PENNSYLVANIA STATE UNIV UNIVERSITY PARK APPLIED RESE--ETC F/G 17/1
SENSITIVITY ANALYSIS IN LARGE SCALE MULTI-OBJECTIVE SYSTEMS.(U)
SEP 78 J H PERLIS

ARL/PSU/TM-78-302
NL AD-A066 098 UNCLASSIFIED 10F2 AD 809 F. .. Ø,

AD AO 66098

FILE COPY

LEVELIC

SENSITIVITY ANALYSIS IN LARGE SCALE MULTI-OBJECTIVE SYSTEMS.

19 John H. Perlis

9) Master's thesis

11/27 Sep 78

12/1690.

Technical Memorandum
File No. TM 78-302
September 17, 1978
Contract No. N90017-73-C-1418

Copy No. 16

MAR 21 1979

14 ARL/PSU/TM-78-302

The Pennsylvania State University Institute for Science and Engineering APPLIED RESEARCH LABORATORY Post Office Box 30 State College, PA 16801

NAVY DEPARTMENT

NAVAL SEA SYSTEMS COMMAND

391007

79 03 19 10%

This document has been approved for public release and salo; its distribution is unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

. REPORT NUMBER	ON PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TM 78-302		
TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
SENSITIVITY ANALYSIS IN LARGE	SCALE	MS Thesis, November 1978
MULTI-OBJECTIVE SYSTEMS		6. PERFORMING ORG. REPORT NUMBER TM 78-302
John H. Perlis		8. CONTRACT OR GRANT NUMBER(*) N00017-73-C-1418
. PERFORMING ORGANIZATION NAME AND ADDR	FSS	10. PROGRAM ELEMENT PROJECT, TASK
The Pennsylvania State Univers Applied Research Laboratory P. O. Box 30, State College, F	sity	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRESS Naval Sea Systems Command		12. REPORT DATE September 17, 1978
Department of the Navy		13. NUMBER OF PAGES
Washington, DC 20362		166 pages & figures
4. MONITORING AGENCY NAME & ADDRESS(II ditt	erent from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified, Unlimited
		15a. DECLASSIFICATION/DOWNGRADING
	distribution unlimi	ted
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release, of per NSSC (Naval Sea Systems Co		ted,
Approved for public release, of per NSSC (Naval Sea Systems Co	ommand), 12/12/78	
Approved for public release, of per NSSC (Naval Sea Systems Co	ommand), 12/12/78	
Approved for public release, of per NSSC (Naval Sea Systems Co	ommand), 12/12/78	
Approved for public release, of per NSSC (Naval Sea Systems Co	ommand), 12/12/78	
Approved for public release, of per NSSC (Naval Sea Systems Co	ommand), 12/12/78	
Approved for public release, of per NSSC (Naval Sea Systems Co.	ommand), 12/12/78	an Report)
Approved for public release, of per NSSC (Naval Sea Systems Co. 7. DISTRIBUTION STATEMENT (of the abstract entert of the abstract entert entert of the abstract entert e	ommand), 12/12/78	an Report)
Approved for public release, of per NSSC (Naval Sea Systems Co. 7. DISTRIBUTION STATEMENT (of the abstract entered) 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessar transducer	ommand), 12/12/78	an Report)
per NSSC (Naval Sea Systems Co. 7. DISTRIBUTION STATEMENT (of the abstract enter 8. SUPPLEMENTARY NOTES	ommand), 12/12/78	an Report)

No matter what method is employed in the programming of a transducer array, in practice the performance predicted by the model will not be achieved due to error in construction and operation of the array. Furthermore, the degree to which a given amount of error degrades an array design (i.e., design sensitivity) will differ greatly from one design to the next. A measure of sensitivity is proposed, based on the maximum impact which a given amount of error can produce on a particular design. The adoption of this measure

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Continued)

allows the sensitivity problem to be solved through the use of mathematical programming techniques. The best of these techniques for the general array design case is shown to be Nonlinear Goal Programming. The sensitivity values for five planar symmetric array designs are determined and compared.

The results of this comparison indicate the potential of the proposed measure and solution technique for the development of a fast and inexpensive method for array design sensitivity analysis. Particularly, the resulting sensitivity values are free from the a priori assumptions and high costs inherent in simulation. Furthermore, the method is based on a general framework which is applicable to the analysis of several array design factors inclusing size, geometry, pattern, and component reliability. The method may also be extended to multi-objective design problems outside the area of array design.

ACKNOWLEDGMENTS

The author would like to express his gratitude to Professors Benjamin Niebel, Matthew Rosenshine, and Richard Zindler, committee members, for their time and suggestions. Special gratitude is extended to Professor James Ignizio, thesis advisor, for guidance throughout the course of the study.

This research was supported by the Applied Research Laboratory under contract to the Naval Sea Systems Command.

TABLE OF CONTENTS

																									I	Page
ACKNOWL	EDGM I	ENTS					•		•	•	•	•	•	•	•		•	•		•		•	•	•	•	ii
LIST OF	FIGU	IRES	•				•	•	•		•	•		•				•	•	•		•	•	•	•	v
LIST OF	TABI	LES					•		•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	x
ABSTRAC	T .		•				•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	xiv
ı.	INTRO	DUCT	ION		•		•		•	•	•	•					•	•	•	•	•	•	•		•	1
	1.1	Purpo	se	of	the	S	tuc	ly				•				•	•		•	•		•	•			1
	1.2	Organ	ni za	atio	on o	of	the	e F	ap	er		•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
II.	ARRA	Y DEST	IGN	ANI	E	RRO	R	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
	2.1	Trans	sdu	cer	Arı	ray	8																			4
	2.2	Array	y Pa	atte	erns	3 .					•					•						•	•	•		4
	2.3	Arra	y De	esig	gn S	Thr	oug	gh	Op	ti	mi	l za	ti	or	1 1	ec	hr	ic	ļue	28		•	•	•		9
	2.4	Arra	y Se	ensi	lti	71t	y	and	l E	rı	01	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
III.	THE N	MEASU	REM	ENT	OF	SE	NS:	IT	[VI	T	7	•	•	•	•	•	•	•	•	•		•	•	•	•	14
	3.1	Sens	iti	vít	v b	v F	ea	tur	.6																	14
	3.2	The !	Err	or	Reg	ion	AI	nd	Er	ro	r	Su	ırf	ac	e											15
	3.3	Simu	lat	ion																						17
	3.4	Opti																								18
	3.5	MAXI																								21
	3.6	The																								23
IV.	APPL	CATI	on:	T	HE I	USE	01	F M	(A)	MI)	1 7	0	GE	ENE	RA	T	E A	N	10	os		•				25
	4.1	The I	F																							25
	4.2	Arra						·	•	•	•	•	•	•	•										•	25
	4.3	Expe	y D	est	1	Dat	+0	rne		•	•	•	•	•	•			•								28
	4.4	The I																								44
	4.5	Sens																								46
	4.6	Meas																								47
	4.7	Resu																								48
v.		USSIO																								
	5.1	Impl	ica	tio	ns i	of	th	e I	Res	su]	Lts	3														134
	5.2	Poter	nti.																							
	5.3	Summ	ary																							137

TABLE OF CONTENTS (CONTINUED)

APPENDIX A:	THE DIRECTIVITY FUNCTION FOR A
	PLANAR SYMMETRIC ARRAY
APPENDIX B:	THE HOOKE AND JEEVES PATTERN SEARCH ALGORITHM 14
APPENDIX C:	LINEAR TECHNIQUES

LIST OF FIGURES

Figu	re												Page
2.1	Coordina	ate :	System							•		•	6
2.2	Countou	r Pl	ot. 10	by 10 Un	shaded A	rray .							7
2.3	Simulate	ed 3	d Plot.	10 by 1	.0 Unshad	led Arr	ay .		•	•			8
2.4	General: Local an		•	se Surfac ptima .	e Showin	•		•		•			11
3.1	General:	i zed	Error I	Region Ab	out Desi	gn Sol	utio	n F	201	lnt	:	•	16
4.1	Element	Pos	itions	in the Fi	rst Quad	rant .		•	•	•	•		26
4.2	Pattern	1.	Design	Solution	• Simula	ited 3d	Plo	t		•			29
4.3	Pattern	1.	Design	Solution	. Contou	r Plot				•			30
4.4	Pattern	2.	Design	Solution	. Simula	ted 3d	Plo	t		•		•	31
4.5	Pattern	2.	Design	Solution	. Contou	r Plot					•		32
4.6	Pattern	3.	Design	Solution	• Simula	ted 3d	Plo	t			•		33
4.7	Pattern	3.	Design	Solution	. Contou	r Plot			•	•			34
4.8	Pattern	4.	Design	Solution	. Simula	ted 3d	Plo	t					35
4.9	Pattern	4.	Design	Solution	. Contou	r Plot							36
4.10	Pattern	5.	Design	Solution	• Simula	ted 3d	Plo	t	•	•			37
4.11	Pattern	5.	Design	Solution	. contou	r Plot			•				38
4-12	Pattern Maximum	-	_	ent Error the Main									49
4.13		_		ent Error the Main									50
4.14	Pattern Maximum	-		ent Error Side Lobe									51

Figure															Page
	attern Maximum	_		 	•							•			51
	attern Maximum	100	_	Erron		•				•					52
	attern Maximum								•			•			53
	attern Maximum		-	 	•	•	•	•		•	•	•	•	•	54
	attern Maximum		_	 	•		•	•	•	•	•	•		•	55
	attern Maximum		-	 						•	•	•	•	•	56
	attern Maximum			 	m	•		•	•	•	•	•		•	57
	attern Maximum				m	•		•		•	•	•	•	•	58
	attern Maximum			 		•			•	•					59
M	attern Maximum	The second second		No. of the last of		•		•	•	•	•	•	•	•	60
2 00 000	attern Maximum			 			•		•	•	•	•		•	61
M	attern Maximum	_					•	•	•	•					62
M	attern laximum	_	-	 	m			•	•				•	•	63
	attern	_		Error											64

Figure											Page
		3. 1 Percent Error Impact on Side Lobe 1 .			•	•					65
	_	3. 2 Percent Error Impact on Side Lobe 1 .	•		•			•	•		66
		3. 1 Percent Error Impact on Side Lobe 2 .	•					•	•		67
	Pattern Maximum	3. 2 Percent error Impact on Side Lobe 2 .	•			•		•		•	68
	Pattern Maximum	3. 1 Percent Error Impact on the Null .	•			•		•			69
	Pattern Maximum	3. 2 Percent Error Impact on the Null .		•	•	•	•	•	•		70
	Pattern Maximum	4. 1 Percent Error Impact on the Main Beam .	•		•	•	•		•	•	71
		4. 2 Percent Error Impact on the Main Beam .	•		•	•			•	•	72
		4. 1 Percent Error Impact on Side Lobe 1 .	•		•		•		•	•	73
		4. 2 Percent Error Impact on Side Lobe 1 .		•							74
		4. 1 Percent Error Impact on Side Lobe 2 .	•							•	75
	Pattern Maximum	4. 2 Percent Error Impact on Side Lobe 2 .		•					•		76
		5. 1 Percent Error Impact on the Main Beam .									77
	Pattern Maximum	5. 2 Percent Error Impact on the Main Beam .	•								78
		5. 1 Percent Error Impact on Side Lobe 1									78

Figur	re Page	2
4.43		79
4.44		80
4.45	Pattern 5. 2 Percent Error Maximum Impact on SIde Lobe 2 8	31
4.46	Pattern 1. $\overline{\Delta G}$ vs. Error Range by Feature	9
4.47	Pattern 2. AG vs. Error Range by Feature	0:
4.48	Pattern 3. AG vs. Error Range by Feature	1
4.49	Pattern 4. $\overline{\Delta G}$ vs. Error Range by Feature	.2
4.50	Pattern 5. AG vs. Error Range by Feature	.3
4.51	Pattern 1. AGmax vs. Error Range by Feature	4
4.52	Pattern 2. AGmax vs. Error Range by Feature	5
4.53	Pattern 3. AGmax vs. Error Range by Feature	6
4.54	Pattern 4. AGmax vs. Error Range by Feature	7
4.55	Pattern 5. AGmax vs. Error Range by Feature 12	8
4.56	Main Beam Impact. $\overline{\Delta G}$ vs. Error Range by Pattern	9
4.57	Main Beam Impact. AG max vs. Error Range by Pattern	0

Figur	e						Page
4.58	Aggregated Side Lobe Impact. $\overline{\Delta G}$ vs. Error Range by Pattern .					•	131
4.59	Aggregated Side Lobe Impact. AGmax vs. Error Range by Pattern		•				132

LIST OF TABLES

0

Table	e	Page
4.1	Pattern 1. Amplitude and Phase Settings Design Problem Solution Vector	39
4.2	Pattern 2. Amplitude and Phase Settings Design Problem Solution Vector	40
4.3	Pattern 3. Amplitude and Phase Settings Design Problem Solution Vector	41
4.4	Pattern 4. Amplitude and Phase Settings Design Problem Solution Vector	42
4.5	Pattern 5. Amplitude and Phase Settings Design Problem Solution Vector	43
4.6	Pattern 1. Amplitude and Phase Settings Maximum Impact on the Main Beam, 1 percent error	83
4.7	Pattern 1. Amplitude and Phase Settings Maximum Impact on the Main Beam. 2 percent error	84
4.8	Pattern 1. Amplitude and Phase Settings Maximum Impact on Side Lobe 1. 1 percent error	85
4.9	Pattern 1. Amplitude and Phase Settings Maximum Impact on Side Lobe 1. 2 percent error	86
4.10	Pattern 1. Amplitude and Phase Settings Maximum Impact on Side Lobe 2. 1 percent error	87
4.11	Pattern 1. Amplitude and Phase Settings Maximum Impact on Side Lobe 2. 2 percent error	88
4.12	Pattern 1. Amplitude and Phase Settings Maximum Impact on the Null. 1 percent error	89
4.12	Pattern 1. Amplitude and Phase Settings Maximum Impact on the Null. 2 percent error	90

A STATE OF THE STA

LIST OF TABLES (CONTINUED)

Table					1	Page
	2. Amplitude and Phase Settings Impact on the Main Beam. 1 percent error		•			91
	 Amplitude and Phase Settings Impact on the Main Beam. 2 percent error 	•			•	92
4.16 Pattern Maximum	2. Amplitude and Phase Settings Impact on Side Lobe 1. 1 percent error .	•	•	•		93
	2. Amplitude and Phase Settings Impact on Side Lobe 1. 2 percent error .	•	•	•	•	94
	2. Amplitude and Phase Settings Impact on Side Lobe 2. 1 percent error .	•	•	•	•	95
	2. Amplitude and Phase Settings Impact on Side Lobe 2. 2 percent error .	•				96
	3. Amplitude and Phase Settings Impact on the Main Beam. 1 percent error	•	•		•	97
	3. Amplitude and Phase Settings Impact on the Main Beam. 2 percent error		•			98
	3. Amplitude and Phase Settings Impact on Side Lobe 1. 1 percent error .					99
	3. Amplitude and Phase Settings Impact on Side Lobe 1. 2 percent error .	•	•	•		100
	3. Amplitude and Phase Settings Impact on Side Lobe 2. 1 percent error .				•	101
	3. Amplitude and Phase Settings Impact on Side Lobe 2. 2 percent error .					102
	3. Amplitude and Phase Settings Impact on the Null. 1 percent error					103

