## Inverse Transform Method

# Example

▶ Let

$$X \sim p(x) = \begin{cases} 2, & 0 < x < 1/4 \\ 2/3, & 1/4 < x < 1 \end{cases}$$

Evaluate  $\mathbb{E}[X]$  by OMC.

#### Pseudocode

```
1: procedure INTEGRAL(N) \triangleright N is total number of samples

2: s \leftarrow 0 \triangleright s is the sum of samples

3: for i=1...N do

4: generate Y \sim p

5: s \leftarrow s + Y

6: return \frac{s}{N} \triangleright return the average
```

▶ (Q.) How to generate  $Y \sim p$ ?



#### Inverse Transform Method - 1

- ▶ (Prop) Suppose X has its CDF F and its inverse  $F^{-1}$  exists, then  $F^{-1}(U) \sim X$ , where  $U \sim U(0,1)$ .
- ▶ (proof)

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x).$$

#### Inverse Transform Method - 2

- ▶ Inverse transform method provides exact sampling as long as the inverse of CDF is explicitly available.
- ▶ ITM sample generation for  $X \sim F$  given  $F^{-1}$ 
  - 1: **procedure** ISINTEGRAL( $F^{-1}$ )
  - 2: generate  $Y \sim U(0,1)$   $\triangleright$  use numpy.random.uniform
  - 3:  $X = F^{-1}(Y)$
  - 4: return X

### HW

Let

$$X \sim p(x) = \begin{cases} 2, & 0 < x < 1/4 \\ 2/3, & 1/4 < x < 1 \end{cases}$$

- Evaluate its expectation
- ▶ Implement OMC to estimate its expectation.