博弈理论入门

刘恒熙

宁波市镇海中学

2025年5月16日

1 基础

2 数

3 一些无穷小量

4 总结

博弈是什么?

本次讲课涉及的博弈均满足以下条件:

- 有两位玩家,通常称为左方和右方。
- 存在有限多种局势,其中有一个初始局势。
- 有明确定义的规则安排每一步走法,使一个玩家从一个某一局势转移到他的选择。
- 左方和右方在整个游戏中交替行动。
- 两个玩家都知道一切情况,即有完全信息。
- 没有随机行动。
- 按照正常游戏规定,不能行动的玩家输。
- 规则保证从一个局势出发,不能经过若干次行动回到原来的局势,即游戏总是会由于某位玩家不能行动结束。

用 DAG / 树表示博弈

用 DAG 表示博弈: 用节点表示**局势**,用标 L 的有向边表示左方选择,用标 R 的有向边表示右方选择。

Figure 2: 用树表示一个博弈

用树表示博弈:把从不同的转移路径到达的同一个局势看作不同的局势。 例如,右图中的 C.E.G 均对应左图中的同一个局势 D. 右图中的 D.F 均对应 左图中的同一个局势 C。

"局势"并不包含下一步由谁进行 右图中局势 B 的左方选择不应该被看作没用 的,因为它可能会在把博弈相加后起作用。

博弈的结局

给定博弈对应的 DAG,可以根据以下规则,在 DAG 上进行 DP,计算左方先走时的胜者和右方先走时的胜者。

- 对于一个局势,左方先走时能获胜,当且仅当存在一个左方选择,使得在该局势中,若右方先走,则左方获胜。
- 对于一个局势,右方先走时能获胜,当且仅当存在一个右方选择,使得在该局势中,若左方先走,则右方获胜。

博弈的结局

给定博弈对应的 DAG,可以根据以下规则,在 DAG 上进行 DP,计算左方先走时的胜者和右方先走时的胜者。

- 对于一个局势,左方先走时能获胜,当且仅当存在一个左方选择,使得在 该局势中,若右方先走,则左方获胜。
- 对于一个局势,右方先走时能获胜,当且仅当存在一个右方选择,使得在该局势中,若左方先走,则右方获胜。

根据左方先走时的胜者和右方先走时的胜者,可以将博弈的结局分为四类:

左方先走

左方获胜 右方获胜

右方先走

左方获胜 右方获胜
 左方获胜
 后手获胜

 先手获胜
 右方获胜

Table 1: 博弈的结局

博弈的相加

用以下记号表示局势 G 的左方选择有 A,B,C,\cdots ,右方选择有 D,E,F,\cdots :

$$G = \{A, B, C, \cdots \mid D, E, F, \cdots\}$$

把 G 的左方选择记作 G^L ,右方选择记作 G^R ,有 $G = \{G^L \mid G^R\}$ 。

博弈的相加

用以下记号表示局势 G 的左方选择有 A,B,C,\cdots ,右方选择有 D,E,F,\cdots

$$G = \{A, B, C, \dots \mid D, E, F, \dots\}$$

把 G 的左方选择记作 G^L ,右方选择记作 G^R ,有 $G = \{G^L \mid G^R\}$ 。

两个博弈的和,就是同时进行两个博弈,玩家每一步需要在两个博弈**之一**行动一次。

更形式化地,定义两个博弈 G, H 的和

$$G + H = \{G^L + H, G + H^L \mid G^R + H, G + H^R\}$$

其中, G^L+H 表示将 G^L 中的每一个局势分别和 H 相加得到的若干个局势。 G,H 称作 G+H 的分支。

博弈的相加

用以下记号表示局势 G 的左方选择有 A,B,C,\cdots ,右方选择有 D,E,F,\cdots

$$G = \{A, B, C, \dots \mid D, E, F, \dots\}$$

把 G 的左方选择记作 G^L ,右方选择记作 G^R ,有 $G = \{G^L \mid G^R\}$ 。

两个博弈的和,就是同时进行两个博弈,玩家每一步需要在两个博弈**之一**行动一次。

更形式化地,定义两个博弈 G, H 的和

$$G + H = \{G^L + H, G + H^L \mid G^R + H, G + H^R\}$$

其中, G^L+H 表示将 G^L 中的每一个局势分别和 H 相加得到的若干个局势。 G,H 称作 G+H 的分支。

例如,若
$$G = \{A \mid B, C\}, H = \{D, E \mid F\}, 则$$

 $G + H = \{A + H, G + D, G + E \mid B + H, C + H, G + F\}.$

根据博弈相加的意义,博弈的加法显然满足结合律和交换律。

如果把两个分别含有 $\Theta(n)$ 个局势的博弈相加,局势数量可以达到 $\Theta(n^2)$;而如果有 m 个相加,局势数量可以达到 $\Theta(n^m)$ 。

因此我们需要寻找快速计算(满足一定条件的)博弈的和的方法。

寻找等价关系

两个分别含有 $\Theta(n)$ 个局势的博弈相加,局势数量确实是 $\Theta(n^2)$ 的,但是通常我们只关心一个博弈的性质,例如某一方先走时的胜者。所以,可以尝试用更简洁的"等价"博弈来代替原来的博弈。

如何定义两个博弈"等价"?

寻找等价关系

两个分别含有 $\Theta(n)$ 个局势的博弈相加,局势数量确实是 $\Theta(n^2)$ 的,但是通常我们只关心一个博弈的性质,例如某一方先走时的胜者。所以,可以尝试用更简洁的"等价"博弈来代替原来的博弈。

如何定义两个博弈"等价"?

两个实数 x, y 相等,当且仅当 x + (-y) = 0 (或者写作 x - y = 0)。

类似地,可以定义两个博弈相等。在定义相等之前,需要先定义博弈的负,以及一个博弈是否 "=0"。

寻找等价关系

两个分别含有 $\Theta(n)$ 个局势的博弈相加,局势数量确实是 $\Theta(n^2)$ 的,但是通常我们只关心一个博弈的性质,例如某一方先走时的胜者。所以,可以尝试用更简洁的"等价"博弈来代替原来的博弈。

如何定义两个博弈"等价"?

