Access and Core Networks

SONET/SDH

- Synchronous Optical NETwork (SONET) North America
 - TDM physical layer standard for optical fiber communications.
 - → Compatible with US and Canada PDH 8000 frames/sec T frame = 125 µsec.
 - Point-to-point (linear) or ring Optical Carriers (OC)
 - ITU version = Synchronous Digital Hierarchy (SDH) Rest of the World
 - Small differences, but interoperable at higher speeds.
 - Direct mapping of lower levels into higher ones
 - SONET frames: STS. SDH frames: STM.
 - Transport all PDH types in one universal hierarchy.
 - Also transports ATM cells and general packet data.
 - SONET Add-Drop Multiplexing
 - Allows taking individual channels in and out without full demultiplexing.

SONET/SDH Designations and bandwidths

SONET Optical Carrier Level	SONET Frame Format	SDH level and Frame Format	Payload bandwidth[nb 3] (Kbit/s)	Line Rate (Kbit/s)
OC-1	STS-1	STM-0	50,112	51,840
OC-3	STS-3	STM-1	150,336	155,520
OC-12	STS-12	STM-4	601,344	622,080
OC-24	STS-24		1,202,688	1,244,160
OC-48	STS-48	STM-16	2,405,376	2,488,320
OC-192	STS-192	STM-64	9,621,504	9,953,280
OC-768	STS-768	STM-256	38,486,016	39,813,120
OC-3072	STS-3072	STM-1024	153,944,064	159,252,480

STS Frames

- Transport Overhead (TOH):
 - Processed at every SONET node.
 - Occupies a portion of each SONET frame.
 - Carries management and link integrity information.
- Synchronous Payload Envelope (SPE):
 - Path Overhead (POH),
 - Inserted & removed at the ends.
 - Data/Payload.

- STS-1 Frame: 9 rows x 90 cols.
 - 810 bytes per frame, 8000 frames/sec → 51.84Mbps
 - 810x64kbps → 51.84Mbps
- Special OH bytes

H1, H2, H3: Pointer Action

	Tra	insport Overhe	ad
0	Framing A1	Framing A2	STS-1 ID C1
egenerator Section Overhead	Section BIP-8 B1	Orderwire E1	User F1
	Data Com D1	Data Com D2	Data Com D3
Pointers	Pointer H1	Pointer H2	Pointer Action H3
4	BIP-8 B2	APS K1	APS K2
lutiplexor Section Overhead	Data Com D4	Data Com D5	Data Com D6
	Data Com D7	Data Com D8	Data Com D9
	Data Com D10	Data Com D11	Data Com D12
9 Bytos —	Growth Z1	Growth/ FEBE Z2	Orderwire E2

Path Overhead	Payload Envelope Data		
Trace J1			
BIP-8 B3			
Signal Label C2			
Path Status G1			
Jser Channel F2	Payload		
Indicator H4			
Growth/ DQDB Z3			
Growth Z4			
Growth Z5			

SPE Over Consecutive Frames

Pointer indicates where SPE begins within a frame

- Pointer enables add/drop capability
 - Positive/negative byte stuffing.

STS Multiplexing

- Synchronous/Channelized
 - Synchronize each incoming STS-1 to local clock → STS-1s.
 - All STS-1s are byte interleaved to produce STS-n.

- Concatenated Payload
 - H1,H2,H3 tell us if there is concatenation
 - STS-3c has more payload than 3 STS-1s
 - STS-Nc payload = Nx260/3x9 bytes
 - Payload rates
 - → OC-3c = 149.760 Mbps, OC-12c = 599.040 Mbps, OC-48c = 2.3961 Gbps, OC-192c = 9.5846 Gbps
- OC-Nc Concatenated Payload

SONET/SDH Usage

Network/ISP Core

Long-range point-to-point links

Asynchronous Transfer Mode (ATM)

- ATM is a blend of Synchronous Transfer Mode (STM) and packet switching.
 - It has variable assignment, based on the arrival rate and delay sensitivity of the traffic.
 - However, after the assignment occurs, uses fixed-length time slots called cells.
 - Delay-sensitive traffic has immediate assignment
 - Data traffic can be temporarily buffered before being transmitted.
- Is a form of cell switching using small fixed-sized data units called cells.
 - 53 bytes: 5 header and 48 data.

