Reasoning about quantifiers in SMT: the QSMA algorithm¹

Maria Paola Bonacina

Dipartimento di Informatica Università degli Studi di Verona Verona, Italy, EU

Invited Keynote Speech 23rd Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD)

Ames, IA, USA, 26 Oct. 2023

¹Based on joint work with S. Graham-Lengrand and C. Vauthier → (≥) ≥ ✓ ()

Introduction

The QSMA algorithm

Optimized QSMA: the OptiQSMA algorithm

Discussion

Motivation

- Applications of automated reasoning (e.g., analysis, verification, synthesis of programs) need reasoners that
- ▶ Decide the satisfiability of formulas involving both
 - Quantifiers and
 - Defined symbols: Symbols defined in background theories

The big picture

Major research objectives:

- 1. Enriching theorem provers with built-in theories
- 2. Integrating theorem provers and SMT solvers
- 3. Endowing SMT solvers with quantifier reasoning

The QSMA algorithm contributes to Objective (3)

Quantifier elimination (QE)

- ▶ A theory $\mathcal T$ admits QE if for all formulas φ there exists a $\mathcal T$ -equivalent quantifier-free (QF) formula F
- Reduce T-satisfiability of formulas to that of QF formulas
- Few theories admit QE
- QE is prohibitively expensive: Exponential in LRA, doubly exponential in LIA
- Not a practical solution
- ► Practical solution: QSMA algorithm

General problem statement

Quantified satisfiability modulo theory and assignment

Given:

- ► A theory T
- \triangleright A formula φ with arbitrary quantification
- lacktriangle An initial assignment to Boolean or first-order subterms of φ
- \blacktriangleright Either find a \mathcal{T} -model of φ that extends the initial assignment
- Or report that none exists

The QSMA algorithm

A new algorithm for the satisfiability of a formula φ with arbitrary quantification modulo:

- ▶ A theory \mathcal{T} with unique \mathcal{T} -model \mathcal{M}_0
- lacktriangle An initial assignment to the free variables of φ
- ▶ \mathcal{T} is complete: Consistent + for all sentences F either $\mathcal{T} \vdash F$ or $\mathcal{T} \vdash \neg F$
- ▶ \mathcal{T} -model: extension of \mathcal{M}_0 with an assignment to free variables

A satisfiable example in LRA

$$\varphi_1 = \exists x. \forall y. \exists z. \ z \ge 0 \ \land \ x \ge 0 \ \land \ y + z \ge 0$$

- ► Say we assign $x \leftarrow 0$
- For all values for y there exists a satisfying z namely $z \leftarrow max(0, -y)$
 - $y \ge 0$: $z \simeq 0$
 - y < 0: z > 0
- ▶ Therefore φ_1 is true in LRA

(Unique \mathcal{T} -model \mathcal{M}_0 : for a sentence satisfiability, validity, and truth in \mathcal{M}_0 coincide)

An unsatisfiable example in LRA

$$\varphi_2 = \exists x. \forall y. \exists z. \ z \ge 0 \ \land \ x \ge 0 \ \land \ y + z \le 0$$

- ▶ Say we assign $x \leftarrow n$ for some $n \ge 0$ (n is immaterial)
- ▶ For $y \leftarrow 1$ no value for z satisfies $z \ge 0 \land z \le -1$
- ▶ Therefore φ_2 is false in LRA

(Unique \mathcal{T} -model \mathcal{M}_0 : for a sentence unsatisfiability, invalidity, and falsity in \mathcal{M}_0 coincide)

High-level view of the QSMA algorithm

- ► Apply ¬¬ to convert ∀ into ∃
- Use Boolean variables as proxies for quantified subformulas
- Recursive descent over tree structure of formula
- Remove one level of ∃ and assign values to freed 1st-order variables and proxies
- Assignments come from underlying SMA solver that gets a formula and a prior assignment (initially the initial assignment)
- Model-based guidance to weed out large parts of the space of possible assignments

More about formula view and recursive descent

$$\varphi = \exists \bar{x}. F[\bar{z}, \bar{x}, \bar{p}] \{ p_i \leftarrow \exists \bar{y}_i. G_i[\bar{z}, \bar{x}, \bar{y}_i] \}_{i=1}^k \text{ where } \bar{z} = FV(\varphi)$$

