Teorija grafov - Zapiski predavanj

Jakob Drusany

October 17, 2024

Contents

1	Introduction	1
2	Independence, matching, covers	1
3	Matchings	3

1 Introduction

A graph is defined as G = (V, E). n = |V| is the number of vertices, m = |E| is the number of edges. We also denote them as V(G), n(G), E(G), m(G). $\delta(G)$ is the minimum degree of a vertex in G, $\Delta(G)$ is the maximum degree. G[C] represents the induced subgraph of G on the vertex set C.

2 Independence, matching, covers

Definition. The set of vertices $S \subseteq V$ is an **independent set** if G(S) contains no edges. (No two vertices in the independent set are adjacent)

The independence number $\alpha(G)$ is the size of the maximum independent set.

Definition. The set of vertices $T \subseteq V$ is a **vertex cover** if $\forall e \in E \ T \cap e \neq \emptyset$. (All edges have at least one endpoint in the vertex cover)

The vertex cover number $\beta(G)$ is the size of the minimum vertex cover.

Definition. A matching is a set of edges $M \subseteq E$ such that $\forall e, f \in M \ e \neq f \ e \cap f \neq \emptyset$. (No two edges share a vertex)

The matching number $\alpha'(G)$ is the size of the maximum matching.

Definition. An edge cover is a set of edges $C \subseteq E$ such that $\forall v \in V \exists e \in C \ v \in e$. (All vertices are covered by at least one edge from C)

The edge cover number $\beta'(G)$ is the size of the minimum edge cover. Some graphs have no edge covers, for example graphs with isolated vertices.

Figure 1: G from example

```
Example. \alpha(G) = 8

h(G) = 20

\beta(G) = 12 \rightarrow complement of vertex set

\alpha'(G) = 10 \quad maximum \text{ for } \alpha' \text{ is } \frac{h(G)}{2}

\beta'(G) = 10
```

Observations

• $\alpha(G) + \beta(G) = |V|$ (the size of the maximum independent set plus the size of the minimum vertex cover is equal to the number of vertices)

Proof. For every independent set S, the complement \overline{S} is a vertex cover and vice versa.

 $\alpha'(G) \leq \beta(G)$ (the size of the maximum matching is less than or equal to the size of the minimum vertex cover)

Proof. Every edge in a maximum matching must be covered by different vertices in the vertex cover. \Box

• $\alpha(G) \leq \beta'(G)$ (the size of the maximum independent set is less than or equal to the size of the minimum edge cover)

Proof. Every vertex in a maximum independent set must be covered by different edges in the edge cover. $\hfill\Box$

• if G has no isolated vertices: $\alpha'(G) \leq \frac{n}{2} \leq \beta(G)$

3 Matchings

Theorem (Galloi's theorem). If G has no isolated vertices, then $\alpha'(G) + \beta'(G) = n(G)$.

Proof. (1)
$$\beta'(G) + \alpha'(G) \le |V(G)|$$

Take a maximum matching M; $M = \alpha'(G)$. For every vertex not covered in

 $M(\overline{V(M)})$, we can take an incident edge and add them to M. We get a set of edges R, which covers every vertex in G.

$$|R| = |M| + |\overline{V(M)}| = |M| + (|V(G)| - 2|M|)$$

$$= |V(G)| - |M|$$

$$\beta'(G) \le |R| = |V(G)| - \alpha'(G)$$

$$\beta'(G) + \alpha'(G) \le |V(G)|$$

$$(2) \beta'(G) + \alpha'(G) \ge |V(G)|$$

Lemma. Let C be a minimum edge cover. For every edge in C, at least one of its endpoints is covered only once by C.

Proof. Suppose $uv \in G$ and u and v are covered by other edges in C. C' = C $\{uv\}$ is also an edge cover and |C'| < |C| which is a contradiction.

Because of this, we can see that G[C] is a star forest (for all minimal edge covers). G[C] consists of k components: |C| = |V(G)| - k. A matching is obtained by chosing

one edge from every star component of G[C], the resulting matching has k edges (|M|=k)

$$\alpha'(G) \ge |M| = k \ge |V(G)| - |C| = |V(G)| - \beta'(G)$$
$$\alpha'(G) + \beta'(G) \ge |V(G)|$$

Structure of the maximum matching M. For each $uv \in M$ one of these holds:

