1 Булевы операции

1.1. «Основные равенства, связанные с пересечением, объединением и разностью».

2 Эквивалентности и частичные порядки

2.1. і. Если Y — разбиение X, то

$$\mathscr{E}_Y \ := \ \left\{ (u,v) \in X^2 \mid \exists y \, (y \in Y \land u \in y \land v \in y) \right\}$$

- эквивалентность на X, причём $X_{/\mathscr{E}_{Y}}$ равно Y.
- іі. Если pprox эквивалентность на X, то $X_{/pprox}$ разбиение X, причём $\mathscr{E}_{X_{/pprox}}$ равно pprox.
- **2.2.** Пусть R предпорядок на X. Тогда

$$\mathscr{S}_R := \{(u, v) \in X^2 \mid uRv \wedge vRu\}$$

— эквивалентность на X. Кроме того,

$$R^{\sharp} \ := \ \Big\{ \Big([u]_{\mathscr{S}_R}, [v]_{\mathscr{S}_R} \Big) \mid u \in X \wedge v \in X \wedge uRv \Big\},$$

- частичный порядок на $X_{/\mathscr{S}_R}$.
- **2.3.** і. Если R строгий частичный порядок на X, то $R \cup \mathrm{id}_X$ частичный порядок на X;
 - іі. Если R частичный порядок на X, то $R \setminus \mathrm{id}_X$ строгий частичный порядок на X.

3 Отношения и функции

3.1. Пусть R — множество упорядоченных пар, т.е.

$$\forall z (z \in R \to \exists x \exists y z = (x, y)).$$

Тогда найдутся X и Y такие, что $R \subseteq X \times Y$.

- **3.4.** Если $f:X \to Y$ и $g:Y \to Z$, то $f \circ g:X \to Z$, причём $(f \circ g)(x) = g(f(x))$ для всех $x \in X$.
- **3.5.** Пусть $f: X \to Y$. Имеют место следующие эквивалентности:
 - $i.\ f$ инъективна тогда и только тогда, когда на f можно сокращать справа;
 - $ii. \ f$ сюрьективна тогда и только тогда, когда на f можно сокращать слева.
- **3.6** (в ZFC). Пусть $f: X \to Y$. Имеют место следующие эквивалентности:
 - i. f инъективна тогда и только тогда, когда существует правая обратная к f;
 - ії. f сюрьективна тогда и только тогда, когда существуєт левая обратная к f.

Кроме того, если правая и левая обратные к f обе существуют, то они должны совпадать.

3.7. «Альтернативная формулировка аксиомы выбора» (С'). [Предполагая наличие всех остальных аксиом, покажите, что С и С' выводятся друг из друга.]

4 Натуральные числа и индукция

- **4.1.** Для любого $n \in \mathbb{N}$ верно $n \subseteq n+1 \land \neg \exists x \, n \subsetneq x \subsetneq n+1$.
- **4.2.** Для любых $m, n \in \mathbb{N}$,

$$m < n \iff m \subseteq n.$$

- **4.3.** Для всех $n, m \in \mathbb{N}$ верно следующее:
 - i. $n \neq 0 \leftrightarrow \exists k \in \mathbb{N} \ n = k+1;$
 - ii. $n+1=m+1 \leftrightarrow n=m$.
- **4.4** (принцип Дирихле). і. Для любого $n \in \mathbb{N}$ не существует инъекции из n+1 в n.
 - іі. Для любых $n, m \in \mathbb{N}$, если m < n, то не существует инъекции из n в m.
 - ііі. Для любых $n, m \in \mathbb{N}$, если $n \neq m$, то не существует биекции между n и m.
- 4.5. Каждое натуральное число Т-конечно.
- 4.6. Множество всех натуральных чисел Т-бесконечно.
- 4.7. Множество конечно тогда и только тогда, когда оно Т-конечно.

5 Возвратная индукция и рекурсия

- 5.3. Если непустое множество натуральных чисел ограничено, то оно содержит наиб. элемент.
- **5.6.** Для всех $k, m, n \in \mathbb{N}$ верно следующее:
 - i. (k+m) + n = k + (m+n);
 - ii. m + n = n + m.

6 Равномощность

- **6.1.** Для любых X, Y и Z верно следующее:
 - i. $|X \times Y| = |Y \times X|$;
 - ii. $|(X \times Y) \times Z| = |X \times (Y \times Z)|$;
 - ііі. если |X| = |Y|, то $|X \times Z| = |Y \times Z|$.
- **6.2.** Для любых X, Y и Z верно $\left|Z^{X \times Y}\right| = \left|\left(Z^Y\right)^X\right|$.
- **6.3.** Для любых X, Y и Z верно следующее:
 - і. если $X \subseteq Y$, то $|X| \leqslant |Y|$;
 - іі. если $|X| \leqslant |Y|$, то $|X \times Z| \leqslant |Y \times Z|$;
 - ііі. если $Y \neq \emptyset$, то $|X| \leqslant |X \times Y|$.
- **6.4.** Для любых X, Y и Z верно следующее:

- і. если $|X| \leqslant |Y|$, то $|X^Z| \leqslant |Y^Z|$;
- іі. если $|X| \leqslant |Y|$, то $|Z^X| \leqslant |Z^Y|$;
- ііі. если $Y \neq \emptyset$, то $|X| \leqslant |X^Y|$.
- **6.5.** Пусть $|X| \leqslant |Y|$ и $X \neq \emptyset$. Тогда существует сюрьекция из Y на X.
- **6.6** (в ZFC). Пусть существует сюрьекция из Y на X. Тогда $|X| \leqslant |Y|$.

