Measurement error and missing data

Frank Edwards 5/1/2020

What is measurement error?

- When randomly sampling a unit from a larger population, we obtain a single value
- This single value x differs by an unknown amount from the true population value, μ . This is called sampling error.
- This means that our observation is but one of many possible values that could have been observed with a random sample of the population
- · Treating the observation as the **truth** is thus unwise

Divorce data again, now with measurement error!

```
library(rethinking)
data(WaffleDivorce)
d <- WaffleDivorce
head(d %>% select(Location, Divorce, Divorce.SE))
       Location Divorce Divorce.SE
##
## 1
       Alabama
                  12.7
                             0.79
## 2
        Alaska
                  12.5
                             2.05
                             0.74
## 3
       Arizona 10.8
                             1.22
## 4
      Arkansas 13.5
## 5 California
                   8.0
                             0.24
## 6
      Colorado
                  11.6
                             0.94
```

Visualizing the uncertainty

Error is a function of population size

The American Community Survey (ACS) samples a fixed percent of the population. Places with smaller populations have fewer sampled households and larger error

```
ggplot(d, aes(x = Population, y = Divorce.SE)) +
geom_point()
```

What this means in practice

```
NJ<-d %>% filter(Loc=="NJ") %>% select(Loc, Divorce, Divorce.SE)
NJ
```

```
## Loc Divorce Divorce.SE
## 1 NJ 6.1 0.46
```

Let's assume that NJ's true Divorce rate is in fact 6.1 (we got very luck in sampling!). Here's ten possible values we *could* have obtained instead of 6.1

```
rnorm(10, 6.1, 0.46)

## [1] 5.811831 6.184476 5.715611 6.833829 6.251574 5.722585 6.324217 6.439629

## [9] 6.364859 5.959521
```

What this means in practice

Let's say that the true divorce rate in NJ is 6.3, this is the density of possible observations with the one percent ACS sample.

```
samples<-rnorm(1e5, 6.3, 0.46)
plot(density(samples))</pre>
```


Treating the truth as a parameter

For each observed value of a state's divorce rate based on a sample, D_{obs_i} , there is a true state divorce rate D_{true_i} . The observation is one draw from the true sampling distribution

$$D_{\mathrm{obs}_i} \sim \mathrm{Normal}(D_{\mathrm{true}_i}, D_{\mathrm{SE}_i})$$

We don't observe $D_{
m true}$, but can estimate a posterior for it from our model, and incorporate uncertainty in measurement across the model.

Defining a model

 Note that we'll now be estimating uncertainty in divorce rates as we estimate our model of divorce rates!

$$egin{aligned} D_{\mathrm{obs}_i} &\sim \mathrm{Normal}(D_{\mathrm{true}_i}, D_{\mathrm{SE}_i}) \ D_{\mathrm{true}_i} &\sim \mathrm{Normal}(\mu_i, \sigma) \ \mu_i &= lpha + eta_A A_i + eta_M M_i \ &lpha &\sim \mathrm{Normal}(0, 1) \ η_A &\sim \mathrm{Normal}(0, 1) \ η_M &\sim \mathrm{Normal}(0, 1) \ &\sigma &\sim \mathrm{Exponential}(1) \end{aligned}$$

9

Estimating the model

```
d_slim<-list(
  D_obs = scale(d$Divorce), A = scale(d$MedianAgeMarriage),
  M = scale(d$Marriage), D_se = d$Divorce.SE / sd(d$Divorce),
  N = nrow(d))

m_error<-ulam(alist(
  D_obs ~ dnorm(D_true, D_se),
  vector[N]:D_true ~ dnorm(mu, sigma),
  mu<-a + bA * A + bM * M,
  a ~ dnorm(0, 0.2),
  bA ~ dnorm(0, 0.5),
  bM ~ dnorm(0, 0.5),
  sigma ~ dexp(1)
), data=d_slim, cores = 4, chains = 4)</pre>
```

Estimate a model with no measurement error adjustment for comparison

```
m_no_error<-ulam(alist(
    D_obs ~ dnorm(mu, sigma),
    mu<-a + bA * A + bM * M,
    a ~ dnorm(0, 0.2),
    bA ~ dnorm(0, 0.5),
    bM ~ dnorm(0, 0.5),
    sigma ~ dexp(1)
), data=d_slim, cores = 4, chains = 4)</pre>
```

