Solutions Section 3.4 – Solving Trigonometric Equations

Exercise

Find all solutions of the equation: $\sin x = \frac{\sqrt{2}}{2}$

Solution

$$\sin x = \frac{\sqrt{2}}{2} \Rightarrow \hat{x} = \sin^{-1} \frac{\sqrt{2}}{2} = 45^{\circ} \qquad x \in QI, QII$$

$$x = 45^{\circ} \qquad \rightarrow \boxed{x = 45^{\circ} + 360^{\circ}k}$$

$$x = 180^{\circ} - 45^{\circ} = 135^{\circ} \qquad \rightarrow \boxed{x = 135^{\circ} + 360^{\circ}k}$$

Exercise

Find all solutions of the equation: $\cos x = -\frac{\pi}{3}$

Solution

$$\cos x = -\frac{\pi}{3} < -1$$
 has no solution ([-1,1])

Exercise

Find all solutions of the equation: $2\cos\theta - \sqrt{3} = 0$

Solution

$$2\cos\theta = \sqrt{3} \Rightarrow \cos\theta = \frac{\sqrt{3}}{2}$$

$$\theta = \frac{\pi}{6} \qquad \Rightarrow \qquad \boxed{\theta = \frac{\pi}{6} + 2\pi k}$$

$$\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6} \qquad \Rightarrow \qquad \boxed{\theta = \frac{11\pi}{6} + 2\pi k}$$

Exercise

Find all solutions of the equation: $2\cos 2\theta - \sqrt{3} = 0$

$$2\cos 2\theta = \sqrt{3} \Rightarrow \cos 2\theta = \frac{\sqrt{3}}{2}$$

$$2\theta = \frac{\pi}{6} \qquad \Rightarrow \qquad \boxed{\theta = \frac{\pi}{12} + \pi n}$$

$$2\theta = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6} \qquad \Rightarrow \qquad \boxed{\theta = \frac{11\pi}{12} + \pi n}$$

Find all solutions of the equation: $\sqrt{3} \tan \frac{1}{3} x = 1$

Solution

$$\tan\frac{1}{3}x = \frac{1}{\sqrt{3}} \implies \frac{1}{3}x = \frac{\pi}{6}or\frac{7\pi}{6}$$

$$\frac{1}{3}x = \frac{\pi}{6} + \pi n \quad \to \quad \boxed{x = \frac{\pi}{2} + 3\pi n}$$

Exercise

Find all solutions of the equation: $\cos\left(4x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$

Solution

$$\cos\left(4x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} = \cos\frac{\pi}{4}$$

$$\rightarrow 4x - \frac{\pi}{4} = \frac{\pi}{4} + 2\pi k \Rightarrow 4x = \frac{\pi}{2} + 2\pi k \Rightarrow \left[x = \frac{\pi}{4} + \frac{\pi}{2}k\right]$$

$$\cos\left(4x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} = \cos\frac{7\pi}{4}$$

$$\rightarrow 4x - \frac{\pi}{4} = \frac{7\pi}{4} + 2\pi k \Rightarrow 4x = 2\pi + 2\pi k \Rightarrow \left[x = \frac{\pi}{2}k\right]$$

Exercise

Find all solutions of the equation: $(\cos \theta - 1)(\sin \theta + 1) = 0$

Solution

$$\cos \theta - 1 = 0$$

$$\cos \theta = 1$$

$$\sin \theta + 1 = 0$$

$$\sin \theta = -1$$

$$\theta = 0^{\circ} + 360^{\circ}k$$

$$\theta = 270^{\circ} + 360^{\circ}k$$

Exercise

Find all solutions of the equation: $\cot^2 x - 3 = 0$

Solution

$$\cot^{2} x = 3 \Rightarrow \cot x = \pm \sqrt{3}$$

$$x = \frac{\pi}{6} + 2\pi k, \quad \frac{5\pi}{6} + 2\pi k, \quad \frac{7\pi}{6} + 2\pi k, \quad \frac{11\pi}{6} + 2\pi k$$
Or
$$x = \frac{\pi}{6} + \pi n, \quad \frac{5\pi}{6} + \pi n$$

