SEQUENCE LISTING

	(1) GE	NERAL INFORMATION:
5	(i)	APPLICANT: Chuntharapai, Anon Kim, Kyung Jin Love, Richard B. Lu, Ji
10	(ii)	TITLE OF INVENTION: Type I Interferon Receptor Antibodies
		NUMBER OF SEQUENCES: 22
15	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Genentech, Inc. (B) STREET: 1 DNA Way (C) CITY: South San Francisco
20		(D) STATE: California (E) COUNTRY: USA (F) ZIP: 94080
25	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: 3.5 inch, 1.44 Mb floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: WinPatin (Genentech)
30	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: 07-Apr-1998 (C) CLASSIFICATION:
35	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: 08/888,140 (B) FILING DATE: 03 July 1997
40	(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Love, Richard B. (B) REGISTRATION NUMBER: 34,659 (C) REFERENCE/DOCKET NUMBER: P1039P1
45		TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 650/225-5530 (B) TELEFAX: 650/952-9881 FORMATION FOR SEQ ID NO:1:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

50

(A) LENGTH: 7 amino acids
(B) TYPE: Amino Acid
(D) TOPOLOGY: Linear

```
Arg Trp Asn Arg Ser Asp Glu
                         5
      (2) INFORMATION FOR SEQ ID NO:2:
 5
         (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 7 amino acids
             (B) TYPE: Amino Acid
             (D) TOPOLOGY: Linear
10
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
      Ala Trp Asn Ala Ser Ala Ala
15
      (2) INFORMATION FOR SEQ ID NO:3:
         (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 6 amino acids
20
             (B) TYPE: Amino Acid
             (D) TOPOLOGY: Linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
25
      Glu Glu Ile Lys Leu Arg
      (2) INFORMATION FOR SEQ ID NO:4:
30
         (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 6 amino acids
             (B) TYPE: Amino Acid
             (D) TOPOLOGY: Linear
35
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
      Ala Ala Ile Ala Leu Ala
40
      (2) INFORMATION FOR SEQ ID NO:5:
         (i) SEQUENCE CHARACTERISTICS:
             (A) LENGTH: 5 amino acids
             (B) TYPE: Amino Acid
. 45
             (D) TOPOLOGY: Linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
      Arg Ala Glu Lys Glu
50
