

SOLUCIONES	
Nombre:	Nota:/10
1. (10 points) Complete los espacios en blanco en el siguiente párraf Sea $X=\operatorname{Spec} A$ un esquema afín. Entonces las funciones regulare principal $D(f)$ vienen dadas por	
$\mathcal{O}_X(D(f)) = \underline{A_f}$	

En particular, las secciones globales son:

$$\mathcal{O}_X(X) = \underline{A}$$
.

Y la fibra en un punto $x = \mathfrak{p} \in X$ es:

$$\mathcal{O}_{X,x} = \underline{A_{\mathfrak{p}}}$$
.

Si A es además un dominio entero con cuerpo de fracciones K, el punto genérico de X se define como el punto $\xi \in X$ que corresponde al ideal primo 0.

El punto genérico tiene la propiedad de pertenecer a todos los <u>abiertos no vacíos</u> de X. La fibra genérica viene dada por:

$$\mathcal{O}_{X,\xi} = \underline{K}$$
.

Se sigue que para todo abierto $U\subset X$, el homomorfismo canónico $\mathcal{O}_X(U)\to \mathcal{O}_{X,\xi}$ tiene como núcleo:

$$\ker(\mathcal{O}_X(U) \to \mathcal{O}_{X,\xi}) = \underline{0}$$

Por lo que \mathcal{O}_X se puede ver como un sub-haz del pre-haz constante \underline{K} , el cual es en realidad un <u>haz</u> dado que todo abierto U de X es <u>conexo</u>.