LEIC

Álgebra Linear e Geometria Analítica - 2020/21 - SV

5 - Aplicações Lineares

5.1 Verifique se as seguintes aplicações são ou não lineares:

(a)
$$f_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 tal que $f_1(x,y) = (x-y,2y,1)$

(b)
$$f_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
 tal que $f_2(x,y) = (x-y,2y,2x+3y)$

(c)
$$f_3: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 tal que $f_3(x, y) = |x + y|$

(d)
$$f_4: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
 tal que $f_4(x,y,z) = (2z+1,x+2y)$

(e)
$$f_5: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 tal que $f_5(x,y,z) = (xy,2y,x+z)$

(f)
$$f_6: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 tal que $f_6(x,y) = (x^2,0)$

(g)
$$f_7: \mathbb{R}^3 \longrightarrow \mathbb{R}$$
 tal que $f_7(x, y, z) = \begin{vmatrix} 1 & -1 & x \\ 3 & 0 & y \\ -1 & 2 & z \end{vmatrix}$

(h)
$$f_8: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 tal que $f_8(a,b) = (2a - b, a + 6b)$

(i)
$$f_9: \mathbb{R}^{2 \times 2} \longrightarrow \mathbb{R}^{2 \times 2}$$
 tal que $f_9\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \begin{bmatrix} x+w & y-z \\ 0 & 2z+w \end{bmatrix}$

(j)
$$f_{10}: \mathbb{R}^{2 \times 2} \longrightarrow \mathbb{R}^{3 \times 1}$$
 tal que $f_{10}\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 3b \\ a^2 \\ c - d \end{bmatrix}$

(k)
$$f_{11}: \mathbb{R}^{2 \times 2} \longrightarrow \mathbb{R}^2$$
 tal que $f_{11} \left(\begin{bmatrix} x & y \\ z & w \end{bmatrix} \right) = (x + w, y + z)$

(l)
$$f_{12}: \mathbb{R}^{n \times 1} \longrightarrow \mathbb{R}^{n \times 1}$$
 tal que $f_{12}(X) = AX$, com $A \in \mathbb{R}^{n \times n}$

5.2 Considere a aplicação linear $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ tal que

$$f(1,0,0,0) = (2,-1), \quad f(0,1,0,0) = (-2,0), \quad f(0,0,1,0) = (3,-2) \quad \text{e} \quad f(0,0,0,1) = (1,1).$$

Determine a expressão geral de f e calcule f(1,3,4,-2).

5.3 Considere a transformação linear $T:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ tal que

$$T(1,0,0) = (2,3,-2), \quad T(1,1,0) = (4,1,4) \quad e \quad T(1,1,1) = (5,1,-7).$$

Determine a expressão geral de T e calcule T(2,0,1).

5.4 Considere a função linear $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que

$$g(-2,1) = (-1,2,0)$$
 e $g(1,3) = (0,-3,5)$.

1

Determine a expressão geral de g e calcule g(2, -3).

- 5.5 Determine o Núcleo e a Imagem das aplicações lineares do exercício 1.
- 5.6 Considere a aplicação linear $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que f(x,y) = (2x y, -8x + 4y). Quais dos seguintes vetores:
 - (a) (1, -4), (5, 0), (-3, 12) pertencem à Imagem de f?
 - (b) (5,10), (3,2), (1,1) pertencem ao Núcleo de *f*?
- 5.7 Considere a transformação linear $T: \mathbb{R}^5 \longrightarrow \mathbb{R}^4$ tal que

$$T(x, y, z, w, t) = (x - z + 3w - t, x + 3w - t, 2x - z + 5w - t, -z + w)$$

- (a) Calcule a imagem do vetor (1, 0, -1, 2, 3).
- (b) Determine a dimensão e uma base dos subespaços Im(T) e Nuc(T).
- (c) Defina analiticamente os subespaços Imagem e Núcleo de T.
- (d) *T* é sobrejetiva? E injetiva? Justifique.
- (e) Determine todos os vetores que têm por imagem o vetor (2, 2, 4, 1).
- 5.8 Defina analiticamente os subespaços Imagem e Núcleo da aplicação linear $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que

$$g(x,y,z) = (x+y,y+z,x+z).$$

Diga, justificando, se g é um automorfismo (endomorfismo bijetivo) de \mathbb{R}^3 .

