FALL 2016 HUNTER COLLEGE STAT 706 General Linear Model I Final Exam

Last Name:	
First Name:	

December 21, 2016

Instructions

- There are 4 questions, each question is between 5-7 points. The maximal score is 24 points. A perfect score is 20 points.
- There are two versions of Question 2, 3, 4 with different points. Please choice one version and only one to answer.
- Show all work. You will receive partial credit for partially completed problems.
- You may use any references.

- Q1. (5pt) An exponentially tilted or exponential twisting (ET) density $f_{\rm ET}$ based on a base density f_0 and with natural parameter θ is given by $f_{\rm ET} = \exp(z\theta) f_0(z)/M(\theta)$, where $M(\theta)$ is the moment generating function (MGF) of the base density f_0 . Take f_0 to be the hyperbolic secant density $f_0(z) = \frac{1}{2} \mathrm{sech}(\pi z/2), z \in (-\infty, +\infty)$, with the moment generating function $M(\theta) = \mathrm{sec}(\theta)$, $\theta \in (-\pi/2, +\pi/2)$
- (1) Verify that the distribution f_{ET} generated by f_0 belongs to an exponential family.
- (2) Find the mean and variance of this distribution. Express the variance as a function of the mean.
- (3) Find the canonical link for a generalized linear model (GLM) from the exponentially tilted distribution f_{ET} .

- Q2. Please choose only one question from 2-A and 2-B. Circle your option.
- **2-A**. (5 pts) Suppose that $\{Z_i\}_{i=1}^n$ are independent with $\mu_i = \mathbb{E}(Z_i)$ satisfying $\log \mu_i = x_i \beta$, where x_i is the univariate predictor, and with $\text{var}(Z_i) = \mu/2$.
- (1) Give the quasi-likelihood estimating equation for β and find the asymptotic variance of $\widehat{\beta}_{MQL}$, the maximum quasi-likelihood estimator (MQLE) of β .
- (2) Assuming that $\{Z_i\}_{i=1}^n$ are normally distributed (with means and variances as given above). Give the likelihood estimating equation for β and find the asymptotic variance of $\widehat{\beta}_{ML}$, the maximum likelihood estimator (MLE) of β .
- (3) Calculate the asymptotic relative efficiency of $\widehat{\beta}_{ML}$ with respect to $\widehat{\beta}_{MQL}$, which is defined as $\widehat{\sigma}_{\widehat{\beta}_{MQL}}^2/\widehat{\sigma}_{\widehat{\beta}_{ML}}^2$. Is the asymptotic relative efficiency greater or less than 1? Explain it.
- **2-B.** (6 pts) Suppose that $\{Z_i\}_{i=1}^n$ are independent with $\mu_i = \mathbb{E}(Z_i)$ satisfying $\log \mu_i = x_i \beta$, where x_i is the univariate predictor, and with $\text{var}(Z_i) = \phi \mu^2$, where $\phi > 0$ is a constant.
- (1) Give the quasi-likelihood estimating equation for β and find the asymptotic variance of $\widehat{\beta}_{MQL}$, the maximum quasi-likelihood estimator (MQLE) of β .
- (2) Assuming that $\{Z_i\}_{i=1}^n$ are normally distributed (with means and variances as given above). Give the likelihood estimating equation for β and find the asymptotic variance of $\widehat{\beta}_{ML}$, the maximum likelihood estimator (MLE) of β .

Q3. Please choose only one question from 3-A and 3-B. Circle your option.

The Kalman filter is a recursive estimator used to estimate the state of a linear time-varying state equation, in which the states are driven by noise and observations are made in the presence of noise. By using the Kalman filter, a sequence of estimates of the state of the system x_t is determined by giving a sequence of measurements $\{y_0, y_1, \dots\}$.

Consider a univariate discrete-time state-variable system driven by noise, with noisy observations

$$x_{t+1} = a_t x_t + w_t,$$

$$y_t = c_t x_t + v_t,$$

where the state noise $w_t \sim N(0, \sigma_t^2)$, and the observation noise $v_t \sim N(0, \tau_t^2)$. Noises $\{w_0, w_1, \cdots, v_0, v_1, \cdots\}$ are mutually independent.

3-A. (5 pts) Write down the steps to update the estimate of the state.

Verify that $P_{t+1|t+1} > 0$ if $P_{t|t} > 0$. Suppose that $a_t = 3$, $c_t = 1$, $\sigma_t^2 = 1^2$, $\tau_t^2 = 2^2$. Based on two observations at t = 0 and t = 1, which are $y_0 = 1$, $y_1 = 2$, starting from an initial estimate $\hat{x}_{0|-1} = 0$, with an initial variance $P_{-1|-1} = 1^2$, use the Kalman filter to calculate $\hat{x}_{2|1}$, which is the estimate of the state at t=2 by giving the observations $\mathcal{Y}_1 = \{y_0, y_1\}.$

3-B. (7 pts) Do option A at first. Keep a_t , c_t , y_0 , y_1 , $\hat{x}_{0|-1}$, $P_{-1|-1}$ the same, and consider three more cases with (1) $\sigma_t^2 = 1^2$, $\tau_t^2 = 1^2$, (2) $\sigma_t^2 = 2^2$, $\tau_t^2 = 1^2$, and (3) $\sigma_t^2 = 2^2$, $\tau_t^2 = 2^2$. Including the case in option A, there are totally four cases. Compare the estimate $\hat{x}_{2|1}$ and $P_{2|1}$ in all four cases. Discuss the difference.

Q4. Please choose only one question from 4-A and 4-B. Circle your option.

4-A. (5 pts) Researchers record how long the flu last for patients in two groups.

Group	Days until recovery
Control	5, 9
Treatment	2, 4, 6

Use one variable, with takes values of 0 and 1, being an indicator variable for the two sample. Then the hazard in samples 0 and 1 are respectively $\lambda_0(t)$ and $e^{\beta}\lambda_0(t)$.

Use the Cox regression model to (1) find the estimating equation of β , and (2) test the null hypothesis $H_0: \beta = 0$, report the p-value and draw a conclusion.

4-B. (6 pts) Do option A at first.

Do a two-sample t-test on this data set, and report the p-value. Show how to calculate the t-statistic, the degree of freedom, and the p-value, please do not use software to directly get the final results. Compare two results by using the Cox model and the t-test. Discuss the difference.

More space

More space