ANÁLISIS NUMÉRICO I — Examen Final – Laboratorio

3 de diciembre de 2014

Nombre	Carrera

1. Encuentre las raíces de

$$\frac{1}{x} - tan(x) \tag{1}$$

en el intervalo $[0, \pi/2]$ utilizando el método que considere conveniente (justifique).

Para alumnos que no aprobaron las actividades de laboratorio:

2. El método de la secante consiste en aproximar una raíz de f mediante la sucesión

$$x_{k+1} = x_k - \frac{f(x_k)}{a_k}, \qquad a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

(a) Escriba una función en Octave que implemente el método de la secante. La función deberá ejecutarse [hx,hf]=secante(fun,x0,x1,err,M), donde fun es el nombre de la función que evalúa $f: R \to R$, x0 y x1 son puntos iniciales, err es la tolerancia deseada del error, M es el número máximo de iteraciones permitidas y hx= $[x_1, \ldots, x_k]$, hf= $[f(x_1), \ldots, f(x_k)]$ son los históricos de puntos generados y valores funcionales luego de k iteraciones. El algoritmo debe finalizar en la k-ésima iteración si vale alguna de las siguientes:

$$|x_k - x_{k-1}| < \text{err}, \qquad |f(x_k)| < \text{err}, \qquad k \ge M.$$

(b) Use este algoritmo para hallar la raíz de $f(x) = 2x^3 - 16$.

Corrección: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

1	2	Nota (0-10)