8 BIT BINARY COUNTER WITH INPUT REGISTER (3-STATE)

- HIGH SPEED f_{MAX} = 80 MHz (TYP.) AT V_{CC} = 5 V
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } T_A = 25 \text{ °C}$
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS FOR RCO 15 LSTTL LOADS FOR Qn
- BALANCED PROPAGATION DELAYS

 tpi H = tpHi
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- WIDE OPERATING VOLTAGE RANGE V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS593

DESCRIPTION

The M54/74HC593 is a high speed CMOS 8 BIT REGISTER COUNTER (3 STATE) fabricated with silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.

The M54/74HC593 consists of a parallel input, 8 bit storage register feeding an 8 bit binary counter. Both the register and the counter have individual positive edge-triggered clock. In addition, the counter has direct load and clear functions. Expansion is easily accomplished by connecting RCO of first stage to the count enable CCKEN, of the second stage etc.

The M54/74HC593 comes in a 20 pin package and has 3 state I/O, which provides parallel counter outputs.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

October 1993 1/12

INPUT AND OUTPUT EQUIVALENT CIRCUIT

TRUTH TABLE

				INPUTS	3				FUNCTION
G	G	CCLR	CCKEN	CCKEN	ССК	CLOAD	RCKEN	RCK	TONCTION
L	Н	X	Х	Х	Х	X	Х	Х	ALL Q BUS BECOME HIGH Z AND CAN BE APPLIED ANY DATA
Н	Х	Χ	X	Χ	X	Χ	Χ	Х	THE OUTPUT DATA OF THE
Х	L	Х	Х	Х	Х	Х	Х	Х	COUNTER IS ENABLE ON QA THRU QH
Х	Χ	L	Х	Х	Х	Н	Х	Х	COUNTER IS CLEARED TO ZERO
Х	Х	Н	Х	Х	Х	L	Х	Х	THE DATA OF Q BUS IS LOADED INTO COUNTER
Х	Χ	Н	Н	Х		Н	Χ	Х	COUNTER ADVANCES THE
Χ	Χ	Η	Х	Ш		Η	Χ	Χ	COUNT
Х	Χ	Η	Н	Χ		Η	X	Х	NO COUNT
Х	Χ	Н	Х	L		Н	Χ	Х	
Χ	Χ	Н	L	Н	Х	Н	Χ	Х	NO COUNT
Х	Х	X	Х	Х	Х	Х	Н	Х	REGISTER DATA IS NOT CHANGED
Х	Х	Х	Х	Х	Х	Х	L		REGISTER DATA IS NOT CHANGED
Х	Х	Х	Х	Х	Х	Х	L		THE DATA OF Q BUS IS STORED INTO REGISTER

X: Don't Care

 $\overline{\mathsf{RCO}} = \overline{\mathsf{QA'} \bullet \mathsf{QB'} \bullet \mathsf{QC'} \bullet \mathsf{QD'} \bullet \mathsf{QE'} \bullet \mathsf{QF'} \bullet \mathsf{QG'} \bullet \mathsf{QH'}}$

(QA' to QH': Internal outputs of the counter)

LOGIC DIAGRAM

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 2, 3, 4, 5, 6, 7, 8	A/QA to H/QH	Binary Outputs
9	CLOAD	Counter Clock Load Input
11	RCO	Ripple Carry Output
12	CCLR	Counter Clear Input
13	CCK	Counter Clock Input
14, 15	CCKEN, CCKEN	Counter Clock Enable Inputs
16	RCK	Register Clock Input
17	RCKEN	Register Clock Enable Input
18, 19	G, G	Output Enable
10	GND	Ground (0V)
20	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
Io	DC Output Source Sink Current Per Output Pin (RCO)	± 20	mA
	(QA - QH)	± 35	
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

(*) 500 mW: ≡ 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
Vcc	Supply Voltage		2 to 6	V
Vı	Input Voltage		0 to Vcc	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	ိုင
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 2 V$	0 to 1000	ns
		$V_{CC} = 4.5 \text{ V}$	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		T	est Co	nditions				Value				
Symbol	Parameter	Vcc (V)			A = 25 C C and 7			85 °C HC	1	125 °C HC	Unit	
		(V)			Min.	Min. Typ. Max		Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VIH	I _O =-20 μA	4.4	4.5		4.4		4.4		
	(RCO)	6.0	or		5.9	6.0		5.9		5.9		V
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	V _{IH}	I _O =-20 μA	4.4	4.5		4.4		4.4		\/
	(QA - QH)	6.0	or		5.9	6.0		5.9		5.9		V
		4.5	VIL	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-7.8 mA	5.68	5.8		5.63		5.60		
Vol	Low Level Output	2.0	V _I =	Ι _Ο = 20 μΑ		0.0	0.1		0.1		0.1	W
	Voltage	4.5	VI =			0.0	0.1		0.1		0.1	
	(RCO)	6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VIII	I ₀ = 20 μA		0.0	0.1		0.1		0.1	.,
	(QA - QH)	6.0	or			0.0	0.1		0.1		0.1	V
		4.5	V _{IL}	I _O = 6.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 7.8 mA		0.18	0.26		0.33		0.40	
II	Input Leakage Current	6.0	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
loz	3 State Output Off State Current	6.0		$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.5		±5.0		±10	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 6 \text{ ns}$)

