Assignment 1

Jonas Trepiakas - 3039733855 - j
trepiakas@berkeley.edu

5: Let $F: X \times I \to X$ be a deformation retraction of X onto x_0 such that F(x,0) = 1 and $F(X,1) = x_0$ and $F(x_0,t) = x_0$ for all t. Let $U \subset X$ be a neighborhood of x_0 in X. Since F is continuous, $F^{-1}(U)$ is open and nonempty as $x_0 \in F^{-1}(U)$, and since U is open and I is open in I, we have by definition of the product topology that $U \times I$ is open in $X \times I$ and thus $F^{-1}(U) \cap U \times I$ is open and nonempty as $\{x_0\} \times I \subset F^{-1}(U) \cap U \times I$. We can thus write $F^{-1}(U) \cap U \times I$ as a union of basis elements $\bigcup_{\alpha} V_{\alpha} \cup W_{\alpha}$ where all V_{α} are open in X and W_{α} open in I. Since $\{x_0\} \times I \subset F^{-1}(U)$, we have $\bigcup_{\alpha} W_{\alpha} = I$, and since I is compact, there exist $\alpha_1, \ldots, \alpha_n$ such that $W_{\alpha_1} \cup \ldots \cup W_{\alpha_n} = I$. Then $V = V_{\alpha_1} \cap \ldots \cap V_{\alpha_n}$ is open as the finite intersection of open sets and nonempty as all contain x_0 , and we find that $F(V \times I) \subset U$ since for any $(x,t) \in V \times I$, there exists a $1 \le i \le n$ such that $(x,t) \in V_{\alpha_i} \times W_{\alpha_i}$ and $F(V_{\alpha_1} \times W_{\alpha_1}) \subset F(F^{-1}(U) \cap U \times I) \subset U$. Now $V \times I$ is open and satisfies that the restriction $F|_{V \times I} : V \times I \to U$ is well-defined and a homotopy between the inclusion map $1_V : V \to U$ and the constant function sending V to x_0 since $F(x,0) = 1_V$ and $F(x,1) = x_0$, and it is continuous since for any open set W of the subspace U, we have $F|_{V \times I}^{-1}(W) = F^{-1}(W) \cap V \times I$ which is the intersection of open sets and thus open.

Hence the inclusion map $\mathbb{1}_V : V \to U$ is nullhomotopic.

15: We have $S^{\infty} = \bigcup_n S^n$ and each S^n can be built inductively from S^{n-1} by attaching two n-cells (by the procedure on page 7, Hatcher). If now A is a subcomplex of S^{∞} that contains an n-cell, it must also contain the boundary of this n-cell since a subcomplex is a closed subspace. The boundary of an n-cell, ∂e^n , is an (n-1)-cell which in the n-skeleton S^n would be S^{n-1} in this cell structure. So if the subcomplex A has finite dimension n, then it is of the form $e_1^n \bigcup_{i < n} e_1^i \cup e_2^i$ or $e_1^n \cup e_2^n \bigcup_{i < n} e_1^i \cup e_2^i$. If A is infinite dimensional, it must be S^{∞} since it is a union of cells and assume it does not contain a cell e_2^l . Since it is not finite dimensional, it must contain a cell e_2^l with i > l and hence by the finite case, it must contain $\bigcup_{i < j} e_1^i \cup e_2^i$ which contains e_2^j .