EE-2003: Computer

Organization & Assembly Course Section Student Signature

Language

Date: 4th April, 2024 **Course Instructor(s)**

Mehreen Javaid, Ahmad Raza, Shahbaz Hassan

Sessional-II Exam

Total Time: 1 Hour Total Marks: 50 Do not write anything on the question paper except the information required above.

Instructions:

- 1. Read the question carefully, understand the question, and then attempt your answers in the provided answer booklet.
- 2. Verify that you have $\underline{3}$ printed pages of the question paper including this page. There are $\underline{Four(4)}$ questions.
- 3. Calculator sharing is strictly prohibited.
- 4. Use permanent ink pens only. Any part done using soft pencil will not be marked and cannot be claimed for rechecking

Question 1 [10 Marks]

Carefully dry run the given program. Show complete traces of runtime stack for **both** fill and clear phases by writing the actual offset and values as provided. Stack segment starts at 1000h. Write the final values of register at the end of program and also where asked in between the code in the form of comments. Suppose data segment starts at **000Fh** offset. (*No Need to Write Code Just Fill the Stack on Provided Answer Sheet*).

1.	.model small		
2.	.data		
3.	ary db 25, 35, 52, 49, 53		
4.	.code		
5.	mov ax, @data		
6.	mov ds, ax		
7.	jmp start		
8.	MySub PROC uses dx cx		
9.	push bp		
10.	mov bp,sp		
11.	sub sp, 4		
12.	mov word ptr [bp-4], 59		
13.	mov word PTR [bp-2], 57		
14.	mov dX, [bp-2] ;dX=		
15.	mov dx, [bp+4]; dx =		
16.	mov bx, [bp+10] ;bx=		
17.	mov dx, [bx] ; dx =		
18.	mov sp, bp		
19.	pop bp		

20				
20.	ret 2			
21.	MySub ENDP			
22.	start:			
23.	main proc			
24.	mov si, offset ary			
25.	mov word ptr [si], 45h			
26.	add si, 2			
27.	mov dx, [si-2] ; dx =			
28.	mov dx, [si] ; dx =			
29.	mov di, offset ary			
30.	Add di,3			
31.	push di			
32.	mov cx, 49			
33.	push cx			
34.	call MySub			
35.	inc ex			
36.	push cx			
37.	push dx			
38.	call AddTwo			
39.	mov dx, ax ; dx =			
40.	main endp			
41.	mov ah, 4ch			
42.	int 21h			
43.	End main			
44.	AddTwo Proc			
45.	push bp			
46.	mov bp, sp			
47.	mov ax, [bp+6] ;AX=			
48.	mov si, [bp+8]			
49.	add ax,[si] ; $AX=$			
50.	pop bp			
51.	ret			
52.	AddTwo endp			

Question 2 [5 + 5 + 5 = 15 Marks]

[a]. Write an assembly code to multiply [Ax * 42] using Shift and rotate instructions. The value of Accumulator register (Ax = 04).

mov ax,04

mov bx,ax

mov cx,ax

shl ax,5

shl bx,3

shl cx,1

add ax,bx

add ax,cx

National University of Computer and Emerging Sciences FAST School of Computing Spring-2024 Islamabad Campus

[b]. Write down the values of each register at each step. (0.5 mark for each correct value)

Mov ax, -96	;ax=FFA0	11111111110100000
Mov cx, 2	;cx= 0002	0000000000000010
Shl al, 2	;ax= FF80	1111111110000000
Shr ah, 3	;ax= 1F80	00011111110000000
Mov dx, ax	;dx = 1F80	00011111110000000
Sal dx, cl	;dx = 7E00	01111110000000000
Sar Ax, 1	;ax= 0FC0	0000111111000000
rer dl, 1	;dl= 00	00000000
Shl dx, 1	;dh= FC	11111100
Rol Ax, 1	;ax= 1F80	0001111110000000

[c]. Perform the 1-bit logical left shift operation on following Qword Number. You are required to write an assembly language code.

```
.data
Var1 dq 45F37C4A556DE13h
.code
```

```
mov si,offset var1 ;1 marks
shl word ptr [si],1 ;1 marks
rcl word ptr [si+2],1 ;1 marks
rcl word ptr [si+4],1 ;1 marks
rcl word ptr [si+6],1 ;1 marks
```

Question 1 solution

