510(K) SUMMARY

This summary of 510(k) safety and effectiveness information is being submitted in accordance with the requirements of SMDA 1990 and 21 CFR §807.92.

The assigned 510(k) number is: ___063407_____

Submitter:

Shenzhen Mindray Bio-medical Electronics Co., LTD Mindray Building, Keji 12th Road South, Hi-tech Industrial Park, Nanshan, Shenzhen, 518057, P. R. China

Tel: +86 755 2658 2888

Fax: +86 755 2658 2680

• Contact Person:

Li Dongling Shenzhen Mindray Bio-medical Electronics Co., LTD Mindray Building, Keji 12th Road South, Hi-tech Industrial Park, Nanshan, Shenzhen, 518057, P. R. China

• Date Prepared:

Oct. 20, 2006

Name of the device:

- Trade/Proprietary Name: BC-3200 Auto Hematology Analyzer
- Common Name: Automated Differential Cell Counter
- Classification

21 CFR§864.5220 Automated Differential Cell Counter

Class II

Legally Marketed Predicate Device:

K#990352, COULTER® A^C·T diff 2TM Analyzer, Coulter Corporation.

Description:

The BC-3200 Auto Hematology Analyzer is a quantitative, automated hematology analyzer and leukocyte differential counter for In Vitro Diagnostic Use in clinical laboratories. It is only to be used by trained medical professionals to identify the normal patient, with all normal system-generated parameters, and to flag or identify patient results that require additional studies. The analyzer provides analysis results of 16 parameters (listed below) of human blood and three histograms.

Parameter	Abbreviation
White Blood Cell or leukocyte	WBC
Lymphocyte	Lymph#
Mid-sized cell	Mid#
Granulocyte	Gran#
Lymphocyte percentage	Lymph%
Mid-sized cell percentage	Mid%
Granulocyte percentage	Gran%
Red Blood Cell or erythrocyte	RBC
Hemoglobin Concentration	HGB
Mean Corpuscular (erythrocyte) Volume	MCV
Mean Cell (erythrocyte) Hemoglobin	MCH
Mean Cell (erythrocyte) Hemoglobin Concentration	MCHC
Red Blood Cell (erythrocyte) Distribution Width	RDW
Hematocrit	HCT
Platelet	PLT
Mean Platelet Volume	MPV

White Blood Cell Histogram	WBC Histogram
Red Blood Cell Histogram	RBC Histogram
Platelet Histogram	PLT Histogram

The BC-3200 Auto Hematology Analyzer system consists of the analyzer, reagents (M-30D DILUENT, M-30R RINSE, M-30CFL LYSE, M-30E E-Z CLEANSER and M-30P PROBE CLEANSER), controls (BC-3D Hematology Control), calibrator (SC-CAL PLUS Hematology Calibrator) and accessories.

Performance of the system depends on the combined integrity of all components.

The two independent measurement methods used in this analyzer are: the Coulter method for determining the WBC, RBC, and PLT data and the colorimetric method for determining the HGB.

Statement of intended Use:

The BC-3200 auto hematology analyzer is a quantitative, automated hematology analyzer and leukocyte differential counter to be used in clinical laboratories for In Vitro Diagnostic purpose.

The intended use of BC-3200 Auto Hematology Analyzer is to identify the normal patient, with all normal system-generated parameters, and to flag or identify patient results that require additional studies.

Performance characteristics:

Reproducibility

Reproducibility is stated in terms of both Standard Deviation (SD) and Coefficient of Variation (CV%). Reproducibility was determined by replicate testing(n=11) with samples of low, normal and high concentrations, three samples for each concentration. For each sample, results of the 2nd to 11th runs were adopted to calculate the SD and CV %. See Table 1 to Table 3.

	WBC	RBC	HGB	MCV	PLT
1	$(\times 10^3 / \mu L)$	$(\times 10^6 / \mu L)$	(g/dL)	(fl)	$(\times 10^3 / \mu L)$
mean	4.1	2.88	9.2	64.6	162
SD	0.07	0.04	0.1	0.40	5.06
CV(%)	1.63	1.45	0.8	0.62	3.12
2	WBC	RBC	HGB	MCV	PLT
2	$(\times 10^3 / \mu L)$	$(\times 10^6 / \mu L)$	(g/dL)	(fl)	$(\times 10^3 / \mu L)$
mean	3.2	3.02	9.3	72.9	155
SD	0.03	0.03	0.1	0.21	7.02
CV(%)	0.99	1.06	1.0	0.28	4.53
3	WBC	RBC	HGB	MCV	PLT
3	$(\times 10^3 / \mu L)$	$(\times 10^6 / \mu L)$	(g/dL)	(fl)	$(\times 10^3 / \mu L)$
mean	3.1	1.91	5.6	61.0	61
SD	0.06	0.03	0.1	0.24	5.11
CV(%)	1.84	1.76	1.1	0.39	8.39

