Glisson, W., Andel, T., McDonald, T., Jacobs, M., Campbell, M. & Mayr, J.

(2015) Compromising a Medical Mannequin. Healthcare Information Systems and

Technology (Sighealth)

- What are the major threats and vulnerabilities discussed in the paper?
- How would you mitigate against these?

Major threats	Vulnerabilities
The Government Accountability Office	Fu and Blum (2013) also highlight the
report (2012) concludes that the FDA	MAUDE database does not adequately
faces challenges in how to identify	capture security-based failures or
medical device failures from intentional	malfunctions for medical devices.
or malicious activities and that current	
policy and procedures are inadequate	Devices can be breached
given the real security threats that exist	Decidual data
Deliev and precedures	Residual data
Policy and procedures	Networks infiltrated
Logging	Networks inilitiated
Logging	Architecture
These tensions include a) the need to	/ Horntooture
fail encryption versus the impact on	Brute force
functionality and energy consumption.	Diato ioroc
, , , , , , , , , ,	Denial of service
Identification, monitoring and control	
The authors indicate that there is a lack	
of research focusing on vulnerabilities in	
reprogrammable control devices.	
NA:Ai ar a Ai a ra	
Mitigation	Firewalls
Physical components out of use, e.g. USB drives	FIICWAIIS
OOD dilves	CAPTCHA and two-factor
Zero trust architecture	authentication
2010 trast aromicolare	danomidation
Intrusion detection and prevention	Medical devices need to consider
systems	security in their developing
,	
Education and training	
Policy	

From reviewing the paper "Compromising a medical mannequin" (Glisson et al., 2015), we understand the severe nature of threats and vulnerabilities the healthcare profession faces in society.

From the outset, Glisson et al. (2015) identify that the FDA's current policies and procedures are inadequate to deal with security threats (United States Government Accountability Office, 2012). The impact is significant given the risk posed to practitioners and patients, resulting in fatalities in a worst-case scenario. Education and training are crucial if staff maintain operational security (Anderson, 2008) to resist social engineering attempts and prevent negligent actions that could compromise security policies. Anderson (2008) suggests that a practical approach of two-factor authentication for login and CAPTCHA could mitigate attacks by brute force, which were indicated as a threat method (Glisson et al., 2015).

The article highlights how the FDA MAUDE database fails to capture impaired availability or malware infections in the medical device operating systems (Fu & Blum, 2013). This is significant to maintain the integrity and availability of the CIA triad (Troncoso, 2019). A compromised system would interfere with the safe practice of healthcare and a potential breach of patient data. The article highlights the severe risk of a compromised network that devices, such as pacemakers, could gather patient data and modify the device's behaviour, resulting in complications such as cardiac arrest. The conduct or functionality of the device could be threatened by a denial of service attack (Glisson et al., 2015). To mitigate these potential vulnerabilities, the use of intrusion prevention systems (Lerace et al., 2005) would support detecting anomalies of traffic and defence towards denial of service, notably as databases such as FDA's MAUDE does not support this. However, the use of an IPS may cause performance issues of the operating system, high cost and can incur false positive

alerts, which can increase the workload of administrators. However, the IPS would support mitigation, offering detection and logging capabilities to reduce device vulnerabilities such as in the icsma-20-343-01 case in GE imagery and ultrasound products (Cybersecurity and Infrastructure Security Agency, 2020).

- Cybersecurity and Infrastructure Security Agency. (2020). ICS Medical Advisory (ICSMA-20-343-01). Available: https://us-cert.cisa.gov/ics/advisories/icsma-20-343-01 [Accessed 13 November 2021].
- Fu, K. & Blum, J. (2013). Controlling for Cybersecurity Risks of Medical Device Software. *Communications of the ACM*, 56, (10): 35-37.
- Glisson, W., Andel, T., Mcdonald, J., Jacobs, M., Campbell, M. & Mayr, J. (2015).

 Compromising a Medical Mannequin. Available:

 https://www.researchgate.net/publication/281487935 Compromising a Medical Mannequin [Accessed 13 November 2021].
- Lerace, N., Urrutia, C. & Bassett, R. (2005). Intrusion prevention systems. Available: https://doi.org/10.1145/1071916.1071927 [Accessed 13 November 2021].
- Troncoso, C. (2019). Privacy & Online Rights Knowledge Area Issue 1. Available: https://www.cybok.org/media/downloads/Privacy Online Rights issue 1.0 FNULPel.pdf [Accessed 13 November 2021].
- United States Government Accountability Office. (2012). Medical Devices: FDA Should Expand Its Consideration of Information Security for Certain Types of Devices. Available: https://www.gao.gov/assets/gao-12-816.pdf [Accessed 13 November 2021].