习题讨论课02答案: 极限与连续

一、连续与函数在一点处的极限

【定义】

f 在 x₀ 处连续:

- f 在 x_0 处有定义; (允许 f 仅在 x_0 处有定义)
- 对任意 $\varepsilon > 0$, 存在 $\delta_{\varepsilon} > 0$ 使得:

$$|x - x_0| < \delta_{\varepsilon}, x \in D_f \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

极限 $\lim_{x \to x_0} f(x) = A$:

- x_0 是 f 的定义域 D_f 的一个聚点, 即 f 在 x_0 的任意近旁有定义; (允许 f 在 x_0 处没有定义)
- 对任意 $\varepsilon > 0$, 存在 $\delta_{\varepsilon} > 0$ 使得:

$$0 < |x - x_0| < \delta_{\varepsilon}, x \in D_f \Rightarrow |f(x) - A| < \varepsilon.$$

注: 极限 $\lim_{x\to x_0}f(x)=A$ 是由 (任意) 临近 x_0 处 f 的函数值共同决定的,与 x_0 处 f 的值无关。

单侧极限。右极限 $f(x_0+)=\lim_{x\to x_0^+}f(x)=A$:(类似定义左极限 $f(x_0-)=\lim_{x\to x_0^-}f(x)=A$)

- f 在 x_0 的右侧任意近旁有定义; (允许 f 在 x_0 处没有定义)
- 对任意 $\varepsilon > 0$, 存在 $\delta_{\varepsilon} > 0$ 使得:

$$x_0 < x < x_0 + \delta_{\varepsilon}, x \in D_f \Rightarrow |f(x) - A| < \varepsilon.$$

【联系】

设 x_0 是 f 的定义域 D_f 的一个聚点。则

• $\lim_{x \to x_0} f(x) = A$ 当且仅当

$$\tilde{f}(x) = \begin{cases} f(x), & x \neq x_0 \\ A, & x = x_0 \end{cases}$$

在 x_0 处连续。

•
$$f(x_0+) = \lim_{x \to x_0^+} f(x) = A \stackrel{\text{def}}{=} \mathbb{A} \mathbb{A}$$

$$\tilde{f}_{+}(x) = \begin{cases} f(x), & x > x_0, \\ A, & x = x_0 \end{cases}$$

在 x_0 处右连续。

• $f(x_0-) = \lim_{x \to x_0^-} f(x) = A \stackrel{\text{def}}{=} \mathbb{A} \mathbb{A}$

$$\tilde{f}_{-}(x) = \begin{cases} f(x), & x < x_0 \\ A, & x = x_0 \end{cases}$$

在 x_0 处左连续。

如果 \tilde{f} 在 x_0 处连续, 而 f 在 x_0 处不连续, 则称 x_0 为 f 的**可去间断点**。 如果 $f(x_0+), f(x_0-)$ 都存在但不相等, 则称 x_0 为 f 的**跳跃间断点**。 可去间断点和跳跃间断点统称为**第一类间断点**。

如果 x_0 是 f 定义域的聚点, 但 f 在 x_0 处既不连续, 也不是第一类间断, 则称 x_0 为 f 的第二类间断点。

【连续和极限的运算性质】

- 线性: f,g 都在 x_0 处连续 $\Rightarrow \lambda f + \mu g$ 在 x_0 处连续。 $\lim_{x \to x_0} f(x) = A, \lim_{x \to x_0} g(x) = B \Rightarrow \lim_{x \to x_0} (\lambda f(x) + \mu g(x)) = \lambda A + \mu B.$
- 乘法: f, g 都在 x_0 处连续 $\Rightarrow fg$ 在 x_0 处连续。 $\lim_{x \to x_0} f(x) = A, \lim_{x \to x_0} g(x) = B \Rightarrow \lim_{x \to x_0} (f(x)g(x)) = AB.$
- 除法: f, g 都在 x_0 处连续, 且 $g(x_0) \neq 0 \Rightarrow \frac{f}{g}$ 在 x_0 处连续。 $\lim_{x \to x_0} f(x) = A, \lim_{x \to x_0} g(x) = B \neq 0 \Rightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} \text{ }$
- 复合 (换元): f 在 x_0 处连续, g 在 $f(x_0)$ 处连续 $\Rightarrow g \circ f$ 在 x_0 处连续。 $\lim_{x \to x_0} f(x) = y_0, g$ 在 y_0 处连续 $\Rightarrow \lim_{x \to x_0} g(f(x)) = g(y_0)$ 。 $\lim_{x \to x_0} f(x) = y_0, \lim_{y \to y_0} g(x) = B \Rightarrow \lim_{x \to x_0} g(f(x)) = B$ 。 (这对吗?)

