Final Review Sheet Answers

Stat 134: Adam Lucas

Fall 2018

The proofs/calculations of most exercises here are omitted. Again, refer to your notes if unsure; all of the theoretical results have been discussed in lecture notes or in the textbook.

1 Relationships Between Distributions

- 1. cX, where $X \sim \text{Exp}(\lambda)$, c > 0: $\text{Exp}(\frac{\lambda}{c})$
- 2. $X_1 + X_2 + X_3$, where the X_i 's are i.i.d. Gamma $(1, \mu)$. What about $\frac{X_1}{X_1 + X_2 + X_3}$? $\frac{X_1 + X_2 + X_3}{X_1 + X_2 + X_3} \sim \text{Gamma } (3, \mu); \quad \frac{X_1}{X_1 + X_2 + X_3} \sim \text{Beta } (1, 2). \text{ (For this one, think about } T_1 \text{ and } T_3 \text{ for a Poisson Process.)}$
- 3. $X^2 + Y^2$, where X, Y are independent standard Normal. What is $\sqrt{X^2 + Y^2}$? Exp $(\frac{1}{2})$; standard Rayleigh
- 4. 2X + 3Y, where X, Y independent Normal (μ, σ^2) . What if X, Y are bivariate normal with correlation $\rho = 0.6$?

$$2X + 3Y \sim \mathcal{N}(5\mu, 13\sigma^2)$$
 if $\rho = 0$; $2X + 3Y \sim \mathcal{N}(5\mu, (13 + 7.2)\sigma^2)$ if $\rho = 0.6$

5. Consider each of the following common discrete distributions: Poisson, Binomial, Geometric, and Hypergeometric. For which of these is the sum of two independent RVs a known distribution? Under what conditions?

Excluding the degenerate cases (e.g., p=0 or p=1), this holds for the first 3 distributions. For Binomial, the p values must be the same, in which case the n's are added; for the Geometric the result is Negative Binomial provided the p values are the same.

2 Symmetry

1. Under some conditions, we can quickly recognize the expectation of a random variable X to be zero. What are they?

The distribution/density of X must be symmetric about the origin, and $\mathbb{E}(|X|) < \infty$; i.e. the expectation must be defined.

2. Find the probability that the last ace in a standard, well-shuffled deck is at position 47 or greater. Using symmetry between the front and back of the deck, this answer is

$$\frac{\binom{4}{1}\binom{48}{6}}{\binom{52}{6}}$$

3. You and I each roll a fair n sided die. Without using a summation, find the probability your roll is strictly greater than mine.

$$P(X < Y) = P(X > Y)$$
, and $P(X < Y) + P(X > Y) + P(X = Y) = 1$. Therefore,

$$P(X > Y) = \frac{1 - \frac{1}{n}}{2}$$

4. Let X, Y be independent $\mathcal{N}(0, \sigma^2)$ random variables. Without using Φ , find P(X + 2Y > 0, X > 0). What is the reason behind this answer?

Using the rotational symmetry of the joint distribution of (X, Y),

$$P(X + 2Y > 0, X > 0) = \frac{\frac{\pi}{4} + \arctan(\frac{1}{2})}{2\pi}$$

5. Suppose we have 5 independent Uniform [0, 1] variables. Prove that $U_{(2)} - U_{(1)}$ is equal in distribution to $U_{(1)}$. Recognize this as a named distribution, and state the parameters.

Both variables should be Beta (1,5).

3 To Infinity, and Beyond

1. Let $X \sim \text{Geom }(p)$ on $\{1, 2, \ldots\}$. It is not easy to directly find $\mathbb{E}(X)$ using the formula $\sum_{x=1}^{\infty} x P(X = x)$. We have shown three alternate methods for finding this expectation; what are they?

The three methods are (i) the tail sum formula for expectations of discrete RVs, (ii) using the MGF of a Geometric, and (iii) conditioning on the result of the first toss.

