Fall 2019

CS6501: Topics in Human-Computer Interaction

http://seongkookheo.com/cs6501 fall2019

Touch Interfaces

Seongkook Heo Oct 10, 2019

Milestones of Touch Interfaces

Based on "Multi-touch systems that I have known and loved" by Bill Buxton http://www.billbuxton.com/multitouchOverview.html

The first touchscreen (1960s)

- Invented by E.A. Johnson, Roayl Radar Establishment, UK.
- Used capacitive touch sensing, which is what we use for most mobile devices.
- Johnson, E. A. (1965). Touch display--a novel input/output device for computers. *Electronics Letters*, 1(8), 219-220.

The first touchscreen (1960s)

Touch Displays: A Programmed Man-Machine Interface

By E. A. JOHNSON

Royal Radar Establishment, Malvern

1. Introduction

A very large number of so-called automatic data-processing systems require the co-operation of human operators to achieve satisfactory operation. In many of these systems it is necessary to reduce operator reaction time to a minimum, which in turn demands an arrangement where the man-machine communications are optimized. This requires that the methods of presenting information to, and receiving instructions from, the operator should be rapid and easy.

Johnson, E. A. (1967). Touch displays: A programmed man-machine interface. *Ergonomics*, *10*(2), 271-277.

PLATO IV Touch Screen Terminal (1972)

 PLATO IV computer assisted education system had a terminal with a touchscreen.

Initial implementation had a 16 x 16 infrared light beams.

Soft Machines (1983)

- The first paper providing a comprehensive discussion of the properties of touchscreen-based user interfaces— which they call "soft machines", in comparison with hard machines
- Properties of hard machines and controls
 - Modularity
 - Form follows function
 - One-to-one mapping of controls and operations
 - Manual operation
 - Immediate feedback
 - Language of controls
- Soft machine = Properties of hard machines + Flexibility

Nakatani, L. H., & Rohrlich, J. A. (1983, December). Soft machines: A philosophy of user-computer interface design. In *Proceedings of the SIGCHI conference on Human Factors in Computing Systems* (pp. 19-23). ACM.

Videoplace (1985)

- A vision-based system developed by Myron Krueger
- Suggests a rich set of gestures, including the pinch gesture to scale and translate objects

Multi-touch Tablet (1985)

- A touch tablet capable of sensing multi-touch, developed by Lee, Buxton, and Smith.
- It could also detect pressure (degree of touch) for each finger
- Used capacitance sensing, so was thinner and simpler than visonbased methods

DigitalDesk (1991)

- Classic example of Augmented Reality:
 Enabled interaction on physical objects
- Also demonstrated multitouch concepts,
 e.g., two-finger scaling and translation

Wellner, P. (1991). The Digital Desk Calculator: Tactile manipulation on a desktop display. *Proceedings of the Fourth Annual Symposium on User Interface Software and Technology (UIST '91)*, 27-33.

Wellner, P. (1991). The Digital Desk Calculator: Tactile manipulation on a desktop display. *Proceedings of the Fourth Annual Symposium on User Interface Software and Technology (UIST '91)*, 27-33.

Simon (1994)

- First smart phone designed by IBM and manufactured by Mitsubishi Electric.
- Relied on "soft machine" user interfaces
- Could run many applications, including emails, address book, calendar, calculator, notepad, etc.

iGesture Pad (1998)

- Gesture input + Keyboard
 - Capacitance between electrodes and grounded object
- Fingerworks, largely based on Westerman's thesis work

Westerman, W. 1999. PhD Dissertation Hand tracking, finger identification, and chordic manipulation on a multi-touch surface.

iGesture Pad (1998)

	,
Channel Icon	Finger Combination
• •	Any 2 fingertips (excluding thumb).
•••	Any 3 fingertips (excluding thumb).
••••	All 4 fingertips (excluding thumb).
•	Thumb and any fingertip.
•	Thumb and any 2 fingertips.
•••	Thumb and any 3 fingertips.
••••	Thumb and all 4 fingertips.

Motion Icon	Type of Chord Motion
	Brief tap on surface (one-shot).
+	Translation (slide) in any direction.
‡	Reversible translation up or down.
	Reversible translation left or right.
 	Reversible up or down translation, irreversible right translation.
†	Translation in a particular direction (one-shot).
	Contractive hand scaling (one-shot).
<u> </u>	Expansive hand scaling (one-shot).
\Box	Clockwise hand rotation (one-shot).
	Counter-clockwise hand rotation (one-shot).

$Right\\ Hand\\ Channel$	Chord Motion	$GUI \ Action$
••		Primary mouse button click.
••	-\$-	Mouse cursor manipulation.
•••		Primary mouse button double-click.
•••		Dragging/Selection via primary mouse button.
••••		No mapping to avoid accidents.
••••	-\$-	Continuous scrolling/panning of current window.
••••		Key layout homing.
••••	-\$-	No mapping to tolerate shifts in resting hand posture.

Apple iPhone (2007)

- Not the first mobile phone with a touchbased interface
- Multi-touch capacitive touch display
- Well-designed and smooth interaction and visual feedback accommodated with a rich set of functions

PixelSense (2011)

- Developed by Microsoft and Samsung
- Also known as Surface 2.0, now discontinued.
- Displays pixels have optical sensors

Microsoft® PixelSense®

Usability Issues of Touch Interfaces

Limited Input Vocabulary

Limited input states

Limited Input Vocabulary

- Limited input modes
 - No modifier keys
 - No extra buttons
 - No scroll wheels

Limited Input Vocabulary

iPhone 6s – Force Touch

SAMSUNG

Samsung Galaxy S4

Image by Bob Jouy https://www.flickr.com/photos/bobjouy/21679830866

YouTube video
https://www.youtube.com/watch?v=U8STgCviLe0

VS

Finger occlusion

Xia, H., Grossman, T., & Fitzmaurice, G. NanoStylus: Enhancing input on ultra-small displays with a finger-mounted stylus. UIST 2015

Finger control

Holz, C., & Baudisch, P. Understanding touch. CHI 2011. ACM.

Finger control

Holz, C., & Baudisch, P. Understanding touch. CHI 2011. ACM.

Lack of Tactile Feedback

No physical boundaries, no clicks

Harrison, C., & Hudson, S. E. Providing dynamically changeable physical buttons on a visual display. CHI 2009

Lack of Tactile Feedback

No physical boundaries, no clicks

Tactus Technology, transparent physical buttons for touchscreens

Sanitary issues

Touchscreen Kiosk at San Antonio Military Medical Center

Sanitary issues

Kandel, C. E., Simor, A. E., & Redelmeier, D. A. (2014). Elevator buttons as unrecognized sources of bacterial colonization in hospitals. *Open Medicine*, 8(3), e81.

Infographic from https://sunnybrook.ca/media/item.asp?c=1&i=1150&f=elevator-button-bacteria

Usability Issues of Touch Interfaces

Limited Input vocabulary

Imprecise input

Lack of tactile feedback

Sanitary issues

And many more...

Thank you!