

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta003

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

Toate subjectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $(1-i)^4$.
- (4p) b) Să se calculeze distanța de la punctul C(1, 1) la dreapta x + y = 0.
- (4p) c) Să se determine ecuația tangentei la hiperbola $\frac{x^2}{4} \frac{y^2}{3} = 1$, în punctul P(4, 3).
- (4p) d) Să se determine a > 0, astfel încât punctul C(1, 1) să se afle pe cercul $x^2 + y^2 = a$.
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele A(1,-1), B(3,-3) și C(1,1).
- (2p) f) Să se determine $a,b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $(\cos \pi + i \sin \pi)^3 = a + bi$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se rezolve în mulțimea numerelor reale ecuația $4^x + 3 \cdot 2^x 4 = 0$.
- (3p) b) Să se calculeze expresia $C_6^1 C_6^2 + C_6^4 C_6^5$.
- (3p) c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$ este $f(x) = x^4 x$, să se calculeze $(f \circ f)(1)$.
- (3p) d) Să se calculeze probabilitatea ca un element $n \in \{1, 2, ..., 5\}$, să verifice relația $2^n \ge 3n + 2$.
- (3p) e) Să se calculeze suma elementelor din grupul $(\mathbf{Z}_8,+)$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = ln(x^2 + 3)$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f'(x)dx$.
- (3p) c) Să se arate că funcția f este strict crescătoare pe intervalul $(0, \infty)$.
- (3p) d) Să se calculeze $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$.
- (3p) e) Să se determine numărul punctelor de extrem local ale funcției f.

SUBIECTUL III (20p)

Se consideră matricele $E = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$ și $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și mulțimea M formată din

toate matricele cu 3 linii și 3 coloane și toate elementele din mulțimea numerelor naturale.

- (4p) a) Să se verifice că $E \in M$ și că $I_3 \in M$.
- **(4p)** b) Să se arate că dacă $A, B \in M$, atunci $A + B \in M$.
- **(4p)** c) Să se arate că dacă $A, B \in M$, atunci $A \cdot B \in M$.
- (2p) d) Să se calculeze determinantul matricei E.
- (2p) e) Să se găsească o matrice $C \in M$, astfel încât rang(C) = 1 și o matrice $D \in M$, astfel încât rang(D) = 2.
- (2p) f) Să se arate că matricea E este inversabilă și $E^{-1} \notin M$.
- (2p) g) Să se arate că, dacă matricea $X \in M$ este inversabilă şi $X^{-1} \in M$, atunci suma elementelor de pe fiecare linie a sa este egală cu 1 şi suma elementelor de pe fiecare coloană a sa este egală cu 1.

SUBIECTUL IV (20p)

Se consideră funcția $f:(0,\infty)\to \mathbf{R}$, $f(x)=x\ln a-a\ln x$, unde $a\in \mathbf{R}$, a>0.

- (4p) a) Să se calculeze f'(x), x > 0.
- (4p) b) Să se calculeze f(a) și f'(a).
- (4p) c) Să se arate că $e^x \ge x^e$, $\forall x \in (0, \infty)$.
- (2p) d) Utilizând teorema lui *Fermat* să se determine a > 0 astfel încât $f(x) \ge 0$, $\forall x \in (0, \infty)$.
- (2p) e) Să se arate că $\int_{1}^{2} e^{x} dx \ge \int_{1}^{2} x^{e} dx$.
- (2p) f) Să se arate că pentru x > 0, avem $e^x = x^e$ dacă și numai dacă x = e.
- (2p) g) Să se determine numerele reale c, b, d > 0 cu proprietatea că $c^x + b^x + d^x \ge x^c + x^b + x^d$, $\forall x \in (0, \infty)$.