ITSM-R Reference Manual

George Weigt February 11, 2018

Contents

1	Intr	$\operatorname{oduction}$
	1.1	Time series analysis in a nutshell
	1.2	White Noise Variance
	1.3	ARMA Coefficients
	1.4	ARIMA Models
	1.5	Data Sets
2	E	ctions
4	2.1	aacvf
	$\frac{2.1}{2.2}$	acvf
	2.2	
	2.3	ar.inf
	$\frac{2.4}{2.5}$	arma
	$\frac{2.5}{2.6}$	autofit
	$\frac{2.0}{2.7}$	burg
	2.1	check
	$\frac{2.0}{2.9}$	forecast
	_	hannan
		hr
		ia
		ma.inf
		periodogram
		plota
		plotc
		plots
		Resid
		season
		sim
		smooth.exp
		smooth.fft
		smooth.ma
		smooth.rank 24
		specify
		test
		trend 26
	2.28	
		j

1 Introduction

ITSM-R is an R package for analyzing and forecasting univariate time series data. The intended audience is students using the textbook *Introduction to Time Series and Forecasting* by Peter J. Brockwell and Richard A. Davis. The textbook includes a student version of the Windows-based program ITSM 2000. The initials ITSM stand for Interactive Time Series Modeling. ITSM-R provides a subset of the functionality found in ITSM 2000.

The following example shows ITSM-R at work forecasting a time series.

```
library(itsmr)
                                        # Load ITSM-R
plotc(wine)
                                        # Plot the data
M = c("log", "season", 12, "trend", 1)
                                        # Model the data
e = Resid(wine, M)
                                        # Obtain residuals
test(e)
                                        # Check for stationarity
a = arma(e,p=1,q=1)
                                        # Model the residuals
ee = Resid(wine, M, a)
                                        # Obtain secondary residuals
test(ee)
                                        # Check for white noise
forecast(wine,M,a)
                                        # Forecast future values
```

Note the use of Resid with a capital R to compute residuals. ITSM-R uses Resid instead of resid to avoid a name conflict warning when the library is loaded.

1.1 Time series analysis in a nutshell

It turns out that you do most of the work. You have to analyze the data and determine a data model M and ARMA model a that yield white noise for residuals.

Time series data
$$\longrightarrow M \longrightarrow a \longrightarrow White noise$$

What the software does is invert M and a to transform zero into a forecast. (Recall that zero is the best predictor of noise.)

$$0 \longrightarrow a^{-1} \longrightarrow M^{-1} \longrightarrow Forecast$$

Model M should yield residuals that are a stationary time series. Basically this means that any trend in the data is eliminated. (Seasonality in the data can be removed by either M or a.) The test function is used to determine if the output of M is stationary. The following is the result of test(e) in the above example.

Null hypothesis: Residuals are iid noise.

Test	Distribution	Statistic	p-value
Ljung-Box Q	$Q \sim chisq(20)$	71.57	0 *
McLeod-Li Q	$Q \sim chisq(20)$	12.07	0.9138
Turning points	T $(T-93.3)/5 \sim N(0,1)$	93	0.9468
Diff signs S	$(S-70.5)/3.5 \sim N(0,1)$	70	0.8848
Rank P	(P-5005.5)/283.5 ~ N(0,1)	5136	0.6453

As seen above, the ACF and PACF plots decay rapidly indicating stationarity. After M is determined, the residuals of M are modeled with an ARMA model a. In some circumstances the following table can be useful for choosing p and q from the plots of test(e).

ACF	PACF	Model
Decays	Zero for $h > p$	AR(p)
Zero for $h > q$	Decays	MA(q)
Decays	Decays	ARMA(p, q)

The ARMA model a should yield residuals that resemble white noise. To check for white noise, the test function is used a second time. The following is the result of test(ee) in the above example.

Null hypothesis: Residuals are iid noise.

Test	Distribution	Statistic	p-value
Ljung-Box Q	$Q \sim chisq(20)$	13.3	0.8642
McLeod-Li Q	$Q \sim chisq(20)$	16.96	0.6556
Turning points	T $(T-93.3)/5 \sim N(0,1)$	93	0.9468
Diff signs S	$(S-70.5)/3.5 \sim N(0,1)$	70	0.8848
Rank P	$(P-5005.5)/283.5 \sim N(0,1)$	4999	0.9817

The vertical lines in the ACF and PACF plots are below the noise threshold (the dashed horizontal lines) for lags greater than zero which is good. In addition, the *p*-values in the table all fail to reject the null hypothesis of iid noise. Recall that a *p*-value is the probability that the null hypothesis is true.

