Yilun Wang(yilun830@bu.edu) - final project

convert notebook to html then print as PDF

```
In [ ]:
| jupyter nbconvert --to html /content/Assignment 05 Yilun Wang.ipynb
main content
In [264]:
%matplotlib inline
In [329]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import seaborn as sns
In [266]:
# project tickers
pt = pd.read csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-assignme
nts/main/ProjectTickers.csv')
In [267]:
pt.head()
Out[267]:
```

```
Ticker
                            Name RetYTD
        Α
                Agilent Technologies
                                    -0.2080
      AA
1
                        Alcoa Corp
                                     0.4731
     AAL
                American Airlines Gp
                                     0.0579
     AAN Aarons Holdings Company
                                    -0.1327
  AAON
                          Aaon Inc -0.3456
In [267]:
```

(2) Determine Risk Exposures

In [268]:

```
# upload stock return
data_return = pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765
-assignments/main/efevj68i6ylkiw7c.csv')
```

In [269]:

```
# upload ff factors of year 2017-2021
ff_factors = pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-
assignments/main/FF-Factors-2017-2021.csv')
```

In [270]:

```
pt.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1886 entries, 0 to 1885
Data columns (total 3 columns):
    Column Non-Null Count Dtype
    ----
            -----
 0
    Ticker 1886 non-null
                           object
    Name
            1886 non-null
 1
                           object
                           float64
    RetYTD 1886 non-null
dtypes: float64(1), object(2)
memory usage: 44.3+ KB
```

In [271]:

```
data_return.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 114715 entries, 0 to 114714
Data columns (total 4 columns):
 #
    Column Non-Null Count
                            Dtype
    _____
            -----
 0
    PERMNO 114715 non-null int64
 1
    date
            114715 non-null int64
    TICKER 114653 non-null object
 2
            114700 non-null object
dtypes: int64(2), object(2)
memory usage: 3.5+ MB
```

In [272]:

```
# change RET type to float, outliers would be transfer to "NaN"
data return['RET'] = pd.to numeric(data return['RET'],errors='coerce')
```

In [273]:

```
# check again type
data return.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 114715 entries, 0 to 114714
Data columns (total 4 columns):
#
     Column Non-Null Count
                              Dtype
             _____
 0
     PERMNO
             114715 non-null int64
     date
             114715 non-null int64
 1
             114653 non-null object
     TICKER
             114629 non-null float64
 3
     RET
dtypes: float64(1), int64(2), object(1)
memory usage: 3.5+ MB
In [274]:
# check null values
data return.isna().sum()
Out[274]:
PERMNO
           0
date
           0
TICKER
          62
RET
          86
dtype: int64
In [275]:
# fill NA with 0
data return['RET'].fillna(0, inplace=True)
In [276]:
# check NA again
data return.isna().sum()
Out[276]:
PERMNO
           0
date
           0
TICKER
          62
RET
dtype: int64
```

In [277]:

```
data return.head()
```

Out[277]:

	PERMNO	date	TICKER	RET
0	10026	20170131	JJSF	-0.043918
1	10026	20170228	JJSF	0.048836
2	10026	20170331	JJSF	0.016293
3	10026	20170428	JJSF	-0.007229
4	10026	20170531	JJSF	-0.033289

In [278]:

```
ff_factors.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 60 entries, 0 to 59
Data columns (total 5 columns):
    Column Non-Null Count Dtype
--- ----- ------
    dateff 60 non-null
                          int64
    mktrf 60 non-null
1
                          float64
    smb
            60 non-null
                          float64
    hml
            60 non-null
                          float64
 3
            60 non-null
                          float64
```

dtypes: float64(4), int64(1)

memory usage: 2.5 KB

In [279]:

```
ff_factors.head()
```

Out[279]:

	dateff	mktrf	smb	hml	rf
0	20170131	0.0194	-0.0113	-0.0274	0.0004
1	20170228	0.0357	-0.0204	-0.0167	0.0004
2	20170331	0.0017	0.0113	-0.0333	0.0003
3	20170428	0.0109	0.0072	-0.0213	0.0005
4	20170531	0.0106	-0.0252	-0.0375	0.0006

Rename date column to "date" to match WRDS data "date" column for each stock

In [280]:

```
# Rename date column to "date" to match WRDS data "date" column for each stock
ff_factors.rename(columns={'dateff':'date'}, inplace=True)
ff_factors.head()
```

Out[280]:

	date	mktrf	smb	hml	rf
0	20170131	0.0194	-0.0113	-0.0274	0.0004
1	20170228	0.0357	-0.0204	-0.0167	0.0004
2	20170331	0.0017	0.0113	-0.0333	0.0003
3	20170428	0.0109	0.0072	-0.0213	0.0005
4	20170531	0.0106	-0.0252	-0.0375	0.0006

Create loops for each stock to get new dataframe for each stock's monthly data

create a vacant dataframe for final outputs

```
In [281]:
```

```
# create a vacant dataframe for final outputs
final_outputs = pd.DataFrame(columns=['TICKER', 'mktrf','smb','hml'])
final_outputs.head()
```

Out[281]:

