Sta347 Probability I

Selected Practice Problems for Final Dec. 10, 2013

- (1) Let X have the density function $f(x) = cxe^{-2x}$, $0 \le x < \infty$. And f(x) = 0 otherwise.
 - (a). Find the value of c.
 - (b). Give the mean and the variance of X.
 - (c). Give the moment generating function of X.
- (2) Let U_1, U_2 and U_3 be i.i.d. Uniform[0,1] random variables. Find $P(U_1 + U_2 > U_3)$.
- (3) The joint density function of X and Y is given by $f(x,y) = 6x^2y$ if $0 \le x \le 1$ and $0 \le y \le 1$. And f(x,y) = 0 otherwise.
 - (a). Find the mean and variance of X.
 - (b). Find the mean and variance of Y.
 - (c). Find the conditional expectation of X given Y.
- (4) Let the region $A = \{(x,y) \in \mathbb{R}^2 : -1 \le x \le 1, 0 \le y \le 1, y-x \le 1, y+x \le 1\}$. Let (X,Y) be the random vector which distributes uniformly on A.
 - (a). Find the marginal density of X.
 - (b). Find the marginal density of Y.
 - (c). Find the conditional density function of Y given X.
 - (d). Find $P(X Y \ge 0)$.
- (5) Let U_1 and U_2 be i.i.d. Uniform[0,1] random variables. Find the density function of $Y = U_1U_2$.
- (6) Suppose that X_1, X_2, \dots, X_n are i.i.d. random variables each with mean μ_1 and variance σ_1^2 . Suppose that Y_1, Y_2, \dots, Y_n are i.i.d. random variables each with mean μ_2 and variance σ_2^2 . Show that, as $n \to \infty$, the random variable

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2 + \sigma_2^2)/n}}$$

converges in distribution to a standard normal random variable.

(7) Let X be a chi-squared distribution with n degrees of freedom. In other words, X has density

$$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}, \quad x \ge 0$$

and f(x) = 0 otherwise. Show that the random variable $(X - n)/\sqrt{2n}$ converges in distribution to a standard normal random variable.

(8) For a sequence of vector random variables $(X_i, Y_i)_{i=1}^n$, let $F_i(x, y)$ be the cumulative distribution function of (X_i, Y_i) . We say (X_i, Y_i) converges in distribution to a vector random variable (X, Y) with cumulative distribution function F(x, y) if for any $(x_0, y_0) \in \mathbb{R}^2$ such that F(x, y) is continuous at (x_0, y_0) , we have $F_i(x_0, y_0) \to F(x_0, y_0)$. Prove that if (X_i, Y_i) converges in distribution to (X, Y), then X_i converges in distribution to Y.