

The Examiner has objected to claims 3 and 14 and suggested amendments to improve the clarity of the claim language. Applicants have amended claims 3 and 14 as suggested by the Examiner.

Claims 12-19 have also been amended to eliminate all occurrences of "means for" terminology. Such amendments are made to clarify the scope of the subject matter Applicants regard as their invention and to conform the claims to 35 USC Section 112, second paragraph, such amendments are not made to distinguish the claims over any art of record.

Claims 1 and 12 are rejected under 35 USC, section 102(b) as being anticipated by U.S. Patent 5,825,865, Oberlander et al., hereafter "Oberlander". Further, the Examiner rejected claims 2-10 and 13-21 as being rejected under 35 USC Section 103(a) as being unpatentable over Oberlander as applied to claims 1 and 12, and further in view of U.S. Patent 5,708,422, Blonder et al., hereafter "Blonder".

Applicants respectfully traverse the Examiner's rejection of claims 1 and 12 under 35 USC as being anticipated by Oberlander et al. The Examiner has indicated that Oberlander teaches message routing in a communication network that supports and responds to an information profile. Applicants respectfully assert that Oberlander does not disclose receipt of an information profile as part of the incoming communication, as previously recited in claims 1 and 12. In Oberlander, a plurality of information profiles are stored in a database and are utilized to preferentially route communications to destination addresses. The information profile disclosed in Applicant's specification includes information illustrated in the user Info field of Table 8 of the subject specification, e.g. any of the first name, last name, street, apartment, city, state, country, postal code, phone, fax and company information, such information profile is transmitted as part of the disclosed protocol. Conversely, the information profile disclosed in Oberlander, comprises routing information such as physical address, device type, source steering, target steering, context steering, priority and time of day preferences (Oberlander, column 5, line 16-column 8, line 14). Further, the message descriptor 300 of Oberlander does not include the information profile as

claimed and described in the subject application (Oberlander, column 4, line 43 through column 5, line 15). Claims 1 and 12, as originally filed, clearly recited the step of or code for receiving an information profile identifying the source of an incoming communication. The Examiner has failed to indicate where Oberlander discloses an information profile received with the incoming communication.

To further clarify this aspect of the invention, claim 1 has been amended to now recite a method of selectively alerting a user of an incoming communication over a computer network comprising the step of "receiving an incoming communication over the computer network, the incoming communication containing an information profile identifying the source of the incoming communication" (claim 1, lines 1-5). Claim 12 similarly recites a computer program product containing program code comprising "program code for receiving an incoming communication over the computer network, the incoming communication containing in information profile identifying the source of the incoming communication" (claim 12, lines 5-7). In light of the above, Applicants assert that claims 1-12, as well as all of their subsequent dependent claims are not anticipated by Oberlander for the reasons stated above.

Regarding the rejections of the claims under 35 USC Section 103, the Examiner has admitted that Oberlander does not teach the generation of a notification signal, nor its association with an information profile. Blonder et al. discloses a credit card authorization system which can be used to selectively alert card account owners based on certain parameters contained within an information profile stored in a validation database 106. As with Oberlander, the information profiles contained within the database 106 contain information different from that disclosed in the subject application. Blonder et al. also does not disclose the transmission of an information profile with an incoming communication.

The Examiner will note that combining the teachings of Blonder with Oberlander would not yield the packetized data transmission protocol of Applicants' invention in which an information profile identifying the source of the incoming communication is transmitted along with the incoming communication.

It is the incoming information profile which, when matched against an entry in a recipient's personal directory which enables selective responses to be initiated in the subject application.

In light of the foregoing, Applicants respectfully assert that the subject matter of claims 1-22 is neither disclosed nor suggested by either Oberlander or Blonder whether considered singularly or in combination.

