

Clase XV

Diseño de redes de datos (DRD101)

Agenda

Direccionamiento IPv6

Direccionamiento IPv6

¿Qué es IPv6?

IPv6 es la versión más reciente del Protocolo de Internet (IP). Está diseñado para proporcionar direccionamiento IP y seguridad adicional para respaldar el crecimiento previsto de dispositivos conectados en IoT, fabricación y áreas emergentes como la conducción autónoma.

IPv4 vs IPv6

IPv4	IPv6
Implementado en 1981	Implementado en 1998
Dirección IP de 32 bits	Dirección IP de 128 bits
4.3 mil millones de direcciones Las direcciones se deben reutilizar y enmascarar	340 mil millones de direcciones Todos los dispositivos pueden tener una dirección exclusiva
Notacion numerica con punto decimal 192.168.5.18	Notación hexadecimal alfanumérica 2001:0db8:0000:0000:0006:0600:300d:527b (Simplificada: 2001:db8::6:600:300d:527b)

HEXADECIMAL	0	1	2	3	4	5	6	7
BINARIO	0000	0001	0010	0011	0100	0101	0110	0111
HEXADECIMAL	8	9	Α	В	С	D	E	F
BINARIO	1000	1001	1010	1011	1100	1101	1110	1111

Categorías direccionamiento IPv6

Unicast

• Identifica una interfaz de un nodo IPv6, un paquete enviado a una dirección unicast es entregado a la interfaz identificada con esa dirección.

Multicast

 Identifica a un grupo de interfaces IPv6, un paquete enviado a una dirección multicast es procesado por todos los miembros del grupo multicast.

Anycast

• Es asignada a múltiples interfaces (usualmente en múltiples nodos), un paquete enviado a una dirección anycast es entregado sólo a una de esas interfaces, usualmente la más cercana.

Una dirección IPv6 esta compuesta por 8 bloques hexadecimales, conforme a las siguientes convenciones:

- Un bloque de 0000 debe ser representado por un único 0 y no debe ser reemplazado por
 ...
- Las direcciones IPv6 deben ser representadas lo más cortas, utilizar :: donde sea posible.
- Siempre recortar el mayor número de ceros, si dos bloques de ceros tienen igual longitud, recortar el primero.

Notación prefijo.

Un **prefijo de enrutamiento global** (global routing prefix) es un grupo superior de bits de una dirección IP utilizados para identificar una subnet o un tipo específico de dirección.

Por ejemplo para la dirección 2E78:DA53:1200::/40

Notación hexadecimal	Notación binaria	Número de bits
2E 78	0010 1110 0111 1000	16
DA 53	1101 1010 0101 0011	16
12	0001 0010	8
		Total: 40

La siguiente tabla muestra los prefijos actualmente reservados, la mayor parte del espacio de direccionamiento (alrededor del 80%) no se encuentra asignado y puede ser utilizado para futuras asignaciones.

Asignación	Prefijo binario	Prefijo hexadecimal	Comentario
Global unicast	001	2000::/3	Enrutable publicamente
Unique local	1111 110	FC00::/7	Enrutable en la LAN
Link local	1111 1110 10	FE80::/10	No enrutable
Multicast	1111 1111	FF00::/8	Direccionamiento para grupos

Según el <u>RFC3177</u>, algunas asignaciones de prefijos IPv6 se definen así:

- Pequeñas y grandes empresas, suscriptores de hogar deberían recibir un prefijo /48.
- Grandes suscriptores deberían recibir un prefijo /47 o múltiples /48.
- Redes móviles deberían recibir un prefijo /64.

Estructura de direccionamiento IPv6

Direcciones Global Unicast

Subneteo

Ejemplo:

Una compañía recibe el prefijo global de enrutamiento 2001:DB8:1111::/48 para asignarlo

a todas sus subredes.

Para habilitar IPv6 en un router, se tienen dos tareas básicas:

- 1. Utilizar el comando global ipv6 unicast-routing para habilitar el enrutamiento IPv6.
- 2. Utilizar el subcomando en el modo de configuración de interfaz ipv6 address address/length para habilitar IPv6 en cada interfaz deseada y configure la dirección IPv6 de la interfaz y el prefijo.

Ejemplo de configuración:

```
ipv6 unicast-routing
!
interface serial0/0/1
ipv6 address 2001:db8:1111:2::1/64
!
interface gigabitethernet0/0
ipv6 address 2001:db8:1111:1::1/64
!
interface gigabitethernet0/1
ipv6 address 2001:db8:1111:4::1/64
```


Los routers admiten tres opciones básicas para **rutas estáticas** para IPv6 sobre cómo decirle a un router dónde enviar paquetes:

- 1. Dirigir los paquetes a una interfaz en el router local.
- 2. Dirigir los paquetes a la dirección unicast de un router vecino.
- 3. Dirigir los paquetes a la dirección link local de un router vecino (también requiere la interfaz saliente)


```
! The next command uses R1's S0/0/1 as the outgoing interface
ipv6 route 2001:db8:1111:3::/64 S0/0/1

! The next command uses R2's address as the next-hop router unicast address
ipv6 route 2001:db8:1111:3::/64 2001:DB8:1111:2::2

! The next command uses R1's S0/0/1 as the outgoing interface, and
! R2's link-local address as the next-hop router address
ipv6 route 2001:db8:1111:3::/64 S0/0/1 FE80::FF:FE00:2
```


EIGRP para IPv6

Se comporta de manera muy similar a su contraparte de IPv4, EIGRP. Una vez habilitados en todos los routers de una red, los routers intercambian mensajes EIGRP. Estos mensajes permiten a los enrutadores descubrir vecinos.

