

CS310 Natural Language Processing 自然语言处理 Lecture 02 - Word Vectors

Instructor: Yang Xu

主讲人: 徐炀

xuyang@sustech.edu.cn

Content

- Motivation
- Documents and Counts-based Method
- Neural Network-based Method -- word2vec
- Evaluation and Applications

Recap: Bag-of-Words Neural Networks

Task: News text classification

X: ["*Here*", "is", "an", "example"]

$$= \begin{bmatrix} P(\mathsf{World}|X) \\ P(\mathsf{Sports}|X) \\ P(\mathsf{Business}|X) \\ P(\mathsf{Sci/Tec}|X) \end{bmatrix}$$

Naïve method: one-hot vectors

- Words as discrete symbols
 ⇔ localist representations
- One-hot vectors

Vocabulary (10k) =
$$\begin{bmatrix} a \\ about \\ all \\ \vdots \\ zoo \end{bmatrix}$$

Apple

[00000000**1**00000000...0]

CS310 NLP

Orange [0000000000001000...0]

I would like some apple juice

I would like some orange _____

Distance between any pair of words is constant:

Euclidean distance =
$$\sqrt[2]{(1-0)^2+(1-0)^2}$$

Cosine distance = 0

One-hot vector is not helpful

Ideally ⇒ real-valued word vectors

	Man	Woman	King	Queen	Apple	Orange
Gender	-1	1	-0.98	0.97	0.00	-0.01
Royal	0.01	0.02	0.93	0.98	-0.01	0.00
Age	0.03	0.02	0.72	0.68	0.03	0.02
Food	0.00	0.00	0.01	0.02	0.95	0.97

$$e_{Man} = \begin{bmatrix} -1\\0.01\\0.03\\0.0 \end{bmatrix} \qquad e_{Woman} = \begin{bmatrix} 1\\0.02\\0.02\\0.0 \end{bmatrix} \qquad e_{Man} - e_{Woman} = \begin{bmatrix} -2\\-0.01\\0.01\\0.00 \end{bmatrix}$$

$$e_{Man} - e_{Woman} = \begin{bmatrix} -2\\ -0.01\\ 0.01\\ 0.00 \end{bmatrix}$$

$$e_{King} - e_{Queen} = \begin{bmatrix} -1.95 \\ -0.05 \\ 0.04 \\ -0.01 \end{bmatrix}$$

With real-valued dense vectors, word similarity can be computed more accurately

Content

- Motivation
- Documents and Counts-based Method
 - LSA and TF-IDF
- Neural Network-based Method -- word2vec
- Evaluation and Applications

Documents and Word Counts

- Goal: Derive word vectors from a collection of documents
- without annotation -- unsupervised/self-supervised

Notations:

- x is the collection of C documents
- x_c is the cth document in the corpus
- ℓ_c is the length of x_c (in # of tokens)
- N is the total number of tokens (words), $N = \sum_{c=1}^{C} \ell_c$

SP 2025 CS310 NLP 7

Build Word-Document Matrix (term-document matrix)[1]

- Build matrix $\mathbf{A} \in \mathbb{R}^{V \times C}$, which contains the count of each word in each document
- Example:

 x_1 :学而时习之

x2:学而不思则罔

x3: 思而不学则殆

Entry $\mathbf{A}_{v,c} = \operatorname{count}_{x_c}(v)$, count of word v in the cth document

		x_1	x_2	x_3			
	学	1	1	1			
	而	1	1	1			
	不	0	1	1			
	思	0	1	1			
$V \prec$	则	0	1	1			
	时	1	0	0			
	习	1	0	0			
	之	1	0	0			
	图	0	1	0			
	殆	0	0	1			

[1] https://en.wikipedia.org/wiki/Term-document_matrix

Q: Can we directly use this matrix?

Example

• 《论语》前十篇内容,8664字,267章

C = 267

$$v(\mathcal{F}) = [2., 2., 1., 1., 2., 1., 2., \cdots, 0., 1.]$$

$$v(\Box) = [1., 1., 1., 1., 1., 2., 1., \cdots, 0., 1.]$$

$$v(\rightleftharpoons) = [1., 0., 0., 0., 0., 1., 2., 1., \cdots, 0., 0.]$$

Most of them are same numbers. Are they really necessary?

V = 8664

SP 2025 CS310 NLP 9

Q: How do we interpret the matrix?

- What is the expected occurrence of word v in document c?
- Under a simple assumption, the chance of word v to occur at any position is $\frac{\operatorname{count}_x(v)}{N}$, (where $\operatorname{count}_x(v)$ is the count of v over all documents)
- So the expected occurrence of v in a document of length ℓ_c is $\frac{\operatorname{count}_x(v)}{N} \cdot \ell_c$
- Consider the **ratio** of *observed* count of v in document c, $\operatorname{count}_{x_c}(v)$, to the expected count $\frac{\operatorname{count}_{x}(v)}{N} \cdot \ell_c$

Intuition of surprise in word

	x_1	x_2	x_3
学	1	1	1
而	1	1	1
不	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

$$count_{x}(学) = 1 + 1 + 1 = 3$$

Expected count of 学 in
$$x_1$$
 is $\frac{\operatorname{count}_x(Ÿ)}{N} \cdot \ell_1 = \frac{3}{17} \cdot 5 \approx 0.88$

