RevBayes:

Bayesian phylogenetics using probabilistic graphical models and an interpreted model specification language

SEBASTIAN HÖHNA

DEPARTMENT OF EVOLUTION & ECOLOGY, UC DAVIS DEPARTMENT OF STATISTICS, UC BERKELEY

RevBayes

- Why a new software???
 - No inherited problems
 - Extendable software
 - We need a general a flexible modeling framework
 - It needs to be fast
 - We need to be comfortable to develop in it

A new software provides more opportunities but is also more work.

Ambitions

Bastien Boussau

Ambitions

Your wildest dreams will come true!

Fredrik Ronquist

History

- 1) General and flexible model specification
 - a) Availability of (common) models
 - b) Extendability

1) General and flexible model specification

- a) Availability of (common) models
- b) Extendability

2) Easy to learn

- a) Well structured model specification
- b) Explicit models
- c) Documentation, examples and tutorials

1) General and flexible model specification

- a) Availability of (common) models
- b) Extendability

2) Easy to learn

- a) Well structured model specification
- b) Explicit models
- c) Documentation, examples and tutorials

3) Fast & Efficient

- a) Fast likelihood calculators
- b) Efficient (MCMC) algorithms, e.g., tree proposals

- 1) General and flexible model specification
 - a) Availability of (common) models
 - b) Extendability

2) Easy to learn

- a) Well structured model specification
- b) Explicit models
- c) Documentation, examples and tutorials

Graphical Models & interpreted interface &

3) Fast & Efficient

- a) Fast likelihood calculators
- b) Efficient (MCMC) algorithms, e.g., tree proposals

Specifying a model in MrBayes

Parameter	Options	Current Settin
Nucmodel	4by4/Doublet/Codon	4by4
Nst	1/2/6	6
Code	Universal/Vertmt/Mycoplasma/	
	Yeast/Ciliates/Metmt	Universal
Ploidy	Haploid/Diploid	Diploid
Rates	Equal/Gamma/Propinv/Invgamma/Adgamma	Invgamma
Ngammacat	<number></number>	4
Nbetacat	<number></number>	5
Omegavar	Equal/Ny98/M3	Equal
Covarion	No/Yes	No
Coding	All/Variable/Noabsencesites/	
	Nopresencesites	All
Parsmodel	No/Yes	No

Specifying a model in MrBayes

Damamatan	Ontions	Current Cottin
Parameter	Options	Current Settin
Nucmodel	4by4/Doublet/Codon	4by4
Nst	1/2/6	6
Code	2, 2, 0	0
code	Universal/Vertmt/Mycoplasma/	**
	Yeast/Ciliates/Metmt	Universal
Ploidy	Haploid/Diploid	Diploid
Rates	Equal/Gamma/Propinv/Invgamma/Adgamma	Invgamma
Ngammacat	<number></number>	4
Nbetacat	<number></number>	5
Omegavar	Equal/Ny98/M3	Equal
Covarion	No/Yes	No
Coding	All/Variable/Noabsencesites/	
	Nopresencesites	A11
Parsmodel	No/Yes	No

Bottom Up Design

- Standard building blocks:
 - Distributions:
 - Uniform Distribution
 - Normal Distribution
 - Exponential Distribution
 - Gamma Distribution
 - ...
 - Functions:
 - Addition
 - Multiplication
 - Exponentiation
 - ...
- Phylogenetically inspired
 - Distributions
 - Tree priors
 - Substitution processes
 - ...
 - Functions
 - Rate matrix
 - •

Assemble model from probability distributions and functions

Bottom Up Design

Building blocks:

Assembled model:

Bottom Up Design

Building blocks:

Assembled model:

Graphical Models Notation

A simple graphical model

A simple graphical model

Features Available in RevBayes

• There are many features available now.

• Currently we are at a beta testing stage.

• The release will be submitted after this workshop.

• RevBayes is still under

Available distributions/functions/models

Standard distributions:

- Uniform distribution
- Normal distribution
- Exponential distribution
- Gamma distribution
- Lognormal distribution
- Geometric distribution

0 ...

