

CLAIM LISTING:

1. (Previously Presented) A semiconductor device comprising:
 - a semiconductor layer;
 - a switching element provided on a surface of the semiconductor layer;
 - a substrate at another surface of the semiconductor layer, a portion of the semiconductor layer located between the switching element and the substrate having an impurity concentration sufficient enough so that a region adjacent to the substrate is not depleted;
 - a defect region provided in a portion of said semiconductor layer that includes an entire non depletion layer, wherein the non-depletion layer is not depleted after a switch-off operation, and a half-valued width of a lattice defect concentration of the defect region is thicker than the thickness of the non-depletion layer;
 - a peak of lattice defect concentration being within said non-depletion layer, wherein said lattice defect concentration in the non-depletion layer is sufficient to shorten lifetime of carriers and reduce turn-off time; and
 - a switching control having a current flowing in a thickness direction of the semiconductor layer when said switching element is turned on and off.
2. (Previously Presented) A semiconductor device according to claim 1 wherein said defect region does not include said switching element.
3. (Previously Presented) A semiconductor device according to claim 1 wherein the life times of carriers in said defect region are shorter than those in other portions.
4. (Previously Presented) A semiconductor device according to claim 1 comprising a bipolar transistor with an emitter, a base and a collector thereof laid out in the thickness direction of said semiconductor layer,
 - wherein said switching element is a field-effect transistor which is turned on for injecting carriers to said base of said bipolar transistor.
5. (Previously Presented) A semiconductor device according to claim 2 comprising a bipolar transistor with an emitter, a base and a collector thereof laid out in the

thickness direction of said semiconductor layer wherein said switching element is a field-effect transistor which is turned on for injecting carriers to said base of said bipolar transistor.

6. (Previously Presented) A semiconductor device according to claim 4 wherein said defect region includes an entire portion in said base in close proximity to said emitter which is not depleted after a switch-off operation.

7. (Previously Presented) A semiconductor device according to claim 5 wherein said defect region includes an entire portion in said base in close proximity to said emitter which is not depleted after a switch-off operation.

8. (Previously Presented) A semiconductor device according to claim 4 wherein said bipolar transistor and said field-effect transistor constitute an insulated-gate bipolar transistor (IGBT).

9. (Previously Presented) A semiconductor device according to claim 5 wherein said bipolar transistor and said field-effect transistor constitute an insulated-gate bipolar transistor (IGBT).

10. (Previously Presented) A semiconductor device according to claim 6 wherein said bipolar transistor and said field-effect transistor constitute an insulated-gate bipolar transistor (IGBT).

11. (Previously Presented) A semiconductor device according to claim 7 wherein said bipolar transistor and said field-effect transistor constitute an insulated-gate bipolar transistor (IGBT).