# Computational Complexity Theory

Lecture 6: NTM; Class co-NP and EXP

Department of Computer Science, Indian Institute of Science

# Recap: Search version of NP problems

- Recall: A language  $L \subseteq \{0,1\}^*$  is in NP if
  - > There's a poly-time verifier M and poly. function p s.t.
  - $> x \in L$  iff there's a  $u \in \{0, 1\}^{p(|x|)}$  s.t M(x, u) = 1.
- Search version of L: Given an input  $x \in \{0,1\}^*$ , find a  $u \in \{0,1\}^{p(|x|)}$  such that M(x,u) = 1, if such a u exists.
- Remark: Search version of L only makes sense once we have a verifier M in mind.

# Recap: Decision versus Search

- Is the search version of an NP problem more difficult than the corresponding decision version?
- Theorem. Let  $L \subseteq \{0,1\}^*$  be NP-complete. Then, the search version of L can be solved in poly-time if and only if the decision version can be solved in poly-time.

w.r.t any verifier M!

# Recap: Decision versus Search

- Is search equivalent to decision for every NP problem?
- Theorem. (Bellare & Goldwasser 1994) If EE ≠ NEE then there's a language in NP for which search does not reduce to decision.

 Sometimes, the decision version of a problem can be trivial but the search version is possibly hard. E.g., Computing Nash Equilibrium (see class PPAD).

## Recap: Two types of poly-time reductions

• Definition. A language  $L_1 \subseteq \{0,1\}^*$  is <u>polynomial-time</u> (Karp or many-one) reducible to a language  $L_2 \subseteq \{0,1\}^*$  if there's a polynomial time computable function f s.t.

$$x \in L_1 \iff f(x) \in L_2$$

• Definition. A language  $L_1 \subseteq \{0,1\}^*$  is <u>polynomial-time</u> (Cook or Turing) reducible to a language  $L_2 \subseteq \{0,1\}^*$  if there's a TM that decides  $L_1$  in poly-time using polymany calls to a "subroutine" (<u>oracle</u>) for deciding  $L_2$ .



- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple  $(\Gamma, Q, \delta_0, \delta_1)$ . It has a special state  $q_{accept}$  in addition to  $q_{start}$  and  $q_{halt}$ .

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple  $(\Gamma, Q, \delta_0, \delta_1)$ . It has a special state  $q_{accept}$  in addition to  $q_{start}$  and  $q_{halt}$ .
- At every step of computation, the machine applies one of two functions  $\delta_0$  and  $\delta_1$  arbitrarily.



also called *nondeterministically* 

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple  $(\Gamma, Q, \delta_0, \delta_1)$ . It has a special state  $q_{accept}$  in addition to  $q_{start}$  and  $q_{halt}$ .
- At every step of computation, the machine applies one of two functions  $\delta_0$  and  $\delta_1$  arbitrarily.



this is different from *randomly* 

- A nondeterministic Turing machine is like a deterministic Turing machines but with two transition functions.
- It is formally defined by a tuple  $(\Gamma, Q, \delta_0, \delta_1)$ . It has a special state  $q_{accept}$  in addition to  $q_{start}$  and  $q_{halt}$ .
- At every step of computation, the machine applies one of two functions  $\delta_0$  and  $\delta_1$  arbitrarily.
- Unlike DTMs, NTMs are not intended to be physically realizable (because of the arbitrary nature of application of the transition functions).

- Definition. An NTM M <u>accepts</u> a string  $x \in \{0,1\}^*$  iff on input x there <u>exists</u> a sequence of applications of the transition functions  $\delta_0$  and  $\delta_1$  (beginning from the start configuration) that makes M reach  $q_{accept}$ .
- Defintion. An NTM M <u>decides</u> a language  $L \subseteq \{0,1\}^*$  if
  - $\rightarrow$  M accepts  $x \longleftrightarrow x \in L$
  - $\triangleright$  On every sequence of applications of the transition functions on input x, M either reaches  $q_{accept}$  or  $q_{halt}$ .

