Wed	nesd	lay	412	3																	
NN	form	n U	ntin	rinc	j (ક્ષા	19)														
reco	<u>(1)</u>														e 5,		ny E·	20, 1	fner(2	
?				>0,				>0	th	q+	work	C 5 ;	for a	ılı x	.es	, ?					
ex)			V	0h																	
	5	(×0)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ;																	
46t	Jo t	ç	oe a	func	tina	fva	MA 6	5,4	S	STR	th.	R	(A)o	Sau -	H hat	€ is	(a to	:forn	11.		
	COV	nuiti	ous		Sif	for	an							_					-	-y < 8	>
	: {()	() =	lα	is <u>r</u>	ot	นท	i f .			.>0?		7									
<u>ex</u>				wor nt o					shoul	d w	ork :	for all	Xo	,∈[o,	ıJ						
note:	if	f is	CON	on I	us on	5															
				f u				0													
thm			be a, b		Cov	TNU	CNON	fur	ction	n OY	۱ ۱	a,67	. 17	hen	f is	uni	form	ly	conti	inuou	2
															On (a ₁ b		y sul	oset	of S	S .	

PROOF: By contradiction

let f be a continuous function on $[a_1b]$, suppose that f is nat uniformly conton $[a_1b]$. This means there exists a E>0 st for each 8>0 there exists $x,y\in S$ st $|x-y|\leq S$ and $|f(x)-f(y)|\geq E$. Take S=|n|, we see that for each |n|, there exists |x|, $|y|\leq S$ such that $|x|-y|\leq |n|$, and $|f(x|)-f(y|)\geq E$. Since |f(x|) is bounded, by |f(x|)-f(y|) is closed and |f(x|)-f(y|)> E. Converging to some |f(x|)-f(y|)> 1 is closed and |f(x|)-f(y|)> 1. Then, |f(x|)-f(y|)> 1 is closed and |f(x|)-f(y|)> 1. Cexplain |f(x|)-f(y|)> 1. Hence |f(x|)-f(y|)> 1. Which contradicts |f(x|)-f(y|)> 1. Which contradicts |f(x|)-f(y|)> 1. Thus |f(x|)-f(y|)> 1.

Compactness in terms of sequences

We showed that

if I is continuous on [9,6] then

- (1) f is bounded on [9,6]
- (2) f attains its min and max values on (a, 63
- (3) & 15 uniformly continuous on [9,6]

in the three proofs, we used

- · every sequence in [a,b] has a subsequence converging to a point in [a,b]
- def a set Sin IR, or more generally in a metric space (M,a) is called compact if every sequence in S has a subsequence converging to a point in S note: (1,2,3) hold for any continuous function from a compact set S to R
- thm a set S in IR is compact \iff it is closed and bounded (hw) note: in metric spaces, in general \implies but not \iff (hw)

