Exámenes de "Programación funcional con Haskell" (2009-2018)

José A. Alonso (coord.) y

Gonzalo Aranda, María J. Hidalgo, Ignacio Pérez, Luis Valencia

Antonia M. Chávez, Andrés Cordón, Francisco J. Martín José F. Quesada,

Miguel A. Martínez, Agustín Riscos y

Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Sevilla, 30 de junio de 2018

Esta obra está bajo una licencia Reconocimiento-NoComercial-Compartirlgual 2.5 Spain de Creative Commons.

Se permite:

- copiar, distribuir y comunicar públicamente la obra
- hacer obras derivadas

Bajo las condiciones siguientes:

Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor.

No comercial. No puede utilizar esta obra para fines comerciales.

Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.

- Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.
- Alguna de estas condiciones puede no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Esto es un resumen del texto legal (la licencia completa). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2. 5/es/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Índice general

ln	Introducción 5		
1	Exámenes del curso 2009–10 1.1 Exámenes del grupo 1 (José A. Alonso y Gonzalo Aranda) 1.2 Exámenes del grupo 3 (María J. Hidalgo)		
2	Exámenes del curso 2010–11 2.1 Exámenes del grupo 3 (María J. Hidalgo)		
3	Exámenes del curso 2011–12 3.1 Exámenes del grupo 1 (José A. Alonso y Agustín Riscos)	. 141 . 173	
4	Exámenes del curso 2012–13 4.1 Exámenes del grupo 1 (Antonia M. Chávez) 4.2 Exámenes del grupo 2 (José A. Alonso y Miguel A. Martínez) 4.3 Exámenes del grupo 3 (María J. Hidalgo) 4.4 Exámenes del grupo 4 (Andrés Cordón e Ignacio Pérez)	. 229 . 263	
5	Exámenes del curso 2013–14 5.1 Exámenes del grupo 1 (María J. Hidalgo) 5.2 Exámenes del grupo 2 (Antonia M. Chávez) 5.3 Exámenes del grupo 3 (José A. Alonso y Luis Valencia) 5.4 Exámenes del grupo 4 (Francisco J. Martín) 5.5 Exámenes del grupo 5 (Andrés Cordón y Miguel A. Martínez)	. 329 . 344 . 384	
6	Exámenes del curso 2014–15 6.1 Exámenes del grupo 1 (Francisco J. Martín)		

4 Índice general

	6.3 Exámenes del grupo 3 (Andrés Cordón)6.4 Exámenes del grupo 4 (María J. Hidalgo)6.5 Exámenes del grupo 5 (José A. Alonso y Luis Valencia)	477	
7	Exámenes del curso 2015–16 7.1 Exámenes del grupo 1 (María J. Hidalgo)	582 603 622	
8	Exámenes del curso 2016–17 8.1 Exámenes del grupo 1 (María J. Hidalgo)	734 748 764	
9	Exámenes del curso 2017–18 9.1 Exámenes del grupo 1 (María J. Hidalgo) 9.2 Exámenes del grupo 2 (Antonia M. Chávez) 9.3 Exámenes del grupo 3 (Francisco J. Martín) 9.4 Exámenes del grupo 4 (José A. Alonso) 9.5 Exámenes del grupo 5 (Andrés Cordón y Miguel A. Martínez)	876 891 908	
A	Resumen de funciones predefinidas de Haskell A.1 Resumen de funciones sobre TAD en Haskell	973 975	
В	Método de Pólya para la resolución de problemas B.1 Método de Pólya para la resolución de problemas matemáticos B.2 Método de Pólya para resolver problemas de programación		
Bi	Bibliografía		

Introducción

Desde el inicio (en el curso 2009–10) del Grado en Matemática de la Universidad de Sevilla se estudia, en la asignatura de Informática de primero, una introducción a la programación funcional con Haskell.

Durante este tiempo he ido publicando materiales para la asignatura que he recopilado en dos libros:

- Temas de programación funcional ¹
- Piensa en Haskell (Ejercicios de programación funcional con Haskell) ²

Este libro completa los anteriores presentando una recopilación de los exámenes de la asignatura durante estos años.

Los exámenes se realizaron en el aula de informática y su duración fue de 2 horas. La materia de cada examen es la impartida desde el comienzo del curso (generalmente, el 1 de octubre) hasta la fecha del examen.

En algunos ejercicios se usan tipos abstractos de datos estudiados en la asignatura tal como se explica en [1]. Sus implementaciones se encuentra en la página de los códigos³

El libro consta de 9 capítulos correspondientes a los 9 cursos en los que se ha impartido la asignatura. En cada capítulo hay una sección, por cada uno de los grupos de la asignatura, y una subsección por cada uno de los exámenes del grupo.

Además contiene dos apéndices. Uno con el método de Polya de resolución de problemas (sobre el que se hace énfasis durante todo el curso) y el otro con un resumen de las funciones de Haskell de uso más frecuente.

Los ejercicios de cada examen han sido propuestos por los profesores de su grupo (cuyos nombres aparecen en el título de la sección). Sin embargo, los he modificado para unificar el estilo de su presentación.

Los códigos del libro están disponibles en Github https://github.com/jaalonso/Examenes de PF con Haskell.

https://www.cs.us.es/~jalonso/cursos/i1m/temas/2015-16-IM-temas-PF.pdf

http://www.cs.us.es/~jalonso/publicaciones/Piensa_en_Haskell.pdf

³https://github.com/jaalonso/I1M

6 Índice general

José A. Alonso Sevilla, 21 de junio de 2018

1

Exámenes del curso 2009-10

1.1. Exámenes del grupo 1 (José A. Alonso y Gonzalo Aranda)

1.1.1. Examen 1 (30 de noviembre de 2009)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 1º examen de evaluación continua (30 de noviembre de 2009)
__ ______
-- Ejercicio 1. Definir, por recursión ,la función
    sumaFactR :: Int -> Int
-- tal que (sumaFactR n) es la suma de los factoriales de los números
-- desde 0 hasta n. Por ejemplo,
    sumaFactR 3 == 10
sumaFactR :: Int -> Int
sumaFactR 0 = 1
sumaFactR (n+1) = factorial (n+1) + sumaFactR n
-- (factorial n) es el factorial de n. Por ejemplo,
    factorial 4 == 24
factorial n = product [1..n]
-- Ejercicio 2. Definir, por comprensión, la función
   sumaFactC :: Int -> Int
```

```
-- tal que (sumaFactC n) es la suma de los factoriales de los números
-- desde 0 hasta n. Por ejemplo,
     sumaFactC 3 == 10
sumaFactC :: Int -> Int
sumaFactC n = sum [factorial x | x <- [0..n]]
__ _______
-- Ejercicio 3. Definir, por recursión, la función
     copia :: [a] -> Int -> [a]
-- tal que (copia xs n) es la lista obtenida copiando n veces la lista
-- xs. Por ejemplo,
    copia "abc" 3 == "abcabcabc"
copia :: [a] -> Int -> [a]
copia xs 0 = []
copia xs n = xs ++ copia xs (n-1)
-- Ejercicio 4. Definir, por recursión, la función
     incidenciasR :: Eq a => a -> [a] -> Int
-- tal que (incidenciasR x ys) es el número de veces que aparece el
-- elemento x en la lista ys. Por ejemplo,
     incidenciasR 3 [7,3,5,3] == 2
incidenciasR :: Eq a => a -> [a] -> Int
incidenciasR _ []
incidenciasR x (y:ys) | x == y = 1 + incidenciasR x ys
                    | otherwise = incidenciasR x ys
      ------
-- Ejercicio 5. Definir, por comprensión, la función
     incidenciasC :: Eq a => a -> [a] -> Int
-- tal que (incidenciasC x ys) es el número de veces que aparece el
-- elemento x en la lista ys. Por ejemplo,
     incidenciasC 3 [7,3,5,3] == 2
incidenciasC :: Eq a => a -> [a] -> Int
incidenciasC x ys = length [y | y <- ys, y == x]
```

1.1.2. Examen 2 (12 de febrero de 2010)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 2º examen de evaluación continua (12 de febrero de 2010)
import Test.QuickCheck
-- Ejercicio 1.1. Definir, por recursión, la función
     diferenciasR :: Num a => [a] -> [a]
-- tal que (diferenciasR xs) es la lista de las diferencias entre los
-- elementos consecutivos de xs. Por ejemplo,
     diferenciasR [5,3,8,7] == [2,-5,1]
diferenciasR :: Num a => [a] -> [a]
diferenciasR [] = []
diferenciasR[_] = []
diferenciasR (x1:x2:xs) = (x1-x2) : diferenciasR (x2:xs)
-- La definición anterior puede simplificarse
diferenciasR' :: Num a => [a] -> [a]
diferenciasR' (x1:x2:xs) = (x1-x2) : diferenciasR' (x2:xs)
diferenciasR' _
                      = []
-- Ejercicio 1.2. Definir, por comprensión, la función
     diferenciasC :: Num a => [a] -> [a]
-- tal que (diferenciasC xs) es la lista de las diferencias entre los
-- elementos consecutivos de xs. Por ejemplo,
     diferenciasC [5,3,8,7] == [2,-5,1]
diferenciasC :: Num a => [a] -> [a]
diferenciasC xs = [a-b \mid (a,b) < -zip xs (tail xs)]
-- Ejercicio 2. Definir la función
     producto :: [[a]] -> [[a]]
-- tal que (producto xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo,
     ghci> producto [[1,3],[2,5]]
```

```
[[1,2],[1,5],[3,2],[3,5]]
     ghci> producto [[1,3],[2,5],[6,4]]
- -
     [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
     ghci> producto [[1,3,5],[2,4]]
     [[1,2],[1,4],[3,2],[3,4],[5,2],[5,4]]
     ghci> producto []
     [[]]
producto :: [[a]] -> [[a]]
producto []
                = [[]]
producto (xs:xss) = [x:ys | x <- xs, ys <- producto xss]</pre>
__ ______
-- Ejercicio 3. Definir el predicado
     comprueba :: [[Int]] -> Bool
-- tal que tal que (comprueba xss) se verifica si cada elemento de la
-- lista de listas xss contiene algún número par. Por ejemplo,
     comprueba [[1,2],[3,4,5],[8]] == True
     comprueba [[1,2],[3,5]]
                                   == False
-- la definición (por comprensión):
comprueba :: [[Int]] -> Bool
comprueba xss = and [or [even x | x <- xs] | xs <- xss]
-- 2ª definición (por recursión):
compruebaR :: [[Int]] -> Bool
compruebaR [] = True
compruebaR (xs:xss) = tienePar xs && compruebaR xss
-- (tienePar xs) se verifica si xs contiene algún número par.
tienePar :: [Int] -> Bool
tienePar [] = False
tienePar (x:xs) = even x || tienePar xs
-- 3º definición (por plegado):
compruebaP :: [[Int]] -> Bool
compruebaP = foldr ((&&) . tienePar) True
-- (tieneParP xs) se verifica si xs contiene algún número par.
tieneParP :: [Int] -> Bool
tieneParP = foldr ((||) . even) False
```

```
-- Ejercicio 4. Definir la función
     pertenece :: Ord a => a -> [a] -> Bool
-- tal que (pertenece x ys) se verifica si x pertenece a la lista
-- ordenada creciente, finita o infinita, ys. Por ejemplo,
     pertenece 22 [1,3,22,34] == True
     pertenece 22 [1,3,34] == False
     pertenece 23 [1,3..]
                            == True
                           == False
     pertenece 22 [1,3..]
pertenece :: Ord a => a -> [a] -> Bool
pertenece _ [] = False
pertenece x (y:ys) | x > y = pertenece x ys
                 | x == y = True
                 | otherwise = False
-- La definición de pertenece puede simplificarse
pertenece' :: Ord a => a -> [a] -> Bool
pertenece' x ys = x 'elem' takeWhile (<= x) ys</pre>
1.1.3. Examen 3 (15 de marzo de 2010)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 3º examen de evaluación continua (15 de marzo de 2010)
import Test.QuickCheck
-- Ejercicio 1.1.1. Definir, por recursión, la función
     pares :: [Int] -> [Int]
-- tal que (pares xs) es la lista de los elementos pares de xs. Por
-- ejemplo,
     pares [2,5,7,4,6,8,9] == [2,4,6,8]
pares :: [Int] -> [Int]
pares [] = []
pares (x:xs) | even x = x : pares xs
            | otherwise = pares xs
```

```
______
-- Ejercicio 1.1.2. Definir, por recursión, la función
     impares :: [Int] -> [Int]
-- tal que (impares xs) es la lista de los elementos impares de xs. Por
-- ejemplo,
     impares [2,5,7,4,6,8,9] == [5,7,9]
impares :: [Int] -> [Int]
impares [] = []
impares (x:xs) \mid odd x = x : impares xs
            | otherwise = impares xs
-- Ejercicio 1.1.3. Definir, por recursión, la función
     suma :: [Int] -> Int
-- tal que (suma xs) es la suma de los elementos de xs. Por ejemplo,
     suma [2,5,7,4,6,8,9] == 41
  ______
suma :: [Int] -> Int
suma []
         = 0
suma (x:xs) = x + suma xs
-- Ejercicio 1.2. Comprobar con QuickCheck que la suma de la suma de
-- (pares xs) y la suma de (impares xs) es igual que la suma de xs.
-- La propiedad es
prop pares :: [Int] -> Bool
prop pares xs =
   suma (pares xs) + suma (impares xs) == suma xs
-- La comprobación es
     ghci> quickCheck prop_pares
     OK, passed 100 tests.
-- Ejercicio 1.3 Demostrar por inducción que que la suma de la suma de
-- (pares xs) y la suma de (impares xs) es igual que la suma de xs.
```

```
{ -
Demostración:
La propiedad que hay que demostrar es
    suma (pares xs) + suma (impares xs) = suma xs
Caso base: Hay que demostrar que
    suma (pares []) + suma (impares []) = suma []
En efecto,
    suma (pares []) + suma (impares [])
    = suma [] + suma []
                                            [por pares.1 e impares.1]
    = 0 + 0
                                            [por suma.1]
    = 0
                                            [por aritmética]
    = suma []
                                            [por suma.1]
Paso de inducción: Se supone que la hipótesis de inducción
    suma (pares xs) + suma (impares xs) = suma xs
Hay que demostrar que
    suma (pares (x:xs)) + suma (impares (x:xs)) = suma (x:xs)
Lo demostraremos distinguiendo dos casos
Caso 1: Supongamos que x es par. Entonces,
     suma (pares (x:xs)) + suma (impares (x:xs))
    = suma (x:pares xs) + suma (impares xs)
                                                    [por pares.2, impares.3]
    = x + suma (pares xs) + suma (impares xs)
                                                    [por suma.2]
    = x + suma xs
                                                    [por hip. de inducción]
    = suma (x:xs)
                                                    [por suma.2]
Caso 1: Supongamos que x es impar. Entonces,
     suma (pares (x:xs)) + suma (impares (x:xs))
    = suma (pares xs) + suma (x:impares xs)
                                                    [por pares.3, impares.2]
    = suma (pares xs) + x + suma (impares xs)
                                                    [por suma.2]
    = x + suma xs
                                                    [por hip. de inducción]
    = suma (x:xs)
                                                    [por suma.2]
-}
-- Ejercicio 2.1.1. Definir, por recursión, la función
      duplica :: [a] -> [a]
-- tal que (duplica xs) es la lista obtenida duplicando los elementos de
-- xs. Por ejemplo,
     duplica [7,2,5] == [7,7,2,2,5,5]
```

```
duplica :: [a] -> [a]
duplica [] = []
duplica (x:xs) = x:x:duplica xs
__ ______
-- Ejercicio 2.1.2. Definir, por recursión, la función
    longitud :: [a] -> Int
-- tal que (longitud xs) es el número de elementos de xs. Por ejemplo,
-- longitud [7,2,5] == 3
longitud :: [a] -> Int
longitud [] = 0
longitud (x:xs) = 1 + longitud xs
__ ______
-- Ejercicio 2.2. Comprobar con QuickCheck que (longitud (duplica xs))
-- es el doble de (longitud xs), donde xs es una lista de números
-- enteros.
__ _______
-- La propiedad es
prop duplica :: [Int] -> Bool
prop duplica xs =
   longitud (duplica xs) == 2 * longitud xs
-- La comprobación es
    ghci> quickCheck prop duplica
    OK, passed 100 tests.
-- Ejercicio 2.3. Demostrar por inducción que la longitud de
-- (duplica xs) es el doble de la longitud de xs.
__ ______
{ -
Demostración: Hay que demostrar que
   longitud (duplica xs) = 2 * longitud xs
Lo haremos por inducción en xs.
Caso base: Hay que demostrar que
   longitud (duplica []) = 2 * longitud []
```

```
En efecto
    longitud (duplica xs)
    = longitud []
                              [por duplica.1]
    = 0
                              [por longitud.1]
    = 2 * 0
                              [por aritmética]
    = longitud []
                             [por longitud.1]
 Paso de inducción: Se supone la hipótesis de inducción
    longitud (duplica xs) = 2 * longitud xs
Hay que demostrar que
    longitud (duplica (x:xs)) = 2 * longitud (x:xs)
 En efecto,
    longitud (duplica (x:xs))
                                       [por duplica.2]
    = longitud (x:x:duplica xs)
    = 1 + longitud (x:duplica xs)
                                       [por longitud.2]
    = 1 + 1 + longitud (duplica xs)
                                       [por longitud.2]
    = 1 + 1 + 2*(longitud xs)
                                       [por hip. de inducción]
    = 2 * (1 + longitud xs)
                                       [por aritmética]
    = 2 * longitud (x:xs)
                                       [por longitud.2]
- }
-- Ejercicio 3.1. Definir la función
     listasMayores :: [[Int]] -> [[Int]]
-- tal que (listasMayores xss) es la lista de las listas de xss de mayor
-- suma. Por ejemplo,
      ghci> listasMayores [[1,3,5],[2,7],[1,1,2],[3],[5]]
      [[1,3,5],[2,7]]
listasMayores :: [[Int]] -> [[Int]]
listasMayores xss = [xs | xs <- xss, sum xs == m]</pre>
    where m = maximum [sum xs | xs <- xss]
-- Ejercicio 3.2. Comprobar con QuickCheck que todas las listas de
-- (listasMayores xss) tienen la misma suma.
-- La propiedad es
prop_listasMayores :: [[Int]] -> Bool
prop_listasMayores xss =
    iguales [sum xs | xs <- listasMayores xss]</pre>
```

```
-- (iguales xs) se verifica si todos los elementos de xs son
-- iguales. Por ejemplo,
-- iguales [2,2,2] == True
-- iguales [2,3,2] == False
iguales :: Eq a => [a] -> Bool
iguales (x1:x2:xs) = x1 == x2 && iguales (x2:xs)
iguales _ = True

-- La comprobación es
-- ghci> quickCheck prop_listasMayores
-- OK, passed 100 tests.
```

1.1.4. Examen 4 (12 de abril de 2010)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 4º examen de evaluación continua (12 de abril de 2010)
  ______
-- Ejercicio 1.1. En los apartados de este ejercicio se usará el tipo de
-- árboles binarios definidos como sigue
     data Arbol a = Hoja
                 | Nodo a (Arbol a) (Arbol a)
                 deriving (Show, Eq)
-- En los ejemplos se usará el siguiente árbol
     ejArbol :: Arbol Int
     ejArbol = Nodo 2
                   (Nodo 5
                         (Nodo 3 Hoja Hoja)
                         (Nodo 7 Hoja Hoja))
                   (Nodo 4 Hoja Hoja)
-- Definir por recursión la función
     sumaArbol :: Num a => Arbol a -> a
-- tal (sumaArbol x) es la suma de los valores que hay en el árbol
-- x. Por ejemplo,
     sumaArbol ejArbol == 21
```

data Arbol a = Hoja

```
| Nodo a (Arbol a) (Arbol a)
           deriving (Show, Eq)
ejArbol :: Arbol Int
ejArbol = Nodo 2
            (Nodo 5
                 (Nodo 3 Hoja Hoja)
                 (Nodo 7 Hoja Hoja))
            (Nodo 4 Hoja Hoja)
sumaArbol :: Num a => Arbol a -> a
sumaArbol Hoja = 0
sumaArbol (Nodo x i d) = x + sumaArbol i + sumaArbol d
-- Ejercicio 1.2. Definir por recursión la función
     nodos :: Arbol a -> [a]
-- tal que (nodos x) es la lista de los nodos del árbol x. Por ejemplo.
     nodos ejArbol == [2,5,3,7,4]
  ______
nodos :: Arbol a -> [a]
nodos Hoja = []
nodos (Nodo x i d) = x : nodos i ++ nodos d
__ ______
-- Ejercicio 1.3. Demostrar por inducción que para todo árbol a,
-- sumaArbol a = sum (nodos a).
-- Indicar la propiedad de sum que se usa en la demostración.
{ -
Caso base: Hay que demostrar que
   sumaArbol Hoja = sum (nodos Hoja)
En efecto,
   sumaArbol Hoja
                     [por sumaArbol.1]
   = 0
   = sum []
                     [por suma.1]
   = sum (nodos Hoja) [por nodos.1]
Caso inductivo: Se supone la hipótesis de inducción
   sumaArbol i = sum (nodos i)
   sumaArbol d = sum (nodos d)
```

```
Hay que demostrar que
   sumaArbol (Nodo x i d) = sum (nodos (Nodo x i d))
En efecto,
   sumaArbol (Nodo x i d)
   = x + sumaArbol i + sumaArbol d
                                       [por sumaArbol.2]
   = x + sum (nodos i) + sum (nodos d)
                                      [por hip. de inducción]
   = x + sum (nodos i ++ nodos d)
                                      [por propiedad de sum]
   = sum(x:(nodos i)++(nodos d))
                                      [por sum.2]
   = sum (Nodos x i d)
                                      [por nodos.2]
-}
-- Ejercicio 2.1. Definir la constante
     pares :: Int
-- tal que pares es la lista de todos los pares de números enteros
-- positivos ordenada según la suma de sus componentes y el valor de la
-- primera componente. Por ejemplo,
     ghci> take 11 pares
     [(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5)]
pares :: [(Integer,Integer)]
pares = [(x,z-x) | z <- [1..], x <- [1..z-1]]
__ _______
-- Ejercicio 2.2. Definir la constante
     paresDestacados :: [(Integer,Integer)]
-- tal que paresDestadados es la lista de pares de números enteros (x,y)
-- tales que 11 divide a x+13y y 13 divide a x+11y.
paresDestacados :: [(Integer,Integer)]
paresDestacados = [(x,y) | (x,y) < - pares,
                        x+13*y 'rem' 11 == 0,
                        x+11*y 'rem' 13 == 0
-- Ejercicio 2.3. Definir la constante
     parDestacadoConMenorSuma :: Integer
-- tal que parDestacadoConMenorSuma es el par destacado con menor suma y
-- calcular su valor y su posición en la lista pares.
```

```
-- La definición es
parDestacadoConMenorSuma :: (Integer,Integer)
parDestacadoConMenorSuma = head paresDestacados
-- El valor es
    ghci> parDestacadoConMenorSuma
    (23,5)
-- La posición es
     ghci> 1 + length (takeWhile (/=parDestacadoConMenorSuma) pares)
     374
-- Ejercicio 3.1. Definir la función
     limite :: (Num a, Enum a, Num b, Ord b) => (a -> b) -> b -> b
-- tal que (limite f a) es el valor de f en el primer término x tal que
-- para todo y entre x+1 y x+100, el valor absoluto de f(y)-f(x) es
-- menor que a. Por ejemplo,
     limite (n \rightarrow (2*n+1)/(n+5)) 0.001 == 1.9900110987791344
     limite (n \rightarrow (1+1/n)**n) 0.001 == 2.714072874546881
limite :: (Num a, Enum a, Num b, Ord b) => (a -> b) -> b -> b
limite f a =
   head [f x \mid x < [1..],
               maximum [abs(f y - f x) | y <- [x+1..x+100]] < a]
-- Ejercicio 3.2. Definir la función
     esLimite :: (Num a, Enum a, Num b, Ord b) =>
                 (a -> b) -> b -> b -> Bool
-- tal que (esLimite f b a) se verifica si existe un x tal que para todo
-- y entre x+1 y x+100, el valor absoluto de f(y)-b es menor que a. Por
-- ejemplo,
     esLimite (n -> (2*n+1)/(n+5)) 2 0.01 == True
     esLimite (n -> (1+1/n)**n) (exp 1) 0.01 == True
esLimite :: (Num a, Enum a, Num b, Ord b) => (a -> b) -> b -> b -> Bool
esLimite f b a =
   not (null [x \mid x < -[1..],
                  maximum [abs(f y - b) | y <- [x+1..x+100]] < a])
```

1.1.5. Examen 5 (17 de mayo de 2010)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 5º examen de evaluación continua (17 de mayo de 2010)
-- Ejercicio 1.1. Definir Haskell la función
     primo :: Int -> Integer
-- tal que (primo n) es el n-ésimo número primo. Por ejemplo,
     primo 5 = 11
  ______
primo :: Int -> Integer
primo n = primos !! (n-1)
-- primos es la lista de los números primos. Por ejemplo,
     take 10 primos == [2,3,5,7,11,13,17,19,23,29]
primos :: [Integer]
primos = 2 : [n | n < - [3,5..], esPrimo n]
-- (esPrimo n) se verifica si n es primo.
esPrimo :: Integer-> Bool
esPrimo n = [x \mid x < [1..n], rem n x == 0] == [1,n]
-- Ejercicio 1.2. Definir la función
     sumaCifras :: Integer -> Integer
-- tal que (sumaCifras n) es la suma de las cifras del número n. Por
-- ejemplo,
     sumaCifras 325 = 10
sumaCifras :: Integer -> Integer
sumaCifras n
   | n < 10
              = n
   | otherwise = sumaCifras(div n 10) + n 'rem' 10
-- Ejercicio 1.3. Definir la función
     primosSumaPar :: Int -> [Integer]
-- tal que (primosSumaPar n) es el conjunto de elementos del conjunto de
-- los n primeros primos tales que la suma de sus cifras es par. Por
```

```
-- ejemplo,
     primosSumaPar 10 = [2,11,13,17,19]
primosSumaPar :: Int -> [Integer]
primosSumaPar n =
   [x \mid x \leftarrow take \ n \ primos, even (sumaCifras x)]
__ ______
-- Ejercicio 1.4. Definir la función
     numeroPrimosSumaPar :: Int -> Int
-- tal que (numeroPrimosSumaPar n) es la cantidad de elementos del
-- conjunto de los n primeros primos tales que la suma de sus cifras es
-- par. Por ejemplo,
     numeroPrimosSumaPar 10 = 5
numeroPrimosSumaPar :: Int -> Int
numeroPrimosSumaPar = length . primosSumaPar
-- Ejercicio 1.5. Definir la función
     puntos :: Int -> [(Int,Int)]
-- tal que (puntos n) es la lista de los puntos de la forma (x,y) donde x
-- toma los valores 0,10,20,...,10*n e y es la cantidad de elementos del
-- conjunto de los x primeros primos tales que la suma de sus cifras es
-- par. Por ejemplo,
     puntos 5 = [(0,0),(10,5),(20,10),(30,17),(40,21),(50,23)]
puntos :: Int -> [(Int,Int)]
puntos n = [(i, numeroPrimosSumaPar i) | i <- [0, 10...10*n]]
        Examen 6 (21 de junio de 2010)
1.1.6.
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 6º examen de evaluación continua (21 de junio de 2010)
import Data.List
```

```
-- Ejercicio 1. Definir la función
     calculaPi :: Int -> Double
-- tal que (calculaPi n) es la aproximación del número pi calculada
-- mediante la expresión
     4*(1 - 1/3 + 1/5 - 1/7 \dots 1/(2*n+1))
-- Por ejemplo,
     calculaPi 3
                    == 2.8952380952380956
     calculaPi 300 == 3.1449149035588526
-- Indicación: La potencia es **, por ejemplo 2**3 es 8.0.
calculaPi :: Int -> Double
calculaPi n = 4 * sum [(-1)**x/(2*x+1) | x <- [0..fromIntegral n]]
-- Ejercicio 3.1. En la Olimpiada de Matemática del 2010 se planteó el
-- siquiente problema:
    Una sucesión pucelana es una sucesión creciente de 16 números
    impares positivos consecutivos, cuya suma es un cubo perfecto.
    ¿Cuántas sucesiones pucelanas tienen solamente números de tres
    cifras?
-- Definir la función
     pucelanas :: [[Int]]
-- tal que pucelanas es la lista de las sucesiones pucelanas. Por
-- ejemplo,
     ghci> head pucelanas
      [17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47]
pucelanas :: [[Int]]
pucelanas = [[x,x+2..x+30] | x < -[1..],
                            esCubo (sum [x,x+2..x+30])]
-- (esCubo n) se verifica si n es un cubo. Por ejemplo,
     esCubo 27 == True
     esCubo 28 == False
esCubo x = y^3 = x
   where y = ceiling (fromIntegral x ** (1/3))
__ _______
-- Ejercicio 3.2. Definir la función
     pucelanasConNcifras :: Int -> [[Int]]
```

```
-- tal que (pucelanasConNcifras n) es la lista de las sucesiones
-- pucelanas que tienen sólamente números de n cifras. Por ejemplo,
     ghci> pucelanasConNcifras 2
     [[17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47]]
pucelanasConNcifras :: Int -> [[Int]]
pucelanasConNcifras n = [[x,x+2..x+30] | x < - [10^(n-1)+1..10^n-31],
                                     esCubo (sum [x,x+2..x+30])
__ _______
-- Ejercicio 3.3. Calcular cuántas sucesiones pucelanas tienen solamente
-- números de tres cifras.
-- El cálculo es
     ghci> length (pucelanasConNcifras 3)
__ _______
-- Ejercicio 4. Definir la función
     inflexion :: Ord a => [a] -> Maybe a
-- tal que (inflexion xs) es el primer elemento de la lista en donde se
-- cambia de creciente a decreciente o de decreciente a creciente y
-- Nothing si no se cambia. Por ejemplo,
     inflexion [2,2,3,5,4,6] == Just 4
     inflexion [9,8,6,7,10,10] == Just 7
     inflexion [2,2,3,5] == Nothing
     inflexion [5,3,2,2]
                         == Nothing
inflexion :: Ord a => [a] -> Maybe a
inflexion (x:y:zs)
   | x < y = decreciente (y:zs)
   | x == y = inflexion (y:zs)
   | x > y = creciente (y:zs)
inflexion _ = Nothing
-- (creciente xs) es el segundo elemento de la primera parte creciente
-- de xs y Nothing, en caso contrario. Por ejemplo,
     creciente [4,3,5,6] == Just 5
     creciente [4,3,5,2,7] == Just 5
     creciente [4,3,2] == Nothing
```

1.1.7. Examen 7 (5 de julio de 2010)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- Examen de la 1ª convocatoria (5 de julio de 2010)
__ ______
import Test.QuickCheck
import Data.List
-- Ejercicio 1. Definir la función
     numeroCerosFactorial :: Integer -> Integer
-- tal que (numeroCerosFactorial n) es el número de ceros con los que
-- termina el factorial de n. Por ejemplo,
     numeroCerosFactorial 17 == 3
numeroCerosFactorial :: Integer -> Integer
numeroCerosFactorial n = numeroCeros (product [1..n])
-- (numeroCeros x) es el número de ceros con los que termina x. Por
-- ejemplo,
     numeroCeros 35400 == 2
numeroCeros :: Integer -> Integer
numeroCeros x | mod x 10 /= 0 = 0
             | otherwise = 1 + numeroCeros (div x 10)
```

```
-- Ejercicio 2. Las matrices pueden representarse mediante una lista de
-- listas donde cada una de las lista representa una fila de la
-- matriz. Por ejemplo, la matriz
     |1 0 -2|
     |0 3 -1|
-- puede representarse por [[1,0,-2],[0,3,-1]]. Definir la función
     producto :: Num t => [[t]] -> [[t]]
-- tal que (producto a b) es el producto de las matrices a y b. Por
-- ejemplo,
     ghci> producto [[1,0,-2],[0,3,-1]] [[0,3],[-2,-1],[0,4]]
     [[0,-5],[-6,-7]]
producto :: Num t => [[t]] -> [[t]]
producto a b =
   [[sum [x*y \mid (x,y) \leftarrow zip fil col] \mid col \leftarrow transpose b] | fil \leftarrow a]
__ _______
-- Ejercicio 3. El ejercicio 4 de la Olimpiada Matemáticas de 1993 es el
-- siguiente:
     Demostrar que para todo número primo p distinto de 2 y de 5,
     existen infinitos múltiplos de p de la forma 1111.....1 (escrito
     sólo con unos).
-- Definir la función
     multiplosEspeciales :: Integer -> Int -> [Integer]
-- tal que (multiplosEspeciales p n) es una lista de n múltiplos p de la
-- forma 1111...1 (escrito sólo con unos), donde p es un número primo
-- distinto de 2 y 5. Por ejemplo,
     multiplosEspeciales 7 2 == [111111,1111111111]
  ______
-- 1º definición:
multiplosEspeciales :: Integer -> Int -> [Integer]
multiplosEspeciales p n = take n [x \mid x < -unos, mod x p == 0]
-- unos es la lista de los números de la forma 111...1 (escrito sólo con
-- unos). Por ejemplo,
     take 5 unos == [1,11,111,1111,11111]
unos :: [Integer]
unos = 1 : [10*x+1 | x <- unos]
```

```
-- Otra definición no recursiva de unos es
unos' :: [Integer]
unos' = [div (10^n-1) 9 | n < - [1..]]
-- 2ª definición:
multiplosEspeciales2 :: Integer -> Int -> [Integer]
multiplosEspeciales2 p n =
   [div (10^{(p-1)*x})-1) 9 | x <- [1..fromIntegral n]]
-- Ejercicio 4. Definir la función
     recorridos :: [a] -> [[a]]
-- tal que (recorridos xs) es la lista de todos los posibles recorridos
-- por el grafo cuyo conjunto de vértices es xs y cada vértice se
-- encuentra conectado con todos los otros y los recorridos pasan por
-- todos los vértices una vez y terminan en el vértice inicial. Por
-- ejemplo,
     ghci> recorridos [2,5,3]
     [[2,5,3,2],[5,2,3,5],[3,5,2,3],[5,3,2,5],[3,2,5,3],[2,3,5,2]]
-- Indicación: No importa el orden de los recorridos en la lista.
-- -----
recorridos :: [a] -> [[a]]
recorridos xs = [(y:ys)++[y] | (y:ys) <- permutations xs]
1.1.8.
        Examen 8 (15 de septiembre de 2010)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- Examen de la 2º convocatoria (15 de septiembre de 2010)
import Test.QuickCheck
-- Ejercicio 1.1. Definir la función
     diagonal :: [[a]] -> [a]
-- tal que (diagonal m) es la diagonal de la matriz m. Por ejemplo,
     diagonal [[3,5,2],[4,7,1],[6,9,0]] == [3,7,0]
     diagonal [[3,5,2],[4,7,1]]
-- 1ª definición (por recursión):
```

```
diagonal :: [[a]] -> [a]
diagonal ((x1:):xs) = x1: diagonal [tail x | x <- xs]
diagonal = []
-- Segunda definición (sin recursión):
diagonal2 :: [[a]] -> [a]
diagonal2 = flip (zipWith (!!)) [0..]
-- Ejercicio 1.2. Definir la función
     matrizDiagonal :: Num a => [a] -> [[a]]
-- tal que (matrizDiagonal xs) es la matriz cuadrada cuya diagonal es el
-- vector xs y los restantes elementos son iguales a cero. Por ejemplo,
     matrizDiagonal [2,5,3] = [[2,0,0],[0,5,0],[0,0,3]]
matrizDiagonal :: Num a => [a] -> [[a]]
matrizDiagonal [] = []
matrizDiagonal (x:xs) =
    (x: [0 | <- xs]) : [0:zs | zs <- ys]
   where ys = matrizDiagonal xs
-- Ejercicio 1.3. Comprobar con QuickCheck si se verifican las
-- siguientes propiedades:
-- 1. Para cualquier lista xs, (diagonal (matrizDiagonal xs)) es igual a
-- 2. Para cualquier matriz m, (matrizDiagonal (diagonal m)) es igual a
-- La primera propiedad es
prop diagonal1 :: [Int] -> Bool
prop diagonal1 xs =
    diagonal (matrizDiagonal xs) == xs
-- La comprobación es
     ghci> quickCheck prop_diagonal1
     +++ OK, passed 100 tests.
-- La segunda propiedad es
prop_diagonal2 :: [[Int]] -> Bool
prop diagonal2 m =
```

```
matrizDiagonal (diagonal m) == m
-- La comprobación es
     ghci> quickCheck prop diagonal2
     *** Failed! Falsifiable (after 4 tests and 5 shrinks):
-- lo que indica que la propiedad no se cumple y que [[0,0]] es un
-- contraejemplo,
-- Ejercicio 2.1. El enunciado del problema 1 de la Fase nacional de la
-- Olimpiada Matemática Española del 2009 dice:
     Hallar todas las sucesiones finitas de n números naturales
     consecutivos a1, a2, ..., an, con n ≥ 3, tales que
     a1 + a2 + ... + an = 2009.
-- En este ejercicio vamos a resolver el problema con Haskell.
-- Definir la función
     sucesionesConSuma :: Int -> [[Int]]
-- tal que (sucesionesConSuma x) es la lista de las sucesiones finitas
-- de n números naturales consecutivos a1, a2, ..., an, con n ≥ 3, tales
-- que
     a1 + a2 + ... + an = x.
-- Por ejemplo.
     sucesionesConSuma 9 == [[2,3,4]]
     sucesionesConSuma 15 == [[1,2,3,4,5],[4,5,6]]
-- 1º definición:
sucesionesConSuma :: Int -> [[Int]]
sucesionesConSuma x =
    [[a..b] | a <- [1..x], b <- [a+2..x], sum [a..b] == x]
-- 2ª definición (con la fórmula de la suma de las progresiones
-- aritméticas):
sucesionesConSuma' :: Int -> [[Int]]
sucesionesConSuma' x =
    [[a..b] | a <- [1..x], b <- [a+2..x], (a+b)*(b-a+1) 'div' 2 == x]
-- Ejercicio 2.2. Resolver el problema de la Olimpiada con la función
-- sucesionesConSuma.
```

