### COMPUTATIONAL LAB FILE SGTB KHALSA COLLEGE UNIVERSITY OF DELHI

## Statistical Mechanics







SIGNATURE

## 01/14/2023 00:03:32

| CLASS:        | Semester 6 BSc H Physics | Paper : | Statistical Mechanics |
|---------------|--------------------------|---------|-----------------------|
| ROLL NUMBER : | 2020PHY1122              | NAME :  | GAURAV CHANDRA        |

## AIM :

study of ensembles for coins tossing experiment

| CODE:                                         |                                                                                                  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------|
| Roll No.: 2020PHY1122 Name: Gaurav Chandra "" | import numpy as np import math import pandas as pd import matplotlib.pyplot as plt import random |

```
def Generator(N_c, N_t):
                                                                               #plot1
 out_arr = [] #outcomes_array
                                                                               N_c = 7
                                                                               N_t = 20
 for i in range(N_t):
                                                                               while N_t <= 20000:
   out = [] #outcomes
                                                                                 y = Generator(N_c, N_t)[1]
   for j in range(N_c):
                                                                                 x = np.arange(0, N_c+1)
     out.append(random.randint(0,1))
                                                                                 plt.plot(x, y, label=f'N_t = {N_t}', marker='o')
   out_arr.append(out)
                                                                                 N_t *= 10
 n_heads = [] # counting the number of heads and tails
 for n in out_arr:
                                                                               y_bd = Generator(N_c, N_t)[2]
   n_heads.append(sum(n))
                                                                               plt.plot(x, y_bd, label='bionomial distribution', marker='*')
 n_heads = np.array(n_heads)
                                                                               plt.legend()
 n_tails = N_c - n_heads
                                                                               plt.grid()
                                                                               plt.xlabel('NUMBER OF HEADS')
 freq_count = [] # frequency count of macro-states
 for i in range(N_c + 1):
                                                                               plt.ylabel('PROBABILITY')
   freq_count.append(list(n_heads).count(i))
                                                                               plt.savefig('PLOT1_1122')
 freq_count = np.array(freq_count)
                                                                               plt.title('TRIALS VARIATION PLOT')
 probability = freq_count/N_t
                                                                               plt.show()
 binomial_distri_prob = [] # data from bionomial distribtion
 Nc_arr = np.arange(0, N_c+1)
 for i in range(len(Nc_arr)):
   binomial\_distri\_prob.append(math.comb(N\_c, i)/(2^{**}N\_c))
 p = [] # calculating p and q
 for i in range(len(n_heads)):
   p.append(np.sum(n\_heads[:i+1])/((i+1)*N\_c)
 p = np.array(p)
 q = 1-p
 table = pd.DataFrame({'Trials': np.arange(
   1, N_t + 1), 'Outcomes': out_arr, 'No. of Heads': n_heads, 'No. of Tails':
n_tails, 'p': p, 'q': q})
 table.set_index('Trials', inplace=True)
 return table, probability, binomial_distri_prob
```

```
# plot2
                                                                                #plot3
N_t = 20000
                                                                                N_c = 3
for coins in range(2, 10, 2):
                                                                                N_t = 10000
 x = np.arange(0, coins+1)
                                                                                data = Generator(N_c, N_t)[0]
 y = Generator(coins, N_t)[1]
                                                                                y1 = data['p'].to_numpy()
                                                                                y2 = data['q'].to_numpy()
 plt.plot(x, y, label=f'N_c = {coins}', marker='o')
                                                                                x = np.arange(0, N_t)
plt.legend()
plt.grid()
                                                                                plt.plot(x, y1, label='p')
plt.xlabel('NUMBER OF COINS')
                                                                                plt.plot(x, y2, label='q')
plt.ylabel('PROBABILITY')
                                                                                plt.legend()
plt.title('COIN VARIATION PLOT')
                                                                                plt.grid()
plt.savefig('PLOT2_1210')
                                                                                plt.xlabel('NUMBER OF TRIALS')
                                                                                plt.ylabel('p, q')
                                                                                plt.title('CUMULATIVE PLOT')
plt.show()
                                                                                plt.savefig('PLOT3_1122')
                                                                                plt.show()
```







| COMMENTS: |  |  |
|-----------|--|--|
|           |  |  |
|           |  |  |
|           |  |  |

#### COMPUTATIONAL LAB FILE SGTB KHALSA COLLEGE UNIVERSITY OF DELHI

## Statistical Mechanics





SIGNATURE

## 01/18/2023 16:51:57

| CLASS:        | Semester 6 BSc H Physics | Paper : | Statistical Mechanics |
|---------------|--------------------------|---------|-----------------------|
| ROLL NUMBER : | 2020PHY1122              | NAME :  | GAURAV CHANDRA        |

