

Exercise 7: Newton's Method

MAD

bacdavid@student.ethz.ch

Outline

- 1. Information
- 2. Goals
- 3. Theory / Recap (30')
- 4. Exercises (5')

Information

General

- Slides by LAB are on the website (look at them before proceeding!)
- These slides: https://polybox.ethz.ch/index.php/s/9NFCvtriBbRBDnS

Goals

Goals of Today

- Know what the root of a function is by Intermediate Value Theorem
- Briefly understand Bisection Method
- Understand derivation of Newton's Method
- Understand why Newton's Method might be better than Bisection
- Understand generalization of Newton's Method to systems

Theory / Recap

Root of a function

- $f(x^*) = 0$, x^* is a root of f
- **Intermediate Value Theorem:**
 - f is continuous
 - $\operatorname{sign} f(a) \neq \operatorname{sign} f(b)$
 - Then $x^* \in [a, b]$

https://en.wikipedia.org/wiki/Zero_of_a_function#/media/File:X-intercepts.svg

Bisection Method

Bisection Method directly takes advantage of intermediate value theorem:

```
1. Initialize a, b
2. If sign f(a) == sign f(m)
        a ← m
    else
        b ← m
3. Repeat with m ← (a+b)/2
```

- Iterate until $|a-b| < \epsilon$
- Link

Newton's method

- Newton's Method takes advantage of slope: Assume somewhat strict monotonic increase/ decrease towards root
- Derivation:
 - Approximate: $f(x + \Delta x) \approx f(x) + f'(x)\Delta x$ (Taylor)
 - Discretize: $f(x^{(k)}) = f(x^{(k-1)}) + f'(x^{(k-1)})(x^{(k)} x^{(k-1)})$
 - Set $f(x^{(k)}) = 0$: $x^{(k)} = x^{(k-1)} \frac{f(x^{(k-1)})}{f'(x^{(k-1)})}$ (update rule)
- Iterate until $|x^{(k)} x^{(k-1)}| < \epsilon$
- Link
- Where does it fail?

Issues with Newton's Method

- Oscillation
- Stationary Point
- Bad convergence

Newton's Method for Systems

- $\mathbf{x}^* = [x_1^*, ..., x_N^*]^T$, $\mathbf{F}(\mathbf{x}^*) = [f_1(x_1^*), ..., f_N(x_N^*)]^T = \mathbf{0}$
- Update rule: $\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} J^{-1}(\mathbf{x}^{(k-1)})\mathbf{F}(\mathbf{x}^{(k-1)})$
- Define: $\mathbf{x}^{(k)} \mathbf{x}^{(k-1)} = \mathbf{y}^{(k-1)}$
- Write update rule as: $J(x^{(k-1)})y^{(k-1)} = -F(x^{(k-1)})$

Example

System of Equations example

- $5x_1^2 x_2^2 = 0$; $x_2 0.25(\sin x_1 + \cos x_2) = 0$
- Initial Guess: $x_1^{(0)} = 0$; $x_2^{(0)} = 0$
- Do 1 iterations...

Exercises

Questions?

