

ASYNCQVI: ASYNCHRONOUS-PARALLEL Q-VALUE ITERATION FOR REINFORCEMENT LEARNING WITH NEAR-OPTIMAL SAMPLE COMPLEXITY

YIBO ZENG, FEI FENG AND WOTAO YIN ybzeng15@fudan.edu.cn; fei.feng@math.ucla.edu; wotaoyin@math.ucla.edu

ABSTRACT

Given a discounted Markov decision process (S, A, P, r, γ) , we aim to find an ε -optimal policy efficiently. Our algorithm assumes:

- a generative model GM. GM takes any state-action pair (s,a) as input and outputs a sample of next state s' and reward $r_{ss'}^a$ following P.
- N parallel agents running asynchronously with shared memory.

It achieves:

- near-optimal sample complexity.
- $\mathcal{O}(\mathcal{S})$ memory complexity.
- linear parallel speedup.

ALGORITHM

Input: $\varepsilon \in (0, (1 - \gamma)^{-1}), \delta \in (0, 1), L, K;$

Shared variables: $\mathbf{v} \leftarrow \mathbf{0}, \pi \leftarrow \mathbf{0}, t \leftarrow 0$;

Private variables: $\hat{\mathbf{v}}, r, S, q$;

While t < L, every agent asynchronously:

- 1. select a state s_t and an action a_t ;
- 2. copy shared variable to local memory $\hat{\mathbf{v}} \leftarrow \mathbf{v}$;
- 3. call $GM(s_t, a_t)$ K times and collect samples $\{s'_1, \ldots, s'_K\}$ and $\{r_1, \ldots, r_K\}$.
- 4. $q \leftarrow \frac{1}{K} \sum_{k=1}^{K} r_k + \gamma \frac{1}{K} \sum_{k=1}^{K} \hat{v}_{s'_k} \frac{(1-\gamma)\varepsilon}{4};$
- 5. if $q > v_{s_t}$

mutex lock

 $v_{s_t} \leftarrow q, \pi_{s_t} \leftarrow a_t$

mutex unlock

6. $t \leftarrow t + 1$

RELATED WORK

Related Async-Parallel Dynamic Programming or RL Algorithms for DMDPs

Algorithms	Methods	Delay	Rate	Sample	Memory	References
Totally Async QVI	DP	Unbdd	_	N/A	$\mathcal{O}(\mathcal{S} \mathcal{A})$	[1]
Partially Async QVI	DP	Bdd		N/A	$\mathcal{O}(\mathcal{S} \mathcal{A})$	[1]
Async Q-learning	RL	Unbdd	_	_	$\mathcal{O}(\mathcal{S} \mathcal{A})$	[2]
AsyncQVI	RL	Bdd			$\mathcal{O}(\mathcal{S})$	This Work

Related RL Algorithms with a Generative Model

Algorithms	Async	Sample Complexity	Memory	References
Variance-Reduced VI	×	$\tilde{O}\left(\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^4\varepsilon^2}\log(\frac{1}{\delta})\right)$	$\mathcal{O}(\mathcal{S} \mathcal{A})$	[3]
Variance-Reduced QVI	×	$\tilde{O}\left(\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^3 \varepsilon^2} \log(\frac{1}{\delta})\right)$ (log-factored optimal)	$\mathcal{O}(\mathcal{S} \mathcal{A})$	[4]
AsyncQVI		$\tilde{O}\left(\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^5\varepsilon^2}\log(\frac{1}{\delta})\right)$	$\mathcal{O}(\mathcal{S})$	This Work

INSIGHT

AsyncQVI is an approximation of the Q-value iteration with both asynchronous delay and stochastic estimation.

