CS480 – Introduction to Artificial Intelligence

TOPIC: CLASSIFICATION

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

FEEDBACK

- Unsupervised learning
 - No feedback; the agent discovers patterns in the data
 - E.g., clustering, dimensionality reduction, outlier detection
- Supervised learning
 - Feedback: input-output pairs
 - E.g., classification, regression, ranking
- Reinforcement learning
 - Feedback: rewards

2. Supervised Learning

- Given objects with their labels, <X,Y>
- Learn a function f that maps objects, X, to labels, Y
- We want f to perform well on unseen objects
- Several applications
 - Face recognition, speech recognition, medical diagnosis, fraud detection, credit scoring, home value prediction, temperature prediction, ...

• If Y is

- Discrete, the task is called classification
- Continuous, the task is called regression

FUNCTION FITTING?

- Isn't classification/regression simply "function fitting?"
- Yes and No
- The purpose is to generalize and perform well on unseen data
- We don't want to underfit or overfit to the training data

So, which function is the "right" one?

CLASSIFICATION MODELS

- 1. Decision trees
- 2. Nearest neighbors
- 3. Naïve Bayes
- 4. Logistic regression

Note: it's called regression, but it is a classification model

- 5. Support vector machines
- 6. Neural networks

TASK

- Classify emails as spam (s) / not-spam (~s) based on the words they contain
- You look at 100 random emails; 40 of them are spam, 60 of them are not-spam
- What is P(s) for a new email?

FEATURES

• Assume you'll look into the emails' contents; you've decided that the word Nigeria¹ seems to correlate well with spam. You group the 100 emails as follows

Nigeria	Spam	Count
t	S	30
f	S	10
t	~s	10
f	~s	50

If the word Nigeria appears in the new email, then what is $P(s \mid Nigeria=t)$?

1. Why "Nigeria?" https://www.google.com/search?q=nigeria+scam+emails

NIGERIA=T

Nigeria	Spam	Count	
t	S	30	
f	S	10	
t	~s	10	
f	~s	50	

If the word Nigeria appears in the new email, then what is $P(s \mid Nigeria=t)$?

$$P(s \mid N=t) = \frac{P(s, N=t)}{P(N=t)} = \frac{30/100}{(30+10)/100} = \frac{30}{40}$$

ADD ADMISSION INTO YOUR VOCABULARY

Nigeria	Adm.	Spam	Count
t	t	S	10
t	f	S	20
f	t	S	3
f	f	S	7
t	t	~s	8
t	f	~s	2
f	t	~s	40
f	f	~s	10

What is $P(s \mid N=t, A=f)$? What about $P(s \mid N=t, A=t)$?

ADD ADMISSION INTO YOUR VOCABULARY

Nigeria	Adm.	Spam	Count	
t	t	S	10	
t	f	S	20	
f	t	S	3	
f	f	S	7	
t	t	~s	8	
t	f	~s	2	
f	t	~s	40	
f	f	~s	10	

What is $P(s \mid N=t, A=f)$? What about $P(s \mid N=t, A=t)$?

$$P(s \mid N = t, A = f) = \frac{P(s, N = t, A = f)}{P(N = t, A = f)} = \frac{\frac{20}{100}}{\frac{20}{100}} = \frac{20}{22}$$

 $P(s \mid N=t)$ was 0.75. $P(s \mid N=t, A=f)$ is 0.91

17

ADD ADMISSION INTO YOUR VOCABULARY

Nigeria	Adm.	Spam	Count	
t	t	S	10	
t	f	S	20	
f	t	S	3	
f	f	S	7	
t	t	~s	8	
t	f	~s	2	
f	t	~s	40	
f	f	~s	10	

What is $P(s \mid N=t, A=f)$? What about $P(s \mid N=t, A=t)$?

$$P(s \mid N = t, A = t) = \frac{P(s, N = t, A = f)}{P(N = t, A = f)} = \frac{10/100}{(10+8)/100} = \frac{10}{18}$$

 $P(s \mid N=t)$ was 0.75. $P(s \mid N=t, A=f)$ is 0.91. $P(s \mid N=t, A=t) = 0.56$.

18

Now assume we add 998 more words

W_1	W_2	 W ₁₀₀₀	Spam	Count
t	t	 t	S	
t	t	 f	S	
f	f	 f	~s	

Q: How many entries are there in this table?

 $A: 2^{1001} \approx 2 \times 10^{301}$

We have 100 emails. If all emails are distinct, 100 entries will be 1; The rest will be 0.

Q: What is $P(s \mid W_1=t, W_2=f, ..., W_{1000}=t)$?

A: Either 1 or 0 if it is in D, otherwise, it is NaN

Q: How big of a training data do we need?

