Числовые ряды.

Основные определения.

Определение. Сумма членов бесконечной числовой последовательности $a_1, a_2, ..., a_n, ...$ называется **числовым рядом**.

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$
 (1)

При этом числа a_1, a_2, \dots будем называть членами ряда, а a_n – общим членом ряда.

Определение. Суммы

$$S_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k \quad (n = 1, 2, \dots)$$
 (2)

называются частными (частичными) суммами ряда.

Таким образом, сумму ряда (1) можно рассматривать как предел последовательности его частичных сумм.

<u>Определение.</u> Ряд $a_1 + a_2 + ... + a_n + ... = \sum_{n=1}^{\infty} a_n$ называется **сходящимся**, если сходится последовательность его частных сумм. **Сумма сходящегося ряда** — предел последовательности его частных сумм.

$$\lim_{n\to\infty} S_n = S, \qquad S = \sum_{n=1}^{\infty} a_n.$$

<u>Определение.</u> Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

<u>Пример.</u> Рассмотрим $\sum_{k=0}^{\infty} q^k$. Последовательность q^k – геометрическая прогрессия.

Найдём сумму n первых членов геометрической прогрессии. Имеем с одной стороны

$$S_{n+1} = 1 + q + ... + q^{n+1} = 1 + q(1 + q ... + q^n) = 1 + qS_n$$

С другой стороны

$$S_{n+1} = S_n + q^{n+1}$$

Исключая S_{n+1} из двух последних равенств, находим

$$S_n = \sum_{k=0}^n q^k = \frac{1 - q^{n+1}}{1 - q}$$

Если |q| < 1 то

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - q^n}{1 - q} = \frac{1}{1 - q} \implies \sum_{k=0}^{\infty} q^k = \frac{1}{1 - q}$$

Задачу о нахождении частичной суммы ряда $S_n = \sum_{k=1}^n a_k$ обычно рассматривают как задачу о представлении S_n в виде функции от n, удобной для вычисления. Можно, например, задать последовательность b_n такую, что $\forall n \in N$ справедливо равенство $a_n = b_{n+1} - b_n$. Тогда

$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (b_{k+1} - b_k) = b_{n+1} - b_1$$

Упражнение. Найти выражение для частичной суммы в случае если:

$$1) \ a_n = b_{n+k} - b_n, \quad k \in \mathbb{N}$$

2)
$$a_n = b_{n+2} - 2b_{n+1} + b_n$$

Пример. Доказать по определению сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ и найти его сумму.

Решение. Имеем

$$S_n = \sum_{k=1}^n \frac{1}{k(k+2)} = \frac{1}{2} \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+2} \right) = \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right)$$

Тогда

$$S = \lim_{n \to \infty} S_n = \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{3}{4}.$$

Свойства рядов.

Представим числовой ряд следующим образом

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{n} a_k + \sum_{k=n+1}^{\infty} a_k = S_n + R_n$$
 (1)

Определение. Величина

$$R_n = \sum_{k=n+1}^{\infty} a_k ,$$

называется остатком числового ряда (1).

Теорема 1. Ряд (1) сходится $\Leftrightarrow \forall n$ остаток R_n – сходится.

Доказательство.

 (\Leftarrow) . $\forall n \ R_n$ сходится \Rightarrow сходится R_1 . Но R_1 – это и есть исходный ряд.

 $\left(\Rightarrow\right)$. Ряд сходится \Rightarrow существует $\lim_{n\to\infty}S_n=S$. Но частичная сумма \tilde{S}_N остатка R_N имеет вид $\tilde{S}_N = a_{n+1} + ... + a_N = S_N - a_1 - ... - a_n$. Величина $a_1 + ... + a_n$ не зависит от N . Кроме того, $S_N \to S$ при $N \to \infty$. Поэтому существует $\lim_{N \to \infty} \tilde{S}_N = S - a_1 - ... - a_n$. Утверждение доказано.

Следствие. Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

Более того, так как для сходящегося ряда $\lim_{n\to\infty}S_n=S$, то $\lim_{n\to\infty}R_n=\lim_{n\to\infty}\bigl(S-S_n\bigr)=S-S=0,$

$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} (S - S_n) = S - S = 0$$

т.е. можно утверждать, что $p n \partial$ (1) $c x o \partial u m c n$ $m o r \partial a$ u $m o r \partial a$, $k o r \partial a$ $\lim_{n \to \infty} R_n = 0$,

Теорема 2. Если ряд $\sum a_n$ сходится и его сумма равна S, то ряд $\sum Ca_n$ тоже cxodumcя, u его cymma paвна CS . (C = const)

 ${\color{red}{\bf \underline{Teopema~3.}}}$ Если ряды ${\color{gray}{\sum}} a_{\scriptscriptstyle n}$ и ${\color{gray}{\sum}} b_{\scriptscriptstyle n}$ сходятся и их суммы равны соответственно S_1 и S_2 , то ряд $\sum (a_n \pm b_n)$ тоже сходится и его сумма равна $S_1 \pm S_2$

$$\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n = S_1 \pm S_2.$$

Следствие. Сумма сходящегося и расходящегося рядов будет расходящимся рядом. О сумме двух расходящихся рядов общего утверждения сделать нельзя.

Критерий Коши. (необходимое и достаточное условие сходимости ряда)

Определение. Последовательность $\left\{x_n\right\}_{n=1}^{\infty}$ называется фундаментальной если $\forall \varepsilon>0$ $\exists N \in \mathbb{N}$, такое что $\forall n > N$ и $\forall p \in \mathbb{N}$, выполнялось бы неравенство:

$$\left| x_{n+p} - x_n \right| < \varepsilon$$

<u>Теорема (Критерий Коши сходимости последовательности.)</u> Для того, чтобы последовательность $\left\{x_n\right\}_{n=1}^{\infty}$ была сходящейся, необходимо и достаточно, чтобы она была фундаментальной.

Доказательство. (необходимость). Пусть $x_n \to a$, тогда для любого числа $\varepsilon > 0$ найдется номер N такой, что неравенство $|a - x_n| < \varepsilon / 2$ выполняется при n > N. Но при n > N и любом натуральном p (так как n + p > N) выполняется также неравенство $|a - x_{n+p}| < \varepsilon / 2$. Учитывая оба неравенства, получаем:

$$\left|x_{n+p} - x_n\right| = \left|x_{n+p} - a + a - x_n\right| \le \left|x_{n+p} - a\right| + \left|a - x_n\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Необходимость доказана. Доказательство достаточности рассматривать не будем.

Сформулируем **критерий Коши** для **ряда:** для того, чтобы ряд $\sum a_n$ был сходящимся необходимо u достаточно, чтобы $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}: \forall n > N$ u $\forall p \in \mathbb{N}$ выполнялось бы неравенство

$$|S_{n+p} - S_n| = |a_{n+1} + a_{n+2} + \dots + a_{n+p}| < \varepsilon.$$

Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому, как правило, используются более простые признаки сходимости:

<u>Следствие</u> (**Необходимое условие сходимости**). *Если ряд* $\sum a_n$ *сходится, то общий член* a_n *стремится к нулю*.

