

14BHDxx Informatica

ING. INF/ELT/ENE/MTM/ELN/FIS/CIN - CORSO #3 (DIQ-JZZ)

PROF. FULVIO CORNO

Welcome

Corso di Informatica (14BHD)

- Insegnamento obbligatorio, 8 crediti, 1° Semestre
- Corso n. 3
 - Studenti con cognomi compresi tra DIQ e JZZ
 - Iscritti ai corsi di ing. Informatica, Elettrica, Energetica, Matematica, Elettronica, Fisica, Cinema
- Docenti:
 - Fulvio Corno (lezioni, esercitazioni in aula)
 - Roberta Bardini (esercitazioni in laboratorio, esercitazioni in aula)
 - Lorenzo Martini (esercitazioni in laboratorio)

Benvenuti ad Ingegneria

- Questo è il primo corso di Ingegneria che affronterete
- Ingegneria =
 - Saper progettare
 - Risolvere problemi
 - Trovare soluzioni
 - Soddisfare le specifiche
 - Nel rispetto dei vincoli
 - Con gli strumenti disponibili

Benvenuti ad Ingegneria

- Questo è il primo corso di Ingegneria che affronterete
- Ingegneria =
 - Saper progettare
 - o Risolvere problemi
 - o Trovare soluzioni
 - Soddisfare le specifiche
 - Nel rispetto dei vincoli
 - o Con gli strumenti disponibili
- Ingegneria informatica =
 - Problemi di ogni genere (calcolo, gestione dati, interazione, ...)
 - Lo strumento è il calcolatore

Linguaggi di programmazione

- In questo corso si parte da zero, non è richiesto conoscere già un linguaggio
- Le capacità di problem solving si trasferiscono facilmente da un linguaggio all'altro
- Talvolta, dovrete dis-imparare alcune cattive abitudini apprese in precedenza

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES

Programma del corso

Link utili

- Sito del corso (ufficiale):
 - <u>http://elite.polito.it/</u> → Teaching → Informatica (14BHD)
 - o Link breve: http://bit.ly/polito-informatica
- Gruppo Telegram
 - o https://t.me/politoinfo2023
- Materiale, laboratori, esercizi
 - o https://github.com/polito-informatica

Programma dell'insegnamento

- Metodologie di Problem Posing and Solving (PPS)
 - Tecniche di analisi basate su flow-chart e pseudo-code
 - Implementazione attraverso programmi informatici
- Strutture dati e rappresentazione dell'informazione nel PPS
 - Numeri, Stringhe, Vettori, Sequenze, Liste, Insiemi, Dizionari, ...
- Linguaggio di programmazione Python
 - Maggior semplicità sintattica e maggior potenza espressiva
 - Possibilità di affrontare esercizi con uno scopo applicativo più diretto
 - Ambiente di lavoro adeguato ai sistemi operativi moderni
 - Disponibilità di numerose librerie adatte a diversi campi applicativi (che potranno essere introdotte negli insegnamenti successivi).

Contenuti

- Teoria (9h)
 - o Cenni di Informatica generale ed impatti dell'informatica e del digitale
 - Struttura ed architettura del calcolatore, linguaggi, applicazioni
 - Rappresentazione dell'Informazione
- Problem Solving (12h)
 - Approccio alla logica dei problemi
 - I passaggi del processo di Problem Solving
 - Tipologie di problemi e di approcci risolutivi
- Programmazione Python (41h)
 - Numeri e Stringhe
 - Decisioni
 - Cicli
 - Liste (vettori)
 - Insiemi e dizionari (array associativi)
 - File
 - Funzioni
- Laboratori (12 x 1,5 = 18h)

...e cioè cosa impariamo a fare?

• Quali sono i nomi più frequenti in quest'aula?

