머신러닝(Machine Learning) 개요

[학습목표] 머신러닝의 개념, 머신러닝 역사, 머신러닝 종류 등을 살펴본다

1. 머신러닝이란?

Machine Learning, 기계 학습, 機械學習

- 컴퓨터 프로그램이 데이터와 처리 경험을 이용한 학습을 통해 정보 처리 능력을 향상시키는 것 또는 이와 관련된 연구 분야
- 기계 학습은 자율 주행 자동차, 필기체 문자 인식 등과 같이 알고리즘 개발이 어려운 문제의 해결에 유용

Machine Learning

http://word.tta.or.kr/dictionary/dictionaryView.do? subject=%EA%B8%B0%EA%B3%84+%ED%95%99%EC%8A%B5

Arthur Samuel (1901 ~ 1990)

- 1959년 Machine Learning 이라는 용어를 대중화한 개척자
- 체커 프로그램으로 세계 최초의 성공적인 자기 학습 프로그램 중 하나로 인공 지능의 기본 개념에 대한 시연

" 명시적인 프로그래밍 없이

컴퓨터가 학습하는 능력을 갖추게 하는 연구 분야 "

https://artsandculture.google.com/entity/arthur-samuel/m02qqp3s?categoryid=historical-figure http://webdocs.cs.ualberta.ca/~chinook/project/legacy.html

일반적인 프로그램과 머신러닝 프로그램

- 일반 프로그램 : A 입력에 B 조건이 성립되면 X를 동작시킴
- 머신러닝 프로그램: A 정보를 입력할 때 정답이 X가 되는 조건 B를 찾도록 기계를 학습함

일반 프로그램

다음 수식을 계산한 결과는?

3 × 2 =

✓ 입력 A : 숫자

 $4 \times -3 =$

✔ 조건 B : 곱하기 ×

 $5 \times 8 =$ $7 \times -5 =$

✓ 동작 X : 두 숫자를 곱해서 결과를 출력

머신러닝 프로그램

□ 와 △에 들어갈 정수는?

Tom Mitchell (1951 ~, 카네기 멜론 대학 컴퓨터 과학 교수)

"어떤 작업 T에 대한 컴퓨터 프로그램의 성능을 P로 측정했을 때 경험 E로 인해 성능이 향상됐다면, 이 컴퓨터 프로그램은 작업 T와 성능 측정 P에 대해 경험 E로 학습한 것이다."

Experience (E) placed against Task (T) is measured by Performance (P)

성능 개선

https://www.zldoty.com/what-is-machine-learning/

Machine Learning defined in Wikipedia

학습 ←

- 경험을 통하여 자동으로 개선되는 컴퓨터 알고리즘에 대한 학문
- 샘플 데이터인 Training Data를 사용하여 수학적 모델을 생성
- 생성된 모델은 예측 또는 의사결정에 활용
- 통계학, 최적화, Data Mining, AI 등과 밀접한 학문이고 자주 함께 언급됨
- 비즈니스 환경에서 활용하면서 Predictive Analytics 라고 표현하기도 함

https://ko.wikipedia.org/wiki/%EA%B8%B0%EA%B3%84_%ED%95%99%EC%8A%B5

2. 머신러닝의 역사

https://www.packtpub.com/product/deep-learning-essentials/9781785880360/

1940년대

- : 인공지능 태동기
 - 1943년 Warren McCulloch(맥컬러) & Walter Pits(월터 피츠) 최초로 뇌의 뉴런 개념 발표
 - 1949년 Hebb의 Hebbian Learning Thoery 발표

1950년대

- : 논리 연산기로 기계가 논리적 추론을 할 수 있음을 보여줌
 - 베이즈 정리를 기초로 확률 기반의 분류기 연구 시작(확률적 모델링)
 - 모든 특성값은 서로 독립임을 가정
 - 나이브 베이즈(Naive Bayes)
 - 1950년 Alan Turing(앨런 튜링)의 Turing Test
 - 사람과 같은 지능을 가졌는지 테스트
 - 1956년 Dartmouth Al Conference
 - Marvin Minsky, John McCarthy, Claude Shannon 및 Nathan Rochester는 "Artificial Intelligence (인공지능)"라는 용어를 제안

