

GEOMETRÍA Capítulo 3

<u>Ángulos complementarios y</u> <u>suplementarios</u>

MOTIVATING| STRATEGY

ÁNGULOS COMPLEMENTARIOS Y SUPLEMENTARIOS

Ángulos complementarios
Son dos ángulos cuyas medidas suman 90°.

<u>Ángulos Suplementarios</u>
Son dos ángulos cuyas medidas suman 180°.

Los ángulos AOB y CQD son complementarios.

suplementarios.

Complemento de un ángulo

Es lo que le falta a la medida de un ángulo para que sea igual a 90°.

$$C_{\alpha} = 90^{\circ} - \alpha$$

 C_{α} : Se lee complemento de α

Ejemplos:

$$\sqrt{C_{34^{\circ}}} = 90^{\circ} - 34^{\circ} = 56^{\circ}$$

$$\sqrt{C_{72^{\circ}}} = 90^{\circ} - 72^{\circ} = 18^{\circ}$$

Suplemento de un ángulo

Es lo que le falta a la medida de un ángulo para que sea igual a 180°.

$$S_{\beta} = 180^{\circ} - \beta$$

 S_{β} : Se lee suplemento de β

Ejemplos:

$$\sqrt{S_{115^{\circ}}} = 180^{\circ} - 115^{\circ} = 65^{\circ}$$

$$\sqrt{S_{57^{\circ}}} = 180^{\circ} - 57^{\circ} = 123^{\circ}$$

NES

Complemento del complemento de alfa

Se representa por: CC_{α}

$$CC_{\alpha} = 90^{\circ} - (90^{\circ} - \alpha)$$

$$CC_{\alpha} = \alpha$$

Ejemplos:

Suplemento del suplemento de alfa.

Se representa por: SS_{α}

$$SS_{\alpha} = 180^{\circ} - (180^{\circ} - \alpha)$$

$$SS_{\alpha} = \alpha$$

Ejemplos:

Teorema.- Siempre que se presenten dos letras iguales y estén juntas, se simplifica y queda la medida del ángulo.

1. Si el suplemento de x es igual a 160°, calcule el complemento de 2x.

Resolución

- Piden: C_{2x}
- Recordemos:

$$S_{\alpha} = 180^{\circ} - \alpha$$

$$C_{\beta} = 90^{\circ} - \beta$$

$$S_{x} = 160^{\circ}$$
 $180^{\circ} - x = 160^{\circ}$
 $180^{\circ} = 160^{\circ} + x$
 $180^{\circ} - 160^{\circ} = x$
 $20^{\circ} = x$

$$C_{2x} = 90^{\circ} - 2x$$

$$= 90^{\circ} - 2(20^{\circ})$$

$$= 90^{\circ} - 40^{\circ}$$

$$= 50^{\circ}$$

$$C_{2x} = 50^{\circ}$$

2. Si el complemento del suplemento de x es igual a 30°, halle el valor de x.

Resolución

- Piden: x
- Recordemos:

$$S_{\alpha} = 180^{\circ} - \alpha$$

$$C_{\beta} = 90^{\circ} - \beta$$

$$CS_x = 30^{\circ}$$

$$_{(180^{\circ}-x)} = 30^{\circ}$$

$$90^{\circ} - (180^{\circ} - x) = 30^{\circ}$$

$$90^{\circ} - 180^{\circ} + x = 30^{\circ}$$

$$-90^{\circ} + x = 30^{\circ}$$

$$x = 120^{\circ}$$

3. Halle la medida de un ángulo, si se sabe que el complemento del ángulo es igual al cuádruplo de su medida.

Resolución

- Medida del ángulo: α
- Piden: α

$$C_{\beta} = 90^{\circ} - \beta$$

$$C_{\alpha} = 4\alpha$$

$$90^{\circ} - \alpha = 4\alpha$$

$$90^{\circ} = 4\alpha + \alpha$$

$$90^{\circ} = 5\alpha$$

 $18^{\circ} = \alpha$

$$\alpha = 18^{\circ}$$

HELICO | PRACTICE

4. Las medidas de dos ángulos suplementarios están en la relación de 3 a 7. Halle la medida del mayor ángulo.

Resolución

• Sean α y β las medidas de los ángulos.

- Dato: $\alpha = 3k$ $\beta = 7k$
- Piden: $\beta = 7k$

<u>Ángulos Suplementarios</u>

Son dos ángulos cuyas medidas suman 180°.

$$\alpha + \beta = 180^{\circ}$$
 $3k + 7k = 180^{\circ}$
 $10k = 180^{\circ}$
 $k = 18^{\circ}$

$$\beta = 7k$$

$$\beta = 7(18^{\circ})$$

$$\beta = 126^{\circ}$$

5. La diferencia de las medidas de dos ángulos complementarios es 40°. Halle la medida del mayor ángulo.

Resolución

• Sean α y β las medidas de los ángulos.

• Dato:

$$\alpha - \beta = 40^{\circ}$$

 Piden: El mayor ángulo.

<u>Ángulos complementarios</u>

Son dos ángulos cuyas medidas suman 90°.

$$\alpha + \beta = 90^{\circ} + \alpha$$

$$\alpha + \beta = 40^{\circ} + \alpha$$

$$2\alpha = 130^{\circ}$$

$$\alpha = 65^{\circ}$$

$$\alpha = 65^{\circ}$$

6. En la figura, calcule $SCCCCC_{(\alpha - \beta)}$.

$$C_{\beta} = 90^{\circ} - \beta$$

$$S_{\alpha} = 180^{\circ} - \alpha$$

Resolución

Del gráfico:

$$\alpha + 30^{\circ} = 180^{\circ}$$
 $\alpha = 150^{\circ}$
 $\beta + 50^{\circ} = 180^{\circ}$
 $\beta = 130^{\circ}$

Piden:

$$SCCCCC_{(\alpha-\beta)} = SCCCCC_{(150^{\circ}-130^{\circ})}$$

= $SC_{20^{\circ}}$
= $S_{(90^{\circ}-20^{\circ})}$
= $S_{70^{\circ}}$
= $180^{\circ}-70^{\circ}$
= 110° $SCCCCC_{(\alpha-\beta)} = 110^{\circ}$

HELICO | PRACTICE

7. En cierto momento las agujas de un reloj se encuentran en la posición como se muestra en la figura. Calcule el suplemento del complemento de β.

Resolución

- Piden: SC_β
- Del gráfico:

m
$$\angle$$
AOB = 90°
 β + 5 β = 90°
 β = 15°

Luego:

$$SC_{\beta} = SC_{15}^{\circ}$$

= $S_{(90^{\circ}-15^{\circ})}$
= S_{75}°
= $180^{\circ}-75^{\circ}$

$$C_{\beta} = 90^{\circ} - \beta$$

$$S_{\alpha} = 180^{\circ} - \alpha$$

$$SC_{\beta} = 105^{\circ}$$

© SACO OUYEROS