

Written assessment, January 16, 2025

Last name, First name _

Exercise 1 (value 8)

For each of n jobs the starting time on a computer equipped with a single processor has to be scheduled. The duration in minutes of each job $i \in N = \{1, 2, ..., n\}$ is t_i . The sequence of execution of the jobs follows the indices and is $1 - 2 - \cdots - n$ and cannot be changed. At most one job can be run at each time on the processor. Each job $i \in N$ has a given delivery time (in minutes) d_i . The delivery of jobs has to be on time, and a penalty of P euros has to be paid for each minute of early/late delivery, for each job. Write a Mixed Integer Linear Program to select the starting time (in minute) for each job, with the objective of minimizing the total penalty paid.

Exercise 2 (value 9)

Consider the following linear program:

min
$$3x_1 + 2x_2 + 4x_3$$

 $s.t.$ $x_1 + 4x_2 \ge 6$
 $2x_1 - 3x_2 + 2x_3 \ge 4$
 $x_1, x_2, x_3 \ge 0$

- Write the dual
- Solve the dual using the graphical method (write the optimal solution and the objective value of the dual)
- Find the optimal solution of the primal using the complementary slackness conditions

Exercise 3 (value 8)

Consider a Knapsack problem with four objects characterized by the following profits p = (1, 2, 3, 2) and weights w = (100, 50, 80, 71), and with a container of capacity c = 200. Calculate the optimal solution using dynamic programming. Report all the steps of the algorithm together with the final solution and its value.

Written assessment, January 16, 2025 Solution sketch

Exercise 1

 $x_i = \text{starting time for job } i \in N \text{ (in minutes)}$ $y_i = \text{minutes of early/late completion time for job } i \in N$

$$\begin{aligned} & \min \, P \sum_{i \in N} y_i \\ & y_i \geq (x_i + t_i) - d_i & i \in N \\ & y_i \geq d_i - (x_i + t_i) & i \in N \\ & x_i \geq x_{i-1} + t_{i-1} & i \in N \backslash \{n\} \\ & x_i \geq 0, \text{integer} & i \in N \\ & y_i \geq 0 & i \in N \end{aligned}$$

Exercise 2

The dual problem is:

$$\max 6u_1 + 4u_2$$
s.t. $u_1 + 2u_2 \le 3$

$$4u_1 - 3u_2 \le 2$$

$$2u_2 \le 4$$

$$u_1, u_2 \ge 0$$

The graphical solution looks as follows:

The optimal solution of the dual is $u_1 = \frac{13}{11}, u_2 = \frac{10}{11}$ with value $z_D = \frac{118}{11}$.

The complementary slackness conditions are:

$$\begin{cases} (x_1 + 4x_2 - 6)u_1 = 0\\ (2x_1 - 3x_2 + 2x_3 - 4)u_2 = 0\\ (u_1 + 2u_2 - 3)x_1 = 0\\ (4u_1 - 3u_2 - 2)x_2 = 0\\ (2u_2 - 4)x_3 = 0 \end{cases} \rightarrow \begin{cases} x_1 + 4x_2 = 6\\ 2x_1 - 3x_2 + 2x_3 = 4\\ x_3 = 0 \end{cases}$$

The optimal solution of the primal is $x_1 = \frac{34}{11}, x_2 = \frac{8}{11}, x_3 = 0$ with value $z_P = \frac{118}{11}$.

Exercise 3

$$p = (1, 2, 3, 2) \ w = (100, 50, 80, 71)$$

$$P = 1 + 2 + 3 + 2 = 8$$

	0	1	2	3	4	5	6	7	8
$\overline{f_0}$	0	∞	∞	∞	∞	∞	∞	∞	∞
f_1	0	100	∞	∞	∞	∞	∞	∞	∞
f_2	0	100	50	150	∞	∞	∞	∞	∞
f_3	0	100	50	80	180	130	230	∞	∞
f_4	0	100	50	80	121	130	230	201	301
	0	1	2	3	4	5	6	7	8
$\overline{J_0}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
J_1	Ø	{1}	Ø	Ø	Ø	Ø	Ø	Ø	Ø
J_2	Ø	{1}	$\{2\}$	$\{1, 2\}$	Ø	Ø	Ø	Ø	Ø
J_3	Ø	{1}	$\{2\}$	$\{3\}$	$\{1, 3\}$	$\{2, 3\}$	$\{1, 2, 3\}$	Ø	Ø
J_4	Ø	{1}	{2}	{3}	$\{2,4\}$	$\{2,3\}$	$\{1,2,3\}$	$\{2, 3, 4\}$	$\{1,2,3,4\}$

The optimal solution $x = \{2, 3\}$ has profit 5 and weight 130.