LIST OF TABLES (CONTINUED)

Table	Page
4.27 Pattern 3. Amplitude and Phase Settings Maximum Impact on the Null. 2 percent error	104
4.28 Pattern 4. Amplitude and Phase Settings Maximum Impact on the Main Beam. 1 percent error	105
4.29 Pattern 4. Amplitude and Phase Settings Maximum Impact on the Main Beam. 2 percent error	106
4.30 Pattern 4. Amplitude and Phase Settings Maximum Impact on Side Lobe 1. 1 percent error	107
4.31 Pattern 4. Amplitude and Phase Settings Maximum Impact on Side Lobe 1. 2 percent error	108
4.32 Pattern 4. Amplitude and Phase Settings Maximum Impact on Side Lobe 2. 1 percent error	109
4.33 Pattern 4. Amplitude and Phase Settings Maximum Impact on Side Lobe 2. 2 percent error	110
4.34 Pattern 5. Amplitude and Phase Settings Maximum Impact on the Main Beam. 1 percent error	111
4.35 Pattern 5. Amplitude and Phase Settings Maximum Impact on the Main Beam. 2 percent error	112
4.36 Pattern 5. Amplitude and Phase Settings Maximum Impact on Side Lobe 1. 1 percent error	113
4.37 Pattern 5. Amplitude and Phase Settings Maximum Impact on Side Lobe 1. 2 percent error	114
4.38 Pattern 5. Amplitude and Phase Settings Maximum Impact on Side Lobe 2. 1 percent error	115
4.39 Pattern 5. Amplitude and Phase Settings Maximum Impact on Side Lobe 2. 2 percent error	116

LIST OF TABLES (CONTINUED)

Table	e	Page
4.40	Summary of Amplitude and Phase Setting Error Impact Data	117
4-41	Summary of Aggregated Side Lobe Impact Data	118
4.42	Summary of Operating Wavelength Error Impact Data	134

ABSTRACT

No matter what method is employed in the programming of a transducer array, in practice, the performance predicted by the model will not be achieved due to error in construction and operation of the array. Furthermore, the degree to which a given amount of error degrades an array design (i.e., design sensitivity) will differ greatly from one design to the next. A measure of sensitivity is proposed, based on the maximum impact which a given amount of error can produce on a particular design. The adoption of this measure allows the sensitivity problem to be solved through the use of mathematical programming techniques. The best of these techniques for the general array design case is shown to be Non-linear Goal Programming. The sensitivity values for five planar symmetric array designs are determined and compared.

The results of this comparison indicate the potential of the proposed measure and solution technique for the development of a fast and inexpensive method for array design sensitivity analysis. Particularly, the resulting sensitivity values are free from the a priori assumptions and high costs inherent in simulation. Furthermore, the method is based on a general framework which is applicable to the analysis of several array design factors including size, geometry, pattern, and component reliability. The method may also be extended to multiobjective design problems outside the area of array design.

INTRODUCTION

1.1 Purpose of the Study

Mathematical programming techniques appearing during the past 10 years have provided a means for designing complex array patterns. From 1946 until the advent of these techniques, arrays were almost universally programmed using the Dolph Tschebbyscheff method, which involved setting the directional response function equal Tschebbyscheff polynomial of like degree.[1,9] This method applied only to linear arrays in the exact sense. However, by the use of the product theorem, patterns produced by planar arrays could be approximated. The Dolph-Tschebbyscheff method allowed main beam width and side lobe height to be specified. In contrast, it is now possible to achieve main beam shape and place nulls, as well as achieve other objectives. A concomitant to the increased demands on array performance is a decreased tolerance of the array pattern to small deviations in the values of certain key parameters. Thus, the potential impact of error has become of increased concern to the designer. This concern provides the motivation for the present study, the purpose of which is to find a practical means of assessing array pattern sensitivity.

This process entails the choice of some measure of the impact of

error on an array pattern to serve as an indicator of sensitivity, and concurrently, the development of a method by which this measure can be evaluated. The choice reflects a compromise between attaining as much information regarding sensitivity as possible, and keeping the time and expense involved in its acquisition within reasonable limits.

The design of this study encompasses five main objectives. These are:

- 1. To define a consistent measure of array pattern sensitivity, which may be applied to all classes of array, and to any type of array design.
- 2. To develop or, more correctly, to adapt an efficient method to determine array pattern sensitivity, based on the above measure.
- 3. To discuss and compare alternate means for measuring and determining sensitivity.
- 4. To apply the chosen method to a representative problem. Specifically, on an array of given size and geometry, the sensitivities of five different array patterns, displaying a wide range of possible design features, will be determined and compared.
- 5. To discuss the extension of the method to the general array design sensitivity analysis problem.

1.2 Organization of the Paper

The paper is organized as follows. Chapter Two includes an introduction to transducer arrays and array patterns, pertinent terminology, coordinate systems, and conventional representations.

Methods of array pattern design using mathematical programming techniques are summarized, and error sources are discussed, as well as their resolution into variables of the directivity function.

In Chapter Three, alternate methods of measuring sensitivity are discussed. These are the expected value and the maximum value of change in the array pattern. Then, methods of finding these values are compared, including simulation and a set of mathematical optimization techniques.

MAXIM, a program which measures the maximum impact of error on an array pattern is presented, and the use of MAXIM to develop an index of sensitivity is discussed.

Chapter Four is a description of an experimental application of MAXIM. Sensitivity values are generated for five directivity patterns. The results are presented in graphic and tabular form.

These results are discussed in Chapter Five, and extensions and alternate applications of the method are suggested.

CHAPTER II

ARRAY DESIGN AND ERROR

2.1 Transducer Arrays

A transducer is any device which converts a signal from one transmission medium into a signal in another. When operating as a reciever the transducer converts a signal incident to its surface into an electric signal, and converts an electric signal into a radiated signal when operating as a transmitter.

A transducer array consists of a set of transducers, termed elements, which are placed according to some fixed geometrical arrangement, and are electrically interconnected. Arrays fall into three categories, depending on the number of physical dimensions necessary to acomodate the element positions. These are: linear, planar, and conformal, corresponding to one, two, and three dimensions, respectively.

2.2 Array Patterns

One of the major objectives involved in acoustic array design is the achievement of a desired array pattern, or equivalently, directivity pattern. If the operating array is viewed from an aspect angle, expressed as a solid angle, θ , ϕ , where the θ component is measured from the positive Z axis, and the ϕ component from the positive X axis (see

fig.2.1), the power radiated along that angle (or the sensitivity of the array to a signal incident to it from that angle) is called the directional response of the array in the θ , ϕ direction. The directional response is measured in dB. Letting θ and ϕ vary to define some region in space (often a hemisphere), the directional response at all angles contained in that region is called an array pattern. The parameters which determine the array pattern are:

- 1. The number and placement of elements.
- 2. The wavelength at which the system operates.
- 3. The relative amplitude and phase shading coefficients of the excitation currents to the individual elements.

Figure 2.2 is a contour plot. It represents a typical array pattern defined on $0 < \theta < 180$ and $0 < \phi < 180$. This pattern is obtained from a 10 by 10 planar symmetric array with unshaded element amplitude and phase settings. The response of the array is given on a five-degree grid in negative decibels. Thus -0 dB represents the peak power radiated in any direction, and one half of the total gain (radiated power) of the array is in the region -3 dB or less off peak. In figure 2.2 the center of this region, called the main beam, or main lobe, is at $\theta = 90$, $\phi = 90$. In this case, the axis or boresight of the array falls along the positive Y axis. Any other lobe in the array pattern with a relatively high gain , for instance at $\theta = 60$, $\phi = 90$, is considered to be noise and is called a side lobe. Likewise, any region where the gain falls below some prespecified level, say -60 dB, is termed a null, e.g., $\phi = 15$, $\phi = 40$. Figure 2.3 is a simulated $\phi = 10$ 0 plot of the same pattern.

An array pattern may be defined in terms of three categories of

BORRSIGHT AT 90.90

Figure 2.2 Contour Plot. 10 by 10 Unshaded Array

Figure 2.3
Simulated 3^d Plot. 10 by 10 Unshaded Array

design feature:

- 1. The size and shape of the main beam.
- 2. The "height" of the side lobes.
- 3. The placement of nulls.

2.3 Array Design Through Optimization Techniques

During the past ten years, problems in array pattern design have been successfully solved using mathematical optimization techniques. Among the methods which have been employed are Lagrangian multipliers, linear programming, method of steepest ascent, SUMT, and non-linear goal programming. Although these methods differ widely with regard to solution technique (and relative success), they usually share an underlying view of the array design problem as an optimization model in m objectives, and 2n variables. Thus an array of n independent elements, or sets of elements, is required to meet a set of specified directional responses, at m aspect angles (0, 0 points), thereby defining an array pattern. In general, it is desired to maximize an objective function

$$z(f_1(a_1,...,a_{2n}),....,f_m(a_1,...,a_{2n}), f_1,...,f_m)$$

where $f_1(a_1,\dots,a_{2n})$ is the achieved directional response at θ_1,ϕ_1 , $a_1,\dots a_{2n}$ are the amplitude and phase shading coefficients of the elements of the array, and f_1' is the specified response at θ_1,ϕ_1 . The function Z will take on increasingly greater values as

$$f_{i}(a_{1},...,a_{2n}) \rightarrow f'_{i}, i=1,...,m$$

Due to a somewhat unfortunate overlap in terminology, the set of values which Z takes on as a_1, \dots, a_{2n} vary continuously, is called a response surface. The term "response surface" has to do with the response of the objective function and does not refer directly to the directional response of the array pattern. A response surface in 2 rather than 2n dimensions is shown in figure 2.4. The point (a'_1, a'_2) is called a global optimum. That is, there is no point (a_1, a_2) in the domain of Z such that $Z(a_1, a_2) > Z(a'_1, a'_2)$. The point (a''_1, a''_2) is a local optimum, since, although the conditions for global optimality do not hold, there exists a region given by:

$$|a_i-a_i'| < d_i, i=1,2, d_i > 0$$

such that $Z(a_1,a_2) \le Z(a_1,a_2)$ holds for all a_1,a_2 within the region.

Of the optimization methods listed above, Lagrangian multipliers and linear programming are called indirect methods, since their solution techniques involve the simultaneous solution of a set of equations. The method of steepest ascent, the sequential unconstrained minimization technique, and non-linear goal programming, are direct search techniques relying on evaluation of response surface elevation, and some search movement logic to find an optimum.

Recently [10,15], Non-linear Goal Programming (NLGP), which is based on the modified Hooke and Jeeves pattern search discussed in appendix B, has been shown to provide good, robust solutions to the array design problem. The success of NLGP is due in part to the simplicity and directness of its search technique. All necessary information for search movement decisions is available directly from the objective function. Another factor in the success of NLGP derives from the goal programming problem formulation, which accommodates multiple

Figure 2.4 Generalized Response Surface Showing Local and Global Optima

possibly conflicting, or even incommeasurable objectives. This particular feature of NLGP is especially applicable to the array design problem, since the achievement of different array pattern features usually conflict. For example, it is difficult to achieve a narrow main beam, and at the same time maintain low side lobe levels.

2.4 Array Sensitivity and Error

Sensitivity analysis is the measurement of system response to deviations in the values of decision variables from those assumed in the optimal solution. The technique by which sensitivity is found is not dependent on the method originally used to obtain the solution.

If, as is often the case, the size, shape, and operating wavelength of the array have been specified in advance, the array design solution consists of a vector of element amplitude and phase shading coefficients. It happens that the values of these variables, specified in the solution are not precisely attained in practice. The reason for this may be traced to several sources of error, inherent in the construction and operation of a transducer array. The following list of error sources is not intended to be comprehensive, but to provide a representative sample.

Error sources are usually divided into two classes, depending on whether their effects on the array pattern are random or systemmatic.

The most important error source in the random category is control error in the excitation signals recieved by the individual elements. This error source is analogous to instrument drift, and will vary with time. Random construction errors in the manufacture and placement of elements, in the manufacture of phase shifters, or in the length and

fitting of feed lines will have a fixed but unpredictable effect on a given array.

Chief among the systemmatic errors is a phenomenon called mutual coupling. The signal emitted from any one element will induce a sympathetic excitation in every other element in the array. The amplitude and phase of this component of a given element's radiation depend on its position in the array, and the amplitude and phase setting of each other element. Systematic phase error may also be introduced by sensitivity of phase shifters, transmission lines, and other array components to frequency variations. Another source of phase error is the approximation inherent in discrete or digital phase shifters.

The effects of these and any other error source may be represented as a change in element amplitude and phase-shading coefficients. However, the error introduced by the mathematical model of directional response, which assumes elements with point apertures, and isotropic radiation patterns is not treated here. This error source may be resolved through refinements in the model if necessary.

CHAPTER III

THE MEASUREMENT OF SENSITIVITY

3.1 Sensitivity by Feature

In the array design problem the analyst is forced to consider the entire pattern at once, which results in a multiobjective problem formulation. This is because, as has been previously noted, the achievement of different array pattern features often conflict. While a pattern satisfying all design objectives would nominally be optimal, it probably won't be feasible. Optimality is then assigned to the "best" trade off which is both acceptable and feasible. The relative importance of different features may be reflected either in a set of weighting factors or in a preemptive priority structure. It is precisely this type of multiobjective problem which goal programming was designed to solve.

In the case where array pattern sensitivity is to be determined, however, it is more profitable to examine individual features of an array pattern separately. This is because the degradation of the different features will conflict in exactly the same manner as their achievement. By separating a pattern with, say, four important features into four different sensitivity problems, the question of deciding the relative "worst" between alternative examples of impact where different

features are affected is circumvented. With this separation, four new response surfaces may be created, each representing the achievement of one feature. Although the solution vector lies at the optimal point of the array pattern response surface, it does not follow that it lies at the optimal point of any of the individual feature response surfaces.

3.2 The Error Region and Error Surface

Consider the solution vector of an array design problem. Each component of this vector may be said to have an interval of error about it, representing the potential cumulative effects of all error sources which can be resolved into error in amplitude and phase—shading coefficients. The true value of the elements will lie somewhere along these intervals, which are expressed as plus or minus some percentage of the range over which the amplitude or phase can vary. Amplitudes are conventionally normalized to dimensionless values between 0 and 1, phase to values between 0 and 360 degrees. For an n-element array, these error intervals will form a hypercube in 2n space, with the solution vector at its center. This hypercube will be called the error region. A 2-dimensional error region is shown in figure 3.1.

If the error region is superimposed on a feature response surface, it will contain all values which that objective function which indicates the achievement of the desired feature will take on due to error. This part of the response surface will be called the error surface.

Perfect information about the sensitivity of a feature would consist of two types of data. The first of these would be a complete map of the error surface. This is equivalent to complete enumeration of the response function value over 2n continuous intervals. It is easily

Figure 3.1 Generalized Error Region About Design Solution Point seen that even a low-resolution approximation would require that an astronomical number of points be evaluated as the array becomes large. For example, the array pattern of a 100 -element array depends on 200 decision variables. If the error interval of each variable is approximated by 50 equally spaced points, forming a 200 -dimensional lattice, total enumeration of the error surface response at the lattice points requires the array pattern to be evaluated 10,000 times. It should be noted as well, that as the array size increases, so does the cost of each evaluation. The second set of data would be composed of detailed knowlege of the effects of error sources. This would include such information as analysis of component interaction in various array constructions, probability distributions, the different random error types, and so forth. This kind of data is not available in practice.

