Probability of Recession

William Chiu

2022-11-29

Summary

Forecast the probability of a recession in the next 6 months using the following predictors:

- $1.\ \,$ Spread between 10Y CMT and Effective Federal Funds Rate
- 2. YOY change in Unemployment Rate
- 3. YOY growth in CPI-U
- 4. YOY change in Effective Federal Funds Rate
- 5. Adstock transformations of predictors

Extract Historical Data

Refer to this vignette for FRED data access.

```
library(tidyverse)
library(lubridate)
library(fredr)
library(car)
library(MLmetrics)
library(caret)
library(pdp)
library(gridExtra)
library(mboost)
library(gbm)
library(randomForest)
library(glmnet)
library(gtsummary)
randSeed <- 1983
startTestDate <- "1978-01-01"
startTrainDate <- "1988-01-01"
```

```
series_id <- c("FEDFUNDS", "GS10", "USREC", "UNRATE", "CPIAUCSL")

full_data <- map_dfr(series_id, function(x) {
   fredr(
        series_id = x,
        observation_start = as.Date("1950-01-01"),
        observation_end = as.Date("2022-12-01")</pre>
```

```
})
```

Pivot Wider

Calculate Features/Predictors

```
full_data_wide_features <- full_data_wide_raw %>%
  arrange(date) %>%
  mutate(SPRD_10YCMT_FEDFUNDS = GS10 - FEDFUNDS,
         D_UNRATE = UNRATE - lag(UNRATE, 12),
         G_CPIU = (CPIAUCSL / lag(CPIAUCSL, 12) - 1) * 100,
         D_EFFR = FEDFUNDS - lag(FEDFUNDS, 12),
         D_{GS10} = GS10 - lag(GS10, 12)
         ) %>%
  mutate(across(
    .cols=c(SPRD_10YCMT_FEDFUNDS, D_UNRATE,
               G_CPIU, D_EFFR, GS10, D_GS10),
    .fns=list(lag1 = ~lag(.x, 1),
         lag3 = \sim lag(.x, 3),
         lag6 = \sim lag(.x, 6),
         lag9 = \sim lag(.x, 9),
         lag12 = ~lag(.x, 12))
  )) %>%
  select(-CPIAUCSL) %>% ## index rises with time
  drop_na()
```

Calculate Adstock

where

The adstock transformation is an auto-regressive transformation of a time series. The transformation takes into account past values of the time series. The intuition is that past values of the time series has a contemporaneous effect on the outcome.

$$AdStock(x_t) = x_t + \theta AdStock(x_{t-1})$$
$$0 < \theta < 1$$

The parameters cannot be estimated easily with least squares or logistic regression. Instead, we assume a range of potential values between 0.05 and 1.

```
full_data_wide_features_adstock <- full_data_wide_features %>%
  arrange(date) %>%
    mutate(across(
    .cols=c(UNRATE:D_GS10),
    .fns=list(adstk85 = ~stats::filter(.x,
                                      filter=0.85,
                                      method="recursive") ,
         adstk91 = ~stats::filter(.x,
                                      filter=0.91,
                                      method="recursive") ,
         adstk92 = ~stats::filter(.x,
                                      filter=0.92,
                                      method="recursive"),
         adstk93 = ~stats::filter(.x,
                                      filter=0.93,
                                      method="recursive"),
         adstk94 = ~stats::filter(.x,
                                      filter=0.94,
                                      method="recursive"),
         adstk95 = ~stats::filter(.x,
                                      filter=0.95,
                                      method="recursive"),
         adstk99 = ~stats::filter(.x,
                                      filter=0.99,
                                      method="recursive")
  ))) %>%
 mutate(constant=1)
```

Calculate Moving Average

```
ma_fun <- function(k_param){</pre>
  rep(1/k_param, k_param)
full_data_wide_features_adstock <- full_data_wide_features_adstock %%
  arrange(date) %>%
    mutate(across(
    .cols=c(SPRD 10YCMT FEDFUNDS),
    .fns=list(
         ma2m = ~stats::filter(.x,
                                       filter=ma_fun(2),
                                     method="convolution",
                                     sides=1),
         ma3m = ~stats::filter(.x,
                                       filter=ma_fun(3),
                                     method="convolution",
                                     sides=1),
         ma6m = ~stats::filter(.x,
                                       filter=ma_fun(6),
                                     method="convolution",
                                     sides=1),
```

