

FCC PART 22, and 90

TEST REPORT

For

Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road, Nanshan District, Shenzhen, 518057 China

FCC ID: YAMBD55XU1

Report Type: Product Type:

Original Report Digital Portable Radio

Report Number: RDG161020001-00A

Report Date: 2016-12-16

Jesse Huang

Reviewed By: Manager

Prepared By: Bay Area Compliance Laboratories Corp. (Kunshan)

No.248 Chenghu Road, Kunshan, Jiangsu province, China

Jesse-Humf

Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTYTEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC §1.1307(b) & §2.1093 - RF EXPOSURE	
APPLICABLE STANDARD	
FCC §2.1046 & § 22.565 & §90.205 - RF OUTPUT POWER	10
APPLICABLE STANDARD	
TEST PROCEDURE	
Test Data	10
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	12
APPLICABLE STANDARD	
TEST PROCEDURE	
Test Data	12
FCC §2.1049 & §22.359 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	18
APPLICABLE STANDARD	18
Test Procedure	
TEST DATA	18
FCC §2.1051 & §22.359 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	26
APPLICABLE STANDARD	26
Test Procedure	
Test Data	
FCC §2.1053 & §22.359 & §90.210 - RADIATED SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §2.1055 & § 22.355 & §90.213 - FREQUENCY STABILITY	
APPLICABLE STANDARD	
Test Procedure	

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR	36
APPLICABLE STANDARD	36
TEST PROCEDURE	36
TEST DATA	36

FCC Part 22, and 90 Page 3 of 38

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Hytera Communications Corporation Limited's* product, model number: *BD552 U(1)(FCC ID: YAMBD55XU1) in* this report is a *Digital Portable Radio* which was measured approximately: 121 mm (L) * 60 mm (W) *36 mm (H), rated with input voltage: DC7.2V from rechargeable Li-ion battery or DC 12.0V charging from adapter.

Report No.: RDG161020001-00A

Adapter Information: Model: HKA01212010-XO

Input: AC 100-240V, 50/60Hz, 0.5A

Output: DC12.0V, 1.0A

Note: This series products model: $BD555\ U(1)$, $BD556\ U(1)$, $BD558\ U(1)$ and $BD552\ U(1)$ have the same appearance, PCB and material, the difference among them can be referred to the declaration letter that stated and guaranteed by the applicant. Model $BD552\ U(1)$ was selected for fully testing, the detailed information.

*All measurement and test data in this report was gathered from production sample serial number: 161020001 (Assigned by BACL, Kunshan). The EUT supplied by the applicant was received on 2016-10-20.

Objective

This test report is prepared on behalf of *Hytera Communications Corporation Limited* in accordance with Part 22, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 22 – Public Mobile Service

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D and ANSI C63.4-2014.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 22, and 90 Page 4 of 38

Measurement Uncertainty

Item		Uncertainty
AC Power Line	s Conducted Emissions	±3.26 dB
RF conducte	d test with spectrum	±0.9dB
RF Output Power with Power meter		±0.5dB
D. P. C. L. C.	30MHz~1GHz	±5.91dB
Radiated emission	Above 1G	±4.92dB
Occupied Bandwidth		±0.5kHz
Temperature		±1.0℃
Humidity		±6%

Report No.: RDG161020001-00A

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the Chenghu Lake Road, Kunshan Development Zone No.248, Kunshan, Jiangsu, China

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 22, and 90 Page 5 of 38

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Report No.: RDG161020001-00A

EUT Exercise Software

No exercise software was used.

Special Accessories

No special accessory was used.

Equipment Modifications

No modification was made to the EUT tested.

Block Diagram of Test Setup

FCC Part 22, and 90 Page 6 of 38

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307(b), §2.1093	RF Exposure	Compliance
\$2.1046; \$ 22.565; \$90.205	RF Output Power	Compliance
§2.1047; §90.207	Modulation Characteristic	Compliance
§2.1049;§22.359; §90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051; §22.359;§90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053; §22.359;§90.210	Spurious Radiated Emissions	Compliance
§2.1055; § 22.355;§90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Report No.: RDG161020001-00A