UNI (User-Network Interface).
NNI (Network-Network Interface).

ATM Connections and Switching

- ATM is connection-oriented.
 - A connection (an ATM channel) must be established before any cells are sent.
 - Two levels of ATM connections:
 - Virtual path connections.
 - Virtual channel connections.
 - Indicated by two fields in the cell header:
 - Virtual Path Identifier: VPI.
 - Virtual Channel Identifier: VCI.
- Switching based on VPI/VCI.

Port in	VPI/VCI	Port out	VPI/VCI
1	1/1	2	2/4
1	1/2	2	3/3
1	4/1	3	5/1
1	4/2	3	5/2

ATM Adaptation Layer (AAL)

- AAL is responsible for providing specific transport services to the higher layer protocols.
- The AAL is divided into:
 - Convergence Sublayer (CS) manages the flow of data to and from SAR sublayer.
 - Segmentation and Reassembly Sublayer (SAR) breaks data into cells at the sender and reassembles cells into larger data units at the receiver.
- ITU-T has defined four AAL service classes based on combinations of these three characteristics
 - Class A is a constant bit rate (CBR), delay-sensitive, connection-oriented service or a circuit emulation service.
 - Class B is a variable bit rate (VBR) service requiring time synchronization between sender and receiver (e.g., real-time compressed audio and video).
 - Classes C and D are delay-insensitive VBR services.
- Four AAL protocol types were defined to support the four service classes.
 - AAL 1 and AAL 5; And not in use anymore: AAL 2 and AAL 3/4.
 - Each type describes the format of the SAR-PDU (or the cell Payload field) and related operational procedures.

TDM, WDM and DWDM

- Time-division multiplexing (TDM).
 - ◆ E.g., SONET/SDH.
- Wavelength Division Multiplexing (WDM).
- Dense Wavelength Division Multiplexing (DWDM)
 - Optical fiber multiplexing technology that is used to increase the bandwidth of existing fiber networks.
 - Supports a higher number of wavelengths over the optical fiber.
 - Is a physical layer architecture, it can transparently support both TDM and data formats such as ATM, Gigabit Ethernet, etc...

de aveiro

Passive Optical Network (PON)

- Is "passive" since it uses unpowered splitters to route data sent from a central location to multiple destinations.
- Based on TDM transmission.
- Variants
 - GPON a "gigabit-capable PON" that supports 2.488 Gbps downstream and 1.244 Gbps upstream; follows the ITU G.984 standard.
 - ▶ EPON the most popular PON implementation; transmits data as Ethernet frames at up to 10 Gbps downstream and upstream; also known as GEPON or the IEEE 802.3 standard.
- Focused on fiber connectivity to the home and other types of final network users (hotels, hospitals, and high-density residential buildings).

DWDM-PON and TWDM-PON

- The evolution of PON technologies are:
 - Time and Wavelength Division Multiplexed Passive Optical Network (TWDM-PON).
 - Dense Wavelength Division Multiplexed Passive Optical Network (DWDM-PON).
 - Adds flexibility by supporting the overlay of multiple services, user groups or organizations on the same fiber.
 - Can coexist with, and expand on, current PON deployments.

Ensures that operators' investments will keep providing value in the long term.

