Introduction To Algorithms CS430

Spring 2014 HomeWork 10 Sample Problem–No need to turn in

- 1. Problem 34.1-1 **Solution** If LONGESTPATHLENGTH could be solved in polynomial time, then we could solve the decision problem LONGESTPATH in polynomial time for instance < G, u, v, k > by running LONGESTPATHLENGTH on < G, u, v > and returning true if and only if LONGESTPATHLENGTH returned a value $\geq k$. If $LONGESTPATH \in P$, then we identify the length of the longest path by essetially doing a sequential search (binary search would be faster, though still in P) over all possible path lengths.
- 2. 34.1-3 **Solution** Clearly, an ASCII text file can be represented as a string of bits; that is how one could save some bits by writing the numbers in binary. At any rate, the number of words of memory required for the adjacency-list representation will be O(|V| + |E|). Each vertex number will be between 1 and |V|, and so will require $\Theta(lg|V|)$ bits to store. So, the total number of bits needed will be O((|V| + |E|)lg|V|) To show that these representations are polynomially related, one can how that one representation can be transform into other representation in a polynomial-time.

To Convert the matrix to the adjacency list:

```
Repeat for every row

Scan through the row from left-to-right.

Add the column number to the list
```

To Convert the adjacency list to matrix:

```
Start with a matrix M of all 0's.
Let i be a counter of what line you are at. In that line:
    if hit the number j
        then put a 1 at M[i, j]
```

3. 34.1-6 **Solution**

(a) Since L_1 and L_2 are both in P, there exists machines M_1 and M_2 which decides L_1 and L_2 , respectively. Design a machine M_3 which takes w as input as the following:

 $M_3(w)$:

- 1 Run M_1 with input w. If M_1 accepts w, then accept.
- 2 Run M_2 with input w. If M_2 accepts w, then accept.

It is clear that M_3 accepts w if and only if M_1 or M_2 accepts w and M_3 runs in polynomial time.

(b) Since L_1 and L_2 are both in P, there exists machines M_1 and M_2 which decides L_1 and L_2 , respectively. Design a machine M_3 which takes w as input as the following:

 $M_3(w)$:

1 Run M_1 with input w. If M_1 accepts w, then run M_2 on w, else reject. 2 If M_2 also accepts w, then accept, else reject. It is clear that M_3 accepts w if and only if both M_1 or M_2 accepts w and M_3 runs in polynomial time.

- (c) Since L_1 and L_2 are both in P, there exists machines M_1 and M_2 which decides L_1 and L_2 , respectively. Design a machine M_3 which takes $w=a_1a_2a_n$ with each $a_i\in\sigma$ as input, as the following: $M_3(w):1$ For i=0,1,2,...,n
 - 2 Run M_1 with input $w_1 = a_1 a_2 ... a_i$ and run M_1 with input $w_2 = a_{i+1} a_{i+2} ... a_n$. If both M_1 and M_2 accepts w, then accept.
 - 3 If none of the iterations in Stage 2 accept, then reject.

It is clear that M_3 accepts w if and only if $w=w_1w_2$, where M_1 accepts w_1 and M_2 accepts w_2 . Also, M_3 runs in polynomial time.

- (d) Since L_1 is in P, there exists machines M_1 that decides L_1 . Design a machine M_2 which takes w as input as the following: $M_2(w)$:
 - 1 Run M_1 with input w. If M_1 accepts w, then reject, else accept.

It is clear that M_2 accepts w if and only if M_1 rejects w, and M_2 runs in polynomial time.

(e) Since L_1 is in P, there exists machines M_1 that decides L_1 . By using dynamic programming, a machine M_2 that decides L_1 in polynomial time, which takes $w = w_1 w_2 ... w_n$ as input, can be constructed as follows:

```
M_2(w): 1 \text{ if } w = \epsilon, \text{ then accept} 2 for i=1 to n 3 for j=1 to n 4 A[i,j]=0 5 for i=1 to n 6 set A[i,j]=1 if w_i \in L_1 7 for l=2 to n 8 for i=1 to nl+1 9 j=i+l1 10 set A[i,j]=1 if w_i...w_jL_1 11 for k=i to j1 12 set A[i,j]=1 if A[i,k]=1 and A[k,j]=1 13 if A[1,n]=1 then accept 14 else reject
```

Since each step takes polynomial time and there are $O(n^3)$ steps in it, it takes polynomial time for M 2 to decide L₁.

4. Show that \leq_P relation is a transitive relation on problems. That is, show if $P_1 \leq_P P_2$ and $P_2 \leq_P P_3$, then $P_1 \leq_P P_3$. Solution Let $P_1 \leq_P P_2$ and $P_1 \leq_P P_2$, i.e.

```
there exist polynomial-time computable reduction functions f_1:\{0,1\}^*\{0,1\}^* and f_2:\{0,1\}^*\{0,1\}^* such that x\in P_1\Leftrightarrow f_1(x)\in P_2 x\in P_2\Leftrightarrow f_2(x)\in p_3 Define f_3=f_1\circ f_2, then L 3 is a polynomial-time computable function: \{0,1\}^*\{0,1\}^* and x\in P_1\Leftrightarrow f_3(x)\in P_3
```

holds. Hence $P_1 \leq_P P_3$.