<u>Замечание.</u> Однако, это условие не является достаточным. Можно говорить только о том, что *если общий член не стремится к нулю, то ряд точно расходится* (достаточное условие расходимости). Согласно этому замечанию, мы получаем, что ряд a-a+a-a+... расходится при $a \neq 0$.

<u>Пример.</u> Ряд вида $\sum_{n=1}^{\infty} \frac{1}{n}$ называется гармоническим рядом. Этот ряд является расходящимся, хотя его общий член и стремится к нулю.

Покажем, что этот ряд расходится. Используем критерий Коши. Следует доказать, что

$$\exists \varepsilon > 0 : \forall N \in \mathbb{N} \ \exists n \geq N, \exists p \in \mathbb{N} : \quad \left| \frac{1}{n+1} + \dots + \frac{1}{n+p} \right| \geq \varepsilon.$$

Положим $\varepsilon = 1/2$ выберем число. Берем любое N и любое n > N. Пусть p = n. Тогда

$$\frac{1}{n+1} + \dots + \frac{1}{n+p} = \frac{1}{n+1} + \dots + \frac{1}{2n} > \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{1}{2} = \varepsilon.$$

<u>Пример.</u> Исследовать сходимость ряда $\frac{1}{2} + \frac{2}{5} + \frac{3}{8} + ... + \frac{n}{3n-1} + ...$

Найдем $\lim_{n\to\infty}\frac{n}{3n-1}=\lim_{n\to\infty}\frac{1}{3-1/n}=\frac{1}{3}\neq 0$ — необходимый признак сходимости не выполняется, значит ряд расходится.

<u>Теорема.</u> Если ряд сходится, то последовательность его частных сумм ограничена (Доказательство аналогично соответствующему признаку для последовательностей).

<u>Замечание.</u> Однако, этот признак также не является достаточным. Например, ряд $\sum_{n=1}^{\infty} (-1)^n$ расходится, т.к. расходится последовательность его частных сумм в силу того, что

$$S_n = \begin{cases} 0, & npu & \text{четных } n \\ 1, & npu & \text{нечетных } n \end{cases}, \quad \lim_{n \to \infty} S_n \text{ не существует}$$

Тем не менее, последовательность частных сумм ограничена, т.к. $\left|S_n\right| \leq 1$ при любом n.

Ряды с неотрицательными членами.

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на -1 из этих рядов можно получить ряды с отрицательными членами.

Теорема. Для сходимости ряда $\sum a_n$ с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

Доказательство.

- (⇒). Пусть $S_N \to S$, $N \to \infty$. Тогда $S_N \le S$ при всех N, т.к. $u_n \ge 0$ $\forall n$.
- (\Leftarrow) . Пусть $\forall N$ $S_N < C$. Поскольку $S_{N+1} = S_N + u_{N+1} \ge S_N$, последовательность S_N возрастает и, по условию, ограничена. Следовательно, по теореме Вейерштрасса (см. 1-ый семестр), она имеет предел, то есть ряд сходится.

Простые следствия из этого критерия – очень полезные теоремы сравнения.

Признаки сравнения рядов с неотрицательными членами.

Пусть даны два ряда $\sum a_n$ и $\sum b_n$ при $a_n, b_n \ge 0$.

Теорема 1. Если $a_n \le b_n$ при любом достаточно большом n, то из сходимости ряда $\sum b_n$ следует сходимость ряда $\sum a_n$, а из расходимости ряда $\sum a_n$ следует расходимость ряда $\sum b_n$.

<u>Доказательство.</u> Обозначим через S_n и σ_n частные суммы рядов $\sum a_n$ и $\sum b_n$. Т.к. по условию теоремы ряд $\sum b_n$ сходится, то его частичные суммы ограничены, т.е. при всех n $\sigma_n < M$, где M — некоторое число. Но т.к. $a_n \le b_n$, то $S_n \le \sigma_n$, поэтому частичные суммы ряда $\sum a_n$ тоже ограничены, а этого достаточно для сходимости.

Пример. Исследовать на сходимость ряд $\frac{1}{\ln 2} + \frac{1}{\ln 3} + ... + \frac{1}{\ln n} + ...$

Т.к. $\frac{1}{\ln n} > \frac{1}{n}$, а гармонический ряд $\sum_{n=2}^{\infty} \frac{1}{n}$ расходится, то расходится и ряд $\sum_{n=2}^{\infty} \frac{1}{\ln n}$.

<u>Пример.</u> Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{n2^n}$.

Т.к. $\frac{1}{n2^n} < \frac{1}{2^n}$, а ряд $\sum_{n=1}^{\infty} \frac{1}{2^n}$. сходится (как убывающая геометрическая прогрессия), то

ряд $\sum_{n=1}^{\infty} \frac{1}{n2^n}$ тоже сходится.

Также используется следующий признак сходимости:

Выберем $\varepsilon = \frac{k}{2}$. Тогда

$$\exists n_0: \ \forall n \geq n_0 \quad \Rightarrow \quad -\frac{k}{2} < \frac{a_n}{b_n} - k < \frac{k}{2} \quad \Leftrightarrow \quad \frac{k}{2} < \frac{a_n}{b_n} < \frac{3}{2}k \quad \Leftrightarrow \quad \frac{k}{2}b_n < a_n < \frac{3k}{2}b_n$$

при $n \ge N$ (т.к. $b_n > 0$).

Если ряд $\sum a_n$ — сходится, то сходится и ряд $\sum (k/2)b_n$ (по теореме 1). Тогда, взяв c=2/k , получим, что и ряд $\sum (ck/2)b_n$, т.е. ряд $\sum b_n$ — сходится.

Если ряд $\sum b_n$ — сходится, то сходится и ряд $\sum (3k/2)b_n$ и, следовательно, сходится ряд $\sum a_n$. Теорема доказана.

Теорема 3. Если, начиная с некоторого номера n > N выполняется неравенство

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n} \tag{1}$$

то из сходимости ряда $\sum b_n$ следует сходимость ряда $\sum a_n$

Eсли же начиная c некоторого номера n > N выполняется неравенство

$$\frac{a_{n+1}}{a_n} \ge \frac{b_{n+1}}{b_n} \qquad (2)$$

то из расходимости ряда $\sum b_n$ следует расходимость ряда $\sum a_n$.

<u>Доказательство.</u> Будем считать без ограничения общности, что неравенство (1) выполнено $\forall n$. Тогда имеем последовательность неравенств

$$\frac{a_2}{a_1} \le \frac{b_2}{b_1}, \frac{a_3}{a_2} \le \frac{b_3}{b_2}, \dots, \frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}, \dots$$

Перемножив почленно эти неравенства, получим

$$\frac{a_n}{a_1} \le \frac{b_n}{b_1} \implies a_n \le \frac{a_1}{b_1} b_n$$

Если ряд $\sum b_n$ сходится, то сходится и ряд $\sum (a_1/b_1)b_n$. Следовательно, по первой теореме сравнения сходится ряд $\sum a_n$.

Доказательство для неравенства (2) строится аналогичным образом.

Теорема 4. Если выполняется предельное равенство

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{b_{n+1}}{b_n}$$
 (3)

то ряды $\sum a_n$ и $\sum b_n$ ведут одинаково в смысле сходимости.

Пример применения теоремы 2.

