PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-170247

(43) Date of publication of application: 14.06.2002

(51)Int.CI.

7/0065 G11B GO2B 5/122 GO3H 1/02 GO3H 1/28

(21)Application number: 2000-360262

(71)Applicant : SONY CORP

(22)Date of filing:

27.11.2000

(72)Inventor: SUGANUMA HIROSHI

(54) HOLOGRAM RECORDING MEDIUM, HOLOGRAM RECORDING AND REPRODUCING DEVICE AND HOLOGRAM RECORDING AND REPRODUCING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To easily carry out multiple recording of holograms.

SOLUTION: The hologram recording medium 1 is provided with a hologram recording medium layer for recording the holograms and a wedge substrate for changing the progression direction of incident reference light 4 and object light 5. The angle multiplex recording of the holograms is carried out by rotating the hologram recording medium 1 having the hologram recording layer and the wedge substrate, thereby changing the progression direction of the reference light 4 and the object light 5.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-170247 (P2002-170247A)

(43)公開日 平成14年6月14日(2002.6.14)

(51) Int.Cl. ⁷	É	即記号	FΙ		テーマコード(参考)
G11B	7/0065		G11B	7/0065	2H042
G 0 2 B	5/122		G 0 2 B	5/122	2K008
G03H	1/02		G 0 3 H	1/02	5 D O 9 O
	1/28			1/28	

審査請求 未請求 請求項の数14 OL (全 20 頁)

弁理士 小池 晃 (外2名)

(21)出願番号	符膜2000-360262(P2000-360262)	(71)出顧人	000002185	
			ソニー株式会社	
(22)出顧日	平成12年11月27日(2000.11.27)		東京都品川区北品川6丁目7番35号	
		(72)発明者	菅沼 洋	
			東京都品川区北品川6丁目7番35号	ソニ
			一株式会社内	
		(74)代理人	100067736	

最終頁に続く

(54)【発明の名称】 ホログラム記録媒体、ホログラム記録再生装置並びにホログラム記録再生方法

(57)【要約】

【課題】 ホログラムの多重記録を容易に行う。

【解決手段】 ホログラム記録媒体1に、ホログラムを 記録するホログラム記録層と、入射する参照光 4 及び物 体光5の進行方向を変化させるためのウエッジ基板を設 ける。そして、ホログラム記録層及びウエッジ基板を有 するホログラム記録媒体1を回転させることによって、 参照光4及び物体光5の進行方向を変化させ、ホログラ ムの角度多重記録を行う。

【特許請求の範囲】

【請求項1】 回転しながら参照光及び物体光を照射されることによって、情報信号が光の位相情報として記録されるホログラム記録媒体において、

1

回転平面に対して平行な第1の主面と、この第1の主面 に対して傾きを有する第2の主面とを有し、

上記参照光及び物体光のうち少なくとも一方は上記第2の主面から照射され、照射された上記参照光及び物体光の少なくとも一部を透過させることができる透光性を有することを特徴とするホログラム記録媒体。

【請求項2】 上記回転平面に対して平行な上記第1の主面と、この第1の主面に対して傾きを有する上記第2の主面とを有し、上記参照光及び物体光のうち少なくとも一方は上記第2の主面から照射され、照射された上記参照光及び物体光の少なくとも一部を透過させることができる透光性を有する基板と、

上記回転平面に対して平行に配設され、情報信号を光の 位相情報として記録及び/又は再生する記録層とを備

上記記録層は、有機感光材料によって構成されてなるこ 20 とを特徴とする請求項1記載のホログラム記録媒体。

【請求項3】 金属をドープしたフォトリフラクティブ 結晶によって形成されてなることを特徴とする請求項1 記載のホログラム記録媒体。

【請求項4】 上記金属は、Fe、Ce、Pr、又はFeとMnとの合金であることを特徴とする請求項3記載のホログラム記録媒体。

【請求項5】 上記フォトリフラクティブ結晶は、Li NbO。又はLiTaO。であることを特徴とする請求 項3記載のホログラム記録媒体。

【請求項6】 照射された上記参照光及び物体光を反射する反射層を、上記参照光及び物体光が照射される上記第2の主面に対して反対側の上記第1の主面側に配設することを特徴とする請求項1記載のホログラム記録媒体。

【請求項7】 上記反射層は、コーナーキューブをアレイ状に配列したコーナーキューブ群であることを特徴とする請求項6記載のホログラム記録媒体。

【請求項8】 ホログラム記録媒体に対して参照光及び物体光を照射することにより情報信号を光の位相情報と 40して記録及び/又は再生を行うホログラム記録再生装置において、

上記ホログラム記録媒体を回転させるための駆動系と、上記参照光及び物体光を出力する光源を有し、回転平面に対して平行な第1の主面と上記第1の主面に対して傾きを有する第2の主面とを有し上記参照光及び物体光のうち少なくとも一方は上記第2の主面から照射され照射された上記参照光及び物体光の少なくとも一部を透過させることができる透光性を有するホログラム記録媒体に対して、上記参照光及び物体光を照射する光学系と、

上記駆動系及び上記光学系の制御を行う制御部とを有することを特徴とするホログラム記録再生装置。

【請求項9】 上記光学系は、照射された上記参照光を 反射する反射部を備え、

上記ホログラム記録媒体を一度透過した上記参照光を、 上記反射部を用いて位相共役光として上記ホログラム記 録媒体へ反射し、情報信号を光の位相情報として再生を 行うことを特徴とする請求項8記載のホログラム記録再 生装置。

10 【請求項10】 上記反射部は、コーナーキューブ又は コーナーキューブをアレイ状に配列したコーナーキュー ブ群であることを特徴とする請求項9記載のホログラム 記録再生装置。

【請求項11】 ホログラム記録媒体に対して参照光及び物体光を照射することにより情報信号を光の位相情報として記録及び/又は再生を行うホログラム記録再生方法において、

回転平面に対して平行な第1の主面と第1の主面に対して傾きを有する第2の主面とを有し上記参照光及び物体光のうち少なくとも一方は上記第2の主面から照射され照射された上記参照光及び物体光の少なくとも一部を透過させることができる透光性を有するホログラム記録媒体を回転させ、上記参照光及び物体光を用いて上記ホログラム記録媒体に対して情報信号を光の位相情報として記録及び/又は再生を行うことを特徴とするホログラム記録再生方法。

【請求項12】 上記ホログラム記録媒体を一度透過した上記参照光を、ミラーを用いて反射させ、同一の光路を逆行させて位相共役光として上記ホログラム記録媒体に照射し、情報信号を光の位相情報として再生を行うことを特徴とする請求項11記載のホログラム記録再生方法。

【請求項13】 上記ホログラム記録媒体を一度透過した上記参照光を、コーナーキューブ又はコーナーキューブをアレイ状に配列したコーナーキューブ群を用いて反射させ、同一の光路を逆行させて位相共役光として上記ホログラム記録媒体に照射し、情報信号を光の位相情報として再生を行うことを特徴とする請求項11記載のホログラム記録再生方法。

10 【請求項14】 上記コーナーキューブ又は上記コーナーキューブ群を、上記ホログラム記録媒体を一度透過した上記参照光のビームウエストに配設することを特徴とする請求項13記載のホログラム記録再生方法。

【発明の詳細な説明】

[0001]

30

【発明の属する技術分野】情報信号を光の位相情報として記録するホログラム記録媒体と、情報信号を光の位相情報として記録再生するホログラム記録再生装置及びホログラム記録再生方法とに関する。

50 [0002]

【従来の技術】従来のホログラム記録媒体は、フィルム形状やディスク形状等をしており、互いにコヒーレントなレーザ光である参照光及び物体光を照射されることによって、記録対象となる情報信号を参照光と物体光との干渉パターン、すなわち参照光及び物体光の位相情報として記録する。ここで、物体光は、情報信号を光の位相情報として与えられており、物体から反射したレーザ光や、空間変調器によって変調されたレーザ光である。また、ホログラム記録媒体は、参照光又は参照光と位相共役な光である、再生光を照射されることによってホログ 10 ラムを再生する。

【0003】ディスク形状のホログラム記録媒体を用いたホログラム記録再生装置については、多くの報告がある。例えば、米国特許USP5671073では、参照光として球面波を用いて、ディスク形状のホログラム記録媒体の回転によりホログラムを多重記録する方法(以下ではシフト多重記録と呼ぶ。)が提案されている。

【0004】また、最近では、結晶をディスク形状に加工したホログラム記録媒体の例も発表されている(Tao Shiquan et al. "Multi-track storage of 10,000 holo 20 grams in a disk-type photorefractive crystal," SPI E Vol. 3864, pp. 270(1999))。

