

74VHC245

OCTAL BUS TRANSCEIVER (3-STATE)

- HIGH SPEED: $t_{PD} = 4.0 \text{ ns}$ (TYP.) at $V_{CC} = 5V$
- LOW POWER DISSIPATION: $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \text{°C}$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- POWER DOWN PROTECTION ON CONTROL INPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 8 mA (MIN)
- BALANCED PROPAGATION DELAYS: tpi H ≅ tpHi
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 2V to 5.5V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 245
- IMPROVED LATCH-UP IMMUNITY
- LOW NOISE: V_{OLP} = 0.9V (MAX.)

DESCRIPTION

The 74VHC245 is an advanced high-speed CMOS OCTAL BUS TRANSCEIVER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology.

This IC is intended for two-way asynchronous communication between data busses; the

Table 1: Order Codes

PACKAGE	T & R
SOP	74VHC245MTR
TSSOP	74VHC245TTR

direction of data transmission is determined by DIR input. The enable input G can be used to disable the device so that the busses are effectively isolated.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

All floating bus terminals during High Z State must be held HIGH or LOW.

Figure 1: Pin Connection And IEC Logic Symbols

November 2004 1/12

Figure 2: Input Equivalent Circuit

Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION
1	DIR	Directional Control
2, 3, 4, 5, 6, 7, 8, 9	A1 to A8	Data Inputs/Outputs
18, 17, 16, 15, 14, 13, 12, 11	B1 to B8	Data Inputs/Outputs
19	G	Output Enable Input
10	GND	Ground (0V)
20	V_{CC}	Positive Supply Voltage

Table 3: Truth Table

INP	UTS	FUNC	OUTPUT		
G	DIR	A BUS	B BUS	OUTPUT	
L	L	OUTPUT	INPUT	A = B	
L	Н	INPUT	OUTPUT	B = A	
Н	X	Z	Z	Z	

X : Don't Care Z : High Impedance

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage (DIR, G)	-0.5 to +7.0	V
V _{I/O}	Bus I/O Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
I _O	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 75	mA
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 5.5	V
VI	Input Voltage (DIR, G)	0 to 5.5	V
V _{I/O}	Bus I/O Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 1) ($V_{CC} = 3.3 \pm 0.3 V$) ($V_{CC} = 5.0 \pm 0.5 V$)	0 to 100 0 to 20	ns/V

1) V_{IN} from 30% to 70% of V_{CC}

Table 6: DC Specifications

		7	Test Condition				Value				
Symbol	Parameter	v _{cc}		T _A = 25°C		-40 to	85°C	-55 to	125°C	Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	3.0 to 5.5		0.7V _{CC}			0.7V _{CC}		0.7V _{CC}		V
V _{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	3.0 to 5.5				0.3V _{CC}		0.3V _{CC}		0.3V _{CC}	V
V _{OH}	High Level Output	2.0	I _O =-50 μA	1.9	2.0		1.9		1.9		
	Voltage	3.0	I _O =-50 μA	2.9	3.0		2.9		2.9		
		4.5	I _O =-50 μA	4.4	4.5		4.4		4.4		V
		3.0	I _O =-4 mA	2.58			2.48		2.4		
		4.5	I _O =-8 mA	3.94			3.8		3.7		
V _{OL}	Low Level Output	2.0	I _O =50 μA		0.0	0.1		0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1		0.1	
		4.5	I _O =50 μA		0.0	0.1		0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44		0.55	
		4.5	I _O =8 mA			0.36		0.44		0.55	
I _{OZ}	High Impedance Output Leakage Current	5.5	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.25		± 2.5		± 2.5	μΑ
I _I	Input Leakage Current	0 to 5.5	V _I = 5.5V or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40		40	μΑ

Table 7: AC Electrical Characteristics (Input $t_r = t_f = 3ns$)

