From Linear Models to Gaussian Processes

Mark van der Wilk

Department of Computing Imperial College London

January 23, 2023

- ► The prior has a large effect on the predictions & we needed a sensible prior.
- Polynomial bases didn't lead to a sensible prior, squared exponential did.
- We needed many basis functions to ensure sensible uncertainty.

- The prior has a large effect on the predictions & we needed a sensible prior.
- Polynomial bases didn't lead to a sensible prior, squared exponential did.
- ► We needed many basis functions to ensure sensible uncertainty.

- The prior has a large effect on the predictions & we needed a sensible prior.
- Polynomial bases didn't lead to a sensible prior, squared exponential did.
- ► We needed many basis functions to ensure sensible uncertainty.

- The prior has a large effect on the predictions & we needed a sensible prior.
- Polynomial bases didn't lead to a sensible prior, squared exponential did.
- ► We needed many basis functions to ensure sensible uncertainty.

Today

We will see:

- By considering computational cost, we derive the Gaussian process view of BLR.
- ▶ This is the kernel trick!
- ▶ What is a Gaussian process.
- ► How to find posteriors in GP models.

- ► Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- ► Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- ► Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- ► Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- ► Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- ► Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- ► Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- ► Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- ► Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

- Non-local basis functions give uncertainty everywhere (like polynomials).
- ▶ But uncertainty decreases non-locally!
- ► For *M* bases, when we condition on *M* points: full certainty!

Exercise: For a model with *M* bases, show that after conditioning on *M* points (zero variance likelihood) leads to 1) completely certain predictions, 2) certain posterior.

For Gaussian models, finding conditionals can easily be done by finding the **joint**, and then applying the **Gaussian conditioning rule**.

$$\theta \sim \mathcal{N}(0, I_M), \qquad \epsilon \sim \mathcal{N}(0, I_N \sigma^2), \qquad [\Phi(X)]_{nm} = \phi_m(\mathbf{x}_n).$$
 (1)

$$\theta \in \mathbb{R}^M$$
, $\mathbf{y} \in \mathbb{R}^N$, $\epsilon \in \mathbb{R}^N$, $\Phi(X) \in \mathbb{R}^{N \times M}$, $X \in \mathbb{R}^{N \times D}$. (2)

$$\begin{bmatrix} \boldsymbol{\theta} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_M & 0 \\ \Phi(\mathbf{X}) & \mathbf{I}_n \end{bmatrix} \begin{bmatrix} \boldsymbol{\theta} \\ \boldsymbol{\epsilon} \end{bmatrix}$$
 (3)

$$\implies p\left(\begin{bmatrix}\boldsymbol{\theta}\\\mathbf{y}\end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix}\boldsymbol{\theta}\\\mathbf{y}\end{bmatrix}; 0, \begin{bmatrix}\boldsymbol{I}_{M} & \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} \\ \boldsymbol{\Phi}(\boldsymbol{X}) & \boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} + \sigma^{2}\boldsymbol{I}_{N}\end{bmatrix}\right) \quad (4)$$

Using:

- ► Linear relationships between Gaussian RVs gives Gaussian joint.
 - Write joint Gaussian as a linear transformation of RVs with known independent distributions.
- $\mathbb{E}_{\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma})}[A\mathbf{x}] = A\boldsymbol{\mu}$, and $\mathbb{V}_{\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma})}[A\mathbf{x}] = A\boldsymbol{\Sigma}A^{\mathsf{T}}$.

Gaussian conditioning formula (will be provided in exam):

$$p\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}; \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}\right)$$
(5)

$$p(\mathbf{x}_2|\mathbf{x}_1) = \mathcal{N}\left(\mathbf{x}_2; \boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{x}_1 - \boldsymbol{\mu}_1), \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\right)$$
(6)

 $p(\mathbf{x}_1|\mathbf{x}_2)$ is similar, and can be obtained by reordering the vector to $\begin{bmatrix} \mathbf{x}_2 & \mathbf{x}_1 \end{bmatrix}^\mathsf{T}$. You can find the covariance matrix for this ordering in terms of the covariance blocks that are given above.

