# Example - RRR Robot

## Harsh Maithani

#### Problem statement

Given the DH parameters of a RRR robot, as well as cartesian trajectory points stored in an external file -

- 1. Determine the Forward Kinematics
- 2. Determine the Inverse Kinematics
- 3. Fetch cartesian trajectory points from an external file and formulate a trajectory planner to send intermediate points to the robot.

#### Solution

The DH parameters of the robot, along with the joint limits are -

| Link number | $Twist(\alpha)$ | Link length $(a)$ | Link offset $(d)$ | Joint angle $(\theta)$ | Min. limit | Max. limit |
|-------------|-----------------|-------------------|-------------------|------------------------|------------|------------|
| 0           | 0               | 0                 | -                 | -                      | -          | -          |
| 1           | pi/2            | 10                | 0                 | $\theta_1$             | -pi        | pi         |
| 2           | 0               | 5                 | 0                 | $\theta_2$             | -pi/2      | pi/2       |
| 3           | 0               | 5                 | 0                 | $\theta_2$             | -pi        | pi         |

Table 1: DH Parameters

For prototyping we used the Peter Corke RTB Toolbox in MATLAB that has in-built Forward Kinematics and Inverse Kinematics functionality. The toolbox is provided in the submission folder for convenience but it is recommended to download it directly from the website of Peter Corke. The Inverse Kinematics functionality can be erroneous though.

| robot | :: 3 axis, RI | RR, stdDH, f | astRNE |        |        |
|-------|---------------|--------------|--------|--------|--------|
| ] j   | theta         | ₫ [          | a      | alpha  | offset |
| 1     | q1            | <br>  0      | 10     | 1.5708 | 0      |
| 2     | q2            | 0            | 5      | 0      | 0      |
| 3     | q3            | 01           | 5      | 0      | 0      |

Figure 1: Robot DH parameters with Peter Corke RTB Toolbox

The DH parameters as defined by Craig are:

- $a_i$  = the distance from  $Z_i$  to  $Z_{i+1}$  measured along  $X_i$
- $\alpha_i$  = the angle from  $Z_i$  to  $Z_{i+1}$  measured about  $X_i$
- $d_i$  = the distance from  $X_{i-1}$  to  $X_i$  measured along  $Z_i$
- $\theta_i$  = the angle from  $X_{i-1}$  to  $X_i$  measured about  $Z_i$

Using these definitions, the robot can be visualized as in the figure as -



Figure 2: Robot visualized. Frames  $O_0$  and  $O_1$  are identical.

### Forward Kinematics

The Forward Kinematics equations can be derived as

$$\boldsymbol{x} = \left[ L_1 + L_2 \cos(\theta_2) + L_3 \cos(\theta_2 + \theta_3) \right] \cos(\theta_1) \tag{1}$$

$$\mathbf{y} = \begin{bmatrix} L_1 + L_2 \cos(\theta_2) + L_3 \cos(\theta_2 + \theta_3) \end{bmatrix} \sin(\theta_1) \tag{2}$$

$$\mathbf{z} = \left[ L_2 \sin(\theta_2) + L_3 \sin(\theta_2 + \theta_3) \right] \tag{3}$$

To view the results in MATLAB run main.m

```
In C++
x = (L1 + L2 * \cos(q2) + L3 * \cos(q2 + q3)) * \cos(q1);
y = (L1 + L2 * \cos(q2) + L3 * \cos(q2 + q3)) * \sin(q1);
z = (L2 * \sin(q2) + L3 * \sin(q2 + q3));
```

#### **Inverse Kinematics**

The Inverse Kinematics equations can be derived as

$$q_1 = tan^{-1} \left(\frac{y}{x}\right) \tag{4}$$

$$q_3 = \cos^{-1} \left[ \frac{\left(\frac{x}{\cos(q_1)} - L_1\right)^2 + z^2 - L_2^2 - L_3^2}{2 L_2 L_3} \right]$$
 (5)

$$q_2 = tan^{-1} \left(\frac{m}{n}\right) - tan^{-1} \left(\frac{\sqrt{n^2 + m^2 - z^2}}{z}\right)$$
 (6)

where

$$m = L_2 + L_3 \cos(q_3)$$
 and  $n = L_3 \sin(q_3)$ 

For  $q_2$  we have referred to the book by Craig - Introduction to Robotics, Mechanics and Control (Page 377).

To view the results in MATLAB run main.m

```
In C++

q1 = atan(y/x);  // Angles in radians
q3 = acos((pow((x/cos(q1) - L1),2) + pow(z,2) - pow(L2,2) - pow(L3,2))/(2*L2*L3));

m = L2 + L3 * cos(q3);
n = L3 * sin(q3);
q2 = (atan2(m,n)-atan2(sqrt(pow(n,2)+pow(m,2)-pow(z,2)),z));
```

| Joint Angles | RTB Toolbox           | Analytical Equations  | C++                   |  |
|--------------|-----------------------|-----------------------|-----------------------|--|
| $q_1:0.15$   | $x: 17.85  q_1: 0.15$ | $x: 17.85  q_1: 0.15$ | $x: 17.85  q_1: 0.15$ |  |
| $q_2:0.29$   | $y: 2.698  q_2: 0.29$ | $y: 2.69  q_2: 0.29$  | $y: 2.69  q_2: 0.29$  |  |
| $q_3:0.57$   | $z:5.219$ $q_3:0.57$  | $z:5.21  q_3:0.57$    | $z:5.21$ $q_3:0.57$   |  |

Table 2: Verification of Forward and Inverse Kinematics. Inverse Kinematics from the RTB Toolbox can be erroneous.

## Trajectory planner

We use the trajectory planning equations for minimizing the jerk in the paper by Huaizhong Li (provided in the submission folder). The trajectory consists of two phases - an acceleration phase and an immediate deceleration phase. There are more trajectory planning algorithms in robotics textbooks. The one we have chosen for this problem ensures that the jerk is minimized.

• Acceleration phase  $(t \in [0, t_1])$ 

$$d = \frac{A}{2} n^2 \left[ \frac{1}{2} \left( m \ t \right)^2 - \left( 1 - \cos(m \ t) \right) \right) \right] \tag{7}$$

• Deceleration phase  $(t \in [t_1, t_2])$ 

$$d = \frac{1}{4}AT_1^2 + \frac{1}{2}AT_1T_2 + \frac{A}{2}n^2 \left[ \frac{(2\pi)^2(t-t_2)}{T_1} - \frac{1}{2} \left( \frac{2\pi(t-t_2)}{T_1} \right)^2 + \left( 1 - \cos\left(\frac{2\pi(t-t_2)}{T_1}\right) \right) \right]$$
(8)

where

$$A = 8 \frac{q_f - q_i}{T^2}, \ T_1 = \left(\frac{2(q_f - q_i)}{A}\right)^{1/2}, \ T_2 = T_1, \ m = \frac{2\pi}{T_1}, \ n = \frac{T_1}{2\pi}$$

To view the results in MATLAB run the file complete\_planner.m or run main.m with the last line uncommented.

```
In C++

// Acceleration phase
displacement = (A/2)*(pow(n,2))*(0.5*(pow((m*t),2))-(1-cos(m*t))); // Displacement

// Deceleration phase
displacement = 0.25*A*(pow(T1,2))+0.5*A*T1*T2+0.5*A*(pow(n,2))
        *( (pow((2*PI),2)*(t-t_start)/T1)-0.5*pow((m*(t-t_start)),2)
        +(1-cos(m*(t-t_start))) );
```