- 5.9 Dada a função linear $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que h(x,y) = (y,0), prove que $\mathrm{Im}(h) = \mathrm{Nuc}(h)$.
- 5.10 Seja $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ uma aplicação linear. Prove que:
 - (a) se n > m então f não é injetiva;
 - (b) se n < m então f não é sobrejetiva;
 - (c) se n = m então f é injetiva se e só se é f sobrejetiva.
- 5.11 Considere as transformações lineares $T_1: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $T_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ e $T_3: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ tais que

$$T_1(x,y,z) = (x+y-z, -2x+z), \quad T_2(x,y) = (x,x+y,0,-y) \quad \text{e} \quad T_3(x,y,z,w) = (x-w,2y-z,3x+z).$$

Defina as seguintes aplicações lineares:

(a) $T_2 \circ T_1$

(c) $T_1 \circ T_3$

(e) $T_3 \circ T_2 \circ T_1$

(b) $T_3 \circ T_1$

- (d) $T_1 \circ T_3 \circ T_2$
- 5.12 Seja p a projeção ortogonal de \mathbb{R}^3 sobre o plano xy:

$$p: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 tal que $p(x,y,z) = (x,y,0)$

Prove que:

- (a) $p \circ p = p$;
- (b) a Imagem de *p* é um plano e calcule a sua equação geral;
- (c) o Núcleo de *p* é uma reta e calcule as suas equações reduzidas.
- 5.13 Prove que a aplicação linear $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que g(x,y,z) = (x+y+z,2x-y-z,x+2y-z) é:
 - (a) bijetiva (injetiva e sobrejetiva);
 - (b) invertível e defina a aplicação linear inversa de g.

5.14 Seja
$$A = \begin{bmatrix} a & 0 & 2 \\ 2 & 1 & 2 \\ 0 & 1 & -2 \end{bmatrix}$$
 a matriz canónica da aplicação linear T .

- (a) Calcule a dimensão e uma base da Imagem e do Núcleo de *T* para todos os valores reais de *a*.
- (b) Considere a = 1.
 - i. Prove que *T* não é injetiva e indique dois vetores que têm a mesma imagem.
 - ii. Determine todos os valores reais de k para os quais (1,2,k) pertence à Imagem de T. Conclua, com base no resultado obtido, por que razão T não é sobrejetiva.
- 5.15 Sejam $f_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $f_B: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ e $f_C: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$, as aplicações lineares cujas matrizes canónicas são, respetivamente,

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & 6 & -4 \\ 7 & 4 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} e C = \begin{bmatrix} 4 & 1 & 5 & 2 \\ 1 & 2 & 3 & 0 \end{bmatrix}$$

- (a) Determine as expressões gerais de f_A , f_B e f_C .
- (b) Determine a característica e a nulidade de f_A , f_B e f_C .
- (c) Justifique se f_A , f_B e f_C são injetivas ou sobrejetivas.
- (d) Calcule uma base da Imagem e do Núcleo de f_A , f_B e f_C .
- 5.16 Seja $A=\begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}$ e considere o endomorfismo g de $\mathbb{R}^{2\times 2}$ definido por

$$g(X) = AX - XA$$

- (a) Determine o Núcleo de *g* e indique uma base respetiva.
- (b) Determine a Imagem de g e exiba uma sua base.
- (c) Diga, justificando, se g é invertível.
- 5.17 Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^{2 \times 2}$ a aplicação linear tal que $f(a,b,c) = \begin{bmatrix} a & b-c \\ 2b & a \end{bmatrix}$.
 - (a) Mostre que $Nuc f = \{(0,0,0)\};$
 - (b) Justifique que $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \in \text{Im} f;$
 - (c) Sem determinar Im f, justifique que f não é sobrejetiva;
 - (d) Indique uma base de Im f.
- 5.18 Considere a aplicação linear $h: \mathbb{R}^{2 \times 2} \longrightarrow \mathbb{R}^{2 \times 2}$ definida por

$$h\left(\begin{bmatrix} x & y \\ z & w \end{bmatrix}\right) = \begin{bmatrix} x & x+y \\ z+w & 2w \end{bmatrix}$$

- (a) Escreva a matriz de h em relação à base canónica de $\mathbb{R}^{2\times 2}$, $\mathcal{B}_c = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right)$.
- (b) Mostre que h é invertível e determine a expressão geral de h^{-1} .
- 5.19 Considere as aplicações lineares $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$f(2,0,0) = (2,0), \quad f(0,1,0) = (2,1) \quad e \quad (2,-1,1) \in \text{Nuc} f$$

e $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $G=\begin{bmatrix}1 & -1 \\ -1 & 2 \\ 3 & -1\end{bmatrix}$ é a respetiva matriz canónica.

