⋄⋄⋄ Lycée de Dindéfélo ⋄⋄⋄			A.S.: 2024/2025
Matiàna - Mathématiques	Nivosu . T C2	Data	

Matière : Mathématiques Niveau: T S2 Date: 09/06/2025

Problèmes proposés au BAC S2 Sénégal de 1999 à 2022

Problème 1 Extrait BAC 1999 1^{er} groupe On | Partie C: considère la fonction f définie par :

$$f(x) = \begin{cases} x + \ln \left| \frac{x - 1}{x + 1} \right| & \text{si } x \in] - \infty, -1[\cup] - 1, 0[\\ x^2 e^{-x} & \text{si } x \in [0, +\infty[$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$, d'unité 2 cm.

Partie A

- 1 Déterminer l'ensemble de définition D_f de f. Calculer f(-2) et f(3).
- Calculer les limites aux bornes de D_f .
- Étudier la continuité de f en 0.
- Établir que la dérivée de f est donnée par :

$$f'(x) = \begin{cases} \frac{x^2 + 1}{x^2 - 1} & \text{si } x \in]-\infty, -1[\cup] - 1, 0[\\ xe^{-x}(2 - x) & \text{si } x \in [0, +\infty[\end{cases}$$

- **b** La fonction f est-elle dérivable en 0 ? Justifier votre réponse.
- Dresser le tableau de variations de f.
- 5 Démontrer que l'équation f(x) = 0 admet une solution unique α comprise entre -1.6 et -1.5.
- Justifier que la droite (D) d'équation y = x est une asymptote à la courbe (C_f) en
 - **b** Étudier la position relative de (C_f) par rapport à la droite (D) pour $x \in]-\infty, -1[\cup]-1, 0[.$
 - Tracer (C_f) .

Partie B:

Soit q la restriction de f à I = [0; 2].

- 1 Montrer que g définit une bijection de I vers un intervalle J à préciser.
- 2 On note q^{-1} la bijection réciproque de q.
 - a Résoudre l'équation $g^{-1}(x) = 1$.
 - **b** Montrer que $\left(g^{-1}\right)'\left(\frac{1}{e}\right) = e$.
 - Construire $(C_{g^{-1}})$, la courbe de g^{-1} .

 β étant un réel strictement positif, on pose :

$$I(\beta) = \int_0^\beta f(x) \, dx$$

- a Interpréter graphiquement $I(\beta)$.
 - En procédant par une intégration par parties, calculer $I(\beta)$.
- 2 Calculer $\lim_{\beta \to -\infty} I(\beta)$.
- 3 On pose $\beta = 2$.
 - Calculer I(2).
 - En déduire la valeur en cm² de l'aire du domaine du plan délimité par la courbe (C_f) , l'axe des abscisses et les droites d'équations $x = 0 \text{ et } x = \frac{4}{e^2}.$

Problème 2 BAC 1999 Remplacement

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x \in]-\infty; 0[\\ \ln\left|\frac{x-1}{x+1}\right| & \text{si } x \in [0; 1[\cup]1; +\infty[$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$ d'unité 2 cm.

Partie A:

- 1 Étudier la continuité de f en 0.
- Montrer que $\forall x \in]0;1[$ $\frac{f(x)}{x} = \frac{\ln(1-x)}{x} - \frac{\ln(1+x)}{x}$
 - Étudier la dérivabilité de f en 0.
 - En déduire que (C_f) admet au point d'abscisse 0 deux demi-tangentes dont on donnera les équations.
- Étudier les variations de f.
- Tracer (C_f) .

Partie B:

Soit g la restriction de f à $]1; +\infty[$.

