Machine Learning Project by Udit Arya

1. Introduction

Data Set Problems

In this type dataset of Machine learning model is needed in order to predict the outcome of the drugs type that might be suitable for the patient.

Objectives of Notebook

This notebook aims to:

- Dataset exploration using various types of data visualization.
- Build various ML models that can predict drug type.

The machine learning models used in this project are:

- 1. Linear Logistic Regression
- 2. Linear Support Vector Machine (SVM)
- 3. K Neighbours
- 4. Naive Bayes (Categorical & Gaussian)
- 5. Decision Tree
- 6. Random Forest

The following is the structure of the data set.

Sample Data	Description	Variable Name
23; 47;	Patient Age	Age
F; M;	Gender of patient (male or female)	Sex
HIGH; NORMAL; LOW;	Levels of blood pressure (high, normal, or low)	ВР
1.4; 1.3;	Levels of cholesterol (high or normal)	Cholesterol
25.355; 13.093;	Sodium to potassium ratio in blood	Na_to_K
DrugY; drugC;	Type of drug	Drug

2. Importing Libraries

Importing libraries that will be used in this notebook.

```
In [2]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import os
```

3. Reading Data Set

After importing libraries, we will also **import the dataset** that will be used.

```
In [6]: df_drug = pd.read_csv("drug200.csv")
```

Read the first 6 rows in the dataset.

```
In [5]: df_drug.head()
```

Out[5]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	DrugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	DrugY

Data type and checking null in dataset.

```
In [4]: print(df_drug.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
```

```
#
    Column
                Non-Null Count Dtype
    -----
                -----
                              ----
0
                200 non-null
                              int64
    Age
                              object
1
    Sex
                200 non-null
    BP
               200 non-null
                              object
   Cholesterol 200 non-null
3
                              object
4
                              float64
    Na to K
             200 non-null
5
                              object
    Drug
                200 non-null
dtypes: float64(1), int64(1), object(4)
```

memory usage: 9.5+ KB

None

4. Initial Dataset Exploration

This section will explore raw dataset that has been imported.

4.1 Categorical Variables

The distribution of cholesterol level is balanced.

```
In [5]: df_drug.Drug.value_counts()
Out[5]: DrugY
                   91
         drugX
                   54
         drugA
                   23
         drugC
                  16
         drugB
                  16
         Name: Drug, dtype: int64
         It can be seen that from results above, DrugY has more amount than other types of drugs
In [6]: df_drug.Sex.value_counts()
Out[6]: M
              104
               96
         Name: Sex, dtype: int64
         The distribution of patient gender is balanced.
In [7]: df drug.BP.value counts()
Out[7]: HIGH
                    77
         LOW
                    64
         NORMAL
                    59
         Name: BP, dtype: int64
         The distribution of blood pressure level is balanced.
In [8]: | df_drug.Cholesterol.value_counts()
Out[8]: HIGH
                    103
                     97
         NORMAL
         Name: Cholesterol, dtype: int64
```

4.2 Numerical Variables

This section will show mean, count, std, min, max and others using describe function. The skewness value for each numerical variables will also shown in this section.

```
In [9]: df_drug.describe()
Out[9]:
                       Age
                              Na_to_K
           count 200.000000
                           200.000000
                  44.315000
                             16.084485
           mean
                  16.544315
                             7.223956
             std
            min
                  15.000000
                             6.269000
            25%
                  31.000000
                             10.445500
            50%
                  45.000000
                             13.936500
            75%
                  58.000000
                             19.380000
                  74.000000
                             38.247000
            max
In [10]:
          skewAge = df_drug.Age.skew(axis = 0, skipna = True)
          print('Age skewness: ', skewAge)
          Age skewness: 0.03030835703000607
          skewNatoK = df_drug.Na_to_K.skew(axis = 0, skipna = True)
In [11]:
          print('Na to K skewness: ', skewNatoK)
```

Na to K skewness: 1.039341186028881

```
In [12]: sns.distplot(df_drug['Age']);
```

/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

In [13]: sns.distplot(df_drug['Na_to_K']);

/opt/conda/lib/python3.7/site-packages/seaborn/distributions.py:2619: FutureW arning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histog rams).

warnings.warn(msg, FutureWarning)

The distribution of 'Age' column is **symetric**, since the skewness value between -0.5 and 0.5 The distribution of 'Na_to_K' column is **moderately skewed**, since the skewness value is **between 0.5 and 1**. It can also be seen from the histogram for 'Na_to_K' column

5. EDA

This section will explore variables in the dataset using different various plots/charts.

