

Technology Advances

TATION OF THE PROPERTY OF THE

Advances in Technology

- Technology has been advancing at lightning speed
- Architecture and IT as a whole were beneficiaries
- Technology advance is summarized by Moore's Law
 - You probably heard of it at some point. Something about ...
 - "X doubles every 18-24 months at constant cost"
- Is X:
 - CPU performance?
 - CPU clock frequency?
 - Transistors per CPU chip?
 - Area of CPU chip?

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Miniaturization of Transistors

Data source: Radamson, H.H.; He, X.; Zhang, Q.; Liu, J.; Cui, H.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J.; Gao, J.; Yang, H.; Gu, S.; Zhao, X.; Du, Y.; Yu, J.; Wang, G. Miniaturization of CMOS. *Micromachines* **2019**, *10*, 293.

- Moore's Law has been driven by transistor miniaturization
 - CPU chip area hasn't changed much

Future of Moore's Law

- The semiconductor industry has produced roadmaps
 - Semiconductor Industry Association (SIA): 1977~1997
 - International Technology Roadmap for Semiconductors (ITRS): 1998~2016
 - International Roadmap for Devices and Systems (IRDS): 2017~Present
- IRDS Lithography Projection (2020)

Year of Production	2018	2020	2022	2025	2028	2031	2034
Technology Node (nm)	7	5	3	2.1	1.5	1.0	0.7

- Looks like Moore's Law will continue into foreseeable future
- IRDS does not project significant increase in CPU chip size
- Increases in transistors will come from transistor density

IRDS isn't Perfect

ITRS (predecessor of IRDS) has made corrections before

- After all, you are trying to predict the future
- But architects rely on the roadmap to design future processors

Moore's Law and Performance

- Million-dollar question: Did Moore's Law result in higher performance CPUs?
- Please go to your respective Teams chat groups
 - But stay in the Zoom room and use only chat on Teams
 - To have chat content accessible to asynchronous students
- 1. Get to know each other
- 2. And then try to answer the following questions:
 - What do you think? Are CPUs getting faster?
 - If not, why do you think so? If yes, again why do you think so?
- 3. After 10 minutes, we will share discussions with class

THE TOTAL PROPERTY OF THE PARTY OF THE PARTY

Are CPUs getting Faster?

- Yes!
- Clock speeds are increasing, power draw is decreasing -Andrew
- More cores Jason
- Visual Studio compilation is actually faster -Nick

- No!
- Clock speeds are plateauing recently
 - Jason
- Seems stagnant from user's perspective e.g. Visual Studio - Josh

SECTION OF THE PROPERTY OF THE

Components of Execution Time

Processor activity happens on clock "ticks" or cycles

On each tick, bits flow through logic gates and are latched

Execution time =
$$\frac{\text{seconds}}{\text{program}}$$

$$\frac{\text{seconds}}{\text{program}} = \frac{\text{cycles}}{\text{program}} \quad X \quad \frac{\text{seconds}}{\text{cycle}}$$

$$= \frac{\text{instructions}}{\text{program}} \quad X \quad \frac{\text{cycles}}{\text{instructions}} \quad X \quad \frac{\text{seconds}}{\text{cycle}}$$

Improving Execution Time

$$\frac{\text{instructions}}{\text{program}}$$
 X $\frac{\text{cycles}}{\text{instructions}}$ X $\frac{\text{seconds}}{\text{cycle}}$

- - Also known as CPI (Cycles Per Instruction)
 - IPC (Instructions Per Cycle) = $\frac{\text{instructions}}{\text{cycles}}$ = reverse of $\frac{\text{cycles}}{\text{instructions}}$ Higher IPC leads to shorter execution time
- Improving instructions program:
 - Less instructions leads to shorter execution time
 - ISAs that do a lot of work with one instruction shortens time

Moore's Law and Performance

Million-dollar question: Did Moore's Law result in higher performance CPUs?

Law impacts both architecture and physical layers

Instruction Set Architecture

Computer

Processor Organization

Architecture

Transistor Implementation

Physical Layer

- Processor Organization: many more transistors to use in design
- Transistor Implementation: smaller, more efficient transistors

Moore's Law Impact on Architecture

- So where did architects use all those transistors?
- Well, we will learn this throughout the semester ©
 - Pipelining
 - Parallel execution
 - Prediction of values
 - Speculative execution
 - Memory caching
 - In short, they were used to improve frequency or IPC
- Let's go on to impact on the physical layer for now

Moore's Law Impact on Physical Layer

- CPU frequency is also impacted by transistor speed
 - As well as how many transistors are in between clock ticks (which is determined by processor organization)
- So did Moore's Law result in faster transistors?
 - In other words, are smaller transistors faster?

THI CAN THE STREET

Speed of Transistors

Transistor 101: Transistors are like faucets!

- To make a transistor go fast, do one of the following:
 - Reduce distance from source to sink (channel length)
 - Reduce bucket size (capacitance) ↓
 - Increase water pressure (supply voltage) 企

Smaller Transistors are Faster!

Transistor 101: Transistors are like faucets!

- When a transistor gets smaller:
 - Channel length (channel resistance) is reduced ↓
 - Capacitance is reduced ↓
- So, given the same supply voltage, smaller is faster!
- So, did Moore's Law enjoy faster and faster frequencies?