Visualize the results

Visualize the results: error model posterior mu

Visualize the results: observed data (blue)

Visualize the results: model without error adjustment (red)

Visualize the results: magnitude of shrinkage

The posterior for each observation of D

Fitting this model with brms

Visualzing the brms inferences

Measurement error on both outcomes and predictors

Let's look at that data again

##		Loc	Marriage	Marriage.SE	Divorce	Divorce.SE
##	1	AL	20.2	1.27	12.7	0.79
##	2	AK	26.0	2.93	12.5	2.05
##	3	ΑZ	20.3	0.98	10.8	0.74
##	4	AR	26.4	1.70	13.5	1.22
##	5	CA	19.1	0.39	8.0	0.24
##	6	CO	23.5	1.24	11.6	0.94

What this means in practice

If we assume that the observed marriage and divorce values are the true value, the sampling distributions look like this

Incorporating two kinds of measurement error into our model

$$\begin{split} & D_{\mathrm{obs}_i} \sim \mathrm{Normal}(D_{\mathrm{true}_i}, D_{\mathrm{SE}_i}) \\ & D_{\mathrm{true}_i} \sim \mathrm{Normal}(\mu_i, \sigma) \\ & \mu_i = \alpha + \beta_A A_i + \beta_M M_{\mathrm{true}_i} \\ & M_{\mathrm{obs}_i} \sim \mathrm{Normal}(M_{\mathrm{true}_i}, M_{\mathrm{SE}_i}) \\ & M_{\mathrm{true}_i} \sim \mathrm{Normal}(0, 1) \\ & \alpha \sim \mathrm{Normal}(0, 1) \\ & \beta_A \sim \mathrm{Normal}(0, 1) \\ & \beta_M \sim \mathrm{Normal}(0, 1) \\ & \sigma \sim \mathrm{Exponential}(1) \end{split}$$

Estimating the model with ulam()

```
d slim$M se<-d$Marriage.SE/sd(d$Marriage)</pre>
m error both<-ulam(alist(</pre>
  D_obs ~ dnorm(D_true, D_se),
  vector[N]:D true ~ dnorm(mu, sigma),
  mu < -a + bA * A + bM * M.
  M ~ dnorm(M true, M se),
  vector[N]:M true ~ dnorm(0,1),
  a \sim dnorm(0, 0.2),
  bA \sim dnorm(0, 0.5),
  bM \sim dnorm(0, 0.5),
  sigma \sim dexp(1),
  data=d_slim, cores = 4, chains = 4)
```

Estimating the model with brm()

Measurement error

- · Data are often measured with error
- Sometimes we know this error that's great!
- Incorporate the measurement error into your model
- Bayesian models are generative: we can estimate a posterior for variables measured with error at the same time as we estimate other parameters
- Correlated errors across multiple measures can induce bias (see DAGs on page 498)

· Somtimes variables are missing a value

- · Somtimes variables are missing a value
- · R calls these NA

- · Somtimes variables are missing a value
- · R calls these NA
- · There can be many reasons that a value isn't reported

- · Somtimes variables are missing a value
- · R calls these NA
- · There can be many reasons that a value isn't reported
- Think hard about why it may have happened

- · Somtimes variables are missing a value
- · R calls these NA
- · There can be many reasons that a value isn't reported
- Think hard about why it may have happened
- Software typically defaults to listwise deletion, or complete case analysis

- · Somtimes variables are missing a value
- R calls these NA
- · There can be many reasons that a value isn't reported
- Think hard about why it may have happened
- Software typically defaults to listwise deletion, or complete case analysis
- At best, this discards perfectly good information in the other variables in that row. At worst, it leads to biased inference.

Imputation

· Avoid discarding data whenever possible

Imputation

- · Avoid discarding data whenever possible
- Use common sense to replace missings when possible (e.g. in panel data when we have a respondent's age in one wave but not another)

Imputation

- · Avoid discarding data whenever possible
- Use common sense to replace missings when possible (e.g. in panel data when we have a respondent's age in one wave but not another)
- Avoid imputing data with a single value when we are uncertain (never replace a missing with a mean or interpolation). This overstates your certainty, and artificially narrows posterior intervals

Imputation

- · Avoid discarding data whenever possible
- Use common sense to replace missings when possible (e.g. in panel data when we have a respondent's age in one wave but not another)
- Avoid imputing data with a single value when we are uncertain (never replace a missing with a mean or interpolation). This overstates your certainty, and artificially narrows posterior intervals
- Use imputation models to populate your uncertainty into the analysis.