两个实数 x, y 相等,当且仅当 x + (-y) = 0 (或者写作 x - y = 0)。

类似地,可以定义两个博弈相等。在定义相等之前,需要先定义博弈的负,以及一个博弈是否 "=0"。

原来的 "=" 表示两个博弈的所有局势可以一一对应,或者说两个博弈对应的 树相同。

在完成定义和验证定义的合理性之前,先将博弈"等价"记作" \equiv ",而博弈完全相同仍然记作" \equiv "。

博弈的负

定义一个博弈的负为交换左方和右方的选择得到的博弈。(或者把反转博弈对应的图中,标 L 的边改为标 R,标 R 的边改为标 L。)

更形式化地,对于一个博弈 $G = \{G^L \mid G^R\}$,定义

$$-G = \{-G^R \mid -G^L\}$$

其中, $-G^R$ 表示将 G^R 中的每一个局势分别取负得到的若干个局势。

显然,有 -(-G) = G。

由于本次讲课涉及的博弈都是有限的,通过上述递归定义的博弈的负是良定义的。

Figure 3: F = -A

零博弈

设 G_0 是一个初始局势下双方都不能行动的博弈。

对于任意的博弈 H, 有 $G_0 + H = H$, 因此可以认为 G_0 类似 0 的性质。

 G_0 属于"后手获胜"类的博弈,那么"后手获胜"类的博弈是否都具有这样的性质?

零博弈

设 G_0 是一个初始局势下双方都不能行动的博弈。

对于任意的博弈 H, 有 $G_0 + H = H$, 因此可以认为 G_0 类似 0 的性质。

 G_0 属于"后手获胜"类的博弈,那么"后手获胜"类的博弈是否都具有这样的性质?

设 G 是一个"后手获胜"的博弈。

对于任意的博弈 H, G + H 和 H 的结局相同。

也就是说,指定先手后,在 H 中能获胜的一方在 G+H 中仍然能获胜。

在 H 中能获胜的一方可以采取以下策略在 G + H 中获胜:

- 如果对方上次行动是在 G 中进行的,在 G 中行动一次。
- 否则(对方上次行动是在 H 中进行的,或者这是 G + H 的第一次行动), 在 H 中行动一次。

定义 $G \equiv 0$ 当且仅当在 G 中,后手能获胜。

博弈的相等

定义两个博弈 G,H 相等,当且仅当 $G+(-H)\equiv 0$ (或 $G-H\equiv 0$)。

Figure 4: $H = -F \wedge A + H \equiv 0 \implies A \equiv F$

- "≡"是等价关系。
 - 对任意的博弈 A, 有 A ≡ A:
 - 只需要说明在 A + (-A) 中, 后手总是有取胜的策略。
 - 不妨设先手为左方,且左方在 A 中走到某个 $B\in A^L$,右方可以 $-A=\{-A^R\mid -A^L\}$ 中走到 $-B\in -A^L$,此时总博弈为 B+(-B),右方仍

然有取胜策略。

Figure 5: A 与 -A

"≡"是等价关系。

- 对任意的博弈 A, 有 A ≡ A:
 - 只需要说明在 A + (-A) 中, 后手总是有取胜的策略。
 - 不妨设先手为左方、且左方在 A 中走到某个 $B \in A^L$ 、右方可以 $-A = \{-A^R \mid -A^L\}$ 中走到 $-B \in -A^L$,此时总博弈为 B + (-B),右方仍然有取胜策略。

Figure 5: A - A

- 若 $A \equiv B$, 则 $B \equiv A$ 。
 - 令 D = A B, 只需要说明若 $D \equiv 0$, 则 $-D \equiv 0$ 。
 - 交换左方和右方的选择,不会改变一个博弈是否是"后手获胜"的。

"≡"是等价关系。

- 对任意的博弈 A, 有 A ≡ A:
 - 只需要说明在 A + (-A) 中, 后手总是有取胜的策略。
 - 不妨设先手为左方,且左方在 A 中走到某个 $B \in A^L$,右方可以 $-A = \{-A^R \mid -A^L\}$ 中走到 $-B \in -A^L$,此时总博弈为 B + (-B),右方仍 然有取胜策略。

Figure 5: A - A

- 若 $A \equiv B$, 则 $B \equiv A$ 。
 - 令 D = A B, 只需要说明若 $D \equiv 0$, 则 $-D \equiv 0$ 。
 - 交换左方和右方的选择,不会改变一个博弈是否是"后手获胜"的。
- 若 $A \equiv B, B \equiv C$, 则 $A \equiv C$ 。
 - 令 D = A B, E = B C, 只需要说明若 $D \equiv 0, E \equiv 0$, 则 $D + E \equiv 0$ 。
 - D, E 均是 "后手获胜"的。加上一个"后手获胜"的博弈,不会改变一个博弈的结局。

在该等价关系下,加法、负、根据选择构造博弈仍然能进行。

- 若 $A \equiv A', B \equiv B'$, 则 $A + B \equiv A' + B'$ 。
 - $(A A') + (B B') \equiv 0.$

在该等价关系下,加法、负、根据选择构造博弈仍然能进行。

- 若 $A \equiv A', B \equiv B'$, 则 $A + B \equiv A' + B'$ 。
 - $(A A') + (B B') \equiv 0.$
- 若 $A \equiv A'$, 则 $-A \equiv -A'$ 。
 - $-A (-A') \equiv -(A A') \equiv 0.$

在该等价关系下,加法、负、根据选择构造博弈仍然能进行。

- 若 $A \equiv A', B \equiv B'$, 则 $A + B \equiv A' + B'$ 。
 - $(A A') + (B B') \equiv 0.$
- 若 $A \equiv A'$,则 $-A \equiv -A'$ 。
 - $-A (-A') \equiv -(A A') \equiv 0.$
- 若 $A \equiv A', B \equiv B', C \equiv C', \cdots, D \equiv D', E \equiv E', F \equiv F', \cdots, 则$ $\{A, B, C, \cdots \mid D, E, F, \cdots\} \equiv \{A', B', C', \cdots \mid D', E', F', \cdots\}_\circ$
 - 在博弈 $\{A,B,C,\cdots\mid D,E,F,\cdots\}-\{A',B',C',\cdots\mid D',E',F',\cdots\}$ 中,后 手只要走到不同于先手第一步选择分支中,与先手的选择等价的选择就能获 胜。

用 0 表示一个双方都不能进行任何行动的博弈,即 $0=\{|\}$ 。 容易验证 0 是一个"后手获胜"的博弈,且" $\equiv 0$ "的含义不变。对于任意的博弈 G,有 $G+0\equiv G$ 。

 $G + 0 - G \equiv (G - G) + 0 \equiv 0.$

用 0 表示一个双方都不能进行任何行动的博弈,即 $0=\{\,|\,\}$ 。 容易验证 0 是一个"后手获胜"的博弈,且" $\equiv 0$ "的含义不变。对于任意的博弈 G,有 $G+0\equiv G$ 。