The observed count of 学 in x_1 is $count_{x_1}$ (学) = 1

The **surprise** of seeing 学 in x_1 is:

$$\log \frac{\text{observed}}{\text{expected}} = \log \frac{\text{count}_{x_1}(\cancel{>})}{\frac{\text{count}_{x}(\cancel{>})}{N} \cdot \ell_1} \approx \log \frac{1}{0.88} \approx 0.125$$

Intuition of surprise in word

	x_1	x_2	x_3
学而	1	1	1
而	1	1	1
不	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习之	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

$$count_x(\supset) = 1 + 0 + 0 = 1$$

Expected count of \Im in x_1 is $\frac{\operatorname{count}_x(\Im)}{N} \cdot \ell_1 = \frac{1}{17} \cdot 5 \approx 0.29$

The observed count of \Im in x_1 is $\operatorname{count}_{x_1}(\Im) = 1$

The **surprise** of seeing \Im in x_1 is:

$$\log \frac{\text{observed}}{\text{expected}} = \log \frac{\text{count}_{x_1}(\Xi)}{\frac{\text{count}_{x}(\Xi)}{N} \cdot \ell_1} \approx \log \frac{1}{0.29} \approx 1.223 \quad \text{> surprise of } \Xi$$

Pointwise Mutual Information

• From matrix $\mathbf{A} \in \mathbb{R}^{V \times C}$, derive positive **pointwise mutual information**

$$[\mathbf{A}]_{v,c} = \left[\log \frac{\operatorname{count}_{x_c}(v)}{\frac{\operatorname{count}_{x}(v)}{N} \cdot \ell_c}\right]_{+} = \left[\log \frac{N \cdot \operatorname{count}_{x_c}(v)}{\operatorname{count}_{x}(v) \cdot \ell_c}\right]_{+} \quad \text{where } [x]_{+} = \max(0, x)$$

More examples:

$$[\mathbf{A}]_{\stackrel{\text{2}}{\cancel{2}},2} = \log \frac{17 \cdot 1}{3 \cdot 6} \approx -0.057 \rightarrow 0 \quad \text{rounded to 0 because of max()}$$

$$[\mathbf{A}]_{\mathbb{R},2} = \log \frac{17 \cdot 1}{2 \cdot 6} \approx 0.348$$

SP 2025 CS310 NLP

Meaning of PMI

Random variable **A** and **B**

Example:

$$\log \frac{\operatorname{count}_{x_1}(\ge)}{\frac{\operatorname{count}_{x}(\ge)}{N} \cdot \ell_1} \approx \log \frac{1}{0.29} \approx 1.223$$

is high, which means we learn a lot about the global meaning of " \ge " by reading x_1

Mutual Information (MI):

The amount of information each r.v. offers about

about A

$$[\mathbf{A}]_{v,c} = \begin{bmatrix} \log \frac{\operatorname{count}_{x_c}(v)}{\operatorname{count}_{x}(v)} & \log \frac{\operatorname{count}_{x_c}(v)}{\operatorname{count}_{x}(v)} \\ N \end{bmatrix} + \begin{bmatrix} \operatorname{count}_{x_c}(v) \\ \operatorname{count}_{x_c}(v) \\ N \end{bmatrix} + \begin{bmatrix} \operatorname{count}_{x_c}($$

How much do we know about the global meaning of v by knowing about its local meaning in document c

Pointwise Mutual Information

$$PMI = [\mathbf{A}]_{v,c} = \left[\log \frac{\operatorname{count}_{x_c}(v)}{\frac{\operatorname{count}_{x}(v)}{N} \cdot \ell_c} \right]_{\perp}$$

	x_1	x_2	x_3
学	1	1	1
而	1	1	1
不思	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

X1:学而时习之

X2:学而不思则周

x3: 思而不学则殆

PMIs highlight the most informative words

	x_1	x_2	x_3
学	0	0	0
而	0	0	0
不	0	0	0
思	0	0	0
则	0	0	0
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

Properties of PMI

- If a word v has nearly same frequency in every document, then its row $[\mathbf{A}]_{v,*}$ will be nearly all zeros
- If a word v only occurs in one document c, then its PMI will be large and positive
- Thus, PMI is sensitive to rare words; usually need to smooth the frequencies by filtering rare words

Reflection

- Can we directly use word-document matrix $\mathbf{A} \in \mathbb{R}^{V \times C}$ (or smoothed PMI [A]) to represent word meanings?
- For example, can we use the row vectors as input features for a neural text classifier?
- What are the advantages/disadvantages?

Improvement: Latent Semantic Analysis

(Deerwester et al., 1990)

 LSA seeks to find a more compact (low rank) representation of word-document matrix A

$$\mathbf{A} \approx \widehat{\mathbf{A}} = \mathbf{M} \times \operatorname{diag}(\mathbf{s}) \times \mathbf{C}^{\mathsf{T}}$$

$$V \times C \qquad V \times d \qquad d \times d \qquad d \times C$$

- Can be solved by applying singular value decomposition to \mathbf{A} , and then truncating to d dimensions $(\widehat{\mathbf{A}})$
- M contains left singular vectors of A
- C contains right singular vectors of A
- s are singular values of A

SVD and Truncated SVD

SVD:

 $V \times V$

 $V \times C$

 $C \times C$

 $\mathbf{C}^{ op}$

- **M** and **C** are unitary, i.e., $MM^T = I$ and $CC^T = I$
- diag(s) only has non-zero elements at diagonal
- \mathbf{M} are eigenvectors of $\mathbf{A}\mathbf{A}^{\mathsf{T}}$
- \mathbf{C} are eigenvectors of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$
- s^2 are eigenvalues

SVD truncated at *d* dimensions:

=

 $d \times C$

- Truncated: keeping only top d singular values in s
- corresponding d columns in M and C

Truncated SVD => word vectors

$$\mathbf{A} \approx \widehat{\mathbf{A}} = \mathbf{M} \times \operatorname{diag}(\mathbf{s}) \times \mathbf{C}^{\mathsf{T}}$$

- vth row in M is the embedding vector for word v
- cth column in C is the embedding vector for document c
- M contains useful word vectors ("embeddings") of d dimensions

 e_c

C contains document vectors

LSA Example d = 2

- Word vectors M plotted
- Note that some words are in the same spot. Why?