Missing data typology

The ludicrous names that get used in the literature to describe various mechanisms for missing data

- Missing completely at random: each observation has equal probability of being missing.
- Missing at random: each observation's probability of being missing is conditional on some set of measured variables
- Missing not at random: each observation's probaility of being missing is conditional on some set of unmeasured variables

This dog ate my homework

He's still a good boy

Why do dogs make homework go missing?

Let's asssume that H is the grade a homework would have received if graded, S is how much a student studied, and D is whether a dog ate the homework. We observe H_0bs , a vector of grades where some are missing.

Dogs eat homework completely at random

Nothing affects a dog's decision to eat homework, they just strike at random!

Simulate random homework eating

Min. 1st Qu. Median Mean 3rd Qu.

4.000

##

##

0.000 3.000

Dogs eat homework 20 percent of the time, and strike at random

```
N<-100
S<-rnorm(N)
H<-rbinom(N, size = 10, prob = inv_logit(S))
D<-rbinom(N, 1, p = 0.2)
H_obs<-H
H_obs(D==1)<-NA
summary(H_obs)</pre>
```

Max.

4.692 6.000 10.000

NA's

22

How does the missingness affect inference? List-wise deletion

```
library(broom)
d<-data.frame(H_obs = H_obs, S = S) %>% filter(!is.na(H_obs))
mcar_0<-brm(H_obs ~ S, data = d)</pre>
```

```
tidy(mcar_0)
```

```
##
           term
                  estimate std.error
                                          lower
                                                      upper
               5.010457 0.1728653
                                    4.724120
                                                   5.295409
## 1 b Intercept
            b S 2.367944 0.2097332
                                       2.020992
                                                   2.718633
## 2
## 3
          sigma
                  1,480677 0,1239770
                                       1,290049
                                                   1.696584
## 4
           lp -145.912882 1.2764912 -148.397932 -144.559153
```

How does the missingness affect inference? Complete data

```
d<-data.frame(H = H, S = S)
mcar_1<-brm(H ~ S, data = d)</pre>
```

tidy(mcar_1)

```
estimate std.error
                                         lower
##
           term
                                                    upper
## 1 b_Intercept 5.056265 0.1428282 4.817824
                                                 5.287313
           b S 2.308409 0.1651645 2.045640
                                                 2.589497
## 2
                                   1.251116
          sigma
               1.411133 0.1045346
                                                 1,593560
## 3
## 4
           lp__ -181.274366 1.2884789 -183.813197 -179.913627
```

Dogs eat homework when students study too much

Why don't you want to go play?

Simulate bad dogs

```
P<-ifelse(S>0, 0.5, 0)
D<-rbinom(N, 1, p = P)
H_obs<-H
H_obs[D==1]<-NA
summary(H_obs)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 3.000 4.000 4.273 6.000 10.000 23
```

How does the missingness affect inference? List-wise deletion

```
d<-data.frame(H_obs = H_obs, S = S) %>% filter(!is.na(H_obs))
mar_0<-brm(H_obs ~ S, data = d)</pre>
```

```
tidy(mar_0)
```

```
estimate std.error
                                         lower
##
           term
                                                     upper
## 1 b_Intercept 5.119811 0.1648090 4.850172
                                                  5.385539
            b S 2.391552 0.1840305
                                       2.093521
                                                  2,694043
## 2
          sigma
                  1.321968 0.1115854
                                       1.151886
                                                  1,514636
## 3
## 4
           lp__ -135.532848 1.2370945 -137.988813 -134.175817
```

How does the missingness affect inference? Complete data

```
d<-data.frame(H = H, S = S)
mar_1<-brm(H ~ S, data = d)</pre>
```

```
tidy(mar_1)
```

```
estimate std.error
                                         lower
##
           term
                                                     upper
## 1 b_Intercept 5.057506 0.1429910 4.825733
                                                  5,290436
           b S 2.309885 0.1660931 2.043301
                                                  2.585037
## 2
          sigma
                  1.412079 0.1015118 1.256419
                                                  1.584946
## 3
           lp__ -181.251686 1.2327416 -183.704430 -179.905489
## 4
```

