Nome: João Vitor Hartung Toppa

RA: 213140

LISTA 6

1)

Inicialmente, precisamos criar o diagrama de dispersão dado pelo enunciado. Pelo programa Wolfram Mathematica, conseguimos inserir os seguintes comandos:

```
xx = {1, 2, 3, 4, 5, 6, 7, 8};
yy = {0.5, 0.6, 0.9, 0.8, 1.2, 1.5, 1.7, 2.0};
data = Transpose@{xx, yy};
ListPlot[data]
```

E nos é gerado o gráfico:

a)

Para realizarmos o M.M.Q. para ajuste linear de curvas, precisamos encontrar α tal que $y_i = \alpha_1 x_{i1} + \alpha_2 x_{i2} + \cdots + \alpha_p x_{ip}$. Como o a exige ajuste linear $(y = \alpha_1 x + \alpha_0)$, precisamos encontrar o ajuste de valores mínimos para a matriz gerada por α .

Inicialmente, temos que:

 $x_{i1} = x, x_{i2} = 1$. Portanto, podemos criar uma tabela que descreve o comportamento de x_{i1} e x_{i2} para nosso scatterplot.

x_{i1}	x_{i2}	\overline{f}		
1	1	0.5		
2	1	0.6		
3	1	0.9		
4	1	0.8		
5	1	1.2		
6	1	1.5		
7	1	1.7		
8	1	2.0		

Table 1: Tabela de dados para ajuste linear

Com a tabela montada, podemos, então, montar nossa equação para resolução do nosso ajuste linear.

$$\begin{bmatrix} \langle \bar{x}_{i1}, \bar{x}_{i1} \rangle & \langle \bar{x}_{i1}, \bar{x}_{i2} \rangle \\ \langle \bar{x}_{i2}, \bar{x}_{i1} \rangle & \langle \bar{x}_{i2}, \bar{x}_{i2} \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \langle \bar{f}, \bar{x}_{i1} \rangle \\ \langle \bar{f}, \bar{x}_{i2} \rangle \end{bmatrix}$$

Temos:

$$\begin{split} \langle \bar{x}_{i1}, \bar{x}_{i1} \rangle &= 204 \\ \langle \bar{x}_{i1}, \bar{x}_{i2} \rangle &= 36 \\ \langle \bar{x}_{i2}, \bar{x}_{i2} \rangle &= 8 \\ \langle \bar{x}_{i2}, \bar{x}_{i1} \rangle &= 36 \\ \langle \bar{f}, \bar{x}_{i1} \rangle &= 50.5 \\ \langle \bar{f}, \bar{x}_{i2} \rangle &= 9.2 \end{split}$$

$$\begin{bmatrix} 204 & 36 \\ 36 & 8 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 50.5 \\ 9.2 \end{bmatrix}$$

A solução para α_1 e α_2 é dada por:

$$\alpha = \begin{bmatrix} 0.217 \\ 0.175 \end{bmatrix}$$

E, portanto:

$$f(x) = 0.217 \cdot x_1 + 0.175$$

b)

A questão b exige ajuste quadrático $(y = \alpha_2 x^2 + \alpha_1 x + \alpha_0)$, precisamos encontrar o ajuste de valores mínimos para a matriz gerada para α . A matriz de produtos internos para uma função quadrática é dada por:

$$\begin{bmatrix} \langle \bar{x}_{i1}^2, \bar{x}_{i1}^2 \rangle & \langle \bar{x}_{i1}^2, \bar{x}_{i2} \rangle & \langle \bar{x}_{i1}^2, 1 \rangle \\ \langle \bar{x}_{i2}, \bar{x}_{i1}^2 \rangle & \langle \bar{x}_{i2}, \bar{x}_{i2} \rangle & \langle \bar{x}_{i2}, 1 \rangle \\ \langle 1, \bar{x}_{i1}^2 \rangle & \langle 1, \bar{x}_{i2} \rangle & \langle 1, 1 \rangle \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} \langle \bar{f}, \bar{x}_{i1}^2 \rangle \\ \langle \bar{f}, \bar{x}_{i2} \rangle \\ \langle \bar{f}, 1 \rangle \end{bmatrix}$$

Temos:

$$\begin{split} &\langle \bar{x}_{i1}^2, \bar{x}_{i1}^2 \rangle = 8772 \\ &\langle \bar{x}_{i1}^2, \bar{x}_{i2} \rangle = 1296 \\ &\langle \bar{x}_{i1}^2, 1 \rangle = 204 \\ &\langle \bar{x}_{i2}, 1 \rangle = 36 \\ &\langle \bar{x}_{i2}, \bar{x}_{i2} \rangle = 204 \\ &\langle 1, 1 \rangle = 8 \\ &\langle \bar{f}, \bar{x}_{i1}^2 \rangle = 319.1 \\ &\langle \bar{f}, \bar{x}_{i2} \rangle = 50.5 \\ &\langle \bar{f}, 1 \rangle = 9.2 \end{split}$$

E, portanto:

$$\begin{bmatrix} 8772 & 1296 & 204 \\ 1296 & 204 & 36 \\ 204 & 36 & 8 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 319.1 \\ 50.5 \\ 9.2 \end{bmatrix}$$

A solução para $\alpha_1,\,\alpha_2$ e α_3 é dada por:

$$\alpha = \begin{bmatrix} 0.015 \\ 0.077 \\ 0.407 \end{bmatrix}$$

$$f(x) = 0.015 \cdot x^2 + 0.077 \cdot x + 0.407$$

Por último, precisamos calcular o resquício:

Table 2: Valores do ajuste quadrático e diferenças em relação aos valores observados

\overline{x}	1	2	3	4	5	6	7	8
$\gamma(x)$	0.499	0.621	0.773	0.955	1.167	1.409	1.681	1.983
$f(x) - \gamma(x)$	0.001	0.020	0.127	0.155	0.032	0.100	0.019	0.017

Somatório das diferenças quadráticas: $\sum (f(x) - \gamma(x)) = 0.464$