NUMERIČKA METODA ZA RAVNOTEŽU ELASTIČNOG ŠTAPA UZ PREPREKU

Petra Sočo

10. svibnja 2022.

Uvodne pretpostavke i definicije

Pretpostavke 1.1

- V Hilbertov prostor sa skalarnim produktom $\langle \cdot, \cdot \rangle$,
- V* dual od V,
- $a: V \times V \longrightarrow \mathbb{R}$ koercitivna, neprekidna bilinearna forma,
- $L: V \longrightarrow \mathbb{R}$ neprekidan, linearan funkcional,
- K konveksan, zatvoren, neprazan, $K \subseteq V$,
- $j: V \longrightarrow \mathbb{R} \cup \{+\infty\}$ konveksan, odozdo poluneprekidan funkcional takav da $j(v) > -\infty, \forall v \in V$ i $j \not\equiv +\infty$.

j je (slabo) nizovno poluneprekidan odozdo ako za svaki niz $(u_n)_n\subseteq V$ takav da $(u_n\rightharpoonup u)$ $u_n\to u$ vrijedi:

$$j(u) \leq \liminf_{n} j(u_n).$$

Promatramo dvije vrste varijacijskih nejednakosti (V.N.):

• V.N. prve vrste: $Na\acute{c}i\ u \in K\ t.d.$

$$a(u, v - u) \ge L(v - u), \ \forall v \in K$$
 (P₁)

• V.N. druge vrste: *Naći* $u \in V$ t.d.

$$a(u,v-u)+j(v)-j(u)\geq L(v-u), \ \forall v\in V \qquad (P_2)$$

Teoremi postojanja i jedinstvenosti rješenja

Teorem 1.2

Problem (P_1) ima jedinstveno rješenje.

Dokaz.

Jedinstvenost.

Neka su u_1, u_2 dva različita rješenja. Tada vrijedi

$$\mathsf{a}(\mathit{u}_1,\mathit{v}-\mathit{u}_1) \geq \mathsf{L}(\mathit{v}-\mathit{u}_1) \quad \text{i} \quad \mathsf{a}(\mathit{u}_2,\mathit{v}-\mathit{u}_2) \geq \mathsf{L}(\mathit{v}-\mathit{u}_2), \ \forall \mathit{v} \in \mathsf{K}.$$

Uzimajući $v=u_2$ u prvoj i $v=u_1$ u drugoj nejednakosti, zbrajanjem i korištenjem koercitivnosti bilinearne forme a, slijedi $u_1=u_2$.

Postojanje.

 (P_1) svodimo na problem fiksne točke. Prema Rieszovom teoremu reprezentacije postoje $A \in \mathcal{L}(V, V)$ i $I \in V$ takvi da

$$\langle Au, v \rangle = a(u, v), \ \forall u, v \in V \quad i \quad L(v) = \langle I, v \rangle, \ \forall v \in V.$$

 (P_1) je ekvivalentan problemu nalaženja $u \in K$ t.d.

$$\langle Au - I, v - u \rangle \ge 0, \ \forall v \in K,$$

odnosno, množenjem s $-\rho$ za $\rho > 0$ i dodavanjem i oduzimanjem u:

$$\langle u - \rho(Au - I) - u, v - u \rangle \le 0, \ \forall v \in K, \ \rho > 0.$$

Teorem: Za svaki $u \in V$ postoji jedinstveni $u_K \in K$ takav da

$$||u - u_K|| = \inf_{v \in K} ||u - v||.$$

--- Možemo definirati operator projekcije

$$P_K: V \longrightarrow K, \quad P_K(u) = u_K, \ u \in V.$$

Teorem: Neka je $u \in V$ proizvoljan. Tada vrijedi

$$\langle P_K(u) - u, v - P_K(u) \rangle \ge 0, \ \forall v \in K.$$

Obratno, ako neki $w \in K$ zadovoljava

$$\langle w - u, v - w \rangle \ge 0, \ \forall v \in K,$$

onda je $w = P_K(u)$.

 $u \in K$ je rješenje problema (P_1) ako i samo ako

$$u = P_K(u - \rho(Au - I))$$
, za neki $\rho > 0$.

Promotrimo operator $W_{
ho}:V\longrightarrow V$ definiran sa

$$W_{\rho}(v) = P_{K}(v - \rho(Av - I)).$$

 P_K stroga kontrakcija pa, iz koercitivnosti forme a i neprekidnosti operatora A, imamo

$$\|W_{\rho}(v_1) - W_{\rho}(v_2)\|^2 \le (1 - 2\rho\alpha + \rho^2 \|A\|^2) \|v_1 - v_2\|^2.$$

Uz ρ t.d. $0 < \rho < 2\alpha/\|A\|^2$, W_ρ je stroga kontrakcija pa iz teorema fiksne točke sada slijedi da (P_1) ima rješenje.