Dogs hate noise, and so does homework

Noisy homes X make bad homework and dogs

Simulate noisy houses

```
N<-100
S<-rnorm(N)
X<-rnorm(N)
H<-rbinom(N, size = 10, prob = inv_logit(2 + S - 2*X))
D<-ifelse(X>1, 1, 0)
H_obs<-H
H_obs[D==1]<-NA
summary(H_obs)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2.000 8.000 9.000 8.247 10.000 10.000 19
```

How does the missingness affect inference? List-wise deletion

```
d<-data.frame(H_obs = H_obs, S = S, X = X) %>% filter(!is.na(H_obs))
mnar_0<-brm(H_obs ~ S, data = d)</pre>
```

```
tidy(mnar_0)
```

```
estimate std.error
                                            lower
##
           term
                                                       upper
## 1 b_Intercept 8.377476 0.2212538 8.0167669
                                                    8.737188
                                        0.7812635
                                                    1.530252
## 2
            b S
                   1.153430 0.2229636
          sigma
                                        1.7158168
                                                    2,239891
## 3
                   1.957408 0.1588300
           lp__ -173.878775 1.2765405 -176.3685728 -172.527316
## 4
```

How does the missingness affect inference? Complete data

```
d<-data.frame(H = H, S = S)
mnar_1<-brm(H ~ S, data = d)</pre>
```

tidy(mnar_1)

```
estimate std.error
                                         lower
##
           term
                                                     upper
## 1 b_Intercept 7.360858 0.2998019 6.877486
                                                  7.858758
            b S 1.506460 0.3009301
                                       1.020529
                                                  2.007309
## 2
          sigma
                  3.011228 0.2237737 2.663287
                                                  3,404937
## 3
## 4
           lp__ -256.092820 1.2324443 -258.498001 -254.743549
```

How does the missingness affect inference? Complete data with unobserved cause

```
d<-data.frame(H = H, S = S, X = X)
mnar_2<-brm(H ~ S + X, data = d)</pre>
```

```
tidy(mnar_2)
```

##		term	estimate	std.error	lower	upper
##	1	b_Intercept	7.457159	0.1740462	7.1747142	7.743018
##	2	b_S	1.117298	0.1772999	0.8296919	1.404930
##	3	b_X	-2.304900	0.1615164	-2.5704538	-2.039863
##	4	sigma	1.695863	0.1210468	1.5112663	1.911102
##	5	lp	-199.693354	1.3923707	-202.4171385	-198.019594

Very good dogs

Dogs only eat bad homework

Simulate good dogs

```
N<-100
S<-rnorm(N)
H<-rbinom(N, size = 10, prob = inv_logit(S))
D<-ifelse(H<5, 1, 0)
H_obs<-H
H_obs[D==1]<-NA
summary(H_obs)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 5.000 5.000 6.000 6.738 8.000 10.000 39
```

How does the missingness affect inference? List-wise deletion

```
d<-data.frame(H_obs = H_obs, S = S) %>% filter(!is.na(H_obs))
mnar_0<-brm(H_obs ~ S, data = d)</pre>
```

tidy(mnar_0)

```
## term estimate std.error lower upper
## 1 b_Intercept 5.754663 0.2103699 5.4076133 6.105897
## 2 b_S 1.515797 0.2304014 1.1362693 1.899124
## 3 sigma 1.145530 0.1057819 0.9897332 1.332844
## 4 lp_ -99.865863 1.1903074 -102.2037173 -98.517445
```

How does the missingness affect inference? Complete data

```
d<-data.frame(H = H, S = S)
mnar_1<-brm(H ~ S, data = d)</pre>
```

tidy(mnar_1)

```
estimate std.error
                                         lower
##
           term
                                                     upper
## 1 b_Intercept 4.903829 0.1389065 4.674313
                                                  5,128918
           b S 2.278978 0.1520660 2.023544
                                                  2.531579
## 2
          sigma
                 1.405604 0.1040351 1.245806
                                                  1,591546
## 3
## 4
          lp__ -180.754545 1.2672585 -183.300258 -179.401340
```

Bayesian imputation

- Much like with measurement error, we can treat missing values as parameters to be estimated from our model.
- · HMC samples continuous missing measures well
- But it can't handle categorical measures as easily (see 15.3 for a method)
- We're going to use brm(), but see 15.2.2 for examples using ulam()