		T	est Co	nditions				Value				
Symbol	Parameter	Vcc	C _L			_A = 25 ^c C and 7			85 °C HC	1	125 °C HC	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH}	Output Transition	2.0				30	75		95		110	
t_{THL}	Time (RCO)	4.5	50			8	15		19		22	ns
		6.0				7	13		16		19	
t _{TLH}	Output Transition	2.0				20	60		75		90	
t _{THL}	Time (Qn)	4.5	50			7	12		15		18	ns
		6.0				6	10		13		15	
t _{PLH}	Propagation	2.0				108	210		265		315	
t _{PHL}	Delay Time (CCK - Qn)	4.5	50			27	42		53		63	ns
		6.0				23	36		45		54	
		2.0				124	240		300		360	
		4.5	150			31	48		60		72	ns
		6.0				26	41		51		61	
t _{PLH}	Propagation	2.0				108	210		265		315	
t _{PHL}	Delay Time	4.5	50			27	42		53		63	ns
	(CLOAD - Qn)	6.0				23	36		45		54	
		2.0				124	240		300		360	
		4.5	150			31	48		60		72	ns
		6.0				26	41		51		61	
t _{PHL}	Propagation	2.0				112	220		275		330	
THE	Delay Time	4.5	50			28	44		55		66	ns
	(CCLR - Qn)	6.0				24	37		47		56	
		2.0				128	250		315		375	
		4.5	150			32	50		63		75	ns
		6.0				27	43		54		64	
t _{PLH}	Propagation	2.0				144	250		315		375	
t _{PHL}	Delay Time	4.5	50			36	50		63		75	ns
	(CCK - RCO)	6.0				31	10		54		64	
t _{PLH}	Propagation	2.0				152	295		370		445	
t _{PHL}	Delay Time	4.5	50			38	59		74		89	ns
	(CLOAD - RCO)	6.0				32	50		63		76	
t _{PLH}	Propagation	2.0				116	225		280		340	
tphL	Delay Time	4.5	50			29	45		56		68	ns
	(CCLR - RCO)	6.0				25	38		48		58	
t _{PLH}	Propagation	2.0				188	360		450		540	
t _{PHL}	Delay Time	4.5	50			47	72		90		108	ns
	(RCK - RCO)	6.0	-			40	61		77		93	
t _{PZL}	3 State Output	2.0				72	145		180		220	
tPZL tPZH	Enable Time	4.5	50	R _L = 1 KΩ		18	29		36		44	ns
		6.0				15	25		31		38	
		2.0				88	175		220		265	
		4.5	150	R _L = 1 KΩ		22	35		44		53	ns
		6.0	-			19	30		37	1	45	

AC ELECTRICAL CHARACTERISTICS (continued)

		Te	est Co	nditions				Value				
Symbol	Parameter	V _{CC}	C _L			_A = 25 ^c C and 7		1	85 °C HC	1	125 °C HC	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLZ}	3 State Output	2.0				80	140		175		210	
t _{PHZ}	Disable Time	4.5	50	$R_L = 1 K\Omega$		22	28		35		42	ns
		6.0				17	24		30		36	
f _{MAX}	Maximum Clock	2.0			5.4	4		4.4		3.6		
	Frequency	4.5	50		27	17		22		18		MHz
		6.0			32	20		26		21		
t _{W(H)}	Minimum Pulse	2.0				44	100		125		150	
$t_{W(L)}$	(L) Width (CCK, RCK)	4.5	50			11	20		25		30	ns
	(CCK, RCK)	6.0				9	17		21		26	
$t_{W(L)}$	Minimum Pulse	2.0				40	100		125		150	
	Width OLDAR	4.5	50			10	20		25		30	ns
	(CCLR, CLOAD)	6.0				9	17		21		26	
ts	Minimum Set-up	2.0				56	125		160		195	
	Time (CCKEN,	4.5	50			14	25		32		39	ns
	CCKEN, CCK)	6.0				12	21		27		33	
ts	Minimum Set-up	2.0				32	75		95		110	
	Time	4.5	50			8	15		19		22	ns
	(RCKEN - RCK)	6.0				7	13		16		19	
$t_{s(H)}$	Minimum Set-up	2.0				56	125		160		195	
	Time	4.5	50			14	25		32		39	ns
	(RCK - CLOAD)	6.0				12	21		27		33	
ts	Minimum Set-up	2.0				16	50		60		70	
	Time	4.5	50			4	10		12		14	ns
	(A to H - RCK)	6.0				3	9		11		12	
t _h	Minimum Hold	2.0				0	0		0		0	
	Time	4.5	50			0	0		0		0	ns
		6.0				0	0		0		0	
t_{REM}	Minimum Clear	2.0					5				5	
	Remuval Time	4.5	50				5		5		5	ns
	(CCLR, CLOAD)	6.0					5		5		5	
C _{IN}	Input Capacitance					5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance					19						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

Plastic DIP20 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.254			0.010				
В	1.39		1.65	0.055		0.065		
b		0.45			0.018			
b1		0.25			0.010			
D			25.4			1.000		
E		8.5			0.335			
е		2.54			0.100			
e3		22.86			0.900			
F			7.1			0.280		
I			3.93			0.155		
L		3.3			0.130			
Z			1.34			0.053		

Ceramic DIP20 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			25			0.984		
В			7.8			0.307		
D		3.3			0.130			
E	0.5		1.78	0.020		0.070		
e3		22.86			0.900			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
I	1.27		1.52	0.050		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N1			4° (min.),	15° (max.)				
Р	7.9		8.13	0.311		0.320		
Q			5.71			0.225		

SO20 MECHANICAL DATA

DIM.		mm		inch				
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			2.65			0.104		
a1	0.10		0.20	0.004		0.007		
a2			2.45			0.096		
b	0.35		0.49	0.013		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.50			0.020			
c1			45°	(typ.)				
D	12.60		13.00	0.496		0.512		
Е	10.00		10.65	0.393		0.419		
е		1.27			0.050			
e3		11.43			0.450			
F	7.40		7.60	0.291		0.299		
L	0.50		1.27	0.19		0.050		
М			0.75			0.029		
S			8° (r	max.)				

10/12

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.