Data Structure

Kwang-Yeol Park 2018 03 15

References:

- http://r4ds.had.co.nz/
- MOOC: https://www.coursera.org/specializations/jhu-data-science

Report submission:

- sbaram1@naver.com
- Title: Student_ID, Name, Report_title

Lecture material: https://github.com/sbaram1/Presentation

Research Process

Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says

A new survey of data scientists found that they spend most of their time massaging rather than mining or modeling data. Still, most are happy with having the sexiest job of the 21st century. The survey of about 80 data scientists was conducted for the second year in a row by CrowdFlower, provider of a "data enrichment" platform for data scientists. Here are the highlights:

Data preparation accounts for about 80% of the work of data scientists


```
# install.packages("dplyr")
# install.packages("magrittr")
library(dplyr)
```

Data structure and importing DB

Data Preparation for analysis

Entering data from the keyboard

```
a <- c(1, 2, 3, 4, 5)
a
## [1] 1 2 3 4 5
```

Data Structure

- · Types
 - Logical
 - Integer
 - Numeric (Double)
 - Character

Matrix

```
mat1 <- matrix(data=c(1:6), nr=3, nc=2)
mat1

## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6</pre>
```

Data frame

```
ID <- c(11:15)

Age <- c(32, 35, 45, 21, 58)

Sex <- c("M", "M", "F", "M", "F")

DB <- data.frame(ID, Age, Sex)

DB

## ID Age Sex

## 1 11 32 M

## 2 12 35 M

## 3 13 45 F

## 4 14 21 M

## 5 15 58 F
```

Data frame 2

```
DB[1,]
## ID Age Sex
## 1 11 32 M
DB[,1]
## [1] 11 12 13 14 15
DB$1D
## [1] 11 12 13 14 15
str(DB)
## 'data.frame': 5 obs. of 3 variables:
## $ ID : int 11 12 13 14 15
```

Factor

```
a \leftarrow c(1, 2, 2, 1, 2, 1, 1, 1, 1, 2)
class(a)
## [1] "numeric"
b <- factor(a)
b
## [1] 1 2 2 1 2 1 1 1 1 2
## Levels: 12
class(b)
## [1] "factor"
```

Factor 2

```
?factor
b <- factor(a, levels=c(1, 2), labels=c("M", "F"))
b

## [1] M F F M F M M M M F
## Levels: M F

# back_to_a <- as.numeric(as.character(b))
# droplevels()</pre>
```

Exercise 1

- Make a numeric vector
 - What is the 3rd element?
- Make a 3x3 matrix
 - What is in the 3rd row and column?
- make vector b (1, 2, 3, 7, 8)
 - turn b into factor b
 - turn b into numeric vector b again
- · Make a data frame
 - variable name: ID, age, sex
 - number of rows: 5
 - sex should be factor
 - Display the content of ID

Managing data frame

Read Data file

- Importing DB files
 - CSV file (comma separated values)
 - SPSS file (read.spss() in foreign package, spss.get() in Hmisc package, read_sav in heven package)
 - MS-EXCEL file

```
# Check Working directory
# getwd()
DB1 <- read.csv("db/VitDdb_example.csv", sep=",", header=TRUE)
#install.packages("Hmisc")
# library(Hmisc)
# DB2 <- spss.get("db/VitDdb_example.sav", use.value.labels=TRUE)
# library(haven)
# VitDdb_example <- read_sav("~/Dropbox/RBook/ERC_KSS_R_lecture/2nd_20180209/db/VitDdb_example.sav")</pre>
```

Change the name of variable

```
names(DB1)
   [1] "Age"
                               "Gender_F"
                                                       "TOAST.classification"
                                                       "WBC"
    [4] "NIHSS.admission"
                                "mRS.admission"
    [7] "Hemoglobin"
                               "hsCRP"
                                                       "FBS"
## [10] "T.Chol"
                               "HDI "
                                                       "I DI "
## [13] "TG"
                               "VitD"
names(DB1)[4] <- c("NIHSS")
names(DB1)[which(names(DB1) = "mRS.admission")] <- c("Prev_mRS")
DB1 <- rename(DB1, TOAST = TOAST.classification)
# DB1 <- rename(DB1, NHISS = NIHSS.admission, Prev mRS = mRS.admission.
#
                TOAST = TOAST.classification)
```