      (2) INFORMATION FOR SEQ ID NO:6:
         (i) SEQUENCE CHARACTERISTICS:
```

	(A) LENGTH: 5 amino acids(B) TYPE: Amino Acid(D) TOPOLOGY: Linear
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
	Ala Ala Ala Ala 1 5
10	(2) INFORMATION FOR SEQ ID NO:7:
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 9 amino acids(B) TYPE: Amino Acid(D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
20	Glu Val His Leu Glu Ala Glu Asp Lys 1 5 9
	(2) INFORMATION FOR SEQ ID NO:8:
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 9 amino acids(B) TYPE: Amino Acid(D) TOPOLOGY: Linear
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: Ala Val Ala Leu Ala Ala Ala Ala Ala 1 5 9
35	(2) INFORMATION FOR SEQ ID NO:9:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 5 amino acids
40	(B) TYPE: Amino Acid (D) TOPOLOGY: Linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
45	Glu Glu Arg Ile Glu 1 5
43	(2) INFORMATION FOR SEQ ID NO:10:
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 5 amino acids(B) TYPE: Amino Acid(D) TOPOLOGY: Linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

```
Ala Ala Ile Ala
     (2) INFORMATION FOR SEQ ID NO:11:
 5
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6 amino acids
            (B) TYPE: Amino Acid
            (D) TOPOLOGY: Linear
10
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
      Arg His Lys Ile Tyr Lys
                        5 6
15
     (2) INFORMATION FOR SEQ ID NO:12:
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6 amino acids
20
            (B) TYPE: Amino Acid
            (D) TOPOLOGY: Linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
25
      Ala Ala Ile Tyr Ala
     (2) INFORMATION FOR SEQ ID NO:13:
30
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6 amino acids
            (B) TYPE: Amino Acid
            (D) TOPOLOGY: Linear
35
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
      His Leu Tyr Lys Trp Lys
40
     (2) INFORMATION FOR SEQ ID NO:14:
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6 amino acids
            (B) TYPE: Amino Acid
(D) TOPOLOGY: Linear
45
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
      Ala Leu Tyr Ala Trp Ala
50
     (2) INFORMATION FOR SEQ ID NO:15:
        (i) SEQUENCE CHARACTERISTICS:
```

```
(A) LENGTH: 8 amino acids
            (B) TYPE: Amino Acid
