1 \mathbb{R} und \mathbb{C}

Ordnungsvollständigkeit: Seien $A, B \subseteq \mathbb{R}$ s. d.

(i) $A \neq \emptyset$ (ii) $\forall a \in A \ \forall b \in B \ a \leqslant b$

Dann: $\exists c \in \mathbb{R}$ s.d. $\forall a \in A \ a \leqslant c \ \forall b \in B \ c \leqslant b$

Korollar 1.1.7 (Archimedisches Prinzip)

Sei $x > 0y \in \mathbb{R}$ Dann: $\exists n \in \mathbb{N} \quad y \leqslant n * x$

Satz 1.1.8 $\forall t \ge 0, t \in \mathbb{R}$ hat $x^2 = t$ eine Lösung in \mathbb{R} Satz 1.1.10 $\forall x, y \in \mathbb{R}$

(i) $|x| \ge 0$

(iii)
$$|x+y| \leqslant |x| + |y|$$

(ii) |xy| = |x||y|

(iv)
$$|x + y| \ge ||x| - |y||$$

Satz 1.1.11 (Young'sche Ungleichung)

 $\forall \varepsilon > 0, \forall x, y \in \mathbb{R} \text{ gilt:} \qquad 2|xy| \leqslant \varepsilon x^2 + \frac{1}{\varepsilon} y^2$

Definition 1.1.12 Sei $A \subset \mathbb{R}$

(i) / (ii) $c \in \mathbb{R}$ ist eine obere/untere Schranke von A wenn $\forall a \in A$ $a \leqslant / \geqslant c$. A ist nach oben/unten beschränkt, wenn es eine obere/untere Schranke gibt.

(iii) / (iv) $m \in \mathbb{R}$ ist ein Maximum/Minimum von A wenn $m \in A$ und m obere/untere Schranke von A ist. Satz 1.1.15 Sei $A \subseteq \mathbb{R}$, $A \neq \emptyset$ Sei A nach oben/unten beschränkt. Dann gibt es eine kleinste obere/ grösste untere Schranke von A: $c := \sup A / c := \inf A$ genannt Supremum/Infimum von A

Korollar 1.1.16 Seien $A \subseteq B \subseteq \mathbb{R}$ Wenn B nach oben/unten beschränkt ist, folgt sup $A \leqslant \sup B$ / inf $B \leqslant \inf A$

Konvention: Wenn *A* **nicht beschränkt ist**, definieren wir sup $A = +\infty$ bzw. inf $A = -\infty$

Satz 1.3.4 (Fundamentalsatz der Algebra) Sei $n \ge 1$, $n \in \mathbb{N}$, $a_i \in \mathbb{C}$ und

$$P(z) = z^{n} + a_{n-1}z^{n-1} + \dots + a_0$$

Dann

$$\exists z_1,...,z_n \in \mathbb{C}$$
,

so dass

$$P(z) = (z - z_1)(z - z_2)...(z - z_n)$$

2 Folgen und Reihen

2.1 Grenzwert einer Folge

Definition 2.1.1 Eine Folge (reeller Zahlen) ist eine Abbildung $a: N^* \longrightarrow \mathbb{R}$. Wir schreiben a_n statt a(n) und bezeichnen eine Folge mit $(a_n)_{n \ge 1}$

Lemma 2.1.3 Sei $(a_n)_{n\geqslant 1}$ eine Folge. Dann gibt es höchstens eine reelle Zahl $l\in\mathbb{R}$ mit der Eigenschaft: $\forall \varepsilon>0$ ist die Menge $\{n\in\mathbb{N}:a_n\notin]l-\varepsilon,l+\varepsilon[\}$ endlich.

Definition 2.1.4 Eine Folge $(a_n)_{n\geqslant 1}$ ist **konvergent**, wenn es $l\in\mathbb{R}$ gibt, so dass $\forall \varepsilon>0$ die Menge $\{n\in\mathbb{N}: a_n\notin]l-\varepsilon, l+\varepsilon[\}$ **endlich** ist.

Lemma 2.1.6 Sei $(a_n)_{n\geqslant 1}$ eine Folge. Folgende Aussagen sind äquivalent

(1) $(a_n)_{n\geqslant 1}$ konvergiert gegen $l=\lim_{n\to\infty}a_n$

(2) $\forall \varepsilon > 0 \exists N \geqslant 1$, so dass $|a_n - l| < \varepsilon \quad \forall n \geqslant N$

Satz 2.1.8 Seien $(a_n)_{n\geqslant 1}$, $(b_n)n\geqslant 1$ konvergent mit $a=\lim_{n\to\infty}a_n$, $b=\lim_{n\to\infty}b_n$

(1) $(a_n + b_n)_{n \ge 1}$ ist konvergent: $\lim_{n \to \infty} (a_n + b_n) = a + b$

(2) $(a_n \cdot b_n)_{n \ge 1}$ ist konvergent: $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$

(3) Sei $\forall n \geq 1$ $b_n \neq 0$ und $b \neq 0$. Dann ist $(\frac{a_n}{b_n})_{n \geq 1}$ konvergent und $\lim_{n \to \infty} (\frac{a_n}{b_n})_{n \geq 1} = \frac{a}{b}$

(4) Wenn $\exists K \ge 1$ mit $\forall n \ge K : a_n \le b_n$, folgt $a \le b$

Beispiel 2.1.9 $b \in \mathbb{Z}$: $\lim_{n \to \infty} (1 + \frac{1}{n})^b = 1$. Das folgt aus

 $\lim_{n\to\infty} (1+\frac{1}{n}) = 1$ und wiederholter Anwendung von **Satz 2.1.8 (2) und (3)**.

2.2 Satz von Weierstrass

Definition 2.2.1 (1)[(2)] $(a_n)_{n\geqslant 1}$ ist monoton wachsend [fallend] wenn: $a_n \leqslant [\geqslant] a_{n+1} \ \forall n \geqslant 1$

Satz 2.2.2 (Weierstrass) Sei $(a_n)_{n\geqslant 1}$ monoton wachsend [fallend] und nach oben [unten] beschränkt. Dann konvergiert $(a_n)_{n\geqslant 1}$ mit

$$\lim_{n \to \infty} a_n = \sup\{a_n : n \geqslant 1\}$$
$$[\lim_{n \to \infty} a_n = \inf\{a_n : n \geqslant 1\}]$$

Beispiel 2.2.3 Sei $a \in \mathbb{Z}$ und $0 \le q < 1$. Dann gilt $\lim_{n \to \infty} u^a a^n = 0$

Wir können annehmen, dass q > 0. Sei $x_n = n^a q^n$, dann folgt:

$$x_{n+1} = (n+1)^{a} q^{n+1}$$

$$= (\frac{n+1}{n})^{a} q \cdot n^{a} q^{n}$$

$$= (1 + \frac{1}{n})^{a} \cdot q \cdot x_{n}.$$

Also:

$$x_{n+1} = (1 + \frac{1}{n})^a \cdot q \cdot x_n.$$

Da $\lim_{n\to\infty} (1+\frac{1}{n})^a = 1$ (**Beispiel 2.1.9**), gibt es ein n_0 , so dass

$$(1+\frac{1}{n})^a < \frac{1}{q} \ \forall n \geqslant n_0.$$

Es folgt:

$$x_{n+1} < x_n \ \forall n \geqslant n_0.$$

Da für $x_n > 0 \ \forall n \ge 1$ die Folge nach **unten beschränkt** ist und für $n \ge n_0$ **monoton fallend** ist.

$$l = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (1 + \frac{1}{n})^a \cdot qx^n$$

= $q \cdot \lim_{n \to \infty} x_n = q \cdot l$.

Also $(1-q) \cdot l = 0$ woraus l = 0 folgt.

Bemerkung 2.2.24 In Beispiel 2.2.3 wird zweimal die folgende einfache Tatsache verwendet: Sei $(a_n)_{n\geqslant 1}$ eine konvergente Folge mit $\lim_{n\to\infty}a_n=a$ und $k\in\mathbb{N}$. Dann ist die durch

$$b_n := a_{n+k} \ n \geqslant 1$$

definierte Folge konvergent und

$$\lim_{n\to\infty}b_n=a.$$

Lemma 2.2.7 (Bernoulli Ungleichung)

$$(1+x)^n \geqslant 1+n \cdot x \quad \forall n \in \mathbb{N}, x > -1$$

2.3 Limes superior und Limes inferior

Limes inferior/ superior: Sei $(a_n)_{n\geqslant 1}$ eine

beschränkte Folge. Sei $\forall n \geqslant 1$:

$$b_n = \inf\{a_k : k \ge n\}$$

$$c_n = \sup\{a_k : k \ge n\}$$

Dann folgt $\forall n \geqslant 1$ $b_n \leqslant b_{n+1}$ (monoton wachsend) und $c_n \geqslant c_{n+1}$ (monoton fallend) und beide Folgen beschränkt. Wir definieren:

$$\liminf_{n\to\infty} a_n := \lim_{n\to\infty} b_n$$

$$\limsup_{n\to\infty} a_n := \lim_{n\to\infty} c_n$$

2.4 Cauchy Kriterium

Lemma 2.4.1 $(a_n)_{n\geqslant 1}$ konvergiert genau dann, wenn $(a_n)_{n\geqslant 1}$ beschränkt und $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$

Satz 2.4.2 (Cauchy Kriterium) $(a_n)_{n\geqslant 1}$ ist genau dann kovergent, wenn $\forall \varepsilon > 0 \ \exists N \geqslant 1$,

$$|a_n - a_m| < \varepsilon \quad \forall n, m \geqslant N$$

2.5 Satz von Bolzano-Wierstrass

Definition 2.5.1 Ein **abgeschlossenes Intervall** $I \subseteq \mathbb{R}$ ist von der Form

(1)
$$[a,b]$$
 $a \leqslant b \in \mathbb{R}$

(3)
$$]-\infty,a]$$
 $a\in\mathbb{R}$

$$(2) [a, +\infty[a \in \mathbb{R}$$

$$(4)$$
 $]-\infty, +\infty[=\mathbb{R}$

Bemerkung 2.5.2 Ein Intervall $I \subseteq \mathbb{R}$ ist **genau** dann abgeschlossen, wenn für jede konvergente Folge $(a_n)_{n\geqslant 1}$ mit $a_n\in I$ $\lim_{n\to\infty}a_n\in I$.

