Number Theory Notes

JΗ

Date

Contents

		ite Fields
	1.1	Generalities
		1.1.1 Finite fields
		1.1.2 Multiplicative group of a finite field
	1.2	Equations over a finite field
	1.3	Quadratic reciprocity
2	p-ac	dic Fields
		p-adic Integers and Rationals
		p-adic Equations

4 CONTENTS

Chapter 1

Finite Fields

1.1 Generalities

1.1.1 Finite fields

Definition - Characteristic of a field

If K is a field then the map $\mathbb{Z} \to K$ induced by $1 \mapsto 1$ is a ring morphism. The image of this morphism is an integral domain since K is a field, hence the kernel is a prime ideal. Since \mathbb{Z} is a PID, we can define the characteristic of K, denoted $\operatorname{Char}(K)$ to be the positive generator of the kernel.

Proposition - Frobenius map

If K is a field and Char(K) is prime then

$$\sigma_p: K \to K := x \mapsto x^p$$

is an injection.

Proof. Easy to show $\sigma_p(0) = 0, \Sigma_p(1) = 1$. Also

$$\sigma_p(ab) = (ab)^p = a^p b^p = \sigma_p(a)\sigma_p(b)$$

$$\sigma_p(a+b) = (a+b)^p = a^p + b^p = \sigma(a) + \sigma(b)$$

by expanding the binomial and noting that when $1 \le k \le p$, $p \mid \binom{p}{k} k! (p-k)!$ and is coprime to the latter two, thus $p \mid \binom{p}{k}$. Since σ_p is a morphism of fields it is injective.

Proposition - Classification of finite fields

Let K be a finite field and suppose $\Omega \models \mathrm{ACF}_p$ where p is prime and q is a non-trivial power of p. Then

1.
$$\operatorname{Char}(K) \neq 0$$
 and $|K| = p^{[K:\mathbb{F}_p]}$

- 2. $\mathbb{F}_q:=\{x\in\Omega\,|\,x^q=x\}$ is the unique subfield of Ω with q elements.
- 3. If |K| = q then $K \cong \mathbb{F}_q$.

Proof.

- 1. If $\operatorname{Char}(K) = 0$ then \mathbb{Z} injects into K thus thus $\aleph_0 \leq |\mathbb{Z}| \leq |K|$ which is false. Since $[K : \mathbb{F}_p]$ is the cardinality of any basis B of K as a vector space over \mathbb{F}_p and $K \cong \mathbb{F}_p^B$, $|K| = \left|\mathbb{F}_p^B\right| = p^{[K:\mathbb{F}_p]}$.
- 2. Easy to show elementarily that \mathbb{F}_q is a subfield. As polynomials over a field are seperable if and only the gcd of the derivative and the polynomial is 1,

$$D(X^{q} - X) = qX^{q-1} - 1 = -1$$

Hence it has q distinct roots in the algebraic closure of Ω , namely Ω itself. Hence $|\mathbb{F}_q| = q$. Uniqueness: if $L \leq \Omega$ and |L| = q then for any unit $x \in L \setminus \{0\}$, $x^{q-1} = 1$ by Lagrange and so $x \in \mathbb{F}_q$. Thus $L \subseteq \mathbb{F}_q$ and they have equal finite cardinality, so $L = \mathbb{F}_q$.

3. If L is a field such that |L| = q then the image of \mathbb{Z} in L has cardinality dividing q by Lagrange. Hence $\operatorname{Char}(L)=p$ and the image of \mathbb{Z} is \mathbb{F}_p . Finitely generate L over \mathbb{F}_p and for each generator a the minimal polynomial of a over \mathbb{F}_p splits in Ω since it is aglebraically closed. By 'embedding finite extensions via conjugates' in Galois Theory, there is a map $L \to F_q$ which is injective. It is an isomorphism since they have the same finite cardinality.

1.1.2 Multiplicative group of a finite field

Definition – Euler's Totient Function

If $1 \le a \le d$ in \mathbb{Z} then a is coprime to d if and only if $\overline{a} \in \mathbb{Z}/d\mathbb{Z}$ is a generator since

$$\begin{aligned} &(a,d) = 1\\ \Leftrightarrow & \exists \lambda, \mu \in \mathbb{Z}, \lambda a + \mu d = 1\\ \Leftrightarrow & \exists \lambda \in \mathbb{Z}, \overline{\lambda a} = 1\\ \Leftrightarrow & \langle \overline{a} \rangle = \mathbb{Z}/d\mathbb{Z} \end{aligned}$$

We define Euler's totient function

$$\phi(d) := |\{a \in \mathbb{Z}/d\mathbb{Z} \mid \langle a \rangle = \mathbb{Z}/d\mathbb{Z}\}| = |\{a \in \mathbb{Z} \mid 1 \le a \le d \land (a,d) = 1\}|$$

Notation. For any cyclic group G, let $\Phi(G) = \{g \in G \mid \langle g \rangle = G\}$ be the set of generators.

Proposition – Partitioning cyclic groups If $n \in \mathbb{Z}_{>0}$ then $n = \sum_{d \mid n} \phi(d)$.

If
$$n \in \mathbb{Z}_{>0}$$
 then $n = \sum_{d \mid n} \phi(d)$.

7 1.1. GENERALITIES

Proof. Let $n \in \mathbb{Z}_{>0}$ and let d divide n. Then by some cyclic group theory there exists a unique cyclic subgroup $C_d \leq \mathbb{Z}/n\mathbb{Z}$ with cardinality d. We want to show that $\mathbb{Z}/n\mathbb{Z} = \bigsqcup_{d|n} \Phi(C_d)$. Indeed if $x \in \mathbb{Z}/n\mathbb{Z}$ then $\langle x \rangle$ has some order d dividing n by Lagrange. Hence $x \in \Phi(\langle x \rangle) = \Phi(C_d)$. Thus $\mathbb{Z}/n\mathbb{Z} \subseteq \bigcup_{d \mid n} \Phi(C_d)$.

To show it is disjoint notice that if x is in $\Phi(C_d) \cap \Phi(C_e)$ then d and e are both the order of x.

Proposition – Sufficient condition for cyclic

Let G be a group such that for any $d \mid |G|$,

$$\left|\left\{x \in G \,|\, x^d = e\right\}\right| \le d$$

Proof. We show that for all divisors of |G| there is an element of G of that order. Then in particular |G| |G|and so there is a generator of G.

