[IT Essential] Project DB 설계 - 프로젝트를 위한 RDBMS 설계방법

진행자: 최호근 컨설턴트님

날짜: 2021-01-20

🖺 목차

- 1. DB 설계의 목적
- 2. 설계를 위한 요구사항 분석
- 3. <u>개념적 설계</u>
 - 3-1. <u>개체(Entity)와 속성(Attribute) 추출</u>
 - 3-2. <u>개체 간의 관계(Relationship) 추출</u>
 - 3-3. 개념 설계 기반으로 ERD 생성
- 4. <u>논리적 설계</u>
 - 4-1. 모든 개체는 릴레이션(Table)으로 변환
 - 4-2. N:M 관계는 릴레이션(Table)으로 변환
 - 4-3. 1:N 관계는 외래키(FK)로 표현
 - 4-4. 1:1 관계는 외래키(FK)로 표현
 - 4-5. <u>다중값 속성은 독립 릴레이션(Table)으로</u>
- 5. 물리적 스키마 및 구현
- 6. <u>반정규화</u>
 - 6-1. 테이블 반정규화 방법
 - 6-2. 대표적 반정규화 컬럼 반정규화
 - 6-3. 대표적 반정규화 관계 반정규화
- 7. 두 줄 요약
- 8. <u>Q&A</u>

1. DB 설계의 목적

설계를 대충하면 기능 한 개 추가될 때마다 DB와 관련된 이미 개발된 프로그램도 함께 뜯어고쳐야 하는 경우가 발생한다!

- 프로젝트, 명세서 등의 정보 요구사항에 대한 정확한 이해
- 분석자, 개발자, 사용자 간의 원활한 의사소통 수단
- 데이터 중심의 분석 방법
- 현행 시스템만이 아닌 신규 시스템 개발의 기초 제공

2. 설계를 위한 요구사항 분석

- 데이터베이스에 대한 사용자의 요구사항을 수집하고 분석해서 아래와 같이 요구사항(기능) 명세서 를 작성한다.
- 예) 항공사 DB

〈요구사항 명세 샘플 - 항공사 DB〉

회원으로 가입하려면 아이디, 비밀번호, 성명, 신용카드 정보를 입력해야 한다 회원의 신용카드 정보는 여러 개를 저장할 수 있다 . 신용카드번호, 유효기간을 저장할 수 있다. 회사가 보유한 비행기에 대해 비행기 번호, 출발 날짜, 출발 시간 정보를 저장하고 있다. 비행기 좌석에 대한 좌석 번호, 등급 정보를 저장하고 있다. 회원은 좌석을 예약하는데, 회원 한 명은 좌석을 하나만 예약할 수 있고 , 한 좌석은 회원 한 명만 예약할 수 있다.

3. 개념적 설계

- 작성한 요구사항 명세서에서 데이터베이스를 구성하는데 필요한 개체, 속성, 개체 간의 관계를 추출하여 ERD(Entity Relationship Diagram)를 생성한다.
 - 개체(Entity)와 속성(Attribute)을 추출한다.
 - 대부분 명사로 선별한다.
 - 개체 간의 관계(Relationship)를 추출한다.

대부분 동사로 선별한다. (개체간의 관계를 나타내는 동사이여야 한다.) 관계에 속한 속성도 있을 수 있다.

1:1, 1:N, N:M

필수적인 참여, 선택적인 참여

- 참고자료
 - o ERD란 무엇인가?

3-1. 개체(Entity)와 속성(Attribute) 추출

- 요구사항에서 **개체(Entity)**는 대부분 명사로 이루어져 있지만, **속성(Attribute)**과 구별하여 추출한다.
- 아래 예시에서 개체는 주황색, 속성은 파란색으로 표시되어있다.

〈요구사항 명세 샘플〉

회원으로 가입하려면 아이디, 비밀번호, 성명, 신용카드 정보를 입력해야 한다 회원의 신용카드 정보는 여러 개를 저장할 수 있다 . 신용카드번호, 유효기간을 저장할 수 있다. 회사가 보유한 비행기에 대해 비행기 번호, 출발 날짜, 출발 시간 정보를 저장하고 있다. 비행기 좌석에 대한 좌석 번호, 등급 정보를 저장하고 있다. 회원은 좌석을 예약하는데, 회원 한 명은 좌석을 하나만 예약할 수 있고 , 한 좌석은 회원 한 명만 예약할 수 있다.