- 1 Montrer que g est une bijection de $]1; +\infty[$ vers un intervalle J à préciser. On notera g^{-1} la bijection réciproque de g.
- 2 Montrer que l'équation g(x) = -e admet une unique solution α sur l'intervalle]1; $+\infty$ [. (On ne demande pas de calculer α).
- **3** Montrer que $\forall x \in J, \ g^{-1}(x) = 1 \frac{e^x}{e^x 1}$.
- 4 Construire $(C_{g^{-1}})$. (On indiquera la nature et l'équation de chacune des asymptotes à (C_q) et $(C_{q^{-1}})$).
- 5 Calculer en cm² l'aire A de l'ensemble des points M(x; y) défini par :

$$\begin{cases} -\ln 7 \le x \le -1\\ 0 \le y \le g^{-1}(x) \end{cases}$$

<u>Problème 3</u> BAC 2000 1^{er} groupe Soit f la fonction définie de \mathbb{R} dans \mathbb{R} par :

$$f(x) = \begin{cases} x \ln(x+1) & \text{si } x \ge 0\\ xe^{\frac{1}{x}} & \text{si } x < 0 \end{cases}$$

Le plan est muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$ (unité graphique 2 cm).

On désigne par (C) la courbe représentative de f et (Δ) la droite d'équation y=x.

Partie A:

- 1 a Montrer que f est continue en 0.
 - **b** Étudier la dérivabilité de f en 0.
 - c Interpréter les résultats précédents.
- 2 a Montrer que $\forall x < 0, f'(x) > 0.$
 - b Étudier les variations de f sur $[0; +\infty[$. En déduire que $\forall x > 0, f'(x) > 0$.
 - c Donner le tableau de variations de f.
- 3 Déterminer $\lim_{x \to -\infty} x \left(e^{\frac{1}{x}} 1 \right)$, (on pourra poser $u = \frac{1}{x}$).
 - b Montrer que la droite (D): y = x + 1 est asymptote à (C) au voisinage de $-\infty$. On admettra que (C) est en dessous de (D).
 - Déterminer la nature de la branche infinie de (C) en $+\infty$.
- 4 Construire (C), on précisera les coordonnées de I, intersection de (C) et (Δ) pour x > 0.

Partie B:

1 Déterminer les réels a, b et c tels que :

$$\forall x \in \mathbb{R}_+, \quad \frac{x^2}{x+1} = ax + b + \frac{c}{x+1}.$$

2 En déduire au moyen d'une intégration par parties que la fonction F telle que :

$$F(x) = \frac{(x^2 - 1)\ln(x + 1)}{2} - \frac{1}{4}(x^2 - 2x)$$

est une primitive de f sur \mathbb{R}_+ .

3 En déduire en cm² l'aire A de la partie du plan délimitée par (Δ) , (C) et les droites d'équations x = 0 et x = e - 1.

Partie C:

- Montrer que f admet une bijection réciproque notée f^{-1} .
 - b f^{-1} est-elle dérivable en 0 ? Préciser la nature de la tangente en 0 à la courbe f^{-1} .
- 2 Construire (C_0) , la courbe de f^{-1} dans le repère $(O; \vec{i}; \vec{j})$.
- **3** Déduire du **B.3**) l'aire du domaine D définie par : M(x;y) tels que :

$$\begin{cases} 0 \le x \le e - 1 \\ f(x) \le y \le f^{-1}(x) \end{cases}$$

Problème 4 BAC 2000 Remplacement

Partie A : Soit g la fonction définie par $g(x) = 1 - xe^{-x}$.

- 1 Étudier les variations de g.
- 2 En déduire le signe de g(x) suivant les valeurs de x

Partie B : Soit f la fonction définie par :

$$f(x) = \begin{cases} \ln(-x) & \text{si } x < -1\\ (x+1)(1+e^{-x}) & \text{si } x \le -1 \end{cases}$$

On désigne par (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}; \vec{j})$ (unité graphique 2 cm).

- 1 Étudier la continuité et la dérivabilité de f sur \mathbb{R} .
- 2 Étudier les variations de f, puis dresser le tableau de variations de f.
- 3 a Montrer que la droite (D): y = x+1 est une asymptote à (C_f) en $+\infty$.
 - b Étudier la position relative de (C_f) par rapport à (D) sur $[-1; +\infty[$.
- Montrer qu'il existe un unique point de la courbe (C_f) où la tangente (T) est parallèle à la droite (D).

