

*Check out the interactive Riemann Sums demo
available on Wolfram Demonstrations:
<https://demonstrations.wolfram.com/RiemannSums/>*

→ quiz 1 on Thursday
Section 5.5: → Turning Point Poll by
12:45
Integration by substitution

Math 1552 lecture slides adapted from the course materials
By Klara Grodzinsky (GA Tech, School of Mathematics, Summer 2021)

Today's Learning Goals

- Evaluate integrals using the substitution (usub) method
- Understand how to choose u
- Understand which functions can be evaluated with the substitution method
- The substitution method is a *change of variable* in the integral that simplifies the integrand into $f(u) du$ for a function f we recognize

Functions we already know how to integrate directly:

Recall the antiderivatives of the following functions we reviewed last week:

$$x^n, \sin(ax), \cos(ax)$$

$$\csc(ax) \cot(ax)$$

$$\sec(ax) \tan(ax)$$

$$\sec^2(ax), \csc^2(ax)$$

$$e^{ax}, b^{ax}$$

(know these, or understand how to get the antiderivative formulas)

$$\frac{1}{1+(ax)^2}, \frac{1}{\sqrt{1-(ax)^2}}$$

Method of u-substitution

This method is the reverse of the chain rule for derivatives:

Let F be an antiderivative of f . Let $u = g(x)$.

$$\int f(g(x)) \cdot g'(x) dx = \int f(u) du = F(u) + C$$

In other words :

$$\int f(stuff) \cdot (stuff)' dx = F(stuff) + C$$

u-substitution with Definite Integrals

To evaluate $\int_a^b f(g(x))g'(x)dx$,

set $u = g(x)$ and *change the limits of integration* to match the new variable:

$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$$

Example 1.1: Evaluate.

$$I = \int \frac{\cos(\sqrt{t})}{\sqrt{t} \sin(\sqrt{t})} dt$$

→ What do we choose as u ? Why?

→ first take $u = \sqrt{t}$, $du = \frac{1}{2\sqrt{t}} dt$

$$I = \int \frac{\cos(u)}{\sin(u)} du$$

→ another v-sub

$$v = \sin(u), dv = \cos(u) du$$

→ In total: $I = 2 \ln |\sin(\sqrt{t})| + C$

$$I = 2 \int \frac{dv}{\sqrt{v}}$$

$$= 2 \ln |v| + C$$

$$= 2 \ln |\sin(u)|$$

$$+ C$$

Example 1.2: Evaluate.

$$I = \int \frac{dx}{x(\ln x)^3}$$

→ what to choose as u ?

$$u = \ln x, du = \frac{dx}{x}$$

$$\rightarrow I = \int \frac{du}{u^3}$$

$$= -\frac{1}{2u^2} + C$$

$$= -\frac{1}{2(\ln x)^2} + C$$

Example 1.3: Evaluate $I = \int w\sqrt{1+w} dw$

→ What to choose as u ?

$$u = 1+w, du = dw, w = u - 1$$

$$\begin{aligned} I &= \int (u-1)u^{1/2} du \\ &= \int (u^{3/2} - u^{1/2}) du \\ &= \frac{2}{5}u^{5/2} - \frac{2}{3}u^{3/2} + C \end{aligned}$$

$$\begin{aligned} I &= \frac{2}{5}(1+w)^{5/2} \\ &- \frac{2}{3}(1+w)^{3/2} + C \end{aligned}$$

$$I = \int w \sqrt{1+w} dw$$

What if we choose $u=w$, $du=dw$,
 $1+w=u+1$

$$I = \int u \sqrt{u+1} du$$

Example 2: Evaluate the integral.

$$\int (\sin 6x) e^{\cos 6x} dx = I$$

(A) $\frac{1}{6} e^{\cos 6x} + C$

(B) $-\frac{1}{6} e^{\cos 6x} + C$

(C) $\frac{1}{6} (\cos 6x) e^{\cos 6x} + C$

(D) $\frac{1}{2} (e^{\cos 6x})^2 + C$

→ two clear choices:

* ① $u = \cos(6x)$

② $u = \sin(6x)$

→ $u = \cos(6x), du = -6 \cdot \sin(6x) dx$

$\longleftrightarrow -\frac{1}{6} du = \sin(6x) dx$

→ $I = -\frac{1}{6} \int e^u du = -\frac{1}{6} e^{\cos 6x} + C$

Example 3.2:

Evaluate the following indefinite integral:

$$I = \int \tan(x) dx$$

$$\rightarrow I = \int \frac{\sin x}{\cos x} dx$$

$$u = \cos x, du = -\sin x \cdot dx$$

$$\rightarrow I = - \int \frac{du}{u} = -\ln|u| + C$$

$$= -\ln|\cos x| + C$$

$$= \ln|\sec x| + C$$

$$\begin{aligned} -\ln(\alpha) &= \ln(\frac{1}{\alpha}) \\ &= \ln(\sec x) \end{aligned}$$