例 1. 讨论函数 $f(x) = \frac{x^2 - 3x + 2}{x^2 - x}$ 的连续性和间断点。

解. 易见 g(x) = x 是连续函数,根据连续函数的四则运算性质知多项式和有理分式都是连续函数,从而 $f(x) = \frac{x^2 - 3x + 2}{x^2 - x}$ 是连续函数,即在定义域 $\{x \in \mathbb{R} | x \neq 0, 1\}$ 中处处连续。

x = 0 和 x = 1 不在定义域中,但它们是定义域的聚点。对正整数 n > 1

$$f\left(\frac{1}{n}\right) = \frac{\frac{1}{n^2} - \frac{3}{n} + 2}{\frac{1}{n^2} - \frac{1}{n}} = \frac{1 - 3n + 2n^2}{1 - n} = -2n + 1 < -n$$

无下界,所以右极限 $\lim_{x\to 0^+} f(x)$ 不存在。因此 x=0 是 f 的第二类间断点。 因式分解并化简

$$f(x) = \frac{x^2 - 3x + 2}{x^2 - x} = \frac{(x - 1)(x - 2)}{x(x - 1)} = \frac{x - 2}{x}, \quad \forall x \notin \{0, 1\},$$

后者在 x=1 处连续。所以 x=1 是 f(x) 的可去间断点,

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - x} = \lim_{x \to 1} \frac{x - 2}{x} = \frac{1 - 2}{1} = -1.$$

例 2. 设 f_1, f_2, \ldots, f_n 是 I 上的连续函数。证明

$$g(x) = \max\{f_1(x), f_2(x), \dots, f_n(x)\}\$$

也是 I 上的连续函数。

证法1. 利用运算性质. 对 n 做数学归纳法。只需证明 n=2 时结论成立。

$$\max\{f_1(x), f_2(x)\} = \frac{f_1(x) + f_2(x)}{2} + \left| \frac{f_1(x) - f_2(x)}{2} \right|$$

因为 $|x| = \sqrt{x^2}$ 是连续函数,所以由上式以及连续性的运算知 $\max \{f_1(x), f_2(x)\}$ 是连续函数的线性组合和复合。

证法2. 用连续性定义. 对任意 $\varepsilon > 0$, 对 k = 1, 2, ..., n, 存在 $\delta_k > 0$ 使得

$$x \in I, |x - x_0| < \delta_k \Rightarrow f_k(x_0) - \varepsilon < f_k(x) < f_k(x_0) + \varepsilon.$$

取 $\delta = \min \{\delta_1, \delta_2, \dots, \delta_n\}$, 则

$$x \in I, |x - x_0| < \delta_k \Rightarrow f_k(x) < \max\{f_1(x_0), f_2(x_0), \dots, f_n(x_0)\} + \varepsilon.$$

从而

$$\max\{f_1(x), f_2(x), \dots, f_n(x)\} < \max\{f_1(x_0), f_2(x_0), \dots, f_n(x_0)\} + \varepsilon.$$
由对称性,

$$\max\{f_1(x_0), f_2(x_0), \dots, f_n(x_0)\} < \max\{f_1(x), f_2(x), \dots, f_n(x)\} + \varepsilon.$$

所以
$$g(x_0) - \varepsilon < g(x) < g(x_0) + \varepsilon$$
。

因此
$$g$$
 在 x_0 处连续。

例 3. 设 f 在区间 (a,b) 到区间 (α,β) 的严格增满射, 则 f 是连续函数, f 的反 函数 f^{-1} 也是连续函数。因此指数函数 a^x (在 $(-\infty, +\infty)$ 中) 是连续函数, 幂 函数 x^{α} 和对数函数 $\log_a x$ 是区间 $(0,+\infty)$ 中的连续函数。

证明. 任给 $x_0 \in (a,b)$ 。则 $f(x_0) \in (\alpha,\beta)$ 。

任给 $y_1 \in (\alpha, J(x_0))$ 以及 $y_2 \in (f(x_0), \beta)$ 。

因为 f 是满射, 所以存在 $x_1, x_2 \in (a, b)$ 使得 $f(x_1) = y_1, f(x_2) = y_2$ 。

因为 f 严格增, $f(x_1) = y_1 < f(x_0) < y_2 = f(x_2)$, 所以 $x_1 < x_0 < x_2$ 。 对于任意 $x \in (x_1, x_2)$,都有

$$y_1 = f(x_1) < f(x) < f(x_2) = y_2.$$

所以 f 在 x_0 处连续。

f 存在反函数 f^{-1} , 且反函数 f^{-1} 是区间 (α, β) 到 (a, b) 的严格增满射, 所 以 f^{-1} 连续。

注: 如果把上述条件中的严格增改成单调(即还包括严格减、单调不增、单调 不减),则 f 是连续函数。请读者自己给出证明。

例 4. 对任意 $\alpha > 0$, 证明 $\lim_{\alpha \to 0} x^{\alpha} = 0$.

