Tutorial Business Analytics

Tutorial 3

Exercise 3.1

The following table displays the per capita gross national product (X in 1000\$) and the percentage of literate people among the population (Y).

Country	X	Y
Nepal	0.5	5
Uganda	0.6	28
Thailand	1.0	68
South Korea	1.4	77
Peru	1.8	48
Lebanon	3.6	48
Ireland	5.7	98
France	6.4	96
New Zealand	13.0	99

Note:
$$\sum x_i = 34$$
, $\sum x_i^2 = 262.22$, $\sum y_i = 567$, $\sum x_i y_i = 2914.3$, $\bar{x} = 3.78$, $\bar{y} = 63$

a) Calculate the coefficients $\hat{\beta}_o$ and $\hat{\beta}_1$ of the simple linear regression model using the ordinary least squares. Find the regression line using the formulas below:

$$\hat{\beta}_{1} = \frac{Cov(x,y)}{Var(x)} = \frac{\frac{1}{n-1}\sum_{i}^{n}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\frac{1}{n-1}\sum_{i}^{n}(x_{i} - \bar{x})^{2}} = \frac{\sum_{i}^{n}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i}^{n}(x_{i} - \bar{x})^{2}}$$

$$= \frac{\frac{1}{n}\sum_{i}^{n}x_{i}y_{i} - \bar{x}\bar{y}}{\frac{1}{n}\sum_{i}^{n}x_{i}^{2} - \bar{x}^{2}}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

- b) Interpret the coefficients calculated in exercise a).
- c) Test the zero hypothesis $H_0: \beta_1 \le 0$ with significance level $\alpha = 0.05$. Use the following t-test with RSS = 4411.4 and $\sum_{i=1}^{n} (x_i \bar{x})^2 = 133.77$:

$$t_0 = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$$

$$SE(\hat{\beta}_1) = \sqrt{\frac{RSS}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \frac{1}{n-2}}$$

- d) Now the above linear regression model will be used to estimate the percentage of literates among a country with known gross national product. Which problems might occur? Briefly explain your concerns using an example.
- e) Repeat c) using R.

Exercise 3.2

t	Demand
0	28.20
1	37.65
2	47.28
3	59.76
4	73.44
5	86.19
6	100.31
7	112.58
8	121.63
9	
10	

a) For the time series above, calculate the forecasted demand value for t=10 using the simple linear regression and the formula below:

$$\widehat{Y}_t = \widehat{\beta}_0 + \widehat{\beta}_1 \cdot t$$

- b) Calculate the RMSE and explain its meaning.
- c) For the time series above, calculate the forecasted demand value for t=10 assuming a biannual seasonal component of the following form: Starting from the first period t=0, suppose after every second period a new year begins. Make use of the formula below:

$$\hat{Y}_t = \hat{\beta}_0 + \hat{\beta}_1 \cdot t + \hat{\beta}_2 \cdot Q_1$$

d) Does the data reflect biannual data?

Note: You can use R to solve this exercise.

Exercise 3.3

Given the data in Exercise_3.csv (Y- response variable), test the Gauss-Markov assumptions using R. If any of the properties is violated, make the necessary corrections until you have a BLUE estimator.

- a) Test if there is a linear dependency between predictors.
- b) Check the linearity assumption and fit a model to the data.
- c) Check if the homoscedasticity assumption holds.
- d) Check for autocorrelation.
- e) Test the exogeneity assumption. Briefly explain the results.

Note: You can use appropriate R functions from R packages like car and lmtest to solve this exercise.