Section 2-1: Reference Frames

 Every measurement must be made with respect to a reference frame. Usually, speed is relative to the Earth.

FIGURE 2–2 A person walks toward the front of a train at 5 km/h. The train is moving 80 km/h with respect to the ground, so the walking person's speed, relative to the ground, is 85 km/h.

Specifically, if a person walks towards the front of a train at 5 km/h (with respect to the train floor) & the train is moving 80 km/h with respect to the ground. The person's speed, relative to the ground is 85 km/h.

 When specifying speed, always specify the frame of reference unless its obvious ("with respect to the Earth").

Distances are also measured in a reference

frame.

 When specifying speed or distance, we also need to specify DIRECTION.

Coordinate Axes

 Define a reference frame using a standard coordinate axes.

2 Dimensions (x,y)

Note, if its convenient,
 we could reverse + & -!

Standard set of xy coordinate axes

Coordinate Axes

• 3 Dimensions (x,y,z)

Define direction using these.

Displacement & Distance

Distance traveled by an object
 ≠ displacement of the object!

- Displacement = change in position of object.
- Displacement is a vector (magnitude & direction). Distance is a scalar (magnitude).
- Figure: distance = 100 m, displacement = 40 m East

Displacement

Copyright © 2005 Pearson Prentice Hall, Inc.

The arrow represents the displacement (in meters).

$$x_1 = 10 \text{ m}, x_2 = 30 \text{ m}$$

Displacement
$$\equiv \Delta x = x_2 - x_1 = 20 \text{ m}$$

Δ = Greek letter "delta" meaning "change in"

FIGURE 2-6 For the displacement $\Delta x = x_2 - x_1 = 10.0 \,\text{m} - 30.0 \,\text{m}$, the displacement vector points to the left.

 $x_1 = 30 \text{ m}, x_2 = 10 \text{ m}$ Displacement $\equiv \Delta x = x_2 - x_1 = -20 \text{ m}$ Displacement is a VECTOR

Vectors and Scalars

- Many quantities in physics, like displacement, have a magnitude and a direction. Such quantities are called <u>VECTORS</u>.
 - Other quantities which are vectors: velocity, acceleration, force, momentum, ...
- Many quantities in physics, like distance, have a magnitude only. Such quantities are called <u>SCALARS</u>.
 - Other quantities which are scalars: speed, temperature, mass, volume, ...

• I usually denote vectors with arrows over the symbol.

 In one dimension, we can drop the arrow and remember that a + sign means the vector points to right & a minus sign means the vector points to left.

Figure 1
The motion of a commuter train traveling along a straight route is an example of one-dimensional motion. Each train can move only forward and backward along the track.

Sect. 2-2: Average Velocity

- Scalar → Average Speed = (Distance traveled)/(Time taken)
- vector→Average <u>Velocity</u> = (Displacement)/(Time taken)
 - Velocity: Both magnitude & direction describing how fast an object is moving. A <u>VECTOR</u>. (Similar to displacement).
 - Speed: Magnitude only describing how fast an object is moving. A SCALAR. (Similar to distance).
 - Units: distance/time = m/s

Average Velocity, Average Speed

Displacement from before. Walk for 70 s.

- Average Speed = (100 m)/(70 s) = 1.4 m/s
- Average velocity = (40 m)/(70 s) = 0.57 m/s

In general:

$$\Delta x = x_2 - x_1 = displacement$$

$$\Delta t = t_2 - t_1 = elapsed time$$
Average Velocity:
$$\overline{V} = \frac{\Delta x}{\Delta t} = (x_2 - x_1)/(t_2 - t_1)$$

Bar denotes average

Example 2-1

• Person runs from $x_1 = 50.0$ m to $x_2 = 30.5$ m in $\Delta t = 3.0$ s. $\Delta x = -19.5$ m

Average velocity = $\overline{\mathbf{v}} = (\Delta \mathbf{x})/(\Delta \mathbf{t})$ = -(19.5 m)/(3.0 s) = -6.5 m/s. Negative sign indicates **DIRECTION**, (negative **x** direction)

Sect. 2-3: Instantaneous Velocity

- Instantaneous velocity = velocity at any instant of time = average velocity for an infinitesimally short time
- Mathematically, instantaneous velocity:

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

 $\lim_{\Delta t \to 0}$ ratio $\frac{\Delta x}{\Delta t}$ considered as a whole for smaller & smaller Δt .

Mathematicians call this a derivative.

Do not set $\Delta t = 0$ because $\Delta x = 0$ then & 0/0 is undefined!

⇒ Instantaneous velocity

The instantaneous velocity is the average velocity in the limit as the time interval becomes infinitesimally short.

FIGURE 2–8 Car speedometer showing mi/h in white, and km/h in orange.