Even though perfect sensitivity information is impractical or impossible to obtain, it is still desirable to find some characteristic of the error surface which will allow an assessment of sensitivity to be made. Candidates include the average elevation and the range (maximum elevation minus minimum elevation) of the error surface. The corresponding measures would be, respectively, the expected value of the feature's performance, and the worst value of the feature's performance in the error region.

3.3 Simulation

An estimate of the mean and standard deviation of the error surface elevation can be obtained by sampling points within the error region, and evaluating the objective function at these points. This amounts to a simulation of error impact. The sample will consist of a set of

points, constrained to lie within the error region, and randomly generated according to some distribution. For this purpose the distribution will usually be either normal about the solution vector, with a specified standard deviation, or uniform across the error region. Since the error sources discussed above are, in fact, partially systematic, and their random components partially fixed with regard to effect on a particular array, the assumptions inherent in these types of Monte Carlo simulations may seriously bias the analysis.

A second problem with simulation is the required sample size, and consequent expense. The number of degrees of freedom in the directivity function is twice the number of independent elements in the array. Reliable sample sizes tend to become quite large. It is noteworthy that in the 100-element case mentioned earlier (not a particularly large array), even a ten per cent sample amounts to 1000 points.

3.4 Optimization Models

Since simulation and enumeration are the only means of arriving at the expected value of array pattern feature sensitivity, and both prove to be impractical in light of present computer speeds and capacities, it remains to examine the error surface range. The maximum elevation on the error surface is assumed to be the solution vector for the array pattern. Quite a few optimization methods may be used to find the minimum elevation. These turn out to be the same techniques which have previously been brought to bear on the array design problem. It should not be surprising, considering the relationship between the two problems, that the relative success of a technique in solving one is a good predictor of performance on the other.

Representatives of three classes of optimization models will be discussed. These are:

- 1. Calculus-based methods.
- 2. Linear Programming.
- 3. Direct search techniques.

In order to restrict an indirect method, i.e. one based on the solution of a set of equations, to the error region, two inequality constraints must be added to the problem for each decision variable. A typical calculus—based technique for minimization subject to constraints is the use of Kuhn Tucker conditions. This method uses Lagrangian multipliers to create a set of equations which are solved simultaneously.

In the case of the general (non-symmetrical) n-element array these consist of:

- 1. 2n Lagrangians of the directivity function set equal to 0.
- 2. 4n inequality constraints.
- 3. 4n slack constraints, bounding the values which the multipliers may take on.

To find the minumum on a region, different combinations of the multipliers are set to 0, forcing the method to consider stationary points only along one or more boundaries of the error region. No multipliers set to 0 corresponds to the interior of the error region. This process is combinatorically explosive. At the worst case, up to 2^{4n} separate problems, each non-linear in 2n variables and 10n constraints, may have to be solved. Solving even one of these problems however, can be a somewhat monumental undertaking.

Two formulations which linearize the directivity function have been

developed. McMahon et al.[18] were the first to translate the array pattern design problem into a linear programming problem. This approach will solve for both amplitude and phase coefficients, but in order to do so, is forced to separate the real and imaginary components of the pattern. Because of this, it is impossible to reduce the problem size by taking symmetry into account.

Unlike calculus - based techniques, which are applied to the error surface, linear programming evaluates the directivity pattern. Thus a set of θ , ϕ points must be specified to define a feature which corresponds to some worst case. At each θ , ϕ point, four inequalities are generated, two each for the real and imaginary parts of the pattern. Two synthetic decision variables are developed for each element in the array, but as these are unrestricted, their number is functionally doubled. Also, for each element, four inequality constraints are added in order to define the error region.

Even before considering the number of θ , ϕ points required to define the worst case for a feature, there will be a problem in 4n variables, and 4n constraints. While this problem is orders of magnitude smaller than that generated by Kuhn Tucker conditions, its solution is still an expensive project. There will also be a certain amount of unavoidable round off error due to the subtraction and division required at each pivot.

In a later linear formulation, Wilson [20] created a linear programming problem which deals only with the real component of the pattern. Symmetry conditions may be incorporated into the directivity function in this model, and the decision variables are restricted to non-negative values. However, this drastic reduction in problem size is

accomplished at the expense of the abilty to solve for phase settings. Wilson's model assumes that all elements are excited in phase, and solves only for the amplitude coefficients. Although this technique could be easily adapted to a sensitivity analysis of the restricted (planar symmetric and unphased array) class of problem which it was intended to solve, it is not applicable to the general case.

Direct search techniques have been the most effective means of solving the general array design problem. The sequential unconstrained minimization technique, (SUMT) [11, 12], gradient search (method of steepest ascent), and Non-linear Goal Programming [4] have all been utilized to search for an optimum directivity pattern. Summaries and comparisons of these techniques have been made by Ignizio [15] and by Draus [10]. When applied to identical pattern synthesis problems, NLGP was found to equal or exceed (sometimes markedly) the performance of the other two methods, while at the same time displaying a clear superiority in computational efficiency. These results, plus the multiobjective capacity of the goal programming formulation make NLGP the most attractive direct search technique, and by extension, the best optimization model to adapt to the general directivity pattern sensitivity problem.

3.5 MAXIM/PS

NLGP/PS is the goal programming code specifically designed for planar symmetric array pattern design. This code was written by James P. Ignizio and Susan M. Draus at the Industrial Engineering Department, and Applied Research Laboratory, The Pennsylvania State University. Its accuracy and robustness have been extensively tested.

Only minor revisions were necessary in order to adapt NLGP to search for the minimum elevation of the error surface. These changes involve parameters of the pattern search, which is described in detail in appendix B.

- The initial step sizes were reduced to compensate for the constrained region in which the search takes place.
- 2. Logic was added to the evaluation of provisional base points such that any point outside the error region registers no improvement. This effectively constrains the search to the error region.
- 3. Changes were made in the functional relationships which define the goals, that is, the response desired at given θ , ϕ points. In NLGP the achieved levels of response were set equal to the desired levels in the main region, and less than or equal in the side region. In the revised version, response in the main region is set less than or equal to the desired level, and in the side region, greater than or equal to the desired level.
- 4. The solution vector of the design problem is used as the initial base point for the pattern search.

The goal programming formulation, the directional response formulation, and the pattern search algorithm are identical in both codes. The revised version is called MAXIM/PS, as it measures the MAXIMUM IMpact of an error range on a feature.

Direct search techniques do not guarantee a global optimal solution on a multimodal response surface, and the Hooke and Jeeves pattern search is no exception. This is less of a problem in the array design

case, because only a satisfactory solution is required. The question of whether or not the global minumum of an error surface has been found is of greater concern, since a difference of several dB of sensitivity may be involved. In practice, however, error intervals are very small (on the order of ± 2 or 3 percent of the decision variable range), so that the chance of multimodality on any error interval, and hence on the error surface, is significantly reduced. If an extra measure of confidence is required, it is possible to make multiple search runs, commencing from different starting points.

3.6 The Index of Sensitivity

As noted previously, in the determination of pattern sensitivity important features should be considered separately. Thus, the θ , ϕ points corresponding to a high side lobe might be chosen and assigned an aspired value of -1 dB. MAXIM would then search within the error region for the point at which this side lobe was driven as high as possible. A measure on the θ , ϕ points used to define the side lobe, say the highest point or the mean height, could then be compared between the solution to the design problem and the maximum error impact solution. If the directional response at these θ , ϕ points had risen by an average of 15 dB, or if the maximum height of the feature had risen by 15 dB, the feature would be given a sensitivity value of 15 dB. The same procedure would then be repeated for all relevant features of the pattern. These would include other side lobes, nulls, and the main beam. The main beam θ , ϕ points would be given an aspired value of -60 dB to bring the response down as far as possible.

For a given error range, the result of this approach is a set of

pattern. These are to be compared with minimum acceptable sensitivity values for these features. The maximum amount, in dB, by which the acceptable sensitivity value for any feature of the pattern is violated is the IOS, or index of sensitivity assigned to the pattern. Note that the IOS is specific to a given error range.

CHAPTER IV

APPLICATION: THE USE OF MAXIM TO GENERATE AN IOS

4.1 The Experiment

In order to evaluate the utility of the IOS measure of sensitivity, it was decided to test and compare a series of directivity patterns on a single array. The directivity patterns were chosen so as to reflect a broad sampling of objectives. Synthesis took place on a 10 x 10 planar symmetric array. The choice of array size and geometry was based on two considerations. The number of elements was to be large enough to produce patterns which were somewhat difficult, and hence interesting from the standpoint of sensitivity. At the same time, the number of decision variables involved was to be kept down to a reasonable level, allowing the analysis to be accomplished at a small to moderate cost in computation time.

4.2 Array Description

The 10 x 10 planar symmetric array is square and consists of 100 equally spaced elements. The elements are considered to lie in the X-Z plane, 25 elements to a quadrant, with symmetry about both the X and Z axes. The elements are placed and numbered as shown in figure 4.1. In the planar symmetric type of array, sets of four symmetrically placed

Figure 4.1 Element Positions in the First Quadrant.

elements recieve identical excitation currents. This fact decreases both the amount of hardware necessary for array construction, and the difficulty in programming the array. In the 10 x 10 case, it is necessary to consider only 25 sets of elements, a reduction from 200 to 50 decision variables.

The directivity pattern is measured over a hemisphere defined by:

$$0 \le \theta \le 180$$
 and $0 \le \emptyset \le 180$

See figure 2.1. Thus boresight falls along the positive Y axis.

The directivity function for this array is given by:

$$G_{\phi} = 10 \log \left[\frac{25}{16 \left[\left(\sum_{i=1}^{\infty} A_{i} \cos \alpha_{i} \cos b_{i} \cos c_{i} \right)^{2} + \left(\sum_{i=1}^{\infty} A_{i} \sin \alpha_{i} \cos b_{i} \cos c_{i} \right)^{2} \right] \right]$$

where:

 α_{i} = the phase shift associated with element i.

$$b_i = 2\pi/\lambda x_i \sin\theta \cos\phi$$

$$c_i = 2\pi/\lambda z_i \cos\theta$$

A, - the excitation amplitude of element i.

 λ = the operating wavelength of the array.

See appendix A for the derivation of this result from the general directivity function.

4.3 Experimental Patterns

Five patterns were synthesized using NLGP. This process is documented in references 10 and 15. These are:

- 1. 20 by 30 degree elliptical main beam with uniform response. Side lobes ≤ -27 dB off peak. -61 dB nulls at (20,20), (160,20), (20,160), (160,160).
- 2. 30 degree circular main beam with uniform response. Side lobes < -26 dB off peak.</p>
- 3. 30 degree circular main beam with uniform response. Side lobes ≤ -26 dB off peak. Broad nulls ≤ -47 dB off peak, centered about (40,35), (40,165), (140,165), (140,35), (140,165).
- 4. 30 degree square main beam with uniform response. Side lobes ≤ -28 dB off peak.
- 5. 30 by 70 degree rectangular main beam with uniform response. Side lobes < -27 dB off peak.

In the discussion to follow, the experimental patterns will be referred to as patterns 1 through 5. These five patterns are illustrated by 5 degree resolution contour plots, and 2 degree resolution simulated 3^d plots in figures 4.2 to 4.11. Tables 4.12 to 4.15 show the element set amplitude and phase-shading coefficients for the five design solutions.

Figure 4.2
Pattern 1. Design Solution
Simulated 3^d Plot

GAIN DEGNADATION IS -0.237

Figure 4.3 Pattern 1. Design Solution Contour Plot

Figure 4.4
Pattern 2. Design Solution
Simulated 3^d Plot

BORRSIGHT AT 90.20

THETA PRI 0 5 10 15 20 25 30 35 40 45 50 55 40 65 70 75 80 85 70 95 00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

GAIN DECEMBATION IS

Figure 4.5
Pattern 2. Design Solution
Contour Plot

Figure 4.6
Pattern 3. Design Solution
Simulated 3^d Plot

SORESIGET AT 90,90

THETA

PHI

GAIN DEGRADATION IS

Figure 4.7
Pattern 3. Design Solution
Contour Plot

Figure 4.8
Pattern 4. Design Solution
Simulated 3^d Plot

HORESIGHT AT 20.40

TEST

PHI

> GAIN DEGRAPATION IS -10.643

> > Figure 4.9
> > Pattern 4. Design Solution
> > Contour Plot

Figure 4.10
Pattern 5. Design Solution
Simulated 3^d Plot

BORESIGHT AT 90,90

GAIN DEGRADATION IS

0

Figure 4.11 Pattern 5. Design Solution Contour Plot

TABLE 4.1

Pattern 1. Amplitude and Phase settings.

Design Problem Solution Vector.

Element Number	A _i	$^{\alpha}{}_{\mathbf{i}}$
1	1.00000	45.08598
2	0.83026	50.47632
3	0.55588	61.58244
3 4 5	0.28236	81.43579
5	0.14425	125.26320
6	0.73256	29.22868
6 7 8	0.55325	40.92334
8	0.36320	46.62827
9	0.17836	86.20399
10	0.00016	-23.47665
11	0.47729	5.06743
12	0.31261	4.35339
13	0.16010	7.01000
14	0.06544	-72.95085
15	0.03629	-110.93900
16	0.35335	-27.58368
17	0.24252	-58.43025
18	0.18708	-57.70381
19	0.00300	-96.97165
20	0.05679	-95.49803
21	0.19194	-79.03387
22	0.16094	-56.59669
23	0.09302	-116.47880
24	0.02788	-106.64440
25	0.01390	-153.24800

TABLE 4.2

Pattern 2. Amplitude and Phase settings.

Design Problem Solution Vector.

Element Number	A ₁	$^{\alpha}{}_{\mathbf{i}}$
1	1.00000	86.59134
2	0.72492	76.29446
3	0.40101	46.41832
1 2 3 4 5	0.21527	-16.98532
5	0.16095	-59.23582
6	0.67942	81.91975
7	0.49048	63.05440
8	0-23734	18.64299
9	0.24548	-33.18059
. 10	0.13429	-52.38556
11	0.24719	58.71460
12	0.21164	19.38586
13	0.27099	-8.95276
14	0.21564	-35.90080
15	0.13460	-62.06729
16	0.14507	-31.14095
17	0.14949	-28.63022
18	0.21673	-37.39592
19	0.14453	-54.42915
20	0.02817	-68.23637
21	0.13854	-65.68265
22	0.11909	-53.94441
23	0.06781	-47.95035
24	0.07849	-64.44748
25	0.00075	-78.08585

TABLE 4.3

Pattern 3. Amplitude and Phase settings. Design Problem Solution Vector.

Element Number	Ai	α _i
1	1.00000	86.58992
2	0.72632	76.29305
3	0.34581	51.41776
1 2 3 4 5	0.23573	-21.98474
5	0.14923	-43.99036
6	0.69419	81.91833
7 8	0.47213	63.05298
8	0.24763	18.64278
9	0.23630	-30.62059
10	0.15778	-61.38362
11	0.24962	58.71346
12	0.19205	21.43350
13	0.26085	-8.95269
14	0.20757	-40-90024
15	0.10105	-52.45972
16	0.14143	-34-98846
17	0.14389	-26.19022
18	0.20862	-37.39572
19	0.13913	-49.42932
20	0.05563	-57.98967
21	0.11944	-68.87962
22	0.11464	-57 - 30469
23	0.06528	-43-59050
24	0.07555	-50.84010
25	0.00073	-73.46278

TABLE 4.4

Pattern 4. Amplitude and Phase settings. Design Problem Solution Vector.

