

planetmath.org

Math for the people, by the people.

extended Cartan matrix

Canonical name ExtendedCartanMatrix
Date of creation 2013-03-22 15:30:14
Last modified on 2013-03-22 15:30:14
Owner benjaminfjones (879)
Last modified by benjaminfjones (879)

Numerical id 8

Author benjaminfjones (879)

Entry type Definition Classification msc 17B67

Related topic GeneralizedCartanMatrix
Defines extended Cartan matrix

Let A be the Cartan matrix of a complex, semi-simple, finite dimensional, Lie algebra \mathfrak{g} . Recall that $A=(a_{ij})$ where $a_{ij}=\langle\alpha_i,\alpha_j^\vee\rangle$ where the α_i are simple roots for \mathfrak{g} and the α_j^\vee are simple coroots. The extended Cartan matrix denoted \hat{A} is obtained from A by adding a zero-th row and column corresponding to adding a new simple root $\alpha_0:=-\theta$ where θ is the maximal (relative to $\{\alpha_1,\ldots,\alpha_n\}$) root for \mathfrak{g} . θ can be defined as a root of \mathfrak{g} such that when written in terms of simple roots $\theta=\sum_i m_i\alpha_i$ the coefficient sum $\sum_i m_i$ is maximal (i.e. it has maximal height). Such a root can be shown to be unique.

The matrix \hat{A} is an example of a generalized Cartan matrix. The corresponding Kac-Moody Lie algerba is said to be of affine type.

For example if $\mathfrak{g} = \mathfrak{sl}_n\mathbb{C}$ then A is obtained from A by adding a zero-th row: $(2, -1, 0, \dots, 0, -1)$ and zero-th column $(2, -1, 0, \dots, 0, -1)$ simultaneously to the Cartan matrix for $\mathfrak{sl}_n\mathbb{C}$.

References

[1] Victor Kac, *Infinite Dimensional Lie Algebras*, Third edition. Cambridge University Press, Cambridge, 1990.