Optimal File Merge Patterns

- Given n number of sorted files, the task is to find the minimum computations done to reach the Optimal Merge Pattern.
 - When two or more sorted files are to be merged altogether to form a single file, the minimum computations are done to reach this file are known as **Optimal Merge Pattern**.
- If more than 2 files need to be merged then it can be done in pairs. For example, if need to merge 4 files A, B, C, D. First Merge A with B to get X1, merge X1 with C to get X2, merge X2 with D to get X3 as the output file.
- If we have two files of sizes m and n, the total computation time will be m+n. Here, we use the greedy strategy by merging the two smallest size files among all the files present.

- Given 3 files with sizes 2, 3, 4 units. Find an optimal way to combine these files
- *Input:* n = 3, size = {2, 3, 4}

Output: 14

Explanation: There are different ways to combine these files:

3 Methods

$$Cost = 5 + 9 = 14$$

$$Cost = 7 + 9 = 16$$

$$Cost = 6 + 9 = 15$$

 As, different pairings require different amounts of time, in this strategy we want to determine an optimal way of merging many files together. At each step, two shortest sequences are merged.

- Let us consider the given files, f₁, f₂, f₃, f₄ and f₅ with 20, 30, 10, 5 and 30 number of elements respectively.
- If merge operations are performed according to the provided sequence, then
- M_1 = merge f_1 and f_2 => 20 + 30 = 50
- M_2 = merge M_1 and f_3 => 50 + 10 = 60
- M_3 = merge M_2 and f_4 => 60 + 5 = 65
- M_4 = merge M_3 and f_5 => 65 + 30 = 95
- Hence, the total number of operations is
- 50 + 60 + 65 + 95 = 270

- Sorting the numbers according to their size in an ascending order, we get the following sequence –
- f₄, f₃, f₁, f₂, f₅
- Hence, merge operations can be performed on this sequence
- M_1 = merge f_A and f_3 => 5 + 10 = 15
- M_2 = merge M_1 and f_1 => 15 + 20 = 35
- $M_3 = merge M_2 = 35 + 30 = 65$
- M_4 = merge M_3 and f_5 => 65 + 30 = 95
- Therefore, the total number of operations is
- 15 + 35 + 65 + 95 = 210