证明. 不妨设 0 < x < 1 。任取正整数 m 使得 $\frac{1}{m} < \alpha$ 。则 $\log_2 x < \log_2 1 = 0$, 所以 $\alpha \log_2 x < \frac{1}{m} \log_2 x$ 。 因此

$$x^{\alpha} = 2^{\alpha \log_2 x} < 2^{\frac{1}{m} \log_2 x} = x^{\frac{1}{m}}.$$

对任意 $0 < \varepsilon < 1$,

$$x^{\frac{1}{m}} < \varepsilon \Longleftrightarrow x = \left(x^{\frac{1}{m}}\right)^m < \varepsilon^m.$$

因此当 $0 < x < \varepsilon^m$ 时,

$$0 < x^{\alpha} < \varepsilon$$
.

例 5. 对实数 α , 求极限 $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}$ 。 $(\alpha$ 为无理数时,难度为 \bigstar)

 \mathbf{m} . (1) 当 α 为正整数 m 时,函数是有理分式,

$$\frac{(1+x)^m-1}{x} = \frac{mx + C_m^2 x^2 + \dots + C_m^m x^m}{x} = m + C_m^2 x + \dots + C_m^m x^{m-1},$$

所以 $\lim_{x\to 0} \frac{(1+x)^m-1}{x} = m$ 。 当 m=0 时,上述结论成立。

当 α 为负整数 -m 时,函数是有理分式,用四则运算

$$\frac{(1+x)^{-m}-1}{x} = \frac{1-(1+x)^m}{x(1+x)^m} = -\frac{1}{\frac{(1+x)^m-1}{x}} \cdot \frac{1}{(1+x)^m},$$

$$\frac{(1+x)^{\frac{m}{n}}-1}{x}\overset{(1+x)^{\frac{1}{n}}=1+y}{=}\frac{(1+y)^m-1}{(1+y)^n-1}=\frac{\frac{(1+y)^m-1}{y}}{\frac{(1+y)^n-1}{y}},$$

由幂函数的连续性, $\lim_{x\to 0} (1+x)^{\frac{1}{n}} = 1$,从而 $x\to 0$ 时, $y=(1+x)^{\frac{1}{n}}-1\to 0$. 所以

$$\lim_{x \to 0} \frac{(1+x)^{\frac{m}{n}} - 1}{x} = \lim_{y \to 0} \frac{\frac{(1+y)^m - 1}{y}}{\frac{(1+y)^n - 1}{y}} = \frac{\lim_{y \to 0} \frac{(1+y)^m - 1}{y}}{\lim_{y \to 0} \frac{(1+y)^n - 1}{y}} = \frac{m}{n}.$$

(3) 对任意实数 α , 对任意 $\varepsilon > 0$, 由于有理数在实数集中稠密, 所以可取 有理数 $\frac{m_1}{n_1}, \frac{m_2}{n_2}$ 使得

$$\alpha - \varepsilon < \frac{m_1}{n_1} < \alpha < \frac{m_2}{n_2} < \alpha + \varepsilon.$$

因为

$$\alpha - \varepsilon < \lim_{x \to 0} \frac{\left(1 + x\right)^{\frac{m_i}{n_i}} - 1}{x} = \frac{m_i}{n_i} < \alpha + \varepsilon, \quad i = 1, 2$$

所以存在 $0 < \delta < 1$ 使得对任意 $0 < x < \delta$,

$$\alpha - \varepsilon < \frac{(1+x)^{\frac{m_i}{n_i}} - 1}{r} < \alpha + \varepsilon, \quad i = 1, 2$$

从而由指数函数单调性和不等式的基本性质

$$\alpha - \varepsilon < \frac{(1+x)^{\frac{m_1}{n_1}} - 1}{x} < \frac{(1+x)^{\alpha} - 1}{x} < \frac{(1+x)^{\frac{m_2}{n_2}} - 1}{x} < \alpha + \varepsilon. \tag{*}$$

所以

$$\lim_{x \to 0^+} \frac{(1+x)^{\alpha} - 1}{x} = \alpha.$$

类似可证

$$\lim_{x \to 0^-} \frac{(1+x)^{\alpha} - 1}{x} = \alpha.$$

所以

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha.$$

注: 这个结论在传统教课书中是利用指数函数与对数函数的一些重要极限得到 的。这里给出的解法是一个初等做法, 刚好可以帮助读者熟悉处理极限的一些不 同的常用方法。另外请读者思考在(*)中是否可以使用极限的夹挤定理。