FCC Part 22, and 90 Page 7 of 38

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	F	Radiated Emission	n Test		
Sonoma Instrunent	Amplifier	330	171377	2016-09-16	2017-09-16
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-11	2017-11-10
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08
Sunol Sciences	Broadband Antenna	JB3	A090314-1	2016-01-09	2019-01-08
Narda	Pre-amplifier	AFS42- 00101800	2001270	2016-09-08	2017-09-08
EMCO	Horn Antenna	3116	9510-2384	2015-11-07	2018-11-06
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2016-11-11	2017-11-10
ETS	Horn Antenna	3115	6229	2016-01-11	2017-01-10
ETS	Horn Antenna	3115	9311-4159	2016-01-11	2017-01-10
R&S	Auto test Software	EMC32	V 09.10.0	NCR	NCR
BACL	RF cable	KS-LAB-012	KS-LAB-012	2015-12-15	2016-12-15
Ducommun technologies	RF Cable	104PEA	218124002	2016-04-22	2017-04-22
НР	Signal Generator	E4421B	US38440505	2016-11-11	2017-11-10
		RF Conducted	test		
BACL	TS 8997 Cable-01	T-KS- EMC086	T-KS- EMC086	2015-12-10	2016-12-09
BACL	RF cable	KS-LAB-012	KS-LAB-012	2015-12-16	2016-12-15
WEINSCHEL	3dB Attenuator	5326	N/A	2016-06-18	2017-06-18
Rohde & Schwarz	OSP120 BASE UNIT	OSP120	101247	2016-07-04	2017-07-03
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131	2016-09-21	2017-09-21
HEWLETT PACKARD	RF Communications Test SET	8920A	3438A05201	2016-09-21	2017-09-21
HONOVA	Power Splitter	ZFRSC-14-S+	019411452	2016-06-12	2017-06-12
N/A	30dB Attenuator	100W 30dB	N/A	2016-06-18	2017-06-18

FCC Part 22, and 90 Page 8 of 38

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307(b) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §1.1307(b) and §2.1093, protable device operates Part 90 should be subjected to rountine environmental evaluation for RF exposure prior or equipment authorization or use.

Report No.: RDG161020001-00A

Result: Compliance.

Please refer to SAR Report Number: RDG161020001-20A.

FCC Part 22, and 90 Page 9 of 38

FCC §2.1046 & § 22.565 & §90.205 - RF OUTPUT POWER

Applicable Standard

FCC §2.1046, § 22.565 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Report No.: RDG161020001-00A

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Chris Wang on 2016-11-14.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC Part 22, and 90 Page 10 of 38

Mode	Frequency Spacing (kHz)	Frequency (MHz)	Power level	Output (dBm)	Output Power(W)	Note
		400.0125	High	36.19	4.16	For Federal
		400.0123	Low	30.23	1.05	For Federal
		453.2125	High	36.31	4.28	For Part 90
Analog	12.5	433.2123	Low	30.41	1.10	roi rait 90
Analog	12.3	454.0125	High	36.30	4.27	Ean Dont 22
		434.0123	Low	30.42	1.10	For Part 22
		469.9875	High	36.33	4.30	For Dort 00
			Low	30.27	1.06	For Part 90
		400.0125	High	36.21	4.18	For Federal
		400.0125	Low	30.21	1.05	For Federal
		453.2125	High	36.31	4.28	For Part 90
Digital	12.5	455.2125	Low	30.39	1.09	roi rait 90
Digital		454.0125	High	36.29	4.26	For Part 22
			Low	30.40	1.10	FOF Part 22
		460.0075	High	36.31	4.28	For Dort 00
		469.9875	Low	30.28	1.07	For Part 90

Note: The high rated power is 4.0W. The low rated power is 1.0W.

FCC Part 22, and 90 Page 11 of 38

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047 and §90.207:

(a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.

Report No.: RDG161020001-00A

(b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Procedure

Test Method: TIA-603D 2.2.3

Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Chris Wang on 2016-11-14.

Test Mode: Transmitting

Result: Compliance.

FCC Part 22, and 90 Page 12 of 38

Analog Modulation:

MODULATION LIMITING

Report No.: RDG161020001-00A

Carrier Frequency: 453.2125MHz, Channel Separation=12.5 kHz

	Instantaneous		Steady	y-state	
Audio Frequency (Hz)	DEVIATION (@+20dB) [kHz]	DEVIATION (@-20dB) [kHz]	DEVIATION (@+20dB) [kHz]	DEVIATION (@-20dB) [kHz]	FCC Limit [kHz]
300	1.003	0.092	0.987	0.085	2.500
400	1.213	0.105	1.207	0.097	2.500
500	1.607	0.126	1.587	0.117	2.500
600	1.764	0.137	1.759	0.125	2.500
700	1.823	0.150	1.812	0.146	2.500
800	1.870	0.166	1.864	0.158	2.500
900	2.001	0.179	1.993	0.172	2.500
1000	2.175	0.201	2.156	0.194	2.500
1200	2.136	0.224	2.122	0.212	2.500
1400	2.101	0.256	2.091	0.251	2.500
1600	2.069	0.283	2.058	0.271	2.500
1800	2.051	0.300	2.048	0.289	2.500
2000	1.978	0.325	1.965	0.318	2.500
2100	1.994	0.333	1.986	0.327	2.500
2200	1.971	0.346	1.960	0.331	2.500
2300	1.984	0.355	1.971	0.348	2.500
2400	1.994	0.364	1.987	0.351	2.500
2500	2.070	0.375	2.056	0.360	2.500
2600	2.110	0.391	2.098	0.380	2.500
2700	2.094	0.409	2.088	0.401	2.500
2800	2.096	0.420	2.083	0.411	2.500
2900	2.005	0.424	1.996	0.419	2.500
3000	1.893	0.403	1.885	0.396	2.500

