Model selection

Timothy Daley

November 29, 2016

Book change for this week

This week we will be using the book An Introduction to Statistical Learning with Applications in R, available for free at [http://www-bcf.usc.edu/~gareth/ISL/]. The material for this week is covered in chapter 6.

Multiple regression: regress everything!

► Suppose we have a bunch of data and we just run a regression on everything.

Multiple regression: regress everything!

Table 1: Fitting linear model: $log(mpg) \sim cylinders + displacement + horsepower + weight + acceleration + year + origin$

	Estimate	Std. Error	t value	Pr(> t)
cylinders	-0.02795	0.01157	-2.415	0.01619
displacement	0.0006362	0.000269	2.365	0.01852
horsepower	-0.001475	0.0004935	-2.989	0.002984
weight	-0.0002551	2.334e-05	-10.93	2.12e-24
acceleration	-0.001348	0.003538	-0.381	0.7034
year	0.02958	0.001824	16.21	2.13e-45
origin	0.04071	0.009955	4.089	5.276e-05
(Intercept)	1.751	0.1662	10.53	5.845e-23
R^2	0.87951			

Multiple regression: regress everything!

How to choose which variables are important?

► Method 1: Successively remove variables that are not important.

Est	imate Std	. Error t v	alue Pr(> t)
cylinders	-0.02795	0.01157	-2.415	0.01619*
displacement	0.0006362	0.000269	2.365	0.01852*
horsepower	-0.001475	0.0004935	-2.989	0.002984*
weight -0.0	002551 2.3	34e-05 -10	.93 2.1	2e-24*
acceleration	-0.001348	0.003538	-0.381	0.7034
year 0.0	2958 0.	001824 16	.21 2.1	3e-45*
origin 0.0	4071 0.	009955 4.	089 5.27	6e-05*
(Intercept)	1.751	0.1662	10.53	5.845e-23*
$R^2 0.8$	7951			

Removing non-significant variables

Removing non-significant variables

Table 3: Fitting linear model: $log(mpg) \sim cylinders + displacement + horsepower + weight + year + origin$

	Estimate	Std. Error	t value	Pr(> t)
cylinders	-0.02772	0.01154	-2.402	0.01679*
displacement	0.0006466	0.0002673	2.419	0.01601*
horsepower	-0.001359	0.0003876	-3.505	0.0005099*
weight	-0.0002594	2.044e-05	-12.69	4.433e-31*
year	0.02963	0.001817	16.31	7.782e-46*
origin	0.04067	0.009944	4.09	5.247e-05*
(Intercept)	1.723	0.1493	11.54	1.174e-26*
R^2	0.87946			

Removing non-significant variables

Im(log(mpg) ~ cylinders + displacement + horsepower + weight + year + origi ...

How to choose which variables are important?

- ► Method 2:
 - Start with nothing (intercept only)
 - ► Test adding variables one at a time
 - Add most significant
 - Repeat until no variables are significant

► Individual regression estimates:

	Estimate	Std. Error	t value	Pr(>
cylinders	-0.1648	0.005678	-29.03	1.675e-99
displacement	-0.00277	8.569e-05	-32.37	1.478e-112
horsepower	-0.00733	0.0002494	-29.41	5.393e-101
weight	-0.00035	9.79e-06	-35.81	2.392e-125*
acceleration	0.05516	0.005581	9.884	1.045e-20
year	0.05329	0.003817	13.96	3.28e-36
origin	0.2366	0.0177	13.37	8.27e-34

▶ Add weight, now the other added regression coefficients are:

	Estimate	Std. Error	t value	Pr(>
cylinders	-0.04193	2.182e-05	-12.6	8.793e-31
displacement	-0.00092	0.000216	-4.262	2.549e-05
horsepower	-0.00256	0.00041	-6.231	1.205e-09
acceleration	0.01232	0.003261	3.777	0.0001835
year	0.03129	0.00177	17.68	8.933e-52*
origin	0.03096	0.01265	2.448	0.01481

► Add weight and year, now the other added regression coefficients are:

	Estimate	Std. Error	t value	Pr(>
cylinders	-0.01872	0.00831	-2.253	0.02483
displacement	-0.00024	0.000169	-1.429	0.1537
horsepower	-0.00087	0.000335	-2.612	0.009355
acceleration	0.0043	0.00251	1.714	0.08735
origin	0.03081	0.009372	3.288	0.001103*

► Add weight, year, and origin, now the other added regression coefficients are:

	Estimate	Std. Error	t value	Pr(>
cylinders	-0.01559	0.008287	-1.882	0.06064
displacement	-0.00012	0.000173	-0.6686	0.5042
horsepower	-0.00104	0.000332	-3.116	0.001968*
acceleration	0.00466	0.002479	1.881	0.06077

Final model: weight, year, origin, and horsepower

	Estimate	Std. Error	t value	Pr(>
weight	-0.00025	1.58e-05	-15.89	3.804e-44
year	0.0295	0.001821	16.2	1.941e-45
origin	0.03463	0.009349	3.704	0.0002434
horsepower	-0.001034	0.0003323	-3.116	0.001968
(Intercept)	1.658	0.148	11.2	1.989e-25

Adding vs subtracting variables

- Subtracting variables:
 - ► Final model:
 - ▶ log(mpg) ~ cylinders + displacement + horsepower + weight + year + origin
- Adding variables:
 - ► Final model:
 - ▶ log(mpg) ~ weight + year + origin + horsepower
- Which model is better?

Adjusted R^2

- R² always increases with the number of variables
- Penalize R² for the number of variables
- adjusted $R^2 = R^2 (1 R^2) \frac{p}{n-p-1}$
 - n is the number of observations (sample size)
 - p is the number of variables in regression

Mallow's C_p

- $C_p = \frac{1}{p} (RSS + 2p\hat{\sigma}^2)$
 - ► RSS = residual sum of squares = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - $ightharpoonup \hat{\sigma}^2$ is the estimated variance of the residuals
- \triangleright Smaller C_p is better.

AIC: Akaike Information Criterion

- ▶ In general: AIC = $2p 2 \log L$
- ► For linear regression: $AIC = 2p + n \log RSS$
- ▶ With more predictors, *RSS* gets smaller while *p* gets larger
- ► Smaller AIC is preferable
- $ightharpoonup C_p$ is a special case of AIC.

BIC: Bayesian Information Criterion

- ▶ In general: BIC = $p \log n 2 \log L$
- ▶ For linear regression: BIC = $p \log n + n \log(RSS/n)$
- ▶ Like AIC but larger penalty on number of parameters
 - ▶ Tends to pick smaller models than AIC

Regularization methods

In linear models the goal is to minimize the residual sum of squares

$$RSS = \sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij} \right)^{2}$$

- ▶ What if we add a penalty term for the β_j 's?
 - ▶ Don't include β_0 since we could just set $\beta_0 = \bar{y}$ and de-mean the y's

Ridge regression

▶ Ridge regression adds a penalty proportional to β_i^2 :

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- ▶ This "shrinks" the β_j 's towards 0
 - But not all the way.

LASSO (least absolute shrinkage and selection operator)

▶ Lasso adds a penalty proportional to $|\beta_j|$:

$$\sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij} \right)^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|$$

▶ This "shrinks" the β_j 's to be 0

How to choose λ ?

- $\lambda = 0$ is equivalent to plain regression
- ▶ $\lambda = \infty$ will make all $\beta_j = 0$.
- ▶ Want $0 < \lambda < \infty$, but what is optimal?