Wind - Angli suchtanil

Trigonometric Functions

- If $\sin \theta$ and $\cos \theta$ are the roots of the equation $ax^2 - bx + c = 0$, then a, b and c satisfy the

 - (a) $a^2 + b^2 + 2ac = 0$ (b) $a^2 b^2 + 2ac = 0$ (c) $a^2 + c^2 + 2ab = 0$ (d) $a^2 b^2 2ac = 0$
- If $\tan \theta = \frac{-4}{3}$, then $\sin \theta$ is
 - (a) $\frac{-4}{5}$ but not $\frac{4}{5}$ (b) $\frac{-4}{5}$ or $\frac{4}{5}$
 - (c) $\frac{4}{5}$ but not $-\frac{4}{5}$ (d) None of these
- What is the value of radian measures corresponding to the 25° measures?

- The value of sin 20° sin 40° sin 60° sin 80° is
- (b) $\frac{5}{16}$

- In a \triangle ABC, if a = 2, b = 3 and $\sin A = \frac{2}{3}$, then

 - (a) 90°
- (b) 80°
- (c) 30°
- (d) 60°
- The general solutions of the following equation: 10.
 - (a) $\theta = \frac{n}{2} + \pi$, $n \in \mathbb{Z}$ (b) $\theta = \frac{n\pi}{2}$, $n \in \mathbb{Z}$
 - (c) $\theta = \frac{\pi}{2} + n$, $n \in \mathbb{Z}$ (d) None

- /The value of $\cos 22 \frac{1^{\circ}}{2}$ is
 - (a) $\sqrt{\frac{\sqrt{2}+1}{2}}$
- (b) $\sqrt{\frac{\sqrt{2}+1}{\sqrt{2}}}$
- (c) $\sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}$ (d) $\frac{\sqrt{2}+1}{2\sqrt{2}}$
- If $\cos A = \frac{4}{5}$, $\cos B = \frac{12}{13}$, $\frac{3\pi}{2} < A$, $B < 2\pi$, the values of the following: $\cos(A + B)$ is

- (d) $\frac{65}{30}$
- 9. If $\sin A = \frac{3}{5}$, $0 < A < \frac{\pi}{2}$ and
 - $\cos B = \frac{-12}{13}, \pi < B < \frac{3\pi}{2}$, then the value of $\cos(A + B)$ is
 - (a) $\frac{65}{33}$ (b) $\frac{33}{65}$
- (d) $-\frac{33}{65}$
- Which of the following is not correct?
 - (a) $\sin \theta = -\frac{1}{5}$ (b) $\cos \theta = 1$
 - (c) $\sec \theta = \frac{1}{2}$
- (d) $\tan \theta = 20$

11.	If 3 tan $(\theta - 15^{\circ}) = \tan (\theta + 15^{\circ})$. $0^{\circ} < \theta < 90^{\circ}$, then
	Α=

- The most general value of θ , satisfying the two 12.

equations,
$$\cos \theta = \frac{1}{\sqrt{2}}$$
, $\tan \theta = 1$ is:

- (a) $2n\pi \pm \frac{5\pi}{4}$ (b) $2n\pi + \frac{\pi}{4}$
- (c) $n\pi + \frac{5\pi}{4}$ (d) $(2n+1)\pi + \frac{\pi}{4}$
- 13. If $\frac{\cos A}{\cos B} = n$, $\frac{\sin A}{\sin B} = m$, then the value of

$$(m^2-n^2)\sin^2 B$$
 is

- (a) $1 + n^2$
- (c) n²
- The value of $\tan 3A \tan 2A \tan A$ is:
 - (a) tan 3A tan 2A tan A
 - (b) $\tan 3A + \tan 2A + \tan A$
 - (c) tan 3A tan 2A tan A
 - (d) tan 3A + tan 2A tan A
- Given x > 0, in which interval the values of 23.

$$f(x) = 3\cos\sqrt{3 + x + x^2}$$
 lie?

- (a) [-3,3)
- (b) (-3,3]
- (c) (-3,3)
- (d) [-3,3]
- Value of sin12°.sin48°.sin54° is: 16.

