39.
$$y = -2$$

40.
$$2x - 3y + 6 = 0$$

41.
$$3x - 4y = 12$$

42.
$$4x + 5y = 10$$

43-52 Sketch the region in the xy-plane.

43.
$$\{(x,y) \mid x < 0\}$$

44.
$$\{(x, y) | y > 0\}$$

45.
$$\{(x, y) | xy < 0\}$$

46.
$$\{(x, y) | x \ge 1 \text{ and } y < 3\}$$

47.
$$\{(x,y) \mid |x| \le 2\}$$

48.
$$\{(x,y) \mid |x| < 3 \text{ and } |y| < 2\}$$

49.
$$\{(x,y) \mid 0 \le y \le 4 \text{ and } x \le 2\}$$

50.
$$\{(x,y) | y > 2x - 1\}$$

51.
$$\{(x,y) \mid 1 + x \le y \le 1 - 2x\}$$

52.
$$\{(x,y) \mid -x \le y < \frac{1}{2}(x+3)\}$$

53. Find a point on the *y*-axis that is equidistant from
$$(5, -5)$$
 and $(1, 1)$.

54. Show that the midpoint of the line segment from $P_1(x_1, y_1)$ to $P_2(x_2, y_2)$ is

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

55. Find the midpoint of the line segment joining the given points. (a) (1, 3) and (7, 15) (b) (-1, 6) and (8, -12)

56. Find the lengths of the medians of the triangle with vertices A(1, 0), B(3, 6), and C(8, 2). (A median is a line segment from a vertex to the midpoint of the opposite side.)

57. Show that the lines 2x - y = 4 and 6x - 2y = 10 are not parallel and find their point of intersection.

58. Show that the lines 3x - 5y + 19 = 0 and 10x + 6y - 50 = 0 are perpendicular and find their point of intersection.

59. Find an equation of the perpendicular bisector of the line segment joining the points A(1, 4) and B(7, -2).

60. (a) Find equations for the sides of the triangle with vertices P(1, 0), Q(3, 4), and R(-1, 6).

(b) Find equations for the medians of this triangle. Where do they intersect?

61. (a) Show that if the *x*- and *y*-intercepts of a line are nonzero numbers *a* and *b*, then the equation of the line can be put in the form

$$\frac{x}{a} + \frac{y}{b} = 1$$

This equation is called the **two-intercept form** of an equation of a line.

(b) Use part (a) to find an equation of the line whose *x*-intercept is 6 and whose *y*-intercept is −8.

62. A car leaves Detroit at 2:00 PM, traveling at a constant speed west along I-96. It passes Ann Arbor, 40 mi from Detroit, at 2:50 PM.

(a) Express the distance traveled in terms of the time elapsed.

(b) Draw the graph of the equation in part (a).

(c) What is the slope of this line? What does it represent?

C GRAPHS OF SECOND-DEGREE EQUATIONS

In Appendix B we saw that a first-degree, or linear, equation Ax + By + C = 0 represents a line. In this section we discuss second-degree equations such as

$$x^{2} + y^{2} = 1$$
 $y = x^{2} + 1$ $\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1$ $x^{2} - y^{2} = 1$

which represent a circle, a parabola, an ellipse, and a hyperbola, respectively.

The graph of such an equation in x and y is the set of all points (x, y) that satisfy the equation; it gives a visual representation of the equation. Conversely, given a curve in the xy-plane, we may have to find an equation that represents it, that is, an equation satisfied by the coordinates of the points on the curve and by no other point. This is the other half of the basic principle of analytic geometry as formulated by Descartes and Fermat. The idea is that if a geometric curve can be represented by an algebraic equation, then the rules of algebra can be used to analyze the geometric problem.

CIRCLES

As an example of this type of problem, let's find an equation of the circle with radius r and center (h, k). By definition, the circle is the set of all points P(x, y) whose distance from

FIGURE I

the center C(h, k) is r. (See Figure 1.) Thus P is on the circle if and only if |PC| = r. From the distance formula, we have

$$\sqrt{(x-h)^2 + (y-k)^2} = r$$

or equivalently, squaring both sides, we get

$$(x - h)^2 + (y - k)^2 = r^2$$

This is the desired equation.