Community Access Television (CATV) "Cable" TV

- Hybrid Fiber Access (HCF)
 - Copper/Coax from Fiber Nodes and clients.
 - Fiber core (FN-Hub + Hub-Hub + some Hubs-Headend).
- Cable Modem (CM)
- Cable Modem Terminating System (CMTS)
- Fiber Node (FN)

Data Over Cable Service Interface Specification (DOCSIS)

- Versions 1.0 and 1.1
 - D/U: up to 50Mbps/9Mbps. Speed in Europe, 8MHz channels.
- Version 2.0
 - Adds A-TDMA which is a direct extension of the DOCSIS 1.x concepts and new synchronous CDMA (S-CDMA) → Upstream speed improvement.
 - D/U: up to 50Mbps/27Mbps.
- Version 3.0
 - Adds bonding of individual physical channels.
 - Using 4 channels D/U: up to 200Mbps/108Mbps.
 - Using 8 channels D/U: up to 400Mbps/108Mbps.
- In US, 6MHz channels → Lower speeds.
- Spectrum allocation

DOCSIS Transmission

- Downstream Transmission
 - Digital Video Broadcast (DVB) standards.
 - Signal is a continuous stream of 188-byte long MPEG packets, that contain:
 - An MPEG video payload, or
 - a DOCSIS MAC payload.
- Upstream Transmission
 - TDMA Transmission Mode (from version 1.0).
 - Transmissions are separated only in time.
 - Synchronous CDMA (S-CDMA) Transmission Mode (from version 2.0).
 - Transmissions are separated by both time and CDMA spreading code.
 - CDMA Code division multiple access.
 - DOCSIS MAC payloads transmited in one or more mini-slots (time/code divided mini slots).

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data | LLC
Link | MAC
Layer
Physical Layer

SNMP, TFTP, DHCP, ToD, IGMP				
TCP/UDP				
IP, ICMP, ARP				
802.2 LLC	802.1d Bridge	802.2 LLC		
DOCSIS MAC		802.3 MAC		
DOCSIS PHY		10/100BASE- T, USB		

Mobile Networks

- 2G:
 - GSM (Global System for Mobile)
 - GSM Packet Radio System (GPRS)
 - Enhanced Data-rates for GSM Evolution (EDGE)
 - Based on TDMA
- 3G:
 - Universal Mobile Telecommunication System (UMTS)
 - Based on Wideband-CDMA (W-CDMA)
 - High Speed Packet Access (HSPA)
 - High-Speed Downlink Packet Access (HSDPA)
 - High-Speed Uplink Packet Access (HSUPA)
 - ◆ CDMA2000
- 4G:
 - ◆ LTE
 - LTE-Advanced
 - → IEEE 802.16e (WiMax) and IEEE 802.16m
 - Based on OFDA and MIMO
- 5G:
 - Based on MIMO
 - Small cells
 - NFV Core
 - Integrated Wired and Wireless IP networks

Cellular Network Concept

- Concept used on Public Land Mobile Networks (PLNM).
- Network is distributed over land areas called cells.
 - Each served by at least one fixedlocation transceiver, known as base station.
- Macrocells are mainly used to provide a widespread coverage area.
- Smaller micro, pico or femtocell structures can be used for high data-rate.
 - Able to sustain high speed datatraffic by reducing the propagation distance, hence reducing the transmission power.
 - Micro/picocells can handle many devices within the range of a few hundred meters while femtocells are mostly used for indoor or home area.

Global System for Mobile (GSM)

GSM Packet Radio System (GPRS)

Universal Mobile Telecommunication System (UMTS)

- 3rd Generation Partnership Project (3GPP) standard.
- Novel radio access network called Universal Terrestrial Radio Access Network (UTRAN)
- Core network remains largely unchanged from GPRS/EDGE.

High Speed Packet Access (HSPA)

- Upgrade to W-CDMA networks to provide higher bit rates and lower delays.
- High-Speed Downlink Packet Access (HSDPA)
 - To be able to make faster decisions on radio channel allocation (adapting to varying channel quality) and reduces delays, new functions were added closer to the radio interface (NodeB):
 - → Scheduling, select which UE(s) is/are to use the radio resources at each Transmission Time Interval (TTI), where one TTI is 2 ms.
 - → Link adaptation, setting of channel coding rate and modulation (QPSK or 16QAM), in order to utilize the resources effectively.
- High-Speed Uplink Packet Access (HSUPA)
 - Uses a packet scheduler that operates on a request-grant principle where the UEs request a permission to send data and the scheduler decides when and how many UEs will be allowed to do so.
 - However, unlike HSDPA, uplink transmissions are not orthogonal to each other.
- Evolved High Speed Packet Access (HSPA+)
 - Further increase bit rates.
 - New functions are added:
 - Higher order modulation 64QAM (DL) and 16QAM (UL),
 - → Multiple Input Multiple Output (MIMO) used only in the DL.

