Feuille d'exercice n° 15 : **Dérivation**

Exercice 1 $(\stackrel{\triangleright}{\omega})$ — Limite double —

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0. Montrer que f est dérivable en 0, et $f'(0) = \ell$ si et seulement si :

$$\forall \quad \varepsilon > 0 \quad \exists \quad \delta > 0 \quad \forall (h,k) \in]0, \delta[^2 \qquad \left| \frac{f(h) - f(-k)}{h + k} - \ell \right| \leq \varepsilon$$

Exercice 2 Soit f l'application : $\mathbb{R} \to \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$, il existe une $x \mapsto \frac{1}{1+x^2}$

fonction polynomiale P_n tel que $\forall x \in \mathbb{R}, f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^{n+1}}$.

Exercice 3 Calculer la fonction dérivée d'ordre n des fonctions f, g, h définies par :

$$f(x) = \sin x$$
; $g(x) = \sin^2 x$; $h(x) = \sin^3 x + \cos^3 x$.

Exercice 4 ($^{\circ}$) Calculer les dérivées successives des fonctions :

$$x \mapsto x^2 e^x$$
 ; $x \mapsto x^2 (1+x)^n$; $x \mapsto \frac{x^2+1}{(x+1)^2}$; $x \mapsto x^{n-1} \ln x$.

Exercice 5 Déterminer toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que $\forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y)$.

Exercice 6 (\succeq) Soit $a, b \in \mathbb{R}$ tels que a < b et $f : [a, b] \to \mathbb{R}$ dérivable telle que f(a) = f(b) = 0. Montrer que par tout point $(x_0, 0)$ avec $x_0 \in \mathbb{R} \setminus [a, b]$, il passe au moins une tangente à la courbe représentative de f.

Exercice 7 ($^{\otimes}$) Déterminer $a, b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \sqrt{x}$$
 si $0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ sinon

soit dérivable sur \mathbb{R}_{+}^{*} .

Exercice 8 — Rolle à l'infini —

Soit f une fonction continue et dérivable sur l'intervalle $[a, +\infty[$ vérifiant $f(x) \xrightarrow[x \to +\infty]{} f(a)$. Montrer qu'il existe un élément c dans $]a, +\infty[$ tel que f'(c) = 0.

Exercice 9 Soit $f:[a,b] \to \mathbb{R}$ dérivable telle que f(a)=f(b)=0 et f'(a)>0, f'(b)>0. Montrer qu'il existe $c_1,c_2,c_3\in]a,b[$ tels que $c_1< c_2< c_3$ et $f'(c_1)=f(c_2)=f'(c_3)=0$.

Exercice 10 (\bigcirc) — Polynômes de Legendre — On pose $f(t) = (t^2 - 1)^n$.

- 1. Montrer que : $\forall k \in \{0, \dots, n-1\}, f^{(k)}(1) = f^{(k)}(-1) = 0.$
- 2. Calculer $f^{(n)}(1)$ et $f^{(n)}(-1)$.
- 3. Montrer que $f^{(n)}$ s'annule au moins n fois dans l'intervalle]-1,1[.

Exercice 11 ($\delta \phi$) Étant donné α dans]0,1[, montrer que pour tout entier naturel n non nul

$$\frac{\alpha}{(n+1)^{1-\alpha}} \leqslant (n+1)^{\alpha} - n^{\alpha} \leqslant \frac{\alpha}{n^{1-\alpha}}.$$

En déduire la limite $\lim_{n\to\infty}\sum_{p=1}^n\frac{1}{p^{\alpha}}$.

Exercice 12 — Distance à la corde —

Soit $f:[a,b]\to\mathbb{R}$ de classe \mathscr{C}^2 .

1. On suppose que f(a) = f(b) = 0. Soit $c \in [a, b[$. Montrer qu'il existe $d \in [a, b[$ tel que :

$$f(c) = -\frac{(c-a)(b-c)}{2}f''(d).$$

(Considérer $g(t) = f(t) + \lambda(t-a)(b-t)$ où λ est choisi de sorte que g(c) = 0)

2. Cas général : Soit $c \in [a, b[$. Montrer qu'il existe $d \in [a, b[$ tel que :

$$f(c) = \frac{b-c}{b-a}f(a) + \frac{c-a}{b-a}f(b) - \frac{(c-a)(b-c)}{2}f''(d).$$

Exercice 13 Soit $f: [0, +\infty[\to \mathbb{R} \text{ une fonction dérivable. On suppose que } f'(x) \xrightarrow[x \to +\infty]{} \ell$, avec $\ell \in \mathbb{R}$. Montrer que $\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} \ell$.

Exercice 14

- 1. Montrer que si une fonction f est lipschitzienne sur un intervalle $I \subset \mathbb{R}$, alors, |f| l'est aussi.
- 2. Montrer que la réciproque est fausse, à l'aide de la fonction

3. Montrer que la somme de deux fonctions lipschitziennes sur I est lipschitzienne sur I.

Exercice 15 La fonction $\frac{1}{x}$ est-elle lipschitzienne sur $]0, +\infty[$? sur $[1, +\infty[$?

Exercice 16 () On considère une suite $(u_n)_{n\geqslant 0}$ définie par $: u_0 \in [-1, +\infty[$ et pour tout $n, u_{n+1} = \sqrt{1+u_n}$.

1. Montrer que cette suite ne possède qu'une seule limite finie éventuelle α que l'on calculera.

2. Montrer que pour tout $n \ge 2$, $|u_{n+1} - \alpha| \le \frac{1}{2\sqrt{2}}|u_n - \alpha|$. En déduire la convergence de la suite (u_n) .

Exercice 17 () On considère une suite $(u_n)_{n\geqslant 0}$ définie par : $u_0=\frac{3}{2}$ et pour tout $n, u_{n+1}=\frac{2}{u_n}+\ln(u_n)$.

- 1. Montrer que l'équation $x = \frac{2}{x} + \ln(x)$ possède une unique solution réelle L.
- 2. Justifier que pour tout $n \in \mathbb{N}$, $u_n \in \left[\frac{3}{2}, 2\right]$ puis que pour tout $n \geqslant 0$, $|u_n L| \leqslant \left(\frac{2}{9}\right)^n$. Conclure.

