Abschlussprüfung 2015 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Name:	Vorname:
Klasse	: Platzziffer: Punkte:
	Aufgabe A 1 Haupttermin
A 1.0	Gegeben sind rechtwinklige Dreiecke AB _n M mit
	$\overline{AM} = 4 \text{ cm} \text{ und den Hypotenusen } [AB_n].$
	Die Winkel B _n AM haben das Maß φ mit
	$\phi \in]30^{\circ}; 90^{\circ}[$.
	Der Kreis k mit dem Mittelpunkt M und dem Radius
	$r = \overline{MC} = 2 \text{ cm}$ schneidet die Seite [AM] im Punkt D
	und die Seiten [B _n M] im Punkt C. Skizze
	Runden Sie im Folgenden auf zwei Stellen nach dem Komma.
A 1.1	Berechnen Sie die Länge der Seite $[AB_1]$ für $\phi = 54^{\circ}$.
	1.0
. 1.0	D' E' AR CR II I II G I [AR] [AR] I [R C]
A 1.2	Die Figuren AB _n CD, die durch die Strecken [AD], [AB _n] und [B _n C] sowie
	durch den Kreisbogen DC begrenzt sind, rotieren um die Gerade AM.
	Zeigen Sie durch Rechnung, dass für das Volumen V der entstehenden Rotationskörper in Abhängigkeit von φ gilt: $V(\varphi) = \frac{16}{3} \cdot \pi \cdot (4 \cdot \tan^2 \varphi - 1) \text{ cm}^3$.
	3 P
A 1.3	Berechnen Sie das Volumen des entstehenden Rotationskörpers für $\phi = 54^{\circ}$.
	1 P

A 2.0 Punkte $A_n(2 \cdot \sin \varphi - 4 \mid 3 \cdot \sin \varphi - 1)$ mit $\varphi \in [0^\circ; 90^\circ]$ legen zusammen mit den Punkten $B(-2 \mid -3)$ und $D(2 \mid 3)$ Parallelogramme A_nBC_nD fest.

A 2.1 In das Koordinatensystem zu A 2.0 ist das Parallelogramm A_1BC_1D für $\phi=0^\circ$ eingezeichnet.

Berechnen Sie die Koordinaten des Punktes A_2 für $\phi = 90^{\circ}$ und zeichnen Sie sodann das Parallelogramm A_2BC_2D ein.

A 2.2 Zeigen Sie rechnerisch, dass für den Trägergraphen t der Punkte A_n gilt: $y = \frac{3}{2}x + 5 \ \big(\ \mathbb{G} = \mathbb{IR} \times \mathbb{IR} \, \big).$

Zeichnen Sie den Trägergraphen t in das Koordinatensystem zu A 2.0 ein.

A 2.3 Begründen Sie, dass die Flächeninhalte A aller Parallelogramme A_nBC_nD maßgleich sind.

- A 3.0 Gegeben ist die Funktion f_1 mit der Gleichung $y = log_2(x+2) + 1$ ($G = IR \times IR$).
- A 3.1 Geben Sie die Definitionsmenge der Funktion f_1 an.

A 3.2 Bestimmen Sie die nach y aufgelöste Gleichung der Umkehrfunktion zu f₁.

A 3.3 Der Graph der Funktion f_2 hat eine Gleichung der Form $y = \log_2(-x + a) + 3$ ($G = IR \times IR$; $a \in IR$) und schneidet den Graphen der Funktion f_1 auf der y-Achse. Bestimmen Sie den zugehörigen Wert für a.

Abschlussprüfung 2015

an den Realschulen in Bayern

3 P

4 P

2 P

2 P

3 P

3 P

Prüfungsdauer: 150 Minuten

Mathematik I

Aufgabe B 1 Haupttermin

- B 1.0 Gegeben ist die Funktion f_1 mit der Gleichung $y = 0.75^{x+2} 3$ ($G = \mathbb{R} \times \mathbb{R}$).
- B 1.1 Geben Sie die Definitions- und Wertemenge der Funktion f_1 an.

 Zeichnen Sie sodann den Graphen zu f_1 für $x \in [-9; 4]$ in ein Koordinatensystem.

 Für die Zeichnung: Längeneinheit 1 cm; $-9 \le x \le 5$; $-4 \le y \le 8$

B 1.2 Der Graph der Funktion f_1 wird durch orthogonale Affinität mit der x-Achse als Affinitätsachse und dem Affinitätsmaßstab k=-2 sowie anschließende Parallelverschiebung mit dem Vektor $\overrightarrow{v} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ auf den Graphen der Funktion f_2 abgebildet.

Zeigen Sie rechnerisch, dass die Funktion f_2 die Gleichung $y = -2 \cdot 0,75^{x+4} + 7$ besitzt $(G = IR \times IR)$ und zeichnen Sie sodann den Graphen zu f_2 für $x \in [-9;4]$ in das Koordinatensystem zu B 1.1 ein.