69

Find all solutions of the equation: $\cos x + 1 = 2\sin^2 x$

Solution

$$\cos x + 1 = 2(1 - \cos^2 x)$$

$$\cos x + 1 = 2 - 2\cos^2 x$$

$$\cos x + 1 - 2 + 2\cos^2 x = 0$$

$$2\cos^2 x + \cos x - 1 = 0$$

$$\cos x = -1$$

$$\boxed{x = \pi + 2\pi n}$$

$$\cos x = \frac{1}{2}$$

$$\boxed{x = \frac{\pi}{3} + 2\pi n; \quad x = \frac{5\pi}{3} + 2\pi n}$$

Exercise

Find all solutions of the equation: cos(ln x) = 0

Solution

$$\cos\left(\ln x\right) = 0 \to \begin{cases} \ln x = \frac{\pi}{2} + 2\pi k \\ \ln x = \frac{3\pi}{2} + 2\pi k \end{cases} \to \ln x = \frac{\pi}{2} + \pi n \Rightarrow \boxed{x = e^{\pi/2 + \pi n}}$$

Exercise

Find the solutions of the equation that are in the interval $[0, 2\pi)$: $2\sin^2 x = 1 - \sin x$ **Solution**

$$2\sin^2 x + \sin x - 1 = 0$$

$$\frac{\sin x = -1}{x = \frac{3\pi}{2}}$$

$$\sin x = \frac{1}{2}$$

$$x = \frac{\pi}{6}; \quad x = \frac{5\pi}{6}$$

Exercise

Find the solutions of the equation that are in the interval $[0, 2\pi)$: $\tan^2 x \sin x = \sin x$

$$\tan^2 x \sin x - \sin x = 0$$
$$\sin x \left(\tan^2 x - 1 \right) = 0$$

$$\sin x = 0$$

$$\tan^2 x - 1 = 0 \Rightarrow \tan^2 x = 1$$

$$\tan x = \pm 1$$

$$x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$

Find the solutions of the equation that are in the interval $[0, 2\pi)$: $1 - \sin x = \sqrt{3} \cos x$

Solution

$$(1 - \sin x)^2 = (\sqrt{3}\cos x)^2$$

$$1 - 2\sin x + \sin^2 x = 3\cos^2 x$$

$$1 - 2\sin x + \sin^2 x = 3(1 - \sin^2 x)$$

$$1 - 2\sin x + \sin^2 x = 3 - 3\sin^2 x$$

$$1 - 2\sin x + \sin^2 x - 3 + 3\sin^2 x = 0$$

$$4\sin^2 x - 2\sin x - 2 = 0$$

$$\begin{vmatrix}
\sin x = 1 \\
x = \frac{\pi}{2} \to (check) \\
1 - \sin \frac{\pi}{2} = \sqrt{3} \cos \frac{\pi}{2} \\
1 - (1) = \sqrt{3} (0) \\
0 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
\sin x = -\frac{1}{2} \\
x = \frac{7\pi}{6} \\
1 - \sin \frac{7\pi}{6} = \sqrt{3} \cos \frac{7\pi}{6} \\
1 - (-\frac{1}{2}) = \sqrt{3} \left(-\frac{\sqrt{3}}{2}\right) \\
\frac{3}{2} = -\frac{3}{2}
\end{vmatrix}$$

$$\begin{vmatrix}
x = \frac{11\pi}{6} \\
1 - \sin \frac{11\pi}{6} = \sqrt{3} \cos \frac{11\pi}{6} \\
1 - (-\frac{1}{2}) = \sqrt{3} \left(\frac{\sqrt{3}}{2}\right) \\
\frac{3}{2} = \frac{3}{2}
\end{vmatrix}$$

The solutions are: $x = \frac{\pi}{2}, \frac{11\pi}{6}$

Exercise

Find the solutions of the equation that are in the interval $[0, 2\pi)$: $\sin x + \cos x \cot x = \csc x$

Solution

$$\sin x + \cos x \frac{\cos x}{\sin x} = \frac{1}{\sin x}$$
Multiply by sinx both sides $(\sin x \neq 0)$

$$\sin^2 x + \cos^2 x = 1$$

$$1 = 1 \quad (True)$$

The solutions are: $x \in [0, 2\pi)$ except 0 and π .

