SCC0633/5908 Processamento de Linguagem Natural

E a comunicação acontece...

Contatos Imediatos do Terceiro Grau

1977

 Não apenas Steven
 Spielberg, mas também o compositor John Williams (Star Wars, Harry Potter, Jurassic Park, Indiana Jones, Superman, etc.)

Tipos de linguagens

- Nem toda linguagem é necessariamente verbal (escrita ou oral)
- Linguagens não verbais utilizam outros meios comunicativos, como gestos, sons, cores, imagens, expressões faciais e corporais e símbolos
 - Fotografias, placas, acenos de mão, etc.
 - Libras Língua Brasileira de Sinais (segunda língua oficial do Brasil desde 2002)
 - Conta com alfabeto, estrutura linguística e gramatical próprios!
- Também há linguagens híbridas/mistas, como ocorre com histórias em quadrinhos, charges e outdoors
 - Mensagens de Instagram e outras redes sociais podem se enquadrar aqui!

Modelagem estatística & distribucional

SCC5908 Introdução ao Processamento de Língua Natural SCC0633 Processamento de Linguagem Natural

Prof. Thiago A. S. Pardo

RELEMBRANDO NA AULA PASSADA

- o Córpus e sua importância para PLN
- Modelos matemáticos e estatísticos
 - Leis de Zipf
 - Probabilidades
 - Teorema de Bayes
 - Modelo Noisy-Channel

Relembrando: o que era isso e qual sua importância?

 $P(X | \mathbf{Y}) = P(\mathbf{Y} | X) \times P(X) / P(\mathbf{Y})$

TEOREMA DE BAYES

$$P(X | Y) = P(Y | X) \times P(X) / P(Y)$$

Busca em um espaço de soluções

- Y é observado
- Deve-se escolher X que maximize P(X | Y): decodificação

$$P(X | Y) = P(Y | X) \times P(X) / P(Y)$$

$$\downarrow constante$$

$$P(X | Y) = P(Y | X) \times P(X)$$

• Generalizando o modelo

o Conjuntos P(X) e P(Y | X) são os parâmetros do modelo

$\circ P(Y | X)$

- História gerativa
 - o Como X se transforma em Y
- Principal parte do modelo, responsável por seu sucesso ou fracasso

• Generalizando o modelo

Transmissão de bits:

$$P(X)$$
 ~uniforme \rightarrow pode ser ignorado, portanto $P(0)=P(1)=0.5$

$$P(0 \rightarrow 0) = P(0 \mid 0) = 0.6$$

$$P(0 \rightarrow 1) = P(1 \mid 0) = 0.4$$

$$P(1 \rightarrow 1) = P(1 \mid 1) = 0.3$$

$$P(1 \rightarrow 0) = P(0 \mid 1) = 0.7$$

- o O processo pode ser tão complexo quanto se queira
 - Dependente do problema modelado
 - Em vez de 1 bit, podem-se ter bytes, sinais sonoros, palavras, sentenças, textos, etc.
 - Em geral, P(X) não segue distribuição uniforme
 - Modelagem ao contrário!

- o O processo pode ser tão complexo quanto se queira
 - P(Y | X) pode ser uma composição de probabilidades condicionais
 - No exemplo anterior: em vez de P(bit Y|bit X) ser simplesmente a probabilidade de um bit virar outro, poderia ser isso CONJUGADO à probabilidade de o receptor ter problemas técnicos/operacionais
 - \bullet P(bit Y | bit X) = ?

