TRANSFORMATIONS FROM THEORETICAL HERTZSPRUNG-RUSSELL DIAGRAMS TO COLOR-MAGNITUDE DIAGRAMS: EFFECTIVE TEMPERATURES, B-V COLORS, AND BOLOMETRIC CORRECTIONS

PHILLIP J. FLOWER¹

Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-1911 Received 1995 November 27; accepted 1996 April 2

ABSTRACT

This paper provides improved numerical relations between effective temperatures of stars, their B-V colors, and their bolometric corrections (BCs) for the purpose of comparing theoretical stellar evolutionary calculations to color-magnitude diagrams of star clusters. Temperatures and bolometric correction measurements for 335 stars from the literature form the observational basis for the transformations. Measured temperatures range from 2900 to 52,500 K. Polynomial fits to the observations give relations between effective temperatures and B-V colors and between temperatures and bolometric corrections. Hot supergiants appear to have a $T_{\rm eff}$: B-V relation slightly different from those of main-sequence stars, subgiants, and giants. All luminosity classes appear to follow a unique $T_{\rm eff}$: BC relation. The $T_{\rm eff}$: BC relation for stars with temperatures less than ~ 5000 K, however, is uncertain because temperatures of the coolest stars are determined from uncertain angular diameters.

Subject headings: Hertzsprung-Russell diagram — stars: atmospheres — stars: early-type — stars: fundamental parameters — stars: late-type — stars: supergiants

1. INTRODUCTION

Many observational tests of stellar evolutionary theory rely on the ability to compare theoretical parameters ($\log L$ and $\log T_{\rm eff}$) of theoretical evolutionary tracks to observed parameters (V and B-V, for instance) of stars in star clusters. It is of primary importance, therefore, to establish accurate empirical scales of bolometric corrections (BCs), colors, and effective temperatures to convert the theoretically derived parameters to observational parameters. Since the publication of the comprehensive scales by Flower (1977), observers and theoreticians have made improved empirical scales possible by determining temperatures, bolometric corrections, and colors for several hundred stars.

This paper collects temperature and bolometric correction measurements for 335 stars for the purpose of establishing refined numerical relations between effective temperature and bolometric correction and between effective temperature and B-V color. The stars span luminosity classes from main-sequence stars (V) to supergiants (I) and temperatures from 2900 to 52,500 K.

Most of the improvements and additions in the last decade to Flower's (1977) scales rely on new temperature measurements of early-type stars (Chlebowski & Garmany 1991; Fitzpatrick & Garmany 1990; Humphreys & McElroy 1984; Malagnini et al. 1986; Massey, Parker, & Garmany 1989; Napiwotzki, Schönberner, & Wenske 1993); some additions have been made to the cool end as well (Habets & Heintze 1981; Humphreys & McElroy 1984).

At the same time, many groups have concentrated on determining temperatures and bolometric corrections for individual stars using a variety of techniques. Temperature and bolometric correction estimates for the hottest stars require fitting observed photospheric line profiles to stellar atmosphere models (Bohannan et al. 1986; Kudritzki 1980; Kudritzki, Simon, & Harmann 1983; Simon et al. 1983; Voels et al. 1989). For cooler stars, observed flux distribu-

tions are used instead (Bell & Gustafsson 1989; Beeckmans 1977; Blackwell, Lynas-Gray, & Petford 1991; Cayrel de Strobel et al. 1989; Code et al. 1976; Fitzpatrick 1987; Leggett et al. 1986; Malagnini & Morossi 1990; Malagnini et al. 1985, 1986). For nearby stars, it is possible to use angular diameters and observed bolometric fluxes to derive effective temperatures (Faucherre et al. 1983; Ridgway et al. 1980)

The above references to temperature and bolometric correction measurements form the basis of the new $T_{\rm eff}:B-V:BC$ scales derived in this work. Of 335 stars, 297 have measured effective temperatures with reliable B-V colors and 122 have measured bolometric corrections as well as effective temperatures. This database is rich enough to numerically fit measured temperatures, colors, and bolometric corrections with polynomials over the entire range of temperature for each luminosity class.

Although bolometric corrections seem to be well determined for cool stars, temperatures for the coolest giants derived from angular diameters (Ridgway et al. 1980) are in disagreement with temperatures determined by other means. Since these bolometric corrections constitute the bulk of those for cool stars in this study, the $T_{\rm eff}$:BC scale for the coolest stars remains uncertain.

2. METHOD

The first step in establishing the temperature scales was to separate the stars by luminosity class and then to fit both effective temperatures and colors and effective temperatures and bolometric corrections with polynomials. I used straight averages of temperatures and bolometric corrections for stars observed by more than one group.

2.1.
$$T_{\text{eff}}: B-V Scales$$

A total of 297 stars form the database for the $T_{\rm eff}$: B-V transformations. Of these, 93 were measured more than once, resulting in 530 individual temperature determinations. Figure 1 shows the measurements separated by luminosity class and Table 1 lists the data for individual

¹ pjf@gamma.phys.clemson.edu.

FLOWER

Fig. 1.—Effective temperatures and colors for all stars in Table 1 separated by luminosity class. Temperatures of giants, subgiants, and main-sequence stars are lower by 0.3 in $\log T_{\rm eff}$ than the next more luminous class. The lines are to help guide the eye at high temperatures

stars. The uncertainties in derived temperatures, $\Delta \log T$, listed in Table 1 are by those making the measurements. Uncertainties in measured colors, $\Delta (B-V)_0$, are taken from measurements or from FitzGerald (1970). Since most stars in these studies are bright and nearby, individual reddening values are generally very small and do not significantly contribute to the uncertainties in colors. Most star numbers under the heading "Star" in Table 1 are HR numbers but a few HD numbers are listed. Also, Fitzpatrick (1987) uses Sanduleak (1969) numbers for the LMC supergiants. The column "LC" gives the luminosity class of each star.

Fig. 2.—Temperatures of Ridgway et al. (1980) compared to the temperatures of the giants in Fig. 1. The curve is a polynomial fit to giants, subgiants, and main-sequence stars.

A problem arose in comparing the temperatures of Ridgway et al. (1980) to other temperatures for giants. Figure 2 shows the comparison of the giants shown in Figure 1 to the temperatures measured by Ridgway et al. (1980). For the most part, the Ridgway et al. (1980) temperatures are lower than the rest. Of four stars in common with Blackwell et al. (1990) and Bell & Gustafsson (1989), the Ridgway et al. (1980) temperatures averaged 380 K lower. The tight grouping of the giants in Figure 1 suggests the presence of systematic uncertainties in the Ridgway et al. (1980) temperatures and perhaps with temperatures derived from angular diameters in general.

Fig. 3.—Bolometric corrections by luminosity class for all stars in Table 2. The Ridgway et al. (1980) temperatures are their "uncorrected" values.

