Regression

PHYS591000 Spring 2021

Reference: https://indico.cern.ch/event/619370/ Lecture by Michael Kagan

Outline

- Linear regression: Simply fit a line!
- Linear regression with multivariable and polynomials
- Problem of overfitting and regularization

Regression

- Start with the simplest case: Fit a line!
 - → Linear regression
- Physics example: Predict energy of a particle using information of a calorimeter

- Calorimeters are used to measure the energy of a particle
- The incoming particle interacts with materials in the calorimeter and produce a bunch of other particles. → "Shower"

 Expect the energy of the particle depends on the properties of the shower it creates, e.g. number of particles in the shower

 Goal: Predict the energy of a particle given the number of shower particles it creates.

• Fit a line!

• Make a prediction of y ("target") given the value of x ("feature") using a hypothesis $y = h(x) = \theta_0 + \theta_1 x$

• The line $y = h(x) = \theta_0 + \theta_1 x$ is the line that gives the *closest* predictions to all the points from the training sample

• Find θ_0 and θ_1 that minimizes the sum of the squares $\Sigma_i(h(x_i)-y_i)^2$ from each (x_i, y_i) of the training sample \to method of least squares

• $\Sigma_i(h(x_i)-y_i)^2$ is called the objective function (cost function, loss function)

Can extend to multivariable (more features) regression

What if we want to fit with a polynomial function?

- What if we want to fit with a polynomial function?
 - → Same as fitting with multiple features!

Overfitting: When there are too many parameters/features, the learned hypothesis may fit the training set 'too well' (sum of least square \rightarrow 0) but fail to generalize to new samples (fail to make good predictions for test samples).

Overfitting

- Options to avoid/fix overfitting:
 - Manually reduce the number of features/parameters
 - Regularization: Add a 'penalty' for the sizes of parameters

• Example: overfitting from two points \rightarrow Sum of squares $\Sigma_i(h(x_i)-y_i)^2=0$

 The line fits training (red) samples perfectly but fails to generalize to test samples (blue)

- Regularization: Minimize $\Sigma_i(h(x_i)-y_i)^2$ (with θ_0)+ $\lambda \Sigma_i \theta_i^2$ (from i=1, i.e. without θ_0) (Do not penalize the overall constant θ_0)
- λ:hyperparameter chosen with an independent validation sample
 → Then apply on another independent testing sample to evaluate the performance
- Ridge regression: $\lambda \Sigma_i \theta_i^2$ (from i=1) Lasso regression: $\lambda \Sigma_i |\theta_i|$ (from i=1)

Summary-I

- Linear regression: Fit the training sample with a line by minimizing the sum of squares $\Sigma_i(h(x_i)-y_i)^2$
- Linear regression can be generalized to cases with multivariable (more than one feature) or with polynomials.

Summary-II

- When there are too many features one may overfit the training sample
 - Consequence: Cannot generalize to test samples
- Regularization: Add a penalty for the size of the parameters to make the prediction less sensitive to the training sample
- E.g. Ridge regression: minimize $\Sigma_i(h(x_i)-y_i)^2 + \lambda \Sigma_i \theta_i^2$ (from i=1)
 - The hyperparameter λ can be tuned with validation samples

Addendum

- Overfitting may happen for classification too!
 - → Sometimes called "overtraining"
- Similarly one can 'regularize' the classification algorithm. We'll touch upon the relevant ideas later.

Source: Wikipedia