AJAY KUMAR GARG ENGINEERING COLLEGE, GHAZIABAD DEPARTMENT OF APPLIED SCIENCES & HUMANITIES

Sessional Test 2

Program: B. Tech Session: 2024-25

Max. Marks: 50

Subject: Engineering Mathematics-11

Semester: 2

Section: All Section excluding S-10

Subject Code: BAS-203

Time: 2 Hours

BE Remarks:	11	2	3	4	5	6	7	8	9	10	11	12
CO No.	CO2	CO2	CO3	CO3	CO3	CO2	CO2	CO2	CO3	CO3	CO2	CO3
Bloom's Level* (L! to L6)	Lì	L2	L3	LI	L2	L5	L5	L3	L6	L6	L3	1.6
Weightage CO2: 26.5						Weightage CO3: 23.5						

*Shoom's Level: L1: Remember, L2: Understand, L3: Apply, L4: Analyze, L5: Evaluate, L6: Create

Note: Answer all the sections with all the questions

Section-A

(2*5=10)

- 1. Find Laplace transform of $F(t) = \sinh at \sinh t$.
- State unit step function and find its Laplace transform.
- Find the Fourier constant b_1 for the function $f(x) = \left(\frac{\pi x}{2}\right)$ in the interval $(0,2\pi)$
- State Dirichlet's conditions for the expansion of f(x) in Fourier series.
- What is the Fourier series for an even function defined in the interval (-l, l).

Section-B

(5*5=25)

- Find Laplace transform of $t^2e^t \sin 4t$.
- Use convolution theorem to find $L^{-1}\left(\frac{s}{(s^2+4)(s^2+1)}\right)$
- Find the inverse Laplace transformation of $\log \left\{ \frac{s^2+1}{s(s+1)} \right\}$.
- 9. Find the half range cosine series of the function $f(t) = \begin{cases} 2t, & 0 < t < 1; \\ 2(2-t), & 1 < t < 2. \end{cases}$ 10. Obtain the Fourier series for the function $f(x) = \begin{cases} x, & -\pi < x < 0 \\ -x, & 0 < x < \pi \end{cases}$

(i)
$$1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \dots = \frac{\pi^2}{12}$$
.

(ii)
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
.

Section-C

(7.5*2=15)

11. Solve the Simultaneous equation by using Laplace transfom

$$\frac{dx}{dt} + \frac{dy}{dt} + x + y = 1, \frac{dy}{dt} = 2x + y; x(0) = 0, y(0) = 1.$$

12. If
$$f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ \sin x, & 0 \le x \le \pi \end{cases}$$
, Prove that $f(x) = \frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}$. Hence show that

$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}$$