Bemerkung 2.5.3 Seien I = [a, b], J = [c, d] mit

 $a \le b$, $c \le d$, a, b, c, $d \in \mathbb{R}$. Dann ist $I \subseteq J$ genau dann, wenn $c \le a$, $b \le d$

Satz 2.5.5.5 (Cauchy-Cantor) Sei

$$I_1\supseteq I_2\supseteq...I_n\supseteq I_{n+1}\supseteq...$$

eine Folge abgeschlossener Intervalle mit

$$\mathcal{L}(I_1) < +\infty$$

Dann gilt

$$\bigcap_{n\geqslant 1}I_n\neq\emptyset.$$

Falls zudem

$$\lim_{n\to\infty} \mathcal{L}(I_n) = 0$$

gilt, enthält

$$\bigcap_{n\geqslant 1}I_n$$

genau einen Punkt.

Definition 2.5.7 Eine **Teilfolge** einer Folge $(a_n)_{n\geqslant 1}$ ist eine Folge $(b_n)_{n\geqslant 1}$, wobei

$$b_n = a_{l(n)}$$

und

$$l: \mathbb{N}^* \longrightarrow \mathbb{N}^*$$

eine Abbildung mit der Eigenschaft

$$l(n) < l(n+1) \quad \forall n \geqslant 1$$

Satz 2.5.9 (Bolzano-Weierstrass) Jede beschränkte Folge besitzt eine konvergente Teilfolge.

2.6 Folgen in \mathbb{R}^d und \mathbb{C}

Definition 2.6.1 Eine **Folge in** \mathbb{R}^d ist eine Abbildung $a: \mathbb{N}^* \longrightarrow \mathbb{R}^d$. Wir schreiben a_n statt a(n) und bezeichnen die Folge mit $(a_n)_{n \ge 1}$

Definition 2.6.2 Eine Folge $(a_n)_{n\geqslant 1}$ in \mathbb{R}^d ist **konvergent**, wenn $\exists a \in \mathbb{R}^d$, so dass $\forall \varepsilon > 0 \exists N \geqslant 1$ mit

$$||a_n - a|| < \varepsilon \quad \forall n \geqslant N$$

Satz 2.6.3 Sei $b = (b_1, ..., b_d)$. Folgende Aussagen sind äquivalent:

(1) $\lim_{n \to \infty} a_n = b$ (2) $\lim_{n \to \infty} a_{nj} = b_j \quad \forall 1 \le j \le d$

Bemerkung 2.6.4 Sei $x = (x_1, ..., x_d)$.

Dann ist $\forall 1 \leq i \leq d$

$$x_j^2 \leqslant \sum_{i=1}^d x_i^2 = ||x||^2 \leqslant d \cdot \max_{1 \leqslant i \leqslant d} x_i^2$$

woraus

$$|x_j| \leqslant ||x|| \leqslant \sqrt{d} \cdot \max_{1 \leqslant i \leqslant d} |x_i|$$

folgt.

Bemerkung 2.6.5 Eine konvergente Folge $(a_n)_{n\geqslant 1}$ in \mathbb{R}^d ist beschränkt. Das heisst: $\exists R \geqslant 0$ mit $||a_n|| \leqslant R \ \forall n \geqslant 1$

Satz 2.6.6 (1) Eine Folge $(a_n)_{n\geqslant 1}$ konvergiert genau dann, wenn sie eine Cauchy Folge ist: $\forall \varepsilon > 0 \ \exists N \geqslant 1$ mit $||a_n - a_m|| < \varepsilon \quad \forall n, m \geqslant N$.

(2) Jede beschränkte Folge hat eine konvergente Teilfolge.

2.7 Reihen

Definition 2.7.1 Die Reihe $\sum_{k=1}^{\infty} a_k$ ist konvergent, wenn die Folge $(S_n)_{n\geqslant 1}$ der Partialsummen konvergiert. In diesem Fall definieren wir: $\sum_{k=1}^{\infty} a_k = \lim_{n\to\infty} S_n$

Beispiel 2.7.2 (Geometrische Reihe) Sei $q \in \mathbb{C}$ mit |q| < 1. Dann konvergiert

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

Sei

$$S_n = \sum_{k=0}^n q^k = 1 + q + \dots + q^n.$$

$$q \cdot S_n = q + ... + q^n + q^{n+1}$$

woraus

$$(1 - q)S_n = 1 - q^{n+1}$$

folgt. Es gilt also:

$$S_n = \frac{1 - q^{n+1}}{1 - q}$$

Nun zeigen wir die Konvergenz:

$$|S_n - \frac{1}{1-q}| = |\frac{-q^{n+1}}{1-q}| = \frac{|q|^{n+1}}{|1-q|}.$$

Es folgt aus **Beispiel 2.2.3** und $0 \le |q| < 1$:

$$\lim_{n \to \infty} |S_n - \frac{1}{1 - 1}| = \lim_{n \to \infty} \frac{|q|^{n+1}}{|1 - q|} = 0.$$

Somit konvergiert $(S_n)_{n\geqslant 1}$ gegen $\frac{1}{1-q}$.

Beispiel 2.7.3 (Harmonische Reihe) Die Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

divergiert.

Satz 2.7.4 Seien $\sum_{k=1}^{\infty} a_k$, $\sum_{j=1}^{\infty} b_j$ konvergent sowie $\alpha \in \mathbb{C}$. Dann ist:

(1) $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergent und

$$\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{j=1}^{\infty} b_j)$$

(2) $\sum_{k=1}^{\infty} (\alpha \cdot a_k)$ konvergent und

$$\sum_{k=1}^{\infty} (\alpha \cdot a_k) = \alpha \cdot \sum_{k=1}^{\infty} a_k$$

Satz 2.7.5 (Cauchy Kriterium) Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, wenn: $\forall \varepsilon > 0 \,\exists N \geqslant 1$ mit $|\sum_{k=n}^{m} a_k| < \varepsilon \quad \forall m \geqslant n \geqslant N$.

Satz 2.7.6 Eine Reihe $\sum_{k=1}^{\infty} a_k$ mit

$$a_k \geqslant 0 \quad \forall k \in \mathbb{N}^*$$

konvergiert genau dann, wenn die Folge $(S_n)_{n \ge 1}$

$$S_n = \sum_{k=1}^n a_k$$

der Partialsummen nach oben beschränkt ist.

Korollar 2.7.7 (**Vergleichssatz**) Seien $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ Reihen mit: $0 \le a_k \le b_k$ $\forall k \ge 1$. Dann gelten:

$$\sum_{k=1}^{\infty} b_k$$
 konvergent $\Longrightarrow \sum_{k=1}^{\infty} a_k$ konvergent

$$\sum_{k=1}^{\infty} a_k$$
 divergent $\Longrightarrow \sum_{k=1}^{\infty} b_k$ divergent

Die **Implikationen treffen auch zu**, wenn $\exists K \ge 1$ mit $0 \le a_k \le b_k \quad \forall k \ge K$

Definition 2.7.9 Die Reihe $\sum_{k=1}^{\infty} a_k$ ist absolut konvergent, wenn $\sum_{k=1}^{\infty} |a_k|$ konvergiert.

Satz 2.7.10 Eine absolut konvergente Reihe $\sum_{k=1}^{\infty} a_k$ ist auch konvergent und es gilt: $|\sum_{k=1}^{\infty} a_k| \le \sum_{k=1}^{\infty} |a_k|$ Satz 2.7.12 (Leibniz 1682) Sei $(a_n)_{n\geqslant 1}$ monoton fallend mit $a_n\geqslant 0 \quad \forall n\geqslant 1$ und $\lim_{n\to\infty} a_n=0$. Dann konvergiert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

und es gilt:

$$a_1 - a_2 \leqslant S \leqslant a_1$$

Definition 2.7.14 Eine Reihe $\sum_{n=1}^{\infty} a'_n$ ist eine Umordnung der Reihe $\sum_{n=1}^{\infty} a_n$ wenn es eine bijektive Abbildung $\phi : \mathbb{N}^* \longrightarrow \mathbb{N}^*$ gibt, so dass $a'_n = a_{\phi(n)}$

Satz 2.7.16 (Drichlet 1837) Wenn $\sum_{n=1}^{\infty} a_n$ absolut konvergiert, dann konvergiert jede Umordnung der Reihe mit demselben Grenzwert.

Satz 2.7.17 (Quotientenkriterium, Cauchy 1821) Sei $(a_n)_{n\geqslant 1}$ mit $a_n\neq 0$ $\forall n\geqslant 1$ und $\sum_{n=1}^{\infty}a_n$ eine Reihe.

$$\limsup_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n$$
 konvergiert absolut

$$\liminf_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}>1\implies\sum_{n=1}^\infty a_n \text{ divergiert}$$

Beispiel 2.7.18 (Exponential funktion)

Für $z \in \mathbb{C}$ betrachten wir die Reihe:

$$1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$$

mit allgemeinem Glied

$$a_n=\frac{z^n}{n!}.$$

Dann folgt für $z \neq 0$:

$$\frac{|a_{n+1}|}{|a_n|} = \left| \frac{z^{n+1}}{(n+1)!} \frac{n!}{z^n} \right| = \frac{|z|}{n+1}.$$

Also gilt:

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=0$$

und die Reihe konvergiert für alle $z \in \mathbb{C}$. Wir definieren die **Exponentialfunktion**:

$$\exp z := 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Bemerkung 2.7.19 Das Quotientenkriterium versagt, wenn z. B. unenedlich viele Glieder a_n der Reihe verschwinden (= 0 sind)

Satz 2.7.20 (Wurzelkriterium, Cauchy 1821)

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1 \Longrightarrow \sum_{n=1}^{\infty} a_n$$
 konvergiert absolut

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} > 1 \Longrightarrow \sum_{n=1}^{\infty} a_n \text{ und } \sum_{n=1}^{\infty} |a_n| \text{ divergieren}$$

Konvergenzradius

Sei $(c_k)_{k\geqslant 0}$ eine Folge (in $\mathbb R$ oder $\mathbb C$). Wenn

$$\limsup_{k\to\infty} \sqrt[k]{|c_k|}$$

existiert, definieren wir:

$$\rho = +\infty$$
 wenn $\limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0$

$$\rho = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}} \quad \text{wenn } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0$$

Riemann Zeta Funktion Sei s > 1 und

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Wir wissen, dass $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert. Die Reihe konvergiert $\forall s > 1$

Korollar 2.7.21 Die Potenzreihe $\sum_{k=0}^{\infty} c_k z^k$ konvergiert absolut $\forall |z| < \rho$ und divergiert $\forall |z| > \rho$.