## AIM :

TO UNDERSTAND THE DISTRIBUTION FUNCTIONS LIKE MAXWELL-BOLTZMANN ,BOSE EINSTEIN AND FERMI DIRAC DISTRIBUTIONS

| CODE:                                                            |                                                                                |
|------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Roll No.: 2020PHY1122 Name: Gaurav Chandra "" import numpy as np | <pre>def f_fd(X,alpha):   Y = 1/(np.exp(alpha)*np.exp(X) + 1)   return Y</pre> |
| import matplotlib.pyplot as plt                                  | <pre>#plot 1 plt.plot(X,f_mb(X),label = "Maxwell's Boltzmann")</pre>           |
| k = 8.6173 * 10**(-5)                                            | plt.plot(X1,f_be(X1,alpha),label = "Bose Einstein")                            |
| X = np.linspace(-4,4,100)                                        | plt.plot(X,f_fd(X,alpha),label = "Fermi Dirac")                                |
| alpha = 0                                                        | plt.ylim([0,10])                                                               |
| X1 = np.linspace(alpha+10**(-5),4,100)                           | plt.xlabel("E/KT")                                                             |
| def f_mb(X):                                                     | plt.ylabel("F(E/KT)") plt.title("PLOT OF PROBABILITY VS E/KT")                 |
| Y = np.exp(-X)                                                   | plt.grid()                                                                     |
| return Y                                                         | plt.legend() plt.show()                                                        |
| def f_be(X,alpha):                                               |                                                                                |
| Y = 1/(np.exp(alpha)*np.exp(X) - 1) return Y                     |                                                                                |

```
#plot 2
                                                                                 #plot 3
e_f = 1 #eV
                                                                                 U = 1 #eV
T = [10,100,1000,5000]
                                                                                 T = [10,100,1000,5000]
                                                                                 e = np.linspace(U+10**(-5),4,100)
e = np.linspace(-4,4,100)
for i in T:
 plt.plot(e,f\_fd(e/(k^*i)\,,\,alpha=-e\_f/(k^*i)), marker='o',label='Temp
                                                                                 for i in T:
='+str(i)+' K')
                                                                                  x = e/(k*i)
                                                                                  alpha = -U/(k*i)
plt.xlabel("E (in eV)")
                                                                                  plt.plot(e,f\_be(x,alpha),marker = 'o',label = 'Temp = '+str(i)+' \ K')
plt.ylabel("F")
plt.legend()
                                                                                 plt.xlabel("E (in eV)")
plt.title("PROBABILITY PLOT OF FERMI DIRAC FUNCTION FOR DIFFERENT
TEMPERATURE")
                                                                                 plt.ylabel("F")
                                                                                 plt.legend()
plt.grid()
plt.show()
                                                                                 plt.ylim([0,10])
                                                                                 plt.xlim([U,2.5])
                                                                                 plt.title("PROBABILITY PLOT OF BOSE EINSTEIN FUNCTION FOR DIFFERENT
                                                                                 TEMPERATURE")
                                                                                 plt.grid()
                                                                                 plt.show()
```

```
#plot 4

T = [500,1000,5000,10000]
e = np.linspace(-0.1,0.1,100)

for i in T:
    X = e/(k*i)
    plt.plot(e,f_mb(X),linewidth=4,label = "Temp ='+str(i)+' K')

plt.xlabel("E (in eV)")
plt.ylabel("F")
plt.legend()
plt.title("PROBABILITY PLOT OF MAXWELL BOLTZMANN FUNCTION FOR
DIFFERENT TEMPERATURE")
plt.grid()
plt.show()
```



#### PROBABILITY PLOT OF FERMI DIRAC FUNCTION FOR DIFFERENT TEMPERATURE



## PROBABILITY PLOT OF BOSE EINSTEIN FUNCTION FOR DIFFERENT TEMPERATURE



## PROBABILITY PLOT OF MAXWELL BOLTZMANN FUNCTION FOR DIFFERENT TEMPERATURE





## **Computational Lab File**

1 message

Google Forms <forms-receipts-noreply@google.com>
To: chandra.gaurav2018@gmail.com

Tue, 28 Feb, 2023 at 5:51 pm

# Google Forms Thanks for filling out Computational Lab File Here's what was received. Computational Lab File Email \* chandra.gaurav2018@gmail.com Class \* Semester 6 BSc H Physics Paper \* Statistical Mechanics Name \*

Roll No. \*

2020PHY1122

```
Aim *
```

The Laws of Radiation - Stefan-Bolztmann Law ( Radiant Flux )

```
Code1 *
(about 10 lines)
#name:gaurav chandra
#name: 2020phy1122
import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate
from scipy import stats
h = 6.626*10**(-34)
c = 3*10**(8)
k = 8.61733 *10**(-5)* 1.6 *10**(-19)
x = np.linspace(0.01,12,100)
def f_p(a):
  return (a**3)/(np.exp(a)-1)
plt.plot(x,f_p(x))
plt.xlabel("x")
plt.ylabel("f_p(x) = x**3/(e**x -1)")
plt.grid()
plt.title("PLOT OF F_p VS X FOR PEAK")
plt.savefig("fig_1_a5")
plt.show()
```

```
Code2
(about 10 lines)
i = list(f_p(x)).index(max(f_p(x)))
xp = x[i]
print("the value of peak(dimentionless) is : ",xp)
b = (h*c)/(k*xp)
print("the value of b is: ",b)
#part b
inte = integrate.quad(f_p,0.1,100)[0]
print("The value of integration obtained using python is ",inte)
inte\_cal = (np.pi**4/15)
print("The value of integration obtained using the numerical method is ",inte_cal)
def C(T):
  I = h*c/(k*T)
  C = 8*np.pi*(k*T)/I**3
  return C
Temp = np.arange(100,10000,500)
C_t = C(Temp)
#print(C_t)
U = inte*(C_t)
F = c*U/4
```

```
plt.plot(Temp,F,'o-')
plt.xlabel("TEMPERATURE")
plt.ylabel("RADIANT FLUX")
plt.title("PLOT OF RADIANT FLUX VS TEMPERATURE")
plt.grid()
plt.savefig("fig_2_a5")
plt.show()

plt.plot(np.log(Temp),np.log(F),'o-')
plt.xlabel("TEMPERATURE")
plt.ylabel("RADIANT FLUX")
plt.title("LOG PLOT OF RADIANT FLUX VS TEMPERATURE")
plt.xlim([-1,10])
plt.ylim([-20,20])
plt.grid()
```

```
plt.savefig("fig_3_a5")
plt.show()

result = stats.linregress(np.log(Temp),np.log(F))
print("THE SLOPE IS :",result.slope,"AND THE INTERCEPT IS :",result.intercept)

sigma_cal = c*8*np.pi**5*k**4/(4*15*(c*h)**3)
sigma_num = np.exp(result.intercept)

print("THE VALUE OF SIGMA CALCULATED FROM STEFAN BLOTZMANN LAW IS :",sigma_cal," Wm**-2 * T**-4")
print("THE VALUE OF SIGMA CALCULATED FROM THE PLOT IS :",sigma_num," Wm**-2 * T**-4")
if np.round(sigma_num,10) == np.round(sigma_cal,10):
    print("AS THE SIGMA CALCULATED AND SIGMA FROM PLOT ARE EQUAL,SO THE STEFAN BOLTZMANN
LAW IS PROVED")
```

```
Code4
(about 10 lines)

#to calculate mean point

a = 0.001
b = 12
x = np.linspace(a,b,11)
for i in x:
    int_l = integrate.quad(f_p,a,i)[0]
    int_r = integrate.quad(f_p,i,b)[0]

if abs(int_l - int_r)/int_r <= 0.1:
    x_mean = i
    print("THE X VALUE WHICH DIVIDES THE AREA IN EQUAL PARTS IS :",x_mean)
    break
```

