

Multiple Testing

Bernard Ng

Department of Statistics, UBC

www.cmmt.ubc.ca

Outline

- Single Hypothesis Testing
- Multiple Hypothesis Testing
- Bonferroni Correction
- Step-up Procedure
- False Discovery Rate Correction
- Max-t Permutation Test
- Recent Topics
- Neuroimaging Applications

Single Hypothesis Testing

- In the past, a handful of hypotheses with a lot of samples, e.g. census data.
- H_0 : $X = \mu \text{ vs. } H_A$: $X \neq \mu$
 - Are girls smarter than guys? => two sample t-test
 - Do last minute studying affect scores? => regression
- Generate statistics e.g. z, t, F, ...
- p < 0.05

Multiple Hypothesis Testing

 Nowadays, a lot of (unplanned) hypotheses but not enough samples (for medical research)

Multiple Testing Problem

- P(not rejecting 1 hypothesis) = $1-\alpha$
- P(not rejecting all *n* hypotheses) = $(1-\alpha)^n$
- $\alpha_{\text{FWER}} = 1 (1 \alpha)^n$ $-\alpha = 0.05, n = 10: \alpha_{\text{FWER}} = 0.4013$ $-\alpha = 0.05, n = 10^2: \alpha_{\text{FWER}} \approx 1$
- So if e.g. run 100 experiments, then α_{FWER} ·100 of them would have ≥1 hypothesis falsely rejected.
- Intuition from ML perspective is that the more we sample the variable space, the more "likely" we will get some "extreme" samples. [3]

MATLAB Demo

Data sources: U.S. Department of Agriculture and National Science Foundation

tylervigen.com

Spurious correlations

Now a ridiculous book!

- · Spurious charts
- · Fascinating factoids
- · Commentary in the footnotes

Amazon | Barnes & Noble | Indie Bound

http://tylervigen.com/spurious-correlations

Problems with scientific research

How science goes wrong

Scientific research has changed the world. Now it needs to change itself

Last year researchers at one biotech firm, Amgen, found they could reproduce just six of 53 "landmark" studies in cancer research. Earlier, a group at Bayer, a drug company, managed to repeat just a quarter of 67 similarly important papers. A leading computer scientist frets that three-quarters of papers in his subfield are bunk. In 2000-10 roughly 80,000 patients took part in clinical trials based on research that was later retracted because of mistakes or improprieties.

Notations and Terminologies

Pre			icted	unobserved
Ground Truth		True	False	dilobscived
	True	U True Positive	V False Positive	n ₀
	False	T False Negative	S True Negative	n-n ₀
		n-R	R	n

Sensitivity = $S/(n-n_0)$ Specificity = U/n_0

Note: All terms are defined wrt null, e.g. if the ground truth is that the null hypothesis is True, but we claimed it is false, then we have a false positive. 12

Bonferroni Correction

Procedures

- Recall $\alpha_{\text{FWER}} = 1 (1 \alpha)^n$
- Set $\alpha = 1$ - $(1 \alpha_{\text{FWER}})^{1/n} \approx 1$ - $(1 \alpha_{\text{FWER}}/n) = \alpha_{\text{FWER}}/n$

Examples

- $\alpha_{\text{FWER}} = 0.05$ and n = 10, needs $\alpha = 0.05/10 = 0.005$
- $\alpha_{\text{FWER}} = 0.05$ and $n = 10^6$, needs $\alpha = 0.05/10^6 = 5 \times 10^{-8}$

Properties

• Ctrls FWER = $P(V \ge 1)$ in strong sense.

Can handle correlated hypotheses.

Very stringent

	Predicted			
		True	False	
Ground Truth	True	U	V	n ₀
	False	Т	S	n-n _o
		n-R	R	n
				_

MATLAB Demo

Step-up Procedure

- aka Hochberg's procedure
- Sort p in descending order
- $p(i) \le a/(n-i+1)$ i. $p(n) \le \alpha/(n-n+1)$ ii. $p(n-1) \le \alpha/(n-(n-1)+1)$ iii. ...
- Controls FWER in strong sense
- Holm's Step-down procedure uses same threshold but less sensitive.

MATLAB Demo

False Discovery Rate

Idea

- Benjamini & Hochberg, 1995
- Recall FWER = P(V≥1)
- Fdp = V/max(R,1)
- But V unobserved, so: FDR = E(Fdp)

Procedures

- Sort p in ascending order.
- Find $i_0 = \max i \text{ s.t. } p(i) \le i \cdot q/n$

False Discovery Rate

Properties

- If hypotheses are independent, then FDR < q for all configurations of hypotheses.
- If data are Gaussian and hypotheses are positively correlated, i.e. $\Sigma_{ij} \ge 0$, then FDR < q.
- If hypotheses are correlated,

```
FDR < q \cdot (log(n) + 0.577)
=> p(i) < i \cdot q/n / (log(n) + 0.577)
BUT i = 1, p(i) < q/n / (log(n) + 0.577) < q/n
```

Predicted				
		True	False	
Ground Truth	True	U	V	n _o
	False	Т	S	n-n ₀
		n-R	R	n

False Discovery Rate

Properties

- n=n₀, then FDR = FWER since:
 V=R, so V=0 iff Fdp = 0 and V≥1 iff Fdp=1,
 i.e. Fdp = indicator variable,
 thus P(V≥1) = E(Fdp) = FDR => ctrls FWER weakly
- n<n₀, controlling FWER controls FDR
- Adaptive: 5/100, 50/1000, ...
- More sensitive than Hochberg
 i/n / (1/(n-i+1)) = i·(1-(i-1)/n)
 e.g. i = n/2 => ~n/4 gain

	Predicted			
,		True	False	
Ground Truth	True	U	V	n _o
Grou	False	Т	S	n-n ₀
'		n-R	R	n

MATLAB Demo

Max-t Permutation Test

 Strongly controls FWER under any kind of dependence structure under certain assumptions.

MATLAB Demo

Recent Topics

Recent Topics

Data Sharing

Recent Topics

Data Reuse

Online FDR

Javanmard and Montanari, On Online Control of False Discovery Rate, 2015: arXiv:1502.06197

LORD (significance Levels based On Recent Discovery):

• Choose any sequence $\underline{\beta} = (\beta_i)_{i=1}^{\infty}$, such that

$$eta_i \geq 0, \qquad \sum_{i=1}^\infty eta_i = lpha\,.$$
 given by

Rule is given by

$$au_i \equiv \max \left\{ \ell < i, H_\ell ext{ is rejected }
ight\}.$$
 $lpha_i = eta_{i- au_i}$.

Neuroimaging Applications

Activation Detection

Connectivity Estimation

Brain Decoding

Shape vs. Function

Magnetic Resonance Imaging (MRI)

Functional MRI (fMRI)

BOLD Effect

Task-based fMRI

Famous Dead Salmon Study

Resting State fMRI

SM. Smith, P.T. Fox, K.L. Miller, D.C. Glahn, P.M. Fox, C.E. Mackay, N. Filippini, K.E. Watkins, R. Toro, A.R. Laird, and C.F. Beckmann, "Correspondence of the Brain's Functional Architecture During Activation and Rest," Proc. Natl. Acad. Sci., vol.106, pp.13040-13045, 2009

Connectivity Estimation

Which connection significant?

Brain Decoding

From **w**, which variable significantly drives classification?

Summary

- Multiple testing can result in many false findings if the number of tests is not accounted for.
- Bonferroni correction is too stringent.
- FDR correction is a good compromise.
- Data sharing is creating new problems.