- ► F is QF as proxies p_i replace subformulas $\varphi_i = \exists \bar{y}_i.G_i[\bar{z},\bar{x},\bar{y}_i]$
- ► $FV(\varphi) = \emptyset$: quantified SMA problems when working subformulas under assignment to higher-level variables
- $ightharpoonup p_i \leftarrow \text{true}/\text{false}$: try to show φ_i true / false
- p_i undefined: can be ignored
- ho is true under the initial assignment iff QSMA can extend the initial assignment to one satisfying

$$F[\bar{z},\bar{x},\bar{p}] \wedge \bigwedge_i (p_i \Leftrightarrow \varphi_i)$$

The satisfiable example in LRA done by QSMA

$$\varphi_1 = \exists x. \neg \exists y. \neg \exists z. \ z \ge 0 \ \land \ x \ge 0 \ \land \ y + z \ge 0$$

 $\rightarrow \exists x. \neg p_1$ $p_1 = \exists y. \neg \exists z. z > 0 \land x > 0 \land y + z > 0$

$$\triangleright$$
 $x\leftarrow 0$, $p_1\leftarrow$ false

- $\rightarrow \exists y. \neg p_2$ $p_2 = \exists z. \ z > 0 \ \land \ x > 0 \ \land \ y + z > 0$
- \triangleright $y \leftarrow n$, $p_2 \leftarrow \text{true}$
- $\Rightarrow \exists z.z > 0 \land x > 0 \land v+z > 0$
- \triangleright $z \leftarrow max(0, -n)$
- ► True

```
x and p1 are assignable
        y and p2 are assignable
(z, z \ge 0 \text{ and } x \ge 0 \text{ and } y+z \ge 0)
    z is assignable
```

$$(z, z \ge 0 \text{ and } x \ge 0 \text{ and } y+z \ge 0)$$

z is assignable

The unsatisfiable example in LRA done by QSMA

$$\varphi_2 = \exists x. \neg \exists y. \neg \exists z. \ z \ge 0 \ \land \ x \ge 0 \ \land \ y + z \le 0$$

$$ightharpoonup \exists x. \neg p_1$$

$$\rho_1 = \exists y. \neg \exists z. \ z \geq 0 \ \land \ x \geq 0 \ \land \ y+z \leq 0$$

- \triangleright $x\leftarrow n \ (n \ge 0), \ p_1\leftarrow false$
- $\exists y. \neg p_2$ $p_2 = \exists z. \ z > 0 \land x > 0 \land y + z < 0$
- ▶ $y \leftarrow 1$, $p_2 \leftarrow \text{true}$
- $\exists z.z \ge 0 \land x \ge 0 \land y+z \le 0$
- No z satisfies $z \ge 0 \land z \le -1$
- ► False

```
(x,-p1) \atop p1 \\ (y,-p2) \\ y \ and \ p2 \ are \ assignable \\ p2 \\ (z,z>=0 \ and \ x>=0 \ and \ y+z <=0) \\ z \ is \ assignable
```

More general example

- QSMA handles arbitrary formulas
- Quantifiers in arbitrary positions: no need of prenex normal form
- ▶ $\varphi = \exists x.((\forall y.F[x,y]) \Rightarrow (\forall z.G[x,z]))$ where F and G are QF
- Eliminating implication and universal quantifiers yields: $\varphi = \exists x.((\exists y. \neg F[x, y]) \lor (\neg \exists z. \neg G[x, z]))$

The more general example as done by QSMA

$$\varphi = \exists x. ((\exists y. \neg F[x, y]) \lor (\neg \exists z. \neg G[x, z]))$$

- $\exists x. (p_1 \lor \neg p_2)$ $p_1 = \exists y. \neg F[x, y]$ $p_2 = \exists z. \neg G[x, z]$
- Assign x, p_1 , p_2
- ▶ $p_1 \leftarrow$ true: find a y satisfying $\neg F[x, y]$
- ▶ $p_2 \leftarrow$ false: show that there is no z satisfying $\neg G[x, z]$

From formula to QSMA-tree

$$\varphi = \exists \bar{x}. F[\bar{z}, \bar{x}, \bar{p}] \{ p_i \leftarrow \exists \bar{y}_i. G_i[\bar{z}, \bar{x}, \bar{y}_i] \}_{i=1}^k$$

- ▶ QSMA-tree $\mathcal{G} = (\bar{z}, T)$ with rigid variables \bar{z}
- ightharpoonup k = 0: T is a node labeled $(\bar{x}, F[\bar{z}, \bar{x}])$
- k > 0:
 - ▶ T has root labeled $(\bar{x}, F[\bar{z}, \bar{x}, \bar{p}])$ with k arcs labeled p_1, \ldots, p_k to children b_1, \ldots, b_k
 - ► Child b_i labeled $(\bar{y}_i, G_i[\bar{z}, \bar{x}, \bar{y}_i])$ is root of QSMA-tree $\mathcal{G}_i = ((\bar{z}, \bar{x}), T_i)$ with rigid variables $\bar{z} \uplus \bar{x}$ for $\varphi_i = \exists \bar{y}_i. G_i[\bar{z}, \bar{x}, \bar{y}_i]$

