Loan Amortization Schedule

```
In [37]: #Load the necessary libraries
import pandas as pd
import numpy as np
import numpy_financial as npf
import matplotlib.pyplot as plt
import seaborn as sns
```

```
def amortization_schedule(InterestRate,LoanAmount,years):
In [38]:
             Document String
             This function takes in the following inputs as paraments and return a table:
             InterestRate = As a float or Integer
              Loan Amount = The Total Loan Amount
             Years = The Loan term
              .....
             # Parameter Definition
             #the loan amount is converted to negative because money is going out
              LoanAmount = -(LoanAmount)
              # The annual interest rate is converted to monthly by dividing by 12
             InterestRate=(InterestRate / 100) / 12
             #We multiply the years by 12 to have the total number of period
              periods = years * 12
             #Create an Array
             nper = np.arange(1,periods+1)
             #Build the Amortization Schedule
             #Interest Payment
              interest = np.round(npf.ipmt(InterestRate,nper,periods,LoanAmount),2)
             #Principal payment
              principal = np.round(npf.ppmt(InterestRate,nper,periods,LoanAmount),2)
             #Join Data
             df= list(zip(nper,interest,principal))
             df=pd.DataFrame(df,columns=["Period","Interest","Principal"])
              #Monthly Loan payment
             df["Payment"] = df["Interest"] + df["Principal"]
             #df["test"] = pv
              #Cummulative payment
             df["Total Principal Paid"] = df["Principal"].cumsum()
             df["Total Interest Paid"] = df["Interest"].cumsum()
             df["Total Payment Paid"] = df["Payment"].cumsum()
             #Reverse values since we are paying down the balance
             #df["Outstanding_Bal"] = df["Outstanding_Bal"].values[::-1]
              return df
```

30 years Amortization

A 30-year fixed rate at 4%. The loan will amortize over 30 years.

```
In [39]: Loan_Amount = 1_000_000
    Interest_Rate = 4
    Loan_Term = 30
```

In [40]: df = amortization_schedule(Interest_Rate,Loan_Amount,Loan_Term)
df

Out[40]:

	Period	Interest	Principal	Payment	Total Principal Paid	Total Interest Paid	Total Payment Paid
0	1	3333.33	1440.82	4774.15	1440.82	3333.33	4774.15
1	2	3328.53	1445.62	4774.15	2886.44	6661.86	9548.30
2	3	3323.71	1450.44	4774.15	4336.88	9985.57	14322.45
3	4	3318.88	1455.28	4774.16	5792.16	13304.45	19096.61
4	5	3314.03	1460.13	4774.16	7252.29	16618.48	23870.77
•••							
355	356	78.78	4695.37	4774.15	981061.48	718537.01	1699598.49
356	357	63.13	4711.02	4774.15	985772.50	718600.14	1704372.64
357	358	47.43	4726.73	4774.16	990499.23	718647.57	1709146.80
358	359	31.67	4742.48	4774.15	995241.71	718679.24	1713920.95
359	360	15.86	4758.29	4774.15	1000000.00	718695.10	1718695.10

360 rows × 7 columns

Total Interest Paid = 718,695

Total Payment Made = 1,718,695

20 years Amortization

A 20-year fixed rate at 2.5%. The loan will amortize over 20 years.

```
In [41]: Loan_Amount = 1_000_000
    Interest_Rate = 2.5
    Loan_Term = 30
In [42]: df_20 = amortization_schedule(Interest_Rate,Loan_Amount,Loan_Term)
df_20
```

Out[42]:

	Period	Interest	Principal	Payment	Total Principal Paid	Total Interest Paid	Total Payment Paid
0	1	2083.33	1867.88	3951.21	1867.88	2083.33	3951.21
1	2	2079.44	1871.77	3951.21	3739.65	4162.77	7902.42
2	3	2075.54	1875.67	3951.21	5615.32	6238.31	11853.63
3	4	2071.63	1879.57	3951.20	7494.89	8309.94	15804.83
4	5	2067.72	1883.49	3951.21	9378.38	10377.66	19756.04
•••							
355	356	40.90	3910.31	3951.21	984277.12	422353.28	1406630.40
356	357	32.76	3918.45	3951.21	988195.57	422386.04	1410581.61
357	358	24.59	3926.62	3951.21	992122.19	422410.63	1414532.82
358	359	16.41	3934.80	3951.21	996056.99	422427.04	1418484.03
359	360	8.21	3942.99	3951.20	999999.98	422435.25	1422435.23

360 rows × 7 columns

Total Interest Paid = 422,435

Total Payment Made = 1,422,435

Tn Γ 1•