

Session 07: Multiple Lineare Regression

Dominic Schmitz & Janina Esser

Verein für Diversität in der Linguistik

Beispieldaten

Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Stressed Vowels sind kürzer je nachdem wie viele Konsonanten ihnen folgen:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Beispieldaten

Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Unabhängig von diesem Vowel Shortening gilt, dass offene Vokale länger sind als halb-offene Vokale, und halb-offene Vokale sind länger als geschlossene Vokale:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Einfache Lineare Regression

Einfache Lineare Regression: Formel

Multiple Lineare Regression: Formel

Multiple Lineare Regression in R

- Mehr Variablen = mehr Zeitaufwand
- Typische Schritte bei Multipler Linearer Regression sind
 - 1. Distribution der abhängigen Variable überprüfen
 - 2. "volles" Modell erstellen
 - 3. "bestes" Modell finden
 - 4. Assumptions überprüfen
 - 5. Modell interpretieren

1: Verteilung der abhängigen Variable

- Wie wir bereits wissen, nutzen wir hierzu den Shapiro-Wilk Test
- Die abhängige Variable in unserem Beispiel, duration, ist nicht normalverteilt
- Daher nutzen wir wieder eine log-transformierte Version der Variable, durationLog

2: "Volles" Modell

- Unsere abhängige Variable ist durationLog
- Als nächstes müssen wir die unabhängigen Variablen identifizieren, die wir nutzen möchten
- In diesem Beispiel sind es die folgenden Variablen:

structure i.e. coda structure

vowe1 i.e. vowel quality

• rate i.e. speech rate

number

 i.e. slide number during experiment

2: "Volles" Modell

Erstellen des "vollen" Modells:

- Theoretisch müssten wir nun alle möglichen Variabel-Kombinationen testen um das "beste" Modell zu finden
- Allerdings ist dieser Vorgang manuell durchgeführt fehleranfällig und zeitaufwendig (und macht wirklich keinen Spaß)
- Zum Glück gibt es eine Funktion, die diesen Schritt übernimmt:

step(model)

000

> step(model)

000

> step(model)

Start: AIC=-1167.31

Akaike Information CriterionJe niedriger, desto besser die Modellanpassung

durationLog ~ structure + vowel + rate + number

> step(model)

Start: AIC=-1167.31

Akaike Information Criterion

Je niedriger, desto besser die Modellanpassung

durationLog ~ structure + vowel + rate + number

	Df	Sum of Sq	RSS	AIC	
- number	1	0.0536	31.839	-1168.55	ein Modell ohne numbe r
<none></none>			31.786	-1167.31	
- rate	1	0.8500	32.636	-1157.48	
- vowel	4	3.4109	35.197	-1129.64	ein Modell ohne vowe 1
- structure	2	14.9708	46.756	-998.41	33 131161

Step: AIC=-1168.55

durationLog ~ structure + vowel + rate

bestes Modell gefunden durch die **step()** function und sein AIC

zusätzlicher Beweis dafür, dass eine weitere Reduzierung die Anpassung des Modells nicht verbessert

bestes Modell gefunden durch die **step()** Funktion

und ihren Aufruf

Call:

lm(formula = durationLog ~ structure + vowel + rate, data = data)

Coefficients:			
(Intercept)	structureopen	structuresingle	vowele
-1.5062	0.4340	0.1219	-0.1441
voweli	vowelo	vowelu	rate
-0.2374	-0.1229	-0.2365	-0.2532

Modellkoeffizienten – werden wir uns in Schritt 5 genauer ansehen

- Multiple Lineare Regression folgt den gleichen Annahmen, denen auch die Einfache Lineare Regression folgt
 - Linearität
 - Homoskedastizität
 - Normalität
 - Unabhängigkeit

Linearitätsannahme:

Die Beziehung zwischen X und dem Mittelwert von Y ist linear.

Die Linie sollte horizontal und flach sein.

Homoskedastizitätsannahme:

Die Varianz der Residuen ist für jeden Wert von X gleich groß.

 Die Daten sollten gleichmäßig über die Linie verteilt sein, wobei keine offensichtlichen Muster erkennbar sein sollten.

Normalitätsannahme:

Für jeden festen Wert von X ist Y normalverteilt.

Normality of Residuals

Distribution should be close to the normal curve

 Die Verteilung der Residuen eines linearen Modells sollte einer Normalverteilung folgen.