TICKER mktrf smb hml

create loop

In [282]:

```
for x in pt['Ticker']:
 # create new df for x stock
 x data = data return[data return["TICKER"] == x]
 # merge x data & ff factors for each x
 x ff = pd.merge(x data, ff factors, on='date', how='outer')
 # Run OLS regression for each x (60 months) using FF 3-factor model
 y = x ff["RET"] - x_ff["rf"]
 X = x ff[['mktrf' , 'smb' , 'hml']]
 # Use statsmodels
 X = sm.add constant(X) # adding a constant
 model = sm.OLS(y, X).fit()
 # create a new df for our necessary parameters
 # model.params has 4 numbers: alpha/mktrf/smb/hml
 # tickers = X'name, and we also have other two r-squareds.
 # As a result, we get a new df with 7 parameters as following:
 new=pd.DataFrame({'mktrf': [model.params[1]],
                    'smb': [model.params[2]],
                    'hml': [model.params[3]],
                    'TICKER': [X]
                    })
 # Store the above items (TICKER, R-squared, Adj. R-squared, const, mktrf, smb,
hml) to a row in the final outputs dataframe.
 final outputs=final outputs.append(new,ignore index=True)
 # finish!
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:1
17: FutureWarning: In a future version of pandas all arguments of co
ncat except for the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

In [283]:

```
# check our final results
final_outputs.head(20)
```

Out[283]:

	TICKER	mktrf	smb	hml
0	А	1.014152	-0.253674	-0.143608
1	AA	1.984149	0.527862	1.924844
2	AAL	1.315550	0.612825	1.248123
3	AAN	1.640807	0.141355	0.841349
4	AAON	0.516779	0.422130	-0.117068
5	AAP	1.112646	0.123161	0.469651
6	AAPL	1.314647	-0.344850	-0.714986
7	AAT	1.007945	0.384752	0.685424
8	AAWW	0.971779	0.591275	0.283819
9	ABBV	0.774071	0.083434	0.204134
10	ABC	0.520776	-0.279820	-0.040484
11	ABCB	0.893665	1.158212	1.270126
12	ABG	1.277690	0.165531	1.103423
13	ABM	1.238217	-0.426307	0.524660
14	ABMD	1.302492	0.935928	-1.006187
15	ABR	1.625833	0.853485	0.547468
16	ABT	0.764430	-0.304822	-0.266568
17	ABTX	0.717397	0.892790	0.768598
18	ABUS	2.344090	2.002693	0.223151
19	ACAD	0.540352	0.984864	-0.459562

In [284]:

```
final_outputs.isna().sum()
```

Out[284]:

TICKER 0 mktrf 0 smb 0 hml 0 dtype: int64

Write the contents of the dataframe to a CSV file with the name "FF-Exposures.csv"

```
In [285]:
```

```
final_outputs.to_csv("FF-Exposures.csv")
```

(3) Calculate Financial Ratios

```
In [286]:
```

```
# import financials
fin = pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-assignm
ents/main/Project-2021-Financials.csv')
```

In [287]:

```
fin.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1886 entries, 0 to 1885
Data columns (total 21 columns):
              Non-Null Count Dtype
 #
    Column
    _____
              _____
 0
    gvkey
              1886 non-null
                             int.64
 1
   datadate 1886 non-null
                             int64
 2
   fyear
              1886 non-null
                             int64
 3
    indfmt
              1886 non-null
                             object
   consol
             1886 non-null
                             object
 4
 5
    popsrc 1886 non-null
                             object
    datafmt 1886 non-null
 6
                             object
 7
    tic
              1886 non-null
                             object
    curcd
              1886 non-null
                             object
 9
    at
             1886 non-null
                             float64
                             float64
 10 ceq
              1886 non-null
 11 csho
              1886 non-null
                             float64
 12 dt
              1649 non-null
                             float64
             1886 non-null
 13 ebit
                             float64
 14
   lt
              1881 non-null
                             float64
 15 ni
             1886 non-null
                             float64
 16 oancf
             1885 non-null
                             float64
 17 sale
              1886 non-null
                             float64
 18 seq
              1886 non-null
                             float64
              1886 non-null
                             object
 19 costat
 20 prcc c
            1886 non-null
                             float64
dtypes: float64(11), int64(3), object(7)
memory usage: 309.5+ KB
```

In [288]:

```
# rename column
fin.rename(columns={'tic':'Ticker'}, inplace=True)
fin.head()
```

Out[288]:

	gvkey	datadate	fyear	indfmt	consol	popsrc	datafmt	Ticker	curcd	at	
0	1004	20210531	2020	INDL	С	D	STD	AIR	USD	1539.700	
1	1045	20211231	2021	INDL	С	D	STD	AAL	USD	66467.000	 6
2	1075	20211231	2021	INDL	С	D	STD	PNW	USD	22003.222	 1
3	1078	20211231	2021	INDL	С	D	STD	ABT	USD	75196.000	 17
4	1161	20211231	2021	INDL	С	D	STD	AMD	USD	12419.000	 12

5 rows × 21 columns

In [289]:

```
# merge two datasets
df = pd.merge(fin, pt, how='outer', on='Ticker')
```

In [290]:

```
df.head()
```

Out[290]:

	gvkey	datadate	fyear	indfmt	consol	popsrc	datafmt	Ticker	curcd	at	
0	1004	20210531	2020	INDL	С	D	STD	AIR	USD	1539.700	
1	1045	20211231	2021	INDL	С	D	STD	AAL	USD	66467.000	 -5!
2	1075	20211231	2021	INDL	С	D	STD	PNW	USD	22003.222	 1
3	1078	20211231	2021	INDL	С	D	STD	ABT	USD	75196.000	 8!
4	1161	20211231	2021	INDL	С	D	STD	AMD	USD	12419.000	 31

5 rows × 23 columns

Create ratios

In [291]:

