Silver - Aluminium - Magnesium

Qingsheng Ran, updated by Ibrahim Ansara[†], K.C. Hari Kumar, Patric Wollants and Yong Du

Literature Data

The Al-AgMg section of the system was studied by [1933Ota] using thermal analysis, metallography and electrical resistance measurements on twenty alloys. The materials used were of 99.9 (Ag), 99.8 (Al) and 99.8 (Mg) mass% purity. [1933Ota] proposed the section to be a pseudobinary system, which was also mentioned by [1959Zam] and [1961Fri]. [1957Kus], however, disputed this on the basis of X-ray diffraction studies of the precipitates occurring in a Al-1.98 mole% AgMg and a Al-2.22 mole% AgMg alloy.

The Mg-rich corner was investigated by thermal and metallographic analysis ([1938Nis], 37 alloys; [1939Hau], 69 alloys; [1939Saw], 54 alloys; [1945Kus1], 52 alloys and [1945Kus2], 15 alloys) and X-ray diffraction [1945Kus1, 1945Kus2]. All the authors used metals with a purity better than 99.8 mass%.

The Al-rich corner was studied by metallography ([1959Zam], 38 alloys; [1961Fri], 38 alloys and [1969Ito], 10 alloys), thermal analysis (DTA) [1961Fri, 1969Ito], X-ray diffraction ([1972Wil], 22 alloys), microhardness [1961Fri] and electrical resistivity measurements [1969Ito]. The Al had a purity of 99.98 mass% or better. [1986Cou] studied the stable and metastable precipitates of three alloys in the Al-rich corner at 120, 183 and 235°C, and determined the precipitated phases and their structures using X-ray diffraction

Alloys containing 99.99% pure Al and Ag and > 99.8% Mg were examined by [1986Sch]. The 400, 300 and 200°C sections in the Mg-rich corner were investigated based on ten samples. The equilibrium composition of the phases in two- and three-phase equilibria was determined by electron beam microanalysis and metallography.

The agreement between different experiments for the Mg-rich and the Al-rich corner is generally good, except for the concentrations of the liquid and the Mg solid solution at the invariant equilibrium. Values from [1939Saw] strongly differ from the other reported values. [1956Gla] reported the mutual solubilities of AgMg and Ag₃Al based on X-ray and microstructural investigation, without details of the experimental procedures. [1933Ota] mentioned the existence of the ternary compound AgMgAl and its equilibria with other phases. [1957Kus] determined its structure. Another ternary compound T, with a composition near 8.92 Ag - 52.87 Al - 38.21 Mg at.%, was proposed by [1965Whe]. Using TEM, he found this phase to be body-centered cubic. This phase was confirmed at a slightly different composition by [1966Aul] using X-ray diffraction. Both ternary phases, AgMgAl and T, were confirmed by XRD [1972Wil, 1986Cou]. A metastable phase (T') with the same composition as T was detected by [1976Aul] and confirmed by [1986Cou] by means of X-ray precession camera photographs. The unit cell was determined.

The present evaluation was published in the MSIT Evaluation Program earlier and reflects today's state of knowledge.

Binary Systems

The binary Ag-Al system from [Mas2], the Ag-Mg system from [Mas2] and the Al-Mg system from [1998Lia] are accepted.

Solid Phases

The structure of phase T was suggested by [1966Aul] to be the same as that of $Mg_{32}(Al,Zn)_{49}$ [1957Ber] with the composition of $(Ag,Al)_{49}Mg_{32}$, Ag:Al=1:6. The solid elements, the ternary compounds and the phases appearing in the phase diagrams presented are listed in Table 1.

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

Pseudobinary Sections

[1933Ota] reported the pseudobinary section Al-AgMg with the ternary compound AgMgAl and two invariant equilibria. [1959Zam] and [1961Fri] mentioned this and measured the solubility limit of AgMgAl in Al and the temperature at which this limit was achieved. The temperature agrees well with that reported by [1933Ota]. However, the measured solubility was 1.98 and 2.62 mole% AgMg, whereas that determined by [1933Ota] was 3.37 mole%. [1957Kus] reported that X-ray diffraction lines of a second precipitate appeared in some of their Al+2.22 mole% AgMg samples, in addition to the lines of AgMg which were always present. Therefore they disagreed that this section was a pseudobinary one. The conclusion of [1957Kus] is quite doubtful, since AgAlMg is a stable phase, and a Al - 1.98 mole% AgMg sample of [1957Kus] did not show diffraction lines of this phase. [1972Wil] also suggested that the section Al-AgMg should not be pseudobinary at 200°C. The pseudobinary section based on [1933Ota] is presented in Fig. 1.