Gaussian conditioning formula (will be provided in exam):

$$p\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}; \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}\right)$$
(5)

$$p(\mathbf{x}_2|\mathbf{x}_1) = \mathcal{N}\left(\mathbf{x}_2; \boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{x}_1 - \boldsymbol{\mu}_1), \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}\right)$$
(6)

 $p(\mathbf{x}_1|\mathbf{x}_2)$ is similar, and can be obtained by reordering the vector to $\begin{bmatrix} \mathbf{x}_2 & \mathbf{x}_1 \end{bmatrix}^\mathsf{T}$. You can find the covariance matrix for this ordering in terms of the covariance blocks that are given above.

$$p\left(\begin{bmatrix} \boldsymbol{\theta} \\ \mathbf{y} \end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\theta} \\ \mathbf{y} \end{bmatrix}; 0, \begin{bmatrix} \boldsymbol{I}_{M} & \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} \\ \boldsymbol{\Phi}(\boldsymbol{X}) & \boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} + \sigma^{2}\boldsymbol{I}_{N} \end{bmatrix}\right)$$
(7)
$$p(\boldsymbol{\theta}|\mathbf{y}) = \mathcal{N}\left(\boldsymbol{\theta}; \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} \left[\boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} + \sigma^{2}\boldsymbol{I}_{N}\right]^{-1}\mathbf{y}\right)$$

$$\mathbf{I}_{M} - \Phi(\mathbf{X})^{\mathsf{T}} \left[\Phi(\mathbf{X}) \Phi(\mathbf{X})^{\mathsf{T}} + \sigma^{2} \mathbf{I}_{N} \right]^{-1} \Phi(\mathbf{X})$$
 (8)

Looks complicated. But we can compute it!

$$p(\boldsymbol{\theta}|\mathbf{y}) = \mathcal{N}\left(\boldsymbol{\theta}; \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} \left[\boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} + \sigma^{2} \boldsymbol{I}_{N}\right]^{-1} \mathbf{y}\right)$$
$$\boldsymbol{I}_{M} - \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} \left[\boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} + \sigma^{2} \boldsymbol{I}_{N}\right]^{-1} \boldsymbol{\Phi}(\boldsymbol{X})\right)$$
(9)

What is the computational cost?

 $¹N \times N$ matrix multiplication and matrix inversion can both be $O(N^{2.373})$, but we assume $O(N^3)$. Most important is that we distinguish these expensive operations from cheaper ones that are $O(N^2)$.

Looks complicated. But we can compute it!

$$p(\boldsymbol{\theta}|\mathbf{y}) = \mathcal{N}\Big(\boldsymbol{\theta}; \boldsymbol{\Phi}(X)^{\mathsf{T}} \Big[\boldsymbol{\Phi}(X)\boldsymbol{\Phi}(X)^{\mathsf{T}} + \sigma^{2}\boldsymbol{I}_{N}\Big]^{-1}\mathbf{y}$$
$$\boldsymbol{I}_{M} - \boldsymbol{\Phi}(X)^{\mathsf{T}} \Big[\boldsymbol{\Phi}(X)\boldsymbol{\Phi}(X)^{\mathsf{T}} + \sigma^{2}\boldsymbol{I}_{N}\Big]^{-1}\boldsymbol{\Phi}(X)\Big) \qquad (9)$$

What is the computational cost? We assume costs of simple linear algebra algorithms, even though more efficient algorithms exist¹.

 Φ(X): O(NMD) — Assume linear time cost for each dimension of input, then need to compute each basis function for each data point.

 $^{^{1}}N \times N$ matrix multiplication and matrix inversion can both be $O(N^{2.373})$, but we assume $O(N^{3})$. Most important is that we distinguish these expensive operations from cheaper ones that are $O(N^{2})$.

