1) Find solutions to: $\begin{array}{l}
15x \equiv 4 \pmod{26} \\
24x \equiv 6 \pmod{63}
\end{array}$

We must find an arbitrary solution to the first congruency, which through a small amount of brute forcing yields x=2, so $x\equiv 2 \pmod{26}$, and now for the second congruency (with substantially more brute forcing): x=16. The solution to the following simultaneous congruencies is the same as our original question:

 $x\equiv 2\pmod{26}$. We can now construct a linear equation from the first one, and solve it: $26y+2\equiv 16\pmod{63}$. With more brute forcing, we learn that y=49 is a solution, so $y\equiv 49\pmod{63}$, therefore y=49+63z . Substituting this back into x=2+26y , we obtain x=1276+1638z , ie $x\equiv 1276\pmod{1638}$. $n\equiv 1\pmod{5}$

2) Given $n \equiv 0 \pmod{7}$ $n \equiv 6 \pmod{11}$, solve for n. $n \equiv 5 \pmod{12}$ $n \equiv 2261 \pmod{4620}$

3) RTS: $21|(3n^7+7n^3+11n)$.

To prove $21|(3n^7+7n^3+11n)$ we need prove only $3|(3n^7+7n^3+11n)$ and $7|(3n^7+7n^3+11n)$. In the first case, we observe that $3|3n^7$ trivially, and that $7n^3 \equiv 7n \pmod{3}$. Thus we have 3|18n, again, trivially true. Since 3 divides all of the terms, 3 must divide the entire polynomial.

In the second case, $7|7n^3$ trivially, $3n^7 \equiv 3n \pmod{n}$, and so 7|14n. Again, 7 divides the entire polynomial. QED \square .

```
279^{2} \equiv 41 \pmod{100}
279^{4} \equiv 81 \pmod{100}
279^{8} \equiv 61 \pmod{100}
279^{16} \equiv 21 \pmod{100}
279^{32} \equiv 41 \pmod{100}
279^{64} \equiv 81 \pmod{100}
279^{128} \equiv 61 \pmod{100}
279^{128} \equiv 61 \pmod{100}
279^{256} \equiv 21 \pmod{100}
279^{512} \equiv 41 \pmod{100}
279^{669} \equiv 279^{512} 279^{128} 279^{16} 279^{8} 279^{4} 279 \pmod{100}
279^{669} \equiv 19 \pmod{100}
```

 $279 \equiv 79 \pmod{100}$

5) RTS: $\phi(m) = \phi(2m)$ iff m is odd. $\phi(ab) = \phi(a) \cdot \phi(b)$ when a and b are coprime. Because we know m is odd, it must be coprime to 2, and so $\phi(m) \cdot \phi(2) = \phi(2m)$. Since $\phi(2) = 1$, so $\phi(m) = \phi(2m)$, when .

QED.