Lecture #15 Graph Algorithm (2)

Algorithm
JBNU
Jinhong Jung

In This Lecture

- ☐ Discussions on MST algorithms
 - Complexity analysis of Prim's algorithm
 - Correctness analysis and other discussions

- ☐ Single source shortest path
 - Dijkstra's algorithm

Outline

□ Complexity analysis of Prim's algorithm

☐ Discussion on MST algorithms

☐ Correctness analysis of MST algorithms

☐ Single source shortest path problem

☐ Dijkstra's algorithm

Time Complexity of Prim's Alg.

- \square Space complexity: O(n+m) space for adj. list and heap
- \square Time complexity: $O(m \log n)$ time
 - lacktriangledown is # of edges and n is # of nodes

```
def prim(G, r):
    Q \leftarrow min-heap()
    for each v in V - \{r\}:
        c[v] \leftarrow \infty & Q.insert(c[v], v)
        c[r] \leftarrow 0 & Q.insert(c[r], r)
0(n \log n)
```

```
\begin{array}{l} \text{All nodes} \\ \text{are} \\ \text{checked} \end{array} \begin{array}{l} \text{while } Q \text{ is not empty:} \\ u \leftarrow Q.\text{remove()} \\ \text{for each } v \text{ in } N_u: \\ \text{if } v \in Q \text{ and } w(u,v) < c[v]: \\ c[v] \leftarrow w(u,v) \\ \text{Q.decrease-key}(v,\ c[v]) \\ \text{parent}[v] \leftarrow \mathbf{u} \end{array} \begin{array}{l} O(\log n) \\ O(|N_u|\log n) \\ O(|N_u|\log n) \end{array} \begin{array}{l} \sum_{u \in V} |N_u|\log n \\ = \log n \sum_{u \in V} |N_u| \\ = O(m\log n) \end{array}
```

Outline

☐ Complexity analysis of Prim's algorithm

☐ Discussion on MST algorithms

☐ Correctness analysis of MST algorithms

☐ Single source shortest path problem

☐ Dijkstra's algorithm

Prim v.s. Kruskal

- ☐ If a graph is dense, then Prim's algorithm is better
 - Prim with binary heap takes $O(m \log n)$ time
 - Can be theoretically optimized with Fibonacci heap to $O(m + n \log n)$
 - Kruskal takes $O(m \log m) = O(m \log n)$ time for sorting edges
- ☐ If a graph is sparse or edges are already sorted, then Kruskal's algorithm is better
 - For a sparse graph (e.g., $m \simeq n$), both have the same complexity $O(n \log n)$, but disjoint set is more lightweight than binary heap (or Fibonacci heap)
 - For sorted edges, there is no cost for sorting; Kruskal's time complexity becomes O(n + m) in this case.

Outline

☐ Complexity analysis of Prim's algorithm

☐ Discussion on MST algorithms

☐ Correctness analysis of MST algorithms

☐ Single source shortest path problem

☐ Dijkstra's algorithm

Correctness Analysis of MST

☐ Why are Kruskal's & Prim's algorithms correct?

- Both are greedy algorithms because at each phase,
 - Kruskal greedily chooses the minimum edge not producing a cycle,
 - Prim greedily chooses the minimum edge crossing two partitions.
- Is each selected edge safe for the optimality of MST?

☐ Flow of proving MST algorithms

- Greedy choice property by safe edge theorem
- Optimal sub-structure property of MST
- Generic MST algorithm based on safe edge
- Connection of Kruskal or Prim to Generic MST

Safe Edge Theorem (1)

□ Conditions

- G = (V, E) is a connected, weighted, and undirected graph.
- Let *A* be a sub-graph of an MST *T*.
- If (U, V U) is a cut of G w.r.t. A, let e = (u, v) be a minimum edge crossing the cut.
- \Box Claim: the edge e is safe for A
 - i.e., e doesn't harm the optimality for constructing MST T.

Safe Edge Theorem (2)

Proof by contradiction

- Let's assume the edge e is not in MST T.
- Because T is a spanning tree, there should be a path P on T connecting u and v as follows:
 - Note that P is unique because if there are two or more paths between u and v, a cycle forms which contradicts to that T is a tree.
- Let e' = (x, y) be a crossing edge on P.