(1)
$$N(u) \cap \overline{V(M)} = \emptyset$$

$$N(v) \cap \overline{V(M)} = \emptyset$$

$$V(M)$$

$$\vdots$$

$$V(M)$$

$$\overline{V(M)}$$

(3)
$$N(u) \cap \overline{V(M)} \neq \emptyset$$
 or $N(u) \cap \overline{V(M)} = \emptyset$
$$N(v) \cap \overline{V(M)} = \emptyset \qquad N(v) \cap \overline{V(M)} \neq \emptyset$$

$$\overline{V(M)} = \emptyset \qquad V(M)$$

Definition. Let M be a matching. A path $v_1u_1v_2u_2 \dots v_ku_k(v_{k+1})$ is an **m-altering path** if the edges along the path alternate between M and $\overline{M} = E$ M

Definition. An m-alternating path is m-augmenting if both ends of the path are uncovered by M

For example $x_1x_2x_3x_4$ in the above figure. This is important because $M' = M \setminus \{x_2x_3\} \cup \{x_1x_2\}$ is a larger matching.

Theorem. Let G be a graph and M a matching in G. If there exists an M-augmenting path then M is not a maximum matching.

Proof. Let P be an M-augmenting path. $P = v_1 v_2 \dots v_k$, because it is an augmenting path $v_1 v_2 \notin M$ $v_{k-1} v_k \notin M \Rightarrow |E(P) \cap \overline{M}| = |E(P) \cap M| + 1$ Let $M' = M \Delta E(P)$, M' is a matching in G (Marked as zigzag lines in the graph). M' is a matching

- For vertices outside P the edges are the same in M and M'.
- v_1, v_k were uncovered by M so they are now covered by M'.
- For internal vertices: v_i is covered once in M. This edge is missing in M', therefore v_i is covered by another edge in M'.
- $\Rightarrow M'$ is a matching, |M'|=|M|+1, so M is not a maximum matching. \Box König-Egerváry graphs:

König-Egerváry have $\alpha'(G) = \beta(G)$. In the example: $\alpha'(G) = 5 = \beta(G)$, G is not bipartite.

Theorem (Königs theorem). Let G be a bipartite graph, then the following holds:

- (a) $\alpha'(G) = \beta(G)$
- (b) let M be a matching in G and a M-augmenting path does not exist, then M is a maximum matching.

Proof. Let G be a bipartite graph on sets A, B. Suppose that M is a matching such that an M-augmenting path in G does not exist (such an M exists).

- \bullet M is marked in red
- x, y are the sets of uncovered vertices in A, B $(X = A \setminus V(M), Y = B \setminus V(M))$.
- B_1 is the set of vertices in B that are reachable from X with an M-alternating path.
- A_1 is the set of vertices in A that are reachable from X with an M-alternating path.
- $B_2 = B \setminus (B_1 \cup Y)$
- $A_2 = A \setminus (A_1 \cup X)$

 $A \to B$ edges are in \overline{M}

 $B \to A$ edges are in M

$$A_1 = \{ a \in A \mid \exists b \in B_1 : ab \in M \}, \quad A_2 = \{ a \in A \mid \exists b \in B_2 : ab \in M \}$$

$$|A_1| = |B_1|; \quad |A_2| = |B_2|; \quad |A_1| + |A_2| = |M|$$

We can prove that the following statements hold:

- There are no edges between X and YLets propose $x \in X, y \in Y, xy \in E$. This is an M-alternating path of length 1. It is also an M-augmenting path, because its endpoints are not covered by M. This is a contradiction, because we assumed that there are no M-augmenting paths.
- There are no edges between X and B_2 An edge $x \in X, b \in B2, xb \in E$ is an M-alternating path from X to B_2 which contradicts the definition of B_1 and B_2 .

• There are no edges between A_1 and YSuppose that $a \in A_1, y \in Y, ay \in E$.

There exists an M-alternating path from X to B_1 :

$$v_1v_2\ldots v_k,\ v_1\in X,\ v_k\in B_1$$

We can now add an edge from v_k to a from the matching M and ay not from M. The path

$$v_1v_2\ldots v_kay$$

is an M-alternating path and because v_1 and y are not covered by M it is also an M-augmenting path.

• There are no edges between A_1 and B_2 If we begin an M-alternating path in X and end in A_1 we get a path:

$$xv_2 \dots v_{k-1}a, x \in X, a \in A_1$$

Now we can add the edge $ab, b \in B_1, ab \notin M$. We know that $v_{k-1}a \in M$ so $x_1v_2 \dots v_{k-1}ab$ is an M-alternating path. B_1 is therefore reachable from X with an M-alternating path. This a contradiction with the definition of B_1 and B_2 .