Table 1 Imprecision, low concentration samples

1	WBC	RBC	HGB	MCV	PLT
1	$(\times 10^3 / \mu L)$	$(\times 10^6 / \mu L)$	(g/dL)	(fl)	$(\times 10^3 / \mu L)$
mean	10.1	4.60	13.1	83.3	244
SD	0.12	0.03	0.09	0.38	8.05
CV(%)	1.18	0.73	0.7	0.45	3.30
2	WBC	RBC	HGB	MCV	PLT
2	$(\times 10^3 / \mu L)$	$(\times 10^6 / \mu L)$	(g/dL)	(fl)	$(\times 10^3 / \mu L)$
mean	9.8	5.34	15.2	83.1	249
SD	0.10	0.04	0.12	0.27	4.86
CV(%)	0.99	0.78	0.8	0.33	1.95
2	WBC	RBC	HGB	MCV	PLT
3	$(\times 10^3 / \mu L)$	$(\times 10^6/\mu L)$	(g/dL)	(fl)	$(\times 10^3 / \mu L)$
mean	11.3	5.27	15.0	85.9	231
SD	0.13	0.04	0.06	0.21	8.53
CV(%)	1.11	0.73	0.4	0.25	3.70

Table 2 Imprecision, normal concentration samples

1	WBC	RBC	HGB	MCV	PLT
1	$(\times 10^3 / \mu L)$	$(\times 10^6 / \mu L)$	(g/dL)	(fl)	$(\times 10^3 / \mu L)$
mean	16.7	6.98	22.4	112.1	419
SD	0.31	0.09	0.2	0.79	9.73
CV(%)	1.85	1.24	0.7	0.71	2.32
2	WBC	RBC	HGB	MCV	PLT
2	$(\times 10^3 / \mu L)$	$(\times 10^6 / \mu L)$	(g/dL)	(fl)	$(\times 10^3 / \mu L)$
mean	25.1	6.22	18.8	/	408
SD	0.26	0.05	0.2	/	6.45
CV(%)	1.03	0.84	0.8	/	1.58
2	WBC	RBC	HGB	MCV	PLT
3	$(\times 10^3 / \mu L)$	$(\times 10^6 / \mu L)$	(g/dL)	(fl)	$(\times 10^3 / \mu L)$
mean	18.5	6.09	18.0	/	495
SD	0.17	0.04	0.2	/	11.44
CV(%)	0.93	0.60	0.8	/	2.31

Table 3 Imprecision, high concentration samples

Iner-Laboratory Precision

Two laboratories, each having one BC-3200 installed, were selected for the test. Three samples of various concentrations (respectively low, normal and high) were prepared, each with sufficient volume to run twice on both of the BC-3200s. Each BC-3200 was operated by one operator, who conducted the test from

beginning to the end. Each sample was divided into two aliquots, and the two aliquots were analyzed respectively by the two selected laboratories within the same day of preparation. Each aliquot was run twice on the BC-3200 and both runs were conducted within a short interval. No outlier was found during the test.

Based on the data acquired, repeatability variance (S_r^2) , between laboratory variance (S_L^2) , and reproducibility variance (S_R^2) of the following parameters, WBC, RBC, HGB, MCV, PLT, Lymph%, Mid% and Gran%, were calculated for

each concentration. The inter-laboratory precision see table 4.

		Low	Normal	High					
WBC $(\times 10^3 / \mu L)$									
Mean	_	2.13	8.10	20.68					
Repeatability variance	S_r^2	0.0025	0.0098	0.0613					
Between Laboratory variance	S_L^2	0.0000	0.0151	0.0000					
	S_R^2	0.0025	0.0249	0.0613					
Reproducibility variance	S_R	0.0500	0.1578	0.2476					
	CV%	2.35%	1.95%	1.20%					
	Gra	an (%)	•						
Mean		32.53	60.98	81.30					
Repeatability variance	S_r^2	1.1050	0.0221	0.0637					
Between Laboratory variance	S_L^2	1.7588	0.7703	0.0932					
	S_R^2	2.8638	0.7924	0.1569					
Reproducibility variance	S_R	1.6923	0.8902	0.3961					
	CV%	5.20%	1.46%	0.49%					
	Lyn	iph (%)							
Mean		12.65	28.83	51.30					
Repeatability variance	S_r^2	0.2073	0.0613	3.0439					
Between Laboratory variance	S_L^2	0.0000	1.3307	6.4781					