1.2 White Noise Variance

ITSM-R includes five methods for estimating ARMA parameters. They are Yule-Walker, Burg, Hannan-Rissanen, maximum likelihood, and the innovations method. For all estimation methods, ITSM-R uses the following formula to estimate white noise variance (Brockwell and Davis, p. 164).

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{t=1}^{n} \frac{(X_t - \hat{X}_t)^2}{r_{t-1}}$$

The $X_t - \hat{X}_t$ are innovations (Brockwell and Davis, p. 71). Residuals are defined as follows (Brockwell and Davis, p. 164).

$$\hat{W}_t = \frac{X_t - \hat{X}_t}{\sqrt{r_{t-1}}}$$

Thus $\hat{\sigma}^2$ is the average of the squared residuals.

The innovations algorithm (Brockwell and Davis, p. 73) is used to compute \hat{X}_t and r_{t-1} . Note that the algorithm produces mean squared errors $v_{t-1} = E(X_t - \hat{X}_t)^2$ for $\kappa(i,j) = E(X_i X_j)$ given in equation (2.5.24). However, ITSM-R uses $\kappa(i,j) = E(W_i W_j)$ given in equation (3.3.3). For the covariance in (3.3.3) the innovations algorithm produces $r_{t-1} = E(W_t - \hat{W}_t)^2$ instead of v_{t-1} . The relationship between v_{t-1} and r_{t-1} is given in equation (3.3.8) as

$$v_{t-1} = E(X_t - \hat{X}_t)^2 = \sigma^2 E(W_t - \hat{W}_t)^2 = \sigma^2 r_{t-1}$$

where σ^2 is white noise variance.

It should be noted that γ_X in (3.3.3) is the autocovariance of the ARMA model, not of the data. Then by equation (3.2.3) it can be seen that σ^{-2} in (3.3.3) cancels with σ^{2} in γ_{X} . Hence the innovations algorithm does not depend on white noise variance at all. After the innovations are computed, white noise variance is estimated using the above formula for $\hat{\sigma}^2$.

$$\gamma_X(h) = E(X_{t+h}X_t) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|h|}$$
 (3.2.3)

$$m = \max(p, q) \tag{3.3.2}$$

$$\frac{1}{j=0} \qquad (3.3.2)$$

$$\kappa(i,j) = \begin{cases}
\sigma^{-2}\gamma_X(i-j), & 1 \leq i, j \leq m \\
\sigma^{-2}\left[\gamma_X(i-j) - \sum_{r=1}^p \phi_r \gamma_X(r-|i-j|)\right], & \min(i,j) \leq m < \max(i,j) \leq 2m, \\
\sum_{r=0}^q \theta_r \theta_{r+|i-j|}, & \min(i,j) > m, \\
0 & \text{otherwise.}
\end{cases}$$
(3.3.2)

Because all estimation methods use the above formula for $\hat{\sigma}^2$, variance estimates computed by ITSM-R are different from what is normally expected. For example, the Yule-Walker estimation function yw returns a white noise variance estimate that differs from the traditional Yule-Walker algorithm.

Since variance estimates are computed uniformly, model AICCs can always be compared directly, even when different methods are used to estimate model parameters. For example, it is perfectly valid to compare the AICC of a Yule-Walker model to that of a maximum likelihood model.

1.3 ARMA Coefficients

ARMA coefficient vectors are ordered such that the vector index corresponds to the lag of the coefficient. For example, the model

$$X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2}$$

with

$$\phi_1 = 1/2$$

$$\phi_2 = 1/3$$

$$\theta_1 = 1/4$$

$$\theta_2 = 1/5$$

corresponds to the following R vectors.

phi =
$$c(1/2,1/3)$$

theta = $c(1/4,1/5)$

The equivalent model

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2}$$

makes plain the sign convention of the AR coefficients.

