LCIE Etablissement de Moirans ZI Centr'alp 170, rue de Chatagnon 38430 Moirans

RCS Grenoble 408 363 174

Tél.: +33 4 76 07 36 36 Fax: +33 4 76 55 90 88

TEST REPORT

N°: 803117-R1-E

JDE: 135412

Subject

Electromagnetic compatibility and Radio spectrum Matters (ERM) tests according to standards: FCC CFR 47 Part 15, Subpart B et C **RSS-247 Issue 1.0**

Issued to

PETZL

Site de Crolles, Cedex 105A.

38920 CROLLES

Apparatus under test

♥ Product

Trade mark

Manufacturer

Model under test

Serial number

♥ FCCID

& ICID

Test date

Test location

IC Test site

Test performed by

Composition of document

Modification of the last version

Document issued on

HEADLAMP

PETZL

PETZL PRODUCTION

REACTIK+

E920445C01 GNDUFL & 150300242

2AFG9-E95

20473-E95

May 11th, 2015 to May 22th, 2015

Moirans

6500A-1 & 6500A-3

Gaëtan Deschamps

37 pages

None

July 10th, 2015

Written by:

Deschamps Gaetan Tests operator Jacob Marie

Approved by: Merlin Anthony Technical manager

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested . Unless otherwise specified; the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision.

LCIE

France

33, av du Général Leclerc

BP 8

92266 Fontenay-aux-Roses cedex

contact@lcie.fr

Société par Actions Simplifiée au capital de 15 745 984 €

www.lcie.fr

Tél: +33 1 40 95 60 60

Fax: +33 1 40 95 86 56

RCS Nanterre B 408 363 174

www.lcie.com

SUMMARY

1.	TEST PROGRAM	3
2.	SYSTEM TEST CONFIGURATION	4
3.	CONDUCTED EMISSION DATA	8
4.	RADIATED EMISSION DATA	10
5.	BANDWIDTH (15.247)	14
6.	MAXIMUM PEAK OUTPUT POWER (15.247)	17
7.	POWER SPECTRAL DENSITY (15.247)	20
8.	BAND EDGE MEASUREMENT (15.247)	23
9.	OCCUPIED BANDWIDTH	28
10.	ANNEX 1 (GRAPHS)	31
11.	UNCERTAINTIES CHART	37

1. TEST PROGRAM

Standard: - FCC Part 15, Subpart C 15.247

- ANSI C63.10 (2013)

- RSS-247 Issue 1.0 - May 2015 - RSS-Gen Issue 4 - Nov 2014

- 558074 D01 DTS Measurement Guidance v03r03

EMISSION TEST		LIMITS		RESULTS
	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	☑ PASS
Limits for conducted disturbance at mains ports	150-500kHz	66 to 56	56 to 46	□ FAIL
150kHz-30MHz	0.5-5MHz	56	46	□ NA □ NP
	5-30MHz	60	50	
Radiated emissions 9kHz-30MHz CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-210 §A8.5	9kHz-490kHz : Measure at 30 490kHz-1.705M	Measure at 300m 9kHz-490kHz : 67.6dBμV/m /F(kHz) Measure at 30m 490kHz-1.705MHz : 87.6dBμV/m /F(kHz) 1.705MHz-30MHz : 29.5 dBμV/m		
Radiated emissions 30MHz-25GHz* CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-210 §A8.5 Highest frequency :16MHz (Declaration of provider)	30MHz-88MHz 88MHz-216MH 216MHz-960M	Measure at 3m 30MHz-88MHz : 40 dBμV/m 88MHz-216MHz : 43.5 dBμV/m 216MHz-960MHz : 46.0 dBμV/m Above 960MHz : 54.0 dBμV/m		
Bandwidth 6dB CFR 47 §15.247 (a) (2) RSS-210 §A8.2	At least 500kHz			☑ PASS □ FAIL □ NA □ NP
Maximum Peak Output Power CFR 47 §15.247 (b) RSS-210 §A8.4 (4)	Limit: 30dBm Conducted or F	Limit: 30dBm Conducted or Radiated measurement		
Band Edge Measurement CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-210 §A8.5	Limit: -20dBc Radiated emis	or ssions limits in rest	ricted bands	☑ PASS □ FAIL □ NA □ NP ☑ PASS
Power spectral Density CFR 47 §15.247 (e) RSS-210 §A8.2	Limit: 8dBm/3	Limit: 8dBm/3kHz		
Occupied bandwidth RSS-Gen §4.6.1	No limit			☑ PASS □ FAIL □ NA □ NP
Receiver Spurious Emission** RSS-Gen §4.10	See RSS-Gen	See RSS-Gen §4.10		