Definition 2.7.22 $\sum_{k=0}^{\infty} b_k$ ist eine **lineare Anordnung** der **Doppelreihe** $\sum_{i,j\geqslant 0} a_{ij}$, wenn es eine **Bijektion** $\sigma: \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ **gibt**, mit $b_k = a_{\sigma(k)}$.

Satz 2.7.23 (Cauchy 1821) Wir nehmen an, dass es $B \ge 0$ gibt, so dass $\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \le B \quad \forall m \ge 0$. Dann kovergieren die folgenden Reihen absolut:

$$S_i := \sum_{j=0}^{\infty} a_{ij} \quad \forall i \geqslant 0 \text{ und } U_j := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geqslant 0$$

sowie

$$\sum_{i=0}^{\infty} S_i \text{ und } \sum_{j=0}^{\infty} U_j$$

und es gilt:

$$\sum_{i=0}^{\infty} S_i = \sum_{j=0}^{\infty} U_j$$

Und jede lineare Anordnug der Doppelreihe konvergiert absolut mit gleichem Grenzwert.

Definition 2.7.24 Das **Cauchy Produkt** der Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{j=0}^{\infty} b_j$ ist die Reihe:

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{\infty} a_{n-j} b_j \right)$$

$$= a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + \dots$$

Satz 2.7.26 Falls die Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{j=0}^{\infty} b_j$ absolut konvergieren, konvergiert ihr Cauchy Produkt und es gilt:

$$\sum_{n=0}^{\infty} (\sum_{j=0}^{\infty} a_{n-j} b_j) = (\sum_{i=0}^{\infty} a_i) (\sum_{j=0}^{\infty} b_j)$$

Anwendung 2.7.27 (Exponential funktion) $\forall z, w \in \mathbb{C}$

$$\exp(w+z) = \exp(w)\exp(z).$$

Wir berechnen das Cauchy Produkt der Reihen: $\sum_{i=0}^{\infty} \frac{w^i}{i!}, \quad \sum_{i=0}^{\infty} \frac{z^i}{i!}. \quad \text{Dieses ist:} \quad \sum_{n=0}^{\infty} (\sum_{j=0}^{n} \frac{w^{n-j}}{(n-j)!} \frac{z^j}{j!})$ Woraus die Behauptung folgt.

Satz 2.7.28 Sei $f_n : \mathbb{N} \longrightarrow \mathbb{R}$ eine Folge. Wir nehmen wenn sie in **jedem Punkt von D stetig** ist. Satz 3.2.4 Sei $x_0 \in D \subseteq \mathbb{R}$ und f : D

- (1) $f(j) := \lim_{n \to \infty} f_n(j) \quad \forall j \in \mathbb{N} \text{ existiert}$
- (2) es eine Funktion $g: \mathbb{N} \longrightarrow [0, \infty[$ gibt, so dass
- **2.1** $|f_n(j) \leq g(j) \quad \forall j \geq 0, \ \forall n \geq 0$
- 2.2 $\sum_{j=0}^{\infty} g(j)$ konvergiert.

Dann folgt:

$$\sum_{i=0}^{\infty} f(j) = \lim_{n \to \infty} \sum_{i=0}^{\infty} f_n(j)$$

Korollar 2.7.29 (Exponential funktion) $\forall z \in \mathbb{C}$ konvergiert die Folge $((1 + \frac{z}{n})^n)_{n \ge 1}$ und

$$\lim_{n\to\infty} (1+\frac{z}{n})^n = exp(z)$$

3 Stetige Funktionen

3.1 Reellwertige Funktionen

Definition 3.1.1 f ist nach **[oben/unten] beschränkt** wenn $f(D) \subseteq \mathbb{R}$ nach **[oben/unten] beschränkt** ist.

Definition 3.1.2 Eine Funktion $f: D \longrightarrow \mathbb{R}$, wobei $D \subseteq \mathbb{R}$, ist:

(1)[(2)] [streng] monoton wachsend, wenn

$$\forall x, y \in D \quad x \leq [<]y \Rightarrow f(x) \leq [<]f(y)$$

(3)[(4)] [streng] monoton fallend, wenn

$$\forall x, y \in D \quad x \leq [<]y \Rightarrow f(x) \geqslant [>]f(y)$$

(5)[(6)] [streng] monoton, wenn f [streng] monoton wachsend oder fallend ist.

3.2 Stetigkeit

Definition 3.2.1 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 **stetig**, wenn

$$\forall \varepsilon > 0 \ \exists \delta > 0$$

so dass $\forall x \in D$ die Implikation:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

gilt

Definition 3.2.2 Die Funktion $f: D \longrightarrow \mathbb{R}$ ist **stetig**, wenn sie in **jedem Punkt von D stetig** ist.

Satz 3.2.4 Sei $x_0 \in D \subseteq \mathbb{R}$ und $f : D \longrightarrow \mathbb{R}$. Die Funktion f ist genau dann in x_0 stetig, wenn für jede Folge $(a_n)_{n \ge 1}$ in D die folgende Implikation gilt:

$$\lim_{n\to\infty} a_n = x_0 \Longrightarrow \lim_{n\to\infty} f(a_n) = f(x_0).$$

Korollar 3.2.5 Seien $x_0 \in D \subseteq \mathbb{R}$, $\lambda \in \mathbb{R}$ und $f: D \longrightarrow \mathbb{R}$, $g: D \longrightarrow \mathbb{R}$ beide **stetig** in x_0 :

- (1) f + g, $\lambda \cdot f$, $f \cdot g$ sind stetig in x_0 .
- (2) Wenn $g(x_0) \neq 0$ ist, ist

$$\frac{f}{g}: D \cap \{x \in D: g(x) \neq 0\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x)}{g(x)}$$

stetig in x_0

Definition 3.2.6 Eine **polynomielle Funktion**

 $P: \mathbb{R} \longrightarrow \mathbb{R}$ ist eine Funktion der Form:

$$P(x) = a_n x^n + \dots + a_0$$

wobei: $a_n, ..., a_0 \in \mathbb{R}$. Wenn $a_n \neq 0$ ist, ist n der **Grad** von P.

Korollar 3.2.7 **Polynomielle Funktionen** sind auf ganz \mathbb{R} **stetig**.

Korollar 3.2.8 Seien P,Q polynomielle Funktionen auf \mathbb{R} mit $Q \neq 0$. Seien $x_1,...,x_m$ die Nullstellen von Q. Dann ist

$$\frac{P}{Q}: \mathbb{R} \setminus \{x_1, ..., x_m\} \longrightarrow \mathbb{R}$$
$$x \longmapsto \frac{P(x)}{O(x)}$$

stetig.

3.3 Zwischenwertsatz

Satz 3.3.1 (Zwischenwertsatz, Bolzano 1817) Seien $I \subseteq \mathbb{R}$ ein Intervall, $f: I \longrightarrow \mathbb{R}$ eine stetige Funktion und $a, b \in I$. Für jedes c zwischen f(a) und f(b) gibt es ein z zwischen a und b mit f(z) = c.

3.4 Min-Max Satz

Definition 3.4.2 Ein **Intervall** $I \subset \mathbb{R}$ ist **kompakt**, wenn es von der Form I = [a, b], $a \leq b$ ist.

Lemma 3.4.3 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$ und $f, g : D \longrightarrow \mathbb{R}$ stetig in x_0 . So sind |f|, $\max(f,g)$, $\min(f,g)$ stetig in x_0 .

Lemma 3.4.4 Sei $(x_n)_{n\geqslant 1}$ eine **konvergente Folge** in \mathbb{R} mit Grenzwert $\lim_{n\to\infty} x_n \in \mathbb{R}$. Sei $a\leqslant b$. Wenn $\{x_n:n\geqslant 1\}\subseteq [a,b]$, folgt: $\lim_{n\to\infty} x_n\in [a,b]$.

Satz 3.4.5 Sei $f: I = [a,b] \longrightarrow \mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u \in I$ und $v \in I$ mit: $f(u) \le f(x) \le f(v) \quad \forall x \in I$. Insbesondere ist f beschränkt.

3.5 Umkehrabbildung

Satz 3.5.1 Seien $D_1, D_2 \subseteq \mathbb{R}$, $f: D_1 \longrightarrow D_2, g: D_2 \longrightarrow \mathbb{R}$ und $x_0 \in D_1$. Wenn f in x_0 und g in $f(x_0)$ stetig sind, so ist $g \circ f: D_1 \longrightarrow \mathbb{R}$ in x_0 stetig.

Korollar 3.5.2 Wenn in Satz 3.5.1 f auf D_1 und g auf Definition 3.7.3 (Weierstrass 1841) Die Folge D_2 stetig sind, ist $g \circ f$ auf D_1 stetig.

Satz 3.5.3 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ $f: D \longrightarrow \mathbb{R}$, wenn gilt: $\forall \varepsilon > 0 \exists N \ge 1$, so dass: stetig, streng monoton. Dann ist $I := f(i) \subseteq \mathbb{R}$ ein Intervall und $f^{-1}: I \longrightarrow I$ ist stetig, streng monoton.

3.6 Reelle Exponentialfunktion

Satz 3.6.1 exp : $\mathbb{R} \longrightarrow]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv.

Korollar 3.6.2

$$\exp(x) > 0 \quad \forall x \in \mathbb{R}.$$

Aus der Potenzreihendarstellung von exp folgt ausserdem:

$$\exp(x) > 1 \quad \forall x > 0.$$

Wenn y < z ist, folgt (aus 2.7.27)

$$\exp(z) = \exp(y + (z - y))$$
$$= \exp(y) \exp(z - y)$$

und da $\exp(z - y) > 1$ ist folgt folgendes Korollar:

Korollar 3.6.3
$$\exp(z) > exp(y) \quad \forall z > y$$

Korollar 3.6.4
$$\exp(x) \ge 1 + x \quad \forall x \in \mathbb{R}$$

Korollar 3.6.5 Der natürlich Logarithmus ln $[0,+\infty[\longrightarrow \mathbb{R}]$ ist eine streng monoton wachsende, stetige, bijektive Funktion. Des weiteren gilt

$$\ln(a \cdot b) = \ln a + \ln b \quad \forall a, b \in]0, +\infty[.$$

Korollar 3.6.6 (1)/(2) Für a > /< 0 ist

$$]0, +\infty[\longrightarrow]0, +\infty[$$
 $r \longmapsto r^a$

eine stetige, streng monoton wachsende/fallende Bijektion.

$$\forall a, b \in \mathbb{R}, \, \forall x > 0$$
:

$$(3) \ln(x^a) = a \ln(x)$$

$$(4) x^a \cdot x^b = x^{a+b}$$

(5)
$$(x^a)^b = x^{a \cdot b}$$

3.7 Konvergenz von Funktionenfolgen

Definition 3.7.1 Die Funktionenfolge $(f_n)_{n\geq 0}$ konvergiert punktweise gegen eine Funktion $f: D \longrightarrow \mathbb{R}$, wenn

$$\forall x \in D : f(x) = \lim_{n \to \infty} f_n(x).$$

 $f_n: D \longrightarrow \mathbb{R}$ konvergiert gleichmässig in D gegen $\forall n \geqslant N, \forall x \in D: |f_n(x) - f(x)| < \varepsilon.$

Satz 3.7.4 Sei $D \subseteq \mathbb{R}$ und $f_n : D \longrightarrow \mathbb{R}$ eine Funktionenfolge bestehend aus (in D) stetigen Funktionen, die (in D) gleichmässig gegen eine Funktion $f: D \longrightarrow \mathbb{R}$ konvergiert. Dann ist f (in D) stetig.

