

RO4001 - Model Predictive Control

Exercise Sheet 6

Fall semester 2020/21 Jan. 12, 2021

The exercises may be solved individually or in small groups. You are *not* allowed to use a calculator or computer unless this is explicitly stated.

Exercise 1 (polyhedral computations using MPT)

Note: Use MATLAB (MPT toolbox) to solve this exercise.

In this exercise, you will compute various sets for the following DT LTI system:

$$x_{k+1} = \underbrace{\begin{bmatrix} 1.5 & 1.2 \\ 0 & 1 \end{bmatrix}}_{\triangleq A} x_k + \underbrace{\begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix}}_{\triangleq B} u_k , \qquad (1a)$$

$$y_k = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\triangleq C} x_k . \tag{1b}$$

The system is subject to the following input and state constraints:

$$u_k \in \underbrace{\{u \in \mathbb{R} \mid ||u||_{\infty} \le 1\}}_{\triangleq \mathbb{U}} , \qquad x_k \in \underbrace{\{x \in \mathbb{R}^2 \mid ||x||_{\infty} \le 5\}}_{\triangleq \mathbb{X}} , \qquad \forall \ k = 0, 1, 2, \dots$$
 (2)

- a) As a first step, you shall install and familiarize yourself with the MPT 3 toolbox for Matlab.
 - i) To install the MPT 3 toolbox, download and execute the following Matlab script: https://www.mpt3.org/Main/Installation?action=download&upname=install_mpt3.m
 - ii) Get a quick overview of the capabilities of MPT by running the three basic demos. Each demo can be started with a MATLAB command:

mpt_demo_sets1

mpt_demo_sets2

mpt_demo_sets3

b) For system (1), compute the LQR gain K_{∞} for the following weights:

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , \qquad R = 1 .$$

(*Hint:* Use the MATLAB command dlqr.)

i) In the remainder of part b), we consider the closed-loop (autonomous) system under LQR control,

$$x_{k+1} = \underbrace{(A - BK_{\infty})}_{\triangleq A_a} x_k . \tag{3}$$

Use MPT to compute the pre sets $\operatorname{pre}_1(\mathbb{X})$, $\operatorname{pre}_2(\mathbb{X})$, and $\operatorname{pre}_3(\mathbb{X})$ of (3). Plot them along with \mathbb{X} in different colors into a single figure. (*Hints:* Use the syntax $\operatorname{plot}(P, '\operatorname{color}', '\operatorname{r}')$ to plot a polytope object P in red. For nicer overlappings, plot the sets in the order of $\operatorname{pre}_3(\mathbb{X})$, $\operatorname{pre}_2(\mathbb{X})$, $\operatorname{pre}_1(\mathbb{X})$, \mathbb{X} .)

- ii) Use MPT to compute the reach sets $\operatorname{reach}_1(\mathbb{X})$, $\operatorname{reach}_2(\mathbb{X})$, and $\operatorname{reach}_3(\mathbb{X})$ of (3). Plot them along with \mathbb{X} in different colors into a single figure. (*Hint*: For nicer overlappings, plot the sets in the order of \mathbb{X} , $\operatorname{reach}_1(\mathbb{X})$, $\operatorname{reach}_3(\mathbb{X})$.)
- iii) Can you use the plots of the pre sets and the reach sets to infer the stability of system (3)?
- iv) How could we take the input constraints into account? Modify steps b.ii) and b.iii) accordingly.
- c) The next task is to compute and verify a positive invariant set for system (1).
 - i) Implement the algorithm from the script to compute the maximal positive invariant set \mathcal{O}_{∞} as a polytope object.
 - ii) Obtain the vertices of the minimal V-representation of \mathcal{O}_{∞} . For each vertex, simulate 10 steps of the closed loop system (3). Create a figure in which you plot \mathcal{O}_{∞} along with all state trajectories (in the $x_{1,k},x_{2,k}$ -plane) starting from the vertices. Create another figure in which you plot the corresponding control inputs $u_k = -K_{\infty}x_k$ over time $k = 0, 1, \ldots, 9$.
 - iii) Why is it sufficient to consider the vertices to verify the invariance of \mathcal{O}_{∞} ?
- d) From now on, consider system (1) without a fixed control law, i.e., for general $u_k \in \mathbb{U}$.
 - i) Use MPT to compute and plot the pre sets of \mathbb{X} , $\operatorname{pre}_1(\mathbb{X})$, $\operatorname{pre}_2(\mathbb{X})$, and $\operatorname{pre}_3(\mathbb{X})$ for the case of the control system, analogous to b.i).
 - ii) Use MPT to compute and plot the reach sets \mathbb{X} , reach₁ (\mathbb{X}), reach₂ (\mathbb{X}), and reach₃ (\mathbb{X}) for the case of the control system, analogous to b.ii).
- e) Compute the maximal control invariant set \mathcal{C}_{∞} for the control system (1) by implementing the corresponding algorithm from the script. Compare the result with the maximal positive invariant set \mathcal{O}_{∞} of c.ii).