A	$\approx \widehat{\mathbf{A}}$
=	$\mathbf{M} \times \operatorname{diag}(\mathbf{s}) \times \mathbf{C}^{T}$

	x_1	x_2	x_3
学而	1	1	1
而	1	1	1
不思	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

 $\mathbf{A} =$

LSA Example d = 2

- Document vectors C plotted
- Note that documents x_2 and x_3 are in the same spot. Why?

	x_1	x_2	x_3
学而	1	1	1
而	1	1	1
不	0	1	1
思	0	1	1
则	0	1	1
时	1	0	0
习	1	0	0
之	1	0	0
罔	0	1	0
殆	0	0	1

LSA Summarized

- It creates a mapping of words and documents into the same lowdimensional space.
- Bag-of-words assumption (Salton et al., 1975):
 - A document is nothing more than the distribution of words it contains.
- Distributional hypothesis (Harris, 1954; J.R. Firth, 1957):
 - Words' meanings are nothing more than the distribution of *contexts* (here, documents) they occur in.
 - Words that occur in similar contexts have similar meanings.
- Word-document matrix A is sparse and noisy; LSA "fills in" the zeroes and tries to eliminate the noise.
- It finds the best rank-d approximation to A.

Content

- Motivation
- Documents and Counts-based Method
 - LSA and TF-IDF
- Neural Network-based Method -- word2vec
- Evaluation and Applications

TF-IDF

 Background: Find the most relevant document among a collection of documents, using a query

tf: term frequency

idf: inverse document frequency

How to match a document a query?

- Compute a term weight for each document term
- **tf**: term frequency
- idf: inverse document frequency
- tf-idf riangleq tf imes idf (product of the two) $tf_{t,d} = \begin{cases} tf_{t,d} = tf_{t,d} \end{cases}$

term t; document d

 $tf_{t,d} = \begin{cases} 1 + \log_{10} count(t,d) & \text{if } count(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$

- **tf**: words that occur more often in a document are likely to be informative about the document's content
- Use the log₁₀ of word frequency count rather than raw count
- Why? A word appearing 100 times doesn't make it 100 times more likely

$$tf_{t,d} = \begin{cases} 1 + \log_{10} count(t,d) & \text{if } count(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

term *t*; document *d*

term occurs 0 times in document: tf = 0 term occurs 1 times in document: tf = 1 term occurs 10 times in document: tf = 2, ...

- document frequency df_t of a term t is the number of documents it occurs in
- Terms that occur in only a few documents are useful for discriminating those documents from the rest of the collection;
- terms that occur across the entire collection aren't as helpful (the, a, an, ...)
- inverse document frequency or idf is defined as:

$$\mathrm{idf}_t = \log_{10} \frac{N}{\mathrm{df}_t}$$

N: total number of documents The fewer documents in which toccurs, the higher idf_t

Inverse document frequency example

Some idf values for some words in the corpus of Shakespeare plays

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

Extremely informative words that occur in only one play like *Romeo*

good or sweet tare completely nondiscriminative since they occur in all 37 plays

Scoring with tf-idf

• We can score document d by the cosine of its vector \vec{d} with the query vector \vec{q} :

$$score(q, d) = cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot d}{|\vec{q}| \cdot |\vec{d}|}$$

• in which \vec{q} and \vec{d} are vectors of query length n, whose values are the **tf-idf** values (normalized):

$$\vec{q} = \frac{[\text{tfidf}(t_1, q), \dots, \text{tfidf}(t_n, q)]}{\sqrt{\sum_{t \in q} \text{tfidf}^2(t, q)}}$$

$$\vec{d} = \frac{[\text{tfidf}(t_1, d), \dots, \text{tfidf}(t_n, d)]}{\sqrt{\sum_{t \in d} \text{tfidf}^2(t, d)}}$$

$$tfidf(t_i, q)$$

$$t_i \in q \frac{\text{tfidf}(t_i, q)}{\sqrt{\sum_{t \in d} \text{tfidf}^2(t, q)}} \cdot \frac{\text{tfidf}(t_i, d)}{\sqrt{\sum_{t \in d} \text{tfidf}^2(t, q)}}$$

Tf-idf scoring example

A collection of 4 nano documents

Query: sweet love

Doc 1: Sweet sweet nurse! Love?

Doc 2: Sweet sorrow

Doc 3: How sweet is love?

Doc 4: Nurse!

