Elements of Statistical Learning 4: Linear Methods for Classification

Fabian Hainzl

appliedAl

1.8.2019

Notation

Notation in these slides follows Elements of Statistical Learning

G(x)	Predictor		
$p_k(x)$	Pr(G = k X = x)		
π_k	Pr(G=k)		
$\hat{f}_k(x) = \hat{\beta}_{k0} + \hat{\beta}_k^T x$	Linear model for k-th output dimension		
K	Number of classes		
N	Number of samples		

Fabian Hainzl

Linear Classification

Classification

Two approaches to supervised learning:

- Regression: Continuous output variable
- Classification: Discrete output variable

Goal of classification

 Divide input space into a collection of regions with constant classification

Linear Regression

Classification

Two approaches to supervised learning:

- Regression: Continuous output variable
- Classification: Discrete output variable

Goal of classification

 Divide input space into a collection of regions with constant classification

Linear Regression

Linear dependence of output on the weights

Linear Classification

Classification

Two approaches to supervised learning:

- Regression: Continuous output variable
- Classification: Discrete output variable

Goal of classification

 Divide input space into a collection of regions with constant classification

Linear Regression

Linear dependence of output on the weights

Linear Classification

Linear decision boundaries

Decision Boundary

Decision boundaries

- Boundaries between regions of different classes
- Points of input space where several classes have same probability

Definition of decision boundary:

$$\{x: (\hat{\beta}_{k0} - \hat{\beta}_{m0}) + (\hat{\beta}_{k} - \hat{\beta}_{m})^{T} x = 0\}$$

Linear classification

Linear classification:

• Decision boundaries are hyperplanes

Linear classification

Linear classification:

Decision boundaries are hyperplanes

This is the case if

- posterior probability Pr(G = k | X = x) is linear in x
- monotone transformation of posterior probability is linear

Generalization to non-linear decision boundaries

Augment feature space by adding squares and cross-products of features

Example for 2 dimensions:

Linear Regression for Classification

- Indicator matrix $\mathbf{Y} \in \mathbb{R}^{\textit{NxK}}$ with one-hot encoded class targets in rows
- Closed-form solution for weight matrix $\mathbf{B} \in \mathbb{R}^{(p+1)xK}$:

$$\hat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

Classification via

$$\hat{f}(x) = \hat{\mathbf{B}}[1, x^T]^T$$

$$\hat{G}(x) = argmax_{k \in \mathcal{G}} \hat{f}_k(x)$$

Problems with Linear Regression Approach

• Limited interpretability of $\hat{f}_k(x)$ as class probability, negative and greater 1 values possible

Problems with Linear Regression Approach

- Limited interpretability of $\hat{f}_k(x)$ as class probability, negative and greater 1 values possible
- Class masking effects

Linear regression

Linear Discriminant Analysis

Effects of Masking

Linear Discriminant Analysis (LDA)

- Class posteriors Pr(G|X) is needed for optimal classification
- With class-conditional density $f_k(x) = Pr(X = x | G = k)$ and prior $\pi_k = Pr(G = k)$,

Linear Discriminant Analysis (LDA)

- Class posteriors Pr(G|X) is needed for optimal classification
- With class-conditional density $f_k(x) = Pr(X = x | G = k)$ and prior $\pi_k = Pr(G = k)$,

$$Pr(G = k|X = x) = \frac{f_k(x)\pi_k}{\sum_{j=1}^{K} f_j(x)\pi_j}$$

• LDA assumes mutliavriate Gaussians as class conditional densities with common covariance matrices $\Sigma_k = \Sigma \forall k \in K$

Estimate Parameters of Gaussian Distribution

with

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k)}$$

$$\hat{\pi}_k = \frac{N_k}{N}$$

$$\hat{\mu}_k = \sum_{g_i = k} \frac{x_i}{N_k}$$

$$\hat{\Sigma} = \sum_{k=0}^{K} \sum_{j=0}^{K} \frac{(x_i - \hat{\mu}_k)(x_i - \hat{\mu}_k)^T}{N_k K_k}$$