Remove the last 12 months of historical data

Since the NBER often dates recessions after they have already occurred (and sometimes ended), remove the last 12 months of historical data from both the training and test data sets.

```
recent_data <- tail(full_data_wide_features_adstock, 12)
train_test <- head(full_data_wide_features_adstock, -12)</pre>
```

Recession in next 6 months

Split Train/Test

```
full_data_wide$constant <- 1

train_data <- full_data_wide %>%
    filter(date >= startTrainDate)

test_data <- full_data_wide %>%
    filter(date >= startTestDate) %>%
    filter(date <= startTrainDate)

train_yes_no <- train_data %>%
    mutate(FUTREC == case_when(FUTREC == 1 ~ "yes",
```

Characteristic	N = 400
date	1988-01-01 to 2021-04-01
USREC	36 (9.0%)
UNRATE	5.50(4.70, 6.70)
GS10	$4.50 \ (2.67, 6.23)$
FEDFUNDS	$2.71\ (0.37,\ 5.29)$
SPRD_10YCMT_FEDFUNDS	$1.48\ (0.53,\ 2.56)$
D_UNRATE	-0.30 (-0.60, 0.23)
G_CPIU	$2.54 \ (1.69,\ 3.22)$
D_EFFR	$0.01 \; (-0.75, 0.63)$
D_GS10	-0.30 (-0.85, 0.39)
SPRD_10YCMT_FEDFUNDS_lag1	$1.48\ (0.53,\ 2.56)$
SPRD_10YCMT_FEDFUNDS_lag3	$1.50\ (0.53,\ 2.56)$
SPRD_10YCMT_FEDFUNDS_lag6	$1.54 \ (0.53, \ 2.56)$
SPRD_10YCMT_FEDFUNDS_lag9	$1.56 \ (0.53, \ 2.56)$
SPRD_10YCMT_FEDFUNDS_lag12	$1.56 \ (0.53, \ 2.56)$
D_UNRATE_lag1	-0.30 (-0.60, 0.23)
D_UNRATE_lag3	-0.30 (-0.60, 0.20)
D_UNRATE_lag6	-0.30 (-0.60, 0.20)
D_UNRATE_lag9	-0.30 (-0.60, 0.20)
D_UNRATE_lag12	-0.30 (-0.60, 0.10)
G_CPIU_lag1	$2.54 \ (1.69,\ 3.22)$
G_CPIU_lag3	$2.54 \ (1.70, \ 3.23)$
G_CPIU_lag6	$2.57 \ (1.72, \ 3.26)$
G_CPIU_lag9	$2.60\ (1.73,\ 3.34)$
G_CPIU_lag12	2.60(1.74, 3.34)
D_EFFR_lag1	$0.01 \; (-0.75, 0.63)$
D_EFFR_lag3	$0.01 \ (-0.75, \ 0.66)$
D_EFFR_lag6	0.02 (-0.74, 0.68)
D_EFFR_lag9	$0.02 \ (-0.73, \ 0.68)$
D_EFFR_lag12	$0.02 \ (-0.73, \ 0.68)$
GS10_lag1	$4.51 \ (2.70, 6.26)$
GS10_lag3	$4.53 \ (2.71, 6.27)$
GS10_lag6	$4.56 \ (2.72, 6.30)$
GS10_lag9	4.58 (2.80, 6.42)
GS10_lag12	4.65 (2.84, 6.49)
D_GS10_lag1	$-0.30 \ (-0.85, \ 0.39)$
D_GS10_lag3	-0.30 (-0.85, 0.39)
D_GS10_lag6	-0.29 (-0.85, 0.41)
D_GS10_lag9	-0.27 (-0.83, 0.43)
D_GS10_lag12	-0.27 (-0.83, 0.43)
$UNRATE_adstk85$	37(32, 45)
$UNRATE_adstk91$	62 (54, 74)