Una possibile soluzione... in Python

```
import csv
from matplotlib import pyplot
# Leggi l'elenco degli studenti e salvalo in un'array
def leggi(nome file):
   file = open(nome file, 'r')
   reader = csv.reader(file)
    prima = True
   studenti = []
   for line in reader:
        if prima: # skip first line (headers)
            prima = False
        else:
            studenti.append(line)
   file.close()
    return studenti
# estrai i nomi di hattesimo da un elenco di studenti
def estrai nomi(elenco):
    lista nomi = []
   for riga in elenco:
        lista_nomi.append(riga[2])
    return lista nomi
# Calcola le frequenze dei vari nomi presenti in un array
def frequenze(tokens):
   freq = {}
    for token in tokens:
        if token in freq:
           freq[token] = freq[token] + 1
        else:
            freq[token] = 1
    return freq
```

```
# calcola il massimo valore presente nelle frequenze
def max frequenza(freq):
    return max(freq.values())
def nomi piu frequenti(freq, max):
    return [nome for (nome, frequenza) in freq.items() if frequenza == max]
FILENAME = '01TXYOV 2020.csv'
def main():
    stud = leggi(FILENAME)
    nomi = estrai nomi(stud)
    print(f"Nella classe ci sono {len(stud)} studenti")
    freq = frequenze(nomi)
    max freq = max frequenza(freq)
    print(f"Il nome più frequente compare {max freq} volte")
    nomi max = nomi piu frequenti(freq, max freq)
    print(f"Si tratta di : {nomi max}")
    # estrai solo i nomi che compaiono almeno 3 volte
    freq2 = \{k: v \text{ for } (k, v) \text{ in freq.items() if } v >= 3\}
    print(
        f"I nomi che compaiono più volte sono {', '.join(sorted(list(freq2.keys())))}."
    pyplot.barh(list(freq2.keys()), freq2.values())
    pyplot.show()
main()
```

https://replit.com/@fulcorno/NomiFrequentiStudenti#main.py

A cosa serve imparare a programmare?

Dopo «Informatica»

Tecniche di Programmazione Ing. Informatica		Algoritmi e strutture dati Basi di dati		Sistemi operativi Programmazione a oggetti	Reti di calcolatori Controlli automatici	Insegnamento a scelta Analisi e visualizzazione dati Embedded	
Ing. Cinema		Algoritmi e programmazione a oggetti		Basi di dati	Reti di calcolatori	Systems and IoT Intro elettronica sistemi embedded	
mg. cinema				Computer Grafica		Introduzione alle Applicazioni Web	
Ing. Gestionale		Basi di dati		Programmazione a oggetti	Progettazione di applicazioni Internet		
		(L8+l		Tecniche di Programmazione	Reti telematiche e internet	(solo L8)	
Ing. Elettronica	Algoritmi e programmazione						
E.C.E.	Communication networks			Algorithms and Programming			
	l anno	ll a	anno !	III anno			

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES 15

Dopo «Dopo «Informatica»»

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES 16

Uno sguardo a Python

VISIONE GENERALE DELL'ECOSISTEMA PYTHON

Il linguaggio Python

- Linguaggio gratuito ed open-source
- Disponibile per tutti i sistemi operativi
 - Windows, Mac OS X, Linux
 - Sistemi embedded, Raspberry PI, Android
- Progettato negli anni '90 da Guido Van Rossum
 - Sintassi semplice, pulita, regolare
 - Approccio «batterie incluse»
 - Ampia libreria di funzioni standard
 - Basso gradino d'accesso
 - Linguaggio interpretato
- Sterminata documentazione on-line

Diffusione del linguaggio Python

- IEEE Spectrum, 23 Aug 2022
 https://spectrum.ieee.org/top-programming-languages-2022
 - Top Programming Languages 2022

- Altre statistiche, per i più curiosi:
 - https://www.tiobe.com/tiobe-index/
 - http://pypl.github.io/PYPL.html
 - o https://octoverse.github.com/
 - O ...

