PRÁCTICA No. 2 RECTIFICADORES

OBJETIVO:

- Analizar el funcionamiento de los diferentes rectificadores con diodos.
- Analizar el comportamiento de los diferentes rectificadores con filtro de integración.
- Interpretar los valores obtenidos y compararlos con los valores teóricos.

MATERIAL:

- 1 Tablilla de experimentación. (ProtoBoard)
- 4 Diodos 1N4003
- 1 Transformador de 12 V a 1 A con derivación central
- 1.5 Mts de cable dúplex del No. 14
- 1 Clavija

- 1 Cinta de aislar
- 1 Resistencia de 100Ω a 10 W
- 1 Resistencia de 22Ω a 25 W
- 1 Capacitor electrolítico de 470 μF a 50 V
- 1 Capacitor electrolítico de 2200 μF a 50 V

EQUIPO:

- 1 Multímetro
- 1 Osciloscopio de propósito general
- 2 Puntas BNC-Caimán para osciloscopio.
- 6 Puntas caimán-caimán
- 1 Juego de Puntas de multímetro
- 1 Cable de alimentación

DESARROLLO EXPERIMENTAL

> Transformador

Arme el siguiente circuito:

Coloque una resistencia de carga según la tabla y mida con el voltaje en las terminales 1 y 2 del circuito en la opción CA.

$R_{ m L}$	V_{rms}
100 Ω	
22 Ω	

1

> Rectificador de media onda.

Arme el siguiente circuito:

Coloque una resistencia de carga (R_L) de 100 Ω .

Mida el voltaje a la salida del transformador (V_T) en la opción CA del multímetro en las terminales 1 y 3 del circuito y posteriormente el voltaje de la resistencia de carga (V_0) en la opción CD del multímetro en las terminales 2 y 3.

$$V_T =$$
 ______ , $V_0 =$ _____ y calcular $I_0 =$ _____

Posteriormente coloque el canal 1 del osciloscopio en las terminales 1 y 3 y el canal 2 en los puntos 2 y 3 y dibuje las señales que se obtienen a la entrada y la salida del rectificador. Ambos canales deben de estar en la opción de CD.

Obtener el voltaje pico del transformador de la señal del canal 1.

 $V_P = \underline{\hspace{1cm}}$

Obtener el voltaje pico menos el voltaje del diodo del canal 2.

$$V_P - V_D = \underline{\hspace{1cm}}$$

> Rectificador de media onda con filtro de integración

Arme el siguiente circuito:

Coloque una resistencia de carga de 100Ω y el capacitor según la tabla.

Mida el voltaje de la resistencia de carga (V_0) en la opción CD del multímetro en las terminales 1 y 2 y calcule la corriente de salida (I_0) .

Posteriormente coloque el canal 1 del osciloscopio en las terminales 1 y 2 en la opción de AC y mida el voltaje de rizo del rectificador (ΔV_0).

Capacitor	V_0	I_0	ΔV_0
470 μF			
2200 μF			

Dibujar el canal 1 con capacitor de 470 μF.

____V/div canal 1 ____mseg/div Dibujar el canal 1 con capacitor de 2200 µF.

____V/div canal 1 ____mseg/div

> Rectificador de onda completa con dos diodos.

Arme el siguiente circuito:

Coloque una resistencia de carga (R_L) de $100~\Omega$.

Mida el voltaje a la salida del transformador (V_T) en la opción CA del multímetro en las terminales 1 y 3 del circuito y posteriormente el voltaje de la resistencia de carga (V_0) en la opción CD del multímetro en las terminales 2 y 3.

$$V_T =$$
______ , $V_0 =$ ______ y calcular $I_0 =$ _____

Posteriormente coloque el canal 1 del osciloscopio en las terminales 1 y 3 y el canal 2 en los puntos 2 y 3 y dibuje las señales que se obtienen a la entrada y la salida del rectificador. Ambos canales deben de estar en la opción de CD.

_mseg/div

$$V_P = \underline{\hspace{1cm}}$$

Obtener el voltaje pico menos el voltaje del diodo del canal 2.

Obtener el voltaje pico del transformador de la señal del canal 1.

$$V_P/2 - V_D =$$

> Rectificador de onda completa con dos diodos con filtro de integración

Arme el siguiente circuito:

Coloque una resistencia de carga de $100\,\Omega$ y el capacitor según la tabla.