```
-- Las soluciones se calculan con
      ghci> sucesionesConSuma' 2009
      [[17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
        38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,
        59,60,61,62,63,64,65],
       [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,
       50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69],
       [137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150],
       [284, 285, 286, 287, 288, 289, 290]]
-- Por tanto, hay 4 soluciones.
-- Ejercicio 3.1. Definir la función
      sumasNcuadrados :: Int -> Int -> [[Int]]
-- tal que (sumasNcuadrados x n) es la lista de las descomposiciones de
-- x en sumas decrecientes de n cuadrados. Por ejemplo,
      sumasNcuadrados 10 4 == [[3,1,0,0],[2,2,1,1]]
sumasNcuadrados :: Int -> Int -> [[Int]]
sumasNcuadrados x 1 \mid a^2 == x = [[a]]
                   | otherwise = []
    where a = ceiling (sqrt (fromIntegral x))
sumasNcuadrados x n =
    [a:y:ys | a <- [x',x'-1..0],
              (y:ys) \leftarrow sumasNcuadrados (x-a^2) (n-1),
              y \le a
   where x' = ceiling (sqrt (fromIntegral x))
-- Ejercicio 3.2. Definir la función
      numeroDeCuadrados :: Int -> Int
-- tal que (numeroDeCuadrados x) es el menor número de cuadrados que se
-- necesita para escribir x como una suma de cuadrados. Por ejemplo,
      numeroDeCuadrados 6 == 3
      sumasNcuadrados 6 3 == [[2,1,1]]
   ______
numeroDeCuadrados :: Int -> Int
numeroDeCuadrados x = head [n \mid n < - [1..], sumasNcuadrados <math>x \mid n \mid - []]
```

```
-- Ejercicio 3.3. Calcular el menor número n tal que todos los números
-- de 0 a 100 pueden expresarse como suma de n cuadrados.
__ ______
-- El cálculo de n es
    ghci> maximum [numeroDeCuadrados x \mid x < [0..100]]
__ _______
-- Ejercicio 3.4. Comprobar con QuickCheck si todos los números
-- positivos pueden expresarse como suma de n cuadrados (donde n es el
-- número calculado anteriormente).
-- La propiedad es
prop numeroDeCuadrados x =
   x >= 0 ==> numeroDeCuadrados x <= 4
-- La comprobación es
    ghci> quickCheck prop numeroDeCuadrados
    OK, passed 100 tests.
       Examen 9 (17 de diciembre de 2010)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- Examen de la 3<sup>a</sup> convocatoria (17 de diciembre de 2010)
import Data.List
-- Ejercicio 1. Definir la función
    ullman :: (Num a, Ord a) => a -> Int -> [a] -> Bool
-- tal que (ullman t k xs) se verifica si xs tiene un subconjunto con k
-- elementos cuya suma sea menor que t. Por ejemplo,
    ullman 9 3 [1..10] == True
    ullman 5 3 [1..10] == False
-- 1ª solución (corta y eficiente)
ullman :: (Ord a, Num a) => a -> Int -> [a] -> Bool
```

```
ullman t k \times s = sum (take k (sort \times s)) < t
-- 2º solución (larga e ineficiente)
ullman2 :: (Num a, Ord a) => a -> Int -> [a] -> Bool
ullman2 t k xs =
    [ys | ys <- subconjuntos xs, length ys == k, sum ys < t] /= []
-- (subconjuntos xs) es la lista de los subconjuntos de xs. Por
-- ejemplo,
      subconjuntos "bc" == ["","c","b","bc"]
      subconjuntos "abc" == ["","c","b","bc","a","ac","ab","abc"]
subconjuntos :: [a] -> [[a]]
subconjuntos [] = [[]]
subconjuntos (x:xs) = zss++[x:ys | ys <- zss]</pre>
    where zss = subconjuntos xs
-- Los siguientes ejemplos muestran la diferencia en la eficencia:
      ghci> ullman 9 3 [1..20]
      True
      (0.02 secs, 528380 bytes)
- -
      ghci> ullman2 9 3 [1..20]
      True
      (4.08 secs, 135267904 bytes)
      ghci> ullman 9 3 [1..100]
      True
      (0.02 secs, 526360 bytes)
      ghci> ullman2 9 3 [1..100]
        C-c C-cInterrupted.
      Agotado
-- Ejercicio 2. Definir la función
      sumasDe2Cuadrados :: Integer -> [(Integer, Integer)]
-- tal que (sumasDe2Cuadrados n) es la lista de los pares de números
-- tales que la suma de sus cuadrados es n y el primer elemento del par
-- es mayor o igual que el segundo. Por ejemplo,
      sumasDe2Cuadrados 25 == [(5,0),(4,3)]
-- lª definición:
sumasDe2Cuadrados_1 :: Integer -> [(Integer, Integer)]
sumasDe2Cuadrados 1 n =
    [(x,y) | x < - [n,n-1..0],
```

```
y < -[0..x],
           x*x+y*y == n
-- 2ª definición:
sumasDe2Cuadrados2 :: Integer -> [(Integer, Integer)]
sumasDe2Cuadrado 2 n =
   [(x,y) | x < - [a,a-1..0],
           y < -[0..x],
           x*x+y*y == n
   where a = ceiling (sqrt (fromIntegral n))
-- 3ª definición:
sumasDe2Cuadrados3 :: Integer -> [(Integer, Integer)]
sumasDe2Cuadrado 3 n = aux (ceiling (sqrt (fromIntegral n))) 0
   where aux x y \mid x < y = []
                | x*x + y*y < n = aux x (y+1)
                | x*x + y*y == n = (x,y) : aux (x-1) (y+1)
                | otherwise = aux (x-1) y
-- Comparación
     +----+
              | 1º definición | 2º definición | 3º definición |
     +----+
           999 | 2.17 segs | 0.02 segs | 0.01 segs
                             | 140.38 segs
                                          | 0.13 segs
     | 48612265 |
-- Eiercicio 3. Los árboles binarios pueden representarse mediante el
-- tipo de datos Arbol definido por
     data Arbol a = Nodo (Arbol a) (Arbol a)
                 | Hoja a
                 deriving Show
  Por ejemplo, los árboles
     árbol1
                   árbol2
                               árbol3
                                         árbol4
        0
                     0
                                0
                                               0
       / \
                    /\
                   0 3
      1 o
                                  3
                                                   1
                                               0
                   / \
        2
           3
                                               3
                    2
  se representan por
     arbol1, arbol2, arbol3, arbol4 :: Arbol Int
     arbol1 = Nodo (Hoja 1) (Nodo (Hoja 2) (Hoja 3))
```

```
arbol2 = Nodo (Nodo (Hoja 1) (Hoja 2)) (Hoja 3)
      arbol3 = Nodo (Nodo (Hoja 1) (Hoja 4)) (Hoja 3)
      arbol4 = Nodo (Nodo (Hoja 2) (Hoja 3)) (Hoja 1)
-- Definir la función
      igualBorde :: Eq a => Arbol a -> Arbol a -> Bool
-- tal que (igualBorde t1 t2) se verifica si los bordes de los árboles
-- t1 y t2 son iguales. Por ejemplo,
      iqualBorde arbol1 arbol2 == True
      igualBorde arbol1 arbol3 == False
      iqualBorde arbol1 arbol4 == False
data Arbol a = Nodo (Arbol a) (Arbol a)
             | Hoja a
             deriving Show
arbol1, arbol2, arbol3, arbol4 :: Arbol Int
arbol1 = Nodo (Hoja 1) (Nodo (Hoja 2) (Hoja 3))
arbol2 = Nodo (Nodo (Hoja 1) (Hoja 2)) (Hoja 3)
arbol3 = Nodo (Nodo (Hoja 1) (Hoja 4)) (Hoja 3)
arbol4 = Nodo (Nodo (Hoja 2) (Hoja 3)) (Hoja 1)
igualBorde :: Eq a => Arbol a -> Arbol a -> Bool
igualBorde t1 t2 = borde t1 == borde t2
-- (borde t) es el borde del árbol t; es decir, la lista de las hojas
-- del árbol t leídas de izquierda a derecha. Por ejemplo,
      borde arbol4 == [2,3,1]
borde :: Arbol a -> [a]
borde (Nodo i d) = borde i ++ borde d
borde (Hoja x) = [x]
-- Ejercicio 4. (Basado en el problema 145 del Proyecto Euler).
-- Se dice que un número n es reversible si su última cifra es
-- distinta de 0 y la suma de n y el número obtenido escribiendo las
-- cifras de n en orden inverso es un número que tiene todas sus cifras
-- impares. Por ejemplo,
-- * 36 es reversible porque 36+63=99 tiene todas sus cifras impares,
-- * 409 es reversible porque 409+904=1313 tiene todas sus cifras
         impares,
-- * 243 no es reversible porque 243+342=585 no tiene todas sus cifras
         impares.
```

```
-- Definir la función
      reversiblesMenores :: Int -> Int
-- tal que (reversiblesMenores n) es la cantidad de números reversibles
-- menores que n. Por ejemplo,
      reversiblesMenores 10
                              == 0
      reversiblesMenores 100 == 20
      reversiblesMenores 1000 == 120
  ------
-- (reversiblesMenores n) es la cantidad de números reversibles menores
-- que n. Por ejemplo,
      reversiblesMenores 10
                              == 0
      reversiblesMenores 100 == 20
      reversiblesMenores 1000 == 120
reversiblesMenores :: Int -> Int
reversiblesMenores n = length [x \mid x < -[1..n-1], esReversible x]
-- (esReversible n) se verifica si n es reversible; es decir, si su
-- última cifra es distinta de 0 y la suma de n y el número obtenido
-- escribiendo las cifras de n en orden inverso es un número que tiene
-- todas sus cifras impares. Por ejemplo,
      esReversible 36 == True
      esReversible 409 == True
esReversible :: Int -> Bool
esReversible n = rem \ n \ 10 /= 0 \&\& impares (cifras <math>(n + (inverso \ n)))
-- (impares xs) se verifica si xs es una lista de números impares. Por
-- ejemplo,
      impares [3,5,1] == True
      impares [3,4,1] == False
impares :: [Int] -> Bool
impares xs = and [odd x | x <- xs]
-- (inverso n) es el número obtenido escribiendo las cifras de n en
-- orden inverso. Por ejemplo,
      inverso 3034 == 4303
inverso :: Int -> Int
inverso n = read (reverse (show n))
-- (cifras n) es la lista de las cifras del número n. Por ejemplo,
      cifras 3034 == [3,0,3,4]
cifras :: Int -> [Int]
```

```
cifras n = [read [x] | x <- show n]
```

1.2. Exámenes del grupo 3 (María J. Hidalgo)

1.2.1. Examen 1 (4 de diciembre de 2009)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 1º examen de evaluación continua (4 de diciembre de 2009)
import Test.QuickCheck
import Data.Char
import Data.List
-- Ejercicio 1. Definir, por composición, la función
     insertaEnposicion :: a -> Int -> [a] -> [a]
-- tal que (insertaEnposicion x n xs) es la lista obtenida insertando x
-- en xs en la posición n. Por ejemplo,
     insertaEnposicion 80 4 [1,2,3,4,5,6,7,8] == [1,2,3,80,4,5,6,7,8]
     insertaEnposicion 'a' 1 "hola"
                                            == "ahola"
insertaEnposicion :: a -> Int -> [a] -> [a]
insertaEnposicion x n xs = take (n-1) xs ++ [x] ++ drop (n-1) xs
-- Ejercicio 2. El algoritmo de Euclides para calcular el máximo común
-- divisor de dos números naturales a y b es el siguiente:
     Si b = 0, entonces mcd(a,b) = a
     Si b > 0, entonces mcd(a,b) = mcd(b,c), donde c es el resto de
              dividir a entre b
-- Definir la función
     mcd :: Int -> Int -> Int
-- tal que (mcd a b) es el máximo común divisor de a y b calculado
-- usando el algoritmo de Euclides. Por ejemplo,
     mcd 2 3
                     1
     mcd 12 30
                == 6
     mcd 700 300 == 100
```

```
mcd :: Int -> Int -> Int
mcd a 0 = a
mcd a b = mcd b (a 'mod' b)
-- -----
-- Ejercicio 3.1. Definir la función
     esSubconjunto :: Eq a => [a] -> [a] -> Bool
-- tal que (esSubconjunto xs ys) se verifica si todos los elementos de
-- xs son también elementos de ys. Por ejemplo,
     esSubconjunto [3,5,2,1,1,1,6,3] [1,2,3,5,6,7] == True
     esSubconjunto [3,2,1,1,1,6,3] [1,2,3,5,6,7]
                                                     == True
     esSubconjunto [3,2,1,8,1,6,3] [1,2,3,5,6,7]
                                                    == False
-- 1ª definición (por recursión):
esSubconjunto :: Eq a => [a] -> [a] -> Bool
esSubconjunto [] ys = True
esSubconjunto (x:xs) ys = x 'elem' ys && esSubconjunto xs ys
-- 2ª definición (por comprensión):
esSubconjunto2 :: Eq a => [a] -> [a] -> Bool
esSubconjunto2 xs ys = and [x 'elem' ys | x <- xs]
-- 3ª definición (por plegado):
esSubconjunto3 :: Eq a => [a] -> [a] -> Bool
esSubconjunto3 xs ys = foldr (\ x \rightarrow (\&\&) (x 'elem' ys)) True xs
-- Ejercicio 3.2. Definir la función
      igualConjunto :: Eq a => [a] -> [a] -> Bool
-- tal que (iqualConjunto xs ys) se verifica si xs e ys son iquales como
-- conjuntos. Por ejemplo,
     igualConjunto [3,2,1,8,1,6,3] [1,2,3,5,6,7]
                                                   == False
     igualConjunto [3,2,1,1,1,6,3] [1,2,3,5,6,7]
                                                     == False
     igualConjunto [3,2,1,1,1,6,3] [1,2,3,5,6]
                                                    == False
     igualConjunto [3,2,1,1,1,6,3,5] [1,2,3,5,6]
                                                     == True
igualConjunto :: Eq a => [a] -> [a] -> Bool
igualConjunto xs ys = esSubconjunto xs ys && esSubconjunto ys xs
```

```
-- Ejercicio 4.1. Definir por comprensión la función
      repiteC :: Int -> [a] -> [a]
-- tal que (repiteC n xs) es la lista que resulta de repetir cada
-- elemento de xs n veces. Por ejemplo,
      repiteC 5 "Hola" == "HHHHHHooooolllllaaaaaa"
repiteC :: Int -> [a] -> [a]
repiteC n xs = [x | x <- xs, i <- [1..n]]
-- Ejercicio 4.2. Definir por recursión la función
      repiteR :: Int -> [a] -> [a]
-- tal que (repiteR n xs) es la lista que resulta de repetir cada
-- elemento de xs n veces. Por ejemplo,
      repiteR 5 "Hola" == "HHHHHHooooolllllaaaaaa"
repiteR :: Int -> [a] -> [a]
repiteR [] = []
repiteR n (x:xs) = replicate n x ++ repiteR n xs
1.2.2.
         Examen 2 (16 de marzo de 2010)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 2º examen de evaluación continua (16 de marzo de 2010)
import Test.QuickCheck
import Data.Char
import Data.List
-- Ejercicio 1. Probar por inducción que para toda lista xs:
      length (reverse xs) = length xs
-- Nota: Las definiciones recursivas de length y reverse son:
     length[] = 0
                                          -- length.1
     length (x:xs) = 1 + length xs -- length.2
     reverse [] = []
                                          -- reverse.1
- -
     reverse (x:xs) = reverse xs ++ [x]
                                          -- reverse.2
- -
```

```
La demostración es por inducción en xs.
Base: Supongamos que xs = []. Entonces,
  length (reverse xs)
  = length (reverse [])
  = length []
                              [por reverse.1]
  = length xs.
Paso de inducción: Supongamos la hipótesis de inducción
  length (reverse xs) = length xs
y sea x un elemento cualquiera. Hay que demostrar que
   length (reverse (x:xs)) = length (x:xs)
En efecto,
  length (reverse (x:xs))
  = length (reverse xs ++ [x])
                                     [por reverse.2]
  = length (reverse xs) + length [x]
  = length xs + 1
                                     [por H.I.]
  = length (x:xs)
                                     [por length.2]
- }
__ ______
-- Ejercicio 2.1. Definir, por recursión, la función
     sumaVectores :: [Int] -> [Int] -> [Int]
-- tal que (sumaVectores v w) es la lista obtenida sumando los elementos
-- de v y w que ocupan las mismas posiciones. Por ejemplo,
     sumaVectores [1,2,5,-6] [0,3,-2,9] == [1,5,3,3]
-- 1ª definición (por comprensión)
sumaVectores :: [Int] -> [Int] -> [Int]
sumaVectores xs ys = [x+y \mid (x,y) < -zip xs ys]
-- 2ª definición (por recursión):
sumaVectores2 :: [Int] -> [Int] -> [Int]
sumaVectores2 [] _ = [] sumaVectores2 _ [] = []
sumaVectores2 (x:xs) (y:ys) = x+y : sumaVectores2 xs ys
-- Ejercicio 2.2. Definir, por recursión, la función
```

```
multPorEscalar :: Int -> [Int] -> [Int]
-- tal que (multPorEscalar x v) es la lista que resulta de multiplicar
-- todos los elementos de v por x. Por ejemplo,
    multPorEscalar 4 [1,2,5,-6] == [4,8,20,-24]
  _____
multPorEscalar :: Int -> [Int] -> [Int]
multPorEscalar _ [] = []
multPorEscalar n (x:xs) = n*x : multPorEscalar n xs
-- Ejercicio 2.3. Comprobar con QuickCheck que las operaciones
-- anteriores verifican la propiedad distributiva de multPorEscalar con
-- respecto a sumaVectores.
-- La propiedad es
prop distributiva :: Int -> [Int] -> Bool
prop distributiva n xs ys =
   multPorEscalar n (sumaVectores xs ys) ==
   sumaVectores (multPorEscalar n xs) (multPorEscalar n ys)
-- La comprobación es
    ghci> quickCheck prop distributiva
    +++ OK, passed 100 tests.
-- Ejercicio 2.4. Probar, por inducción, la propiedad anterior.
{ -
La demostración es por inducción en xs.
Base: Supongamos que xs = []. Entonces,
  multPorEscalar n (sumaVectores xs ys)
  = multPorEscalar n (sumaVectores [] ys)
  = multPorEscalar n []
  = []
  = sumaVectores [] (multPorEscalar n ys)
  = sumaVectores (multPorEscalar n []) (multPorEscalar n ys)
  = sumaVectores (multPorEscalar n xs) (multPorEscalar n ys)
```

Paso de inducción: Supongamos la hipótesis de inducción

```
multPorEscalar n (sumaVectores xs ys)
   = sumaVectores (multPorEscalar n xs) (multPorEscalar n ys) (H.I. 1)
Hay que demostrar que
   multPorEscalar n (sumaVectores (x:xs) ys)
   = sumaVectores (multPorEscalar n (x:xs)) (multPorEscalar n ys)
Lo haremos por casos en ys.
Caso 1: Supongamos que ys = []. Entonces,
  multPorEscalar n (sumaVectores xs ys)
  = multPorEscalar n (sumaVectores xs [])
  = multPorEscalar n []
  = []
  = sumaVectores (multPorEscalar n xs) []
  = sumaVectores (multPorEscalar n xs) (multPorEscalar n [])
  = sumaVectores (multPorEscalar n xs) (multPorEscalar n ys)
Caso 2: Para (y:ys). Entonces,
   multPorEscalar n (sumaVectores (x:xs) (y:ys))
   = multPorEscalar n (x+y : sumaVectores xs ys)
         [por multPorEscalar.2]
   = n*(x+y) : multPorEscalar n (sumaVectores xs ys)
         [por multPorEscalar.2]
   = n*x+n*y : sumaVectores (multPorEscalar n xs) (multPorEscalar n ys)
         [por H.I. 1]
   = sumaVectores (n*x : multPorEscalar n xs) (n*y : multPorEscalar n ys)
         [por sumaVectores.2]
   = sumaVectores (multPorEscalar n (x:xs)) (multPorEscalar n (y:ys))
         [por multPorEscalar.2]
- }
     -- Ejercicio 3. Consideremos los árboles binarios definidos como sique
     data Arbol a = H
                  | N a (Arbol a) (Arbol a)
                  deriving (Show, Eq)
-- Definir la función
     mapArbol :: (a -> b) -> Arbol a -> Arbol b
-- tal que (mapArbol f x) es el árbol que resulta de sustituir cada nodo
-- n del árbol x por (f n). Por ejemplo,
     ghci> mapArbol (+1) (N 9 (N 3 (N 2 H H) (N 4 H H)) (N 7 H H))
     N 10 (N 8 H H) (N 4 (N 5 H H) (N 3 H H))
```

```
data Arbol a = H
             | N a (Arbol a) (Arbol a)
             deriving (Show, Eq)
mapArbol :: (a -> b) -> Arbol a -> Arbol b
mapArbol H
                    = H
mapArbol f (N \times i d) = N (f \times) (mapArbol f i) (mapArbol f d)
-- Ejercicio 4. Definir, por comprensión, la función
     mayorExpMenor :: Int -> Int -> Int
-- tal que (mayorExpMenor a b) es el menor n tal que a^n es mayor que
-- b. Por ejemplo,
     mayorExpMenor 2 1000 == 10
     mayorExpMenor 9 7
                           == 1
mayorExpMenor :: Int -> Int -> Int
mayorExpMenor a b =
    head [n \mid n < [0..], a^n > b]
```

1.2.3. Examen 3 (5 de julio de 2010)

El examen es común con el del grupo 1 (ver página 24).

1.2.4. Examen 4 (15 de septiembre de 2010)

El examen es común con el del grupo 1 (ver página 26).

1.2.5. Examen 5 (17 de diciembre de 2010)

El examen es común con el del grupo 1 (ver página 30).

2

Exámenes del curso 2010-11

2.1. Exámenes del grupo 3 (María J. Hidalgo)

2.1.1. Examen 1 (29 de Octubre de 2010)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 1º examen de evaluación continua (29 de octubre de 2010)

import Test.QuickCheck

-- Ejercicio 1. Definir la función extremos tal que (extremos n xs) es la
-- lista formada por los n primeros elementos de xs y los n finales
-- elementos de xs. Por ejemplo,
-- extremos 3 [2,6,7,1,2,4,5,8,9,2,3] == [2,6,7,9,2,3]

extremos n xs = take n xs ++ drop (length xs - n) xs

-- Ejercicio 2.1. Definir la función puntoMedio tal que
-- (puntoMedio pl p2) es el punto medio entre los puntos pl y p2. Por
-- ejemplo,
-- puntoMedio (0,2) (0,6) == (0.0,4.0)
-- puntoMedio (-1,2) (7,6) == (3.0,4.0)

puntoMedio (x1,y1) (x2,y2) = ((x1+x2)/2, (y1+y2)/2)
```

```
-- Ejercicio 1.2. Comprobar con quickCheck que el punto medio entre P y
-- Q equidista de ambos puntos.
__ ______
-- El primer intento es
prop puntoMedio (x1,y1) (x2,y2) =
   distancia (x1,y1) p == distancia (x2,y2) p
   where p = puntoMedio(x1,y1)(x2,y2)
-- (distancia p q) es la distancia del punto p al q. Por ejemplo,
     distancia (0,0) (3,4) == 5.0
distancia (x1,y1) (x2,y2) = sqrt((x1-x2)^2+(y1-y2)^2)
-- La comprobación es
     ghci> quickCheck prop_puntoMedio
     *** Failed! Falsifiable (after 13 tests and 5 shrinks):
     (10.0, -9.69156092012789)
     (6.0, 27.0)
-- Falla, debido a los errores de redondeo. Hay que expresarla en
-- términos de la función ~=.
-- (x ~= y) se verifica si x es aproximadamente igual que y; es decir,
-- el valor absoluto de su diferencia es menor que 0.0001.
x \sim = y = abs(x-y) < 0.0001
-- El segundo intento es
prop puntoMedio2 (x1,y1) (x2,y2) =
   distancia (x1,y1) p ~= distancia (x2,y2) p
   where p = puntoMedio(x1,y1)(x2,y2)
-- La comprobación es
     ghci> quickCheck prop_puntoMedio'
     +++ OK, passed 100 tests.
-- Ejercicio 3. Definir la función ciclo tal que (ciclo xs) es
-- permutación de xs obtenida pasando su último elemento a la primera
-- posición y desplazando los otros elementosPor ejemplo,
     ciclo [2,5,7,9]
                        == [9,2,5,7]
     ciclo ["yo","tu","el"] == ["el","yo","tu"]
```

```
ciclo [] = []
ciclo xs = last xs : init xs
-- Ejercicio 4.1. Definir la función numeroMayor tal que
-- (numeroMayor x y) es el mayor número de dos cifras que puede puede
-- construirse con los dígitos x e y. Por ejemplo,
     numeroMayor 2 5 == 52
     numeroMayor 5 2 == 52
numeroMayor x y = 10*a + b
   where a = \max x y
        b = min \times y
-- Ejercicio 4.2. Definir la función numeroMenor tal que tal que
-- (numeroMenor x y) es el menor número de dos cifras que puede puede
-- construirse con los dígitos x e y. Por ejemplo,
     numeroMenor 2 5 == 25
     numeroMenor 5 2 == 25
  ______
numeroMenor x y = 10*b + a
   where a = \max x y
        b = min \times v
-- Ejercicio 4.3. Comprobar con QuickCheck que el menor número que puede
-- construirse con dos dígitos es menor o igual que el mayor.
__ _______
-- La propiedad es
prop menorMayor x y =
 numeroMenor x y <= numeroMayor x y</pre>
-- La comprobación es
     ghci> quickCheck prop menorMayor
    +++ 0K, passed 100 tests.
```

2.1.2. Examen 2 (26 de Noviembre de 2010)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 2º examen de evaluación continua (26 de noviembre de 2010)
import Test.QuickCheck
-- Ejercicio 1.1. Definir, por recursión, la función
     sustituyeImpar :: [Int] -> [Int]
-- tal que (sustituyeImpar x) es la lista obtenida sustituyendo cada
-- número impar de xs por el siguiente número par. Por ejemplo,
     sustituyeImpar [3,2,5,7,4] == [4,2,6,8,4]
  ______
sustituyeImpar :: [Int] -> [Int]
sustituyeImpar [] = []
sustituyeImpar (x:xs) \mid odd x = x+1 : sustituyeImpar xs
                  | otherwise = x : sustituyeImpar xs
__ _______
-- Ejercicio 1.2. Comprobar con QuickChek que para cualquier
-- lista de números enteros xs, todos los elementos de la lista
-- (sustituyeImpar xs) son números pares.
-- La propiedad es
prop sustituyeImpar :: [Int] -> Bool
prop sustituyeImpar xs = and [even x | x <- sustituyeImpar xs]
-- La comprobación es
     ghci> quickCheck prop_sustituyeImpar
    +++ OK, passed 100 tests.
.. .....
-- Ejercicio 2.1 El número e se puede definir como la suma de la serie
     1/0! + 1/1! + 1/2! + 1/3! + \dots
-- Definir la función aproxE tal que (aproxE n) es la aproximación de e
-- que se obtiene sumando los términos de la serie hasta 1/n!. Por
-- ejemplo,
    aproxE 10 == 2.718281801146385
```

```
aproxE 100 == 2.7182818284590455
     aproxE 1000 == 2.7182818284590455
aproxE n = 1 + sum [1/(factorial k) | k <- [1..n]]
-- (factorial n) es el factorial de n. Por ejemplo,
     factorial 5 == 120
factorial n = product [1..n]
__ ________
-- Ejercicio 2.2. Definir la constante e como 2.71828459.
e = 2.71828459
-- Ejercicio 2.3. Definir la función errorE tal que (errorE x) es el
-- menor número de términos de la serie anterior necesarios para obtener
-- e con un error menor que x. Por ejemplo,
     errorE 0.001
                 == 6.0
     errorE 0.00001 == 8.0
  ______
errorE x = head [n \mid n \leftarrow [0..], abs(aproxE n \leftarrow e) < x]
-- Ejercicio 3.1. Un número natural n se denomina abundante si es menor
-- que la suma de sus divisores propios.
-- Definir una función
     numeroAbundante:: Int -> Bool
-- tal que (numeroAbundante n) se verifica si n es un número
-- abundante. Por ejemplo,
     numeroAbundante 5
                      == False
     numeroAbundante 12 == True
     numeroAbundante 28 == False
     numeroAbundante 30 == True
numeroAbundante:: Int -> Bool
numeroAbundante n = n < sum (divisores n)
```

```
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
     divisores 24 == [1,2,3,4,6,8,12]
divisores:: Int -> [Int]
divisores n = [m \mid m < -[1..n-1], n 'mod' m == 0]
__ ______
-- Ejercicio 3.2. Definir la función
     numerosAbundantesMenores :: Int -> [Int]
-- tal que (numerosAbundantesMenores n) es la lista de números
-- abundantes menores o iguales que n. Por ejemplo,
     numerosAbundantesMenores 50 = [12, 18, 20, 24, 30, 36, 40, 42, 48]
numerosAbundantesMenores :: Int -> [Int]
numerosAbundantesMenores n = [x \mid x < -[1..n], numeroAbundante x]
__ ______
-- Ejercicio 3.3. Definir la función
     todosPares :: Int -> Bool
-- tal que (todosPares n) se verifica si todos los números abundantes
-- menores o iguales que n son pares. Comprobar el valor de dicha
-- función para n = 10, 100 y 1000.
.. .....
todosPares :: Int -> Bool
todosPares n = and [even x | x < -numerosAbundantesMenores n]
-- La comprobación es
     ghci> todosPares 10
     True
    ghci> todosPares 100
    True
     ghci> todosPares 1000
    False
__ ______
-- Ejercicio 3.4. Definir la constante
     primerAbundanteImpar :: Int
-- cuyo valor es el primer número natural abundante impar.
primerAbundanteImpar :: Int
primerAbundanteImpar = head [x \mid x < -[1..], numeroAbundante x, odd x]
```

```
-- Su valor es-- ghci> primerAbundanteImpar-- 945
```

2.1.3. Examen 3 (17 de Diciembre de 2010)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 3º examen de evaluación continua (17 de diciembre de 2010)
__ _______
import Data.List
import Test.QuickCheck
-- Ejercicio 1. Definir la función
     grafoReducido_1:: (Eq a, Eq b) => (a->b)->(a-> Bool) -> [a] -> [(a,b)]
-- tal que (grafoReducido f p xs) es la lista (sin repeticiones) de los
-- pares formados por los elementos de xs que verifican el predicado p y
-- sus imágenes. Por ejemplo,
     grafoReducido (^2) even [1..9] == [(2,4),(4,16),(6,36),(8,64)]
     grafoReducido (+4) even (replicate 40 1) == []
     grafoReducido (*5) even (replicate 40 2) == [(2,10)]
-- 1º definición
grafoReducido1:: (Eq a, Eq b) \Rightarrow (a->b)->(a-> Bool) -> [a] -> [(a,b)]
grafoReducidol f p xs = nub (map (\xspace x -> (x,f x)) (filter p xs))
-- 2º definición
grafoReducido2:: (Eq a, Eq b) \Rightarrow (a->b)->(a-> Bool) -> [a] -> [(a,b)]
grafoReducido2 f p xs = zip as (map f as)
   where as = filter p (nub xs)
-- 3º definición
grafoReducido3:: (Eq a, Eq b) \Rightarrow (a->b)->(a-> Bool) -> [a] -> [(a,b)]
grafoReducido3 f p xs = nub [(x,f x) | x <- xs, p x]
  ______
-- Ejercicio 2.1. Un número natural n se denomina semiperfecto si es la
-- suma de algunos de sus divisores propios. Por ejemplo, 18 es
-- semiperfecto ya que sus divisores son 1, 2, 3, 6, 9 y se cumple que
```

```
-- 3+6+9=18.
-- Definir la función
     esSemiPerfecto:: Int -> Bool
-- tal que (esSemiPerfecto n) se verifica si n es semiperfecto. Por
-- ejemplo,
     esSemiPerfecto 18 == True
     esSemiPerfecto 9 == False
     esSemiPerfecto 24 == True
-- 1º solución:
esSemiPerfecto:: Int -> Bool
esSemiPerfecto n = any p (sublistas (divisores n))
   where p xs = sum xs == n
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
     divisores 18 = [1,2,3,6,9]
divisores :: Int -> [Int]
divisores n = [m \mid m < -[1..n-1], n 'mod' m == 0]
-- (sublistas xs) es la lista de las sublistas de xs. por ejemplo,
     sublistas [3,2,5] = [[],[5],[2],[2,5],[3],[3,5],[3,2],[3,2,5]]
sublistas :: [a] -> [[a]]
sublistas []
            = [[]]
sublistas (x:xs) = yss ++ [x:ys | ys <- yss]</pre>
   where yss = sublistas xs
-- 2ª solución:
esSemiPerfecto2:: Int -> Bool
esSemiPerfecto2 n = or [sum xs == n | xs <- sublistas (divisores n)]
__ _______
-- Ejercicio 2.2. Definir la constante
     primerSemiPerfecto :: Int
-- tal que su valor es el primer número semiperfecto.
primerSemiPerfecto :: Int
primerSemiPerfecto = head [n| n<- [1..], esSemiPerfecto n]</pre>
-- Su cálculo es
-- ghci> primerSemiPerfecto
```

```
6
-- Ejercicio 2.3. Definir la función
     semiPerfecto :: Int -> Int
-- tal que (semiPerfecto n) es el n-ésimo número semiperfecto. Por
-- ejemplo,
     semiPerfecto 1 == 6
     semiPerfecto 4 == 20
     semiPerfecto 100 == 414
___________
semiPerfecto :: Int -> Int
semiPerfecto n = [n| n \leftarrow [1..], esSemiPerfecto n] !! (n-1)
-- Ejercicio 3.1. Definir mediante plegado la función
     producto :: Num a => [a] -> a
-- tal que (producto xs) es el producto de los elementos de la lista
-- xs. Por ejemplo,
     producto [2,1,-3,4,5,-6] == 720
producto :: Num a => [a] -> a
producto = foldr (*) 1
  ______
-- Ejercicio 3.2. Definir mediante plegado la función
     productoPred :: Num a => (a -> Bool) -> [a] -> a
-- tal que (productoPred p xs) es el producto de los elementos de la
-- lista xs que verifican el predicado p. Por ejemplo,
     productoPred even [2,1,-3,4,5,-6] == -48
  ______
productoPred :: Num a => (a -> Bool) -> [a] -> a
productoPred p = foldr f 1
   where f x y | p x = x*y
             | otherwise = y
-- Ejercicio 3.3. Definir la función la función
     productoPos :: (Num a, Ord a) => [a] -> a
-- tal que (productoPos xs) es el producto de los elementos
```

```
-- estríctamente positivos de la lista xs. Por ejemplo,
     productoPos [2,1,-3,4,5,-6] == 40
productoPos :: (Num a, Ord a) => [a] -> a
productoPos = productoPred (>0)
-- Ejercicio 4. Las relaciones finitas se pueden representar mediante
-- listas de pares. Por ejemplo,
     r1, r2, r3 :: [(Int, Int)]
     r1 = [(1,3), (2,6), (8,9), (2,7)]
     r2 = [(1,3), (2,6), (8,9), (3,7)]
     r3 = [(1,3), (2,6), (8,9), (3,6)]
-- Definir la función
     esFuncion :: [(Int,Int)] -> Bool
-- tal que (esFuncion r) se verifica si la relación r es una función (es
-- decir, a cada elemento del dominio de la relación r le corresponde un
-- único elemento). Por ejemplo,
     esFuncion r1 == False
     esFuncion r2 == True
     esFuncion r3 == True
r1, r2, r3 :: [(Int, Int)]
r1 = [(1,3), (2,6), (8,9), (2,7)]
r2 = [(1,3), (2,6), (8,9), (3,7)]
r3 = [(1,3), (2,6), (8,9), (3,6)]
-- lª definición:
esFuncion :: [(Int,Int)] -> Bool
esFuncion r = and [length (imagenes x r) == 1 | x <- dominio r]
-- (dominio r) es el dominio de la relación r. Por ejemplo,
     dominio r1 == [1,2,8]
dominio :: [(Int, Int)] -> [Int]
dominio r = nub [x | (x,_) <- r]
-- (imagenes x r) es la lista de las imágenes de x en la relación r. Por
-- ejemplo,
     imagenes 2 r1 == [6,7]
imagenes :: Int -> [(Int, Int)] -> [Int]
```

```
imagenes x r = nub [y | (z,y) <- r, z == x]
-- 2º definición:
esFuncion2 :: (Eq a, Eq b) \Rightarrow [(a, b)] \rightarrow Bool
esFuncion2 r = [fst x | x <- nub r] == nub [fst x | x <- nub r]
-- Ejercicio 5. Se denomina cola de una lista xs a una sublista no vacía
-- de xs formada por un elemento y los siguientes hasta el final. Por
-- ejemplo, [3,4,5] es una cola de la lista [1,2,3,4,5].
-- Definir la función
     colas :: [a] -> [[a]]
-- tal que (colas xs) es la lista de las colas de la lista xs. Por
-- ejemplo,
     colas [] == []
colas [1,2] == [[1,2],[2]]
- -
     colas [4,1,2,5] == [[4,1,2,5],[1,2,5],[2,5],[5]]
colas :: [a] -> [[a]]
colas [] = []
colas (x:xs) = (x:xs) : colas xs
__ _______
-- Ejercicio 6.1. Se denomina cabeza de una lista xs a una sublista no
-- vacía de xs formada por el primer elemento y los siguientes hasta uno
-- dado. Por ejemplo, [1,2,3] es una cabeza de [1,2,3,4,5].
-- Definir, por recursión, la función
     cabezasR :: [a] -> [[a]]
-- tal que (cabezasR xs) es la lista de las cabezas de la lista xs. Por
-- ejemplo,
     cabezasR []
                         == []
     cabezasR [1,4] == [[1],[1,4]]
     cabezasR [1,4,5,2,3] == [[1],[1,4],[1,4,5],[1,4,5,2],[1,4,5,2,3]]
cabezasR :: [a] -> [[a]]
cabezasR []
             = []
cabezasR (x:xs) = [x] : [x:ys | ys <- cabezasR xs]
```

