Донейросетевые методы машинного перевода

Жилкина Ксения

Факультет Компьютерных Наук, ПМИ НИУ ВШЭ

7 декабря 2018

Оглавление

Машинный перевод

История

Перевод на основе правил

Системы дословного перевода

Трансферные системы

Интерлингвистические системы

Преимущества и недостатки RBMT

Перевод на основе примеров

Близость предложений

Рекомбинация

Преимущества и недостатки ЕВМТ

Статистический перевод

Статистический перевод по словам

Статистический перевод по фразам

SMT на основе синтаксиса

Преимущества и недостатки SMT

Донейросетевой МП: что сейчас и что дальше?

Оглавление

Машинный перевод История

Перевод на основе правил

Системы дословного перевода

Трансферные системы

Интерлингвистические системы

Преимущества и недостатки RBMT

Перевод на основе примеров

Близость предложений

Рекомбинация

Преимущества и недостатки ЕВМТ

Статистический перевод

Статистический перевод по словам

Статистический перевод по фразам

SMT на основе синтаксиса

Преимущества и недостатки SMT

Донейросетевой МП: что сейчас и что дальше?

3/39

Определение

Машинный перевод - процесс перевода с одного естественного языка на другой с помощью специальной компьютерной программы.

В чем польза?

- Повышение эффективности труда переводчиков
- ► Единство терминологии и стиля уменьшение затрат на редакторскую правку
- ▶ Человек не обязан знать язык перевода

История

▶ 1933г, СССР: машина Петра Троянского

▶ 7 января 1954г, штаб-квартира IBM, Нью-Йорк: Джорджтаунский эксперимент, компьютер IBM 701

Основные подходы

- ▶ МП на основе правил (Rule-Based, RBMT)
- ▶ МП на примерах (Example-Based, EBMT)
- ▶ Статистический (Statistical, SMT)
- ▶ Нейросетевой (Neural, NMT)

Оглавление

Машинный перевод История

Перевод на основе правил

Системы дословного перевода

Трансферные системы

Интерлингвистические системы

Преимущества и недостатки RBMT

Перевод на основе примеров

Близость предложений

Рекомбинация

Преимущества и недостатки ЕВМТ

Статистический перевод

Статистический перевод по словам

Статистический перевод по фразам

SMT на основе синтаксиса

Преимущества и недостатки SMT

Донейросетевой МП: что сейчас и что дальше?

Основная идея RBMT

Имитация действий переводчика:

- двуязычный словарь (напр, EN -> RU)
- набор лингвистических правил под каждый язык (напр, RU: существительные женского рода оканчиваются на -а/-я)
- дополнительные списки имён, корректоры орфографии, транслитераторы и т.д.

Виды RBMT

- ▶ Системы пословного перевода (Direct MT)
- ▶ Трансферные системы (Transfer-based MT)
- ▶ Интерлингвистические системы (Interlingual MT)

Системы дословного перевода

- ▶ Пословный перевод + правка морфологии, согласование падежей, окончания и остальной синтаксис
- Лингвистами прописываются правила под каждое слово
- В результате очень низкое качество
- В современных системах подход не используется

Трансферные системы

- ▶ Три этапа: анализ, трансфер и синтез. Пример: PROMT
- Выделение синтаксических конструкций (подлежащее, сказуемое и т.д.). Не закладываются правила перевода каждого слова, манипулирование целыми конструкциями
- Преимущества: можно задать общие правила согласования по роду и падежу + в теории можно добиться хорошей конвертации порядка слов в языках
- ▶ Недостатки: комбинаций слов больше, чем самих слов + все еще много работы лингвистов + все еще низкое качество

Интерлингвистические системы

- Два этапа: анализ и синтез на основе правил и словарей соответствующих языков
- Для перевода с одного языка на другой используется промежуточное представление interlingua (метаязык с едиными правилами для всех существующих языков)
- Преимущества: в отличие от трансферной системы, можем свободно добавлять языки к уже имеющимся
- Недостатки: создать универсальную интерлингву вручную оказалось крайне сложно

Преимущества и недостатки RBMT

- Преимущества
 - Синтаксическая и морфологическая точность (не путает слова)
 - Стабильность и предсказуемость результата (все переводчики получат одинаковый результат)
 - Возможность настройки на предметную область

Недостатки

- Трудоемкость и длительность разработки (учет всех) исключений из правил + омонимия)
- Необходимость поддерживать и актуализировать лингвистические базы данных
- «Машинный акцент» при переводе: Since the Desert One debacle, the United States has poured vast resources into its special forces.

