Math 6210 NOTES: DIFFERENTIAL GEOMETRY

COLTON GRAINGER APRIL 17, 2019

These notes were taken in University of Colorado's Math 6210 (Differential Geometry) class in Spring 2019, taught by Prof. Jeanne Clelland. I live-TeXed them with vim, so there may be typos and failures of understanding. Any mistakes are my own. Please send questions, comments, complaints, and corrections to colton.grainger@colorado.edu. Thanks to adebray for the LATEX template, which I have forked from https://github.com/adebray/latex_style_files.

Contents

1. 2019-04-17

Lecture 1.

2019-04-17

Last time, we defined covectors, cotangent vectors, and a basis for the *cotangent space at a point*, given a basis of tangent vectors for the tangent space.

That is, by choosing a coordinate chart $(U,(x^i))$ about a point $p \in U$, we have a basis for T_pM

$$\frac{\partial}{\partial x^1}\Big|_p, \dots, \frac{\partial}{\partial x^n}\Big|_p,$$

and therefore a dual basis for T_p^*M

$$\mathrm{d}x^1 \bigg|_p, \dots, \mathrm{d}x^n \bigg|_p.$$

Example 1.1 (Changing the cotangent basis). Let (\tilde{x}^j) be another local coordinate chart in a neighborhood of p. Then

$$\left. \frac{\partial}{\partial x^i} \right|_p = \sum_{j=1}^n \frac{\partial \tilde{x}^j}{\partial x^i} \frac{\partial}{\partial \tilde{x}^j} \right|_p.$$

Now let $(d\tilde{x}^j)$ be the dual basis to $(\frac{\partial}{\partial \tilde{x}^j}|_p)$. Consider a cotangent vector $w \in T_p^*M$. Written in terms of both the original and the new cotangent bases, w is expressed as

$$w = \sum_{i=1}^{n} a_i \, \mathrm{d}x^i \, \bigg|_p = \sum_{j=1}^{n} \tilde{a}_j \, \mathrm{d}\tilde{x}^j \, \bigg|_p.$$

To determine the relation between the original basis representation $[a_i]$ and the new representation $[\tilde{a}_j]$, evaluate the covector w at each tangent vector $\frac{\partial}{\partial x^i}\Big|_{p}$ in the original basis. Then

$$a_{i} = w \left(\frac{\partial}{\partial x^{i}} \Big|_{p} \right)$$
 because $dx^{i} \frac{\partial}{\partial x^{j}} = \delta_{j}^{i}$

$$= w \left(\sum_{j=1}^{n} \frac{\partial \tilde{x}^{j}}{\partial x^{i}} \frac{\partial}{\partial \tilde{x}^{j}} \Big|_{p} \right)$$
 by the chain rule

$$= \sum_{j=1}^{n} \frac{\partial \tilde{x}^{j}}{\partial x^{i}} w \left(\frac{\partial}{\partial \tilde{x}^{j}} \Big|_{p} \right)$$
 by linearity

$$= \sum_{j=1}^{n} \tilde{a}_{j} \frac{\partial \tilde{x}^{j}}{\partial x^{i}}$$
 because $d\tilde{x}^{r} \frac{\partial}{\partial \tilde{x}^{j}} = \delta_{j}^{i}$.

Exercise 1.2. Give a numerical representation of the change of basis map taking $[a_i]$ to $[\tilde{a}j]$. Compare this to the change of basis on T_pM with \tilde{v}^j written in terms of a basis v^i .

We prefer to express old covectors in terms of a new covector basis. Whereas with tangent vectors, the chain rule gives us a means (and hence a preference) to express the new vectors in terms of the old tangent vector basis.

Example 1.3 (Basis covectors). Let w be the cotangent vector in example 1.1. Then

(1.4)
$$w = \sum_{j=1}^{n} \tilde{a}_j \, \mathrm{d}\tilde{x}^j \bigg|_p = \sum_{i=1}^{n} a_i \, \mathrm{d}x^i \bigg|_p \quad \text{and} \quad w = \sum_{i,j=1}^{n} \tilde{a}_j \frac{\partial \tilde{x}^j}{\partial x^i} \, \mathrm{d}x^i \bigg|_p.$$

As the scalars $[\tilde{a}_j]$ range through \mathbb{R}^n , the relation in (1.4) determines the representation of the new basis covector in terms of the old basis covectors:

(1.5)
$$d\tilde{x}^{j} \Big|_{p} = \sum_{i=1}^{n} \frac{\partial \tilde{x}^{j}}{\partial x^{i}} dx^{i} \Big|_{p}.$$

Note. We have to hurry on to define covector fields, in order to state Stokes' theorem by the end of the semester. So we're glossing over the theory of vector bundles.

Definition 1.6 (Cotangent bundle). Let $M \in \mathsf{Man}^n$. The cotangent bundle over M is the disjoint union

$$T^*M = \coprod_{p \in M} T_p^*M,$$

with projection $\pi \colon T^*M \to M$ sending cotangent vectors $w_p \mapsto p$ onto M.

Proposition 1.7. The cotangent bundle is a smooth vector bundle over M.

Proof. By definitions, fiber over $p \in M$ is the cotangent vector space at p. We claim π is a smooth projection with the fibers over M varying smoothly.

