

TA: Jakub Pawelczak

Recitation 3

[Definitions used today]

- (weakly/strongly) convex, continuous, monotone preferences, locally non-satiated utility function
- utility maximization, Debreu theorem, lexicographic preferences
- WARP, GWARP, GARP, Topkis theorem, Afriat theorem

Question 1 [Weak vs strong continuity] 182 [Question I.1 Fall 2014 majors]

Let \succeq be a transitive and complete preference relation on (connected) set $X \subseteq \mathbb{R}^N_+$: Prove that the following statements are equivalent

- \succeq on X is **weakly continuous** if $\forall x \in X$ the preferred-to-x set $U(x) = \{y \in X : y \succeq x\}$ and lower countur set $L(x) = \{y \in X : x \succeq y\}$ are closed.
- \succeq on X is **strongly continuous** if for all sequences $\{x_n\}\{y_n\} \in X$ such that $x_n \to x$, $y_n \to y$, if $\forall n, x_n \succeq y_n$, then $x \succeq y$.

Solution 1

TBD

Question 2 [Properties of preferences]

Prove following statements

- 1. If a preorder \succeq is monotone in \mathbb{R}^l , then it is locally nonsatiated.
- 2. If a preorder ≥ is transitive, weakly monotone, and locally nonsatiated then it is monotone
- 3. A preorder \succeq is weakly convex \iff the upper contour sets $U(x) = \{y \in X : y \succeq x\}$ are convex for all $x \in X$
- 4. If a preorder ≥ is continuous and strictly convex then it is convex

Solution 2

The following definitions are following from Debreu(1987).

Definition 0.1. A **preorder** \succeq on X is a binary relation which is reflexive $(\forall x \in X, x \succeq x)$ and transitive $(\forall x, y, z \in X \ni (x \succeq y \land y \succeq z) \Rightarrow x \succeq z)$. A **complete preorder** is a preorder that is complete $(\forall x, y \in X, x \succeq y \lor y \succeq x)$.

0.1 Monotonicity and Nonsatiation

Definition 0.2. A preorder \succeq is weakly monotone on a set X if $\forall x, y \in X, x \geq y \Rightarrow x \succeq y$.

A preorder \succeq is **monotone** on a set X if $\forall x, y \in X, x \gg y \Rightarrow x \succ y$.

A preorder \succeq is **strongly monotone** on a set X if $\forall x, y \in X, (x \ge y \land x \ne y) \Rightarrow x \succ y$.

Definition 0.3. A preorder \succeq is locally nonsatiated on a set X if $\forall x \in X$ and $\forall \epsilon > 0, \exists y \in X \ni ||x - y|| < \epsilon$ and $y \succ x$.

0.2 Convexity

Definition 0.4. A preorder \succeq is weakly convex on a set X if $\forall x, y \in X, \forall \lambda \in (0,1)$,

$$x \succeq y \Rightarrow \lambda x + (1 - \lambda)y \succeq y$$

Definition 0.5. A preorder \succeq is **convex** on a set X if $\forall x, y \in X, \forall \lambda \in (0,1)$,

$$x \succ y \Rightarrow \lambda x + (1 - \lambda)y \succ y$$

Definition 0.6. A preorder \succeq is strongly/strictly convex on a set X if $\forall x, y \in X, \forall \lambda \in (0,1)$,

$$x \sim y \land x \neq y \Rightarrow \lambda x + (1 - \lambda)y \succ y$$

- Recitation 3

0.3 Continuity

Definition 0.7. (Sequential definition/weak continuity) A preorder \succeq is continuous on a set X if $\forall \{x_n\}, \{y_n\} \subseteq X$,

$$\forall n \in \mathbb{N}, (x_n \succeq y_n) \land (x_n \to x) \land (y_n \to y) \Rightarrow x \succeq y$$

Definition 0.8. (Set definition / strong continuity) A preorder \succeq is continuous on a set X if $\forall x \in X$, the upper contour set $U(x) = \{y \in X : y \succeq x\}$ and the lower contour set $L(x) = \{y \in X : x \succeq y\}$ are closed in X.

Proposition 0.9. Equivalence of Weak and Strong Continuity

If X is connected (e.g. $X = \mathbb{R}^l_+$), then definitions of weak and strong continuity are equivalent.

0.4 Relationships Among Preorder Properties

Proposition 0.10. If a preorder \succeq is strictly monotone, then it is monotone.

Proof. Let $x,y \in X$ such at $y \gg x$. Then $y \geq x$ and $y \neq x$. Since \succeq is strictly monotone, this implies that $y \succ x$. Thus, \succeq is monotone.

Proposition 0.11. If a preorder \succeq is monotone in \mathbb{R}^l , then it is locally nonsatiated.