- (d) 8
- 17. If $\csc \theta \cot \theta = q$, then the value of $\cot \theta$ is:

If $\sin A = \sin B$, $\cos A = \cos B$, then the value of A in terms of B is:

- (a) $n\pi + B$
- (b) $n\pi + (-1)^n B$
- (c) $2n\pi + B$
- (d) $2n\pi B$
- $\cos\theta \cdot \cos(90 \theta) \sin\theta \sin(90 \theta)$ equals:
- (b) 2
- (c) -1
- The value of the expression

$$\frac{1}{2}(\sqrt{3}\sin 75^{\circ} - \cos 75^{\circ})$$
 is:

- (b) 2
- (c) $1/\sqrt{2}$
- If $\tan^2 A = 2 \tan^2 B + 1$, then $\cos 2A + \sin^2 B$ equals:
 - (a) -1
- (b) 1
- (c)

22. The value of
$$\left(\frac{\cos\left(\frac{\pi}{2} + x\right) + \sin\left(\frac{\pi}{2} + x\right)}{\cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right)}\right)^{2}$$
 is

- $1 + \sin 2x$
- (c) 1
- (d) None of these
- .To derive the tangent formula, the following steps are given:

1.
$$\tan(A+B) = \frac{\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\sin A \sin B}} + \frac{\cos A \sin B}{\cos A \cos B}$$

2.
$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$

3.
$$\tan(A+B) = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

4.
$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Their correct and proper sequential form to derive the formula is:

- (a) 2, 4, 3, 1
- (b) 1, 2, 3, 4
- (c) 1, 4, 2, 3
- (d) 2, 3, 1, 4

- The value of $\cos^3\theta + \cos^3(120^\circ + \theta) \cos^3$ $(\theta - 120^{\circ})$ is:
 - (a) $\frac{\sqrt{3}}{2}\cos 3\theta$ (b) $\frac{3}{4}\sec^{3}\theta$
 - (c) $\frac{3}{2} \tan^3 \theta$ (d) $\frac{3}{4} \cos 3\theta$
- 25. If $\cos T = \frac{3}{5}$ and if $\sin R = \frac{8}{17}$, where T is in the fourth quadrant and R is in the second quadrant, then $\cos (T - R)$ is equal to:

- (d) $-\frac{77}{85}$
- 26. cos(A+B).cos(A-B) is given by:
 - (a) $\cos^2 A \cos^2 B$ (b) $\cos(A^2 B^2)$
 - (c) $\cos^2 A \sin^2 B$
- (d) $\sin^2 A \cos^2 B$
- The value of sin 20° (tan 10° + cot 10°) is equal to:
 - (a)
- (c) 1
- (d) 2
- If $x = \cos^2\theta + \sec^2\theta$, then which one of the following is correct?
 - (a) x = 2
- (b) x < 2
- (c) x > 2
- (d) $x \ge 2$
- If $\sin \theta = \frac{24}{25}$ and $0^{\circ} < \theta < 90^{\circ}$ then what is the
 - value of $\sin\left(\frac{\theta}{2}\right)$?

- If $\tan \theta + \sec \theta = 4$, then what is the value of $\sin \theta$?
- (b) $\frac{8}{15}$
- (d) $\frac{3}{5}$

- 31. What is the value of sin 1950° - cos 1950°?
- (b) $(\sqrt{3}+1)/2$
- (c) $(1-\sqrt{3})/2$
- (d) $(\sqrt{3}-1)/2$
- Consider the following:

1.
$$\frac{1+\sin\theta}{1-\sin\theta} = (\sec\theta + \tan\theta)^2$$

 $\sqrt{\sec^2 \theta + \csc^2 \theta} = \tan \theta + \cot \theta$

Which of the above is/are correct?

- (a) l only
- (b) 2 only
- (c) both 1 and 2
- (d) neither 1 nor 2
- If $\tan A = 1/2$, $\tan B = 1/3$; then what is the value of tan(2A + B)?
 - (a)
- (b) 2
- (c) 3
- (d) 4
- If $\tan \theta + \sec \theta = p$, then what is the value of
 - (a) $\frac{p^2+1}{p^2}$
- (b) $\frac{p^2 + 1}{\sqrt{p}}$
- (c) $\frac{p^2+1}{2p}$
- What is the value of $\sin 10^{\circ} + \sin 50^{\circ} \sin 70^{\circ}$?
 - (a) 1
- (b) 0

- If $\tan A = \frac{1}{3}$ and $\tan B = \frac{1}{7}$, then what is the value
 - of2A+B? (a) 30°
- (c) 60°
- (d) 135°
- 37. Given that $p = \tan \alpha + \tan \beta$, and $q = \cot \alpha + \cot$

β; then what is $\left(\frac{1}{p} - \frac{1}{q}\right)$ equal to?