			,	,			
	S_R^2	0.2073	1.3920	9.5220			
Reproducibility variance	S_R	0.4553	1.1798	3.0858			
	CV%	3.60%	4.09%	6.02%			
	M	id (%)					
Mean		6.05	10.20	16.18			
Repeatability variance	S_r^2	0.0490	0.0098	0.6655			
Between Laboratory variance	S_L^2	0.0205	0.0751	1.3786			
	S_R^2	0.0695	0.0849	2.0441			
Reproducibility variance	S_R	0.2636	0.2914	1.4297			
	CV%	4.36%	2.86%	8.84%			
RBC (× $10^6/\mu$ L)							
Mean		2.48	4.89	5.80			
Repeatability variance	S_r^2	0.0004	0.0065	0.0085			
Between Laboratory variance	S_L^2	0.0007	0.0013	0.0000			
	S_R^2	0.0011	0.0078	0.0085			
Reproducibility variance	S_R	0.0332	0.0883	0.0922			
	CV%	1.34%	1.81%	1.59%			
	HG	B (g/L)					
Mean		6.35	14.08	19.13			
Repeatability variance	S_r^2	0.0000	0.0025	0.0123			
Between Laboratory variance	S_L^2	0.0050	0.0601	0.0952			
	S_R^2	0.0050	0.0626	0.1075			
Reproducibility variance	S_R	0.0707	0.2502	0.3279			
	CV%	1.11%	1.78%	1.71%			
	M	CV (fl)					

Mean		77.28	86.73	96.33
Repeatability variance	S_r^2	0.1103	0.0123	0.0907
Between Laboratory variance	S_L^2	2.2562	1.5252	2.7160
	S_R^2	2.3665	1.5375	2.8067
Reproducibility variance	S_R	1.5383	1.2400	1.6753
	CV%	1.99%	1.43%	1.74%
	PLT ($(\times 10^3 / \mu L)$		
Mean		94.75	258.25	468.50
Repeatability variance	S_r^2	13.2453	16.2699	12.5033
Between Laboratory variance	S_L^2	14.5024	69.9901	65.7484
	S_R^2	27.7477	86.2600	78.2517
Reproducibility variance	S_R	5.2676	9.2876	8.8460
	CV%	5.56%	3.60%	1.89%

Table 4 Within-run precision and total precision

Appendix of Table 4:

WBC	Form A			Form B			Form C		
Laboratory	Low	Normal	High	Low	Normal	High	Low	Normal	High
1	2.2	8.1	20.5	2.15	8.2	20.75	0.07	0.14	0.35
	2.1	8.3	21	2.13	8.2	20.73	0.07	0.14	0.33
2	2.1	8	20.6	2.1	0	20.6	0	0	0
	2.1	8	20.6	2.1	8	20.6	0	0	U

Gran(%)		Form A			Form B			Form C		
Laboratory	Low	Normal	High	Low	Normal	High	Low	Normal	High	
1	32.5	60.2	81.1	31.45	60.35	81.05	1.48	0.21	0.07	
	30.4	60.5	81	31.43	00.55	81.03	1.40	0.21	0.07	
2	33.5	61.6	81.8	33.6	61.6	81.55	0.14	0	0.35	
	33.7	61.6	81.3	33.0	01.0	01.33	0.14	U	0.55	

Lymph (%) Form A				Form B Form C			C		
Laboratory	Low	Normal	High	Low	Normal	High	Low	Normal	High

1	12.8	29.9	51.7	12.75	29.65	53.3	0.07	0.35	2.26
	12.7	29.4	54.9	12.73	29.03	33.3	0.07	0.55	2.20
2	12.1	28	50	12.55	28	40.2	0.64	0	0.00
	13	28	48.6	12.33	28	49.3	0.64	U	0.99

Mid (%)	Form A				Form B			Form C		
Laboratory	Low	Normal	High	Low	Normal	High	Low	Normal	High	
1	6.1	9.9	15.8	6.2	10	15.25	0.14	0.14	0.79	
	6.3	10.1	14.7	6.2	10	15.25	0.14	0.14	0.78	
2	6.1	10.4	16.5	5.9	10.4	17.1	0.28	0	0.85	
	5.7	10.4	17.7	3.9	10.4	1/.1	0.28	0	0.83	

RBC	Form A			Form B			Form C		
Laboratory	Low	Normal	High	Low	Normal	High	Low	Normal	High
1	2.44	4.78	5.84	2.455	4.845	5.765	0.02	0.09	0.11
	2.47	4.91	5.69	2.433	4.043	3.703	0.02	0.09	0.11
2	2.51	4.99	5.89	2.495	4.94	5.84	5.04	0.07	0.07
	2.48	4.89	5.79	2.493	4.94	3.84	0.02	0.07	0.07