Diffusione del linguaggio Python

Top languages over the years

https://www.tiobe.com/tiobe-index/

https://octoverse.github.com/

https://www.python.org/

Batterie incluse

- Tipi di dato fondamentali
 - boolean, int, float, complex, string, regexp
- Strutture dati fondamentali
 - liste/array/matrici, tuple, insiemi, dizionari/mappe/hash, file, ...
- Orientato agli oggetti
 - Utilizzo semplice e diretto di oggetti predefiniti
 - Possibilità di creare classi ed oggetti personalizzati (avanzato)
- 200+ Moduli nella libreria standard

200 Moduli della libreria standard

abc	chunk	decimal	getpass	keyword	optparse	queue	sndhdr	telnetlib	unittest
aifc	cmath	difflib	gettext	linecache	os	quopri	socket	tempfile	urllib
argnarco	cmd	dis	glob	locale	ossaudiodev (Linux, FreeBSD)	random	socketserver	termios (Unix)	
argparse			_		,			` '	uu
array	codecs	distutils	graphlib	logging	parser	re	spwd (Unix)	test	uuid
ast	codeop	doctest	grp (Unix)	Izma	pathlib	readline (Unix)	sqlite3	textwrap	venv
asynchat	collections	email	gzip	mailbox	pdb	reprlib	ssl	threading	warnings
asyncio	colorsys	encodings	hashlib	mailcap	pickle	resource (Unix)	stat	time	wave
asyncore	compileall	ensurepip	heapq	marshal	pickletools	rlcompleter	statistics	timeit	weakref
atexit	configparser	enum	hmac	math	pipes (Unix)	runpy	string	tkinter	webbrowser
audioop	contextlib	errno	html	mimetypes	pkgutil	sched	stringprep	token	winreg (Win)
base64	contextvars	faulthandler	http	mmap	platform	secrets	struct	tokenize	winsound (Win)
bdb	сору	fcntl (Unix)	imaplib	modulefinder	plistlib	select	subprocess	trace	wsgiref
binascii	copyreg	filecmp	imghdr	msilib (Windows)	poplib	selectors	sunau	traceback	xdrlib
binhex	crypt (Unix)	fileinput	imp	msvcrt (Windows)	pprint	shelve	symbol	tracemalloc	xml
bisect	csv	fnmatch	importlib	multiprocessing	profile	shlex	symtable	tty (Unix)	xmlrpc
builtins	ctypes	fractions	inspect	netrc	pstats	shutil	sys	turtle	zipapp
bz2	curses (Unix)	ftplib	io	nis (Unix)	pty (Linux)	signal	sysconfig	turtledemo	zipfile
calendar	dataclasses	functools	ipaddress	nntplib	pwd (Unix)	site	syslog (Unix)	types	zipimport
cgi	datetime	gc	itertools	numbers	pyclbr	smtpd	tabnanny	typing	zlib
cgitb	dbm	getopt	json	operator	pydoc	smtplib	tarfile	unicodedata	zoneinfo

Gli ambienti di lavoro

- Ambienti di sviluppo tradizionali (IDE)
 - IDLE, PyCharm, Visual Studio Code, Eclipse PyDev, ...
- Ambienti di sviluppo on-line
 - Repl.it, PythonAnywhere, Python Tutor
- Ambienti per il calcolo interattivo
 - Spyder, IPython
- Notebook Computazionali
 - Jupyter, JupyterLab, Google Colab
- Ambienti per l'apprendimento
 - Mu, Thonny, Wing

L'IDE di Visual Studio Code

L'IDE di PyCharm

IDE On-line : https://replit.com/

Ambienti scientifici interattivi

SPYDER

JUPYTERLAB (ANCHE ON-LINE), GOOGLE COLAB

Ambienti scientifici interattivi

SPYDER

JUPYTERLAB (ANCHE ON-LINE), GOOGLE COLAB

Nuove possibilità...

