Espaces préhilbertiens et espaces euclidiens

Dans tout ce chapitre E désigne un \mathbb{R} -espace vectoriel

I. Produit scalaire

1. Définitions et exemples classiques

Définition. On appelle forme bilinéaire sur E, toute application ϕ de $E \times E$ dans \mathbb{R} telle que :

- pour tout $x \in E$, l'application $y \mapsto \phi(x, y)$ soit linéaire,
- pour tout $y \in E$, l'application $x \mapsto \phi(x, y)$ soit linéaire.

Définition. On appelle forme bilinéaire symétrique sur E toute forme bilinéaire S sur E telle que : $\forall (x,y) \in E^2$, S(x,y) = S(y,x).

Définition. Soit ϕ une forme bilinéaire sur E.

On dit que ϕ est positive si $\forall x \in E, \ \phi(x,x) \geq 0$.

On dit que ϕ est définie positive si ϕ est positive et vérifie : $\forall x \in E, \ \phi(x,x) = 0 \Longrightarrow x = 0$.

Définition. On appelle produit scalaire toute forme bilinéaire symétrique définie positive.

Exemples classiques à connaître :

• Soit $n \in \mathbb{N}^*$.

L'application $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, $(X,Y) \mapsto \sum_{i=1}^n x_i y_i$ est le produit scalaire canonique sur \mathbb{R}^n .

- Soit $(n,p) \in \mathbb{N}^* \times \mathbb{N}^*$. L'application $M_{n,p}(\mathbb{R}) \times M_{n,p}(\mathbb{R}) \to \mathbb{R}$, $(A,B) \mapsto \operatorname{Tr}({}^tAB)$ est le produit scalaire canonique sur $M_{n,p}(\mathbb{R})$.
- Soit $n \in \mathbb{N}^*$.

L'application $\mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}$, $\left(\sum_{k \in \mathbb{N}} a_k X^k, \sum_{k \in \mathbb{N}} b_k X^k\right) \mapsto \sum_{k \in \mathbb{N}} a_k b_k$ est un produit scalaire classique sur $\mathbb{R}[X]$.

 \bullet Soit a et b deux réels tels que a < b. L'application

$$\mathcal{C}([a,b],\mathbb{R}) \times \mathcal{C}([a,b],\mathbb{R}) \to \mathbb{R}, \ (f,g) \mapsto \int_a^b fg$$

est un produit scalaire classique sur $\mathcal{C}([a,b],\mathbb{R})$.

 \bullet Soit a et b deux réels tels que a < b. L'application

$$\mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}, \ (P,Q) \mapsto \int_a^b P(t)Q(t)dt$$

est un produit scalaire classique sur $\mathbb{R}[X]$.

Remarque: On admet le lemme suivant : si f est une fonction continue et positive sur [a, b] et si $\int_a^b f(t) dt = 0$, alors $\forall t \in [a, b], f(t) = 0$.

Exemple. Soit E un \mathbb{K} -espace vectoriel possédant une base $(e_i)_{i\in I}$.

$$L'application \ E \times E \to \mathbb{R}, \ \left(\sum_{i \in I} a_i e_i, \sum_{i \in I} b_i e_i\right) \mapsto \sum_{i \in I} a_i b_i \ est \ un \ produit \ scalaire \ sur \ E.$$

Définition. On appelle espace préhilbertien réel un \mathbb{R} -espace vectoriel muni d'un produit scalaire. Lorsque l'espace vectoriel est de dimension finie, on parle d'espace vectoriel euclidien.

2. Norme euclidienne associée

Dans la suite, E est un espace préhilbertien réel dont le produit scalaire est noté $\langle ., . \rangle$.

Définition. On appelle norme euclidienne associée au produit scalaire $\langle .,. \rangle$ l'application :

$$E \to \mathbb{R}^+, \ x \mapsto ||x|| = \sqrt{\langle x, x \rangle}$$

Proposition. Pour tout $(x, \lambda) \in E \times \mathbb{R}$, on a:

- $\|\lambda x\| = |\lambda| \|x\|;$
- $-\|x\|=0$ si, et seulement si, x=0.

Définition. On appelle vecteur normé, ou unitaire, tout vecteur de norme 1.

Corollaire. Soit x un vecteur non nul. Alors $\frac{x}{\|x\|}$ est unitaire.

Proposition. Pour tout $(x,y) \in E^2$, on a:

$$||x+y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle$$
 et $||x-y||^2 = ||x||^2 + ||y||^2 - 2\langle x, y \rangle$.

