

FUNDAMENTALS OF ACCELERATED DATA SCIENCE WITH RAPIDS

COURSE GOALS

Learn the core tools to use RAPIDS for everyday data science

Understand RAPIDS' scalability from workstation and cluster to cloud and HPC

Build the foundations for you to learn RAPIDS capabilities now and in the future

TRADITIONAL MODEL

RAPIDS MODEL

RAPIDS PLATFORM

Specialized package examples

cuSpatial cuSignal CLX
Geospatial Analytics Signal Processing Cyber Analytics

DATA SCIENCE TOOLSETS

	CPU	GPU/RAPIDS
Data handling	pandas	cuDF
Machine learning	scikit-learn	cuML
Graph analytics	NetworkX	cuGraph

	CPU	GPU/RAPIDS
Viz	Bokeh/ Datashader	cuXfilter
Geospatial	GeoPandas/ SciPy.spatial	cuSpatial
Signals	SciPy.signal	cuSignal
Cyber	cyberpandas	CLX

REQUIREMENTS

Appropriate OS: Ubuntu 16.04/18.04/20.04, CentOS/RHEL 7, Windows with WSL

(preview)

NVIDIA Pascal™ GPU architecture or newer

CUDA 10.1.2/10.2/11.x, drivers, etc. (see rapids.ai)

Open source/flexible mindset

- Using v20.02 in this class
- New versions released regularly

RAPIDS

Source code on GitHub

Containers on NGC & Docker Hub

Conda packages

https://github.com/rapidsai https://ngc.nvidia.com

https://anaconda.org/rapidsai

On-premises

rapids.ai

In the cloud

EXERCISE DATA

Fused and simulated from several sources

- Population data
 - Simulated from UK Census data on England and Wales, both from details (age, sex, given name, county) and aggregate statistics (geographic coordinates, employment)
- Road network data
 - Nodes (endpoints/junctions) and edges of the entire road network of Great Britain
- Epidemic data
 - Detailed hospital/clinic data from the UK National Health Service
 - Spread modeled on academic research on Ebolavirus risk factors

SECTION 1 01 - 04

RAPIDS PLATFORM

CUDF DATAFRAMES

Pandas model: observations/records (rows) of features (columns)

Each feature/column has a single datatype

Simple, flexible interface to complex, performant datastructure

Special emphasis on columnar structure

RAPIDS PLATFORM

APACHE ARROW

Columnar layout leverages GPU strengths

Emphasis on zero-copy and shallow-copy operations minimizes a key bottleneck

Consistency with CPU version simplifies development and conversion

APACHE ARROW

One format for interoperability and efficiency

INTEROPERABILITY

DLPack and __cuda_array_interface__

TRY NOTEBOOKS 01 - 04 NOW

docs.rapids.ai/api

SECTION 1 05

INTEROPERATING WITH CUPY

CuPy:cuDF :: numpy:pandas

Not as fast as an optimized CUDA kernel, but very efficient for coding

Important to keep track of data type requirements (e.g. contiguity)

COORDINATE SYSTEMS

We will be using data that was provided in both ellipsoidal and grid coordinate formats

Grid coordinates make distance calculations more convenient within a specific area

Fusing geospatial datasets like this requires complex coordinate conversions—a perfect job for GPU acceleration!

TRY NOTEBOOK 05 NOW

docs.rapids.ai/api

SECTION 1 06

RAPIDS PLATFORM

CUGRAPH

Follows NetworkX convention for graph object

Key differences to take advantage of GPU power

Exercises

- Now: steps to build a graph with from_cudf_edgelist
- Later: traversing the graph with single-source shortest path

Not shown today: analyzing a graph for centralities, communities, link prediction...

BUILDING A GRAPH

With from_cudf_edgelist

Undirected (Graph) vs directed (DiGraph)

Single vs Multi graphs

One source column, one destination column, one edge weight column

TRY NOTEBOOK 06 NOW

docs.rapids.ai/api

SECTION 1 07 - 08

RAPIDS PLATFORM

DISTRIBUTED DATAFRAMES

Scaling seamlessly

WORKING WITH PARTITIONS

No intrinsic row ordering, so no .iloc row selection, and index is essential

Key methods operate on whole dataframe partitions

Remember distinction between multi-GPU and multi-node/multi-GPU algorithms

Rebalance across workers when necessary

TASK SCHEDULER

Enabling efficient compute

Simple operations

Compound operations

Complex DAG task chains

WORKING WITH THE SCHEDULER

Let Dask help you overcome your storage I/O barriers

Limit .compute (stay in Dask) until necessary

For exploratory and experimental data science, don't be afraid to .persist

Remember that everything in a graph will be rerun without .persist/.compute—including random number generation

TRY NOTEBOOKS 07 - 08 NOW

docs.rapids.ai/api