Element Number	Ai	αi
1	1.00000	83.71129
2	0.58462	74.89516
3	0.14241	34 • 26 509
4	0.19317	-61.69458
5	0.10087	-100.38940
6	0.55779	84.17863
7	0.34828	59.88213
8	0.23030	6.18118
9	0.18049	-23.08340
10	0.10228	-77.36714
11	0.00410	-174.76480
12	0.14119	-0.87991
13	0.26177	5.56305
14	0.19908	-13.63951
15	0.08626	-12.35343
16	0.15645	-99.23828
17	0.10658	-45.02731
18	0.16667	-6.84196
19	0.14051	1.34623
20	0.01905	-10.38139
21	0.08704	-100.32360
22	0.03587	- 78.75728
23	0.03556	-40.04144
24	0.02226	115.26540
25	0.01850	89.00087

Pattern 5. Amplitude and Phase settings.

Design Problem Solution Vector.

TABLE 4.5

Element Number	. A ₁	α _i
1	0.66059	102.85650
2	0.38303	110.02400
3	0.01744	105.41250
4	0.09856	-85.83286
5	0.07641.	-48.83804
1 2 3 4 5 6 7 8	1.00000	41.89236
7	0.65056	37.02228
8	0.17021	38.25259
9	0.08036	-93.32645
10	0.14957	-147.13670
11	0.81610	2.49893
12	0.47947	1.34707
13	0.17213	-20.41713
14	0.07275	-167.79430
15	0.06579	-165.56710
16	0.53865	-75.06853
17	0.36734	-77.70242
18	0.12291	-93.52895
19	0.00422	63.56360
20	0.08095	68.92059
21	0.27639	-101.25180
22	0.17685	-107.32960
23	0.05861	-94.70036
24	0.05308	43.36661
25	0.03110	53.67607

For each pattern, sensitivity values were determined for:

- 1. The main beam,
- 2. the two highest side lobes,
- 3. nulls if present,

at \pm 1 percent and \pm 2 percent error in A_1 and α values, and at -2 percent, -1 percent, 1 percent and 2 percent error in λ . Because of the symmetry inherent in the pattern, a side lobe or null in one orthont will have an identical counterpart in the other three. For convenience, a set of four such symmetrical features will be referenced only in the orthont defined by:

$$0 \le \theta \le 90$$
 and $0 \le \emptyset \le 90$

The process by which the sensitivity values were obtained is described in detail for pattern 1. It holds for the other four patterns as well.

4.4 The MAXIM Runs

Four major features were identified. These are the main beam, the two highest side lobes, denoted sl(1) and sl(2), and the nulls. These features are outlined in figure 4.2.

The sensitivity of each of these features to error in A_i and a_i was analyzed separately, using MAXIM. Thus two MAXIM runs were made for each feature, with error ranges for A_i and a_i set first at 1 percent, and then at 2 percent. A_i and a_i vary independently, and the capability to model this is built into MAXIM. Setting these error ranges equal reflects a desire to keep the analysis as simple as possible.

Since MAXIM evaluates the directivity pattern, rather than the response surface, it is necessary to develop a set of goals which will

drive the solution to the minimum elevation point on the error surface. Directional response values which correspond to extreme degradation are therefore specified at a number of θ , ϕ points in the feature. It was felt that a 5-degree resolution was sufficient to define the features examined here. Smaller, irregularly shaped features may require a finer resolution. The goals are of the form:

$$G_{\theta\phi} + n_{\theta\phi} - p_{\theta\phi} = B_{\theta\phi}$$

where:

 $G_{\theta \phi}$ is the directivity function for θ, ϕ .

 $n_{\theta \, \varphi}$ is a negative deviation variable.

 $\mathbf{p}_{\theta \, \dot{\mathbf{o}}}$ is a positive deviation variable.

 $B_{\theta \varphi}$ is a value representing the worst possible response at $\theta , \pmb{0}$ in dB .

For θ , in the main beam, $B_{\theta\phi}$ = -60 dB. For θ , in the side lobes or nulls, $B_{\theta\phi}$ = 1 dB.

The objective function of MAXIM is of the form:

$$MIN Z = \sum_{\theta \phi} W_{\theta \phi} P_{\theta \phi}$$

for 0,0 in the main beam.

and

$$MIN Z = \sum_{\theta \phi} W_{\theta \phi}^{} n_{\theta \phi}^{}$$

for 0,0 in a side lobe or null

where the weighting factors, $W_{\theta\phi}$, are set to unity, indicating no difference in priority between θ , ϕ points in the same feature. This is the basic goal programming formulation in one priority level. There are, in fact, three priority levels in the problem, but two of these, excitation symmetry and error range, are implicit in the directivity function and pattern search logic respectively.

The solution vector of the design problem was used as the initial base point for the pattern search.

4.5 Sensitivity Values

MAXIM generates a contour plot, displaying the worst possible response of the given feature on a specified error region. This is then compared with the contour plot of the design solution directivity pattern, previously generated by NLGP. Two sensitivity values are taken for each MAXIM contour plot, i.e., for each feature at each error range. These are the average difference (\overline{AG}) , and the difference in the worst directional response values for any Θ , Φ point in the feature, $(\Delta Gmax)$.

AG is given by:

$$\frac{\Sigma}{\theta \phi} \frac{(G_{\theta \phi} - G_{\theta \phi}')}{n}$$

for 0,0 points in a side lobe or null. Or:

$$\frac{\Sigma}{\theta \phi} \frac{(G'_{\theta \phi} - G_{\theta \phi})}{n}$$

for 0,0 points in the main beam.

Where

G = the response at θ , ϕ for the design solution.

 $G'_{\theta\phi}$ = the worst response at θ , in the error region.

n = the number of θ , ϕ points used to define the feature.

△Gmax is given by:

M - M'

Where

M = Max $[G_{\theta\phi}]$ for θ , ϕ in a side lobe or null.

Min $[G_{\theta\phi}]$ for θ , ϕ in the main beam.

 $M' = Max [G'_{\theta \phi}]$ for θ, ϕ in a side lobe or null. Min $[G'_{\theta \phi}]$ for θ, ϕ in the main beam.

A negative value for $\overline{\Delta G}$ or ΔG max indicates that the error has produced an improvement in the feature. This will not occur due to error in A_1 and α_4 , but may for error in λ .

4.6 Measurement of Operating Wavelength Error Impact

The designs were synthesized using an operating wavelength (λ) of 1 unit length. In order to determine sensitivity to error in λ , patterns were made for each design where all element amplitude and phase settings were maintained at the design solution values, and operating wavelength was set at .98, .99, 1.01, and 1.02 units of length. The two sensitivity measures defined above, $\overline{\Delta G}$ and ΔG max, were then measured on each feature.

4.7 Results

Figures 4.12 to 4.45 are contour plots of patterns 1 through 5, showing the maximum impacts of 1 and 2 percent error in amplitude and phase settings on the features outlined.

Figures 4.46 to 4.50 are graphs of feature sensitivity to error in A_1 and α_1 , measured in terms of $\overline{\Delta G}$ for each pattern. Figures 4.51 to 4.55 are graphs of feature sensitivity to error in A_1 and α_1 , measured in terms of ΔG max for each pattern.

Figures 4.56 and 4.57 are graphs of main beam sensitivity to error in A_1 and α_1 , across the 5 patterns, measured in terms of $\overline{\Delta G}$, and ΔG max respectively. Figures 4.58 and 4.59 are graphs of aggregated side lobe sensitivity to error in A_1 and α_1 across the 5 patterns, measured in terms of $\overline{\Delta G}$, and ΔG max respectively.

Tables 4.6 to 4.39 show the amplitude and phase values for each pattern generated by MAXIM.

Table 4.40 summarizes the data for amplitude and phase error sensitivity. Table 4.42 presents the data for operating wavelength sensitivity. As the figures indicate that sensitivity to \leq 2 percent absolute error in λ is quite low, it was felt that little information was to be gained by the presentation of the associated contour plots.

BORESTGST AT 70.90

THE ATTE

GAIN CEGRACATION IS

Figure 4.12
Pattern 1. 1 Percent Error
Maximum Impact on The Main Beam

DORESIGNE AT 90.30

THETA PRI

GAIN DEGRADATION IS

Figure 4.13
Pattern 1. 2 Percent Error
Maximum Impact on the Main Beam

BORESTORE AT 10. 10

THETS

PHI

GAIS DEGRADATION IS

Figure 4.14
Pattern 1. 1 Percent Error
Maximum Impact on Side Lobe 1

DORESIGET AT 90,00

78574 28

GAIN DEGRADATION IS

Figure 4.15
Pattern 1. 2 Percent Error
Maximum Impact on Side Lobe 1

BORESIGST AT 20.30

TRETA

PRI

GAIN DEGRADATION IS

Figure 4.16 Pattern 1. 1 Percent Error Maximum Impact on Side Lobe 2 BORESIGET AT 20,90

THETA

PEI

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 88

GAIN DEGRADATION IS

Figure 4.17
Pattern 1. 2 Percent Error
Maximum Impact on Side Lobe 2

GAIN DEGRATATION IS

Figure 4.18
Pattern 1. 1 Percent Error
Maximum Impact on the Null

BORESIGHT AT 20,90

GAIN DECRADATION IS

1

Figure 4.19
Pattern 1. 2 Percent Error
Maximum Impact on the Null

BORRSIGHT AT 90.90

GAIN DEGRADATION IS

Figure 4.20
Pattern 2. 1 Percent Error.
Maximum Impact on the Main Beam

DOZESIGNE AT 90.20

GAIS DEGRADATION IS

Figure 4.21
Pattern 2. 2 Percent Error
Maximum Impact on the Main Beam

BORESIGET AT 20, 90

THETA

PEI

GAIN DEGRADATION IS

Figure 4.22
Pattern 2. 1 Percent Error
Maximum Impact on Side Lobe 1

BORESIGET AT 30,30

PEI

THETA

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 00

GAIN DECRADATION IS

Figure 4.23
Pattern 2. 2 Percent Error
Maximum Impact on Side Lobe 1

BORESIGET AT 90. 10

THETA

PHI

GAIN DESPADATION IS

Figure 4.24
Pattern 2. 1 Percent Error
Maximum Impact on Side Lobe 2

BORESIGNT AT 30.90

THETA PRI

GAIN DEGRADATION IS

Figure 4.25
Pattern 2. 2 Percent Error
Maximum Impact on Side Lobe 2

SORESTERT AT 30.9

THETA 0 5 10 15 20 25 30 35 40 45 30 55 60 65 70 75 80 85 90 95 00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

GAIN DEGRADATION IS

Figure 4.26
Pattern 3. 1 Percent Error
Maximum Impact on the Main Beam

BORESTGET AT 90,20

THETA

281

GAIN DEGRADATION IS

Figure 4.27
Pattern 3. 2 Percent Error
Maximum Impact on the Main Beam

30885 EGHT AT 70, 30

PRETA

PRI

GAIN DEGRACATION IS

Figure 4.28
Pattern 3. 1 Percent Error
Maximum Impact on Side Lobe 1

THETA PET

GAIN DEGRADATION IS

Figure 4.29
Pattern 3. 2 Percent Error
Maximum Impact on Side Lobe 1

BORESIGHT AT 90.90

THETA

PHI

GAIN DEGRADATION IS

Figure 4.30
Pattern 3. 1 Percent Error
Maximum Impact on Side Lobe 2

BORESIGET AT 90,90

THETA PHI

GAIN DEGRADATION IS

Figure 4.31
Pattern 3. 2 Percent Error
Maximum Impact on Side Lobe 2

BORESIGET AT 90,90

THETA P

GAIN DEGRADATION IS

Figure 4.32
Pattern 3. 1 Percent Error
Maximum Impact on the Null

BORESIGHT AT 90.30

THEFA PEI

GAIN DEGRADATION IS

Figure 4.33
Pattern 3. 2 Percent Error
Maximum Impact on the Null

BODESIGHT AT 90. 30

THETA

PHI

GAIN DEGRADATION IS

Figure 4.34
Pattern 4. 1 Percent Error
Maximum Impact on the Main Beam

200 PETCHT AP 90 30

THETA PRI

GAIN DEGRADATION IS

Figure 4.35
Pattern 4. 2 Percent Error
Maximum Impact on the Main Beam

BORRSIGHT AT 20.90

THETA PRI

GAIN DEGRADATION IS

Figure 4.36
Pattern 4. 1 Percent Error
Maximum Impact on Side Lobe 1

BORESTGHT AT 90, 90

GAIN DEGRADATION IS

Figure 4.37
Pattern 4. 2 Percent Error
Maximum Impact on Side Lobe 1

BORESIGHT AT 90.90

THETA PHI

GAIN DEGRADATION IS

Figure 4.38
Pattern 4. 1 Percent Error
Maximum Impact on Side Lobe 2

DORESTERT AT 90.90

THETA PHI

GAIN DEGRADATION IS

Figure 4.39
Pattern 4. 2 Percent Error
Maximum Impact on Side Lobe 2

BORRSIGHT AT 20.30

THETA

PHI

GAIN DEGRADATION IS

Figure 4.40
Pattern 5. 1 Percent Error
Maximum Impact on the Main Beam

BORESIGHT AT 20.20

CHETA

OWT

GAIN DEGRADATION IS

Figure 4.41
Pattern 5. 2 Percent Error
Maximum Impact on the Main Beam

BORRSIGHT AT 90.20

THETA PRI

GAIN DEGRADATION IS

Figure 4.42
Pattern 5. 1 Percent Error
Maximum Impact on Side Lobe 1

SORESIGHT AT 90.90

THETA PHI

GAIN DEGEADATION IS

Figure 4.43
Pattern 5. 2 Percent Error
Maximum Impact on Side Lobe 1

BORESIGHT AT 90.30

THETA

GAIN DEGRADATION IS -0.537

Figure 4.44
Pattern 5. 1 Percent Error
Maximum Impact on Side Lobe 2

BORESIGHT AT 30.90

THETA PHI

GAIN DEGRADATION IS

Figure 4.45
Pattern 5. 2 Percent Error
Maximum Impact on Side Lobe 2

Table 4.6

Pattern 1 Amplitude and Phase Settings

Maximum Impact on the Main Beam. 1 percent error.

Element Number	A _i	$^{\alpha}{}_{\mathbf{i}}$
1	0.99001	41-49132
1 2	0.81989	46.88094
3	0.54476	57.98431
4	0.29153	77.83815
3 4 5	0.13375	121.66500
6 7	0.74183	25.63405
7	0.56344	37.32784
8	0.37299	43.03300
9	0.18821	82.60611
10	0.01031	-19.88239
11	0.48664	8.66110
12	0.32213	7.94737
13	0.16964	10.60483
14	0.05548	-69.35330
15	0.02564	-107.34150
16	0.36302	-23.98924
17	0.23218	-54.83496
18	0.17712	-54.10857
19	-0.00683	-100.55660
20	0.04657	-91.89992
21	0.18199	-75.43584
22	0.15151	-53.00188
23	0.08324	-112.88140
24	0.01772	-103.04570
25	0.00364	-155.93350

Table 4.7

Pattern 1. Amplitude and Phase settings.

