

**Instruction Manual** 

# **AX5805**

TwinSAFE drive option card for the AX5000 servo drive

Version: 1.3.0

Date: 2013-03-11



# **Table of contents**

| 1 | For | ewor   | d                                                                 | 3  |
|---|-----|--------|-------------------------------------------------------------------|----|
|   | 1.1 | Notes  | s on the manual                                                   | 3  |
|   |     | 1.1.1  | Disclaimer                                                        | 3  |
|   |     | 1.1.2  | Brands                                                            | 3  |
|   |     | 1.1.3  | Patents                                                           | 3  |
|   |     | 1.1.4  | Copyright                                                         | 3  |
|   |     | 1.1.5  | Delivery conditions                                               | 3  |
|   | 1.2 | Safet  | y instructions                                                    | 4  |
|   |     | 1.2.1  | Delivery state                                                    | 4  |
|   |     | 1.2.2  | Operator's obligation to exercise diligence                       | 4  |
|   |     | 1.2.3  | Safety symbols used in this manual                                | 5  |
| 2 | Sys | stem ( | description                                                       | 6  |
| 3 | Pro | duct   | description                                                       | 7  |
|   | 3.1 | Gene   | ral description                                                   | 7  |
|   | 3.2 | Inten  | ded use                                                           | 8  |
|   | 3.3 | Techi  | nical data                                                        | 12 |
|   |     | 3.3.1  | Reaction times for the AX51xx                                     | 13 |
|   |     | 3.3.2  | Reaction times for the AX52xx                                     | 13 |
|   | 3.4 | Instal | lation                                                            | 14 |
|   |     | 3.4.1  | Safety instructions                                               | 14 |
|   |     | 3.4.2  | Transport and storage                                             | 14 |
|   |     | 3.4.3  | Installation of the AX5805                                        | 14 |
|   |     | 3.4.4  | Permitted motors                                                  | 17 |
|   |     | 3.4.5  | Firmware                                                          | 17 |
|   | 3.5 | Confi  | guration of the AX5805 in the TwinCAT System Manager              | 18 |
|   |     | 3.5.1  | Configuration requirements                                        | 18 |
|   |     | 3.5.2  | Inserting an AX5805                                               | 18 |
|   |     | 3.5.3  | Registering the TwinSAFE address in the TwinCAT System Manager    | 21 |
|   | 3.6 | Parar  | neterization of the AX5805 in the TwinCAT System Manager          | 22 |
|   |     | 3.6.1  | Units and calculations                                            | 22 |
|   |     | 3.6.2  | Configuration of the process image of the AX5805                  | 24 |
|   |     | 3.6.3  | Setting the mode of operation                                     | 33 |
|   |     | 3.6.4  | Parameterization and referencing of the safe position             | 36 |
|   |     | 3.6.5  | Parameterization of the integrated safety functions of the AX5805 | 40 |
|   |     | 3.6.6  | Configuring the error reaction                                    | 86 |

|   | 3.7 | First       | Steps – AX5805                                           | 87  |  |  |
|---|-----|-------------|----------------------------------------------------------|-----|--|--|
|   |     | 3.7.1       | Step 1: parameterize the AX5103 servo drive              | 87  |  |  |
|   |     | 3.7.2       | Step 2: parameterize the AX5805                          | 87  |  |  |
|   |     | 3.7.3       | Step 3: link Error_Acknowledge in Safe PLC               | 89  |  |  |
|   |     | 3.7.4       | Step 4: Link the SDIn safety function in the Safe PLC    | 90  |  |  |
|   |     | 3.7.5       | Step 5: Implementation of an EMERGENCY STOP button       | 91  |  |  |
| 4 | Err | or an       | d diagnosis                                              | 93  |  |  |
|   | 4.1 | Error       | indices in CoE object 0xFA82                             | 93  |  |  |
|   | 4.2 |             | on for shut-down CoE Objects 0xFA10:07 and 0xFA10:08     | 99  |  |  |
|   | 4.3 |             | nose CoE Object 0xFA10                                   | 100 |  |  |
|   |     | 4.3.1       | 0xFA10:01 = 0                                            | 100 |  |  |
|   |     | 4.3.2       | 0xFA10:01 = 1                                            | 100 |  |  |
|   |     | 4.3.3       | 0xFA10:01 = 2                                            | 100 |  |  |
|   |     | 4.3.4       | 0xFA10:01 = 3                                            | 101 |  |  |
|   |     | 4.3.5       | 0xFA10:01 = 4                                            | 101 |  |  |
|   |     | 4.3.6       | 0xFA10:01 = 5                                            | 101 |  |  |
|   |     | 4.3.7       | 0xFA10:01 = 6                                            | 102 |  |  |
|   |     | 4.3.8       | 0xFA10:01 = 7                                            | 102 |  |  |
|   |     | 4.3.9       | 0xFA10:01 = 8                                            | 102 |  |  |
|   | 4.4 | Maint       | tenance                                                  | 103 |  |  |
|   |     | 4.4.1       | Cleaning the AX5805                                      | 103 |  |  |
|   |     | 4.4.2       | Lifespan and proof tests                                 | 103 |  |  |
|   | 4.5 | Deco        | mmissioning                                              | 103 |  |  |
|   |     | 4.5.1       | Disposal                                                 | 103 |  |  |
| 5 | Apı | pendi       | x                                                        | 104 |  |  |
|   | 5.1 | Beck        | hoff Support and Service                                 | 104 |  |  |
|   |     | 5.1.1       | Beckhoff branches and partner companies Beckhoff Support | 104 |  |  |
|   |     | 5.1.2       | Beckhoff company headquarters                            | 104 |  |  |
|   | 5.2 | Certificate |                                                          |     |  |  |

# 1 Foreword

# 1.1 Notes on the manual

This description is only intended for the use of trained specialists in control and automation technology who are familiar with the applicable national standards. It is essential that the following notes and explanations are followed when installing and commissioning these components.

The responsible staff must ensure that the application or use of the products described satisfy all the safety requirements, including all the relevant laws, regulations, guidelines and standards.

#### 1.1.1 Disclaimer

This documentation has been prepared with care. The products described are, however, constantly under development. For this reason, the documentation may not always have been fully checked for consistency with the performance data, standards or other characteristics described.

If it should contain technical or editorial errors, we reserve the right to make changes at any time and without notice

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

#### 1.1.2 Brands

Beckhoff<sup>®</sup>, TwinCAT<sup>®</sup>, EtherCAT<sup>®</sup>, Safety over EtherCAT<sup>®</sup>, TwinSAFE<sup>®</sup> and XFC<sup>®</sup> are registered and licensed brand names of Beckhoff Automation GmbH.

The use by third parties of other brand names or trademarks contained in this documentation may lead to an infringement of the rights of the respective trademark owner.

#### 1.1.3 Patents

The EtherCAT technology is patent protected, in particular by the following applications and patents: EP1590927, EP1789857, DE102004044764, DE102007017835 with the corresponding applications and registrations in various other countries.

The TwinCAT technology is patent protected, in particular by the following applications and patents: EP0851348, US6167425 with the corresponding applications and registrations in various other countries.

# 1.1.4 Copyright

The copying, distribution and utilization of this document as well as the communication of its contents to others without express authorization is prohibited. Offenders shall be held liable for damages. All rights conferred by patent grant or registration of a utility model or registered design are reserved.

#### 1.1.5 Delivery conditions

In addition, the general delivery conditions of the company Beckhoff Automation GmbH apply.

<sup>&</sup>lt;sup>©</sup> Beckhoff Automation GmbH.

# 1.2 Safety instructions

# 1.2.1 Delivery state

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH.

# 1.2.2 Operator's obligation to exercise diligence

The operator must ensure that

- the TwinSAFE products are only used as intended (refer to Chapter 3);
- the TwinSAFE products are only operated in sound condition and in working order (refer to Chapter 4.4.1).
- the TwinSAFE products are operated only by suitably qualified and authorized personnel.
- the personnel is instructed regularly about relevant occupational safety and environmental protection aspects, and is familiar with the operating instructions and in particular the safety instructions contained herein.
- the operating instructions are in good condition and complete, and always available for reference at the location where the TwinSAFE products are used.
- none of the safety and warning notes attached to the TwinSAFE products are removed, and all notes remain legible.

# 1.2.3 Safety symbols used in this manual

The following safety symbols are used in this manual to bring specific safety instructions to the reader's attention.



## Risk of immediate personal injury or death

Failure to follow these instructions may *immediately* lead to personal injury or death.



# Risk of personal injury or death

Failure to follow these instructions may lead to personal injury or death.



#### Risk of personal injury

Failure to follow these instructions may lead to personal injury.



#### Risk of property damage

Failure to follow these instructions may lead to property damage.



#### **Important**

This symbol identifies information that is critical for applying and understanding this product correctly.

# 2 System description

By integrating safety technology into its drive technology, Beckhoff has extended the TwinSAFE system philosophy into the drive in a manner consistent with existing TwinSAFE products. TwinSAFE enables integrated safety automation, ranging from digital inputs and logic systems to drives and digital outputs. Simple diagnostics and easy to use functions help the user implement the required application quickly and safely.

Significant hazards to persons arise from the dynamic movements of the electrical drive equipment of machines. Controlling these hazards while achieving smooth production flow can be a significant challenge.

The Beckhoff servo amplifiers from the AX5xxx series become fully-fledged safety drives with the addition of the AX5805 TwinSAFE drive option card.

The option card is able to completely remove torque from the motor or monitor speed, position and direction of rotation (in accordance with EN ISO 13849-1:2006 to PL e). No further circuits such as circuit breakers, contactors in the supply lines, or special encoder systems are necessary for this functionality.

This enables a lean installation and helps to lower costs and cabinet space. No special encoder system is required in order to implement the SDI (Safe Direction) or SLS (Safely Limited Speed) functions. All of Beckhoff's motors listed in the document 'AX5805 – List of permitted motors' can be used without further expenditure and without additional encoder systems for these functions. Even safe position monitoring or position range monitoring is simple to implement with the aid of the AX5805 safety option card.

Adding the AX5805 does not require any additional wiring, since EtherCAT communication is used in the AX5xxx basic controllers. The AX5805 TwinSAFE drive option card is a self-contained EtherCAT Slave and communicates directly via the AX controller with a TwinSAFE logic terminal existing in the network.



Figure 1: TwinSAFE system overview

# 3 Product description

# 3.1 General description

#### AX5805 - TwinSAFE drive option card AX5000 series drive controllers

The AX5805 TwinSAFE drive option card is an optional extension for Beckhoff's AX5000 servo drive series. The following safety functions can be implemented by installing the AX5805 in the AX5000:

- Stop functions (STO, SOS, SS1, SS2)
- Speed functions (SLS, SSM, SSR, SMS)
- Position functions (SLP, SCA, SLI)
- Acceleration functions (SAR, SMA)
- Direction of rotation functions (SDIp, SDIn)

Similarly to when programming or configuration of the safety application, the entire parameterization of the AX5805 option card is performed in the TwinCAT software. All system-specific settings are stored together with the application in the TwinSAFE logic terminal or in the AX5805 startup parameters. This makes it possible to switch out the AX5805 at any time – without changing the software. The AX5805 receives all necessary parameters at the next switch on or boot-up.

The AX5805 fulfills the requirements of IEC 61508 SIL 3 and DIN EN ISO 13849-1:2006 (Cat 4, PL e).

The AX5805 is intended for use in the safety option slot of a servo drive of the AX5000 series.



**Attention** 

#### Compatibility of the AX5000 and AX5805

The AX5805 can be used only in servo drives AX5xxx-0000-x2xx.

Attempting to install the AX5805 into AX5000 servo drives of a previous version can cause irreparable damage to the AX5000.

# 3.2 Intended use



#### Intended use

Using the TwinSAFE drive option card for purposes other than intended, as described below, is not permitted!

The AX5805 TwinSAFE drive option card extends the field of use of the Beckhoff AX5000 servo drive by enabling safety functions that allow the servo drive to be used in the field of machine safety.

# The following safety measures and safety instructions must be observed when using the TwinSAFE drive option card:



#### Remove power prior to installation

The servo drive must be disconnected from the mains and system voltage before installing the TwinSAFE drive option card. Even when the AX5000 is disconnected from the mains voltage, dangerous voltage continues to be present at the X02 terminals of the DC link for at least 5 minutes. Wait until the DC link capacitors are discharged before touching live terminals.



#### Parameter set change of the AX5000!

The changing of the parameter sets of the AX5000 can not be used together with the AX5805.



#### Risk of personal injury or death

Electronic equipment is not fail-safe. The machine manufacturer is responsible for ensuring that the connected motors and the machine are brought into a safe state in the event of a fault in the drive system.



#### Correctness of the parameters for a specific application

The AX5805 can check if its parameters are set correctly. It cannot check if the parameters are correct for a specific application. This can only be checked in an acceptance test, which the machine manufacturer must perform.

Especially the parameter Speed\_Compare\_Window should be left on the default value. This parameter has a direct influence on the safety functions.



#### Providing additional external safety measures for STO

When it is activated, STO initiates a coast-to-stop action. No braking is applied to the connected motors; the torque applied to the motor is switched off and the motor coasts to a stop. The time and distance it takes for the motor to stop depends on the mechanics and kinetic energy present in the system. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.



#### Providing additional external safety measures for STO and SS1

When it is activated, STO initiates a coast-to-stop action. No braking is applied to the connected motors; the torque applied to the motor is switched off and the motor coasts to a stop. The time and distance it takes for the motor to stop depends on the mechanics and kinetic energy present in the system. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.

When the TwinSAFE drive option card determines that an error has occurred, the preconfigured error reaction is activated. The standard error reaction is STO, but for certain functions (SSR, SAR, SLI, SLP, SLS, SMA, and SMS), the SS1 error reaction can also be parameterized.

When the SS1 error reaction is executed, the AX5805 TwinSAFE Drive option card triggers an emergency stop ramp in the AX5000. This is purely functional and is not a safety function. The STO safety function (Safe Torque Off) is activated after the motor reaches SS1 or the time set by the ESTOP Ramp Time parameter has elapsed. Any motors that are still moving after the ESTOP Ramp Time has elapsed will coast to a stop. If there are loads suspended from the motor, the motor may even be accelerated. In order to avoid inadvertent movements, external safety mechanisms (e.g. mechanical brakes) must be provided by the user.



#### **Avoiding power interruptions**

Power interruptions activate STO (Safe Torque Off), removing all torque from the motor. Any motors that are moving coast to a stop. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.



#### Faults and interruptions in the EtherCAT communication

Faults and interruptions in the EtherCAT communication activate STO (Safe Torque Off), removing all torque from the motor. Any motors that are moving coast to a stop. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.



#### Activating or restarting a project in the TwinCAT System Manager

Activating or restarting a project in the TwinCAT System Manager activates STO (Safe Torque Off), removing all torque from the motor. Any motors that are moving coast to a stop. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.



#### Downloading the safety project to the EL6900 TwinSAFE PLC

Downloading the safety project to the EL6900 TwinSAFE PLC activates STO (Safe Torque Off), removing all torque from the motor. Any motors that are moving coast to a stop. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.



#### The servo drive must be configured correctly

Incorrect parameterization of the servo drive (e.g. current controller oscillates or is too lethargic) activates STO (Safe Torque Off). Any motors that are moving coast to a stop. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.



#### The servo drive must be dimensioned appropriately

Loads that cannot be stopped by the AX5000 servo drive without faulting (e.g. if the AX5000 servo drive is under-dimensioned) activate STO (Safe Torque Off). Any motors that are moving coast to a stop. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.



## Change of the EtherCAT State

When changing the EtherCAT state of the AX5805 to BOOT, the disconnecting circuits will be switched off immediatelly and the brake stays in its current state. Due to this it can happen that the brake remains opened in case of standstill.

In general the axis has to be in a safe state that it is allowed to change the EtherCAT state.



# For use in machinery per the Machinery Directive

The TwinSAFE Drive option cards may only be used in machines as defined in the Machinery Directive (Directive 2006/42/EC on machinery).



# Ensuring traceability of serial numbers

The buyer must ensure the traceability of the AX5805 via its serial number.

# 3.3 Technical data

| Product name                                            | AX5805                                                                                                                                                                        |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fault response time                                     | see tables in chapters 3.3.1 and 3.3.2                                                                                                                                        |
| Safety input process image (dependent on the AX5000)    | 7 bytes (AX51XX) or 11 bytes (AX52XX)                                                                                                                                         |
| Safety output process image (dependent on the AX5000)   | 7 bytes (AX51XX) or 11 bytes (AX52XX)                                                                                                                                         |
| Standard input process image (dependent on the AX5000)  | 8 bytes (AX51XX) or 16 bytes (AX52XX)                                                                                                                                         |
| Standard output process image (dependent on the AX5000) | 8 bytes (AX51XX) or 16 bytes (AX52XX)                                                                                                                                         |
| Supply voltage of the AX5805                            | Supplied by the AX5000 servo drive                                                                                                                                            |
| Dimensions (W x H x D) including cover plate            | 26 mm x 100 mm x 54 mm                                                                                                                                                        |
| Weight                                                  | approx. 75 g                                                                                                                                                                  |
| Permissible ambient temperature (operation)             | 0°C to +50°C                                                                                                                                                                  |
| Permissible ambient temperature (transport/storage)     | -25°C to +70°C                                                                                                                                                                |
| Permissible air humidity                                | 5% to 95%, non-condensing                                                                                                                                                     |
| Permissible air pressure (operation/storage/transport)  | 750 hPa to 1100 hPa                                                                                                                                                           |
| Permissible contamination level                         | Contamination level 2 according to EN 61800-5-1 (see also chapter 'Cleaning')                                                                                                 |
| Unacceptable operating conditions                       | TwinSAFE products must not be used under the following operating conditions:                                                                                                  |
|                                                         | <ul> <li>in the presence of ionizing radiation</li> <li>in corrosive environments</li> <li>in an environment that leads to contamination of the safety option card</li> </ul> |
| EMC immunity / emission                                 | conforms to EN 61800-5-1 / EN 61326-3-1                                                                                                                                       |
| Protection class                                        | IP20                                                                                                                                                                          |
| Permitted operating environment                         | control cabinet or terminal box with minimum protection class IP54 according to IEC 60529                                                                                     |
| Permissible installation position                       | vertical                                                                                                                                                                      |
| Approvals                                               | CE, TÜV Süd                                                                                                                                                                   |

The user must ensure that the TwinSAFE option card is only transported, stored and operated under the conditions specified in technical data (refer to table above).



# **Prohibited operating conditions**

The TwinSAFE drive option cards may not be used under the following operating conditions:

- in the presence of ionizing radiation
- in corrosive environments
- in an environment that leads to contamination of the safety option card

#### 3.3.1 Reaction times for the AX51xx

The reaction time is the amount of time from a safety-related event is received (as an input signal to the AX5805) until the internal circuits are switched off. If the TwinSAFE communication is to be included in the calculation, the watchdog time of the TwinSAFE connection must be added to this. For a worst-case consideration, the maximum time with update of the CoE data must always be used.

#### Firmware ≤ 04

| Operation mode        | Minimum reaction time | Maximum reaction time |
|-----------------------|-----------------------|-----------------------|
| STO-MODE              | 18ms                  | 36ms                  |
| Default process data  | 22ms                  | 44ms                  |
| Extended process data | 23ms                  | 46ms                  |

#### Firmware > 04 (Revision number ≥ AX5805-0000-0017)

| Operation mode        | Minimum reaction time | Maximum reaction time |
|-----------------------|-----------------------|-----------------------|
| STO-MODE              | 15ms                  | 30ms                  |
| Default process data  | 34ms                  | 68ms                  |
| Extended process data | 34ms                  | 68ms                  |

#### 3.3.2 Reaction times for the AX52xx

The reaction time is the amount of time from a safety-related event is received (as an input signal to the AX5805) until the internal circuits are switched off. If the TwinSAFE communication is to be included in the calculation, the watchdog time of the TwinSAFE connection must be added to this. For a worst-case consideration, the maximum time with update of the CoE data must always be used.

#### Firmware ≤ 04

| Operation mode        | Minimum reaction time | Maximum reaction time |
|-----------------------|-----------------------|-----------------------|
| STO-MODE              | 39ms                  | 78ms                  |
| Default process data  | 47ms                  | 94ms                  |
| Extended process data | 48ms                  | 96ms                  |

#### Firmware > 04 (Revision number ≥ AX5805-0000-0017)

| Operation mode        | Minimum reaction time | Maximum reaction time |
|-----------------------|-----------------------|-----------------------|
| STO-MODE              | 15ms                  | 30ms                  |
| Default process data  | 34ms                  | 68ms                  |
| Extended process data | 34ms                  | 68ms                  |



#### STO mode reaction times

The reaction times for the STO mode are only valid, when both axis are configured for the STO mode.

# 3.4 Installation

# 3.4.1 Safety instructions

Before installing and commissioning the TwinSAFE drive option cards, refer to the safety instructions in the Foreword of this User Manual (Chapter 1).

# 3.4.2 Transport and storage

For storage and transport of the digital TwinSAFE Drive option cards, use the original packaging in which they were delivered.



#### Adhering to the specified environmental conditions

The user must ensure that the TwinSAFE option card is only transported, stored and operated under the conditions specified in technical data.

#### 3.4.3 Installation of the AX5805



#### Remove power prior to installation

The servo drive must be disconnected from the mains and system voltage before installing the TwinSAFE drive option card. Even when the AX5000 is disconnected from the mains voltage, dangerous voltage continues to be present at the X02 terminals of the DC link for at least 5 minutes. Wait until the DC link capacitors are discharged before touching live terminals

#### 3.4.3.1 Installation requirements

The AX5805 can be used only in servo drives AX5xxx-0000-x2xx.



#### Risk of property damage

Attempting to install the AX5805 into AX5000 servo drives of a previous version can cause irreparable damage to the AX5000.