- 5 Tracer (C_f) , l'asymptote (D) et la tangente (T), on précisera la tangente ou les demi-tangentes à (C_f) au point d'abscisse -1.
- 6 a Montrer que f est une bijection de $[-1; +\infty[$ sur un ensemble J que l'on précisera.
 - b Construire (C_0) , la courbe de f^{-1} sur le même graphique que la courbe (C_f) .

Partie C : Pour $\beta \ge -1$, on note $A(\beta)$ l'aire en cm² de la partie du plan définie par :

$$\begin{cases}
-1 \le x \le \beta \\
x+1 \le y \le f(x)
\end{cases}$$

- 1 Calculer $A(\beta)$ à l'aide d'une intégration par parties.
- 2 Montrer que $A(\beta)$ admet une limite finie lorsque $\beta \to +\infty$. Interpréter graphiquement cette limite.

Problème 5 BAC 2001 1er groupe

On considère la fonction g définie par :

$$f(x) = \begin{cases} x(1 - \ln x)^2 & \text{si } x > 0\\ 0 & \text{si } x = 0 \end{cases}$$

On appelle (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1 Étudier la continuité et la dérivabilité de g sur son ensemble de définition.
- 2 Étudier les variations de g puis dresser son tableau de variations.
- 3 Tracer (C).
- 4 Soit α un réel appartenant à l'intervalle]0; e[.
 - a Calculer à l'aide de deux intégrales par parties, l'aire $A(\alpha)$ du domaine plan délimitée par l'axe des abscisses, la courbe (C) et les droites d'équations respectives $x = \alpha$ et x = e.
 - b Calculer
- 5 a Déterminer les coordonnées des points d'intersection de la courbe (C) et la droite (Δ) d'équation y=x.
 - b Pour quelles valeurs de m la droite (Δ_m) d'équation y = mx recoupe-t-elle la courbe (C) en deux points M_1 et M_2 autres que O
 - La droite (Δ_m) coupe la droite (D) d'équation x = e en P.

 Montrer que $OM_1 \times OM_2 = OP^2$.

- 6 a Montrer que la restriction h de la fonction g à l'intervalle $[e; +\infty[$ admet une réciproque h^{-1} dont on précisera l'ensemble de définition.
 - b Sur quel ensemble h^{-1} est-elle dérivable? Calculer $h(e^2)$; en déduire $(h^{-1})'(e^2)$.
 - c Construire la courbe de h^{-1} .

Problème 6 BAC 2002 1^{er} groupe

Partie A : On considère la fonction g définie sur $+ \setminus \{1\}$ par :

$$g(x) = \begin{cases} \frac{1}{(\ln x)^2} - \frac{1}{\ln x} & \text{si } x > 0 \text{ et } x \neq 1\\ 0 & \text{si } x = 0 \end{cases}$$

- 1 Montrer que g est continue en 0.
- 2 Étudier les limites de g aux bornes de son ensemble de définition.
- 3 Dresser le tableau de variations de q.
- 4 En déduire le signe de g(x) en fonction de x.
- 5 Calculer en cm² l'aire de la partie plane comprise entre la courbe de g, l'axe des abscisses et les droites d'équations respectives : x = e et $x = e^2$.

Partie B : On considère la fonction f définie sur $\mathbb{R}^+ \setminus \{1\}$ par : $f(x) = \begin{cases} -\frac{x}{\ln x} & \text{si } x > 0 \text{ et } x \neq 1 \\ 0 & \text{si } x = 0 \end{cases}$

- Montrer que f est continue à droite et dérivable à droite au point 0.
 En déduire l'existence d'une demi-tangente à la courbe représentative (C) de f au point d'abscisse 0.
- 2 Étudier les limites aux bornes de son ensemble de définition.
- 3 Comparer f'(x) et g(x). En déduire les variations de f et son tableau de variations.
- 4 Déterminer l'équation de la tangente (D) à la courbe (C) au point d'abscisse e^2 .
- 5 Soit M le point de (C) d'abscisse x et N le point de (D) de même abscisse x. On pose $\varphi(x) = \overline{MN}$.
 - a Montrer que $\varphi(x) = f(x) + \frac{x + e^2}{4}$.
 - b Déduire de la **partie A** le tableau de variations de f'(x) puis le signe de f'(x) sur $]1; +\infty[$.
 - c En déduire le signe de $\varphi(x)$ sur]1; $+\infty$ [et la position de (C) par rapport à (D) pour les points d'abscisse x > 1.

