

성취 기준

● 동일한 정보가 다양한 방법으로 디지털로 변환되어 표현될 수 있음을 이해할 수 있다.

1) 숫자 정보의 표현

◆ 진법의 종류

❖ 십진법

- 우리가 일상에서 사용하는 수 체계
- 0에서 9까지 10개의 숫자를 사용하여 수를 표현하는 방법
- 수의 자리가 하나씩 올라감에 따라 자릿값이 10배씩 커지는 수 체계

❖ 이진법

- 컴퓨터에 사용
- 0과 1 두 개의 숫자로 수를 표현하는 방법
- ■수의 자리가 하나씩 올라감에 따라 자릿값이 2배씩 커지는 수 체계

❖ 팔진법

- ■0부터 7까지 여덟 개의 숫자로 한 자릿수를 표현 하는 방법
- ■8이 될 때마다 자리올림

❖ 십육진법

- 0부터 15까지 열여섯 개의 숫자로 한 자릿수를 표현 하는 방법
- 숫자 10~15는 두 자릿수로 표현되기 때문에 한 자릿 수로 나타내기 위해 각각 A~F까지의 알파벳 사용
- 16이 될 때마다 자리올림

◆ 진법 표현 방법

구분	10진법	2진법	8진법	16진법
기호	0~9	0, 1	0~7	0∼9, A∼F
표현된 수	10진수	2진수	8진수	16진수
밑수(기수)	10	2	8	16
예	314.2	(101.01) ₂	(73.4) ₈	(E5.D) ₁₆
올림수	9+1=(10) ₁₀	1+1=(10) ₂	7+1=(10) ₈	F+1=(10) ₁₆

▲ 2진수 vs 8진수, 16진수의 관계

진수 표현

❖ 진수

✓ 진법으로 표현한 수

❖ 진수 표현

- ✓ 수의 진법은 밑으로 표현
- ✓ 십진수의 밑은 10, 이진수의 밑은 2, 팔진수의 밑은 8, 십육진수의 밑은 16으로 표현
- ✓ 일반적으로 십진수의 밑은 생략

◆ 진법의 변환

- ❖ 10진수 → 2진수, 8진수, 16진수로 변환
 - 변환하고자 하는 진수의 수로 더 이상 나눌 수 없을 때까지 나눈 후 구해진 나머지 값들을 역순으로 배열

❖ 2진수, 8진수, 16진수→10진수로 변환

■ 변환하고자 하는 진수의 각 자릿값을 곱한 후 모두 더함

$$(101)_{2} = (5)_{10}$$

$$(1 \ 0 \ 1)_{2} = \underline{1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}}$$