```
-- Ejercicio 6.2. Definir, por plegado, la función
     cabezasP :: [a] -> [[a]]
-- tal que (cabezasP xs) es la lista de las cabezas de la lista xs. Por
-- ejemplo,
     cabezasP []
                       == []
     cabezasP [1,4] == [[1],[1,4]]
     cabezasP [1,4,5,2,3] == [[1],[1,4],[1,4,5],[1,4,5,2],[1,4,5,2,3]]
cabezasP :: [a] -> [[a]]
cabezasP = foldr (\xys -> [x] : [x:y | y <- ys]) []
-- Ejercicio 6.3. Definir, por composición, la función
     cabezasC :: [a] -> [[a]]
-- tal que (cabezasC xs) es la lista de las cabezas de la lista xs. Por
-- ejemplo,
     cabezasC []
                       == []
     cabezasC [1,4] = [[1],[1,4]]
     cabezasC [1,4,5,2,3] == [[1],[1,4],[1,4,5],[1,4,5,2],[1,4,5,2,3]]
cabezasC :: [a] -> [[a]]
cabezasC = reverse . map reverse . colas . reverse
```

2.1.4. Examen 4 (11 de Febrero de 2011)

El examen es común con el del grupo 1 (ver página 75).

2.1.5. Examen 5 (14 de Marzo de 2011)

El examen es común con el del grupo 1 (ver página 77).

2.1.6. Examen 6 (15 de abril de 2011)

import Data.Array

```
import Test.QuickCheck
import Monticulo
-- Ejercicio 1.1. Definir la función
     mayor :: Ord a => Monticulo a -> a
-- tal que (mayor m) es el mayor elemento del montículo m. Por ejemplo,
     mayor (foldr inserta vacio [6,8,4,1]) == 8
  ______
mayor :: Ord a => Monticulo a -> a
mayor m | esVacio m = error "mayor: monticulo vacio"
       | otherwise = aux m (menor m)
       where aux m k \mid esVacio m = k
                    | otherwise = aux (resto m) (max k (menor m))
__ ______
-- Ejercicio 1.1. Definir la función
     minMax :: Ord a => Monticulo a -> Maybe (a,a)
-- tal que (minMax m) es un par con el menor y el mayor elemento de m
-- si el montículo no es vacío. Por ejemplo,
     minMax (foldr inserta vacio [6,1,4,8]) == Just (1,8)
     minMax (foldr inserta vacio [6,8,4,1]) == Just (1,8)
     minMax (foldr inserta vacio [7,5]) == Just (5,7)
minMax :: (Ord a) => Monticulo a -> Maybe (a,a)
minMax m | esVacio m = Nothing
        | otherwise = Just (menor m, mayor m)
-- Ejercicio 2.1. Consideremos el siguiente tipo de dato
     data Arbol a = H a \mid N \text{ (Arbol a)}
-- y el siguiente ejemplo,
     ejArbol :: Arbol Int
     ejArbol = N (N (H 1) 3 (H 4)) 5 (N (H 6) 7 (H 9))
-- Definir la función
      arbolMonticulo:: Ord t => Arbol t -> Monticulo t
-- tal que (arbolMonticulo a) es el montículo formado por los elementos
-- del árbol a. Por ejemplo,
     ghci> arbolMonticulo ejArbol
```

```
M 1 2 (M 4 1 (M 6 2 (M 9 1 Vacio Vacio) (M 7 1 Vacio Vacio)) Vacio)
          (M 3 1 (M 5 1 Vacio Vacio) Vacio)
data Arbol a = H a \mid N \text{ (Arbol a)}
ejArbol :: Arbol Int
ejArbol = N (N (H 1) 3 (H 4)) 5 (N (H 6) 7 (H 9))
arbolMonticulo:: Ord t => Arbol t -> Monticulo t
arbolMonticulo = lista2Monticulo . arbol2Lista
-- (arbol2Lista a) es la lista de los valores del árbol a. Por ejemplo,
     arbol2Lista ejArbol == [5,3,1,4,7,6,9]
arbol2Lista :: Arbol t -> [t]
arbol2Lista (H x) = [x]
arbol2Lista (N i x d) = x : (arbol2Lista i ++ arbol2Lista d)
-- (lista2Monticulo xs) es el montículo correspondiente a la lista
-- xs. Por ejemplo,
     ghci> lista2Monticulo [5,3,4,7]
     M 3 2 (M 4 1 (M 7 1 Vacio Vacio) Vacio) (M 5 1 Vacio Vacio)
lista2Monticulo :: Ord t => [t] -> Monticulo t
lista2Monticulo = foldr inserta vacio
-- Ejercicio 2.2. Definir la función
     minArbol :: Ord t => Arbol t -> t
-- tal que (minArbol a) es el menor elemento de a. Por ejemplo,
     minArbol ejArbol == 1
  _____
minArbol :: Ord t => Arbol t -> t
minArbol = menor . arbolMonticulo
__ _______
-- Ejercicio 3.1. Consideremos los tipos de los vectores y las matrices
-- definidos por
     type Vector a = Array Int a
     type Matriz a = Array (Int,Int) a
-- y los siguientes ejemplos
     p1, p2, p3 :: Matriz Double
     p1 = listArray((1,1),(3,3))[1.0,2,3,1,2,4,1,2,5]
```

```
p2 = listArray((1,1),(3,3))[1.0,2,3,1,3,4,1,2,5]
     p3 = listArray ((1,1),(3,3)) [1.0,2,1,0,4,7,0,0,5]
- -
-- Definir la función
     esTriangularS :: Num a => Matriz a -> Bool
-- tal que (esTriangularS p) se verifica si p es una matriz triangular
-- superior. Por ejemplo,
     esTriangularS p1 == False
     esTriangularS p3 == True
type Vector a = Array Int a
type Matriz a = Array (Int,Int) a
p1, p2, p3:: Matriz Double
p1 = listArray ((1,1),(3,3)) [1.0,2,3,1,2,4,1,2,5]
p2 = listArray((1,1),(3,3))[1.0,2,3,1,3,4,1,2,5]
p3 = listArray((1,1),(3,3))[1.0,2,1,0,4,7,0,0,5]
esTriangularS:: Num a => Matriz a -> Bool
esTriangularS p = and [p!(i,j) == 0 | i < [1..m], j < [1..n], i > j]
   where (,(m,n)) = bounds p
__ _______
-- Ejercicio 3.2. Definir la función
     determinante:: Matriz Double -> Double
-- tal que (determinante p) es el determinante de la matriz p. Por
-- ejemplo,
     ghci> determinante (listArray ((1,1),(3,3)) [2,0,0,0,3,0,0,0,1])
     ghci> determinante (listArray ((1,1),(3,3)) [1..9])
     0.0
     ghci> determinante (listArray ((1,1),(3,3)) [2,1,5,1,2,3,5,4,2])
  ______
determinante:: Matriz Double -> Double
determinante p
   | (m,n) == (1,1) = p!(1,1)
   | otherwise =
       sum [((-1)^{(i+1)})*(p!(i,1))*determinante (submatriz i 1 p)
           | i < [1..m]]
```

```
where (\_,(m,n)) = bounds p
-- (submatriz i j p) es la submatriz de p obtenida eliminado la fila i y
-- la columna j. Por ejemplo,
      ghci> submatriz 2 3 (listArray ((1,1),(3,3)) [2,1,5,1,2,3,5,4,2])
      array ((1,1),(2,2)) [((1,1),2),((1,2),1),((2,1),5),((2,2),4)]
      ghci> submatriz 2 3 (listArray ((1,1),(3,3)) [1..9])
      array ((1,1),(2,2)) [((1,1),1),((1,2),2),((2,1),7),((2,2),8)]
submatriz :: Num a => Int -> Int -> Matriz a -> Matriz a
submatriz i j p =
    array ((1,1), (m-1,n-1))
          [((k,l), p ! f k l) | k <- [1..m-1], l <- [1..n-1]]
   where (,(m,n)) = bounds p
          f k l | k < i \& l < j = (k,l)
                | k >= i \& k | < j = (k+1,l)
                | k < i \& k | >= j = (k, l+1)
                | otherwise
                                = (k+1, l+1)
-- Ejercicio 4.1. El número 22940075 tiene una curiosa propiedad. Si lo
-- factorizamos, obtenemos 22940075 = 5^2×229×4007. Reordenando y
-- concatenando los factores primos (5, 229, 40079 podemos obtener el
-- número original: 22940075.
-- Diremos que un número es especial si tiene esta propiedad.
-- Definir la función
      esEspecial :: Integer -> Bool
-- tal que (esEspecial n) se verifica si n es un número especial. Por
-- ejemplo,
      esEspecial 22940075 == True
      esEspecial 22940076 == False
esEspecial :: Integer -> Bool
esEspecial n =
    sort (concat (map cifras (nub (factorizacion n)))) == sort (cifras n)
-- (factorizacion n) es la lista de los factores de n. Por ejemplo,
      factorizacion 22940075 == [5,5,229,4007]
factorizacion :: Integer -> [Integer]
factorizacion n \mid n == 1 = []
                | otherwise = x : factorizacion (div n x)
```

```
where x = menorFactor n
-- (menorFactor n) es el menor factor primo de n. Por ejemplo,
     menorFactor 22940075 == 5
menorFactor :: Integer -> Integer
menorFactor n = head [x | x < [2..], rem n x == 0]
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
     cifras 22940075 == [2,2,9,4,0,0,7,5]
cifras :: Integer -> [Integer]
cifras n = [read [x] | x <- show n]
-- Ejercicio 4.2. Comprobar con QuickCheck que todos los números primos
-- son especiales.
-- La propiedad es
prop_Especial :: Integer -> Property
prop Especial n =
   esPrimo m ==> esEspecial m
   where m = abs n
-- (esPrimo n) se verifica si n es primo. Por ejemplo,
     esPrimo 7 == True
     esPrimo 9 == False
esPrimo :: Integer -> Bool
esPrimo x = [y \mid y < [1..x], x 'rem' y == 0] == [1,x]
2.1.7. Examen 7 (27 de mayo de 2011)
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 7º examen de evaluación continua (27 de mayo de 2011)
import Data.List
import Data.Array
import Test.QuickCheck
-- import GrafoConMatrizDeAdyacencia
import GrafoConVectorDeAdyacencia
```

```
-- Ejercicio 1. En los distintos apartados de este ejercicio
-- consideraremos relaciones binarias, representadas mediante una lista
-- de pares. Para ello, definimos el tipo de las relaciones binarias
-- sobre el tipo a.
      type RB a = [(a,a)]
-- Usaremos los siguientes ejemplos de relaciones
      r1, r2, r3 :: RB Int
      r1 = [(1,3),(3,1),(1,1),(3,3)]
      r2 = [(1,3),(3,1)]
      r3 = [(1,2),(1,4),(3,3),(2,1),(4,2)]
    Definir la función
      universo :: Eq a => RB a -> [a]
-- tal que (universo r) es la lista de elementos de la relación r. Por
-- ejemplo,
       universo r1 == [1,3]
       universo r3 == [1,2,3,4]
type RB a = [(a,a)]
r1, r2, r3 :: RB Int
r1 = [(1,3),(3,1),(1,1),(3,3)]
r2 = [(1,3),(3,1)]
r3 = [(1,2),(1,4),(3,3),(2,1),(4,2)]
-- lª definición:
universo :: Eq a => RB a -> [a]
universo r = \text{nub} (l1 ++ l2)
    where l1 = map fst r
          12 = map snd r
-- 2ª definición:
universo2 :: Eq a => RB a -> [a]
universo2 r = nub (concat [[x,y] | (x,y) < - r])
-- Ejercicio 1.2. Definir la función
      reflexiva:: RB Int -> Bool
-- tal que (reflexiva r) se verifica si r es una relación reflexiva en
-- su universo. Por ejemplo,
      reflexiva r1 == True
      reflexiva r2 == False
```

reflexiva:: RB Int -> Bool reflexiva r = and [(x,x) 'elem' r | x <- universo r]__ ______ -- Ejercicio 1.3. Dadas dos relaciones binarias R y S, la composición es -- la relación R o $S = \{(a,c) \mid existe b tal que aRb y bRc\}.$ -- Definir la función compRB:: RB Int -> RB Int -> RB Int -- tal que (compRB r1 r2) es la composición de las relaciones r1 y r2. -- Por ejemplo, compRB r1 r3 == [(1,3),(3,2),(3,4),(1,2),(1,4),(3,3)]compRB r3 r1 == [(3,1),(3,3),(2,3),(2,1)]-- ------- lª definición: compRB:: RB Int -> RB Int -> RB Int compRB r s = [(x,z) | (x,y) < -r, (y',z) < -s, y == y']-- 2º definición: compRB2:: RB Int -> RB Int -> RB Int compRB2 [] = []compRB2 ((x,y):r) s = compPar (x,y) s ++ compRB2 r s-- (compPar p r) es la relación obtenida componiendo el par p con la -- relación binaria r. Por ejemplo, compPar (5,1) r1 == [(5,3),(5,1)]compPar:: (Int,Int) -> RB Int -> RB Int compPar [] = [] compPar (x,y) ((z,t):r) | y == z = (x,t) : compPar (x,y) r | otherwise = compPar (x,y) r -- 3º definición: compRB3:: RB Int -> RB Int -> RB Int compRB3 r1 r2 = $[(x,z) \mid x < -universo r1, z < -universo r2,$ interRelacionados x z r1 r2] -- (interRelacionados x z r s) se verifica si existe un y tal que (x,y) -- está en r e (y,z) está en s. Por ejemplo. interRelacionados 3 4 r1 r3 == True interRelacionados :: Int -> Int -> RB Int -> RB Int -> Bool

```
interRelacionados x z r s =
    not (null [y \mid y < -universo r, (x,y) p 'elem' r, (y,z) 'elem' s])
-- Ejercicio 1.4. Definir la función
     transitiva:: RB Int -> Bool
-- tal que (transitiva r) se verifica si r es una relación
-- transitiva. Por ejemplo,
     transitiva r1 == True
     transitiva r2 == False
-- 1º solución:
transitiva :: RB Int -> Bool
transitiva r = and [(x,z) 'elem' r | (x,y) <- r, (y',z) <- r, y == y']
-- 2ª solución:
transitiva2 :: RB Int -> Bool
transitiva2 [] = True
transitiva2 r = and [trans par r | par <- r]
   where trans (x,y) r = and [(x,v) 'elem' r | (u,v) <- r, u == y ]
-- 3ª solución (usando la composición de relaciones):
transitiva3 :: RB Int -> Bool
transitiva3 r = contenida r (compRB r r)
    where contenida [] = True
          contenida (x:xs) ys = elem x ys && contenida xs ys
-- 4ª solución:
transitiva4 :: RB Int -> Bool
transitiva4 = not . noTransitiva
-- (noTransitiva r) se verifica si r no es transitiva; es decir, si
-- existe un (x,y), (y,z) en r tales que (x,z) no está en r.
noTransitiva :: RB Int -> Bool
noTransitiva r =
    not (null [(x,y,z) | (x,y,z) <- ls,
                         (x,y) 'elem' r, (y,z) 'elem' r,
                         (x,z) 'notElem' r])
    where l = universo r
         ls = [(x,y,z) | x <- l, y <- l, z <- l, x/=y, y /= z]
```

```
-- Ejercicio 2.1. Consideremos un grafo G = (V,E), donde V es un
-- conjunto finito de nodos ordenados y E es un conjunto de arcos. En un
-- grafo, la anchura de un nodo es el máximo de los valores absolutos de
-- la diferencia entre el valor del nodo y los de sus adyacentes; y la
-- anchura del grafo es la máxima anchura de sus nodos. Por ejemplo, en
-- el grafo
     g :: Grafo Int Int
     g = creaGrafo ND (1,5) [(1,2,1),(1,3,1),(1,5,1),
                              (2,4,1),(2,5,1),
                              (3,4,1),(3,5,1),
                              (4,5,1)
-- su anchura es 4 y el nodo de máxima anchura es el 5.
-- Definir la función
      anchura :: Grafo Int Int -> Int
-- tal que (anchuraG g) es la anchura del grafo g. Por ejemplo,
     anchura q == 4
q :: Grafo Int Int
g = creaGrafo ND (1,5) [(1,2,1),(1,3,1),(1,5,1),
                        (2,4,1),(2,5,1),
                        (3,4,1),(3,5,1),
                        (4,5,1)
anchura :: Grafo Int Int -> Int
anchura g = maximum [anchuraN g x | x <- nodos g]
-- (anchuraN g x) es la anchura del nodo x en el grafo g. Por ejemplo,
      anchuraN g 1 == 4
      anchuraN g 2 == 3
     anchuraN q 4 == 2
      anchuraN q 5 == 4
anchuraN :: Grafo Int Int -> Int -> Int
anchuraN g x = maximum (0 : [abs (x-v) | v < - adyacentes g x])
-- Ejercicio 2.2. Comprobar experimentalmente que la anchura del grafo
-- grafo cíclico de orden n es n-1.
-- La conjetura
conjetura :: Int -> Bool
```

```
conjetura n = anchura (grafoCiclo n) == n-1
-- (grafoCiclo n) es el grafo cíclico de orden n. Por ejemplo,
     ghci> grafoCiclo 4
     G ND (array (1,4) [(1,[(4,0),(2,0)]),(2,[(1,0),(3,0)]),
                       (3,[(2,0),(4,0)]),(4,[(3,0),(1,0)])]
grafoCiclo :: Int -> Grafo Int Int
grafoCiclo n = creaGrafo ND (1,n) xs
   where xs = [(x,x+1,0) \mid x < -[1..n-1]] ++ [(n,1,0)]
-- La comprobación es
     ghci> and [conjetura n | n <- [2..10]]
     True
-- Ejercicio 3.1. Se dice que una matriz es booleana si sus elementos
-- son los valores booleanos: True, False.
-- Definir la función
     sumaB :: Bool -> Bool -> Bool
-- tal que (sumaB x y) es falso si y sólo si ambos argumentos son
-- falsos.
sumaB :: Bool -> Bool -> Bool
sumaB = (||)
-- Ejercicio 3.2. Definir la función
     prodB :: Bool -> Bool -> Bool
-- tal que (prodB x y) es verdadero si y sólo si ambos argumentos son
-- verdaderos.
__ _______
prodB :: Bool -> Bool -> Bool
prodB = (\&\&)
-- Ejercicio 3.3. En los siguientes apartados usaremos los tipos
-- definidos a continuación:
-- * Los vectores son tablas cuyos índices son números naturales.
       type Vector a = Array Int a
-- * Las matrices son tablas cuyos índices son pares de números
```

```
naturales.
        type Matriz a = Array (Int,Int) a
- -
-- En los ejemplos se usarán las siguientes matrices:
      m1, m2 :: Matriz Bool
      m1 = array((1,1),(3,3))[((1,1),True),((1,2),False),((1,3),True),
                                ((2,1),False),((2,2),False),((2,3),False),
                                ((3,1),True), ((3,2),False),((3,3),True)]
     m2 = array((1,1),(3,3))[((1,1),False),((1,2),False),((1,3),True),
                                ((2,1),False),((2,2),False),((2,3),False),
                                ((3,1),True), ((3,2),False),((3,3),False)]
  También se usan las siguientes funciones definidas en las relaciones
  de ejercicios.
      numFilas :: Matriz a -> Int
      numFilas = fst . snd . bounds
      numColumnas:: Matriz a -> Int
      numColumnas = snd . snd . bounds
- -
      filaMat :: Int -> Matriz a -> Vector a
- -
      filaMat i p = array(1,n)[(j,p!(i,j)) | j <- [1..n]]
          where n = numColumnas p
      columnaMat :: Int -> Matriz a -> Vector a
      columnaMat j p = array (1,m) [(i,p!(i,j)) | i <- [1..m]]
          where m = numFilas p
-- Definir la función
      prodMatricesB :: Matriz Bool -> Matriz Bool -> Matriz Bool
-- tal que (prodMatricesB p q) es el producto de las matrices booleanas
-- p y q, usando la suma y el producto de booleanos, definidos
-- previamente. Por ejemplo,
      ghci> prodMatricesB m1 m2
      array ((1,1),(3,3)) [((1,1),True),((1,2),False),((1,3),True),
                           ((2,1),False),((2,2),False),((2,3),False),
                           ((3,1),True), ((3,2),False),((3,3),True)]
type Vector a = Array Int a
type Matriz a = Array (Int,Int) a
m1, m2 :: Matriz Bool
```

```
m1 = array((1,1),(3,3))[((1,1),True),((1,2),False),((1,3),True),
                          ((2,1),False),((2,2),False),((2,3),False),
                          ((3,1),True), ((3,2),False),((3,3),True)]
m2 = array((1,1),(3,3))[((1,1),False),((1,2),False),((1,3),True),
                          ((2,1),False),((2,2),False),((2,3),False),
                          ((3,1),True), ((3,2),False),((3,3),False)]
numFilas :: Matriz a -> Int
numFilas = fst . snd . bounds
numColumnas:: Matriz a -> Int
numColumnas = snd . snd . bounds
filaMat :: Int -> Matriz a -> Vector a
filaMat i p = array(1,n)[(j,p!(i,j)) | j <- [1..n]]
    where n = numColumnas p
columnaMat :: Int -> Matriz a -> Vector a
columnaMat j p = array (1,m) [(i,p!(i,j)) | i <- [1..m]]
    where m = numFilas p
prodMatricesB:: Matriz Bool -> Matriz Bool -> Matriz Bool
prodMatricesB p q =
    array ((1,1),(m,n))
          [((i,j), prodEscalarB (filaMat i p) (columnaMat j q)) |
           i \leftarrow [1..m], j \leftarrow [1..n]
    where m = numFilas p
          n = numColumnas q
-- (prodEscalarB v1 v2) es el producto escalar booleano de los vectores
-- v1 y v2.
prodEscalarB :: Vector Bool -> Vector Bool -> Bool
prodEscalarB v1 v2 =
    sumB [prodB i j | (i,j) <- zip (elems v1) (elems v2)]
    where sumB = foldr sumaB False
-- Ejercicio 3.4. Se considera la siguiente relación de orden entre
-- matrices: p es menor o igual que q si para toda posición (i,j), el
-- elemento de p en (i,j) es menor o igual que el elemento de q en la
-- posición (i,j). Definir la función
      menorMatricesB :: Ord a => Matriz a -> Matriz a -> Bool
-- tal que (menorMatricesB p q) se verifica si p es menor o igual que
```

```
-- q.
     menorMatricesB m1 m2 == False
     menorMatricesB m2 m1 == True
menorMatricesB :: Ord a => Matriz a -> Matriz a -> Bool
menorMatricesB p q =
   and [p!(i,j) \le q!(i,j) \mid i \le [1..m], j \le [1..n]]
       where m = numFilas p
             n = numColumnas p
-- Ejercicio 3.5. Dada una relación r sobre un conjunto de números
-- naturales mayores que 0, la matriz asociada a r es una matriz
-- booleana p, tal que p_ij = True si y sólo si i está relacionado con j
-- mediante la relación r. Definir la función
     matrizRB:: RB Int -> Matriz Bool
-- tal que (matrizRB r) es la matriz booleana asociada a r. Por ejemplo,
     ghci> matrizRB r1
     array ((1,1),(3,3)) [((1,1),True),((1,2),False),((1,3),True),
                          ((2,1),False),((2,2),False),((2,3),False),
                          ((3,1),True),((3,2),False),((3,3),True)]
     ghci> matrizRB r2
     array ((1,1),(3,3)) [((1,1),False),((1,2),False),((1,3),True),
                          ((2,1),False),((2,2),False),((2,3),False),
                          ((3,1),True),((3,2),False),((3,3),False)]
-- Nota: Construir una matriz booleana cuadrada, de dimensión nxn,
-- siendo n el máximo de los elementos del universo de r.
  matrizRB:: RB Int -> Matriz Bool
matrizRB r = array ((1,1),(n,n)) [((i,j),f(i,j)) | i <- [1..n],j<-[1..n]]
   where n = maximum (universo r)
         f(i,j) = (i,j) 'elem' r
-- Ejercicio 3.5. Se verifica la siguiente propiedad: r es una relación
-- transitiva si y sólo si M^2 <= M, siendo M la matriz booleana
-- asoociada a r, y M^2 el resultado de multiplicar M por M mediante
-- el producto booleano. Definir la función
     transitivaB :: RB Int -> Bool
-- tal que (transitivaB r) se verifica si r es una relación
```

2.1.8. Examen 8 (24 de Junio de 2011)

El examen es común con el del grupo 1 (ver página 88).

2.1.9. Examen 9 (8 de Julio de 2011)

El examen es común con el del grupo 1 (ver página 93).

2.1.10. Examen 10 (16 de Septiembre de 2011)

El examen es común con el del grupo 1 (ver página 100).

2.1.11. Examen 11 (22 de Noviembre de 2011)

El examen es común con el del grupo 1 (ver página 109).

2.2. Exámenes del grupo 4 (José A. Alonso y Agustín Riscos)

2.2.1. Examen 1 (25 de Octubre de 2010)

finales 3 [2,5,4,7,9,6] == [7,9,6]

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 1º examen de evaluación continua (25 de octubre de 2010)
-- -- Ejercicio 1. Definir la función finales tal que (finales n xs) es la
-- lista formada por los n finales elementos de xs. Por ejemplo,
```

```
finales n \times s = drop (length \times s - n) \times s
-- Ejercicio 2. Definir la función segmento tal que (segmento m n xs) es
-- la lista de los elementos de xs comprendidos entre las posiciones m y
-- n. Por ejemplo,
      segmento 3 4 [3,4,1,2,7,9,0] == [1,2]
      segmento 3 5 [3,4,1,2,7,9,0] == [1,2,7]
      segmento 5 3 [3,4,1,2,7,9,0] == []
segmento m n xs = drop (m-1) (take n <math>xs)
-- Ejercicio 3. Definir la función mediano tal que (mediano x y z) es el
-- número mediano de los tres números x, y y z. Por ejemplo,
      mediano 3 2 5 == 3
     mediano 2 4 5 == 4
     mediano 2 6 5 == 5
     mediano 2 6 6 == 6
-- lª definición:
mediano x y z = x + y + z- minimum [x,y,z] - maximum [x,y,z]
-- 2º definición:
mediano2 x y z
    | a <= x && x <= b = x
    | a <= y \& y <= b = y
    | otherwise
    where a = minimum [x,y,z]
          b = maximum [x,y,z]
-- Ejercicio 4. Definir la función distancia tal que (distancia p1 p2)
-- es la distancia entre los puntos p1 y p2. Por ejemplo,
      distancia (1,2) (4,6) == 5.0
distancia (x1,y1) (x2,y2) = sqrt((x1-x2)^2+(y1-y2)^2)
```

2.2.2. Examen 2 (22 de Noviembre de 2010)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 2º examen de evaluación continua (22 de noviembre de 2010)
-- Ejercicio 1. El doble factorial de un número n se define por
     n!! = n*(n-2)* ... * 3 * 1, si n es impar
     n!! = n*(n-2)* ... * 4 * 2, si n es par
     1!! = 1
     0!! = 1
-- Por ejemplo,
     8!! = 8*6*4*2 = 384
     9!! = 9*7*5*3*1 = 945
-- Definir, por recursión, la función
     dobleFactorial :: Integer -> Integer
-- tal que (dobleFactorial n) es el doble factorial de n. Por ejemplo,
     dobleFactorial 8 == 384
     dobleFactorial 9 == 945
dobleFactorial :: Integer -> Integer
dobleFactorial 0 = 1
dobleFactorial 1 = 1
dobleFactorial n = n * dobleFactorial (n-2)
__ ______
-- Ejercicio 2. Definir, por comprensión, la función
     sumaConsecutivos :: [Int] -> [Int]
-- tal que (sumaConsecutivos xs) es la suma de los pares de elementos
-- consecutivos de la lista xs. Por ejemplo,
     sumaConsecutivos [3,1,5,2] == [4,6,7]
     sumaConsecutivos [3] == []
sumaConsecutivos :: [Int] -> [Int]
sumaConsecutivos xs = [x+y | (x,y) <- zip xs (tail xs)]
-- Ejercicio 3. La distancia de Hamming entre dos listas es el número de
-- posiciones en que los correspondientes elementos son distintos. Por
```

```
-- ejemplo, la distancia de Hamming entre "roma" y "loba" es 2 (porque
-- hay 2 posiciones en las que los elementos correspondientes son
-- distintos: la 1º y la 3º).
-- Definir la función
      distancia :: Eq a => [a] -> [a] -> Int
-- tal que (distancia xs ys) es la distancia de Hamming entre xs e
-- ys. Por ejemplo,
     distancia "romano" "comino"
                                       2
      distancia "romano" "camino"
                                   == 3
     distancia "roma"
                                   == 2
                         "comino"
     distancia "roma" "camino"
     distancia "romano" "ron"
                                   == 1
     distancia "romano" "cama"
     distancia "romano" "rama"
                                   == 1
-- lª definición (por comprensión):
distancia :: Eq a => [a] -> [a] -> Int
distancia xs ys = sum [1 \mid (x,y) < -zip xs ys, x /= y]
-- 2ª definición (por recursión):
distancia2 :: Eq a => [a] -> [a] -> Int
distancia2 [] ys = 0
distancia2 xs [] = 0
distancia2 (x:xs) (y:ys) | x /= y = 1 + distancia2 xs ys
                         | otherwise = distancia2 xs ys
-- Ejercicio 4. La suma de la serie
      1/1^2 + 1/2^2 + 1/3^2 + 1/4^2 + \dots
-- es pi^2/6. Por tanto, pi se puede aproximar mediante la raíz cuadrada
-- de 6 por la suma de la serie.
-- Definir la función aproximaPi tal que (aproximaPi n) es la aproximación
-- de pi obtenida mediante n términos de la serie. Por ejemplo,
      aproximaPi 4 == 2.9226129861250305
      aproximaPi 1000 == 3.1406380562059946
-- 1º definición (por comprensión):
aproximaPi n = sqrt(6*sum [1/x^2 | x <- [1..n]])
```

```
-- 2^{\underline{a}} definición (por recursión):

aproximaPi2 n = sqrt(6 * aux n)

where aux 1 = 1

aux n = 1/n^2 + aux (n-1)
```

2.2.3. Examen 3 (20 de Diciembre de 2010)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 3º examen de evaluación continua (20 de diciembre de 2010)
__ ______
import Test.QuickCheck
-- Ejercicio 1. Definir, por recursión, la función
     sumaR :: Num b => (a -> b) -> [a] -> b
-- tal que (suma f xs) es la suma de los valores obtenido aplicando la
-- función f a lo elementos de la lista xs. Por ejemplo,
     sumaR (*2) [3,5,10] == 36
     sumaR (/10) [3,5,10] == 1.8
sumaR :: Num b => (a -> b) -> [a] -> b
sumaR f []
            = 0
sumaR f (x:xs) = f x + sumaR f xs
-- Ejercicio 2. Definir, por plegado, la función
     sumaP :: Num b => (a -> b) -> [a] -> b
-- tal que (suma f xs) es la suma de los valores obtenido aplicando la
-- función f a lo elementos de la lista xs. Por ejemplo,
     sumaP (*2) [3,5,10] == 36
     sumaP (/10) [3,5,10] == 1.8
sumaP :: Num b => (a -> b) -> [a] -> b
sumaP f = foldr (\xy -> fx + y) 0
-- Ejercicio 3. El enunciado del problema 1 de la Olimpiada
-- Iberoamericana de Matemática Universitaria del 2006 es el siguiente:
     Sean m y n números enteros mayores que 1. Se definen los conjuntos
```

```
P(m) = \{1/m, 2/m, ..., (m-1)/m\} \text{ y } P(n) = \{1/n, 2/n, ..., (n-1)/n\}.
     La distancia entre P(m) y P(n) es
     min \{|a - b| : a en P(m), b en P(n)\}.
-- Definir la función
     distancia :: Float -> Float -> Float
-- tal que (distancia m n) es la distancia entre P(m) y P(n). Por
-- ejemplo,
     distancia 2 7 == 7.142857e-2
     distancia 2 8 == 0.0
distancia :: Float -> Float -> Float
distancia m n =
   minimum [abs (i/m - j/n) \mid i < [1..m-1], j < [1..n-1]]
__ ______
-- Ejercicio 4.1. El enunciado del problema 580 de "Números y algo
-- más.." es el siguiente:
     ¿Cuál es el menor número que puede expresarse como la suma de 9,
     10 y 11 números consecutivos?
-- (El problema se encuentra en http://goo.gl/1K3t7 )
-- A lo largo de los distintos apartados de este ejercicio se resolverá
-- el problema.
-- Definir la función
     consecutivosConSuma :: Int -> Int -> [[Int]]
-- tal que (consecutivosConSuma x n) es la lista de listas de n números
-- consecutivos cuya suma es x. Por ejemplo,
     consecutivosConSuma 12 3 == [[3,4,5]]
     consecutivosConSuma 10 3 == []
  ______
consecutivosConSuma :: Int -> Int -> [[Int]]
consecutivosConSuma x n =
    [[y..y+n-1] \mid y < -[1..x], sum [y..y+n-1] == x]
-- Se puede hacer una definición sin búsqueda, ya que por la fórmula de
-- la suma de progresiones aritméticas, la expresión
     sum [y..y+n-1] == x
-- se reduce a
-- (y+(y+n-1))n/2 = x
```

```
-- De donde se puede despejar la y, ya que
     2yn+n^2-n = 2x
     y = (2x-n^2+n)/2n
-- De la anterior anterior se obtiene la siguiente definición de
-- consecutivosConSuma que no utiliza búsqueda.
consecutivosConSuma2 :: Int -> Int -> [[Int]]
consecutivosConSuma2 x n
    |z| = 0 \& \mod z (2*n) == 0 = [[y..y+n-1]]
    | otherwise
   where z = 2*x-n^2+n
         y = div z (2*n)
-- Ejercicio 4.2. Definir la función
     esSuma :: Int -> Int -> Bool
-- tal que (esSuma x n) se verifica si x es la suma de n números
-- naturales consecutivos. Por ejemplo,
     esSuma 12 3 == True
     esSuma 10 3 == False
esSuma :: Int -> Int -> Bool
esSuma x n = consecutivosConSuma x n /= []
-- También puede definirse directamente sin necesidad de
-- consecutivosConSuma como se muestra a continuación.
esSuma2 :: Int -> Int -> Bool
esSuma2 \times n = or [sum [y..y+n-1] == x | y <- [1..x]]
__ _______
-- Ejercicio 4.3. Definir la función
     menorQueEsSuma :: [Int] -> Int
-- tal que (menorQueEsSuma ns) es el menor número que puede expresarse
-- como suma de tantos números consecutivos como indica ns. Por ejemplo,
     menorQueEsSuma [3,4] == 18
-- Lo que indica que 18 es el menor número se puede escribir como suma
-- de 3 y de 4 números consecutivos. En este caso, las sumas son
--18 = 5+6+7 y 18 = 3+4+5+6.
menorQueEsSuma :: [Int] -> Int
menorQueEsSuma ns =
```

```
head [x \mid x \leftarrow [1..], and [esSuma x n \mid n \leftarrow ns]]
-- Ejercicio 4.4. Usando la función menorQueEsSuma calcular el menor
-- número que puede expresarse como la suma de 9, 10 y 11 números
-- consecutivos.
-- La solución es
     ghci> menorQueEsSuma [9,10,11]
     495
2.2.4. Examen 4 (11 de Febrero de 2011)
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 1º examen de evaluación continua (11 de febrero de 2011)
-- Ejercicio 1. (Problema 303 del proyecto Euler)
-- Definir la función
     multiplosRestringidos :: Int -> (Int -> Bool) -> [Int]
-- tal que (multiplosRestringidos n x) es la lista de los múltiplos de n
-- cuyas cifras verifican la propiedad p. Por ejemplo,
     take 4 (multiplosRestringidos 5 (<=3)) == [10,20,30,100]
     take 5 (multiplosRestringidos 3 (\leq4)) == [3,12,21,24,30]
     take 5 (multiplosRestringidos 3 even) == [6,24,42,48,60]
multiplosRestringidos :: Int -> (Int -> Bool) -> [Int]
multiplosRestringidos n p =
   [y \mid y < [n,2*n..], and [p x \mid x < - cifras y]]
-- (cifras n) es la lista de las cifras de n, Por ejemplo,
     cifras 327 == [3,2,7]
cifras :: Int -> [Int]
cifras n = [read [x] | x <- show n]
-- Ejercicio 2. Definir la función
     sumaDeDosPrimos :: Int -> [(Int,Int)]
-- tal que (sumaDeDosPrimos n) es la lista de las distintas
```

```
-- descomposiciones de n como suma de dos nuúmeros primos. Por ejemplo,
      sumaDeDosPrimos 30 = [(7,23),(11,19),(13,17)]
-- Calcular, usando la función sumaDeDosPrimos, el menor número que
-- puede escribirse de 10 formas distintas como suma de dos primos.
sumaDeDosPrimos :: Int -> [(Int,Int)]
sumaDeDosPrimos n =
    [(x,n-x) \mid x < - primosN, x < n-x, n-x 'elem' primosN]
    where primosN = takeWhile (<=n) primos
-- primos es la lista de los números primos
primos :: [Int]
primos = criba [2..]
    where criba []
                    = []
          criba (n:ns) = n : criba (elimina n ns)
          elimina n xs = [x \mid x \leftarrow xs, x \pmod n \neq 0]
-- El cálculo es
      ghci> head [x \mid x <- [1..], length (sumaDeDosPrimos x) == 10]
-- Ejercicio 3. Se consideran los árboles binarios
-- definidos por
      data Arbol = H Int
                 | N Arbol Int Arbol
                 deriving (Show, Eq)
-- Por ejemplo, el árbol
           5
          /\
             7
        9
      /\ /\
      1 46 8
-- se representa por
      N (N (H 1) 9 (H 4)) 5 (N (H 6) 7 (H 8))
-- Definir la función
     maximoArbol :: Arbol -> Int
-- tal que (maximoArbol a) es el máximo valor en el árbol a. Por
-- ejemplo,
     maximoArbol (N (N (H 1) 9 (H 4)) 5 (N (H 6) 7 (H 8))) == 9
```

```
data Arbol = H Int
          | N Arbol Int Arbol
          deriving (Show, Eq)
maximoArbol :: Arbol -> Int
maximoArbol(Hx) = x
maximoArbol (N i x d) = maximum [x, maximoArbol i, maximoArbol d]
-- Ejercicio 4. Definir la función
     segmentos :: (a -> Bool) -> [a] -> [a]
-- tal que (segmentos p xs) es la lista de los segmentos de xs de cuyos
-- elementos verifican la propiedad p. Por ejemplo,
     segmentos even [1,2,0,4,5,6,48,7,2] == [[],[2,0,4],[6,48],[2]]
  ______
segmentos [] = []
segmentos p xs =
   takeWhile p xs : segmentos p (dropWhile (not.p) (dropWhile p xs))
2.2.5.
        Examen 5 (14 de Marzo de 2011)
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 5º examen de evaluación continua (14 de marzo de 2011)
-- Ejercicio 1. Se consideran las funciones
     duplica :: [a] -> [a]
     longitud :: [a] -> Int
-- tales que
     (duplica xs) es la lista obtenida duplicando los elementos de xs y
     (longitud xs) es el número de elementos de xs.
-- Por ejemplo,
     duplica [7,2,5] == [7,7,2,2,5,5]
     longitud [7,2,5] == 3
-- Las definiciones correspondientes son
     duplica[] = []
                                      -- duplica.1
     duplica (x:xs) = x:x:duplica xs -- duplica.2
- -
- -
```

```
-- longitud.1
      longitud [] = 0
      longitud (x:xs) = 1 + longitud xs -- longitud.2
- -
-- Demostrar por inducción que
     longitud (duplica xs) = 2 * longitud xs
{ -
Demostración: Hay que demostrar que
    longitud (duplica xs) = 2 * longitud xs
Lo haremos por inducción en xs.
Caso base: Hay que demostrar que
    longitud (duplica []) = 2 * longitud []
En efecto
    longitud (duplica xs)
    = longitud []
                             [por duplica.1]
                             [por longitud.1]
    = 0
   = 2 * 0
                             [por aritmética]
    = longitud []
                             [por longitud.1]
Paso de inducción: Se supone la hipótesis de inducción
    longitud (duplica xs) = 2 * longitud xs
Hay que demostrar que
   longitud (duplica (x:xs)) = 2 * longitud (x:xs)
En efecto,
    longitud (duplica (x:xs))
    = longitud (x:x:duplica xs)
                                      [por duplica.2]
                                      [por longitud.2]
    = 1 + longitud (x:duplica xs)
    = 1 + 1 + longitud (duplica xs)
                                      [por longitud.2]
    = 1 + 1 + 2*(longitud xs)
                                      [por hip. de inducción]
    = 2 * (1 + longitud xs)
                                      [por aritmética]
    = 2 * longitud (x:xs)
                                      [por longitud.2]
- }
-- Ejercicio 2. Las expresiones aritméticas pueden representarse usando
-- el siguiente tipo de datos
      data Expr = N Int | S Expr Expr | P Expr Expr
                deriving Show
-- Por ejemplo, la expresión 2*(3+7) se representa por
      P (N 2) (S (N 3) (N 7))
-- Definir la función
```

```
valor :: Expr -> Int
-- tal que (valor e) es el valor de la expresión aritmética e. Por
-- ejemplo,
    valor(P(N 2)(S(N 3)(N 7))) == 20
data Expr = N Int | S Expr Expr | P Expr Expr
          deriving Show
valor :: Expr -> Int
valor(N x) = x
valor (S x y) = valor x + valor y
valor (P \times y) = valor \times * valor y
-- Ejercicio 3. Definir la función
     esFib :: Int -> Bool
-- tal que (esFib x) se verifica si existe un número n tal que x es el
-- n-ésimo término de la sucesión de Fibonacci. Por ejemplo,
     esFib 89 == True
     esFib 69 == False
esFib :: Int -> Bool
esFib n = n == head (dropWhile (< n) fibs)
-- fibs es la sucesión de Fibonacci. Por ejemplo,
      take 10 fibs == [0,1,1,2,3,5,8,13,21,34]
fibs :: [Int]
fibs = 0:1:[x+y \mid (x,y) <-zip fibs (tail fibs)]
-- Ejercicio 4 El ejercicio 4 de la Olimpiada Matemáticas de 1993 es el
-- siguiente:
      Demostrar que para todo número primo p distinto de 2 y de 5,
      existen infinitos múltiplos de p de la forma 1111.....1 (escrito
      sólo con unos).
-- Definir la función
     multiplosEspeciales :: Integer -> Int -> [Integer]
-- tal que (multiplosEspeciales p n) es una lista de n múltiplos p de la
-- forma 1111...1 (escrito sólo con unos), donde p es un número primo
-- distinto de 2 y 5. Por ejemplo,
```

```
multiplosEspeciales 7 2 == [111111,1111111111]
-- lª definición
multiplosEspeciales :: Integer -> Int -> [Integer]
multiplosEspeciales p n = take n [x \mid x < -unos, mod x p == 0]
-- unos es la lista de los números de la forma 111...1 (escrito sólo con
-- unos). Por ejemplo,
     take 5 unos == [1,11,111,1111,1111]
unos :: [Integer]
unos = 1 : [10*x+1 | x <- unos]
-- Otra definición no recursiva de unos es
unos2 :: [Integer]
unos2 = [div (10^n-1) 9 | n < - [1..]]
-- 2ª definición (sin usar unos)
multiplosEspeciales2 :: Integer -> Int -> [Integer]
multiplosEspeciales2 p n =
    [div (10^{(p-1)*x})-1) 9 | x <- [1..fromIntegral n]]
```

