

Facultad de Matemática, Astronomía y Física y Computación Universidad Nacional de Córdoba

Ciencia de Datos

Práctico N°9: Métodos de Ensemble

Problema 1: Para la realización de este práctico resulta útil consultar la ipynb de Sebastian Raschka, pero se propone cambiar de dataset y usar en su lugar el *Breast Cancer Wisconsin* dataset. Con el fin de evaluar por separado los modelos que integran el emsemble del test del emsemble, separar el 25 % de los datos para test y a su vez dividir el conjunto de entrenamiento, separando de este un 25 % para validación de cada modelo.

Problema 2: Votación de la mayoría

- a) Construir tres árboles de decisión con diferentes profundidades usando el parámetro max_depth = 1,2,3. Luego construir un emsemle con igual peso para esos árboles usando EnsembleVoteClassifier() de la librería mlxtend.classifier; o bien, VotingClassifier de scikit-learn.
- b) Reportar la accuracy en la validación de cada modelo por separado y en el test del emsemble.

Problema 3: Bagging: Bootstrap Aggregating

Usando BaggingClassifier(), construir una bolsa de 500 árboles de decisión, usando todas las características, bootstrap con reemplazo y out-of-bag samples para estimar el error de generalización. Reportar accuracy out-of-bag (OOB) y sobre el set de test.

Problema 4: Adaptive Boosting (Adaboost)

Utilizar 500 tree stumps (max_depth=1) para implementar AdaBoostClassifier() con el algoritmo SAMME.R, usando todas las variables. Reportar accuracy sobre el set de test.

Problema 5: Gradient Boosting

Implementar GradientBoostingClassifier() con los valores default de los parámetros y estudiar el impacto de los parámetros n_estimators, learning_rate, max_depth en accuracy. ¿En qué casos se recomienda usar HistGradientBoostingClassifier()?

Problema 6: Random Forests

Implementar RandomForestClassifier() y estudiar el significado de los parámetros max_depth, max_features, min_samples_leaf y min_samples_split.

FaMAF 2023