B 1.3 Punkte $A_n(x|0,75^{x+2}-3)$ auf dem Graphen zu f_1 und Punkte $C_n(x|-2\cdot 0,75^{x+4}+7)$ auf dem Graphen zu f_2 haben dieselbe Abszisse x und sind für x>-6,61 zusammen mit Punkten B_n und D_n die Eckpunkte von Drachenvierecken $A_nB_nC_nD_n$. Die Strecken $[A_nC_n]$ liegen auf den Symmetrieachsen der Drachenvierecke $A_nB_nC_nD_n$.

Es gilt: $\overrightarrow{A_n} \overrightarrow{B_n} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Zeichnen Sie das Drachenviereck $A_1B_1C_1D_1$ für x=-5 und das Drachenviereck $A_2B_2C_2D_2$ für x=1 in das Koordinatensystem zu B 1.1 ein.

B 1.4 Bestätigen Sie durch Rechnung, dass für die Länge der Strecken $[A_n C_n]$ in Abhängigkeit von der Abszisse x der Punkte A_n gilt: $\overline{A_n C_n}(x) = (-2,125 \cdot 0,75^{x+2} + 10)$ LE.

B 1.5 Unter den Drachenvierecken $A_nB_nC_nD_n$ gibt es die Raute $A_3B_3C_3D_3$.

Berechnen Sie die Koordinaten des Punktes B_3 auf zwei Stellen nach dem Komma gerundet.

B 1.6 Zeigen Sie, dass für den Flächeninhalt A der Drachenvierecke $A_n B_n C_n D_n$ in Abhängigkeit von der Abszisse x der Punkte A_n gilt: $A(x) = (-6,375 \cdot 0,75^{x+2} + 30) FE$. Begründen Sie sodann, dass für den Flächeninhalt aller Drachenvierecke $A_n B_n C_n D_n$ gilt: $A < 30 \ FE$.

Bitte wenden!

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2015

an den Realschulen in Bayern

Mathematik I

Aufgabe B 2

Haupttermin

B 2.0 Das gleichschenklige Trapez ABCD hat die parallelen Seiten [AD] und [BC]. Der Mittelpunkt der Seite [AD] ist der Punkt K, der Mittelpunkt der Seite [BC] ist der Punkt L. Das Trapez E ABCD ist die Grundfläche des geraden Prismas ABCDEFGH (siehe Skizze). Der Punkt E liegt senkrecht über dem Punkt A.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie ein Schrägbild des Prismas ABCDEFGH, wobei [KL] auf der Schrägbildachse und der Punkt K links vom Punkt L liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

2 P

B 2.2 Der Mittelpunkt der Kante [EH] ist der Punkt M, der Mittelpunkt der Kante [FG] ist der Punkt N. Für den Punkt S auf [MN] gilt: $\overline{SN} = 2 \text{ cm}$.

Punkte P_n auf [KS] bilden zusammen mit den Punkten K und L Dreiecke KLP $_n$. Die Winkel P_n LK haben das Maß ϕ mit $\phi \in]0^\circ;74,05^\circ]$.

Zeichnen Sie die Strecke [MN], den Punkt S sowie das Dreieck KLP_1 für $\phi=45^\circ$ in das Schrägbild zu B 2.1 ein.

Bestätigen Sie rechnerisch, dass der Winkel LKS das Maß 60,26° hat.

3 P

B 2.3 Zeigen Sie durch Rechnung, dass für die Länge der Strecken [LP_n] in Abhängigkeit $von \ \phi \ gilt: \ \overline{LP_n} \big(\phi \big) = \frac{5,21}{\sin \big(\phi + 60,26^\circ \big)} \, cm \ .$

Geben Sie die minimale Länge der Strecken [LPn] an.

3 P

B 2.4 Unter den Dreiecken KLP_n gibt es das gleichschenklige Dreieck KLP₂ mit der Basis [KP₂]. Berechnen Sie die Länge der Strecke [KP₂].

2 P

B 2.5 Die Punkte P_n sind die Spitzen von Pyramiden ABCD P_n mit den Höhen $\left[P_nT_n\right]$ und T_n auf der Strecke $\left[KL\right]$. Zeichnen Sie die Pyramide ABCD P_1 und ihre Höhe $\left[P_1T_1\right]$ in das Schrägbild zu B 2.1 ein.

Zeigen Sie sodann rechnerisch, dass für das Volumen V der Pyramiden ABCDP_n in

Abhängigkeit von φ gilt: $V(\varphi) = \frac{104, 20 \cdot \sin \varphi}{\sin (\varphi + 60, 26^{\circ})} \text{ cm}^{3}$.

3 P

B 2.6 Die Pyramide BCGFP₃ mit der rechteckigen Grundfläche BCGF und der Spitze P₃ hat dasselbe Volumen wie die Pyramide ABCDP₃.

Berechnen Sie den zugehörigen Wert für φ.