$ au_1^{\#2}$	0	0	0	$-\frac{i}{kr_5+2k^3r_5}$	$\frac{i (6k^2 r_5 + t_1)}{\sqrt{2} k (1 + 2k^2)^2 r_5 t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 k^4 \; r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
σ_{1}^{*1}	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} \; (k^2 r_5 + 2 k^4 r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$
${\mathfrak r}_1^{\#1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$i\sqrt{2} k$ $t_1 + k^2 t_1$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} + ^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2^{+}}^{#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

$\omega_{0^{+}}^{\#1} f_{0^{+}}^{\#1} f_{0^{+}}^{\#2} \omega_{0^{-}}^{\#1}$								
$\omega_{0^+}^{\#1}\dagger$	0	0	0	0				
$f_{0^{+}}^{#1}\dagger$	0	0	0	0				
$f_{0^{+}}^{#2}$ †	0	0	0	0				
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$				

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

$-rac{1}{3}t_1\;\omega_{\lambda}^{\;lpha\prime}\;\omega_{\kappalpha}^{\;\;\;\;\;\;\;\; t_1\;\omega_{\kappa\lambda}^{\;\;\;\;\;\;\;\;\; t_5\;\partial_{i}\omega_{\kappa\lambda}^{\;$	$\frac{1}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\alpha\beta\theta}$ - $\frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\theta\alpha\beta}$ - $r_5\partial_\alpha\omega_{\lambda}^{\alpha}_{\theta}\partial_\kappa\omega^{\theta\kappa\lambda}$ +	$r_5\partial_\theta\omega_\lambda^{lpha}\partial_\kappa\omega^{\theta\kappa\lambda}$ - $r_5\partial_\alpha\omega_\lambda^{lpha}\partial_\kappa\omega^{\kappa\lambda\theta}$ + 2 $r_5\partial_\theta\omega_\lambda^{lpha}\partial_\kappa\omega^{\kappa\lambda\theta}$ -	$rac{1}{2}t_1\partial^{lpha}\!f_{eta\kappa}\partial^{\kappa}\!f_{lpha}^{$	$rac{1}{3}t_{1}\;\omega_{\kappalpha}^{\;$	$2t_{1} \omega_{{}_{1}{\kappa}{\theta}} \partial^{\kappa} f^{{}_{1}{\theta}} - \tfrac{1}{3} t_{1} \omega_{{}_{1}{\alpha}}^{$	$rac{1}{2}t_1\partial_\kappa f_{\ \ \ \ }^{\ \ \ \ \ \ \ \ \ \ \ \ \ } \partial^\kappa f_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{1}{3}r_2\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta} + \frac{2}{3}r_2\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} - \frac{2}{3}r_2\partial^\beta\omega_{\alpha}^{\ \alpha\lambda}\partial_\lambda\omega_{\alpha\beta}^{\ \prime} +$	$rac{2}{3}r_{2}\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}+r_{5}\partial_{lpha}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}_{}-r_{5}\partial_{ heta}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}_{}$	Added source term: $\left f^{lphaeta}\ _{ au_{lphaeta}}+\omega^{lphaeta\chi}\ \sigma_{lphaeta\chi} ight.$
	$^{\kappa\lambda}_{\kappa}\partial^{\prime}\omega_{\lambda}^{\alpha} + \frac{2}{3}r_{2}\partial^{\beta}\omega^{\theta\alpha}_{\kappa}\partial_{\theta}\omega_{\alpha\beta}^{} -$	$^{\kappa\lambda}_{}\partial^{\prime}\omega_{\alpha}^{\alpha} + \frac{2}{3}r_2\partial^{\beta}\omega^{\theta\alpha}_{\alpha}_{\alpha}^{\beta} - \\ ^{9lphaeta}_{} - r_5\partial_{lpha}\omega_{\beta}^{\alpha} + \phi$	$^{\kappa\lambda}_{\kappa}^{}\partial^{l}\omega_{\lambda}^{}\alpha_{}+rac{2}{3}r_{2}\partial^{eta}\omega_{\theta\alpha}^{}\kappa_{}\partial_{\theta}\omega_{\alphaeta}^{}\kappa_{} ^{3}\alphaeta_{}^{}-r_{5}\partial_{\alpha}\omega_{\lambda}^{}\alpha_{}_{}\theta\partial_{\kappa}\omega^{}^{}\theta^{\kappa\lambda}+$ $^{-}2r_{5}\partial_{\theta}\omega_{\lambda}^{}\alpha_{}^{}\partial_{\kappa}\omega^{}^{}\kappa^{}\lambda^{}\theta_{}-$	$k_{\kappa}^{\lambda} \beta' \omega_{\lambda}^{\alpha} + \frac{2}{3} r_{2} \beta^{\beta} \omega^{\theta \alpha}_{\kappa} \beta_{\theta} \omega_{\alpha\beta}^{\kappa} - \beta^{\beta} \beta^{\beta} \omega^{\theta \alpha}_{\kappa} \beta^{\beta} + \beta^{\beta} \beta^{\beta} \omega^{\beta} \beta^{\beta} + \beta^{\beta} \beta^{\beta} \omega^{\beta} \beta^{\beta} + \beta^{\beta} \beta^{\beta} \omega^{\beta} \beta^{\beta} $	$k_{\kappa}^{\lambda} \partial^{l} \omega_{\lambda}^{\alpha} + \frac{2}{3} r_{2} \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} -$ $\partial^{\beta} \partial^{\beta} - r_{5} \partial^{\alpha} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\theta \kappa \lambda} +$ $- 2 r_{5} \partial^{\beta} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\kappa \lambda \theta} -$ $t_{1} \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\alpha \lambda} +$ $t_{2} \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f'_{\lambda} - \frac{1}{3} t_{1} \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{\lambda} +$	$k_{\kappa}^{\lambda} \partial' \omega_{\lambda}^{\alpha} + \frac{2}{3} r_{2} \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha\beta}^{\kappa} -$ $\partial^{\beta} \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} +$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} -$ $t_{1} \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha\lambda} +$ $t_{2} \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\gamma}^{\lambda} - \frac{1}{3} t_{1} \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f_{\gamma}^{\lambda} +$ $\omega_{\lambda}^{\lambda} \partial^{\kappa} f_{\kappa}^{\prime} + \frac{1}{2} t_{1} \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda\alpha} +$	$k_{\kappa}^{\lambda} \partial^{l} \omega_{\lambda}^{\alpha} + \frac{2}{3} r_{2} \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha\beta}^{\kappa} -$ $\partial^{\beta} \partial^{\alpha} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\theta \kappa \lambda} +$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\kappa \lambda \theta} -$ $-1 r_{5} \partial^{\beta} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\kappa \lambda \theta} -$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\kappa \lambda \theta} -$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\kappa \lambda} +$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\kappa \lambda} +$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\kappa} \gamma^{\lambda} +$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\kappa} \gamma^{\lambda} +$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\kappa} \partial^{\kappa} \gamma^{\lambda} +$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\kappa} \gamma^{\lambda} \partial^{\kappa} \gamma^{\lambda} +$ $-2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\kappa} \gamma^{\lambda} $	$k_{\kappa}^{\kappa\lambda} \partial^{l} \omega_{\lambda}^{\alpha} + \frac{2}{3} r_{2} \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha\beta}^{\kappa} -$ $\partial^{\beta} \partial^{\beta} \partial^{\alpha} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\theta \kappa \lambda} +$ $-2 r_{5} \partial^{\beta} \omega_{\lambda}^{\alpha} \partial^{\beta} \omega^{\kappa \lambda \theta} -$ $-2 r_{5} \partial^{\beta} \omega_{\lambda}^{\alpha} \partial^{\kappa} \omega^{\kappa \lambda \theta} -$ $t_{1} \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\alpha\lambda} +$ $t_{2} \partial^{\beta} f^{\lambda}_{\kappa} \partial^{\kappa} f^{\lambda}_{\kappa} + \frac{1}{2} t_{1} \partial^{\alpha} f^{\lambda}_{\lambda} \partial^{\kappa} f^{\lambda}_{\kappa} +$ $t_{1} \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f^{\lambda}_{\kappa} + \frac{1}{2} t_{1} \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda\alpha} +$ $t_{2} \partial^{\beta} f^{\lambda}_{\kappa} \partial^{\kappa} f^{\lambda}_{\kappa} +$ $t_{3} \partial^{\beta} f^{\lambda}_{\kappa} \partial^{\kappa} f^{\lambda}_{\kappa} +$ $t_{4} \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f^{\lambda}_{\kappa} +$ $t_{4} \partial^{\beta} f^{\lambda}_{\kappa} \partial^{\kappa} f^{\lambda}_{\kappa} +$	$k_{\kappa}^{\lambda} \partial^{l} \omega_{\lambda}^{\alpha} + \frac{2}{3} r_{2} \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha\beta}^{\kappa} - 3\alpha \omega_{\lambda}^{\alpha} \partial_{\alpha} \omega^{\theta \kappa \lambda} + 3\alpha \omega_{\lambda}^{\alpha} \partial_{\alpha} \omega^{\theta \kappa \lambda} + 3\alpha \omega_{\lambda}^{\alpha} \partial_{\alpha} \omega^{\theta \kappa \lambda} + 3\alpha \omega_{\lambda}^{\alpha} \partial_{\alpha} \omega^{\kappa \lambda \theta} - 3\alpha \omega_{\lambda}^{\alpha} \partial_{\alpha} \omega^{\kappa \lambda \theta} - 3\alpha \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - 3\alpha \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda} + 4\alpha \omega_{\lambda}^{\alpha} \partial_{\kappa} \psi_{\lambda}^{\alpha} \partial_{\kappa} \psi_{\lambda}^{\alpha} + 4\alpha \omega_{\lambda}^{\alpha} \partial_{\kappa} \psi_{\lambda}^{\alpha} \partial_{\kappa} \psi_{\kappa}^{\alpha} \partial_{\kappa} \psi_{\lambda}^{\alpha} \partial_{\kappa} \psi_{\lambda}^{\alpha} \partial_{\kappa} \psi_{\kappa}^{\alpha} \partial_{\kappa}^{\alpha} \partial_{\kappa$

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$
$ au_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	0	0	0	0
$\sigma_{0}^{\#1}$	0	0	0	0
•	$\sigma_{0}^{\#1}\dagger$	$\tau_0^{\#1} \dagger$	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}$ \dagger

	#	1	1	1	3	3	3	2	17
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} == 0$	$\sigma_{0+}^{#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta$ - 2 i k $\sigma_{2+}^{\#1}\alpha\beta$ == 0	Total #:

	Massive particle				
? $I^{P} = 0^{-}$?	Pole residue:	$-\frac{1}{r_2} > 0$			
3 -0	Polarisations:	1			
$\overline{k^{\mu}}$	Square mass:	$\frac{t_1}{r_2} > 0$			
?	Spin:	0			
·	Parity:	Odd			

 $\frac{\text{Unitarity conditions}}{r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0}$