- (a) $\cot (\alpha \beta)$ (b) $\tan (\alpha \beta)$
- (c) $\tan (\alpha + \beta)$
- (d) $\cot(\alpha + \beta)$
- Given that $\tan \theta = m \neq 0$, $\tan 2\theta = n \neq 0$ and $\tan \theta + \tan 2\theta = \tan 3\theta$, then which one of the following is correct?
- (a) m = n
- (b) m+n=1
- (c) m+n=0
- (d) mn = -1

39.	Given that $\tan \alpha = m/(m+1)$, $\tan \beta = 1/(2m+1)$,
	then what is the value of $\alpha + \beta$?

- What is the value of $(\sec\theta \cos\theta)(\cot\theta + \tan\theta)$?
- (d) cos θ (c) $\sin \theta$
- What is the value of $\cot (-870^{\circ})$? 41.
- (c) $-\sqrt{3}$
- (d) $-\frac{1}{\sqrt{2}}$

42. What is the value of
$$\left(\sin 22\frac{1^{\circ}}{2} + \cos 22\frac{1^{\circ}}{2}\right)^4$$
?

- (a) $\frac{3+2\sqrt{2}}{2}$ (b) $\frac{1+2\sqrt{2}}{2}$
- (c) $3\sqrt{2}+2$

43. If
$$\sin 2A = \frac{4}{5}$$
, then what is the value of

$$\tan A \left(0 \le A \le \frac{\pi}{4} \right) ?$$

- (c) $\frac{1}{2}$ (d) 2

44. What is the value of
$$\sin\left(\frac{5\pi}{12}\right)$$
?

- (a) $\frac{\sqrt{3}+1}{2}$ (b) $\frac{\sqrt{6}+\sqrt{2}}{4}$
- (c) $\sqrt{\frac{3+\sqrt{2}}{4}}$ (d) $\frac{\sqrt{6}+1}{2}$

45. What is the correct sequence of the following

- 1. $\sin\left(\frac{\pi}{12}\right)$ 2. $\cos\left(\frac{\pi}{12}\right)$
- 3. $\cot\left(\frac{\pi}{12}\right)$

Select the correct answer using the code given

- (a) 3 > 2 > 1

46. The value of
$$\sin \left[n\pi + (-1)^n \frac{\pi}{4} \right]$$
, $n \in I$ is

- (b) $\frac{1}{\sqrt{2}}$
- (c) $-\frac{1}{\sqrt{2}}$
- (d) None of these

47. The value of
$$\frac{\tan x}{\tan 3x}$$
 wherever defined never lies

- (a) $\frac{1}{2}$ and 2 (b) $\frac{1}{3}$ and 3
- (c) $\frac{1}{4}$ and 4 (d) $\frac{1}{3}$ and 2
- In a AABC, if angle C is obtuse, then
 - (a) tan A tan B < 1
- (b) tan A tan B≤1
- (c) tan A tan B > 1
- (d) None of these
- The number of solution of $\tan x + \sec x = 2\cos x$ in $[0, 2\pi)$ is
 - (a) 2 .
- (b) 3
- (c) 0

50. Let
$$\alpha, \beta$$
 be such that $\pi < \alpha - \beta < 3\pi$.

If $\sin \alpha + \sin \beta = -\frac{21}{65}$ and $\cos \alpha + \cos \beta = -\frac{27}{65}$,

then the value of $\cos \frac{\alpha - \beta}{2}$

- (a) $\frac{-6}{65}$ (b) $\frac{3}{\sqrt{130}}$
- (d) $-\frac{3}{\sqrt{130}}$
- The number of values of x in the interval $[0,3\pi]$ satisfying the equation $2\sin^2 x + 5\sin x - 3 = 0$
 - (a)
- (b) 6 (d) 2
- (c) 1

- If $0 < x < \pi$ and $\cos x + \sin x = \frac{1}{2}$, then $\tan x$
 - (a) $\frac{(1-\sqrt{7})}{4}$ (b) $\frac{(4-\sqrt{7})}{3}$
- Let A and B denote the statements $A : \cos \alpha + \cos \beta + \cos \gamma = 0$ \mathbf{B} : $\sin \alpha + \sin \beta + \sin \gamma = 0$

If $\cos (\beta - \gamma) + \cos (\gamma - \alpha) + \cos (\alpha - \beta) = -\frac{3}{2}$,

- (a) A is false and B is true.
- (b) both A and B are true.
- (c) both A and B are false.
- (d) A is true and B is false.
- 54. Let $\cos(\alpha + \beta) = \frac{4}{5}$ and $\sin(\alpha \beta) = \frac{5}{13}$,

where $0 \le \alpha, \beta \le \frac{\pi}{4}$.

