

Evaluating RISC-V Cores for PULP

An Open Parallel Ultra-Low-Power Platform

www.pulp.ethz.ch

30 June 2015

Sven Stucki
Antonio Pullini
Michael Gautschi
Frank K. Gürkaynak
Andrea Marongiu
Igor Loi
Davide Rossi
Prof. Luca Benini

Summary

- Background
 - The group
- PULP platform
 - Goals
 - Our approach
- RISC-V on PULP

The Group of Prof. Luca Benini

Approximately 40 people

- ETH Zürich Integrated Systems Laboratory (IIS)
- University of Bologna EEES

- Many involved in PULP
- Great experience in IC design
 - More than 400 ICs, in-house ASIC tester
- Close Collaborations
 - POLIMI (compiler support)
 - CEA/LETI
 - EPFL

Our Goal: Reach 1 GOPS/mW efficiency

10¹²ops/J
↓
1pJ/op
↓
1GOPS/mW

Energy Proportionality

0,003GOPS/mW - 30KW

PULP

- An open research platform
- Goals:
 - Reach 1 GOPS/mW efficiency
 - Scalable hardware: Achieve energy proportionality
- Research on:
 - Efficient cores, platform innovations
 - Technology options
 - Software support

http://pulp.ethz.ch

Our Approach: PULP

Exploit parallelism

- Multiple small cores organized in a cluster
- Share memory within the cluster

Simple but efficient processor cores

- Currently: OpenRISC with ISA extensions
- RISC-V Minion core in the work

Hardware optimizations

- Near-threshold operation
- Dedicated accelerators

PULP Family of Chips

- Silicon proven in 28nm
- Several tape-outs in different technologies
 - 180nm (IcySoC project, approximate computing)
 - 130nm (Mixed-signal PULP: Vivo-SOC)
 - 65nm (Student projects, demonstrators)
 - 28nm (Flagship designs, technology options)

RISC-V on PULP

Replace OpenRISC with RISC-V core

Motivation

- More active community
- Compressed instruction set

Current status:

- Simple 4-stage (IF, ID, EX, WB) design
- Support for RV32IC
- 'mul' instruction from M extension
- UMC65: 22 kGE for t_{pd} = 2.2ns @ 1.08V
- Privileged features: M-mode, Mbare memory

RVC: Big impact on code size

PULP Architecture

Tightly Coupled Data Memory (TCDM)

- Cluster-local data storage, explicitly managed
- Single-cycle access without contention

Instruction Cache

Exploit parallelism: shared between cores

System on Chip

- Frequency-locked loop (FLL)
- Memory, (I/O) Peripherals, ROM, ...

Improved OpenRISC: OR10N Core

- OpenRISC core developed at IIS
- ISA extensions to improve efficiency
 - Hardware Loops
 - Pre-/Postincrement memory access
 - Vectorial (packed SIMD) instructions
- Custom Ilvm compiler
 - No changes to C code needed to use new instructions
- Debugging support

RISC-V on PULP: Future Work

- Tapeout in 4Q2015
 - GlobalFoundries 28nm

- Evaluate OR10N extensions for RV core
 - Hardware loops: Smaller impact on RV
 - Vectorial instructions

We are open for suggestions / collaborations

OR10N Extensions Performance Gain

OR10N Extensions Power Improvement

Near Threshold Operation More Efficient

Actual PULP Measurement Results

PULP v2: Best in Class

PULP v2: Best in Class

