Treatment planning with MMCTP

Andrew Alexander, Jan Seuntjens

Medical Physics Unit McGill University

June 18, 2011

Layout

- Setup
 - McGill RT import
 - Linac Configuration
 - CT to Density
- 2 TPS
 - Treatment Planning Window
 - External beam options
- MCTF
 - BEAMnrc
 - BEAMnrc CM auto-scripts
 - EGSnrc
 - DOSXYZnrc

Patient Import Steps

- File > Import > RT Patient
- Select import format
- MMCTP will browse the selected folder
- Oppulate the import listbox with patient name and ID
- Select the patient and press transfer (it takes time to transfer)
 - Raw DICOM read
 - O DICOM RT class read
 - O DICOM to McGill RT
 - Write McGill RT
- Openition of the property o

Patient Import Window

 \bullet File > Import > RT Patient

```
Import Format
                      DICOM
Patient name
                                            Patient ID
                                                                                           McGill Patients
RANDO BREAST
                                             000000251
                                                                                           ► A A A B
                                                                                           ▶ BREAST RANDO 000000251
                                                                                           ▶ C B 3
                                                                        Transfer ->
                                                                           Physics
Data:Users:andrew:Documents:MMCTP-Programming:RT-Imports:DICOM:04-
                                                                                          Data:Users:andrew:Documents:MMCTP-Programming:McGilRT:
TomoTherapy:iason plan:
                                                                            Close
```


DICOM header browser

• Task > DICOM header

00			DICON	thle: RTPLAN_1.2.826.0.1.368	80043.2.200.262933318.134.5361.2	230		-
Tag a	Tag b	VR	VM	Info	Value	Byte Position	Byte Length	٠
8000	0000	UL	1	Identifying Group Length	322	0	4	
8000	0012	DA	1	Instance Creation Date	20110214	12	8	
8000	0013	TM	1	Instance Creation Time	083028	28	6	
8000	0016	UI	1	SOP Class UID	1.2.840.10008.5.1.4.1.1.481.5	42	30	
8000	0018	UI	1	SOP Instance UID	1.2.826.0.1.3680043.2.200.262933318	80	50	
8000	0020	DA	1	Study Date	20101220	138	8	
8000	0030	TM	1	Study Time	120307	154	6	
8000	0050	SH	0	Accession Number		168	0	
8000	0060	CS	1	Modality	RTPLAN	176	6	
8000	0070	LO	1	Manufacturer	TomoTherapy Incorporated	190	24	
8000	0090	PN	0	Referring Physician's Name		222	0	
8000	1010	SH	1	Station Name	0210037	230	8	
8000	1030	LO	1	Study Description	TomoTherapy Patient Disease	246	28	
8000	103E	LO	1	Series Description	TomoTherapy Plan	282	16	
8000	1070	PN	1	Operator's Name	Kathy	306	6	
8000	1090	LO	1	Manufacturer's Model Name	Hi-Art	320	6	
0010	0000	UL	1	Patient Group Length	78	334	4	
0010	0010	PN	1	Patient's Name	RANDO ^BREAST	346	14	
0010	0020	LO	1	Patient's ID	000000251	368	10	
0010	0030	DA	1	Patient's Birth Date	19550101	386	8	
0010	0040	CS	1	Patient's Sex	0	402	2	
0010	1010	AS	1	Patient's Age	055Y	412	4	
0018	0000	UL	1	Acquisition Group Length	32	424	4	
0018	1020	LO	1	Software Version(s)	HiArt4_0_3_Apps 4.0.3.80	436	24	
0020	0000	UL	1	Relationship Group Length	206	468	4	
0020	000D	UI	1	Study Instance UID	1.2.826.0.1.3680043.2.200.78065334	480	48	
0020	000E	UI	1	Series Instance UID	1.2.826.0.1.3680043.2.200.79416575	536	48	
0020	0010	SH	1	Study ID	BREL	592	4	
0020	0011	IS	1	Series Number	1222150128	604	10	
0020	0013	IS	1	Instance 'formerly Image' Nu	5	622	2	
0020	0052	UI	1	Frame of Reference UID	1.2.840.113704.1.111.1212.12899397	632	38	
0020	1040	LO	0	Position Reference Indicator		678	0	

DICOM Classes

- Four MMCTP DICOM classes: images, structure, plan and dose
- Each class contains variables pertinent to the function of each type
- Sequence and nested sequences within each class
- Total of 27 MMCTP DICOM classes
- MMCTP DICOM classes simplify reading, import, export and writing of DICOM

MLC Configuration

 $\bullet \ \, \mathsf{File} > \mathsf{Configurations} > \mathsf{MLC} \; \mathsf{tab} \\$

Linac Configuration

File > Configurations > Beam tab

CT to Density

ullet File > Configurations > CT to Density tab

CT to Density

- Only used in EGSPhant create
- User can override each contour to exclude CT2Density
- User selects which curve to use
- Linear interpolation between points
- The default pegs file is assumed for EGSPhant file when selecting a curve

