Titulaire: Th. Gallouët

MATHF214, Compléments de Mathématiques Assistants : S. Dendievel, R. Nascimento

Exercice 1 Construire par développement en série de Taylor autour de $x_0 = 0$, la solution générale de l'équation différentielle :

- a) y'' + y = 0;
- b) $(1-x^2)y'' 4xy' 2y = 0$;
- c) $(1+x^2)y'' 4xy' + 6y = 0$;
- $d) \left(1 \frac{x^2}{2}\right) y'' + 4xy' 10y = 0$

Exercice 2 On considère l'équation différentielle

$$(x^2 - 1)y'' + 2xy' - \lambda y = 0.$$

a) Montrer que les coefficients c_k des solutions $y(x) = \sum_{k=0}^{\infty} c_k x^k$ satisfont à la relation de récurrence

$$c_{k+2} = \frac{k(k+1) - \lambda}{(k+2)(k+1)} c_k$$

avec $k \in \mathbb{N}$.

- b) i) Montrer que pour $c_1 = 0$ et $\lambda = n(n+1)$, $n \in 2\mathbb{N}$, la solution se réduit à un polynôme de degré n.
 - ii) Sous ces conditions, écrire les polynômes $P_n(x)$, de degré 0, 2 et 4, tels que $P_n(1) = 1$ (avec n = 0, 2, 4).
- c) i) Montrer que pour $c_0 = 0$ et $\lambda = n(n+1)$, $n \in 2\mathbb{N} + 1$, la solution se réduit à un polynôme de degré n.
 - ii) Sous ces conditions, écrire les polynômes $P_n(x)$, de degré 1,3 et 5, tels que $P_n(1) = 1$ (avec n = 1, 3, 5).

Exercice 3 On considère l'équation différentielle

$$xy'' + (1 - x)y' - \lambda y = 0.$$

1. Montrer que les coefficients c_k des solutions $y(x) = \sum_{k=0}^{\infty}$ satisfont à la relation de récurrence

$$c_{k+2} = \frac{k+\lambda}{(k+1)^2} c_k$$

avec $k \in \mathbb{N}$.

2. i) Montrer que pour $\lambda = -n, n \in \mathbb{N}$, la solution se réduit à un polynôme de degré n.

ii) Sous ces conditions, écrire les polynômes $L_n(x)$, de degré 0, 1, 2, 3 et 4, tels que $L_n(0) = n!$ (avec n = 0, 1, 2, 3, 4).

Exercice 4 On considère l'équation différentielle

$$(1 - x^2)y'' - xy' + a^2y = 0$$

 $où a \in \mathbb{N} \ et \ y : [-1, 1] \to \mathbb{R}.$

- 1. Déterminer la relation de récurrence satisfaite par les c_k des solutions y(x) développables en série de Taylor autour de $x_0 = 0$.
- 2. On fait le choix $c_0 = 0$ lorsque a est impair et $c_1 = 0$ lorsque a est pair. En déduire que la solution y qui correspond à ce choix est un polynôme dont on indiquera le degré et la parité.
- 3. Déterminer le polynôme dans le cas a=3.
- 4. Montrer que $y(x) = \cos(\gamma \arccos x)$, pour $\gamma \ge 0$ est solution de l'équation différentielle avec une valeur de γ que l'on déterminera.

Exercice 5 On considère l'équation différentielle

$$y'' + 2xy' + 2y = 0.$$

- 1. Obtenir la relation de récurrence qui régit les coefficients c_k des solutions y(x) développables en série de Taylor autour de $x_0 = 0$.
- 2. i) Construire les solutions développables en série de Taylor autour de $x_0 = 0$.
 - ii) Parmi ces solutions, déterminer celle qui satisfait aux conditions initiales

$$\begin{cases} y(0) &= 1 \\ y'(0) &= 0. \end{cases}$$