noPlenoDF = empleonoPleno[['Periodo', 'Total']]
noPlenoDF.rename(columns = {
    'Periodo': 'Fecha', 'Total': 'No_pleno'}, inplace = True)
```

Transformar de string a int los valores de total de Subempleo, empleo adecuado y empleo no pleno

```
In [93]:
```

```
subEmpDF['Subempleo'] = subEmpDF['Subempleo'].str.replace('.','').astype(int)
subEmpDF.head()
```

```
Out[93]:
```

```
Fecha Subempleo
 6 dic-07
            1155872
24 jun-08
            1130699
42 dic-08
             957978
60 dic-09
            1071615
78 jun-10
            1041266
In [94]:
empAdeDF['Adecuado'] = empAdeDF['Adecuado'].str.replace('.','').astype(int)
empAdeDF.head()
Out[94]:
    Fecha Adecuado
 5 dic-07
           2737158
23 jun-08
           2750595
41 dic-08
           2858659
59 dic-09
           2565691
77 jun-10
           2715542
In [95]:
noPlenoDF['No pleno'] = noPlenoDF['No pleno'].str.replace('.','').astype(int)
noPlenoDF.head()
Out[95]:
    Fecha No_pleno
10 dic-07
           1504000
           1688693
28 jun-08
46 dic-08
           1649349
64 dic-09
           1778578
           1811893
82 jun-10
In [96]:
resMerge = pd.merge(subEmpDF, empAdeDF, on=['Fecha'])
resMerge.head()
Out[96]:
   Fecha Subempleo Adecuado
0 dic-07
                     2737158
            1155872
1 jun-08
            1130699
                     2750595
2 dic-08
            957978
                     2858659
3 dic-09
           1071615
                     2565691
4 jun-10
            1041266
                     2715542
In [97]:
finMerge = pd.merge(resMerge, noPlenoDF, on=['Fecha'])
finMerge.head()
Out[97]:
```

	Fecha	Subemple8	Adecuada	N8_pien8
0	dic-07	1155872	2737158	1504000
1	jun-08	1130699	2750595	1688693
2	dic-08	957978	2858659	1649349
3	dic-09	1071615	2565691	1778578
4	jun-10	1041266	2715542	1811893

In [98]:

```
plt.figure(figsize=(16, 10))
plt.title('Subempleo, Empleo Adecuado - Ecuador')
plt.plot(finMerge.Fecha, finMerge.Subempleo, 'y.-')
plt.plot(finMerge.Fecha, finMerge.Adecuado, 'r.-')
plt.plot(finMerge.Fecha, finMerge.No_pleno, 'b.-')
plt.xticks(finMerge.Fecha[::3].tolist())
plt.xlabel('Fecha')
plt.ylabel('Total')
plt.legend(['Subempleo', 'Adecuado', 'No Adecuado'])
plt.show()
```


CONCLUSIÓN

• Despues de realizar el analisis de los datos de personas con empleo y sin empleo, se pudo notar el gran cambio en graficas que nos representas el aumento de desempleo.

RECOMENDACIONES

• Transformar los datos, limpiar el dataset y revisar material de apoyo brindado por el docente.

REFERENCIAS:

• Dataset https://www.ecuadorencifras.gob.ec/estadisticas-laborales-octubre-2021/