Maximum Impact on the Main Beam. 2 Percent Error.

Element Number	A	α _i
1	0.98007	37.91867
2	0.80996	43.30829
3	0.53490	54.41331
4	0.30084	74.26247
5	0.12382	118.08930
1 2 3 4 5 6 7	0.75111	22.06139
7	0.57337	33.75526
8	0.38292	39.46039
9	0.19814	79.03043
10	0.02023	-16.30980
11	0.49657	12.23315
12	0.33206	11.51942
13	0.17957	14.17688
14	0.04555	-65.77925
15	0.01571	-103.76740
16	0.37295	-20.41682
17	0.22225	-51.26228
18	0.18361	-50.53598
19	-0.01676	-103.90100
20	0.03664	-88.32588
21	0.17206	-71.86179
22	0.14157	-49.42924
23	0.07331	-109.30740
24	0.00779	-99.47165
25	-0.00629	-153.67570

Table 4.8

Pattern 1. Amplitude and Phase settings.

Maximum Impact on Side lobe 1. 1 Percent Error.

Element Number	Ai	α _i
1	1.00994	48 • 68059
2	0.83987	54.07021
3	0.54873	65.17307
4	0.27155	85.02690
1 2 3 4 5	0.15368	128.85380
6	0.72184	25.63399
7	0.54346	37.32780
8	0.35301	43.03294
9	0.18796	82.72293
10	0.01031	-19.90404
11	0.46666	8.66104
12	0.30215	7.94732
13	0.14966	10.60477
14	0.07143	-76.54237
15	0.04562	-114.53050
16	0.36302	-31.17850
17	0.25216	-62.02150
18	0.19710	-61.29488
19	0.01315	-93.37694
20	0.06655	-98.86388
21	0.20197	-82.62491
22	0.17149	-60.18817
23	0.08324	-120.07050
24	0.01772	-110.23470
25	0.01760	-156.83910

Table 4.9

Pattern 1. Amplitude and Phase settings.

Maximum Impact on Side Lobe 1. 2 Percent Error.

Element Number	A ₁	°i
1	1.01985	52.25250
2	0.84979	57.63838
3	0.53490	68.74329
4	0.26162	88.59712
5	0.12382	132.42400
6	0.71192	22.06139
1 2 3 4 5 6 7 8	0.53353	33.75526
8	0-36832	39.46039
	0-19814	89.43881
10	-0.01318	-19.15211
11	0-45673	12-23315
12	0.29222	11.51942
13	0.13973	14.17688
14	0.08538	-80.11287
15	0.05555	-118.10100
16	0.37295	-34.75050
17	0.26209	-65.59200
18	0.20703	-64.86537
19	0.02307	-100-20710
20	0.07647	-102-61650
21	0.21190	-86.19540
22	0.18141	-63.75867
23	0.07331	-123-64100
24	0.00779	-113.80520
25	0.02713	-160.40960

Table 4.10

Pattern 1. Amplitude and Phase settings.

Maximum Impact on Side Lobe 2. 1 Percent Error.

Element Number	A _i	$^{\alpha}$ i
1	1.00961	41.74815
2	0.82021	53.95192
3	0.56436	58.09955
4	0.29120	84.90733
5	0.13407	128.73420
6	0.74150	32.70503
1 2 3 4 5 6 7	0.54379	44.39886
8	0.37266	43.15051
9	0.18788	89.67531
10	-0.00059	-26.80592
11	0.48631	8.54297
12	0.30248	0.87618
13	0.16931	3.53352
14	0.05580	-76-27386
15	0.04529	-114.38990
16	0.36269	-24.10683
17	0.24270	-61.90031
18	0.19677	-54.22615
19	-0.00651	-93.50945
20	0.06622	-98.96780
21	0.18231	-75.55025
22	0.15183	-60.06697
23	0.10313	-112.99580
24	0.01804	-110-11350
25	0.02329	-149.76440

Table 4.11

Pattern 1. Amplitude and Phase settings.

Maximum Impact on Side Lobe 2. 2 Percent Error.

Element Number	A _i	α _i
1	1.01988	52.25273
1 2 3	0.80996	57 • 64056
3	0.57462	54.41354
4	0.30146	88.59930
5	0.12382	132.42620
6	0.75175	36.39546
4 5 6 7 8	0.53353	33.75549
	0.38292	39.46065
9	0.19814	93.36726
10	0.02024	-30.64375
11	0.49657	12.23329
12	0.29222	-2.81394
13	0.17957	-0.15656
14	0.04555	-80-11456
15	0.05555	-103-83400
16	0.36733	-20.41698
17	0.26209	-65.59369
18	0.20703	-50.53621
19	-0.01676	-93.19521
20	0.07647	-100-87590
21	0.17206	-71.86348
22	0.18135	-63.76036
23	0.07893	-109.30900
24	0.00779	-113.80690
25	0.03355	-146.07760

Table 4.12

Pattern 1. Amplitude and Phase settings.

Maximum Impact on the Null. 1 Percent Error.

Element Number	A ₁	α i
1	0.99021	41-49115
2	0.81994	52.09497
3	0.56463	65-17279
1 2 3 4 5 6 7 8	0.29153	85.02663
5	0.15373	128-85350
6	0.72342	32-82320
7	0.54346	44.51698
8	0.35323	43-03284
9	0.16823	82.72266
10	0.01031	-27.07143
11	0.48664	1.47198
12	0.30764	0.75828
13	0.14966	10-60474
14	0.05548	-76.54156
15	0.02570	-114.52970
16	0.34304	-23-98907
17	0.23218	-62.02069
18	0.19710	-59.32150
19	0.01315	-93.49113
20	0.06655	-92.01680
21	0.20197	-75.55272
22	0.17149	-60.11172
23	0.08329	-120.06970
24	0.01772	-110.23390
25	0.02362	-156.83830

Table 4.13

Pattern 1. Amplitude and Phase settings.

Maximum Impact on the Null . 2 Percent Error.

Element Number	A ₁	α _i
1	0.98647	37.91867
2	0.81008	53.71478
1 2 3	0.57450	68.74329
4	0.30146	88.59712
5	0.16365	132.42400
6	0.71232	36 - 39523
7	0.53353	48.08904
4 5 6 7 8	0.34950	39.46039
9	0.15830	79.03043
10	0.02023	-30.64362
11	0.49657	-2.10023
12	0.30314	-2.81393
13	0.13973	14.17688
14	0.04555	-80-11287
15	0.01583	-118-10100
16	0.33311	-20.41682
17	0.22225	-65.59200
18	0.20703	-60.94119
19	0.02307	-89.80022
20	0.07647	-88.32588
21	0.21190	-71.86179
22	0.18141	-61.45319
23	0.07343	-123.64100
24	0.00779	-113.80520
25	0.03355	-160-40960

Table 4.14

Pattern 2. Amplitude and Phase settings.

Maximum Impact on the Main Beam. 1 Percent Error.

Element Number	A _i	α _i
1	0.99001	82.99451
2	0.71493	72.69763
3	0.41100	42.82335
4	0.22526	-13.39055
1 2 3 4 5 6 7 8	0-15096	-55.64073
6	0.66943	78.32292
7	0.50047	59.45757
8	0.24733	17.08455
9	0.25547	-29.58571
10	0-12430	-48.79063
11	0.25718	55-11913
12	0.22163	16.72641
13	0.28098	-5.35801
14	0.22563	-32 • 30592
15	0.12461	-58 • 47069
16	0.15506	-27.54604
17	0.15947	-25.03529
18	0.22672	-33.80103
19	0-13454	-50.83426
20	0.01818	-64.63976
21	0.12854	-62.08603
22	0.10943	-50.34950
23	0.05815	-44.35547
24	0.06849	-60.85086
25	-0.00923	-81.58513

Table 4.15

Pattern 2. Amplitude and Phase settings.

Maximum Impact on the Main Beam. 2 Percent Error.

Element Number	A _i	α _i
1	0.98008	79 • 42007
2	0.70500	69.12321
3	0.42092	39.25085
4	0.23519	-9.81820
1 2 3 4 5	0.14103	-52.06812
6	0.65950	74.74850
6 7 8	0.51040	55.88519
8	0.25725	15.54277
9	0.26540	-26.01320
10	0.12097	-45.21815
11	0.26710	51.54634
12	0.23156	14.19118
13	0.29091	-1.78578
14	0.23555	-28.73344
15	0.11468	-54.89915
16	0.16498	-23.97356
17	0.16940	-21.46283
18	0.23665	-30-22852
19	0.12461	-47.26175
20	0.00825	-61.06621
21	0.11861	-58.51248
22	0.11317	-46.77702
23	0.06899	-40.78296
24	0.05857	-57.27869
25	-0.01916	-85.18558

Table 4.16

Maximum Impact on Side Lobe 1. 1 Percent Error.

Element Number	Ai	a _i
1	0.99001	82.99374
1 2 3	0.71493	72.69687
. 3	0.39101	42.82324
4	0.22526	-20.57953
5	0.17094	-62.80807
6	0.68941	85.51195
4 5 6 7	0.50047	66-64658
8	0.22735	22.23720
9	0.23549	-29.58563
10	0.12430	-55.97975
11	0.23719	55.11902
12	0.22163	15.79092
13	0.28098	-12.54722
14	0-22563	-39-49507
15	0.14459	-62.30493
16	0.13508	-27.54596
17	0.13949	-25.03519
18	0-20674	-33.80095
19	0.13454	-58.02119
20	0.01818	-71.82802
21	0.14852	-62.08505
22	0.12908	-57.53702
23	0.07780	-51 - 54457
24	0.08847	-61.31598
25	0.01075	-74.48824

Table 4.17

Pattern 2. Amplitude and Phase settings.

Maximum Impact on Side Lobe 1. 2 Percent Error.

Element Number	Ai	α _i
1	0.98007	79.41789
	0.70500	69.12102
2 3	0.38108	39-25060
4	0.23518	-24.15146
5	0.18087	-66.35463
6	0.69933	89.08096
7	0.51039	70-21561
6 7 8	0.21741	25.80904
9	0.22556	-26.01297
10	0.11437	-59.54799
11	0.22726	51.54608
12	0.23156	12-21849
13	0.29091	-16.11913
14	0.23555	-43.06696
15	0.15451	-65.30235
16	0.12515	-23.97336
17	0.12956	-21.46260
18	0.19681	-30.22830
19	0.12461	-61.59137
20	0.00825	-75.39813
21	0.15845	-66.00323
22	0.13901	-61.10658
23	0.08773	-55.11650
24	0.09840	-67.68253
25	0.02067	-71.09834

Table 4.18

Pattern 2. Amplitude and Phase settings.

Maximum Impact on Side Lobe 2. 1 Percent Error.

Element Number	A _i	$^{\alpha}{}_{\mathbf{i}}$
1	1.00995	83.11012
2	0.71493	79.88518
3	0.41099	42.82304
4	0.20528	-13.39043
5	0.17094	-62.82626
1 2 3 4 5	0.66943	85.51047
7	0.50047	59.57318
8	0.22734	15.04794
9	0.25547	-36.77461
10	0.13350	-48.79034
11	0.25717	55.19592
12	0.20165	15.79082
13	0.28098	-5.35789
14	0.20837	-32.30568
15	0.14459	-65.65773
16	0.15505	-34.65994
17	0.13949	-32.22432
18	0.22672	-33-80075
19	0.13454	-58.02000
20	0.01818	-71.82681
21	0.14852	-69.27309
22	0.12908	-50.34926
23	0.05782	-51.54437
24	0.08847	-68.03792
25	-0.00923	-81 - 67628

Table 4.19

Maximum Impact on Side Lobe 2. 2 Percent Error.

Element Number	A _i	°i
1	1.01983	79 • 41620
2	0.70500	83.45398
3	0.42092	39.25041
4	0.19535	-9.81802
5	0.18086	-66.39648
3 4 5 6 7 8	0.65949	89.07927
7	0.51039	55.88481
8	0.21741	11.47547
9	0.26539	-40.34660
10	0.14813	-45.21776
11	0.26710	52.10831
12	0.19172	12.21839
13	0.29090	-1.78575
14	0.22138	-28.73311
15	0.15451	-69.22795
16	0.16498	-37.74136
17	0.12956	-35.79630
18	0.23664	-30-22812
19	0.12461	-61.59027
20	0.00825	-75.39703
21	0.15845	-72.84331
22	0.13901	-46.77669
23	0.04789	-55.11636
24	0.09840	-71.60814
25	-0.01916	-85.24651

Table 4.20

Maximum Impact on the Main Beam. 1 Percent Error.

Element Number	Ai	$^{\alpha}$ i
1 2	0.99033	83-10712
2	0.71665	72.81026
3	0.35546	47.94011
4	0.24539	-18.50732
5	0.15889	-40.51294
3 4 5 6 7	0.68453	78 • 43555
	0.48179	59.57018
8	0.25729	16.45805
9	0.24596	-27 • 14305
10	0.14811	-57.90044
11	0.25928	55-23537
12	0.20170	17.95587
13	0.27051	-5.47562
14	0.21723	-37.42282
15	0.09138	-48.98233
16	0.15109	-31.51103
17	0.15355	-22.71280
18	0.21828	-33-91832
19	0.12946	-45.95184
20	0.04597	-54.51227
21	0.10977	-65.39644
22	0.10497	-53.82712
23	0.07493	-40.11311
24	0.06588	-47.36270
25	-0.00894	-76.95766

Table 4.21

Pattern 3. Amplitude and Phase settings.

Maximum Impact on the Main Beam. 2 Percent Error.

Element Number	Ai	$^{\alpha}_{\mathtt{i}}$
1	0.98008	79.41866
2	0.70639	69.12178
3	0.36572	44.25023
4	0.25565	-14.81753
5	0.16914	-36.82297
6	0.67427	74.74707
1 2 3 4 5 6 7 8	0-49204	55.88377
8	0.26755	15.53319
9	0.25621	-23.45320
10	0.13786	-54.21576
11	0.26953	51.54518
12	0.21196	15.02099
13	0.28077	-1.78571
14	0.22749	-33.73288
15	0.08113	-45.29236
16	0.16135	-27.82106
17	0.16381	-19.02280
18	0.22854	-30.22832
19	0.11921	-42.26193
20	0.03571	-50.82227
21	0.09952	-61.70944
22	0.09588	-50.13727
23	0.07958	-36.42317
24	0.05563	-43.67273
25	-0.01919	-80.56252

Table 4.22

Pattern 3. Amplitude and Phase settings.

Maximum Impact on Side Lobe 1. 1 Percent Error.

Element Number	Ai	α _i
1	0.99001	90.18063
2 3	0.71632	79.88376
3	0.33603	55.01173
4	0.22574	-18.38959
5	0.13924	-40.39520
4 5 6 7 8 9	0.70418	85.48949
7	0.48212	66-64369
8	0-23764	15.04776
9	0.24629	-34.21460
10	0.16777	-64.97406
11	0.23963	55-11768
12	0.18205	17.83820
13	0.25108	-5.35782
14	0.19758	-37 • 30504
15	0.09105	-48.86459
16	0.13144	-31.39325
17	0.13390	-22.59503
18	0.21861	-40.98973
19	0.14912	-53.02333
20	0.06562	-61.58011
21	0-12943	-72.47006
22	0.12463	-60.89513
23	0.05528	-39.99532
24	0.06556	-47.24496
25	-0.00926	-77.05322

Table 4.23

Pattern 3. Amplitude and Phase settings.

