Constants		Momentum	
Accel. Due to gravity	$g = 9.8 m/s^2$	Momentum vector	$\vec{p}=m\vec{v}$
	-	Impulse	$\vec{J} = \Delta \vec{p}$
Mathematics		Momentum of	$ec{p}_f = ec{p}_i$
		isolated system	$\Delta \vec{p} = 0$
Quadratic Equation	$ax^2 + bx + c = 0$	Inertia	$\Delta \vec{p} = 0$ $\frac{m_u}{m_s} = -\frac{\Delta v_{x,s}}{\Delta v_{x,u}}$
Solution to quad eq'n.	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\Delta y = y_f - y_i$		
Difference in variable y:	$\Delta y = y_f - y_i$ $y_{12} = y_2 - y_1$	Energy	
		Kinetic Energy	$K = \frac{1}{2}mv^2$ $E_f = E_i$
1D Motion		Energy of closed system	$E_f = E_i$ $\Delta E = \Delta (K + E_{int}) = 0$
Position vector	$\vec{r} = x\hat{\imath}$	Relative velocity	$\vec{v}_{12} = \vec{v}_2 - \vec{v}_1$
Distance between points	$d = x_2 - x_1 $	Relative speed	$v_{12} = \vec{v}_{12} = \vec{v}_2 - \vec{v}_1 $
x -displacement	$\Delta x = x_f - x_i$ $\Delta x = \int_{t_i}^{t_f} v_x dt$ $\Delta \vec{r} = \vec{r}_f - \vec{r}_i$	Coefficient of Restitution	$\Delta E = \Delta (K + E_{int}) = 0$ $\vec{v}_{12} = \vec{v}_2 - \vec{v}_1$ $v_{12} = \vec{v}_{12} = \vec{v}_2 - \vec{v}_1 $ $e = \frac{v_{12,f}}{v_{12,i}}$
Displacement vector	$\Delta \vec{r} = \vec{r_f} - \vec{r_i}$ $\Delta \vec{r} = (x_f - x_i)\hat{i} = \Delta x \hat{i}$	1-D Coefficient of Restitution	$e = \frac{ v_{2x,f} - v_{1x,f} }{ v_{2x,i} - v_{1x,i} }$
Average velocity vector	$\Delta \vec{r} = (x_f - x_i)\hat{\imath} = \Delta x \hat{\imath}$ $\vec{v}_{av} = \frac{\Delta \vec{r}}{\Delta t}$	Non-convertible Kinetic Energy	$e = \frac{ v_{2x,f} - v_{1x,f} }{ v_{2x,i} - v_{1x,i} }$ $K_{CM} = \frac{1}{2} m_{tot} v_{CM}^2 = \frac{p_{tot}^2}{2m_{tot}}$
Average velocity x —component	$v_{x,av} = \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$	Convertible Kinetic Energy	$K_{conv} = K - K_{CM}$ $K_{conv} = \frac{1}{2}\mu v_{12}^{2}$ $Joule = kg \frac{m^{2}}{s^{2}}$ $\mu = \frac{m_{1}m_{2}}{m_{1} + m_{2}}$
Instantaneous velocity	$\vec{v} = \frac{d\vec{r}}{dt}$	Energy Units	$Joule = kg \frac{m^2}{s^2}$
Instantaneous velocity <i>x</i> —component	$\vec{v} = \frac{d\vec{r}}{dt}$ $v_x = \frac{dx}{dt}$ $\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$	Reduced Mass	$\mu = \frac{m_1 m_2}{m_1 + m_2}$
Average acceleration vector	$\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$		
Average acceleration x —component	$a_{x,av} = \frac{v_f - v_i}{t_f - t_i} = \frac{\Delta v_x}{\Delta t}$	Reference Frames	
Instantaneous acceleration	$\vec{a} = \frac{d\vec{v}}{dt}$ $a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2}$ $\Delta v_x = \int_{t_i}^{t_f} a_x dt$ $x(t) = x_i + v_i t + \frac{1}{2} a t^2$	Velocity of object o in Frame A	$ec{v}_{Ao}$
Instantaneous accel.	$a = \frac{dv_x}{dt} = \frac{d^2x}{dt}$	Velocity of object o in	$\vec{v}_{Bo} = \vec{v}_{BA} + \vec{v}_{Ao}$
x –component	$u_{\chi} - \frac{1}{dt} - \frac{1}{dt^2}$	Frame B	→ → . →
Change in velocity x — component	$\Delta v_x = \int_{t_i}^{t_f} a_x dt$	Position of object <i>o</i> in Frame <i>B</i>	$ec{r}_{Bo} = ec{r}_{Ao} + ec{v}_{BA}t_e$
Constant acceleration	$x(t) = x_i + v_i t + \frac{1}{2} a t^2$	Acceleration of object o in Frame B	$\vec{a}_{Bo} = \vec{a}_{Ao}$
	$v_x(t) = v_{x,i} + a_x t$	Center of Mass Position	$ec{r}_{CM} = rac{m_1 ec{r}_i + m_1 ec{r}_i + \cdots}{m_1 + m_2 + \cdots}$
	$v_{x,f}^2 = v_{x,i}^2 + 2a_x \Delta x$	Center of Mass Velocity	$\vec{r}_{CM} = \frac{m_1 \vec{r}_i + m_1 \vec{r}_i + \cdots}{m_1 + m_2 + \cdots}$ $\vec{v}_{CM} = \frac{m_1 \vec{v}_i + m_1 \vec{v}_i + \cdots}{m_1 + m_2 + \cdots}$ $\vec{v}_{CM} = \frac{\vec{p}_{system}}{m_{system}}$
	$\Delta x = \frac{v_{x,f} - v_{x,i}}{2} \ \Delta t$		$ec{v}_{\mathit{CM}} = rac{ec{p}_{\mathit{system}}}{m_{\mathit{system}}}$
Accel. on inclined plane	$a_x = g \sin \theta$		