1. Q-value iteration with full update:

$$Q_{s,a}(t+1) = \sum_{s'} p_{ss'}^a r_{ss'}^a + \gamma \sum_{s'} p_{ss'}^a \max_{a'} Q_{s',a'}, \ \forall \ s, a$$

2. Q-value iteration with coordinate update and asynchronous delay:

$$Q_{s,a}(t+1) = \begin{cases} \sum_{s'} p_{ss'}^a r_{ss'}^a + \gamma \sum_{s'} p_{ss'}^a \max_{a'} \hat{Q}_{s',a'}(t), & \text{if updating } (s,a) \text{ at } t; \\ Q_{s,a}(t), & \text{o.w.} \end{cases}$$

3. AsyncQVI: Asynchronous Q-value iteration with stochastic estimation:

$$Q_{s,a}(t+1) = \begin{cases} \frac{1}{K} \sum_k r_k + \gamma \frac{1}{K} \sum_k \max_{a'} \hat{Q}_{s'_k,a'}(t) - (1-\gamma)\varepsilon/4 & \text{if updating } (s,a) \text{ at } t; \\ Q_{s,a}(t), & \text{o.w.} \end{cases}$$

Convergence of AsyncQVI is established through building a sequence of type 2 with the same asynchronous delay. Estimation error is controlled through enough sampling and the discounted factor.

REFERENCES

- [1] Dimitri P Bertsekas and John N Tsitsiklis. *Parallel and distributed computation: numerical methods*, volume 23. Prentice hall Englewood Cliffs, NJ, 1989.
- [2] John N. Tsitsiklis. Asynchronous stochastic approximation and q-learning. *Machine Learning*, 16(3):185–202, Sep 1994.
- 3] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and faster algorithms for solving markov decision processes. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 770–787. Society for Industrial and Applied Mathematics, 2018.
- [4] Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample complexities for solving markov decision processes with a generative model. In *Advances in Neural Information Processing Systems*, pages 5192–5202, 2018.

THEORY

Theorem 1 Under partial asynchronism, given accuracy parameters ε and δ , with $L = \left\lceil 2B_1 + \frac{B_1 + B_2 - 1}{1 - \gamma} \log\left(\frac{2}{(1 - \gamma)\varepsilon}\right) \right\rceil$ and $K = \left\lceil \frac{8}{(1 - \gamma)^4 \varepsilon^2} \log\left(\frac{4L}{\delta}\right) \right\rceil$, AsyncQVI returns an ε -optimal policy π with probability at least $1 - \delta$. Here B_1 is the uniform consecutive update bound and B_2 is the uniform communication delay bound.

Corollary 1 Under partial asynchronism, AsyncQVI returns an ε -optimal policy π with probability at least $1-\delta$ at the sample complexity

$$\tilde{\mathcal{O}}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^5\varepsilon^2}\log\left(\frac{1}{\delta}\right)\right),$$

provided that $B_1 + B_2 = \mathcal{O}(|\mathcal{S}||\mathcal{A}|)$.

TEST PROBLEM

We test the sailing problem with two positioning noises: a wind noise $\mathcal{N}(0, \sigma_1^2)$ and a vortex noise $\mathcal{N}(0, \sigma_2^2)$. The latter occurs with probability p. Given the current position (x, y) and an action (δ_x, δ_y) , the next position is

$$(x + \delta_x + \mathcal{N}(0, \sigma_1^2), y + \delta_y + \mathcal{N}(0, \sigma_1^2)) \sim 1 - p$$
, or
 $(x + \delta_x + \mathcal{N}(0, \sigma_1^2 + \sigma_2^2), y + \delta_y + \mathcal{N}(0, \sigma_1^2 + \sigma_2^2)) \sim p$.

We set the instant reward as

$$d \times |\frac{\text{angle between wind and action directions}}{45}|,$$

where d is a constant hyperparameter.

RESULTS

We compared five algorithms: AsyncQVI (AQVI), Async Q-learning with Constant stepsize (AQLC), Async Q-learning with diminishing stepsize (AQLD), Variance-Reduced QVI (VRQVI), and Varian-reduced VI (VRVI). For parallel algorithms (the first three), we use 20 threads. We also test parallel performance. Overall, our algorithm is similar to Q-learning but with less memory and averagely $10 \times$ faster than variance-reduced methods with $3 \times$ more samples. Linear parallel speedup is achieved.

(c) Test with doubling threads.