Query vector $\vec{q} = (0.383, 0.924)$

Query							
word	cnt	tf	df	idf	tf-idf	$\mathbf{n'lized} = \text{tf-idf/} q $	
sweet	1	1	3	0.125	0.125	0.383	
nurse	0	0	2	0.301	0	0	
love	1	1	2	0.301	0.301	0.924	
how	0	0	1	0.602	0	0	
sorrow	0	0	1	0.602	0	0	
is	0	0	1	0.602	0	0	
$ q = \sqrt{.125^2 + .301^2} = .326$							

Tf-idf scoring example Query vector $\vec{q} = (0.383,0.924)$

			Docu	ment 1	
word	cnt	tf		n'lized	\times q
sweet	2	1.301	0.163	(0.357)	0.137
nurse	1	1.000	0.301	0.661	0
love	1	1.000	0.301	(0.661)	0.610
how	0	0	0	0	0
sorrow	0	0	0	0	0
is	0	0	0	0	0
$ d_1 = \sqrt{.163^2 + .301^2 + .301^2} = .456$					

word cnt tf tf-idf n'lized
$$\times q$$

sweet 1 1.000 0.125 (0.203) 0.0779

nurse 0 0 0 0 0 0

love 0 0 0 0 0

how 0 0 0 0 0

sorrow 1 1.000 0.602 0.979 0

is 0 0 0 0 0

 $|d_2| = \sqrt{.125^2 + .602^2} = .615$

$$\vec{d}_1 = (0.357, 0.661)$$

$$\operatorname{score}(\overrightarrow{q},\overrightarrow{d}_1) = 0.747$$

$$\vec{\boldsymbol{d}}_2 = (0.203)$$

$$\operatorname{score}(\overrightarrow{q}, \overrightarrow{d}_1) = 0.0779$$

Therefore, d_1 is more relevant

Query: sweet love

Doc 1: Sweet sweet nurse! Love?

Doc 2: Sweet sorrow

Table of Content

- Motivation
- Documents and Counts-based Method
- Neural Network-based Method -- word2vec
- Evaluation and Applications

Motivation: Distributional semantics

- Distributional semantics: A word's meaning is given by the words that frequently appear close-by
- "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
- When a word w appears in a text, its local context is the set of words that co-occur within a fixed-size window

```
...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...
```

The meaning of "banking" is represented by these context words

SP 2025 CS310 NLP 33

In What Form of Representation?

 Goal: Obtain a dense vector for each word, so that word sense similarity can be computed via vector distance, such as dot product

$$e_{apple} = \begin{bmatrix} 0.00 \\ -0.01 \\ 0.03 \\ 0.95 \\ \dots \\ 0.21 \end{bmatrix} \quad e_{orange} = \begin{bmatrix} -0.01 \\ 0.00 \\ 0.02 \\ 0.97 \\ \dots \\ 0.22 \end{bmatrix} \quad \text{Common dimension size:} \quad 100\text{-d,} 200\text{-d,} 300\text{-d,} \dots$$

These dense word vectors are also called word embeddings (嵌入) (which implies the idea of placing or mapping words into some continuous vector space)

Intuition: One-hot vs. Distributed repr.

One-hot representation

Distributed representation

The individual dimensions of a word embedding do not have concrete "meanings"

$$E_{orange} = \begin{bmatrix} -0.01\\ 0.00\\ 0.02\\ 0.97\\ ...\\ 0.22 \end{bmatrix}$$

For instance, e_{orange} It does NOT mean $1^{\rm st}$ dimension -0.01 is for "animalness" $4^{\rm th}$ dimension 0.97 is for "fruitness" They are only meaningful when compared to other words

Images source: https://www.oreilly.com/ideas/how-neural-networks-learn-distributed-representations

Question: How to obtain word embeddings?

- An effective and efficient method: Word2vec (Mikolov et al. 2013 a&b)
- Basic Idea:
- Given a corpus as a list of words
- Go through each position t in the text, which has a center word c and context
 ("outside") words o
- Use the similarity of word vectors between c and o to compute the probability of o given c, i.e., conditional probability P(o|c) (or vice versa)
- Maximize this probability by keep adjusting the word vectors

使用中心词c与上下文词o的词向量相似度来计算条件概率(I)(或者反过来)

Two architectures of Word2vec

Compute probability $P(w_{t+j}|w_t)$, for $j \in \{-2, -1, 1, 2\}$ when window size is 2

SP 2025 CS310 NLP 37

Use A Moving Window $t \leftarrow t + 1$

Skip-gram: Compute probability $P(w_{t+j}|w_t)$, for $j \in \{-2, -1, 1, 2\}$ when window size is 2

Continuous Bag-of-Words (CBOW)

Compute only one probability at position t: $P(w_t|w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2})$, for window size 2

Word2vec Objective Function (Skip-gram as example)

- Given a data set of T tokens, for each position t = 1, ..., T, we compute the conditional probability $P(w_{t+j}|w_t)$, for $j \in \{-m, ..., m\}$, with window size m
- Then the likelihood of data is:

$$\mathcal{L}(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j}|w_t; \theta)$$

 θ denotes model parameters, that is, all the word **embeddings** to be learned!

• The objective function (cost/loss) is the negative log-likelihood

$$J(\theta) = -\frac{1}{T}\log \mathcal{L}(\theta) = -\frac{1}{T}\sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j}|w_t;\theta)$$

Question: How to compute $P(w_{t+j}|w_t;\theta)$?