1.4 ARIMA Models

ARIMA(p,d,q) models are specified by differencing d times with a lag of one each time. For example, the following R code specifies an ARIMA(1,2,3) model for data set quant.

```
M = c("diff",1,"diff",1)
e = Resid(quant,M)
a = arma(e,1,3)
```

1.5 Data Sets

ITSM-R includes the following data sets that are featured in *Introduction to Time Series* and *Forecasting*. Each data set is an ordinary vector (not a time series object).

Name	Obs.	Description
airpass	144	Number of international airline passengers, 1949 to 1960
deaths	72	USA accidental deaths, 1973 to 1978
dowj	78	Dow Jones utilities index, August 28 to December 18, 1972
lake	98	Level of Lake Huron, 1875 to 1972
strikes	30	USA union strikes, 1951 to 1980
Sunspots	100	Number of sunspots, 1770 to 1869
wine	142	Australian red wine sales, January 1980 to October 1991

2 Functions

2.1 aacvf

Computes the autocovariance of an ARMA model.

The ARMA model is a list with the following components.

\$phi AR coefficients [1:p] =
$$\phi_1, \ldots, \phi_p$$

\$theta MA coefficients [1:q] = $\theta_1, \ldots, \theta_q$
\$sigma2 White noise variance σ^2

Returns a vector of length h+1 to accommodate lag 0 at index 1.

The following example is from p. 103 of Introduction to Time Series and Forecasting.

```
R> a = specify(ar=c(1,-0.24),ma=c(0.4,0.2,0.1))
R> aacvf(a,3)
[1] 7.171327 6.441393 5.060274 3.614340
```

2.2 acvf

Computes the autocovariance of time series data.

acvf(x,h=40)
$$\begin{cases} x & \text{Time series data} \\ h & \text{Maximum lag} \end{cases}$$

Returns a vector of length h+1 to accommodate lag 0 at index 1.

Example:

```
R> gamma = acvf(Sunspots)
R> plot(0:40,gamma,type="h")
```


2.3 ar.inf

Returns the AR(∞) coefficients $\pi_0, \pi_1, \ldots, \pi_n$ where $\pi_0 = 1$.

$$\texttt{ar.inf(a,n)} \quad \left\{ \begin{array}{l} \texttt{a} \quad \mathrm{ARMA \ model} \\ \texttt{n} \quad \mathrm{Order} \end{array} \right.$$

A vector of length n+1 is returned to accommodate π_0 at index 1.

Example:

R> a = yw(Sunspots,2)

R> ar.inf(a,10)

[1] 1.0000000 -1.3175005 0.6341215 0.0000000 0.0000000 0.0000000

For invertible ARMA processes, $AR(\infty)$ is the polynomial $\pi(z)$ such that

$$\pi(z) = \frac{\phi(z)}{\theta(z)} = 1 + \pi_1 z + \pi_2 z^2 + \cdots$$

The corresponding autoregression is

$$Z_t = \pi(B)X_t = X_t + \pi_1 X_{t-1} + \pi_2 X_{t-2} + \cdots$$

The coefficients π_j are calculated recursively using the following formula. (See p. 86 of Introduction to Time Series and Forecasting.)

$$\pi_j = -\phi_j - \sum_{k=1}^q \theta_k \pi_{j-k}$$
 $j = 1, 2, \dots$

2.4 arar

Predict future values of a time series using the ARAR algorithm.

$$\texttt{arar(x,h=10,opt=2)} \quad \left\{ \begin{array}{ll} \texttt{x} & \text{Observed data} \\ \texttt{h} & \text{Steps ahead} \\ \texttt{opt} & \text{Display option} \end{array} \right.$$

The display options are 0 for silent, 1 for tabulate, 2 for plot and tabulate. Returns the following list invisibly.

\$pred	Predicted values
\$se	Standard errors
\$1	Lower bounds
\$u	Upper bounds

Example:

R> arar(airpass)

Optimal lags 1 2 9 10

Optimal coeffs 0.5247184 0.2735903 0.2129203 -0.316453

WN Variance 110.1074

Filter 1 -0.5247184 -0.2735903 0 0 0 0 0 0 -0.2129203 0.316453 0 -1.114253 0.5846688 0.3048487 0 0 0 0 0 0.237247 -0.3526086