Napomena 1.3

Dokaz Teorema 1.2 daje i algoritam za rješavanje (P_1) budući da je $v\mapsto P_K(v-\rho(Av-l))$ kontrakcija za $0<\rho<2\alpha/\left\|A\right\|^2$ što slijedi iz Banachovog teorema fiksne točke. Dakle, imamo iteracije:

$$\left\{ \begin{array}{l} u^{(0)} \in \textit{V proizvoljno odabran} \\ u^{(n+1)} = \textit{P}_{\textit{K}}(u^{(n)} - \rho(\textit{A}u^{(n)} - \textit{I})), \; \textit{za} \; n \geq 0 \end{array} \right.$$

za koje vrijedi $\lim_{n\to\infty}u^{(n)}=u$, gdje je u rješenje (P_1) .

Propozicija 1.4

U slučaju da je bilinearna forma a dodatno simetrična i funkcional $J: V \longrightarrow \mathbb{R}$ definiran s $J(v) = \frac{1}{2}a(v,v) - L(v)$, problem minimizacije

Naći
$$u \in K \ t.d. \ J(u) \le J(v), \ \forall v \in K,$$
 (1)

ima jedinstveno rješenje. Dodatno, $u \in K$ je jedinstveno rješenje (P_1) ako i samo ako u rješava (1).

Za dokaz postojanja jedinstvenog rješenja problema (P_2) potrebna je sljedeća lema.

Lema 1.5

Neka je $b:V\times V\longrightarrow \mathbb{R}$ simetrična, neprekidna i koercitivna bilinearna forma s konstantnom koercitivnosti $\beta>0$. Neka je $L\in V^*$ i $j:V\longrightarrow \overline{\mathbb{R}}$ konveksan, odozdo poluneprekidan funkcional i $J(v)=\frac{1}{2}b(v,v)+j(v)-L(v)$. Tada problem minimizacije (\star)

Naći
$$u \in V \ t.d. \ J(u) \le J(v), \ \forall v \in V.$$
 (*)

ima jedinstveno rješenje. Dodatno, $u \in V$ je rješenje od (\star) ako i samo ako $u \in V$ rješava

$$b(u, v - u) + j(v) - j(u) \ge L(v - u), \ \forall v \in V.$$
 (\triangle)

Teorem 1.6

Problem (P_2) ima jedinstveno rješenje.

Ideja dokaza.

Za svaki $u \in V$ i $\rho > 0$ definiramo pomoćnu zadaću: *Naći* $w \in V$ t.d. za svaki $v \in V$ vrijedi

$$\langle w, v - w \rangle + \rho j(v) - \rho j(w) \ge \langle u, v - w \rangle + \rho L(v - w) - \rho a(u, v - w).$$
 (π^u_ρ)

Iz Leme 1.5 slijedi da za svaki $u\in V$ i $\rho>0$ postoji jedinstveno rješenje zadaće (π^u_ρ) pa je dobro definirano preslikavanje

$$f_{\rho}: V \longrightarrow V, \quad f_{\rho}(u) = w,$$

gdje je w jedinstveno rješenje od (π_{ρ}^u) . Dokaže se da je f_{ρ} stroga kontrakcija pa iz Banachovog teorema fiksne točke slijedi da postoji jedinstveni $u \in V$ takav da $f_{\rho}(u) = u$ koji onda rješava i (P_2) .

Aproksimacija problema (P_1)

Za parametar h takav da $h \to 0$ definiramo niz zatvorenih potprostora $(V_h)_h$ takav da $V_h \le V$ za svaki h. Definiramo i familiju nepraznih, zatvorenih, konveksnih skupova $(K_h)_h$ takvu da za svaki h vrijedi $K_h \subseteq V_h$ i koja zadovoljava sljedeća svojstva:

(i) Ako je $(v_h)_h$ niz takav da $v_h \in K_h, \forall h$ i $(v_h)_h$ je ograničen u V, tada vrijedi

$$\lim_{h\to 0} v_h \stackrel{w}{=} v \implies v \in K.$$

(ii) Postoje $\chi \subset V$, $\overline{\chi} = K$ i $r_h : \chi \longrightarrow K_h$ takvi da za svaki $v \in \chi$ vrijedi $\lim_{h \to 0} r_h v = v$.

Problem (P_1) aproksimiramo zadaćom:

Naći
$$u_h \in K_h$$
 t.d. $a(u_h, v_h - u_h) \ge L(v_h - u_h), \ \forall v_h \in K_h.$ (P_{1h})

Teorem 1.7

Varijacijske nejednakosti 00000000000

> Neka K_h i V_h zadovoljavaju (i) i (ii) i neka je u rješenje zadaće (P_1) , a u_h rješenje (P_{1h}) . Tada vrijedi

$$\lim_{h\to 0}\|u_h-u\|=0.$$

Ideja dokaza.

Dokaz provodimo u tri dijela:

- (i.) uniformna ograničenost niza $(u_h)_h$,
- (ii.) slaba konvergencija niza $(u_h)_h$ prema u koji rješava zadaću $(P_1)_h$
- (iii.) jaka kovergencija niza $(u_h)_h$ prema u.

Motivacija

Za neprekidnu funkciju $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ i $S \subset \mathbb{R}^n$, $S \neq \emptyset$ rješavamo problem

$$\min_{x \in S} f(x)$$
.

