Chain rule: p(x,y) = p(x)p(y|x) = p(y)p(x|y)

Extended chain rule: p(x, y, z, w) = p(x)p(y|x)p(z|x, y)p(w|x, y, z)

Conditional probability as a distribution: $\sum_{x} p(X|Y=y) = 1$

Independence: If p(X|Y) = p(X), then X and Y are independent for all values of X

Conditional independence: $X \perp Y | Z \leftrightarrow p(X,Y|Z) = p(X|Z)p(Y|Z)$

Factored joint distribution of a Bayes net: $p(x_1, ..., x_n) = \prod p(x_i | parents(x_i))$

Local Markov property: $X_i \perp NonDescendants(X_i)|Parents(X_i)$

Trail blocking: Evidence in **cascade**, evidence in **common cause**, or no evidence in **V structure** (including descendants)

D-separation: when all trails between 2 sets of nodes are blocked given evidence set. D-separation implies

conditional independence

Cascade X -> E -> Y

Common cause X <- E -> Y

V structure X -> E(and descendents) <- Y

Loss function: A means to measure accuracy of a classifier function. Must be differentiable so as to apply gradient descent. Loss over an epoch/minibatch is taken as the average loss over the each of the individual predictions

Softmax loss/Cross entropy: Given output values $S_1, S_2, \dots, S_k \in \mathbb{R}$, take probabilities as $p_n = \frac{e^{S_n}}{\sum e^{S_i}}$. Loss is computed as $\frac{1}{N} \sum_{i=1}^{N} (-\log p_i)$. Useful for probabilities and classification tasks

Mean Square Error (MSE) loss: Given output values $S_1, S_2, ..., S_k \in \mathbb{R}$, take loss as $\frac{1}{N} \sum_{i=1}^{N} (S_i - y_i)^2$. Useful for predicting numerical values/continuous variables

Neuron input: For m inputs x_1, \dots, x_m into a neuron, each neuron computes $z = \sum_{i=1}^m w_i x_i + b$, where w_i is the individual weight learned and b is the bias. Each neuron thus has m+1 trainable parameters.

Activation functions: Sigmoid $f(x) = \frac{1}{1 + e^{-x}}$, $\tanh f(x) = \tanh(x)$, ReLu (rectified linear unit) $f(x) = \max(0, x) - \min(1 + e^{-x})$

ANN Hyperparameters: Hidden layers, nodes in each layer, activation function, output nodes, initial weights & bias, learning rate. optimization algos, batch size, epochs

CNN: Special type of ANN that extracts features from images, and can be highly generalizable for different tasks **Filter**: $(N \times N \times D)$ set of values that slides over the image spatially and computes dot products. N is a hyperparameter, D is the depth of the input volume. Each filter can only produce an activation map of depth = 1

Activation maps: Each filter tries to interpret certain features, and activates in areas where that feature is found

Stride: How many rows/columns the filter is shifted by when convolving over the image

Padding: Adding zeros uniformly to the image on all sides to avoid fractional outputs for activation maps

Convolutional layer summary: Given input volume $(W_1 \times H_1 \times D_1)$, with K filters, filter size F (assume square), stride S, and padding P, produces an output volume $(W_2 = \frac{W_1 - F + 2P}{S} + 1, H_2 = \frac{H_1 - F + 2P}{S} + 1, D_2 = K)$. Trainable parameters = $K(F \times F \times D_1 + 1)$

Max pooling: To make activation map smaller and more tractable, we have a filter that simply takes the max value of all those under that filter's view. No training parameters needed

Dropout: Randomly drop out neurons during training to force every neuron to learn something useful.

Batch normalization: Normalise a layer's input by subtracting the mini-batch mean and dividing it by standard deviation, to ensure that those inputs have mean = 0 and s.d. = 1. Scale and shift the normalized value $y = \gamma \cdot \hat{x} + \beta$

Dependency parsing: Relations between words can be represented using a dependency tree

Named entity recognition: Label each noun with the concepts they represent (entity, org., person)

Coreference resolution: Find all expressions that refer to the same entity

Co-occurrence matrix: $N \times N$, symmetric matrix storing frequencies of words occurring within a certain window of each other within a corpus of text.

