Homework 5 David Yang

- 1. Suppose X_1, \ldots, X_n are i.i.d. Normal with mean μ and variance σ^2 .
 - a) Show the MLE for σ is the square root of the MLE for σ^2 (in general, if $\hat{\theta}$ is the MLE of θ , then $\hat{\theta}$ is the MLE of θ , then $\hat{\varphi} = g(\hat{\theta})$ is the MLE for $\varphi = g(\theta)$).

Solution. If X_1, \ldots, X_n are i.i.d. Normal with mean μ and variance σ^2 ,

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(x_i - \mu)^2}{2\sigma^2}}$$
$$= (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{\sum (x_i - \mu)^2}{2\sigma^2}}.$$

The log-likelihood is

$$l(\mu, \sigma^2) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{\sum (x_i - \mu)^2}{2\sigma^2}$$
$$= -\frac{n}{2} \log \left(2\pi\sigma^2\right) - \frac{\sum (x_i - \mu)^2}{2\sigma^2}.$$

Setting the partials to 0 to solve for the MLEs, we get that

$$\begin{split} \frac{\partial l}{\partial \mu} &= 2 \frac{\sum (x_i - \mu)}{2\sigma^2} \\ \frac{\partial l}{\partial \sigma^2} &= -\frac{n}{2} \cdot \frac{1}{2\pi\sigma^2} \cdot 2\pi - \frac{1}{2} \cdot \left(\sum (x_i - \mu)^2\right) \cdot \left(-\frac{1}{\sigma^4}\right) \\ &= -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum (x_i - \mu)^2 \end{split}$$

The first equation is equivalent to $\sum (x_i - \mu) = 0$, so solving for μ gives

$$\hat{\mu} = \frac{\sum x_i}{n} = \overline{x}.$$

The second equation is equivalent to $\frac{n}{2\sigma^2} = \frac{1}{2\sigma^4} \sum (x_i - \mu)^2$, and solving for σ^2 gives

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{n}.$$

Plugging in the MLE for μ , we get the MLE for $\hat{\sigma}^2$:

$$\hat{\sigma}^2 = \frac{\sum (x_i - \mu)^2}{n}$$
$$= \left[\frac{1}{n} \left(\sum (x_i - \overline{x})^2\right)\right]. \blacksquare$$

b) Sho	w that $\hat{\sigma}^2$	$= \sum \frac{(X_i - \bar{X})^2}{n}$	has	$\mathbf{smaller}$	mean	square	error	than	the	unbiase	d
esti	mate $s^2 = \sum_{i=1}^{n} a_i s_i$	$\sum \frac{(X_i - \overline{X})^2}{n-1}$.									

Solution.

- c) Find an expression for the expected value of the sample standard deviation $s=\sqrt{s^2}$. Use this to construct an unbiased estimate for σ . You could check your answer by generating sample variances from the Gamma distribution implied by a given n and σ .
- 2. Suppose X_1, \ldots, X_n are i.i.d. Poisson(θ).
 - a) Let $Y = \sum X_i$. If n = 3, find $P(X_1 = 2, X_2 = 3, X_3 = 0 \mid Y = 5, \theta = 2)$. How does this change if $\theta = 3$?

Solution.

b) Show that \overline{X} is the MLE for θ , and that the reciprocal Fisher information gives the exact variance of $\hat{\theta}$. Verify that $\operatorname{Poisson}(\theta)$ is a 1-parameter exponential family, so you know you can use the second derivative formula for the Fisher information.

Solution.

c) If n=10 and $\theta=10$, check the Normal approximation to the distribution of \overline{X} . Use the continuity correction to approximate $P(\overline{X}=10)$ and compare this to the exact probability based on the associated Poisson distribution.

Solution.

d) Show that $\theta \sim \operatorname{Gamma}\left(\alpha, \frac{\alpha}{u}\right)$ defines a conjugate family of prior distributions for θ , and that the posterior mean for $\theta \mid \overline{x}$ is a weighted average of \overline{x} and the prior mean μ , with more weight on \overline{x} as n increases.

Solution.