durée : 2h

Exercice 1 (25 points).

Partie 1 : La constante d'Euler

Soit (H_n) la suite réelle (dite série harmonique) définie par :

$$\forall n \geqslant 1 , \ H_n = \sum_{k=1}^n \frac{1}{k}.$$

On pose:

$$\forall n \in \mathbb{N}^*, \ a_n = H_n - \ln(n+1), \ b_n = H_n - \ln(n).$$

1. En utilisant l'inégalíté classique : $\forall x>-1,\ \ln(1+x)\leqslant x,$ montrer que, pour tout $n\in\mathbb{N}^*$

$$\ln(n+2) - \ln(n+1) \leqslant \frac{1}{n+1}$$
 et $\ln(n) - \ln(n+1) \leqslant -\frac{1}{n+1}$

- 2. Montrer que les suite (a_n) et (b_n) convergent vers une même limite que l'on notera γ , dite constante d'Euler.
- 3. Justifier: $1 \ln(2) \leqslant \gamma \leqslant 1$.
- 4. Quelle est la limite de la suite (H_n) ?

Partie 2: Une application

Pour tout
$$n \in \mathbb{N}^*$$
 , on pose : $A_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^{n+1}}{n}$.

On souhaite démontrer que la suite (A_n) converge et déterminer sa limite.

5. On pose , pour tout entier naturel non nul n ,

$$K_n = \sum_{k=1}^n \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$$

- (a) Montrer que la suite (K_n) est croissante et majorée par 1.
- (b) Que peut-on en déduire?
- (c) Exprimer, pour $n \in \mathbb{N}^*$, K_n à l'aide d'éléments des suites (H_n) et (H_{2n}) ; puis à l'aide d'éléments des suites (b_n) et (b_{2n}) .
- (d) En déduire que la suite (K_n) converge vers $\ln(2)$.
- 6. (a) Montrer, par récurrence, que $\forall n\geqslant 1, \ A_{2n}=K_n.$
 - (b) Que vaut $A_{2n+2} A_{2n+1}$? En déduire que la suite (A_n) converge et déterminer sa limite.

Exercice 2 (15 points).

On considère la suite (u_n) définie par

$$\begin{cases} u_0 = e \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1 + u_n}{1 + \ln(u_n)} \end{cases}$$

- 1. On définit la fonction g sur $[1, +\infty[$ par $g(x) = \frac{1+x}{1+\ln x}$
 - (a) Etudier le signe de la fonction $h: x \mapsto x \ln x 1$ sur l'intervalle $[1, +\infty[$.
 - (b) Montrer que la dérivée de g s'annule en un unique point α de $[1, +\infty[$ et que celui-ci vérifie $\alpha \ln(\alpha) = 1$.
 - (c) Déterminer le tableau des variations de g , en précisant le comportement de g aux bornes.
 - (d) Montrer que l'intrervalle $[\alpha, +\infty[$ est stable par g.
- 2. Montrer soigneusement que la suite (u_n) est monotone et converge vers une limite à préciser

Exercice 3 (10 points).

On veut déterminer les fonctions définies sur $\left[0,1\right]$ et vérifiant les deux points suivants :

$$\begin{cases} (P_1): & \forall x \in [0,1], \ 2x - f(x) \in [0,1] \\ (P_2): & \forall x \in [0,1], \ f(2x - f(x)) = x \end{cases}$$

1. Soit f une solution du problème. Soit $\alpha \in [0,1]$ et la suite v définie par :

$$\begin{cases} v_0 = \alpha \\ \forall n \in \mathbb{N}, \ v_{n+1} = 2v_n - f(v_n) \end{cases}$$

- (a) Montrer que la suite v est bien définie et que tous ses termes sont dans [0,1].
- (b) Montrer que : $\forall n \in \mathbb{N}, \ v_{n+2} = 2v_{n+1} v_n$.
- (c) En déduire une expression de v_n en fonction de α et de $f(\alpha)$.
- (d) En déduire que $f(\alpha) = \alpha$.
- 2. Conclure.