

Human Competitiveness of Genetic Programming in Spectrum Based Fault Localization

谢晓园 武汉大学计算机学院 xxie@whu.edu.cn

缘挺。

•现代社会,软件无处不在

- 高质量软件 迫切要求
- 关键系统的软件缺陷将造成灾难性损失
 - 人民生命威胁, 巨额财产损失, 社会秩序破坏

2003.8.14 美国 美国东北部大面积停电 分布式软件缺陷

2005.11.1 日本 东京股市"停摆" 软件系统升级缺陷

2011.8.18 俄罗斯 质子火箭发射失败 推进器控制软件缺陷

2011.7.23 中国 甬温线动车事故 列控软件缺陷

- 软件缺陷的产生不可避免
 - 缺陷定位贯穿整个软件生命周期
- 常用方法 人工缺陷定位
 - 费时费力,效果不稳定
- 自动缺陷定位
 - 受到广泛关注
 - 存在关键问题, 亟待解决

Spectrum-based Fault Localization -SBFL

Tests

to check

Program spectrum: run-time profile

- Associated with each testing result
- Granularity: statements, branches, etc.
- Coverage information: binary (execution slice), execution trace, etc.

Testing result for the test cases:

Ranking

- Program spectrum 程序频谱: run-time profile
 - · Associated with each testing result
 - Granularity: statements, branches, etc.
 - Coverage information: binary, execution trace, etc.

$$PG: \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} MS: \begin{pmatrix} 1/0 & 1/0 & ... & 1/0 \\ 1/0 & 1/0 & ... & 1/0 \\ \vdots & \vdots & \vdots \\ 1/0 & 1/0 & ... & 1/0 \end{pmatrix}$$
 $RE: (p/f & p/f & ... & p/f)$

・ 为每一个程序节点 s_i 可得 $A_i = < e_f^i, e_p^i, n_f^i, n_p^i >$

'n': 'not executed'

'p': 'pass'

$$PG: \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{pmatrix} MS: \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$RE: (p \ p \ p \ p \ f \ f)$$

$$MA: \begin{pmatrix} a'_{ef} & a'_{ep} & a'_{nf} & a'_{np} > \\ 0 & 1 & 2 & 3 \\ 1 & 3 & 1 & 1 \\ 2 & 3 & 0 & 1 \end{pmatrix}$$

- •风险评估公式 (risk evaluation formula R)
 - mapping A_i into the risk value of statement s_i
 - SBFL最核心的组成部分

Tarantula =
$$\frac{\frac{e_f}{e_f + n_f}}{\frac{e_p}{e_p + n_p} + \frac{e_f}{e_f + n_f}}.$$

• 所有语句风险值降序排列, 依次排查程序缺陷

• SBFL示例:

Structural	Test Test Test			SI	ec	tru	m	Tarantula	Rank
Elements	t_1	t_2	t_2 t_3		e_f	n_p	n_f		8
s_1	•			1	0	0	2	0.00	9
s_2	•			1	0	0	2	0.00	9
s_3	•			1	0	0	2	0.00	9
s_4	•			1	0	0	2	0.00	9
85	•			1	0	0	2	0.00	9
s_6	•		•	1	1	0	1	0.33	4
s ₇ (faulty)		•	•	0	2	1	0	1.00	1
88	•	•		1	1	0	1	0.33	4
89	•	•	•	1	2	0	0	0.50	2
Result	Р	F	F						

- •风险评估公式的度量指标
 - Effectiveness measurement: Expense metric
 - 须被检查语句的比例
 - · The lower, the better

Expense = (k+1)/n

SBFL重要研究内容:设计高效的风险评估公式

2. 人工风险评估公式的设计

• 第一个公式: Tarantula in 2002

Tarantula =
$$\frac{\frac{e_f}{e_f + n_f}}{\frac{e_p}{e_p + n_p} + \frac{e_f}{e_f + n_f}}.$$

JONES, J. A., HARROLD, M. J., AND STASKO, J. 2002. Visualization of test information to assist fault localization. In Proceedings of the 34th International Conference on Software Engineering, 467–477.

2. 人工风险评估公式的设计

• 手工设计思想: based on various intuitions

Jaccard, Dice. Overlap, Cosine, etc

Classification in botany:

Jaccard, Ochiai, Russell&Rao, Dice, Anderberg, etc.,

Clustering Simple-Matching.

M1: M2: Kulczynski I. Kultaynski 2. Hamann and Solut. oc.

A < d' d' d' d' >

RE:(ppppff)

群雄割据。。。

Name	Formula	N N	ame	Formula
0	-1 if $a_{nf} > 0$, otherwise	e any O	-	$\alpha_{ef} = \frac{a_{eg}}{4\pi (P+1)}$
Jaccord	int France	0	chiai	Variation (1997)
Tarantuta	24 - 24 24 - 24			
Zoltur	toff + top + Tomographic			
Ample	100 - 000 l	Λ	niple2	部一部
Wong1	a_{ef}	70	ong2	$\alpha_{ef} - a_{ep}$
Wong3	$a_{ef} - h$, where $h = \left\{ -2 \right\}$	$\frac{1}{2}$ + 0.1(α_{ep} 2.8 + 0.001		if $a_{ep} \le 2$ if $2 < a_{ep} \le 10$ 0) if $a_{ep} > 10$
Wong3"	$\alpha_{ex} = n$, where $\alpha = 0$	-1000 i Vong3 i	100000	
CBI Inc	$\frac{a_{ij}}{a_{ij}+a_{ip}}=\frac{a_{ip}j}{T}$	C	BHLog	CHITTE! THE
CBI Sqrt	ration 500	N	11	4,714a
M2	a ₁ / a ₁ /+a ₁₀ +2(a ₁ /+a ₁₀)	5/	13	Sela, principl
Sørensen-Dice	34,y 34,y+4,y+4,u			
Kulczynski1				
Kulczynski2	$\frac{1}{2}\left(\frac{\sigma_{0,f}}{\log p} + \frac{\sigma_{0,f}}{a_{1,f} + a_{1,p}}\right)$			
Russell and Rao	4	1.	ee.	$a_{ef} + a_{ep}$
Rogers & Tanimoto	0,1+0+p 0,1+0+p 0,1+0+p	.6	oodman	20,1-0,1-0,2 20,110,110,2
Simple Matching	d ₁ y+d ₁₀	18	amarin	8-1+6-4-6-1-6-4
Hamming	$a_{ef} + a_{e\mu}$	E	uclid	$\sqrt{a_{ef} + a_{ep}}$
Ochiui2	4,14m2 √10,1+0,210,4+0,1(0.00F)0	ieP)		
Ochiai3	62, intF(a,y+a,y)			
Platetsky-Shapiro	$a_{ef} + a_{ef}^3 + totF - a_{ep}a_e$			
Collective Strength	$1 - \frac{a_{xy} + a_{xy}}{(a_{xy} + a_{xy})(x + x^2) + (a_{xy} + a_{yy})}$	- 1000F *	-(4,1+4,4	1-0,1-0,p
Geometric Mean	Aughley-Hapfley	ne Pr		
Harmonic Mean	$\frac{(a_r f a_{ep} - a_n f a_{ep})((a_r f + a_{ep})}{(a_n f + a_{ep})(a_{ep} + a_{ep})}$	((e _{np} +e _{nf})	+(forF)(n	(P)

