2-2-1 데이터 가공의 이해

Contents

- 1. 데이터 가공 프로세스
- 2. 데이터정제를 위한 기준 및 처리방법
- 3. 데이터 가공
- 4. 데이터 품질평가
- 5. 거래데이터 품질진단 및 절차
- 6. AI데이터 가공 사례

1. 데이터가공 프로세스

1.데이터 수집: 다양한 소스에서 데이터를 수집. 데이터의 종류, 형식, 출처 등을 파악하고, 수집 방법을 결정

2.데이터 정제: 수집한 데이터를 정리하고, 불필요한 정보를 제거. 데이터의 오류를 수정하고, 중복된 데이터를 제거

3.데이터 가공: <mark>정제된 데이터를 분석 목적에 맞게 가공. 데이터를 분류하고, 예측 모델을 구축을 위한 작업</mark>

4.데이터 분석: 가공한 데이터를 분석하여 인사이트를 도출. 통계 분석, 머신러닝 등의 기술을 활용하여 데이터를 분석

5.데이터 시각화: 분석 결과를 시각적으로 표현. 그래프, 차트, 대시보드 등을 활용하여 데이터를 시각화

6.데이터 활용: 분석결과 기반 의사결정, 새로운 정책에 활용

1. 데이터가공 프로세스

데이터 정제 및 가공

- 수집된 데이터로부터 분석에 필요한 데이터를 추출하고 통합
- 이상치, 결측치 등을 처리

데이터 정제 기준

이상치(Outlier) : 모든 데이터가 상식적인 범위 안에 존재하는가

예시 1 : 스포츠 데이터, NBA 자유투 데이터 포스트 시즌 2023-24

NBA Player free-throws Stats 2023-24

3점 슛 평균회수(게임당)

예시 2: 제조업 측정데이터의 재현성 평가

Gage R & R(Repeatability and Reproducibility)

Repeatability(반복성): 반복 측정에서 일관 된 값이 측정되는지 (동일 측정자, 동일기계에 서 반복적 측정)

Reproducibility(재현성): 측정자들이 동일 측정기를 사용하여 얻은 측정된 값들이 일관되 게 나오는지(<mark>다른 측정자(사람, 시점), 동일 기</mark> 계 사용)

데이터 정제 기준

• 3-시그마 규칙

• 1.5 IQR 규칙

Inter Quartile Range =3Q(75%) - 1Q(25%)

이상치로 볼 수 있음

예시 3:이상치 및 오류 데이터

통계치의 왜곡 - Monkey 데이터

F		Model	Equat	:ion	
weight	=	2.7356	+	0.5797	height

상관계수: 0.53

F	Summary of	Fit	
Mean of Response		R-Square	0.2775
Root MSE		Adj R-Sq	0.2374

ID	height	weight
1	55	29
2	45	27
3	35	17
4	39	29
5	53	31
6	41	21
7	51	31
8	35	13
9	57	37
10	57	41
11	45	45
12	47	35
13	35	25
14	49	25
15	43	31
16	51	33
17	31	29
18	53	27
19	47	17
20	51	45

예시 3: 이상치 및 오류 데이터

Monkey 데이터 + Kingkong 한마리

 Model Equation

 weight = - 30.2495 + 1.3078 height

상관계수: 0.94

F	Summary of	Fit	
Mean of Response	35.1429	R-Square	0.8843
Root MSE	9.6461	Adj R-Sq	0.8782

<u> 상관계수 : 0.53</u>

	11019111	11019110
1	55	29
2	45	27
3	35	17
4	39	29
5	53	31
6	41	21
7	51	31
8	35	13
9	57	37
10	57	41
11	45	45
12	47	35
13	35	25
14	49	25
15	43	31
16	51	33
17	31	29
18	53	27
19	47	17
20	51	45
21	130	150

height

weight

데이터 정제 : 이상치 및 오류 데이터

ID	height	weight
1	55	29
2	45	27
3	35	17
4	39	29
5	53	31
6	41	21
7	51	31
8	35	NaN
9	57	37
10	57	41
11	45	45
12	47	NaN
13	35	25
14	49	25
15	43	31
16	51	33
17	31	29
18	53	27
19	47	17
20	51	45
21	130	150

결측치(Missing Value)

- 입력이 누락된 값
- 무시하거나 적절한 값으로 대치

이상치(Outlier)

- · 이상치 발생 원인 파악
- 삭제, 대체, 변환 등을 통해 처리

이상치 및 오류 데이터의 처리방법

예시: 결측치 처리방법 (LOCF 예시)

환자의 혈압데이터 (일별 측정 – <mark>시계열 데이터로</mark> 볼수 있음)

Day	Blood Pressure
Day 1	120
Day 2	125
Day 3	Missing
Day 4	Missing
Day 5	130

Day	Blood Pressure (LOCF)
Day 1	120
Day 2	125
Day 3	125
Day 4	125
Day 5	130

수축기혈압

데이터 유형별 오류 형태

문자열

사람별 거주 도시

ID	Name	City
1	Jay	Washington
2	Susan	washington
3	Lee	NA
4	Michael	Argentina
5	Park	33
6	Max	Londin
7	Jay	Washington