Find the solutions of the equation that are in the interval $[0, 2\pi)$: $2\sin^3 x + \sin^2 x - 2\sin x - 1 = 0$

Solution

$$\sin^{2} x (2 \sin x + 1) - (2 \sin x + 1) = 0$$

$$(2 \sin x + 1) (\sin^{2} x - 1) = 0$$

$$2 \sin x + 1 = 0$$

$$\sin x = -\frac{1}{2}$$

$$x = \frac{7\pi}{6}, \frac{11\pi}{6}$$

$$x = \frac{\pi}{2}, \frac{3\pi}{2}$$

Exercise

Find the solutions of the equation that are in the interval $[0, 2\pi)$: $2\tan x \csc x + 2\csc x + \tan x + 1 = 0$

Solution

$$2 \tan x \csc x + \tan x + 2 \csc x + 1 = 0$$

$$\tan x (2 \csc x + 1) + (2 \csc x + 1) = 0$$

$$(2 \csc x + 1) (\tan x + 1) = 0$$

$$2 \csc x + 1 = 0$$

$$\csc x = -\frac{1}{2} = \frac{1}{\sin x}$$

$$\sin x = -2 \text{ (impossible)}$$

$$\tan x = -1$$

$$x = \frac{3\pi}{4}, \frac{7\pi}{4}$$

Exercise

Solve
$$2\cos\theta + \sqrt{3} = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$

$$2\cos\theta = -\sqrt{3}$$

$$\cos\theta = -\frac{\sqrt{3}}{2} \implies \hat{\theta} = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$\boxed{\theta = 150^{\circ}, 210^{\circ}}$$

Solve
$$5\cos t + \sqrt{12} = \cos t$$
 if $0 \le t < 2\pi$

Solution

$$5\cos t - \cos t = -\sqrt{12}$$

$$4\cos t = -2\sqrt{3}$$

$$4\cos t = -2\sqrt{3}$$

$$\cos t = -\frac{2\sqrt{3}}{4}$$

$$\cos t = -\frac{\sqrt{3}}{2} \implies t = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$\theta = \frac{5\pi}{6}, \frac{7\pi}{6}$$

Exercise

Solve
$$\tan \theta - 2\cos \theta \tan \theta = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$\tan \theta \left(1 - 2\cos \theta\right) = 0$$

$$\tan \theta = 0$$

$$\theta = 0^{\circ}, 180^{\circ}$$

$$\cos \theta = \frac{1}{2} \implies \theta = \cos^{-1}\left(\frac{1}{2}\right)$$

$$\theta = 60^{\circ}, 300^{\circ}$$

$$\theta = 0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}$$

Exercise

Solve
$$2\sin^2\theta - 2\sin\theta - 1 = 0$$
 if $0^\circ \le \theta < 360^\circ$

$$\sin \theta = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(2)(-1)}}{2(2)}$$

$$= \frac{2 \pm \sqrt{12}}{4}$$

$$= \frac{2 \pm 2\sqrt{3}}{4}$$

$$= \frac{1 \pm \sqrt{3}}{2}$$

$$\hat{\theta} = \sin^{-1}\left(\frac{1-\sqrt{3}}{2}\right) = -21.47^{\circ}$$
 $\sin \theta = \frac{1+\sqrt{3}}{2} = 1.366 > 1$

$$\sin \theta = \frac{1+\sqrt{3}}{2} = 1.366 > 1$$

$$\theta = 360^{\circ} - 21.47^{\circ} = 338.53^{\circ}$$

$$\theta = 180^{\circ} + 21.47^{\circ} = 201.47^{\circ}$$

Solve
$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2}$$

Solution

$$-\frac{1}{2}$$
 is negative \rightarrow cosine is in QII or QIII.

