CS224 Lab No: 4 Section No: 06 Barış Tan Ünal 22003617

LAB 6 PRELIMINARY REPORT

PART 1

No.	Cache Size KB	N Way Cache	Word Size (no. of bits)	Block Size (no. of words	No. of Sets	Tag Size in Bits	Index Size (Set no.) In bits	Block Offset Size	Byte Offset Size In Bits	Block Replacement Policy Needed
1	64	1	32	4	2^{12}	15	12	2	2	No
2	64	2	32	4	2 ¹¹	16	11	2	2	Yes
3	64	4	32	8	2 ⁹	17	9	3	2	Yes
4	64	Full	32	8	1	26	0	3	2	Yes
9	128	1	16	4	214	14	14	2	1	No
10	128	2	16	4	2 ¹³	15	13	2	1	Yes
11	128	4	16	16	2 ¹⁰	16	10	4	1	Yes
12	128	Full	16	16	1	26	0	4	1	Yes

PART 2.a

Instruction	Iteration No.							
Instruction	1	2	3	4	5			
lw \$t1, 0x24(\$0)	Compulsory	Conflict	Conflict	Conflict	Conflict			
lw \$t2, 0xAC(\$0)	Compulsory	HIT	HIT	HIT	HIT			
lw \$t3, 0xC8(\$0)	Conflict	Conflict	Conflict	Conflict	Conflict			

PART 2.b

C (Capacity): 16 words b (block size): 4 words B (Number of blocks): 8 S (Number of sets): 2

With the quantities above, the offset and set bits can be calculated.

Number of set bits: $log_2S = log_22 = 1$

Number of block offset bits: $log_2b = log_24 = 2$

Number of byte offset bits: 2

Number of tag bits: 32 - (1 + 2 + 2) = 27

Taking 1-bit valid bit, tag bits and the data field bits into account in the calculations.

Total memory cache size: (1 + 27 + (32 * 4))*4 = 624 bits

PART 2.c

- (x2) 4:1 mux: for selecting the proper memory location in the block
- (x1) 2:1 mux: for selecting from the proper way of the cache since it is 2-way
- (x2) equality comparator: for checking if the tag is equal to the tag we are searching for
- (x2) AND gate: for generating hit signal, taking the outputs of comparators
- (x1) OR gate: for generating hit signal, taking the outputs of the AND gates

PART 3.a

Instruction	Iteration No.							
Instruction	1	2	3	4	5			
lw \$t1, 0x24(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity			
lw \$t2, 0xAC(\$0)	Compulsory	Capacity	Capacity	Capacity	Capacity			
lw \$t3, 0xC8(\$0)	Capacity	Capacity	Capacity	Capacity	Capacity			

PART 3.b

Since there is only one set, there is no need for set bits. Also, there is no need for block offset too because the block size is only one word. We need 2-bits of byte offset since number of blocks equals to 2.

Tag bits should be 30-bits (32 - 2 = 30).

One bit is sufficient for LRU policy since cache memory size is 2.

Total cache size: (32 + 1 + 30) * 2 = 126 bits. (32 bits for data, 1 bit for valid bit and 30 bits for tag.)

PART 4

AMAT = 2 + 0.1(4 + 0.05 * 20) = 2.5 clock cycles

2GHz = $2 * 2^{30}$ Hz \rightarrow Clock Period (T) = 2^{-31} s Time Needed = AMAT * Instr. Count * T = **11.64 s**