REFLEXION SUR UN PROBLEME D'OPTIMISATION

Question

On note &(x) = \(\subsete | x - a \(\) on c'on suppose:

in EN et u > 2

ii/ les aç sont deux à deux distincts. Antrement dit, dans les aç il u'y a pas deux bois la vience valeur.

faduret - elle un minimum sur IR?

Résondre directement cette question n'est pas immédiat
pour tout le mande. On va danc considéran des cas
partieuliers!

Cas n = 2

2(x)= |x-a, 1+ |x-a, 1 où a, #a2.

On choiser a, = 1 et a, = 2 d'où & (x) = (x-1) + (x-2).
La calculatrice vous donne:

On pent conjecturer que ...

... Yx E 3-00 , 1] , f (x1 = ax +6 on a < 0

... Yx E [1;2], 2 (x)= &

-.. Yx E [2; tas [, f(x) = ux+p on u > 0

```
Promous la validité de cette conjecture (en la précisant).
Cast: x ∈ ]-0; 1]
                        1a1 = -a ma 60
x < 1 => x-1 <0 => 1x-1= - (x-1)
x 51 => x-25-160 => (x-21=-(x-2)
On a done our J-00; TJ:
$(x) = - x + 1 - x + 2 = -2x + 3
cas 2 : x ∈ [1:2]
                         lal = a mazo
x 3 1 = 1 x - 1 > 0 = 1 1x - 1 = x - 1
x 52 => x-250 => 1x-21=-x+2
On a done sur [1,2]:
9(x1= x-1-x+2=1
Cas 3: x € [2; +00[
x >2 => x-1 > 1 > 0 => 1x-11= x-1
x > 2 = 1 x - 2 > 0 => 1x - 21 = x - 2
On a done mue [2; too [:
$(x) = x - 1 + x - 2 = 2x - 3
Resume
   [-2x+3 nix 5+
f(x) = \begin{cases} 1 & \text{if } 1 \leq x \leq 2 \\ 2x - 3 & \text{if } x \geq 2 \end{cases}
On en déduit le Kableau des variations suivant.
```


>		-00	1 2		3 +00
1 26 -	٠ ٦ ١	-x+1	x-1	x-4	×
ا عد ٠	-21	-x + 2	-x+2	العام	х-2
ا عد-	- 3 [-x+3	-x+3	-×+3	x-3
40	ies	-3×+6	-2+4	×	3x-6

On en déduit le tablean des variations suivant.

Cas general					
	de se lance	u dans d	L longs calu	nes!!!	
On peut su	pposer que a	a, < a ₂ <	a3 < < a	u . Imag	gimous
Cetablean	whoodust d	lous le ca	s precedent.		
La 100 col	oune va co	uterior u	. Bois le tom	ne (-x+)	
			by u'a pas		
count.					
Ensuite s	w Ca ₁ ; a	27,00	a m rigue	e mains qui	
"disposait	" por rap	port a ea	1 ere colonn	e	
Swe [az;	a 3 7 , ou	a deux			
Sur Ca3;	43,04	a trious.			
···ete.					
Cas uz 2	estpain:	sue [a	p; ape 2 3,	icya u-	٩
signes usõiv	s devaut:	e soit u	-p=p, ex	autant de	
signes peus					
on en des	hur que of	Cars = &	our Cap;	2 pt z].	
Sw. 3-00	; a, J, 28	Ly a au	- minimum p	+1 60 C-	بدك
			a an waxi		
On a alor					
× - 00		Ep+1 +1	90		
		7			
\$cus	71 ->				

faduet & (ap) powe winimum swe [ap; ap+ +]. $\begin{aligned}
\xi(a_p) &= \sum_{k=1}^{\infty} |a_p - a_k| + \sum_{k=p+1}^{\infty} |a_p - a_k| \\
\xi(a_p) &= \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{\infty} a_k
\end{aligned}$ $\begin{aligned}
\xi(a_p) &= \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{\infty} a_k
\end{aligned}$ Cas u=2p + 1 est impaire: on raisonne de vieine pour montrer f(ap+1) est le minimum de f en a p+1 miquement. \$ (ap+1) = \(\frac{\S}{6} \) | ap+1 - ae | + \(\frac{\S}{6} \) | ap+1 - ae |

| \sqrt{ap+1} \) = \(\frac{\S}{6} \) | ap+1 - ae |

| \sqrt{ap+2} \) | \(\frac{\S}{2} \) | \(\ €(ap+1) = \(\int a \) = \(\int a Médiane On note que les minimums sont attents aux valeurs viedicus de {a, a, ..., a, ...