HGB	Form A				Form B			Form C		
Laboratory	Low	Normal	High	Low	Normal	High	Low	Normal	High	
1	6.3	13.9	18.8	6.3	13.9	18.9	0	0	0.14	
	6.3	13.9	19	0.3	13.9	18.9	U	0	0.14	
2	6.4	14.3	19.4	6.1	14.25	19.35	0	0.07	0.07	
	6.4	14.2	19.3	6.4	14.25	19.33	0	0.07	0.07	

MCV	Form A				Form B			Form C		
Laboratory	Low	Normal	High	Low	Normal	High	Low	Normal	High	
1	76.5	85.9	95.2	76.2	85.85	95.15	0.42	0.07	0.07	
	75.9	85.8	95.1	/0.2	83.83	93.13	0.42	0.07	0.07	
2	78.5	87.5	97.8	78.35	87.6	97.5	0.21	0.14	0.42	
	78.2	87.7	97.2	16.33	87.0	97.3	0.21	0.14	0.42	

PLT	Form A				Form B			Form C		
Laboratory	Low	Normal	High	Low	Normal	High	Low	Normal	High	
1	88	265	466	91.5	264.5	462.5	4.95	0.71	4.95	
	95	264	459	91.3	204.3	402.3	4.93	0.71	4.93	
2	97	248	474	98	252	1715	1 /1	5.66	0.71	
	99	256	475	98	252	474.5	1.41	5.66	0.71	

Linearity

Linearity was determined by running diluted samples. RBC,HGB are diluted by blood plasma of the sample , while WBC and PLT are diluted by specified diluent . Concentrations from 0 to 100 % were tested , each concentration twice . The average of the two runs is taken as the result , together with the concentration , to calculate per the linear regression equation . See Table 5 to Table 8.

Dilution (%)	Test 1	Test 2	Mean	Ideal	Error	Proportional error			
100	117.1	115.9	116.50	120.01	3.51	2.9			
80	99.8	100.1	99.95	96.01	-3.94	-4.1			
60	73.4	72.1	72.75	72.00	-0.75	-1.0			
40	47.8	48.6	48.20	48.00	-0.20	-0.4			
20	23.1	23.1	23.10	23.99	0.89	3.7			
10	12.1	12.0	12.05	11.99	-0.06	-0.5			
5	6.0	6.2	6.10	6.00	-0.10	-1.7			
2.5	3.0	2.9	2.95	2.99	0.04	1.3			
1.25	1.3	1.3	1.30	1.49	0.19	12.8			
0.625	0.5	0.5	0.50	0.74	0.24	32.4			
0.3125	0.2	0.1	0.15	0.36	0.21	58.3			
0	0	0	0.00	-0.01	-0.01	/			
Slope	1.2002								
Intercept	-0.0129								

Table 5 WBC Linearity

Dilution (%)	Test 1	Test 2	Mean	Ideal	Error	Proportional error			
100	8.46	8.43	8.445	8.519	0.074	0.9			
80	6.91	6.86	6.885	6.819	-0.066	-1.0			
60	5.12	5.17	5.145	5.119	-0.026	-0.5			
40	3.42	3.46	3.440	3.419	-0.021	-0.6			
20	1.71	1.69	1.700	1.719	0.019	1.1			
10	0.89	0.87	0.880	0.869	-0.011	-1.3			
5	0.46	0.46	0.460	0.444	-0.016	-3.6			
2.5	0.21	0.22	0.215	0.232	0.017	7.3			
1.25	0.10	0.13	0.115	0.125	0.010	8.0			
0	0.00	0.00	0.000	0.019	0.019	/			
Slope	0.0850								

Intercept	0.0191
1	1

Table 6 RBC Linearity

Dilution (%)	Test 1	Test 2	Mean	Ideal	Error	Proportional error				
100	25.6	25.6	25.60	25.40	-0.20	-0.8				
80	20.5	20.1	20.30	20.33	0.03	0.1				
60	15.1	14.9	15.00	15.26	0.26	1.7				
40	10.1	10.1	10.10	10.19	0.09	0.9				
20	5.2	5.0	5.10	5.11	0.01	0.2				
10	2.7	2.6	2.65	2.58	-0.07	-2.7				
5	1.4	1.4	1.40	1.31	-0.09	-6.9				
2.5	0.7	0.7	0.70	0.68	-0.02	-2.9				
1.25	0.4	0.4	0.40	0.36	-0.04	-11.1				
0	0.0	0.0	0.00	0.04	0.04	/				
Slope	0.2536									
Intercept		0.0425								