Available distributions/functions/models

Standard distributions:

- Uniform distribution
- Normal distribution
- Exponential distribution
- Gamma distribution
- Lognormal distribution
- Geometric distribution
- 0 ...

• Tree priors:

- Uniform topology (unrooted)
- Uniform node-age
- o constant-rate birth-death
- o diversity-dependent pure-birth
- constant population-size coalescent

Available distributions/functions/models

Standard distributions:

- Uniform distribution
- Normal distribution
- Exponential distribution
- Gamma distribution
- Lognormal distribution
- Geometric distribution
- 0 ..

• Tree priors:

- Uniform topology (unrooted)
- Uniform node-age
- o constant-rate birth-death
- diversity-dependent pure-birth
- constant population-size coalescent

Substitution models:

- Jukes Cantor
- Felsenstein 81
- HKY85
- General time reversible (GTR)
- Empirical Amino Acid (mtRev, ...)
- Coala
- 0 ...

Standard distributions:

- Uniform distribution
- Normal distribution
- Exponential distribution
- Gamma distribution
- Lognormal distribution
- Geometric distribution
- o ...

• Tree priors:

- Uniform topology (unrooted)
- Uniform node-age
- o constant-rate birth-death
- diversity-dependent pure-birth
- constant population-size coalescent

Substitution models:

- Jukes Cantor
- Felsenstein 81
- HKY85
- General time reversible (GTR)
- Empirical Amino Acid (mtRev, ...)
- Coala
- 0 ..

Rate variation among sites:

• Any mixture you want (e.g., gamma)!

• Clock models:

- strict clock
- iid clock rates (e.g., independent gamma rates)
- mixture distributions (e.g., UCLN and UCE)
- autocorrelated lognormal
- o RLC
- o DPP
- O ...

• Clock models:

- o strict clock
- iid clock rates (e.g., independent gamma rates)
- mixture distributions (e.g., UCLN and UCE)
- autocorrelated lognormal
- o RLC
- o DPP
- O ...

• Gene-tree species-tree:

 constant population-size multispecies coalescent

Clock models:

- strict clock
- iid clock rates (e.g., independent gamma rates)
- mixture distributions (e.g., UCLN and UCE)
- autocorrelated lognormal
- o RLC
- o DPP
- O ...

• Gene-tree species-tree:

 constant population-size multispecies coalescent

Additional models:

 Branch-heterogeneous substitution models (e.g., possibility to specify any substitution process per branch).

• Clock models:

- strict clock
- iid clock rates (e.g., independent gamma rates)
- mixture distributions (e.g., UCLN and UCE)
- autocorrelated lognormal
- o RLC
- o DPP
- O ...

• Gene-tree species-tree:

 constant population-size multispecies coalescent

Additional models:

 Branch-heterogeneous substitution models (e.g., possibility to specify any substitution process per branch).

• Inference:

- Metropolis-Hastings (MCMC and reversible jump MCMC)
- Metropolis-coupled MCMC
- Power-posteriors (Path-sampling and stepping-stone-sampling)

Primates:

- 12 taxa
- 898 sites
- 412 patterns

MCMC:

- burnin of 10⁵
- chain length of 10⁶
- only substitution model parameters are updated

	НКҮ	HKY+G	GTR	GTR+G
BEAST v1.8	95.8	325.5	110.3	354.9

*** MrBayes used two runs because the single run does not allow to set tree proposals to o.

Primates:

- 12 taxa
- 898 sites
- 412 patterns

MCMC:

- burnin of 10⁵
- chain length of 10⁶
- only substitution model parameters are updated

	НКҮ	HKY+G	GTR	GTR+G
BEAST v1.8	95.8	325.5	110.3	354.9
MrBayes 3.2***	212.2	530.6	208.4	513.9

*** MrBayes used two runs because the single run does not allow to set tree proposals to o.

Primates:

- 12 taxa
- 898 sites
- 412 patterns

MCMC:

- burnin of 10⁵
- chain length of 10⁶
- only substitution model parameters are updated