형태 불일치 결측치

유형 불일치

유형 불일치

오타

데이터 중복

범주형

학생별 학점

ID	Name	Grade
1	Jay	D
2	Susan	Α
3	Lee	NA
4	Michael	Α
5	Park	8
6	Max	С
7	Jay	D

결측치

유형 불일치

데이터 중복

수치형

학생별 키

ID	Name	Height
1	Jay	178
2	Susan	170
3	Lee	NA
4	Michael	-10
5	Park	input
6	Max	180
7	Jay	178

결측치

모순된 데이터

유형 불일치

데이터 중복

분석을 위한 데이터 가공

- 모델에 적용하기 위한 데이터 가공
- 결측치 처리, 이상치 처리, 데이터 형식 변환 등 데이터 전처리
- 변수 선택, 차원 축소, 파생변수 생성 등을 통해 추가 가공

관리를 위한 데이터 가공

- 데이터를 저장, 검색, 접근, 백업 및 보관의 효율화
- 데이터의 품질을 안정적으로 유지 및 개선
- 데이터 정규화, 중복 제거, 보안을 위한 접근 제어, 데이터 버전 관리 등

데이터가공 : 분석용 데이터 구축

서울시립과학관 관람객 현황(2017-2023)

서울시립과학관 2017년 개관이래 2023년 9월말 현재까지의 관람객 현황에 대한 데이터로 연도, 과학관명, 관람객 인원 등의 항목을 제공합니다.

% 서울 열린데이터 광장	

	년월	과학관명	관람객 인원
0	2017년 05월	서울시립과학관	31620
1	2017년 06월	서울시립과학관	18827
2	2017년 07월	서울시립과학관	16734
3	2017년 08월	서울시립과학관	24244
4	2017년 09월	서울시립과학관	14189
5	2017년 10월	서울시립과학관	18881
6	2017년 11월	서울시립과학관	17077
7	2017년 12월	서울시립과학관	29013
8	2018년 01월	서울시립과학관	19647
9	2018년 02월	서울시립과학관	12010

- 결측치와 이상치가 존재하는가?
- 존재한다면 처리를 어떻게 할 것인가?
- 데이터를 시각화 해본다면?
- 분기별/연도별 관람객 인원은?

•••

데이터가공: 분석용 데이터 구축

관람객 인원이 수치형 데이터인지 확인 is_numeric_dtype(df['관람객 인원'])

✓ 0.0s

False

2019년 12월	서울시립과학관		14165	
2020년 01월	서울시립과학관		16607	
2020년 02월	서울시립과학관		4676	
2020년 03월	서울시립과학관	휴관		
2020년 04월	서울시립과학관	휴관		
2020년 05월	서울시립과학관		778	
2020년 06월	서울시립과학관	휴관		
2020년 07월	서울시립과학관		755	
2020년 08월	서울시립과학관		3528	
2020년 09월	서울시립과학관	휴관		
2020년 10월	서울시립과학관		1216	
2020년 11월	서울시립과학관		1723	
2020년 12월	서울시립과학관		108	
2021년 01월	서울시립과학관		684	
2021년 02월	서울시립과학관		2277	

정상 관람객수

	년월	과학관명	관람객 인원
34	2020년 03월	서울시립과학관	휴관
35	2020년 04월	서울시립과학관	휴관
37	2020년 06월	서울시립과학관	휴관
40	2020년 09월	서울시립과학관	휴관

서울시립과학관 관람객 현황(2017-2023)

12.10-1-1		J	-,
년월	과학관명	관람객 인원	4
2019년 11월	서울시립과학관	18202	
2019년 12월	서울시립과학관	14165	
2020년 01월	서울시립과학관	16607	
2020년 02월	서울시립과학관	4676	
2020년 03월	서울시립과학관	휴관	
2020년 04월	서울시립과학관	휴관	
2020년 05월	서울시립과학관	778	
2020년 06월	서울시립과학관	휴관	
2020년 07월	서울시립과학관	755	-
2020년 08월	서울시립과학관	3528	
2020년 09월	서울시립과학관	휴관	
2020년 10월	서울시립과학관	1216	
2020년 11월	서울시립과학관	1723	
2020년 12월	서울시립과학관	108	
2021년 01월	서울시립과학관	684	
2021년 02월	서울시립과학관	2277	
2021년 03월	서울시립과학관	2657	
2021년 04월	서울시립과학관	2055	
2021년 05월	서울시립과학관	3571	
2021년 06월	서울시립과학관	3063	

이터로 연도, 과학관명, 관람객 인원 등의 항목을 제공합니다.

- (1) 휴관은 관람객 인원 O으로 처리 혹은
- (2) 휴관 (월)은 제외?

제1급 법정감염병 지정기간 2020년 1월 20일부터 2022년 4월 24일까지

질문1:2020년의 월평균 관람객수는?

Sum(20.1-20.12)/8=3673

Sum(20.1-20.12)/12=2449

질문2: 코로나 기간중 2020년의 월평균 관람객수는?