(about 10 lines)

 $b_mean = (h*c)/(k*x_mean)$ 

print("THE MEAN B VALUE IS;",b\_mean)

#### Code6

(about 10 lines)

#### Plot1

Submitted files



fig\_1\_a5 - Gaurav Chandra.png

#### Plot2

Submitted files



fig\_2\_a5 - Gaurav Chandra.png

#### Plot3

Submitted files



fig\_3\_a5 - Gaurav Chandra.png

## Plot4

No files submitted

## Comments

OUTPUT:--

the value of peak(dimentionless) is: 2.795555555555556

the value of b is: 0.005157174798518598

The value of integration obtained using python is 6.493618402286659

The value of integration obtained using the numerical method is 6.493939402266828

THE SLOPE IS: 4.0 AND THE INTERCEPT IS: -16.69226675748456

THE VALUE OF SIGMA CALCULATED FROM STEFAN BLOTZMANN LAW IS: 5.6319932389868827e-08

Wm\*\*-2 \* T\*\*-4

THE VALUE OF SIGMA CALCULATED FROM THE PLOT IS: 5.6317148456102276e-08 Wm\*\*-2 \* T\*\*-4 AS THE SIGMA CALCULATED AND SIGMA FROM PLOT ARE EQUAL, SO THE STEFAN BOLTZMANN LAW IS **PROVED** 

THE X VALUE WHICH DIVIDES THE AREA IN EQUAL PARTS IS: 3.6007

THE MEAN B VALUE IS; 0.004003990518224171

Create your own Google Form Report Abuse









## **Computational Lab File**

1 message

Google Forms <forms-receipts-noreply@google.com>
To: chandra.gaurav2018@gmail.com

Thu, 9 Mar, 2023 at 8:13 pm

## Google Forms Thanks for filling out Computational Lab File Here's what was received. Computational Lab File Email \* chandra.gaurav2018@gmail.com Class \* Semester 6 BSc H Physics Paper \* Statistical Mechanics Name \*