Characteristic	N = 400
UNRATE_adstk92	70 (61, 82)
UNRATE_adstk93	80 (71, 93)
UNRATE_adstk94	94 (83, 110)
UNRATE_adstk95	114 (101, 132)
UNRATE_adstk99	620 (557, 653)
GS10_adstk85	30 (17, 43)
GS10_adstk91	51 (29, 72)
GS10_adstk92	57 (33, 81)
GS10_adstk93	65 (37, 93)
GS10_adstk94	76 (43, 110)
$GS10_adstk95$	92 (51, 133)
GS10_adstk99	611 (434, 790)
FEDFUNDS_adstk85	21 (4, 36)
FEDFUNDS_adstk91	37(9,59)
FEDFUNDS_adstk92	$43\ (11,\ 66)$
FEDFUNDS_adstk93	50 (14, 75)
FEDFUNDS_adstk94	59 (17, 87)
FEDFUNDS_adstk95	71 (21, 104)
FEDFUNDS_adstk99	457 (263, 652)
SPRD_10YCMT_FEDFUNDS_adstk85	10 (4, 17)
SPRD_10YCMT_FEDFUNDS_adstk91	17(7, 26)
SPRD_10YCMT_FEDFUNDS_adstk92	19 (8, 29)
SPRD_10YCMT_FEDFUNDS_adstk93	22 (9, 32)
SPRD_10YCMT_FEDFUNDS_adstk94	$26\ (11,\ 37)$
SPRD_10YCMT_FEDFUNDS_adstk95	$31\ (15,\ 44)$
SPRD_10YCMT_FEDFUNDS_adstk99	137 (111, 161)
D_UNRATE_adstk85	-2 (-4, 2)
D_UNRATE_adstk91	-4 (-6, 4)
D_UNRATE_adstk92	-4 (-6, 4)
D_UNRATE_adstk93 D_UNRATE_adstk94	-5 (-7, 5) 5 (9, 6)
D_UNRATE_adstk94 D_UNRATE_adstk95	-5 (-8, 6) -6 (-9, 6)
D UNRATE adstk99	-9 (-17, 5)
G CPIU adstk85	17 (12, 21)
G CPIU adstk91	28 (21, 35)
G_CPIU_adstk92	31 (24, 39)
G_CPIU_adstk93	35 (28, 44)
G CPIU adstk94	41 (32, 51)
G CPIU adstk95	49 (38, 61)
G CPIU adstk99	311 (261, 416)
D_EFFR_adstk85	0 (-5, 4)
D_EFFR_adstk91	0(-9,5)
$D_EFFR_adstk92$	-1 (-10, 5)
$D_EFFR_adstk93$	-1 (-11, 6)
$D_EFFR_adstk94$	-1 (-12, 6)
$D_EFFR_adstk95$	-2 (-13, 6)
D_EFFR_adstk99	-18 (-37, -8)
D_GS10_adstk85	-1.7 (-4.5, 1.4)
D_GS10_adstk91	-2.3 (-6.1, 1.2)
D_GS10_adstk92	-2.5 (-6.5, 1.0)
D_GS10_adstk93	-2.8 (-7.0, 0.6)
D_GS10_adstk94	-3.3 (-7.5, 0.1)

Characteristic	N = 400
D_GS10_adstk95	-4.2 (-8.4, -0.8)
D_GS10_adstk99	-20 (-23, -13)
constant	400 (100%)
SPRD_10YCMT_FEDFUNDS_ma2m	$1.48 \ (0.48, \ 2.54)$
SPRD_10YCMT_FEDFUNDS_ma3m	1.49 (0.49, 2.57)
SPRD_10YCMT_FEDFUNDS_ma6m	$1.51\ (0.50,\ 2.59)$
SPRD_10YCMT_FEDFUNDS_ma9m	$1.52\ (0.49,\ 2.62)$
SPRD_10YCMT_FEDFUNDS_ma12m	$1.49 \ (0.50, \ 2.60)$
FUTREC	56 (14%)

Remove stale data from test set

Exclude historical data prior to 1978-01-01 because the economy changed dramatically (due to computational innovation).

```
summary(test_data$date)
##
           Min.
                     1st Qu.
                                   Median
                                                            3rd Qu.
                                                                             Max.
                                                  Mean
## "1978-01-01" "1980-06-23" "1982-12-16" "1982-12-16" "1985-06-08" "1987-12-01"
test_data <- test_data %>%
  filter(date >= startTestDate)
summary(test_data$date)
           Min.
                     1st Qu.
                                   Median
                                                  Mean
                                                            3rd Qu.
## "1978-01-01" "1980-06-23" "1982-12-16" "1982-12-16" "1985-06-08" "1987-12-01"
```

