

Reconocimiento de Patrones

Version 2022-2

Clustering: Mixture of Gaussians

[Capítulo 6]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Algorithm:

- 1. Input Data $X = \{x_1, x_2, ..., x_N\}$ and number of clusters K
- 2. Centroids $\{c_1, c_2, ... c_K\}$ = random K points of X
- 3. Initial values for μ_k, Σ_k
- 4. For each data point x_i
- 5. Compute Mahalanobis distance $d_{ik} = d(x_i, c_k)$ i=1,...,N, k=1,...K
- 6. Assign x_i to the nearest centroid: $y_i = \operatorname{argmin}_i \{d_{ik}\}$
- 7. Compute for each cluster μ_k, Σ_k (c* = μ_k)
- 8. if $c_k^* \neq c_k$ then $c_k = c_k^*$ go to step 4
- 9. Output: $\{c_1^*, c_2^*, ..., c_K^*\}$ and y_i for i=1,...,N

Choose random K=2 points (centroids)

PAT06_GaussMix.pptx

PATO6_GaussMix.pptx

PATO6_GaussMix.pptx

Repeat until convergence