FCC Part 22, and 90 Page 13 of 38

FCC Part 22, and 90 Page 14 of 38

Audio Frequency Response

Report No.: RDG161020001-00A

Carrier Frequency: 453.2125 MHz, Channel Separation=12.5 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
300	-10.09
400	-7.81
500	-5.73
600	-4.10
700	-2.94
800	-1.83
900	-0.87
1000	0.00
1200	1.66
1400	2.98
1600	4.00
1800	4.87
2000	5.53
2100	5.72
2200	6.09
2300	6.33
2400	6.55
2500	6.82
2600	7.12
2700	7.61
2800	7.86
2900	7.98
3000	7.43

FCC Part 22, and 90 Page 15 of 38

FCC Part 22, and 90 Page 16 of 38

Carrier Frequency: 453.2125 MHz, Channel Separation=12.5 kHz

Audio Frequency (kHz)	Response Attenuation (dB)	Limit (dB)
1.0	0.0	/
3.0	-16.1	0.0
4.0	-77.6	-12.5
5.0	-81.9	-22.2
6.0	-82.3	-30.1
7.0	-86.4	-36.8
8.0	-87.2	-42.6
9.0	-86.1	-47.7
10.0	-90.5	-52.3
12.0	-91.3	-60.2
14.0	-90.5	-66.9
16.0	-91.5	-72.7
18.0	-92.1	-77.8
20.0	-92.6	-82.5

FCC Part 22, and 90 Page 17 of 38

FCC §2.1049 & §22.359 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049, §22.359 and §90.210

Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: RDG161020001-00A

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least: At least $50 + 10 \log (P) dB$ or 70 dB, whichever is the lesser attenuation.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

Test Data

Environmental Conditions

Temperature:	23~25 ℃
Relative Humidity:	50~55 %
ATM Pressure:	100.0~101.0 kPa

The testing was performed by Chris Wang from 2016-11-17 to 2016-11-18.

FCC Part 22, and 90 Page 18 of 38

Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)	Note
	12.5	453.2125	High	5.31	10.32	For most 00
Analog	12.5	455.2125	Low	5.31	10.32	For part 90
	12.5	454.0125	High	5.31	10.32	For part 22
	12.5		Low	5.31	10.32	For part 22
Digital	12.5	452.2125	High	7.62	9.52	E
	12.5	453.2125	Low	7.41	9.22	For part 90
	12.5	454.0125	High	7.31	9.42	For part 22
	12.5	434.0123	Low	7.52	9.72	For part 22

Note: Emission bandwidth was based on calculation method instead of measurement.

Emission Designator Per CFR 47 $\S 2.201\& \S 2.202$, $B_n = 2M + 2D$

For FM Mode (Channel Spacing: 12.5 kHz)

Emission Designator 11K0F3E In this case, the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation. BW = $2(M+D) = 2*(3.0 \text{ kHz} + 2.5 \text{ kHz}) = 11 \text{ kHz} \rightarrow 11K0$

F3E portion of the designator represents an FM voice transmission Therefore, the entire designator for 12.5 kHz channel spacing FM mode is 11K0F3E.

For Digital Mode (Channel Spacing: 12.5 kHz) Emission Designator 7K60F1D and 7K60F1E

The 99% energy rule (title 47CFR 2.1049) was used for digital mode. It basically states that 99% of the modulation energy falls within X kHz, in this case, 7.62 kHz. The emission mask was obtained from 47CFR 90.210(d).

F1D and F1E portion of the designator indicates digital information.

Therefore, the entire designator for 12.5 kHz channel spacing digital mode is 7K60F1D and 7K60F1E.

