Reinforcement Learning Cheat Sheet Action-Value (Q) Function

Agent-Environment Interface

The Agent at each step t receives a representation of the environment's state, $S_t \in S$ and it selects an action $A_t \in A(s)$. Then, as a consequence of its action the agent receives a reward, $R_{t+1} \in R \in \mathbb{R}$.

Policy

A policy is a mapping from a state to an action

$$\pi_t(s|a)$$
 (1)

That is the probability of select an action $A_t = a$ if $S_t = s$.

Reward

The total reward is expressed as:

$$G_t = \sum_{k=0}^{H} \gamma^k r_{t+k+1}$$
 (2)

Where γ is the discount factor and H is the horizon, that can be infinite.

Markov Decision Process

A Markov Decision Process, MPD, is a 5-tuple (S, A, P, R, γ) where:

finite set of states:

 $s \in S$

finite set of actions:

 $a \in A$

state transition probabilities:

 $p(s'|s,a) = Pr\{S_{t+1} = s'|S_t = s, A_t = a\}$

expected reward for state-action-nexstate:

 $r(s', s, a) = \mathbb{E}[R_{t+1}|S_{t+1} = s', S_t = s, A_t = a]$

Value Function

Value function describes how good is to be in a specific state sunder a certain policy π . For MDP:

$$V_{\pi}(s) = \mathbb{E}[G_t | S_t = s] \tag{4}$$

Informally, is the expected return (expected cumulative discounted reward) when starting from s and following π

Optimal

$$v_*(s) = \max v^{\pi}(s) \tag{5}$$

We can also denoted the expected reward for state, action pairs.

$$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[G_t | S_t = s, A_t = a \right]$$
 (6)

Optimal

The optimal value-action function:

$$q_*(s, a) = \max_{\pi} q^{\pi}(s, a)$$
 (7)

Clearly, using this new notation we can redefine v^* , equation 5, using $q^*(s, a)$, equation 7:

$$v_*(s) = \max_{a \in A(s)} q_{\pi*}(s, a) \tag{8}$$

Intuitively, the above equation express the fact that the value of a state under the optimal policy must be equal to the expected return from the best action from that state.

Bellman Equation

An important recursive property emerges for both Value (4) and Q (6) functions if we expand them.

Value Function

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_{t} | S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} | S_{t} = s \right]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)$$
Sum of all probabilities \forall possibile r

$$\left[r + \gamma \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} | S_{t+1} = s' \right] \right]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma v_{\pi}(s') \right]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma v_{\pi}(s') \right]$$

Similarly, we can do the same for the Q function:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_{t} | S_{t} = s, A_{t} = a \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s, A_{t} = a \right]$$

$$= \mathbb{E}_{\pi} \left[R_{t+1} + \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} | S_{t} = s, A_{t} = a \right]$$

$$= \sum_{s', r} p(s', r | s, a) \left[r + \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} | S_{t+1} = s' \right] \right]$$

$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma V_{\pi}(s') \right]$$
(10)

Contraction Mapping

Definition

Let (X,d) be a metric space and $f:X\to X$. We say that f is a contraction if there is a real number $k \in [0,1)$ such that

$$d(f(x), f(y)) \le kd(x, y)$$

for all x and y in X, where the term k is called a Lipschitzcoefficent for f.

Contraction Mapping theorem

Let (X,d) be a complete metric space and let $f:X\to X$ be a contraction. Then there is one and only one fixed point x^* such that

$$f(x^*) = x^*$$

Moreover, if x is any point in X and $f^n(x)$ is inductively defined by $f^2(x) = f(f(x)), f^3(x) = f(f^2(x)), \dots,$ $f^n(x) = f(f^{n1}(x))$, then $f^n(x) \to x^*$ as $n \to \infty$. This theorem guarantees a unique optimal solution for the dynamic programming algorithms detailed below.

Dynamic Programming

Taking advantages of the subproblem structure of the V and Q function we can find the optimal policy by just planning

Policy Iteration

end

1. Initialisation

We can now find the optimal policy

```
V(s) \in \mathbb{R}, (e.g V(s) = 0) and \pi(s) \in A for all s \in S,
\Delta \leftarrow 0
2. Policy Evaluation
while \Delta < \theta (a small positive number) do
     foreach s \in S do
          V(s) \leftarrow \sum_{a}^{\infty} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right]
           \Delta \leftarrow \max(\Delta, |v - V(s)|)
end
3. Policy Improvement
```

policy-stable $\leftarrow true$ while not policy-stable do

for each $s \in S$ do $old\text{-}action \leftarrow \pi(s)$ $\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s') \right]$ policy-stable $\leftarrow old$ -action $\neq \pi(s)$ end