$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{4\pi}{3}$$

$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2} = \cos\frac{2\pi}{3}$$

$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2} = \cos\frac{4\pi}{3}$$

$$\cos\left(A-\frac{\pi}{9}\right) = -\frac{1}{2} = \cos\frac{4\pi}{3}$$

$$A - \frac{\pi}{9} = \frac{2\pi}{3} + 2\pi k$$

$$A - \frac{\pi}{9} = \frac{4\pi}{3} + 2\pi k$$

$$A = \frac{2\pi}{3} + \frac{\pi}{9} + 2\pi k$$

$$A = \frac{4\pi}{3} + \frac{\pi}{9} + 2\pi k$$

$$A = \frac{7\pi}{9} + 2\pi k$$

$$A = \frac{13\pi}{9} + 2\pi k$$

Exercise

Solve:
$$4\cos\theta - 3\sec\theta = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$4\cos\theta - 3\frac{1}{\cos\theta} = 0$$

$$\cos \theta \neq 0$$

$$4\cos\theta\cos\theta - 3\frac{1}{\cos\theta}\cos\theta = 0$$

$$4\cos^2\theta - 3 = 0$$

$$4\cos^2\theta = 3$$

$$\cos^2\theta = \frac{3}{4}$$

$$\cos \theta = \pm \frac{\sqrt{3}}{2} \Rightarrow \theta = \cos^{-1} \left(\pm \frac{\sqrt{3}}{2} \right)$$

The solutions are: $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$

Solve: $2\sin^2 x - \cos x - 1 = 0$ if $0 \le x < 2\pi$

Solution

$$2(1-\cos^2 x) - \cos x - 1 = 0$$

$$2-2\cos^2 x - \cos x - 1 = 0$$

$$-2\cos^2 x - \cos x + 1 = 0$$

$$\cos x = -1$$

$$\cos x = \frac{1}{2}$$

$$x = \pi$$

$$x = \frac{\pi}{3}, \frac{5\pi}{3}$$

The solutions are: $x = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$

Exercise

Solve: $\sin \theta - \sqrt{3} \cos \theta = 1$ if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$\sin \theta - 1 = -\sqrt{3} \cos \theta$$

$$(\sin \theta - 1)^2 = (-\sqrt{3} \cos \theta)^2$$

$$\sin^2 \theta - 2 \sin \theta + 1 = 3 \cos^2 \theta$$

$$\sin^2 \theta - 2 \sin \theta + 1 = 3(1 - \sin^2 \theta)$$

$$\sin^2 \theta - 2 \sin \theta + 1 = 3 - 3 \sin^2 \theta$$

$$\sin^2 \theta - 2 \sin \theta + 1 - 3 + 3 \sin^2 \theta = 0$$

$$4 \sin^2 \theta - 2 \sin \theta - 2 = 0$$

$$\sin \theta = 1 \implies \theta = 90^\circ \implies \sin \theta = -\frac{1}{2} \implies \theta = 210^\circ, 330^\circ \implies \theta = 210^\circ$$

Check

The solutions are: 90° , 210°

Solve:
$$7\sin^2\theta - 9\cos 2\theta = 0$$
 if $0^\circ \le \theta < 360^\circ$

Solution

$$7\sin^2\theta - 9\left(1 - 2\sin^2\theta\right) = 0$$

$$7\sin^2\theta - 9 + 18\sin^2\theta = 0$$

$$\cos^2\theta = 1 - 2\sin^2\theta$$

$$25\sin^2\theta - 9 = 0$$

$$25\sin^2\theta = 9$$

$$\sin^2 \theta = \frac{9}{25} \implies \sin \theta = \pm \frac{3}{5}$$

$$\hat{\theta} = \sin^{-1}\left(\frac{3}{5}\right) \approx 36.87^{\circ}$$

$$\theta \approx 36.87^{\circ}$$
 $\theta \approx 180^{\circ} - 36.87^{\circ} \approx 143.13^{\circ}$

$$\theta \approx 180^{\circ} + 36.87^{\circ} \approx 216.87^{\circ}$$
 $\theta \approx 360^{\circ} - 36.87^{\circ} \approx 323.13^{\circ}$