- **Solution**: Use *two* vectors per word *w*
- When w is a center word, its vector is v_w
- When w is a context (outside) word, its vector is u_w
- Then the conditional probability of context word o given center word c can be computed using softmax function:

$$P(o|c) = \frac{\exp(u_o^{\mathsf{T}} v_c)}{\sum_{w \in V} \exp(u_w^{\mathsf{T}} v_c)}$$

Dot product measures the similarity between o and c

Normalized over the entire vocabulary

Compute probabilities using softmax

$$P(turning|into) = \frac{\exp(u_{turning}^{\mathsf{T}} v_{into})}{\sum_{w \in V} \exp(u_{w}^{\mathsf{T}} v_{into})} \qquad P(crises|into) = \frac{\exp(u_{crises}^{\mathsf{T}} v_{into})}{\sum_{w \in V} \exp(u_{w}^{\mathsf{T}} v_{into})}$$

Example from: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1224/

Number of Parameters

- Because *two* vectors are used per word w: v_w and u_w
- => Two parameter tables, or, embedding matrices

Usually we keep the target table **V** as the trained embeddings

Table V contains all parameters for center vectors

Table **U** contains all parameters for **context** vectors

Problem with Softmax

center co

context

' would

like

some

orange

juice

with

some

white chocolate

chips

$$P(juice|orange) = \frac{\exp(u_{juice}^{\mathsf{T}} v_{orange})}{\sum_{w \in V} \exp(u_{w}^{\mathsf{T}} v_{orange})}$$

For a vocabulary of 10,000 words

Needs 10,000 times of dot product to compute the denominator

To Overcome Softmax

Solutions

1. Hierarchical softmax

Make binary predictions instead:

$$P\left(o < \frac{|V|}{2} \middle| c\right)$$

The probability of word o belongs to the 1st half of vocabulary

For vocabulary size |V| = 10k

Multiple steps of binary predictions until word *o* is found

Then
$$P(o|c) = P(o < 5k|c)$$
.
 $P(o < 2.5k|c) \cdot P(o < 1.25k|c) ...$

product of probabilities along the path

Time complexity $O(\log(|V|))$

Reference: http://ruder.io/word-embeddings-softmax/

Solution 2: Negative sampling intuition

Intuition: Given a center word, predict if a randomly sampled word is its context or not (within a fixed window)

Center	Outside Word	Label	
orange	juice	1	→
orange	king	0	
orange	the	0	
orange	of	0	
orange	book	0	
	Υ	Δ	•
	χ	ν	

Step 1: Pick a context word within the window

Positive sample

Step 2: Randomly pick *k* words from the entire vocabulary that do not appear in the window

Negative samples

SP 2025 CS310 NLP 46

Negative sampling intuition

С	0	\mathcal{Y}
Center	Outside	Context or not
orange	juice	1
orange	king	0
orange	the	0
orange	of	0
orange	book	0

Instead of using softmax:
$$P(o|c) = \frac{\exp(u_o \cdot v_c)}{\sum_{j=1...|V|} \exp(u_j \cdot v_c)} = \hat{y}_t$$

Use **logistic regression**:
$$P(y = 1 | c, o) = \sigma(u_o \cdot v_c)$$

k+1 times of logistic regression

Negative Sampling: Objective Function (loss)

• For token at position t, maximize the log-likelihood:

Word o is the positive sample

$$J_t(\theta) = \log \sigma(u_o^{\mathsf{T}} v_c) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P(w)} [\log \sigma(-u_{w_i}^{\mathsf{T}} v_c)]$$

The k words w_i (i = 1 ... k) are the negative samples

• Sigmoid function $\sigma(u_o^{\mathsf{T}} v_c)$ outputs the probability of o in the context window of c

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
 a monotone increasing function

SP 2025

Maximizing this term will push the dot product $u_o^\mathsf{T} v_c$ to larger values, i.e., making o and c closer in semantic space

Maximizing this term will push the dot product $u_{w_i}^{\mathsf{T}} v_c$ to **smaller** values, i.e., making w_i and c farther apart in semantic space

Loss ⇒ negation of objective

$$\mathcal{L}(\theta) = -J_t(\theta) = -\left[\log \sigma(u_o^{\mathsf{T}} v_c) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P(w)} \left[\log \sigma(-u_{w_i}^{\mathsf{T}} v_c)\right]\right]$$

$$\mathcal{L}(\theta) = -\left[\log \sigma(u_{\text{pos}} \cdot v) + \sum_{i=1}^{k} \log \sigma(-u_{\text{neg}_i} \cdot v)\right]$$

(Simplify the subscripts)

 $u_{
m pos},\,u_{
m neg}$, and v are all learnable parameters

Need to derive derivatives: $\frac{\partial \mathcal{L}}{\partial u_{\text{pos}}}$, $\frac{\partial \mathcal{L}}{\partial u_{\text{neg}_i}}$, $\frac{\partial \mathcal{L}}{\partial v}$

Loss: derivatives

$$\mathcal{L}(\theta) = -\left[\log \sigma(u_{\text{pos}} \cdot v) + \sum_{i=1}^{k} \log \sigma(-u_{\text{neg}_i} \cdot v)\right]$$

$$\frac{\partial \mathcal{L}}{\partial u} = (\sigma(u_{\text{pos}} \cdot v) - 1)v$$
Using the knowledge:
$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

$$\frac{\partial \mathcal{L}}{\partial u_{\text{pos}}} = (\sigma(u_{\text{pos}} \cdot v) - 1)v$$

$$\frac{\partial \mathcal{L}}{\partial u_{\text{neg}_i}} = \left(\sigma(u_{\text{neg}_i} \cdot v)\right) v$$

$$\frac{\partial \mathcal{L}}{\partial v} = (\sigma(u_{\text{pos}} \cdot v) - 1)u_{\text{pos}} + \sum_{i=1}^{k} \sigma(u_{\text{neg}_i} \cdot v)u_{\text{neg}_i}$$