인공지능 황금기

- 1957년 : Frank Rosenblatt : Perceptron 개념 발표
 - 최고의 인공신경망(다수의 입력으로부터 하나의 결과를 내는 알고리즘)
 - 뇌의 신경세포의 뉴런과 동작 방식이 비슷

마크I 퍼셉트론

• 뉴욕 타임스는 퍼셉트론 (Perceptron)이 "걸고, 말하고,보고, 쓰고, 스스로 번식하여 그 존재를 인식할 수 있는 전자 컴퓨터의 배아체"라고 보도

1960년대

- 1960년
 - Widrow, Hoff가 **Delta Learning Rule** 발표
 - Perceptron 훈련을 위한 실용적인 방법으로 사용. 더 나은 분류기 개발
- 1967년
 - Cover & Hart 최근접 이웃 알고리즘(Nearest Neighbor algorithm)
 - 거대한 이정표와 컴퓨터 패턴 인식의 탄생을 기록
- 1969년
 - Minsky Marvin은 XOR 문제에 Perceptron이 적합하지 않다고 주장

1974~1980 AI 첫 번째 겨울

1970년대

- 1970년
 - S. Linnainmaa가 Back Propagation 발표

1980년대

- : Rule-based 알고리즘을 통한 탐색, 추론을 통한 지능 향상(전문가 시스템 발전)
 - 1981년
 - P. J. Werbos가 Multilayer Perceptron을 Back Propagation으로 계산하는 방법을 발표
 - 1986년
 - Smolensky이 **Boltzmann Machine** 발표
 - R. Quinlan이 머신러닝의 주류가 된 Decision Tree 발표
 - o ID3 알고리즘
 - Decision Tree 변종인 ID4, CART 등의 알고리즘 발표(C4.5, C5.0, CART, CHAID 등)
 - 1989년
 - Bell 연구소 Yann LeCun은 **LeNet 신경망** 발표
 - 초창기 합성곱 신경망(Convolution Neural Network:CNN)과 역전파를 연결
 - ㅇ 손글씨 숫자 이미지를 분류하는 문제에 적용함
 - 우편 봉투의 우편 번호 코드를 자동으로 읽기 위해 1990년대 미국 우편 서비스에 사용됨

1987 ~ 1993 : AI 두 번째 겨울

1990년대

- 1995년
 - Vladimir Vapnik과 Corinna Cortes는 **현대적 Support Vector Machine** 발표
 - ㅇ 2개 범주를 분류하는 이진 분류기
 - ㅇ 고차원 평명인 초평면으로 분류
 - o (Vladimir Vapnik과 Alexey Chervonekis가 만든 선형공식은 1963년 공개)
 - IBM 근무하던 Tin Kam Ho가 Random Decision Forests 개념 최초 발표
- 1997년
 - Freund와 Schapire는 부스팅, 앙상블 기법을 사용한 AdaBoost 알고리즘을 발표
 - 단일 분류기 성능을 높이는 방법
 - Leo Breiman은 **Gradient Boosting** 개념 제안

- o Cost 함수에 최적화 알고리즘을 적용한 것을 부스팅으로 해석
- Jerome H. Friedman에 의해 Gradient Boosting 알고리즘 발전
- Sepp Hochreiter; Jürgen Schmidhuber, **LSTM**(Long Short-Term Memory) 발표
- 1998년
 - LeNet5 발표

2000년대

- : 사전에 정의된 feature와 weight로 스스로 학습하는 머신러닝
 - 2000년
 - 커널함수를 사용한 SVM 발표
 - 2001년
 - Leo Breiman이 Random Decision Forests 발전
 - 앙상블 기법을 이용한 여러 개 결정트리를 이용한 알고리즘으로 각각의 결정트리 생성 시 특성과 테스트 데이터를 무작위로 뽑는 기법
 - AdaBoost가 과적합과 이상치에 약점을 보였지만, Random Forest는 이에 뛰어난 성능을 보임
 - 2005년
 - Hinton, LeCun, Bengio, Andrew Ng, Deep Learning
 - 2006년
 - Hinton과 Salakhutdinov이 Boltzmann Machine 재조명
 - Hinton, 심층신뢰신경망(DBN, Deep Belief Network) 발표
 - 2009년
 - ImageNet dataset