Long Term Evolution (LTE)

- LTE standard has been developed by 3GPP
 - Extension of UMTS (based on 3GPP standard)
 - and CDMA200 1xEV-DO (based on 3GPP2 standard).
- Designed for high speed data applications both in the uplink and downlink.
 - Offers about 300Mbps data rate in the downlink and about 75 Mbps in the uplink.
- LTE is an all IP based network, supporting both IPv4 and IPv6.
 - Possibility of supporting voice over LTE (VoLTE).
- Uses a different form of radio interface from UMTS.
 - Instead of CDMA it uses OFDMA (Orthogonal Frequency Division Multiple Access is used in the downlink; and SC-FDMA(Single Carrier - Frequency Division Multiple Access) is used in the uplink.
- Uses MIMO (Multiple Input Multiple Output).
 - Requires the use of multiple antennas (antenna matrices).
- LTE has been defined to accommodate both FDD and TDD operation.

Long Term Evolution (LTE)

S-GW - Serving Gateway

P-GW - Packet data network Gateway

MME - Mobility Management Entity

HSS - Home Subscriber Server

PCRF - Policy and Charging Rules Function

LTE-Advanced

- LTE-Advanced is the upgraded version of LTE.
 - Increases the peak data rates to about 1GBPS in the downlink and 500MBPS in the uplink.
- Utilizes higher number of antennas and added carrier aggregation feature.
 - Carrier aggregation can be used for both FDD and TDD.

Conventional LTE Network: Single channel approach to data transfer

LTE Advanced device simultaneously receives on two radio channels which increases user data rates and reduces latency (faster network response time)

5G

- Architecture incorporates
 - Network Function Virtualization (NFV) at the core,
 - Edge Computing (EC),
 - Software Defined Networks (SDNs).
- Uses a high frequency range (30 GHz and 300 GHz) of the radio spectrum,
 - → Higher frequency → Higher bandwidth, Lower range → Smaller cells.
- Integrated Wired and Wireless IP networks.

WPAN and Sensor Networks

Wireless Personal Area Network (WPAN)

- Span a small area (e.g.,a private home or an individual workspace)
 - Communicate over a short distance.
 - Low-powered communication.
 - Primarily uses ad-hoc networking.
 - Could be wireless or wired.

Internet of Things / Sensor Networks

- Composed by small and medium devices
 - Usually battery powered.
 - May not allow battery replacement.
 - Low computational resources.
- Network requirements
 - Simplicity
 - Easy to deploy and with low computational requirements.
 - Low cost devices.
 - Security
 - Node access should be controlled.
 - Data should be encrypted.
 - Reliability
 - Limited failures and integrated recovery features.
 - Efficiency (low-power)
 - → Battery life should be measured in months or years.
 - Scalability
 - Should support an high number of connected devices.

IEEE 802.15

- Standard for low-data-rate physical and medium access control layer specifications for wireless personal area networks (WPAN).
- Evolved over time:
 - ◆ IEEE 802.15.4-2003 ; IEEE 802.15.4-2006, IEEE 802.15.4-2011 IEEE 802.15.4-2015.
- IEEE 802.15.4 is a wireless access technology for
 - Low-cost and low-data-rate devices.
 - Devices powered by batteries.
 - Enables easy installation using a compact protocol stack.
 - Several network communication stacks use this technology in both the consumer and business markets.

