Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2018 CS3EL04/IT3EL04 Distributed Systems

Branch/Specialisation: CSE/IT Programme: B.Tech.

Maximum Marks: 60 Duration: 3 Hrs.

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1

		nould be written in full instead of only	y a, b, c or d.	₹.				
Q.1	i.	The example of distributed systems is						
		(a) Internet	(b) Intranet					
		(c) Both Internet and Intranet	(d) None of these					
	ii.	If one site falls in distributed systen	1	1				
		(a) The remaining sites can continue	e operating					
		(b) All the sites will stop working						
		(c) Directly connected sites will sto	p working					
		(d) None of these						
	iii.	An RPC (remote procedure call) is	initiated by	1				
		(a) Server	(b) Client					
		(c) Both Server and Client	(d) Neither Server nor Client					
	iv.	The local operating system on the s	erver machine passes the	1				
		incoming packets to the						
		(a) Server stub	(b) Client stub					
		(c) Client operating system	(d) None of these					
	v.	In distributed systems a logical cloc	k is associated with	1				
		(a) Each Instruction	(b) Each Process					
		(c) Each Register	(d) None of these					
	vi.	In token passing approach of dis	stributed systems to achieve mutual	1				
		exclusion, processes are organized in a ring structure						
		(a) Logically	(b) Physically					
		(c) Both logically and physically	(d) None of these					
	vii.	In Distributed file system the mapp	ing between the logical and	1				
		physical object is called						
		(a) Client Interfacing (b) Naming	(c) Migration (d) Heterogeneity					
			P.T.	O				

	viii.	Which of the following is a visual way to determine the deadlock occurrence?	1
		(a) Resource allocation graph (b) Starvation graph	
		(c) Inversion graph (d) None of these	
	ix.	A distributed database has which of the following advantages over a centralized database?	1
		(a) Software cost (b) Software complexity	
		(c) Slow Response (d) Modular growth	
	х.	QoS stands for	1
		(a) Quality of security (b) Quality of system	
		(c) Quality of service (d) None of these	
Q.2	i.	Discuss the term 'Heterogeneity' in context to distributed systems.	2
	ii.	What is DCE (Distributed Computing Environment)? Enlist its	3
		components.	_
	iii.	What do you mean by transparency? Define the various transparency	5
ΩD		types associated with distributed systems.	_
OR	iv.	Elaborate the various architectural models of distributed systems.	5
Q.3	i.	Differentiate between a Remote and local method invocation.	2
	ii.	Illustrate the RMI invocation semantics.	8
OR	iii.	Make use of appropriate diagram and describe the roles of each of the components (objects and modules involved) in a remote method invocation.	8
Q.4	i.	Define clock drift, External synchronization and Internal synchronization.	3
	ii.	Describe central server algorithm and ring based algorithm for mutual	7
		exclusion.	
OR	iii.	What is the need of election algorithm in distributed system? Describe	7
		the ring based election algorithm.	
Q.5	i.	In context to distributed file system draw and describe the File service architecture.	4
	ii.	Draw and brief about the NFS (Network File System) architecture.	6

OR	iii.	Explain the two-phase commit protocol in distributed transaction management.	6	
		management.		
Q.6		Attempt any two:		
	i.	Describe the components of Load Distributing Algorithms.	5	
	ii. State and explain the types of Load Distributing Algorithms.			
	iii.	Write in brief about distributed database.	5	