2010년대

- : 인간 뇌의 정보처리 방식을 흉내 낸 Deep Learning
 - 2010년
 - Nair와 Hinton의 **ReLU**(Rectified linear unit) 함수 발표
 - 2011년
 - IDSIA의 Dan Ciresan이 GPU로 훈련된 심층신경망(Deep Neural Network) 으로 학술 이 미지 분류대회에서 우승(인식률 74.2%, 오류율 25.8%)
 - ㅇ 현대적 딥러닝의 첫번째 성공
 - 2012년
 - Google's Large Scale Deep Neural Networks Project
 - 고양이넷
 - 스탠포드대학의 Andrew Ng과 구글이 함께한 딥 러닝 프로젝트
 - 16,000개의 컴퓨터 프로세서와 10억 개 이상의 neural networks, DNN을 이용하여 유튜브에 업로드 되어 있는 천만 개 넘는 비디오 중 고양이 인식에 성공
 - 이미지 분류 대회 ImageNet에서 Geoffrey Hinton 팀이 심층 합성곱 신경망(ConvNet)으로 우승
 - 모델 이름 : AlexNet
 - 1400만개 이미지를 훈련하고 고해상도 컬러이미지를 1000개 범주로 분류
 - 전통적 방식 정확도 74.3%, 제프리 힌트 팀 83.6%
 - 2014년
 - Ian Goodfellow **GAN**(Generative Adversarial Nets)
 - 2015년

- 이미지 분류 대회 ImageNet에서 ConvNet으로 96.4% 정확도 달성
- 2016년
 - 알파고1.0:16만 기보 지도학습기반 심층강화학급과 확률적 샘플링 기반 의사결정
- 2018년
 - GTP 출시

이미지출처: Kien Nguyen, Arun Ross. "Iris Recognition with Off-the-Shelf CNN Features: A Deep Learning Perspective", IEEE ACCESS SEPT(2017), p.3

2020년대

생성형 AI의 혁명

- 2022년 : 생성형 AI 붐의 시작, GPT-3.5 출시
- 2023년 : **GPT-4** 출시
 - GPT-3.5보다 약 500배 더 큰 데이터셋을 활용한 모델
 - 이미지, 오디오, 비디오 등 다양한 입력 데이터 동시 처리
 - 데이터 포맷도 다양하게 생성하는 멀티모달모델(LMM)로 진화

출처: https://news.skhynix.co.kr/post/all-around-ai-1

머신러닝의 주요 알고리즘

확률적 모델링

- 통계학 이론을 데이터 분석에 응용
- 초창기 머신러닝 형태 중 하나
- 나이브 베이즈(Naive Bayes)
- 로지스틱 회귀
- 참고: 베이즈정리와 통계학: 18세기

신경망

- 1세대 : Perceptron
- 2세대: Multilayer Perceptron, Back Propagation
- 3세대 : Boltzmann Machine, ReLU, Dropout, Local Minima

커널(Kernel) 방법

- 분류 알고리즘의 한 종류
- 서포트 벡터 머신(support vector machine)

결정 트리

- 랜덤 포레스트
- 그래디언트 부스팅
- 머신러닝 경연대회 사이트인 캐글(Kaggle)
 - 2010년 시작되었을 때 랜덤포레스트가 가장 선호하는 알고리즘
 - 2014년 그래디언트 부스팅이 선호

3. 머신러닝과 AI

Artificial Intelligence

컴퓨터가 인간의 지능을 흉내 낼 수 있게 하는 모든 기술로, Machine Learning을 포함

Machine Learning

AI의 하위 집합으로, 기계가 경험을 바탕으로 스스로 개선해 가는 기법을 말하며, Deep Learning을 포함

Deep Learning

Machine Learning의 하위 집합으로, 신경망을 기반으로 특정 작업을 기계 스스로 학습하는 기법

https://docs.microsoft.com/ko-kr/azure/machine-learning/concept-deep-learning-vs-machine-learning

