

Arrays in database systems, the next frontier?

What is an array?

An **array** is a systematic arrangement of objects, usually in rows and columns.

Get(A, X, Y) => Value

Set(A, X, Y) <= Value

There are many species: Bit array, dynamic array, parallel array, sparse array, variable length array, jagged array

Who needs them anyway

Seismology – partial timeseries (temporal lists)

Climate sim – temporal ordered grid snapshots

Astronomy - temporal ordered rasters

Remote sensing - ,,

Social networks – 2-D user profiling

Genomics – ordered DNA strings

Scientists 'love them' :

MSEED, NETCDF, FITS, CSV

Arrays in DBMS

There was no direct economic value in arrays.

Astral (1980), Plain (1980)

Relational prototype built on arrays (1975)

Object-orientation and persistent languages were the make belief to handle them

Postgresql

Array declarations:

CREATE TABLE sal_emp (name text, pay_by_quarter integer[], schedule text[][]); CREATE TABLE tictactoe (squares integer[3][3]);

Array operations: denotation ([]), contains (@>), is contained in (<@), append, concat (||), dimension, lower, upper, prepend, to-string, fromstring

Mysql

From the MySQL forum May 2010:

"

- > How to store multiple values in a single field? Is there any array data type
- ➤ concept in mysql? >

As Jörg said "Multiple values in a single field" would be an explicit violation of the relational model..."

"

Is there any experience beyond encoding it as blobs?

What is the problem?

- Appropriate array denotations?
- Functional complete operation set?
- Scale?
- Size limitations due to (blob) representations?
- Community awareness?

- Raster data (Peter Baumann)
- Event data (Tore Rish)
- Microscopy data (Jennie Zhang)

Storing Relations in MonetDB

Virtual OID: seqbase=1000 (increment=1)

BAT Data Structure

BAT: <u>binary association table</u>

BUN: <u>binary unit</u>

Head & Tail:

- consecutive memory blocks (arrays)
- memory-mapped files

Tail Heap:

best-effort duplicate elimination for strings (~ dictionary encoding)

MonetDB Vaults

A contract between MonetDB and file repository of voluminous scientific data

- provide seamless SQL access to foreign file formats using SciQL views
- zero cost, adaptive loading and replication
- Capitalize libraries as UDFs (linpack, R,..)
- Short term targets:
 - MSEED, FITS, NETCDF, csv

Vaults

SciQL (called Cycle) Work in Progress!

Martin Kersten
Niels Nes
Milena Ivanova
Ying Zhang

2010 DIR Workshop, Edinburgh

MonetDB SciQL

SciQL (pronounced 'cycle')

- A backward compatible extension of SQL'03
- Symbiosis of relational and array paradigm
- Flexible structure-based grouping
- Capitalizes the MonetDB physical array storage
 - Recycling, an adaptive 'materialized view'
 - Zero-cost attachment contract for cooperative clients

http://www.cwi.nl/~mk/SciQL.pdf

SciQL examples

-- simple checker boarding aggregation SELECT sum(value) FROM matrix WHERE (x + y) % 2 = 0

-- embedding a transposed into a zero enlarged one INSERT INTO vmatrix SELECT [y], [x], value FROM matrix

SciQL tiling examples

-- structural aggregation

SELECT x, y, avg(value) FROM matrix GROUP BY matrix[x:x+2][y:y+2];

SELECT x, y, avg(value) FROM matrix GROUP BY DISTINCT matrix[x:x+2][y:y+2];

SELECT x, y, avg(value) FROM vmatrix GROUP BY matrix[x-1:x+1][y-1:y+1];

SELECT x, y, avg(value) FROM vmatrix GROUP BY matrix[x][y], matrix[x-1][y], matrix[x+1][y],

matrix[x][y-1], matrix[x][y+1];

Figure 3: SciQL Array Tiling

SciQL storage examples MONET DB

Figure 1: Alternative Array Storage Schemes

Science DBMS

	MonetDB 5.23	SciDB 0.5	Rasdaman
Open source	Mozilla License	GPL 3.0 Commercial	Dual license
Downloads	>12.000 /month	Tens up to now	
SQL compliance	SQL 2003	??	SQL92++
Interoperability	JDBC, ODBC, MAPI, C, Python, Ruby, C++	C++ UDF	
Array model	SciQL	AQL	RASQL
Science support	Linked libraries	Linked libraries	Linked libraries
Foreign files	Vaults of csv, FITS, NETCDF, MSEED	??	
Distribution	50-200 node cluster	4 node cluster	
Distribution tech	Dynamic partial replication	Static fragmentation	Static fragmentation
	Various schemes	Map-reduce	
Largest demo	Skyserver SDSS 6 3TB		

Minimal requirements?