Corollaire (égalité du parallélogramme). Pour tout $(x,y) \in E^2$, on a :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Proposition (Formules de polarisation). Pour tout $(x, y) \in E^2$, on a:

- $-2\langle x, y \rangle = \|x + y\|^2 \|x\|^2 \|y\|^2;$ $-2\langle x, y \rangle = \|x\|^2 + \|y\|^2 \|x y\|^2;$ $-4\langle x, y \rangle = \|x + y\|^2 \|x y\|^2.$

Théorème (Inégalité de Cauchy-Schwarz). Pour tout $(x,y) \in E^2$, on a :

- $|\langle x, y \rangle| \le ||x|| \, ||y||.$
- Cette inégalité est une égalité si, et seulement si, x et y sont proportionnels, i.e. si, et seulement si,

$$\exists \lambda \in \mathbb{R} : y = \lambda x \quad ou \quad \exists \lambda \in \mathbb{R} : x = \lambda y.$$

si, et seulement si,

$$\exists \lambda \in \mathbb{R} : y = \lambda x \quad ou \quad x = 0.$$

Théorème (Inégalité triangulaire). Pour tout $(x, y) \in E^2$, on a :

- $||x + y|| \le ||x|| + ||y||.$
- Cette inégalité est une égalité si, et seulement si, x et y sont positivement proportionnels, i.e. si, et seulement si,

$$\exists \lambda \in \mathbb{R}^+ : y = \lambda x \quad ou \quad \exists \lambda \in \mathbb{R}^+ : x = \lambda y.$$

si, et seulement si,

$$\exists \lambda \in \mathbb{R}^+ : y = \lambda x \quad ou \quad x = 0.$$

II. Orthogonalité

1. Vecteurs orthogonaux

Définition. Deux vecteurs x et y sont dits orthogonaux lorsque $\langle x, y \rangle = 0$. On note alors $x \perp y$.

Théorème (de Pythagore). Deux vecteurs x et y sont orthogonaux si, et seulement si :

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Définition. Une famille $(x_i)_{i\in I}$ est dite orthogonale si elle est constituée de vecteurs orthogonaux deux à deux, c'est-à-dire si

$$\forall (i,j) \in I^2, i \neq j \Longrightarrow \langle x_i, x_j \rangle = 0.$$

Proposition. Une famille orthogonale de vecteurs non nuls est libre

Théorème. Procédé d'orthogonalisation de Gramm-Schmidt Soit (e_1, e_2, \dots, e_p) une famille libre de E. Il existe une famille orthogonale (f_1, f_2, \dots, f_p) de E telle que :

$$\forall k \in [1, p], \quad \text{Vect}(f_1, \dots, f_k) = \text{Vect}(e_1, \dots, e_k).$$

Il suffit de prendre
$$f_1 = e_1$$
 et $\forall k \in [2, p], f_k = e_k - \sum_{j=1}^{k-1} \frac{\langle e_k, f_j \rangle}{\|f_j\|^2} f_j$.

Définition. Une famille $(x_i)_{i\in I}$ est dite orthonormale ou orthonormée si elle est constituée de vecteurs unitaires orthogonaux deux à deux, c'est-à-dire si

$$\forall (i,j) \in I^2, \quad \langle x_i, x_j \rangle = \delta_{i,j}.$$

Proposition. Une famille orthonormale est libre

Proposition. Procédé d'orthonormalisation de Gramm-Schmidt Soit (e_1, e_2, \dots, e_p) une famille libre de E. Il existe une famille orthonormale (f_1, f_2, \dots, f_p) de E telle que :

$$\forall k \in [1, p], \quad \text{Vect}(f_1, \dots, f_k) = \text{Vect}(e_1, \dots, e_k).$$

Il suffit de prendre
$$f_1 = \frac{e_1}{\|e_1\|}$$
 et $\forall k \in [2, p]$, $f_k = \frac{e_k - \sum_{j=1}^{k-1} \langle e_k, f_j \rangle f_j}{\|e_k - \sum_{j=1}^{k-1} \langle e_k, f_j \rangle f_j\|}$.

2. Orthogonal d'un ensemble

Définition. Soit A une partie de E. On appelle orthogonal de A de E, l'ensemble

$$A^{\perp} = \left\{ x \in E \, : \, \forall a \in A, \; \langle x, a \rangle = 0 \right\}.$$

Proposition. L'orthogonal d'une partie de E est un sev de E.

Proposition. Soient A et B deux parties de E. On a $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$.

Proposition. Soit A une partie de E. On a $A^{\perp} = (Vect A)^{\perp}$.