I EQUATION OF A CIRCLE An equation of the circle with center (h, k) and radius r is

$$(x - h)^2 + (y - k)^2 = r^2$$

In particular, if the center is the origin (0, 0), the equation is

$$x^2 + v^2 = r^2$$

EXAMPLE 1 Find an equation of the circle with radius 3 and center (2, -5).

SOLUTION From Equation 1 with r = 3, h = 2, and k = -5, we obtain

$$(x-2)^2 + (v+5)^2 = 9$$

EXAMPLE 2 Sketch the graph of the equation $x^2 + y^2 + 2x - 6y + 7 = 0$ by first showing that it represents a circle and then finding its center and radius.

SOLUTION We first group the x-terms and y-terms as follows:

$$(x^2 + 2x) + (y^2 - 6y) = -7$$

Then we complete the square within each grouping, adding the appropriate constants to both sides of the equation:

$$(x^2 + 2x + 1) + (y^2 - 6y + 9) = -7 + 1 + 9$$

$$(x+1)^2 + (y-3)^2 = 3$$

Comparing this equation with the standard equation of a circle (1), we see that h = -1, k=3, and $r=\sqrt{3}$, so the given equation represents a circle with center (-1,3) and radius $\sqrt{3}$. It is sketched in Figure 2.

 $x^2 + y^2 + 2x - 6y + 7 = 0$

or

EXAMPLE 3 Draw the graph of the parabola $y = x^2$.

SOLUTION We set up a table of values, plot points, and join them by a smooth curve to obtain the graph in Figure 3.

x	$y = x^2$
0	0
$\pm \frac{1}{2}$	$\frac{1}{4}$
±1	1
±2	4
±3	9

FIGURE 3

Figure 4 shows the graphs of several parabolas with equations of the form $y = ax^2$ for various values of the number a. In each case the *vertex*, the point where the parabola changes direction, is the origin. We see that the parabola $y = ax^2$ opens upward if a > 0 and downward if a < 0 (as in Figure 5).

FIGURE 4

FIGURE 5

Notice that if (x, y) satisfies $y = ax^2$, then so does (-x, y). This corresponds to the geometric fact that if the right half of the graph is reflected about the y-axis, then the left half of the graph is obtained. We say that the graph is **symmetric with respect to the y-axis**.

The graph of an equation is symmetric with respect to the y-axis if the equation is unchanged when x is replaced by -x.

If we interchange x and y in the equation $y = ax^2$, the result is $x = ay^2$, which also represents a parabola. (Interchanging x and y amounts to reflecting about the diagonal line y = x.) The parabola $x = ay^2$ opens to the right if a > 0 and to the left if a < 0. (See

Figure 6.) This time the parabola is symmetric with respect to the x-axis because if (x, y)satisfies $x = ay^2$, then so does (x, -y).

FIGURE 6

The graph of an equation is symmetric with respect to the x-axis if the equation is unchanged when y is replaced by -y.

FIGURE 7

(1, -1)

0

EXAMPLE 4 Sketch the region bounded by the parabola $x = y^2$ and the line y = x - 2.

SOLUTION First we find the points of intersection by solving the two equations. Substituting x = y + 2 into the equation $x = y^2$, we get $y + 2 = y^2$, which gives

$$0 = y^2 - y - 2 = (y - 2)(y + 1)$$

so y = 2 or -1. Thus the points of intersection are (4, 2) and (1, -1), and we draw the line y = x - 2 passing through these points. We then sketch the parabola $x = y^2$ by referring to Figure 6(a) and having the parabola pass through (4, 2) and (1, -1). The region bounded by $x = y^2$ and y = x - 2 means the finite region whose boundaries are these curves. It is sketched in Figure 7.

ELLIPSES

The curve with equation

2

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

where a and b are positive numbers, is called an **ellipse** in standard position. (Geometric properties of ellipses are discussed in Section 10.5.) Observe that Equation 2 is unchanged if x is replaced by -x or y is replaced by -y, so the ellipse is symmetric with respect to both axes. As a further aid to sketching the ellipse, we find its intercepts.