^{*§15.33:} The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

⁻ If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz

2. SYSTEM TEST CONFIGURATION

2.1. JUSTIFICATION:

REATICK+ have two reference following color: REACTIK+ and E95HNE. References have the same electronic and mechanical elements. All tests are performed on the product REACTIK+ whose colour is coral.

HARDWARE IDENTIFICATION (EUT AND AUXILIARIES): 2.2.

Equipment under test (EUT):

REACTIK+ Serial Number: E920445C01 GNDUFL & 150300242

Equipment Under Test

Power supply:

During all the tests, EUT is supplied by V_{nom}: 3.7VDC For measurement with different voltage, it will be presented in test method.

Name	Туре	Rating	Reference / Sn	Comments
Supply1	□ AC □ DC ☑ Battery	3.7VDC	E920975C01	-

Inputs/outputs - Cable:

mpatoroutp	ato Gabio.					
Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
Power supply	USB	0.2	V	V		-

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
Power supply DC	TDK	-	A7044059
USB adaptor	-	-	-

Equipment information:

Bluetooth LE Type:		v4.0			☑v	4.1	
Frequency band:			[2400 – 24	83.5] MHz			
Spectrum Modulation:			☑ DSSS (Te	ested like it)			
Number of Channel:			4	0			
Spacing channel:			2M	Hz			
Channel bandwidth:			1M	Hz			
Antenna Type:							
Antenna connector:	☐ Yes		☑ 1	No	☑T	emporary for test	
			\checkmark	1 1			
Transmit chains:	Single antenna						
	Gain: -4.5dBi						
Beam forming gain:			N	0			
Receiver chains			1				
Type of equipment:		е	□ Plu	ug-in		□ Combined	
Duty cycle:	Continuous d	uty	□ Intermi	ttent duty		☐ 100% duty	
Equipment type:	☐ Produc	ction m	odel	☑ Pre	e-produ	ction model	
	Tmin:		☑ -20°C	□ 0°C		□ °C	
Operating temperature range:	Tnom:			20°C			
	Tmax:	□ 35°C □ 55		□ 55°C)		
Type of power source:	☐ AC power sup	ply	☑ DC pow	er supply	V	Battery (Lithium)	
Operating voltage range:	Vnom:		□ 230V	//50Hz		☑ 3.7Vdc	

CHANNEL PLAN						
Channel	Frequency (MHz)	Channel	Frequency (MHz)			
Cmin: 0	2402	Cmid: 20	2442			
1	2404	21	2444			
2	2406	22	2446			
3	2408	23	2448			
4	2410	24	2450			
5	2412	25	2452			
6	2414	26	2454			
7	2416	27	2456			
8	2418	28	2458			
9	2420	29	2460			
10	2422	30	2462			
11	2424	31	2464			
12	2426	32	2466			
13	2428	33	2468			
14	2430	34	2470			
15	2432	35	2472			
16	2434	36	2474			
17	2436	37	2476			
18	2438	38	2478			
19	2440	Cmax: 39	2480			

DATA RATE						
Data Rate (Mbps)	Modulation Type	Worst Case Modulation				
1	GFSK	V				

2.3. RUNNING MODE

The EUT is set in the following modes during tests with software (SDK 7.1 / DTM):

- Permanent emission with modulation on a fixed channel in the data rate that produced the highest power
- Permanent reception

All tests are performed at Cmin, Cmid and Cmax.

There 2 configurations tests:

- The EUT is powered by USB (called in report "DC mode"), the LED and Bluetooth function is off.
- The EUT is powered by battery (called in report "Battery mode), the LED and Bluetooth are on.

