ЛАБОРАТОРНАЯ РАБОТА № 3 ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ

В статистике во многих случаях мы строим оценки интересующих нас параметров распределения. Возникает вопрос: насколько эти оценки могут отличаться от оцениваемых параметров? *Statgraphics* позволяет указать интервал, в котором неизвестный нам параметр попадает с заданной вероятностью.

От вас требуется:

- 1) получить 10 случайных выборок объема n=100 из нормальной генеральной совокупности N(0,4);
- **2)** построить по каждой из полученных выборок два доверительных интервала для математического ожидания M:
- **a**) с доверительной вероятностью P=95 %,
- **b**) с доверительной вероятностью P=70 %;

Для получения **десяти** нужных выборок используйте генератор случайных чисел. Заготовьте в тетради таблицу:

Название	Доверительный ин-	Его длина	Доверительный	Его
выборки	тервал для <i>P</i> =0,95		интервал для	длина
			P=0,7	

Построение доверительных интервалов

В строке меню выберите *Describe*, в раскрывшемся меню выберите *Numeric* **Data**, затем *One-Variable Analysis*

В раскрывшемся окне выберите название выборки, затем нажмите на кнопку , и на ОК.

Нажмите кнопку \square *Tables and graphs*, раскроется окно, затем выберите в нем *Confidence Interval* и нажмите ОК. Перед вами появится новое окно, щелкните по нему дважды, чтобы раскрыть. В этом окне вы можете увидеть доверительный интервал для 95% вероятности для математического ожидания и дисперсии, который запишите в таблицу (с двумя знаками после запятой). Сейчас вам нужен доверительный интервал для P=70%. Щелкните правой кнопкой в этом окне, выберите *Pane Options*, в раскрывшемся окне наберите нужные цифры. Нажмите ОК.

Для того чтобы вычислить доверительный интервал для другой выборки, нажмите кнопку *Input Dialog*, в раскрывшемся окне выберите другую выборку, нажмите ОК. Результат пересчитается.

Для выборок **равного объема** можно было получить все доверительные интервалы одновременно. Для этого нужно в строке меню вместо *One-Variable Analysis* выбрать *Multivariable Analysis*, далее выбрать все выборки сразу.

Выполните операцию и занесите в таблицу границы доверительного интервала с точностью до двух знаков после десятичной запятой, вычислите и запишите его длину.

Аналогично заполните таблицу для остальных девяти выборок.

Посчитайте, в скольких случаях из десяти истинное значение математического ожидания M=0 оказалось вне доверительного интервала для P=95 %, а затем для P=70 %. В каком случае это происходит чаще? Проанализируйте, как зависит длина доверительного интервала от величины P, покажите результаты преподавателю.

Сгенерируйте сейчас пять выборок из нормальной совокупности N(0,1) для n=10, 30, 50, 100, 1000. Постройте для каждой из этих выборок доверительные интервалы для математического ожидания и дисперсии с доверительной вероятностью 95%. Заполните следующую таблицу:

Объем	Доверительный	Его длина	Доверительный	Его длина
выборки	интервал для M	Бго длина	интервал для σ^2	го длина

Как изменяются длины доверительных интервалов при фиксированной доверительной вероятности с увеличением объема выборки?

Покажите результаты преподавателю.

ЗАДАНИЕ

1. У 50 новорожденных измерили массу тела. Результаты (в кг) таковы:

3.7	3.85	3.71	3.78	3.6	4.45	4.2	3.87	3.33	3.76
3.75	4.03	3.75	4.18	3.8	4.75	3.25	4.1	3.55	3.35
3.38	3.3	4.15	3.95	3.5	3.88	3.72	3.15	4.15	3.81
4.22	3.75	3.58	3.55	4.08	4.03	3.24	4.05	3.56	3.05
3.58	3.98	3.78	4.05	3.40	3.80	3.067	4.38	4.20	3.88

Построить доверительный интервал для средней массы.

- 1. Можно ли утверждать, что 95 % элементов выборки для новорожденных принадлежат построенному интервалу?
- 2. Можно ли утверждать, что выборочное среднее принадлежит этому интервалу? С какой вероятностью?
- 3. Можно ли утверждать, что 95 % детей, родившихся в этом году, имеют массу тела, принадлежащую этому интервалу?
 - 4. Сформулируйте содержательно, что вы получили?
- 5. Нужна ли в данном примере нормальность изучаемой случайной величины?

ВОПРОСЫ К ЛАБОРАТОРНОЙ РАБОТЕ.

- 1. Для чего нужно вычислять доверительный интервал оценки?
- 2. Что такое доверительная вероятность?
- 3. Как записывается доверительный интервал для математического ожидания?

- 4. Какое распределение используется для построения доверительного интервала для математического ожидания?
- 5. В каком случае требование нормальности распределения изучаемой случайной величины существенно?
- 6. Какое распределение используется при построении доверительного интервала для дисперсии?
- 7. Во сколько раз следует увеличить объем выборки, чтобы на порядок уменьшить длину доверительного интервала? Что происходит с длиной доверительного интервала при увеличении доверительной вероятности?