

# An In-depth Study of Bandwidth Allocation across Media Sources in Video Conferencing

Zejun Zhang<sup>1</sup>, Xiao Zhu<sup>2</sup>, Anlan Zhang<sup>1</sup>, Feng Qian<sup>1</sup>

<sup>1</sup>University of Southern California, <sup>2</sup>Google







# Video Conferencing Applications (VCAs)











Online Education



Online Discussion



# **Characterizing VCAs: Existing Work**



e.g., Xu et al. [IMC'12], Chang et al. [IMC'21], MacMillan et al. [IMC'21], Saini et al. [JAZ'23], etc.







System Design

Quality-of-Experience (QoE)

**Network Utilization** 



- Limited media sources: only audio and/or video stream(s)
- Lack of a quantitative QoE assessment



# **Characterizing VCAs: Research Problems**



- How do VCAs allocate bandwidth across diverse media sources?
  - When bandwidth is limited

What are the QoE implications of different bandwidth allocation strategies?

Can we develop a unified QoE model for modern VCAs?





## **Our Contribution**





### A measurement study

- Media sources: audio, video, screen
- Bandwidth allocation strategy
- Zoom case study



### A large-scale user study

800 participants & 45,000+ ratings



### A generic QoE model

- Across VCAs, scenarios, media sources
- VCAs QoE evaluation



# Challenges



- Commercial VCAs are closed-source
  - How to efficiently acquire QoE metrics, e.g., data rate, resolution, latency, etc.
- User study design
  - How to determine a representative subset of bandwidth allocation samples
- QoE modeling across VCAs/scenarios/media sources
  - How to ensure the generalizability and robustness



# **Understanding Bandwidth Allocation Strategy**



- Methodology
  - 4 {audio, video, screen} combination scenarios
  - 3 VCAs: Zoom, Webex, Google Meet
  - More details are in our paper

|            | Audio | Video         | Screen        |
|------------|-------|---------------|---------------|
| Scenario 1 | √     | (Full-Screen) |               |
| Scenario 2 | √     |               | (Full-Screen) |
| Scenario 3 | √     | (Thumbnail)   | (Full-Screen) |
| Scenario 4 | √     | (Half-Screen) | (Half-Screen) |

### Key takeaway

• 3 VCAs share the same prioritization when allocating bandwidth: audio > video > screen





# **Case Study: Zoom**



### Video transmission

|                  | Sender      | Receiver1   | Receiver2 | Receiver3 | Receiver4 | Receiver5 |  |  |  |  |  |
|------------------|-------------|-------------|-----------|-----------|-----------|-----------|--|--|--|--|--|
|                  | (Unlimited) | (Unlimited) | (750Kbps) | (500Kbps) | (250Kbps) | (150Kbps) |  |  |  |  |  |
| Data rate (Kbps) | 1158±120    | 883±130     | 647±85    | 453±44    | 218±35    | 144±20    |  |  |  |  |  |
| Framerate (FPS)  | 21±3        | 21±3        | 13±2      | 10±2      | 8±1       | 7±2       |  |  |  |  |  |
| Resolution       | 360p        | 360p        | 360p      | 360p      | 180p      | 144p      |  |  |  |  |  |
| SSIM             |             | 0.89        | 0.87      | 0.84      | 0.82      | 0.8       |  |  |  |  |  |
| VMAF             |             | 91          | 73        | 66        | 41        | 22        |  |  |  |  |  |

Ensure a better framerate by sacrificing resolution and SSIM → Fluency

### Screen transmission

|                  | Sender      | Sender Receiver1 |           | Receiver3 | Receiver4 | Receiver5 |  |
|------------------|-------------|------------------|-----------|-----------|-----------|-----------|--|
|                  | (Unlimited) | (Unlimited)      | (750Kbps) | (500Kbps) | (250Kbps) | (150Kbps) |  |
| Data rate (Kbps) | 1482±230    | 1439±230         | 547±150   | 326±85    | 168±40    | 118±20    |  |
| Framerate (FPS)  | 10+2        | 10+2             | 4+1       | 2+1       | 1+1       | <1_       |  |
| Resolution       | 720p        | 720p             | 720p      | 720p      | 720p      | 720p      |  |
| SSIM             |             | 0.91             | 0.89      | 0.88      | 0.87      | 0.85      |  |
| VMAF             |             | 90               | 86        | 82        | 75        | 64        |  |