TABLE 1 $T_{\text{eff}}: B-V \text{ DATA}$

log T	(B-V) ₀	Δ log T	Δ(B-V) ₀	Star	LC	Reference	log T		Δ log T	Δ(B-V) ₀	Star	LC	Reference
3.838	0.34	0.006	0.030	0021	3	b	3.639	1.39		0.100	2473 2491		b
3.911 4.041	0.17 07	0.016 0.017	0.030 0.025	0100 0126	5 5 3 5 3	mm mm	3.639 3.997 3.672 3.907 3.899 4.292 3.600 4.314	01 1.10	0.010 0.009 0.009	0.020 0.079	2491 2506	3	be c b
3.644	1.28	0.010	0.079	0165	3	b	3.907	0.09	0.005	0.030	2540	3	b
3.678 3.774	1.15 0.57	0.027 0.016	0.079 0.050	0168 0219	5	f b bg	3.899 4.292	0.21 15	0.016 0.013	0.030 0.020	2550 256–67	4	mm fi
3.774 3.596 3.907	1.50 0.13	0.011	0.080	0224 0269	3 5	b bg b mm m2	3.600	1.43	0.011 0.022	0.079	256–67 2574	3	bg b2 c
3 701	0.93	0.005 0.009 0.011	0.030 0.062	0271	3	b	3.787 3.926	22 0.56	0.022 0.030 0.005	0.020 0.020	2618 2693	2	D2 C
3.583 3.904	1.58 0.17	0.011 0.003	0.050 0.052	0337 0343	3	b f	3.926 3.676	0.07 1.03	0.005 0.009	0.030 0.062	2751 2821	3	b b
3.925	0.13	0.019	0.030	0403	5	mm	3.676 4.125 3.848 3.819	09	0.023	0.020	2827 2852	1 5	be c
3.816 3.612	0.42 1.36	0.007 0.009	0.041 0.080	0417 0434	4	b b bg	3.848 3.819	0.32 0.39	0.014 0.007	0.030 0.150	2852 2930	5 3	b mm m2 b
3.792 3.645	0.54 1.28	0.002 0.010	0.035 0.080	0458 0464	5	b b bg	3.814 3.689	0.44	0.010 0.009	0.020	2930 2943 2990	4-5	mm m1 m2 b2 c
4.163	19	0.015 0.002	0.020	0472 0509	5 5	be c	4.658 4.477	1.00 32	0.028	0.080 0.020	303308	3 5	b bg f s
3.728 3.803	0.72 0.48	0.002 0.007	0.054 0.041	0509 0544	5 4	b b	4.477 3.605	30 1.48	0.024 0.011	0.020 0.079	3055 3249	3	m2 bg
3.886	0.28	0.017	0.030	0591	5	mm m2	3.714	0.84	0.008	0.062	3323	3	bg
3.661 3.642	1.18 1.14	0.023	0.100 0.080	0603 0617	5 2 3	f bg f	3.657 3.978 4.258 3.912 3.965 3.617 3.723 3.801 3.724	1.17 0.00	0.010 0.007	0.079 0.020	3403 3410	5	bg mm
3.926 3.679	0.10 0.98	0.005	0.030 0.062	0620 0753	4–5 5 5 5	Ь	4.258	15 0.19	0.013	0.020	35~66	1	fi
3.921	0.08	0.014	0.030	0804	5	bg mm	3.965	0.00	0.014 0.021	0.030 0.020	3569 3685	4 4	mm m2 mm c
4.108 3.860	14 0.31	0.010 0.009	0.020 0.020	0811 0813	5 3–4	m2 mm	3.617	1.44 0.77	0.010 0.008	0.080 0.100	3748 3771	2-3 3-4	bg bg
3.666	1.11	0.009	0.079	0824	3	bg	3.801	0.46	0.017	0.030	3775	4	mm m2
3.573 3.944	1.62 0.12	0.012 0.015	0.048 0.020	0911 0919	3	b mm	3.724	0.80 0.18	0.008	0.100 0.020	3873 3874	5	bg m2
2 779	0.59	0.002	0.050	0937	5	b	3.912	0.18	0.019 0.007	0.030	3874 3974	5	mm
3.750 4.246	0.68 16	0.012 0.013	0.050 0.020	0996 100-67	5	b bg mm m2 fi	3.612 4.085	1.45 12	0.011 0.014	0.079 0.020	3980 3982	3 5	mm m1 m2 be c
3.789	0.47	0.007	0.100 0.062	1017 1030	1	Ь	4.179	14	0.014	0.020	3982 40-68	1	fi
3.750 4.246 3.789 3.703 3.840	0.88 0.40	0.009 0.025	0.030	1083	3 4–5 5	b mm	3.902 3.912 3.612 4.085 4.179 3.976 3.847 3.970 3.605 4.346 4.147 3.747 3.671 3.987 3.668	0.05 0.31	0.006 0.020	0.030 0.030	4023 4031	5 3	mm m2
3.712 3.774	0.88 0.58	0.008 0.002	0.062 0.035	1084 1101	5 5	bg b	3.970 3.605	0.01 1.48	0.023	0.020 0.079	4033 4094	3	mm ba
4.141 3.697	16 0.92	0.010	0.020	1122	3	m2	4.346	21 14	0.013	0.020 0.020	41–68 4119	1	bg fi
3.697 3.970	0.92 0.01	0.009 0.028	0. 089 0.030	1136 1251	4	bg mm	4.147 3.747	14 0.81	0.014	0.020 0.100	4119 4166	5 2	m2 bg
3.678	1.06	0.009	0.079	1256	5	b	3.671	1.04	0.009	0.080	4247	3-4	bg
3.696 3.710	0.95 0.82	0.009 0.008	0.100 0.060	1303 1325	1 5	b b bg	3.987	02 1.07	0.027 0.009	0.030 0.079	4295 4301	4	mm m2 bg
3.696 3.694	0.99 0.98	0.009 0.009	0.079 0.079	1346 1373	3	b	3.657 3.924	1.14 0.12	0.010 0.031	0.079	4335	3 5	bg
3.905	0.15	0.001	0.030	1380 1396	5	b	3.836	0.37	0.010	0.020	4357 4399	4	mm m2 mm m2
3.691 4.279	0.97 17	0.009 0.013	0.062 0.020	1396 14–67	3	b fi	3.836 3.681 3.742	1.00 0.72	0.009	0.062 0.050	4471 4496	3 5	bg bg mm
3.693	1.00	0.009	0.060	1409	3	b bg	3.646 3.947 3.785 3.637 3.977 4.096	1.18	0.010	0.079	4518	3 5	bg
4.086 3.595	07 1.54	0.013 0.011	0.020 0.080	145–67 1457	1 3	fi b bg	3.947 3.785	0.08 0.53	0.017 0.007	0.020 0.035	4534 4540	5	mm c mm m2
3.697 3.910	0.98 0.12	0.009 0.001	0.062 0.030	1464 1473	3 5	bg b	3.637	1.33	0.007 0.010	0.079	4630	5	bg
4.249	20 0.09	0.014	0.020	1641	5	m2	4.096	0.03 11	0.027 0.019	0.030 0.020	4660 4662	5 3	mm c
3.922 3.845	0.09 0.30	0.010 0.006	0.020 0.030	1666 1676	2	mm b	3.854 3.670	0.30 1.13	0.009	0.020 0.079	4694 4737	4	mm bg
4.061	04	0.011	0.020	1713	1	be c	3.762 4.452 3.764 3.589	0.59	0.013	0.050	4785	3 5 3 3	bg mm
3.772 4.441	0.63 28	0.007 0.015	0.078 0.020	1729 1756	4–5 5	m2	4.452 3.764	28 0.66	0.013 0.008	0.020 0.150	4853 4883	3	bg m2
4.329	24	0.030	0.020	1756 1790	3 1	be c	3.589 3.701	1.56	0.011	0.048	4920	3	b .
4.060 4.390 3.676	04 24	0.013 0.054	0.020 0.020	18–65 1903	1	fi be c	3.769 3.752	0.94 0.57	0.009 0.023	0.060 0.050	4932 4983 5019	4	bg L bg L mm
3.676 3.908	0.95 0.13	0.009 0.005	0.080 0.030	1903 1907 1937	3	b bg	3.752 4.378	0.71 26	0.008 0.014	0.050 0.054 0.020	5019 5056	5 4	bg c
3.908 4.490	26	0.028	0.020	1948	1	be c	3.909	0.15	0.012	0.030	5062	5	b mm m2
3.649 3.693	1.16 0.93	0.010 0.009	0.079 0.060	1963	3	b b bg	3.748 3.923	0.71 0.11	0.008 0.003	0.050 0.030	5072 5107	5	b bg b
3.922 4.427	0.08 22	0.016 0.018	0.030 0.020	1948 1963 1995 1998 2004	5	mm c	3.571 3.811	1.63	0.012	0.048 0.040	5154 5185 5191 5235 5264 5287	3	b
4.033	07	0.010	0.020	2010	5	m2	4.223	0.45 20	0.013 0.016	0.020	5191	5	b mm m2 (L)
	1.16 0.59	0.010	0.079 0.050	2010 2040 2047 2061	3 5	bg bg	3.778 3.925	0.58 0.08	0.007 0.018	0.080 0.030	5235 5264	4 5	b bg mm m2
3.633 3.767 3.547 3.683 3.679 4.395 3.874 3.969	1.67	0.007 0.025	0.100	2061	1	t	3.925 3.667	1.12	0.010	0.079	5287	3	bg
3.683 3.679	1.00 1.02	0.009 0.009	0.080 0.062	2077 2219	3	b bg b	3.790 3.794	0.54 0.52	0.007 0.008	0.041 0.035	5338	4	b b mm
4.395	25 0.16	0.036	0.020 0.020	2294 2326	2-3	be c	3.638 4.024	1.23	0.010	0.080	5340	3	b bg
3.969	0.00	0.029 0.019	0.020	2421	4	be c mm	3.796	01 0.50	0.014 0.007	0.020 0.040	5404	5 5	mm L mm m2
3.030	1.21	0.010	0.079	2427	3	b • • •	3.752 4.000	0.70 04	0.008	0.078	5409		bg
3.637 3.837	1.30 0.35	0.010 0.006	0.080	5429 5447	5	b bg b L m2	3.903	0.23	0.010 0.013	0.030 0.020	7557	3 4–5	mm m2 mm be c
3.836 3.992	0.38 03	0.006 0.009	0.030 0.025	5487 5511 5563	3	bLmm mm	3.704 3.689	0.86 1.02	0.009 0.009	0.080 0.079 0.020	7602 7615	4	b bg L bg
3 6 1 6	1.45	0.011	0.080	5563	3	bg f	4.241	20	0.015	0.020	7688	5	m2
3.846 3.605 3.697	0.32 1.49	0.002 0.011	0.030 0.079	5570 5600	5	b b	4.246 3.694	20 0.94	0.013 0.009	0.020 0.062	7739 7754	5 3	m2 b
3.697	0.97	0.009	0.060	5602	3	b bg	3.998 4.245	05	0.009	0.025	7773	5	m2
3.821 3.685	0.43 0.95	0.007 0.009	0.040 0.060	5681	3	b mm b bg	4.146	21 11	0.016 0.013	0.020 0.020 0.079		1	be c fi
4.068 3.857	12 0.31	0.028 0.008	0.025 0.030	5685	5	L mm	3.632 3.835	1.33 0.37	0.010 0.009	0.079 0.020	7806	3	bg mm
3.676	1.01	0.009	0.080	5570 5600 5602 5634 5681 5685 5733 5777 5854	3-4	bg	3.815	0.39	0.007	0.100	7834 7882	2	ь
3.660 3.692	1.17 1.00	0.010 0.009	0.080	5854 5901	3 4	b bg bg	3.845 4.040	0.46 07	0.013 0.008	0.030 0.025	7882 7906	4	mm m2
2.072													-

