FIG. 1A

-685 agacaaagatgcttacttcttaaacatgttcqaggtttattgaaaatgatcaccagcttctaaccatgct -615 alcttcttcoctqcaagcgaacagtggaagatgatgatgataacggaaatatcggaacatcactcaacaaac -545 caaaaattcggaacatcatatcgcaacaaattcaataggaaatactggaaattccaaaacagaaaagatctga -75 aacggaacaagacagagacagaactacggaactagagaagaagatgatgagaggaacggaggagaatgsttctctca -805 acggagttactaatcggcgaattgagattgagattggagtagaagagaacgsttcaggaacatggttcctca -135 aacgaatccccaagcgttcccgaattcagtactctgttccaaatagaacagacgtgttcagaaacctagg -805 agaatgaatgacagatgstccgaattcgaattggttctgtcaaaaaacagaacggtttagaacaacaacata -135 tccggtttgaatgataagaaaaaacaacasgtcggttggaacaatatatatactaacacacata -135 tccggtttgaatgataagaaaaaacaggcaattcgaatcaggtggttgaacatggcacagggttaaaaacca -55 ttccgttttafaaaaggatacaagttccaaacgaacaggtggttgtcctctcctaccAgACAATTAACCC -16 TTTCTCGAACATCTTCTTCTCTCTTCTCAAATTATTTTTCCAGTAATCAATTTCTTCTCTTCTAGA 86 TTTTTACAGGAACTAATTTTCTGCTCTGAGGTATCAGATGAGTAGCCGATGGAATCGTACGATCTACGTT 156 GGGANTTOCCTGGGGATATTCGCAGTGGGGGTTGAAGATCTCTTCTACAAGGEEtgaaaatttcctc 12 T N 1 P G D I R K C E V E D L F Y K 226 ttttetetegataaaaattgaatteattatgactagtttgggtteataaatttgcaattetgtettgetg 296 agacaatttaaategactettatgtatatttgttteagTATGGACCAATTGTGGACATTGATTTGAGAT 30 Y G P I V D I D L K I 366 TCCACCGAGACCTCCTGGTTATCCCTTTGTCGAGgtatattgatcaagtacaaatttgttttttttttttt42 P P R P P G Y A F V E436 tettgtaatagtataggetaatgactaagattagtttgttattggtggeagTTTCAAGATCCTCGTCATGC 52 E D P R D A 506 AGACGATGCAATTTATGCACGTGATGCTTATGATTTTGATGGGTGTCGACTTCGGGttagtaaacgcatg 59 D D A I Y G R D G Y D F D G C R L R 646 ATTIGCACATOGTOGTOGTAGATTITCACCATCAGTTIGATAGGTACAGCAGCAGCAGCTACAGTGCGAGCCGGTG 79 1 A H G G R R F S P S V D R Y S S S Y S A S R A 716 CACCTTCAAGACGCCTCTGACTACGGCGgtttgtagagtcttctcgattgtgttatttggtgttgtaaaa 103 PSRRSDYR 856 TTCCTCGCAGGCCTTAAGgtaagggacactatatagtctttttctctctgaatgttggttctctatatcat 121 S W Q D L K . 926 gttttggatttatctcttttctgaaatgatgttatttgctatttacgggtgattagCATCACATGCCCAA 127 D H M R K 996 AGCTOGAGATGTCTCCTGAAGTTTTCCCTGACGGTAAAGgtgagttgacattcgatagtttggat 132 A G D V C F S E V F P D R K G 1066 aagettittgattgatgagtagtagtaaattagtettigtgaaggagaataggtgttaageatetgaaetge 1116 taaaeteacatteagtattettitgtagGCATGTCTGGGTTGTGATTATAGCAACTATGATGATGATATGA 147 <u>M S G V V D Y S</u> N Y D D M K * 1206 AGTAGGCAGTAAGttttatatctttgcaacgcaaatgttcctggacttatgccttagactgcttttgttt 161 Y A ... 1276 catagtataccgagctgaatttatcttctggaggccagtgttggatctttgatgttcccttaaaatttt 1346 tgatggacagaTAMGAMCTTGATCCAGAATTCAAATGCTTCTAGTGCTTATATACGgt 169 | R K L D A T E F R N A F S S A Y 1 R 1416 atgitgtattgctttctttgattttgttaagcataagtggatatggagtcatctctgaatttactgttc 1496 gGTCAGGGATATGAGTCGAGAGTGTGAGTGAGCCCAGATGATTCTAAAAGCTATGAAGCAGAGA 182 V R E Y E S R S V S R S P D D S K S Y R S R S R S 1776 TGTCTCAAGgtatgagtgttagatttgtatcattattatatatgtagttaccccttcatggatcacttgt 243 V S R 406 ggggattggatttagatgggtcatctagatggattcttggactggatttacaaagctggattsgcatgaa 253 G D W I stop 2516 cg acceptate aggregate transport of the control of the contro 3106 TTCTCAGGCTCCACTGCTMATAGAATTTCATTCCGATTTGGGATTATTATACTGGTCTTCTTGTATGGGA 3176 CGACCAMATGTCTTTCTAGTTTTAGTGTGAAACCTGGAATTAGTGTGTATTTTGTGCATTAMAAGCCG 3246 GAACACTGTCTCAGCTGGATAATAAGTTCATCAGACTATGTGTGGGGTGTGGAGGTTTTTCCATAC 3116 AATATACATTTACATTAGAACLACLGGTGTCCLLEALGALLALCLLAAACCLAAAC

