

Application: Interest rates You put \$100 in an acct atabak The bank promises that after Years Balance Q: What's the 1 105 interest rate? 110 Q: Does it 115 120 flutuate? 125 From the balance function, you 25 know the interest 3 - t(3) 3 t(3+1) 20 ハケー function 110 105-100 -5 3

Rate of Change E.g. Deer population: f(5) = 300 f (3)=160 1 2 3 4 5 6 7 8 From years 3 to 5, f(3+2) - f(3) = 300 - 160 = 140so the rate of change of four [3,5] was 70 deer/yr The 2-year growth rate of fat 3 was 70 deer per year

(h-) Différence quotients la (h-) Riemann sums let f be some continuous function (mR) D The (h-) difference quotient of f is the function Df(x) = f(x+h) - f(x) $h \left(h = x + h - x \right)$ D The h-Riemann sum of f is the function $Sf(x) = Sh \cdot (f(0) + f(h) + f(2h) + ... + f((n-1) \cdot h))$ if x = n.h (for nt IN) undefined otherwise

```
Df(x) is a continuous function over all x \in (-\infty, \infty)
    Sf(x) is only defined
for x = nh (n EIN)
So when x = nh
DSf(x) = Sf(x+h) - Sf(x)
 = K. (fto)+ fth+...f(nh)) - K. (fto)+...+fth+Ih)
=f(nh)=f(x)
             h. (Df(0) + Df(h)+... + Df((n-11h))
 =h.(f(0+h)-f(0) + f(2h)-f(h)+f(3h)-f(2h)+...+f(x)-f(h)h)
```

(h) Fundamental theorem of calculus

When
$$x = nh$$
,

 $SDf(x) = f(x) - f(0)$

DS $f(x) = f(x)$

From a function f ,

we can extract its rate of change Df

and DDf , $DDDf$,... D^nf ,...

D From the rare of change of a function, Df

we can extract the (change of the)

function SDf

and since $SDf(x) = f(x) - f(0)$

This is as good as knowing the functions

up to a constant. (The functions

walker at 0)

Homo exectus -> Homo sapiens -> Homo Calculus The FTC is one of the most important leaps of intellectual evolution in our recent history. Velocity = D (distance) Acceleration = D(velocity) = DD (distance) Force = acceleration (Newton)

So if we know the force on an Sbject, we know/contrôl (3) where it will be at any future time. shoot humans into space in metal tubes at regular intervals We

Power = D(energy)
Power = D(energy) as a function of time
Electric energy = voltage x charge
At constant voltage,
At constant voltage, Power = voltage x D (charge) as a f A time
D(Charge) is commanly known as
electric current (the thing that gives you a shock)
Q: How to transfer large amounts of electric energy at low current?
High voltage, low urrent => high power
(high vate
his is why power lines are at transfer) high voltage

A law of	physics sa	ys Shat	we always how
D (entropy) > 0		
→ ·	Energy fl	ows from	hot to cold
	(heat)		hot to cold temp
			from experience,
e.g. i	ce melts in u	later.	ή.
Bur	the reason	is that	D (enropy) >0)

o Also why refrigerators / AC's require energy (electricity) to bransfer hear from cold to hot. Calculo Cogito, ergo sum