            (D) TOPOLOGY: Linear
5
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
      Glu Glu Ile Lys Phe Asp Thr Glu
                        5
10
     (2) INFORMATION FOR SEQ ID NO:16:
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 8 amino acids
            (B) TYPE: Amino Acid
15
            (D) TOPOLOGY: Linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
      Ala Ala Ile Ala Phe Ala Thr Ala
20
                        5
     (2) INFORMATION FOR SEQ ID NO:17:
        (i) SEQUENCE CHARACTERISTICS:
25
            (A) LENGTH: 8 amino acids
            (B) TYPE: Amino Acid
            (D) TOPOLOGY: Linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
30
      Glu Arg Lys Ile Ile Glu Lys Lys
     (2) INFORMATION FOR SEQ ID NO:18:
35
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 8 amino acids
            (B) TYPE: Amino Acid
            (D) TOPOLOGY: Linear
40
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
      Ala Ala Ile Ile Ala Ala Ala
45
     (2) INFORMATION FOR SEQ ID NO:19:
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6 amino acids
50
            (B) TYPE: Amino Acid
            (D) TOPOLOGY: Linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
```

```
Asp Glu Lys Leu Asn Lys
     (2) INFORMATION FOR SEQ ID NO:20:
 5
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6 amino acids
            (B) TYPE: Amino Acid
            (D) TOPOLOGY: Linear
10
       (xi) SEQUENCE DESCRIPTION: SEO ID NO:20:
     Ala Ala Leu Asn Ala
                        5
15
     (2) INFORMATION FOR SEQ ID NO:21:
        (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 6741 base pairs
20
            (B) TYPE: Nucleic Acid
            (C) STRANDEDNESS: Double
            (D) TOPOLOGY: Linear
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
25
      GAATTCCGTA ACTGGTGGGA TCTGCGGCGG CTCCCAGATG ATGGTCGTCC 50
      TCCTGGGCGC GACGACCCTA GTGCTCGTCG CCGTGGCGCC ATGGGTGTTG 100
30
      TCCGCAGCCG CAGGTGGAAA AAATCTAAAA TCTCCTCAAA AAGTAGAGGT 150
      CGACATCATA GATGACAACT TTATCCTGAG GTGGAACAGG AGCGATGAGT 200
35
      CTGTCGGGAA TGTGACTTTT TCATTCGATT ATCAAAAAAC TGGGATGGAT 250
      AATTGGATAA AATTGTCTGG GTGTCAGAAT ATTACTAGTA CCAAATGCAA 300
      CTTTTCTTCA CTCAAGCTGA ATGTTTATGA AGAAATTAAA TTGCGTATAA 350
40