# 3.4.3.2 Setting the TwinSAFE address of the AX5805



Figure 2: DIP switch for setting the TwinSAFE address

The TwinSAFE address can be set via the 10-way DIP switch seen in Figure 2. The TwinSAFE addresses between 1 and 1023 are available(address 0 is not permitted).

| DIP switch |     |     |     |     |     | Address |     |     |     |      |
|------------|-----|-----|-----|-----|-----|---------|-----|-----|-----|------|
| 1          | 2   | 3   | 4   | 5   | 6   | 7       | 8   | 9   | 10  |      |
| OFF        | OFF | OFF | OFF | OFF | OFF | OFF     | OFF | OFF | OFF | 0    |
| ON         | OFF | OFF | OFF | OFF | OFF | OFF     | OFF | OFF | OFF | 1    |
| OFF        | ON  | OFF | OFF | OFF | OFF | OFF     | OFF | OFF | OFF | 2    |
| ON         | ON  | OFF | OFF | OFF | OFF | OFF     | OFF | OFF | OFF | 3    |
| OFF        | OFF | ON  | OFF | OFF | OFF | OFF     | OFF | OFF | OFF | 4    |
| ON         | OFF | ON  | OFF | OFF | OFF | OFF     | OFF | OFF | OFF | 5    |
| OFF        | ON  | ON  | OFF | OFF | OFF | OFF     | OFF | OFF | OFF | 6    |
| ON         | ON  | ON  | OFF | OFF | OFF | OFF     | OFF | OFF | OFF | 7    |
|            |     |     |     |     |     |         |     |     |     |      |
| ON         | ON  | ON  | ON  | ON  | ON  | ON      | ON  | ON  | ON  | 1023 |



# Each TwinSAFE address must be unique

Each TwinSAFE address may only be used once per network.

# 3.4.3.3 Mounting the AX5805



Figure 3: Safety slot in the AX5000

The AX5805 is inserted from above into the card slot marked 'Safety' in the AX5000 servo drive (see Figure 3: Safety slot in the AX5000) and secured by the screw.



# Install carefully

Insert the AX5805 carefully, without using force.

# 3.4.3.4 Removing the AX5805

Unscrew the screw of the AX5805 and carefully pull on the screw.

#### 3.4.4 Permitted motors

The AX5805 TwinSAFE Drive option card supports only synchronous Beckhoff servo motors with encoders.



#### **Restrictions for motors**

- Only specific Beckhoff rotary synchronous servo motors with position feedback are permitted for use with the AX5805.
- Modifying an approved motor is not permitted.
- Use of another manufacturer's motor is not permitted.
- Use of a linear motor is not permitted.

Further details regarding motor types can be found in the document 'AX5805 – List of permitted motors'. The associated PFH values for a safety-related calculation can also be found in this document.

#### 3.4.5 Firmware

According to the installed firmware on the AX5805 there are different settings in the safe parameters possible.

| Firmware AX5805 | Revision number  | Firmware AX5000 | Safe Parameter MotorDefaultData  |
|-----------------|------------------|-----------------|----------------------------------|
|                 |                  |                 | (0x2x40)                         |
| ≤ 04            | AX5805-0000-0016 | any             | according to the document        |
|                 |                  |                 | AX5805_DefaultMotorValues_de.pdf |
| > 05            | AX5805-0000-0017 | ≥ 2.04          | 0x0000                           |

# 3.5 Configuration of the AX5805 in the TwinCAT System Manager

## 3.5.1 Configuration requirements

To configure the AX5805, Version 2.11 build 2041 or higher of the TwinCAT automation software is required. The current version can be downloaded from the Beckhoff website at <a href="https://www.beckhoff.com">www.beckhoff.com</a>.

## 3.5.2 Inserting an AX5805

The AX5805 TwinSAFE Drive option card must be inserted in the System Manager configuration below the AX5000 servo drive.



Figure 4: Adding the AX5805 in the TwinCAT System Manager

Since the AX5805's software supports both single-channel and two-channel servo drives (AX5000), the AX5805 (Safety Drive Option) must be selected as the basis.



Figure 5: Selecting the AX5805 as the basis

Depending on the servo drive used (AX5000 single-channel or two-channel), the corresponding modules (single-channel or two channel) must then be inserted. In doing so, care must be taken to insert a safety module and a standard module.

At start-up, the AX5805 checks whether the modules that have been selected match the servo drive.



Figure 6: Inserting the safety module in the AX5805



Figure 7: Inserting the standard module in the AX5805

## 3.5.3 Registering the TwinSAFE address in the TwinCAT System Manager

The TwinSAFE address set using the DIP switch on the AX5805 TwinSAFE drive option card must also be set on the Safe Parameter tab (FSoE Address entry).



Figure 8: Registering the TwinSAFE address in the TwinCAT System Manager

# 3.6 Parameterization of the AX5805 in the TwinCAT System Manager

#### 3.6.1 Units and calculations



Relationship of electrical angle to 1 mechanical motor revolution:

$$1^{\circ} \ electrical \ angle = \frac{1^{\circ} \ mechanical \ angle}{pole \ pairs * 2}$$

Position - relation between increments and mech. angle:

$$increment = \frac{pole\ pairs*65536}{360^{\circ}}*mech.\ angle(in\ ^{\circ})$$

Example position - calculation SOS (AM302x - 3 pole pairs; position area - 10 revolutions):

increments = 
$$\frac{3*65536}{360^{\circ}} * 3600^{\circ} = 1.966.080$$
 increments

Unit for position window (e.g. for SLP) (pole revolution)

$$pole \ revolution = \frac{mechanical \ revolution}{pole \ pairs*2}$$

Speed - calculation in increments/ms:

increments per ms = 2 \* 65536 \* pole pairs \* revolution per ms

Example speed - calculation SSR (window between 500 and 250 R/min, AM302x - 3 pole pairs):

$$500 \frac{R}{min} = 8,33 \frac{R}{s} = 0,00833 \frac{R}{ms}$$

$$250\frac{R}{min} = 4,166\frac{R}{s} = 0,004166\frac{R}{ms}$$

increments per 
$$ms\ (500\frac{R}{min}) = 2*65536*3\frac{incr}{R}*0,00833\frac{R}{ms} = 3275\frac{incr}{ms}$$

increments per 
$$ms$$
  $(250 \frac{R}{min}) = 2 * 65536 * 3 \frac{incr}{R} * 0,004166 \frac{R}{ms} = 1638 \frac{incr}{ms}$ 

Acceleration - calculation in increments/ms2:

increments per  $ms^2 = 2 * 65536 * pole pairs * revolution per <math>ms^2$ 

Example acceleration - calculation SAR (AM302x - 3 pole pairs, 100 U/ms²):

increments per 
$$ms^2 = 2 * 65536 * 3 \frac{incr}{U} * 100 \frac{U}{s^2} = 39.321.600 \frac{incr}{s^2} = 39.32 \frac{incr}{ms^2}$$

## 3.6.2 Configuration of the process image of the AX5805

#### 3.6.2.1 **General**

The safety functions of the AX5805 are activated or deactivated in the control word and the current states of the safety functions are returned in the status word. The control words consist of one byte with fixed data and one byte with configurable data.

The mappings for control and status word are set via the objects 0x1600 and 0x1A00 in the *Safe Parameters* of the AX5805. The configuration settings are confirmed by pressing the *Update Variables* button.



#### Creating and changing the process image

The creation of the process image should take place before the creation of a Safety PLC project. The links to the Safety PLC are deleted after each change of the process image.



#### Order of execution of the safety functions

The safety functions are executed in the same order as in the control word.



#### **Priority of safety functions**

The safety function STO (safe torque off) has the highest priority, i.e. any other activated safety function, e.g. SLS (safe limited speed), can be interrupted by activating STO.



Figure 9: Example for SOS\_1:



#### Instance of the safety function

Functions are instanced starting at 1. Safety functions that have a maximum of one instance (Restart\_Request, Safe Maximum Speed, Safe maximum Acceleration) must be mapped with instance number 0.

#### 3.6.2.2 Control word default mapping for axis 1 (1st byte, fixed feature set)

Control word default mapping for axis 1 1600:02 - 1600:09

| Bit | Assignment                            | Possible setting | Default value |
|-----|---------------------------------------|------------------|---------------|
| 0   | Safe Torque Off (Axis 1 STO)          | none             | 0x66400001    |
| 1   | Safe Stop 1 (Axis 1 SS1_1)            | none             | 0x66500101    |
| 2   | Safe Stop 2 (Axis 1 SS2_1)            | none             | 0x66700101    |
| 3   | Safe Operating Stop (Axis 1 SOS_1)    | none             | 0x66680101    |
| 4   | Safe Speed Range (Axis 1 SSR_1)       | none             | 0x66800101    |
| 5   | Safe Direction positive (Axis 1 SDIp) | none             | 0x66D00001    |
| 6   | Safe Direction negative (Axis 1 SDIn) | none             | 0x66D10001    |
| 7   | Error Acknowledge (Axis 1 ErrAck)     | none             | 0x66320001    |



Figure 10: Control word default mapping for axis 1

#### 3.6.2.3 Control word user mapping for axis 1 (2nd byte, configurable feature set)

Control word user mapping for axis 1 1600:0A - 1600:11

The 8 bits in second half of the Control word for axis 1 can be freely configured to contain up to a total of 8 of the following functions. E.g. if 6 safe stop instances are chosen, only 2 other instances can be implemented.

| Index  | Name                     | Maximum number of instances |
|--------|--------------------------|-----------------------------|
| 0x6630 | Restart_Ack              | 1                           |
| 0x6650 | Safe Stop 1              | 8                           |
| 0x6670 | Safe Stop 2              | 8                           |
| 0x6668 | Safe operating stop      | 8                           |
| 0x6680 | Safe Speed Range         | 8                           |
| 0x6690 | Safely Limited Speed     | 8                           |
| 0x66A0 | Safely Limited Position  | 8                           |
| 0x66B0 | Safely Limited Increment | 8                           |
| 0x66C0 | Safe Acceleration Range  | 8                           |



Figure 11: Control word user mapping for axis 1

#### 3.6.2.4 Control word default mapping for axis 2 (1st byte, fixed feature set)

Control word default mapping for axis 2 1600:13 - 1600:1A

| Bit | Assignment                            | Possible setting | Default value |
|-----|---------------------------------------|------------------|---------------|
| 0   | Safe Torque Off (Axis 2 STO)          | none             | 0x6E400001    |
| 1   | Safe Stop 1 (Axis 2 SS1_1)            | none             | 0x6E500101    |
| 2   | Safe Stop 2 (Axis 2 SS2_1)            | none             | 0x6E700101    |
| 3   | Safe Operating Stop (Axis 2 SOS_1)    | none             | 0x6E680101    |
| 4   | Safe Speed Range (Axis 2 SSR_1)       | none             | 0x6E800101    |
| 5   | Safe Direction positive (Axis 2 SDIp) | none             | 0x6ED00001    |
| 6   | Safe Direction negative (Axis 2 SDIn) | none             | 0x6ED10001    |
| 7   | Error Acknowledge (Axis 2 ErrAck)     | none             | 0x6E320001    |



Figure 12: Control word default mapping for axis 2

#### 3.6.2.5 Control word user mapping for axis 2 (2nd byte, configurable feature set)

Control word user mapping for axis 2 1600:1B - 1600:22

The bits in the variable range of the control word for axis 2 can be occupied by the following functions.

| Index  | Name                     | Maximum number of instances |
|--------|--------------------------|-----------------------------|
| 0x6E30 | Restart_Acknowledge      | 1                           |
| 0x6E50 | Safe Stop 1              | 8                           |
| 0x6E70 | Safe Stop 2              | 8                           |
| 0x6E68 | Safe operating stop      | 8                           |
| 0x6E80 | Safe Speed Range         | 8                           |
| 0x6E90 | Safely Limited Speed     | 8                           |
| 0x6EA0 | Safely Limited Position  | 8                           |
| 0x6EB0 | Safely Limited Increment | 8                           |
| 0x6EC0 | Safe Acceleration Range  | 8                           |



Figure 13: Control word user mapping for axis 2

#### 3.6.2.6 Status word default mapping for axis 1 (1st byte, fixed feature set)

Status word default mapping for axis 1 1A00:02 - 1A00:09

| Bit | Assignment                            | Possible setting | Default value |
|-----|---------------------------------------|------------------|---------------|
| 0   | Safe Torque Off (Axis 1 STO)          | none             | 0x66400001    |
| 1   | Safe Speed Monitor (Axis 1 SSM_1)     | none             | 0x66E00101    |
| 2   | Safe Speed Monitor (Axis 1 SSM_2      | none             | 0x66E00201    |
| 3   | Safe Operating Stop (Axis 1 SOS_1)    | none             | 0x66680101    |
| 4   | Safe Speed Range (Axis 1 SSR_1)       | none             | 0x66800101    |
| 5   | Safe Direction positive (Axis 1 SDIp) | none             | 0x66D00001    |
| 6   | Safe Direction negative (Axis 1 SDIn) | none             | 0x66D10001    |
| 7   | Error Acknowledge (Axis 1 ErrAck)     | none             | 0x66320001    |



Figure 14: Status word default mapping for axis 1

#### 3.6.2.7 Status word user mapping for axis 1 (2nd byte, configurable feature set)

Status word user mapping for axis 1 1A00:0A - 1A00:11

The bits in the variable range of the status word for axis 1 can be occupied by the following functions.

| Index  | Name                             | Maximum number of instances | Comment                              |
|--------|----------------------------------|-----------------------------|--------------------------------------|
| 0x6630 | Axis 1 Restart_Request           | 1                           |                                      |
| 0x6668 | Axis 1 Safe Operating Stop       | 8                           |                                      |
| 0x6680 | Axis 1 Safe Speed Range          | 8                           |                                      |
| 0x6690 | Axis 1 Safely Limited Speed      | 8                           |                                      |
| 0x66A0 | Axis 1 Safely Limited Position   | 8                           |                                      |
| 0x66A8 | Axis 1 Safe Maximum Speed        | 1                           | Activation by setting the parameters |
| 0x66B8 | Axis 1 Safely Limited Increment  | 8                           |                                      |
| 0x66C0 | Axis 1 Safe Acceleration Range   | 8                           |                                      |
| 0x66C8 | Axis 1 Safe Maximum Acceleration | 1                           | Activation by setting the parameters |
| 0x66E0 | Axis 1 Safe Speed Monitor        | 8                           | Activation by setting the parameters |
| 0x66E8 | Axis 1 Safe CAM                  | 8                           | Activation by setting the parameters |



Figure 15: Status word user mapping for axis 1

#### 3.6.2.8 Status word default mapping for axis 2 (1st byte, fixed feature set)

Status word default mapping for axis 2 1A00:13 - 1A00:1A

| Bit | Assignment                            | Possible setting | Default value |
|-----|---------------------------------------|------------------|---------------|
| 0   | Safe Torque Off (Axis 2 STO)          | none             | 0x6E400001    |
| 1   | Safe Speed Monitor (Axis 2 SSM_1)     | none             | 0x6EE00101    |
| 2   | Safe Speed Monitor (Axis 2 SSM_2      | none             | 0x6EE00201    |
| 3   | Safe Operating Stop (Axis 2 SOS_1)    | none             | 0x6E680101    |
| 4   | Safe Speed Range (Axis 2 SSR_1)       | none             | 0x6E800101    |
| 5   | Safe Direction positive (Axis 2 SDIp) | none             | 0x6ED00001    |
| 6   | Safe Direction positive (Axis 2 SDIn) | none             | 0x6ED10001    |
| 7   | Error Acknowledge (Axis 2 ErrAck)     | none             | 0x6E320001    |



Figure 16: Status word default mapping for axis 2

#### 3.6.2.9 Status word user mapping for axis 2 (2nd byte, configurable feature set)

Status word user mapping for axis 2 1A00:1B - 1A00:22

The bits in the variable range of the status word for axis 2 can be occupied by the following functions.

| Index  | Name                             | Maximum number of instances | Comment                              |
|--------|----------------------------------|-----------------------------|--------------------------------------|
| 0x6E30 | Axis 2 Restart_Request           | 1                           |                                      |
| 0x6E68 | Axis 2 Safe Operating Stop       | 8                           |                                      |
| 0x6E80 | Axis 2 Safe Speed Range          | 8                           |                                      |
| 0x6E90 | Axis 2 Safely Limited Speed      | 8                           |                                      |
| 0x6EA0 | Axis 2 Safely Limited Position   | 8                           |                                      |
| 0x6EA8 | Axis 2 Safe Maximum Speed        | 1                           | Activation by setting the parameters |
| 0x6EB8 | Axis 2 Safely Limited Increment  | 8                           |                                      |
| 0x6EC0 | Axis 2 Safe Acceleration Range   | 8                           |                                      |
| 0x6EC8 | Axis 2 Safe Maximum Acceleration | 1                           | Activation by setting the parameters |
| 0x6EE0 | Axis 2 Safe Speed Monitor        | 8                           | Activation by setting the parameters |
| 0x6EE8 | Axis 2 Safe CAM                  | 8                           | Activation by setting the parameters |



Figure 17: Status word user mapping for axis 2

# 3.6.3 Setting the mode of operation

#### 3.6.3.1 **General**

The AX5805 has two modes of operation. The standard mode has the full range of the AX5805's functions, while the STO mode has a more restricted range of functions.

#### 3.6.3.2 Standard mode

When operated in standard mode, the AX5805 supports all of its available safety functions. To ensure correct operation, at minimum, the following objects must be parameterized correctly. The parameters are checked when the AX5805 is started up. It is only possible to use a safety function after setting the associated parameters.

| Index  | Name                         | Description                                                                                             | Unit | Default value |
|--------|------------------------------|---------------------------------------------------------------------------------------------------------|------|---------------|
| 0x2000 | Motor_Type                   | Motor type for axis 1<br>0x0000 = rotary synchronous<br>motor with feedback                             |      | 0x0000        |
| 0x2001 | Motor_String                 | Name of the motor                                                                                       |      |               |
| 0x2002 | Motor_Polepairs              | Number of motor pole pairs                                                                              |      |               |
| 0x2020 | Speed_Compare_Window         | Do not change default value                                                                             |      | 0x000000B4    |
| 0x2021 | Speed_Compare_Violationlevel | Number of 125 µs cycles in which the speed may be outside the Speed_Compare_Window (value range 0-255)  |      | 0x00000014    |
| 0x2030 | ESTOP_Ramp_Time              | The amount of time in SS1, after which STO is activated                                                 | ms   | 0x0000        |
| 0x2040 | Motor_Default_Data           | This is a parameter specific to the motor, and can be found in the document "AX5805_Default_Values.pdf" |      | 0x0028        |
| 0x2800 | Motor_Type                   | Motor type for axis 2<br>0x0000 = rotary synchronous<br>motor with feedback                             |      | 0x0000        |
| 0x2801 | Motor_String                 | Name of the motor                                                                                       |      |               |
| 0x2802 | Motor_Polepairs              | Number of motor pole pairs                                                                              |      |               |
| 0x2820 | Speed_Compare_Window         | Do not change default value                                                                             |      | 0x000000B4    |
| 0x2821 | Speed_Compare_Violationlevel | Number of 125 µs cycles in which the speed may be outside the Speed_Compare_Window (value range 0-255)  |      | 0x00000014    |
| 0x2830 | ESTOP_Ramp_Time              | The amount of time in SS1, after which STO is activated                                                 | ms   | 0x0000        |
| 0x2840 | Motor_Default_Data           | This is a parameter specific to the motor, and can be found in the document "AX5805_Default_Values.pdf" |      | 0x0028        |
| 0x2F00 | Number_of_Axis               | Number of axes                                                                                          |      | 0x0000        |
| 0x2F01 | STO_Mode_Active              | Activate STO mode                                                                                       |      | FALSE         |
| 0x2F02 | Debug_Mode_Active            | This parameter must be set to FALSE.                                                                    |      | FALSE         |

When parameterizing the motor string, the value must be entered as ASCII code. Detailed information can be found in the document AX5805\_MotorDefaultValues\_en.pdf.

#### **Example**



Figure 18: Input of the motor string

Beginning from TwinCAT version 2.11 Build 2230 the motor string can be entered in a textual way.



Figure 19: Input of the textual motor string

### 3.6.3.3 STO-mode

When it is operated in STO-mode, the AX5805 does not evaluate any motor data or the parameters of the safety functions. It is able to execute the STO function, tests the circuitry that is switched off, and can remove all torque from the motor.

The following table contains the minimum parameters that must be set for this mode of operation (up to firmware 04):

| Index  | Name              | Description                          | Unit | Default value |
|--------|-------------------|--------------------------------------|------|---------------|
| 0x2F00 | Number_of_Axis    | Number of axes                       |      | 0x0000        |
| 0x2F01 | STO_Mode_Active   | Activate STO mode                    |      | TRUE          |
| 0x2F02 | Debug_Mode_Active | This parameter must be set to FALSE. |      | FALSE         |

Starting from firmware 05 and revision number AX5805-0000-0017 the following table contains the minimum parameters that must be set for using the STO mode:

| Index  | Name              | Description                          | Unit | Default value |
|--------|-------------------|--------------------------------------|------|---------------|
| 0x2041 | STO_Mode_Active   | Activate STO mode axis 1             | 1    | FALSE         |
| 0x2841 | STO_Mode_Active   | Activate STO mode axis 2             | 1    | FALSE         |
| 0x2F00 | Number_of_Axis    | Number of axis                       | 1    | 0x0000        |
| 0x2F02 | Debug_Mode_Active | This parameter must be set to FALSE. |      | FALSE         |



### **Restrictions in STO mode**

When it is in STO mode, the AX5805 does not evaluate any motor data or the parameters of the safety functions.

In order to enable and move the axis/axes, the bits in the control word for the safety functions STO and SS1 (including all of their instances) must be set to 1.

The bits of the safety function SS1 do not have any functionality.

### 3.6.4 Parameterization and referencing of the safe position

The SLP (Safely Limited Position) and SCA (Safe CAM) safety functions can be used only after the axis has been homed and the referencing cam has been encountered and the safety position has been referenced.

### 3.6.4.1 Requirements

An external position (e.g. position of the NC) must be linked with the standard process image (Position Actual Value) of the AX5805. The external position (e.g. NC Position of the axis) must be referenced/homed prior to the AX5805 Reference input being turned on. In the case where an incremental encoder is used, the axis must be homed prior to the referencing input being turned on.



Figure 20: An external position must be linked with the AX5805

A reference cam (e.g. proximity switch) must be connected to the digital inputs/outputs X06 (device front) of the AX5000. The corresponding number of the digital input (0 to 7) must be entered in the Reference\_Position\_Inputpin parameter.



Figure 21: GPIO (X06) on the AX5000

### 3.6.4.2 Parameterization



### Monitoring the reference cam

As soon as the parameters for the reference position have been entered and an external position is linked with the standard process image, the AX5805 expects to see that the reference cam input is on every time the reference position is crossed.

By default, AX5000 input 0 is configured to be the Reference Cam hardware input. If the SLP and SCA functions are not to be used and a Reference Cam will not be wired to a hardware input on the drive, then Input 0 of the AX5000 must remain unconnected or the AX5805 reference cam hardware input parameter must configured to an unused input of the AX5000.