 $\text{Ряд } \sum_{n=1}^{\infty} \ln \left(1 + \sin \frac{1}{2^n} \right) \text{ сходится, т.к. } \ln \left(1 + \sin \frac{1}{2^n} \right) \sim \sin \frac{1}{2^n} \sim \frac{1}{2^n} \text{ при } n \to \infty \text{ и ряд } \sum_{n=1}^{\infty} \frac{1}{2^n} - \cos \frac{1}{2^n} = 0$ сходится.

Признаки Даламбера и Коши

Теорема (признак сходимости Даламбера) (Жан Лерон Даламбер (1717 – 1783) – французский математик)

Если для ряда $\sum a_n$ с положительными членами существует такое число q < 1, что для всех достаточно больших n выполняется неравенство

$$\frac{a_{n+1}}{a_n} \le q$$

то ряд $\sum a_n$ сходится, если же для всех достаточно больших n выполняется условие

$$\frac{a_{n+1}}{a_n} \ge 1,$$

то ряд $\sum a_n$ расходится.

Доказательство. Из условий теоремы следует что

$$0 < a_n \le q a_{n-1} \le q^2 a_{n-2} \le \dots \le q^{n-n_0} a_{n_0} \quad .$$

Иными словами, $a_n \leq \frac{a_{n_0}}{q^{n_0}} \cdot q^n$ и по первой теореме сравнения ряд сходится.

Если $a_{n+1} \ge a_n$, то $a_n \to 0$ при $n \to \infty$ и ряд расходится.

В предельной форме этот признак выглядит так:

Теорема (предельный признак Даламбера) Если существует предел $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$, то при q < 1 ряд сходится, а при q > 1 — расходится. Если q = 1, то на вопрос о сходимости ответить нельзя.

<u>Доказательство.</u> При q < 1 выбираем ε так, чтобы $q + \varepsilon < 1$. Пусть n_0 выбрано так, чтобы при $n \ge n_0$ выполняется неравенство $\left| \frac{a_{n-1}}{a_n} - q \right| < \varepsilon$, т.е. $\frac{a_{n+1}}{a_n} < q + \varepsilon$ и $a_{n+1} < \left(q + \varepsilon \right) a_n$, $q + \varepsilon < 1$. По предыдущей теореме ряд сходится. Если же q > 1, то выберем ε так, что $q - \varepsilon > 1$. Тогда, при $n \ge n_0$ имеем $a_{n+1} > \left(q - \varepsilon \right) a_n > a_n$ и ряд расходится.

Пример. Определить сходимость ряда $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

$$a_n = \frac{n}{2^n}, \quad a_{n+1} = \frac{n+1}{2^{n+1}}, \qquad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)2^n}{2^{n+1}n} = \frac{n+1}{2n} = \frac{1+1/n}{2} = \frac{1}{2} < 1.$$

Вывод: ряд сходится.

<u>Пример.</u> Определить сходимость ряда $1 + \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!} + ...$

$$a_n = \frac{1}{n!}, \quad a_{n+1} = \frac{1}{(n+1)!}, \quad \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1.$$

Вывод: ряд сходится.

 $\underline{\mathbf{3aмечание.}}$ Признаки Даламбера в приведённой формулировке не работают, если предел $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ не существует. Тем не менее, этот признак можно усилить. Как известно, из любой расходящейся последовательности, можно выделить пару сходящихся подпоследовательностей с разными пределами. Поэтому, обозначим

$$\frac{1}{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n}$$
 — верхнее значение предела

$$\underline{\lim_{n \to \infty}} \frac{a_{n+1}}{a_n}$$
 — нижнее значение предела

После чего сформулируем усиленный признак Даламбера

<u>Теорема (усиленный признак Даламбера).</u> $E cлu \lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1 \ mo \ psd \ \sum a_n \ cxodumcs$,

$$ecлu \lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1 - pяд pacxoдится.$$

<u>Замечание.</u> В такой формулировке признак Даламбера не решает вопроса о сходимости в случае если

$$\underline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} \le 1 \le \overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n}$$

Теорема (Радикальный признак Коши) Если для ряда $\sum a_n$ с неотрицательными членами существует такое число q < 1, что для всех достаточно больших n выполняется неравенство

$$\sqrt[n]{a_n} \leq q$$
,

то ряд $\sum a_n$ сходится, если же для всех достаточно больших n выполняется неравенство

$$\sqrt[n]{a_n} \ge 1$$
,

то ряд $\sum a_n$ расходится.

Доказательство. Неравенство $\sqrt[n]{a_n} \le q$ при $n \ge n_0$ равносильно неравенству $a_n \le q^n$. Так как $0 \le q < 1$, ряд $\sum_{n=1}^{\infty} q^n$ — сходится. По 1-й теореме сравнения ряд $\sum_{n=1}^{\infty} a_n$ также сходится.

Если же $\sqrt[n]{a_n} \ge 1$, то и $a_n \ge 1$ и равенство $\lim_{n \to \infty} a_n = 0$ невозможно. Т.о. необходимый признак сходимости не выполняется и ряд расходится.

Теорема (предельный признак Коши). Если существует предел $\lim_{n\to\infty} \sqrt[n]{a_n} = q$, то при q < 1 ряд сходится, а при q > 1 ряд расходится.

Доказательство. Пусть q < 1. Выберем ε так, чтобы $q + \varepsilon < 1$ (т.е. $\varepsilon < 1 - q$). Тогда при $n \ge n_0\left(\varepsilon\right) \left|\sqrt[n]{a_n} - q\right| < \varepsilon$, т.е. $\sqrt[n]{a_n} < q + \varepsilon < 1$. Применяя предыдущую теорему, получаем, что ряд сходится.

Если же q>1, то выберем ϵ так, что $q-\epsilon>1$ (т.е. $\epsilon < q-1$). Тогда $\left|\sqrt[n]{a_n}-q\right|<\epsilon \Rightarrow 1< q-\epsilon<\sqrt[n]{a_n}$. Вновь по предыдущей теореме ряд расходится.

<u>Пример.</u> Определить сходимость ряда $\sum_{n=1}^{\infty} \left(\frac{2n^2+1}{3n^2+5} \right)^n$.

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{2n^2 + 1}{3n^2 + 5} = \lim_{n \to \infty} \frac{2 + 1/n^2}{3 + 5/n^2} = \frac{2}{3} < 1$$

Вывод: ряд сходится.

<u>Пример.</u> Определить сходимость ряда $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$.

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right) = 1.$$

Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e \neq 0,$$

таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.

