Aulas 16 & 17

- Modelos de Harvard e Von Neumann
- Pressupostos para a construção de um Datapath genérico para uma arquitectura tipo MIPS
- Análise dos blocos constituintes necessários à execução de um subconjunto de intruções de cada classe de instruções:
 - Aritméticas e lógicas (add, addi, sub, and, or, slt, slti)
 - Acesso à memória (lw, sw)
 - Controlo de fluxo de execução (beq, bne, j)
- Montagem de um datapath completo para execução de instruções num único ciclo de relógio (single cycle)

Bernardo Cunha, José Luís Azevedo, Arnaldo Oliveira, Tomás Oliveira e Silva

Universidade de Aveiro - DETI

Aulas 16&17 - 1

Arquitectura de Computadores I

2012/13

Modelo de von Neumann

Datapath + Control

Memory – armazenamento de: programas, dados para processamento, resultados

CPU – processamento da informação através da execução do programa armazenado em memória

Universidade de Aveiro - DETI

Modelo de Harvard

Arquitectura de Computadores I

2012/13

Modelo de Von Neumann

- um único espaço de endereçamento para instruções e dados (i.e. uma única memória)
- acesso a instruções e dados é feito em ciclos de relógio distintos

Modelo de Harvard

- dois espaços de endereçamento separados: um para dados e outro para instruções (i.e. duas memórias independentes)
- possibilidade de acesso, no mesmo ciclo de relógio, a dados e instruções (i.e. CPU pode fazer o fetch da instrução e ler os dados que a instrução vai manipular no mesmo ciclo de relógio)
- memórias de dados e instruções podem ter comprimentos de palavra diferentes

Universidade de Aveiro - DETI

- O CPU consiste, fundamentalmente, em duas secções:
 - Datapath elementos operativos e respectiva interligação:
 - Registos internos
 - Unidade Aritmética e Lógica (ALU)
 - Elementos de encaminhamento (*multiplexers*)
 - Unidade de controlo: responsável pela coordenação dos elementos do datapath, durante a execução de uma instrução

Universidade de Aveiro - DETI

Aulas 16&17 - 7

Arquitectura de Computadores I

2012/13

Implementação de um Datapath

- As unidades funcionais que constituem o datapath são de dois tipos:
 - Elementos combinatórios (por exemplo a ALU)
 - Elementos de estado, isto é, que têm capacidade de armazenamento (por exemplo os registos internos, a memória*)
- Um elemento de estado possui, pelo menos, duas entradas:
 - Os dados a serem armazenados
 - O relógio, que determina o instante em que os dados são armazenados (interface síncrona)
- Um elemento de estado pode ser lido em qualquer momento
- A saída de um elemento de estado disponibiliza a informação armazenada na última transição activa do relógio
- (*) Na abordagem que se faz a seguir considera-se a memória externa ao CPU como um elemento operativo integrante do *datapath*

- Para além do sinal de relógio, um elemento de estado pode ainda ter sinais de controlo adicionais:
 - Um sinal de leitura (read), que permite (quando activo) que a informação armazenada seja disponibilizada na saída
 - Um sinal de escrita (write), que autoriza (quando activo) a escrita de informação na próxima transição activa do relógio
- Se algum destes dois sinais não estiver explicitamente representado, isso significa que a operação respectiva é sempre realizada. No caso da operação de escrita ela é realizada uma vez por ciclo, e coincide com a transição activa do sinal de relógio

Havendo um sinal de relógio comum, e por uma questão de simplificação dos diagramas, o sinal de relógio pode não ser explicitamente representado

Universidade de Aveiro - DETI

Aulas 16&17 - 9

Arquitectura de Computadores I

2012/13

Implementação de um Datapath

Exemplos de representação gráfica de blocos funcionais correspondentes a elementos de estado

Memória para escrita e leitura (230 words de 32 bits)

Memória apenas para leitura (2³⁰ words de 32 bits)

O sinal "Read" pode não existir. Nesse caso a informação de saída estará sempre disponível e corresponderá ao conteúdo da posição de memória especificada na entrada "address"

