Sisal Page 1 of 3



## **General information**

#### Overview

Sisal fiber is derived from an agave, Agave sisalana. Sisal is valued for cordage use because of its strength, durability, ability to stretch, affinity for certain dyestuffs, and resistance to deterioration in saltwater.

# Designation

Sisal

### Typical uses

Sisal is used by industry in three grades, according to www.sisal.ws. The lower grade fiber is processed by the paper industry because of its high content of cellulose and hemicelluloses. The medium grade fiber is used in the cordage industry for making: ropes, baler and binders twine. Ropes and twines are widely employed for marine, agricultural, and general industrial use. The higher-grade fiber after treatment is converted into yarns and used by the carpet industry.

Sisall is now used as a reinforcement in polymer-matrix composites.

# **Composition overview**

# **Compositional summary**

| Material family Base material Composition detail (polymers and natural materials) Natural material  Price Price Price Price * 0.  Physical properties Density 0.  Mechanical properties Young's modulus 1.  Yield strength (elastic limit) Tensile strength Elongation 2 Flexural modulus * 1.  Shear modulus * 0.             | iber<br>latural       |        |          |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|----------|--|--|--|--|--|
| Base material  Renewable content  Composition detail (polymers and natural materials)  Natural material  Price  Price  Price  * 0.  Physical properties  Density  0.  Mechanical properties  Young's modulus  1.  Yield strength (elastic limit)  Tensile strength  Elongation  2  Flexural modulus  * 1.  Shear modulus  * 0. | latural               | Fiber  |          |  |  |  |  |  |
| Renewable content 10  Composition detail (polymers and natural materials)  Natural material 10  Price  Price * 0.  Physical properties  Density 0.  Mechanical properties  Young's modulus 1.  Yield strength (elastic limit) * 66  Tensile strength 74  Elongation 2  Flexural modulus * 1.  Shear modulus * 0.               |                       |        |          |  |  |  |  |  |
| Composition detail (polymers and natural materials)  Natural material 10  Price  Price * 0.  Physical properties  Density 0.  Mechanical properties  Young's modulus 1.  Yield strength (elastic limit) * 66  Tensile strength 74  Elongation 2  Flexural modulus * 1.  Shear modulus * 0.                                     | Cellulose             |        |          |  |  |  |  |  |
| Natural material 10  Price                                                                                                                                                                                                                                                                                                     | 00                    |        | %        |  |  |  |  |  |
| Natural material 10  Price                                                                                                                                                                                                                                                                                                     |                       |        |          |  |  |  |  |  |
| Price * 0.  Physical properties  Density 0.  Mechanical properties  Young's modulus 1.  Yield strength (elastic limit) * 66  Tensile strength 74  Elongation 2  Flexural modulus * 1.  Shear modulus * 0.                                                                                                                      | 00                    |        | %        |  |  |  |  |  |
| Physical properties  Density 0.  Mechanical properties  Young's modulus 1.  Yield strength (elastic limit) * 66  Tensile strength 74  Elongation 2  Flexural modulus * 1.  Shear modulus * 0.                                                                                                                                  |                       |        |          |  |  |  |  |  |
| Density 0.  Mechanical properties  Young's modulus 1.  Yield strength (elastic limit) * 66  Tensile strength 74  Elongation 2  Flexural modulus * 1.  Shear modulus * 0.                                                                                                                                                       | .272 -                | 0.318  | USD/lb   |  |  |  |  |  |
| Mechanical propertiesYoung's modulus1.Yield strength (elastic limit)* 66Tensile strength74Elongation2Flexural modulus* 1.Shear modulus* 0.                                                                                                                                                                                     |                       |        |          |  |  |  |  |  |
| Young's modulus  1. Yield strength (elastic limit)  Tensile strength  Elongation  Plexural modulus  * 1.  Shear modulus  1.  * 66  74  * 74  * 8  * 1.  * 9.                                                                                                                                                                   | .0522 -               | 0.0542 | lb/in^3  |  |  |  |  |  |
| Yield strength (elastic limit)                                                                                                                                                                                                                                                                                                 | Mechanical properties |        |          |  |  |  |  |  |
| Tensile strength 74 Elongation 2 Flexural modulus * 1. Shear modulus * 0.                                                                                                                                                                                                                                                      | .36 -                 | 3.19   | 10^6 psi |  |  |  |  |  |
| Elongation 2 Flexural modulus * 1. Shear modulus * 0.                                                                                                                                                                                                                                                                          | 6.7 -                 | 83.5   | ksi      |  |  |  |  |  |
| Flexural modulus * 1. Shear modulus * 0.                                                                                                                                                                                                                                                                                       | '4.1 -                | 92.8   | ksi      |  |  |  |  |  |
| Shear modulus * 0.                                                                                                                                                                                                                                                                                                             | -                     | 7      | % strain |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | .36 -                 | 3.19   | 10^6 psi |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                | .532 -                | 1.33   | 10^6 psi |  |  |  |  |  |
| Poisson's ratio * 0.                                                                                                                                                                                                                                                                                                           | .359 -                | 0.374  |          |  |  |  |  |  |
| Shape factor 1                                                                                                                                                                                                                                                                                                                 |                       |        |          |  |  |  |  |  |
| Fatigue strength at 10^7 cycles * 31                                                                                                                                                                                                                                                                                           |                       | 45.8   | ksi      |  |  |  |  |  |