6 Représenter dans le plan rapporté à un repère orthonormé la courbe (C) et la droite (D) unité 2cm.

Problème 7 BAC 2003 1er GROUPE

Partie A : On considère la fonction u définie sur $[0; +\infty[$ par :

$$u(x) = \ln \left| \frac{x+1}{x-1} \right| - \frac{2x}{x^2 - 1}$$

- 1 Déterminer l'ensemble de définition de u.
 - **b** Calculer u(0) et $\lim_{x \to +\infty} u(x)$.
- Étudier les variations de u.
 (il n'est pas nécessaire de calculer la limite de u en 1).
- 3 Déduire des résultats précédents que :
 - a $\forall x \in [0; 1[, u(x) \ge 0.$
 - b $\forall x \in]1; +\infty[, u(x) < 0.$

Partie B: Soit g la fonction définie sur $[0; +\infty[$ par

$$g(x) = x \ln \left| \frac{x+1}{x-1} \right| - 1$$

- 1 Déterminer D_g (le domaine de définition de g); puis étudier la limite de g en 1.
- - b En déduire que

$$\lim_{x \to +\infty} \frac{x-1}{2} \ln \left(1 + \frac{2}{x-1} \right) = 1.$$

- En déduire que $\lim_{x\to +\infty} g(x) = 1$. Interpréter géométriquement ce résultat.
- \mathbf{d} Dresser le tableau de variations de g.
- e Montrer qu'il existe un réel α unique appartenant à]0; 1[tel que $g(\alpha) = 0$. Donner un encadrement d'ordre 1 de α .
- 2 Tracer la courbe (C_g) de g dans le plan rapporté à un repère orthonormé (unité 2 cm).

Partie C: Soit h la fonction définie sur [0; 1] et

$$f(x) = (x^2 - 1) \ln \sqrt{\frac{x+1}{x-1}}.$$

- 1 Montrer que f est dérivable sur [0;1[et que : $f'(x) = g(x), \forall x \in [0;1[$.
- 2 Déterminer l'aire du domaine plan limité par la courbe (C_g) , l'axe des abscisses et la droite d'équation $x = \alpha$.

Problème 8 BAC 2004 1er GROUPE

Soit f la fonction définie par :

$$f(x) = \frac{(2x-1)e^x - 2x + 2}{e^x - 1}.$$

On note (C) la représentation graphique de la fonction f dans un repère orthonormé $(O; \vec{i}; \vec{j})$, dont l'unité est 2 cm.

Déterminer l'ensemble de définition D_f de la fonction f, et trouver les réels a, b et c tels que pour tout $x \in D_f$, on ait :

$$f(x) = ax + b + \frac{c}{e^x - 1}.$$

- 2 Déterminer les limites de f aux bornes de D_f .
- 3 a Déterminer la fonction dérivée de f.
 - **b** Résoudre dans \mathbb{R} , l'équation :

$$2e^{2x} - 5e^x + 2 = 0.$$

- c En déduire le sens de variation de f et dresser le tableau de variations de f.
- Démontrer que les droites d'équations respectives y = 2x 1 et y = 2x 2 sont des asymptotes de (C) respectivement en $+\infty$ et en $-\infty$.

 Préciser l'autre asymptote.
- 5 Soit x un réel de D_f . On considère les deux points M et M' de (C) d'abscisses respectives x et -x. Déterminer les coordonnées du milieu Ω du segment [MM'].