Начиная с разгрома Пустыни Один, Соединенные Штаты вылили обширные ресурсы в свой спецназ

Оглавление

Машинный перевод

История

Перевод на основе правил

Системы дословного перевода

Трансферные системы

Интерлингвистические системы

Преимущества и недостатки RBMT

Перевод на основе примеров

Близость предложений

Рекомбинация

Преимущества и недостатки ЕВМТ

Статистический перевод

Статистический перевод по словам

Статистический перевод по фразам

SMT на основе синтаксиса

Преимущества и недостатки SMT

Донейросетевой МП: что сейчас и что дальше?

Основная идея ЕВМТ

- ▶ В 1984 году учёному университета Киото по имени Макото Нагао приходит идея: а что если не пытаться каждый раз переводить заново, а использовать уже готовые фразы?
- Четыре этапа: мэтчинг фраз с фразами из базы темплейтов с помощью метрик близости, перевод фрагментов, рекомбинация, выравнивание (постобработка - например, согласование существительного с глаголом)
- Для подбора близких фрагментов необходимы: метрика близости и достаточно объемная база темплейтов (WordNet c указанием гиперонимов, "sisters"или Wikipedia)

ЯИДУ В ТЕАТР = I'M GOING TO THE THEATER ЯИДУ В МАГАЗИН $\stackrel{???}{=}$ I'M GOING TO THE STORE STORE

Близость предложений

Word-based similarity

- Расстояние редактирования (расстояние Левенштейна)
- Для векторного представления предложений мешок слов + индекс Дайса или мера Жаккара для вычисления близости векторов
- tf-idf + косинусный коэффициент

Пример: косинусный коэффициент + tf-idf

 S_1 = "Peter hired a car for the trip."

 S_2 ="For the trip, a car was hired by Peter."

$$V(S_1) = tf(S_1) \cdot idf(S_1)$$
 - векторное представление S_1

$$\mathsf{V}(\mathsf{S}_2) = \mathit{tf}(\mathsf{S}_2) \cdot \mathit{idf}(\mathsf{S}_2)$$
 - векторное представление S_2

$$\mathsf{cosine}(\mathsf{V}(\mathsf{S}_1), V(S_2)) = rac{V(S_1) \cdot V(S_2)}{|V(S_1)| \cdot |V(S_2)|}$$
 - мера близости S_1 и S_2

Близость предложений

Tree and graph-based similarity

Близость деревьев разбора:

Based on constituency and dependency parse trees of S_1 and S_2 .

```
(ROOT
(S
(NP (PRP$ My) (NN dog))
(ADVP (RB also))
(VP (VBZ likes)
(S
(VP (VBG eating)
(NP (NN sausage)))))
(. )))
(ROOT-0, likes-4)
xcomp(likes-4, eating-5)
dobj(eating-5, sausage-6)
```

Близость семантических графов:

Близость предложений

Tree and graph-based similarity

Пример: constituency tree similarity

- N_1 количество вершин в S_1
- N_2 количество вершин в S_2
- М количество смэтчившихся вершин при заданном порядке обхода деревьев

$$S(S_1, S_2) = \frac{M}{\max(N_1, N_2)}$$

Если S > определенного порога, деревья считаются близкими

```
(ROOT
(S
(NP (PRP He))
(VP (VBZ buys)
(NP
(NP (DT a) (NN book))
(PP (IN on)
(NP (JJ international) (NNS politics)))))
(. .)))
```

```
(ROOT
(S
(NP (PRP He))
(VP (VBZ buys)
(NP (NNS mangoes)))
(. .)))
```

Рекомбинация

Фрагменты текста, извлечённые на этапе соответствий, объединяются для создания целого предложения. Способы:

