asd

#### FIGURE 1. pYA3450



pYA3450 is an araC P<sub>BAD</sub> asd vector derived from pYA247. Around 35 bp (the number was calculated based on the map of pYA247 from MEGAN) unneccesary sequence between P<sub>BAD</sub> and asd was deleted by replacing the original asd gene with a 1,100 bp EcoRI-HindIII PCR product derived from the asd gene of pYA292. The PCR product contains the asd gene from 300 to 1420 bp including the SD sequence. The pYA247 was cut with EcoRI and HindIII and the 2.9 kb fragment was isolated and ligated with the 1.1 kb PCR product of asd.

# FIGURE 2A. pYA3530



# FIGURE 2B. pYA3531



pYA3531 (araC P<sub>BAD</sub> P22 c2 GTG-asd)

FIGURE 3. Growth of χ8645 ΔPmurA7::*araC* P<sub>BAD</sub> *murA* in 1% Rodent Chow, 1% Chicken Feed and 1% Chicken Breast Meat Broth +/- 0.5% Arabinose



PCT/US2003/026883





# FIGURE 5A. DNA vaccine vector pYA3650



DNA vaccine vector pYA3650 designed to express eukaryotic DNA from human cytomegalovirus immediate early gene promoter.

pYA3650 contains the immediate early gene promoter / enhancer from CMV, the Bovine growth hormone (BGH) gene polyadenylation signal, transcriptional termination sequence to enhance mRNA stability, a regulatable activator-promoter complex controlling the in vitro/in vivo expression of two genetically modified genes specifying enzymes necessary for synthesis of the rigid layer of the bacterial cell wall, a regulated synthesis of antisense RNA to completely turn off in vivo translation of mRNA encoded by the two genes whose products are necessary for synthesis of the rigid layer of the bacterial cell wall, and a replicon necessary for replication in bacteria but not in eukaryotic cells.

The exact locations are: rfGTT 36-100,trpATT 1243-1271, SD-GTG murA 2595/3868, 5ST1T2 5178/5620,  $P_{\mbox{CMV}}$  202-789, araC 2497-1377, SD-GTG asd, 3889/4995, pUC ori 6081/6754, BGH pA 888/1118,  $P_{\mbox{BAD}}$  2498-2582 and  $P22P_{\mbox{R}}$  5106-5027.

The map shows the location of sites for enzymes that cleave the molecule once.

### FIGURE 5B. DNA vaccine vector pYA3651

6,759 base pairs



DNA vaccine vector pYA3651 possesses SD-ATG-asd designed to increase translational level of Asd mRNA compared to pYA3650. The exact locations are: rrfGTT 36-100,trpATT 1243-1271,SD-GTG murA 2595/3868, 5ST1T2 5178/5620,  $P_{\mbox{CMV}}$  202-789,  $araC^*$  2497-1377, SD-ATG asd, 3889/4995, pUC ori 6081/6754, BGH pA 888/1118,  $P_{\mbox{BAD}}$  2498-2582 and P22 $P_{\mbox{R}}$  5106-5027.

The map shows the location of sites for enzymes that cleave the molecule once.

#### FIGURE 6. Suicide Vcetors

#### A. AasdA16

# B. ΔasdA19::TT araC P<sub>BAD</sub> c2



# C. ΔPmur7::TT araC PBAD murA



PCT/US2003/026883

## FIGURE 7. Transductional Method of Moving Unmarked Mutations



Illustration of overall processes for transfer of the  $\Delta asdA16$  mutation. Black boxes and gray boxes represent cloned 5' (left [L]) and 3' (right [R]) flanking regions, respectively, of the asd gene. (Step a) Using the recombinant suicide plasmid pMEG-443, a  $\Delta asdA16$  mutant was generated by the routine allelic-exchange method. (Step b) Plasmid pMEG-443 was integrated into the chromosome of the  $\chi 8554$  ( $\Delta asdA16$ ) strain by single-crossover insertion. (Step c) Phage P22HT*int* was propagated on the donor strain  $\chi 8680$  ( $\Delta asdA16$ ::pMEG-443). The  $\Delta asdA16$ ::pMEG-443 complex was transduced to a wild-type recipient strain, and transductants were selected based on the plasmid-encoded antibiotic resistance markers. (Step d) Excision of the plasmid by homologous recombination between duplicated regions was selected for by using the plasmid-carried sacB counterselection system to generate the unmarked deletion mutation.

FIGURE 8. Construction of suicide vectors ΔasdA33 and ΔasdA183::TT araC P<sub>BAD</sub> c2 for use in S. typhi and S. paratyphi A



FIGURE 9. Construction of suicide vector for ΔaraBAD1923



#### In Salmonella chromosome:



#### FIGURE 10. Construction of suicide vector for *\Delta araE25*



#### In Salmonella chromosome:



vgeA: Function unknown

araE: Low-affinity L-arabinose transport; L-arabinose proton symport

kduD: 2-deoxy-D-gluconate 3-dehydrogenase

# FIGURE 11. Construction of suicide vector for ΔaraBAD23

#### S. typhimurium



#### In Salmonella chromosome:



araBAD (araB1 to araD+1,total of 4111 bp) deleted and SD, Ncol and Pmel sites inserted

PCT/US2003/026883

# FIGURE 12. Construction of suicide vectors for ΔaraBAD23 c2 lacl::rrfG TT, ΔaraBAD23 c2::rrfG TT and ΔaraBAD23 lacl::rrfG TT



CCG TCA GGA TGG CCT TTC GCA TAA TCT

AGA CTG CAG TT 3'



FIGURE 12. continued



∆araBAD23 c2::rrfGTT

∆araBAD23 lacl::rrfG TT

## FIGURE 12. continued

# In S. typhimurium chromosome:







FIGURE 13. Construction of suicide vector for ΔendA2311





FIGURE 14. Construction of suicide vector for  $\Delta endA23::TT$  ara  $CP_{BAD}$  lack with improved lacl expression



In chromosome:



2429 bp of lacl PBAD araC::TT inserted



FIGURE 15. Construction of suicide vector for  $\Delta gmd-11$ 



gmm/wcaH: Guanosine di-P mannose mannosyl hydrolase
 fcl/wcaG: Colanic acid gene cluster, bifunctional GDP fucose synthetase
 gmd: Fucose biosynthesis; GDP-D-mannose 4,6-dehydratase
 wcaF: Involved in lipopolysaccharide biosynthesis, putative
 acyltransferase

#### In Salmonella chromosome:



FIGURE 16. Construction of suicide vector for  $\Delta(gmd-fcl)-26$ 



gmm/wcaH: Guanosine di-P mannose mannosyl hydrolase fcl/wcaG: Colanic acid gene cluster, bifunctional GDP fucose synthetase gmd: Fucose biosynthesis; GDP-D-mannose 4,6-dehydratase wcaF: Involved in lipopolysaccharide biosynthesis, putative acyltransferase

#### In Salmonella chromosome:



FIGURE 17. Construction of suicide vector for ΔrelA1123



FIGURE 18. Construction of suicide vector for *∆relA11::*TT *araC*P<sub>BAD</sub> *lacI* with improved *lacI* expression



#### In chromosome:



Deletion of 2247 bp (relA-12 to relA2235/2235) and inserted 2429 bp of araCP<sub>BAD</sub> lacl

FIGURE 19. Construction of suicide vector for AmsbB48



pykA: Pyruvate kinase A (II)

msbB: Role in outer membrane structure; myriostoyl transferase in lipid A biosynthesis

yebA: Putative peptidase

#### In Salmonella chromosome:



FIGURE 20. Construction of suicide vector for ΔfliC825



#### FIGURE 21. Construction of suicide vector for $\Delta fljB217$

χ8600, S. typhimurium SL1344 ΔfliC



Figure 22. Construction of a suicide vector for transfer of  $\Delta fliC$ -Var mutation



primer 79: delV.fliC 1 Xmal/bp81-104 5'-TCCCCCGGGGGCTATGGAGCGTCTGTCTTCCGG-3'

primer 80: delV fliC 2 EcoRI/bp540-516

5'-GGGAAT TCCTTA TAT TTT TGT TGCACATTCAG-3'

primer 81: delV fliC 3 EcoRI/bp1261-1285

5'-GGGAAT TCACGTTACGTT CTGACCTGGGTGCG-3'

primer 82: delV fliC 4 Sphl/bp1679-1655

5'-ACA TGCATGCCGTCTTAT CCAGCCGTGATTTTCCA-3'



Figure 23. Construction of the suicide vector for the  $\Delta fljB$ -Var deletion mutation



primer 83: delV.fliC 1 Xmal/bp81-104 5'-T CCCCCGGGCT GGT CTGCGT ATCAAC AGC-3' primer 84: delV fliC 2 EcoRI/bp540-516 5'-GGGAAT TCA TCA TAC GCT TTCTGCACG TT-3' primer 85: delV fliC 3 EcoRI/bp1261-1285 5'-GGGAAT TCCAGA AAA TTG ATGCCG GCCTG-3' primer 86: delV fliC 4 Sphl/bp1679-1655 5'-ACA TGCATG CCATAG AAT AAT CCC GCG GCC-3'

FIGURE 24. Construction of the suicide vector to make the ΔsifA26 (in-frame deletion) mutation



Primer 87: TGATGAGCTCTTTCTCTCTCCAAAATCTC (sifA SacI) Primer 88: CTTAGGTACCGGTCGATTTAATCAATTATG (sifA KpnI)



FIGURE25. Construction of suicide vector  $\Delta P_{sifA196}$ ::TT araC  $P_{BAD}$  sifA



Primer 89:GCAAGAGCTCCTCTTCGTTTTGATCCATG (sifA-SacI)

Primer 90:GCCGGATCCAGATCTTATCTACTCGAGAGGAAAAAAACGCTATGCCGATTACTATAGGG (sifA-XhoI BglII)

Primer 91:CCTCTCGAGTAGATAAGATCTGGATCCGGCGCGGATGATGTTGTAGATTTG (sifA-XhoI BglII)

Primer 92:GCAGGTACCCGGCAATGGGCCTGTTCTAC (sifA-KpnI)



FIGURE 26. Construction of suicide vector with  $\Delta alr$ -3 mutation



Primer 93: dnaB-SphI

ACATGCATGCCGCGCGGATAAACGTCCGGTGAAC

Primer 94: dnaB-BamHI

CGCGGATCCTGTTAAAAGAATGACGGAGAGTTAC

Primer 95: tyrB-BamHI

CGTGGATCCGTGGCGCTTGCGCTTATCCGGCTTG

Primer 96: tyrB-XmaI

TCCCCGGGCTTCGGCTTCT

FIGURE 27. Construction of suicide vector with ΔdadB4 mutation



Primer 97: ycgO-SphI

ACATGCATGCGAATGCGAAATTCGCCGACGTG

Primer 98: ycgO-BamHI

CGCGGATCCTAATTCAGGCTAAGGCGTCGACC

Primer 99: dadA-BamHI

CGCGGATCCTTATCAGTTATGCGCGCTATGCAA

Primer 100: dadA-SmaI

TCCCCCGGGCTTTAATACCGACTTACTGCAACC



FIGURE 28. Construction of suicide vector with improved ΔP<sub>mur</sub>::TT *araC*P<sub>BAD</sub> *murA* deletion-insertion mutation



Deletion of 41 bp between murA and yrbA and inserted 1329 bp of PBAD araC::TT

1:1

# FIGURE 29. Construction of pYA3607



# Sequence of antisense RNA of asd from P22PR in pYA3607:

| TCATGAGACA ATAACCCTGA          | TAAATGCTTC  | AATAATGGAA | GATCCTACGC | TCACCCATCA |
|--------------------------------|-------------|------------|------------|------------|
| ATTGTGTATT CATAGTTAAC          | TCATCTTAAA  | TAAACTTGAC | TAAAGATTCC | TTTAGTAGAT |
| P22 <i>c</i> 2                 | OR3         |            | OR2        |            |
| AATTTAAGTG TTCTTTAATT          | TCGGAGCGAG  | TCTATGTACA | AGTCGACGGT | ATCGTGCAGC |
| OR1                            |             | P22cro     |            |            |
| TAGA <u>CTA</u> CGC CAACTGGCGC | AGCATTCGAC  | GCAGCGGCTC | GGCGGCGCCC | CATAACAACT |
| asd stop codon                 |             |            |            |            |
| GGTCGCCTAC GGTAAACGCC          | GACAAGAACT  | CTGGCCCCAT | GTTCAGCTTA | CGCAGACGAC |
| asd                            |             |            |            |            |
| CAACCGGCGT AGTCAACGTC          | CCGGTCACCG  | CCGCCGGGGT | TAATTCGCGC | ATAGTGATAT |
| CACGATCGTT CGGCACCACT          | TTCGCCCACG  | GATTATGTGC | CGCCAGCAGT | TCTTCCACCG |
| TCGGAATGGA TACCTCTTT           | 'TTCAGCTTGA | TGGTGAACGC | CTGGCTGTGA | CAGCGCAGCG |
| CGCCGACGCG CACACACAA           | CCATCAACCG  | GAATCACAGA | GGCAGTATTG | AGAATCTTGT |
| TGGTTTCCGC CTGGCCTTTC          | CACTCTTCGC  | GGCTCTGGCC | GTTATCGAGC | TGTTTGTCGA |
| TCCAGGGGAT CAGGCTTCCC          | GCCAGCGGTA  | CGCCAAAGTT | ATCAACCGGC | AGCTCGCCGC |
| TGCGGGTCAA TGCCGTAACT          | TTGCGTTCAA  | TATCAAGAAT | TGCGGAAGAC | GGCGTCGCCA |
| GTTCATCGGC GACATGGCCA          | TACAACTGAC  | CCATCTGGGT | TAACAGCTCG | CGCATATG   |
| asd                            |             |            |            | NdeI       |

FIGURE 30. Construction of regulatable lysis system vector pYA3646:





### FIGURE 31. Steps in the construction of pYA3646



### B. Construction of pYA3609.





### FIGURE 31. (continued)

### C. Construction of pYA3610.

Insert 1.28kb SD-ATG  $\it murA$  PCR from  $\chi 289$  using Primer 41 and 42 into pYA3608 at EcoRI site