		٦	Test Condition			Value						
Symbol	Parameter	v _{cc}	CL		Т	T _A = 25°C		-40 to	85°C	-55 to 125°C		Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	3.3 ^(*)	15			5.8	8.4	1.0	10.0	1.0	10.0	
t _{PHL}	Time	3.3 ^(*)	50			8.3	11.9	1.0	13.5	1.0	13.5	ns
		5.0 ^(**)	15			4.0	5.5	1.0	6.5	1.0	6.5	115
		5.0 ^(**)	50			5.5	7.5	1.0	8.5	1.0	8.5	
t _{PZL}	Output Disable	3.3 ^(*)	15	$R_L = 1K\Omega$		8.5	13.2	1.0	15.5	1.0	15.5	
t _{PZH}	Time	3.3 ^(*)	50	$R_L = 1K\Omega$		11.0	16.7	1.0	19.0	1.0	19.0	nc
		5.0 ^(**)	15	$R_L = 1K\Omega$		5.8	8.5	1.0	10.0	1.0	10.0	ns
		5.0 ^(**)	50	$R_L = 1K\Omega$		7.3	10.6	1.0	12.0	1.0	12.0	
t _{PLZ}	Output Enable	3.3 ^(*)	50	$R_L = 1K\Omega$		11.5	15.8	1.0	18.0	1.0	18.0	nc
t _{PHZ}	PHZ Time	5.0 ^(**)	50	$R_L = 1K\Omega$		7.0	9.7	1.0	11.0	1.0	11.0	ns
toslh	Output to Output	3.3 ^(*)	50				1.5		1.5		1.5	ns
toshl	Skew time (note 1)	5.0 ^(**)	50				1.0		1.0		1.0	113

^(*) Voltage range is $3.3V \pm 0.3V$ (**) Voltage range is $5.0V \pm 0.5V$

Note 1: Parameter guaranteed by design. $t_{soLH} = |t_{pLHm} - t_{pLHn}|$, $t_{soHL} = |t_{pHLm} - t_{pHLn}|$

Table 8: Capacitive Characteristics

		Test Condition	Value							
Symbol Parameter			Т	T _A = 25°C			-40 to 85°C		-55 to 125°C	
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance			4	10		10		10	рF
C _{I/O}	Output Capacitance			8						pF
C _{PD}	Power Dissipation Capacitance (note 1)			21						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/8$ (per circuit)

Table 9: Dynamic Switching Characteristics

		1	Test Condition		Value						
Symbol	Parameter	v _{cc}		Т	T _A = 25°C			85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{OLP}	Dynamic Low				0.6	0.9					.,
V _{OLV}	Voltage Quiet Output (note 1, 2)	5.0		-0.9	-0.6						V
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	5.0	C _L = 50 pF	3.5							V
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	5.0				1.5					V

Figure 3: Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 C_L =15/ 50pF or equivalent (includes jig and probe capacitance) $R_L=R_1$ = $1K\Omega$ or equivalent $R_T=Z_{OUT}$ of pulse generator (typically $50\Omega)$

¹⁾ Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0V to 5.0V, (n-1) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. (n-1) switching 0V to 5.0V. Inputs under test switching: 5.0V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f=1MHz.

Figure 4: Waveform - Propagation Delays (f=1MHz; 50% duty cycle)

Figure 5: Waveform - Output Enable And Disable Time (f=1MHz; 50% duty cycle)

SO-20 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А	2.35		2.65	0.093		0.104		
A1	0.1		0.30	0.004		0.012		
В	0.33		0.51	0.013		0.020		
С	0.23		0.32	0.009		0.013		
D	12.60		13.00	0.496		0.512		
E	7.4		7.6	0.291		0.299		
е		1.27			0.050			
Н	10.00		10.65	0.394		0.419		
h	0.25		0.75	0.010		0.030		
L	0.4		1.27	0.016		0.050		
k	0°		8°	0°		8°		
ddd			0.100			0.004		

TSSOP20 MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
А			1.2			0.047			
A1	0.05		0.15	0.002	0.004	0.006			
A2	0.8	1	1.05	0.031	0.039	0.041			
b	0.19		0.30	0.007		0.012			
С	0.09		0.20	0.004		0.0079			
D	6.4	6.5	6.6	0.252	0.256	0.260			
Е	6.2	6.4	6.6	0.244	0.252	0.260			
E1	4.3	4.4	4.48	0.169	0.173	0.176			
е		0.65 BSC			0.0256 BSC				
К	0°		8°	0°		8°			
L	0.45	0.60	0.75	0.018	0.024	0.030			

Tape & Reel SO-20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			30.4			1.197
Ao	10.8		11	0.425		0.433
Во	13.2		13.4	0.520		0.528
Ko	3.1		3.3	0.122		0.130
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	6.9		7.1	0.272		0.280
Ko	1.7		1.9	0.067		0.075
Ро	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Table 10: Revision History

Date	Revision	Description of Changes
12-Nov-2004	6	Order Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.