Lambda Calculus

국민대학교 컴퓨터공학부 강 승 식

Brief history

 Achim Jung, "A short introduction to the Lambda Calculus", available at http://www.cs.bham.ac.uk/~axj/pub/ papers/lambda-calculus.pdf

Alonzo Church, 14.6.1903-11.8.1995

- λ-calculus, 1932
 - Alonzo Church(1903-1995)
 - Functional foundation for Mathematics
- Re-discovered by Computer Science
 - McCarthy, Strachey, Landin, and Scott in the 1960s

Expressions in λ-calculus

- Expression are written in prefix form
 - No infix or postfix operators

- Function and argument are simply written next to each other
 - without brackets around the argument
 - + x 3
 - * x x
 - $+ (\sin x) 4$

Functions in λ-calculus

- Example function
 - f(x) = 3x

- λ-calculus
 - λx. * 3 x
 - λ says that the variable x is not part of an expression, but the *formal parameter* of the function declaration

Functions in λ-calculus

• In Pascal,

```
function f( x : int) : int begin f := 3 * x end; 
\begin{vmatrix} & & & & & & \\ & & & & & \\ & \lambda & & x & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

- In Lisp,
 - (lambda (x) (* 3 x))
 - Function definition with no function name

Free and bound variables

- In a term λx . M, the scope of x is M
 - x is bound in M
 - Variables that are not bound are free
- Example: (λx . (λy . (x (z y)))) y
 - z is free
 - The last y is free
 - The x and remaining y are bound

Function application

- Application is simply juxtaposition
- A function F that is defined by $(\lambda x . * 3 x)$
 - (λx.*3 x) 4
 - F4

Function of a function

- Body of a function consists of another function
- A function N that is defined by λy . (λx . * y x)
 - It returns another function, i.e., N 3 behaves like F

- Function with two arguments y and x
 - λy. λx.*y x
 - λ y x . * y x
- "N 3 4" is the same as "(N 3) 4"

 $\lambda x y z. M$ is a shorthand for $\lambda x. (\lambda y. (\lambda z. M))$

 $M_1 M_2 M_3$ is a shorthand for $(M_1 M_2) M_3$

(MMM)

λ-term: official definition

- $M := \overline{C} \mid x \mid MM \mid \lambda x . M$
 - c is any constants 1,2,3,... or arithmetic operators +,*.
 - x is any of possible variables
- The grammar is ambiguous for " $\lambda x \cdot x y$ "

• It should be interpreted as "λx . (x y)" not "(λx . x) y"

Unambiguous definition

- " $\lambda x . x y$ " \rightarrow " $\lambda x . (x y)$ " or " $(\lambda x . x) y$ "
- The conventional interpretation can be enforced

```
<term> ::= <atom> | <app> | <fun> <atom> ::= <head-atom> | (<app> ) <<head-atom> ::= x | c | (<fun> ) <math>=  <br/><app> ::= <head-atom> <atom> | <app> <atom> <fun> ::= \lambda x.<term>
```

Reduction or β -reduction

Textual replacement of a formal parameter by the actual parameter

```
• (\lambda x . * 3 x) 4 ---> \beta * 3 4
```

•
$$(\lambda y . y 5) (\lambda x . * 3 x) ---> \beta (\lambda x . * 3 x) 5 ---> \beta * 3 5$$

 A term reaches a form where no further reductions are possible, except

```
• (\lambda x . x x) (\lambda x . x x) \rightarrow \text{reduces to itself}
```

β -reduction

The main reduction rule in the λ -calculus is β -reduction, which is just function application.

$$(\lambda x. M) N \longrightarrow_{\beta} [x \mapsto N] M$$

The notation $[x \mapsto N]M$ means:

$$M$$
, with all free occurrences of x replaced by N .

Restriction: N should not have any free variables which are bound in M.

Example:

$$(\lambda x. (\lambda y. (xy))) (\lambda y. y) \longrightarrow_{\beta} \lambda y. (\lambda y. y) y$$

An expression that cannot be β -reduced any further has been reduced to *normal* form.

Evaluation strategies

We have the β -rule, but if we have a complex expression, where should we apply it first?

$$(\lambda x. \lambda y. yxx) ((\lambda x. x)(\lambda y. z))$$

Two popular strategies:

normal-order: Reduce the outermost "redex" first.

$$[x \mapsto (\lambda x. x)(\lambda y. z)](\lambda y. yxx) \longrightarrow_{\beta} \lambda y. y((\lambda x. x)(\lambda y. z))((\lambda x. x)(\lambda y. z))$$

applicative-order: Arguments to a function evaluated first, from left to right.

$$(\lambda x. \lambda y. yxx)([x \mapsto (\lambda y. z)]x) \longrightarrow_{\beta} (\lambda x. \lambda y. yxx)((\lambda y. z))$$

Exercises

- 1. Translate the following Java expressions into λ -calculus notation:
 - (a) sin(x+3)
 - (b) length(y)+z
- 2. Draw the syntax trees for the following λ -terms:
 - (a) $\lambda xy.x$
 - (b) $\lambda xyz.xyz$
 - (c) $(\lambda x.xx)(\lambda x.xx)$
- Reduce to normal form:
 - (a) $(\lambda x. + x \, 3)4$
 - (b) $(\lambda f x. f(f x)) (\lambda y. * y 2) 5$

$$(\lambda \times y z . + \times z)$$
 (length y)
 $(\lambda y z . + (length y) z)$

$$(\lambda \ y \ z . + (length \ y) \ z) \ (2 \ 3)$$

 $(\lambda \ z . + (length \ 2) \ z) \ 3$
+ (length \ 2) \ 3

- 4. Let T be the λ-term λx.xxx. Perform some β-reductions on TT. What do you observe?
- 5. Let S be the term λxyz.(xz)(yz) and K the term λxy.x. Reduce SKK to normal form. (Hint: This can be messy if you are not careful. Keep the abbreviations S and K around as long as you can and replace them with their corresponding λ-terms only if you need to. It becomes very easy then.)
- Let Z be the λ-term λzx.x(zzx) and let Y be ZZ. By performing a few β-reductions, show that YM will be a fixpoint of M for any term M, i.e., we have YM =_β M(YM).
- Suppose a symbol of the λ-calculus alphabet is always 5mm wide. Write down a pure λ-term (i.e., without constants) with length less than 20cm having a normal form with length at least 10^{10¹⁰} light-years. (A light-year is about 10¹³ kilometers.)