Chapter 22

Gauss' Law

Electric field lines

- Electric field lines give us a means of representing the electric field pictorially.
- The electric field vector is tangent to the electric field line at each point.
- The number of lines per unit area through a surface perpendicular to the lines is proportional to the magnitude of the electric field in that region.

The magnitude of the field is greater on surface A than on surface B. B

Electric field lines

 If the electric field pattern is known in a given region, what can we determine about the charge distribution in that region?

A box containing an unknown amount of charge

Flux of the electric field lines

(a) Positive charge inside box, outward flux

(c) Negative charge inside box, inward flux

Flux of the electric field lines

(b) Zero *net* charge inside box, inward flux cancels outward flux.

(c) No charge inside box, inward flux cancels outward flux.

Electric flux Φ_E

For a uniform electric field:

$$\Phi_E = E_{\perp}A$$

• Define the vector area \overrightarrow{A}

$$\vec{A} = A \hat{n}$$

$$\Phi_E = \overrightarrow{E} \cdot \overrightarrow{A}$$

• Units: $(N \cdot m^2/C)$

Electric flux Φ_E

$$\Phi_E = \overrightarrow{E} \cdot \overrightarrow{A}$$

$$\Phi_E = EA$$

$$\Phi_E = EA \cos \phi$$

$$\Phi_E = 0$$

Electric flux Φ_E

For a *non-uniform* electric field, irregular surface:

On a surface element dA:

$$d\Phi_E = \overrightarrow{E} \cdot d\overrightarrow{A}$$

For the complete surface

$$\Phi_E = \int_S \vec{E} \cdot d\vec{A}$$

Net electric flux Φ_{Net}

For closed (containing a *volume*) surface:

The net electric flux

$$\Phi_{Net} = \oint \vec{E} \cdot d\vec{A}$$

 $(\overrightarrow{dA} \text{ points outward})$

Net electric flux Φ_{Net}

For point charge q enclosed by a spherical surface

$$\vec{\mathbf{E}} = k \frac{q}{r^2} \hat{\mathbf{r}}$$
$$d\vec{\mathbf{A}} = dA \hat{\mathbf{r}}$$

The net electric flux

$$\Phi_{Net} = \left(k\frac{q}{r^2}\right) \oint dA$$
$$= \left(k\frac{q}{r^2}\right) (4\pi r^2)$$
$$\Phi_{Net} = \frac{q}{\epsilon_0}$$

Net electric flux Φ_{Net}

For point charge *q* enclosed by any closed surface

$$\Phi_{Net} = \frac{q}{\epsilon_0}$$

 The shape of the closed surface can be arbitrarily chosen — the same result is obtained.

Net electric flux Φ_{Net}

For negative point charge -q

$$\Phi_{Net} = -\frac{q}{\epsilon_0}$$

Net electric flux Φ_{Net}

When the point charge q is not enclosed by the surface

$$\Phi_{Net} = 0$$

Net electric flux Φ_{Net}

For N point charges q_i enclosed by the surface

$$\vec{\mathbf{E}} = k \sum_{j=1}^{N} \frac{q_j}{r_j^2} \hat{\mathbf{r}}_j$$

The net electric flux

$$\Phi_{Net} = \frac{1}{\epsilon_0} \sum_{j=1}^{N} q_j$$

$$\Phi_{Net} = \frac{1}{\epsilon_0} \ Q_{Enclosed}$$

Gauss' Law

Gauss' Law

For N point charges q_i enclosed by the surface

$$\Phi_{Net} = \frac{1}{\epsilon_0} \ Q_{Enclosed}$$

Example: Spherical shell

A thin spherical shell of radius *a* has a charge +Q evenly distributed over its surface. Find the electric field both inside and outside the shell.

Example: Spherical shell

Solution: The charge distribution is spherically symmetric. The electric field must be radially symmetric and directed outward. Use spherical *Gaussian surface*.

Case 1: r < a

$$\Phi_{Net} = E_{in} A = \frac{Q_{Enc}}{\epsilon_0}$$
$$= 0$$

Therefore:

$$E_{in}=0$$

Example: Spherical shell

• Case 2: r > a

$$\Phi_{Net} = E_{out}A = E_{out}(4\pi r^2)$$

$$\frac{Q_{Enc}}{\epsilon_0} = \frac{Q}{\epsilon_0}$$

Therefore:

$$E_{out} = \frac{Q}{\epsilon_0 (4\pi r^2)}$$
$$= k \frac{Q}{r^2}$$

Example: Spherical shell

Solution:

$$E(r) = \begin{cases} 0 & r \le a \\ k\frac{Q}{r^2} & r \ge a \end{cases}$$

Example: Non-Conducting Solid Sphere

An electric charge +Q is *uniformly distributed* throughout a non-conducting solid sphere of radius a. Determine the electric field everywhere inside and outside the sphere.

Charge density:

$$\rho = \frac{Q}{(4\pi a^3/3)}$$

Example: Non-Conducting Solid Sphere

Solution: The electric field must be radially symmetric and directed outward. The magnitude of the electric field is constant on spherical surfaces of radius *r*.