Proposition. Soit A un sev de E engendré par la famille $(a_i)_{i\in I}$ et $x \in E$. On a $x \in A^{\perp} \iff \forall i \in I, \langle x, a_i \rangle = 0$.

Proposition. Soit A une partie de E. On a $A \subset (A^{\perp})^{\perp}$.

Remarque: On a pas forcément $A^{\perp\perp} = A$.

Par exemple si l'on considère $E = \mathcal{C}([0,1],\mathbb{R})$ muni du produit scalaire $(f,g) \mapsto \int_0^1 fg$ et $F = \{f \in E : f(0) = 0\}$, alors $F^{\perp} = \{0\}$ donc $F^{\perp \perp} = E \neq F$.

3. Bases orthonormales

Définition. Soit F un sev de E. On appele base orthonormale de F toute base de F qui est aussi une famille orthonormale.

Théorème. Tout espace euclidien possède une base orthonormale.

Corollaire. Soit F un sev de E.

Si F est de dimension finie, alors il possède une base orthonormale.

Théorème. Théorème de la base orthonormale incomplète

Si E est euclidien, alors toute famille orthonormale de E peut être complétée en une base orthonormale de E.

Corollaire. Soit F un sev de E.

 $Si\ F\ est\ de\ dimension\ finie,\ alors\ toute\ famille\ orthonormale\ de\ F\ peut\ être\ complétée\ en\ une\ base\ orthonormale\ de\ F.$

Proposition. Expression des coordonnées d'un vecteur dans une base orthonormale $Soit (e_1, ..., e_n)$ une base orthonormale de E.

Pour tout
$$x \in E$$
, on a $x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$

Proposition. Expression du produit scalaire et de la norme dans une base orthonormale

Soit
$$x = \sum_{i=1}^{n} x_i e_i$$
 et $y = \sum_{i=1}^{n} y_i e_i$. On a alors

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$
 et $||x||^2 = \sum_{i=1}^{n} x_i^2$.

Proposition. Soient $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (f_1, ..., f_n)$ deux bases orthonormales de E. La matrice de passage P de \mathcal{B} dans \mathcal{B}' vérifie $P^{-1} = {}^tP$.

Proposition. (théorème de Riesz) Soit f une forme linéaire sur E euclidien. Il existe un unique vecteur a tel que $\forall x \in E$, $f(x) = \langle a, x \rangle$.

Corollaire. Toute forme linéaire sur E est de la forme $x \mapsto \langle a, x \rangle$, avec $a \in E$.

III. Projection orthogonale sur un espace vectoriel de dimension finie

1. Supplémentaire orthogonal

Définition. Deux sev F et G sont dits orthogonaux si $\forall (x,y) \in F \times G$, $\langle x,y \rangle = 0$, ce qui est équivalent à $F \subset G^{\perp}$ ou à $G \subset F^{\perp}$.

Proposition. Soit F un sev de E. Si F est de dimension finie, alors $E = F \oplus F^{\perp}$. Le sev F^{\perp} est appelé le supplémentaire orthogonal de F.

Proposition. Si E est euclidien et si F est un sev de E, alors

$$\dim F^{\perp} = \dim E - \dim F \quad et \quad (F^{\perp})^{\perp} = F.$$

Proposition. Soit E euclidien, $\mathcal{B} = (e_1, ..., e_n)$ une base orthonormale de E et $u = \sum_{i=1}^n u_i e_i$.

Le supplémentaire orthogonal de la droite $\mathbb{R}u$ est l'hyperplan d'équation $\sum_{i=1}^n u_i x_i = 0$ dans \mathcal{B} .

Autrement dit,
$$(\mathbb{R}u)^{\perp} = \left\{ \sum_{i=1}^{n} x_i e_i \text{ avec } (x_1, ..., x_n) \in \mathbb{R}^n \text{ v\'erifiant } \sum_{i=1}^{n} u_i x_i = 0 \right\}$$

Proposition. Soit E euclidien de dimension n et $(a_1,...,a_n) \in \mathbb{R}^n$ non nul.

Le supplémentaire orthogonal de l'hyperplan d'équation $\sum_{i=1}^{n} a_i x_i = 0$ dans une bon $(e_1, ..., e_n)$ est

la droite engendrée par le vecteur $\sum_{i=1}^{n} a_i e_i$.

2. Projection orthogonale

Définition. Soit F un sev de E de dimension finie. On appelle projection orthogonale sur F, la projection sur F parallèlement à F^{\perp} .