Que peut-on en déduire pour la courbe (C)?

- $\mathbf{6}$ Tracer la courbe (C).
- 7 a Trouver les réels α et β tels que, pour tout réel x de l'ensemble D_f , on ait :

$$f(x) = 2x + \alpha + \frac{\beta e^x}{e^x - 1}.$$

b Soit k un réel supérieur ou égal à 2. Déterminer l'aire A(k) en cm² de l'ensemble des points du plan dont les coordonnées (x; y) vérifient :

$$\ln 2 \le x \le \ln k$$
 et $2x - 1 \le y \le f(x)$.

Problème 9 BAC 2004 Remplacement

Partie A : Soit l'équation différentielle

$$(E): -\frac{1}{2}y'' + \frac{3}{2}y' - y = 0$$

Déterminer la solution g de (E) dont la courbe représentative (C) passe par le point A(0; -1) et dont la tangente en ce point est parallèle à l'axe des abscisses.

Partie B : Soit la fonction définie sur \mathbb{R} par :

$$f(x) = e^{2x} - e^x.$$

On note (Γ) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$ (unité 2 cm).

- 1) Étudier les variations de f.
- 2 Déterminer l'équation de la tangente à (Γ) au point d'abscisse ln 2.
- 3 Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.

Partie C : Soit h la restriction de f à l'intervalle $[0; +\infty[$.

- 1 Démontrer que h réalise une bijection de $[0; +\infty[$ sur un intervalle J à préciser.
- 2 Démontrer que h^{-1} est dérivable en 3, puis calculer $(h^{-1})'(3)$.
- 3 Déterminer $h^{-1}(x)$ pour tout $x \in J$.
- 4 Tracer (C_0) , la courbe représentative de h^{-1} dans le repère $(O; \vec{i}; \vec{j})$.

Problème 10 BAC 2005 1er GROUPE

Partie A : Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{e^x}{e^x + 1} - \ln(e^x + 1).$$

On note (C) la représentation graphique de la fonction f dans un plan muni d'un repère orthonormal $(O; \vec{i}; \vec{j})$ (unité 2 cm).

- 1 Étudier les variations de f.
- 2 Montrer que $\lim_{x \to +\infty} [f(x) 1 + x] = 0$. Que peut-on en déduire pour (C_f) ?
- 3 Construire (C_f) .
- 4 Montrer que f réalise une bijection de $]-\infty;+\infty[$ sur $]-\infty;0[$.

Partie B : Soit g la fonction définie par :

$$f(x) = e^x \ln(1 + e^x)$$

On note (C_g) sa courbe représentative.

- 1 Montrer que g est dérivable sur \mathbb{R} .
- 2 Montrer que, pour tout réel x, $f'(x) = e^{-x} f(x)$.
- 3 Montrer que $\lim_{x \to +\infty} g(x) = 0$ et $\lim_{x \to -\infty} g(x) = 1$.
- 4 En déduire la nature des branches infinies.
- 5 Dresser le tableau de variations de g.
- 6 Construire (C_q) dans le repère précédent.
- 7 **a** Montrer que $\frac{1}{e^x + 1} = \frac{e^{-x}}{e^{-x} + 1}$.

b À tout réel β , on associe le réel

$$I(\beta) = \int_0^\beta g(x) \, dx.$$

Justifier l'existence de $I(\beta)$.

- c Calculer $I(\beta)$ à l'aide d'une intégration par parties.
- d Calculer $\lim_{\beta \to +\infty} I(\beta)$.

Partie C: On considère l'équation différentielle :

$$(E): y' + y = \frac{e^{-x}}{e^{-x} + 1}.$$

- 1 Vérifier que la fonction g étudiée dans la **partie** B est solution de (E).
- 2 Montrer qu'une fonction ϕ est solution de (E) si et seulement si ϕg est solution de l'équation différentielle $(E_0): y' + y = 0$.
- **3** Résoudre (E_0) et en déduire les solutions de (E).
- 4 Déterminer la solution de (E) qui s'annule en $\ln 2$.

