

approximation of derivative methods

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: OE-601A/OE-EE601A Digital Signal Processing UPID: 006623

Time Allotted : 3 Hours Full Marks :70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

		Group-A (Very Short Answer Type Question)	
1. Ar	swer	any ten of the following:	[1 x 10 = 10
	(1)	Autocorrelation function of periodic signal is equal to of the signal.	
	(11)	The function given by the equation $x(n)=1$, for $n=0$; $x(n)=0$, for $n\neq 0$ is called function.	
	(III)	Write down the differentiation property of z transform	
	(IV)	The Fourier transform of $x(n)=(0.8)^n$ is, where $n=0,1,2,3$	
	(V)	Infinite memory system is also known as system.	
	(VI)	Power spectrum describes distribution of under frequency domain.	
	(VII)	The filter that may not be realized by approximation of derivatives techniques are called	
	(VIII)	Explain the non-parametric methods of power spectrum estimation.	
	(IX)	Show whether the function is periodic or not	
		$x(t) = \cos\left(rac{2}{5}\pi t ight) + \cos\left(rac{2}{7}\pi t ight)$	
	(X)	Z and Laplace transform are related by	
	(XI)	By applying time shifting property determine the z transform of the	
		$x(z) = \frac{z^{-1}}{1 - 3z^{-1}}$	
	(XII)	Write the formula of IDFT.	
		Group-B (Short Answer Type Question)	
		Answer any three of the following:	$[5 \times 3 = 15]$
2.	Writ	te down the energy and power equation in continuous and discrete domain.	[5]
3.	Find	the inverse z transform of	[5]
	} _	0.78z	
	G	$(z) = \frac{0.78z}{(z - 0.60)(z - 1)}$	
4.	Expl	ain the power spectrum estimation using AR model.	[5]
5.		sider the following two LTI systems: $H1(z) = 1 + 0.5z^{-1} + 0.25z^{-2}$ $H2(z) = 1 - 0.9z^{-1} + 0.81z^{-2}$ ermine the impulse response of the system $H(z) = H1(z) * H2(z)$ using convolution in time domain.	[5]
6.	freq	wpass Butterworth filter is designed with a passband edge frequency of 2 kHz and a stopband edge uency of 2.5 kHz. The sampling rate is 8 kHz, and the passband and stopband ripple are both 0.1 dB. ermine the filter order and the filter coefficients.	[5]
		Group-C (Long Answer Type Question)	
		Answer any three of the following:	$[15 \times 3 = 45]$
7.		ompute the autocorrelation and power spectral density for the signal $= K\cos(2\pi f_c t + \phi)$	[7+8]
	Whe	ere K and fc are constant and φ is a random variable which is uniformly distributed over the interva	160,150
	b)De	etermine the estimation of the autocorrelation and power spectrum of random signals.	
8.	//	plain the following methods of IIR filter design	[7+4+4]

b)use the backward difference for the derivative and convert the analog filter with system function

 $H(s)=1/(s^2+16)$

c)For the analog transfer function

H(s)=1/(s+1)(s+2)

Determine H(z) using impulse invariant method

9. a) Compute the signal energy and power for the system given below

[6+3+6]

- i) $x(t)=e^{-4t} u(t)$
- u(t)=1 for $t \ge 0$
- u(t)=0 for t<0
- $ii)x(t)=e^{-3|t|}$
- b) Define unit pulse function and write down its mathematical formula
- c) Find the Fourier coefficient and Fourier series of the signal given below

10. a)Explain the Decimation of Time (DIT) algorithms of FFT

[8+7]

b) With help of DIT FFT method find the DFT of the sequence given below $x(n)=\{1,2,3,4,4,3,2,1\}$

[4+8+3]

b)Find the inverse z transform of the function given below

11. a)Explain the different methods of calculation of inverse z transform.

i)Use long division method

$$F(z) = \frac{z+1}{z^2 + 0.2z + 0.1}$$

ii)Use partial fraction method

$$F(z) = \frac{z+1}{z^2 + 0.3z + 0.02}$$

c)Determine the relationship between z transform and DFT

*** END OF PAPER ***