TARIF 1-Continued

						TABLE 1-	–Con	inued					
log T	(B-V) ₀	Δ log T	Δ(B-V) ₀	Star	LC	Reference	log T	(B-V) ₀	Δ log T	Δ(B-V)	_O Star	LC	Reference
3.680	1.02	0.009	0.062	5908	3	bg	3.682	1.03	0.009	0.079	7949	3	b
3.772	0.56	0.002	0.035	5914	5	b	3.695		0.009	0.090	7957	4	b bg
3.802	0.48	0.007	0.040	5933	5	L mm	3.650		0.010	0.062	8085	5	bg
3.635	1.22	0.010	0.080	5947	3	bg L	3.629		0.010	0.062	8086		bg
4.482	28 0.44	0.014 0.013	0.020 0.030	5953 5977	4 4	be c mm	3.889 3.675		0.010	0.020 0.079	8162		mm
3.810 3.789	0.44	0.013	0.030	5986	4	ь	3.676		0.009	0.079	8173 8255	3	b b bg
4.410	26	0.024	0.020	5993	5	m2	3.873		0.008	0.020	8270		mm
3.579	1.58	0.010	0.050	6056	3	b L	3.641	1.23	0.020	0.100	8308	i	L&L
3.687	0.96	0.009	0.060	6075	3	bL	3.712		0.008	0.100	8414	ĺ	b
4.182	15	0.044	0.020	6092	4	L m2	4.142		0.022	0.020	8425	4	be c mm
3.852	0.32	0.012	0.030	6093	5	mm	3.806		0.007	0.150	8454	3	b
3.849	0.26	0.006 0.009	0.030	6095 6132	3	b L b	3.697 3.671	0.96 1.04	0.009	0.070	8499	3-4	b bg
3.700 3.700	0.91 0.93	0.009	0.062 0.062	6148	3	b	4.501	31	0.009 0.020	0.079 0.020	8551 8622	3 5	b m2
3.597	1.48	0.011	0.079	6159	3	b	3.638		0.010	0.079	8632	3	b
4.491	30	0.035	0.020	6175	5	be c L	3.794	0.50	0.007	0.050	8665	3-4	b
3.691	0.92	0.009	0.062	6220	3	bg	3.702	0.93	0.009	0.060	8684	3	b bg
3.620	1.37	0.011	0.079	6271	3	bg	3.684	1.05	0.009	0.079	8694	3	bg
3.660	1.15	0.010	0.079	6299	3	bg	3.922	0.05	0.021	0.030	8709	5	mm
3.568	1.58	0.012	0.048	6337	3	b	3.988	0.09	0.013	0.030	8728	5	c mm m1 m2
4.120 3.957	14 0.04	0.010 0.016	0.020 0.030	6396 6410	4	mm Lmm	3.557 3.996	1.66 05	0.012	0.100 0.025	8775 8781	2	b
3.615	1.42	0.015	0.100	6418	2	bg L	3.853	0.29	0.003	0.023	8830	5	mm b
3.830	0.39	0.010	0.040	6493	5	b mm m2	3.690	1.01	0.009	0.062	8832	5	bg
3.610	1.50	0.011	0.100	6498	2	bg	3.781	0.61	0.007	0.150	8905	3	b
3.746	0.72	0.012	0.020	6516	4–5	mm	3.677	1.06	0.009	0.079	8916	3	b
3.902	0.14	0.022	0.020	6556	3	be c L mm m1 m2	3.701	0.93	0.009	0.062	8923	3	b
3.663	1.16	0.010	0.079	6603	3	bg	3.691	1.03	0.009	0.080	8974	3-4	bg
3.749	0.70	0.023	0.080	6623 6629	4 5	b bg mm m2 mm	4.253 4.681	16	0.013	0.020	90-67	1	fi
3.970 3.656	0.02 1.18	0.019 0.010	0.025 0.079	6688	3	b	4.653	32 32	0.026 0.028	0.020 0.020	93128 93129	5 1	S
3.690	0.98	0.009	0.079	6698	3	bL	4.720	33	0.020	0.020	93250	Ó	s kl
3.700	0.94	0.009	0.062	6703	- 3	b	4.525	31	0.015		AE Aur	5	V
3.607	1.50	0.011	0.080	6705	3	b bg f L	3.710	0.86	0.008		OphA36	5	су
3.709	0.96	0.009	0.062	6770	3	bg _	3.708	0.86	0.008	0.020	OphB36	5	cy
3.911	0.12	0.005	0.030	6771	4	b	3.658	1.16	0.010		OphC36	5	су
3.695	0.94	0.009	0.080	6869	3-4	bg	4.477	25	0.015	0.020	α Cam	1	V
4.276 3.974	21 03	0.044 0.014	0.020 0.020	6875 6879	5	m2 be c	4.519 4.505	29 27	0.015 0.015	0.020 0.020	δ Ori ξ Ori	1	V
3.652	1.18	0.014	0.020	6895	3	b	4.623	30	0.015	0.020		ò	v bo b2 k2
3.670	1.04	0.009	0.079	6913	3	bg		.50	0.015	0.020	2.00	٠	1 DO DE RE
3.982	0.00	0.009	0.020	7001	5	be c L mm	Refer						
3.807	0.45	0.007	0.040	7061	5	b mm m2	b	Blackwell e		1)			
3.672	1.10	0.009	0.100	7063	2	b bg	be	Beeckmann		000)			
3.927	0.13	0.005	0.030	7069	3	b	bg bo	Bell & Gust Bohannan e					
3.715 3.667	0.77 1.18	0.008	0.150 0.079	7133 7150	3	b bg	c	Code et al.					
3.674	1.18	0.009	0.079	7176	3	b	су	Cayrel de S		al. (1989)			
3.999	08	0.024	0.025	7178	3	Ľ	f	Faucherre e	t al. (198				
3.986	0.00	0.008	0.025	7235	5	mm m2	fi	Fitzpatrick (
4.058	09	0.015	0.025	7236	5	mm	k1	Kudritzki (1					
3.656	0.97	0.019	0.062	7310	3	f	k2	Kudritzki et))			
3.653 3.700	1.26	0.010 0.009	0.100 0.062	7314 7328	2	bg b	.L mm	Leggett et a Malagnini &		(1990)			
3.753	0.96 0.74	0.009	0.062	7368	5	mm	ml	Malagnini e					
3.741	0.77	0.008	0.010	7373	4	mm	m2	Malagnini e					
3.853	0.30	0.012	0.030	7377	4	mm	S	Simon et al.	(1983)	•			
3.649	1.17	0.010	0.079	7429	3	bg	V	Voels et al.	(1989)				
3.720	0.79	0.008	0.062	7462	5	bg							
3.829	0.38	0.011	0.040	7469	5	b mm							
3.697 3.735	0.97 0.78	0.009	0.100 0.100	7478 7479	3–4 3	bg b bg							
3.758 3.758	0.78	0.008	0.100	7503	5	b bg bg mm							
3.753	0.66	0.008	0.050	7504	5	bg							
3.618	1.44	0.016	0.090	7525	3	ьĽ							