Definition 3.7.5 Eine Funktionenfolge $f_n : D \longrightarrow \mathbb{R}$ ist gleichmässig konvergent, wenn $\forall x \in D$ der Grenzwert $f(x) := \lim_{n \to \infty} f_n(x)$ existiert und die Folge $(f_n)_{n \ge 0}$ gleichmässig gegen *f* konvergiert.

Korollar 3.7.6 Die Funktionenfolge $f_n: D \longrightarrow \mathbb{R}$ kon**vergiert genau dann gleichmässig** in *D*, wenn:

$$\forall \varepsilon > 0 \,\exists N \geqslant 1$$
, so dass $\forall n, m \geqslant N \text{ und } \forall x \in D$:

$$|f_n(x)-f_m(x)|<\varepsilon.$$

Korollar 3.7.7 Sei $D \subseteq \mathbb{R}$. Wenn $f_n : D \longrightarrow \mathbb{R}$ eine gleichmässig konvergente Folge stetiger Funktionen ist, dann ist die Funktion $f(x) := \lim_{n \to \infty} f_n(x)$ stetig.

Definition 3.7.8 Die Reihe $\sum_{k=0}^{\infty} f_k(x)$ konvergiert **gleichmässig** (in *D*), wenn die durch

$$S_n(x) := \sum_{k=0}^{\infty} f_k(x)$$

definierte Funktionenfolge gleichmässig konvergiert. Satz 3.7.9 Sei $D \subseteq \mathbb{R}$ und $f_n : D \longrightarrow \mathbb{R}$ eine Folge stetiger Funktionen. Wir nehmen an, dass $|f_n(x)| \leq c_n \ \forall x \in D \text{ und, dass } \sum_{n=0}^{\infty} c_n \text{ konvergiert.}$

$$\sum_{n=0}^{\infty} f_n(x)$$

gleichmässig in D und deren Grenzwert

$$f(x) := \sum_{n=0}^{\infty} f_n(x)$$

ist eine in *D* stetige Funktion.

Dann konvergiert die Reihe

Definition 3.7.10 Die Potenzreihe

$$\sum_{k=0}^{\infty} c_k x^k$$

hat positiven Konvergenzradius, wenn

$$\limsup_{k\to\infty} \sqrt[k]{|c_k|}$$

existiert. Der Konvergenzradius ist dann definiert als:

$$\rho = +\infty$$

$$\rho = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}}$$

$$\rho = \frac{1}{\limsup \sqrt[k]{|c_k|}} \qquad \text{für } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0$$

Satz 3.7.11 Sei $\sum_{k=0}^{\infty}$ eine **Potenzreihe** mit **positivem Konvergenzradius** $\rho > 0$ und

$$f(x) := \sum_{k=0}^{\infty} c_k c^k, |x| < \rho.$$

Dann gilt: $\forall 0 \le r < \rho$ **konvergiert**

$$\sum_{k=0}^{\infty} c_k x^k$$

gleichmässig auf [-r, r], insbesondere ist $f:]-\rho, \rho[\longrightarrow \mathbb{R}$

stetig.

3.8 Trigonometrische Funktionen

Satz 3.8.1 $\sin : \mathbb{R} \longrightarrow \mathbb{R}$ und $\cos : \mathbb{R} \longrightarrow \mathbb{R}$ sind stetige Funktionen.

Satz 3.8.2 Sei $z \in \mathbb{C}$

- (1) $\exp iz = \cos(z) + i\sin(z)$
- (2) $\cos(z) = \cos(-z) \text{ und } \sin(-z) = -\sin(z)$
- (3) $\sin(z) = \frac{e^{iz} e^{-iz}}{2i}$, $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$
- (4) $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$
- (5) $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$
- (6) $\cos^2(z) + \sin^2(z) = 1$

Korollar 3.8.3 $\sin(2z) = 2\sin(z)\cos(z)$ $\cos(2z) = \cos^2(z) - \sin^2(z)$

3.9 Die Kreiszahl π

Satz 3.9.1 Die Sinusfunktion hat auf $]0, +\infty[$ mindestens eine Nullstelle. Sei

$$\pi := \inf\{t > 0 : \sin t = 0\}.$$

(1)
$$\sin \pi = 0, \pi \in]2,4[$$

(2)
$$\forall x \in]0, \pi[: \sin x > 0]$$

(3)
$$e^{\frac{i\pi}{2}} = i$$

Korollar 3.9.2
$$x \geqslant \sin x \geqslant x - \frac{x^3}{3!} \quad \forall 0 \leqslant x \leqslant \sqrt{6}$$

Korollar 3.9.3 Sei $x \in \mathbb{R}$

(1)
$$e^{i\pi} = -1$$
, $e^{2i\pi} = 1$

(2)
$$\sin(x + \frac{\pi}{2}) = \cos(x)$$
, $\cos(x + \frac{\pi}{2}) = -\sin(x)$

(3)
$$\sin(x + \pi) = -\sin(x)$$
, $\sin(x + 2\pi) = \sin(x)$

(4)
$$\cos(x+\pi) = -\cos(x), \cos(x+2\pi) = \cos(x)$$

Sei
$$k \in \mathbb{Z}$$

(5) Nullstellen von Sinus = $\{k \cdot \pi : k \in \mathbb{Z}\}$

$$\sin(x) > 0 \qquad \forall x \in]2k\pi, (2k+1)\pi[$$

$$\sin(x) < 0 \qquad \forall x \in](2k+1)\pi, (2k+2)\pi[$$

(6) Nullstellen von Cosinus = $\{\frac{\pi}{2} + k \cdot \pi : k \in \mathbb{Z}\}$

$$\cos(x) > 0 \qquad \forall x \in]2k\pi - \frac{\pi}{2}, (2k+1)\pi - \frac{\pi}{2}[$$

$$\cos(x) < 0 \quad \forall x \in](2k+1)\pi - \frac{\pi}{2}, (2k+2)\pi - \frac{\pi}{2}[$$

3.10 Grenzwerte von Funktionen

Definition 3.10.1 $x_0 \in \mathbb{R}$ ist ein Häufungspunkt der Menge D, wenn $\forall \delta > 0$:

$$(|x_0 - \delta, x_0 + \delta|) \setminus \{x_0\} \cap D \neq \emptyset$$

Definition 3.10.3 Sei $f: D \longrightarrow \mathbb{R}$, $x_0 \in \mathbb{R}$ ein **Häufungspunkt** von D. Dann ist $A \in \mathbb{R}$ der Grenzwert von f(x) für $x \to x_0$, bezeichnet mit $\lim_{x \to x_0} f(x) = A$, wenn $\forall \varepsilon > 0 \,\exists \delta > 0$, so dass $\forall x \in D \cap (]x_0 - \delta, x_0 + \delta[\setminus \{x_0\})$:

$$ass \ \forall x \in D \cap (|x_0 - \delta, x_0 + \delta| \setminus \{x \\ |f(x) - A| < \varepsilon$$

Bemerkung 3.10.4 (1) Sei $f: D \longrightarrow \mathbb{R}$ und x_0 ein Häufungspunkt von D. Dann gilt $\lim_{x \to x_0} f(x) = A$ genau, dann wenn für jede Folge $(a_n)_{n \ge 1}$ in $D \setminus \{x_0\}$ mit $\lim_{n \to \infty} a_n = x_0$ folgendes gilt: $\lim_{n \to \infty} f(a_n) = A$.

(2) Sei $x_0 \in D$. Dann ist f genau dann stetig, wenn $\lim_{x \to \infty} f(x) = f(x_0)$.

(3) Mittels (1) zeigt man leicht, dass wenn

$$f,g: D \longrightarrow \mathbb{R} \text{ und } \lim_{x \to x_0} f(x), \lim_{x \to x_0} g(x) \text{ existieren:}$$

$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

folgen.

(4) Seien $f,g:D \longrightarrow \mathbb{R}$ mit $f \leqslant g$. Dann folgt $\lim_{x \to x_0} f(x) \leqslant \lim_{x \to x_0} g(x)$ falls beide Grenzwerte existieren.

(5) Wenn $g_1 \leqslant f \leqslant g_2$ und $\lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x)$, so existiert $l := \lim_{x \to x_0} f(x)$ und $l = \lim_{x \to x_0} g_1(x)$

Satz 3.10.6 Seien $D, E \subseteq \mathbb{R}$, x_0 Häufungspunkt von $D, f: D \longrightarrow E$ eine Funktion. Wir nehmen an, dass $y_0 := \lim_{x \to x_0} f(x)$ existiert und $y_0 \in E$. Wenn $g: E \longrightarrow \mathbb{R}$ in y_0 stetig ist, folgt:

$$\lim_{x \to x_0} g(f(x)) = g(y_0).$$

4 Differenzierbare Funktionen

4.1 Die Ableitung

Definition 4.1.1 f ist in x_0 differenzierbar, wenn der Grenzwert $\lim_{x \to x_0} \frac{f(x) - f(x-0)}{x - x_0}$ existiert. Ist dies der Fall, wird der Grenzwert mit $f'(x_0)$ bezeichnet.

