Lógica Proposicional

Dante Zanarini

LCC

24/09/2020

Lógica Proposicional como Lenguaje Formal

- Para definir un lenguaje formalmente necesitamos un alfabeto:
- Para nosotros, estará formado por:
 - ▶ Variables proposicionales: $\{p_0, p_1, p_2, ...\}$
 - ▶ *Conectivos:* \land , \lor , \rightarrow , \bot
 - ► Símbolos auxiliares: : (,)

¿Es un alfabeto?

Definición Formal

Definición 1 (PROP)

El conjunto PROP de proposiciones es el mínimo conjunto X con las siguientes propiedades:

- lacktriangle Si $\phi, \psi \in X$, entonces $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi) \in X$
- \bullet Si $\phi \in X$, entonces $(\neg \phi) \in X$
 - Esta definición es equivalente a una definición inductiva, o a una gramática indepediente del contexto
 - Ejercicio: Definir el principio de inducción y el esquema de recursión para Prop

¿Qué significa Mínimo Conjunto?

Ejemplo 1

- **1** $(p_{14} \lor p_4)$ ∈ Prop
- $((\bot \land (\neg p_3)) \rightarrow p_2) \in \mathsf{PROP}$
- **3** $p_1 \land p_8 \notin PROP$
- ¬¬⊥ ∉ Prop
 - ¿Cómo se prueba (1), (2)?
 - ¿Y (3), (4)?

Formación de Fórmulas

Definición 2 (Secuencia de Formación)

Una secuencia $\phi_0, \phi_1, \dots, \phi_n$ es una secuencia de formación para $\phi \in \text{Prop } sii$

•
$$\phi_n = \phi$$
, y

•

$$\forall i \leq n, \ \phi_i \ es \ atómica \ (cumple \ (i)), \ o$$

$$\phi_i = (\phi_k \square \phi_j) \ para \ algún \ k, j < i, \ (con \square \in \{\land, \lor, \rightarrow\})$$

$$\phi_i = (\neg \phi_j), \ para \ algún \ j < i$$

Secuencias de Formación

Ejemplo 2

$$p_1, p_2, (\neg p_1), ((\neg p_1) \land p_2)$$

es una secuencia de formación para

$$((\neg p_1) \wedge p_2)$$

Observemos que

$$\perp$$
, p_1 , p_3 , $(p_1 \wedge p_3)$, p_2 , $(\neg p_1)$, $(p_2 \rightarrow \bot)$, $((\neg p_1) \wedge p_2)$

también es una secuencia de formación para la misma fórmula

Teorema 1

Una palabra tiene una secuencia de formación sii pertenece a Prop

→□▶→□▶→□▶→□▶ ○ ②

6/17

Semántica

- Las fórmulas de Prop son elementos sintácticos,
- Para darles significado, debemos interpretarlas,
- Es decir, asignarles un valor

Definición 3 (Valores de verdad)

El conjunto de valores de verdad tiene exactamente dos elementos: T (true, verdadero) y F (false, falso).

• Asumiremos una relación de orden \leq sobre los valores de verdad tal que $F \leq T$.

Semántica

- La tarea de darle significado a una fórmula puede encararse de forma composicional
- Por ejemplo, conociendo el valor de verdad de ϕ, ψ , podemos dar el valor de verdad de $\phi \lor \psi$.
- ¿Qué significado le damos a las proposiciones atómicas?
 - "En esta clase hay 32 personas"
 - ► Entre dos números distintos *a*, *b*, siempre puedo encontrar un número *c* en el medio.
 - "Algunos perros tienen cuatro patas"

Semántica, proposiciones atómicas

 Para interpretar una proposición atómica, debemos ir al mundo real, o al modelo que tengamos de él, y decidir si asignarle T o F

Definición 4 (Valuación)