2.2.6. Examen 6 (11 de Abril de 2011)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 6º examen de evaluación continua (11 de abril de 2011)

import Data.List
import Data.Array
import Monticulo

-- Ejercicio 1. Las expresiones aritméticas pueden representarse usando
-- el siguiente tipo de datos
-- data Expr = N Int | V Char | S Expr Expr | P Expr Expr
-- deriving Show
-- Por ejemplo, la expresión 2*(a+5) se representa por
-- P (N 2) (S (V 'a') (N 5))
--
-- Definir la función
```

```
valor :: Expr -> [(Char,Int)] -> Int
-- tal que (valor x e) es el valor de la expresión x en el entorno e (es
-- decir, el valor de la expresión donde las variables de x se sustituyen
-- por los valores según se indican en el entorno e). Por ejemplo,
               ghci> valor (P (N 2) (S (V 'a') (V 'b'))) [('a',2),('b',5)]
data Expr = N Int | V Char | S Expr Expr | P Expr Expr
                         deriving Show
valor :: Expr -> [(Char,Int)] -> Int
valor (N x) e = x
valor (V \times X) e = head [y \mid (z,y) < -e, z == x]
valor (S \times y) = valor \times e + valor y = valor x = valor y = valor 
valor (P \times y) = valor \times e * valor y e
-- Ejercicio 2. Definir la función
               ocurrencias :: Ord a => a -> Monticulo a -> Int
-- tal que (ocurrencias x m) es el número de veces que ocurre el
-- elemento x en el montículo m. Por ejemplo,
               ocurrencias 7 (foldr inserta vacio [6,1,7,8,7,5,7]) == 3
ocurrencias :: Ord a => a -> Monticulo a -> Int
ocurrencias x m
           \mid esVacio m = 0
           | x < mm
                                   = 0
           \mid x == mm = 1 + ocurrencias x rm
           | otherwise = ocurrencias x rm
          where mm = menor m
                          rm = resto m
-- Ejercicio 3. Se consideran los tipos de los vectores y de las
-- matrices definidos por
               type Vector a = Array Int a
               type Matriz a = Array (Int,Int) a
-- Definir la función
               diagonal :: Num a => Vector a -> Matriz a
-- tal que (diagonal v) es la matriz cuadrada cuya diagonal es el vector
```

```
-- v. Por ejemplo,
      ghci> diagonal (array (1,3) [(1,7),(2,6),(3,5)])
      array ((1,1),(3,3)) [((1,1),7),((1,2),0),((1,3),0),
                           ((2,1),0),((2,2),6),((2,3),0),
                           ((3,1),0),((3,2),0),((3,3),5)
type Vector a = Array Int a
type Matriz a = Array (Int,Int) a
diagonal :: Num a => Vector a -> Matriz a
diagonal v =
    array ((1,1),(n,n))
          [((i,j),f i j) | i <- [1..n], j <- [1..n]]
    where n = snd (bounds v)
          f i j | i == j
                          = v!i
                | otherwise = 0
-- Ejercicio 4. El enunciado del problema 652 de "Números y algo más" es
-- el siguiente
      Si factorizamos los factoriales de un número en función de sus
      divisores primos y sus potencias, ¿Cuál es el menor número N tal
      que entre los factores primos y los exponentes de estos, N!
      contiene los dígitos del cero al nueve?
      Por ejemplo
          6! = 2^4*3^2*5^1, le faltan los dígitos 0,6,7,8 y 9
         12! = 2^{10*}3^{5*}5^{2*}7^{1*}11^{1}, le faltan los dígitos 4,6,8 y 9
-- Definir la función
      digitosDeFactorizacion :: Integer -> [Integer]
-- tal que (digitosDeFactorizacion n) es el conjunto de los dígitos que
-- aparecen en la factorización de n. Por ejemplo,
      digitosDeFactorizacion (factorial 6) == [1,2,3,4,5]
      digitosDeFactorizacion (factorial 12) == [0,1,2,3,5,7]
-- Usando la función anterior, calcular la solución del problema.
digitosDeFactorizacion :: Integer -> [Integer]
digitosDeFactorizacion n =
   sort (nub (concat [digitos x | x <- numerosDeFactorizacion n]))</pre>
-- (digitos n) es la lista de los digitos del número n. Por ejemplo,
```

```
digitos 320274 == [3,2,0,2,7,4]
digitos :: Integer -> [Integer]
digitos n = [read [x] | x <- show n]
-- (numerosDeFactorizacion n) es el conjunto de los números en la
-- factorización de n. Por ejemplo,
      numerosDeFactorizacion 60 == [1,2,3,5]
numerosDeFactorizacion :: Integer -> [Integer]
numerosDeFactorizacion n =
   sort (nub (aux (factorizacion n)))
  where aux [] = []
         aux((x,y):zs) = x : y : aux zs
-- (factorización n) es la factorización de n. Por ejemplo,
      factorizacion 300 == [(2,2),(3,1),(5,2)]
factorizacion :: Integer -> [(Integer,Integer)]
factorizacion n =
    [(head xs, fromIntegral (length xs)) | xs <- group (factorizacion' n)]</pre>
-- (factorizacion' n) es la lista de todos los factores primos de n; es
-- decir, es una lista de números primos cuyo producto es n. Por ejemplo,
      factorizacion 300 = [2,2,3,5,5]
factorizacion' :: Integer -> [Integer]
factorizacion' n \mid n == 1 = []
                 | otherwise = x : factorizacion' (div n x)
                 where x = menorFactor n
-- (menorFactor n) es el menor factor primo de n. Por ejemplo,
      menorFactor 15 == 3
menorFactor :: Integer -> Integer
menorFactor n = head [x \mid x < - [2..], rem n x == 0]
-- (factorial n) es el factorial de n. Por ejemplo,
      factorial 5 == 120
factorial :: Integer -> Integer
factorial n = product [1..n]
-- Para calcular la solución, se define la constante
solucion =
    head [n \mid n < [1..], digitosDeFactorizacion (factorial n) == [0..9]]
-- El cálculo de la solución es
     ghci> solucion
```

-- 49

2.2.7. Examen 7 (23 de Mayo de 2011)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 7º examen de evaluación continua (23 de mayo de 2011)
__ ______
import Data.Array
import GrafoConVectorDeAdyacencia
import RecorridoEnAnchura
-- Ejercicio 1. Se considera que los puntos del plano se representan por
-- pares de números como se indica a continuación
     type Punto = (Double, Double)
-- Definir la función
     cercanos :: [Punto] -> [Punto] -> (Punto, Punto)
-- tal que (cercanos ps qs) es un par de puntos, el primero de ps y el
-- segundo de qs, que son los más cercanos (es decir, no hay otro par
-- (p',q') con p' en ps y q' en qs tales que la distancia entre p' y q'
-- sea menor que la que hay entre p y q). Por ejemplo,
     ghci> cercanos [(2,5),(3,6)] [(4,3),(1,0),(7,9)]
     ((2.0,5.0),(4.0,3.0))
type Punto = (Double, Double)
cercanos :: [Punto] -> [Punto] -> (Punto,Punto)
cercanos ps qs = (p,q)
   where (d,p,q) = minimum [(distancia p q, p, q) | p <- ps, q <-qs]
         distancia (x,y) (u,v) = sqrt ((x-u)^2+(y-v)^2)
-- Ejercicio 2. Las relaciones binarias pueden representarse mediante
-- conjuntos de pares de elementos.
-- Definir la función
     simetrica :: Eq a \Rightarrow [(a,a)] \rightarrow Bool
-- tal que (simetrica r) se verifica si la relación binaria r es
-- simétrica. Por ejemplo,
```

```
simetrica [(1,3),(2,5),(3,1),(5,2)] == True
     simetrica[(1,3),(2,5),(3,1),(5,3)] == False
simetrica :: Eq a \Rightarrow [(a,a)] \rightarrow Bool
simetrica [] = True
simetrica ((x,y):r)
    | x == y = True
    | otherwise = elem (y,x) r && simetrica (borra (y,x) r)
-- (borra x ys) es la lista obtenida borrando el elemento x en ys. Por
-- ejemplo,
     borra 2 [3,2,5,7,2,3] == [3,5,7,3]
borra :: Eq a => a -> [a] -> [a]
borra x ys = [y \mid y < -ys, y /= x]
-- Ejercicio 3. Un grafo no dirigido G se dice conexo, si para cualquier
-- par de vértices u y v en G, existe al menos una trayectoria (una
-- sucesión de vértices adyacentes) de u a v.
-- Definirla función
     conexo :: (Ix a, Num p) => Grafo a p -> Bool
-- tal que (conexo g) se verifica si el grafo g es conexo. Por ejemplo,
     conexo (creaGrafo False (1,3) [(1,2,0),(3,2,0)]) == True
     conexo (creaGrafo False (1,4) [(1,2,0),(3,4,0)]) == False
conexo :: (Ix a, Num p) => Grafo a p -> Bool
conexo g = length (recorridoEnAnchura i g) == n
   where xs = nodos g
         i = head xs
         n = length xs
-- Ejercicio 4. Se consideran los tipos de los vectores y de las
-- matrices definidos por
     type Vector a = Array Int a
     type Matriz a = Array (Int,Int) a
-- y, como ejemplo, la matriz q definida por
     q :: Matriz Int
     q = array((1,1),(2,2))[((1,1),1),((1,2),1),((2,1),1),((2,2),0)]
```

```
-- Definir la función
      potencia :: Num a => Matriz a -> Int -> Matriz a
-- tal que (potencia p n) es la potencia n-ésima de la matriz cuadrada
-- p. Por ejemplo,
      ghci> potencia q 2
      array ((1,1),(2,2)) [((1,1),2),((1,2),1),((2,1),1),((2,2),1)]
      ghci> potencia q 3
      array ((1,1),(2,2)) [((1,1),3),((1,2),2),((2,1),2),((2,2),1)]
      ghci> potencia q 4
      array ((1,1),(2,2)) [((1,1),5),((1,2),3),((2,1),3),((2,2),2)]
-- ¿Qué relación hay entre las potencias de la matriz q y la sucesión de
-- Fibonacci?
type Vector a = Array Int a
type Matriz a = Array (Int,Int) a
q :: Matriz Int
q = array((1,1),(2,2))[((1,1),1),((1,2),1),((2,1),1),((2,2),0)]
potencia :: Num a => Matriz a -> Int -> Matriz a
potencia p 0 = identidad (numFilas p)
potencia p (n+1) = prodMatrices p (potencia p n)
-- (identidad n) es la matriz identidad de orden n. Por ejemplo,
      ghci> identidad 3
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),0),
                           ((2,1),0),((2,2),1),((2,3),0),
                           ((3,1),0),((3,2),0),((3,3),1)
identidad :: Num a => Int -> Matriz a
identidad n =
    array ((1,1),(n,n))
          [((i,j),f i j) | i <- [1..n], j <- [1..n]]
    where fij | i == j = 1
                | otherwise = 0
-- (prodEscalar v1 v2) es el producto escalar de los vectores v1
-- y v2. Por ejemplo,
      ghci> prodEscalar (listArray (1,3) [3,2,5]) (listArray (1,3) [4,1,2])
prodEscalar :: Num a => Vector a -> Vector a -> a
prodEscalar v1 v2 =
    sum [i*j \mid (i,j) \leftarrow zip \text{ (elems v1) (elems v2)}]
```

```
-- (filaMat i p) es el vector correspondiente a la fila i-ésima
-- de la matriz p. Por ejemplo,
      filaMat 2 q == array (1,2) [(1,1),(2,0)]
filaMat :: Num a => Int -> Matriz a -> Vector a
filaMat i p = array(1,n)[(j,p!(i,j)) | j <- [1..n]]
   where n = numColumnas p
-- (columnaMat j p) es el vector correspondiente a la columna
-- j-ésima de la matriz p. Por ejemplo,
      columnaMat 2 q == array (1,2) [(1,1),(2,0)]
columnaMat :: Num a => Int -> Matriz a -> Vector a
columnaMat j p = array (1,m) [(i,p!(i,j)) | i <- [1..m]]
    where m = numFilas p
-- (numFilas m) es el número de filas de la matriz m. Por ejemplo,
      numFilas q == 2
numFilas :: Num a => Matriz a -> Int
numFilas = fst . snd . bounds
-- (numColumnas m) es el número de columnas de la matriz m. Por ejemplo,
      numColumnas q == 2
numColumnas:: Num a => Matriz a -> Int
numColumnas = snd . snd . bounds
-- (prodMatrices p q) es el producto de las matrices p y q. Por ejemplo,
      ghci> prodMatrices q q
      array ((1,1),(2,2)) [((1,1),2),((1,2),1),((2,1),1),((2,2),1)]
prodMatrices :: Num a => Matriz a -> Matriz a
prodMatrices p q =
    array ((1,1),(m,n))
          [((i,j), prodEscalar (filaMat i p) (columnaMat j q)) |
           i \leftarrow [1..m], j \leftarrow [1..n]
    where m = numFilas p
          n = numColumnas q
-- Los sucesión de Fibonacci es 0,1,1,2,3,5,8,13,... Se observa que los
-- elementos de (potencia q n) son los términos de la sucesión en los
-- lugares n+1, n, n y n-1.
```

2.2.8. Examen 8 (24 de Junio de 2011)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 8º examen de evaluación continua (24 de junio de 2011)
import Test.QuickCheck
import Data.Array
-- Ejercicio 1. Definir la función
     ordena :: (a -> a -> Bool) -> [a] -> [a]
-- tal que (ordena r xs) es la lista obtenida ordenando los elementos de
-- xs según la relación r. Por ejemplo,
    ghci> ordena (x y -> abs x < abs y) [-6,3,7,-9,11]
    [3, -6, 7, -9, 11]
    ghci> ordena (x y \rightarrow length x < length y) [[2,1],[3],[],[1]]
    [[],[3],[1],[2,1]]
ordena :: (a -> a -> Bool) -> [a] -> [a]
ordena [] = []
ordena r (x:xs) =
   (ordena r menores) ++ [x] ++ (ordena r mayores)
       where menores = [y \mid y < -xs, ryx]
            mayores = [y \mid y < -xs, not (r y x)]
__ _______
-- Ejercicio 2. Se consideran el tipo de las matrices definido por
     type Matriz a = Array (Int,Int) a
-- y, como ejemplo, la matriz q definida por
     q :: Matriz Int
     q = array((1,1),(2,2))[((1,1),3),((1,2),2),((2,1),3),((2,2),1)]
-- Definir la función
     indicesMaximo :: (Num a, Ord a) => Matriz a -> [(Int,Int)]
-- tal que (indicesMaximo p) es la lista de los índices del elemento
-- máximo de la matriz p. Por ejemplo,
     indicesMaximo q == [(1,1),(2,1)]
type Matriz a = Array (Int,Int) a
```

```
q :: Matriz Int
q = array((1,1),(2,2))[((1,1),3),((1,2),2),((2,1),3),((2,2),1)]
indicesMaximo :: (Num a, Ord a) => Matriz a -> [(Int,Int)]
indicesMaximo p = [(i,j) | (i,j) < - indices p, p!(i,j) == m]
    where m = maximum (elems p)
-- Ejercicio 3. Los montículo se pueden representar mediante el
-- siguiente tipo de dato algebraico.
      data Monticulo = Vacio
                     | M Int Monticulo Monticulo
                     deriving Show
-- Por ejemplo, el montículo
           1
       5
      /\
      7
          6 8
-- se representa por
     m1, m2, m3 :: Monticulo
     m1 = M 1 m2 m3
     m2 = M 5 (M 7 Vacio Vacio) (M 6 Vacio Vacio)
     m3 = M 4 (M 8 Vacio Vacio) Vacio
-- Definir las funciones
      ramaDerecha :: Monticulo -> [Int]
      rango :: Monticulo -> Int
-- tales que (ramaDerecha m) es la rama derecha del montículo m. Por ejemplo,
      ramaDerecha m1 == [1,4]
      ramaDerecha m2 == [5,6]
      ramaDerecha m3 == [4]
-- y (rango m) es el rango del montículo m; es decir, la menor distancia
-- desde la raíz de m a un montículo vacío. Por ejemplo,
      rango m1
      rango m2
                      ==
                          2
      rango m3
                     == 1
data Monticulo = Vacio
               | M Int Monticulo Monticulo
               deriving Show
```

```
m1, m2, m3 :: Monticulo
m1 = M 1 m2 m3
m2 = M 5 (M 7 Vacio Vacio) (M 6 Vacio Vacio)
m3 = M 4 (M 8 Vacio Vacio) Vacio
ramaDerecha :: Monticulo -> [Int]
ramaDerecha Vacio = []
ramaDerecha (M v i d) = v : ramaDerecha d
rango :: Monticulo -> Int
rango Vacio = 0
rango (M 	 i 	 d) = 1 + min (rango i) (rango d)
-- Ejercicio 4.1. Los polinomios pueden representarse mediante listas
-- dispersas. Por ejemplo, el polinomio x^5+3x^4-5x^2+x-7 se representa
-- por [1,3,0,-5,1,-7]. En dicha lista, obviando el cero, se producen
-- tres cambios de signo: del 3 al -5, del -5 al 1 y del 1 al
-- -7. Llamando C(p) al número de cambios de signo en la lista de
-- coeficientes del polinomio p(x), tendríamos entonces que en este caso
-- C(p)=3.
-- La regla de los signos de Descartes dice que el número de raíces
-- reales positivas de una ecuación polinómica con coeficientes reales
-- igualada a cero es, como mucho, igual al número de cambios de signo
-- que se produzcan entre sus coeficientes (obviando los ceros). Por
-- ejemplo, en el caso anterior la ecuación tendría como mucho tres
-- soluciones reales positivas, ya que C(p)=3.
-- Además, si la cota C(p) no se alcanza, entonces el número de raíces
-- positivas de la ecuación difiere de ella un múltiplo de dos. En el
-- ejemplo anterior esto significa que la ecuación puede tener tres
-- raíces positivas o tener solamente una, pero no podría ocurrir que
-- tuviera dos o que no tuviera ninguna.
-- Definir, por comprensión, la función
      cambiosC :: [Int] -> [(Int,Int)]
-- tal que (cambiosC xs) es la lista de los pares de elementos de xs con
-- signos distintos, obviando los ceros. Por ejemplo,
      cambiosC [1,3,0,-5,1,-7] == [(3,-5),(-5,1),(1,-7)]
```

```
cambiosC :: [Int] -> [(Int,Int)]
cambiosC xs = [(x,y) | (x,y) < -consecutivos (noCeros <math>xs), x*y < 0]
   where consecutivos xs = zip xs (tail xs)
-- (noCeros xs) es la lista de los elementos de xs distintos de cero.
-- Por ejemplo,
     noCeros [1,3,0,-5,1,-7] == [1,3,-5,1,-7]
noCeros = filter (/=0)
-- Ejercicio 4.2. Definir, por recursión, la función
     cambiosR :: [Int] -> [(Int,Int)]
-- tal que (cambiosR xs) es la lista de los pares de elementos de xs con
-- signos distintos, obviando los ceros. Por ejemplo,
     cambiosR [1,3,0,-5,1,-7] == [(3,-5),(-5,1),(1,-7)]
cambiosR :: [Int] -> [(Int,Int)]
cambiosR xs = cambiosR' (noCeros xs)
   where cambiosR' (x:y:xs)
             | x*y < 0 = (x,y) : cambiosR'(y:xs)
             | otherwise = cambiosR' (y:xs)
         cambiosR' _ = []
-- Ejercicio 4.3. Comprobar con QuickCheck que las dos definiciones son
-- equivalentes.
-- La propiedad es
prop_cambios :: [Int] -> Bool
prop cambios xs =
   cambiosC xs == cambiosR xs
-- La comprobación es
     ghci> quickCheck prop cambios
     +++ OK, passed 100 tests.
-- Ejercicio 4.4. Usando las anteriores definiciones y la regla de
-- Descartes, definir la función
     nRaicesPositivas :: [Int] -> [Int]
-- tal que (nRaicesPositivas p) es la lista de los posibles números de
```

```
-- raíces positivas del polinomio p (representado mediante una lista
-- dispersa) según la regla de los signos de Descartes. Por ejemplo,
      nRaicesPositivas [1,3,0,-5,1,-7] == [3,1]
-- que significa que la ecuación x^5+3x^4-5x^2+x-7=0 puede tener 3 ó 1
-- raíz positiva.
nRaicesPositivas :: [Int] -> [Int]
nRaicesPositivas xs = [n, n-2..0]
   where n = length (cambiosC xs)
-- Nota: El ejercicio 4 está basado en el artículo de Gaussiano "La
-- regla de los signos de Descartes" http://bit.ly/iZXybH
-- Ejercicio 5.1. Se considera la siguiente enumeración de los pares de
-- números naturales
      (0,0),
      (0,1), (1,0),
      (0,2), (1,1), (2,0),
      (0,3), (1,2), (2,1), (3,0),
      (0,4), (1,3), (2,2), (3,1), (4,0),
      (0,5), (1,4), (2,3), (3,2), (4,1), (5,0), ...
-- Definir la función
      siguiente :: (Int,Int) -> (Int,Int)
-- tal que (siguiente (x,y)) es el siguiente del término (x,y) en la
-- enumeración. Por ejemplo,
      siguiente (2,0) == (0,3)
      siguiente (0,3) == (1,2)
      siguiente (1,2) == (2,1)
siguiente :: (Int,Int) -> (Int,Int)
siguiente (x,0) = (0,x+1)
siguiente (x,y) = (x+1,y-1)
-- Ejercicio 5.2. Definir la constante
      enumeracion :: [(Int,Int)]
-- tal que enumeracion es la lista que representa la anterior
```

```
-- enumeracion de los pares de números naturales. Por ejemplo,
      take 6 enumeracion == [(0,0),(0,1),(1,0),(0,2),(1,1),(2,0)]
      enumeracion !! 9 == (3,0)
enumeracion :: [(Int,Int)]
enumeracion = iterate siguiente (0,0)
-- Ejercicio 5.3. Definir la función
         posicion :: (Int,Int) -> Int
      tal que (posicion p) es la posición del par p en la
      enumeración. Por ejemplo,
         posicion (3,0) == 9
         posicion (1,2) == 7
posicion :: (Int,Int) -> Int
posicion (x,y) = length (takeWhile (/= (x,y)) enumeracion)
-- Ejercicio 5.4. Definir la propiedad
      prop posicion :: Int -> Bool
-- tal que (prop posicion n) se verifica si para los n primeros términos
-- (x,y) de la enumeración se cumple que
      posicion (x,y) == (x+y)*(x+y+1) 'div' 2 + x
-- Comprobar si la propiedad se cumple para los 100 primeros elementos.
prop_posicion :: Int -> Bool
prop_posicion n =
    and [posicion (x,y) == (x+y)*(x+y+1) 'div' 2 + x |
         (x,y) <- take n enumeracion]</pre>
-- La comprobación es
      ghci> prop posicion 100
     True
```

2.2.9. Examen 9 (8 de Julio de 2011)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- Examen de la 1º convocatoria (8 de julio de 2011)
```

```
import Data.Array
import Data.Char
import Test.QuickCheck
import GrafoConVectorDeAdyacencia
-- Ejercicio 1.1. El enunciado de un problema de las olimpiadas rusas de
-- matemáticas es el siguiente:
     Si escribimos todos los números enteros empezando por el uno, uno
     al lado del otro (o sea, 1234567891011121314...), ¿qué dígito
     ocupa la posición 206788?
-- En los distintos apartados de este ejercicios resolveremos el
-- problema.
-- Definir la constante
     cadenaDeNaturales :: String
-- tal que cadenaDeNaturales es la cadena obtenida escribiendo todos los
-- números enteros empezando por el uno. Por ejemplo,
     take 19 cadenaDeNaturales == "1234567891011121314"
  ______
cadenaDeNaturales :: String
cadenaDeNaturales = concat [show n | n <- [1..]]</pre>
-- Ejercicio 1.2. Definir la función
     digito :: Int -> Int
-- tal que (digito n) es el dígito que ocupa la posición n en la cadena
-- de los naturales (el número de las posiciones empieza por 1). Por
-- ejemplo,
     digito 10 == 1
     digito 11 == 0
digito :: Int -> Int
digito n = digitToInt (cadenaDeNaturales !! (n-1))
-- Ejercicio 1.3. Calcular el dígito que ocupa la posición 206788 en la
-- cadena de los naturales.
```

```
-- El cálculo es
    ghci> digito 206788
-- Ejercicio 2.1. El problema número 15 de los desafíos matemáticos
-- de El Pais parte de la observación de que todos los números naturales
-- tienen al menos un múltiplo no nulo que está formado solamente por
-- ceros y unos. Por ejemplo, 1x10=10, 2x5=10, 3x37=111, 4x25=100,
-- 5x2=10, 6x185=1110; 7x143=1001; 8X125=1000; 9x12345679=1111111111, ...
-- y así para cualquier número natural.
- -
-- Definir la constante
     numerosCon1y0 :: [Integer]
-- tal que numerosCon1y0 es la lista de los números cuyos dígitos son 1
-- ó 0. Por ejemplo,
    ghci> take 15 numerosCon1y0
     [1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111]
  ______
numerosCon1y0 :: [Integer]
numerosCon1y0 = 1 : concat [[10*x,10*x+1] \mid x < - numerosCon1y0]
__ _______
-- Ejercicio 2.2. Definir la función
    multiplosCon1y0 :: Integer -> [Integer]
-- tal que (multiplosCon1y0 n) es la lista de los múltiplos de n cuyos
-- dígitos son 1 ó 0. Por ejemplo,
     take 4 (multiplosCon1y0 3) == [111,1011,1101,1110]
  ______
multiplosCon1y0 :: Integer -> [Integer]
multiplosCon1y0 n =
   [x \mid x < - numerosCon1y0, x 'rem' n == 0]
-- Ejercicio 2.3. Comprobar con QuickCheck que todo número natural,
-- mayor que 0, tiene múltiplos cuyos dígitos son 1 ó 0.
-- La propiedad es
prop existe multiplosCon1y0 :: Integer -> Property
```

```
prop existe multiplosCon1y0 n =
    n > 0 ==> multiplosCon1y0 n /= []
-- La comprobación es
      ghci> quickCheck prop existe multiplosCon1y0
     +++ OK, passed 100 tests.
-- Ejercicio 3. Una matriz permutación es una matriz cuadrada con
-- todos sus elementos iguales a 0, excepto uno cualquiera por cada fila
-- y columna, el cual debe ser igual a 1.
-- En este ejercicio se usará el tipo de las matrices definido por
      type Matriz a = Array (Int,Int) a
-- y los siguientes ejemplos de matrices
      q1, q2, q3 :: Matriz Int
- -
      q1 = array((1,1),(2,2))[((1,1),1),((1,2),0),((2,1),0),((2,2),1)]
      q2 = array((1,1),(2,2))[((1,1),0),((1,2),1),((2,1),0),((2,2),1)]
      q3 = array((1,1),(2,2))[((1,1),3),((1,2),0),((2,1),0),((2,2),1)]
-- Definir la función
      esMatrizPermutacion :: Num a => Matriz a -> Bool
-- tal que (esMatrizPermutacion p) se verifica si p es una matriz
-- permutación. Por ejemplo.
      esMatrizPermutacion q1 == True
      esMatrizPermutacion g2 == False
      esMatrizPermutacion q3 == False
type Matriz a = Array (Int,Int) a
q1, q2, q3 :: Matriz Int
q1 = array((1,1),(2,2))[((1,1),1),((1,2),0),((2,1),0),((2,2),1)]
q2 = array((1,1),(2,2))[((1,1),0),((1,2),1),((2,1),0),((2,2),1)]
q3 = array((1,1),(2,2))[((1,1),3),((1,2),0),((2,1),0),((2,2),1)]
esMatrizPermutacion :: (Num a, Eq a) => Matriz a -> Bool
esMatrizPermutacion p =
    and [esListaUnitaria [p!(i,j) | i <- [1..n]] | j <- [1..n]] &&
    and [esListaUnitaria [p!(i,j) | j <- [1..n]] | i <- [1..n]]
    where ((1,1),(n,_)) = bounds p
```

-- (esListaUnitaria xs) se verifica si xs tiene un 1 y los restantes

```
-- elementos son 0. Por ejemplo,
      esListaUnitaria [0,1,0,0] ==
                                    True
      esListaUnitaria [0,1,0,1] == False
      esListaUnitaria [0,2,0,0] == False
esListaUnitaria :: (Num a, Eq a) => [a] -> Bool
esListaUnitaria xs =
    [x \mid x < -xs, x /= 0] == [1]
    Ejercicio 4. Un mapa se puede representar mediante un grafo donde
    los vértices son las regiones del mapa y hay una arista entre dos
    vértices si las correspondientes regiones son vecinas. Por ejemplo,
    el mapa siquiente
               1
          +---+
          | 3
                           | 5
              6
          +----+
   se pueden representar por
     mapa :: Grafo Int Int
     mapa = creaGrafo False (1,7)
                       [(1,2,0),(1,3,0),(1,4,0),(2,4,0),(2,5,0),(3,4,0),
                        (3,6,0), (4,5,0), (4,6,0), (4,7,0), (5,7,0), (6,7,0)
   Para colorear el mapa se dispone de 4 colores definidos por
      data Color = A | B | C | D deriving (Eq, Show)
  Definir la función
      correcta :: [(Int,Color)] -> Grafo Int Int -> Bool
  tal que (correcta ncs m) se verifica si ncs es una coloración del
  mapa m tal que todos las regiones vecinas tienen colores distintos.
  Por ejemplo,
      correcta [(1,A),(2,B),(3,B),(4,C),(5,A),(6,A),(7,B)] mapa == True
      correcta [(1,A),(2,B),(3,A),(4,C),(5,A),(6,A),(7,B)] mapa == False
mapa :: Grafo Int Int
mapa = creaGrafo ND (1,7)
                 [(1,2,0),(1,3,0),(1,4,0),(2,4,0),(2,5,0),(3,4,0),
                  (3,6,0), (4,5,0), (4,6,0), (4,7,0), (5,7,0), (6,7,0)
```

```
data Color = A | B | C | D deriving (Eq, Show)
correcta :: [(Int,Color)] -> Grafo Int Int -> Bool
correcta ncs q =
    and [and [color x \neq color y \mid y < -adyacentes g x] \mid x < -nodos g]
    where color x = head [c | (y,c) <- ncs, y == x]
-- Ejercicio 5.1. La expansión decimal de un número racional puede
-- representarse mediante una lista cuyo primer elemento es la parte
-- entera y el resto está formado por los dígitos de su parte decimal.
-- Definir la función
      expansionDec :: Integer -> Integer -> [Integer]
-- tal que (expansionDec x y) es la expansión decimal de x/y. Por
-- ejemplo,
     take 10 (expansionDec 1 4)
                                    == [0,2,5]
      take 10 (expansionDec 1 7)
                                    == [0,1,4,2,8,5,7,1,4,2]
     take 12 (expansionDec 90 7) == [12,8,5,7,1,4,2,8,5,7,1,4]
      take 12 (expansionDec 23 14) == [1,6,4,2,8,5,7,1,4,2,8,5]
expansionDec :: Integer -> Integer -> [Integer]
expansionDec x y
    | r == 0 = [q]
    | otherwise = q : expansionDec (r*10) y
   where (q,r) = quotRem \times y
-- Ejercicio 5.2. La parte decimal de las expansiones decimales se puede
-- dividir en la parte pura y la parte periódica (que es la que se
-- repite). Por ejemplo, puesto que la expansión de 23/14 es
      [1,6,4,2,8,5,7,1,4,2,8,5,...
-- su parte entera es 1, su parte decimal pura es [6] y su parte decimal
-- periódica es [4,2,8,5,7,1].
-- Definir la función
      formaDecExpDec :: [Integer] -> (Integer,[Integer],[Integer])
-- tal que (formaDecExpDec xs) es la forma decimal de la expresión
-- decimal xs; es decir, la terna formada por la parte entera, la parte
-- decimal pura y la parte decimal periódica. Por ejemplo,
      formaDecExpDec [3,1,4]
                                           == (3,[1,4],[])
```

```
formaDecExpDec [3,1,4,6,7,5,6,7,5] == (3,[1,4],[6,7,5])
     formaDecExpDec (expansionDec 23 14) == (1,[6],[4,2,8,5,7,1])
formaDecExpDec :: [Integer] -> (Integer,[Integer],[Integer])
formaDecExpDec(x:xs) = (x,ys,zs)
   where (ys,zs) = decimales xs
-- (decimales xs) es el par formado por la parte decimal pura y la parte
-- decimal periódica de la lista de decimales xs. Por ejemplo,
     decimales [3,1,4]
                                 == ([3,1,4],[])
     decimales [3,1,6,7,5,6,7,5] == ([3,1],[6,7,5])
decimales :: [Integer] -> ([Integer],[Integer])
decimales xs = decimales' xs []
   where decimales' [] ys = (reverse ys, [])
         decimales' (x:xs) ys
             | x 'elem' ys = splitAt k ys'
             | otherwise = decimales' xs (x:ys)
             where ys' = reverse ys
                   k = posicion x ys'
-- (posicion x ys) es la primera posición de x en la lista ys. Por
-- ejemplo,
     posicion 2 [0,2,3,2,5] == 1
posicion :: Eq a => a -> [a] -> Int
posicion x ys = head [n \mid (n,y) < -zip [0..] ys, x == y]
-- Ejercicio 5.3. Definir la función
     formaDec :: Integer -> Integer -> (Integer,[Integer],[Integer])
-- tal que (formaDec x y) es la forma decimal de x/y; es decir, la terna
-- formada por la parte entera, la parte decimal pura y la parte decimal
-- periódica. Por ejemplo,
     formaDec 1 4
                   == (0,[2,5],[])
     formaDec 23 14 == (1,[6],[4,2,8,5,7,1])
formaDec :: Integer -> Integer -> (Integer,[Integer],[Integer])
formaDec x y =
   formaDecExpDec (expansionDec x y)
```