Step	Prediction	sqrt(MSE)	Lower Bound	Upper Bound
1	466.1915	10.49321	445.6248	486.7582
2	426.3592	11.85003	403.1331	449.5853
3	463.614	13.17574	437.7895	489.4384
4	509.5108	13.93231	482.2035	536.8182
5	516.2016	14.48202	487.8169	544.5864
6	594.0837	14.85609	564.9658	623.2017
7	693.9735	15.12129	664.3358	723.6112
8	670.4816	15.30835	640.4772	700.4859
9	564.4617	15.44148	534.1964	594.727
10	518.5135	15.93834	487.2743	549.7526

2.5 arma

Returns an ARMA model using maximum likelihood to estimate the AR and MA coefficients.

$$arma(x,p=0,q=0) \quad \begin{cases} x & \text{Time series data} \\ p & \text{AR order} \\ q & \text{MA order} \end{cases}$$

The R function arima is called to estimate ϕ and θ . The innovations algorithm is used to estimate the white noise variance σ^2 . The resulting ARMA model is a list with the following components.

\$phi AR coefficients $[1:p] = \phi_1, \dots, \phi_p$ \$theta MA coefficients $[1:q] = \theta_1, \dots, \theta_q$ \$sigma2 White noise variance σ^2 \$aicc Akaike information criterion corrected \$se.phi Standard errors for the AR coefficients \$se.theta Standard errors for the MA coefficients

The signs of the coefficients correspond to the following model.

$$X_{t} = \sum_{j=1}^{p} \phi_{j} X_{t-j} + Z_{t} + \sum_{k=1}^{q} \theta_{k} Z_{t-k}$$

The following example estimates ARMA(1,0) parameters for a stationary transformation of the Dow Jones data.

R > M = c("diff",1)

R> e = Resid(dowj,M)

R> a = arma(e,1,0)

R> a

\$phi

[1] 0.4478187

\$theta

[1] 0

\$sigma2

[1] 0.1455080

\$aicc

[1] 74.48316

\$se.phi

[1] 0.01105692

\$se.theta

[1] 0

2.6 autofit

Uses maximum likelihood to determine the best ARMA model given a range of models. The autofit function tries all combinations of argument sequences and returns the model with the lowest AICC. This is a wrapper function, the R function arima does the actual estimation.

$$autofit(x,p=0:5,q=0:5) \begin{cases} x & \text{Time series data} \\ p & \text{AR order} \\ q & \text{MA order} \end{cases}$$

Returns a list with the following components.

\$phi AR coefficients [1:p] = ϕ_1, \dots, ϕ_p \$theta MA coefficients [1:q] = $\theta_1, \dots, \theta_q$ \$sigma2 White noise variance σ^2

\$aicc Akaike information criterion corrected \$se.phi Standard errors for the AR coefficients \$se.theta Standard errors for the MA coefficients

The signs of the coefficients correspond to the following model.

$$X_{t} = \sum_{j=1}^{p} \phi_{j} X_{t-j} + Z_{t} + \sum_{k=1}^{q} \theta_{k} Z_{t-k}$$

The following example shows that an ARMA(1,1) model has the lowest AICC for the Lake Huron data.

R> autofit(lake)

\$phi

[1] 0.7448993

\$theta

[1] 0.3205891

\$sigma2

[1] 0.4750447

\$aicc

[1] 212.7675

\$se.phi

[1] 0.006029624

\$se.theta

[1] 0.01288894

2.7 burg

Estimates AR coefficients using the Burg method.

$$\mathtt{burg(x,p)} \quad \left\{ \begin{array}{l} \mathtt{x} \quad \mathrm{Time \ series \ data} \\ \mathtt{p} \quad \mathrm{AR \ order} \end{array} \right.$$

Returns an ARMA model with the following components.

\$phi AR coefficients $[1:p] = \phi_1, \dots, \phi_p$ \$theta 0 \$sigma2 White noise variance σ^2

\$aicc Akaike information criterion corrected \$se.phi Standard errors for AR coefficients

se.theta 0

Example:

R> burg(lake,1)

\$phi

[1] 0.8388953

\$theta

[1] 0

\$sigma2

[1] 0.5096105

\$aicc

[1] 217.3922

\$se.phi

[1] 0.003023007

\$se.theta

[1] 0

2.8 check

Check for causality and invertibility of an ARMA model.

check(a) { a ARMA model

The ARMA model is a list with the following components.

