Module RFresPCB

Input Variables

Input Variables: instance=0 (bold) and model=9

name	description	default
Rs	RF resistance	50
Ср	Resistor shunt capacitance	0.3e-12
Ls	Series induuctance	8.5e-9
Llead	Parasitic lead induuctance	0.1e-9
Cshunt	Parasitic shunt capacitance	1e-10
Tc1	First order temperature coefficient	0.0
Tc2	Second order temperature coefficient	0.0
Tnom	Parameter extraction temperature	26.85
Temp	Simulation temperature	26.85

Output Variables

Output Variables: instance=0 (bold) and model=0 (red-underlined: temperature dependent)

name description dependencies

Nature/Discipline Definition

Nature				
name	access	abstol	units	
Current	I	1e-12	A	
Charge	Q	1e-14	coul	
Voltage	V	1e-6	V	
Flux	Phi	1e-9	Wb	
Magneto_Motive_Force	MMF	1e-12	A*turn	
Temperature	Temp	1e-4	K	
Power	Pwr	1e-9	W	
Position	Pos	1e-6	m	
Velocity	Vel	1e-6	m/s	
Acceleration	Acc	1e-6	m/s^2	
Impulse	Imp	1e-6	m/s^3	
Force	F	1e-6	N	
Angle	Theta	1e-6	rads	
Angular_Velocity	Omega	1e-6	rads/s	
Angular_Acceleration	Alpha	1e-6	rads/s^2	
Angular_Force	Tau	1e-6	N*m	
Discipline				

flow name potential logic electrical Voltage Current voltage Voltage current Current Magneto Motive Force Flux magnetic thermal Temperature Power kinematic Position Force kinematic v Velocity rotational Angle Angular_Force rotational_omega | Angular_Velocity Angular_Force

Model Equations

Notations used:

- · green: input parameter
- · bar over: variable never used
- · bar under: temperature dependent variable
- · red: voltage dependent variable

Initial Model

```
\begin{split} & Tdiff = (Temp - Tnom); \\ & FourKT = ((4.0 \cdot 1.3806503e-23) \cdot Temp); \\ & Rst = (Rs \cdot ((1.0 + (Tc1 \cdot Tdiff)) + ((Tc2 \cdot Tdiff) \cdot Tdiff))); \\ & Rn = \frac{FourKT}{Rst}; \end{split}
```

----- end of Initial Model

```
I(n1, n1) <+ ddt((Cshunt \cdot V(n1, n1)));
I(n1, n1) <+ \frac{V(n1, n1)}{Rst};
I(n1, n1) <+ ddt((Cp \cdot V(n1, n1)));
I(n3, n3) <+ ddt((Cshunt \cdot V(n3, n3)));
I(RT1, RT1) <+ (-V(nx, nx));
I(nx, nx) <+ V(RT1, RT1);
I(nx, nx) <+ ddt((Llead \cdot V(nx, nx)));
I(n2, n2) <+ (-V(ny, ny));
I(ny, ny) <+ ddt((Ls \cdot V(ny, ny)));
I(n3, n3) <+ (-V(nz, nz));
I(nz, nz) <+ V(n3, n3);
I(nz, nz) <+ ddt((Llead \cdot V(nz, nz)));
```

 $I(n1, n1) <+ white_noise(Rn, "thermal");$