<u>Важное замечание.</u> Признак Даламбера и признак Коши связаны между собой: если существует конечный или бесконечный предел

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q$$

то тогда существует и предел $\lim_{n\to\infty} \sqrt[n]{a_n} = q$ (т.е. оба предела равны). Обратное неверно, поэтому:

- 1) Если можно применить признак Даламбера, то можно и применить признак Коши
- 2) С другой стороны существуют случаи, когда признак Даламбера не работает, а признак Коши работает

Для иллюстрации данного замечания поступим следующим образом. Во-первых, используя понятия верхнего и нижнего пределов, усилим признак Коши (также как это сделали с признаком Даламбера)

<u>Замечание.</u> Признак Коши в такой формулировке не решает вопроса о сходимости в случае, если $\overline{\lim_{n\to\infty}} \sqrt[n]{a_n} = 1$. Тем не менее, в силу неравенств

$$\varliminf_{n\to\infty} \frac{a_{\scriptscriptstyle n+1}}{a_{\scriptscriptstyle n}} \leq \varliminf_{n\to\infty} \sqrt[n]{a_{\scriptscriptstyle n}} \leq \varlimsup_{n\to\infty} \sqrt[n]{a_{\scriptscriptstyle n}} \leq \varlimsup_{n\to\infty} \frac{a_{\scriptscriptstyle n+1}}{a_{\scriptscriptstyle n}}$$

усиленный признак Коши, может дать ответ на вопрос о сходимости в том случае если признак Даламбера (в том числе и усиленный) не работает

Важный пример. Исследовать на сходимость ряд

$$\sum_{n=1}^{\infty} 2^{(-1)^n - n} = \frac{1}{2^2} + \frac{1}{2^1} + \frac{1}{2^4} + \frac{1}{2^3} + \frac{1}{2^6} + \frac{1}{2^5} + \dots$$

Очевидно, здесь

$$\underline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} = \frac{1}{8}, \ \overline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} = 2$$

Следовательно, признак Даламбера не работает. С другой стороны

$$\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = \frac{1}{2}$$

Поэтому, в соответствии с усиленным признаком Коши этот ряд сходится

Упражнение. Показать с помощью усиленного признака Коши, что ряд $\sum_{n=1}^{\infty} 2^{n-(-1)^n}$ расходится. Показать также, что признак Даламбера здесь не работает.

Итак, признаки Коши и Даламбера удобны, но слабоваты. Например, для рядов $\sum_{n=1}^{\infty} \frac{1}{n}$ и

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 имеем:

$$\sqrt[n]{\frac{1}{n}} = e^{\frac{1}{n}\ln\frac{1}{n}} \to 1$$
, $\sqrt[n]{\frac{1}{n(n+1)}} = e^{\frac{1}{n}\left(\ln\frac{1}{n} + \ln\frac{1}{n+1}\right)} \to 1$ при $n \to \infty$,

т.е. признак Коши не применим.

Признак Даламбера тем более, неприменим, т.к

$$\lim_{n \to \infty} \frac{n}{n+1} = 1, \lim_{n \to \infty} \frac{n(n+1)}{(n+1)(n+2)} = 1.$$

Однако мы знаем, что гармонический ряд расходится, а для второго ряда легко подсчитать частичную сумму:

$$S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{N} - \frac{1}{N+1} = 1 - \frac{1}{N+1} \xrightarrow{N \to \infty} 1$$

т.е. ряд сходится.

Интегральный признак Коши. Признаки Раабе и Гаусса.

Теорема (интегральный признак Коши) Если f(x) – непрерывная положительная функция, убывающая на промежутке $[1,\infty)$, то ряд $\sum_{n=1}^{\infty} f(n)$ и несобственный интеграл $\int_{-\infty}^{\infty} f(x) dx$ одинаковы в смысле сходимости.

<u>Доказательство</u>. Ввиду монотонности при всех n выполняются неравенства $a_{n+1} = f\left(n+1\right) \le f\left(x\right) \le f\left(n\right) = a_n, n \le x \le n+1$.

Интегрируя, получаем $a_{n+1} \le \int_{0}^{n+1} f(x) dx \le a_n$.

Тогда
$$a_2 + \ldots + a_{n+1} \le \int\limits_1^{n+1} f\left(x\right) dx \le a_1 + \ldots + a_n$$
, или $S_{n+1} - a_1 \le \int\limits_1^{n+1} f\left(x\right) dx \le S_n$.

Поэтому если $\int_{1}^{\infty} f(x) dx$ сходится, то $\exists c: \forall X \int_{1}^{X} f(x) dx \le C$.

Тогда
$$\forall n \ S_{n+1} - a_1 \le \int_1^{n+1} f(x) dx \le C$$
 и $S_{n+1} \le C + a_1$, \Rightarrow ряд сходится.

Пусть теперь наоборот, известно, что ряд сходится. Тогда $\exists C : \forall n \ S_n \leq C$.

Взяв произвольное X, выберем n так, чтобы $X \le n+1$. Тогда

$$\int\limits_{1}^{X}f\left(x\right)dx\leq \int\limits_{1}^{n+1}f\left(x\right)dx\leq S_{n}\leq C\;.$$
 Значит, $\int\limits_{1}^{\infty}f\left(x\right)dx$ сходится.

Геометрическая иллюстрация теоремы.

 $\int_{1}^{n+1} f(x)dx$ – площадь под графиком f(x) на отрезке от 1 до n+1. $a_1+...+a_n$ – площадь ступенчатой фигуры, расположенной над графиком и $a_2+...+a_{n+1}$ – площадь ступенчатой фигуры, под графиком.

Пусть ряд и интеграл сходятся. Тогда остаток ряда

$$R_n = a_{n+1} + a_{n+2} + \dots \le \int_{n}^{n+1} f(x) dx + \int_{n+1}^{n+2} f(x) dx + \dots = \int_{n}^{\infty} f(x) dx.$$

<u>Определение.</u> Ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$ называется общегармоническим рядом или рядом Дирихле.

<u>Пример.</u> (Сходимость общегармонического ряда). Общему члену общегармонического ряда соответствует функция $f(x) = \frac{1}{x^p}$. Интеграл $\int\limits_1^\infty \frac{dx}{x^p}$ сходится при p > 1 и расходится при $p \le 1$. По интегральному признаку Коши, общегармонический ряд сходится при p > 1 и расходится при $p \le 1$.

При доказательстве признаков Коши и Даламбера использовалась идея сравнения рядов с рядом, членами которого являются члены убывающей геометрической прогрессии. Если ряд сравнивать с общегармоническим рядом, то можно получить ещё один интересный признак сходимости.

Теорема. (Признак Раабе)

1) (Радикальный признак). Числовой ряд $\sum a_n$ сходится, если при достаточно больших n выполняется неравенство

$$R_n = n \left(\frac{a_n}{a_{n+1}} - 1 \right) \ge q > 1 \tag{1}$$

Eсли R_n ≤1 то ряд расходится

2) (Предельный признак). Пусть существует конечный предел

$$\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = q$$

Тогда, числовой ряд $\sum a_n$ сходится, если q > 1 и расходится при q < 1.

Замечание. В предельном случае, при q=1 признак Раабе не работает (**Пример гармонический ряд**). Тем не менее, он даёт ответ на вопрос о сходимости даже в тех случаях, когда признаки Коши и Даламбера не работают.