```
# create 4 market ratios and take the inverse
df['book/price'] = df['ceq'] / (df['prcc_c'] * df['csho'])
df['e/price'] = df['ni'] / (df['prcc_c'] * df['csho'])
df['sale/price'] = df['sale'] / (df['prcc_c'] * df['csho'])
df['ebit/price'] = df['ebit'] / (df['prcc_c'] * df['csho'])

# create 6 other ratios
df['price/cashflow'] = (df['prcc_c'] * df['csho']) / df['oancf']
df['totaldebt/totalassets'] = df['dt'] / df['at']
df['totaldebt/equity'] = df['lt'] / df['seq']
df['roa'] = df['ebit'] / df['at']
df['totaldebt/totalliabilies'] = df['lt'] / df['at']
df['totaldebt/capital'] = df['dt'] / (df['dt'] + df['ceq'])
```

In [292]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1886 entries, 0 to 1885
Data columns (total 33 columns):

	Columns (total 33 columns		D+
#	Column	Non-Null Count	Dtype
		1006	
0	gvkey	1886 non-null	int64
1	datadate	1886 non-null	int64
2	fyear	1886 non-null	int64
3	indfmt	1886 non-null	object
4	consol	1886 non-null	object
5	popsrc	1886 non-null	object
6	datafmt	1886 non-null	object
7	Ticker	1886 non-null	object
8	curcd	1886 non-null	object
9	at	1886 non-null	
10	ceq	1886 non-null	
11	csho	1886 non-null	
12	dt	1649 non-null	float64
13	ebit	1886 non-null	float64
14	lt	1881 non-null	float64
15	ni	1886 non-null	float64
16	oancf	1885 non-null	float64
17	sale	1886 non-null	float64
18	seq	1886 non-null	float64
19	costat	1886 non-null	object
20	prcc_c	1886 non-null	float64
21	Name	1886 non-null	object
22	RetYTD	1886 non-null	float64
23	book/price	1886 non-null	float64
24	e/price	1886 non-null	float64
25	sale/price	1886 non-null	float64
26	ebit/price	1886 non-null	float64
27	price/cashflow	1885 non-null	float64
28	totaldebt/totalassets	1649 non-null	float64
29	totaldebt/equity	1881 non-null	float64
30	roa	1886 non-null	float64
31	totaldebt/totalliabilies	1881 non-null	float64
32	totaldebt/capital	1649 non-null	float64
	es: float64(22), int64(3),		
~ 0 J P	501 01 WD	22,300(0)	

memory usage: 501.0+ KB

In [293]:

```
# check null value df.isna().sum()
```

Out[293]:

gvkey	0
datadate	0
fyear	0
indfmt	0
consol	0
popsrc	0
datafmt	0
Ticker	0
curcd	0
at	0
ceq	0
csho	0
dt	237
ebit	0
lt	5
ni	0
oancf	1
sale	0
seq	0
costat	0
prcc_c	0
Name	0
RetYTD	0
book/price	0
e/price	0
sale/price	0
ebit/price	0
price/cashflow	1
totaldebt/totalassets	237
totaldebt/equity	5
roa	0
totaldebt/totalliabilies	5
totaldebt/capital	237
dtype: int64	

Winsorize

In [294]:

```
#import winsorize
from scipy.stats.mstats import winsorize
```

winsorize for price/cashflow:

```
In [295]:
```

```
# winsorize
df['price/cashflow'] = winsorize(df['price/cashflow'], (0.01,0.01))
df['price/cashflow'].describe()
```

Out[295]:

```
count
         1886.000000
mean
           18.696278
std
           49.327257
min
         -142.704032
25%
            5.901279
50%
           12.229813
75%
           23.454398
max
          340.564298
```

Name: price/cashflow, dtype: float64

winsorize for totaldebt/totalassets:

In [296]:

```
# because we lose 237 values, which is a lot. So we fill the NA with average val
ue
df['totaldebt/totalassets'].fillna(df['totaldebt/totalassets'].mean(), inplace=T
rue)
df['totaldebt/totalassets'].describe()
```

Out[296]:

```
1886,000000
count
mean
            0.330024
            0.237333
std
min
            0.00000
            0.176501
25%
50%
            0.330024
75%
            0.430186
max
             3.165332
```

Name: totaldebt/totalassets, dtype: float64

winsorize for totaldebt/equity:

```
In [297]:

# winsorize
df['totaldebt/equity'] = winsorize(df['totaldebt/equity'], (0.01,0.01))
df['totaldebt/equity'].describe()

Out[297]:
count  1886.000000
```

count 1886.000000
mean 2.755861
std 5.741946
min -24.094786
25% 0.759778
50% 1.538695
75% 3.468388
max 31.522617

Name: totaldebt/equity, dtype: float64

winsorize for totaldebt/totalliabilies:

```
In [298]:
```

```
# winsorize
df['totaldebt/totalliabilies'] = winsorize(df['totaldebt/totalliabilies'], (0.01
,0.01))
df['totaldebt/totalliabilies'].describe()
```

Out[298]:

```
1886.000000
count
             0.631315
mean
std
             0.256761
             0.086737
min
25%
             0.460233
50%
             0.633081
75%
             0.802777
max
             1.552428
```

Name: totaldebt/totalliabilies, dtype: float64

winsorize for totaldebt/capital:

```
In [299]:
```

```
# winsorize
df['totaldebt/capital'].fillna(df['totaldebt/capital'].mean(), inplace=True)
df['totaldebt/capital'].describe()
```

Out[299]:

```
1886.000000
count
            0.470835
mean
std
             0.392527
min
           -3.714286
25%
             0.276201
50%
             0.470835
75%
             0.588980
             6.584568
max
```

Name: totaldebt/capital, dtype: float64

double check:

```
In [300]:
```

C	df.isna().sum()

Out[300]:	
arricorr	

gvkey	0
datadate	0
fyear	0
indfmt	0
consol	0
popsrc	0
datafmt	0
Ticker	0
curcd	0
at	0
ceq	0
csho	0
dt	237
ebit	0
1t	5
ni	0
oancf	1
sale	0
seq	0
costat	0
prcc_c	0
Name	0
RetYTD	0
book/price	0
e/price	0
sale/price	0
ebit/price	0
price/cashflow	0
totaldebt/totalassets	0
totaldebt/equity	0
roa	0
totaldebt/totalliabilies	0
totaldebt/capital	0
dtype: int64	

Save variables to new csv

In [301]:

Out[301]:

	Ticker	book/price	e/price	sale/price	ebit/price	price/cashflow	totaldebt/totalassets	t
0	AIR	0.760488	0.027941	1.288865	0.051121	12.179491	0.133208	
1	AAL	-0.630953	-0.171320	2.568684	-0.473988	16.524425	0.694736	
2	PNW	0.740913	0.077616	0.477178	0.101023	9.269055	0.330024	
3	ABT	0.144202	0.028480	0.173496	0.036113	23.571338	0.256011	
4	AMD	0.043164	0.018205	0.094618	0.021176	49.328969	0.058942	

plot the heatmap

In [330]:

```
sns.heatmap(new.corr(), annot=True)
plt.show()
```



```
In [302]:
```

```
# dataframe to csv
new.to_csv("Fin-Ratios.csv")
```

(4) Industry Indicators

```
In [303]:
# import temGICS.csv
temp = pd.read csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-sessio
n02/main/tempGICSS.csv')
In [304]:
# import project tickers.csv
data1 = pd.read csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-sessi
on02/main/ProjectTickers.csv')
In [305]:
temp.isna().sum()
Out[305]:
            0
gvkey
datadate
            0
fyear
            0
indfmt
            0
consol
            0
popsrc
            0
datafmt
tic
curcd
            0
costat
ggroup
dtype: int64
In [306]:
data1.isna().sum()
Out[306]:
Ticker
          0
          0
Name
RetYTD
          0
dtype: int64
```

In [307]:

```
# rename column
temp.rename(columns={'tic':'Ticker'}, inplace=True)
temp.head()
```

Out[307]:

	gvkey	datadate	fyear	indfmt	consol	popsrc	datafmt	Ticker	curcd	costat	ggroup
0	1004	20210531	2020	INDL	С	D	STD	AIR	USD	Α	2010
1	1045	20211231	2021	INDL	С	D	STD	AAL	USD	Α	2030
2	1075	20211231	2021	INDL	С	D	STD	PNW	USD	Α	5510
3	1078	20211231	2021	INDL	С	D	STD	ABT	USD	Α	3510
4	1161	20211231	2021	INDL	С	D	STD	AMD	USD	Α	4530

In [308]:

```
# merge two datasets
df2 = pd.merge(temp, data1, how='outer', on='Ticker')
```

In [309]:

```
df2.head()
```

Out[309]:

	gvkey	datadate	fyear	indfmt	consol	popsrc	datafmt	Ticker	curcd	costat	ggroup	
0	1004	20210531	2020	INDL	С	D	STD	AIR	USD	А	2010	
1	1045	20211231	2021	INDL	С	D	STD	AAL	USD	Α	2030	
2	1075	20211231	2021	INDL	С	D	STD	PNW	USD	Α	5510	ν
3	1078	20211231	2021	INDL	С	D	STD	ABT	USD	Α	3510	L
4	1161	20211231	2021	INDL	С	D	STD	AMD	USD	А	4530	

In [310]:

```
# get dummy
df2 = pd.get_dummies(df2, columns=['ggroup'])
df2.head()
```

Out[310]:

	gvkey	datadate	fyear	indfmt	consol	popsrc	datafmt	Ticker	curcd	costat	 ggrou
0	1004	20210531	2020	INDL	С	D	STD	AIR	USD	А	
1	1045	20211231	2021	INDL	С	D	STD	AAL	USD	Α	
2	1075	20211231	2021	INDL	С	D	STD	PNW	USD	Α	
3	1078	20211231	2021	INDL	С	D	STD	ABT	USD	Α	
4	1161	20211231	2021	INDL	С	D	STD	AMD	USD	Α	

5 rows × 36 columns

In [311]:

```
df2.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1886 entries, 0 to 1885
Data columns (total 36 columns):