Rigid variables and assignable variables

Rigid and assignable variables at a node

QSMA-tree
$$\mathcal{G} = (\bar{z}, T)$$

- Node *n* labeled (\bar{x}, F)
- ▶ Local variables $n.\bar{x}$
- ▶ QF formula n.F
- \triangleright k outgoing arcs labeled p_1, \ldots, p_k
- Assignable vars at n: $Var(n) = \bar{x} \uplus \{p_1, \dots, p_k\}$
- Rigid vars at n: $Rigid(n) = \bar{z} \uplus \bar{x}_1 \uplus \ldots \uplus \bar{x}_m$
- \triangleright $\mathcal{G}_n = (Rigid(n), T_n)$

From QSMA-tree back to formula

QSMA-tree:
$$G = (\bar{z}, T)$$

For all nodes n of T, the formula $n.\psi$ at node n:

- Node *n* is leaf labeled $(\bar{x}, F[\bar{z}, \bar{x}])$: $n.\psi = \exists \bar{x}. F[\bar{z}, \bar{x}]$
- Node n has label $(\bar{\mathbf{x}}, F[\bar{\mathbf{z}}, \bar{\mathbf{x}}, \bar{\mathbf{p}}])$ and children b_1, \ldots, b_k via arcs (n, b_i) labeled p_i : $n.\psi = \exists \bar{\mathbf{x}}.F[\bar{\mathbf{z}}, \bar{\mathbf{x}}, \bar{\mathbf{p}}]\{p_i \leftarrow b_i.\psi\}_{i=1}^k$ for $b_i.\psi$ the formula at node b_i

If $\mathcal G$ is the QSMA-tree for φ and r is the root of $\mathcal G$ then $r.\psi=\varphi$

Satisfaction of QSMA-tree

```
QSMA-tree \mathcal{G} = (\bar{z}, T) with root r
```

- $ightharpoonup \mathcal{M}$: extension of \mathcal{M}_0 to $Rigid(r) = \bar{z}$
- $ightharpoonup \mathcal{M} \models \mathcal{G}$ if there exists an extension \mathcal{M}' of \mathcal{M} to Var(r) s.t.
 - 1. $\mathcal{M}' \models r.F$
 - 2. For all children b of r via arc (r, b) labeled p $\mathcal{M}'(p) = \text{true}$ iff $\mathcal{M}' \models \mathcal{G}_b$

```
If \mathcal{M}'(p) = \text{true}: try to show b.\psi true
If \mathcal{M}'(p) = \text{false}: try to show b.\psi false
If \mathcal{M}' is partial and does not assign p: ignore b.\psi
```

Thm: \mathcal{G} is the QSMA-tree for formula φ : $\mathcal{M} \models \mathcal{G}$ iff $\mathcal{M} \models \varphi$

Assigning variables in QSMA

Assume to have a solver for theory \mathcal{T} (and model \mathcal{M}_0) offering a model extension function SMA:

- ▶ Given formula $\exists \bar{x}.F[\bar{z},\bar{x},\bar{p}]$, where F is QF and extension \mathcal{M} of \mathcal{M}_0 to \bar{z} ,
- ► SMA($F[\bar{z}, \bar{x}, \bar{p}], \mathcal{M}$) returns:
 - ▶ Either extension \mathcal{M}' of \mathcal{M} to $\bar{\mathbf{x}} \uplus \bar{\mathbf{p}}$ such that $\mathcal{M}' \models F[\bar{z}, \bar{x}, \bar{p}]$
 - Or nil if no such extension exists
- ► Testing all possible assignments: impossible, infinitely many
- ► Needed: model-based guidance

Under-approximations and over-approximations

Formula φ with $FV(\varphi) = \overline{\mathbf{z}}$ $[\![\varphi]\!]$: set of models of φ