5.1 Drug Type Distribution

```
In [14]: sns.set_theme(style="darkgrid")
    sns.countplot(y="Drug", data=df_drug, palette="flare")
    plt.ylabel('Drug Type')
    plt.xlabel('Total')
    plt.show()
```


5.2 Gender Distribution

```
In [15]: sns.set_theme(style="darkgrid")
    sns.countplot(x="Sex", data=df_drug, palette="rocket")
    plt.xlabel('Gender (F=Female, M=Male)')
    plt.ylabel('Total')
    plt.show()
```


5.3 Blood Pressure Distribution

```
In [16]: sns.set_theme(style="darkgrid")
    sns.countplot(y="BP", data=df_drug, palette="crest")
    plt.ylabel('Blood Pressure')
    plt.xlabel('Total')
    plt.show()
```


5.4 Cholesterol Distribution

```
In [17]: sns.set_theme(style="darkgrid")
    sns.countplot(x="Cholesterol", data=df_drug, palette="magma")
    plt.xlabel('Blood Pressure')
    plt.ylabel('Total')
    plt.show()
```


5.5 Gender Distribution based on Drug Type

```
In [18]: pd.crosstab(df_drug.Sex,df_drug.Drug).plot(kind="bar",figsize=(12,5),color=['#
    plt.title('Gender distribution based on Drug type')
    plt.xlabel('Gender')
    plt.xticks(rotation=0)
    plt.ylabel('Frequency')
    plt.show()
```


5.6 Blood Pressure Distribution based on Cholesetrol

```
In [19]: pd.crosstab(df_drug.BP,df_drug.Cholesterol).plot(kind="bar",figsize=(15,6),col
plt.title('Blood Pressure distribution based on Cholesterol')
plt.xlabel('Blood Pressure')
plt.xticks(rotation=0)
plt.ylabel('Frequency')
plt.show()
```


5.7 Sodium to Potassium Distribution based on Gender and Age

6. Dataset Preparation

This section will prepare the dataset before building the machine learning models.

6.1 Data Binning

6.1.1 Age

The ag will be divided into 7 age categories:

- Below 20 y.o.
- 20 29 y.o.
- 30 39 y.o.
- 40 49 y.o.
- 50 59 y.o.
- 60 69 y.o.
- Above 70.

```
In [7]: bin_age = [0, 19, 29, 39, 49, 59, 69, 80]
    category_age = ['<20s', '20s', '30s', '40s', '50s', '60s', '>60s']
    df_drug['Age_binned'] = pd.cut(df_drug['Age'], bins=bin_age, labels=category_a
    df_drug = df_drug.drop(['Age'], axis = 1)
```

6.1.2 Na_to_K

The chemical ratio will be divided into 4 categories:

- Below 10.
- 10 20.
- 20 30.
- Above 30.

```
In [8]: bin_NatoK = [0, 9, 19, 29, 50]
    category_NatoK = ['<10', '10-20', '20-30', '>30']
    df_drug['Na_to_K_binned'] = pd.cut(df_drug['Na_to_K'], bins=bin_NatoK, labels=
    df_drug = df_drug.drop(['Na_to_K'], axis = 1)
```

6.2 Splitting the dataset

In [10]: **from** sklearn.metrics **import** confusion matrix

The dataset will be split into 70% training and 30% testing.

```
from sklearn.metrics import classification_report

In [24]: X = df_drug.drop(["Drug"], axis=1)
    y = df_drug["Drug"]

from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rar
```

6.3 Feature Engineering

The FE method that used is **one-hot encoding**, which is **transforming categorical variables** into a form that could be provided to ML algorithms to do a better prediction.

```
In [25]: X_train = pd.get_dummies(X_train)
X_test = pd.get_dummies(X_test)
```

In [26]:	5]: X_train.head()							
Out[26]:		Sex_F	Sex_M	BP_HIGH	BP_LOW	BP_NORMAL	Cholesterol_HIGH	Cholesterol_NORMAL
	131	0	1	0	1	0	0	1
	96	1	0	0	1	0	1	0
	181	1	0	0	0	1	1	0
	19	1	0	1	0	0	0	1
	153	1	0	0	1	0	0	1
	4)			>
In [27]:	X_te	st.hea	d()					
Out[27]:		Sex_F	Sex_M	BP_HIGH	BP_LOW	BP_NORMAL	Cholesterol_HIGH	Cholesterol_NORMAL
	18	0	1	0	1	0	1	0
	170	1	0	0	0	1	1	0
	107	0	1	0	1	0	1	0
	98	0	1	1	0	0	0	1
	177	0	1	0	0	1	1	0

6.4 SMOTE Technique

Since the number of 'DrugY' is more than other types of drugs, **oversampling is carried out to avoid overfitting**.

```
In [28]: from imblearn.over_sampling import SMOTE
X_train, y_train = SMOTE().fit_resample(X_train, y_train)
```

```
In [29]: sns.set_theme(style="darkgrid")
    sns.countplot(y=y_train, data=df_drug, palette="mako_r")
    plt.ylabel('Drug Type')
    plt.xlabel('Total')
    plt.show()
```


As can be seen, the distrubtion of drug type are now balanced.