The x-intercepts of a graph are the x-coordinates of the points where the graph intersects the x-axis. They are found by setting y = 0 in the equation of the graph.

The *y*-intercepts are the *y*-coordinates of the points where the graph intersects the y-axis. They are found by setting x = 0 in its equation.

FIGURE 8 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

If we set y = 0 in Equation 2, we get $x^2 = a^2$ and so the x-intercepts are $\pm a$. Setting x = 0, we get $y^2 = b^2$, so the y-intercepts are $\pm b$. Using this information, together with symmetry, we sketch the ellipse in Figure 8. If a = b, the ellipse is a circle with radius a. **EXAMPLE 5** Sketch the graph of $9x^2 + 16y^2 = 144$.

SOLUTION We divide both sides of the equation by 144:

$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

The equation is now in the standard form for an ellipse (2), so we have $a^2 = 16$, $b^2 = 9$, a = 4, and b = 3. The x-intercepts are ± 4 ; the y-intercepts are ± 3 . The graph is sketched in Figure 9.

FIGURE 9 $9x^2 + 16y^2 = 144$

HYPERBOLAS

3

The curve with equation

FIGURE 10

The hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

FIGURE I

The hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$

is called a **hyperbola** in standard position. Again, Equation 3 is unchanged when x is replaced by -x or y is replaced by -y, so the hyperbola is symmetric with respect to both axes. To find the x-intercepts we set y=0 and obtain $x^2=a^2$ and $x=\pm a$. However, if we put x=0 in Equation 3, we get $y^2=-b^2$, which is impossible, so there is no y-intercept. In fact, from Equation 3 we obtain

 $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$

$$\frac{x^2}{a^2} = 1 + \frac{y^2}{b^2} \ge 1$$

which shows that $x^2 \ge a^2$ and so $|x| = \sqrt{x^2} \ge a$. Therefore we have $x \ge a$ or $x \le -a$. This means that the hyperbola consists of two parts, called its *branches*. It is sketched in Figure 10.

In drawing a hyperbola it is useful to draw first its *asymptotes*, which are the lines y = (b/a)x and y = -(b/a)x shown in Figure 10. Both branches of the hyperbola approach the asymptotes; that is, they come arbitrarily close to the asymptotes. This involves the idea of a limit, which is discussed in Chapter 2. (See also Exercise 55 in Section 4.5.)

By interchanging the roles of x and y we get an equation of the form

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

which also represents a hyperbola and is sketched in Figure 11.

EXAMPLE 6 Sketch the curve $9x^2 - 4y^2 = 36$.

SOLUTION Dividing both sides by 36, we obtain

$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

which is the standard form of the equation of a hyperbola (Equation 3). Since $a^2 = 4$, the x-intercepts are ± 2 . Since $b^2 = 9$, we have b = 3 and the asymptotes are $y = \pm \left(\frac{3}{2}\right)x$. The hyperbola is sketched in Figure 12.

FIGURE 12

The hyperbola $9x^2 - 4y^2 = 36$

If b = a, a hyperbola has the equation $x^2 - y^2 = a^2$ (or $y^2 - x^2 = a^2$) and is called an equilateral hyperbola [see Figure 13(a)]. Its asymptotes are $y = \pm x$, which are perpendicular. If an equilateral hyperbola is rotated by 45°, the asymptotes become the x- and y-axes, and it can be shown that the new equation of the hyperbola is xy = k, where k is a constant [see Figure 13(b)].

FIGURE 13 Equilateral hyperbolas

SHIFTED CONICS

Recall that an equation of the circle with center the origin and radius r is $x^2 + y^2 = r^2$, but if the center is the point (h, k), then the equation of the circle becomes

$$(x - h)^2 + (y - k)^2 = r^2$$

Similarly, if we take the ellipse with equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

and translate it (shift it) so that its center is the point (h, k), then its equation becomes

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

(See Figure 14.)