### D. Construction of pYA3624.



### FIGURE 31. (continued)





### FIGURE 31. (continued)

### G. Construction of pYA3646.



FIGURE 32. Cloning of araCPBAD from E.coli K-12 to achieve tighter regulation and a lower level of transcription in the absence of arabinose than is achievable with the existing araCPBAD system from E.coli B/r



| _                                                               |  |
|-----------------------------------------------------------------|--|
|                                                                 |  |
| <u>.</u>                                                        |  |
| ð                                                               |  |
| Ĕ                                                               |  |
| *                                                               |  |
| Ü                                                               |  |
| Ē                                                               |  |
| ⋖                                                               |  |
| ₩                                                               |  |
| ď                                                               |  |
| ŭ                                                               |  |
| 등                                                               |  |
| ₫                                                               |  |
| 9                                                               |  |
| Ñ                                                               |  |
| ō                                                               |  |
| <u>ত</u>                                                        |  |
| 0                                                               |  |
| ۲                                                               |  |
| ⋷                                                               |  |
| æ                                                               |  |
| ਰ                                                               |  |
| ≧                                                               |  |
| œ<br>—                                                          |  |
| 2                                                               |  |
| 9                                                               |  |
| ď                                                               |  |
| ⋛                                                               |  |
| <u> </u>                                                        |  |
| .⊑                                                              |  |
| တ္သ                                                             |  |
| 82                                                              |  |
| *                                                               |  |
| Ε                                                               |  |
| 9                                                               |  |
| ₽.                                                              |  |
| 돗                                                               |  |
| Ξ,                                                              |  |
| ĕ                                                               |  |
| Ξ                                                               |  |
| y                                                               |  |
| •                                                               |  |
| B                                                               |  |
| PBA                                                             |  |
| $C_{PBA}$                                                       |  |
| raC*PBA                                                         |  |
| araC*PBA                                                        |  |
| of <i>araC</i> "PBA                                             |  |
| e of <i>araC</i> *PB⊿                                           |  |
| ice of <i>araC</i> "PB⊿                                         |  |
| ence of <i>araC</i> *PB⊿                                        |  |
| luence of <i>araC</i> "PB⊿                                      |  |
| equence of <i>araC</i> *PB⊿                                     |  |
| sequence of araC*PBA                                            |  |
| te sequence of <i>araC</i> *PB⊿                                 |  |
| tide sequence of <i>araC</i> *PBA                               |  |
| eotide sequence of <i>araC</i> *PB⊿                             |  |
| cleotide sequence of <i>araC</i> *PB⊿                           |  |
| ucleotide sequence of <i>araC</i> *PBA                          |  |
| nucleotide sequence of araC*PBA                                 |  |
| lA nucleotide sequence of <i>araC</i> *PB⊿                      |  |
| NA nucleotide sequence of <i>araC</i> *PB⊿                      |  |
| DNA nucleotide sequence of araC*PBA                             |  |
| <ol> <li>DNA nucleotide sequence of araC*PBA</li> </ol>         |  |
| 33. DNA nucleotide sequence of araC*PBA                         |  |
| RE 33. DNA nucleotide sequence of <i>araC</i> *PBA              |  |
| JRE 33. DNA nucleotide sequence of <i>araC</i> *P <sub>BA</sub> |  |
| GURE 33. DNA nucleotide sequence of <i>araC</i> *PBA            |  |
| JRE 33                                                          |  |

|                | TTATGGATAA   | aralı                                          | AAATGCTATG GCATAGCAAA GTGTGACGCC GTGCAAATAA TCAATGTGGA CTTTTCTGCC GTGATTATAG ACACTTTTGT TACGCGTTTT |                     | IGICATIGICT TITGGICCCGC TITGITACAG AATGCTTTTA ATAAGCGGGG TTACCGGTTG GGTTAGCGAG AAGAGCCAGT AAAAACGCA |             |                                                                            |       |
|----------------|--------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------|-------|
|                | TCCGCTAATC   | 2                                              | ACACTTTTGT                                                                                         | araO <sub>1R</sub>  | AAGAGCCAGT                                                                                          |             |                                                                            |       |
| -35            | TCAGGTAGGA   | aral                                           | GTGATTATAG                                                                                         |                     | GGTTAGCGAG                                                                                          |             | GAAAAGT-                                                                   |       |
|                | ATAAAAAGCG   |                                                | CTTTTCTGCC                                                                                         | ara0 <sub>1</sub> L | TTACCGGTTG                                                                                          |             | GTGGGAGTAT                                                                 |       |
|                | GAGAGTTGCG   |                                                | TCAATGTGGA                                                                                         | æ                   | ATAAGCGGGG                                                                                          |             | TCTCTGAATG                                                                 |       |
| -10            | AGAAACAGTA   |                                                | GIGCAAATAA                                                                                         | site                | AATGCTTTTA                                                                                          |             | ATTGGTTTCT                                                                 | 3     |
| 3NA +1         | ACGGGTATGG . |                                                | STGTGACGCC                                                                                         | CRP binding site    | rttgttacag .                                                                                        | " mRNA —    | AATATGGACA                                                                 | ara02 |
| araBAD mRNA +1 | GCCCAAAAA    |                                                | GCATAGCAAA                                                                                         |                     | rregreceee                                                                                          | +1 araC* mF | TGTCTGATGC                                                                 |       |
| <b>V</b>       | -GAATTCGCTA  | EcoRi Nhei aral <sub>2</sub> aral <sub>1</sub> | AAATGCTATG                                                                                         |                     | TGTCATGCCT                                                                                          | -10         | GIGACGGCAA IGICIGAIGC AAIAIGGACA AITGGITICI ICICIGAAIG GIGGGAGIAI GAAAAGI- |       |
|                | 5.           |                                                |                                                                                                    |                     |                                                                                                     |             |                                                                            |       |

CIG පි GAA E ე ი o G AAC N ATT ATC TTT F r. r CAT H CAG O CAC H පු araC\* start codon CAC H GAT D CGC R

ದ್ವರಿ AGC S R G AAT N GAT AAG K CAG O GTA V codon TCG CGA S R CCA P CAT H AGT S CAT H C.A.G ATT I CGC R CAA AAC GAG N E AGC S GAC D GCC GAG E ATT ATC GAT D GTA V GAT GCG ₽ GAA TTT F AGC S AAT N ATG AAT TTA L GGT G GAC AGC I CGC R GTC V GIT AAA K AGC S AAT N g S CTG L ATT I cgc ಸ . 999 9 GGT G CAC H GTC V GAT GAG E AGC S CAG O 9 8 CGT R ATC I CIT CGC R AIC TTT F CTG L TTC GAG E CCT A AAT N ATA I TGT C

TGACGGCTTG ACGGAGTAGC ATAGGGTTTG CAGAATCCCT GCTTCGTCCA TTTGACAGGC ACATTATGCAt -3'

| _                                               |
|-------------------------------------------------|
| ō                                               |
| 5                                               |
| ∆D regio                                        |
| =                                               |
| PBAD                                            |
| ⋖                                               |
| m                                               |
| 8                                               |
| $\overline{\mathbf{c}}$                         |
| r araCPBA                                       |
| ≈                                               |
| -                                               |
| ፷                                               |
| <u> </u>                                        |
| ≒                                               |
| coli Bl                                         |
| .::                                             |
| ш                                               |
| ð                                               |
| 듶                                               |
| PBAD region and the <i>E.coli</i> B/            |
| 2                                               |
| ë                                               |
| ž                                               |
| Ξ                                               |
| . <u>≃</u>                                      |
| Ď                                               |
| 2                                               |
|                                                 |
| BAD                                             |
| ×                                               |
| щ                                               |
| 六                                               |
| $\mathbf{z}$                                    |
| 20                                              |
| a                                               |
| 2                                               |
| ↽                                               |
| ب                                               |
| =                                               |
| $\overline{\mathbf{z}}$                         |
| ដ                                               |
| ıŭ                                              |
| ~                                               |
| Ō                                               |
|                                                 |
| 돭                                               |
| 듩                                               |
| 후                                               |
| it of th                                        |
| ant of th                                       |
| nent of the <i>E.coli</i> K-12 <i>araC</i> PBAD |
| iment of th                                     |
| gnment of th                                    |
| lignment of th                                  |
| alignment of th                                 |
| s alignment of th                               |
| es alignment of th                              |
| ices alignment of th                            |
| ences alignment of th                           |
| uences alignment of th                          |
| quences alignment of th                         |
| equences alignment of th                        |
| sequences alignment of th                       |
| le sequences alignment of th                    |
| ide sequences alignment of th                   |
| otide sequences alignment of th                 |
| eotide sequences alignment of th                |
| sleotide sequences alignment of th              |
| icleotide sequences alignm                      |
| nucleotide sequences alignment of th            |
| icleotide sequences alignm                      |
| A nucleotide sequences alignm                   |
| MA nucleotide sequences alignme                 |
| 34. DNA nucleotide sequences alignment          |

|     | 100                                                                                  | 100                        |     |     | 200                                                                                      |   | 200                                                                                     |            | 0                                           | 300               | 300                                                                                                     |     |     | 400                                                                                   | 400                                                                                   |     |     |                                                                                           | 200                                                                              |     |        | 600                                                                               |
|-----|--------------------------------------------------------------------------------------|----------------------------|-----|-----|------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------|------------|---------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------|-----|-----|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----|-----|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----|--------|-----------------------------------------------------------------------------------|
| 100 | GCAAAGT                                                                              | GCAAAGT                    | 100 | 200 | TACAGAA                                                                                  |   | TACAGAA                                                                                 | 300        |                                             |                   | TTTCTTC                                                                                                 | 300 | 400 | AACGCCG                                                                               | AACGCCG                                                                               | 400 | 200 | GTGAAAA                                                                                   | GTGAAAA                                                                          | 200 | 600    | AATGGTA                                                                           |
| •   | TATGGCATA                                                                            | <br>TATGGCATA              | •   | •   | CCGCTTTGT                                                                                |   | CCGCTTTGT                                                                               | • •        |                                             | GACAAT 166        | GACAATTGG                                                                                               | •   | •   | GGCGGGTTT                                                                             | GGCGGGTTT                                                                             | •   | •   | CAGGGGGTG                                                                                 | CAGGGGGTG                                                                        | •   | •      | AGGCTCGCG,                                                                        |
| 80  | TAAAAATGC                                                                            | <br>TAAAAATGC              | 80  | 180 | GCTTTGGTC                                                                                |   | GCTTTGGTC                                                                               | 780<br>280 | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -     | IIIIIIIII         | TGCAATATG                                                                                               | 280 | 380 | CCATCTGGT                                                                             | CCATCTGGT                                                                             | 380 | 480 | ATTCGCGGT                                                                                 | ATTCGCGGT                                                                        | 480 | 280    | GTCATCCGG                                                                         |
| •   | ATCTTATGG                                                                            |                            | •   | •   | TTTGTCATG                                                                                |   | TTTGTCATG                                                                               | • •        | ようかんかいかん かん                                 |                   | AATGTCTGA                                                                                               | •   | •   | GTTTAACGC                                                                             | GTTTAATGC                                                                             | •   | •   | PATCTCACCATT                                                                              | AATCTCACC                                                                        | •   | •      | ACTACGGTC                                                                         |
| 09  | IGGAGAAACAGTAGAGAGTTGCGATAAAAAGCGTCAGGTAGGATCCGCTAATCTTATGGATAAAATGTTATGGCATAGCAAAGT |                            | 09  | 160 | : NATCAATGTGGACTTTTCTGCCGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTTGGTCCCGCTTTTGTTACAGAA |   | :AATCAATGTGGACTTTTCTGCCGGTGATTATAGACACTTTTGTTACGCGTTTTTGTCATGGCTTTTGGTCCCGCTTTGTTACAGAA | 160<br>260 |                                             |                   | CAGTGACGG                                                                                               | 260 | 360 | ATGAAAAGTATGGCTGAAGCGCAAAATGATCCCCTGCTGCTGCGGATACTGGTTTAAGGCCCATCTGGTGGCGGGTTTAACGCCG | IATGAAAAGTATGGCTGAAGCGCAAAATGATCCCCTGCTGCCGGGATACTCGTTTAATGCCCATCTGGTGGCGGGTTTAACGCCG | 360 | 460 | raictcgatttttttatcgaccgaccgctgggaatgaaaggttatatctcaatctcaccattcgcggtcaggggggtggtgaaaa<br> | IAICICGALTITITITITITALCGACCGACCGCTGGGAATGAAGGTTATTCTCAATCTCACCATTCGCGGTCGGGGGGGG | 460 | 260    | TGTCTGCCGACCGGGTGATATTTGCTGTTCCCGCCAGGAGATTCATCACTACGGTCGTCATCCGGAGGCTCGCGAATGGTA |
|     | GTCAGGTAG                                                                            |                            | •   | •   | GACACTTTT                                                                                |   | GACACTTTT                                                                               |            | ָּהָרְאָרָאָרָאָרָאָרָאָרָאָרָאָרָאָרָאָרָא |                   | Taaaagacg                                                                                               | •   | •   | cccrecrec                                                                             | CCCTGCTGC                                                                             | •   | •   | aatgaaagg<br>                                                                             | AATGAAAGG                                                                        | •   | •      | CCGCCAGGA<br>          <br>CCGCCAGGA                                              |
| 40  | ATAAAAAGC                                                                            |                            | 40  | 140 | GTGATTATA                                                                                |   | GTGATTATA                                                                               | 140<br>240 | ָרְעָרֶרָעָרָעָרָעָרְעָּרְעָּרָ             |                   | AAGAGCCAG                                                                                               | 240 | 340 | aaaatgatc                                                                             | AAAATGATC                                                                             | 340 | 440 | Accecrese                                                                                 | ACCGCTGGG                                                                        | 440 | 540    | TTTGCTGTTC            TTTGCTGTTC                                                  |
| •   | AGAGTTGCG                                                                            | HILLILLI                   | •   | •   | TTTTCTGCC                                                                                |   | TTTTCTGCC                                                                               | • •        |                                             |                   | GTTAGCGAG                                                                                               |     |     | CTGAAGCGC                                                                             | CTGAAGCGC                                                                             | •   | •   | TATCGACCG                                                                                 | TATCGACCG                                                                        | •   | រ<br>• | GGTGATATT                                                                         |
| )   | AAACAGTAG                                                                            | HIIIIIIII<br>AAACAGTAG     |     |     | AATGTGGAC                                                                                |   | aatgiggac                                                                               |            |                                             | Accest 1 <u>e</u> | ACCGGTTTG                                                                                               |     |     | AAAGTATGG                                                                             | AAAGTATGG                                                                             |     |     | CGATTTTT                                                                                  | CGATTTTTT                                                                        |     |        | TGCCGACCG                                                                         |
| 20  | GGTATGGAG                                                                            |                            | 20  | 120 |                                                                                          |   |                                                                                         | 220        |                                             | H                 | AGCGGGGTT                                                                                               | 220 | 320 |                                                                                       |                                                                                       | 320 | 420 |                                                                                           |                                                                                  | 420 | 520    | H - H                                                                             |
| •   | coli K-12 1 CCAAAAAAACGGGTA7                                                         | coli B/r 1 ccaaaaaacgggta: | •   | •   | 101 GTGACGCCGTGCAAA                                                                      |   | 101 GTGACGCCGTGCAAA                                                                     | • •        | ענוי ע ענוינאנינאט                          |                   | 201 TGCTTTTAATAAGGGGGGTTACCGGGTTTGGTTAGCGAGAAGAGGCCAGTAAAAGACGCAGTGACGGCAATGTCTGATGCAATATGGATTGGTTTCTTC | •   | •   | 301 TCTGAATGG <u>T</u> GGGAG1                                                         | 301 TCTGAATGGCGGGAG                                                                   | •   | •   | 401 ATTGAGGCCAACGGTT                                                                      | 401 ATTGAGGCCAACGGT                                                              | •   | •      | 501 ATCAGGGACGAGATT<br>                                                           |
|     | K-12 1 CC                                                                            | 9/r 1 cc                   |     |     | 101 GT                                                                                   | = | 101 GT                                                                                  |            | £                                           | 11                | 201 TG                                                                                                  |     |     | 301 TC                                                                                | 301 TC                                                                                |     |     | 401 AT                                                                                    | 401 AT                                                                           |     |        | 501 AT<br>  <br>501 AT                                                            |
|     | coli                                                                                 | coli ]                     |     |     |                                                                                          |   |                                                                                         |            |                                             |                   |                                                                                                         |     |     |                                                                                       |                                                                                       |     |     |                                                                                           |                                                                                  |     |        |                                                                                   |

