

KFNet: Learning Temporal Camera Relocalization using Kalman Filtering

Lei Zhou¹, Zixin Luo¹, Tianwei Shen¹, Jiahui Zhang², Mingmin Zhen¹, Yao Yao¹, Tian Fang³, Long Quan¹

²Tsinghua Unversity ³Everest Innovation Technology

Motivation =

- Accurate image-based relocalization requires 2D-3D matches and projective geometry. (Sattler, Torsten, et al.)
- While most works focus on one-shot relocalization, no efforts are made in temporal relocalization with 2D-3D matching in time domain.
- Temporal methods performs even worse than one-shot ones.

- First to extend the scene coordinate regression problem to the time domain.
- Integrate the Kalman filters into a recurrent CNN network for pixel-level state inference over time-series images.
- Bridge the existing performance gap between temporal and one-shot relocalization approaches.

KFNet architecture -

Three sub-systems: the measurement, process and filtering

Bayesian formulation

The measurement system

- Generative model: image observations are generated from the underlying scene coordinate map, i.e., $P(I_t \mid y_t)$.
- Fully convolutional network: map I_t to z_t , then $P(z_t | y_t)$.
- Estimate Gaussian measurement noise for likelihood loss.

$$\mathcal{L}_{likelihood} = \sum_{i=1}^{N} \left(3 \log v_{(i)} + \frac{\|\mathbf{z}_{(i)} - \mathbf{y}_{(i)}\|_{2}^{2}}{2v_{(i)}^{2}} \right)$$

Measurement noise

¹Hong Kong University of Science and Technology

The process system

- Model the linear transition process by optical flow warping.
- Cost volume constructor + U-Net for flow estimation.
- Estimate Gaussian process noise for prior loss.

$$\mathcal{L}_{prior} = \sum_{i=1}^{N} \left(3 \log r_{(i)} + \frac{\|\hat{\boldsymbol{\theta}}_{(i)}^{-} - \mathbf{y}_{(i)}\|_{2}^{2}}{2r_{(i)}^{2}} \right)$$

Estimated optical flow fields

0.20

0.05

The filtering system

- Fusing both likelihood and prior estimations.
- Compute innovation and Kalman gain for posterior loss.
- NIS testing: negate potential outlier pixels outside the acceptance region

Results =

The matching accuracy

- Right chart: mean error of scene coordinate predictions.
- KFNet > SCoordNet > DSAC++

Median translation and rotation error.

	One-shot relocalization					Temporal relocalization				
	MapN et	CamN et	AS	DSAC ++	SCoordN et	VidLoc	LSTM- KF	VLocNet ++	LSG	KFNet
7scene s	0.207 m, 7.78°	0.040 m, 1.69°	0.051m, 2.46°	0.036 m, 1.10°	0.029m, 0.98°	0.246m, -	0.424m, 11.00°	0.0 <mark>22m</mark> , 1.39°	0.19 0m, 7.47°	0.027m, 0.88°
Cambri dge	1.63m, 3.64°	-	0.29m, 0.63°	0.14m, 0.33°	0.13m, 0.32°	-	2.15m, 6.56°	-	-	0.13m, 0.30°
DeepLo c	-	-	_	-	0.083m, 0.45°	-	_	0.320m, 1.48°	_	0.065m, 0.43°

KFNet is more robust to motion blur.

Code release

- Code released at https://github.com/zlthinker/KFNet.
- Contact: https://zlthinker.github.io/.