Name	Formula	Name	Formula
Arithmetic Mean	Saprage Saprage		
Cohen	(h ₁)+h ₂ y-(h ₂)+h ₃ y-(h ₁)+(h)F (h)F (h)F (h)F (h)F (h)F (h)F (h)F		
Scott	B(A, phoj - A, phoj) - (A, p - A, p)		
Ficiss	(3a1-a1-a1-a1-a1-a1-a1-a1-a1-a1-a1-a1-a1-a	Vos.	
Rogot1	1 (Say + and + Say + and +	=)	
Rogot2	$\frac{1}{4} \left(\frac{a_{ij}}{a_{ij} + a_{ip}} + \frac{a_{ij}}{totF} + \frac{a_{ip}}{totF} \right)$	+ = ===================================	
Binury	0 if $a_{nf} > 0$, otherwise 1	Gowert	4,1-16,144,244
Gower2	$\frac{a_{i,j} + a_{i,p}}{a_{i,j} + a_{i,p} + 0.5 + (a_{i,j} + a_{i,p})}$	Gower3	Application of the
Auderberg	Aug (Ray Hay)		
AddedValue	ma (a ₁ + a ₂ + aF)	Interest	(6, r+6, r) WF
Confidence	$\max\left(\frac{n_{i,j}}{n_{i,j}+n_{i,k}}, \frac{n_{i,j}}{n_{i,j}}\right)$		
Certainty	$\max \left(\frac{a_{i,j}}{a_{i,j}+a_{op}}-(a_{i,j}+a_{op})\right)$	$I = (\alpha_{ef} + \alpha_{eg})$)
Sneath & Sokal 1	Title 1 + ding !		-
Sneath & Sokal 2	Trailing		
Phi	A ₁ /+2(4 ₁ /+4 ₁) A ₁ /4 ₁ /-4 ₁ /4 ₁		
Kappa	V (100 F 100, j + 6, y 100, j + 6, y 100 F) - 1 4	1 ₄₂ 14 ₁₂ (347)	
Conviction	$\frac{\sqrt{(mF)(k_1) + k_{12} + k_{$	(to F)	
Mountford	26,7		
and the second	Est+40 (00F) (24)+40+401	54	- 11
Klosgen	$\sqrt{n_{ef}} * \max \left(\frac{n_{ef}}{n_{ef} + n_{eg}} - \text{tot} F \right)$ $n_{ef} = n_{ef} + n_{ef}$	- 10 - (Oct +	u _{e,f}))
YeleQ	Author (Author)	YuleY	41/49 41/41
YuleV	Application of the state of the		
Correlation :	$\sqrt{(3a_{ef}+a_{eg})(5dF+a_{eg})(5dF)}$		
Maduttan	1 - 94144	Braun	54.59
Baroni	$\frac{\sqrt{a_{1}/a_{12}}+a_{1f}}{\sqrt{a_{1}/a_{12}}+a_{1f}+a_{1g}}$	Coef	
Levandowsky	THE PARTY	Watson	$\frac{a_1/+a_{12}}{2a_1/+a_{12}+a_{12}}$ $1 - \frac{(a_{11}+a_{12})}{2a_1/+a_{12}+a_{12}}$
JacCube	- K ₁	NFD	$a_{ef} + a_{ap}$
SokalDist	V 4.1+4.0	Overlap	4,1
CorRatio	100 (100 (100 p))	Forbes	Ta _{cf}
Fager	$\frac{a_{ij}}{\sqrt{s_0 f}(a_{ij} + a_{ij})} = \frac{1}{2\sqrt{a_{ij} + a_{ij}}}$	100000	1 31/

3. 人工公式的比较

• 实验比较

Table X. Description of Siemens Test Suite and Space

Program	Versions	LOC	Test Cases	Description
teas	41	173	1608	altitude separation
schedule	9	410	2650	priority scheduler
schedule2	10	307	2710	priority scheduler
print_tokens	7	563	4130	lexical analyser
print_tokens2	10	508	4115	lexical analyser
tot_info	23	406	1052	information measure
replace	32	563	5542	pattern recognition
Space	32	9059	13585	array definition language