      GAGCAGAAAA AGAAAACACT TCTTCATGGT ATGAGGTTGA CTCATTTACA 400
      CCATTCGCA AAGCTCAGAT TGGTCCTCCA GAAGTACATT TAGAAGCTGA 450
45
      AGATAAGGCA ATAGTGATAC ACATCTCTCC TGGAACAAAA GATAGTGTTA 500
      TGTGGGCTTT GGATGGTTTA AGCTTTACAT ATAGCTTACT TATCTGGAAA 550
      AACTCTTCAG GTGTAGAAGA AAGGATTGAA AATATTTATT CCAGACATAA 600
50
      AATTTATAAA CTCTCACCAG AGACTACTTA TTGTCTAAAA GTTAAAGCAG 650
      CACTACTTAC GTCATGGAAA ATTGGTGTCT ATAGTCCAGT ACATTGTATA 700
```

	AAGACCACAG	TTGAAAATGA	ACTACCTCCA	CCAGAAAATA	TAGAAGTCAG	750
	TGTCCAAAAT	CAGAACTATG	TTCTTAAATG	GGATTATACA	TATGCAAACA	800
5	TGACCTTTCA	AGTTCAGTGG	CTCCACGCCT	TTTTAAAAAG	GAATCCTGGA	850
	AACCATTTGT	ATAAATGGAA	ACAAATACCT	GACTGTGAAA	ATGTCAAAAC	900
10	TACCCAGTGT	GTCTTTCCTC	AAAACGTTTT	CCAAAAAGGA	ATTTACCTTC	950
l U	TCCGCGTACA	AGCATCTGAT	GGAAATAACA	CATCTTTTTG	GTCTGAAGAG	1000
	ATAAAGTTTG	ATACTGAAAT	ACAAGCTTTC	CTACTTCCTC	CAGTCTTTAA	1050
15	CATTAGATCC	CTTAGTGATT	CATTCCATAT	CTATATCGGT	GCTCCAAAAC	1100
	AGTCTGGAAA	CACGCCTGTG	ATCCAGGATT	ATCCACTGAT	TTATGAAATT	1150
20	ATTTTTTGGG	AAAACACTTC	AAATGCTGAG	AGAAAAATTA	TCGAGAAAAA	1200
-0	AACTGATGTT	ACAGTTCCTA	ATTTGAAACC	ACTGACTGTA	TATTGTGTGA	1250
	AAGCCAGAGC	ACACACCATG	GATGAAAAGC	TGAATAAAAG	CAGTGTTTTT	1300
25	AGTGACGCTG	TATGTGAGAA	AACAAAACCA	GGAAATGACA	AAACTCACAC	1350
	ATGCCCACCG	TGCCCAGCAC	CTGAACTCCT	GGGGGGACCG	TCAGTCTTCC	1400
30	TCTTCCCCCC	AAAACCCAAG	GACACCCTCA	TGATCTCCCG	GACCCCTGAG	1450
	GTCACATGCG	TGGTGGTGGA	CGTGAGCCAC	GAAGACCCTG	AGGTCAAGTT	1500
	CAACTGGTAC	GTGGACGGCG	TGGAGGTGCA	TAATGCCAAG	ACAAAGCCGC	1550
35	GGGAGGAGCA	GTACAACAGC	ACGTACCGAG	TGGTCAGCGT	CCTCACCGTC	1600
	CTGCACCAGG	ACTGGCTGAA	TGGCAAGGAG	TACAAGTGCA	AGGTCTCCAA	1650
40	CAAAGCCCTC	CCAGCCCCCA	TCGAGAAAAC	CATCTCCAAA	GCCAAAGGGC	1700
	AGCCCCGAGA	ACCACAGGTG	TACACCCTGC	CCCCATCCCG	GGAAGAGATG	1750
	ACCAAGAACC	AGGTCAGCCT	GACCTGCCTG	GTCAAAGGCT	TCTATCCCAG	1800
45	CGACATCGCC	GTGGAGTGGG	AGAGCAATGG	GÇAGCCGGAG	AACAACTACA	1850
	AGACCACGCC	TCCCGTGCTG	GACTCCGACG	GCTCCTTCTT	CCTCTACAGC	1900
50	AAGCTCACCG	TGGACAAGAG	CAGGTGGCAG	CAGGGGAACG	TCTTCTCATG	1950
	CTCCGTGATG	CATGAGGCTC	TGCACAACCA	CTACACGCAG	AAGAGCCTCT	2000
	CCCTGTCTCC	GGGTAAATGA	GTGCGACGGC	CCTAGAGTCG	ACCTGCAGAA	2050

	GCTTAGAACC	GAGGGGCCGC	CATGGCCCAA	CTTGTTTATT	GCAGCTTATA	2100
	ATGGTTACAA	ATAAAGCAAT	AGCATCACAA	ATTTCACAAA	TAAAGCATTT	2150
5	TTTTCACTGC	ATTCTAGTTG	TGGTTTGTCC	AAACTCATCA	ATGTATCTTA	2200