- Under-approximation of φ : QF formula U with $FV(U) = \overline{z}$ for all extensions \mathcal{M} of \mathcal{M}_0 to \overline{z} $\mathcal{M} \models U \text{ implies } \mathcal{M} \models \varphi$ under-approximations help to return true
- Over-approximation of φ : QF formula O with $FV(O) = \overline{z}$ for all extensions \mathcal{M} of \mathcal{M}_0 to \overline{z} $\mathcal{M} \models \varphi$ implies $\mathcal{M} \models O$ $\mathcal{M} \not\models O$ implies $\mathcal{M} \not\models \varphi$ over-approximations help to return false

$$[\![U]\!]\subseteq [\![\varphi]\!]\subseteq [\![O]\!]$$

Under- and over-approximations in QSMA

- ▶ QSMA-tree $\mathcal{G} = (\bar{z}, T)$ for formula φ
- ▶ Given \mathcal{M} extending \mathcal{M}_0 to \overline{z} , the QSMA algorithm determines whether $\mathcal{M} \models \mathcal{G}$:
 - For all nodes n of T maintain under-approximation n.U of $n.\psi$ and over-approximation n.O of $n.\psi$
 - ► Goal: $\mathcal{M} \models n.U \lor \neg n.O$: if $\mathcal{M} \models n.U$ return true for \mathcal{G}_n (i.e., for $n.\psi$) if $\mathcal{M} \not\models n.O$ return false for \mathcal{G}_n (i.e., for $n.\psi$)

Formulas $n.\psi$ have the form $\exists \bar{x}.F[\bar{z},\bar{x},\bar{p}]$

Model-based under-approximations in QSMA

Assume to have a solver for theory \mathcal{T} (and model \mathcal{M}_0) offering a model-based under-approximation function MBU:

- ▶ Given formula $\exists \bar{x}.F[\bar{z},\bar{x},\bar{p}]$, where F is QF and extension \mathcal{M} of \mathcal{M}_0 to $\bar{z} \uplus \bar{p}$ such that $\mathcal{M} \models \exists \bar{x}.F[\bar{z},\bar{x},\bar{p}]$
- ▶ MBU($F[\bar{z}, \bar{x}, \bar{p}], \bar{x}, \mathcal{M}$) returns an under-approximation of $\exists \bar{x}. F[\bar{z}, \bar{x}, \bar{p}]$ that is true in \mathcal{M} : a QF formula $U[\bar{z}, \bar{p}]$ such that
 - $ightharpoonup \mathcal{T} \models U[\bar{z},\bar{p}] \Rightarrow (\exists \bar{x}.F[\bar{z},\bar{x},\bar{p}])$ and
 - $ightharpoonup \mathcal{M} \models U[\bar{z},\bar{p}]$

 $U[\bar{z},\bar{p}]$: \mathcal{T} -interpolant between model and formula

Model-based over-approximations in QSMA

Assume to have a solver for theory \mathcal{T} (and model \mathcal{M}_0) offering a model-based over-approximation function MBO:

- ▶ Given formula $\exists \bar{x}.F[\bar{z},\bar{x},\bar{p}]$, where F is QF and extension \mathcal{M} of \mathcal{M}_0 to $\bar{z} \uplus \bar{p}$ such that $\mathcal{M} \not\models \exists \bar{x}.F[\bar{z},\bar{x},\bar{p}]$
- ▶ MBO($F[\bar{z}, \bar{x}, \bar{p}], \bar{x}, \mathcal{M}$) returns an over-approximation of $\exists \bar{x}. F[\bar{z}, \bar{x}, \bar{p}]$ that is false in \mathcal{M} : a QF formula $O[\bar{z}, \bar{p}]$ such that
 - $ightharpoonup \mathcal{T} \models (\exists \bar{x}. F[\bar{z}, \bar{x}, \bar{p}]) \Rightarrow O[\bar{z}, \bar{p}] \text{ and}$
 - $\blacktriangleright \mathcal{M} \not\models O[\bar{z},\bar{p}]$

 $O[\bar{z}, \bar{p}]$: reverse \mathcal{T} - interpolant between formula and model

Examples of MBU and MBO

- Examples of MBU:
 - ► Model-based projection [Komuravelli, Gurfinkel, Chaki: CAV 2014, FMSD journal 2016] [Bjørner, Janota: LPAR 2015 (short)]
 - ► Model generalization for LRA [Dutertre: SMT 2015]
 - Model generalization for NRA [Jovanović, Dutertre: CAV 2021]
- Examples of MBO:
 - Unsatisfiable core (purely Boolean assignment)
 - Model interpolation for NRA [Jovanović, Dutertre: CAV 2021]

Weakening and strengthening approximations in QSMA

QSMA-tree $\mathcal{G} = (\overline{z}, T)$ for formula φ For all nodes n of T:

- Weaken n.U so that [n.U] inflates by introducing a disjunction with an MBU
- ► Strengthen *n.O* so that [n.O] deflates by introducing a conjunction with an MBO
- ▶ Inflate $\llbracket n.U \rrbracket$ and deflate $\llbracket n.O \rrbracket$ to zoom in on either a model of $n.\psi$ or its non-existence

Main function of the QSMA algorithm

```
Opre: \mathcal{G} = (\bar{z}, T): QSMA-tree for \varphi with FV(\varphi) = \bar{z} \mathcal{M}: extension of \mathcal{M}_0 to \bar{z}
Opost: rv iff \mathcal{M} \models \mathcal{G} (rv is "returned value")

1: function QSMA(\mathcal{M}, T)
2: | for all nodes n in T do
3: | n.U \leftarrow \bot
4: | n.O \leftarrow \top
5: | return SUBTREEISSOLVED(root(T), \mathcal{M})
```

⊥: under-approximation of all formulas and identity for disjunction
 ⊤: over-approximation of all formulas and identity for conjunction

subtreeIsSolved: core function of QSMA I

Take node n and model \mathcal{M} extending \mathcal{M}_0 to Rigid(n) Determine whether $\mathcal{M} \models \mathcal{G}_n$ (same as $\mathcal{M} \models n.\psi$)

- ▶ @pre: \mathcal{M} : extension of \mathcal{M}_0 to Rigid(n) $\forall b \in \mathcal{T}$. $\llbracket b.U \rrbracket \subseteq \llbracket b.\psi \rrbracket \subseteq \llbracket b.O \rrbracket$
- ▶ @post: $\forall b \in T$. $\llbracket b.U \rrbracket \subseteq \llbracket b.\psi \rrbracket \subseteq \llbracket b.O \rrbracket$ $\mathcal{M} \models (n.U \lor \neg n.O)$ $rv \text{ iff } \mathcal{M} \models n.U \text{ iff } \mathcal{M} \models \mathcal{G}_n$ $\neg rv \text{ iff } \mathcal{M} \models \neg n.O \text{ iff } \mathcal{M} \not\models \mathcal{G}_n$

subtreeIsSolved: core function of QSMA II

```
    function SUBTREEISSOLVED(n, M)
    if M ⊨ n.U then
    return true
    else if M ⊨ ¬n.O then
    return false
    while true do
    Loop body
```

Let b.p denote the Boolean proxy variable labeling arc (n, b)

The loop in subtreeIsSolved |

```
1. while true do
           L \leftarrow n.F \land \bigwedge_{p \to b} ((b.p \Rightarrow b.O) \land (\neg b.p \Rightarrow \neg b.U))
 2:
           \mathcal{M}' \leftarrow \mathsf{SMA}(L, \mathcal{M})
 3:
           if \mathcal{M}' = nil then
 4.
                  n.O \leftarrow n.O \land MBO(L, FV(L) \setminus Rigid(n), \mathcal{M})
 5:
                  return false
 6:
            else
 7:
                 if SOLUTIONFORALLCHILDREN(n, \mathcal{M}') then
 8:
                       L' \leftarrow n.F \land \bigwedge_{p \to b} ((b.p \Rightarrow b.U) \land (\neg b.p \Rightarrow \neg b.O))
 9.
                       n.U \leftarrow n.U \lor \mathsf{MBU}(L', FV(L') \setminus Rigid(n), \mathcal{M})
10:
11:
                       return true
```

Why formula *L*?

$$L \leftarrow n.F \land \bigwedge_{n \to b} ((b.p \Rightarrow b.O) \land (\neg b.p \Rightarrow \neg b.U))$$

Necessary condition for success: $\mathcal{M} \models \mathcal{G}_n$ implies $\mathcal{M}' \models \mathcal{L}$

 $\mathcal{M} \models \mathcal{G}_n$ means there exists an extension \mathcal{M}' of \mathcal{M} to Var(n) s.t.:

- $\triangleright \mathcal{M}' \models n.F$
- ▶ If $\mathcal{M}'(b.p) = \text{true}$, $\mathcal{M}' \models b.\psi$ the colored formula reduces to b.O and $\mathcal{M}' \models b.O$ because $\llbracket b.\psi \rrbracket \subseteq \llbracket b.O \rrbracket$
- ▶ If $\mathcal{M}'(b.p) = \text{false}$, $\mathcal{M}' \not\models b.\psi$ the colored formula reduces to $\neg b.U$ and $\mathcal{M}' \models \neg b.U$ because $\mathcal{M}' \not\models b.U$ as $\llbracket b.U \rrbracket \subset \llbracket b.\psi \rrbracket$