Ideja pronalaska rješenja penalizacijom je da se ono pokuša naći na cijelom prostoru \mathbb{R}^n , a funkciji cilja prethodno dodajemo penalizacijski član. Odnosno, radimo sljedeću zamjenu

$$\min_{x \in S} f(x) \iff \min_{x \in \mathbb{R}^n} f_c(x) := \min_{x \in \mathbb{R}^n} (f(x) + cP(x)),$$

uz c>0. Funkciju $P:\mathbb{R}^n\longrightarrow\mathbb{R}$ nazivamo penalizacijskom funkcijom i odabiremo je tako da vrijede sljedeća svojstva

- $P(x) \geq 0, \ \forall x \in \mathbb{R}^n$,
- $P(x) = 0 \Leftrightarrow x \in S$.

Za minimizaciju realne funkcije na intervalu $[a,b]\subseteq\mathbb{R}$, definiramo $S=\{x\in\mathbb{R}:x\leq b,\,x\geq a\}$ i penalizacijsku funkciju

$$P(x) = \frac{1}{2} \left[((x-b)_{+})^{2} + ((a-x)_{+})^{2} \right]$$

Penalizacija varijacijskih nejednakosti

Neka je dodatno $j: V \longrightarrow \mathbb{R} \cup \{+\infty\}$ odozdo slabo nizovno poluneprekidan funkcional koji će imati ulogu penalizacijske funkcije P pa dodatno pretpostavljamo:

Pretpostavke 2.1

- $j(v) = 0 \Leftrightarrow v \in K$,
- $j(v) \geq 0$, $\forall v \in V$.

Za $\epsilon > 0$ definiramo $j_{\epsilon} := \frac{1}{\epsilon} j$ pa penalizacija problema (P_1) glasi: Naći u_e ∈ V takav da

$$a(u_{\epsilon}, v - u_{\epsilon}) + j_{\epsilon}(v) - j_{\epsilon}(u_{\epsilon}) \ge L(v - u_{\epsilon}), \ \forall v \in V.$$
 (2)

- Prethodna nejednakost je oblika (P_2) pa iz Teorema 1.6 slijedi da za svaki $\epsilon>0$ postoji jedinstveno rješenje u_ϵ .
- Uz simetričnu $a(\cdot, \cdot)$, prema Lemi 1.5, penalizirani problem (2) ekvivalentan je minimizaciji funkcionala J_{ϵ} na V, gdje je

$$J_{\epsilon}(v) := \frac{1}{2}a(v,v) - L(v) + j_{\epsilon}(v).$$

Napomena 2.2

Neka je j_{ϵ} Gateaux diferencijabilan funkcional, tada je u_{ϵ} rješenje problema (2) ako i samo ako

$$a(u_{\epsilon}, v) + \langle j'_{\epsilon}(u_{\epsilon}), v \rangle = L(v), \ \forall v \in V.$$
 (3)

Teorem 2.3

Ako vrijede Pretpostavke 1.1 i 2.1, tada je

$$\lim_{\epsilon \to 0} \ \|u_\epsilon - u\| = 0 \ \ \text{i} \ \ \lim_{\epsilon \to 0} j_\epsilon(u_\epsilon) = 0,$$

gdje je u_{ϵ} rješenje (2), a u rješenje (P_1).

Ideja dokaza.

Dokaz provodimo u tri dijela:

(i.) uniformna ograničenost niza $(u_{\epsilon})_{\epsilon}$ i ocjena

$$0 \le j(u_{\epsilon}) \le D\epsilon, \quad D > 0, \tag{4}$$

- (ii.) slaba konvergencija niza $(u_{\epsilon})_{\epsilon}$ prema u koji rješava zadaću $(P_1)_{\epsilon}$
- (iii.) jaka kovergencija niza, tj.

$$\lim_{\epsilon \to 0} \|u_{\epsilon} - u\| = 0 \text{ i } \lim_{\epsilon \to 0} j_{\epsilon}(u_{\epsilon}) = 0.$$

Ravnoteža štapa duljine l pri djelovanju sile f, uz Dirichletove rubne uvjete, opisana je sljedećom rubnom zadaćom:

$$\begin{cases} -(EIu'')'' = f \\ u(0) = u(I) = 0 \\ u'(0) = u'(I) = 0. \end{cases}$$

$$V := H_0^2(0, I) = \{ v \in H^2(0, I) : v(0) = v'(0) = 0, v(I) = v'(I) = 0 \}$$

Množenjem jednadžbe štapa s $v \in V$, integriranjem na (0, I) i parcijalnom integracijom dolazimo do slabe formulacije

Naći
$$u \in V$$
 t.d. $a(u, v) = L(v), \forall v \in V$,

gdje su

$$a(u, v) = \int_0^1 E I u'' v'', \qquad L(v) = \int_0^1 f v.$$

Neka je dana funkcija $P \in H^2(0, I)$ za koju vrijedi $P(0), P(I) \leq 0$. Problem prepreke za Euler-Bernoullijev štap definiramo kao

Naći
$$u \in K \ t.d. \ a(u, v - u) \ge L(v - u), \ \forall v \in K$$
 (P)

Problem prepreke za elastični štap

gdje je

$$K := \{v \in V : v \geq P \text{ na } [0, I]\} \subseteq V.$$

(P) ima oblik varijacijske nejednakosti (P_1) pa za postojanje jedinstvenog rješenja treba provjeriti pretpostavke Teorema 1.2. (i.) V je zatvoreni potprostor od $H^2(0, I)$ pa je i sam Hilbertov. Korištenjem ulaganja $H^1(0, I) \hookrightarrow C([0, I])$.