Maximum Impact on Side Lobe 1. 2 Percent Error.

Element Number	A _i	α _i
1	0.98007	93.75113
1 2 3	0.70639	83.45425
3	0.33230	58.57985
4 5	0.21581	-14.81742
5	0.12931	-36.82277
6	0.71411	89.03709
6 7	0.49204	70.21419
8	0.22771	11.47540
9	0.25621	-37.78667
10	0.17770	-68.54538
11	0.22970	51.54495
12	0.17212	14.26602
13	0.24735	-1.78570
14	0.18765	-33.73273
15	0.08113	-45.29216
16	0.12151	-27.82083
17	0.12397	-19.02257
18	0.22854	-44.56186
19	0.15904	-56.59546
20	0.07554	-65.15143
21	0.13935	-76.04137
22	0.13455	-64-46645
23	0.04536	-42.61943
24	0.05563	-43.67253
25	-0.01919	-79.54712

Table 4.24

Pattern 3. Amplitude and Phase settings.

Maximum Impact on Side Lobe 2. 1 Percent Error.

Element Number	A _i	α _i
1	1.00995	90.18057
1 2	0.71632	72.81178
3	0.33581	55.01170
4	0.24572	-25.57875
5	0.15922	-47.58437
6	0.70418	85.50900
4 5 6 7 8	0.46214	59.57170
8	0.23764	22.23676
9	0.24629	-34.21460
10	0.16777	-63.57092
11	0.25961	62.30411
12	0.18205	17.83817
13	0.27084	-5.35781
14	0.19758	-44.49431
15	0.11104	-56.05379
16	0.15142	-31.39322
17	0.13390	-29.78421
18	0.21861	-33.80057
19	0.12913	-53.02332
20	0.06552	-61.57962
21	0.12943	-71.98157
22	0-10470	-60.89464
23	0.06820	-39.99530
24	0.08554	-54.43413
25	-0.00926	-69.98135

Table 4.25

Maximum Impact on Side Lobe 2. 2 Percent Error.

Element Number	A _i	α _i
1	1.01987	93.75259
2	0.70639	69.12108
3	0.32588	58.58133
4	0.25565	-29.15099
1 2 3 4 5	0.16914	-51.03870
6	0.71411	89.08102
6 7 8 9	0.45221	55.88370
8	0.22771	25.80901
9	0.25621	-37.78683
10	0.17770	-68.54456
11	0.26953	65.87613
12	0.17213	14.26612
13	0.28077	-1.78570
14	0.18765	-48.06648
15	0.12096	-59.62334
16	0.16135	-27.82098
17	0.12397	-33.35643
18	0.22854	-30.22826
19	0.11920	-56.59561
20	0.06434	-65.15274
21	0.13935	-70.39001
22	0.12109	-64.46776
23	0.05657	-36.42313
24	0.09547	-58.00421
25	-0.01919	-66.29224

Table 4.26

Maximum Impact on the Null 1 Percent Error.

Element Number	A _i	α _i
1	0.99033	83.10838
2 3	0.71665	79.76546
	0.33614	54.89377
4	0.24539	-18.50745
5	0.15889	-40.51306
6	0.70385	85.39075
4 5 6 7 8	0.48179	59.57143
8	0-25729	15.16562
9	0.22663	-34.09666
10	0.14812	-64.85544
11	0.25928	55.23553
12	0.18238	24.90955
13	0.25119	-5-47570
14	0.21723	-37.42291
15	0.11071	-48.98245
16	0.13176	-38.46460
17	0.15355	-22.71289
18	0.21828	-33.91841
19	0-12946	-52.90540
20	0.04597	-61.46149
21	0.12910	-72.35143
22	0.11508	-60.90169
23	0.05561	-47.04689
24	0.06588	-54.31622
25	0.01039	-69.98114

Table 4.27

Maximum Impact on the Null 2 Percent Error.

Element Number	A _i	α _i
1	0.98007	79.41647
2	0.70639	83.45425
3	0.32588	58.57985
4	0.25565	-25.22350
5	0.16914	-44.31465
	0.71411	89.07954
6 7 8	0-49204	55.88351
8	0.26754	11.47540
9	0.21637	-37.78667
10	0.13786	-68.54538
11	0.26953	51.54495
12	0.17212	28.59955
13	0.24093	-1.78570
14	0.22749	-33.73273
15	0.12096	-45.29216
16	0.12151	-42.15465
17	0.16381	-24.37172
18	0.22854	-30.22809
19	0.11920	-56.59546
20	0.03571	-65.15143
21	0.13935	-76.04137
22	0.11554	-62.16019
23	0.04536	-50.71310
24	0.05563	-58.00290
25	0.02064	-76.69783

Table 4.28

Pattern 4. Amplitude and Phase settings.

Maximum Impact on the Main Beam. 1 Percent Error.

Element Number	A _i	a _i
1	0.99000	80.22981
2	0.57462	71.41367
3	0.15240	30.66972
4	0.14752	-58.21255
5	0.09088	-96.90738
6	0.54779	80-69716
1 2 3 4 5 6 7 8	0.35826	56.28606
8	0.24028	9.77547
9	0.19048	-21.48817
10	0.09229	-73.88510
11	-0.00589	-171-35440
12	0.15118	2.71470
13	0.27176	9-15734
14	0.20907	-10.04460
15	0.09625	-8.75852
16	0.14645	-95.75626
17	0.11651	-41.43205
18	0.17666	-3.24723
19	0.15050	4.94055
20	0.02904	-6.78648
21	0.07705	-96.84164
22	0.02588	-75-27524
23	0.04555	-36.44624
24	0.03225	111.78390
25	0.02849	85.51938

Table 4.29

Pattern 4. Amplitude and Phase settings.

Maximum Impact on the Main Beam. 2 Percent Error.

Element Number	Ai	α _i
1	0.98007	76.53784
2	0.56469	67.72171
3	0.16233	27.09732
4	0.13759	-54.52652
5	0.08095	-93.21754
1 2 3 4 5 6 7 8	0.53786	77.00519
7	0.36819	52.71344
8	0.25021	13.34765
9	0.20040	-17.91579
10	0.08236	-70.19528
11	-0.01582	-170.89520
12	0.16111	6.28663
13	0.28168	12.72952
14	0.21899	-6.47231
15	0.10617	-5.18623
16	0.13653	-92.06642
17	0.12637	-37.85968
18	0.18658	0.32496
19	0.16043	8.51276
20	0.03897	-3.21438
21	0.06712	-93.15181
22	0.01596	-71.58540
23	0.05548	-32.87387
24	0.04218	108.09200
25	0.03842	81.82742

Table 4.30

Pattern 4. Amplitude and Phase settings.

Maximum Impact on Side Lobe 1. 1 Percent Error.

Element Number	A _i	α _i
1	0.99001	80.23009
2 3	0.57462	78.48587
3	0.13242	37.85910
4	0.14752	-65.28502
5	0.09088	-103-97980
6 7	0.56778	87.76935
7	0.35826	63.47284
8	0-24029	2.56845
9	0.19048	-28.67743
10	0.11227	-80.95758
11	-0.00589	-178.27770
12	0.15097	-4.47435
13	0.25178	9.15739
14	0.18909	-10.04464
15	0.07627	-8.75856
16	0.14646	-102.82870
17	0.09658	-41.43213
18	0.17666	-10.43635
19	0.15050	-2.24838
20	0.02904	-13.97578
21	0.09703	-96.84274
22	0.04586	-82.34772
23	0.02557	-43.63550
24	0.03225	118.85610
25	0.02849	92.59158

Table 4.31

Pattern 4. Amplitude and Phase settings.

Maximum Impact on Side Lobe 1. 2 Percent Error.

Element Number	Ai	°i
1	0.98007	76.53615
2	0.56469	82.05467
3	0.12249	41.43098
1 2 3 4 5	0.13759	-68.85524
5	0.10301	-107.55000
6 7 8	0.57770	91.33815
7	0.36819	67.04164
8	0.25021	-0.98577
9	0.20040	-32.24942
10	0.12219	-82.19569
11	-0.01582	-181-36070
12	0.15954	-8.04643
13	0.24185	12.72942
14	0.17916	-6.47224
15	0.06634	-5.18616
16	0.13652	-106.39890
. 17	0.08665	-37.85950
18	0.18658	-14.00842
19	0.16043	-5.82033
20	0.03897	-17.54759
21	0.10695	-93.15073
22	0.05579	-82.00270
23	0.01564	-47 • 20738
24	0.04218	122.42490
25	0.03842	96-16039

Pattern 4. Amplitude and Phase settings.

Maximum Impact on Side Lobe 2. 1 Percent Error.

Element Number	A _i	α _i
1	1.00995	87.30200
2	0.57462	71.41594
3	0.13242	37.85910
2 3 4 5	0-16751	-58-21365
5	0-11086	-103-97980
6 7 8 9	0.56778	87.76935
7	0.33828	56-28613
8	0.22031	9-77551
	0.19048	-21-48825
10	0-11227	-80.95758
11	0.01409	-178-35520
12	0.15118	-4.47435
13	0.25178	9-15739
14	0.20907	-10.04464
15	0.07627	-15.94782
16	0.16644	-102-82870
17	0.11651	-48-62131
18	0.15668	-10-43635
19	0.15050	4.94060
20	0.00906	-13-97578
21	0.09703	-103-83660
22	0.02588	-82.34772
23	0.04555	-43-63550
24	0.03225	118.83660
25	0.00851	92.59158

Table 4.33

Maximum Impact on Side Lobe 2. 2 Percent Error.

Element Number	A _i	$^{\alpha}{}_{\mathbf{i}}$
1	1.01985	90.87250
	0.56469	67.72171
3	0.12249	41.43115
4	0.17743	-54.52652
2 3 4 5 6 7	0.12078	-107.55110
6	0.57770	61-33984
	0.32835	52.71344
8	0.21038	13.34765
9	0.20040	-17-91579
10	0.12219	-84.52890
11	0.02401	-177.61450
12	0.16111	-8.04650
13	0.24185	12.72952
14	0.21899	-11-57497
15	0.06634	-19.51967
16	0.17636	-106.40000
17	0.12637	-52.19350
18	0.14675	-14.00849
19	0.16043	7.43505
20	-0.00087	-11-92710
21	0.10696	-105-17790
22	0.03318	-85.91902
23	0.05548	-47 • 20755
24	0.04218	122.38420
25	-0.00141	91.33383

TABLE 4.34

Pattern 5. Amplitude and Phase settings.

Maximum Impact on the Main Beam. 1 Percent Error.

Element Number	Ai	°i
1	0.65060	99.26013
2	0.37304	106.42760
3	0.00745	101-81600
1 2 3 4 5	0.08857	-82.23674
5	0.08640	-45.24315
6	1.00998	38-29744
6 7 8	0.66055	33-42734
8	0-18020	34 • 65767
9	0.07037	-89.73033
10	0.13958	-143.54060
11	0.82609	6.09347
12	0.48946	4.94162
13	0.18212	-16.82225
14	0.06276	-164-23010
15	0.05580	-161.97100
16	0.52866	-71.47241
17	0.37535	-74 - 10629
18	0.11292	-89.93283
19	0.01421	59.96715
20	0.09094	65.32414
21	0.26640	-97.65575
22	0.16686	-103.73350
23	0.04862	-91 - 10423
24	0.06307	39.77171
25	0.04109	50.08115

TABLE 4.35

Pattern 5. Amplitude and Phase settings.

Maximum Impact on the Main Beam. 2 Percent Error.

Element Number	A _i	α _i
1	0.64067	95.68428
2	0.36311	102.85170
3	-0.00248	103-27540
1 2 3 4 5	0.07864	-78.66121
5	0.09632	-41.67044
6	1.01987	34.72470
6 7 8	0.67048	29.85460
8	0.19013	31.08493
9	0.06044	-86.15480
10	0.12964	-139.96510
11	0.83602	9.66548
12	0.49939	8.51364
13	0.19205	-13.24991
14	0.05283	-160.64750
15	0.04587	-158.39550
16	0.51873	-67.89690
17	0.34742	-70.53078
18	0.10299	-86.35732
19	0.02414	56.39423
20	0.10087	61.74829
21	0.25647	-94.08023
22	0.15693	-100-15800
23	0.03870	-87.52872
24	0.07300	36.19897
25	0.05101	46.50844

TABLE 4.36

Pattern 5. Amplitude and Phase settings.

Maximum Impact on Side Lobe 1. 1 Percent Error.

Element Number	A _i	$^{\alpha}{}_{\mathbf{i}}$
1	0.67058	99.37532
2	0.39302	106.54280
3	0.02743	108.96940
4	0.10855	-89.40341
5	0.08640	-52-43205
1 2 3 4 5 6 7	0.99001	38.29704
7	0.64057	33.46292
8	0.16022	41.81230
9	0.07037	-96.91640
10	0.15956	-150.72670
11	0.82609	6.09326
12	0.48946	4.94142
13	0.18212	-16.82198
14	0.06276	-164.31280
15	0.07572	-162.08570
16	0.54864	-78.65848
17	0.37733	-81.29237
18	0.13289	-97.11890
19	-0.00577	59.99971
20	0.09094	72.51126
21	0.26640	-97.77045
22	0.16685	-103.84820
23	0.04862	-91-21893
24	0.06307	39.77130
25	0.02111	50.08075

TABLE 4.37

Pattern 5. Amplitude and Phase settings.

Maximum Impact on Side Lobe 1. 2 Percent Error.

Element Number	A _i	α _i
1	0.68051	106.09150
2	0.40294	113.25900
3	0.03736	110.26660
4	0.11847	-92.95166
5	0.07910	-56.00414
4 5 6 7	0.98007	34.72459
7	0.63064	29.85451
8	0.15029	43.11046
9	0.07766	-100-48820
10	0.16948	-154.29850
11	0.83602	9.66543
12	0.49939	8.51360
13	0.17931	-13.24987
14	0.07365	-160-62240
15	0.08558	-158.39530
16	0.55856	-82.23029
17	0.38725	-84.86417
18	0.14282	-100-69070
19	-0.01570	58.69946
20	0.10086	76.08180
21	0.25647	-94.08002
22	0.15692	-100-15770
23	0.03870	-87.52849
24	0.07300	44.78825
25	0.01378	46.98734

TABLE 4.38

Pattern 5. Amplitude and Phase settings.

Maximum Impact on Side Lobe 2. 1 Percent Error.

Element Number	A ₁	$^{\alpha}$ i
1	0.65060	106.44720
2	0.39302	113.61470
3	0.00745	101.93120
4	0.10855	-89.42329
5	0.06642	-45.24286
6	1.00995	45 • 48639
1 2 3 4 5 6 7 8	0.64057	33.42696
8	0.16022	41.84660
9	0.07037	-89.84552
10	0.15956	-143-65580
11	0.80611	-1.09571
12	0.48946	4.94144
13	0.16214	-24.01114
14	0.06276	-171-38470
15	0.07578	-165.52790
16	0.54864	-78.65897
17	0.35735	-81.29286
18	0.13290	-90.04802
19	-0.00577	60.04353
20	0.09094	72.43388
21	0.26640	-104.84230
22	0.18683	-110.92000
23	0.04862	-91.21942
24	0.04309	46.96063
25	0.03351	50.08078

TABLE 4.39

Maximum Impact on Side Lobe 2. 2 Percent Error.

