OR 647: Queueing Theory, Spring 2021 Homework Assignment 3 Due Wed. Mar. 3, 2021

- 1. Problem 1.17
- 2. Problem 1.18
- 3. Problem 1.19
- 4. The table below gives the arrival and service times of a sequence of customers to an airline ticket counter. The counter has one line and customers are served in a first-come-first-served manner. Note: Use the same time horizon for parts (a) and (b) in computing the average number in queue.
 - a. Assuming one server, compute the average wait in queue and the average number in queue.
 - b. Assuming there are two servers who are working at half speed (i.e., double the service times), compute the average wait in queue and the average number in queue.
 - c. Compare the answers in (a) and (b) and discuss why there is a difference.

Customer#	Arrival time (min)	Service time (min)
1	0	6
2	6	4
3	9	6
4	10	1
5	15	2
6	17	1
7	19	3
8	23	5
9	29	8
10	35	6

- 5. [10 points] Reconstruct the Excel spreadsheet given in class for airplane arrivals and departures to/from a single runway. Specifically, create columns containing the following elements: Operation #, inter-arrival time (min), actual arrival time (min), arrival or departure (A or D), runway hold time, queue waiting time, departure time, arrival count (1 for arrivals 0 for departures), departure count (0 for arrivals 1 for departures). The spreadsheet should also contain the following global parameters: % arrivals (0.5), arrival runway hold time (1 min), departure runway hold time (1.5 min), operation arrival rate (40 / hr), average service time, rho.
 - a. Graph the queue-waiting time for a given sequence of 400 simulated operations.
 - b. Vary λ from 5, 10, ..., 45, 50. Calculate the average queue-waiting time W_q for each of these cases (based on simulation of 400 operations).
 - c. Calculate the average queue-waiting time for each of these cases for an M/M/1 queue with the same λ and μ . Plot both values of W_q as a function

- of λ and compare the results. How good is the M/M/1 queue as an approximation you're your simulation?
- d. Repeat part (b) when 75% of operations are departures.
- 6. A hardware store has a "merchandise pickup" window where customers arrive to load previously purchased items into their car. Arrivals to the pickup window follow a Poisson process with rate 45 per hour. The time for a store employee to load merchandise into a customer's car is exponentially distributed with a mean of 3 minutes. There are 3 employees. What is the average time it takes for a customer to get his/her merchandise loaded into the car (wait in queue plus service time)?
- 7. A local polling location has 5 voting machines. People arrive to cast their votes according to a Poisson process with rate $\lambda = 75$ per hour. The time to cast a ballot is exponential with a mean of 2 minutes.
 - a. What is the fraction of time that a given voting machine is being utilized?
 - b. What is the fraction of time that 3 or fewer machines are in use?
 - c. What is the average line length?
- 8. Arrivals to a queueing system follow a Poisson process with rate 18 per hour. Service times are exponential with rate 20 per hour. Each server is paid \$40 per hour while working and \$10 per hour while idle. The company determines that it loses \$2 per customer per hour spent waiting in the queue, due to "ill-will" or lost customer loyalty.
 - a. What is the hourly cost to the company if 1 server is employed?
 - b. What is the hourly cost to the company if 2 servers are employed?
 - c. If the company adds a 3rd server, would the cost go up or down compared with 2 servers? (Give a one- or two-sentence explanation without working the numbers out fully).
- 9. Problem 3.32
- 10. Problem 3.37