课堂练习

2021.5.14 杜逆索

TID	项目集			
1	a,c,d,f,g			
2	a,b,d,e,g			
3	a,d,f,g			
4	b,d,f			
5	e,f,g			
6	a,b,c,d,g			
7	a,b,e,g			

1. 给定上表所示的一个事物数据库,写出Apriori算法生成频繁项目集的过程(假定最小支持度=0.5)。

样本	Ca+浓度	Mg+浓度	Na+浓度	C1-浓度	类型
A	0.2	0.5	0.1	0.1	冰川水
В	0.4	0.3	0.4	0.3	湖泊水
С	0.3	0.4	0.6	0.3	冰川水
D	0.2	0.6	0.2	0.1	冰川水
E	0.5	0.5	0.1	0	湖泊水
F	0.3	0.3	0.4	0.4	湖泊水
G	0.3	0.3	0.3	0.2	?
Н	0.1	0.5	0.2	0.2	?

2. 使用K-邻近法对两个未知类型的样本进行分类(冰川水或者湖泊水),本例我们使用K=3,即选择最近的3个邻居。

Ca+浓度	Mg+浓度	Na+浓度	C1-浓度	类型
低	高	高	高	冰川水
高	低	高	高	冰川水
低	高	低	低	冰川水
高	高	低	低	冰川水
低	低	低	低	湖泊水
高	低	低	低	湖泊水
低	高	高	低	湖泊水
高	低	高	低	湖泊水
低	高	高	低	?
高	高	低	高	?

3. 使用ID3决策树算法对两个未知类型的样本进行分类。

(4) 请首先写出D1和D3进行交集合并的语句, 然后写出各语句执行之后的结果。

- 1) D1 = pd.DataFrame({'id':[801, 802, 803,804, 805, 806, 807, 808, 809, 810], 'name':['Ansel', 'Wang', 'Jessica', 'Sak','Liu', 'John', 'TT','Walter','Andrew','Song']})
- 2) D2 = pd.DataFrame({'id':[803, 804, 808,901], 'save': [3000, 500, 1200, 8800]})
- 3) D3 = pd.DataFrame({'id2':[803, 804, 808,901], 'save': [3000, 500, 1200, 8800]})
- 4) a = pd.merge(D1, D2, on='id')
- 5) b = pd.merge(D1, D2, on='id', how='outer')

(5) 要求合并D1和D2的数据并且为并集,请首先写出合并执行代码,然后再写出各语句执行之后的结果。

- 1) D1 = pd.DataFrame({'id':[801, 802, 803,804, 805, 806, 807, 808, 809, 810], 'name':['Ansel', 'Wang', 'Jessica', 'Sak','Liu', 'John', 'TT','Walter','Andrew','Song']})
- 2) D2 = pd.DataFrame({'save': [3000, 500, 1200, 8800]})

(6) 概述k均值和k中心点算法的优缺点。

(7) 简述数据清理、数据变换、刷新的概念。