Roll No. \*

2020PHY1122

Aim \*

to analyse plots of partition function,internal energy,entropy,population density plots for high and low temperature

```
Code1 *
(about 10 lines)
#name: gaurav chandra
#rollno: 2020phy1122
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
k = 8.617 * 10**(-5) # eV/K
def Z(g,e,T):
  n = len(e)
  part = []
  for j in (T):
    z = 0
    for i in range(n):
       z = z + g[i] * np.exp(-e[i]/(k*j))
    part.append(z)
  return part
def frac(g,e,T):
  n = len(e)
  FRAC = np.zeros(n*len(T)).reshape(n, len(T))
  z = Z(g,e,T)
  for i in range(len(T)):
    for j in range(n):
       f1 = (g[j]*np.exp(-e[j]/(k*T[i]))) / z[i]
       FRAC[j][i] = f1
  return FRAC
```

```
Code2
(about 10 lines)
#2level
e = [0,1]
g=[1,1]
#3level
e_3 = [0,1,2]
g_3 = [1,1,1]
plt.subplot(2,2,1)
plt.plot(T1,Z(g,e,T1),c='r',label="2lvl and low T")
plt.xlabel("TEMPERATURE")
plt.ylabel("Z")
plt.grid()
plt.legend()
plt.subplot(2,2,2)
plt.plot(T2,Z(g,e,T2),c='y',label="2lvl and high T")
plt.xlabel("TEMPERATURE")
plt.ylabel("Z")
plt.grid()
plt.legend()
plt.subplot(2,2,3)
plt.plot(T1,Z(g_3,e_3,T1),c='b',label="3lvl and low T")
plt.xlabel("TEMPERATURE")
plt.ylabel("Z")
plt.grid()
plt.legend()
plt.subplot(2,2,4)
plt.plot(T2,\!Z(g\_3,\!e\_3,\!T2),\!c='violet',\!label="3lvl and high T")
plt.xlabel("TEMPERATURE")
plt.ylabel("Z")
plt.grid()
```

```
plt.suptitle("PLOT OF Z VS TEMP")
plt.savefig("ass6_1.png")
plt.legend()
plt.show()

#fractional plot
e_mid = 1/len(e)
```

```
e_{mid_3} = 1/len(e_3)
E_mid ,E_mid_3= np.full( shape = len(T2) ,fill_value = e_mid),np.full( shape = len(T2) ,fill_value = e_mid_3)
plt.subplot(2,2,1)
for i in range(len(e)):
  plt.plot(T1,frac(g,e,T1)[i], label = "energy = "+str(e[i]) + "eV")
plt.xlabel("TEMPERATURE")
plt.ylabel("N_j / N")
plt.legend(loc=6)
plt.grid()
plt.subplot(2,2,2)
for i in range(len(e)):
  plt.plot(T2,frac(g,e,T2)[i], label = "energy = "+str(e[i]) + "eV")
plt.plot(T2,E_mid,'--')
plt.xlabel("TEMPERATURE")
plt.ylabel("N_j / N")
plt.legend(loc="best")
plt.grid()
plt.subplot(2,2,3)
for i in range(len(e_3)):
  plt.plot(T1,frac(g_3,e_3,T1)[i], label = "energy = "+str(e_3[i]) + " eV")
plt.xlabel("TEMPERATURE")
plt.ylabel("N_j / N")
plt.legend(loc=6)
plt.grid()
plt.subplot(2,2,4)
for i in range(len(e_3)):
  plt.plot(T2,frac(g_3,e_3,T2)[i], label = "energy = "+str(e_3[i]) + " eV")
plt.plot(T2,E_mid_3,'--')
plt.xlabel("TEMPERATURE")
plt.ylabel("N_j / N")
plt.legend(loc="best")
plt.grid()
plt.suptitle("PLOT N_j/N VS TEMPERATURE ")
plt.savefig("ass6_2.png")
plt.show()
```

```
(about 10 lines)
```

```
#INTERNAL ENERGY
population_1 = frac(g,e,T1)
population_2 = frac(g,e,T2)
population_3 = frac(g_3,e_3,T1)
population_4 = frac(g_3,e_3,T2)
U_1,U_2,U_3,U_4 = 0,0,0,0
for i in range(len(population_1)):
```

```
U_1 += population_1[i]*e[i]
for i in range(len(population_2)):
  U_2 += population_2[i]*e[i]
for i in range(len(population_3)) :
  U_3 += population_3[i]*e_3[i]
for i in range(len(population_4)):
  U_4 += population_4[i]*e_3[i]
plt.subplot(2,2,1)
plt.plot(T1,U_1,c='r',label="2lvl and low T")
plt.xlabel("TEMPERATURE")
plt.ylabel("U/N")
plt.grid()
plt.legend()
plt.subplot(2,2,2)
plt.plot(T2,U_2,c='y',label="2lvl and high T")
plt.xlabel("TEMPERATURE")
plt.ylabel("U/N")
plt.grid()
plt.legend()
plt.subplot(2,2,3)
plt.plot(T1,U_3,c='b',label="3lvl and low T")
plt.xlabel("TEMPERATURE")
plt.ylabel("U/N")
plt.grid()
plt.legend()
plt.subplot(2,2,4)
plt.plot(T2,U_4,c='g',label="3lvl and high T")
plt.xlabel("TEMPERATURE")
plt.ylabel("U/N")
plt.grid()
plt.legend()
plt.savefig("ass6_3.png")
plt.suptitle("U/N VS TEMPERATURE")
plt.show()
```

```
#ENTROPY
z1 = Z(g,e,T1)
z2 = Z(g,e,T2)
z3 = Z(g_3,e_3,T1)
z4 = Z(g_3,e_3,T2)
N = 1
S1 = N*k*np.log(np.array(z1) / N) + U_1 / T1
S2 = N*k*np.log(np.array(z2) / N) + U_2 / T2
S3 = N*k*np.log(np.array(z3) / N) + U_3 / T1
```

```
S4 = N*k*np.log(np.array(z4) / N) + U_4 / T2
plt.subplot(2,2,1)
plt.plot(T1,S1,c='r',label="2lvl and low T")
plt.xlabel("TEMPERATURE")
plt.ylabel("ENTROPY")
plt.legend()
plt.grid()
plt.subplot(2,2,2)
plt.plot(T2,S2,c='y',label="2lvl and high T")
plt.xlabel("TEMPERATURE")
plt.ylabel("ENTROPY")
plt.legend()
plt.grid()
plt.subplot(2,2,3)
plt.plot(T1,S3,c='b',label="3lvl and low T")
plt.xlabel("TEMPERATURE")
plt.ylabel("ENTROPY")
plt.legend()
plt.grid()
plt.subplot(2,2,4)
plt.plot(T2,S4,c='g',label="3lvl and high T")
plt.xlabel("TEMPERATURE")
plt.ylabel("ENTROPY")
plt.grid()
plt.suptitle("PLOT ENTROPY VS TEMPERATURE")
plt.legend()
plt.savefig("ass6_4.png")
plt.show()
#HELMHOLTZ
F1 = -N*k*np.array(T1) * np.log(np.array(z1))
F2 = -N*k*np.array(T2) * np.log(np.array(z2))
F3 = -N*k*np.array(T1) * np.log(np.array(z3))
F4 = -N*k*np.array(T2) * np.log(np.array(z4))
```

```
plt.subplot(2,2,1);plt.plot(T1,F1,c='r',label="2lvl and low T")
plt.xlabel("TEMPERATURE");plt.ylabel("HELMHOLTZ FNC")
plt.legend();plt.grid()

plt.subplot(2,2,2)
plt.plot(T2,F2,c='y',label="2lvl and high T")
plt.xlabel("TEMPERATURE");plt.ylabel("HELMHOLTZ FNC")
plt.grid();plt.legend()
```

plt.plot(T1,F3,c='b',label="3lvl and low T")

