3. Continuous Functions

3.1 Limits of functions

Motivation: In order to say $f(x) \to L$ as $x \to c$, we first need to figure out conditions to "allow" x to approach c.

Let $S \subset \mathbb{R}$ be a set. A number $c \in \mathbb{R}$ is called a cluster point of S if for all $\delta > 0$, there exists $x \in S \setminus \{c\}$ such that $|x - c| < \delta$.

Example: $S = \{0\} \cup [1,2) \rightarrow c \in [1,2]$

Prop. (Limit Characterization of Cluster Points) Let $S \subset \mathbb{R}$. Then $c \in \mathbb{R}$ is called a cluster point of S \iff there exists a convergent sequence $\{x_n\}$ such that $x_n \in S \setminus \{c\} \ \forall n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = c$.

Pf. \rightarrow : c is a cluster point, pick $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap S \setminus \{c\}$

 \leftarrow : $\{x_n\}$ converges to c, let $\delta>0$, $\exists M\in\mathbb{N}: \forall n\geq M, |x_n-c|<\delta$, so $x_M\in(c-\frac{1}{n},c+\frac{1}{n})\cap S\setminus\{c\}$

Limit of a function. Let $f:S\to\mathbb{R}$ be a function, and let $c\in\mathbb{R}$ be a cluster point of $S\subset\mathbb{R}$. Suppose there exists $L\in\mathbb{R}$ such that for all $\epsilon>0$, there exists $\delta>0$ such that whenever $x\in S\setminus\{c\}$ and $|x-c|<\delta$, we have

$$|f(x) - L| < \epsilon$$
.

Then we say f(x) converges to L as x goes to c.

We write $\lim_{x\to c} f(x) = L$

or
$$f(x) \to L$$
 as $x \to c$.

If no such L exists, we say f(x) diverges at c.

Symbolically: $\exists L \in \mathbb{R}: \forall \epsilon > 0, \, \exists \delta > 0: \forall x \in (c - \delta, c + \delta) \cap S \setminus \{c\}, \, |f(x) - L| < \epsilon.$

Sequential limits lemma. — function limits ←⇒ sequence limits

Let $S \subset R$, and c be a cluster point of S. Then $f(x) \to L$ as $x \to c \iff$ for every sequence $\{x_n\}$ satisfying $x_n \in S \setminus \{c\} \ \forall n$ and $\lim x_n = c$, we have that the sequence $\{f(x_n)\}$ converges to L.

Symbolically: $\lim_{x o c}f(x)=L\iff orall \{x_n\}$ s.t. $x_n\in S\setminus \{c\}$ & $\lim x_n=c$, $\lim_{n o\infty}f(x_n)=L$

3.2 Continuous functions

Continuity. Let $S\subset R$, $c\in S$. We say that f is continous at c if for every $\epsilon>0$ there is a $\delta>0$ such that whenver $x\in S$ and $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon$.

When f is continous at all $c \in S$, then we say f is a continous function.

Prop. (Characterization of Continuity) Let $S \subset R$, $c \in S$, $f: S \to R$. Then:

- 1. If c is not a cluster point of S, then f is continous at c.
- 2. If c is a cluster point of S, then f is continous at $c \iff$ the limit of f(x) as $x \to c$ exists and $\lim_{x \to c} f(x) = f(c)$.

3. Continuous Functions

3. (Sequential Characterization of Continuity) f is continous at $c \iff$ for every sequence $\{x_n\}$ where $x_n \in S$ and $\lim x_n = c$, the sequence $\{f(x_n)\}$ converges to f(c).

Prop. (Continuity of algebraic operations) Let $f,g:S o\mathbb{R}$ be functions continuous at $c\in S$,

- 1. $h:S o\mathbb{R}$ defined by h(x):=f(x)+g(x) is continous at c.
- 2. $-, \times, \div$

Prop. (Compositions preserve continuity) Let $A,B\subset\mathbb{R}$ and $f:B\to\mathbb{R}$ and $g:A\to B$ be functions. If g is continuous at $c\in A$ and f is continuous at f0, then f1 is continuous at f2.

Prop. (Negation of Sequential Characterization of Continuity) Let $S \subset R$, $c \in S$, $f: S \to R$. If there exists $\{x_n\}$ with $x_n \in S$ and $\lim x_n = c$ s.t. $\{f(x_n)\}$ does not converge to f(c), then f(n) is discontinous at c.

3.3 Min-max and intermediate value theorems

Lemma. A continuous function $f:[a,b] o \mathbb{R}$ is bounded.

We say a function $f:S \to \mathbb{R}$ achieves an absolute maximum if there exists $c \in S$ such that $f(x) \le f(c) \ \forall x \in S$.

Similarly for absolute minimum: $f(x) \geq f(c) \ \forall x \in S$.

Min-Max Theorem: A continous function $f:[a,b]\to\mathbb{R}$ achieves both an abs min and abs max on the closed and bounded interval [a,b].

Pf. bounded \rightarrow has an inf $\rightarrow \exists \{f(x_n)\}$ approaches the inf

- $_{ o}$ by Bolzano-Weierstrass, \exists convergent subsequences $\{x_{n_k}\}$, let $x=\lim_{k o\infty}x_{n_k}$
- $_{ o}$ by Characterization of Continuity, $\inf f([a,b])=\lim_{n o\infty}x_n=\lim_{k o\infty}x_{n_k}=f(\lim_{k o\infty}x_{n_k})=f(x)$

Lemma. (Bisection Method for Finding Roots) Let $f:[a,b]\to\mathbb{R}$ be continous. Suppose f(a)<0 and f(b)>0, then there exists $c\in(a,b)$ such that f(c)=0.

Pf. Let
$$a_1 = a$$
, $b_1 = b$.

If
$$f(\frac{a_n+b_n}{2}) \geq 0$$
, let $a_{n+1} = a_n$, $b_{n+1} = \frac{a_n+b_n}{2}$. $\rightarrow \lim f(a_n) \leq 0 \rightarrow \text{ squeeze } f(c) = 0$ If $f(\frac{a_n+b_n}{2}) < 0$, let $a_{n+1} = \frac{a_n+b_n}{2}$, $b_{n+1} = b_n$. $\rightarrow \lim f(b_n) < 0$

Bolzano's Intermediate Value Theorems. Let $f:[a,b] \to \mathbb{R}$ be continous. Suppose $y \in \mathbb{R}$ satisfies f(a) < y < f(b) and f(b) < y < f(a). Then there exists $c \in (a,b)$ such that f(c) = y. Pf: Let g(x) = f(x) - y.

Prop. Every polynomial of odd degree has a real root.

Pf.
$$f(x) = a_d x^d + ... + a_1 x_1 + a_0$$
, $g(x) = x^d + ... + b_1 x_1 + b_0$

3. Continuous Functions 2

 $\lim_{n o \infty} |rac{b_{d-1} n^{d-1} + \ldots + b_0}{n^d}| = \lim_{n o \infty} b = 0 \ o \ \exists M ext{ s.t. } |rac{b_{d-1} M^{d-1} + \ldots + b_0}{M^d}| < 1 \ o \ g(M) > 0, ext{ since } d ext{ is odd, } \exists K ext{ s.t. } g(K) < 0 \ o \ ext{ squeeze } g(c) = 0$

3. Continuous Functions 3