Neural Networks:

compression and constrained learning

Neural Network Compression

A procedure which reduces the size of a network with an acceptable impact on its test accuracy

The Efficient Frontier analogy

Research Questions

- Can we "read" a trained MLP/LSTM to find it out what solution it "represents"?
- What types of solutions can ANNs trained through SGD can and cannot reach?
- Can we estimate the "performance distance" between two ANNs without evaluating on the entire test set?
- How does LSTM training relate to deep MLP training?

Scope Questions

- Classification tasks vs. general.
- How much to invest in "cracking" MLP's before moving to sequence models?

SECTION 1 SOME GENERAL OBSERVATIONS

Typical ANN Layer

- $\overline{ullet} = xW + b$
- a = g(z), we'll assume $g = \tanh$
- dims:
 - $lacksquare z \in \mathbb{R}^{1 imes n}$
 - $lacksquare a \in \mathbb{R}^{1 imes m}$
 - $lacksquare W \in \mathbb{R}^{m imes n}$
 - $lackbox{0.5}{}b \in \mathbb{R}^{1 imes n}$

Typical ANN Layer

- $\overline{ullet} = \overline{xW} + b$
- a=g(z), we'll assume g= anh
- dims:
 - $ullet z \in \mathbb{R}^{1 imes n}$
 - $lack a \in \mathbb{R}^{1 imes m}$
 - $lacksquare W \in \mathbb{R}^{m imes n}$
 - $lackbox{1}{lackbox{1}}{lackbox{1}{lackbox{1}}{lackbox{1}}{lackbox{1}}}}}}}}}}}}}}}}}}}}}}}}$
- Now let's put it in the context of multilayer
 - ullet (l) will denote layer index

Typical ANN layer

- $\overline{| ullet | z^{(l)} = x^{(l)} W^{(l)} + b^{(l)}}$
- $\overline{|ullet|^{a(l)}} = anh(z^{(l)})^{-1}$

Typical ANN layer

$$ullet z^{(l)} = x^{(l)} W^{(l)} + b^{(l)}$$

$$ullet \ a^{(l)} = anh(z^{(l)})$$

$$x^{(l+1)}\equiv a^{(l)}$$

 $a^{(l)}$ is the input for next layer

Rotate → Stretch&reflect → Rotate

- Rotate → Stretch&reflect → Rotate
 - The entire matrix is an affine tranformation in hyperspace
 - Result may be in a lower- or higher- dimension space
 - This approach corresponds to the matrix's Singular Value Decomposition.
- Columns as Features

- The features are non-linearly combined layer by layer...
 - ... or in the same layer (two layers are enough)

- The features are non-linearly combined layer by layer...
 - ... or in the same layer (two layers are enough)
- Before last layer: Convert each feature into a score
 - each column represents the scores of a class
 - The predicted class is decided by highest score

- The features are non-linearly combined layer by layer...
 - ... or in the same layer (two layers are enough)
- Before last layer: Convert each feature into a score
 - each column represents the scores of a class
 - The predicted class is decided by highest score
- Probabilistic interpretation of scores?

- The features are non-linearly combined layer by layer...
 - ... or in the same layer (two layers are enough)
- Before last layer: Convert each feature into a score
 - each column represents the scores of a class
 - The predicted class is decided by highest score
- Probabilistic interpretation of scores?
- I doubt it

- The features are non-linearly combined layer by layer...
 - ... or in the same layer (two layers are enough)
- Before last layer: Convert each feature into a score
 - each column represents the scores of a class
 - The predicted class is decided by highest score
- Probabilstic interpretation of scores?
- I doubt it
- During training, scores only go up!
 - (we'll see why)

"Squash" together values (beyond a threshold)

- "Squash" together values (beyond a threshold)
- Reduces information...

