Discrete Mathematics

Sequence

Shin Hong

Oct 6, 2019

Sequences

- •A sequence of a set S is a function from the set of non-negative (or positive) integers to S
 - a_n , a term of the sequence, denotes the image of n.
 - ex. consider the sequence $\{a_n\}$ where $a_n = \frac{1}{n}$

$$\{a_n\} = \{a_1, a_2, a_3, \ldots\} \qquad 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots$$

Sequence (Chapter 2)

Strings

Definition: A string is a finite sequence from a finite set (an alphabet)

- Sequences of characters or bits are important in computer science
- The *empty string* is represented by λ .
- The string abcde has length 5.

Sequence (Chapter 2)

Arithmetic Progression

Definition: A arithmetic progression is a sequence of the form:

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

where the initial term a and the common difference d are real numbers.

Examples:

- I. Let a=-1 and d=4: $\{s_n\} \ = \ \{s_0,s_1,s_2,s_3,s_4,\dots\} \ = \ \{-1,3,7,11,15,\dots\}$
- 2. Let a = 7 and d = -3: $\{t_n\} = \{t_0, t_1, t_2, t_3, t_4, \dots\} = \{7, 4, 1, -2, -5, \dots\}$
- 3. Let a = 1 and d = 2: $\{u_n\} = \{u_0, u_1, u_2, u_3, u_4, \dots\} = \{1, 3, 5, 7, 9, \dots\}$

Sequence (Chapter 2)

Geometric Progression

Definition. A geometric progression is a sequence of the form:

$$a, ar, ar^2, \dots, ar^n, \dots$$

where the initial term a and the common ratio r are real numbers.

Examples:

I. Let a = 1 and r = -1. Then:

$$\{b_n\} = \{b_0, b_1, b_2, b_3, b_4, \dots\} = \{1, -1, 1, -1, 1, \dots\}$$

2. Let a = 2 and r = 5. Then:

$$\{c_n\} = \{c_0, c_1, c_2, c_3, c_4, \dots\} = \{2, 10, 50, 250, 1250, \dots\}$$

3. Let a = 6 and r = 1/3. Then:

$$\{d_n\} = \{d_0, d_1, d_2, d_3, d_4, \dots\} = \{6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots\}$$

Sequence (Chapter 2)

Recurrence Relations

• A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms (e.g., a_0 , a_1 , a_{n-1}) for all non-negative integers n

• A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.

• The *initial conditions* for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Sequence (Chapter 2)

Fibonacci Sequence

Definition: Define the *Fibonacci* sequence, f_0 , f_1 , f_2 ,..., by:

- Initial Conditions: $f_0 = 0$, $f_1 = 1$
- Recurrence Relation: $f_n = f_{n-1} + f_{n-2}$

Example: Find f_2, f_3, f_4, f_5 and f_6

Answer:

$$f_2 = f_1 + f_0 = 1 + 0 = 1,$$

 $f_3 = f_2 + f_1 = 1 + 1 = 2,$
 $f_4 = f_3 + f_2 = 2 + 1 = 3,$
 $f_5 = f_4 + f_3 = 3 + 2 = 5,$
 $f_6 = f_5 + f_4 = 5 + 3 = 8$

Sequence (Chapter 2)

Discrete Math.

2019-10-10

Questions about Recurrence Relations

• **Example.** Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 1,2,3,4,... and suppose that $a_0 = 2$. What are a_1 , a_2 and a_3 ?

• Solution: We see from the recurrence relation that

$$a_1 = a_0 + 3 = 2 + 3 = 5$$

 $a_2 = 5 + 3 = 8$
 $a_3 = 8 + 3 = 11$

Sequence (Chapter 2)

Solving Recurrence Relations

• Finding a formula for a *i*-th term of a sequence generated by a recurrence relation is called solving the recurrence relation - such a formula is called a *closed formula*.

• Various methods for solving recurrence relations will be covered in Chapter 8 where recurrence relations will be studied in greater depth.

Sequence (Chapter 2)

Ex. Financial Application

• Suppose that a person deposits \$10,000 in a savings account at a bank yielding 11% per year with interest compounded annually

• How much will be in the account after 30 years?

Let P_n denote the amount in the account after 30 years.

 P_n satisfies the following recurrence relation:

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11) P_{n-1}$$

with the initial condition $P_0 = 10,000$

Sequence (Chapter 2)

Financial Application

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11) P_{n-1}$$
 with the initial condition $P_0 = 10,000$

Solution: Forward Substitution

$$P_1 = (1.11)P_0$$

 $P_2 = (1.11)P_1 = (1.11)^2P_0$
 $P_3 = (1.11)P_2 = (1.11)^3P_0$
:

$$P_n = (1.11)P_{n-1} = (1.11)^n P_0 = (1.11)^n 10,000$$

$$P_n = (1.11)^n 10,000$$
 (Can prove by induction, covered in Chapter 5)

$$P_{30} = (1.11)^{30} 10,000 = $228,992.97$$

Sequence (Chapter 2)

Discrete Math.

2019-10-10

2019-10-10

Useful Sequences & Useful Summation Formulae

k = 1

TABLE 1 Some Useful Sequences.		
nth Term	First 10 Terms	
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,	
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,	
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,	
2^{n}	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,	
3^n	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,	
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,	
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,	

TABLE 2 Some Useful		
Sum	Closed Form	Geometric
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1} - a}{r - 1}, r \neq 1_{\longleftarrow}$	Series: We just
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	proved this
$k = 1$ $\sum_{k=1}^{n} k^{2}$	$\frac{n(n+1)(2n+1)}{6} \leftarrow$	Later we will prove some of
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	these by induction.
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$ Proof	Sequence fin text 2)
$\sum_{k}^{\infty} kx^{k-1}, x < 1$		ires calculus) th.