•
$$G + 0 - G \equiv (G - G) + 0 \equiv 0.$$

对于任意的博弈 G, 有 $G + (-G) \equiv 0$ 。

$$G + (-G) + 0 \equiv (G - G) + 0 \equiv 0.$$

从现在开始,用"="表示两个博弈相等。

1 基础

2 数

3 一些无穷小量

4 总结

只有一方能行动的博弈

为了寻找快速计算(满足一定条件的)博弈的和的方法,先从最简单的情况入 手。

考虑类似下图展示的博弈,在这样的博弈中只有(至多)一方能行动。

Figure 6: 在 A, G, I 中,只有一方能行动

在博弈 A + G + I 中,无论谁先行动,左方总是能获胜。

这是因为左方能沿着 $A \to D \to E \to F$ 走 3 步,而右方只能沿着 $G \to H$ 走 1 步。

这启发我们用数表示一个博弈带给一方的优势。

用整数表示自由步

我们希望用 1 表示左方的一个自由步,用 -1 表示右方的一个自由步。 定义 1 为只能由左方行动一次的博弈,即 $1 = \{0 \mid \}$ 。 根据定义,有 $-1 = \{ \mid -0 \} = \{ \mid 0 \}$ 。

用整数表示自由步

我们希望用 1 表示左方的一个自由步,用 -1 表示右方的一个自由步。 定义 1 为只能由左方行动一次的博弈,即 $1=\{0\mid\}$ 。

根据定义,有 $-1 = \{ | -0 \} = \{ | 0 \}$ 。

可以把 1 相加得到更大的数: $2 = 1 + 1 = \{1 + 0, 0 + 1 \mid \} = \{1 \mid \}$, $3 = 2 + 1 = \{2 + 0, 1 + 1 \mid \} = \{2 \mid \}$ 。

一般地,对于任意的正整数 n,有 $n+1=\{n\mid\},-(n+1)=\{\mid-n\}$ 。

Figure 7: 整数值

用整数表示自由步

当一方有多个选择时,能为自己留下最多的自由步的选择是最优的。

Example 1

在 $\{1,2\mid\}$ 中,左方应该选择 2 而不是 1,因此 $\{1,2\mid\}=\{2\mid\}=3$ 。

一般地,对于非负整数 a,b,c,\cdots ,有 $\{a,b,c,\cdots\}\} = \{\max\{a,b,c,\cdots\}\} = \max\{a,b,c,\cdots\} + 1$ 。

可以用后面提到的"删除被优超的选择"更严谨地说明。

Figure 8: $3 = \{1, 2 \mid \}, -1 = \{\mid 0\}, 0 = \{\mid \}$

正、负、零、模糊

用 G > 0 表示在 G 中,无论谁先走,左方都能获胜。

用 G < 0 表示在 G 中,无论谁先走,右方都能获胜。

容易验证 $1, 2, 3, \dots > 0$, $-1, -2, -3, \dots < 0$ 。

如果在 G 中,先走的玩家总是能获胜,则称 G 是模糊 (fuzzy) 的,记作 $G\parallel 0$ (G 混淆于 (confused with) 0)。

左方先走

左方获胜 右方获胜

右方先走

左方获胜 G>0 G=0 右方获胜 $G\parallel 0$ G<0

Table 2: 用符号表示博弈 G 的结局

博弈之和的结果

如果 $G \ge 0, H \ge 0$, 那么 $G + H \ge 0$ 。

- $G \ge 0, H \ge 0$ 即为: 在 G, H 中, 右方先手时, 左方获胜。
- 在 G+H 中,右方先手时,左方每次在右方上次行动的分支中行动,即可获胜。

博弈之和的结果

如果 $G \ge 0, H \ge 0$, 那么 $G + H \ge 0$ 。

- $G \ge 0, H \ge 0$ 即为:在 G, H中,右方先手时,左方获胜。
- ullet 在 G+H 中,右方先手时,左方每次在右方上次行动的分支中行动,即可获胜。

如果 $G \triangleright 0, H \ge 0$, 那么 $G + H \triangleright 0$ ($G \triangleright 0$ 表示 G > 0 或 $G \parallel 0$)。

- $G \triangleright 0$ 即为:在 G 中,左方先手时,左方获胜。
- 在 G + H 中,左方先手时,首先在 G 中行动,之后,左方每次在右方上 次行动的分支中行动,即可获胜。

博弈之和的结果

如果 $G \ge 0, H \ge 0$, 那么 $G + H \ge 0$ 。

- $G \ge 0, H \ge 0$ 即为:在 G, H 中,右方先手时,左方获胜。
- ullet 在 G+H 中,右方先手时,左方每次在右方上次行动的分支中行动,即可获胜。

如果 $G \triangleright 0, H \ge 0$, 那么 $G + H \triangleright 0$ ($G \triangleright 0$ 表示 G > 0 或 $G \parallel 0$)。

- $G \triangleright 0$ 即为:在 G 中,左方先手时,左方获胜。
- 在 G + H 中,左方先手时,首先在 G 中行动,之后,左方每次在右方上 次行动的分支中行动,即可获胜。

整理之前的结果,可以得到以下这张表:BM, 若 G>0, H>0, 则 $G+H\neq 0$.

Table 3: G + H 的结局

左方选择中的负值

考虑计算 $\{-3 \mid \}$ 。如果试图套用之前的规则,会得到-2 < 0。

Figure 9: {-3|}

事实上,因为 $\{-3\mid\}$ 是"后手获胜"的,所以 $\{-3\mid\}=0$ 。 当 $a,b,c,\cdots<0$ 时, $\{a,b,c,\cdots\mid\}$ 是"后手获胜"的,即 $\{a,b,c,\cdots\mid\}=0$ 。与之前的情况合并,可得 $\{a,b,c,\cdots\mid\}=\max\{\max\{a,b,c,\cdots\}+1,0\}$ 。

化简博弈: 删除被优超的选择 (deleting dominated options)

定义 $A \ge B$ 当且仅当 $A - B \ge 0$, $A \le B$ 当且仅当 $A - B \le 0$ 。

在博弈 $G=\{A,B,C,\cdots\mid D,E,F,\cdots\}$ 中,如果有左方选择 $A\geq B$,则 $G=\{A,C,\cdots\mid D,E,F,\cdots\}$ 。

只需要说明 $\{A,B,C,\cdots\mid D,E,F,\cdots\}-\{A,C,\cdots\mid D,E,F,\cdots\}=0$:

化简博弈: 删除被优超的选择 (deleting dominated options)

定义 $A \ge B$ 当且仅当 $A - B \ge 0$, $A \le B$ 当且仅当 $A - B \le 0$ 。

在博弈 $G=\{A,B,C,\cdots\mid D,E,F,\cdots\}$ 中,如果有左方选择 $A\geq B$,则 $G=\{A,C,\cdots\mid D,E,F,\cdots\}$ 。

只需要说明 $\{A, B, C, \dots | D, E, F, \dots\} - \{A, C, \dots | D, E, F, \dots\} = 0$:

- 如果先手的选择不是 B,后手只要在相反的分支中做出对应的选择即可获 胜。
- 如果先手(左方)的选择是 B,后手只要在相反的分支中选择 A,博弈的值就会变为 $B-A \le 0$,后手(右方)仍然能获胜。

Figure 10: 删除被优超的选择

同理,如果有右方选择 $D \ge E$,则 $G = \{A, B, C, \cdots \mid D, F, \cdots\}$ 。

化简博弈: 删除被优超的选择 (deleting dominated options)

如果博弈的选择都是数,那么博弈可以被化简到左右两方分别至多有 1 个选 择。

Example 2

$$\{ \mid -15, -12, -9 \} = \{ \mid -15 \} (= -16).$$

$$\{1, 2 \mid 5, 7, 9 \} = \{ 2 \mid 5 \} (= 3).$$

$$\{-9, -8, -2 \mid -10, -7, -1 \} = \{ -2 \mid -10 \}$$
 (不是数) .