Problem prepreke za elastični štap

- (ii.) <u>a neprekidna, koercitivna, bilinearna forma.</u>
 Neprekidnost i koercitivnost slijede iz Hölderove i Poincaréove nejednakosti redom.
- (iii.) <u>L neprekidan, linearan funkcional.</u> $f \in L^2(0, I)$ pa tvrdnja slijedi korištenjem Hölderove nejednakosti.
- (iv.) $\frac{K \text{ neprazan } i \text{ konveksan.}}{\text{Za dokazati da je } K \text{ neprazan, konstruiramo afinu funkciju, ozn.}}{g, kroz točke <math>(0, P(0))$ i (I, P(I)) pa je $v := P g \in K$.
- (v.) <u>K zatvoren.</u> $(v_n)_n \subseteq K$ niz t.d. $v_n \xrightarrow{H^2} v \implies v_n \xrightarrow{H^1} v$. $H^1(0, I) \hookrightarrow C([0, I]) \implies v_n(x) \longrightarrow v(x), \forall x \implies v \in K$.

Diskretni problem prepreke

- Ekvidistantna mreža $M_h := \{x_i : i = 0, \dots, n\}$ na (0, l).
- Kubični polinomi φ_i čije koeficijente određujemo iz vrijednosti polinoma i njihovih derivacija u čvorovima mreže M_h .
- $V_h := span\{\varphi_i : i = 0, \dots, 2n + 1\}.$
- $K_h := \{v_h \in V_h : v_n(x_i) \ge P(x_i), \forall x_i \in M_h\}.$

Aproksimacija za (P) sada glasi:

Naći
$$u_h \in K_h$$
 t.d. $a(u_h, v_h - u_h) \ge L(v_h - u_h), \ \forall v_h \in K_h, \quad (P_h)$

a iz Teorema 1.2 slijedi da (P_h) ima jedinstveno rješenje.

Teorem 3.1

Neka je u_h rješenje problema (P_h) , a u rješenje (P). Tada za $h \to 0$ vrijedi

$$||u - u_h||_{H^2} \to 0.$$

Kako konkretno odrediti polinome φ_i ? Za $u_h \in V_h$ imamo zapis

$$u_h = \sum_{i=0}^n \alpha_{2i} \varphi_{2i} + \alpha_{2i+1} \varphi_{2i+1}$$

Problem prepreke za elastični štap

i želimo da vrijedi $u_h(x_i) = \alpha_{2i}, \ u'_h(x_i) = \alpha_{2i+1}$ za $x_i \in M_h$. Dakle, trebaju nam polinomi takvi da za $i, j = 0, \ldots, n$ vrijedi

$$\begin{cases} \varphi_{2i}(x_j) = \delta_{ij}, & \varphi'_{2i}(x_j) = 0, \\ \varphi_{2i+1}(x_j) = 0, & \varphi'_{2i+1}(x_j) = \delta_{ij}. \end{cases}$$

Doprinosi baznih funkcija na element $[x_i, x_{i+1}]$.

Penalizacija diskretnog problema prepreke (P_h)

Za proizvoljne $u_h, v_h \in V_h$ vrijede zapisi u bazi

$$u_h = \sum_{j=0}^{2n+1} \alpha_j \varphi_j, \quad v_h = \sum_{j=0}^{2n+1} \beta_j \varphi_j$$

Neka su $x := (\alpha_j)_{j=0}^{2n+1}$ i $y := (\beta_j)_{j=0}^{2n+1}$. Vrijedi

$$a(u_h, v_h) = \langle Cx, y \rangle, \quad L(v_h) = \langle F, y \rangle,$$

gdje je matrica krutosti definirana s $C_{i,j} := a(\varphi_j, \varphi_i)$, a $F_i := L(\varphi_i)$. Neprazan, zatvoren, konveksan podskup definiramo iz K_h :

$$\tilde{K} := \{ y \in \mathbb{R}^{2n+2} : y_{2i} \ge P_i, i = 0, \dots, n \},$$

gdje je $P_i = P(x_i)$.

(P_h) se sada može zapisati kao

Naći
$$x \in \tilde{K} \ t.d. \langle Cx, y - x \rangle \ge \langle F, y - x \rangle, \ \forall y \in \tilde{K}.$$
 (5)

Definiramo još i funkcional $j: \mathbb{R}^{2n+2} \longrightarrow \mathbb{R}$:

$$j(y) := \frac{1}{2} \sum_{i=0}^{n} (P_i - y_{2i})_+^2$$

koji zadovoljava Pretpostavke 1.1 i 2.1:

- *j* je konveksan,
- j je slabo nizovno poluneprekidan odozdo,
- $j(y) = 0 \Leftrightarrow y \in \tilde{K}$,
- $j(y) \geq 0$, $\forall y \in \mathbb{R}^{2n+2}$.