- ▶ Based on sentence parts
- ▶ Based on properties of sentence parts properties can be features such as word, lemma, gender, number (singular/plural), person (3rd, 2nd), tense (past,future), voice (passive,active), POS tag, etc.
- Based on parts of semantic graphs

Рекомбинация

Пример: основанная на частях предложения

Преимущества и недостатки ЕВМТ

Преимущества:

- Движение в сторону работы с многозначностью слов: например, хорошо справляется с фразовыми глаголами в английском языке
 - 1) Ram **put on** the lights. (Switched on) (перевод на хинди—урду: Jalana)
 - 2) Ram **put on** a cap. (Wear) (перевод на хинди—урду: Pahenna)
- Недостатки:
 - ▶ Необходима подробная и объемная база темплейтов

Оглавление

Машинный перевод

История

Перевод на основе правил

Системы дословного перевода

Трансферные системы

Интерлингвистические системы

Преимущества и недостатки RBMT

Перевод на основе примеров

Близость предложений

Рекомбинация

Преимущества и недостатки ЕВМТ

Статистический перевод

Статистический перевод по словам

Статистический перевод по фразам

SMT на основе синтаксиса

Преимущества и недостатки SMT

Донейросетевой МП: что сейчас и что дальше?

Основная идея SMT

- На рубеже 1990 года в исследовательском центре IBM впервые показали систему МП, которая ничего не знала о правилах и лингвистике
- Среди многочисленных переводов (параллельные корпуса) система находит наиболее популярный, его и предоставляя в качестве ответа
- $f = f_1, f_2, ..., f_n$ французское предложение $e = e_1, e_2, ..., e_m$ его английский перевод Хотим: $maxP(e|f) = \frac{P(f|e) \cdot P(e)}{P(f)}$ по всем возможным е То есть ищем: $e' = argmax_e(P(f|e) \cdot P(e))$
- ▶ P(f|e) Translation model, P(e) Language model
- ▶ Компоненты: Translation model, Language model, Decoder

Language model

- Показывает, насколько корректно предложение в рамках своего языка
- ▶ $P(e) = \prod^{...} P(e_i|e_1,...,e_{i-1})$ при больших і почти 0. "unseen" \neq "impossible"
- Приближение n-gram language model:

$$P(e) = \prod_{i=n}^{m} P(e_i | e_{i-n+1}, ..., e_{i-1})$$

- ▶ $P(e_i|e_{i-n+1}^{i-1}) = \frac{\#(e_{i-n+1},...,e_i)}{\#(e_{i-n+1},...,e_{i-1})}$, где # количество фраз
- Но для некоторых фраз и при малых п Р почти 0. Smoothing:

$$\begin{aligned} P_{smooth}\left(e_{i}|e_{i-n+1}^{i-1}\right) &= P^*\left(e_{i}|e_{i-n+1}^{i-1}\right), if\#\left(e_{i-n+1}^{i-1}\right) > 0 \\ &= \alpha\left(e_{i}|e_{i-n+1}^{i-1}\right) \cdot P_{smooth}\left(e_{i}|e_{i-n+2}^{i-1}\right), \text{ otherwise} \end{aligned}$$

where P^* is computed by discounting,

where
$$r$$
 is computed by discounting,
$$\alpha\left(e_{i}|e_{i-n+1}^{i-1}\right) = \frac{1-\sum\limits_{e:\#>0}P\left(e_{i}|e_{i-n+1}^{i-1}\right)}{1-\sum\limits_{e:\#>0}P\left(e_{i}|e_{i-n+2}^{i-1}\right)}$$

Translation model

- ▶ P(f|e) вероятность того, что е и f действительно пара по переводу
- Введем "alignment": $a=(a_1,a_2,...,a_s)$, где a_i номер слова в исходном предложении, которому при переводе соответствует i-е слово в переведенном предложении

Пример:

$$a_1, a_2, \ldots, a_7 = \langle 2, 3, 4, 5, 6, 6, 6 \rangle$$

▶ Тогда вместо моделирования P(f|e) мы можем моделировать alignment model: $P(e|f) = \sum_{a} P(f, a|e)$