Communication Standards

- Wi-Fi
 - ◆ Range: ~50 meters
 - Data Rate: 23-144Mbps
 - Frequency:2.4GHz/5GHz
 - Max. Devices: 250
- Bluetooth
 - Range: 10 meters (class 2/3), 100 meters (class 1)
 - Data Rate: 1-3Mbps
 - Frequency: 2.4GHz
 - Max. Devices: 7

THREAD

- Zigbee
 - Range: 50-70 meters
 - Data Rate: 20-250 kbps
 - Frequency: 915MHz to 2.4GHz
 - Max. Devices: ~1000 (realistically)
- Z-Wave
 - Nange: ~100 meters
 - Data Rate: 100 kbps
 - Frequency: 915MHz
 - Max. Devices: 232
- Thread (newest and trending)
 - ◆ Range: ~30 meters
 - Data Rate: 250 kbps
 - Frequency: 2.4GHz
 - Max. Devices: 300

Wi-Fi

- Star topology.
- Current consumption: ~250mA (very high)
- Wi-Fi is an alternative only for always or frequently powered devices.

Bluetooth

- Mesh and Star topology.
- Current consumption:
 - Bluetooth: ~30mA.
 - Bluetooth LE: less than 15mA.
- Bluetooth has classes that define indicate the power output and wireless range of a device:
 - Class 1: 100 mW (20 dBm), 100 meter
 - Class 2: 2.5 mW (4 dBm), 10 meter
 - Class 3: 1 mW (0 dBm), 1 meter
- Bluetooth Low Energy (LE) is a powerconserving variant of PAN technology.
- Frequency Hopping Spread Spectrum

ZigBee

- Star, Tree or Mesh topology.
- Current consumption: ~50mA.
- ZigBee has not provided interoperability with other IoT solutions or open standards
- ZigBee IP was created to embrace the open standards at the network and transport layers
- Based on IEEE 802.15.4.
- And, based on 6LoWPAN
 - Defines encapsulation and header compression to send and receive IPv6 packets over IEEE 802.15.4 networks.

Z-Wave

- Mesh topology.
- Current consumption: ~2.5mA.
- Defined by ITU-T G.9959 Standard.
 - Closed standard until 2020.

Application Layer

Routing Layer
(Routing and topology scans)

Transfer Layer
(Packet retransmission, ACK, checksums)

MAC Layer
(ITU-T G.9959)
(CSMA/CA, HomeID and NodeID Management)

PHY Layer
(ITU-T G.9959)
(908MHz / 860Mhz Radios)

Thread

- Defined for all but the application layer and all of the layers are pre-existing protocols.
 - At the physical and link layer, IEEE 802.15.4 protocol is used just like with ZigBee.
 - At the network and transport layers, Thread uses a combination of IPv6, 6LowPAN. UDP, and DTLS (Datagram Transport Layer Security).
- Mesh topology.
- IPv6-based networking protocol.
- Independent of other mesh networking protocols, such a ZigBee, Z-Wave, and Bluetooth LE.
- Nodes are split into two forwarding roles: router and end-device.
- Nodes comprise a number of types:
 - Full Thread Device always has its radio on and subscribes to the allrouters multicast address
 - → Router, Router Eligible End Device (REED), Full End Device (FED)
 - Minimal Thread Device does not subscribe to the all-routers multicast address
 - → Minimal End Device (MED) radio always on
 - Sleepy End Device (SED) radio normally disabled, wakes on occasion to poll for messages from its parent

THREAD

Low Power Wide Area Network (LPWAN)

- Wireless telecommunication wide area network designed to allow long-range communications at a low bit rate, low power consumption and low cost.
- SigFox
 - Supports millions of end devices.
 - Proprietary.
 - Access infrastructure (built with operators) and software.
 - Open market for the endpoints.
 - 30-50km range in rural areas, and 3-10km range in urban areas.
 - Ultra narrow band, 868MHz (EU) or 902Mhz (US).
 - Low energy consumption.
 - Dedicated network.
- LoRaWAN
 - Stands for "Long Range".
 - To be used in long-lived battery-powered devices scenarios.
 - Semi-proprietary
 - → Parts of the protocol are well documented, others not
 - → They own the radio part (but sub-licensing is on the way)
 - → You can install your own gateways
 - LoRa usually means two different things:
 - → LoRa: a physical layer that uses Chirp Spread Spectrum (CSS) modulation.
 - → LoRaWAN: a MAC layer protocol.