Looks complicated. But we can compute it!

$$p(\boldsymbol{\theta}|\mathbf{y}) = \mathcal{N}\Big(\boldsymbol{\theta}; \boldsymbol{\Phi}(X)^{\mathsf{T}} \Big[\boldsymbol{\Phi}(X)\boldsymbol{\Phi}(X)^{\mathsf{T}} + \sigma^{2}\boldsymbol{I}_{N}\Big]^{-1}\mathbf{y}$$
$$\boldsymbol{I}_{M} - \boldsymbol{\Phi}(X)^{\mathsf{T}} \Big[\boldsymbol{\Phi}(X)\boldsymbol{\Phi}(X)^{\mathsf{T}} + \sigma^{2}\boldsymbol{I}_{N}\Big]^{-1}\boldsymbol{\Phi}(X)\Big) \qquad (9)$$

What is the computational cost? We assume costs of simple linear algebra algorithms, even though more efficient algorithms exist¹.

- $\Phi(X)$: O(NMD) Assume linear time cost for each dimension of input, then need to compute each basis function for each data point.
- $\Phi(X)\Phi(X)^{\mathsf{T}}$: $O(N^2M)$ Matrix multiplication

 $^{^{1}}N \times N$ matrix multiplication and matrix inversion can both be $O(N^{2.373})$, but we assume $O(N^{3})$. Most important is that we distinguish these expensive operations from cheaper ones that are $O(N^{2})$.

Looks complicated. But we can compute it!

$$p(\boldsymbol{\theta}|\mathbf{y}) = \mathcal{N}\Big(\boldsymbol{\theta}; \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} \big[\boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} + \sigma^{2}\boldsymbol{I}_{N}\big]^{-1}\mathbf{y}$$
$$\boldsymbol{I}_{M} - \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} \big[\boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} + \sigma^{2}\boldsymbol{I}_{N}\big]^{-1}\boldsymbol{\Phi}(\boldsymbol{X})\Big) \qquad (9)$$

What is the computational cost? We assume costs of simple linear algebra algorithms, even though more efficient algorithms exist¹.

- $\Phi(X)$: O(NMD) Assume linear time cost for each dimension of input, then need to compute each basis function for each data point.
- $\Phi(X)\Phi(X)^{\mathsf{T}}$: $O(N^2M)$ Matrix multiplication
- $\left[\Phi(X)\Phi(X)^{\mathsf{T}} + \sigma^2 I_N\right]^{-1}$ $O(N^3)$ Matrix inversion (or Cholesky)

 $^{^{1}}N \times N$ matrix multiplication and matrix inversion can both be $O(N^{2.373})$, but we assume $O(N^{3})$. Most important is that we distinguish these expensive operations from cheaper ones that are $O(N^{2})$.

Woodbury Identity (exam skill)

Usually $M \ll N$, so bottleneck: $\left[\Phi(X)\Phi(X)^{\mathsf{T}} + \sigma^2 I_N\right]^{-1} - O(N^3)$

- ▶ Annoying that we have to compute an $O(N^3)$ cost inverse when the matrix we want is only $\mathbb{R}^{M \times M}$.
- ▶ Also, note that $\Phi(X)\Phi(X)^{\mathsf{T}}$ is at most rank M! Low rank matrices are usually cheaper to deal with!

Woodbury Identity (exam skill)

Usually $M \ll N$, so bottleneck: $\left[\Phi(X)\Phi(X)^{\mathsf{T}} + \sigma^2 I_N\right]^{-1} - O(N^3)$

- ▶ Annoying that we have to compute an $O(N^3)$ cost inverse when the matrix we want is only $\mathbb{R}^{M \times M}$.
- Also, note that $\Phi(X)\Phi(X)^{\mathsf{T}}$ is at most rank M! Low rank matrices are usually cheaper to deal with!