2.2. $T_{\rm eff}$: BC Scales

For the 122 stars with measured effective temperatures and bolometric corrections, I found no differences in the relation between $T_{\rm eff}$ and BC for different luminosity classes (see Fig. 3). Chlebowski & Garmany (1991) have noted this to be true for the hottest stars, and it appears to hold for cooler stars as well. The fit to the data for cool stars requires some discussion because of the uncertainties in the Ridgway et al. (1980) temperatures.

The importance of the Ridgway et al. (1980) data is that they measured bolometric fluxes for all their stars, providing nearly all the available bolometric corrections for temperatures less than 4500 K. I used their bolometric fluxes, based on infrared photometry, and their equation (3) relating the fluxes to bolometric magnitude to derive bolometric corrections for their sample of stars.

The problem, noted in § 2.1, with the Ridgway et al. (1980) data is that their temperatures appear unreliable. Figure 3 shows the difficulties this causes at low temperatures. This figure seems to imply large uncertainties in the bolometric corrections for cool stars.

In an attempt to understand the apparent spread in bolometric corrections in Figure 3 and in light of the significant temperature differences shown in Figure 2, I "corrected" the Ridgway et al. (1980) temperatures by assigning the temperatures from the fit to the giants in Figure 2 for the colors of their giants. Furthermore, I corrected the temperature of δ DRA measured by Faucherre et al. (1983) in the same manner as I did for the Ridgway et al. (1980) giants, since its temperature lies well below the giants in Figure 2. Figure 4 shows the corrected temperatures and bolometric corrections. Added to this figure are data from Dyck, Lockwood, & Capps (1974) for cool giants. I

TABLE 2 T_{eff} : BC DATA

							I _{eff} : BC	DATA	·						
log T	ВС	Δlog T	ΔВС	Star	LC	Reference		log T	BC	∆log T	ΔВС	Star	LC	Reference	
2 670	-0.41	0.027	0.10	0168	3	f		3.582	-1.23	0.000	0.00	5622	3	г	
3.678 3.604	-1.12	0.027	0.00	0224	3	r		3.640	-0.66	0.000	0.00	5824	3	r	
3.907	0.01	0.016	0.05	0269	5	m2		4.188	-1.30	0.015	0.10	6092	4	m2	
3.552	-1.82	0.000	0.00	0284	3	r		4.491	-2.90	0.035	0.30	6175	5	be c	
3.582	-1.19	0.034	0.12	0337	3	f ho o		3.833 3.902	0.00	0.019 0.022	0.0 5 0.0 5	6493 6556	5	m2 be c m2	
4.163 3.853	-1.30 0.05	0.015 0.025	0.20 0.05	0472 0591	5 5	be c m2		3.743	-0.13	0.022	0.03	6623	4	m2	
3.587	-1.89	0.023	0.00	0601	3	r		3.633	-0.96	0.022	0.10	6705	3	f	
3.661	-0.57	0.034	0.09	0603	2	f		3.974	-0.19	0.014	0.05	6829	5	be c	
3.642	-0.45	0.031	0.10	0617	3	r		3.482	-3.55	0.000	0.00	6861	3	r	
4.108	-0.83	0.010	0.08	0811	5	m2		4.276	-1.71	0.042	0.16	6875 6913	5 3	m2	
3.629	-3.69	0.000 0.039	0.00 0.06	0867 0996	3 5	r m2		3.691 3.982	-0.44 -0.21	0.000 0.009	0.05	7001	5	r be c	
3.753 4.141	-0.15 -1.02	0.039	0.08	1122	3	m2		3.559	-3.69	0.000	0.00	7023	3	r	
4.249	-1.64	0.013	0.10	1641	5	m2		3.804	-0.02	0.021	0.04	7061	5	m2	
4.061	-0.58	0.011	0.05	1713	1	be c		3.666	-0.49	0.000	0.00	7150	3	Γ .	
4.441	-2.73	0.015	0.08	1756	4	m2		3.977	-0.17	0.009	0.05	7235	5	m2	
4.329	-1.99	0.030	0.09	1790 1903	3	be c be c		3.702 3.995	-0.26 -0.26	0.021 0.009	0.12	7310 7528	3	m2	
4.390 4.490	-2.41 -3.03	0.054 0.028	0.14 0.20	1903	i	be c		3.903	0.04	0.013	0.05	7557	4-5	be c	
4.427	-2.28	0.018	0.13	2004	ì	c		4.241	-1.62	0.015	0.09	7688	5	m2	
4.033	-0.44	0.003	0.06	2010	4	m2		4.246	-1.64	0.014	0.09	7739	5	m2	
3.566	-2.00	0.000	0.00	2286	3	r .		3.998	-0.27	0.009	0.06	7773	5	m2	
4.395	-2.29	0.036	0.13	2294	2-3	be c		3.676	-0.46	0.000	0.00 0.11	7776 7790	2-3 5	r be c	
3.874 3.969	0.10 -0.10	0.029 0.019	0.08 0.05	2326 2421	1-2 4	be c be c		4.245 3.570	-1.71 -1.73	0.000	0.00	7900	3	r	
3.997	-0.10 -0.10	0.009	0.05	2491	5	be c		4.040	-0.47	0.008	0.06	7906	5	m2	
4.314	-1.96	0.022	0.20	2618	2	be c		3.584	-1.73	0.000	0.00	8318	5	c m2 (r)	
4.125	-0.84	0.023	0.07	2827	1	be c		4.142	-1.01	0.020	0.11	8425	4	be c	
3.855	0.01	0.014	0.04	2852	5	m2		4.501	-3.01	0.020	0.12	8622	5	m2	
3.587	-1.34	0.000	0.00 0.05	2938 2943	3 4-5	r be c m2		3.563 3.932	-1.87 0.00	0.000 0.010	0.00 0.04	8698 8728	3 5	r c m2	
3.814 3.690	-0.01 -0.29	0.010 0.019	0.03	2990	3	f		3.592	-1.45	0.000	0.00	8834	3	r	
4.658	-4.26	0.028	0.25	303308	5	s		3.579	-2.71	0.000	0.00	9047	3	r	
4.477	-2.96	0.014	0.10	3055	3	m2		4.681	-4.28	0.026	0.25	93128	5	S	
3.649	-0.62	0.000	0.00	3095	3	r 2		4.653 4.720	-4.13 -4.64	0.028 0.020	0.25 0.25	93129 93250	1 5	s k s	
3.894 3.965	0.02 -0.12	0.023 0.010	0.06 .049	3569 3685	4	m2 c		4.720	-3.40	0.020	0.10	AE Aur		V	
3.804	-0.12	0.024	0.04	3775	4	m2		3.530	-2.75	0.000	0.00	BS 5299		d	
3.629	-1.01	0.000	0.00	3779	3	r		3.584	-1.23	0.000	0.00	Leo75	3	d	
3.582	-1.57	0.000	0.00	3950	3	r		3.530	-3.10	0.000	0.00	R Lyr	3	d	
3.617	-0.93	0.000	0.00	3980	3	r 		3.516	-2.78	0.000	0.00	R Tri RR Umi	3 3	d d	
4.085	-0.70 0.05	0.014 0.020	0.10 0.05	3982 4031	5	be c m2 m2		3.569 3.468	-2.55 -5.35	0.000	0.00	Т Агі	3	d	
3. 847 4.147	-1.10	0.020	0.03	4119	5	m2		3.562	-1.65	0.000	0.00	UMa 83		ď	
3.559	-1.81	0.000	0.00	4127	3	Г		4.477	-2.88	0.024	0.13	α Cam	1	v	
3.962	-0.12	0.010	0.05	4295	5	m2		3.569	-1.63	0.000	0.00	α Cet	3	d .	
3.907	0.02	0.018	0.05	4357	5	m2		3.591	-1.20	0.000	0.00	β And	3	d d	
3.825	-0.01	0.020 0.000	0.04 0.00	4399 4432	4 3	m2 r		3.562 4.519	-1.85 -3.22	0.000 0.014	0.00 0.10	β Peg δ Ori	2	d v	
3.597 3.696	-1.08 -0.36	0.000	0.00	4432	3	r		3.514	-4.23	0.000	0.00	g Her	3	ď	
3.947	-0.01	0.017	.048	4534	5	c		3.539	-2.48	0.000	0.00	ρ Per	2-3	d	
3.781	-0.05	0.030	0.06	4540	5	m2		3.577	-1.60	0.000	0.00	χ Peg	3	d	
4.096	-0.71	0.017	.069	4662	3	c		4.505	-3.16	0.014	0.10	ξOri	1	v ho k2 v	
4.452	-2.82	0.013	.108 0.07	4853 4883	3	c m2		4.623	-4.00	0.017	0.10	ζ Pup	U	00 KZ V	
3.767 3.584	0.02 -1.97	0.056 0.000	0.07	4902	3	r			ences						
4.378	-2.28	0.014	.108	5056	4	c		be	Beeckmann		· ·				
3.908	0.02	0.013	0.04	5062	5	m2			Bohannan e Code et al.		0)				
4.413	-2.55	0.016	.140	5132	3	C		d	Dyck et al.	(1974)					
3.566	-1.67	0.000	0.00	5150	3	r m2		f	Faucherre e	t al. (198	3)				
4.223 3.925	-1.52 0.02	0.016 0.013	0.10 0.05	5191 5264	5 5	m2			Kudritzki (Kudritzki e		3)				
3.556	-1.82	0.000	0.00	5301	3	Г		m2	Malagnini e	t al. (198	6)				
3.795	0.00	0.026	0.04	5404	5	m2			Ridgway et)				
3.842	-0.01	0.019	0.04	5447	5	m2			Simon et al Voels et al.						
3.625	-0.79	0.031	0.12	5563	3	f				·/					

