ECE 477 Design Review Team 02 - Spring 2014

Courtney Laubach, Sophie Pouliquen, Matt McMunigle, Travis Jefferson

Outline

- Project overview
- Project-specific success criteria
- Block diagram
- Component selection rationale
- Packaging design
- Schematic and theory of operation
- PCB layout
- Software design/development status
- Project completion timeline
- Questions / discussion

Project Overview

- The proposed design is an interactive DJ party system
 - Accompanied web application allows users to vote for songs to be played
 - LED's shine onto spinning disco ball controlled by the beat of the song selected
 - LCD displays current song information
 - Push buttons allow for user-controlled song interaction (skip, pause, etc.)

Project-Specific Success Criteria

- 1. An ability for a user-created webapp to communicate a selected song to the Raspberry Pi through an http request (API poll).
- 2. An ability for a computing PC (Raspberry Pi) to stream music through an audio streaming API and communicate the song information with the microcontroller.
- 3. An ability to create a 'lights' show corresponding the music beat, which will be sampled from the auxiliary out of the Raspberry Pi via the microcontroller ADC.

Project-Specific Success Criteria

- 4. An ability to control the direction and rotation speed of the disco ball through a motor which is controlled via the microcontroller PWM peripheral.
- 5. An ability to utilize an LCD to display user-selected (via a control device) metadata (e.g. audio options, light settings, and track information)

Block Diagram

Component Selection Rationale

Components include

- Microcontroller
- Onboard computer
- o LCD
- LED's with driver
- Push buttons
- Motor with driver
- Power supply

Microcontroller Constraints

Required external peripherals

- 2 SPI (Raspberry Pi, LCD)
- 0 1 I²C (LED driver)
- ADC (audio out)
- PWM (motor)
- Interrupt driven push buttons

Prefer 3.3V digital logic

- 5.0V Raspberry Pi has 3.3V digital logic out
- LED driver and LCD run on 3.3V

Microcontroller Choices

<u>Model</u>	<u>I/O</u> <u>Pins</u>	Program Memory	Communication Peripherals	<u>ADC</u>	<u>Price</u>
MSP430F47177IPZR	68	92 KB	I ² C SPI UART	7 @16b	\$11.26
PIC18F87J11	68	128 KB	I ² C SPI UART	12 @10b	\$4.67

PIC18F87J11 selected for

- o price free samples
- availability of prototyping board in lab

Other Choices

- Onboard computer
 - Raspberry Pi
 - wi-fi capable, serial connection to micro, output line audio, small

LCD

- NHD-2.23-12832UCB3
 - SPI interfacing, small enough to fit at base of design, double line, color
 - 3.3V, 100mA

• LED's

- YSH-FRGBB-IA
 - 3 colors on each
 - LED driver (PCA9626)
 - 3.3V, 650mA

Other Choices

- Push buttons
 - Interrupt driven
- Motor
 - STP-MTR-23055
 - bipolar, small step size, small yet powerful, rotate
 360 degrees
 - 12V, 1.2A
 - Motor Driver (L293DD)
- Power Supply
 - VEF50US12
 - o 12V, 4.17A

Packaging Design

Requirements

- Relatively light weight
- Easy to transport from one location to another

Materials

- Enclosure to hold the motor, PCB board, LCD display, and Raspberry Pi
- Poles mounted on 4 corners to hold LEDs
- 3D printed part: sits on top of motor to mount disco ball

Theory of Operation

Microcontroller

 Controls the LED driver, motor driver, samples audio, LCD, and push buttons

Raspberry Pi

- Sends audio metadata to the micro
- Streams audio to speakers
- Talks with the webapp

User interaction

- Webapp
- Push buttons

Headers/ Motor Connectors Power Micro Audio

Schematic

Microcontroller

- Powered by 3.3 V
- Decoupling Capacitors
- Flashing "heartbeat" LED
- MCLR connections
- On-chip oscillator

Power Circuit

- LM2675: switch mode regulator (12V -> 5V)
- Capacitors in parallel
- LM 1117: low dropout regulator (5V -> 3.3V)
- 12V DC power supply

Motor Driver

- L293DD:Dual H-Bridgemotor driver
- Replaced motor driver with circuitry drawn
- PWM ports

Audio Amplifier

- Gain
- Envelope detector
- ATD pin

Connectors/Headers

- Slave/Master SPI header
- LCD header
- Programming connector (RJ-11)
- Push buttons header
- Raspberry Pi header

LED Driver

I²C

- Pull up resistors
- Address pins

LED output pins traced to header

PCB Layout - General

SparkFun DRC

- 10 mil trace minimum
- 10 mil trace spacing
- 24 mil polygon isolation
- o 23 mil drill diameter

Other Considerations

- No acute angles
- Two Layer

PCB Layout

PCB Layout

PCB Layout - Power

- 3.3V, 5V, 12V
- 40-70 mil Power/GND traces
- Separate Digital and Analog GNDs
- Power components placed together

Resistor acting as jumper

PCB Layout - Microcontroller

- Decoupling capacitors directly under micro
 - Within 250 mil as directed by Manufacturer
- Programming connector for MCLR, DATA,
 CLK

PCB Layout - External Drivers

- LED Driver
 - Pull Up Resistors for I2C DATA/CLK
 - Set Slave address 0011100
- Motor Driver

PCB Layout - External Headers

- Raspberry Pi
- LCD
- Motor
- LED
- Push Buttons

Software Design - Product

Raspberry Pi

 continuous operation, streaming, polling SPI for pending commands

Micro - Interrupt-driven

- Push button interrupts driving major functionality
- ADC sampling driven by timer interrupts
- Constant PWM operation for motor control uses
 ADC value and timer for beat detection

Software Design - Webapp

- Search functionality
 - find and vote for song
- Tally votes
 - Enqueue most voted-for song
- Respond to requests
 - from Raspberry Pi for new song(s)
- View upcoming songs

Software Development Status

SPI transmit from Raspberry Pi

Software Development Status

Webapp

<u>Week</u>	<u>Dates</u>	Course Events	<u>PCB</u>	Micro / RPi	<u>Webapp</u>	<u>Packaging</u>
8	March 2- March 8	Midterm Design Reviews	Revise PCB	SPI comms		Order enclosure
9	March 9-March 15	Homework 7: Final PCB Submission	PCB Verification and Ordering	RPI audio streaming/ micro LCD	Display search results meaningfully	
10	March 16- March 22	Homework 8: Midterm Peer Evaluations	PCB fab and shipped			
11	March 23- March 29	Homework 9: Software Design Narrative	Parts/circuit testing	Audio Streaming/ LCD Audio Filtering	Develop response mechanism for Rpi requests	3D CAD drawing/ Print part
12	March 30- April 5	Homework 10: Patent Liability Analysis, Notebook Evaluation 2	Solder parts to board	LEDs/Push Buttons		Drill enclosure for LCD/motor
13	April 6th- April 12	Homework 11: Reliability and Safety Analysis	Finish Solder	LEDs/ Motor	Vote tallying mechanism	Mount LEDs and poles on enclosure
14	April 13th - April 19	Homework 12: Ethical and Environmental Impact Analysis		Testing	Top 5/Now playing feedback to user	Place parts including PCB board and rpi into enclosure
15	April 20 - April 26	Homework 13: User Manual	Final Testing	Final Testing	Final Testing	Final Testing
16	April 27 - May 3	Final Report, Senior Design Showcase, Peer Evaluation 2				
17	May 4 - May 9	Final Presentations				

Questions / Discussion