JOINT P	MF	¥
---------	----	---

The joint or PMFs of multiplerandom variables say in pairs X and Y are called as Joint distributions of X & Y.

While individual PMF of X and individual of Y are thus called as marginal distributions.

	↑
Consider a discrete Random voricible a PMF gives the probability of each possible value a	JOINT PMF gives propability of both X & Y talking sperific values.
random variable can	$P\left(X=X,Y=Y\right)$
Marginal PMF	e.g. you toss two comydia X= event when 2 occurs in
Now when you have 2 random variable X & Y, the marginal probabilities /PMF of X ory is obtained by	Y= event when 5 occurs in one die.
OF ONE CVE	The probability when both 2 & 5 occurs P(2,5).
$P_X(x) = Y = Y = Y = Y = Y = Y = Y = Y = Y = $	

JNDEPENDANCE OF RANDOM VARIABLES.

Now in the previous example X and Y were 2 different. Random variable which can be dependent or independent.

if
$$P(X=X, Y=Y) = P_X(x).P_Y(y)$$

i.e joint PMF is the product of marginal PMF of X and Y then they are independant.

Example: Two fair six-sided clices are rolled. Let

X represent the outcomes of the first dice

and Y represent the occurrent the second die.

is Find Marginal PMF of X & Y.

(ii) Compute the joint PMF for each case where X=2

(iii) Are X and Y independant? Prove it.

The marginal PMF of X (P3(X)- 1 (equally)ikely for all as relative X= 31,2,3,4,5,63