The EUT is set in the following modes during tests in Battery mode:

- Permanent emission/reception with iPhone by PETZL application Version CEM

The EUT sequences are:

- TX 2402: 0x80 0x28
- TX 2440: 0x93 0x28
- TX 2480: 0xA7 0x28
- RX 2402: 0x40 0x28
- RX 2440: 0x53 0x28
- RX 2480: 0x67 0x28

Firmware / Software Lamp version: V1.4

2.4. E	QUIPMENT MODIFICATION		
✓ None	☐ Modification:		

2.5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 \, dB\mu V/m$

The 32 dBµV/m value can be mathematically converted to its corresponding level in µV/m.

Level in $\mu V/m = Common Antilogarithm [(32dB<math>\mu V/m)/20] = 39.8 \mu V/m$.

2.6. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period

3. CONDUCTED EMISSION DATA

3.1. ENVIRONMENTAL CONDITIONS

Date of test : May 19th,2015 Test performed by : N.Gagnaire

Atmospheric pressure (hPa) : 990 Relative humidity (%) : 40 Ambient temperature (°C) : 21

3.2. TEST SETUP

Mains terminals

The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment)

☐ 10cm above the ground on isolating support (Floor standing equipment)

The distance between the EUT and the LISN is 80cm. The EUT is 40cm away for the vertical ground plane.

The EUT is powered by V_{nom} .

The EUT is powered through a LISN (measure). Auxiliaries are powered by another LISN.

3.3. TEST METHOD

The product has been tested according to ANSI C63.10 and FCC Part 15 subpart C. The product has been tested with 120V/60Hz power line voltage and compared to the FCC Part 15 subpart C §15.207 limits. Measurement bandwidth was 9kHz from 150kHz to 30MHz. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure) is 50Ω / 50μ H. The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured. Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Measurements are performed on the phase (L1) and neutral (N) of power line voltage. Graphs are obtained in PEAK detection. Measures are also performed in Quasi-Peak and Average for any strong signal.

3.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Cable + self	-	-	A5329578	05/14	05/15
Conducted emission comb generator	BARDET	-	A3169049	-	-
LISN tri-phase ESH2-Z5	RHODE & SCHWARZ	33852.19.53	C2320063	11/14	11/15
Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	A2642019	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15
Transient limiter	RHODE & SCHWARZ	ESH3-Z2	A7122204	11/14	11/15

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☐ Divergence:

3.6. TEST RESULTS		
Measurements are performed	ed on the phase (L1) and neutral (N) of the power line.	
Results in DC mode: (PEA	AK detection)	
Measure on L1:	graph Emc#1	(see annex 1)
Measure on N:	graph Emc#2	(see annex 1)

3.7. CONCLUSION

☑ None

Conducted emission data measurement performed on the sample of the product **REACTIK+**, SN: **150300242**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

4. RADIATED EMISSION DATA

4.1. ENVIRONMENTAL CONDITIONS

Date of test : May 12th, 2015 Test performed by : G.Deschamps

Atmospheric pressure (hPa) : 1003 Relative humidity (%) : 41 Ambient temperature (°C) : 23

4.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment)

☑ 150cm above the ground on the non-conducting table (Table-top equipment) - Above 1GHz

☐ 10cm above the ground on isolating support (Floor standing equipment)

The EUT is powered by V_{nom}.

Test setup in Battery mode axis XY

Test setup in DC mode axis Z(USB)

Test setup in DC mode axis XY(USB)

1.5m table above 1GHz

4.3. TEST METHOD

Pre-characterisation measurement: (30MHz – 1GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

The pre-characterization graphs are obtained in PEAK detection and PEAK/AVERAGE from 1GHz to 25GHz.

Characterization on 10 meters open site from 30MHz to 1GHz:

The product has been tested according to ANSI C63.10, FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of 10 meters from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 9kHz below 30MHz and 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown.

Frequency list has been created with anechoic chamber pre-scan results.