Let $d \mid G$. Consider $\{x \in G \mid x \text{ has order } d\}$. If it is non-empty, then take such an x:

$$\langle x \rangle \subseteq \left\{ g \in G \,|\, g^d = e \right\}$$

and so $d \le |\langle x \rangle| \le |\{g \in G \mid g^d = e\}| \le d$. Then $\langle x \rangle = \{g \in G \mid g^d = e\}$. Hence for $g \in G$,

$$g$$
 has order $d\Leftrightarrow g$ has order $d\wedge g^d=e$ $\Leftrightarrow g$ has order $d\wedge g\in \langle x
angle$ $\Leftrightarrow \langle g
angle=\langle x
angle$

Hence $|\{x \in G \mid x \text{ has order } d\}| = \phi(d)$ In either case, (empty or not), $|\{x \in G \mid x \text{ has order } d\}| \le \phi(d)$

Assume for a contradiction that there exists a d such that $\{x \in G \mid x \text{ has order } d\}$ is empty. Then partitioning

$$G = \bigsqcup_{d \mid |G|} \{ x \in G \mid x \text{ has order } d \}$$

we have that

$$|G| = \sum_{d||G|} |\{x \in G \,|\, x \text{ has order } d\}| < \sum_{d||G|} \phi(d) = |G|$$

a contradiction.

Proposition – \mathbb{F}_q^* is cyclic

Suppose $d\mid |\mathbb{F}_q^*|$. Then since $\mathbb{F}_q[X]$ has division algorithm, $\left|\left\{x\in \mathbb{F}_q^*\mid x^d=1\right\}\right|$ Hence \mathbb{F}_q^* is cyclic.

$$\left|\left\{x\in\mathbb{F}_q^*\,|\,x^d=1\right\}\right|\leq d$$

1.2 Equations over a finite field

Proposition

Power sums lemma Let $u \in \mathbb{N}$ and K be field with |K| = q a power of a non-trivial prime. Then

$$\sum_{x \in K} x^u = \begin{cases} -1 & , 1 \le u \land q - 1 \mid u \\ 0 & , \text{ otherwise} \end{cases}$$

Proof. Case u=0 then $\sum_{x\in K^n} x^u = \sum_{x\in K^n} 0 = 0$.

Case $1 \le u \land q - 1 \mid u$ then for some d,

$$\sum_{x \in K} x^u = \sum_{x \in K} (x^{(q-1)})^d = \sum_{x \in K^*} 1^d = (q-1)1 = -1$$

Case $1 \le u \land q-1 \nmid u$ then there exist $d,r \in \mathbb{N}$ such that u=(q-1)d+r and 0 < r < q-1. Let y be a generator of K^* (K^* is cyclic). Then suppose for a contradiction that $y^u=1$, then $q-1 \mid u$ since q-1 is the order of y, a contradiction. Multiplying by y is a bijection on the group, hence

$$\sum_{x \in K^n} x^u = \sum_{x \in K^n} (yx)^u = y^u \sum_{x \in K^n} x^u$$

Thus $(1-y^u)\sum_{x\in K^n}x^u=0$ and so $\sum_{x\in K^n}x^u=0$, as $y^u\neq 1$.

Definition - Vanishing

Let R be a ring. Suppose for all $I \subseteq R[x1, \dots, x_n]$ We define the vanishing of I, $\mathbb{V}(I) := \{x \in R^n \mid \forall f \in I, f(x) = 0\}$

Proposition – Chevalley

Suppose for all $f \in I \subseteq K[x_1, ..., x_n]$ (finite),

$$\sum_{f \in I} \deg f < n$$

Then

$$|\mathbb{V}(I)| \stackrel{p}{=} 0$$

Proof. Consider $P := \prod_{f \in I} (1 - f^{q-1})$. This is well defined as I is finite. We show that $\mathbb{V}(I) = P^{-1}(1)$. Let $x \in K^n$.

$$x \in \mathbb{V}(I) \Rightarrow \forall f \in I, f(x) = 0 \Rightarrow f(x)^{q-1} = 0 \Rightarrow P(x) = 1$$

 $x \notin \mathbb{V} \Rightarrow \exists f \in I, f \neq 0 \Rightarrow f(x)^{q-1} = 1 \Rightarrow P(x) = 0$

Let $S:K[x_1,\ldots,x_n]\to K:=f\to \sum_{x\in K^n}f(x)$ Then $S(P)=\sum_{x\in V(I)}1\stackrel{p}{=}|\mathbb{V}(I)|$. Thus we need show that S(P)=0.

$$\deg P = \sum_{f \in I} (q-1) \deg f = (q-1) \sum_{f \in I} \deg f < n \Rightarrow <(q-1)n$$

by assumption. Hence there exists a finite set T and $\lambda_i \in K$ such that

$$P = \sum_{i \in T} \lambda_i \prod_{j=1}^n x_j^{u_{ij}}$$

and for all $i \in T$, $\sum_{j=1}^{n} u_{ij} < (q-1)n$. Then

$$S(P) = \sum_{x \in K^n} P(x) \tag{1.1}$$

$$= \sum_{x \in K^n} \sum_{i \in T} \lambda_i \prod_{j=1}^n x_j^{u_{ij}} \tag{1.2}$$

$$= \sum_{i \in T} \lambda_i \sum_{x \in K^n} \prod_{j=1}^n x_j^{u_{ij}}$$
 (1.3)

(1.4)

Let $i \in T$ then there exists a k such that $u_{ik} < q-1$ so

$$\sum_{x \in K^n} \prod_{j=1}^n x_j^{u_{ij}} \tag{1.5}$$

$$= \sum_{x_1 \in K} \dots \sum_{x_n \in K} \prod_{j=1}^n x_j^{u_{ij}}$$
 (1.6)

$$= \sum_{x_1 \in K} \cdots \sum_{x_k \in K} \cdots \sum_{x_n \in K} \prod_{j \neq k} x_j^{u_{ij}} \sum_{x_k \in K} x_k^{u_{ik}}$$

$$\tag{1.7}$$

$$= \sum_{x_1 \in K} \cdots \sum_{x_k \in K} \cdots \sum_{x_n \in K} \prod_{j \neq k} x_j^{u_{ij}} 0 \tag{1.8}$$

The last part using the power sum lemma. Hence $|\mathbb{V}(I)| \stackrel{p}{=} S(P) = 0$

Corollary - Non-trivial vanishing

Suppose for all $f \in I \subseteq K[x_1, \dots, x_n]$ (finite),

$$\sum_{f \in I} \deg f < n$$

and $0 \in \mathbb{V}(I)$ then $\exists x \in \mathbb{V}(I) \setminus \{0\}$.

Proof. If |V| = 1 then p|/|V| which is a contradiction. Thus the vanishing is non-trivial.

Definition – Homogeneous $f \in K[x_1,\ldots,x_n]$ is homogeneous with degree m if all monomials are of degree m.

Corollary – Conics over a finite field If $3 \le n$ then if $f \in K[x_1, \dots, x_n]$ is homogeneous with degree 2 then it has a non-trivial zero.

Quadratic reciprocity 1.3

Proposition – Exact sequence

If K is a finite field,

- If Char(K) = 2 then all elements are square.
- If $Char(K) \neq 2$ then the non-zero squares form a subgroup of index 2, and is the kernel of the group morphism $x \to x^{\frac{q-1}{2}}$ into $\langle -1 \rangle$.