【0005】従来のホログラム記録媒体にホログラムを記録する方法としては、参照光及び/又は物体光のホログラム記録媒体に対する入射角の変化によってホログラムを多重記録する方法(以下では角度多重記録と呼ぶ。)がある。

【0006】角度多重記録を行うためには、ビームデフレクタ等を用いて参照光及び/又は物体光のホログラム記録媒体に対する入射角を変化させなければならない。

【0007】ホログラム記録媒体に対して角度多重記録を行うために、参照光及び/又は物体光の入射角を変化させる方法としては、以下に述べるビームデフレクタを用いた手法がある。

【0008】ビームデフレクタを用いた場合に、参照光及び/又は物体光のホログラム記録媒体に対する入射角を変化させる方法としては、ガルバノミラー等を使用して機械的に制御する手法や、音響光学偏向器(以下では A O D と呼ぶ。)や電気光学偏向器(以下では E O D と呼ぶ。)等を使用して電気的に制御する手法を利用している。

【0009】ここで、これらのビームデフレクタの分解 点数Nは、ビームデフレクタのアパーチャの幅をD、アパーチャの形状ファクタをa(円形は1.22であり、長方形は1である。)、ホログラム記録媒体に照射された参照光及び/又は物体光の波長を λ 、参照光及び/又は物体光の角度振幅を ϕ として、以下の式1で得られる。

[0010]

【数1】

(3)

$$N = \frac{\phi D}{a \lambda}$$
 (£1)

*【0011】従って、上記式1から、大きなアパーチャの幅Dを持ち、参照光及び/又は物体光の角度振幅φが大きいほど、分解点数Nが多くなることがわかる。なお、ラグランジェ・ヘルムホルツの関係より、各面での参照光及び/又は物体光の入射高と入射角との積は一定となるので、ビームデフレクタの前後にビーム整形光学系を配設しても、この分解点数は不変である。

【0012】また、ホログラム記録媒体に対して照射される参照光及び/又は物体光の入射角を変化させる他の方法としては、ウエッジ形状のプリズムによるビーム偏向方法がある。参照光及び/又は物体光の進行方向を微小な量だけ変化させるために、ウエッジ形状のプリズムを回転させることで、微小な角度を調整できることが知られている。これにより、任意の方向に参照光及び/又は物体光を偏向させることができる。そして、ウエッジ形状のプリズムの頂角を小さくすれば、回転に対する偏向角を小さくすることができるので、参照光及び/又は物体光の進行方向の微小な角度の調整に有効な方法である。

【0013】また、最近では、新たなホログラムの多重記録方法が提案されており、その一例として、以下で詳細を述べるペリストロフィック多重記録と呼ばれる方法がある(Kevin Curtis et al. "Method for holographic storage using peristrophic multiplexing," 19, Opt. Lett. 993 (1994), A. Pu et al. "High density holographic storage in thin film," SPIE Vol. 2338, Optic al Data Storage (1994), 69)。

【0014】ペリストロフィック多重記録は、図33に示すように、ディスク形状とされたホログラム記録媒体40の一部を頂点とする円錐面に沿って、参照光41を矢印R2の方向に回転させることによりホログラムの多重記録を実現する方法である。

【0015】また、ペリストロフィック多重記録は、参照光41のホログラム記録媒体40に対する入射角を矢印R3の方向に変化させることによって、上述したホログラムの角度多重記録方法を動径方向に併用し、さらに多重度を上げることもできる。

【0016】ここで、ペリストロフィック多重記録の場合に、ブラッグ角を $d\theta$ として、この $d\theta$ は、 λ を波長、tをホログラム記録媒体 40の厚み、 θ 。をホログラム記録媒体 40への参照光 41の入射角、 θ 。をホログラム記録媒体 40への物体光 42の入射角とすれば、以下の式 2で与えられる。

[0017]

【数2】

20

$$d\theta = \sqrt{\frac{2\lambda}{t} \frac{\cos \theta_s}{\sin \theta_R \left(\sin \theta_R + \sin \theta_s\right)}}$$
 (£2)

【0018】なお、通常のホログラムの角度多重記録方法の場合に、ブラッグ角d θは、ホログラム記録媒体40の屈折率をnとして、以下の式3で与えられる。

[0019]

【数3】

$$d\theta' = \frac{\lambda \cdot \cos \theta_S}{n \cdot t \cdot \sin \left(\theta_R + \theta_S\right)} \tag{£3}$$

【0020】次に、従来のホログラム記録媒体を用いてホログラムを再生する方法としては、再生光として参照光と同じ位相で進行方向が逆である位相共役光を用いて、位相共役再生を行う方法がある。位相共役再生を行うために位相共役光を生じせしめるための方法としては、照射された参照光をビームスプリッタで分割し、ホログラムを記録するための参照光とは別の光路を作る方法がある。

[0021]

【発明が解決しようとする課題】しかし、上述した従来のホログラム記録媒体を用いてホログラムを記録及び/又は再生する場合に、ビームデフレクタであるAOD及びEODを用いた手法の分解点数Nは、それぞれ1000点及び数10点程度である。これらの分解点数で多重度を増やすには限界がある。しかも、クロストークノイズを排しつつ記録密度を最大にするには、参照光及び/又は物体光の偏向角度を1000分の数度程度の精度で制御しなければならないといった問題があった。

【0022】また、ビームデフレクタであるガルバノミ 30 ラー等を用いて機械的に制御する手法の場合は、バックラッシュなどの再現性や分解能精度や外乱に対する安定性が悪くなるといった問題があった。

【0023】ペリストロフィック多重記録をする場合においては、参照光を偏向させる装置が、複雑で大掛かりになるという問題があった。

【0024】位相共役再生を行う方法において、再生光を生じさせる為に別の光路を作るので光学系が大型化する上に、ホログラムの角度多重記録を行う場合には参照光のビームデフレクタをそれぞれの光路について用意し 40なければならないといった問題があった。

【0025】そこで、本発明は、上述した実情を鑑みて 提案されるものであり、ホログラム記録媒体に対して入 射させる参照光及び物体光の偏向角度をより高精度に制 御することを可能とし、記録するホログラムの多重度を 向上させ、ホログラム記録媒体の記録容量を向上させる ことを目的とする。

[0026]

【課題を解決するための手段】上述した課題を解決する ために本発明にかかるホログラム記録媒体は、回転しな 50 がら参照光及び物体光を照射されることによって、情報信号が光の位相情報として記録されるホログラム記録媒体である。また、回転平面に対して平行な第1の主面とこの第1の主面に対して傾きを有する第2の主面とを有し、参照光及び物体光のうち少なくとも一方は第2の主面から照射され、照射された参照光及び物体光の少なくとも一部を透過させることができる透光性を有することを特徴とする。

【0027】上述したように構成された本発明に係るホログラム記録媒体は、回転することにより照射された参照光をホログラム記録媒体によって偏向させて、情報信号を参照光及び物体光の位相情報として角度多重記録することができ、記録密度を向上させることができる。

【0028】また、本発明に係るホログラム記録再生装置は、ホログラム記録媒体に対して参照光及び物体光を照射することにより情報信号を光の位相情報として記録及び/又は再生を行うホログラム記録再生装置である。また、ホログラム記録媒体を回転させるための駆動系と、参照光及び物体光を出力する光源を有し回転平面に対して平行な第1の主面と第1の主面に対して傾きを有する第2の主面とを有し参照光及び物体光のうち少なくとも一方は第2の主面から照射され照射された参照光及び物体光の少なくとも一部を透過させることができる透光性を有するホログラム記録媒体に対して参照光及び物体光を照射する光学系と、駆動系及び光学系の制御を行う制御部とを有することを特徴とする。

【0029】そして、本発明に係るホログラム記録再生方法は、ホログラム記録媒体に対して参照光及び物体光を照射することにより情報信号を光の位相情報として記録及び/又は再生を行うホログラム記録再生方法である。また、回転平面に対して平行な第1の主面と第1の主面に対して傾きを有する第2の主面とを有し、参照光及び物体光のうち少なくとも一方は第2の主面から照射され、照射された参照光及び物体光の少なくとも一部を透過させることができる透光性を有するホログラム記録媒体を回転させ、参照光及び物体光を用いて上記ホログラム記録媒体に対して情報信号を光の位相情報として記録及び/又は再生を行うことを特徴とする。

【0030】上述したように構成される本発明に係るホログラム記録再生装置及びホログラム記録再生方法では、上述した本発明に係るホログラム記録媒体に対して、参照光及び物体光を照射して情報信号を光の位相情報として記録及び/又は再生することができる。そして、情報信号を光の位相情報として角度多重記録を行う際に、参照光を偏向させる角度の制御の精度を上げることができ、記録密度を向上させることができる。

[0031]