Characterization on 3 meters full anechoic chamber from 1GHz to 25GHz:

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC part 15 subpart C §15.209 limits. Measurement bandwidth was 1MHz from 1GHz to 25GHz.

Test is performed in horizontal (H) and vertical (V) polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. The height antenna is

☐ On mast, varied from 1m to 4m

☑ Fixed and centered on the EUT (EUT smaller than the beamwidth of the measurement antenna, ANSI C63.10 §6.6.5) Frequency list has been created with anechoic chamber pre-scan results.

4.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Amplifier 1-13GHz	LCIE SUD EST	-	A7102067	10/14	10/15
Antenna Bi-log	CHASE	CBL6111A	C2040172	04/13	04/15
Antenna horn	EMCO	3115	C2042029	09/14	09/15
High Pass (4.8-18GHz)	BL Microwave	SH4800-1800	A7484034	03/15	03/17
Cable Measure @3m	-	-	A5329038	08/14	08/15
Cable Measure @3m	-	-	A5329206	04/15	04/16
Cable Measure @1m	STORMFLEX	0	A5329680	10/14	10/15
Cable Measure @1m	STORMFLEX	0	A5329682	10/14	10/15
Semi-Anechoic chamber #3	SIEPEL	-	D3044017	-	-
Radiated emission comb generator	BARDET	-	A3169050	-	-
HF Radiated emission comb generator	LCIE SUD EST	-	A3169088	-	-
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

4.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

✓ None
□ Divergence:

4.6. TEST RESULTS

4.6.1. Pre-characterization at 3 meters [30MHz-1GHz]

See graphs for 30MHz-1GHz:

occ grapiis ioi ooi	VII 12 10112.				
Graph identifier	Polarization	Mode	EUT position	EUT configuration	Comments
Emr# 1	H/V	TX	Axis XY	Battery Mode	See annex 1
Emr# 2	H/V	TX	Axis XY	Battery Mode	See annex 1
Emr# 3	H/V	TX	Axis XY	DC Mode	See annex 1
Emr# 4	H/V	TX	Axis XY	DC Mode	See annex 1

4.6.2. Characterization on 10 meters open site from 30MHz to 1GHz

Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results.

Measurements are performed using a QUASI-PEAK detection.

No	Frequency	Limit	Measure	Margin	Angle	Pol	Ht	Correc.	Comments
	(MHz)	Quasi-Peak	Quasi-Peak	(Mes-Lim)	Table	Ant.	Ant.	Factor	
	, ,	(dBµV/m)	(dBµV/m)	(dB)	(deg)		(cm)	(dB)	

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

4.6.3. Characterization on 3meters anechoic chamber from 1GHz to 25GHz

Worst case final data result:

The frequency list is created from the results obtained during the pre-characterization in anechoic chamber.

Measurements are performed using a PEAK and AVERAGE detection.

No	Frequency (MHz)	Limit Peak	Measure Peak	Margin Peak		Measure Average			Pol. Ant.	Ht. Ant.	FC (dB)	Remark
	` '		(dBµV/m)		(dBµV/m)			(°)	Aiiti	(cm)	(ab)	
1	2363.100	74.0	39.1	-34.9	54.0	25.7	-28.3	0	Н	100	-2.6	
2	2485.280	74.0	46.4	-27.6	54.0	28.7	-25.3	360	Н	100	-2.3	
3	4804.000	74.0	54.5	-19.5	54.0	43.5	-10.5	360	Н	100	3.6	
4	4884.000	74.0	55.7	-18.3	54.0	44.7	-9.3	5	Н	100	3.8	
5	7326.000	74.0	51.8	-22.2	54.0	38.2	-15.8	5	Н	100	7.5	
6	7440.000	74.0	47.9	-26.1	54.0	35.1	-18.9	5	Н	100	7.7	
7	12010.000	74.0	54.1	-19.9	54.0	40.6	-13.4	0	Н	100	11.5	
8	12210.000	74.0	55.0	-19.0	54.0	41.9	-12.1	5	Н	100	11.7	
9	12400.000	74.0	52.3	-21.7	54.0	38.2	-15.8	5	Н	100	11.8	

Note: Measures have been done at 3m distance.

