Static analysis and software verification

Lecture 3 - Modeling programs

Vincenzo Arceri - University of Parma - vincenzo.arceri@unipr.it

```
1 i = read();
2 if (i != 0)
3 j = 5 / i;
4 else
5 j = 0;
6 return;
```

Goal: certify that the program is safe w.r.t. division by zero

- The idea is to compute the possible values of variable
 - For each program point
 - For all possible executions
- $\langle \wp(\mathbb{Z}), \subseteq \rangle$

Program point	Values
1	i = {}
2	
3	
5	
6	

- The idea is to compute the possible values of variable
 - For each program point
 - For all possible executions
- $\langle \wp(\mathbb{Z}), \subseteq \rangle$

Program point	Values
1	i = {}
2	i = {, -1, 0, 1,}
3	
5	
6	

- The idea is to compute the possible values of variable
 - For each program point
 - For all possible executions
- $\langle \wp(\mathbb{Z}), \subseteq \rangle$

Program point	Values
1	i = {}
2	i = {, -1, 0, 1,}
3	i = {, -1, 1,}
5	i = {0}
6	

- The idea is to compute the possible values of variable
 - For each program point
 - For all possible executions
- $\langle \wp(\mathbb{Z}), \subseteq \rangle$
- How to compute the possible values at program point 6?
 - output pp $3: j = \{..., -1, 1, ...\}$
 - output pp $5: j = \{0\}$

```
1 i = read();
2 if (i != 0)
3     j = 5 / i;
4 else
5     j = 0;
6 return;
```

Program point	Values
1	i = {}
2	i = {, -1, 0, 1,}
3	i = {, -1, 1,}
5	i = {0}
6	

- The idea is to compute the possible values of variable
 - For each program point
 - For all possible executions
- $\langle \wp(\mathbb{Z}), \subseteq, \cup, \cap \rangle$ is a lattice
- How to compute the possible values at program point 6?
 - output pp $3: j = \{..., -1, 1, ...\}$
 - output pp $5: j = \{0\}$

```
1 i = read();
2 if (i != 0)
3     j = 5 / i;
4 else
5     j = 0;
6 return;
```

Program point	Values
1	i = {}
2	i = {, -1, 0, 1,}
3	i = {, -1, 1,}
5	i = {0}
6	

- The idea is to compute the possible values of variable
 - For each program point
 - For all possible executions
- $\langle \wp(\mathbb{Z}), \subseteq (\cup, \cap) \rangle$ is a lattice
- How to compute the possible values at program point 6?
 - output pp $3:j = \{..., -1, 1,...\}$
 - output pp $5: j = \{0\}$

Program point	Values
1	i = {}
2	i = {, -1, 0, 1,}
3	i = {, -1, 1,}
5	i = {0}
6	

- The idea is to compute the possible values of variable
 - For each program point
 - For all possible executions
- $\langle \wp(\mathbb{Z}), \subseteq, \cup, \cap \rangle$ is a lattice
- How to compute the possible values at program point 6?
 - output pp 3: $j = \{-5, -2, -1, 0, 1, 2, 5\}$
 - output pp $5: j = \{0\}$

Program point	Values
1	i = {}
2	i = {, -1, 0, 1,}
3	i = {, -1, 1,}
5	i = {0}
6	i = {, -1, 0, 1,} j = {-5, -2, -1, 0, 1, 2, 5}

```
1 i = {-1, 0, 1}
2 if (i != 0)
3    j = 5 / i;
4 else
5    j = 0;
6 return;
```

Program point	Values
1	i = {}
2	i = [-1, 1]
3	i = [0, 1]
5	i = [0, 0]
6	

- from 3: j = [-5, 5]
- from 5: j = [0, 0]

```
1 i = {-1, 0, 1}
2 if (i != 0)
3    j = 5 / i;
4 else
5    j = 0;
6 return;
```

