Bayesian Statistics III/IV (MATH3341/4031)

Michaelmas term, 2019

Handout 16: Hierarchical Bayesian model

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Aim

To be able to specify and analyze a Hierarchical Bayesian, as well as to extend previously introduces concepts in the Hierarchical Bayes framework.

Basic reading list:

- Robert, C. (2007, Sections 10.1-10.3). The Bayesian choice: from decision-theoretic foundations to computational implementation. Springer Science & Business Media.
- Robert, C. P., & Reber, A. (1998). Bayesian modelling of a pharmaceutical experiment with heterogeneous responses. Sankhyā: The Indian Journal of Statistics, Series B, 145-160. (https://www.jstor.org/stable/pdf/25053027.pdf)

R-scripts:

• https://github.com/georgios-stats/Bayesian_Statistics/blob/master/ HandoutsSupplementary/HierarchicalBayes/HierarchicalBayesPharmaceutical.R

1 Hierarchical Bayesian Model

A Bayesian model can be hierarchical due to the modeling of the observations or due to the decomposition of the prior information. A Bayesian hierarchical model involves several levels / layers of conditional prior distributions.

Definition 1. A hierarchical Bayes model is a Bayesian statistical model with sampling distribution $x \sim f(y|\theta)$ and prior $\theta \sim \pi(\theta)$, where the prior distribution $\pi(\theta)$ is decomposed in conditional distributions. The Bayesian model is

$$\begin{cases} y & \sim f(y|\theta), \text{ is the sampling distribuition} \\ \theta & \sim \pi(\theta) \text{ is the marginal prior which is specified as} \end{cases} \begin{cases} y \sim f(y|\theta) \\ \theta & \sim \pi_1(\theta|\phi_1) \\ \phi_1|\phi_2 \sim \pi_2(\phi_1|\phi_2) \\ \vdots \\ \phi_j|\phi_{j+1} \sim \pi_{j+1}(\phi_j|\phi_{j+1}) \\ \vdots \\ \phi_{m-1}|\phi_m \sim \pi_m(\phi_{m-1}|\phi_m) \end{cases} \end{cases}$$
 j th level hyper-prior

$$\begin{cases} y|\theta & \sim f(y|\theta) \\ \theta|\phi_1 & \sim \pi_1(\theta|\phi_1) \\ \phi_1|\phi_2 & \sim \pi_2(\phi_1|\phi_2) \\ \vdots & & \\ \phi_j|\phi_{j+1} & \sim \pi_{j+1}(\phi_j|\phi_{j+1}) \\ \vdots & & \\ \phi_{m-1} & \sim \pi_m(\phi_{m-1}|\phi_m) \end{cases} \tag{1}$$

8

^aAuthor: Georgios P. Karagiannis.

The joint distribution $p(y, \theta, \phi_1, ..., \phi_j, ..., \phi_{m-1})$ has pdf

$$p(y, \theta, \phi_1, ..., \phi_j, ..., \phi_{m-1}) = f(y|\theta)\pi_1(\theta|\phi_1)\pi_2(\phi_1|\phi_2)\pi_3(\phi_2|\phi_3)...\pi(\phi_{m-1}|\phi_m)$$

The marginal prior distribution $\pi(\theta)$ has pdf

$$\pi(\theta) = \int_{\Phi_1 \times \Phi_{m-1}} \pi_1(\theta|\phi_1) \pi_2(\phi_1|\phi_2) d\phi_1 \pi_3(\phi_2|\phi_3) d\phi_2 ... \pi(\phi_{m-1}|\phi_m) d\phi_{m-1}.$$

- The parameters $\phi_j \in \Phi_j$ are called random hyper-parameters of level j for $1 \le j \le m-1$.
- Remark 2. Hierarchical Bayesian model is simply a special type of Bayesian model, where

$$\begin{cases} y|\theta & \sim f(y|\theta) \\ \theta|\phi & \sim \pi(\theta|\phi) \\ \phi|\phi_m & \sim \pi(\phi|\phi_m) \end{cases}$$
 (2)