Example 3.1:

Hint:

Take

$$u = \sec x + \tan x$$

to get that

$$\sec x = \frac{u'}{u}$$

(logarithmic derivative)

Evaluate the following indefinite integral: $I = \int \sec(x) dx$

$$u = \sec x + \tan x$$

$$\begin{aligned} du &= \sec x \cdot \tan x + \sec^2 x \\ &= (\sec x + \tan x) \sec x \end{aligned}$$

$$du \equiv u'$$

get that $\sec x = \frac{du}{u} \equiv \frac{u'}{u}$

logarithmic derivative of f :

$$\frac{d}{dx} [\ln f(x)] = \frac{f'(x)}{f(x)}$$

$$\sec x = \frac{u'(x)}{u(x)} = \frac{d}{dx} [\ln u(x)]$$

→ integrate both sides

$$I = \int \sec x dx = \ln |u(x)| + C$$

$$= \ln |\sec x + \tan x| + C$$

Additional Trig Formulas (know how to derive these):

$$\int \tan(u) du = \ln|\sec u| + C$$

$$\int \sec(u) du = \ln|\sec u + \tan u| + C$$

$$\int \cot(u) du = \ln|\sin u| + C$$

$$\int \csc(u) du = -\ln|\csc u + \cot u| + C$$

worked
these
today

Work
these
on
your
own

Extra problems (limits of integration)

Evaluate the following indefinite integral:

$$I = \int_0^{\sqrt{\frac{\pi}{4}}} x \cos(x^2) dx$$

→ What to choose as u ?

$$u = x^2 \quad \frac{1}{2} du = x dx \quad du = 2x dx$$

$$\Rightarrow I = \frac{1}{2} \int_0^{\pi/4} \cos(u) du$$

$$= \frac{1}{2} \left(\sin u \right) \Big|_0^{\pi/4} \quad (\text{apply FTC})$$

$$= \frac{1}{2} (\sin(\pi/4) - \sin(0))$$
$$= \frac{1}{2} \left(\frac{\sqrt{2}}{2} - 0 \right) = \frac{\sqrt{2}}{4}$$

Challenge problem (foreshadowing trig subs – later)

Hints:

1. See that

$$\cos(u) = \sqrt{1 - \sin^2(u)}, u \geq 0$$

2. Write

$$x = \sin(u),$$

$$dx = \cos(u)du$$

3. Use the identity

$$\cos^2(u) = \frac{1}{2}(1 + \cos(2u))$$

Evaluate the following indefinite integral: $\int_0^1 \sqrt{1 - x^2} dx$

Hint 1: $\sin^2 u + \cos^2 u = 1$

$$\Rightarrow \cos u = \pm \sqrt{1 - \sin^2 u}$$

when $u > 0$,

$$\cos u = \sqrt{1 - \sin^2 u} \quad (*)$$

Hint 2: write $x = \sin u$, $u = \sin^{-1}(x)$

$$dx = \cos u du$$

$$I = \int_{\sin^{-1}(0)}^{\sin^{-1}(1) \rightarrow \pi/2} \sqrt{1 - \sin^2 u} \cdot \cos(u) du$$

$$= \int_0^{\pi/2} \cos^2(u) du$$

$$I = \int_0^1 \sqrt{1 - x^2} dx$$

Hint 3: $\cos^2(u) = \frac{1}{2} (1 + \cos(2u))$

$$I = \frac{1}{2} \int_0^{\pi/2} (1 + \cos(2u)) du$$

$$= \frac{1}{2} \left(u + \frac{1}{2} \sin(2u) \right) \Big|_0^{\pi/2}$$

$$= \frac{\pi}{4}$$

$$= \frac{1}{2} [(\pi/2 - 0) + \frac{1}{2} (\sin(\pi) - \sin(0))]$$

Section 5.6: Area between two curves

Math 1552 lecture slides adapted from the course materials
By Klara Grodzinsky (GA Tech, School of Mathematics, Summer 2021)

Today's Learning Goals

- Understand what is meant graphically by integrating the difference between two functions (*solve for intersection points between the two curves on the interval*)
- Set up an integral to find the total area bounded between two curves
- Evaluate numerically the area bounded between two curves
- Be able to express the integration in terms of either x or y, depending on the function(s)

Area Between Two Curves

To find the area between two curves, written as functions of x :

$$A = \int_a^b |f(x) - g(x)| dx = \int_a^b (\text{top} - \text{bottom}) dx$$

To find the area between two curves, written as functions of y :

$$A = \int_a^b |f(y) - g(y)| dy = \int_a^b (\text{right} - \text{left}) dy$$