머신러닝과 전통적 방식과 차이

- 전통적 방법의 경우 사소한 문제가 아닌 경우 규칙이 점점 길고 복잡해져 유지보수가 매우 어려움
- 기존 솔루션으로는 많은 수동 조정과 규칙이 필요한 경우, 머신러닝 모델 코드를 간단하게 만들 수 있음
- 전통적인 방식으로 해결할 수 없는 복잡한 문제를 머신러닝으로 해결

머신러닝의 장점

- 기존 솔루션으로는 많은 수동 조정과 규칙이 필요한 문제
 - 하나의 머신러닝 모델이 코드를 간단하게 만들고 전통적인 방법보다 더 잘 수행되도록
 할 수 있음
- 전통적인 방식으로는 해결 방법이 없는 복잡한 문제
 - 가장 뛰어난 머신러닝 기법으로 해결 방법을 찾을 수 있음
- 유동적인 환경: 머신러닝 시스템은 새로운 데이터에 적응 가능
- 복잡한 문제와 대량의 데이터에서 통찰 얻기

어플리케이션 사례

- 이미지 분류 작업: 생산 라인에서 제품 이미지를 분석해 자동으로 분류
- 시맨틱 분할 작업: 뇌를 스캔하여 종양 진단
- 텍스트 분류(자연어 처리)
 - 자동으로 뉴스 기사 분류
 - 토론 포럼에서 부정적인 코멘트를 자동으로 구분
- 텍스트 요약
 - 긴 문서를 자동으로 요약
- 자연어 이해 : 챗봇(chatbot) 또는 개인 비서 만들기
- 회사의 내년도 수익을 예측하기 : 회귀분석
- 음성 인식 : 음성 명령에 반응하는 앱
- 이상치 탐지: 신용 카드 부정 거래 감지
- 군집 작업 : 구매 이력을 기반으로 고객을 나누고 각 집합마다 다른 마케팅 전략을 계획
- 데이터 시각화 : 고차원의 복잡한 데이터셋을 명확하고 의미 있는 그래프로 표현하기
- 추천 시스템: 과거 구매 이력을 기반으로 고객이 관심을 가질 수 있는 상품 추천하기
- 강화 학습 : 지능형 게임 봇(bot) 만들기

4. 머신러닝 종류

https://github.com/trekhleb/homemade-machine-learning

넓은 범주의 분류

1) 감독 하에 훈련하는가?

- 지도(Supervised) 학습
- 비지도(Unsupervised) 학습
- 준지도(Semi-supervised) 학습
- 강화(Reinforcement) 학습
- 전이(Transfer) 학습

2) 실시간으로 점진적인 학습을 하는지?

- 온라인 학습
 - 개별적 또는 소그룹(mini batch)으로 데이터를 순차적으로 공급하여 점진적으로 훈련
- 배치 학습
 - 시스템이 점진적으로 학습할 수 없음
 - 모든 데이터를 사용해 학습
 - 오프라인으로 수행 (많은 시간과 리소스 사용)

3) 데이터 비교 vs 모델 기반인지?

- 인스턴스 기반 학습
- 모델 기반 학습

지도 학습(Supervised Learning)

- 학습 데이터에 입력값(특성)에 대한 출력값(레이블)이 함께 제시됨
 - 입력으로 훈련 데이터 세트가 있고 출력으로 각 훈련 세트에 대한 레이블 또는 "정답" 세 트가 있음
- 알고리즘은 입력값과 출력값 사이의 관계를 가장 잘 설명할 수 있는 "모델"을 찾음
- "모델"을 사용하여 새로운 입력값에 대한 예측 수행
- 출력값이 수치형인 회귀와 범주형인 분류 문제로 나누어 짐