 $\begin{array}{ll} \mbox{\$phi} & \mbox{AR coefficients [1:p]} = \phi_1, \ldots, \phi_p \\ \mbox{\$theta} & \mbox{MA coefficients [1:q]} = \theta_1, \ldots, \theta_q \\ \end{array}$

Example:

```
R> a = specify(ar=c(0,0,0.99))
R> check(a)
Causal
Invertible
```

2.9 forecast

Predict future values of a time series.

forecast(x,M,a,h=10,opt=2,alpha=0.05)
$$\begin{cases} x & \text{Time series data} \\ M & \text{Data model} \\ a & \text{ARMA model} \\ h & \text{Steps ahead} \\ opt & \text{Display option} \\ alpha & \text{Level of significance} \end{cases}$$

The data model M can be NULL for none. The display options are 0 for none, 1 for tabulate, 2 for plot and tabulate. See below for details about the data model.

Example:

9

10

```
R> M = c("log", "season", 12, "trend", 1)
R> e = Resid(wine,M)
R> a = arma(e,1,1)
R> forecast(wine,M,a)
 Step
          Prediction
                          Lower Bound
                                          Upper Bound
    1
             2227.556
                             1834.156
                                             2705.334
    2
             2374.062
                             1946.145
                                             2896.069
    3
             1216.429
                              993.925
                                             1488.743
    4
             1634.838
                             1332.583
                                             2005.651
    5
             1883.996
                             1532.926
                                             2315.467
    6
                             1704.717
             2097.927
                                             2581.833
    7
             2524.942
                             2049.658
                                             3110.437
    8
             2542.990
                             2062.775
                                             3135.001
```

2510.185

2577.324

3096.280

3180.418

3819.219

3924.636

The data model M is a vector of function names. The functions are applied to the data in left to right order. There are five functions from which to choose.

diff Difference the data

hr Subtract harmonic components

log Take the log of the dataseason Subtract seasonal componenttrend Subtract trend component

A function name may be followed by one or more arguments.

diff has a single argument, the lag.

hr has one or more arguments, each specifying the number of observations per harmonic period.

log has no arguments.

season has one argument, the number of observations per season.

trend has one argument, the polynomial order of the trend, (1 for linear, 2 for quadratic, etc.)

A data model is built up by concatenating the function names and arguments. For example, the following vector takes the log of the data, then subtracts a seasonal component of period twelve then subtracts a linear trend component.

At the end of the data model there is an implied subtraction of the mean operation. Hence the resulting time series always has zero mean.

2.10 hannan

Estimates ARMA coefficients using the Hannan-Rissanen algorithm. It is required that q > 0.

$$\mathtt{hannan(x,p,q)} \quad \left\{ \begin{array}{l} \texttt{x} \quad \text{Time series data} \\ \texttt{p} \quad \text{AR order} \\ \texttt{q} \quad \text{MA order} \end{array} \right.$$

Returns a list with the following components.

\$phi AR coefficients [1:p] = ϕ_1, \dots, ϕ_p \$theta MA coefficients [1:q] = $\theta_1, \dots, \theta_q$ \$sigma2 White noise variance σ^2

\$aicc Akaike information criterion corrected \$se.phi Standard errors for AR coefficients \$se.theta Standard errors for MA coefficients

Example:

R> hannan(lake,1,1)
\$phi

[1] 0.6960772

\$theta

[1] 0.3787969

\$sigma2

[1] 0.477358

\$aicc

[1] 213.183

\$se.phi

[1] 0.07800321

\$se.theta

[1] 0.1465265

2.11 hr

Returns the sum of harmonic components of time series data.

$$\text{hr(x,d)} \quad \left\{ \begin{array}{l} \textbf{x} \quad \text{Time series data} \\ \textbf{d} \quad \text{Vector of harmonic periods} \end{array} \right.$$

Example:

2.12 ia

Calculates MA coefficients using the innovations algorithm.

$$\mbox{ia(x,q,m=17)} \quad \left\{ \begin{array}{l} x \quad \mbox{Time series data} \\ q \quad \mbox{MA order} \\ m \quad \mbox{Recursion level} \end{array} \right.$$

Returns a list with the following components.

Normally m should be set to the default 17 even when fewer MA coefficients are required.

