ECE 411 Practicum: Project Phases

Andrew Greenberg

October 2, 2013

Project Phases

- Week 1-2: Concept → specification
- Week 3-4: Schematics and prototyping
- ▶ Week 5-6: Layout, parts orders, PCB orders
- Week 7-9: Assembly and testing
- ▶ Week 10: Demonstration and documentation

Week 1-2: Conception

- Conceptualize
 - Get your team together and brain storm.
 - Choose something cool/fun/interesting, but most of all "doable".
- Research
 - Industrial espionage: a time honored tradition (what are other people doing?)
 - What other thing like your concept exists?
 - What's close? What can you rip apart?
- Deliverables:
 - A few good concepts: "Innovate here"
 - Some light requirements (this is too technology driven to have hard core requirements)
 - Some rough L0 and L1 block diagrams
 - ► Rough schematics (napkins OK)
 - ▶ Initial component research "Hey, this looks cool!"

Week 1-2: Requirements

- What does it do?
- How does it get used?
- ▶ Who uses it?
- What does it look like?
- What is novel/interesting about this concept?
- What aspects of it are important?
- Note that none of these are "How does it work?". That's a specification!

Week 1-2: Specifications

- Specifications: very specific engineering questions
- Feature list: what exactly is your device going to do?
- "Datasheet" numbers: Power? Size? Weight? Environment?
- Use statements: must, should, may.
- Use number ranges (minimum,typical,maximum) and tolerances
 - Must weight (,0.25,0.5) kg.
 - ▶ Vsupply must be 3.3 +/- 10 % V.
 - ▶ Battery capacity must have (250,500,) mAhr of capacity.
 - ▶ Device should run (,500,) times before spectacularly exploding.
- Begin filling in L1 block diagrams and component connections/data flow.
- ▶ Ramp up on your tools: Redmine, EAGLE, AVR Studio IDE, ?

Week 3-4: Parts Identification and Schematic

- Most important part of a designer's job.
- What parts are out there? How do you find one?
- What are their tradeoffs compared to other components?
- You will add and drop features based on what components you find.
- Google, Distributer's websites, and open hardware projects will help you here.
- Begin your schematic and be building component libraries in EAGLE.

Week 3-4: Prototyping

- If you're not absolutely sure how something works, you're going to want to prototype it.
- Purchase development boards and/or bare components. Hand wire ("hack") parts together.
- Your job: reduce design risk!
- In other words, try things out, experiment, hack, make mistakes, etc. Now is the time to get it wrong.
- Deliverables:
 - A much higher likely hood of success for your project.
 - Complete, error free schematics.
 - Bill of materials (BOM).
 - First compiling bits of firmware.

Prototyping: "The visible circuit"

Figure: Easy to probe circuit, as well as interrupt signals and measure current.

Final board: Not-so-visible circuit.

Figure: Final PCB: Very, very hard to probe.

Week 5-6: Layout

- Manufacturing
 - Physical placement of components on the board.
 - Routing traces
 - DFx
- Deliverables:
 - Parts ordered.
 - Last minute changes to schematic, BOM and layout based on availability.
 - ▶ PCB layout complete with no DRC errors.
 - CAM files (Gerber files) created and emailed to PCB mfg.
 - Most of the firmware should now be prototyped.
 - ▶ GO BACK AND UPDATE YOUR DOCUMENTATION.

Week 7-9: Assembly and testing

- Assembly
 - Hand solder boards.
 - ► Test/programming jigs as necessary
- Testing
 - This is where the cold, hard universe passes judgment on your design.
 - Subsection bring up and testing.
 - Debugging and fixing. Lots of fixing.
- Firmware
 - Unless your prototype was really good, this is the time for firmware people to panic.
 - First boards mean lots of code debugging and last minute features.
- Deliverables:
 - Assembled, tested, and programmed boards.

Week 10: Demonstration and Documentation

- Explain and demonstration your design to your peers.
- Deliverables:
 - Final presentation/demonstration
 - Final documentation

Your job in this project

- Pick any two, maybe three: size, power, cost, performance, manufacturability, design time
- Your job is to make these tradeoffs!
- In your documentation, ALWAYS explain your choices. If the decision was arbitrary, say so!

Theoretical Design Process

Figure: The Waterfall Model

Real World Design Process

Figure: Not so much the Waterfall Model

A Better System Design Process: the spiral model

- Quick turns of:
 - $\blacktriangleright \ \ design \rightarrow implement \rightarrow evaluate$
- In ever widening scopes:
 - $lackbox{ concept}
 ightarrow \mathsf{design}
 ightarrow \mathsf{implementation}$
- Documentation continuous evolves with project ("Living" documentation)
- Vaguely similar to agile methods in software engineering

Now back to Earth: Projects!

- Who's got some project ideas?
- ▶ Let's draw some block diagrams, discuss technology tradeoffs, etc.