Олимпиада школьников по технопредпринимательству

КЕЙС: КИБЕР-ПОМОЩНИК МАШИНИСТА-ОБХОДЧИКА НА ТЭЦ

КОМАНДА: КУЗБАСС ЭНЕРДЖИ

ПРОБЛЕМА

Высокие затраты на оплату труда обходчика (~85тыс.Р в месяц)

Низкая точность детектирования поломок оборудования

Аварий на ТЭЦ происходит по причине некачественного осмотра

АКТУАЛЬНОСТЬ

На шестилетний проект "Цифровая экономика" будут выделены 1,08 трлн рублей до 2024 года, на цифровые технологии, 226,4 млрд руб.

Восходящие тренды в сфере автоматизации ТЭЦ:

- •Искусственный интеллект (ИИ). Прогнозируется, что рынок достигнет 387,45 млрд в 2022 году и 1394,3 млрд к 2029 году. Среднегодовой рост: 20,1%
- •Робототехника. Индустрия робототехники оценивалась в 45,3 млрд долларов в 2020 году, и ожидается, что к 2030 году она вырастет на 29% в год до 568 млрд долларов.

ЦЕЛЬ И ЗАДАЧИ

Цель: разработка и создание автоматизированной системы ежедневного осмотра оборудования на ТЭЦ предприятия

Цель до 14.04.23: разработка и создание фундаментальной концепции автоматизированной системы ежедневного осмотра оборудования на ТЭЦ предприятия

Задачи

TRL 1: Оценка технической возможности разработки специального робота, способного выполнять функции машиниста-обходчика

TRL 2: Определение требований к роботу и его программному обеспечению

TRL 3: Разработка первоначального прототипа робота для выполнения базовых функций машинистаобходчика на ТЭЦ

Необходимые замеры робота в разных отделениях

Турбинное отделение

Котельное отделение

- Проверка нагрева в подшипниках
- Проверка масла в маслобаках
- Проверка звука электродвигателя
- Проверка уровня вибрации электродвигателя

- Проверка значений манометров
- Проверка качество горения
- Проверка наличие воды в теплом ящике и топлива в расходной цистерне
- Осмотр работающих механизмов, на предмет дефектов

Микрофон

Строение робота

2 Тепловизор

ТехноОлимп

3 Камера со сканером Лидар

8 Газоанализатор

7 Цифровой измеритель вибрации

Основное гусеничное шасси

Дополнительное гусеничное шасси для лестниц

5 Акселерометр

Алгоритм работы

Робот ориентируясь на камеру и сканер Лидар, будет обходить препятствия.

На оборудовании предприятия будут расположены QR коды. По мере прохождения пути робот будет сканировать QR код для запуска определенного алгоритма измерения.

Программное обеспечение

Управление пилотом включается при необходимости

Отчет за 11.03.23

Отчет по котельному оборудованию Отчет по турбинному оборудованию

Первый прототип

Подробное описание первого прототипа

БИЗНЕСС МОДЕЛЬ

Создание малосерийного производства устройств по индивидуальному заказу (В2В)

● 4.000.000₽

Ценностное предложение: Автоматизированная система, которая позволяет:

- Снизить затраты на оплату труда машинистов обходчиков на 30%
- Повысить точность измерений на 40%
- Уменьшить расходы на ликвидирование последствий аварий на 15%

Целевая аудитория

- Основная: предприятия топливно-энергетического комплекса.
- Альтернативная: компании занимающиеся трубопроводами.

Стейхолдеры

- ПАО ТГК1
- Правительство
- Поставщики сырья
- Инвесторы

ЭКОНОМИКА

Подробные расчеты рынка, unit экономки и эффекта от внедрения

TAM: 14,4B ₽

SAM: 7,2B ₽

SOM: 1,4B ₽

АНАЛОГИ

	Наша система	Робот Гумич РТК	Робот на ВИЗ-Сталь	Робот Magic Junior
Возможность преодоления лестниц	Да	Нет	Нет	Нет
Способ передвижения	Автономно (по Lidar и ИИ), пилотом	Автономно (по камере и ИИ), пилотом	Автономно (по камере и SVS), пилотом	Пилотом
Продолжительность работы	12 часов	3 часа	~24 часа	7 часов
Габариты	930x680x320	1080x715x380	920x590x1100	840x510x290

Наша Команда-Кузбасс энерджи

Кирилл Рудяков

Руководитель, инженер-разработчик

Вячеслав Визило

Бизнес менеджер, программист

Александр Денисов

Аналитик, разработчик 3Д моделей

ПЛАНИРОВАНИЕ

Олимпиада школьников по технопредпринимательству

КЕЙС: КИБЕР-ПОМОЩНИК МАШИНИСТА-ОБХОДЧИКА НА ТЭЦ

КОМАНДА: КУЗБАСС ЭНЕРДЖИ