 Pubblicare on-line esercizi «interattivi» sotto forma di notebook

 Redigere le prime versioni di un articolo, inframmezzando il testo alle formule, con il [ri-]calcolo automatico di risultati e grafici

Librerie per ambiti applicativi

- Scientific computation
 - NumPy, SciPy, SymPy
- Data Analysis, Algoritmi, Grafi
 - o Pandas, networkx, GeoPandas
- Image Processing
 - Pillow, scikit-image, OpenCV
- Visualization
 - Pyviz, matplotlib, plotly, seaborn, altair
- Machine Learning
 - Scikit-learn, tensorflow, pytorch, keras
- Fintech
 - o f.fn, zipline, pyalgotrade
- Biology and Genome
 - Biopython
- Fluid Dynamics
 - Fluidity
- Finite Elements
 - Sfepy
- Control systems

Singoli moduli

Toolkit completo per data science

Calcolo scientifico

NumPy

Array, vettori, algebra lineare

SciPy

 Package specializzati su diversi ambiti scientifici

SymPy

Calcolo simbolico

Pandas

Analisi e manipolazione dati

Subpackage Description cluster Clustering algorithms Physical and mathematical constants constants Fast Fourier Transform routines fftpack Integration and ordinary differential equation solvers integrate interpolate Interpolation and smoothing splines io Input and Output Linear algebra linalg ndimage N-dimensional image processing odr Orthogonal distance regression optimize Optimization and root-finding routines

Signal processing

Special functions

Sparse matrices and associated routines

Spatial data structures and algorithms

Statistical distributions and functions

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES 31

signal

sparse

spatial

special

stats

Calcolo scientifico

- NumPy
 - Array, vettori, algebra lineare

- SciPy
 - Package specializzati su diversi ambiti scientifici

- SymPy
 - Calcolo simbolico

- Pandas
 - Analisi e manipolazione dati

Visualizzazione

matplotlib, plotly, seaborn, ...

Esempio: dati ufficiali Covid-19 in real-time

```
import pandas as pd
import seaborn as sns
sns.set style("whitegrid")
# Leggi dati aggiornati
covid = pd.read json(
path or buf='https://raw.githubusercontent.com/pcm-dpc/COVID-
19/master/dati-json/dpc-covid19-ita-andamento-nazionale.json',
convert dates=['data'])
covid.set index('data', inplace=True)
sns.relplot(data=covid, kind='line')
dati utili = covid[['totale ospedalizzati', 'totale positivi' ]]
sns.relplot(data=dati utili, kind='line')
sns.relplot(data=dati utili, kind='scatter',
x='totale_ospedalizzati', y='totale_positivi', hue='data',
legend=False)
```

Try me on Google Colab

Dove arriviamo nel corso del primo anno?

- Programma del corso di Informatica
 - Conoscenza di base del linguaggio
 - Familiarità con gli ambienti di sviluppo più semplici
 - Capacità di analizzare un problema e formulare un algoritmo
- Le specializzazioni sulle varie aree non rientrano nel programma di Informatica
 - Possibile costruire negli insegnamenti successivi
 - Partendo da una base consolidata

Organizzazione del corso

Sito del corso

Tutto il materiale sarà disponibile su questo sito

- Slide
- Laboratori
- Esempi svolti
- Video Lezioni
- Temi d'esame
- Calendario lezioni
- •••

http://bit.ly/polito-informatica

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES 37

Struttura del corso

- Programmazione e Python : 41 ore
- Teoria: 9 ore
- Problem solving : 12 ore
- Laboratorio : 18 ore (x 3 squadre)

Totale: 80 ore/studente

Libri di testo

TESTO COMPLETO IN ITALIANO

VERSIONE RIDOTTA (CAPITOLI 1-8) CORRISPONDENTE AL PROGRAMMA SVOLTO

Libri: Informazioni dettagliate

TESTO COMPLETO IN ITALIANO

- Concetti di informatica e fondamenti di Python
- Seconda edizione Giugno 2019 (II° Edizione)
- Cay Horstmann Rance D. Necaise
- Maggioli Editore
- Giugno 2019
- ISBN 978-8891635433
- https://www.maggiolieditore.it/concetti-diinformatica-e-fondamenti-di-python.html