Proof. Let $x \in X$ and fix $\epsilon > 0$. Let e denote the unit vector in \mathbb{R}^l . Pick $y = x + \frac{\epsilon}{2\sqrt{l}}e$. Note that $||x - y|| = \epsilon/2 < \epsilon$, and $y \gg x$. Since \succeq is monotone, $y \succ x$. Thus, \succeq is l.n.s.

Proposition 0.12. If a preorder \succeq is transitive, weakly monotone, and locally nonsatiated then it is monotone.

Proof. Let $x, y \in X$ such that $y \gg x$. Let $\epsilon = \min\{y_1 - x_1, \dots, y_\ell - x_\ell\}$. Then for all $z \in X$ such that $||x - z|| < \epsilon$, $y \gg z$. By local nonsatiation, $\exists z' \in X$ such that $||x - z'|| < \epsilon$ and $z' \succ x$. Since $y \gg z'$, weak monotonicity implies that $y \succeq z'$. By transitivity, $y \succ x$. Thus \succeq is monotone.

Proposition 0.13. A preorder \succeq is weakly convex \iff the upper contour sets $U(x) = \{y \in X : y \succeq x\}$ are convex for all $x \in X$.

Proof. Suppose \succeq is weakly convex. Let $x \in X$, let $y, y' \in U(x)$ such that $y' \succeq y$, and let $\lambda \in [0, 1]$. By weak convexity, $\lambda y + (1 - \lambda)y' \succeq y$. By definition of U(x), $y \succeq x$. By transitivity, $\lambda y + (1 - \lambda)y' \succeq x$, so $\lambda y + (1 - \lambda)y' \in U(x)$. Thus U(x) is convex.

Now suppose that U(x) are convex for all $x \in X$. Let $x, y \in X$ such that $y \succeq x$ and let $\lambda \in [0, 1]$. By reflexivity, $x \succeq x$, so $x, y \in U(x)$. Since U(x) is convex, $\lambda x + (1 - \lambda)y \in U(x)$. By definition of U(x), $\lambda x + (1 - \lambda)y \succeq x$. Thus \succeq is weakly convex. Therefore \succeq is convex $\iff U(x)$ is convex for all $x \in X$.

Proposition 0.14. If a preorder \succeq is continuous and strictly convex then it is convex.

Proof. Let $x, y \in X$ such that $y \succ x$ and $x \neq y$, and let $\lambda \in (0,1)$. Then $y \succeq x$ and $x \neq y$, so strict convexity implies that $\lambda y + (1 - \lambda)x \succ x$. Thus we have $y \succ x \Rightarrow \lambda y + (1 - \lambda)x \succ x$, so \succeq is convex.

Question 4

Give an example of preferences/utility function such that :

- 1. satisfy non-satiation, but not weak monotonicity
- 2. satisfy non-satiation, but not local non-satiation
- 3. satisfy local non-satiation, strict monotonicity, but not quasi-concave
- 4. does not satisfy continuous but it is representable by a utility function

Solution 4

TBD

- Recitation 3

Question 3

Consider the following preference relations on \mathbb{R}^2_+

1.
$$x \succeq y \iff \min\{x_1, x_2\} \ge \min\{y_1, y_2\}$$

2.
$$x \succeq y \iff \max\{x_1, x_2\} \geq \max\{y_1, y_2\}$$

are they convex? Are they strictly convex?

Solution 3

a) It is convex but not strictly convex

$$(2,1) \succeq (1,1) \quad (3,1) \succeq (1,1)$$

but

$$\frac{1}{2}(2,1) + \frac{1}{2}(3,1) \succeq (2.5,1) \not\succ (1,1)$$

b) it is not even convex. Take

$$(5,3) \succeq (4.5,4.5) \quad (3,5) \succeq (4.5,4.5)$$

but

$$\frac{1}{2}(5,3) + \frac{1}{2}(3,5) \succeq (4,4) \not\succ (4.5,4.5)$$

Question 5 [Utility representation] 157 [I.1 Fall 2013 majors]

Consider preference relation \succeq on the consumption set \mathbb{R}^L_+ . Suppose that \succeq is reflexive and complete.

- 1. State a definition of \succeq having a utility representation. Is utility representation, if it exists, unique?
- 2. State a theorem providing sufficient conditions on \succeq to have a utility representation. Be as general as you can and clearly define any extra properties of \succeq that you use
- 3. [**Debreu Theorem**] Let \succeq be a complete, transitive and continuous, strictly increasing (i.e. strongly monotone) preference relation on \mathbb{R}^L_+ , show that it has a continuous utility representation

- Recitation 3 4

Solution 5

Check out Debreu's proof by Ariel Rubinstein on my webpage!