FCC Part 22, and 90 Page 19 of 38

Analog Modulation:

Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, High Power

Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power

FCC Part 22, and 90 Page 20 of 38

Frequency 454.0125 MHz: 99% Occupied & 26 dB Bandwidth, High Power

Frequency 454.0125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power

FCC Part 22, and 90 Page 21 of 38

Frequency 453.2125 MHz: Emission Mask, High Power

Frequency 453.2125 MHz: Emission Mask, Low Power

FCC Part 22, and 90 Page 22 of 38

Digital Modulation:

Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, High Power

Report No.: RDG161020001-00A

Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power

FCC Part 22, and 90 Page 23 of 38

Frequency 454.0125 MHz: 99% Occupied & 26 dB Bandwidth, High Power

Frequency 454.0125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power

FCC Part 22, and 90 Page 24 of 38

Frequency 453.2125 MHz: Emission Mask, High Power

Frequency 453.2125 MHz: Emission Mask, Low Power

FCC Part 22, and 90 Page 25 of 38

FCC §2.1051 & §22.359 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Report No.: RDG161020001-00A

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100kHz for below 1GHz, and 1MHz for above 1GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

Environmental Conditions

Temperature:	22~24 ℃	
Relative Humidity:	50~55 %	
ATM Pressure:	100.0~101.0 kPa	

The testing was performed by Chris Wang on 2016-11-12 and 2016-12-15.

Test Mode: Transmitting, please refer to the following plots.

FCC Part 22, and 90 Page 26 of 38

Analog Modulation:

30MHz - 1 GHz, Spacing Channel 12.5 kHz, 453.2125 MHz - PART 90

1 GHz - 5 GHz, Spacing Channel 12.5 kHz, 453.2125 MHz - PART 90

FCC Part 22, and 90 Page 27 of 38

30MHz - 1 GHz, Spacing Channel 12.5 kHz, 454.0125 MHz - PART 22

1 GHz – 5 GHz, Spacing Channel 12.5 kHz, 454.0125 MHz– PART 22

FCC Part 22, and 90 Page 28 of 38

Digital Modulation:

30MHz - 1 GHz, 453.2125MHz - PART 90

Report No.: RDG161020001-00A

1 GHz - 5 GHz, 453.2125MHz - PART 90

FCC Part 22, and 90 Page 29 of 38

30MHz - 1 GHz, 454.0125MHz- PART 22

1 GHz - 5 GHz, 454.0125MHz - PART 22

FCC Part 22, and 90 Page 30 of 38

FCC §2.1053 & §22.359 & §90.210 - RADIATED SPURIOUS EMISSIONS

Report No.: RDG161020001-00A

Applicable Standard

FCC §2.1053, §22.359 and §90.210

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in $dB = 50+10 \text{ Log}_{10}$ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Layne Li on 2016-11-14.

FCC Part 22, and 90 Page 31 of 38

Test Mode: Transmitting

30MHz - 6GHz:

	Racaivar	Receiver Turn	Rx An	tenna		Substitut	ed	Absolute		
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
			Analog M	lodulation	453.2125	MHz– PA	ART 90			
906.43	37.77	281	2.3	Н	-59.2	0.45	5.05	-54.60	-20	34.60
906.43	37.28	143	1.6	V	-59.7	0.45	5.05	-55.10	-20	35.10
1359.64	40.99	128	1.5	Н	-61.0	0.27	7.75	-53.52	-20	33.52
1359.64	46.02	347	1.6	V	-61.6	0.27	7.75	-54.12	-20	34.12
			Digital M	odulation	453.2125	MHz– PA	ART 90			
906.43	37.51	38	1.6	Н	-59.5	0.45	5.05	-54.90	-20	34.90
906.43	36.98	327	2.3	V	-60.0	0.45	5.05	-55.40	-20	35.40
1359.64	41.69	305	1.9	Н	-60.3	0.27	7.75	-52.82	-20	32.82
1359.64	45.72	21	1.7	V	-61.9	0.27	7.75	-54.42	-20	34.42
			Analog M	lodulation	454.0125	MHz– PA	RT 22	_	_	
908.03	36.83	140	1.1	Н	-60.2	0.45	5.05	-55.60	-13	42.60
908.03	36.41	347	1.2	V	-60.6	0.45	5.05	-56.00	-13	43.00
1362.04	36.65	208	1.1	Н	-61.2	0.27	7.75	-53.72	-13	40.72
1362.04	36.28	238	1.8	V	-61.6	0.27	7.75	-54.12	-13	41.12
	Digital Modulation 454.0125MHz– PART 22									
908.03	36.61	205	2.1	Н	-60.4	0.45	5.05	-55.80	-13	42.80
908.03	37.12	269	1.3	V	-59.9	0.45	5.05	-55.30	-13	42.30
1362.04	36.55	33	1.1	Н	-61.3	0.27	7.75	-53.82	-13	40.82
1362.04	34.52	300	1.3	V	-63.4	0.27	7.75	-55.92	-13	42.92

Report No.: RDG161020001-00A

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

FCC Part 22, and 90 Page 32 of 38

FCC §2.1055 & § 22.355 & §90.213 - FREQUENCY STABILITY

Applicable Standard

FCC §2.1055, § 22.355 and §90.213

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

Report No.: RDG161020001-00A

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	24 ℃	
Relative Humidity:	55 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Chris Wang on 2016-11-14.