Metric	Teas	Sch	Sch2	Pt.	Pt2	Tot	Rep
OF.	9.90	3.88	23.21	3.40	0.78	3.11	4.68
0	9.90	7.65	23.21	3.40	0.78	3.11	4.68
Wong3"	10.11	3.88	17.35	3.40	0.82	3.11	3.95
Wong3	17.78	17.71	29.10	3.40	0.82	9.27	11.29
Wong4	10.03	4.74	20.77	3,55	0.78	3.18	4.68
Zoltar	9,90	3.88	20.77	3,40	0.78	3.13	3.92
M2	10.27	1.57	23.17	4.31	2.00	4.59	4.49
Kulczynski?	9.94	3.88	20.80	3.40	1.08	3.27	4.28
Overlap	14.47	11.36	18.51	7.15	10.65	6.63	9.11
Ochiai	10.66	1.63	23.56	6.22	3.70	5.52	4.90
Amean	10.82	5.14	23.89	7.31	5.09	9.37	5.24
Jaccard	10.77	1.68	26.04	8.37	5.55	6.53	6.25
Tarantula	10.80	1.77	26.04	8.93	5.70	7.09	6.45
Russell	14.47	11.36	18.51	7.15	10.65	6.60	9.10
Binary	14.47	15.15	18.51	7.15	10.65	6.60	9.10
Ample	12.83	12.62	27.50	8.32	5.47	15.09	6.92
Ample2	10.91	4.98	28.42	7.71	4.94	9.38	5.72
Pearson	10.92	4.95	25.13	7.84	4.92	9.31	5.05
McCon	9.94	10.94	20.80	3.40	1.08	3.27	4.28
CBI Log	11.47	7.20	26.04	8,88	5.70	10.26	6.25
JacCube	10.35	2.08	22.91	4.57	2.00	4.53	4.58
Rogot2	10.91	10.83	27.76	7.74	4.92	14.37	5.80

ABREU, R. et al. 2009. A practical evaluation of spectrum-based fault localization. J. Syst. Softw. 82, 11, 1780–1792.

3. 人工公式的比较

·基于ITE2的模型分析

Fig. 1. Program segment If-Then-Else-2 (ITE2).

Optimal against ITE2

$$O(a_{np},a_{nf},a_{ep},a_{ef}) = \left\{ \begin{array}{ll} -1 & \text{if } a_{nf} > 0 \\ a_{np} & \text{otherwise} \end{array} \right.$$

$$O^p(a_{np}, a_{nf}, a_{ep}, a_{ef}) = a_{ef} - \frac{a_{ep}}{P+1}$$

NAISH, Lee et al., A model for spectra-based software diagnosis. ACMTrans. Softw. Engin. Methodol. 20, 3, 11:1–11:32.

Table IV. Influence of Test Suite Size and Metric on Total Score (%) for IT E2a

Num. of tests	2	5	10	20	50	100	500	1000
0.00	60.00	72.59	81.10	87.98	94.13	96.81	99.31	99.65
Wong3	60.00	67.04	76.51	86.87	94.06	96.81	99.31	99.65
Wong3	56.67	63.15	75.59	86.79	94.06	96.81	99.31	99.65
Zoltar	60,00	71.48	79.97	87,53	94.06	96.80	99.31	99.65
M2	60,00	72.59	80,98	87.34	92.41	94.33	95.87	96.05
Kulczynski2	60.00	71.48	79.72	86.30	91.78	93.96	95.78	95.99
Russell etc	53.33	61.11	69.57	78.79	88,89	93.80	98.64	99.31
Overlap	48.89	54.88	66.57	77.91	88.79	93.79	98.64	99.31
Ochini	60.00	71.48	79.12	84.90	89.51	91.28	92.75	92.93
Rogot2	56.67	67.78	77.10	83.50	88.42	90.28	91.81	92.00
HMean	48.33	67.13	77.06	83.50	88.42	90.28	91.81	92.00
GMean	48.33	67.13	76.92	83.33	88.23	90.07	91.59	91.78
AMean	48.33	67.13	76.75	83.18	88.01	89.86	91.39	91.58
Ample2	56.67	67.78	76.45	82.79	87.84	89.73	91.28	91.48
Jaccard etc	60.00	71.48	78.22	83.12	87.02	88.55	89.85	90.02
Ochini2	48.33	67.13	75.13	80.93	85.24	86.89	88.30	88.47
Cohen	48.33	67.13	75.16	80.63	84.75	86.35	87.70	87.87
Tarantula etc	55.56	62.10	69,68	75.68	80.40	82.21	83.73	83.92
Fleiss	56.67	65.93	72.54	76.70	80.10	81.48	82.70	82.86
Scott etc	56.67	66.67	72.43	76.46	79.66	80,95	82.12	82.27
CBI Log	33.33	50,86	63.69	73.13	78,70	80.30	82.35	82.89
CBI Sqrt	28.89	46.73	60.71	70.99	77.16	78.69	79.63	79.73
Rogers etc	56.67	63.15	67.60	71.02	73.93	75.15	76.26	76.41
Ample	36.67	34.54	38.28	41.40	43.92	44.87	45.64	45.74

· Genetic Programming for SBFL

Genetic Programming for SBFL

- Genetic Programming for SBFL
 - Tree-based Representation
 - For terminal symbols, we use $< e_f^i, e_p^i, n_f^i, n_p^i>$, as well as constants.

- Genetic Programming for SBFL
 - · GP operators

Operator Node	Definition
gp_add(a, b)	a + b
gp_sub(a, b)	a - b
gp_mul(a, b)	ab
gp_div(a, b)	1 if $b = 0, \frac{a}{b}$ otherwise
gp_sqrt(a)	$\sqrt{ a }$

- Genetic Programming for SBFL
 - · Fitness function
 - To avoid over-fitting, we consider the average E over n bugs $B=\{b_1,b_2,...,b_n\}$ from n programs $P=\{p_1,p_2,...,p_n\}$

$$E(\tau, p, b) = \frac{\text{Ranking of } b \text{ according to } \tau}{\text{Number of statements in } p} * 100$$

fitness
$$(\tau, B, P) = \frac{1}{n} \sum_{i=1}^{n} E(\tau, p_i, b_i)$$
 (to be minimised)

- Genetic Programming for SBFL
 - Configuration
 - Population size: 40;
 - Initialization of maximum tree depth: 4;
 - · Stopping criterion: a fixed run of 100 generations;
 - A rank selection operator;
 - A single point crossover operator with the rate of 1.0;
 - A subtree replacement mutation operator with the rate of 0.08.

- · Genetic Programming for SBFL
 - · Data for evolution

Subject Number of Tests Lines of Code Executable Lines of Code Number of Faults											
flex	567 12,407-14,244	3,393-3,965	47								
grep	199 12,653-13,363	3,078-3,314	11								
gzip	214 6,576-7,996	1,705-1,993	18								
sed	360 8,082-11,990	1,923-2,172	16								

- Genetic Programming for SBFL
 - Protocol
 - The Genetic Programming algorithm was repeated 30 times to cater for its stochastic nature
 - Each individual run of the GP uses a random sample of 20 faults out of 92 to evolve a risk evaluation formula
 - The remaining 72 faults are reserved for evaluation purposes.

