

Aim

Create a colour-scaled map showing the level of genetic diversity of different populations of *Posidonia oceanica* (Jahnke et al., 2015)

Work Flow

Part 1: Genetic Data

Country	Location	Long	Lat	No. in Fig. 1	Sampling design	N	R original paper	Na original paper	Ho original paper	R (N=14)	Na (N=14)	A ₂₀ (MLG =20)	Ho (N=14)	Ref	Cum. threat in questionn aire
	Skerki	11.08	37.70	1	Randomly, every 8–10 m or as in Arnaud-Haond <i>et al.</i> (2007b).	21	0.35	1.77	0.52	0.23	1.7		0.53	Serra et al. 2010	
	Talbot	11.59	37.49	2	Randomly, every 8–10 m or as in Arnaud-Haond et al. (2007b).	23	0.59	1.85	0.36	0.69	1.85		0.37	Serra et al. 2010	
Croatia	Split	16.42	43.50	3	At randomly drawn coordinates in a 20 m x 80 m area (for 16 meadows). Every 7–8 m following a linear transect (for 16 meadows).	22	0	1.38	0.5	0	1.46		0.46	Amau d- Haond et al. 2007	

Reformat Data (Gedit)

Step 1: Remove excessive tabs and replace with nothing:

Find: \t\t\t\t\t

Replace: <nothing>

Step 2: Replace all missing values with 'NA' so that R can read it in:

Find: \t \t

Replace: \tNA\t

Step 3: Replace extra lines with a single carraige return:

Find: \n\n

Replace: \n

Result

1 Long \longrightarrow Lat \longrightarrow NInd	→ R14	→ Na14	A20	→ Ho14
$211.08 \rightarrow 37.7 \rightarrow 21$				
$311.59 \rightarrow 37.49 \rightarrow 23$				
$416.42 \rightarrow 43.5 \rightarrow 22$				
5 32.44 → 34.73 → 38 —				
$69.09 \longrightarrow 41.42 \longrightarrow 20$				
$723.93 \rightarrow 37.72 \rightarrow 40$	0.69	2.3	→ NA	→ 0.31
$826.22 \rightarrow 39.39 \rightarrow 18$	→ 0.77	→ 1.7 —	→ NA —	→ 0.31
$923.73 \rightarrow 37.86 \rightarrow 29$	0.38		→ NA	→ 0.3
10 15.77 \rightarrow 39.85 \rightarrow 24 \rightarrow	→ 0.77	2.85	→ NA —	0.39
11 16.05 \rightarrow 39.15 \rightarrow 25 $-$	→ 0.77	2.77	→ NA	→ 0.45
12 15.64 \rightarrow 38.12 \rightarrow 29 $-$	→ 0.15	2.08	→ NA —	→ 0.47
13 15.57 \rightarrow 38.21 \rightarrow 39 $-$	0.23	2.08	> NA	0.61
$14\ 15.19 \rightarrow 37.29 \rightarrow 40$	→ 1 —	3.39	→ 3.72	0.5
15 12.33 \rightarrow 37.91 \rightarrow 41 $-$	→ 1 —	→ 3	→ 3.32	0.65
16 12.43 \rightarrow 37.81 \rightarrow 41 $-$	→ 1 —	2.92	→ 3.25	0.52
$17\ 13.08 \longrightarrow 37.5 \longrightarrow 40$	0.46	2.85	> NA	0.48
$18\ 11.92 \rightarrow 36.83 \rightarrow 38$	→ 1 —	→ 4.23 -	→ 4.15	→ 0.51
19 15.98 \rightarrow 37.91 \rightarrow 40 $-$	→ 0.77	2.85	> NA	0.4
$20\ 17.15 \rightarrow 39.09 \rightarrow 25$	0.69	→ 2.31	→ NA -	→ 0.34
$21\ 16.96 \rightarrow 39.5 \rightarrow 36$	0.46	→ 1.54	> NA	→ 0.15

Shell

- Run Python
- Run R

Python

Goal: make a subset of a complete data set according to what the user would like to use