Algorithm 1: Policy Iteration

Value Iteration

We can avoid to wait until V(s) has converged and instead do policy improvement and truncated policy evaluation step in one operation

```
Initialise V(s) \in \mathbb{R}, \operatorname{e.g}V(s) = 0 \Delta \leftarrow 0 while \Delta < \theta (a small positive number) do foreach s \in S do  \begin{array}{c|c} v \leftarrow V(s) \\ V(s) \leftarrow \max_{a} \sum\limits_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right] \\ \Delta \leftarrow \max(\Delta,|v - V(s)|) \\ \text{end} \\ \end{array} end end ouput: Deterministic policy \pi \approx \pi_* such that \pi(s) = \underset{a}{\operatorname{argmax}} \sum\limits_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right] Algorithm 2: Value Iteration
```

Monte Carlo Methods

Monte Carlo (MC) is a *Model Free* method, It does not require complete knowledge of the environment. It is based on **averaging sample returns** for each state-action pair. The following algorithm gives the basic implementation

```
Initialise for all s \in S, a \in A(s):
  Q(s, a) \leftarrow \text{arbitrary}
  \pi(s) \leftarrow \text{arbitrary}
  Returns(s, a) \leftarrow \text{empty list}
while forever do
     Choose S_0 \in S and A_0 \in A(S_0), all pairs have
      probability > 0
     Generate an episode starting at S_0, A_0 following \pi
      foreach pair s, a appearing in the episode do
         G \leftarrow return following the first occurrence of s, a
         Append G to Returns(s, a))
         Q(s, a) \leftarrow average(Returns(s, a))
     end
    foreach s in the episode do
         \pi(s) \leftarrow \operatorname{argmax} Q(s, a)
     end
end
```

Algorithm 3: Monte Carlo first-visit

For non-stationary problems, the Monte Carlo estimate for, e.g, ${\cal V}$ is:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$
 (11)

Where α is the learning rate, how much we want to forget about past experiences.

Sarsa

Sarsa (State-action-reward-state-action) is a on-policy TD control. The update rule:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

n-step Sarsa

Define the n-step Q-Return

$$q^{(n)} = R_{t+1} + \gamma Rt + 2 + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

n-step Sarsa update Q(S, a) towards the n-step Q-return

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[q_t^{(n)} - Q(s_t, a_t) \right]$$

Forward View Sarsa(λ)

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$$

Forward-view $Sarsa(\lambda)$:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[q_t^{\lambda} - Q(s_t, a_t) \right]$$

Algorithm 4: $Sarsa(\lambda)$

Temporal Difference - Q Learning

Temporal Difference (TD) methods learn directly from raw experience without a model of the environment's dynamics. TD substitutes the expected discounted reward G_t from the episode with an estimation:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1} - V(S_t)) \right]$$
 (13)

The following algorithm gives a generic implementation.

```
\begin{split} & \text{Initialise } Q(s,a) \text{ arbitrarily and } \\ & Q(terminal - state,) = 0 \\ & \text{foreach } episode \in episodes \text{ do} \\ & & \text{while } s \text{ is not } terminal \text{ do} \\ & & \text{Choose } a \text{ from } s \text{ using policy derived from } Q \\ & & \text{(e.g., $\epsilon$-greedy)} \\ & & \text{Take action } a, \text{ observer } r, s' \\ & & Q(s,a) \leftarrow \\ & & & Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a)\right] \\ & & \text{s } \leftarrow s' \\ & & \text{end} \\ & \text{end} \\ & \text{end} \end{split}
```

Algorithm 5: Q Learning

Deep Q Learning

Created by DeepMind, Deep Q Learning, DQL, substitutes the Q function with a deep neural network called Q-network. It also keep track of some observation in a memory in order to use them to train the network.

$$L_{i}(\theta_{i}) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\underbrace{(r + \gamma \max_{a} Q(s', a'; \theta_{i-1})}_{\text{target}} - \underbrace{Q(s, a; \theta_{i})}_{\text{prediction}})^{2} \right]$$
(13)

Where θ are the weights of the network and U(D) is the experience replay history.

```
Initialise replay memory D with capacity N
Initialise Q(s,a) arbitrarily foreach episode \in episodes do

while s is not terminal do

With probability \epsilon select a random action a \in A(s)
otherwise select a = \max_a Q(s,a;\theta)
Take action a, observer r,s'
Store transition (s,a,r,s') in D
Sample random minibatch of transitions (s_j,a_j,r_j,s'_j) from D
Set y_j \leftarrow
\begin{cases} r_j & \text{for terminal } s'_j \\ r_j + \gamma \max_a Q(s',a';\theta) & \text{for non-terminal } s'_j \end{cases}
Perform gradient descent step on (y_j - Q(s_j,a_j;\theta))^2
s \leftarrow s'
end
end
```

Algorithm 6: Deep Q Learning

Copyright © 2018 Francesco Saverio Zuppichini https://github.com/FrancescoSaverioZuppichini/Reinforcement-Learning-Cheat-Sheet

Double Deep Q Learning