	· ·	i so corumns).	
#	Column	Non-Null Count	
0	gvkey	1886 non-null	
1	datadate	1886 non-null	int64
2	fyear	1886 non-null	int64
3	indfmt	1886 non-null	object
4	consol	1886 non-null	object
5	popsrc	1886 non-null	_
6	datafmt	1886 non-null	object
7	Ticker	1886 non-null	object
8	curcd	1886 non-null	object
9	costat	1886 non-null	object
10	Name	1886 non-null	
11	RetYTD	1886 non-null	
12	ggroup_1010		uint8
13	ggroup_1510	1886 non-null	uint8
14	ggroup_2010		uint8
15	ggroup_2020	1886 non-null	uint8
16	ggroup_2030		
17	ggroup_2510		
18	ggroup_2520	1886 non-null	uint8
19	ggroup_2530	1886 non-null	uint8
20	ggroup_2550	1886 non-null	uint8
21	ggroup_3010	1886 non-null	uint8
22	ggroup_3020	1886 non-null	uint8
23	ggroup_3030	1886 non-null	uint8
24	ggroup_3510	1886 non-null	uint8
25	ggroup_3520	1886 non-null	uint8
26	ggroup_4010	1886 non-null	uint8
27	ggroup_4020	1886 non-null	uint8
28	ggroup_4030	1886 non-null	uint8
29	ggroup_4510	1886 non-null	uint8
30	ggroup_4520	1886 non-null	uint8
31	ggroup_4530 ggroup_5010	1886 non-null	uint8
32	ggroup_5010	1886 non-null	uint8
33	ggroup_5020	1886 non-null	uint8
34	ggroup_5510	1886 non-null	uint8
35		1886 non-null	uint8
dtype	es: float64(1)), int64(3), obj	ect(8), uint8(24)
	ry usage: 235		

```
In [312]:
```

```
# delete useless columns
del df2['gvkey']
del df2['datadate']
del df2['fyear']
del df2['indfmt']
del df2['consol']
del df2['popsrc']
del df2['popsrc']
del df2['datafmt']
del df2['curcd']
del df2['curcd']
del df2['Name ']
del df2['RetYTD']
```

In [313]:

```
df2.info()
```

```
Int64Index: 1886 entries, 0 to 1885
Data columns (total 25 columns):
#
    Column
                  Non-Null Count
                                  Dtype
    _____
                  -----
                                  ____
 0
    Ticker
                  1886 non-null
                                  object
 1
    ggroup 1010
                  1886 non-null
                                  uint8
 2
    ggroup 1510 1886 non-null
                                  uint8
 3
    ggroup 2010
                  1886 non-null
                                  uint8
                  1886 non-null
 4
     ggroup 2020
                                  uint8
 5
                                  uint8
    ggroup_2030
                  1886 non-null
    ggroup 2510
                  1886 non-null
                                  uint8
 7
    ggroup 2520
                  1886 non-null
                                  uint8
     ggroup 2530
                  1886 non-null
 8
                                  uint8
 9
     ggroup 2550
                  1886 non-null
                                  uint.8
 10
    ggroup 3010
                  1886 non-null
                                  uint8
    ggroup 3020
                  1886 non-null
                                  uint8
 11
 12
     ggroup_3030
                  1886 non-null
                                  uint8
 13
    ggroup 3510
                  1886 non-null
                                  uint8
    ggroup 3520
                  1886 non-null
                                  uint8
    ggroup 4010
                  1886 non-null
                                  uint8
 15
                                  uint8
 16
    ggroup 4020
                  1886 non-null
 17
    ggroup 4030
                  1886 non-null
                                  uint8
 18
    ggroup_4510
                  1886 non-null
                                  uint8
 19
     ggroup 4520
                  1886 non-null
                                  uint8
 20
    ggroup 4530
                  1886 non-null
                                  uint.8
 21
    ggroup 5010
                  1886 non-null
                                  uint8
    ggroup 5020
                  1886 non-null
 22
                                  uint8
 23
    ggroup 5510
                  1886 non-null
                                  uint8
     ggroup 6010 1886 non-null
                                  uint8
dtypes: object(1), uint8(24)
memory usage: 73.7+ KB
```

<class 'pandas.core.frame.DataFrame'>

Save variables to new csv

```
In [314]:
```

```
# dataframe to csv
df2.to_csv("Industry.csv")
```

(5) Run OLS explanatory for 4 categories

a. Risk Regressions:

```
In [315]:
```

```
# import FF exposures csv
ff1=pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-assignmen
ts/main/FF-Exposures.csv')
```

In [316]:

```
# rename column
ff1.rename(columns={'TICKER':'Ticker'}, inplace=True)
```

In [317]:

```
# merge FF exposures and tickers retYTD
dfa = pd.merge(ff1, pt, how='outer', on='Ticker')
```

In [318]:

```
dfa.head()
```

Out[318]:

	Unnamed: 0	Ticker	mktrf	smb	hml	Name	RetYTD
0	0	Α	1.014152	-0.253674	-0.143608	Agilent Technologies	-0.2080
1	1	AA	1.984149	0.527862	1.924844	Alcoa Corp	0.4731
2	2	AAL	1.315550	0.612825	1.248123	American Airlines Gp	0.0579
3	3	AAN	1.640807	0.141355	0.841349	Aarons Holdings Company	-0.1327
4	4	AAON	0.516779	0.422130	-0.117068	Aaon Inc	-0.3456

