4. Советов Б.Я., Яковлев С.А. Моделирование систем: Учебник для вузов. – М.: Высш. шк., 1985. – 271 с.

УДК 519.95

Д.Ш. Фаттахов, М.Н. Салманова

МОДЕЛЬ УПРАВЛЕНИЯ ПАРАЛЛЕЛЬНО ФУНКЦИОНИРУЮЩИМИ ОБРАБАТЫВАЮЩИМИ УСТРОЙСТВАМИ В ВИДЕ ВРЕМЕННЫХ СЕТЕЙ ПЕТРИ

Научный руководитель: В.А. Мустафаев, д.т.н., профессор Сумгаитский Государственный Университет (Азербайджанская Республика, г. Сумгаит, valex-sdu@mail.ru)

Временные сети Петри (ВСП) являются одним из возможных расширений базовых сетей Петри, используемых для моделирования дискретных систем и процессов в задачах управления, при анализе которых необходимо учитывать не только порядок выполнения действий, но и временные характеристики. Среди определений ВСП наиболее эффективным является определение, сопоставляющее временные задержки переходам и временные задержки маркерам в позициях сети, как элементам, представляющим действия моделируемой системы.

ВСП определяется выражением $N = (P, T, E, W, \mu_0, Z, S)$, где

 $P = \{p_i\}, \ (i=1,...,n; n$ — число позиций) — конечное непустое множество позиций; $T = \{t_j\}, (j=1,...,m; m$ — число переходов) — конечное непустое множество переходов; $E = \{(p_i,t_j) \subseteq P \times T \cup (t_j,p_i) \subseteq T \times P\}$ — задает дуги объединяющие позиции с переходами и переходы с позициями; $W: E \to N \setminus \{0\}$ — означает разметку кратности дуг; $\mu_0 = (\mu_1^0, \mu_2^0, ..., \mu_n^0)$ — вектор начальной маркировки сети, каждый компонент μ_i^0 равен числу меток в позиции p_i ; $Z = (z_1, z_2, ..., z_n)$ — вектор параметров временных задержек маркеров в позициях ВСП, где $Z: P \to R^+(R^+$ —множество положительных вещественных чисел); $S = (s_1, s_2, ..., s_m)$ — вектор параметров времен

срабатывания разрешенных переходов ВСП, где $S: P \to R^+$. Если $e_k \in E$ — дуга сети N, соединяющая позицию p_i с переходом t_j , то натуральное число $W(e_k) = n_k$ задает кратность дуги e_k . При $n_k > 1$ значение кратности используется в качестве метки дуги. Если $n_k = 1$, то дуга не помечается.

Если кратности всех дуг равны единице, то такие сети называются одинарными [1, ст. 83].

Функционирование сети представляет собой процесс изменения её маркировки в результате запусков и завершений переходов. Маркировка в произвольный момент времени $\tau \in Z$ записывается в виде $\mu(\tau) = (\mu_1(\tau), \mu_2(\tau), ..., \mu_n(\tau)$ [2, ст 5].

Учитывая вышеизложенное, разработан алгоритм функционирования ВСП. *Начало алгоритма*

1. Создание матрицы входной инцидентности множеств переходов с размерностью $n \times m$:

$$c_{i,j}^{-} = \begin{cases} w(p_i, t_j), & ecnu \ \forall p_i \in I(t_j); \\ 0, & ecnu \ \forall p_i \notin I(t_j), \end{cases}$$

где,
$$i = \overline{1,n}$$
 , $j = \overline{1,m}$.

2. Создание матрицы выходной инцидентности множеств переходов с размерностью $m \times n$:

$$c_{j,i}^{+} = \begin{cases} w(t_{j}, p_{i}), \ ecnu \ \forall p_{i} \in O(t_{j}); \\ 0, \ ecnu \ \forall p_{i} \notin O(t_{j}), \end{cases}$$

где, $i = \overline{1,n}$, $j = \overline{1,m}$.

- 3. Создание вектора начальной маркировки μ^0 : $\mu_i^0 = \mu^0(p_i)$, $(i = \overline{1,n})$.
- 4. Создание вектора задержек маркеров в позициях: $z = (z_1, z_2, ..., z_n)$.
- 5. Создание вектора времени срабатывания разрешенных переходов: $s = (s_1, s_2, ..., s_m)$.
- 6. $\tau = 0$ момент времени, для которого зафиксирован начальная разметка сети.
 - 7. Текущая маркировка сети $\mu_{\tau i} = \mu_i^0$; где, $i = \overline{1,n}$.

- 8. Поиск разрешенного перехода: Для каждого перехода t_j , $j = \overline{1,m}$; проверяются следующие условия срабатывания:
- 8.1. Если для всех входных позиций перехода t_j , для которых $c_{ij}^- \neq 0$, выполняется условие $\mu_{\tau\,i} \geq c_{ij}^-, i = \overline{1,n}$, то переход t_j срабатывается и осуществляется переход к шагу 9, в противном случае значение j увеличивается на единицу: j=j+1.
- 8.2. Если $j \le m$, то осуществляется переход к шагу 8, в противном случае вывод сообщения о тупиковом состоянии.
- 9. Нахождение максимального времени блокировок маркеров входных позиций перехода t_i :
 - 9.1. $z_{\text{max}} = 0$;
- 9.2. если для всех $p_i \in I(t_j)$, выполняется условие $z_i > z_{\max}$, то выполняется присваивание $z_{\max} = z_i$.
 - 10. Вычисляется время срабатывания перехода t_j : $\tau = \tau + z_{\max} + s_j$;
 - 11. Создание вектора новой маркировки:

$$\mu'_{\tau i} = \mu_{\tau i} - c_{ij}^{-}, \forall p_i \in I(t_j)$$

$$\mu'_{\tau i} = \mu_{\tau i} + c_{ij}^+, \forall p_i \in O(t_j).$$

12. Новая маркировка принимается за текущую: $\mu_{\tau i} = \mu'_{\tau i}$, $i = \overline{1,n}$; и осуществляется переход к шагу 8.