	НКҮ	HKY+G	GTR	GTR+G
BEAST v1.8	95.8	325.5	110.3	354.9
MrBayes 3.2***	212.2	530.6	208.4	513.9
RevBayes (general implementation)	152.2	640.1	202.9	693

*** MrBayes used two runs because the single run does not allow to set tree proposals to o.

Primates:

- 12 taxa
- 898 sites
- 412 patterns

MCMC:

- burnin of 10⁵
- chain length of 10⁶
- only substitution model parameters are updated

	НКҮ	HKY+G	GTR	GTR+G
BEAST v1.8	95.8	325.5	110.3	354.9
MrBayes 3.2***	212.2	530.6	208.4	513.9
RevBayes (general implementation)	152.2	640.1	202.9	693
RevBayes (char specific)	92.6	269.8	120.8	326.4

*** MrBayes used two runs because the single run does not allow to set tree proposals to o.

Primates:

- 12 taxa
- 898 sites
- 412 patterns

MCMC:

- burnin of 10⁵
- chain length of 10⁶
- only substitution model parameters are updated

	НКҮ	HKY+G	GTR	GTR+G
BEAST v1.8	95.8	325.5	110.3	354.9
MrBayes 3.2***	212.2	530.6	208.4	513.9
RevBayes (general implementation)	152.2	640.1	202.9	693
RevBayes (char specific)	92.6	269.8	120.8	326.4
RevBayes (SSE double precision)	65.1	246.7	114.8	302.6

*** MrBayes used two runs because the single run does not allow to set tree proposals to o.

Performance Study: MCMC Shortcuts

Primates:

- 12 taxa
- 898 sites
- 412 patterns

Cetaceans:

- 71 taxa
- 1140 sites
- 578 patterns

MCMC:

- burnin of 10⁵
- chain length of 10⁶
- only topology or node ages are updated

	Narrow	NodeSlide	Narrow	NodeSlide
BEAST v1.8	3:19	3:41	6:49	10:40
RevBayes (SSE double precision)	1:29	1:38	4:18	5:29

Primates

Cetaceans

A brief intro to Rev

- Rev The computing language used within RevBayes:
 - is an interactive environment
 - basic syntax is inspired by 'R' (and partially by BUGS)
 - aimed to built graphical models
 - o provides standard 'easy-to-use' math-functions

observations <- [<your data="" go="" here="">]</your>

observations <- [<your data go here>] alpha <- 3.0 beta <- 1.0

observations <- [<your data go here>]

alpha <- 3.0 beta <- 1.0 M \sim dnGamma(alpha, beta)

observations <- [<your data go here>] alpha <- 3.0 beta <- 1.0 M \sim dnGamma(alpha, beta)

lambda <- 1.0

observations <- [<your data go here>]

alpha <- 3.0 beta <- 1.0 M \sim dnGamma(alpha, beta)

lambda <- 1.0 sigma \sim dnExponential(lambda)


```
observations <- [<your data go here>]
alpha <- 3.0
beta <- 1.0
M ~ dnGamma(alpha, beta)

lambda <- 1.0
sigma ~ dnExponential(lambda)

mu := ln(M) - (power(sigma, 2.0) / 2.0)</pre>
```



```
observations <- [<your data go here>]
alpha <- 3.0
beta <- 1.0
	exttt{M} \sim 	exttt{dnGamma(alpha, beta)}
lambda <- 1.0
\texttt{sigma} \, \sim \, \texttt{dnExponential(lambda)}
mu := ln(M) - (power(sigma, 2.0) / 2.0)
N <- observations.size()</pre>
for( i in 1:N ){
  x[i] \sim dnLnorm(mu, sigma)
```



```
observations <- [<your data go here>]
alpha <- 3.0
beta <- 1.0
	exttt{M} \sim 	exttt{dnGamma(alpha, beta)}
lambda \leftarrow 1.0
sigma \sim dnExponential(lambda)
mu := ln(M) - (power(sigma, 2.0) / 2.0)
N <- observations.size()</pre>
for( i in 1:N ){
  x[i] \sim dnLnorm(mu, sigma)
  x[i].clamp(observations[i])
```