This question	n paper cont	ains 8 printed	pages]					•
·			Roll	l No.				
S. No. of Que	estion Paper	: 861						·
Unique Paper	r Code	: 234611				•	E	
Name of the l	Paper	: Data Mini	ng [CSHT-616	(<i>iv</i>)]				
Name of the (Course	: B.Sc. (Hon	s.) Computer S	Science				
Semester		: VI	, , , ,			,		
Duration: 3 H	Hours			,			Maximu	ım Marks : 75
(W	Vrite your Ro	ll No. on the t	op immediately	on receiţ	ot of to	his ques	tion pape	r.)
	A	all parts of Qu	uestion 1 (Part	A) are o	compu	ilsory.		
		Parts of a que	estion must be	answere	d toge	ether.		
	<u>:</u>	Attempt a	ny four questio	ns from	Part l	B.		÷.
		All question	ns in Part B ca	arry equa	l mar	ks.		•
			Part A					
	•	(All question	ons are compt	ulsory) 3	35 ma	rks		
1. (a)	Give a diagra	mmatical rep	resentation of th	ne steps i	nvolv	ed in th	e knowle	dge discovery
1	from data. E	xplain in brief						4
(b)	Differentiate	between class	ssification and	regression	on an	alysis.	Give an	example of a
	d-dimensior	al dataset to s	upport the diffe	erence.	•	٠		4
		,						P.T.O.

ţ,

(c)	Define:		
	(i) Closed frequent itemset		
	(ii) Maximal frequent itemset.		•
(d)	State the Apriori property. Also state the two m	ajor drawbac	ks of the Apriori
•	method.		1+2
(e)	Mention the strategy adopted by the FP growth me	thod.	2
(f)	Draw a confusion matrix for a binary classification p	oroblem. Write	e down the formula
-	for:	•	2+4
	(i) Sensitivity		
	(ii) Specificity		
,	(iii) False positive rate		
	(iv) False negative rate.		
(g)	Give an example for the test condition of a binary spl	lit and a multi	way split for: 2+2
	(i) Nominal attributes	,	
•	(ii) Continuous attributes.	·	
(h)	Explain the holdout method for evaluating a classifier	. How is two-f	old cross-validation
	different from the Lelders and 10		

(i) Mention the difference between single and complete linkage of hierarchical clustering. Illustrate with an example.

(j) Describe the following clustering algorithm in terms of:

2+2.

- (i) Shape of clusters
- (ii) Limitations
 - (I) k-means
 - (II) DBSCAN.

Part B

Attempt any four questions from this part.

All questions carry equal marks.

- 2. (a) Describe two objective measures of interestingness for association analysis.
 - (b) Suppose data for analysis include attribute age whose 20 values in increasing order

are:

•

3+3

13, 15, 16, 16, 20, 20, 20, 20, 22, 22, 25,

25, 25, 25, 25, 30, 33, 35, 40, 45.

- (i) Give five number summary of data.
- (ii) Show a boxplot of the data.

P.T.O.

3. (a) Consider a transaction database with two transactions:

Let the minimum support threshold be 1.

- (i) Find two closed frequent itemsets and their support counts.
- (ii) One maximal frequent itemset.

(b)	TID	Items	. 3+3
	T1	11, 12, 15	
,	T2	12, 14	
	Т3	12, 13	
	T4	I1, I2, I4	
-	T5	I1, I3	
	T6	12, 13	
	17	11, 13	
	Т8	I1, I2, I3, I5	

For the transaction dataset given above:

- (i) Generate the complete FP-tree.
- (ii) Mine the conditional FP-tree for item 13. Given minimum support count is 2.

4. Find all frequent item sets in the following transactional database using Apriori (minimum support 40%). Also, mention steps used in each pass. Derive the association rules having 100% confidence:

TID	Α	В	C .	D	E
T ₁	1	1	1	0	0
T ₂	1	1	1	1 .	1
T ₃	. 1	0	1	1.	0
T ₄	1	0	1 .	1	1
T ₅	1	. 1	1	1	0

5. (a) Write the algorithm for the k nearest neighbor algorithm. Why is this algorithm known as a lazy learner?

(b)	Instance	al	a 2	a3	Target class
	1	. T	T	1.0	+
	2	T	T	6.0	+
	3	T	F	5.0	_
	4	F	F	4.0	+
i	5	F	Ţ	7.0	. -
	6	. F	. T	3.0	_
	7	· F	F	8.0	_
	8	T	. F	7.0	+
-	9	F	T	5.0	<u>·</u> ·

P.T.O.

3+5

Consider the training examples shown in the above table for a binary classification problem:

- (i) Calculate the overall Gini index.
- (ii) What is the best split (between al and a2) according to the Gini index?

6. (a) Consider the data set shown below:

2

5

- (i) Estimate the conditional probabilities for P(A = 1|+), P(B = 1|+), P(C = 1|+), P(A = 1|+), P(B = 1|+), P(B = 1|+), P(B = 0|+), P(B = 0|+),
- Use the estimate of conditional probabilities given in part (i) to predict the class label for a test sample (A = 0, B = 1, C = 0) using the naive Bayes approach.
- (b) What is a core object in the DBSCAN algorithm for clustering.

order in which the points are merged.

. (a) Use the similarity matrix in the given table to perform complete link hierarchical clustering.

Show your results by drawing a dendrogram. The dendrogram should clearly show the

Data	p1	p2	р3	p 4	p5
pl	1.00	0.10	0.41	0.55	0.35
p 2	0.10	1.00	0.64	0.47	0.98
р3	0.41	0.64	1.00	0.44	0.85
p4	0.55	0.47	0.44	1.00	0.76
p 5	0.35	0.98	0.85	0.76	1.00

P.T.O.

(b) For the given data, compute two clusters using k-means algorithm for clustering where initial cluster centers are (1.0, 1.0) and (5.0, 7.0). Execute for two interations: 5

(8)

Record	A	. В
number		
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5