### Exceeding the maximum range of travel

If the maximum range of travel is exceeded (over travel)the AX5805 activates STO and removes torque from the motor. There is no direct possibility to re-activate the axes. There are three possible methods to re-activate the axes:

- Bring the axis mechanically back within the defined range (recommended).
- Force the external position accordingly (not recommended)
- Parameterize the maximum limits of the range of travel accordingly (not recommended)

| Index  | Name                          | Description                                                                                         | Unit | Default value |
|--------|-------------------------------|-----------------------------------------------------------------------------------------------------|------|---------------|
| 0x2010 | Reference_Position_Window     | Window around the reference position at which the AX5805 expects the reference cam (axis 1)         |      | 0x00000000    |
| 0x2011 | Reference_Position_Inputpin   | Number of the digital input on the AX5000 to (0 to 7) which the reference cam is connected (axis 1) |      | 0x00          |
| 0x2012 | Reference_Position            | External position / reference position, central point of the reference cam (axis 1)                 |      | 0x00000000    |
| 0x2013 | Reference_Position_UpperLimit | Maximum external position (axis 1)                                                                  |      | 0x00000000    |
| 0x2014 | Reference_Position_LowerLimit | Minimum external position (axis 1)                                                                  |      | 0x00000000    |
| 0x2810 | Reference_Position_Window     | Window around the reference position at which the AX5805 expects the reference cam (axis 2)         |      | 0x00000000    |
| 0x2811 | Reference_Position_Inputpin   | Number of the digital input on the AX5000 to which the reference cam is connected (axis 2)          |      | 0x00          |
| 0x2812 | Reference_Position            | External position / reference position, central point of the reference cam (axis 2)                 |      | 0x00000000    |
| 0x2813 | Reference_Position_UpperLimit | Maximum external position (axis 2)                                                                  |      | 0x00000000    |
| 0x2814 | Reference_Position_LowerLimit | Minimum external position (axis 2)                                                                  |      | 0x00000000    |

| Inc | dex    | Name                             | Flags | Value            |   |
|-----|--------|----------------------------------|-------|------------------|---|
| +   | 1018:0 | Identity                         | RO    | >4<              |   |
| +   | 1600:0 | DRIVE RxPDO-Map FSoE Master Me   | RO    | > 19 <           |   |
| ŧ   | 1A00:0 | DRIVE TxPDO-Map FSoE Slave Mes   | RO    | > 19 <           |   |
|     | 2000   | Motor_Type                       | RW    | 0x0000 (0)       | E |
| +   | 2001:0 | Motor_String                     | RO    | > 16 <           |   |
|     | 2002   | Motor_Polepairs                  | RW    | 0x0000 (0)       |   |
| -   | 2010   | Reference_Position_Window        | RW    | 0x00000000 (0)   |   |
|     | 2011   | Reference_Position_Inputpin      | RW    | 0x00 (0)         |   |
|     | 2012   | Reference_Position               | RW    | 0                |   |
|     | 2013   | Reference_Position_UpperLimit    | RW    | 0                | - |
| ŀ   | 2014   | Reference_Position_LowerLimit    | RW    | 0                |   |
| 1-  | 2020   | Speed_Compare_Window             | RW    | 0x000000B4 (180) |   |
|     | 2021   | Speed_Compare_Violationlevel     | RW    | 0x00000014 (20)  |   |
|     | 2030   | ESTOP_Ramp_Time                  | RW    | 0x0000 (0)       |   |
|     | 2040   | Motor_Default_Data               | RW    | 0x0028 (40)      |   |
|     | 2F00   | Number_of_Axis                   | RW    | 0x00 (0)         |   |
|     | 2F01   | STO_Mode_Active                  | RW    | FALSE            |   |
|     | 2F02   | Debug_Mode_Active                | RW    | FALSE            |   |
|     | 2F03   | Reserved                         | RW    | FALSE            |   |
|     | 6642   | STO_Restart_Acknowledge_behavior | RW    | FALSE            |   |
| +   | 6651:0 | t_SS1                            | RO    | >8<              |   |
| +   | 6653:0 | n Zero SS1 32 Rit                | RO    | >8 <             | 7 |
| 4   | -      | III                              |       |                  |   |

Figure 22: Reference position

### 3.6.4.3 Initiation of the reference position

As long as the referencing input has *not* been detected, the safe position functions of the AX5805 are deactivated, i.e. its current position output remains at 0. The referencing status can be monitored via the CoE parameter 0x2015. The axis is referenced when the current position corresponds to the parameterized position and simultaneously, the Reference Cam is passed completely in positive or negative direction.

The Reference position is re-verified every time the axis crosses the Reference Position window. If the Reference Cam Input is encountered outside the reference position window, or if the Reference Cam input is not encounter when crossing the reference position window, the AX5805 recognizes that the reference cam is not in the correct location or the controller position system (NC Position) is invalid. Then, the AX5805 activates STO and removes torque from the motor.



Figure 23: Structure image for the reference position



# Initiation of the reference position

During referencing the reference cam should be passed over with very slow speed. This assures an accurate detection of the cam edges by the AX5805.

# 3.6.5 Parameterization of the integrated safety functions of the AX5805

### 3.6.5.1 Description of the Error Acknowledge function



Figure 24: Description of the Error Acknowledge function

Errors reported by the TwinSAFE Drive option card can be reset via the rising edge of the Error Acknowledge signal. The error bit remains set if the reported error continues or occurs again immediately.

# 3.6.5.2 Description of the STO safety function



Figure 25: Description of the Safe Torque Off function (STO)

As soon as the safety function STO is activated, all torque is removed from the motor.

If the STO\_Restart\_Acknowledge\_behavior parameter is set to TRUE, then the Restart\_Acknowledge control bit must be set in order for the axis to restart.



### Control\_Bit Restart Acknowledge

The Restart Acknowledge control bit is not included in the standard mapping of the AX5805. It must be additionally mapped into the user configurable range of the control word.

### Parameters for axis 1:

| Index  | Name                                 | Description                                                                                              | Sub-<br>index | Unit | Default value |
|--------|--------------------------------------|----------------------------------------------------------------------------------------------------------|---------------|------|---------------|
| 0x6642 | STO_Restart_<br>Acknowledge_behavior | If this parameter is set, the AX5805 needs a Restart_Acknowledge_Signal after the STO function is called |               |      | FALSE         |

### Parameters for axis 2:

| Index  | Name                                 | Description                                                                                              | Sub-<br>index | Unit | Default value |
|--------|--------------------------------------|----------------------------------------------------------------------------------------------------------|---------------|------|---------------|
| 0x6E42 | STO_Restart_<br>Acknowledge_behavior | If this parameter is set, the AX5805 needs a Restart_Acknowledge_Signal after the STO function is called |               |      | FALSE         |

### 3.6.5.3 Description of the SS1 safety function



Figure 26: Description of the Safe Stop 1 function (SS1) with time monitor

When the SS1 function is activated, a timer for t\_SS1 is started and the speed of the motor is monitored. There are two conditions which activate the STO function (removing torque from the motor):

- Condition 1: The STO function will be activated as soon as the speed of the motor falls within the range of n Zero SS1 prior to the t SS1 timer elapsing.
- Condition 2: If the speed of the motor is not within the range of n\_Zero\_SS1 when the t\_SS1 time elapses, STO function will be activated regardless of the speed of the motor at the point the timer elapses.

Whichever condition occurs first will activate the safety function STO, removing torque from the motor.

# Parameters for axis 1

| Index  | Name                          | Description                                                                                     | Sub-<br>index | Unit              | Default value |
|--------|-------------------------------|-------------------------------------------------------------------------------------------------|---------------|-------------------|---------------|
| 0x6651 | t_SS1 :001                    | Maximum time until the activation of the STO safety function                                    | 01            | 10ms              | 0x0000        |
| 0x6651 | t_SS1 :002                    | Maximum time until the activation of the STO safety function                                    | 02            | 10ms              | 0x0000        |
| 0x6651 | t_SS1:003                     | Maximum time until the activation of the STO safety function                                    | 03            | 10ms              | 0x0000        |
| 0x6651 | t_SS1 :004                    | Maximum time until the activation of the STO safety function                                    | 04            | 10ms              | 0x0000        |
| 0x6651 | t_SS1 :005                    | Maximum time until the activation of the STO safety function                                    | 05            | 10ms              | 0x0000        |
| 0x6651 | t_SS1 :006                    | Maximum time until the activation of the STO safety function                                    | 06            | 10ms              | 0x0000        |
| 0x6651 | t_SS1 :007                    | Maximum time until the activation of the STO safety function                                    | 07            | 10ms              | 0x0000        |
| 0x6651 | t_SS1 :008                    | Maximum time until the activation of the STO safety function                                    | 08            | 10ms              | 0x0000        |
| 0x6653 | n_Zero_SS<br>1 32 Bit<br>:001 | Speed window for SS1_1                                                                          | 01            | Increments per ms | 0x00000000    |
| 0x6653 | n_Zero_SS<br>1 32 Bit<br>:002 | Speed window for SS1_2                                                                          | 02            | Increments per ms | 0x00000000    |
| 0x6653 | n_Zero_SS<br>1 32 Bit<br>:003 | Speed window for SS1_3                                                                          | 03            | Increments per ms | 0x00000000    |
| 0x6653 | n_Zero_SS<br>1 32 Bit<br>:004 | Speed window for SS1_4                                                                          | 04            | Increments per ms | 0x00000000    |
| 0x6653 | n_Zero_SS<br>1 32 Bit<br>:005 | Speed window for SS1_5                                                                          | 05            | Increments per ms | 0x00000000    |
| 0x6653 | n_Zero_SS<br>1 32 Bit<br>:006 | Speed window for SS1_6                                                                          | 06            | Increments per ms | 0x00000000    |
| 0x6653 | n_Zero_SS<br>1 32 Bit<br>:007 | Speed window for SS1_7                                                                          | 07            | Increments per ms | 0x00000000    |
| 0x6653 | n_Zero_SS<br>1 32 Bit<br>:008 | Speed window for SS1_8                                                                          | 08            | Increments per ms | 0x00000000    |
| 0x6654 | t_L SS1<br>:001               | Minimum time until the activation of the STO safety function, if the speed is within the window | 01            | 1ms               | 0x0000        |
| 0x6654 | t_L SS1<br>:002               | Minimum time until the activation of the STO safety function, if the speed is within the window | 02            | 1ms               | 0x0000        |
| 0x6654 | t_L SS1<br>:003               | Minimum time until the activation of the STO safety function, if the speed is within the window | 03            | 1ms               | 0x0000        |

| Index  | Name            | Description                                                                                     | Sub-<br>index | Unit | Default value |
|--------|-----------------|-------------------------------------------------------------------------------------------------|---------------|------|---------------|
| 0x6651 | t_SS1 :001      | Maximum time until the activation of the STO safety function                                    | 01            | 10ms | 0x0000        |
| 0x6654 | t_L SS1<br>:004 | Minimum time until the activation of the STO safety function, if the speed is within the window | 04            | 1ms  | 0x0000        |
| 0x6654 | t_L SS1<br>:005 | Minimum time until the activation of the STO safety function, if the speed is within the window | 05            | 1ms  | 0x0000        |
| 0x6654 | t_L SS1<br>:006 | Minimum time until the activation of the STO safety function, if the speed is within the window | 06            | 1ms  | 0x0000        |
| 0x6654 | t_L SS1<br>:007 | Minimum time until the activation of the STO safety function, if the speed is within the window | 07            | 1ms  | 0x0000        |
| 0x6654 | t_L SS1<br>:008 | Minimum time until the activation of the STO safety function, if the speed is within the window | 08            | 1ms  | 0x0000        |

# Parameters for axis 2:

| Index  | Name                      | Description                                                                                     | Sub-<br>index | Unit              | Default value |
|--------|---------------------------|-------------------------------------------------------------------------------------------------|---------------|-------------------|---------------|
| 0x6E51 | t_SS1 :001                | Maximum time until the activation of the STO safety function                                    | 01            | 10ms              | 0x0000        |
| 0x6E51 | t_SS1 :002                | Maximum time until the activation of the STO safety function                                    | 02            | 10ms              | 0x0000        |
| 0x6E51 | t_SS1 :003                | Maximum time until the activation of the STO safety function                                    | 03            | 10ms              | 0x0000        |
| 0x6E51 | t_SS1 :004                | Maximum time until the activation of the STO safety function                                    | 04            | 10ms              | 0x0000        |
| 0x6E51 | t_SS1 :005                | Maximum time until the activation of the STO safety function                                    | 05            | 10ms              | 0x0000        |
| 0x6E51 | t_SS1 :006                | Maximum time until the activation of the STO safety function                                    | 06            | 10ms              | 0x0000        |
| 0x6E51 | t_SS1 :007                | Maximum time until the activation of the STO safety function                                    | 07            | 10ms              | 0x0000        |
| 0x6E51 | t_SS1 :008                | Maximum time until the activation of the STO safety function                                    | 08            | 10ms              | 0x0000        |
| 0x6E53 | n_Zero_SS1<br>32 Bit :001 | Speed window for SS1_1                                                                          | 01            | Increments per ms | 0x00000000    |
| 0x6E53 | n_Zero_SS1<br>32 Bit :002 | Speed window for SS1_2                                                                          | 02            | Increments per ms | 0x00000000    |
| 0x6E53 | n_Zero_SS1<br>32 Bit :003 | Speed window for SS1_3                                                                          | 03            | Increments per ms | 0x00000000    |
| 0x6E53 | n_Zero_SS1<br>32 Bit :004 | Speed window for SS1_4                                                                          | 04            | Increments per ms | 0x00000000    |
| 0x6E53 | n_Zero_SS1<br>32 Bit :005 | Speed window for SS1_5                                                                          | 05            | Increments per ms | 0x00000000    |
| 0x6E53 | n_Zero_SS1<br>32 Bit :006 | Speed window for SS1_6                                                                          | 06            | Increments per ms | 0x00000000    |
| 0x6E53 | n_Zero_SS1<br>32 Bit :007 | Speed window for SS1_7                                                                          | 07            | Increments per ms | 0x00000000    |
| 0x6E53 | n_Zero_SS1<br>32 Bit :008 | Speed window for SS1_8                                                                          | 08            | Increments per ms | 0x00000000    |
| 0x6E54 | t_L SS1 :001              | Minimum time until the activation of the STO safety function, if the speed is within the window | 01            | 1ms               | 0x0000        |
| 0x6E54 | t_L SS1 :002              | Minimum time until the activation of the STO safety function, if the speed is within the window | 02            | 1ms               | 0x0000        |
| 0x6E54 | t_L SS1 :003              | Minimum time until the activation of the STO safety function, if the speed is within the window | 03            | 1ms               | 0x0000        |
| 0x6E54 | t_L SS1 :004              | Minimum time until the activation of the STO safety function, if the speed is within the window | 04            | 1ms               | 0x0000        |
| 0x6E54 | t_L SS1 :005              | Minimum time until the activation of the STO safety function, if the speed is within the window | 05            | 1ms               | 0x0000        |
| 0x6E54 | t_L SS1 :006              | Minimum time until the activation of the STO safety function, if the speed is within the window | 06            | 1ms               | 0x0000        |

| Index  | Name         | Description                                                                                     | Sub-<br>index | Unit | Default value |
|--------|--------------|-------------------------------------------------------------------------------------------------|---------------|------|---------------|
| 0x6E54 | t_L SS1 :007 | Minimum time until the activation of the STO safety function, if the speed is within the window | 07            | 1ms  | 0x0000        |
| 0x6E54 | t_L SS1 :008 | Minimum time until the activation of the STO safety function, if the speed is within the window | 08            | 1ms  | 0x0000        |

SOS State

# Speed n\_Zero\_ss2 -n\_Zero\_ss2 -n\_Zero\_ss3 s-s\_Zero\_so8 P osition Torque on Motor

### 3.6.5.4 Description of the SS2 safety function

Figure 27: Description of the Safe Stop 2 function (SS2) with time monitor

When the SS2 function is activated, the timer t\_SS2 is started and the speed of the motor is monitored. Similarly to the SS1 function, the SS2 function can complete in two ways. Unlike the SS1 function, when the SS2 function completes without error, the drive will be in the SOS state (rather than the STO state).

- Completion Condition 1: If the motor is within the range of n\_Zero\_SS2 prior to t\_SS2 timing out, then the SOS state is activated after t\_L\_SS2 has elapsed.
- Completion Condition 2: If the t\_SS2 timer elapses before the motor reaches the speed set by n\_Zero\_SS2, then the SOS function is activated regardless of whether the motor is moving or not. Should the parameters of the SOS function be exceeded, the SOS function will activate the STO function, removing torque from the motor.

A corresponding instance of SOS must be used for each instance of SS2.

# Parameters for axis 1:

| Index  | Name                      | Description                                                                                       | Sub-<br>index | Unit              | Default value |
|--------|---------------------------|---------------------------------------------------------------------------------------------------|---------------|-------------------|---------------|
| 0x6671 | t_SS2 :001                | Maximum time until the activation of the SOS_1 safety function                                    | 01            | 10ms              | 0x0000        |
| 0x6671 | t_SS2:002                 | Maximum time until the activation of the SOS_2 safety function                                    | 02            | 10ms              | 0x0000        |
| 0x6671 | t_SS2:003                 | Maximum time until the activation of the SOS_3 safety function                                    | 03            | 10ms              | 0x0000        |
| 0x6671 | t_SS2 :004                | Maximum time until the activation of the SOS_4 safety function                                    | 04            | 10ms              | 0x0000        |
| 0x6671 | t_SS2 :005                | Maximum time until the activation of the SOS_5 safety function                                    | 05            | 10ms              | 0x0000        |
| 0x6671 | t_SS2:006                 | Maximum time until the activation of the SOS_6 safety function                                    | 06            | 10ms              | 0x0000        |
| 0x6671 | t_SS2:007                 | Maximum time until the activation of the SOS_7 safety function                                    | 07            | 10ms              | 0x0000        |
| 0x6671 | t_SS2 :008                | Maximum time until the activation of the SOS_8 safety function                                    | 08            | 10ms              | 0x0000        |
| 0x6672 | t_L SS2 :001              | Minimum time until the activation of the SOS_1 safety function, if the speed is within the window | 01            | 1ms               | 0x0000        |
| 0x6672 | t_L SS2 :002              | Minimum time until the activation of the SOS_2 safety function, if the speed is within the window | 02            | 1ms               | 0x0000        |
| 0x6672 | t_L SS2 :003              | Minimum time until the activation of the SOS_3 safety function, if the speed is within the window | 03            | 1ms               | 0x0000        |
| 0x6672 | t_L SS2 :004              | Minimum time until the activation of the SOS_4 safety function, if the speed is within the window | 04            | 1ms               | 0x0000        |
| 0x6672 | t_L SS2 :005              | Minimum time until the activation of the SOS_5 safety function, if the speed is within the window | 05            | 1ms               | 0x0000        |
| 0x6672 | t_L SS2 :006              | Minimum time until the activation of the SOS_6 safety function, if the speed is within the window | 06            | 1ms               | 0x0000        |
| 0x6672 | t_L SS2 :007              | Minimum time until the activation of the SOS_7 safety function, if the speed is within the window | 07            | 1ms               | 0x0000        |
| 0x6672 | t_L SS2:008               | Minimum time until the activation of the SOS_8 safety function, if the speed is within the window | 08            | 1ms               | 0x0000        |
| 0x6679 | n_Zero_SS2<br>32 Bit :001 | Speed window for SS2_1                                                                            | 01            | Increments per ms | 0x00000000    |
| 0x6679 | n_Zero_SS2<br>32 Bit :002 | Speed window for SS2_2                                                                            | 02            | Increments per ms | 0x00000000    |
| 0x6679 | n_Zero_SS2<br>32 Bit :003 | Speed window for SS2_3                                                                            | 03            | Increments per ms | 0x00000000    |
| 0x6679 | n_Zero_SS2<br>32 Bit :004 | Speed window for SS2_4                                                                            | 04            | Increments per ms | 0x00000000    |
| 0x6679 | n_Zero_SS2<br>32 Bit :005 | Speed window for SS2_5                                                                            | 05            | Increments per ms | 0x00000000    |

| Index  | Name                      | Description            | Sub-<br>index | Unit              | Default value |
|--------|---------------------------|------------------------|---------------|-------------------|---------------|
| 0x6679 | n_Zero_SS2<br>32 Bit :006 | Speed window for SS2_6 | 06            | Increments per ms | 0x00000000    |
| 0x6679 | n_Zero_SS2<br>32 Bit :007 | Speed window for SS2_7 | 07            | Increments per ms | 0x00000000    |
| 0x6679 | n_Zero_SS2<br>32 Bit :008 | Speed window for SS2_8 | 08            | Increments per ms | 0x00000000    |

# Parameters for axis 2:

| Index  | Name                      | Description                                                                                       | Sub-<br>index | Unit              | Default value |
|--------|---------------------------|---------------------------------------------------------------------------------------------------|---------------|-------------------|---------------|
| 0x6E71 | t_SS2 :001                | Maximum time until the activation of the SOS_1 safety function                                    | 01            | 10ms              | 0x0000        |
| 0x6E71 | t_SS2 :002                | Maximum time until the activation of the SOS_2 safety function                                    | 02            | 10ms              | 0x0000        |
| 0x6E71 | t_SS2 :003                | Maximum time until the activation of the SOS_3 safety function                                    | 03            | 10ms              | 0x0000        |
| 0x6E71 | t_SS2 :004                | Maximum time until the activation of the SOS_4 safety function                                    | 04            | 10ms              | 0x0000        |
| 0x6E71 | t_SS2 :005                | Maximum time until the activation of the SOS_5 safety function                                    | 05            | 10ms              | 0x0000        |
| 0x6E71 | t_SS2 :006                | Maximum time until the activation of the SOS_6 safety function                                    | 06            | 10ms              | 0x0000        |
| 0x6E71 | t_SS2 :007                | Maximum time until the activation of the SOS_7 safety function                                    | 07            | 10ms              | 0x0000        |
| 0x6E71 | t_SS2 :008                | Maximum time until the activation of the SOS_8 safety function                                    | 08            | 10ms              | 0x0000        |
| 0x6E72 | t_L SS2 :001              | Minimum time until the activation of the SOS_1 safety function, if the speed is within the window | 01            | 1ms               | 0x0000        |
| 0x6E72 | t_L SS2 :002              | Minimum time until the activation of the SOS_2 safety function, if the speed is within the window | 02            | 1ms               | 0x0000        |
| 0x6E72 | t_L SS2:003               | Minimum time until the activation of the SOS_3 safety function, if the speed is within the window | 03            | 1ms               | 0x0000        |
| 0x6E72 | t_L SS2:004               | Minimum time until the activation of the SOS_4 safety function, if the speed is within the window | 04            | 1ms               | 0x0000        |
| 0x6E72 | t_L SS2 :005              | Minimum time until the activation of the SOS_5 safety function, if the speed is within the window | 05            | 1ms               | 0x0000        |
| 0x6E72 | t_L SS2:006               | Minimum time until the activation of the SOS_6 safety function, if the speed is within the window | 06            | 1ms               | 0x0000        |
| 0x6E72 | t_L SS2:007               | Minimum time until the activation of the SOS_7 safety function, if the speed is within the window | 07            | 1ms               | 0x0000        |
| 0x6E72 | t_L SS2:008               | Minimum time until the activation of the SOS_8 safety function, if the speed is within the window | 08            | 1ms               | 0x0000        |
| 0x6E79 | n_Zero_SS2<br>32 Bit :001 | Speed window for SS2_1                                                                            | 01            | Increments per ms | 0x00000000    |
| 0x6E79 | n_Zero_SS2<br>32 Bit :002 | Speed window for SS2_2                                                                            | 02            | Increments per ms | 0x00000000    |
| 0x6E79 | n_Zero_SS2<br>32 Bit :003 | Speed window for SS2_3                                                                            | 03            | Increments per ms | 0x00000000    |
| 0x6E79 | n_Zero_SS2<br>32 Bit :004 | Speed window for SS2_4                                                                            | 04            | Increments per ms | 0x00000000    |
| 0x6E79 | n_Zero_SS2<br>32 Bit :005 | Speed window for SS2_5                                                                            | 05            | Increments per ms | 0x00000000    |

| Index  | Name                      | Description            | Sub-<br>index | Unit              | Default value |
|--------|---------------------------|------------------------|---------------|-------------------|---------------|
| 0x6E79 | n_Zero_SS2<br>32 Bit :006 | Speed window for SS2_6 | 06            | Increments per ms | 0x0000000     |
| 0x6E79 | n_Zero_SS2<br>32 Bit :007 | Speed window for SS2_7 | 07            | Increments per ms | 0x00000000    |
| 0x6E79 | n_Zero_SS2<br>32 Bit :008 | Speed window for SS2_8 | 08            | Increments per ms | 0x00000000    |

### 3.6.5.5 Description of the SOS safety function



Figure 28: Description of the Safe Operating Stop function (SOS)

When the SOS function is activated, the position of the motor is captured (s\_cp), and a position window is defined around this position (s\_cp +/- s\_Zero\_SOS). The current position of the motor is monitored, and as long as the motor remains within this window, the motor remains enabled with torque applied.

