DSE'23 - class 7: Matrices

19/10/2023

Manipulations with matrices/ vectors

Rule	Comments		
$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$	order is reversed, everything is transposed		
$(\mathbf{a}^T \mathbf{B} \mathbf{c})^T = \mathbf{c}^T \mathbf{B}^T \mathbf{a}$	as above		
$\mathbf{a}^T\mathbf{b} = \mathbf{b}^T\mathbf{a}$	(the result is a scalar, and the transpose of a scalar is itself		
$(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$	multiplication is distributive		
$(\mathbf{a} + \mathbf{b})^T \mathbf{C} = \mathbf{a}^T \mathbf{C} + \mathbf{b}^T \mathbf{C}$	as above, with vectors		
$\mathbf{AB} eq \mathbf{BA}$	multiplication is not commutative		

Common derivatives

Scalar derivative		Vector derivative			
f(x)	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}x}$	$f(\mathbf{x})$	\rightarrow	$\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$
bx	\rightarrow	b	$\mathbf{x}^T\mathbf{B}$	\rightarrow	В
bx	\rightarrow	b	$\mathbf{x}^T\mathbf{b}$	\rightarrow	b
x^2	\rightarrow	2x	$\mathbf{x}^T\mathbf{x}$	\rightarrow	$2\mathbf{x}$
bx^2	\rightarrow	2bx	$\mathbf{x}^T \mathbf{B} \mathbf{x}$	\rightarrow	$2\mathbf{B}\mathbf{x}$

Block 1: training differential muscles 💪

Problem 1: light start

(a) Find dF

$$F=egin{pmatrix} 5 & 6x_1 \ x_1x_2 & x_1^2x_2 \end{pmatrix}$$

(b) F is 2x2 matrix with elements f_{ij} placed at row i column j. Write down explicitly expression for tr(F'dF) explicitly (without using matrices)

Problem 2: life gets more interesting

A, B — matrices of constants, R — matrix with variables, r — column vector of variables. Find differentials for each of the cases below and simplify the answers for the case of symmetric A:

- (a) d(ARB)
- (b) d(r'r)
- (c) d(r'Ar)
- (d) $d(R^{-1})$
- (e) d(cos(r'r))
- (f) d(r'Ar/r'r)

Problem 3: Classics

Let's derive traditional OLS regression in matrix form:

- (a) Consider simple regression without constant $y_i=\hat{eta}_1z_i+\hat{eta}_2x_i$. Place all data in matrix X and vectors y, z, x:
- 1. Explicitly write down following matrices and calculate their shape: X^\prime , $X^\prime y$, $X^\prime X$, $y^\prime X$, $y^\prime z$
- 2. Write down first order conditions for \hat{eta}_1 , \hat{eta}_2 in two forms: in matrices and as a linear system
- 3. Simplify the system for the case of $\,\hat{y}_i = \hat{eta}_1 + \hat{eta}_2 x_i \,$
- (b) Now let's generalize the derivations from (a) to the case of general OLS regression

$$Q(\hat{eta}) = (y - X\hat{eta})'(y - X\hat{eta})$$

- 1. Find $dQ(\hat{eta})$ and $d^2Q(\hat{eta})$
- 2. Write down FOC for OLS problem
- 3. Find $\hat{\beta}$ assuming that X'X is invertible
- 4. Show that $\hat{\beta}$ is unbiased
- 5. Find $Var(\hat{eta})$
- 6. Derive in matrix from TSS = ESS + RSS and state assumptions under which this equation is true

Problem 4: Omitted variable

Consider true model $y=x_1'\beta_1+x_2'\beta_2+e$, $E[e|x_1,x_2]=0$, assume random sampling. Suppose that β_1 is estimated by regression of y on x_1 only. Find probability limit of the estimator. What are the conditions when it is consistent for β_1 ?

Services References

- 1. More problems
- 2. Yandex handbook on matrix differentials
- 3. Nice book on Econometrics fundamentals