Universidade de Aveiro - DETI

- Nestes slides faz-se uma abordagem à implementação de um datapath capaz de interpretar e executar o seguinte subconjunto de instruções do MIPS:
 - As instruções aritméticas e lógicas (add, addi, sub, and, or, slt, slti)
 - Instruções de acesso à memória: load word (1w) e store word (sw)
 - As instruções de salto condicional (beq, bne) e salto incondicional (j)
- Como iremos ver, independentemente da quantidade e tipo de instruções suportadas por uma dada arquitectura, uma parte importante do trabalho realizado pelo CPU e da infra-estrutura necessária para executar essas instruções é comum a praticamente todas elas

Universidade de Aveiro - DETI

Aulas 16&17 - 11

Arquitectura de Computadores I

2012/13

Implementação de um Datapath

- No caso particular do MIPS, para qualquer instrução que compõe o set de instruções, as duas primeiras operações necessárias à sua realização são sempre as mesmas:
 - Usar o conteúdo do registo Program Counter (PC) para indicar o endereço da memória do qual vai ser lida a próxima instrução e efectuar essa leitura
 - Ler um ou mais registos internos, usando para isso os índices obtidos nos respectivos campos da instrução (rs e rt):
 - a) Nas instruções de transferência memória→registo ("lw") e nas instruções que operam com constantes (imediatos) apenas o conteúdo de um registo é necessário
 - b) Em todas as outras é sempre necessário o conteúdo de dois registos (excepto na instrução "jump")
- Depois destas operações genéricas, realizam-se as acções específicas para completar a execução da instrução em causa

- As acções específicas necessárias para executar as instruções de cada uma das três classes de instruções descritas anteriormente são, em grande parte, semelhantes, independentemente da instrução exacta em causa
- Por exemplo, todas as classes de instruções (à excepção do salto incondicional) utilizam a ALU depois da leitura dos registos:
 - as instruções aritméticas e lógicas para a execução da instrução
 - as instruções de acesso à memória usam a ALU para calcular o endereço de memória
 - a instrução de branch para efectuar a subtracção que permite determinar se os operandos são iguais ou diferentes
- A execução da instrução de salto incondicional ("j") resume-se à alteração incondicional do registo Program Counter (PC) – o novo valor é obtido a partir dos 26 LSB do código máquina da instrução (ver aula 5)

Universidade de Aveiro - DETI

Aulas 16&17 - 13

Arquitectura de Computadores I

2012/13

Implementação de um Datapath

- Depois de utilizar a ALU, as acções que completam as várias classes de instruções diferem:
 - as instruções aritméticas e lógicas armazenam o resultado da ALU no registo destino especificado na instrução
 - a instrução sw acede à memória para escrita do valor do registo lido anteriormente
 - a instrução *lw* acede à memória para leitura; o valor lido da memória é, de seguida, escrito no registo destino especificado na instrução
 - a instrução de *branch* pode ter que alterar o conteúdo do registo
 Program Counter (i.e. o endereço onde se encontra a próxima instrução a ser executada)

Implementação de um Datapath - Instruction Fetch

- O processo de acesso à memória para leitura da próxima instrução é genericamente designado por *Instruction Fetch*
- Por uma questão de simplificar a organização da informação, as instruções que compõem um programa são armazenadas sequencialmente na memória:
 - se a instrução n se encontra armazenada no endereço k, então a instrução n+1 encontra-se armazenada no endereço k+x, em que x é a dimensão da instrução n, medida em bytes
- No MIPS, a dimensão das instruções é fixa e igual a 4 bytes; o endereço k
 é sempre um múltiplo de 4
- O processo de *Instruction Fetch* deverá, uma vez concluído, deixar o conteúdo do PC pronto para endereçar a próxima instrução
 - No caso do MIPS, tal corresponde a adicionar a constante 4 ao valor actual do PC

Universidade de Aveiro - DETI

Aulas 16&17 - 15

Arquitectura de Computadores I

2012/13

Implementação de um Datapath - Instruction Fetch

Os elementos operativos (combinatórios e/ou de memória) necessários à implementação de uma operação de *Instruction Fetch* serão portanto:

- A memória (de código)
- O Program Counter (um registo de 32 bits dos quais só são aproveitados os 30 mais significativos)
- Um somador

Implementação de um Datapath - Instruction Fetch

A parte do *Datapath* necessária à execução de um *Instruction Fetch* tomará assim a seguinte configuração:

Universidade de Aveiro - DETI

Aulas 16&17 - 17

Arquitectura de Computadores I

2012/13

Implementação de um Datapath

Que outros elementos operativos básicos serão necessários para suportar a execução das várias classes de instruções que estamos a considerar?

