HOMEWORK 3 (2023) — SOLUTIONS

 ${
m JAIST-School}$ of Information Science — I232 Information Theory

- 1. What is the correct relationship, =, \geq , \leq or ? (for unknown) for each pair below. Give reason with equations or phrase like "conditioning reduces entropy."
 - 1. I(X;Y) = 0.

Solution: Mutual information is non-negative, so $I(X; Y) \ge 0$.

2. H(X,Y)_____H(X) + H(Y)

Solution: \leq Chain rule of entropy and conditioning reduces entropy.

3. $I(X;Y) + H(X|Y) __H(X)$.

Solution: Variation on the definition of mutual information, so =.

4. $I(X; X)_{___} H(X)$.

Solution: By definition of mutual information, I(X;X) = H(X) - H(X|X). H(X|X) = 0, so I(X;X) = H(X).

5. $I(X;Y) _ H(X) - H(g(Y)|Y)$.

Solution: By conditional entropy of functions, H(g(Y)|Y) = 0. From the definition of mutual information I(X;Y) = H(X) - H(X|Y), we have $I(X;Y) \le H(X)$.

6. $H(X|Y)_{___{}} H(X) + H(Y)$

Solution: Conditioning reduces entropy: $H(X|Y) \leq H(X)$ and non-negativity of entropy: $0 \leq H(Y)$, correct answer is \leq .

7. $H(2X) _{----} H(X)$

Solution: 2X is deterministic function of X, so H(2X) = H(X).

8. $H(X_2|X_1)$ _____ $H(X_2|X_1,X_0)$

Solution: Conditioning reduces entropy: $H(X_2|X_1) \ge H(X_2|X_1,X_0)$.

2. Consider jointly distributed X and Y with $\mathcal{X} = \{0,1\}$ and $\mathcal{Y} = \{0,1\}$ with joint distribution given by:

$$\begin{array}{c|cccc} p_{\mathsf{XY}}(x,y) & y = 0 & y = 1 \\ \hline x = 0 & \frac{1}{3} & \frac{1}{6} \\ x = 1 & \frac{1}{6} & \frac{1}{3} \end{array}$$

Let Z be a new random variable Z = X + Y. Here "+" means real addition so $\mathcal{Z} = \{0, 1, 2\}$.

- (a) Find H(X), H(Y) and H(X, Y)
- (b) Find the joint distribution $p_{XYZ}(x, y, z)$.
- (c) Find I(X, Y; Z).
- (d) Find I(X; Z).

Solution:

(a) To calculate $H(\mathsf{X})$ and $H(\mathsf{Y})$, we first calculate $p_{\mathsf{X}}(x) = \sum_{y \in \mathcal{Y}} p_{\mathsf{X}\mathsf{Y}}(x,y)$ and $p_{\mathsf{Y}}(y) = \sum_{x \in \mathcal{X}} p_{\mathsf{X}\mathsf{Y}}(x,y)$. Then $H(\mathsf{X}) = h(\frac{1}{2}) = 1$ and $H(\mathsf{Y}) = h(\frac{1}{2}) = 1$

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{XY}(x,y) \log p_{XY}(x,y) = -\left(2\frac{1}{3}\log\frac{1}{3} + 2\frac{1}{6}\log\frac{1}{6}\right)$$

$$= \frac{2}{3}\log 3 + \frac{1}{3}\log 6 = \frac{2}{3}\log 3 + \frac{1}{3}\log 3 + \frac{1}{3}\log 2$$

$$= \frac{1}{3} + \log 3 \quad \left(\text{Other answers: } h(\frac{1}{2}) + h(\frac{1}{3}) = \frac{1}{3}\log 54 \approx 1.9182\right)$$

(b) One way to write a joint distribution:

$$\begin{array}{c|ccccc} p_{\mathsf{XYZ}}(x,y,z) & z=0 & z=1 & z=2 \\ \hline x=0,y=0 & \frac{1}{3} & 0 & 0 \\ x=0,y=1 & 0 & \frac{1}{6} & 0 \\ x=1,y=0 & 0 & \frac{1}{6} & 0 \\ x=1,y=1 & 0 & 0 & \frac{1}{3} \\ \hline \end{array}$$

- (c) $H(\mathsf{Z}|\mathsf{X},\mathsf{Y})=0$ because Z is a deterministic function of X and Y . $I(\mathsf{X},\mathsf{Y};\mathsf{Z})=H(\mathsf{Z})-H(\mathsf{Z}|\mathsf{X},\mathsf{Y})=\log 3$.
- (d) Two possible solutions are given:

$$\begin{split} I(\mathsf{X};\mathsf{Z}) &= I(\mathsf{X},\mathsf{Y};\mathsf{Z}) - I(\mathsf{Y};\mathsf{Z}|\mathsf{X}) & \text{Chain rule of mutual information} \\ &= \log 3 - (H(\mathsf{Y}|\mathsf{X}) - H(\mathsf{Y}|\mathsf{Z},\mathsf{X})) & \text{Using result of (c) and definition of mutual information} \\ &= \log 3 - h(\frac{1}{3}) + 0 & \text{Compute } H(\mathsf{Y}|\mathsf{X}) \text{ from } p_{\mathsf{Y}|\mathsf{X}}(y|x); \text{ given } \mathsf{Z} \text{ and } \mathsf{X}, \mathsf{Y} \text{ is known} \\ &= \frac{2}{3} \end{split}$$

$$\begin{split} I(\mathsf{X};\mathsf{Z}) &= H(\mathsf{Z}) - H(\mathsf{Z}|\mathsf{X}) & \text{Definition of mutual information} \\ &= \log 3 - H(\mathsf{Z}|\mathsf{X}) & \text{See part (b)} \\ &= \log 3 - \sum_{x \in \mathcal{X}} p_{\mathsf{X}}(x) H(\mathsf{Z}|\mathsf{X} = x) \\ &= \log 3 - h(\frac{1}{3}) = \frac{2}{3} & p_{\mathsf{Z}|\mathsf{X}}(0|0) = 2/3, p_{\mathsf{Z}|\mathsf{X}}(1|0) = 1/3 \text{ and } p_{\mathsf{X}}(x) = 1/2 \end{split}$$

3. Let X, Y and Z be jointly distributed variables such that $X \to Y \to Z$ forms a Markov chain. Prove $H(X|Z) \ge H(X|Y)$.

Solution: Since $X \to Y \to Z$ forms a Markov chain, the data processing inequality holds.

$$I(X;Y) \ge I(X;Z)$$
 data processing inequality $H(X) - H(X|Y) \ge H(X) - H(X|Z)$ definition of mutual information $H(X|Z) \ge H(X|Y)$