Security Encryption Scheme

An *encryption scheme* consists of a set $\{E_e:e\in K\}$ and a corresponding set $\{D_d:d\in K\}$ of encrypting and decrypting functions, respectively.

For each $e \in K$, there is a unique key $d \in K$ where $D_d = E_e^{-1}$.

An encryption scheme is also called a cipher.

It should be clear that every e is actually a representative of some bijection from M to C. In this task, you have to count the number of such bijections and, hence, the number of keys that produce different encryption functions.

Assume that |M| = |C| = n which is given as the input.

Constraints

1 < n < 10

Input Format

The input consists of a single positive integer n.

Output Format

Output a single positive integer, the number of bijections.

Sample Input

3

Sample Output

6

Explanation

Let us assume that $M=\{1,2,3\}$ and $C=\{3,2,1\}$.

We can have encryption schemes where ${\bf 1}$ can be mapped to ${\bf 3}$ or ${\bf 2}$ or ${\bf 1}$, ${\bf 2}$ can be mapped to the remaining two, and ${\bf 1}$ can be mapped to the unmapped one.

This accounts for 3 * 2 * 1 = 6 such encryption functions.