I can't be bothered to make the exact sequence.

Proof.

- If Char(K) = 2 then the Frobenius map $\sigma_2 : x \mapsto x^2$ is an automorphism of K. Hence the preimage of any element squares to that element.
- If $\operatorname{Char}(K) \neq 2$ then generate $K^* = \langle g \rangle$ since it is cyclic. The map $x \to x^{\frac{q-1}{2}}$ has kernel $\{x \in K \mid x \text{ square}\}$ since (writing any element as a multiple of g)

$$g^n \in \ker \Leftrightarrow g^{\frac{n(q-1)}{2}} = 1 \Leftrightarrow q-1 \mid \frac{n(q-1)}{2} \Leftrightarrow n \text{ even} \Leftrightarrow x \text{ square}$$

We check where the generator g is sent. If $g^{\frac{q-1}{2}}=1$ then the order of g is less than q-1 which is a contradiction hence the image is non-trivial. Any element of the image of the map squares to 1 hence solves $x^2 - 1 = 0$, which only has two solutions in K. Thus the image is $\langle -1 \rangle$ and the index of the kernel is 2.

Definition – Legendre symbol

If p is prime that is not 2 and $x \in \mathbb{F}_p$ then

$$\left(\frac{x}{p}\right) := \begin{cases} x^{\frac{p-1}{2}} &, x \text{ unit } \\ 0 &, x = 0 \end{cases}$$

Check that for each p this is a homomorphism $\mathbb{F}_p \to \langle -1 \rangle$.

1.3. QUADRATIC RECIPROCITY

11

 $\label{eq:definition} \begin{array}{l} \textbf{Definition} - \varepsilon(n) \\ \text{If } n \in \mathbb{Z} \text{ is odd} \end{array}$

$$\varepsilon(n) := \frac{n-1}{2} \pmod{2}$$

Proposition - Computations

$$\begin{pmatrix} \frac{1}{p} \end{pmatrix} = 1$$

$$\begin{pmatrix} \frac{-1}{p} \end{pmatrix} = (-1)^{\varepsilon(p)}$$

Proposition - Quadratic reciprocity

Let $l \neq p$ be primes that aren't 2. Then

$$\left(\frac{l}{p}\right)\left(\frac{p}{l}\right) = (-1)^{\varepsilon(l)\varepsilon(p)}$$

Proof. Let w be order l element of Ω , the algebraic closure of \mathbb{F}_p . For $x \in \mathbb{F}_l$ write w^x to be w^r for any $r \in \mathbb{Z}$ such that $x = \overline{r} \in \mathbb{F}_l$ (independant of choice of r by $w^l = 1$). Let

$$y = \sum_{x \in \mathbb{F}_l} \left(\frac{x}{l}\right) w^x \in \Omega$$

We first show that $y^2 = (-1)^{\varepsilon(l)} \overline{l}$, where $\overline{l} \in \mathbb{F}_p$.

$$y^{2} = \left(\sum_{x \in \mathbb{F}_{l}} \left(\frac{x}{l}\right) w^{x}\right) \left(\sum_{y \in \mathbb{F}_{l}} \left(\frac{y}{l}\right) w^{y}\right)$$

$$= \sum_{x \in \mathbb{F}_{l}} \sum_{y \in \mathbb{F}_{l}} \left(\frac{x}{l}\right) w^{x} \left(\frac{y}{l}\right) w^{y}$$

$$= \sum_{x \in \mathbb{F}_{l}} \sum_{y \in \mathbb{F}_{l}} \left(\frac{xy}{l}\right) w^{x+y}$$

$$= \sum_{u \in \mathbb{F}_{l}} \sum_{x \in \mathbb{F}_{l}} \left(\frac{x(u-x)}{l}\right) w^{u}$$

Case on what x is:

$$x \neq 0 \Rightarrow \left(\frac{x(u-x)}{l}\right) = \begin{pmatrix} \frac{xu-x^2}{l} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{x^2}{l} \end{pmatrix} \left(\frac{-1}{l}\right) \left(\frac{1-\frac{u}{x}}{l}\right)$$

$$= x^{p-1} \left(\frac{-1}{l}\right) \left(\frac{1-\frac{u}{x}}{l}\right)$$

$$= (-1)^{\varepsilon(l)} \left(\frac{1-\frac{u}{x}}{l}\right)$$

If x = 0 then clearly $\left(\frac{x(u-x)}{l}\right) = 0$. Hence

$$y^2 = \sum_{u \in \mathbb{F}_l} \sum_{x \in \mathbb{F}_l^*} (-1)^{\varepsilon(l)} \left(\frac{1 - \frac{u}{x}}{l} \right) = (-1)^{\varepsilon(l)} \sum_{u \in \mathbb{F}_l} \sum_{x \in \mathbb{F}_l^*} \left(\frac{1 - \frac{u}{x}}{l} \right)$$

Given $x \neq 0$, case on what u is:

$$u = 0 \Rightarrow \sum_{x \in \mathbb{F}_{l}^{*}} \left(\frac{1 - \frac{u}{x}}{l} \right)$$
$$= \sum_{x \in \mathbb{F}_{l}^{*}} \left(\frac{1}{l} \right)$$
$$= \sum_{x \in \mathbb{F}_{l}^{*}} 1$$
$$= \bar{l} - 1$$

$$u \neq 0 \Rightarrow \sum_{x \in \mathbb{F}_{l}^{*}} \left(\frac{1 - \frac{u}{x}}{l}\right)$$

$$= \sum_{x \in F_{l}^{*}} \left(\frac{1 - \frac{1}{x}}{l}\right)$$

$$= \sum_{s \in \mathbb{F}_{l}^{*}} \left(\frac{1 - s}{l}\right)$$

$$= \sum_{s \in \mathbb{F}_{l} \setminus \{1\}} \left(\frac{s}{l}\right)$$

$$= \sum_{s \in \mathbb{F}_{l}} \left(\frac{s}{l}\right) - \left(\frac{1}{l}\right)$$

$$= -1$$

Since the index of the kernel of $(\frac{\star}{l})$ is 2, and the cosets have equal cardinality. Hence

$$y^{2}(-1)^{\varepsilon(l)} = \sum_{u \in \mathbb{F}_{l}} \sum_{x \in \mathbb{F}_{l}^{*}} \left(\frac{1 - \frac{u}{x}}{l}\right)$$
$$= \bar{l} - 1 - \sum_{u \in \mathbb{F}_{l}^{*}} w^{u}$$
$$= \bar{l} - (1 + w + w^{2} + \dots + w^{l})$$

since l is prime. Note that $0=w^l-1=(w+1)(1+w+\cdots+w^l)$. Hence $1+w+\cdots+w^l=0$ and $y^2=(-1)^{\varepsilon(l)}\overline{l}$. Next we show that $y^{p-1}=\left(\frac{p^-1}{l}\right)$.