The solutions are: 36.87°, 143.13°, 216.87°, 323.13°

Exercise

Solve:
$$2\cos^2 t - 9\cos t = 5$$
 if $0 \le t < 2\pi$

Solution

$$2\cos^2 t - 9\cos t - 5 = 0$$

$$(2\cos t + 1)(\cos t - 5) = 0$$

$$2\cos t + 1 = 0 \qquad \qquad \cos t - 5 = 0$$

$$\cos t = -\frac{1}{2} \qquad \qquad \cos t = 5$$

$$\cos t = -\frac{1}{2} \qquad \qquad \cos t = 5$$

$$\hat{t} = \cos^{-1}\left(-\frac{1}{2}\right)$$
 No solution

$$\hat{t} = \frac{\pi}{3}$$

Negative sign \rightarrow cosine is in QII or QIII

$$t = \pi - \frac{\pi}{3} \qquad t = \pi + \frac{\pi}{3}$$

$$t = \frac{2\pi}{3} \qquad \qquad t = \frac{4\pi}{3}$$

The solutions are: $\left[\frac{2\pi}{3}, \frac{4\pi}{3}\right]$

Solve
$$\sin \theta \tan \theta = \sin \theta$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$\sin \theta \tan \theta - \sin \theta = 0$$

$$\sin \theta (\tan \theta - 1) = 0$$

$$\sin \theta = 0 \qquad \tan \theta - 1 = 0$$

$$\theta = 0^{\circ}, 180^{\circ} \qquad \tan \theta = 1$$

$$\theta = 45^{\circ}, 225^{\circ}$$

The solutions are: 0° , 45° , 180° , 225°

Exercise

Solve
$$\tan^2 x + \tan x - 2 = 0$$
 if $0 \le x < 2\pi$

Solution

$$\tan^2 x + \tan x - 2 = 0$$

 $\tan x = 1$ $\tan x = -2$
 $x = \frac{\pi}{4}, \frac{5\pi}{4}$ $\hat{x} = \tan^{-1}(2) \approx 1.107$ $x \in QII, QIV$
 $x = 2.034, 5.176$

The solutions are: $\left[\frac{\pi}{4}, \frac{5\pi}{4}, 2.034, 5.176 \right]$

Exercise

Solve
$$\tan x + \sqrt{3} = \sec x$$
 if $0 \le x < 2\pi$

$$(\tan x + \sqrt{3})^2 = (\sec x)^2$$

$$\tan^2 x + 2\sqrt{3} \tan x + 3 = \sec^2 x$$

$$\tan^2 x + 2\sqrt{3} \tan x + 3 = 1 + \tan^2 x$$

$$\tan^2 x + 2\sqrt{3} \tan x + 3 - 1 - \tan^2 x = 0$$

$$2\sqrt{3} \tan x + 2 = 0$$

$$2\sqrt{3} \tan x = -2$$

$$\tan x = -\frac{2}{2\sqrt{3}} = -\frac{1}{\sqrt{3}}$$

$$x = \frac{5\pi}{6} \quad or \quad x = \frac{11\pi}{6}$$

$$\tan \frac{5\pi}{6} + \sqrt{3} = \sec \frac{5\pi}{6}$$

$$\tan \frac{11\pi}{6} + \sqrt{3} = \sec \frac{11\pi}{6}$$

$$-\frac{\sqrt{3}}{3} + \sqrt{3} = -\frac{2\sqrt{3}}{3}$$

$$\frac{2\sqrt{3}}{3} \neq -\frac{2\sqrt{3}}{3}$$

$$\tan \frac{11\pi}{6} + \sqrt{3} = \sec \frac{11\pi}{6}$$

$$-\frac{\sqrt{3}}{3} + \sqrt{3} = \frac{2\sqrt{3}}{3}$$

$$\frac{2\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}$$
False

The solutions are: $\frac{11\pi}{6}$

Exercise

Solve
$$2\cos\theta + \sqrt{3} = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$2\cos\theta = -\sqrt{3}$$

$$\cos\theta = -\frac{\sqrt{3}}{2} \implies \hat{\theta} = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$\theta = 150^{\circ}, 210^{\circ}$$