2.2.10. Examen 10 (16 de Septiembre de 2011)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 2º convocatoria (16 de septiembre de 2011)
import Data.List
import Test.QuickCheck
-- Ejercicio 1. Definir la función
     subsucesiones :: [Integer] -> [[Integer]]
-- tal que (subsucesiones xs) es la lista de las subsucesiones
-- crecientes de elementos consecutivos de xs. Por ejemplo,
     subsucesiones [1,0,1,2,3,0,4,5] == [[1],[0,1,2,3],[0,4,5]]
     subsucesiones [5,6,1,3,2,7] == [[5,6],[1,3],[2,7]] subsucesiones [2,3,3,4,5] == [[2,3],[3,4,5]]
     subsucesiones [7,6,5,4]
                                    == [[7],[6],[5],[4]]
subsucesiones :: [Integer] -> [[Integer]]
subsucesiones [] = []
subsucesiones [x] = [[x]]
subsucesiones (x:y:zs)
    | x < y = (x:us):vss
    | otherwise = [x]:p
   where p@(us:vss) = subsucesiones (y:zs)
-- Ejercicio 2. Definir la función
     menor :: Ord a => [[a]] -> a
-- tal que (menor xss) es el menor elemento común a todas las listas de
-- xss, donde las listas de xss están ordenadas (de menor a mayor) y
-- pueden ser infinitas. Por ejemplo,
     menor [[3,4,5]]
                                              == 3
     menor [[1,2,3,4,5,6,7],[0.5,3/2,4,19]] == 4.0
     menor [[0..], [4,6..], [2,3,5,7,11,13,28]] == 28
menor :: Ord a => [[a]] -> a
menor(xs:xss) =
   head [x | x <- xs, all (x 'pertenece') xss]
```

```
-- (pertenece x ys) se verifica si x pertenece a la lista ys, donde ys
-- es una lista ordenada de menor a mayor y, posiblemente, infinita. Por
-- ejemplo,
      pertenece 6 [0,2..] == True
      pertenece 7 [0,2..] == False
pertenece :: Ord a => a -> [a] -> Bool
pertenece x [] = False
pertenece x (y:ys) | x < y = False
                   | x == y = True
                   | x > y = pertenece x ys
-- Ejercicio 3. Un conjunto A está cerrado respecto de una función f si
-- para todo elemento x de A se tiene que f(x) pertenece a A. La
-- clausura de un conjunto B respecto de una función f es el menor
-- conjunto A que contiene a B y es cerrado respecto de f. Por ejemplo,
-- la clausura de \{0,1,2\} respecto del opuesto es \{0,1,2,-1,-2\}.
-- Definir la función
      clausura :: Eq a => (a -> a) -> [a] -> [a]
-- tal que (clausura f xs) es la clausura de xs respecto de f. Por
-- ejemplo,
      clausura (x -> -x) [0,1,2]
                                      == [0,1,2,-1,-2]
      clausura (x \rightarrow (x+1) \pmod{5} [0] == [0,1,2,3,4]
clausura :: Eq a => (a -> a) -> [a] -> [a]
clausura f xs = clausura' f xs xs
    where clausura' f xs ys | null zs = ys
                            | otherwise = clausura' f zs (ys++zs)
              where zs = nuevosSucesores f xs ys
nuevosSucesores :: Eq a => (a -> a) -> [a] -> [a] -> [a]
nuevosSucesores f xs ys = nub [f x | x <- xs] \ ys
-- Ejercicio 4.1. El problema del laberinto numérico consiste en, dados
-- un par de números, encontrar la longitud del camino más corto entre
-- ellos usando sólo las siguientes operaciones:
      * multiplicar por 2,
      * dividir por 2 (sólo para los pares) y
     * sumar 2.
-- Por ejemplo,
```

```
longitudCaminoMinimo 3 12 ==
      longitudCaminoMinimo 12 3 ==
- -
      longitudCaminoMinimo 9 2
                                 == 8
      longitudCaminoMinimo 2 9
                                == 5
-- Unos caminos mínimos correspondientes a los ejemplos anteriores son
-- [3,6,12], [12,6,3], [9,18,20,10,12,6,8,4,2] y [2,4,8,16,18,9].
-- Definir la función
      orbita :: Int -> [Int] -> [Int]
-- tal que (orbita n xs) es el conjunto de números que se pueden obtener
-- aplicando como máximo n veces las operaciones a los elementos de
-- xs. Por ejemplo,
     orbita 0 [12] == [12]
      orbita 1 [12] == [6,12,14,24]
      orbita 2 [12] == [3,6,7,8,12,14,16,24,26,28,48]
orbita :: Int -> [Int] -> [Int]
orbita 0 xs = sort xs
orbita n xs = sort (nub (ys ++ concat [sucesores x | x <- ys]))
    where ys = orbita (n-1) xs
          sucesores x | odd x = [2*x, x+2]
                      | otherwise = [2*x, x 'div' 2, x+2]
-- Ejercicio 4.2. Definir la función
      longitudCaminoMinimo :: Int -> Int -> Int
-- tal que (longitudCaminoMinimo x y) es la longitud del camino mínimo
-- desde x hasta y en el laberinto numérico.
      longitudCaminoMinimo 3 12 ==
      longitudCaminoMinimo 12 3 == 2
     longitudCaminoMinimo 9 2
                                == 8
      longitudCaminoMinimo 2 9
longitudCaminoMinimo :: Int -> Int -> Int
longitudCaminoMinimo x y =
    head [n \mid n < [1..], y 'elem' orbita n [x]]
-- Ejercicio 5.1. En este ejercicio se estudia las relaciones entre los
-- valores de polinomios y los de sus correspondientes expresiones
-- aritméticas.
```

```
-- Las expresiones aritméticas construidas con una variables, los
-- números enteros y las operaciones de sumar y multiplicar se pueden
-- representar mediante el tipo de datos Exp definido por
     data Exp = Var | Const Int | Sum Exp Exp | Mul Exp Exp
                deriving Show
-- Por ejemplo, la expresión 3+5x^2 se puede representar por
     exp1 :: Exp
     exp1 = Sum (Const 3) (Mul Var (Mul Var (Const 5)))
-- Definir la función
     valorE :: Exp -> Int -> Int
-- tal que (valorE e n) es el valor de la expresión e cuando se
-- sustituye su variable por n. Por ejemplo,
     valorE exp1 2 == 23
data Exp = Var | Const Int | Sum Exp Exp | Mul Exp Exp
          deriving Show
exp1 :: Exp
exp1 = Sum (Const 3) (Mul Var (Mul Var (Const 5)))
valorE :: Exp -> Int -> Int
valorE Var
                 n = n
valorE (Const a) n = a
valorE (Sum e1 e2) n = valorE e1 n + valorE e2 n
valorE (Mul e1 e2) n = valorE e1 n * valorE e2 n
-- Ejercicio 5.2. Los polinomios se pueden representar por la lista de
-- sus coeficientes. Por ejemplo, el polinomio 3+5x^2 se puede
-- representar por [3,0,5].
-- Definir la función
     expresion :: [Int] -> Exp
-- tal que (expresion p) es una expresión aritmética equivalente al
-- polinomio p. Por ejemplo,
     ghci> expresion [3,0,5]
     Sum (Const 3) (Mul Var (Sum (Const 0) (Mul Var (Const 5))))
  ______
expresion :: [Int] -> Exp
```

```
expresion [a] = Const a
expresion (a:p) = Sum (Const a) (Mul Var (expresion p))
-- Ejercicio 5.3. Definir la función
    valorP :: [Int] -> Int -> Int
-- tal que (valorP p n) es el valor del polinomio p cuando se sustituye
-- su variable por n. Por ejemplo,
    valorP [3,0,5] 2 == 23
valorP :: [Int] -> Int -> Int
valorP[a] = a
valorP (a:p) n = a + n * valorP p n
-- Ejercicio 5.4. Comprobar con QuickCheck que, para todo polinomio p y
-- todo entero n,
    valorP p n == valorE (expresion p) n
 ______
-- La propiedad es
prop valor :: [Int] -> Int -> Property
prop valor p n =
   not (null p) ==>
   valorP p n == valorE (expresion p) n
-- La comprobación es
    ghci> quickCheck prop valor
    +++ OK, passed 100 tests.
2.2.11.
        Examen 11 (22 de Noviembre de 2011)
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 3º convocatoria (22 de noviembre de 2011)
import Data.Array
import Test.QuickCheck
```

-- Ejercicio 1.1. Definir, por comprensión, la función

```
barajaC :: [a] -> [a] -> [a]
-- tal que (barajaC xs ys) es la lista obtenida intercalando los
-- elementos de las listas xs e ys. Por ejemplo,
     barajaC [1,6,2] [3,7] == [1,3,6,7]
     barajaC [1,6,2] [3,7,4,9,0] == [1,3,6,7,2,4]
barajaC :: [a] -> [a] -> [a]
barajaC xs ys = concat [[x,y] | (x,y) <- zip xs ys]
-- Ejercicio 1.2. Definir, por recursión, la función
     barajaR :: [a] -> [a] -> [a]
-- tal que (barajaR xs ys) es la lista obtenida intercalando los
-- elementos de las listas xs e ys. Por ejemplo,
     barajaR [1,6,2] [3,7] == [1,3,6,7]
     barajaR [1,6,2] [3,7,4,9,0] == [1,3,6,7,2,4]
barajaR :: [a] -> [a] -> [a]
barajaR (x:xs) (y:ys) = x : y : barajaR xs ys
barajaR _ = []
__ ______
-- Ejercicio 1.3. Comprobar con QuickCheck que la longitud de
-- (barajaR xs v1) es el doble del mínimo de las longitudes de xs es vs.
__ _______
prop baraja :: [Int] -> [Int] -> Bool
prop baraja xs ys =
   length (barajaC xs ys) == 2 * min (length xs) (length ys)
-- La comprobación es
     ghci> quickCheck prop_baraja
     +++ OK, passed 100 tests.
       -- Ejercicio 2.1. Un número n es refactorizable si el número de los
-- divisores de n es un divisor de n.
-- Definir la constante
     refactorizables :: [Int]
-- tal que refactorizables es la lista de los números
```

```
-- refactorizables. Por ejemplo,
     take 10 refactorizables == 1,2,8,9,12,18,24,36,40,56]
refactorizables :: [Int]
refactorizables =
    [n \mid n \leftarrow [1..], length (divisores n) 'divide' n]
-- (divide x y) se verifica si x divide a y. Por ejemplo,
     divide 2 6 == True
     divide 2 7 == False
     divide 0 7 == False
     divide 0 0 == True
divide :: Int -> Int -> Bool
divide 0 y = y == 0
divide x y = y 'rem'x == 0
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
     divisores 36 = [1,2,3,4,6,9,12,18,36]
divisores :: Int -> [Int]
divisores n = [x \mid x < -[1..n], n 'rem' x == 0]
__ _______
-- Ejercicio 2.2. Un número n es redescompible si el número de
-- descomposiciones de n como producto de dos factores distintos divide
-- a n.
- -
-- Definir la función
     redescompible :: Int -> Bool
-- tal que (redescompible x) se verifica si x es
-- redescompible. Por ejemplo,
     redescompible 56 == True
     redescompible 57 == False
redescompible :: Int -> Bool
redescompible n = nDescomposiciones n 'divide' n
nDescomposiciones :: Int -> Int
nDescomposiciones n =
   2 * length [(x,y) | x <- [1..n], y <- [x+1..n], x*y == n]
```

```
-- Ejercicio 2.3. Definir la función
      prop refactorizable :: Int -> Bool
-- tal que (prop refactorizable n) se verifica si para todo x
-- entre los n primeros números refactorizables se tiene que x es
-- redescompible syss x no es un cuadrado. Por ejemplo,
      prop refactorizable 10 == True
prop refactorizable :: Int -> Bool
prop refactorizable n =
    and [(nDescomposiciones x 'divide' x) == not (esCuadrado x)
         | x <- take n refactorizables]</pre>
-- (esCuadrado x) se verifica si x es un cuadrado perfecto; es decir,
-- si existe un y tal que y^2 es igual a x. Por ejemplo,
      esCuadrado 16 == True
      esCuadrado 17 == False
esCuadrado :: Int -> Bool
esCuadrado x = y^2 == x
    where y = round (sqrt (fromIntegral x))
-- Otra solución, menos eficiente, es
esCuadrado' :: Int -> Bool
esCuadrado' x =
    [y \mid y < -[1..x], y^2 == x] /= []
-- Ejercicio 3. Un árbol binario de búsqueda (ABB) es un árbol binario
-- tal que el de cada nodo es mayor que los valores de su subárbol
-- izquierdo y es menor que los valores de su subárbol derecho y,
-- además, ambos subárboles son árboles binarios de búsqueda. Por
-- ejemplo, al almacenar los valores de [8,4,2,6,3] en un ABB se puede
-- obtener el siguiente ABB:
         5
-- Los ABB se pueden representar como tipo de dato algebraico:
     data ABB = V
```

```
| N Int ABB ABB
               deriving (Eq, Show)
-- Por ejemplo, la definición del ABB anteriore es
      ej :: ABB
      ej = N 3 (N 2 V V) (N 6 (N 4 V V) (N 8 V V))
  Definir la función
      inserta :: Int -> ABB -> ABB
-- tal que (inserta v a) es el árbol obtenido añadiendo el valor v al
  ABB a, si no es uno de sus valores. Por ejemplo,
      ghci> inserta 5 ej
      N 3 (N 2 V V) (N 6 (N 4 V (N 5 V V)) (N 8 V V))
      ghci> inserta 1 ej
      N 3 (N 2 (N 1 V V) V) (N 6 (N 4 V V) (N 8 V V))
      ghci> inserta 2 ej
      N 3 (N 2 V V) (N 6 (N 4 V V) (N 8 V V))
data ABB = V
         | N Int ABB ABB
         deriving (Eq, Show)
ej :: ABB
ej = N 3 (N 2 V V) (N 6 (N 4 V V) (N 8 V V))
inserta :: Int -> ABB -> ABB
inserta v' V = N v' V V
inserta v' (N v i d)
    | v' == v = N v i d
    | v' < v = N v \text{ (inserta } v' \text{ i) } d
    | otherwise = N v i (inserta v' d)
-- Ejercicio 4. Se consideran los tipos de los vectores y de las
-- matrices definidos por
      type Vector a = Array Int a
      type Matriz a = Array (Int,Int) a
-- Definir la función
      antidiagonal :: (Num a, Eq a) => Matriz a -> Bool
-- tal que (antidiagonal m) se verifica si es cuadrada y todos los
-- elementos de m que no están en su diagonal secundaria son nulos. Por
-- ejemplo, si m1 y m2 son las matrices definidas por
     m1, m2 :: Matriz Int
```

```
m1 = array((1,1),(3,3))[((1,1),7),((1,2),0),((1,3),4),
                                ((2,1),0),((2,2),6),((2,3),0),
                                ((3,1),0),((3,2),0),((3,3),5)
     m2 = array((1,1),(3,3))[((1,1),0),((1,2),0),((1,3),4),
                                ((2,1),0),((2,2),6),((2,3),0),
                                ((3,1),0),((3,2),0),((3,3),0)
-- entonces
      antidiagonal m1 == False
      antidiagonal m2 == True
type Vector a = Array Int a
type Matriz a = Array (Int,Int) a
m1, m2 :: Matriz Int
m1 = array((1,1),(3,3))[((1,1),7),((1,2),0),((1,3),4),
                          ((2,1),0),((2,2),6),((2,3),0),
                          ((3,1),0),((3,2),0),((3,3),5)
m2 = array((1,1),(3,3))[((1,1),0),((1,2),0),((1,3),4),
                          ((2,1),0),((2,2),6),((2,3),0),
                          ((3,1),0),((3,2),0),((3,3),0)
antidiagonal :: (Num a, Eq a) => Matriz a -> Bool
antidiagonal p =
    m == n \& nula [p!(i,j) | i <- [1..n], j <- [1..n], j /= n+1-i]
    where (m,n) = snd (bounds p)
nula :: (Num a, Eq a) => [a] -> Bool
nula xs = xs == [0 \mid x <- xs]
```

Exámenes del curso 2011-12

3.1. Exámenes del grupo 1 (José A. Alonso y Agustín Riscos)

3.1.1. Examen 1 (26 de Octubre de 2011)

⁻⁻ Ejercicio 2. Las dimensiones de los rectángulos puede representarse

⁻⁻ por pares; por ejemplo, (5,3) representa a un rectángulo de base 5 y

⁻⁻ altura 3. Definir la función mayorRectangulo tal que

^{-- (}mayorRectangulo r1 r2) es el rectángulo de mayor área ente r1 y r2.

```
-- Por ejemplo,
     mayorRectangulo (4,6) (3,7) == (4,6)
     mayorRectangulo (4,6) (3,8) == (4,6)
     mayorRectangulo (4,6) (3,9) == (3,9)
mayorRectanglo (a,b) (c,d) | a*b >= c*d = (a,b)
                         | otherwise = (c,d)
-- Ejercicio 3. Definir la función interior tal que (interior xs) es la
-- lista obtenida eliminando los extremos de la lista xs. Por ejemplo,
     interior [2,5,3,7,3] == [5,3,7]
     interior [2..7] == [3,4,5,6]
interior xs = tail (init xs)
3.1.2. Examen 2 (30 de Noviembre de 2011)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 2º examen de evaluación continua (30 de noviembre de 2011)
__ _______
-- Ejercicio 1.1. [Problema 357 del Project Euler] Un número natural n
-- es especial si para todo divisor d de n, d+n/d es primo. Definir la
-- función
     especial :: Integer -> Bool
-- tal que (especial x) se verifica si x es especial. Por ejemplo,
     especial 30 == True
     especial 20 == False
especial :: Integer -> Bool
especial x = and [esPrimo (d + x 'div' d) | d <- divisores x]
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
     divisores 30 = [1,2,3,5,6,10,15,30]
divisores :: Integer -> [Integer]
divisores x = [d \mid d < [1..x], x 'rem' d == 0]
```

```
-- (esPrimo x) se verifica si x es primo. Por ejemplo,
     esPrimo 7 == True
     esPrimo 8 == False
esPrimo :: Integer -> Bool
esPrimo x = divisores x == [1,x]
-- Ejercicio 1.2. Definir la función
     sumaEspeciales :: Integer -> Integer
-- tal que (sumaEspeciales n) es la suma de los números especiales
-- menores o iguales que n. Por ejemplo,
     sumaEspeciales 100 == 401
-- Por comprensión
sumaEspeciales :: Integer -> Integer
sumaEspeciales n = sum [x \mid x < [1..n], especial x]
-- Por recursión
sumaEspecialesR :: Integer -> Integer
sumaEspecialesR 0 = 0
sumaEspecialesR n \mid especial n = n + sumaEspecialesR (n-1)
                 | otherwise = sumaEspecialesR (n-1)
-- Ejercicio 2. Definir la función
     refinada :: [Float] -> [Float]
-- tal que (refinada xs) es la lista obtenida intercalando entre cada
-- dos elementos consecutivos de xs su media aritmética. Por ejemplo,
     refinada [2,7,1,8] = [2.0,4.5,7.0,4.0,1.0,4.5,8.0]
     refinada [2]
                        == [2.0]
     refinada []
                        == []
refinada :: [Float] -> [Float]
refinada (x:y:zs) = x : (x+y)/2 : refinada (y:zs)
refinada xs = xs
__ _______
-- Ejercicio 3.1. En este ejercicio vamos a comprobar que la ecuación
-- diofántica
     1/x_1 + 1/x_2 + \dots + 1/x_n = 1
-- tiene solución; es decir, que para todo n >= 1 se puede construir una
```

```
-- lista de números enteros de longitud n tal que la suma de sus
-- inversos es 1. Para ello, basta observar que si
     [x 1, x 2, ..., x n]
-- es una solución, entonces
     [2, 2*x 1, 2*x 2, ..., 2*x n]
-- también lo es. Definir la función solucion tal que (solucion n) es la
-- solución de longitud n construida mediante el método anterior. Por
-- ejemplo,
     solution 1 == [1]
     solucion 2 == [2,2]
     solucion 3 == [2,4,4]
     solucion 4 == [2,4,8,8]
     solucion 5 == [2,4,8,16,16]
solucion 1 = [1]
solucion n = 2 : [2*x \mid x < - solucion (n-1)]
-- Ejercicio 3.2. Definir la función esSolucion tal que (esSolucion xs)
-- se verifica si la suma de los inversos de xs es 1. Por ejemplo,
     esSolucion [4,2,4]
                          == True
     esSolucion [2,3,4]
                          == False
     esSolucion (solucion 5) == True
esSolucion xs = sum [1/x | x <- xs] == 1
3.1.3.
        Examen 3 (25 de Enero de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 3º examen de evaluación continua (25 de enero de 2012)
-- Ejercicio 1.1. [2 puntos] Un número es muy compuesto si tiene más
-- divisores que sus anteriores. Por ejemplo, 12 es muy compuesto porque
-- tiene 6 divisores (1, 2, 3, 4, 6, 12) y todos los números del 1 al 11
-- tienen menos de 6 divisores.
-- Definir la función
     esMuyCompuesto :: Int -> Bool
```

```
-- tal que (esMuyCompuesto x) se verifica si x es un número muy
-- compuesto. Por ejemplo,
     esMuyCompuesto 24 == True
     esMuyCompuesto 25 == False
-- Calcular el menor número muy compuesto de 4 cifras.
__ ______
esMuyCompuesto :: Int -> Bool
esMuyCompuesto x =
   and [numeroDivisores y < n \mid y < [1..x-1]]
   where n = numeroDivisores x
-- (numeroDivisores x) es el número de divisores de x. Por ejemplo,
     numeroDivisores 24 == 8
numeroDivisores :: Int -> Int
numeroDivisores = length . divisores
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
     divisores 24 == [1,2,3,4,6,8,12,24]
divisores :: Int -> [Int]
divisores x = [y \mid y \leftarrow [1..x], mod x y == 0]
-- Los primeros números muy compuestos son
     ghci> take 14 [x | x <- [1..], esMuyCompuesto x]
     [1,2,4,6,12,24,36,48,60,120,180,240,360,720]
-- El cálculo del menor número muy compuesto de 4 cifras es
     ghci> head [x \mid x < [1000..], esMuyCompuesto x]
     1260
-- Ejercicio 1.2. [1 punto] Definir la función
     muyCompuesto :: Int -> Int
-- tal que (muyCompuesto n) es el n-ésimo número muy compuesto. Por
-- ejemplo,
     muyCompuesto 10 == 180
muyCompuesto :: Int -> Int
muyCompuesto n =
   [x \mid x \leftarrow [1..], esMuyCompuesto x] !! n
```

```
-- Ejercicio 2.1. [2 puntos] [Problema 37 del proyecto Euler] Un número
-- primo es truncable si los números que se obtienen eliminado cifras,
-- de derecha a izquierda, son primos. Por ejemplo, 599 es un primo
-- truncable porque 599, 59 y 5 son primos; en cambio, 577 es un primo
-- no truncable porque 57 no es primo.
-- Definir la función
      primoTruncable :: Int -> Bool
-- tal que (primoTruncable x) se verifica si x es un primo
-- truncable. Por ejemplo,
      primoTruncable 599 == True
      primoTruncable 577 == False
primoTruncable :: Int -> Bool
primoTruncable x
    | x < 10
             = primo x
    | otherwise = primo x && primoTruncable (x 'div' 10)
-- (primo x) se verifica si x es primo.
primo :: Int -> Bool
primo x = x == head (dropWhile (< x) primos)
-- primos es la lista de los números primos.
primos :: [Int ]
primos = criba [2..]
    where criba :: [Int] -> [Int]
          criba (p:xs) = p : criba [x \mid x <- xs, x \text{ 'mod' } p /= 0]
-- Ejercicio 2.2. [1.5 puntos] Definir la función
      sumaPrimosTruncables :: Int -> Int
-- tal que (sumaPrimosTruncables n) es la suma de los n primeros primos
-- truncables. Por ejemplo,
      sumaPrimosTruncables 10 == 249
-- Calcular la suma de los 20 primos truncables.
sumaPrimosTruncables :: Int -> Int
sumaPrimosTruncables n =
    sum (take n [x | x <- primos, primoTruncable x])</pre>
-- El cálculo es
```

```
ghci> sumaPrimosTruncables 20
      2551
- -
-- Ejercicio 3.1. [2 puntos] Los números enteros se pueden ordenar como
      0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, ...
-- Definir la constante
      enteros :: [Int]
-- tal que enteros es la lista de los enteros con la ordenación
-- anterior. Por ejemplo,
      take 10 enteros == [0,-1,1,-2,2,-3,3,-4,4,-5]
enteros :: [Int]
enteros = 0 : concat [[-x,x] | x <- [1..]]
-- Otra definicición, por iteración, es
enteros1 :: [Int]
enteros1 = iterate siguiente 0
    where siguiente x \mid x >= 0 = -x-1
                      | otherwise = -x
-- Ejercicio 3.2. [1.5 puntos] Definir la función
      posicion :: Int -> Int
-- tal que (posicion x) es la posición del entero x en la ordenación
-- anterior. Por ejemplo,
      posicion 2 == 4
posicion :: Int -> Int
posicion x = length (takeWhile (/=x) enteros)
-- Definición por recursión
posicion1 :: Int -> Int
posicion1 x = aux enteros 0
    where aux (y:ys) n | x == y = n
                       | otherwise = aux ys (n+1)
-- Definición por comprensión
posicion2 :: Int -> Int
posicion2 x = head [n | (n,y) <- zip [0..] enteros, <math>y == x]
```

```
-- Definición directa

posicion3 :: Int -> Int

posicion3 x | x >= 0 = 2*x

| otherwise = 2*(-x)-1
```

3.1.4. Examen 4 (29 de Febrero de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 4º examen de evaluación continua (29 de febrero de 2012)
__ _______
-- Ejercicio 1. [2.5 puntos] En el enunciado de uno de los problemas de
-- las Olimpiadas matemáticas de Brasil se define el primitivo de un
-- número como sique:
     Dado un número natural N, multiplicamos todos sus dígitos,
     repetimos este procedimiento hasta que quede un solo dígito al
     cual llamamos primitivo de N. Por ejemplo para 327: 3x2x7 = 42 y
     4x2 = 8. Por lo tanto, el primitivo de 327 es 8.
-- Definir la función
     primitivo :: Integer -> Integer
-- tal que (primitivo n) es el primitivo de n. Por ejemplo.
     primitivo 327 == 8
primitivo :: Integer -> Integer
primitivo n \mid n < 10 = n
           | otherwise = primitivo (producto n)
-- (producto n) es el producto de las cifras de n. Por ejemplo,
     producto 327 == 42
producto :: Integer -> Integer
producto = product . cifras
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
     cifras 327 == [3,2,7]
cifras :: Integer -> [Integer]
cifras n = [read [y] | y <- show n]
```

```
-- Ejercicio 2. [2.5 puntos] Definir la función
      sumas :: Int -> [Int] -> [Int]
-- tal que (sumas n xs) es la lista de los números que se pueden obtener
   como suma de n, o menos, elementos de xs. Por ejemplo,
      sumas 0 [2,5]
                       == [0]
      sumas 1 [2,5]
                      == [2,5,0]
      sumas 2 [2,5]
                      == [4,7,2,10,5,0]
      sumas 3 [2,5] = [6,9,4,12,7,2,15,10,5,0]
      sumas 2 [2,3,5] == [4,5,7,2,6,8,3,10,5,0]
sumas :: Int -> [Int] -> [Int]
sumas 0 = [0]
sumas [] = [0]
sumas n (x:xs) = [x+y \mid y < -sumas (n-1) (x:xs)] + +sumas n xs
-- Ejercicio 3. [2.5 puntos] Los árboles binarios se pueden representar
-- mediante el siguiente tipo de datos
      data Arbol = H
                | N Int Arbol Arbol
  Por ejemplo, el árbol
              9
           3
                7
             \ H
        2
              4
       /\
             /\
         ΗН
      Н
-- se representa por
      N 9 (N 3 (N 2 H H) (N 4 H H)) (N 7 H H)
  Definir la función
      ramaIzquierda :: Arbol -> [Int]
  tal que (ramaIzquierda a) es la lista de los valores de los nodos de
-- la rama izquierda del árbol a. Por ejemplo,
      ghci> ramaIzquierda (N 9 (N 3 (N 2 H H) (N 4 H H)) (N 7 H H))
      [9,3,2]
data Arbol = H
           | N Int Arbol Arbol
```

```
ramaIzquierda :: Arbol -> [Int]
                  = []
ramaIzquierda H
ramaIzquierda (N x i d) = x : ramaIzquierda i
__ ______
-- Ejercicio 4. [2.5 puntos] Un primo permutable es un número primo tal
-- que todos los números obtenidos permutando sus cifras son primos. Por
-- ejemplo, 337 es un primo permutable ya que 337, 373 y 733 son
-- primos.
-- Definir la función
     primoPermutable :: Integer -> Bool
-- tal que (primoPermutable x) se verifica si x es un primo
-- permutable. Por ejemplo,
     primoPermutable 17 == True
     primoPermutable 19 == False
primoPermutable :: Integer -> Bool
primoPermutable x = and [primo y | y <- permutacionesN x]
-- (permutacionesN x) es la lista de los números obtenidos permutando
-- las cifras de x. Por ejemplo,
permutacionesN :: Integer -> [Integer]
permutacionesN x = [read ys | ys <- permutaciones (show x)]
-- (intercala x ys) es la lista de las listas obtenidas intercalando x
-- entre los elementos de ys. Por ejemplo,
      intercala 1 [2,3] = [[1,2,3],[2,1,3],[2,3,1]]
intercala :: a -> [a] -> [[a]]
intercala x [] = [[x]]
intercala x (y:ys) = (x:y:ys) : [y:zs | zs <- intercala x ys]</pre>
-- (permutaciones xs) es la lista de las permutaciones de la lista
-- xs. Por ejemplo,
     permutaciones "bc" == ["bc","cb"]
     permutaciones "abc" == ["abc","bac","bca","acb","cab","cba"]
permutaciones :: [a] -> [[a]]
permutaciones []
                    = [[]]
permutaciones (x:xs) =
   concat [intercala x ys | ys <- permutaciones xs]</pre>
```

-- Ejercicio 2. [2.5 puntos] Definir la función

```
-- (primo x) se verifica si x es primo.
primo :: Integer -> Bool
primo x = x == head (dropWhile (< x) primos)
-- primos es la lista de los números primos.
primos :: [Integer ]
primos = criba [2..]
   where criba :: [Integer] -> [Integer]
         criba (p:xs) = p : criba [x | x <- xs, x 'mod' p /= 0]
        Examen 5 (21 de Marzo de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 5º examen de evaluación continua (21 de marzo de 2012)
__ _______
-- Ejercicio 1. [2.5 puntos] Dos números son equivalentes si la media de
-- sus cifras son iguales. Por ejemplo, 3205 y 41 son equvalentes ya que
-- (3+2+0+5)/4 = (4+1)/2. Definir la función
     equivalentes :: Int -> Int -> Bool
-- tal que (equivalentes x y) se verifica si los números x e y son
-- equivalentes. Por ejemplo,
     equivalentes 3205 41 == True
     equivalentes 3205 25 == False
equivalentes :: Int -> Int -> Bool
equivalentes x y = media (cifras x) == media (cifras y)
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
     cifras 3205 == [3,2,0,5]
cifras :: Int -> [Int]
cifras n = [read [y] | y <- show n]
-- (media xs) es la media de la lista xs. Por ejemplo,
     media [3,2,0,5] == 2.5
media :: [Int] -> Float
media xs = (fromIntegral (sum xs)) / (fromIntegral (length xs))
```

```
relacionados :: (a -> a -> Bool) -> [a] -> Bool
-- tal que (relacionados r xs) se verifica si para todo par (x,y) de
-- elementos consecutivos de xs se cumple la relación r. Por ejemplo,
      relacionados (<) [2,3,7,9]
      relacionados (<) [2,3,1,9]
                                                     False
      relacionados equivalentes [3205,50,5014] == True
relacionados :: (a -> a -> Bool) -> [a] -> Bool
relacionados r(x:y:zs) = (r x y) \& relacionados r(y:zs)
relacionados _ _ = True
-- Una definición alternativa es
relacionados' :: (a -> a -> Bool) -> [a] -> Bool
relacionados' r xs = and [r \times y \mid (x,y) < -zip xs (tail xs)]
-- Ejercicio 3. [2.5 puntos] Definir la función
      primosEquivalentes :: Int -> [[Int]]
-- tal que (primosEquivalentes n) es la lista de las sucesiones de n
-- números primos consecutivos equivalentes. Por ejemplo,
      take 2 (primosEquivalentes 2) == [[523,541],[1069,1087]]
      head (primosEquivalentes 3) == [22193,22229,22247]
primosEquivalentes :: Int -> [[Int]]
primosEquivalentes n = aux primos
    where aux (x:xs) | relacionados equivalentes ys = ys : aux xs
                     | otherwise
                                                    = aux xs
                     where ys = take n (x:xs)
-- primos es la lista de los números primos.
primos :: [Int]
primos = criba [2..]
    where criba :: [Int] -> [Int]
          criba (p:xs) = p : criba [x \mid x <- xs, x \text{ 'mod' p /= 0}]
-- Ejercicio 4. [2.5 puntos] Los polinomios pueden representarse
-- de forma dispersa o densa. Por ejemplo, el polinomio
-- 6x^4-5x^2+4x-7 se puede representar de forma dispersa por
-- [6,0,-5,4,-7] y de forma densa por [(4,6),(2,-5),(1,4),(0,-7)].
-- Definir la función
```

```
-- densa :: [Int] -> [(Int,Int)]
-- tal que (densa xs) es la representación densa del polinomio cuya
-- representación dispersa es xs. Por ejemplo,
-- densa [6,0,-5,4,-7] == [(4,6),(2,-5),(1,4),(0,-7)]
-- densa [6,0,0,3,0,4] == [(5,6),(2,3),(0,4)]
-- densa :: [Int] -> [(Int,Int)]
densa xs = [(x,y) | (x,y) <- zip [n-1,n-2..0] xs, y /= 0]
    where n = length xs

3.1.6. Examen 6 ( 2 de Mayo de 2012)
-- Informática (1º del Grado en Matemáticas Grupo 1)
```