<u>Доказательство</u> (для радикального признака). Пусть выполнено неравенство (1). Тогда

$$n\left(\frac{a_n}{a_{n+1}}-1\right) \ge q \implies \frac{a_n}{a_{n+1}} \ge \frac{q}{n}+1$$
 (2)

Возьмём теперь любое число s между 1 и q, т.е. 1 < s < q. Тогда, по известноому предельному соотношению

$$\lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^s - 1}{1/n} = s$$

при достаточно больших n имеет место неравенство

$$\frac{\left(1+\frac{1}{n}\right)^{s}-1}{1/n} < q \quad \Rightarrow \quad \left(1+\frac{1}{n}\right)^{s} < 1+\frac{q}{n}$$

Тогда, в соответствии с неравенством (2) получим

$$\frac{a_n}{a_{n+1}} > \left(1 + \frac{1}{n}\right)^s$$

Это неравенство можно записать следующим образом

$$\frac{a_{n+1}}{a_n} < \left(\frac{n}{n+1}\right)^s = \frac{1/(n+1)^s}{1/n^s}$$

Справа стоит отношение двух последовательных членов обобщённого гармонического ряда, который сходится при s>1. В этом случае по третьей теореме сравнения сходится ряд $\sum a_n$. Если же начиная с некоторого номера

$$n\left(\frac{a_n}{a_{n+1}}-1\right) \le 1$$

то рассуждая аналогичным образом, придём к неравенству

$$\frac{a_{n+1}}{a_n} > \frac{1/\left(n+1\right)}{1/n}$$

где справа стоят последовательные члены расходящегося гармонического ряда. Следовательно, по третьей теореме сравнения ряд $\sum a_n$ расходится.

Пример.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
.

Имеем $\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1\right) = \lim_{n\to\infty} n \left(\frac{n+2}{n} - 1\right) = 2 > 1$. Следовательно, ряд сходится.

Теорема. (признак Гаусса). Пусть $\delta > 0$ и

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + O\left(n^{-(1+\delta)}\right), \quad n \to \infty.$$
 (3)

Тогда:

Eсли $\lambda > 1$ - ряд сходится,

Eсли $0 \le \lambda < 1$ - ряд расходится,

Eсли $\lambda = 1$ и $\mu > 1$ - ряд сходится,

Eсли $\lambda = 1$ и $\mu \le 1$ - ряд расходится.

<u>Доказательство.</u> В случае, если $\lambda > 1$ ($0 \le \lambda < 1$) доказательство основывается на применении признака Даламбера т.к.

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\frac{1}{\lambda}$$

и ряд сходится если $\lambda > 1$. При $0 \le \lambda < 1$ ряд расходится.

Случай $\lambda = 1$ и $\mu > 1$ ($\mu < 1$) исследуется с помощью признака Раабе. Имеем из соотношения (3)

$$\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu$$

Таким образом, ряд сходится при $\mu > 1$ и расходится при $\mu < 1$

Рассмотрим, наконец, случай $\lambda = 1$ и $\mu = 1$. Здесь равенство (3) даёт

$$\frac{a_n}{a_{n+1}} = 1 + \frac{1}{n} + O\left(n^{-(1+\delta)}\right) = \frac{n+1}{n} + O\left(n^{-\delta}\right)$$

Следовательно, при больших значениях n ряд $\sum a_n$ эквивалентен гармоническому ряду и поэтому расходится.

<u>Примеры.</u> В применении к гармоническому ряду $\sum_{n=1}^{\infty} \frac{1}{n}$ признак Гаусса дает:

$$\frac{a_n}{a_{n+1}} = \frac{n+1}{n} = 1 + \frac{1}{n}$$
, $\lambda = 1, \mu = 1$ - ряд расходится.

Для ряда $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ имеем:

$$\frac{a_n}{a_{n+1}} = \frac{(n+1)(n+2)}{n(n+1)} = \frac{n+2}{n} = 1 + \frac{2}{n}, \ \lambda = 1, \mu = 2 > 1 - \text{ряд сходится}.$$

Знакопеременные ряды.

<u>Определение.</u> Знакопеременным числовым рядом или рядом общего типа называется ряд вида

$$u_1 + u_2 + ... + u_n + ... = \sum_{n=1}^{\infty} u_n$$

где общий член u_n может быть как положительным, так и отрицательным

Частным случаем знакопеременного ряда является знакочередующийся ряд или ряд типа Лейбница, который имеет вид:

$$a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n+1} a_n + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} a_n, \quad a_n > 0 \ \forall n \in \mathbb{N}.$$
 (1)

<u>Теорема о сходимости знакочередующегося ряда (Признак Лейбница).</u> Если у знакочередующегося ряда (1) общий член стремится к нулю $a_n \to 0$ и последовательность $\{a_n\}$ – монотонна, то ряд сходится.

Доказательство. Частичную сумму чётного порядка можно представить в виде

$$S_{2n} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n})$$

Так как каждая скобка есть положительное число, то последовательность $\left\{S_{2n}\right\}$ – возрастающая. С другой стороны те же частичные суммы можно переписать в виде

$$S_{2n} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n} < a_1$$

Отсюда видно, что последовательность $\{S_{2n}\}$ — ограничена сверху, т.е. $S_{2n} < a_1$. Следовательно, по теореме Вейерштрасса эта последовательность имеет предел

$$\lim_{n\to\infty} S_{2n} = S$$

Переходя к сумме нечётного порядка, имеем $S_{2n-1} = S_{2n} + a_{2n}$. Так как общий член стремится к нулю, то

$$\lim_{n \to \infty} S_{2n-1} = S$$

Отсюда следует, что число S является суммой ряда, т.е. ряд сходится. **Теорема** доказана.

Замечание 1. Из доказательства теоремы видно, что частичные суммы чётного порядка приближаются к S возрастая. Написав аналогичное представление для нечётных сумм, нетрудно видеть, что они приближаются к S убывая

$$S_{2n-1} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1})$$

Поэтому, всегда имеет место неравенство $S_{2n} < S < S_{2n-1}$ откуда в частности следует, что

$$0 < S < a_1$$

Это позволяет, получить очень простую оценку для остатка рассматриваемого ряда, а именно

$$\left| r_n \right| < a_{n+1}$$
 , где $r_n = \sum_{k=n+1}^{\infty} \left(-1 \right)^{k+1} a_k$

<u>Замечание 2.</u> Условие монотонности существенно. В качестве примера можно рассмотреть ряд вида

$$\sum_{n=1}^{\infty} \left(-1\right)^n a_n \text{ , где } a_n = \begin{cases} \frac{1}{n^2}, & n=2k\\ \frac{1}{n}, & n=2k-1 \end{cases}, \quad k \in \mathbb{N}$$

Тогда
$$\sum_{n=1}^{\infty} \left(-1\right)^n a_n = \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} - \sum_{k=1}^{\infty} \frac{1}{2k+1}$$

Первый ряд сходится, а второй расходится. Следовательно, рассматриваемый ряд расходится.

Абсолютная и условная сходимость рядов.

Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).

$$u_1 + u_2 + \dots + u_n + \dots = \sum_{n=1}^{\infty} u_n$$
 (1)

и ряд, составленный из абсолютных величин членов ряда (1):

$$|u_1| + |u_2| + \dots + |u_n| + \dots = \sum_{n=1}^{\infty} |u_n|$$
 (2)

Теорема. Из сходимости ряда (2) следует сходимость ряда (1).

