

 $f(b, \omega) = \frac{1}{1-1} f(y^{(i)})$ The property $f(y^{(i)})$, but $f(y^{(i)})$ is not $f(y^{(i)}-y^{(i)})$ We choose board ω that maximize $f(b, \omega)$

Log-likelihood for regression

3

Equivalently, we choose by ω to maximize the log-likelihood $\ell(b, \omega) = \log \{I(b, \omega)\}$

... Or

minimize the negative log-likelihood cost function $\mathcal{J}(b,\omega) = -\log\{\mathcal{I}(b,\omega)\}$ = - log { II f(y(1))} = - log { T = 1 = 202 (y") - a")2} $= -\sum_{i=1}^{m} \log \left\{ \sqrt{2\pi r \sigma^2} e^{-\frac{1}{2\sigma^2} (y^{(i)} - a^{(i)})^2} \right\}$ $= - \sum_{i=1}^{m} \left[\log \left(\frac{1}{\sqrt{12\pi \sigma^2}} \right) - \frac{1}{2\sigma^2} \left(y^{(i)} - a^{(i)} \right)^2 \right]$ $= -m \cdot \log(\sqrt{1200^2}) + \frac{1}{20^2} \sum_{i=1}^{m} (y^{(i)} - a^{(i)})^2$ =-m. log (\(\sqrt{1200} \) + \(\frac{1}{200} \) \(\frac{1}{200 Minimizing the above is equivalent to minimizing. $RSS = \sum_{i=1}^{m} \{y^{(i)} - (b + \omega_i x_i^{(i)} + \cdots + \omega_p x_p^{(i)})\}^2$