

3 ~~48.~~ The device of claim ~~48~~ wherein the affinity reagent is bound to a filter element
4 within the tip.

1 ~~50.~~ The device of claim ~~48~~ wherein the tip is a micropipette.

1 ~~51.~~ The device of claim ~~49~~ wherein the tip is a micropipette.

1 ~~52.~~ The device of claim ~~49~~ wherein the filter element is securely fixed to the tip.

1 ~~53.~~ The device of claim 5 wherein the filter element is securely fixed to the tip.

1 ~~54.~~ The device of claim ~~49~~ wherein the filter element is removably fixed within the
2 tip.

1 ~~55.~~ The device of claim ~~51~~ wherein the filter element is removably fixed within the
2 tip.

1 ~~56.~~ A method for the separation of a component of a specimen comprising the steps
2 of:

3 a. providing a tip having an affinity reagent present, and
4 b. flowing a volume of the specimen through the tip, thereby binding the
5 component to the affinity reagent.

1 ~~57.~~ The method according to claim ~~56~~ further including the step of washing the
2 retained affinity reagent with bound component by flowing rinses through the tip.

- 1 11
2 58. The method according to claim 57 further including the step of flowing an
3 effective dissociation solution through the tip and over the retained affinity
4 reagent with bound component, thereby eluting the bound compound from the
affinity reagent.

5 12
6 59. The method according to claim 58 wherein the dissociation solution is a MALDI
matrix.

1 13
2 60. The method according to claim 58 further including the step of depositing the
eluted component directly onto a mass spectrometer probe tip.

3 14
4 61. The method according to claim 60 further including the step of depositing a
MALDI matrix to the mass spectrometer probe tip

1 15
2 62. The method according to claim 59 further including the step of depositing the
eluted component directly onto a mass spectrometer probe tip.

1 16
2 63. The method according to claim 60 further including the step of inserting the mass
spectrometer probe tip into a mass spectrometer, thereby enabling laser
desorption/ionization of the component.

1 17
2 64. The method according to claim 61 further including the step of inserting the mass
spectrometer probe tip into a mass spectrometer, thereby enabling laser
desorption/ionization of the component.

1 18. 15. The method according to claim 62 further including the step of inserting the mass
2 spectrometer probe tip into a mass spectrometer, thereby enabling laser
3 desorption/ionization of the component.

1 19. 16. The method according to claim 63 further including the step of performing mass
2 spectrometric analysis on the eluted component.

1 20. 17. The method according to claim 64 further including the step of performing mass
2 spectrometric analysis on the eluted component.

1 21. 18. The method according to claim 65 further including the step of performing mass
2 spectrometric analysis on the eluted component.

1 22. A method for the separation of a component of a specimen comprising the steps
2 of:
3 a. providing a tip,
4 b. binding the component to an affinity reagent,
5 c. forcing a volume of the affinity reagent with bound component through
6 the tip, thereby retaining the affinity reagent with bound component within
7 the tip,
8 d. washing the retained affinity reagent with bound component by forcing
9 rinses through the tip,