- · Genetic Programming for SBFL
 - Result

ID	Refined Formula	ID	Refined Formula
GP01	$e_f(n_p + e_f(1 + \sqrt{e_f}))$	GP16	$\sqrt{e_2^{\frac{3}{2}} + n_0}$
GP02	$2(e_f + \sqrt{n_p}) + \sqrt{e_p}$	GP17	$\frac{\sqrt{e_f^2 + n_p}}{e_f - n_p} + \frac{n_p}{\sqrt{e_f}} - e_f - e_f^2$
GP03	$\sqrt{ e_f^2 - \sqrt{e_p} }$	GP18	$c_f^3 + 2n_p$
GP04	$\sqrt{\left \frac{n_p}{e_p-n_p}-e_f\right }$	GP19	$e_f \sqrt{ e_p - e_f + n_f - n_p }$
GP05	(e++n-)-/F	GP20	
GP06	$\frac{e_f + e_p)(n_p n_f + \sqrt{e_p})(e_p + n_p)\sqrt{ e_p - n_p }}{e_f n_p}$	GP21	$\sqrt{e_f + \sqrt{e_f + n_p}}$
GP07	$2e_f(1 + e_f + \frac{1}{2n_p}) + (1 + \sqrt{2})\sqrt{n_p}$	GP22	$e_f^2 + e_f + \sqrt{n_p}$
P08		GP23	$\sqrt{e_f}(e_f^2 + \frac{n_p}{e_f} + \sqrt{n_p} + n_f + n_f$
P09	$\frac{e_f \sqrt{n_p}}{n_p + n_p} + n_p + e_f + e_f^3$	GP24	$e_f + \sqrt{n_p}$
P10	$\sqrt{ e_f - \frac{1}{n_p} }$	GP25	$e_f^2 + \sqrt{n_p} + \frac{\sqrt{e_f}}{\sqrt{ e_p - n_p }} + \frac{n_p}{(e_f - n_p)}$
P11	$e_f^2(e_f^2 + \sqrt{n_p})$	GP26	$2e_f^2 + \sqrt{n_p}$
3P12	$\sqrt{e_p + e_f + n_p - \sqrt{e_p}}$	GP27	$n_{\theta}\sqrt{(n_{\theta}n_{j}-\epsilon_{f})}$ $\epsilon_{f}+n_{\theta}n_{f}$
	$e_f(1 + \frac{1}{2e_r + e_f})$	GP28	$e_f(e_f + \sqrt{n_p} + 1)$
33-0-1		GP29	$e_f(2e_f^2 + e_f + n_p) + \frac{(e_f - n_p)\sqrt{n_p}e_p}{e_p - n_p}$
SP15	$e_f + \sqrt{n_f + \sqrt{n_p}}$	GP30	$\sqrt{ e_f - \frac{n_f - n_g}{e_f + n_f} }$

华山论剑。。

5.1 实验方法比较

• Mean Expense

Wong3	Wong2	Wong1	Tarant.	Jacc'd	AMPLE	Ochiai	Op2	Op1	GP	ID
6.63	17.10	22.24	15.06	6.10	10.96	32.66	5.30	9.20	5.73	GP01
8.92	19.49	23.45	14.92	6.63	11.91	32.60	5.72	9.67	12.04	GP02
8,85	18.55	23.55	15.68	6.99	12.18	29,99	6.11	11.35	14.46	GP03
6.33	14.64	22.62	13.88	5.03	8.83	30.98	4.46	9.70	7.80	GP04
8.53	18.54	23.15	14.46	6.42	10.63	29.95	5.80	11.04	9.35	GP05
7.01	16.70	23.12	15.35	6.79	12.51	28.02	5.87	11.11	12.15	GP06
8.68	19.74	23.88	14.81	6.85	12.19	29.53	5.94	11.18	8.93	GP07
9.05	19.94	23.54	16.21	7.04	11.67	30.91	6.34	10.23	6.32	GP08
8.20	18.31	22.58	14.06	6.17	11.40	31.56	5.33	10.58	9.66	GPU9
8.56	19.74	22.99	15.79	7.16	12.51	29.83	6.31	11.55	6.31	GP10
6.96	18.16	22.05	16.77	6.69	12.12	33.52	5.83	11.07	5.83	GP11
9.09	19.42	22.91	16.65	7.02	11.65	32.15	6.23	8.84	12.09	GP12
6.69	17.00	22.03	15.92	5.90	10.27	31.67	5.11	9.05	5.11	GP13
8.63	18.10	23.15	15.88	6.55	11.10	31.69	5.91	8.52	9.91	GP14
8.4	17.17	23.85	15.16	6.19	10.23	33.02	5.59	9.54	5.62	GP15
8.42	18.36	23.06	14.60	6.41	10.74	30.52	5.71	8.32	6.79	GP16
8.59	17.94	22.44	16.85	6.98	12.06	33.62	6.22	11.46	7.67	GP17
8.14	17.46	22.17	15.45	6.33	11.46	34.17	5.54	10.78	9.42	GP18
7.79	15.26	22.84	15.03	5.78	10.18	31.28	5.11	9.01	6.42	GP19
8.42	19.30	23.41	15.23	6.38	10.88	29.34	5.69	10.93	5.69	GP20
9.43	19.85	23.01	15.70	6.89	10.86	29.82	6.24	10.13	10.17	GP21
8.63	18.60	23.25	13.67	6,60	10.46	28.06	5.91	8.50	7.58	GP22
7.25	16.90	21.77	14.69	6.16	10.57	30,86	5.52	10.76	6.14	GP23
8.35	20.16	23.41	15.76	7.10	12.53	28.74	6.21	10.15	9.18	GP24
9.48	20.19	22.63	17.59	7.18	12.36	32.56	6.29	10.19	9.34	GP25
7.69	16.18	23.77	18.28	7.25	12.27	32.83	6.38	11.62	6.38	GP26
7.81	19.23	22.99	16.42	6.85	12.01	33.28	177	8,53	9,75	GP27
6.85	17.17	22.86	13.52	6.15		4.00		9.18	5.56	GP28
8.88	20.18	22.94	17.00	7.14	12.83			10.12	7.16	GP29
8.34	17.09	22.79	14.49	5.78	10.17	30.02	5.14	9.10	10.68	GP30