【発明の実施の形態】本発明に係るホログラム記録媒体 を、略ディスク形状のホログラム記録媒体に適月 合について、図面を用いて詳細に説明する。 【0032】このホログラム記録媒体には、本発明に係るホログラム記録再生装置及びホログラム記録再生方法を用いて、ホログラムの記録及び/又は再生を行われる。なお、以下では、ホログラム記録再生装置及びホログラム記録再生方法についても併せて説明する。

【0033】本発明に係るホログラム記録媒体は、以下に第1の構成例及び第2の構成例として具体的に示す。 【0034】まず、第1の構成例としてホログラム記録媒体1は、図1に示すように、全体として中央に開口部1aを有する略ディスク形状とされており、ホログラム10記録層2と、ウエッジ基板3とにより構成される。また、ホログラム記録媒体1は、記録再生時に、軸0を中心として例えば矢印R1の方向へ回転される。ホログラム記録媒体1は、ホログラム記録媒体1の回転平面に対

【0035】ホログラム記録層2は、ホログラム記録媒体1に、ホログラム記録媒体1の回転平面に対して平行な第1の主面側に配設されている。また、ホログラム記録層2は、互いにコヒーレントなレーザ光である参照光204及び物体光5を照射されることにより、記録対象となる情報信号を参照光4と物体光5との干渉パターンとして記録する。この干渉パターンには、照射された参照光4及び物体光5の位相情報が含まれている。

して平行な第1の主面と、この第1の主面に対して傾き

を有する第2の主面とを有している。

【0036】ホログラム記録層2を構成する材料としては、ホログラムを記録することができるあらゆる材料を用いることができるが、例えば、フォトポリマや液晶等の有機記録材料を用いることが好ましい。

【0037】ウエッジ基板3は、ホログラム記録媒体1の回転平面対して平行な第1の主面と、この第1の主面 30に対して傾きを有する第2の主面とを有している。第1の主面が底面となりホログラム記録層2と当接するように配設される。また、ウエッジ基板3は、第2の主面が第1の主面に対して傾斜しているのでプリズムとしての機能を有し、照射された参照光4を透過させ、また屈折させることによって偏向させる。

【0038】ウエッジ基板3を構成する材料としては、 参照光4及び物体光5を透過させることができればよい。

【0039】参照光4及び物体光5は、互いにコヒーレ 40 ントなレーザ光であり、後述するホログラム記録再生装置に備わるレーザ光源(図示せず)からホログラム記録媒体1に照射されホログラムを記録する。物体光5は、記録対象となる情報信号を光の位相情報として含んでいる。

【0040】上述したように構成された、ホログラム記録媒体1は、回転軸0を中心として例えば、矢印R1方向に回転される。この際に開口部1aが、例えば、ホログラム記録装置によってチャッキングされる。ホログラム記録媒体1が回転する際に、ウエッジ基板3がプリズ 50

ムとしての機能を有するために、ウエッジ基板3のプリズムとしての頂角の方向が回転することになる。これにより、レーザ光源がらホログラム記録媒体1に対して照射された参照光4がウエッジ基板3内へ入射する際の入射角が変化するために、参照光4は、ウエッジ基板3内で偏向する。

8

【0041】ここで、ホログラム記録媒体1の回転に伴って、上述した参照光4が偏向する様子を、図2乃至図5に断面図として示す。

【0042】まず、図2中のA-A'線における断面図を図3に示す。ホログラム記録媒体1に向けて照射された参照光4は、矢印Cの光路を通りウエッジ基板3内に入射する。ウエッジ基板3内に入射した参照光4は、ウエッジ基板3の入射面で偏向してホログラム記録層2に到達する。

【0043】一方、ホログラム記録媒体1に照射された物体光5は、矢印C'の光路を通りウエッジ基板3内に入射し、ホログラム記録層2に到達する。

【0044】次に、図2中のB-B'線における断面図、すなわち図3の断面図から参照光4を照射させる位置を固定してホログラム記録媒体1を矢印R1の方向へ90度回転させた状態の断面図を図4に示す。ホログラム記録媒体1に向けて照射された参照光4は、矢印Dの光路を通りウエッジ基板3内に入射する。ウエッジ基板3内に入射した参照光4は、ウエッジ基板3の入射面で偏向してホログラム記録層2に到達する。

【0045】一方、ホログラム記録媒体1に照射された物体光5は、矢印D'の光路を通りウエッジ基板3内に入射し、ホログラム記録層2に到達する。

【0046】次に、図2中のA'-A線における断面図、すなわち図3の断面図から参照光4を照射させる位置を固定してホログラム記録媒体1を矢印R1の方向へ180度回転させた状態の断面図を図5に示す。ホログラム記録媒体1に向けて照射された参照光4は、矢印Eの光路を通りウエッジ基板3内に入射する。ウエッジ基板3内に入射した参照光4は、ウエッジ基板3の入射面で偏向してホログラム記録層2に到達する。

【0047】一方、ホログラム記録媒体1に照射された物体光5は、矢印E'の光路を通りウエッジ基板3内に入射し、ホログラム記録層2に到達する。

【0048】次に、図2中のA'-A線における断面図、すなわち図3の断面図から参照光4を照射させる位置を固定してホログラム記録媒体1を矢印R1の方向へ270度回転させた状態においては、図4と略同等の為に説明を省略する。

【0049】以上のように、ホログラム記録媒体1が回転することで、ホログラム記録媒体1に照射した参照光4の進行方向をウエッジ基板3の入射面で偏向させることができる。そして、前に記録したホログラムのブラッグ条件が満たされなくなるまで十分な角度だけ回転した

10

ところで、次の情報信号をホログラムとして記録する。 再生時には、ホログラム記録媒体1に対して再生光(図示せず)を照射させれば、記録した物体光5が再生され、情報信号がホログラムとして再生される。

9

【0050】なお、再生光としては、参照光4又は参照 光4と位相共役なレーザ光である位相共役光を用いるこ とができる。この再生光は、後述するホログラム記録再 生装置のレーザ光源から出力される。

【0051】ここで、ウエッジ基板3のプリズムの頂角とホログラム記録媒体1内での偏向の角度の関係を、図 106乃至図8に示す。参照光4をホログラム記録媒体1の底面に対して垂直に入射するものとして、ウエッジ基板3の頂角を α 、ウエッジ基板3内での参照光4の偏向方向とホログラム記録媒体1の第2の主面の法線とのなす角を β 、ウエッジ基板3の屈折率を α とすれば、 α in α は、以下の式4のように表すことができる。

[0052]

【数4】

$$\sin \alpha = n \cdot \sin \beta \qquad (\vec{x}4)$$

【0053】ウエッジ基板3の頂角方向と垂直な方向を0度として反時計回りに測った角度をy、y面内でのウエッジ基板3の頂角を α '、参照光4とホログラム記録媒体1の第2の主面の法線とのなす角度を β 'とすれば、t an α '及びs in α 'は、以下の式5及び式6のように表すことができる。

[0054]

【数5】

$$\tan \alpha' = \tan \alpha \times \sin y \qquad (\vec{x}5)$$

[0055]

【数6】

$$\sin \alpha' = n \cdot \sin \beta'$$
 (式6)

【0056】これらを連立して、 $\alpha=5$ 度、n=1.5の場合について計算した結果を図9にグラフとして示す。このグラフからもわかるように、ホログラム記録媒体1が1回転する間に、 ± 3.33 度の範囲で β 'が変化する。この条件で、1000分の5度おきに角度多重記録を行えば、ホログラム記録媒体101周で約2500のホログラムを多重記録できる計算になる。

【0057】このホログラムを多重記録された1周分の 40 領域をトラックとして、ホログラム記録媒体1は、図1 0及び図11に示すように、各ホログラムを矢印R2の螺旋状もしくは矢印R3の同心円状のトラックに連続して記録することができる。このようなトラック構造6を、例えば、同心円状に400設ければ、100万のホログラムを多重記録することができる。

【0058】ここで、従来より用いられるビームデフレクタなどによる角度偏向手法もしくは波長を可変可能なレーザ光源又は複数のレーザ光源などによる波長可変手法を使用しない場合は、隣り合うトラックが同一の参照 50

光4により記録されているので、隣り合うトラックを重ね合わせて記録してしまうと、ホログラムの再生時に再生光が両方のトラックに照射されてしまう。これにより、同時に複数のホログラムを再生することになってしまうので、各トラックを完全に分離しなければならない。但し、従来より用いられる角度偏向手法もしくは波長可変手法を組み合わせて記録すれば、動径方向にもホログラムを多重記録することができ、多重度すなわち記録密度をさらに高めることができる。

【0059】なお、各トラック間には、図10及び図1 1に示すように、記録時もしくは再生時のレーザ光の位 置決めのために、従来から用いられている光ディスクと 同様にグループ7などを設けてもよい。