(2020.2월-2020.12월까지로 산정)

제1급 법정감염병 지정기간 2020년 1/20 -2022년 4/24

1차 통계량 – 직접 얻어진 통계량

분기별 평균 관람객 수

 0 2017Q1 31620 1 2017Q2 19935 2 2017Q3 16715 3 2018Q1 15010 4 2018Q2 20929 5 2018Q3 17774
 2 2017Q3 16715 3 2018Q1 15010 4 2018Q2 20929
3 2018Q1 15010 4 2018Q2 20929
4 2018Q2 20929
5 201803 17774
3 201003 11114
6 2018Q4 16823
7 2019Q1 17502
8 2019Q2 22588
9 2019Q3 17491
10 2019Q4 11816
11 2020Q1 259
12 2020Q2
13 2020Q3 979

2차 통계량(가공통계) – 일정한 <mark>연산을 가하여</mark> 얻어진 통계

- 정형/비정형 데이터
- 특정시기별 구분 (코로나기간/일반기간)
- '휴관'- 숫자가 아닌 데이터 처리 =>
- 분기별 관람객 분석 (<u>파생변수 생성</u>-> 가공데이터 생성)

- 완전성 (completeness) : 데이터가 필요한 <mark>모든 정보를</mark> 갖고 있는지 여부
- ・ 정확성 (Accuracy): 데이터가 실제를 <mark>정확하게</mark> 반영 여부. 결측치, 오류 또는 부정확한 값 여부
- 일관성 (Consistency): 데이터가 <mark>동일한 형식으로</mark> 표현되고 일관된 값으로 저장

- 유효성 (Validity): 데이터가 정확한 <mark>형식과 범위 내</mark>.
- 신뢰성 (Reliability): 데이터 <mark>수집방법의 신뢰성</mark>

- 시간성 (Timeliness): 데이터가 <mark>실시간 정보가</mark> 반영되는지. 업데이트 여부
- 가용성 (Accessibility): 데이터에 쉽게 <mark>접근 가능성</mark>, 사용자가 필요할 때 사용 가능한가

데이터 품질: 유효성 예시 (혈압)

데이터 품질: 정확성 예시 (데이터 오류)

- 데이터 신뢰성 확보
- 데이터 구매-수요자 간 품질 증명
- 품질 관리를 통한 원활한 데이터의 활용

한국데이터거래소 (https://kdx.kr/main) : 민간 데이터거래소 (무료/ 유료)

인기 AI 데이터

업협회

• 공공데이터, 마이데이터의 품질 진단은 데이터수집, 데이터정제, 데이터분석, 품질평가, 피 드백 및 개선과 지속적인 관리 과정을 통해 가능함

• 마이데이터는 금융거래소와 한국데이터거래소

금융데이터거래소: https://www.findatamall.or.kr/

한국데이터거래소 (https://kdx.kr/main): 민간 데이터거래소

• 공공데이터 – 지역 공공데이터 포탈

• 금융관련 AI플랫폼

마이데이터 사업: 종합금융 플랫폼

마이데이터 종합포털: https://www.mydatacenter.or.kr:3441/myd/mydsvc/sub2.do

데이터와 환경, ESG: Environmental, Social, Governance)

"데이터센터"

클라우드, 온라인 게임, VOD, 소셜네트워크(SNS)로 주고받는 메시지와 자료 등 각종 온라인 데이터를 저장하고 전송하는 시설

• 비정형 데이터(텍스트, 이미지, 오디오 등)를 정형 데이터로 변환하는 작업

(1) 이미지(영상)데이터 분석을 활용한 위험감지 경보 시스템 (산업체)

시간별 모니터링 데이터

로그	로그창									
	strTime	nFPos	nld×	nTotal	nLeft	пТор	nRight	nBottom	nLabel	strClass
7	00:00:02	60	2	2	36	158	389	274	1	Smoke
8	00:00:02	65	1	4	285	180	354	311	0	Fire
9	00:00:02	65	2	4	691	265	878	501	0	Fire
10	00:00:02	65	3	4	33	160	274	269	1	Smoke
11	00:00:02	65	4	4	293	183	352	251	0	Fire
12	00:00:02	70	1	5	715	157	909	434	0	Fire

(2) AI 활용 데이터 가공 (임베딩을 포함한 딥러닝 기술 활용) 사례

2. AI 데이터 분석단계

(2) AI 활용 데이터 가공 (임베딩을 포함한 딥러닝 기술 활용) 사례

- 대장암(정상/전이단계/비정상) 분류

2. AI 데이터 분석단계

(3) AI 활용 데이터 가공 – 농산물 원산지 분류

주성분분석: 특징1, 특징2, 특징3

인접보전기법: 특징1, 특징2, 특징3

Ref: Talanta, 144, 960-968 (2015)

• 오디오 데이터 : Analog Digital Conversion을 거쳐 이산 벡터를 생성-> 딥러닝 모델 적용

https://hyunlee103.tistory.com/54

감사합니다