$T = B_1 \cup A_2$ is a vertex cover

We only need to prove that all edges from $A = X \cup A_1 \cup A_2$ are covered by the vertex cover because the graph is a bipartite graph.

- all edges from X are covered by a vertex in B_1
- all edges from A_1 are covered by a vertex in B_1
- all edges from A_2 are covered by a vertex in A_2

Now we can finish the proof:

$$|T| = |B_1| + |A_2| = |A_1| + |A_2| = |M|$$

$$\beta(G) \le |T| = |M| \le \underline{\alpha'(G)} \le \beta(G)$$

From this we can conclude:

- (a) $\alpha'(G) = \beta(G)$
- (b) $|M| = \alpha'(G)$ therefore M is a maximum matching.

Corollary. If G is a bipartite graph then $\alpha(G) = \beta'(G)$.

Proof.

$$\alpha(G) = n(G) - \beta(G) \stackrel{\text{Königs}}{\stackrel{\downarrow}{=}} n(G) - \alpha'(G) \stackrel{\text{Gallois}}{\stackrel{\downarrow}{=}} \beta'(G)$$

Definition (HC). G is a bipartite on the sets A, B. Halls condition (HC) holds for A if

$$\forall S \subseteq A: |S| \le |N(G)|$$

where $N(S) = \bigcup_{x \in S} N(x)$ is the set of neighbors of S.

Theorem (Halls theorem). G bipartite on A, B. There exists a matching that covers $A \iff HC \text{ holds for } A$.

Proof.

 (\Rightarrow) Let M be the matching that covers A. $\forall S \subseteq A$ we can take the pairs matched by M:

$$B_S = \{ v \in B \mid \exists u \in S : uv \in M \}$$

We know that $|S| = |B_S|$ and $B_S \subseteq N(S) \Rightarrow |S| = |B_S| \leq |N(S)|$. Therefore HC holds for A.

(\Leftarrow) We have to prove that there does not exist a matching M that covers $A \Rightarrow \mathrm{HC}$ does not hold for A

Take the maximum matching in G. Lets draw the same picture for G as in the proof of Königs theorem.

The maximum matching does not cover $A \Rightarrow X \neq \emptyset$. Consider $S = A_1 \cup X$. We have seen that all neighbors of S are in B_1 (in Königs) so $N(S) = B_1$, $|S| = |A_1| + |X|$ and $|N(S)| = |B_1| = |A_1|$ so |S| > |N(S)| which means that HC does not hold for A.

Theorem. Let M be a matching in G. There exists an M-augmenting path $\iff M$ is not a maximum matching.

Proof. (\Rightarrow) this was proven in the previous lecture

(\Leftarrow) M is a matching, not maximum. Then there exists a M' matching such that |M'| > |M|. Consider $M\Delta M'$ (symmetric difference). Let $G' = G[M\Delta M']$. In G', the maximum degree $\Delta(G') \leq 2$. G' contains only paths and cycles. If The component is a cycle:

M and M' edges alternate in the cycle, therefore there are the same number of edges from M and M' in the cycle.

If The component is a path:

- path of even length, then M,M'-edges alternate, therefore there are the same number of edges from M and M' in the path.
- path of odd length, then there is one more edge from M' than from M or vice versa.

$$|M'| > |M| \Rightarrow |M' \setminus M| > |M \setminus M'|$$

 \Rightarrow there exists a component G'_1 in G' such that there are more edges from M' than from M. This component is a path of odd length that starts and ends with an edge from M'.

The following holds:

- $-G'_1$ is an M-alternating path
- $-v_1$ is not covered by M.
- in G' $deg(v_1) = 1$ (because it is a path component), therefore no edge from $M \setminus M'$ is incident to v_1 .
- $-v_1$ is not incident to any edge from $M \cap M'$ since v_1 is already covered by an edge from M'.

In conclusion v_1, v_k are not covered by M so G'_1 is an alternating path with uncovered endpoints and is therefore an M-augmenting path.

9

Algorithms for the above theorems:

- "Blossom algorithms" to find an M-augmenting path and improve the matching if possible. The best known algorithm is $O(n\sqrt{n})$.
- We can determine the matching number and the edge cover number in polynomial time.

Definition (Oddity). o(G): number of odd components in G

Theorem (Tuttes theorem). G has a perfect matching $\iff \forall S \subseteq V(G) \ o(G-S) \leq |S|$ $o(G-S) \leq |S|$ is called the Tutte condition.

Proof. (\Rightarrow) M is a perfect matching in G. For every $S \subseteq V(G)$.