	TCATGTCTGG	ATCGATCGGG	AATTAATTCG	GCGCAGCACC	ATGGCCTGAA	2250
10	ATAACCTCTG	AAAGAGGAAC	TTGGTTAGGT	ACCTTCTGAG	GCGGAAAGAA	2300
10	CCAGCTGTGG	AATGTGTGTC	AGTTAGGGTG	TGGAAAGTCC	CCAGGCTCCC	2350
	CAGCAGGCAG	AAGTATGCAA	AGCATGCATC	TCAATTAGTC	AGCAACCAGG	2400
15	TGTGGAAAGT	CCCCAGGCTC	CCCAGCAGGC	AGAAGTATGC	AAAGCATGCA	2450
	TCTCAATTAG	TCAGCAACCA	TAGTCCCGCC	CCTAACTCCG	CCCATCCCGC	2500
20	CCCTAACTCC	GCCCAGTTCC	GCCCATTCTC	CGCCCCATGG	CTGACTAATT	2550
	TTTTTTTTT	ATGCAGAGGC	CGAGGCCGCC	TCGGCCTCTG	AGCTATTCCA	2600
	GAAGTAGTGA	GGAGGCTTTT	TTGGAGGCCT	AGGCTTTTGC	AAAAAGCTGT	2650
25	TAACAGCTTG	GCACTGGCCG	TCGTTTTACA	ACGTCGTGAC	TGGGAAAACC	2700
	CTGGCGTTAC	CCAACTTAAT	CGCCTTGCAG	CACATCCCCC	CTTCGCCAGC	2750
30	TGGCGTAATA	GCGAAGAGGC	CCGCACCGAT	CGCCCTTCCC	AACAGTTGCG	2800
	TAGCCTGAAT	GGCGAATGGC	GCCTGATGCG	GTATTTTCTC	CTTACGCATC	2850
	TGTGCGGTAT	TTCACACCGC	ATACGTCAAA	GCAACCATAG	TACGCGCCCT	2900
35	GTAGCGGCGC	ATTAAGCGCG	GCGGGTGTGG	TGGTTACGCG	CAGCGTGACC	2950
	GCTACACTTG	CCAGCGCCCT	AGCGCCCGCT	CCTTTCGCTT	TCTTCCCTTC	3000
40	CTTTCTCGCC	ACGTTCGCCG	GCTTTCCCCG	TCAAGCTCTA	AATCGGGGGC	3050
	TCCCTTTAGG	GTTCCGATTT	AGTGCTTTAC	GGCACCTCGA	CCCCAAAAAA	3100
	CTTGATTTGG	GTGATGGTTC	ACGTAGTGGG	CCATCGCCCT	GATAGACGGT	3150
45	TTTTCGCCCT	TTGACGTTGG	AGTCCACGTT	CTTTAATAGT	GGACTCTTGT	3200
	TCCAAACTGG	AACAACACTC	AACCCTATCT	CGGGCTATTC	TTTTGATTTA	3250
50		*			AGCTGATTTA	
	ACAAAAATTT	AACGCGAATT	TTAACAAAAT	ATTAACGTTT	ACAATTTTAT	3350
	GGTGCACTCT	CAGTACAATC	TGCTCTGATG	CCGCATAGTT	AAGCCAACTC	3400

	CGCTATCGCT	ACGTGACTGG	GTCATGGCTG	CGCCCGACA	CCCGCCAACA	3450
	CCCGCTGACG	CGCCCTGACG	GGCTTGTCTG	CTCCCGGCAT	CCGCTTACAG	3500
5	ACAAGCTGTG	ACCGTCTCCG	GGAGCTGCAT	GTGTCAGAGG	TTTTCACCGT	3550
	CATCACCGAA	ACGCGCGAGG	CAGTATTCTT	GAAGACGAAA	GGGCCTCGTG	3600
10	ATACGCCTAT	TTTTATAGGT	TAATGTCATG	ATAATAATGG	TTTCTTAGAC	3650
10	GTCAGGTGGC	ACTTTTCGGG	GAAATGTGCG	CGGAACCCCT	ATTTGTTTĀT	3700
	TTTTCTAAAT	ACATTCAAAT	ATGTATCCGC	TCATGAGACA	ATAACCCTGA	3750
15	TAAATGCTTC	AATAATATTG	AAAAAGGAAG	AGTATGAGTA	TTCAACATTT	3800
	CCGTGTCGCC	CTTATTCCCT	TTTTTGCGGC	ATTTTGCCTT	CCTGTTTTTG	3850
20	CTCACCCAGA	AACGCTGGTG	AAAGTAAAAG	ATGCTGAAGA	TCAGTTGGGT	3900
20	GCACGAGTGG	GTTACATCGA	ACTGGATCTC	AACAGCGGTA	AGATCCTTGA	3950
	GAGTTTTCGC	CCCGAAGAAC	GTTTTCCAAT	GATGAGCACT	TTTAAAGTTC	4000
25	TGCTATGTGG	CGCGGTATTA	TCCCGTGATG	ACGCCGGGCA	AGAGCAACTC	4050
	GGTCGCCGCA	TACACTATTC	TCAGAATGAC	TTGGTTGAGT	ACTCACCAGT	4100
