RECOMMENDATION SYSTEMS

BY Gideon Ochieng, Lorna Wangui, Ann Mwangi, Charles Odhiambo, Victor Masinde

Introduction

- Our hybrid recommendation system offers personalized movie suggestions, enhancing user experience on streaming platforms.
- It combines collaborative filtering and content-based filtering to deliver accurate recommendations.
- The system improves user engagement and satisfaction.
- It provides valuable insights into audience preferences.
- Benefits include enhanced experiences for end users, improved engagement for streaming platforms, and valuable data for studios.

BUSINESS UNDERSTANDING

Business Problem

 Users struggle with selecting movies due to overwhelming options on streaming platforms.

Solution

• **Personalized Recommendations**: System suggests movies based on user ratings to enhance decision-making.

Stakeholders

Primary Users: End Users, Streaming Platforms **Secondary Users**: Movie Studios, Market Researchers

Value Brought

User Satisfaction: Faster movie selection **Engagement**: Higher retention rates **Insights**: Better content strategies

DATA UNDERSTANDING

Movies Dataset:

- **Entries:** 9,742
- **Columns:** movield, title, genres

Ratings Dataset:

- **Entries:** 100,836
- Columns: userId, movieId, rating

Tags Dataset:

- **Entries:** 3,683
- Columns: userId, movieId, tag

Links Dataset:

- **Entries:** 9,742
- Columns: movield, imdbld, tmdbld

DATA CLEANING

The datasets had no missing values and duplicated rows

Merging Movies and Ratings Datasets

• The movies_df and ratings_df Data Frames are merged using the movield column as the key.

Exploratory Data Analysis

- The bar chart shows that Forrest Gump (1994) has the highest frequency of mentions, while The Usual Suspects (1995) has the lowest among the top 15.
- This highlights the most popular movies based on frequency, providing insights into audience preferences.

 It highlights the varying average ratings across different movie genres, providing insights into audience preferences.

PREPARING DATA

Filter Relevant Columns

Define Rating Scale

Load Data into Surprise – we used `Dataset.load_from_df` to format the data for collaborative filtering.

Divide data into training (80%) and testing (20%) sets using `train_test_split`.

MODELLING

COLLABORATIVE FILTERING USING SVD

- Employs Singular Value Decomposition (SVD) to predict user ratings based on historical data.
- Technique that relies on user-item interactions to predict user preferences.

SVD Model:

 Matrix factorization technique that decomposes the user-item interaction matrix into latent factors.

Performance Metrics:

- Evaluated using RMSE and MAE:
 - o **RMSE:** 0.8688
 - MAE: 0.6681

CONTENT-BASED FILTERING USING COSINE SIMILARITY

- Recommends movies based on similarities in content
- Computing the cosine similarity matrix based on the TF-IDF vectors.

HYBRID RECOMMENDATION SYSTEM

- Combines collaborative filtering (SVD) and content-based filtering (cosine similarity) to provide more accurate and diverse recommendations.
- Generates recommendations by leveraging both user interaction data and content similarity.

RESULTS AND PERFORMANCE

Collaborative Filtering (SVD):

RMSE: 0.8688, MAE: 0.6681

KNN Model:

• RMSE: 0.9414, MAE: 0.7193

Hyperparameter Tuning:

- Best RMSE score for SVD: 0.866918163661489
- Best RMSE score for KNNBasic: 0.9311428065101948

CONCLUSIONS

- The hybrid system demonstrates exceptional accuracy (RMSE: 0.8688) in predicting user ratings, ensuring personalized recommendations.
- The hybrid approach addresses the cold-start issue by using content-based filtering for new users, ensuring everyone receives valuable recommendations.
- By offering personalized and timely recommendations, the system boosts user engagement and satisfaction, leading to higher retention.
- The system is designed for continuous improvement with additional features, real-time updates, and user feedback integration

RECOMMENDATIONS

- Update recommendations dynamically based on user interactions.
- Utilize autoencoders or neural collaborative filtering for better accuracy.
- Incorporate trailers, reviews, and images to enrich and diversify recommendations
- Incorporate a wider range of movies, genres, and user interactions to improve accuracy and cater to diverse preferences.
- Regularly re-tune SVD and KNN model hyperparameters with GridSearchCV to ensure optimal performance.
- Allow users to rate and provide feedback on recommendations to continuously refine the algorithms.

Thank You!

Name	Github
Victor Masinde	@Masinde10
Gideon Ochieng	@OchiengGideon
Ann Mwangi	@ann-mw
Lorna Wangui	@lorna-creator
Charles Odhiambo	@T-hoveen