-- Informática (1º del Grado en Matemáticas, Grupo 1) -- 6º examen de evaluación continua (2 de mayo de 2012) import Data.Array import Data.List -- Ejercicio 1. Un número x es especial si el número de ocurrencia de -- cada dígito d de x en x^2 es el doble del número de ocurrencia de d -- en x. Por ejemplo, 72576 es especial porque tiene un 2, un 5, un 6 y -- dos 7 y su cuadrado es 5267275776 que tiene exactamente dos 2, dos 5, -- dos 6 y cuatro 7. -- Definir la función especial :: Integer -> Bool -- tal que (especial x) se verifica si x es un número especial. Por -- ejemplo, especial 72576 == True especial 12 == False -- Calcular el menor número especial mayor que 72576. -- ----especial :: Integer -> Bool especial x =sort (ys ++ ys) == sort (show (x^2)) where ys = show x

```
-- EL cálculo es
      ghci> head [x \mid x \leftarrow [72577..], especial x]
      406512
-- Ejercicio 2. Definir la función
      posiciones :: Eq a => a -> Array (Int,Int) a -> [(Int,Int)]
-- tal que (posiciones x p) es la lista de las posiciones de la matriz p
-- cuyo valor es x. Por ejemplo,
      ghci> let p = listArray((1,1),(2,3))[1,2,3,2,4,6]
      ghci> p
      array ((1,1),(2,3)) [((1,1),1),((1,2),2),((1,3),3),
                           ((2,1),2),((2,2),4),((2,3),6)]
      ghci> posiciones 2 p
      [(1,2),(2,1)]
      ghci> posiciones 6 p
- -
      [(2,3)]
      ghci> posiciones 7 p
      []
posiciones :: Eq a => a -> Array (Int,Int) a -> [(Int,Int)]
posiciones x p = [(i,j) \mid (i,j) < - indices p, p!(i,j) == x]
-- Ejercicio 3. Definir la función
      agrupa :: Eq a => [[a]] -> [[a]]
-- tal que (agrupa xss) es la lista de las listas obtenidas agrupando
-- los primeros elementos, los segundos, ... de forma que las longitudes
-- de las lista del resultado sean iguales a la más corta de xss. Por
-- ejemplo,
      agrupa [[1..6], [7..9], [10..20]] == [[1,7,10], [2,8,11], [3,9,12]]
      agrupa []
                                        == []
agrupa :: Eq a => [[a]] -> [[a]]
agrupa [] = []
agrupa xss
    | [] 'elem' xss = []
                = primeros xss : agrupa (restos xss)
    | otherwise
    where primeros = map head
          restos = map tail
```

```
-- Ejercicio 4. [Basado en el problema 341 del proyecto Euler]. La
-- sucesión de Golomb {G(n)} es una sucesión auto descriptiva: es la
-- única sucesión no decreciente de números naturales tal que el número
-- n aparece G(n) veces en la sucesión. Los valores de G(n) para los
-- primeros números son los siguientes:
             1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
     G(n)
             122334445 5 5 6 6 6 6 ...
-- En los apartados de este ejercicio se definirá una función para
-- calcular los términos de la sucesión de Golomb.
  ______
-- Ejercicio 4.1. Definir la función
     golomb :: Int -> Int
-- tal que (golomb n) es el n-ésimo término de la sucesión de Golomb.
-- Por ejemplo,
     golomb 5 == 3
     golomb 9 == 5
-- Indicación: Se puede usar la función sucGolomb del apartado 2.
golomb :: Int -> Int
golomb n = sucGolomb !! (n-1)
-- Ejercicio 4.2. Definir la función
     sucGolomb :: [Int]
-- tal que sucGolomb es la lista de los términos de la sucesión de
-- Golomb. Por ejemplo,
     take 15 sucGolomb == [1,2,2,3,3,4,4,4,5,5,5,6,6,6,6]
-- Indicación: Se puede usar la función subSucGolomb del apartado 3.
sucGolomb :: [Int]
sucGolomb = subSucGolomb 1
-- Ejercicio 4.3. Definir la función
     subSucGolomb :: Int -> [Int]
-- tal que (subSucGolomb x) es la lista de los términos de la sucesión
-- de Golomb a partir de la primera ocurrencia de x. Por ejemplo,
     take 10 (subSucGolomb 4) == [4,4,4,5,5,5,6,6,6,6]
```

```
-- Indicación: Se puede usar la función golomb del apartado 1.
__ _______
subSucGolomb :: Int -> [Int]
subSucGolomb 1 = 1 : subSucGolomb 2
subSucGolomb 2 = [2,2] ++ subSucGolomb 3
subSucGolomb \ x = replicate (golomb \ x) \ x ++ subSucGolomb (x+1)
-- Nota: La sucesión de Golomb puede definirse de forma más compacta
-- como se muestra a continuación.
sucGolomb' :: [Int]
sucGolomb' = 1 : 2 : 2 : g 3
   where g x = replicate (golomb x) x ++ g (x+1)
        golomb n = sucGolomb !! (n-1)
3.1.7. Examen 7 (25 de Junio de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 7º examen de evaluación continua (25 de junio de 2012)
__ ______
-- Ejercicio 1. [2 puntos] Definir la función
     ceros :: Int -> Int
-- tal que (ceros n) es el número de ceros en los que termina el número
-- n. Por ejemplo,
    ceros 30500 == 2
     ceros 30501 == 0
-- lª definición (por recursión):
ceros :: Int -> Int
ceros n | n 'rem' 10 == 0 = 1 + ceros (n 'div'10)
       | otherwise = 0
-- 2ª definición (sin recursión):
ceros2 :: Int -> Int
ceros2 n = length (takeWhile (=='0') (reverse (show n)))
    -- Ejercicio 2. [2 puntos] Definir la función
     superpar :: Int -> Bool
```

```
-- tal que (superpar n) se verifica si n es un número par tal que todos
-- sus dígitos son pares. Por ejemplo,
     superpar 426 == True
      superpar 456 == False
-- 1ª definición (por recursión)
superpar :: Int -> Bool
superpar n \mid n < 10
                     = even n
           | otherwise = even n && superpar (n 'div' 10)
-- 2ª definición (por comprensión):
superpar2 :: Int -> Bool
superpar2 n = and [even d | d <- digitos n]
digitos :: Int -> [Int]
digitos n = [read [d] | d <- show n]
-- 3ª definición (por recursión sobre los dígitos):
superpar3 :: Int -> Bool
superpar3 n = sonPares (digitos n)
    where sonPares [] = True
          sonPares (d:ds) = even d && sonPares ds
-- la función sonPares se puede definir por plegado:
superpar3' :: Int -> Bool
superpar3' n = sonPares (digitos n)
    where sonPares ds = foldr ((\&\&) . even) True ds
-- 4ª definición (con all):
superpar4 :: Int -> Bool
superpar4 n = all even (digitos n)
-- 5ª definición (con filter):
superpar5 :: Int -> Bool
superpar5 n = filter even (digitos n) == digitos n
-- Ejercicio 3. [2 puntos] Definir la función
      potenciaFunc :: Int -> (a -> a) -> a -> a
-- tal que (potenciaFunc n f x) es el resultado de aplicar n veces la
-- función f a x. Por ejemplo,
      potenciaFunc 3 (*10) 5 == 5000
```

```
potenciaFunc 4 (+10) 5 == 45
potenciaFunc :: Int -> (a -> a) -> a -> a
potenciaFunc 0 = x = x
potenciaFunc n f x = potenciaFunc (n-1) f (f x)
-- 2ª definición (con iterate):
potenciaFunc2 :: Int -> (a -> a) -> a -> a
potenciaFunc2 n f x = last (take (n+1) (iterate f x))
-- Ejercicio 4. [2 puntos] Las expresiones aritméticas con una variable
-- (denotada por X) se pueden representar mediante el siguiente tipo
     data Expr = Num Int
               | Suma Expr Expr
               | X
-- Por ejemplo, la expresión "X+(13+X)" se representa por
-- "Suma X (Suma (Num 13) X)".
-- Definir la función
     numVars :: Expr -> Int
-- tal que (numVars e) es el número de variables en la expresión e. Por
-- ejemplo,
     numVars (Num 3)
                                        == 0
     numVars X
     numVars (Suma X (Suma (Num 13) X)) == 2
data Expr = Num Int
         | Suma Expr Expr
         | X
numVars :: Expr -> Int
numVars (Num n) = 0
numVars (Suma a b) = numVars a + numVars b
numVars X
                 = 1
__ ______
-- Ejercicio 5. [2 puntos] Cuentan que Alan Turing tenía una bicicleta
-- vieja, que tenía una cadena con un eslabón débil y además uno de los
-- radios de la rueda estaba doblado. Cuando el radio doblado coincidía
-- con el eslabón débil, entonces la cadena se rompía.
```

```
-- La bicicleta se identifica por los parámetros (i,d,n) donde
-- * i es el número del eslabón que coincide con el radio doblado al
    empezar a andar,
-- * d es el número de eslabones que se desplaza la cadena en cada
    vuelta de la rueda y
-- * n es el número de eslabones de la cadena (el número n es el débil).
-- Si i=2 y d=7 y n=25, entonces la lista con el número de eslabón que
-- toca el radio doblado en cada vuelta es
      [2,9,16,23,5,12,19,1,8,15,22,4,11,18,0,7,14,21,3,10,17,24,6,...]
-- Con lo que la cadena se rompe en la vuelta número 14.
-- 1. Definir la función
         eslabones :: Int -> Int -> Int -> [Int]
      tal que (eslabones i d n) es la lista con los números de eslabones
      que tocan el radio doblado en cada vuelta en una bicicleta de tipo
      (i,d,n). Por ejemplo,
         take 10 (eslabones 2 7 25) == [2,9,16,23,5,12,19,1,8,15]
-- 2. Definir la función
         numeroVueltas :: Int -> Int -> Int
      tal que (numeroVueltas i d n) es el número de vueltas que pasarán
      hasta que la cadena se rompa en una bicicleta de tipo (i,d,n). Por
      ejemplo,
         numeroVueltas 2 7 25 == 14
eslabones :: Int -> Int -> Int -> [Int]
eslabones i d n = [(i+d*j) \text{ 'mod' n } | j < - [0..]]
-- 2º definición (con iterate):
eslabones2 :: Int -> Int -> [Int]
eslabones2 i d n = map ('mod' n) (iterate (+d) i)
numeroVueltas :: Int -> Int -> Int -> Int
numeroVueltas i d n = length (takeWhile (/=0) (eslabones i d n))
3.1.8.
         Examen 8 (29 de Junio de 2012)
```

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- Examen de la 1º convocatoria (29 de junio de 2012)
```

```
import Data.List
import Data.Array
-- Ejercicio 1. [2 puntos] Definir la función
     paresOrdenados :: [a] -> [(a,a)]
-- tal que (paresOrdenados xs) es la lista de todos los pares de
-- elementos (x,y) de xs, tales que x ocurren en xs antes que y. Por
-- ejemplo,
     pares0rdenados [3,2,5,4] == [(3,2),(3,5),(3,4),(2,5),(2,4),(5,4)]
     pares0rdenados [3,2,5,3] = [(3,2),(3,5),(3,3),(2,5),(2,3),(5,3)]
-- 1º definición:
paresOrdenados :: [a] -> [(a,a)]
paresOrdenados [] = []
pares0rdenados (x:xs) = [(x,y) | y <- xs] ++ pares0rdenados xs
-- 2º definición:
pares0rdenados2 :: [a] \rightarrow [(a,a)]
paresOrdenados2 [] = []
pares0rdenados2 (x:xs) =
   foldr (\y ac -> (x,y):ac) (pares0rdenados2 xs) xs
-- 3º definición (con repeat):
pares0rdenados3 :: [a] -> [(a,a)]
paresOrdenados3 [] = []
pares0rdenados3 (x:xs) = zip (repeat x) xs ++ pares0rdenados3 xs
__ _______
-- Ejercicio 2. [2 puntos] Definir la función
     sumaDeDos :: Int -> [Int] -> Maybe (Int,Int)
-- tal que (sumaDeDos x ys) decide si x puede expresarse como suma de
-- dos elementos de ys y, en su caso, devuelve un par de elementos de ys
-- cuya suma es x. Por ejemplo,
     sumaDeDos 9 [7,4,6,2,5] == Just (7,2)
     sumaDeDos 5 [7,4,6,2,5] == Nothing
  ______
sumaDeDos :: Int -> [Int] -> Maybe (Int,Int)
sumaDeDos _ [] = Nothing
sumaDeDos _ [_] = Nothing
```

```
sumaDeDos y (x:xs) \mid y-x 'elem' xs = Just(x,y-x)
                  | otherwise = sumaDeDos y xs
-- 2ª definición (usando paresOrdenados):
sumaDeDos2 :: Int -> [Int] -> Maybe (Int,Int)
sumaDeDos2 x xs
   | null ys = Nothing
    | otherwise = Just (head ys)
   where ys = [(a,b) \mid (a,b) < -pares0rdenados xs , a+b == x]
-- Ejercicio 3. [2 puntos] Definir la función
     esProductoDeDosPrimos :: Int -> Bool
-- tal que (esProductoDeDosPrimos n) se verifica si n es el producto de
-- dos primos distintos. Por ejemplo,
     esProductoDeDosPrimos 6 == True
     esProductoDeDosPrimos 9 == False
esProductoDeDosPrimos :: Int -> Bool
esProductoDeDosPrimos n =
   [x \mid x < - primosN,
        mod n x == 0,
        div n x /= x,
        div n x 'elem' primosN] /= []
   where primosN = takeWhile (<=n) primos
primos :: [Int]
primos = criba [2..]
                  = []
   where criba []
         criba (n:ns) = n : criba (elimina n ns)
         elimina n xs = [x \mid x < -xs, x 'mod' n /= 0]
-- Ejercicio 4. [2 puntos] La expresiones aritméticas se pueden
-- representar mediante el siguiente tipo
     data Expr = V Char
               | N Int
               | S Expr Expr
               | P Expr Expr
               deriving Show
-- por ejemplo, representa la expresión "z*(3+x)" se representa por
-- (P (V 'z') (S (N 3) (V 'x'))).
```

```
-- Definir la función
      sustitucion :: Expr -> [(Char, Int)] -> Expr
-- tal que (sustitucion e s) es la expresión obtenida sustituyendo las
-- variables de la expresión e según se indica en la sustitución s. Por
-- ejemplo,
      ghci> sustitucion (P (V 'z') (S (N 3) (V 'x'))) [('x',7),('z',9)]
      P (N 9) (S (N 3) (N 7))
      ghci> sustitucion (P (V 'z') (S (N 3) (V 'y'))) [('x',7),('z',9)]
      P (N 9) (S (N 3) (V 'y'))
data Expr = V Char
          | N Int
          | S Expr Expr
          | P Expr Expr
          deriving Show
sustitucion :: Expr -> [(Char, Int)] -> Expr
sustitucion e [] = e
sustitucion (V c) ((d,n):ps) \mid c == d = N n
                             | otherwise = sustitucion (V c) ps
sustitucion (N n) = N n
sustitucion (S e1 e2) ps = S (sustitucion e1 ps) (sustitucion e2 ps)
sustitucion (P el e2) ps = P (sustitucion el ps) (sustitucion e2 ps)
-- Ejercicio 5. [2 puntos] (Problema 345 del proyecto Euler) Las
-- matrices puede representarse mediante tablas cuyos índices son pares
-- de números naturales:
      type Matriz = Array (Int,Int) Int
-- Definir la función
      maximaSuma :: Matriz -> Int
-- tal que (maximaSuma p) es el máximo de las sumas de las listas de
-- elementos de la matriz p tales que cada elemento pertenece sólo a una
-- fila y a una columna. Por ejemplo,
      ghci> maximaSuma (listArray ((1,1),(3,3)) [1,2,3,8,4,9,5,6,7])
      17
-- ya que las selecciones, y sus sumas, de la matriz
      |1 2 3|
     |8 4 9|
     |5 6 7|
-- son
```

```
[1,4,7] \longrightarrow 12
     [1,9,6] --> 16
- -
     [2,8,7] --> 17
     [2,9,5] --> 16
     [3,8,6] \longrightarrow 17
     [3,4,5] --> 12
-- Hay dos selecciones con máxima suma: [2,8,7] y [3,8,6].
type Matriz = Array (Int,Int) Int
maximaSuma :: Matriz -> Int
maximaSuma p = maximum [sum xs | xs <- selecciones p]</pre>
-- (selecciones p) es la lista de las selecciones en las que cada
-- elemento pertenece a un única fila y a una única columna de la matriz
-- p. Por ejemplo,
     ghci> selecciones (listArray ((1,1),(3,3)) [1,2,3,8,4,9,5,6,7])
      [[1,4,7],[2,8,7],[3,4,5],[2,9,5],[3,8,6],[1,9,6]]
selecciones :: Matriz -> [[Int]]
selecciones p =
    [[p!(i,j) | (i,j) <- ijs] |
    ijs <- [zip [1..n] xs | xs <- permutations [1..n]]]
   where (,(m,n)) = bounds p
-- Nota: En la anterior definición se ha usado la función pernutations
-- de Data.List. También se puede definir mediante
permutaciones :: [a] -> [[a]]
permutaciones []
                    = [[]]
permutaciones (x:xs) =
    concat [intercala x ys | ys <- permutaciones xs]</pre>
-- (intercala x ys) es la lista de las listas obtenidas intercalando x
-- entre los elementos de ys. Por ejemplo,
     intercala 1 [2,3] = [[1,2,3],[2,1,3],[2,3,1]]
intercala :: a -> [a] -> [[a]]
intercala x [] = [[x]]
intercala x (y:ys) = (x:y:ys) : [y:zs | zs <- intercala x ys]</pre>
-- 2ª solución (mediante submatrices):
maximaSuma2 :: Matriz -> Int
maximaSuma2 p
    | (m,n) == (1,1) = p!(1,1)
```

```
| otherwise = maximum [p!(1,j)]
                  + maximaSuma2 (submatriz 1 j p) | j <- [1..n]]
    where (m,n) = dimension p
-- (dimension p) es la dimensión de la matriz p.
dimension :: Matriz -> (Int,Int)
dimension = snd . bounds
-- (submatriz i j p) es la matriz obtenida a partir de la p eliminando
-- la fila i y la columna j. Por ejemplo,
      ghci> submatriz 2 3 (listArray ((1,1),(3,3)) [1,2,3,8,4,9,5,6,7])
      array ((1,1),(2,2)) [((1,1),1),((1,2),2),((2,1),5),((2,2),6)]
submatriz :: Int -> Int -> Matriz -> Matriz
submatriz i j p =
    array ((1,1), (m-1,n-1))
          [((k,l), p ! f k l) | k <- [1..m-1], l <- [1.. n-1]]
    where (m,n) = dimension p
          f k l | k < i \& l < j = (k,l)
                | k >= i \& k | < j = (k+1,l)
                | k < i \& k | >= j = (k, l+1)
                                 = (k+1, l+1)
                | otherwise
```

3.1.9. Examen 9 (9 de Septiembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- Examen de la convocatoria de Septiembre (10 de septiembre de 2012)
-- import Data.Array
-- Ejercicio 1. [1.7 puntos] El enunciado de uno de los problemas de la
-- IMO de 1966 es
-- Calcular el número de maneras de obtener 500 como suma de números
-- naturales consecutivos.
-- Definir la función
-- sucesionesConSuma :: Int -> [(Int,Int)]
-- tal que (sucesionesConSuma n) es la lista de las sucesiones de
-- números naturales consecutivos con suma n. Por ejemplo,
-- sucesionesConSuma 15 == [(1,5),(4,6),(7,8),(15,15)]
-- ya que 15 = 1+2+3+4+5 = 4+5+6 = 7+8 = 15.
```

```
-- Calcular la solución del problema usando sucesionesConSuma.
sucesionesConSuma :: Int -> [(Int,Int)]
sucesionesConSuma n =
    [(x,y) \mid y < [1..n], x < [1..y], sum [x..y] == n]
-- La solución del problema es
      ghci> length (sucesionesConSuma 500)
-- Otra definción, usando la fórmula de la suma es
sucesionesConSuma2 :: Int -> [(Int,Int)]
sucesionesConSuma2 n =
    [(x,y) \mid y \leftarrow [1..n], x \leftarrow [1..y], (x+y)*(y-x+1) == 2*n]
-- La 2ª definición es más eficiente
      ghci> :set +s
      ghci> sucesionesConSuma 500
      [(8,32),(59,66),(98,102),(500,500)]
      (1.47 secs, 1452551760 bytes)
      ghci> sucesionesConSuma2 500
      [(8,32),(59,66),(98,102),(500,500)]
      (0.31 secs, 31791148 bytes)
-- Ejercicio 2 [1.7 puntos] Definir la función
      inversiones :: Ord a => [a] -> [(a,Int)]
-- tal que (inversiones xs) es la lista de pares formados por los
-- elementos x de xs junto con el número de elementos de xs que aparecen
-- a la derecha de x y son mayores que x. Por ejemplo,
      inversiones [7,4,8,9,6] == [(7,2),(4,3),(8,1),(9,0),(6,0)]
inversiones :: Ord a => [a] -> [(a,Int)]
inversiones []
inversiones (x:xs) = (x, length (filter (>x) xs)) : inversiones xs
-- Ejercicio 3 [1.7 puntos] Se considera el siguiente procedimiento de
-- reducción de listas: Se busca un par de elementos consecutivos
-- iguales pero con signos opuestos, se eliminan dichos elementos y se
-- continúa el proceso hasta que no se encuentren pares de elementos
```

```
-- consecutivos iguales pero con signos opuestos. Por ejemplo, la
-- reducción de [-2,1,-1,2,3,4,-3] es
      [-2,1,-1,2,3,4,-3] (se elimina el par (1,-1))
      -> [-2,2,3,4,-3]
                            (se elimina el par (-2,2))
      -> [3,4,-3]
                             (el par (3,-3) no son consecutivos)
-- Definir la función
      reducida :: [Int] -> [Int]
-- tal que (reducida xs) es la lista obtenida aplicando a xs el proceso
-- de eliminación de pares de elementos consecutivos opuestos. Por
-- ejemplo,
      reducida [-2,1,-1,2,3,4,-3]
                                             == [3,4,-3]
      reducida [-2,1,-1,2,3,-4,4,-3]
                                             == []
      reducida [-2,1,-1,2,5,3,-4,4,-3]
                                            == [5]
      reducida [-2,1,-1,2,5,3,-4,4,-3,-5] == []
paso :: [Int] -> [Int]
paso [] = []
paso [x] = [x]
paso (x:y:zs) \mid x == -y = paso zs
              | otherwise = x : paso (y:zs)
reducida :: [Int] -> [Int]
reducida xs | xs == ys = xs
            | otherwise = reducida ys
            where ys = paso xs
reducida2 :: [Int] -> [Int]
reducida2 xs = aux xs []
    where aux [] ys
                                       = reverse ys
          aux (x:xs) (y:ys) | x == -y = aux xs ys
          aux (x:xs) ys
                                       = aux xs (x:ys)
-- Ejercicio 4. [1.7 puntos] Las variaciones con repetición de una lista
-- xs se puede ordenar por su longitud y las de la misma longitud
-- lexicográficamente. Por ejemplo, las variaciones con repetición de
-- "ab" son
    "", "a", "b", "aa", "ab", "ba", "bb", "aaa", "aab", "aba", "abb", "baa", . . .
-- y las de "abc" son
      "", "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", . . .
-- Definir la función
      posicion :: Eq a => [a] -> [a] -> Int
```

```
-- tal que (posicion xs ys) es posición de xs en la lista ordenada de
-- las variaciones con repetición de los elementos de ys. Por ejemplo,
      posicion "ba" "ab"
                              == 5
      posicion "ba" "abc"
      posicion "abccba" "abc" == 520
posicion :: Eq a => [a] -> [a] -> Int
posicion xs ys =
    length (takeWhile (/=xs) (variaciones ys))
variaciones :: [a] -> [[a]]
variaciones xs = concat aux
    where aux = [[]] : [[x:ys | x <- xs, ys <- yss] | yss <- aux]
-- Ejercicio 5. [1.6 puntos] Un árbol ordenado es un árbol binario tal
-- que para cada nodo, los elementos de su subárbol izquierdo son
-- menores y los de su subárbol derecho son mayores. Por ejemplo,
           5
         /\
       3 7
      / \
      1 4 6
-- El tipo de los árboles binarios se define por
      data Arbol = H Int
                 | N Int Arbol Arbol
-- con lo que el ejemplo anterior se define por
      ejArbol = N 5 (N 3 (H 1) (H 4)) (N 7 (H 6) (H 9))
- -
-- Definir la función
      ancestroMasProximo :: Int -> Int -> Int
-- tal que (ancestroMasProximo x y a) es el ancestro más próximo de los
-- nodos x e y en el árbol a. Por ejemplo,
      ancestroMasProximo 4 1 ejArbol == 3
      ancestroMasProximo 4 6 ejArbol == 5
data Arbol = H Int
           | N Int Arbol Arbol
ejArbol :: Arbol
```

```
ejArbol = N 5 (N 3 (H 1) (H 4)) (N 7 (H 6) (H 9))
ancestroMasProximo :: Int -> Int -> Arbol -> Int
ancestroMasProximo x y (N z i d)
    | x < z \& y < z = ancestroMasProximo x y i
    | x > z \& y > z = ancestroMasProximo x y d
    | otherwise
-- Ejercicio 6. [1.6 puntos] Las matrices puede representarse mediante
-- tablas cuyos índices son pares de números naturales:
      type Matriz = Array (Int,Int) Int
-- Definir la función
      maximos :: Matriz -> [Int]
-- tal que (maximos p) es la lista de los máximos locales de la matriz
-- p; es decir de los elementos de p que son mayores que todos sus
-- vecinos. Por ejemplo,
      ghci> maximos (listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,0,2,5,4])
      [9,7]
-- va que los máximos locales de la matriz
     19 4 6 51
     |8 1 7 3|
-- |0 2 5 4|
-- son 9 y 7.
type Matriz = Array (Int,Int) Int
maximos :: Matriz -> [Int]
maximos p =
    [p!(i,j) \mid (i,j) < - indices p,
               and [p!(a,b) < p!(i,j) | (a,b) < - vecinos (i,j)]]
    where (,(m,n)) = bounds p
          vecinos (i,j) = [(a,b) \mid a < - [max 1 (i-1)..min m (i+1)],
                                    b \leftarrow [max 1 (j-1)..min n (j+1)],
                                    (a,b) /= (i,j)]
```

3.1.10. Examen 10 (10 de Diciembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- Examen de la convocatoria de Diciembre de 2012
```

```
import Data.Array
-- Ejercicio 1.1. Definir una función verificanP
      verificanP :: Int -> Integer -> (Integer -> Bool) -> Bool
-- tal que (verificanP k n p) se cumple si los primeros k dígitos del
-- número n verifican la propiedad p y el (k+1)-ésimo no la verifica.
-- Por ejemplo,
    verificanP 3 224119 even == True
    verificanP 3 265119 even == False
    verificanP 3 224619 even == False
digitos:: Integer -> [Integer]
digitos n = [read [x]| x <- show n]
verificanP :: Int -> Integer -> (Integer -> Bool) -> Bool
verificanP k n p = length (takeWhile p (digitos n)) == k
-- Ejercicio 1.2. Definir la función
     primosPK :: (Integer -> Bool) -> Int -> [Integer]
-- tal que (primosPK p k) es la lista de los números primos cuyos
-- primeros k dígitos verifican la propiedad p y el (k+1)-ésimo no la
-- verifica. Por ejemplo,
    take 10 (primosPK even 4)
     [20021, 20023, 20029, 20047, 20063, 20089, 20201, 20249, 20261, 20269]
primosPK :: (Integer -> Bool) -> Int -> [Integer]
primosPK p k = [n | n < - primos, verificanP k n p]
primos :: [Integer]
primos = criba [2..]
    where criba [] = []
          criba (n:ns) = n : criba (elimina n ns)
          elimina n xs = [x \mid x < -xs, x 'mod' n /= 0]
-- Ejercicio 2. Definir la función
      suma2 :: Int -> [Int] -> Maybe (Int,Int)
-- tal que (suma2 n xs) es un par de elementos (x,y) de la lista xs cuya
```

```
-- suma es n, si éstos existe. Por ejemplo,
     suma2 27 [1..6] == Nothing
     suma2 7 [1..6] == Just (1,6)
__ ______
suma2 :: Int -> [Int] -> Maybe (Int,Int)
suma2 _ []
suma2 _ [_]
                             = Nothing
suma2 y (x:xs) \mid y-x \text{ 'elem' } xs = Just (x,y-x)
             | otherwise = suma2 y xs
-- Ejercicio 3. Consideremos el tipo de los árboles binarios definido
-- por
     data Arbol = H Int
                | N Int Arbol Arbol
                deriving Show
-- Por ejemplo,
          5
       3
            7
      /\
            /\
     1 4 6
-- se representa por
     ejArbol = N 5 (N 3 (H 1) (H 4)) (N 7 (H 6) (H 9))
-- Definir la función
     aplica :: (Int -> Int) -> Arbol -> Arbol
-- tal que (aplica f a) es el árbol obtenido aplicando la función f a
-- los elementos del árbol a. Por ejemplo,
     ghci> aplica (+2) ejArbol
     N 7 (N 5 (H 3) (H 6)) (N 9 (H 8) (H 11))
     ghci> aplica (*5) ejArbol
     N 25 (N 15 (H 5) (H 20)) (N 35 (H 30) (H 45))
data Arbol = H Int
          | N Int Arbol Arbol
          deriving Show
ejArbol :: Arbol
ejArbol = N 5 (N 3 (H 1) (H 4)) (N 7 (H 6) (H 9))
```

```
aplica :: (Int -> Int) -> Arbol -> Arbol
aplica f(Hx) = H(fx)
aplica f(N \times i d) = N(f \times x) (aplica f(i)) (aplica f(d))
-- Ejercicio 4. Las matrices puede representarse mediante tablas cuyos
-- índices son pares de números naturales:
     type Matriz = Array (Int,Int) Int
-- Definir la función
     algunMenor :: Matriz -> [Int]
-- tal que (algunMenor p) es la lista de los elementos de p que tienen
-- algún vecino menor que él. Por ejemplo,
     algunMenor (listArray ((1,1),(3,4)) [9,4,6,5,8,1,7,3,4,2,5,4])
     [9,4,6,5,8,7,4,2,5,4]
-- pues sólo el 1 y el 3 no tienen ningún vecino menor en la matriz
     19 4 6 51
    |8 1 7 3|
     |4 2 5 4|
type Matriz = Array (Int,Int) Int
algunMenor :: Matriz -> [Int]
algunMenor p =
    [p!(i,j) \mid (i,j) < - indices p,
              or [p!(a,b) < p!(i,j) | (a,b) < - vecinos (i,j)]]
   where (\_,(m,n)) = bounds p
         vecinos (i,j) = [(a,b) \mid a < - [max 1 (i-1)..min m (i+1)],
                                 b \leftarrow [max 1 (j-1)..min n (j+1)],
                                 (a,b) /= (i,j)
```

3.2. Exámenes del grupo 2 (María J. Hidalgo)

3.2.1. Examen 1 (27 de Octubre de 2011)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 1º examen de evaluación continua (27 de octubre de 2011)
```

- -----

```
-- Ejercicio 1. Los puntos del plano se pueden representar mediante
-- pares de números reales.
-- Definir la función estanEnLinea tal que (estanEnLinea p1 p2) se
-- verifica si los puntos p1 y p2 están en la misma línea vertical u
-- horizontal. Por ejemplo,
      estanEnLinea (1,3) (1,-6) == True
      estanEnLinea (1,3) (-1,-6) == False
      estanEnLinea (1,3) (-1,3) == True
estanEnLinea (x1,y1) (x2,y2) = x1 == x2 || y1 == y2
-- Ejercicio 2. Definir la función pCardinales tal que
-- (pCardinales (x,y) d) es la lista formada por los cuatro puntos
-- situados al norte, sur este y oeste, a una distancia d de (x,y).
-- Por ejemplo,
      pCardinales (0,0) 2 == [(0,2),(0,-2),(-2,0),(2,0)]
      pCardinales (-1,3) 4 == [(-1,7),(-1,-1),(-5,3),(3,3)]
pCardinales (x,y) d = [(x,y+d),(x,y-d),(x-d,y),(x+d,y)]
-- Ejercicio 3. Definir la función elementosCentrales tal que
-- (elementosCentrales xs) es la lista formada por el elemento central
-- si xs tiene un número impar de elementos, y los dos elementos
-- centrales si xs tiene un número par de elementos. Por ejemplo,
      elementosCentrales [1..8] == [4,5]
      elementosCentrales [1..7] == [4]
elementosCentrales xs
             = [xs!!(m-1), xs!!m]
    even n
    | otherwise = [xs !! m]
    where n = length xs
          m = n 'div' 2
-- Ejercicio 4. Consideremos el problema geométrico siguiente: partir un
-- segmento en dos trozos, a y b, de forma que, al dividir la longitud
-- total entre el mayor (supongamos que es a), obtengamos el mismo
```

3.2.2. Examen 2 (1 de Diciembre de 2011)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 2º examen de evaluación continua (1 de diciembre de 2011)
import Test.QuickCheck
import Data.List
__ _______
-- Ejercicio 1.1. Definir, por recursión, la función
     todosIgualesR:: Eq a => [a] -> Bool
-- tal que (todosIqualesR xs) se verifica si los elementos de la
-- lista xs son todos iguales. Por ejemplo,
     todosIgualesR [1..5] == False
     todosIgualesR [2,2,2] == True
     todosIgualesR ["a","a"] == True
todosIgualesR:: Eq a => [a] -> Bool
todosIgualesR [] = True
todosIqualesR [ ] = True
todosIgualesR (x:y:xs) = x == y && todosIgualesR (y:xs)
.. .....
-- Ejercicio 1.2. Definir, por comprensión, la función
     todosIgualesC:: Eq a => [a] -> Bool
```

```
-- tal que (todosIqualesC xs) se verifica si los elementos de la
-- lista xs son todos iguales. Por ejemplo,
      todosIgualesC [1..5] == False
      todosIgualesC [2,2,2] == True
      todosIgualesC ["a","a"] == True
todosIgualesC:: Eq a => [a] -> Bool
todosIgualesC xs = and [x==y | (x,y) <- zip xs (tail xs)]
-- Ejercicio 1.3. Comprobar con QuickCheck que ambas definiciones
-- coinciden.
-- La propiedad es
prop todosIquales :: [Int] -> Bool
prop todosIguales xs = todosIgualesR xs == todosIgualesC xs
-- La comprobación es
     ghci> quickCheck prop todosIguales
      +++ OK, passed 100 tests.
-- Ejercicio 2.1. Definir la función
      intercalaCero :: [Int] -> [Int]
-- tal que (intercalaCero xs) es la lista que resulta de intercalar un 0
-- entre cada dos elementos consecutivos x e y, cuando x es mayor que
-- y. Por ejemplo,
      intercalaCero [2,1,8,3,5,1,9] == [2,0,1,8,0,3,5,0,1,9]
      intercalaCero [1..9] == [1,2,3,4,5,6,7,8,9]
-- -----
intercalaCero :: [Int] -> [Int]
intercalaCero [] = []
intercalaCero[x] = [x]
intercalaCero (x:y:xs) | x > y = x : 0 : intercalaCero (y:xs)
                      | otherwise = x : intercalaCero (y:xs)
-- Ejercicio 2.2. Comprobar con QuickCheck la siguiente propiedad: para
-- cualquier lista de enteros xs, la longitud de la lista que resulta
-- de intercalar ceros es mayor o igual que la longitud de xs.
```

```
-- La propiedad es
prop intercalaCero :: [Int] -> Bool
prop intercalaCero xs =
   length (intercalaCero xs) >= length xs
-- La comprobación es
     ghci> quickCheck prop intercalaCero
     +++ OK, passed 100 tests.
-- Ejercicio 3.1. Una lista social es una lista de números enteros
-- x 1,...,x n tales que para cada índice i se tiene que la suma de los
-- divisores propios de x_i es x_(i+1), para i=1,...,n−1 y la suma de
-- los divisores propios de x_n es x_1. Por ejemplo,
-- [12496,14288,15472,14536,14264] es una lista social.
-- Definir la función
     esListaSocial :: [Int] -> Bool
-- tal que (esListaSocial xs) se verifica si xs es una lista social.
-- Por ejemplo,
     esListaSocial [12496, 14288, 15472, 14536, 14264] == True
     esListaSocial [12, 142, 154]
                                                  == False
__ ______
esListaSocial :: [Int] -> Bool
esListaSocial xs =
   (and [asociados x y \mid (x,y) <- zip xs (tail xs)]) &&
   asociados (last xs) (head xs)
   where asociados :: Int -> Int -> Bool
         asociados x y = sum [k \mid k \leftarrow [1..x-1], rem x k == 0] == y
-- Ejercicio 3.2. ¿Existen listas sociales de un único elemento? Si
-- crees que existen, busca una de ellas.
listasSocialesUnitarias :: [[Int]]
listasSocialesUnitarias = [[n] | n <- [1..], esListaSocial [n]]</pre>
-- El cálculo es
     ghci> take 4 listasSocialesUnitarias
```

```
[[6],[28],[496],[8128]]
-- Se observa que [n] es una lista social syss n es un número perfecto.
-- Ejercicio 4. (Problema 358 del proyecto Euler) Un número x con n
-- cifras se denomina número circular si tiene la siguiente propiedad:
-- si se multiplica por 1, 2, 3, 4, ..., n, todos los números que
-- resultan tienen exactamente las mismas cifras que x, pero en distinto
-- orden. Por ejemplo, el número 142857 es circular, ya que
      142857 * 1 = 142857
      142857 * 2 = 285714
     142857 * 3 = 428571
      142857 * 4 = 571428
      142857 * 5 = 714285
      142857 * 6 = 857142
-- Definir la función
      esCircular :: Int -> Bool
-- tal que (esCircular x) se verifica si x es circular. Por ejemplo,
     esCircular 142857 == True
      esCircular 14285 == False
esCircular :: Int -> Bool
esCircular x = and [esPermutacionCifras y x | y <- ys]
 where n = numeroDeCifras x
        ys = [k*x | k < - [1..n]]
-- (numeroDeCifras x) es el número de cifras de x. Por ejemplo,
      numeroDeCifras 142857 == 6
numeroDeCifras :: Int -> Int
numeroDeCifras = length . cifras
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
      cifras 142857 == [1,4,2,8,5,7]
cifras :: Int -> [Int]
cifras n = [read [x] | x <- show n]
-- (esPermutacion xs ys) se verifica si xs es una permutación de ys. Por
-- ejemplo,
     esPermutacion [2,5,3] [3,5,2] == True
     esPermutacion [2,5,3] [2,3,5,2] == False
```

sumatorioR f m n = aux m θ

where aux k ac | k > n = ac

```
esPermutacion :: Eq a => [a] -> [a] -> Bool
esPermutacion [] = True
esPermutacion []
                  _ = False
esPermutacion (x:xs) ys = elem x ys && esPermutacion xs (delete x ys)
-- (esPermutacion x y) se verifica si las cifras de x es una permutación
-- de las de y. Por ejemplo,
     esPermutacionCifras 253 352 == True
     esPermutacionCifras 253 2352 == False
esPermutacionCifras :: Int -> Int -> Bool
esPermutacionCifras x y =
  esPermutacion (cifras x) (cifras y)
3.2.3.
        Examen 3 (26 de Enero de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 3º examen de evaluación continua (26 de enero de 2012)
import Test.QuickCheck
import Data.List
-- Ejercicio 1.1. Definir la función
     sumatorio :: (Integer -> Integer) -> Integer -> Integer
-- tal que (sumatorio f m n) es la suma de f(x) desde x=m hasta x=n. Por
-- ejemplo,
     sumatorio (^{2}) 5 10 == 355
     sumatorio abs (-5) 10 == 70
     sumatorio (^2) 3 100000 == 333338333349995
-- 1ª definición (por comprensión):
sumatorioC :: (Integer -> Integer) -> Integer -> Integer
sumatorioC f m n = sum [f x | x < - [m..n]]
-- 2ª definición (por recursión):
sumatorioR :: (Integer -> Integer) -> Integer -> Integer
```

| otherwise = aux (k+1) (ac + f k)