FIGURE 14

Notice that in shifting the ellipse, we replaced x by x - h and y by y - k in Equation 4 to obtain Equation 5. We use the same procedure to shift the parabola $y = ax^2$ so that its vertex (the origin) becomes the point (h, k) as in Figure 15. Replacing x by x - h and y by y - k, we see that the new equation is

$$y - k = a(x - h)^2$$
 or $y = a(x - h)^2 + k$

FIGURE 15

EXAMPLE 7 Sketch the graph of the equation $y = 2x^2 - 4x + 1$.

SOLUTION First we complete the square:

$$y = 2(x^2 - 2x) + 1 = 2(x - 1)^2 - 1$$

In this form we see that the equation represents the parabola obtained by shifting $y = 2x^2$ so that its vertex is at the point (1, -1). The graph is sketched in Figure 16.

FIGURE 16 $y = 2x^2 - 4x + 1$

EXAMPLE 8 Sketch the curve $x = 1 - y^2$.

SOLUTION This time we start with the parabola $x = -y^2$ (as in Figure 6 with a = -1) and shift one unit to the right to get the graph of $x = 1 - y^2$. (See Figure 17.)

(b) $x = 1 - y^2$

FIGURE 17

EXERCISES

1–4 Find an equation of a circle that satisfies the given conditions.

- I. Center (3, -1), radius 5
- **2.** Center (-2, -8), radius 10
- **3.** Center at the origin, passes through (4, 7)
- **4.** Center (-1, 5), passes through (-4, -6)

5-9 Show that the equation represents a circle and find the center and radius.

5.
$$x^2 + y^2 - 4x + 10y + 13 = 0$$

6.
$$x^2 + y^2 + 6y + 2 = 0$$

7.
$$x^2 + y^2 + x = 0$$

8.
$$16x^2 + 16y^2 + 8x + 32y + 1 = 0$$

9.
$$2x^2 + 2y^2 - x + y = 1$$

10. Under what condition on the coefficients a, b, and c does the equation $x^2 + y^2 + ax + by + c = 0$ represent a circle? When that condition is satisfied, find the center and radius of the circle.

11-32 Identify the type of curve and sketch the graph. Do not plot points. Just use the standard graphs given in Figures 5, 6, 8, 10, and 11 and shift if necessary.

11.
$$y = -x^2$$

12.
$$y^2 - x^2 = 1$$

13.
$$x^2 + 4y^2 = 16$$

14.
$$x = -2y^2$$

15.
$$16x^2 - 25y^2 = 400$$

16.
$$25x^2 + 4y^2 = 100$$

17.
$$4x^2 + y^2 = 1$$

18.
$$y = x^2 + 2$$

19.
$$x = y^2 - 1$$

20.
$$9x^2 - 25y^2 = 225$$

21.
$$9v^2 - x^2 = 9$$

22.
$$2x^2 + 5y^2 = 10$$

23.
$$xy = 4$$

24.
$$v = x^2 + 2x$$

25.
$$9(x-1)^2 + 4(y-2)^2 = 36$$

26. $16x^2 + 9y^2 - 36y = 108$

27.
$$y = x^2 - 6x + 13$$

28.
$$x^2 - y^2 - 4x + 3 = 0$$

29.
$$x = 4 - y^2$$

30.
$$y^2 - 2x + 6y + 5 = 0$$

31.
$$x^2 + 4y^2 - 6x + 5 = 0$$

32.
$$4x^2 + 9y^2 - 16x + 54y + 61 = 0$$

33-34 Sketch the region bounded by the curves.

33.
$$y = 3x$$
, $y = x^2$

34.
$$y = 4 - x^2$$
, $x - 2y = 2$

35. Find an equation of the parabola with vertex (1, -1) that passes through the points (-1, 3) and (3, 3).

36. Find an equation of the ellipse with center at the origin that passes through the points $(1, -10\sqrt{2}/3)$ and $(-2, 5\sqrt{5}/3)$.

37-40 Sketch the graph of the set.

37.
$$\{(x,y) | x^2 + y^2 \le 1\}$$

38.
$$\{(x,y) | x^2 + y^2 > 4\}$$

39.
$$\{(x,y) | y \ge x^2 - 1\}$$

40.
$$\{(x,y) | x^2 + 4y^2 \le 4\}$$