4.7. CONCLUSION

Radiated emission data measurement performed on the sample of the product **REACTIK+**, SN: **150300242**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

5. BANDWIDTH (15.247)

5.1. TEST CONDITIONS

Date of test : May 12th, 2015 Test performed by : G.Deschamps

Atmospheric pressure (hPa) : 1003 Relative humidity (%) : 41 Ambient temperature (°C) : 23

5.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.5dB

Test setup:

☐ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete, a delta marker is used to measure the frequency difference as the emission bandwidth.

Measurement Procedure: §8.1 Option 1 (DTS Measurement Guidance)

- 1. Set resolution bandwidth (RBW) = 100kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

5.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW		A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

5.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

|--|

5.5. TEST SEQUENCE AND RESULTS

5.6. CONCLUSION

Bandwidth measurement performed on the sample of the product **REACTIK+**, SN: **E920445C01 GNDUFL**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

6. MAXIMUM PEAK OUTPUT POWER (15.247)

6.1. TEST CONDITIONS

Date of test : May 12th, 2015 Test performed by : G.Deschamps

Atmospheric pressure (hPa) : 1003 Relative humidity (%) : 41 Ambient temperature (°C) : 23

6.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.5dB

Test setup:

☐ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where

- E is the measured maximum fundamental field strength in V/m.
- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.
- d is the distance in meters from which the field strength was measured.
- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30G}$$

Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

• ☑ RBW ≥ DTS bandwidth §9.1.1 (DTS Measurement Guidance)

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq 3 x RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

• ☐ Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a) Set the RBW = 1 MHz.
- b) Set the VBW \geq 3 x RBW
- c) Set the span \geq 1.5 x DTS bandwidth.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

6.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

6.4.	DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION
✓ None	☐ Divergence:

6.5. TEST SEQUENCE AND RESULTS

Modulation:

6.6. CONCLUSION

Maximum Peak Output Power measurement performed on the sample of the product **REACTIK+**, SN: **E920445C01 GNDUFL**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

7. Power Spectral Density (15.247)

7.1. TEST CONDITIONS

Date of test : May 12th, 2015 Test performed by : G.Deschamps

Atmospheric pressure (hPa) : 1003 Relative humidity (%) : 41 Ambient temperature (°C) : 23

7.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.5dB

Test setup:

☐ Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.
- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.
- d is the distance in meters from which the field strength was measured.
- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30C}$$

Measurement Procedure PKPSD: §10.2 (DTS Measurement Guidance)

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

7.4.	DIVERGENCE,	ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION
☑ None	е	□ Divergence:

7.5. TEST SEQUENCE AND RESULTS

Modulation:

7.6. CONCLUSION

Power Spectral Density measurement performed on the sample of the product **REACTIK+**, SN: **E920445C01 GNDUFL**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

8. BAND EDGE MEASUREMENT (15.247)

8.1. TEST CONDITIONS

Date of test : May 12th, 2015 Test performed by : G.Deschamps

Atmospheric pressure (hPa) : 1003 Relative humidity (%) : 41 Ambient temperature (°C) : 23

8.2. LIMIT

RF antenna conducted test: § 11 (DTS Measurement Guidance)

Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB. For -20dBc limit, lowest power output level is considered, worst case.

Radiated emission test: § 12 (DTS Measurement Guidance)

Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See results in Radiated emissions section before.

8.3. SETUP

The EUT is placed in an anechoic chamber; levels have been corrected to be in compliant with Peak Output Power measurement. The EUT is turn ON; the graphs of the restrict frequency band are recorded with a display line indicating the highest level and other the 20dB offset below to show compliance with 15.247 (d) and 15.205. The emissions in restricted bands are compared to 15.209 limits.

RBW: 100kHz VBW: 300kHz

Test setup:

8.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15

<i>8.5.</i>	DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

|--|

8.6. TEST SEQUENCE AND RESULTS

Offset: Attenuator+cable 10.5dB **GRAPH / MODULATION.**

Worst case in Cmax and display line at -17.58dBm

8.7. CONCLUSION

Band Edge Measurement performed on the sample of the product **REACTIK+**, SN: **E920445C01 GNDUFL**, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Issue 1.0 limits.