Woodbury Identity²:

$$\underbrace{(A + UBV)^{-1}}_{N \times N} = A^{-1} - A^{-1}U \underbrace{(B^{-1} + VA^{-1}U)^{-1}}_{M \times M} VA^{-1}$$
(10)

$$\boldsymbol{A} \in \mathbb{R}^{N \times N}$$
, $\boldsymbol{U} \in \mathbb{R}^{N \times M}$, $\boldsymbol{V} \in \mathbb{R}^{M \times N}$, $\boldsymbol{B} \in \mathbb{R}^{M \times M}$ (11)

²Matrix cookbook recipe 156

BLR: Cheap Posterior Mean

Let's start with the mean:

$$\boldsymbol{\mu}_{\boldsymbol{\theta}} = \Phi(\boldsymbol{X})^{\mathsf{T}} \left[\Phi(\boldsymbol{X}) \Phi(\boldsymbol{X})^{\mathsf{T}} + \sigma^{2} \boldsymbol{I}_{N} \right]^{-1} \mathbf{y}$$
 (12)

and take $A = \sigma^2 I_N$, $U = \Phi(X)$, $B = I_M$, $V = \Phi(X)^T$:

$$\left[\Phi(X)\Phi(X)^{\mathsf{T}} + \sigma^{2} \mathbf{I}_{N}\right]^{-1} = \frac{\mathbf{I}_{N}}{\sigma^{2}} - \frac{\Phi(X)}{\sigma^{2}} \left[\mathbf{I}_{M} + \frac{\Phi(X)^{\mathsf{T}}\Phi(X)}{\sigma^{2}}\right]^{-1} \frac{\Phi(X)^{\mathsf{T}}}{\sigma^{2}}$$

$$\therefore \boldsymbol{\mu}_{\boldsymbol{\theta}} = \sigma^{-2} \Phi(\boldsymbol{X})^{\mathsf{T}} \left[\boldsymbol{I}_{N} - \frac{\Phi(\boldsymbol{X})}{\sigma^{2}} \left[\boldsymbol{I}_{M} + \sigma^{-2} \Phi(\boldsymbol{X})^{\mathsf{T}} \Phi(\boldsymbol{X}) \right]^{-1} \Phi(\boldsymbol{X})^{\mathsf{T}} \right] \mathbf{y} \\
= \left[\boldsymbol{I}_{M} - \sigma^{-2} \Phi(\boldsymbol{X})^{\mathsf{T}} \Phi(\boldsymbol{X}) \left[\boldsymbol{I}_{M} + \sigma^{-2} \Phi(\boldsymbol{X})^{\mathsf{T}} \Phi(\boldsymbol{X}) \right]^{-1} \right] \sigma^{-2} \Phi(\boldsymbol{X})^{\mathsf{T}} \mathbf{y} \\
= \left[\left[\boldsymbol{I}_{M} + \underline{\sigma^{-2}} \Phi(\boldsymbol{X})^{\mathsf{T}} \Phi(\boldsymbol{X}) \right] - \underline{\sigma^{-2}} \Phi(\boldsymbol{X})^{\mathsf{T}} \Phi(\boldsymbol{X}) \right] \cdot \left[\boldsymbol{I}_{M} + \sigma^{-2} \Phi(\boldsymbol{X})^{\mathsf{T}} \Phi(\boldsymbol{X}) \right]^{-1} \sigma^{-2} \Phi(\boldsymbol{X})^{\mathsf{T}} \mathbf{y} \tag{13}$$

BLR: Cheap Posterior Mean

$$\boldsymbol{\mu}_{\boldsymbol{\theta}} = \left[\boldsymbol{I}_{M} + \sigma^{-2} \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} \boldsymbol{\Phi}(\boldsymbol{X}) \right]^{-1} \sigma^{-2} \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}} \mathbf{y}$$
 (14)

Now we can compute in:

- ▶ $\Phi(X)$: O(NMD) As earlier.
- ▶ $\Phi(X)^{\mathsf{T}}\Phi(X)$: $O(M^2N)$ Matrix multiplication
- $[I_M + \Phi(X)^T \Phi(X)]^{-1} O(M^3)$ Matrix inversion (or Cholesky)

So when $M \ll N$, we now have $O(NM^2)$.

BLR: Cheap Posterior Variance

We can similarly apply Woodbury to the posterior variance, just slightly differently.

