Изучение свойств ферромагнетиков.

13 сентября 2022 г.

1.Аннотация.

В работе измеряются величины остаточной индукции магнитного поля B_r , коэрцитивной силы H_c , амплитуда магнитной индукции B_s и напряжённости магнитного поля H_s предельной петли гистерезиса для ферромагнитных образцов из трёх различных матеиалов: феррита, пермаллоя и кремнистого железа — тороидной формы. Для измерений используются фигуры лиссажу, получаемые при помои электронного осциллографа, подключённого к установке, возбуждающей колебания. Схему установки см. на рис. 1.

Рис. 1: Схема экспирементальной установки.

2. Теоретическое введение.

Для нахождения напряжённости поля в образце воспользуемся формулой, следующей из теоремы о циркуляции:

 $H = \frac{IN_0}{2\pi R},\tag{1}$

где I — величина намагничивающего тока, N_0 — число витков в намагничивающей обмотке, а R — средний радиус тора.

Намагничивающий ток измеряется при помощи ЭО с использованнем закона Ома (см. рис. 1). Окончательно, исходя из 1, получим

$$H = \frac{U_X N_0}{2\pi R R_0},\tag{2}$$

Методика измерения магнитной индукции в образце основывается на формуле

$$B = \frac{R_i C_i}{SN_i} U_{out},\tag{3}$$

где $U_{out} = U_Y$ — выходное напряжение интегрирующей ячейки, R_i и C_i — её сопротивление и ёмкость соответственно, S — площадь поперечного сечения образца, а N_i — число витков в его вторичной обмотке

Подключая U_X и U_Y к соответствующим каналам удаётся получить на экране осциллографа петлю гистерезиса. Для измеренияеё параметров используется сетка на экране.

Для калибровки масштаба шкал осциллографа в случае оси X используется синусоидальный ток эффективное значение которого I_{eff} измеряется независимо при помощи цифрового амперметра, пропускаемый через известное сопротивление R_0 (катушка образца на время калибровки закорачивалась). Рабочая формула в этом случае:

$$K_X = \frac{2R_0\sqrt{2}I_{eff}}{2r},\tag{4}$$

где K_X — масштаб по оси X, а 2x — длина горизонтального отрезка на экране. В случае же оси Y было произведено независимое (при помощи цифрового вольтметра и Θ) измерение синусоидаль напряжения на клеммах "1/100"и "общий" делителя напряжений (см. рис. 1) (измерения также проводятся без подключения образца). Рабочая формула в этом случае:

$$K_Y = \frac{2\sqrt{2}U_{eff}}{2u},\tag{5}$$

где K_Y — измеряемый масштаб, U_{eff} — эффиктивное напряжение, измеряемое вольтметром, а 2y — длина вертикаьльного отрезка на экране осциллографа.

Для выяснения характерного времени разрядки конденсатора интегрирующей ячейки воспользуемся формулой $\tau_i = C_i R_i$. Параметры C_i и R_i указаны на установке. Подставляя их в формулу находим, что $\tau \gg \frac{1}{\omega}$, где ω — частота напряжения, указанная на установке. Используемые значения: $R_i = 20 \text{ кОм}, C_i = 20 \text{ мк} \Phi \ \omega = 50 \ \Gamma \text{ц}$

3.Приборы и материалы

Указанные на установке параметры представлены в таблице

Таблица 1: Параметры измерительной установки, согласно маркировке

R_0 , Om	R_i , кОм	C_i , мк Φ	
$0,\!22$	20	20	

В следующей таблице указаны параметры используемых образцов

Таблица 2: Параметры используемых образцов, согласно маркировке

Материал	N_0 , iiit	N_i , iiit	S, cm ²	$2\pi R$, cm
Феррит	42	400	3,0	25
Пермаллой	20	400	0,76	13,3
Кремнистое железо	25	250	2,5	11

4. Результаты измерений и обработка данных.

Полученные результаты измерений представлены ниже. Под K_X и K_Y понимается масштаб соответствующей оси осциллографа, согласно значениям на ручках прибора.

Таблица 3: Измеренные значения напряжения

Материал	h, дел $/5$	$K_Y, \frac{MB}{AEA}$	w, дел $/5$	$K_X, \frac{MB}{AB}$	$2X_c$, дел $/5$	$K_X, \frac{MB}{AB}$	$2Y_r$, дел $/5$	K_Y , $\frac{MB}{MEA}$
Феррит	40	20	37	200	30	10	31	10
Пермаллой	20	50	10	50	46	10	18	50
Кремнистое железо	25	50	36	200	32	20	24	20

В таблице ниже представлены значения, полученные при калибровке ЭО. Под K_X и K_Y понимается масштаб соответствующей оси осциллографа, согласно значениям на ручках прибора. K_X^m и K_Y^m — рассчитанный по измерениям масштаб соответствующих осей ЭО.

Таблица 4: Проверка калибровки ЭО.

$K_X, \frac{MB}{AEA}$	I_{eff} , MA	K_X^m , $\frac{{}_{ m MB}}{{}_{ m дел}}$	$K_Y, \frac{MB}{AB}$	U_{eff} , м ${ m B}$	$K_Y^m, \frac{{}_{\mathrm{MB}}}{{}_{\mathrm{дел}}}$
10	152	9,45	10	27	9,54
20	306	19,05	20	55	19,44
50	765	47,60	50	136	48,08
200	1550	192,90	_	_	_

Исходя из этих данных, можно заключить, что осциллограф откалиброван достаточно точно, чтобы использовать в расчётах величины K_X и K_Y .

В таблице далее представлены рассчитанные по данным из таблицы 3 величины коэрцитивной силы (H_c) , остаточной индукции (B_r) и амплитуд напряжённости (H_s) и индукции поля (B_s) для предельной петли гистерезиса каждого образца.

Таблица 5: Рассчитанные характеристики используемых образцов

Материал	Феррит	Пермаллой	Кремниевое железо
$H_c, \frac{A}{M}$	22.9	31.4	66.1
$\sigma_{H_c}, rac{\mathrm{A}}{\mathrm{M}}$	1.4	1.9	4.0
B_r , Тл	0.03	1.56	0.12
σ_{B_r} , м T л	1.8	93.6	7.2
$H_s, \frac{A}{M}$	1221	136	1033
$\sigma_H, \frac{A}{M}$	73	8	62
B_s , Тл	0.16	1.73	0.92
σ_B , Тл	0.01	0.10	0.05

Оцененная относительная погрешность полученных величин составила $\varepsilon \approx 11\%$ В следующей таблице можно найти максимальные значения дифференциальной магнитной проницаемости μ_{max} для используемых материалов.

Таблица 6: Измеренные значения максимальной магнитной проницаемости

Материал Феррит		Пермаллой	Кремнистое железо	
μ_{max}	1.50	1.65	0.77	

На рис. 2 представлены кривые намагничивания, по которым производилась оценка

Рис. 2: кривые начального намагничивания изучаемых образцов

5.Обсуждение результатов и выводы

В работе удалось измерить магнитные свойства трёх ферромагнитных материалов. Основной вклад в погрешность вносит считывание данных с ЭО. Погрешность можно было бы существенно уменьшить, используя цифровой прибор.

Рис. 3: Петли гистерезиса для феррита, пермаллоя и кремнистого железа соответственно