corrected their temperatures by 0.020 in $\log T_{\rm eff}$ to reflect the more recent temperature determination in the database—Dyck et al. (1974) have four stars in common with the database. Table 2 lists all the measurements, including the corrected temperatures for Ridgway et al. (1980) and Dyck et al. (1974). The listed uncertainties in bolometric corrections, ΔBC , are those estimated in the references

The corrected temperatures significantly tightened up the

 $T_{\rm eff}$: BC relation for the coolest stars. This further strengthens the conclusion that the Ridgway et al. (1980) temperatures are uncertain. Consequently, I did not include the Ridgway et al. (1980) temperatures (corrected or uncorrected) in the fit for the $T_{\rm eff}$: B-V data for giants.

3. RESULTS

Table 3 lists the B-V colors, effective temperatures, and bolometric corrections for main-sequence stars, subgiants,

FLOWER

 $\label{eq:table 3} T_{\rm eff} \colon B-V \colon {\rm BC\ Scales\ for\ Main\ Sequence\ Stars,\ Subgiants,\ and\ Giants}$

B-V	log T	ВС	T	ett · 25 / B-'	/ log T	ВС	Т	B-V	log T	ВС	T	B-V	log T	BC	T
						0.031	7825	0.73	3.7380		5470	1.27	3.6401	-0.707	4366
-0.35	4.7538 4.7031	-4.720 -4.506	56728	0.1 0.2		0.031	7766	0.73	3.7358	-0.153	5442	1.28	3.6384	-0.722	4300
-0.34 -0.33		-4.306 -4.197	30477 45106	0.2		0.032	7707	0.75	3.7335	-0.161	5413	1.29	3.6368	-0.736	4333
-0.32	4.6098	-3.861	50477 45196 40719	0.2	2 3.8836	0.033	7648	0.76	3.7313	-0.168	5470 5442 5413 5386 5339 5333 5307 5282 5256 5231 5207 5183 5159 5136 5040 5068 5047 5025 5004 4963 4963 4943 4902	1.30	3.6351	-0.752	4349 4333 4316
-0.32	4.5670		36897	0.2	3.8804	0.034	7592	0.77	3.7291	-0.176	5359	1.31	3.6335	-0.766	4300
-0.30		-3.234	33620	0.2	4 3.8771	0.034	7535	0.78	3.7270	-0.184	5333	1.32	3.6318	-0.782	4283
-0.29		-2.966	36897 33620 30789 28333	0.2	5 3.8740	0.035	7481	0.79	3.7249	-0.192	5307	1.33	3.6301	-0.798	4300 4283 4266
-0.28		-2.730	28333	0.2	5 3.8708	0.035	7426	0.80	3.7228	-0.200	5282	1.34	3.6285	-0.814	4251 4234 4217
-0.27	4.4183	-2.523	26333 26199 24338 22703 21261 19989 18858 17852 16958	0.2 0.2	7 3.8676	0.035 0.035	7372 7319	0.81	3.7207	-0.208	5256	1.35	3.6268	-0.831	4234
-0.26		-2.341	24338	0.2	3.8645	0.035	7319	0.82	3.7186	-0.216	5231	1.36	3.6251	-0.848	4217
-0.25	4.3561	-2.177	22703	0.2 0.3 0.3	3.8614	0.035	7267	0.83	3.7166	-0.225	5207	1.37	3.6235	-0.865	4202
-0.24	4.3276	-2.028	21261	0.3	3.8583	0.034	7216	0.84	3.7146	-0.233	5183	1.38	3.6218	-0.883	4186
-0.23		-1.891	19989	0.3	1 3.8552	0.034	7164 7113	0.85		-0.242	5159	1.39	3.6201	-0.901	4169
-0.22		-1.762	18858	0.3	2 3.8521	0.033	7113	0.86	3.7107	-0.250	5136	1.40	3.6184	-0.920	4153
-0.21	4.2517		17852	0.3	3.8490	0.032	7063	0.87	3.7088	-0.259	5114	1.41	3.6167	-0.939	4137 4120
-0.20	4.2294		16958	0.3	3.8460	0.031	7014 6964	0.88	3.7068	-0.208	5090	1.42	3.6149	-0.960 -0.980	4120
-0.19		-1.414	16154	0.3	5 3.8429 5 3.8399	0.030	6964	0.89	3.7049 3.7031	-0.277	5068	1.43	3.6132	-0.980 -1.002	4103
-0.18	4.1885	-1.307	16154 15434 14787 14203	0.3	3.8399	0.028	6916	0.90 0.91	3.7012	0.205	5047	1.44 1.45	3.6114 3.6096	-1.002	4086 4070
-0.17		-1.205	14/8/	0.3 0.3	7 3.8368 3 3.8338	0.026	6867 6820	0.91		-0.304	5004	1.43	3.6078	-1.024	4070
-0.16	4.1524		14203	0.3	3.8307	0.023	6771	0.92	3.6976	-0.304	4084		3.6060	-1.047	4053 4036 4018
-0.15 -0.14	4.1360 4.1205		130//	0.3	3.8277	0.022	6725	0.93	3.6958		4963	1.48	3.6041	-1.096	4018
-0.14	4.1203	-0.923	13677 13197 12764 12368	0.4	3.8247	0.018	6725 6678	0.95	3.6940		4943	1.49	3.6022	-1.122	4001
-0.13	4.1000	-0.759	12704	0.4		0.015	6632	0.96	3.6922	-0.342	4922	1.50	3.6002	-1.150	3982
-0.12	4.0795		12(1/12	0.4	3.8187	0.013	6587	0.97	3.6904	-0.352	4902	1.51		-1.178	4001 3982 3964
-0.11	4.0674	-0.614	11678	0.4	4 3.8157	0.009	6541	0.98	3.6887	-0.361	4883	1.52	3.5961	-1.209	3945
-0.10	4.0560	-0.549	11678 11376 11099 10846 10612	0.4		0.006	6541 6496	0.99	3.6869	-0.372	4883 4862	1.53	3.5940	-1.241	3945 3926
-0.08		-0.488	11099	0.4	3.8098	0.003	6453	1.00	3.6852	-0.382	4843	1.54	3.5918	-1.276	3906 3885 3865 3843
-0.07	4.0353	-0.432	10846	0.4		-0.001	6409 6366	1.01	3.6835		4843 4825 4806 4786 4767 4748 4731 4713 4694 4676	1.55	3.5895	-1.312	3885
-0.06		-0.381	10612	0.4	8 3.8039	-0.001 -0.004	6366	1.02	3.6818	-0.403	4806	1.56	3.5872	-1.350	3865
-0.05		-0.334	10396	0.4	9 3.8010	-0.008	6324	1.03	3.6800		4786	1.57	3.5847	-1.393	3843