Proposition. Soit F est un sev de E de dimension finie et p_F la projection orthogonale sur F Si $(e_1,...,e_p)$ est une bon de F, alors $\forall x \in E$, $p_F(x) = \sum_{i=1}^p \langle x,e_i \rangle e_i$

Proposition. Soit F est un sev de E de dimension finie. Soit $(e_1, ..., e_p)$ une famille génératrice de F et $x \in E$, alors

$$\forall y \in F, \ y = p_F(x) \iff \forall k \in [1, n], \ \langle x - y, e_i \rangle = 0.$$

Proposition. Soit $(e_1, ..., e_n)$ une base orthonormale de E et $u = \sum_{i=1}^n u_i e_i$ un vecteur non nul de E. La projection orthogonale sur la droite $\mathbb{R}u$ est l'application

$$E \to \mathbb{R}, \ x \mapsto \frac{\langle x, u \rangle}{\|u\|^2} u$$

La projection orthogonale sur l'hyperplan d'équation $\sum_{i=1}^{n} u_i x_i = 0$ dans la base $(e_1, ..., e_n)$ est l'application

$$E \to \mathbb{R}, \ x \mapsto x - \frac{\langle x, u \rangle}{\|u\|^2} u$$

3. Distance à un sev de dimension finie

Proposition. Soit F est un sev de E de dimension finie, p_F la projection orthogonale sur F et $x \in E$. On $a : \forall y \in F$, $||x - p_F(x)|| \le ||x - y||$ avec égalité si, et seulement si, $y = p_F(x)$. Ainsi, le vecteur $p_F(x)$ est le vecteur de F le plus proche de x, i.e.

$$||x - p_F(x)|| = \min\{||x - y||, y \in F\}$$

On dit que $||x - p_F(x)||$ est la distance du vecteur x au sev F, et on note $d(x, F) = ||x - p_F(x)||$.

4. Distance à un sea de dimension finie

Proposition. Soit \mathcal{F} un sea de dimension finie et $x \in E$. Il existe un unique $y \in \mathcal{F}$ tel que $||x - y|| = \min\{||x - t||, t \in \mathcal{F}\}$ Le point y est appelé le projeté orthogonal de M sur \mathcal{F} . On note $d(x, \mathcal{F}) = ||x - y||$.

Définition. Soit E euclidien et \mathcal{H} un hyperplan affine de direction H. On appelle vecteur normal à \mathcal{H} tout vecteur non nul de H^{\perp} .

Proposition. Soit E euclidien de dimension n, $(a_1, ..., a_n) \in \mathbb{R}^n$ non nul et \mathcal{H} l'hyperplan affine d'équation $\sum_{i=1}^n a_i x_i = b$ dans une bon $(e_1, ..., e_n)$.

Les vecteurs normaux à \mathcal{H} sont les vecteurs non nuls colinéaires à $\sum_{i=1}^{n} a_i e_i$.

Proposition. Soit E euclidien et \mathcal{H} un hyperplan affine passant par a et de vecteur normal n. Pour tout $x \in E$ on a $d(x, \mathcal{H}) = \frac{|\langle n, x - a \rangle|}{\|n\|}$

Corollaire. Si l'on considère \mathbb{R}^3 muni du produit scalaire usuel et \mathcal{P} le plan affine passant par A et de vecteur normal \vec{n} , alors pour tout point M on a $d(M,\mathcal{P}) = \frac{\left|\langle \vec{n}, \overrightarrow{AM} \rangle \right|}{\|\vec{n}\|}$

Proposition. Soit E euclidien.

Si \mathcal{H} est un hyperplan affine d'équation $\sum_{i=1}^n a_i x_i = b$ dans une bon, alors, pour tout x de coor-

données
$$(x_1,...,x_n)$$
, on a $d(x,\mathcal{H}) = \frac{\left|\sum_{i=1}^n a_i x_i - b\right|}{\sqrt{\sum_{i=1}^n a_i^2}}$.

Corollaire. Si l'on considère \mathbb{R}^2 muni du produit scalaire usuel et \mathcal{D} la droite affine d'équation ax + by = c, alors pour tout point M(x,y), on a $d(M,\mathcal{D}) = \frac{|ax + by - c|}{\sqrt{a^2 + b^2}}$

Corollaire. Si l'on considère \mathbb{R}^3 muni du produit scalaire usuel et \mathcal{P} le plan affine d'équation ax + by + cz = d, alors pour tout point M(x, y, z), on a $d(M, \mathcal{P}) = \frac{|ax + by + cz - d|}{\sqrt{a^2 + b^2 + c^2}}$