Ensure a high resolution by decreasing the framerate → Clarity



# **QoE Modeling: User Study**



- Setup
  - {27, 27, 243, 243} bitrate combination samples
    - For Scenario {1, 2, 3, 4}
  - Each clip > 15s
- 800 participants & 45,000+ ratings
  - Ratings: accumulated score
  - Translate to QoE values: PageRank
- More details are in the paper

|            | Audio | Video         | Screen        |
|------------|-------|---------------|---------------|
| Scenario 1 | √     | (Full-Screen) |               |
| Scenario 2 | √     |               | (Full-Screen) |
| Scenario 3 | √     | (Thumbnail)   | (Full-Screen) |
| Scenario 4 | √     | (Half-Screen) | (Half-Screen) |





# **QoE Modeling: Model Design**

ACMMultimedia 2024
Melbourne, Australia

- General & scenario-specific QoE model
  - Parameters
    - General: Audio + Video + Screen + Bandwidth + Others
    - Scenario 1: Audio + Video + Bandwidth
    - Scenario 2: Audio + Screen + Bandwidth
    - Scenario 3 & 4: Audio + Video + Screen + Bandwidth

| Category  | Parameter                                       |
|-----------|-------------------------------------------------|
| Audio     | [audio bitrate]                                 |
| Video     | [video resolution, video framerate]             |
| Screen    | [screen resolution, screen framerate]           |
| Bandwidth | [overall bitrate]                               |
| Others    | [ratio of window size between video and screen] |

Table 7: Input parameters of each media source.



# **QoE Modeling: Model Evaluation**



Dataset: from user study

• Training : Evaluation = 8 : 2

- Investigated ML models
  - Logistic Regression
  - Random Forest Regression (RF)
  - Gradient Boosting Decision Tree (GBDT)
  - Multi-layer Perceptron Regression (MLP)

- MLP has the best performance
- Our QoE modeling is generic across diverse scenarios/media sources

| Scenario   | Logistic |      | RF       |      | GBDT        |          |      | MLP  |          |      |      |          |
|------------|----------|------|----------|------|-------------|----------|------|------|----------|------|------|----------|
|            | MAE      | RMSE | Accuracy | MAE  | RMSE        | Accuracy | MAE  | RMSE | Accuracy | MAE  | RMSE | Accuracy |
| Scenario 1 | 0.12     | 0.92 | 82.13%   | 0.12 | 0.86        | 81.3%    | 0.15 | 0.93 | 82.1%    | 0.12 | 0.83 | 84.61%   |
| Scenario 2 | 0.12     | 0.96 | 81.90%   | 0.13 | 0.87        | 82.15%   | 0.16 | 0.97 | 82.20%   | 0.11 | 0.85 | 84.55%   |
| Scenario 3 | 0.15     | 2.81 | 78.79%   | 0.13 | 2.50        | 81.12%   | 0.16 | 2.87 | 81.04%   | 0.13 | 2.19 | 84.37%   |
| Scenario 4 | 0.14     | 2.92 | 80.48%   | 0.11 | 2.28        | 82.06%   | 0.15 | 2.67 | 81.49%   | 0.12 | 2.24 | 82.62%   |
| General    | 0.19     | 4.06 | 70.51%   | 0.09 | <u>1.75</u> | 81.63%   | 0.13 | 2.56 | 81.79%   | 0.08 | 1.78 | 82.86%   |



# **QoE Evaluation of Zoom, Webex, Google Meet**



- Setup
  - MLP-based general QoE model
  - Bandwidth: {0.2, 0.4, 0.6, 0.8, 1.0} Mbps
  - Optimal QoE predicted by the model vs. VCA's QoE









USC University of Southern California

- Zoom consistently achieves higher QoE than Webex and Google Meet in most cases
- None of three VCAs achieve optimal QoE

# **Summary**



- Limitations of existing VCA measurement studies
- Our work
  - A measurement study of VCAs (Zoom, Webex, Google Meet)
    - Bandwidth allocation strategies across {audio, video, screen}
    - Zoom case study
  - A large-scale user study
    - 800 participants & 45,000+ ratings
  - A generic QoE model for VCAs
    - Across VCAs, scenarios, media sources
    - QoE evaluation of VCAs
- Q&A