Always remember the goal! From large inverse, to small inverse.

$$\Sigma_{\theta} = \mathbf{I}_{M} - \Phi(\mathbf{X})^{\mathsf{T}} \left[\Phi(\mathbf{X}) \Phi(\mathbf{X})^{\mathsf{T}} + \sigma^{2} \mathbf{I}_{N} \right]^{-1} \Phi(\mathbf{X})$$
 (15)

We take $A^{-1} = I_M$, $U = \Phi(X)^T$, $B^{-1} = \sigma^2 I_M$, $V = \Phi(X)^T$ to obtain:

$$\Sigma_{\theta} = \left[I_M + \sigma^{-2} \Phi(X)^{\mathsf{T}} \Phi(X) \right]^{-1}$$
 (16)

Also computable in $O(NM^2)$!

Two Ways to Compute

Method 1, cost $O(N^3 + N^2M + NMD)$:

$$p(\boldsymbol{\theta}|\mathbf{y}) = \mathcal{N}\left(\boldsymbol{\theta}; \Phi(X)^{\mathsf{T}} \left[\Phi(X)\Phi(X)^{\mathsf{T}} + \sigma^{2} \mathbf{I}_{N}\right]^{-1} \mathbf{y}\right)$$
$$\mathbf{I}_{M} - \Phi(X)^{\mathsf{T}} \left[\Phi(X)\Phi(X)^{\mathsf{T}} + \sigma^{2} \mathbf{I}_{N}\right]^{-1} \Phi(X)$$
(17)

Method 2, $\cos O(NM^2 + M^3 + NMD)$:

$$p(\boldsymbol{\theta}|\mathbf{y}) = \mathcal{N}\left(\boldsymbol{\theta}; \left[\mathbf{I}_{M} + \sigma^{-2}\Phi(\mathbf{X})^{\mathsf{T}}\Phi(\mathbf{X})\right]^{-1}\sigma^{-2}\Phi(\mathbf{X})^{\mathsf{T}}\mathbf{y}\right)$$
$$\left[\mathbf{I}_{M} + \sigma^{-2}\Phi(\mathbf{X})^{\mathsf{T}}\Phi(\mathbf{X})\right]^{-1}$$
(18)

Predictive Distribution

Compute predictive distribution from mean and variance of $p(\theta|\mathbf{y})$ was an exercise (q&a_video_07 notes).

- 1. We find the posterior parameters in some way.
- 2. We apply Woodbury to ensure we take a small matrix inverse.
- 3. We get predictions at a cost of $O(NM^2 + M^3 + NMD)$.

Using the parameters found by method 2:

$$p(\mathbf{y}_{*}|\mathbf{y}) = \mathcal{N}\Big(\boldsymbol{\theta}; \quad \boldsymbol{\phi}(\mathbf{x}_{*})^{\mathsf{T}} \big[\mathbf{I}_{M} + \sigma^{-2} \Phi(X)^{\mathsf{T}} \Phi(X) \big]^{-1} \sigma^{-2} \Phi(X)^{\mathsf{T}} \mathbf{y}$$
$$\boldsymbol{\phi}(\mathbf{x}_{*})^{\mathsf{T}} \big[\mathbf{I}_{M} + \sigma^{-2} \Phi(X)^{\mathsf{T}} \Phi(X) \big]^{-1} \boldsymbol{\phi}(\mathbf{x}_{*}) + \sigma^{2} \mathbf{I}_{N} \Big) \quad (19)$$

Predictive Distribution — Exercises

We can also find a different form of the predictive distribution, without finding the posterior over parameters first.

