Martin Zelek Robert Knop gr2 Aplikacje internetowe i bazy danych

Zadanie 3.3

zagadnienie: $y' = y(x) - x - \sin(x) + \cos(x) + 1$, y(0) = 1

rozwiązanie: $y(x) = x + e^x + \sin(x)$

zadanie:

- Napisać program realizujący metodę Eulera

- Napisać program realizujący metodę Heuna

Narysować wykres rozwiązania dokładnego oraz wyników metod numerycznych na jednym wykresie

Narysować wykresy błędów metod numerycznych na jednym wykresie, aby porównać metody

1. Teoria

Metoda Eulera – metoda według której "kierunek" jest wyrażony przez pierwzą pochodną funkcji:

$$\varphi = \frac{dy}{dx} = f(x_i, y_i)$$

W takim razie mamy:

$$y_{i+1} = y_i + f(x_i, y_i)h$$

$$h = x_{i+1} - x_i$$

Tak więc pierwsza pochodna funkcji to znaczy prawa strona równania różniczkowego, wyznacza kierunek położenia nowego punktu rozwiązania. Jest to tzw. predyktor. Odległość między predyktorem a rozwiązaniem dokładnym stanowi błąd metody. Ze względu na swoją prostotę metoda Eulera jest łatwa do zastosowania. Dobrze oddaje charakter rozwiązania ale może być obarczona dużym błędem.

Metoda Heuna – W tej metodzie zamiast stałej wartości pochodnej obliczonej na początku przedziału, jak to było w przypadku metody Eulera, oblicza się pochodną również na końcu przedziału. Pierwsze oszacowanie to predyktor a następne to korektor. Metoda ta dzięki zabiegowi numerycznemu daje sporą zmiane w dokładności wyniku i jest znacznie dokładniejsza niż klasyczna metoda Eulera Predyktor wyrażamy stosując metode Eulera:

$$\frac{dy}{dx} = f(x_i, y_i)$$
$$y_{i+1}^0 = y_i + f(x_i, y_i) \cdot h$$

Oznaczając przez

$$y_{i+1} = f(x_{i+1}, y_{i+1}^0)$$

mamy

$$y' = \frac{y_i + y_{i+1}}{2} = \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1})}{2}$$

$$y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1})}{2} \cdot h$$

2. Przykładowe rozwiązanie zadania

a) Metoda Eulera

```
Prysktad metody Eulera
6 = 2
h = 0,5
X. = 0
X = 0,5
x_2 = 1
X_3 = 1,5
4(0)=1
f(x,y) = y - x - \sin(x) + \cos(x) + 1
y_{n+1} = y_n + h \cdot f(x_n, y_n)
X0 = 0 y0 = 1
y1=1+0.5.f(0,1)=
   =1+0.5\cdot(1-0-0+1+1)=2.5
X1=0,5 41=2,5
y_2 = 2.5 + 0.5 \cdot f(0.5, 2.5) =
 = 2,5 +0,5 · (2,5 -0,5 -0,4794 +0,8776+1) =
  = 4.1991
X_2 = 1 y_2 = 4.1991
y3 = 4.1991 + 0.5. (4.1991 - 1 - 0.8415 + 0,5403+1)=
  = 6.1481
X3 = 1,5 43 = 6.1481
y4 = 6.1481 + 0,5 · (6.1481 - 1,5 - 0.9975+0.0707 +1) =
  = 8.5088
```

```
Pryktad metody Heura
6=1
h=0.5
x_0=0
x_1=0.5

y(0)=1
f(x,y)=y-x-im(x)+coo(x)+1
y_{m+1}=y_m+\frac{h}{2}(f(x_m,y_m)+f(x_m+h,y_m+h-f(x_m,y_m)))
x_0=0 y_0=1
f(x_0,y_0)=1-0-0+1+1=3
y_1=1+0.25\cdot(3+f(0+0.5,1+0.5\cdot3))=
=1+0.25\cdot(3+f(0.5,2.5))=
=f(0.5,2.5)=2.5-0.5-0.4794+0.8776+1=3.3982
```

$$= 1 + 0.25 \cdot (3 + 3.3982) = 2.5996$$

$$x_{1} = 0.5 \ y_{1} = 2.5996$$

$$f(x_{1}, y_{1}) = 2.5996 - 0.5 - 0.4794 + 0.8776 + 1 = 3.4978$$

$$y_{2} = 2.5996 + 0.25 (3.4978 + f(1, 4.3485)) =$$

$$f(1, 4.3485) = 4.3485 - 1 - 0.8415 + 0.5403 + 1 = 4.0473$$

$$= 4.0473$$

$$= 2.5996 + 0.25 \cdot (3.4978 + 4.0473) = 4.4859$$