- "Squash" together values (beyond a threshold)
- Reduces information...
 - but makes things more interesting

- "Squash" together values (beyond a threshold)
- Reduces information...
 - but makes things more interesting
- Example:

- "Squash" together values (beyond a threshold)
- Reduces information...
 - but makes things more interesting
- Example:
 - $z = 4x_1 + 2x_2 + 3x_3$
 - \circ changes in values of $x_{(\cdot)}$ have the same effect regardless of z

- "Squash" together values (beyond a threshold)
- Reduces information..
 - but makes things more interesting
- Example:
 - $z = 4x_1 + 2x_2 + 3x_3$
 - \circ changes in values of $x_{(\cdot)}$ have the same effect regardless of z
 - $lacksquare a = anh(z + \overline{0.5})$
 - \circ for {z | z > 1.3 V z < 2.3}, small changes in $x_{(\cdot)}$ have almost no effect on a
 - $\circ a$ now has a *qualitative* rather than *quantitative* interpretation

• Saturated activations correspond to decision planes

- Saturated activations correspond to decision planes
- Layer by layer (or in the same layer), planes combine into (non-convex) regions

- Saturated activations correspond to decision planes
- Layer by layer (or in the same layer), planes combine into (non-convex) regions
- Therefore, (saturated) activations in intermediate layers are region indicators

- Saturated activations correspond to decision planes
- Layer by layer (or in the same layer), planes combine into (non-convex) regions
- Therefore, (saturated) activations in intermediate layers are region indicators
- These regions
 - have soft boundaries
 - and may overlap.

How do the nonlinearities affect training?

After reaching an *approximate* fit, futher epochs are expected to "harden" region boundaries because:

- Random walk is not symmetric: larger |z| implies smaller stepsize.
- neg-log-softmax error term is always positive class scores "race" to infinity

SECTION 2 SURVEY OF SELECTED PAPERS

Main Takeaway from reading so far

There are many approaches, and all of them work exceptionally well!

Imposed Constraint	Interpretation	Benefit
Low bit depth	Coarser search- grid	up to 100x faster
"Fix together" arbitrary connection elements	Impose correlations between columns	4x reduction in number of parameters
Matrix separated into 2 low-rank matrices	Columns constrained to a subspace	?x compression

Binarized networks

(Courbariaux et al. 2016)

Concept: Develop an MLP with all connections weights restricted to +1 and -1

Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or -1

Matthieu Courbariaux*¹ Itay Hubara*² Daniel Soudry³ Ran El-Yaniv² Yoshua Bengio^{1,4}

¹Université de Montréal

MATTHIEU.COURBARIAUX@GMAIL.COM
ITAYHUBARA@GMAIL.COM
DANIEL.SOUDRY@GMAIL.COM
RANI@CS.TECHNION.AC.IL
YOSHUA.UMONTREAL@GMAIL.COM

²Technion - Israel Institute of Technology

³Columbia University

⁴CIFAR Senior Fellow

^{*}Indicates equal contribution. Ordering determined by coin flip.

Binarized networks

(Courbariaux et al. 2016)

Concept: Develop an MLP with all connections weights restricted to +1 and -1

Overview

Binarized networks

(Courbariaux et al. 2016)

Concept: Develop an MLP with all connections weights restricted to +1 and -1

Overview

 Successfully trained a "BNN" (binarized neural network) on an image classification task

Binarized networks

(Courbariaux et al. 2016)

Concept: Develop an MLP with all connections weights restricted to +1 and -1

Overview

- Successfully trained a "BNN" (binarized neural network) on an image classification task
- Reached same performance as reference network

Binarized networks

(Courbariaux et al. 2016)

Concept: Develop an MLP with all connections weights restricted to +1 and -1

Overview

- Successfully trained a "BNN" (binarized neural network) on an image classification task
- Reached same performance as reference network
- with just a modest increase in number of nodes per layer

Binarized networks (2)

Method's benefits

Binarized networks (2)

Method's benefits

Demonstrated 7x time reduction (through custom CUDA kernel)

Binarized networks (2)

Method's benefits

- Demonstrated 7x time reduction (through custom CUDA kernel)
- computations should reduce by ~6*10²:
 - Multiply two 32-bit floating-point numbers: ~600 ops
 - Multiply two 1-bit numbers: 1 op (XNOR gate)

• Custom hardware and compiler optimizations are required.