$$\uparrow \uparrow \uparrow = 4 + 0 + 1$$

$$2^{2} \ 2^{1} \ 2^{0} = 5$$

$$(4B)_{16} = (75)_{10}$$

$$(4B)_{16} = 4 \times 16^{1} + 8 \times 16^{0}$$

$$\uparrow \uparrow = 64 + 11$$

$$16^{1}16^{0} = 75$$

❖ 2진수, 8진수, 16진수의 상호 변환

■ 8진수

- 2진수 세 자리에 대응
- 최하위 자리부터 2진수를 세 자리씩 묶어 8진수 1자리로 변환
- 왼쪽의 부족한 자리가 있으면 0으로 채워 줌

■ 16진수

- 2진수 네 자리에 대응
- 최하위 자리부터 2진수를 네 자리씩 묶어 16진수 1자리로 변환
- 왼쪽의 부족한 자리가 있으면 0으로 채워 줌

2진수 11010과 011010은 서로 같은 값! 변환 과정에서 자릿수를 맞춰 준 것

- 8진수, 16진수 → 2진수로 변환
 - 8진수 한 자리를 2진수 세 자리로 변환
 - 16진수 한 자리를 2진수 네 자리로 변환

• 8진수, 16진수의 상호 변환: 2진수로 변환한 다음, 해당 진수로 변환

소수점이 있는 값의 진법 변환

01 10진수 → 2진수, 8진수로 변환

✓ 10진수의 소수 부분은 변환하고자 하는 진수로 계속 곱해 나가며 계산 결과의 정수가 되는 값을 위에서 아래로 순서 대로 나열

소수점이 있는 값의 진법 변환

02 2진수, 16진수 → 10진수로 변환

✓ 변환하려는 진수의 각 자리의 숫자와 자릿값을 곱하여 모두 더함

$$(101.01)_{2} = (5.25)_{10}$$

$$(1 0 1 . 0 1)_{2} = \underbrace{1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}}_{1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{-1}} + \underbrace{1 \times 2^{-1} + 1 \times 2^{-2}}_{1 \times 2^{2} + 2^{1} + 2^{0} + 2^{-2}}_{1 \times 2^{2} + 2^{0} + 2^{-2}}_{1 \times 2^{-2} + 2^{-2}}_{1 \times 2^{-2}}_{1 \times 2^{-2}}_{1 \times 2^{-2} + 2^{-2}}_{1 \times 2^{-2}}_{1 \times 2^{-2}}_{1 \times 2^{-2}}_{1 \times 2^{-2}}_{1 \times 2^{-2} + 2^{-2}}_{1 \times 2^{$$

$$(4B.2)_{16} = (75.125)_{10}$$

$$(4 B. 2)_{16}$$
 = $4 \times 16^{1} + B \times 16^{0} + 2 \times 16^{-1}$
 $\uparrow \uparrow \uparrow \uparrow = 64 + 11 + 0.125$
 $16^{1} 16^{0} 16^{-1}$ = 75.125

진법 변환의 상호 관계 이해하기

다음의 진법 변환 문제를 해결해 보자.

01 2진수를 8진수와 16진수로 변환한 것이다. □의 ?를 채워 보자.

진법 변환의 상호 관계 이해하기

- 02 괄호에 알맞은 진법 변환 값을 적어 보자.
 - ① (2.75)10를 2진수로 변환하면 (

)2이다.

② (101011.00111)2을 10진수로 변환하면 (

)10이다.

03 계산기 프로그램을 이용하여 02번의 답이 옳은지 확인해 보자.

2) 문자 정보의 표현

◆ 문자 정보

- ❖ 한글, 한자, 영문자, 숫자 등으로 표현된 정보
- ❖ 컴퓨터 내부에서 2진수로 저장되어 표현

◆ 문자 코드

- ❖ 각 문자를 서로 구별할 수 있게 만든 코드 체계
- ❖ 대표적인 문자 코드: 아스키코드, 유니코드, 한글 코드 등

❖ 아스키(ASCII)코드

- ■미국 표준화 협회가 제정한 정보 교환용 표준 코드
- 컴퓨터 상호 간의 데이터 전송과 컴퓨터 내부에서 문자 데이터 처리에 주로 사용되는 표준화된 코드
- 7비트(bit) 조합으로 128(2⁷)개의 서로 다른 문자 표현
- 데이터 처리 장치 간의 통신을 표준화하기 위한 용도로 개발
- 현재 개인용 컴퓨터에서 표준 문자 코드로 사용
- 이후 확장된 아스키코드는 256개(2⁸)개의 문자를 표현

■ 아스키코드의 표현 문자

- 제어 부호 33자
- 특수 문자 32자
- 공백 문자 1
- 숫자 10자(0~9)
- 알파벳 대·소문자 52자(A~Z, a~z)

♦ 참고 자료

아스키코드 표

10진수	ASCII	10진수	ASCII	10진수	ASCII	10진수	ASCI
0	NULL	32	SP	64	@	96	
1	SOH	33	1	65	Α	97	а
2	STX	34		66	В	98	ь
3	ETX	35	#	67	С	99	С
4	EOT	36	\$	68	D	100	d
5	ENQ	37	%	69	Е	101	е
6	ACK	38	&	70	F	102	f
7	BEL	39		71	G	103	9
8	BS	40	(72	Н	104	h
9	HT	41)	73	- 1	105	i
10	LF	42	*	74	J	106	J j
11	VT	43	+	75	K	107	k
12	FF	44	553	76	L	108	Į,
13	CR	45	() ,	77	М	109	m
14	SO	46		78	N	110	п
15	SI	47	1	79	0	111	0
16	DLE	48	0	80	Р	112	Р
17	DC1	49	1	81	Q	113	q
18	SC2	50	2	82	R	114	r
19	SC3	51	3	83	S	115	s
20	SC4	52	4	84	Т	116	t
21	NAK	53	5	85	U	117	u
22	SYN	54	6	86	V	118	V
23	ETB	55	7	87	W	119	w
24	CAN	56	8	88	×	120	×
25	EM	57	9	89	Y	121	У
26	SUB	58	*:	90	Z	122	z
27	ESC	59	;	91	[123	{
28	FS	60	<	92	₩	124	T.
29	GS	61	-	93]	125	}
30	RS	62	>	94	•	126	~
31	US	63	?	95	_	127	DEL