双方选择都是整数的博弈

对于整数 a, b, 考虑计算 $\{a \mid b\}$ 的值。

 $a \ge b$ 的情况较为困难,因此先考虑 a < b 的情况。

在具有整数值的博弈中,一方的行动总是会"消耗"自己的优势,因此左方的 选择应该对左方更不利,即值更小。

如果 a < 0 < b, 博弈 $\{a \mid b\}$ 是 "后手获胜"的, 因此 $\{a \mid b\} = 0$ 。

如果 $b \le 0$, 可以通过 $\{a \mid b\} = -\{-b \mid -a\}$ 转化为 $a \ge 0$ 的情况。

双方选择都是整数的博弈

对于整数 a, b,考虑计算 $\{a \mid b\}$ 的值。

 $a \ge b$ 的情况较为困难,因此先考虑 a < b 的情况。

在具有整数值的博弈中,一方的行动总是会"消耗"自己的优势,因此左方的 选择应该对左方更不利,即值更小。

如果 a < 0 < b, 博弈 $\{a \mid b\}$ 是 "后手获胜"的,因此 $\{a \mid b\} = 0$ 。

如果 $b \le 0$, 可以通过 $\{a \mid b\} = -\{-b \mid -a\}$ 转化为 $a \ge 0$ 的情况。

如果 $0 \le a < b$, 博弈 $\{a \mid b\}$ 是 "左方获胜"的。猜测 $\{a \mid b\}$ 可能是正整数。

设 $\{a\mid b\}=n$,其中 n 是正整数,那么 $\{a\mid b\}-n$ 是"后手获胜"的:

- 左方先手,选择 {a | b} → a: 由右方获胜,可得 a n < 0。</p>
- 右方先手,选择 {a | b} → b:由左方获胜,可得 b n > 0。
- 右方先手,选择 $-n \rightarrow -(n-1)$,博弈变为 $\{a \mid b\} n + 1$:
 - 左方选择 $\{a\mid b\}\to a$: 由左方获胜,可得 $a-n+1\geq 0$ 。

因此, $a < n \le a + 1, n < b$ 。

- 当 $b-a \ge 2$ 时, $\{a \mid b\} = a+1$ 。此时 $\{a \mid b\} = \{a \mid \}$,b 可以看作没有用的右方选择。
- 当 b-a=1 时, $\{a \mid b\}$ 的值不是整数。

$\{0 \mid 1\} = ?$

目前值未知的博弈中,最简单的是 {0 | 1}。

有 0 < {0 | 1} < 1。

Figure 11: $\{0 \mid 1\} > 0, \{0 \mid 1\} - 1 < 0$

$\{0 \mid 1\} = ?$

目前值未知的博弈中,最简单的是 {0 | 1}。

有 0 < {0 | 1} < 1。

Figure 11: $\{0 \mid 1\} > 0, \{0 \mid 1\} - 1 < 0$

猜测 $\{0 \mid 1\}$ 可能与 $\frac{1}{2}$ 有相似的性质,可以发现 $\{0 \mid 1\} + \{0 \mid 1\} - 1 = 0$ 。

Figure 12: $\{0 \mid 1\} + \{0 \mid 1\} - 1 = 0$

$$\{0 \mid 1\} = \frac{1}{2}$$

定义 $\frac{1}{2} = \{0 \mid 1\}$ 。取负可得 $-\frac{1}{2} = \{-1 \mid 0\}$ 。

通过加法,可以得到 \cdots $,-\frac{5}{2},2,-\frac{3}{2},1,-\frac{1}{2},0,\frac{1}{2},1,\frac{3}{2},2,\frac{5}{2},\cdots$ 。

Example 3

$$\begin{array}{l} \frac{5}{2} = 5 \cdot \frac{1}{2} = \{0 + 4 \cdot \frac{1}{2} \mid 1 + 4 \cdot \frac{1}{2}\} = \{2 \mid 3\}. \\ -\frac{3}{2} = 3 \cdot (-\frac{1}{2}) = \{-1 + 2 \cdot (-\frac{1}{2}) \mid 0 + 2 \cdot (-\frac{1}{2})\} = \{-2 \mid -1\}. \\ \frac{6}{2} = 6 \cdot \frac{1}{2} = \{0 + 5 \cdot \frac{1}{2} \mid 1 + 5 \cdot \frac{1}{2}\} = \{\frac{5}{2} \mid \frac{7}{2}\}. \end{array}$$

一个数可以有不同形式 $\{2\mid\},\{\frac{5}{2}\mid\frac{7}{2}\}$ 是 3 的不同形式。 $\{\mid\},\{-1\mid1\},\{-\frac{1}{2}\mid\frac{1}{2}\}$ 是 0 的不同形式。

$$\{0 \mid 1\} = \frac{1}{2}$$

定义 $\frac{1}{2} = \{0 \mid 1\}$ 。取负可得 $-\frac{1}{2} = \{-1 \mid 0\}$ 。

通过加法,可以得到 $\cdots,-\frac{5}{2},2,-\frac{3}{2},1,-\frac{1}{2},0,\frac{1}{2},1,\frac{3}{2},2,\frac{5}{2},\cdots$ 。

Example 3

$$\begin{array}{l} \frac{5}{2} = 5 \cdot \frac{1}{2} = \{0 + 4 \cdot \frac{1}{2} \mid 1 + 4 \cdot \frac{1}{2}\} = \{2 \mid 3\}. \\ -\frac{3}{2} = 3 \cdot (-\frac{1}{2}) = \{-1 + 2 \cdot (-\frac{1}{2}) \mid 0 + 2 \cdot (-\frac{1}{2})\} = \{-2 \mid -1\}. \\ \frac{6}{2} = 6 \cdot \frac{1}{2} = \{0 + 5 \cdot \frac{1}{2} \mid 1 + 5 \cdot \frac{1}{2}\} = \{\frac{5}{2} \mid \frac{7}{2}\}. \end{array}$$

一个数可以有不同形式 $\{2\mid\},\{\frac{5}{2}\mid\frac{7}{2}\}$ 是 3 的不同形式。

 $\{|\}, \{-1|1\}, \{-\frac{1}{2}|\frac{1}{2}\} \neq 0 \text{ n}$ n \mathbb{R} \mathbb{R} \mathbb{R} .