X=USV^T: SVD process applied on co-occurrence matrix

Continuous bag of words: Predict word given context. Training data = context, prediction = word

Skip-gram: Predict context given word. Training data = word, prediction = context. Often performs better due to additional training data w Naïve Bayes assumption, better for rare words

Negative sampling: Reduce complexity by updating small subset of weights

Recurrent NN:

 $s_t = f(Ux_t + Ws_{t-1})$ where f is an activation function, $o_t = g(Vs_t)$ where g is output activation

Search problem: Comprises state space, operators, costs, objective

Search	Informed?	Metric	Queue replace?	Explore replace?
BFS	No	Breadth, node ordering	No	No
DFS	No	Depth, node ordering	No	No
BFS opt	No	Path cost $g(n)$	Yes	No
Best-first	Yes	Heuristic $h(n)$	Yes	No
A*	Yes	Path and heuristic $g(n) + h(n)$	Yes	Yes

Admissible heuristic: \forall states $n, h(n) \leq c(s, g)$, i.e. heuristic not exceed min cost

Consistent heuristic: \forall states $n, p, h(n) \leq c(n, p) + h(p)$ (triangle inequality)

MDP terms: *Decision epoch*-finite/infinite horizon, *absorbing state*-transition outside is impossible, *markov assumption*-**past**\(\pm\)**future | present**, *transition function* must be normalized

EU defined for every state and action: $Q(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + V(s')]$

MEU defined for every state: $V = \max_{a} Q(s, a)$

Policy can be stationary/non-stationary, deterministic/stochastic

Value iteration: Set $V^0(s) = 0 \ \forall$ states s, each time step t, update $\forall s$:

$$Q^t(s,a) = \sum_{s`} P(s`|s,a) \left[R(s,a,s`) + \gamma V^{t-1}(s`) \right]$$
, where discount factor $\gamma < 1$ $V^t(s) = \max_s Q^t(s,a)$

Convergence when $\max_{s} |V^{t+1}(s) - V^t(s)| < \epsilon$

Optimal policy guarantee: $\pi^*(s) = \arg \max_{a} Q^{(t+1)}(s, a)$

Multi-armed bandit: Given tries t, action count $k_t(a)$, action rewards $R_1(a), \dots, R_{k_t}(a)$,

expected payoff
$$Q_t(a) = \frac{R_1(a) + \dots + R_{k_t}(a)}{k_t(a)}$$

Greedy -pick $\max_{a} Q_t(a)$	ϵ -greedy- $\max_{a}Q_{t}(a)$ (1- ϵ) of the time else random
Softmax- $P(a) = \frac{e^{Q_t(a)}}{\sum_b e^{Q_t(b)}}$	Upper confidence bound- $\max_{a}(Q_{t}(a)+c\sqrt{\frac{\log{(t)}}{k_{t}(a)}})$, with constant c

Q-learning: World is a set of *discrete and finite* states and actions. An **experience** is (s_t, a_t, r_t, s_{t+1}) where s_t is **state** at time step t, a_t is **action**, r_t is **reward** and s_{t+1} is **new state**. An **episode** is a sequence of experiences from start to a **terminal state**

Tabular Q-learning: Store Q(s,a) for each state and action in 2D array (rows are states and columns are actions). On new experience, compute $Q^{new}(s_t,a_t) = Q(s_t,a_t) + \alpha \left[r_t + \gamma \cdot \max_a Q(s_{t+1},a) - Q(s_t,a_t) \right]$, where α is step size/learning rate, and γ is discount factor. Repeat for a fixed number of experiences, or upon some convergence condition (among Q(s,a) or V(s))

Feature-based learning: Instead of states, learn specific features. Represent Q value according to weighted combination of these features $\Rightarrow Q(s,a) = w_1 \cdot f_1(s,a) + \dots + w_n \cdot f_n(s,a)$, where w_i are weights and f_i are features. Saves on memory as weights can be stored as a single vector independent of state, learning becomes more generalizable.