System odzysku

System odzyskiwania - wymagania

 Po złożeniu spadochron może zajmować maksymalnie przestrzeń ograniczoną walcem o średnicy
 66 mm i wysokości 40 mm

- Nie powinien mocno napierać na zasobnik!
- Musi zapewniać szybkość opadania
 CanSata w przedziale 8 11 m/s

- kluczowe jest osiągnięcie zakładanej szybkości opadania
- spadochron powinien zachowywać stabilność spadania

Fizyka spadochronu

- po pewnym (krótkim) czasie siła oporu równoważy ciężar całego układu ($F_o = F_g$), a szybkość opadania stabilizuje się
- w dużym uproszczeniu: $v_{max}(m, S)$

Jaka średnica?

$$\begin{cases} F_g = (m_c + m_s) \cdot g \\ F_o = \frac{1}{2} \cdot v^2 \cdot S \cdot C_d \cdot \rho \end{cases}$$

$$S = \frac{2 \cdot (m_c + m_s) \cdot g}{v^2 \cdot C_d \cdot \rho}$$

gdzie:

S – powierzchnia spadochronu

 v_{\parallel} – szybkość powietrza opływającego spadochron

 $m_{\it c}$, $m_{\it s}$ - masa cansatu, spadochronu

g – przyspieszenie ziemskie

ho – gęstość powietrza

 \mathcal{C}_d – bezwymiarowy współczynnik czołowego oporu aerodynamicznego, zależny od kształtu obiektu

Tabela współczynników $oldsymbol{\mathcal{C}_d}$	
kwadrat	1,000
sześciokąt	0,866
ośmiokąt	0,828
koło	0,785

- Otwór znacznie poprawia stabilność spadochronu
- Średnica otworu ≈ 20% średnicy spadochronu
- Symulacje np. w Rocksim/ OpenRocket

- Przynajmniej 6 linek dla stabilności i redundancji
- Wykonany z nienasiąkalnego i niemnącego się materiału
- Jaskrawy kolor ułatwi znalezienie
 CanSata po upadku na ziemię

Testy spadochronu

Testy w locie

- testy otwarcia się spadochronu
- testy szybkości spadania

"dummy CanSat" – model masowy

Gdzie testować?

 szkolne okno, wysokie budynki, wieże ciśnień, zwyżki strażackie, mosty, drony...

Bezpieczeństwo dla osób testujących i otoczenia!

Testy spadochronu

- Rejestracja przebiegu testu (dokumentacja np. nagranie wideo)
- Analiza wideo program Tracker (https://physlets.org/tracker/)
- Porównanie z teorią, wskazanie możliwych powodów rozbieżności