Exercise

Solve
$$5\cos t + \sqrt{12} = \cos t$$
 if $0 \le t < 2\pi$

$$5\cos t - \cos t = -\sqrt{12}$$

$$4\cos t = -2\sqrt{3}$$

$$4\cos t = -2\sqrt{3}$$

$$\cos t = -\frac{2\sqrt{3}}{4}$$

$$\cos t = -\frac{\sqrt{3}}{2} \implies t = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$\theta = \frac{5\pi}{6}, \frac{7\pi}{6}$$

$$\sqrt{12} = \sqrt{4.3} = 2\sqrt{3}$$

Solve
$$\tan \theta - 2\cos \theta \tan \theta = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$\tan \theta \left(1 - 2\cos \theta\right) = 0$$

$$\tan \theta = 0 \qquad 1 - 2\cos \theta = 0$$

$$\theta = 0^{\circ}, 180^{\circ} \qquad 1 = 2\cos \theta$$

$$\cos \theta = \frac{1}{2} \implies \theta = \cos^{-1}\left(\frac{1}{2}\right)$$

$$\theta = 60^{\circ}, 300^{\circ}$$

$$\theta = 0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}$$

Exercise

Solve
$$2\sin^2\theta - 2\sin\theta - 1 = 0$$
 if $0^\circ \le \theta < 360^\circ$

Solution

$$\sin \theta = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(2)(-1)}}{2(2)}$$

$$= \frac{2 \pm \sqrt{12}}{4}$$

$$= \frac{2 \pm 2\sqrt{3}}{4}$$

$$= \frac{1 \pm \sqrt{3}}{2}$$

$$\widehat{\theta} = \sin^{-1} \left(\frac{1 - \sqrt{3}}{2}\right) = -21.47^{\circ} \qquad \sin \theta = \frac{1 + \sqrt{3}}{2} = 1.366 > 1$$

$$\theta = 360^{\circ} - 21.47^{\circ} = 338.53^{\circ}$$

$$\theta = 180^{\circ} + 21.47^{\circ} = 201.47^{\circ}$$

Exercise

Solve
$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2}$$

$$-\frac{1}{2}$$
 is negative \rightarrow cosine is in QII or QIII.

$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2} = \cos\frac{2\pi}{3}$$

$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2} = \cos\frac{4\pi}{3}$$

$$79$$

$$A - \frac{\pi}{9} = \frac{2\pi}{3} + 2\pi k$$

$$A - \frac{\pi}{9} = \frac{4\pi}{3} + 2\pi k$$

$$A = \frac{2\pi}{3} + \frac{\pi}{9} + 2\pi k$$

$$A = \frac{4\pi}{3} + \frac{\pi}{9} + 2\pi k$$

$$A = \frac{7\pi}{9} + 2\pi k$$

$$A = \frac{13\pi}{9} + 2\pi k$$

Solve: $4\cos\theta - 3\sec\theta = 0$ if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$4\cos\theta - 3\frac{1}{\cos\theta} = 0$$

 $\cos\theta \neq 0$

$$4\cos\theta\cos\theta - 3\frac{1}{\cos\theta}\cos\theta = 0$$

$$4\cos^2\theta - 3 = 0$$

$$4\cos^2\theta = 3$$

$$\cos^2\theta = \frac{3}{4}$$

$$\cos \theta = \pm \frac{\sqrt{3}}{2} \Rightarrow \theta = \cos^{-1} \left(\pm \frac{\sqrt{3}}{2} \right)$$

The solutions are: $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$

Exercise

 $2\sin^2 x - \cos x - 1 = 0$ if $0 \le x < 2\pi$

Solution

$$2\left(1-\cos^2 x\right)-\cos x-1=0$$

$$2-2\cos^2 x - \cos x - 1 = 0$$

$$-2\cos^2 x - \cos x + 1 = 0$$

$$\cos x = -1$$

$$\cos x = \frac{1}{2}$$

$$x = \pi$$

$$x = \frac{\pi}{3}, \ \frac{5\pi}{3}$$

The solutions are: $x = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$

$$\overline{z} = \frac{\pi}{3}, \ \pi, \ \frac{5\pi}{3}$$

Solve:
$$\sin \theta - \sqrt{3} \cos \theta = 1$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$\sin \theta - 1 = -\sqrt{3} \cos \theta$$