$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

Gradients update with SGD

Start with randomly initialized U and V matrices, and do the updates

$$\begin{aligned} u_{\text{pos}}^{t+1} &= u_{\text{pos}}^{t} - \alpha \left(\sigma \left(u_{\text{pos}}^{t} \cdot v^{t} \right) - 1 \right) v^{t} \\ u_{\text{neg}_{i}}^{t+1} &= u_{\text{neg}_{i}}^{t} - \alpha \left(\sigma \left(u_{\text{neg}_{i}}^{t} \cdot v^{t} \right) \right) v^{t} \\ v^{t+1} &= v^{t} - \alpha \left[\left(\left(\sigma \left(u_{\text{pos}}^{t} \cdot v^{t} \right) - 1 \right) - 1 \right) u_{\text{pos}}^{t} + \sum_{i=1}^{k} \sigma \left(u_{\text{neg}_{i}}^{t} \cdot v^{t} \right) u_{\text{neg}_{i}}^{t} \right] \end{aligned}$$

 α is the learning rate

Intuition: One step of gradient descent

SP 2025 CS310 NLP 52

More details: choosing window size

- **Small windows** (k = 2) : nearest words are syntactically similar words in same taxonomy
 - Nearest neighbor of Hogwarts: Sunnydale, Evernight, Blandings (Other school names)

- Large windows (k = 5): nearest words are related words in same semantic field
 - Nearest neighbor of Hogwarts: Dumbledore, half-blood, Malfoy (entities in the HP world)

More Details : Sample less frequent words

- Maximize probability that real outside word appears;
- Minimize probability that random words appear around center word
- Sample from the distribution $P(w) = \frac{U(w)^{\frac{3}{4}}}{Z}$, the unigram frequency distribution U(w) raised to the $\frac{3}{4}$ power (Z is normalization term)
- The power makes less frequent words be sampled more often
- $0.9^{3/4} \approx 0.924 => a 2.7\%$ increase in chance being sampled
- $0.1^{3/4} \approx 0.178 => a 77.8\%$ increase in chance being sampled

Why word2vec works?

Levy and Goldberg, 2014, Neural Word Embedding as Implicit Matrix Factorization
 Why Skip-gram negative sampling (SGNS) works?

Table V contains all parameters for center vectors

Table **U** contains all parameters for **context** vectors

Equations from Levy and Goldberg, 2014

- How to find the unknown function $M_{ij} = f(v_i \cdot u_j)$?
- Start from the SGNS loss:

$$\ell = \sum_{w \in V_W} \sum_{c \in V_C} \#(w, c) \left(\log \sigma(\vec{w} \cdot \vec{c}) \right) + \sum_{w \in V_W} \sum_{c \in V_C} \#(w, c) \left(k \cdot \mathbb{E}_{c_N \sim P_D} \left[\log \sigma(-\vec{w} \cdot \vec{c}_N) \right] \right)$$

$$= \sum_{w \in V_W} \sum_{c \in V_C} \#(w, c) \left(\log \sigma(\vec{w} \cdot \vec{c}) \right) + \sum_{w \in V_W} \#(w) \left(k \cdot \mathbb{E}_{c_N \sim P_D} \left[\log \sigma(-\vec{w} \cdot \vec{c}_N) \right] \right)$$

This eq from Levy and Goldberg (2014) use different terms:

$$w \in V_W \Rightarrow v_c \in V$$
 $c \in V_C \Rightarrow u_o \in U$

$$c \in V_C \Rightarrow u_o \in U$$

#(w, c) denotes the number of times the pair (w,c) appears in D

 P_D is the prob. distr. to sample NSs

Equations from Levy and Goldberg, 2014

Explicitly express the expectation term:

$$\mathbb{E}_{c_N \sim P_D} \left[\log \sigma(-\vec{w} \cdot \vec{c}_N) \right] = \sum_{c_N \in V_C} \frac{\#(c_N)}{|D|} \log \sigma(-\vec{w} \cdot \vec{c}_N)$$

$$= \frac{\#(c)}{|D|} \log \sigma(-\vec{w} \cdot \vec{c}) + \sum_{c_N \in V_C \setminus \{c\}} \frac{\#(c_N)}{|D|} \log \sigma(-\vec{w} \cdot \vec{c}_N)$$

Get the local loss for a specific (w, c) pair:

$$\ell(w,c) = \#(w,c)\log\sigma(\vec{w}\cdot\vec{c}) + k\cdot\#(w)\cdot\frac{\#(c)}{|D|}\log\sigma(-\vec{w}\cdot\vec{c})$$

Equations from Levy and Goldberg, 2014

• Let $x = w \cdot c$, and calculate the partial derivative:

$$\frac{\partial \ell}{\partial x} = \#(w, c) \cdot \sigma(-x) - k \cdot \#(w) \cdot \frac{\#(c)}{|D|} \cdot \sigma(x)$$

Compare the derivative to zero, with some simplification:

$$e^{2x} - \left(\frac{\#(w,c)}{k \cdot \#(w) \cdot \frac{\#(c)}{|D|}} - 1\right) e^x - \frac{\#(w,c)}{k \cdot \#(w) \cdot \frac{\#(c)}{|D|}} = 0$$

Equations from Levy and Goldberg, 2014

- If we let $y = e^x$, it becomes a quadratic equation of y
- and the solution is:

$$y = \frac{\#(w,c)}{k \cdot \#(w) \cdot \frac{\#(c)}{|D|}} = \frac{\#(w,c) \cdot |D|}{\#w \cdot \#(c)} \cdot \frac{1}{k}$$

numerator: among all occurrences of c, the chance of w cooccurs with it

• Substituting y with e^x and x with $w \cdot c$:

$$\log\left(\frac{\#(w,c)/\#(c)}{\#(w)/|D|}\right)$$

$$\vec{w} \cdot \vec{c} = \log \left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)} \cdot \frac{1}{k} \right) = \log \left(\frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)} \right) - \log k$$

denominator: prior (global) probability of w

It is exactly the point-wise mutual information (PMI) between w and c!