1. Using the method of transforming Gaussian RVs, show that the joint $p(\mathbf{y}, y_*)$ is

$$p(\mathbf{y}, y_*) = \mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ y_* \end{bmatrix}; 0, \begin{bmatrix} \Phi(\mathbf{X})\Phi(\mathbf{X})^{\mathsf{T}} + \sigma^2 \mathbf{I}_N & \Phi(\mathbf{X})\phi(\mathbf{x}_*) \\ \phi(\mathbf{x}_*)^{\mathsf{T}}\Phi(\mathbf{X})^{\mathsf{T}} & \phi(\mathbf{x}_*)^{\mathsf{T}}\phi(\mathbf{x}_*) + \sigma^2 \end{bmatrix}\right)$$
(20)

2. Show that

$$p(y_*|\mathbf{y}) = \mathcal{N}\Big(y_*; \quad \boldsymbol{\phi}(\mathbf{x}_*)^{\mathsf{T}} \Phi(\mathbf{X})^{\mathsf{T}} \Big[\Phi(\mathbf{X}) \Phi(\mathbf{X})^{\mathsf{T}} + \sigma^2 \mathbf{I}_N \Big]^{-1} \mathbf{y},$$
$$\boldsymbol{\phi}(\mathbf{x}_*)^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_*) + \sigma^2$$
$$-\boldsymbol{\phi}(\mathbf{x}_*)^{\mathsf{T}} \Phi(\mathbf{X})^{\mathsf{T}} \Big[\Phi(\mathbf{X}) \Phi(\mathbf{X})^{\mathsf{T}} + \sigma^2 \mathbf{I}_N \Big]^{-1} \Phi(\mathbf{X}) \boldsymbol{\phi}(\mathbf{x}_*) \Big)$$
(21)

The cost of computing the predictive in this way is $O(N^3 + N^2M + NMD)$ (like the earlier posterior).

Infinite Basis Functions

So we said that to *properly* model uncertainty, and have a flexible enough model, we needed *many*, or even an **infinite** number of basis functions.

- ► For the $O(NM^2 + M^3 + NMD)$ method, all terms contain $M \to \infty$ because each matrix we compute grows with the features.
- ► For the $O(N^3 + N^2M + NMD)$ method, the matrices we need are all of finite size...:

Infinite Basis Functions

So we said that to *properly* model uncertainty, and have a flexible enough model, we needed *many*, or even an **infinite** number of basis functions.

- ► For the $O(NM^2 + M^3 + NMD)$ method, all terms contain $M \to \infty$ because each matrix we compute grows with the features.
- ► For the $O(N^3 + N^2M + NMD)$ method, the matrices we need are all of finite size...:

$$\Phi(\mathbf{X})\Phi(\mathbf{X})^{\mathsf{T}} \in \mathbb{R}^{N \times N}, \quad \Phi(\mathbf{X})\phi(\mathbf{x}_*) \in \mathbb{R}^{N \times 1}$$
 (22)

Infinite Basis Functions

So we said that to *properly* model uncertainty, and have a flexible enough model, we needed *many*, or even an **infinite** number of basis functions.

- ▶ For the $O(NM^2 + M^3 + NMD)$ method, all terms contain $M \to \infty$ because each matrix we compute grows with the features.
- ► For the $O(N^3 + N^2M + NMD)$ method, the matrices we need are all of finite size...:

$$\Phi(X)\Phi(X)^{\mathsf{T}} \in \mathbb{R}^{N \times N}, \quad \Phi(X)\phi(x_*) \in \mathbb{R}^{N \times 1}$$
 (22)

Notice that we only need **inner products** between feature vectors:

$$[\Phi(\mathbf{X})\Phi(\mathbf{X})^{\mathsf{T}}]_{ij} = \boldsymbol{\phi}(\mathbf{x}_i)^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_j). \tag{23}$$

Infinite Basis Functions

So we said that to *properly* model uncertainty, and have a flexible enough model, we needed *many*, or even an **infinite** number of basis functions.

- ► For the $O(NM^2 + M^3 + NMD)$ method, all terms contain $M \to \infty$ because each matrix we compute grows with the features.
- ► For the $O(N^3 + N^2M + NMD)$ method, the matrices we need are all of finite size...:

$$\Phi(X)\Phi(X)^{\mathsf{T}} \in \mathbb{R}^{N \times N}, \quad \Phi(X)\phi(x_*) \in \mathbb{R}^{N \times 1}$$
 (22)

Notice that we only need **inner products** between feature vectors:

$$[\Phi(X)\Phi(X)^{\mathsf{T}}]_{ij} = \boldsymbol{\phi}(\mathbf{x}_i)^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_j). \tag{23}$$

What if I told you... there were functions that computed inner <u>products...</u> without computing the vector itself?