If one of the boundaries is crossed, the safety function STO is activated and torque is removed from the motor. This reaction cannot be configured.

# Parameters for axis 1:

| Index  | Name                      | Description                                                                                   | Sub-<br>index | Unit       | Default value |
|--------|---------------------------|-----------------------------------------------------------------------------------------------|---------------|------------|---------------|
| 0x666A | s_Zero_SOS<br>32 Bit :001 | If the SOS_1 function is activated, the axis may move within the position window defined here | 01            | Increments | 0x0000        |
| 0x666A | s_Zero_SOS<br>32 Bit :002 | If the SOS_2 function is activated, the axis may move within the position window defined here | 02            | Increments | 0x0000        |
| 0x666A | s_Zero_SOS<br>32 Bit :003 | If the SOS_3 function is activated, the axis may move within the position window defined here | 03            | Increments | 0x0000        |
| 0x666A | s_Zero_SOS<br>32 Bit :004 | If the SOS_4 function is activated, the axis may move within the position window defined here | 04            | Increments | 0x0000        |
| 0x666A | s_Zero_SOS<br>32 Bit :005 | If the SOS_5 function is activated, the axis may move within the position window defined here | 05            | Increments | 0x0000        |
| 0x666A | s_Zero_SOS<br>32 Bit :006 | If the SOS_6 function is activated, the axis may move within the position window defined here | 06            | Increments | 0x0000        |
| 0x666A | s_Zero_SOS<br>32 Bit :007 | If the SOS_7 function is activated, the axis may move within the position window defined here | 07            | Increments | 0x0000        |
| 0x666A | s_Zero_SOS<br>32 Bit :008 | If the SOS_8 function is activated, the axis may move within the position window defined here | 08            | Increments | 0x0000        |

# Parameters for axis 2:

| Index  | Name                      | Description                                                                                   | Sub-<br>index | Unit       | Default value |
|--------|---------------------------|-----------------------------------------------------------------------------------------------|---------------|------------|---------------|
| 0x6E6A | s_Zero_SOS<br>32 Bit :001 | If the SOS_1 function is activated, the axis may move within the position window defined here | 01            | Increments | 0x0000        |
| 0x6E6A | s_Zero_SOS<br>32 Bit :002 | If the SOS_2 function is activated, the axis may move within the position window defined here | 02            | Increments | 0x0000        |
| 0x6E6A | s_Zero_SOS<br>32 Bit :003 | If the SOS_3 function is activated, the axis may move within the position window defined here | 03            | Increments | 0x0000        |
| 0x6E6A | s_Zero_SOS<br>32 Bit :004 | If the SOS_4 function is activated, the axis may move within the position window defined here | 04            | Increments | 0x0000        |
| 0x6E6A | s_Zero_SOS<br>32 Bit :005 | If the SOS_5 function is activated, the axis may move within the position window defined here | 05            | Increments | 0x0000        |
| 0x6E6A | s_Zero_SOS<br>32 Bit :006 | If the SOS_6 function is activated, the axis may move within the position window defined here | 06            | Increments | 0x0000        |
| 0x6E6A | s_Zero_SOS<br>32 Bit :007 | If the SOS_7 function is activated, the axis may move within the position window defined here | 07            | Increments | 0x0000        |
| 0x6E6A | s_Zero_SOS<br>32 Bit :008 | If the SOS_8 function is activated, the axis may move within the position window defined here | 08            | Increments | 0x0000        |

# 3.6.5.6 Description of the SSR safety function



Figure 29: Description of the Safe Speed Range function (SSR) with time monitor

When the SSR function is activated, the velocity of the motor is examined and one of two timers is started.

- If the motor's velocity is *outside* the allowable range defined by n\_UL\_SSR and n\_LL\_SSR upon activation, then the timer t\_SSR is started and the motor must reach a velocity in the permitted range before the timer elapses. If the t\_SSR timer elapses before a permitted velocity is reached, the function defined by ErrorReaction\_SSR is activated.
- If the motor's velocity was already *within* the permitted range when the SSR function is activated, then timer t\_L\_SSR is started and the velocity of the motor will be monitored after the t\_L\_SSR timer elapses. If the motor exceeds the limits after the t\_L\_SSR timer has elapsed, then the function ErrorReaction\_SSR is activated

# Parameters for axis 1:

| Index  | Name                    | Description                                                    | Sub-<br>index | Unit              | Default value |
|--------|-------------------------|----------------------------------------------------------------|---------------|-------------------|---------------|
| 0x6681 | t_SSR<br>:001           | Maximum time until the activation of the SSR_1 safety function | 01            | 1 ms              | 0x0000        |
| 0x6681 | t_SSR<br>:002           | Maximum time until the activation of the SSR_2 safety function | 02            | 1 ms              | 0x0000        |
| 0x6681 | t_SSR:<br>003           | Maximum time until the activation of the SSR_3 safety function | 03            | 1 ms              | 0x0000        |
| 0x6681 | t_SSR<br>:004           | Maximum time until the activation of the SSR_4 safety function | 04            | 1 ms              | 0x0000        |
| 0x6681 | t_SSR<br>:005           | Maximum time until the activation of the SSR_5 safety function | 05            | 1 ms              | 0x0000        |
| 0x6681 | t_SSR<br>:006           | Maximum time until the activation of the SSR_6 safety function | 06            | 1 ms              | 0x0000        |
| 0x6681 | t_SSR<br>:007           | Maximum time until the activation of the SSR_7 safety function | 07            | 1 ms              | 0x0000        |
| 0x6681 | t_SSR<br>:008           | Maximum time until the activation of the SSR_8 safety function | 08            | 1 ms              | 0x0000        |
| 0x6683 | n_UL_SSR<br>32 Bit :001 | Upper speed limit when the SSR_1 function is activated         | 01            | Increments per ms | 0x00000000    |
| 0x6683 | n_UL_SSR<br>32 Bit :002 | Upper speed limit when the SSR_2 function is activated         | 02            | Increments per ms | 0x00000000    |
| 0x6683 | n_UL_SSR<br>32 Bit :003 | Upper speed limit when the SSR_3 function is activated         | 03            | Increments per ms | 0x00000000    |
| 0x6683 | n_UL_SSR<br>32 Bit :004 | Upper speed limit when the SSR_4 function is activated         | 04            | Increments per ms | 0x00000000    |
| 0x6683 | n_UL_SSR<br>32 Bit :005 | Upper speed limit when the SSR_5 function is activated         | 05            | Increments per ms | 0x00000000    |
| 0x6683 | n_UL_SSR<br>32 Bit :006 | Upper speed limit when the SSR_6 function is activated         | 06            | Increments per ms | 0x00000000    |
| 0x6683 | n_UL_SSR<br>32 Bit :007 | Upper speed limit when the SSR_7 function is activated         | 07            | Increments per ms | 0x00000000    |
| 0x6683 | n_UL_SSR<br>32 Bit :008 | Upper speed limit when the SSR_8 function is activated         | 08            | Increments per ms | 0x00000000    |
| 0x6685 | n_LL_SSR<br>32 Bit :001 | Lower speed limit when the SSR_1 function is activated         | 01            | Increments per ms | 0x00000000    |
| 0x6685 | n_LL_SSR<br>32 Bit :002 | Lower speed limit when the SSR_2 function is activated         | 02            | Increments per ms | 0x00000000    |
| 0x6685 | n_LL_SSR<br>32 Bit :003 | Lower speed limit when the SSR_3 function is activated         | 03            | Increments per ms | 0x00000000    |
| 0x6685 | n_LL_SSR<br>32 Bit :004 | Lower speed limit when the SSR_4 function is activated         | 04            | Increments per ms | 0x00000000    |
| 0x6685 | n_LL_SSR<br>32 Bit :005 | Lower speed limit when the SSR_5 function is activated         | 05            | Increments per ms | 0x00000000    |
| 0x6685 | n_LL_SSR<br>32 Bit :006 | Lower speed limit when the SSR_6 function is activated         | 06            | Increments per ms | 0x00000000    |
| 0x6685 | n_LL_SSR<br>32 Bit :007 | Lower speed limit when the SSR_7 function is activated         | 07            | Increments per ms | 0x00000000    |
| 0x6685 | n_LL_SSR<br>32 Bit :008 | Lower speed limit when the SSR_8 function is activated         | 08            | Increments per ms | 0x00000000    |

| Index  | Name                          | Description                                                                                       | Sub-<br>index | Unit | Default<br>value    |
|--------|-------------------------------|---------------------------------------------------------------------------------------------------|---------------|------|---------------------|
| 0x6686 | t_L_SSR<br>:001               | Minimum time until the activation of the SSR_1 safety function, if the speed is within the window | 01            | 1 ms | 0x0000              |
| 0x6686 | t_L_SSR<br>:002               | Minimum time until the activation of the SSR_2 safety function, if the speed is within the window | 02            | 1 ms | 0x0000              |
| 0x6686 | t_L_SSR<br>:003               | Minimum time until the activation of the SSR_3 safety function, if the speed is within the window | 03            | 1 ms | 0x0000              |
| 0x6686 | t_L_SSR<br>:004               | Minimum time until the activation of the SSR_4 safety function, if the speed is within the window | 04            | 1 ms | 0x0000              |
| 0x6686 | t_L_SSR<br>:005               | Minimum time until the activation of the SSR_5 safety function, if the speed is within the window | 05            | 1 ms | 0x0000              |
| 0x6686 | t_L_SSR<br>:006               | Minimum time until the activation of the SSR_6 safety function, if the speed is within the window | 06            | 1 ms | 0x0000              |
| 0x6686 | t_L_SSR<br>:007               | Minimum time until the activation of the SSR_7 safety function, if the speed is within the window | 07            | 1 ms | 0x0000              |
| 0x6686 | t_L_SSR<br>:008               | Minimum time until the activation of the SSR_8 safety function, if the speed is within the window | 08            | 1 ms | 0x0000              |
| 0x668A | Error<br>Reaction<br>SSR :001 | Error reaction of SSR_1                                                                           | 01            |      | 0x66400001<br>(STO) |
| 0x668A | Error<br>Reaction<br>SSR :002 | Error reaction of SSR_2                                                                           | 02            |      | 0x66400001<br>(STO) |
| 0x668A | Error<br>Reaction<br>SSR :003 | Error reaction of SSR_3                                                                           | 03            |      | 0x66400001<br>(STO) |
| 0x668A | Error<br>Reaction<br>SSR :004 | Error reaction of SSR_4                                                                           | 04            |      | 0x66400001<br>(STO) |
| 0x668A | Error<br>Reaction<br>SSR :005 | Error reaction of SSR_5                                                                           | 05            |      | 0x66400001<br>(STO) |
| 0x668A | Error<br>Reaction<br>SSR :006 | Error reaction of SSR_6                                                                           | 06            |      | 0x66400001<br>(STO) |
| 0x668A | Error<br>Reaction<br>SSR :007 | Error reaction of SSR_7                                                                           | 07            |      | 0x66400001<br>(STO) |
| 0x668A | Error<br>Reaction<br>SSR :008 | Error reaction of SSR_8                                                                           | 08            |      | 0x66400001<br>(STO) |

# Parameters for axis 2:

| Index  | Name                        | Description                                                    | Sub-<br>index | Unit              | Default value |
|--------|-----------------------------|----------------------------------------------------------------|---------------|-------------------|---------------|
| 0x6E81 | t_SSR<br>:001               | Maximum time until the activation of the SSR_1 safety function | 01            | 1 ms              | 0x0000        |
| 0x6E81 | t_SSR<br>:002               | Maximum time until the activation of the SSR_2 safety function | 02            | 1 ms              | 0x0000        |
| 0x6E81 | t_SSR:<br>003               | Maximum time until the activation of the SSR_3 safety function | 03            | 1 ms              | 0x0000        |
| 0x6E81 | t_SSR<br>:004               | Maximum time until the activation of the SSR_4 safety function | 04            | 1 ms              | 0x0000        |
| 0x6E81 | t_SSR<br>:005               | Maximum time until the activation of the SSR_5 safety function | 05            | 1 ms              | 0x0000        |
| 0x6E81 | t_SSR<br>:006               | Maximum time until the activation of the SSR_6 safety function | 06            | 1 ms              | 0x0000        |
| 0x6E81 | t_SSR<br>:007               | Maximum time until the activation of the SSR_7 safety function | 07            | 1 ms              | 0x0000        |
| 0x6E81 | t_SSR<br>:008               | Maximum time until the activation of the SSR_8 safety function | 08            | 1 ms              | 0x0000        |
| 0x6E83 | n_UL_SS<br>R 32 Bit<br>:001 | Upper speed limit when the SSR_1 function is activated         | 01            | Increments per ms | 0x00000000    |
| 0x6E83 | n_UL_SS<br>R 32 Bit<br>:002 | Upper speed limit when the SSR_2 function is activated         | 02            | Increments per ms | 0x00000000    |
| 0x6E83 | n_UL_SS<br>R 32 Bit<br>:003 | Upper speed limit when the SSR_3 function is activated         | 03            | Increments per ms | 0x00000000    |
| 0x6E83 | n_UL_SS<br>R 32 Bit<br>:004 | Upper speed limit when the SSR_4 function is activated         | 04            | Increments per ms | 0x00000000    |
| 0x6E83 | n_UL_SS<br>R 32 Bit<br>:005 | Upper speed limit when the SSR_5 function is activated         | 05            | Increments per ms | 0x00000000    |
| 0x6E83 | n_UL_SS<br>R 32 Bit<br>:006 | Upper speed limit when the SSR_6 function is activated         | 06            | Increments per ms | 0x00000000    |
| 0x6E83 | n_UL_SS<br>R 32 Bit<br>:007 | Upper speed limit when the SSR_7 function is activated         | 07            | Increments per ms | 0x00000000    |
| 0x6E83 | n_UL_SS<br>R 32 Bit<br>:008 | Upper speed limit when the SSR_8 function is activated         | 08            | Increments per ms | 0x00000000    |
| 0x6E85 | n_LL_SSR<br>32 Bit :001     | Lower speed limit when the SSR_1 function is activated         | 01            | Increments per ms | 0x00000000    |
| 0x6E85 | n_LL_SSR<br>32 Bit :002     | Lower speed limit when the SSR_2 function is activated         | 02            | Increments per ms | 0x00000000    |
| 0x6E85 | n_LL_SSR<br>32 Bit :003     | Lower speed limit when the SSR_3 function is activated         | 03            | Increments per ms | 0x00000000    |
| 0x6E85 | n_LL_SSR<br>32 Bit :004     | Lower speed limit when the SSR_4 function is activated         | 04            | Increments per ms | 0x00000000    |
| 0x6E85 | n_LL_SSR<br>32 Bit :005     | Lower speed limit when the SSR_5 function is activated         | 05            | Increments per ms | 0x00000000    |

| Index  | Name                          | Description                                                                                       | Sub-<br>index | Unit              | Default value       |
|--------|-------------------------------|---------------------------------------------------------------------------------------------------|---------------|-------------------|---------------------|
| 0x6E85 | n_LL_SSR<br>32 Bit :006       | Lower speed limit when the SSR_6 function is activated                                            | 06            | Increments per ms | 0x00000000          |
| 0x6E85 | n_LL_SSR<br>32 Bit :007       | Lower speed limit when the SSR_7 function is activated                                            | 07            | Increments per ms | 0x00000000          |
| 0x6E85 | n_LL_SSR<br>32 Bit :008       | Lower speed limit when the SSR_8 function is activated                                            | 08            | Increments per ms | 0x00000000          |
| 0x6E86 | t_L_SSR<br>:001               | Minimum time until the activation of the SSR_1 safety function, if the speed is within the window | 01            | 1 ms              | 0x0000              |
| 0x6E86 | t_L_SSR<br>:002               | Minimum time until the activation of the SSR_2 safety function, if the speed is within the window | 02            | 1 ms              | 0x0000              |
| 0x6E86 | t_L_SSR<br>:003               | Minimum time until the activation of the SSR_3 safety function, if the speed is within the window | 03            | 1 ms              | 0x0000              |
| 0x6E86 | t_L_SSR<br>:004               | Minimum time until the activation of the SSR_4 safety function, if the speed is within the window | 04            | 1 ms              | 0x0000              |
| 0x6E86 | t_L_SSR<br>:005               | Minimum time until the activation of the SSR_5 safety function, if the speed is within the window | 05            | 1 ms              | 0x0000              |
| 0x6E86 | t_L_SSR<br>:006               | Minimum time until the activation of the SSR_6 safety function, if the speed is within the window | 06            | 1 ms              | 0x0000              |
| 0x6E86 | t_L_SSR<br>:007               | Minimum time until the activation of the SSR_7 safety function, if the speed is within the window | 07            | 1 ms              | 0x0000              |
| 0x6E86 | t_L_SSR<br>:008               | Minimum time until the activation of the SSR_8 safety function, if the speed is within the window | 08            | 1 ms              | 0x0000              |
| 0x6E8A | Error<br>Reaction<br>SSR :001 | Error reaction of SSR_1                                                                           | 01            |                   | 0x66400001<br>(STO) |
| 0x6E8A | Error<br>Reaction<br>SSR :002 | Error reaction of SSR_2                                                                           | 02            |                   | 0x66400001<br>(STO) |
| 0x6E8A | Error<br>Reaction<br>SSR :003 | Error reaction of SSR_3                                                                           | 03            |                   | 0x66400001<br>(STO) |
| 0x6E8A | Error<br>Reaction<br>SSR :004 | Error reaction of SSR_4                                                                           | 04            |                   | 0x66400001<br>(STO) |
| 0x6E8A | Error<br>Reaction<br>SSR :005 | Error reaction of SSR_5                                                                           | 05            |                   | 0x66400001<br>(STO) |
| 0x6E8A | Error<br>Reaction<br>SSR :006 | Error reaction of SSR_6                                                                           | 06            |                   | 0x66400001<br>(STO) |
| 0x6E8A | Error<br>Reaction<br>SSR :007 | Error reaction of SSR_7                                                                           | 07            |                   | 0x66400001<br>(STO) |
| 0x6E8A | Error<br>Reaction<br>SSR :008 | Error reaction of SSR_8                                                                           | 08            |                   | 0x66400001<br>(STO) |

SDIn active

# SDIp Controlword SDIn Speed s op+sZero SDI s\_cp1-sZero\_SD cp-sZero SDI Position Torque on Motor SDIp active Statusword

### 3.6.5.7 Description of the SDIp safety function

Figure 30: Description of the Safe Direction positive function (SDIp)

The SDIp and SDIn functions are included in the fixed configuration and are separate but related. SDIp permits motion of the motor in a positive direction.

- If the SDIp bit in the control word is set (SDIp=1), positive rotation of the motor is allowed. The status bit SDIp in the status word indicates when the axis is moving in the positive direction (SDIp status=1).
- If the SDIp bit is cleared (SDIp=0), then the SDIp function is activated, the position is captured, and a window is defined (s\_cp + s\_Zero\_SDI). If the axis exceeds this range in the forward direction, the STO function is activated and torque is removed from the motor.

If both SDIp and SDIn are cleared, the motor remains enabled but is not permitted to exceed the position window in either direction.

# Parameter for axis 1:

| Index  | Name              | Description                                 | Sub-index | Unit       | Default value |
|--------|-------------------|---------------------------------------------|-----------|------------|---------------|
| 0x66D3 | s_Zero_SDI 32 Bit | Position window for the SDI safety function |           | Increments | 0x00000000    |

# Parameter for axis 2:

| Index  | Name              | Description                                 | Sub-index | Unit       | Default value |
|--------|-------------------|---------------------------------------------|-----------|------------|---------------|
| 0x6ED3 | s_Zero_SDI 32 Bit | Position window for the SDI safety function |           | Increments | 0x00000000    |

# 3.6.5.8 Description of the SDIn safety function



Figure 31: Description of the Safe Direction negative function (SDIn)

The SDIp and SDIn functions are included in the fixed configuration and are separate but related. SDIn permits the motion of the motor in a negative direction.