Stoga, penalizacija od (5) glasi: *Naći* $x_{\epsilon} \in \mathbb{R}^{2n+2} t.d.$

$$\langle Cx_{\epsilon}, y - x_{\epsilon} \rangle + j_{\epsilon}(y) - j_{\epsilon}(x_{\epsilon}) \ge \langle F, y - x_{\epsilon} \rangle, \ \forall y \in \mathbb{R}^{2n+2}.$$
 (6)

Primjer 3.2

Neka su $N, m \in \mathbb{N}, m \geq 2$ i $F : \mathbb{R}^N \longrightarrow \mathbb{R}$ funkcija definirana s $F(x) = (x_i)_+^m$ za neki $1 \leq i \leq N$. F je diferencijabilna u klasičnom smislu i vrijedi $\nabla F(x) = m(x_i)_+^{m-1} e_i$.

Za i = 0, ..., n i konstantni vektor $P = (P_i)_{i=0}^n = (P(x_i))_{i=0}^n$, gdje su $x_i \in M_h$, definiramo pomoćne funkcije:

 $h: \mathbb{R} \longrightarrow \mathbb{R}, \ h(z) := (z_+)^2 \quad \text{i} \quad g_i: \mathbb{R}^{2n+2} \longrightarrow \mathbb{R}, \ g_i(y) = P_i - y_{2i}$

pomoću kojih j ima alternativni zapis

$$j(y) = \frac{1}{2} \sum_{i=0}^{n} (P_i - y_{2i})_+^2 = \frac{1}{2} \sum_{i=0}^{n} h(g_i(y)).$$

Dakle, j je konačna suma funkcionala kao u prethodnom primjeru, ali u kompoziciji s afinim funkcijama. Iz lančanog pravila slijedi da je i j diferencijabilan pa je Gateauxova derivacija jednaka klasičnoj. Preciznije, imamo

$$j'(y) = \nabla j(y) = \frac{1}{2} \sum_{i=0}^{n} h'(g_i(y)) \nabla g_i(y) = \frac{1}{2} \sum_{i=0}^{n} -2(P_i - y_{2i})_+ e_{2i}$$
$$= -\left[(P_0 - y_0)_+ \quad 0 \quad (P_1 - y_2)_+ \quad 0 \quad \dots \quad (P_n - y_{2n})_+ \quad 0 \right]^T.$$

Uz Napomenu 2.2, x_{ϵ} je rješenje (6) ako i samo ako zadovoljava

$$\langle Cx_{\epsilon}, y \rangle + \langle j_{\epsilon}'(x_{\epsilon}), y \rangle = \langle F, y \rangle, \ \forall y \in \mathbb{R}^{2n+2},$$

gdje je
$$j_{\epsilon}=rac{1}{\epsilon}j.$$

Odnosno, x_{ϵ} je jedinstveno rješenje nelinearnog sustava

$$Cx_{\epsilon} - \frac{1}{\epsilon}(P - x_{\epsilon})_{+} = F \tag{7}$$

gdje su

$$x_{\epsilon} = \begin{bmatrix} x_0^{\epsilon} & x_1^{\epsilon} & x_2^{\epsilon} & x_3^{\epsilon} & \dots & x_{2n}^{\epsilon} & x_{2n+1}^{\epsilon} \end{bmatrix}^T$$

$$(P-x_{\epsilon})_{+}=\begin{bmatrix} (P_{0}-x_{0}^{\epsilon})_{+} & 0 & (P_{1}-x_{2}^{\epsilon})_{+} & \dots & (P_{n}-x_{2n}^{\epsilon})_{+} & 0 \end{bmatrix}^{T}.$$

Za rješenje problema (P_h) treba promatrati niz rješenja (7) kako $\epsilon \to 0$, a budući da je dobivena jednadžba nelinearna, trebamo iskoristiti neku numeričku metodu koja aproksimira rješenje x_{ϵ} .

Gradijentne metode

U (7) prepoznajemo gradijent funkcionala $J_\epsilon: \mathbb{R}^{2n+2} \longrightarrow \mathbb{R}$ definiranog s

$$J_{\epsilon}(x) = \frac{1}{2}\langle Cx, x \rangle + j_{\epsilon}(x) - \langle F, x \rangle.$$

Primijenimo Lemu 1.5 na penalizirani diskretni problem prepreke (6) \implies rješenje tražimo minimizacijom funkcionala J_{ϵ} .

Gradijentne metode za minimizaciju generiraju niz točaka $x^{(k)}$ takvih da $J_{\epsilon}(x^{(k+1)}) < J_{\epsilon}(x^{(k)})$ počevši od neke zadane aproksimacije $x^{(0)} \in \mathbb{R}^{2n+2}$:

$$\begin{cases}
s^{(k)} = -\nabla J_{\epsilon}(x^{(k)}), \\
\lambda^{(k)} = \operatorname{argmin}_{\lambda > 0} J_{\epsilon}(x^{(k)} + \lambda s^{(k)}), \\
x^{(k+1)} = x^{(k)} + \lambda^{(k)} s^{(k)}, \\
k = k + 1.
\end{cases} (8)$$

Za razliku od gore navedenih iteracija, smjer $s^{(k)}$ ćemo birati kao $s^{(k)} = -C^{-1}\nabla J_{\epsilon}(x^{(k)})$, gdje je C matrica krutosti. Za računanje koraka $\lambda^{(k)}$ koristimo neegzaktno pretraživanje po pravcu.

