Business Scenario:

A nationwide survey of hospital costs conducted by the US Agency for Healthcare consists of hospital records of inpatient samples. The given data is restricted to the city of Wisconsin and relates to patients in the age group 0-17 years. The agency wants to analyze the data to research on the healthcare costs and their utilization.

Here is a detailed description of the given dataset:

- AGE: Age of the patient discharged
- FEMALE: Binary variable that indicates if the patient is female
- LOS: Length of stay, in days
- RACE: Race of the patient (specified numerically)
- TOTCHG: Hospital discharge costs APRDRG: All Patient Refined Diagnosis Related Groups

Importing Dataset
library(readxl)
hospdata = read_excel("hospitalcosts.xlsx",sheet="HospitalCosts")
View(hospdata)

*	AGE ‡	FEMALE \$	LOS ‡	RACE ‡	тотснб ‡	APRDRG ‡
1	17	1	2	1	2660	560
2	17	0	2	1	1689	753
3	17	1	7	1	20060	930
4	17	1	1	1	736	758
5	17	1	1	1	1194	754
6	17	0	0	1	3305	347
7	17	1	4	1	2205	754
8	16	1	2	1	1167	754
9	16	1	1	1	532	753
10	17	1	2	1	1363	758
11	17	1	2	1	1245	758
12	15	0	2	1	1656	753
12	15	1	2	1	1270	751

Summary(hospdata)

Output:

Output:	
AGE	FEMALE
Min. : 0.000	Min. :0.000
1st Qu.: 0.000	1st Qu.:0.000
Median : 0.000	Median :1.000
Mean : 5.086	Mean :0.512
3rd Qu.:13.000	3rd Qu.:1.000
Max. :17.000	
LOS	RACE
Min. : 0.000	Min. :1.000
1st Qu.: 2.000	
Median : 2.000	
Mean : 2.828	
	3rd Qu.:1.000
Max. :41.000	•
	NA's :1
TOTCHG	APRDRG
Min. : 532	Min. : 21.0
1st Qu.: 1216	
Median : 1536	-
Mean : 2774	
3rd Qu.: 2530	
Max. :48388	
1	13321

Goal 1.

To record the patient statistics, the agency wants to find the age category of people who frequent the hospital and has the maximum expenditure.

#To find the age category of people who frequent the hospital

Code:

attach(hospdata)

hist(AGE)

Output:

Histogram of AGE

#To see the value for age group 0-1

table(AGE)

AGE																	
0	1	2	3	4	5	6	7	8	9	10	11	12	1 3	14	1 5	16	17
307	10	1	3	2	2	2	3	2	2	4	8	1 5	18	25	29	29	38

So the age category of people who frequent the hospital is: 0-1 years (307)

#To find the age category of people who has maximum expenditure

Code:

tapply(TOTCHG,AGE,sum)

Output:

0	1	2	3	4	5	6	7
678118	37744	7298	30550	15992	18507	17928	10087
8	9	10	11	12	13	14	15
4741	21147	24469	14250	54912	31135	64643	111747
16	17						
69149	174777						

Analysis:

So the maximum expenditure is for the age group 0-1: 678118

Goal 2.

In order of severity of the diagnosis and treatments and to find out the expensive treatments, the agency wants to find the diagnosis related group that has maximum hospitalization and expenditure.

Code:

summary(as.factor(APRDRG))

output:

	, 50	mmai) (us	ritud		, 11 ILE	,,,	<i>'</i>																			
ı	21	23	49	50	51	53	54	57	58	92	97	114	115	137	138	139	141	143	204	206	225	249	254	308	313	317	344
ı	1	1	1	1	1	10	1	2	1	1	1	1	2	1	4	5	1	1	1	1	2	6	1	1	1	1	2
ı	347	420	421	422	560	561	566	580	581	602	614	626	633	634	636	639	640	710	720	723	740	750	751	753	754	755	756
ı	3	2	1	3	2	1	1	1	3	1	3	6	4	2	3	4	267	1	1	2	1	1	14	36	37	13	2
ı	758	760	776	811	812	863	911	930	952																		
	20	2	1	2	3	1	1	2	1																		

#to get the diagnostic realted cost

Code:

tapply(TOTCHG,as.factor(APRDRG),sum)

Output:

21	23	49	50	51	53	54	57	58	92	97	114	115	137	138
10002	14174	20195	3908	3023	82271	851	14509	2117	12024	9530	10562	25832	15129	13622
139	141	143	204	206	225	249	254	308	313	317	344	347	420	421
17766	2860	1393	8439	9230	25649	16642	615	10585	8159	17524	14802	12597	6357	26356
422	560	561	566	580	581	602	614	626	633	634	636	639	640	710
5177	4877	2296	2129	2825	7453	29188	27531	23289	17591	9952	23224	12612	437978	8223
720	723	740	750	751	753	754	755	756	758	760	776	811	812	863
14243	5289	11125	1753	21666	79542	59150	11168	1494	34953	8273	1193	3838	9524	13040
911	930	952												
48388	26654	4833												

To get maximum cost

which.max(tapply(TOTCHG,as.factor(APRDRG),sum))

640

44

```
max(tapply(TOTCHG,as.factor(APRDRG),sum))
```

[1] 437978

Analysis:

So here 640 diag. related group has max cost: 437978

Goal 3.