Linear Discriminant Functions

 To compare two classes j and k, it sufficies to compare log ratio:

$$\log \frac{Pr(G = j|X = x)}{Pr(G = k|X = x)}$$

$$= \log \frac{\pi_j}{\pi_k} - \frac{1}{2} (\mu_j + \mu_k)^T \Sigma^{-1} (\mu_j - \mu_k) + x^T \Sigma^{-1} (\mu_k - \mu_l)$$

Decision rule can be formulated as

$$G(x) = \operatorname{argmax}_k \delta_k(x)$$

with

$$\delta_k(x) = \log \pi_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + x^T \Sigma^{-1} \mu_k$$

LDA Result

Bayes decision boundaries

LDA decision boundaries on 20 samples

LDA vs QDA

LDA with augmented feature space

QDA
$$(\Sigma_j \neq \Sigma_k)$$

Logistic Regression

Squash network output $\mathbb{R} \to [0,1]$ using

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Logistic Regression

Squash network output $\mathbb{R} \to [0,1]$ using

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Network output is modeled as the log-odds:

$$\beta^T x = \frac{p_1}{p_0} = \frac{p_1}{1 - p_1}$$

Inverse of sigmoid function is called logit function.

Fabian Hainzl

Linear Classification

Fitting Logistic Regression

Log-likelihood for N observations:

$$L(\theta) = \sum_{i=1}^{N} \log p_{g_i}(x_i)$$

Fitting Logistic Regression

Log-likelihood for N observations:

$$L(\theta) = \sum_{i=1}^{N} \log p_{g_i}(x_i)$$

For the binary case with the target $y_i \in \{0, 1\}$:

$$L(\theta) = \sum_{i=1}^{N} y_i \beta^T x_i - \log(1 + e^{\beta^T x_i})$$

Fitting Logistic Regression

Log-likelihood for N observations:

$$L(\theta) = \sum_{i=1}^{N} \log p_{g_i}(x_i)$$

For the binary case with the target $y_i \in \{0, 1\}$:

$$L(\theta) = \sum_{i=1}^{N} y_i \beta^T x_i - \log(1 + e^{\beta^T x_i})$$

To maximize log-likelihood:

$$\frac{\partial L(\theta)}{\partial \beta} = \sum_{i=1}^{N} y_i x_i (y_i - p(x_i)) = 0$$

 Solved iteratively with IRLS (Iteratively reweighted least squares), a variant of the Newton-Raphson algorithm

Example: South African Hearth Disease

Model selection strategies:

- Remove independent variable with least significant coefficient
- Refit model with each variable removed, perform analysis of deviance

	Coefficient	Std. Error	Z Score
(Intercept)	-4.130	0.964	-4.285
sbp	0.006	0.006	1.023
tobacco	0.080	0.026	3.034
ldl	0.185	0.057	3.219
famhist	0.939	0.225	4.178
obesity	-0.035	0.029	-1.187
alcohol	0.001	0.004	0.136
age	0.043	0.010	4.184
	Coefficient	Std. Error	Z score
(Intercept)	-4.204	0.498	-8.45
tobacco	0.081	0.026	3.16
ldl	0.168	0.054	3.09
famhist	0.924	0.223	4.14
age	0.044	0.010	4.52

Example: South African Hearth Disease

L₁ Regularized Logistic Regression

$${}^{\lambda}L(\theta) = \sum_{i=1}^{N} y_i \beta^T x_i - \log(1 + e^{\beta^T x_i}) - \lambda \sum_{j=1}^{p} |\beta_j|$$

$${}^{\emptyset} {}^{\emptyset} {}$$

Fabian Hainzl

Linear Classification

Logistic Regression vs. LDA

- Mathematically identical models:
 - Log-odds are linear function of inputs in both cases
 - In LDA linearity results from Gaussian assumption, in Logistic Regression it is a modeling decision.
- Difference in fitting parameters:
 - By estimating Gaussian parameters, LDA maximizes full log-likelihood Pr(X, G)
 - Logistic Regression maximizes conditional likelihood Pr(G|X)
- Logistic Regression is 'generally felt' to be safer and more robust
- ESL claims: Similar results in practice, even if LDA assumptions are violated (e.g. qualitative predictors)