Local probability

Word2vec SGNS related to PMI

Recall PMI from LSA

$$[\mathbf{A}]_{v,c} = \left[\log \frac{\operatorname{count}_{x_c}(v)}{\frac{\operatorname{count}_{x}(v)}{N} \cdot \ell_c}\right]_{+} = \left[\log \frac{\frac{\operatorname{count}_{x_c}(v)}{\ell_c}}{\frac{\operatorname{count}_{x}(v)}{N}}\right]_{+}$$

• Finally, we can describe the matrix *M* that SGNS is factorizing:

$$M_{ij}^{\text{SGNS}} = W_i \cdot C_j = \vec{w}_i \cdot \vec{c}_j = PMI(w_i, c_j) - \log k$$

- When k = 1, SGNS is factorizing a word-context matrix, in which the unknown association function between w and c is f(w,c) = PMI(w,c)
- When k > 1, SGNS is factorizing a shifted PMI matrix

GloVe: From a different perspective

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation.

- Start from the word-word co-occurrence counts X
 - X_{ij} is the number of times word j occurs in the context of word i

$$i = ice$$
 X_{ij}

Let $X_i = \sum_k X_{ik}$ be the number of times any word occurs in the context of word i

Let $P_i = P(j|i) = X_{ij}/X_i$ be the probability that word j occurs in the context of word i

GloVe: a showcase

Pennington, J., Socher, R., & Manning, C. (2014)

• Consider i = ice and j = steam

$$i = ice$$

$$j = steam$$

$$P_{jk} - \cdots - P_{jk}$$

The relationship between ice and steam can be examined by studying the $ratio\ of\ their\ co-occurrence$ $probabilities\ with\ various\ probe\ words\ k$

E.g., for k =solid (related to ice but not steam)

we expect the ratio $\frac{P_{ik}}{P_{jk}}$ to be large, as $P_{ik} \gg P_{jk}$

For k = gas (related to steam but not ice)

we expect the ratio $\frac{P_{ik}}{P_{jk}}$ to be small, as $P_{ik} \ll P_{jk}$

GloVe: a showcase

Pennington, J., Socher, R., & Manning, C. (2014)

- For words k that are either related to both, say water
- or to neither, say fashion

The ratio should $\frac{P_{ik}}{P_{jk}}$ be close to one, as $P_{ik} \approx P_{jk}$

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

GloVe: introduce the basic idea

- The appropriate starting point for learning word vectors should be the ratios of co-occurrence probabilities rather than the probabilities themselves.
- The most general embedding model takes the form:

$$F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}} \qquad \Longrightarrow \qquad F(w_i - w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$

The final form takes several steps further following a few desiderata

$$F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{P_{ik}}{P_{jk}} \implies F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F(w_i^T \tilde{w}_k)}{F(w_j^T \tilde{w}_k)} \implies F(w_i^T \tilde{w}_k) = P_{ik} = \frac{X_{ik}}{X_i}$$

$$w_i^T \tilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - \log(X_i)$$

SP 2025

GloVe

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation.

Cost function:
$$J = \sum_{i,j=1}^{V} f(X_{ij}) (w^{\mathsf{T}}_{i} \widetilde{w}_{j} + b_{i} + \widetilde{b}_{j} - \log(X_{ij}))^{2}$$
Dot product of two embeddings Frequency counts of word i and j co-occur (within a fixed window)

Basic idea: words that appear together more often (larger X_{ij}) should have closer meanings (larger dot product)

Advantages: Fast training; scalable to large corpra

GloVe: interesting connection to word2vec

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation.

• Choice for the weighting-function $f(\cdot)$

Cost function:
$$J = \sum_{i,j=1}^{V} f(X_{ij}) (w^{\mathsf{T}}_{i} \widetilde{w}_{j} + b_{i} + \widetilde{b}_{j} - \log(X_{ij}))^{2}$$

- 1. f(0) = 0, as $x \to 0$, it should vanish fast so that $\lim_{x\to 0} f(x) \log x$ is finite
- 2. f(x) should be non-decreasing so that rare co-occurrences are not overweighted
 - 3. f(x) should be small for larger x, so that frequent co-occurrences ("of", "the") are not overweighted

66 SP 2025 CS310 NLP

GloVe: interesting connection to word2vec

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation.

• Choice for the weighting-function
$$f(\cdot)$$

$$J = \sum_{i,j=1}^{V} f(X_{ij}) (w^{\top}_{i} \widetilde{w}_{j} + b_{i} + \widetilde{b}_{j} - \log(X_{ij}))^{2}$$

$$f(x) = \begin{cases} (x/x_{\text{max}})^{\alpha} & \text{if } x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}$$

Figure 1: Weighting function f with $\alpha = 3/4$.

