

министерство науки и высшего образования российской федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

ОТЧЁТ ПО ПРАКТИКЕ

Учебная ознакомительная практика

Оценка

Оглавление

1	Осн	овная часть
	1.1	Индивидуальное задание практики
		Выбор моделей
		YOLO
	1.4	RT-DETR
	1.5	Faster R-CNN
	1.6	Исследование моделей

Введение

Учебная ознакомительная практика в ДВФУ направлена на формирование и развитие первичных профессиональных умений и навыков в сфере избранной специальности, в том числе в области разработки программных продуктов с применением современных информационных технологий с учётом тенденции развития программирования и математического обеспечения.

Учебная ознакомительная практика позволяет систематизировать знания, умения и навыки студента, что обеспечивает становление профессиональных компетенций будущего магистра.

Задачами учебной практики являются:

- приобретение первых практических навыков по выбранному направлению подготовки;
- формирование единства теоретической и практической подготовки,
 закрепление и углубление полученных теоретических знаний и практических
 навыков в области разработки программных продуктов с применением
 современных информационных технологий;
- участие в сборе внутренней и внешней информации и приобретение навыков самостоятельной ее обработки и анализа;
 - проверка достоверности собранных данных;
- приобретение и развитие навыков, способствующих формированию творческого подхода в решении проблем проектной и производственно-технологической деятельности;
- сбор фактического материала для подготовки магистерской диссертации:
 конкретизация направлений магистерского исследования, необходимого объёма информации для обобщения своих знаний по выбранной теме магистерской диссертации.

Содержание и программа практики:

- ознакомление с программой, местом и временем проведением практики;
- ознакомление с литературными источниками по теме практики;

- проведение исследования информационной базы индивидуального проекта;
 - выполнение индивидуального проекта практики;
 - подготовка отчёта по практике и его защита.

1 Основная часть

1.1 Индивидуальное задание практики

В качестве индивидуального задания практики было поручено исследовать возможность распознавания медведей при помощи методов машинного обучения.

Само по себе распознавание медведей является актуальной и интересной задачей, так как разработанные решения можно использовать для:

- Исследование поведения медведей
- Обеспечение безопасного проведения работ в областях, которые расположены в местах обитания медведей
 - Исследование миграции медведей
- Наблюдение за медведями в местах их содержания(вольеры, заповедники и т.д.)

1.2 Выбор моделей

Для выполнения задания в первую очередь требовалось выбрать рассматриваемые модели. К моделям были применены следующие требования, а именно:

- Быстродействие
- Точность
- Возможность решать задачи классификации изображений или детекции

В частном случае задача детекции была превращена в задачу классификации, так как если модель смогла на изображении найти объект с нужным классом, то в качестве ответа получали только метку класса, а именно есть медведь на изображении или он отсутствует.

Были выбраны следующие модели:

- YOLO
- RT-DETR
- Faster R-CNN

Для всех моделей были использованы веса, которые обучили на датасете Common Objects in Context (COCO).

1.3 YOLO

Когда в задаче говорится о детекции объектов, то в первую очередь для решения этой задачи в голову приходит архитектура YOLO.

YOLO (You Only Look Once), популярная модель обнаружения объектов и сегментации изображений, была разработана Джозефом Редмоном и Али Фархади в Университете Вашингтона. Появившись в 2015 году, YOLO быстро завоевала популярность благодаря своей высокой скорости и точности.

На сегодняшний день существует не менее 10 версий описываемой архитектуры.

Алгоритм YOLO, был первой попыткой сделать возможной детекцию объектов в реальном времени. В рамках алгоритма YOLO исходное изображение сначала разбивается на сетку из $N \times N$ ячеек. Если центр объекта попадает внутрь координат ячейки, то эта ячейка считается ответственной за определение параметров местонахождения объекта. Каждая ячейка описывает несколько вариантов местоположения ограничивающих рамок для одного и того же объекта. Каждый из этих вариантов характеризуется пятью значениями — координатами центра ограничивающей рамки, его шириной и высотой, а также степени уверенности в том, что ограничивающая рамка содержит в себе объект. Также необходимо для каждой пары класса объектов и ячейки определить вероятность того, что ячейка содержит в себе объект этого класса. Таким образом, последний слой сети, принимающий конечное решение об ограничивающих рамках и классификации объектов работает с тензором размерности $N \times N \times (5B+C)$, где B — количество предсказываемых ограничивающих рамок для ячейки, C количество классов объектов, определённых изначально.

Рисунок 1 – Алгоритм YOLO

Рисунок 2 – Архитектура YOLO

1.4 RT-DETR

Следующей исследуемой архитектурой стали визуальные трансформеры. К использованию Real-Time Detection Transformer(RT-DETR) подтолкнула статья на arxiv "DETRs Beat YOLOs on Real-time Object Detection" и готовая реализация в бибилотеке ultralytics.