Program point	Values
1	i = {}
2	i = [-1, 1]
3	i = [0, 1]
5	i = [0, 0]
6	i = [-1, -1] j = [-5, 5]

- from 3: j = [-5, 5]
- from 5: j = [0, 0]

```
1 i = {-1, 0, 1}
2 if (i != 0)
3    j = 5 / i;
4 else
5    j = 0;
6 return;
```

Program point	Values
1	i = {}
2	i = [-1, 1]
3	i = [0, 1]
5	i = [0, 0]
6	i = [-1, 1] j = [-10, 5]

- from 3: j = [-5, 5]
- from 5: j = [0, 0]

```
1 i = {-1, 0, 1}
2 if (i != 0)
3    j = 5 / i;
4 else
5    j = 0;
6 return;
```

Program point	Values
1	i = {}
2	i = [-1, 1]
3	i = [0, 1]
5	i = [0, 0]
6	i = [-1, 1] j = [-5, 5]

• from 3: j = [-5, 5]

The 'abstract state' is modeled as a function

• from 5: j = [0, 0]

- The idea is to compute the possible values of variable
 - For each program point
 - For all possible executions
- $\langle \wp(\mathbb{Z}), \subseteq, \cup, \cap \rangle$ is a lattice
- How to compute the possible values at program points 3 and 5?

Program point	Values
1	i = {}
2	i = {, -1, 0, 1,}
3	i = {, -1, 1,}
5	i = {0}
6	$i = \{, -1, 0, 1,\}$ $j = \{, -1, 0, 1,\}$

- The idea is to compute the possible values of variable
 - For each program point
 - For all possible executions
- $\langle \wp(\mathbb{Z}), \subseteq, \cup, \cap \rangle$ is a lattice
- How to compute the possible values at program points 3 and 5?
- filter(i! = 0) = $\{..., -1, 1, ...\}$
- $3 = 2 \cap filter(x! = 0) = \{..., -1, 1, ...\}$

Program point	Values
1	i = {}
2	i = {, -1, 0, 1,}
3	i = {, -1, 1,}
5	i = {0}
6	i = {, -1, 0, 1,} j = {-5, -2, -1, 0, 1, 2, 5}

```
• \langle \wp(\mathbb{Z}), \subseteq, \cup, \cap \rangle is a lattice
```

```
1 i = 0;
2 while (?)
3 i++;
```

1	empty set
2	{0} u [[i++]] 3
3	2
4	2

```
1 i = 0;
2 while (?)
3 i++;
```

1	empty set
2	{0} u [[i++]] 3
3	2
4	2

	0	1	2	3	4
1	empty set				
2	empty set				
3	empty set				
4	empty set				

```
1 i = 0;
2 while (?)
3 i++;
```

1	empty set
2	{0} u [[i++]] 3
3	2
4	2

	0	1	2	3	4
1	empty set	empty set			
2	empty set	{0}			
3	empty set	empty set			
4	empty set	empty set			

```
1 i = 0;
2 while (?)
3 i++;
```

1	empty set
2	{0} u [[i++]] 3
3	2
4	2

	0	1	2	3	4
1	empty set	empty set	empty set		
2	empty set	{0}	{0}		
3	empty set	empty set	{0}		
4	empty set	empty set	{0}		

```
1 i = 0;
2 while (?)
3 i++;
```

1	empty set
2	{0} u [[i++]] 3
3	2
4	2

	0	1	2	3	4
1	empty set	empty set	empty set	empty set	
2	empty set	{0}	{0}	{0, 1}	
3	empty set	empty set	{0}	{0}	
4	empty set	empty set	{0}	{0}	

```
1 i = 0;
2 while (?)
3 i++;
```

1	empty set
2	{0} u [[i++]] 3
3	2
4	2

	0	1	2	3	4
1	empty set	empty set	empty set	empty set	empty set
2	empty set	{0}	{0}	{0, 1}	{0, 1}
3	empty set	empty set	{0}	{0}	{0, 1}
4	empty set	empty set	{0}	{0}	{0, 1}