30	CACAGAAAAG	CATCTTACGG	ATGGCATGAC	AGTAAGAGAA	TTATGCAGTG	4150
50	CTGCCATAAC	CATGAGTGAT	AACACTGCGG	CCAACTTACT	TCTGACAACG	4200
	ATCGGAGGAC	CGAAGGAGCT	AACCGCTTTT	TTGCACAACA	TGGGGGATCA	4250
35	TGTAACTCGC	CTTGATCGTT	GGGAACCGGA	GCTGAATGAA	GCCATACCAA	4300
	ACGACGAGCG	TGACACCACG	ATGCCAGCAG	CAATGGCAAC	AACGTTGCGC	4350
40	AAACTATTAA	CTGGCGAACT	ACTTACTCTA	GCTTCCCGGC	AACAATTAAT	4400
	AGACTGGATG	GAGGCGGATA	AAGTTGCAGG	ACCACTTCTG	CGCTCGGCCC	4450
	TTCCGGCTGG	CTGGTTTATT	GCTGATAAAT	CTGGAGCCGG	TGAGCGTGGG	4500
45	TCTCGCGGTA	TCATTGCAGC	ACTGGGGCCA	GATGGTAAGC	CCTCCCGTAT	4550
	CGTAGTTATC	TACACGACGG	GGAGTCAGGC	AACTATGGAT	GAACGAAATA	4600
50	GACAGATCGC	TGAGATAGGT	GCCTCACTGA	TTAAGCATTG	GTAACTGTCA	4650
- •	GACCAAGTTT	ACTCATATAT	ACTTTAGATT	GATTTAAAAC	TTCATTTTTA	4700
	ATTTAAAAGG	ATCTAGGTGA	AGATCCTTTT	TGATAATCTC	ATGACCAAAA	4750

	TCCCTTAACG	TGAGTTTTCG	TTCCACTGAG	CGTCAGACCC	CGTAGAAAAG	4800
	ATCAAAGGAT	CTTCTTGAGA	TCCTTTTTT	CTGCGCGTAA	TCTGCTGCTT	4850
5	GCAAACAAAA	AAACCACCGC	TACCAGCGGT	GGTTTGTTTG	CCGGATCAAG	4900
	AGCTACCAAC	TCTTTTTCCG	AAGGTAACTG	GCTTCAGCAG	AGCGCAGATA	4950
10	CCAAATACTG	TCCTTCTAGT	GTAGCCGTAG	TTAGGCCACC	ACTTCAAGAA	5000
10	CTCTGTAGCA	CCGCCTACAT	ACCTCGCTCT	GCTAATCCTG	TTACCAGTGG	5050
	CTGCTGCCAG	TGGCGATAAG	TCGTGTCTTA	CCGGGTTGGA	CTCAAGACGA	5100
15	TAGTTACCGG	ATAAGGCGCA	GCGGTCGGGC	TGAACGGGGG	GTTCGTGCAC	5150
	ACAGCCCAGC	TTGGAGCGAA	CGACCTACAC	CGAACTGAGA	TACCTACAGC	5200
20	GTGAGCATTG	AGAAAGCGCC	ACGCTTCCCG	AAGGGAGAAA	GGCGGACAGG	5250
20	TATCCGGTAA	GCGGCAGGGT	CGGAACAGGA	GAGCGCACGA	GGGAGCTTCC	5300
	AGGGGGAAAC	GCCTGGTATC	TTTATAGTCC	TGTCGGGTTT	CGCCACCTCT	5350
25	GACTTGAGCG	TCGATTTTTG	TGATGCTCGT	CAGGGGGGCG	GAGCCTATGG	5400
	AAAAACGCCA	GCAACGCGGC	CTTTTTACGG	TTCCTGGCCT	TTTGCTGGCC	5450
30	TTTTGCTCAC	ATGTTCTTTC	CTGCGTTATC	CCCTGATTCT	GTGGATAACC	5500
	GTATTACCGC	CTTTGAGTGA	GCTGATACCG	CTCGCCGCAG	CCGAACGACC	5550
	GAGCGCAGCG	AGTCAGTGAG	CGAGGAAGCG	GAAGAGCGCC	CAATACGCAA	5600
35	ACCGCCTCTC	CCCGCGCGTT	GGCCGATTCA	TTAATCCAGC	TGGCACGACA	5650
	GGTTTCCCGA	CTGGAAAGCG	GGCAGTGAGC	GCAACGCAAT	TAATGTGAGT	5700
40	TACCTCACTC	ATTAGGCACC	CCAGGCTTTA	CACTTTATGC	TTCCGGCTCG	5750
	TATGTTGTGT	GGAATTGTGA	GCGGATAACA	ATTTCACACA	GGAAACAGCT	5800
	ATGACCATGA	TTACGAATTA	ATTCGAGCTC	GCCCGACATT	GATTATTGAC	5850
45	TAGTTATTAA	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA	5900
	TGGAGTTCCG	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG	5950