- If the SDIn bit in the control word is set (SDIn=1), negative rotation of the motor is allowed. The status bit SDIn in the status word indicates when the axis is moving in the negative direction (SDIn status =1).
- If the SDIn bit is cleared (SDIn=0), then the SDIn function is activated, the position is captured, and a window is defined (s\_cp s\_Zero\_SDI). If the axis exceeds this range in the reverse direction, the STO function is activated and torque is removed from the motor.

If both SDIp and SDIn are cleared, the motor remains enabled but is not permitted to exceed the position window in either direction.

# Parameter for axis 1:

| Index  | Name              | Description                                 | Sub-index | Unit       | Default value |
|--------|-------------------|---------------------------------------------|-----------|------------|---------------|
| 0x66D3 | s_Zero_SDI 32 Bit | Position window for the SDI safety function |           | Increments | 0x0000000     |

# Parameter for axis 2:

| Index  | Name              | Description                                 | Sub-index | Unit       | Default value |
|--------|-------------------|---------------------------------------------|-----------|------------|---------------|
| 0x6ED3 | s_Zero_SDI 32 Bit | Position window for the SDI safety function |           | Increments | 0x00000000    |

### 3.6.5.9 Description of the SSM safety function



Figure 32: Description of the Safe Speed Monitor function (SSM0, SSM1)

The SSM function only performs monitoring; it indicates when the speed of the axis is within the range specified by the SSM parameters. The SSM monitoring is activated by entering values in the SSM parameters (n\_UL\_SSM\_x or n\_LL\_SSM\_x in Figure 32 unequal to 0). The status is set if the current speed is within the limits n\_UL\_SSM 32 Bit (UL-Upper limit) and n\_LL\_SSM 32 Bit (LL-Lower limit).

# Parameters for axis 1:

| Index  | Name                    | Description                             | Sub-<br>index | Unit              | Default value |
|--------|-------------------------|-----------------------------------------|---------------|-------------------|---------------|
| 0x66E2 | n_UL_SSM 32 Bit<br>:001 | Upper speed limit of the SSM_1 function | 01            | Increments per ms | 0x00000000    |
| 0x66E2 | n_UL_SSM 32 Bit<br>:002 | Upper speed limit of the SSM_2 function | 02            | Increments per ms | 0x00000000    |
| 0x66E2 | n_UL_SSM 32 Bit<br>:003 | Upper speed limit of the SSM_3 function | 03            | Increments per ms | 0x00000000    |
| 0x66E2 | n_UL_SSM 32 Bit<br>:004 | Upper speed limit of the SSM_4 function | 04            | Increments per ms | 0x00000000    |
| 0x66E2 | n_UL_SSM 32 Bit<br>:005 | Upper speed limit of the SSM_5 function | 05            | Increments per ms | 0x00000000    |
| 0x66E2 | n_UL_SSM 32 Bit<br>:006 | Upper speed limit of the SSM_6 function | 06            | Increments per ms | 0x00000000    |
| 0x66E2 | n_UL_SSM 32 Bit<br>:007 | Upper speed limit of the SSM_7 function | 07            | Increments per ms | 0x00000000    |
| 0x66E2 | n_UL_SSM 32 Bit<br>:008 | Upper speed limit of the SSM_8 function | 08            | Increments per ms | 0x00000000    |
| 0x66E4 | n_LL_SSM 32 Bit<br>:001 | Lower speed limit of the SSM_1 function | 01            | Increments per ms | 0x00000000    |
| 0x66E4 | n_LL_SSM 32 Bit<br>:002 | Lower speed limit of the SSM_2 function | 02            | Increments per ms | 0x00000000    |
| 0x66E4 | n_LL_SSM 32 Bit<br>:003 | Lower speed limit of the SSM_3 function | 03            | Increments per ms | 0x00000000    |
| 0x66E4 | n_LL_SSM 32 Bit<br>:004 | Lower speed limit of the SSM_4 function | 04            | Increments per ms | 0x00000000    |
| 0x66E4 | n_LL_SSM 32 Bit<br>:005 | Lower speed limit of the SSM_5 function | 05            | Increments per ms | 0x00000000    |
| 0x66E4 | n_LL_SSM 32 Bit<br>:006 | Lower speed limit of the SSM_6 function | 06            | Increments per ms | 0x00000000    |
| 0x66E4 | n_LL_SSM 32 Bit<br>:007 | Lower speed limit of the SSM_7 function | 07            | Increments per ms | 0x00000000    |
| 0x66E4 | n_LL_SSM 32 Bit<br>:008 | Lower speed limit of the SSM_8 function | 08            | Increments per ms | 0x00000000    |

# Parameters for axis 2:

| Index  | Name                    | Description                             | Sub-<br>index | Unit              | Default value |
|--------|-------------------------|-----------------------------------------|---------------|-------------------|---------------|
| 0x6EE2 | n_UL_SSM 32 Bit<br>:001 | Upper speed limit of the SSM_1 function | 01            | Increments per ms | 0x00000000    |
| 0x6EE2 | n_UL_SSM 32 Bit<br>:002 | Upper speed limit of the SSM_2 function | 02            | Increments per ms | 0x00000000    |
| 0x6EE2 | n_UL_SSM 32 Bit<br>:003 | Upper speed limit of the SSM_3 function | 03            | Increments per ms | 0x00000000    |
| 0x6EE2 | n_UL_SSM 32 Bit<br>:004 | Upper speed limit of the SSM_4 function | 04            | Increments per ms | 0x00000000    |
| 0x6EE2 | n_UL_SSM 32 Bit<br>:005 | Upper speed limit of the SSM_5 function | 05            | Increments per ms | 0x00000000    |
| 0x6EE2 | n_UL_SSM 32 Bit<br>:006 | Upper speed limit of the SSM_6 function | 06            | Increments per ms | 0x00000000    |
| 0x6EE2 | n_UL_SSM 32 Bit<br>:007 | Upper speed limit of the SSM_7 function | 07            | Increments per ms | 0x00000000    |
| 0x6EE2 | n_UL_SSM 32 Bit<br>:008 | Upper speed limit of the SSM_8 function | 08            | Increments per ms | 0x00000000    |
| 0x6EE4 | n_LL_SSM 32 Bit<br>:001 | Lower speed limit of the SSM_1 function | 01            | Increments per ms | 0x00000000    |
| 0x6EE4 | n_LL_SSM 32 Bit<br>:002 | Lower speed limit of the SSM_2 function | 02            | Increments per ms | 0x00000000    |
| 0x6EE4 | n_LL_SSM 32 Bit<br>:003 | Lower speed limit of the SSM_3 function | 03            | Increments per ms | 0x00000000    |
| 0x6EE4 | n_LL_SSM 32 Bit<br>:004 | Lower speed limit of the SSM_4 function | 04            | Increments per ms | 0x00000000    |
| 0x6EE4 | n_LL_SSM 32 Bit<br>:005 | Lower speed limit of the SSM_5 function | 05            | Increments per ms | 0x00000000    |
| 0x6EE4 | n_LL_SSM 32 Bit<br>:006 | Lower speed limit of the SSM_6 function | 06            | Increments per ms | 0x00000000    |
| 0x6EE4 | n_LL_SSM 32 Bit<br>:007 | Lower speed limit of the SSM_7 function | 07            | Increments per ms | 0x00000000    |
| 0x6EE4 | n_LL_SSM 32 Bit<br>:008 | Lower speed limit of the SSM_8 function | 08            | Increments per ms | 0x00000000    |

# 3.6.5.10 Description of the SAR safety function



Figure 33: Description of the Safe Acceleration Range function (SAR)

When SAR (Safe Acceleration Range) is activated, monitoring of the acceleration window begins. The acceleration must remain within the limits a\_UL\_SAR (UL - Upper Limit) and a\_LL\_SAR (LL - lower limit). If one of the limits is exceeded, the Error Reaction function SS1 or STO (as defined by ErrorReaction\_SAR) is executed.

# Parameters for axis 1:

| Index  | Name                       | Description                                           | Sub-<br>index | Unit                              | Default value       |
|--------|----------------------------|-------------------------------------------------------|---------------|-----------------------------------|---------------------|
| 0x66C2 | a_UL_SAR 32 Bit<br>:001    | Upper acceleration limit of the SAR_1 safety function | 01            | Increments<br>per ms <sup>2</sup> | 0x00000000          |
| 0x66C2 | a_UL_SAR 32 Bit<br>:002    | Upper acceleration limit of the SAR_2 safety function | 02            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C2 | a_UL_SAR 32 Bit :003       | Upper acceleration limit of the SAR_3 safety function | 03            | Increments<br>per ms <sup>2</sup> | 0x00000000          |
| 0x66C2 | a_UL_SAR 32 Bit<br>:004    | Upper acceleration limit of the SAR_4 safety function | 04            | Increments<br>per ms <sup>2</sup> | 0x00000000          |
| 0x66C2 | a_UL_SAR 32 Bit :005       | Upper acceleration limit of the SAR_5 safety function | 05            | Increments<br>per ms <sup>2</sup> | 0x00000000          |
| 0x66C2 | a_UL_SAR 32 Bit<br>:006    | Upper acceleration limit of the SAR_6 safety function | 06            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C2 | a_UL_SAR 32 Bit<br>:007    | Upper acceleration limit of the SAR_7 safety function | 07            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C2 | a_UL_SAR 32 Bit<br>:008    | Upper acceleration limit of the SAR_8 safety function | 08            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C4 | a_LL_SAR 32 Bit<br>:001    | Lower acceleration limit of the SAR_1 safety function | 01            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C4 | a_LL_SAR 32 Bit<br>:002    | Lower acceleration limit of the SAR_2 safety function | 02            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C4 | a_LL_SAR 32 Bit<br>:003    | Lower acceleration limit of the SAR_3 safety function | 03            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C4 | a_LL_SAR 32 Bit<br>:004    | Lower acceleration limit of the SAR_4 safety function | 04            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C4 | a_LL_SAR 32 Bit<br>:005    | Lower acceleration limit of the SAR_5 safety function | 05            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C4 | a_LL_SAR 32 Bit<br>:006    | Lower acceleration limit of the SAR_6 safety function | 06            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C4 | a_LL_SAR 32 Bit<br>:007    | Lower acceleration limit of the SAR_7 safety function | 07            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C4 | a_LL_SAR 32 Bit :008       | Lower acceleration limit of the SAR_8 safety function | 08            | Increments per ms <sup>2</sup>    | 0x00000000          |
| 0x66C5 | Error Reaction<br>SAR :001 | Error reaction of SAR_1                               | 01            |                                   | 0x66400001<br>(STO) |
| 0x66C5 | Error Reaction<br>SAR :002 | Error reaction of SAR_2                               | 02            |                                   | 0x66400001<br>(STO) |
| 0x66C5 | Error Reaction<br>SAR :003 | Error reaction of SAR_3                               | 03            |                                   | 0x66400001<br>(STO) |
| 0x66C5 | Error Reaction<br>SAR :004 | Error reaction of SAR_4                               | 04            |                                   | 0x66400001<br>(STO) |
| 0x66C5 | Error Reaction<br>SAR :005 | Error reaction of SAR_5                               | 05            |                                   | 0x66400001<br>(STO) |
| 0x66C5 | Error Reaction<br>SAR :006 | Error reaction of SAR_6                               | 06            |                                   | 0x66400001<br>(STO) |
| 0x66C5 | Error Reaction<br>SAR :007 | Error reaction of SAR_7                               | 07            |                                   | 0x66400001<br>(STO) |
| 0x66C5 | Error Reaction<br>SAR :008 | Error reaction of SAR_8                               | 08            |                                   | 0x66400001<br>(STO) |

# Parameters for axis 2:

| Index  | Name                       | Description                                           | Sub-<br>index | Unit                              | Default value                |
|--------|----------------------------|-------------------------------------------------------|---------------|-----------------------------------|------------------------------|
| 0x6EC2 | a_UL_SAR 32 Bit<br>:001    | Upper acceleration limit of the SAR_1 safety function | 01            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC2 | a_UL_SAR 32 Bit<br>:002    | Upper acceleration limit of the SAR_2 safety function | 02            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC2 | a_UL_SAR 32 Bit<br>:003    | Upper acceleration limit of the SAR_3 safety function | 03            | Increments<br>per ms <sup>2</sup> | 0x00000000                   |
| 0x6EC2 | a_UL_SAR 32 Bit<br>:004    | Upper acceleration limit of the SAR_4 safety function | 04            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC2 | a_UL_SAR 32 Bit<br>:005    | Upper acceleration limit of the SAR_5 safety function | 05            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC2 | a_UL_SAR 32 Bit<br>:006    | Upper acceleration limit of the SAR_6 safety function | 06            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC2 | a_UL_SAR 32 Bit<br>:007    | Upper acceleration limit of the SAR_7 safety function | 07            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC2 | a_UL_SAR 32 Bit<br>:008    | Upper acceleration limit of the SAR_8 safety function | 08            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC4 | a_LL_SAR 32 Bit<br>:001    | Lower acceleration limit of the SAR_1 safety function | 01            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC4 | a_LL_SAR 32 Bit<br>:002    | Lower acceleration limit of the SAR_2 safety function | 02            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC4 | a_LL_SAR 32 Bit<br>:003    | Lower acceleration limit of the SAR_3 safety function | 03            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC4 | a_LL_SAR 32 Bit<br>:004    | Lower acceleration limit of the SAR_4 safety function | 04            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC4 | a_LL_SAR 32 Bit<br>:005    | Lower acceleration limit of the SAR_5 safety function | 05            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC4 | a_LL_SAR 32 Bit<br>:006    | Lower acceleration limit of the SAR_6 safety function | 06            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC4 | a_LL_SAR 32 Bit<br>:007    | Lower acceleration limit of the SAR_7 safety function | 07            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC4 | a_LL_SAR 32 Bit :008       | Lower acceleration limit of the SAR_8 safety function | 08            | Increments per ms <sup>2</sup>    | 0x00000000                   |
| 0x6EC5 | Error Reaction<br>SAR :001 | Error reaction of SAR_1                               | 01            |                                   | 0x66400001<br>(STO)          |
| 0x6EC5 | Error Reaction<br>SAR :002 | Error reaction of SAR_2                               | 02            |                                   | 0x66400001<br>(STO)          |
| 0x6EC5 | Error Reaction<br>SAR :003 | Error reaction of SAR_3                               | 03            |                                   | 0x66400001<br>(STO)          |
| 0x6EC5 | Error Reaction<br>SAR :004 | Error reaction of SAR_4                               | 04            |                                   | 0x66400001<br>(STO)          |
| 0x6EC5 | Error Reaction<br>SAR :005 | Error reaction of SAR_5                               | 05            |                                   | 0x66400001<br>(STO)          |
| 0x6EC5 | Error Reaction<br>SAR :006 | Error reaction of SAR_6                               | 06            |                                   | 0x66400001<br>(STO)          |
| 0x6EC5 | Error Reaction<br>SAR :007 | Error reaction of SAR_7                               | 07            |                                   | 0x66400001                   |
| 0x6EC5 | Error Reaction<br>SAR :008 | Error reaction of SAR_8                               | 08            |                                   | (STO)<br>0x66400001<br>(STO) |

# 3.6.5.11 Description of the SCA safety function

This function is available only if the safe position has been referenced (refer to Chapter 3.6.4.3).



Figure 34: Description of the Safe CAM function (SCA)

SCA (Safe CAM) can be implemented as a bit in the Safety status word. The SCA output is set to 1 when the current position lies within the window between the upper limit s\_UL\_SCA (UL - Upper Limit) and the lower limit s\_LL\_SCA (LL - Lower Limit).

# Parameters for axis 1:

| Index  | Name                    | Description                                       | Sub-<br>index | Unit                                                 | Default value |
|--------|-------------------------|---------------------------------------------------|---------------|------------------------------------------------------|---------------|
| 0x66EA | s_UL_SCA 32<br>Bit :001 | Upper position limit of the SCA_1 safety function | 01            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EA | s_UL_SCA 32<br>Bit :002 | Upper position limit of the SCA_2 safety function | 02            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EA | s_UL_SCA 32<br>Bit :003 | Upper position limit of the SCA_3 safety function | 03            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EA | s_UL_SCA 32<br>Bit :004 | Upper position limit of the SCA_4 safety function | 04            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EA | s_UL_SCA 32<br>Bit :005 | Upper position limit of the SCA_5 safety function | 05            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EA | s_UL_SCA 32<br>Bit :006 | Upper position limit of the SCA_6 safety function | 06            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EA | s_UL_SCA 32<br>Bit :007 | Upper position limit of the SCA_7 safety function | 07            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EA | s_UL_SCA 32<br>Bit :008 | Upper position limit of the SCA_8 safety function | 08            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EC | s_LL_SCA 32<br>Bit :001 | Lower position limit of the SCA_1 safety function | 01            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EC | s_LL_SCA 32<br>Bit :002 | Lower position limit of the SCA_2 safety function | 02            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EC | s_LL_SCA 32<br>Bit :003 | Lower position limit of the SCA_3 safety function | 03            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EC | s_LL_SCA 32<br>Bit :004 | Lower position limit of the SCA_4 safety function | 04            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EC | s_LL_SCA 32<br>Bit :005 | Lower position limit of the SCA_5 safety function | 05            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EC | s_LL_SCA 32<br>Bit :006 | Lower position limit of the SCA_6 safety function | 06            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EC | s_LL_SCA 32<br>Bit :007 | Lower position limit of the SCA_7 safety function | 07            | pole revolution<br>relative to<br>reference position | 0x00000000    |
| 0x66EC | s_LL_SCA 32<br>Bit :008 | Lower position limit of the SCA_8 safety function | 08            | pole revolution<br>relative to<br>reference position | 0x00000000    |

# Parameters for axis 2:

| Index  | Name                    | Description                                       | Sub-<br>index | Unit                                                 | Default value |
|--------|-------------------------|---------------------------------------------------|---------------|------------------------------------------------------|---------------|
| 0x6EEA | s_UL_SCA 32<br>Bit :001 | Upper position limit of the SCA_1 safety function | 01            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEA | s_UL_SCA 32<br>Bit :002 | Upper position limit of the SCA_2 safety function | 02            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEA | s_UL_SCA 32<br>Bit :003 | Upper position limit of the SCA_3 safety function | 03            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEA | s_UL_SCA 32<br>Bit :004 | Upper position limit of the SCA_4 safety function | 04            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEA | s_UL_SCA 32<br>Bit :005 | Upper position limit of the SCA_5 safety function | 05            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEA | s_UL_SCA 32<br>Bit :006 | Upper position limit of the SCA_6 safety function | 06            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEA | s_UL_SCA 32<br>Bit :007 | Upper position limit of the SCA_7 safety function | 07            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEA | s_UL_SCA 32<br>Bit :008 | Upper position limit of the SCA_8 safety function | 08            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEC | s_LL_SCA 32<br>Bit :001 | Lower position limit of the SCA_1 safety function | 01            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEC | s_LL_SCA 32<br>Bit :002 | Lower position limit of the SCA_2 safety function | 02            | pole revolution<br>relative to reference<br>position | 0x00000000    |
| 0x6EEC | s_LL_SCA 32<br>Bit :003 | Lower position limit of the SCA_3 safety function | 03            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEC | s_LL_SCA 32<br>Bit :004 | Lower position limit of the SCA_4 safety function | 04            | pole revolution<br>relative to reference<br>position | 0x00000000    |
| 0x6EEC | s_LL_SCA 32<br>Bit :005 | Lower position limit of the SCA_5 safety function | 05            | pole revolution<br>relative to reference<br>position | 0x00000000    |
| 0x6EEC | s_LL_SCA 32<br>Bit :006 | Lower position limit of the SCA_6 safety function | 06            | pole revolution<br>relative to reference<br>position | 0x00000000    |
| 0x6EEC | s_LL_SCA 32<br>Bit :007 | Lower position limit of the SCA_7 safety function | 07            | pole revolution relative to reference position       | 0x00000000    |
| 0x6EEC | s_LL_SCA 32<br>Bit :008 | Lower position limit of the SCA_8 safety function | 08            | pole revolution relative to reference position       | 0x00000000    |

# 3.6.5.12 Description of the SLI safety function



Figure 35: Description of the Safely Limited Increment function (SLI)

When the SLI (Safe Limited Increment) function is activated, the current position is captured under s\_cp, and monitoring of the position is activated. The axis may not leave the window defined between s\_cp + s\_UL\_SLI (UL-upper limit) and s\_cp - s\_LL\_SLI (LL-lower limit). If one of the limits is exceeded, the Error Reaction Function SS1 or STO (as defined by ErrorReaction\_SLI) is executed.



# Difference between firmware 04 and 05

The value s\_LL\_SLI has to be entered as a positive value up to firmware version 04. Beginning from firmware version 05 it has to be entered as a negative value.