- Definition. An NTM M accepts a string  $x \in \{0,1\}^*$  iff on input x there **exists** a sequence of applications of the transition functions  $\delta_0$  and  $\delta_1$  (beginning from the start configuration) that makes M reach  $q_{accept}$ .
- Defintion. An NTM M decides a language  $L \subseteq \{0,1\}^*$  if
  - ➤ M accepts x ← x∈L
  - $\triangleright$  On every sequence of applications of the transition functions on input x, M either reaches  $q_{accept}$  or  $q_{halt}$ .

remember in this course we'll always be dealing with TMs that halt on every input.

- Definition. An NTM M accepts a string  $x \in \{0,1\}^*$  iff on input x there **exists** a sequence of applications of the transition functions  $\delta_0$  and  $\delta_1$  (beginning from the start configuration) that makes M reach  $q_{accept}$ .
- Defintion. An NTM M decides L in T(|x|) time if
  - $\rightarrow$  M accepts  $x \longleftrightarrow x \in L$
  - $\triangleright$  On <u>every sequence</u> of applications of the transition functions on input x, M either reaches  $q_{accept}$  or  $q_{halt}$  within T(|x|) steps of computation.

## Class NTIME

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

Theorem. NP = U NTIME (n<sup>c</sup>).
 Proof sketch: Let L be a language in NP. Then, there's a poly-time verifier M s.t,

 $x \in L$   $\Longrightarrow \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x,u) = I$ 

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

• Theorem. NP =  $\bigcup_{c>0}$  NTIME (n<sup>c</sup>).

Proof sketch: Let L be a language in NP. Then, there's a poly-time verifier M s.t,

$$x \in L$$
  $\Longrightarrow \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x,u) = I$ 

Think of an NTM M' that on input x, at first <u>guesses</u> a  $u \in \{0,1\}^{p(|x|)}$  by applying  $\delta_0$  and  $\delta_1$  nondeterministically

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

Theorem. NP = U NTIME (n<sup>c</sup>).
 Proof sketch: Let L be a language in NP. Then, there's a poly-time verifier M s.t,

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x,u) = I
```

.... and then simulates M on (x, u) to verify M(x, u) = 1.

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

```
• Theorem. NP = \bigcup_{c>0} NTIME (n<sup>c</sup>).
Proof sketch: Let L be in NTIME (n<sup>c</sup>). Then, there's an NTM M' that decides L in p(n) = O(n<sup>c</sup>) time. (|x| = n)
```

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

• Theorem. NP =  $\bigcup_{c>0}$  NTIME (n<sup>c</sup>). Proof sketch: Let L be in NTIME (n<sup>c</sup>). Then, there's an NTM M' that decides L in p(n) =  $O(n^c)$  time. (|x| = n) Think of a verifier M that takes x and u  $\in \{0,1\}^{p(n)}$  as input,

 Definition. A language L is in NTIME(T(n)) if there's an NTM M that decides L in c. T(n) time on inputs of length n, where c is a constant.

• Theorem. NP =  $\bigcup_{c>0}$  NTIME (nc).

Proof sketch: Let L be in NTIME (nc). Then, there's an NTM M' that decides L in p(n) =  $O(n^c)$  time. (|x| = n)

Think of a verifier M that takes x and u  $\in \{0,1\}^{p(n)}$  as input, and simulates M' on x with u as the sequence of choices for applying  $\delta_0$  and  $\delta_1$ .

- Definition. For every  $L \subseteq \{0,1\}^*$  let  $\overline{L} = \{0,1\}^* \setminus L$ . A language L is in co-NP if  $\overline{L}$  is in NP.
- Example. SAT =  $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$ .

- Definition. For every  $L \subseteq \{0,1\}^*$  let  $\overline{L} = \{0,1\}^* \setminus L$ . A language L is in co-NP if  $\overline{L}$  is in NP.
- Example. SAT =  $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$ .
- Note: co-NP is <u>not</u> complement of NP. Every language in P is in both NP and co-NP.

- Definition. For every  $L \subseteq \{0,1\}^*$  let  $\overline{L} = \{0,1\}^* \setminus L$ . A language L is in co-NP if  $\overline{L}$  is in NP.
- Example. SAT =  $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$ .



- Definition. For every  $L \subseteq \{0,1\}^*$  let  $\overline{L} = \{0,1\}^* \setminus L$ . A language L is in co-NP if  $\overline{L}$  is in NP.
- Example. SAT =  $\{\phi : \phi \text{ is } \underline{not} \text{ satisfiable}\}$ .
- Note: SAT is Cook reducible to SAT. But, there's a fundamental difference between the two problems that is captured by the fact that SAT is not known to be Karp reducible to SAT. In other words, there's no known poly-time verification process for SAT.

