кой	темпера	атуры:	RT/ρ	M =
$2Z_2L\rho/$	(ZM).	Этсюда	следует	

T .	_	$2Z_2L$
1 кр2	_	$\overline{Z_0R}$

	Если разделить критическую темпера-
_	туру $T_{\kappa p2}$ на критическю температуру
	$T_{ ext{ iny Kp1}},$ то получится безразмерное число:
_	$T_{\text{кр2}}/T_{\text{кр1}} pprox i - 2$. Заметим, что при $i = 3$,
	т. е. для веществ с одноатомными моле-
_	кулами, это отношение равно единице,
	значит, разные подходы дают один и тот
	же результат для критической темпера-
	туры.

Xe	Ar	Kr	Ne	Rn	CBr_4	C_6H_{12}	H_2S	N_2
1,80	1,80	1,80	1,82	1,87	1,95	1,98	1,99	2,00
C_6H_6	Br_2	CH_4	I_2	CCl_4	C_7H_{14}	H_2O	H_2	Cl_2
2,02	2,08	2,11	2, 14	2,22	2,32	2,37	2,39	2,42
CF_4	C_8H_{18}	F_2	C_3H_6	O_2	C_5H_10	$O = C = Me_2$	P_2	Pt
2,55	2,63	2,70	2,73	2,86	2,86	2,86	3,05	3, 15
He	W	S_2	C_2H_6	Ag	Au	Zn	Mo	Cu
3,25	3, 25	3,35	3,41	3,49	3,61	3,74	3,85	3,97
Cd	Zr	Pb	Rb	Na	K	Cs	Hg	Li
4, 18	4,21	6,61	6,74	6,75	6,78	7, 78	7,53	8,43

цепочек атомов (молекул), которые могут изгибаться, и междуд цепочками имеются промежутки. Если для щелочных металлов $Z_2 \approx 7$, то это означает, что значительня часть вещества в среднем по времени пребывает в составе неких трубок-цилиндровструй с заполнением. На каждую молекулу, находящуюся на поверхности такой трубки, приходится по шесть таких же соседок, живущих на поверхности, и одна - внутри трубки. А в промежутках между трубками - пустота. Это можно представить как структуру пены с тонкими стенками и толстыми участками, на которых стенки соединяются друг с другом под неким углом в пространстве или как модель кристаллической решетки, у которой стерженьки, соединяющие узлы решетки, являются теми самыми цилиндрами-трубками-струями.

Каждая молекула, входящая в состав кондесированного вещества, при невысоких внешних давления и при температуре значительно меньше критической занимает объем, примерно D^3 . А кинетическая энергия поступательного движения молекулы равна $E_{\text{кин}} = 3kT/2$. Таким образом, давление, связанное с тепловым движением, которое молекула оказывает на стенки своей «ячейки/клетки», равно $(2/3)E_{\text{кин}}/D^3 = kT/D^3 =$ $RT/\rho M$. Когда эта величина сравняется с собственным давлением вещества при числе соседок Z_2 , вещество не сможет находиться в конденсированном состоянии, т.е. это равенство дает еще один критерий нахождения критичес

Поверхностная энергия и коэффициент поверхностного натяжения

Молекулы кондесированного вещества, которые живут на границе раздела с паром этого же вещества, имеют меньшее количество ближайших соседок Z_3 , чем молекулы, живущие внутри объема и имеющие число соседок Z. Поэтому потенциальная яма, в которой находится каждая молекула на поверхности, имеет меньшую глубину.

При невысоких температурах, когда взаимодействием молекулы на поверхности с молекулами пара можно пренебречь, у каждой молекуы на поверхности в среднем число соседок меньше на определенную долю от максимально числа соседок: $\triangle Z = Z - Z_3$. Например, если Z=12 при плотной упаковке шариков, то у молекул на плоской поверхности соседо всего $Z_3 = 9$. Следовательно, потенциальная энергия в положении равновесия у таких молекул равна $-9U_0$, а избыточная энергия равна $3U_0 = ZU_0/4$. Каждая молкула на поверхности занимает площадь, которая по порядку величины равна D^2 . Для самой плотной упаковки шариков эта площадь составляет $\sqrt{3}D^2/2$. Поэтому избыточная энергия, приходящаяся на единицу площади, равна примерно

$$\sigma_0 = \frac{ZU_0}{2\sqrt{3}D^2}.$$

Это и есть коэффициент поверхностного натяжения при невысоких температурах.

По мере роста температуры давление и плотность насыщенного пара растут, и молекулы пара создают для каждой молекулы,