Marking Scheme

CS3EL04/IT3EL04 Distributed Systems

Q.1	i.	The example of distributed systems is	1
V.1	••	(c) Both Internet and Intranet	•
	ii.	If one site fails in distributed system	1
		(a) the remaining sites can continue operating	
	iii.	An RPC (remote procedure call) is initiated by	1
		(b) client	
	iv.	The local operating system on the server machine passes the	1
		incoming packets to the	
		(a) server stub	
	v.	In distributed systems a logical clock is associated with	1
		(b) Each Process	
	vi.	In token passing approach of distributed systems, processes are	1
		organised in a ring structure	
		(a) Logically	
	vii.	In Distributed file system the mapping between the logical and	1
		physical object is called	
		(b) Naming	
	viii.	Which of the following is a visual way to determine the	1
		deadlock occurrence?	
	ix.	(a) Resource allocation graph A distributed database has which of the following advantages	1
	IX.	over a centralized database?	1
		(d) Modular growth	
	х.	QoS stands for	1
	λ.	(c) Quality of service	1
		(c) Quanty of service	
0.2	i.	Discuss the term 'Heterogeneity' in context to distributed	2
Q. <u>~</u>	1.	systems.	_
		Defining heterogeneity - 1 mark	
		Role of Middleware - 1 mark	
	ii.	What is 'Openness'? How can Openness be achieved (give	3
		appropriate example)?	
		Defining Openness - 1 mark	
		To specify how Openness can be achieved with example - 2 marks	
	iii.	What do you mean by transparency? Define the various	5
		transparency types associated with distributed systems.	
		Defining transparency - 1 mark	
		Defining each transparency type (0.5 mark * 8) - 4 marks	

OR	iv.	Elaborate the various architectural models of distributed systems. 5 architectural models(figure/description) (1 mark * 5) - 5 marks		
Q.3	i.	Differentiate between a Remote and local method invocation.	2	
		Local method invocation - 1 mark		
		Remote method invocation - 1 mark		
	ii.	Illustrate the RMI invocation semantics.	8	
		Table showing combination of fault tolerant measures - 2 marks		
		Maybe invocation semantics - 2 marks		
		At-least-once invocation semantics - 2 marks		
		At-most-once semantics - 2 marks		
OR	iii.	Make use of appropriate diagram and describe the roles of each of	8	
		the components (objects and modules involved) in a remote method invocation.		
		Diagram - 2 marks		
		Communication module - 2 marks		
		Remote reference module - 2 marks		
		Proxy/skeleton/dispatcher/remote object - 2 marks		
		2 marks		
Q.4	i.	Define clock drift, External synchronization and Internal synchronization.	3	
		Defining clock drift - 1 mark		
		Defining external synchronization - 1 mark		
		Defining internal synchronization - 1 mark		
	ii.	Describe central server algorithm and ring based algorithm for	7	
	11.	mutual exclusion.	•	
		Describe central server algorithm - 3.5 marks		
		Describe Ring based algorithm - 3.5 marks		
OR	iii.	What is an election? Describe the ring based election algorithm.	7	
		Defining election - 2 marks		
		Ring based election algorithm - 5 marks		
Q.5	i.	In context to distributed file system draw and describe the File	4	
		service architecture.		
		File service architecture diagram - 1 mark		
		Use of Client module - 1 mark		
		Use of Directory service - 1 mark		
		Use of Flat file service - 1 mark	,	
	ii.	Draw and brief about the NFS (Network File System)	6	
		architecture.		
		NFS architecture diagram - 1 mark		
OB		Explaining briefly about NFS - 5 marks	,	
OR	iii.	Explain the two-phase commit protocol.	6	
		Operations for two phase commit protocol - 2 marks		
		Phase 1 and Phase 2 of the two phase commit protocol - 4 marks		

Q.6	i.	Attempt any two: Describe the components of Load Distributing Algorithms.		
		Giving name of the components (as below)	- 1 mark	
		Transfer policy	- 1 mark	
		Selection policy	- 1 mark	
		Location policy	-1 mark	
		Information policy	- 1 mark	
	ii.	State and explain the types of Load Distributing Algorit Any 5 types - Static/dynamic/Adaptive/Load sh balancing/Pre-emptive/non-pre-emptive (1 mark * 5)	aring/Load	5
	iii.	Write in brief about distributed database. Introduction to distributed database	- 5 marks	5