### FIGURE 34. (continued)

|     | 700                                                                                             | 700                                                                                    |     |     | 800                                                                                      |   | 800                                                                                      |     |     | 900                                                                                     | 006          |     |      | 1000                                                                                    |          | 1000                                                                                  |      |        | 1100                                                                                                                   |                                         | 1100                                                              |      |      | 1200                                                                                                 |   | 1200                                                                  |      |      |                                                                                                     |          |                                                                                    |      |
|-----|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|-----|------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------|-----|-----|-----------------------------------------------------------------------------------------|--------------|-----|------|-----------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------|------|--------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|------|------|------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------|------|------|-----------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------|------|
| 700 | AAGCG                                                                                           | AAGCG                                                                                  | 700 | 800 | SCAAT                                                                                    | Ξ | SCAAT                                                                                    | 800 | 900 | SCAGA                                                                                   |              |     | 1000 |                                                                                         | $\equiv$ |                                                                                       | 1000 | 1100   |                                                                                                                        |                                         |                                                                   | 1100 | 1200 |                                                                                                      |   |                                                                       | 1200 | 1300 |                                                                                                     |          |                                                                                    |      |
| •   | TTACTTTCGTCCGCGCCTACTGGCATGAATGGCTTAACTGGCCGTCAATATTTGCCAATACGGG <u>T</u> TTCTTTCGCCCGGATGAAGCG | TTACITICGTCCGCGCGCTACTGGCATGATGGCTTAACTGGCCGTCAATATTTGCCAATACGGGGTTCTTTCGCCCGGATGAAGCG | •   | •   | ITICAGCGACCTGTTTGGGCAAATCATTAACGCCGGCAAGGGGAAGGGCGCTATTCGGAGCTGCTGGCGATAAATCTGCTTGAGCAAT |   | TTCAGCGACCTGTTTGGGCAAATCATTAACGCCGGGCAAGGGGAAGGGCGCTATTCGGAGCTGCTGGCGATAAATCTGCTTGAGCAAT | •   | •   | GCATGGAAGCGATTAACGAGTCGCTCCATCCACCGATGGATAATCGGGTACGCGAGGCTTGTCAGTACATCAGCGATCACTGGCAGA |              |     | •    | TAICGCCAGCGTCGCACACACATGTTTGCTTGTCGCCGTCGCGTCTCTCTTTTCCGCCAGCAGCAGTTAGGGATTAGCGTCTTAAGC |          | TATCGCCAGCGTCGCACAGGTTTGCTTGTCGCCGTCGCGTCTGTCACATCTTTTCCGCCAGCAGTTAGGGATTAGCGTCTTAAGC | •    | •      | CAACG <u>C</u> AT <u>TAGT</u> CAGGCGAAGCTGCTTTTGAGCAC <u>T</u> ACCCGGATGCCTATCGCCACCGTCGGTCGCAATGTTTGGGTTTTTGACGATCAAC |                                         | CAACGTATCAGCCAGGCGAAGCTGCTTTTGAGCACCACCCGGATGCCTATCGCCACCGTCGGTCG | •    | •    | GAGTATTTAAAAAATGCACCGGGGCCAGCCCGAGCGAGTTT <u>T</u> CGTGCCGGTTGTGAAGAAAAATGAATGATGATGTGGCCGTCAAGTTGTC |   | GGGTATTTAAAAATGCACCGGGGCCAGCCCAGCGAGTTCCGTGCCGGTTGTGAAGAAAAAGTGAATGAA | •    | •    | ACALTATGCA                                                                                          |          | GAATUAGACAATTGACGGCTTGACGGAGTAGCATAGGGTTTGCAGAATCCCTGCTTCGTCCATTTGACAGGCACATTATGCA | •    |
| 680 | racege <u>r</u> tetite                                                                          | racegeerrer                                                                            | 680 | 780 | TGCTGGCGAT                                                                               |   | TGCTGGCGAT                                                                               | 780 | 880 | TCAGTACATC                                                                              |              | 880 | 980  | CAGCAGTTAG                                                                              |          | CAGCAGTTAG                                                                            | 980  | 1080   | GTCGCAATGT                                                                                                             |                                         | GTCCCAATGT                                                        | 1080 | 1180 | AGTGAATGAT                                                                                           |   | AGTGAATGAT                                                            | 1180 | 1280 | ATTTGACAGG                                                                                          |          | ATTTGACAGG                                                                         | 1280 |
| •   | TATTIGCCAA                                                                                      | TATTTGCCAA                                                                             | •   | •   | CTATTCGGAG                                                                               |   | CTATTCGGAGG                                                                              | •   | •   | CGCGAGGCTTC                                                                             | CGCGAGGCTTC  | •   | •    | ATCTTTTCCGC                                                                             |          | ATCTTTTCCGC                                                                           | •    | •      | GCCACCGTCG                                                                                                             |                                         | GCCACCGTCG                                                        | •    | •    | rctgaagaaaa                                                                                          |   | rgtgaagaaaa                                                           | •    | •    | TGCTTCGTCC                                                                                          |          | TGCTTCGTCC                                                                         | •    |
| 099 | TGGCCGTCAATATTT                                                                                 | гессетсал                                                                              | 099 | 160 | 3GGAAGGGCCG                                                                              |   | SGGAAGGGCG                                                                               | 160 | 860 | PATCGGGTA                                                                               |              | 860 | 960  | GTCTGTCAC                                                                               |          | GTCTGTCAC                                                                             | 960  | . 1060 | GATGCCTAT                                                                                                              |                                         | GATGCCTAT                                                         | 1060 | 1160 | cereceer                                                                                             |   | cereceer                                                              | 1160 | 1260 | GCAGAATCC                                                                                           |          | GCAGAATCC                                                                          | 1260 |
| •   | ATGGCTTAAC                                                                                      | ATGGCTTAAC                                                                             | •   | •   | GCCGGGCAAG                                                                               |   | GCCGGGCAAG                                                                               | •   | •   | CACCGATGGA                                                                              | CACCGATGGA1  | •   | •    | этсессетсе                                                                              |          | Freecearce                                                                            | •    | •      | AGCACIACCCG                                                                                                            | ======================================= | AGCACCACCC                                                        | •    | •    | GAGCGAGTTI                                                                                           |   | GAGCGAGTTC                                                            | •    | •    | SCATAGGGTTT                                                                                         |          | SCATAGGGTTT                                                                        | •    |
| 640 | actggcatgaatg                                                                                   | ACTGGCATGA                                                                             | 640 | 740 | AATCATTAAC                                                                               |   | AATCATTAAC                                                                               | 740 | 840 | TCGCTCCATC                                                                              | TCGCTCCATCCA | 840 | 940  | ATGTTTGCTT                                                                              |          | ATGTTTGCTT                                                                            | 940  | 1040   | SCIGCITITE                                                                                                             |                                         | 3CTGCTTTTG                                                        | 1040 | 1140 | 3GGCCAGCC                                                                                            |   | 3GGCCAGCCC                                                            | 1140 | 1240 | rgacggagtag                                                                                         |          | raActicaAGTAC                                                                      | 1240 |
| •   | CCGCGCGCCT                                                                                      | וככפכפכפככב                                                                            | •   | •   | TGTTTGGGCA                                                                               |   | TGTTTGGGCA                                                                               | •   | •   | CATGGAAGCGATTAACGAGTC                                                                   | GATTAACGAG   | •   | •    | GTCGCACAGC                                                                              |          | GTCGCACAGC                                                                            | •    | •      | GICAGGCGAA                                                                                                             |                                         | GCCAGGCGAA                                                        | •    | •    | AAAATGCACC                                                                                           |   | AAAATGCACC                                                            | •    | •    | ATTGACGGCT                                                                                          |          | ATTGACGGCT                                                                         | •    |
| 620 | Tractricerc                                                                                     | Tracttrees                                                                             | 620 | 720 | TTCAGCGACC                                                                               |   | TTCAGCGACC                                                                               | 720 | 820 | GCATGGAAGC                                                                              | GCATGGAAGC   | 820 | 920  | TATCGCCAGC                                                                              |          | TATCGCCAGC                                                                            | 920  | 1020   | CAACGCATIA                                                                                                             | _<br>=<br>=<br>=                        | CAACGTATCA                                                        | 1020 | 1120 | GAGTATTTAA                                                                                           |   | GGCTATTTAA                                                            | 1120 | 1220 | GAATCAGACA                                                                                          |          | GAATCAGACA                                                                         | 1220 |
| •   | E.co   K-12 601 TCACCAGIGGT<br>                                                                 | 601 TCACCAGTGGGT                                                                       | •   | •   | 701 CACCAGCCGCAI                                                                         |   | 701 CACCAGCGGCAI                                                                         | •   | •   | TGTTACTGCGGC                                                                            |              | •   | •    | 5                                                                                       |          | CAGCAATTTTGA                                                                          | •    | •      | 1001 TGGCGCGAGGAC                                                                                                      |                                         | 1001 TGGCGCGAGGAC                                                 | •    | •    |                                                                                                      |   | 1101 TCTATTTCTCGC                                                     | •    | •    | 1201 ATAATTGGTAACGAATCAGACAATTGACGGCTTGACGGAGTAGGATAGGGTTTGCAGAATCCCTGCTTCGTCCATTTGACAGGCACATTATGCA |          | 1201 ATAATTGGTAAC                                                                  | •    |
|     | 1 109                                                                                           | 601 I                                                                                  |     |     | 701 C                                                                                    |   | 701                                                                                      |     |     | 801 T                                                                                   | 801 T        |     |      | 901 C                                                                                   | _        | 901<br>C                                                                              |      |        | 1001                                                                                                                   | _                                       | 1001                                                              |      |      | 101                                                                                                  | _ | 101                                                                   |      |      | 201 A                                                                                               | — ?<br>? | 4 TO7                                                                              |      |
|     | E.coli K-12                                                                                     | E.coli B/r                                                                             |     |     |                                                                                          |   |                                                                                          |     |     |                                                                                         |              |     |      |                                                                                         |          |                                                                                       |      |        | • •                                                                                                                    |                                         | e                                                                 |      |      | đ                                                                                                    | , | •7                                                                    |      |      |                                                                                                     | •        | -1                                                                                 |      |

01 WAR 2005

PCT/US2003/026883

FIGURE 35. Construction of the regulatable lysis system vector pYA3647



FIGURE 36. Construction of the DNA vaccine vector pYA3650:



### FIGURE 37. Steps in the construction of pYA3650

### A. Construction of pYA3587.



### B. Construction of pYA3611.





### FIGURE 38. DNA sequence of DNA vaccine vector pYA3650 A. (1-3300 bp)

| 100 ACGGATCCGC 100 CGGTAAATGG 200 ACGTCAATGG 300 TGGCCCGCCT 400 TTTGGCAGTA 500 | CCAACGGGAC 600<br>CTAACTAGAG 700<br>GCTCGGATCC 800<br>CGACTGTGCC 900<br>NGAGGGAATT 1000<br>CATGCTGGGG 1100 |                                                                                  | AGCAGACTTA 1800<br>CCGGGCGAAA 1900<br>GCGAGCCTCC 2000<br>ACCCCCTGAC 2100<br>AACCCGCCAC 2200<br>CAATGTCCA 2300<br>CAAAGCGGGA 2400<br>ATGCCATAGC 2500 | ALTCTGAGAA 2600 TCCTTTTTGC 2700 TGGGAAAGTA 2800 TGGGCGCTGG 2900 GCCTCGAACA 3000 CAGCGTTGGC 3100 GCGAACTTCC 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TITIGITIAA A ACATAACITIA CETITICCATIG TGACGGIAAA GIGAIGGGI                     | GGCACCAAAA<br>AGCTCTCTGG<br>TTGGTACCGA<br>TGATCAGCCT<br>CCTAATAAAA<br>CAATAGCAGG                           |                                                                                  | TGCGCTTCA I GATACCATTC ATTTTTCACC ATCGCGCTTA I GAGAAGAAC CATTCTGTAA ACACTTTGCT I                                                                    | GGGCTRGCCTA GCTCTGCCTA GCCAGCTGGG TGCTTCTATC CACATTTCTG TGCATTTCTG TGTATTCTG |
| 80<br>CGGATGGCCT<br>GTTCCGCGTT<br>CCAATAGGGA<br>TTGACGTCAA                     | AGTITICITITI ATATAAGCAG AAACTIAAGC TIAAACCCGC TAAACCCGC ACTGCGAAGA                                         |                                                                                  | ATGCGGCTGG<br>ACCACTGGT<br>CTCGTCCCTG<br>GTTGGCCTCA<br>CCACCATTCA<br>TTATTAAAAG<br>GCACGGCGTC                                                       | CCGTTTTTTT<br>TAAAATGCT<br>AAGCTGCTAA<br>AAACCATGCG<br>GGTTGATCTA<br>CATATCGTGA<br>AACCGGAAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 70<br>  GCCATCCTGA<br>  CATATATGGA<br>  CATAGTAACG<br>  ACGCCCCTA              | CCTCAATGGG GCTGGAGGTCT GCTGGGCCCGT AGGGGCCCGT AGGGGGCGGAGG                                                 | GCCAGCTAGA<br>GGCTTTTTTT<br>TGTCTGATTC<br>TTAAATACTC<br>TAATGCGTTG<br>GCTGGCGATA |                                                                                                                                                     | TTCTCCATAC TTTCCGGCGC TACATCAATG GATCTGGTTA GTGCGCGTC GAAAGGTGCA GCAGCGCTG TGGAACGTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60<br>TATGCGAAGG<br>GTTCATAGCC<br>CGTATGTTCC<br>TATGCCAAGT                     | ACCCATTGA<br>GCGTGTACGG<br>ACCCAGCTG<br>CTCGAGTCTA<br>CTCGGAAGG                                            | AACCGGAATT CTAATGAGCG AGCCGTCAAT GGTGCATTTT TTCGCCTGAC GCTGTGCGCAC               | 21.444044                                                                                                                                           | TCTCTACTGT GAAGTCACAA AAGACGTCGA CGCACCTTAC TGTACGATCG ATGGAAAAC TATTGAAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50<br>CAGTCTAGAT<br>GGGGTCATTA<br>TCAATAATGA<br>AAGTGTATCA                     | CCAAGTCTCC TGGGCGGTAG CTATAGGGAG GTGGCGGCCG GTGGCGGTGGG                                                    | TCTAGCCCGC TCTAGCCCGC TACTCCGTCA GGCTGGCCCC CAAAAGCAGCAA                         |                                                                                                                                                     | TTATCGCAAC<br>GCTCCAGGGC<br>CCGAAACTGA<br>ATGTATTCTG<br>ACCTGGCGGT<br>GCTCCCGTC<br>GCACCACGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40 GCGTTAACTG AATCAATTAC CCCATTGACG GCAGTACATC                                 | ACGGGGATTT<br>TTGACGCAAA<br>ATACGACTCA<br>ATCCCCCGTG<br>ATTCTGGGGG                                         |                                                                                  | CTTGCCCGGC<br>GTTAAGCCAT<br>GGCGCGAACA<br>TCATTCCCAG<br>CAGGGGATCA<br>TTTTACTGGC                                                                    | CTGACGCTTT<br>GGCCAACGAA<br>CCAGAACGTTA<br>GGCGACGTTA<br>AAGTTTCACT<br>TTACGTTAAA<br>CTGGCGGAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30<br>CCAGATATAC<br>TATTAATAGT<br>ACGACCCCCG<br>TGCCCACTTG                     | GGTTTGACTC<br>CTCCGCCCCA<br>ATCGAATTA<br>TTCTCCAGAT<br>TTGTTTGCCC<br>GTGTCATTCT                            | 558888                                                                           | TACCCGATIA<br>CGCCCTTCCC<br>TTGACGCCA<br>AATCTCTCTT<br>ATATAACCTT<br>ATCCCGGCAG<br>TCACTGCGTC                                                       | CGGATCCTAC<br>CGTGTTCAGG<br>CGGTAGAGAT<br>TATTGATGCC<br>GGTCAGGGGC<br>TGGAAGAGG<br>TGCTCCAACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20   GATGTACGGG ATTGACTAGT TGACCGCCCA TACGGTAAAC CCAGTAAAC CCAGTACATG          | CGTGGATAGC GTCGTAACAA TTACTGGCTT TGTGGTGGAA CAGCCATCTG GTCTGAGTAG                                          |                                                                                  | AAGCCICGCC<br>CTCCGAATAC<br>TTGGCAATAC<br>CGTAGTCGTG<br>GAGATTGCGG<br>GACATTGCCG<br>GACAAAAACG                                                      | ATAAGATTAG<br>GGATAAATTT<br>GGGGAAGAAC<br>GTTCTGTGCA<br>AGCGCGCTTT<br>ACCATCAAG<br>CCATCAAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10 GACTCTTCGC GACATTGATT CCCGCCTGGC GTGGACTATT GGCATTATGC                      |                                                                                                            |                                                                                  | ATCIACTORC<br>TCGCCAGCAG<br>GAAACCCGTA<br>GGATGACGAC<br>CGCGAATGGT<br>CAGATGGGCG<br>TATTGCATCA                                                      | ATTTTATCC<br>CAAACTAAGT<br>CGCACTACTG<br>GAACGTAATG<br>GGCCGCTGGT<br>ATTAGGCCC<br>GCAACGGTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 101<br>201<br>301<br>401                                                       | 501<br>601<br>701<br>801<br>901                                                                            | 1101<br>1201<br>1301<br>1401<br>1501<br>1601                                     | 1701<br>1801<br>1901<br>2001<br>2101<br>2201<br>2301<br>2401                                                                                        | 2501<br>2601<br>2701<br>2801<br>2901<br>3001<br>3101<br>3201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Append his house