Bemerkung 4.1.2 Es ist oft von Vorteil in der Definition von $f'(x_0)$, $x = x_0 + h$ zu setzen, so dass: $f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h}$

Satz 4.1.3 (Weierstrass 1861) Sei $f: D \longrightarrow \mathbb{R}$, $x_0 \in D$ Häufungspunkt von D. Folgende Aussagen sind äquivalent:

(1) f ist in x_0 differenzierbar

(2) Es gibt $c \in \mathbb{R}$ und $r : D \longrightarrow \mathbb{R}$ mit:

2.1
$$f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$$

2.2 $r(x_0) = 0$ und r ist stetig in x_0

Wenn dies zutrifft, ist $c = f'(x_0)$ eindeutig bestimmt.

Satz 4.1.4 Eine Funktion $f:D \longrightarrow \mathbb{R}$ ist in x_0 **genau dann differenzierbar, wenn** es eine Funktion $\phi:D \longrightarrow \mathbb{R}$ gibt, die in x_0 **stetig** ist und $f(x)=f(x_0)+\phi(x)(x-x_0) \quad \forall x\in D$. In diesem Fall gilt: $\phi(x)=f'(x)$.

Korollar 4.1.5 Sei $f: D \longrightarrow \mathbb{R}$ und x_0 ein Häufungspunkt von D. Wenn f in x_0 differenzierbar ist, ist f in x_0 stetig.

Definition 4.1.7 $f: D \longrightarrow \mathbb{R}$ ist in D differenzierbar, wenn für jeden Häufungspunkt $x_0 \in D$, f in x_0 differenzierbar ist.

Satz 4.1.9 Sei $D \subseteq \mathbb{R}$, $x_0 \in D$ ein Häufungspunkt von D und $f,g:d \longrightarrow \mathbb{R}$ in x_0 differenzierbar. Dann gelten:

(1) f + g ist in x_0 differenzierbar und $(f + g)'(x_0) = f'(x_0) + g'(x_0)$

(2) $f \cdot g$ ist in x_0 differenzierbar und $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$

(3) Wenn $g(x_0) \neq 0$ ist, ist $\frac{f}{g}$ in x_0 differenzierbar und $(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$

Satz 4.1.11 Seien $D, E \subseteq \mathbb{R}$, sei $x_0 \in D$ ein Häufungspunkt, sei $f: D \longrightarrow E$ eine in x_0 differenzierbare Funktion, so dass $y_0 := f(x_0)$ ein Häufungspunkt von E ist und sei $g: E \longrightarrow \mathbb{R}$ eine in y_0 differenzierbare Funktion. Dann ist $g \circ f: D \longrightarrow \mathbb{R}$ in x_0 differenzierbar und $(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$

Korollar 4.1.12 Sei $f: D \longrightarrow E$ eine **bijektive Funktion**, sei $x_0 \in D$ ein **Häufungspunkt**. Wir nehmen an f ist in x_0 **differenzierbar** und $f'(x_0) \neq 0$. Zudem nehmen wir an f^{-1} ist in $y_0 = f(x_0)$ **stetig**. Dann ist y_0 ein **Häufungspunkt** von E, f^{-1} ist in y_0 **differenzierbar** und $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

4.2 Zentrale Sätze über die Ableitung

Definition 4.2.1 Sei $f: D \longrightarrow \mathbb{R}$, $D \subseteq \mathbb{R}$ und $x_0 \in D$.

(1) [(2)] f besitzt ein lokales Maximum [Minimum]

 $]x_0 - \delta, x_0 + \delta \cap D$

(3) f besitzt ein **lokales Extremum** in x_0 , wenn es ein $\forall y \in]-1,1[\arcsin'(y)=\frac{1}{\sqrt{1-y^2}}$ lokales Minimum oder Maximum ist.

Satz 4.2.2 Sei $f:]a,b[\longrightarrow \mathbb{R}, x_0 \in]a,b[$. Wir nehmen an, f ist in x_0 differenzierbar.

(1) Wenn $f'(x_0) > 0$ ist, $\exists \delta > 0$ mit: f(x) > 0 $\overline{f(x_0)} \quad \forall x \in]x_0, x_0 + \delta[f(x) < f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$

(2) Wenn $f'(x_0) < 0$ ist, $\exists \delta > 0$ mit: f(x) < $\overline{f(x_0)}$ $\forall x \in]x_0, x_0 + \delta[f(x) > f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$

(3) Wenn f in x_0 ein **lokales Extremum** besitzt, folgt $f'(x_0) = 0.$

Satz 4.2.3 (Rolle 1690) Sei $f: [a,b] \longrightarrow \mathbb{R}$ stetig und in a, b differenzierbar. Wenn f(a) = f(b), so gibt es $\xi \in]a,b[$ mit: $f'(\xi)=0.$

Satz 4.2.4 (Lagrange 1797) Sei $f \longrightarrow \mathbb{R}$ stetig und in a, b differenzierbar. Es gibt $\xi \in a, b$ mit: f(b) $f(a) = f'(\xi)(b - a).$

Korollar 4.2.5 Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ stetig und in für $y = \tan x$: $\arctan'(y) = \cos^x = \frac{1}{1+y^2}$. a, b differenzierbar.

(1) Wenn $f'(\xi) = 0 \quad \forall \xi \in]a, b[$ ist, ist f konstant.

(2) Wenn $f'(\xi) = g'(\xi) \quad \forall \xi \in]a,b[$ ist, gibt es $c \in \mathbb{R}$ $\overline{\text{mit:}}\ f(x) = g(x) + c \quad \forall x \in [a, b].$

(3) [(4)] Wenn $f'(\xi) \ge [>]0 \quad \forall \xi \in]a,b[$ ist, ist f auf [a, b] [strikt] monoton wachsend.

(5) [(6)] Wenn $f'(\xi) \leq [<]0 \quad \forall \xi \in]a,b[$ ist, ist f auf [a, b] [strikt] monoton fallend.

(7) Wenn es $M \ge 0$ gibt, mit: $|f'(\xi)| \le M \quad \forall \xi \in]a, b[$, $folgt \ \forall x_1, x_2 \in [a, b]: \ |f(x_1) - f(x_2)| \leq M|x_1 - x_2|.$

Beispiel 4.2.6 (1) arcsin Da $\sin' = \cos \operatorname{und} \cos(x) >$ $0 \ \forall x \in]-\frac{\pi}{2},\frac{\pi}{2}[$ folgt aus Korollar 4.2.5 (4), dass die Sinusfunktion auf $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ strikt monoton wachsend ist. Also ist sin : $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1, 1]$ bijektiv. Wir definieren arcsin : $[-1,1] \longrightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$ als die Umkehrfunktion von sin. Nach Korollar 4.1.12 ist sie auf] – 1,1[differenzierbar und für $y = \sin x$, $x \in$ $]-\frac{\pi}{2},\frac{\pi}{2}[$ folgt nach **4.1.12**: $\arcsin'(y)=\frac{1}{\sin'(x)}=\frac{1}{\cos x}.$

in x_0 , wenn $\exists \delta > 0$ mit: $f(x) \leq [\geqslant] f(x_0) \quad \forall x \in \text{Wir verwenden nun: } y^2 = \sin^2 x = 1 - \cos^2 x \text{ woraus}$ mit $\cos c > 0$ folgt: $\cos x = \sqrt{1 - y^2}$. Wir erhalten also

> (2) arccos Eine analoge Diskussion, wie in (1) zeigt, dass cos : $[0,\pi] \longrightarrow [-1,]$ strikt monoton fallend ist und $[0,\pi]$ auf [-1,1] bijektiv abbildet. Sei: arccos : $[-1,1] \longrightarrow [0,\pi]$ die Umkehrfunktion. Sie ist auf] – 1,1[differenzierbar und $\arccos'(y) = \frac{-1}{\sqrt{1-y^2}} \ \forall y \in \mathbb{R}$

> (3) arctan Für $x \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$ hatten wir die Tangensfunktion definiert: $\tan x = \frac{\sin x}{\cos x}$ und deren Ableitung berechnet: $\tan' x = \frac{1}{\cos^2 x}$. Also ist $\tan \text{ auf }] - \frac{\pi}{2}, \frac{\pi}{2}[$ streng monoton wachsend mit $\lim_{x \to \infty} \tan x = +\infty$,

> $\lim_{x \to \infty} \tan x = -\infty$. Also ist $\tan \left[: \right] - \frac{\pi}{2}, \frac{\pi}{2} \left[\longrightarrow \right] - \frac{\pi}{2}$ ∞, ∞ [bijektiv. Sei arctan :] $-\infty, \infty$ [\longrightarrow] $-\frac{\pi}{2}, \frac{\pi}{2}$ [die Umkehrfunktion. Dann ist arctan differenzierbar und

> Satz 4.2.9 (Cauchy) Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ stetig und in a, b differenzierbar. Es gibt $\xi \in a, b$ mit: $g'(\xi)(f(b) - f(a)) = f'(\xi)(g(b) - g(a))$. Wenn $g'(x) \neq 0$ $0 \quad \forall x \in]a,b[$ ist, folgt: $g(a) \neq g(b)$ und $\frac{f(b)-f(a)}{g(b)-g(a)} =$

> Satz 4.2.10 (Bernoulli 1691/92, de l'Hôpital 1696) Seien $f,g:]a,b[\longrightarrow \mathbb{R}$ differenzierbar mit $g'(x) \neq g'(x)$ $0 \quad \forall x \in]a,b[$. Wenn $\lim_{x \to b^-} f(x) = 0$, $\lim_{x \to b^-} g(x) = 0$ und

 $\lim_{x\to b^-}\frac{f'(x)}{g'(x)}=:\lambda \text{ existiert, folgt: } \lim_{x\to b^-}\frac{f(x)}{g(x)}=\lim_{x\to b^-}\frac{f'(x)}{g'(x)}.$

Bemerkung 4.2.11 Der Satz gilt auch wenn: b = $+\infty$ $\lambda = +\infty$ $x \to a^+$

Definition 4.2.13 (1) f ist konvex (auf I), wenn $\forall x, y \in I, x \leq y \text{ und } \lambda \in [0,1] \text{ folgendes gilt: } f(\lambda x + y)$ $(1 - \lambda)y) \leqslant \lambda f(x) + (1 - \lambda)f(y)$

(2) f ist streng konvex, wenn $\forall x, y \in I, x < y$ und $\overline{\lambda} \in]0,1[$ folgendes gilt: $f(\lambda x + (1-\lambda)y) < \lambda f(x) +$

 $(1-\lambda)f(y)$

Bemerkung 4.2.14 Sei $f: I \longrightarrow \mathbb{R}$ konvex. Ein einfacher Induktionsbeweis zeigt, dass $\forall n \geqslant 1$ 1, $\{x_1, ..., x_n\} \subseteq I$ und $\lambda_1, ... \lambda_n$ in [0, 1] mit $\sum_{i=1}^n \lambda_i = 1$ folgendes gilt: $f(\sum_{i=1}^{n} \lambda_i x_i) \leq \sum_{i=1}^{n} \lambda_i f(x_i)$

Lemma 4.2.15 Sei $f: I \longrightarrow \mathbb{R}$ eine beliebige Funktion. Die Funktion f ist genau dann konvex, wenn $\forall x_0 < x < x_1 \text{ in } I \text{ folgendes gilt: } \frac{f(x) - f(x_0)}{x - x_0} \leqslant \frac{f(x_1) - f(x)}{x_1 - x}$

Satz 4.2.16 Sei $f:]a, b[\longrightarrow \mathbb{R}$ differenzierbar. f ist genau dann (streng) konvex, wenn f' (streng) monoton wachsend ist.