5.1 实验方法比较

• Vargha & Delaney's A-test

ID		Op1	1 23	Op2:	A	MPLE	J	occard	V	Vong3
	A	Count	A	Count	A	Count	A	Count	A	Count
GP01	0.51	3/63/6	0.50	2/64/6	0.53	25/46/1	0.51	22/47/3	0.50	7/60/5
GP02	0.38	9/16/47	0.35	8/16/48	0.39	22/8/42	0.36	19/10/43	0.39	13/15/44
GP03	0.45	4/52/16	0.42	0/56/16	0.45	21/33/18	0.42	20/33/19	0.44	5/54/13
GP04	0.37	11/9/52	0.34	7/9/56	0.37	16/9/47	0.34	10/9/53	0.37	9/9/54
GP05	0.49	6/53/13	0.47	4/53/15	0.49	19/42/11	0.47	15/41/16	0.50	10/51/11
GP06	0.49	4/48/20	0.47	3/48/21	0.50	6/56/10	0.47	5/48/19	0.48	6/46/20
GP07	0.46	6/38/28	0.44	2/42/28	0.47	19/30/23	0.44	14/31/27	0.46	7/38/27
GP08	0.51	3/59/10	0.50	3/59/10	0.54	25/47/0	0.51	26/46/0	0.52	9/54/9
GPON	0.50	6/51/15	0.48	2/55/15	0.50	17/43/12	0.48	17/42/13	0.50	4/53/15
GP10	0.52	4/67/1	0.50	0/71/1	0.53	23/45/4	0.50	24/44/4	0.51	8/63/1
GP11	0.52	4/68/0	0.50	0/72/0	0.53	24/45/3	0.50	23/46/3	0.52	5/67/0
GP12	0.48	2/53/17	0.47	2/53/17	0.50	19/46/7	0.48	19/45/8	0.49	2/55/15
GP13	0.51	3/69/0	0.50	0/72/0	0.52	23/47/2	0.50	22/48/2	0.50	6/66/0
GP14	0.50	2/59/11	0.49	2/59/11	0.52	20/49/3	0.49	18/49/5	0.50	5/56/11
GP15	0.51	3/63/6	0.50	3/63/6	0.51	21/48/3	0.50	21/48/3	0.52	10/56/6
GP16	0.50	2/58/12	0.49	2/58/12	0.53	22/47/3	0.50	17/50/5	0.52	10/53/9
GP17	0.48	5/50/17	0.45	1/53/18	0.49	22/33/17	0.46	18/35/19	0.48	8/49/15
GP18	0.50	4/61/7	0.48	0/65/7	0.50	21/42/9	0.48	20/43/9	0.50	2/64/6
GP19	0.50	4/49/19	0.49	3/49/20	0.52	20/46/6	0.50	16/46/10	0.51	8/49/15
GP20	0.52	4/68/0	0.50	0/72/0	0.52	23/46/3	0.50	23/46/3	0.53	9/63/0
GP21	0.50	3/61/8	0.49	3/61/8	0.51	22/46/4	0.49	20/46/6	0.51	9/55/8
GP22	0.50	2/67/3	0.49	0/69/3	0.52	22/47/3	0.50	20/49/3	0.52	5/65/2
GP23	0.52	4/63/5	0.50	0/67/5	0.52	23/45/4	0.50	19/47/6	0.52	5/64/3
GP24	0.51	3/56/13	0.50	3/56/13	0.52	20/50/2	0.50	19/49/4	0.51	6/54/12
GP25	0.48	11/46/15	0.47	8/47/17	0.50	17/37/18	0.48	18/36/18	0.50	12/43/17
GP26	0.52	4/68/0	0.50	0/72/0	0.52	23/46/3	0.50	22/47/3	0.51	5/67/0
GP27	0.51	2/58/12:	0.50	2/58/12	0.52	21/51/0	0.50	11/51/10	0.51	6/54/12
GP28	0.52	3/60/9	0.51	3/60/9	0.53	22/50/0	0.51	21/49/2	0.52	8/57/7
GP29	0.51	6/45/21	0.49	5/45/22	0.52	19/41/12	0.50	18/39/15	0.52	11/42/19
GP30	0.50	3/60/9	0.49	1/62/9	0.50	18/46/8	0.49	17/46/9	0.51	4/59/9

5.1 实验方法比较

- Definitions: 环境无关的任意两个公式之间的关系
 - Formula R_1 is better than formula R_2 $(R_1 \rightarrow R_2)$
 - R₁→R₂ if for any program, faulty statement, test suite and consistent tie-breaking scheme, E₁ ≤ E₂
 - Formula R_1 is equivalent to formula R_2 ($R_1 \leftrightarrow R_2$)
 - R₁ ← R₂ if for any program, faulty statement, test suite and consistent tie-breaking scheme, E₁ = E₂

•集合的划分

- Given a test suite and a formula R, a program PG={s₁, s₂, ..., s_n} can be divided into three subsets
 - S^R_B: higher risk values than the fault statement s_f, ranked before s_f
 - S_F^R: same risk values as the fault statement s_f, equally ranked with s_f
 - S_A^R: lower risk values than the fault statement s_f, ranked after s_f

$$S_B^R = \{s_i \in S | R(s_i) > R(s_f), 1 \le i \le n\}$$

 $S_F^R = \{s_i \in S | R(s_i) = R(s_f), 1 \le i \le n\}$
 $S_A^R = \{s_i \in S | R(s_i) < R(s_f), 1 \le i \le n\}$
 S_A
只与R的定义有关

包含关系 --- 真正决定定位效果的关键因素

- 为了公平比较公式,提出Consistent tie-breaking scheme
 - Given any two sets of statements S₁, S₂
 - A scheme is consistent if it gives same relative order for statements in S₁∩S₂

