NAME

CUTEST_cofsg - CUTEst tool to evaluate function value and possibly gradient.

SYNOPSIS

CALL CUTEST_cofsg(status, n, X, f, nnzg, lg, G_val, G_var, grad)

DESCRIPTION

The CUTEST_cofsg subroutine evaluates the value of the objective function of the problem decoded from a SIF file by the script *sifdecoder* at the point X, and possibly its gradient in sparse format.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in R^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l(x) \le c_i(x) \le c_i^u(x)$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_cofsg are as follows

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

X [in] - real/double precision

an array which gives the current estimate of the solution of the problem,

f [out] - real/double precision

the value of the objective function evaluated at X,

nnzg [out] - integer

the number of nonzeros in G_val,

lg [in] - integer

the declared length of G val and G var,

G_val [out] - real/double precision

an array which gives the nonzeros of the gradient of the objective function evaluated at X. The i-th entry of G_val gives the value of the derivative with respect to variable G_var(i) of the objective function,

G_var [out] - integer

an array whose i-th component is the index of the variable with respect to which G_val(i) is the derivative, and

grad [in] - logical

a logical variable which should be set to .TRUE. if the gradient of the objective function is required and .FALSE. otherwise.

NOTE

A call to CUTEST_cofsg is more efficient than two separate calls to CUTEST_cfn and CUTEST_csgr.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads,

N.I.M. Gould, D. Orban and Ph.L. Toint,

Technical Report, Rutherford Appleton Laboratory, 2013.

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, ACM TOMS, 21:1, pp.123-160, 1995.

cutest_uofg(3M), cutest_cofg(3M), sifdecoder(1).

NAME

CUTEST_cofsg - CUTEst tool to evaluate function value and possibly gradient.

SYNOPSIS

CALL CUTEST_cofsg(status, n, X, f, nnzg, lg, G_val, G_var, grad)

DESCRIPTION

The CUTEST_cofsg subroutine evaluates the value of the objective function of the problem decoded from a SIF file by the script *sifdecoder* at the point X, and possibly its gradient in sparse format.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in R^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l(x) \le c_i(x) \le c_i^u(x)$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_cofsg are as follows

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

X [in] - real/double precision

an array which gives the current estimate of the solution of the problem,

f [out] - real/double precision

the value of the objective function evaluated at X,

nnzg [out] - integer

the number of nonzeros in G_val,

lg [in] - integer

the declared length of G val and G var,

G_val [out] - real/double precision

an array which gives the nonzeros of the gradient of the objective function evaluated at X. The i-th entry of G_val gives the value of the derivative with respect to variable G_var(i) of the objective function,

G_var [out] - integer

an array whose i-th component is the index of the variable with respect to which G_val(i) is the derivative, and

grad [in] - logical

a logical variable which should be set to .TRUE. if the gradient of the objective function is required and .FALSE. otherwise.

NOTE

A call to CUTEST_cofsg is more efficient than two separate calls to CUTEST_cfn and CUTEST_csgr.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads,

N.I.M. Gould, D. Orban and Ph.L. Toint,

Technical Report, Rutherford Appleton Laboratory, 2013.

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, ACM TOMS, 21:1, pp.123-160, 1995.

cutest_uofg(3M), cutest_cofg(3M), sifdecoder(1).