【0060】以上のように、本発明に係るホログラム媒体1の第1の構成例では、ホログラム記録媒体1の有するウエッジ基板3が、上述したように第1の主面と第2の主面とを有し、このホログラム記録媒体1が回転されることにより、ウエッジ基板3内に入射する参照光4の進行方向を偏向させてホログラム記録層2に対してホログラムの角度多重記録を行うことができる。また、ホログラム記録再生装置を大型化させずに参照光4を偏向させる角度を精度よく制御することができる。

【0061】また、ホログラム記録媒体1は、再生光として参照光4又は参照光4と位相共役なレーザ光を照射されることにより記録されたホログラムを再生する。

【0062】なお、参照光4を偏向させる角度の制御については、従来のビームデフレクタなどを用いた角度偏向手段と比べて、ホログラム記録媒体1の回転による偏向方法を用いたほうが、プリズムを回転させる場合と同様に精度が向上する。次に、第2の構成例としてホログラム記録媒体1は、図12に示すように、全体として中央に開口部1aを有する略ディスク形状とされており、ウエッジ基板3により構成される。また、ホログラム記録媒体1は、記録再生時に、軸0を中心として例えば矢印R1の方向へ回転される。ホログラム記録媒体1は、ホログラム記録媒体1の回転平面に対して平行な第1の主面と、この第1の主面に対して傾きを有する第2の主面とを有している。なお、以下では、第1の構成例との相違点のみを説明し、それ以外の点については略同等の為に説明を省略する。

【0063】ウエッジ基板3は、略ディスク形状を有し、ホログラム記録媒体1の回転平面に対して水平な第1の主面と、この第1の主面に対して傾きを有する第2の主面とを有する。

【0064】また、ウエッジ基板3は、互いにコヒーレントなレーザ光である参照光4及び物体光5を照射されることにより、記録対象となる情報信号を参照光4と物体光5との干渉パターンとして記録する。

【0065】さらに、ウエッジ基板3は、プリズムとしての機能を有し、ウエッジ基板3内に入射された参照光

40

11

4 及び物体光 5 を入射面において屈折させることによって偏向させ、透過させることができる。

【0066】ウエッジ基板3を構成する材料としては、例えば、Fe, Ce, Pr, 又はFeとMnとの合金等をドープしたフォトリフラクティブ結晶などの無機記録材料を用いる。またフォトリフラクティブ結晶としては、例えば、LiNbO3やLiTaO3等が好適である。

【0067】上述したように構成されたホログラム記録 媒体1は、上述したホログラム記録層2を持つ場合と同 10 様に、軸0を中心として矢印R1方向へ回転する。

【0068】ホログラム記録媒体1が回転する際の参照 光4及び物体光5の偏向方向については、上述した第1 の構成例のようにホログラム記録層2と略同等であるた めに説明は省略する。

【0069】なお、ホログラム記録媒体1が第1の構成例のようにホログラム記録層2を有する場合は、ホログラム記録層2にホログラムを記録するのに対して、第2の構成例としてホログラム記録層2を持たない場合は、ウエッジ基板3にホログラムを記録する。言い換えれば、ウエッジ基板3全体を記録領域として用いていると言える。

【0070】ただし、ホログラム記録媒体1において、結晶など複屈折の特性を有する材料を用いる場合は、記録及び/又は再生に用いるレーザ光の偏光方向と結晶軸の方位とに注意する必要がある。すなわち、ホログラムを記録及び/又は再生する際に用いるレーザ光は、ホログラム記録媒体1中を固有偏光として伝播するように、偏光方向と結晶方位を選択することが望ましい。

【0071】例えば、最もよく用いられるフォトリフラ 30 クティブ結晶であるニオブ酸リチウム(LiNbO。)結晶の場合は、結晶の c 軸をウエッジ基板 3 の底面に垂直方向とし、参照光 4 と物体光 5 とは、常光線として伝播するようにする。

【0072】以上のように構成されるホログラム記録媒体1の第2の構成例では、ウエッジ基板3を備えていることによって、ウエッジ基板3内に入射された参照光4を偏向させてホログラムを記録することができる。そして、ホログラム記録媒体1が回転することにより、ホログラム記録媒体1内において参照光4の入射角が変化し、参照光4の入射角を変化させるための光学系を用いずに、角度多重記録を容易に行うことができる。

【0073】また、ホログラム記録媒体1は、再生光として参照光4又は参照光4と位相共役なレーザ光を照射されることにより記録されたホログラムを再生する。

【0074】なお、参照光4を偏向させる角度は、従来の偏向手段と比べて、ホログラム記録媒体1の回転による偏向方法を用いたほうが、プリズムを回転させる場合と同様にホログラム記録媒体1の回転により精度よく制御することができる。

【0075】なお、本発明に係るホログラム記録媒体1が、参照光4を反射する反射層を有するとしてもよい。そこで以下では、反射層を有する場合について説明する。なお、特に記述のない点においては、上述した反射層を有さないホログラム記録媒体1と略同等であるものとし説明する。

【0076】反射層は、ホログラム記録媒体1の回転平面に対して平行な第1の主面側に配設され略円形のディスク形状を有する。また、反射層は、ホログラム記録媒体1の第1の主面に対して傾きを有する第2の主面より照射された参照光4を反射することができる。反射層としては、平面ミラー又はコーナーキューブを用いることができる。

【0077】まず、反射層として平面ミラーを用いた場合について説明する。平面ミラー10は、図13及び図14に示すように、ホログラム記録媒体1の下部に配設され、参照光4を反射する。

【0078】平面ミラー10を有するホログラム記録媒体1に対してホログラムを記録する場合に、参照光4は、図13中の矢印A10に示す方向に照射される。次に、参照光4は、ホログラム記録媒体1に入射して入射面で偏向し、平面ミラー10によって矢印A11に示す方向へ反射される。

【0079】平面ミラー10を有するホログラム記録媒体1に対してホログラムを記録する場合に、物体光5は、矢印A12に示す方向に照射される。

【0080】ホログラム記録媒体1は、上述したような 光路で入射した参照光4と物体光5との干渉パターンを ホログラムとして記録する。

【0081】ホログラムを再生する場合に、再生光11は、図14中の矢印A13に示す方向に照射される。次に、再生光11は、ホログラム記録媒体1に入射して偏向し、平面ミラー10によって矢印A14に示す方向へ反射される。再生光11を照射されたホログラム記録媒体1から再生される物体光5は、矢印A15に示す方向に再生される。

【0082】また、上述した物体光5の入射方向をホログラム記録媒体1は、図15中に示すように、矢印A16に示す周面方向からとしてもよい。この場合に記録されたホログラムを再生光11を照射して再生すると、図16中に示すように、物体光5が矢印A17に示す方向へ再生される。参照光4においては、矢印A12に示す方向から物体光5を照射された場合と同様のため説明は省略する。なお、矢印A16に示す周面方向から物体光5を照射する際に、第1の構成例のようにホログラム記録層2を持つ場合においては、参照光4と物体光5とが干渉する領域をホログラム記録層2内としなければならない。

【0083】以上のように、反射層として平面ミラー1 0を用いた場合は、ホログラムを記録する際の参照光4

と逆の光路から、参照光4である.再生光11を照射することによって、物体光5を物体光5が照射された方向へ再生する。

【0084】次に、コーナーキューブ群を反射層として 用いた場合について説明する。ホログラム記録媒体1の 回転平面に対して平行な第1の主面側に、図17及び図 18に示すように、コーナーキューブ群12を配設する ことによって、ホログラムの記録再生を行う。

【0085】コーナーキューブ群12は、図19に示す コーナーキューブ13をアレイ状に配列したものであ る。コーナーキューブ13は、3つの反射面が互いに垂 直となる位置に配設されてなるプリズムやミラーなどで あり、立方体の頂角を切り取った形状を有している。コ ーナーキューブ13は、一面から入射されたレーザ光を 3つの反射面で全反射させ、入射面からレーザ光の入射 方向に対して逆方向へ出射させる。この際に、入射した レーザ光に対して、出射するレーザ光が180度偏光さ れる。図19に示す像14及び像15は、入射した像が 180度偏光していることを示し、入射された像14が コーナーキューブ13内で全反射を3回繰り返して像1 5のように180度偏光して出射される。なお、内部が 中空のミラーにより構成されたコーナーキューブ13は 波長依存性を持たないため、波長多重記録を行う場合に は特に有効である。

【0086】上述したようなコーナーキューブ13をアレイ状に配列したコーナーキューブ群12は、図20及び図21に示すように、コーナーキューブ13を隙間なく配列して構成される。

