Homework 6

CMPSC 360

Kinner Parikh March 3, 2022

Question 1: Suppose $a, b \in \mathbb{Z}$. If $4|(a^2 + b^2)$, then a and b are not both odd.

Proof: Suppose $a,b\in\mathbb{Z}$. For sake of contradiction, assume that a and b are both odd. By definition of odd, a=2x+1 and b=2y+1 such that $x,y\in\mathbb{Z}$ By definition of divides, $a^2+b^2=4z$ such that $z\in\mathbb{Z}$ $a^2+b^2=(2x+1)^2+(2y+1)^2=4z$ $=4x^2+4x+1+4y^2+4y+1=4z$ $=4x^2+4x+4y^2+4y+2=4z$ =4t+2 such that $t\in\mathbb{Z}$ where $t=x^2+x+y^2+y$

=4t+2 such that $t \in \mathbb{Z}$ where $t=x^2+x+y^2$. So, $4t+2 \neq 4z$, which means $a^2+b^2 \neq 4z$

We have arrived at a contradiction, where $a^2 + b^2 = 4z$ and $a^2 + b^2 \neq 4z$ when a and b are odd Therefore, by sake of proof by contradiction, if $4|(a^2 + b^2)$, then a and b are not both odd. \Box

Question 2: Show that $\forall a, b \in \mathbb{Z}, \ gcd(a, b) = b \leftrightarrow b \mid a$.

Proof:

Suppose $a, b \in \mathbb{Z}$

Case 1: $gcd(a,b) = b \rightarrow b \mid a$

By definition, gcd(a, b) = b means that $b \mid b$ and $b \mid a$ where $b \neq 0$

Therefore, $gcd(a, b) = b \rightarrow b \mid a$

Case 2: $b \mid a \rightarrow gcd(a, b) = b$

Suppose $b \mid a$

We also know that $b \mid b$

By definition of gcd and since $b \mid a$ and $b \mid b$, we can say that gcd(a,b) = b.

Therefore, $b \mid a \rightarrow gcd(a, b) = b$

Therefore, $\forall a, b \in \mathbb{Z}, \ gcd(a, b) = b \leftrightarrow b \mid a \square$

```
Question 3: Is \mathbb{R} = \{(x,y) \mid (x-y) \text{ is divisible by 17} \} an equivalence relation?
   Proof: Assume that \mathbb{R} = \{(x,y) \mid (x-y) \text{ is divisible by } 17\}
   This means that 17 \mid (x-y)
   By definition of divides x - y = 17a such that a \in \mathbb{Z}
   For a statement to be an equivalence relation, it must be reflexive, symmetric, and transitive.
   Case 1: reflexive
       Assume (x, x)
       so x - y = 17a goes to x - x = 17a
       This means that 0 = 17a, for which this is a valid statement since 17 \mid 0
       So \forall x \exists y \ y = x \text{ is true and } (x, y) \in \mathbb{R}
       Therefore, \mathbb{R} is reflexive
   Case 2: Symmetric
       Suppose x - y = 17a for some (x, y)
       To prove symmetry, take the case (y, x)
       So, y-x=17b such that b\in\mathbb{Z}
       Since this can simplify down to -(x-y) = 17b, we know that b = -a
       Thus, 17|(y-x) which means that (y,x) \in \mathbb{R}
       Therefore, \mathbb{R} is symmetric
    Case 3: Transitive
       Proof for transitivity: \exists a, b, c \ (a, b), (b, c) \in \mathbb{R} \to (a, c) \in \mathbb{R}
       Suppose a, b, c \in \mathbb{Z}
       We can say that 17 \mid (a-b) and 17 \mid (b-c)
       By definition of divides, a-b=17p and b-c=17q such that p,q\in\mathbb{Z}
       By algebra, a = 17p + b and c = b - 17q
       So for (a, c), we get 17 \mid (a - c)
       Substituting a and c, 17 | [(17p + b) - (b - 17q)]
                              = 17 \mid (17p + b - b + 17q)
                              = 17 \mid (17p + 17q)
                              = 17 \mid [17(p+q)]
                              = 17 \mid 17t such that t \in \mathbb{Z} where t = p + q
       So, by definition of divides, we know that this is divisible by 17.
       Therefore, \mathbb{R} is transitive
```

Question 4: Suppose Neverland country (which is a fictional one), contains N cities. We define relation \mathbb{R} as follows: If there is a route between two cities (c_i, c_j) for $1 \leq i, j \leq N$, then we have $(c_i, c_j) \in \mathbb{R}$. We also assume that roads are in both directions in Neverland country. Is \mathbb{R} an equivalence relation? If so, what are the equivalence classes?