Конец алгоритма.

Рассмотрим модель функционирования модуля «обрабатывающий В гибкой производственной системе механообработки. центр» Обрабатывающий центр состоит из одного персонального входного накопителя для необработанных деталей; из устройства 1 и устройства 2, выполняющих две различные операции над деталью; из робота-манипулятора, выполняющего загрузки-разгрузки устройства 1 устройства соответственно, и из персонального выходного накопителя для обработанных деталей. Связь модуля с предыдущим и последующим модулями происходит соответственно с помощью вышеуказанных накопителей.

Модуль работает следующим образом: детали поступают на входной накопитель и ожидают обработку; при наличии деталей на входном накопителе робот—манипулятор осуществляет загрузку устройства 1, после обработки детали разгружаются, затем осуществляется загрузка устройства 2, после обработки детали происходит разгрузка устройства 2 и цикл повторяется.

В представленной модели, составленной с применением ВСП (см. рис.1), состояния модуля обрабатывающего центра описываются следующими позициями:

 p_1 и p_2 — соответственно обслуживание устройства 1 и устройства 2; p_3 — входной накопитель необработанных деталей; p_4 , p_8 — соответственно загрузки устройства 1 и устройства 2; p_5 и p_{10} — соответственно готовность для выполнения операций с одной деталью устройства 1 и устройства 2; p_6 и p_9 — завершение обработки над деталью устройства 1 и устройства 2; p_7 и p_{11} — соответственно разгрузки устройства 1 и устройства 2; p_{12} — выходной накопитель обработанных деталей.

Рис. 1. Граф модели ВСП «обрабатывающий центр» в гибкой производственной системе механообработки

Возможные события в модуле обрабатывающего центра описываются следующими переходами:

 t_1 и t_4 — соответственно выполнение загрузки устройства 1 и устройства 2; t_2 и t_5 — соответственно обработка детали устройства 1 и устройства 2; t_3 и t_6 — соответственно выполнение разгрузки устройства 1 и устройства 2; t_7 —

транспортировка детали из выхода устройства 1 к входу устройства 2; t_8 перемещение робота манипулятора от устройства 2 к устройству 1.

Функция инцидентности множества позиций представляется матрицей $C^-(8,12)$:

Функция инцидентности множества переходов представляется матрицей $C^+(8,12)$:

Начальная маркировка представляется вектором: $\mu_0 = (1,0,1,0,1,0,0,0,1,0,0) \ .$

На основе разработанного алгоритма определяется структура ВСП. В результате компьютерного эксперимента получена последовательность срабатывающих переходов $\sigma = (t_1t_2t_3t_7t_4t_5t_6t_8)$ из начальной маркировки μ_0 :

срабатывается переход t_1 : момент выполнения перехода τ = 8, новая маркировка имеет вид μ_1 = (1,0,0,1,0,0,0,0,1,0,0);

срабатывается переход t_2 : момент выполнения перехода $\tau=11$, новая маркировка имеет вид $\mu_2=(1,0,0,0,0,1,0,0,1,0,0)$;

срабатывается переход t_3 : момент выполнения перехода $\tau = 18$, новая маркировка имеет вид $\mu_3 = (1,0,0,0,1,0,0,1,0,0)$;

срабатывается переход t_7 : момент выполнения перехода $\tau=25$, новая маркировка имеет вид $\mu_4=(0,1,0,0,1,0,0,1,0,0)$;

срабатывается переход t_4 : момент выполнения перехода $\tau=34$, новая маркировка имеет вид $\mu_5=(0,1,0,0,1,0,0,0,1,0,0,0)$;

срабатывается переход t_5 : момент выполнения перехода $\tau=38$, новая маркировка имеет вид $\mu_6=(0,1,0,0,1,0,0,0,0,1,0)$;

срабатывается переход t_6 : момент выполнения перехода $\tau=47$, новая маркировка имеет вид $\mu_7=(0,1,0,0,1,0,0,0,1,0,1)$;

срабатывается переход t_8 : момент выполнения перехода $\tau=52$, новая маркировка имеет вид $\mu_8=(1,0,0,0,1,0,0,0,1,0,1)$.

Таким образом, представленные правила срабатывания переходов полностью описывают процесс функционирования ВСП.

Список использованных источников

- 1. Управление ГПС: Модели и алгоритмы./под. общ. ред. академика АН СССР С.В. Емельянова, М.: Машиностроение, 1987, с. ил
- 2. Зайцев Д.А., Слепцов А.И. Уравнение состояний и эквивалентные преобразования временных сетей Петри // Кибернетика и системный анализ. 1997, №5, с. 59-76.