- for $\phi = (\phi_1, ..., \phi_{m-1})$, and ϕ_m fixed hyper-parameter.
- Remark 3. The Bayesian model with sampling distribution $y \sim f(y|\theta)$ and prior $\theta \sim \pi(\theta)$, can be recovered from 2 by marginalizing the prior as

$$\pi(\theta) = \int_{\Phi} \pi(\theta|\phi)\pi(\phi|\phi_m)d\phi = \int_{\Phi_1 \times \Phi_{m-1}} \pi(\theta|\phi_1)\pi(\phi_1|\phi_2)d\phi_1...\pi(\phi_{m-1}|\phi_m)d\phi_{m-1},$$
(3)

- where ϕ_m is just a fixed hyper-parameter. This reduction shows that hierarchical modelings are indeed included in the Bayesian paradigm.
- Note 4. A hierarchical Bayesian model can be used as a mean to specify more diverse priors. This is achieved by
- setting ϕ to be a random hyper-parameter with $\phi|\phi_m\sim\pi_2(\phi|\phi_m)$ instead of setting ϕ to have a fixed value. See Example 5.
- **Example 5.** Consider the 'Challenger O-ring' example from the Computer practicals. Let y_i denote the presence of a defective O-ring in the *i*th flight (0 for absence, and 1 for presence).
- Assume that y_i can be modeled as observations generated independently from a Bernoulli distribution with with parameter p_i . Here, p_i denotes the relative frequency of defective O-rings at flight i. We study if 'presence of a
- defective O-ring' (y) depends on the 'temperature' (t), or the 'pressure' (s).
- Let t_i denote the temperature (in F) in the platform, and let s_i denote the Leak check pressure (in PSI) before the ith flight. Here are some possible models of interest:

$$\mathcal{M}^{I}: \ p(t; \beta_{\mathcal{M}^{I}}, \mathcal{M}^{I}) = \frac{\exp(\beta_{0})}{1 + \exp(\beta_{0})} \qquad ; \mathcal{M}^{IV}: \ p(t; \beta_{\mathcal{M}^{IV}}, \mathcal{M}^{IV}) = \frac{\exp(\beta_{0} + \beta_{1}t + \beta_{2}s)}{1 + \exp(\beta_{0} + \beta_{1}t + \beta_{2}s)}$$

$$\mathcal{M}^{II}: \ p(t; \beta_{\mathcal{M}^{II}}, \mathcal{M}^{II}) = \frac{\exp(\beta_{0} + \beta_{1}t)}{1 + \exp(\beta_{0} + \beta_{1}t)} \qquad ; \mathcal{M}^{V}: \ p(t; \beta_{\mathcal{M}^{V}}, \mathcal{M}^{V}) = \frac{\exp(\beta_{0} + \beta_{1}t + \beta_{2}s + \beta_{3}ts)}{1 + \exp(\beta_{0} + \beta_{1}t + \beta_{2}s + \beta_{3}ts)}$$

$$\mathcal{M}^{III}: \ p(t; \beta_{\mathcal{M}^{III}}, \mathcal{M}^{III}) = \frac{\exp(\beta_{0} + \beta_{2}s)}{1 + \exp(\beta_{0} + \beta_{2}s)} \qquad \text{etc...}$$

$$\mathcal{M}^{II}: p(t; \beta_{\mathcal{M}^{II}}, \mathcal{M}^{II}) = \frac{\exp(\beta_0 + \beta_1 t)}{1 + \exp(\beta_0 + \beta_1 t)}$$

$$\mathcal{M}^{II}) = \frac{\exp(\beta_0 + \beta_1 t)}{1 + \exp(\beta_0 + \beta_1 t)}$$

$$; \mathcal{M}^{V}: p(t; \beta_{\mathcal{M}^{V}}, \mathcal{M}^{V})$$

$$= \frac{\exp(\beta_0 + \beta_1 t + \beta_2 s)}{\exp(\beta_0 + \beta_1 t + \beta_2 s + \beta_3 t s)}$$