Korollar 4.2.17 Sei $f:]a,b[\longrightarrow \mathbb{R}$ zweimal differenzierbar in a, b. f ist (streng) konvex, wenn $f'' \ge 0$ (bzw. f'' > 0) auf]a, b[.

4.3 Höhere Ableitungen

Definition 4.3.1 (1) Für $n \ge 2$ ist f n-mal differen**zierbar in** D, wenn $f^{(n-1)}$ in D differenzierbar ist. Dann ist $f^{(n)} := (f^{(n-1)})'$ und nennt sich die *n*-te **Ableitung** von *f*

(2) f ist n-mal stetig differenzierbar in D, wenn f nmal differenzierbar in $D \& f^{(n)}$ in D stetig ist.

(3) Die Funktion f ist in D glatt, wenn sie $\forall n \ge 1$ nmal differenzierbar ist.

Bemerkung 4.3.2 Es folgt aus Korollar 4.1.5, dass für $n \ge 1$ eine *n*-mal differenzierbare Funktion (n-1)mal stetig differenzierbar ist.

Satz 4.3.3 (analog zu Satz 4.1.9) Sei $D \subseteq \mathbb{R}$ wie in Definition 4.3.1, $n \ge 1$ und $f, g: D \longrightarrow \mathbb{R}$ n-mal differen**zierbar** in D.

(1) f + g ist *n*-mal differenzierbar und $(f + g)^{(n)} =$ $f^{(n)} + g^{(n)}$

(2) $f \cdot g$ ist *n*-mal differenzierbar und $(f \cdot g)^{(n)} =$ $\sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$.

Satz 4.3.5 Sei $D \subseteq \mathbb{R}$ wie in **Definition 4.3.1**, $n \geqslant 1$ und $f,g:D \longrightarrow \mathbb{R}$ *n*-mal differenzierbar in *D*. Wenn $g(x) \neq 0 \quad \forall x \in D \text{ ist, ist } \frac{f}{g} \text{ in } D \text{ } n\text{-mal differenzier-}$ bar.

Satz 4.3.6 Seien $E,D\subseteq\mathbb{R}$ Teilmengen für die jeder Punkt Häufungspunkt ist. Seien $f:D\longrightarrow E$, $g:E\longrightarrow\mathbb{R}$ n-mal differenzierbar. Dann ist $f\circ g$ n-mal differenzierbar und $(g\circ f)^{(n)}(x)=\sum_{k=1}^n A_{n,k}(x)(g^{(k)}\circ f)(x)$ wobei $A_{n,k}$ ein Polynom in den Funktionen $f',f^{(2)},...,f^{n+1-k}$ ist.

4.4 Potenzreihen & Taylor Approximation

Satz 4.4.1 Seien $f_n:]a,b[\longrightarrow \mathbb{R}$ eine Funktionenfolge wobei f_n einmal in $]a,b[\quad \forall n\geqslant 1$ stetig differenzierbar ist. Wir nehmen an, dass sowohl die Folge $(f_n)_{n\geqslant 1}$ wie auch $(f'_n)_{n\geqslant 1}$ gleichmässig in]a,b[mit $\lim_{n\to\infty}f_n=:f$ und $\lim_{n\to\infty}f'_n=:p$ konvergieren. Dann ist f stetig differenzierbar und f'=p.

Satz 4.4.2 Sei $\sum_{k=0}^{\infty} c_k x^k$ eine **Potenzreihe** mit pos. Konvergenzradius $\rho > 0$. Dann ist $f(x) = \sum_{k=0}^{\infty} c_k (x - x_0)^k$ auf $]x_0 - \rho, x_0 + \rho[$ differenzierbar und $f'(x) = \sum_{k=0}^{\infty} kc_k (x - x_0)^{k-1} \quad \forall x \in]x_0 - \rho, x_0 + \rho[$.

Korollar 4.4.3 Unter der Voraussetzung von Satz Eine Partition P' ist eine Verfeinerung von P, wenn 4.4.1 ist f auf $]x_0 - \rho, x_0 + \rho[$ glatt und $f^{(j)}(x) = P \subset P'$. Offensichtlich ist die Vereinigung $P_1 \cup P_2$ $\sum_{k=j}^{\infty} c_k \frac{k!}{(k-j)!} (x-x_0)^{k-j}$. Insbesondere ist $c_j = \frac{f^{(j)}(x_0)}{j!}$.

Satz 4.4.5 Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig und in]a,b[(n+1)-mal differenzierbar. Für jedes $a < x \le b$ gibt es $\xi \in]a,x[$ mit: $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$

Korollar 4.4.6 (Taylor Approximation) Sei f: $[c,d] \longrightarrow \mathbb{R}$ stetig und in]c,d[(n+1)-mal differenzierbar. Sei c < a < d. $\forall x \in [c,d] \exists \xi$ zwischen x und a, so dass: $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$.

Korollar 4.4.7 Sei $n \ge 0$, $a < x_0 < b$ und $f : [a,b] \longrightarrow \mathbb{R}$ in]a,b[(n+1)-mal stetig differenzierbar. Annahme: $f'(x_0) = f^{(2)}(x_0) = ... = f^{(n)}(x_0) = 0$.

(1) Wenn n gerade ist und x_0 eine lokale Extremalstelle ist, folgt $f^{(n+1)}(x_0) = 0$.

(2) Wenn *n* ungerade ist und $f^{(n+1)}(x_0) > 0$ ist, ist x_0

eine strikt lokale Minimalstelle.

(3) Wenn *n* ungerade ist und $f^{(n+1)}(x_0) < 0$ ist, x_0 eine strikt lokale Maximalstelle.

Korollar 4.4.8 Sei $f : [a,b] \longrightarrow \mathbb{R}$ stetig und in]a,b[**zweimal stetig differenzierbar**. Sei $a < x_0 < b$. Annahme: $f'(x_0) = 0$.

(1) Wenn $f^{(2)}(x_0) > 0$ ist, ist x_0 eine **strikt lokale** Minimalstelle.

(2) Wenn $f^{(2)}(x_0) < 0$ ist, ist x_0 eine strikt lokale Maximalstelle.

5 Riemann Integral

5.1 Definition und Integrabilitätskriterien

Definition 5.1.1 Eine **Partition** von I ist eine endliche Teilmenge $P \subseteq [a,b]$ wobei $\{a,b\} \subseteq P$. Es gilt: $n := \operatorname{card} P - 1 \geqslant 1$ und es gibt **genau eine Bijektion** $\{0,1,2,...,n\} \longrightarrow P$, $j \mapsto x_j$ mit der Eigenschaft $i < j \Longrightarrow x_i < x_j$.

Eine Partition P' ist eine Verfeinerung von P, wenn $P \subset P'$. Offensichtlich ist die Vereinigung $P_1 \cup P_2$ zweier Partitionen wieder eine Partition. Insbesondere haben zwei Partitionen immer eine gemeinsame Vereinigung. Sei $f:[a,b] \longrightarrow \mathbb{R}$ eine beschränkte Funktion, das heisst es gibt $M \geqslant 0$ mit $|f(x)| \leqslant M \quad \forall x \in [a,b]$. Sei $P = \{x_0,x_1,...,x_n\}$ eine Partition von I. Insbesondere gilt: $x_0 = a < x_1 < ... < x_n = b$ Länge des Teilintervalls $[x_{i-1},x_i]$, $\delta_i := x_i - x_{i-1}$, $i \geqslant 1$

Untersumme $s(f, P) := \sum_{i=1}^{n} f_i \delta_i$, $f_i = \inf_{\substack{x_{i-1} \leq x \leq x_i}} f(x)$

Obersumme $S(f, P) := \sum_{i=1}^{n} F_i \delta_i$, $F_i = \sup_{x_{i-1} \le x \le x_i} f(x)$

Lemma 5.1.2 (1) Sei P' eine **Verfeinerung** von P. Dann gilt: $s(f, P) \leq s(f, P') \leq s(f, P') \leq s(f, P)$.

(2) Für beliebige Partitionen P_1, P_2 gilt: $s(f, P_1) \leq S(f, P_2)$.

Sei $\mathcal{P}(I)$ die Menge der Partitionen von I. Wir definieren: $s(f) = \sup_{P \in \mathcal{P}(I)} s(f,P)$, S(f) =

 $\inf_{P\in\mathcal{P}(I)}S(f,P).$

Definition 5.1.3 Eine beschränkte Funktion f: $[a,b] \longrightarrow \mathbb{R}$ ist (Riemann) integrierbar, wenn s(f) = S(f). In diesem Fall bezeichnen wir den gemeinsamen Wert von s(f) und S(f) mit $\int_a^b f(x) \, dx$.

Satz 5.1.4 Eine beschränkte Funktion ist genau dann integrierbar, wenn $\forall \varepsilon > 0 \exists P \in \mathcal{P}(I)$: $S(f,P) - s(f,P) < \varepsilon$.

Satz 5.1.8 (Du Bois-Reymond 1875, Darboux 1875) Eine beschränkte Funktion $f:[a,b] \longrightarrow \mathbb{R}$ ist genau dann integrierbar, wenn $\forall \varepsilon > 0 \exists \delta > 0$, so dass: $\forall P \in \mathcal{P}_{\delta}(I), S(f,P) - s(f,P) < \varepsilon$. Hier bezeichnet $\mathcal{P}_{\delta}(I)$ die Menge der Partitionen P, für welche $\max_{1 \le i \le n} \delta_i \le \delta$.

