1.4 Sampling Distribution Notation, Definitions, and Formulas

	Sampling Distribution of Sample Proportions	Sampling Distribution of Sample Means
Notation	$\bar{P} \rightarrow$ random variable of sample proportions from all possible samples of the population	$\overline{X} \rightarrow$ random variable of sample means from all possible samples of the population
	$p \rightarrow$ population proportion, $\bar{p} \rightarrow$ sample proportion	$\mu \rightarrow$ population proportion, $\bar{x} \rightarrow$ sample proportion
	$se(\bar{P}) \rightarrow$ represents the standard error of the <i>sampling distribution of sample proportions</i> (standard deviation)	$se(\bar{X}) \rightarrow$ represents the standard error of the <i>sampling distribution of sample means</i> (standard deviation)
Central Limit Theorem	The Central Limit Theorem isn't about the distribution of individual values from the sample. It is about the sample <i>proportions</i> or sample <i>means</i> of many different random samples drawn from the same population.	
	For any population proportion p , the sampling distribution of \bar{P} is approximately normal if the sample size n is sufficiently large.	For any population mean μ , the sampling distribution of \overline{X} is approximately normal if the sample size n is sufficiently large.*
Criteria for Assuming Normality	$np \ge 5$ $n(1-p) \ge 5$ Both of the above criteria must be met.	n > 30 Note: When the population is known to be normally distributed, the sampling distribution of sample means is normally distributed for any size n.
Expected Value	$E(\bar{P})=p$	$E(\bar{X}) = \mu$
Standard Error	$se(\bar{P}) = \sqrt{\frac{p(1-p)}{n}}$	$se(\bar{X}) = \frac{\sigma}{\sqrt{n}}$
Z, standard normal value (means when σ is known)	$z = \frac{\bar{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$	$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$

1.5 Individual Data Values Vs. Sample Means and Proportions

Standard Normal Probabilities with Individual Data Values

Standard Normal Probabilities with Sample Means

$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ $-1 * \frac{\sigma}{\sqrt{n}} \qquad E(\bar{X}) \qquad + 1 * \frac{\sigma}{\sqrt{n}}$

$$E(\bar{X})=\mu$$

Standard Normal Probabilities with Sample Proportions

$$E(\bar{P})=p$$