Problem prepreke za elastični štap

- (i.) Jednostavne iteracije. Radimo korak gradijentne metode ako je zadovoljeno $J(x^{(k)} + \lambda s^{(k)}) < J(x^{(k)})$ i pritom prilagođavamo veličinu $\lambda^{(k)}$.
- (ii.) Backtracking. Krenemo od relativno velikog koraka $\lambda^{(0)}$ koii iterativno smanjujemo sve dok Armijo-Goldstein uvjeti:

$$J_{\epsilon}(x^{(k)}) - J_{\epsilon}(x^{(k+1)} + \lambda s^{(k)}) \ge -\lambda \alpha \langle \nabla J_{\epsilon}(x^{(k)}), s^{(k)} \rangle$$

ne budu ispunjeni, uz neki unaprijed odabrani $\alpha \in (0,1)$.

Algoritam 3.3: Gradijentna metoda za (7) uz jednostavne iteracije

Problem prepreke za elastični štap

Ulaz: $x^{(0)} \in \mathbb{R}^{2n+2}$, $\epsilon > 0$, $\eta > 0$

Izlaz: $x^{(k)} \approx x_{\epsilon}$

Sve dok $\|\nabla J_{\epsilon}(x^{(k)})\| \geq \eta$:

1.
$$s^{(k)} = -C^{-1}\nabla J_{\epsilon}(x^{(k)})$$

2.
$$y = x^{(k)} + \lambda^{(k-1)}s^{(k)}$$

3. Ako
$$J_{\epsilon}(y) < J_{\epsilon}(x^{(k)})$$
:
i. $x^{(k+1)} = y$

ii.
$$\lambda^{(k)} = 2\lambda^{(k-1)}$$

iii.
$$k = k + 1$$

4. Inače:
$$\lambda^{(k-1)} = \lambda^{(k-1)}/2$$

Algoritam 3.4: Gradijentna metoda za (7) uz Armijo-Goldsteinov uvjet

Problem prepreke za elastični štap

Ulaz: $x^{(0)} \in \mathbb{R}^{2n+2}$, $\epsilon, \eta > 0, \rho = 1, \alpha = 0.5, \beta \in (0.5, 0.8)$

Izlaz: $x^{(k)} \approx x_c$

Sve dok $\|\nabla J_{\epsilon}(x^{(k)})\| \geq \eta$:

- 1. $s^{(k)} = -C^{-1}\nabla J_{\epsilon}(x^{(k)})$
- 2. $f(\lambda) := J_{\epsilon}(x^{(k)} + \lambda s^{(k)}) J_{\epsilon}(x^{(k)}) \lambda \alpha \langle \nabla J_{\epsilon}(x^{(k)}), s^{(k)} \rangle$
- 3. $\lambda^{(k)} = \rho$
- 4. Sve dok $f(\lambda^{(k)}) > 0$: $\lambda^{(k)} = \beta \lambda^{(k)}$
- $5 x^{(k+1)} = x^{(k)} + \lambda^{(k)} s^{(k)}$
- 6. k = k + 1

Newtonova metoda

Problem prepreke za elastični štap

Općenito, rješava jednadžbu G(x)=0 za neku $G:\mathbb{R}^N\longrightarrow\mathbb{R}^N$. Uz dobro odabranu početnu točku $x^{(0)}\in\mathbb{R}^N$, algoritam glasi:

$$\begin{cases} & \textit{rije} \check{\textit{siti}} \; \textit{sustav} \; \; \nabla \textit{G}(\textit{x}^{(k)}) \textit{z} = -\textit{G}(\textit{x}^{(k)}), \\ & \textit{x}^{(k+1)} = \textit{x}^{(k)} + \textit{z}, \\ & \textit{k} = \textit{k} + 1. \end{cases}$$

Mogući problemi u izvršavanju algoritma:

- (i.) evaluacija funkcije G, gradijenta funkcije G i rješavanje sustava u svakoj iteraciji,
- (ii.) gradijent nije dobro definiran.

Za riješiti (7) trebalo bi uzeti $G(x) = Cx + j'_{\epsilon}(x) - F$ i N = 2n + 2, gdje je

Problem prepreke za elastični štap

$$j'(x) = -\begin{bmatrix} (P_0 - x_0)_+ & 0 & (P_1 - x_2)_+ & 0 & \dots & (P_n - x_{2n})_+ & 0 \end{bmatrix}^T.$$

Međutim, sada se postavlja pitanje računanja Jacobijeve matrice funkcije j'_{ϵ} . Naime, funkcija $x \mapsto x_+$ nije diferencijabilna u $x = 0 \in \mathbb{R}$ pa, slično, j'_{ϵ} ima problem u točkama oblika

$$\begin{cases} x = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 & \dots & x_{2n} & x_{2n+1} \end{bmatrix}^T, \\ x_{2i} = P_i \text{ za barem jedan indeks } i \in \{0, 1, \dots, n\}, \end{cases}$$

gdje su $x_1, x_2, \ldots, x_{2n+1} \in \mathbb{R}$.