- o O processo pode ser tão complexo quanto se queira
 - P(Y | X) pode ser uma composição de probabilidades condicionais
 - No exemplo anterior: em vez de P(bit Y|bit X) ser simplesmente a probabilidade de um bit virar outro, poderia ser isso CONJUGADO à probabilidade de o receptor ter problemas técnicos/operacionais
 - P(bit Y | bit X) = p_conversão_bit(Y | X) * p_problema_recepção(X)

- o O processo pode ser tão complexo quanto se queira
 - P(Y | X) pode ser uma composição de probabilidades condicionais
 - No exemplo anterior: em vez de P(bit Y|bit X) ser simplesmente a probabilidade de um bit virar outro, poderia ser isso CONJUGADO à probabilidade de o receptor ter problemas técnicos/operacionais
 - P(bit Y | bit X) = p_conversão_bit(Y | X) * p_problema_recepção(X) = c(Y | X) * r(X)

Aplicação	Entrada	Saída	P(X)	P(Y X)
	(X)	(Y)		
Tradução Automática	Sequência de palavras	Sequência de palavras	Modelo de língua	Modelo de tradução
Optical Character Recognition (OCR)	Texto	Texto com erros	Prob. do texto	Modelo de erros de OCR
Reconhecimento de Fala	Sequência de palavras	Sinal acústico	Prob. de sequência de palavras	Modelo acústico

Tradução Automática

 Tradução de uma sentença em inglês para português

• Do que precisamos para saber P(X | Y)?

Tradução Automática

 Tradução de uma sentença em inglês para português

- Do que precisamos para saber P(X | Y)?
 - Saber como calcular P(X) e P(Y | X)

P(Y | X)

- o História gerativa → modelo de tradução
 - Como uma sentença se traduz na outra
 - Por exemplo, palavras são traduzidas e depois reordenadas
 - 2 parâmetros: tradução (t) e reordenação (r)

O cão preto morreu.

The black dog died.

 $P(\text{tradução}) = t(\text{the } | \text{ o}) \times t(\text{dog } | \text{cão}) \times t(\text{black } | \text{preto}) \times t(\text{died } | \text{morreu}) \times r(1 | 1) \times r(3 | 2) \times r(2 | 3) \times r(4 | 4)$

P(X)

o Modelo de língua

• Como prever a probabilidade de uma sentença traduzida a partir de "*The boy fell*."?

```
P(O menino caiu.)?

P(O menino colapsou.)?

P(O garoto caiu.)?
```

P(X)

- o Modelo de língua "clássico" baseado em n-gramas
 - A probabilidade de uma sentença é a multiplicação da probabilidade de seus n-gramas (calculados a partir do conjunto de dados) ponderados

```
P(O \ menino \ caiu.) = \\ peso_1 \ x \ P(O) \ x \ P(menino) \ x \ P(caiu) \ x \ P(.) + \\ peso_2 \ x \ P(O,menino) \ x \ P(menino,caiu) \ x \ P(caiu,.) + \\ peso_3 \ x \ P(O,menino,caiu) \ x \ P(menino,caiu,.) + \\ peso_4 \ x \ P(O,menino,caiu,.)
```

- Uma possível alternativa (irreal): distribuição uniforme
 - Toda sentença é igualmente provável

- Preocupação de Shannon com a informação sendo veiculada em um canal
 - Mais dados
 - Mais longas são as mensagens
 - Maior a probabilidade de erros

Questões

- Como medir a quantidade de informação?
- Como otimizar seu envio?

- Entropia: grau de desordem/surpresa de um conjunto de dados
 - Quanto <u>menor a entropia</u>, mais <u>previsível</u> e organizado é o conjunto de dados
 - Melhor para transmissão!

- o Originalmente, para calcular o número de bits necessários para a codificação de uma mensagem
 - Quanto menor a entropia, menos bits são necessários para codificar a mensagem
 - \circ 1 bit: 0 ou 1 \rightarrow 2 possibilidades

 - 3 bits: 000, 001, 010, 011, 100, 101, 110 ou 111 → 8 possibilidades
 - Etc.