-0.04	4.0084		10396 10195 10011 9840 9680 9530 9392	0.5 0.5	3.7981 3.7952	-0.012	6282 6240	1.04		-0.426	4767	1.58	3.5822	-1.437	3821 3797 3773 3748 3721
-0.03		-0.252	10011	0.5	1 3.7952	-0.016	6240	1.05	3.6766	-0.437	4748	1.59	3.5795	-1.486	3797
-0.02	3.9930	-0.216	9840	0.5	2 3.7923	-0.021	6198	1.06	3.6750		4731	1.60	3.5767	-1.539	3773
-0.01	3.9859	-0.184	9680	0.5	3 3.7895	-0.025	6158	1.07	3.6733	-0.459	4713	1.61	3.5738	-1.595	3748
0.00	3.9791	-0.155	9530	0.5	4 3.7866	-0.030 -0.035	6117	1.08		-0.471	4694	1.62	3.5707	-1.658	3721
0.01	3.9728	-0.129	9392	0.5	5 3.7838	-0.035	6078	1.09	3.6699	-0.482	4676	1.63		-1.728	3693
0.02	3.9667	-0.106	9261	0.5	3.7811	-0.039	6040	1.10	3.6682	-0.494	4658	1.64	3.5640	-1.802	3664
0.03	3.9609	-0.085	9261 9139 9026	0.5	3.7783	-0.045 -0.050	6002 5964	1.11	3.6666		4640	1.65		-1.885 -1.978	3634
0.04		-0.067	9026	0.5	3.7756	-0.050	5964	1.12 1.13	3.6649 3.6633	-0.517 -0.528	4622	1.66	3.5565 3.5525	-1.978	3001
0.05	3.9502	-0.050	8916	0.5 0.6	9 3.7729 0 3.7702	-0.055	5927 5891	1.13	3.6616	0.540	4603	1.67 1.68	3.5482	-2.191	2522
0.06	3.9452	-0.036	8814	0.6	3.7676	-0.067	5855	1.14	3.6599	-0.552	4560	1.69	3.5436	-2.318	3496
0.07	3.9404	-0.024	8/1/	0.6	3.7670	0.007	5810	1.16	3.6583	-0.564	4553	1.70	3.5387	-2.460	3457
0.08 0.09	3.9358 3.9314	-0.013	8916 8814 8717 8625 8538 8454 8373 8296	0.6	2 3.7622	-0.073 -0.079	5819 5784	1.17	3.6566	-0.576	4535	1.71	3.5335	-2.620	3664 3634 3601 3568 3533 3496 3457 3415 3372 3326 3278
0.09	3.9271	0.004	8454	0.6	3.7598	-0.085	5751	1.18	3.6550		4518	1.72	3.5279	-2.803	3372
0.10	3.9271	0.010	8373	0.6	5 3.7570	-0.091	5717	1.19	3.6533	-0.601	4500	1.73	3.5220	-3.007	3326
0.11	3.9189	0.015	8296	0.6		-0.098	5684	1.20	3.6516	-0.614	4483	1.74	3.5157	-3.239	3278
0.12	3.9150	0.019	8222	0.6	7 3.7523		5653	1.21	3.6500		4466	1.75	3.5090	-3.502	3228 3175 3119
0.13	3.9113	0.022	8222 8152	0.6 0.6	3.7498	-0.111	5653 5620	1.22	3.6483	-0.640	4449	1.76	3.5018	-3.805	3175
0.15	3.9076	0.024	8083	0.6	9 3.7474	-0.117	5589	1.23	3.6467	-0.652	4433	1.77	3.4941	-4.152	3119
0.16	3.9040	0.026	8016	0.7	3.7450	-0.124	5559	1.24	3.6450	-0.666	4415	1.78	3.4860	-4.544	3061
0.17	3.9004	0.028	8016 7950	0.7 0.7	3.7426	-0.132	5528	1.25	3.6434	-0.679	4658 4640 4622 4605 4587 4569 4553 4535 4518 4500 4483 4466 4449 4433 4415 4399 4382	1.79	3.4772	-5.004	3000
0.18	3.8969	0.029	7886	0.7	2 3.7403	-0.139	5499	1.26	3.6417	-0.694	4382	1.80	3.4678	-5.535	2936

and giants and Table 4 lists them for supergiants. The polynomial fits to main-sequence stars, subgiants, and giants did not differ significantly from each other. Figure 5 shows the fit to the supergiants and the fit for the fainter luminosity classes compared to each luminosity class. The error bars for the temperatures and B-V colors are from the uncertainties listed in Table 1. Figure 6 shows the polynomial fit to the bolometric correction data; error bars are from Table 2. Because I corrected the temperatures of Ridgway et al. (1980) and Dyck et al. (1974) and calculated bolometric corrections for Ridgway et al. (1980), no error bars are drawn for their data.

Tables 5 and 6 give coefficients to the polynomial fits to the data for B-V color and bolometric corrections, respectively. Because of the particular shape of the log $T_{\rm eff}$: BC relationship, I fitted curves to three regions, $\log T_{\rm eff} \geq 3.9$, $3.9 < \log T_{\rm eff} < 3.7$, and $\log T_{\rm eff} \leq 3.7$, and then smoothed the fit between them by eye. I joined the latter two fits at $\log T_{\rm eff} = 3.6816$ for supergiants and at $\log T_{\rm eff} = 3.6800$ for main-sequence stars, subgiants, and giants. At the hotter end, I smoothed the curves in the B-V range of $0.13 \leq B-V \leq 0.18$ for the supergiants and $0.14 \leq B-V \leq 0.26$ for the others.

4. DISCUSSION

Figure 7a shows a comparison of the polynomial fits for supergiants to that for main-sequence stars, subgiants, and giants over the entire parameter range. The scales appear to differ for temperatures between 10,000 and 30,000 K and between 6000 and 8000 K. Below 6000 K, the scales are nearly identical. Since the supergiant fit above $\sim 10,000$ K is based on 21 stars, over half that defining the main-sequence, subgiant, and giant scale, the differences may be real. A similar difference is noted by Böhm-Vitense (1981). Between 8000 and 6000 K, however, only five supergiants have measured temperatures (see Fig. 1); hence, the significance of the differences at those temperatures is uncertain.

