4. Projekt

im Fach

Numerische Optimierung

Juli 2020

Maximilian Gaul

Siehe GlobNewton.m.

Aufgabe 2

Siehe auch Projekt_4.m. Für die Himmelblau-Funktion

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

gelten folgende Ableitungen

$$\nabla f(x_1, x_2) = \begin{bmatrix} 2(x_1^2 + x_2 - 11) \cdot 2x_1 + 2(x_1 + x_2^2 - 7) \\ 2(x_1^2 + x_2 - 11) + 2(x_1 + x_2^2 - 7) \cdot 2x_2 \end{bmatrix}$$

$$H_f(x_1, x_2) = \begin{bmatrix} 4(x_1^2 + x_2 - 11) + 8x_1^2 & 4x_1 + 4x_2 \\ 4x_1 + 4x_2 & 4(x_1 + x_2^2 - 7) + 8x_2^2 \end{bmatrix}$$

Schritt	X	f(x)
1	$[0.00, 0.00]^T$	170.0
2	$[1.75, 2.75]^T$	32.26
3	$[3.76, 2.22]^T$	31.69
4	$[3.19, 1.96]^T$	1.31
5	$[3.02, 1.99]^T$	0.01
:	:	:
15	$[3.00, 2.00]^T$	$1.10 \cdot 10^{-26}$

Abbildung 1: Verlauf von GlobNewton für f bei einer Genauigkeit von 10^{-12}

Schritt	x	f(x)	
1	$[-1.20, 1.00]^T$	125.11	
2	$[-2.87, 3.87]^T$	27.30	
3	$[-2.80, 3.29]^T$	1.05	
4	$[-2.80, 3.14]^T$	0.00	
5	$[-2.81, 3.13]^T$	$9.83 \cdot 10^{-7}$	
:	:	:	
12	$[-2.81, 3.13]^T$	$4.10 \cdot 10^{-29}$	

Abbildung 2: Verlauf von GlobNewton für f bei einer Genauigkeit von 10^{-12}

Für die 2D Rosenbrock-Funktion

$$q(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

gelten die Ableitungen

$$\nabla g(x_1, x_2) = \begin{bmatrix} 400x_1^3 - 400x_1x_2 + 2x_1 - 2\\ 200(x_2 - x_1^2) \end{bmatrix}$$

$$H_g(x_1, x_2) = \begin{bmatrix} 800x_1^2 - 400(x_2 - x_1^2) + 2 & -400x_1\\ -400x_1 & 200 \end{bmatrix}$$

Schritt	X	f(x)
1	$[0.00, 0.00]^T$	1.00
2	$[0.25, 0.00]^T$	0.95
3	$[0.31, 0.09]^T$	0.48
4	$[0.52, 0.22]^T$	0.46
5	$[0.57, 0.32]^T$	0.19
:	:	:
15	$[1.00, 1.00]^T$	$8.21 \cdot 10^{-28}$

Abbildung 3: Verlauf von GlobNewton für g bei einer Genauigkeit von 10^{-12}

Schritt	x	f(x)
1	$[-1.20, 1.00]^T$	24.20
2	$[-1.18, 1.38]^T$	4.73
3	$[-0.93, 0.81]^T$	4.09
4	$[-0.78, 0.59]^T$	3.23
5	$[-0.46, 0.11]^T$	3.21
:	:	:
12	$[1.00, 1.00]^T$	$4.93 \cdot 10^{-28}$

Abbildung 4: Verlauf von GlobNewton für g bei einer Genauigkeit von 10^{-12}

Aufgabe 3

Die Hesse-Matrizen der beiden Funktionen f und g ist stetig und kontinuierlich, d.h. es kann in beiden Fällen vom Zutreffen der Lipschitz-Bedingung

$$||H(x) - H(y)|| < L||x - y|| \, \forall x, y \in \mathbb{R}^n$$

ausgegangen werden. Weiterhin enthalten beide Funktionen keine mehrfachen Nullstellen durch die das Newton-Verfahren gebremst werden könnte. Aufgrundessen konvergieren beide Funktionen lokal-quadratisch (sollte die

Hesse-Matrix eine Abstiegsrichtung liefern). Global gesehen konvergiert das Newton-Verfahren je nach Schrittweitenstrategie (ob effizient oder nicht) und Startwert entweder gar nicht aufgrund zu kleiner Schrittweiten (z.B. normales Armijo-Verfahren) oder zumindest nur superlinearer. Die lokale quadratische Konvergenz der Himmelblau-Funktion kann man in (1) und (2) zwischen Schritt 3 und 4 bzw. 2 und 3 gut erkennen. Da beide Funktionen nicht quadratisch sind, konvergiert das Verfahren nicht in einem einzigen Schritt.