- choice of possible data with associated code
 - "Make a map of: "
 - "AllelicRichness(MLG=20): A20"
 - "Observed Heterozygozity (N=14): Ho14"
- Ask user to input choice (raw input) "Enter the code of the desired data: "
- Translate the code to its associated column name Trans={'Nind':2, 'R14':3,...}
- Make subset of complete data for the map, with Long, Lat and chosen data OutFile.write(ElementList[a])

R

Goal: make a map of the data generated from the python file

- Import the data made in python and saved on the current directory
- Make a map of mediterranean using coordinates
- Put the data points on the map and add a colour gradient according to its value

Result

Hiccups along the way...

- Finding the right code to use (R)
- Discovering that certain functions were not compatible with each other
- Inexperience

Part II: Human impacts data

Fishing_deme	Nutrient_Inpu	at Commercial_Shipping	Organic_Pollution	UV_Radiation	Urban_Run	off Ocean_Acidification	Sea_Surface	Oil_Spills	Risk_of_Hypoxia	cumulative_thre
0.226	0.005	0.468		0 0.833	0.039	0.846	0.226	() (9.89
0.228	0.198	0.283	0.014	0.833	0.255	0.869	0.139	(0 0.439	11.49
0.204	0.284	0.262	0.031	0.833	0.231	0.869	0.242	(0.044	2.76
0.147	0.213	0.225	0.016	0.737	0.303	0.88	0.143	() (3.22
0.149	0.416	0.115	0.092	0.737	0.337	0.857	0.075	(0.476	3.17
0.149	0.244	0.295	0.022	0.737	0.182	0.857	0.045	() (6.88
0.259	0.056	0.212	0.002	0.909	0.107	0.869	0.006	0.005	0.44	4.65
0.26	0.018	0.181		0.909	0.062	0.869	0.009	0.001	0.34	4.37
0.316	0.135	0.252	0.007	0.873	0.035	0.869	0.162	(0.142	4.29
0.316	0.08	0.192	0.003	0.873	0.018	0.869	0.149	(0.071	3.36
0.316	0.08	0.192	0.003	0.873	0.018	0.869	0.149	(0.071	3.36
0.111	0.063	0.246	0.003	0.833	0.079	0.869	0.027	0.001	(2.79
0.087	0.156	0.146	0.041	0.737	0.207	0.869	0.004	() (6.12
0.09	0.07	0.023	0.013	0.816	0.196	0.857	0.086	0.002	(1.34
0.098	0.006	0.271	0.001	0.679	0.062	0.869	0.283	(0.327	3.26
0.102	0.334	0.12	0.174	0.909	0.261	0.857	0.009	() (4.07
0.118	0.129	0.023	0.03	0.909	0.19	0.88	0.075	() (4.32
0.124	(0.093		0 0.788		0 0.88	0.258	() (2.46
0.138	0.199	0.107	0.063	0.833	0.194	0.869	0.009	() (5.76
0.094	0.037	0.012	0.006	0.788	0.2	0.88	0.182	() (6.1
0 117	0 120	0.27	0.034	n 700	0.244	0.901	0.120	1	0 0 419	11 17

Reformat Data

Step 1: Replace commas for tabs:

