Prof. Dr. İbrahim EKSİN Prof. Dr. Müjde GÜZELKAYA Res. Asst. Emre DİNCEL

FEEDBACK CONTROL SYSTEMS (KON 313E) HOMEWORK ASSIGNMENT - 2

2015 - 2016 Fall Term

Deadline: 30.11.2015

Question 1: State space model of a synchronous generator connected to the infinite bus (Figure 1) is given below.

Figure 1. Single generator – infinite bus system.

$$\begin{bmatrix} \Delta \dot{E_q'} \\ \Delta \dot{\delta} \\ \Delta \dot{\omega} \\ \Delta \dot{E}_{fd} \end{bmatrix} = \begin{bmatrix} -\frac{1}{K_3 T_{do}'} & -\frac{K_4}{T_{do}'} & 0 & \frac{1}{T_{do}'} \\ 0 & 0 & \omega_s & 0 \\ -\frac{K_2}{2H} & -\frac{K_1}{2H} & -\frac{K_D}{2H} & 0 \\ -\frac{K_A}{T_A} & -\frac{K_A}{T_A} & 0 & -\frac{1}{T_A} \end{bmatrix} \begin{bmatrix} \Delta E_q' \\ \Delta \delta \\ \Delta \omega \\ \Delta E_{fd} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ K_A \\ T_A \end{bmatrix} \Delta V_{ref}$$

- **a.** Obtain the open-loop transfer function $\left(T(s) = \frac{\Delta \delta(s)}{\Delta V_{ref}(s)}\right)$ with the help of state-space model by taking the system output as deviation of the rotor angle $(\Delta \delta)$.
- **b.** What is the type and order of this system? Show the poles (and zeros if exists) in s-plane. Is the open-loop system stable? Explain.
- **c.** Calculate the approximate settling time, overshoot and final value of the closed-loop system. Plot the unit step response of system roughly.
- **d.** It is desired to control the synchronous generator system using the block diagram given in Figure 2. Find the transfer functions of $T_y(s) = \frac{Y(s)}{R(s)}$, $T_{d1}(s) = \frac{Y(s)}{D_1(s)}$ and $T_{d2}(s) = \frac{Y(s)}{D_2(s)}$ (just in terms of C(s) and G(s)).

e. Assume that there is not any disturbance effect (i.e. $D_1(s) = D_2(s) = 0$). In this case, if the controller is given as C(s) = k calculate the steady state error for the unit step inputs. Solve the same problem by taking $C(s) = \frac{2k}{s}$.

Figure 2. Closed-loop control system with unit feedback.

- **f.** The controller is given as C(s) = k (s + 1). In case of a disturbance effect in the form of $D_1(s) = \frac{2}{s}$ calculate the steady state error for step type inputs $(D_2(s) = 0)$. Similarly, in case of a disturbance effect in the form of $D_2(s) = \frac{2}{s}$ calculate the steady state error for step type inputs $(D_1(s) = 0)$.
- **g.** Use Routh–Hurwitz criteria to analyse the closed–loop system stability for $C(s) = \frac{1}{3}$.
- **h.** Find the value range of k in which the closed-loop system remains stable by using Routh-Hurwitz stability analysis method for C(s) = k (s + 1).
- i. Plot the variation curve of the roots of characteristic equation for the positive values of the parameter k (C(s) = k).
- **j.** Is it possible to bring two of the closed-loop system poles to the points of $s_{1,2}=-2\pm 2j$ by using positive k value? Interpret via the root-locus plot (do not perform any calculation).

Table 1. Parameters and their values.

Parameter	Value	Parameter	Value
K ₁	0.925	K _D	0
K ₂	1.075	$T^{'}_{do}$	9.6
K ₃	0.285	T_A	0.06
K_4	2.197	K _A	25
K ₅	0.005	ω_{s}	377
K ₆	0.355	Н	3.2

Question 2:

Figure 3. A closed-loop control system.

For the closed-loop control system given above, variation curve of the roots of characteristic equation for the positive and negative values of the parameter k is given in Figure 4.

Figure 4. Root-locus plot of the system.

- **a.** It is known that $G_p(s)$ is a first order system and value of its impulse response at the time of t=0 is known to be 2. Find the open-loop transfer function $G_p(s)$ and plot the unit step response roughly.
- **b.** Calculate the position, velocity and acceleration error constants for $k = \frac{3}{2}$.
- **c.** Find the value range of the parameter k with the help of root-locus such that the lowest possible settling time in the closed-loop is achieved.
- **d.** If one of the closed-loop system poles is located at the point of $s=-\frac{1}{3}$ calculate the location of the other closed-loop system pole.
- **e.** Find the value range of the parameter k in which all closed-loop system poles are located on the left side of the line s=-0.6 using Routh-Hurwitz criteria (Note that Routh-Hurwitz checks whether the closed-loop poles are on the left side of the line s=0 or not. In order to check the left side of the line s=-0.6 a minor modification is required).

Question 3: Answer the questions for the open-loop transfer function given below.

$$G(s) = \frac{K(s+4)}{(s^2 + 2s + 2)(s + \varphi)}$$

- **a.** What is the type and order of the given system? Plot the root-locus for the positive values of the parameter K by taking $\varphi=1$.
- **b.** Find the interval of parameter φ in which the closed-loop system is stable for K=1 using Routh-Hurwitz stability test.
- **c.** Plot the variation curve of the roots of characteristic equation for $\varphi < 0$ (K = 1).
- **d.** In case two of the closed-loop system poles are located on the imaginary axis, determine the location of 3rd pole for K=1.
- **e.** Calculate the approximate overshoot and delay-time of the closed-loop system for $K=\frac{3}{2}$ and $\varphi=6$.