Cette définition correspond bien à l'intuition de la derivée parlielle: on derive par rapport à la ke variable en maintenant fixées les (k-1) e autres variables.

 $(a_1,...,a_k+t,...,a_n)$ peut se réécure a+tek avec $ek=(0,...,1,...,o)^T \in \mathbb{R}^n$ le k^e vecteur de la base canonique $C_p(t)=f(a+tek)$ (=> variations de f le long du k^e axe $C_p'(o)=\frac{\partial f}{\partial x_k}(a)$ (=> dérivée partielle au point a selon l'axe $(0,e_k)$

△ En dimesson 1, l'existence de f'(20) implique la continuité de f en xo Cette propriété n'est plus vraie pour f: 187 _ 18

Exemple :
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x_1, x_2) \longmapsto \begin{cases} 0 & \text{Si}(x_1, x_2) = (0,0) \\ \frac{x_1 x_2}{x_1^2 + x_2^2} & \text{Sinon} \end{cases}$$

On a vu (cf cours sur la converité à l'ordre 0) que f n'est pas continue en (0,0)

Pointant,
$$f(0, E) = f(E, 0) = 0 \ \forall E \in \mathbb{R} \longrightarrow \frac{\partial f}{\partial x_1}(0, 0) = \frac{\partial f}{\partial x_2}(0, 0) = 0$$

Dérivée directionnelle pour f. 18n -18

La dérivée partielle est ene dérivée selon me direction (un axe de la base canonique) Cette idée se généralise pour me direction quelconque: on dit que f admet me dérivée en ∞ 0 Suivant en verteur $u \in \mathbb{R}^n \setminus \{0\}$ si P'application $f: t \mapsto f(x_0 + tu)$ est dérivable en O

La dérivée $cp'(o) = \lim_{t\to o} \frac{f(x_0+tu) - f(x_0)}{t}$ se note $D_{u}f(x_0)$: c'est la <u>dérivée</u> directionnelle de f en se serivant le verteur en Évidenment: $\frac{\partial f}{\partial x_0}(x_0) = D_{ext}f(x_0)$

Si on remplace u par du $(d \neq 0)$: $D_{du} f(x_0) = dD_{u} f(x_0)$ _ Corsque la dérivée directionnelle existe en un point suivant en verteur, elle existe suivant tout verteur de même direction (mais la valeur de la dérivée change)

→ on parle de dérivée dans la direction de m Consque m est enitaire (1121/2=1)

Définition: gradient de f en $x_0 \in \mathbb{R}^n$ On appelle gradient de f en $x_0 \in \mathbb{R}^n$ On appelle gradient de f en $x_0 \in \mathbb{R}^n$ $f = \nabla f(x_0) = \left(\frac{\partial f}{\partial x_0}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0)\right)^T$

Propriétés: Soit f: 187 - 18 et xo ER. Si f est différentiable en xo, alors

- → f est continue en oco (déja vu si f:18 → 18)
- _ of est dérivable en xo suivant tout veuteur en ∈ 12° 140}, et la dérivée directionnelle vaut Duf(xo) = df_xo(u)
- _ en particulier pour tous les venteurs de la base canonique en $k=1,...,n:\frac{\partial f}{\partial x_k}(x_0)=D_{ek}f(x_0)$ _ toutes les dérivées partielles éristent = $df_{x_0}(e_k)$

Soit maintenant h ERP en vecteur de coordonnées (hi...hn) dans la bese canonique : h = Ît h; e;

About
$$df_{\infty}(h) = df_{\infty}\left(\sum_{i=1}^{n}h_{i}e_{i}\right) = \sum_{i=1}^{n}h_{i}df_{\infty}(e_{i}) = \sum_{i=1}^{n}h_{i}\underbrace{\mathcal{D}_{e_{i}}f_{\infty}}_{\partial\Sigma_{i}}(\infty)$$

$$df_{\infty}(h) = \sum_{i=1}^{n}h_{i}\frac{\partial f}{\partial\Sigma_{i}}(\infty)$$

Si f et différentiable en xo, alors dfx: h -> < Pfixo, h> = Vf(xo) h

Le DL1 d'une fonction f: M? S'écuit donc f(xsth) = f(xs)+dfxs(h)+os(h) = f(xs)+ \forall f(xs) h+os(h)

Interpretation geométrique du gradient

On consider of différentiable en seo. A quoi correspond le vecteur h tel que $df_{\infty}(h) = \nabla f(x_0)^T h = 0$?

-
$$f(x_0+h) = f(x_0) + \nabla f(x_0)^T h + O_0(h)$$
 puisque f différentiable en xo
= $f(x_0) + O_0(h)$ pour h tel que $\nabla f(x_0)^T h = 0$

Donc pour 11h 11 -0 (h petit) tel que Vfixih =0, fixih) = fixo)

- _ h est la direction de l'isocontour de valeur f(xs)
- V(rs) est orthogonal à la ligne de niveau f(rs) de f

Dans quelle direction pointe le gradient? Prenons h = d'Tf(25) pour d>0 (donc h colinéaire à Pf(25))

Alone
$$f(x_0+h) = f(x_0+a\nabla f(x_0)) = f(x_0)+\nabla f(x_0)^Th + O(h)$$

$$= f(x_0) + d \|\nabla f(x_0)\| (\|\nabla f(x_0)\| + \mathcal{E}(d\nabla f(x_0))) \longrightarrow \text{meme si } \mathcal{E}(d\nabla f(x_0)) < 0$$

Or $\mathcal{E}(d\nabla f(x)) = 0$, donc pour do suffixamment petit, on est sûrs que $\|\nabla f(x)\| + \mathcal{E}(d\nabla f(x)) > 0$

Donc fix+d vfixo) > fixo) pour h = d vfixo) avec d>0 Suffisamment petit

- _ √fræ) pointe vou les valeurs avissates de f
- _o et de marière ples générale: le gradient indique la direction de plus forte perte (sera demontré plus tard)

4) Cas général: la matrice jacobienne

Dans le cas général où
$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^p$$
 avec $\forall i=1,...p$ $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ "fonction-coordonnée" $x \mapsto f_i(x)$

f différentiable en x5∈1? <=> ser p fonctions coordonnées j; i=1, p Sont différentiables en x5∈1?

$$f(x_0+h) = \begin{pmatrix} f_1(x_0+h) \\ \vdots \\ f_p(x_0+h) \end{pmatrix} = \begin{pmatrix} f_1(x_0) + cl_{1x_0}(h) + cl_{0}(h) \\ \vdots & \vdots & \vdots \\ f_p(x_0) + cl_{px_0}(h) + cl_{0}(h) \end{pmatrix} = \begin{pmatrix} f_1(x_0) \\ \vdots \\ f_p(x_0) \end{pmatrix} + \begin{pmatrix} cl_{1x_0}(h) \\ \vdots \\ cl_{px_0}(h) \end{pmatrix} + cl_{0}(h) = f(x_0) + \begin{pmatrix} cl_{1x_0}(h) \\ \vdots \\ cl_{px_0}(h) \end{pmatrix} + cl_{0}(h) + cl_{$$

1 h | E(h) avec E: 12 12 et | E(h) | = 0 quand | h | = 0