Then $\tan 2\alpha =$

- (a) $\frac{56}{33}$

- 55. If $A = \sin^2 x + \cos^4 x$, then for all real x:
 - (a) $\frac{13}{16} \le A \le 1$
- (b) 1≤A≤2
- (c) $\frac{3}{4} \le A \le \frac{13}{16}$ (d) $\frac{3}{4} \le A \le 1$
- 56. The possible values of $\theta \in (0, \pi)$ such that $\sin (\theta) + \sin (4\theta) + \sin (7\theta) = 0$ are:
 - (a) $\frac{\pi}{4}$, $\frac{5\pi}{12}$, $\frac{\pi}{2}$, $\frac{2\pi}{3}$, $\frac{3\pi}{4}$, $\frac{8\pi}{9}$
 - (b) $\frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{35\pi}{36}$
 - (c) $\frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{8\pi}{9}$
 - (d) $\frac{2\pi}{9}$, $\frac{\pi}{4}$, $\frac{4\pi}{9}$, $\frac{\pi}{2}$, $\frac{3\pi}{4}$, $\frac{8\pi}{9}$

- If $\alpha + \beta + \gamma = 2\pi$, then: 57.
 - (a) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
 - (b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1$
 - (c) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = -\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
 - (d) None of these
 - Given both θ and ϕ are acute angle $\sin \theta = \frac{1}{2}, \cos \phi = \frac{1}{3}$, then the value of $\theta + \phi$
- (b) $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$

- The smallest positive root of the equation,
- (b) $\left(\frac{\pi}{2},\pi\right)$

- If $\sin \theta + \csc \theta = 2$, then $\sin^2 \theta + \csc^2 \theta$ is 60. equal to
 - (a) 1

- (d) None of these
- If $\tan \theta = \frac{1}{2}$ and $\tan \phi = \frac{1}{3}$, then the value of $\theta + \phi$ is
- (b) n

- The value of cos 1° cos 2° cos 3° ... cos 179° is 62.

- (b) 0
- (d) $\neg 1$ The value of cos 12° + cos 84° + cos 156° + cos 132° is
- (b) 1

- The value of $\sin \frac{\pi}{10} \sin \frac{13\pi}{10}$ is

- (d) 0

[Hint: Use $\sin 18^\circ = \frac{\sqrt{5} - 1}{1}$

and
$$\cos 36^{\circ} = \frac{\sqrt{5} + 1}{4}$$
]

- The value of $\cos^2 48^\circ \sin^2 12^\circ$ is
- (c) $\frac{\sqrt{5}+1}{5}$

[Hint: Use $\cos^2 A - \sin^2 B$ $=\cos\left(A+B\right)\cos\left(A-B\right)]$

- The solution of the equation $\cos^2\theta + \sin\theta + 1 = 0$, lies in the interval:
 - (a) $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ (b) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$
 - (c) $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$ (d) $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$
- 67. Solution of the equation $\tan x + \tan 2x + \tan x$. \tan 2x = 1 will be:
 - (a) $x = \frac{n\pi}{3} + \frac{\pi}{12}$ (b) $x = n\pi \frac{\pi}{4}$
 - (c) $x = n\pi + \frac{\pi}{3}$ (d) $x = n\pi \pm \frac{\pi}{4}$
- 68. If $x + \frac{1}{x} = 2 \cos \theta$, then $x^3 + \frac{1}{x^3}$ is:
- (a) $\frac{1}{2}\cos 3\theta$ (b) $2\cos 3\theta$

 - (c) cos 3θ
- (d) $\frac{1}{3}\cos 3\theta$

- The value of $\cos \frac{\pi}{3} \cdot \cos \frac{\pi}{7} \cdot \cos \frac{2\pi}{7} \cos \frac{4\pi}{7}$:
 - (a)
- (c)
- The general value of x satisfying $\cos x = \sqrt{3}(1 - \sin x)$ is given by:
 - (a) $x = n\pi \pm \frac{\pi}{2}$

 - (c) $\dot{x} = n \pi + (-1)^n \frac{\pi}{3}$
 - (d) $x = n\pi \pm \frac{\pi}{2}$
- If $\tan x = \frac{b}{a}$, then the value of $a \cos 2x + b \sin 2x$

is:

- (a) a
- (c) a+b.
- (d) b
- The value of $\tan 20^{\circ} + 2 \tan 50^{\circ} \tan 70^{\circ}$ is:
 - (a) 1
- (b) 0
- (c) tan 50°
- (d) none of these
- The general solution of the equation sin $2x + 2\sin x + 2\cos x + 1 = 0$ is
- If $\sin x + \sin^2 x = 1$, then the value of $\cos^{12} x + 3 \cos^{12} x + 3 \cos^$ $^{10}x + 3\cos^8 x + \cos^6 x - 1$ is equal to
 - (a) · 0
- (c) -1