Invariant Equilibria

A ternary eutectic was reported between 403 and 405°C [1938Nis, 1939Hau, 1939Saw, 1945Kus1, 1945Kus2]. Concerning the liquid concentrations, four authors agree fairly well in the amounts of Ag and Mg whereas [1939Saw] gave the values with \approx 7.6 at.% Ag and \approx 13.5 at.% Mg. Other reported invariant equilibria are the peritectic and eutectic in the pseudobinary system Al-AgMg. The invariant equilibria are listed in Table 2.

Liquidus Surface

[1939Hau] proposed a liquidus surface of the partial system with more than 50 mass% Mg. The contributions of [1938Nis, 1939Saw] and [1945Kus1] are in good agreement.

Isothermal Sections

Isothermal sections of the Mg-rich region are shown in Fig. 3. With decreasing temperature the solubilities of Ag and Al go down to 1 mass% Ag and 3 mass% Al at 200°C. Isothermal sections of the Al-corner at 500 and 200°C are presented in Figs. 4 and 5.

Thermodynamics

A thermodynamic calculation for the Ag-Al-Mg system has been performed by [1997Lim] who modelled the ternary compounds AgMgAl and T as $Ag_1Mg_1Al_1$ and $(Ag,Al)_{49}Mg_{32}$, respectively. The agreement between the measured and calculated invariant reactions is good. Also for the Al-AgMg pseudobinary system this is the case. However, some discrepancies between the calculated and experimentally determined isothermal sections remain.

References

[1933Ota]	Otani, B., "An Investigation of the Ternary Alloy of Al-Ag-Mg, "Silver Duralumin" (in Japanese), <i>Kinzoku no Kenkyu</i> , 10 , 262-276 (1933) (Equi. Diagram, Experimental, #, 1)
[1938Nis]	Nishimura, H., Sawamoto, H., "On the Investigations of Magnesium-Rich Mg-Al-Ag System" (in Japanese), <i>Suiyokwai-Shi</i> , 9 , 645-653 (1938) (Equi. Diagram, Experimental, 13)
[1939Hau]	Haughton, J.L., "Alloys of Magnesium, Part IX: The Constitution of the Magnesium Rich Alloys of Magnesium, Aluminium and Silver", <i>J. Inst. Metals</i> , 65 , 447-456 (1939) (Equi.

Landolt-Börnstein New Series IV/11A1

Diagram, Experimental, #, 10)

[1939Saw] Sawamoto, H., "Age-hardening of Mg-rich Mg-Al-Ag Alloys" (in Japanese), Suiyokwai-Shi, 9, 821-829 (1939) (Equi. Diagram, Experimental, 0)