Bei Quasi-Newton-Verfahren mit approximierter Hesse-Matrix und effizienter Schrittweitenstrategie kann man global gesehen von einer superlinearen Konvergenz für beide Funktionen f und g ausgehen. Im gegensatz zum reinen Newton-Verfahren kann man die Update-Formeln der Hesse-Matrix so wählen, dass eine Abstiegsrichtung entsteht. Broyden et al. haben 1973 in On the Local and Superlinear Convergence of Quasi-Newton Methods gezeigt, dass die Fehler in der Approximation von H_k begrenzt sind und sich nicht unbeschränkt erhöhen und daraus die superlineare Konvergenz abgeleitet werden kann.

Weiterhin sind beide Funktionen nicht quadratischer Natur ansonsten könnte die Schrittweite ggf. exakt berechnet werden.

Aufgabe 4

Das Optimierungsproblem

$$\min -2x_1 - 3x_2 - 4x_3$$

unter den Nebenbedingungen

$$x_1 + x_2 + x_3 \le 4$$
 $3x_2 + x_3 \le 6$ $x_1 \le 2$ $x_3 \le 3$ $x_i > 0, i \in \{1, 2, 3\}$

hat folgende Normalform

$$\min -2x_1 - 3x_2 - 4x_3$$

$$x_1 + x_2 + x_3 + x_4 = 4 (I)$$

$$3x_2 + x_3 + x_5 = 6 (II)$$

$$x_1 + x_6 = 2 (III)$$

$$x_3 + x_7 = 3 (IV)$$

$$x_i \ge 0, i \in \{1, 2, 3, 4, 5, 6, 7\} (V)$$

		$\lceil 1 \rceil$	$\lceil 1 \rceil$	$\lceil 2 \rceil$	$\lceil 2 \rceil$
		0	0	2	
	3	3	3	0	
	-3	0	0	0	0
			3	0	2
		0	1	0	0
				[3]	
(I)	×	✓	✓	✓	✓
(II)	✓	X	✓	✓	✓
(III)	✓	X	✓	✓	✓
(IV)	✓	✓	✓	✓	✓
(V)	×	✓	✓	✓	✓

Abbildung 5: Auswertung gegebener Vektoren bezüglich Nebenbedingungen

Die Vektoren $x^{(3)}$, $x^{(4)}$ und $x^{(5)}$ sind gültige Basisvektoren während $x^{(1)}$ einen negativen Eintrag enthält sowie nicht alle Nebenbedingungen erfüllt. $x^{(2)}$ erfüllt ebenfalls nicht alle Nebenbedingungen.

Aufgabe 6

Das Optimierungsproblem lässt sich in Matrixschreibweise als lineares Gleichungssystem der Form Ax=b schreiben

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot x = \begin{bmatrix} 4 \\ 6 \\ 2 \\ 3 \end{bmatrix}$$

Aus dem angegebenen Basisvektor $x=\begin{bmatrix}2\\0\\2\\0\\4\\0\\1\end{bmatrix}$ kann man die Indexmengen

 $B=\{1,3,5,7\}$ und $N=\{2,4,6\}$ ablesen. B enthält die Indizes bei denen $x_i\neq 0$ sind während N gerade die Einträge enthält, bei denen $x_i=0$ sind. Daraus wiederum kann man A_B und A_N bilden

$$A_B = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} A_N = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

die gerade die Spalten aus ${\cal A}$ enthalten, die in der jeweiligen Indexmenge angegeben sind.