## FIGURE 38. (continued) DNA sequence of DNA vaccine vector pYA3650 B. (3301- 6759bp)

4500 4600 4700 4800 4900 5000 5200 5300 5400 5100 5500 5600 5700 5800 5900 6100 6000 6200 6300 6400 TGGCGCACAG TATTTATCAC ATCGATCGTG CTACAGGACG CITITGAICT GGAIGCGCTA AAAGCGCTCG AIATCAICGI TGGATTGATG CGGCTTCTAC GCTGCGCATG CTCTCGACGC CGTGCTGGCG TTTTCTACCT AACTGTACCG 9090909909 TGAACGCAAA CTCGATAACG AAGCTGAACA TTAAGATGAC GCGTCGGCGC GTGGCCGAAA TTGGCGGATG CCGCCGGGAG CGGATTTGAA CGTTGCGAAG CGTAGTCTAG CACCTGACCC AACGAAAGGC GCGTTTCTAC GGCAAGCCGC AGGCGCGTCA GTGCTTTTAG CGGGTGTCGG TAATTTAAAA AGTTAGGCCA CCACTTCAAG AACTCTGTAG CTTCCAACAT TATTIGITTA AGCGTCAGAC CCCGTAGAAA AGATCAAAGG GATAGTTACC AGAGCTACCA GGAAAAACGC AAAAACTTTC TGTTAACGTA GAAACGGTCT CATTGAAGAC AAACTGCGCG CTTTAGGTGC AAATATTGAG CGTGTGAAAG GCGAATAAGA ATTCAGGAAA AAAACGCTGT CGCGATTICG ACGCIATICG CCCTGTTITC TGTGGGCGGT GACTGGGTAT CCGTCGCGAC CTATCAGGCC GCCTCCGGCG TCTTCCGCAA TTCTTGATAT GGAAGCCTGA TCCCCTGGAT CGACAACAG TTGTGTGTGC CCATTCCGAC GGTGGAAGAA CTGCTGGCGG CACATAATCC TCGTCTGCGT TAGGCGACCA GITGITATGG GGCGCCGCCG AGCCGCTGCG TCGAATGCTG CGCCAGITGG GTACATAGAC TCGCTCCGAA ATTAAAGAAC ACTTAAATTA TCTACTAAAG GAATCTTTAG TCAAGTTTAT CGGCAGTAGC GCGGTGGTCC CATCAAATAA ACCCTGATAA ATGCTTCAAT AATGGAAGAT GGAAATGTGC GCGGAACCCC CTIGGCIGIT TCCTGACGGA TGGCCTTTTT ACGIGCIAAA ACTICAITIT GIGGIIIGII IGCCGGAICA TGTGATGCTC GTCAGGGGGG CGGAGCCTAT AACGACCTAC ACCGAACTGA GATACCTACA CAGCCAGATA GTCCGAAGGC GTTTATCACC CACGGTGTTG TGGTTGATCG TGAAGACCTT CGAAGAGTGG AAAGGCCAGG CGGAAACCAA CAAGATTCTC AATACTGCCT CTGTGATTCC GGTTGATGGT CGCCGGTTGG GAGAGTAGGG AACTGCCAGG GTCTCATGAG TACCGGGTTG GAGAGCGCAC TCCTGGTGGC GGCGGCGATT TCTCGCGGCA AAATTATCTG CCGTAACGCG GGACATCGAA GTCGGCGAAG ACTGGATTAG CCTGGATATG CATGGCAAAC CGCATCCGGC ATTCCCGACC GATATGCAGG CCCAGTTCAC GCTGTTGAAC CTGGTGGCAG AAGGGACCGG GCCGAAATCG AAAGCAATAC CGTTATTTGT GGGACGACGG GCAGGGTTAC AACAATGGCG GGCGACGCCG TTCAGCCTGA TACAGATTAA ATCAGAACGC AGAAGCGGTC TGATAAAACA GTTTGCCTGG CGTTCCACTG ACGTTGACTA GAIGGGIGAG CGIAGGAICI ICCAITAITG AAGCAITIAI CAGGGITAIT TAGGACAAAT GGCAGGACGC CCGCCATAAA CTGCCAGGCA TCAAATTAAG CAGAAGGCCA CACTTTTCGG CAATAATAGC GCTACCAGCG GTGTAGCCGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT GTCGGAACAG TATTGCGGAA GGTAGAGGAG AAAGCGGATG CGACGGCCTG CCGATGAACT ACCGCTGGCG GGTGACCGGC CTCCCCATGC TCTAAATACA TTCAAATATG TATCCGCTCA TGAGACAATA CTCTCCTGAG TCCCGGACGG CGCGGGGTTG TITGATAATC TCATGACCAA AATCCCTTAA CGTGAGTITT AAAAACCACC GCTTGGAGCG ATACAGGTGG ATAAATGCTT TGTCCTTCTA AAGCGGCAGG CGTCGALTTT CCTTTTGCTC ACATGTTCT ACGTGATTAC GGCCATGTCG TGGCTGGCTG GCTGGCGCGG AATGGTCGGC TCTGTTCTCA TGCAACGCAT CACCGGCACG GGCGCCGATT ATACCAACGA AATTTATCCA AAGCTGCGCG CTGGGGGGTC TCTTTGCCCA TAATCTCGTT ACTITGGCGT CACAGCCAGG CGTTCACCAT CAAGCTGAAA AAAGAGGTAT 2002002222 CGCCGATGGT AGTGTGGGGT TICGITITAT CIGITGITIG ICGGIGAACG TTGCAAACAA GGGATCGATC IGTGCGGTAT ITCACACCGC CTCATGAGAC AATAACCCTG ACACAGCCCA CTGACTTGAG TACCAAATAC CCCACCTTCG GCGACACCTC CCATTATTAT TCTCGACCCG GTCAACCAGG GGGCGCGCAC TGCATCAGCA AGCCTGGTGC CCCAGATGGG TCAGTTGTAT TGACCCGCAG CGGCGAGCTG CCGGTTGATA ACGATCGTGA TATCACTATG CGCGAATTAA GGGTCGATCG GGAAATTCTT TTCTGCGCGT AATCTGCTGC TGGCTTCAGC AGAGCGCAGA GGGTTCGTGC CIGCIAAICC IGITACCAGI AAGGCGGACA CCTGTCGGGT TTCGCCCACCT GGTTCCTGGG CTTTTGCTGG TGAGCCGTAT GCGTTTACCG AACGCCGTAG TATGTATCCG GCTGAACGGG CGAAGGGAGA ACGCTGGAGC GTGCCAGAGC CCGATCTGCG ACAGGCGCG GAGCTGTTAA TCGTATCGAA ACCGGTACTT GTTGATGTCG TGGGGCCAGA GTTCTTGTCG CCGTCGACTT TTAACTATGA ATACACAATT TCAGAAGTGA GACTGGGCCT GAGGGTGGCG TGTTTATTT CAGAAACGTC AACCAGTCAC TACATTCAAA GAAGATCCTT CGAAGGTAAC GATCCTTTTT ATACCTCGCT CCACGCTTCC CAGCGGTCGG TCTTTATAGT AAACTGCGTG GCTACGAACG GGTTTTATCG CCCAGTTTGG GACCTGCCAG AAAGATGATG TTAGCCTGAT CCATATGCGC GTTACGGCAT GCCAGAGCCG GTGGTGCCGA GTTATGGCAA GCTGCGCTGT CATGCCGAAC TCAGTCGAAA CAACGGCCCG GGCAGCCCTG TTTTTCTAAA CTGCACGATA 5201 AGAGAAGATT AAACTCTTTT CACAGGTAAA GGATCTAGGT ACTCTTTTTC CACCGCCTAC GGATAAGGCG TGAGAAAGCG ACGCCTGGTA CAGCAACGCG ATCTTCTTGA 3801 3901 4201 4301 4401 4501 4001 4101 4601 4701 4801 4901 5101 5401 5601 5001 5301 5901 6001 6101 6201 5501 5701 5801 6501 6301 6401



### FIGURE 39. Oligo nucleotide sequence of synthesized *rrfG* TT and multiple cloning site of pYA3650

### Synthesized *rrfG* TT oligo sequence:

5' AAC TGC AGT CTA GAT TAT GCG AAA GGC CAT CCT GAC GGA TGG CCT TTT TGT TTA AAC GGA TCC GC 3'