$$y^p = \sum_{x \in \mathbb{F}_l} \left(\frac{x}{l}\right)^p w^x p \qquad \text{`Freshman's dream'}$$

$$= \sum_{x \in \mathbb{F}_l} \left(\frac{x}{l}\right) w^x p \qquad \left(\frac{x}{l}\right) = \pm 1 \text{ and } p \text{ is odd}$$

$$= \sum_{z \in \mathbb{F}_l} \left(\frac{zp^{-1}}{l}\right) w^z$$

$$= \left(\frac{p^{-1}}{l}\right) \left(\sum_{z \in \mathbb{F}_l} \left(\frac{z}{l}\right) w^z\right)$$

$$= \left(\frac{p^{-1}}{l}\right) y$$

Hence

$$y^{p-1} = \left(\frac{p^{-1}}{l}\right) = \left(\left(\frac{pl}{l}\right)^{-1}\right)$$

thus

$$\begin{pmatrix} \frac{l}{p} \end{pmatrix} \begin{pmatrix} \frac{p}{l} \end{pmatrix} = \begin{pmatrix} \frac{l}{p} \end{pmatrix} y^{1-p}$$

$$= \begin{pmatrix} \frac{l}{p} \end{pmatrix} (y^2)^{\frac{1-p}{2}}$$

$$= \begin{pmatrix} \frac{l}{p} \end{pmatrix} ((-1)^{\varepsilon(l)} \overline{l})^{\frac{1-p}{2}}$$

$$= \begin{pmatrix} \frac{l}{p} \end{pmatrix} (\left(\frac{(-1)^{\varepsilon(l)} l}{p}\right))^{-1}$$

$$= (\left(\frac{(-1)^{\varepsilon(l)}}{p}\right)^{\varepsilon(l)\varepsilon(p)}$$

$$= (-1)^{\varepsilon(l)\varepsilon(p)}$$

Chapter 2

p-adic Fields

2.1 p-adic Integers and Rationals

Definition – Projective system

Let \mathcal{C} be a category. A contravariant functor $F:(\mathbb{N},\leq)\to\mathcal{C}$ is called a projective system.

Definition – **Projective** system A

Define a contravariant functor $A:(\mathbb{N},\leq)\to\mathbf{Ring}$ such that for each n

$$A_n := \mathbb{Z}/p^n\mathbb{Z}$$
 and $\pi_n : \mathbb{Z} \to A_n$ is the projection

and for any n such that $1 \leq n$, there exists a surjective ring morphism $\phi_n : A_n \to A_{n-1}$ such that $\phi_n \circ \pi_n = \pi_{n-1}$ and $\ker(\phi_n) = p^{n-1}A_n$.

Exercise. Check that such a ϕ_n exists.

Definition – *p*-adic integers

Let

$$\mathbb{Z}_p = \{ x \in \prod_{n \in \mathbb{N}} A_n \mid (\forall n \in \mathbb{N}, x_n \in A_n) \land (\forall n > 0, \phi_n(x_n) = x_{n-1}) \}$$

be the projective limit. Define addition and multiplication pointwise. Verify that this \mathbb{Z}_p is a ring with $0 = (0)_{n \in \mathbb{N}}$ and $1 = (1)_{n \in \mathbb{N}}$.

For each $n \in \mathbb{N}$ let $\varepsilon_n : \mathbb{Z}_p \to A_n$ be the ring morphisms mapping $x \mapsto x_n$. Note that by definition $\phi_n \circ \varepsilon_n = \varepsilon_{n-1}$.

In addition, provide each A_n with the discrete toplogy, giving $\prod_{n\in\mathbb{N}}A_n$ the product topology and \mathbb{Z}_n

the subset topology.

Proposition – \mathbb{Z}_p is compact

Since each A_n is finite, each A_n is compact. Hence by Tychonoff's theorem the product is compact. Since closed in compact is compact we just need to show that \mathbb{Z}_p is closed.

We want to write \mathbb{Z}_p as the intersection of closed sets

$$D_k := \left\{ x \in \prod_{n \in \mathbb{N}} A_n \, | \, \phi_k(x_k) = x_{k-1} \right\}$$

for $k \in \mathbb{N}$. Clearly

$$\bigcap_{k\in\mathbb{N}} D_k = \mathbb{Z}_p$$

and

$$D_k = \bigcup_{x_{k-1} \in A_{k-1}} \left(\varepsilon_{k-1}^{-1}(x_{k-1}) \cap \bigcup \left\{ \varepsilon_k^{-1}(x_k) \, | \, x_k \in A_k \, \land \, \phi_k(x_k) = x_{k-1} \right\} \right)$$

Since each $\{x_k\}$ is closed in A_k , each preimage $\varepsilon_k^{-1}(x_k)$ is closed. Thus the finite union of the preimages

$$\left\{ \int \left\{ \varepsilon_k^{-1}(x_k) \mid x_k \in A_k \land \phi_k(x_k) = x_{k-1} \right\} \right\}$$

is closed. Since each $\{x_{k-1}\}$ is closed in A_{k-1} , each preimage $\varepsilon_{k-1}^{-1}(x_{k-1})$ is closed. Thus intersection

$$\left(\varepsilon_{k-1}^{-1}(x_{k-1})\cap\bigcup\left\{\varepsilon_k^{-1}(x_k)\,|\,x_k\in A_k\,\wedge\,\phi_k(x_k)=x_{k-1}\right\}\right)$$

is closed. Hence the finite union is closed and D_k is closed. Arbitrary intersection of closed is closed so \mathbb{Z}_p is closed and thus compact.

Proposition – Universal property of \mathbb{Z}_p

Suppose R is a ring with ring morphisms $\rho_n:R\to A_n$ for each $n\in\mathbb{N}$ such that for each n>0, $\phi_n\circ\rho_n=\rho_{n-1}$. Then there exists a unique ring morphism $f:R\to\mathbb{Z}_p$ such that for each $n,\varepsilon_n\circ f=\rho_n$.

Proof. If there exists such a map then it is unique: suppose f,g both satisfy the given properties. Then for any n and any $a \in R$ $\varepsilon_n \circ f(a) = \rho_n(a) = \varepsilon_n \circ g(a)$. Thus f(a) = g(a), by the property of products (if they agree on all the projections they are equal).

For existance we let $a \in R$ and consider the set

$$\bigcap_{n\in\mathbb{N}}\varepsilon_n^{-1}\circ\rho_n(a)$$

show that it has cardinality 1, and let f map a to this unique element. If $x, y \in \bigcap_{n \in \mathbb{N}} \varepsilon_n^{-1} \circ \rho_n(a)$ then for any $n \in \mathbb{N}$, $\varepsilon_n(x) = \rho_n(a) = \varepsilon_n(y)$. Thus a = b by the property of products. Hence the cardinality is ≤ 1 .