3-2. 개체 간의 관계(Relationship) 추출

- 개체 간의 관계(Relationship)는 여러가지로 분류해서 정의된다.
- 아래 예시에서 관계는 초록색으로 표시되어있다.

〈요구사항 명세 샘플〉

회원으로 가입하려면 아이디, 비밀번호, 성명, 신용카드 정보를 입력해야 한다. 회원의 신용카드 정보는 여러 개를 저장 할 수 있다 . 신용카드번호, 유효기간을 저장할 수 있다. 회사가 보유한 비행기에 대해 비행기 번호, 출발 날짜, 출발 시간 정보를 저장하고 있다. 비행기 좌석에 대한 좌석 번호, 등급 정보를 저장하고 있다. 회원은 좌석을 예약하는데, 회원 한 명은 좌석을 하나만 예약할 수 있고, 한 좌석은 회원 한 명만 예약할 수 있다.

3-3. 개념 설계 기반으로 ERD 생성

- 주황색은 개체, 파란색은 속성, 초록색은 관계를 나타낸다.
- IE 표기법을 사용해서 관계를 표기한다.
- 참고자료
 - <u>IE 표기법/까마귀발 표기법</u>

4. 논리적 설계

- 모든 개체는 릴레이션(Table)으로 변환
- N:M 관계는 릴레이션(Table)으로 변환
- 1:N 관계는 외래키로 표현
- 1:1 관계는 외래키로 표현
- 다중값 속성은 독립 릴레이션(Table)으로 변환

4-1. 모든 개체는 릴레이션(Table)으로 변환

- ER 다이어그램의 각 개체를 **릴레이션(Table)**으로 변환한다.
- 개체는 테이블, 속성은 테이블의 속성으로 변환한다.

4-2. N:M 관계는 릴레이션(Table)으로 변환

• N:M 관계(다대다 관계)에서 관계는 릴레이션 이름, 관계 속성은 릴레이션 속성으로 변환한다.

4-3. 1:N 관계는 외래키(FK)로 표현

• 일반적으로 1:N 관계(일대다 관계)에서 1측 개체의 기본키를 N측 릴레이션에 포함시키고 외래키 (FK, Foreign Key)로 지정한다.

4-4. 1:1 관계는 외래키(FK)로 표현

• 일반적 1:1 관계(일대일 관계)는 외래키(FK)를 주고 받는다.

4-5. 다중값 속성은 독립 릴레이션(Table)으로

- 릴레이션에서는 **다중 값 속성**을 가질 수 없으므로 다중 값 속성은 별도의 릴레이션으로 생성해야 한다.
- 예) 한 사원이 자녀를 5명 두고 있다고 할 때, 자녀 정보를 담기 위해 사원 릴레이션(table)에 자녀 컬럼을 다섯개 추가 할 수는 없으니까 별도의 자녀 릴레이션을 생성하고 외래키로 참조한다.

5. 물리적 스키마 및 구현

• ERD를 실제 테이블로 생성한다. (Workbench 같은 DB Tool이나 SQL스크립트 사용으로도 가능해야 한다.)

- 참고자료
 - o ERD 툴 종류

6. 반정규화

- 반정규화(역정규화)는 정규화 된 엔티티타입, 속성, 관계를 **시스템의 성능향상, 개발과 운영의 단순 화를 위해** 모델을 통합하는 프로세스를 말한다.
- 정규화 모델 vs 반정규화 모델

〈정규화 모델〉

이상적인 논리모델은 모든 엔티티타입,속성,관계가 반드시 한 개만 존재하며 따라서 입력,수정,삭제도 한군데에서만 발생하므로 데이타 값이 변질되거나 이질화 될 가능성이 없다. 반면 여러 테이블이 생성되어야 하므로 SQL작성이 용이하지 않고 과다한 테이블 조인이 발생하여 성능이 저하될 가능성이 높다.

(반정규화 모델)

반대로 반정규화를 하면 여러 개의 테이블이 단순해지므로 SQL작성이 용이하고 성능이 향상될 가능성이 많다. 그러나 같은 데이터가 여러 테이블에 걸쳐 존재하므로 무결성이 깨질 우려가 있다.