To make sure that there is no malpractice, the agency needs to analyze if the race of the patient is related to the hospitalization costs.

#h0: the race of patient is related to the hospitalization cost

#ha: No relation between race and cost

Code:

```
summary(as.factor(RACE))
1 2 3 4 5 6 NA's
484 6 1 3 3 2 1
```

hspdt=na.omit(hospdata) summary(as.factor(hspdt\$RACE))

```
1 2 3 4 5 6
484 6 1 3 3 2
```

#Applying ANNOVA

Code:

```
anv<- aov(TOTCHG~RACE,data=hspdt)
summary(anv)</pre>
```

Analysis:

- here the p-value is .68(high), so we can reject the null hypothesis
- So we conclude there is no relation between race of the patient and the hospital cost

Goal 4.

To properly utilize the costs, the agency has to analyze the severity of the hospital costs by age and gender for proper allocation of resources.

Code:

```
#Applying regression modeling

md1<- Im(formula = TOTCHG~AGE+FEMALE, data = hspdt)
summary(md1)
```

Output:

```
lm(formula = TOTCHG ~ AGE + FEMALE, data = hspdt)
Residuals:
                         3Q
           1Q Median
  Min
 -3403 -1444
                            44950
                -873
                       -156
Coefficients:
            Estimate Std. Error t value
(Intercept)
                         261.42
             2719.45
                                10.403
               86.04
                         25.53
                                 3.371
AGE
FEMALE
             -744.21
                         354.67 -2.098
            Pr(>|t|)
            < 2e-16 ***
(Intercept)
            0.000808 ***
FEMALE
            0.036382 *
Signif. codes:
  0 '***' 0.001 '**' 0.01 '*' 0.05
  '.' 0.1 '
Residual standard error: 3849 on 496 degrees of freedom
Multiple R-squared: 0.02585,
                              Adjusted R-squared: 0.02192
F-statistic: 6.581 on 2 and 496 DF. p-value: 0.001511
```

Analysis:

- Since the p-value for age is lesser than 0.05 and has 3*, it has most statistical significance
- Also gender has less p-value.
- So we can conclude that the model is statistically significance

Goal 5.

Since the length of stay is the crucial factor for inpatients, the agency wants to find if the length of stay can be predicted from age, gender, and race.

Code:

```
md2<-lm(formula=LOS~AGE+FEMALE+RACE, data = hspdt) summary(md2)
```

Output:

```
Call:
lm(formula = LOS ~ AGE + FEMALE + RACE, data = hspdt)
Residuals:
  Min
           1Q Median
                         3Q
                               Max
 -3.22 -1.22 -0.85
                       0.15
                             37.78
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                  7.487 3.25e-13 ***
                        0.39318
(Intercept) 2.94377
AGE
            -0.03960
                        0.02231
                                 -1.775
                                          0.0766 .
FEMALE
            0.37011
                        0.31024
                                  1.193
                                          0.2334
RACE
            -0.09408
                        0.29312
                                 -0.321
                                          0.7484
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.363 on 495 degrees of freedom
Multiple R-squared: 0.007898, Adjusted R-squared:
                                                     0.001886
F-statistic: 1.314 on 3 and 495 DF, p-value: 0.2692
```

Analysis:

- Here we can see the p-value for age, gender and race is higher, so it is statistically insignificant
- Hence age, gender and race can't be used to predict length of stay.

Goal 6.

To perform a complete analysis, the agency wants to find the variable that mainly affects the hospital costs.

Code:

```
md3<- Im(formula=TOTCHG~ ., data = hspdt)
summary(md3)
```

Output:

```
Call:
lm(formula = TOTCHG \sim ., data = hspdt)
Residuals:
   Min
           1Q Median
                         30
                               Max
                        122
 -6377
         -700
              -174
                             43378
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                 10.280 < 2e-16 ***
(Intercept) 5218.6769
                        507.6475
                                   7.710 7.02e-14 ***
             134.6949
                         17.4711
AGE
            -390.6924
                        247.7390
                                            0.115
FEMALE
                                 -1.577
LOS
             743.1521
                        34.9225
                                  21.280
                                          < 2e-16 ***
            -212.4291
                        227.9326 -0.932
                                            0.352
RACE
APRDRG
              -7.7909
                          0.6816 -11.430 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2613 on 493 degrees of freedom
Multiple R-squared: 0.5536,
                               Adjusted R-squared: 0.5491
F-statistic: 122.3 on 5 and 493 DF, p-value: < 2.2e-16
```

Analysis:

- Here we can see Age, LOS and APRDRG have 3 stars, so they are the once with statistical significance.
- we can see that age and length of stay affect the total hospital cost.