INF 112: Programação II

Aula 04

→ Introdução à análise de complexidade

Fábio R. Cerqueira, UFV, DPI, frcerqueira@gmail.com

Análise de algoritmo

- → O que analisar:
 - Eficiência de tempo;
 - Eficiência de espaço.
- → Nosso foco será <u>tempo</u>.

Análise de algoritmo

- Em geral, os algoritmos gastam mais tempo para serem executados quando a entrada é aumentada.
- Portanto, é bastante lógico investigar a eficiência do algoritmo como uma função de algum parâmetro n que indique o tamanho da entrada do algoritmo.

Como medir tempo de execução?

- → Podemos simplesmente usar alguma unidade padrão de medida de tempo (segundos, milissegundos, etc.) para medir o tempo de execução de um programa que implementa o algoritmo.
- Mas há alguns problemas com esta estratégia:
 - Dependência da velocidade de um computador particular;
 - Dependência da qualidade do programa que implementa o algoritmo e ainda do compilador utilizado;
 - E a dificuldade de cronometrar o tempo de execução real de um programa.

Como medir tempo de execução?

- Uma possível solução é contar o número de vezes que cada operação do algoritmo é executada.
- Veja que se quisermos, eventualmente, fazer uma estimativa precisa de tempo, isto seria interessante.
- No entanto, quando se analisa um algoritmo, o que se deseja, mais frequentemente, é perceber como o mesmo se comporta relativamente à entrada fornecida. Particularmente, como o número de operações realizadas cresce à medida que a entrada aumenta. Para o entendimento deste comportamento, contar todas as operações é normalmente desnecessário.

Como medir tempo de execução?

- O que se pode fazer é identificar a operação mais importante do algoritmo, chamada de <u>operação</u> <u>básica</u>, que é aquela que mais contribui para o tempo de execução total.
- A partir daí, computar o número de vezes que a operação básica é executada.
- A operação básica é, via de regra, aquela que se encontra no laço mais interno do algoritmo e a que mais tempo consome.

Exemplo de tamanho de entrada e operações básicas

Problema	Tamanho da entrada	Operação Básica
Buscar um elemento em uma lista de <i>n</i> itens	Número de elementos na lista (ou seja, <i>n</i>)	Comparações
Multiplicação de duas matrizes	As dimensões da matriz ou o número total de elementos	Multiplicação de dois números
Checar se um dado inteiro <i>n</i> é primo	Número de dígitos (em representação binária)	Divisão
Problema típico de grafos	Número de vértices e arestas	Visitar um vértice ou atravessar uma aresta

Análise teórica de eficiência de tempo

- Analisa-se a eficiência de tempo determinando-se o número de repetições da operação básica. Esta contagem será na forma de uma função do tamanho da entrada.
- Operação básica: aquela que mais contribui para o tempo total de execução do algoritmo

Análise teórica de eficiência de tempo

→ Assumindo-se que C(n) = ½n(n-1), qual será a diferença no tempo para se executar um algoritmo se compararmos uma execução para um certo tamanho de entrada n e outra execução para 2n (ou seja, se dobrarmos o tamanho da entrada)? A resposta é: a segunda execução levaria, aproximadamente, quatro vezes mais tempo:

 $C(n) = \frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \approx \frac{1}{2}n^2$ (para valores de n bem altos) e portanto:

 $T(2n)/T(n) \approx c_{op}C(2n) / c_{op}C(n) \approx \frac{1}{2}(2n)^2 / \frac{1}{2}n^2 = 4.$

Ordem de complexidade ou taxa de crescimento

- Vemos então que ignora-se constantes multiplicativas e concentra-se na análise da <u>taxa de crescimento</u> (também chamada de <u>ordem de complexidade</u>) do algoritmo para entradas de tamanho elevado.
- Por que esta ênfase no cálculo da taxa de crescimento para entradas cada vez maiores?
- Simplesmente porque para entradas de tamanho pequeno, o tempo de execução normalmente não importa, não faz diferença.