Element Number	Ai	$\alpha_{\mathbf{i}}$
1	0-64067	110.01770
2	0.40294	117.18520
3	-0.00248	104.43720
4	0.11847	-92.99461
5	0.05649	-41.67038
6	1.00713	49.05843
1 2 3 4 5 6 7 8	0.63064	29.85451
8	0.15029	45.41866
9	0.06044	-86.15459
10	0.16948	-139.96490
11	0.79618	-4.66772
12	0.49939	8.51360
13	0.15221	-27.58324
14	0.05283	-174.95600
15	0.08570	-162.32360
16	0.55856	-82.23029
17	0.34742	-84.86417
18	0.14282	-86.35709
19	-0.01570	58.69946
20	0.10086	73.77478
21	0.25647	-108.41360
22	0.19676	-114.49130
23	0.03870	-87.52849
24	0.03317	50-53267
25	0.01147	46.50833

Table 4.40. Summary of A_1 , α_1 Impact Data.

		Main	Main Beam	Side Lobe 1	be 1	Side Lobe 2	be 2	Null	
Pattern	Error	ΔĞ	∆GMAX	δ <u>δ</u>	∆GMA X	Δ <u>G</u>	ΔGMAX	<u> 9</u> V	AGMAX
	1%	0.87	1.0	4.80	5.0	5.10	0.9	29.00	29.0
1	2%	0.91	2.0	7.90	8.0	5.60	0.6	34.0	34.0
,	1%	0.92	1.0	7.78	0.6	5.51	0.9		
7	2%	1.15	1.0	11.78	13.0	9.12	11.0		
	1%	0.92	1.0	8.36	8.0	00.9	4.0	24.80	21.0
3	2%	1.10	1.0	11.64	12.0	10.36	0.6	29.60	26.0
*	1%	0.81	1.0	7.10	8.0	7.27	0.6		
•	2%	1.81	2.0	10.50	12.0	11.64	14.0		
	1%	26.0	1.0	10.85	11.0	7.53	5.0		
5	2%	1.97	2.0	15.50	16.0	11.02	9.0		
-									

 $\Delta \overline{G}$, $\Delta GMAX$ in dB.

Table 4.41. Summary of Aggregated Side Lobe Impact Data.

	1	%	2%	
Pattern	$\Delta \overline{G}$	ΔGMAX	$\Delta \overline{G}$	ΔGMAX
1	4.95	5.50	6.75	8.50
2	6.65	7.50	10.45	12.00
3	7.18	6.00	11.00	10.50
4	7.23	8.50	11.07	13.00
5	9.19	8.0	13.56	12.5

 $\Delta \overline{G}$, $\Delta GMAX$ in dB.

Error Range in %

Figure 4.46
Pattern 1

AG vs. Error Range by Feature.

Error Range in %

Figure 4.47 Pattern 2 $\overline{\Delta G}$ vs. Error Range by Feature.

Error Range in %

Figure 4.48

Pattern 3 $\overline{\Delta G}$ vs. Error Range by Feature.

Error Range in %

Figure 4.49
Pattern 4

AG vs. Error Range by Feature.

Error Range in %

Figure 4.50 Pattern 5 $\overline{\Delta G}$ vs. Error Range by Feature.

Error Range in %

Figure 4.51 Pattern 1 Δ Gmax vs. Error Range by Feature.

Figure 4.52
Pattern 2

AGmax vs. Error Range by Feature.

Figure 4.53
Pattern 3
Δ Gmax vs, Error Range by Feature.

Figure 4.54
Pattern 4

4 Gmax vs. Error Range by Feature.

Figure 4.55
Pattern 5

AGmax vs. Error Range by Feature.

Error Range in %

Figure 4.56 Main Beam Impact $\overline{\Delta G}$ vs. Error Range by Pattern.

Error Range in %

Figure 4.57 Main Beam Impact Δ Gmax vs. Error Range by Pattern.

Error Range in %

Figure 4.58 Aggregated Side Lobe Impact. ΔG vs. Error Range by Pattern.

Error Range in %

Figure 4.59 Aggregated Side Lobe Impact. Δ Gmax vs. Error Range by Pattern.

Table 4.42. Summary of λ Error Impact Data.

		Main	Main Beam	Side Lobe 1	obe 1	Side	Side Lobe 2	Nul1	1
Pattern	γ	<u>5</u> ∇	AGMAX	<u>5</u> ∇	AGMAX	ΔĞ	∆GMAX	ΔĞ	∆GMA X
	86.	0.333	1.0	-0.571	0.0	0.0	1.0	-1.0	-1.0
	66.	0.110	0.0	-0.214	0.0	0.167	1.0	0.0	0.0
•	1.01	0.0	0.0	0.357	0.0	0.333	1.0	1.0	1.0
	1.02	0.0	0.0	0.143	-1.0	0.500	1.0	3.0	3.0
	86.	0.077	0.0	-0.667	0.0	0.462	0.0		
•	66.	0.0	0.0	-0.222	0.0	0.346	0.0		
,	1.01	0.0	0.0	0.0	0.0	-0.308	0.0		
	1.02	0.0	0.0	-0.222	0.2	0.577	0.0		
	86.	0.077	0.0	-0.727	0.0	-0.111	-1.0	-1.0	-1.0
	66.	0.077	0.0	-0.182	0.0	0.0	-1.0	-1.6	-3.0
ဇ	1.01	0.0	0.0	-0.454	0.0	-0.111	0.0	9.0-	0.0
	1.00	0.0	0.0	-0.273	0.0	-0.222	0.0	-0.2	1.0

Table 4.42 (continued).

Pattern λ ΔG ΔGMAX ΔG ΔGMAX ΔG ΔGMAX ΔG .98 0.187 1.0 -0.737 -1.0 -0.187 -1.0 4 1.01 -0.134 0.0 -0.818 -1.0 0.187 -1.0 1.02 -0.20 0.0 -0.818 -1.0 0.50 -1.0 1.02 -0.20 0.0 -0.737 -1.0 0.50 -1.0 .98 0.158 1.0 -0.128 0.0 0.815 1.0 .99 0.031 0.0 -0.428 0.0 0.259 1.0 .99 0.031 0.0 -0.428 0.0 0.259 1.0 .101 0.031 0.0 0.214 1.0 -0.593 0.0 .102 -0.094 -1.0 0.143 0.0 -1.185 -1.0			Mair	Main Beam	Side Lobe 1	þe 1	Side Lobe 2	obe 2	Nu	Nu11
.98 0.187 1.0 -0.737 -1.0 -0.187 .99 0.0 0.0 -0.818 -2.0 0.187 1.01 -0.134 0.0 -0.818 -1.0 0.50 1.02 -0.20 0.0 -0.737 -1.0 0.50 .98 0.158 1.0 -0.128 0.0 0.815 .99 0.031 0.0 -0.428 0.0 0.259 1.01 0.031 0.0 0.214 1.0 -0.593 1.02 -0.094 -1.0 0.143 0.0 -1.185	Pattern	٧	Δ <u>G</u>	AGMAX	<u>5</u> δ	ΔGMAX	Δ <u>G</u>	AGMAX	Δ <u>G</u>	ΔGMAX
.99 0.0 0.0 -0.818 -2.0 0.187 1.01 -0.134 0.0 -0.818 -1.0 0.50 1.02 -0.20 0.0 -0.737 -1.0 0.50 .98 0.158 1.0 -0.128 0.0 0.815 .99 0.031 0.0 -0.428 0.0 0.259 1.01 0.031 0.0 0.214 1.0 -0.593 1.02 -0.094 -1.0 0.143 0.0 -1.185		.98	0.187	1.0	-0.737	-1.0	-0.187	-1.0		
1.01 -0.134 0.0 -0.818 -1.0 0.50 1.02 -0.20 0.0 -0.737 -1.0 0.50 .98 0.158 1.0 -0.128 0.0 0.815 .99 0.031 0.0 -0.428 0.0 0.259 1.01 0.031 0.0 0.214 1.0 -0.593 1.02 -0.094 -1.0 0.143 0.0 -1.185	*	66.	0.0	0.0	-0.818	-2.0	0.187	-1.0		
1.02 -0.20 0.0 -0.737 -1.0 0.50 .98 0.158 1.0 -0.128 0.0 0.815 .99 0.031 0.0 -0.428 0.0 0.259 1.01 0.031 0.0 0.214 1.0 -0.593 1.02 -0.094 -1.0 0.143 0.0 -1.185	•	1.01	-0.134	0.0	-0.818	-1.0	0.50	-1.0		
.98 0.158 1.0 -0.128 0.0 0.815 .99 0.031 0.0 -0.428 0.0 0.259 1.01 0.031 0.0 0.214 1.0 -0.593 1.02 -0.094 -1.0 0.143 0.0 -1.185		1.02	-0.20	0.0	-0.737	-1.0	0.50	-1.0		
.99 0.031 0.0 -0.428 0.0 0.259 1.01 0.031 0.0 0.214 1.0 -0.593 1.02 -0.094 -1.0 0.143 0.0 -1.185		86.	0.158	1.0	-0.128	0.0	0.815	1.0		
1.01 0.031 0.0 0.214 1.0 -0.593 1.02 -0.094 -1.0 0.143 0.0 -1.185	ď	66.	0.031	0.0	-0.428	0.0	0.259	1.0		
-0.094 -1.0 0.143 0.0 -1.185	1	1.01	0.031	0.0	0.214	1.0	-0.593	0.0		
		1.02	-0.094	-1.0	0.143	0.0	-1.185	-1.0		

ΔG, ΔGMAX in dB.

CHAPTER V

DISCUSSION OF THE RESULTS AND EXTENSIONS OF THE METHOD

5.1 Implications of the results

The analysis presented is meant to illustrate the power of the MAXIM-IOS method, and not to generate sensitivity data for a particular design problem. None the less, some trends which may be tentatively identified in the data deserve comment.

- 1. The nulls appear as the most sensitive feature in the pattern by a factor of about three over the side lobes.
- 2. Among the features examined, the main beams showed the least sensitivity overall. However, among the main beams, the square or rectangular shapes were much more sensitive at the 2 percent error range than the round beam.
- 3. In general, the broader the main beam, the greater the side lobe sensitivity appeared to be.
- 4. The minimum elevation points on the error surface almost universally occurred at the edge of the error interval of each decision variable.

The first three observations accord well with intuitive expectations for feature sensitivity. The fourth observation is

exactly what would be expected for a well behaved error surface. That is, the error regions appear to be tightly enough constrained about an optimum to contain only one local minimum. It is to be expected that such a minimum will lie on an edge, as far from the maximum as possible. Thus it can be said that for a 10 by 10 array at least, MAXIM-generated sensitivity values can be accepted with some confidence within the two percent error region.

5.2 Potential uses for MAXIM

The worst performance posssible for an array design or feature, deriving from error is, in itself, a valuable piece of information. However, MAXIM can be used to generate other types of information as well. In Chapter four, only one type of experiment which may be designed around MAXIM was described. There, a method to determine the relationship between directivity pattern and sensitivity was examined. If such an experiment were to be performed on a series of alternative pattern designs, the procedure could be refined somewhat. Presumably, the alternatives to be evaluated in an actual application are not likely to differ from each other as radically as the sample in the above study. The sensitivity of a pattern might, for instance, be examined as one feature in a pattern changes over some interval. It may prove some cases, it is possible to greatly decrease sensitivity through small modifications in the design specifications. It should be noticed that in such a case the IOS will tend to be based on a meaningful set of standards.

It would also be of value to take MAXIM values on a finer set of error ranges than those used in this study. The relative rate of change

in maximum degradation of given features over an error range is of importance, since it can give an indication of the expected degradation. For instance, suppose two features were to be compared for sensitivity, and the following MAXIM data were obtained. At one percent error the first feature had a sensitivity value of 5 dB, while the second had a sensitivity value of 10 dB. At two percent error the sensitivity value of both features was 15 dB. In this case, the expected performance of the first feature would be worse than the second.

Element amplitude and phase coefficient error ranges could be analyzed separately, allowing these ranges to take on realistic values for the particular system being studied.

If, in a given application, array pattern sensitivity is to be taken into account at the design stage, it is possible, by holding any two of the following three array characteristics constant, to perform a sensitivity analysis similar to the one in this study on the third.

- 1. Array size and geometry.
- 2. Directivity pattern design.
- 3. Error ranges.

Number three assumes the existence of a reliable means of converting the effects of error sources, such as those mentioned in Chapter two, into error ranges in A_1 and α_1 and conversely. Then, sensitivity value vs. error range graphs, such as figure 4.56 could be used to specify acceptable tolerances for array or component manufacture.

Finally, the arrays examined in this study have all been of the planar symmetric type. MAXIM may easily be extended to the more general case of conformal array sensitivity analysis, since NLGP Conformal, a non-linear goal programming code specifically for the conformal array

case, has already been developed. A modification of this code to yield a conformal version of MAXIM would also make it possible to analyze non-symmetric error in planar symmetric arrays.

5.3 Summary

The MAXIM-IOS method of sensitivity/impact analysis has been presented and illustrated with a sample study on five rather complex array patterns. The resulting measure, maximum impact, represents the worst realization which a particular feature of a pattern can assume due to a given amount of error. The change in the value of this realization as error in amplitude and phase settings increases is also an indicator of the shape of the response surfance in the error region.

Since MAXIM is based on an optimization technique, this kind of sensitivity analysis may be completed at a very small cost in computation time. It will now be practical, therefore, to include the results of MAXIM-IOS analyses of specific proposed arrays and array patterns as a factor to be taken into account during the design process.

Maxim compares well with simulation-based sensitivity analysis. Although at first glance the sensitivity measures which can be estimated through simulation seem to give more information, these values are in fact dependent on a priori assumptions concerning error distribution. MAXIM, on the other hand, requires no such assumptions. The cost factor, however, is the chief advantage of MAXIM over simulation. This advantage becomes steadily more pronounced as array size increases.

APPENDIX A

THE DIRECTIVITY FUNCTION FOR A PLANAR SYMMETRIC ARRAY

A.1 Derivation From the General Case

For a planar array in the X-Z plane consisting of n elements, the magnitude of the contribution to the directivity pattern, at an aspect angle of θ , ϕ , of an element located at x_1, z_1 is:

$$A_i \exp[j(u_i + \alpha_i)]$$
 (A.1)

where:

 $u_i = kx_i \sin\theta \cos\phi + kz_i \cos\theta$

 $\mathbf{A_i}$ is the amplitude shading coefficient.

 α_i is the phase shift.

 $k = 2\pi/\lambda$

 λ is the operating wavelength.