```
-- Ejercicio 1.2. Definir la función
      sumaPred :: Num a => (a -> Bool) -> [a] -> a
-- tal que (sumaPred p xs) es la suma de los elementos de xs que
-- verifican el predicado p. Por ejemplo:
      sumaPred even [1..1000] == 250500
      sumaPred even [1..100000] == 2500050000
-- la definición (por composición, usando funciones de orden superior):
sumaPred :: Num a => (a -> Bool) -> [a] -> a
sumaPred p = sum . filter p
-- 2ª definición (por recursión):
sumaPredR :: Num a => (a -> Bool) -> [a] -> a
sumaPredR _ [] = 0
sumaPredR p (x:xs) | p x = x + sumaPredR p xs
                   | otherwise = sumaPredR p xs
-- 3ª definición (por plegado por la derecha, usando foldr):
sumaPredPD :: Num a => (a -> Bool) -> [a] -> a
sumaPredPD p = foldr f 0
   where f x y | p x
                       = x + y
               | otherwise = y
-- 4ª definición (por recursión final):
sumaPredRF :: Num a => (a -> Bool) -> [a] -> a
sumaPredRF p xs = aux xs 0
   where aux [] a = a
          aux (x:xs) a | p x = aux xs (x+a)
                      | otherwise = aux xs a
-- 5ª definición (por plegado por la izquierda, usando foldl):
sumaPredPI p = foldl f 0
   where f \times y \mid p y
                       = x + y
                | otherwise = x
-- Ejercicio 2.1. Representamos una relación binaria sobre un conjunto
-- como un par formado por:
-- * una lista, que representa al conjunto, y
-- * una lista de pares, que forman la relación
-- En los ejemplos usaremos las siguientes relaciones
```

```
r1, r2, r3,r4 :: ([Int],[(Int, Int)])
      r1 = ([1..9], [(1,3), (2,6), (8,9), (2,7)])
      r2 = ([1..9], [(1,3), (2,6), (8,9), (3,7)])
      r3 = ([1..9], [(1,3), (2,6), (6,2), (3,1), (4,4)])
      r4 = ([1..3], [(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)])
-- Definir la función
      reflexiva :: Eq a \Rightarrow ([a],[(a,a)]) \rightarrow Bool
-- tal que (reflexiva r) se verifica si r es una relación reflexiva. Por
-- ejemplo,
      reflexiva r1 == False
      reflexiva r4 == True
r1, r2, r3,r4 :: ([Int],[(Int, Int)])
r1 = ([1..9], [(1,3), (2,6), (8,9), (2,7)])
r2 = ([1..9], [(1,3), (2,6), (8,9), (3,7)])
r3 = ([1..9], [(1,3), (2,6), (6,2), (3,1), (4,4)])
r4 = ([1..3], [(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)])
reflexiva :: Eq a => ([a],[(a,a)]) -> Bool
reflexiva (us,ps) = and [(x,x) 'elem' ps | x <- us]
-- Ejercicio 2.2. Definir la función
      simetrica :: Eq a \Rightarrow ([a],[(a,a)]) \Rightarrow Bool
-- tal que (simetrica r) se verifica si r es una relación simétrica. Por
-- ejemplo,
      simetrica r1 == False
      simetrica r3 == True
-- 1ª definición (por comprensión):
simetricaC :: Eq a => ([a],[(a,a)]) -> Bool
simetricaC(x,r) =
    null [(x,y) \mid (x,y) < -r, (y,x)  'notElem' r]
-- 2ª definición (por recursión):
simetrica :: Eq a \Rightarrow ([a],[(a,a)]) \Rightarrow Bool
simetrica r = aux (snd r)
    where aux [] = True
          aux((x,y):s) | x == y = aux s
                          | otherwise = elem (y,x) s && aux (delete (y,x) s)
```

```
-- Ejercicio 3. (Problema 347 del proyecto Euler) El mayor entero menor
-- o igual que 100 que sólo es divisible por los primos 2 y 3, y sólo
-- por ellos, es 96, pues 96 = 3*32 = 3*2^5.
-- Dados dos primos distintos p y q, sea M(p,q,n) el mayor entero menor
-- o iqual que n sólo divisible por ambos p y q; o M(p,q,N)=0 si tal
-- entero no existe. Por ejemplo:
     M(2,3,100) = 96
     M(3,5,100) = 75 y no es 90 porque 90 es divisible por 2, 3 y 5
                       y tampoco es 81 porque no es divisible por 5.
     M(2,73,100) = 0 porque no existe un entero menor o igual que 100 que
                      sea divisible por 2 y por 73.
-- Definir la función
     mayorSoloDiv :: Int -> Int -> Int -> Int
-- tal que (mayorSoloDiv p q n) es M(p,q,n). Por ejemplo,
     mayorSoloDiv 2 3 100 == 96
     mayorSoloDiv 3 5 100 == 75
     mayorSoloDiv 2 73 100 == 0
-- 1ª solución
-- =========
mayorSoloDiv :: Int -> Int -> Int -> Int
mayorSoloDiv p q n
    \mid null xs = 0
    | otherwise = head xs
   where xs = [x \mid x < [n,n-1..1], divisoresPrimos x == sort [p,q]]
-- (divisoresPrimos n) es la lista de los divisores primos de x. Por
-- ejemplo,
     divisoresPrimos 180 = [2,3,5]
divisoresPrimos :: Int -> [Int]
divisoresPrimos n = [x \mid x < [1..n], rem n x == 0, esPrimo x]
-- (esPrimo n) se verifica si n es primo. Por ejemplo,
      esPrimo 7 == True
      esPrimo 9 == False
esPrimo :: Int -> Bool
esPrimo n = [x \mid x < [1..n], rem n x == 0] == [1,n]
```

```
-- 2ª solución:
-- =========
mayorSoloDiv2 :: Int -> Int -> Int -> Int
mayorSoloDiv2 p q n
    | null xs = 0
    | otherwise = head xs
    where xs = [x \mid x \leftarrow [n,n-1..1], soloDivisible p q x]
-- (soloDivisible p q x) se verifica si x es divisible por los primos p
-- y por q, y sólo por ellos. Por ejemplo,
      soloDivisible 2 3 96 == True
      soloDivisible 3 5 90 == False
      soloDivisible 3 5 75 == True
soloDivisible :: Int -> Int -> Bool
soloDivisible p q x =
    mod x p == 0 \& mod x q == 0 \& aux x
    where aux x \mid x 'elem' [p,q] = True
                \mid \mod x p == 0 = \operatorname{aux} (\operatorname{div} x p)
                | \mod x \neq = 0 = aux (div x q)
                 otherwise
                                 = False
-- Ejercicio 4.1. Dado un número n, calculamos la suma de sus divisores
-- propios reiteradamente hasta que quede un número primo. Por ejemplo,
      n | divisores propios
                                                 | suma de div. propios
     30
        [1,2,3,5,6,10,15]
                                                    42
        [1,2,3,6,7,14,21]
                                                    54
     42
     54
        [1,2,3,6,9,18,27]
                                                    66
     66
        | [1,2,3,6,11,22,33]
                                                    78
     78
        [1,2,3,6,13,26,39]
                                                    90
        [1,2,3,5,6,9,10,15,18,30,45]
                                                 | 144
     90
    144
        [1,2,3,4,6,8,9,12,16,18,24,36,48,72] | 259
        | [1,7,37]
    259
                                                    45
     45
        [1,3,5,9,15]
                                                    33
     33
        | [1,3,11]
                                                    15
     15
        | [1,3,5]
                                                     9
     9 | [1,3]
                                                     4
                                                     3
     4 | [1,2]
   3 (es primo)
```

```
-- Definir una función
     sumaDivReiterada :: Int -> Int
-- tal que (sumaDivReiterada n) calcule reiteradamente la suma de los
-- divisores propios hasta que se llegue a un número primo. Por ejemplo,
     sumaDivReiterada 30
                         == 3
     sumaDivReiterada 52
     sumaDivReiterada 5289 == 43
     sumaDivReiterada 1024 == 7
sumaDivReiterada :: Int -> Int
sumaDivReiterada n
   l esPrimo n
   | otherwise = sumaDivReiterada (sumaDivPropios n)
-- (sumaDivPropios n) es la suma de los divisores propios de n. Por
-- ejemplo,
     sumaDivPropios 30 == 42
sumaDivPropios :: Int -> Int
sumaDivPropios n = sum [k | k <- [1..n-1], rem n k == 0]
-- Ejercicio 4.2. ; Hay números naturales para los que la función
-- anterior no termina? Si crees que los hay, explica por qué y
-- encuentra los tres primeros números para los que la función anterior
-- no terminaría. En caso contrario, justifica por qué termina siempre.
-- Basta observar que si n es igual a la suma de sus divisores propios
-- (es decir, si n es un número perfecto), la función no termina porque
-- vuelve a hacer la suma reiterada de sí mismo otra vez. Luego, la
-- función no termina para los números perfectos.
-- Los números perfectos se definen por
esPerfecto :: Int -> Bool
esPerfecto n = sumaDivPropios n == n
-- Los 3 primeros números perfectos se calcula por
     ghci> take 3 [n | n <- [1..], esPerfecto n]</pre>
     [6,28,496]
-- Por tanto, los tres primeros números para los que el algoritmo no
```

```
-- termina son los 6, 28 y 496.
-- Se puede comprobar con
     ghci> sumaDivReiterada 6
       C-c C-cInterrupted.
3.2.4. Examen 4 ( 1 de Marzo de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 4º examen de evaluación continua (1 de marzo de 2011)
import Test.QuickCheck
import Data.List
-- Ejercicio 1. Definir la función
     verificaP :: (a -> Bool) -> [[a]] -> Bool
-- tal que (verificaP p xs) se verifica si cada elemento de la lista xss
-- contiene algún elemento que cumple el predicado p. Por ejemplo,
     verificaP odd [[1,3,4,2], [4,5], [9]] == True
     verificaP odd [[1,3,4,2], [4,8], [9]] == False
-- lª definición (por comprensión):
verificaP :: (a -> Bool) -> [[a]] -> Bool
verificaP p xss = and [any p xs | xs <- xss]</pre>
-- 2ª definición (por recursión):
verificaP2 :: (a -> Bool) -> [[a]] -> Bool
verificaP2 p [] = True
verificaP2 p (xs:xss) = any p xs && verificaP2 p xss
-- 3ª definición (por plegado):
verificaP3 :: (a -> Bool) -> [[a]] -> Bool
verificaP3 p = foldr((&&) . any p) True
```

-- Ejercicio 2. Se consideran los árboles binarios

| N Arbol Int Arbol

-- definidos por

-- data Arbol = H Int

```
deriving (Show, Eq)
-- Por ejemplo, el árbol
          5
         /\
       9
      / \
     1 4 6
  se representa por
     N (N (H 1) 9 (H 4)) 5 (N (H 6) 7 (H 8))
-- Definir la función
     mapArbol :: (Int -> Int) -> Arbol -> Arbol
-- tal que (mapArbol f a) es el árbol que resulta de aplicarle f a los
-- nodos y las hojas de a. Por ejemplo,
     ghci> mapArbol (^2) (N (N (H 1) 9 (H 4)) 5 (N (H 6) 7 (H 8)))
     N (N (H 1) 81 (H 16)) 25 (N (H 36) 49 (H 64))
  -----
data Arbol = H Int
           | N Arbol Int Arbol
          deriving (Show, Eq)
mapArbol :: (Int -> Int) -> Arbol -> Arbol
mapArbol f (H x) = H (f x)
mapArbol f (N i \times d) = N (mapArbol f i) (f \times) (mapArbol f d)
-- Ejercicio 3. Definir la función
     separaSegunP :: (a -> Bool) -> [a] -> [[a]]
-- tal que (separaSegunP p xs) es la lista obtenida separando los
-- elementos de xs en segmentos según que verifiquen o no el predicado
-- p. Por jemplo,
     ghci> separaSegunP odd [1,2,3,4,5,6,7,8]
     [[1],[2],[3],[4],[5],[6],[7],[8]]
     ghci> separaSegunP odd [1,1,3,4,6,7,8,10]
     [[1,1,3],[4,6],[7],[8,10]]
separaSegunP :: (a -> Bool) -> [a] -> [[a]]
separaSegunP p [] = []
separaSegunP p xs =
    takeWhile p xs : separaSegunP (not . p) (dropWhile p xs)
```

```
-- Ejercicio 4.1. Un número poligonal es un número que puede
-- recomponerse en un polígono regular.
-- Los números triangulares (1, 3, 6, 10, 15, ...) son enteros del tipo
     1 + 2 + 3 + \ldots + n.
-- Los números cuadrados (1, 4, 9, 16, 25, ...) son enteros del tipo
     1 + 3 + 5 + \dots + (2n-1).
-- Los números pentagonales (1, 5, 12, 22, ...) son enteros del tipo
     1 + 4 + 7 + \ldots + (3n-2).
-- Los números hexagonales (1, 6, 15, 28, ...) son enteros del tipo
     1 + 5 + 9 + \dots + (4n-3).
-- Y así sucesivamente.
-- Según Fermat, todo número natural se puede expresar como la suma de n
-- números poligonales de n lados. Gauss lo demostró para los
-- triangulares y Cauchy para todo tipo de polígonos.
-- Para este ejercicio, decimos que un número poligonal de razón n es
-- un número del tipo
     1 + (1+n) + (1+2*n)+...
-- Es decir, los números triángulares son números poligonales de razón
-- 1, los números cuadrados son números poligonales de razón 2, los
-- pentagonales de razón 3, etc.
-- Definir la constante
     triangulares :: [Integer]
-- tal que es la lista de todos los números triángulares. Por ejemplo,
     ghci> take 20 triangulares
     [1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210]
triangulares :: [Integer]
triangulares = [sum [1..k] | k <- [1..]]
__ ______
-- Ejercicio 4.2. Definir la función
     esTriangular :: Integer -> Bool
-- tal que (esTriangular n) se verifica si n es un número es triangular.
-- Por ejemplo,
     esTriangular 253 == True
     esTriangular 234 == False
```

```
esTriangular :: Integer -> Bool
esTriangular x = x 'elem' takeWhile (<=x) triangulares
__ ______
-- Ejercicio 4.3. Definir la función
     poligonales:: Integer -> [Integer]
-- tal que (poligonales n) es la lista de los números poligonales de
-- razón n. Por ejemplo,
     take 10 (poligonales 1) == [1,3,6,10,15,21,28,36,45,55]
     take 10 (poligonales 3) == [1,5,12,22,35,51,70,92,117,145]
poligonales:: Integer -> [Integer]
poligonales n = [sum [1+j*n | j < [0..k]] | k < [0..]]
-- Ejercicio 4.4. Definir la función
     esPoligonalN :: Integer -> Integer -> Bool
-- tal que (esPoligonalN x n) se verifica si x es poligonal de razón n.
-- Por ejemplo,
     esPoligonalN 12 3 == True
     esPoligonalN 12 1 == False
esPoligonalN :: Integer -> Integer -> Bool
esPoligonalN x n = x 'elem' takeWhile (<= x) (poligonales n)
-- Ejercicio 4.5. Definir la función
     esPoligonal :: Integer -> Bool
-- tal que (esPoligonalN x) se verifica si x es un número poligonal. Por
-- ejemplo,
     esPoligonal 12 == True
esPoligonal :: Integer -> Bool
esPoligonal x = or [esPoligonalN \times n \mid n < - [1..x]]
-- Ejercicio 4.6. Calcular el primer número natural no poligonal.
```

```
primerNoPoligonal :: Integer
primerNoPoligonal = head [x \mid x < [1..], not (esPoligonal x)]
-- El cálculo es
      ghci> primerNoPoligonal
-- Ejercicio 4.7. Definir la función
      descomposicionTriangular :: Integer -> (Integer, Integer, Integer)
-- tal que que (descomposicionTriangular n) es la descomposición de un
-- número natural en la suma de, a lo sumo 3 números triángulares. Por
-- ejemplo,
      descomposicionTriangular 20 == (0,10,10)
      descomposicionTriangular 206 == (1,15,190)
     descomposicionTriangular 6 == (0,0,6)
      descomposicionTriangular 679 == (1,300,378)
descomposicionTriangular :: Integer -> (Integer, Integer, Integer)
descomposicionTriangular n =
 head [(x,y,z) \mid x < -xs,
                  y <- x : dropWhile (<x) xs,
                  z <- y : dropWhile (<y) xs,
                  x+y+z == n
    where xs = 0: takeWhile (<=n) triangulares
3.2.5.
         Examen 5 (22 de Marzo de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 5º examen de evaluación continua (22 de marzo de 2012)
import Test.QuickCheck
import Data.List
import PolOperaciones
-- Ejercicio 1.1. Definir, por comprensión, la función
      interseccionC :: Eq a => [[a]] -> [a]
-- tal que (interseccionC xss) es la lista con los elementos comunes a
-- todas las listas de xss. Por ejemplo,
```

```
interseccionC[[1,2],[3]] == []
     intersectionC [[1,2],[3,2],[2,4,5,6,1]] == [2]
interseccionC :: Eq a => [[a]] -> [a]
interseccionC []
               = []
intersectionC (xs:xss) = [x \mid x \leftarrow xs, and [x 'elem' ys| ys \leftarrow xss]]
-- Ejercicio 1.2. Definir, por recurción, la función
     interseccionR :: Eq a => [[a]] -> [a]
-- tal que (interseccionR xss) es la lista con los elementos comunes a
-- todas las listas de xss. Por ejemplo,
     interseccionR [[1,2],[3]] == []
     intersectionR [[1,2],[3,2],[2,4,5,6,1]] == [2]
interseccionR :: Eq a => [[a]] -> [a]
interseccionR [xs]
interseccionR (xs:xss) = inter xs (interseccionR xss)
   where inter xs ys = [x \mid x < -xs, x 'elem' ys]
-- Ejercicio 2.1. Definir la función
     primerComun :: Ord a => [a] -> [a] -> a
-- tal que (primerComun xs ys) el primer elemento común de las listas xs
-- e ys (suponiendo que ambas son crecientes y, posiblemente,
-- infinitas). Por ejemplo,
     primerComun [2,4..] [7,10..] == 10
primerComun :: Ord a => [a] -> [a] -> a
primerComun xs ys = head [x \mid x <- xs, x 'elem' takeWhile (<=x) ys]
-- Ejercicio 2.2. Definir, utilizando la función anterior, la función
     mcm :: Int -> Int -> Int
-- tal que (mcm x y) es el mínimo común múltiplo de x e y. Por ejemplo,
     mcm 123 45 == 1845
     mcm 123 450 == 18450
     mcm 35 450 == 3150
```

```
mcm :: Int -> Int -> Int
mcm \ x \ y = primerComun \ [x*k | k <- [1..]] \ [y*k | k <- [1..]]
-- Ejercicio 3.1. Consideremos el TAD de los polinomios visto en
-- clase. Como ejemplo, tomemos el polinomio x^3 + 3.0*x^2 - 1.0*x - 2.0,
-- definido por
     eiPol :: Polinomio Float
     ejPol = consPol 3 1
                    (consPol 2 3
                            (consPol 1 (-1)
                                   (consPol 0 (-2) polCero)))
-- Definir la función
     integral :: Polinomio Float -> Polinomio Float
-- tal que (integral p) es la integral del polinomio p. Por ejemplo,
     integral ejPol == 0.25*x^4 + x^3 + -0.5*x^2 - 2.0*x
  ______
eiPol :: Polinomio Float
eiPol = consPol 3 1
              (consPol 2 3
                      (consPol 1 (-1)
                              (consPol 0 (-2) polCero)))
integral :: Polinomio Float -> Polinomio Float
integral p
   | esPolCero p = polCero
   | otherwise
               = consPol (n+1) (b/fromIntegral (n+1)) (integral r)
   where n = qrado p
        b = coefLider p
        r = restoPol p
__ ______
-- Ejercicio 3.2. Definir la función
     integralDef :: Polinomio Float -> Float -> Float
-- tal que (integralDef p a b) es el valor de la integral definida
-- de p entre a y b. Por ejemplo,
     integralDef ejPol 1 4 == 113.25
  ______
integralDef :: Polinomio Float -> Float -> Float
integralDef p a b = valor q b - valor q a
   where q = integral p
```

```
-- Ejercicio 4. El método de la bisección para calcular un cero de una
-- función en el intervalo [a,b] se basa en el teorema de Bolzano:
      "Si f(x) es una función continua en el intervalo [a, b], y si,
      además, en los extremos del intervalo la función f(x) toma valores
      de signo opuesto (f(a) * f(b) < 0), entonces existe al menos un
      valor c en (a, b) para el que f(c) = 0".
-- La idea es tomar el punto medio del intervalo c = (a+b)/2 y
-- considerar los siguientes casos:
-- * Si f(c) ~= 0, hemos encontrado una aproximación del punto que
    anula f en el intervalo con un error aceptable.
-- * Si f(c) tiene signo distinto de f(a), repetir el proceso en el
  intervalo [a,c].
-- * Si no, repetir el proceso en el intervalo [c,b].
-- Definir la función
      ceroBiseccionE :: (Float -> Float) -> Float -> Float -> Float
-- tal que (ceroBiseccionE f a b e) es una aproximación del punto
-- del intervalo [a,b] en el que se anula la función f, con un error
-- menor que e, aplicando el método de la bisección (se supone que
-- f(a)*f(b)<0). Por ejemplo,
      let f1 x = 2 - x
      let f2 x = x^2 - 3
      ceroBiseccionE fl 0 3 0.0001
                                    == 2.000061
      ceroBiseccionE f2 0 2 0.0001
                                     == 1.7320557
      ceroBiseccionE f2 (-2) 2 0.00001 == -1.732048
      ceroBiseccionE cos 0 2 0.0001
                                      == 1.5708008
ceroBiseccionE :: (Float -> Float) -> Float -> Float -> Float
ceroBiseccionE f a b e = aux a b
    where aux c d | aceptable m
                                   = m
                  | f c * f m < 0 = aux c m
                  | otherwise
                                   = aux m d
             where m = (c+d)/2
                   aceptable x = abs (f x) < e
```

3.2.6. Examen 6 (3 de Mayo de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 6º examen de evaluación continua (3 de mayo de 2012)
import Data.List
import Data.Array
import Test.QuickCheck
import PolOperaciones
-- Ejercicio 1.1. Definir la función
     verificaP :: (a -> Bool) -> [[a]] -> Bool
-- tal que (verificaP p xss) se cumple si cada lista de xss contiene
-- algún elemento que verifica el predicado p. Por ejemplo,
     verificaP odd [[1,3,4,2], [4,5], [9]] == True
     verificaP odd [[1,3,4,2], [4,8], [9]] == False
verificaP :: (a -> Bool) -> [[a]] -> Bool
verificaP p xss = and [any p xs | xs <- xss]</pre>
__ _______
-- Ejercicio 1.2. Definir la función
     verificaTT :: (a -> Bool) -> [[a]] -> Bool
-- tal que (verificaTT p xss) se cumple si todos los elementos de todas
-- las listas de xss verifican el predicado p. Por ejemplo,
     verificaTT odd [[1,3], [7,5], [9]] == True
     verificaTT odd [[1,3,4,2], [4,8], [9]] == False
verificaTT :: (a -> Bool) -> [[a]] -> Bool
verificaTT p xss = and [all p xs | xs <- xss]</pre>
-- Ejercicio 1.3. Definir la función
     verificaEE :: (a -> Bool) -> [[a]] -> Bool
-- tal que (verificaEE p xss) se cumple si algún elemento de alguna
-- lista de xss verifica el predicado p. Por ejemplo,
     verificaEE odd [[1,3,4,2], [4,8], [9]] == True
     verificaEE odd [[4,2], [4,8], [10]] == False
```

```
verificaEE :: (a -> Bool) -> [[a]] -> Bool
verificaEE p xss = or [any p xs | xs <- xss]</pre>
-- Ejercicio 1.4. Definir la función
    verificaET :: (a -> Bool) -> [[a]] -> Bool
-- tal que (verificaET p xss) se cumple si todos los elementos de alguna
-- lista de xss verifican el predicado p. Por ejemplo,
     verificaET odd [[1,3], [4,8], [10]] == True
     verificaET odd [[4,2], [4,8], [10]] == False
verificaET :: (a -> Bool) -> [[a]] -> Bool
verificaET p xss = or [all p xs | xs <- xss]</pre>
__ ______
-- Ejercicio 2. (Problema 303 del proyecto Euler). Dado un número
-- natural n, se define f(n) como el menor natural, múltiplo de n,
-- cuyos dígitos son todos menores o iguales que 2. Por ejemplo, f(2)=2,
-- f(3)=12, f(7)=21, f(42)=210, f(89)=1121222.
-- Definir la función
    menorMultiplo1y2 :: Int -> Int
-- tal que (menorMultiplo1y2 n) es el menor múltiplo de n cuyos dígitos
-- son todos menores o iguales que 2. Por ejemplo,
    menorMultiplo1y2 42 == 210
menorMultiplo1y2 :: Int -> Int
menorMultiplo1y2 n =
   head [x \mid x < [n,2*n..], all (<=2) (cifras x)]
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
    cifras 325 == [3,2,5]
cifras :: Int -> [Int]
cifras n = [read [x] | x <- show n]
__ _______
-- Ejercicio 3. Definir la función
     raicesApol :: Fractional t => [(t, Int)] -> Polinomio t
-- tal que (raicesApol rs) es el polinomio correspondiente si rs es la
-- lista de raices, con sus respectivas multiplicidades, rs; es decir,
```

```
-- raicesApol [(r1,n1),...,(rk,nk)] es (x-r1)^n1...(x-rk)^nk. Por
-- ejemplo,
    raicesApol [(2,1),(-1,3)] == x^4 + x^3 + -3.0*x^2 + -5.0*x + -2.0
raicesApol :: Fractional t => [(t, Int)] -> Polinomio t
raicesApol rs = multListaPol factores
    where factores = [potencia (creaFactor x) n \mid (x,n) < -rs]
-- (creaFactor a) es el polinomio x-a. Por ejemplo,
      ghci> creaFactor 5
      1.0*x + -5.0
creaFactor :: Fractional t => t -> Polinomio t
creaFactor a = creaPolDensa [(1,1),(0,-a)]
-- (creaPolDensa ps) es el polinomio cuya representación densa (mediante
-- pares con grados y coeficientes) es ps. Por ejemplo,
      ghci> creaPolDensa [(3,5),(2,4),(0,7)]
      5*x^3 + 4*x^2 + 7
creaPolDensa :: Num a => [(Int,a)] -> Polinomio a
                  = polCero
creaPolDensa []
creaPolDensa ((n,a):ps) = consPol n a (creaPolDensa ps)
-- (potencia p n) es la n-ésima potencia de P. Por ejemplo,
      ghci> potencia (creaFactor 5) 2
      x^2 + -10.0*x + 25.0
potencia :: Num a => Polinomio a -> Int -> Polinomio a
potencia p 0 = polUnidad
potencia p n = multPol p (potencia p (n-1))
-- (multListaPol ps) es el producto de los polinomios de la lista
-- ps. Por ejemplo,
      ghci> multListaPol [creaFactor 2, creaFactor 3, creaFactor 4]
      x^3 + -9.0*x^2 + 26.0*x + -24.0
multListaPol :: Num t => [Polinomio t] -> Polinomio t
multListaPol []
                    = polUnidad
multListaPol (p:ps) = multPol p (multListaPol ps)
-- multListaPol se puede definir por plegado:
multListaPol' :: Num t => [Polinomio t] -> Polinomio t
multListaPol' = foldr multPol polUnidad
```

```
-- Ejercicio 4.1. Consideremos el tipo de los vectores y las matrices
-- definidos por
     type Vector a = Array Int a
      type Matriz a = Array (Int,Int) a
-- Definir la función
      esEscalar:: Num a => Matriz a -> Bool
-- tal que (esEscalar p) se verifica si p es una matriz es escalar; es
-- decir, diagonal con todos los elementos de la diagonal principal
-- iguales. Por ejemplo,
      esEscalar (listArray ((1,1),(3,3)) [5,0,0,0,5,0,0,0,5])
                                                               == True
      esEscalar (listArray ((1,1),(3,3)) [5,0,0,1,5,0,0,0,5])
                                                                   False
      esEscalar (listArray ((1,1),(3,3)) [5,0,0,0,6,0,0,0,5])
type Vector a = Array Int a
type Matriz a = Array (Int,Int) a
esEscalar:: Num a => Matriz a -> Bool
esEscalar p = esDiagonal p && todosIguales (elems (diagonalPral p))
-- (esDiagonal p) se verifica si la matriz p es diagonal. Por ejemplo.
      esDiagonal (listArray ((1,1),(3,3)) [5,0,0,0,6,0,0,0,5]) == True
      esDiagonal (listArray ((1,1),(3,3)) [5,0,0,1,5,0,0,0,5]) ==
                                                                    False
esDiagonal:: Num a => Matriz a -> Bool
esDiagonal p = all (==0) [p!(i,j) | i<-[1..m], j<-[1..n], i/=j]
    where (m,n) = dimension p
-- (todosIquales xs) se verifica si todos los elementos de xs son
-- iguales. Por ejemplo,
      todosIguales [5,5,5] == True
      todosIguales [5,6,5] == False
todosIguales :: Eq a => [a] -> Bool
todosIguales (x:y:ys) = x == y && todosIguales (y:ys)
todosIguales = True
-- (diagonalPral p) es la diagonal principal de la matriz p. Por
-- ejemplo,
      ghci> diagonalPral (listArray ((1,1),(3,3)) [5,0,0,1,6,0,0,2,4])
      array (1,3) [(1,5),(2,6),(3,4)]
diagonalPral :: Num a => Matriz a -> Vector a
diagonalPral p = array(1,n)[(i,p!(i,i)) | i <- [1..n]]
    where n = min (numFilas p) (numColumnas p)
```

```
-- (numFilas p) es el número de filas de la matriz p. Por ejemplo,
      numFilas (listArray ((1,1),(2,3)) [5,0,0,1,6,0]) == 2
numFilas :: Num a => Matriz a -> Int
numFilas = fst . snd . bounds
-- (numColumnas p) es el número de columnas de la matriz p. Por ejemplo,
      numColumnas (listArray ((1,1),(2,3)) [5,0,0,1,6,0]) == 3
numColumnas:: Num a => Matriz a -> Int
numColumnas = snd . snd . bounds
-- Ejercicio 4.2. Definir la función
      determinante:: Matriz Double -> Double
-- tal que (determinante p) es el determinante de la matriz p. Por
-- ejemplo,
      ghci> determinante (listArray ((1,1),(3,3)) [2,0,0,0,3,0,0,0,1])
      ghci> determinante (listArray ((1,1),(3,3)) [1..9])
      ghci> determinante (listArray ((1,1),(3,3)) [2,1,5,1,2,3,5,4,2])
      -33.0
determinante:: Matriz Double -> Double
determinante p
    | dimension p == (1,1) = p!(1,1)
    | otherwise =
        sum [((-1)^{(i+1)})*(p!(i,1))*determinante (submatriz i 1 p)
             | i <- [1..numFilas p]]
-- (dimension p) es la dimensión de la matriz p. Por ejemplo,
      dimension (listArray ((1,1),(2,3)) [5,0,0,1,6,0]) == (2,3)
dimension :: Num a => Matriz a -> (Int,Int)
dimension p = (numFilas p, numColumnas p)
-- (submatriz i j p) es la submatriz de p obtenida eliminado la fila i y
-- la columna j. Por ejemplo,
      ghci> submatriz 2 3 (listArray ((1,1),(3,3)) [2,1,5,1,2,3,5,4,2])
      array ((1,1),(2,2)) [((1,1),2),((1,2),1),((2,1),5),((2,2),4)]
      ghci> submatriz 2 3 (listArray ((1,1),(3,3)) [1..9])
      array ((1,1),(2,2)) [((1,1),1),((1,2),2),((2,1),7),((2,2),8)]
submatriz :: Num a => Int -> Int -> Matriz a -> Matriz a
```

3.2.7. Examen 7 (24 de Junio de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 7º examen de evaluación continua (24 de junio de 2012)
import Data.List
import Data.Array
import Data.Ratio
import Test.QuickCheck
import PolOperaciones
import GrafoConVectorDeAdyacencia
__ ______
-- Ejercicio 1. Definir la función
     duplicaElemento :: Eq a => a -> [a] -> [a]
-- tal que (duplicaElemento x ys) es la lista obtenida duplicando las
-- apariciones del elemento x en la lista ys. Por ejemplo,
     duplicaElemento 7 [2,7,3,7,7,5] == [2,7,7,3,7,7,7,5]
duplicaElemento :: Eg a => a -> [a] -> [a]
duplicaElemento _ [] = []
duplicaElemento x (y:ys) \mid y == x = y : y : duplicaElemento x ys
                       | otherwise = y : duplicaElemento x ys
```

```
-- Ejercicio 2.1. Definir la función
     listaAcumulada :: Num t \Rightarrow [t] \Rightarrow [t]
-- tal que (listaAcumulada xs) es la lista obtenida sumando de forma
-- acumulada los elementos de xs. Por ejemplo,
     listaAcumulada [1..4] == [1,3,6,10]
-- 1ª definición (por comprensión):
listaAcumulada :: Num t => [t] -> [t]
listaAcumulada xs = [sum (take n xs) | n <- [1..length xs]]
-- 2ª definición (por recursión):
listaAcumuladaR [] = []
listaAcumuladaR xs = listaAcumuladaR (init xs) ++ [sum xs]
-- 3º definición (por recursión final)
listaAcumuladaRF [] = []
listaAcumuladaRF (x:xs) = reverse (aux xs [x])
   where aux [] ys = ys
         aux (x:xs) (y:ys) = aux xs (x+y:y:ys)
-- Ejercicio 1.2. Comprobar con QuickCheck que el último elemento de
-- (listaAcumulada xs) coincide con la suma de los elemntos de xs.
-- La propiedad es
prop listaAcumulada :: [Int] -> Property
prop listaAcumulada xs =
   not (null xs) ==> last (listaAcumulada xs) == sum xs
-- La comprobación es
     ghci> quickCheck prop listaAcumulada
     +++ OK, passed 100 tests.
__ ______
-- Ejercicio 3.1. Definir la función
     menorP :: (Int -> Bool) -> Int
-- tal que (menorP p) es el menor número natural que verifica el
-- predicado p. Por ejemplo,
     menorP (>7) == 8
```

```
menorP :: (Int -> Bool) -> Int
menorP p = head [n \mid n < - [0..], p n]
-- Ejercicio 3.2. Definir la función
    menorMayorP :: Int -> (Int -> Bool) -> Int
-- tal que (menorMayorP m p) es el menor número natural mayor que m que
-- verifica el predicado p. Por ejemplo,
    menorMayorP 7 (\xspace x - 5 == 0)
                                  == 10
  ______
menorMayorP :: Int -> (Int -> Bool) -> Int
menorMayorP m p = head [n \mid n < -[m+1..], p n]
-- Ejercicio 3.3. Definir la función
    mayorMenorP :: Int -> (Int -> Bool) -> Int
-- tal que (mayorMenorP p) es el mayor entero menor que m que verifica
-- el predicado p. Por ejemplo,
    mayorMenorP 17 (\xspace x - 5 == 0) == 15
mayorMenorP :: Int -> (Int -> Bool) -> Int
mayorMenorP m p = head [n \mid n < -[m-1,m-2..], p n]
__ _______
-- Ejercicio 4. Definir la función
     polNumero :: Int -> Polinomio Int
-- tal que (polNumero n) es el polinomio cuyos coeficientes son las
-- cifras de n. Por ejemplo,
    polNumero 5703 == 5x^3 + 7x^2 + 3
polNumero :: Int -> Polinomio Int
polNumero = creaPolDispersa . cifras
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
    cifras 142857 == [1,4,2,8,5,7]
cifras :: Int -> [Int]
cifras n = [read [x] | x <- show n]
-- (creaPolDispersa xs) es el polinomio cuya representación dispersa es
-- xs. Por ejemplo,
```

type Matriz = Array (Int,Int) Float

```
creaPolDispersa [7,0,0,4,0,3] == 7*x^5 + 4*x^2 + 3
creaPolDispersa :: (Num a, Eq a) => [a] -> Polinomio a
creaPolDispersa [] = polCero
creaPolDispersa (x:xs) = consPol (length xs) x (creaPolDispersa xs)
-- Ejercicio 5.1. Los vectores se definen por
     type Vector = Array Int Float
-- Un vector se denomina estocástico si todos sus elementos son mayores
-- o iguales que 0 y suman 1.
-- Definir la función
     vectorEstocastico :: Vector -> Bool
-- tal que (vectorEstocastico v) se verifica si v es estocástico. Por
-- ejemplo,
     vectorEstocastico (listArray (1,5) [0.1, 0.2, 0, 0, 0.7]) == True
     vectorEstocastico (listArray (1,5) [0.1, 0.2, 0, 0, 0.9]) == False
___________
type Vector = Array Int Float
vectorEstocastico :: Vector -> Bool
vectorEstocastico v = all (>=0) xs && sum xs == 1
   where xs = elems v
__ _______
-- Ejercicio 5.2. Las matrices se definen por
     type Matriz = Array (Int,Int) Float
-- Una matriz se demonina estocástica si sus columnas son vectores
-- estocásticos.
-- Definir la función
     matrizEstocastica :: Matriz -> Bool
-- tal que (matrizEstocastico p) se verifica si p es estocástica. Por
-- ejemplo,
     matrizEstocastica (listArray ((1,1),(2,2)) [0.1,0.2,0.9,0.8]) == True
     matrizEstocastica (listArray ((1,1),(2,2)) [0.1,0.2,0.3,0.8]) == False
```