<u>Доказательство.</u> Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого $\varepsilon > 0$ существует число N, такое, что при n > N и любом целом p > 0 верно неравенство:

$$\left|u_{n+1}\right| + \left|u_{n+2}\right| + \dots + \left|u_{n+p}\right| < \varepsilon$$

По свойству абсолютных величин:

$$\left| u_{n+1} + u_{n+2} + \dots + u_{n+p} \right| \le \left| u_{n+1} \right| + \left| u_{n+2} \right| + \dots + \left| u_{n+p} \right| < \varepsilon$$

$$\left| u_{n+1} + u_{n+2} + \dots + u_{n+p} \right| < \varepsilon$$

То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1).

Определение. Ряд $\sum u_n$ называется абсолютно сходящимся, если сходится ряд $\sum |u_n|$

Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.

<u>Определение.</u> Ряд $\sum u_n$ называется **условно сходящимся**, если он сходится, а ряд $\sum |u_n|$ расходится.

Для исследования на абсолютную сходимость можно пользоваться всеми признаками и теоремами сформулированными для знакоположительных рядов. Например, признаки Коши и Даламбера.

Признак Даламбера. Если существует предел $\lim_{n\to\infty}\left|\frac{u_{n+1}}{u_n}\right|=q$, то при q<1 ряд $\sum u_n$ будет абсолютно сходящимся, а при q>1 ряд будет расходящимся. При q=1 признак не дает ответа о сходимости ряда.

Признак Коши. Если существует предел $\lim_{n\to\infty} \sqrt[n]{|u_n|} = q$, то при q < 1 ряд $\sum u_n$ будет абсолютно сходящимся, а при q > 1 ряд будет расходящимся. При q = 1 признак не дает ответа о сходимости ряда.

Важное замечание. Вообще из расходимости ряда (2) не следует расходимость ряда (1). Но, если эта расходимость установлена по признакам Коши и Даламбера, то расходимость ряда (2) влечёт за собой и расходимость ряда (1).

В самом деле, если q>1 в признаке Даламбера, то $|\mathbf{u}_{\scriptscriptstyle \mathrm{n+1}}|>|u_{\scriptscriptstyle n}|$ и общий член $|u_{\scriptscriptstyle n}|$ не стремится к нулю. Следовательно, ряд (1) расходится.

Для признака Коши, если q>1, то $\left|u_{_{n}}\right|=q^{^{n}}\to\infty$. Тогда $u_{_{n}}\to\infty$ и ряд (1) расходится.

Упражнение. Сформулировать по аналогии интегральный признак Коши, признаки Гаусса и Раабе.

Признаки Абеля и Дирихле

При исследовании на условную сходимость наиболее часто применяются признаки Абеля и Дирихле. В обоих этих признаках ряд общего типа представляется в виде

$$\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} a_n b_n \tag{1}$$

Теорема. (Признак Дирихле). Если частичные суммы ряда $\sum_{n=1}^{\infty} b_n$, т.е. суммы $\sum_{n=1}^{N} b_n$ ограниченны в совокупности (т.е. $\exists C \ \forall N \ \left| \sum_{n=1}^{N} b_n \right| \leq C$), а последовательность a_n монотонно стремится к 0, то ряд (1) сходится.

Доказательство. Обозначим для начала

$$\sum_{n=1}^{N} b_n = B_N$$

Далее, для доказательства воспользуемся критерием Коши. С этой целью преобразуем следующую сумму

$$\begin{split} & r_{n,p} = a_{n+1}b_{n+1} + a_{n+2}b_{n+2} + \ldots + a_{n+p}b_{n+p} = \\ & = a_{n+1}\left(B_{n+1} - B_n\right) + a_{n+2}\left(B_{n+2} - B_{n+1}\right) + \ldots + a_{n+p}\left(B_{n+p} - B_{n+p-1}\right) = \\ & = -a_{n+1}B_n + B_{n+1}\left(a_{n+1} - a_{n+2}\right) + B_{n+2}\left(a_{n+2} - a_{n+3}\right) + \ldots + B_{n+p-1}\left(a_{n+p-1} - a_{n+p}\right) + a_{n+p}B_{n+p} \end{split}$$

Данное преобразование называется **преобразованием Абеля**. Выберем теперь n столь большим, что $a_{n+1} < \varepsilon/2C$. Это можно сделать, так как a_n стремится к нулю. Тогда в силу ограниченности B_n и монотонного стремления к нулю членов последовательности a_n получаем, что $\forall p > 0$

$$\left| r_{n,p} \right| \le Ca_{n+1} + C\left(a_{n+1} - a_{n+p}\right) + Ca_{n+p} = 2Ca_{n+1} < \varepsilon$$

Тогда, согласно критерию Коши ряд (1) сходится.

<u>Замечание</u>. Если положить $b_n = \left(-1\right)^{n+1}$, то $\left|B_n\right| \leq 1$ и мы получаем признак Лейбница для знакочередующихся рядов.

Теорема. (Признак Абеля). Если ряд $\sum_{n=1}^{\infty} b_n$ сходится, а числа a_n образуют монотонную и ограниченную последовательность, то ряд (1) – сходится.

<u>Доказательство</u>. Данный признак можно получить на основании признака Дирихле. Учитывая, что последовательность a_n имеет конечный предел равный, например a, выполним следующее преобразование

$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} (a_n - a) b_n + a \sum_{n=1}^{\infty} b_n$$

Второй ряд по условию теоремы сходится, а первый удовлетворяет условия признака Дирихле так как $a_n-a\to 0$ $(n\to\infty)$ монотонно. Таким образом ряд (1) сходится.

Пример. Доказать сходимость рядов $\sum_{n=1}^{\infty} a_n \sin n$, где последовательность $\{a_n\}$ монотонно стремится к нулю.

Решение. Обозначим $B_n = \sum_{k=1}^n \sin k$

Тогда, умножая обе части равенства на $2\sin\frac{1}{2}$, находим

$$2\sin\frac{1}{2}B_n = \sum_{k=1}^{n} 2\sin\frac{1}{2}\sin k$$

Используя тригонометрическое равенство $2\sin\frac{1}{2}\sin k = \cos\left(k-\frac{1}{2}\right)-\cos\left(k+\frac{1}{2}\right)$, получаем, что

$$2\sin\frac{1}{2}B_n = \cos\left(\frac{1}{2}\right) - \cos\left(n + \frac{1}{2}\right) = 2\sin\frac{n+1}{2}\sin\frac{n}{2} \implies B_n = \frac{\sin\frac{n+1}{2}\sin\frac{n}{2}}{\sin\frac{1}{2}}$$

Очевидно, что $|B_n| \le \left(\sin\frac{1}{2}\right)^{-1}$. Таким образом, условия теоремы Дирихле выполнены, следовательно, ряд сходится.

Упражнение. Доказать сходимость ряда $\sum_{n=1}^{\infty} a_n \cos n$, где последовательность $\{a_n\}$ удовлетворяет условиям теоремы Дирихле

<u>Пример.</u> Исследовать на абсолютную и условную сходимости ряд $\sum_{n=1}^{\infty} \frac{\sin n}{n^{\alpha}}$

<u>Решение.</u> Очевидно, что при $\alpha > 0$ ряд удовлетворяет условиям теоремы Дирихле и следовательно, сходится. При $\alpha \leq 0$ общий член ряда не стремится к нулю, поэтому ряд расходится.

