SEQUENCE LISTING

- <110> Hair, Gregory A. Boden, Scott D.
- <120> Novel Bone Mineralization Proteins, DNA, Vectors, Expression Systems
- <130> 06148.0115
- <140>
- <141>
- <150> 60/054,219
- <151> 1997-07-30
- <150> 60/080,407
- <151> 1998-04-02
- <160> 35
- <170> PatentIn Ver. 2.0
- <210> 1
- <211> 457
- <212> PRT
- <213> Rattus norvegicus
- <400> 1
- Met Asp Ser Phe Lys Val Val Leu Glu Gly Pro Ala Pro Trp Gly Phe 1 5 10 15
- Arg Leu Gln Gly Gly Lys Asp Phe Asn Val Pro Leu Ser Ile Ser Arg 20 25 30
- Leu Thr Pro Gly Gly Lys Ala Ala Gln Ala Gly Val Ala Val Gly Asp 35 40 45
- Trp Val Leu Ser Ile Asp Gly Glu Asn Ala Gly Ser Leu Thr His Ile
 50 55 60
- Glu Ala Gln Asn Lys Ile Arg Ala Cys Gly Glu Arg Leu Ser Leu Gly 65 70 75 80
- Leu Ser Arg Ala Gln Pro Ala Gln Ser Lys Pro Gln Lys Ala Leu Three 85 90 95
- Pro Pro Ala Asp Pro Pro Arg Tyr Thr Phe Ala Pro Ser Ala Ser Leu

100	105	110

Asn	Lys	Thr 115	Ala	Arg	Pro	Phe	Gly 120	Ala	Pro	Pro	Pro	Thr 125	Asp	Ser	Ala
Leu	Ser 130	Gln	Asn	Gly	Gln	Leu 135	Leu	Arg	Gln	Leu	Val 140	Pro	Asp	Ala	Ser
Lys 145	Gln	Arg	Leu	Met	Glu 150	Asn	Thr	Glu	Asp	Trp 155	Arg	Pro	Arg	Pro	Gly 160
Thr	Gly	Gln	Ser	Arg 165	Ser	Phe	Arg	Ile	Leu 170	Ala	His	Leu	Thr	Gly 175	Thr
Glu	Phe	Met	Gln 180	Asp	Pro	Asp	Glu	Glu 185	Phe	Met	Lys	Lys	Ser 190	Ser	Gln
Val	Pro	Arg 195	Thr	Glu	Ala	Pro	Ala 200	Pro	Ala	Ser	Thr	Ile 205	Pro	Gln	Glu
Ser	Trp 210	Pro	Gly	Pro	Thr	Thr 215	Pro	Ser	Pro	Thr	Ser 220	Arg	Pro	Pro	Trp
Ala 225	Val	Asp	Pro	Ala	Phe 230	Ala	Glu	Arg	Tyr	Ala 235	Pro	Asp	Lys	Thr	Ser 240
Thr	Val	Leu	Thr	Arg 245	His	Ser	Gln	Pro	Ala 250	Thr	Pro	Thr	Pro	Leu 255	Gln
Asn	Arg	Thr	Ser 260	Ile	Val	Gln	Ala	Ala 265	Ala	Gly	Gly	Gly	Thr 270	Gly	Gly
Gly	Ser	Asn 275	Asn	Gly	Lys	Thr	Pro 280	Val	Cys	His	Gln	Cys 285	His	Lys	Ile
Ile	Arg 290	Gly	Arg	Tyr	Leu	Val 295	Ala	Leu	Gly	His	Ala 300	Tyr	His	Pro	Glu
Glu 305	Phe	Val	Cys	Ser	Gln 310	Cys	Gly	Lys	Val	Leu 315	Glu	Glu	Gly	Gly	Phe 320
Phe	Glu	Glu	Lys	Gly 325	Ala	Ile	Phe	Cys	Pro 330	Ser	Cys	Tyr	Asp	Val 335	Arg
Tyr	Ala	Pro	Ser 340	Cys	Ala	Lys	Cys	Lys 345	Lys	Lys	Ile	Thr	Gly 350	Glu	Ile
Met	His	Ala	Leu	Lys	Met	Thr	Trp	His	Val	Pro	Cys	Phe	Thr	Cys	Ala