MST *T*: blue lines Path *P*: red lines

Safe Edge Theorem (3)

□ Proof by contradiction

• Let's remove e' from T, and add e; this results in a new tree T' as follows:

$$T' = T - e' + e$$

Safe Edge Theorem (4)

☐ Proof by contradiction

- Note that $w(e) \le w(e')$ because e is minimum edge crossing the cut.
- Then, $w(T') \le w(T)$ due to the following:
 - w(e) = edge's weight, & w(T) = the cost of a tree T

$$w(T') = w(T) - w(e') + w(e) \le w(T)$$

- This leads to
 - Case 1) If w(e) = w(e'), then w(T') = w(T). Because T is minimal, T' is also minimal. $\Rightarrow T$ is replaceable with $T' \Rightarrow$ the edge e is in MST.
 - Case 2) If w(e) < w(e'), then w(T') < w(T) which contradicts to that T is minimal \Rightarrow the edge e is in MST by contradiction.
- Thus, adding e to A is not damaged for constructing MST, implying that e is safe for A.

Optimal Sub-structure of MST

- □ Claim: the optimal (minimum spanning) tree is composed of optimal (MS) sub-trees.
 - Consider an edge e = (u, v) in an MST T.
 - Removing e partitions T into T_1 and T_2 , i.e., $w(T) = w(T_1) + w(e) + w(T_2)$
 - Then, T_1 and T_2 are MSTs of G_1 and G_2 , respectively,
 - Where G_i be an induced sub-graph of nodes in T_i
 - \circ Because there cannot be better sub-trees than T_1 and T_2 , otherwise T would be sub-optimal.

Optimal sub-structure of MST

Generic MST Algorithm

□ Pseudocode

```
def Generic-MST(G):
    Graph A ← Ø
    while A is not a spanning tree:
        find a safe edge e for A
        add e to A
    return A
```

- \square Claim: A has n-1 safe edges forming an MST of G.
 - (Spanning tree) See the appendix.
 - (Minimality) Greedily selecting a safe edge is safe for the optimality by the Safe edge theorem. By inductively selecting a safe edge of each subproblem, the selected safe edges don't harm the optimality.

Kruskal's Alg. To Generic MST

☐ Connection of Kruskal's alg. to generic MST

```
def kruskal(G):
    T \leftarrow list() \Rightarrow A

for each edge (u, v) \in sorted(E):
    if (u, v) doesn't form a cycle in T:
    add (u, v) to T \Rightarrow safe edge for <math>A
```


- For (u, v), let $u \in U$ (a comp.) and $v \in V U$ (another comp.)
- Let A be a tree in U; then, e = (u, v) is the minimum edge crossing the cut (U, V U), implying it's safe for A.
- T has n-1 safe edges with the same reason as Generic MST.
- In conclusion, Kruskal's algorithm is correct by Generic MST.

Prim's Alg. To Generic MST

☐ Connection of Prim's alg. to generic MST

```
def prim(G, r):
    S \leftarrow \emptyset \Rightarrow A
......

while S is not V:
    u \leftarrow \text{extract-min}(V - S, c)
    S \leftarrow S \cup \{u\} \Rightarrow \text{safe edge } (*, u) \text{ for } A \text{ where } * \leftarrow \text{parent[u]}
    for each v in N_u:
        if v \in V - S and w(u, v) < c[v]:
        c[v] \leftarrow w(u, v)
        parent[v] \leftarrow u
```


- Let S be U, and A be a tree in U; then, the selected edge is the minimum edge crossing the cut (S, V S), implying it's safe for A.
- \boldsymbol{S} has n-1 safe edges with the same reason as Generic MST.
- In conclusion, Prim's algorithm is correct by Generic MST.

Outline

☐ Complexity analysis of Prim's algorithm

☐ Discussion on MST algorithms

☐ Correctness analysis of MST algorithms

☐ Single source shortest path problem

☐ Dijkstra's algorithm

Shortest Path

☐ Shortest path between two nodes

- Cost of the path = the sum of weights of its edges
- Shortest path has the minimum cost

The shortest path from s to t is $s \rightarrow u \rightarrow t$, and its distance is 23

Single Source Shortest Path

☐ Shortest paths from a single source

- Let's find the shortest paths from a single source node s to all other nodes (input graph G is connected and weighted).
- These paths result in **shortest-path tree** rooted at s

Shortest paths from source node s to all other nodes

Why Important?

☐ Used in various algorithms & applications on graphs

Network routing protocols

 Send information over the internet, from my computer to all over the world; how should we send information quickly?

Geographic information systems

Find the shortest path between two locations

Road network in a map

How To Find Shortest Paths?