- [1945Kus1] Kusnetsov V.G., Guseva, L.N., "Magnesium-rich Alloys of Magnesium with Aluminium and Silver, I: Equilibrium Diagram of System Mg-Mg₃Ag-Mg₄Al₃" (in Russian), *Bull. Acad. Sci. USSR, Classe Sci. Chim.*, 297-307 (1945) (Equi. Diagram, Experimental, 13)
- [1945Kus2] Kusnetsov, V.G., "X-Ray Investigations of Solid Solutions of Aluminium and Silver in Magnesium" (in Russian), *Bull. Acad. Sci. USSR, Classe Sci. Chim.*, 420-430 (1945) (Equi. Diagram, Experimental, 13)
- [1956Gla] Gladyshevskii, E.I., Cherkashin, E.E., "Solid Solutions on the Bases of Metallic Compounds" (in Russian), *J. Inorg. Chem.*, **1**, 1394-1401 (1956) (Equi. Diagram, Experimental, 4)
- [1957Ber] Bergman, G., Waugh, J.L.T., Pauling, L., "The Crystal Structure of the Metallic Phase Mg₃₂(AlZn)₄₉", *Acta Crystallogr.*, **10**, 254-259 (1957) (Crys. Structure, Experimental, 20)
- [1957Kus] Kusumoto, K., Ohta, M., Konishi, N., "X-Ray Studies on the Precipitation Process of Al-AgMg Alloys" (in Japanese), *Nippon Kinzoku Gakkai Shi*, **21**, 561-565 (1957) (Crys. Structure, Equi. Diagram, Experimental, 5)
- [1959Zam] Zamotorin, M.I., "The Simultaneous Solubility of Magnesium and Silver in Aluminium in the Solid State" (in Russian), *Tr. Leningrad. Polithekhn. Inst.*, No.202, 28-29 (1959) (Equi. Diagram, Experimental, 5)
- [1961Fri] Fridlyander, I.N., Zakharov, A.M., "Phase Diagram and Mechanical Properties of Al-AlAgMg Alloys" (in Russian), *Deformation Alluminium Alloys*, Sb. Statei, Moskow, 17-23 (1961) (Equi. Diagram, Experimental, Mechan. Prop., 5)
- [1965Whe] Wheeler, M.J., Blankenburgs, G., Staddon, R.W., "Evidence for a Ternary Phase in the Aluminium-Magnesium-Silver System", *Nature*, **207**, 746-767 (1965) (Crys. Structure, Experimental, 3)
- [1966Aul] Auld, J.H., Williams, B.E., "X-ray Powder Data of T Phases Composed of Aluminium and Magnesium with Silver, Copper or Zinc", *Acta Crystallogr.*, **21**, 830-831 (1966) (Crys. Structure, Experimental, 4)
- [1969Ito] Ito, T., Furuya, T., Matsuura, K., Watanabe, K., "The Solid Solubility of the α-Phase in an Al-Mg Alloy Containing 0.5 mass% Ag and the Aging Phenomena" (in Japanese), *J. Jpn. Inst. Met.*, **33**, 1232-1238 (1969) (Equi. Diagram, Experimental, 16)
- [1972Wil] Williams, B.E., "The Aluminium-rich Corner of the Al-Ag-Mg Phase Diagrams", J. Australian Inst. Metals, 17, 171-174 (1972) (Equi. Diagram, Crys. Structure, Experimental, #, 9)
- [1976Aul] Auld, J.H., Cousland, S., "The Metastable T' Phase in Al-Zn-Mg and Al-Ag-Mg Alloys", Met. Sci., 445-448 (1976) (Crys. Structure, Experimental, 10)
- [1986Cou] Cousland, S.M., Tate, G.R., "Structural Changes Associated with Solid-State Reactions in Al-Ag-Mg Alloys", *J. Appl. Crystallogr.*, **19**, 174-180 (1986) (Crys. Structure, Equi. Diagram, Experimental, 9)
- [1986Sch] Schürmann, E., Engel, R., "Investigation of the Phase Equilibria of Magnesium rich Alloys in the Quaternary System Magnesium-Silver-Aluminium-Lithium at 400, 300, and 200 °C with Respect to the Solid Solubility of the δ -Magnesium Solid Solution in Equilibrium with the λ , η , γ and ε Phases. Part 1: Experimental Conditions for Melting and Annealing as well as Results of the Determination of Solid State Phase Equilibria of Magnesium Rich Alloys of the Binary and Ternary Systems" (in German), *Giessereiforschung*, **38**, 58-66 (1986) (Equi. Diagram, Experimental, #, 25)
- [1997Lim] Lim, M.S.-S., Tibballs, J.E., Rossiter, P.L., "An Assessment of Thermodynamic Equilibria in the Ag-Al-Cu-Mg Quaternary System in Relation to Precipitation Reactions", *Z. Metallkd.*, **88**, 236-245 (1997) (Assessment, Thermodyn., Experimental, Theory, Equi. Diagram, 40)

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

[1997Su]	Su, HL., Harmelin, M., Donnadieu, P., Baetzner, C., Seifert, H. J., Lukas, H. L., Effenberg,
	G., Aldinger, F., "Experimental Investigation of the Mg-Al Phase Diagram from 47-63 at.%
	Al", J. Alloys Compd., 247, 57-65 (1997) (Equi. Diagram, Experimental, #, 20)
[1998Lia]	Liang, P., Su, HL., Donnadieu, P., Harmelin, M.G., Quivy, A., Ochin, P., Effenberg, G.,
	Seifert, H.J., Lukas, H.L., Aldinger, F., "Experimental Investigation and Thermodynamic
	Calculation of the Central Part of the Mg-Al Phase Diagram", Z. Metallkd. 89, 536-540
	(1998) (Equi. Diagram, Thermodyn., Experimental, 33)
[2003Luk]	Lukas, H.L., "Al-Mg (Aluminium-Magnesium)", MSIT Binary Evaluation Program, in
	MSIT Workplace, Effenberg, G. (Ed.), MSI, Materials Science International Services
	GmbH, Stuttgart; to be published, (2003) (Crys. Structure, Equi. Diagram, Assessment, 49)