常见错误:

5

1. 有些学生听说过 L'Hôpital 法则。所以采用

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \lim_{x \to 0} \frac{\left((1+x)^{\alpha} - 1\right)'}{(x)'} = \lim_{x \to 0} \frac{\alpha(1+x)^{\alpha-1}}{1} = \alpha.$$

这里使用了导数公式 $(x^{\alpha})' = \alpha x^{\alpha-1}$. 殊不知, 按导数定义,

$$(x^{\alpha})' = \lim_{h \to 0} \frac{(x+h)^{\alpha} - x^{\alpha}}{h} = \frac{x^{\alpha}}{x} \lim_{h \to 0} \frac{\left(1 + \frac{h}{x}\right)^{\alpha} - 1}{\frac{h}{x}} = x^{\alpha - 1} \lim_{t \to 0} \frac{(1+t)^{\alpha} - 1}{t}.$$

这回到了最初要求的极限。这是逻辑循环,是逻辑错误。因为蕴涵关系 $p \Rightarrow p$ 总是真的,但我们无从知晓 p 是否为真。

2. 有的同学在 α 两侧任取有理数 r, s,然后由单调性知 x > 0 时,

$$\frac{(1+x)^r - 1}{x} < \frac{(1+x)^\alpha - 1}{x} < \frac{(1+x)^s - 1}{x},\tag{**}$$

然后让 $x \to 0$, 由极限保序性得到

$$r = \lim_{x \to 0} \frac{(1+x)^r - 1}{x} \le \lim_{x \to 0} \frac{(1+x)^\alpha - 1}{x} \le \lim_{x \to 0} \frac{(1+x)^s - 1}{x} = s,$$

然后再由 r,s 任意性得到

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha.$$

这里的错误在于他默认了极限 $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x}$ 的存在性,而这是需要证明的。 有的同学补充说这是用了夹挤定理。但事实上,(**)两端函数并没有相等

的极限, 因此不满足夹挤定理的条件。

由(**)以及其两端函数有极限,我们知道 $\frac{(1+x)^{\alpha}-1}{x}$ 在 $x\to 0$ 时有界,从而 有上极限和下极限,并且由(**)可得

$$r = \lim_{x \to 0} \frac{(1+x)^r - 1}{x} \le \underline{\lim}_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x}$$
$$\le \underline{\lim}_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} \le \underline{\lim}_{x \to 0} \frac{(1+x)^s - 1}{x} = s,$$

这是再由r,s的任意性得到

$$\alpha \le \underline{\lim}_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} \le \overline{\lim}_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} \le \alpha.$$

从而 $\lim_{\substack{x\to 0 \\ x \neq 0}} \frac{(1+x)^{\alpha}-1}{x}$ 存在且等于 α . 本课程不要求学生了解上、下极限的概念和性质。

二、三角函数

本节内容仅供学生自学阅读。

【三角函数的基本性质】

sin, cos 由以下性质唯一确定

- 1. \cos, \sin 定义域为 $(-\infty, +\infty)$;
- 2. $\cos 0 = \sin \frac{\pi}{2} = 1$, $\cos \pi = -1$;
- 3. 对任意 $x, y \in \mathbb{R}$,

$$\cos(y - x) = \cos x \cos y + \sin x \sin y.$$

4. 对任意 $0 < x < \frac{\pi}{2}$,

$$0 < \cos x < \frac{\sin x}{x} < \frac{1}{\cos x}.$$

【由上述基本性质推导 sin, cos 的其他性质】

在(3)中取 x = y, 并利用(2), 得到

$$1 = \cos^2 x + \sin^2 x. \tag{5}$$

由(5)并结合(2), 得到

$$\sin 0 = \cos \frac{\pi}{2} = \sin \pi = 0. \tag{6}$$

- 由(6)并结合(3),得到 cos 是偶函数 (取 y = 0), (7)
- 以及 $\cos\left(\frac{\pi}{2} x\right) = \sin x$ (取 $y = \frac{\pi}{2}$), 并且 $\cos x = \sin\left(\frac{\pi}{2} x\right)$ 。 (8)
- (3)中取 $y = \pi$ 并结合 (2,6), 得到 $\cos(\pi x) = -\cos x$ 。 (9)
- 由(9)知 cos 是 2π 周期函数, 再结合(8)知 sin 是 2π 周期函数。 (10)

