

2

DEFINISI ALJABAR BOOLEAN

- + = tambah
- = kali
- = komplemen

Aljabar Bool merupakan aljabar yang berhubungan dengan variable-variable biner dan operator-operator logic.

Aljabar Boolean terdiri dari:

- **1. B** = himpunan (Bool)
- 2. + dan . = operator biner
- **3.** ' = operator unar/komplemen
- 4. 0 dan 1 = elemen biner
- 5. a,b,c...z = variable

HUKUM-HUKUM ALJABAR BOOLEAN

1. HKM IDENTITAS

$$i. a + 0 = a$$

 $ii. a \cdot 1 = a$

2. HKM KOMPLEMEN

$$i. a + a' = 1$$

 $ii. a . a' = 0$

3. HKM INVOLUSI

$$i. (a')' = a$$

4. HKM DOMINASI

$$i. a + 1 = 1$$

 $ii. a . 0 = 0$

5. HKM KOMUTATIF

i.
$$a + b = b + a$$

ii. $a.b = b.a$

6. HKM DISTRIBUTIF

i.
$$a + (b.c) = (a + b).(a + c)$$

ii. $a.(b + c) = (a.b) + (a.c)$

7. HKM ASOSIATIF

$$i.a + (b + c) = (a + b) + c$$

 $ii. a. (b. c) = (a. b). c$

8. HKM IDEMPOTEN

i.
$$a + a = a$$

 ii. $a \cdot a = a$

9. HKM PENYERAPAN

$$i. a + (a. b) = a$$

 $ii. a. (a + b) = a$

10. HKM De MORGAN

i.
$$(a + b)' = a'.b'$$

ii. $(a.b)' = a' + b'$

11. HKM 0/1

$$i. 0' = 1.$$

 $ii. 1' = 0$

TERAPAN ALJABAR BOOLEAN

Catt: Pada pertemuan 4 hanya membahas:

- 1. Aljabar Boolean 2 Variable dan 3 Variable
- 2. Prinsip Dualitas
- 3. Fungsi Boolean4. Penjumlahan dan Perkalian 2 Fungsi

Sedangkan point 5-8 akan dibahas pada pertemuan selanjutnya

Terapan aljabar Boolean antara lain:

- 1. Aljabar Boolean 2 Variable dan 3 Variable
- 2. Prinsip Dualitas
- 3. Fungsi Boolean
- 4. Penjumlahan dan Perkalian 2 Fungsi
- 5. Komplemen Fungsi Boolean
- 6. Bentuk Kanonik
- 7. Rangkaian Logik (Gate)
- 8. Penyederhanaan Fungsi Boolean

Aljabar Boolean dapat di implenetasikan ke dalam bentuk table.

Yang dimaksud dengan 2 dan 3 disini adalah banyaknya variable yang digunakan.

Terdiri dari:

- 1. Operator biner (+ dan .)
- 2. Operator unar/komplenen (')
- 3. Elemen biner (0 dan 1)
- 4. Variable (a,b,..z)

ALJABAR BOOLEAN 2 & 3 VARIABLE

TABEL
KEBENARAN
ALJABAR
BOOLEAN
2 VARIABEL

Kaidah penggunaan operator biner, operator unar dan elemen biner ke dalam bentuk table 2 variable: Dengan rumus: 2^n , n = banyaknya variable

\boldsymbol{a}	<i>a</i> '
0	1
1	0

a	b	a.b
0	0	0
0	1	0
1	0	0
1	1	1

\boldsymbol{a}	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

ALJABAR BOOLEAN 2 & 3 VARIABLE

TABEL KEBENARAN ALJABAR BOOLEAN 3 VARIABEL

\boldsymbol{a}	b	\boldsymbol{c}	a.b.c
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	a+b+c
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

ALJABAR BOOLEAN 2 & 3 VARIABLE

CONTOH:

Perhatikan bahwa

1.
$$a+(a'.b)=a+b$$

2. a+(b.c)+(a.c')

Buatlah **table kebenarannnya**

\boldsymbol{a}	\boldsymbol{b}	a,	a'.b	a+(a'.b)	a+b
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1

\boldsymbol{a}	b	c	c'	b.c	a.c	a+(b.c)+(a.c')
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	0	1	0	0	0	1
1	1	0	1	0	1	1
1	1	1	0	1	0	1

