Newton's Laws of Motion, Monentum

and Impulse

Supplementary Questions

Part 1

1.
$$p = mV$$

= $6.6 \times 10^{-26} \times 2.0 \times 10^{7}$
= $1.32 \times 10^{-18} \text{ kg m/s}$

2.
$$P = mV$$

= $9.11 \times 10^{-31} \times 7.5 \times 10^{6}$
= 6.83×10^{-24} kg m/s

3.
$$F = \frac{\Delta p}{\Delta t}$$
; $\Delta p = m(V-u)$

$$\Delta p = 1400 \times (0-20) = (-) 28,000 \text{ kgm/s}$$

:
$$\Delta t = \frac{\Delta p}{F} = \frac{28,000}{480 \times 10^3} = \frac{0.0583 \text{ Seconds}}{...}$$

4.
$$F = \Delta p : \Delta p = m(v-u)$$

$$\Delta p = 3.4 \times 10^{6} \times (0 - 0.1)$$
= (-) 3.4×10^{-7} kgm/s

$$F = \frac{\Delta p}{\Delta t} = \frac{3.4 \times 10^{-7}}{2.2 \times 10^{-3}}$$

5.
$$F = \Delta p$$
 $\Delta p = m(v-u)$

$$\Delta p = 50 \times 10^{-3} \times (40 - 0)$$

= 2 kg m/s

$$F = \frac{\Delta p}{\Delta t} = \frac{2}{3 \times 10^{-3}}$$

$$:.F = 667 N$$

6.
$$F = \Delta p = \frac{m \Delta V}{\Delta t}$$

$$F = \frac{m}{\Delta t} \cdot \Delta v$$

$$= 900 \times 40 \times 10^{3}$$

$$:.F = 3.6 \times 10^{7} \text{N}$$

$$7.$$
 i) $\Delta p = m(v-u)$

$$\Delta p \text{ per Second} = 75 \times 550$$

$$= 41250 \text{ kg m/s}^2$$

ii)
$$F = \Delta P/\Delta t$$

$$= 41250 N$$

$$11i)$$
 4 × 41250 = $1.65 \times 10^5 N$

8. i)
$$\Delta p = P_2 - P_1$$

= $30 \times 10^3 - 60 \times 10^3$
= -30×10^3 kg m/s

ii)
$$\Delta p = P_2 - P_1$$

= $45 \times 10^3 - 15 \times 10^3$
= 30×10^3 kgmls

iii)
$$P = 60 \times 10^3 \text{ kgm/s}$$

$$M = 20 \times 10^3 \text{ kg}$$

$$P = mV \implies V = \frac{P}{m} = \frac{60 \times 10^3}{20 \times 10^3}$$

iv)
$$P = 45 \times 10^3 \text{ kgm/s}$$

 $M = 30 \times 10^3 \text{ kg}$
 $P = mV \implies V = \frac{P}{m} = \frac{45 \times 10^3}{30 \times 10^3}$

V)
$$\Delta t = 1.00 - 0.64 = 0.36$$
 Seconds.
 $F = \frac{\Delta p}{\Delta t} = \frac{30 \times 10^3}{0.36} = 8.33 \times 10^4 \text{ N}$

9.* i)
$$\Delta p = m(V-u)$$

$$= 4.8 \times 10^{-26} \times (500 - (-500))$$

$$= 4.8 \times 10^{-23} \text{ kg m/s}^{2}$$

ii)
$$F = \Delta P = 4.8 \times 10^{-23} \,\text{N}$$
 for each molecule.

of Holeaules =
$$\frac{0.1}{4.8 \times 10^{-23}}$$
= $\frac{2.08 \times 10^{21}}{1.8 \times 10^{21}}$

iii)
$$A = 1 m^2$$

= $1 \times 10^{-6} m^2$

$$P = \frac{F}{A} = \frac{0.1}{1 \times 10^{-6}}$$

1.
$$\Delta p = m(v-u)$$
; $F = \frac{\Delta p}{\Delta E}$

$$: M(y-u) = F.\Delta t$$

$$V = \frac{F \cdot \Delta t}{m}$$

$$= \frac{75 \times 7.5 \times 10^{-3}}{0.23}$$

2. i)
$$\Delta p = F \cdot \Delta t$$

= 75 × 0.03
= 2.25 kg m/s

ii)
$$\Delta p = m(v-u)$$
; $u = 0$

$$V = \frac{\Delta p}{m} = \frac{2.25}{0.025} = \frac{90 \text{ M/s}}{0.025}$$

3.
$$F = \Delta p$$

$$= \frac{0.028 \times (10-0)}{0.035}$$

4.
$$F = \Delta p = m \Delta t$$

$$F = \frac{300 \times 18 \times 10^{-3}}{60} \times 550$$

5.
$$F = \Delta P$$
 ΔE

6. i)
$$\Delta p = m(v-u)$$

= $60 \times 10^{-3} \times (25 - (-20))$
= 2.7 kg m/s

iii)
$$F = \Delta P = \frac{2-7}{0.09}$$

$$F = 30 N$$