- Custom hardware and compiler optimizations are required.
- Performance outside image classification: not tested

- Custom hardware and compiler optimizations are required.
- Performance outside image classification: not tested
- Cumbersome 'hybrid' compuational model still required:

- Custom hardware and compiler optimizations are required.
- Performance outside image classification: not tested
- Cumbersome 'hybrid' compuational model still required:
 - Inputs: floating point

- Custom hardware and compiler optimizations are required.
- Performance outside image classification: not tested
- Cumbersome 'hybrid' compuational model still required:
 - Inputs: floating point
 - Intermediate layers: binary

- Custom hardware and compiler optimizations are required.
- Performance outside image classification: not tested
- Cumbersome 'hybrid' compuational model still required:
 - Inputs: floating point
 - Intermediate layers: binary
 - Class scores: integers

- Any arbitrary vector in hyperspace can be represented as:
 - lacksquare A length $l \in \mathbb{R}^+$, and angles $\phi_1, \phi_2, \ldots \phi_{d-1}$
 - $ullet \phi_i \in (0,2\pi)$

- Any arbitrary vector in hyperspace can be represented as:
 - lacksquare A length $l \in \mathbb{R}^+$, and angles $\phi_1, \phi_2, \ldots \phi_{d-1}$
 - $ullet \phi_i \in (0,2\pi)$
- ANN matrix columns ← arbitrary vectors

- Any arbitrary vector in hyperspace can be represented as:
 - lacksquare A length $l \in \mathbb{R}^+$, and angles $\phi_1, \phi_2, \ldots \phi_{d-1}$
 - $ullet \phi_i \in (0,2\pi)$
- ANN matrix columns ← arbitrary vectors

$$lacksquare l = \sqrt{d}$$

•
$$\hat{\phi_i} \cdot \hat{\phi_j} = \cos heta_{ij} \in \pm (1 - rac{2k}{d})$$
 where $k = 1, \dots, d/2$

- Any arbitrary vector in hyperspace can be represented as:
 - lacksquare A length $l \in \mathbb{R}^+$, and angles $\phi_1, \phi_2, \ldots \phi_{d-1}$
 - $ullet \phi_i \in (0,2\pi)$
- ANN matrix columns ← arbitrary vectors

$$lacksquare l = \sqrt{d}$$

•
$$\hat{\phi_i} \cdot \hat{\phi_j} = \cos heta_{ij} \in \pm (1 - rac{2k}{d})$$
 where $k=1,\ldots,d/2$

Yet they succeed!

Binarization - Conclusions

- Length is not necessary to represent "states"
 - All activations are saturatd
- Good solutions do not require "infinite" resolution in input space.
- Note that XNOR gates span the complete functional space.

Compressing Neural Networks with the Hashing Trick

Wenlin Chen*
James T. Wilson*
Stephen Tyree*†
Kilian Q. Weinberger*
Yixin Chen*

WENLINCHEN@WUSTL.EDU

J.WILSON@WUSTL.EDU

STYREE@NVIDIA.COM

KILIAN@WUSTL.EDU

CHEN@CSE.WUSTL.EDU

^{*} Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA

[†] NVIDIA, Santa Clara, CA, USA

Compressing Neural Networks with the Hashing Trick

Wenlin Chen*
James T. Wilson*
Stephen Tyree*†
Kilian Q. Weinberger*
Yixin Chen*

WENLINCHEN@ WUSTL.EDU
J.WILSON@ WUSTL.EDU
STYREE@ NVIDIA.COM
KILIAN@ WUSTL.EDU
CHEN@ CSE.WUSTL.EDU

* Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA

Concept: Save memory and multiplications, by arbitrarily constraining different entries to the same value

[†] NVIDIA, Santa Clara, CA, USA

Figure 1. An illustration of a neural network with random weight sharing under compression factor $\frac{1}{4}$. The 16+9=24 virtual weights are compressed into 6 real weights. The colors represent matrix elements that share the same weight value.

