Op-amp simple comparators

Op-amp in switching mode \Rightarrow comparators with op-amp. The **voltage comparator** compares two input voltages and signalizes to the output what input voltage is greater.

- > voltages comparison: by the sign of their difference
- > according to the sign of the difference, the comparator outputs one or another of the two possible output voltages
- For op-amp comparators one can consider only one input, namely the difference between v^+ and v^- , meaning v_D

$$V_{O} \in \{V_{OL}, V_{OH}\}$$
 $v_{D} > 0$, that is $v^{+} > v^{-}$, $v_{O} = V_{OH}$ $v_{D} < 0$, that is $v^{+} < v^{-}$, $v_{O} = V_{OL}$

Op-amp model in switching regime

Appropriate for rail-to-rail op-amp

Two types of voltage comparators:

> simple comparators, without any feedback, one threshold voltage.

hysteresis comparators, with positive feedback, two threshold voltages

□ **threshold voltage** V_{Th} : that particular value of the input voltage v_I for which the output switches, v_D - crosses through zero.

Simple Comparators

no feedback, only one threshold voltage

Threshold voltage V_{Th} : that particular value of the input voltage v_I for which the output switches from one state in the other state $(v_D = 0)$.

To find V_{Th} :

- find the expression of v_D
- use the condition $v_D = 0$ and replace v_I with V_{Th}
- obtain V_{Th}

Simple comparators with $V_{Th} = 0$ V

- > one grounded input
- $\triangleright v_I$ is applied to the other input

Comparators with $V_{Th} = 0V$

noninverting

$$v_{\mathcal{O}} = \begin{cases} V_{\mathcal{O}H} & \text{if } v_{\mathcal{D}} > 0, \text{ this is } v_{\mathcal{I}} > 0 \\ V_{\mathcal{O}L} & \text{if } v_{\mathcal{D}} < 0, \text{ this is } v_{\mathcal{I}} < 0 \end{cases}$$

How does the output voltage look like if the input voltage is a sine wave with 3 V amplitude and the supply is $\pm V_{PS} = \pm 12 \text{ V}$?

$$v^+ = v_I; \quad v^- = 0$$
 $v_D = v_I$
 $v_D = 0; \quad V_{Th} = 0$

Comparators with $V_{Th} = 0V - cont$.

How does the output voltage look like if the input voltage is a sine wave with 3V amplitude and the supply is $\pm V_{PS} = \pm 12 \text{ V}$?

Comparators with $V_{Th} \neq 0$

noninverting

How can V_{REF} be obtained from the available dc sources?

$$V_{REF} = \frac{R_1}{R_1 + R_2} V_{PS}$$

Example

 $10^{\spadesuit}_{\bullet} v_I[V]$

8 6

-2-

-6 -8

 $V_{OH} = 12$

 $V_{OL} = -12 + 12$

 $v_{\mathcal{O}}[V]$

Redesign:

- ✓ inverting
- $\checkmark V_{Th} = +6V$
- ? VTC
- $v_O(t)$

Comparators with $V_{Th} \neq 0$

inverting

 $i^+ << \text{current through}$ $R_1, R_2 \text{ divider } (i^+ \cong 0)$

$$V_{REF} = \frac{R_1}{R_1 + R_2} V_{PS}$$

Op-amps specially intended for comparators

- general-purpose op-amp comparators
- > **special class** of op-amp intended for comparators like: LM306, LM 311, LM 399, LM 393, LM 339:
 - high differential voltages
 - > very fast response (very high slew rate)
 - > usual comparators has *open collector* output (they necessitate an external resistor connected from the output towards a positive potential)
 - can have an extra **ground terminal** beside the usual supply terminals

Applications of simple comparators

- Light sensor
- > Interface between analog and logic circuits
- Obtaining rectangular signal from sinusoidal (triangular) signal
- Optical indicator for voltage level
- Pulse width modulation
- > Signalizing and control circuit
- > Analog to digital converter
- **>**

Light Sensor Circuit

PC: CdS
Photoconductive
Photocells
PDV-P8001

LDR - Light Dependent Resistor

Dark resistance (big): $R_D > 200 \text{ k}\Omega$

Illuminated resistance (small): $R_I \in (3; 11) \text{ k}\Omega$

When the light falling on the photocell (PC) is blocked, its resistance will increase and the voltage across PC will rise. When the voltage rises above 1/2 of the supply voltage the output of the comparator will turn ON and the LED will be lit.

Optical Indicator for Voltage Level

Design a bar graph optical indicator for the voltage level using 5 LEDs

LED Bar Graph Dual Column Vu-meter display Decibel level 2x12

Bar graph LED indicating the audio level under 2X12 levels (stereo)

It contains 12 LEDs per side (7 green, 2 orange, 3 red).

The display speed and peak level can be adjusted individually by the button on the rear panel.

