Fluides et Electromagnetisme

David Wiedemann

Table des matières

T	Not	cations du cours et maths necessaires	2
	1.1	Scalaires et Vecteurs	2
	1.2	L'operateur ∇ (nabla) et la definition du gradient, de la diver-	
		gence et du rotationnel	2
	1.3	Formules d'integration	3
2	Flu	ides au repos	3
	2.1	Introduction	3
	2.2	Densite de fluide	4
3	Pression dans un fluide		
	3.1	Pression hydrostatique	4
	3.2	Densite de force associee a la pression	5
	3.3	Poussee d'Archimede	5
	3.4	Tension superficielle	5
		3.4.1 Origine et definition de la tension superficielle	5
		3.4.2 Quelques consequences immediates de la tension superficielle	6
\mathbf{L}	\mathbf{ist}	of Theorems	
	4	Theorème (Theoreme du gradient)	3
	5	Theorème (Theoreme de La divergence (de Gauss))	3
	6	Theorème (Theoreme de Stokes)	3

1 Notations du cours et maths necessaires

1.1 Scalaires et Vecteurs

On distingue les quantites scalaires (pression, masse, la charge electrique) et les quantites vectorielles (vitesse, force) .

Dans un repere 3D, les vecteurs de base unitaires e_x, e_y, e_z

On definit un champ scalaire (resp. vectoriel) par une fonction $p(\overrightarrow{r},t)$ qui depend de la position et du temps.

1.2 L'operateur ∇ (nabla) et la definition du gradient, de la divergence et du rotationnel

En coordonnes cartesiennes, on a

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

On note

$$\frac{\partial p}{\partial x}(\overrightarrow{r},t) = \lim_{h \to 0} \frac{p(x+h,y,z,t) - p(x,y,z,t)}{h}$$

— Le gradient, note ∇f d'un champ scalaire $f(\overrightarrow{r},t)$ est un champ vectoriel donne par

$$\nabla f(\overrightarrow{r},t) = e_x \frac{\partial f}{\partial x} + e_y \frac{\partial f}{\partial y} + e_z \frac{\partial f}{\partial z}$$

— La divergence, notee $\nabla \cdot \overrightarrow{u}$ d'un champ vectoriel $\overrightarrow{u}(\overrightarrow{r},t)$ est un champ scalaire donne par

$$\nabla \cdot \overrightarrow{u} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$

— Le rotationnel $\nabla \times \overrightarrow{u}$ d'un champ vectoriel est un champ vectoriel donne par

$$\nabla \times \overrightarrow{u}(\overrightarrow{r},t) = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}) \times (u_x, u_y, u_z)$$

Remarque

On peut utiliser ∇ comme un vecteur, mais il faut faire attention a ce que les operations sont pas commutatives.

Remarque

Souvent, on ecrit ∂_x pour $\frac{\partial}{\partial x}$

Remarque

Les expressions du gradient, divergence, rotationel sont independantes du systeme de coordonnees

1.3 Formules d'integration

Theorème 4 (Theoreme du gradient)

Soit un volume V quelconque dans l'espace et soit S la surface fermee limitant le volume V (on note $S = \partial V$).

A chaque element de la surface, on assimile un vecteur orthogonal a la surface en ce point. On le note \overrightarrow{dS} et il represente le "petit element" de surface.

Alors on a

$$\int\int_{S}fd\overrightarrow{S}=\int\int\int_{V}\nabla fdV$$

Theorème 5 (Theoreme de La divergence (de Gauss))

Le flux d'un champ vectoriel $\overrightarrow{A}(\overrightarrow{r},t)$ au travers d'une surface S:

$$\phi = \int \int_{S} \overrightarrow{A} \cdot \overrightarrow{dS}$$

Soit une surface fermee $S=\partial V$ et $d\overrightarrow{S}$ qui point vers l'exterieur de V, alors on a

$$\int \int_{S} \overrightarrow{A} \cdot d\overrightarrow{S} = \int \int \int_{V} (\nabla \cdot \overrightarrow{A}) dV$$

Theorème 6 (Theoreme de Stokes)

On definit la circulation d'un champ vectoriel $\overrightarrow{A}(\overrightarrow{r},t)$ le long d'une courbe fermee Γ :

$$\Sigma = \oint_{\Gamma} \overrightarrow{A} \cdot d\overrightarrow{l}$$

Dans ce cas la, on a

$$\oint_{\Gamma} \overrightarrow{A} \times \overrightarrow{dl} = \int \int_{S} (\nabla \times \overrightarrow{A}) \cdot \overrightarrow{dS}$$

L'orientation relative de \overrightarrow{dl} et \overrightarrow{dS} est donnee par la regle de la main droite.

2 Fluides au repos

2.1 Introduction

On appelle un fluide un corps qui est a l'etat liquide, gazeux, ou plasma, systeme d'un grand nombre de particules qui est susceptible de s'ecouler facilement.

Autrement dit, un corps deformable/qui n'a pas de forme propre.