Code6

plt.subplot(2,2,3)

```
plt.subplot(2,2,4)
plt.plot(T2,F4,c='g',label="3lvl and high T");plt.xlabel("TEMPERATURE")
plt.ylabel("HELMHOLTZ FNC");plt.grid()
plt.legend();plt.suptitle("PLOT F VS TEMP FOR HIGH TEMP")
plt.savefig("ass6_5.png");plt.show()

result_1,result_2 = stats.linregress(T2,F2),stats.linregress(T2,F4)
print("The slope of the plot of F vs T for high temp for 2lvl system is :",result_1.slope)
print("The value obtained for entropy at high temperature :",np.max(S2))
print("The slope of the plot of F vs T for high temp for 3lvl system is :",result_2.slope)
print("The value obtained for entropy at high temperature :",np.max(S4))
```

#### Plot1

Submitted files



ass6\_1 - Gaurav Chandra.png

#### Plot2

Submitted files



ass6\_2 - Gaurav Chandra.png

#### Plot3

Submitted files



ass6\_3 - Gaurav Chandra.png

## Plot4

Submitted files



ass6\_4 - Gaurav Chandra.png

The slope of the plot of F vs T for high temp for 2lvl system is : -5.969921003642963e-05. The value obtained for entropy at high temperature : 5.972704195240474e-05

The slope of the plot of F vs T for high temp for 3lvl system is : -9.459123224292288e-05 The value obtained for entropy at high temperature : 9.466355272246002e-05

Create your own Google Form Report Abuse























## **Computational Lab File**

1 message

Google Forms <forms-receipts-noreply@google.com>
To: chandra.gaurav2018@gmail.com

Tue, 28 Mar, 2023 at 11:36 pm

# Google Forms Thanks for filling out Computational Lab File Here's what was received. Computational Lab File Email \* chandra.gaurav2018@gmail.com Class \* Semester 6 BSc H Physics Paper \* Statistical Mechanics Name \*

