EC205 Analog Electronics Lab Lab – 1

Utkarsh R Mahajan 201EC164
Sannan Ali 201EC159

Experiment 1: Logic Gates using Diodes

Aim: To design OR and AND gates using diodes and resistors for:

- A) Positive logic
- B) Negative logic

1.a] Positive Logic OR Gate

Output is high whenever any one of the inputs, or both the inputs are high. Circuit diagram:

Circuit in LTspice:

Case 1: V1=0V, V2=0V

Both the inputs are low So the expected output is also low.

now Simulation in LTspice:

As we can see, the output voltage Vout is 0V, which is low and is the expected output.

Case 2: $V_1=0V$, $V_2=5V$ or $V_1=0V$, $V_2=5V$

One of the inputs is high, hence the expected output is also high. Simulation in LTspice:

As we can see, the output is 4.3V, which is expected because the Diode has a potential of its own, and we can conclude that our Vout is also high.

Case 3: $V_1 = 5V$, $V_2 = 5V$

Since both inputs are high, The expected output is high.

Results:

V1	V2	V_{out}	Υ
0	0	0	0
0	5	4.3	1
5	0	4.3	1
5	5	4.3	1

b]Negative Logic OR Gate

Output is high whenever any one of the inputs, or both the inputs are high. Circuit diagram:

Circuit in LTspice:

Case 1: $V_1=0V$, $V_2=0V$

Both the inputs are low So the expected output is also now Simulation in LTspice:

As we can see, the output voltage Vout is 0V, which is low and is the expected output.

Case 2: $V_1=0V$, $V_2=-5V$ or $V_1=-5V$, $V_2=0V$

One of the inputs is high, hence the expected output is also high. Simulation in LTspice:

As we can see, the output is -4.3V, which is expected because the Diode has a potential of its own, and we can conclude that our Vout is also high.

Case 3: $V_1 = -5V$, $V_2 = -5V$

Since both inputs are high, The expected output is high.

Results:

V1	V2	V_{out}	Υ
0	0	0	0
0	-5	-4.3	1
-5	0	-4.3	1
-5	-5	-4.3	1

c]Positive Logic AND Gate

Output is high whenever both of the inputs are high. Circuit diagram:

Circuit in LTspice:

Case 1: V1=0V, V2=0V

Both the inputs are low So the expected output is also low. now Simulation in LTspice:

As we can see, the output voltage Vout is 0V, which is low and is the expected output.

Case 2: $V_1=0V$, $V_2=5V$ or $V_1=5V$, $V_2=0V$

Only one of the inputs is high, hence the expected output is low. Simulation in LTspice:

As we can see, the output voltage Vout is 0V, which is low and is the expected output

Case 3: $V_1=5V$, $V_2=5V$

Since both inputs are high, the expected output is high.

As we can see, the output voltage Vout is high and is the expected output.

Results:

V1	V2	V_{out}	Υ
0	0	0	0
0	5	0	0
5	0	0	0
5	5	4.3	1

2]Negative Logic AND Gate

Output is high whenever both of the inputs are high.

Circuit diagram in LTspice:

As we can see, the output voltage Vout is 0V, which is low and is the expected output.

0.5s

0.4s

0.7s

0.8s

0.9s

0.6s

Case 2: $V_1=0V$, $V_2=-5V$ or $V_1=-5V$, $V_2=0V$

0.3s

-6**V**-

0.0s

= 0.000s y = 0.15V

0.1s

0.2s

Only one of the inputs is high, hence the expected output is low. Simulation in LTspice:

As we can see, the output voltage Vout is 0V, which is low and is the expected output

Case 3: $V_1=5V$, $V_2=5V$

Since both inputs are high, the expected output is high.

As we can see, the output voltage Vout is high and is the expected output.

Results:

V1	V2	V _{out}	Υ
0	0	0	0
0	-5	0	0
-5	0	0	0
-5	-5	-4.3	1

2:List/Explain the following

1] Typical voltage drop across the diode (Silicon, Germanium and Gallium Arsenide) for 10mA of forward current.

Diode	Voltage Drop
Silicon (Si)	0.7V
Germanium (Ge)	0.3V
Gallium Arsenide (GaAs)	1.2V

Since the voltage drop in case of forward bias depends upon the material of the diode, it is independent of the forward current.

2]typical reverse saturation current in 1N4001 diode

T _A	Reverse Saturation Current	Units
25 °C	5	μΑ
125 °C	50	μΑ

We can see that the reverse saturation current increases with increase in temperature because it leads to more electron-hole pairs which increase the conductivity.