- o A entropia é 0 se todos os exemplos são do mesmo tipo
 - Uma sequência de letras iguais tem entropia igual a 0
 → não há surpresa, sabe-se o que esperar
- A entropia é 1 quando a coleção contém número igual de exemplos de cada tipo
 - Maior desordem possível
- Se a coleção contém número diferente de exemplos de cada tipo, a entropia varia entre 0 e 1
- Em PLN, diferentes entropias podem indicar <u>situações variadas</u>
 - O que acontece com um fenômeno com alta entropia?
 - E em um com baixa entropia?

- Em um córpus em que só há sentenças catafóricas?
 - Entropia do fenômeno=0
- Em um córpus em que metade das sentenças são catafóricas?
 - Entropia do fenômeno=1
- Em um córpus em que não há sentenças catafóricas?
 - Entropia do fenômeno=0

 Genericamente, para qualquer número de tipos de exemplos de um conjunto de dados S, a entropia de S é dada pela fórmula

$$Entropia(S) = \sum_{i=1}^{T} -p_i * \log_2(p_i)$$

em que p_i é a proporção de exemplos de S pertencendo ao tipo i e T é o número total de tipos

• Por que esse "menos"? Por que log₂?

- Exemplo: língua polinésia simplificada
 - Letras dessa língua e suas frequências

```
p t k a i u
1/8 1/4 1/8 1/4 1/8 1/8
```

Entropia da língua

```
Entropia(S) = -1/8*\log_2(1/8) - 1/4*\log_2(1/4) - 1/8*\log_2(1/8)
-1/4*\log_2(1/4) - 1/8*\log_2(1/8) - 1/8*\log_2(1/8)
Entropia(S) = 2,5 bits
```

```
p t k a i u
100 00 101 01 110 111
```

- Exemplo: língua polinésia simplificada
 - Letras dessa língua e suas frequências

101

```
p t k a i u
1/8 1/4 1/8 1/4 1/8 1/8
```

Entropia da língua

100

00

Entropia(S) =
$$-1/8*log_2(1/8) - 1/4*log_2(1/4) - 1/8*log_2(1/8)$$

$$-1/4*log_2(1/4) - 1/8*l$$
Entropia(S) = **2,5 bits**

Menores códigos para letras mais frequentes

p

t

k

a

i

u

01

110

111

- o Há diferentes formas de se calcular
 - Por exemplo, para línguas, pode-se considerar a formação silábica em vez das letras

Alguém consegue explicar essa figura?

- Espresso? But I ordered a cappuccino!
- Don't worry, the cosine distance between them is so small that they are almost the same thing.

Mais recentemente...

- O retorno dos modelos distribucionais
 - Inspiração no modelo do espaço vetorial de Salton (1971), originalmente aplicado para Recuperação de Informação, e em hipóteses linguísticas anteriores
 - <u>Sofisticação</u> e <u>eficiência</u> recentes
 - Grande poder computacional disponível
 - o Grande volume de dados para "aprendizado"

Intuição

- Palavras que ocorrem/se "distribuem" nos mesmos contextos tendem a ter o mesmo sentido
 - Hipótese distribucional, formulada por linguistas na década de 50 (Joos, 1950; Harris, 1954; Firth 1957)
 - Firth (1957)
 - You shall know a word by the company it keeps!

oculist and eye-doctor ... occur in almost the same environments

A bottle of **tesgüino** is on the table Everybody likes **tesgüino Tesgüino** makes you drunk We make **tesgüino** out of corn.

→ bebida alcóolica

A IDEIA

- Osgood et al. (1957) e a tentativa de capturar o significado "afetivo" de cada palavra em um vetor de 3 dimensões
 - Valência (valence), intensidade (arousal) e controle (dominance) sobre o estímulo

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24
life	6.68	5.59	5.89

- Ideia revolucionária: "semântica vetorial"
 - O significado de *heartbreak* pode ser representado pelo vetor [2.45, 5.65, 3.58]

APLICAÇÕES

- o Em várias frentes
 - Recuperação de Informação
 - Inferência Textual
 - Similaridade Lexical
 - Análise de Sentimentos
 - Tradução Automática
 - Etc.