Mit

$$A_B^{-1} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 0 & 1 & 1 \end{bmatrix}$$

kann man nun Γ berechnen

$$\Gamma = A_B^{-1} \cdot A_N = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & -1 \\ 2 & -1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$$

und
$$\beta_B=A_B^{-1}\cdot b=\begin{bmatrix}2\\2\\4\\1\end{bmatrix}$$
. Mit zusätzlichem $c=\begin{bmatrix}-2\\-3\\-4\\0\\0\\0\end{bmatrix}$ und $c_B=\begin{bmatrix}-2\\-4\\0\\0\\0\end{bmatrix}$,

 $c_N = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$ lässt sich $\xi = \Gamma^T c_B - c_N = \begin{bmatrix} -1 \\ -4 \\ 2 \end{bmatrix}$ berechnen und das Tableau aufstellen (Pivot-Element farbig hinterlegt):

	x_2	x_4	x_6		
$\overline{x_1}$	0	0	1	2	2
x_3	1	1	-1	2	1
x_5	2	-1	1	4	4
x_7	-1	-1	1	1	1
	-1	-4	2	-12	

Abbildung 6: Start Tableau für Simplex

q=6,p=7, es werden also die Elemente x_7 und x_6 getauscht. Daraus entstehen die neuen Index-Mengen $B=\{1,3,5,6\}$ und $N=\{2,4,7\}$

Daraus lässt sich wieder bestimmen

$$A_{B} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} A_{N} = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A_{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 1 \end{bmatrix}$$

und draus wiederum

$$\Gamma = A_B^{-1} A_N = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 3 & 0 & -1 \\ -1 & -1 & 1 \end{bmatrix} \beta_B = A_B^{-1} b = \begin{bmatrix} 1 \\ 3 \\ 3 \\ 1 \end{bmatrix}$$

$$\mathsf{Mit}\,c_B = \begin{bmatrix} -2 \\ -4 \\ 0 \\ 0 \end{bmatrix}, c_N = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} \,\mathsf{kann}\,\mathsf{man}\,\mathsf{bestimmen}\,\xi = \Gamma^T c_B - c_N = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}$$

und daraus das neue Tableau aufstellen

Abbildung 7: Simplex Tableau nach einem Schritt

Selbiges erhält man durch die Update-Formel:

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline & x_2 & x_4 & x_7 & \\ \hline x_1 & 0 - \frac{1 \cdot (-1)}{1} & 0 - \frac{1 \cdot (-1)}{1} & \frac{-1}{1} & 2 - \frac{1 \cdot 1}{1} \\ x_3 & 1 - \frac{-1 \cdot (-1)}{1} & 1 - \frac{-1 \cdot (-1)}{1} & -1 \frac{-1}{1} & 2 - \frac{-1 \cdot 1}{1} \\ \hline x_5 & 2 - \frac{1 \cdot (-1)}{1} & -1 - \frac{1 \cdot (-1)}{1} & \frac{-1}{1} & 4 - \frac{1 \cdot 1}{1} \\ \hline x_6 & \frac{-1}{1} & \frac{-1}{1} & \frac{1}{1} & \frac{1}{1} \\ \hline & -1 - \frac{2 \cdot (-1)}{1} & -4 - \frac{2 \cdot (-1)}{1} & -\frac{2}{1} & -12 - \frac{2}{1} \\ \hline \end{array}$$

Abbildung 8: Simplex Update-Formel für das 1. Tableau

$$\text{Aktuell ist } x = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix} \text{ mit } f(x) = -14.$$

Wenn man in Matlab definiert

```
f = [-2, -3, -4];
A = [1, 1, 1; 0, 3, 1; 1, 0, 0; 0, 0, 1];
lower_bound = [0, 0, 0];
b = [4; 5; 2; 3];
```

und linprog so aufruft (primal-simplex hat in meiner Version 2020a nicht funktioniert, konkrete Implementierung siehe Projekt_4.m):

```
options = optimoptions("linprog", "OptimalityTolerance", 1e
    -8, "Algorithm", "dual-simplex");
linprog(f, A, b, [], [], lower_bound, [], options);
```

dann erhält man
$$x=\begin{bmatrix} \frac{1}{3}\\ \frac{2}{3}\\ 3 \end{bmatrix}$$
 mit $f(x)=-\frac{44}{3}$.

Aufgabe 8

Implementierung siehe ActiveSet.m.