一般地,有 $\frac{n}{2} = \{\frac{n-1}{2} \mid \frac{n+1}{2}\}$,其中 n 为任意整数。

现在, $\{n \mid n+1\} = n + \frac{1}{2}$ 已经得到了解决。

也就是说,对于所有整数 a,b (a < b), $\{a \mid b\}$ 的值都已知。

考虑计算 $\{a\mid b\}$,其中 a,b 均为 $\frac{1}{2}$ 的倍数(存在整数 a',b',使得 $a=\frac{a'}{2},b=\frac{b'}{2}$)。

与分析"双方选择是整数的博弈"时类似,我们同样只需要讨论 $0 \le a < b$ 的情况。

首先, 检查 {a | b} 是不是正整数:

- 之前的分析并没有用到"双方选择是整数"的性质,可以直接套用之前的 结果。
- 如果存在正整数 n, 满足 $a < n \le a + 1, n < b$, 那么 $\{a \mid b\} = n$.
- ▶ 换句话说,如果 [a] + 1 < b,那么 {a | b} = [a] + 1。</p>

考虑计算 $\{a\mid b\}$,其中 a,b 均为 $\frac{1}{2}$ 的倍数(存在整数 a',b',使得 $a=\frac{a'}{2},b=\frac{b'}{2}$)。

与分析"双方选择是整数的博弈"时类似,我们同样只需要讨论 $0 \le a < b$ 的情况。

首先, 检查 {a | b} 是不是正整数:

- 之前的分析并没有用到"双方选择是整数"的性质,可以直接套用之前的 结果。
- 如果存在正整数 n, 满足 $a < n \le a + 1, n < b$, 那么 $\{a \mid b\} = n$.
- ▶ 换句话说,如果 \[\bar{a} \] + 1 < b,那么 \[\{a \cap b\} = \[\[a \] + 1. \]</p>

如果 $\{a\mid b\}$ 不是正整数,假设 $\{a\mid b\}=c$,其中 c 是 $\frac{1}{2}$ 的倍数。

根据 $\{a \mid b\} - c$ 是 "后手获胜"的,可得:

- 左方选择 $-c \rightarrow -c \frac{1}{2}$:
 - 右方选择 $-c \frac{1}{2} \rightarrow -c$:
 - 左方选择 $-c \rightarrow -c \frac{1}{2} \cdots \cdots$

分析失败。

因为之前已经得到了"博弈是某个整数"的条件,所以不用考虑 c 是整数的情况。

可以利用 c 不是整数的性质进行分析。显然, $c+\frac{1}{2},c-\frac{1}{2}$ 是整数。

因为之前已经得到了"博弈是某个整数"的条件,所以不用考虑 c 是整数的情况。

可以利用 c 不是整数的性质进行分析。显然, $c+\frac{1}{2},c-\frac{1}{2}$ 是整数。

根据 $\{a \mid b\} - c$ 是 "后手获胜"的,可得:

- 左方选择 $-c \rightarrow -c \frac{1}{2}$:
 - 右方选择 $-c \frac{1}{2} \rightarrow -c + \frac{1}{2}$ (因为 $-c \frac{1}{2} = \{-c \frac{3}{2} \mid -c + \frac{1}{2}\}$), 由于 $\{a \mid b\} c + \frac{1}{2} > \{a \mid b\} c = 0$, 右方不可能通过这个选择获胜。
 - 右方选择 $\{a \mid b\} \to b$,由右方获胜, $b-c-\frac{1}{2} \le 0$ 。
- 左方选择 {a | b} → a, 由右方获胜, a c < 0。
- 右方选择 $-c \to -c + \frac{1}{2}$:
 - 左方选择 $-c + \frac{1}{2} \rightarrow -c \frac{1}{2}$ (因为 $-c + \frac{1}{2} = \{-c \frac{1}{2} \mid -c + \frac{3}{2}\}$), 由于 $\{a \mid b\} c \frac{1}{2} < \{a \mid b\} c = 0$,左方不可能通过这个选择获胜。
 - 左方选择 $\{a \mid b\} \rightarrow a$,由左方获胜, $a-c+\frac{1}{2} \geq 0$ 。
- 右方选择 $\{a \mid b\} \to b$,由左方获胜,b-c > 0。

因此, $c - \frac{1}{2} \le a < c < b \le c + \frac{1}{2}$ 。

因为之前已经得到了"博弈是某个整数"的条件,所以不用考虑 c 是整数的情况。

可以利用 c 不是整数的性质进行分析。显然, $c+\frac{1}{2},c-\frac{1}{2}$ 是整数。

根据 $\{a \mid b\} - c$ 是 "后手获胜"的,可得:

- 左方选择 $-c \rightarrow -c \frac{1}{2}$:
 - 右方选择 $-c \frac{1}{2} \rightarrow -c + \frac{1}{2}$ (因为 $-c \frac{1}{2} = \{-c \frac{3}{2} \mid -c + \frac{1}{2}\}$), 由于 $\{a \mid b\} c + \frac{1}{2} > \{a \mid b\} c = 0$,右方不可能通过这个选择获胜。
 - 右方选择 $\{a \mid b\} \rightarrow b$, 由右方获胜, $b-c-\frac{1}{2} \leq 0$.
- 左方选择 $\{a \mid b\} \rightarrow a$,由右方获胜,a-c < 0。
- 右方选择 $-c \to -c + \frac{1}{2}$:
 - 左方选择 $-c + \frac{1}{2} \rightarrow -c \frac{1}{2}$ (因为 $-c + \frac{1}{2} = \{-c \frac{1}{2} \mid -c + \frac{3}{2}\}$), 由于 $\{a \mid b\} c \frac{1}{2} < \{a \mid b\} c = 0$, 左方不可能通过这个选择获胜。
 - 左方选择 $\{a \mid b\} \rightarrow a$,由左方获胜, $a-c+\frac{1}{2} \geq 0$ 。
- 右方选择 $\{a \mid b\} \rightarrow b$,由左方获胜,b-c>0。

因此, $c - \frac{1}{2} \le a < c < b \le c + \frac{1}{2}$ 。

换句话说,如果开区间 (a,b) 中不含整数,但是含有 $\frac{1}{2}$ 的倍数,那么 $\{a\mid b\}$ 就等于该 $\frac{1}{2}$ 的倍数(显然唯一)。

