MACS 201: Hilbert spaces and probability

1 Hilbert spaces

Def. Let \mathcal{H} be a complex linear space. An **inner-product** on \mathcal{H} is a function $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbf{C}$ which satisfies the following properties :

- (i) $\forall (x,y) \in \mathcal{H} \times \mathcal{H}, \langle x \mid y \rangle = \overline{\langle y \mid x \rangle},$
- (ii) $\forall x, y, z \in \mathcal{H} \forall (\alpha, \beta) \in \mathbf{C} \times \mathbf{C}, \langle \alpha x + \beta y \mid z \rangle = \alpha \langle x \mid z \rangle + \beta \langle y \mid z \rangle$,
- (iii) $\forall x \in \mathcal{H}, (\langle x \mid x \rangle = 0) \iff (x = 0)$

Then $\|\cdot\|: x \mapsto \sqrt{\langle x \mid x \rangle} \ge 0$ defines a norm on \mathcal{H} . Both are continuous.

Th. For all $x, y \in \mathcal{H}$, we have :

- a) Cauchy-Schwarz inequality: $|\langle x \mid y \rangle| \leq ||x|| \cdot ||y||$,
- b) triangular inequality : $|||x|| ||y||| \le ||x y|| \le ||x|| + ||y||$,
- c) Parallelogram inequality: $||x + y||^2 + ||x y||^2 = 2 ||x||^2 + 2 ||y||^2$.

Def. An inner-product space \mathcal{H} is called an Hilbert space if it is complete.

Prop. For all measured space $(\Omega, \mathcal{F}, \mu)$, the space $L^2(\Omega, \mathcal{F}, \mu)$ endowed with $\langle f \mid g \rangle = \int f \bar{g} \, d\mu$ is a Hilbert space.

Def. Two vectors $x, y \in \mathcal{H}$ are orthogonal if $\langle x \mid y \rangle = 0$ which we denoted by $x \perp y$. If \mathcal{S} is a subspace of \mathcal{H} , we write $x \perp \mathcal{S}$ if $\forall s \in \mathcal{S}, x \perp s$. Also we write $\mathcal{S} \perp \mathcal{T}$ if all vectors in \mathcal{S} are orthogonal to \mathcal{T} .

Not. If $\mathcal{H} = \mathcal{A} + \mathcal{B}$ and $\mathcal{A} \perp \mathcal{B}$ we will denote $\mathcal{H} = \mathcal{A} \stackrel{\perp}{\oplus} \mathcal{B}$.

Def. Let \mathcal{E} be a subset of an Hilbert space \mathcal{H} . The orthogonal set of \mathcal{E} is defined as $\mathcal{E} = \{x \in \mathcal{H} \mid \forall y \in \mathcal{E}, \langle x \mid y \rangle = 0\}$.

Th. If \mathcal{E} is a subset of an Hilbert space \mathcal{H} , then \mathcal{E}^{\perp} is closed.

Def. Let E be a subset of \mathcal{H} . It is an orthogonal set if for all $(x,y) \in E \times E, x \neq y, x \perp y$. If moreover $\forall x \in E, \|x\| = 1$, we say that E is orthonormal.

Th. Let $(e_i)_{i\geqslant 1}$ be an orthonormal sequence of an Hilbert space \mathcal{H} and let $(\alpha_i)_{i\geqslant 1}\in \mathbf{C^N}$. The series $\sum_{i=1}^{\infty}\alpha_i e_i$ converges in \mathcal{H} if and only if $\sum_i |\alpha_i|^2 < \infty$, in which case $\|\sum_{i=1}^{\infty}\alpha_i e_i\|^2 = \sum_{i=1}^{\infty} |\alpha_i|^2$.

Prop. Let $x \in \mathcal{H}$ (Hilbert space) and $E = \{e_1, \dots, e_n\}$ a finite orthonormal set of vectors. Then $||x - \sum_{k=1}^n \langle x \mid e_k \rangle e_k||^2 = ||x||^2 - \sum_{k=1}^n |\langle x \mid e_k \rangle|^2 = \inf\{||x - y||^2, y \in \operatorname{Span}(e_1, \dots, e_n)\}.$

Cor (Bessel inequality). Let $(e_i)_{i\geqslant 1}$ be an orthonormal sequence of a Hilbert space \mathcal{H} . Then \forall , $x\in\mathcal{H}$, $\sum_{i=1}^{\infty}|\langle x\mid e_i\rangle|^2\leqslant \|x\|^2$.