Bei dem gegebenen Problem

$$\min f(x) = x_1^2 + 2x_2^2 - 2x_1 - 6x_2 - 2x_1x_2$$

unter den Nebenbedingungen

$$0.5x_1 + 0.5x_2 \le 1 (I)$$
$$-x_1 + 2x_2 \le 2 (II)$$
$$x_1 \ge 0 (III)$$
$$x_2 \ge 0 (IV)$$

übergibt man an ActiveSet.m folgende Parameter

$$Q = \begin{bmatrix} 2 & -2 \\ -2 & 4 \end{bmatrix} q = \begin{bmatrix} -2 \\ -6 \end{bmatrix} U = \begin{bmatrix} 0.5 & 0.5 \\ -1 & 2 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} r = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

und erhält man mit dem Startwert $x^{(0)} = \begin{bmatrix} -12 \\ 13 \end{bmatrix}$ das Ergebnis:

Schritt	Aktive NB.	x	f(x)
1	{}	$[-12.00, 13.00]^T$	740.00
2	$\{I\}$	$[-9.88, 11.88]^T$	562.58
3	$\{I\}$	$[0.80, 1.20]^T$	-7.20

Abbildung 9: Verlauf von ActiveSet.m für gegebenes Problem

Für fmincon kann man das Problem so in Matlab formulieren:

und erhält dann das selbe Ergebnis $x = \begin{bmatrix} 0.8 \\ 1.2 \end{bmatrix}$.

Aufgabe 9

Die quadratische Funktion $f(x)=x_1^2+2x_2^2-2x_1-6x_2-2x_1x_2$ kann man umformulieren zu

$$f(x) = 0.5x^TQx + q^Tx$$
 mit $Q = \begin{bmatrix} 2, -2 \\ -2, 4 \end{bmatrix}$ und $q = \begin{bmatrix} -2 \\ -6 \end{bmatrix}$.

Die Ungleichungsnebenbedingungen

$$0.5x_1 + 0.5x_2 \le 1$$
$$-x_1 + 2x_2 \le 2$$
$$-x_1 \le 0$$
$$-x_2 \le 0$$

formuliert man um zu (da nach Aufgabenstellung alle aktiv sind)

$$\text{mit}\, U = \begin{bmatrix} 0.5 & 0.5 \\ -1 & 2 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} r = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}.$$

Damit kann man das KKT-System aufstellen

$$\begin{bmatrix} Q & U^T \\ U & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} -q \\ r \end{bmatrix}$$

$$\Leftrightarrow$$

$$\begin{bmatrix} 2 & -2 & 0.5 & -1 & -1 & 0 \\ -2 & 4 & 0.5 & 2 & 0 & -1 \\ 0.5 & 0.5 & 0 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

Das Schur-Komplement dieser Matrix erhält man durch eine Multiplikation von links mit

$$\begin{bmatrix} I & 0 \\ -UQ^{-1} & I \end{bmatrix}$$

$$\operatorname{Mit} Q^{-1} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} \operatorname{und} -UQ^{-1} = \begin{bmatrix} -0.75 & -0.5 \\ 0 & -0.5 \\ 1 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} \operatorname{ergibt} \operatorname{sich:}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ -0.75 & -0.5 & 1 & 0 & 0 & 0 \\ 0 & -0.5 & 0 & 1 & 0 & 0 \\ 1 & 0.5 & 0 & 0 & 1 & 0 \\ 0.5 & 0.5 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Die Rechnung ist dann folgende

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ -0.75 & -0.5 & 1 & 0 & 0 & 0 \\ 0 & -0.5 & 0 & 1 & 0 & 0 \\ 1 & 0.5 & 0.5 & 0 & 0 & 0 & 1 \\ 0.5 & 0.5 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 0.5 & -1 & -1 & 0 \\ -2 & 4 & 0.5 & 2 & 0 & -1 \\ 0.5 & 0.5 & 0 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 0.5 & -1 & -1 & 0 \\ -2 & 4 & 0.5 & 2 & 0 & -1 \\ 0 & 0 & -0.625 & -0.25 & 0.75 & 0.5 \\ 0 & 0 & -0.25 & -1 & 0 & 0.5 \\ 0 & 0 & 0.75 & 0 & -1 & -0.5 \\ 0 & 0 & 0.75 & 0 & -1 & -0.5 \\ 0 & 0 & 0.5 & -0.5 & -0.5 \end{bmatrix}$$

Das Schur-Komplement $-UQ^{-1}U^T$ (4 imes 4-Block rechts unten) ist also

$$\begin{bmatrix} -0.625 & -0.25 & 0.75 & 0.5 \\ -0.25 & -1 & 0 & 0.5 \\ 0.75 & 0 & -1 & -0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \end{bmatrix}$$