Table 7 HGB Linearity

Dilution (%)	Test 1	Test 2	Mean	Ideal	Error	Proportional error			
100	1014	1008	1011.0	1040.3	29.3	2.8			
80	850	858	854.0	832.5	-21.5	-2.6			
60	631	650	640.5	624.8	-15.7	-2.5			
40	425	419	422.0	417.0	-5.0	-1.2			
20	221	208	214.5	209.3	-5.2	-2.5			
10	109	101	105.0	105.4	0.4	0.4			
5	53	53	53.0	53.5	0.5	0.9			
2.5	23	17	20.0	27.5	7.5	27.3			
1.25	8	5	6.5	14.5	8.0	55.2			
0	0 0 0.0 1.6 1.6 /								
Slope	10.3871								
Intercept	1.5618								

Table 8 PLT Linearity

Carryover

Carryover was determined by first running the high concentration sample for

three consecutive times (i1, i2, i3) and then the low concentration sample three consecutive times (j1, j2, j3), and finally calculating per the following equation:

Carryover (%) = $[(j1 - j3)/(i3-j3)] \times 100\%$

The test was then repeated using the high level control. See Table 9 and Table 10.

	High	concent	ration	Low	concentr	ation	
Parameter	sample (whole blood)			sample	e (whole	blood)	Carryover %
	i1	i2	i3	j1	j2	j3	
WBC(× $10^3 / \mu L$)	19.7	20.4	20.0	1.9	1.9	1.9	0%
RBC(× $10^6/\mu$ L)	6.34	6.24	6.2	1.87	1.96	1.85	0.46%
HGB(g/dL)	25.4	25.0	24.8	3.3	3.2	3.2	0.46%
PLT(× $10^3/\mu$ L)	404	390	396	31	34	33	0%

Table 9 Carryover, high concentration sample

	High	concenti	ration	Low	concentr	ation	
Parameter	samp	ole (high	level	samj	ple (spec	Correspond 9/	
Parameter		control)			diluent)	Carryover %	
	i1	i2	i3	j1	j2	j3	
WBC($\times 10^3 / \mu L$)	21.7	21.3	21.7	0.0	0.0	0.0	0%
$RBC(\times 10^6 / \mu L)$	5.88	5.79	5.79	0.00	0.00	0.00	0%
HGB(g/dL)	18.8	18.7	18.9	0.0	0.0	0.0	0%
PLT(× $10^3/\mu$ L)	453	438	429	0	0	0	0%

Table 10 Carryover, high level control

Correlation

Correlation is determined by comparing the results (both CBC and DIFF) obtained by the BC-3200 to those by the Coulter $A^{C} \cdot T$ diff 2^{TM} and by comparing the DIFF results obtained by the BC-3200 to those by manual differential . See Table 11 and Table 12 .

	Sample	Mean		Difference	Slope	Intercept	Correlation
Parameters	(n)	BC-3200	A ^c . T diiff 2	ratio (D%)	(a)	(b)	coefficients
WBC	103	10.4	10.3	2.4	1.0097	-0.0282	0.9994
Lymph#	98	1.9	2.1	11.8	0.9918	-0.1864	0.9890
Mid#	98	0.7	0.5	40.5	2.1022	-0.3798	0.9187
Gran#	98	6.1	6.0	3.7	0.9886	0.1460	0.9978
Lymph%	98	25.8	29.3	11.5	0.7935	2.5772	0.9751
Mid%	98	9.0	6.7	43.0	0.7569	3.8798	0.4644

Gran%	98	65.2	64.0	3.4	0.9046	7.3470	0.9707
RBC	103	4.31	4.27	1.7	0.9916	0.0702	0.9971
HGB	103	12.6	12.5	1.2	0.9951	0.0853	0.9982
НСТ	103	37.6	37.2	2.2	1.0041	0.2953	0.9950
MCV	103	87.8	87.5	1.2	0.9549	4.3174	0.9824
MCH	103	29.2	29.5	1.6	0.9426	1.4345	0.9791
MCHC	103	33.3	33.7	1.8	0.7759	7.1720	0.6784
RDW	103	13.1	13.5	4.7	0.4393	7.1667	0.9569
PLT	103	226	230	8.0	0.8882	21.837	0.9961
MPV	102	8.5	8.9	4.7	0.7037	2.2287	0.9334

Table 11 Correlation to Coulter A^C⋅T diff 2TM

	Samples	M	I ean	Slope Intercept		Correlation
Parameter	(n)	DC 2200	Manual	(a)	(b)	coefficient
	BC-3200	BC-3200	differential			(r)
Lymph%	196	26.8	30.4	0.7575	3.7958	0.95
Mid%	196	9.2	9.0	0.3739	5.822	0.57
Gran%	196	64.0	60.6	0.8456	12.721	0.94

Table 12 Correlation to manual differential

• Ability to flag abnormal WBC histograms

BC-3200's ability to flag abnormal WBC histograms was determined by comparing 200 sample results obtained by the BC-3200 to those obtained by manual differential. See Table 13.