5: Interpretation

- Generell sind wir an zwei Dingen interessiert:
 - 1. die p-Werte der einzelnen Prädikatoren / Predictors
 - 2. die Effekte der einzelnen Prädikatoren / Predictors

5: Interpretation – *p*-Werte

1. Mit der anova() Funktion erhalten wir p-Werte

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
structure	2	15.131	7.5654	104.4874	< 2.2e-16 ***
vowel	4	3.507	0.8767	12.1079	2.41e-09 ***
rate	1	0.842	0.8416	11.6241	0.0007112 ***
Residuals	439	31.786	0.0724		

2. Mit der **summary**() Funktion können wir einen Blick auf die einzelnen Effekte der Prädikatoren werfen

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16	***
structureopen	0.43395	0.03112	13.947	< 2e-16	***
structuresingle	0.12186	0.03117	3.910	0.000107	***
vowele	-0.14406	0.04033	-3.572	0.000393	***
voweli	-0.23739	0.04035	-5.883	7.97e-09	***
vowelo	-0.12292	0.04034	-3.048	0.002446	**
vowelu	-0.23653	0.04033	-5.864	8.87e-09	***
rate	-0.25324	0.07425	-3.410	0.000708	***

2. Mit der **summary**() Funktion können wir einen Blick auf die einzelnen Effekte der Prädikatoren werfen

2. Mit der **summary**() Funktion können wir einen Blick auf die einzelnen Effekte der Predictors werfen

2. Mit der **summary**() Funktion können wir einen Blick auf die einzelnen Effekte der Predictors werfen

2. Mit der **summary**() Funktion können wir einen Blick auf die einzelnen Effekte der Predictors werfen

structure:double + vowel:a + rate:start

Estimate Std. Error t value Pr(>|t|) (Intercept) -1.506200.10486 -14.364 < 2e-16structureopen 0.12186 structuresingle 0.03117 3.910 0.000107 vowele Um den geschätzten Mittelwert voweli von durationLog in structure:single words zu erhalten, müssen wir seine Schätzung zum vowelo Achsenabschnitt addieren, d. h. vowelu rate -1.50620 + 0.12186 = -1.38434

 Mit der summary() Funktion k\u00f6nnen wir einen Blick auf die einzelnen Effekte der Pr\u00e4dikatoren werfen

structure:single + vowel:a + rate:start

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16 ***
structureopen	0.43395	0.03112	13.947	< 2e-16 ***
structuresingle	e 0.12186	0.03117	3.910	0.000107 ***
vowele	-0.14406	0.04033	-3.572	0.000393 ***
voweli	-0.23739	0.04035	-5.883	7.97e-09 ***

vowelo vowelu rate

Um den geschätzten Mittelwert von durationLog in structure:single & vowel:i-Wörtern zu erhalten, müssen wir beide Schätzungen zum Intercept addieren, d. h.

-1.50620 + 0.12186 - 0.23739 = -1.62173

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Predictors werfen

structure:double + vowel:a + rate:start

	Estimate	durationLog is		
(Intercept)	-1.50620		* * *	
structureopen	0.43395	 deutlich länger in offenen coda- Wörtern 	* * *	
structuresingl	e 0.12186		* * *	
vowele	-0.14406	coda-Wörtern		
voweli	-0.23739	als in komplexen coda-Wörtern		
vowelo	-0.12292	•		
vowelu	-0.23653	0.04033 -5.864 8.87e-09 *		
rate	-0.25324	0.07425 -3.410 0.000708 *		

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Prädikatoren werfen

structure:double + vowel:a + rate:start

	Estimate	Std. Error t value Pr(> t)	
(Intercept)	-1.50620	0.10486 -14.364 < 2e-16	***
structureopen	0.43395	0.03112 13.947 < 2e-16	
structuresingl	e 0.12186	0.03117 3.910 0.000107	
vowele	-0.14406	durationLog ist	***
voweli	-0.23739	 deutlich kürzer in Wörtern mit 	***
vowelo	-0.12292		**
vowelu	-0.23653	o, u/	***
rate	-0.25324	als in Wörtern mit /a/	

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Prädikatoren werfen

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16	
structureo	pen 0.43395	0.03112	13.947	< 2e-16	
structures	ingle 0.12186	0.03117	3.910	0.000107	
vowele	-0.14406	0.04033	-3.572	0.000393	
voweli	0 22720	0.04035	E 003	7.97e-09	
vowelo	je höher die Spred niedriger ist der V		ionLog	0.002446	
vowelu	-0-/31	0.04033	-5.864	8.87e-09	
rate	-0.25324	0.07425	-3.410	0.000708	***

2. Mit der summary() Funktion können wir einen Blick auf die einzelnen Effekte der Prädikatoren werfen

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1.50620	0.10486	-14.364	< 2e-16 ***
structureopen	0.43395	0.03112	13.947	< 2e-16 ***
structuresingle	0.12186	0.03117	3.910	0.000107 ***
vowele	-0.14406	0.04033	-3.572	0.000393 ***
voweli	-0.23739	0.04035	-5.883	7.97e-09 ***
vowelo	-0.12292	0.04034	-3.048	0.002446 **
vowelu	-0.23653	0.04033	-5.864	8.87e-09 ***
rate	-0.25324	0.07425	-3.410	0.000708 ***

Der s.g. "Tukey-Contrast" zeigt uns die Unterschiede innerhalb eines kategorischen Prädikators

```
> tukey(model = mdl_fin, predictor = structure)
```

```
Estimate Std. Error t value Pr(>|t|) open - double == 0 0.43395 0.03112 13.95 < 1e-04 *** single - double == 0 0.12186 0.03117 3.91 0.00031 *** single - open == 0 -0.31209 0.03111 -10.03 < 1e-04 ***
```