To show that the set is non-empty, take $x=(\rho_n(a))_{n\in\mathbb{N}}$. This is in \mathbb{Z}_p since for each n>0, $\phi_n\circ\rho_n(a)=\rho_{n-1}(a)$. Also it is in the intersection since for each n, $\varepsilon_n(x)=\rho_n(a)$. Hence the cardinality is 1. Hence f is well-defined and for all $n\in\mathbb{N}$, $\varepsilon_n\circ f=\rho_n$.

For any n,

$$\varepsilon_n \circ f(a+b) = \rho_n(a+b) = \rho_n(a) + \rho_n(b) = \varepsilon_n \circ f(a) + \varepsilon_n \circ f(b) = \varepsilon_n(f(a) + f(b))$$

Hence by property of products f(a+b) = f(a) + f(b) and similarly for multiplication. Note that for any n, $\varepsilon_n \circ f(1) = \rho_n(1) = 1$. Hence f(1) = 1. Thus f is a ring morphism.

Corollary – \mathbb{Z} injects into \mathbb{Z}_p

Then there exists a unique injective ring morphism $\iota: \mathbb{Z} \to \mathbb{Z}_p$ such that for each $n, \varepsilon_n \circ \iota = \pi_n$.

Proof. By the previous theorem the morphism exists and is unique. It must send $1 \mapsto 1$ hence $\iota(x) = 0$ would imply $\pi_n(x) = \varepsilon_n \circ \iota(x) = 0$ for all $n \in \mathbb{N}$. Hence for any $n \in \mathbb{N}$, $p^n \mid x$. Thus x = 0.

Proposition – Multiplying by
$$p^n$$
 is injective and $x_n=0$ implies $x\in p^n\mathbb{Z}_p$
$$0 \longrightarrow \mathbb{Z}_p \xrightarrow{p^n \cdot} \mathbb{Z}_p \xrightarrow{\varepsilon_n} A_n \longrightarrow 0$$

is a short exact sequence of abelian groups.

Proof. To check that the morphism $\mathbb{Z}_p \to \mathbb{Z}_p$ multiplying by p^n is injective it suffices to show that multiplying by p is injective. Suppose x is in the kernel of this map, then px=0 thus for any n, $px_{n+1}=\varepsilon_{n+1}(px)=0$. We show that for any n, $x_n=0$. There exists $a\in\mathbb{Z}$ such that $\pi_{n+1}(a)=x_{n+1}$. Since $\pi_{n+1}(pa)=px_{n+1}=0$, $pa=p^{n+1}b$ for some $b\in\mathbb{Z}$. Hence $a=p^nb$ since \mathbb{Z} is an integral domain. Thus $\pi_n(a)=x_n=0$. Thus x=0.

To check that the $p^n\mathbb{Z}_p=\ker(\varepsilon_n)$ we note that for any $x\in\mathbb{Z}_p$, $\varepsilon_n(p^nx)=p^nx_n=0\in A_n$. Hence $p^n\mathbb{Z}_p\subseteq\ker(\varepsilon_n)$. For the other direction suppose $\varepsilon_n(x)=0$. Suppose $n\leq m\in\mathbb{Z}$. Then there exists a unique $a_m\in\mathbb{Z}$ such that $0\leq a< p^m$ and $\pi_m(a_m)=\varepsilon_m(x)$. Then

$$\pi_n(a_m) = \phi_m \circ \cdots \circ \phi_{n+1} \pi_m(a_m) = \phi_m \circ \cdots \circ \phi_{n+1} \varepsilon_m(x) = \varepsilon_n(x) = 0$$

Thus there exists a unique $b_m \in \mathbb{Z}$ such that $a_m = p^n b_m$.

Let $b=(\pi_m(b_m))_{m\in\mathbb{N}}\in\mathbb{Z}_p$. Note that multiplying by p^n commutes with all the map as they are ring homomorphisms. Then for any $m\in\mathbb{N}$,

$$\phi_{m+1}\varepsilon_{m+1}(b) = \phi m + 1 \circ \pi_{m+1}(b_{m+1}) = \phi m + 1 \circ \pi_{m+1}(p^n a_{m+1})$$

$$= p^n \phi_{m+1} \circ \pi_{m+1}(p^n a_{m+1}) = p^n \pi_m(a_m)$$

$$= \pi_m(b_m)$$

$$= \varepsilon_m(b)$$

Hence $b \in \mathbb{Z}_p$. Furthermore, let $m \in \mathbb{N}$ then

$$\varepsilon_m(p^n b) = p^n \pi_m(b_m) = \pi_m(p^n b_m) = \pi_m(a_m) = \varepsilon_m(x)$$

Hence $p^n b = x$. Thus $x \in p^n \mathbb{Z}_p$.

Proposition – \mathbb{Z}_p is a local ring, decomposition of non-zero elements

- x_n ∈ A_n is a unit if and only if x_n ∉ pA_n.
 x ∈ Z_p is a unit if and only if x ∉ pZ_n.
 For any x ∈ Z_p \ {0} there exist unique n ∈ N and u ∈ Z_p such that u is a unit and pⁿu = x.

Proof.

1. If x_n is a unit and $x_n \in pA_n$ then write $x_n = py_n$ for $y_n \in A_n$. We see that p is a unit since $x_n^{-1}py_n = 1$. However p is nilpotent since $p^n = 0$ a contradiction. Hence $x_n \notin pA_n$. Conversely if $x_n \notin pA_n$ then supposing $x_1 = 0$ deduces $x \in p\mathbb{Z}_p$ by the previous proposition. Hence $x_n \in pA$ a contradiction. Thus $x_1 \neq 0 \in A_1$, a field, so x_1 is a unit in A_1 . Hence there exist $x_{\mathbb{Z}}, y_{\mathbb{Z}}, z_{\mathbb{Z}} \in \mathbb{Z}$ such that $\iota(x_{\mathbb{Z}}) = x$ and

$$\begin{aligned} x_{\mathbb{Z}}y_{\mathbb{Z}} + pz_{\mathbb{Z}} &= 1 \\ \Rightarrow \pi_n(x_{\mathbb{Z}}y_{\mathbb{Z}} + pz_{\mathbb{Z}}) &= 1 \\ \Rightarrow x_ny_n + pz_n &= 1 \\ \Rightarrow x_ny_n(1 + \dots + (pz_n)^{n-1}) &= 1 - (pn)^z = 1 \in A_n \\ \Rightarrow x_n \text{ is a unit} \end{aligned}$$

Hence x_n is a unit if and only if $x_n \notin pA_n$.

2. If x is a unit of \mathbb{Z}_p then in particular x_1 is a unit. Suppose $x \in p\mathbb{Z}_p$ then $x_1 = 0$ by the previous proposition. Hence x_1 is not a unit, a contradiction. Thus $x \notin p\mathbb{Z}_p$.

