

Этикетка

КСНЛ.431279.008 ЭТ

Микросхема 1564ЛП23Т1ЭП

Микросхема интегральная 1564ЛП23Т1ЭП

Функциональное назначение:

Четыре элемента мажоритарной логики «2 из 3» с тремя состояниями на выходах

Условное графическое обозначение

Схема расположения выводов Номера выводов показаны условно

Таблица назначения выводов

№	Обозначение	Назначение вывода	N₂	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	EZ	Вход управления тре- тьим состоянием выхода	11	Y3	Выход четвертого канала
2	A0	Первый вход данных первого канала	12	Y2	Выход третьего канала
3	В0	Второй вход данных первого канала	13	C3	Третий вход данных четвертого канала
4	C0	Третий вход данных первого канала	14	В3	Второй вход данных четвертого канала
5	A1	Первый вход данных второго канала	15	A3	Первый вход данных четвертого канала
6	B1	Второй вход данных второго канала	16	C2	Третий вход данных третьего канала
7	C1	Третий вход данных второго канала	17	B2	Второй вход данных третьего канала
8	Y0	Выход первого канала	18	A2	Первый вход данных третьего канала
9	Y1	Выход второго канала	19	M	Вход управления
10	0V	Общий	20	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25+10 °C)

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)				
	Буквенное	Ној	ома	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при:				
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B} I_{O}=20 \text{ MKA}$	$U_{OL\;max}$	-	0,10	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 мкА		-	0,10	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		=	0,10	
при:				
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 mA		=	0,26	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		=	0,26	
2. Минимальное выходное напряжение высокого уровня, В, при:				
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B} I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-	
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 MKA		4,4	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-	
при:				
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 6,0 mA		4,0	-	
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		5,5	-	
3. Входной ток низкого уровня, мкА, при:				
U_{CC} = 6,0 B, U_{IL} = 0 B, U_{IH} = U_{CC}	${ m I}_{ m IL}$	=	/-0,1/	
4. Входной ток высокого уровня, мкА, при:				
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	=	0,1	
5. Ток потребления, мкА, при		·		
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	8,0	
6. Выходной ток низкого уровня в состоянии «Выключено», мкА, при:				
$U_{CC} = 6.0 \text{ B}, U_{IH} = 4.2 \text{ B}$	I_{OZL}	-	/-0,5/	

7. Выходной ток высокого уровня в состоянии «Выключено», мкА, при:	I_{OZH}	-	0,5
$U_{CC} = 6.0 \text{ B}, U_{IH} = 4.2 \text{ B}$			
8. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 10 \text{ M}\Gamma\text{u}$	I_{OCC}	-	20,0
9. Время задержки распространения от выводов A_{I} , B_{I} , C_{I} , до вывода Y_{1} , нс,			
М=0 при:	t_{PHL1}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ n}\Phi$	t_{PLH1}	-	96
$U_{CC} = 4.5 \text{ B}, C_L = 50 \Pi\Phi$		-	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \Pi\Phi$		-	20
10. Время задержки распространения от выводов А ₁ , до вывода Y ₁ , нс,			
М=1 при:	$t_{\mathrm{PHL}2}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{\rm PLH2}$	-	96
$U_{CC} = 4.5 \text{ B}, C_L = 50 \Pi\Phi$		-	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \Pi\Phi$		-	20
11. Время задержки распространения от вывода М до вывода Y ₁ , нс, при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{ m PHL}$	-	120
$U_{CC} = 4.5 \text{ B}, C_L = 50 \pi\Phi$	$t_{\rm PLH3}$	-	30
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		ı	25
12. Время задержки распространения сигнала при переходе из состояния	t_{PLZ}		
низкого уровня в состояние «Выключено» и из состояния «Выключено» в	t_{PZL}		
состояние низкого уровня, нс, при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ п}\Phi, R_{L=}1 \text{ кOm}$		-	96
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ пФ}, R_{L=} 1 \text{ кОм}$		-	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi, R_{L=}1 \text{кOm}$		ı	20
13. Время задержки распространения сигнала при переходе из состояния			
высокого уровня в состояние «Выключено» и из состояния «Выключено» в	t_{PHZ}		
состояние высокого уровня, нс, при:	t_{PZH}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ п}\Phi, R_{L=}1 \text{ кOm}$		-	96
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ п}\Phi, R_{L=}1 \text{кOm}$		-	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi, R_{L=}1 \text{ кOm}$		-	20
14. Входная емкость, пФ	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г.

серебро г.

в том числе:

золото г/мм
на 20 выводах длиной мм.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при $\gamma = 99\%$ при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте $3И\Pi$, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-31ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛП23Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-31ТУ и признаны годными для эксплуатации.

Приняты по (извещение, акт и	от (дата)	
Место для штампа ОТК		Место для штампа ПЗ
Место для штампа « Перепро	» (дата)	
Приняты по (извещение, акт	т и др.) от (дата)	_
Место для штампа ОТК		Место для штампа П

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