The combined output of n elements is given by:

$$A_i \exp[j(u_i + \alpha_i)]$$
 (A.2)

which is equal to

$$A_i(\cos \alpha_i + j \sin \alpha_i)(\cos u_i + j \sin u_i)$$

Consider the contributions from four elements, placed symmetrically about the center of the array at the points: (x_1, z_1) , $(-x_1, z_1)$, $(-x_1, -z_1)$, and $(x_1, -z_1)$. Suppose further that these elements are excited identically (i.e., have identical A_i and α_i coefficients). This result is:

$$A_{i}(\cos \alpha_{i} + j \sin \alpha_{i})[\cos u_{1} + j \sin u_{2} + \cos u_{2} + j \sin u_{1} + \cos(-u_{1}) + j \sin(-u_{1}) + \cos(-u_{2}) + j \sin(-u_{2})]$$
(A.4)

where:

$$u_1 = kx_i \sin\theta \cos\phi + kz_i \cos\theta$$

 $u_2 = -kx_i \sin\theta \cos\phi + kz_i \cos\theta$

Since, for any angle r, cosr = cos(-r), and sin r = -sin(-r), this becomes:

$$2A_{1}(\cos \alpha_{1} + j \sin \alpha_{1})[\cos \alpha_{1} + \cos \alpha_{2}]$$
(A.5)

By applying the double angle formula, equation A.5 can be stated as:

$$4A_{1} (\cos \alpha_{1} + j \sin \alpha_{1}) \cos(\kappa x_{1} \sin \theta \cos \phi) \cos(\kappa z_{1} \cos \theta)$$
(A.6)

Finally, the power response at 0,0, for m sets of four elements is obtained by multiplying A.6 by its complex conjugate. Thus:

$$P_{\theta\phi} = \frac{16[(\sum_{i=1}^{n} a_i \cos \alpha_i \cos(\kappa x_i \sin \theta \cos \phi) \cos(\kappa z_i \cos \theta))^2}{1 + (\sum_{i=1}^{n} a_i \cos(\kappa x_i \sin \theta \cos \phi) \cos(\kappa z_i \cos \theta))^2]}$$

$$+ (\sum_{i=1}^{n} a_i \sin \alpha_i \cos(\kappa x_i \sin \theta \cos \phi) \cos(\kappa z_i \cos \theta))^2] \qquad (A.7)$$

The power response is to be expressed in dB. Therefore we write:

$$G_{(\theta,\phi)} = 10\log[P_{(\theta,\phi)}/P_{(0,0)}]$$
 (A.8)

Where:

P(0,0) is the peak power output for the array in any direction.

APPENDIX B

THE HOOKE AND JEEVES PATTERN SEARCH ALGORITHM

B.1 Notation

Before describing the pattern search logic, it is necessary to define several parameters and notational conventions.

- 1. a is a vector of n decision variable values.
- 2. d is the perturbation step size for the jth search iteration.
- 3. t_{jk} is the trial point obtained after perturbing about the k^{th} , (k=1,n), decision variable in the j^{th} search iteration.
- 4. a is the search acceleration factor.

B.2 Pattern Search Logic

The pattern search proceeds from an initial base point a, which then becomes the trial point for the first iteration when no variables have yet been perturbed, written t_{10} . Each variable is successively perturbed by $\pm d_1$. t_{10} and d_1 are user specified parameters. If t_{1k} is preferred over $t_{1(k-1)}$, the search will move to t_{1k} and perturb the k+1th variable. The algorithm evaluates trial points by simply substituting the associated decision variable values into the achievement function. After all n variables have been perturbed, t_{1n} is

compared to t_{10} . If t_{1n} is not preferred over t_{10} , the perturbation step size is reduced, and the variables are again perturbed about t_{10} . If, however, t_{1n} is preferred over t_{10} , the search proceeds to a new trial point, denoted t_{20} and given by:

$$t_{20} = (t_{1n} - t_{10}) \cdot \alpha$$

 t_{20} is then compared to t_{1n} . If t_{20} is preferred over t_{1n} , the next iteration begins, from there. If not, then t_{1n} becomes t_{20} , d_2 is reduced to a fractional part of d_1 , and the next iteration begins at that point.

The pattern search can terminate in the following ways:

- 1. A prespectied maximum number of search iterations may be equalled.
- 2. A user defined maximum number of perturbation step size reductions may be reached.
- 3. The solution may be within some tolerance factor of the theoretically optimal point.
- 4. The improvement between two successive trial base points may be below a specified tolerance limit.

APPENDIX C

LINEAR TECHNIQUES

C.1 Properties of Linear Models

A linear optimization model has the following general form. An objective function

is to be maximized subject to n constraints:

$$\sum_{i=1}^{m} c_{ij} x_{i} \stackrel{(\stackrel{\leq}{=})}{>} b_{j} \qquad j=1,\ldots,n$$

where the x_i are decision variables, and the c_{ij} are numerical coefficients. If a non-linear optimization problem may be transformed into or approximated by a linear problem, it can be solved using linear programming techniques. Theoretically, the various linear programming algorithms always find the optimal solution(s) if they exist. However, in the case of large linear programming problems requiring the performance of a great many operations, round-off error accrued during the course of the calculations may lead to an invalid solution, or cause the algorithm to fail and find no solution at all.

It is possible, by manipulating the directivity function and aggregating variables, to achieve a linear formulation of array

directional response. The derivation of this result will be reviewed in this section, and the characteristics of the linear programming problems so obtained will be discussed.

C2. Linearization of the Directional Response Function

As shown in Appendix A, equation A.2, the combined output from n elements in a given direction, θ , ϕ , is given by:

$$P_{\theta\phi} = \sum_{i=1}^{n} A_i \exp[j(u_i + \alpha_i)]$$

where u depends on the operating wavelength, the element position, and the aspect angle. For an element in the X-Z plane, for instance,

$$u_i = \kappa x_i \sin \theta \cos \phi + \kappa z_i \cos \theta$$

The output expression may be equivalently written:

$$P_{\theta\phi} = \sum_{i=1}^{n} (\cos u_i + j \sin u_i) A_i (\cos \alpha_i + j \sin \alpha_i)$$

Expanding and rearranging terms gives:

$$P_{\theta\phi} = \sum_{i=1}^{n} [\cos u_i (A_i \cos \alpha_i) - \sin u_i (A_i \sin \alpha_i)]$$

$$+ j \sum_{i=1}^{n} [\cos u_i (A_i \sin \alpha_i) + \sin u_i (A_i \cos \alpha_i)]$$

If the terms $A_1\cos\alpha_1$ and $A_1\sin\alpha_1$ are understood to be decision variables (i.e., the shading coefficients are now complex), and the terms $\sin u_1$ and $\cos u_1$ to be coefficients, this function assumes the general linear form. The values taken on by the synthetic decision variables, $A_1\sin\alpha_1$ and $A_1\cos\alpha_1$, are not in themselves of interest. However, as long as both of them appear in the real component of the response function, it will be possible to recover the separate A_1 and α_1

upon solution.

Since the coefficients cosu, and sinu, depend only on element positions and the 0,0 points at which the pattern is to be evaluated, numerical values may be determined and substituted into the response function. Then the problem may be solved using any of a number of computer packages for linear problems.

C3. Linear Models for General Arrays

In 1961, McMahon et al. [18] presented the transformation of the directivity function into a linear form, as reviewed above, and presented results for several linear and planar arrays in the 12 to 70 element range. This formulation applies to the most general case of array design. The array may be phased, and element positions may conform to any surface.

The chief disadvantage of this formulation is the size of the resultant linear programming problem. Four inequality constraints are required at each 0,0 point defining the desired pattern in order to create upper and lower bounds on both the real and imaginary components of the response function. Furthermore, 4 non-negative decision variables are generated for each element of the array. Thus the size of the resultant linear programming problem is given by the polynomial, Y = 4n x 4m, where n is the number of 0,0 points needed to define the pattern, and m is the number of elements in the array. Adequate pattern definition will usually require upwards of 65 0,0 points per orthont. Thus, a conservative estimate for the linear programming problem generated by just a 100-element (conformal, planar, or linear) array, whose response is specified over a hemisphere, is 400 variables and

1,040 constraints.

Unfortunately, there is no direct relationship between the size of a linear programming problem and the complexity function of the algorithm required to solve it. It has, however, been the experience of the author that the use of this method to program arrays as small as 64 elements is prohibitively expensive.

The general array linear formulation suffers its severest shortcomings when applied to arrays whose elements are symmetrically placed. As shown in Appendix A for the planar array case, such symmetry conditions may be incorporated into the directional response function. This type of reformulation allows the pattern to be specified on a fractional part of the region over which it is to be defined. number of 0,0 points needed to specify the pattern produced by an n element planar array displaying two-way symmetry is half that of a nonsymmetric n-element array. Four-way symmetry halves this number again. Since each θ , ϕ point has 4 associated constraints, this method can greatly reduce problem size. However, as shown in equation A.5, the incorporation of symmetry conditions causes the jsinu, terms to sum to 0 and drop out of the directivity function. The synthetic decision variables then become indeterminate in that unique values for A_i and α_i can no longer be recovered. Thus, the technique is incompatible with the linear formulation, and symmetric arrays will generate the same size problems as non-symmetric arrays. There is, however, one case where symmetry can reduce problem size for the linear formulation. When the array is planar-symmetric and relatively small (n < m/2), the number of constraints will be reduced somewhat if directional response is specified in only one orthont, and the decision variables corresponding

to the elements in one quadrant of the array are set equal to those in the other three. For instance, if the 100-element array, 260 0,0 point case given above is treated in this manner, the associated linear programming problem has 400 variables and 860 constraints.

C.4 The Planar-symmetric, Non-phased Case

Wilson [20] has presented results for planar arrays with two-way symmetry, and all element phase shift coefficients set to 0. In this case, the response at 0,0 from two elements placed symmetrically in the X-Z plane and excited identically is:

where u is defined as above. This result can be extended to the fourway symmetry case, and becomes:

Then the output of s sets of 4 symmetric elements is:

This function contains no imaginary component, and since the decision variables, A_1 , lie by definition between 0 and 1, only one decision variable is generated per set of 4 elements. The 100-element planar-symmetric, non-phased array with the same pattern as earlier examples, has an associated linear programming problem of 25 decision variables, and about 65 constraints. In general, the size of the problem in this case increases as the polynomial, $n/4 \times (m/4 + d/4)$ where d is the number of θ , ϕ points in the main beam.

The most general objective function for both McMahon's and Wilson's linear programming problems minimizes a weighted sum of deviations from the specified responses at the θ , ϕ points. Other objective functions are possible, however. Wilson's formulation [20], for instance, minimizes the maximum deviation over the set of θ , ϕ points.

The recent development of a code to solve massive linear goal programming problems [17] allows the reformulation of these linear models as linear goal programming models. The multi-objective nature of array synthesis problems may now be represented in a preemptive priority structure, as well as in the relative weights assigned to the goals.

C.5 MAXIM for Planar Symmetric Non-Phased Arrays

It is only for the planar-symmetric non-phased array that the linear model has proved to be of practical value, since here the associated linear programming problems are of a size which is economically feasible. The same holds for MAXIM applications. The linear version of MAXIM is as follows:

MIN
$$z = \sum_{i}^{n} w_{i}^{d}_{i}$$

St : $\sum_{j=1}^{n} \cos u_{ij} A_{j} + n_{i} - p_{i} = b_{i}$

for the i θ , ϕ points in the feature under consideration. d is a negative deviation variable for the main beam, and a positive deviation variable elsewhere. The minimization takes place subject to a set of constraints given by:

$$\sum_{j=1}^{n} \cos u_{ij} A_{j} + n_{i} - p_{i} = b_{i}$$

$$A_{j} \leq A_{j}^{*} + \epsilon_{j}$$

$$A_{j} \geq A_{j}^{*} - \epsilon_{j}$$

$$j=1, n/4$$

where A_1^* is the design soltion, and 2ε is the error range. The analysis then proceeds as with the non-linear model. All results established for the non-linear case hold here as well, with two exceptions. Only those error sources which are resolvable into error in amplitude settings may be treated with this formulation. Thus, for instance, error in element placement could not be analyzed. With regard to the solution technique itself, however, the optimal solution is now guaranteed.

BIBLIOGRAPHY

Books

- Albers, Vernon M., Underwater Acoustics Handbook II. University Park, Pennsylvania, The Pennsylvania State University Press, 1965.
- Beveridge, G. and Schechter, R. S., Optimization: Theory and Practice, New York, McGraw-Hill Book Co., 1970.
- 3. Ignizio, J. P. and Gupta, J.N.D., Operations Research in Decision Making, New York, Crane, Russak and Co., 1975.
- 4. Ignizio, J. P., Goal Programming and Extensions, Lexington, MA, D.C. Heath and Company, 1976.
- Skolnik, Merril I., Introduction to Radar Systems, New York, McGraw-Hill Book Company, 1962.
- 6. Steinberg, Bernard D., Principles of Aperture and Array System Design, New York, John Wiley and Sons, 1976.
- 7. Wilde, D. J. and Bieghtler, C. S., Foundations of Optimization, Prentice-Hall Inc., Englewood Cliffs, NJ, 1967.

Articles, Papers, and Reports

- Allen, J. L., "Array Antennas: New Applications for an Old Technique," IEEE Spectrum, Vol , November 1964, pp. 115-129.
- 9. Dolph, C. L., "A Current Distribution for Broadside Arrays Which Optimizes the Relation Between Beam Width and Side Lobe Level," Proc. IRE, Vol. 32, 1946, pp. 335-348.
- 10. Draus, S. M., "The Design of Acoustic Transducer Arrays Using Goal Programming," M. S. Thesis at The Pennsylvania State University, August 1977.
- 11. Fiacco, A. V. and McCormick, G. P., "The sequential Unconstrained Minimization Technique for Non-linear Programming, a Primal-Dual Method," Management Science, Vol. 10, no. 2, January 1964
- 12. Fiacco, A. V. and McCormick, G. P., "Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming," Management Science, Vol. 10, no. 4, July 1964

BIBLIOGRAPHY (CONTINUED)

- 13. Hooke, R. and Jeeves, T.A., "Direct Search Solution of Numerical and Statistical Problems," J. Assoc. Computer Machines, Vol. 8, 1961, pp. 212-229.
- 14. Hsiao, J. K. and Rao, J.B. L., "Computer Analysis of Conformal Phased Arrays," NRL Report 7826
- 15. Ignizio, J. P., "The Application of Goal Programming to Acoustic Array Design (A Methodology for Multicriteria Systems Design)" Applied Research Laboratory, Internal Memorandum, May 1977.
- 16. Ignizio, J. P., "An Approach to Multicriteria Design," Final Report, U. S. Army Contract; DASG6077-C-0078, April 1978.
- 17. Kirtland, D., Perlis, J. and Rue B., "SLGP: A Sequential Linear Goal Programming Code, Built Around MPSX," Proc. SHARE 51, (in press)
- 18. McMahon, G. W., Hubley, Barbara and Mohammed, A., "Design of Optimum Directional Arrays Using Linear Programming Techniques," J. Acoust. Soc. Am., Vol. 51, No. 1, 1972, pp. 304-309.
- 19. Wang, H. S. C., "Amplitude Shading of Sonar Transducer Arrays," J. Acoust. Soc. Am., Vol. 57, No. 5, May, 1975, pp. 1076-1084.
- 20. Wilson, G. L., "Computer Optimization of Transducer Array Patterns," J. Acoust. Soc. Am., Vol. 59, No. 1, January, 1976, pp. 195-203.

DISTRIBUTION

Commander (NSEA 09G32) Naval Sea Systems Command Department of the Navy Washington, DC 20362

Copies 1 and 2

Commander (NSEA 0342) Naval Sea Systems Command Department of the Navy Washington, DC 20362

Copies 3 and 4

Defense Documentation Center 5010 Duke Street Cameron Station Alexandria, VA 22314

Copies 5 through 16