VERSIONE RIDOTTA (CAPITOLI 1-8) CORRISPONDENTE AL PROGRAMMA SVOLTO

- Python Introduzione alla programmazione
- Versione ridotta della Seconda Edizione
- Cay S. Horstmann, Rance D. Necaise
- Maggioli Editore
- Luglio 2023
- o ISBN: 978-8891663979
- https://www.maggiolieditore.it/pythonintroduzione-alla-programmazione.html

Libri di testo

TESTO ORIGINALE IN LINGUA INGLESE

INFO DETTAGLIATE

- Python For Everyone
- 3rd Edition
- Cay S. Horstmann, Rance D. Necaise
- Wiley
- ISBN: 978-1-119-49853-7 December 2018
- https://www.wiley.com/enit/Python+For+Everyone,+3rd+Edition-p-9781119498537

Altre risorse...

Introduzione a Python Tony Gaddis Pearson - ISBN: 9788891900999

Introduzione a Python per l'informatica e la data science Paul J. Deitel, Harvey M. Deitel, Pietro Codara, Carlo Mereghetti Pearson - ISBN: 9788891915924

The Hitchhiker's Guide to Python: **Best Practices for Development** Kenneth Reitz, Tanya Schlusser O'Reilly Media - ISBN-13: 978-1491933176

https://docs.python.org/3/tutorial/

https://realpython.com/

Gratis su:

https://docs.python-guide.org/

Strumenti per programmare

https://www.jetbrains.com/pycharm/

- Professional (gratis per docenti e studenti)
- Community (gratis per tutti)

http://pythontutor.com

https://replit.com
(free online IDE)

Istruzioni di installazione

http://bit.ly/polito-informatica

@fulcorno/NomiFrequentiStudenti

```
main.py
     import csv
     # from matplotlib import pyplot
     FILENAME = '01TXYOV_2020.csv'
     # Leggi l'elenco degli studenti e salvalo in un array
     def leggi(nomefile):
       file = open(nomefile, 'r')
 9
       reader = csv.reader(file)
10
       prima = True
       studenti = []
11
       for line in reader:
12
13
         if prima: #skip first line (headers)
14
           prima = False
15
         else:
           studenti.append(line)
16
17
       file.close()
18
       return studenti
19
     # estrai i nomi di battesimo da un elenco di studenti
20
     def nomi(elenco):
21
       nomi = []
22
23
       for riga in elenco:
24
         nomi.append(riga[2])
25
       return nomi
26
     # Calcola le frequenze dei vari nomi presenti in un
     array
     def frequenze(tokens):
28
29
       freq = {}
30
       for token in tokens:
31
         if token in freq:
           freq[token]= freq[token]+1
32
33
         else:
           freq[token] = 1
34
```

https://NomiFrequentiStudenti.fulcorno.repl.run Nella classe ci sono 180 studenti Q 🐼 Il nome più frequente compare 9 volte Si tratta di : ['ALESSANDRO'] I nomi che compaiono più di una volta sono ALESSANDRO, ANDREA , CLAUDIO, DAVIDE, ENRICO, ETTORE, FEDERICA, FEDERICO, FRANCE SCA, FRANCESCO, GABRIELE, GIANLUCA, GIOVANNI, GIUSEPPE, LOREN ZO, LUCA, MARCO, MARTINA, MATTEO, MATTIA, MICHELE, PIETRO. > [] https://replit.com (free online IDE)