### Multiple Cloning Site of pYA3650:

AATTAATACG ACTCACTATA GGGAGACCCA AGCTGGCTAG CGTTTAAACT T7 promoter/priming site

TAAGCTTGGT ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGGAATTCTG KpnI

CAGATATCCA GCACAGTGGC GGCCGCTCGA GTCTAGAGGG CCCGTTTAAA

NotI XhoI Stop codon

CCCGCTGATC AGCCTCGACT GTGCCTTCTA GTTGCCAGCC ATCTGTTGTT

TGCCCCTCCC CCGTGCCTTC CTTGACCCTG GAAGGTGCCA CTCCCACTGT

CCTTTCCTAA TAAAATGAGG AAATTGCATC
BGH poly A signal

### FIGURE 40. DNA and amino acid sequences of GTG-murA gene of pYA3650

| H                                     |        | ප      |                   | U     |        | Ε       | 4              |         | H      |          |      | U           |    |      | ပ        |        |      | <sub>O</sub> |                 |      | Æ           |        |      | <sub>o</sub> |          |      | ບ              |        | E           |                                                                                 |          | E        | 4                                                                                                                |           | Æ         |         |
|---------------------------------------|--------|--------|-------------------|-------|--------|---------|----------------|---------|--------|----------|------|-------------|----|------|----------|--------|------|--------------|-----------------|------|-------------|--------|------|--------------|----------|------|----------------|--------|-------------|---------------------------------------------------------------------------------|----------|----------|------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------|
| riri 1                                |        | S CTG  |                   | AT    | Σ      |         | 5<br>2 α       | l       | r CGT  |          |      | N ACG       | H  |      | ACC      | H      |      | 3 GTG        | >               |      | 8           | O      |      | r<br>ccc     | д        |      | A AAC          | z      | ٤           | Į,                                                                              | 4        |          | ,<br>5                                                                                                           |           | TAA       | *       |
|                                       | ı      | CAG    |                   | ACC   | E      | Ś       | ე<br>5 ∢       |         | GGT    | O        |      | ACC         | H  |      | 8        | ט      |      | CIG          | Ļ               |      | ຣີ          | Ø      |      | GAT          | Ħ        |      | GAA            | М      | Ž           | <b>S</b> :                                                                      | 4        |          | ์<br>วั>                                                                                                         |           | 3         | M       |
| ATC                                   |        | AGC    |                   |       | ×      |         | 3<br>5         |         | GAT    |          |      | ပ္ပ         | Ö  |      |          | œ      |      | TTC          | [z <sub>4</sub> |      | 8           | Д      |      | ပ္ပ          | ф        |      | E              | ㄸ      | ŧ           | 5                                                                               | 크        |          | 5<br>5 >                                                                                                         |           | ဗ္ဗ       | ש       |
| ij                                    | д      | E      |                   | GII   |        |         | AIC<br>I       | ı       | GIC    | >        |      | GA          | M  |      | 55       | ט      |      | ACT          | H               |      | S           | ద      |      | ပ္ပ          | Ø        |      | ត្ត            | >      | Ę           | ;                                                                               | >        | 5        | 5<br>5<br>6 E                                                                                                    | 4         | AAA       | ×       |
| CTG                                   | ы      | S. S.  | ч                 | SE    | H      |         | ۲<br>ا         |         | TCC    | വ        |      | ပ္ပံ        | Ø  |      | AGC      | တ      |      | GGI          | ט               |      | SEC         | н      |      | ACC          |          |      | Acc            | T      |             | 5 ,                                                                             |          |          | ֓֞֝֝֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֓֓֡֓֓֓֓֓֡֓֜֝֡֓֓֡֓֡֓֡֓֡                                                              |           | GTG       | >       |
| GCT                                   | Ø      | AAG    |                   |       | Ω      | Ę       | ָלֵ<br>בַּ     | ı       | GCT    | Ø        |      | Ę           | ы  |      | AIT      | н      |      | ACC          | E               |      | AAA         | ×      |      | g            | 24       |      | GA.            | 凶      | É           | ر<br>: د                                                                        | I,       | Ş        | 3<br>3<br>5                                                                                                      | ,         | CGT       | œ       |
| Ę,                                    | Æ      | ATG    | Σ                 | TAC   | ×      | Ę       | 5<br>5<br>0    | ı       | AAA    | ×        |      | ACC         | EH |      | Æ        | ×      |      | 3AA          | M               |      | Š           | _      |      | GIA          | >        |      | C              |        | Ē           | 5 (                                                                             | ر        | ć        | § 6                                                                                                              | 1         | GAG       | M       |
| AAT                                   | z      | ដ្ឋ    | ß                 | CC    | Д      | Ç       | ე<br>ვ         | ı       | GIT    | >        |      | ថ្ង         | Æ  |      | ဗ္ဗဗ္ဗ   | Æ      |      | ATC          | н               |      | S<br>E<br>E | ч      |      | AAC          | z        |      | AIC            | н      | Ē           | ;                                                                               | <b>-</b> | ٢        | 5                                                                                                                | <b>:</b>  | ATT       | ы       |
| \$                                    | _      | P S    | т<br>81           | ව්    | Æ      | 111     | ا<br>م ر       | 141     | TAC    | >-       | 171  | ij          | Æ  | 201  | g        | Ö      | 231  | GGI          | 24              | 261  | GIG         | >      | 291  | GII          | >        | 321  | H              | [24    | /351        | 1 :                                                                             | ۷,       | / 38T    |                                                                                                                  | 7411      | AAT       | z       |
| 61/21<br>GCT A                        | A 151  | HE.    | D T S 1<br>241/81 | IGC   | ט      | 331/    | ¥              | 421/    | 361    | י<br>ניז | 211/ | Ę           | ບ  | 109  | j<br>E   | ۔      | 691/ | EAT          | Δ.              | 781/ | ည္တ         | a!     | 11/8 | SCT          | «        | 196  | -<br>ဗ္ဗ       | ריז    | 1051/351    | ָ<br>נ                                                                          | ;        | 174T     |                                                                                                                  | 1231/411  | GCA AAT 7 |         |
| 299                                   | rn     | GIC    | 5                 | TIC   | Gr.    |         | 5 0            | •       | GAA    | m        |      | AIG         | ~  | _    | ACG      | _      | _    | ဗ္ဗ          | <u>۔</u>        |      | SAC (       | _      | _    | AAG (        | <br>     |      | ×              | _      | - 2         | į,                                                                              | . ·      | Ş        | י<br>ני פ                                                                                                        | ,         | 3GT       | rh      |
| JC 0                                  |        | GAC (  | ^                 | GTA   | _      |         | 7.5            |         | GAA    | _        |      | ב ב         | _  |      | H        | н      |      | CIG (        | Ξ,              |      | SE<br>SE    | L<br>D |      | CCG          | _        |      | 9              | A E G  | Ş           | ָ<br>קר                                                                         | -<br>-   | Ę        | ;<br>;<br>a                                                                                                      |           | Ą         | о<br>П. |
| T H                                   |        | AAA 0  | H                 | AT    | N      | ì       | 50             |         | 5      |          |      | ACC ATC 1   |    |      | 110      | _<br>H |      | GI           | _               |      | ដ្ឋ         | ı<br>ı |      | CGT          | ~        |      | Z.             |        | ,<br>,      | § .                                                                             | 14<br>:- | Ç        | ֓֞֜֜֜֜֞֜֜֜֜֜֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֡֜֜֜֓֓֓֓֡֓֜֜֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֡֡֡                                                     |           | GCT       | ٦.      |
| ð                                     | н      | CTG A  | -                 |       | ν<br>Λ | Ç       | 3 0            | •       | AAA O  |          |      | GIG         |    |      | S<br>S   | H      |      | 000          | -               |      | AT P        | E<br>D |      | AAA O        | <u>μ</u> |      | ğ              | 124    | Ç           | יייי אייייי אייייי                                                              |          | . 5      | ה היה<br>מיה                                                                                                     | ı         | ၁၅၁       |         |
| GTC A                                 | H      | AAA C  |                   |       | 2      |         |                |         | ATC A  |          |      | ACG G       | >  |      | ă        | R<br>R |      | TAT C        | P4              |      | e<br>S      | ы      |      | GGC A        | *        |      | 5<br>5         | V      | ر<br>د<br>د | 5                                                                               | 4        | ç        | ין ניים<br>פים                                                                                                   | •         | CTG C     | æ       |
| S S                                   | N<br>N | CCG A  |                   |       | R<br>D |         |                |         | ACC A  |          |      | S<br>S<br>S | H  |      | <b>₹</b> | N<br>N |      | GIC I        | ×               |      | 2<br>2<br>2 | д<br>Ö |      | CAT G        |          |      | ည<br>ည         | r<br>^ | ξ           | ֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֓֓֓֓                                     | đ        | ξ        | י<br>מ                                                                                                           | ı         | AAA C     | П       |
| ည<br>ည                                | D)     | GTC C  |                   |       | A R    |         | 9 C            |         | GCG A  |          |      | ပ္ပ         | æ  |      | ອ<br>ຊ   | T A    |      | GGT G        | >               |      | ပ္ပ         | o<br>A |      | ATG C        |          |      | S<br>S         | N      | Ç           | ֓֞֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֡֓֡֓֡֓֜֜֡֓֡֓֡֓֡֡֡֡֓֡֓֡֓֡֓֡֡֡֡֡֓֡֡֡֡֡֡ | ₹        | É        | ξ υ<br>5 α                                                                                                       | )         | AC A      | D       |
| <b>8</b>                              | o<br>O | AAC G  |                   | YT G  | Ø      | į       | יה<br>בי       | ı       | S<br>S | Ø        |      | g<br>E      | Ü  |      | Y Y      | H      |      | S<br>S       | ט               |      | S<br>S      | ď      |      | YI A         | Σ        |      | <b>2</b><br>22 | z      | Ş           | ) :<br>?                                                                        | d.       | Š        | 5 4                                                                                                              | :         | Ø<br>₹    | B       |
| ភ<br>ព                                |        |        |                   | E G   | А      | ;<br>;  | ರ∝<br>ಶ        | ਼<br>ਜ਼ | 8      | Ö        | rd.  | ខ្ល         | >  | 덛    | ς<br>G   | А      | ႕    | ន            | ט               | ᅼ    | E F         | z      | ᅼ    | 5            | Ω        | -:   | Ę              | П      | 41          | ۶,<br>د                                                                         | ₹ ;      | í<br>L   | i v<br>Ç                                                                                                         | , [0]     | ATT G     | 四       |
| 11, p                                 | 1/4)   | មិ     | 0<br>1/71         | T AT  | H      | 301/101 | ร ๙<br>≰       | 1/13    | A T    | ы        | 1/16 | ξ<br>Ω      | ഗ  | 1/19 | ဂ<br>ရ   | >      | 1/22 | 8            | ט               | 1/25 | ပ္ပ         | æ      | 1/28 | S<br>S       | J        | 1/31 | S<br>S         | H      | 1021/341    | 5 0                                                                             | ؟<br>;   | 1777/3/1 | ร์ a                                                                                                             | 01/4      | 2         | R       |
| 31/1<br>G AAG                         | X .    |        | 12                | G CAT | Ħ      | 8 8     | วี ><br>ข      | 39      | S      | ø        | 48   | A<br>GI     | >  | 57   | A AI     | H      | 99   | T T          | ы               | 75   | S<br>TG     | ပ      | 84   | T AG         | တ        | 93   | S AC           | ₽      | A &         | ς:                                                                              | Σ,       | ન (      | ם<br>כ                                                                                                           | ; ;       |           |         |
| A ACG                                 | E      | A GAG  |                   | r Gre |        |         | ָם<br>בורבי    |         | C GAA  |          |      | T AAA       | ×  |      | G GAA    |        |      | A CGT        | ĸ               |      | T ÀT        | н      |      | G ATT        | Н        |      | G TTC          | Œ      |             | ֓֞֞֜֞֝֞֜֞֝֓֓֓֓֓֞֜֜֝֓֓֓֓֓֞֝֟֜֓֓֓֓֓֞֝֓֓֓֞֝                                        |          |          | ֓֞֝֝֞֜֜֝֝֜֝֝֜֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֝֓֓֓֓֓֡֝֝֡֓֡֓֡֓֡֝֝֡֓֓֡֓֡֡֝֡֓֡֓֡֓֡֡֡֝֡֡֓֡֓֡֡֝֡֡֡֓֡֡֡֝֡֡֡֓֡֡֝֡֡֡֝֝֡֡֡֝֜֝֡֡֜֝֝֡֡֡֡ |           | C GAA     | Θ       |
| ද්ධ ද                                 | д      | 3 GTA  |                   |       | ຜ      |         |                |         | CTC    |          |      | GAT         | Α  |      | S        | Д      |      | G GAA        | ω               |      | A AT        | н      |      | n TGG        | ×        |      | ð              | ø      | ,           | ֚֝֞֝֝֟֝֜֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡֓֡֓֡֓֡                               | מ        | ć        | ֓֞֝֝֟֝֝֟֝֝֓֓֓֓֓֓֓֟֝֓֓֓֟֝֓֓֓֓֓֟֝֓֓֓֓֓֟֝֓֓֓֓֡֓֡֓֡֓֡                                                                | 1         | C TAC     | ×       |
| 999                                   | Ö      | DOC 4  | Д                 |       | ט      | Č       |                | ı       | r GGC  | Ü        |      | 3 ATG       | Σ  |      | E.       | œ      |      | r GTG        | >               |      | A P         | ×      |      | A GAC        | Ω        |      | Ö              | K      | }           | ָרְבָּי<br>י                                                                    | 7        |          | ן<br>ב<br>ב                                                                                                      | 1         | ğ         | Ö       |
| 8                                     | œ      | G.     | M                 | AA.   | z      | Ì       | ž .:           | 1       | E F    | ß        |      | E S         | >  |      | 5        | œ      |      | ည်           | Ö               |      | g           | Ö      |      | 3            | 团        |      | 5              | ø      | è           | Ś 1                                                                             | ম        | Š        | }<br>5                                                                                                           | Ç         | S         | ద       |
| E                                     | >      | 8      | 网                 | 5     | æ      | į       | ງ<br>ວ ⊲       | :       | ATT    | н        |      | ATC         | H  |      | ဗ္ဗ      | ď      |      | 3            | 团               |      | g           | ĸ      |      | 8            | ტ        |      | ATG            | Σ      | į           | 3,                                                                              | 74       | É        | Z 2                                                                                                              | =         | GA        | Ω       |
| CGT                                   | œ      | ည္တ    | 4                 | GAA   | M      | i       | ე<br>ე<br>.⊤ ₃ | :       | 5      | Ħ        |      | ฮ           | Ħ  |      | ຽ        | ď      |      | ATC          | н               |      | Ę           | တ      |      | GIC          | >        |      | GAI            | Д      | į           | 5 ;                                                                             | >        | į        | 5 >                                                                                                              | •         | ATC       | н       |
| TTT                                   | [I4    | SE     | ᄓ                 | GIA   | >      | į       | ATC            | ı       | CIA    | H        |      | ខ្ល         | Æ  |      | AAC      | z      |      | GIC          | >               |      | ATT         | H      |      | GAA          | 臼        |      | ACC            | H      | {           | 5                                                                               | =        | 8        | 3                                                                                                                | ×         | 5         | Ħ       |
| AAA                                   | ×      | CIA    | ႕                 | AAA   | ×      |         | i<br>L         | )       | GAT    | А        |      | g           | Ö  |      | GPA      | M      |      | AIC          | H               |      | ည္ပ         | K      |      | AIC          | н        |      | ပ္ပ            | Д      | į           | 5                                                                               | Σ        | ]        | 5                                                                                                                | ۲ _       | TAT       | ×       |
| GAT                                   | Ας     | ž<br>ą | 4 G               | ည     | 4      | 16/     | រូវ            | 721     | GIT    | >        | 151  | AAA         | ×  | 181  | ATT      | н      | /211 | SGI          | œ               | /241 | ဗ္ဗ         | Æ      | 1271 | GAC          | Д        | /301 | TTC            | ÇŁ,    | /331        | 111                                                                             | E4 .     | 1/36     | 3                                                                                                                | קס        | ATT       | н       |
| 1/1<br>GTG GAT AAA TTT CGT GTT CAG GG | × 5    | 27,00  | A 181             | GG    | ტ      | 271/    | GGT<br>o       | 361/    | ပ္ပ    | ρį       | 451, | TIG         |    | 541/ | ATT      | н      | 631/ | GAT          | Ω               | 721/ | ပ္ပ         | Æ      | 811/ | ည္ပ          | æ        | 901, | ឡ              | Ø      | 991,        | 5                                                                               | 24       | 108      |                                                                                                                  | י<br>ברני | 180       | 24      |
|                                       |        |        |                   |       |        |         |                |         |        |          |      |             |    |      |          |        |      |              |                 |      |             |        |      |              |          |      |                |        |             |                                                                                 |          |          |                                                                                                                  |           |           |         |

