Sign Language Production using Deep Learning

author: Alua Musralina advisor: Radoslav Neychev

Phystech School of Applied Mathematics and Informatics Moscow Institute of Physics and Technology, Russia musralina.az@phystech.edu www.mipt.ru

> Moscow, Russia May 28, 2023

Outline

- 1. Motivation
- 2. Tasks description
- 3. Dataset for Sign Language Production
- 4. Methods overview
- 5. Gloss Generation results
- 6. Keypoints generation
- 7. Conclusion
- 8. Outlook

Motivation

The Sign language is a language, that is visually performed with hand gestures, body postures and face expressions, so the meaning of signs depends on the combination of all of them.

- 1. There are up-to 300 different signed languages (United Nations 2022) and up-to 70 million deaf people exist in our world (World Federation of the Deaf 2022).
- 2. There are two main tasks can be implemented for Translation:
 - 2.1 from sign language (Sign Language Recognition)
 - 2.2 into sign language (Sign Language Production)

Motivation

Every sign has an unique identifier, which is called as **Gloss**. There is no direct alignment between sign sequences and spoken language sentences.

https://research.sign.mt

Tasks

Tasks:

- Methods overview
 - end-to-end system (text2sign architecture)
 - with the intermediate results production (text2gloss architecture)
- ► Implementation and evaluation of Gloss production
 - seq2seq from scratch
 - seq2seq with pre-trained model
- ▶ Implementation of mapping from Gloss to Sign Keypoints

Goal:

Tasks

Tasks:

- Methods overview
 - end-to-end system (text2sign architecture)
 - with the intermediate results production (text2gloss architecture)
- Implementation and evaluation of Gloss production
 - seq2seq from scratch
 - seq2seq with pre-trained model
- ▶ Implementation of mapping from Gloss to Sign Keypoints

Goal:

► Implementation and evaluation of possible improvements of seq2seq models for text2gloss translation for Sign Language Production.

Phoenix Dataset for SLP

8257 videos of 9 different signers are provided, with a vocabulary of 2887 German words and 1066 different sign glosses.

Methods overview

In general, text to sign language process can be divided into three modules:

- pre-processing the input text
- convert into sign sequences using MT
- generate videos or animated avatars

Methods examples overview:

- Production of concatenated isolated signs (Stephanie Stoll).
- Automatically Mapping between the text and the pose sequences, without need of Gloss production. Glosses are produced only for comparison (Ben Saunders).

Luong attention (Stoll)

e with

Progressive Transformer (Saunders)

Evaluation of Gloss production

Text to Gloss production results:

with small dataset (ca. 8000 pairs) and relatively simple model a good BLEU 23.72 for generating the Gloss is achieved, which further could be used for avatar generation.

Methods results comparison table:

Method	Number of parameters	Bleu-4	Rouge-1
Stoll: Enc-Dec with attention	Not available	19.10	54.55
Saunder: Progressive transformer case, text2gloss part	Not available	15.26	48.10
Our: Enc-Dec without attention and with LSTM	2,452,438	7.35	29.15
Our: Encoder-Decoder model with attention and with bidirectional GRU	4,937,430	19	49.69
Our: pre-trained Huggingface transformer	73, 886, 208	23.72	64.92

Keypoints generation

- ▶ 2D upper body joint and facial landmark positions are first extracted using MediaPipe library:
 - 21 keypoints for each hand
 - 33 keypoints for pose
- Lookup table is created for each gloss.
- ▶ The glosses are mapped to the sequence of prepared frames (video).

Outlook

Outlook

- ► Further fine-tune the Huggingface transformer
- ► Generate more natural movements of avatars (out of the scope of this work)