- 알고리즘
 - k-최근접이웃(K-Nearest Neightbor: KNN)
 - 선형 회귀(Linear Regression)
 - 로지스틱 회귀(Logistic Regression)
 - 서포트 벡터 머신(Support Vector Machine)
 - 의사결정트리(Decision Tree)
 - 랜덤 포레스트(Random Forest)
 - 신경망

비지도 학습(Unsupervised Learning)

- 학습 데이터에 레이블이 지정되거나 분류되지 않은 테스트 데이터에서 학습
- 알고리즘은 학습 데이터의 특징만을 활용하여 목표한 결과를 산출
- 적절한 군집을 찾거나, 변수의 복잡성을 낮추기 위한 차원 축소 등
- GAN(Generative Adversarial Nets) 등과 같은 새로운 기법이 등장하고 있음
- 알고리즘
 - 군집분석(Clustering)
 - o K-평균(K-Means)
 - o 계층적 군집 분석(Hierarchical Cluster Analysis,HCA)
 - DBSCAN
 - 시각화와 차원축소
 - o 주성분 분석(Principal Component Analysis, PCA)
 - o 커널(Kernel) PCA
 - 지역적 선형 임베딩(Locally-Linear Embedding, LLE)
 - t-SNE(t-distributed Stochastic Neighbor Embedding)
 - 이상치 탐지
 - 가우스 분포를 이용한 이상치 탐지
 - 연관규칙(Association Rule)
 - Apriori
 - Eclat

준지도 학습(Semi-supervised Learning)

- 모든 데이터에 항상 레이블을 달아 줄 수 있는 것이 아닌 현실을 고려한 접근법
- 레이블이 달려있는 데이터와 레이블이 달려있지 않은 데이터를 동시에 사용하여 더 좋은 모델을 만들고자 함
 - 지도와 비지도 알고리즘 조합
- 항상 최선의 성능이 발휘되는 것은 아니나, 군집 형태에 가까운 경우 좋은 결과를 나타냄
- 알고리즘
 - 심층신뢰신경망(DBN)
 - 제한된 볼츠만 기계(RBM)

강화학습(Reinforcement Learning)

- 행동심리학에서 영감을 받은
- 구체적인 행동에 대한 지시가 없이 목표만 주어짐
- 현재 상태에 대한 최선의 액션을 보상에 의해 스스로 찾아 학습하게 하는 방법
- 학습한 내용은 최고의 결과를 얻기 위한 전략으로 활용됨
 - Agent인 환경(environment)을 관찰하고 행동(action)을 실행하고 그 결과 보상(reward)을 받음
 - 보상을 얻기 위한 정책이라 부르는 최상의 전략(policy)을 스스로 학습
- 데이터에서 보지 못한 내용에도 적응하여 반복하면서 더 좋은 결과를 얻을 수 있음
- 알고리즘
 - SARSA
 - Q-Learning

https://opentutorials.org/course/4548/28949

전이학습(Transfer Learning)

- 기존의 학습 방법들은 학습에 사용한 데이터와 이후 분석을 하려는 데이터가 같은 분포를 가지고 있다는 가정을 바탕으로 함
- 새로운 문제를 해결하고자 할 때 기존에 학습된 모델을 이용하여 새로운 모델을 만드는 방법
- 이미 잘 훈련된 모델이 있고, 해결하고자 하는 문제가 유사성이 있을 경우, 학습 데이터가 부족한 경우 등에 사용
- 기존의 pre-trained model을 미세 조정하여 사용하는 학습 방법이 대표적

┃ 5. 머신러닝 워크플로우(Workflow)

https://www.altexsoft.com/whitepapers/machine-learning-bridging-between-business-and-data-science/

- 1. Collect data : 유용한 데이터를 최대한 많이 확보하고 하나의 데이터 세트로 통합
- 2. Prepare data : 결측값, 이상값, 기타 데이터 문제를 적절하게 처리하여 사용 가능한 상태로 준비
- 3. Split data: 데이터 세트를 학습용과 평가용 세트로 분리
- 4. Train a model : 이력 데이터의 일부를 활용하여 알고리즘이 데이터 내의 패턴을 잘 찾아 주는지 확인
- 5. Test and validate a model : 학습 후 모델의 성능을 평가용 데이터 세트로 확인하여 예측 성능을 파악
- 6. Deploy a model: 모델을 의사결정 시스템에 탑재 / 적용
- 7. Iterate: 새로운 데이터를 확보하고 점진적으로 모델을 개선

머신러닝 프로젝트 사례

예. 돈이 사람들을 행복하게 하는가?

