University of St Andrews

SAMPLE EXAMINATION DIET SCHOOL OF MATHEMATICS & STATISTICS

MODULE CODE: MT5836

MODULE TITLE: Galois Theory

EXAM DURATION: $2\frac{1}{2}$ hours

EXAM INSTRUCTIONS: Attempt ALL questions.

The number in square brackets shows the

maximum marks obtainable for that

question or part-question.

Your answers should contain the full

working required to justify your solutions.

PERMITTED MATERIALS: Non-programmable calculator

YOU MUST HAND IN THIS EXAM PAPER AT THE END OF THE EXAM.

PLEASE DO NOT TURN OVER THIS EXAM PAPER UNTIL YOU ARE INSTRUCTED TO DO SO.

- 1. (a) State Eistenstein's criterion. [2]
 - (b) Is the converse of Eisenstein's criterion true? Justify your answer. [2]
 - (c) Are the following polynomials irreducible over \mathbb{Q} ? Justify your answer in each case. You may use standard combinatorial results without proof, provided that they are clearly stated.
 - (i) $f(X) = 3X^5 + 6X^4 + 18X^3 + 12X + 2$.
 - (ii) $g(X) = 3X^5 + 6X^4 + 18X^3 + 12X + 4$.
 - (iii) $h(X) = X^{p-1} + X^{p-2} + \dots + 1$, where p is an odd prime. [5]

- 2. (a) Let F be a field and $f \in F[X]$ be a polynomial with coefficients in F with $\deg f \geq 1$. Define what is meant by a *splitting field* of f over F. [2]
 - (b) Assume that $\deg f = 2$ and that f has a root α in some extension K of F. Prove that $F(\alpha)$ is a splitting field for f over F.
 - (c) Let $f \in F[X]$. Define what is meant by the Galois group of f. [1]
 - (d) Now consider the polynomials $f = (X^2 2)(X^2 + 1)$ and $g = X^4 + 1$ in $\mathbb{Q}[X]$. Prove that the Galois groups of f and of g are isomorphic. [5]

- 3. (a) State the Fundamental Theorem of Galois Theory (a proof is not required). [4]
 - (b) Let E be the splitting field over \mathbb{Q} of the polynomial $f = X^4 5$, and let $G = \operatorname{Gal}(E:Q)$.
 - (i) Show that $E = \mathbb{Q}(\alpha, i)$, where $\alpha = \sqrt[4]{5}$. [3]
 - (ii) State the Tower Law. Hence, or otherwise, show that $[E:\mathbb{Q}]=8$, and deduce that |G|=8. [5]
 - (iii) Show that G contains an automorphism σ such that $\sigma(\alpha) = i\alpha$ and $\sigma(i) = i$, and an automorphism τ such that $\tau(\alpha) = \alpha$ and $\tau(i) = -i$. [2]
 - (iv) Prove that every element of G can be written as $\sigma^k \tau^l$, where $k \in \{0, 1, 2, 3\}$ and $l \in \{0, 1\}$. [4]
 - (v) Find the values of k and l such that $\tau \sigma \tau^{-1} = \sigma^k \tau^l$. [2]
 - (vi) Prove that the extension $E:\mathbb{Q}$ has exactly five intermediate fields B with $[B:\mathbb{Q}]=4$, and that for exactly one of these intermediate fields the extension $B:\mathbb{Q}$ is a normal extension. [6]
 - (vii) Find the subgroup of G that corresponds to the intermediate field $\mathbb{Q}(i\sqrt{5})$ under the Galois correspondence for the extension $E:\mathbb{Q}$. [4]

- 4. (a) Define what is meant by saying that a group G is solvable. [2]
 - (b) Define what is meant by saying that a polynomial is solvable by radicals. [2]
 - (c) State (without proof) Galois' Great Theorem. [1]
 - (d) Let n be a natural number, and let $\epsilon = e^{2\pi i/n}$ be a primitive nth root of unity. Let $K = \mathbb{Q}(\epsilon)$. Prove that $\mathrm{Gal}(K : \mathbb{Q})$ is abelian. [2]
 - (e) Now let $\alpha = \sqrt[n]{2}$ be the positive real nth root of 2, and let $E = \mathbb{Q}(\epsilon, \alpha)$. Prove that $\operatorname{Gal}(E:K)$ is abelian, and that $\operatorname{Gal}(E:\mathbb{Q})$ is solvable. You may use both the Fundamental Theorem and results from group theory, without proof, provided that the results you are using are clearly stated. [4]

END OF PAPER