- (a) Mostre que f(x, y, z) = (x + 2y, y + z), para todo o $(x, y, z) \in \mathbb{R}^3$.
- (b) Caracterize o Núcleo e a Imagem de g. Será g injetiva? E sobrejetiva? Justifique.
- (c) Determine $(f \circ g)(x, y)$, qualquer que seja $(x, y) \in \mathbb{R}^2$ e mostre que $f \circ g$ é um automorfismo de \mathbb{R}^2 .
- 5.20 Sejam $A=\begin{bmatrix}1&1&1\\1&1&0\\1&0&0\end{bmatrix}$ e h o endomorfismo de \mathbb{R}^3 cuja matriz canónica é A.
 - (a) Mostre que h é um automorfismo de \mathbb{R}^3 .
 - (b) Escreva a matriz de h em relação à base $\mathcal{B} = ((1,1,0),(0,1,0),(0,1,1))$.
 - (c) Determine $h^{-1}(x, y, z)$, qualquer que seja $(x, y, z) \in \mathbb{R}^3$.
- 5.21 Considere a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que T(x,y) = (x+y, -2x+4y). Calcule a matriz de T relativamente à base:
 - (a) canónica de \mathbb{R}^2 ;
 - (b) $\mathcal{B} = ((1,1),(1,2)).$
- 5.22 Considere a função linear $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que g(x,y,z) = (2x-y,2y-z). Calcule a matriz de g relativamente às bases:
 - (a) canónicas de \mathbb{R}^3 e \mathbb{R}^2 ;
 - (b) $\mathcal{B} = ((1,1,1), (0,1,1), (0,0,1)) \in \mathcal{B}' = ((0,1), (1,1)).$
- 5.23 Em $\mathbb{R}^{2\times 2}$, considere a base canónica, $\mathcal{B}_c = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$, e o endomorfismo f cuja matriz canónica é

$$M_f = egin{bmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 0 & 1 \ -1 & 0 & -1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}.$$

- (a) Determine $f\left(\begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}\right)$ e $f\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)$.
- $\text{(b) Seja } \mathcal{B} = \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right) \text{ uma nova base de } \mathbb{R}^{2 \times 2}. \text{ Determine } M(f; \mathcal{B}, \mathcal{B}).$
- 5.24 Seja $\begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 0 & 0 \end{bmatrix}$ a matriz canónica de uma aplicação linear $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$. Calcule:
 - (a) a matriz de f relativamente às bases $\mathcal{B}=((1,3),(-2,4))$ e $\mathcal{B}'=((1,1,1),(2,2,0),(3,0,0))$;
 - (b) [f(1,3)] e [f(-2,4)];
 - (c) $[f(1,3)]_{\mathcal{B}'}$ e $[f(-2,4)]_{\mathcal{B}'}$.
- 5.25 Seja $\begin{bmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ a matriz canónica de uma transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$.
 - (a) Calcule a matriz de T relativamente à base ordenada $\mathcal{B}=((1,-1,0),(1,0,-1),(1,0,0));$

(b)
$$[T(1,-1,0)]$$
, $[T(1,0,-1)]$ e $[T(1,0,0)]$;

(c)
$$[T(1,-1,0)]_{\mathcal{B}}$$
, $[T(1,0,-1)]_{\mathcal{B}}$ e $[T(1,0,0)]_{\mathcal{B}}$.

5.26 Considere a matriz $M(f; \mathcal{B}, \mathcal{B}') = \begin{bmatrix} 2 & 1 \\ 5 & 3 \\ -2 & 2 \end{bmatrix}$, com $\mathcal{B} = ((1,3), (2,-1))$ e $\mathcal{B}' = ((1,0,0), (0,1,0), (0,0,1))$.

Calcule a matriz canónica e defina a aplicação linear f.

5.27 Considere a matriz
$$M(g; \mathcal{B}, \mathcal{B}') = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & 3 \\ -3 & 3 & 1 \end{bmatrix}$$
, com $\mathcal{B} = ((-1,1,1), (1,-1,1), (1,1,-1))$ e $\mathcal{B}' = ((1,0,-1), (0,1,-1), (1,-1,0))$. Calcule a matriz canónica e defina a função linear g .

$$\mathcal{B}' = ((1,0,-1),(0,1,-1),(1,-1,0))$$
. Calcule a matriz canónica e defina a função linear g .