In [319]:

```
# Run OLS regression
y = dfa["RetYTD"]
X = dfa[['mktrf' , 'smb' , 'hml']]
# Use statsmodels
X = sm.add_constant(X) # adding a constant
model = sm.OLS(y, X).fit()
model.summary()
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:1
17: FutureWarning: In a future version of pandas all arguments of co
ncat except for the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

Out[319]:

OLS Regression Results

De	p. Variabl	e:	RetYTD			uared:	0.095
	Mode	el:	C	LS /	Adj. R-sq	uared:	0.093
Method: Le			ast Squa	res	F-st	atistic:	65.51
Date: Thu,			28 Apr 20)22 P r	ob (F-sta	itistic):	2.76e-40
Time:			01:50	:54 I	_og-Like	79.945	
No. Observations:			1886			AIC:	-151.9
Df	Residual	s:	18	382		BIC:	-129.7
	Df Mode	el:		3			
Covar	iance Typ	e:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]	
const	-0.0981	0.011	-8.783	0.000	-0.120	-0.076	
mktrf	0.0082	0.009	0.957	0.339	-0.009	0.025	
smb	-0.0120	0.004	-2.736	0.006	-0.021	-0.003	

hml	0.1068	0.008	13.814	0.000	0.09	2 0.122
0	mnibus:	642.171	Durl	oin-Wats	on:	2.005
Prob(O	mnibus):	0.000	Jarque	e-Bera (JB):	3599.566
	Skew:	1.492		Prob(JB):	0.00
ŀ	Curtosis:	9.074		Cond.	No.	4.56

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Through the regression, we can find the R-squared is 0.095 and Adj.R-squared is 0.093, which is not good. The explanatory level is low. Also, mktrf and hml's coefficient are positive(0.0082 and 0.1068), which means the size and market exposure have posive effect on stock return. Finally, the negative coefficient(-0.0120) of smb means that size exposure has negative effect on stock return.

h Financial Characteristics

In [320]:

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:1 17: FutureWarning: In a future version of pandas all arguments of co ncat except for the argument 'objs' will be keyword-only x = pd.concat(x[::order], 1)

Out[320]:

OLS Regression Results

Dep. Variable:	RetYTD	R-squared:	0.085
Model:	OLS	Adj. R-squared:	0.080
Method:	Least Squares	F-statistic:	17.46
Date:	Thu, 28 Apr 2022	Prob (F-statistic):	9.87e-31
Time:	01:50:54	Log-Likelihood:	70.268
No. Observations:	1886	AIC:	-118.5
Df Residuals:	1875	BIC:	-57.57
Df Model:	10		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-0.1639	0.017	-9.731	0.000	-0.197	-0.131
book/price	0.1370	0.014	9.704	0.000	0.109	0.165
e/price	-0.1240	0.063	-1.965	0.050	-0.248	-0.000
sale/price	0.0130	0.004	3.251	0.001	0.005	0.021
ebit/price	0.1436	0.071	2.020	0.043	0.004	0.283
price/cashflow	-0.0001	0.000	-1.105	0.269	-0.000	9.49e-05
totaldebt/totalassets	0.0759	0.041	1.855	0.064	-0.004	0.156
totaldebt/equity	-0.0020	0.001	-1.976	0.048	-0.004	-1.49e-05
roa	0.1464	0.044	3.322	0.001	0.060	0.233
totaldebt/totalliabilies	-0.0155	0.033	-0.463	0.644	-0.081	0.050
totaldebt/capital	0.0277	0.026	1.078	0.281	-0.023	0.078

Omnibus:	649.740	Durbin-Watson:	1.948
Prob(Omnibus):	0.000	Jarque-Bera (JB):	4325.518
Skew:	1.454	Prob(JB):	0.00
Kurtosis:	9.826	Cond. No.	849.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Through the regression, we can find the R-squared is 0.085 and Adj.R-squared is 0.080, which is not good. The explanatory level is low. Also, (book/price, sale/price, ebit/price, totaldebt/ totalassets, roa, totaldebt/capital)'s coefficient are positive, which means they have posive effect on stock return. Finally, the negative coefficient of (e/price, price/cashflow, totaldebt/equity, totaldebt/totalliabilities) means that they have negative effect on stock return.

c. Industry Dummies:

```
In [321]:
```

```
# import fin ratios csv
ff3=pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-assignmen
ts/main/Industry.csv')

# merge FF exposures and tickers retYTD
dfc = pd.merge(ff3, pt, how='outer', on='Ticker')
```

In [322]:

```
dfc.head()
```

Out[322]:

	Unnamed: 0	Ticker	ggroup_1010	ggroup_1510	ggroup_2010	ggroup_2020	ggroup_2030	gς
0	0	AIR	0	0	1	0	0	
1	1	AAL	0	0	0	0	1	
2	2	PNW	0	0	0	0	0	
3	3	ABT	0	0	0	0	0	
4	4	AMD	0	0	0	0	0	

5 rows × 28 columns

In [323]:

```
# Run OLS regression
y = dfc["RetYTD"]
X = dfc.iloc[:,2:-2]

# Use statsmodels
X = sm.add_constant(X) # adding a constant
model = sm.OLS(y, X).fit()
model.summary()
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:1
17: FutureWarning: In a future version of pandas all arguments of co
ncat except for the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

Out[323]:

OLS Regression Results

Covariance Type:

Dep. Variable:	RetYTD	R-squared:	0.326
Model:	OLS	Adj. R-squared:	0.317
Method:	Least Squares	F-statistic:	39.07
Date:	Thu, 28 Apr 2022	Prob (F-statistic):	6.29e-141
Time:	01:50:54	Log-Likelihood:	357.63
No. Observations:	1886	AIC:	-667.3
Df Residuals:	1862	BIC:	-534.2
Df Model:	23		