Figure 7b emphasizes the differences in the scales at high temperatures by comparing the two fits and by showing the observations for individual stars with temperatures greater than 8000 K. For temperatures between 10,000 and 30,000 K, all supergiants lie to the right of the fit to the fainter luminosity classes. The fits merge at the highest temperatures probably because B-V becomes increasingly insensitive to temperature changes. In Böhm-Vitense's (1981) review of temperature scales, she also notes that the

TABLE 4 $T_{\text{eff}}: B-V: \text{BC Scales for Supergiants}$

B-V	log T	ВC	T	B-V	log T	ВС	Т	B-V	log T	ВС	T	В	-V	log T	ВC	T
-0.35	4.7704		58938	0.19	3.8739		7479	0.73		-0.119	5580	1	.27	3.6474	-0.647	4440
-0.34	4.7339		54187	0.20	3.8693	0.035	7401	0.74		-0.124	5559		.28	3.6457	-0.661	4422
-0.33	4.6986	-4.480	49957	0.21	3.8648	0.035	7324	0.75	3.7432	-0.130	5536		.29	3.6439	-0.675	4404
-0.32	4.6643		46163	0.22	3.8605	0.035	7252	0.76	3.7414	-0.135	5513		.30	3.6422	-0.689	4387
-0.31	4.6312		42775	0.23	3.8564	0.034	7184	0.77	3.7396	-0.141	5490		.31	3.6404	-0.705	4369
-0.30	4.5991		39728 36991	0.24 0.25	3.8525	0.033	7120 7058	0.78	3.7378	-0.147	5467		.32	3.6386	-0.720	4351
-0.29 -0.28	4.5681 4.5380	-3.543	34514	0.23	3.8487 3.8451	0.032	7000	0.79 0.80	3.7360 3.7342	-0.153 -0.159	5445 5422		.33	3.6369	-0.735	4334
-0.28	4.5089	-3.108	32277	0.26	3.8416	0.031	6943	0.80	3.7324	-0.159	5422 5400		.34	3.6351	-0.752	4316 4298
-0.26		-2.915	30255	0.27	3.8382	0.027	6889	0.81	3.7305	-0.103	5376		.35 .36	3.6333 3.6315	-0.768 -0.785	4298 4280
-0.25	4.4536		28418	0.29	3.8350	0.025	6839	0.83	3.7287	-0.178	5354		.37	3.6297	-0.802	4262
-0.24	4.4274		26754	0.30	3.8319	0.023	6790	0.84	3.7268	-0.185	5330		.38	3.6279	-0.820	4245
-0.23	4.4020		25234	0.31	3.8289	0.021	6743	0.85	3.7250	-0.191	5308		.39	3.6260	-0.839	4226
-0.22	4.3774		23845	0.32	3.8260	0.019	6698	0.86	3.7231	-0.199	5285		.40	3.6242	-0.858	4209
-0.21	4.3537		22578	0.33	3.8232	0.017	6655	0.87	3.7212	-0.206	5262		.41	3.6223	-0.878	4190
-0.20	4.3308		21419	0.34	3.8205	0.014	6614	0.88	3.7194	-0.213	5240		.42	3.6204	-0.898	4172
-0.19	4.3087		20356	0.35	3.8179	0.012	6575	0.89	3.7175	-0.221	5217		.43	3.6184	-0.920	4153
-0.18	4.2874		19382	0.36	3.8154	0.009	6537	0.90	3.7156	-0.229	5195		.44	3.6164	-0.943	4134
-0.17	4.2668	-1.718	18484	0.37	3.8130	0.007	6501	0.91	3.7137	-0.237	5172		45	3.6144	-0.966	4115
-0.16	4.2470		17660	0.38	3.8106	0.004	6465	0.92	3.7118	-0.245	5149	1.	46	3.6124	-0.990	4096
-0.15	4.2278		16896	0.39	3.8083	0.001	6431	0.93	3.7099	-0.254	5127	1.	47	3.6103	-1.016	4076
	4.2094		16195	0.40	3.8061	-0.001	6398	0.94	3.7080	-0.262	5105	1.	48	3.6081	-1.043	4056
	4.1916		15545	0.41	3.8039	-0.004	6366	0.95	3.7061	-0.271	5082		.49	3.6059	-1.072	4035
	4.1744		14941	0.42	3.8018		6335	0.96	3.7042	-0.280	5060		.50	3.6037	-1.101	4015
-0.11	4.1579		14384	0.43	3.7997	-0.010	6305	0.97	3.7023	-0.289	5038		.51	3.6014	-1.133	3993
	4.1420		13867	0.44	3.7977	-0.012	6276	0.98	3.7004	-0.299	5016	1.	52	3.5990	-1.167	3971
-0.09	4.1267		13387	0.45	3.7958	-0.015	6248	0.99	3.6985	-0.308	4994		53	3.5965	-1.203	3949
-0.08	4.1119		12938	0.46	3.7938	-0.018	6220	1.00	3.6966	-0.318	4972		54	3.5940	-1.241	3926
-0.07		-0.791	12522	0.47	3.7919	-0.021	6192	1.01	3.6947	-0.328	4951		55	3.5914	-1.282	3903
	4.0841 4.0710	-0.711	12136 11776	0.48 0.49	3.7900 3.7882	-0.024 -0.027	6165 6140	1.02	3.6928	-0.339	4929		56	3.5887	-1.326	3878
		-0.653	11436	0.49	3.7864	-0.027	6115	1.03 1.04	3.6909 3.6891	-0.349 -0.359	4907 4887		57	3.5859	-1.372	3853
		-0.493	11122	0.51	3.7846	-0.033	6089	1.04	3.6872	-0.339	4866		.58 .59	3.5831 3.5801	-1.421	3829 3802
	4.0345		10826	0.52	3.7828		6064	1.06	3.6853	-0.370	4845		.59 .60	3.5770	-1.475 -1.533	3802 3775
		-0.368	10551	0.52	3.7811		6040	1.07	3.6834	-0.393	4823		61	3.5738	-1.595	3748
	4.0126		10294	0.54	3.7793		6015	1.08	3.6816	-0.404	4803		62	3.5705	-1.662	3748 3719
0.01		-0.260	10050	0.55	3.7776		5992	1.09	3.6797	-0.416	4782		63	3.5670	-1.736	3689
		-0.213	9824	0.56		-0.049	5968	1.10	3.6779	-0.429	4763		64	3.5634	-1.816	3659
0.03		-0.170	9611	0.57	3.7742		5945	1.11	3.6760	-0.441	4742		65	3.5597	-1.901	3628
		-0.132	9410	0.58	3.7724		5921	1.12	3.6742	-0.453	4722		66	3.5558	-1.995	3595
	3.9648		9221	0.59			5897	1.13	3.6724	-0.466	4703		67	3.5518	-2.096	3562
	3.9564		9044	0.60		-0.063	5876	1.14	3.6705	-0.478	4682		68	3.5475	-2.210	3527
		-0.045	8877		3.7674		5853	1.15	3.6687	-0.491	4663		69	3.5432	-2.329	3493
	3.9406		8721	0.62	3.7657		5830	1.16	3.6669	-0.503	4644		7 0	3.5386	-2.463	3456
		-0.007	8574	0.63	3.7640		5807	1.17	3.6651	-0.516	4624	1.	71	3.5338	-2.611	3418
	3.9261	0.006	8435	0.64	3.7623		5784	1.18	3.6633	-0.528	4605	1.	72	3.5289	-2.769	3379
	3.9192	0.015	8302	0.65	3.7606		5762	1.19	3.6615	-0.541	4586		73	3.5237	-2.947	3339
	3.9127	0.021	8178	0.66	3.7589		5739	1.20	3.6597	-0.554	4567		74	3.5183	-3.141	3298
	3.9064	0.024	8061	0.67	3.7571		5716	1.21	3.6580	-0.566	4549		75	3.5127	-3.355	3256
	3.9004	0.028	7950	0.68	3.7554		5693	1.22	3.6562	-0.579	4531		76	3.5068	-3.592	3212
	3.8947	0.030	7846	0.69	3.7537		5671	1.23	3.6544	-0.593	4512	1.		3.5007	-3.853	3167
	3.8891	0.031	7746	0.70	3.7520		5649	1.24	3.6527	-0.606	4494	1.		3.4943	-4.142	3121
	3.8839	0.033	7654	0.71	3.7502		5626	1.25	3.6509	-0.619	4476	1.		3.4877	-4.460	3073
0.18	3.8788	0.033	7564	0.72	3.7485	-U.114	5604	1.26	3.6492	-0.633	4458	1.	80	3.4807	-4.817	3024

Fig. 4.—Bolometric corrections for all stars with the "corrected" temperatures of Ridgway et al. (1980). The temperatures of Dyck et al. (1974) were increased by 0.02 in log $T_{\rm eff}$.

