Ceng352 - Database Management Systems Written Assignment 2

Koray Can Yurtseven, 2099547 Spring 2019

Q1 Transactions T1, T2, T3 are to be run concurrently. The following table gives details of the proposed schedule of read/write operations and the time when each such operation is scheduled.

Time	T1	T2	Т3
1		read(C)	
2	read(A)		
3	write(A)		
4		read(A)	
5			read(B)
6			write(B)
7		write(A)	
8		write(C)	
9	write(B)		
10			commit
11		commit	
12	commit		

When answering the following questions, indicate shared locks by s_i and exclusive locks by x_i where i is the transaction number. Also indicate the operations of transactions as $R_i(X)$ and $W_i(X)$ for read and write operations respectively where i is the transaction number and X is a data item.

(a) Describe how the **strict two-phase locking with deadlock detection** would handle the schedule by filling in the following table.

Operation	Given L A	OCKS on da B	ta items C	Wait for graph
$R_2(C)$			S_2	
$R_1(A)$	S_1		S_2	
$W_1(A)$	X_1		S_2	
$R_2(A)$	X_1		S_2	$T_2 - > T_1, T_2$ delays, waits for A

$R_3(B)$	X_1	S_3	S_2	$T_2 - > T_1$
$W_3(B)$	X_1	X_3	S_2	$T_2 - > T_1$
$W_1(B)$	X_1	X_3	S_2	$T_2 - > T_1 - > T_3$, T_1 delays waits for B
C_3	X_1	X_1	S_2	$T_2 - > T_1, T_1$ takes lock on B, continues
C_1	S_2		S_2	T_2 takes lock on A, continues
$W_2(A)$	X_2		S_2	
$W_2(C)$	X_2		X_2	
C_2				

(b) Describe how the strict two-phase locking with wound wait deadlock prevention would handle the schedule. Assume that $TS(T1)=1,\,TS(T2)=2,\,TS(T3)=3.$

Operation	Given L A	OCKS on da B	ta items C	Wait for graph
$R_2(C)$			S_2	
$R_1(A)$	S_1		S_2	
$W_1(A)$	X_1		S_2	
$R_2(A)$	X_1		S_2	$T_2 - > T_1, T_2$ is newer, it will wait for A
$R_3(B)$	X_1	S_3	S_2	$T_2 - > T_1$
$W_3(B)$	X_1	X_3	S_2	$T_2 - > T_1$
$W_1(B)$	X_1	X_1	S_2	$T_2 - > T_1$, T_3 has lock on B. T_3 is newer T_3 will be killed and will be restarted later
C_1	S_2		S_2	T_2 is awaken, it took lock on A
$R_3(B)$	S_2	S_3	S_2	I assumed T_3 is restarted at this point
$W_2(A)$	X_2	S_3	S_2	
$W_2(C)$	X_2	S_3	X_2	
$W_3(B)$	X_2	X_3	X_2	

C_2	X_3	
C_3		

Q2 Consider the schedule H below. The symbol $r_i(x)$ stands for a read by transaction Ti to item x and $w_i(x)$ stands for a write by Ti to item x. Suppose **timestamp-based** scheduler is used as the concurrency control protocol.

$$H: r_1(A)r_2(B)w_1(C)r_3(B)r_3(C)w_2(B)w_3(A)$$

Describe what happens as each operation below executes if

(a)
$$TS(T1) = 1$$
, $TS(T2) = 2$, $TS(T3) = 3$

(b)
$$TS(T1) = 1$$
, $TS(T2) = 3$, $TS(T3) = 2$

Justify whether each operation is accepted or rejected, and show how the RTS and WTS timestamps of the data items are updated in each step.

Note: If an access is rejected, its parent transaction is aborted; so you can ignore (remove from the schedule) all the subsequent accesses by that transaction)

(a)
$$TS(T1) = 1$$
, $TS(T2) = 2$, $TS(T3) = 3$

0 "	A		В		С	
Operation	RTS	WTS	RTS	WTS	RTS	WTS
$R_1(A)$	1					
$R_2(B)$	1		2			
$W_1(C)$	1		2			1
$R_3(B)$	1		3			1
$R_3(C)^*$	1		3		3	1
$W_2(B)^{**}$	1		3		3	1
$W_3(A)^{***}$	1	3	3		3	1

* Check for $WT(C) > TS(T_3)$

The last write time of C is 1. T_3 's TS is 3. Meaning that, previous transaction (T_1) is already written to C. It is safe to read.

** Check for $RT(B) > TS(T_2)$

The last read time of B is 3. T_2 's TS is 2. Meaning that, later transaction (T_3) read B before the T_2 is written to B. Too late to write. Rollback T_2

** Check for $RT(A) > TS(T_3)$

The last read time of A is 1. T_3 's TS is 3. Safe to write.

Also check for $WT(A) > TS(T_3)$

The last write time of A is 0. T_3 's TS is 3. Safe to write.

(b)
$$TS(T1) = 1$$
, $TS(T2) = 3$, $TS(T3) = 2$

0	A		В		С	
Operation	RTS	WTS	RTS	WTS	RTS	WTS
$R_1(A)$	1					
$R_2(B)$	1		3			
$W_1(C)$	1		3			1
$R_3(B)$	1		3			1
$R_3(C)^*$	1		3		2	1
$W_2(B)^{**}$	1		3	3	2	1
$W_3(A)^{***}$	1	2	3	3	2	1

* Check for $WT(C) > TS(T_3)$

The last write time of C is 1. T_3 's TS is 2. Meaning that, previous transaction is written to C. Safe to read.

** Check for $RT(B) > TS(T_2)$

The last read time of B is 3. T_2 's TS is 3.

Also check for $WT(B) > TS(T_2)$

The last write time of B is 0. T_2 's TS is 3. T_3 is the first one to write. Safe to write.

** * Check for $RT(A) > TS(T_3)$ The last read time of A is 1. T_3 's TS is 2. Meaning that, the previous transaction has already read A.

Also check for $WT(A) > TS(T_3)$

The last write time of A is 0. T_3 's TS is 2. T_2 is the first one to write. Safe to write.