- o Given $X_1, X_2, ..., X_n$, and class Y
- \circ Assume $X_i \perp X_j \mid Y$

$$P(Y|X_1, X_2, ..., X_n) = \frac{P(X_1, X_2, ..., X_n | Y)P(Y)}{P(X_1, X_2, ..., X_n)} = \frac{P(Y) \prod_{i=1}^n P(X_i | C)}{P(X_1, X_2, ..., X_n)}$$

We need to estimate P(X) and $P(X_i | C)$

Nigeria	Adm.	Spam	Count
t	t	S	10
t	f	S	20
f	t	S	3
f	f	S	7
t	t	~s	8
t	f	~s	2
f	t	~s	40
f	f	~s	10

What is P(S)?

What is P(N|S)?

What is P(A|S)?

		_	
Nigeria	Adm.	Spam	Count
t	t	S	10
t	f	S	20
f	t	S	3
f	f	S	7
t	t	~s	8
t	f	~s	2
f	t	~s	40
f	f	~s	10

What is P(S)?

Spam	P(S)	
S	40/100	
~s	60/100	

What is P(N|S)?

Nigeria	Spam	P(N,S)	P(N S)
t	S	30/100	30/40
f	S	10/100	10/40
t	~s	10/100	10/60
f	~s	50/100	50/60

What is P(A|S)?

Adm.	Spam	P(A,S)	P(A S)	
t	S	13/100	13/40	
f	S	27/100	27/40	
t	~s	48/100	48/60	22
f	~s	12/100	12/60	

INFERENCE IN NAÏVE BAYES

• What is P(s | N=t, A=f)?

ZERO PROBABILITIES

- We have *n* features, X_1 through X_n
- If $P(X_i|C)$ is zero for any feature and class combination, we would be in trouble
- Example
 - Assume that X_{592} is a weird feature that is rarely *true* in the world. Assume that X_{592} is always *false* in our training data, no matter what the class is
 - $P(X_{592} = f \mid C = t) = 1; P(X_{592} = t \mid C = t) = 0$
 - $P(X_{592} = f \mid C = f) = 1; P(X_{592} = t \mid C = f) = 0$
 - In one of the objects in our test data, X_{592} is *true*.
 - What is $P(C \mid X_1, X_2, ..., X_{592} = t, ... X_n)$?

OTHER CLASSIFIERS - OVERVIEW

SOME CLASSIFIERS

- o Naïve Bayes
- Logistic regression
- Decision trees
- Support vector machines
- Neural networks

LOGISTIC REGRESSION

- Learns P(Y|X) directly, without going through P(X|Y) and P(Y)
- Assumes P(Y|X) follows the logistic function

$$P(Y = false \mid X_1, X_2, \dots, X_n) = \frac{1}{1 + e^{w_0 + \sum_{i=1}^n w_i X_i}}$$

$$P(Y = true \mid X_1, X_2, \dots, X_n) = \frac{e^{w_0 + \sum_{i=1}^n w_i X_i}}{1 + e^{w_0 + \sum_{i=1}^n w_i X_i}}$$

• Learning: estimate the weights $w_0, w_1, ..., w_n$

Learning – Parameter Estimation

Maximize (conditional) log-likelihood

$$W \leftarrow \operatorname{argmax}_{W} \prod P(Y^{(d)}|\boldsymbol{X}^{(d)})$$

$$W \leftarrow \underset{W}{\operatorname{argmax}} \sum \ln P(Y^{(d)}|X^{(d)})$$

DECISION TREES

Learning: how do you learn a small tree that generalizes to unseen data?

 $Image\ credit:\ Ethem\ Alpaydin.\ Introduction\ to\ Machine\ Learning.\ 3rd\ Edition.\ http://www.cmpe.boun.edu.tr/\sim ethem/i2ml3e$

SUPPORT VECTOR MACHINES

Image credit: Ethem Alpaydin. Introduction to Machine Learning. 3rd Edition. http://www.cmpe.boun.edu.tr/~ethem/i2ml3e CS480 – Introduction to Artificial Intelligence – Illinois Institute of Technology 30

NEURON

By Quasar Jarosz at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7616130

WHAT AN ARTIFICIAL NEURON DOES

- Takes a weighted sum of its inputs
 - $w_0 + \sum_{i=1}^k w_i x_i$
 - Assume that there is always a constant input 1, that is, $x_0 = 1$. Then,
 - $\sum_{i=0}^k w_i x_i$
- Passes this sum through its activation function
 - $f(\sum_{i=0}^k w_i x_i)$

MULTILAYER NEURAL NETWORKS

- An input layer
- One or more hidden layers
- An output layer

• Learning: estimate the weights

SCIKIT-LEARN CODE EXAMPLES

- https://scikit-learn.org/stable/
- Naïve Bayes
 - https://scikit-learn.org/stable/modules/naive_bayes.html
- Logistic regression
 - https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
- Decision Trees
 - https://scikit-learn.org/stable/modules/tree.html
- Support vector machines
 - https://scikit-learn.org/stable/modules/svm.html
- Neural networks
 - https://scikit-learn.org/stable/modules/neural_networks_supervised.html