Definiramo funkciju zadanu matricom $M:\mathbb{R}^{2n+2}\longrightarrow\mathbb{R}^{(2n+2)^2}$ koja će imati ulogu gradijenta funkcionala j'_ϵ

$$M(y) := diag(m_0(y_0) \ 0 \ m_2(y_2) \ 0 \ \dots \ m_{2n}(y_{2n}) \ 0),$$

gdje su funkcije $m_i: \mathbb{R} \longrightarrow \mathbb{R}^+$, zadane sa

$$m_{2i}(y_{2i}) = \begin{cases} 1 & P_i > y_{2i}, \\ 0 & P_i \leq y_{2i}. \end{cases}$$

Newtonove iteracije sada imaju oblik

$$x^{(k+1)} = x^{(k)} - (C + \frac{1}{\epsilon}M(x^{(k)}))^{-1}G(x^{(k)}),$$

gdje je $G(x) = Cx + j'_{\epsilon}(x) - F$.

Algoritam 3.5: Newtonov algoritam za (7)

Ulaz: $x^{(0)} \in \mathbb{R}^{2n+2}$. $\epsilon > 0$. n > 0

Izlaz: $x^{(k)} \approx x_{\epsilon}$

Sve dok $||x^{(k-1)} - x^{(k)}|| / ||x^{(k)}|| \ge \eta$:

1. riješiti sustav $(C + \frac{1}{\epsilon}M(x^{(k)}))z = Cx^{(k)} + j'_{\epsilon}(x^{(k)}) - F$

Problem prepreke za elastični štap 00000000000000000000

- $2 x^{(k+1)} = x^{(k)} z$
- 3. k = k + 1

Algoritam 3.5 možemo iskoristiti za pretraživanje po pravcu u algoritmu gradijentne metode (8) u kojem minimiziramo funkciju $f(\lambda) = J_{\epsilon}(x^{(k)} + \lambda s^{(k)})$, tj. tražimo $\lambda > 0$ takav da $f'(\lambda) = 0$. Trebaju nam još:

$$f'(\lambda) = \langle \nabla J(x^{(k)} + \lambda s^{(k)}), s^{(k)} \rangle,$$

$$f''(\lambda) = \langle s^{(k)}, \nabla^2 J_{\epsilon}(x^{(k)} + \lambda s^{(k)}) s^{(k)} \rangle.$$

Umjesto $\nabla^2 J_{\epsilon}(x)$ koristimo $C + \frac{1}{\epsilon} M(x^{(k)})$ pa iteracije, za aproksimaciju $\lambda^{(k)}$, glase:

$$\lambda^{(j+1)} = \lambda^{(j)} - \frac{f'(\lambda^{(j)})}{f''(\lambda^{(j)})}.$$

Ekvivalencije diskretnog problema prepreke

Naći $x \in \tilde{K}$ t.d

(i.)
$$\langle Cx, y - x \rangle \ge \langle F, y - x \rangle$$
, $\forall y \in \tilde{K}$,

(ii.)
$$J(x) \leq J(y) = \frac{1}{2} \langle Cy, y \rangle - \langle F, y \rangle, \ \forall y \in \tilde{K}.$$
 \longrightarrow Octave funkcija 'qp'

Naći $x_{\epsilon} \in \mathbb{R}^{2n+2}$ t.d.

(i.)
$$\langle Cx_{\epsilon}, y - x_{\epsilon} \rangle + j_{\epsilon}(y) - j_{\epsilon}(x_{\epsilon}) \ge \langle F, y - x_{\epsilon} \rangle, \ \forall y \in \mathbb{R}^{2n+2},$$

(ii.)
$$J_{\epsilon}(x_{\epsilon}) \leq J_{\epsilon}(y) = \frac{1}{2} \langle Cy, y \rangle + j_{\epsilon}(y) - \langle F, y \rangle, \ \forall y \in \mathbb{R}^{2n+2},$$

 \longrightarrow Penalizacija uz Gradijentnu m. (Alg. 3.3, 3.4 ili Nap. 3.6).

(iii.)
$$\langle Cx_{\epsilon}, y \rangle + \langle j'_{\epsilon}(x_{\epsilon}), y \rangle = \langle F, y \rangle, \ \forall y \in \mathbb{R}^{2n+2}.$$
 \longrightarrow Penalizacija uz Newtonovu m. (Alg. 3.5).

Treba promatrati niz rješenja (7) kada $\epsilon \to 0$ i pri tome radimo zamjenu $\frac{1}{\epsilon} \leftrightarrow \overline{\epsilon}$ počevši primjerice od $\overline{\epsilon} = 10$.

Za početnu aproksimaciju $x^{(0)}$ uzimamo rješenje problema bez prepreke, a dobiveni niz aprosimacija x_{ϵ} uspoređujemo s rješenjem Octave funkcije 'qp' koja rješava problem kvadratnog programiranja uz uvjete (ozn. \overline{x}).