| BEDUPACK                                 |                                   |
|------------------------------------------|-----------------------------------|
| Mechanical loss coefficient (tan delta)  | * 0.00407 - 0.00753               |
| Impact & fracture properties             |                                   |
| Fracture toughness                       | 17.8 - 92 ksi.in^0.5              |
|                                          |                                   |
| Thermal properties                       |                                   |
| Glass temperature                        | * 716 - 734 °F                    |
| Maximum service temperature              | * 752 - 788 °F                    |
| Thermal conductivity                     | * 0.144 - 0.202 BTU.ft/hr.ft^2.°F |
| Specific heat capacity                   | 0.287 - 0.291 BTU/lb.°F           |
| Thermal expansion coefficient            | * 8.33 - 16.7 µstrain/°F          |
| Magnetic properties                      |                                   |
| Magnetic type                            | Non-magnetic                      |
|                                          |                                   |
| Optical properties                       | _                                 |
| Transparency                             | Opaque                            |
| Absorption & permeability                |                                   |
| Water absorption @ 24 hrs                | * 2 - 2.4 %                       |
| Water absorption @ sat                   | 10 - 12 %                         |
| Humidity absorption @ sat                | * 3.33 - 4 %                      |
| Tidifficity absorption & sat             | J.55 4 //                         |
| Durability                               |                                   |
| Water (fresh)                            | Excellent                         |
| Water (salt)                             | Excellent                         |
| Weak acids                               | Acceptable                        |
| Strong acids                             | Unacceptable                      |
| Weak alkalis                             | Acceptable                        |
| Strong alkalis                           | Unacceptable                      |
| Organic solvents                         | Acceptable                        |
| Oxidation at 500C                        | Unacceptable                      |
| UV radiation (sunlight)                  | Good                              |
| Flammability                             | Highly flammable                  |
| ·                                        |                                   |
| Primary production energy, CO2 and water |                                   |
| Embodied energy, primary production      | * 4.09e3 - 4.51e3 BTU/lb          |
| CO2 footprint, primary production        | * 1.52 - 1.68 lb/lb               |
| Water usage                              | * 2.18e5 - 2.41e5 in^3/lb         |
| Processing energy, CO2 footprint & water |                                   |
| Fabric production energy                 | * 1.07e3 - 1.17e3 BTU/lb          |
|                                          | 210/18                            |

Sisal Page 3 of 3



| Fabric production CO2   | * 0.198 | - | 0.218 | lb/lb   |
|-------------------------|---------|---|-------|---------|
| Fabric production water | * 28.5  | - | 42.9  | in^3/lb |

Recycling and end of life

| Recycle                            | ×        |   |       |        |
|------------------------------------|----------|---|-------|--------|
| Recycle fraction in current supply | 8.55     | - | 9.45  | %      |
| Downcycle                          | ✓        |   |       |        |
| Combust for energy recovery        | ✓        |   |       |        |
| Heat of combustion (net)           | * 8.28e3 | - | 8.7e3 | BTU/lb |
| Combustion CO2                     | * 1.5    | - | 1.58  | lb/lb  |
| Landfill                           | ✓        |   |       |        |
| Biodegrade                         | ✓        |   |       |        |

# Links

| ProcessUniverse |  |  |  |
|-----------------|--|--|--|
| Reference       |  |  |  |
| Shape           |  |  |  |