由
$$(8,9)$$
 可知 \sin 是奇函数。 (11)

由 (3,8) 可知

$$\sin(x+y) = \sin x \cos y + \cos x \sin y. \tag{12}$$

由 (7,11,3,12) 可得

$$\sin(x - y) = \sin x \cos y - \cos x \sin y \tag{13}$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \tag{14}$$

并且

$$\sin u - \sin v = 2\sin\frac{u-v}{2}\cos\frac{u+v}{2},\tag{15}$$

$$\cos u - \cos v = -2\sin\frac{u - v}{2}\sin\frac{u + v}{2}.$$
 (16)

若 $-\frac{\pi}{2} \le v < u \le \frac{\pi}{2}$, 则

$$0 < \frac{u-v}{2} \leq \frac{\pi}{2}, \quad -\frac{\pi}{2} < \frac{u+v}{2} < \frac{\pi}{2},$$

因为 \cos 在 $\left[0,\frac{\pi}{2}\right]$ 上为正, 又 \cos 为偶函数, 所以

$$\cos\frac{u+v}{2} > 0.$$

因为 $\sin e (0, \frac{\pi}{2}]$ 上为正, 所以

$$\sin\frac{u-v}{2} > 0.$$

所以
$$\sin u > \sin v$$
,故 $\sin 在 \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ 上严格增。 (17)

类似可证
$$\cos$$
 在 $[0,\pi]$ 上严格增。 (18)

由 (12,14,2,4) 可得 $\cos \frac{\pi}{3} = \frac{1}{2}$ 。

当 $0 < x < \frac{\pi}{3}$ 时,由(4)知

$$0 < \sin x < \frac{x}{\cos x} < \frac{x}{\cos \frac{\pi}{3}} = 2x,$$

再由 sin 是奇函数, 得到: 对任意 $|x| < \frac{\pi}{3}, |\sin x| \le 2|x|$ 。 所以 sin 在 x = 0 连续。 (19)

再由(4)和(20)知,
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 。 (21)

由(21)知

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{4\left(\frac{x}{2}\right)^2} = \frac{1}{2}.$$
 (22)

三、函数在无穷远处的极限、数列极限

【定义】

• $\lim_{x \to +\infty} f(x) = A\left(\lim_{n \to +\infty} a_n\right)$: 对任意 $\varepsilon > 0$, 存在 N 使得

$$x \in D_f \cap [N, +\infty) \Rightarrow |f(x) - A| < \varepsilon.$$

数列极限是这种极限的特殊情况, $f(n) = a_n$ 是数列的通项公式。

• $\lim_{x \to -\infty} f(x) = A$: 对任意 $\varepsilon > 0$, 存在 N 使得

$$x \in D_f \cap (-\infty, N] \Rightarrow |f(x) - A| < \varepsilon.$$

• $\lim_{x \to \infty} f(x) = A$: 对任意 $\varepsilon > 0$, 存在 N 使得

$$x \in D_f, |x| > N \Rightarrow |f(x) - A| < \varepsilon.$$

【联系】

- $\lim_{x \to +\infty} f(x) = A \iff \lim_{y \to 0^+} f\left(\frac{1}{y}\right) = A$ 。 对 $\lim_{x \to -\infty} f(x)$, $\lim_{x \to \infty} f(x)$ 有类似 结论。
- $\lim_{x \to \infty} f(x) = A \iff \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A$.

【相关概念】

• y = kx + b 是 $x \to \pm \infty(\infty)$ 时 y = f(x) 的渐近线:

$$\lim_{x \to \pm \infty(\infty)} (f(x) - (kx + b)) = 0.$$

• 以上极限等价于

$$k = \lim_{x \to \pm \infty(\infty)} \frac{f(x)}{x}, \quad b = \lim_{x \to \pm \infty(\infty)} (f(x) - kx).$$

【极限的性质:与不等式的联系】

- 保序。设 $\lim_{x\to a} f(x) = A \ \pi \lim_{x\to a} g(x) = B \ \text{appear}$
 - 若在 a 附近总有 $f(x) \leq g(x)$, 则 $A \leq B$;
 - 若 A < B, 则在 a 附近总有 f(x) < g(x) 。注: 这条性质比上一条更重要。
- 夹挤定理。设 $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=A$ 存在。若在 a 附近总有 $f(x)\leq h(x)\leq g(x)$,则 $\lim_{x\to a}h(x)$ 存在,且 $\lim_{x\to a}h(x)=A$ 。

例 6. 设 $a_n > 0$ 满足, $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = A \in [0, +\infty]$ 。 证明 $\lim_{n \to +\infty} \sqrt[n]{a_n} = A$.