53/79

### Rec'd PCT/PTO 01 MAR 2005 PCT/US2003/026883

FIGURE 41. DNA and amino acid sequences of GTG-asd gene of pYA3650

WO 2004/020643

| ATT                                  | н   |        | GAT    | Δ   |      |         | C  |       |        | Н          |       | ပ္ပ    | A  |      |             | Σ  |       |       | 2 |      | AGC      | (C) |         | ည္ပ    | Ö |       | AAT         | z |      | GILL  | >  |       | ÇŢĢ      | 'n             | ı    |            |
|--------------------------------------|-----|--------|--------|-----|------|---------|----|-------|--------|------------|-------|--------|----|------|-------------|----|-------|-------|---|------|----------|-----|---------|--------|---|-------|-------------|---|------|-------|----|-------|----------|----------------|------|------------|
| Ģ                                    | 4   |        | H      | Œ   |      |         | U. |       | i.     | } >        | ,     | TII    | Du | 1    | S           | 0  | ŧ     | ACC   | E | ı    | CAG      | 0   | r       | GIC    | > |       | G           | Ħ |      |       | Д  |       | ပ္ပ      | Д              | ı    |            |
| GAC                                  | Ω   |        | GCF    | Ø   |      | GAA     | E  | 1     | GARC   | Д          | 1     | STO    | ч  |      |             | E  |       | TTG   | 1 | ı    | ပ္ပ      | Ö   |         | ည္ပ    | ~ |       | S<br>S      | Ø |      |       | EH |       | GAG      | M              |      |            |
|                                      | [ž. |        |        | Ω   |      | ပ္ပ     | ρ  | :     |        | 0          |       | GGT    | Ö  |      |             | ч  |       | ដូ    | A |      | AAC      | Z   |         | GIG    | > |       | ည           | Æ |      | ACT   | H  |       | ပ္ပ      | Æ              |      |            |
| GAT                                  | Д   |        |        | O   |      |         | ,7 |       |        | z          |       |        | ප  |      |             | ы  |       | ACG   | E |      | GAT      | А   |         | TGI    | ပ |       | STO         | ы |      | TTG   | ч  |       | ပ္ပ      | A              |      |            |
| ည္သ                                  | œ   |        |        | ы   |      | AAG     | ×  | ł     | GIC    | ^          |       | ST.    | ы  |      | GAG         | Θ  |       | GII   | > |      | ព្       | H   |         | TIG    |   |       | S<br>D<br>D | ы |      | ACG   | E  |       | ည္ပ      | ტ              |      |            |
| GAG                                  | 团   |        |        | H   |      |         | Д  |       | S      | <b>D</b> 4 |       | 5<br>S | ຜ  |      | ပ္ပ         | 24 |       | AAA   | × |      | CAG      | 0   |         | GGI    | ဗ |       | GAA         | М |      | ည္ပ   | Ö  |       | <b>T</b> | 3              |      |            |
| GAG                                  | м   |        | ပ္ပ    | ტ   |      | TAT     | >  | 1     | GAC    | Д          |       | ATG    | Σ  |      | ATG         | Σ  |       | ည     | œ |      | AAA      | ×   |         | GAT    | Д |       | GAA         | 凶 |      | ACC   | E  | _     | TIA      | ч              |      |            |
|                                      |     | /21    | ACC    | H   | /81  | ALL     | н  | /111  | SE     | ы          | /141  | TTG    | 卢  | 171/ | Ą           | Ħ  | /201  | GAA   | Œ | /231 | GAC      | А   | /261    | GI     | > | /291  | GTG         | > | /321 | GIG   | >  | 1/321 | TIG      | H              |      |            |
| 61/<br>ATG                           |     | 151    | FCC    | တ   | 241/ | GAA     | Œ  | 331   | ALL    | н          | 421   | ATG    | Σ  | 511  | ည           | ద  | 601   | ATT   | н | 691  | ATC      | н   | 781/261 | ပ္ပ    | Д | 871   | ACG         | H | 961  | ပ္ပ   | Æ  |       | 5        | ø              | !    |            |
| ည္သ                                  | æ   |        | ACC    | EH  |      | AAC     | z  |       | ATT    | н          |       | £<br>E | ч  |      | පිටුව ටුවුව | Ø  |       | GAT   | А |      | ŢĞ       | 3   |         | ATT    | н |       | ပ္ပ         | д |      | ပ္ပ   | Æ  |       | GAC      | Ω              |      |            |
| S                                    | ø   |        | GAC    |     |      | ACC     |    |       |        | н          |       | AGC    |    |      | ည္ပ         | O  |       |       | H |      | ပ္ပ      | Д   |         | GTG    |   |       | ALL         |   |      | ည     |    |       |          | ტ              |      |            |
| ATG                                  | Σ   |        | ပ္ပ    |     |      | TAL     |    |       | ပ္ပ    | Ø          |       | GIT    |    |      | ပ္ပ         | Ö  |       | ATT   | H |      | ATC      | н   |         | Įį     |   |       | ICC         | ഗ |      | ACC   | E  |       | GTA      | >              |      |            |
| CIC                                  |     |        | TC     |     |      | GAT     |    |       |        | Ω          |       | ACC    |    |      | 960         | Ö  |       |       | Æ |      | CTG      |     |         | ပ္ပ    |   |       | GTA         | > |      | TIA   |    |       | NG<br>PG | H              |      |            |
| GTT                                  | >   |        | ACC    | H   |      | 8       | Ö  |       | GAT    | Ω          |       | TGI    | ပ  |      | TCC         | တ  |       |       | တ |      | AGC 1    | ഗ   |         | ACT    | H |       | GAG         | M |      | GAA   | 臼  |       | TIT      | ር <sub>ዱ</sub> |      |            |
| TCT.                                 | Ø   |        | CCC    |     |      | 3 GGC   | Ö  |       |        | ×          |       | : AAC  | z  |      | GCC         | 4  |       | II.   | လ |      | GGA      | ტ   |         | AAT    | Z |       | AAA AAA     | × |      | ည္သ   | œ  |       | ည္ပ      | Ø              |      |            |
| ၁၅၅                                  | დ   |        | 900    |     |      | CAG     |    |       | : ATC  | Σ          |       | GGT    | ೮  |      | ၁၂၂         | ø  |       |       | വ |      | 900      | ø   |         | CIC    | H |       | AAA         | × |      | ATG   | Σ  |       | TCG      | ß              |      |            |
| GIC                                  | >   |        | 999    | ď   |      | TGC     | ບ  |       | SGC 5  | æ          |       | 990    | Ö  |      | 5           | ď  |       | 3 ACG | E |      | CIG      | H   |         | ATT    | н |       | CILC        | ы |      | : ACT | E  | ri.   | TIG      | ы              |      |            |
| A ATC                                | Σ   | 121/41 | 5      | ď   | 1/11 | 3 ACC   | EH | 1/101 | 5      | ы          | (/13] | P. G.  | >  | /161 | EA          | ×  | 1/191 | 8     | Ø | /223 | 200      | Д   | ./251   | AAG    | ĸ | ./281 | AAG         | × | /311 | ATC   | н  | 1/34  | H        | ſτι            |      |            |
| 31/11<br>2 GGA AT                    | ტ   | 121    | 7      | G   | 21   | E G     | >  | 301   | r Acc  | H          | 391   | L      | P  | 48]  | ACC.        | Ħ  | 571   | ទ     | н | 661  | GE :     | >   | 751     | A P    | Z | 841   | ATC         | н | 931  | 3     | A  | 102   | 9        | ы              |      |            |
| 3 CGC                                | æ   |        | i TIT  |     |      | ATC     |    |       | r rer  |            |       | 3 ACC  |    |      | 999         |    |       | r GAA | œ |      | ပ္ပ      |     |         | ACC.   | H |       | ACC.        |   |      | CGI   |    |       | ე<br>ე   |                |      | rh         |
| c TGG                                | Z   |        | S CAG  |     |      | r ATC   |    |       |        | Æ;         |       |        | ×  |      | CGIC        |    |       |       | Q |      | TII :    |     |         | GAA    |   |       | 3 TTC       |   |      | GAT   |    |       | 8        |                |      | TAG        |
| ე <u>მ</u> მ ე                       | ტ   |        | DI ICC | Ω   |      | C GAT   | A  |       | FI GO  | A          |       | C GTG  | >  |      | A TCC       | တ  |       | 2000  | Ø |      | r AAC    | z   |         | 900    | ø |       | g GCG       | Ø |      | 3 AAC | z  |       | ATG      | Σ              |      | වූ<br>දි   |
| r AT                                 | н   | 1      | PAC    | H   |      | E c     | ᄓ  |       | r GA   | Ω          |       | i GG   | Ö  |      | GE GE       | >  |       | r GT  | > |      | I GA     | Ω   |         | 5      | Ø |       | ð           | ø |      | ຽ     | Δ, |       | J AA     | z              |      | E.         |
| T TT                                 | Œ   | İ      | I IC   | ഗ   |      | A<br>G  | ¥  |       | GAT    | н          |       | C AN   | z  |      | S<br>T      | 3  |       | 5     | н |      | G G      | >   |         | Ğ<br>₹ | O |       | S AG        | S |      | E G   | >  |       | ij       | ы              |      | <u>წ</u> , |
| e<br>G                               | ט   |        | L      | D-4 |      | A A     | ×  |       | i<br>T | ×          |       | A. A.  | z  |      | I GA        | Α  |       | i GG  | ტ |      | g        | Д   |         | Æ      | × |       | 5           | Ħ |      | P. G. | >  |       | I AA     | ×              |      | ğ<br>'     |
| T GT                                 | >   |        | T II   | Ēų  |      | S S     | ы  |       | T TA   | ×          |       | E<br>U | ᄓ  |      | c<br>G      | >  |       | G TA  | × |      | ជ្ជ      | ы   |         | ტ<br>ქ | 3 |       | S<br>TG     | ပ |      | G A   | ×  |       | ဗ<br>ဗ   | œ              |      | ;<br>;     |
| A A                                  | z   |        | 1 G    | >   |      | 9       | Ø  |       | 9      | ტ          | н     | ဗ္ဗ    | G  | н    | £           | ч  | _     | G 7   | ч | _    | 9        | M   | _       | §<br>Ø | M |       | ဗ<br>ဗ      | œ | Н    | ပ္ပ   | ⋖  | н     | E<br>E   | H              | 61   | A AT       |
| 1/1<br>GTG AAA AAT GTT GGT TTT ATC G | ×   | /31    | ບູ     | Д   | 1/61 | S<br>GA | A  | 1/91  | ජ      | œ          | 1/12  | S<br>G | Δ  | 1/15 | T AA        | z  | 1/18  | ð     | ø | 1/21 | ည်<br>ကြ | O   | 1/24    | ე<br>მ | 闰 | 1/27  | E<br>E      | H | 1/30 | ģ     | 3  | 1/33  | F CG     | æ              | 81/3 | F<br>Q     |
| 7. £                                 | E   | 91     | පි     | ĸ   | 18   | ប       | Н  | 27    | Ę      | Z          | 36    | AC     | H  | 45   | ð           | 耳  | 54    | g     | ರ | 63   | AG       | ß   | 72      | ଧ      | æ | 81    | ပ္ပ         | Ø | 90   | ပ္ပ   | Д  | 99    | ဗ        | Ö              | 10   | g<br>S     |

FIGURE 42. Construction of the DNA vaccine vector pYA3651



## FIGURE 43. DNA sequence of the DNA vaccine vector pYA3651 A. (1-3300 bp)

| 100 CGGATCCGC 100 CGGTAAATGG 200 ACGTCAATGG 300 TTGGCCGCCT 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                   | CCGGGCGAAA 1900<br>GCGAGCCTCC 2000<br>ACCCCCTGAC 2100<br>AACCCGCCAC 2200<br>CAATGTCCA 2300<br>CAAAGCGGGA 2400<br>ATGCCATAGC 2500 | ATTCTGAGAA 2600 TCCTTTTTGC 2700 TGCGAAAGTA 2800 TGGGCGCTGG 2900 GCCTCGAACA 3000 CAGCGTTGGC 3100 GCGAACTTCC 3200 TTCTGCCGGA 3300                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 90 TITIGITIAA ACATAACITA CITICCAITG TGACGGTAAA GTGATGCGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGCTCTCTGG TTGGTACCGA TGATCAGCCT CCTAATAAAA CAATTACTCT                           | TTCCCCGATG ATGACAACTT GAGTTGATCG CAGCTTAAGA TGTCTGCCAG CAATTGCTCA                 | TGGGCTTCAT GATACCATTC ATTTTCACC ATGGGCGTTA GAGAAGAAAC CATTCTGTAA ACACTTTGCT                                                      | GGGCTAGCGA<br>GCTCTGCCTA<br>GCCAGCTGGG<br>TGCTTCTATC<br>CACATTTCTG<br>TGGATAAAGT<br>CGTCGATACC<br>GTCTATCGG                                                                                                                                                                                                                               |
| A CGGATGGCCT A GTTCCGCGTT S CCAATAGGGA A TTGACGTCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |                                                                                   |                                                                                                                                  | CCGTTTTTTT TAAAAATGCT AAGCTGCTAA AAACCATGCG GGTTGATCTA CATATCGTGA AACCGGAAAT AGGCGGCGGT                                                                                                                                                                                                                                                   |
| 70 GCCATCCTGA CATATAGGA CATAGTAACG ACGCCCCTA TAGTCATCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                                                                                   |                                                                                                                                  | TTCTCCATAC<br>TTTCCGGCGC<br>TACATCAATG<br>GATCTGGTTA<br>GTGCGCGTCC<br>GAAAGGTGCA<br>GCAGCGCGTG<br>TGGAACGTFT                                                                                                                                                                                                                              |
| TATGCGAAGGGTTCATAGCCCCGTATGTTCCTTATGCCAAGTATGTTCCAAGTATGCCAAGTATGCCAAGTAACCCCATTGAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                                                                   | TGCCCAAACA<br>AGGCGCGCG<br>ACCCGGTCGG<br>ATAAAAAAT<br>CAGCCATACT<br>AACCCAACCG                                                   | TCTCTACTGT GAAGTCACAA AAGACGTCGA CGCACCTTAC TGTACGATCG ATGGACACT TATTGAAAAC ATCGAAGGTG                                                                                                                                                                                                                                                    |
| CAGTCTAGAT GGGGTCATTA TCAATAATGA AAGTGTATCA TTGGCAGTAC CCAAGTCTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TGGGGGTAG<br>CTATAGGGAG<br>GTGGCGCCG<br>CCTTCCTTGA<br>GTGGGGTGGG                 | TCTAGCCCGC<br>TACTCCGTCA<br>GGCTGGCCCC<br>CAAAAGCAGCA<br>AAGCAAACAT<br>GATGGAGCGA | GTTAATGATT TCATGCCAGT GCAAAATATC CGGTCGGTCG TTTTGCGCTT TCTTCTCGCT TCTTCTCGCT                                                     | TTATCGCAAC<br>GCTCCAGGGC<br>CCGAAACTGA<br>ATGTATTCTG<br>ACCTGGCGGT<br>GCTTCCGTCG<br>GCACCACGAT                                                                                                                                                                                                                                            |
| 40 ACCETTAACTG AATCAATTAC CCCATTGACG GCAGTACATC ACTTTCCTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTGACGCAAA<br>ATACGACTCA<br>ATCCAGCACA<br>CTCCCCCGTG<br>ATTCTGGGGG<br>GGTTTTATGG | TGTTGGAAGA AACCCTATGC AACTCGCTCG GGGTAGTGCT CGACGGGAC TCCATCGGTG                  | CTTGCCGGGC<br>GTTAAGCCAT<br>GGCGGAACA<br>TCATTCCCAG<br>CAGGGATCA<br>TTTTACTGGC                                                   | CTGACGCTTT<br>GGCCAACGAA<br>CCAGAACGTC<br>GGCGACGTTA<br>AAGTTTCACT<br>TTACGTTAAA<br>CTGGCGGAAG                                                                                                                                                                                                                                            |
| 30<br>CCAGATATAC<br>TATTAATAGT<br>ACGACCCCCG<br>TGCCCACTTG<br>ACCTTATGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTCCGCCCA<br>ATCGAAATTA<br>TTCTGCAGAT<br>TTGTTTGCCC<br>GTGTCATTCT<br>TCTACTGGGC  | CGATATAAGT<br>GGATTCTGCA<br>ACCGGCACGA<br>ATAGGCATCC<br>GTGACCAGACG               | CGCCCTTCCC TTGACGCCA AATCTCTCCT ATATAACCTT ATCCCGGCAG TCCCGGCAG TCACTGCGCCCCCCCCCC                                               | CGGATCCTAC CGTGTTCAGG CGGTAGAGAT TATTGATGCC GGTCAGGGGC TGGAAGAAGG TGCTGCAACC                                                                                                                                                                                                                                                              |
| 20   30 GATGTACGGG CCAGATATAC ATTGACTAGT TATTAATAGT TGACCGCCCA ACGACCCCCG TACGGTAAAC TGCCCACTTG CCAGTACATG ACCTTATGGG CGTGGATAGC GGTTTGACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GTCGTAACAA<br>TTACTGGCTT<br>TGTGGTGGAA<br>CAGCCATCTG<br>GTCTGAGTAG               |                                                                                   |                                                                                                                                  | ATAAAATTA<br>GGGTAAATTT<br>GCGGAAGAAC<br>GTTCTGTGCA<br>AGCGCGCTTT<br>ACCATCAAAC<br>CCATCAAAC                                                                                                                                                                                                                                              |
| DESCRIPTION OF THE PROPERTY COCCOCCTORGE GEORGE GEORGE GEORGE GEORGE GEORGE CATCHATTE GEORGE | TTTCCAAAAT AACCCACTGC ACTAGTCCAG TTCTAGTTGC GCATCGCATT                           | •                                                                                 |                                                                                                                                  | CCAACTAACT CGCACTACTG CGCACTAATG CGCCCCTAATG CGCCCCCCCCC ATTAGGCCCC CCACTAATC CCCACTAATC CCCCACTAATC CCCCCCCC |
| 101<br>201<br>301<br>401<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                                                                   |                                                                                                                                  | 2501 7<br>2601 0<br>2701 0<br>2801 0<br>2901 0<br>3101 0<br>3201 1                                                                                                                                                                                                                                                                        |