Bayesian imputation with brm()

```
library(mice)
data(nhanes)
summary(nhanes)
```

##	age	bmi	hyp	chl
##	Min. :1.00	Min. :20.40	Min. :1.000	Min. :113.0
##	1st Qu.:1.00	1st Qu.:22.65	1st Qu.:1.000	1st Qu.:185.0
##	Median :2.00	Median :26.75	Median :1.000	Median :187.0
##	Mean :1.76	Mean :26.56	Mean :1.235	Mean :191.4
##	3rd Qu.:2.00	3rd Qu.:28.93	3rd Qu.:1.000	3rd Qu.:212.0
##	Max. :3.00	Max. :35.30	Max. :2.000	Max. :284.0
##		NA's :9	NA's :8	NA's :10

Let's build a model to predict BMI as a function of age and cholesterol

```
m0<-brm(bmi ~ age + chl,
data = nhanes, cores = 4)
```

```
tidy(m0)
```

```
## term estimate std.error lower upper
## 1 b_Intercept 19.37909555 4.30609437 12.41820478 26.1394491
## 2 b_age -5.34243116 1.81800293 -8.31855456 -2.5025320
## 3 b_chl 0.08424802 0.02803889 0.04018392 0.1298188
## 4 sigma 3.53870045 0.99612633 2.32355308 5.3745995
## 5 lp_ -38.78828222 1.83988763 -42.26928157 -36.6939884
```

This model dropped the missing values in bmi and chl

- We can impute values by sampling them with HMC, giving them a likelihood and priors
- · We'll obtain posteriors for each missing value
- · We specify these likelihoods and priors explicitly

But we've got missingness on chl too

We need to specify a model with more than one likelihood, as we did in the measurement error model. We set (missing and non-missing) values in bmi to be a function of age and cholesterol, and missing cholesterol values to be a function of age.

The output

summary(m2)

```
Family: MV(gaussian, gaussian)
##
    Links: mu = identity; sigma = identity
           mu = identity; sigma = identity
##
## Formula: bmi | mi() ~ age + mi(chl)
           chl | mi() ~ age
##
     Data: nhanes (Number of observations: 25)
##
## Samples: 4 chains. each with iter = 2000: warmup = 1000: thin = 1:
           total post-warmup samples = 4000
##
##
## Population-Level Effects:
##
                Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
## bmi Intercept
                  21.94
                             3.82
                                    14.65
                                             29.84 1.00
                                                           1760
                                                                    2101
## chl Intercept 138.72
                            24.74
                                    89.72 186.90 1.00
                                                           2654
                                                                   2774
## bmi age
                  -4.29 1.48 -7.17 -1.34 1.00
                                                           1274
                                                                  2240
## chl age
                  30.84
                         12.90 5.73 56.47 1.00
                                                           2707
                                                                   2650
## bmi michl
                  0.06
                             0.02 0.01 0.11 1.00
                                                           1070
                                                                   1526
##
## Family Specific Parameters:
##
            Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
## sigma_bmi
              3.31
                         0.77
                                 2.15
                                       5.08 1.00
                                                       1558
                                                                1909
## sigma chl
             40.18
                         7.65
                                28.27
                                       57.83 1.00
                                                       2095
                                                                2085
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

Visualizing the imputation

```
post<-posterior_samples(m2)
plot(density(post$'Ymi_bmi[10]'))</pre>
```


Bayesian imputation: pros/cons

Pros - We can allow for very complex structures in our models - We can neatly specify variable specific models for missing data - Sampling missing values using HMC as part of the model is consistent with Bayesian modeling principals

Cons - Gets technically complex quickly - Doesn't have easy solution for categorical data - Computationally intensive for big data

Multiple imputation by chained equations (MICE)

MICE is a common pseudo-Bayesian approach to missing data. It produces *k* predictions for each unobserved variable based on a fully conditional regression models (where each variable is a function of all others).

- We'll allow each variable in the model to be a function of all others (we can relax this)
- · Then make conditional predictions for each missing value
- This results in *k* complete datasets
- · We apply our analysis over each dataset, and pool results

For a detailed description of the method and software, See Van Buuren and Groothuis-Oudshoorn, 2011:

http://www.jstatsoft.org/v45/i03/paper

MICE in practices

It's honestly too easy

```
library(mice)
imp_nhanes<-mice(nhanes, m = 10, maxit = 20)
summary(imp_nhanes)</pre>
```

Visualizing convergence

plot(imp_nhanes)

Visualizing the imputations

stripplot(imp_nhanes, chl~.imp, pch=20, cex=2)

Changing predictors

If we've got a collinear variable or a factor with many categories, we may want to exclude it from the model. Columns indicate predictors, row indicates outcomes.