The Bayesian hierarchical model under consideration is:

$$\begin{cases} y_i | \theta \sim f(y_i | \theta) & :: & \left\{ y_i | \mathcal{M}, \beta_{\mathcal{M}} \sim \operatorname{Br} \left(y_i | \frac{\exp(x_i^\top \beta_{\mathcal{M}})}{1 + \exp(x_i^\top \beta_{\mathcal{M}})} \right), & \text{for, } i = 1, ..., n \\ \\ \theta | \phi_1 \sim \pi(\theta | \phi_1) & :: & \begin{cases} \beta_j | \mathcal{M} \sim (1 - \gamma_j) \mathbf{1}_0(\beta_j) + \gamma_j \mathbf{N}(\beta_j | \mu_0, \sigma_0^2) & j = 1, ..., d \\ \\ \mathcal{M} & = (\gamma_1, ..., \gamma_d) \\ \\ \gamma_j | \varpi & \sim \operatorname{Br}(\varpi), & j = 1, ..., d \end{cases} \\ \\ \phi_1 | \phi_2 \sim \pi(\phi_1 | \phi_2) & :: & \left\{ \varpi \quad \sim \operatorname{Be}(a_0, b_0) \right\} \end{cases}$$

- where $\theta = (\mathcal{M}, \beta_{\mathcal{M}})$, $\phi_1 = \varpi$, and $\phi_2 = (a_0, b_0)$. Above, in the prior we considered an extra level of uncertainty by considering $\varpi \sim \text{Be}(a_0, b_0)$.
 - Here we added an additional level of uncertainty, and set $\varpi \sim \text{Be}(a_0, b_0)$ which creates a more diverse prior model, compared to the computer practical handout example where we had set $\varpi = 0.5$.
- Now the joint probability distribution has pdf

$$p(y, \beta_{\mathcal{M}}, \mathcal{M}, \varpi) = \underbrace{\prod_{i=1}^{n} \operatorname{Br}\left(y_{i} | \frac{\exp(x_{i}^{\top} \beta_{\mathcal{M}})}{1 + \exp(x_{i}^{\top} \beta_{\mathcal{M}})}\right)}_{f(y|\theta)} \underbrace{\prod_{i=1}^{n} \left((1 - \gamma_{j}) \mathbf{1}_{0}(\beta_{j}) + \gamma_{j} \mathbf{N}(\beta_{j} | \mu_{0}, \sigma_{0}^{2})\right) \prod_{i=1}^{n} \operatorname{Br}(\gamma_{i} | \varpi) \operatorname{Be}(\varpi | a_{0}, b_{0})}_{\pi(\phi_{1} | \phi_{2})}$$

- Note 6. A hierarchical Bayesian model can be used when the sampling distribution or the prior distributions justify a certain structure. See Example 7.
- Example 7. Robert and Reber (1998) considers an experiment under which rats are intoxicated by a substance, then treated by either a placebo or a drug. (Sess: https://www.jstor.org/stable/pdf/25053027.pdf)
- Statistical model $(f(y|\theta))$: The model associated with this experiment is a linear additive model effect: given x_{ij} , y_{ij} and z_{ij} , y_{ij} th responses of the ith rat at the control, intoxication and treatment stages, respectively. The statistical model was specified such as that $(1 \le i \le I)$

$$\begin{aligned} x_{i,j} &\sim \mathbf{N}(\theta_i, \sigma_c^2) &, 1 \leqslant j \leqslant J_i^c \\ y_{i,j} &\sim \mathbf{N}(\theta_i + \delta_i, \sigma_a^2) &, 1 \leqslant j \leqslant J_i^a, \\ z_{i,j} &\sim \mathbf{N}(\theta_i + \delta_i + \xi_i, \sigma_t^2) &, 1 \leqslant j \leqslant J_i^t, \end{aligned}$$

where θ_i is the average control measurement, δ_i the average intoxication effect and ξ_i the average treatment effect for the *i*th rat, the variances of these measurements being constant for the control, the intoxication and the treatment effects. An additional (observed) variable is w_i , which is equal to 1 if the rat is treated with the drug, and 0 otherwise.

Prior model $\pi(\theta|\phi)$: The different individual averages are related through a common (conjugate) prior distribution,

$$\theta_{i} \sim N(\mu_{\theta}, \sigma_{\theta}^{2}), \qquad \delta_{i} \sim N(\mu_{\delta}, \sigma_{\delta}^{2}), \qquad \xi_{i} | w_{i} \sim \begin{cases} N(\mu_{P}, \sigma_{P}^{2}) &, w_{i} = 0 \\ N(\mu_{D}, \sigma_{D}^{2}) &, w_{i} = 1 \end{cases}$$

$$\sigma_{c} \sim \pi(\sigma_{c}) \propto \frac{1}{\sigma_{c}}, \qquad \sigma_{a} \sim \pi(\sigma_{a}) \propto \frac{1}{\sigma_{a}}, \qquad \sigma_{t} \sim \pi(\sigma_{t}) \propto \frac{1}{\sigma_{t}}, \qquad (4)$$