Case 1: r < a

$$\Phi_{Net} = E_{in} A = E_{in} (4\pi r^2)$$

$$\frac{Q_{Enc}}{\epsilon_0} = \frac{\rho(4\pi a^3/3)}{\epsilon_0}$$

Therefore:

$$E_{in} = \frac{\rho r}{3\epsilon_0} = kQ\left(\frac{r}{a^3}\right)$$

Example: Non-Conducting Solid Sphere

$$\frac{Q_{Enc}}{\epsilon_0} = \frac{Q}{\epsilon_0}$$

Therefore:

$$E_{out} = \frac{Q}{\epsilon_0 (4\pi r^2)}$$
$$= k \frac{Q}{r^2}$$

Example: Non-Conducting Solid Sphere

Solution:

$$E(r) = \begin{cases} kQ\left(\frac{r}{a^3}\right) & r \le a \\ k\frac{Q}{r^2} & r \ge a \end{cases}$$

Example: Infinitely Long Rod of Uniform Charge Density

An infinitely long rod of negligible radius has a uniform charge density λ . Calculate the electric field at a distance from the wire.

Solution: The electric field must point *radially away* from the symmetry axis of the rod. The magnitude of the electric field is constant on cylindrical surfaces of radius *r*.

Example: Infinitely Long Rod of Uniform Charge Density

Solution: We choose a coaxial cylinder as our Gaussian surface.

$$\Phi_{Net} = \oint \vec{E} \cdot d\vec{A} = \int \vec{E}_1 \cdot d\vec{A}_1 + \int \vec{E}_2 \cdot d\vec{A}_2 + \int \vec{E}_3 \cdot d\vec{A}_3$$

• The ends S_1 and S_2 yield $\Phi = 0$

$$\Phi_{Net} = \int \vec{E}_3 \cdot d\vec{A}_3 = E_3(2\pi \, r\ell)$$

$$\frac{Q_{Enc}}{\epsilon_0} = \frac{(\lambda \ \ell)}{\epsilon_0}$$

Example: Infinitely Long Rod of Uniform Charge Density

Solution:

Therefore:

$$E(r) = \frac{\lambda}{2\pi\epsilon_0 r} = 2k\left(\frac{\lambda}{r}\right)$$

Example: Infinitely Plane of Charge

Consider an infinitely wide non-conducting sheet in the xy-plane with uniform surface charge density σ . Determine the electric field everywhere in space.

Example: Infinitely Plane of Charge

Solution: By planar symmetry, the electric field must point perpendicularly away from the plane. The magnitude of the electric field is constant on planes parallel to the non-conducting plane.

- We choose our Gaussian surface to be a cylinder ("pillbox").
 - The pillbox consists of three parts: two end-caps and the cylindrical side.

Example: Infinitely Plane of Charge

Solution:

$$\Phi_{Net} = \oint \vec{E} \cdot d\vec{A} = \int \vec{E}_1 \cdot d\vec{A}_1 + \int \vec{E}_2 \cdot d\vec{A}_2 + \int \vec{E}_3 \cdot d\vec{A}_3$$

• The side S_3 yield $\Phi = 0$

$$\Phi_{Net} = E_1 A + E_2 A = 2EA$$

$$\frac{Q_{Enc}}{\epsilon_0} = \frac{(\sigma A)}{\epsilon_0}$$

Therefore:

$$E = \frac{\sigma}{2\epsilon_0} = 2\pi k \ \sigma$$

Example: Infinitely Plane of Charge

Solution:

$$E(x, y, z) = \begin{cases} -\frac{\sigma}{2\epsilon_0} & z < a \\ +\frac{\sigma}{2\epsilon_0} & z > a \end{cases}$$

Electric field in a conductor

 At equilibrium under electrostatic conditions, the *electric field* is zero at any point within a conducting material.

 At equilibrium under electrostatic conditions, any excess charge resides on the surface of a conductor.

Electric field in a conductor

Excess charge on a solid conductor.

Electric field in a conductor

Excess charge on solid conductor with internal cavity.

Because $\vec{E} = 0$ at all points within the conductor, the electric field at all points on the Gaussian surface must be zero.

Electric field in a conductor

 An isolated point charge suspended in the cavity of charged solid conductor with internal cavity.

For \vec{E} to be zero at all points on the Gaussian surface, the surface of the cavity must have a total charge -q.

Example: Conductor with internal cavity

A solid conductor carries a total charge of +7 nC. Within the cavity, insulated from the conductor, is a point charge of -5 nC. How much charge is on each surface of the conductor?

total charge -q.

Electric field in a conductor

Electric field on the surface of a charged solid conductor.

Static equilibrium:

$$E_{\parallel}=0$$

(No tangential field)

Perpendicular field only:

$$E_{\perp} = \frac{\sigma}{\epsilon_0}$$

Electric field in a conductor

Electric field on the surface of a charged solid conductor.

Electric field in a conductor

 The conductor shields any charge within it from electric fields created outside the conductor.

At electrostatic equilibrium, *electric field* must vanish inside a conductor. The conductor is *polarized*.

Example: Parallel-plate capacitor

Two parallel infinite conducting planes lying in the *xy*-plane are separated by a distance *d*. Each plane is uniformly charged with equal but opposite surface charge densities. Find the electric field everywhere in space.

Example: Parallel-plate capacitor

- Solution:
 - a) By superposition of two infinite planes
 - b) Using Gauss' law

$$E(x, y, z) = \begin{cases} 0 & z > d/2 \\ -\frac{\sigma}{\epsilon_0} & d/2 > z > -d/2 \\ 0 & z < -d/2 \end{cases}$$

END