又一次,我们遇到了类似的问题: 无法计算 $\{0\mid \frac{1}{2}\}, \{\frac{1}{2}\mid 1\}, \{1\mid \frac{3}{2}\}, \cdots$ 的值。

$$\{0 \mid \frac{1}{2}\} = \frac{1}{4}$$

可以发现 $\{0 \mid \frac{1}{2}\} + \{0 \mid \frac{1}{2}\} - \frac{1}{2} = 0$ 。

Figure 13: $\{0 \mid \frac{1}{2}\} + \{0 \mid \frac{1}{2}\} - \frac{1}{2} = 0$

定义 $\frac{1}{4} = \{0 \mid \frac{1}{2}\}$,可以得到所有 $\frac{1}{4}$ 的倍数。

$$\{0 \mid \frac{1}{2}\} = \frac{1}{4}$$

可以发现 $\{0 \mid \frac{1}{2}\} + \{0 \mid \frac{1}{2}\} - \frac{1}{2} = 0$ 。

Figure 13: $\{0 \mid \frac{1}{2}\} + \{0 \mid \frac{1}{2}\} - \frac{1}{2} = 0$

定义 $\frac{1}{4} = \{0 \mid \frac{1}{2}\}$,可以得到所有 $\frac{1}{4}$ 的倍数。

再次考虑计算 $\{a \mid b\}$ 。

同理可得,如果 $\{a \mid b\} = c$,其中 c 是 $\frac{1}{4}$ 的奇数倍,那么 $c - \frac{1}{4} \leq a < c < b \leq c + \frac{1}{4}$ 。

换句话说,如果开区间 (a,b) 中不含 $\frac{1}{2}$ 的倍数,但是含有 $\frac{1}{4}$ 的倍数,那么 $\{a\mid b\}$ 就等于该 $\frac{1}{4}$ 的倍数。

是否有 $\{0 \mid \frac{1}{4}\} = \frac{1}{8}, \{0 \mid \frac{1}{8}\} = \frac{1}{16}, \cdots$?

$$\{0 \mid \frac{1}{2^k}\} = \frac{1}{2^{k+1}}$$

对于非负整数 k,有 $\{0 \mid \frac{1}{2^k}\} + \{0 \mid \frac{1}{2^k}\} = \frac{1}{2^k}$ 。

Figure 14: $\{0 \mid \frac{1}{2^k}\} + \{0 \mid \frac{1}{2^k}\} - \frac{1}{2^k} = 0 \ (k \geq 1)$

定义 $\frac{1}{2k+1} = \{0 \mid \frac{1}{2k}\}$, 其中 k 为非负整数。

将若干个 $\frac{1}{2^k}$ 相加可得 $\frac{p}{2^k} = \{\frac{p-1}{2^k} \mid \frac{p+1}{2^k}\}$ 。

对于正整数 k, 如果 $\{a\mid b\}=c$, 其中 c 是 $\frac{1}{2^k}$ 的奇数倍,那么 $c-\frac{1}{2^k}\leq a< c< b\leq c+\frac{1}{2^k}$ 。

要计算一个 $\{a\mid b\}\ (a< b)$,首先检查该值是否为整数,然后依次检查该值是 否为 $\frac{1}{2},\frac{1}{4},\frac{1}{8},\cdots$ 的倍数。

简单性法则、数的最简形

简单性法则 (The Simplicity Rule)

 $\{a \mid b\}$ 的值是开区间 (a,b) 中"最简单"的数。

其中数从"简单"到"复杂"依次为: $0,1,-1,2,-2,3,-3,\cdots$, $\frac{1}{2}$ 的奇数倍、 $\frac{1}{4}$ 的奇数倍、 $\frac{1}{8}$ 的奇数倍……

Example 4

数的最简形

以下 n,k 为正整数,p 为整数。之后会说明为什么它们是"最简单"的形式。 $0=\{\,|\,\,\}$. $n=\{n-1\,|\,\},-n=\{\,|\,-(n-1)\}$. $\frac{2p+1}{2k}=\{\,\frac{p}{2k+1}\,|\,\frac{p+1}{2k+1}\,\}$.

Example 5

$$-4 = \{ \mid -3 \}.$$

$$-\frac{5}{2} = \{ -3 \mid -2 \}.$$

$$7 = \{ 6 \mid \}.$$

$$\frac{3}{8} = \{ \frac{1}{4} \mid \frac{1}{2} \}.$$

目前进展

目前,我们能用数表示满足以下条件的博弈 $G = \{A, B, C, \cdots \mid D, E, F, \cdots \}$ 的值:

- $A, B, C, \dots, D, E, F, \dots$ 都是已知的数。
- $\blacksquare \ \max\{A,B,C,\cdots\} < \min\{D,E,F,\cdots\}_{\circ}$

1 基础

2 数

3 一些无穷小量

4 总结

在 $G^L < G^R$ 的条件下,我们已经能用数表示所有博弈。

接下来,我们允许 $G^L \not\subset G^R$ 。

首先,探究 {0 | 0} 的性质。

Figure 15: $\{0 \mid 0\}$

在 $G^L < G^R$ 的条件下,我们已经能用数表示所有博弈。

接下来,我们允许 $G^L \not\subset G^R$ 。

首先,探究 {0 | 0} 的性质。

Figure 15: {0 | 0}

 $\{0 \mid 0\}$ 是 "先手获胜"的,即 $\{0 \mid 0\} \parallel 0$ 。

显然 $\{0\mid 0\}$ 不等于任何数,因此我们需要引入一个符号表示 $\{0\mid 0\}$ 。

在 $G^L < G^R$ 的条件下,我们已经能用数表示所有博弈。

接下来,我们允许 $G^L \not\subset G^R$ 。

首先,探究 {0 | 0} 的性质。

Figure 15: {0 | 0}

 $\{0 \mid 0\}$ 是 "先手获胜"的,即 $\{0 \mid 0\} \parallel 0$ 。

显然 $\{0\mid 0\}$ 不等于任何数,因此我们需要引入一个符号表示 $\{0\mid 0\}$ 。

定义 $* = \{0 \mid 0\}$ (* 读作星 (star))。

* 可以和数相加,记 * 与数 x 的和为 x*。

* 有名大?