• $\langle \wp(\mathbb{Z}), \subseteq, \cup, \cap \rangle$ is a lattice

```
1 i = 0;
2 while (?)
3 i++;
```

1	empty set
2	{0} u [[i++]] 3
3	2
4	2

	0	1	2	3	4
1	empty set	empty set	empty set	empty set	empty set
2	empty set	{0}	{0}	{0, 1}	{0, 1}
3	empty set	empty set	{0}	{0}	{0, 1}
4	empty set	empty set	{0}	{0}	{0, 1}

By Kleene theorem, the fixpoint exists, but we cannot compute it in this way...

```
• \langle \{0, +, -, \bot, \top\}, \sqsubseteq, \sqcup, \Pi, \top, \bot \rangle is a lattice
```

```
1 i = 0;
2 while (?)
3 i++;
```

1	bottom
2	0 u [[i++]] 3
3	2
4	2

	0	1	2	3	4
1	bottom				
2	bottom				
3	bottom				
4	bottom				

```
• \langle \{0, +, -, \bot, T\}, \sqsubseteq, \sqcup, \Pi, T, \bot \rangle is a lattice
```

```
1 i = 0;
2 while (?)
3 i++;
```

1	bottom
2	0 u [[i++]] 3
3	2
4	2

	0	1	2	3	4
1	bottom	bottom	bottom		
2	bottom	0	Т		
3	bottom	+	Т		
4	bottom	0	T		

```
• \langle \{0, +, -, \bot, T\}, \sqsubseteq, \sqcup, \Pi, T, \bot \rangle is a lattice
```

```
1 i = 0;
2 while (?)
3 i++;
```

1	bottom
2	0 u [[i++]] 3
3	2
4	2

	0	1	4	5	6
1	bottom	•••	bottom	bottom	
2	bottom	•••	T	T	
3	bottom	•••	T	T	
4	bottom		T	T	

Fixpoint!

IMP

$$e ::= x \mid n \mid e_1 \text{ op}_a e_2$$
 $b ::= \mathbf{true} \mid \mathbf{false} \mid \neg b_1 \mid b_1 \text{ op}_b b_2 \mid e_1 \text{ op}_c e_2$
 $s ::= x := e; \mid \mathbf{skip} \mid s_1 s_2 \mid \mathbf{if} b \mathbf{then} s_1 \mathbf{else} s_2 \mid \mathbf{while} b \mathbf{do} s_1$

Where:

- $n \in \mathbb{Z}$
- $op_a \in \{+, -, *, \div\}$
- $op_b \in \{\&\&, \|\}$
- $op_c \in \{==, >, <, \geq, \leq\}$

IMP concrete semantics

- We need a lattice structure for the trace semantics
- A single execution of a program is $\tau \in X^{\infty}$
- We can model the concrete semantics as the lattice $\langle \wp(X^{\infty}), \subseteq, \cup, \cap \rangle$
- How to define the semantics (intuition)
 - Compute a single-step of the computation, obtaining a set of partial executions
 - Iterate over them to compute the following steps
 - Until a fixpoint is reached

Final partial execution

- First step
 - Execution of length I
 - Union with the traces with only the initial states
 - i-th step
 - Execution of length i
 - take the unionwith the traces long at most i-l
 - Until a fixpoint is reached

Least fixpoint computation

• Given a program P, the fixpoint semantics, starting from below (least fixpoint)

$$lfp_{\emptyset}^{\subseteq}F_{P}$$

• In this way, we obtain the set of partial executions

Example

- The trace semantics defined so far 'computes' all partial executions, including
 - blocking execution
 - infinite execution
 - partial executions
- Based on the purpose, we can abstract it
 - only blocking execution
 - values for each program point

An abstraction of the trace semantics