Layout

- Setup
 - McGill RT import
 - Linac Configuration
 - CT to Density
- 2 TPS
 - Treatment Planning Window
 - External beam options
- MCTF
 - BEAMnrc
 - BEAMnrc CM auto-scripts
 - EGSnrc
 - DOSXYZnrc

MMCTP

- Treatment planning window
 - External beam properties
 - Visualization properties
 - DVH tools
 - Dose profiles
 - MC tools
- Contouring window

External beams

- Options within treatment planning window
- Advanced options within the beam properties window
- General tab
- Beam weight, MUs, Tx number all used in MC dose normalization

External beams

- Geometry tab
- Settings class per field (static, step and shoot, dynamic)
- Nominal isocenter distance is used to place phsp file

External beams

- Accessories tab
- MLC (static, step and shoot, dynamic) and wedge (static, dynamic) options

Layout

- Setup
 - McGill RT import
 - Linac Configuration
 - CT to Density
- 2 TPS
 - Treatment Planning Window
 - External beam options
- MCTP
 - BEAMnrc
 - BEAMnrc CM auto-scripts
 - EGSnrc
 - DOSXYZnrc

BEAMnrc within MMCTP

- Idea is to include all BEAMnrc functionality within MMCTP
- BEAMnrc header information, including sources (limited)
- BEAMnrc CM variables (limited)
- EGSnrc input options
- Variables are edited manually or automatically through scripts
- BEAMnrc classes are coded within MMCTP to read, write, edit, transfer and submit input files
- BEAMnrc classes loaded dynamically per user selected plan

BEAMnrc tab

- External beams are listed by row
- User check box to queue beam submissions
- Progress is displayed in second column
- BEAMnrc status text box report below
- Double click on row to open BEAMnrc properties

BEAMnrc properties per beam

- Summary of basic BEAMnrc properties, simulation status and previous run statistics
- Output text box for BEAMnrc test run
- Force addphsp run button
- Phsp property window
- Advanced BEAMnrc options window

Phsp properties window

- Summary of beam properties
- Summary of beam phsp status
- List of phsp files located on shell/BEAM folder of linac

Phsp database

- Summary of beam properties
- Summary of beam phsp status
- Total list of phsp files located on all shells and BEAMnrc folders
- MMCTP will attempt to link current simulation within DB

Advanced BEAMnrc options

- BEAMnrc header, CM and EGSnrc input access
- Only updated after a BEAMnrc test run or production run

BEAMnrc header

- Readable source numbers and auto DBS option
- Generally BEAMnrc source are not modified within MMCTP (exception of spectrum paths)
- Determine phsp scoring plane

BEAMnrc Source #	GUI
0	Yes
1	Yes
3	Yes
19	Yes
21	Yes

• DBS auto radius size, $R_{cm} = (FS_x^2 + FS_y^2)^{0.5} + 5$

BEAMnrc CMs

CM	Read	Auto-scripts*	GUI
JAWS	Yes	Yes	Yes
DYNJAWS	Yes	Yes	Yes
WEDGE	Yes	Yes	Yes
DYNVMLC	Yes	Yes	Yes
VARMLC	Yes	Yes	Yes
MLC	Yes	No	Yes
TOMOMLC	Yes	Yes	Yes
APPLICAT	Yes	Yes	Yes
BLOCK	Yes	Yes	Yes
SLAB	Yes	No	Yes
FLAT	Yes	No	No

^{*} Auto-scripts are linked to particular linac manufactures and CM inputfile flags

BEAMnrc input file

- BEAMnrc classes are loaded dynamically per user selected plan
- For each external beam there is a BEAMnrc input file class
- First attempt to read input file from plan folder
- Second attempt to read input file from BEAMnrc-Setting folder, template input file for MMCTP linac
- Once found, the Z value of last scoring plane is read-in and stored as a parameter to be passed to DOSXYZnrc
- Last scoring plane must be a BLOCK or SLAB CM
- Input files are updated if the linac name or beam energy is changed

BEAMnrc Simulations user control

- Turn on BEAMnrc auto run and auto refresh (Configurations Window)
- Turn on global auto run and auto refresh (Configurations Window)
- Oheck-on a BEAMnrc run (Treatment Planning Window)

BEAMnrc Simulations system control auto-run

- If phsp database on, search database for match
- If auto-shell on, determine shell
- Generate input file, remove any previous input files on shell, upload new input files to shell
- Run test run to determine particle per history density and CPU time per history
- Calculate the required number of histories and update the estimated simulation time
- Generate input file, remove any previous input files on shell, upload new input files to shell
- Summit job to shell queueing system