7 Счётные множества

- 7.2. Если множество конечно, то оно D-конечно.
- 7.3 (в ZFC). Если множество бесконечно, то оно D-бесконечно.
- **7.4.** Пусть $f: X \to \mathbb{R}$. Предположим также, что

$$\left\{ \sum_{s\in S}f\left(s\right) \mid S\subseteq X$$
 и S конечно $ight\}$

ограничено, т.е. существует $N \in \mathbb{N}$ такое, что для любого конечного $S \subseteq X$,

$$\left| \sum\nolimits_{s \in S} f\left(s\right) \right| \; \leqslant \; N.$$

Тогда $\{x \in X \mid f(x) \neq 0\}$ не более чем счётно.

8 Континуальные множества

- **8.1.** $\mathbb{R} \times \mathbb{R}$, $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ и т.д. континуальны.
- **8.2.** \mathbb{R}^* континуально.
- 8.3. Множество всех трансцендентных чисел континуально.
- **8.4** (в ZFC). Пусть $X \cup Y = \mathbb{R}$. Тогда хотя бы одно из X и Y континуально.

9 Упорядоченные множества

- **9.1.** Пусть $\langle A, \leqslant \rangle$ л.у.м.
 - і. Если S начальный сегмент $\langle A,\leqslant \rangle$, а T начальный сегмент $\langle S,\leqslant_S \rangle$, то T начальный сегмент $\langle A,\leqslant \rangle$.
 - іі. Если $S \subseteq A$, а T начальный сегмент $\langle A, \leqslant \rangle$, то $S \cap T$ начальный сегмент $\langle S, \leqslant_S \rangle$.

[Здесь \leq_S обозначает $\leq \cap S \times S$.]

- **9.2.** Пусть \mathfrak{A} л.у.м.
 - і. Если S и T начальные сегменты \mathfrak{A} , то $S \subseteq T$ или $T \subseteq S$.
 - іі. Если $\mathscr S$ некоторое множество начальных сегментов $\mathfrak A$, то $\bigcup \mathscr S$ и $\bigcap \mathscr S$ окажутся начальными сегментами $\mathfrak A$.

- **9.3.** Для всякого ч.у.м. $\langle A, \leqslant \rangle$ следующие условия эквивалентны:
 - і. \leq полный порядок на A;
 - ii. в каждом непустом подмножестве A есть наименьший элемент.
- **9.4** (в ZFC). Ч.у.м. $\langle A, \leqslant \rangle$ фундировано тогда и только тогда, когда не существует инъективной функции f из $\mathbb N$ в A такой, что f(n+1) < f(n) для всех $n \in \mathbb N$.
- **9.5.** Гомоморфизм f из ч.у.м. $\mathfrak A$ в ч.у.м. $\mathfrak B$ является изоморфизмом тогда и только тогда, когда существует гомоморфизм g из $\mathfrak B$ в $\mathfrak A$ такой, что $f \circ g = \mathrm{id}_A$ и $g \circ f = \mathrm{id}_B$.
- 9.9. «Характеризация № как ч.у.м. с точностью до изоморфизма».
- **9.10.** «Характеризация $\mathbb Q$ как ч.у.м. с точностью до изоморфизма».
- **9.11.** С точностью до изоморфизма существует ровно четыре плотных л.у.м. со счётными носителями.
- **9.12.** Постройте два плотных л.у.м. без концов с континуальными носителями, которые не изоморфны.

10 Ординалы и кардиналы

- 10.1. Докажите, что сложение и умножение на Ord ассоциативны.
- 10.2. Докажите, что ни сложение, ни умножение на Ord не коммутативно.
- 10.4. Докажите, что сложение и умножение на Card ассоциативны и коммутативны.

11 Лемма Цорна

[Здесь всё в ZFC!]

- 11.1. У всякого векторного пространства есть базис.
- **11.2.** Пусть $\mathfrak{A}=\langle A,\leqslant \rangle$ ч.у.м. Тогда сущ. линейный порядок \preccurlyeq на A такой, что \leqslant \subseteq \preccurlyeq .
- 11.3 (принцип максимума Хаусдорфа). Пусть $\mathfrak{A} = \langle A, \leqslant \rangle$ ч.у.м. Тогда для каждой цепи S в \mathfrak{A} найдётся максимальная цепь S' в \mathfrak{A} такая, что $S \subseteq S'$.