По мению авторов статьи, использование подавления немаксимумов (Non-Maximum Suppression, NMS), который является важных шагом в детекции YOLO, негативно сказывается на производительности и точности модели. В свою очередь авторы отказываюстя от NMS и описывают свою архитектуру следующим образом.

Мы передаем признаки из последних трех слоев бэкбона в кодер.

Эффективный гибридный кодер преобразует многомасштабные признаки в последовательность признаков изображения посредством внутримасштабного взаимодействия признаков основанного на внимании (Attention based Intrascale Feature Interaction, AIFI) и слияния межмасштабных признаков на основе CNN (CNN-based Cross-scale Feature Fusion, CCFF). Затем выбор запроса с минимальной неопределенностью выбирает фиксированное количество признаков кодера, которые будут служить начальными объектными запросами для декодера. Наконец, декодер со вспомогательными головами прогнозирования итеративно оптимизирует объектные запросы для генерации категорий и блоков.

Рисунок 3 – Представление RT-DETR

Также авторы сделали бенчмарк с датасетом MS COCO и сравнили свою архитектуру с другими моделями детекции в реальном времени и показали, что их архитектура достигает SOTA

Рисунок 4 – Сравнение RT-DETR с другими моделями детекции

1.5 Faster R-CNN

Заключительной рассматриваемой архитектурой стали Сверточные сети, основанные на регионах или же Region-based CNN (R-CNN), а в частности их модификация Faster R-CNN.

Эта архитектура была выбрана для рассмотрения как одна из классических архитектур, которая решает задачу детекции. В её основе лежит алгоритм выборочного поиска (Selective Search). Данный алгоритм получает на вход изображение, а на выходе выдает массив прямоугольников, в которых возможно находится объект. И идея такова, что в первую очередь будет проведен выборочный поиск, при помощи которого мы получим кропы изображений, а уже эти кропы мы помещаем в классификатор.

В дальнейшем эту идею развили, потому что нам не нравилось, что для каждой гипотезы из выборочного поиска мы выполняли классификацию, поэтмоу решили сперва выполнить свертку и получить карту признаков(Feature Map), затем на исходном изображении получить гипотезы и их спроецировать на карту признаков. Этот алгоритм назвали Fast R-CNN.

Заключительной идее в R-CNN стало следующее: выборочный поиск решили заменить на нейронную сеть. И теперь поиск границ объектов это тоже обучаемый алгоритм.

Рисунок 5 – Принцип работы Faster R-CNN

1.6 Исследование моделей

Для исследования моделей был собран небольшой тестовый датасет из 71 изображения. 51 изображение содержало медведей, 20 изображений медведей не содержали. Изображения подбирались с учетом специфики задания, а именно подбирались изображения из дикой природы, полученные при помощи фотоловушек или съемки издалека, то есть художественные снимки заведомо не подходили, так как имели высокое качество, что в свою очередь не соответствовало специфике задания.

Рисунок 6 – Пример изображения, которое содержит медведя

Рисунок 7 – Пример изображения, которое медведя не содержит

Для выполнения работы были использованы следующие библиотеки:

- ultralytics
- torchvision
- matplotlib
- sklearn

Метрикой качества модели была выбрана ассигасу, также были построены матрицы ошибок и ROC кривая.

Вычисление метрики, посмотрение матриц ошибок и ROC кривой было выполнено в виде функций, в которые передавались истинные метки и метки предказанные моделями. В функцию для построения ROC кривой вместо предсказанных меток передавалась уверенность модели в ответе.

Вычисление точности:

Построение матрицы ошибок:

```
def plot_conf_mat(y_pred_dict, y_true, rows_cols: tuple[int] |

→ None = None, figsize: tuple[int] | None = None, save =

→ False, file_name = 'ConfMat_plot.png'):

if not rows_cols:

rows, cols = factor(len(y_pred_dict))

→ #определяем кол-во строк и столбцов при

→ помощи разложения на множители

rows, cols = rows_cols
```

```
for i in range(rows):
                        for j in range(cols):
                        model, y pred =
                        → list(y pred dict.items())[counter]
                        cm = confusion matrix(y true, y pred)
                        axs[i][j].set title(model)
                        ConfusionMatrixDisplay(cm).plot(ax=axs[i][j]
                        counter +=1
        plt.tight layout()
        if save:
                plt.savefig(file name)
Построение ROC кривой
def plot_roc_curve(y_conf_dict, y_true, save = False, file_name
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
        for name, y conf in y conf dict.items():
                fpr, tpr, thresholds = metrics.roc curve(y true,

y_conf)

                roc auc = metrics.auc(fpr, tpr)
                metrics.RocCurveDisplay(fpr=fpr, tpr=tpr,
                \rightarrow roc auc=roc auc,
                 → estimator name=name).plot(ax=ax)
        ax.plot((0, 1), (0, 1),
                label="Chance level (AUC = 0.5)",
                               12
```

fig, axs = plt.subplots(rows, cols, figsize=figsize)

counter = 0

```
color="k",
    linestyle="--",)

ax.legend()
ax.set_title("Receiver Operating Characteristic (ROC)
    curves")
ax.grid(linestyle="--")
plt.tight_layout()

if save:
    plt.savefig(file_name)
```

Результаты исследования моделей представлены ниже.