把 * 和一个正数 x 进行比较,即计算 *-x 的结局:

- 左方 $* \rightarrow 0$,博弈变为 -x < 0,右方获胜。
- 左方 $-x \rightarrow (-x)^L$:
 - 右方 $* \to 0$,博弈变为 $(-x)^L < -x < 0$,右方获胜。
- 右方 $* \rightarrow 0$,博弈变为 -x < 0,右方获胜。

Figure 16: * - x

因此 * < x, 即 * **小于任何正数**。同理,* **大于任何负数**。可以认为 * 是一个无穷小量。

由加法的定义,可得 $x* = \{x, x^L + * \mid x, x^R + *\}$ 。

因为 $x > x^L + *, x < x^R + *,$ 可以用"删除被优超的选择"的方法化简博弈,从而 $x * = \{x \mid x\}$ 。

$$* + *, \{* \mid *\}$$

* + * 是 "后手获胜"的,所以 * + * = 0。

把一个 * 移到等式的右边,可得 * = -*。

Figure 17: * + *

 $\{* \mid *\}$ 同样是 "后手获胜"的,所以 $\{* \mid *\} = 0$ 。

Figure 18: {* | *}

目前,我们已知的值相加得到的结果都可以表示成 x 或者 x*。

$\{0 \mid *$

读者可以自行验证: 对于任意整数 x, 都有 $0 < \{0 \mid *\} < x$ 。

Figure 19: $\{0 \mid *\} > 0, \{0 \mid *\} - x < 0$

$\{0 \mid *\}$

读者可以自行验证:对于任意整数 x,都有 $0 < \{0 \mid *\} < x$ 。

Figure 19: $\{0 \mid *\} > 0, \{0 \mid *\} - x < 0$

定义 $\uparrow = \{0 \mid *\}, \downarrow = - \uparrow = \{* \mid 0\} \ (\uparrow$ 读作上 (up), \downarrow 读作下 (down))。

记录 \uparrow , \downarrow 与 * 的和时,可以把 * 写在后面并省略加号。例如,可以把 \uparrow +* 写作 \uparrow *。

同样可以认为 ↑,↓ 是无穷小量。

 $2 \cdot \uparrow, 3 \cdot \uparrow, \dots; 2 \cdot \downarrow, 3 \cdot \downarrow, \dots$ 也都是无穷小量。

$\{0 \mid *\}$

读者可以自行验证: 对于任意整数 x, 都有 $0 < \{0 \mid *\} < x$.

Figure 19: $\{0 \mid *\} > 0, \{0 \mid *\} - x < 0$

定义 $\uparrow = \{0 \mid *\}, \downarrow = - \uparrow = \{* \mid 0\} \ (\uparrow$ 读作上 (up), \downarrow 读作下 (down))。

记录 \uparrow , \downarrow 与 * 的和时,可以把 * 写在后面并省略加号。例如,可以把 \uparrow +* 写作 \uparrow *。

同样可以认为 ↑,↓ 是无穷小量。

 $2 \cdot \uparrow, 3 \cdot \uparrow, \dots; 2 \cdot \downarrow, 3 \cdot \downarrow, \dots$ 也都是无穷小量。

通过加法,可得 $\uparrow + \uparrow = \{\uparrow \mid \uparrow *\}$ 。这是 $2 \cdot \uparrow$ 的最简形吗?

更一般地,如何求任意一个博弈的最简形?

观察 $\{0,\frac{1}{4}\,|\,1\}=\frac{1}{2}\,$ 。 $\frac{1}{4}$ 没有影响博弈的值,这是因为虽然 $\frac{1}{4}>0$,但是 $(\frac{1}{4})^R=\frac{1}{2}$,也就是说,左方获得的 $\frac{1}{4}$ 的 "收益"会被右方 "撤销"。利用这种 思想,可以得到另一种化简博弈的方法。

对于博弈 $G=\{A,B,\cdots\mid C,D,\cdots\}$ 的一个右方选择 C,若存在 C 的某个左方选择 H 满足 $H\geq G$,则称右方到 C 的行动是可逆的。

此时,有 $G = \{A, B, \dots \mid H^R, D, \dots \}$ 。

Figure 20: $G = \{A, B, \cdots \mid H^R, D, \cdots \}$

同理,如果对于一个左方选择 A,若存在 A 的右方选择 $F \leq G$,则称左方到 A 的行动是**可逆**的。

此时,有 $G = \{F^L, B, \cdots \mid C, D, \cdots \}$ 。

读者可以自行验证 $G-\{A,B,\cdots \mid H^R,D,\cdots\}=0$ 。

Figure 21: $G - \{A, B, \cdots \mid H^R, D, \cdots \}$

提示:

读者可以自行验证 $G - \{A, B, \dots \mid H^R, D, \dots\} = 0$ 。

Figure 21: $G - \{A, B, \cdots \mid H^R, D, \cdots \}$

提示:

- **1** H G ≥ 0.
- $H X \triangleleft 0.$

读者可以自行验证 $G-\{A,B,\cdots \mid H^R,D,\cdots\}=0$ 。

Figure 21: $G - \{A, B, \cdots \mid H^R, D, \cdots \}$

提示:

- **1** H G ≥ 0.
- $2 H-X \triangleleft 0.$
- $G X \triangleleft 0.$

博弈的最简形

对一个博弈不断执行**删除被优超的选择和绕开可逆行动**,最后总能得到该博弈的**唯一**最简形。

博弈的最简形

对一个博弈不断执行**删除被优超的选择和绕开可逆行动**,最后总能得到该博弈的**唯一**最简形。

证明

假设有两个不能再执行删除被优超的选择或绕开可逆行动的博弈 G=H。 由于 G=H,G-H中后手有取胜的策略。不妨设先手为左方,且第一次行动 在 G中进行。

后手第一次行动一定在不同于先手第一次行动的分支中进行。

■ 否则,有先手执行 $G \to A$,后手执行 $A \to B$,由于后手能获胜,有 $B - H \le 0$,即 $B \le G$,因此 A 为可逆行动,与假设矛盾。

博弈的最简形

对一个博弈不断执行**删除被优超的选择和绕开可逆行动**,最后总能得到该博弈的**唯一**最简形。

证明

假设有两个不能再执行删除被优超的选择或绕开可逆行动的博弈 G=H。 由于 G=H,G-H 中后手有取胜的策略。不妨设先手为左方,且第一次行动 在 G 中进行。

后手第一次行动一定在不同于先手第一次行动的分支中进行。

■ 否则,有先手执行 $G \to A$,后手执行 $A \to B$,由于后手能获胜,有 $B-H \le 0$,即 $B \le G$,因此 A 为可逆行动,与假设矛盾。

因此,若先手执行 $G \to A$ $(A \in G^L)$,后手会执行 $-H \to -B$ $(B \in H^L)$,由于后手能取胜, $A-B \le 0$,即 $A \le B$ 。

也就是说,对于 G 中的每个左方选择,都存在 H 中的一个左方选择大于等于该 G 中的左方选择。交换 G 和 H,该命题仍然成立。

取 $A \in G^L$, 再取 $B \in H^L, B \ge A$, 以及 $C \in G^L, C \ge B$, 有 $A \le B \le C$ 。由于 G^L 中没有被优超的选择,A = C,故 A = B = C。

所以,G 中的每个左方选择都在 H 的左方选择中存在,即 $G^L\subseteq H^L$ 。同理 $H^L\subseteq G^L$,因此 $G^L=H^L$ 。

对应地,有 $G^R = H^R$ 。

综上所述, $G^L = H^L$, $G^R = H^R$, 即 G 和 H 的形式相同。

化简一些博弈

```
Example 6 2 \cdot \uparrow = \{ \uparrow \mid \uparrow \ * \} \uparrow \ * = \{ *, \uparrow \mid 0, \uparrow \} \{ * \mid 1 \}
```

