Estatística

11 – Comparação de parâmetros de duas populações

Página da FEG: www.feg.unesp.br/~marcela

Dados Emparelhados

Exemplo: xi: peso da cobaia i no início da semana

COBAIA	Xi	Yi
1	635	640
2	704	712
3	662	681
4	560	558
5	603	610
6	745	740
7	698	707
8	575	585
9	633	635
10	669	682

$$H_0: \mu_d = 0$$

 $H_1: \mu_d > 0$

$$H_1: \mu_d > 0$$

Comparação de Médias de Duas Populações Dados Emparelhados

Exemplo: xi: peso da cobaia i no início da semana

COBAIA	Xi	Yi	Di
1	635	640	5
2	704	712	8
3	662	681	19
4	560	558	-2
5	603	610	7
6	745	740	-5
7	698	707	9
8	575	585	10
9	633	635	2
10	669	682	13
TOTAL	_		66

$$\overline{d} = \frac{\sum d_i}{n} = \frac{66}{10} = 6.6$$

Comparação de Médias de Duas Populações Dados Emparelhados

Exemplo: xi: peso da cobaia i no início da semana

COBAIA	Xi	Yi	Di	Di ²
1	635	640	5	25
2	704	712	8	64
3	662	681	19	361
4	560	558	-2	4
5	603	610	7	49
6	745	740	-5	25
7	698	707	9	81
8	575	585	10	100
9	633	635	2	4
10	669	682	13	169
TOTAL			66	882

$$s_d^2 = \frac{\sum d_i^2 - (\sum d_i)^2 / n}{n - 1} = \frac{882 - (66)^2 / 10}{10 - 1} = 49,6$$

Comparação de Médias de Duas Populações **Dados Emparelhados**

Exemplo: xi: peso da cobaia i no início da semana

yi: peso da cobaia i no fim da semana

COBAIA	Xi	Yi	Di	Di ²
1	635	640	5	25
2	704	712	8	64
3	662	681	19	361
4	560	558	-2	4
5	603	610	7	49
6	745	740	-5	25
7	698	707	9	81
8	575	585	10	100
9	633	635	2	4
10	669	682	13	169
TOTAL			66	882

$$H_0: \mu_d = 0$$

 $H_1: \mu_d > 0$

$$H_1: \mu_d > 0$$

Rejeitar H₀ se:

$$\frac{\overline{d}}{s_d / \sqrt{n}} > t_{n-1,\alpha}$$

Dados Emparelhados

Exemplo: xi: peso da cobaia i no início da semana

COBAIA	Xi	Yi	Di	Di ²
1	635	640	5	25
2	704	712	8	64
3	662	681	19	361
4	560	558	-2	4
5	603	610	7	49
6	745	740	-5	25
7	698	707	9	81
8	575	585	10	100
9	633	635	2	4
10	669	682	13	169
TOTAL			66	882

$$H_0: \mu_d = 0$$

 $H_1: \mu_d > 0$

$$H_1: \mu_d > 0$$

$$\frac{\overline{d}}{s_d / \sqrt{n}} = \frac{6.6}{7,043 / \sqrt{10}} = 2.96 > t_{n-1,\alpha} = t_{9,0,01} = 2.821$$

Dados Emparelhados

Exemplo: xi: peso da cobaia i no início da semana

COBAIA	Xi	Yi	Di	Di ²
1	635	640	5	25
2	704	712	8	64
3	662	681	19	361
4	560	558	-2	4
5	603	610	7	49
6	745	740	-5	25
7	698	707	9	81
8	575	585	10	100
9	633	635	2	4
10	669	682	13	169
TOTAL			66	882

$$H_0: \mu_d = 2$$

$$H_0: \mu_d = 2$$

 $H_1: \mu_d > 2$

$$\frac{\vec{d} - 2}{s_d / \sqrt{n}} = \frac{4.6}{7,043 / \sqrt{10}} = 2,07 < t_{n-1,\alpha} = t_{9,0,01} = 2,821$$

Dados Não Emparelhados

Exemplo: Resistência de dois tipos de concreto.

Concreto 1	Concreto 2
54	50
55	54
58	56
51	52
57	53

$$\overline{x_1} = 55$$
 $\overline{x_2} = 53$
 $s_1^2 = 7.5$
 $s_2^2 = 5.0$

Ao nível de significância de 5%, há evidência de que o Concreto 1 seja mais resistente do que o Concreto 2 ?

Rejeitar H₀ se:

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 > \mu_2 \end{cases}$$

$$\frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s_1^2 / n_1 + s_2^2 / n_2}} > t_{n_1 + n_2 - 1, \alpha}$$

Dados Não Emparelhados

Exemplo: Resistência de dois tipos de concreto.

Concreto 1	Concreto 2
54	50
55	54
58	56
51	52
57	53

Ao nível de significância de 5%, há evidência de que o Concreto 1 seja mais resistente do que o Concreto 2 ?

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 > \mu_2 \end{cases}$$

$$\frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s_1^2 / n_1 + s_2^2 / n_2}} = 1,26 < t_{n_1 + n_2 - 1,\alpha} = 1,86$$

Pesquisa de Opinião acerca da revista X

	Apreciam	Não Apreciam	Total
Homens (1)	32	48	80
Mulheres (2)	26	24	50

$$\begin{cases} H_0 : p_1 = p_2 \\ H_1 : p_1 \neq p_2 \end{cases}$$

$$p'_1 = \frac{f_1}{n_1} = \frac{32}{80} = 0,40$$

$$p'_2 = \frac{f_2}{n_2} = \frac{26}{50} = 0.52$$

Pesquisa de Opinião acerca da revista X

	Apreciam	Não Apreciam	Total
Homens (1)	32	48	80
Mulheres (2)	26	24	50

$$\begin{cases} H_0 : p_1 = p_2 \\ H_1 : p_1 \neq p_2 \end{cases}$$

Rejeitar H₀ se:

$$\frac{|p_1' - p_2'|}{\sqrt{p_1' \cdot (1 - p_1') / n_1 + p_2' \cdot (1 - p_2') / n_2}} > Z_{\alpha/2}$$

Pesquisa de Opinião acerca da revista X

	Apreciam	Não Apreciam	Total
Homens (1)	32	48	80
Mulheres (2)	26	24	50

$$\begin{cases} H_0 : p_1 = p_2 \\ H_1 : p_1 \neq p_2 \end{cases}$$

$$\frac{|p'_1 - p'_2|}{\sqrt{p'_1 \cdot (1 - p'_1) / n_1 + p'_2 \cdot (1 - p'_2) / n_2}} = 1,34 < Z_{\alpha/2} = 1,96$$

$$\begin{cases}
 n_1 p_1 \ge 5 \\
 n_1 (1 - p_1) \ge 5
\end{cases}$$

$$\Rightarrow p_1 \to Normal \left(p_1, \frac{p_1 (1 - p_1)}{n_1} \right)$$

$$\begin{cases} n_2 p_2 \ge 5 \\ n_2 (1 - p_2) \ge 5 \end{cases} \implies p_2 \rightarrow Normal\left(p_2, \frac{p_2 (1 - p_2)}{n_2}\right)$$