This modeling seems to describe the natural phenomenon realistically enough, in the sense the responses x_{ij} , y_{ij} and z_{ij}

Hyper-priors $\pi(\phi|\phi_m)$: For the higher levels of prior ($\pi(\phi|\phi_m)$ in Eq 2), they considered improper (Jeffrey's) hyperpriors.

$$(\mu_{\theta}, \sigma_{\theta}) \sim \pi(\mu_{\theta}, \sigma_{\theta}) \propto \frac{1}{\sigma_{\theta}}, \qquad (\mu_{\delta}, \sigma_{\delta}) \sim \pi(\mu_{\delta}, \sigma_{\delta}) \propto \frac{1}{\sigma_{\delta}}, \qquad (\mu_{P}, \sigma_{P}) \sim \pi(\mu_{P}, \sigma_{P}) \propto \frac{1}{\sigma_{P}}, \qquad (5)$$

$$(\mu_D, \sigma_D) \sim \pi(\mu_D, \sigma_D) \propto \frac{1}{\sigma_D}.$$
 (6)

The priors in lines (4), (5) and (6) are improper non-informative priors. One could have have specify proper priors, like Normal-Inverse Gamma which are conjugate, however in that case he/she should have to specify the values for the fixed hyper-parameters.

As improper priors are specified, one need to study under what conditions the above improper priors lead to a proper (well defined) posterior –we omit this step here...

Note 8. A particularly appealing aspect of hierarchical models is that they allow for conditioning on all levels, and this easy decomposition of the posterior. Consider the Bayesian hierarchical model (2) a parametric model $f(y|\theta)$ with a hierarchical prior $\theta \sim \pi_1(\theta|\phi)$, and $\phi \sim \pi(\phi)$. The posterior distribution of θ is

$$\pi(\theta|y) = \int_{\Phi} \pi(\theta|y,\phi)\pi(\phi|y)d\phi \tag{7}$$

where

$$\pi(\theta|y,\phi) = \frac{f(y|\theta)\pi_1(\theta|\phi)}{f_1(y|\phi)}$$
$$f_1(y|\phi) = \int_{\Theta} f(y|\theta)\pi_1(\theta|\phi)d\theta$$
$$\pi(\phi|y) = \frac{f_1(y|\phi)\pi_2(\phi)}{f(y)}$$
$$f(y) = \int_{\Theta} f_1(y|\phi)\pi_2(\phi)d\phi$$

Remark 9. It has important consequences in terms of the computation of Bayes estimators, though, since it shows that $\pi(\theta|y)$ can be simulated by generating, first, ϕ from $\pi(\phi|y)$ and then θ from $\pi(\theta|y,\phi)$, if these two conditional distributions are easier to work with. (Snapshot from Term 2).

Note 10. Hierarchical decomposition (2) may facilitate the computation of intractable posterior moments. Let h be a function $h: \Theta \to \mathbb{R}$, then

$$E_{\pi}(h(\theta)|y) = E_{\pi} \left(E_{\pi} \left(h(\theta)|y, \phi \right) |y \right).$$

If $E_{\pi}(h(\theta)|y) = \int h(\theta)\pi(\theta|y)d\theta$ is intractable and θ has high dimensionality, one could possibly try to specify the prior decomposition $\pi(\theta) = \int_{\Phi} \pi_1(\theta|\phi)\pi_2(\phi|\phi_m)d\phi$ in (3) such that $E_{\pi}(h(\theta)|y,\phi)$ can be computed analytically, and ϕ has low conventionality. In that case one would have to compute the equivalent but lower dimensional (and hence easier) integral $E_{\pi}(E_{\pi}(h(\theta)|y,\phi)|y) = \int E_{\pi}(h(\theta)|y,\phi)\pi(\phi|y)d\phi$.

