Binary quadratic form + n-th power residues.

Anzo Teh

28 July 2016

- 1. JOM 2013, N5. Let p be an odd prime such that $2^p + 1|p^p + 1$. Prove that any prime divisor of $2^p + 1$ other than 3 is greater than 6p.

 Generalization. For any prime number p we have: each prime divisor of $\gcd(2^p + 1, p^p + 1)$ is equal to 3 or is greater than 6p.
- 2. APMO 2014, # 3. Find all positive integers n such that for any integer k there exists an integer a for which $a^3 + a k$ is divisible by n.
- 3. APMO 2012, # 3. Determine all the pairs (p,n) of a prime number p and a positive integer n for which $\frac{n^p+1}{p^n+1}$ is an integer.
- 4. IMO 2012, N6. Let x and y be positive integers. If $x^{2^n} 1$ is divisible by $2^n y + 1$ for every positive integer n, prove that x = 1.
- 5. IMO 2012, N8. Prove that for every prime p > 100 and every integer r, there exist two integers a and b such that p divides $a^2 + b^5 r$.
- 6. IMO 2011, N8. Let $k \in \mathbb{Z}^+$ and set $n = 2^k + 1$. Prove that n is a prime number if and only if the following holds: there is a permutation a_1, \ldots, a_{n-1} of the numbers $1, 2, \ldots, n-1$ and a sequence of integers g_1, \ldots, g_{n-1} , such that n divides $g_i^{a_i} a_{i+1}$ for every $i \in \{1, 2, \ldots, n-1\}$, where we set $a_n = a_1$.
- 7. IMO 2010, N4. Let a, b be integers, and let $P(x) = ax^3 + bx$. For any positive integer n we say that the pair (a, b) is n-good if n|P(m) P(k) implies n|m-k for all integers m, k. We say that (a, b) is $very \ good$ if (a, b) is n-good for infinitely many positive integers n.
 - (a) Find a pair (a, b) which is 51-good, but not very good.
 - (b) Show that all 2010-good pairs are very good.
- 8. IMO 2008, # 3. Prove that there are infinitely many positive integers n such that $n^2 + 1$ has a prime divisor greater than $2n + \sqrt{2n}$.