Test Mode: Transmitting

FCC Part 22, and 90 Page 33 of 38

Reference Frequency: 453.2125MHz, Limit: ±2.5 ppm					
Test Env	ironment	Frequency Measure with Time Elapsed			
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency error (MHz)	Frequency Error (ppm)		
	Frequency Stability	y versus Input Temper	ature		
50	7.2	453.212201	-0.6597		
40	7.2	453.212209	-0.6421		
30	7.2	453.212205	-0.6509		
20	7.2	453.212202	-0.6575		
10	7.2	453.212207	-0.6465		
0	7.2	453.212200	-0.6619		
-10	7.2	453.212203	-0.6553		
-20	7.2	453.212205	-0.6509		
-30	7.2	453.212210	-0.6399		
Frequency Stability versus Input Voltage					
20	6.3	453.212211	-0.6377		

Reference Frequency: 454.0125MHz, Limit: ±5 ppm						
Test Envi	ronment	Frequency Measure with Time Elapsed				
Temperature (°C)			Frequency Error (ppm)			
	Frequency Stability	y versus Input Temper	ature			
50	7.2	454.012198	-0.6652			
40	7.2	454.012203	-0.6542			
30	7.2	454.012211	-0.6365			
20	7.2	454.012200	-0.6608			
10	7.2	454.012205	-0.6498			
0	7.2	454.012195	-0.6718			
-10	7.2	454.012206	-0.6476			
-20	7.2	454.012201	-0.6586			
-30	7.2	454.012212	-0.6343			
	Frequency Stability versus Input Voltage					
20	6.3	454.012206	-0.6476			

FCC Part 22, and 90 Page 34 of 38

Reference Frequency: 453.2125 MHz, Limit: ±2.5 ppm, 12.5 kHz						
Test Envi	ronment	Frequency Measure with Time Elapsed				
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)			
	Frequency Stability	y versus Input Temper	rature			
50	7.2	453.212195	-0.6730			
40	7.2	453.212201	-0.6597			
30	7.2	453.212191	-0.6818			
20	7.2	453.212196	-0.6708			
10	7.2	453.212203	-0.6553			
0	7.2	453.212207	-0.6465			
-10	7.2	453.212189	-0.6862			
-20	7.2	453.212202	-0.6575			
-30	7.2	453.212196	-0.6708			
	Frequency Stability versus Input Voltage					
20	6.3	453.212193	-0.6774			

Reference Frequency: 454.0125MHz, Limit: ±5 ppm, 12.5 kHz						
Test Env	ironment	Frequency Measure with Time Elapsed				
Temperature (°C)	- **		Frequency Error (ppm)			
	Frequency Stability	versus Input Temper	ature			
50	7.2	454.012203	-0.6542			
40	7.2	454.012210	-0.6387			
30	7.2	454.012194	-0.6740			
20	7.2	454.012205	-0.6498			
10	7.2	454.012212	-0.6343			
0	7.2	454.012203	-0.6542			
-10	7.2	454.012206	-0.6476			
-20	7.2	454.012197	-0.6674			
-30	7.2	454.012202	-0.6564			
	Frequency Stability versus Input Voltage					
20	6.3	454.012199	-0.6630			

FCC Part 22, and 90 Page 35 of 38

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

Test method: TIA-603-D 2010, section 2.2.19.3

Test Procedure

a) Connect the EUT and test equipment as shown on the following block diagram.

b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.

Report No.: RDG161020001-00A

- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ±12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P₀.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ± 4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .
- k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

Test Data

Environmental Conditions

Temperature:	27 ℃	
Relative Humidity:	55 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Chris Wang on 2016-11-17.

FCC Part 22, and 90 Page 36 of 38

Channel Separation (kHz)	•		Result
	10 (t1)	<+/-12.5 kHz	
12.5	25(t2)	<+/-6.25 kHz	Pass
	10 (t3)	<+/-12.5 kHz	

Please refer to the following plots.

FCC Part 22, and 90 Page 37 of 38

Turn on

Turn off

***** END OF REPORT *****

FCC Part 22, and 90 Page 38 of 38