For the converse suppose $x \notin p\mathbb{Z}_p$ then by the previous proposition $x_1 \neq 0$. For any $n \in \mathbb{N}$, if $x_n \in A_n$ then $x_1 = \phi_n \circ \cdots \circ \phi_2 x_n = 0$ which is false. Hence for any $n \in \mathbb{N}$, $x_n \notin pA_n$ which by the first part implies there exists a unique $y_n \in A_n$, $x_n y_n = 1$. We show that $y := (y_n)_{n \in \mathbb{N}}$ is the inverse of x in \mathbb{Z}_p . To show that $y \in \mathbb{Z}_p$ let $n \in \mathbb{N}$.

$$x_n \phi_{n+1}(y_{n+1}) = \phi_{n+1}(x_{n+1})\phi_{n+1}(y_{n+1})\phi_{n+1}(x_{n+1}y_{n+1}) = \phi(1) = 1$$

Hence $\phi_{n+1}(y_{n+1}) = y_n$ by uniqueness of inverses in A_n . To show that xy = 1 note that for any $n \in \mathbb{N}$, $\varepsilon_n(xy) = x_n x_y = 1$. Hence xy = 1.

3. Let $x \in \mathbb{Z}_p$ be non-zero and consider the set

$$\{n \in \mathbb{N} \mid \varepsilon_n(x) = 0\}$$

This is non-empty since $\varepsilon_0(x) = 0$. By induction there exists a maximum of this set, call this n. Since $\varepsilon_n(x)=0$ by the previous proposition $x=p^ny$ for some $y\in\mathbb{Z}_p$. Suppose $y\in\mathbb{Z}_p$ then $\varepsilon_{n+1}(x)=0$ which is a contradiction with maximality. Hence by the previous part of this proposition y is a unit.

Suppose we have another decomposition $x = p^m z$ with z a unit. Then by maximality of n, $m \le n$. By the previous proposition we have that multiplication by p^m is injective. Hence $p^n y = p^m z$ implies $p^{n-m}y=z$. Since z is a unit, n-m=0. Hence n=m and $y=p^{n-m}y=z$.

Definition – \mathbb{N}_{∞}

On the set $\mathbb{N}_{\infty} := \mathbb{N} \cup \{\infty\}$ define commutative addition such that if $n, m \in \mathbb{N}$ then it is the usual addition and for any $x \in \mathbb{N}_{\infty}$, $x + \infty = \infty$. We order the set using \leq , where it is the usual $m \leq n$ for $m, n \in \mathbb{N}$ and for any $x \in \mathbb{N}_{\infty}$, $x \leq \infty$ and if $\infty \leq x$ then $x = \infty$. This is a total order hence we have a well defined infimum for any non-empty set.

Definition – p-adic valuation

Given p a prime, define $v_p: \mathbb{Z}_p \to \mathbb{N}_\infty$ sending any non-zero x to n, where $n \in \mathbb{N}$ and $u \in \mathbb{Z}_p$ is a unit such that $x = p^n u$. In the other case we define $v_p(0) := \infty$.

Proposition

For any p prime and $x, y \in \mathbb{Z}_p$

$$v_p(xy) = v_p(x) + v_p(y), \quad \inf\{v_p(x), v_p(y)\} \le v_p(x+y)$$

Proof. Case on what x, y are.

Corollary

 \mathbb{Z}_p is an integral domain.

Proof. Let $x, y \in \mathbb{Z}_p$ be such that xy = 0. Suppose for a contradiction both x, y are non-zero. Then $v_p(x), v_p(y) \in \mathbb{N}$ hence $\infty = v_p(xy) = v_p(x) + v_p(y) \in \mathbb{N}$, a contradiction.

Definition – **Metric on** \mathbb{Z}_p

Define a norm on \mathbb{Z}_p by

$$|\star|: \mathbb{Z}_p \to \mathbb{R}_{\geq 0} := x \mapsto \begin{cases} 0, & x = 0 \\ p^{-v_p(x)}, & x \neq 0 \end{cases}$$

This satisfies

- 1. $|x| = 0 \Leftrightarrow x = 0$
- 2. $|x + y| \le \max(|x|, |y|) \le |x| + |y|$
- 3. $|xy| \le |x| |y|$
- 4. |1| = 1

This induces a metric on \mathbb{Z}_p .

Proof. Straight forward.

Proposition - Cosets are clopen balls

For any n and $a \in \mathbb{Z}$ the coset $a + p^n \mathbb{Z}_p$ is a clopen ball $B_{\delta}(a)$ for some $\delta \in \mathbb{R} -> 0$.

Proof. $b \in a+p^n\mathbb{Z}_p$ if and only if $n \le v_p(b-a)$ if and only if $|b-a| \le p^{-n}$ if and only if $|b-a| < \frac{p^{-n}+p^{1-n}}{2} =: \delta$, as the image of the norm is discrete. Hence $a+p^n\mathbb{Z}_p = \overline{B_{p^{-n}(a)}} = B_\delta(a)$ and is clopen. \square

Proposition - Induced topologies are equivalent

The metric topology \mathcal{T}_0 is the same as the subspace topology \mathcal{T}_1 from $\prod_{n\in\mathbb{N}}A_n$.

Proof. We first show that the neighbourhoods of points are the same. Call the neighbourhood filter for a point a in the metric tolopogy $N_0(a)$ and the other $N_1(a)$. We use $\langle \star | \ldots \rangle$ to mean the neighbourhood filter generated by $\{\star \mid \dots \}$.

$$\begin{split} N_1(a) &= \langle U \cap \mathbb{Z}_p \,|\, a \in U \in \text{ product topology on } \prod A_n \rangle \\ &= \langle \varepsilon_n^{-1}(U) \cap \mathbb{Z}_p \,|\, \exists n \in \mathbb{N}, a_n \in U \subseteq A_n \rangle \\ &= \langle U \subseteq \mathbb{Z}_p \,|\, \exists n \in \mathbb{N}, a + \ker(\varepsilon_n) \subseteq U \rangle \\ &= \langle U \subseteq \mathbb{Z}_p \,|\, \exists n \in \mathbb{N}, a + p^n \mathbb{Z}_p \subseteq U \rangle \\ &= \langle U \subseteq \mathbb{Z}_p \,|\, \exists \delta > 0, B_\delta(a) \subseteq U \rangle \\ &= N_0(a) \end{split}$$

The penultimate equality is due to cosets being clopen balls for one inclusion and the other inclusion follows from finding $n \in \mathbb{N}$ such that $p^{-(n+1)} < \delta < p^{-n}$.

Since a subset U is open in a topology if and only if for all points $a \in U, U \in N(p)$ we see that $U \in \mathcal{T}_0$ if and only if $\forall p \in U, U \in N_0(p)$ if and only if $\forall p \in U, U \in N_1(p)$ if and only if $U \in \mathcal{T}_1$.