The following example generates results that match *Introduction to Time Series and Fore-casting* p. 154.

```
R> y = diff(dowj)

R> a = ia(y,17)

R> round(a$theta,4)

[1] 0.4269 0.2704 0.1183 0.1589 0.1355 0.1568 0.1284 -0.0060

[9] 0.0148 -0.0017 0.1974 -0.0463 0.2023 0.1285 -0.0213 -0.2575

[17] 0.0760

R> round(a$theta/a$se/1.96,4)

[1] 1.9114 1.1133 0.4727 0.6314 0.5331 0.6127 0.4969 -0.0231

[9] 0.0568 -0.0064 0.7594 -0.1757 0.7666 0.4801 -0.0792 -0.9563

[17] 0.2760
```

The formula for the standard error of the jth coefficient is given on p. 152 of Introduction to Time Series and Forecasting as

$$\sigma_j = n^{-1/2} \left[\sum_{i=0}^{j-1} \hat{\theta}_{mi}^2 \right]^{1/2}$$

where $\hat{\theta}_{m0} = 1$. Hence the standard error for $\hat{\theta}_1$ is $\sigma_1 = n^{-1/2}$.

2.13 ma.inf

Returns the MA(∞) coefficients $\psi_0, \psi_1, ..., \psi_n$ where $\psi_0 = 1$.

$$ma.inf(m,n) = \begin{cases} a & ARMA \text{ model} \\ n & Order \end{cases}$$

A vector of length n+1 is returned to accommodate ψ_0 at index 1.

Example:

R> a = yw(Sunspots, 2)

R > ma.inf(a,10)

- [1] 1.00000000 1.31750053 1.10168617 0.61601672 0.11299949
- [6] -0.24175256 -0.39016452 -0.36074148 -0.22786538 -0.07145884
- [11] 0.05034727

For causal ARMA processes, $MA(\infty)$ is the polynomial $\psi(z)$ such that

$$\psi(z) = \frac{\theta(z)}{\phi(z)} = 1 + \psi_1 z + \psi_2 z^2 + \cdots$$

The corresponding moving average is

$$X_t = \psi(B)Z_t = Z_t + \psi_1 Z_{t-1} + \psi_2 Z_{t-2} + \cdots$$

The coefficients ψ_j are calculated recursively using the following formula. (See p. 85 of Introduction to Time Series and Forecasting.)

$$\psi_j = \theta_j + \sum_{k=1}^p \phi_k \psi_{j-k} \qquad j = 1, 2, \dots$$

2.14 periodogram

0.04938272 0.01234568

Plots a periodogram.

The periodogram vector divided by 2π is returned invisibly. The plot options are 0 for no plot, 1 to plot only the periodogram, and 2 to plot both the periodogram and the filter coefficients. The filter q can be a vector in which case the overall filter is the composition of MA filters of the designated orders.

R> periodogram(Sunspots,c(1,1,1,1)) Filter 0.01234568 0.04938272 0.1234568 0.1975309 0.2345679 0.1975309 0.1234568

2.15 plota

Plots ACF and PACF for time series data and/or ARMA model.

$$\texttt{plota(u,v=NULL,h=40)} \quad \left\{ \begin{array}{l} u,v \quad \text{Time series data and/or ARMA model, in either order} \\ h \quad \text{Maximum lag} \end{array} \right.$$

Example:

R> plota(Sunspots)

R> a = yw(Sunspots,2)
R> plota(Sunspots,a)

The following example demonstrates the utility of the $\pm 1.96/\sqrt{n}$ bounds as a test for noise.

R> noise = rnorm(200)
R> plota(noise)

2.16 plotc

Plots one or two time series in color.

$$\label{eq:plots_plots_plots} {\scriptsize \begin{tabular}{ll} y 1 & Blue line with knots \\ y 2 & Red line without knots \\ \end{tabular}}$$

Example:

R> plotc(uspop)

R> y = trend(uspop,2)
R> plotc(uspop,y)

2.17 plots

Plots the spectrum of data or an ARMA model.

 $\verb"plots"(u) \quad \left\{ \begin{array}{l} u \quad \text{Time series data or ARMA model} \end{array} \right.$

Example:

2.18 Resid

Returns the residuals of a time series model.

Either M or a can be NULL for none. See below for details about the data model. The returned residuals always have zero mean.