❖ 유니코드(Unicode)

- 2바이트(byte) 사용
- 개발 목적:
 - 전 세계 모든 언어와 문자 코드 체계의 단일화
 - 코드 사이의 호환성 등
- ■세계 통합 코드 체계
- 16비트(2바이트)를 사용하여 문자를 나타내므로 총 65,536(2¹⁶)개의 문자와 기호 표현

❖ 한글 코드

- ■컴퓨터 내부에서 한글을 표시하기 위해 사용되는 코드
- 완성형 한글 코드와 조합형 한글 코드로 구분
- 한국 산업 표준은 국제 표준과 호환이 될 수 있는 완성형 한글 코드 채택

■ 완성형 한글 코드

- 한글을 음절 단위로 처리
- 완성된 글자 하나하나에 2바이트를 사용하여 순서 대로 고유의 코드 부여
- 최대 2,350자까지만 표현 가능(모든 한글 문자를 표시할 수 없음)

■ 조합형 한글 코드

- 한글 음절을 초성, 중성, 종성으로 구분해 표현하는 방식
- 모든 한글의 글자 표현 가능

🚁 유니코드 기록하기

다음의 유니코드를 찾아 기록해 보자.

▼ 제시 문자

찾을 문자	워드프로세서	파워포인트	유니코드(16진수)
	문자 영역	하위 집합	ㅠ니ㅗ프(10건구)
예가	한글 글자 마디	한글 음절	
정보	한글 글자 마디	한글 음절	
中世	한중일 통합 한자	한중일 통합 한자	
1 0 2	라틴	기본 라틴 문자	

유니코드 기록하기

Q 길잡이

- 한글워드프로세서
 - ① 주메뉴: [입력] [문자표] 클릭 (단축키 Ctrl] + F10).
 - ② 유니코드 문자표 탭에서 해당 문자 선택 → 오른쪽 상단의 유니

코드 값 확인

유니코드 기록하기

② MS워드 워드프로세서

- ① 주메뉴: [삽입] [텍스트 상자] [가로 텍스트 상자] 클릭 → 작업 화면에 드래그 → 사각형 상자 그림
- ② 주메뉴: [삽입] [기호] 클릭
- ③ 해당되는 문자 선택 → 하단의 문자 코드 값 확인

3) 소리 정보의 표현

- ◆ 소리 정보
 - ❖ 진동수와 진폭을 갖는 아날로그 형태의 파형
 - ❖ 컴퓨터에서 처리하기 위해 디지털 형태로 변환

◆ 아날로그 소리

❖ 표본화, 양자화, 부호화 과정을 거쳐 디지털 소리로 변환

◆ 소리 정보의 디지털화 과정

표본화(sampling)

- •아날로그 소리 신호를 일정 시간마다 표본을 추출하는 과정
- •표본화 간격이 좁을수록 음질은 좋아지지만 파일 용량이 커짐

양자화(quantization)

- •표본화된 값을 근접한 정숫값으로 조정하는과정
- •음량값(y축의 값)을 구분 하는 단계를 늘려 줄수록 보다 정확한 값을 얻을 수 있음

부호화(coding)

•양자화를 거친 정숫값을 2진수로 변환하여 디지털 소리를 구성하는 단계

◆ 소리 정보의 저장 파일 형식

파일 형식	특징
WAV	 윈도 기반의 운영 체제에서 주로 사용 압축을 하지 않은 파일 형식으로 음질은 좋으나 파일 용량이 큼.
MP3	• CD 수준의 고음질을 유지하면서도 파일 압축 효과가 좋아 현재 다양한 매체에서 사용
WMA	윈도 미디어 플레이어의 표준 파일 형식웹을 통한 실시간 재생에 주로 사용