Infinite Basis Functions

So we said that to *properly* model uncertainty, and have a flexible enough model, we needed *many*, or even an **infinite** number of basis functions.

- ► For the $O(NM^2 + M^3 + NMD)$ method, all terms contain $M \to \infty$ because each matrix we compute grows with the features.
- ► For the $O(N^3 + N^2M + NMD)$ method, the matrices we need are all of finite size...:

$$\Phi(X)\Phi(X)^{\mathsf{T}} \in \mathbb{R}^{N \times N}$$
, $\Phi(X)\phi(\mathbf{x}_*) \in \mathbb{R}^{N \times 1}$ (22)

Notice that we only need **inner products** between feature vectors:

$$[\Phi(X)\Phi(X)^{\mathsf{T}}]_{ij} = \boldsymbol{\phi}(\mathbf{x}_i)^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_j). \tag{23}$$

What if I told you... there were functions that computed inner products... without computing the vector itself? **Kernel trick.**³

³http://oneweirdkerneltrick.com

Kernels: Polynomial kernel

If we can compute the matrices $\Phi(X)\Phi(X)^{\mathsf{T}}$ and $\Phi(X)\phi(x_*)$ directly, without first computing the features, we could do computations without incurring the cost for large features!

Kernels: Polynomial kernel

If we can compute the matrices $\Phi(X)\Phi(X)^{\mathsf{T}}$ and $\Phi(X)\phi(x_*)$ directly, without first computing the features, we could do computations without incurring the cost for large features!

Example: Polynomial kernel

$$k(x,y) = (xy+1)^{M-1} = \sum_{m=0}^{M-1} {M-1 \choose m} x^m y^m = \boldsymbol{\phi}(x)^{\mathsf{T}} \boldsymbol{\phi}(y)$$
 (24)

for
$$M = 3$$
, $\boldsymbol{\phi}(x) = \begin{bmatrix} 1 & \sqrt{2}x & x^2 \end{bmatrix}^\mathsf{T}$ (25)

Kernels: Polynomial kernel

If we can compute the matrices $\Phi(X)\Phi(X)^{\mathsf{T}}$ and $\Phi(X)\phi(x_*)$ directly, without first computing the features, we could do computations without incurring the cost for large features!

Example: Polynomial kernel

$$k(x,y) = (xy+1)^{M-1} = \sum_{m=0}^{M-1} {M-1 \choose m} x^m y^m = \boldsymbol{\phi}(x)^{\mathsf{T}} \boldsymbol{\phi}(y)$$
 (24)

for
$$M = 3$$
, $\boldsymbol{\phi}(x) = \begin{bmatrix} 1 & \sqrt{2}x & x^2 \end{bmatrix}^\mathsf{T}$ (25)

16

We can compute very large inner products for very cheap!

Kernels: Infinite Dimensional Feature Spaces

We can even consider infinite dimensional feature spaces, if the limit of the inner product exists!

$$\phi_{m}(x) = \exp\left(-\frac{(x - c_{m})^{2}}{2\ell^{2}}\right), \qquad c_{m} = \frac{m}{M} \cdot (c_{\text{max}} - c_{\text{min}})$$

$$k(x, x') = \frac{1}{M} \sum_{m=1}^{M} \phi_{m}(x)\phi_{m}(x')$$

$$\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \phi_{m}(x)\phi_{m}(x') = \int_{c_{\text{min}}}^{c_{\text{max}}} \exp\left(-\frac{(x - c)^{2}}{2\ell^{2}}\right) \exp\left(-\frac{(x' - c)^{2}}{2\ell^{2}}\right) dc$$

$$= \sqrt{\pi}\ell \exp\left(-\frac{(x - x')^{2}}{4\ell^{2}}\right)$$

Squared Exponential Kernel: Infinite SqExp basis functions, everywhere!

