

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 7 May 2003		2. REPORT TYPE View Graphs		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE First Principles Calculations of the Interaction of Nitro Compounds with the A1 (111) Surface				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Jerry Boatz, Dan C. Sorescu, Donald L. Thompson				5d. PROJECT NUMBER 2303	
				5e. TASK NUMBER M2C8	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER			
Air Force Research Laboratory (AFMC) AFRL/PRSP 10 E. Saturn Blvd. Edwards AFB CA 93524-7680		AFRL-PR-ED-VG-2003-130			
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)			
Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048		11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-VG-2003-130			
12. DISTRIBUTION / AVAILABILITY STATEMENT					
Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
20030610 052					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Sheila Benner	
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	A	19b. TELEPHONE NUMBER (include area code) (661) 275-5693	

FILE

MEMORANDUM FOR PRS (In-House Publication)

FROM: PROI (STINFO)

8 May 2003

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2003-130
Jerry Boatz (AFRL/PRSP) et al., "First Principles Calculations of the Interaction of Nitro Compounds with the Al (111) Surface"

**DoD High Performance Computing Users Group Conf.
(Bellevue, WA, 9-13 June 2003) (Deadline = 09 June 2003)**

(Statement A)

First Principles Calculations of the Interaction of Nitro Compounds with the

Al (111) Surface

DoD UGC, 9-13 Jun 03
Bellevue, WA

Jerry Boatz

Senior Research Chemist

Propulsion Directorate

Air Force Research Laboratory

Multiscale Simulations of High Energy Density Materials (MSoH) Challenge Project

Dan C. Sorescu*

Jerry Boatz**

Donald L. Thompson***

* National Energy Technology Laboratory, Pittsburgh, PA 15236

** Air Force Research Laboratory, Edwards AFB, CA 93524

*** Oklahoma State University, Dept. of Chemistry, Stillwater, OK 74078

OUTLINE

1. Introduction

- Background on HEDM
- Payoffs

2. Theoretical Methods and benchmarks

- Plane-wave DFT
- Molecular Dynamics

3. Results

4. Summary

What We Are Trying To Do

Identify, develop, and transition new propellants and advanced concepts for propulsion applications

- Hydrocarbon fuels for liquid boost
- Liquid & solid oxidizers for boost and upper stages
- Monopropellants for spacecraft and upper stages
- Laser lightcraft for microsatellite and other applications

What Difference It Will Make

Vehicle Type	Baseline Vehicle	Propellant	Takeoff Mass (lb)	Payload Mass (lb)	Payload Mass (lb) With 10% Isp Increase
Two-stage ELV	Atlas II // Centaur D-1A	RP-1/LOX (Isp = 295 s) // LH2/LOX (Isp = 455 s)	360,000	12,500	15,600 (+25%)
SSTO RLV	Lockheed SSTO	LH2/LOX (Isp = 455 s)	1,900,000	40,000	68,000 (+70%)
Missile Defense Interceptor	Boost-Phase Interceptor	HTPB/AI/HMX (Isp = 270 s)	1,847	74	110 (+49%)

Our research is aimed at increasing propellant Isp by as much as 50%

How We Do What We Do

Propellant Discovery & Development

Employ a synergic blend of experimental, theoretical, and computational techniques derived from the disciplines of chemistry and physics

Experiments

Exploratory experiments

Develop new synthesis methods

Measure properties & compare with predictions

Optimize synthesis, devise test methods

Identify target compounds

Attempt synthesis on small scale

Characterize new materials

Scale up, formulate and test

Calculate stability and performance

Calculate synthesis or decomposition routes

Model spectral fingerprints

Theory & modeling

MSoH: Concept

Atomistic level understanding of condensed phase properties of energetic materials

- which factors influence the phase transitions (e.g., the melting point of energetic crystals?)
- what is the mechanism of phase stabilization in AN salts?
- how are the chemical properties of energetic materials influenced by chemisorption on metallic surfaces?

Technical tasks include

- a) Characterization of static, dynamic properties of AN, ADN salts
 - structural, thermodynamic, transport properties and phase transitions
- b) Investigation of KNO_3 -induced phase stabilization of ammonium nitrate (AN) salts
- c) Interactions between HEDM molecules and Al surfaces, nanoclusters.
 - how do surface/cluster interactions modify the chemical properties of HEDM?
 - RDX, HMX, FOX-7 (1,1-diamino-2,2-dinitroethylene)

MSoH Project Objectives

Objectives of the Current Computational Research Program

To identify the chemisorption mechanism
of various nitro compounds on Al surface.