Example 11. Regarding the fully hierarchical model (1), the full conditionals distributions of each element of $\vartheta = (\theta, \phi_1, ..., \phi_{m-1}) \in \Theta \times \Phi$ are given as:

$$\pi(\vartheta_j|y,\vartheta_{-j}) = \pi(\vartheta_j|y,\vartheta_{j-1},\vartheta_{j+1})$$

with the convention

$$\vartheta_{j} = \begin{cases} \theta & , j = 1 \\ \phi_{j-1} & , j = 2, ..., m \\ \phi_{m} & , j = m \end{cases}$$

and $\theta_{-j} = (\theta_1, ..., \theta_{j-1}, \theta_{j+1}, ... \theta_m).$

97 Proof. Straightforward by using the Bayesian theorem.

Example 12. (Cont...) You may use

$$-\frac{1}{2}\sum_{i=1}^{n}\frac{(x-\mu_{i})^{2}}{\sigma_{i}^{2}} = -\frac{1}{2}\frac{(x-\hat{\mu})^{2}}{\hat{\sigma}^{2}} + C; \ \hat{\sigma}^{2} = (\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}})^{-1}; \ \hat{\mu} = \hat{\sigma}^{2}(\sum_{i=1}^{n}\frac{\mu_{i}}{\sigma_{i}^{2}}); \quad C = \frac{1}{2}\frac{(\sum_{i=1}^{n}\frac{\mu_{i}}{\sigma_{i}^{2}})^{2}}{\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}} - \frac{1}{2}\sum_{i=1}^{n}\frac{\mu_{i}^{2}}{\sigma_{i}^{2}}$$

The joint posterior pdf of $\vartheta = (\theta_{1:I}, \delta_{1:I}, \xi_{1:I}, \sigma_c^2, \sigma_a^2, \sigma_t^2, \sigma_\theta^2, \sigma_\delta^2, \sigma_P^2, \sigma_D^2, \mu_\theta, \mu_\delta, \mu_P, \mu_D)$ given obs. x, y, z is

$$\pi(\vartheta|x,y,z) \propto \prod_{i=1}^{I} \left[\exp\left(-\frac{(\theta_{i} - \mu_{\theta})^{2}}{2\sigma_{\theta}^{2}} - \frac{(\delta_{i} - \mu_{\delta})^{2}}{2\sigma_{\delta}^{2}}\right) \prod_{j=1}^{J_{i}^{c}} \exp\left(-\frac{(x_{i,j} - \theta_{i})^{2}}{2\sigma_{c}^{2}}\right) \times \prod_{j=1}^{J_{i}^{a}} \exp\left(-\frac{(y_{i,j} - \theta_{i} - \delta_{i})^{2}}{2\sigma_{a}^{2}}\right) \times \prod_{j=1}^{J_{i}^{c}} \exp\left(-\frac{(y_{i,j} - \theta_{i} - \delta_{i})^{2}}{2\sigma_{a}^{2}}\right) \times \prod_{w_{i}=0} \exp\left(-\frac{(\xi_{i} - \mu_{P})^{2}}{2\sigma_{P}^{2}}\right) \prod_{w_{i}=0} \exp\left(-\frac{(\xi_{i} - \mu_{D})^{2}}{2\sigma_{D}^{2}}\right) \right] \times \sigma_{c}^{-\sum_{i} J_{i}^{c} - 1} \sigma_{a}^{-\sum_{i} J_{i}^{c} - 1} \sigma_{t}^{-\sum_{i} J_{i}^{c} - 1} \sigma_{\theta}^{I-1} \sigma_{\theta}^{I-1} \sigma_{D}^{I-1} \sigma_{D}^{I-1} \sigma_{D}^{I-1} \sigma_{P}^{I-1}.$$

The joint posterior distributions is not of standard form, and its pdf is intractable. However the full conditionals are of standard form. For instance, the full conditional posterior distribution density

$$\pi(\delta_{1:I}|x_{\text{all}},y_{\text{all}},z_{\text{all}},\theta_{1:I},\xi_{1:I},\sigma_{c}^{2},\sigma_{a}^{2},\sigma_{b}^{2},\sigma_{\delta}^{2},\sigma_{P}^{2},\sigma_{D}^{2},\mu_{\theta},\mu_{\delta},\mu_{P},\mu_{D})$$

$$\propto \prod_{i=1}^{I} \left[\exp\left(-\frac{(\delta_{i}-\mu_{\delta})^{2}}{2\sigma_{\delta}^{2}}\right) \times \prod_{j=1}^{J_{i}^{a}} \exp\left(-\frac{(y_{i,j}-\theta_{i}-\delta_{i})^{2}}{2\sigma_{a}^{2}}\right) \times \prod_{j=1}^{J_{i}^{t}} \exp\left(-\frac{(z_{i,j}-\theta_{i}-\delta_{i}-\xi_{i})^{2}}{2\sigma_{t}^{2}}\right) \right]$$