1996ApJ...469..355F

Fig. 5.—Polynomial fits to temperatures and colors. Temperatures of giants, subgiants, and main-sequence stars are lower by 0.3 in $\log T_{\rm eff}$ than the next more luminous class. The lower three curves are identical; the curve is the polynomial fit to all giants, subgiants, and main-sequence stars in the database listed in Table 5 (except those of Ridgway et al. 1980). Symbols for stars without error bars are larger than the error bars.

scales merge at high temperatures and that they merge at lower temperatures.

Figure 8 compares the new polynomial fits with previous $T_{\rm eff}$: B-V scales. I used the color-spectral type relation of FitzGerald (1970) to obtain colors for the effective temperature-spectral type scales of Fitzpatrick & Garmany (1990). No significant differences exist between any of the scales, except for the luminosity class V scale of Habets & Heintze (1981), and they only differ at low temperatures.

Habets & Heintze (1981) base their scale on several older calibrations, including Flower (1977), instead of relying on measured temperatures. They also calibrate their temperatures with spectral type instead of B-V color. To compare their scale with others, I used the colors of FitzGerald (1970) for main-sequence stars. Figure 5, however, shows that the most recent temperatures for main-sequence stars, subgiants, and giants define a tight scale as red as B-V=1.6 that does not support the lower temperatures of Habets & Heintze (1981). Perhaps the differences reflect assignments of temperatures to spectral types or in the color transformation between spectral type and B-V color.

Figure 9a compares the new $T_{\rm eff}$:BC scale with Flower's (1977, 1975) scales. The differences above 10,000 K are most likely due to the greater number of stars with measured bolometric corrections available today (compare, for instance, Fig. 6 in this paper with Fig. 3 in Flower 1977). For cooler temperatures, the new scale is hotter than Flower's (1975) giant scale because I increased the temperatures of Dyck et al. (1974) by 0.02 in log $T_{\rm eff}$.

Unfortunately, the present database does not contain any cool supergiants with accurately known bolometric corrections. Flower's (1977) supergiant $T_{\rm eff}$: BC scale for cool temperatures relies on the temperature estimates by Lee (1970) and his measured bolometric corrections. He did not have many angular diameters from which to estimate temperatures, so he used infrared color calibrations and blackbody temperatures. It is not clear how modern temperature estimates will change the supergiant scale at low temperatures from Flower's (1977) scale.

Figure 9b shows that the new temperature scale agrees at the hot end with those of Chlebowski & Garmany (1991) and Humphreys & McElroy (1984). The Habets & Heintze (1981) scale, however, deviates significantly from the new scale as well as from Flower's (1977) older scales. Habets & Heintze (1981) base their bolometric corrections on data from visual and astrometric binaries. They determine bolometric corrections as a function of mass using mean radii and mean effective temperatures. In doing so, for instance,

Fig. 6.—Polynomial fit to temperatures and bolometric corrections for all stars. Temperatures of Ridgway et al. (1980) and of Dyck et al. (1974) are "corrected" temperatures as in Fig. 4.

Fig. 7.—(a) Supergiant fit compared to the fit for the other luminosity classes over the entire $T_{\rm eff}$ and B-V range. (b) Fits and observations compared. Error bars are the same as in Fig. 5.

Fig. 8.—Polynomial fit for supergiants compared to the fit for the other luminosity classes. Curves in (b) are shifted by 0.5 to the right and curves in (c) and (d) are shifted 0.3 and 0.6 in log $T_{\rm eff}$, respectively. (a) Supergiants from this paper (SG) and from Flower (1977) (SG F77). (b) Supergiants from this paper and luminosity class Ia and Ib from Fitzpatrick & Garmany (1990). (c) Main-sequence stars, subgiants, and giants fits from this paper (MS-G) compared to main-sequence fit (MS F77) and giant fit (G F77) from Flower (1977). (d) This paper compared to main-sequence scales (MS H&H81) of Habets & Heintze (1981) and luminosity class II from Fitzpatrick & Garmany (1990).

they determine the Sun's bolometric correction to be -0.32, much greater than the canonical value of -0.07. Their different bolometric corrections are apparently due to differences in temperature, radius, and absolute magnitude between the Sun and their mean relations for main-sequence stars.

Figure 9b also shows a comparison with the temperatures and bolometric corrections computed by Alonso, Arribas, & Martínez-Roger (1995) for a solar composition. The favorable comparison gives support to the adjustments made to the temperatures of Ridgway et al. (1980).

Figure 10 shows the effect of the transformations on stellar evolutionary tracks (calculated by El Eid, Flower, & Hartmann 1996). The overall effect of the bolometric corrections when transforming to color-magnitude diagrams is to stretch the tracks in magnitude. This is especially appar-

TABLE 5 B-V Colors $B-V=a+b \log T_{\text{eff}}+c (\log T_{\text{eff}})^2+\cdots$

Coefficient	Supergiants	Main-Sequence Stars, Subgiants, Giants
а	4.0125597	3.979145
b	-1.055043	-0.654499
c	2.133395	1.740690
d	-2.459770	-4.608815
e	1.349424	6.792600
f	-0.283943	-5.396910
g		2.192970
ď	•••	-0.359496

1996ApJ...469..355F

Fig. 9.—(a) The new bolometric correction scale compared with the scales of Flower (1977, 1975). (b) Comparison with other T_{eff} : BC scales. The models of Alonso et al. (1995) are for solar composition and $\log g = 4$.

4.1 4.0

 $\log T_{\rm eff}$

3.9 3.8

3.7

3.6

4.3 4.2

4.5

4.6

ent for hydrogen-burning phases. The steep bolometric corrections together with large changes in temperature for small changes in color in the $T_{\rm eff}$: B-V scales cause the

TABLE 6
BOLOMETRIC CORRECTIONS $BC = a + b \log T_{\text{eff}} + c (\log T_{\text{eff}})^2 + \cdots$

Coefficient	$\log T_{\rm eff} > 3.90$	$3.90 < \log T_{\rm eff} > 3.70$	$\logT_{\rm eff} < 3.70$
а	-0.188115	-0.370510	-0.190537
$oldsymbol{b}$.	0.137146	0.385673	0.155145
\boldsymbol{c}	-0.636234	-0.150651	-0.421279
d	0.147413	0.261725	0.381476
e	-0.179587	-0.170624	•••
f	0.788732	•••	•••

helium-burning phases to lie nearly directly over the hydrogen-burning phases for massive stars. The differences in the tracks of the same mass in Figure 10b reflect the slight differences between the supergiant scale and the main-sequence-giant scale (Fig. 7).

To summarize, I found that supergiants have a $T_{\rm eff}: B-V$ relation slightly different from those of the other luminosity classes above 10,000 K, but all luminosity classes appear to follow a unique $T_{\rm eff}: BC$ relation. Uncertainties exist, however, at the cool end of the $T_{\rm eff}: BC$ scale because of uncertainties in temperatures of giants and the lack of observations of supergiants. It is not certain if cool supergiants have smaller bolometric corrections than cool giants and main-sequence stars for a given effective temperature. It may be fair to say that we do not know the bolometric

Fig. 10.—(a) Evolutionary tracks for 2, 5, and 12 solar masses from El Eid et al. (1996) in $\log L$ and $\log T_{\rm eff}$. (b) The same evolutionary tracks transformed with the two new scales.

corrections of cool supergiants.

Further improvements to $T_{\rm eff}$: B-V scales and $T_{\rm eff}$: BC scales must await reliable temperatures for cool giants and more temperatures and bolometric corrections for cool supergiants. In the meantime, the polynomial fits presented here represent the current observational status of temperature and bolometric correction measurements of stars.

This work was supported in part by a URGC grant from Clemson University. The author thanks M. F. El Eid for many discussions of stellar evolution and comparisons with observations, Mark Leising for insights into the differences between temperature scales of the different luminosity classes, and Dieter Hartmann for many discussions and critical readings of the manuscript.

REFERENCES