Señales en MATLAB y SIMULINK

Práctica 1

Contenidos de la práctica

- 1. Catálogo de señales de entrada
 - Funciones de MATLAB
 - 2. Integración en SIMULINK
 - 3. Catálogo de señales de entrada discretas
- 2. Manipulación de señales discretas
- 3. Señales periódicas
 - 1. Tren de pulsos
 - Dientes de sierra
 - 3. Seno rectificado de media onda
- 4. Convolución discreta

1. Catálogo de señales de entrada

• Escalón:
$$e(t) = A \cdot u(t - t_0) = \begin{cases} A & t \ge t_0 \\ 0 & t < t_0 \end{cases}$$

• Rampa:
$$r(t) = m \cdot (t - t_0) \cdot u(t - t_0)$$

• Pulso:
$$p(t) = A \cdot (u(t - t_0) - u(t - t_1))$$

• Triangular:
$$tr(t) = m(t - t_0) \cdot u(t - t_0) - 2m\left(t - \left(\frac{t_0 + t_1}{2}\right)\right) \cdot u\left(t - \frac{t_0 + t_1}{2}\right) + m(t - t_1) \cdot u(t - t_1)$$

• Seno cardinal:
$$sinc(t) = A \frac{\sin(\frac{2\pi}{T}t)}{t}$$

• Impulso:
$$\delta(t-t_0) = 0, t \neq t_0 \int_{-\infty}^{+\infty} \delta(\tau) d\tau = 1$$

1. Catálogo de señales de entrada

1. Catálogo de señales de entrada discretas

• Escalón:
$$esc(n) = A \cdot u(n - n_0) = \begin{cases} A & n \ge n_0 \\ 0 & n < n_0 \end{cases}$$

• Impulso:
$$imp(n) = A \cdot \delta(n - n_0) = \begin{cases} A & n \ge n_0 \\ 0 & n < n_0 \end{cases}$$

- Pulso: $rect(n) = A \cdot (u(n n_0) u(n n_1))$
- Rampa: $rampa(n) = m \cdot (n n_0) \cdot u(n n_0)$
- Seno cardinal: $senoc(n) = A \frac{\sin(\frac{\pi}{N}n)}{\pi n}$
- Triangular: tri(n) = ???

1. Catálogo de señales de entrada

1.2 Funciones de MATLAB

•	[n.u]	_	escalon	ni	.nf	.n0.	A))
	[** / W]		COCATOIL	\ 	,	, ,	/	,

- [n,imp] = impulso(ni,nf,n0, A)
- [n,p] = pulso(ni,nf,n0,n1,A)
- [n,r] = rampa(ni,nf,n0,m)
- [n,sc] = senoc(N,p,A)
- [n,tri] = triangular(ni,nf,n0,n1,m)

Notación	Parámetro		
ni	Muestra de inicio de la señal		
nf	Muestra de fin de la señal		
no	Muestra de cambio		
n1	2ª muestra de cambio		
Α	Amplitud		
m	Pendiente		
N	Periodo seno cardinal		
р	Número de periodos		

1.2 Funciones de MATLAB

Ejemplo: Entrada escalón

```
function [n,u] = escalon(ni, nf, n0, A)
% function [n,u] = escalon(ni, nf, n0, A)
% Arg. entrada:
% * ni : muestra inicial de la senal
% * nf : muestra final de la senal
% * n0 : muestra de comienzo del escalon
% * A : amplitud del escalon
n = ni:nf;
n = n';
u = A*(n>=n0);
end
```

• Crear funciones para las demás entradas del catálogo

1.3 Integración en SIMULINK

SIMULINK

1.3 Integración en SIMULINK

1.3 Integración en SIMULINK

• Opciones de simulación (tiempo discreto)

2. Manipulación de señales discretas

- Manipulaciones sobre la variable independiente (n)
 - Desplazamiento $x(n-n_0), x(n+n_0)$
 - Operaciones siguientes respecto de cero!!!!!!
 - Compresión

- $x(M \cdot n) \rightarrow \text{Submuestreo}$

- Dilatación

 $\chi\left(\frac{n}{N}\right)$

- → Sobremuestreo
- ¿Qué hacer con las muestras intermedias?
- Reflexión

$$x(-n)$$

- Crear funciones en MATLAB para cada operación
 - Las funciones deben mantener los índices de entrada

3. Señales periódicas

- Tren de pulsos
 - function [t,x] = pulsos(A,w,n,Ts)

- A: amplitud de los pulsos
- w: ancho del pulso
- **n**: número de pulsos
- **Ts**: tiempo de muestreo

3. Señales periódicas

- Dientes de sierra
 - function [t,x] = dientes(A, w, n, Ts)

- A: amplitud de los dientes
- w: ancho del diente
- **n**: número de dientes
- **Ts**: tiempo de muestreo

3. Señales periódicas

- Onda senoidal rectificada (media onda)
 - function [t,x] = rectificada(A, w, n, Ts)

- A: amplitud de los pulsos
- w: ancho del pulso
- **n**: número de pulsos
- **Ts**: tiempo de muestreo

4. Convolución discreta

• Expresión analítica:

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k) \cdot h(n-k)$$

- Algoritmo
 - Paso 1. Recibir valores de secuencias x(n) y h(n)
 - Paso 2. Realizar reflexión sobre la secuencia $h(k) \rightarrow h(-k)$
 - Paso 3. Realizar desplazamiento de *n* muestras sobre la secuencia reflejada
 - Paso 4. Multiplicar las dos secuencias x(n) y h(n-k)
 - Paso 5. Realizar el sumatorio de los productos
 - Paso 6. Incrementar *n* y volver al paso 3.

4. Convolución discreta

- Implementar una función con la siguiente cabecera:
 - function cn = convolucion(x, h, n0, n1)
 - x: secuencia de entrada
 - h: secuencia de entrada
 - no: primera componente de la convolución
 - n1: última componente de la convolución
- Ejemplo:
 - -x(n)=[00000012321000000]
 - h(n) = [00000012345000000]
 - no=0; n1 = 16

4.1 Auralización

- Modelar y replicar la acústica que la forma de una habitación/espacio provoca sobre un sonido
 - Aplicado a entornos de realidad virtual
 - Efectos de sonido
 - Diseño de auditorios o salas de conciertos
- Cualquier sonido grabado "en seco" (cámara sin ecos) puede ser reproducido como si se hubiese generado en otro lugar mediante la siguiente convolución discreta

$$a(n) = h(n) * s(n)$$

donde

- -s(n) un sonido sin eco
- -h(n) la respuesta a impulso de la habitación
- -a(n) es la secuencia auralizada

5 Algoritmo de Karplus-Strong

- Sintetizamos sonidos mediante la reproducción de señales periódicas que oscilan a una determinada frecuencia
- Generalmente esas señales son sinusoidales, pero podemos utilizar cualquiera
- El algoritmo de Karplus-Strong (KS) propone utilizar señales aleatorias que decaen con el tiempo:

