

I2C-4DI-4RO

MANUAL

Documento V1.00 - 08/05/2016

ÍNDICE DE CONTENIDO

1.	Descripción general	3
	Conexiones.	
3.	Direccionamiento del módulo.	7
4.	Relés de salida	8
5.	Entradas digitales	9
	Especificaciones técnicas.	

1. Descripción general.

El módulo de expansión I2C-4DI4RO es un dispositivo auxiliar de entradas y salidas basado en bus I2C y el chip expansor **PCF8574**. Gracias a sus conectores RJ12 podemos ampliar fácilmente el número de módulos en el bus.

Lo más destacado:

- Tamaño compacto en caja de carril DIN.
- Alimentación directa de 12 a 30VDC o alimentación propia en el conector RJ12.
- Hasta un máximo de 8 módulos en el bus.
- 4 Relés de salida, 4 entradas digitales aisladas.
- 2x conector auxiliar RJ12 para I2C.
- Regulador interno conmutado de alta eficiencia.

Está recomendado para aplicaciones distribuidas como domótica, conexión directa con ArduPLCs, control, etc.

Todas las entradas y salidas son accesibles a través de robustas bornas de tornillo.

El módulo de expansión I2C-4DI4RO se entrega montado en una caja estándar para carril DIN. Esto nos facilita el montaje dentro de cuadros eléctricos para automatización, domótica, etc.

2. Conexiones.

Podemos conectar el módulo de expansión de dos formas distintas:

- Directamente en las bornas de alimentación.
- A través de la alimentación en el conector RJ12.

Las bornas de conexión de alimentación e I2C están pensadas para conectar el módulo a dispositivos que no incorporan el conector RJ12, por ejemplo, una placa Arduinotm o Arduclema:

El conector RJ12 está pensado para conectar directamente el módulo a dispositivos compatibles con este conector, por ejemplo, ArduPLC MICRO, ArduPLC V2 o ArduPLC MEGA. Esto facilita la interconexión entre módulos compatibles:

Para usar el conector RJ12 debe activar la alimentación a través de este conector puenteando el jumper S4. Retire la tapa inferior de la caja carril DIN para acceder a la placa electrónica:

Si es necesario, puede también activar las resistencias PULL-UP del bus I2C a través de los jumpers S3 y S2. Asegúrese que no hay más de un dispositivo con las resistencias de PULL-UP activadas:

El pinout del conector BUS I2C (RJ12 6/6) es el siguiente:

PIN RJ12	SEÑAL
1	+24VDC
2	+5VDC
3	GND
4	DREADY
5	SCL
6	SDA

3. Direccionamiento del módulo.

Podemos conectar hasta 8 módulos en el BUS I2C. Para ello tenemos que asignar una dirección a cada uno de ellos mediante el dipswitch S6. Retire la tapa inferior de la caja carril DIN para acceder a la placa electrónica:

POSICION DIPSWITCH	DIRECCIÓN
000	0
100	1
010	2
110	3
001	4
101	5
011	6
111	7

4. Relés de salida.

Los relés de salida son del tipo normalmente abierto. Todas las salidas cuentan con sus comunes totalmente independientes.

Ejemplo de conexión para controlar 4 lámparas:

Características técnicas de las salidas de relé:

Máxima corriente: 5A

Máxima tensión: 250VAC o 30VDC

Máxima potencia: 1250VA, 500W

Vida eléctrica: 100,000 operaciones a 5A y 250VAC

• Vida mecánica: 10,000,000 operaciones

5. Entradas digitales.

Las entradas digitales se activan con niveles lógicos de desde 12DC hasta 24VDC referenciado al pin N/P. De esta forma podemos activar las entradas en la forma POSITIVO COMÚN o NEGATIVO COMÚN.

Un ejemplo de conexión para 2 interruptores en modo POSITIVO COMÚN sería de la siguiente manera:

Para el caso de NEGATIVO COMÚN:

Conexión NEGATIVO COMÚN o POSITIVO COMÚN con fuente de 24V externa:

Características técnicas de las entradas digitales:

• Aislamiento: 3Kv

• Rango funcionamiento: 12-30VDC.

• Corriente de entrada por canal: 5mA @ 24VDC

Frecuencia máxima de entrada: 1Khz

Máxima corriente salida 24V: 100mA

6. Especificaciones técnicas.

Rango de alimentación modelo DC: 12 a 30 VDC

Protección de alimentación: inversión de polaridad.

Consumo a 24VDC en reposo: 15mA (0.4W)

Consumo a 24VDC máximo: 100mA (2.4W)

Rango entradas digitales: 12 a 30VDC

Máxima corriente salidas relé: 5A

Máxima tensión salidas relé: 250VAC o 30VDC

Máxima potencia salidas relé: 1250VA, 500W

Temperatura de funcionamiento: -10 a 60 °C

Ancho: 88 mm

Alto: 90 mm

Fondo: 58 mm

Peso: 200 g.