What is claimed is:

1	1.	A nozzle	for	injection	molding,	comprising:	

a thermally conductive nozzle body defining an internal passage for conveying a flow of heated melt through the nozzle body;

a nozzle tip on an end of the nozzle body, communicating with the internal passage, wherein the nozzle tip is structured for engagement with a mold for coupling the passage to an injection inlet; and,

wherein a heat flow blocking configuration is disposed between an extreme end of the nozzle tip and a point of the internal passage spaced back from the nozzle tip.

- 2. The nozzle of claim 1, wherein the heat flow blocking configuration comprises a portion having reduced thermal conduction capacity between the extreme end and the point spaced backed from the nozzle tip.
- 3. The nozzle of claim 2, wherein the portion having reduced thermal conduction comprises a reduction in wall thickness along the internal passage.
- 4. The nozzle of claim 3, wherein the reduction in wall thickness occurs at an extension of the internal passage at the extreme end of the nozzle tip.
- 5. The nozzle of claim 4, further comprising at least one fin extending laterally from the extension of the internal passage to the nozzle body, for supporting said extension.
- 6. The nozzle of claim 5, wherein the fin supporting the extension has a material gap between the extension and the nozzle body.
- 7. The nozzle of claim 1, wherein internal passage extends axially along the nozzle body to an axially placed cylindrical hub of a diameter less than a diameter of the nozzle body.

1	8.	The nozzle of claim 7, further comprising a tubular extension from					
2	the cylindrical hub, the tubular extension having a wall thickness less than a						
3	wall thickness of the cylindrical hub.						
1	9.	The nozzle of claim 8, further comprising at least one fin forming a					
2	buttress sup	porting the tubular extension relative to the cylindrical hub.					
1	10.	The nozzle of claim 9, wherein the fin forms at least two radially					
2	extending bu	uttresses.					
1	11.	The nozzle of claim 10, wherein the buttresses are diametrically					
2	opposite.	•					
1	12.	The nozzle of claim 9, wherein the fin has a gap between the					
2	cylindrical hub and a buttress forming web.						
1	13.	The nozzle of claim 9, wherein the web extends along a line of a					
2	spherical surface.						
1	14.	A nozzle for coupling to an injection mold having an injection inlet,					
2	comprising:						
3	a thermally conductive nozzle body defining an internal passage for						
4	conveying a flow of heated melt through the nozzle body;						
5	a nozzle tip on an end of the nozzle body, communicating with the						
6	internal passage, wherein the nozzle tip is structured for engagement with a						
7	mold for coupling the passage to an injection inlet; and,						
8	a thermally discontinuously conductive structure disposed between an						
9	extreme end of the nozzle tip and a point of the internal passage spaced back						
10	from the noz	zzle tip.					
1	15.	The nozzle of claim 14, wherein the nozzle substantially					
2	comprised a	thermally conductive metal material and the thermally					
3	discontinuously conductive structure comprises a gap in the thermally						

conductive metal material between the nozzle body and the nozzle tip.

- 1 16. The nozzle of claim 15, wherein the gap comprises a reduction in material thickness.
- 1 17. The nozzle of claim 16, wherein the gap comprises an opening in a supporting web.