● MID 파일

- 전자 악기와 컴퓨터 간의 정보 교환의 목적으로 제정된표준 파일 형식
 - ✓ 악보와 악기 종류, 건반을 누르는 강도 등만 수록된 파일
 - ✓ 목소리는 없고 악기 연주만 가능
 - ✔ 미디 장치의 종류와 설정에 따라 다양한 음악 재생
 - ✓ 악기 지정만 바꾸면 다른 악기로도 쉽게 변경하여 연주 가능

소리 표현 원리 실습하기

01 표본화 단계를 설명해 보자.

(가)와 같이 (나)에도 아날로그 선 위에 검은색 점을 찍어 보자.

•점이 찍힌 모양을 보았을 때, 어느 쪽이 원래의 아날로그 신호 와 더 유사한가? 그 이유는?

🗻 소리 표현 원리 실습하기

02 양자화 단계를 설명해 보자.

오른쪽 그림 (가)와 같이 (나)에도 아날로그 선 위에 표본화로 얻어진 표본값 (검은색 점)과 가까운 정숫값을 빨간색 점으로 찍어 보자.

•표본화로 얻어진 표본값(검은색 점)과 양자값(빨간색 점) 사이의 간격이 어느 쪽이 더 좁은가? 그 이유는?

🚧 소리 표현 원리 실습하기

03 부호화 단계를 설명해 보자.

양자화를 4단계로 할 경우는 로 표현하고, 양자화를 8단계로 할 경우는 로 표현한다.

04 표본 횟수를 10개로 늘리고 진폭을 16단계로 그래프에 표본값은 검은색 점을, 양자값은 빨간색 점을 찍어 보자. 또 원본 아날로그 신호와 비교했을 때 어떤 변화가 생겼는지 이야기해 보자.

사운드(소리) 편집 무료 소프트웨어

❖ 소리 편집 프로그램

✓ 컴퓨터에서 지원되는 소리를 녹음하거나 혼합 및 편집이 가능한 사운드 편집 프로그램인 오더시티(Audacity) 등이 있다.

▲오더시티(Audacity)

4) 이미지 정보의 표현

- ◆ 비트맵 방식
 - ❖ 픽셀(pixel)이 모여 하나의 그림을 이루는 방식
 - ❖ 비트맵 이미지를 확대하면 각 점이 그대로 커져 경계선 부분이 울퉁불퉁하게 보이는 계단 현상이 나타남
 - ❖ 벡터 이미지보다 용량이 크고, 처리 속도가 느림
 - ❖ 이미지의 표현 범위가 넓음

◆ 벡터 방식

- ❖ 점, 직선, 곡선, 도형 등의 이미지 구성 개체들에 대한 정보로 표현·저장된 이미지
- ❖ 프린터나 스크린 등으로 출력될 때 해당 매체에 맞게 비트맵 이미지로 변환·처리
- ❖ 화면에 선과 모양을 재생시키는 명령어 알고리즘 으로 표현
- ❖ 확대하거나 축소하여도 경계선에 계단 현상 없음
- ❖ 단순한 아이콘이나 캐릭터, 로고 디자인 등에 많이 활용

2

효율적인 디지털 표현

◆ 비트맵 이미지와 벡터 이미지의 비교

▲ 비트맵 이미지 확대

▲ 벡터 이미지 확대

◆ 비트맵 방식과 벡터 방식의 파일 형식과 특징

표현 방식	파일 형식	특징
	JPG	 압축률이 높은 파일로 인터넷에서 많이 사용 RGB 이미지에서의 모든 컬러 정보를 유지
	ВМР	윈도에서 기본적으로 지원하는 파일 형식압축하지 않은 방식이므로 파일의 크기가 큼
비트맵 방식	GIF	 인터넷에서 파일 전송 시간을 최소화하기 위해 설계된 압축 파일 이미지를 연결시킨 애니메이션 포함
	PNG	GIF와 JPG의 장점을 합친 파일 형식 이미지 변형 없이 원래 이미지를 그대로 웹상에 표현 가능
	PSD	포토샵에서 가장 기본적으로 사용하는 파일 형식작업에 이용한 다양한 효과가 모두 같이 저장

