Draft: Nov 28, 2022 version

GLG Project

A match made in machine learning heaven: linking every client request to the best expert

Ying Hu, Cody McCormack, Cris Fortes

Outline

- Problem
- Solution
- Data + Model
- Demo
- MLE Stack
- Conclusions (and lessons learned)
- Future Work
- Q&A and Feedback
- Appendix

GLG's business largely revolves around *matching clients*, requesting insights on a specific topic, *with an expert* on that topic from their large database so that they can meet by phone, video or in person. Visually:

Since GLG receives **100s of these requests** per day, how can they leverage machine learning to *semi-automate the matching process at scale*?

Solution

Natural Language Processing (NLP)!

This was our initial idea (illustrative and simplified example):

Acronyms: NLP (Natural Language Processing), NER (Named-Entity Recognition), C (Clustering), LDA (latent Dirichlet allocation), DJ (Disc Jockey), GLG (Gerson Lehrman Group).

Problem | Solution | Data + Model | Demo | MLE Stack | Conclusions | Future Work | Q&A | Appendix

Data

Natural Language Processing Models

Annotated Corpus for
Named Entity Recognition
| Kaggle:

Has ~48,000 sentences and ~35,000 unique words Model 1, Named-Entity Recognition (NER):

Trained our NER model on Kaggle dataset + leveraged spaCy pre-trained NER model

Model 2, Topic modeling (LDA):

Trained our LDA model on Kaggle dataset and generated topics list dictionary

Model 3, Membership Classifier (k-NN + Transformers): Trained SentenceTransformers and then tested k-NN on Kaggle dataset

Placeholder for demo day URL: http://54.221.36.219:8000/

Replace it with
Flask web app screenshot
and/or recorded demo *after*demo day

Enter Text to Get Matched!
Let's Connect You!
The sentence entered is:
David Guetta is a DJ, who sometimes plays for rich kids in Ibiza, Spain.
The entities from the text are:
['David Guetta', 'Ibiza', 'Spain']
The text may be related to the following topics:
28.78% of Topic 2: ['north', 'south', 'korea', 'prime', 'minister']
16.42% of Topic 3: ['Beijing', 'Britain', 'France', 'gas', 'German', 'Middle', 'East', 'Russian']
15.67% of Topic 14: ['charge', 'right', 'court', 'lraq', 'house']
14.94% of Topic 15: ['oil', 'company', 'market', 'demand', 'power', 'government']
The text is close to the following texts:
Antonio Banderas was born in Spain and is an accomplished actor , writer , singer and producer .
The concert will include a number of well-known Hispanic performers including Gloria Estefan , Marc Anthony , Jose Feliciano , George Lopez and Thalia .
Musicians - particularly those from Mexico - have struck a cord with US audiences.

MLE Stack

Conclusions

- Natural Language Processing (NLP) models work!
- Any NLP model is only as good as the data it was trained on
- Quickly jumping into the web app (Flask), even before the NLP models were working properly, was the right thing to do (MVP mindset)
- Seeing a live, working, deployed model that addresses a real business problem is priceless

Future Work

- Training our NLP models on larger and more diverse datasets should yield better results. For example, using this other 2.7-million news articles dataset: <u>All the News 2.0 - Components</u>
- Adapting our models to cover non-English languages would come in handy (GLG also has offices in Europe, Asia, Japan and the Middle East)
- Building a GLG topic expert(s) recommendation model with input from our NLP models would be a natural next step for this project

Q&A and Feedback

GLG Project

A match made in machine learning heaven: linking every request to the best expert

Ying Hu, Cody McCormack, Cris Fortes

Did exploratory data analysis (EDA) on one dataset from Kaggle:

Annotated Corpus for Named Entity Recognition | Kaggle

List of entity tags

- geo = Geographical Entity
- org = Organization
- per = Person
- gpe = Geopolitical Entity
- tim = Time indicator
- art = Artifact
- eve = Event
- nat = Natural Phenomenon

Example of entity tag

	Sentence #		Word	POS	Tag
0	Sentence: 1		Thousands	NNS	0
1	NaN		of	IN	0
2	NaN	den	nonstrators	NNS	0
3	NaN		have	VBP	0
4	NaN		marched	VBN	0
5	NaN		through		0
6	NaN		London	NNP	B-geo
7	NaN	ľ	to	то	0
8	NaN		protest	VB	0
9	NaN		the	DT	0

Plot of entity tag count

Capital vs. non-capital word count

Named-Entity Recognition (NER) preliminary results

	Test 1: spaCY predic-	Test 2: TPOT for AutoML	Test 3: one-hot encoding			4: TF-IDF	Test 5: one-hot encoding with preprocessed data		Test 6: TF-IDF encoding with preprocessed data	
	tions		XGB	Logistic Regression	XGB	Logistic Regression	XGB	Logistic Regression	XGB	Logistic Regression
Accuracy	0.937	Too computa tionally intense for local machine	0.959	0.932	0.935	0.921	0.959	0.932	0.935	0.921
Recall	0.619		0.906	0.761	0.881	0.612	0.906	0.761	0.881	0.612
Precision	0.753		0.755	0.659	0.644	0.638	0.758	0.659	0.644	0.638
F1 Score	0.680		0.824	0.706	0.744	0.625	0.825	0.706	0.744	0.625

Clustering preliminary results

	Model 1: Bag of words + KMeans		Model 2: TF-IDF + KMeans		Model 3: Bag of words + PCA + KMeans		Model 4: Bag of words + PCA + Agglomerative	Model 5: Bag of words + LDA (to be tested further)						
n_cluster	2	3	2	3	2	3	too long to run; after 50 mins, the model was still outputs the mo							So far, with topic
Silhouette Coefficient	0.28	0.17	0.00814	0.000157	0.28	0.17		number = 10, the model seemingly outputs the most						
random_ states	1, 5, 10, 42	0, 1						sensible list of topics						
	Silhoue Coeffici decrease n_cluster in	ent es as					on a small portion of the dataset							