Valores de algumas funções importantes à medida que $n \rightarrow \infty$

Vejamos a tabela abaixo para entender melhor:

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Valores de algumas funções importantes à medida que $n ightarrow \infty$

Exemplo para n!

Suponha que a operação básica de um certo algoritmo gaste 10⁻⁹ segundos para ser executada em um programa que o implemente e que esta operação seja executada n! vezes. Ou seja, suponha que:

$$T(n) \approx 10^{-9} n!$$

→ Neste caso, teríamos:

n	Tempo de execução
20	77 anos
21	1620 anos

Melhor caso, caso médio, pior caso

Para contar o número de operações realizadas pelo algoritmo, há três cenários possíveis para a análise de eficiência:

- \rightarrow Pior caso: $C_{pior}(n)$ máximo para entradas de tamanho n
- \rightarrow Melhor caso: $C_{\text{melhor}}(n)$ mínimo para entradas de tamanho n.
- ightharpoonup Caso médio: $C_{\text{médio}}(n)$ média para entradas de tamanho n.
 - Número de vezes que a operação básica será executada para entradas típicas;
 - NÃO é a média do pior e melhor caso;
 - É o número esperado de operações básicas como uma variável aleatória advinda de uma suposição sobre a distribuição de probabilidade de todas as possíveis entradas.

Exemplo: busca sequencial


```
ALGORITHM SequentialSearch(A[0..n-1], K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n-1] and a search key K

//Output: The index of the first element of A that matches K

// or -1 if there are no matching elements

i \leftarrow 0

while i < n and A[i] \neq K do

i \leftarrow i + 1

if i < n return i

else return -1
```

- **Pior caso:** $C_{pior}(n) = n$.
- \rightarrow Melhor caso: $C_{\text{melhor}}(n) = 1$.
- Caso médio ...

Melhor caso, caso médio, pior caso

Caso médio da busca sequencial:

- Suponha que:
 - A probabilidade de uma busca com sucesso seja p
 - e a probabilidade da primeira ocorrência ocorrer na *i*-ésima posição da lista seja a mesma para todo *i*.
- No caso de uma busca com sucesso, a probabilidade da primeira ocorrência ser na i-ésima posição da lista é p/n para todo i. O número de comparações feitas pelo algoritmo será i.
- No caso de uma busca sem sucesso, o número de comparações será n com probabilidade 1-p.

Melhor caso, caso médio, pior caso

Portanto, o número médio de comparações do algoritmo SequentialSearch será:

$$C_{\text{médio}}(n) = [1.p/n + 2.p/n + ... + i.p/n + ... + n.p/n] + n.(1-p)$$

= $p/n[1 + 2 + ... + i + ... + n] + n(1-p)$
= $p/n \times n(n+1)/2 + n(1-p) = p(n+1)/2 + n(1-p)$.

- → Note que:
 - Se p = 1 (i.e., a busca deverá ter sucesso), o número médio de comparações será de (n+1)/2
 - If p = 0 (i.e., a busca certamente não terá sucesso), o número médio de comparações será de n.

Exercícios

- 1) Para cada caso a seguir, indique de quanto o valor da função será alterado se seu argumento for aumentado em quatro vezes:
 - a) $\log_{n} n$ b) \sqrt{n} c) n d) n^2

- 2) De acordo com uma lenda bem conhecida, o jogo de xadrez foi inventado há vários séculos atrás, no noroeste da Índia, por um sábio chamado Shashi. Quando ele levou seu invento para o rei, o mesmo gostou tanto do jogo que ofereceu ao inventor qualquer recompensa que quisesse. Sashi pediu que lhe fossem dados grãos. A quantidade seria obtida da seguinte forma: Apenas um grão de trigo teria que ser colocado no primeiro quadrado do tabuleiro, dois grãos no segundo, quatro no terceiro, oito no quarto, e assim por diante, até que os 64 quadrados fossem todos preenchidos. Pergunta-se: Qual será o resultado final deste "algoritmo para obtenção de grãos"? (O que seria a entrada deste algoritmo?)