



2.2) For 
$$|\omega| < \pi$$
:  $H(\omega) = \operatorname{rec} + \left(\frac{1/\alpha \cdot \omega}{2\pi}\right) \longrightarrow D = \frac{1}{\alpha}$ 

For all 
$$w: H(w) = \sum_{k=-\infty}^{\infty} rect \left( \frac{1}{\alpha} \cdot \frac{w-2\pi k}{2\pi} \right) = prect_{2\pi\alpha}(w)$$



2.4) H(w) is 211-periodic, so any value outside of w=[-17,77] can be determined with simple addition/multiplication

2.5) 
$$H(e^{ju}) = \sum_{k=-\infty}^{\infty} rect\left(\frac{1}{\alpha} \cdot \frac{w-2\pi k}{2\pi}\right)$$
;  $T=1$ 

Ly using sampling formula: 
$$h(n) = \frac{1}{D} sinc(\frac{n}{D}) = \alpha sinc(\alpha n)$$



2.7) when 
$$d=1$$
;  $h(n) = sinc(n)$ 

corresponds to zero

decimation