Exercises

- 1. Define a relation σ on \mathbb{R} such that $x\sigma y$ if and only if $x-y\in\mathbb{Z}$. Show that σ is an equivalence relation. Describe the equivalence classes.
- 2. Let $f: \mathbb{Z} \to \mathbb{Z}$ be given by $f(x) = x^2$. Is f one-to-one? Is it onto?
- 3. Let $g: \mathbb{R} \to \mathbb{R}$ be given by g(x) = x + 7. Is g one-to-one? Is it onto?
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \lfloor x \rfloor$. Is f onto? Similarly, let $g: \mathbb{R} \to \mathbb{Z}$ be given by $g(x) = \lfloor x \rfloor$. Is g onto?

Solutions

- 1. To show that σ is an equivalence relation, we must show that it is reflexive, symmetric, and transitive:
 - (a) For any $x \in \mathbb{R}$, $x x = 0 \in \mathbb{Z}$, so $x \sigma x$; therefore σ is reflexive.
 - (b) For any $x, y \in \mathbb{R}$, if $x\sigma y$, then let $m = x y, m \in \mathbb{Z}$. Then, $y x = -m \in \mathbb{Z}$, so $y\sigma x$; therefore σ is symmetric.
 - (c) For $x, y, z \in \mathbb{R}$, if $x y \in \mathbb{Z}$ and $y z \in \mathbb{Z}$, let m = x y, n = y z. Then, $x - z = (x - y) + (y - z) = m + n \in \mathbb{Z}$, so $x\sigma z$. Therefore, σ is transitive.

Note that we could have avoided using the label m and just said "if $x-y \in \mathbb{Z}$, then $y-x=-(x-y) \in \mathbb{Z}$." Similarly we could have skipped the labels m and n in transitivity.

Now, for any $x \in \mathbb{R}$, the equivalence class containing x consists of all real numbers which differ from x by an integer amount, i.e.

$$[x] = {\dots, x-2, x-1, x, x+1, x+2, \dots}.$$

The set of equivalence classes [x] for each real number $0 \le x < 1$ gives all equivalence classes.

- 2. f is not 1-to-1, a counterexample¹ is: f(-1) = 1 = f(1), but $-1 \neq 1$. f is not onto: for instance, there is no integer x for which $x^2 = -1$.
- 3. g is one-to-one²: Suppose $x_1 + 7 = x_2 + 7$ for $x_1, x_2 \in \mathbb{R}$; subtracting 7 from each side, we have $x_1 = x_2$.

g is onto³: For any $y \in \mathbb{R}$, the value y-7 has f(y-7)=(y-7)+7=y.

4. f is not onto, since there is no $x \in \mathbb{R}$ for which $\lfloor x \rfloor = \frac{3}{2}$ (or any other non-integer value).

g is onto, since for any $y \in \mathbb{Z}$, we have g(y) = y.

Note that the choice of input to g is not unique, we could have also said $g\left(y+\frac{1}{2}\right)=y$, or g(y+0.013)=y. To show that g is onto, we only need some value that works, we don't care how many such values there are.

¹i.e. an example of $x_1, x_2 \in \mathbb{Z}$ such that $x_1 \neq x_2$ but $f(x_1) = f(x_2)$.

²To show g is one-to-one, we have to prove either " $x_1 \neq x_2 \implies g(x_1) \neq g(x_2)$ " or " $g(x_1) = g(x_2) \implies x_1 = x_2$ ".

³We have to prove that for any $y \in \mathbb{R}$ (the codomain), there is some $x \in \mathbb{R}$ (the domain) such that y = f(x) (informally, 'If I give you any y, how can you choose a value that when put into the function, gives y?').