Particular important goals:

- a) to clarify if dissociative chemisorption can take place;
- b) what type of species or radicals are formed on the surface.

Limitations: temperature effects are not considered in the present set of calculations.

Computational Method :

Ab Initio Total Energy Calculations

- Theoretical approach: spin polarized DFT with GGA and pseudopotential method.

- The occupied electronic orbitals are expanded in a plane-wave basis $\Psi_i(r) = \sum_G c_{iG} \exp(iGr)$

$$\text{with reciprocal lattice vectors } G \text{ limited by } \frac{\hbar^2 G^2}{2m} < E_{cut}, \text{ Ecut: 395 eV}$$

Exchange-Correlation Functionals: PW91

- Pseudopotentials: Ultralsoft Vanderbilt-type

- K-point sampling: Monkhorst-Pack Special K-pts

- Electron Smearing Near Fermi Level with Extrap.to T=0
VASP: Methfessel-Paxton Function, 0.2 eV min. width.

VASP: “Vienna Ab Initio Simulation Package”,
J. Hafner, G. Kresse et al., Univ. of Vienna

MSoH: Scalable CCM Software

DL_POLY_2.0

Run on Cray T3E

GAMESS

MP2 Gradient Scalability Test
Silicene molecule, Si(C₆H₅)₂

CASTEP

Run on SGI O3K

Al(111) Slab Model

Al(111)- (3x3) surface units
slab model with 4 layers
(36 Al atoms), 3D periodic
boundary conditions

Chemisorption of Nitromethane on Al(III)

Initial configuration

Optimized configuration
top view

Formation of strong Al-O bonds; deformations of NM molecule

Dissociative Chemisorption of Nitromethane

Initial configuration

Optimized configuration
top view
side view

* Dissociation of one O atom, oxidation of Al surface atoms.

Dissociative Chemisorption of Nitromethane

Initial configuration

Optimized configuration
side view

Optimized configuration
top view

* Dissociation of both O atoms, oxidation of Al surface atoms.

*There are some initial configurations for
which nitromethane does not chemisorb*

Initial configuration

Final configuration

Adsorption Energies of Nitromethane

Chemisorption of FOX-7 on Al(111)

$(NH_2)_2C=CN(O_2)_2$

Initial configuration

Optimized configuration
top view
side view

Formation of strong Al-O bonds; deformations of FOX-7

Dissociative Chemisorption of FOX-7

Initial configuration

Optimized configuration
top view

* Dissociation of one O atom, oxidation of Al surface atoms.

Dissociative Chemisorption of FOX-7

Initial configuration

Optimized configuration
side view

Optimized configuration
top view

* Dissociation of both O atoms, oxidation of Al surface atoms.

Adsorption Energies of FOX-7

Computational requirements: 220,000 hours on ERDC Cray T3E, ARL SGI 3800

Conclusions

Both non-dissociative and dissociative interactions are found

- (1) non-dissociative formation of N-O-Al bonds
- (2) complete dissociation of one or two O atoms with subsequent formation of Al₃O "cap" sites.

Non-dissociative adsorption energies are 30-70 kcal/mol

Adsorption energies for single O-atom dissociation are 110-130 kcal/mol

Adsorption energies for double O-atom dissociation are 220-230 kcal/mol

Adsorption energies of the nitroso and nitrene fragments are 60-80 kcal/mol and 110-160 kcal/mol, respectively

Neither NM or FOX-7 completely passivate the aluminum surface against oxidation

Dissociative adsorption is competitive with O₂ adsorption (105 kcal/mol)

Chemisorption of nitroso and nitrene fragments may sterically and/or energetically inhibit growth of aluminum oxide overcoat

Formation of Al-O bonds appears to be general process in nitro compounds

Summary & Future Directions

Summary

Interactions and adsorption energies of nitromethane and FOX-7 with the aluminum (111) surface have been calculated.

Multiple starting configurations have been examined (vertical & horizontal wrt metal surface; interactions with fcc, on-top, and hcp surface sites)

Future Directions

Interactions of NM and FOX-7 on aluminum oxide surface

Interactions of ammonium nitrate (AN) on Al (111)

DOD HPCMP

Challenge Project Award Financial Support

DOE

DURINT-ARO

AFRL

AFOSR

ACKNOWLEDGMENTS