Roll No. \*

2020PHY1122

Aim \*

To study the canonical Ensemble-Maxwell Boltzmann

```
Code1 *
(about 10 lines)
import numpy as np
import matplotlib.pyplot as plt
from scipy import integrate
from scipy import stats
def forward_d(x,y):
  derive=[]
  for i in range(len(x)-1):
    dy=y[i+1]-y[i]
    dx=x[i+1]-x[i]
    derive.append(dy/dx)
  return np.array(derive)
k = 1.38*10**(-23)
h = 6.626*10**(-34)
N_a = 6.022*10**(23)
m = 1.6*10**(-27)
V = np.linspace(20*10**(-3),50*10**(-3),50)
T = np.linspace(150,450,50)
matrix = np.zeros(len(V)*len(T)).reshape(len(T),len(V))
for i in range(len(V)):
 for j in range(len(T)):
  v = V[i]
  t = T[j]
  def z(n):
   z = (np.pi/2) * (n**2) * np.exp(-h**2 * n**2/(8*m*v**(2/3)*k*t))
   return z
  I = integrate.quad(z,0,10**(11))[0]
```

```
matrix[i][j] = I
log_z = np.log(matrix)
#print(matrix)
```

```
Code2
(about 10 lines)
# plot of log z vs temp
fig=plt.figure()
fig.set_figheight(6)
fig.set_figwidth(10)
plt.subplot(1,2,1)
plt.title("plot of log(z) vs T ")
plt.scatter(T,log_z[:,0],label = "for V= "+str(np.round(V[0],3)))
plt.scatter(T,log_z[:,4],label = "for V= "+str(np.round(V[4],3)))
plt.scatter(T,log_z[:,8],label = "for V= "+str(np.round(V[8],3)))
plt.xlabel("T")
plt.ylabel("log(Z)")
plt.grid()
plt.legend(loc='best')
plt.subplot(1,2,2)
plt.title("plot of log(z) vs log(T) ")
plt.scatter(np.log(T),log_z[:,0],label = "for log(V) = "+str(np.round(np.log(V[0]),3)))
plt.scatter(np.log(T),log_z[:,4],label = "for log(V) = "+str(np.round(np.log(V[4]),3)))
plt.scatter(np.log(T),log_z[:,8],label = "for log(V)= "+str(np.round(np.log(V[8]),3)))
plt.xlabel("log(T)")
plt.ylabel("log(Z)")
plt.grid()
```

```
plt.legend(loc='best')
plt.show()
plt.savefig('fig7_1.png')
# plot of log z vs volume
fig=plt.figure()
fig.set_figheight(6)
fig.set_figwidth(11)
plt.subplot(1,2,1)
plt.title("plot of log(z) vs V ")
plt.scatter(V,log_z[0],label = "for T= "+str(np.round(T[0],3)))
plt.scatter(V,log_z[4],label = "for T= "+str(np.round(T[4],3)))
plt.scatter(V,log_z[8],label = "for T= "+str(np.round(T[8],3)))
plt.xlabel("V")
plt.ylabel("log(Z)")
plt.grid()
plt.legend(loc='best')
```

```
plt.subplot(1,2,2)
plt.title("plot of log(z) vs log(V) ")
plt.scatter(np.log(V),log_z[0],label = "for T= "+str(np.round(T[0],3)))
plt.scatter(np.log(V),log_z[4],label = "for T= "+str(np.round(T[4],3)))
plt.scatter(np.log(V),log_z[8],label = "for T= "+str(np.round(T[8],3)))
plt.xlabel("log(V)")
plt.ylabel("log(Z)")
plt.grid()
plt.legend(loc='best')
plt.show()
plt.savefig('fig7_2.png')
```

```
Code4
(about 10 lines)
# pressure matrix
pressure = []
for i in range(len(T)):
  der = forward_d(V, log_z[i])
  P = N_a*k*T[i] * der
  pressure.append(P)
pressure = np.array(pressure).reshape(len(T),len(V)-1)
#print(pressure)
fig=plt.figure()
fig.set_figheight(6)
fig.set_figwidth(12.5)
plt.subplot(1,2,1)
plt.title("plot of Pressure vs Volume ")
plt.scatter(V[:len(V)-1],pressure[0],label = "for T= "+str(np.round(T[0],3)))
plt.scatter(V[:len(V)-1],pressure[4],label = "for T= "+str(np.round(T[4],3)))
plt.scatter(V[:len(V)-1],pressure[8],label = "for T= "+str(np.round(T[8],3)))
plt.xlabel("V")
plt.ylabel("Pressure")
plt.grid()
plt.legend(loc='best')
```

```
plt.subplot(1,2,2)
plt.title("plot of Pressure vs Temperature ")
plt.scatter(T,pressure[:,0],label = "for V= "+str(np.round(V[0],3)))
plt.scatter(T,pressure[:,4],label = "for V= "+str(np.round(V[4],3)))
plt.scatter(T,pressure[:,8],label = "for V= "+str(np.round(V[8],3)))
plt.xlabel("Temperature")
plt.ylabel("Pressure")
plt.grid()
plt.legend(loc='best')
plt.show()
```

```
plt.savefig('fig7_3.png')
# energy matrix
cv=[]
for i in range(3):
  energy = []
  der = forward_d(T, log_z[:,i])
  #energy.append(der)
  for j in range(len(T)-1):
    energy.append(k*T[j]**2 *der[j])
  plt.scatter(T[:len(T)-1],energy,label = "for V="+str(np.round(V[i],4)))
  cv.append(stats.linregress(T[:len(T)-1],energy)[0])
plt.title("plot of Energy vs Temperature ")
plt.xlabel("Temperature")
plt.ylabel("energy")
plt.grid()
plt.legend(loc='best')
plt.show()
plt.savefig('fig7_4.png')
print('the specific heat of this ideal gas obtained is ',np.average(cv))
print('the specific heat calculated using formula is ',1.5*k)
```

(about 10 lines)

## Plot1

Submitted files



fig7\_1 - Gaurav Chandra.png

#### Plot2

Submitted files



fig7\_2 - Gaurav Chandra.png

| Submitted files                          |  |
|------------------------------------------|--|
|                                          |  |
| fig7_3 - Gaurav Chandra.png              |  |
|                                          |  |
|                                          |  |
| Plot4                                    |  |
| Submitted files                          |  |
| fig7_4 - Gaurav Chandra.png              |  |
| iig7_4 - Gaulav Chandra.piig             |  |
|                                          |  |
|                                          |  |
| Comments                                 |  |
|                                          |  |
|                                          |  |
|                                          |  |
| Create your own Google Form Report Abuse |  |
|                                          |  |









## **Computational Lab File**

1 message

Google Forms <forms-receipts-noreply@google.com>
To: chandra.gaurav2018@gmail.com

Sat, 8 Apr, 2023 at 6:36 pm

## Google Forms Thanks for filling out Computational Lab File Here's what was received. Computational Lab File Email \* chandra.gaurav2018@gmail.com Class \* Semester 6 BSc H Physics Paper \* Statistical Mechanics Name \*

Roll No. \*

2020PHY1122

## Aim \*

To study the distribution of particles for energies for bosons and fermions and calculate internal energy and specific heat using this.

```
Code1 *
(about 10 lines)
#name: gaurav chandra
#rollno: 2020PHY1122
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from scipy import integrate
import warnings
warnings.filterwarnings('ignore')
c = 3*10**(8)
h = 4.1357*10**(-15) #eV s
k = 8.617 * 10**(-5) # eV/K
N=6.022 *10**(23)
m =1; V=1
#for bose-einstein
def f_be(X,alpha):
  Y = 1/(np.exp(alpha)*np.exp(X) - 1)
  return Y
#for fermi-dirac
def f_fd(X,alpha):
  Y = 1/(np.exp(alpha)*np.exp(X) + 1)
  return Y
```

