HW Solution

CS/ECE 374: Algorithms & Models of Computation, Spring 2019

Submitted by:

- \bullet «Alan Lee»: «alanlee2»
- ullet «Joshua Burke»: «joshuab3»
- \ll Gerald Kozel \gg : \ll gjkozel $2\gg$

```
(100 PTS.) As easy as 1,2,3,6. Let L = \{a^i b^j c^k \mid k = i + j\}.
```

- 1 (20 PTS.) Prove that L is context free by describing a grammar for L.
- 2 (80 PTS.) Prove that your grammar is correct. (See extra problems for an example of how this is done.)

Version: 1.0

12 Solution:

1.
$$G = (V, T, P, S)$$

 $V = \{S, A, B\}$
 $T = \{a, b, c\}$
 $P =$
 $S \rightarrow A$
 $A \rightarrow aAc \mid B \mid \epsilon$
 $B \rightarrow bBc \mid \epsilon$

2. To prove our grammar is correct, we will prove $L \subseteq L(G)$ and $L(G) \subseteq L$. We will separately prove these statements.

Claim 1. $L(G) \subseteq L$, meaning every string in L(G) has the property that the number of a's and b's is equal to the number of c's.

Proof: we will prove that for any string w, we have $\Delta(w) = (\#_a(w) + \#_b(w)) - \#_c(w)$. We will prove that $\Delta(w) = 0$ for every string $w \in L(G)$.

Inductive Hypothesis: let w be an arbitrary string in L(G) and consider an arbitrary derivation of w of length k. Assume that $\Delta(u) = 0$ for every string u in L(G) that can be derived with fewer than k production rules. There are 3 cases to consider depending on the first production in the derivation of w.

Base Case: $w = \epsilon$ from some set of production rules, then by definition, $\Delta(w) = (\#_a(w) + \#_b(w)) - \#_c(w) = 0$.

Sub case 1: Suppose derivation of w begins with $S \to^* w$. Then w = u for some string $u \in L(G)$, that can be derived with fewer than k production rules. The inductive hypothesis implies $\Delta(u) = 0$. It then follows that $\Delta(w) = 0$.

Sub case 2: Suppose w uses $S \to A$ making w = awc. Then w = auc for some string $u \in L(G)$ The inductive hypothesis implies $\Delta(u) = 0$. It then follows that $\Delta(w) = 0$.

Sub case 3: Suppose w uses $S \to A \to B$ making w = bwc. Then w = buc for some string $u \in L(G)$. The inductive hypothesis implies $\Delta(u) = 0$. It then follows that $\Delta(w) = 0$.

In all cases, all strings produced will hold the property $\Delta(w) = 0$.

Claim 2. $L \subseteq L(G)$, meaning G generates every string with the property that the number of a's and b's is equal to the number of c's.

Proof: we will prove for any arbitrary string w in language L, w is an element of L(G).

Base Case: $w = \epsilon$, then w is an element of L(G) because of the production rule $S \to A \to \epsilon$.

Non-Empty Case:

Sub case 1: By using production rules, w uses $S \to A$ making w = auc where u is a nonempty string with the $\#_a(u) + \#_b(u) = \#_c(u)$. This implies $u \in L(G)$. Thus the production rule $A \to aAc$ implies that $w \in L(G)$.

Sub case 2: w = buc where u is a non empty string with $\#_b(u) = \#_c(u)$ and $\#_a(u) = 0$. this implies that $u \in L(G)$ thus the rule $B \to bBc$ implies $w \in L(G)$.

Sub case 3: w = u where u is a non empty string with $\#_b(u) = \#_c(u)$ and $\#_a(u) = 0$. This is based on the result of sub case 2 that B will always satisfy the condition $\#_b(u) = \#_c(u)$ and $\#_a(u) = 0$. This implies that $u \in L(G)$ thus the rule $A \to B$ implies $w \in L(G)$.

In all the cases, we conclude that G generates w.

With claim 1 and claim 2 together, it implies that L = L(G).