■ Naïve solution

- Enumerate all possible paths (w/o cycle) b.t.w. two nodes.
- If the graph is complete, # of those paths is O(n!).
 - \circ # of paths between two nodes with extra k nodes is $\binom{n-2}{k}$
 - # of orders of k nodes in a path is k!
 - # of all possible paths is

Euler's number
$$e = \sum_{j=0}^{\infty} \frac{1}{j!} = 2.718 \cdots$$

$$\sum_{k=0}^{n-2} {n-2 \choose k} k! = \sum_{k=0}^{n-2} \frac{(n-2)!}{(n-2-k)!} = (n-2)! \sum_{j=0}^{n-2} \frac{1}{j!} < (n-2)! \ e \in O(n!)$$

☐ Thus, it's impractical! How to find them quickly?

Outline

☐ Complexity analysis of Prim's algorithm

☐ Discussion on MST algorithms

☐ Correctness analysis of MST algorithms

☐ Single source shortest path problem

☐ Dijkstra's algorithm

Dijkstra's Algorithm

☐ Efficiently find single source shortest paths

- Input: a weighted graph G & a source node s
- Output: shortest paths from s to all other nodes
 - Result in the shortest path tree rooted at s
- Condition: G should have non-negative weights on edges
 - It could fail if the graph has negative edge weights

☐ Dijkstra's algorithm

- Performs in $O(m \log n)$ time
 - if it uses min heap
- Proposed by Edsger Dijkstra in 1956
- Similar to Prim's algorithm

Edsger W. Dijkstra

Optimal Sub-structure of SSPS

☐ A sub-path of a shortest path is also shortest!

- Let $P: s \rightsquigarrow t$ be the shortest path from s to t
- Then, the sub-path $P_1: s \rightsquigarrow x$ in P is shortest
 - Assume P_1 is not shortest \Rightarrow There is another shortest path $P_2: s \rightsquigarrow x$
 - $P_3: P_2 \cup x \rightsquigarrow t$ is shorter than P, which contradicts to P is shortest
 - Thus, "assume P_1 is not shortest" is false $\Rightarrow P_1$ is shortest

 Implies that if we know a shortest sub-path, we can find another shortest path built upon the sub-path

Dijkstra's Intuition

□ Incrementally grow shortest paths starting from source node s (i.e., grow the shortest path tree S)

Dijkstra's Algorithm (1)

- \Box Incrementally grow shortest paths starting from source node s (i.e., grow the shortest path tree S)
 - Step 1. maintain two sets S and V S
 - \circ \boldsymbol{S} is a set of nodes consisting of the current shortest path tree
 - $\circ V S$ is a set of remaining nodes where V is set of nodes in G

Dijkstra's Algorithm (2)

- \Box Incrementally grow shortest paths starting from source node s (i.e., grow the shortest path tree S)
 - Step 2. Pick a crossing edge (t, u) from S to V S such that the distance of path $s \rightsquigarrow t \rightarrow u$ is minimized
 - \circ Green edges are crossing edges between S and V-S

Dijkstra's Algorithm (3)

- \Box Incrementally grow shortest paths starting from source node s (i.e., grow the shortest path tree S)
 - Step 2. Pick a crossing edge (t, u) from S to V S such that the distance of path $s \rightsquigarrow t \rightarrow u$ is minimized
 - Among the crossing edges, the blue edge minimizes the distance.

Dijkstra's Algorithm (4)

- □ Incrementally grow shortest paths starting from source node s (i.e., grow the shortest path tree S)
 - Step 2 leads to moving the other endpoint of the edge into S
 - The shortest path tree is expanded!
 - Repeat Step 2 until S becomes V

Example (1)

- ☐ Step 1. Maintain two node sets
 - Initialize $D[s] = 0 \& D[v] = \infty$ for all other nodes v
 - Mark all nodes as "not-sure" (in V S)

D[v] Estimate of a node

- If $v \in S$, D[v] is the minimum (true) distance from s to v.
- If $v \in V S$, D[v] is the smallest (estimate) distance from s to v, checked so far.

Red: "not-sure"
Blue: "sure"

Example (2)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-1. Pick a "not-sure" node u with the smallest estimate D[u]

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (3)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-2. Update the estimate D[v] to all not-sure neighbors v of node u if (u, v) makes a shorter path to v
 - $D[v] = \min(D[v], D[u] + w(u, v)) \#$ called relaxation

D[v] Estimate of a node

Red: "not-sure"

Example (4)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-3. Move the other node u of the edge into S by marking the selected node u as "sure"

Red: "not-sure"

Estimate of a node

Example (5)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-1. Pick a "not-sure" node u with the smallest estimate D[u]

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (6)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-2. Update the estimate D[v] to all not-sure neighbors v of node u if (u, v) makes a shorter path to v
 - $D[v] = \min(D[v], D[u] + w(u, v)) \#$ called relaxation