Algoritam 4.1: Algoritam penalizacije za (P_h)

Ulaz: $x^{(0)} \in \mathbb{R}^{2n+2}$, $\overline{\epsilon} > 0$, $\eta > 0$, $\tau = 10$

Izlaz: $x^{(IT)} \approx x$

Sve dok $||x^{(IT-1)} - x^{(IT)}|| \ge \eta \quad \forall \quad j_{\epsilon}(x^{(IT)}) \ge \eta$:

- 1. Riješiti (7) pomoću Algoritma 3.3, 3.4, 3.5 ili Napomene 3.6
- 2. IT = IT + 1
- 3. $\overline{\epsilon} = \tau \overline{\epsilon}$

Ako u svim primjerima uzimamo da je poprečni presjek pravokutnik P visine h i širine w, za modul smicanja I dobivamo sljedeće:

$$I(x) = \iint_P y^2 dy dz = \int_{-d/2}^{d/2} \int_{-h/2}^{h/2} y^2 dy dz = \frac{1}{3} \frac{h^3}{4} w.$$

Napomena 4.2

U svim simulacijama koje koriste neku verziju gradijentne metode treba kontrolirati broj iteracija. Točnije, nije poželjno da, za neki $\bar{\epsilon}$, algoritam penalizacije previše vremena provede u gradijentnoj metodi.

Uvodni primjer

$$I = 2m$$
, $E = 2 \times 10^{11} Pa$ (čelik), $f = -2000 N$, $h = 0.5 cm = 0.005 m$, $w = 3 cm = 0.03 m$, $P = -1$, $\eta = 10^{-4}$.

Slika: Niz aproksimacija x_{ϵ} Algoritma 4.1 dobivenih Newtonovom metodom

Slika: Za svaku iteraciju algoritma penalizacije računamo $\|x_\epsilon - \overline{x}\|_2$, gdje je \overline{x} aproksimacija dobivena Octave funkcijom 'qp', a x_ϵ su dobiveni različitim varijantama gradijentne metode, $\eta = 10^{-4}$

Uspoređujemo gradijentnu metodu (s Newtonovim pretraživanjem po pravcu) i Newtonov algoritam 3.5. Povećanjem točnosti na $\eta = 10^{-8}$, gradijentna metoda ne konvergira. Uz već uvedeno ograničenje na 10 iteracija, uvodimo i ograničenje na broj iteracija u dijelu koji pretražuje po pravcu (v. Napomena 4.2). Ipak, za svaki $\bar{\epsilon}$ Algoritam 4.1 više vremena provede u gradijentnoj metodi nego u Newtonovoj.

$\overline{\epsilon}$	1	10	10 ²	10^{3}	10 ⁴	10 ⁵	10^{6}
G.M.	6	10	10	10	10	10	10
N.M.	2	3	3	4	4	4	3

$\overline{\epsilon}$	10 ⁷	10 ⁸	10 ⁹	10^{10}	10^{11}	10 ¹²
G.M.	10	10	10	10	10	10
N.M.	2	1	1	1	1	1

Tablica: Broj iteracija gradijentne (G.M) i Newtonove metode (N.M.) za svaki $\bar{\epsilon}$ u Algoritmu 4.1. $n=10^{-8}$

Primjer: Ovisnost o obliku prepreke

$$I=4m, E=6.9\times 10^{10} Pa$$
 (aluminij), $\eta=10^{-8}, f=0,$ $P_1(x)=\sin(\frac{\pi}{4}x)-0.4$ i $P_2(x)=(1-4(x-1)^2)((x-1)^2-0.5)+1.$

Slika: Algoritam penalizacije za P_1 . $\eta = 10^{-8}$

Slika: Algoritam penalizacije za P_2 . $\eta = 10^{-8}$

Slika: Vrijednosti $\|x_{\epsilon} - \overline{x}\|_2$ za P_1 , $\eta = 10^{-8}$

Slika: Vrijednosti $||x_{\epsilon} - \overline{x}||_2$ za P_2 , $\eta = 10^{-8}$

Za sve metode možemo usporediti i vrijeme izvršavanja ukupnog algoritma penalizacije uz sve oblike gradijentne metode i Newtonovu metodu.

[s]	Alg. 3.3	Alg. 3.4	Nap. 3.6	Alg. 3.5
P_1	4.75	34.824	6.693	1.253
P_2	4.758	37.645	2.183	1.12179

Primjer: Izbor penalizacijskog funkcionala

Pretpostavimo da smo, za neki $m \ge 3$, definirali

$$j_{\epsilon}^{m}(x) := \frac{1}{m\epsilon} \sum_{i=0}^{n} (P_{i} - x_{2i})_{+}^{m}.$$

Za svaki $m \ge 3$ vrijedi $j_{\epsilon}^m \in C^{m-1}$ (v. Primjer 3.2) \implies svi su klase barem C^2 .

$$I=4m,~E=6.9 \times 10^{10} Pa$$
 (aluminij), $P(x)=-0.1,~f=-10N,~\eta=10^{-6}.$

Kao rezultat imamo da je za m>2 potreban veći broj iteracija čime se i povećava vrijeme izvršavanja algoritma, a i postižemo manji pad norme razlike.

Slika: Vrijednosti $||x_{\epsilon} - \overline{x}||_2$ dobivenih Newtonovom metodom, $\eta = 10^{-6}$

Slika: Algoritam penalizacije za m=4 i $\eta=10^{-6}$