Find: , Replace: \t

```
1 fish \longrightarrow nut \longrightarrow ship \longrightarrow pol \longrightarrow uv \longrightarrow uvb \longrightarrow oa \longrightarrow sst \longrightarrow inv \longrightarrow pop \longrightarrow oil \longrightarrow hypox \longrightarrow cthreat \longrightarrow
                                                                          Long \longrightarrow Lat
                           2 \text{ 0.122} \rightarrow 0.005 \rightarrow 0.468 \rightarrow 0 \longrightarrow 0.833 \rightarrow 0.039 \rightarrow 0.846 \rightarrow 0.226 \rightarrow 0 \longrightarrow 0
                                                                              9.89 -- -1.99
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            → 36.82
                           3\ 0.145 \rightarrow 0.198 \rightarrow 0.283 \rightarrow 0.014 \rightarrow 0.833 \rightarrow 0.255 \rightarrow 0.869 \rightarrow 0.139 \rightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0.439 \rightarrow 11.49 \rightarrow 0.439 \rightarrow 0.439
                                                                              0.01 \longrightarrow 38.62
                           4\ 0.132 \rightarrow 0.284 \rightarrow 0.262 \rightarrow 0.031 \rightarrow 0.833 \rightarrow 0.231 \rightarrow 0.869 \rightarrow 0.242 \rightarrow 0.049 \rightarrow 0.249 \rightarrow 0 \longrightarrow 0.044 \rightarrow 2.76 \rightarrow 0.044 \rightarrow 0.249 \rightarrow 0.044 
                                                                              0.05 \longrightarrow 38.63
                           5 \ 0.111 \rightarrow 0.213 \rightarrow 0.225 \rightarrow 0.016 \rightarrow 0.737 \rightarrow 0.303 \rightarrow 0.88 \rightarrow 0.143 \rightarrow 0.393 \rightarrow 0.25 \rightarrow 0 \longrightarrow 0 \longrightarrow 3.22 \rightarrow 0.25 \rightarrow 0
                                                                              2.84 \longrightarrow 41.69
                           6\ 0.132 \rightarrow 0.416 \rightarrow 0.115 \rightarrow 0.092 \rightarrow 0.737 \rightarrow 0.337 \rightarrow 0.857 \rightarrow 0.075 \rightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0.476 \rightarrow 3.17 \rightarrow 0.000 
                                                                              3.19 \longrightarrow 42.21
                           7\ 0.132 \rightarrow 0.244 \rightarrow 0.295 \rightarrow 0.022 \rightarrow 0.737 \rightarrow 0.182 \rightarrow 0.857 \rightarrow 0.045 \rightarrow 0.147 \rightarrow 0.612 \rightarrow 0 \longrightarrow 0 \longrightarrow 6.88 \rightarrow 0.045 \rightarrow 0.045 \rightarrow 0.047 \rightarrow 0.
                                                                              3.3 \longrightarrow 42.3
                           8 0.17 - 0.056
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \to 0.212 \to 0.002 \to 0.909 \to 0.107 \to 0.869 \to 0.006 \to 0.721 \to 0.31 \to 0.005 \to 0.44 \to 4.65 \to 0.008 \to 0.008
                                                                          1.41 \longrightarrow 38.75
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \longrightarrow 0.909 \longrightarrow 0.062 \longrightarrow 0.869 \longrightarrow 0.009 \longrightarrow 0.721 \longrightarrow 0.307 \longrightarrow 0.001 \longrightarrow 0.34 \longrightarrow 4.37 \longrightarrow
                           90.17 \longrightarrow 0.018
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          \rightarrow 0.181 \rightarrow 0
                                                                              1.46 \longrightarrow 38.74
10\ 0.221 \rightarrow 0.135 \rightarrow 0.252 \rightarrow 0.007 \rightarrow 0.873 \rightarrow 0.035 \rightarrow 0.869 \rightarrow 0.162 \rightarrow 0.783 \rightarrow 0 \longrightarrow 0 \longrightarrow 0.142 \rightarrow 4.29 \rightarrow 0.007 \rightarrow 0
                                                                          2.93 \longrightarrow 39.15
    11\ 0.221 \longrightarrow 0.08 \longrightarrow 0.192 \longrightarrow 0.003 \longrightarrow 0.873 \longrightarrow 0.018 \longrightarrow 0.869 \longrightarrow 0.149 \longrightarrow 0.348 \longrightarrow 0.228 \longrightarrow 0 \longrightarrow 0.071 \longrightarrow 3.36 \longrightarrow 0.008 \longrightarrow 0.008
```


R

Goal: make a map of the data generated from the python file

- Import the data
- Make a map of mediterranean
- Put the data points on the map and add a colour gradient based on whichever variable is called upon (e.g. ocean acidification or nutrient input)

Result