Proposition – Topological properties of \mathbb{Z}_p \mathbb{Z}_p is complete in the topological sense and the image of \mathbb{Z} is dense in \mathbb{Z}_p .

Proof. Any Cauchy sequence in \mathbb{Z}_p has a subsequence converging to $x \in \mathbb{Z}_p$ as \mathbb{Z}_p is a compact metric space. This is also the unique limit of the original sequence as it is Cauchy. Hence \mathbb{Z}_p is complete.

Clearly $\iota(\mathbb{Z}) \subseteq \mathbb{Z}_p$. Let $x \in \mathbb{Z}_p$. We want to show that there exists a sequence in $\iota(\mathbb{Z})$ converging to x, hence showing that $x \in \overline{\iota(\mathbb{Z})}$. For any $n \in \mathbb{N}$ there exists an element $b \in \mathbb{Z}$ such that $\pi_n(b) = \varepsilon_n(x)$. Define the sequence $y: \mathbb{N} \to \mathbb{Z}_p := n \to \iota(b)$. Then we claim that $\lim_{n \in \mathbb{N}} y(n) = x$ Let $\delta \in \mathbb{R}_{>0}$. There exists $N \in \mathbb{N}$ such that $p^{-N} < \delta$. Let $n \in \mathbb{N}$ be such that $N \le n$. Then $\varepsilon_n(x - y(n)) = 0$ implies $x - y(n) \in p^n A_n$ and so

$$|x - y(n)| = p^{-v_p(x - y(n))} \le p^{-n} \le p^{-N} < \delta$$

Thus the limit exists and is x. Hence $\overline{\iota(\mathbb{Z})} = \mathbb{Z}_p$.

Definition – \mathbb{Q}_p

Since \mathbb{Z}_p is an integral domain, we can construct its field of fractions. We call this \mathbb{Q}_p .

Proposition – Inclusions into \mathbb{Q}_p

There is a unique injective ring morphism $\mathbb{Z}_p \to \mathbb{Q}_p$ which (without confusion) we treat as \subseteq and there is a unique injective extension of the ring morphism $\iota : \mathbb{Z} \to \mathbb{Z}_p$ to $\mathbb{Q} \to \mathbb{Q}_p$.

$$\mathbb{Z} \xrightarrow{\subseteq} \mathbb{Q}$$

$$\iota \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}_p \xrightarrow{\subseteq} \mathbb{Q}_p$$

Proof. The inclusion $\mathbb{Z}_p \to \mathbb{Q}_p$ is a result of the construction of the field of fractions. We extend ι by mapping $\frac{a}{b} \in \mathbb{Q}$ to $\frac{\iota(a)}{\iota(b)} \in \mathbb{Q}_p$. Check that it is well-defined and injective, a ring morphism and that the diagram above commutes.

Proposition

 $\mathbb{Q}_p \cong \mathbb{Z}_p[\frac{1}{p}]$ canonically and any unit of \mathbb{Q}_p can be uniquely written in the form p^nu for $n \in \mathbb{Z}$ and u a unit in the image of \mathbb{Z}_p under the isomorphism.

Proof. Let $f: \mathbb{Z}_p[\frac{1}{p}] \to \mathbb{Q}_p$ such that $\sum_{i=0}^n x_i(\frac{1}{p})^i \mapsto \sum_{i=0}^n \frac{x_i}{p^i}$. Clearly f is well defined and injective. To show that it is surjective note that for any element $\frac{a}{b} \in \mathbb{Q}_p$ with $a, b \in \mathbb{Z}_p, b \neq 0$ we can write $b = p^n u$ for unique $n \in \mathbb{N}$ and u a unit. Hence $\frac{a}{b} = \frac{a}{p^n u} = \frac{au^{-1}}{p^n}$ which is due to an element of $\mathbb{Z}_p[\frac{1}{p}]$ via f.

The same trick gives us the decomposition of units in \mathbb{Q}_p .

Definition – p**-adic** valuation for \mathbb{Q}_p

Extend the definition of v_p to \mathbb{Q}_p by taking $x \neq 0$ to n such that $p^n u = x$.

Note that $0 \le v_p(x)$ if an only if x is a p-adic integer.

Definition – Addition is a homeomorphism on \mathbb{Q}_p

Let $a \in \mathbb{Q}_p$. Then the map $\mathbb{Q}_p \to \mathbb{Q}_p$ sending $b \mapsto a + b$ is a homeomorphism.

Proof. Let $b \in \mathbb{Q}_b$ and let $\delta \in \mathbb{R}_{>0}$. It suffices that $a + B_{\delta}(b) \subseteq B_{\delta}(a+b)$. Indeed if $c \in B_{\delta}(b)$ then $|a+c-(a+b)| = |c-b| < \delta$.

This map has inverse -a which is continuous for the same reasons. Hence $a + \star$ is a homeomorphism. \Box

Proposition – Topological properties of \mathbb{Q}_p

- 1. For any n $p^n\mathbb{Z}_p$ is clopen in \mathbb{Q}_p , in particular \mathbb{Z}_p is open in \mathbb{Q}_p . 2. \mathbb{Q}_p is locally compact and $\iota(\mathbb{Q})$ is dense in \mathbb{Q}_p .

Proof. Since \mathbb{Z}_p and \mathbb{Q}_p share the same metric Each $p^n\mathbb{Z}_p$ is clopen in \mathbb{Q}_p . We first note that \mathbb{Q}_p is locally compact at 0 since \mathbb{Z}_p is an open compact neighbourhood of 0. Furthermore, for any $a \in \mathbb{Q}_p$, $a + \star$ is a homeomorphism so the coset $a + \mathbb{Z}_p$ is the image of an open compact set which is open and compact. Clearly $a \in a + \mathbb{Z}_p$. Hence \mathbb{Q}_p is locally compact.

Clearly $\overline{\iota(\mathbb{Q})} \subseteq \mathbb{Q}_p$ Let $x \in \mathbb{Q}_p$, then $x = p^n u$ for $n \in \mathbb{N}$ and $u \in \mathbb{Z}_p$ a unit. Then $u \in \overline{\iota(\mathbb{Z})} \subseteq \overline{\iota(\mathbb{Q})}$ and so $x \in p^n \overline{\iota(\mathbb{Q})} \subseteq \overline{\iota(\mathbb{Q})}$. Thus \mathbb{Q} is dense in \mathbb{Q}_p .

 \mathbb{Q}_p is complete: take a Cauchy sequence in \mathbb{Q}_p . Let $\delta = 1$, then there exists $N \in \mathbb{N}$ such that for any $n, m \in \mathbb{N}$, if $N \leq n \leq m$ then $|x_m - x_n| \leq 1$. Hence the sequence $(x_m)_{N \leq m} \subseteq x_N + \mathbb{Z}_p$ which is compact as it is an image of the homeomorphism $x_m + \star$. Hence there is a subsequence converging to a limit in $x_m + \mathbb{Z}_p$, and applying Cauchy we conclude this is the limit of the original sequence.