证明. 任取 $A_1 < A_3 < A < A_4 < A_2$. (注: 当 A = 0 时,只需取 A_4, A_2 ; 当 $A = +\infty$ 时,只需取 A_1, A_3 .)则存在正整数 N 使得 $\forall n \geq N$, $A_3 < \frac{a_{n+1}}{a_n} < A_4$. 由 Bernoulli 不等式,当

$$n > \max \left\{ N, \frac{\frac{a_N}{A_4^N}}{\frac{A_2}{A_4} - 1}, \frac{\frac{A_3^N}{a_N}}{\frac{A_3}{A_1} - 1} \right\}$$

时,

$$\left(\frac{A_2}{A_4}\right)^n > n\left(\frac{A_2}{A_4} - 1\right) > \frac{a_N}{A_4^N}, \quad \left(\frac{A_3}{A_1}\right)^n > n\left(\frac{A_3}{A_1} - 1\right) > \frac{A_3^N}{a_N},$$

于是

$$A_1^n < A_3^{n-N} a_N \le a_n = \frac{a_n}{a_{n-1}} \cdots \frac{a_{N+1}}{a_N} a_N \le A_4^{n-N} a_N < A_2^n,$$

从而

$$A_1 < \sqrt[n]{a_n} < A_2.$$

所以
$$\lim_{n \to +\infty} \sqrt[n]{a_n} = A$$
.

注. 为了得到结论 $A_1 < \sqrt[n]{a_n} < A_2$,我们使用了更强的条件 $A_3 < \frac{a_{n+1}}{a_n} < A_4$. 这个手法我们还会用到,值得体会学习。

用上述结论可以用于以下练习。

- 1. 设 a > 0. 求 $\lim_{n \to +\infty} \sqrt[n]{a}$.
- $3. \ \ \ \ \ \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n!}}.$
- 4. $\vec{R} \lim_{n \to +\infty} \sqrt[n]{\frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n}}$.

例 7. 设 a>1 。则 $\lim_{x\to+\infty}\frac{x}{a^x}=0$, $\lim_{x\to+\infty}\frac{\log_a x}{x}=0$ 。

证明. (1) 先考虑数列极限 $\lim_{n\to +\infty} \frac{n}{a^n}$ 。 首先,当 $n>\frac{1}{a-1}$ 时,

$$0 < \frac{u_{n+1}}{u_n} = \frac{n+1}{an} < 1,$$

数列 $u_n = \frac{n}{a_n}$ 最终成为单调减数列,

由 Bernoulli 不等式, $a^n>n(a-1)$,所以对任意 $\varepsilon>0$,当 $n>\frac{2}{\varepsilon(a-1)^2}$ 时,

$$0 < \frac{2n}{a^{2n}} < \frac{2n}{n^2(a-1)^2} = \frac{2/(a-1)^2}{n} < \varepsilon.$$

因此当 $n>rac{4}{arepsilon(a-1)^2}+rac{1}{a-1}$ 时, $0< u_n<arepsilon$,所以, $\lim_{n o +\infty}rac{n}{a^n}=0$ 。

(2) 因此对任意 $\varepsilon > 0$, 存在 N 使得对任意正整数 $n \ge N$, 都有

$$\frac{n}{a^n} < \varepsilon$$
.

对 x > N, 取 n = |x|, 则 $N \le n \le x < n + 1$,

$$a^n \le a^x < a^{n+1},$$

$$0 < \frac{x}{a^x} < \frac{n+1}{a^n} \le \frac{2n}{a^n} < 2\varepsilon.$$

所以 $\lim_{x\to +\infty} \frac{x}{a^x} = 0$ 。

(3) 当 $x > a^N$ 时, $y = \log_a x > N$, 所以

$$0 < \frac{\log_a x}{x} = \frac{y}{a^y} < 2\varepsilon,$$

所以 $\lim_{x \to +\infty} \frac{\log_a x}{x} = 0$ 。

例 8. 求 $\lim_{n\to+\infty} \sqrt[n]{n}$ 。

解法1. 对任意 $0<\varepsilon<1$,存在正整数 $N>\frac{1}{\varepsilon^2}$. 对任意正整数 $n\geq N$,用 Bernoulli 不等式得到

$$(1+\varepsilon)^{2n} = ((1+\varepsilon)^n)^2 > (n\varepsilon)^2 > n.$$

所以

$$1 \le \sqrt[n]{n} < (1+\varepsilon)^2 = 1 + 2\varepsilon + \varepsilon^2 < 1 + 3\varepsilon,$$