## Code2 (about 10 lines) #distribution of particles def dN\_de(e,T,case1,case2): #case can be either R(relativistic) or NR(non relativistic) alpha=-U/(k\*T)alpha2 = -ef/(k\*T)X = e/(k\*T)if case1 == 'R' and case2 == 'B': return (4\*V\*np.pi/(h\*c)\*\*3)\*f\_be(X,alpha)\*(e\*\*2) elif case1 == 'NR' and case2 == 'B': return (2\*V\*np.pi\*(2\*m)\*\*(3/2)/h\*\*3)\*f\_be(X,alpha)\*(e\*\*0.5) elif case1 == 'R' and case2 == 'F': return (4\*V\*np.pi/(h\*c)\*\*3)\*f\_fd(X,alpha2)\*(e\*\*2) elif case1 == 'NR' and case2 == 'F': return (2\*V\*np.pi\*(2\*m)\*\*(3/2)/h\*\*3)\*f\_fd(X,alpha2)\*(e\*\*0.5) else: print('ERROR? plz only enter the valid cases i.e (N,NR,B,F)for(relativistic,non-relativistic,bosons and

## Code3

fermions)')

```
def internal(T,case1,case2):
  internal_energy = []
  for i in T:
    alpha1=-U/(k*i)
    alpha2 = -ef/(k*i)
    if case1 == 'R' and case2 == 'B':
      f=lambda e:(4*V*np.pi/(h*c)**3)*(1/(np.exp(alpha1)*np.exp(e/(k*i)) - 1))*(e**3)
      internal_energy.append(integrate.quad(f,U+0.0001,10)[0])
    elif case1 == 'NR' and case2 == 'B':
      f=lambda e:(2*V*np.pi*(2*m)**(3/2)/h**3)*(1/(np.exp(alpha1)*np.exp(e/(k*i)) -1))*(e**1.5)
      internal_energy.append(integrate.quad(f,U+0.0001,2)[0])
    elif case1 == 'R' and case2 == 'F':
      f=lambda e:(4*V*np.pi/(h*c)**3)*(1/(np.exp(alpha2)*np.exp(e/(k*i)) +1))*(e**3)
      internal_energy.append(integrate.quad(f,0.0001,10)[0])
    elif case1 == 'NR' and case2 == 'F':
      f=lambda e:(2*V*np.pi*(2*m)**(3/2)/h**3)*(1/(np.exp(alpha2)*np.exp(e/(k*i)) +1))*(e**1.5)
      internal_energy.append(integrate.quad(f,0.0001,10)[0])
```

```
else:
    print('ERROR? plz only enter the valid cases i.e (N,NR,B,F)for(relativistic,non-relativistic,bosons and fermions)')

return internal_energy
```

```
Code4
(about 10 lines)
#plot of dN/de vs e for fermions
e = np.linspace(0,20,100)
T =[1000,20000,50000]
U=0;ef=5
print('The characteristic temperature used here is 1/k = 1/k)
fig=plt.figure()
fig.set_figheight(7)
fig.set_figwidth(9)
plt.subplot(2,2,1)
plt.plot(e,dN_de(e, T[0], case1='NR', case2='F'),'o-',c='r',markersize=5,label='low T= '+str(T[0]))
plt.legend()
plt.grid()
plt.xlabel('e (in eV)')
plt.ylabel('dN / de ')
plt.title("FOR NON-RELATIVISTIC FERMIONS")
plt.xlim(0,10)
plt.subplot(2,2,2)
plt.plot(e,dN_de(e, T[0], case1='R', case2='F'),'o-',c='r',markersize=5,label='low T= '+str(T[0]))
plt.legend(loc='best')
plt.grid()
plt.xlabel('e (in eV)')
plt.ylabel('dN / de ')
plt.title("FOR RELATIVISTIC FERMIONS")
plt.xlim(0,10)
plt.subplot(2,2,3)
plt.plot(e,dN_de(e, T[1], case1='NR', case2='F'),'o-',c='violet',markersize=5,label='high T= '+str(T[1]))
plt.legend(loc='best')
plt.grid()
plt.xlabel('e (in eV)')
plt.ylabel('dN / de ')
plt.subplot(2,2,4)
plt.plot(e,dN_de(e, T[1], case1='R', case2='F'),'o-',c='violet',markersize=5,label='high T= '+str(T[1]))
plt.legend(loc='best')
plt.grid()
plt.xlabel('e (in eV)')
plt.ylabel('dN / de ')
```

```
Code5
(about 10 lines)
plt.suptitle('PLOT OF DISTRIBUTION OF PARTICLES VS ENERGY FOR FERMIONS')
plt.show()
plt.subplot(2,2,2)
plt.plot(T[10:]/1000,internal(T[10:], case1='NR', case2='F'),o-',c='g',markersize=4,label='non-relativistic')
plt.grid()
plt.xlabel('Temperature (in K) (x10**3)')
plt.ylabel('internal energy(in eV) ')
plt.title("FOR HIGH TEMPERATURE")
plt.legend()
plt.suptitle('PLOT OF INTERNAL ENERGY VS TEMPERATURE FOR FERMIONS')
plt.subplot(2,2,3)
plt.plot(T[:10]/1000,internal(T[:10], case1='R', case2='F'),'o-',c='r',markersize=4,label='relativistic')
plt.grid()
plt.xlabel('Temperature (in K) (x10**3)')
plt.ylabel('internal energy(in eV) ')
plt.legend()
plt.subplot(2,2,4)
plt.plot(T[10:]/1000,internal(T[10:], case1='R', case2='F'),'o-',c='g',markersize=4,label='relativistic')
plt.grid()
plt.xlabel('Temperature (in K) (x10**3)')
plt.ylabel('internal energy(in eV) ')
plt.suptitle('PLOT OF INTERNAL ENERGY VS TEMPERATURE FOR FERMIONS')
plt.legend()
plt.show()
#plot of dN/de vs e for bosons
U=0
e = np.linspace(U+0.0001,7,100)
T =[1500,10000,50000]
fig=plt.figure()
fig.set_figheight(7)
fig.set_figwidth(9)
plt.subplot(2,2,1)
```