FIG. 1B

GENE AND mRNAs OF atSRp30

FIG. 1C

GENE AND mRNAs OF atSRp34

2155

FIG. 1D

2188	AC	CA	GCJ	C	WG	TC	cc	w	CK	GC.	w	VG T	CZ	TO	AC	G	'AG	GT	cc	cc	TG	CA	AA	AT	CT	AC	TC	AA			rcv:		Ç
232	R	s	F	₹	s	F	•	K	,	١.	K	S		s	R		R	5		₽	A		ĸ	s		T	s	R	:	s	P	G	
2258	cc	cc	CTO	C	AC	TC	×	GC	T	CA	cc	TC	т	C	ωG	AA	Gq	ta	at	qa	c t	t g	at	t C	ct	tt	ca	gaa	t	gce	cc	499	ıc.
256		R																									4 A 5						
2328	ac	at	tac	ct	aq	tc	qq	ıt.	q	ı tı	. c t	cc	t۹	rt q		аt	tc	a t	qa	aa.	ate	ct	qa	t t	9	asi	149	c C a	tt	tgt	tg	atg	Ç
2398	ca	aa	gtt	ct	.cg	tt	94	tt	g	19	cat	at	ac	Eg	gt	tt	t٤	tg	ÉĿ	ga	ca	cc	ŧ9	ct	gŧ	CC	gct	cgi	c	ett	at	tgt	c
2468	ct	tc	tta	ct	cc	at	cc	tt	at	a	tt	39	at	gc	tt	ag	cc	CŁ	tε	tc	tg	ąt	E a	ag.	e C	tt	gcg	agi	25	99	cc	tta	C.
2538	tt	t t	tag)Ca	tt	tt	C.	44	ta	t	gCt	CL	tt	tc	ŧς	t c	ct	ga	ga	39	aaa		tg	gti	t	tg1	C C	cat	20	2	tat	994	ţ
267																														,	r	C	r
2608	t.	c.	tec	· a *	ct	40			to	a		ee		t.	te	ta	~ a	ta	24.		tte		t t	ati	ta	a C 4		tgi	: : :	ccs	tc	tee	g
270																	_	-	_			_	_	_									
2678				.			٠.																									t ac	٠.
748	τg	cc	36.0	29	•	99	-	•	ıcı	•3	cgs	749		-21	EEg	7	tc	e c	tt	33	•	C.	C#	a c	a c				,,,			***	_
718	••	CE.		tt	88	c t	cg	•	gç	•	cg	AC.	••	C.	tg	9.	4 6	Cti	39	gc 1	te	cc	tt	996	"	cg					40	tag	č
2788 2858	••			91				ce	ce	-		99			C.			CE	CE	gee	ce		tc.							a		asa	
928	9-	•			~	••	~~	•		~							٧L	Lg:									to.	a	£ŧ	ċċŧ	tŧ	tct	t
998		~		~~		AT	÷	~	-	~						~	~	~	36	~	т.	•				• • •		701	c		ct	tgt	9
267	•-			•-	-5	s		R			R	Š	٠.	R	Ġ	٠.	P .	Ť.	•~	P .	٠.,	•	30	,-;	,-			•					
068					_				_			_			_		-	_			_									٠	T.A.	tc#	c
138	~	-			~	••	~	"	~		-	CC	~	tg.	~	cε	• C		9		gt			CCC	-	~	71	~	AC	ZAC	T٨	CCA	G
278	Ÿ	•••	<u>~</u>	ຼ	~	~	~	~;		∵				٠.	•	~		٠	~	ıcı	٠,	·	×	~~;		P				τ	R	s	
208							•	-3		^	3		•	•		^	•		•	•	•	•	•	-	•	•	•						
100			R					_																									

FIG. 2

FIG. 3

locates and and

5/9 FIG. 5

6/9 FIG. 6

7/9 **FIG. 7**

FIG. 8

A

В

anti p34