Pour beaucoup d'applications : un fluide est decrit par sa densite de masse $\rho(\overrightarrow{r},t)$, la pression ($p(\overrightarrow{r},t)$) et la vitesse $\overrightarrow{u}(\overrightarrow{r},t)$

Dans ce chapitre, on suppose $\overrightarrow{u}(\overrightarrow{r},t)=0, \rho(\overrightarrow{r},t)=\rho(\overrightarrow{r})$ et $p(\overrightarrow{r},t)=p(\overrightarrow{r})$

2.2 Densite de fluide

Supposons un recipient avec un fluide dedans et un systeme de coordonnees.

On note

$$\bar{\rho} = \frac{\Delta m}{\Delta V}$$

pour la densite moyenne.

On prend ensuite la limite $\Delta V \to dV$ et on obtient ainsi

$$\rho(\overrightarrow{r},t) = \lim_{\Delta V \to dV} \frac{\Delta m}{\Delta V}$$

Lecture 2: Pression dans un fluide

Fri 26 Feb

3 Pression dans un fluide

La pression dans un fluide est definie par la force par unite de surface exercee par le fluide sur une paroi ou sur une autre partie du fluide. Cette force sera perpendiculaire a la surface. On note

$$\overrightarrow{dF} \left[\frac{N}{m^2} = \text{ Pascal } = \text{ Pa } \right] = p \overrightarrow{dS}$$

La pression est donnee par un champ scalaire.

L'isotropie de la pression suit naturellement dans le cas ou il n'y a pas de forces de cisaillement (= forces tangentielles a la surface)

3.1 Pression hydrostatique

On veut determiner $p(\overrightarrow{r})$ pour un fluide au repos.

On supposera un fluide incompressible (la densite est constante).

On considere un recipient contenant un fluide et un pave droit de dimension dy, dx et $z_2 - z_1$.

On utilise

$$\sum_{i} \overrightarrow{F}_{i} = 0$$

selon z.

On a donc une force F_1 s'appliquant en haut et F_2 s'appliquant en bas et finalement F_g , on a donc

$$F_1 + F_g - F_2 = 0$$

$$p(z_1)dxdy + \rho dxdy(z_2 - z_1)g - p(z_2)dxdy = 0$$

$$p(z_2) = p(z_1) + \rho g(z_2 - z_1)$$

pour z_1 et $z_2 = h$, on trouve

$$p(h) = p(0) + \rho g h = p_0 + \rho g h$$

Ainsi, la variation d'un fluide au repos ne depend que de la profondeur, mais est independante de la forme du fluide et ne varie pas perpendiculairement a la pesanteur.

Lecture 3: Hydrostatique

Tue 02 Mar

3.2 Densite de force associee a la pression

Calculons la force exercee sur un volume de fluide infinitesimal du a la pression.

On suppose qu'on connait $p(\overrightarrow{r})$.

$$\overrightarrow{F}_1 = p(\overrightarrow{r}(-\frac{dx}{2},0,0))dydz\overrightarrow{e}_x$$

Donj

$$\sum_{i=1}^{6} \overrightarrow{F}_{i} = \left(-p(\frac{dx}{2},0,0) - p(-\frac{dx}{2},0,0)/dx\right) dx dy dz = -\frac{\partial p}{\partial x} dV \overrightarrow{e}_{x} + \dots = -\nabla p dV$$

donc la densite de force associee a la pression est $-\nabla p$.

3.3 Poussee d'Archimede

Tout corps plonge dans un fluide recoit de la part de celui-ci une poussee verticale egale au poids du fluide deplace

3.4 Tension superficielle

Experience:

On a des tubes de largeurs differentes, ouverts en haut et plonge dans l'eau.

On note que le niveau d'eau monte a un niveau de $h\alpha \frac{1}{r}$

Semble etre une contradiction de la pression hydrostatique.

On verra que ce phenomene est du a la tension superficielle. La loi $p(h) = p_0 + \rho g h$ reste valable dans le fluide, mais pas necessairement a la surface.

3.4.1 Origine et definition de la tension superficielle

On considere a nouveau un fluide, il est constitue de particules ayant des interactions entre elles (inter moleculaires, etc)

Il y a moins de telles liaisons pour une molecule a la surface du fluide. Pour amener cette molecule la-bas et pour augmenter la surface, il faut faire un travail. Experience :

Soit un film de liquide (eau savonneuse) tendu dans un cadre ABCD.

Si on tend le cadre, il ya une force qui s'y oppose.

Le travail est donc proportionel au changement de surface

$$\Delta W = \gamma \Delta S = \gamma BC \Delta k \cdot 2$$

Le 2 apparait parce que il y a 2 surfaces (liquide/gaz)

Donc on a

$$F = 2F_{\gamma} = 2BC\gamma$$

L'interface liquide/gaz est un peu comme une membrane elastique, mais la force est independante de la deformation.

Experience

Mesure de γ On plonge un cylindre attache a un newton metre dans le liquide. On mesure la force necessaire pour faire apparaître un film lie au cylindre et on prend la difference entre cette force et la force F_G .

3.4.2 Quelques consequences immediates de la tension superficielle

Les bulles de savon minimisent leur surface et c'est pour cela qu'elles sont spheriques.

Meme chose pour les bulles d'eau en apesanteur.

Meme chose pour les cheveux mouilles qui collent.

Certains objets (trombone, punaises) ou des insectes qui flottent (qui marchent sur la surface)