Setup Parallel Processing

```
library(doParallel)

cl <- makePSOCKcluster(3)
registerDoParallel(cl)</pre>
```

Cross-Validation Framework

```
fcstHorizon <- 3
initWindow <- 120
param_skip <- fcstHorizon - 1

if(initWindow < 100){
   stop("Too few observations.")
}</pre>
```

```
fitControl_oneSE <- trainControl(method = "timeslice",</pre>
                            initialWindow=initWindow,
                           horizon=fcstHorizon,
                            fixedWindow=FALSE,
                            skip=param_skip,
                            ## Estimate class probabilities
                            classProbs = TRUE,
                            ## Evaluate performance using
                            ## the following function
                            summaryFunction = mnLogLoss,
                            selectionFunction="oneSE")
fitControl_best <- trainControl(method = "timeslice",</pre>
                            initialWindow=initWindow,
                           horizon=fcstHorizon,
                            fixedWindow=FALSE,
                            skip=param_skip,
                            ## Estimate class probabilities
                            classProbs = TRUE,
                            ## Evaluate performance using
                            ## the following function
                            summaryFunction = mnLogLoss,
                            selectionFunction="best")
```

Gradient Boosting for Additive Models


```
gam_mod$bestTune
```

```
## mstop prune
## 3 9 no
```

eXtreme Gradient Boosting Trees

```
metric = "logLoss",
  tuneGrid = grid_xgb,
  objective = "binary:logistic"
)
plot(xgb_mod)
```



```
xgb_mod$bestTune
```

Random Forest

```
grid_rf <- data.frame(mtry=seq.int(1,50,5))
set.seed(randSeed)

rf_mod <- train(
  FUTREC ~ . - date - USREC - constant,
  data = train_yes_no,
  method = "rf",</pre>
```

```
trControl = fitControl_oneSE,
metric = "logLoss",
tuneGrid = grid_rf,
importance = TRUE
)
plot(rf_mod)
```


rf_mod\$bestTune

```
## mtry
## 2 6
```

Stepwise Regression

The glmStepAIC method uses the glm() function from the stats package. The documentation for glm() says:

For binomial and quasibinomial families the response can also be specified as a factor (when the first level denotes failure and all others success) or as a two-column matrix with the columns giving the numbers of successes and failures.

However, for most methods (that do not invoke glm()) in train, the first level denotes the success (the opposite of glm()). This behavior causes the coefficient signs to flip. Be highly suspicious when interpreting coefficients from models that are fit using train.

```
set.seed(randSeed)

stepwise_mod <- train(
  FUTREC ~ . - date - USREC - constant,
  data = train_yes_no,
  method = "glmStepAIC",
  trControl = fitControl_oneSE,
  metric = "logLoss",
  tuneLength = 10,
  family = binomial,
  trace = 0,
  k = 10*log(nrow(train_yes_no)),
  direction = "forward"
)</pre>
```

Elastic Net (Lasso)

```
grid_glmnet <- expand.grid(
    alpha = 1,
    lambda = seq(0, 1, 0.005)
)

set.seed(randSeed)

glmnet_mod <- train(
    FUTREC ~ . - date - USREC - constant,
    data = train_yes_no,
    method = "glmnet",
    trControl = fitControl_best,
    metric = "logLoss",
    tuneGrid = grid_glmnet,
    family = "binomial"
)

plot(glmnet_mod)</pre>
```



```
glmnet_mod$bestTune
```

```
## alpha lambda
## 8 1 0.035
```

Multivariate Adaptive Regression Splines


```
earth_mod$bestTune
```

```
## nprune degree
## 1 2 1
```

Null Model: Intercept-only Model

```
set.seed(randSeed)

null_mod <- train(
  FUTREC ~ constant,
  data = train_yes_no,
  method = "glm",
  trControl = fitControl_best,
  metric = "logLoss",
  family = binomial
)</pre>
```

