a) $\forall x (Filo(x) \rightarrow \exists y (Livno(x) \land Escrever(x;y)))$ b) Ax Ay ((Filo(x) x Aluno De (xy)) -> J2 (Limo(2) V Escher (2) 1 Ler (x,2))) (2) Aqui consideremos • $C_{X} = C_{X} = C_{X}$ Introduzionos o sículsolo de fungão f de una argumento:

 $A \times (b(x't(x)) \vee O(x't(x)))$

· (2 + 7) = 4 + ((-3) + 7) + (-3) = 2 + ((-3) + 7) = 2 +

Introduzimos o simbolo de função q de uma variável:

4x4y42(7P6xy)07Q(xz)0R(x,g(x))

Finalmente, cousideremos $\gamma = \exists x \forall w \ \gamma R(x, \omega)$

Introduzimos o símbolo de constante C:

Yw 7 R (c,w)

Portanto, oblémuse as dausulas

P(x, f(x,1), Q(x, f(x))

7P(x2, y2) U7Q(x2, 22) UR(x2, g(x2)),

7 R (c, w)

A dedugo: H 1) D(x" t(x")) 2) 7 P(x2, 1/2) U7 Q(x2, 22) UR (x2, g(x2)) H 3) 7Q(x2,22) UR(x2,g(x2)) Res (1,2), mgu (P(x1, f(x1), P(x2, y2)) $= \{ x_2/x_1 \} f(x_1)/y_2 \}$ 4) Q (x, f(x)) H 5) R(x, g(x)) Res(3,4) mgu (Q(x2,22), Q(y,, f(y,)) = { /1/x21 f(x)/22} 6) $\neg R(c_1\omega)$ 7) L Res (5,6) mgu(R(x,g(x)),R(c,w))={c(x,g(c)/w}

Assim, podemos conduit que $\{e_1, e_2, 74\}$ e'inconsistente, portanto, $\{e_1, e_2 \neq 4\}$

Parte B

Resolução 1:

Número de maneiras de escolher um livro em francês e um livro em espanhol: $5 \times 7 = 35$ Número de maneiras de escolher um livro em francês e um livro em português: $5 \times 11 = 55$ Número de maneiras de escolher um livro em espanhol e um livro em português: $7 \times 11 = 77$ Número de maneiras de escolher dois livros em línguas diferentes:

$$5 \times 7 + 5 \times 11 + 7 \times 11 = 35 + 55 + 77 = 167.$$

Resolução 2:

Número de maneiras de escolher dois livros: $\binom{5+7+11}{2} = \binom{23}{2} = \frac{23\times22}{2} = 23\times11 = 253$ Número de maneiras de escolher dois livros em francês: $\binom{5}{2} = 10$

Número de maneiras de escolher dois livros em espanhol: $\binom{7}{2} = 21$

Número de maneiras de escolher dois livros em português: $\binom{11}{2} = 55$

Número de maneiras de escolher dois livros em línguas diferentes:

$$\binom{23}{2} - \binom{5}{2} - \binom{7}{2} - \binom{11}{2} = 253 - 10 - 21 - 55 = 167.$$

4. (a)
$$\binom{4+7+1+2}{4,7,1,2} = \binom{14}{4,7,1,2} = \frac{14!}{4!7!2}$$
.
(b) $\binom{1+7+1+2}{1,7,1,2} = \binom{11}{1,7,1,2} = \frac{11!}{7!2}$.

O número de soluções pedido é o mesmo que o número de soluções da equação

$$x_1 + x_2 + x_3 + x_4 = 15 - 3 = 12$$

 $com x_1, x_2, x_3, x_4 \in \mathbb{N} e x_1 \leq 2.$

Resolução 1: Notamos que $x_1 \in \{0, 1, 2\}$.

Quando $x_1 = 0$, a equação $x_2 + x_3 + x_4 = 12$ tem $\binom{3}{12} = \binom{3+12-1}{12} = \binom{14}{12} = \frac{14\times13}{2} = 91$ soluções. Quando $x_1 = 1$, a equação $x_2 + x_3 + x_4 = 12 - 1 = 11$ tem $\binom{3}{11} = \binom{3+11-1}{11} = \binom{13}{11} = \frac{13\times12}{2} = 78$ soluções.

Quando $x_2 = 2$, a equação $x_2 + x_3 + x_4 = 12 - 2 = 10$ tem $\binom{3}{10} = \binom{3+10-1}{10} = \binom{12}{10} = \frac{12 \times 11}{2} = 66$ soluções.

Número de soluções que satisfazem as condições do enunciado:

$$\binom{3}{12}$$
 + $\binom{3}{11}$ + $\binom{3}{10}$ = 91 + 78 + 66 = 235.

Resolução 2: O número de soluções da equação $x_1 + x_2 + x_3 + x_4 = 12$ é

$$\binom{4}{12}$$
 = $\binom{4+12-1}{12}$ = $\binom{15}{12}$ = $\frac{15 \times 14 \times 13}{3 \times 2}$ = $5 \times 7 \times 13 = 455$.

O número de soluções da equação $x_1+x_2+x_3+x_4=12$ em que $x_1\geq 3$ é o mesmo que o número de soluções da equação $x_1+x_2+x_3+x_4=12-3=9$, ou seja,

$$\binom{4}{9} = \binom{4+9-1}{9} = \binom{12}{9} = \frac{12 \times 11 \times 10}{3 \times 2} = 2 \times 11 \times 10 = 220.$$

Número de soluções que satisfazem as condições do enunciado:

$$\binom{4}{12}$$
 - $\binom{4}{9}$ = 455 - 220 = 235.

 $= \left[2000 + \left[2000 - \left[2000 - 133 + 100 - 33\right]\right]$ = 200 (M) (M) (M) = 1000-200 = 800 Resposta: 800 númeral.