Existence theorems: Rader RES 1964, Hildebrand, Mathematical Economics:Debreu 1981,

Definition 0.15. A function $u: X \to \mathbb{R}$ is a **utility representation** of a preorder \succeq if for all $x, y \in X$,

$$u(y) \ge u(x) \iff y \succeq x.$$

Theorem 0.16. (Existence of Utility Representation)

If a preorder \succeq is complete, continuous and monotone on $X = \mathbb{R}^l_+$, then it has a continuous utility representation.

Proof. **Step-1** Constructing $\alpha(x)$

Let \succeq be a complete, continuous and monotone preorder on \mathbb{R}^l_+ , and let $x \in \mathbb{R}^l_+$. Let $e = (1, 1, ..., 1) \in \mathbb{R}_{++}$. Then $\alpha e \in \mathbb{R}^l_+ \ \forall \alpha \in \mathbb{R}_+$. Choose $\bar{\alpha}$ such that $\bar{\alpha}e \geq x$. Since \succeq is monotone, $\bar{\alpha}e \succeq x$. Also note that $0e \leq x$, so $\succeq 0e^{-\alpha}$

Define A^+ and A^- as

$$A^{+} = \{ \alpha \in \mathbb{R}_{+} : \alpha e \succeq x \} \qquad A^{-} = \{ \alpha \in \mathbb{R}_{+} : x \succeq \alpha e \}$$

Since \succeq is continuous, A^+ and A^- are closed. $\bar{\alpha} \in A^+$ and $0 \in A^-$, so both sets are also nonempty. By completeness of \succeq , $\mathbb{R}_+ = A^+ \cup A^-$.

Since \mathbb{R}_+ is connected, $A^+ \cap A^- \neq \emptyset$. Let $\alpha(x) \in A^+ \cap A^-$. Then $\alpha(x)e \sim x$.

Step-2 Uniqueness

Suppose that $\exists \alpha' \in A^+ \cap A^-$ such that $\alpha' \neq \alpha(x)$. Then either $\alpha' > \alpha(x)$ or $\alpha(x) > \alpha'$. If the former case is true, then since \succeq is monotone, $\alpha'e \succ \alpha(x)e \sim x$. If the latter, then $\alpha'e \prec \alpha(x)e \sim x$. In either case, it cannot be true that $\alpha' \in A^+ \cap A^-$. Therefore $\alpha(x)$ is unique.

Step-3 Utility Representation

 (\Rightarrow) Let $x, y \in \mathbb{R}^l_+$ such that $y \succeq x$. Then by definition of $\alpha(x)$, we have $\alpha(y)e \sim y \succeq x \sim \alpha(x)e$.

By transitivity, $\alpha(y)e \succeq \alpha(x)e$, and so by monotonicity, $\alpha(y) \geq \alpha(x)$.

 (\Leftarrow) Suppose that $\alpha(y) \geq \alpha(x)$. Then by monotonicity of \succeq , $\alpha(y)e \succeq \alpha(x)e$.

By definition of $\alpha(x)$, we have $y \sim \alpha(y)e \succeq \alpha(x)e \sim x$. By transitivity, $y \succeq x$

Thus we have $y \succeq x \iff \alpha(y) \geq \alpha(x)$, so $u(x) = \alpha(x)$ is a utility representation of \succeq

Step-4 Continuity

Note that $u: \mathbb{R}^l_+ \to \mathbb{R}_+$. For any $x \in \mathbb{R}^l_+$, we can write $u^{-1}([0,\alpha(x)])$ and $u^{-1}([\alpha(x),\infty))$ as

$$u^{-1}([0,\alpha(x)]) = \{ y \in \mathbb{R}^l_+ : \alpha(x) \ge u(y) \} = \{ y \in \mathbb{R}^l_+ : \alpha(x)e \ge y \}$$
$$u^{-1}([\alpha(x),\infty)) = \{ y \in \mathbb{R}^l_+ : u(y) \ge \alpha(x) \} = \{ y \in \mathbb{R}^l_+ : y \ge \alpha(x)e \}$$

By continuity of \succeq , both of these sets are closed. So we have for every $x \in \mathbb{R}^l_+$, $[0, \alpha(x)]$ and $u^{-1}([0, \alpha(x)])$ are closed, and $[\alpha(x), \infty)$ and $u^{-1}([\alpha(x), \infty))$ are closed.

Also, for $[\alpha(x), \alpha(y)]$ which is closed, we have

$$u^{-1}([\alpha(x),\alpha(y)]) = u^{-1}([\alpha(x),\infty)) \cap u^{-1}([0,\alpha(y)])$$

which is closed.

Thus by the topological definition of continuity, $u(x) = \alpha(x)$ is continuous.