• Theorem 1: 给定两个公式,如果其对应的程序语句子集存在关系 $S_B^{R_1}=S_B^{R_2},\ S_F^{R_1}=S_F^{R_2},\ S_A^{R_1}=S_A^{R_2},\ \square R_I$ 世 R_2 ,也即, R_2 一 R_1 且 R_1 一 R_2

- Theorem 2: 给定两个公式,如果其对应的程序语句子集存在关系 $S_B^{R_1} \subseteq S_B^{R_2}$, $S_A^{R_2} \subseteq S_A^{R_1}$,则 $R_1 \to R_2$
- Theorem 3: 给定两个公式,如果其对应的程序语句子集存在关系 $S_B^{R_1} \subsetneq S_B^{R_2}$, $S_A^{R_2} \subsetneq S_A^{R_1}$,则 $R_1 \to R_2$,且 $R_2 \to R_1$,即 R_1 严格优于 R_2

5.2 局部最优理论框架

• Theorem 4: 给定两个公式,如果其对应的程序语句子集存在反例使得相对应的子集间无确定包含关系,则 R_1 —\> R_2 , 且 R_2 —\> R_1

Table III. A_i for PG_2 with TS_3

Statement	$A_i = \langle \alpha_{ef}^i, \alpha_{ep}^i, \alpha_{ef}^i, \alpha_{ep}^i \rangle$		
-11	<40, 160, 0, 0>		
P2	<0,70,40,90>		
43	<40.90, 0, 70>		
- 4	<0,30,40,130>		
45			
rig.			
- 12	<0,30,40,130>		
44	s <40, 30, 0, 130 >−		
. 49	<40, 30, 0, 130>		
*10	<40, 60, 0, 100>		

• GP2, GP3, GP13, GP19在与35个人工公式对比中被证明是maximal

证实或推翻过去20年的研究成果

Proposition 1: $GP13 \leftrightarrow Op1$ and $GP13 \leftrightarrow Op2$.

$$X^{Op} = \{s_i | e_f^i = F \text{ and } e_p^f > e_p^i, 1 \le i \le n\}$$

 $Y^{Op} = \{s_i | e_f^i = F \text{ and } e_p^f = e_p^i, 1 \le i \le n\}$
 $Z^{Op} = S \setminus X^{Op} \setminus Y^{Op}$

$$\begin{split} S_B^{GP13} = & \{s_i | e_f^i (1 + \frac{1}{2e_p^i + e_f^i}) \!>\! F (1 + \frac{1}{2e_p^f + F}), 1 \!\leq\! i \!\leq\! n \} \\ S_F^{GP13} = & \{s_i | e_f^i (1 + \frac{1}{2e_p^i + e_f^i}) \!=\! F (1 + \frac{1}{2e_p^f + F}), 1 \!\leq\! i \!\leq\! n \} \end{split}$$

Proof. Refer to Lemma 3 and Lemma 4 we have $S_B^{N1} = S_B^{N2} = S_B^{GP13}$, $S_F^{N1} = S_F^{N2} = S_F^{GP13}$ and $S_A^{N1} = S_A^{N2} = S_A^{GP13}$, respectively. After Theorem 1 GP13 \leftrightarrow Naish1 and GP13 \leftrightarrow Naish2.

Proposition 1: $GP13 \leftrightarrow Op1$ and $GP13 \leftrightarrow Op2$.

- 1. To prove that $S_B^{GP13} = X^{Op}$.
 - (1) To prove $X^{Op} \subseteq S_B^{GP13}$. For any $s_i \in X^{Op}$, we have $F(1+\frac{1}{2e_p^i+F}) > F(1+\frac{1}{2e_p^f+F})$ because $e_p^f > e_p^i$ and F > 0. Since $e_f^i = F$, we have $e_f^i(1+\frac{1}{2e_p^i+e_f^i}) > F(1+\frac{1}{2e_p^f+F})$, which implies $s_i \in S_B^{GP13}$. Thus, we have proved $X^{Op} \subseteq S_B^{GP13}$.
 - (2) To prove S_B^{GP13}⊆X^{Op}. For any s_i∈S_B^{GP13}, we have eⁱ_f(1+1/(2eⁱ_F+eⁱ_f)>F(1+1/(2eⁱ_F+F</sub>). Let us consider the following two exhaustive cases.

5.3 有限集合下的具份细论标加 2. To prove that $S_F^{GP13} = Y^{Op}$.

(1) To prove $Y^{Op} \subseteq S_F^{GP13}$. For any $s_i \in Y^{Op}$, we have $e_f^i (1 + \frac{1}{2e_p^i + e_f^i}) = F(1 + \frac{1}{2e_p^f + F})$ because $e_f^i = F$ and $e_p^f = e_p^i$. After the definition of S_F^{GP13} , $s_i \in S_F^{GP13}$. Thus, we have proved $Y^{Op} \subseteq S_F^{GP13}$.

Propo

- (2) To prove S_F^{GP13}⊆Y^{Op}. For any s_i∈S_F^{GP13}, we have eⁱ_f(1+1/2eⁱ_p+eⁱ_f)=F(1+1/2eⁱ_p+F</sub>). Let us consider the following two exhaustive cases.
 - Case (i) eⁱ_f<F. First, consider the sub-case that eⁱ_f=0. Then we have eⁱ_f(1+ 1/(2eⁱ_p+eⁱ_f)=0. It follows from the definition of S^{GP13}_F that 0=F(1+ 1/(2eⁱ_p+F</sub>), which is however contradictory to F>0 and e^f_p≥0. Thus, it is impossible to have eⁱ_f=0. Now, consider the sub-case that 0<eⁱ_f<F. Similar to the above proof of S^{GP13}_B⊆X^{Op}, we can prove that (1/(1+2eⁱ_p)/(1+2eⁱ_p)
 (1/(1+2eⁱ_p)/(1+2eⁱ_p))<(F-eⁱ_f), which is however contradictory to eⁱ_f(1+ 1/(2eⁱ_p+eⁱ_f))=F(1+ 1/(2eⁱ_p+F)</sub>.