- Instruções aritméticas e lógicas
 - Tipo R: add, sub, and, or, slt
 - Tipo I: addi, slti
- Instruções de leitura e escrita da memória (Tipo I: Iw, sw)
- Instruções de salto condicional (Tipo I: beq, bne)

Na análise que se segue, não se explicita a Unidade de Controlo. Esta unidade é responsável pela geração dos sinais de controlo que asseguram a coordenação dos elementos do *datapath* durante a execução de uma instrução

Implementação de um Datapath (Instruções tipo R)

Operações realizadas na execução de uma instrução do tipo R:

- Instruction Fetch (leitura da instrução, cálculo de PC+4)
- Leitura dos registos operandos (registos especificados nos campos "rs" e "rt" da instrução)
- Realização da operação na ALU (especificada no campo "funct")
- Escrita do resultado no registo destino (especificado no campo "rd")

Exemplo: add \$2, \$3, \$4

31					0
opcode	rs	rt	rd	shamt	funct
(0)	(3)	(4)	(2)	(0)	(32)
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

Código máquina: 0x00641020

Universidade de Aveiro - DETI

Aulas 16&17 - 19

Arquitectura de Computadores I

2012/13

Implementação de um Datapath (Instruções tipo R)

Os elementos necessários à execução das instruções aritméticas e lógicas (tipo R) são:

- Uma ALU de 32 bits
- Um conjunto de registos internos (*File Register* com 32 registos)

Universidade de Aveiro - DETI

Arquitectura de Computadores I

2012/13

Universidade de Aveiro - DETI

Ligação entre a memória de código e o File Register (Instruções tipo R)

Universidade de Aveiro - DETI

Aulas 16&17 - 23

Arquitectura de Computadores I

2012/13

Implementação de um Datapath (Instrução SW)

Operações realizadas na execução de uma instrução "sw":

- Instruction Fetch (leitura da instrução, cálculo de PC+4)
- Leitura dos registos que contêm o **endereço-base** e o **valor a transferir** (reg. especificados nos campos "**rs**" e "**rt**"da instrução)
- Cálculo, na ALU, do endereço de acesso (soma algébrica entre o conteúdo do registo "rs" e o offset especificado na instrução)
- Escrita na memória

Exemplo: sw \$2, 0x24(\$4)

Endereço da memória

opcode rs rt offset (43) (4) (2) (0x24)

Universidade de Aveiro - DETI

Implementação de um Datapath (Instrução LW)

Operações realizadas na execução de uma instrução "Iw"

- Instruction Fetch (leitura da instrução, cálculo de PC+4)
- Leitura do registo que contém o endereço base (registo especificado no campo "rs" da instrução)
- Cálculo, na ALU, do endereço de acesso (soma algébrica entre o conteúdo do registo "rs" e o offset especificado na instrução)
- Leitura da memória
- Escrita do valor lido da memória no registo destino (especificado no campo "rt" da instrução)

Universidade de Aveiro - DETI

Aulas 16&17 - 25

Arquitectura de Computadores I

2012/13

Implementação de um Datapath (Instruções Iw e sw)

Os elementos necessários à execução das instruções de transferência de informação entre registos e memória (*load* e *store*) são, para além da ALU e do *File Register*.

Universidade de Aveiro - DETI

(o bit 15 é replicado nos 16 mais

significativos da constante de saída)

Aulas 16&17 - 26

diagramas, o barramento de dados da memória

(bidireccional) está separado em entrada e saída

Implementação de um Datapath (Instruções Iw e sw)

Os elementos necessários à execução das instruções de transferência de informação entre registos e memória (*load* e *store*) são, para além da ALU e do *File Register*.