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

Ideally, a speedometer would measure instantaneous velocity; in fact, it measures average velocity, but over a very short time interval.

Sect. 2-4: Acceleration

- Velocity can change with time. An object with velocity that is changing with time is said to be accelerating.
- Definition: <u>Average acceleration</u> = ratio of change in velocity to elapsed time.

$$\overline{a} \equiv \frac{\Delta v}{\Delta t} = (v_2 - v_1)/(t_2 - t_1)$$

- Acceleration is a vector.
- Instantaneous acceleration

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$$

• Units: velocity/time = distance/(time)² = m/s²

Example 2-4: Average Acceleration

$$\begin{array}{c} t_1 = 0 \\ v_1 = 0 \end{array}$$

A car accelerates along a straight road from rest to 90 km/h in 5.0 s. Find the magnitude of its average acceleration. Note: 90 km/h = 25 m/s

at
$$t = 1.0 \text{ s}$$

 $v = 5.0 \text{ m/s}$

at
$$t = 2.0 \text{ s}$$

 $v = 10.0 \text{ m/s}$

at
$$t = t_2 = 5.0 \text{ s}$$

 $v = v_2 = 25 \text{ m/s}$

Example 2-4: Average Acceleration

$$t_1 = 0$$

$$v_1 = 0$$

at
$$t = 1.0 \text{ s}$$

 $v = 5.0 \text{ m/s}$

A car accelerates along a straight road from rest to 90 km/h in 5.0 s. Find the magnitude of its average acceleration. Note: 90 km/h = 25 m/s

$$\overline{a} = \frac{\Delta v}{\Delta t}$$
: (25 m/s – 0 m/s)/5 s = 5 m/s²

at
$$t = 2.0 \text{ s}$$

 $v = 10.0 \text{ m/s}$

at
$$t = t_2 = 5.0 \text{ s}$$

 $v = v_2 = 25 \text{ m/s}$

Velocity & Acceleration are both vectors.

Are the velocity and the acceleration always in the same direction?

Velocity & Acceleration are both vectors.

Are the velocity and the acceleration always in the same direction?

<u>NO!!</u>

If the object is <u>slowing down</u>, the acceleration vector is in the opposite direction of the velocity vector!

Velocity & acceleration are both vectors.

Is it possible for an object to have a zero velocity and a non-zero acceleration?

Velocity & Acceleration are both vectors.

Is it possible for an object to have a zero acceleration and a non-zero velocity?

YES!!

If the object is **moving at a constant velocity**, the acceleration vector is zero!

Velocity & acceleration are both vectors.

Is it possible for an object to have a zero velocity and a non-zero acceleration?

Velocity & acceleration are both vectors.

Is it possible for an object to have a zero velocity and a non-zero acceleration?

<u>YES!!</u>

If the object is <u>instantaneously at rest</u> (v = 0) <u>but is</u> <u>either on the verge of starting to</u>

move or is turning around & changing

<u>direction</u>, the velocity is zero, but the acceleration is not!

When an object is slowing down, we can say it is decelerating. But be careful:

deceleration does not mean the negative acceleration.

Deceleration

ws down, as it comes in for landing in St. Maarten. Its acceleration is opposite in direction to its velocity. (credit: Steve Conry, Flickr)

FIGURE 2-12 The car of

Example 2–6, now moving to the *left* and decelerating. The acceleration is $a = (v_2 - v_1)/\Delta t$, or

$$a = \frac{(-5.0 \text{ m/s}) - (-15.0 \text{ m/s})}{5.0 \text{ s}}$$
$$= \frac{-5.0 \text{ m/s} + 15.0 \text{ m/s}}{5.0 \text{ s}} = +2.0 \text{ m/s}^2.$$

$$v_2 = -5.0 \text{ m/s}$$
 $v_1 = -15.0 \text{ m/s}$

Motion with Constant Acceleration

- Many practical situations:
 - The magnitude of the acceleration is uniform (constant)
 - The motion is in a straight line
 - Free Fall
- It's useful to derive some equations which apply *in this case ONLY*.
 - The kinematic equations for uniform acceleration in one dimension.