Now consider a local coordinate chart (x^i) on $U \subset M$. We will show that U is a trivializing neighborhood for π . The coordinate cotangent vectors determine n (local) sections back into the cotangent bundle (called coordinate covector fields on M). These are

(1.8)
$$dx^{i}: U \to T^{*}U \quad \text{such that} \quad dx^{i}(p) = dx^{i} \bigg|_{p} \in T_{p}^{*}M.$$

The coordinate chart $(U,(x^i))$ then determines a chart for the open neighborhood $\pi^{-1}(U) = T^*U$. Each covector $w \in \pi^{-1}(U)$ is in the fiber of some $p \in U$, and can be expressed in terms of the cotangent basis at p

$$w_p = \begin{bmatrix} \xi_1 & \cdots & \xi_n \end{bmatrix} \begin{bmatrix} \mathrm{d}x^1 \big|_p \\ \vdots \\ \mathrm{d}x^n \big|_p \end{bmatrix}.$$

We'll define our chart $\pi^{-1}(U) \xrightarrow{\sim} U \times \mathbb{R}^n$ pointwise

$$\sum_{i=1}^{n} \xi_i \, \mathrm{d}x^i \, \bigg|_p \longmapsto (x^1, \dots, x^n, \xi_1, \dots, \xi_n).$$

Taking for granted that this correspondence is smooth, we have shown the atlas $\{U_i, \varphi_i\}$ for M induces a local trivialization of the cotangent bundle.

Definition 1.9 (Covector fields). A global section of T^*M is a global covector field (a.k.a., a differential 1-form), and a local section of T^*M is a local covector field.

If $\omega \in \Gamma(T^*M)$ is a covector field, and $X \in \mathfrak{X}M$ is a vector field, then we can define a scalar function $\omega(X) \colon M \to \mathbb{R}$ such that $\omega(X)(p) = \omega \Big|_{p}(X_p)$. In local coordinates,

if
$$X = X^i \frac{\partial}{\partial x^i}$$
, and $\omega = \xi_j \, \mathrm{d} x^j$, then $\omega(X) = \sum_i \xi_i(x) X^i(x)$.

Definition 1.10 (Pullbacks of covector fields). Let $M \xrightarrow{F} N$ be a map in Man, with p a point of M. The differential $dF_p: T_pM \to T_{F(p)}N$ has a dual linear map $dF_p^*: T_{F(p)}^* \to T_p^*M$ called the *pullback map* by F at p, or the *cotangent map* at p. It's characterized by the property that for all $\mathbf{v} \in T_pM$, and covectors $\omega \in T_{F(p)}^*N$,

$$(\mathrm{d}F_p)^*(\omega)(\mathbf{v}) = \omega(\mathrm{d}F_p(\mathbf{v})).$$

Definition 1.11 (Coframe fields). A local coframe field on $U \subset M$ is an ordered n-tuple $(\varepsilon^1, \ldots, \varepsilon^n)$ of covector fields such that, for all $p \in U$, the evaluation of $(\varepsilon^1, \ldots, \varepsilon^n)$ at p forms a basis for T_p^*M .

Suppose (E^1, \ldots, E^n) is a frame field on $U \subset M$, then the dual coframe field $(\varepsilon^1, \ldots, \varepsilon^n)$ is defined by

$$\varepsilon^i(E_j) = \delta^i_j.$$

We write \mathfrak{X}^*M for the smooth covector fields on M.

Exercise 1.12. Does each smooth manifold M admit a smooth covector field?¹

We proceed to "discover" differential 1-forms.

Definition 1.13 (Differential of a scalar function). Let $M \in Man$ and $f \in C^{\infty}(M)$. The differential of f is the covector field df on M defined by

$$\mathrm{d} f \Big|_p (\mathbf{v}) = \mathbf{v}(f) \quad \text{for all } \mathbf{v} \in T_p M.$$

We've specified how df acts at each point, for each tangent vector. Doesn't this look like a Krönecker pairing?

¹Patrick asked if it's true that every $M \in \mathsf{Man}$ admits a smooth nonvanishing covector field. I have no idea.

Example 1.14 (Coordinate representation of a differential). Consider local coordinates (x^i) on M. If we write $\mathbf{v} = \sum_{i=1}^n v^i \frac{\partial}{\partial x^i} \Big|_p$ and $\mathrm{d} f \Big|_p = \sum_{j=1}^n a_j \, \mathrm{d} x^j \Big|_p$, then

$$\sum_{i=1}^{n} v^{i} a_{i} = \left(a_{j} dx^{j} \Big|_{p} \right) \left(v^{i} \frac{\partial}{\partial x^{i}} \Big|_{p} \right)$$

$$= df \Big|_{p} (\mathbf{v})$$

$$= \mathbf{v} \Big|_{p} (f)$$

$$= \sum_{i=1}^{n} v^{i} \frac{\partial f}{\partial x^{i}} \Big|_{p}$$

Varying the scalars $\begin{bmatrix} v^1 & \cdots & v^n \end{bmatrix}^t$ for the tangent vector \mathbf{v} , we determine each scalar component

$$a_i = \frac{\partial f}{\partial x^i} \bigg|_{n}$$

in the basis representation of $df|_{n}$. Therefore the differential of f in terms of local coordinates is

$$\mathrm{d}f\bigg|_p = \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i \, \bigg|_p.$$

We have also shown $dx^i = d(x^i)$ for the coordinate functions x^i of chart $(U, (x^i))$. That is, dx^i is the differential of $x^i : U \to \mathbb{R}$.

Defining the differential of a scalar function as an *evaluation* extends the notion of the "differential" given for dx in high school calculus. The two concepts are the same for a function $f: M \to \mathbb{R}$ if we choose to make the identification $df: T_pM \to T_{f(p)}\mathbb{R} \cong \mathbb{R}$.

Proposition 1.15. Let $\gamma: J \to M$ be a smooth curve, $f \in C^(M)$. Then the differential of the function $f \circ \gamma: J \to \mathbb{R}$ is given by (the familiar evaluation)

$$(f \circ \gamma)'(t) = \mathrm{d}f_{\gamma(t)}(\gamma'(t)).$$

Exercise 1.16. Soft question: why should a covector represent an infinitesimal path? Can this be connected with local 1-parameter group actions?