6-1. 테이블 반정규화 방법

- 1:1 관계의 테이블 병합
- 1:N 관계의 테이블 병합
- 수퍼/서브 타입 테이블 병합
- 수직 분할(집중화 된 일부 컬럼을 분리)
- 수평 분할(행으로 구분하여 구간별 분리)
- 테이블 추가 (중복테이블, 통계테이블, 이력케이블, 부분테이블)
- 참고자료
 - o 반정규화(비디오)

6-2. 대표적 반정규화 - 컬럼 반정규화

- 중복컬럼 추가 (자주 조회하는 컬럼이 있는 경우)
- 파생 컬럼 추가 (미리 계산한 값)
- PK에 의한 컬럼 추가
- 응용시스템 오작동을 위한 컬럼 추가 (이전 데이터 임시 보관)

6-3. 대표적 반정규화 - 관계 반정규화

- 중복 관계 추가 (이미 A테이블에서 C테이블의 정보를 읽을 수 있는 관계가 있음에도 관계를 중복하여 조회(Read) 경로를 단축)
- 아래의 예시에서 왼쪽 같은 경우는 고객번호를 가지고 배송번호를 조회하려면 여러 번의 조인이 일어나야하지만, 오른쪽과 같이 반정규화를 통해 배송 테이블에 고객번호를 컬럼으로 넣으면 조회 경로를 단축 시킬 수 있다.

7. 두 줄 요약

- 정규화가 좋은가 반정규화가 좋은가?
 - o 정답은 정해져 있지 않고 **그때그때 다르다.** 개념을 잘 알고 있어야 적절하게 쓸 수 있다.

8. Q&A

- 1. 정규화에도 단계가 있나요?
 - ㅇ 제1 정규형부터 제5 정규형까지 있으며 정규화를 할 때 단계별로 순차적으로 진행합니다.
 - ㅇ 참고자료
 - 정규화 (Normalization) 단계
- 2. 테이블을 설계 할 때 컬럼명을 테이블명을 구분할 수 있도록 지으면 반정규화가 어려워지나요?
 - 명칭은 상관이 없으나, 구분이 가능하도록 명칭을 명확하게 지으면 좋습니다.
- 3. 테이블을 만들 때 쓰는 SQL 스크립트는 다 외우고 있어야 하나요?
 - o DB 생성, 테이블 생성, 컬럼 추가, 테이블 변경 등 기본적인 CRUD 정도는 알고 있으면 좋습니다.
 - ㅇ 참고자료
 - SQL 쿼리 연습
- 4. RDBMS와 NoSQL 설계는 많이 다른가요?

- NoSQL은 key와 value 형태로 되어있어 정규화를 위반하는 경우도 많아 RDBMS와 NoSQL의 설계 방법은 많이 다릅니다. 저장할 값의 종류와 호출 방법에 따라 RDBMS와 NoSQL 중 어떤 것을 사용하는 것이 좋을지 고민 후 선택해야 합니다.
- ㅇ 참고자료
 - SQL vs NoSQL
- 5. 외부키 유무가 데이터베이스 효율에 큰 영향을 끼치나요?
 - o 효율은 어떤 형태로 쿼리가 이루어지는지, 외부키가 얼마나 자주 사용되는지와 관련이 있기 때문에 단순히 외부키의 존재 유무만으로는 효율성을 평가하기는 어렵습니다.
- 6. 언제 NoSQL을 사용하고 언제 RDBMS를 사용하는지 좀 더 구체적으로 알고싶습니다.
 - o CRUD가 많이 일어날 때는 RDBMS를 많이 사용하고, 단순한 입력과 조회가 많이 일어날 때는 NoSQL을 많이 사용합니다.
- 7. 어떻게 설계된 DB를 볼 때 매력적이라고 느끼시나요?
 - o 개발자들이 개발하기 편한 DB가 매력적인 DB라고 생각합니다.
- 8. DB 성능을 고려해야 할 데이터 개수의 기준이 있을까요?
 - o 요즘에는 데이터베이스의 성능이 많이 좋아져서 설계만 잘하면 억 단위의 데이터도 문제 없이 다룰 수 있습니다.