

On the hardness of learning to stabilize linear systems

Xiong Zeng¹

Zexiang Liu¹

Zhe Du¹

Necmiye Ozay¹

Mario Sznaier²

¹Electrical Engineering and Computer Science University of Michigan, Ann Arbor ²Electrical and Computer Engineering Northeastern University

On the hardness of learning to stabilize linear systems with a static linear state-feedback controller

Xiong Zeng¹

Zexiang Liu¹

Zhe Du¹

Necmiye Ozay¹

Mario Sznaier²

¹Electrical Engineering and Computer Science University of Michigan, Ann Arbor ²Electrical and Computer Engineering Northeastern University

Many components in a feedback loop can be learned:

- Plant model: model-based learning, system identification
- Task specification: inverse optimal control, inverse reinforcement learning
- Controller: model-free learning
- Perception/estimation modules

What are the fundamental limits in learning-based control?

What is complexity?

 Computational complexity: how the computational cost of an algorithm depends on the input size?

Comp. Cost = $\mathcal{O}(\text{input size})$

• Sample complexity: how a **performance metric** of a *learning* algorithm depends on the sample size (# of data points)?

Performance = $\mathcal{O}(\text{sample size})$

Examples of performance metric:

approximation error,

accumulative cost or regret,

probability of stability (this work)

complexity of a problem ≈ complexity of the best algorithm

Setup

Given

• A discrete-time linear time-invariant (LTI) system S from a class C_n :

$$x_{t+1} = Ax_t + Bu_t + w_t,$$

where $x_t \in \mathbb{R}^n$ and $w_t \sim \mathcal{N}(0, \sigma_w^2 \mathbf{I})$

• A time budget N and an input budget $\mathbb{E}[\|u_t\|^2] \leq \sigma_u^2$

Consider a learning algorithm π that

- (i) interacts with the system for N units of time, and
- (ii) outputs a linear static state-feedback controller \widehat{K} at time N

We want \widehat{K} to stabilize the (unknown) system S.

Setup

Given

• A discrete-time linear time-invariant

 x_{t+1} :

where $x_t \in \mathbb{R}^n$ and $w_t \sim \mathcal{N}(0, \sigma_w^2 \mathbf{I})$

A time budget N and an input budge

Consider a learning algorithm π that

Use your favorite algorithm π :

- Excite the system for N steps and do (direct) data-driven control
- Excite the system for N steps and do system id and certainty equivalent control
- Use any other online/active learning method
- (i) interacts with the system for N units of time, and
- (ii) outputs a linear static state-feedback controller \widehat{K} at time N

We want \widehat{K} to stabilize the (unknown) system S.

Problem statement

Denote the probability that \widehat{K} stabilizes an unknown system $S=(A,B)\in\mathcal{C}_n$ by $P^N_{S,\pi}\left(\left(A+B\ \widehat{K}\right)\text{is stable}\right)$

A learning algorithm π is evaluated by the **worst-case** stabilization probability over C_n : $\inf_{S \in C_n} P_{S,\pi}^N((A+B \ \widehat{K}) \text{ is stable})$

Sample complexity of π : Given a $\delta \in [0,1]$, the minimum time/data budget N such that

$$\inf_{S \in C_n} P_{S,\pi}^N((A + B \widehat{K}) \text{ is stable}) \ge 1 - \delta.$$

Question: Given a class C of linear systems, how does the **sample complexity** for learning stabilizing static state-feedback controllers depend on the **system dimension** n?

Related work

Question: Given a class C of linear systems, how does the sample complexity for learning stabilizing static state-feedback controllers depend on the system dimension n?

Existing results (very incomplete list):

Dean et al. 2017, Mania et al. 2019	$N \ge \frac{C^{sys}}{spoly(n)}$ $\Rightarrow Stable$	Non-degenerate noise $(w_t \sim N(0, \Sigma), \Sigma > 0)$
Tsiamis et al. 2022	$Stable \Rightarrow \\ N \ge O(exp(n))$	Degenerate noise ($\Sigma \geq 0$ and $\Sigma \gg 0$): Hard to identify
Our Work	$Stable \Rightarrow \\ N \ge O(exp(n))$	Non-degenerate noise ($\Sigma > 0$): Not necessarily hard to identify but there is a different obstruction

Sufficient conditions for sample complexity

Necessary conditions for sample complexity

aka, lower bounds

Roadmap to establish hardness

Find a class C_n of systems such that for any algorithm π and for all $\delta \in [0,0.5]$, we have $\inf_{S \in C_n} P_{S,\pi}^N((A+B \ \widehat{K}) \text{ is stable}) \geq 1-\delta.$

only if

$$N \geq O(exp(n)).$$

Key insight: if the class C_n contains a pair of systems (A_1, B_1) and (A_2, B_2) that are

- hard to distinguish, and
- not co-stabilizable

then learning to stabilize is hard.