50	CCCAACGACC	CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT	6000
	AACGCCAATA	GGGACTTTCC	ATTGACGTCA	ATGGGTGGAG	TATTTACGGT	6050
	AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT	ATCATATGCC	AAGTACGCCC	6100

	CCIA	41 1 G/	ACG :	rcaa)	GACC	G 17	AAAT	الالال	۔ بردر	.1666	AII	AIG	CCAC	31A	0130
	CATO	GACCI	TA T	rggg <i>i</i>	CTTI	rc cr	racti	rggc <i>i</i>	A GTA	ACATO	CTAC	GTAT	TAGI	CA	6200
5	TCG	CTAT	rac (CATGO	STGAT	G C	GGTTI	TGGC	AG1	racai	CAA	TGG	CGT	GA	6250
	TAG	CGGT	rtg <i>i</i>	ACTCA	ACGGG	G A	TTCC	CAAGI	стс	CCACC	CCCA	TTG	ACGTO	CAA	6300
10	TGG	GAGT	rtg 1	TTTT	GCAC	CC A	TAAL	CAAC	G GGA	ACTTI	rcca	AAA	CTCC	AT	6350
10	ACA	ACTC	CGC (CCA	TGAC	G C	TAAL	GGCC	G GTA	AGGCC	STGT	ACG	TGGG	GAG.	6400
	GTC	TATA:	CAA (GCAGA	AGCTO	G T	TAGT	GAAC	CGT	CAG	ATCG	CCT	GGAGA	ACG	6450
15	CCAT	rcca(CGC 1	rgtti	TGAC	CC TO	CCATA	AGAAC	ACA	ACCGO	GGAC	CGAT	CCAC	SCC	6500
	TCC	GCGG	ccs (GGAAC	CGGTC	C A	rtgg <i>i</i>	AACGO	G GG	ATTCO	CCCG	TGC	CAAGA	AGT	6550
20	GAC	GTAAC	GTA (CCGCC	CTATA	AG AG	STCTA	ATAGO	G CCC	CACCO	CCT	TGG	CTCGI	ATT	6600
20	GAA	CGCG	GCT A	ACAA	raat?	TA CA)AATA	CCTTA	A TGT	TATCA	ATAC	ACA	racg <i>i</i>	TTA	6650
	TAG	GTGA	CAC 1	OATAT	SAAT <i>I</i>	AA C	ATCC	ACTTI	r GCC	CTTTC	CTCT	CCAC	CAGGT	rg T	6700
25	CCA	CTCC	CAG (STCCA	ACTO	C A	GGCC	ATGGO	C GGC	CCATO	CGAT	т 67	741		
30	·	i) SI (<i>I</i> (I	EQUEN A) Li B) T' C) T(ION I NCE (ENGTH YPE: DPOL(NCE I	CHARA H: 63 Amir DGY:	ACTEI 31 ar no Ac Line	RISTI mino cid ear	CS: acio	is	NO • 23					
~ ~	•	·	_												
35	Leu 1	Lys	Ser	Pro	Gln 5	Lys	Val	Glu	Val	Asp 10	Ile	Ile	Asp	Asp	Asn 15
40	Phe	Ile	Leu	Arg	Trp 20	Asn	Arg	Ser	Asp	Glu 25	Ser	Val	Gly	Asn	Val 30
10	Thr	Phe	Ser	Phe	Asp 35	Tyr	Gln	Lys	Thr	Gly 40	Met	Asp	Asn	Trp	Ile 45
45	Lys	Leu	Ser	Gly	Cys 50	Gln	Asn	Ile	Thr	Ser 55	Thr	Lys	Cys	Asn	Phe 60
	Ser	Ser	Leu	Lys	Leu 65	Asn	Val	Tyr	Glu	Glu 70	Ile	Lys	Leu	Arg	Ile 75
50	Arg	Ala	Glu	Lys	Glu 80	Asn	Thr	Ser	Ser	Trp 85	Tyr	Glu	Val	Asp	Ser 90
	Phe	Thr	Pro	Phe	Arg 95	Lys	Ala	Gln	Ile	Gly 100	Pro	Pro	Glu	Val	His 105

	Leu	Glu	Ala	Glu	Asp 110	Lys	Ala	Ile	Val	Ile 115	His	Ile	Ser	Pro	Gly 120
5	Thr	Lys	Asp	Ser	Val 125	Met	Trp	Ala	Leu	Asp 130	Gly	Leu	Ser	Phe	Thr 135
10	Tyr	Ser	Leu	Leu	Ile 140	Trp	Lys	Asn	Ser	Ser 145	Gly	Val	Glu	Glu	Arg 150
	Ile	Glu	Asn	Ile	Tyr 155	Ser	Arg	His	Lys	Ile 160	Tyr	Lys	Leu	Ser	Pro 165
