

Exploring Datastore Access Latency across AWS Compute Services

Bhupendra Singh | Scalable Software Systems | Bachelor's Thesis | December 4, 2024

Why Access Latency?

- Even slight increases in access latency can harm application performance
- Access latency reveals the distance between components

Why AWS?

- AWS leads the market with 31% share (Richter, 2024)
- Limited understanding of AWS compute and datastore pair behavior
- Such insights can guide AWS developers in optimizing performance

Our Contribution

 We benchmark access latency between AWS compute and datastore services to understand how the choice of compute service influences access latency dynamics

- Datastore Services: RDS, DynamoDB, and S3
- Compute Services: EC2 and Lambda

Approach

- Focus on access latency as the key metric
- Perform read-only operations on datastores
- Use an open workload model
- Test with constant and burst workloads
- Evaluate each pair twice under both workload types
- Meet cloud benchmarking requirements in implementation
- Consider AWS Free Tier limitations

Implementation Overview

EC2 Pairs

Lambda Pairs

- AWS Region eu-central-1
- Fair resource allocation
- 800K datapoints for RDS
- 800K datapoints for DynamoDB
- 18K datapoints for S3
- 3σ rule for outlier detection

Benchmark Results

- EC2-RDS vs. Lambda-RDS
 - EC2-RDS outperforms Lambda-RDS
 - EC2-RDS shows less variance
 - 962 vs. 1879 Outliers

Benchmark Results

- EC2-DynamoDB vs. Lambda-DynamoDB
 - EC2-DynamoDB outperforms Lambda-DynamoDB
 - Lambda-DynamoDB shows less variance
 - 3956 vs. 3073 Outliers

Benchmark Results

- EC2-S3 vs. Lambda-S3
 - o EC2-S3 outperforms Lambda-S3
 - Lambda-S3 less varied under constant load
 - EC2-S3 less varied under burst load
 - 128 vs. 148 Outliers

Why is EC2 faster?

- Performance variability in Lambda
- Complex architecture of Lambda
- Networking Configuration

Time-Series Representation: EC2-RDS vs Lambda-RDS under constant workload

High level architecture of Lambda (Brooker, 2023)

Thank you for your attention! Question or Feedback?

Exploring Datastore Access Latency across AWS Compute Services

Bhupendra Singh | Scalable Software Systems | Bachelor's Thesis | December 4, 2024

References

- Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka. "On-demand Container Loading in AWS Lambda". In: 2023 USENIX Annual Technical Conference (USENIX ATC 23). Boston, MA: USENIX Association, July 2023, pp. 315–328.
- Felix Richter. "Worldwide Market Share of Leading Cloud Infrastructure Service Providers".
 November 2024. https://www.statista.com/chart/18819/.
- Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. "Firecracker: Lightweight Virtualization for Serverless Applications". In: 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20). Santa Clara, CA: USENIX Association, Feb. 2020, pp. 419–434.

Backup Slides

Exploring Datastore Access Latency across AWS Compute Services

Bhupendra Singh | Scalable Software Systems | Bachelor's Thesis | December 4, 2024

EC2-RDS vs. Lambda-RDS

EC2-DynamoDB vs. Lambda-DynamoDB

EC2-S3 vs. Lambda-S3

4000

6000

Time (s)

— ec2_s3_spiky_run1

3000

Time (s)

ec2_s3_spiky_run2
— lambda_s3_spiky_run1
— lambda_s3_spiky_run2

8000

— ec2_s3_constant_run1

— ec2_s3_constant_run2

— lambda_s3_constant_run1 — lambda_s3_constant_run2

1000