The loop in subtreeIsSolved |

```
1. while true do
           L \leftarrow n.F \land \bigwedge_{p \to b} ((b.p \Rightarrow b.O) \land (\neg b.p \Rightarrow \neg b.U))
 2:
           \mathcal{M}' \leftarrow \mathsf{SMA}(L, \mathcal{M})
 3:
           if \mathcal{M}' = nil then
 4.
                  n.O \leftarrow n.O \land MBO(L, FV(L) \setminus Rigid(n), \mathcal{M})
 5:
                  return false
 6:
            else
 7:
                 if SOLUTIONFORALLCHILDREN(n, \mathcal{M}') then
 8:
                       L' \leftarrow n.F \land \bigwedge_{p \to b} ((b.p \Rightarrow b.U) \land (\neg b.p \Rightarrow \neg b.O))
 9.
                       n.U \leftarrow n.U \lor \mathsf{MBU}(L', FV(L') \setminus Rigid(n), \mathcal{M})
10:
11:
                       return true
```

solutionForallChildren handles the recursion

```
    function SOLUTIONFORALLCHILDREN(n, M)
    for all children b of n do
    if M(b.p) ≠ undef then
    if M(b.p) ≠ SUBTREEISSOLVED(b, M) then
    return false
    return true
```

- As soon as a child b (with assigned b.p) fails (expected truth value not met): return false
- \triangleright Success for all children b (with assigned b.p): return true

The loop in subtreeIsSolved III

```
1. while true do
           L \leftarrow n.F \land \bigwedge_{p \to b} ((b.p \Rightarrow b.O) \land (\neg b.p \Rightarrow \neg b.U))
 2:
           \mathcal{M}' \leftarrow \mathsf{SMA}(L, \mathcal{M})
 3:
           if \mathcal{M}' = nil then
 4.
                  n.O \leftarrow n.O \land MBO(L, FV(L) \setminus Rigid(n), \mathcal{M})
 5:
                  return false
 6:
            else
 7:
                 if SOLUTIONFORALLCHILDREN(n, \mathcal{M}') then
 8:
                       L' \leftarrow n.F \land \bigwedge_{p \to b} ((b.p \Rightarrow b.U) \land (\neg b.p \Rightarrow \neg b.O))
 9.
                       n.U \leftarrow n.U \lor \mathsf{MBU}(L', FV(L') \setminus Rigid(n), \mathcal{M})
10:
11:
                       return true
```

Why formula L'?

$$L' \leftarrow n.F \land \bigwedge_{n \to b} ((b.p \Rightarrow b.U) \land (\neg b.p \Rightarrow \neg b.O))$$

First: $\mathcal{M}' \models L'$

- $ightharpoonup \mathcal{M}' \models n.F$ because $\mathcal{M}' \models L$
- ▶ If $\mathcal{M}'(b.p) = \text{true}$: the colored formula reduces to b.U and $\mathcal{M}' \models b.U$ since subtreeIsSolved (b, \mathcal{M}') returned true (solutionForallChildren returned true)
- ▶ If $\mathcal{M}'(b.p) = \text{false}$: the colored formula reduces to $\neg b.O$ and $\mathcal{M}' \models \neg b.O$ since subtreeIsSolved (b, \mathcal{M}') returned false (solutionForallChildren returned true)

Why formula L'?

$$L' \leftarrow n.F \land \bigwedge_{n \to b} ((b.p \Rightarrow b.U) \land (\neg b.p \Rightarrow \neg b.O))$$

Sufficient condition for success: $\mathcal{M}' \models L'$ implies $\mathcal{M} \models \mathcal{G}_n$
 $\mathcal{M}' \models L'$ means that:

- $\triangleright \mathcal{M}' \models n.F$
- If $\mathcal{M}'(b.p) = \text{true}$: the colored formula reduces to b.U and $\mathcal{M}' \models b.U$ implies $\mathcal{M}' \models b.\psi$
- ▶ If $\mathcal{M}'(b.p) = \text{false}$: the colored formula reduces to $\neg b.O$ and $\mathcal{M}' \models \neg b.O$ implies $\mathcal{M}' \not\models b.\psi$