Problème 11 BAC 2006 1^{er} GROUPE

Partie A : Soit h la fonction définie sur \mathbb{R} par :

$$h(x) = 1 + (1 - x)e^{2 - x}$$

- 1 Étudier les variations de h (on ne demande pas de calculer les limites aux bornes de D_h).
- 2 En déduire le signe de h(x) sur \mathbb{R} .

Partie B : Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = x(1 + e^{2-x})$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$ (unité 2 cm).

- 1 a Étudier les limites de f en $+\infty$ et en $-\infty$.
 - b Préciser la nature de la branche infinie en $-\infty$.
 - Calculer $\lim_{x\to +\infty} [f(x)-x]$, puis interpréter le résultat obtenu.
 - d Préciser la position de (C_f) par rapport à la droite $(\Delta): y = x$.
- 2 a Dresser le tableau de variations de f.
 - b Montrer que f admet une bijection réciproque notée f^{-1} , définie sur \mathbb{R} .
 - f^{-1} est-elle dérivable en 4?
 - d Étudier la position de (C_f) par rapport à sa tangente au point d'abscisse 2.
 - e Construire (C_f) (on tracera la tangente au point d'abscisse 2).

f Construire $(C_{f^{-1}})$, la courbe de f^{-1} dans le repère précédent.

Partie C: Soit β un réel strictement positif sur \mathbb{R} . La région du plan est délimitée par les droites d'équations x=0 et $x=\beta$, et les courbes d'équations respectives y=f(x) et y=x. Soit $A(\beta)$ l'aire de cette région R_{β} , en cm².

- 1 Calculer $A(\beta)$ en fonction de β .
- 2 Déterminer $\alpha = \lim_{\beta \to +\infty} A(\beta)$. Interpréter graphiquement le résultat obtenu.

Problème 12 BAC 2007 1^{er} GROUPE

Partie A : Soit g la fonction définie sur $]0; +\infty[$ par

$$g(x) = 1 + x + \ln x.$$

- \bigcirc Dresser le tableau de variations de g.
- 2 Montrer qu'il existe un unique α solution de l'équation g(x)=0. Vérifier que $0,2<\alpha<0,3$.
- 3 En déduire le signe de g sur $]0; +\infty[$.
- 4 Établir la relation : $\ln \alpha = -1 \alpha$.

Partie B : On considère la fonction f définie par :

$$f(x) = \begin{cases} \frac{x \ln x}{1+x} & \text{si } x > 0\\ 0 & \text{si } x = 0 \end{cases}$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$ (unité 5 cm).

- 1 Montrer que la fonction f est continue en 0 puis sur $[0; +\infty[$.
- 2 Étudier la dérivabilité de f en 0. Interpréter graphiquement ce résultat.
- 3 Déterminer la limite de f en $+\infty$.
- 4 Montrer que $\forall x \in]0; +\infty[$,

$$f'(x) = \frac{g(x)}{(1+x)^2}.$$

En déduire le signe de f'(x) sur $]0; +\infty[$.

- 5 Montrer que $f(\alpha) = -\alpha$.
- 6 Dresser le tableau de variations de f.
- 7 Construire (C_f) . (on prendra $\alpha = 0.3$).

Partie C: Soit h la restriction de f à l'intervalle $I = [1; +\infty[$.

- 1 Montrer que h réalise une bijection de I vers un intervalle J à préciser.
- 2 Soit h^{-1} la bijection réciproque de h. Étudier la dérivabilité de h^{-1} sur J.
- 3 Calculer h(2) et $\left(h^{-1}\right)'\left(\frac{2\ln 2}{3}\right)$.
- Construire $(C_{h^{-1}})$, la courbe de h^{-1} dans le repère $(O; \vec{i}; \vec{j})$.