Def. A subset E of a Hilbert space \mathcal{H} is said dense id $\overline{\mathrm{Span}}(E) = \mathcal{H}$. An orthonormal dense sequence is called a Hilbert basis.

Prop. Consider the measured space $(\Omega, \mathcal{F}, \mu)$ and the Hilbert space $\mathcal{H} = L^2(\Omega, \mathcal{F}, \mu)$, $\overline{\mathrm{Span}}(\mathbf{1}_A, A \in \mathcal{F}) = \mathcal{H}$.

Th. Let $(e_i)_{i\geqslant 1}$ be a Hilbert basis of the Hilbert space \mathcal{H} . Then $\forall x\in\mathcal{H}, x=\sum_{i=1}^{\infty}\langle x\mid e_i\rangle e_i$.

Th. Let $(e_i)_{i\geqslant 1}$ be an orthonormal sequence of the Hilbert space \mathcal{H} . The following assertions are equivalent:

- (i) $(e_i)_{i\geqslant 1}$ is a Hilbert basis,
- (ii) if some $x \in \mathcal{H}$ satisfies $\forall i \geqslant 1, \langle x \mid e_i \rangle = 0$ then x = 0,
- (iii) $\forall x \in \mathcal{H}, ||x||^2 = \sum_{i=1}^{\infty} |\langle x \mid e_i \rangle|^2$.

Th. A Hilbert space H if separable (i.e. contains a countable dense subset) if and only if it admits a Hilbert basis.

1.1 Fourier series

Let $\psi_n \colon x \mapsto \frac{1}{\sqrt{2\pi}} e^{inx}, n \in \mathbf{Z}$. Let $L^1(\mathbf{T})$ denote the set of 2π -periodic locally integrable functions. For $f \in L^1(\mathbf{T})$, set $\forall n \in \mathbf{N}, f_n = \sum_{k=-n}^n \left(\int_{\mathbf{T}} f \bar{\phi}_k \right) \phi_k$.

Th. Suppose that f is a continuous 2π -periodic function. Then the Cesaro sequence $\frac{1}{n}\sum_{k=0}^{n-1} f_k$ converges uniformly to f.

Cor. Let μ be a finite measure on the Borel sets of $\mathbf{T} = \mathbf{R}/(2\pi\mathbf{Z})$. The sequence $(\phi_n)_{n \in \mathbf{Z}}$ is dense in the Hilbert space $L^2(\mathbf{T}, \mathcal{B}(\mathbf{T}), \mu)$.

Cor. The sequence $(\phi_n)_{n\in\mathbf{Z}}$ is a Hilbert basis in $L^2(\mathbf{T})$. In particular, $\forall f\in L^2(\mathbf{T}), f=\sum_{k=-\infty}^\infty \alpha_k\phi_k$ with $\alpha_k=\frac{1}{\sqrt{2\pi}}\int_{\mathbf{T}}f(x)e^{-ikx}\,\mathrm{d}x$ when the infinite sum converges in $L^2(\mathbf{T})$. The Parseval identity then reads $\int_{\mathbf{T}}|f(x)|^2\,\mathrm{d}x=\sum_{k=-\infty}^\infty |\alpha_k|^2$.

1.2 Projection and orthogonality principle

Th (Projection theorem). *Let* \mathcal{E} *be a closed convex subset of a Hilbert space* \mathcal{H} *and* $x \in \mathcal{H}$. *Then the following holds :*

- (i) There exists a unique vector $\operatorname{proj}(x \mid \mathcal{E}) \in \mathcal{E}$ such that $||x \operatorname{proj}(x \mid \mathcal{E})|| = \inf_{w \in \mathcal{E}} ||x w||$.
- (ii) If moreover \mathcal{E} is a linear subspace, $\operatorname{proj}(x \mid \mathcal{E})$ is the unique $\hat{x} \in \mathcal{E}$ such that $x \hat{x} \in \mathcal{E}^{\perp}$. It is called the orthogonal projection of x onto \mathcal{E} .

2 Probability

Th (π - λ theorem). *If* $A \subset C$ *with* A *a* π -system and C *a* λ -system, then $\sigma(A) = C$.

Th. Let C be a π -system on Ω and $\mathcal{F} = \sigma(C)$ the smallest σ -field containing C. Then a probability measure μ on (Ω, \mathcal{F}) is uniquely characterized by $\mu(A)$ on $A \in C$.