Die Zielfunktion

$$f(x) = \sum_{j=1}^{4} (3000x_j + a_j x_j^2) + K \left(4s_0 + \sum_{i=1}^{4} (4 - i)(x_i - b_i) \right)$$

kann man ausformulieren

$$3000(x_1 + x_2 + x_3 + x_4) + 2x_1^2 + 1.75x_2^2 + 0.75x_3^2 + 500 \cdot (2000 + 3x_1 - 6000 + 2x_2 - 8000 + x_3 - 3000)$$

und anschließend zusammenfassen zu

$$f(x) = 2x_1^2 + 1.75x_2^2 + 0.75x_2^2 + 0.75x_3^2 + 4500x_1 + 4000x_2 + 3500x_3 + 3000x_4 - 7.5 \cdot 10^6$$

Die erste Reihe an Ungleichungsnebenbedingungen

$$s_0 + \sum_{i=1}^{j} (x_i - b_i) \le L$$
 , $j = 1, 2, 3$

kann man ausformulieren zu 3 Bedingungen

$$g_1(x) = s_0 + \sum_{i=1}^{1} (x_i - b_i) \le L \Leftrightarrow 500 + x_1 - 2000 \le 2000 \Leftrightarrow x_1 - 3500 \le 0$$

$$g_2(x) = s_0 + \sum_{i=1}^{2} (x_i - b_i) \le L \Leftrightarrow 500 + x_1 - 2000 + x_2 - 4000 \le 2000 \Leftrightarrow x_1 + x_2 - 7500 \le 0$$

$$g_3(x) = s_0 + \sum_{i=1}^{3} (x_i - b_i) \le L \Leftrightarrow 500 + x_1 - 2000 + x_2 - 4000 + x_3 - 3000 \le 2000$$

$$\Leftrightarrow x_1 + x_2 + x_3 - 10500 < 0$$

Die zweite Reihe an Ungleichungsnebenbedingungen

$$s_0 + \sum_{i=1}^{j} (x_i - b_i) \ge 0$$
 , $j = 1, 2, 3$

kann man zu 3 weiteren Bedingungen ausformulieren

$$g_4(x) = s_0 + \sum_{i=1}^{1} (x_i - b_i) \ge 0 \Leftrightarrow 500 + x_1 - 2000 \ge 0 \Leftrightarrow -x_1 + 1500 \le 0$$

$$g_5(x) = s_0 + \sum_{i=1}^{2} (x_i - b_i) \ge 0 \Leftrightarrow 500 + x_1 - 2000 + x_2 - 4000 \ge 0 \Leftrightarrow -x_1 - x_2 + 5500 \le 0$$

$$g_6(x) = s_0 + \sum_{i=1}^{3} (x_i - b_i) \ge 0 \Leftrightarrow 500 + x_1 - 2000 + x_2 - 4000 + x_3 - 3000 \ge 0$$
$$\Leftrightarrow -x_1 - x_2 - x_3 + 8500 \le 0$$

Die Gleichungsnebenbedingung

$$h_1(x) = s_0 + \sum_{i=1}^{4} (x_i - b_i) = s_1$$

lässt sich umformulieren zu

$$500 + x_1 - 2000 + x_2 - 4000 + x_3 - 3000 + x_4 - 1000 = 500 \Leftrightarrow x_1 + x_2 + x_3 + x_4 = 10000$$

Mit

$$\nabla f = \begin{bmatrix} 4x_1 + 4500 \\ 3.5x_2 + 4000 \\ 1.5x_3 + 3500 \\ 3000 \end{bmatrix}, \nabla g_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \nabla g_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \nabla g_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \nabla g_4 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

$$\nabla g_5 = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \nabla g_6 = \begin{bmatrix} -1 \\ -1 \\ -1 \\ 0 \end{bmatrix}, \nabla h_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

kann man nun die KKT-Bedingungen aufstellen. Zuerst die Stationaritätsgleichung

$$\begin{bmatrix} 4x_1 + 4500 \\ 3.5x_2 + 4000 \\ 1.5x_3 + 3500 \\ 3000 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \lambda_4 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda_5 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + \lambda_6 \begin{bmatrix} -1 \\ -1 \\ -1 \\ 0 \end{bmatrix} + \mu_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Komplementaritätsbedingungen