- A memória externa (de dados)
- Um extensor de sinal

Exemplo:

Universidade de Aveiro - DETI

Aulas 16&17 - 27

Arquitectura de Computadores I

2012/13

Universidade de Aveiro - DETI

Arquitectura de Computadores I

2012/13

Universidade de Aveiro - DETI

Implementação de um Datapath (Instruções de branch)

Operações realizadas na execução de uma instrução de branch:

- Instruction Fetch (leitura da instrução, cálculo de PC+4)
- Leitura dos registos a comparar
- Comparação dos valores dos registos (realização de uma operação de subtracção na ALU)
- Cálculo do endereço-alvo da instrução de branch (Branch Target Address - BTA) - ver aula 5

- Alteração do valor do registo PC:
 - se a condição testada pelo branch for verdadeira PC = BTA
 - se a condição testada pelo branch for falsa PC = PC + 4

Exemplo: **beq \$2, \$3, 0x20**

opcode	rs	rt	instruction_offset
(4)	(2)	(3)	(0x20)

Universidade de Aveiro - DETI

Aulas 16&17 - 31

Arquitectura de Computadores I

2012/13

Implementação de um Datapath (Instruções de branch)

Finalmente, os elementos necessários à execução das instruções de salto condicional implicam a inclusão dos seguintes elementos:

- left shifter (2 bits)
- Um somador

O *left shifter* recupera os 2 bits menos significativos do *instruction_offset* que são desprezados no momento da codificação da instrução (ver aula 5)

Implementação de um Datapath (Instruções de branch)

Universidade de Aveiro - DETI

Aulas 16&17 - 33

Arquitectura de Computadores I

2012/13

Implementação de um Datapath

- Tendo identificado, separadamente, os blocos básicos constituintes do *Datapath* necessários à execução dos vários tipos de instruções do MIPS (dos quais se omitiram desta discussão, por enquanto, as instruções do tipo J), coloca-se a seguinte questão:
 - Como juntar e interligar os diversos blocos, por forma a servir todas as instruções?
- A resposta a esta pergunta passa pela identificação dos blocos que podem ser partilhados pelos vários tipos de instruções e pelo desenvolvimento de uma estratégia que permita que os mesmos possam ser "configurados" para cada caso.

Relembremos o formato dos três tipos de instruções!

31	Aritméticas e lógicas — Tipo R						
opcode (0)	rs	rt	rd	shamt	funct		
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits		
31	LW, SW, aritméticas imediatas — Tipo I 0						
opcode	rs	rt	offset / imm				
6 bits	5 bits	5 bits	16 bits				
31 Branches – Tipo I 0							
opcode	rs	rt	instruction_offset				
6 bits	5 bits	5 bits	16 bits				

Universidade de Aveiro - DETI

Aulas 16&17 - 35

Arquitectura de Computadores I

2012/13

Implementação de um Datapath (1º passo)

A combinação das instruções de acesso à memória com as instruções aritméticas e lógicas do tipo R e do tipo I pode ser feita do seguinte modo:

Escolha do registo destino (3º campo nas instruções tipo R, 2º na instrução LW e nas aritméticas e lógicas imediatas)

Note-se a utilização de multiplexers para adequar os recursos às necessidades

Universidade de Aveiro - DETI

Implementação de um Datapath (1º passo)

Uma instrução do tipo R executada sobre um datapath misto

Universidade de Aveiro - DETI

Aulas 16&17 - 37

Arquitectura de Computadores I

2012/13

Implementação de um Datapath (1º passo)

A instrução SW (store word) executada sobre um datapath misto

Universidade de Aveiro - DETI

Aulas 16&17 - 38

32

Implementação de um Datapath (1º passo)

A instrução LW (load word) executada sobre um datapath misto

Universidade de Aveiro - DETI

Aulas 16&17 - 39

Arquitectura de Computadores I

2012/13

Implementação de um Datapath (1º passo)

Uma instrução aritmética imediata executada sobre um *datapath* misto (ex. addi \$4, \$15, 0x2F)

Universidade de Aveiro - DETI

Implementação de um Datapath (2º passo)

O bloco de *Instruction Fetch* pode ser acrescentado sem grandes complicações

Universidade de Aveiro - DETI

Aulas 16&17 - 41

Arquitectura de Computadores I

2012/13

Implementação de um Datapath (3º passo)

Finalmente, a adição das instruções de salto condicional, implica uma pequena alteração à imagem de conjunto...

Universidade de Aveiro - DETI

Implementação de um Datapath (3º passo)

Datapath misto (Instruction fetch)

Universidade de Aveiro - DETI

Aulas 16&17 - 43

Arquitectura de Computadores I

2012/13

Universidade de Aveiro - DETI