7. Models

7.1 Logistic Regression

	precision	recall	f1-score	support
D	4 00	0.70	0.00	20
DrugY	1.00	0.70	0.82	30
drugA	0.71	1.00	0.83	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	0.82	1.00	0.90	18
accuracy			0.85	60
macro avg	0.79	0.94	0.84	60
weighted avg	0.89	0.85	0.85	60

```
[[21 2 1 2 4]
[0 5 0 0 0]
[0 0 3 0 0]
[0 0 0 4 0]
[0 0 0 0 18]]
```

Logistic Regression accuracy is: 85.00%

7.2 K Neighbours

```
In [31]: from sklearn.neighbors import KNeighborsClassifier
KNclassifier = KNeighborsClassifier(n_neighbors=20)
KNclassifier.fit(X_train, y_train)

y_pred = KNclassifier.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
KNAcc = accuracy_score(y_pred,y_test)
print('K Neighbours accuracy is: {:.2f}%'.format(KNAcc*100))
```

support	f1-score	recall	precision	
30	0.66	0.67	0.65	DrugY
5	0.44	0.40	0.50	drugA
3	0.33	0.33	0.33	drugB
4	0.40	0.50	0.33	drugC
18	0.71	0.67	0.75	drugX
60	0.62			accuracy
60	0.51	0.51	0.51	macro avg
60	0.62	0.62	0.63	weighted avg

```
[[20 1 1 4 4]
[2 2 1 0 0]
[1 1 1 0 0]
[2 0 0 2 0]
[6 0 0 0 12]]
```

K Neighbours accuracy is: 61.67%

```
In [32]: scoreListknn = []
    for i in range(1,30):
        KNclassifier = KNeighborsClassifier(n_neighbors = i)
        KNclassifier.fit(X_train, y_train)
        scoreListknn.append(KNclassifier.score(X_test, y_test))

plt.plot(range(1,30), scoreListknn)
    plt.xticks(np.arange(1,30,1))
    plt.xlabel("K value")
    plt.ylabel("Score")
    plt.show()
    KNAccMax = max(scoreListknn)
    print("KNN Acc Max {:.2f}%".format(KNAccMax*100))
```


KNN Acc Max 71.67%

7.3 Support Vector Machine (SVM)

```
In [33]: from sklearn.svm import SVC
SVCclassifier = SVC(kernel='linear', max_iter=251)
SVCclassifier.fit(X_train, y_train)

y_pred = SVCclassifier.predict(X_test)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
SVCAcc = accuracy_score(y_pred,y_test)
print('SVC accuracy is: {:.2f}%'.format(SVCAcc*100))
```

	precision	recall	f1-score	support
DrugY	0.82	0.77	0.79	30
drugA	0.00	0.00	0.00	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	0.82	1.00	0.90	18
accuracy			0.80	60
macro avg	0.61	0.75	0.67	60
weighted avg	0.74	0.80	0.76	60

```
[[23  0  1  2  4]

[ 5  0  0  0  0]

[ 0  0  3  0  0]

[ 0  0  0  4  0]

[ 0  0  0  0  18]]

SVC accuracy is: 80.00%
```

/opt/conda/lib/python3.7/site-packages/sklearn/svm/_base.py:249: ConvergenceW arning: Solver terminated early (max_iter=251). Consider pre-processing your data with StandardScaler or MinMaxScaler.

% self.max_iter, ConvergenceWarning)

/opt/conda/lib/python3.7/site-packages/sklearn/metrics/_classification.py:122 1: UndefinedMetricWarning: Precision and F-score are ill-defined and being se t to 0.0 in labels with no predicted samples. Use `zero_division` parameter t o control this behavior.

```
_warn_prf(average, modifier, msg_start, len(result))
```

7.4 Naive Bayes

7.4.1 Categorical NB

```
In [34]: from sklearn.naive_bayes import CategoricalNB
    NBclassifier1 = CategoricalNB()
    NBclassifier1.fit(X_train, y_train)

y_pred = NBclassifier1.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
    NBAcc1 = accuracy_score(y_pred,y_test)
    print('Naive Bayes accuracy is: {:.2f}%'.format(NBAcc1*100))
```

	precision	recall	f1-score	support
DnugV	1.00	0.70	0.82	30
DrugY				30
drugA	0.71	1.00	0.83	5
drugB	0.75	1.00	0.86	3
drugC	0.50	0.50	0.50	4
drugX	0.75	1.00	0.86	18
accuracy			0.82	60
macro avg	0.74	0.84	0.77	60
weighted avg	0.86	0.82	0.81	60

```
[[21 2 1 2 4]

[ 0 5 0 0 0]

[ 0 0 3 0 0]

[ 0 0 0 2 2]

[ 0 0 0 0 18]]
```

