Adjacent Block Interchange Problem

November 2, 2022

1 Intro

Motivation: You have a PDF but it's reversed! You can only move the pages by designating a range of pages and moving them to a specified location.

Operation: Given a list, you may designate a range and a point in that range (between values) and the blocks on either side are (rigidly) swapped. Notation:

$$|_0 \ 1 \ |_1 \ 2 \ |_2 \ 3 \ |_3 \ \dots \ |_{n-1} \ n \ |_n$$

Denote a swap of the range a, c about point b (s.t. a < b < c) by [a, b, c].

Problem: If the list is reversed, what is the optimal sequence of swaps to sort it?

A clear upper bound is n-1: the sequence of swaps $s_i = [1, i-1, i]$ (for $1 \le i < n$) reverses the list. Is this the best we can do?

Question: If we permute the swaps above by some permutation $\sigma \in S_{n-1}$ and associate to it the permutation defined on the reversal (so that $id \in S_{n-1}$ is sent to $id \in S_n$), what can we say about this map? It is certainly a map of sets $S_{n-1} \to S_n$ preserving the identity, but is it a group homomorphism? If so, what is the image?

Question: In general, what is the best sorting algorithm using this operation?

1.1 Duality

Observe that if σ is the reversing permutation $(n\ 1)(n-1\ 2)\dots$ then it is its own inverse. It is fixed under conjugation by itself and, importantly, an operation of the type we are considering is sent to another under conjugation by σ , so conjugation by σ defines an involution on the solution set. Call orbits of solutions under conjugation by σ equivalence classes. Visually, this corresponds to flipping the entire permutation. Algebraically an operation [a, b, c] on n elements is sent to [n-c, n-b, n-a] (note the order).

2 Optimal sequences

	length	equivalence classes
2	1	1
3	2	2
4	3	10
5	3	1
6	4	21
7	4	4
8	5	57
9	5	5
10	6	77

(Lexicographically earliest)

- 2. [[0, 1, 2]]
- 3. [[0,1,3],[0,1,2]]
- 4. [[0,1,4],[0,1,3],[0,1,2]]
- 5. [[0,2,4],[1,3,5],[0,2,4]]
- 6. [[0,1,2],[0,3,5],[1,4,6],[0,2,4]]
- 7. [[0,2,5],[1,4,7],[0,3,5],[1,4,6]]
- 8. [[0, 1, 2], [0, 3, 6], [1, 5, 8], [0, 3, 5], [1, 4, 6]]
- $9. \ [[0,2,6],[1,5,9],[0,4,6],[1,5,7],[2,6,8]]\\$
- 10. [[0,1,2],[0,3,7],[1,6,10],[0,4,6],[1,5,7],[2,6,8]]

2.1 Almost symmetric optimal sequences

No self-dual solutions have been found yet. However, for n=6, there are two nicely symmetric solutions.

$$[[0,3,6],[0,2,4],[1,3,5],[2,4,6]] \\ [[0,3,6],[2,4,6],[1,3,5],[0,2,4]]$$

$$\begin{split} &[[1,3,5],[2,4,6],[1,3,5],[0,1,6]] \\ &[[1,3,5],[0,2,4],[1,3,5],[0,5,6]] \end{split}$$