The loop in subtreeIsSolved IV

```
1. while true do
           L \leftarrow n.F \land \bigwedge_{p \to b} ((b.p \Rightarrow b.O) \land (\neg b.p \Rightarrow \neg b.U))
 2:
           \mathcal{M}' \leftarrow \mathsf{SMA}(L, \mathcal{M})
 3:
           if \mathcal{M}' = nil then
 4.
                  n.O \leftarrow n.O \land MBO(L, FV(L) \setminus Rigid(n), \mathcal{M})
 5:
                  return false
 6:
            else
 7:
                 if SOLUTIONFORALLCHILDREN(n, \mathcal{M}') then
 8:
                       L' \leftarrow n.F \land \bigwedge_{p \to b} ((b.p \Rightarrow b.U) \land (\neg b.p \Rightarrow \neg b.O))
 9.
                       n.U \leftarrow n.U \lor \mathsf{MBU}(L', FV(L') \setminus Rigid(n), \mathcal{M})
10:
11:
                       return true
```

When solutionForallChildren returns false

solutionForallChildren found a child b of n such that

- ▶ Either $\mathcal{M}'(b.p) = \text{true}$ but subtreeIsSolved (b, \mathcal{M}') returned false: subtreeIsSolved (b, \mathcal{M}') updated b.O
- ▶ Or $\mathcal{M}'(b.p) = \text{false}$ but subtreeIsSolved (b, \mathcal{M}') returned *true*: subtreeIsSolved (b, \mathcal{M}') updated b.U

Either way the state has changed: variable L will get a new formula and SMA will not produce the same assignment

QSMA is partially correct

Thm: subtreeIsSolved is partially correct: if the preconditions hold and it halts, the postconditions hold

And termination?

- ► LRA: given $\exists x. F[\bar{z}, x]$ under-approximation: $F[\bar{z}, \tilde{q}]$ \tilde{q} : constant symbol for rational number q
- Consider an MBU such that $MBU(F[\bar{z},x],x,\mathcal{M}) = F[\bar{z},\tilde{q}]$ and $\mathcal{M} \models F[\bar{z},\tilde{q}]$
- ▶ Infinite enumeration of rational constants and infinite series of under-approximations $(\bigvee_{i=1}^n F[\bar{z}, x]\{x \leftarrow \tilde{q}_i\})_{n \in \mathbb{N}}$

are finite

MBU and MBO have finite basis: QSMA is totally correct

For all QF formulas
$$F[\bar{z}, \bar{x}, \bar{p}]$$
 and tuples \bar{x} the sets $\{ \text{MBU}(F[\bar{z}, \bar{x}, \bar{p}], \bar{x}, \mathcal{M}) \mid \mathcal{M} : \text{ extension of } \mathcal{M}_0 \text{ to } \bar{z} \text{ such that } \mathcal{M} \models \exists \bar{x}. F[\bar{z}, \bar{x}, \bar{p}] \}$ $\{ \text{MBO}(F[\bar{z}, \bar{x}, \bar{p}], \bar{x}, \mathcal{M}) \mid \mathcal{M} : \text{ extension of } \mathcal{M}_0 \text{ to } \bar{z} \text{ such that } \mathcal{M} \not\models \exists \bar{x}. F[\bar{z}, \bar{x}, \bar{p}] \}$

Thm: If MBU and MBO have finite basis, whenever the preconditions are satisfied subtreeIsSolved halts

Example I

- $\forall x.((\exists y.(x \simeq 2 \cdot y)) \Rightarrow (\exists z.(3 \cdot x \simeq 2 \cdot z)))$

- \blacktriangleright The original formula is true in LRA iff φ is false in LRA
- ▶ In this example the original formula is true in LRA
- $\varphi = \exists x. (p_1 \land \neg p_2) \text{ where}$ $p_1 = \exists y. (x \simeq 2 \cdot y) \qquad p_2 = \exists z. (3 \cdot x \simeq 2 \cdot z)$

Example II

$$\varphi = \exists x. (p_1 \land \neg p_2)$$
 $p_1 = \exists y. (x \simeq 2 \cdot y)$ $p_2 = \exists z. (3 \cdot x \simeq 2 \cdot z)$

- Apply subtreeIsSolved to the root: $L \leftarrow p_1 \land \neg p_2$ as $b_1.U = b_2.U = \bot$ and $b_1.O = b_2.O = \top$
- ▶ Say SMA produces $x \leftarrow 1$, $p_1 \leftarrow \text{true}$, $p_2 \leftarrow \text{false}$
- ▶ Recurse on b_1 : $L \leftarrow x \simeq 2 \cdot y$ (no children)
- ► SMA produces $y \leftarrow \frac{1}{2}$: return *true*
- ▶ Recurse on b_2 : $L \leftarrow 3 \cdot x \simeq 2 \cdot z$ (no children)
- ► SMA produces $z \leftarrow \frac{3}{2}$: return *true*
- ▶ But $p_2 \leftarrow$ false, hence return false