所以

$$\lim_{n \to +\infty} \sqrt[n]{n} = 1.$$

解法2. $\log_2 \sqrt[n]{n} = \frac{\log_2 n}{n}$, 由

$$\lim_{x \to +\infty} \frac{\log_2 x}{x} = 0$$

知

$$\lim_{n \to +\infty} \frac{\log_2 n}{n} = 0.$$

所以

$$\lim_{n \to +\infty} \sqrt[n]{n} = \lim_{n \to +\infty} 2^{\frac{1}{n} \log_2 n} = 2^0 = 1.$$

解法3. 对数列 $a_n = n$ 用例 6 的结论。

$$\lim_{n \to +\infty} \frac{n+1}{n} = 1,$$

因此 $\lim_{n\to+\infty} \sqrt[n]{n} = 1$.

例 9. 求

$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 2x} - \sqrt[3]{x^3 - x^2} \right)$$

解. 分离出主项

$$\begin{split} \sqrt{x^2 + 2x} - \sqrt[3]{x^3 - x^2} &= x\sqrt{1 + \frac{2}{x}} - x\sqrt[3]{1 - \frac{1}{x}} \stackrel{y = 1/x}{=} \frac{\sqrt{1 + 2y} - \sqrt[3]{1 - y}}{y} \\ \lim_{y \to 0} \frac{\sqrt{1 + 2y} - \sqrt[3]{1 - y}}{y} &= \lim_{y \to 0} \frac{\sqrt{1 + 2y} - 1}{y} - \lim_{y \to 0} \frac{\sqrt[3]{1 - y} - 1}{y} \\ &= 2\lim_{y \to 0} \frac{\sqrt{1 + u} - 1}{u} + \lim_{y \to 0} \frac{\sqrt[3]{1 + v} - 1}{v} = 1 + \frac{1}{3} = \frac{4}{3}. \end{split}$$

例 10. 求 $y = \frac{2x^2 - 3x + 2}{x + 1}$ 在 $x \to \pm \infty$ 时的渐近线。

解.

$$\frac{y}{x} = \frac{2x^2 - 3x + 2}{x^2 + x} = \frac{2 - \frac{3}{x} + \frac{2}{x^2}}{1 + \frac{1}{x}} \to \frac{2}{1} = 2, \quad x \to \pm \infty,$$
$$y - 2x = \frac{-5x + 2}{x + 1} = \frac{-5 + \frac{2}{x}}{1 + \frac{1}{x}} \to -5, \quad x \to \pm \infty.$$

所以渐近线为 y = 2x - 5。

例 11. 求 $y = \sqrt{x^2 - x + 1}$ 在 $x \to \pm \infty$ 时的渐近线。

证明.

$$\frac{y}{x} = \frac{\sqrt{x^2 - x + 1}}{x} = \pm \sqrt{1 - \frac{1}{|x|} + \frac{1}{x^2}} \to \pm 1, \quad x \to \pm \infty,$$

$$y - x = \sqrt{x^2 - x + 1} - x = \frac{\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} - 1}{\frac{1}{x}} \to -\frac{1}{2}, \quad x \to +\infty.$$

所以 $y = x - \frac{1}{2}$ 是 $x \to +\infty$ 时的渐近线。

同理可证, $y = -x + \frac{1}{2}$ 是 $x \to -\infty$ 时的渐近线。

例 12. (★★) 设数列 $\{a_n\}$ 满足

$$a_{m+n} \le a_m + a_n, \quad \forall m, n \ge 1,$$

且存在 α 使得对任意 n 都有 $a_n \ge \alpha n$ 。证明 $\lim_{n \to +\infty} \frac{a_n}{n} = \inf_{n > 1} \frac{a_n}{n}$ 。

证明. 记 $\beta=\inf_{n\geq 1}\frac{a_n}{n}$ 。对任意 $0<\varepsilon<1$,因为 $\beta+\varepsilon$ 不是 $\frac{a_n}{n}$ 的下界,所以存

在正整数 M 使得 $\frac{a_M}{M} < \beta + \varepsilon$. 对任意正整数 $n > \frac{|a_1|+\dots+|a_M|}{\varepsilon} + 2M$,取 $k = \left\lfloor \frac{n}{M} \right\rfloor - 1, r = n - kM$,则 $k>\frac{|a_1|+\cdots+|a_M|}{M\varepsilon}$, $r\in\{1,2,\ldots,M\}$,于是

$$\beta \leq \frac{a_n}{n} = \frac{a_{kM+r}}{kM+r} \leq \frac{ka_M + a_r}{kM} \leq \frac{a_M}{M} + \frac{|a_1| + \dots + |a_M|}{kM} < \beta + 2\varepsilon.$$
 所以 $\lim_{n \to +\infty} \frac{a_n}{n} = \beta$ 。