$$(\sin \theta - 1)^2 = (-\sqrt{3} \cos \theta)^2$$

$$\sin^2 \theta - 2 \sin \theta + 1 = 3 \cos^2 \theta$$

$$\sin^2 \theta - 2 \sin \theta + 1 = 3(1 - \sin^2 \theta)$$

$$\sin^2 \theta - 2 \sin \theta + 1 - 3 + 3 \sin^2 \theta = 0$$

$$4 \sin^2 \theta - 2 \sin \theta - 2 = 0$$

$$\sin \theta = 1$$

$$\sin \theta = -\frac{1}{2}$$

$$\theta = 90^\circ$$

$$\theta = 210^\circ, 330^\circ$$

Check

$$\theta = 90^{\circ}$$

$$\sin 90^{\circ} - \sqrt{3}\cos 90^{\circ} = 1$$

$$1 - \sqrt{3}(0) = 1$$

$$1 = 1$$

$$\theta = 210^{\circ}$$

$$\sin 210^{\circ} - \sqrt{3}\cos 210^{\circ} = 1$$

$$-\frac{1}{2} - \sqrt{3}\left(-\frac{\sqrt{3}}{2}\right) = 1$$

$$-\frac{1}{2} + \frac{3}{2} = 1$$

$$1 = 1$$

$$\theta = 330^{\circ}$$

$$\sin 330^{\circ} - \sqrt{3}\cos 330^{\circ} = 1$$

$$-\frac{1}{2} - \sqrt{3}\left(\frac{\sqrt{3}}{2}\right) = 1$$

$$-\frac{1}{2} - \frac{3}{2} = 1$$

$$-2 \neq 1 (False statement)$$

The solutions are: 90° , 210°

Exercise

Solve:
$$7\sin^2 \theta - 9\cos 2\theta = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$
Solution
$$7\sin^2 \theta - 9(1 - 2\sin^2 \theta) = 0$$

$$7\sin^2 \theta - 9 + 18\sin^2 \theta = 0$$

$$25\sin^2 \theta - 9 = 0$$

$$25\sin^2 \theta = 9$$

$$\sin^2 \theta = \frac{9}{25} \implies \sin \theta = \pm \frac{3}{5}$$
$$\hat{\theta} = \sin^{-1} \left(\frac{3}{5}\right) \approx 36.87^{\circ}$$

$$\theta \approx 36.87^{\circ}$$
 $\theta \approx 180^{\circ} - 36.87^{\circ} \approx 143.13^{\circ}$ $\theta \approx 180^{\circ} + 36.87^{\circ} \approx 216.87^{\circ}$ $\theta \approx 360^{\circ} - 36.87^{\circ} \approx 323.13^{\circ}$

The solutions are: 36.87°, 143.13°, 216.87°, 323.13°

Exercise

Solve: $2\cos^2 t - 9\cos t = 5$ if $0 \le t < 2\pi$

Solution

$$2\cos^2 t - 9\cos t - 5 = 0$$

$$(2\cos t + 1)(\cos t - 5) = 0$$

$$2\cos t + 1 = 0$$

$$\cos t - 5 = 0$$

$$\cos t = -\frac{1}{2}$$

$$\cos t = 5$$

$$\cos t = -\frac{1}{2}$$

$$\cos t = 5$$

$$\hat{t} = \cos^{-1}\left(-\frac{1}{2}\right)$$
 No solution

$$\hat{t} = \frac{\pi}{3}$$

Negative sign \rightarrow cosine is in QII or QIII

$$t = \pi - \frac{\pi}{3} \qquad t = \pi + \frac{\pi}{3}$$

$$t = \pi + \frac{\pi}{3}$$

$$t = \frac{2\pi}{3} \qquad \qquad t = \frac{4\pi}{3}$$

$$t = \frac{4\pi}{3}$$

The solutions are: $\frac{2\pi}{3}$, $\frac{4\pi}{3}$

Exercise

Solve $\sin \theta \tan \theta = \sin \theta$ if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$\sin \theta \tan \theta - \sin \theta = 0$$

