Công thức xét tính đồng biến, nghịch biến của hàm số Cách xét tính đồng biến, nghịch biến của hàm số chi tiết

I. Lí thuyết tổng hợp.

- Cho K là một khoảng hoặc một đoạn hoặc nửa khoảng, y=f(x) là hàm số xác định trên K.
- + Hàm số y = f(x) đồng biến (tăng) trên K nếu với mọi x thuộc K thì khi x tăng f(x) cùng tăng, khi x giảm f(x) cùng giảm.
- + Hàm số y = f(x) nghịch biến (giảm) trên K nếu với mọi x thuộc K thì khi x tăng f(x) giảm, khi x giảm f(x) tăng.
- Lưu ý.
- + Nếu một hàm số đồng biến trên K thì trên đó, đồ thị của nó đi lên.
- + Nếu một hàm số nghịch biến trên K thì trên đó, đồ thị của nó đi xuống.
- + Hàm số bậc nhất y = ax + b luôn đồng biến hoặc nghịch biến trên \mathbb{R} .

II. Các công thức.

- Cho hàm số y = f(x) xác định trên K. Lấy $x_1, x_2 \in K$ và $x_1 < x_2$.

Đặt
$$T = f(x_2) - f(x_1)$$
. Ta có:

 $T > 0 \Leftrightarrow Ham s \acute{o} y = f(x) đồng biến (tăng) trên K$

 $T < 0 \iff Ham \ so \ y = f(x) \ nghịch biến (giảm) trên K$

- Cho hàm số y = f(x) xác định trên K. Lấy $x_1, x_2 \in K$ và $x_1 \neq x_2$.

Đặt
$$T = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$$
. Ta có:

 $T > 0 \iff Hàm số y = f(x) đồng biến (tăng) trên K$

 $T < 0 \Leftrightarrow Ham so y = f(x) nghịch biến (giảm) trên K$

- Nếu một hàm số đồng biến trên K thì trên đó, đồ thị của nó đi lên.
- Nếu một hàm số nghịch biến trên K thì trên đó, đồ thị của nó đi xuống.

III. Ví dụ minh họa.

Bài 1: Xét tính đồng biến, nghịch biến của hàm số $y = f(x) = x + 1 - \frac{2}{x - 3}$ trên khoảng $(3; +\infty)$.

Lời giải:

- Điều kiện xác định của hàm số
$$y = f(x) = x + 1 - \frac{2}{x - 3}$$
 là: $x - 3 \neq 0 \Leftrightarrow x \neq 3$

$$\Rightarrow$$
 Tập xác định của hàm số $y = f(x)$ là: $D = R \setminus \{3\}$

$$\Rightarrow$$
 Hàm số $y = f(x) = x + 1 - \frac{2}{x - 3}$ xác định trên khoảng $(3; +\infty)$

- Lấy
$$x_1, x_2 \in (3; +\infty)$$
 và $x_1 \neq x_2$. Đặt $T = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$.

$$\Rightarrow T = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{x_1 + 1 - \frac{2}{x_1 - 3} - \left(x_2 + 1 - \frac{2}{x_2 - 3}\right)}{x_1 - x_2}$$

$$= \frac{x_1 + 1 - \frac{2}{x_1 - 3} - x_2 - 1 + \frac{2}{x_2 - 3}}{x_1 - x_2}$$

$$= \frac{x_1 - x_2 - 2\left(\frac{1}{x_1 - 3} - \frac{1}{x_2 - 3}\right)}{x_1 - x_2} = \frac{x_1 - x_2 - 2\left[\frac{x_2 - 3 - x_1 + 3}{(x_1 - 3)(x_2 - 3)}\right]}{x_1 - x_2}$$

$$= \frac{x_1 - x_2 - 2\left[\frac{x_2 - x_1}{(x_1 - 3)(x_2 - 3)}\right]}{x_1 - x_2} = \frac{x_1 - x_2 + 2\left[\frac{x_1 - x_2}{(x_1 - 3)(x_2 - 3)}\right]}{x_1 - x_2}$$

$$= \frac{1 + \frac{2}{(x_1 - 3)(x_2 - 3)}}{1} = 1 + \frac{2}{(x_1 - 3)(x_2 - 3)}$$

Ta thấy trong khoảng $(3;+\infty)$ thì T luôn xác định.

Với
$$x_1, x_2 \in (3; +\infty) \implies \begin{cases} x_1 - 3 > 0 \\ x_2 - 3 > 0 \end{cases} \Rightarrow T = 1 + \frac{2}{(x_1 - 3)(x_2 - 3)} > 0$$

 \Rightarrow Hàm số $y = f(x) = x + 1 - \frac{2}{x - 3}$ đồng biến trên khoảng $(3; +\infty)$.

Bài 2: Xét tính đồng biến, nghịch biến của hàm số: $y = f(x) = x^2 - 4$ trên khoảng $(-\infty; 0)$.

Lời giải:

Hàm số $y = f(x) = x^2 - 4$ xác định trên \mathbb{R}

 \Rightarrow Hàm số $y = f(x) = x^2 - 4$ xác định trên khoảng $(-\infty; 0)$

Lấy
$$x_1, x_2 \in (-\infty; 0)$$
 và $x_1 < x_2 \implies \begin{cases} x_2 - x_1 > 0 \\ x_1 + x_2 < 0 \end{cases}$ (1)

Ta có:
$$T = f(x_2) - f(x_1) = (x_2^2 - 4) - (x_1^2 - 4) = x_2^2 - x_1^2 = (x_2 - x_1)(x_1 + x_2)$$
 (2)

Từ (1) và (2) \Rightarrow T < 0 \Rightarrow Hàm số $y = f(x) = x^2 - 4$ nghịch biến trên khoảng $(-\infty; 0)$

Bài 3: Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Xét tính đồng biến, nghịch biến của hàm số trên khoảng (2; 4) và đoạn [-4; -2].

Lời giải:

Ta thấy khi $x \in (2;4)$ thì đồ thị của hàm số y = f(x) đi lên

 \Rightarrow Hàm số y = f(x) đồng biến trên khoảng (2; 4)

Ta thấy khi $x \in [-4;-2]$ thì đồ thị của hàm số y = f(x) đi xuống

 \Rightarrow Hàm số y = f(x) nghịch biến trên đoạn [-4; -2]

IV. Bài tập tự luyện.

Bài 1: Xét tính đồng biến, nghịch biến của hàm số y = f(x) = 4x - 9 trên toàn tập xác định của nó.

Bài 2: Xét tính đồng biến, nghịch biến của hàm số $y = f(x) = x^2 - 5x + 7$ trên các khoảng $(-\infty;0)$ và $(4;+\infty)$.