9. OCCUPIED BANDWIDTH

9.1. TEST CONDITIONS

Date of test : May 12th, 2015 Test performed by : G.Deschamps

Atmospheric pressure (hPa) : 1003 Relative humidity (%) : 41 Ambient temperature (°C) : 23

9.2. SETUP

☑ Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.5dB

Test setup:

☐ Radiated measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Measurement Procedure:

- a) RBW shall be in the range of 1% to 5% of the anticipated occupied bandwidth
- b) Set the video bandwidth (VBW) ≥ 3 x RBW
- c) SPAN = Capture all products of the modulation process
- d) Detector = Peak.
- e) Trace mode = max hold.
- f) Sweep = auto couple.
- g) Allow the trace to stabilize.
- h) OBW 99% function of spectrum analyzer used

9.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Cable Measure	-	18G	A5329603	08/14	08/15
Spectrum analyzer ROHDE & SCHWARZ		FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (PM2) OREGON		BAR916HG-G	B4206011	04/14	04/15

9.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

|--|

9.5. TEST SEQUENCE AND RESULTS

Channel	Channel Frequency (MHz)	99% Occupied Bandwidth (MHz)
Cmin	2402	1.072
Cmid	2442	1.045
Cmax	2480	1.044

10. ANNEX 1 (GRAPHS)

Frequency	Mes.Peak	Mes.QPeak	LimQP	Mes.QPeak-LimQP	Mes.Avg	LimAvg	Mes.Avg-LimAvg
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)
0.158	49.9	40.8	65.57	-24.77	25.02	55.57	-30.55
0.506	43.36	38.92	56	-17.08	34.02	46	-11.98
0.998	43.25	34.05	56	-21.95	24.93	46	-21.07
1.004	43.37	36.09	56	-19.91	28.14	46	-17.86
1.092	43.36	33.53	56	-22.47	25.51	46	-20.49
1.412	41.97	33.95	56	-22.05	26.36	46	-19.64
1.616	41.43	33.93	56	-22.07	25.54	46	-20.46
1.684	39.97	29.54	56	-26.46	20.21	46	-25.79
2.368	45.89	36.41	56	-19.59	29.46	46	-16.54
3.604	37.77	29.46	56	-26.54	22.21	46	-23.79

Frequency	Mes.Peak	Mes.QPeak	LimQP	Mes.QPeak-LimQP	Mes.Avg	LimAvg	Mes.Avg-LimAvg
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)
0.158	52.61	44.13	65.57	-21.44	27.39	55.57	-28.18
0.506	44.33	41.04	56	-14.96	33.88	46	-12.12
1	40.85	34.7	56	-21.3	25.6	46	-20.4
1.02	41.26	36.36	56	-19.64	27.81	46	-18.19
1.108	42.98	39.21	56	-16.79	31.26	46	-14.74
1.524	41.85	35.68	56	-20.32	26.94	46	-19.06
1.628	40.43	32.37	56	-23.63	23.16	46	-22.84
2.384	44.53	38.11	56	-17.89	30.65	46	-15.35
21.792	34.01	27.91	60	-32.09	20.72	50	-29.28

Frequency (MHz)	Peak (dBµV/m)	Polarization	
30.918	27.8	Horizontal	
30.595	27.47	Vertical	

Frequency (MHz)	Peak (dBµV/m)	Polarization	
30.238	28.2	Horizontal	
30.578	27.34	Vertical	

Frequency (MHz)	Peak (dBµV/m)	Polarization	
30.901	27.23	Horizontal	
35.984	27.45	Vertical	
47.969	25.57	Vertical	

Frequency (MHz)	Peak (dBµV/m)	Polarization	
31.105	27.08	Horizontal	
909.64	35.13	Horizontal	
35.967	28.82	Vertical	

11. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie Measurement of conducted disturbances in voltage on the power port	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans Measurement of radiated electric field on the Moirans open area test site	5.07 dB	5.2 dB

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par la norme, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limits values.