# Parameters for axis 1:

| Index  | Name                       | Description                                       | Sub-<br>index | Unit       | Default value       |
|--------|----------------------------|---------------------------------------------------|---------------|------------|---------------------|
| 0x66BA | s_UL_SLI 32 Bit<br>:001    | Upper position limit of the SLI_1 safety function | 01            | Increments | 0x00000000          |
| 0x66BA | s_UL_SLI 32 Bit<br>:002    | Upper position limit of the SLI_2 safety function | 02            | Increments | 0x00000000          |
| 0x66BA | s_UL_SLI 32 Bit<br>:003    | Upper position limit of the SLI_3 safety function | 03            | Increments | 0x00000000          |
| 0x66BA | s_UL_SLI 32 Bit<br>:004    | Upper position limit of the SLI_4 safety function | 04            | Increments | 0x00000000          |
| 0x66BA | s_UL_SLI 32 Bit<br>:005    | Upper position limit of the SLI_5 safety function | 05            | Increments | 0x00000000          |
| 0x66BA | s_UL_SLI 32 Bit<br>:006    | Upper position limit of the SLI_6 safety function | 06            | Increments | 0x0000000           |
| 0x66BA | s_UL_SLI 32 Bit<br>:007    | Upper position limit of the SLI_7 safety function | 07            | Increments | 0x0000000           |
| 0x66BA | s_UL_SLI 32 Bit<br>:008    | Upper position limit of the SLI_8 safety function | 08            | Increments | 0x00000000          |
| 0x66BC | s_LL_SLI 32 Bit<br>:001    | Lower position limit of the SLI_1 safety function | 01            | Increments | 0x0000000           |
| 0x66BC | s_LL_SLI 32 Bit<br>:002    | Lower position limit of the SLI_2 safety function | 02            | Increments | 0x00000000          |
| 0x66BC | s_LL_SLI 32 Bit<br>:003    | Lower position limit of the SLI_3 safety function | 03            | Increments | 0x00000000          |
| 0x66BC | s_LL_SLI 32 Bit<br>:004    | Lower position limit of the SLI_4 safety function | 04            | Increments | 0x00000000          |
| 0x66BC | s_LL_SLI 32 Bit<br>:005    | Lower position limit of the SLI_5 safety function | 05            | Increments | 0x0000000           |
| 0x66BC | s_LL_SLI 32 Bit<br>:006    | Lower position limit of the SLI_6 safety function | 06            | Increments | 0x0000000           |
| 0x66BC | s_LL_SLI 32 Bit<br>:007    | Lower position limit of the SLI_7 safety function | 07            | Increments | 0x0000000           |
| 0x66BC | s_LL_SLI 32 Bit<br>:008    | Lower position limit of the SLI_8 safety function | 08            | Increments | 0x00000000          |
| 0x66BD | Error Reaction SLI :001    | Error reaction of SLI_1                           | 01            |            | 0x66400001<br>(STO) |
| 0x66BD | Error Reaction SLI :002    | Error reaction of SLI_2                           | 02            |            | 0x66400001<br>(STO) |
| 0x66BD | Error Reaction SLI:003     | Error reaction of SLI_3                           | 03            |            | 0x66400001<br>(STO) |
| 0x66BD | Error Reaction SLI:004     | Error reaction of SLI_4                           | 04            |            | 0x66400001<br>(STO) |
| 0x66BD | Error Reaction SLI<br>:005 | Error reaction of SLI_5                           | 05            |            | 0x66400001<br>(STO) |
| 0x66BD | Error Reaction SLI:006     | Error reaction of SLI_6                           | 06            |            | 0x66400001<br>(STO) |
| 0x66BD | Error Reaction SLI:007     | Error reaction of SLI_7                           | 07            |            | 0x66400001<br>(STO) |
| 0x66BD | Error Reaction SLI:008     | Error reaction of SLI_8                           | 08            |            | 0x66400001<br>(STO) |

# Parameters for axis 2:

| Index  | Name                       | Description                                       | Sub-<br>index | Unit       | Default value       |
|--------|----------------------------|---------------------------------------------------|---------------|------------|---------------------|
| 0x6EBA | s_UL_SLI 32 Bit<br>:001    | Upper position limit of the SLI_1 safety function | 01            | Increments | 0x00000000          |
| 0x6EBA | s_UL_SLI 32 Bit<br>:002    | Upper position limit of the SLI_2 safety function | 02            | Increments | 0x00000000          |
| 0x6EBA | s_UL_SLI 32 Bit<br>:003    | Upper position limit of the SLI_3 safety function | 03            | Increments | 0x00000000          |
| 0x6EBA | s_UL_SLI 32 Bit<br>:004    | Upper position limit of the SLI_4 safety function | 04            | Increments | 0x00000000          |
| 0x6EBA | s_UL_SLI 32 Bit<br>:005    | Upper position limit of the SLI_5 safety function | 05            | Increments | 0x00000000          |
| 0x6EBA | s_UL_SLI 32 Bit<br>:006    | Upper position limit of the SLI_6 safety function | 06            | Increments | 0x00000000          |
| 0x6EBA | s_UL_SLI 32 Bit<br>:007    | Upper position limit of the SLI_7 safety function | 07            | Increments | 0x00000000          |
| 0x6EBA | s_UL_SLI 32 Bit<br>:008    | Upper position limit of the SLI_8 safety function | 08            | Increments | 0x00000000          |
| 0x6EBC | s_LL_SLI 32 Bit<br>:001    | Lower position limit of the SLI_1 safety function | 01            | Increments | 0x00000000          |
| 0x6EBC | s_LL_SLI 32 Bit<br>:002    | Lower position limit of the SLI_2 safety function | 02            | Increments | 0x00000000          |
| 0x6EBC | s_LL_SLI 32 Bit<br>:003    | Lower position limit of the SLI_3 safety function | 03            | Increments | 0x00000000          |
| 0x6EBC | s_LL_SLI 32 Bit<br>:004    | Lower position limit of the SLI_4 safety function | 04            | Increments | 0x00000000          |
| 0x6EBC | s_LL_SLI 32 Bit<br>:005    | Lower position limit of the SLI_5 safety function | 05            | Increments | 0x00000000          |
| 0x6EBC | s_LL_SLI 32 Bit<br>:006    | Lower position limit of the SLI_6 safety function | 06            | Increments | 0x00000000          |
| 0x6EBC | s_LL_SLI 32 Bit<br>:007    | Lower position limit of the SLI_7 safety function | 07            | Increments | 0x00000000          |
| 0x6EBC | s_LL_SLI 32 Bit<br>:008    | Lower position limit of the SLI_8 safety function | 08            | Increments | 0x00000000          |
| 0x6EBD | Error Reaction SLI :001    | Error reaction of SLI_1                           | 01            |            | 0x66400001<br>(STO) |
| 0x6EBD | Error Reaction SLI<br>:002 | Error reaction of SLI_2                           | 02            |            | 0x66400001<br>(STO) |
| 0x6EBD | Error Reaction SLI:003     | Error reaction of SLI_3                           | 03            |            | 0x66400001<br>(STO) |
| 0x6EBD | Error Reaction SLI<br>:004 | Error reaction of SLI_4                           | 04            |            | 0x66400001<br>(STO) |
| 0x6EBD | Error Reaction SLI<br>:005 | Error reaction of SLI_5                           | 05            |            | 0x66400001<br>(STO) |
| 0x6EBD | Error Reaction SLI<br>:006 | Error reaction of SLI_6                           | 06            |            | 0x66400001<br>(STO) |
| 0x6EBD | Error Reaction SLI:007     | Error reaction of SLI_7                           | 07            |            | 0x66400001<br>(STO) |
| 0x6EBD | Error Reaction SLI<br>:008 | Error reaction of SLI_8                           | 08            |            | 0x66400001<br>(STO) |

# 3.6.5.13 Description of the SLP safety function

This function is available only if the safe position has been referenced (refer to Chapter 3.6.5.3).



Figure 36: Description of the Safely Limited Position function (SLP)

When the SLP function is activated (SLP = 0), the position of the motor is monitored with regard to the reference position. If the axis is outside the limits specified by parameters s\_UL\_SLP (upper limit) and s\_LL\_SLP (lower limit), the Error Reaction function (SS1 or STO) as defined by ErrorReaction\_SLP is activated.

# Parameters for axis 1:

| Index  | Name                     | Description                                       | Sub-<br>index | Unit                                           | Default value       |
|--------|--------------------------|---------------------------------------------------|---------------|------------------------------------------------|---------------------|
| 0x66A2 | s_UL_SLP<br>32 Bit :001  | Upper position limit of the SLP_1 safety function | 01            | pole revolution relative to reference position | 0x00000000          |
| 0x66A2 | s_UL_ SLP<br>32 Bit :002 | Upper position limit of the SLP_2 safety function | 02            | pole revolution relative to reference position | 0x00000000          |
| 0x66A2 | s_UL_SLP<br>32 Bit :003  | Upper position limit of the SLP_3 safety function | 03            | pole revolution relative to reference position | 0x00000000          |
| 0x66A2 | s_UL_SLP<br>32 Bit :004  | Upper position limit of the SLP_4 safety function | 04            | pole revolution relative to reference position | 0x00000000          |
| 0x66A2 | s_UL_SLP<br>32 Bit :005  | Upper position limit of the SLP_5 safety function | 05            | pole revolution relative to reference position | 0x00000000          |
| 0x66A2 | s_UL_SLP<br>32 Bit :006  | Upper position limit of the SLP_6 safety function | 06            | pole revolution relative to reference position | 0x00000000          |
| 0x66A2 | s_UL_SLP<br>32 Bit :007  | Upper position limit of the SLP_7 safety function | 07            | pole revolution relative to reference position | 0x00000000          |
| 0x66A2 | s_UL_SLP<br>32 Bit :008  | Upper position limit of the SLP_8 safety function | 08            | pole revolution relative to reference position | 0x00000000          |
| 0x66A4 | s_LL_SLP 32<br>Bit :001  | Lower position limit of the SLP_1 safety function | 01            | pole revolution relative to reference position | 0x00000000          |
| 0x66A4 | s_LL_SLP 32<br>Bit :002  | Lower position limit of the SLP_2 safety function | 02            | pole revolution relative to reference position | 0x00000000          |
| 0x66A4 | s_LL_SLP 32<br>Bit :003  | Lower position limit of the SLP_3 safety function | 03            | pole revolution relative to reference position | 0x00000000          |
| 0x66A4 | s_LL_SLP 32<br>Bit :004  | Lower position limit of the SLP_4 safety function | 04            | pole revolution relative to reference position | 0x00000000          |
| 0x66A4 | s_LL_SLP 32<br>Bit :005  | Lower position limit of the SLP_5 safety function | 05            | pole revolution relative to reference position | 0x00000000          |
| 0x66A4 | s_LL_SLP 32<br>Bit :006  | Lower position limit of the SLP_6 safety function | 06            | pole revolution relative to reference position | 0x00000000          |
| 0x66A4 | s_LL_SLP 32<br>Bit :007  | Lower position limit of the SLP_7 safety function | 07            | pole revolution relative to reference position | 0x00000000          |
| 0x66A4 | s_LL_SLP 32<br>Bit :008  | Lower position limit of the SLP_8 safety function | 08            | pole revolution relative to reference position | 0x00000000          |
| 0x66A5 | Error Reaction SLP :001  | Error reaction of SLP_1                           | 01            |                                                | 0x66400001<br>(STO) |
| 0x66A5 | Error Reaction SLP:002   | Error reaction of SLP_2                           | 02            |                                                | 0x66400001<br>(STO) |
| 0x66A5 | Error Reaction SLP :003  | Error reaction of SLP_3                           | 03            |                                                | 0x66400001<br>(STO) |
| 0x66A5 | Error Reaction SLP :004  | Error reaction of SLP_4                           | 04            |                                                | 0x66400001<br>(STO) |
| 0x66A5 | Error Reaction SLP :005  | Error reaction of SLP_5                           | 05            |                                                | 0x66400001<br>(STO) |
| 0x66A5 | Error Reaction SLP :006  | Error reaction of SLP_6                           | 06            |                                                | 0x66400001<br>(STO) |
| 0x66A5 | Error Reaction SLP :007  | Error reaction of SLP_7                           | 07            |                                                | 0x66400001<br>(STO) |
| 0x66A5 | Error Reaction SLP :008  | Error reaction of SLP_8                           | 08            |                                                | 0x66400001<br>(STO) |

# Parameters for axis 2:

| Index  | Name                     | Description                                       | Sub-<br>index | Unit                                           | Default value                |
|--------|--------------------------|---------------------------------------------------|---------------|------------------------------------------------|------------------------------|
| 0x6EA2 | s_UL_SLP 32<br>Bit :001  | Upper position limit of the SLP_1 safety function | 01            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA2 | s_UL_ SLP<br>32 Bit :002 | Upper position limit of the SLP_2 safety function | 02            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA2 | s_UL_SLP 32<br>Bit :003  | Upper position limit of the SLP_3 safety function | 03            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA2 | s_UL_SLP 32<br>Bit :004  | Upper position limit of the SLP_4 safety function | 04            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA2 | s_UL_SLP 32<br>Bit :005  | Upper position limit of the SLP_5 safety function | 05            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA2 | s_UL_SLP 32<br>Bit :006  | Upper position limit of the SLP_6 safety function | 06            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA2 | s_UL_SLP 32<br>Bit :007  | Upper position limit of the SLP_7 safety function | 07            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA2 | s_UL_SLP 32<br>Bit :008  | Upper position limit of the SLP_8 safety function | 08            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA4 | s_LL_SLP 32<br>Bit :001  | Lower position limit of the SLP_1 safety function | 01            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA4 | s_LL_SLP 32<br>Bit :002  | Lower position limit of the SLP_2 safety function | 02            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA4 | s_LL_SLP 32<br>Bit :003  | Lower position limit of the SLP_3 safety function | 03            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA4 | s_LL_SLP 32<br>Bit :004  | Lower position limit of the SLP_4 safety function | 04            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA4 | s_LL_SLP 32<br>Bit :005  | Lower position limit of the SLP_5 safety function | 05            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA4 | s_LL_SLP 32<br>Bit :006  | Lower position limit of the SLP_6 safety function | 06            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA4 | s_LL_SLP 32<br>Bit :007  | Lower position limit of the SLP_7 safety function | 07            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA4 | s_LL_SLP 32<br>Bit :008  | Lower position limit of the SLP_8 safety function | 08            | pole revolution relative to reference position | 0x00000000                   |
| 0x6EA5 | Error Reaction SLP:001   | Error reaction of SLP_1                           | 01            |                                                | 0x66400001<br>(STO)          |
| 0x6EA5 | Error Reaction SLP :002  | Error reaction of SLP_2                           | 02            |                                                | 0x66400001<br>(STO)          |
| 0x6EA5 | Error Reaction SLP :003  | Error reaction of SLP_3                           | 03            |                                                | 0x66400001<br>(STO)          |
| 0x6EA5 | Error Reaction SLP :004  | Error reaction of SLP_4                           | 04            |                                                | 0x66400001<br>(STO)          |
| 0x6EA5 | Error Reaction SLP :005  | Error reaction of SLP_5                           | 05            |                                                | 0x66400001<br>(STO)          |
| 0x6EA5 | Error Reaction SLP :006  | Error reaction of SLP_6                           | 06            |                                                | 0x66400001                   |
| 0x6EA5 | Error Reaction SLP :007  | Error reaction of SLP_7                           | 07            |                                                | (STO)<br>0x66400001          |
| 0x6EA5 | Error Reaction SLP :008  | Error reaction of SLP_8                           | 08            |                                                | (STO)<br>0x66400001<br>(STO) |

# SLS n\_pos\_max n\_SLS Speed to t\_L\_sLS t\_SLS Torque on Motor SLS State

# 3.6.5.14 Description of the SLS safety function

Figure 37: Description of the Safely Limited Speed function (SLS) with time monitor

SLS limits the motor's absolute speed. The single parameter  $n_SLS$  is defined, and this limit is the maximum positive and negative speed of the motor.

- If the speed of the motor is *outside* the allowable range defined by +/- n\_SLS upon activation (SLS=0), then the timer t\_SLS is started and the motor must achieve a speed within the acceptable range before the timer elapses. If the timer elapses before the motor reaches an acceptable speed, the Error Reaction Function SS1 or STO (as defined by ErrorReaction SLS) is activated.
- If the speed of the motor was already *within* the allowable range upon activation (SLS=0), then timer t\_L\_SLS is started and the velocity of the motor will be monitored after the t\_L\_SLS timer elapses. If the motor exceeds the limits after the t\_L\_SLS timer elapses, then the Error Reaction Function SS1 or STO (as defined by ErrorReaction\_SLS) is activated

# Parameters for axis 1:

| Index  | Name                 | Description                                                                                       | Sub-<br>inde<br>x | Unit              | Default value |
|--------|----------------------|---------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------|
| 0x6691 | t_SLS :001           | Maximum time until the activation of the SLS safety function                                      | 01                | 1 ms              | 0x0000        |
| 0x6691 | t_SLS :002           | Maximum time until the activation of the SLS safety function                                      | 02                | 1 ms              | 0x0000        |
| 0x6691 | t_SLS :003           | Maximum time until the activation of the SLS safety function                                      | 03                | 1 ms              | 0x0000        |
| 0x6691 | t_SLS :004           | Maximum time until the activation of the SLS safety function                                      | 04                | 1 ms              | 0x0000        |
| 0x6691 | t_SLS :005           | Maximum time until the activation of the SLS safety function                                      | 05                | 1 ms              | 0x0000        |
| 0x6691 | t_SLS :006           | Maximum time until the activation of the SLS safety function                                      | 06                | 1 ms              | 0x0000        |
| 0x6691 | t_SLS :007           | Maximum time until the activation of the SLS safety function                                      | 07                | 1 ms              | 0x0000        |
| 0x6691 | t_SLS :008           | Maximum time until the activation of the SLS safety function                                      | 08                | 1 ms              | 0x0000        |
| 0x6693 | n_SLS 32<br>Bit :001 | Speed window for SLS_1                                                                            | 01                | Increments per ms | 0x00000000    |
| 0x6693 | n_SLS 32<br>Bit :002 | Speed window for SLS_2                                                                            | 02                | Increments per ms | 0x00000000    |
| 0x6693 | n_SLS 32<br>Bit :003 | Speed window for SLS_3                                                                            | 03                | Increments per ms | 0x00000000    |
| 0x6693 | n_SLS 32<br>Bit :004 | Speed window for SLS_4                                                                            | 04                | Increments per ms | 0x00000000    |
| 0x6693 | n_SLS 32<br>Bit :005 | Speed window for SLS_5                                                                            | 05                | Increments per ms | 0x00000000    |
| 0x6693 | n_SLS 32<br>Bit :006 | Speed window for SLS_6                                                                            | 06                | Increments per ms | 0x00000000    |
| 0x6693 | n_SLS 32<br>Bit :007 | Speed window for SLS_7                                                                            | 07                | Increments per ms | 0x00000000    |
| 0x6693 | n_SLS 32<br>Bit :008 | Speed window for SLS_8                                                                            | 08                | Increments per ms | 0x00000000    |
| 0x6694 | t_L SLS<br>:001      | Minimum time until the activation of the SLS_1 safety function, if the speed is within the window | 01                | 1 ms              | 0x0000        |
| 0x6694 | t_L SLS<br>:002      | Minimum time until the activation of the SLS_2 safety function, if the speed is within the window | 02                | 1 ms              | 0x0000        |
| 0x6694 | t_L SLS<br>:003      | Minimum time until the activation of the SLS_3 safety function, if the speed is within the window | 03                | 1 ms              | 0x0000        |
| 0x6694 | t_L SLS<br>:004      | Minimum time until the activation of the SLS_4 safety function, if the speed is within the window | 04                | 1 ms              | 0x0000        |
| 0x6694 | t_L SLS<br>:005      | Minimum time until the activation of the SLS_5 safety function, if the speed is within the window | 05                | 1 ms              | 0x0000        |

| Index  | Name                          | Description                                                                                       | Sub-<br>inde<br>x | Unit | Default<br>value    |
|--------|-------------------------------|---------------------------------------------------------------------------------------------------|-------------------|------|---------------------|
| 0x6694 | t_L SLS<br>:006               | Minimum time until the activation of the SLS_6 safety function, if the speed is within the window | 06                | 1 ms | 0x0000              |
| 0x6694 | t_L SLS<br>:007               | Minimum time until the activation of the SLS_7 safety function, if the speed is within the window | 07                | 1 ms | 0x0000              |
| 0x6694 | t_L SLS<br>:008               | Minimum time until the activation of the SLS_8 safety function, if the speed is within the window | 08                | 1 ms | 0x0000              |
| 0x6698 | Error<br>Reaction<br>SLS :001 | Error reaction of SLS_1                                                                           | 01                |      | 0x66400001<br>(STO) |
| 0x6698 | Error<br>Reaction<br>SLS :002 | Error reaction of SLS_2                                                                           | 02                |      | 0x66400001<br>(STO) |
| 0x6698 | Error<br>Reaction<br>SLS :003 | Error reaction of SLS_3                                                                           | 03                |      | 0x66400001<br>(STO) |
| 0x6698 | Error<br>Reaction<br>SLS :004 | Error reaction of SLS_4                                                                           | 04                |      | 0x66400001<br>(STO) |
| 0x6698 | Error<br>Reaction<br>SLS :005 | Error reaction of SLS_5                                                                           | 05                |      | 0x66400001<br>(STO) |
| 0x6698 | Error<br>Reaction<br>SLS :006 | Error reaction of SLS_6                                                                           | 06                |      | 0x66400001<br>(STO) |
| 0x6698 | Error<br>Reaction<br>SLS :007 | Error reaction of SLS_7                                                                           | 07                |      | 0x66400001<br>(STO) |
| 0x6698 | Error<br>Reaction<br>SLS :008 | Error reaction of SLS_8                                                                           | 08                |      | 0x66400001<br>(STO) |