frid	ay	414																		
_imit	s of	Fuv	nction	15																
def \	let	α€	IR as	nd su	1000Se	. th	cat a	fun	ction	5	is de	fined	Oh	JI	9a3	Sov	SOM	L Op	en	
					iining				,,,,,,											
					J		2016		И	المناط		C()					anal			
				if.		IUWK	oer l	- 12	INCE	HAMIL	01	3(X)	as a	X 10	Nas	to a	. WILL	W	, rc	
																lina				
	(;)						(X _n)	in J	\ Eas	COV	nvergi	ng t	o a	we	have	n⇒0	b + (2	(^N) =	L	
		•••	equiv	valen	tly															
	(ii)	for	each	270	, th	ere i	exists	8>1	o su	ch th	at X	.e J\	8a3	and	12-	a < 8	im	ply 1	f(x)	LKE,
		,	equiv	valen	tly	•														
	(iii)				•		exists	8>0) SW	ch th	at C)< x	-a <	Siv	nplie	, 1£	(x)-L	168	3	
remo	arks:																			
			of.	Sirc+	tian	defi	nitions	Can	he	nroue	a) sin	ilar Iu	to	eouiv	A lewro	ot	2 40	finiti	ions of	
										Pivvo	u 3111	יייעיי יי	10	-quivi	Alcaice	U,	W OIC	1.4///	VII.S - U(
		•					is eas	9 10	266											
	2 lim																			
							ed at													
<i>⇒</i> > d	lefinin	ig or	cha	inging	۵	doe	s no	t af	feet	the li	timi									
≥) S	чрроз	e thi	at f	is de	fincel	on	an op	en Ir	iterva	1 2	Conta	ining	a. T	nen	fis	contin	uous	at a	if an	d
	only	if	lim x-ja	f(x):	= f(a)															
ex	Let	f(x)	$=\frac{x^2}{x}$	-1	Let	us	CONS	ider	lim x=1	f(2)										
	The	funct	on f	15	de fine	el C	n IA	1813	. 0	n this	s set	£ ()) = ((x - l) (- <u>n</u>	= 2	†1			
							-I, we													
dobl	S	010117	عاد معا			, , ,	s def	Optu		الد:		() ()	lao o		lim	_ {(χ)=L	iŧ		
							ا (طاه											y+ Y.	9	
							.xists												Pb	
							s defi													
	(i) 5	01 61	very	seq.	(xn)	in (.c,a) c	onver	ging	to a	we l	nave	lim :	f(x,)	= F	e	quival	entle	j	
	(ii)	for d	each	٤>	0 th	ere e	xists	S>0	st o	- 8<	x<α	im	plies	1 } (XJ-L	48	0-	e	<u>- န</u>	

```
ex For the step function f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases} \begin{cases} \lim_{x \to 0^{+}} f(x) = 0 \end{cases} and \begin{cases} \lim_{x \to 0^{+}} f(x) = 1 \end{cases}
indeed, for every seq (2n) in (-00,0) converging to x has lim 5(xn)=0
        for every seq (yn) in (0,0) converging to x has lim f(yn)=1
ex) for the salt and pepper function f(x) \in \{0, x \in \mathbb{Q}, 1 \} lim f(x) = \{0, x \in \mathbb{Q}, x \neq 0\}
     Let x_n = 1/n, then x_n \in \mathbb{Q} and x_n > 0, x_n \to 0 and \lim_{n \to \infty} f(x_n) = 1
     let yn = 12, then yn & and yn >0, yn >0 and lim & f(yn) = 0
     Since there are 2 sequences in (900) converging to 0 w/ different
     limits, x > 0+ f(x) DNE
thrm Suppose that a, LER and a function & is defined on J/gaz for some open interval
     J containing a. Then x = a f(x)=L = lim f(x) = L = lim f(x)
     PROOF => is clear
     (4) Suppose that lim f(x)=L= lim f(x)
     Let \varepsilon>0. Then there exists \delta, >0 and \delta_2 >0 such that
          a-8, < x < a implies |f(x)-L| < \varepsilon and
          a<x<a+8, impiles |f(x)-1/28
     Let 8=min [8, , 8, 4. Then, O<1x-a1<8 implies Iflx)-L1<&
corollary) if at least one of the one-sided limits does not exist, or they are not equal
          then x-a f(x) does not exist
note: in ex 2, x \to 0 f(x) DNE since \lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x)
       in ex 3, lim sw DNE since lim sw DNE
than Suppose that x = a f(x) = L, ER and lim g(x) = La ER. Then
     (i) lim (f+g)(x) = L,+La
     (ii) x+0 (fg)(x)= L11x
     (iii) \lim_{x \to a} \left( \frac{1}{q} \right)(x) = \frac{L}{L_0} provided \lim_{x \to a} \left( \frac{1}{q} \right)(x) = \frac{L}{L_0}
     PROOF OUTLINE - explain why defined on JIEa], then follows from corresponding thin forsa
Remark: This result also holds for one sided limits
```