In the following example, Resid and test are used to check for stationarity of the transformed data. Then they are used again to check that the overall model reduces the data to white noise.

```
R> M = c("log", "season", 12, "trend", 1)
R> e = Resid(airpass, M)
R> test(e)
R> a = arma(e, 1, 0)
R> ee = Resid(airpass, M, a)
R> test(ee)
```

The data model M is a vector of function names. The functions are applied to the data in left to right order. There are five functions from which to choose.

diff Difference the data
hr Subtract harmonic components
log Take the log of the data
season Subtract seasonal component
trend Subtract trend component

A function name may be followed by one or more arguments.

diff has a single argument, the lag.

hr has one or more arguments, each specifying the number of observations per harmonic period.

log has no arguments.

season has one argument, the number of observations per season.

trend has one argument, the polynomial order of the trend, (1 for linear, 2 for quadratic, etc.)

A data model is built up by concatenating the function names and arguments. For example, the following vector takes the log of the data, then subtracts a seasonal component of period twelve then subtracts a linear trend component.

```
R> M = c("log", "season", 12, "trend", 1)
```

At the end of the data model there is an implied subtraction of the mean operation. Hence the resulting time series always has zero mean.

2.19 season

Returns the seasonal component of time series data.

$$season(x,d)$$
 $\begin{cases} x & Time series data \\ d & Number of observations per season \end{cases}$

Example:

2.20 sim

Generate synthetic observations for an ARMA model.

The ARMA model is a list with the following components.

\$phi AR coefficients
$$\phi_1, \ldots, \phi_p$$

\$theta MA coefficients $\theta_1, \ldots, \theta_q$
\$sigma2 White noise variance σ^2

Example:

2.21 smooth.exp

Applies an exponential smoothing filter to data and returns the result.

$$\mathtt{smooth.exp}(\mathtt{x,a}) \quad \left\{ \begin{array}{l} \mathtt{x} \quad \text{Time series data} \\ \mathtt{a} \quad 0 \text{ to } 1, \text{ zero is maximum smoothness.} \end{array} \right.$$

Example:

2.22 smooth.fft

Applies a low pass filter to data and returns the result.

$$\mathtt{smooth.fft(x,c)} \quad \left\{ \begin{array}{l} \mathtt{x} \quad \mathrm{Time\ series\ data} \\ \mathtt{c} \quad \mathrm{Cut\text{-}off\ freq.\ 0-1} \end{array} \right.$$

The cut-off frequency is specified as a fraction. For example, $\mathsf{c}=0.25$ passes the lowest 25% of the frequency spectrum.

Example:

R> y = smooth.fft(signal,0.035)
R> plotc(signal,y)

2.23 smooth.ma

Applies a moving average filter to data and returns the result.

$$smooth.ma(x,q)$$
 $\begin{cases} x & Time series data \\ q & Filter order \end{cases}$

Example:

R> y = smooth.ma(strikes,2)
R> plotc(strikes,y)

From p. 25 of Introduction to Time Series and Forecasting,

$$Y_t = \frac{1}{2q+1} \sum_{j=-q}^{q} X_{t-j}$$

Hence for q=2 the moving average filter is

$$Y_t = \frac{1}{5}(X_{t-2} + X_{t-1} + X_t + X_{t+1} + X_{t+2})$$

2.24 smooth.rank

Passes the mean and the k frequencies with the highest amplitude. The remainder of the spectrum is filtered out.

$${\tt smooth.rank(x,k)} \quad \left\{ \begin{array}{l} {\tt x} \quad {\rm Time \ series \ data} \\ {\tt k} \quad {\rm Rank} \end{array} \right.$$

Example:

2.25 specify

Returns an ARMA model with the specified parameters.

$$\label{eq:specify} \mbox{specify(ar=0,ma=0,sigma2=1)} \left\{ \begin{array}{ll} \mbox{ar} & \mbox{AR coefficients [1:p]} = \phi_1, \dots, \phi_p \\ \mbox{ma} & \mbox{MA coefficients [1:q]} = \theta_1, \dots, \theta_q \\ \mbox{sigma2} & \mbox{White noise variance } \sigma^2 \end{array} \right.$$

The signs of the coefficients correspond to the following model.

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots$$

Example:

R> specify(ar=c(0,0,0.99))

\$phi

[1] 0.00 0.00 0.99

\$theta

[1] 0

\$sigma2

[1] 1

2.26 test

Test residuals for randomness.

test(e) { e Residuals

Example:

R> M = c("log", "season", 12, "trend", 1)

R> e = Resid(airpass,M)

R> test(e)

Null hypothesis: Residuals are iid noise.