# FIGURE 43. (continued) DNA sequence of the DNA vaccine vector pYA3651 B. (3301-6759bp)

|                                                                                  | TTTTCTACCT 4000 ATATCATGT 4100 GCTGCGCATG 4200 AACTGTACCG 4300 GCGGCGCGC 4400    |                                                                                   | TTGGCGGATG 5200 CACCTGACCC 5300 AACGAAAGGC 5400 CGTTGCGAAG 5500 GGGTTTCTAC 5600 CTTCCAACAT 5700 CTTCCAACAT 5700 CAGGTGTCGG 5800 IATTTAAAA 6000 AGAGCTACCA 6200 AGAGCTACCA 6200 AGAGCTACCA 6200 AGAGCTACCA 6200 AGAGCTACCA 6200 AGAGCTACCA 6500 |                          |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| · · - ·                                                                          |                                                                                  |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                | _                        |
| • •                                                                              | CCCTGTTTTC AAAGCGCTCG CGGCTTCTAC TGTGGGCGGT GCCTCCGGCG                           |                                                                                   | CTTGGCTGTT<br>GCGGTGGTCC<br>CATCAATAA<br>CGGATTTGAA<br>TGGCCTTTTT<br>AATGGAAGAT<br>GTGCTTTTAG<br>GCGGAACCC<br>ACTTCATTT<br>CCCGTAGAAA<br>TGCCGGATCA<br>CCACTTCAAG<br>GACTCAAGAC<br>GACTCAAGAC<br>GACTCAAGAC                                                                                                                                                    | CGGAGCCTAT               |
| CAGCCAGATA<br>GTCCGAAGGC<br>GTTATCACC<br>CACGGTGTTG<br>TGGTTGATCG                | ACGCTATTCG GGATGCGCTA TGGATTGATG TGAAGACCTT CTATCAGGCC TCTTCCGCAA                | TCCCCTGGAT<br>GGTTGATGGT<br>CTGCTGGCGG<br>CGCCGGTTGG<br>TCGAATGCTG                | GTCTCATGAG<br>CGGCAGTAGC<br>AACTGCCGGGAG<br>TCCTGACGGA<br>ATGCTTCAAT<br>AGGCGCTCAA<br>AGGCGCTCAAA<br>AGCGCTCAAA<br>AGCGCTCAGAC<br>ACTAGGCCA<br>TACCGGGTTGT<br>AGTTAGGCCA<br>TACCGAACTGA                                                                                                                                                                        | GTCAGGGGG                |
| CCGTAACGCG<br>CATGGCAACG<br>AAGGGACCGG<br>CGTTATTTGT<br>GGGACGACGG<br>GCGAATAAGA | CECGATITICG CTTITGATCT GCAGGGTTAC AACAATGGCG CCGTCGCGAC GGCGACGCG                | GGAAGCCTGA<br>CTGTGATTCC<br>GGTGGAAGAA<br>ACGTTGACTA<br>AGCCGCTGCG                | CAGGGTTATT GTTTGCCTGG GAGAGTAGGG TAGGACAAT CAGAAGGCCA ACCCTGATAA ACCCTGATAA GCTTCCGC CATTCCGC CGTTCCACTG GCTACCACTG GCTACCACTG AACGACCTAC GTCGGAACAG GTCGGAACAG                                                                                                                                                                                                | TGTGATGCTC               |
| AAATTATCTG<br>CCTGGATATG<br>CTGGTGGCAG<br>AAAGCAATAC<br>TATTGCGGAA<br>CGTGTGAAAG | GTACAGGACG CTACAGGACG AAAGCGGATG CGACGGCCTG GACTGGGTAT CCGATGAACT                | ACCGCTGGCG AATACTGCCT CCATTCCGAC GGTGACCGGC GGCGCCCCCG                            | AAGCATTTAT TGATAAAACA CTCCCCATGC CTCTCCTGAG TGAGACAATA CGCGGGGTTG ATAAATGCTT CGTGAGTTT AAAAACCACC TGTCCTTCTA AGAGGGGGTA AGAGGGGGGG AGAGGGGGG                                                                                                                                                                                                                   | CGICGAITIT :             |
| ACTGGGGGGA<br>ACTGGATTAG<br>GCTGTTGAAC<br>GCCGAAATCG<br>TGGCTGGCTG<br>AAATATTGAG | TGCAACGCAT<br>CACCGGCACG<br>AAGCTGCGCG<br>ACGTGATTAC<br>TAATCTCGTT<br>GGCCATGTCG | ACTITIGGCGT<br>CAAGATICTC<br>AAAGAGGTAT<br>CCCCGGCGGC<br>GTIGTTATGG<br>AITAAAGAAC | TCCATTATTG AGAAGCGGTC AGTGTGGGGT TCGGTGAACG CTGCCAGGCA TATCCGGTCA TTCACACCCT AATAACCCTTAA TTCACAAATAC GGCTGCTAA TACCAAATAC GGCTGCTGCAACCAA TACCAAATAC GGCTGCTGCCAACCAA TACCAAATAC GGCTGCTGCCACCAACCAACCAACCAACCAACCAACCAAC                                                                                                                                     | CTGACTTGAG               |
| GGCGCCGATT GTCGCCCAAG CCCAGTTCAC GGGCGCGCAC AGCCTGGTGC CTTTAGGTGC                | TCTGTTCTCA<br>GCGACACCTC<br>AATTTATCCA<br>GTCAACCAGG<br>TCTTTGCCCA<br>TCAGTTGTAT | CCGGTTGATA<br>CGGAAACCAA<br>CAAGCTGAAA<br>CGCGAATTAA<br>TAGGCGACCA<br>TCGCTCCGAA  | CGTAGGATCT ATCAGAACGC CGCCGATGGT CTGTTGTTTG CCGCCATAAA TTCAAATTCTT TGTGCGGTAT CTCATGACCAA AATCTGCCGA AGGGCAGA TGTTACCAGT GGGTTCGT AGGGCAGA AAGGCGGACA AAGGCGGACA AAGGCGGACA                                                                                                                                                                                    | TTCGCCACCT<br>CTTTTGCTGG |
|                                                                                  | AATGGTCGGC CCCACCTTCG ATACCAACGA TCTCGACCCG CTGGGCCGTC                           |                                                                                   | GATGGGTGAG TACAGATTAA AACGCCGTAG TTCGTTTTAT GGCAGGACG TCTAAATACA GGGATCGATCG TATGTATCCG TATGTATCCG TTTGATAATCC TATGTATCCG TTTGATAATCC GGGATCGACC TTTGCGCCGT TGGCTTCAGC CTGCTAAATCC GCTGAACGGG CGGAAGGGAGA                                                                                                                                                      | ccrerceeer<br>Gerrccreee |
|                                                                                  | GCTGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG                                           |                                                                                   | ATACACAATT TTCAGACGAGA GACTGGGCCT GAGGGTGGCC TGTTTATTT CAGAAACGTC AACCAGTCAC TACATTCAAA GAAGATCCTT CAAGAGGAAC TACATTCAAA GAAGATAAC TACATTCAAA CAACCGCTCCT CAACCGCTCCC ACCACCTCCCC ACCACCCTCCCCCCCCCC                                                                                                                                                           | TCTTTATAGT<br>GCCTTTTTAC |
|                                                                                  | GCCAGTTTGG<br>CCCAGTTTGG<br>GACCTGCCAG<br>AAAGATGATG<br>TTAGCCTGAT<br>CCATATGCGC |                                                                                   | TTAACTATGA AGAGAAGATT CATGCCGAAC TCAGTCGAAA CAACGCCCG AAACTCTTTT CACAGGTAAA GGCAGCCTG TTTTTCTAAA GGATCTTTTC CACCGCCTG TTTTTTCTTAAA ACTCTTTTC CACCGCCTAC TGAGAAAGCG TGAGAAAGCG                                                                                                                                                                                  | ACGCCTGGTA<br>CAGCAACGCG |
| 3301<br>3401<br>3501<br>3601<br>3701<br>3801                                     | 3901<br>4001<br>4101<br>4201<br>4301<br>4401                                     | 4501<br>4601<br>4701<br>4801<br>4901<br>5001                                      | 5101<br>5201<br>5301<br>5401<br>5501<br>5601<br>5801<br>5901<br>6201<br>6401                                                                                                                                                                                                                                                                                   | 6601                     |

### FIGURE 44. DNA and amino acid sequences of ATG-asd gene of pYA3651

| ATT                                               | GAT                                                    | ۹     | SG.    | ტ          |               | ATT.                                        | 4    |        | A        |       | ATG    | Σ.     | :     |             | )<br>}<br>} |       | AGC      | S            |       | ပ္ပဗ္ဗ  | Ö        |       | AAT   | 2      | i     | T.L.        | ; >        | >        | CIC       | 1        | 1     |
|---------------------------------------------------|--------------------------------------------------------|-------|--------|------------|---------------|---------------------------------------------|------|--------|----------|-------|--------|--------|-------|-------------|-------------|-------|----------|--------------|-------|---------|----------|-------|-------|--------|-------|-------------|------------|----------|-----------|----------|-------|
| GCT                                               | TI                                                     |       | AGC    | ഗ          |               | 9<br>5<br>5                                 | >    | TIT    | ĵe,      |       | S      | 6      | ¥     | טע          | E           | ,     | 9        | 0            | ı     | GIC     | >        |       | S     | =      | i     | S           | 2          | 4        | S         | ρ        |       |
| GAC                                               | GCT                                                    |       | GAA    |            |               | ည<br>ဗ                                      |      | S      |          |       | ACC    | E      | ı     | TI          |             |       |          | ט            |       | ဗ္ဗ     | æ        |       | Ş     | A      | }     | ACG         | }<br>E-    | 4        |           | Œ        |       |
| TTC                                               | GAC                                                    |       | ပ္ပပ္ပ |            |               | 9                                           | ×    | GGT    | U        | ,     |        | 1      |       |             | 4           |       |          | z            |       | GTG     | >        |       | ည     | A      |       |             | E          |          | ည္ပ       | A        | :     |
| GAT<br>D                                          | වී ර                                                   |       | CIG    |            |               | AAC                                         |      |        | Ü        |       |        | ļ      |       |             | E           |       |          | Д            |       | TGT     | U        |       | STO   | ч      |       |             | <u>, -</u> |          | ည္ပ       | <b>A</b> | :     |
| S<br>R<br>R                                       | CTA                                                    |       | AAG    | ×          | į             | ပ္<br>(၁)                                   | •    | SIS    | ы        |       | GAG    | Ħ      | l     | GIT         | · >         |       | ည        | ы            |       | TTG     | ы        |       | CTG   | ы      |       | ACG         | Ę          |          | ည္သ       | Ö        | ı     |
| GAG                                               | ACG                                                    | 1     | S<br>S | ы          |               | ည<br>ည                                      |      | TCG    | ഗ        |       | ပ္ပ    | p4     |       | ~           |             |       | Ph.      |              |       |         |          |       | _     |        |       |             | U          | ,        | TGG       | 3        | :     |
| GAG                                               | 151/51<br>GGC GAC ACC TCC ACC GGC ACV<br>G D T S T G T | )     | TAT    | ×          | ć             | ع و<br>ا                                    | 1    | ATG    | Σ        |       | ATG    | Σ      |       | ပ္ပ         | P4          |       | AAA      | ×            |       | GAT     | Д        |       | GAA   | 四      |       | ACC         | E          |          | TTA       | ы        | ı     |
| 21<br>GTA                                         | /51<br>ACC<br>T                                        | 81    | AIT    | н          | 7117          | י<br>ני                                     | 141  | TIG    | ы        | 171,  | GAT    | =      | 201   | GA          | M           | 231   | g        | Д            | 261   | GII     | >        | 291   | GIG   | >      | 321   | GIG         | ^          | 1051/351 | TIG       | H        |       |
| 61/21<br>ATG GT<br>M V                            | 151,<br>TCC                                            | 241,  | GAA    | 团          | 331,          | AII.                                        | 421  | ATG    | Σ        | 511/  | g      | 24     | 601/  | ALT         | н           | 691/  | AIC      | н            | 781/  | ပ္ပင္ပ  | Д        | 871/  | ACG   | H      | 961/  | ggg         | 4          | 1051     | SS        | o        | ,     |
| CGC<br>R                                          | ACC                                                    | )     | AAC    | z          | Ē             | AII.                                        | ,    | CIG    | ᄓ        |       | ည      | Æ      |       | GAT         | А           |       | <u> </u> | <b>:</b>     |       | ATT     | н        |       | ည္ပ   | д      |       | 90          | Ø          | :        | GAC       | Д        |       |
| g o                                               | GAC                                                    | 1     | ACC    | ₽          | ě             | ALL                                         | 1    | AGC    | တ        |       | ပ္ပ    | b      |       | H           | ц           |       | ပ္ပ      | д            |       | GIG     | >        |       | ATT   | н      |       | ည           | д          |          | ည္သ       | ບ        |       |
| ATG                                               | ည္သ ဗ                                                  | ,     | TAT    | ⊭          | ç             | ر<br>م و                                    | :    | GLL    | >        |       | ည္ဟ    | b      |       | AII         | H           |       | AIC      | н            |       | TCI     | ຜ        |       | អ្ន   | S      |       | ACC         |            |          | GIA       |          |       |
| CTC                                               | TTC                                                    |       | GAT    | А          | Ę             | ,<br>,                                      | l    | ACC    | H        |       | ည္ပ    | Ö      |       | gg          | ¥           |       | Ü        | H            |       | ပ္ပင္ပ  | æ        |       | GIA   | >      |       | TTA         | ы          |          | ACC       | Ė        |       |
| GIT<br>V                                          | ACC                                                    |       | ည္သ    | ro<br>O    |               | ,<br>,                                      |      | TGT    |          |       | ıçç    | တ      |       | ij          |             |       | AGC      | တ            |       | ACT     | E        |       | GAG   | ω      |       | GAA         | M          |          | LLL       |          |       |
| TCT                                               | ည္သင္တ                                                 |       | ည္တ    |            | *             | £ ×                                         |      | AAC    |          |       | ပ္ပ    | Æ      |       | ī           |             | į     | <b>₹</b> | <sub>G</sub> |       | AAT     | z        |       | AAA   | ×      |       | ဗ္ဗ         | 24         |          | 9         | ď        |       |
| ၁၅၅                                               | GCG<br>A                                               |       | g<br>G | O#         | Ę             | )<br>                                       |      | GGT    | כיז      |       | ည္ဟ    | ₫:     |       | ည္ပင္ပ      | ۵.          | 9     | D<br>D   | ₫.           |       | S.F.C   | _        |       | 4AA   | یر     |       | ATG         | _          |          | ភិ        | m        |       |
| 31/11<br>CGA ATG GTC<br>G M V                     | GCG<br>A                                               |       | ည်င    | ပ          | נ             | ץ<br>א                                      |      | ည္ဟမ္  | G        |       | GAG    | œ      |       | ACG         | E           | į     | 9        | L            |       | AIT     | н        |       | 55    |        |       | ACT         | H          |          | TIG       | ۔        |       |
| ATG M                                             | CAG                                                    | 71    | ACC    | -          | 101           | ם ל                                         | 131  | GTG    | >        | 161   | TAT    | ×      | 191   | ည္သ         | æ           | 221   | 9        | Δ.           | 251   | AAG     | ₩.       | 281   | AAG   | 2      | 311   | ATC.        | H          | /341     | LIC       | Cz.      |       |
| 31/1<br>GGA<br>G                                  | 777<br>GGA<br>G                                        | 211/  | 13     | ,<br>,     | 301/<br>208   | 3                                           | 391/ | TII    | ·<br>[24 | 481/  | ACC    | H      | 277/  |             |             | 199   | ST.A     | · ·          | 721/  | AAC     | -<br>-   | 841/  | ATC   | _<br>H | 931/  | SAT .       | _          | 1021     | 3AG       | 60       |       |
| CGC<br>R                                          | TTT<br>F                                               |       | ATC    | _,         | Į.            | ,<br>,<br>,<br>,                            |      | ACC    | E        |       | ဗ္ဗဗ္ဗ | Æ      |       | GAA         | Ш           | 9     | ်<br>၅   | (3           |       | ACC     |          |       | ACC   | H      |       | CGI         | ~<br>œ     |          | ,<br>500  | _<br>_   |       |
| TGG<br>W                                          | S o                                                    |       | AIC.   | -          |               | ;<br>A                                      |      | AAG    |          |       | GIC    |        |       | GAI         | _           |       |          |              |       | GAA     | <u>.</u> |       | TIC   |        |       | GAT         |            |          | 999       |          |       |
| ည<br>ဗ                                            | TCC<br>S                                               |       | GAT    |            |               | 3                                           |      | GIG    |          |       | ក្ត    | ເກ     |       | ပ္ပ         |             |       | AAC      |              |       | ဗ္ဗ     |          |       | ອວ    |        |       | AAC (       |            |          | ATG       | ~        |       |
| ភ្ជ                                               | ည                                                      |       | F<br>L |            | F             | •                                           |      | ပ္ပ    |          |       | Z      |        |       | i<br>i      |             | 5     | <u>.</u> |              |       | ğ       |          |       | ğ     |        |       | ဗ္ဗ         |            |          | Š         | ~<br>~   |       |
| TIT                                               | TCT                                                    |       | ဗ္ဗ    | <.         | ATT.          | Н                                           |      | AAT    | z        |       | 9      | ·<br>• |       | GAT         | _<br>Hd     |       | 1        | >            |       | ပ္ပမ္မ  | ניז      |       | မှင္ပ | ED.    |       | Sig         | _<br>>     |          | org       |          |       |
| GGT                                               | TTT                                                    |       | ¥.     | ·<br>•     | 2             | `<br>}<br>! 33                              |      | AAC    |          |       | SAC .  | _      |       | ပ္က         |             | ,     | 3        | ۵.           |       | A<br>A  | ۷.       |       | AC 7  | <br>   |       | FIG (       | _          |          | AAG (     | _        |       |
| STT.                                              | TTC                                                    |       | Æ.     |            |               | ,                                           |      | Sig    |          |       | ij     | _      |       | FAT (       | _           | ļ     | 2        | _            |       | -<br>25 | ~        |       | į     |        |       | AA (        | _          |          | 15        | ~        |       |
| AAT N                                             | 3TT                                                    |       | 9      | d!         | £             | ָ<br>֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֓֞ |      | ည္တင္မ | ריז      |       | )<br>H | ,      |       | T. DI       |             | Ç     | 9. AG    | ~-<br>~-     |       | 3AG     | D-1      |       | igc 1 | ~      |       | S<br>S<br>S | -          |          | 25        | . 7      |       |
| AAA<br>K                                          | CCT G                                                  | 19    | GAT    |            | ון פי<br>המני |                                             | 121  | 3AC (  | _        | 151   | AT (   | _      | 181   | . PAG       | ~           | 211   | ر<br>ر   |              | 741   | AAA (   | r.,      | :71   | 25    |        | 301   | ည           | 7          | 331      | igi<br>Eg | ~        | 1361  |
| 1/1<br>ATG AAA AAT GTT GGT TTT A<br>M K N V G F I | 25/16<br>26C (                                         | 181/( | g<br>E | - :<br>- : | 271/:<br>725  | 2 -                                         | 361/ | ၁၁၃    | r<br>1   | 121/7 | AT 7   | ~      | 341/1 | E<br>E<br>E | <u>,,</u>   | 331/2 | 2        |              | 721/2 | ပ္တ     | ₩.<br>~  | 111/2 | ဋ္ဌ   |        | 101/3 | 8           | <u>حر</u>  | 191/3    | igi c     | , r.     | .081/ |

FIGURE 45. Immuno Blot Analysis on AraC P<sub>BAD</sub> Asd Vectors Using Rabbit Anti-Asd Serum.