Informazioni pratiche

	Lunedì	Martedì	Mercoledì	Giovedì	Venerdì
08:30-10:00					
10:00-11:30					
11:30-13:00			Lezione / Esercitazione Aula 4	Laboratorio Squadra 1 Aula 3D	
13:00-14:30			Lezione / Esercitazione Aula 4	Laboratorio Squadra 2 Aula 3D	
14:30-16:00					
16:00-17:30			Laboratorio Squadra 3 Aula 3D		
17:30-19:00	Lezione / Esercitazione Aula 4				

Orario Settimanale

Laboratori

- La parte più importante del corso, in cui imparare a risolvere problemi e scrivere programmi
- Il corso è diviso in 3 squadre
 - Presso i Laboratori Informatici (LAIB)
- Inizio laboratori: 11-12/10/2023
- Testo pubblicato sul sito del corso
- È necessario installare il software richiesto (Python e VSCode) vedere le istruzioni di installazione sul portale

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES 45

Suddivisione in squadre

- Squadra 1 (giovedì 11:30, Aula 3D): xxxxx
- Squadra 2 (giovedì 13:00, Aula 3D): xxxxx
- Squadra 3 (mercoledì 16:00, Aula 3D): xxxxx

Svolgimento dei laboratori

Politecnico di Torino, 2023/24 INFORMATICA / COMPUTER SCIENCES 5:

Comunicazioni

- Tutti i contatti con i docenti avverranno sulla piattaforma Telegram
 - Non inviare e-mail ai docenti, ma utilizzare il gruppo Telegram
 - Non inviare messaggi privati, se non richiesti dai docenti stessi
- Iscriversi (obbligatorio!) all'indirizzo https://t.me/politoinfo2023

Esame

Contenuti dell'esame

- 3 domande brevi sulla parte teorica del corso (6 punti)
- Un esercizio di programmazione (26 punti)
 - Con la possibilità di usare uno strumento di sviluppo per la scrittura del codice
 - Sarà consegnato il codice sorgente del programma sviluppato
 - Il codice verrà corretto manualmente (valuteremo la qualità della soluzione, e il rispetto delle richieste del problema, in maniera indipendente da eventuali errori sintattici e dall'effettivo funzionamento del programma)
- Nelle ultime 2 settimane del corso vi proporremo diversi esercizi di simulazione dell'esame, in modo da poter familiarizzare con le modalità di esame e con le conoscenze richieste per passarlo

Cosa serve per passare [bene] l'esame?

- Capacità logico-razionali di analisi e di sintesi
 - Comprendere i propri processi risolutivi e saperli formalizzare
- Svolgere tutti gli esercizi proposti
 - Davvero
 - Anche quelli [che sembrano] facili
 - Da soli
 - Su Personal Computer
 - Verificarli con dati diversi
 - Cercare di metterli in crisi
- Inventarsi nuovi problemi, o varianti di quelli proposti
 - E poi risolverli

Contatti

Docenti

- Fulvio Corno
 - Dipartimento di Automatica e Informatica (3° piano)
 - o fulvio.corno@polito.it

- Roberta Bardini
 - Dipartimento di Automatica e Informatica (2° piano)
 - o roberta.bardini@polito.it

Ci trovate su Telegram!

Link utili

- Sito del corso (ufficiale):
 - http://elite.polito.it/ → Teaching → Informatica (14BHD)
 - o Link breve: http://bit.ly/polito-informatica
- Gruppo Telegram
 - o https://t.me/politoinfo2023
- Materiale, laboratori, esercizi
 - o https://github.com/polito-informatica

Licenza d'uso

 Queste diapositive sono distribuite con licenza Creative Commons "Attribuzione - Non commerciale - Condividi allo stesso modo 2.5 Italia (CC BY-NC-SA 2.5)"

Sei libero:

- o di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera
- o di modificare quest'opera
- Alle seguenti condizioni:
 - Attribuzione Devi attribuire la paternità dell'opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
 - Non commerciale Non puoi usare quest'opera per fini commerciali.
 - Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.
- http://creativecommons.org/licenses/by-nc-sa/2.5/it/

