Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №3 з дисципліни "Аналогова електроніка"

Виконав:

студент групи ДК-61

Накоренко А.А

Перевірив:

доц. Короткий \in В.

Завдання 1. Дослідження залежності І с (U зв) для n-канального польового МДН транзистора 2N7000

Характер залежності повністю відповідає теорії.

Далі визначив порогову напругу по формулі:

 $U_{{\scriptscriptstyle 3B1}}$ та $U_{{\scriptscriptstyle 3B2}}$ взяті при струмі в 4мА та 16мА відповідно.

$$U_n = 1,59 B$$

Тепер можна знайти b з формули:

$$I_c = \frac{b}{2}(U_{\scriptscriptstyle 3B} - U_{\scriptscriptstyle \Pi})^2$$

$$b = 0,1512$$

Залежність отримана на практиці:

За практичними значеннями b = 0,0245, що сильно відрізняється від теоретичних розрахунків. Виходячи з цього можна стверджувати, що модель цього транзистора в LTSpice не є точною.

Завдання 2. Дослідження підсилювача з загальним витоком на польовому МДН транзисторі 2N7000

Була виконана лише симуляція.

Умова досягнення струму насичення $U_{BC} \geq U_{3B}$ - U_{Π}

Для проведеної симуляції:

- $1.U_{3B} = 1.7B$. Насичення досягнуто при $U_{BC} = 0.109B \ge 1.7B 1.59B = 0.11B$
- 2. Uзв = 1,8B. Насичення досягнуто при Uвс= 0.205B ≥ 1.8 B 1.59B = 0.21B
- 3. Uзв = 1,9В. Насичення досягнуто при Uвс= 0.294В ≈ 1.9 В 1.59В = 0.31В
- 4. Uзв = 2,0В. Насичення досягнуто при Uвс= 0.397В ≈ 2.0 В 1.59В = 0.41В
- 5. Uзв = 2,1В. Насичення досягнуто при Uвс= 0,452мВ < 2.1В 1,59В = 0,51В

Умова дуже добре виконується для напруг ЗВ, які ближче до порогової, але чим вища ЗВ, ти менш точно починала виконуватись умова. Це можна пояснити неточністю моделі.

Завдання 3. Дослідження підсилювача з загальним витоком на польовому МДН транзисторі 2N7000

3.1) Було створено схему підсилювача. Номінали резисторів було розраховано за допомогою змінного резистора.

3.2)Робоча точка

$$I_0 = 5.8 mA$$

$$U_{3B0} = 1,8652 B$$

$$U_{BC0} = 3,2665 B$$

Результат симуляції на скріні вище. З нього видно, що амплітуда вихідного сигналу 248мB.

Ku= 248/20 = 12,4

3.3)Спотворення починаються при вхідній напрузі 90мВ

При вхідній напрузі в 150мВ спотворення видно краще

3.4) Збільшив напругу на R2, щоб $U_{3B0} = 2 B$.

В такому випадку:

$$U_{BC0} = 1,2 B$$

$$I_{c0} = 12,6 \text{ MB}$$

Тепер знаходим gm

$$g_m = \frac{\Delta I_c}{\Delta U_{\scriptscriptstyle \mathrm{3B}}} = \frac{6.8*10^{-3}}{0.1314} = 50$$
 мС

3.5) Знахожу Ки

$$Ku = -300*50*10^{(-3)} = -15$$

Реальна схема

Те ж саме було реалізоване на реальній схемі.

3.2)

Практичні значення:			
Uзв0, В	1,87		
Uвс0, B	2,5		
Urc0, B	2,5		
IcO, A	0,0083		
	0,0083		

3.3)

На практиці коефіцієнт Ки дещо більший ніж за розрахунками:

360/21 = 17.14

3.4)Початок спотворень при 90мВ

Спотворення при 120мВ

Спотворення при 160мВ

3.5) Визначення Ки та gm

Ku	-16,54	Ku = -R3 * Δlc/ΔU36		
Ku	-17,24	експериментально		
δ, %	4,21	відносно Ки = -R3 * ∆lc/∆Uзв		

було	Uзв0, B	1,87			
стало	Uзв0, В	2	ΔИзв,В	0,13	
було	IcO, A	0,0083			
стало	IcO, A	0,0155	Δlc, A	Δlc, A 0,0072	
	gm	0,055	gm=Δlc/ΔUзв		

Як видно, Ки в симуляції відрізняється від значення отриманих на практиці. Це можна пояснити неточністю моделі в LTSpice.

Висновок

Отже виконавши цю лабораторну роботу, я в житті перевірив деякі властивості біполярного транзистора, та схем, побудованих на його основі. В принципі, з деякими похибками просимульована модель відповідає дійсності. Похибки можна пояснити неточністю моделі транзистора.