【0087】コーナーキューブ群12を有するホログラム記録媒体1に対してホログラムを記録する場合に、参30 照光4は、図17中の矢印A18に示す方向に照射される。次に、参照光4は、ホログラム記録媒体1に入射して入射面で偏向し、コーナーキューブ群12によって矢印A19の方向へ反射される。

【0088】コーナーキューブ群12を有するホログラム記録媒体1に対してホログラムを記録する場合に、物体光5は、矢印A20に示す方向に照射される。

【0089】ホログラム記録媒体1は、上述したような 光路で入射した参照光4と物体光5との干渉パターンを ホログラムとして記録する。

【0090】ホログラムを再生する場合に、再生光11は、図18中の矢印A21に示す方向に照射される。次に、ホログラム記録媒体1に入射して入射面で偏向し、コーナーキューブ群12によって矢印A22の方向へ反射される。再生光11を照射されたホログラム記録媒体1から生ずる物体光5は、矢印A23に示す方向に再生される。

【0091】また、上述した物体光5の入射方向を、図22中の矢印A24に示すホログラム記録媒体1の周面方向からとしてもよい。この場合は、物体光5が再生さ50

れる方向が図23中の矢印A25に示す方向となる。参照光4においては、矢印A20に示す方向から物体光5を照射された場合と同様のため説明は省略する。なお、矢印A24に示すホログラム記録媒体1の周面方向から物体光5を照射する際に、第1の構成例のようにホログラム記録層2を持つ場合においては、参照光4と物体光5とが干渉する領域をこのホログラム記録層2内としなければならない。

【0092】以上のように、反射層としてコーナーキューブ群12を用いた場合は、ホログラムを記録する際の参照光4に対して逆の光路から、参照光4とは位相共役光である再生光11を照射することによって物体光5を物体光5が照射された方向へ再生する。

【0093】以上のような流れにより、反射層を有するホログラム記録媒体1は、照射された参照光4と物体光5との干渉パターンを記録し、再生光11を照射されることによって記録された物体光5を再生し情報信号をホログラムとして再生することができる。

【0094】この際に、再生光11として、ホログラム 記録媒体1に配設された反射層によって反射された参照 光4を位相共役光として用い、ホログラムの位相共役再 生を行うことができる。

【0095】これによって、ホログラム記録再生装置側において、位相共役光を作り出すための光学系が不要となり、また、再生される物体光5の位置が常に物体光5が照射された向きになるために、装置構成の大型化を防ぐことができる。

【0096】また、コーナーキューブ群12を用いた場合においては、参照光4と再生光11との光路が全く同一のために、再生光11の為に光学系を調整せずとも参照光4を用いてそのままホログラムの位相共役再生を行うことができる。これによって、ホログラム記録再生装置において装置構成の簡略化も期待できる。

【0097】なお、上述の説明では、ホログラム記録媒体1の第1の主面側に反射層を配設し、参照光4の反射光を再生光11として利用した場合を示したが、ホログラム記録媒体1の反対側から再生光11として参照光4を照射させてもよい。この場合は、ホログラム記録再生装置の装置構成が多少複雑化するが、ホログラムを記録する際の参照光4とは別の光路を作り位相共役再生を行うことができる。

【0098】また、ホログラムの位相共役再生においては、記録時の参照光4の波面が完全に復元されるので、収差は完全に補正される。従って、物体光5は、図15及び図16、図22及び図23に示したように、ホログラム記録媒体1の周面方向から照射させた場合であっても良好な再生出力を得ることができる。また、ホログラムの位相共役再生時には元の波面が完全に復元されるので、ホログラム記録媒体1の周面は、任意の形状とすることができる。

【0099】ここで、ホログラム記録媒体1の周面は、 原理上は粗面であっても構わないが、散乱による光利用 効率を考えると、高い面精度で形成されていることによ り散乱光の光利用効率を高くすることができる。しか し、形状は限定されるものではなく、不連続面であって も構わない。

【0100】なお、本発明に係るホログラム記録媒体1 は、ウエッジ基板3の傾斜角度を急峻にすれば、レーザ 光の偏向方向が大きく変化しホログラムの角度多重記録 の際の多重度が上がり、ホログラムを再生する際の選択 10 性を高めることができるので、記録密度を向上させるこ とができる。しかし、ウエッジ基板3の傾斜角度を単純 に大きくすれば、ホログラム記録媒体1が厚くなり、容 積が増加してしまう。これを避けるために、図24に示 すように、ホログラム記録媒体1の領域を分割し、各領 域がそれぞれ回転平面に対して傾きを有する変形ウエッ ジ基板16としてもよい。

【0101】このようにすれば、各々の領域でのウエッ ジ基板3の傾斜角度を大きくすることができるので、参 照光4の偏向角度が大きくなり、角度多重記録における 20 多重度を向上させることができる。これによって、記録 密度の向上が期待できる。また、ホログラム記録媒体1 の回転平面に対する質量の偏りを避けることができ回転 安定性が増すことになる。なお、図24においては、第 1の構成例のようにホログラム記録層2を有する場合に ついて図示してあるが、第2の構成例のようにホログラ ム記録層2を持たない場合であってもよい。また、上述 したように反射層を有する場合にも適用可能である。

【0102】なお、ホログラム記録媒体1は、中央に開 □部1aを備えないとしてもよい。この場合は、中央部 30 まで記憶領域を確保することができるために記憶容量を 増やすことができる。

【0103】次に、本発明に係るホログラム記録再生装 置及びホログラム記録再生方法について上述したホログ ラム記録媒体1に対してホログラムを記録及び/又は再 生を行う場合について説明する。なお、上述したホログ ラム記録媒体1において説明したものと同等であるもの には説明を省略する。

【0104】本発明に係るホログラム記録再生装置20 の構成例を図25に示す。ホログラム記録再生装置20 40 は、制御部21と、光学系22と、駆動系23とにより 構成される。

【0105】制御部21は、ホログラム記録再生装置2 0全体の制御を行う。

【0106】光学系22は、図26に示すように、レー ザ光源24と、空間変調器25と、コリメータレンズ2 6と、ビームスプリッタ27と、ミラー28, 29, 3 0と、フーリエ変換レンズ31,32と、ディテクター アレイ33とを有する。

ザ、半導体レーザ及びそれらの非線形波長変換によるコ ヒーレント光を連続的に出力することができる光源が好 ましい。レーザ光源24としては、特に、Nd:YAG レーザ, Nd:YVO4レーザの第二高調波, Arイオ ンレーザは、上述した本発明に係るホログラム記録媒体 1に対しホログラムを記録する際に、ホログラム記録媒 体 1 に対して感度が高く、コヒーレンスも優れている上 に手軽に入手することが可能であるため好適なレーザ光 源である。

16

【0108】また、レーザ光源24としては、GaN系 等の半導体レーザを用いるとしてもよい。この場合は、 波長幅を狭くするために、DFB(Distributed Feed-B ack) 構造や外部共振器などを用いることも考えられ る。また、レーザ光源24の出力するレーザ光は、参照 光4,物体光5,再生光11として用いられる。

【0109】空間変調器25は、照射されたレーザ光に 対し情報信号を光の位相情報として与え、ホログラム記 録媒体1にホログラムを記録する際の物体光5を生成す る機能を有している。

【0110】この空間変調器25には、透過型を用い、 例えば、市販の液晶パネルである透過型液晶空間変調器 などを用いることができる。しかし、空間変調器25と しては、上記の透過型液晶空間変調器に限定されるもの ではなく、マイクロマシン技術を用いた反射型の空間変 調器などを用いることができる。

【0111】コリメータレンズ26は、レーザ光源24 から出力されたレーザ光を平行光とし、ビームスプリッ タ27へ送る機能を有する。

【0112】ビームスプリッタ27は、コリメータレン ズ26によって平行光とされたレーザ光を二分割し、一 方を参照光4とするためにミラー28へ反射し、他方を 透過してミラー29へ送る機能を有する。

【0113】ミラー28は、ビームスプリッタ27で分 割されたレーザ光を参照光4としてホログラム記録媒体 1へ照射させる。

【0114】ミラー29は、ビームスプリッタ27で分 割されたレーザ光を、ミラー30へ反射させる。

【0115】ミラー30は、ミラー29で反射されたレ ーザ光を空間変調器25へ反射する。

【0116】フーリエ変換レンズ31は、空間変調器2 5を透過したレーザ光をフーリエ変換し、ホログラム記 録媒体1に対して照射する。

【0117】フーリエ変換レンズ32は、ホログラム記 録媒体 1 から再生された物体光 5 をフーリエ変換しディ テクターアレイ33へ照射する。

【0118】ディテクターアレイ33は、例えば、CC D (Charge-Coupled Device) により構成されており、 再生された物体光5を電気信号として検出する。なお、 ディティターアレイ33としては、CCDが現在最も簡 【0107】レーザ光源24は、固体レーザ、気体レー 50 単に入手することができるが、特にCCDに限定される ものではなく、低消費電力且つ低コストで作成できることから近年開発が進んでいるCMOS (Complementary Mental-oxide Semiconductor Device) などを用いてもよい。