EIGRP para IPv6

Para R1

```
ipv6 unicast-routing
!
ipv6 router eigrp 1
  eigrp router-id 1.1.1.1
!
interface GigabitEthernet0/0
  ipv6 address 2001:db8:1:1::1/64
  ipv6 eigrp 1
!
interface serial 0/0/0
  description link to R2
  ipv6 address 2001:db8:1:5::1/64
  ipv6 eigrp 1
!
interface serial 0/0/1
  description link to R3
  ipv6 address 2001:db8:1:4::1/64
  ipv6 eigrp 1
```

Para R2

```
ipv6 unicast-routing
ipv6 router eigrp 1
eigrp router-id 2.2.2.2
interface GigabitEthernet0/0
 ipv6 address 2001:db8:1:2::2/64
ipv6 eigrp 1
interface serial 0/0/0
 description link to R3
 ipv6 address 2001:db8:1:6::2/64
ipv6 eigrp 1
interface serial 0/0/1
 description link to R1
 ipv6 address 2001:db8:1:5::2/64
ipv6 eigrp 1
interface serial 0/1/0
 description link to R4
 ipv6 address 2001:db8:1:8::2/64
ipv6 eigrp 1
```


Verificación IPv6 desde routers

Ping extendido


```
R1# ping
Protocol [ip]: ipv6
Target IPv6 address: 2001:db8:1111:3::22
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands? [no]: yes
Source address or interface: GigabitEthernet0/0
UDP protocol? [no]:
Verbose? [no]:
Precedence [0]:
DSCP [0]:
Include hop by hop option? [no]:
Include destination option? [no]:
Sweep range of sizes? [no]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:1111:3::22, timeout is 2 seconds:
Packet sent with a source address of 2001:DB8:1111:1::1
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/1/4 ms
```


Verificación IPv6 desde routers

Otros comandos

Rl# traceroute 2001.db8.1111.3:.22

Type escape sequence to abort.

Tracing the route to 2001:DB8:1111:3::22

1 2001:DB8:1111:2::2 4 msec 0 msec 0 msec 2 2001:DB8:1111:3::22 0 msec 4 msec 0 msec

Rl# show ipv6 route 2001:db8:1111:3::22
Routing entry for 2001:DB8:1111:3::/64

Known via "static", distance 1, metric 0
Route count is 1/1, share count 0
Routing paths:

directly connected via Serial0/0/1
Last updated 00:01:29 ago

Rl# show ipv6 route 2001:1:1:1:1

Verificación IPv6 desde routers

Comandos verificación EIGRP

Direcciones especiales

La dirección no especificada.

La dirección de loopback.

Es útil en resolución de problemas del protocolo IP, se representa como 0:0:0:0:0:0:1, abreviado como ::1. Nunca debe asignarse estática o dinámicamente a un interfaz.

Stateful DHCPv6

Sigue el mismo proceso general para IPv4 (DHCPv4):

- 1. Existe un servidor o servidores DHCP en algún lugar de la red.
- 2. Los hosts de usuario utilizan mensajes DHCP para solicitar la concesión de una dirección IP e información sobre otras configuraciones.
- 3. El servidor responde, asignando una dirección alhost e informando al host de las otras configuraciones.

La única diferencia notable entre DHCPv4 y stateful DHCPv6 es que el servidor stateful DHCPv6 no proporciona la información del default gateway. En cambio, utiliza NDP, que le permite al host solicitar a los routers locales que se identifiquen.

Comandos configuración DHCPv6

```
ipv6 dhcp pool poolname
address prefix X:X:X::X/<0-128>
dns-server ipv6-address
domain-name domain
exit
interface type number
ipv6 dhcp server poolname
ipv6 nd managed-config-flag
exit
```


Stateful DHCPv6

DHCPv4
Unicast Address
Subnet Mask
Default Router
DNS Servers

Stateful DHCPv6
Unicast Address
Prefix Length
Default Router
DNS Servers

Proceso EUI-64

- 1. Las direcciones MAC de las NIC de todo dispositivo y toda interface, esta conformado por tres HEXTET, 48 Bits.
- 2. Se toma el segundo Hextet y se parte por la mitad.
- 3. Se inserta en Hexadecimal **FF:FE**, para conformar 4 Hextet en la porción de interface ID.
- 4. Se invierte el BIT 7 del primer HEXTET de la porción Interface ID

0026:07DE:9FC3

0026:07_:_DE:9FC3

0026:07 FF:FE DE:9FC3

0000 0000 0010 0110

0000 0010 0010 0110

0226: 07FF: FEDE: 9FC3

FE80 :: 0226 : 07FF : FEDE : 9FC3

DNS

El DNS se utiliza en el mundo IPv4 para realizar asignaciones de nombre a dirección IP, esta funcionalidad no ha cambiado en el mundo IPv6.

En el <u>RFC3596</u>, se ha definido un nuevo tipo de registro DNS para IPv6, el registro de tipo **AAAA** (llamado "quad-A").

Un registro de tipo AAAA luce de la siguiente forma:

google.com IN AAAA 2607:f8b0:4000:818::200e

Interoperabilidad

Técnicas de tunelización.

Los mecanismos de tunelización se pueden utilizar para implementar una infraestructura de reenvío IPv6 mientras que la infraestructura general de IPv4 sigue siendo la base y no debe o no puede modificarse o actualizarse.

Interoperabilidad

NAT64.

Esta técnica permite que los dispositivos con IPv6 se comuniquen con dispositivos IPV4, con una traducción de direcciones, proceso muy similar a NAT de IPV4.

EDUCACIÓN SUPERIOR CON ESTILO SALESIANO

