Correction du TP n°3 - Partie n°1 -

Tout d'abord je voudrais vous informer que cette correction est basée sur les réponses de votre collègue Nabil qui interagit avec moi par ses réponses aux anciennes séries.....Bravo Nabil !!

Exercice 1:

```
(1.1) disp('methode 1')
    M = [1 7 0 5*pi-3 -6 log(pi/3);exp(3*i) 3 -1 tan(sqrt(3)/2) 0 2;1 -2 0 9 -1
    cos(pi/4);1 -1 2 3 -sqrt(2) -2];
    b = [2;6*i;0;1];
    X=M\b
```

```
Command Window

>> disp('methode 1')
M=[1 7 0 5*pi-3 -6 log(pi/3);exp(3*i) 3 -1
b=[2;6*i;0;1];
X=M\b

methode 1

X =

0.0000 + 0.0000i
0.1920 + 0.5337i
0.3986 + 6.2437i
0.0520 - 0.3140i
0.0000 + 0.0000i
-0.1193 + 5.5058i
```

Méthode 2 :

%% Vu que la matrice M n'est pas inversible et que le nombre des équations est strictement inférieur au nombre des inconnues (m < n) cela vaut dire qu'on a un système « Sous-déterminé » et que le rang(M)= 4 = nombre de ligne ça vaut dire que le système admet une infinité des solutions.

Exercice Supplémentaire : Pour faciliter cette tache on pourra reformuler le système à 4 inconnus :

$$S' = \begin{cases} x_1 + 7x_2 + (5\pi - 3)x_4 &= 2\\ e^{3i}x_1 + 3x_2 - x_3 + tan(\frac{\sqrt{3}}{2})x_4 &= 6i\\ x_1 - 2x_2 + 9x_4 &= 0\\ x_1 - x_2 + 2x_3 + 3x_4 &= 1 \end{cases}$$

et vous devez essayer d'écrire un programme en Matlab qui illustre la méthode de pivot de Gauss

Exercice 2:

```
(2.1) P = [2 5 sqrt(3) 0 0 6 5 12]
     disp('les racines de ce polynôme sont :')
     roots(P)
              Columns 1 through 7
                        5.0000 1.7321
                                          0
                                                   0 6.0000 5.0000
                2.0000
              Column 8
               12.0000
             les racines de ce polynôme sont :
             ans =
               -2.2360 + 0.0000i
                0.9811 + 0.6687i
               0.9811 - 0.6687i
               -1.0122 + 0.8320i
               -1.0122 - 0.8320i
               -0.1009 + 1.0482i
               -0.1009 - 1.0482i
(2.2) W = [1 -2 3];
    H = conv(W, P)
        H =
           Columns 1 through 7
             2.0000 1.0000 -2.2679 11.5359 5.1962 6.0000 -7.0000
            Columns 8 through 10
             20.0000 -9.0000 36.0000
(2.3) [Q,R]=deconv(P,W)
          >> [Q,R]=deconv(P,W)
          Q =
            2.0000 9.0000 13.7321 0.4641 -40.2679 -75.9282
          R =
           Columns 1 through 7
                 0
                    0
                                  0
                                       0
                                                   0 0 -26.0526
            Column 8
            239.7846
```

```
P;
                                      T=conv(W,Q)+R
                                         if P~=T
                                      disp('faux')
                                          else
                                      disp('vrai')
                                        end
        >> %verification
         T=conv(W,Q)+R
         if P~=T
         disp('faux')
         else
         disp('vrai')
         end
          Columns 1 through 7
            2.0000 5.0000 1.7321 0
                                                     0 6.0000 5.0000
           Column 8
            12.0000
         vrai
(2.4) disp('le polynôme quotient');
    disp('et le polynome qui reste de la division =')
        le polynôme quotient
         Q =
            2.0000 9.0000 13.7321 0.4641 -40.2679 -75.9282
         et le polynome qui reste de la division =
          Columns 1 through 7
                         0
                                  0
                                     0
                                                    0
                                                             0 -26.0526
          Column 8
           239.7846
(2.5) [r,p,k]=residue(Q,1)
             >> [r,p,k]=residue(Q,1)
                  []
               p =
                   []
                  2.0000 9.0000 13.7321 0.4641 -40.2679 -75.9282
      %remarque
      if k==Q
      disp('le polynôme Q n`admet pas une décomposition')
      end
```

%verification

```
>> % remarque
if k==0
disp('le polynôme Q n'admet pas une décomposition')
end
le polynôme Q n'admet pas une décomposition

>> polyder(P)
ans =
14.0000 30.0000 8.6603 0 0 12.0000 5.0000

>> polyint(W)
ans =
0.3333 -1.0000 3.0000 0
```