L2: Overview of machine learning applications, types, and tasks

Prof. Xun Jiao

Before class

- No HWs this week
- Syllabus/Slides on BB

Review of last class

- What is machine learning?
 - Method that can learn from ???

WHEN TO USE MACHINE LEARNING?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful:

There is no need to "learn" to calculate payroll

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

Learning to classify text documents

spam → vs

not spam

Learning to detect objects in images

Example training images for each orientation

Some more examples

Recognizing patterns:

- Facial identities or facial expressions (Iphone)
- Handwritten or spoken words
- Medical images (IBM Watson system)

Recognizing anomalies:

- Unusual credit card transactions
- Unusual patterns of sensor readings in a nuclear power plant

Prediction:

• Future stock prices or currency exchange rates

Autonomous Driving, Robotics, Gaming Al ...

Machine Learning - Practice

Mining Databases

Speech Recognition

Control learning

Text analysis

Object recognition

- Support Vector Machines
- · Bayesian networks
- Hidden Markov models
- Deep neural networks
- Reinforcement learning

• ...

Why is this called "Applied" Machine Learning?

More emphasis on using existing tools than implementing algorithms

But you'll do a little bit of implementation too

Less mathematical theory

But you'll still learn how the algorithms work Math will be taught as needed

More focus on creating systems/pipelines (data processing, design, evaluation)

High-level Goals

identify when machine learning can help solve a problem and which approaches are appropriate;

be comfortable doing machine learning in Python, and be familiar enough with the algorithms and parameters to easily adopt other toolkits;

understand the underlying concepts well enough that you can read machine learning papers, and can modify implementations for your own needs;

Develop an ML pipeline system for selected applications

Concrete goals

- The primary Machine Learning algorithms
 - Logistic regression, Bayesian methods, HMM's, SVM's, reinforcement learning, decision tree learning, boosting, unsupervised clustering, ...
- How to use them on real data
 - text, image, structured data
 - your own project
- Underlying statistical and computational theory
- Enough to read and understand ML research papers

What this course can give you?

- Jobs in industry.
- Ability to conduct research in the most popular AI area.
- Build your own system to help people
 - Automatically recommend restaurants you family may like
- Ability to use ML/data analysis techniques for many different fields
 - Discovering new thermal energy materials
 - Predict when elders will fall using brain information
 - Diagnose a nose-related disease
 - Build better computers
- This is a big data era, and you have unlimited possibility when you master the power of the tool of data analysis.

Machine Learning in Computer Science

- Machine learning already the preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control

– ...

This ML niche is growing (why?)

Machine Learning in Computer Science

- Machine learning already the preferred approach to
 - Speech recognition, Natural language processing
 - Computer vision
 - Medical outcomes analysis
 - Robot control

- ...

- This ML niche is growing
 - Improved machine learning algorithms
 - Increased volume of online data
 - Increased demand for self-customizing software

Tom's prediction: ML will be fastest-growing part of CS this century

Outline: Machine learning types and tasks

- A systematic view of machine learning
 - Machine learning VS AI
 - Supervised Learning VS Unsupervised Learning
 - Regression VS. classification
 - Training VS validation VS testing

AI VS. Machine Learning

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

- Artificial intelligence is a wide field, which aims at making machines intelligent. All has a set of tools through which it enables a machine to mimic human intelligence.
 - Natural language processing
 - Robotics
 - Machine Learning
 - Self-driving cars
 - https://en.wikipedia.org/wiki/Artificial_intelligence#Re asoning, problem_solving
- One of the tools AI have is machine learning, that gives the machines to learn without being told explicitly what to do.
- Machine learning again has various tools in its pocket, one
 of them being neural networks. *Neural networks* try to
 mimic the activity of a human brain. *Deep learning* is the
 use of more sophisticated neural networks, with more nonlinear layers, convolutional layers etcetera.

Supervised vs. Unsupervised Learning

- Supervised Learning
 - Goal: A program that performs a task as good as humans.
 - TASK well defined (the target function)
 - EXPERIENCE training data provided by a human
 - PERFORMANCE error/accuracy on the task
- Unsupervised Learning
 - Goal: To find some kind of structure in the data.
 - TASK vaguely defined
 - No EXPERIENCE
 - No PERFORMANCE (but, there are some evaluations metrics)