MATRIZ TERMO-DOCUMENTO

- o Ocorrência de palavras em 4 obras literárias
 - Matriz termo-documento de obras de Shakespeare

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- o Cada documento é representado por um vetor
 - O espaço vetorial é, portanto, um conjunto de vetores

Matriz termo-documento

 Dois documentos são similares se seus vetores são similares

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle	1	0	7	13	
good	114	80	62	89	
fool	36	58	1	4	
wit	20	15	2	3	

MATRIZ TERMO-DOCUMENTO

 Dois documentos são similares se seus vetores são similares

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle	1	0	7	13	
good	114	80	62	89	
fool	36	58	1	4	
wit	20	15	2	3	

Como essa ideia é usada em Recuperação de Informação?

Projeção das obras no espaço Vetorial

- Exemplo considerando apenas as dimensões "fool" e "battle"
 - Similaridade entre obras visualmente representada

Cômputos sobre as matrizes

- o Células de uma matriz
 - Frequência simples (de ocorrência de um termo no escopo considerado)
 - Valor booleano (a palavra ocorreu ou não no escopo considerado)
 - TF-IDF (Term Frequency Inverse Document Frequency)
 - Etc.
 - o Usando ou não suavização
 - Para que serve a suavização?

TF-IDF

- <u>Alternativa mais interessante</u> para a frequência simples, que pode ser enganosa
 - Termos muito comuns em todos os documentos não são discriminativos deles, por exemplo
- TF-IDF privilegia termos frequentes em um documento (TF) que ocorrem relativamente pouco nos demais (IDF), ou seja, que sejam discriminativos do documento de interesse

TF-IDF

- TF-IDF(termo t, documento d) = TF(t,d) * IDF(t)
 - TF(t,d) = frequência simples de t em d
 - o Também é comum aplicar o log e suavizar (por quê?)
 - $IDF(t) = log_{10}(N/df(t))$
 - N: número de documentos da coleção
 - o df(t): número de documentos da coleção em que t ocorreu
 - o Quanto menor o número de documentos em que t ocorre, maior o $\mathrm{IDF}(t)$
 - Exemplo: a palavra Romeu ocorre (113 vezes) somente em uma obra de Shakespeare (dentre 37 selecionadas)
 - $TF(Romeu) = log_{10}(113+1) = 2.05$
 - IDF = $\log_{10}(37/1) = 1.56$
 - \circ TF-IDF = 2,05*1,57 = 3,22

EXEMPLO

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Termos mais comuns em todas as obras (como "good") perdem a importância, enquanto os mais discriminativos (como "battle") ganham importância

Matriz termo-documento

- Base para a representação *Bag Of Words* (BOW)
 - Muito comum em Aprendizado de Máquina
 - Considerada *baseline* para muitas tarefas
 - E, por incrível que pareça, se sai muito bem em muitas tarefas
- o Mas com claras <u>limitações</u>
 - Não considera a ordem e estruturação dos termos
 - Semântica limitada
 - Alta dimensionalidade
 - Estratégias para lidar: remoção de stopwords, normalização das palavras (por exemplo, lematização, radicalização e nominalização), corte por frequência

MATRIZ TERMO-CONTEXTO

- Para representar <u>palavras</u>, independentemente de obra, é mais usual ter matriz **termo**contexto, ou **termo-termo**
 - Em vez de documentos inteiros, usam-se os contextos das palavras (em uma janela pré-especificada, com N palavras à esquerda e à direita da palavra em questão)
 - o Palavras são similares se seus **contextos** são similares!