Manual	BC-3200			
differential	Positive (39)	Negative (161)		
Positive (40)	TP (22)	FN (18)		
Negative (160)	FP (17)	TN (143)		
		False Negative Ratio		
Agreement (%)	False Positive Ratio (%)	(%)		
82.5	10.6	45		

Table 13 Ability to flag abnormal WBC histograms

Reference Ranges

A Normal Ranges Study was conducted to assess the Reference Ranges for the BC-3200 analyzer. Whole-blood samples were collected from 121 donors.

Normal Population Study

				90%Confidence	90%Confidence
Parameter	Units	Sex	Mean	Low Limit	High Limit
WBC	$\times 10^3$ cells $/\mu$ L	M/F	6.86	3.47	10.25
RBC	$\times 10^6$ cells $/\mu L$	M/F	4.56	3.54	5.58
HGB	g/ dL	M/F	13.40	10.27	16.52
НСТ	%	M/F	40.12	30.98	49.26
MCV	fL	M/F	88.18	80.82	95.55
MCH	pg	M/F	29.36	26.57	32.15
MCHC	g/ dL	M/F	33.33	32.09	34.56
PLT	$\times 10^3$ cells $/\mu$ L	M/F	209.92	119.62	300.22
RDW	%	M/F	12.81	11.53	14.10
MPV	fL	M/F	8.47	7.07	9.87
Lymph	%	M/F	27.33	18.11	36.55
Mid	%	M/F	9.45	5.23	13.67
Gran	%	M/F	63.26	51.62	74.89

Table 14 Reference Range

Comparison of Technological Characteristics:

Compare the BC-3200 Auto Hematology Analyzer to COULTER $^{\circledR}$ $A^{C}\cdot T$ diff 2^{TM} Analyzer

NO	Feature	BC-3200 Auto	COULTER® A ^C ·T diff	
•		Hematology Analyzer	2 TM Analyzer	
1	Intended Use	The BC-3200 auto	The COULTER® A ^C ·T	
		hematology analyzer is a	diff 2 TM Analyzer is a	
		quantitative, automated	quantitative, automated	
		hematology analyzer and	hematology analyzer	
		leukocyte differential	and leukocyte	
		counter for In Vitro differential counter		
		Diagnostic Use in In Vitro Diagnostic Us		
		clinical laboratories. in clinical laboratories.		
2	Sample Types	Whole Blood Mode and	Whole blood mode	
		Prediluted Mode and Prediluted mod		
3	Operating Modes	Closed Vial Whole	Open Vial Whole Blood	
		Blood mode	mode and Closed Vial	
			Whole Blood mode	
4	Throughput	1 minute / analysis	60 seconds or less	

5	Reagents Required	M-30D DILUENT; M-30R RINSE; M-30CFL LYSE;	dff A ^C ·T Park or diff A ^C ·T Tain reagent park, both of which contain	
		M-30E E-Z	diluent and lytic reagent. A ^C ·T Rinse Shutdown	
		CLEANSER; M-30P PROBE	Diluent	
		CLEANSER		
6	Operating Rage			
	WBC	$0.0 - 299.9 \ (\times 10^3/\mu L)$	$0.0-150 \ (\times 10^3/\mu L)$	
	RBC	$0.00 - 19.99 (\times 10^6/\mu L)$	$0.00-8.00~(\times10^6/\mu\text{L})$	
	HGB	$0 - 29.9 \ (\times g/dL)$	0.00-30.0 (×g/dL)	
	PLT	$0 - 2999 (\times 10^3 / \mu L)$	$000-3000 \ (\times 10^3/\mu L)$	
	MCV	0.0 - 249.9fL	50.0-130.0 fL	
7	Background Counts			
	WBC	$0.3 \times 10^3 / \mu L$ or less	$0.4 \times 10^3 / \mu L$ or less	
	RBC	$0.03\times10^6/\mu$ L or less	0.04×10^6 /µL or less	
	HGB	0.1 g/dL or less	0.2 g/dL or less	
	PLT	$10 \times 10^3 / \mu L$ or less	$7.0 \times 10^3 / \mu L$ or less	
8	Reproducibility			
	WBC	$7.0-15.0\times10^3/\mu$ L	$6.0-15.0\times10^3 / \mu L$	
		3.0% or less	3.0% or less	
	RBC	$3.50-6.00\times10^6/\mu$ L	$3.00-6.00\times10^6/\mu$ L	
		2.5% or less	3.0% or less	
	HGB	11.0-18.0 g/dL	12.0-18.0 g/dL	
		2.0% or less	2.0% or less	
	MCV	80.0-110.0 fL	80.0-100.0 fL	
		2.0% or less	3.0% or less	
	PLT	$200-400\times10^{3} / \mu L$	$200-500\times10^3 / \mu L$	
Δ.	T important	6.0% or less	7.0% or less	
9	Linearity	2.		
	WBC	$0.3-99.9 \ (\times 10^3/\mu L)$	$0 - 99.9 \times 10^{3} / \mu L$	
		±0.3 or ±5%	$\pm 0.3 \text{ or } \pm 5\%$	
	RBC	$0.20 - 7.99 (\times 10^6 / \mu L)$	$0 - 7.0(\times 10^6/\mu L)$	
		$\pm 0.05 \text{ or } \pm 5\%$	$\pm 0.05 \text{ or } \pm 5.0\%$	
	HGB	1.0-24.9 (g/dL)	$0 - 25.0 (g/dL) \Box$	
		± 0.2 or $\pm 3\%$	$\pm 0.2 \text{ or } \pm 3.0\%$	
	PLT	$10-999(\times 10^3/\mu L)$	$0 - 999 (\times 10^{3}/\mu L) \square$	
		$\pm 10 \text{ or } \pm 10\%$	$\pm 10.0 \text{ or } \pm 10.0\%$	

