Exploring Factors that Impact Car Accident Severity

Data Mining Final Project Group #5 Abdulaziz Gebril, Jenny Tsai, & Mojahid Osman April 28, 2020

Introduction

- Car accidents take away people's lives everyday
- US Department of Transportation Stats in 2018:
 - o 36,560 deaths
 - o 33,654 fatal crashes (severe accidents)

Problem Statement

"What factors might impact car accident severity?"

- Weather conditions
- Road conditions

About the Dataset

- The U.S. accident data are collected from February 2016 to December 2019
- Records gathered using several data providers, including two APIs that provide streaming traffic incident data.
- There are about 3.0 million accident records in this dataset

About the Dataset (cont'd)

49 Features:

- Weather Conditions
 - Temperature
 - Humidity
 - Pressure
 - Visibility
 - Precipitation
 - Wind Chill
 - Wind Speed
 - Weather condition
 - Wind direction
 - Sunrise/Sunset

- Road Conditions:
 - Amenity
 - Bump
 - Crossing
 - Give Way
 - Junction
 - No Exit
 - Railway
 - o Roundabout
 - Station
 - Stop
 - Traffic Calming
 - Traffic Signal

- Location / Time
 - State
 - County
 - City
 - Latitude
 - Longitude
 - Start Time
 - End Time

About the Dataset (cont'd)

Target Variable:

- Car Accident Severity (1 4)
 - Duration of accident

Pre-Processing

Using Columns "Start_Time" and "End_Time" to create "Date", "Year"," Month",
 "Day", "Hour", "WeekDay" and "Time Duration(min)"

Severity Classification (High & Low)

Pre-Processing (cont'd)

Continuous Variables:

- (1) Averaging data points that occurred on the same Date and City
- (2) Averaging data points that occurred on the same Date and State
- Distance function to check Second Imputation approach.

Categorical Variables:

- Collapse categories for weather condition and wind speed
- Forward fill all data points that occurred on the same Date and City

An Iterative Process of Cleaning:

- Adjust for imbalance data
 - Subset for 2019 data (whole) and 2018 (high severity)
 - Also tried resampling, but prone to overfitting and underfitting
- Drop attributes not useful to our study
 - Location and Time
 - o E.g., Weather condition, Wind Direction, Turning Loop
- Drop attributes still with many nans after imputation
 - Precipitation and Wind Chill (tried regression imputation)

Modeling: Theoretical Framework

Ensemble Learning

Random Forest - Bagging

- Train a number of trees in parallel
- Make final prediction based on majority vote

Adaptive Boosting

- Train a number of trees in a sequential way
- Learn from previous mistakes and increase the weight of misclassified data points

Modeling: Theoretical Framework (cont'd)

Grid Search + K-Fold Cross Validation

- Find the best hyper-parameters for the model through exhaustive search
- Cross-validated to get reliable results, not just from a particular train-test set

sklearn.ensemble

- RandomForestClassifier
- AdaBoostClassifier

sklearn.model_selection

- GridSearch
 - Can specify parameter k for cross-validation

Modeling: Analyses

18 Features:

- 6 Weather Conditions
 - Temperature
 - Humidity
 - Pressure
 - Visibility
 - Wind Speed
 - o Sunrise/Sunset

- 12 Road Conditions
 - Amenity
 - o Bump
 - Crossing
 - Give Way
 - Junction
 - No Fxit
 - Railway
 - Roundabout
 - Station
 - Stop
 - Traffic Calming
 - o Traffic Signal

Modeling: Analyses

Steps:

- Perform Grid Search and CV to find best parameters for RF and AdaBoost using subsample (n = 2,000)
- 2. Split full dataset (n = 1.2 m) into train & test (7:3)
- 3. Perform training for RF and AdaBoost using all features

- 4. Select top 10 important features and re-run the models
- 5. Build confusion matrix and evaluate model performance against test set

Results: Grid Search & Cross Validation

Grid Search

- # of trees, cost function (gini or entropy), learning rate
- Cross validation (k = 5)
- Scoring = Accuracy

Best Parameters for...

- Random Forest:
 - N_estimators = 100
 - Criterion = gini
- AdaBoost DT
 - N_estimators = 100
 - Learning_rate = 0.1

Results: Feature Selection

Random Forest

AdaBoost

Results: Feature Selection (cont'd)

Weather Conditions	Road Conditions		
PressureTemperature	Traffic SignalCrossing		
Humidity	• Junction		
Wind Speed	• Stop		

Results: Model Performance

Random Forest

Results Using Top 10 features: Classification Report: precision recall f1-score support 0.75 0.79 0.77 199174 0.73 0.68 0.70 161896 0.74 361070 accuracy 0.74 0.74 0.74 361070 macro avq weighted avg 0.74 0.74 0.74 361070

Accuracy: 74.2185725759548

ROC_AUC: 81.16041778890892

AdaBoost

Results Using Top 10 Features:					
Classification	Report: precision	recall	f1-score	support	
0 1	0.70 0.65	0.73 0.62	0.72 0.64	199174 161896	
accuracy macro avg weighted avg	0.68	0.68 0.68	0.68 0.68 0.68	361070 361070 361070	

Accuracy: 68.25546292962584

ROC AUC: 73.30263509189082

Summary & Conclusion

- 8 features that impact accident severity in both models:
 - Pressure
 - Temp
 - Humidity
 - Wind Speed
 - o Traffic Signal
 - Crossing
 - Junction
 - Stop

 RF favors weather variables, while AdaBoost favors road variables

- Overall, data fits better with RF
 - o Why?

Visualization: PyQT5