BEAMnrc Simulations system control auto-refresh

- Search for lock file, read progress
- If lock file not found, search for _w log files
- If all _w log files exist and contain "Simulation finished" run addphsp
- Addphsp script is generated locally, transferred to shell and submitted to queueing system
- Search for addphsp log for "Done"
- Run BEAMDP on new phsp file, read number of photons and particles
- Update phsp database
- Remove _w files

Auto-script CM JAWS

```
x1=-gRTOG.Plan(Plan_Index).Beam(beam_number).Collimator.fields(0).X1
     x2=gRTOG.Plan(Plan_Index).Beam(beam_number).Collimator.fields(0).X2
     v1=-gRTOG.Plan(Plan_Index),Beam(beam_number),Collimator,fields(0),Y1
     y2=gRTOG.Plan(Plan_Index).Beam(beam_number).Collimator.fields(0).Y2
if cm.JAWS.XY_Choice(i-1)="Y" Then
     zvtop=cm.JAWS.ZMIN_JAWS(i-1)
     zybot=cm.JAWS.ZMAX_JAWS(i-1)
     cm.JAWS.XFP_JAWS(i-1)=zytop*y2/100
     cm.JAWS.XBP_JAWS(i-1)=zvbot*v2/100
     cm.JAWS.XFN_JAWS(i-1)=zytop*y1/100
     cm.JAWS.XBN_JAWS(i-1)=zybot*y1/100
if cm.JAWS.XY_Choice(i-1)="X" Then
     zxtop=cm.JAWS.ZMIN_JAWS(i-1)
     zxbot=cm.JAWS.ZMAX_JAWS(i-1)
     cm.JAWS.XFP_JAWS(i-1)=zxtop*x2/100
     cm.JAWS.XBP_JAWS(i-1)=zxbot*x2/100
     cm.JAWS.XFN_JAWS(i-1)=zxtop*x1/100
     cm.JAWS.XBN_JAWS(i-1)=zxbot*x1/100
```

JAWS

Auto-script CM DYNVMLC

MLC field is defined at isocenter, required to convert the MLC leaf projections at isocenter to the MLC leaf positions within BEAMnrc.

Back-projection is complicated by rounded leaf ends of the MLC.

Auto-script CM DYNVMLC

- Varian Script is defined within the methods of the class BEAM, under the title
 egs_Input_CM_DYNVMLC_MLC2BEAM_Varian.
- This script is unique to Varian millennium type MLCs with rounded leaf ends.
- In the event that the MMCTP beam does not contain a MLC pattern, a default retracted MLC position of 20.3 cm is used for each leaf.

Auto-script CM APPLICAT

- Values are not edited
- THe whole CM section is replaced with an APPLICAT file
- Each linac applicator is linked to an APPLICAT file
- APPLICAT files are stored within the MMCTP BEAMnrc folder
- Same approach for WEDGE CM

**** start of CM APPLICAT with ident 27, RMAX 5x5 applicator 78.54, ZBACK 2, 0, #SCRAPERS, SQUARE 63.75, 1.65, 3.58, 4.42, 0, 0 76.5, 2.025, 3.305, 4.695, 0, 0 0.521, 0.01, 0, 0, BISNICRU700 BISNICRU700

EGSnrc settings

- Accessible for both BEAM/DOS
- Read-in from template input file
- MMCTP does not auto edit these settings

DOSXYZnrc Main Window

- ability to start calculation
- progress bars for dose calculation status
- access to DOSXYZ input parameters
- access to EGSPhant creation tools

DOSXYZnrc

- Source linking to BEAM
- Elementary
 parameters +
 access to advanced
 parameters
- Calibration dose and monitor backscatter correction
- Previous run stats
- Test Run access and output

DOSXYZnrc

- Phantom definition
- Edit dosxyznrc parameters
- Source definition access
- Variance reduction techniques access

DOSXYZnrc - source type definition

- Automatically determines values from the External Beam tab information
- Values are determined upon test run

Exclude Fat Photons from DBS			
BEAM sim with no LATCH filter			
BEAM sim with latch	I BIT FILTER=0		
Isocenter (x,y,z)	-0.07	56.34	-6.73
Angles (theta,phi,coll)	0.	0.	0.
Distance from souce to isocenter	30.		
BEAM simulation:	BEAM_6X	DYNJAWS_DYN	VMLC
input file:	QA_PHANTOMNEW_37943_p01b1 MLCicru		
pegs data:			
e split	51		

DOSXYZnrc - source type definition - link to external beam definition

- Automatically determines values from the External Beam tab information
- Values are determined upon test run

DOSXYZnrc - source type definition - link to external beam definition

DOSXYZnrc - phantom creation

DOSXYZnrc - phantom creation

- Selection of resolution and boundaries
- Selection of material data set
- Selection of name (Note: length)
- Possibility to generate mathematical phantom

DOSXYZnrc - phantom creation

- Contour filling and material assignment
- Regions are assigned by specifying material + density