$$\propto \prod_{i=1}^{I} \left[\exp\left(-\frac{(\delta_{i}-\mu_{\delta})^{2}}{2\sigma_{\delta}^{2}} - \sum_{j=1}^{J_{i}^{a}} \frac{(\delta_{i}-(y_{i,j}-\theta_{i}))^{2}}{2\sigma_{a}^{2}} - \sum_{j=1}^{J_{i}^{t}} \frac{(\delta_{i}-(z_{i,j}-\theta_{i}-\xi_{i})}{2\sigma_{t}^{2}}\right) \right]$$

$$\propto \prod_{i=1}^{I} \left[\exp\left(-\frac{(\delta_{i}-\mu_{\delta,i}^{*})^{2}}{2\left(\sigma_{\delta,i}^{*}\right)^{2}} + \text{const...}\right) \right] \propto \prod_{i=1}^{I} \left[\exp\left(-\frac{(\delta_{i}-\mu_{\delta,i}^{*})^{2}}{2\left(\sigma_{\delta,i}^{*}\right)^{2}} + \text{const...}\right) \right]$$

$$\propto \prod_{i=1}^{I} N\left(\delta_{i}|\mu_{\delta,i}^{*}, (\sigma_{\delta,i}^{*})^{2}\right)$$

111 with

$$\delta_i | \text{rest}, \dots \stackrel{\text{ind}}{\sim} N\left(\mu_{\delta,i}^*, \left(\sigma_{\delta,i}^*\right)^2\right), \ \forall i = 1, ..., n$$

113 where

$$\left(\sigma_{\delta,i}^{*}\right)^{2} = \left(\frac{1}{\sigma_{\delta}^{2}} + \frac{1}{\sigma_{a}^{2}}J_{i}^{a} + \frac{1}{\sigma_{t}^{2}}J_{i}^{t}\right)^{-1}; \quad \mu_{\delta,i}^{*} = \left(\sigma_{\delta,i}^{*}\right)^{2}\left(\frac{\mu_{\delta}}{\sigma_{\delta}^{2}} + \frac{\sum_{j=1}^{J_{i}^{a}}y_{i,j} - J_{i}^{a}\theta_{i}}{\sigma_{a}^{2}} + \frac{\sum_{j=1}^{J_{i}^{a}}y_{i,j} - J_{i}^{t}\theta_{i} - J_{i}^{t}\xi_{i}}{\sigma_{t}^{2}}\right)$$

Notice that δ_i are a postriori independent given all the resp unknown parameters $(\theta_{1:I}, \xi_{1:I}, \sigma_c^2, \sigma_a^2, \sigma_t^2, \sigma_\theta^2, \sigma_\delta^2, \sigma_P^2, \sigma_D^2, \mu_\theta, \mu_\delta, \mu_P, \mu_D)$. Notice that the prior $\delta_i \sim N(\mu_\delta, \sigma_\delta^2)$ in Example 7 is conditional conjugate prior of δ_i .

Try to compute the rest

$$\pi(\theta_{1:I}|\text{rest},...) \sim?; \qquad \pi(\sigma_t^2|\text{rest},...) \sim? \qquad etc...$$

$$\pi(\xi_{1:I}|\text{rest},...) \sim?; \qquad \pi(\sigma_\theta^2|\text{rest},...) \sim?$$

$$\pi(\sigma_e^2|\text{rest},...) \sim?; \qquad \pi(\sigma_\delta^2|\text{rest},...) \sim?$$

$$\pi(\sigma_a^2|\text{rest},...) \sim?; \qquad \pi(\sigma_P^2|\text{rest},...) \sim?$$

- See the solutions in: Robert, C. P., & Reber, A. (1998). Bayesian modelling of a pharmaceutical experiment with heterogeneous responses. Sankhy: The Indian Journal of Statistics, Series B, 145-160. from the link (https://www.jstor.org/stable/pdf/25053027.pdf).
- I have an R script with a demo in https://github.com/georgios-stats/ Bayesian_Statistics/blob/master/HandoutsSupplementary/HierarchicalBayes/ HierarchicalBayesPharmaceutical.R

2 Non-identifiability issue

A parametric model for which an element of the parametrisation is redundant is said to be non-identified. Let Bayesian model $(f(y|\theta), \pi(\theta))$, where $\theta = (\theta_1, \theta_2) \in \Theta_1 \times \Theta_2$, and assume that the parametric model does not depend on θ_1 ; i.e. $f(y|\theta_1, \theta_2) = f(y|\theta_2)$. The fact that the likelihood does not depend on θ_1 suggests that y does not provide information about θ_1 directly.