It is the similar fractional power scaling used for negative sampling in word2vec

$$P(w) = \frac{U(w)^{\frac{3}{4}}}{Z} \qquad \sum_{i=1}^{k} \mathbb{E}_{w_i \sim P(w)} \left[\log \sigma \left(-u_{w_i}^{\mathsf{T}} v_c\right)\right]$$

Content

- Motivation
- Documents and Counts-based Method
- Neural Network-based Method -- word2vec
- Evaluation and Applications

General Evaluation in NLP

- Intrinsic (内在的) vs. Extrinsic (外在的)
- Intrinsic:
 - Evaluation on a specific/intermediate subtask
 - Fast to compute
 - Not clear if really helpful unless correlation to real task is found
- Extrinsic:
 - Evaluation on a real task
 - Can take a long time to compute accuracy
 - Unclear if the subsystem is the problem or its interaction with other subsystems

Adapted from: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1224/

Evaluate Word Vectors (Embeddings)

Intrinsic task: Word semantic similarity task

 $\underline{d_1} = \cos(v_{book}, v_{library})$, cosine similarity

Word1	Word2	Hur	nan score	Cosi	ne distance
book	library	7.46		d1	
bank	money	8.12		d2	
wood	forest	7.73		d3	
professor	cucumber	0.31		d4	

Correlation between the two columns are used to evaluate the quality of word embeddings

Evaluate Word Vectors (Embeddings)

Intrinsic task: Word analogy task

Question: What is to "King" as "woman" to "man"?

$$v_{Man} - v_{Woman} \approx v_{King} - v_{w} \quad w = ?$$

Find the word w so that:

$$\arg\max_{w} sim(v_{w}, v_{King} - v_{Man} + v_{Woman})$$

Here, sim() is a similarity function, for example, cosine similarity

$$sim(u,v) = \frac{u^T v}{\|u\| \|v\|}$$

Finding the most similar vector v_w will hopefully pick up the word w = Queen

Word Analogy Task (as an interesting application)

Capital-common-countries:

Athens Greece Baghdad Iraq Athens Greece Bangkok Thailand Athens Greece Beijing China Athens Greece Berlin Germany

..

Family:

boy girl brother sister boy girl brothers sisters boy girl dad mom boy girl father mother

•••

Comparative:

bad worse big bigger bad worse bright brighter bad worse cheap cheaper bad worse cold colder

••

City-in-state:

Chicago Illinois Houston **Texas**Chicago Illinois Philadelphia **Pennsylvania**Chicago Illinois Phoenix **Arizona**Chicago Illinois Dallas **Texas**

70 - 80 % accuracy reported in Mikolov et al., 2013

Figure from: Pennington et al. (2014). Glove: Global vectors for word representation.

How to use embeddings

Load pretrained word2vec/glove embeddings to initialize parameters

```
import torch
import torch.nn as nn
import numpy as np
                                                                                                   Binary or text format
from gensim.models import KeyedVectors
# Load pretrained embeddings (Word2Vec format)
word_vectors = KeyedVectors.load_word2vec_format("path/to/word2vec.bin",) binary=True)
# Define vocabulary (example: words mapped to indices)
vocab = {"hello": 0, "world": 1, "goodbye": 2} # Example vocab
vocab size = len(vocab)
embedding dim = word vectors.vector size # Must match pretrained embedding size
# Initialize an embedding matrix
embedding matrix = np.zeros((vocab size, embedding dim))
# Fill the embedding matrix with pretrained word vectors
for word, idx in vocab.items():
   if word in word vectors:
        embedding matrix[idx] = word_vectors[word]
    else:
        embedding_matrix[idx] = np.random.normal(scale=0.6, size=(embedding_dim,)) # F
# Convert to torch tensor
embedding tensor = torch.tensor(embedding matrix, dtype=torch.float)
# Initialize nn. Embedding with pretrained weights
embedding layer = nn.Embedding.from pretrained(embedding tensor, freeze=False) # Set 1
```


Fun Application: Emoji2vec

Eisner, B., Rocktäschel, T., Augenstein, I., Bošnjak, M., & Riedel, S. (2016). emoji2vec: Learning emoji representations from their description. arXiv preprint arXiv:1609.08359.

```
      - ↑ ↑ ↑ ↑ □ = 1: ♥ , 2: ♥ , 3: ♠ , 4: ♠ , 5: ♦

      5 □ - ♥ + ♥ = 1: $ □ , 2: ♠ , 3: ♠ , 4: ♠ , 5: ♠

      5 □ - ♥ + ♥ = 1: ♠ , 2: ♠ , 3: ♠ , 4: ♠ , 5: ♠

      - ♥ + ♥ = 1: ♠ , 2: ♥ , 3: ♠ , 4: ♠ , 5: ♠

      - ♥ + ♠ = 1: ♠ , 2: ♥ , 3: ♠ , 4: ♠ , 5: ♠
```


References

- Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11):613–620, 1975.
- Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954.
- J. R. Firth. A synopsis of linguistic theory 1930–1955. In Studies in Linguistic Analysis, pages 1–32. Blackwell, 1957.
- Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391–407, 1990.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space.
 In Proceedings of ICLR, 2013a. URL http://arxiv.org/pdf/1301.3781.pdf.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In NeurIPS, 2013b.
- Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation.
- Eisner, B., Rocktäschel, T., Augenstein, I., Bošnjak, M., & Riedel, S. (2016). emoji2vec: Learning emoji representations from their description. arXiv preprint arXiv:1609.08359.