Mohammad Hanif Furqan Aufa Putra | 5025221161 | PAA - A

1. Substitution Method

Buktikan menggunakan Substitution Method bahwa T(n) = T(n-1) + n adalah $O(n^2)!$

2. Iteration Method

Tentukan upper bound dari T(n)=2T(n-1)+1 menggunakan Iteration Method!

3. Master Method

Tentukan *tight asymptotic bounds* (Θ) untuk fungsi *reccurences* berikut ini:

1.
$$T(n) = 2T(n/4) + 1$$

2.
$$T(n)=2T(n/4)+\sqrt{n}$$

3.
$$T(n)=2T(n/4)+n$$

4.
$$T(n) = 2T(n/4) + n^2$$

Jawaban:

- 1. Substitution Method
 - a. Buat asumsi $T(n) = O(n^2)$.
 - b. Buat asumsi $T(k) \le ck^2$ untuk $k \le n-1$.
 - c. Membuktikan $T(n) \le cn^2$ dengan menggunakan induksi.

$$T(n) = T(n-1) + n$$

$$\leq c(n-1)^2 + n$$

$$= c(n^2 - 2n + 1) + n$$

$$= cn^2 - 2cn + c + n$$

$$= cn^2 - (2cn - c - n)$$

$$\leq$$
 cn² jika c \geq 1 dan n \geq 1.

2. Iteration Method

$$T(n) = 2T(n-1) + 1$$

$$T(n) = 2(2T(n-2) + 1) + 1 = 4T(n-2) + 3$$

$$T(n) = 4(2T(n-3) + 1) + 3 = 8T(n-3) + 7$$

$$T(n) = 8(2T(n-4) + 1) + 7 = 16T(n-4) + 15$$

$$T(n) = 2^{k}T(n-k) + (2^{k}-1)$$
Mencari nilai k di mana n - k = 1, yang berarti k = n - 1. Jadi:
$$T(n) = 2^{n-1}T(1) + 2^{n-1} - 1$$

$$T(n) = 2^{n-1}T(1) + 2^{n-1} - 1$$

$$T(n) = O(2^n)$$

Jadi, upper bound dari T(n) = 2T(n-1) + 1 adalah $0(2^n)$

3. Master Method

a.
$$a = 2$$
; $b = 4$; $f(n) = 1$
 $n^{\log_b a} = n^{\log_4 2} = n^{1/2}$

Karena waktu eksekusi f(n) = 1 lebih rendah daripada $n^{1/2}$, maka penyelesaian untuk masalah ini adalah: $T(n) = \theta(n^{1/2})$.

b.
$$a = 2$$
; $b = 4$; $f(n) = \sqrt{n}$

$$n^{\log_b a} = n^{\log_4 2} = n^{1/2}$$

Dikarenakan $f(n) = \sqrt{n}$ mempunyai waktu eksekusi yang setara dengan $n^{1/2}$, solusinya adalah: $T(n) = \theta(n^{\log_b a} \log n) = \theta(n^{1/2} \log n)$

c.
$$a = 2$$
; $b = 4$; $f(n) = n$
 $n^{\log_b a} = n^{\log_4 2} = n^{1/2}$

Karena f(n) = n memiliki waktu eksekusi yang lebih cepat daripada $n^{1/2}$, maka solusinya adalah: $T(n) = \theta(f(n)) = \theta(n)$

d.
$$a = 2$$
; $b = 4$; $f(n) = n^2$

$$n^{\log_b a} = n^{\log_4 2} = n^{1/2}$$

Karena $f(n) = n^2$ memiliki waktu eksekusi yang lebih cepat daripada $n^{1/2}$, maka solusinya adalah: $T(n) = \theta(f(n)) = \theta(n^2)$.