10	Carryover		
	WBC	0.5% or less	2.0% or less
	RBC	0.5% or less	2.0% or less
	HGB	0.5% or less	2.0% or less
	PLT	1.0% or less	2.0% or less
11	Principles		
	WBC	Coulter method	Coulter method
	RBC	Coulter method	Coulter method
	PLT	Coulter method	Coulter method
	HGB	Colorimetric method Hemoglobinometry method	
12	Analysis Vessels	Simultaneous analysis of RBC and WBC in separate analysis vessels, and using a single aperture each of WBC and RBC counting and sizing.	Simultaneous analysis of RBC and WBC in separate analysis vessels, and using a single aperture each of WBC and RBC counting and sizing.
13	Normal Patient	Ability to set normal	Ability to set normal
	Ranges	patient ranges against which sample results are compared. Sample results are flagged with "H" is the result is above the normal range and "L" if below the normal range.	patient ranges against which sample results are compared. Sample results are flagged with "H" is the result is above the normal range and "L" if below the normal range.
14	Sample Processing	Utilizes an automatic sampling, diluting and mixing device for sample processing.	Utilizes an automatic sampling, diluting and mixing device for sample processing.
15	Quality Control	Provides 2 QC programs:	Provides QC programs:
	<u> </u>	L-J Analysis and X-B Analysis.	L-J Analysis.
16	Calibration	Provides 2 calibration programs: manual calibration and auto calibration using commercial calibrators.	Provides 2 calibration programs: manual calibration and auto calibration using commercial calibrators.
17	Aperture Alert	Minimize the possibility	Minimize the possibility

		of reporting erroneous	of reporting erroneous	
		results caused by a	results caused by a	
		partial or transient	partial or transient	
		aperture clog or by other	aperture clog or by other	
		aperture disturbance. aperture disturbance.		
18	Software	This system is run by	This system is run by	
		computer software.	computer software.	
		Ability to calculate data,	Ability to calculate data,	
		store data and review	store data and review	
		results.	results.	
19	Recommended	BC-3D :Low, Normal	4C PLUS cell control:	
	Controls	and High	abnormal low, normal,	
			and abnormal high.	
20	Recommended	SC-CAL PLUS	S-CAL calibrator	
	Calibrator			
21	Sample Volume	13μL of whole blood	18μL of whole blood	
	Aspirated	20μL of predilute blood	20μL of prediluted blood	
22	Parameters	Parameters: WBC, RBC,	Parameters: WBC, RBC,	
		HGB, HCT, MCV,	Hgb, Hct, MCV, MCH,	
		MCH, MCHC, PLT,	MCHC, Plt, LY%, LY#,	
		Lymph%, Lymph#,	MO%, MO#, GR%,	
		Mid%, Mid#, Gran%,	GR#, RDW, MPV	
		Gran#, RDW, MPV		

The BC-3200 Auto Hematology Analyzer is substantially equivalent to COULTER $^{\circledR}$ A $^{\ref{C}}$ -T diff $2^{\ref{TM}}$ Analyzer. The design, components, characteristic performance of the BC-3200 Auto Hematology Analyzer is similar to its predicate device. The system provides a means for count WBC, RBC, PLT and HGB for human in clinical laboratory.

The differences between the BC-3200 Auto Hematology Analyzer and COULTER $^{\circledR}$ A $^{\text{C}}$ -T diff 2^{TM} Analyzer are performance value, sample volume aspirated and operating mole. These differences do not affect the safety or efficacy of the device.