STATE OF THE PARTY OF THE PARTY

Yes, for a while ...

Source: Computer Architecture, A Quantitative Approach (6th ed.) by John Hennessy and David Patterson, 2017

- Improvements in large part due to transistors
 - Processor design also contributed but we'll discuss later

SEVERS TO SEVER SE

But not so much lately

Source: Computer Architecture, A Quantitative Approach (6th ed.) by John Hennessy and David Patterson, 2017

Suddenly around 2003, frequency scaling stops

Dent in CPU Performance

Single-Threaded Integer Performance

Source: https://preshing.com/20120208/ a-look-back-at-single-threaded-cpu-performance/

- This caused a big dent in CPU performance at 2003
- Improvements henceforth only came from architecture
 - From improvements to IPC (instructions per cycle)

THI CAN THE PROPERTY OF THE PR

So What Happened? TDP.

- TDP (Thermal Design Power):
 - Maximum heat (power) that cooling system can handle
 - Cooling system hasn't improved much over generations (Typically a CPU cooling fan attached with thermal paste)
- CPU Power = A * N * CFV² must be < TDP</p>
 - A = Activity factor (% of transistors with activity)
 - N = Number of transistors

 - F = Frequency
 - V = Supply Voltage

What happens to each factor with Moore's Law?

TDP and Moore's Law

- CPU Power

 A * N * CFV² with Moore's Law
 - A = Activity factor
 - N = Number of transistors ① ①

 - F = CPU frequency ☆ (thanks to reductions in transistor size)
 - V = CPU Supply Voltage
- Reductions in C cannot offset increases in N and F
 - Q) How did CPU frequency keep increasing up to 2003?
 - A) By maintaining power through reductions in Voltage \P
 - Q) Wait! Voltage reduction reduces frequency! (Transistor 101)
 - A) Alright, time to do MOSFET 101

MOSFET 101

Source

MOSFET (Metal Oxide Silicon Field Effect Transistor)

[A MOSFET transistor switched off] [A MOSFET transistor switched on]

- Gate is switched on when V_G reaches a threshold V_{th}
 - By creating a channel in depletion region through field effect
 - V_{th}: threshold voltage (minimum voltage to create channel)

MOSFET 101

RC charging curve of V_G

- \blacksquare Speed (T_{on}) is determined by V_{dd} if V_{th} is fixed
 - V_{dd} is the CPU supply voltage (the water pressure)
 - If V_{dd} is lower, V_G will reach V_{th} more slowly (low pressure)

MOSFET 101

RC Charging Curve of V_G

■ Speed (T_{on}) is maintained while reducing V_{dd} to V_{dd} , if V_{th} is also reduced to V_{th} .

THI CONTROL OF THE PARTY OF THE

Dennard Scaling

- So in the end, this is what happens ...
- CPU Power

 A * N * CFV² with Moore's Law
 - A = Activity factor
 - N = Number of transistors ① ①

 - F = CPU frequency ☆ (thanks to reductions in transistor size)
 - V = CPU Supply Voltage ↓ (to reduce power)
 - V_{th} = CPU Threshold Voltage ↓ (to maintain frequency)
- Factors balance each other out to make power constant
- This recipe for scaling frequency while keeping power constant is called Dennard Scaling

End of Dennard Scaling

And around 2003 is when Dennard Scaling ended

THI CAN THE STREET

Limits to Dropping V_{th}

- Subthreshold leakage
 - Transistor leaks current even when gate is off $(V_G = 0)$

- This leakage current translates to leakage power
- Leakage worsens when V_{th} is dropped (related to oxide thickness)

Leakage Power across Generations

Leakage power has increased across technology nodes

Source: L. Yan, Jiong Luo and N. K. Jha, "Joint dynamic voltage scaling and adaptive body biasing for heterogeneous distributed real-time embedded systems," in *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 24, no. 7, pp. 1030-1041, July 2005

End of Dennard Scaling

- Power_{CPU} ∝ Power_{dynamic} + Power_{leakage}
 - Power_{dvnamic} \propto A * N * CFV²
 - Power_{leakage} \propto f(N, V, V_{th}) \propto N * V * e^{-Vth}
 - Leakage worsens exponentially when V_{th} is dropped
 - Catch-22: when dropping V_{th} , Power_{dynamic} \checkmark but Power_{leakage} \checkmark \checkmark
 - That means V_{th} can't be reduced and V can't be reduced
- Power_{dynamic} (\propto A * N * CFV²) + Power_{leakage} (\propto N * V * e^{-Vth})
 - A = Activity factor
 - N = Number of transistors 企 企

 - F = CPU frequency ⇔ (Can't increase without violating TDP)
 - $V = CPU Supply Voltage \Leftrightarrow (Due to fixed V_{th})$
 - V_{th} = CPU Threshold Voltage \Leftrightarrow (Due to leakage power)

THI CAN THE STREET

Free Ride is Over

- "Free" speed improvements from transistors is over
- Now it's up to architects to improve performance
 - Moore's Law is still alive and well (although slowing down)
 - Architects are flooded with extra transistors each generation
- Now is a good time to discuss technology constraints
 - Since we already mentioned a big one: TDP