15	Glu	Thr	Thr	Tyr	Cys 170	Leu	Lys	Val	Lys	Ala 175	Ala	Leu	Leu	.Thr	Ser 180
	Trp	Lys	Ile	Gly	Val 185	Tyr	Ser	Pro	Val	His 190	Cys	Ile	Lys	Thr	Thr 195
20	Val	Glu	Asn	Glu	Leu 200	Pro	Pro	Pro	Glu	Asn 205	Ile	Glu	Val	Ser	Val 210
25	Gln	Asn	Gln	Asn	Tyr 215	Val	Leu	Lys	Trp	Asp 220	Tyr	Thr	Tyr	Ala	Asn 225
23	Met	Thr	Phe	Gln	Val 230	Gln	Trp	Leu	His	Ala 235	Phe	Leu	Lys	Arg	Asn 240
30	Pro	Gly	Asn	His	Leu 245	Tyr	Lys	Trp	Lys	Gln 250	Ile	Pro	Asp	Cys	Glu 255
	Asn	Val	Lys	Thr	Thr 260	Gln	Cys	Val	Phe	Pro 265	Gln	Asn	Val	Phe	Gln 270
35	Lys	Gly	Ile	Tyr	Leu 275	Leu	Arg	Val	Gln	Ala 280	Ser	Asp	Gly	Asn	Asn 285
40	Thr	Ser	Phe	Trp	Ser 290	Glu	Glu	Ile	Lys	Phe 295	Asp	Thr	Glu	Ile	Gln .300
,	Ala	Phe	Leu	Leu	Pro 305	Pro	Val	Phe	Asn	Ile 310	Arg	Ser	Leu	Ser	Asp 315
45	Ser	Phe	His	Ile.	-		Gly			Lys 325	Gln	Ser	Gly	Asn	Thr 330
	Pro	Val	Ile	Gln	Asp 335	Tyr	Pro	Leu	Ile	Tyr 340	Glu	Ile	Ile	Phe	Trp 345
50	Glu	Asn	Thr	Ser	Asn 350	Ala	Glu	Arg	Lys	Ile 355	Ile	Glu	Lys	Lys	Thr 360
	Asp	Val	Thr	Val	Pro 365	Asn	Leu	Lys	Pro	Leu 370	Thr	Val	Tyr	Cys	Val 375

	Lys	Ala	Arg	Ala	His 380	Thr	Met	Asp	Glu	Lys 385	Leu	Asn	Lys	Ser	Ser 390
5	Val	Phe	Ser	Asp	Ala 395	Val	Cys	Glu	Lys	Thr 400	Lys	Pro	Gly	Asn	Asp 405
10	Lys	Thr	His	Thr	Cys 410	Pro	Pro	Cys	Pro	Ala 415	Pro	Glu	Leu	Leu	Gly 420
10	Gly	Pro	Ser	Val	Phe 425	Leu	Phe	Pro	Pro	L <u>y</u> s 430	Pro.	Lys.	Asp	Thr	Leu 435
15	Met	Ile	Ser	Arg	Thr 440	Pro	Glu	Val	Thr	Cys 445	Val	Val	Val.	Asp	Val 450
	Ser	His	Glu	Asp	Pro 455	Glu	Val	Lys	Phe	Asn 460	Trp	Tyr	Val	Asp	Gly 465
20	Val	Glu	Val	His	Asn 470	Ala	Lys	Thr	Lys	Pro 475	Arg	Glu	Glu	Gln	Tyr 480
25	Asn	Ser	Thr	Tyr	Arg 485	Val	Val	Ser	Val	Leu 490	Thr	Val	Leu	His	Gln 495
20	Asp	Trp	Leu	Asn	Gly 500	Lys	Glu	Tyr	Lys	Cys 505	Lys	Val	Ser	Asn	Lys 510
30	Ala	Leu	Pro	Ala	Pro 515	Ile	Glu	Lys	Thr	Ile 520	Ser	Lys	Ala	Lys	Gly 525
	Gln	Pro	Arg	Glu	Pro 530	Gln	Val	Tyr	Thr	Leu 535	Pro	Pro	Ser	Arg	Glu 540
35	Glu	Met	Thr	Lys	Asn 545	Gln	Val	Ser	Leu	Thr 550	Cys	Leu	Val	Lys	Gly 555
40	Phe	Tyr	Pro	Ser	Asp 560	Ile	Ala	Val	Glu	Trp 565	Glu	Ser	Asn	Gly	Gln 570
.0	Pro	Glu	Asn	Asn	Tyr 575	Lys	Thr	Thr	Pro	Pro 580	Val	Leu	Asp	Ser	Asp 585
45	Gly	Ser	Phe	Phe	Leu 590	Tyr	Ser	Lys	Leu	Thr 595	Val	Asp	Lys	Ser	Arg 600
	Trp	Gln	Gln	Gly	Asn 605	Val	Phe	Ser	Суѕ	Ser 610	Val	Met	His	Glu	Ala 615
50	Leu	His	Asn	His	Tyr 620	Thr	Gln	Lys	Ser	Leu 625	Ser	Leu	Ser	Pro	Gly 630
	Lys 631														