Gaussian Process Prediction

So how do we do prediction? Just replace inner products $\phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{x}')$ with $k(\mathbf{x}, \mathbf{x}')$. Now cost is $O(N^3 + N^2) = O(N^3)$, down from ∞ for basis funcs.

$$p(y_*|\mathbf{y}) = \mathcal{N}\left(y_*; \quad k(\mathbf{x}_*, \mathbf{X}) \left[k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N\right]^{-1} \mathbf{y}, \\ k(\mathbf{x}_*, \mathbf{x}_*) + \sigma^2 - k(\mathbf{x}_*, \mathbf{X}) \left[k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N\right]^{-1} k(\mathbf{X}, \mathbf{x}_*)\right)$$
(27)

18

Recap

What did we do?

- 1. Start with a basis function model.
- 2. **Integrated out parameters** to directly find **predictive distribution** $p(y_*|\mathbf{y})$.
- 3. Prediction only depended on **inner products** of feature vectors.
- 4. We showed that we could compute inner products with a **kernel function**.
- 5. Computational cost down from ∞ to $O(N^3)$.
- 6. Different **representation** of a basis function model.

Recap

What did we do?

- 1. Start with a basis function model.
- 2. **Integrated out parameters** to directly find **predictive distribution** $p(y_*|\mathbf{y})$.
- 3. Prediction only depended on **inner products** of feature vectors.
- 4. We showed that we could compute inner products with a **kernel function**.
- 5. Computational cost down from ∞ to $O(N^3)$.
- 6. Different **representation** of a basis function model.

... but what is a Gaussian process?

Priors on Function Values

Another way of looking at our model:

$$p(y_n|f(\mathbf{x}_n),\mathbf{x}_n) = \mathcal{N}(y_n;f(\mathbf{x}_n),\sigma^2)$$
(28)

$$p(f(X)) = \mathcal{N}(f(X); \mu, \Sigma)$$
(29)

Remember: Each parameter *implied* an entire function. So our prior placed a distribution on all the function values.

For a basis function model, find the prior on the vector of function values at each input point, denoted f(X), from the prior on the weights $p(\theta) = \mathcal{N}(0, I_M)$

$$\Sigma = \mathbb{V}_{p(\theta)}[\Phi(X)\theta] = \Phi(X)\Phi(X)^{\mathsf{T}}$$
(30)

Priors on Function Values

Another way of looking at our model:

$$p(y_n|f(\mathbf{x}_n),\mathbf{x}_n) = \mathcal{N}(y_n;f(\mathbf{x}_n),\sigma^2)$$
 (28)

$$p(f(X)) = \mathcal{N}(f(X); \mu, \Sigma)$$
 (29)

Remember: Each parameter *implied* an entire function. So our prior placed a distribution on all the function values.

For a basis function model, find the prior on the vector of function values at each input point, denoted f(X), from the prior on the weights $p(\theta) = \mathcal{N}(0, I_M)$

$$\Sigma = \mathbb{V}_{p(\theta)}[\Phi(X)\theta] = \Phi(X)\Phi(X)^{\mathsf{T}}$$
(30)

A Gaussian process specifies $[\Phi(X)\Phi(X)^{\mathsf{T}}]_{ij} = \phi(\mathbf{x}_i)^{\mathsf{T}}\phi(\mathbf{x}_j) = k(\mathbf{x}_i, \mathbf{x}_j)$ directly:

$$p(f(X)) = \mathcal{N}(f(X); 0, k(X, X))$$
(31)

20

So what really is a Gaussian process?

See handwritten notes for:

- ► Definition of Gaussian process
- Gaussian processes as distributions on functions
- BLR defines a Gaussian process
- Find the posterior of a GP

Recommended reading

► Rasmussen and Williams (2006) §2.1 + §2.2

References I

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning. MIT press, Cambridge, MA, USA.

23