- OECD 웹사이트 : Better Life Index 데이터셋
 - https://stats.oecd.org/index.aspx?DataSetCode=BLI
- IMF 웹사이트: 1인당 GDP
 - https://www.imf.org/en/Publications/SPROLLs/world-economic-outlook-databases#sort=%40imfdate%20descending

```
In [2]: import matplotlib
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        import sklearn.linear_model
        def prepare_country_stats(oecd_bli, gdp_per_capita):
            oecd_bli = oecd_bli[oecd_bli["INEQUALITY"]=="TOT"]
            oecd_bli = oecd_bli.pivot(index="Country", columns="Indicator",
                                       values="Value")
            gdp per capita.rename(columns={"2015": "GDP per capita"},
                                  inplace=True)
            gdp_per_capita.set_index("Country", inplace=True)
            full_country_stats = pd.merge(left=oecd_bli, right=gdp_per_capita,
                                          left_index=True, right_index=True)
            full_country_stats.sort_values(by="GDP per capita", inplace=True)
            remove indices = [0, 1, 6, 8, 33, 34, 35]
            keep_indices = list(set(range(36)) - set(remove_indices))
            return full_country_stats[["GDP per capita", 'Life satisfaction']].iloc[keep_indices
```

```
# Load the data (데이터 적재)
oecd_bli = pd.read_csv("data/lifesat/oecd_bli_2015.csv", thousands=',')
gdp_per_capita = pd.read_csv("data/lifesat/gdp_per_capita.csv",
                            thousands=',',delimiter='\t',
                            encoding='latin1', na_values="n/a")
# Prepare the data (데이터 전처리)
country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)
X = np.c_[country_stats["GDP per capita"]]
y = np.c_[country_stats["Life satisfaction"]]
# Visualize the data (데이터 탐색)
country_stats.plot(kind='scatter', x="GDP per capita", y='Life satisfaction')
plt.show()
# Select a linear model (모델 선택)
model = sklearn.linear_model.LinearRegression()
# Train the model (모델 학습, 훈련)
model.fit(X, y)
# Make a prediction for Cyprus(슬로베니아) (예측, 추론)
X_new = [[22587]] # Cyprus' GDP per capita
print(model.predict(X_new)) # outputs [[ 5.96242338]]
```


[[5.96242338]]

6. 머신러닝의 주요 이슈

머신러닝의 주요 작업 : 학습 알고리즘을 선택해서 데이터에 훈련시키는 것

• 나쁜 데이터

- 충분하지 않은 양의 데이터
- 대표성 없는 데이터
- 낮은 품질의 데이터 : 오류, 잡음, 이상치
- 연관성이 적은 특성(변수)
- 나쁜 알고리즘
 - 훈련 데이터 과대적합
 - 훈련 데이터 과소적합

테스트와 검증

• 모델이 새로운 사례에 잘 일반화 될수 있는가?

머신러닝에서 사용되는 주요 패키지

머신러닝 패키지

• 사이킷런(Scikit-Learn)

배열/선형대수/통계 패키지

- NumPy
- SciPy

데이터 핸들링

Pandas

시각화

- Matplotlib
- Seaborn

딥러닝

- 텐서플로(Tensorflow)
- 케라스(Keras)
- 파이토치(PyTorch)

출처 :

https://projectresearch.co.kr/2017/06/14/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9Dml%E0%EA%B0%84%EB%9E%B5%ED%95%9C-%EC%97%AD%EC%82%AC/

• https://ko.wikipedia.org/wiki/%EA%B8%B0%EA%B3%84_%ED%95%99%EC%8A%B5