Constant Acceleration

- Please Read on your own again!
- In the derivation, its useful to change notation slightly

```
t_1 = 0 = time when the problem begins
x_1 \equiv x_0 = initial position (at <math>t_1 = 0, often x_0 = 0)
        \mathbf{v}_1 \equiv \mathbf{v}_0 = \text{initial velocity (at } \mathbf{t}_1 = \mathbf{0})
t_2 \equiv t = time when we wish to know other
                           quantities
              x_2 = x = position at time t
              \mathbf{v}_2 = \mathbf{v} = \text{velocity at time } \mathbf{t}
            a ≡ acceleration = constant
```

(average & instantaneous accelerations are equal)

Using these, by definition we have:

– Average velocity:

$$v = (x - x_0)/t => x = x_0 + vt$$
 (1)

– Acceleration (average = instantaneous):

$$a = (v - v_0)/t => v = v_0 + at$$
 (2)

– Average velocity (another form):

$$\overline{V} = (\frac{1}{2})(V + V_0)$$
(3)

This is because velocity increases at a uniform rate, thus the average velocity will be midway between initial and final velocities.

$$x = x_0 + \overline{v}t$$

$$= x_0 + \left(\frac{v_0 + v}{2}\right)t$$

$$= x_0 + \left(\frac{v_0 + v_0 + at}{2}\right)t$$

$$x = x_0 + v_0t + \frac{1}{2}at^2.$$

Eq (2):
$$a = (v - v_0)/t => t = (v - v_0)/a$$

Eq (1):
$$x = x_0 + vt =>$$

$$x = x_0 + \left(\frac{v + v_0}{2}\right) \left(\frac{v - v_0}{a}\right) = x_0 + \frac{v^2 - v_0^2}{2a}.$$

$$v^2 = v_0^2 + 2a(x - x_0),$$

Constant Acceleration Equations

Results (one dimensional motion only!):

$$v = v_0 + at$$
 (1)
 $x = x_0 + v_0 t + (\frac{1}{2})a t^2$ (2)
 $v^2 = (v_0)^2 + 2a (x - x_0)$ (3)
 $\overline{v} = (\frac{1}{2}) (v + v_0)$ (4)

NOT VALID <u>UNLESS</u> a = CONSTANT!!!

Usually $\mathbf{x}_0 = \mathbf{0}$. Sometimes $\mathbf{v}_0 = \mathbf{0}$

Kinematic equations
for constant acceleration
(we'll use them a lot)

All we need for 1 dimensional constant-acceleration problems:

NOT VALID *UNLESS* a = CONSTANT!!!

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

$$\overline{v} = \frac{v + v_0}{2}.$$

Physics and Equations IMPORTANT!!!

- Even though these equations & their applications are important, Physics is <u>not</u> a collection of formulas to memorize & blindly apply!
- Physics is a set of <u>PHYSICAL PRINCIPLES</u>.
- Blindly searching for the "equation which will work for this problem" can be DANGEROUS!!!!

Problem Solving Strategies

- 1. Read the whole problem. Make sure you understand it. Read it again.
- 2. Decide on the objects under study & what the time interval is.
- 3. Draw a diagram & choose coordinate axes.
- 4. Write down the known (given) quantities, & the unknown ones needed.
- 5. What physics applies? Plan an approach to a solution.
- **6. Which equations** relate known & unknown quantities? Are they valid in this situation? Solve <u>algebraically</u> for the unknown quantities, & check that your result is sensible (correct dimensions).
- 7. Calculate the solution, round it to appropriate number of significant figures.
- 8. Look at the result is it reasonable? Does it agree with a rough estimate?
- 9. Check the units again.

Bottom Line:

THINK!

DO NOT BLINDLY

APPLY FORMULAS!!!!

Example 2-6: Runway Design

You're designing an airport. A plane that will use this airport must reach a speed of $v_{min} = 100 \text{ km/h}$ (27.8 m/s) before takeoff. It can accelerate at $a = 2 \text{ m/s}^2$. (a) If the runway

is x = 150 m long, can this plane reach the speed of before it runs off the end of the runway? (b) If not, what is the minimum length required for the runway?

Solutions

(a) Use **Eq.** (3):

$$v^{2} = v_{0}^{2} + 2a(x - x_{0})$$

$$= 0 + 2(2.00 \text{ m/s}^{2})(150 \text{ m}) = 600 \text{ m}^{2}/\text{s}^{2}$$

$$v = \sqrt{600 \text{ m}^{2}/\text{s}^{2}} = 24.5 \text{ m/s}.$$

Known	Wanted
$x_0 = 0$	v
$v_0 = 0$	
$x = 150 \mathrm{m}$	
$a = 2.00 \mathrm{m/s^2}$	

(b) Use Eq. (3) again with

$$(x - x_0) = \frac{v^2 - v_0^2}{2a} = \frac{(27.8 \text{ m/s})^2 - 0}{2(2.00 \text{ m/s}^2)} = 193 \text{ m.}$$
 $\begin{cases} x = x_0 + v_0 t + \frac{1}{2}at^2 \\ v^2 = v_0^2 + 2a(x - x_0) \end{cases}$ (2)

To be safe, make the runway

200 m long!

$$v = v_0 + at (1)$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2 (2)$$

$$v^2 = v_0^2 + 2a(x - x_0)(3)$$

$$\bar{v} = \frac{v + v_0}{2} \cdot (4)$$