Homework Problems

- 1. Let X_1, \dots, X_n be an *i.i.d.* random sample from Exponential(θ) distribution. Assuming $n \geq 2$, let θ have a prior distribution of InverseGamma(α, β) distribution.
 - (a) Show that the family of inverse gamma distribution is the conjugate for the exponential distribution.
 - (b) Calculate the posterior mean (Bayes estimator under squared error loss) and the posterior variance at hyperparameter $\alpha = 1$ and $\beta > 0$.
 - (c) Compare the Bayes estimator in part (b) with the MLE of θ with respect to the Frequentist's criteria of bias and MSE (where θ is non-random and the expectation is taken under the sampling distribution $f(\mathbf{x}|\theta)$).

The pdf of Exponential(θ) distribution is

$$f(x|\theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right)$$

The pdf of InverseGamma(α, β) distribution is

$$f(x|\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} \exp\left(-\frac{\beta}{x}\right)$$

2. Consider the weighted squared error loss function

$$L(\theta, a) = \omega(\theta)(\theta - a)^2,$$

where $\omega(\theta)$ is a nonnegative weight function, and a is the estimator.

(a) Show that the Bayes estimator directly minimizing the posterior expected loss function with respect to the estimate a is given by

$$a^* = \frac{\mathrm{E}\left[\theta\omega(\theta)|\mathbf{X}\right]}{\mathrm{E}\left[\omega(\theta)|\mathbf{X}\right]}.$$

(b) Let X_1, \dots, X_n be a random sample from a Bernoulli distribution with probability of success $p \in (0,1)$. Consider the Uniform(0,1) prior on p. Find the Bayes estimator of p the with respect to this prior and the loss function

$$L(p,a) = \frac{(p-a)^2}{p(1-p)}$$

- (c) Calculate the Risk function for the Bayesian estimator in part (b).
- 3. The LINEX (LINear-EXponential) loss function introduced by Zellner (1986) is given by

$$L(\theta, a) = e^{c(a-\theta)} - c(a-\theta) - 1,$$

where c > 0 is a constant. As the constant c varies, the loss function varies from very assymmetric to an almost symmetric one.

- (a) Verify that $L(\theta, a)$ is a nonnegative function of the difference $a \theta$. For c = .2, .5, 1 plot $L(\theta, a)$ as a function of $a \theta$.
- (b) Show that the Bayes estimator of θ with respect to a prior π is given by

$$\hat{\theta}_B = -\frac{1}{c} \log E(e^{-c\theta}|\mathbf{X}).$$

(c) Let X_1, \dots, X_n be a random sample from a $\mathcal{N}(\theta, \sigma^2)$ where σ^2 is known. Suppose that θ has a noninformative prior given by

$$\pi(\theta) = 1, \quad \theta \in \mathcal{R}.$$

Show that the Bayes estimator of θ with respect to this prior is given by

$$\hat{\theta}_B(\overline{X}) = \overline{X} - (c\sigma^2/(2n)).$$

- (d) Calculate the posterior expected loss for $\hat{\theta}_B(\overline{X})$ and \overline{X} using LINEX loss.
- (e) Calculate the posterior expected loss for $\hat{\theta}_B(\overline{X})$ and \overline{X} using (unweighted) squared-error loss.
- 4. Consider independent random variables X_1, X_2, \ldots, X_n such that $X_i \sim Poisson(\lambda_i)$. Further assume that λ_i are i.i.d. from $Exponential(\beta)$.
 - (a) Under the assumption that β is known, find Bayes estimator of λ_i under squared error loss, i.e. obtain $E(\lambda_i|X_i)$.
 - (b) (**Empirical Bayes**) Instead of assuming known β in part (a), let us estimate β through the following steps.

- First obtain the marginal distribution $m(\mathbf{X})$ whose distribution involves β .
- Next obtain the maximum likelihood estimator of β using $m(\mathbf{X})$. Call it $\hat{\beta}$.
- Plug in $\hat{\beta}$ in the Bayes estimator in part (a) in place of (known) β . The resulting estimator is called the **empirical Bayes** estimator of λ_i .
- 5. Let X_1, X_2, \ldots, X_n be a i.i.d. random sample from a $Poisson(\lambda)$ distribution. Assume the following hierarchy

$$X_i | \lambda \sim Poisson(\lambda), \quad \lambda | \beta \sim Exp(\beta), \quad \pi(\beta) = \frac{1}{\beta} \text{ (noninformative)}.$$

Then find Bayes estimator of λ under squared error loss.