Def. Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ and \mathcal{G} a sub- σ -field of \mathcal{F} .

3 Mathematical statistics

3.1 Statistical modeling

Def. Let (Ω, \mathcal{F}) be a measurable space and \mathcal{P} a collection of probabilities on this space. Let X be a measurable function from (Ω, \mathcal{F}) to the observation space (X, \mathcal{X}) . We say that \mathcal{P} is a **statistical model** for the observation variable X and denote $\mathcal{P}^X = \left(P^X\right)_{P \in \mathcal{P}}$ the corresponding collection of probability distributions.

It is usual in statistics to consider $\Omega = X$, $\mathcal{F} = \mathcal{X}$ and $X(\omega) = \omega$, in which case $\forall P \in \mathcal{P}, P = P^X$.

Def. Let $\nu \in \mathbf{M}_+(\mathsf{X},\mathcal{X})$ and \mathcal{P} be a statistical model for X. We say that \mathcal{P} is a ν -dominated model for X, or that \mathcal{P}^X is ν -dominated, if $\forall P \in \mathcal{P}, P^X \ll \nu$.

Lem. Let $\nu \in \mathbf{M}_+(\mathsf{X},\mathcal{X})$. Consider a ν -dominated model \mathcal{P} for the variable X. Then there exists a countable collection $(P_n)_{n\geqslant 1}$ in \mathcal{P} such that \mathcal{P}^X is also dominated by $\mu=\sum_{n\geqslant 1}2^{-n}P_n^X$.

Def. Let \mathcal{P} be a statistical model for the observation variable X. We say that \mathcal{P} is a **parametric model** for X if there exists a finite dimensional set Θ such that $\mathcal{P} = (P_{\theta})_{\theta \in \Theta}$.

Def. Let \mathcal{P} be a statistical model for X. Any finite dimensional quantity $t(P^X)$ only depending on P^X as $P \in \mathcal{P}$ is called an **identifiablee parameter**.

Def. Let \mathcal{P} be a statistical model for X. A **statistic** in this context is any random variable T valued in $(\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d))$ with $d \ge 1$, defined by T = g(X) where g is a Borel function not depending on $P \in \mathcal{P}$.

If a statistic is used as a guess for a parameter $t(P) \in \mathbf{R}^d$, it is called an **estimator** of t(P). In this case, the **bias** of T for estimating t(P) is defined as $\operatorname{Bias}(T,P) = \int T \, \mathrm{d}P - t(P)$ whenever $\int |T| \, \mathrm{d}P < \infty$. We say that T is an *unbiased* estimator of t(P) if $\forall P \in \mathcal{P}, \int T \, \mathrm{d}P = t(P)$. The **quadratic risk** or **mean squared error** (in the case d=1) is defined by $\operatorname{MSE}(T,P) = \int (T-t(P))^2 \, \mathrm{d}P = \operatorname{Var}(T) + \operatorname{Bias}(T,P)^2$.

Def. Let T be a statistic valued in $(\mathbf{R}^d, \mathbf{R}^{\mathcal{D}})$ with $d \geqslant 1$. We say that T is a **sufficient statistic** for the model \mathcal{P} if, for all $P \in \mathcal{P}$, the conditional distribution of X given T does not depend on P, that is, there exists a probability kernel $Q \subset \mathbf{R}^d \times \mathcal{X}$ such that, for all $P \in \mathcal{P}$, Q is a regular version of $P^{X|T}$.

Lem. Let S be a sufficient statistic associated to the Markov kernel Q and let T = g(X) be an unbiased estimator of the parameter t(P) (both real valued). Define $T^R = \int g(x)Q(S, dx)$. Then T^R is an unbiased estimator of the parameter t and its variance is smaller than that of T. As a consequence we have, $\forall P \in \mathcal{P}, \text{MSE}(T^R, P) \leq \text{MSE}(T, P)$.

Th (Fisher Factorization theorem). Let $\nu \in \mathbf{M}_+(\mathsf{X}, \mathcal{X})$. Consider a ν -dominated model \mathcal{P} for X and let S = g(X) be a d-dimensional statistic. Then S is a sufficient statistic for the model \mathcal{P} if and only if there exists a non-negative Borel function h on X such that $\forall P \in \mathcal{P}$, there exists a Borel function $f_P \colon \mathbf{R}^d \to \mathbf{R}_+$ such that $\frac{\mathrm{d} P^X}{\mathrm{d} \nu} = h \cdot f_P \circ g$.