Partie D:

1 À l'aide d'une intégration par parties, calculer l'intégrale

$$I = \int_1^e x \ln x \, dx.$$

2 Montrer que pour tout $x \in [1; e]$,

$$\frac{x \ln x}{e+1} \le f(x) \le \frac{x \ln x}{2}.$$

3 En déduire que :

$$\frac{e^2+1}{4(e+1)} \le \int_1^e f(x) \, dx \le \frac{e^2+1}{8}.$$

Problème 13 BAC 2008 1^{er} GROUPE

Partie A : Soit f la fonction numérique définie par

$$f(x) = \begin{cases} x + 2 + \ln\left(\frac{x-1}{x+1}\right) & \text{si } x < 0\\ (2+x)e^{-x} & \text{si } x \ge 0 \end{cases}$$

et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$ (unité 1 cm).

- 1 Montrer que f est définie sur $\mathbb{R} \setminus \{-1\}$.
- 2 a Calculer les limites aux bornes du domaine de définition de f.

Préciser les asymptotes parallèles aux axes.

- b Calculer $\lim_{x\to +\infty} [f(x) (x-2)].$ Interpréter graphiquement le résultat.
- 3 a Étudier la continuité de f en 0.
 - **b** Démontrer que :

$$\lim_{x \to 0} \frac{e^{-x} - 1}{x} = -1 \quad \text{et} \quad \lim_{x \to 0} \frac{\ln(1 - x)}{x} = -1.$$

- c En déduire que f est dérivable à gauche et à droite en 0. f est-elle dérivable en 0 ?
- 4 Calculer f'(x) pour :
 - $\mathbf{a} \quad x \in]0; +\infty[.$
 - **b** $x \in]-\infty; -1[\cup]-1; 0[.$

- 5 Étudier le signe de f'(x) pour :
 - $\mathbf{a} \quad x \in]0; +\infty[.$
 - **b** $x \in]-\infty; -1[\cup]-1; 0[.$
- 6 Dresser le tableau de variations de f.
- 7 Montrer que l'équation f(x) = 0 admet une unique solution α appartenant à]-3;-2[.
- 8 Tracer (C_f) . On mettra en évidence l'allure de (C_f) au point d'abscisse 0 et les droites asymptotes.

Partie B: Soit g la restriction de f à l'intervalle $]-\infty;-1[$.

- 1 Montrer que g définit une bijection de] $-\infty$; -1 sur un intervalle J à préciser.
- 2 On note g^{-1} sa bijection réciproque.
 - a Calculer g(-2). Montrer que g^{-1} est dérivable en $\ln 3$.
 - b Calculer $(g^{-1})'(\ln 3)$.
 - c Représenter la courbe de g^{-1} dans le repère précédent.

Partie C: Soit A l'aire de la région du plan délimitée par les droites d'équations respectives x = -2, x = -3 et y = x + 2 et la courbe de f.

Problème 14 BAC 2009 1er GROUPE

1 Étudier les variations de la fonction f définie sur $]-1;+\infty[$ par : $f(x)=2\ln(x+1).$ Tracer sa courbe représentative (C) et (T) dans le repère orthonormal $(O;\vec{i};\vec{j})$, unité 2 cm.

- b Démontrer que sur $[2; +\infty[$, la fonction l, définie par l(x) = f(x) x, est bijective et que l'équation l(x) = 0 admet une solution unique λ .
- 2 On considère la suite $(U_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} U_0 = 5 \\ U_{n+1} = 2\ln(1 + U_n) \end{cases}$$

- a Sans faire de calcul, représenter les quatre premiers termes de la suite sur le graphique.
- b Démontrer par récurrence que pour tout n, $U_n \geq 2$.
- Montrer que pour tout $x \in [2; +\infty[$, on a :

$$|f'(x)| \le \frac{2}{3}.$$

d En déduire que pour tout n, on a :

$$|U_{n+1} - \lambda| \le \frac{2}{3}|U_n - \lambda|,$$

$$|U_n - \lambda| \le 2\left(\frac{2}{3}\right)^n,$$

et que (U_n) converge vers λ .

e Déterminer le plus petit entier naturel p tel que :

$$|U_p - \lambda| \le 10^{-2}.$$

Que représente U_p pour λ ?