Figure 2: Graph G showing S and H_i which are odd components not in S

if H_1 is an odd component then there exists at least one M-edge between $V(H_i)$ and S. This holds for every odd component. Therefore there exists at least o(G - S) M-edges between S and \overline{S} . As M is a matching these edges are incident do different vertices from S. Therefore $o(G - S) \leq |S|$ (Tuttes condition holds).

- (\Leftarrow) If the Tuttes condition holds then there exists a perfect matching. Suppose that the lemma does not hold. Then there exists a counter example F on n vertices.
 - (1) F satisfies the Tuttes condition
 - (2) There does not exist a perfect matching in F

We can add edges to F while it remains a counter example, until we get a graph G. G is then the largest counter example.

Lemma. n(G) is even

Proof. if we take $S = \emptyset$, then

$$|S| = 0 \ge o(G - s) = o(G) \ge 0 \implies o(G) = 0$$

Because the number of odd components is zero, n is even.

Lemma. $\forall e \in E(\overline{(G)})$ G' = G + e has a perfect matching

Proof. -G + e is not a counter example (because of the maximality of G).

- -G + e satisfies TC: For every $S \subseteq V(G + e)$ $o(G + e S) \le |S|$. When adding an edge e to G we have 4 cases:
 - (a) If the edge e is inside S or inside a component of G S, then the number of odd components does not change.
 - (b) If the edge e is between two even components of G S, then the number of odd components does not change.
 - (c) If the edge e is between odd-even components of G S, then the number of odd components does not change.
 - (d) If the edge e is between two odd components of G-S, then the number of odd components decreases by two (the two odd components become an even component).

Therefore G' satisfies the Tuttes condition:

$$|S| \ge o(G - S) \ge o(G' - S)$$

G' is not a counter example, therefore (2) does not hold and there exists a perfect matching in G'.

To end the proof we need to show that G has a perfect matching. Let u be the set of universal vertices (deg(v) = n - 1) in G. G[u] is a complete graph (fully connected). We can construct a perfect matching for different cases:

- 1. If every H_i induces a complete graph, then we can construct a matching M
 - If H_i is an even component then then we can cover every vertex with M-edges inside H_i .
 - If H_i is an odd component then we cover all but one vertex with M-edges inside H_i .
 - The remaining o(G-u) vertices fro the odd components can be covered with M-edges between u and the components using o(G-u) different vertices from u. This can be done as all edges are present in G between u and \overline{u} and $o(G-u) \leq |u|$.
 - If some vertices from u are uncovered then we define a matching on them. This is possible because G[u] is a complete graph, n(G) is even and M covered an even number of vertices so far.

Therefore G has a perfect matching.

2. If there exists a non-complete component H_i , then we can find a pair of vertices x, y such that dist(x, y) = 2.

We can define z as the shared neighbor of x and y. There exists a vertex w such that w is not connected to z. This vertex exists because z is not a universal vertex. We define 2 expansions (both have a perfect matching because of lemma 2):

$$- G_1 = G + xy \to M_1$$

$$-G_2 = G + zw \rightarrow M_2$$

 M_1 contains xy, otherwise M_1 is a perfect matching in G. M_2 contains zw because of the same reason. Consider $M_1 \Delta M_2$. First remove the edges from $M_1 \cup M_2$ (isolated vertices). For the remaining edges all vertices are of degree 2, therefore $\exists v$ such that v is connected to one M_1 -edge and one M_2 -edge.

Every non-isolated vertex from $G[M_1\Delta M_2]$ is of degree 2, therefore the graph is composed of only cycles. Because M_1 and M_2 alternate, these are even cycles. $xy \in M_1$ and $xy \notin M_2 \Rightarrow xy \in M_1\Delta M_2$

- If xy and zw belong to different components in $G[M_1\Delta M_2]$.

 $M = M_1 \Delta M_2$ is a perfect matching in G:

- $*\ M\subseteq E(G)\ xy\notin M,\, zw\notin M$
- * Every vertex is covered exactly once by M
- If xy and zw belong to the same component, without loss of generality along the cycle the edges are ordered: $zw \dots xy \dots (yx)$ is a symmetric case)

Borge-Tutte formula: A maximum matching in G leaves exactly

$$\max_{S\subseteq V(G)}\{o(G-S)-|S|\}$$

uncovered vertices. Equivalently:

$$\alpha'(G) = \frac{1}{2} \left(n - \max_{S \subseteq V(G)} \{ o(G - S) - |S| \} \right)$$