Proposition 0.17. *If* \succeq *is a lexicographic preference then* \succeq *has no utility representation.*

Proof. Let \succeq be a lexicographic preference relation on \mathbb{R}^2_+ and suppose for contradiction that $\exists u: X \to \mathbb{R}$ such that u is a utility representation of \succeq . For each $x \in \mathbb{R}_+$, we can find a rational number r(x) such that u(x,2) > r(x) > u(x,1). Let $x, x' \in \mathbb{R}_+$ such that x' > x. Then

$$u(x',2) > r(x') > u(x',1) > u(x,2) > r(x) > u(x,1).$$

Thus r(x') > r(x), so we have a one-to-one map $r : \mathbb{R}_+ \to \mathbb{Q}$. This is a contradiction since \mathbb{R}_+ is uncountable and \mathbb{Q} is countable. Therefore \succeq has no utility representation.

- Recitation 3 5

Question 6 [Lexicographic preference]

Consider the following lexicographic preferences on the consumption set \mathbb{R}^2_+ : the value $x_1 + x_2$ has the first priority, the value of x_2 has the second priority.

- 1. Is this preference relation continuous? Prove of give a counter example.
- 2. Does this preference relation have the utility representation? Prove of give a counter example.
- 3. Consider the lexicographic preferences on \mathbb{R}^N_{++} such that the first priority is described by an increasing and continuous utility function $u_1(x)$ and the second priority is described by another increasing and continuous utility function $u_2(x)$. Show that, if u_1 is strictly concave, then the Walrasian demand of the lexicographic preference coincides with the Walrasian demand of u_1 for every $p \in \mathbb{R}^N_+$, $p \neq 0$ and w > 0.

Question 7 [Midterm 2018]

Consider a list of observations $\{(p_1, x_1), \dots, (p_T, x_T)\}$ where $p_t \in \mathbb{R}^N_+$ and $x_t \in \mathbb{R}^N_+$ are price vector and a corresponding consumption plan of a consumer respectively, for every $t \in \{1, \dots, T\}$.

- 1. State the Generalized Weak Axiom of Revealed Preference (GWARP) and Generalized (strong) Axiom of Revealed Preference (GARP) for these observations.
- 2. Show that if a locally non-satiated utility function rationalized observations then GARP holds.
- 3. Suppose that the observations are generated by a demand function d(p, w) that is $x_t = d(p_t, w_t)$ for every t. Function d is given as

$$d(p, w) = \begin{cases} (\frac{w}{p_1}, 0) & \text{if } p_1 \ge p_2\\ (\frac{w}{p_1 + p_2}, \frac{w}{p_1 + p_2}) & \text{if } p_2 > p_1 \end{cases}$$

Does GWARP hold for arbitrary observations generated by d? Can demand d be rationalized by a locally non-satiated utility function?

- 4. Show that if a locally non-satiated utility function rationalized observations then GWARP holds.
- 5. Show that the assumption of local non-satiation in the previous point cannot be dispensed with i.e. give an example of a utility function that rationalizes a set of pairs of prices and consumption bundles that violates GWARP

Question 8 [Properties of Walrasian Demand]

Prove following claims

- 1. [Walras Law] Show that if a preference relation \succeq is continuous and locally non-satisted then $p \cdot x^*(p, w) = w$, for all $x^*(p, w)$ that belong to the Walrasian Demand correspondence.
- 2. [GWARP] Show that if a preference relation \succeq is continuous and locally non-satiated then for all w > 0

$$w' > 0, p >> 0$$
 and $p' >> 0$: $p \cdot x^* (p', w') \le w \Rightarrow p' \cdot x^* (p, w) > w'$

Question 9 230 [I.1 Fall 2016 minors]

Let d: be a demand function of prices and income satisfying budget equation pd(p, w) = w for every p and w

- 1. Show that if d is a Walrasian demand function of a consumer with strictly increasing utility function, then the Generalized Weak Axiom of Revealed Preference (GWARP) holds for every T-tuple of price-quantity pairs $\{p^t, x^t\}_{t=1}^T$, where $x^t = d(p^t, w^t)$ $p^t \in \mathbb{R}_{++}^L$ and $w^t \in \mathcal{R}_+$ for every $t = 1, \ldots, T$. State GWARP
- 2. onsider the following demand function for L=2 and show that GWARP does not hold for \hat{d} :

$$\hat{d}(p, w) = \begin{cases} \left(\frac{w}{p_1}, 0\right) & \text{if } p_1 \ge p_2\\ \left(0, \frac{w}{p_2}\right) & \text{if } p_2 > p_1 \end{cases}$$

- 3. State the Afriat's Theorem. The proof is not required
- 4. Prove the necessity of an axiom for rationalizability

- Recitation 3

Solution 9