Zulässigkeit

•
$$\lambda_i \ge 0$$
 , $i \in \{1, 2, 3, 4, 5, 6\}$

•
$$g_1(\hat{x}) \leq 0$$

•
$$\lambda_1(x_1 - 3500) = 0$$

•
$$g_2(\hat{x}) \leq 0$$

•
$$\lambda_2(x_1 + x_2 - 7500) = 0$$

•
$$q_3(\hat{x}) < 0$$

•
$$\lambda_3(x_1 + x_2 + x_3 - 10500) = 0$$

•
$$q_4(\hat{x}) < 0$$

•
$$\lambda_4(-x_1+1500)=0$$

•
$$g_5(\hat{x}) \leq 0$$

•
$$\lambda_5(-x_1 - x_2 + 5500) = 0$$
 • $g_6(\hat{x}) \le 0$

•
$$q_6(\hat{x}) < 0$$

•
$$\lambda_6(-x_1-x_2-x_3+8500)=0$$
 • $h_1(\hat{x})=0$

•
$$h_1(\hat{x}) = 0$$

Weiterhin muss die Linear Independence Constraint Qualification (LICQ) für eine optimale Lösung \hat{x} gelten. D.h. die Gradienten der aktiven Ungleichungsnebenbedingungen und die Gradienten der Gleichungsnebenbedingung müssen linear unabhängig sein.

Aufgabe 11

Mit $x_1 = 2500$ und $x_2 = 3000$ ändern sich die Komplementaritätsbedingungen wie folgt:

•
$$\lambda_1(2500 - 3500) = 0 \Leftrightarrow -1000\lambda_1 \Rightarrow \lambda_1 = 0$$

•
$$\lambda_2(2500 + 3000 - 7500) = 0 \Leftrightarrow -2000\lambda_2 \Rightarrow \lambda_2 = 0$$

•
$$\lambda_3(2500 + 3000 + x_3 - 10500) = 0 \Leftrightarrow \lambda_3(x_3 - 5000) = 0$$

•
$$\lambda_4(-2500 + 1500) = 0 \Leftrightarrow -1000\lambda_4 = 0 \Rightarrow \lambda_4 = 0$$

•
$$\lambda_5(-2500 - 3000 + 5500) = 0 \Leftrightarrow 0 \cdot \lambda_5 = 0$$

•
$$\lambda_6(-2500 - 3000 - x_3 + 8500) = 0 \Leftrightarrow \lambda_6(-x_3 + 3000) = 0$$

Aus der Gleichungsnebenbedingung wird $h_1(x) = x_3 + x_4 = 4500$. Damit verkürzt sich die Stationaritätsgleichung zu

$$\begin{bmatrix} 14500 \\ 14500 \\ 1.5x_3 + 3500 \\ 3000 \end{bmatrix} + \lambda_3 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \lambda_5 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + \lambda_6 \begin{bmatrix} -1 \\ -1 \\ -1 \\ 0 \end{bmatrix} + \mu_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Da $g_5(x)$ aktiv, d.h. gleich 0 ist, müssen weitere aktive Ungleichungsnebenbedingungen linear unabhängig von ∇g_5 sein (und ebenso von ∇h_1). Wie man sieht dürfen deswegen $g_3(x)$ und $g_6(x)$ nicht gleichzeitig aktiv sein da $\nabla g_3(x) =$ $-\nabla g_6(x)$.

Im ersten Fall setzt man $\lambda_3=0, \lambda_6\neq 0$. Aus $\lambda_6(-x_3+3000)=0$ kann man schlussfolgern dass $x_3=3000$ sein muss. Aus $h_1(x)=x_3+x_4=4500$ folgt dann $x_4=1500$. Die Stationaritätsgleichung verkürzt sich weiter zu

$$\begin{bmatrix} 14500 \\ 14500 \\ 1.5x_3 + 3500 \\ 3000 \end{bmatrix} + \lambda_5 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + \lambda_6 \begin{bmatrix} -1 \\ -1 \\ -1 \\ 0 \end{bmatrix} + \mu_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Aus $3000+\mu_1=0$ folgt $\mu_1=-3000$. Aus $1.5\cdot 3000+3500-\lambda_6-3000=0$ folgt dann $\lambda_6=5000$. Schließlich kann man aus $14500-\lambda_5-5000-3000=0$ ableiten, dass $\lambda_5=6500$ sein muss. Man erhält also den KKT Punkt

$$x = \begin{bmatrix} 2500 \\ 3000 \\ 3000 \\ 1500 \end{bmatrix} \text{ mit } \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0, \lambda_4 = 0, \lambda_5 = 6500, \lambda_6 = 6500, \mu_1 = -3000$$

der auch zulässig ist.