# Parameters for axis 2:

| Index  | Name                 | Description                                                                                       | Sub-<br>index | Unit              | Default value |
|--------|----------------------|---------------------------------------------------------------------------------------------------|---------------|-------------------|---------------|
| 0x6E91 | t_SLS:001            | Maximum time until the activation of the SLS safety function                                      | 01            | 1 ms              | 0x0000        |
| 0x6E91 | t_SLS :002           | Maximum time until the activation of the SLS safety function                                      | 02            | 1 ms              | 0x0000        |
| 0x6E91 | t_SLS :003           | Maximum time until the activation of the SLS safety function                                      | 03            | 1 ms              | 0x0000        |
| 0x6E91 | t_SLS :004           | Maximum time until the activation of the SLS safety function                                      | 04            | 1 ms              | 0x0000        |
| 0x6E91 | t_SLS :005           | Maximum time until the activation of the SLS safety function                                      | 05            | 1 ms              | 0x0000        |
| 0x6E91 | t_SLS :006           | Maximum time until the activation of the SLS safety function                                      | 06            | 1 ms              | 0x0000        |
| 0x6E91 | t_SLS :007           | Maximum time until the activation of the SLS safety function                                      | 07            | 1 ms              | 0x0000        |
| 0x6E91 | t_SLS :008           | Maximum time until the activation of the SLS safety function                                      | 08            | 1 ms              | 0x0000        |
| 0x6E93 | n_SLS 32<br>Bit :001 | Speed window for SLS_1                                                                            | 01            | Increments per ms | 0x00000000    |
| 0x6E93 | n_SLS 32<br>Bit :002 | Speed window for SLS_2                                                                            | 02            | Increments per ms | 0x00000000    |
| 0x6E93 | n_SLS 32<br>Bit :003 | Speed window for SLS_3                                                                            | 03            | Increments per ms | 0x00000000    |
| 0x6E93 | n_SLS 32<br>Bit :004 | Speed window for SLS_4                                                                            | 04            | Increments per ms | 0x00000000    |
| 0x6E93 | n_SLS 32<br>Bit :005 | Speed window for SLS_5                                                                            | 05            | Increments per ms | 0x00000000    |
| 0x6E93 | n_SLS 32<br>Bit :006 | Speed window for SLS_6                                                                            | 06            | Increments per ms | 0x00000000    |
| 0x6E93 | n_SLS 32<br>Bit :007 | Speed window for SLS_7                                                                            | 07            | Increments per ms | 0x00000000    |
| 0x6E93 | n_SLS 32<br>Bit :008 | Speed window for SLS_8                                                                            | 08            | Increments per ms | 0x00000000    |
| 0x6E94 | t_L SLS<br>:001      | Minimum time until the activation of the SLS_1 safety function, if the speed is within the window | 01            | 1 ms              | 0x0000        |
| 0x6E94 | t_L SLS<br>:002      | Minimum time until the activation of the SLS_2 safety function, if the speed is within the window | 02            | 1 ms              | 0x0000        |
| 0x6E94 | t_L SLS<br>:003      | Minimum time until the activation of the SLS_3 safety function, if the speed is within the window | 03            | 1 ms              | 0x0000        |
| 0x6E94 | t_L SLS<br>:004      | Minimum time until the activation of the SLS_4 safety function, if the speed is within the window | 04            | 1 ms              | 0x0000        |
| 0x6E94 | t_L SLS<br>:005      | Minimum time until the activation of the SLS_5 safety function, if the speed is within the window | 05            | 1 ms              | 0x0000        |
| 0x6E94 | t_L SLS<br>:006      | Minimum time until the activation of the SLS_6 safety function, if the speed is within the window | 06            | 1 ms              | 0x0000        |

| Index  | Name                          | Description                                                                                       | Sub-<br>index | Unit | Default value       |
|--------|-------------------------------|---------------------------------------------------------------------------------------------------|---------------|------|---------------------|
| 0x6E94 | t_L SLS<br>:007               | Minimum time until the activation of the SLS_7 safety function, if the speed is within the window | 07            | 1 ms | 0x0000              |
| 0x6E94 | t_L SLS<br>:008               | Minimum time until the activation of the SLS_8 safety function, if the speed is within the window | 08            | 1 ms | 0x0000              |
| 0x6E98 | Error<br>Reaction<br>SLS :001 | Error reaction of SLS_1                                                                           | 01            |      | 0x66400001<br>(STO) |
| 0x6E98 | Error<br>Reaction<br>SLS:002  | Error reaction of SLS_2                                                                           | 02            |      | 0x66400001<br>(STO) |
| 0x6E98 | Error<br>Reaction<br>SLS:003  | Error reaction of SLS_3                                                                           | 03            |      | 0x66400001<br>(STO) |
| 0x6E98 | Error<br>Reaction<br>SLS:004  | Error reaction of SLS_4                                                                           | 04            |      | 0x66400001<br>(STO) |
| 0x6E98 | Error<br>Reaction<br>SLS:005  | Error reaction of SLS_5                                                                           | 05            |      | 0x66400001<br>(STO) |
| 0x6E98 | Error<br>Reaction<br>SLS :006 | Error reaction of SLS_6                                                                           | 06            |      | 0x66400001<br>(STO) |
| 0x6E98 | Error<br>Reaction<br>SLS:007  | Error reaction of SLS_7                                                                           | 07            |      | 0x66400001<br>(STO) |
| 0x6E98 | Error<br>Reaction<br>SLS :008 | Error reaction of SLS_8                                                                           | 08            |      | 0x66400001<br>(STO) |

# 3.6.5.15 Description of the SMA safety function



Figure 38: Description of the Safe Maximum Acceleration function (SMA)

The SMA function monitors the maximum acceleration, and is activated by setting the parameters a\_pos\_max or a\_neg\_max to a value that is not equal to 0. If at any time either a\_pos\_max or a\_neg\_max is not equal to 0 and one of the limits is exceeded, the Error Reaction Function SS1 or STO (as defined by ErrorReaction\_SMA) is executed.

### Parameters for axis 1:

| Index  | Name                   | Description                                                  | Unit                           | Default value       |
|--------|------------------------|--------------------------------------------------------------|--------------------------------|---------------------|
| 0x66CA | a_pos_max_SMA<br>32Bit | Maximum positive acceleration                                | Increments per ms <sup>2</sup> | 0x0000              |
| 0x66CC | a_neg_max_SMA<br>32Bit | Maximum negative acceleration                                | Increments per ms <sup>2</sup> | 0x0000              |
| 0x66CD | Error Reaction SMA     | Maximum time until the activation of the SLS safety function |                                | 0x66400001<br>(STO) |

#### Parameters for axis 2:

| Index  | Name                   | Description                                                  | Unit                           | Default value       |
|--------|------------------------|--------------------------------------------------------------|--------------------------------|---------------------|
| 0x6ECA | a_pos_max_SMA<br>32Bit | Maximum positive acceleration                                | Increments per ms <sup>2</sup> | 0x0000              |
| 0x6ECC | a_neg_max_SMA<br>32Bit | Maximum negative acceleration                                | Increments per ms <sup>2</sup> | 0x0000              |
| 0x6ECD | Error Reaction SMA     | Maximum time until the activation of the SMA safety function |                                | 0x66400001<br>(STO) |

3.6.5.16 Description of the SMS safety function

# SMS activated by parameter



Figure 39: Description of the Safe Maximum Speed function (SMS)

The SMS function monitors the motor's maximum speed and is activated by setting the parameters n\_pos\_max or n\_neg\_max to a value not equal to 0. If either n\_pos\_max or n\_neg\_max is not equal to 0 and one of the limits is exceeded, the Error Reaction function (STO or SS1) as defined by ErrorReaction\_SMS is executed.

#### Parameters for axis 1:

| Index  | Name                   | Description                                                  | Unit              | Default value       |
|--------|------------------------|--------------------------------------------------------------|-------------------|---------------------|
| 0x66AA | n_pos_max_SMS<br>32Bit | Maximum positive speed                                       | Increments per ms | 0x0000              |
| 0x66AC | n_neg_max_SMS<br>32Bit | Maximum negative speed                                       | Increments per ms | 0x0000              |
| 0x66AD | Error Reaction<br>SMS  | Maximum time until the activation of the SMS safety function |                   | 0x66400001<br>(STO) |

# Parameters for axis 2:

| Index  | Name                   | Description                                                  | Unit              | Default value       |
|--------|------------------------|--------------------------------------------------------------|-------------------|---------------------|
| 0x6EAA | n_pos_max_SMS<br>32Bit | Maximum positive speed                                       | Increments per ms | 0x0000              |
| 0x6EAC | n_neg_max_SMS<br>32Bit | Maximum negative speed                                       | Increments per ms | 0x0000              |
| 0x6EAD | Error Reaction<br>SMS  | Maximum time until the activation of the SMS safety function |                   | 0x66400001<br>(STO) |

# 3.6.6 Configuring the error reaction

This section describes the AX5805's two error reactions in greater detail. The default error reaction is the STO function. However, for some of the AX5805's safety functions (SSR, SAR, SLI, SLP, SLS, SMA, and SMS), it is possible to configure the error reaction to SS1.

#### 3.6.6.1 Error reaction Safe Torque Off (STO 0x66400001)

This is the default error reaction. If this error reaction is configured, the AX5805 immediately switches all torque off from the motors as soon as an error has been detected.



# Providing additional external safety measures for STO

When it is activated, STO initiates a coast-to-stop action. No braking is applied to the connected motors; the torque applied to the motor is switched off and the motor coasts to a stop. The time and distance it takes for the motor to stop depends on the mechanics and kinetic energy present in the system. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.

#### 3.6.6.2 Error reaction Safe Stop 1 (SS1 0x66500001)

When the error reaction SS1 is activated, the AX5805 notifies the AX5000, that it should activate its emergency stop ramp. The emergency stop ramp is purely functional and is *not* a safety function.

After the timespan set in the parameters 0x2030 and 0x2830 has elapsed, the AX5805 activates the STO function, which removes all torque from the motor.

It is possible that the AX5000 fails to activate the emergency stop ramp. In this case, it is possible that the motors will continue to rotate or even accelerate. Therefore, it is important to configure the timespan so that an inadvertent acceleration during the configured time period does not lead to hazardous situation. On the other hand, it is important to configure a timespan long enough so that the motors can be stopped.



# Choosing the timespan for SS1

The timespan for the error reaction SS1 should be configured so that no hazardous situation arises if:

- the AX5000 fails to activate the emergency stop ramp, or
- if the motors continue to rotate or even accelerate.

After the configured timespan has elapsed, STO (Safe Torque Off) is activated. When it is activated, STO initiates a coast-to-stop action. No braking is applied to the connected motors; the torque applied to the motor is switched off and the motor coasts to a stop. The time and distance it takes for the motor to stop depends on the mechanics and kinetic energy present in the system. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.

# 3.7 First Steps - AX5805

In the following example, the safety function SDIn (axis may only rotate in a positive direction, refer to Chapter 3.6.5.8) is configured and activated.

This example uses the following hardware:

- AX5103-0000-0200 servo drive
- TwinSAFE Drive option card AX5805
- EL6900 TwinSAFE PLC
- 3x EL1904 TwinSAFE input terminals

# 3.7.1 Step 1: parameterize the AX5103 servo drive

The parameter P-0-2000 in the parameters of the servo amplifier AX5103 must be set to AX5805. Further parameters may also have to be set according to the motors in use (refer to the AX5000 user manual).



Figure 40: P-0-2000 Configured Safety Option → AX5805

# 3.7.2 Step 2: parameterize the AX5805

The following parameters must be set in the safe parameters of the AX5805.

- Motor\_String (Index 0x2001)
  - The motor in this example is named: AM3021-0C40-0000  $\rightarrow$  enter ASCII code 41 4D 33 30 32 31 2D 30 43 34 30 2D 30 30 30 or in a textual way
- Motor Polepairs (Index 0x2002)
  - The motor in use has 3 pairs of poles. → enter 3
- Number\_of\_Axes (Index 0x2F00)
  - The AX5103 servo drive in use is a single-channel device → enter 1
- s\_Zero\_SDI 32Bit (Index 0x66D3)
  - The window in which the direction of rotation is not monitored  $\rightarrow$  enter e.g. 10 increments



Figure 41: Setting the parameters

# 3.7.3 Step 3: link Error\_Acknowledge in Safe PLC

In order to be able to acknowledge errors (e.g. reset an error after the axis has moved in the negative direction while the SDIn safety function is activated), a safe input (in this case channel 1 of the first EL1904) is linked with the Error\_Acknowledge bit in the control word of the AX5805.



Figure 42: AX5805 Error\_Ack link



Figure 43: Error\_Acknowledge button on the AX5805

# 3.7.4 Step 4: Link the SDIn safety function in the Safe PLC

This example activates the SDIn safety function by using a light curtain, which is connected to the second TwinSAFE EL1904 input terminal. The safety function SDIn is activated if the light curtain is interrupted. The axis may only move in the positive direction of rotation. If it nonetheless moves in the negative direction and the window limit is exceeded, the AX5805 activates the STO action and removes torque from the motor.



Figure 44: AX5805 SDI\_n link



Figure 45: Light curtain for SDIn of the AX5805

# 3.7.5 Step 5: Implementation of an EMERGENCY STOP button

The emergency stop function could be implemented as follows. When the Emergency Stop is pressed, the drive must be disabled. In this case, the drive stops the motor via the functional (non-safety) STOP ramp. After the preconfigured time (ESTOP delayed output) has elapsed, the STO function is activated and torque is removed from the motor.

The delayed output signal of the ESTOP is linked to all of the functions. Since the STO function has the highest priority, all of the other safety functions are disabled in the normal operating mode, even after the delayed output signal is linked to them.



# STOP ramp of the AX5000 servo drive

The STOP ramp of the AX5000 servo drive is purely functional and is not designed to be a safety feature. In the event of a malfunction, the motors coast to a stop or may even be accelerated. In order to avoid these dangerous situations and movements, external safety mechanisms are to be provided by the user.



Figure 46: AX5805 STO link



Figure 47: Linking of the unused AX5805 functions



Figure 48: Emergency stop button for STO of the AX5805

# 4 Error and diagnosis

When it is activated, STO initiates a coast-to-stop action. No braking is applied to the connected motors; the torque applied to the motor is switched off and the motor coasts to a stop. The time and distance it takes for the motor to stop depends on the mechanics and kinetic energy present in the system. If there are loads suspended from the motor, the motor may even be accelerated. The user must provide external safety mechanisms (e.g. mechanical brakes) to prevent such inadvertent motion.

The reason for switching off can be read from the diagnostic data (CoE object 0xFA82). The data within this object is divided into:

- Diagnosis, and
- Error

Error indices smaller than 0x1000 or larger than 0x4FFF are errors that can be reset by the transition of the EtherCAT state from PREOP to SAFEOP. These include communication errors, parameter errors and environment errors.

All other errors are internal errors that can only be reset by a hardware reset or by switching the AX5805 to the EtherCAT state BOOT.

# 4.1 Error indices in CoE object 0xFA82

| Error index in 0xFA82 | Error name         | Description                                                                  | Typical error reaction time |
|-----------------------|--------------------|------------------------------------------------------------------------------|-----------------------------|
| 0x0001                | FAULT_MAXT_C1      | The temperature has exceeded the maximum permissible temperature (MC1).      |                             |
| 0x0002                | FAULT_MAXT_C2      | The temperature has exceeded the maximum permissible temperature (MC2).      |                             |
| 0x0003                | FAULT_MINT_C1      | The temperature has fallen below the minimum permissible temperature (MC1).  |                             |
| 0x0004                | FAULT_MINT_C2      | The temperature has fallen below the minimum permissible temperature (MC2).  |                             |
| 0x0101                | HW_ERR_MAX_VCC_C1  | The supply voltage has exceeded the maximum permissible voltage.             |                             |
| 0x0102                | HW_ERR_MAX_VCC_C2  | The supply voltage has exceeded the maximum permissible voltage.             |                             |
| 0x0103                | HW_ERR_MIN_VCC_C1  | The supply voltage has fallen below the minimum permissible voltage.         |                             |
| 0x0104                | HW_ERR_MIN_VCC_C2  | The supply voltage has fallen below the minimum permissible voltage.         |                             |
| 0x0201                | FAULT_MCTC1_TO     | The MCTests of MC1 were not carried out completely within the specified time |                             |
| 0x0202                | FAULT_MCTC2_TO     | The MCTests of MC2 were not carried out completely within the specified time |                             |
| 0x0203                | FAULT_TIMER_C1     | The global timer was not updated in time.                                    |                             |
| 0x0204                | FAULT_TIMER_C2     | The global timer was not updated in time.                                    |                             |
| 0x020C                | FAULT_TS_WDG_TO_C1 | The TS module was not called within the watchdog time.                       |                             |
| 0x020D                | FAULT_TS_WDG_TO_C2 | The TS module was not called within the watchdog time.                       |                             |

| Error index in    | Error name                           | Description                                                                                 | Typical error reaction time |
|-------------------|--------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------|
| 0xFA82            |                                      |                                                                                             |                             |
| 0x020E            | FAULT_RESET_MC1                      | A reset has occurred in the operation of the controller for MC1. MC2 was not reset thereby. |                             |
| 0x0300            | FAULT_SERCOMC2                       | Error group: an error occurred in the SerComP24C2 module during data transmission           |                             |
| 0x0401-<br>0x040B | FAULT_SERCOM1                        | Error group: an error occurred in the SerComP24C1 module during data transmission           |                             |
| 0x0501-<br>0x0507 | FAULT_TEMPSENSOR                     | An error occurred during communication with the AD7814.                                     |                             |
| 0x0601            | FAULT_OUTPUTCOMPARE                  | The values output by MC1 and MC2 differ.                                                    |                             |
| 0x0602            | FAULT_OUTPUTCOMPAREC2                | The values output by MC1 and MC2 differ.                                                    |                             |
| 0x0700            | HW_ERR_MIN_VCC_FPGA                  | The FPGA supply voltage has fallen below the minimum.                                       |                             |
| 0x0701            | HW_ERR_MAX_VCC_FPGA                  | The FPGA supply voltage has exceeded the maximum permissible voltage.                       |                             |
| 0x0710            | FAULT_FEEDBACK_C1                    | An error was detected in the feedback channels of $\mu$ C1.                                 |                             |
| 0x0711            | FAULT_FEEDBACK_C2                    | An error was detected in the feedback channels of $\mu$ C2.                                 |                             |
| 0x0720            | FAULT_Parameter_C1                   | General parameter error – µC1                                                               |                             |
| 0x0721            | FAULT_Parameter_C2                   | General parameter error – µC2                                                               |                             |
| 0x0722            | FAULT_Parameter_C1_DRIVE_PRO<br>FILE | Parameter: unknown parameter index – µC1 drive profile                                      |                             |
| 0x0723            | FAULT_Parameter_C1_VENDOR_S PECIFIC  | Parameter: unknown parameter index – µC1, vendor-specific                                   |                             |
| 0x0724            | FAULT_Parameter_C2_DRIVE_PRO FILE    | Parameter: unknown parameter index –<br>µC2drive profile                                    |                             |
| 0x0725            | FAULT_Parameter_C2_VENDOR_S PECIFIC  | Parameter: unknown parameter index – µC2 vendor-specific                                    |                             |
| 0x0726            | FAULT_PDO_MAPPING_FSOE_CO<br>MMAND   | PDO mapping: FSOE COMMAND error                                                             |                             |
| 0x0727            | FAULT_PDO_MAPPING_LENGTH             | PDO mapping: Length_Error                                                                   |                             |
| 0x0728            | FAULT_PDO_MAPPING_STO_K1             | PDO mapping: STO error                                                                      |                             |
| 0x0729            | FAULT_PDO_MAPPING_SS1_1_K1           | PDO mapping: Error SS1_1                                                                    |                             |
| 0x072A            | FAULT_PDO_MAPPING_SS2_1_K1           | PDO mapping: Error SS2_1                                                                    |                             |
| 0x072B            | FAULT_PDO_MAPPING_SOS_1_K1           | PDO mapping: SS2_1 error                                                                    |                             |
| 0x072C            | FAULT_PDO_MAPPING_SSR_1_K1           | PDO mapping: SSR_1 error                                                                    |                             |
| 0x072D            | FAULT_PDO_MAPPING_SDIp_K1            | PDO mapping: SDIp error                                                                     |                             |
| 0x072E            | FAULT_PDO_MAPPING_SDIn_K1            | PDO mapping: SDIn error                                                                     |                             |
| 0x072F            | FAULT_PDO_MAPPING_Error_ACK<br>_K1   | PDO mapping: Error_ACK error                                                                |                             |
| 0x0730            | FAULT_PDO_MAPPING_Error_CRC<br>0     | PDO mapping: FSOE CRC0 error                                                                |                             |
| 0x0731            | FAULT_PDO_MAPPING_STO_K2             | PDO mapping: STO error                                                                      |                             |
| 0x0732            | FAULT_PDO_MAPPING_SS1_1_K2           | PDO mapping: Error SS1_1                                                                    |                             |
| 0x0733            | FAULT_PDO_MAPPING_SS2_1_K2           | PDO mapping: Error SS2_1                                                                    |                             |
| 0x0734            | FAULT_PDO_MAPPING_SOS_1_K2           | PDO mapping: SS2_1 error                                                                    |                             |

| Error           | Error name                               | Description                                                                                                      | Typical error |
|-----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|
| index in 0xFA82 |                                          |                                                                                                                  | reaction time |
| 0x0735          | FAULT_PDO_MAPPING_SSR_1_K2               | PDO mapping: SSR_1 error                                                                                         |               |
| 0x0736          | FAULT_PDO_MAPPING_SDIp_K2                | PDO mapping: SDIp error                                                                                          |               |
| 0x0737          | FAULT_PDO_MAPPING_SDIn_K2                | PDO mapping: SDIn error                                                                                          |               |
| 0x0738          | FAULT_PDO_MAPPING_Error_ACK _K2          | PDO mapping: Error_ACK error                                                                                     |               |
| 0x0739          | FAULT_PDO_MAPPING_Error_CRC 1            | PDO mapping: FSOE CRC1 error                                                                                     |               |
| 0x073A          | FAULT_PDO_MAPPING_Error_Conn ID          | PDO mapping: FSOE ConnID error                                                                                   |               |
| 0x073B          | FAULT_PDO_MAPPING_SSM_1_K1               | PDO mapping: SSM_1_K1 error                                                                                      |               |
| 0x073C          | FAULT_PDO_MAPPING_SSM_1_K2               | PDO mapping: SSM_1_K2 error                                                                                      |               |
| 0x073D          | FAULT_PDO_MAPPING_SSM_2_K1               | PDO mapping: SSM_2_K1 error                                                                                      |               |
| 0x073E          | FAULT_PDO_MAPPING_SSM_2_K2               | PDO mapping: SSM_2_K2 error                                                                                      |               |
| 0x0740          | FAULT_WRONG_MOTORCONSTR<br>UCTIONTYPE_K1 | Register communication: parameterized motor type for axis 1 does not correspond to the connected motor           |               |
| 0x0741          | FAULT_UNKNOWN_MOTOR_TYPE _K1             | Register communication: parameterized motor type for axis 1 is unknown                                           |               |
| 0x0742          | FAULT_WRONG_MOTORCONSTR<br>UCTIONTYPE_K2 | Register communication: parameterized motor type for axis 2 does not correspond to the connected motor           |               |
| 0x0743          | FAULT_UNKNOWN_MOTOR_TYPE _K2             | Register communication: parameterized motor type for axis 2 is unknown                                           |               |
| 0x0744          | FAULT_NUM_OF_POLEPAIRS_K1                | Register communication: parameterized number of pole pairs for axis 1 does not correspond to the connected motor |               |
| 0x0745          | FAULT_NUM_OF_POLEPAIRS_K2                | Register communication: parameterized number of pole pairs for axis 2 does not correspond to the connected motor |               |
| 0x0746          | FAULT_WRONG_MOTOR_CONFIG<br>URED_K1      | Register communication: parameterized motor type for axis 2 does not correspond to the connected motor           |               |
| 0x0747          | FAULT_WRONG_MOTOR_CONFIG<br>URED_K2      | Register communication: parameterized motor type for axis 2 does not correspond to the connected motor           |               |
| 0x0748          | FAULT_RXPDO_LENGTH                       | PDO mapping: RXPDO length is wrong                                                                               |               |
| 0x0749          | FAULT_TXPDO_LENGTH                       | PDO mapping: TXPDO length is wrong                                                                               |               |
| 0x074A          | FAULT_UNKNOWN_RXPDO_INDEX                | PDO mapping: RXPDO index is unknown                                                                              |               |
| 0x074B          | FAULT_UNKNOWN_TXPDO_INDEX                | PDO mapping: TXPDO index is unknown                                                                              |               |
| 0x074C          | FAULT_WRONG_NUMBER_OF_AX LE              | The parameterized number of axes does not correspond to the number detected                                      |               |
| 0x1001          | FAULT_CRC_INIT_C1                        | An incorrect checksum was determined for MC1 during the POR.                                                     |               |
| 0x1002          | FAULT_CRC_INIT_C2                        | An incorrect checksum was determined for MC2 during the POR.                                                     |               |
| 0x1003          | FAULT_CRC_C1                             | An incorrect checksum was determined for MC1 during operation.                                                   |               |
| 0x1004          | FAULT_CRC_C2                             | An incorrect checksum was determined for MC2 during operation.                                                   |               |