Далее, имеет место оценка

$$\left| \frac{\sin n}{n^{\alpha}} \right| \le \frac{1}{n^{\alpha}}$$

Ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ сходится при $\alpha > 1$. Поэтому ряд $\sum_{n=1}^{\infty} \frac{\sin n}{n^{\alpha}}$ сходится абсолютно при $\alpha > 1$.

Покажем, что при $0 < \alpha \le 1$ этот ряд расходится. В самом деле

$$\left| \frac{\sin n}{n^{\alpha}} \right| \ge \frac{\sin^2 n}{n^{\alpha}} = \frac{1}{2} \left(\frac{1}{n^{\alpha}} - \frac{\cos 2n}{n^{\alpha}} \right)$$

Ряд с первым общим членом расходится при $0<\alpha\leq 1$, а второй сходится. Поэтому ряд $\sum_{n=1}^{\infty}\left|\frac{\sin n}{n^{\alpha}}\right| \ \text{расходится при } 0<\alpha\leq 1, \ \text{откуда следует условная сходимость исходного ряда.}$ Таким образом,

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^{\alpha}} \begin{cases} cxo \partial umc s \ a \delta c o n o m + o \ n p u & \alpha > 1 \\ cxo \partial umc s \ y c n o b + o \ n p u & 0 < \alpha \leq 1 \\ pacxo \partial umc s \ n p u & \alpha \leq 0 \end{cases}$$

<u>Пример.</u> Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt{n} \ln (n+1)} \left(1 + \frac{1}{n}\right)^{-n}$

<u>Решение.</u> Ряд $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt{n} \ln (n+1)}$ сходится (см. предыдущие примеры).

Последовательность $\left\{ \left(1 + \frac{1}{n}\right)^{-n} \right\}$ — ограничена. Следовательно, по признаку Абеля исследуемый ряд сходится.

Свойства абсолютно и условно сходящихся рядов

Теорема 1. Если ряд $\sum a_n$ можно представить в виде разности двух сходящихся рядов с неотрицательными членами, то тогда этот ряд сходится абсолютно.

Доказательство. В самом деле, пусть имеет место представление

$$\sum a_n = \sum b_n - \sum c_n$$

где ряды $\sum b_n$ и $\sum c_n$ знакоположительные и сходящиеся. Тогда очевидно

$$|a_n| = |b_n - c_n| \le |b_n| + |c_n| = b_n + c_n$$

Если построенные таким образом ряды $\sum b_n$ и $\sum c_n$ сходятся, то по первой теореме сравнения сходится ряд $\sum |a_n|$ и следовательно ряд $\sum a_n$ сходится абсолютно.

<u>Замечание.</u> Обратное утверждение не верно. Т.е., *если ряд* $\sum a_n$ *сходится абсолютно* и имеет место представление

$$\sum a_n = \sum b_n - \sum c_n, \quad b_n, c_n \ge 0$$

то отсюда вовсе не следует, что ряды $\sum b_n^{-} u \sum c_n^{-}$ сходятся.

Пример. Рассмотрим ряд

$$\sum_{n=1}^{\infty} \frac{1}{2n(2n-1)}$$

Этот ряд является знакоположительным и сходящимся. Любой знакоположительный сходящийся ряд является абсолютно сходящимся. Но его можно представить в виде следующий разности

$$\sum_{n=1}^{\infty} \frac{1}{2n(2n-1)} = \sum_{n=1}^{\infty} \left[\frac{1}{2n-1} - \frac{1}{2n} \right] = \sum_{n=1}^{\infty} \frac{1}{2n-1} - \sum_{n=1}^{\infty} \frac{1}{2n}$$
 (1)

где ряды, стоящие в правой части (1), являются расходящимися. Таким образом, абсолютно сходящийся ряд представлен в виде разности двух расходящихся рядов с положительными членами.

Интересно, что равенство (1) можно продолжить и по-другому

$$\sum_{n=1}^{\infty} \frac{1}{2n(2n-1)} = \sum_{n=1}^{\infty} \left[\frac{1}{2n-1} - \frac{1}{2n} \right] = \sum_{k=1}^{\infty} \frac{(-1)^k}{k}$$

Получившийся справа ряд тоже сходится, правда условно.

Теорема 2. Условно сходящийся ряд можно представить разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами.

<u>Доказательство.</u> Рассмотрим ряды $\sum b_n$ и $\sum c_n$, общие члены которых находятся по формулам

$$b_n = \frac{|a_n| + a_n}{2}, \quad c_n = \frac{|a_n| - a_n}{2}$$
 (2)

Тогда очевидно

$$b_n \ge 0, \quad c_n \ge 0$$

$$a_n = b_n - c_n$$

Так как ряд $\sum a_n$ сходится то $b_n \to 0$ и $c_n \to 0$. Предположим, что ряд $\sum c_n$ сходится. Тогда из сходимости ряда $\sum b_n - \sum c_n$ следует сходимость ряда

$$\sum b_n + \sum c_n$$

так как $b_n + c_n = 2c_n - (b_n - c_n)$. Но тогда должен сходиться ряд $\sum |a_n|$ так как $|a_n| = |b_n - c_n| = b_n + c_n$, что противоречит условию теоремы. Следовательно, ряд $\sum c_n$ расходится. Аналогично доказывается расходимость ряда $\sum b_n$.

В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда. Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму. По этому поводу имеет место следующие теоремы

Теорема 3. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда.

<u>Teopema 4.</u> (Teopema Pumana). Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.

Доказательство этих теорем приводить не будем, но разберём пример, наглядно показывающий, как перестановки в условно сходящихся рядах могут повлиять на его сумму.

Пример. Рассмотрим ряд
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n}$$

Рассмотрим перестановку ряда, такую что последовательность частичных сумм имела своим пределом любое наперёд заданное число a. Начнём с первого члена и будем добавлять к нему отрицательные пока не получим первую сумму меньшую a

$$S_1 = 1 - \frac{1}{2} - \frac{1}{4} - \dots - \frac{1}{n_1} < a$$

После этого добавим следующее положительное слагаемое, так чтобы сумма стала больше a

$$S_2 = 1 - \frac{1}{2} - \frac{1}{4} - \dots - \frac{1}{n_1} + \frac{1}{3} > a$$

Далее, опять буде вычитать отрицательные члены пока сумма не станет меньше a

$$S_3 = 1 - \frac{1}{2} - \frac{1}{4} - \dots - \frac{1}{n_1} + \frac{1}{3} - \frac{1}{n_1 + 2} - \dots - \frac{1}{n_2} < a$$

Затем опять прибавляем положительное слагаемое

$$S_4 = 1 - \frac{1}{2} - \frac{1}{4} - \dots - \frac{1}{n_1} + \frac{1}{3} - \frac{1}{n_1 + 2} - \dots - \frac{1}{n_2} + \frac{1}{5} > a$$

и т.д. продолжая этот процесс до бесконечности

При этом имеет место следующее соотношение

$$S_{2n} - S_{2n-1} = \frac{1}{2n+1}$$

Переходя к пределу получаем

$$\lim_{n \to \infty} (S_{2n} - S_{2n-1}) = \lim_{n \to \infty} \frac{1}{2n+1} = 0 \quad \Rightarrow \quad \lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} S_{2n-1} = S.$$

Учитывая, что

$$S_{2n-1} < a < S_{2n}$$

и при переходе к приделу строгое неравенство превращается в нестрогое, т.е

$$\lim_{n\to\infty} S_{2n-1} \le a \le \lim_{n\to\infty} S_{2n}$$

получаем, что S = a.