Roadmap to establish hardness

Find a class C_n of systems such that for any algorithm π and for all $\delta \in [0,0.5]$, we have

$$\inf_{S \in C_n} P_{S,\pi}^N((A + B \widehat{K}) \text{ is stable}) \ge 1 - \delta.$$

only if

$$N \geq O(exp(n)).$$

Key insight: if the class C_n contains a pair of systems (A_1, B_1) and (A_2, B_2) that are

- hard to distinguish, and when driven by the same policy π , the resulting state trajectories are similar
- not co-stabilizable
 there does not exist a single controller that simultaneously stabilizes the two systems

then learning to stabilize is hard. $\nexists K$ s.t. both $A_1 + B_1 K$ and $A_2 + B_2 K$ are stable

$$\mathbf{A} = \begin{bmatrix} r & v & 0 & \cdots & 0 \\ 0 & 0 & v & \cdots & 0 \\ & \ddots & \ddots & \\ 0 & 0 & 0 & \cdots & v \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{n \times n}, \ \mathbf{B} = \begin{bmatrix} b^{(1)} \\ 0 \\ \vdots \\ 0 \\ v \end{bmatrix} \in \mathbb{R}^n$$
 First order system with actuation delay of length n-1
$$x_{t+1} = Ax_t + Bu_t + w_t, \quad r > 1, \ 0 < v < \frac{r-1}{2}, \ \text{and} \ b^{(1)} \ge 0.$$

Take
$$B_1 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ v \end{bmatrix}$$
, $B_2 = \begin{bmatrix} m \\ 0 \\ \vdots \\ v \end{bmatrix}$

$$\mathbf{A} = \begin{bmatrix} r & v & 0 & \cdots & 0 \\ 0 & 0 & v & \cdots & 0 \\ & \ddots & \ddots & \\ 0 & 0 & 0 & \cdots & v \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{n \times n}, \ \mathbf{B} = \begin{bmatrix} b^{(1)} \\ 0 \\ \vdots \\ 0 \\ v \end{bmatrix} \in \mathbb{R}^n$$
 First order system with actuation delay of length n-1
$$x_{t+1} = Ax_t + Bu_t + w_t, \quad r > 1, \ 0 < v < \frac{r-1}{2}, \ \text{and} \ b^{(1)} \ge 0.$$

Take
$$B_1 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ v \end{bmatrix}$$
, $B_2 = \begin{bmatrix} m \\ 0 \\ \vdots \\ v \end{bmatrix}$

Proposition 1: There exists a state-feedback controller K that stabilizes both (A, B_1) and (A, B_2) only if

$$m \le \mathcal{O}(\frac{1}{\exp(n)})$$

Proposition 1: There exists a state-feedback controller K that stabilizes both (A, B_1) and (A, B_2) only if

$$m \le \mathcal{O}(\frac{1}{\exp(n)})$$

Proof sketch: Use <u>Ackerman's formula</u> to analytically construct K to place the poles of system 1 arbitrarily inside the unit circle and check the stability of system 2 when controlled by K using <u>Jury stability test</u>.

Proposition 1: There exists a state-feedback controller K that stabilizes both (A, B_1) and (A, B_2) only if

$$m \le \mathcal{O}(\frac{1}{\exp(n)})$$

Proof sketch: Use <u>Ackerman's formula</u> to analytically construct K to place the poles of system 1 arbitrarily inside the unit circle and check the stability of system 2 when controlled by K using <u>Jury stability test</u>.

We can also do a sanity check numerically using LMI-based sufficient condition for costabilizability

find
$$K, P$$

s.t. $(A + B_1 K)^T P(A + B_1 K) < P$
 $(A + B_2(m)K)^T P(A + B_2(m)K) < P$
 $P > 0$

Main result

Theorem: For any class C of systems containing such a pair with $m = 2\left(\frac{2v}{r-1}\right)^n$ and any learning algorithm, the least amount of data for learning to stabilize arbitrary systems in Cgrows exponentially with the state dimension!

$$\inf_{S \in C_n} P^N_{S,\pi}((A+B\ \widehat{K}) \text{ is stable}) \ge 1-\delta \quad \text{only if} \quad N \ge \frac{\sigma^2_w}{2\sigma^2_u} \Big(\frac{r-1}{2v}\Big)^{2\eta} \log(\frac{1}{3\delta})$$

Main result

Theorem: For any class C of systems containing such a pair with $m = 2\left(\frac{2v}{r-1}\right)^n$ and any learning algorithm, the least amount of data for learning to stabilize arbitrary systems in C grows exponentially with the state dimension!

Proof Sketch

- Having $b^{(1)}$ entries of the pairs exponentially closer to each other as a function of n upper bounds the KL divergence of length-N trajectories generated by the two systems (indistinguishability)
- Co-stabilizability requires exponential closeness in parameters space due to Proposition 1
- Use Birge's inequality to establish a KL divergence lower bound

Numerical illustration

Number of samples required for 90% probability of finding a stabilizing controller using certainty equivalent LQR*:

y-axis: observed least sample size *N* for CE LQR being stabilizing with probability 0.9

Certainty Equivalent LQR

- Excite the system with iid
 Gaussian input for N steps
- Learn system matrices
- Do LQR with learned model

$$\min_{u_0, u_{1, \dots}} \lim_{T \to \infty} E\left[\frac{1}{T} \sum_{t=0}^{T} (x_t^T Q x_t + u_t^T R u_t)\right]$$

$$s. t. x_{t+1} = A x_t + B u_t + w_t$$

* By our result, same trend holds for any algorithm

Conclusions

Key contributions:

Learning to stabilize a linear system is hard if we have systems that are

hard to distinguish AND hard to co-stabilize

- Compare with earlier work by Tsiamis et al., our analysis
 - > reveals a new obstruction for the hardness of learning to stabilize;
 - > covers a larger class of systems (including open-loop unstable ones)

Conclusions

 $\begin{array}{c|c} & & & \\ &$

Key contributions:

Learning to stabilize a linear system is hard if we have systems that are

hard to distinguish AND hard to co-stabilize

- Compare with earlier work by Tsiamis et al., our analysis
 - > reveals a new obstruction for the hardness of learning to stabilize;
 - > covers a larger class of systems (including open-loop unstable ones)

Current work:

- Observation: Static linear state feedback controllers are not a rich enough class for costabilizing linear systems (memory helps!)
- Can we reduce sample complexity by using dynamic time-varying controllers?