Therefore, it is impossible to have $0 < e_f^i < F$. Therefore, we have proved that if $s_i \in S_F^{GP13}$, then we cannot have $e_f^i < F$.

Case (ii) eⁱ_f=F. Assume further eⁱ_p≠e^f_p. Obviously, we have F(1+1/2e¹_{p+F})≠F(1+1/2e¹_{p+F}), which can be re-written as eⁱ_f(1+1/2e¹_{p+e¹f})≠F(1+1/2e¹_{p+F}). However, this is contradictory to eⁱ_f(1+1/2e¹_{p+e¹f}) =F(1+1/2e¹_{p+F}). Thus, the only possible case is e^f_p=eⁱ_p.

We have proved that if $s_i \in S_F^{GP13}$, then $e_f^i = F$ and $e_p^f = e_p^i$, which imply $s_i \in Y^{Op}$. Therefore, $S_F^{GP13} \subseteq Y^{Op}$.

Proposition 1: $GP13 \leftrightarrow Op1$ and $GP13 \leftrightarrow Op2$.

Proof. Refer to Lemma 3 and Lemma 4 we have $S_B^{N1} = S_B^{N2} = S_B^{GP13}$, $S_F^{N1} = S_F^{N2} = S_F^{GP13}$ and $S_A^{N1} = S_A^{N2} = S_A^{GP13}$, respectively. After Theorem 1 GP13 \leftrightarrow Naish1 and GP13 \leftrightarrow Naish2.

ER6 M2 Kulczynski2 Wong3

AMPLE Ochiai

ER2

ER3 ER4

Proposition 2. GP02, GP03, GP19, ER1 and ER5 are distinct maximal formulas (or groups of equivalent formulas.

- With 7512 ER1' → GP02 does not hold; with 7521 GP02 → ER1' does not hold.
- With 7512 ER5 → GP02 does not hold; with 7521 GP02 → ER5 does not hold
- With 7511 ER1' → GP03 does not hold; with 7512 GP03 → ER1' does not hold.
- With 7511 ER5 → GP03 does not hold; with 7512 GP03 → ER5 does not hold.
- With 7511 ER1' → GP19 does not hold; with 7512 GP19 → ER1' does not hold.
- With 7511 ER5 → GP19 does not hold; with 7512 GP19 → ER5 does not hold.
- With 7511 GP02 → GP03 does not hold; with 7512 GP03 → GP02 does not hold.
- With 7511 GP02 → GP19 does not hold; with 7512 GP19 → GP02 does not hold.
- With 7521 GP03 → GP19 does not hold; with 7522 GP19 → GP03 does not hold.

Table 2, i for PG_1 and PG_2 with different test suites

Statement	$\phi = (x_{j}^{*}, x_{p}^{*}, y_{j}^{*}, y_{p}^{*})$				
	37814	T.81a	7.824	TS2r	
100	<0.6,0.00	<3,8,0,0;	<2.15,6,10	<10.15, 0, 0	
74	<0,1,1,5>	<0.6,1,2>	<0.1,2,14>	<0.1,10.140	
+4	<1.5, 0, 1>	<1, 2, 0, 0>	<2.14.8(D)	<(0.14,0,1)	
74	<1,4,0,2>	<1,1,0,7>	<1,7,1,80	49.0,1,15-	
- 19	<0.1, 1.10	600. L.L.T.>	43.7.1.80	<0.14.9(1)	
76	<1,5,0,1>	化抗乳机物	<2.14.6.15	< (0.14, 0.15	
60	$\ll 1,4,0,2>$	<1,1,9,7>	<1, A, 1, 7>	(3,4,3,9)	
74	<00.1, 1, 50-	<0,1,1,7>	<1.6,1.9>	<3.8,5,70	
49	<1.5,0,1>	<1,2,0,6>	<2,14,0,13	<(0.16,0.1)	
. 194	$<\!1,4,0,2\!>$	<1,1,0,7>	<1,2,1,4>	<11,12,8,2>	
Ass	<0.1,1,5>	<0.1,1.7>	<1,5,1,100	-59, 2, 1, 130	

• GP2, GP3, GP13 GP19在与35个人工公式对比中被证明是maximal

- 定义: Limited maximality --- A risk evaluation formula R₁ from a subset of formulas, S ⊂ F, is said to be a maximal formula of S if for any element R₂ ∈ S, R₂ → R₁ implies R₂ ↔ R₁.
- $\mathbb{R} \mathfrak{X}$: Maximality --- A risk evaluation formula R_1 from a subset of formulas, \mathfrak{S} is said to be a *maximal* formula in \mathfrak{F} if for any distinct formula $R_2 \in \mathcal{F}$ such that $R_2 \to R_1$ implies $R_2 \leftrightarrow R_1$

有限集→无限集

How to generalized the analysis?

• 频谱坐标系:

$$\overline{R}(e_{if},e_{ip})=R(e_{if};e_{ip};n_{if};n_{ip}).$$

$$\overline{\mathcal{F}} = \left\{ \overline{R} \ \middle| \ \overline{R}: \ I_f \times I_p \to Real \right\}$$

R将平面上每个 $<e_{ib}$ e $_{ip}>$ 点映射到三 维空间Risk Value轴的相应高度

给定P&TS(动态执行信息),每个点上将会附结>=0个程序语句,这些语句所 获得的risk值就是其所附结点的risk值;不同执行信息决定了每个点上所附 结语句的密度,不同的密度会导致当前P&TS情况下sf的ranking不同

R: 5BFL formulæ assign be mapped to the spectral btain a 3D space, in which res. The points whose er

nates depicted above.

porder: the faulty statement is guaranteed to be mapped on the border.

频谱坐标系中的Faulty Border: we call the sequential points <(F, O), (F, 1), ..., (F, e_p), ..., (F, P)> 为Faulty Border, 记为E

• Faulty Border作用: single fault s_f 一定附结于Faulty Border的某个点上,因为 e_f =F

- •解决办法:构建辅助概念
 - U_R denotes the set of points outside E that have risk higher than or equal to those of some points on E, for formula R.

