IA - Exercicios k-NN (Sílvia)

1. Usando k-NN, indique a classe do nova amostra considerando iniciamente k=1 e depois k=3. Use a distância de Manhattan para definir os vizinhos.

$$d(x_i, x_j) = \sum_{l=1}^{d} |x_i^l - x_j^l|$$

N.	Atributo1	Atributo2	Classe
1	1	1	A
2	3	3	A
3	0	2	A
4	4	9	В
5	5	6	В
Nova Amostra	3	5	?

2. Considere que o k=3 e a distância de Manhantan (dada abaixo) como métrica. Usando o k-NN, indique a classe da nova amostra descrita por [$Atributo_1=4$, $Atributo_2=2$, $Atributo_3=3$, $Atributo_4/Classe=?$].

$$d(x_i, x_j) = \sum_{l=1}^{d} |x_i^l - x_j^l|$$

N.	Atributo_1	Atributo_2	Atributo_3	Atributo_4
1	5	4	3	1
2	1	0	1	2
3	2	1	0	2
4	6	3	6	1
5	3	4	2	3
6	3	3	1	3