```
x \in L \implies \exists u \in \{0,1\}^{p(|x|)} \text{ s.t. } M(x,u) = I
```

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{p(|x|)} s.t. M(x, u) = I

x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. M(x, u) = 0
```

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = I x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = 0 x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. \overline{M}(x,u) = I \widehat{M} outputs the opposite of M
```

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = I x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = 0 x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. \overline{M}(x,u) = I \overline{M} is a poly-time TM
```

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = I x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. M(x,u) = 0 x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. \overline{M}(x,u) = I is in co-NP
```

• Recall, a language  $L \subseteq \{0,1\}^*$  is in NP if there's a poly-time verifier M such that

```
x \in L \Longrightarrow \exists u \in \{0,1\}^{p(|x|)} s.t. M(x, u) = I

x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. M(x, u) = 0

x \in \overline{L} \Longrightarrow \forall u \in \{0,1\}^{p(|x|)} s.t. \overline{M}(x, u) = I
```

• Definition. A language  $L \subseteq \{0,1\}^*$  is in co-NP if there's a polynomial function p and a poly-time TM M such that

$$x \in L$$
  $\forall u \in \{0,1\}^{p(|x|)}$  s.t.  $M(x, u) = I$  for NP this was  $\exists$ 

- Definition. A language  $L' \subseteq \{0,1\}^*$  is co-NP-complete if
  - L' is in co-NP
  - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

• Theorem. SAT is co-NP-complete.

- Definition. A language L'  $\subseteq \{0,1\}^*$  is co-NP-complete if
  - L' is in co-NP
  - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

• Theorem. SAT is co-NP-complete.

Proof. Let  $L \in \text{co-NP}$ . Then  $\overline{L} \in \text{NP}$ 

- Definition. A language L'  $\subseteq \{0,1\}^*$  is co-NP-complete if
  - L' is in co-NP
  - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

• Theorem. SAT is co-NP-complete.

Proof. Let 
$$L \in \text{co-NP}$$
. Then  $\overline{L} \in \text{NP}$   $\Rightarrow \overline{L} \leq_{D} \text{SAT}$ 

- Definition. A language L'  $\subseteq \{0,1\}^*$  is co-NP-complete if
  - L' is in co-NP
  - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

• Theorem. SAT is co-NP-complete.

Proof. Let 
$$L \in \text{co-NP}$$
. Then  $\overline{L} \in \text{NP}$   $\Longrightarrow \overline{L} \leq_p \overline{SAT}$   $\Longrightarrow L \leq_p \overline{SAT}$ 

- Definition. A language L'  $\subseteq \{0,1\}^*$  is co-NP-complete if
  - L' is in co-NP
  - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

Theorem. Let

**TAUTOLOGY** =  $\{\phi : \text{ every assignment satisfies } \phi \}$ .

TAUTOLOGY is co-NP-complete.

Proof. Similar (homework)

- Definition. A language L'  $\subseteq \{0,1\}^*$  is co-NP-complete if
  - L' is in co-NP
  - Every language L in co-NP is polynomial-time (Karp) reducible to L'.

Theorem. If L in NP-complete then L is co-NP-complete
 Proof. Similar (homework)

### The diagram again



If a co-NP-complete language belongs to NP then



Let  $C_1$  and  $C_2$  be two complexity classes.

If 
$$C_1 \subseteq C_2$$
, then  $co-C_1 \subseteq co-C_2$ .

Obs. 
$$co-(co-C) = C$$
.

# The diagram again



If an NP-complete language belongs to co-NP then



Let  $C_1$  and  $C_2$  be two complexity classes.

If 
$$C_1 \subseteq C_2$$
, then  $co-C_1 \subseteq co-C_2$ .

Obs. 
$$co-(co-C) = C$$
.

# The diagram again



If an NP-complete language belongs to co-NP then



Let  $C_1$  and  $C_2$  be two complexity classes.

If 
$$C_1 \subseteq C_2$$
, then  $co-C_1 \subseteq co-C_2$ .

Obs. 
$$co-(co-C) = C$$
.

Integer factoring.