P_R denotes the set of relations of risk values between any two distinct points
 (F, e_{pi}) and (F, e_{pi}) {<i, j, op>}

Monotonicity with ep

- Theorem 1: Any formula $R \in \mathcal{F}$, R is maximal, iff $oldsymbol{U_R} = \emptyset$
 - U_R = Ø是 maximality 的充要条件!
 - •性质: If $U_{R1}=U_{R2}=\emptyset$, and $P_{R1}=P_{R2}$, then, R_2 \longrightarrow R_1
 - 性质: If $U_{R1}=U_{R2}=\emptyset$, and $P_{R1}\neq P_{R2}$, then, $R_2 \leftarrow \$
- Theorem 2: There is no formula that is greatest against the set of all formulas F

• 全局视图:

- GP13是 无限集合下的maximal
- GP2、GP3、GP19不是无限集合下的maximal,但可以通过修改U_R中点的risk值,变为maximal

5.4 实证分析

• GP13是 "practical greatest" formula

Table VI. The p-values from Shapiro-WWI Normality Test on Observed Expense Values.

Stubject.	EE,	OFFE	GPS^{N}	GF19 [®]	ER_{s}
flex:	-10-4	< 1e-4	< 3e-4	<.1e4	5,0400
gings	-10-4	< 1m-4	< lo-4	<.1e4	- le4
prip	- le-t	< 1e4	< 1e4	< 10-4	× 1e-4
and.	< 1e-4	< 1e4	< let	< 164	< 1e-4
space	< 1e-4	< 10-4	< 10-4	< 10-4	< 10-4

- $\begin{array}{l} \bullet \ \ {\rm flas} : ER_1 \succeq (GP_{10}^M \succeq GP_{10}^M \succeq GP_{1}^M) \succeq ER_6, \\ \bullet \ \ {\rm grap} : ER_1 \succeq (GP_{10}^M \succeq GP_{10}^M) \succeq ER_6, \\ \bullet \ \ {\rm grap} : ER_1 \succeq (GP_{10}^M \succeq GP_{10}^M) \succeq ER_6, \\ \bullet \ \ {\rm grap} : ER_1 \succeq (GP_{10}^M \succeq GP_{10}^M) \succeq (ER_6 \succeq GP_{10}^M) \\ \bullet \ \ {\rm subset} : ER_1 \succeq (GP_{10}^M \succeq GP_{10}^M \succeq GP_{10}^M) \succeq ER_6. \\ \bullet \ \ \ {\rm subset} : (ER_1 \succeq GP_{10}^M) \succeq (GP_{10}^M \succeq GP_{20}^M) \succeq ER_6. \end{array}$

Table VE. Interpretation of the Hypotheses in the Context of SBFL.

Hypotheses:	76)	H ₁
Acorptome Condition:	p-radue ≥ 0.05.	p-rulue < 0.05
2 nailed:	EA > DB: A and BDO have similar performance	ELA) ≥ ELE: A nod B DO NO T have similar performance
1-tailed (lower):	EAU SEE A DOES NOT tend to be worse than B	El.Ar = El.Br. A DOES tood to be worse than B
1-tailed (upper):	E.A) ≥ E.B): A DOES NOT tend to be better than B	E(A) < E(E) A DOES tend to be better than E

生埃落定。

理论分析框架被扩展至无限集合,GP-evolved 公式被证明为general maximal,并为practical greatest

•相关论文

- J.Tu , X.Xie (*), T.Y.Chen , B.Xu , On the analysis of spectrum based fault localization using hitting sets, Journal of Systems and Software, 2019, Vol.147, pp. 106-123.
- S. Yoo (*), X. Xie (*), F-C. Kuo, T. Y. Chen, M. Harman, Human Competitiveness of Genetic Programming in Spectrum-Based Fault Localisation: Theoretical and Empirical Analysis, ACM Transactions on Software Engineering and Methodology, 2017, 26(1), pp. 4:1-4:30.
- X.Xie, Z.Liu, S. Song, Z. Chen, J. Xuan and B.W. Xu, Revisit of Automatic Debugging via Human Focus-tracking, International Conference on Software Engineering (ICSE) 2016.
- T. Y. Chen, X. Xie (*), F-C. Kuo, B.W.Xu, A Revisit of a Theoretical Analysis on Spectrum-Based Fault Localization, Annual International Computers, Software & Applications Conference (COMPSAC), 2015
- X. Xie (*), T. Y. Chen, F.-C. Kuo, B. W. Xu, A Theoretical Analysis of The Risk Evaluation Formulas for Spectrum-Based Fault Localization, ACM Transaction on Software Engineering and Methodology, 2013, Vol. 22, No. 4, pp. 31:1-31:40.
- X. Xie (*), F.-C. Kuo, T.Y. Chen, S. Yoo and M. Harman, Provably Optimal and Human-Competitive Results in SBSE for Spectrum Based Fault Localisation, Symposium on Search Based Software Engineering (SSBSE), 2013, pp. 224-238.

"Human Competitiveness of Genetic Programming in Spectrum Based Fault Localisation: Theoretical and Empirical Analysis."

14th Annual ACM SIGEVO "HUMIES" Awards (银奖) 2017, Berlin, Germany

http://www.human-competitive.org/

Management of A. Paper V.V. Strates, of the Strate St. No.

14 Strategy of A. Paper V.V. Strates, of the Strate St. No.

15 Strategy of the St

"There is an unhealthy tendency toward empirical studies in software testing and debugging research......It is refreshing to see that the authors of this paperexample of the successful application of mathematical theory"

ACM Computing Reviews, 29(12): "令人耳目一新的成果,阻止了该领域先前错误的研究方向,是软件工程理论研究的成功案例"

自动缺陷定位的奠基人

ACM/IEEE Fellow ACM TOSEM 编委 ACM SIGSOFT 执行主席 北美计算研究协会CRA-W主席 2004年美国杰出科学家总统奖

Mary Jean Harrold數授 Georgia Tech

George K. Baah: "非常高兴你们团队对Harrold教授的猜想给出了证明,阻止了未来所有新公式的提出"

"I am happy that your team has been able to make this contribution. Mary lean, Andy Podgurski and I suspected something like this based on published empirical results and I am happy your team has been able to prove it. I hape it puts a stop to all the fault localization formulas that are being created or imported from the statistics literature."

确确

