Machine Learning Algorithms as an Early Predictor of Alzhemier's disease

Marek Kociński

2024.08.22 IMR

Alzheimer's disease

Loss of autonomy in day-to-day functioning

- Managing everyday life activities such as:
 - finances,
 - medication,
 - running errands,
 - preparing meals,
 - maintaining interests,
- is one of the criteria differentiating between mild cognitive impairment (MCI) and Alzheimer's disease (AD).

The goal of the project: To find an early predictor(s) of AD

DATA

The ADNI clinical dataset comprises clinical **longitudinal** information about each subject including:

- · recruitment,
- demographics,
- · physical examinations,
- and cognitive assessment data.

STUDY CHARACTERISTICS	ADNI-1	ADNI-GO (Grand Opportunities)	ADNI-2	ADNI-3
Primary goal	Develop biomarkers as outcome measures for clinical trials	Examine biomarkers in earlier stages of disease	Develop biomarkers as predictors of cognitive decline, and as outcome measures	Study the use of tau PET and functional imaging techniques in clinical trials
Funding	\$40 million federal (NIA), \$27 million industry and foundation	\$24 million American Recovery Act funds	\$40 million federal (NIA), \$27 million industry and foundation	\$ 40 million federal (NIA), up to \$20 million industry and foundation
Duration/start date	5 years/October 2004	2 years/September 2009	5 years/September 2011	5 years/September 2016
Cohort	200 elderly controls 400 MCI 200 AD	Existing ADNI-1 + 200 early MCI	Existing ADNI-1 and ADNI-GO + 150 elderly controls100 early MCI 150 late MCI 150 AD	Existing ADNI-1, ADNI-GO, ADNI-2 + 133 elderly controls 151 MCI 87 AD

BMC Geriatrics

Nature Part of Springer Nature

Citation Impact

About Articles Submission Guidelines Collections

3.921 - 2-year Impact Factor 4.878 - 5-year Impact Factor 1.758 - Source Normalized

Impact per Paper (SNIP) 1.414 - SCImago Journal Rank (SJR)

Functional activity level reported by an informant is an early predictor of Alzheimer's disease.

Alexandra Vik1*, Marek Kocinski1,3, Ingrid Rye2, Astri J Lundervold2, Alexander S Lundervold1,4 and for the Alzheimer's Disease Neuroimaging Initiative⁵ Vik et al.

Loss of autonomy in day-to-day functioning may be noticed by relatives subtle changes in ordinary life situations long before these changes are given medical diagnosis.

In this study we ask if: even such subtle changes should be given weight as an early predictor of AD, by including report scales like the functional activity questionnaire (FAQ).

Data balance for: gender, age bins, age and length of participation

Methods and Results

Demographics	sMCI (360)	cAD (320)
	Train (285)/Test (75)	Train (255)/Test (65)
Sex (F:M)	114:171/32:43	99:156/25:40
Age at inclusion [years]: mean (SD)	73.9 (7.4)/72.7(7.3)	73.9 (7.7)/73.9 (6.9)
Age at inclusion [years]: range	55-91/57.8-87.8	55.2-88.3/55-88.4
Education [years]: mean (SD)	15.8 (2.9)/16.2(2.9)	15.8 (2.9)/16.2(2.9)
Participation length [years]: mean (SD)	4.6 (2.8)/4.5(2.7)	5.0 (2.7)/5.5(2.8)

Demographics of the included subsample extracted from the ADNI cohort. sMCI – stable mild cognitive impairment, cAD – converting Alzheimer's Disease

Eleven neurocognitive features were used as input in a **Random Forest binary classifier** (sMCI vs. cAD) model

Results for RF classifier:

accuracy = 73%

Predicting conversion to Alzheimer's Disease in individuals with Mild Cognitive Impairment using clinically transferable features

Ingrid Rye $^{1,+}$, Alexandra Vik $^{2+}$, Marek Kocinski $^{2,3,4+}$, Alexander S. Lundervold 2,5 , Astri J. Lundervold 1 , and for the Alzheimer's Disease Neuroimaging Initiative**

scientific reports

Explore content v About the journal v Publish with us v

Journal metrics 2021

- 2-year impact factor: 4.380
- 5-year impact factor: 5.134
- Immediacy index: 0.783
- Eigenfactor® score: 1.23250
- Article influence score: 1.285
- 2 year median: 3

Longitudinal data that identify two groups of patients who were diagnosed with MCI at a **baseline clinical examination**: one group including patients who were diagnosed with AD and one group retaining their MCI diagnosis during the observation period.

Selected features included **demographic data**, **information from neuropsychological** and **MRI** examinations and **genetic information** about APOE status.

We train two different supervised learning algorithms:

- an ensemble-based model constructed by combining five different models
- a Random Forest (RF) model

sMCI (N = 357)	cAD (N = 321)
Mean (SD)	Mean (SD)
73.1 (7.45)	73.9 (7.11)
41.2	38.9
36.9 (10.5)	29.3 (7.7)
4.88 (3.93)	2.05 (2.67)
11.26 (3.16)	9.42 (3.56)
39.2 (15.6)	44.7 (21.5)
108.1 (56.9)	133.8 (73.9)
17.8 (5.17)	15.8 (4.75)
1.71 (1.44)	1.65 (1.38)
12.9 (9.3)	13.3 (9.6)
$0.00451 (7.6*10^{-4})$	$0.00398 (6.8*10^{-4})$
42.3	64.2
	Mean (SD) 73.1 (7.45) 41.2 36.9 (10.5) 4.88 (3.93) 11.26 (3.16) 39.2 (15.6) 108.1 (56.9) 17.8 (5.17) 1.71 (1.44) 12.9 (9.3) 0.00451 (7.6*10 ⁻⁴)

Results for RF classifier:

accuracy = 66%

2D and 3D U-Nets for skull stripping in large and heterogeneous set of head MRI using fastai*

* - Sathiesh's presentation "Deep learning for medical image analysis: fastai + MONAI"; tomorrow 11:30-11:45

Data sets:

- ADNI
- AIBL
- IXI
- PPMI
- SLIM
- Calgary-Campinas
- SALD

Training test: 2791 3D images Test sets: 934 + 561 3D images

Dice = $0 \triangleright 978$ laccard = $0 \triangleright 957$

Assessing kidney function from DCE-MRI

Assessing kidney function from DCE-MRI

Manual labelling

Automatic aorta segmentation

Time series extraction and modeling