四、涉及平均值的极限, Stolz定理

例 13. 设 $\lim_{n\to +\infty} a_n = A \in \mathbb{R} \cup \{\pm \infty\}$ 。证明

$$\lim_{n \to +\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A.$$

证明. 任取 $A_1 < A_3 < A < A_4 < A_2$ 。则存在正整数 N 使得对任意 $n \ge N$,

$$A_3 < a_n < A_4.$$

于是

$$\frac{a_1 + a_2 + \ldots + a_N + (n - N)A_3}{n} < \frac{a_1 + a_2 + \ldots + a_N + a_{N+1} + \cdots + a_n}{n} < \frac{a_1 + a_2 + \ldots + a_N + (n - N)A_4}{n}.$$

因为

$$\lim_{n \to +\infty} \frac{a_1 + a_2 + \ldots + a_N + (n - N)A_3}{n} = A_3 > A_1,$$

$$\lim_{n \to +\infty} \frac{a_1 + a_2 + \ldots + a_N + (n - N)A_4}{n} = A_4 < A_2,$$

所以存在 $N_1 > N$ 使得对任意 $n \ge N_1$,

$$\frac{a_1 + a_2 + \ldots + a_N + (n - N)A_3}{n}, \quad \frac{a_1 + a_2 + \ldots + a_N + (n - N)A_4}{n} < A_2,$$

所以

$$A_1 < \frac{a_1 + a_2 + \dots + a_n}{n} < A_2.$$

因此

$$\lim_{n \to +\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A.$$

用类似办法可以证明以下更一般的结论。

例 14. (★)设
$$\lim_{n\to+\infty} a_n = A, b_{ij} \geq 0$$
 满足

$$b_{n1} + b_{n2} + \dots + b_{nn} = 1,$$

且对任意 N,

$$\lim_{n \to +\infty} (b_{n1} + b_{n2} + \dots + b_{nN}) = 0.$$

证明

$$\lim_{n \to +\infty} (b_{n1}a_1 + b_{n2}a_2 + \dots + b_{nn}a_n) = A.$$

注: 上述正数 $b_{n1}, b_{n2}, \ldots, b_{nn}$ 可以视为对 a_1, a_2, \ldots, a_n 做平均的权重。以下习题留作练习。

1. (★) 设
$$\lim_{n \to +\infty} a_n = A$$
. 求 $\lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n C_n^k a_k$. 提示: 考虑 $b_{nk} = \frac{C_n^k}{2^n}$. 对任意 K , $\sum_{k=0}^K C_n^k$ 是关于 n 的一个 K 次多项式。

2. (★) 设
$$\lim_{n\to+\infty} a_n = A$$
. 求

$$\lim_{n \to +\infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2}.$$

提示:考虑

$$\lim_{n \to +\infty} \frac{a_1 + 2a_2 + \dots + na_n}{1 + 2 + \dots + n}.$$

3. (★) 设
$$\lim_{n\to+\infty} a_n = A$$
, $\lim_{n\to+\infty} b_n = B$. 求

$$\lim_{n \to +\infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n}.$$

提示:不妨设所有 $b_n > 0$ 且 B > 0. 考虑

$$\lim_{n \to +\infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{b_1 + b_2 + \dots + b_n}.$$

例 15 (Stolz). (★) 设 $\{x_n\}$ 严格增无上界, $\lim_{n\to+\infty}\frac{y_n-y_{n-1}}{x_n-x_{n-1}}=A$ 。证明 $\lim_{n\to+\infty}\frac{y_n}{x_n}=A$ 。

证明. 记
$$x_0=0, y_0=0$$
 。 取 $a_n=\frac{y_n-y_{n-1}}{x_n-x_{n-1}}, b_{in}=\frac{x_i-x_{i-1}}{x_n}$ 。则由上题结论知
$$\lim_{n\to+\infty}\frac{y_n}{x_n}=\lim_{n\to+\infty}\left(b_{1n}a_1+b_{n2}a_2+\cdots+b_{nn}a_n\right)=\lim_{n\to+\infty}a_n=A.$$

Stolz 定理的另一证明来自于以下图形的启示。从以下图示中不难理解, $\{x_n\}$ 单调无上界的条件是不可或缺的。

图 1: Stolz定理的图解

以下习题作为练习。

1. (★) 设
$$\alpha > -1$$
。 求 $\lim_{n \to +\infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}}$.

2.
$$(\bigstar)$$
 \vec{x} $\lim_{n \to +\infty} \frac{1^{-1} + 2^{-1} + \dots + n^{-1}}{\ln n}$.