◆ 비트맵 방식과 벡터 방식의 파일 형식과 특징

표현 방식	파일 형식	특징
	Al	• 일러스트레이터에서 가장 기본적으로 사용하는 파일 형식
벡터	FLA	• 플래시에서 가장 기본적으로 사용하는 파일 형식
방식	WMF	• 클립아트와 같은 작은 크기의 그림 표현에 사용
	SVG	• 2차원 벡터 그래픽을 표현하기 위한 XML 기반의 파일 형식

이미지 편집 무료 소프트웨어

❖ 이미지 편집 프로그램

✔이미지 편집 프로그램: 픽슬러(Pixlr), 김프(GIMP) 등

▲픽슬러(Pixlr) 화면

▲김프(GIMP) 화면

5) 동영상 정보의 표현

- ◆ 동영상
 - ❖ 이미지를 연속으로 모아서 보여줌으로써 사람의 눈에 움직이는 것처럼 보이도록 하는 영상
- ◆ 프레임과 fps
 - ❖ 프레임: 동영상을 구성하는 하나의 정지 영상
 - ❖ fps(frames per second): 1초 동안에 보여 주는 프레임의 수

◆ 동영상의 품질

- ❖ 프레임 수, 픽셀 수, 픽셀당 색상의 비트(bit) 수에 의해 품질 결정
- ❖ 프레임 수, 픽셀 수, 색상 수가 많을수록 동영상이 선명해지지만 파일 용량은 커짐
- ❖ 동영상 저장 시 파일 크기를 줄이기 위해 코덱을 이용해 압축하여 저장

*코덱: 영상이나 음성 신호를 디지털로 변환하는 코더(Coder)와 디지털 신호를 아날로그형태로 변환시켜 주는 디코더(Decoder)의 기능을 모두 갖춘 기술

◆ 동영상 정보의 파일 형식

표현 형식	특징
AVI	윈도 기본 재생 동영상 파일 형식화질은 뛰어나지만 파일의 크기가 비교적 큼
MOV	애플사에서 개발한 동영상 파일 형식인터넷상에서 실시간 재생 가능
MPEG(MPG)	• 압축률이 높아 CD, DVD와 방송용 등에 많이 사용
ASF	• MS사에서 개발한 스트리밍 방식의 동영상 파일 형식

● 동영상 파일 크기 계산하기

30fps으로 촬영한 캠코더 영상은 한 픽셀에 24bit가 사용되며, 800×600의 해상도를 갖는다.

❖ 영상만 고려했을 때 동영상 1초의 대략적인 용량 계산

동영상 파일 크기 = 녹화 시간(초) × 초당 프레임 수(fps) × 화면 크기 × 픽셀당 비트 수

- = 1초 × 30프레임 × 800 × 600 × 24bit
- = 345,600,000bit
- = 43,200,000byte
- **≒ 41MB**

동영상 편집 무료 소프트웨어

❖ 동영상 편집 프로그램

✓동영상 파일을 변환해 주는 팟인코더, 이미지를 이용해 동영상을 제작하는 무비메이커 등

▲ 팟인코더 화면

▲무비메이커 화면

"세상의 모든 콘텐츠와 서비스를 팝니다!" 아마존의 창업자, 제프 베조스

◆제프 베조스(Jeffrey Preston Bezos)

- 미국의 기술 관련 기업가이자, 투자자
- 아마존닷컴의 설립자이자 현 최고 경영자(CEO)
- 아마존의 탄생: 아마존의 지류와 수량처럼 다양하고 많은 물건을 파는 쇼핑몰이 되자는 의미에서 인터넷 쇼핑몰을 'AMAZON.COM'으로 이름 붙임
- 책을 팔던 곳에서 모든 콘텐츠를 파는 곳으로 변화

https://terms.naver.com/entry.nhn?docId=3579233&cid=59086&categoryId=59090