D[v] Estimate of a node

Red: "not-sure"

Example (7)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-3. Move the other node u of the edge into S by marking the selected node u as "sure"

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (8)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-1. Pick a "not-sure" node u with the smallest estimate D[u]

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (9)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-2. Update the estimate D[v] to all not-sure neighbors v of node u if (u, v) makes a shorter path to v
 - $D[v] = \min(D[v], D[u] + w(u, v)) \#$ called relaxation

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (10)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-3. Move the other node u of the edge into S by marking the selected node u as "sure"

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (10)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-1. Pick a "not-sure" node u with the smallest estimate D[u]

Red: "not-sure"

Example (10)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-2. Update the estimate D[v] to all not-sure neighbors v of node u if (u, v) makes a shorter path to v
 - $D[v] = \min(D[v], D[u] + w(u, v)) \#$ called relaxation

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (11)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-3. Move the other node u of the edge into S by marking the selected node u as "sure"

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (12)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-1. Pick a "not-sure" node u with the smallest estimate D[u]

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (12)

- \square Step 2. Pick a crossing edge from S to V-S
 - Step 2-3. Move the other node u of the edge into S by marking the selected node u as "sure"

 $\frac{D[v]}{D[v]}$ Estimate of a node

Red: "not-sure"

Example (12)

☐ Final shortest path tree with distances

By Dijkstra's algorithm

 $\frac{D[v]}{}$ Estimate of a node

Red: "not-sure"

Dijkstra's Algorithm

☐ Pseudocode (See the Appendix for details)

```
def dijkstra(G, s):
                                                                   Step 1. Initialization
                              # set of sure nodes
     S \leftarrow \emptyset
                                                                   Maintain two node sets
     for each v in V:
                                                                   S (sure) and V - S (not-sure)
          D[v] \leftarrow \infty
     D[s] \leftarrow 0 \& parent[s] \leftarrow s
     while S is not V:
                                                                   Step 2-1. Pick a "not-sure"
          u \leftarrow \text{extract-min}(V - S, D)
                                                                   node (smallest estimate)
          for each v in N_u:
                                                                   Step 2-2. Update all "not-
               if v \in V - S and D[u] + w(u, v) < D[v]:
                                                                   sure" neighbors of the
                    D[v] \leftarrow D[u] + w(u, v) # relaxation
                                                                   selected node u
                    parent[v] \leftarrow u  # trace
                                                                   Step 2-3. Mark the selected
          S \leftarrow S \cup \{u\}
                                                                   node u as "sure"
                                                                   (can be move up after Step 2-1)
```

return D and parent

The complexities and implmentation of Dijkstra's algorithm are the same as those of Prim's one

What You Need To Know

☐ Discussion on minimum spanning tree

- Complexity analysis of Prim's algorithm
- Discussion on MST algorithms

☐ Single source shortest path

• Given a weighted graph G and a source node s, it is to find the shortest paths from s to all other nodes

☐ Dijkstra's algorithm (negative weights aren't allowed)

- Incrementally grow shortest paths starting from source node s (i.e., grow the shortest path tree S)
 - Similar to Prim's algorithm
- Time complexity is $O(m \log n)$ using min heap

In Next Lecture

- ☐ Discussion on Dijkstra's algorithm
 - Implementation details
 - Discussions

- ☐ Single source shortest path with negative edges
 - Bellman-Ford's algorithm

Thank You

Appendix: Generic MST (1)

- \square Claim: Generic MST produces a spanning tree of n-1 edges
 - Initially, Generic MST starts with n groups for each node as the below example.
 - One safe edge merges two groups into one group

Appendix: Generic MST (2)

- \blacksquare Lemma 1: n-h groups remains in G with h safe edges.
 - Base case: If h = 0 (no safe edges), there are n groups in G.
 - Inductive step: Assume the lemma holds for h = k safe edges.
 - Given k + 1 safe edges, k safe edges make n k groups remain.
 - One remaining safe edge will merge two groups into one, meaning # of groups decreases by 1; thus, there will be n-k-1 groups.
 - A safe edge is crossing two groups by its definition; thus, adding it will merge the groups.
 - This means that the lemma also holds for k+1 safe edges.
 - \blacksquare Thus, the lemma holds for any h safe edges.

Appendix: Generic MST (3)

- \Box Claim: Generic MST produces a spanning tree of n-1 edges
 - Thus, Generic MST terminates when one group remains in G, meaning it selects h = n 1 safe edges by Lemma 1.
 - All n nodes are inlucded in the final group, and connected with n-1 edges, which satisfies the definition of spanning tree.