Naive Bayes accuracy is: 81.67%

7.4.2 Gaussian NB

	precision	recall	f1-score	support
DrugY	0.67	0.87	0.75	30
drugA	0.71	1.00	0.83	5
drugB	0.75	1.00	0.86	3
drugC	0.67	0.50	0.57	4
drugX	1.00	0.39	0.56	18
accuracy			0.72	60
macro avg	0.76	0.75	0.72	60
weighted avg	0.77	0.72	0.70	60

```
[[26 2 1 1 0]

[ 0 5 0 0 0]

[ 0 0 3 0 0]

[ 2 0 0 2 0]

[11 0 0 0 7]]
```

Gaussian Naive Bayes accuracy is: 71.67%

7.5 Decision Tree

```
In [36]: from sklearn.tree import DecisionTreeClassifier
DTclassifier = DecisionTreeClassifier(max_leaf_nodes=20)
DTclassifier.fit(X_train, y_train)

y_pred = DTclassifier.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
DTAcc = accuracy_score(y_pred,y_test)
print('Decision Tree accuracy is: {:.2f}%'.format(DTAcc*100))
```

	precision	recall	f1-score	support
DrugY	0.95	0.63	0.76	30
drugA	0.50	0.80	0.62	5
drugB	0.75	1.00	0.86	3
drugC	0.67	1.00	0.80	4
drugX	0.82	1.00	0.90	18
accuracy			0.80	60
macro avg	0.74	0.89	0.79	60
weighted avg	0.84	0.80	0.80	60

```
[[19     4     1     2     4]
[ 1     4     0     0     0]
[ 0     0     3     0     0]
[ 0     0     0     4     0]
[ 0     0     0     0     18]]
```

Decision Tree accuracy is: 80.00%

```
In [37]: scoreListDT = []
for i in range(2,50):
    DTclassifier = DecisionTreeClassifier(max_leaf_nodes=i)
    DTclassifier.fit(X_train, y_train)
    scoreListDT.append(DTclassifier.score(X_test, y_test))

plt.plot(range(2,50), scoreListDT)
plt.xticks(np.arange(2,50,5))
plt.xlabel("Leaf")
plt.ylabel("Score")
plt.show()
DTAccMax = max(scoreListDT)
print("DT Acc Max {:.2f}%".format(DTAccMax*100))
```


DT Acc Max 83.33%

7.6 Random Forest

```
In [38]: from sklearn.ensemble import RandomForestClassifier

RFclassifier = RandomForestClassifier(max_leaf_nodes=30)
RFclassifier.fit(X_train, y_train)

y_pred = RFclassifier.predict(X_test)

print(classification_report(y_test, y_pred))

print(confusion_matrix(y_test, y_pred))

from sklearn.metrics import accuracy_score
RFAcc = accuracy_score(y_pred,y_test)
print('Random Forest accuracy is: {:.2f}%'.format(RFAcc*100))
```

support	f1-score	recall	precision	
30	0.80	0.67	1.00	DougV
30	0.00	0.67	1.00	DrugY
5	0.77	1.00	0.62	drugA
3	0.86	1.00	0.75	drugB
4	0.80	1.00	0.67	drugC
18	0.90	1.00	0.82	drugX
60	0.83			accuracy
60	0.83	0.93	0.77	macro avg
60	0.83	0.83	0.88	weighted avg

```
[[20 3 1 2 4]

[0 5 0 0 0]

[0 0 3 0 0]

[0 0 0 4 0]

[0 0 0 0 18]]
```

Random Forest accuracy is: 83.33%

```
In [39]: scoreListRF = []
for i in range(2,50):
    RFclassifier = RandomForestClassifier(n_estimators = 1000, random_state =
    RFclassifier.fit(X_train, y_train)
    scoreListRF.append(RFclassifier.score(X_test, y_test))

plt.plot(range(2,50), scoreListRF)
plt.xticks(np.arange(2,50,5))
plt.xlabel("RF Value")
plt.ylabel("Score")
plt.show()
RFAccMax = max(scoreListRF)
print("RF Acc Max {:.2f}%".format(RFAccMax*100))
```


RF Acc Max 83.33%

8. Model Comparison

Out[40]:

	Model	Accuracy
0	Logistic Regression	85.000000
7	Decision Tree Max	83.333333
8	Random Forest	83.333333
9	Random Forest Max	83.333333
4	Categorical NB	81.666667
3	SVM	80.000000
6	Decision Tree	80.000000
2	K Neighbors Max	71.666667
5	Gaussian NB	71.666667
1	K Neighbors	61.666667

From the results, it can be seen that most of ML models can reach up to 80% accuracy in predicting classification of drug type.

In []:	
---------	--