Mida el voltaje de la resistencia de carga (V_0) en la opción CD del multímetro en las terminales 1 y 2 y calcule la corriente de salida (I_0) .

Posteriormente coloque el canal 1 del osciloscopio en las terminales 1 y 2 en la opción de AC y mida el voltaje de rizo del rectificador (ΔV_0).

Capacitor	V_0	I_0	ΔV_0
470 μF			
2200 μF			

Dibujar el canal 1 con capacitor de 470 µF.

____V/div canal 1 ____mseg/div Dibujar el canal 1 con capacitor de 2200 μF.

____V/div canal 1 ____mseg/div

> Rectificador de onda completa tipo puente.

Arme el siguiente circuito:

Coloque una resistencia de carga (R_L) de 100 Ω .

Mida el voltaje a la salida del transformador (V_T) en la opción CA del multímetro en las terminales 1 y 2 del circuito y posteriormente el voltaje de la resistencia de carga (V_0) en la opción CD del multímetro en las terminales 3 y 4.

$$V_T =$$
 ______ , $V_0 =$ _____ y calcular $I_0 =$ _____

Coloque el canal 1 del osciloscopio en las terminales 1 y 2, y dibuje la señal que se obtiene, posteriormente desconecte el canal 1 y coloque el canal 2 del osciloscopio en las terminales 3 y 4 y dibuje la señal que se obtiene. Ambos canales deben de estar en la opción de CD.

Nota: No conectar ambos canales del osciloscopio al mismo tiempo en este circuito, debido a que se generaría un corto.

Obtener el voltaje pico del transformador de la señal del canal 1.

$$V_P = \underline{\hspace{1cm}}$$

Obtener el voltaje pico menos el voltaje del diodo del canal 2.

$$V_P - 2V_D = \underline{\hspace{1cm}}$$

> Rectificador de onda completa tipo puente con filtro de integración

Arme el siguiente circuito:

Coloque una resistencia de carga de 100Ω y el capacitor según la tabla.

Mida el voltaje de la resistencia de carga (V_0) en la opción CD del multímetro en las terminales 1 y 2 y calcule la corriente de salida (I_0) .

Posteriormente coloque el canal 1 del osciloscopio en las terminales 1 y 2 en la opción de AC y mida el voltaje de rizo del rectificador (ΔV_0).

Capacitor	V_0	I_0	ΔV_0
470 μF			
2200 μF			

Dibujar el canal 1 con capacitor de 470 μ F.

____V/div canal 1 ____mseg/div Dibujar el canal 1 con capacitor de 2200 μF .

____V/div canal 1 ____mseg/div

ANÁLISIS TEORICO.

Realizar el análisis teórico de todos los circuitos anteriores.

- > Rectificador de media onda.
- > Rectificador de media onda con filtro de integración
- > Rectificador de onda completa con derivación central
- > Rectificador de onda completa con derivación central con filtro de integración
- > Rectificador de onda completa tipo puente
- > Rectificador de onda completa tipo puente con filtro de integración.

Con sus respectivos cambios de resistencias y capacitores según sea caso.

ANÁLISIS SIMULADO

Realizar el análisis simulado en el Pspice de todos los circuitos anteriores.

- > Rectificador de media onda.
- Rectificador de media onda con filtro de integración
- > Rectificador de onda completa con derivación central
- > Rectificador de onda completa con derivación central con filtro de integración
- > Rectificador de onda completa tipo puente
- > Rectificador de onda completa tipo puente con filtro de integración.

Con sus respectivos cambios de resistencias y capacitores.

COMPARACIÓN DE LOS RESULTADOS TEÓRICOS, PRÁCTICOS Y SIMULADOS.

Analizar todos los valores y dar una explicación de las variaciones ó diferencias que existan en los valores obtenidos en lo teórico, simulado y práctico.

CUESTIONARIO

- 1. Menciona la importancia de los rectificadores de voltaje
- 2. Explica la diferencia que existe entre un rectificador de media onda y uno de onda completa.
- 3. ¿Cuál es la diferencia de un rectificador de onda completa con derivación central y del tipo puente?
- 4. ¿Cómo se mide el voltaje de salida del rectificador?
- 5. ¿Cómo se mide el voltaje de rizo del rectificador?

CONCLUSIONES

Dar sus conclusiones de los circuitos armados, comparando los resultados teóricos, simulados y experimentales (Conclusiones individuales).