

xkcd.com

Topics Today:

- Caches!!
 - Theory
 - Design
 - Examples

Memory Hierarchy

Memory Hierarchy

Real World Example - Intel i7

Cache Level	Size	Access Time
L1	64 kB	4 cycles
L2	256 kB	10 cycles
L3	8192 kB	40 cycles

RAM	8388608 kB	200 cycles
Disk	1073741824 kB	20000000 cycles

Memory Hierarchy

Problem: Caches are very tiny, but memory is quite large
If memory accesses are totally random, caches are useless

Solution: Memory accesses really aren't random at all!

Memory Hierarchy

Temporal Locality

You are likely to access memory locations multiple times

Spatial Locality

You are likely to access memory locations near each other

Memory Hierarchy

Example:

```
int data[10];
int sum = 0;
...
for (int i=0; i<10; i++) {
    sum += data[i];
}</pre>
```

Memory Hierarchy

Real World Example - Intel i7

Cache Design

Split Cache – portion your cache into two halves

I-Cache: Instruction Cache

D-Cache: Data Cache

Why would we want to do this?

Types of Caches

Fully Associative

B	locks	map	to a	anv	cac	he	line
		map		411 y	cac		

Memory				
0x1000	10			
0x1004	20			
0x1008	30			
0x100C	40			
0x1010	50			
0x1014	60			
0x1018	70			
0x101C	80			
0x1020	90			
0x1024	100			
0x1028	110			

Types of Caches

Direct Mapped

Types of Caches

Set Associative

Memory					
0x1000	10				
0x1004	20				
0x1008	30				
0x100C	40				
0x1010	50				
0x1014	60				
0x1018	70				
0x101C	80				
0x1020	90				
0x1024	100				
0x1028	110				

Types of Caches

Set Associative

1	1-Way		2-Way		-Way	6-	Way	
Cache			Cache		Cache		Cache	
Tag	Data	Tag	Data	Tag	Data	Tag	Data	
			Sets = Cache Lines / Ways					

Three C's

There are three reasons a cache miss occurs

- 1) Compulsory never been loaded before
- 2) Capacity evicted due to small cache size
- 3) Conflict evicted due to overlap with another block

Cache Addressing

Addresses split into:

Cache Writing Policy

For Writes Only

On misses:

Write Allocate – add to cache

No Write Allocate – don't add to cache

On hits:

Write Through – always write to memory

Write Back – only write to cache

Caches

Cache Examples

Block size = 1 Word, Address = 16 bits

2-way Set Associative

Cache			
Tag	Data		

Memory				
0x1000	10			
0x1004	20			
0x1008	30			
0x100C	40			
0x1010	50			
0x1014	60			
0x1018	70			
0x101C	80			
0x1020	90			
0x1024	100			
0x1028	110			
0x102C	120			

Caches

Cache Examples

Options:

- Type of Cache
- Cache Size
- Block Size
- Address Bits
- Write Policy