Korollar 5.1.9 Die beschränkte Funktion $f:[a,b] \rightarrow \mathbb{R}$ ist genau dann integrierbar mit $A:=\int_a^b f(x)\,dx$, wenn: $\forall \varepsilon>0 \ \exists \delta>0$, so dass $\forall P\in \mathcal{P}(I)$ mit $\delta(P)<\delta$ und $\xi_1,...,\xi_n$ mit $\xi_i\in[x_{i-1},x_i],\ P=\{x_0,...,x_n\}$ $|A-\sum_{i+1}^n f(\xi_i)(x_i-x_{i-1})|<\varepsilon$.

5.2 Integrierbare Funktionen

Satz 5.2.1 Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ beschränkt, integrierbar und $\lambda \in \mathbb{R}$. Dann sind f+g, $\lambda \cdot f$, $f \cdot g$, |f|, $\max(f,g)$, $\min(f,g)$ und (falls $|g(x)| \ge \beta > 0 \quad \forall x \in [a,b]$) $\frac{f}{g}$ integrierbar.

Bemerkung 5.2.2 Sei $\phi : [c, d] \longrightarrow \mathbb{R}$ eine beschränkte Funktion. Dann ist $(*) \sup_{x,y \in [c,c]} |\phi(x) - \phi(y)| =$

 $\sup_{x \in [c,d]} \phi(x) - \inf_{x \in [c,d]} \phi(x).$ Einerseits gilt offensichtlich

 $\forall x, y \in [c, d]: \phi(x) \leq \sup_{[c, d]} \phi, \quad \phi \geqslant \inf_{[c, d]} \phi \text{ also ist } \phi(x) - \phi$

 $\phi(y) \leqslant \sup_{[c,d]} \phi - \inf_{[c,d]} \phi$, woraus durch vertauschen von x,y folgt: $|\phi(x) - \phi(y)| \leqslant \sup_{[c,d]} - \inf_{[c,d]} \phi$. Andererseits

sei $\varepsilon > 0$. Dann gibt es $\xi \in [c,d]$ und $\eta \in [c,d]$

 $= \phi(\xi) > \varepsilon \text{ und } \phi(\eta) < \inf_{[c,d]} \phi + \varepsilon \text{ woraus } \phi(\xi) - \phi(\eta) > \varepsilon$

 $\sup_{[c,d]} \phi - \inf_{[c,d]} \phi - 2\varepsilon$ folgt. Dies zeigt die Aussage (*)

Korollar 5.2.3 Seien P, Q Polynome und [a,b] ein **Intervall** in dem Q **keine Nullstelle** besitzt. Dann ist $[a,b] \longrightarrow \mathbb{R}$, $x \mapsto \frac{P(x)}{O(x)}$ **integrierbar**.

Definition 5.2.4 Eine Funktion $f: D \longrightarrow \mathbb{R}$, $D \subseteq \mathbb{R}$ ist in D **gleichmässig stetig,** wenn $\forall \varepsilon > 0 \ \exists \delta > 0$ $\forall x, y \in D: |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon$.

Satz 5.2.6 (Heine 1872) Sei $f : [a,b] \longrightarrow \mathbb{R}$ stetig in dem kompakten Intervall [a,b]. Dann ist f in [a,b] gleichmässig stetig.

Satz 5.2.7 Sei $f : [a, b] \longrightarrow \mathbb{R}$ stetig. So ist f integrierbar.

Satz 5.2.8 Sei $f:[a,b] \longrightarrow \mathbb{R}$ monoton. So ist f integrierbar.

Bemerkung 5.2.9 Seien a < b < c und $f : [a,c] \longrightarrow \mathbb{R}$ beschränkt mit $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar. Dann ist f integrierbar und (*) $\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$. In der Tat ergibt die Summe einer Obersumme (respektive Untersumme) für $f|_{[a,b]}$ und $f|_{[b,c]}$ eine Obersumme (respektive Untersumme) für f. Wir erweitern jetzt die Definition von $\int_a^b f(x) dx$ auf: $\int_a^a f(x) dx = 0$ und wenn a < b, $\int_b^a f(x) dx := -\int_a^b f(x) dx$. Dann gilt (*) für alle Tripel a,b,c unter den entsprechenden Integrabilitätsvoraussetzungen.

Satz 5.2.10 Sei $I \subseteq \mathbb{R}$ ein kompaktes Intervall mit Endpunkten a, b sowie $f_1, f_2 : I \longrightarrow \mathbb{R}$ beschränkt integrierbar und $\lambda_1, \lambda_2 \in \mathbb{R}$. Dann gilt: $\int_a^b (\lambda_1 f_1(x) + \lambda_2 f_2(x)) dx = \lambda_1 \int_1^b f_1(x) dx + \lambda_2 \int_a^b f_2(x) dx$.

5.3 Ungleichungen & Mittelwertsatz

Satz 5.3.1 Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ beschränkt integrierbar, und $f(x) \leq g(x) \quad \forall x \in [a,b]$. Dann folgt: $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.

Korollar 5.3.2 Wenn $f:[a,b] \longrightarrow \mathbb{R}$ beschränkt integrierbar, folgt: $|\int_a^b f(x) dx| \le \int_a^b |f(x)| dx$.

Satz 5.3.3 (Cauchy-Schwarz Ungleichung) Seien

 $f,g:[a,b]\longrightarrow \mathbb{R}$ beschränkt integrierbar. Dann gilt: $|\int_a^b f(x)g(x)\,dx| \leqslant \sqrt{\int_a^b f^2(x)\,dx}\sqrt{\int_a^b g^2(x)\,dx}$.

Satz 5.3.4 (Mittelwertsatz, Cauchy 1821) Sei f: $[a,b] \longrightarrow \mathbb{R}$ stetig. So $\exists \xi \in [a,b]$: $\int_a^b f(x) dx = f(\xi)(b-a)$.

Satz 5.3.6 (Cauchy 1821) Seien $f,g:[a,b] \longrightarrow \mathbb{R}$ wobei f stetig, g beschränkt und integrierbar mit $g \ge 0 \quad \forall x \in [a,b]$. Dann gibt es $\xi \in [a,b]$ mit: $\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx$.

5.4 Fundamentalsatz Differentialrechnung

Satz 5.4.1 (Fundamentalsatz der Analysis) Seien a < b und $f : [a, b] \longrightarrow \mathbb{R}$ stetig. Die Funktion $F(x) = \int_a^x f(t) dt$, $a \le x \le b$ ist in [a, b] stetig differenzierbar und $F'(x) = f(x) \quad \forall x \in [a, b]$.

Definition 5.4.2 Sei a < b und $f : [a,b] \longrightarrow \mathbb{R}$ **stetig**. Eine Funktion $F : [a,b] \longrightarrow \mathbb{R}$ heisst **Stammfunktion** von f, wenn F (**stetig) differenzierbar** in [a,b] ist und F' = f in [a,b] gilt.

Satz 5.4.3 (Fundamentalsatz der Differentialrechnung) Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig. So gibt es eine Stammfunktion F von f, die bis auf eine addidive Konstante eindeutig bestimmt ist und: $\int_a^b f(x) \, dx = F(b) - F(a)$.

Satz 5.4.5 (Partielle Integration) Seien $a < b \in \mathbb{R}$ und $f,g:[a,b] \longrightarrow \mathbb{R}$ stetig differenzierbar. Dann gilt: $\int_a^b f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x) \, dx$.

Satz 5.4.6 (Substitution) Sei a < b, $\phi : [a,b] \longrightarrow \mathbb{R}$ stetig differenzierbar, $I \subseteq \mathbb{R}$ ein Intervall mit $\phi([a,b]) \subseteq I$ und $f:I \longrightarrow \mathbb{R}$ eine stetige Funktion. Dann gilt: $\int_{a/a}^{\phi(b)} f(x) dx = \int_a^b f(\phi(t)) \phi'(t) dt$.

Korollar 5.4.8 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig.

(1) Seien $a, b, c \in \mathbb{R}$, so dass das abgeschlossene Intervall mit **Endpunkten** $a + c, b + c \in I$. Dann gilt: $\int_{a+c}^{b+c} f(x) dx = \int_a^b f(t+c) dt.$

(2) Seien $a, b, c \in \mathbb{R}$ mit $c \neq 0$, so dass das

abgeschlossene Intervall mit den **Endpunkten** $ac, bc \in I$. Dann gilt: $\int_a^b f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$.

5.5 Integration konvergenter Reihen

Satz 5.5.1 Sei $f_n:[a,b]\longrightarrow \mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen, die gleichmässig gegen eine Funktion $f:[a,b]\longrightarrow \mathbb{R}$ konvergiert. So ist f beschränkt integrierbar und $\lim_{n\to\infty}\int_a^b f_n(x)\,dx=\int_a^b f(x)\,dx$.

Korollar 5.5.2 Sei $f_n : [a,b] \longrightarrow \mathbb{R}$ eine Folge **beschränkter, integrierbarer Funktionen**, so dass $\sum_{n=0}^{\infty} f_n$ auf [a,b] **gleichmässig konvergiert**. Dann gilt: $\sum_{n=0}^{\infty} \int_a^b f_n(x) dx = \int_a^b (\sum_{n=0}^{\infty} f_n(x)) dx$.

Korollar 5.5.3 Sei $f(x) = \sum_{n=0}^{\infty} c_k x^k$ eine **Potenzreihe** mit positivem Konvergenzradius $\rho > 0$. Dann ist für jedes $0 \le r < \rho$, f auf [-r,r] **integrierbar** und es gilt $\forall x \in]-\rho, \rho[: \int_0^x f(t) dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$.

5.8 Uneigentliche Integrale

Definition 5.8.1 Sei $f: [a, \infty[\longrightarrow \mathbb{R}]]$ beschränkt und integrierbar auf [a, b] für alle b > a. Wenn $\lim_{b \to \infty} \int_a^b f(x) \, dx$ existiert, bezeichnen wir den **Grenzwert** mit $\int_a^\infty f(x) \, dx$ und sagen, dass f auf $[a, +\infty[]$ integrierbar ist.

Lemma 5.8.3 Sei $f: [a, \infty[\longrightarrow \mathbb{R}$ beschränkt und integrierbar auf [a,b] $\forall b>a$. (1) Wenn $|f(x)| \leq g(x)$ $\forall x \geq a$ und g(x) auf $[a,\infty[$ integrierbar ist, ist f auf $[a,\infty[$ integrierbar. (2) Wenn $0 \leq g(x) \leq f(x)$ und $\int_a^\infty g(x) \, dx$ divergiert, divergiert auch $\int_a^\infty f(x) \, dx$.