2. Two players simultaneously toss coins which land heads with probabilities p_1 and p_2 respectively. They continue until exactly one player's coin lands heads; that player is the winner. Show that the probability Player 1 wins is $\frac{p_1q_2}{p_1q_2+q_1p_2}$.

Hint: write this out as a sequence of tosses. For the first player to win on the n^{th} toss, what has to happen?

3. Find $\mathbb{E}(X(X-1))$ for $X \sim \text{Pois } (\mu)$.

Using the function rule, we observe that this value is μ^2 .

4. Let Y have density $f_Y(y) = \frac{\lambda}{2} e^{-\lambda |y|}$, for $y \in \mathbb{R}$. With little computation, find $\mathbb{E}(|Y|)$ and $\mathbb{E}(Y)$.

If we look at the graph of the density of Y, or through the change-of-variable formula, we observe that $|Y| \sim \text{Exp }(\lambda)$. Thus $\mathbb{E}(|Y|) = \frac{1}{\lambda}$, and $\mathbb{E}(Y) = 0$ by symmetry.

4 Could You Rephrase That?

1. Suppose there are 3n people in a room, divided into groups of 3. What is the chance that there is at least one group where two members share the same birthday?

$$1 - \left(\frac{364 \cdot 363}{365^2}\right)^n$$

2. Continued from (a): Approximate this chance for large n.

We use a Poisson approximation, with $p=P(\text{shared b-day in group})=2(\frac{1}{365})-(\frac{1}{365})^2$ (using inclusion-exclusion rule). Then this probability from (a) is approximately $1-e^{-np}$ for large n.

3. Let $X \sim \text{Gamma}(r, \lambda)$, where r is an integer. Use what we know about the Poisson process to obtain the CDF of X.

$$P(X < t) = P(N_t \ge r)$$

$$= 1 - P(N_t < r)$$

$$= 1 - \sum_{k=0}^{r-1} e^{\lambda t} \frac{(\lambda t)^k}{k!}$$

4. Let X be an arbitrary random variable with an invertible CDF F_X . What is the random variable formed by $F_X(X)$?

Let $Z = F_X(X)$. Then,

$$F_{Z}(z) = P(Z \le z)$$

$$= P(F_{X}(X) \le z)$$

$$= P(F_{X}^{-1}(F_{X}(X)) \le F_{X}^{-1}(z))$$

$$= P(X \le F_{X}^{-1}(z))$$

$$= F_{X}(F_{X}^{-1}(z))$$

$$= z, \quad z \in [0, 1]$$

We conclude that $Z \sim \text{Unif } (0,1)$.

5 Some Useful Results

- 1. Let $X \sim \text{Pois } (\mu), Y \sim \text{Pois } (\lambda), X \perp Y$. What is the distribution of X + Y? (Hint: use the binomial theorem, $(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.) $X + Y \sim \text{Pois } (\mu + \lambda)$
- 2. Use Markov's Inequality to derive Chebyshev's Inequality. See pg. 191 192 in Pitman's Probability.
- 3. Let $X \sim \text{Exp }(\lambda_X), Y \sim \text{Exp }(\lambda_Y)$. What is P(X < Y)? $\frac{\lambda_X}{\lambda_X + \lambda_Y}$
- 4. Find the distribution of $\min\{X_1, X_2, \dots, X_n\}$, where the X_i 's are independent Exp (λ) variables. Let M denote the minimum. Then $M \sim \text{Exp }(n\lambda)$. Note this result generalizes to the case where the rates are all different; you simply add the rate parameters.
- 5. Suppose cars and trucks arrive at a bridge according to independent Poisson processes with rates λ_c and λ_r per minute respectively. Given that n vehicles arrive in t minutes, what is the distribution of $N_{c,t}$, the number of cars to arrive by time t?

The easiest way to proceed here is using the conditional probability rule. We find that $N_{c,t}|N_t=n \sim \text{Binom }(n,\frac{\lambda_c}{\lambda_c+\lambda_n})$.