Applicants respectfully traverse the rejection of claims 11 and 22 under 35 USC Section 112, 1st paragraph as being nonenabling to the limitation "<u>a haptic</u>—sensor signal". Haptic sensors, or those relating to the sense of touch or tactile stimulation, are well known in the art, as are the signals which are coupled to/from such sensor. The following United States patent relate to tactile devices and technology:

Patent No.	<u>Issued</u>	<u>Inventor</u>	<u>Class</u>
3,229,387	Jan., 1966	Linvill	
<u>4,191,945</u>	Mar., 1980	Hannen	340 /407.1
<u>4,307,266</u>	Dec., 1981	Messina	340 /825.46
<u>4,379,697</u>	Apr., 1983	Linvill	
<u>4,491,760</u>	Jan., 1985	Linvill	
<u>4,871,992</u>	Oct., 1989	Petersen	340 /825.19
<u>4,926,879</u>	May, 1990	Sevrain	340 /407.1
<u>4,985,692</u>	Jan., 1991	Breider	340 /825.19
<u>5,165,897</u>	Nov., 1992	Johnson	340 /825.19
<u>4,398,889</u>	Aug., 1983	Lam et al.	434 /45
<u>4,504,233</u>	Mar., 1985	Galus et al.	434 /45
<u>5,022,407</u>	Jun., 1991	Horch et al.	128 /744
<u>5,125,843</u>	Jun., 1992	Holloway	434 /45
<u>5,275,174</u>	Jan., 1994	Cook	128 /744
<u>5,354,162</u>	Oct., 1994	Burdea et al.	414 /5
<u>5,396,266</u>	Mar., 1995	Brimhall	345 /161
<u>5,405,152</u>	Apr., 1995	Katanics et al.	463 /30
3,795,150	Mar., 1974	Eckhardt	74 /5.4
3,875,488	Apr., 1975	Crocker et al.	318 /648
3,919,691	Nov., 1975	Noll	340 /172.5
<u>4,197,488</u>	Apr., 1980	Kant	318 /115
<u>4,382,217</u>	May, 1983	Horner et al.	318 /778
<u>4,398,889</u>	Aug., 1983	Lam et al.	434 /45
<u>4,436,188</u>	Mar., 1984	Jones	188 /378
<u>4,477,043</u>	Oct., 1984	Repperger	244 /223

4.550.047	1005		70/000 04
<u>4,550,617</u>	Nov., 1985	Fraignier et al.	73 /862.04
<u>4,632,341</u>	Dec., 1986	Repperger et al.	244 /230
<u>4,676,002</u>	Jun., 1987	Slocum	33 /1.MP
<u>4,689,449</u>	Aug., 1987	Rosen	200 /6
4,769,763	Sept., 1988	Trieb etal.	364 /559
4,775,289	Oct., 1988	Kazerooni	414 /735
4,800,721	Jan., 1989	Cemenska et al.	60 /393
4,803,413	Feb., 1989	Kendig et al.	318 /648
4,874,998	Oct., 1989	Hollis, Jr.	318 /568.21
4,897,582	Jan., 1990	Otten et al.	318 /135
4,907,970	Mar., 1990	Meenen, Jr.	434 /45
4,925,312	May, 1990	Onaga et al.	364 /165 X
4,933,584	Jun., 1990	Harms et al.	318/138 X
<u>4,961,038</u>	Oct., 1990	MacMinn	318 /696
<u>4,961,138</u>	Oct., 1990	Gorniak	364 /200
<u>4,983,901</u>	Jan., 1991	Lehmer	318 /685
<u>4,985,652</u>	Jan., 1991	Oudet et al.	310/15
<u>5,007,085</u>	Apr., 1991	Greanias et al.	380 /25
<u>5,007,300</u>	Apr., 1991	Siva	74 /471.XY
<u>5,044,956</u>	Sept., 1991	Behensky et al.	434 /45
<u>5,072,361</u>	Dec., 1991	Davis et al.	364 /167.01
<u>5,088,046</u>	Feb., 1992	McMurtry et al.	364 /474.03
5,103,404	Apr., 1992	McIntosh	414/5 X
5,107,080	Apr., 1992	Rosen	200 /6
<u>5,116,051</u>	May, 1992	Moncrief et al.	273 /448.D
5,116,180	May, 1992	Fung et al.	414 /5
5,136,194	Aug., 1992	Oudet et al.	310 /15
5,139,261	Aug., 1992	Openiano	273 /148.B
<u>5,142,931</u>	Sept., 1992	Menahem	74 /471.XY
5,143,505	Sept., 1992	Burdea et al.	414/5
<u>5,143,303</u> <u>5,181,181</u>	Jan., 1993	Glynn	364 /566
<u>5,184,319</u>	Feb., 1993	Kramer	364 /806
	Feb., 1993	Good et al.	318 /432
<u>5,185,561</u>			
<u>5,186,629</u>	Feb., 1993	Rohen	434 /114
<u>5,220,260</u>	Jun., 1993	Schuler	318 /561
<u>5,223,776</u>	Jun., 1993	Radke et al.	318 /568.1
<u>5,228,356</u>	Jul., 1993	Chuang	74 /471.XY
<u>5,243,266</u>	Sept., 1993	Kasagami et al.	318 /568.1
<u>5,264,768</u>	Nov., 1993	Gregory et al.	318 /628 X
<u>5,289,273</u>	Feb., 1994	Lang	348 /121
<u>5,327,790</u>	Jul., 1994	Levin et al.	73 /862.325
<u>5,354,162</u>	Oct., 1994	Burdea et al.	414 /5
5,389,865	Feb., 1995	Jacobus et al.	318 /568.11
5,396,266	Mar., 1995	Brimhall	345 /161
5,397,323	Mar., 1995	Taylor et al.	606 /130
5,402,582	Apr., 1995	Raab	33 /503
	, ,		