OptiQSMA: Reconsider this example

$$\varphi = \exists x. (p_1 \lor \neg p_2)$$
 $p_1 = \exists y. \neg F[x, y]$ $p_2 = \exists z. \neg G[x, z]$

- Apply subtreeIsSolved to the root $r: L \leftarrow p_1 \lor \neg p_2$
- ▶ If SMA yields $p_1 \leftarrow$ true:
- ▶ Recurse on b_1 : $L \leftarrow \neg F[x, y]$
- ► If SMA yields value for y s.t. $\neg F[x, y]$, return *true*
- ▶ If SMA yields $p_2 \leftarrow$ false:
- ▶ Recurse on b_2 : $L \leftarrow \neg G[x, z]$
- ► If SMA returns nil, return false

OptiQSMA: from the example to the general idea

- Pass $(p_1 \lor \neg p_2) \land (p_1 \Rightarrow \neg F[x, y])$ to SMA (in place of $p_1 \lor \neg p_2$)
- ▶ If SMA assigns true to p_1 , it also assigns to x and y values that satisfy $\neg F[x, y]$ $\exists y. \neg F[x, y]$ is found true without recursion
- ▶ If SMA assigns false to p_2 , still need to recurse to check that $\exists z.\neg G[x,z]$ is false
- Fewer recursive calls to subtreelsSolved by letting the underlying solver SMA look ahead

OptiQSMA: the look-ahead formula

- ▶ QSMA-tree $\mathcal{G} = (\bar{z}, T)$
- \triangleright For all nodes n of T the look-ahead formula of n is

$$LF(n) = n.F \wedge \bigwedge_{n \to b} (b.p \Rightarrow LF(b))$$

► If b.p is true look ahead at b.F (the child's formula)

OptiQSMA: FAN and NAN nodes

- ► No alternation nodes:
 - NAN (n, \mathcal{M}) : descendants b of n via a path where all proxies and b.p are assigned true by \mathcal{M}
 - Handled together in one shot without recursion
- First alternation nodes:
 - **FAN** (n, \mathcal{M}) : descendants b of n via a path where all proxies are assigned true but b.p is assigned false by \mathcal{M}
 - Recursion needed

OptiQSMA: satisfaction with look-ahead

```
QSMA-tree \mathcal{G} = (\bar{z}, T) with root r
```

- ▶ \mathcal{M} : extension of \mathcal{M}_0 to $Rigid(r) = \bar{z}$
- $ightharpoonup \mathcal{M} \models_{la} \mathcal{G}$ if there exists an extension \mathcal{M}' of \mathcal{M} to FV(LF(r)) such that
 - 1. $\mathcal{M}' \models LF(r)$
 - 2. For all nodes $b \in FAN(r, \mathcal{M}')$: $\mathcal{M}' \not\models_{la} \mathcal{G}_b$

For node $b \in FAN(r, \mathcal{M}')$: $\mathcal{M}'(b.p) = false$: try to show $b.\psi$ false

Thm: \mathcal{G} is the QSMA-tree for formula φ : $\mathcal{M} \models \mathcal{G}$ iff $\mathcal{M} \models_{la} \mathcal{G}$

Implementation and experimental results

- OptiQSMA is implemented in YicesQS (S. Graham-Lengrand) built on top of Yices 2 (B. Dutertre, D. Jovanović)
- YicesQS entered the Single Query Track (Main Track) of SMT-COMP in 2022 and 2023
- 2022: YicesQS won SAT performance and 24s performance columns for Arith (LRA, LIA, NRA, NIA); only solver to solve all LRA benchmarks; ranked 2nd for Largest Contribution Award
- ➤ 2023: YicesQS won SAT performance (parallel) and 24s performance (parallel) columns and was among the first three solvers in all columns for Arith

Current and future work

- Integration of QSMA in the CDSAT framework for conflict-driven reasoning in unions of theories:
 - 1. SMA as a CDSAT solver
 - 2. QSMA as a CDSAT module
 - Formalize QSMA as transition system and unwrap it into CDSAT
- Improvements to YicesQS, e.g.: integer reasoning, bitvector reasoning

Thanks

MPB, Stéphane Graham-Lengrand, and Christophe Vauthier. QSMA: a new algorithm for quantified satisfiability modulo theory and assignment.

Proc. of the 29th Int. Conf. on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence 14132, 78-95, Springer, 2023.

Thank you!