Satz 5.8.5 (McLaurin 1742) Sei $f: [1, \infty[\longrightarrow [0, \infty[$ monoton fallend. Die Reihe $\sum_{n=1}^{\infty} f(n)$ konvergiert genau dann, wenn $\int_{1}^{\infty} f(x) dx$ konvergiert.

Eine Situation, die zu einem uneigentlichen Integral führt, ist wenn $f:]a,b] \longrightarrow \mathbb{R}$ auf jedem Intervall $[a+\varepsilon,b], \ \varepsilon>0$ beschränkt und integrierbar ist, aber auf]a,b] nicht notwendigerweise beschränkt ist.

Definition 5.8.8 In dieser Situation ist $f:]a,b] \longrightarrow \mathbb{R}$ integrierbar, wenn $\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) \, dx$ existiert.In

diesem Fall wird der **Grenzwert** mit $\int_a^b f(x) dx$ beze- tion, ist **ungerade**. Für **ungerade** Funktionen gilt: auf $[0, \infty[$ strikt monoton wachsend, $\cosh(0) = 1$ und ichnet.

Definition 5.8.11 Für s > 0 definieren wir $\Gamma(s) :=$ $\int_0^\infty e^{-x} x^{s-1} dx$.

Satz 5.8.12 (Bohr-Mollerup)

- (1) Die **Gamma Funktion** erfüllt die Relationen:
- (a) $\Gamma(1) = 1$ (b) $\Gamma(s+1) = s\Gamma(s) \quad \forall s > 0$
- (c) γ ist logarithmisch konvex, d.h. $\Gamma(\lambda x + (1 1)^{-1})$ $(\lambda)y \leq \Gamma(x)^{\lambda}\Gamma(y)^{1--\lambda}$ für alle x,y>0 und $0\leq \lambda\leq 1$.
- (2) Die Gamma Funktion ist die einzige Funktion $]0, \infty[\longrightarrow]0, \infty[$, die (a), (b) und (c) erfüllt. Darüberhinaus gilt: $\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)...(x+n)} \quad \forall x > 0$

Lemma 5.8.13 Sei p > 1 und q > 1 mit $\frac{1}{p} + 1q = 1$. Dann gilt $\forall a, b \ge 0$: $a \cdot b \le \frac{a^p}{n} + \frac{b^q}{q}$.

Satz 5.8.14 (Hölder Ungleichung) Seien p, q > 1 mit $\frac{1}{n} + \frac{1}{1}$. Für alle stetigen Funktionen $f,g:[a,b] \longrightarrow \mathbb{R}$ gilt: $\int_{a}^{b} |f(x)g(x)| dx \le ||f||_{p} ||g||_{q}$

5.9 Das unbestimmte Integral

Satz 5.9.3 Seien P, Q Polynome mit grad(P)grad(Q) und Q mit **Produktzerlegung** (*) Dann gibt es A_{ij} , B_{ij} , $C_{ij} \in \mathbb{R}$ mit: $\frac{P(x)}{Q(x)} = \sum_{i=1}^{l} \sum_{j=1}^{m_i} \frac{(A_{ij} + B_{ij}x)}{((x-a_i)^2 + \beta_i^2)^j}$ $\sum_{i=1}^k \sum_{j=1}^{n_i} \frac{C_{ij}}{x - \gamma_i)^j}.$

6 Anhang A

Satz A.0.1 (Binomialsatz) $\forall x,y \in \mathbb{C}, n \geqslant 1$ gilt: $(x+y)^n = \sum_n kx^k y^{n-k}$.

7 Wichtige Beispiele

Ungerade und gerade Funktionen Sei f(x) eine gerade Funktion. Dann: f(x) = f(-x). Sei g(x) eine **ungerade** Funktion. Dann: -g(x) = g(-x). Das **Pro**dukt von 2 geraden Funktionen ist gerade. Das Produkt von 2 ungeraden Funktionen ist gerade. Das Produkt einer ungeraden und einer geraden Funk-

 $\int_{-a}^{+a} g(x) dx = 0$. (Dies kann man sich graphisch vorstellen).

Konvergenztest für Reihen Gegeben: $\sum_{n=0}^{\infty} a_n$.

- (1) Spezieller Typ?
- **1.1** Geometrische Reihe: $\sum q^n$? Konvergent, wenn: |q| < 1.
- **1.2** Alternierende Reihe: $\sum (-1)^n a_n$? Konvergent, wenn: $\lim a_n = 0$.
- 1.3 Riemann Zeta: $\zeta(s) = \sum_{n} \frac{1}{n^s}$ Konvergent, wenn:
- **1.4** Teleskopreihe $\sum (b_n b_{n-1})$? Konvergent, wenn: $\lim b_n$ existiert.
- (2) Kein spezieller Typ:
- 2.1 $\lim a_n = 0$? Nein: divergent.
- 2.2 Quotientenkriterium anwendbar?
- 2.3 Wurzelkriterium anwendbar?
- **2.4** Gibt es eine **konvergente Majorante**?
- **2.5** Gibt es eine **divergente Minorante**?
- 2.6 Nichts von all dem?
- \Longrightarrow kreativ sein.

Allgemeine Potenzen Wir können die Exponentialfunktion und den natürlichen Logarithmus verwenden, um allgemeine Potenzen zu definieren. Für x > 0und $a \in \mathbb{R}$ beliebig definieren wir: $x^a := \exp(a \ln x)$. Insbesondere: $x^0 = 1 \ \forall x > 0$.

Trigonometrische Funktionen Sinusfunktion für $z \in$

$$\mathbb{C}: \sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}.$$
 Kosinusfunktion für $z \in \mathbb{C}: \cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+1)!}.$ Tangensfunktion für $z \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}: \tan z = \frac{\sin z}{\cos z}.$ Cotangensfunktion für $z \notin \pi \cdot \mathbb{Z}: \cot z = \frac{\cos z}{\sin z}.$

Hyperbelfunktionen $\forall x \in \mathbb{R}: \cosh x = \frac{e^x + e^{-x}}{2}$. $\overline{\sinh x} = \frac{e^x - e^{-x}}{2}. \quad \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}. \quad \text{Es}$ gilt offensichtlich: $\cosh x \geqslant 1 \ \forall x \in \mathbb{R}, \ \sinh x \geqslant$ $1 \ \forall x \in]0, +\infty[, \sin(0) = 0.$ Daraus folgt: cosh ist

 $\lim \cosh x = +\infty$. Also ist $\cosh : [0, \infty[\longrightarrow [1, \infty[$ bijektiv. Deren Umkehrfunktion wird mit arcosh: $[1,\infty] \longrightarrow [0,\infty[$ bezeichnet. Unter Verwendung von $\cosh^2 x - \sinh^2 x = 1 \ \forall x \in \mathbb{R} \ \text{folgt: arcosh'y} =$ $\frac{1}{\sqrt{y^2-1}} \ \forall y \in]1,+\infty[$. Analog zeigt man, dass sinh : $\mathbb{R} \longrightarrow \mathbb{R}$ streng monoton wachsend und bijektiv ist. Dessen Umkehrfunktion wird mit arsinh : $\mathbb{R} \longrightarrow \mathbb{R}$ bezichnet und es gilt: $\operatorname{arsinh}' y = \frac{1}{\sqrt{1+y^2}} \ \forall y \in \mathbb{R}.$

Für $\tanh x$ folgt: $\tanh' x = \frac{1}{\cosh^2 x} > 0$ Also ist \tanh auf R streng monoton wachsend und man zeigt, dass $\lim_{x \to +\infty} \tanh x = 1$, $\lim_{x \to -\infty} \tanh x = -1$. Die Funktion $tanh : \mathbb{R} \longrightarrow]-1,1[$ ist bijektiv. Ihre Umkehrfunktion wird mit artanh :] -1,1[$\longrightarrow \mathbb{R}$ bezeichnet. Es gilt dann: artanh' $y = \frac{1}{1-v^2} \ \forall y \in]-1,1[.$

7.1 Ableitungen

$$(ax^{z})' = azx^{z-1}$$

$$(x^{x})' = (e^{x \ln x})' = (\ln(x) + 1)e^{x}$$

$$(x \ln x)' = \ln(x) + 1$$

$$e'^{x} = e^{x}$$

$$\sin' x = \cos x$$

$$\cos' x = -\sin x$$

$$\tan' x = \frac{1}{\cos^{2} x}$$

$$\cot' x = -\frac{1}{\sin^{2} x}$$

$$\ln' x = \frac{1}{x}$$

$$\arcsin' x = \frac{1}{\sqrt{1-x^{2}}}$$

$$\arccos' x = \frac{-1}{\sqrt{1-x^{2}}}$$

$$\arctan' x = \frac{1}{1+x^{2}}$$

$$\sinh' x = \cosh x$$

$$\cosh' x = \sinh x$$

$$\tanh' x = \frac{1}{\cosh^{2} x}$$

$$\operatorname{arsinh}' y = \frac{1}{\sqrt{1+y^{2}}} \quad \forall y \in \mathbb{R}$$

$$\operatorname{arcosh}' y = \frac{1}{\sqrt{y^{2}-1}} \quad \forall y \in]1, +\infty[$$

$$\operatorname{artanh}' y = \frac{1}{1-y^{2}} \quad \forall y \in]-1, 1[$$

Jonas Degelo Analysis I FS2020

7.2 Integrale

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

$$\sin 3x = 3 \sin x - 4 \sin^3 x$$

$$\cos 3x = 4 \cos^3 x - 3 \cos x$$

$$\tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$$

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$$

$$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{1 + \cos x}$$

$$\tan^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x} \tan^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$

$$\sin x + \sin y = 2 \sin \frac{x + y}{2} \cos \frac{x - y}{2}$$

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x-y) + \cos(x+y))$$

$$\sin x \cos y = \frac{1}{2}(\sin(x-y) + \sin(x+y))$$

7.4 Grenzwerte

$$\lim_{x \to \infty} (1 + \frac{x}{n})^n = e^x$$

$$\forall \alpha \in \mathbb{R} \quad \lim_{x \to \infty} \sqrt[n]{n^{\alpha}} = 1$$

$$\lim_{x \to \infty} \sqrt[n]{n!} = \infty$$

$$\forall \alpha \in \mathbb{R}, |q| < 1 \quad \lim_{x \to \infty} n^{\alpha} \cdot q^n = 0$$

$$\lim_{x \to 0} \sqrt[x]{x} = \dots$$

$$\lim_{x \to 0} x^x = \dots$$