(about 10 lines)

```
plt.plot(e,dN_de(e, T[0], case1='NR', case2='B'),'o-',c='r',markersize=5,label='low T= '+str(T[0]))
plt.legend()
plt.grid()
plt.xlabel('e (in eV)')
plt.ylabel('dN / de ')
plt.xlim(0,1)
plt.ylim(0,1e44)
plt.title("FOR NON-RELATIVISTIC BOSONS")
plt.subplot(2,2,2)
plt.plot(e,dN_de(e, T[0], case1='R', case2='B'),'o-',c='r',markersize=5,label='low T= '+str(T[0]))
plt.legend(loc='best')
plt.grid()
plt.xlabel('e (in eV)')
plt.ylabel('dN / de ')
plt.xlim(0,2)
plt.title("FOR RELATIVISTIC BOSONS")
plt.subplot(2,2,3)
plt.plot(e,dN_de(e, T[1], case1='NR', case2='B'),'o-',c='violet',markersize=5,label='high T= '+str(T[1]))
plt.legend(loc='best')
plt.grid()
plt.xlabel('e (in eV)')
plt.ylabel('dN / de ')
plt.xlim(0,1)
plt.ylim([0,1e45])
plt.subplot(2,2,4)
plt.plot(e,dN_de(e, T[1], case1='R', case2='B'),'o-',c='violet',markersize=5,label='high T= '+str(T[1]))
plt.legend(loc='best')
plt.grid()
plt.xlabel('e (in eV)')
plt.ylabel('dN / de ')
#plt.title("FOR RELATIVISTIC BOSONS")
plt.suptitle('PLOT OF DISTRIBUTION OF PARTICLES VS ENERGY FOR BOSONS')
plt.show()
T=np.linspace(10,200000,200)
```

#### Plot1

Submitted files



test1 - Gaurav Chandra.png

#### Plot2

Submitted files



test2 - Gaurav Chandra.png

#### Plot3

Submitted files



test3 - Gaurav Chandra.png

#### Plot4

Submitted files



test4 - Gaurav Chandra.png

#### Comments

```
fig=plt.figure()
fig.set_figheight(7)
fig.set_figwidth(10)
plt.subplot(2,2,1)
plt.plot(T[:10]/1000,internal(T[:10], case1='NR', case2='B'),'o-',c='r',markersize=4,label='non-relativistic')
plt.grid()
plt.xlabel('Temperature (in K) (x10**3)')
plt.ylabel('internal energy(in eV) ')
plt.title("FOR LOW TEMPERATURE")
plt.legend()
plt.subplot(2,2,2)
plt.plot(T[10:]/1000,internal(T[10:], case1='NR', case2='B'),'o-',c='g',markersize=4,label='non-relativistic')
plt.grid()
plt.xlabel('Temperature (in K) (x10**3)')
plt.ylabel('internal energy(in eV) ')
plt.title("FOR HIGH TEMPERATURE")
plt.suptitle('PLOT OF INTERNAL ENERGY VS TEMPERATURE FOR BOSONS')
plt.subplot(2,2,3)
plt.plot(T[:10]/1000,internal(T[:10], case1='R', case2='B'),'o-',c='r',markersize=4,label='relativistic')
plt.grid()
plt.xlabel('Temperature (in K) (x10**3)')
plt.ylabel('internal energy(in eV) ')
```

```
#plt.title("FOR LOW TEMPERATURE")
plt.legend()
plt.subplot(2,2,4)
plt.plot(T[10:]/1000,internal(T[10:], case1='R', case2='B'),'o-',c='g',markersize=4,label='relativistic')
plt.grid()
plt.xlabel('Temperature (in K) (x10**3)')
plt.ylabel('internal energy(in eV) ')
#plt.title("FOR HIGH TEMPERATURE")
plt.suptitle('PLOT OF INTERNAL ENERGY VS TEMPERATURE FOR BOSONS')
plt.legend()
plt.show()
slope1=stats.linregress(T[1:],internal(T[1:], case1='NR', case2='F'))[0]
slope2=stats.linregress(T[1:],internal(T[1:], case1='R', case2='F'))[0]
slope3=stats.linregress(T,internal(T, case1='NR', case2='B'))[0]
slope4=stats.linregress(T,internal(T, case1='R', case2='B'))[0]
specific_heat=[slope1,slope2,slope3,slope4]
print('The specific heat for fermi gas for non-relativistic fermions is ',slope1)
print('The specific heat for fermi gas for relativistic fermions is ',slope2)
print('The specific heat for boson gas for non-relativistic bosons is ',slope3)
print('The specific heat for boson gas for relativistic bosons is ',slope4)
#references: Thermal Physics by SC Garg ,R M Bansal & C K Ghosh book pageno: 595 section 14.2,14.3,14.4
```

Create your own Google Form Report Abuse

#### PLOT OF DISTRIBUTION OF PARTICLES VS ENERGY FOR FERMIONS



PLOT OF INTERNAL ENERGY VS TEMPERATURE FOR FERMIONS



#### PLOT OF DISTRIBUTION OF PARTICLES VS ENERGY FOR BOSONS



PLOT OF INTERNAL ENERGY VS TEMPERATURE FOR BOSONS

