Nonregular languages

Sipser 1.4 (pages 77-82)

Nonregular languages?

- We now know:
 - Regular languages may be specified either by
 - regular expressions
 - DFAs or NFAs
- What if we can't find a regular expression or finite state automaton for a language?
- How do we show a language is not regular?

Limited memory

- Since finite state automata cannot back up when reading an input, they are allowed only a bounded amount of memory
- What about the language $\{0^n 1^n | n \ge 0\}$?

PAUSE

Hmm... how can we prove a language is not regular?

- What about
 - $\{w \mid w \text{ has an equal number of } 0s \text{ and } 1s\}$
 - {w | w has an equal number of occurrences of the substrings 01 and 10}

Try a different perspective

- Are there properties of a language that imply it is regular?
- What if the language is finite?

Try a different perspective

- How can a regular language be infinite?
 - Regular expression must have a star
 - Star operators correspond to cycles in the finite state automaton

Pigeonhole principle

- Let M be a finite state machine with N states recognizing an infinite language
- Let $x \in L(M)$ with |x| = N
- Then there exists a sequence of states $s_0, s_1, s_2, ..., s_N$
- So: N+1 pigeons into N holes...
 - Some hole must have at least 2 pigeons!
 - I.e., at least two of the states must be the same, so there must be a cycle

Machine cycles

- Let s_k be the first repeated state; that is, $s_k = s_{k+c}$ for some c, $0 \le k < k+c \le N$.
- Where

Viriefy
$$-x = a_{1}a_{2}...a_{k}...a_{k+c}...a_{N} = uvw$$

$$-u = a_{1}a_{2}...a_{k}$$

$$-v = a_{k+1}...a_{k+c}$$

$$-w = a_{k+c+1}...a_{N}$$

$$s_{0}$$

$$s_{k}$$

$$s_{k}$$

• We conclude: $uv^iw \in L(M)$ for all $i \ge 0$.

The pumping lemma

- Theorem 1.70: If A is a regular language, then there is a number p where, if x is any string of length at least p, then x = uvw, such that
 - 1. For each $i \ge 0$, $uv^i w \in A$,
 - 2. |v| > 0, and
 - 3. $|uv| \leq p$.

So now...

- Is $L = \{0^n 1^n : n \ge 0\}$ regular?
- Let's prove it!
 - \cdot Suppose, for a contradiction, L is regular... then we can apply the pumping lemma
 - Let p be pumping length given by P.L. Consider $x = \underline{\hspace{1cm}} \in L$. By P.L., x = uvw such that $uv^iw \in L$ for all $i \ge 0$.
 - What does v look like?
 - Can we pump v to get a contradiction?
 - *− uv*—*w*

Complete proof

L = Onla

Pf suppose, for a contradiction, L is regular. Let p be the pumping length given by P. L. Consider the string $X=0^pI^p\in L$. Since $|x|\geq p$, x=uvw such that the conditions of the P. L. hold. By conditions @+@, $v=0^k$, where k>0. Then, by condition @, $uv^2w=0^{p+k}I^p\in L$. But $p+k\neq p$ since k>0; thus $uv^2w\notin L$, giving the contradiction.

Choose x wisely

r = Oulu Pf Suppose, for a contradiction, L is regular. Let p be the pumping length given by P.L. Consider the string $x=0^{1/2}|^{1/2} \in L$. Since $|x| \ge p$, x = uvw such that the conditions of the P. L. hold. By conditions @ + @, v= J, where by condition (), usew= OP-k IP Ex. But p-k # P since k>0; thus wow & L, giving the contradiction. could be Case 1: all 0s (v=0k) case 2: all 1s (v=1k) case 3: 65 + 15 (v=001k)

> CS 311 Mount Holyoke College

Reuse!

• Is $C = \{ w \mid w \text{ has an equal number of } 0s \text{ and } 1s \}$ a regular language?

Pf Suppose for a contradiction, that C= \(\psi \) \(\psi \) has on equal # of 0s + 1s \(\frac{1}{2} \) were regular. We know that 0* 1* describes a regular language A. Consider The language ANC; this is on in. Since regular lang. are closed under 1, ACC is req. But ue just should only = Ancis not reg., guing the contradiction.

Picking the substring to pump

• Is $PAL = \{w \in \{0, 1\}^* : w \text{ is a palindrome}\}$ a regular language?