Exercise 2 (MPC with terminal conditions)

Note: Use MATLAB (MPT toolbox) to solve this exercise.

In this exercise, you will design linear quadratic MPCs with different terminal conditions for the following DT LTI system:

$$x_{k+1} = \underbrace{\begin{bmatrix} 1.2 & 1 \\ 0 & 1 \end{bmatrix}}_{\triangleq A} x_k + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\triangleq B} u_k , \qquad (4a)$$

$$y_k = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\triangleq C} x_k . \tag{4b}$$

The system is subject to the following input and state constraints:

$$u_k \in \underbrace{\{u \in \mathbb{R} \mid ||u||_{\infty} \le 1\}}_{\triangleq_{\mathbb{N}}}, \qquad x_k \in \underbrace{\{x \in \mathbb{R}^2 \mid ||x||_{\infty} \le 15\}}_{\triangleq_{\mathbb{N}}}, \qquad \forall \ k = 0, 1, 2, \dots$$
 (5)

Use your code from exercise sheet 5 to design the MPCs and your code from exercise 1 to compute invariant sets. Unless stated otherwise, use the cost weights Q = I, R = 1 and the prediction horizon N = 3.

- a) Choose a zero terminal constraint $\mathbb{X}_f = \{0\}$ and a terminal weight P = Q, so that closed-loop stability is guaranteed. (*Hint*: Design an appropriate equality constraint in quadprog to enforce the terminal constraint.)
 - i) For the initial condition $x_0 = \begin{bmatrix} 2 & -1 \end{bmatrix}^T$, plot the closed-loop trajectory (i.e., $x_{2,k}$ over $x_{1,k}$) for 4 steps, along with the corresponding open-loop predictions of the MPC. Analyze the mismatch between the open loop and the closed loop trajectories.
 - ii) Change the prediction horizon to N=10 and do the same analysis, again for the initial condition $x_0=[2 \ -1]^{\rm T}$.
 - iii) Compute the 3-step controllable set \mathcal{K}_3 and the 10-step controllable set \mathcal{K}_{10} of \mathbb{X}_f for the two MPC controllers. Compare the two sets. Are these sets also stabilizable sets? (*Hint*: To compute the controllable sets, modify your code from exercise 1 for computing pre sets.)
- b) Choose as a terminal weight P the infinite horizon cost matrix P_{∞} of the LQR and as a terminal set \mathbb{X}_f the positive invariant set of the system under LQR state feedback $u_k = -K_{\infty}x_k$. (Hint: Use the code from exercise 1 to compute \mathbb{X}_f , then integrate it into your MPC controller of exercise sheet 5).
 - i) Pick again N=3. For the initial condition $x_0=\begin{bmatrix} 2 & -1 \end{bmatrix}^T$, plot the closed-loop trajectory (i.e., $x_{2,k}$ over $x_{1,k}$) for 4 steps, along with the corresponding open-loop predictions of the MPC. Compare your results to task a.i).
 - ii) Compute the 3-step controllable set \mathcal{K}_3 of \mathbb{X}_f for this MPC controller. Compare it with the result of task a.iii). Is it also a stabilizable set? (*Hint:* Re-use the code from part a.iii).)