Compare Models

```
resamps <- resamples(list(XGB = xgb_mod,
                          GAM = gam_mod,
                          RF = rf_mod,
                          Step = stepwise_mod,
                          Lasso = glmnet_mod,
                          MARS = earth_mod,
                          Null = null_mod)
                     )
summary(resamps)
##
## Call:
## summary.resamples(object = resamps)
## Models: XGB, GAM, RF, Step, Lasso, MARS, Null
## Number of resamples: 93
##
## logLoss
##
                                         Median
                                                               3rd Qu.
                 Min.
                           1st Qu.
                                                      Mean
                                                                            Max.
         1.319869e-01 1.366067e-01 1.539588e-01 0.3357008 0.161339671
                                                                        2.066952
## XGB
## GAM
         6.477267e-02 8.776182e-02 9.701278e-02 0.3093973 0.180938950
                                                                        2.786303
         9.992007e-16 6.711129e-03 2.362709e-02 0.1667428 0.119006715
## RF
                                                                        2.818110
## Step 9.992007e-16 9.992007e-16 1.114294e-13 0.7389759 0.001166015 34.538776
## Lasso 1.047675e-03 4.119648e-03 1.967613e-02 0.2847785 0.133543781
                                                                        3.185871
## MARS 9.992007e-16 4.302611e-03 3.877078e-02 0.6710615 0.050065756 34.538776
## Null 9.065437e-02 1.407726e-01 1.576289e-01 0.4399853 0.193132473 2.465489
##
         NA's
## XGB
            0
            0
## GAM
## RF
            0
## Step
## Lasso
            0
## MARS
            0
## Null
            0
```

```
dotplot(resamps, metric = "logLoss", conf.level=0.95)
```


Confidence Level: 0.95

Explore XGB Model

variable	Overall
UNRATE	0
GS10	0
FEDFUNDS	0
SPRD 10YCMT FEDFUNDS	0
D UNRATE	0
G CPIU	0
D EFFR	0
D GS10	0
SPRD_10YCMT_FEDFUNDS_lag1	0
SPRD_10YCMT_FEDFUNDS_lag3	0
SPRD_10YCMT_FEDFUNDS_lag6	0
SPRD_10YCMT_FEDFUNDS_lag9	0
SPRD 10YCMT FEDFUNDS lag12	0
D UNRATE lag1	0
D_UNRATE_lag3	0
D UNRATE lag6	0
D UNRATE lag9	0
D UNRATE lag12	0
G_CPIU_lag1	0
G CPIU lag3	0
G_CPIU_lag6	0
G CPIU lag9	0
G_CPIU_lag12	0
D_EFFR_lag1	0
D EFFR lag3	0
D EFFR lag6	0
D EFFR lag9	0
D EFFR lag12	0
$\overline{\text{GS}10}$ lag1	0
GS10 lag3	0
GS10 lag6	0
GS10_lag9	0
GS10_lag12	0
D_GS10_lag1	0
\overline{D} GS10 lag3	0
D_GS10_{lag6}	0
\overline{D} GS10 lag9	0
D_GS10_lag12	0
UNRATE adstk85	0
UNRATE_adstk91	0
UNRATE_adstk92	0
UNRATE_adstk93	0
UNRATE_adstk94	0
UNRATE_adstk95	0
UNRATE_adstk99	0
GS10_adstk85	0
GS10_adstk91	0
$GS10_adstk92$	0
$GS10_adstk93$	0
$GS10_adstk94$	0
$GS10_adstk95$	0
$GS10_adstk99$	0