$$\sin\theta(\tan\theta-1)=0$$

$$\sin \theta = 0$$

$$\tan\theta - 1 = 0$$

$$\theta = 0^{\circ}, 180^{\circ}$$

$$\tan \theta = 1$$

$$\theta = 45^{\circ}, 225^{\circ}$$

The solutions are: 0° , 45° , 180° , 225°

Solve
$$\tan^2 x + \tan x - 2 = 0$$
 if $0 \le x < 2\pi$

Solution

$$\tan^2 x + \tan x - 2 = 0$$

 $\tan x = 1$ $\tan x = -2$
 $x = \frac{\pi}{4}, \frac{5\pi}{4}$ $\hat{x} = \tan^{-1}(2) \approx 1.107$ $x \in QII, QIV$
 $x = 2.034, 5.176$

The solutions are: $\frac{\pi}{4}$, $\frac{5\pi}{4}$, 2.034, 5.176

Exercise

Solve
$$\tan x + \sqrt{3} = \sec x$$
 if $0 \le x < 2\pi$

Solution

$$(\tan x + \sqrt{3})^2 = (\sec x)^2$$

$$\tan^2 x + 2\sqrt{3} \tan x + 3 = \sec^2 x$$

$$\tan^2 x + 2\sqrt{3} \tan x + 3 = 1 + \tan^2 x$$

$$\tan^2 x + 2\sqrt{3} \tan x + 3 - 1 - \tan^2 x = 0$$

$$2\sqrt{3} \tan x + 2 = 0$$

$$2\sqrt{3} \tan x = -2$$

$$\tan x = -\frac{2}{2\sqrt{3}} = -\frac{1}{\sqrt{3}}$$

$$x = \frac{5\pi}{6} \quad or \quad x = \frac{11\pi}{6}$$

$$\tan \frac{5\pi}{6} + \sqrt{3} = \sec \frac{5\pi}{6}$$

$$\tan \frac{11\pi}{6} + \sqrt{3} = \sec \frac{11\pi}{6}$$

$$-\frac{\sqrt{3}}{3} + \sqrt{3} = -\frac{2\sqrt{3}}{3}$$

$$\frac{2\sqrt{3}}{3} \neq -\frac{2\sqrt{3}}{3}$$

$$\tan \frac{11\pi}{6} + \sqrt{3} = \sec \frac{11\pi}{6}$$

$$-\frac{\sqrt{3}}{3} + \sqrt{3} = \frac{2\sqrt{3}}{3}$$

$$\frac{2\sqrt{3}}{3} \neq -\frac{2\sqrt{3}}{3}$$

$$\frac{2\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}$$
False

The solutions are: $\frac{11\pi}{6}$

If a projectile (such as a bullet) is fired into the air with an initial velocity v at an angle of elevation θ , then the height h of the projectile at time t is given by:

$$h(t) = -16t^2 + vt\sin\theta$$

- a) Give the equation for the height, if v is 600 ft./sec and $\theta = 45^{\circ}$.
- b) Use the equation in part (a) to find the height of the object after $\sqrt{3}$ seconds.
- c) Find the angle of elevation of θ of a rifle barrel, if a bullet fired at 1,500 ft./sec takes 3 seconds to reach a height of 750 feet. Give your answer in the nearest of a degree.

a)
$$h(t) = -16t^2 + 600t \sin 45^\circ$$

= $-16t^2 + 600t \frac{\sqrt{2}}{2}$
= $-16t^2 + 300\sqrt{2} t$

b)
$$h(t = \sqrt{3}) = -16(\sqrt{3})^2 + 300\sqrt{2} \sqrt{3}$$

 $\approx 686.8 \text{ ft}$

c)
$$h(t) = -16t^2 + vt\sin\theta$$

 $750 = -16(3)^2 + 1500(3)\sin\theta$
 $750 = -144 + 4500\sin\theta$
 $750 + 144 = 4500\sin\theta$
 $\frac{894}{4500} = \sin\theta$
 $\left|\frac{\theta}{4500}\right| = \sin^{-1}\left(\frac{894}{4500}\right) \approx 11.5^{\circ}$