GSFC The Thermal Infrared Investigation on Cassini: A Challenge for Laboratory Studies

D.E. Jennings, C.A. Nixon, F.M. Flasar, V.G. Kunde and A. Coustenis

Presented at EGU 2010: Spectroscopy and Radiative Transfer in Planetary Atmospheres Vienna, 5 May 2010

CIRS

CIRS Development Team at Goddard in 1996

Location of CIRS on Cassini

CIRS

CASSINI REMOTE SENSING SPECTRAL COVERAGE

MID-IR

Michelson

Instrument Description

Telescope Diameter (cm): 50.8

Interferometers: FAR-IR

Type: Polarizing

 Spectral range (cm⁻¹):
 10 - 650
 600 -1450

 Spectral range (microns):
 15.4 - 1000
 6.9 -16.6

 Spectral resolution (cm⁻¹):
 0.5 to 20
 0.5 to 20

Integration time (sec): 2 to 50 2 to 50

FOCAL PLANES: <u>FP1</u> <u>FP3</u> <u>FP4</u>

10 - 650 600 - 1125 1100 - 1450 Spectral range (cm⁻¹) **Detectors** Thermopile PC HgCdTe PV HgCdTe **Pixels** 2 1 x 10 1 X 10 3.9 0.273 0.273 Pixel FOV (mrad)

Peak D*(cm hz^{1/2} W⁻¹) 4 x 10⁹ 2 x 10¹⁰ 5 x 10¹¹

Data Telemetry Rate (kbs) 2, 4
Instrument Temperature (K) 170
Focal Planes 3 & 4 Temperature (K) 75 - 90

GSFC CIRS CIRS on **RSP** 5 May 2010 dej-6

CIRS Ready for Thermal-Vacuum Testing

Module

Electronics

5 May 2010

dej-7

CIRS' Backside

CIRS FOV's Projected on Titan's Limb

Voyager IRIS

Laboratory spectroscopy and Voyager IRIS

Titan FP1 Large Average

CIRS

Titan FP3 Large Average

Titan 60-90N latitude 50-150 tangent height 1006 spectra

CIRS

Titan FP4 Large Average

GSFC CIRS Titan's Atmospheric Haze North polar haze cap

CIRS FP1 spectrum at 0.5 cm⁻¹ resolution

Solid Propionitrile as a candidate for 200 cm⁻¹ feature

CIRS

Amine torsional group frequency as a candidate for 225 cm⁻¹ emission feature

5 May 2010

CIRS

Do group frequencies on heavy molecules contribute to the infrared spectrum?

"Discovery of Heavy Negative Ions in Titan's Ionosphere" From Cassini CAPS; Coates *et al.*, GRL <u>34</u>, L22103 (2007)

CIRS

Identifications of condensed species in Titan from laboratory studies

Carbon isotope enrichment on Titan varies among molecular species

Ethane from CIRS

Carbon-13 Enrichment in Titan' Atmosphere

- Ethane is the main product of the destruction of methane.
- Ethane is $\sim 10\%$ depleted in 13 C compared to methane.

Ethane's δ^{13} C ~ 0 is close to telluric and Solar System values.

CIRS

Is the ¹²C/¹³C enrichment in ethane caused by the kinetic isotope effect?

assume steady-state

$$\frac{^{12}C}{^{13}C}\Big|_{\substack{reservoir\\methane}} \approx KIE \cdot \frac{^{12}C}{^{13}C}\Big|_{\substack{atmosphere\\methane}} \approx \frac{^{12}C}{^{13}C}\Big|_{\substack{atmosphere\\ethane}}$$

- •Ethane is formed from methyl (CH₃), which comes from methane dissociation.
- •At 200-300 km methyl is formed through CCH + $CH_4 = C_2H_2 + CH_3$.
- •The kinetic isotope effect (KIE) might generate the observed ¹²C enrichment in ethane over methane.
- •The near-zero ¹³C-enrichment in ethane implies a primordial origin for the methane reservoir.
- •The KIE in CCH + $CH_4 = C_2H_2 + CH_3$ has not been measured in the lab.

Isotopic species:

CIRS

identification of ¹³C-diacetylene in Titan from laboratory measurements

Laboratory spectra of H¹³CCCCH and HC¹³CCCH

Titan from CIRS observations

Jolly et al., Astrophys. J. <u>714</u>, 852 (2010).

CIRS

Modeling Titan's spectrum requires improved molecular parameters

Missing C₃H₈ hot band in earlier model later fit with improved linelist from laboratory spectroscopy.

Flaud et al., Molec. Phys. in press, (2010)

CIRS

Need for improved molecular parameters from laboratory measurements

1460 cm⁻¹ region. Model residual compared with C₃H₈ lab spectrum.

Pseudo linelist used For $C_2H_6 v_7$.

920 cm⁻¹ region. Model residual compared with C₃H₈ lab spectrum.

Low temperature Spectra needed.

Nixon et al., Plan. Sp. Sci. 57, 1573 (2009).

Ethane v_4 Torsional Band at 288 cm⁻¹ in Titan