- ullet Decide on $K^{(l)}$, free parameters per layer, $K^{(l)} \ll M^{(l)} imes N^{(l)}$
- ullet Create a hash function h:[M] imes[N] o [K]
- ullet Set $V_{ij}=w_{h(i,j)}$
 - V_{ij} is the (virtual) connection matrix
 - $lacksquare w_{(\cdot)}$ is a vector of K parameters

• Simple and fairly generic (CNNs, RNNs, ...)

- Simple and fairly generic (CNNs, RNNs, ...)
- Adjustable compression factor which exceeds binarization
 - 1:64 → ½ bit per entry!

- Simple and fairly generic (CNNs, RNNs, ...)
- Adjustable compression factor which exceeds binarization
 - 1:64 ⇒ ½ bit per entry!
- outperforms other methods(?)

- Simple and fairly generic (CNNs, RNNs, ...)
- Adjustable compression factor which exceeds binarization
 - 1:64 ←→ ½ bit per entry!
- outperforms other methods(?)

Connection hasing vs. feature hashing

For z_i (the layer outputs pre-nonlinearity):

$$z_i = \sum\limits_{j=1}^m V_{ij} a_j$$

Equivalently $z_i = \mathbf{w}^T \phi_i(\mathbf{a})$ Where

$$[\phi_i(\mathbf{a})]_k = \sum_{j:h(i,j)=k} a_j$$

Which means that each z_i depends on a sum of an arbitrary subset of the previous layer's activations a_1,\ldots,a_m

Factorization

Predicting Parameters in Deep Learning

Misha Denil¹ Babak Shakibi² Laurent Dinh³
Marc'Aurelio Ranzato⁴ Nando de Freitas^{1,2}

¹University of Oxford, United Kingdom

²University of British Columbia, Canada

³Université de Montréal, Canada

⁴Facebook Inc., USA

{misha.denil,nando.de.freitas}@cs.ox.ac.uk
laurent.dinh@umontreal.ca

ranzato@fb.com

- Concept: "Generate" $W \in \mathbb{R}^{m imes n}$ from $UV,\ U \in \mathbb{R}^{m imes k}, V \in \mathbb{R}^{k imes n}$
- ullet Number of parameters drops from \overline{mn} to $(m+\overline{n})k$

Factorization

- Not all authors agree on the effectiveness:
 - ullet U and V "cannot be trained together"
 - lacksquare U as a "feature bank"
 - Predetermined by network designer
 - or pretrained
- ullet In image processing, "smooth" U's work well.

This approach performed worst in the benchmark conducted by the *Hashing Trick* authors.

Batch Normalization

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe
Google Inc., sioffe@google.com

Christian Szegedy
Google Inc., szegedy@google.com

Concept: Speed up training by deliberately eliminating the scale and bias of inputs to a layer

Batch Normalization

Concept (cont.):

- Speed up training by deliberately eliminating the scale and bias of inputs to a layer
- Replace the implicit scale and bias of the input population with explicit, learnable scale and bias

Accomplished:

- Achieved faster training and surpassed state-of-the-art performance in image processing
- Is this a "Weaker" form of factorization?

SUMMARY

- Approaches "overlap"
- No theoretical framework
- One successful application is not enough to understand approach
- Smaller networks which "disguise themselves" as larger ones
- Looks like everyone is trying to fool SGD...

NEXT STEPS

Further Reading

- Sequence models training and compression
- Architecture evolution
- Training on "soft" scores
- SGD analysis

NEXT STEPS

Reasearch

- Implement ordinary vs. hashed MLP and look into training process
- Design a problem with a known solution and check the solutions reached by SGD

Ideas to further develop

- Decision-tree-like splits
- Correlations and linear dependence between activations

THANK YOU!