17

【0119】駆動系23は、ホログラム記録媒体1を回転駆動させるスピンドルモータ(図示せず)を有している。なお、駆動系23は、スピンドルモータに限定されるものではなく、ステッピングモータなどを用いてもよい。

【0120】以上のように構成された本発明に係るホロ 10 グラム記録再生装置20は、以下のように動作することによりホログラム記録媒体1に対しホログラムを記録する。

【0121】まず、レーザ光源24は、制御部21によりレーザ光の出力を調整され、レーザ光をコリメータレンズ26へ照射する。そして、コリメータレンズ26は、レーザ光を平行光にし、ビームスプリッタ27へ照射する。

【0122】ビームスプリッタ27は、照射されたレーザ光の一部をミラー28へ反射させ、残りのレーザ光を 20ミラー29へ透過させる。

【0123】ミラー28は、ビームスプリッタ27によって反射されたレーザ光を参照光4としてホログラム記録媒体1に照射する。

【0124】一方、ミラー29は、ビームスプリッタ27から透過したレーザ光をミラー30に向けて反射し、さらにミラー30は、ミラー29で反射されたレーザ光を空間変調器25に向けて反射する。

【0125】空間変調器25は、制御部21に制御されて、記録する情報信号に応じた記録パターンを表示し、ミラー30で反射されたレーザ光に情報信号を光の位相情報として与え物体光5とし、フーリエ変換レンズ31へ透過する。

【0126】フーリエ変換レンズ31は、空間変調器25にて情報信号を光の位相情報として与えられた物体光5をフーリエ変換し、ホログラム記録媒体1に対して照射する。

【0127】ホログラム記録再生装置20は、以上のような動作により、参照光4と物体光5との干渉パターンを、ホログラムとしてホログラム記録媒体1に記録する。1枚のホログラムの記録が終了したら、制御部21からの駆動信号により駆動系23を制御して、ホログラム記録媒体1を、例えば矢印R1の方向へ回転させ、次のホログラムを記録する。

【0128】次に、ホログラム記録再生装置20は、以下のような動作により、ホログラムを記録されたホログラム記録媒体1から、ホログラムを再生する。なお、再生時には、ホログラム記録媒体1を記録時と同じ位置に置き、再生光11として参照光4を用いる。

【0129】まず、レーザ光源24は、制御部21にレ 50

ーザ光の出力を調整され、レーザ光をコリメータレンズ26へ照射する。そして、コリメータレンズ26は、レーザ光を平行光としビームスプリッタ27へ照射する。【0130】ビームスプリッタ27は、コリメータレンズ26から照射されたレーザ光の一部をミラー28へ反射させ、残りのレーザ光をミラー29へ透過させる。

【0131】ミラー28は、ビームスプリッタ27で反射されたレーザ光をさらに反射し、再生光11として、ホログラム記録媒体1に照射する。

【0132】一方、シャッタ(図示せず。)は、ビームスプリッタ27を透過したレーザ光の光路を遮る。

【0133】このようにして、ホログラム記録媒体1に対して、再生光11として、記録時に用いた参照光4のみが照射され、記録されている物体光5をフーリエ変換レンズ33に向けて再生する。

【0134】フーリエ変換レンズ32は、ホログラム記録媒体1で再生された物体光5をフーリエ変換し、ディテクターアレイ33上に情報信号に対応するパターンを結像する。そして、ディテクターアレイ33は、結像した情報信号に対応するパターンを再生情報信号として得ることができる。1枚のホログラムの再生が終了したら、制御部21からの駆動信号により駆動系23を制御して、ホログラム記録媒体1を、例えば矢印R1の方向へ回転させ、次のホログラムを再生する。

【0135】ホログラム記録再生装置20は、以上のような動作によりホログラムを再生する。

【0136】なお、ホログラム記録再生装置20では、ホログラム記録媒体1を透過する再生光4及び物体光5の光路が、ホログラム記録媒体1の回転に伴って変化することになるので、ホログラム記録媒体1の回転に合わせ、ディテクターアレイ33の位置を制御部21の制御によって調整する。この際に、例えば、アクチュエータ(図示せず)等を用いて、ディテクターアレイ33の位置を調整する。

【0137】なお、上述では透過型のフーリエホログラムとしての例を示した。フーリエホログラムを記録する際には、空間変調器25とフーリエ変換レンズ31、フーリエ変換レンズ31とホログラム記録媒体1、ホログラム記録媒体1とフーリエ変換レンズ32、フーリエ変換レンズ32とディテクターアレイ33がいずれもフーリエ変換レンズ31,32の焦点距離Fだけ離れた間隔で配置された"4Fシステム"と呼ばれる光学系の構成とする。しかし、ホログラム記録媒体1内において、ホログラム記録媒体1を正確なフーリエ面からわずかにずらすことが好ましい。これは、ホログラム記録媒体1に対して物体光5を照射する領域を大きく取り、ホログラムを記録する領域を十分に確保するためである。

【0138】なお、一般的に用いられる様々な手法を本 発明に係るホログラム記録再生装置20及びホログラム 記録再生方法と組み合わせることも当然可能である。例

えば、ホログラム記録再生装置 2 0 に参照光 4 を反射させる反射部を備え、反射型のホログラムとすることも容易に可能である。

19

【0139】そこで、ホログラムを再生する際に、ホログラム記録再生装置20が反射部を有する場合について説明する。

【0140】まず、反射部として、図27に示すように、コーナーキューブ34又はコーナーキューブ34をアレイ状に配列したコーナーキューブ群35を用いた場合について説明する。コーナーキューブ34又はコーナーキューブ群35は、コーナーキューブ34又はコーナーキューブ群35に照射されたレーザ光を照射された方向へ正確に反射することが可能である。

【0141】コーナーキューブ34を用いて位相共役再生を行うには、ホログラム記録媒体1を透過した平面波である参照光4をコーナーキューブ34を用いて反射させて、位相共役光とすればよい。但し、行きと帰りの光路では、参照光4の位置がずれる。これを避けるには、参照光4が常にコーナーキューブ34の略略中心に入射するようにすればよい。

【0142】コーナーキューブ群35を用いて位相共役再生を行う場合は、中央部に位置する6個のコーナーキューブ34に入射したレーザ光36が、それぞれの入射するレーザ光の光路が反射により変化しても、それと同じ光路を逆側から入射してくるレーザ光が存在するため、結局同一の波面で逆方向に進行する光束が得られる。また、外周部のコーナーキューブ34へ入射するレーザ光35は、反射時に光路がシフトするために、位相共役再生に寄与できない部分も生じるが、全体として十分な反射光が得られる。ゆえに、十分な位相共役光を得30ることができる。また、ホログラムの記録方法は、ホログラム記録媒体1の記録領域に空間的に分布した冗長性が高い記録方法なので、上述した位相共役光を用いて十分にホログラムを再生することができる。

【0143】なお、実用上問題になるのは、コーナーキ ューブ34の反射角の精度である。典型的な記録材であ る鉄をドープしたニオブ酸リチウムを立方体状に加工 し、隣り合った面から物体光5と参照光4とが直交する ような配置で、ホログラムを多重記録しようとする場合 には、1000分の5度程度の角度間隔でホログラムを 40 多重記録する。例えば、エドモンドサイエンティフィッ ク社製のコーナーキューブ群35の反射角精度は100 0分の60度程度である。このような場合には、一度ビ ームエキスパンダを逆に用いて平行光のままビーム径を 狭めてから、コーナーキューブ群35に入射させること で倍率分精度を上げることができる。例えば、コーナー キューブ群35への入射光のビーム径を12分の1にす れば、コーナーキューブ群35で反射後にビームエキス パンダ (図示せず。) を往復してホログラム記録媒体 1 に戻った光線の角度誤差は1000分の5度になる。

【0144】このようなコーナーキューブ群35を用いれば、上述したホログラム記録媒体1を回転させながらホログラムの記録及び/又は再生を行う場合でも、簡単に位相共役再生を行うことができる。

【0145】上述した、反射部としてコーナーキューブ群35を有するホログラム記録再生装置20について、その要部を図28乃至図30に示し説明する。

【0146】まず、図2中におけるホログラム記録媒体 1のA-A¹線における断面図を図28に示す。ホログラム記録媒体1に向けて照射された参照光4は、矢印Gの光路を通りウエッジ基板3内に入射する。ウエッジ基板3に入射した参照光4は、入射面により進行方向を変えられてホログラム記録層2に到達する。

