Section 3

Quantifiers (I)

Contents

Basics of Quantifiers

2 Universal and Existential Quantifiers

Notes on Quantifiers

Basics of Quantifiers

Motivation

Let \boldsymbol{x} be a real number. Consider the following sentences.

- A(x): If x > 3, then x > 1.
- B(x): $x^2 4 > 0$.

The truth value of each sentence depends on the value of the variable $\boldsymbol{x}.$

- A(x) is true for all x.
- B(x) is true for x < -2 or x > 2.

- For all x, A(x) is true.
- For some x, B(x) is true.

Quantifiers

The quantifiers \forall and \exists , along with the logical connectives, are main ingredients of modern symbolic logic.

Quantifier	Symbol	Technical Name
"for each"	\forall	universal quantifier
"for some"	3	existential quantifier

Example. Let x be a person in this class room. Let P(x) stands for "x likes ramen." Then

- $(\forall x)P(x)$: "For each x, x likes ramen." or "Everybody likes ramen."
- $(\exists x)P(x)$: "For some x, x likes ramen." or "Somebody likes ramen."

Notes

Alternate ways to read.

$$(\forall x)P(x)$$
:

For each x, P(x).

For all x, P(x).

For every x, P(x).

For any x, P(x).

$(\exists x)P(x)$:

For some x, P(x).

For at least one x, P(x).

There exists x such that P(x).

Universe of Discourse

The collection over which the variable x ranges is called the universe of discourse. When clear from context, it is omitted in notation; if not, specify the universe of discourse using the following notation.

$$(\forall x \textcircled{e} U)P(x) \quad \text{or} \quad (\exists x \in U)P(x).$$
 Frequently used collections.

- \mathbb{N} : the set of natural numbers, $\{1, 2, 3, \ldots\}$
- \mathbb{Z} : the set of integers, $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Q: the set of rational numbers
- ℝ: the set of real numbers
- C: the set of complex numbers

Free and Bound Variables

- In P(x), x can stand for any particular element of the universe of discourse; it is called a *free variable*.
- In $(\forall x)P(x)$ or $(\exists x)P(x)$, x varies over the universe of discourse, not standing for any particular element; it is called a *bound variable* or a *dummy variable*.

- · P(x): x likes ramen. -> 1 is a free variable.
- . (Ha) p(x): For each x, of likes ramen. -> of is a dummy variable.

Same as (Yy) P(y)

Universal and Existential Quantifiers

1, C, 2, B

If a card has B on one side, then it has 2 on the other side.

P .				Q		
	, P	Q	$P \Rightarrow Q$			
Ist 2nd 3nd 4th	? F 2. T	F? T?	T T	?	Know this W/o nueding to flip cards	

Universal Quantifier

 $\forall \forall$

Let U be the universe of discourse.

- $(\forall x)P(x)$ is true when P(x) is true for all values of x in U.
- To show $(\forall x)P(x)$ is false, it suffices to show that P(x) is false for at least one value of x in U; such x is said to be a counterexample that disproves the universal sentence.

universal sentence-

Universal Quantifier (cont')

Example. State whether each of the following sentences is true or false. Then prove your claim.

1
$$(\forall x \in \mathbb{R})(x-2=5)$$
 T/F We claim $(\forall x \in \mathbb{R})(x-2=5)$ is false.
Proof Assume that $(\forall x \in \mathbb{R})(x-2=5)$ is true

Then stace 2 is a real number, 2-2=5. But $2-2=0 \neq 5$. This is a contradiction. Hence $(4x \in IR)(2-2=5)$ is false.

Hence
$$(\forall x \in \mathbb{R})(x^2 = 5)$$
 is false $(\forall x \in \mathbb{R})(x^2 + 6x + 10 > 0)$

"Completion of the Square!" Proof Let no & IR be arbitrary.

Then $\lambda_0^2 + 6\lambda_0 + 10 = \lambda_0^2 + 6\lambda_0 + 9 + 1$ that the given Sentence is true.

 $= (\chi_0 + 3)^2 + 1 \quad ? \quad 0 + 1 = 1 \quad ? \quad 0$ We showed that $\chi_0^2 + b\chi_0 + 10 \quad ? \quad 0$. Since χ_0 is arbitrary, we conclude \vee

Existential Quantifier (∃)

Let *U* be the universe of discourse.

- $(\exists x)P(x)$ is true when P(x) is true for at least one value of x in U; such x is said to be an example that proves the existential sentence.
- To show $(\exists x)P(x)$ is false, it is necessary to show that P(x) is false for all values of x in U.

Existential Quantifier (cont')

Example. State whether each of the following sentences is true or false.

•
$$(\exists x \in \mathbb{R})(x-2=5)$$
 $\boxed{ }$ / $\boxed{ }$ / $\boxed{ }$ Proof Take N to be $\boxed{ 7 }$, i.e. $\boxed{ }$ $\boxed{ }$ / $\boxed{ }$ Then $\boxed{ }$ $\boxed{ }$

•
$$(\exists x \in \mathbb{R})(x^2 + 6x + 10 < 0)$$
 \top \nearrow \bigcirc Proof \top show that the given is false, we must prove that $\chi^2 + 6\chi + 10 < 0$ is false for all $\chi \in \mathbb{R}$.

That is, we need to show $(\forall x \in \mathbb{R}) (n^2 + bx + 10 \% 0)$. I Finish this. T

Notes on Quantifiers

Connections to Logical Connectives

Suppose the universe of discourse consists only of two objects $\{a,b\}$. Note that

- $(\forall x)P(x)$ is true exactly when $P(a) \land P(b)$ is true.
- $(\exists x)P(x)$ is true exactly when $P(a)\vee P(b)$ is true.

In general, when the universe of discourse is a finite set $\{a_1, a_2, \dots, a_n\}$, then

- $(\forall x)P(x)$ has the same truth value as $P(a_1) \wedge P(a_2) \wedge \cdots \wedge P(a_n)$.
- $(\exists x)P(x)$ has the same truth value as $P(a_1) \vee P(a_2) \vee \cdots \vee P(a_n)$.

Mpshot: . It is a generalization of
$$\Lambda$$
.

It is a generalization of V

Notation

Suppose A is a subcollection of the universe of discourse. Then

- $(\forall x \in A)P(x)$ is a shorthand notation for $(\forall x)[(x \in A) \Rightarrow P(x)]$.
- $(\exists x \in A)P(x)$ is a shorthand notation for $(\exists x)[(x \in A) \land P(x)]$.

When the universe of discourse is \mathbb{R} , a subcollection may be characterized by an inequality in which case one may use notations e.g.,

•
$$(\forall x > 0)(2x + 7 = 3)$$

- $(\exists x \ge 7)(x^2 4x + 3 > 0)$
 - · Use comp. of sq.

Scope of Quantifiers

The scope of a quantifier is specified using appropriate delimiters.

Example. Let n be an element in $\{2,3,5,7\}$ and let

P(n): n is a prime number. and $\underline{\mathbb{N}}$ is an even number." (True when n=2.) "Every number in \$2,3,5,7% is both a prime number and an even number." (Talse) • $(\forall n)[P(n) \land Q(n)]$ stands for

Homework (1/213 due Wed 1/26)

Section 3: # 1 (e-k), 3,4