nonrobust

[0.025 coef std err t P>|t| 0.975] -0.0525 0.006 -9.154 0.000 -0.064 -0.041 const 0.5675 0.023 24.634 0.000 0.522 0.613 ggroup_1010 0.1103 0.021 5.346 0.000 0.070 0.151 ggroup_1510 -2.473 0.013 -0.068 ggroup_2010 -0.0381 0.015 -0.008 0.0173 0.025 0.692 0.489 -0.032 0.066 ggroup_2020 -0.476 0.634 -0.077 ggroup_2030 -0.0150 0.031 0.047 0.039 -3.980 0.000 -0.232 -0.1555 -0.079 ggroup_2510 -0.1561 0.025 -6.242 0.000 -0.205 -0.107 ggroup_2520 0.684 -0.059 ggroup_2530 -0.0101 0.025 -0.407 0.039 -0.0987 0.022 -4.569 0.000 -0.141 -0.056 ggroup_2550 0.1308 0.047 2.770 0.006 0.038 0.223 ggroup_3010 0.002 0.033 0.0913 0.030 3.074 ggroup 3020 0.149 ggroup_3030 -0.1013 0.047 -2.145 0.032 -0.194 -0.009 -0.0140 0.018 -0.755 0.450 -0.050 0.022 ggroup_3510 -6.887 0.000 ggroup_3520 -0.1115 0.016 -0.143 -0.080 -2.275 0.023 -0.066 -0.0354 0.016 -0.005 ggroup_4010 0.001 -0.0700 0.021 -3.344 -0.111 -0.029 ggroup_4020 ggroup_4030 0.0563 0.025 2.215 0.027 0.006 0.106 -0.0562 0.019 -3.005 0.003 -0.093 -0.020 ggroup_4510 -5.412 0.000 -0.1196 0.022 -0.163 -0.076 ggroup_4520 0.027 -7.509 0.000 -0.253 ggroup_4530 -0.2003 -0.148 0.054 1.193 0.233 -0.041 ggroup_5010 0.0643 0.170 -0.0184 0.030 -0.606 0.545 -0.078 0.041 ggroup_5020 0.000 0.0932 0.026 3.584 0.042 0.144 ggroup_5510 0.018 0.934 0.350 -0.018 0.052 ggroup_6010 0.0167

```
        Omnibus:
        403.265
        Durbin-Watson:
        2.008

        Prob(Omnibus):
        0.000
        Jarque-Bera (JB):
        2314.656

        Skew:
        0.877
        Prob(JB):
        0.00

        Kurtosis:
        8.136
        Cond. No.
        2.02e+15
```

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.91e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Through the regression, we can find the R-squared is 0.326 and Adj.R-squared is 0.317, which is below 0.5 and not good. The explanatory level is low. Also,

(ggroup_1010,1510,2020,3010,3020,4030,5010,5510,6010)'s coefficient are positive, which means they have posive effect on stock return. Finally, the negative coefficient of the rest ggroups mean that they have negative effect on stock return.

d. Combined Regressions:

In [324]:

```
# combine datasets and tickers
f1 = pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-assignme
nts/main/FF-Exposures.csv')
f1.rename(columns={'TICKER':'Ticker'}, inplace=True)
f2 =pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-assignmen
ts/main/Fin-Ratios.csv')
f3 =pd.read_csv('https://raw.githubusercontent.com/ChasteloveCNN/ba765-assignmen
ts/main/Industry.csv')

dff1 = pd.merge(f1, f2, how='outer', on='Ticker')
dff2 = pd.merge(dff1, f3, how='outer', on='Ticker')
dfff = pd.merge(dff2, pt, how='outer', on='Ticker')
```

In [325]:

dfff.head()

Out[325]:

	Unnamed: 0_x	Ticker	mktrf	smb	hml	Unnamed: 0_y	book/price	e/price	sale/p
0	0	Α	1.014152	-0.253674	-0.143608	1420	0.111695	0.025079	0.130
1	1	AA	1.984149	0.527862	1.924844	1020	0.425940	0.039111	1.10
2	2	AAL	1.315550	0.612825	1.248123	1	-0.630953	-0.171320	2.56
3	3	AAN	1.640807	0.141355	0.841349	1182	0.940491	0.143967	2.410
4	4	AAON	0.516779	0.422130	-0.117068	803	0.111730	0.014083	0.12

5 rows × 43 columns

In [326]:

```
dfff.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1886 entries, 0 to 1885
Data columns (total 43 columns):

#	Column		Null Count	Dtype
0	Unnamed: 0 x	1886	non-null	 int64
1	Ticker		non-null	
2	mktrf		non-null	_
3	smb		non-null	
4	hml		non-null	
5	Unnamed: 0 y		non-null	
6	book/price		non-null	float64
7	e/price		non-null	
8	sale/price		non-null	
9	ebit/price		non-null	
10	price/cashflow		non-null	
11	totaldebt/totalassets		non-null	
12	totaldebt/equity		non-null	
13	roa		non-null	
14	totaldebt/totalliabilies		non-null	
15	totaldebt/capital		non-null	
16	Unnamed: 0	1886	non-null	int64
17	ggroup_1010	1886	non-null	int64
18	ggroup 1510	1886	non-null	int64
19	ggroup 2010	1886	non-null	int64
20	ggroup_2020	1886	non-null	int64
21	ggroup_2030	1886	non-null	int64
22	ggroup_2510	1886	non-null	int64
23	ggroup_2520	1886	non-null	int64
24	ggroup_2530	1886	non-null	int64
25	ggroup_2550	1886	non-null	int64
26	ggroup_3010	1886	non-null	int64
27	ggroup_3020	1886	non-null	int64
28	ggroup_3030	1886	non-null	int64
29	ggroup_3510	1886	non-null	int64
30	ggroup_3520	1886	non-null	int64
31	ggroup_4010	1886	non-null	int64
32	ggroup_4020	1886	non-null	int64
33	ggroup_4030	1886	non-null	int64
34	ggroup_4510	1886	non-null	int64
35	ggroup_4520	1886	non-null	int64
36	ggroup_4530	1886	non-null	int64
37	ggroup_5010	1886	non-null	int64
38	ggroup_5020	1886	non-null	int64
39	ggroup_5510	1886	non-null	int64
40	ggroup_6010	1886	non-null	int64
41	Name		non-null	object
42	RetYTD		non-null	float64
dtype	es: float64(14), int64(27),	, obje	ect(2)	

dtypes: float64(14), int64(27), object(2)

memory usage: 648.3+ KB

In [327]:

```
# Run OLS regression
y = dfff["RetYTD"]
X = dfff[['mktrf','smb','hml','book/price','e/price','sale/price','ebit/price',
'price/cashflow','totaldebt/totalassets','totaldebt/equity',
          'roa', 'totaldebt/totalliabilies', 'totaldebt/capital', 'ggroup 1010', 'gg
roup_1510',
          ggroup 2010', ggroup 2020', ggroup 2030', ggroup 2510', ggroup 2520',
'ggroup_2530','ggroup_2550',
          'ggroup 3010', 'ggroup 3020', 'ggroup 3030', 'ggroup 3510', 'ggroup 3520',
          'ggroup 4010', 'ggroup 4020', 'ggroup 4030', 'ggroup 4510', 'ggroup 4520',
'ggroup 4530', 'ggroup 5010',
          'ggroup 5020','ggroup 5510','ggroup 6010']]
# Use statsmodels
X = sm.add constant(X) # adding a constant
model = sm.OLS(y, X).fit()
model.summary()
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:1
17: FutureWarning: In a future version of pandas all arguments of co
ncat except for the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

Out[327]:

OLS Regression Results

Dep. Variable:	RetYTD	R-squared:	0.382
Model:	OLS	Adj. R-squared:	0.370
Method:	Least Squares	F-statistic:	31.71
Date:	Thu, 28 Apr 2022	Prob (F-statistic):	5.93e-165
Time:	01:50:54	Log-Likelihood:	439.74
No. Observations:	1886	AIC:	-805.5
Df Residuals:	1849	BIC:	-600.4
Df Model:	36		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-0.1091	0.019	-5.612	0.000	-0.147	-0.071
mktrf	-0.0161	0.008	-1.974	0.049	-0.032	-0.000
smb	-0.0174	0.004	-4.135	0.000	-0.026	-0.009
hml	0.0681	0.009	7.945	0.000	0.051	0.085
book/price	0.0684	0.014	4.956	0.000	0.041	0.095
e/price	-0.0326	0.053	-0.610	0.542	-0.137	0.072
sale/price	0.0026	0.004	0.679	0.497	-0.005	0.010
ebit/price	0.0841	0.062	1.353	0.176	-0.038	0.206
price/cashflow	-4.624e-05	9.36e-05	-0.494	0.621	-0.000	0.000
totaldebt/totalassets	-0.0429	0.039	-1.106	0.269	-0.119	0.033
totaldebt/equity	-0.0001	0.001	-0.123	0.902	-0.002	0.002
roa	0.0753	0.042	1.808	0.071	-0.006	0.157
totaldebt/totalliabilies	0.0193	0.035	0.555	0.579	-0.049	0.088
totaldebt/capital	0.0522	0.022	2.422	0.016	0.010	0.095
ggroup_1010	0.5254	0.025	21.305	0.000	0.477	0.574
ggroup_1510	0.0894	0.020	4.466	0.000	0.050	0.129
ggroup_2010	-0.0372	0.015	-2.474	0.013	-0.067	-0.008
ggroup_2020	0.0144	0.024	0.599	0.549	-0.033	0.062
ggroup_2030	-0.0403	0.031	-1.321	0.187	-0.100	0.020
ggroup_2510	-0.1685	0.038	-4.403	0.000	-0.243	-0.093
ggroup_2520	-0.1633	0.024	-6.707	0.000	-0.211	-0.116
ggroup_2530	-0.0064	0.025	-0.252	0.801	-0.056	0.043
ggroup_2550	-0.0993	0.022	-4.550	0.000	-0.142	-0.057
ggroup_3010	0.1097	0.048	2.279	0.023	0.015	0.204
ggroup_3020	0.0805	0.029	2.787	0.005	0.024	0.137

ggroup_3030	-0.1006	0.046	-2.201	0.028	-0.190	-0.011
ggroup_3510	0.0391	0.018	2.124	0.034	0.003	0.075
ggroup_3520	0.0012	0.019	0.062	0.951	-0.036	0.039
ggroup_4010	-0.1080	0.020	-5.345	0.000	-0.148	-0.068
ggroup_4020	-0.1056	0.021	-4.947	0.000	-0.148	-0.064
ggroup_4030	-0.0136	0.029	-0.475	0.635	-0.070	0.043
ggroup_4510	0.0059	0.019	0.309	0.757	-0.032	0.043
ggroup_4520	-0.0979	0.022	-4.541	0.000	-0.140	-0.056
ggroup_4530	-0.1510	0.026	-5.710	0.000	-0.203	-0.099
ggroup_5010	0.0317	0.052	0.605	0.545	-0.071	0.134
ggroup_5020	0.0036	0.029	0.122	0.903	-0.054	0.061
ggroup_5510	0.0719	0.026	2.754	0.006	0.021	0.123
ggroup_6010	0.0100	0.019	0.535	0.593	-0.027	0.047

Omnibus: 451.293 **Durbin-Watson:** 2.024 **Jarque-Bera (JB):** 2689.708 Prob(Omnibus): 0.000 0.986 0.00 Skew: Prob(JB): 8.508

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 2.34e+17

[2] The smallest eigenvalue is 9.61e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

We can find the R-squared is 0.382 and Adj.R-squared is 0.370, which are not good and below 0.5. So the explanatory power is low.