variable	Overall
FEDFUNDS adstk85	0
FEDFUNDS adstk91	0
FEDFUNDS adstk92	0
FEDFUNDS adstk93	0
FEDFUNDS adstk94	0
FEDFUNDS adstk95	0
FEDFUNDS adstk99	0
SPRD 10YCMT FEDFUNDS adstk85	0
SPRD 10YCMT FEDFUNDS adstk91	0
SPRD 10YCMT FEDFUNDS adstk92	0
SPRD 10YCMT FEDFUNDS adstk93	0
SPRD 10YCMT FEDFUNDS adstk94	0
SPRD 10YCMT FEDFUNDS adstk99	0
D_UNRATE_adstk85	0
D_UNRATE_adstk91	0
D_UNRATE_adstk92	0
D_UNRATE_adstk93	0
D_UNRATE_adstk94	0
D_UNRATE_adstk95	0
D_UNRATE_adstk99	0
$G_CPIU_adstk85$	0
G_CPIU_adstk91	0
$G_CPIU_adstk92$	0
G_CPIU_adstk93	0
G_CPIU_adstk94	0
G_CPIU_adstk95	0
G_CPIU_adstk99	0
D_EFFR_adstk85	0
D_EFFR_adstk91	0
D_EFFR_adstk92	0
D_EFFR_adstk93	0
D_EFFR_adstk94	0
D_EFFR_adstk95	0
D_EFFR_adstk99	0
D_GS10_adstk85	0
D_GS10_adstk91	0
D_GS10_adstk92	0
D_GS10_adstk93	0
D_GS10_adstk94	0
D_GS10_adstk95 D_GS10_adstk99	0
_ _	0
	0
SPRD_10YCMT_FEDFUNDS_ma3m SPRD_10YCMT_FEDFUNDS_ma6m	$0 \\ 0$
SPRD_10YCM1_FEDFUNDS_maom SPRD_10YCMT_FEDFUNDS_ma9m	0
SPRD_101CM1_FEDFUNDS_ma9m SPRD_101CMT_FEDFUNDS_ma12m	
SFRD_101 CM1_FEDF UNDS_ma12m	0

```
pdp.top2 <- partial(xgb_mod,</pre>
          pred.var = df_imp$variable[2],
          plot = TRUE,
          rug = TRUE)
pdp.top3 <- partial(xgb_mod,</pre>
    pred.var = df_imp$variable[3],
    plot = TRUE,
    chull = TRUE
  )
pdp.top4 <- partial(xgb_mod,</pre>
    pred.var = df_imp$variable[4],
    plot = TRUE,
    chull = TRUE
  )
pdp.top5 <- partial(xgb_mod,</pre>
   pred.var = df_imp$variable[5],
   plot = TRUE,
    chull = TRUE
  )
pdp.top6 <- partial(xgb_mod,</pre>
    pred.var = df_imp$variable[6],
    plot = TRUE,
    chull = TRUE
  )
grid.arrange(pdp.top1, pdp.top2, pdp.top3,
             pdp.top4, pdp.top5, pdp.top6, ncol = 3)
```


Peeking

Peeking means we use the insights from the automated models to choose variables in subsequent models. This is technically cheating and causes the cross-validation errors to be artificially low. This is addressed in the test set which does not have peeking bias.

Logistic Regression (with peeking)

As mentioned early, train and glm treat the reference level differently for binary outcomes. Hence, the coefficients are flipped when training a logistic regression inside train.

```
logit_mod <- train(
  top1_fmla,
  data = train_yes_no,
  method = "glm",
  trControl = fitControl_oneSE,
  metric = "logLoss",
  family=binomial
)</pre>
```

```
##
## Call:
## NULL
##
## Deviance Residuals:
       Min 1Q Median
                                     3Q
                                              Max
## -2.85885 0.01615 0.05089 0.21740
                                          1.44457
##
## Coefficients:
##
                              Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                              -2.35475
                                         0.47256 -4.983 6.26e-07 ***
## SPRD_10YCMT_FEDFUNDS_adstk95 0.22758
                                          0.03434
                                                    6.627 3.43e-11 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 323.97 on 399 degrees of freedom
## Residual deviance: 169.43 on 398 degrees of freedom
## AIC: 173.43
## Number of Fisher Scoring iterations: 8
```