| Error index in 0xFA82 | Error name                | Description                                                                       | Typical error reaction time |
|-----------------------|---------------------------|-----------------------------------------------------------------------------------|-----------------------------|
| 0x1011                | FAULT_RAM_C1              | An error occurred during the GalPat test of MC1.                                  | 125 µs                      |
| 0x1012                | FAULT_RAM_C2              | An error occurred during the GalPat test of MC2.                                  | 125 µs                      |
| 0x1013                | FAULT_RAM_CHECKERBOARD_C1 | An error occurred during the checkerboard test of MC1.                            |                             |
| 0x1014                | FAULT_RAM_CHECKERBOARD_C2 | An error occurred during the checkerboard test of MC2.                            |                             |
| 0x1021                | FAULT_GLBL_TMR            | The global timer is not working correctly.                                        | 125 µs                      |
| 0x1031                | FAULT_SPLIM1              | Stack overruns are no longer being intercepted correctly; SPLIM could not be set. |                             |
| 0x1032                | FAULT_SPLIM2              | Stack overruns are no longer being intercepted correctly.                         |                             |
| 0x1100                | FAULT_OPCT_GRP_C1         | The Opcode test has failed, see OpCodeTest.s for error number                     |                             |
| 0x1300                | FAULT_OPCT_GRP_C2         | The Opcode test of MC2 has failed, see OpCodeTest.s for error number              |                             |
| 0x1801                | FAULT_ESS_CRC_C1          | Different check sums were determined in the TwinSAFE telegrams                    |                             |
| 0x1802                | FAULT_ESS_CRC_C2          | Different check sums were determined in the TwinSAFE telegrams                    |                             |
| 0x1803                | FAULT_SW_MAIN1_C1         | The default case of the main loop of C1 was called.                               |                             |
| 0x1804                | FAULT_SW_MAIN1_C2         | The default case of the main loop of C2 was called.                               |                             |
| 0x1805                | FAULT_ESLCONID_PRJCRCRD   | The Connection ID is not zero when reading the project CRC.                       |                             |
| 0x1806                | FAULT_ESLCONID_PRJCRCWR   | The Connection ID is not zero when writing the project CRC.                       |                             |
| 0x1807                | FAULT_SIZE_EEVONDOR_EXID  | An address was accessed that lies outside the vendor range in the EEPROM.         |                             |
| 0x5100                | FAULT_COM_C1C2            | Communication between µC1 and µC2 is disturbed.                                   |                             |
| 0x5101                | FAULT_ISR_SNT_FEEDBACK    | High priority ISR: communication interrupted: switched mode power supply feedback | 125 µs                      |
| 0x5102                | FAULT_ISR_ANGLE_K1        | High priority ISR: communication interrupted: axis 1 angle                        | 125 µs                      |
| 0x5103                | FAULT_ISR_ANGLE_K2        | High priority ISR: communication interrupted: axis 2 angle                        | 125 µs                      |
| 0x5104                | FAULT_ISR_DELTA_K1        | High priority ISR: communication interrupted: axis 1 distance travelled           | 125 µs                      |
| 0x5105                | FAULT_ISR_DELTA_K2        | High priority ISR: communication interrupted: axis 2 distance travelled           | 125 µs                      |
| 0x5106                | FAULT_ISR_VELO_K1         | High priority ISR: communication interrupted: axis 1 velocity                     | 125 µs                      |
| 0x5107                | FAULT_ISR_VELO_K2         | High priority ISR: communication interrupted: axis 2 velocity                     | 125 µs                      |

| Error index in 0xFA82 | Error name                           | Description                                                                                   | Typical error reaction time |
|-----------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|
| 0x5108                | FAULT_ISR_TEST_FEEDBACK              | High priority ISR: communication interrupted: feedback from switch-off channels               | 125 µs                      |
| 0x5109                | FAULT_TIMEOUT_REG_AX5000_C<br>ONTROL | Register communication: AX5000 does not answer in time: Control word                          |                             |
| 0x510A                | FAULT_TIMEOUT_REG_AX5000_S TATUS     | Register communication: AX5000 does not answer in time: Status word                           |                             |
| 0x510B                | FAULT_TIMEOUT_REG_AX5000_R<br>EGADR  | Register communication: AX5000 does not answer in time: Register address                      |                             |
| 0x510C                | FAULT_TIMEOUT_REG_AX5000_R<br>EGDATA | Register communication: AX5000 does not answer in time: Register data                         |                             |
| 0x510D                | FAULT_TIMEOUT_REG_AX5000_C<br>RC     | Register communication: AX5000 does not answer in time: CRC                                   |                             |
| 0x510E                | FAULT_UNKNOWN_AX5000_INTER<br>FACE   | Register communication: unknown interface to the AX5000                                       |                             |
| 0x510F                | FAULT_COMERROR_AX5000_INTE<br>RFACE  | Register communication: the interface to the AX5000 has a communication error                 |                             |
| 0x5110-<br>0x5113     | FAULT_WRITE_HW_VERSION_AX5<br>805    | Register communication: hardware version could not be written to the register in the AX5000   |                             |
| 0x5114                | FAULT_EXT_ADC_ADDRESS                | High priority ISR: external ADC: an impermissible address was read                            |                             |
| 0x5115                | FAULT_REGISTER_AX5000_CRC_<br>ERROR  | Register communication with the AX5000: telegram has a CRC error.                             |                             |
| 0x5116                | FAULT_CYCLIC_AX5000_CRC_ER<br>ROR    | High priority ISR: cyclic communication with the AX5000: telegram has a CRC error.            | 125 µs                      |
| 0x5117                | FAULT_UNKNOWN_REGISTER_AD DRESS      | Register communication: Addressed register is unknown                                         |                             |
| 0x5118                | FAULT_AX5000_NOT_READY               | High priority ISR: cyclic communication with the AX5000: AX5000 signals a communication error | 125 µs                      |
| 0x5119                | FAULT_C1C2_SYNC_LOST                 | High priority ISR: cyclic communication between μC1 and μC2: Communication error              | 125 µs                      |
| 0x5C00                | FAULT_SET_MAPPED_STATE               | Mapped safety functions: error while setting the state                                        |                             |
| 0x5C01                | FAULT_RESET_MAPPED_STATE             | Mapped safety functions: error while resetting the state                                      |                             |
| 0x5C02                | FAULT_MAPPED_FUNCTION                | Mapped safety functions: invalid mapping, function does not exist.                            |                             |
| 0x5C03                | FAULT_MAPPED_INSTANCE                | Mapped safety functions: invalid mapping, instance does not exist.                            |                             |
| 0x5E02                | FAULT_STO_MODE                       | The requested STO mode is invalid                                                             |                             |
| 0x5E04                | FAULT_UNDEFINED_ERRORREAC TION       | Error reaction: invalid error reaction, error reaction does not exist                         |                             |
| 0x5E03                | FAULT_SDI_MODE                       | The requested SDI mode is invalid.                                                            |                             |
| 0x5F00                | FAULT_CRC_COMPARE_C1                 | An incorrect checksum was determined when comparing with C1                                   |                             |
| 0x5F01                | FAULT_CRC_COMPARE_C2                 | An incorrect checksum was determined when comparing with C2                                   |                             |

| Error index in 0xFA82 | Error name                            | Description                                                                                                                                                                          | Typical error reaction time |
|-----------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 0x5F02                | FAULT_TMR2_INTERRUPT_C1               | MC_Test: Timer2 has triggered an interrupt on μC1. HighPrioISR was not called in time                                                                                                |                             |
| 0x5F03                | FAULT_TMR2_INTERRUPT_C2               | MC_Test: Timer2 has triggered an interrupt on μC2. HighPrioISR was not called in time                                                                                                |                             |
| 0x5F04                | FAULT_SWITCHOFF_TEST                  | MC_Test: the test of the switch-off channels has failed                                                                                                                              |                             |
| 0x5F05                | FAULT_NO_SYNC                         | No SYNC signal                                                                                                                                                                       |                             |
| 0x5F06                | FAULT_UNKNOWN_AXLE                    | The requested axis is unknown!                                                                                                                                                       |                             |
| 0x5F07                | FAULT_FPGA_C2                         | The status of the FPGA is incorrect                                                                                                                                                  |                             |
| 0x5F08                | FAULT_ANGLE_FORMAT_C1                 | The angles of C1 read-in have the wrong format.                                                                                                                                      | 125 µs                      |
| 0x5F09                | FAULT_ANGLE_FORMAT_C2                 | The angles of C2 read-in have the wrong format.                                                                                                                                      | 125 µs                      |
| 0x5F0A                | FAULT_SAFE_MAIN_STATE                 | Unknown state requested                                                                                                                                                              |                             |
| 0x5F0B                | FAULT_STARTUP_FAILED                  | Error during start-up.                                                                                                                                                               |                             |
| 0x5F0C                | FAULT_MOTION_DETECTION                | Motion detection error                                                                                                                                                               | 125 µs                      |
| 0x6000                | FAULT_PARAMETER_<br>FSOE_VENDOR_ID    | Wrong Vendor ID transmitted                                                                                                                                                          |                             |
| 0x6001                | FAULT_PARAMETER_<br>FSOE_MODULE_IDENT | Wrong Module ID transmitted                                                                                                                                                          |                             |
| 0x6002                | FAULT_PARAMETER_FSOE_CRC              | CRC of the AX5805 parameters do not fit to the transmitted CRC (Please check parameters and activate system manager configuration and load safety configuration to the EL69xx again) |                             |

# 4.2 Reason for shut-down CoE Objects 0xFA10:07 and 0xFA10:08

In order to determine the reason for shut-down, the sub-index 01 for the CoE Object 0xFA10 must be set to 0.

| Value in<br>0xFA10:07<br>Reason for Axis 1<br>0xFA10:08 | Description                                                                                                           |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Reason for Axis 2                                       |                                                                                                                       |  |
| 0xXX00                                                  | Error reaction: no error reaction                                                                                     |  |
| 0xXX40                                                  | Error reaction: STO (Safe Torque Off)                                                                                 |  |
| 0xXX50                                                  | Error reaction: SS1 (Safe Stop 1)                                                                                     |  |
| 0x01XX                                                  | Reason: the status word was calculated incorrectly                                                                    |  |
| 0x02XX                                                  | Reason: the parameters are incorrect or haven't been loaded                                                           |  |
| 0x03XX                                                  | Reason: the FSOE-Protocol is not in the DATA state                                                                    |  |
| 0x04XX                                                  | Reason: the internal comparison has failed. Re-check the motor and drive dimensioning and parameterization            |  |
| 0x05XX                                                  | Reason: External Position Reference Cam was detected in an unexpected location.                                       |  |
| 0x06XX                                                  | Reason position detection: the External Position Reference Cam was detected at a position greater than the cam window |  |
| 0x07XX                                                  | Reason position detection: the External Position Reference Cam was detected at a position less than the cam window    |  |
| 0x08XX                                                  | Reason position detection: the axis has exceeded the defined maximum allowable position range                         |  |
| 0x50XX                                                  | Reason safety function: the safety function SS1 has been turned off                                                   |  |
| 0x68XX                                                  | Reason safety function: the safety function SOS has been turned off.                                                  |  |
| 0x80XX                                                  | Reason safety function: the safety function SSR has been turned off.                                                  |  |
| 0x90XX                                                  | Reason safety function: the safety function SLS has been turned off.                                                  |  |
| 0xA0XX                                                  | Reason safety function: the safety function SLP has been turned off.                                                  |  |
| 0xA8XX                                                  | Reason safety function: the safety function SMS has been turned off.                                                  |  |
| 0xB8XX                                                  | Reason safety function: the safety function SLI has been turned off.                                                  |  |
| 0xC0XX                                                  | Reason safety function: the safety function SAR has been turned off.                                                  |  |
| 0xC8XX                                                  | Reason safety function: the safety function SMA has been turned off.                                                  |  |
| 0xD0xx                                                  | Reason safety function: the safety function SDIp has been turned off.                                                 |  |
| 0xD1xx                                                  | Reason safety function: the safety function SDIn has been turned off.                                                 |  |

# 4.3 Diagnose CoE Object 0xFA10

The CoE Object 0xFA10 supplies the user with additional diagnostic information. When sub-index 01 is set to one of the values in the headings below, sub-indices 02 to 08 show the information in the corresponding table.

The error and diagnostic values correspond to the information described in Chapter 4.2 .

# $4.3.1 \quad 0xFA10:01 = 0$

| Index in 0xFA10 | Name                        | Description          |
|-----------------|-----------------------------|----------------------|
| 0xFA10:02       | -                           | -                    |
| 0xFA10:03       | Internal Data               | -                    |
| 0xFA10:04       | Internal Data               | -                    |
| 0xFA10:05       | Software CRC C1             | -                    |
| 0xFA10:06       | Software CRC C2             | -                    |
| 0xFA10:07       | Reason for shut-down Axis 1 | Refer to Chapter 4.2 |
| 0xFA10:08       | Reason for shut-down Axis 2 | Refer to Chapter 4.2 |

# 4.3.2 0xFA10:01 = 1

| Index in 0xFA10 | Name          | Description          |
|-----------------|---------------|----------------------|
| 0xFA10:02       | Error 1 in C1 | Refer to Chapter 4.2 |
| 0xFA10:03       | Error 2 in C1 |                      |
| 0xFA10:04       | Error 3 in C1 |                      |
| 0xFA10:05       | Error 4 in C1 |                      |
| 0xFA10:06       | Error 5 in C1 |                      |
| 0xFA10:07       | Error 6 in C1 |                      |
| 0xFA10:08       | Error 7 in C1 |                      |

# 4.3.3 0xFA10:01 = 2

| Index in 0xFA10 | Name           | Description          |
|-----------------|----------------|----------------------|
| 0xFA10:02       | Error 8 in C1  | Refer to Chapter 4.2 |
| 0xFA10:03       | Error 9 in C1  |                      |
| 0xFA10:04       | Error 10 in C1 |                      |
| 0xFA10:05       | Error 11 in C1 |                      |
| 0xFA10:06       | Error 12 in C1 |                      |
| 0xFA10:07       | Error 13 in C1 |                      |
| 0xFA10:08       | Error 14 in C1 |                      |

# 4.3.4 0xFA10:01 = 3

| Index in 0xFA10 | Name          | Description          |
|-----------------|---------------|----------------------|
| 0xFA10:02       | Error 1 in C2 | Refer to Chapter 4.2 |
| 0xFA10:03       | Error 2 in C2 |                      |
| 0xFA10:04       | Error 3 in C2 |                      |
| 0xFA10:05       | Error 4 in C2 |                      |
| 0xFA10:06       | Error 5 in C2 |                      |
| 0xFA10:07       | Error 6 in C2 |                      |
| 0xFA10:08       | Error 7 in C2 |                      |

# 4.3.5 0xFA10:01 = 4

| Index in 0xFA10 | Name           | Description          |
|-----------------|----------------|----------------------|
| 0xFA10:02       | Error 8 in C2  | Refer to Chapter 4.2 |
| 0xFA10:03       | Error 9 in C2  |                      |
| 0xFA10:04       | Error 10 in C2 |                      |
| 0xFA10:05       | Error 11 in C2 |                      |
| 0xFA10:06       | Error 12 in C2 |                      |
| 0xFA10:07       | Error 13 in C2 |                      |
| 0xFA10:08       | Error 14 in C2 |                      |

# 4.3.6 0xFA10:01 = 5

| Index in<br>0xFA10 | Name                     | Description          |
|--------------------|--------------------------|----------------------|
| 0xFA10:02          | Diagnostic value 1 in C1 | Refer to Chapter 4.2 |
| 0xFA10:03          | Diagnostic value 2 in C1 |                      |
| 0xFA10:04          | Diagnostic value 3 in C1 |                      |
| 0xFA10:05          | Diagnostic value 4 in C1 |                      |
| 0xFA10:06          | Diagnostic value 5 in C1 |                      |
| 0xFA10:07          | Diagnostic value 6 in C1 |                      |
| 0xFA10:08          | Diagnostic value 7 in C1 |                      |

# 4.3.7 0xFA10:01 = 6

| Index in 0xFA10 | Name                      | Description          |
|-----------------|---------------------------|----------------------|
| 0xFA10:02       | Diagnostic value 8 in C1  | Refer to Chapter 4.2 |
| 0xFA10:03       | Diagnostic value 9 in C1  |                      |
| 0xFA10:04       | Diagnostic value 10 in C1 |                      |
| 0xFA10:05       | Diagnostic value 11 in C1 |                      |
| 0xFA10:06       | Diagnostic value 12 in C1 |                      |
| 0xFA10:07       | Diagnostic value 13 in C1 |                      |
| 0xFA10:08       | Diagnostic value 14 in C1 |                      |

# 4.3.8 0xFA10:01 = 7

| Index in 0xFA10 | Name                     | Description          |
|-----------------|--------------------------|----------------------|
| 0xFA10:02       | Diagnostic value 1 in C2 | Refer to Chapter 4.2 |
| 0xFA10:03       | Diagnostic value 2 in C2 |                      |
| 0xFA10:04       | Diagnostic value 3 in C2 |                      |
| 0xFA10:05       | Diagnostic value 4 in C2 |                      |
| 0xFA10:06       | Diagnostic value 5 in C2 |                      |
| 0xFA10:07       | Diagnostic value 6 in C2 |                      |
| 0xFA10:08       | Diagnostic value 7 in C2 |                      |

# 4.3.9 0xFA10:01 = 8

| Index in<br>0xFA10 | Name                      | Description          |
|--------------------|---------------------------|----------------------|
| 0xFA10:02          | Diagnostic value 8 in C2  | Refer to Chapter 4.2 |
| 0xFA10:03          | Diagnostic value 9 in C2  |                      |
| 0xFA10:04          | Diagnostic value 10 in C2 |                      |
| 0xFA10:05          | Diagnostic value 11 in C2 |                      |
| 0xFA10:06          | Diagnostic value 12 in C2 |                      |
| 0xFA10:07          | Diagnostic value 13 in C2 |                      |
| 0xFA10:08          | Diagnostic value 14 in C2 |                      |

# 4.4 Maintenance

The TwinSAFE Drive option cards do not contain serviceable parts.



### The specified environmental conditions must be observed

TwinSAFE option cards must only be stored and operated under the specified conditions (see technical data). There are no user serviceable parts on the AX5805.

If the terminal is operated outside the permitted temperature range it will switch to the Global Fault state.

# 4.4.1 Cleaning the AX5805

The TwinSAFE Drive option card must be protected from unacceptable contamination during operation and storage. If the option card becomes contaminated, it may not be used any further.



### Having contaminated TwinSAFE Drive option cards checked

Do not attempt to clean the TwinSAFE Drive option card. If the option card becomes contaminated, return it to the manufacturer for decontamination and re-testing.

# 4.4.2 Lifespan and proof tests

The TwinSAFE Drive option cards have a service lifespan of 20 years.

Due to the high diagnostic coverage within the lifecycle, no special proof tests are required.

# 4.5 Decommissioning



### Ensure that the power is switched off before de-installation!

Place the AX5000 into a safe, de-energized state before attempting to remove the TwinSAFE Drive option card.

# 4.5.1 Disposal

Before the TwinSAFE Drive option card can be disposed, it must be removed and destroyed. Metal parts can be recycled as appropriate. Electronic parts such as circuit boards must be disposed of in accordance with local regulations.

# 5 Appendix

# 5.1 Beckhoff Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

# 5.1.1 Beckhoff branches and partner companies Beckhoff Support

Please contact your Beckhoff branch office or partner company for <u>local support and service</u> on Beckhoff products!

The contact addresses for your country can be found in the list of Beckhoff branches and partner companies: www.beckhoff.com. You will also find further documentation for Beckhoff components there.

# 5.1.2 Beckhoff company headquarters

Beckhoff Automation GmbH Eiserstr. 5 33415 Verl Germany

Phone: +49 (0) 5246/963-0

Fax: + 49 (0) 5246/963-198 E-mail: info@beckhoff.com Web: www.beckhoff.com

# **Beckhoff Support**

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- world-wide support
- design, programming and commissioning of complex automation systems
- and extensive training program for Beckhoff system components

Hotline: + 49 (0) 5246/963-157 Fax: + 49 (0) 5246/963-9157 E-mail: support@beckhoff.com

#### **Beckhoff Service**

The Beckhoff Service Center supports you in all matters of after-sales service:

- on-site service
- repair service
- spare parts service
- hotline service

Hotline: + 49 (0) 5246/963-460 Fax: + 49 (0) 5246/963-479 E-mail: service@beckhoff.com

# 5.2 Certificate



# CERTIFICATE

No. Z10 12 01 62386 014

Holder of Certificate: BECKHOFF Automation GmbH

Eiserstraße 5 33415 Verl GERMANY

Factory(ies): 62386

**Certification Mark:** 



Product: Safety components

Model(s): AX5805 for use in AX5000-0000-0200-Series

Parameters: Safety Functions:

STO, SS1, SS2, SOS, SLS, SSM, SSR, SMS, SLP, SCA, SLI, SAR,

SMA, SDI

PL e, CAT 4 (EN ISO 13849)

SIL 3 (EN 61508) SILCL 3 (EN 62061)

Tested 2006/42/EC

according to: EN ISO 13849-1:2008 (CAT 4, PL e)

EN 61508-1:2001 (SIL 3) EN 61508-2:2001 (SIL 3) EN 61508-3:2001 (SIL 3) EN 61508-4:2001 (SIL 3) EN 62061:2005 (SILCL 3) EN 61800-5-2:2007 EN 61326-3-1:2008 IEC 61784-3:2010

The product was tested on a voluntary basis and complies with the essential requirements. The certification mark shown above can be affixed on the product. It is not permitted to alter the certification mark in any way. In addition the certification holder must not transfer the certificate to third parties. See also notes overleaf.

**Test report no.:** BV83877T **Valid until:** 2017-02-01

Date, 2012-02-02 (Günter Greil)

Page 1 of 1

772183

TÜV SÜD Product Service GmbH · Zertifizierstelle · Ridlerstraße 65 · 80339 München · Germany

TÜV®