<u>5,405,152</u>	Apr., 1995	Katanics et al.	463 /2
5,414,337	May, 1995	Schuler	318 /561
<u>5,428,748</u>	Jun., 1995	Davidson et al.	395 /275
<u>5,429,140</u>	Jul., 1995	Burdea et al.	128 /774
<u>5,451,924</u>	Sept., 1995	Massimino et al.	340 /407.1
<u>5,473,235</u>	Dec., 1995	Lance et al.	318 /628 X
<u>5,482,051</u>	Jan., 1996	Reddy et al.	128 /733
<u>5,512,919</u>	Apr., 1996	Araki	345 /156
<u>5,513,100</u>	Apr., 1996	Parker et al.	364 /167
<u>5,532,585</u>	Jul., 1996	Oudet et al.	324 /207.22
<u>5,551,701</u>	Sept., 1996	Bouton et al.	463 /36

In addition, Applicants have suggested a known implementation of a tactile sensor signal in the specification, page 5, lines 1-7 which indicates "specific notifications may include ... activating a haptic sensor, such as a vibrator on a mobile pager, in response to the identity of the user. Applicants assert that the description of a haptic sensor signal in light of the abundant prior art in the relevant fields would enable a person reasonably skilled in the art to generate a notification signal comprising a haptic sensor signal. The list of United States patents set forth herein are not being submitted under Applicants' duty of candor but to illustrate the volume of references available which disclose tactile related technology.

New claims 23-30 have been added. New claim 23 is formatted as a propagated signal claim and includes limitations similar to those recited in computer program product claim 12. New claims 24-30 are also formatted as propagated signal claims and depend either directly or indirectly from claim 12 and include limitations similar to claims 13-19, respectively. Support for the recitation of a computer data signal embodied in a carrier wave is set forth in the specification (page 53, line 19 through page 54, line 12 and Figure 1). No new matter is believed added by way of the amendments to either the specification or claims. Applicants respectfully assert that new claims 23-30 are patentable over any references currently of record, whether considered singularly or in combination.

94

In light of the foregoing amendments and remarks, this application is now believed in condition for allowance and a notice to the effect is solicited earnestly. If the Examiner has any further questions regarding this amendment, he is invited to call Applicants' attorney at the number listed below. The Examiner is hereby authorized to charge any fees or credit any balances under 37 CFR §1.17, and 1.16 to Deposit Account No. 02-3038.

Respectfully submitted

Bruce D. Jobse, Esq. Reg. No. 33,518

KUDIRKA & JOBSE, LLP Customer Number 021127

Tel: (617) 367-4600 Fax: (617) 367-4656