【0147】一方ホログラム記録媒体1に照射された物体光5は、矢印G'の光路を通りウエッジ基板3内に入射し、ホログラム記録層2に到達する。

【0148】以上のような光路から入射した参照光4及び物体光5によって、ホログラムを記録する。

【0149】ホログラムを再生する際には、再生光11として参照光4をそのまま用いる。参照光4は、矢印Gの光路を通りウエッジ基板3内に入射する。ウエッジ基板3に入射した参照光4は、入射面により進行方向を変えられてホログラム記録層2に到達し、ホログラム記録層2を透過する。そして、参照光4は、コーナーキューブ群35によって反射されて、矢印Gの光路を逆行し、再びホログラム記録層2に到達する。

【0150】以上のように参照光4を位相共役光として 位相共役再生を行う。

【0151】次に、図2中におけるホログラム記録媒体1のB-B 線における断面図、すなわち図28に示す断面図からホログラム記録媒体1が矢印R1の方向へ90度回転させた状態の断面図を図29に示す。ホログラム記録媒体1に向けて照射された参照光4は、矢印Hの光路を通りウエッジ基板3内に入射する。ウエッジ基板3に入射した参照光4は、入射面により進行方向を変えられてホログラム記録層2に到達する。

【0152】一方ホログラム記録媒体1に照射された物体光5は、矢印H'の光路を通りウエッジ基板3内に入射し、ホログラム記録層2に到達する。

〇 【0153】以上のような光路から入射した参照光4及び物体光5によって、ホログラムを記録する。

【0154】ホログラムを再生する際には、再生光11として参照光4をそのまま用いる。参照光4は、矢印Hの光路を通りウエッジ基板3内に入射する。ウエッジ基板3に入射した参照光4は、入射面により進行方向を変えられてホログラム記録層2に到達し、ホログラム記録層2を透過する。そして、参照光4は、コーナーキューブ群35によって反射されて、矢印Hの光路を逆行し、再びホログラム記録層2に到達する。

50 【0155】以上のように参照光4を位相共役光として

位相共役再生を行う。

【0156】次に、図2中におけるホログラム記録媒体1のA'A断面図、すなわち図28に示す断面図からホログラム記録媒体1が矢印R1の方向へ180度回転させた状態の断面図を図30に示す。ホログラム記録媒体1に向けて照射された参照光4は、矢印1の光路を通りウエッジ基板3内に入射する。ウエッジ基板3に入射した参照光4は、入射面により進行方向を変えられてホログラム記録層2に到達する。

21

【0157】一方ホログラム記録媒体1に照射された物 10 体光5は、矢印1'の光路を通りウエッジ基板3内に入射し、ホログラム記録層2に到達する。

【0158】以上のような光路から入射した参照光4及び物体光5によって、ホログラムを記録する。

【0159】ホログラムを再生する際には、再生光11として参照光4をそのまま用いる。参照光4は、矢印1の光路を通りウエッジ基板3内に入射する。ウエッジ基板3に入射した参照光4は、入射面により進行方向を変えられてホログラム記録層2に到達し、ホログラム記録層2を透過する。そして、参照光4は、コーナーキュー20ブ群35によって反射されて、矢印1の光路を逆行し、再びホログラム記録層2に到達する。

【0160】以上のように参照光4を位相共役光として 位相共役再生を行う。

【0161】次に、図2中におけるA'A断面図、すなわち図28に示す断面図からホログラム記録媒体1が矢印R1の方向へ270度回転させた状態においては、図29と略同等の為に説明を省略する。

【0162】以上のように、コーナーキューブ群35を有するホログラム記録再生装置20は、ホログラム記録 30 媒体1を回転させることで、ホログラム記録媒体1に照射する参照光4及び物体光5の進行方向をウエッジ基板3により変化させることができる。そして、前に記録したホログラムのブラッグ条件が満たされなくなるまで十分な角度だけ回転したところで、次の情報信号を光の位相情報として記録する。再生時には、ホログラム記録媒体1に対して再生光11として参照光4を照射すれば、光記憶媒体1に対して記録した物体光5が再生され、ディテクターアレイ33に情報信号に対応するパターンを結像し、ホログラム記録再生装置20が再生情報信号を40得る。

【0163】以上のように、本発明に係るホログラム記録再生装置20及びホログラム記録再生方法では、反射部としてコーナーキューブ群35を用いることにより、ホログラム記録媒体1から再生する物体光5の再生方向を固定できる。このために、ホログラム記録再生装置におけるアクチュエータが不要になり、装置構成が簡略化でき、より実用的なホログラムの再生が可能になる。

【0164】なお、ホログラム記録再生装置20が反射 部としてコーナーキューブ群35を有する場合につい て、ホログラム記録再生装置20の構成例を、図31に示す。コーナーキューブ群35用いることにより、ホログラム記録媒体1に対して参照光4が入射する時と同じ光路でコーナーキューブ群35によって反射されており、位相共役再生を簡単に実施することが可能である。【0165】また、図32に示すように、ホログラム記録再生装置20が反射部として平面ミラー38を有するとしてもよい。この場合は、ホログラムの位相共役再生を行うことができるが、ホログラム記録媒体1に対する参照光4の入射角度を、ウエッジ基板3の傾斜方向に応

じて変化させなければいけないため、ビームデフレクタ

等の偏向手法が必要になる。

【0166】上述したように透過型のホログラムの再生を行うと、ウエッジ基板3により透過した参照光4及び物体光5の進行方向が変化するので、ディテクターアレイ33の位置を移動させなければならない。しかし、図28に示すようなコーナーキューブ群12を用いた位相共役再生を行えば、再生光11は記録時と同じ参照光4を用いることができ、ホログラム記録媒体1に対して入射した物体光5と同じ方向に正確に無収差で物体光5を再生することができる。

【0167】以上のように本発明に係るホログラム記録再生装置20及びホログラム記録再生方法は、ビームデフレクタなどの偏向手法を用いずに本発明に係るホログラム記録媒体1にホログラムを多重記録及び/再生する ことができる。また、ホログラムを再生する際には、コーナーキューブ群12を用いてホログラムの位相共役再生を行うことができる。この際に、コーナーキューブ群12を加えるだけでビームデフレクタなどの角度偏向手法を用いずとも角度多重記録及び/再生をすることができ、ホログラム記録再生装置20の装置構成が簡単で省スペースになるだけでなく、光学系の収差を除去することができる。

【0168】なお、本発明に係るホログラム記録再生装 置20及びホログラム記録再生方法では、レーザ光とし て平行光を用いることが必要であるが、空間を伝搬する 光は回折が生じるために、レーザ光の波面は厳密には平 面波ではないことが多い。レーザ光の強度は、通常ガウ シアン分布をとるガウシアンビームであることが多い。 このガウシアンビームは、ビームウエストの位置では平 面波であるものの、その前後では波面が微少な曲率を持 つ。従って、ホログラムの再生時に位相不整合が生じ て、回折効率が低下する。この影響を低減するために は、コーナーキューブ34又はコーナーキューブ群35 を平面波である参照光4のビームウエストの位置に設置 すればよい。このとき、コーナーキューブ34又はコー ナーキューブ群35による反射前後の対称性により波面 は補正されるので、上述した回折の影響も最小限に抑え ることができる。

【0169】このように、コーナーキューブ34又はコ

40

ーナーキューブ35群を参照光のビームウエスト位置に配設することで、位相不整合による回折効率の低下を避けることができる。これは、一般的なの角度多重記録と原理的には同じことであるが、本発明に係るホログラム記録再生方法の特徴は、角度多重記録におけるレーザ光を偏向させる手法をウエッジ形状の基板の回転によって代替するところにある。

23

【0170】また、本発明に係るホログラム記録再生装置20及びホログラム記録再生方法は、平面波を参照光4とする任意のホログラムの多重記録方法に適用可能で10あり、波長多重記録、ペリストロフィック多重記録、フラクタル多重記録もしくはこれらの組み合わせによるホログラムの多重記録方法が適用可能である。例えば、レーザ光源を複数用いるか、波長可変なレーザ光源を用いることで、波長多重記録を組み合わせることができる。また、また本発明に係るホログラム記録再生装置20の構成例に、さらに動径方向のビーム偏向手法を加えて、さらに高い多重度のペリストロフィック多重記録を行うことも考えられる。上述したホログラムの多重記録方法を単独でもしくは組み合わせて適用することによって、20ホログラムを記録する際の多重度が上がり、記録密度を高めることができる。