化简一些博弈

```
Example 6 2 \cdot \uparrow = \{ \uparrow | \uparrow * \} \uparrow * = \{ *, \uparrow | 0, \uparrow \} \{ * | 1 \}
```

Answer

$$2 \cdot \uparrow = \{0 \mid \uparrow *\}$$

 $\uparrow * = \{0, * \mid 0\}$
 $\{* \mid 1\} = 0$

Nimber

定义 $*n=\{*0,*1,\cdots,*(n-1)\mid *0,*1,\cdots,*(n-1)\}$,把这类值称作 nimber。 直观地,*n 的值相当于一个大小为 n 的 nim 堆的值。

特别地,*0 = 0, *1 = *...* 之后的数即为熟知的 nim 值或 SG 函数值。

无偏 (impartial) 博弈 (双方选择总是相同的博弈) 的值总是 nimber。

Nimber

定义 $*n = \{*0, *1, \cdots, *(n-1) \mid *0, *1, \cdots, *(n-1)\}$, 把这类值称作 nimber。 直观地, *n 的值相当于一个大小为 n 的 nim 堆的值。

特别地,*0 = 0, *1 = *...* 之后的数即为熟知的 nim 值或 SG 函数值。

无偏 (impartial) 博弈(双方选择总是相同的博弈)的值总是 nimber。

设 $G = \{*a, *b, *c, \cdots | *a, *b, *c, \cdots\}, g = \text{MEX}\{a, b, c, \cdots\},$ 其中 MEX 表示一个集合中最小的未出现的**非负整数**,有 G = *g。

这是因为所有 nim 值大于 > g 的选择都是**可逆**的: 设 *d 为 G 的选择且 d > g, *d 有选择 *g = G. 因此可以用 *g 的选择 $(*0,*1,\cdots,*(g-1))$ 替换 *d.

Figure 22: $\{*0, *1, *2, *4 \mid *0, *1, *2, *4\} = *3$

Nimber 的加法

为了方便,用 $a\oplus b=c$ 表示 *a+*b=*c。显然," \oplus " 运算有结合律和交换 律。

已知 $n \oplus 0 = n, n \oplus n = 0$ 。

假设对于所有 $a, b < 2^k$, $a \oplus b$ 已知, 且 $a \oplus b < 2^k$.

对于 $a < 2^k$,有 $(2^k + a) \oplus 2^k = a$,即 $2^k + a = 2^k \oplus a$ 。

- lacksquare a=0 时显然成立。假设 $a < a_0$ 时成立,可以说明 $a=a_0$ 时仍然成立。
- $*(2^k + a) + *2^k$ 的选择包含 $i = 0, 1, \dots, a 1$: 总是有选择 $*(2^k + i) + *2^k = *i$ 。
- * $(2^k+a)+*2^k$ 的选择不包含 a: 若存在,一定会把一个博弈的 nim 值降 到低于 2^k (否则为 * $(2^k+i)+*2^k=*i$,而 i< a)。因此有 *x+*y=*a,其中 $x \geq 2^k$, $y < 2^k$, $a < 2^k$,可得 $a \oplus y = x$,与假设矛盾。

Nimber 的加法

为了方便,用 $a \oplus b = c$ 表示 *a + *b = *c。显然," \oplus " 运算有结合律和交换律。

已知 $n \oplus 0 = n, n \oplus n = 0$ 。

假设对于所有 $a, b < 2^k$, $a \oplus b$ 已知, 且 $a \oplus b < 2^k$.

对于 $a < 2^k$,有 $(2^k + a) \oplus 2^k = a$,即 $2^k + a = 2^k \oplus a$ 。

- a=0 时显然成立。假设 $a < a_0$ 时成立,可以说明 $a=a_0$ 时仍然成立。
- $*(2^k + a) + *2^k$ 的选择包含 $i = 0, 1, \dots, a 1$: 总是有选择 $*(2^k + i) + *2^k = *i$ 。
- *($2^k + a$) + * 2^k 的选择不包含 a: 若存在,一定会把一个博弈的 nim 值降 到低于 2^k (否则为 *($2^k + i$) + * $2^k = *i$, 而 i < a)。因此有 *x + *y = *a, 其中 $x \ge 2^k$, $y < 2^k$, $a < 2^k$, 可得 $a \oplus y = x$, 与假设矛盾。

可以发现,对于所有 $a, b < 2^{k+1}$, $a \oplus b$ 已知,且 $a \oplus b < 2^{k+1}$ 。

计算两个 nimber 之和时,可以根据 $2^k+a=2^k\oplus a$ 把 nimber 拆成若干个 2 的幂,然后利用 $n\oplus n=0$ 消去相同的 2 的幂,然后逆用 $2^k+a=2^k\oplus a$ 把 2 的幂合并为一个 nimber。

不难发现,"⊕"就是按位异或。

"上"和"星"之和的最简形

其中 $n \neq 1, m = n \oplus 1$ 。

Figure 23: 最简形的可视化

"数""上""星"之和的结局

形如"数""上""星"之和的博弈,双方总是先在"上""星"中行动,最后在"数"中行动。

Example 7

$$3\uparrow *=\{3,3*\mid 3\}.$$

"数""上""星"之和的结局

形如"数""上""星"之和的博弈,双方总是先在"上""星"中行动,最后在"数"中行动。

Example 7

$$3 \uparrow * = \{3, 3* \mid 3\}.$$

设
$$G = a + n \cdot \uparrow + * m_{\circ}$$

- a > 0: G > 0.
- a < 0: G < 0.
- a = 0:
 - n > 2: G > 0.
 - n = 1:
 - $m = 1: G \parallel 0.$ $m \neq 1: G > 0.$
 - 110 7 1. U / U
 - n = 0:
 - m = 0: G = 0.
 - $m \neq 0$: $G \parallel 0$.
 - n = -1
 - $m = 1: G \parallel 0.$
 - $m \neq 1$: G < 0.
 - $n \le -2$: G < 0.

1 基础

2 数

3 一些无穷小量

4 总结

更多值?

还有很多具有特殊性质的博弈。

Example 8

$$\pm a = \{ a \mid -a \} \ (a \ge 0).$$

$$+_a = \{ 0 \mid \{ 0 \mid -a \} \} \ (a \ge 0).$$

很难快速计算一般的博弈之和。

回顾

博弈可以用 DAG 或树表示。

博弈 G 的结局: G>0 - 左方获胜, G<0 - 右方获胜, G=0 - 后手获胜, $G\parallel 0$ - 先手获胜。

可以用简单性法则计算数。

对一个博弈不断执行**删除被优超的选择和绕开可逆行动**,最后总能得到该博弈的唯一最简形。

如果希望了解更多关于博弈的内容,可以阅读 Winning Ways for Your Mathematical Plays。

Thanks for listening!