Since \mathbb{R} is reflexive, symmetric, and transitive, it is an equivalence relation. \square

 \mathbb{R} is an equivalence relation. $[C_a] = \{C_b \mid \text{a route exists from } C_b \text{ to } C_a\}$ **Question 5**: For *n*-dimensional vectors $x, y \in \mathbb{R}^n$, we would say $x \leq y$ if for every $0 \leq i \leq n$, we would have $x_i \leq y_i$ where x_i is the *i*-th element of x. Is \leq a partial order? Prove or disprove.

Proof:

Suppose that *n*-dimensional vectors $x, y \in \mathbb{R}^n$.

When $0 \le i \le n$, we can say that $x_i \le y_i$ such that x_i and y_i are the i-th element of x and y. For the relation to be a partial order, it must be reflexive, transitive, and antisymmetric.

Case 1: Reflexive

For a reflexive case, suppose y = x, so $y_i = x_i$

That means that $x_i \leq x_i$ by substitution.

This statement is true for all $x \in \mathbb{R}^n$.

This relation is reflexive.

Case 2: Transitive

Assume case (a, b) and (b, c) where $a, b, c \in \mathbb{R}^n$

Substituting these pairs into the relation, we get $a_i \leq b_i$ and $b_i \leq c_i$.

This means that $a_i \leq b_i \leq c_i$ by combination.

This can be simplified to be that $a_i \leq c_i$.

So the ordered pair (a, c) is valid under this relation.

Therefore, this relation is transitive.

Case 3: Antisymmetric

Assume case (y, x).

Substituting into the relation we get $y_i \leq x_i$.

Since we know that $x_i \leq y_i$, the ordered pair (y, x) is not valid.

Therefore, this relation is antisymmetric.

The relationship is reflexive, transitive, and antisymmetric.

Therefore, for *n*-dimensional vectors $x, y \in \mathbb{R}^n$, we would say $x \leq y$ if for every $0 \leq i \leq n$, we would have $x_i \leq y_i$ where x_i is the *i*-th element of x is a partial order. \square

Question 6:

Question 7: Let f(x) = 2x where the domain is the set of real numbers. What is

- (a) $f(\mathbb{N}) \to \{x \in \mathbb{N} \mid 2x\}$
- (b) $f(\mathbb{Q}) \to \{x \in \mathbb{Q} \mid 2x\}$
- (c) $f(\mathbb{R}) \to \{x \in \mathbb{R} \mid 2x\}$

Question 8:

- (a) no properties
- (b) (4, 4)
- (c) (1, 2) and (4, 1)

Question 9: Let $A = \{a_1, a_2, ...\}$ such that there are 4 elements in A. That is, |A| = 4. Similarly, let $B = \{b_1, b_2, ...\}$ such that |B| = 2. How many possible relations can be defined from A to B?

Question 10: Consider the set A = 1, 2, 9, 11, 18 having relation $R = \{(1,1), (2,2), (9,9), (11,11), (18,18), (1,2), (2,1), (11,1), (1,11), (18,9), (9,18)\}$, find equivalence class of the following:

```
a) [|1|] \rightarrow \{1, 2, 11\}
```

b)
$$[|2|] \to \{2, 1\}$$

c)
$$[|9|] \rightarrow \{9, 18\}$$

d)
$$[|11|] \rightarrow \{11, 1\}$$

e)
$$[|18|] \rightarrow \{18, 9\}$$

Question 11: Let: $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{5x}{3} - 2$. Prove that f is a one to one function.

Proof:

Assume that x_1 and x_2 belong to \mathbb{R}

Suppose $f(x_1) = f(x_2)$

Definition of the function $\frac{5x_1}{3} - 2 = \frac{5x_2}{3} - 2$ $\frac{5x_1}{3} = \frac{5x_2}{3}$ $5x_1 = 5x_2$ $x_1 = x_2$ Add 2 to both sides
Multiply 3 by both sides
Divide both sides by 5

$$\frac{5x_1}{3} = \frac{5x_2}{3} \\ 5x_1 = 5x_2$$

Therefore, since $x_1 = x_2$, this is an injective function. \square

Question 12: Let: $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{x}{2} + 3$ a surjection (onto)? If it is, constructs the proof, otherwise, give a counterexample.

Proof:

Assume that $a \in \mathbb{R}$

We must show that $\exists x \in \mathbb{R}$ such that f(x) = a

So,
$$a = \frac{x}{2} + 3$$

$$a-3 = \frac{x}{2}$$

$$2a - 6 = x$$

So, substituting for x, $f(x) = \frac{2a-6}{2} + 3$ = a - 3 + 3

$$= c$$

Since f(x) = a, we know that it is onto. \square