```
FACT = \{(N, U): \text{ there's a prime in } [U] \text{ dividing } N\}
```

• Claim. FACT  $\in NP \cap co-NP$ 

• So, FACT is NP-complete implies NP = co-NP.

Integer factoring.
 FACT = {(N, U): there's a prime in [U] dividing N}

- Claim. FACT ∈ NP ∩ co-NP
- Proof. FACT ∈ NP : Give p as a certificate. The verifier checks if p is prime (AKS test), I ≤ p ≤ U and p divides N.

Integer factoring.
 FACT = {(N, U): there's a prime in [U] dividing N}

- Claim. FACT  $\in NP \cap co-NP$
- Proof. FACT ∈ NP: Give the complete prime factorization of N as a certificate. The verifier checks the correctness of the factorization, and then checks if none of the prime factors is in [U].

Integer factoring.FACT = {(N, U): there's a prime in [U] dividing N}

- Claim. FACT  $\in NP \cap co-NP$
- Proof. FACT ∈ NP: Give the complete prime factorization of N as a certificate. The verifier checks the correctness of the factorization, and then checks if none of the prime factors is in [U].
- Homework: If FACT  $\in$  P, then there's a algorithm to find the prime factorization a given n-bit integers in poly(n) time.

Integer factoring.

```
FACT = \{(N, U): \text{ there's a prime in } [U] \text{ dividing } N\}
```

• Factoring algorithm. Dixon's randomized algorithm factors an n-bit number in  $exp(O(\sqrt{n \log n}))$  time.

 Definition. Class EXP is the exponential time analogue of class P.

```
EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})
```

 Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})$$

• Observation. P ⊆ NP ⊆ EXP



 Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})$$

• Observation.  $P \subseteq NP \subseteq EXP$ 

• Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes  $\geq 2^{\delta,n}$  time, where  $\delta > 0$  is some fixed constant and n is the no. of variables.

In other words,  $\delta$  cannot be made arbitrarily close to 0.

 Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})$$

• Observation.  $P \subseteq NP \subseteq EXP$ 

• Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes  $\geq 2^{\delta,n}$  time, where  $\delta > 0$  is some fixed constant and n is the no. of variables.

ETH 
$$\Rightarrow$$
 P  $\neq$  NP

 Definition. Class EXP is the exponential time analogue of class P.

$$EXP = \bigcup_{c \ge 1} DTIME (2^{n^c})$$

• Observation.  $P \subseteq NP \subseteq EXP$ 

• Exponential Time Hypothesis. (Impagliazzo & Paturi 1999) Any algorithm for 3-SAT takes  $\geq 2^{\delta,n}$  time, where  $\delta > 0$  is some fixed constant and n is the no. of variables.

Homework: Read about Strong Exponential Time Hypothesis (SETH).