【0171】また、シフト多重記録においては、平面のホログラム記録媒体に対して参照光として収束光もしくは発散光を用いるが、本件はこれに対して、ホログラム記録媒体1が回転平面に対して平行な第1の主面と、この第1の主面に対して傾きを有する第2の主面を有し、参照光4として平行光を用いる点に特徴がある。これは、角度多重記録の一種であるペリストロフィック多重記録にも似ているが、本発明による方法では回転に伴い、記録位置がずれるために空間的な多重も同時に行うことになる点に本発明の特徴がある。

【0172】これによって、ガルバノミラーやAOD及びEODなどの角度偏向手法が不要となり、また、ホログラムのシフト多重記録をする際のフォーカス位置の光軸方向の制御も不要になる。したがって、ホログラム記録再生装置20の装置構成を単純化することができる。

【0173】また、本発明に係るホログラム記録再生装置20は、ホログラム記録媒体1の周面方向から物体光5を照射する光学系22の配置であってもかまわない。これによって、ホログラム記録媒体1の記録領域を立体的に用い体積型ホログラムとすることも可能である。なお、この場合においては、ホログラム記録媒体1の第2の構成例が好適である。

【0174】なお、位相共役再生を行うための参照光4と位相共役なレーザ光を生じせしめるための方法としては、四光波混合を用いるとしてもよい。この場合には、入射する参照光4が正確に反転した位相共役光を発生させることが可能である。

【0175】本発明に係るホログラム記録媒体1、ホロ 50

グラム記録再生装置 2 0 及びホログラム記録再生方法は、ホログラムメモリ、三次元ディスプレイ、光インターコネクション、相関演算器、ノベルティーフィルタなどの光コンピューティングなど、多岐にわたり応用することが可能である。

[0176]

【発明の効果】本発明に係るホログラム記録媒体は、回転平面に対して平行な第1の主面と、この第1の主面に対して傾きを有する第2の主面とを有することにより、参照光及び/又は物体光のホログラム記録媒体に対する入射角を、ホログラム記録媒体を回転させることにより変化させて、ホログラムを多重記録することができる。【0177】また、ホログラム記録媒体を回転させるだけで参照光の入射角度を変化させることができるので、ホログラム記録再生装置の装置構成が簡略化でき、低コスト化を図ることができる。

【0178】また、参照光を反射させる際には、コーナーキュープ又はコーナーキューブをアレイ状に配列したコーナーキューブ群を1枚加えるだけの簡単な構成で、位相共役再生を行うことができる。

【0179】これにより、光学系で発生した収差は完全に補正されるので、高度に収差が補正された高価で大型のレンズを用いる必要がなく、装置構成を簡略化でき、安価に高品質の再生像が得られる。

【0180】また、本発明に係るホログラム記録再生装置及びホログラム記録再生方法では、本発明に係るホログラム記録媒体を用いることで、参照光及び/又は物体光のホログラム記録媒体に対する入射角を、ホログラム記録媒体を回転させることにより変化させて、ホログラムを多重記録することができる。

【0181】また、ホログラム記録媒体を回転させるだけで参照光の入射角度を変化させることができるので、ホログラム記録再生装置の装置構成が簡略化でき、低コスト化を図ることができる。

【0182】さらに、コーナーキューブ群を用いることにより、ホログラム記録媒体の回転により、ホログラム記録媒体の回転により、ホログラム記録媒体から再生する物体光の再生方向を固定できる。このために、ホログラム記録再生装置における装置構成が簡略化でき、より実用的なホログラムの再生が可能になる。

【0183】以上のように、本発明を用いることによって、ホログラム記録再生装置の部品点数が削減できるため、小型化、小面積化、低コスト化が可能である。

【図面の簡単な説明】

【図1】本発明に係るホログラム記録層を有するホログラム記録媒体に参照光及び物体光が入射する場合の一構成例を示す概略斜視図である。

【図2】本発明に係るホログラム記録層を有するホログラム記録媒体の概略斜視図である。

【図3】本発明に係るホログラム記録層を有するホログ

ラム記録媒体に対して参照光及び物体光が入射する場合 の光路を示す概略垂直断面図である。

【図4】本発明に係るホログラム記録層を有するホログラム記録媒体に対して参照光及び物体光が入射する場合の光路を示す概略垂直断面図である。

【図5】本発明に係るホログラム記録層を有するホログラム記録媒体に対して参照光及び物体光が入射する場合の光路を示す概略垂直断面図である。

【図6】本発明に係るホログラム記録媒体が有するウエッジ基板に対して参照光が入射する場合の概略垂直断面 10 図である。

【図7】本発明に係るホログラム記録媒体が有するウエッジ基板の概略斜視図である。

【図8】本発明に係るホログラム記録媒体が有するウエッジ基板に対して参照光が入射する場合の概略垂直断面図である。

【図9】本発明に係るホログラム記録媒体が有するウエッジ基板の回転による参照光の偏向角の変化を示すグラフである。

【図10】本発明に係るホログラム記録媒体のトラック 20 構造の一例を示す概略図である。

【図11】本発明に係るホログラム記録媒体のトラック 構造の一例を示す概略図である。

【図12】本発明に係るホログラム記録媒体に対して参照光及び物体光が入射する場合の一例を示す概略斜視図である。

【図13】本発明に係る反射層を有するホログラム記録 媒体に対して参照光及び物体光が入射する場合の光路を 示す概略斜視図である。

【図14】本発明に係る反射層を有するホログラム記録 30 媒体に対して再生光を入射させ、物体光が再生される場合の光路を示す概略斜視図である。

【図15】本発明に係る反射層を有するホログラム記録 媒体に対して参照光及び物体光が入射する場合の光路を 示す概略斜視図である。

【図16】本発明に係る反射層を有するホログラム記録 媒体に対して再生光を入射させ物体光が再生される場合 の光路を示す概略斜視図である。

【図17】本発明に係るコーナーキューブ群を有するホログラム記録媒体に対して参照光及び物体光が入射する 40 場合の光路を示す概略斜視図である。

【図18】本発明に係るコーナーキューブ群を有するホログラム記録媒体に対して再生光を入射させ物体光が再生される場合の光路を示す概略斜視図である。 >>

*【図19】本発明において用いられるコーナーキューブ に対して入射されたレーザ光が反射する様子を示す概略 図である。

【図20】本発明において用いられるコーナーキューブ 群の概略図である。

【図21】本発明において用いられるコーナーキューブ 群に対して入射されたレーザ光が反射する様子を示す概 略図である。

【図22】本発明に係るコーナーキューブ群を有するホログラム記録媒体に対して参照光及び物体光が入射する場合の光路を示す概略斜視図である。

【図23】本発明に係るコーナーキューブ群を有するホログラム記録媒体に対して再生光を入射させ物体光が再生される場合の光路を示す概略斜視図である。

【図24】本発明に係るホログラム記録媒体の変形例を 示す概略斜視図である。

【図25】本発明に係るホログラム記録再生装置の構成を示すブロック図である。

【図26】本発明に係るホログラム記録再生装置の一構成例を示す概略図である

【図27】本発明に係るホログラム記録再生装置が有するコーナーキューブ群の概略図である。

【図28】本発明に係るコーナーキューブ群を有するホログラム記録再生装置が、ホログラム記録層を有するホログラム記録媒体に対して参照光及び物体光を照射する場合の光路を示す概略垂直断面図である。

【図29】本発明に係るコーナーキューブ群を有するホログラム記録再生装置が、ホログラム記録層を有するホログラム記録媒体に対して参照光及び物体光を照射する場合の光路を示す概略垂直断面図である。

【図30】本発明に係るコーナーキューブ群を有するホログラム記録再生装置が、ホログラム記録層を有するホログラム記録媒体に対して参照光及び物体光を照射する場合の光路を示す概略垂直断面図である。

【図31】本発明に係るコーナーキューブ群を有するホログラム記録再生装置の一構成例を示す概略図である

【図32】本発明に係るミラーを有するホログラム記録 再生装置の一構成例を示す概略図である。

【図33】従来のホログラム記録媒体に対してホログラムのペリストロフィック多重記録を行う場合を示す概略 斜視図である。

【符号の説明】

1 ホログラム記録媒体、2 ホログラム記録層、3 ウエッジ基板、4 参照光、5 物体光

25

[図14]

【図15】

[図16]

【図17】

[図18]

【図19】

【図20】

【図21】

【図22】

【図23】

[図24]

【図27】

【図26】

[図28]

【図29】

【図30】

【図33】

【図31】

【図32】

フロントページの続き

F ターム(参考) 2H042 EA04 EA05 EA15

2K008 AAO4 AA17 BBO4 BBO5 BBO6 CCO1 CCO3 DD12 DD23 EE01 EE04 FF07 FF17 FF21 HH00 HH06 HH18 HH20 HH25 HH26 HH28

5D090 AA01 BB03 BB05 BB17 CC01 CC14 DD03 FF11 LL02