MATRIZ TERMO-CONTEXTO

Exemplo: 4 palavras e suas co-ocorrências na Wikipédia, considerando uma janela de +- 4 palavras

is traditionally followed by cherry often mixed, such as strawberry rhubarb pie. Apple pie computer peripherals and personal digital a computer. This includes information available on the internet

pie, a traditional dessert assistants. These devices usually

Mapeamento para matriz termo-contexto

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

MATRIZ TERMO-CO

Estamos capturando alguma semântica! A hipótese distribucional realmente ocorre!

Exemplo: 4 palavras e su considerando uma janela de +-

> is traditionally followed by cherry often mixed, such as strawberry computer peripherals and personal digital a computer. This includes information available on the internet

pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually

Mapeamento para matriz termo-contexto

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

48

Projeção

• Considerando apenas as dimensões "computer" e "data", vemos que as palavras são próximas

CÁLCULO COM VETORES

- Como calcular a distância ("similaridade") entre os vetores, para descobrir, por exemplo, que "digital" é mais próxima de "information" do que de "cherry"?
 - Cosseno do ângulo entre os vetores!
 - o Quanto menor o ângulo, maior o cosseno

MEDIDA DO COSSENO

- Produto escalar normalizado dos vetores
 - Quanto maiores os valores nas mesmas dimensões, maior a similaridade
 - Valor 1 se os vetores apontam na mesma direção; 0 se são ortogonais; -1 se apontam em direções opostas
- o Cálculo entre dois vetores v e w

cosine
$$(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Medida do cosseno - exemplo

Considerando a pequena tabela termo-contexto abaixo

	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

$$\cos(\text{cherry,information}) = \frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .017$$

$$\cos(\text{digital,information}) = \frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

O termo "information" é muito mais similar a "digital" do que a "cherry"

Medida do cosseno - exemplo

• Representação gráfica da situação usando apenas 2 dimensões ("pie" e "computer")

MATRIZ TERMO-CONTEXTO

- Exemplos anteriores para fins didáticos apenas
- o Matrizes reais têm milhares de linhas x milhares de colunas
 - Altamente esparsas
 - Muitos zeros

Janela

- <u>Tamanho variável</u>, dependente do propósito
 - o Se mais curta, mais sintática
 - Se mais longa, mais semântica
- <u>Linguisticamente</u> motivada ou não
 - o N-gramas, sintagmas, sentenças, parágrafos

VETORES

- Até então, vetores muito esparsos
 - Muito grandes (20.000 a 50.000 elementos nas linhas e colunas... podendo haver muito mais)
- o Tentativas de torna-los mais densos
 - Eficiência de representação: apenas "termos"/"dimensões" mais significativas
 - 50 a 1.000 termos, aproximadamente
 - Mais capacidade de capturar semântica (menos perceptível para modelos do estilo *bag of words*)
 - Eficiência computacional
 - Menos parâmetros para treinar em AM, melhor generalização e menos *overfitting*
- Surgimento do termo mais moderno: word embeddings
 - A palavra está "embutida" (embedded) no espaço vetorial!

MÉTODOS

- Algumas abordagens já tradicionais (apesar de algumas serem bastante recentes)
 - SVD Singular Value Decomposition
 - LSA (Deerwester et al., 1988)
 - Redes neurais (Bengio et al., 2003) e modelos preditivos
 - "Skip-grams" e "continuous bag of words" (Mikolov et al., 2013)
 - Métodos incorporados no pacote word2vec
 - Métodos baseados em contagem
 - o GloVe (Pennington et al., 2014)
 - BERT (Devlin et al., 2019) e modelos contextuais
 - BERTimbau para o português (Souza et al., 2020)
- o E muitas outras variações, para diferentes propósitos, inclusive
 - FastText, Wang2Vec, Doc2Vec, ELMo, RoBERTa, DeBERTa, Product2Vec, code2vec, etc.

TAREFAS

- o <u>Leitura</u> da semana
 - Knight, K. (1999). A Statistical MT Tutorial Workbook.
 - No e-Disciplinas
- Provinha 5 disponível à tarde no e-Disciplinas