### Lanes:

- 1. χ6212 (*E. coli ΔasdA4*)
- 2. χ8276 (S. typhimurium UK-1 ΔasdA16)
- 3. pYA3530 Asd-GTG (Fig. 2A) in  $\chi$ 8276
- 4. pYA3450 Asd-ATG in χ8276
- 5. pYA3565 Asd-TTG in  $\chi 8276$
- 6. pYA3450 Asd-ATG in  $\chi$ 6212
- 7. pYA3530 Asd-GTG in χ6212
- 8. pYA3656 Asd-TTG in χ6212



FIGURE 46. DAP-less and muramic-less death in host strain with DNA vaccine vectors



The results shows phenotypic properties of recombinant host-vector strains displaying arabinose-dependent growth and regulated cell lysis in the absence of arabinose.

 $\chi 8888 \ \Delta asdA::araC\ P_{BAD}\ c2$ ,  $\Delta P_{murA}::araC\ P_{BAD}\ murA$ ,  $\Delta araBAD$ ,  $\Delta araE$ ,  $\Delta endA$ ,  $\Delta gmd-fcl$ ,  $\Delta relA$ 

FIGURE 47. Change in body temperature as a consequence of oral immunization of 8-week-old female BALB/c mice with live host-vector systems for delivery of DNA vaccine vectors by regulatable cell lysis in vivo





FIGURE 48. Construction of pYA3674 (pYA3650 specifying expression Eimeria acervulina EASZ240- FLAG) and pYA3675 (pYA3651 specifying EASZ240-FLAG)

### specifying EASZ240-FLAG)



FIGURE 49. Construction of pYA3677 (pYA3650 specifying the expression of the *Eimeria acervulina* EAMZ250-FLAG) and pYA3678 (pYA3651 specifying EAMZ250-FLAG)

### pUC19-EAMZ250 (#3)



### FIGURE 50. DNA and amino acid sequences of EASZ-240 with FLAG fusion in pYA3674 and pYA3675

GCA-GCC GCC ACC ATG GGA G GTA CCA KpnI

gat D gtg V ctc r tgg gaa E aag K gtg V tca gat D 9cg **A** gct A 9ag ස gaa E R M G I tca gtt a tac cgt ttc ttt gta ttt cct  $\frac{R}{R}$  F F V F P 1 th a.a of RASZ240

gat D **9**ад В 999 G aat z gac D gct A tca tct ದ್ವರ ಜ 999 G gat D caa gca A ctt agc att gct A ggc att G 99c G gcc A gta tac g aag K 999 G acg T

ctg ttc acc F T acc gat D 9cg A cgt R gaa E aaa K gtt V gat D tgc C gaa E gac D gca A gag E ctc L tat aaa Y K caa act aaa att I ეგე ტ gga G gac gga G gag att tat Y O gtt V 99t G att gaa gtg I E V gcc cca aac A P N tat cag cgt R gga G gtt gac ggc V D G aag aca K T gtg V att gca A ttg L agt cag S Q caa

c ggc ttc G <u>F</u> EASZ240 att I gtg V g tac ctg tac cag ggc
Y L Y Q G
last a.a of E aat N gac D aac N ccg P gag E act T aag K gct A ttc F att I ctg L gcc A ttc F ott L ggt G gca A acg T ეგე ტ ggt G ctg aca L T aac aag ( N K gcg A gat aag K I aac aaa gca g N K A I 9<u>9</u>99 att ttg gcg ₽ cag Q gtg V gag E aac tac gac N Y D aaa K gag E gag E gac cag D Q gac D tat Y ctt aac tat Y

CTC GAG-3 TAA \* TAA\* GAT AAA GAT GAT GAT TAT AAA GAT D Y K D

Stop codon А tag D

PCT/US2003/026883

### FIGURE 51. DNA and amino acid sequences of EAMZ-250 with FLAG fusion in pYA3677 and pYA3678

| GCT-      | Ą             |       |  |
|-----------|---------------|-------|--|
| C ATG     | start 1       | codon |  |
| 8CC 8CC 3 | Kozak start A |       |  |
| A GGA     | SD            |       |  |
| GTA CC    | KpnI SD       |       |  |
| 51 -<br>G |               |       |  |

cct tct S cct tct gtc cct ggg gtc aca tot ccg P gg aca tct S gct cct P tct cct P tcg S gtc V aca EH tct ccg P ຜ aca T tct S cct P tct cct P tcg S gtt v aca ta ccg P aca T cct tct s cct tct cct P F S EAMZ250 ccc ttt cct P tct S of cct ttg gtc V 면 다 다 cca P

ctg r gtt V tca S aat N ccg P aca T tct S 999 G cct 933 G gtt V cct tcg S gcg A gtc V ggt G cct P ccg P aca T 909 A tct S cct cct P tct s CCa P tcc s cct P tca S gtc V cct tcg S ccg P gtt V aca T tct S ccg P oct P aca T tct s cct P cct P tcg S gtc v cca P ccg P tca S aca T gtc V tct S ccg A cct P aca T cct P tct S tcg S cct P

cga R gca A gct A 999 G tct S tct s tcc S gcc 99c G cct P cca P acg T cgc R cag cgc R a gat D а<u></u>дд atc I cga R aac N tgg W Cac H cgc R aac ctc N L gag E ttt F tgt c cag Q agt S 9tg V tcc S gca A gtt V gac act T tca S ctg L 9c9 ₽ cac H att I gca A tgg ¥ cac H tgg W ල් සි 933 G tcc S gaa E acc T gcc A tca S ctc r cca P cgc R caa O gct A tcg S

tca S gtt V 999 G cgt R ctt L gga G ეგე მ aag K ဌၶဌ H cgt R cat H cgt R aga R tcg S atg M င်္ပိပ န cgc R agt S tcc S cgc R E ដូ cgc R act T tgc C cat H с<u></u>

gtc V \* gac D \* gct A GAT AAA А ggt G GAT tac Y GAT ggt G GAT TAT AAA GAT D Y K D aca T ctt ы aag K ည္သည္ tcg ( A R S Cgt atc ctc gcg c R I L A F last a.a of EA acg T ccg P ţţţ S gct င်္ပင် ద cac acc gca H T A tca ໝ tct ഗ agg R tgc C gta tga C gga G ctc agc S ы ი<u>ფ</u> gga G cgt R

CTC GAG-3

FIGURE 52. Serum of mice IgG responses to *S. typhimurium* LPS, SOMPs and to EASZ 240.





 $\chi 8888$  (pYA3674) with GUG translation start codon of asd mRNA induced more rapid cell wall-less death to elicit less of an IgG responses to LPS and SOMPs but a higher response to EASZ240.

Immunity to *S. typhimurium* is a plus but is not the objective and a very strong induction of immunity to *Salmonella* antigens could compete in induction of desired immune responses to specified protective antigen.



FIGURE 53. Chicken Serum IgG responses to S. typhimurium LPS, SOMPs and to EASZ 240





The data represent IgG antibody levels induced in chickens orally immunized with  $\chi 8888$  (pYA3674) and  $\chi 8888$  (pYA3675) at the indicated weeks after immunization.

Both strains elicited anti-LPS, anti-SOMPs and anti-EASZ 240 IgG.

### FIGURE 54. Cloning of sipB in Asd vector pYA3332



1818 bp of *sipB* gene (*sipB-8* to *sipB+18*) was PCR amplified from the *S. typhimurium* UK-1 chromosomal DNA with Primer *sipB*-Ndel and *sipB*-BamHI. This fragment was digested with Ndel enzyme and then filled-in with Klenow enzyme and cut the other end with BamHI. Asd vector pYA3332 was digested with Ncol enzyme and then the overhang removed with a mung bean nuclease and then cut the other end with BamHI enzyme. Then ligate the *sipB* insert with the pYA3332 (blunt ligation).

### fused area sequence:

AGGAAACAGACT ATG ACG CAA SD M T Q sipB

Primer 57. sipB-NdeI: 5'GCAATTCCATATGGTAAATGACGCAAGTAGCATTAG 3'Primer 58. sipB-BamHI:5'CCGGATCCTTTATTTTGGCAGTTTTTATGCG 3'



Heg d Palle il

FIGURE 55. Construction of pYA3681 (pYA3646 with the P<sub>trc</sub>-MCS TT-pBR *ori* cassette)



asd

Figure 56. Construction of pYA3682 (pYA3647 with the P<sub>trc</sub>-MCS TT-pBR *ori* cassette)



ligate 1.9 kb Sph I-rrfG TT-Xba I PCR product from pYA3342 with 3.9 kb Xbal-SphI PCR product from pYA3647.





### FIGURES 55 and 56. Regulated lysis vector pYA3681 and pYA3682



### pYA3681 and pYA3682 possess:

- --pBR ori.
- --Ptrc promoter for expressing antigen gene.
- --araCP<sub>BAD</sub> activator-promoter.
- --two genes for essential enzymes for synthesis of rigid layer of the bacterial cell wall, asd and murA.
- --GTG start codon for murA and either GTG or ATG start codon for asd gene.
- --P22P $_{\mbox{\scriptsize R}}$  promoter for synthesis of anti-sense mRNA of asd and murA genes.
- --multiple transcription terminators to block transcription of genes in adjacent segments of vector.

### P<sub>trc</sub> promoter region sequence:

Ptrc -> -35 -10
ATTCTGAAATGAGCTG<u>TTGACA</u>ATTAATCATCCGGCTCG<u>TATAAT</u>GTGT

SD Ncol

GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGACCATG</u>GGAA

Smal/Xmal

TTCGCAATT<u>CCCGGG</u>GATCCGTCGACCTGCAGCCAAGCTCCCAAGCTT



FIGURE 57. DAP-less and Muramic-less Death in host strain with lysis system vectors



The result shows phenotypic properties of recombinant host-vector strains displaying arabinose-dependent growth and regulated cell lysis in the absence of arabinose.

 $\chi 8888$ :  $\Delta asdA$ ::araC  $P_{BAD}$  c2 , $\Delta P_{murA}$ ::araC  $P_{BAD}$  murA , $\Delta araBAD$ ,  $\Delta araE$ ,  $\Delta endA$ ,  $\Delta gmd$ -fcl and  $\Delta relA$ 

### FIGURE 58. β-Galactosidase release by cell lysis



ß-Galactosidase production from  $\chi 8933$  (the atrB13::MudJ allele in $\chi 8888$ ) was used as a cytoplasmic protein marker and as an indicator of cell lysis in the examination of regulated bacterial lysis in vitro.

The ratio of ß-Galactosidase activity in supernatant and cell-pellet revealed the extent of cell lysis.

Inoculate (1:400) overnight culture (LB broth with 0.002% Ara) to fresh prewarm LB broth with 0.02% Ara, ß-Galactosidase activity in supernatant and cell-pellet were assayed at indicated time point, respectively.

At 3 hr post inoculation (5.4 generations),  $\chi 8933$  (pYA3681) growing in LB broth without Ara shows significant cell lysis and  $\beta$ -Galactosidase activity of supernatant.

χ8933- atrB13::MudJ allele in χ8888



FIGURE 59. Construction of pYA3712 (pYA3681 specifying the expression of codon-optimized rPspA-RX\*1)





FIGURE 60. Construction of pYA3713 (pYA3682 specifying the expression of rPspA-RX1)



FIGURE 61. Construction of the pYA3681 expressing the HBV core PreS1,S2 sequences.



PCT/US2003/026883

FIGURE 62. DNA and amino acid sequences of HBV core gene with preS1 and pre S2 epitopes in pYA3681

Ptrc promoter

-35 -10
TTGACAATTA ATCATCCGGC TCGTATAATG TGTGGAATTG TGAGCGGATA ACAATTTCAC

SD ACAGGAAACA GACC

31/11 ATG GAC ATC GAC CCT TAT AAA GAA TTT GGA GCT ACT GTG GAG TTA CTC TCG TTT TTG CCT M D I D P Y K E F G A T V E L L S F L P 91/31 TCT GAC TTC TTT CCT TCA GTA CGA GAT CTT CTA GAT ACC GCC TCA GCT CTG TAT CGG GAA S D F F P S V R D L L D T A S A L 121/41 151/51 GCC TTA GAG TCT CCT GAG CAT TGT TCA CCT CAC CAT ACT GCA CTC AGG CAA GCA ATT CTT A L E S P E H C S P H H T A L R Q A I L 211/71 TGC TGG GGG GAA CTA ATG ACT CTA GCT ACC TGG GTG GGT GTT AAT ACT GCA AAT CCA GAT G E L M T L A T V G V N T A N P D W 271/91 TGG GAC TTC AAT CCC AAC AAG GAC ACC TGG CCA GAC GCC AAC AAG GTA GGA GCT GGA GCA WDFNPNKDTWP D A N K V 301/101 331/111 TTC GGG TCT AGA GAC CTA GTA GTC AGT TAT GTC AAC ACT AAT ATG GGC CTA AAG TTC AGG F G S R D L V V S Y V N T N M G L K 361/121 391/131 CAA CTC TTG TGG TTT CAC ATT TCT TGT CTC ACT TTT GGA AGA GAA ACA GTT ATA GAG TAT Q L L W F H I S C L T F G R E T V I E Y 451/151 TTG GTG TCT TTC GGA GTG TGG ATT CGC ACT CCT CCA GCT TAT AGA CCA CCA AAT GCC CCT L V S F G V W I R T P P A Y R P P N A P 511/171 ATC CTA TCA ACA CTT CCG GAG ACT ACT GTT GTT AGA CGA CGA GGC AGG TCC CCT GGT GGC I L S T L P E T T V V R R R G R S P G TCC AGT TCA GGA ACA GTA AAC CCT GTT S S S G T V N P V

HBcAg (1-75)-pre-S(27-53)-HBcAG(81-156)-pre-S2(133-143)

FIGURE 63. Construction of Alr<sup>+</sup> plasmid vector with pSC101 ori and p15A ori



SD-alr.  $alr_{-10}$  to  $alr_{1080} + T$ P<sub>alr</sub>:  $alr_{-76}$  to  $alr_{-11}$ 

PCT/US2003/026883

FIGURE 64. Construction of Alr<sup>+</sup> plasmid vector with pSC101 *ori* to enable fusion of antigens with T-cell epitopes to the N-terminal end of the Type III effector SopE



sopE\*: 342 bp of PCR product (sopE-93 to +249) including 93bp sopE promoter region and 249 bp of sopE from Salmonella

### FIGURE 65. Construction of BAC vector with Incla, Inclb, Incl genes and Alr<sup>+</sup> in place of antibiotic resistance genes



incll, ori, repE, incla, inclb, parA and parB sequences are from Rts1 plasmid