Виды SMT

- ► Word-based SMT
- Phrase-based SMT
- Syntax-based SMT

- ▶ Первая модель: IBM model 1
- ▶ Пословный подбор наиболее вероятного перевода
- ▶ Нет учета порядка слов в переводе
- ► Зато модель умела переводить слово в конструкцию из нескольких (но не факт, что обратно): Der Staubsauger (пылесос) -> Vacuum Cleaner

- ▶ IBM model 2
- Добавился промежуточный шаг: после перевода машина пыталась переставить слова местами так, как она думала будет звучать более естественно

- ▶ IBM model 3
- Часто при переводе появляются новые слова, которых не было в оригинальном тексте
- Добавилось два промежуточных шага:
 - Вставка маркеров (NULL-слов) на те места, где машина подозревает необходимость нового слова
 - Подбор нужного артикля, частицы или глагола под каждый маркер

► ISM model 4:

 Учет "относительного порядка": запоминаются слова, которые при переводе меняются местами (например, некоторые прилагательные + существительные при переводе с английского на французский)

▶ IBM model 5:

- Добавили параметров для обучения
- ▶ Пофиксили проблемы, когда два слова конфликтовали за место в предложении

Модели статистического перевода по словам не могли справиться с омонимией, падежами и родом - не учитывали контекст.

Статистический перевод по фразам

- Для обучения текст разбивался не только на слова, но и на N-граммы
- Увеличение точности перевода
- ▶ Нестабильность перевода и случаи перевода вида «three hundred» -> «300»
- ▶ До 2016-го года Google Translate, Yandex, Bing и другие качественные онлайн-переводчики работали именно как Phrase-based

SMT на основе синтаксиса

Преимущества и недостатки SMT

Преимущества:

- Быстрая настройка
- ▶ Легкость добавления новых направлений перевода
- Гладкость перевода
- Не требуется работа лингвистов
- Недостатки:
 - Дефицит параллельных корпусов
 - ▶ Многочисленные грамматические ошибки
 - Большая нестабильность перевода

Оглавление

Машинный перевод

История

Перевод на основе правил

Системы дословного перевода

Трансферные системы

Интерлингвистические системы

Преимущества и недостатки RBMT

Перевод на основе примеров

Близость предложений

Рекомбинация

Преимущества и недостатки ЕВМТ

Статистический перевод

Статистический перевод по словам

Статистический перевод по фразам

SMT на основе синтаксиса

Преимущества и недостатки SMT

Донейросетевой МП: что сейчас и что дальше?

Донейросетевой МП: Что сейчас и что дальше?

- Донейросетевые методы чаще всего комбинируются в Гибридные системы, нивелируя недостатки друг друга
- Использование нейросетей для решения задачи машинного перевода
- Машинный перевод все еще уступает по качеству человеческому переводу
- Ограниченное количество параллельных корпусов для SMT и NMT

Выводы

- ▶ RBMT имитирует действия лингвиста, использует словарь и набор правил
- ЕВМТ не совершает глубокого лингвистического анализа, но собирает перевод предложения из примеров из базы темплейтов
- SMT подбирают наиболее популярный перевод по параллельным корпусам текстов
- В чистом виде донейросетевые методы почти не встретишь - соединяются в Гибридные системы МП

Источники І

- https://vas3k.ru/blog/machine_translation/
- http://www.promt.ru/images/ainl_molchanov_promt.pdf
- Подробнее о мерах близости и рекомбинации предложений при EBMT (слайды 35-63): https://hpi.de/fileadmin/user_upload/fachgebiete/plattner/te aching/MachineTranslation/MT2016/MT13_ExampleBasedMT.pdf
- Language and Translation models:
 http://michaelnielsen.org/blog/introduction-to-statistical-machine-translation/
- Translation model:
 http://www.cs.sfu.ca/anoop/students/anahita_mansouri/anahita-depth-report.pdf

Источники II

- Smoothing: https://cxwangyi.wordpress.com/2010/07/28/backoff-in-n-gram-language-models/
- http://www.machinelearning.ru/wiki/images/5/5d/Mel_lain_msu_nlp_sem_2.pdf
- https://homepages.inf.ed.ac.uk/pkoehn/publications/tutorial2006.pdf
- https://ru.wikipedia.org/wiki/Машинный_перевод_на_ocнoве_примеров
- https://moluch.ru/conf/phil/archive/138/8497/