Una valuación o modelo proposicional es una función

$$v:\{p_0,p_1,\ldots\}\to \{T,F\}$$

Una valuación asigna un valor de verdad a cada proposición atómica

 \bullet La semántica de las fórmulas de PROP dependerá de una valuación

Semántica para Prop, definición formal

Definición 5

Sea v una valuación. Definimos la función

$$\llbracket \ \rrbracket_{v} : \mathsf{PROP} \to \{T, F\}$$

por inducción en Prop:

Observemos que esta definición es similar a las tablas de verdad vistas en primer año

Definiciones adicionales

Definición 6 (Tautología)

Una fórmula $\phi \in \text{Prop}$ es una tautología sii para cualquier valuación v, $[\![\phi]\!]_v = T$

Definición 7 (Contradicción)

Una fórmula $\phi \in \text{Prop}$ es una contradicción sii para cualquier valuación v, $[\![\phi]\!]_v = F$

Definición 8 (Fórmula Satisfactible)

Una fórmula $\phi \in \operatorname{PROP}$ es satisfactible sii para alguna valuación v, $[\![\phi]\!]_v = T$

Dante Zanarini (LCC)

Convenciones sintácticas

Cuando no haya lugar a ambigüedades:

- Omitiremos los paréntesis más externos de una fórmula
- Usaremos el siguiente orden de precedencia: $\neg, \land, \lor, \rightarrow$

Ejemplo 3

Escribiremos

$$p_1 \lor \neg p_2 \to p_3$$

en lugar de

$$((p_1 \vee (\neg p_2)) \rightarrow p_3)$$

• Sea v una valuación. Extendemos la definición de [] v a conjuntos:

$$[\![\Gamma]\!]_v = T$$
 sii para toda $\phi \in \Gamma$, $[\![\phi]\!]_v = T$

Convenciones sintácticas

Definimos el operador \leftrightarrow de la siguiente forma:

$$(\phi \leftrightarrow \psi) \equiv (\phi \to \psi) \land (\psi \to \phi)$$

Ejercicio: Probar que $[\![\phi\leftrightarrow\psi]\!]_{\mathbf{v}}=T$ sii $[\![\phi]\!]_{\mathbf{v}}=[\![\psi]\!]_{\mathbf{v}}$

Dante Zanarini (LCC)

Consecuencia Semántica

Definición 9

Definimos la relación $\models \subseteq \mathcal{P}(PROP) \times PROP$:

 $\Gamma \models \phi \text{ sii para toda valuaci\'on } v, \text{ si } \llbracket \Gamma \rrbracket_v = T \text{ entonces } \llbracket \phi \rrbracket_v = T.$

Diremos que ϕ es una consecuencia semántica de Γ .

Ejemplo 4

- \bullet $\neg \phi \lor \psi, \phi \models \psi$

Sustitución

Definimos $\phi[\psi/p_i]$ por inducción en ϕ :

Teorema 2 (Teorema de Sustitución)

Sean $\phi_1, \phi_2, \psi \in PROP$, $p_i \in AT$.

 $Si \models \phi_1 \leftrightarrow \phi_2$, entonces $\models \psi[\phi_1/p_i] \leftrightarrow \psi[\phi_2/p_i]$

Dante Zanarini (LCC)

Lógica como álgebra

- Como consecuencia del teorema de sustitución, podemos usar nuestro modelos para razonar algebraicamente sobre PROP
- Definimos la relación $\approx \subseteq PROP \times PROP$ tal que

$$\phi \approx \psi$$
 sii $\models \phi \leftrightarrow \psi$

 La relación ≈ es de equivalencia, y nos permite trabajar algebraicamente con fórmulas proposicionales.

Conjuntos Completos de Conectivos

- Un conjunto A de conectivos es completo si, para cada fórmula ϕ , existe ψ tal que:
 - \bullet ψ utiliza únicamente conectivos de A, y
- \bullet Algunos conjuntos completos de conectivos: $\{\neg, \lor\}$, $\{\neg, \land\}$
- \bullet Algunos que no son completos: $\{\vee,\wedge\}$, $\{\bot,\wedge\}$