Proposition - Series converge iff terms converge

Let $x: \mathbb{N} \to \mathbb{Q}_p$ be a sequence. Then x converges if and only if $\lim_{n \in \mathbb{N}} (x(n+1) - x(n)) = 0$.

Proof. Since \mathbb{Q}_p is complete it suffices to show that x is Cauchy if and only if $\lim_{n \in \mathbb{N}} (x(n+1) - x(n)) = 0$. The forward implication is straightforward. For the other direction take $\delta \in \mathbb{R}_{>0}$. By assumption

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}_{>N}, |x(n+1) - x(n)| < \frac{\delta}{2}$$

Let $n,m\in\mathbb{N}$ be such that $N\leq n\leq m$. By induction we can show that $|x(m)-x(n)|\leq \frac{\delta}{2}<\delta$, using $|x+y| \le \max(|x|,|y|)$ for the induction.

2.2 p-adic Equations

Proposition – Non-empty projective limits

Suppose $F:(\mathbb{N},\leq)\to\mathcal{C}$ is a projective system. Denote \downarrow_m^n as the image map in \mathcal{C} from $F(n)\to F(m)$. Suppose that for every $n \in \mathbb{N}$ the object F(n) in \mathcal{C} is finite and non-empty. Then the projective limit

$$\varprojlim F := \left\{ x \in \prod_{n \in \mathbb{N}} F(n) \mid \forall n \in \mathbb{N}, \downarrow_{n+1}^{n} x_{n+1} = x_n \right\}$$

is non-empty. Conversely if the projective limit is non-empty then each F(n) is non-empty.

Proof. The trick is to construct a surjective projective system where the image objects are subsets of each F(n). Let $n \in \mathbb{N}$. Suppose for a contradiction that

$$\forall k \in \mathbb{N}, \exists l \in \mathbb{N}_{>k}, \downarrow_n^{n+l} D_{n+l} \neq \downarrow_n^{n+k} D_{n+k}$$

Then by induction we can show that

$$\forall k \in \mathbb{N}, \exists l \in \mathbb{N}_{>k}, \downarrow_n^{n+l} D_{n+l} \subset \downarrow_n^{n+k} D_{n+k}$$

Since D_n is finite and each $\downarrow_n^{n+k} D_{n+k} \subseteq D_n$, we can conclude by induction that there exists $k \in \mathbb{N}$ such that $\downarrow_n^{n+k} D_{n+k} = \emptyset$, which implies that D_{n+k} is empty, a contradiction. Hence

$$\exists k \in \mathbb{N}, \forall l \in \mathbb{N}_{>k}, \downarrow_n^{n+l} D_{n+l} = \downarrow_n^{n+k} D_{n+k}$$

The sets 'become constant'. We define a functor $G:(\mathbb{N},\leq)\to\mathcal{C}$ sending $n\mapsto\downarrow_n^{n+k}D_{n+k}$ and with the same image maps as F. This functor is well-defined and surjective because for any $n\in\mathbb{N}$, using the 'becomes constant' property of G(n+1) we can show that $\downarrow_n^{n+1}G(n+1)=G(n)$.

Let $x_0 \in G(0)$, which is non-empty as it is the image of a non-empty set g(k) for some $k \in \mathbb{N}$. By induction we can find $x_n \in G(n)$ for each $n \in \mathbb{N}$ such that $\downarrow_i^{i+1} x_{i+1} = x_i$. Hence $(x_n)_{n \in \mathbb{N}} \in \varprojlim G$. Since each $x_n \in F(n)$, $(x_n)_{n \in \mathbb{N}} \in \varprojlim F$.

The converse is clear. \Box

Notation. For $\phi: A \to B$ a ring morphism, S a finite subset of $A[x_1, \dots, x_m]$, and

$$f = \sum_{\lambda \in S} \lambda \prod_{i=1}^{m} (x_i)^{r_{i,\lambda}} \in A[x_1, \dots, x_m]$$

we write $\phi(f)$ to mean

$$\sum_{\lambda \in S} \phi(\lambda) \prod_{i=1}^{m} (x_i)^{r_{i,\lambda}} \in B[x_1, \dots, x_m]$$

Proposition – Vanishing of multivariable polynomials over \mathbb{Z}_p

Let $I \subseteq \mathbb{Z}_p[x_i]_{1 \le i \le m}$. Then $\mathbb{V}(I)$ is non-empty if and only if for all $n \in \mathbb{N}$, $V_n := \mathbb{V}(\{\varepsilon_n(f) | f \in I\})$ is non-empty.

Proof. We first show that the functor V mapping $n \mapsto V_n$ and $n \le m$ to $\downarrow_n^m : V_m \to V_n$ is a projective system. We just need to show that

$$\forall n \in \mathbb{N}, \forall a \in V_{n+1}, \downarrow_n^{n+1} a \in V_n$$

Indeed if $a \in V_{n+1}$ then

$$\begin{split} \varepsilon_n(f) \circ \downarrow_n^{n+1}(a) = & \downarrow_n^{n+1} \circ \varepsilon_{n+1}(f)(\downarrow_n^{n+1}(a)) \\ = & \downarrow_n^{n+1}(\varepsilon_{n+1}(f)(a)) & \text{verify this} \\ = & \downarrow_n^{n+1}(0) = 0 & \text{since } a \in V_{n+1} \end{split}$$

Hence this forms a projective system with each V_n finite (since they are respectively subsets of A_n). Thus $\varprojlim V$ is non-empty if and only if each V_n is non-empty. Claim: $\varprojlim V$ bijects with $\mathbb{V}(I)$.

Let $(a_1,\ldots,a_m)\in (\mathbb{Z}_p)^m$, then clearly for each $i\in \{1,\ldots,m\}$, $(\varepsilon_n(a_i))_{n\in\mathbb{N}}\in$

$$(a_1, \dots, a_m) \in \mathbb{V}(I) \subseteq (\mathbb{Z}_p)^m \Leftrightarrow \forall f \in I, f(a_1, \dots, a_m) = 0 \in \mathbb{Z}_p$$

$$\Leftrightarrow \forall n \in \mathbb{N}, \forall f \in I, \varepsilon_n(f(a_1, \dots, a_m)) = 0 \in A_n$$

$$\Leftrightarrow \forall n \in \mathbb{N}, \forall f \in I, \varepsilon_n(f)(\varepsilon_n(a_1), \dots, \varepsilon_n(a_m)) = 0 \in A_n$$

$$\Leftrightarrow (\varepsilon_n(a_1), \dots, \varepsilon_n(a_m))_{n \in \mathbb{N}} \in \varprojlim V$$

Hence the sets biject and V is non-empty if and only if each V_n is non-empty.