 Table 1: Crystallographic Data of Solid Phases

Phase / Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments		
$ \begin{array}{ccc} \hline (Ag) & cF4 \\ & Fm\overline{3}m \\ & Cu \end{array} $		a = 408.61	25°C pure, [V-C2]		
(Al) < 660.452	<i>cF</i> 4 <i>Fm</i> 3 <i>m</i> Cu	a = 404.95 23°C pure, [V-C2]			
(Mg) < 650	hP2 P6 ₃ /mmc Mg	a = 320.944 c = 521.076	25°C pure, [V-C2]		
Ag ₂ Al < 726	hP2 P6 ₃ /mmc Mg	a = 287.79 c = 462.25	[V-C2] 25°C		
AgMg < 820	cP2 Pm3m CsCl	a = 331.14	[V-C2]		
AgMg ₄ < 465	hP?		[Mas2]		
AgMg ₃ < 484	cF?		[Mas2]		
Mg ₂ Al ₃ < 452	$cF1168$ $Fd\overline{3}m$ Mg_2Al_3	a = 2823.9	1168 atoms on 1704 sites per unit cell [2003Luk]) 60-62 at.% Al [1997Su]		
Mg ₁₇ Al ₁₂ < 458	cI58 I43m αMn	a = 1048.11 a = 1053.05 a = 1057.91	52.58 at.% Mg [L-B] 56.55 at.% Mg [L-B] 60.49 at.% Mg [L-B] designated as Mg ₄ Al ₃ in some publications		
AgMgAl	hP12 P6 ₃ /mmc MgZn ₂	a = 538 $c = 874$	[1972Wil]		

Landolt-Börnstein
New Series IV/11A1

MSIT®

* T, (Ag,Al) ₄₉ Mg ₃₂	cI162 Mg ₃₂ (AlZn) ₄₉	$a = 1452 \pm 1$	[1966Aul] prototype suggested but not proved, Ag:Al ≈ 1:6
* T', (Ag,Al) ₄₉ Mg ₃₂	hP*	a = 1411 $c = 2804$	[1976Aul] metastable

Table 2: Invariant Equilibria

Reaction	<i>T</i> [°C]	Type	Phase	Composition (at.%)		
				Ag	Al	Mg
$L + AgMg \Rightarrow AgAlMg$	570	p (min)	L AgMg AgMgAl	31.01 47.05 33.33	37.98 5.90 33.33	31.01 47.05 33.33
$L \rightleftharpoons Al + AgAlMg$	538	e (max)	L Al AgMgAl	21.03 2.52 33.33	57.94 94.96 33.33	21.03 2.52 33.33
$L = Mg + Al_{12}Mg_{17} + AgMg_3$	404	Е	L (Mg) Mg ₁₇ Al ₁₂ AgMg ₃	8.26 1.43 ~3 25	22.39 7.62 ~37 0.4	69.35 90.95 ~60 74.6

Temperature, °C

 $MSIT^{\circledR}$

 $(Mg)+AgMg_4+Al_{12}Mg_{17}$

20

30

(Mg)+AgMg₄

10

Mg Ag

ΑĬ

50.00

50.00

0.00

10

(Mg)

Mg

ΑI Data / Grid: at.% Fig. 5: Ag-Al-Mg. Axes: at.% (Al) 200°C isothermal section of the Al-corner $(Al)+Ag_2Al$ (AI)+AgAIMg $(Al)+Al_3Mg_2$ /(Al)+Ţ (Al)+AgMg (Al)+Al₃Mg₂+T Mg Ag Al Mg Ag Al 10.00 0.00 0.00 10.00 90.00 90.00

 $MSIT^{\circledR}$

Landolt-Börnstein New Series IV/11A1