А постольку поскольку, число a задано произвольно, то тем самым показано, что в условно сходящемся ряде путём перестановки слагаемых, можно получить, любую наперёд заданную сумму.

<u>Упражнение.</u> Сделать в предыдущем примере такую перестановку, чтобы ряд расходился.

Указание. Первая частичная сумма должна быть больше единицы, вторая меньше 2, третья больше 3 и т.д.

Теорема 5. Если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся абсолютно и их суммы равны соответственно S и σ , то ряд, составленный из всех произведений вида $a_i b_k$, i,k=1,2,... взятых в каком угодно порядке, также сходится абсолютно и его сумма равна $S\sigma$ – произведению сумм перемножаемых рядов.

Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.

Числовые ряды с комплексными членами

Все основные определения сходимости, свойства сходящихся рядов, признаки сходимости для комплексных рядов ничем не отличаются от действительного случая.

Пусть дана бесконечная последовательность комплексных чисел $z_1, z_2, z_3, ..., z_n, ...$ Действительную часть числа $z_{\scriptscriptstyle n}$ будем обозначать $a_{\scriptscriptstyle n}$, мнимую – $b_{\scriptscriptstyle n}$ (т.е. $z_n = a_n + ib_n$, n = 1, 2, 3,

Числовой ряд - запись вида $z_1 + z_2 + z_3 + ... + z_n + ... = \sum_{i=1}^{\infty} z_i$.

Частичные суммы ряда:

$$S_1 = z_1$$
, $S_2 = z_1 + z_2$, $S_3 = z_1 + z_2 + z_3$, $S_4 = z_1 + z_2 + z_3 + z_4$,..., $S_n = z_1 + z_2 + z_3 + ... + z_n$,...

Определение. Если существует предел S последовательности частичных сумм ряда при $n \to \infty$, являющийся собственным комплексным числом, то говорят, что ряд сходится; число S называют суммой ряда и пишут

$$S = z_1 + z_2 + z_3 + \ldots + z_n + \ldots$$
 или $S = \sum_{n=1}^{\infty} z_n$.

Найдём действительные и мнимые части частичных сумм:

$$S_n = z_1 + z_2 + z_3 + \dots + z_n = (a_1 + ib_1) + (a_2 + ib_2) + (a_3 + ib_3) + \dots + (a_n + ib_n) = (a_1 + a_2 + a_3 + \dots + a_n) + i(b_1 + b_2 + b_3 + \dots + b_n) = \sigma_n + i\tau_n$$

где символами σ_n и τ_n обозначены действительная и мнимая части частичной суммы.

Комплексная последовательность сходится тогда и только тогда, когда сходятся последовательности, составленные из её действительной и мнимой частей. Таким образом, ряд с комплексными членами сходится тогда и только тогда, когда сходятся ряды, образованные его действительной и мнимой частями.

<u>Определение</u>. Ряд $\sum_{n=1}^{\infty} z_n$ называется **абсолютно сходящимся**, если сходится ряд

$$\sum_{n=1}^{\infty} \mid z_n \mid = \sum_{n=1}^{\infty} \sqrt{a_n^2 + b_n^2}$$
 , составленный из абсолютных величин его членов.

Так же, как и для числовых действительных рядов с произвольными членами, можно доказать, что если сходится ряд $\sum_{n=1}^{\infty} |z_n|$, то обязательно сходится ряд $\sum_{n=1}^{\infty} z_n$. Если ряд $\sum_{n=1}^{\infty} z_n$ сходится, а ряд $\sum_{i=1}^{\infty} |z_{n}|$ расходится, то ряд $\sum_{i=1}^{\infty} z_{n}$ называется условно сходящимся.

<u>Пример.</u> Исследовать на сходимость ряд $\sum_{i=1}^{\infty} \frac{e^{\frac{i\pi i}{2}}}{\sqrt{n}}$.

Выпишем несколько значений выражения
$$e^{i\frac{\pi}{2}}$$
:
$$e^{i\frac{\pi}{2}} = i, e^{i\frac{2\pi}{2}} = -1, e^{i\frac{3\pi}{2}} = -i, e^{i\frac{4\pi}{2}} = 1, e^{i\frac{5\pi}{2}} = i, e^{i\frac{6\pi}{2}} = -1,$$

дальше значения периодически повторяю

Ряд из действительных частей: $-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{2}} + \dots + (-1)^n \frac{1}{\sqrt{2n}} + \dots;$

Ряд из мнимых частей
$$\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}} - \frac{1}{\sqrt{7}} + ... + (-1)^{n+1} \frac{1}{\sqrt{2n-1}} + ...;$$

Оба ряда сходятся условно, поэтому исходный ряд сходится условно.

Ряд $\sum_{n=1}^{\infty} |z_n|$ - ряд с неотрицательными членами, поэтому для исследования его сходимости можно применять все известные признаки сходимости для знакопостоянных рядов с действительными членами.

Пример. Исследовать на сходимость ряд
$$\sum_{n=1}^{\infty} \frac{\left(2+3i\right)^n}{\left(3-i\right)^{2n}}$$
.

Составим ряд из модулей
$$|2+3i|=\sqrt{2^2+3^2}=\sqrt{13}, \quad |3-i|=\sqrt{3^2+\left(-1\right)^2}=\sqrt{10}:$$

$$\sum_{n=1}^{\infty}\frac{13^{n/2}}{10^n}.$$

Этот ряд сходится (признак Коши $q=\lim_{n\to\infty}\sqrt[n]{\frac{13^{n/2}}{10^n}}=\frac{\sqrt{13}}{10}<1$), поэтому исходный ряд сходится абсолютно.

Для сходящихся рядов с комплексными членами справедливы все свойства рядов с действительными членами:

Необходимый признак сходимости ряда. Общий член сходящегося ряда стремится κ нулю при $n \to \infty$.

Если сходится ряд $\sum_{n=0}^{\infty} z_n$, то сходится любой его остаток, Обратно, если сходится какойнибудь остаток ряда, то сходится и сам ряд.

Если ряд сходится, то сумма его остатка после n-го члена стремится к нулю при $n \to \infty$

Если все члены сходящегося ряда умножить на одно и то же число ${\it C}$, то сходимость ряда сохранится, а сумма умножится на ${\it C}$.

Сходящиеся ряды (A) и (B) можно почленно складывать и вычитать; полученный ряд тоже будет сходиться, и его сумма равна $S_A \pm S_B$.

Если члены сходящегося ряда сгруппировать произвольным образом и составить новый ряд из сумм членов в каждой паре круглых скобок, то этот новый ряд тоже будет сходиться, и его сумма будет равна сумме исходного ряда.

Если ряд сходится абсолютно, то при любой перестановке его членов сходимость сохраняется и сумма не изменяется.

Если ряды (A) и (B) сходятся абсолютно к своим сумма S_A и S_B , то их произведение при произвольном порядке членов тоже сходится абсолютно, и его сумма равна S_AS_B .