355 360 365

Ala Cys Lys Thr Pro Ile Arg Asn Arg Ala Phe Tyr Met Glu Glu Gly 370 375 380

Ala Pro Tyr Cys Glu Arg Asp Tyr Glu Lys Met Phe Gly Thr Lys Cys 385 390 395 400

Arg Gly Cys Asp Phe Lys Ile Asp Ala Gly Asp Arg Phe Leu Glu Ala 405 410 415

Leu Gly Phe Ser Trp His Asp Thr Cys Phe Val Cys Ala Ile Cys Gln 420 425 430

Ile Asn Leu Glu Gly Lys Thr Phe Tyr Ser Lys Lys Asp Lys Pro Leu 435 440 445

Cys Lys Ser His Ala Phe Ser His Val 450 455

<210> 2

<211> 1696

<212> DNA

<213> Rattus norvegicus

<400> 2

gcacgaggat cccagcgcgg ctcctggagg ccgccaggca gccgcccagc cgggcattca 60 qqaqcaqqta ccatggattc cttcaaggta gtgctggagg gacctgcccc ttggggcttc 120 cgtctgcaag ggggcaagga cttcaacgtg cccctctcca tctctcggct cactcctgga 180 ggcaaggccg cacaggccgg tgtggccgtg ggagactggg tactgagtat cgacggtgag 240 aacgccggaa gcctcacaca cattgaagcc cagaacaaga tccgtgcctg tggggagcgc 300 ctcagcctgg gtcttagcag agcccagcct gctcagagca aaccacagaa ggccctgacc 360 cotcoogcog accoccogag gtacactttt gcaccaagog cotcoctcaa caagacggcc 420 eggeeetteg gggeaeceee acetaetgae agegeeetgt egeagaatgg acagetgete 480 agacagetgg teeetgatge cagcaageag eggetgatgg agaatactga agactggege 540 ccgcggccag ggacaggcca gtcccgttcc ttccgcatcc ttgctcacct cacgggcaca 600 gagttcatgc aagacccgga tgaggaattc atgaagaagt caagccaggt gcccaggaca 660 gaagececag ecceagecte aaceatacee caggaateet ggeetggeee caccacecee 720 agecceacea geogeceace etgggeegta gateetgeat ttgetgageg etatgeceea 780 gacaaaacca gcacagtgct gacccgacac agccagccag ccacacctac gcctctgcag 840 aaccgcacct ccatagttca ggctgcagct ggagggggca caggaggagg cagcaacaat 900 ggcaagacgc ctgtatgcca ccagtgccac aagatcatcc gcggccgata cctggtagca 960 ctqqqccacq cqtaccatcc tqaqqaattt qtqtqcaqcc aqtqtqqqaa qqtcctqqaa 1020 gagggtggct tcttcgagga gaagggagct atcttttgcc cctcctgcta tgatgtgcgc 1080 tatgcaccca gctgtgccaa atgcaagaag aagatcactg gagagatcat gcatgcgctg 1140 aagatgacct ggcatgttcc ctgcttcacc tgtgcagcct gcaaaacccc tatccgcaac 1200 agggetttet acatggagga gggggetece tactgegage gagattaega gaagatgttt 1260

```
qqcacaaaqt gtcgcggctg tgacttcaag atcgatgccg gggaccgttt cctggaagcc 1320
ctgggtttca gctggcatga tacgtgtttt gtttgcgcaa tatgtcaaat caacttggaa 1380
ggaaagacet tetaeteeaa gaaggacaag ceeetgtgca agageeatge etttteeeae 1440
qtatqaqcac ctcctcacac tactqccacc ctactctgcc agaagggtga taaaatgaga 1500
qaqctctctc tocctcgacc tttctgggtg gggctggcag ccattgtcct agccttggct 1560
cetggceaga teetgggget ceetecteac agteceettt cecacactic etecaccace 1620
accaccytca ctcacaggty ctagcctcct agccccagtt cactctggty tcacaataaa 1680
                                                                   1696
cctgtatgta gctgtg
<210> 3
<211> 260
<212> DNA
<213> Rattus norvegicus
<400> 3
ttctacatgg aggaggggc tccctactgc gagcgagatt acgagaagat gtttggcaca 60
aagtgtcgcg gctgtgactt caagatcgat gccggggacc gtttcctgga agccctgggt 120
ttcagctggc atgatacgtg ttttgtttgc gcaatatgtc aaatcaactt ggaaggaaag 180
accttctact ccaagaagga caagcccctg tgcaagagcc atgccttttc ccacgtatga 240
                                                                   260
qcacctcctc acactactgc
<210> 4
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Differential Display PCR Primer
<400> 4
                                                                   16
aagctttttt tttttg
<210> 5
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Differential Display PCR Primer
<400> 5
                                                                   13
aagcttggct atg
<210> 6
<211> 223
<212> DNA
<213> Rattus norvegicus
```