PRINSIP DUALITAS

Misalkan s adalah kesaman (identity) di dalam aljabar Boolean yang melibatkan:

- 1. Operator biner (+ dan .)
- 2. Operator unar/komplenen (')
- 3. Elemen biner (0 dan 1)
- 4. Variable (a,b,..z)

Notasi simbolik dualitas = S*

Dengan cara mengganti:

$$1 \rightarrow 0$$

$$0 \rightarrow 1$$

$$+ \rightarrow$$
 .

$$\rightarrow$$

PRINSIP DUALITAS

Contoh tentukan dual dari:

$$2. (a.1).(0+a')=1$$

3.
$$a.(a'+b)=a.b$$

4.
$$(a+b).(b+c)=ac+b$$

5.
$$(a+1).(a+0)=a$$

Jawaban:

1.
$$S^* = a.1 = a$$

2.
$$S^* = (a+0)+(1.a')=0$$

3.
$$S^* = a + (a'.b) = a + b$$

4.
$$S^* = (a.b) + (b.c) = (a+c).b$$

5.
$$S^* = (a.0) + (a.1) = a$$

ekspresi yang dibentuk dari peubah Boolean melalui:

- 1. Operator biner (+ dan .)
- 2. Operator unar/komplenen (')
- 3. Variable (a,b,..z)

Peubah = variable

Notasi simbolik: f, h, g

Contoh:

- 1. f(x) = x
- $2. \quad g(x,y) = x'y + x$
- 3. h(x, y, z) = (x + y)' + xyz

Nama Fungsi	Variable Fungsi	Isi Variable Fungsi
f	\boldsymbol{x}	\boldsymbol{x}
g	x,y	x'y+x
h	x,y,z	(x+y)'+ xyz

FUNGSI BOOLEAN (FUNGSI BINER)

Fungsi Boolean dapat juga di implementasikn ke dalam table kebenaran

Contoh:

$$f(x, y. z) = xyz' + x$$

\boldsymbol{x}	у	z	z '	xyz'	xyz'+x
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	0	1

Misalkan f dan g adalah dua fungsi Boolean dengan n peubah (variable) maka :

Penjumlahan f+g

1.
$$(f+g)(x_1,x_2,...x_n) = f(x_1+x_2+...+x_n) + g(x_1+x_2+...+x_n)$$

Perkalian f.g

2.
$$(f.g)(x1,x2,...,xn) = f(x1+x2+...+xn).g(x1+x2+...+xn)$$

Contoh 1:

Carilah
penjumlahan
dan perkalian
fungsi dari
persamaan

$$f(x,y) = xy' + y$$
$$g(x,y) = x' + y'$$

Penjumlahan

$$f + g(x,y) = (xy' + y) + (x' + y')$$

$$= xy' + y + x' + y'$$

$$= xy' + x' + y + y'$$

$$f + g(x,y) = xy' + x' + 1$$

Hkm komplemen y+y'=1 v.v'=0

Contoh 2:

Carilah penjumlahan dan perkalian fungsi dari persamaan

$$f(x, y, z) = xy' + y$$

$$g(x, y, z) = x' + xy'z$$

Penjumlahan

$$f + g(x, y, z) = (xy' + y) + (x' + xy'z)$$

$$= xy' + y + x' + xy'z$$

$$= (xy' + xy'z) + x' + y$$

$$= xy'(1 + z) + x' + y$$

$$= xy'. 1 + x' + y$$

$$f + g(x, y, z) = xy' + x' + y$$

Perkalian

$$f. g(x, y, z) = (xy' + y). (x' + xy'z)$$

$$= xy'x' + xy'xy'z + yx' + yxy'z$$

$$= xx'y' + xxy'y'z + x'y + xyy'z$$

$$= 0. y' + xy'z + x'y + x. 0. z$$

f.g(x,y,z) = xy'z + x'y

Hkm idempotent y+y=y y.y=y Hkm komplemen y+y'=1 y.y'=0

LATIHAN 3

$$b. 1 + x = 0 + x$$

2. Buatlah table kebenaran fungsi dibawah ini:

$$f = a' + b'c' + abc$$

3. Carilah penjumlahan dan perkalian fungsi dari persamaan dibawah ini:

i.
$$g(a,b) = ab' + b$$

 $h(a,b) = a' + b$

ii.
$$f(a,b,c) = a + ab'$$

 $g(a,b,c) = a'b'c + a'bc$