Bayesian analysis of a non-identified model is always possible if a suitable prior $\Pi(\theta_1, \theta_2)$ on all the parameters is specified. For instance, if one specifies a priori that learning the value of θ_2 may change his belief about θ_1 , via $\pi(\theta_1|\theta_2) \neq \pi(\theta_1)$.

Factorize the prior distribution as $\pi(\theta_1, \theta_2) = \pi(\theta_1 | \theta_2) \pi(\theta_2)$. Then, we have the following PDF/PMF

$$\pi(\theta_{1}, \theta_{2}|y) \propto f(y|\theta_{1}, \theta_{2}) \pi(\theta_{1}, \theta_{2}) = f(y|\theta_{2}) \pi(\theta_{1}|\theta_{2}) \pi(\theta_{2}) \Longrightarrow$$

$$\pi(\theta_{1}, \theta_{2}|y) = \pi(\theta_{2}|y) \pi(\theta_{1}|\theta_{2}) \Longrightarrow$$

$$\pi(\theta_{1}|y, \theta_{2}) = \pi(\theta_{1}|\theta_{2})$$

$$\pi(\theta_{2}|y) = \frac{f(y|\theta_{2}) \pi(\theta_{2})}{\int_{\Theta_{2}} f(y|\theta_{2}) \pi(\theta_{2}) d\theta_{2}} .$$

$$\pi(\theta_{1}|y) = \int_{\Theta_{2}} \pi(\theta_{1}|\theta_{2}) \pi(\theta_{2}) d\theta_{2}$$

$$(9)$$

Here, θ_1 is said to be non-identifiable parameter from the data y, because y provides no direct information about θ_1 .

Inference about θ_1 based on marginal posterior $\pi(\theta_1|y)$ depends on y but the information provided about θ_1 comes indirectly through the marginal posterior of θ_2 , see (9). Equivalently, (9) implies that y provides no information about θ_1 given θ_2 .

If we <u>a priori</u> specify that learning the value of θ_2 does not change our belief about θ_1 $\pi(\theta_1|\theta_2) = \pi(\theta_1)$, then (9) becomes $\pi(\theta_1|y) = \pi(\theta_1)$ and hence data y provide no information about θ_1 at all.

Example 13. (A simple example) Consider a production process where manufactured items are classified as acceptable, with probability $1-\theta_1-\theta_2$, or defective, with probability $\theta_1+\theta_2$. Assume that there are two exclusive assignable causes of failure that occur with probabilities θ_1 and θ_2 , respectively, $\theta_1, \theta_2 > 0$ with $\theta_1 + \theta_2 < 1$.

- For a random sample y, the statistical model for the total number of defective items may be considered as $r_n \sim \text{Bn}(n, \theta_1 + \theta_2)$.
- The data are fully informative for $\theta_1 + \theta_2$, however the individual parameters of interest, (θ_1, θ_2) , are non-identifiable.
- The problem may be mitigated if a suitable a priori on θ is assigned, e.g., $\pi(\theta_1, \theta_2) = \text{Di}_2(\theta|a)$.

Hint: Dirichlet distribution, $\theta \sim \text{Di}_k(a)$ has PDF,

$$\mathrm{Di}_k(\theta|a) = \frac{\Gamma(\sum_{j=1}^{k+1} a_j)}{\prod_{j=1}^{k+1} \Gamma(a_j)} \prod_{j=1}^k \theta_j^{a_j-1} (1 - \sum_{j=1}^k \theta_j) 1(\{\sum_{j=1}^k \theta_j \in (0,1)\}) \cap \{\theta_j \in (0,1)\})$$

and $a_j > 0$ for all j = 1, ..., k + 1. It is a generalization of Beta distribution in many dimensions.