Compare Models

CV errors for models with peeking are misleadingly low. This will be addressed with a test set.

```
##
## Call:
```

```
## summary.resamples(object = resamps)
##
## Models: XGB, GAM, RF, Step, Lasso, MARS, Null, Logit
## Number of resamples: 93
##
## logLoss
##
                           1st Qu.
                                          Median
                 Min.
                                                      Mean
                                                               3rd Qu.
                                                                             Max.
         1.319869e-01 1.366067e-01 1.539588e-01 0.3357008 0.161339671
## XGB
                                                                        2.066952
  GAM
         6.477267e-02 8.776182e-02 9.701278e-02 0.3093973 0.180938950
                                                                         2.786303
         9.992007e-16 6.711129e-03 2.362709e-02 0.1667428 0.119006715
## RF
                                                                        2.818110
  Step
         9.992007e-16 9.992007e-16 1.114294e-13 0.7389759 0.001166015 34.538776
## Lasso 1.047675e-03 4.119648e-03 1.967613e-02 0.2847785 0.133543781
                                                                        3.185871
         9.992007e-16 4.302611e-03 3.877078e-02 0.6710615 0.050065756 34.538776
## MARS
         9.065437e-02 1.407726e-01 1.576289e-01 0.4399853 0.193132473
## Logit 9.992007e-16 1.213044e-04 9.481820e-04 0.3297987 0.036391729
                                                                       7.139040
##
         NA's
## XGB
            0
## GAM
            0
## RF
            0
## Step
            0
## Lasso
            0
## MARS
            0
            0
## Null
## Logit
```


Confidence Level: 0.95

Test Set Performance

```
perf <-
  function(lst_mods,
           f_metric = caTools::colAUC,
           metricname = "ROC-AUC",
           dat=test_data,
           response="FUTREC") {
    lst_preds <- map(</pre>
      .x = lst_mods,
      .f = function(x) {
        if (class(x)[1] != "train") {
          predict(x, newdata = dat, type = "response")
        } else
          (
            predict(x, newdata = dat, type = "prob")[, "yes"]
      }
    map_dfr(lst_preds, function(x) {
      f_metric(x, dat[,response, drop=TRUE])
    }) %>%
      pivot_longer(everything(), names_to = "model", values_to = metricname)
perf(mymods, caTools::colAUC, "ROC-AUC") %>%
  arrange(desc(`ROC-AUC`)) %>%
      knitr::kable()
```

model	ROC-AUC
Step	0.9634233
Logit	0.9634233
GAM	0.9616477
MARS	0.9595170
Lasso	0.9460227
XGB	0.8863636
RF	0.8370028
Null	0.5000000

```
perf(mymods, MLmetrics::LogLoss, "LogLoss") %>%
    arrange(LogLoss) %>%
    knitr::kable()
```

model	LogLoss
XGB	0.4172260
GAM	0.4181043
RF	0.4559358

model	LogLoss
Lasso	0.5220408
Null	0.6349002
Step	0.6771614
Logit	0.6771614
MARS	2.7799214

Probability of Recession (Most Recent Month)

```
curr_data <- tail(full_data_wide_features_adstock, 1)
curr_data$date</pre>
```

[1] "2022-10-01"

model	prob_rec
XGB	14.71%
GAM	11.58%
RF	31.60%
Step	4.58%
Lasso	22.04%
MARS	5.15%
Null	14.00%
Logit	4.58%

Backtesting

```
full_data_bktst <- full_data_wide_features_adstock %>%
  filter(date >= startTestDate)
bkst_fun <- function(mods, dat) {</pre>
  output \leftarrow map_dfc(.x = mods, .f = function(x) {
    if(class(x)[1] != "train"){
      predict(x, newdata = dat, type = "response")
    } else(
       predict(x, newdata = dat, type = "prob")[,"yes"]
    )
  })
  output$date <- dat$date
  output <- output%>%
    pivot_longer(-date, names_to = "model",
                 values_to = "prob_rec")
  return(output)
df_plot <- bkst_fun(mymods, full_data_bktst)</pre>
actuals <- full data bktst %>%
  mutate(model="actuals") %>%
  select(date, model, prob_rec=USREC)
df_plot_final <- bind_rows(df_plot, actuals)</pre>
end_test_date <- max(test_data$date)</pre>
df_plot_final <- df_plot_final %>%
  mutate(epoc = case_when(date <= end_test_date ~ "1_Test_Data",</pre>
                           TRUE ~ "2_Training_Data")
  )
df_plot_logit_scam <- df_plot_final %>%
  filter(model %in% c('actuals', 'Null',
                       'Logit', 'Step', 'Lasso',
                       'LogitKnot'))
df_plot_knots_gbm <- df_plot_final %>%
  filter(model %in% c('actuals', 'Null',
                       'XGB', 'RF',
                       'GAM',
                       'MARS'))
```


stopCluster(cl)