Testing:

Laboratory testing was conducted to validate and verify that the BC-3200 Auto Hematology Analyzer met all design specifications and was substantially equivalent to the predicate device. The testing was performed to demonstrate compliance with the hazard analysis of the system and its

software was performed and testing was conducted to validate the systems overall operation. The BC-3200 Auto Hematology Analyzer has also been tested to assure compliance to the requirements of various published standards, including IEC61010-1, IEC61010-2-101, ISO14971, EN 13640, EN 591, EN 375, EN 980 and IEC 61326.

Clinical testing was conducted to validate and verify that the BC-3200 Auto Hematology Analyzer met all design performance characteristic and was substantially equivalent to the predicate device. The testing consisted of all performance identified in the Guidance Document issued on December 4, 2001 "Class II Special Controls Guidance Document: Premarket Notifications for Automated Differential Cell Counters for Immature or Abnormal Blood Cells; Final Guidance for Industry and FDA".

Although the device is neither life supporting nor life sustaining, diagnostic information derived from the use of the device and alarms generated by the device may be critical to the proper management of the patient. So, the areas of risk for this device are the same as other devices in this class, the significant risk is misdiagnosis:

- Inadequate design of the signal processing and measurement circuitry or program can lead generation of inaccurate diagnostic data. If inaccurate diagnostic data are used in managing the patient, the physician may prescribe a course of treatment that places the patient at risk unnecessarily.
- Inadequate design of the device's software, used to make various measurements, can lead to generation of inaccurate diagnostic data. If inaccurate diagnostic data are used in managing the patient, the physician may prescribe a course of treatment that places the patient at risk unnecessarily.

Conclusion:

The conclusions drawn from clinical and laboratory testing of the BC-3200 Auto Hematology Analyzer demonstrates that the device is as safe, as effective, and performs as well as the legally marketed predicate device-COULTER $^{\text{\tiny \$}}$ A $^{\text{\tiny C}}$ ·T diff 2 $^{\text{\tiny TM}}$ Analyzer.

Food and Drug Administration 2098 Gaither Road Rockville MD 20850

JUN 1 1 2007

Susan D. Goldstein-Falk
Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
c/o MDI Consultants, Inc.
55 Northern Boulevard, Suite 200
Great Neck, New York 11021

Re: k063407

Trade/Device Name: BC-3200 Auto Hematology Analyzer

Regulation Number: 21 CFR 864.5220

Regulation Name: Automated Differential Cell Counter

Regulatory Class: Class II

Product Code: GKZ Dated: May 31, 2007 Received: June 1, 2007

Dear Ms. Goldstein-Falk:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to such additional controls. Existing major regulations affecting your device can be found in Title 21, Code of Federal Regulations (CFR), Parts 800 to 895. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Parts 801 and 809); and good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820). This letter

Page 2 – Susan D. Goldstein-Falk

will allow you to begin marketing your device as described in your Section 510(k) premarket notification. The FDA finding of substantial equivalence of your device to a legally marketed predicate device results in a classification for your device and thus, permits your device to proceed to the market.

If you desire specific information about the application of labeling requirements to your device, or questions on the promotion and advertising of your device, please contact the Office of In Vitro Diagnostic Device Evaluation and Safety at (240) 276-0450. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21CFR Part 807.97). You may obtain other general information on your responsibilities under the Act from the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638-2041 or (240) 276-3150, or at its Internet address http://www.fda.gov/cdrh/dsma/dsmamain.html.

Sincerely yours,

Robert L. Becker, Jr., MD, PhD

Director

Division of Immunology and Hematology Office of *In Vitro* Diagnostic Device Evaluation

and Safety

Center for Devices and Radiological Health

Enclosure

Page 1_of_1_
titative, automated
nter to be used in
•
alyzer is to identify
parameters, and to udies.
e Counter Use
e Counter Ose
807 Subpart C)
CONTINUE ON
odio (ODE)

510(k) Number (if known): 1003407

Device Name: BC-3200 Auto Hematology Analyzer

Indications for Use:

The BC-3200 auto hematology analyzer is a quan hematology analyzer and leukocyte differential cour clinical laboratories for In Vitro Diagnostic purpose.

The intended use of BC-3200 Auto Hematology Ana the normal patient, with all normal system-generated flag or identify patient results that require additional st

Prescription Use X

Over-The

(Per 21 CFR 801 Subpart D)

OR

(21 CFR

(PLEASE DO NOT WRITE BELOW THIS LINE-ANOTHER PAGE IF NEEDED)

DRH, Office of Device Evaluation (ODE)

Office of In Vitro Diagnostic Device

Evaluation and Safety

0041