Test	Distribution	Statistic	p-value	
Ljung-Box Q	$Q \sim chisq(20)$	412.43	0 >	k
McLeod-Li Q	$Q \sim chisq(20)$	41.29	0.0034 *	*
Turning points T	$(T-94.7)/5 \sim N(0,1)$	85	0.0545	
Diff signs S	$(S-71.5)/3.5 \sim N(0,1)$	68	0.314	
Rank P	$(P-5148)/289.5 \sim N(0,1)$	5187	0.8928	

2.27 trend

Returns the trend component of time series data.

$$\texttt{trend(x,p)} \quad \left\{ \begin{array}{l} \texttt{x} \quad \text{Time series data} \\ \texttt{n} \quad \text{Polynomial order} \end{array} \right.$$

Example:

2.28 yw

Estimates AR coefficients using the Yule-Walker method.

$$\mathtt{yw(x,p)} \quad \left\{ \begin{array}{l} \mathtt{x} \quad \mathrm{Time \ series \ data} \\ \mathtt{p} \quad \mathrm{AR \ order} \end{array} \right.$$

Returns an ARMA model with the following components.

\$phi	AR coefficients $[1:p] = \phi_1, \dots, \phi_p$
\$theta	0
\$sigma2	White noise variance σ^2
\$aicc	Akaike information criterion corrected
\$se.phi	Standard errors for AR coefficients
\$se.theta	0

Example:

\$theta [1] 0 \$sigma2

[1] 0.5098608

\$aicc

[1] 217.4017

\$se.phi

[1] 0.003207539

\$se.theta

[1] 0

These are the relevant formulas from Introduction to Time Series and Forecasting, Second Edition.

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} \left(X_{t+|h|} - \bar{X}_n \right) \left(X_t - \bar{X}_n \right)$$
 (2.4.4)

$$\hat{\Gamma}_k = \begin{pmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) & \cdots & \hat{\gamma}(k-1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) & \cdots & \hat{\gamma}(k-2) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\gamma}(k-1) & \hat{\gamma}(k-2) & \cdots & \hat{\gamma}(0) \end{pmatrix}$$
(2.4.6)

$$\hat{R}_k = \frac{1}{\hat{\gamma}(0)} \hat{\Gamma}_k \tag{2.4.8}$$

$$\hat{\boldsymbol{\phi}}_{v} = \hat{R}_{v}^{-1} \hat{\boldsymbol{\rho}}_{v} \tag{5.1.7}$$

$$\hat{v}_p = \hat{\gamma}(0) \left(1 - \hat{\boldsymbol{\rho}}_p' \hat{R}_p^{-1} \hat{\boldsymbol{\rho}}_p \right)$$
 (5.1.11)

where $\hat{\rho}_p = (\hat{\rho}(1), \dots, \hat{\rho}(p))' = \hat{\gamma}_p/\hat{\gamma}(0)$. The subscript p is the order of the AR model (i.e., number of AR coefficients). Note that (5.1.7) and (5.1.11) can also be written as

$$\hat{oldsymbol{\phi}}_p = \hat{\Gamma}_p^{-1} \hat{oldsymbol{\gamma}}_p$$

and

$$\hat{v}_p = \hat{\gamma}(0) - \hat{\gamma}_p' \hat{\phi}_p$$

From equation (5.1.13) the standard error for the jth AR coefficient is

$$SE_j = \sqrt{\frac{\hat{v}_{jj}}{n}}$$

where \hat{v}_{jj} is the jth diagonal element of $\hat{v}_p \hat{\Gamma}_p^{-1}$.

The R code follows immediately from the above equations.

```
gamma = acvf(x,p)
Gamma = toeplitz(gamma[1:p])
phi = solve(Gamma,gamma[2:(p+1)])
v = gamma[1] - drop(crossprod(gamma[2:(p+1)],phi))
V = v * solve(Gamma)
se.phi = sqrt(1/n*diag(V))
```

Recall that R indices are 1-based hence gamma[1] is $\hat{\gamma}(0)$. The function crossprod returns a 1-by-1 matrix which is then converted by drop to a scalar.