Introduction to allele frequency estimation and SNP calling

Matteo Fumagalli

Intended Learning Outcomes

By the end of this session you will be able to

- understand the theory underpinning SNP calling
- calculate allele frequency likelihoods
- re-appreciate the need to avoid genotype calling for low-depth data
- implement a pipeline in ANGSD to perform the aforementioned analyses

Genotype posterior probability

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.7 from the data itself

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.49	0.04
AG	-2.80	0.42	0.96
GG	-17.12	0.09	0

How can we estimate allele frequencies from NGS data?

Estimating allele frequencies

Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4

What is the simplest estimator of allele frequencies?

Estimating allele frequencies
Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

Estimating allele frequencies
Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

$$\hat{f} = \frac{\sum_{i=1}^{N} n_{A,i}}{\sum_{i=1}^{N} (n_{A,i} + n_{G,i})}$$

Estimating allele frequencies
Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

$$\hat{f} = \frac{\sum_{i=1}^{N} n_{A,i}}{\sum_{i=1}^{N} (n_{A,i} + n_{G,i})}$$

 $\hat{f} = 0.75$

What is wrong with this estimator?

Estimating allele frequencies

Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

$$\hat{n_A} = \sum_{i=1}^{N} (1 - \epsilon) n_{A,i} + \epsilon n_{G,i} - \epsilon n_{A,i} - (1 - \epsilon) n_{G,i} = 0.77$$

Estimating allele frequencies

Maximum Likelihood estimator

$$P(D|f) = \prod_{i=1}^{N} \sum_{g \in \{0,1,2\}} P(D|G = g)P(G = g|f)$$

with N samples.

What are P(D|G = g) and P(G = g|f)?

Estimating allele frequencies

Maximum Likelihood estimator

$$P(D|f) = \prod_{i=1}^{N} \sum_{g \in \{0,1,2\}} P(D|G = g)P(G = g|f)$$

P(D|G = g) is the genotype likelihood and P(G = g|f) is given by HWE (for instance).

In our previous example, $\hat{f} = 0.46$ which is much closer to the true value than previous estimators.

Imperial College London SNP calling (for low-coverage NGS data)

Challenges

SNP calling (for low-coverage NGS data)

Challenges

- If high levels of missing data, then genotypes can be lost.
- Rare variants are hard to detect.
- Trade off between false positive and false negative rates.

How to call SNPs (traditionally)?

- If at least one heterozygous genotype has been called.
- If the estimated allele frequency is above a certain threshold.

Imperial College London SNP calling

Call a SNP if

$$\hat{f} > t$$

where t can be the minimum sample allele frequency detectable (e.g. t = 1/2N with N diploids).

Likelihood Ratio Test

A Likelihood Ratio Test (LRT) compares the goodness of fit between the null and the alternative model:

- Null model: f = 0
- Alternative model: $f \neq 0$

Likelihood Ratio Test

A Likelihood Ratio Test (LRT) compares the goodness of fit between the null and the alternative model:

- Null model: f = 0
- Alternative model: $f \neq 0$

$$T = -2\log\frac{L(f=0)}{L(f=\hat{f}_{MLE})}$$

where T is χ^2 distributed with 1 degree of freedom.

Practical: allele frequency estimation and SNP calling in ANGSD

SNP calling procedures

Alignment-based caller

We completely rely on how reads have been mapped

Figure from Erik Garrison

SNP calling procedures

- Assembly-based caller (as in GATK)
- Local re-alignment around putative variants; better resolution for INDELs detection.
- Haplotype-based caller (as in freebayes)

Figure from Erik Garrison

Reference

- 1000 Genomes
- Phased using family structures

new data

partial information

Imputed data

- Probabilistic approach
- The results retains the uncertainty of both the genotype and the haplotypes

Anders Albrechtsen

Reference

- 1000 Genomes
- Phased using family structures

new data

 Data with known and unknown genotypes

Imputed data

$$p(? = T) = p(? = A) =$$

Anders Albrechtsen

Reference

· haplotype frequencies

new data

 Data with known and unknown genotypes

first haplotype

$$p(? = T) = \frac{0.56}{0.56 + 0.03} = 0.95$$

 $p(? = A) = \frac{0.03}{0.56 + 0.03} = 0.05$

second haplotype

$$p(? = T) = \frac{0.21}{0.21 + 0.2} = 0.51$$

$$p(? = A) = \frac{0.2}{0.21 + 0.2} = 0.49$$
Anders Albrechtsen

Bayes formula

$$p(H = h|f,G) = P(G|H=h)P(H=h|f) \\ \sum_{h'} P(G|H=h')P(H=h'|f)$$

P(G|H=h)

1 if consistent0 otherwise

first haplotype

$$p(? = T) = \frac{0.56}{0.56+0.03} = 0.95$$

 $p(? = A) = \frac{0.03}{0.56+0.03} = 0.05$

Anders Albrechtsen

Intended Learning Outcomes

At the end of this session you are now be able to

- understand the theory underpinning SNP calling
- calculate allele frequency likelihoods
- re-appreciate the need to avoid genotype calling for low-depth data
- implement a pipeline in ANGSD to perform the aforementioned analyses