Рисунок 8 – Матрица ошибок для моделей YOLO и RT-DETR

Рисунок 9 – Матрица ошибок для моделей Faster R-CNN

Рисунок 10 – ROC кривая для моделей YOLO и RT-DETR

Рисунок 11 – ROC кривая для моделей Faster R-CNN

Полученные значения метрики качества:

yolov5nu acc: 0.736111111111111

yolov8n acc: 0.7777777777778

yolov8s acc: 0.84722222222222

yolov9t acc: 0.80555555555556

yolov10n acc: 0.75

yolov10s acc: 0.861111111111112

yolov10m acc: 0.90277777777778

yolov8x acc: 0.9444444444444444

yolov9c acc: 0.861111111111112

yolov9e acc: 0.9861111111111112

yolov101 acc: 0.930555555555556

yolov10x acc: 0.9027777777778

rtdetr-1 acc: 0.972222222222222

rtdetr-x acc: 0.95833333333333333

fasterrcnn resnet50 fpn v2 acc: 0.52777777777778

fasterrcnn_mobilenet_v3_large_fpn acc: 0.347222222222222

fasterrcnn_mobilenet_v3_large_320_fpn acc: 0.4305555555555556

Заключение

По полученным результатам исследования можно сделать вывод, что модель yolov9e является наиболее точной в сравнении с другими исследованными моделями. Также эта модель имеет наибольшую площадь под кривой ROC. Изучив матрицу ошибок по этой модели можно обратить внимание, что у модели не было ложно-отрицательных срабатываний. Это означает, что модель не пропустила ни одного изображения содержащего медведя, и в случае когда речь идет о жизнях людей это имеет решающий фактор. Неплохой результат показали RT-DETR, которые уступили лишь одной модели в точности.

Также модели исследовались на синтетических данных в качестве тестовых. Это была созданная сцена с медведем в лесу. Основная проблема с которой столкнулись исследуемые модели заключалась в том, что не получалось обнаружить медведя на этих изображеиях. Эту проблему удавалось нивелировать дообучением исследованных моделей на синтетических данных, что могло бы помочь в задаче детекции медведей в специфической местности.

Во время прохождения практики были успешно выполнены все поставленные задачи. Получены первичные профессиональные умения и навыки в области разработки программных продуктов с применением современных информационных технологий, сформировано единство теоретической и практической подготовки, закреплены теоретические знания и практические умения, был получен опыт самостоятельной сборки, анализа и проверки внешней и внутренней информации, сформированы навыки творческого решения проблем проектной и производственно-технологической деятельности.

При выполнении индивидуального практического задания со стороны руководителя практики и преподавателей была оказана значительная помощь в поиске и изучении нового материала, выполнении заданий, оформлении отчёта.

министерство науки и высшего образования российской федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

ДНЕВНИК

Прохождения практики Учебная ознакомительная практика

Студент	Сизоненко Григорий Григорьевич	
Группа	М9123-09.04.01иибд	

Дата выполнения работ	Место	Краткое содержание выполняемых работ	Отметка о выполнении работы
	ЦПИР	Получение индивидуального практического задания	
	ЦПИР	Выполнения индивидуально практического задания	
	ЦПИР	Подготовка отчёта по практике	
	ЦПИР	Защита отчёта	

Руководитель практики от университета

Костенков В. А., инженер ЦПИР

(Ф.И.О., должность, подпись)

Индивидуальное задание по практике

Студенту группы М912	3-09.04.01иибд	Сизоненко Григорий Григо		рьевич				
	(группа)		(Ф.И.О.)					
Место прохождения практики: Центр прикладных исследований и разработок								
Сроки прохождения пра	актики с	по	2024 год	a				
Виды работ и требов	ания по их вы	іполнению: С	Эзнакомиться с	моделями				
распознавания. Иссле	едовать эти мод	цели в задаче	распознавания	медведей.				
Исследуемые модели	должны быть	протестирова	ны на данных	, которые				
отражают применяемое	оборудование д	ля наблюдения	я за дикими жив	ОТНЫМИ.				
Руководитель практики	от ДВФУ							
инженер ЦПИР		Костенков В. А.		A.				
(должность)	(подпись)		(Ф.И.О.)					
	2024 -							