```
pred<-imp_nhanes$predictorMatrix</pre>
```

Turn off hyp as a predictor of chl

```
pred["chl", "hyp"]<-0
pred</pre>
```

```
## age bmi hyp chl
## age 0 1 1 1 1
## bmi 1 0 1 1
## hyp 1 1 0 0
## chl 1 1 0 0
```

Use the new predictor matrix

Change imputation methods

- The default in mice for continuous measures is partial mean matching
- The algorithm constructs a regression model, samples new coefficients from the parameter distribution, then makes a prediction. It then randomly selects one proximate observation from the observed data
- This makes the imputation data appear similar to the observed
- But sometimes we may not want to to do this, or may have categorical data

Imputation methods

For a full list of methods, see https://stefvanbuuren.name/fimd/sec-modelform.html

```
meth<-imp_nhanes$method
```

Let's change chl to a linear model

```
meth[4]<-"norm"
```

And re-run the model

Visualize imputations

densityplot(imp_nhanes3)

Using the imputed data

After imputation, we conduct our analysis over each imputed dataset.

Typically, we'll need to separately fit each model.

For frequentist methods, either use a loop or the with() function

```
fit <- with(imp_nhanes3, lm(bmi ~ chl))
```

Then pool your results according to Rubin's rules for combination. This averages beta parameters, and adjusts standard errors for cross-imputation variance

The results

pool(fit)

```
## Class: mipo m = 10

## term m estimate ubar b t dfcom

## 1 (Intercept) 10 21.31695134 1.113277e+01 2.129882e+00 1.347564e+01 23

## 2 chl 10 0.02587948 2.925939e+04 5.994597e+05 3.585345e+04 23

## df riv lambda fmi

## 1 16.56385 0.2104482 0.1738597 0.2583155

## 2 16.26681 0.2253655 0.1839170 0.2686309
```

With brms

In a Bayesian context, we don't have to worry about formulas for combination. We fit the model to each dataset, then pool the posterior samples from each for inference.

brms provides brm_multiple() to do this

summary(brm_mi)

```
Family: gaussian
    Links: mu = identity; sigma = identity
## Formula: bmi ~ age + chl
##
     Data: imp nhanes3 (Number of observations: 25)
## Samples: 40 chains, each with iter = 2000; warmup = 1000; thin = 1;
            total post-warmup samples = 40000
##
##
## Population-Level Effects:
##
            Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
## Intercept
               20.85
                          3.18
                                  14.26
                                           26.84 1.18
                                                           150
                                                                    634
               -3.61
## age
                         1.01 -5.59 -1.60 1.10
                                                           235
                                                                   1224
## chl
                0.06
                          0.02
                               0.02 0.10 1.19
                                                           143
                                                                    685
##
## Family Specific Parameters:
         Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
##
## sigma
            3.08
                      0.54
                               2.21
                                        4.33 1.09
                                                       261
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

The posterior samples

```
post<-posterior_samples(brm_mi)
nrow(post)</pre>
```

[1] 40000

Summary

- Measurement error is an important part of the data generating process
- Ignoring it presumes we have perfect measurement, can bias inference, and understates uncertainty
- Missing data is also important. List-wise deletion at best discards information (and overstates certainty), at worst biases inference
- If data is missing completely at random, or is conditional on an observed variable, we can impute the missings and recover valid inference
- If missingness is correlated with the outcome, we've got a problem

Further reading

- Further reading on mice: http://www.gerkovink.com/miceVignettes/
- Further reading on Bayesian imputation and brms:
 https://cran.r-project.org/web/packages/brms/vignettes/brms_missings.html

Thank you!

Thanks for a wonderful semester and for being experimental subjects as I try teaching Bayes!

Stay safe, and please be in touch: $\label{eq:safe} \textbf{frank.edwards@rutgers.edu}$