Event-driven scaling in Kubernetes using KEDA

Diploma Thesis

Faculty of Computer and Information Science

University of Ljubljana

Your Name

Supervisor: Supervisor's Name

June 14, 2025

Contents

Abstract										
P	ovzet	ek		\mathbf{v}						
Acknowledgements										
1	Intr	oducti	ion	1						
	1.1	Motiv	ation	1						
	1.2	Proble	em Statement	1						
	1.3	Goals	and Objectives	1						
	1.4	Thesis	s Outline	1						
2	Theoretical Background									
	2.1	Cloud	-Native and Microservices	3						
	2.2	Conta	iners and Orchestration	3						
		2.2.1	Docker	3						
		2.2.2	Kubernetes	3						
	2.3	Autos	caling in Kubernetes	3						
		2.3.1	Horizontal Pod Autoscaler (HPA)							
		2.3.2	Vertical Pod Autoscaler (VPA)	3						
		2.3.3	Cluster Autoscaler (CA)	3 3						
	2.4 Event-Driven Architecture (EDA)									
		2.4.1	Principles of EDA							
		2.4.2	Common EDA Patterns	3						
		2.4.3	Message Brokers (e.g., RabbitMQ, Apache Kafka)							
	2.5	KEDA	A: Kubernetes-based Event-driven Autoscaling							
		2.5.1	KEDA Architecture	3						
		2.5.2	How KEDA Works with HPA							
		2.5.3	Supported Scalers							
		2.5.4	The ScaledObject Custom Resource	3						

3	Ana	Analysis of the Problem											
	3.1	Limitations of CPU/Memory-Based Scaling											
	3.2	Need for Event-Driven Scaling											
	3.3	Existing Solutions and Their Trade-offs											
4	Dog	ign and Implementation of the Solution											
4	4.1												
	4.1	Tools and Technologies											
	4.3	· · · · · · · · · · · · · · · · · · ·											
	4.5	Test Application											
		4.3.1 Application Logic											
	4 4	4.3.2 Dockerfile											
	4.4	Environment Setup											
		4.4.1 Kubernetes Cluster Setup											
		4.4.2 Deploying the Event Source											
		4.4.3 Deploying the Application											
	4.5	Configuring KEDA for Autoscaling											
		4.5.1 The ScaledObject Configuration											
		4.5.2 Verifying the Setup											
5	Evaluation and Results												
	5.1	Test Environment											
	5.2	Evaluation Metrics											
	5.3	Test Scenarios											
		5.3.1 Scenario 1: Sudden Burst of Traffic											
		5.3.2 Scenario 2: Gradual Increase in Traffic											
		5.3.3 Scenario 3: Scaling to Zero											
	5.4	Presenting the Results											
	5.5	Analysis of Results											
6	Con	nclusion											
U	6.1	Summary of Work											
	_	Contribution											
	6.3	Limitations											
		Future Work											
	6.4	ruture Work											
A	Appendices												
	A.1	Source Code for the Test Application											
	A.2	Kubernetes Deployment YAML											

List of Figures

List of Tables

Abstract

This thesis explores event-driven autoscaling in a Kubernetes environment using KEDA (Kubernetes-based Event-driven Autoscaler). ...

Keywords: Kubernetes, KEDA, event-driven architecture, autoscaling, cloud-native.

Povzetek (Slovenian Abstract)

To diplomsko delo raziskuje dogodkovno pogojeno skaliranje v okolju Kubernetes z uporabo KEDA (Kubernetes-based Event-driven Autoscaler). ...

Ključne besede: Kubernetes, KEDA, dogodkovno vodena arhitektura, samodejno skaliranje, v oblaku rojene aplikacije.

Acknowledgements

Introduction

1.1 Motivation

Kubernetes has become the de facto standard for container orchestration in cloudnative environments [1]. As organizations increasingly adopt microservices architectures, the need for efficient scaling solutions becomes paramount.

- 1.2 Problem Statement
- 1.3 Goals and Objectives
- 1.4 Thesis Outline

In Chapter 2, we ...

Theoretical Background

0 -	\sim 1	1 7	т , •	1 7	Æ•	•
2.	I (31a	วมd- \	lative	and N	/l 1C1	roservices

- 2.2 Containers and Orchestration
- 2.2.1 Docker
- 2.2.2 Kubernetes

Architecture

Key Objects (Pods, Deployments, Services)

- 2.3 Autoscaling in Kubernetes
- 2.3.1 Horizontal Pod Autoscaler (HPA)
- 2.3.2 Vertical Pod Autoscaler (VPA)
- 2.3.3 Cluster Autoscaler (CA)
- 2.4 Event-Driven Architecture (EDA)
- 2.4.1 Principles of EDA
- 2.4.2 Common EDA Patterns
- 2.4.3 Message Brokers (e.g., RabbitMQ, Apache Kafka)
- 2.5 KEDA: Kubernetes-båsed Event-driven Autoscaling
- 2.5.1 KEDA Architecture
- 2.5.2 How KEDA Works with HPA
- 2.5.3 Supported Scalers
- 254 The ScaledObject Custom Resource

Analysis of the Problem

- 3.1 Limitations of CPU/Memory-Based Scaling
- 3.2 Need for Event-Driven Scaling
- 3.3 Existing Solutions and Their Trade-offs

Design and Implementation of the Solution

- 4.1 System Architecture
- 4.2 Tools and Technologies
- 4.3 Test Application
- 4.3.1 Application Logic
- 4.3.2 Dockerfile
- 4.4 Environment Setup
- 4.4.1 Kubernetes Cluster Setup
- 4.4.2 Deploying the Event Source
- 4.4.3 Deploying the Application
- 4.5 Configuring KEDA for Autoscaling
- 4.5.1 The ScaledObject Configuration
- 4.5.2 Verifying the Setup

Evaluation and Results

- 5.1 Test Environment
- 5.2 Evaluation Metrics
- 5.3 Test Scenarios
- 5.3.1 Scenario 1: Sudden Burst of Traffic
- 5.3.2 Scenario 2: Gradual Increase in Traffic
- 5.3.3 Scenario 3: Scaling to Zero
- 5.4 Presenting the Results
- 5.5 Analysis of Results

Conclusion

- 6.1 Summary of Work
- 6.2 Contribution
- 6.3 Limitations
- 6.4 Future Work

Bibliography

[1] Kelsey Hightower, Brendan Burns, and Joe Beda. *Kubernetes: Up and Running*. O'Reilly Media, 2nd edition, 2019.

Appendix A

Appendices

A.1 Source Code for the Test Application

```
import time
import os

def main():
    print("Processing message...")
    time.sleep(1)
    print("Message processed.")

if __name__ == "__main__":
    main()
```

Listing A.1: Sample Python worker.

A.2 Kubernetes Deployment YAML

```
apiVersion: apps/v1
kind: Deployment
metadata:
name: python-worker
spec:
replicas: 1
selector:
matchLabels:
app: python-worker
template:
metadata:
labels:
```

```
app: python-worker
13
      spec:
14
        containers:
         - name: worker
16
           image: your-repo/python-worker:latest
17
           resources:
18
             limits:
19
               memory: "128Mi"
20
               cpu: "500m"
21
```

Listing A.2: Deployment YAML for the test application.