Look at TOAST

set "Undetermined" as reference

DB1\$TOAST

##	[1] CE	Undeterr	mined TIA	Undetermined
##	[5] LAA	CE	LAA	Undetermined
##	[9] TIA	Undeterr	mined TIA	TIA
##	[13] LAA	SVO	LAA	LAA
##	[17] LAA	LAA	TIA	CE
##	[21] SVO	CE	LAA	LAA
##	[25] Undeterm	nined TIA	LAA	CE
##	[29] LAA	LAA	TIA	LAA
##	[33] TIA	CE	CE	TIA
##	[37] CE	TIA	SVO	CE
##	[41] TIA	Undeterr	nined LAA	Undetermined
##	[45] LAA	SVO	LAA	CE
##	[49] LAA	SVO	SVO	CE
##	[53] LAA	CE	LAA	LAA
##	[57] Undeterm	nined LAA	TIA	LAA
##	[61] Undeterm	nined TIA	LAA	LAA

Change reference of a factor

```
levels(DB1$TOAST)
                                              "Other determined"
## [1] "CE"
                          "I AA"
## [4] "SVO"
                          "TIA"
                                              "Undetermined"
# library(magrittr)
DB1$TOAST <- factor(DB1$TOAST) %% relevel(ref = "Undetermined")
# DB1$TOAST <- relevel(DB1$TOAST. ref = "Undetermined")
levels(DB1$TOAST)
## [1] "Undetermined"
                          "CE"
                                              "LAA"
## [4] "Other determined" "SVO"
                                              "TIA"
```

Making new variable

· New variable: SVO vs. non-SVO

DB1\$TOAST

##	[1]	CE	Undetermined	TIA	Undetermined
##	[5]	LAA	CE	LAA	Undetermined
##	[9]	TIA	Undetermined	TIA	TIA
##	[13]	LAA	SV0	LAA	LAA
##	[17]	LAA	LAA	TIA	CE
##	[21]	SVO	CE	LAA	LAA
##	[25]	Undetermined	TIA	LAA	CE
##	[29]	LAA	LAA	TIA	LAA
##	[33]	TIA	CE	CE	TIA
##	[37]	CE	TIA	SVO	CE
##	[41]	TIA	Undetermined	LAA	Undetermined
##	[45]	LAA	SVO	LAA	CE
##	[49]	LAA	SVO	SVO	CE
##	[53]	LAA	CE	LAA	LAA
##	[57]	Undetermined	LAA	TIA	LAA
##	[61]	Undetermined	TIA	LAA	LAA

```
DB1$SV0 <- ifelse(DB1$TOAST = "SV0", 1, 0) %>%
             factor(levels=c(0, 1), labels=c("SVO(-)", "SVO(+)"))
DB1$SVO
    [1] SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
##
    [11] SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
    [21] SVO(+) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
##
    [31] SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(+) SVO(-)
    [41] SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(+)
    [51] SVO(+) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
    [61] SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(+)
##
    [71] SVO(-) SVO(-) SVO(+) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
    [81] SVO(-) SVO(+) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
   [91] SVO(-) SVO(-) SVO(+) SVO(-) SVO(+) SVO(+) SVO(-) SVO(-)
## [101] SVO(+) SVO(-) SVO(-) SVO(+) SVO(+) SVO(-) SVO(-) SVO(-) SVO(-)
## [111] SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
## [121] SVO(-) SVO(-) SVO(-) SVO(+) SVO(+) SVO(-) SVO(-) SVO(-) SVO(-)
## [131] SVO(+) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
## [141] SVO(-) SVO(-) SVO(+) SVO(-) SVO(+) SVO(-) SVO(+) SVO(-) SVO(+)
## [151] SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
## [161] SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
## [171] SVO(-) SVO(+) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
## [181] SVO(+) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-) SVO(-)
```

table(DB1\$TOAST, DB1\$SVO)

##			
##		SVO(-)	SVO(+)
##	Undetermined	121	0
##	CE	202	0
##	LAA	186	0
##	Other determined	16	0
##	SVO	0	148
##	TIA	86	0

Making Stroke subset

summary(DB1\$TOAST)

##	Undetermined	CE	LAA	Other determined
##	121	202	186	16
##	SVO	TIA		
##	148	86		

Using subset function

```
subset(DB1, TOAST != "TIA") %>% nrow()
## [1] 673

subset(DB1, TOAST == "TIA") %>% nrow()
## [1] 86

nrow(DB1)
## [1] 759
```

Exercise 2

- · Use your own DB
 - Disply the summary of DB
 - Display the names of variables
 - Change variable name
 - Make a factor and change reference value
 - Make a new variable
 - Make a subset
- You can use data()