index

March 22, 2022

1 Gradient Boosting - Lab

1.1 Introduction

In this lab, we'll learn how to use both Adaboost and Gradient Boosting classifiers from scikit-learn!

1.2 Objectives

You will be able to:

- Use AdaBoost to make predictions on a dataset
- Use Gradient Boosting to make predictions on a dataset

1.3 Getting Started

In this lab, we'll learn how to use boosting algorithms to make classifications on the Pima Indians Dataset. You will find the data stored in the file 'pima-indians-diabetes.csv'. Our goal is to use boosting algorithms to determine whether a person has diabetes. Let's get started!

We'll begin by importing everything we need for this lab. Run cell below:

Now, use Pandas to import the data stored in 'pima-indians-diabetes.csv' and store it in a DataFrame. Print the first five rows to inspect the data we've imported and ensure everything loaded correctly.

```
[3]: # Import the data
df = pd.read_csv('pima-indians-diabetes.csv')

# Print the first five rows
df.head()
```

[3]:	Pregnancies	Glucose	BloodPre	ssure	SkinThickness	Insulin	BMI	\
0	6	148		72	35	0	33.6	
1	1	85		66	29	0	26.6	
2	8	183		64	0	0	23.3	
3	1	89		66	23	94	28.1	
4	0	137		40	35	168	43.1	
	DiabetesPedi	greeFuncti	on Age	Outco	me			
0		0.6	_		1			
1		0.3	31		0			
2		0.6	72 32		1			
3		0.1	.67 21		0			
4		2.2	.88 33		1			

1.4 Cleaning, exploration, and preprocessing

The target we're trying to predict is the 'Outcome' column. A 1 denotes a patient with diabetes.

By now, you're quite familiar with exploring and preprocessing a dataset.

In the following cells:

[6]: target = df["Outcome"]

df = df.drop("Outcome", axis = 1)

- Check for missing values and deal with them as you see fit (if any exist)
- Count the number of patients with and without diabetes in this dataset
- Store the target column in a separate variable and remove it from the dataset
- Split the dataset into training and test sets, with a test_size of 0.25 and a random_state of 42

```
[4]: # Check for missing values
     df.isna().sum()
[4]: Pregnancies
                                  0
     Glucose
                                  0
     BloodPressure
     SkinThickness
                                  0
     Insulin
    BMI
                                  0
    DiabetesPedigreeFunction
     Age
                                  0
                                  0
     Outcome
     dtype: int64
[5]: # Number of patients with and without diabetes
     dict(df["Outcome"].value_counts())
[5]: {0: 500, 1: 268}
```

1.5 Train the models

Now that we've explored the dataset, we're ready to fit some models!

In the cell below:

- Instantiate an AdaBoostClassifier (set the random_state for 42)
- Instantiate a GradientBoostingClassifer (set the random_state for 42)

```
[9]: # Instantiate an AdaBoostClassifier
adaboost_clf = AdaBoostClassifier(random_state = 42)

# Instantiate an GradientBoostingClassifier
gbt_clf = GradientBoostingClassifier(random_state = 42)
```

Now, fit the training data to both the classifiers:

```
[10]: # Fit AdaBoostClassifier
adaboost_clf.fit(X_train, y_train)
```

[10]: AdaBoostClassifier(random_state=42)

```
[11]: # Fit GradientBoostingClassifier
gbt_clf.fit(X_train, y_train)
```

[11]: GradientBoostingClassifier(random_state=42)

Now, let's use these models to predict labels on both the training and test sets:

```
[12]: # AdaBoost model predictions
adaboost_train_preds = adaboost_clf.predict(X_train)
adaboost_test_preds = adaboost_clf.predict(X_test)

# GradientBoosting model predictions
gbt_clf_train_preds = gbt_clf.predict(X_train)
gbt_clf_test_preds = gbt_clf.predict(X_test)
```

Now, complete the following function and use it to calculate the accuracy and f1-score for each model:

```
f1 = f1_score(true, preds)
          print("Model: {}".format(model_name))
          print("Accuracy: {}".format(acc))
          print("F1-Score: {}".format(f1))
      print("Training Metrics")
      display_acc_and_f1_score(y_train, adaboost_train_preds, model_name='AdaBoost')
      print("")
      display_acc_and_f1_score(y_train, gbt_clf_train_preds, model_name='Gradientu
       ⇔Boosted Trees')
      print("")
      print("Testing Metrics")
      display_acc_and_f1_score(y_test, adaboost_test_preds, model_name='AdaBoost')
      print("")
      display_acc_and_f1_score(y_test, gbt_clf_test_preds, model_name='Gradient_L
       ⇔Boosted Trees')
     Training Metrics
     Model: AdaBoost
     Accuracy: 0.835069444444444
     F1-Score: 0.7493403693931399
     Model: Gradient Boosted Trees
     Accuracy: 0.940972222222222
     F1-Score: 0.9105263157894736
     Testing Metrics
     Model: AdaBoost
     Accuracy: 0.7239583333333334
     F1-Score: 0.618705035971223
     Model: Gradient Boosted Trees
     Accuracy: 0.7447916666666666
     F1-Score: 0.6620689655172414
     Let's go one step further and create a confusion matrix and classification report for each. Do so in
     the cell below:
[15]: adaboost_confusion_matrix = confusion_matrix(y_test, adaboost_test_preds)
      adaboost_confusion_matrix
[15]: array([[96, 27],
             [26, 43]])
[16]: | gbt_confusion_matrix = confusion_matrix(y_test, gbt_clf_test_preds)
```

gbt_confusion_matrix

```
[16]: array([[95, 28], [21, 48]])
```

	precision	recall	f1-score	support
0 1	0.79 0.61	0.78 0.62	0.78 0.62	123 69
accuracy			0.72	192
macro avg	0.70	0.70	0.70	192
weighted avg	0.72	0.72	0.72	192

[18]: gbt_classification_report = classification_report(y_test,gbt_clf_test_preds)
print(gbt_classification_report)

	precision	recall	f1-score	support
0	0.82	0.77	0.79	123
1	0.63	0.70	0.66	69
accuracy			0.74	192
macro avg	0.73	0.73	0.73	192
weighted avg	0.75	0.74	0.75	192

Question: How did the models perform? Interpret the evaluation metrics above to answer this question.

Write your answer below this line:

As a final performance check, let's calculate the 5-fold cross-validated score for each model!

Recall that to compute the cross-validation score, we need to pass in:

- A classifier
- All training data
- All labels
- The number of folds we want in our cross-validation score

Since we're computing cross-validation score, we'll want to pass in the entire dataset, as well as all of the labels.

In the cells below, compute the mean cross validation score for each model.

```
[19]: print('Mean Adaboost Cross-Val Score (k=5):') print(cross_val_score(adaboost_clf, df, target, cv=5).mean())
```

```
# Expected Output: 0.7631270690094218
```

Mean Adaboost Cross-Val Score (k=5): 0.7631270690094218

```
[20]: print('Mean GBT Cross-Val Score (k=5):')
print(cross_val_score(gbt_clf, df, target, cv=5).mean())
# Expected Output: 0.7591715474068416
```

```
Mean GBT Cross-Val Score (k=5): 0.7604702487055428
```

These models didn't do poorly, but we could probably do a bit better by tuning some of the important parameters such as the *Learning Rate*.

1.6 Summary

In this lab, we learned how to use scikit-learn's implementations of popular boosting algorithms such as AdaBoost and Gradient Boosted Trees to make classification predictions on a real-world dataset!