5: Setting the Stage

Exercise 1

- 1. Prove that \emptyset is an inicial object in Sets.
- 2. Prove that any one-point set $\Omega = \{x_0\}$ is a terminal object in Sets. In particular what is the function $\emptyset \to \Omega$?

Proof. Let A be a set.

- 1. Any function $f: \emptyset \to A$ must be $f = \emptyset$ because these functions are formally subsets of $\emptyset \times A = \emptyset$. Since \emptyset satisfies the definition of function, we have $\{\emptyset\} \in \operatorname{Hom}(\emptyset, A) \subseteq \mathcal{P}(\emptyset)$.
- 2. Observe that $a \mapsto x_0$ is a well defined function $c_0 : A \to \Omega$. As a subset of $A \times \Omega$, $c_0 = A \times \Omega$. Any other such function $f : A \to \Omega$ must be a subset of $A \times \Omega$. Any element of $A \times \Omega$ is of the form (a, x_0) , furthermore, for $f \subset A \times \Omega$ to be a function, every ordered pair of the same form has to be an element of f so that $A \times \{x_0\} \subseteq f$ and therefore $f = A \times \Omega = c_0$.