```
matrizEstocastica :: Matriz -> Bool
matrizEstocastica p = all vectorEstocastico (columnas p)
-- (columnas p) es la lista de las columnas de la matriz p. Por ejemplo,
      ghci > columnas (listArray ((1,1),(2,3)) [1..6])
      [array (1,2) [(1,1.0),(2,4.0)],
       array (1,2) [(1,2.0),(2,5.0)],
       array (1,2) [(1,3.0),(2,6.0)]]
      ghci> columnas (listArray ((1,1),(3,2)) [1..6])
      [array (1,3) [(1,1.0),(2,3.0),(3,5.0)],
       array (1,3) [(1,2.0),(2,4.0),(3,6.0)]]
columnas :: Matriz -> [Vector]
columnas p =
    [array (1,m) [(i,p!(i,j)) | i <- [1..m]] | j <- [1..n]]
    where (\_,(m,n)) = bounds p
-- Ejercicio 6. Consideremos un grafo G = (V,E), donde V es un conjunto
-- finito de nodos ordenados y E es un conjunto de arcos. En un grafo,
-- la anchura de un nodo es el número de nodos adyacentes; y la anchura
-- del grafo es la máxima anchura de sus nodos. Por ejemplo, en el grafo
      g :: Grafo Int Int
      g = creaGrafo ND (1,5) [(1,2,1),(1,3,1),(1,5,1),
                              (2,4,1),(2,5,1),
                              (3,4,1),(3,5,1),
                              (4,5,1)
-- su anchura es 4 y el nodo de máxima anchura es el 5.
-- Definir la función
      anchura :: Grafo Int Int -> Int
-- tal que (anchuraG g) es la anchura del grafo g. Por ejemplo,
     anchura q == 4
g :: Grafo Int Int
g = creaGrafo ND (1,5) [(1,2,1),(1,3,1),(1,5,1),
                        (2,4,1),(2,5,1),
                        (3,4,1),(3,5,1),
                        (4,5,1)
anchura :: Grafo Int Int -> Int
anchura g = maximum [anchuraN g x | x <- nodos g]
```

```
-- (anchuraN g x) es la anchura del nodo x en el grafo g. Por ejemplo,
     anchuraN g 1 == 3
     anchuraN g 2 == 3
     anchuraN g 3 == 3
     anchuraN g 4 == 3
     anchuraN q 5 == 4
anchuraN :: Grafo Int Int -> Int -> Int
anchuraN g x = length (advacentes g x)
__ _______
-- Ejercicio 7. Un número natural par es admisible si es una potencia de
-- 2 o sus distintos factores primos son primos consecutivos. Los
-- primeros números admisibles son 2, 4, 6, 8, 12, 16, 18, 24, 30, 32,
-- 36, 48,...
-- Definir la constante
     admisibles :: [Integer]
-- que sea la lista de los números admisibles. Por ejemplo,
     take 12 admisibles == [2,4,6,8,12,16,18,24,30,32,36,48]
  ______
admisibles:: [Integer]
admisibles = [n \mid n \leftarrow [2,4..], esAdmisible n]
-- (esAdmisible n) se verifica si n es admisible. Por ejemplo,
     esAdmisible 32 == True
     esAdmisible 48 == True
     esAdmisible 15 == False
     esAdmisible 10 == False
esAdmisible :: Integer -> Bool
esAdmisible n =
   even n &&
   (esPotenciaDeDos n || primosConsecutivos (nub (factorizacion n)))
-- (esPotenciaDeDos n) se verifica si n es una potencia de 2. Por ejemplo,
     esPotenciaDeDos 4 == True
     esPotenciaDeDos 5 == False
esPotenciaDeDos :: Integer -> Bool
esPotenciaDeDos 1 = True
esPotenciaDeDos n = even n && esPotenciaDeDos (n 'div' 2)
-- (factorizacion n) es la lista de todos los factores primos de n; es
-- decir, es una lista de números primos cuyo producto es n. Por ejemplo,
```

```
factorizacion 300 == [2,2,3,5,5]
factorizacion :: Integer -> [Integer]
factorizacion n \mid n == 1 = []
                | otherwise = x : factorizacion (div n x)
                where x = menorFactor n
-- (menorFactor n) es el menor factor primo de n. Por ejemplo,
     menorFactor 15 == 3
     menorFactor 16 == 2
     menorFactor 17 == 17
menorFactor :: Integer -> Integer
menorFactor n = head [x \mid x < - [2..], rem n x == 0]
-- (primosConsecutivos xs) se verifica si xs es una lista de primos
-- consecutivos. Por ejemplo,
      primosConsecutivos [17,19,23] == True
      primosConsecutivos [17,19,29] == False
      primosConsecutivos [17,19,20] == False
primosConsecutivos :: [Integer] -> Bool
primosConsecutivos [] = True
primosConsecutivos (x:xs) =
    take (1 + length xs) (dropWhile (<x) primos) == x:xs
-- primos es la lista de los números primos. Por ejemplo,
      take 10 primos == [2,3,5,7,11,13,17,19,23,29]
primos :: [Integer]
primos = 2 : [n | n < - [3,5..], esPrimo n]
-- (esPrimo n) se verifica si n es primo.
esPrimo :: Integer-> Bool
esPrimo n = [x \mid x < [1..n], rem n x == 0] == [1,n]
```

3.2.8. Examen 8 (29 de Junio de 2012)

El examen es común con el del grupo 1 (ver página 129).

3.2.9. Examen 9 (9 de Septiembre de 2012)

El examen es común con el del grupo 1 (ver página 134).

3.2.10. Examen 10 (10 de Diciembre de 2012)

El examen es común con el del grupo 1 (ver página 138).

3.3. Exámenes del grupo 3 (Antonia M. Chávez)

3.3.1. Examen 1 (14 de Noviembre de 2011)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 1º examen de evaluación continua (14 de noviembre de 2011)
-- Ejercicio 1.1. Definir la función posicion tal que (posicion x ys) es
-- la primera posición de x en ys. Por ejemplo,
     posicion 5 [3,4,5,6,5] == 2
posicion x xs = head [i | ( c,i) <- zip xs [0..], c == x]
__ _______
-- Ejercicio 2.1. Definir la función impares tal que (impares xs) es la
-- lista de los elementos de xs que ocupan las posiciones impares. Por
-- ejemplo,
     impares [4,3,5,2,6,1] == [3,2,1]
     impares [5] == []
     impares []
                         == []
impares xs = [x \mid x < -xs, odd (posicion x xs)]
-- Ejercicio 2.2. Definir la función pares tal que (pares xs) es la
-- lista de los elementos de xs que ocupan las posiciones pares. Por
-- ejemplo,
     pares [4,3,5,2,6,1] == [4,5,6]
     pares [5]
                      == [5]
     pares []
                       == []
```

```
pares xs = [x \mid x < -xs, even (posicion x xs)]
__ ______
-- Ejercicio 3. Definir la función separaPorParidad tal que
-- (separaPorParidad xs) es el par cuyo primer elemento es la lista de
-- los elementos de xs que ocupan las posiciones pares y el segundo es
-- la lista de los que ocupan las posiciones impares. Por ejemplo,
     separaPorParidad [7,5,6,4,3] == ([7,6,3],[5,4])
     separaPorParidad [4,3,5] == ([4,5],[3])
separaPorParidad xs = (pares xs, impares xs)
    -- Ejercicio 4. Definir la función eliminaElemento tal que
-- (eliminaElemento xs n) es la lista que resulta de eliminar el n-ésimo
-- elemento de la lista xs. Por ejemplo,
     eliminaElemento [1,2,3,4,5] 0
                                == [2,3,4,5]
     eliminaElemento [1,2,3,4,5] 2 == [1,2,4,5]
     eliminaElemento [1,2,3,4,5] (-1) == [1,2,3,4,5]
     eliminaElemento [1,2,3,4,5] 7 == [1,2,3,4,5]
-- lª definición:
eliminaElemento xs n = take n xs ++ drop (n+1)xs
-- 2ª definición:
eliminaElemento2 xs n = [x | x < -xs, posicion x xs /= n]
-- Ejercicio 5. Definir por comprensión, usando la lista [1..10], las
-- siquientes listas
     11 = [2,4,6,8,10]
     12 = [[1],[3],[5],[7],[9]]
     13 = [(1,2),(2,3),(3,4),(4,5),(5,6)]
l1 = [x \mid x < [1..10], even x]
12 = [[x] | x < -[1..10], odd x]
13 = [(x,y)| (x,y) < -zip [1..10] (tail [1..10]), x <= 5]
```

3.3.2. Examen 2 (12 de Diciembre de 2011)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 2º examen de evaluación continua (12 de diciembre de 2011)
import Data.List
import Test.QuickCheck
-- Ejercicio 1. Definir, por comprensión, la función
     filtraAplicaC :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaC f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
     filtraAplicaC (4+) (< 3) [1..7] == [5,6]
filtraAplicaC :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaC f p xs = [f x | x <- xs, p x]
-- Ejercicio 2. Definir, por recursión, la función
     filtraAplicaR :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaR f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
     filtraAplicaR (4+) (< 3) [1..7] == [5,6]
  ______
filtraAplicaR :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaR _ _ [] = []
filtraAplicaR f p (x:xs) | p x
                             = f x : filtraAplicaR f p xs
                      | otherwise = filtraAplicaR f p xs
-- Ejercicio 3. Define la función
     masDeDos :: Eq a => a -> [a] -> Bool
-- tal que (masDeDos x ys) se verifica si x aparece más de dos veces en
-- ys. Por ejemplo,
     masDeDos 1 [2,1,3,1,4,1,1] == True
     masDeDos 1 [1,1,2,3] == False
masDeDos :: Eq a => a -> [a] -> Bool
```

```
masDeDos x ys = ocurrencias x ys > 2
-- (ocurrencias x ys) es el número de ocurrencias de x en ys. Por
-- ejemplo,
     ocurrencias 1 [2,1,3,1,4,1,1] == 4
     ocurrencias 1 [1,1,2,3]
ocurrencias :: Eq a => a -> [a] -> Int
ocurrencias x ys = length [y \mid y < -ys, y == x]
-- Ejercicio 4. Definir la función
     sinMasDeDos :: Eq a \Rightarrow [a] \rightarrow [a]
-- tal que (sinMasDeDos xs) es la la lista que resulta de eliminar en xs los
-- elementos muy repetidos, dejando que aparezcan dos veces a lo
-- sumo. Por ejemplos,
     sinMasDeDos [2,1,3,1,4,1,1] == [2,3,4,1,1]
     sinMasDeDos [1,1,2,3,2,2,5] == [1,1,3,2,2,5]
sinMasDeDos :: Eq a => [a] -> [a]
sinMasDeDos [] = []
sinMasDeDos (y:ys) | masDeDos y (y:ys) = sinMasDeDos ys
                         | otherwise
                                           = y : sinMasDeDos ys
__ _______
-- Ejercicio 5. Definir la función
     sinRepetidos :: Eq a => [a] -> [a]
-- tal que (sinRepetidos xs) es la lista que resulta de quitar todos los
-- elementos repetidos de xs. Por ejemplo,
     sinRepetidos [2,1,3,2,1,3,1] == [2,3,1]
sinRepetidos :: Eq a => [a] -> [a]
sinRepetidos [] = []
sinRepetidos (x:xs) | x 'elem' xs = sinRepetidos xs
                    | otherwise = x : sinRepetidos xs
-- Ejercicio 6. Definir la función
     repetidos :: Eq a => [a] -> [a]
-- tal que (repetidos xs) es la lista de los elementos repetidos de
-- xs. Por ejemplo,
-- repetidos [1,3,2,1,2,3,4] == [1,3,2]
```

```
repetidos [1,2,3]
                      == []
repetidos :: Eq a => [a] -> [a]
repetidos [] = []
repetidos (x:xs) | x 'elem' xs = x : repetidos xs
                | otherwise = repetidos xs
-- Ejercicio 7. Comprobar con QuickCheck que si una lista xs no tiene
-- elementos repetidos, entonces (sinMasDeDos xs) y (sinRepetidos xs)
-- son iguales.
-- La propiedad es
prop_limpia :: [Int] -> Property
prop limpia xs =
   null (repetidos xs) ==> sinMasDeDos xs == sinRepetidos xs
-- La comprobación es
     ghci> quickCheck prop limpia
     +++ OK, passed 100 tests.
-- Ejercicio 8.1. Definir, por recursión, la función
     seleccionaElementoPosicionR :: Eq a => a -> Int -> [[a]] -> [[a]]
-- (seleccionaElementoPosicionR x n xss) es la lista de elementos de xss
-- en las que x aparece en la posición n. Por ejemplo,
     ghci> seleccionaElementoPosicionR 'a' 1 ["casa", "perro", "bajo"]
     ["casa", "bajo"]
  ______
seleccionaElementoPosicionR :: Eq a => a -> Int -> [[a]] -> [[a]]
seleccionaElementoPosicionR x n []= []
seleccionaElementoPosicionR x n (xs:xss)
   | ocurreEn x n xs = xs : seleccionaElementoPosicionR x n xss
   -- (ocurreEn x n ys) se verifica si x ocurre en ys en la posición n. Por
-- ejemplo,
     ocurreEn 'a' 1 "casa" == True
     ocurreEn 'a' 2 "casa" == False
     ocurreEn 'a' 7 "casa" == False
```

```
ocurreEn :: Eq a => a -> Int -> [a] -> Bool
ocurreEn x n ys = 0 <= n && n < length ys && ys!!n == x

-- Ejercicio 8.2. Definir, por comprensión, la función
-- seleccionaElementoPosicionC :: Eq a => a -> Int -> [[a]] -> [[a]]
-- (seleccionaElementoPosicionC x n xss) es la lista de elementos de xss
-- en las que x aparece en la posición n. Por ejemplo,
-- ghci> seleccionaElementoPosicionC 'a' 1 ["casa","perro", "bajo"]
-- ["casa","bajo"]
-- seleccionaElementoPosicionC :: Eq a => a -> Int -> [[a]]-> [[a]]
seleccionaElementoPosicionC x n xss =
    [xs | xs <- xss, ocurreEn x n xs]</pre>
```

3.3.3. Examen 7 (29 de Junio de 2012)

El examen es común con el del grupo 1 (ver página 129).

3.3.4. Examen 8 (9 de Septiembre de 2012)

El examen es común con el del grupo 1 (ver página 134).

3.3.5. Examen 9 (10 de Diciembre de 2012)

El examen es común con el del grupo 1 (ver página 138).

3.4. Exámenes del grupo 4 (José F. Quesada)

3.4.1. Examen 1 (7 de Noviembre de 2011)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 1º examen de evaluación continua (7 de noviembre de 2011)
-- Ejercicio 1. Definir la función
-- conjuntosIguales :: Eq a => [a] -> [a] -> Bool
-- tal que (conjuntosIguales xs ys) se verifica si xs e ys contienen los
```

```
-- mismos elementos independientemente del orden y posibles
   repeticiones. Por ejemplo,
      conjuntosIguales [1,2,3] [2,3,1]
                                                     == True
      conjuntosIguales "arroz" "zorra"
                                                     == True
      conjuntosIguales [1,2,2,3,2,1] [1,3,3,2,1,3,2] == True
      conjuntosIguales [1,2,2,1] [1,2,3,2,1]
                                                    == False
      conjuntosIguales [(1,2)] [(2,1)]
                                                     == False
conjuntosIguales :: Eq a => [a] -> [a] -> Bool
conjuntosIguales xs ys =
    and [x 'elem' ys | x <- xs] && and [y 'elem' xs | y <- ys]
-- Ejercicio 2. Definir la función
      puntoInterior :: (Float,Float) -> Float -> (Float,Float) -> Bool
-- tal que (puntoInterior c r p) se verifica si p es un punto interior
-- del círculo de centro c y radio r. Por ejemplo,
      puntoInterior (0,0) 1 (1,0) == True
      puntoInterior (0,0) 1 (1,1) == False
      puntoInterior (0,0) 2 (-1,-1) == True
puntoInterior :: (Float,Float) -> Float -> (Float,Float) -> Bool
puntoInterior (cx,cy) r (px,py) = distancia (cx,cy) (px,py) <= r</pre>
-- (distancia p1 p2) es la distancia del punto p1 al p2. Por ejemplo,
      distancia (0,0) (3,4) == 5.0
distancia :: (Float,Float) -> (Float,Float) -> Float
distancia (x1,y1) (x2,y2) = sqrt ((x2-x1)^2 + (y2-y1)^2)
-- Ejercicio 3. Definir la función
      tripletes :: Int -> [(Int,Int,Int)]
-- tal que (tripletes n) es la lista de tripletes (tuplas de tres
-- elementos) con todas las combinaciones posibles de valores numéricos
-- entre 1 y n en cada posición del triplete, pero de forma que no haya
-- ningún valor repetido dentro de cada triplete. Por ejemplo,
      tripletes 3 == [(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)]
      tripletes 4 == [(1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,4,2), (1,4,3),
                      (2,1,3),(2,1,4),(2,3,1),(2,3,4),(2,4,1),(2,4,3),
                      (3,1,2), (3,1,4), (3,2,1), (3,2,4), (3,4,1), (3,4,2),
                      (4,1,2), (4,1,3), (4,2,1), (4,2,3), (4,3,1), (4,3,2)
```

```
tripletes 2 == []
tripletes :: Int -> [(Int,Int,Int)]
tripletes n = [(x,y,z) \mid x < -[1..n],
                          y < - [1..n],
                          z < - [1..n],
                          x /= y,
                          x /= z,
                          y /= z
-- Ejercicio 4.1. Las bases de datos de alumnos matriculados por
-- provincia y por especialidad se pueden representar como sigue
      matriculas :: [(String,String,Int)]
      matriculas = [("Almeria","Matematicas",27),
                     ("Sevilla", "Informatica", 325),
                     ("Granada", "Informatica", 296),
                     ("Huelva", "Matematicas", 41),
                     ("Sevilla", "Matematicas", 122),
                     ("Granada", "Matematicas", 131),
                     ("Malaga", "Informatica", 314)]
-- Es decir, se indica que por ejemplo en Almería hay 27 alumnos
-- matriculados en Matemáticas.
-- Definir la función
      totalAlumnos :: [(String,String,Int)] -> Int
-- tal que (totalAlumnos bd) es el total de alumnos matriculados,
-- incluyendo todas las provincias y todas las especialidades, en la
-- base de datos bd. Por ejemplo,
      totalAlumnos matriculas == 1256
matriculas :: [(String,String,Int)]
matriculas = [("Almeria","Matematicas",27),
              ("Sevilla", "Informatica", 325),
              ("Granada", "Informatica", 296),
              ("Huelva", "Matematicas", 41),
              ("Sevilla", "Matematicas", 122),
              ("Granada", "Matematicas", 131),
              ("Malaga", "Informatica", 314)]
totalAlumnos :: [(String,String,Int)] -> Int
```

```
totalAlumnos bd = sum [ n | (\_,\_,n) <- bd]
__ _______
-- Ejercicio 4.2. Definir la función
     totalMateria :: [(String,String,Int)] -> String -> Int
-- tal que (totalMateria bd m) es el número de alumnos de la base de
-- datos bd matriculados en la materia m. Por ejemplo,
     totalMateria matriculas "Informatica" == 935
     totalMateria matriculas "Matematicas" == 321
     totalMateria matriculas "Fisica"
  ______
totalMateria :: [(String,String,Int)] -> String -> Int
totalMateria bd m = sum [n | (,m',n) <- bd, m == m']
3.4.2. Examen 2 (30 de Noviembre de 2011)
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 2º examen de evaluación continua (30 de noviembre de 2011)
-- Ejercicio 1. Un número es tipo repunit si todos sus dígitos son
-- 1. Por ejemplo, el número 1111 es repunit.
-- Definir la función
     menorRepunit :: Integer -> Integer
-- tal que (menorRepunit n) es el menor repunit que es múltiplo de
-- n. Por ejemplo,
     menorRepunit 3 == 111
     menorRepunit 7 == 111111
menorRepunit :: Integer -> Integer
menorRepunit n = head [x \mid x < - [n,n*2..], repunit x]
-- (repunit n) se verifica si n es un repunit. Por ejemplo,
     repunit 1111 == True
     repunit 1121 == False
repunit :: Integer -> Bool
repunit n = and [x == 1 | x <- cifras n]
```

```
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
     cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras n = [read [d] | d <- show n]
__ ______
-- Ejercicio 2. Definir la función
     maximos :: [Float -> Float] -> [Float] -> [Float]
-- tal que (maximos fs xs) es la lista de los máximos de aplicar
-- cada función de fs a los elementos de xs. Por ejemplo,
     maximos [(/2),(2/)] [5,10]
                                             == [5.0, 0.4]
     maximos [(^2),(/2),abs,(1/)] [1,-2,3,-4,5] == [25.0,2.5,5.0,1.0]
-- 1º definición:
maximos :: [Float -> Float] -> [Float] -> [Float]
maximos fs xs = [maximum [f x | x <- xs] | f <- fs]
-- 2ª definición:
maximos2 :: [Float -> Float] -> [Float] -> [Float]
maximos2 fs xs = map maximum [ map f xs | f <- fs]
-- Ejercicio 3. Definir la función
     reduceCifras :: Integer -> Integer
-- tal que (reduceCifras n) es el resultado de la reducción recursiva de
-- sus cifras; es decir, a partir del número n, se debe calcular la suma
-- de las cifras de n (llamémosle c), pero si c es a su vez mayor que 9,
-- se debe volver a calcular la suma de cifras de c y así sucesivamente
-- hasta que el valor obtenido sea menor o igual que 9. Por ejemplo,
     reduceCifras
                   5
                          5
     reduceCifras 123
     reduceCifras 190
     reduceCifras 3456 ==
                           9
reduceCifras :: Integer -> Integer
reduceCifras n | m <= 9</pre>
                        = m
              | otherwise = reduceCifras m
             where m = sum (cifras n)
-- (sumaCifras n) es la suma de las cifras de n. Por ejemplo,
     sumaCifras 3456 == 18
```

```
sumaCifras :: Integer -> Integer
sumaCifras n = sum (cifras n)
-- Ejercicio 4. Las bases de datos con el nombre, profesión, año de
-- nacimiento y año de defunción de una serie de personas se puede
   representar como sigue
      personas :: [(String,String,Int,Int)]
      personas = [("Cervantes","Literatura",1547,1616),
                   ("Velazquez", "Pintura", 1599, 1660),
                   ("Picasso", "Pintura", 1881, 1973),
                   ("Beethoven", "Musica", 1770, 1823),
                   ("Poincare", "Ciencia", 1854, 1912),
                   ("Quevedo", "Literatura", 1580, 1654),
                   ("Goya", "Pintura", 1746, 1828),
                   ("Einstein", "Ciencia", 1879, 1955),
                   ("Mozart", "Musica", 1756, 1791),
                   ("Botticelli", "Pintura", 1445, 1510),
                   ("Borromini", "Arquitectura", 1599, 1667),
                   ("Bach", "Musica", 1685, 1750)]
-- Es decir, se indica que por ejemplo Mozart se dedicó a la Música y
-- vivió entre 1756 y 1791.
-- Definir la función
      coetaneos :: [(String,String,Int,Int)] -> String -> [String]
-- tal que (coetaneos bd p) es la lista de nombres de personas que
-- fueron coetáneos con la persona p; es decir que al menos alguno
-- de los años vividos por ambos coincidan. Se considera que una persona
-- no es coetanea a sí misma. Por ejemplo,
      coetaneos personas "Einstein"
                                      == ["Picasso", "Poincare"]
      coetaneos personas "Botticelli" == []
personas :: [(String,String,Int,Int)]
personas = [("Cervantes","Literatura",1547,1616),
               ("Velazquez", "Pintura", 1599, 1660),
               ("Picasso", "Pintura", 1881, 1973),
               ("Beethoven", "Musica", 1770, 1823),
               ("Poincare", "Ciencia", 1854, 1912),
               ("Quevedo","Literatura",1580,1654),
               ("Goya", "Pintura", 1746, 1828),
               ("Einstein", "Ciencia", 1879, 1955),
               ("Mozart", "Musica", 1756, 1791),
```

```
("Botticelli", "Pintura", 1445, 1510),
               ("Borromini", "Arquitectura", 1599, 1667),
               ("Bach", "Musica", 1685, 1750)]
-- 1º solución:
coetaneos :: [(String,String,Int,Int)] -> String -> [String]
coetaneos bd p =
    [n \mid (n,\_,fn,fd) <- bd,
         n /= p,
         not ((fd < fnp) || (fdp < fn))]
    where (fnp,fdp) = head [(fn,fd) | (n, ,fn,fd) <- bd, n == p]
-- 2ª solución:
coetaneos2 :: [(String,String,Int,Int)] -> String -> [String]
coetaneos2 bd p =
    [n \mid (n, ,fn,fd) \leftarrow bd,
         n /= p,
         not (null (inter [fn..fd] [fnp..fdp]))]
    where (fnp,fdp) = head [(fn,fd) | (n,_,fn,fd) <- bd, n == p]
-- (inter xs ys) es la interseción de xs e ys. Por ejemplo,
      inter [2,5,3,6] [3,7,2] == [2,3]
inter :: Eq a => [a] -> [a] -> [a]
inter xs ys = [x \mid x < -xs, x 'elem' ys]
```

3.4.3. Examen 3 (16 de Enero de 2012)

```
3 (valor absoluto de la resta 2 - 5) y
     8 (valor absoluto de la resta de 5 y (-3))
-- Por tanto, su mayor salto es 8. No está definido el mayor salto para
-- listas con menos de 2 elementos
-- Definir, por compresión, la función
     mayorSaltoC :: [Integer] -> Integer
-- tal que (mayorSaltoC xs) es el mayor salto de la lista xs. Por
-- ejemplo,
     mayorSaltoC [1,5]
     mayorSaltoC [10, -10, 1, 4, 20, -2] == 22
mayorSaltoC :: [Integer] -> Integer
mayorSaltoC xs = maximum [abs (x-y) | (x,y) <- zip xs (tail xs)]
__ ______
-- Ejercicio 1.2. Definir, por recursión, la función
     mayorSaltoR :: [Integer] -> Integer
-- tal que (mayorSaltoR xs) es el mayor salto de la lista xs. Por
-- ejemplo,
     mayorSaltoR [1,5]
     mayorSaltoR [10, -10, 1, 4, 20, -2] == 22
__ ______
mayorSaltoR :: [Integer] -> Integer
mayorSaltoR [x,y] = abs (x-y)
mayorSaltoR (x:y:ys) = max (abs (x-y)) (mayorSaltoR (y:ys))
-- Ejercicio 1.3. Comprobar con QuickCheck que mayorSaltoC y mayorSaltoR
-- son equivalentes.
-- La propiedad es
prop mayorSalto :: [Integer] -> Property
prop mayorSalto xs =
   length xs > 1 ==> mayorSaltoC xs == mayorSaltoR xs
-- La comprobación es
     ghci> quickCheck prop_mayorSalto
     +++ OK, passed 100 tests.
```

```
-- Ejercicio 2. Definir la función
     acumulada :: [Int] -> [Int]
-- que (acumulada xs) es la lista que tiene en cada posición i el valor
-- que resulta de sumar los elementos de la lista xs desde la posicion 0
-- hasta la i. Por ejemplo,
     acumulada [2,5,1,4,3] == [2,7,8,12,15]
     acumulada [1,-1,1,-1] == [1,0,1,0]
   _____
-- lª definición (pro comprensión):
acumulada :: [Int] -> [Int]
acumulada xs = [sum (take n xs) | n <- [1..length xs]]
-- 2ª definición (por recursión)
acumuladaR :: [Int] -> [Int]
acumuladaR [] = []
acumuladaR xs = acumuladaR (init xs) ++ [sum xs]
-- 3º definición (por recursión final):
acumuladaRF :: [Int] -> [Int]
acumuladaRF [] = []
acumuladaRF (x:xs) = reverse (aux xs [x])
   where aux [] ys = ys
         aux (x:xs) (y:ys) = aux xs (x+y:y:ys)
  _____
-- Ejercicio 3.1. Dada una lista de números reales, la lista de
-- porcentajes contendrá el porcentaje de cada elemento de la lista
-- original en relación con la suma total de elementos. Por ejemplo,
-- la lista de porcentajes de [1,2,3,4] es [10.0,20.0,30.0,40.0],
-- ya que 1 es el 10\% de la suma (1+2+3+4=10), y así sucesivamente.
- -
-- Definir, por recursión, la función
     porcentajesR :: [Float] -> [Float]
-- tal que (porcentajesR xs) es la lista de porcentaje de xs. Por
-- ejemplo,
     porcentajesR [1,2,3,4] == [10.0,20.0,30.0,40.0]
     porcentajesR [1,7,8,4] == [5.0,35.0,40.0,20.0]
porcentajesR :: [Float] -> [Float]
porcentajesR xs = aux xs (sum xs)
```

```
where aux [] = []
         aux (x:xs) s = (x*100/s) : aux xs s
-- Ejercicio 3.2. Definir, por comprensión, la función
     porcentajesC :: [Float] -> [Float]
-- tal que (porcentajesC xs) es la lista de porcentaje de xs. Por
-- ejemplo,
     porcentajesC [1,2,3,4] == [10.0,20.0,30.0,40.0]
     porcentajesC [1,7,8,4] == [5.0,35.0,40.0,20.0]
__ ______
porcentajesC :: [Float] -> [Float]
porcentajesC xs = [x*100/s | x <- xs]
   where s = sum xs
__ ______
-- Ejercicio 3.3. Definir, usando map, la función
     porcentajesS :: [Float] -> [Float]
-- tal que (porcentajesS xs) es la lista de porcentaje de xs. Por
-- ejemplo,
     porcentajesS [1,2,3,4] == [10.0,20.0,30.0,40.0]
     porcentajesS [1,7,8,4] == [5.0,35.0,40.0,20.0]
porcentajesS :: [Float] -> [Float]
porcentajesS xs = map (*(100/sum xs)) xs
-- Ejercicio 3.3. Definir, por plegado, la función
     porcentajesP :: [Float] -> [Float]
-- tal que (porcentajesP xs) es la lista de porcentaje de xs. Por
-- ejemplo,
     porcentajesP [1,2,3,4] == [10.0,20.0,30.0,40.0]
     porcentajesP [1,7,8,4] == [5.0,35.0,40.0,20.0]
porcentajesF :: [Float] -> [Float]
porcentajesF xs = foldr (x y -> (x*100/s):y) [] xs
   where s = sum xs
-- Ejercicio 3.4. Definir la función
```

```
equivalentes :: [Float] -> [Float] -> Bool
-- tal que (equivalentes xs ys) se verifica si el valor absoluto
-- de las diferencias de los elementos de xs e ys (tomados
-- posicionalmente) son infereriores a 0.001. Por ejemplo,
     equivalentes [1,2,3] [1,2,3]
                                == True
     equivalentes [1,2,3] [0.999,2,3] == True
     equivalentes [1,2,3] [0.998,2,3] == False
-- lª definición (por comprensión):
equivalentes :: [Float] -> [Float] -> Bool
equivalentes xs ys =
   and [abs (x-y) \le 0.001 \mid (x,y) \le zip xs ys]
-- 2ª definición (por recursión)
equivalentes2 :: [Float] -> [Float] -> Bool
                   = True
equivalentes2 [] []
equivalentes2 []
                       = False
                  = False
equivalentes2 [] _
equivalentes2 (x:xs) (y:ys) = abs (x-y) \leq 0.001 && equivalentes2 xs ys
-- Ejercicio 3.5. Comprobar con QuickCheck que si xs es una lista de
-- números mayores o iguales que 0 cuya suma es mayor que 0, entonces
-- las listas (porcentajesR xs), (porcentajesC xs), (porcentajesS xs) y
-- (porcentajesF xs) son equivalentes.
-- -----
-- La propiedad es
prop_porcentajes :: [Float] -> Property
prop_porcentajes xs =
   and [x >= 0 | x <- xs] \&\& sum xs > 0 ==>
   equivalentes (porcentajesC xs) ys &&
   equivalentes (porcentajesS xs) ys &&
   equivalentes (porcentajesF xs) ys
   where ys = porcentajesR xs
-- La comprobación es
     ghci> guickCheck prop porcentajes
     *** Gave up! Passed only 15 tests.
-- Otra forma de expresar la propiedad es
prop porcentajes2 :: [Float] -> Property
```

```
prop_porcentajes2 xs =
    sum xs' > 0 ==>
    equivalentes (porcentajesC xs') ys &&
    equivalentes (porcentajesS xs') ys &&
    equivalentes (porcentajesF xs') ys
    where xs' = map abs xs
        ys = porcentajesR xs'

-- Su comprobación es
    ghci> quickCheck prop_porcentajes2
    +++ OK, passed 100 tests.
```

3.4.4. Examen 4 (7 de Marzo de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 4º examen de evaluación continua (7 de marzo de 2012)
import Test.QuickCheck
import Data.List
-- Ejercicio 4. Definir la función
      inicialesDistintos :: Eq a => [a] -> Int
-- tal que (inicialesDistintos xs) es el número de elementos que hay en
-- xs antes de que aparezca el primer repetido. Por ejemplo,
      inicialesDistintos [1,2,3,4,5,3] == 2
      inicialesDistintos [1,2,3]
      inicialesDistintos "ahora"
                                        == 0
      inicialesDistintos "ahorA"
                                       == 5
inicialesDistintos [] = 0
inicialesDistintos (x:xs)
    \mid x \text{ 'elem' } xs = 0
    | otherwise = 1 + inicialesDistintos xs
-- Ejercicio 2.1. Diremos que un número entero positivo es autodivisible
```

-- si es divisible por todas sus cifras diferentes de 0. Por ejemplo,

```
-- el número 150 es autodivisible ya que es divisible por 1 y por 5 (el
-- O no se usará en dicha comprobación), mientras que el 123 aunque es
-- divisible por 1 y por 3, no lo es por 2, y por tanto no es
-- autodivisible.
-- Definir, por comprensión, la función
     autodivisibleC :: Integer -> Bool
-- tal que (autodivisibleC n) se verifica si n es autodivisible. Por
-- ejemplo,
     autodivisibleC 0
                          == True
     autodivisibleC 25
                           == False
     autodivisibleC 1234 == False
     autodivisibleC 1234608 == True
autodivisibleC :: Integer -> Bool
autodivisibleC n = and [d == 0 || n 'rem' d == 0 | d <- cifras n]
-- (cifra n) es la lista de las cifras de n. Por ejemplo,
     cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras n = [read [y] | y <- show n]
__ ______
-- Ejercicio 2.2. Definir, por recursión, la función
     autodivisibleR :: Integer -> Bool
-- tal que (autodivisibleR n) se verifica si n es autodivisible. Por
-- ejemplo,
     autodivisibleR 0
                           == True
     autodivisibleR 25
                           == False
     autodivisibleR 1234
                          == False
     autodivisibleR 1234608 == True
autodivisibleR :: Integer -> Bool
autodivisibleR n = aux n (cifras n)
   where aux _ [] = True
         aux n (x:xs) | x == 0 | | n 'rem' x == 0 = aux n xs
                                                = False
                      | otherwise
-- Ejercicio 2.3. Comprobar con QuickCheck que las definiciones
-- autodivisibleC y autodivisibleR son equivalentes.
```

```
-- La propiedad es
prop autodivisible :: Integer -> Property
prop autodivisible n =
   n > 0 ==> autodivisibleC n == autodivisibleR n
-- La comprobación es
     ghci> quickCheck prop autodivisible
     +++ OK, passed 100 tests.
-- Ejercicio 2.4. Definir la función
     siguienteAutodivisible :: Integer -> Integer
-- tal que (siguienteAutodivisible n) es el menor número autodivisible
-- mayor o igual que n. Por ejemplo,
     siguienteAutodivisible 1234 == 1236
     siguienteAutodivisible 111 == 111
  ______
siguienteAutodivisible :: Integer -> Integer
siguienteAutodivisible n =
   head [x \mid x \leftarrow [n..], autodivisible X]
-- Ejercicio 3. Los árboles binarios se pueden representar mediante el
-- siguiente tipo de datos
     data Arbol = H
                | N Int Arbol Arbol
-- donde H representa una hoja y N un nodo con un valor y dos ramas. Por
-- ejemplo, el árbol
              5
           1
               Н
              Н
      Н
          Н
-- se representa por
  arboll :: Arbol
```

-- Definir la función

```
arbol1 = N 5 (N 1 (N 5 H H) H) (N 4 H (N 5 H H))
-- Definir la función
     cuentaArbol :: Arbol -> Int -> Int
-- tal que (cuentaArbol a x) es el número de veces aparece x en el árbol
-- a. Por ejemplo,
     cuentaArbol arbol1 5 = 3
     cuentaArbol arbol1 2 = 0
     cuentaArbol (N 5 H H) 5 = 1
    cuentaArbol H 5
                            = 0
data Arbol = H
          | N Int Arbol Arbol
          deriving Show
arboll :: Arbol
arbol1 = N 5 (N 1 (N 5 H H) H) (N 4 H (N 5 H H))
cuentaArbol :: Arbol -> Int -> Int
cuentaArbol H _ = 0
cuentaArbol (N n a1 a2) x
    | n == x = 1 + c1 + c2
    | otherwise = c1 + c2
   where c1 = cuentaArbol a1 x
         c2 = cuentaArbol a2 x
3.4.5. Examen 5 (28 de Marzo de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 5º examen de evaluación continua (28 de marzo de 2012)
import Data.List
import Test.QuickCheck
import PolRepTDA
-- Ejercicio 1.1. La moda estadística se define como el valor (o los
-- valores) con una mayor frecuencia en una lista de datos.
```

```
moda :: [Int] -> [Int]
-- tal que (moda ns) es la lista de elementos de xs con mayor frecuencia
-- absoluta de aparición en xs. Por ejemplo,
     moda [1,2,3,2,3,3,3,1,1,1] == [1,3]
     moda [1,2,2,3,2]
                             == [2]
     moda [1,2,3]
                             == [1,2,3]
     moda []
                             == []
moda :: [Int] -> [Int]
moda xs = nub [x | x <- xs, ocurrencias x xs == m]
   where m = maximum [ocurrencias x xs | x <-xs]
-- (ocurrencias x xs) es el número de ocurrencias de x en xs. Por
-- ejemplo,
     ocurrencias 1 [1,2,3,4,3,2,3,1,4] == 2
ocurrencias :: Int -> [Int] -> Int
ocurrencias x xs = length [y \mid y < -xs, x == y]
__ ______
-- Ejercicio 1.2. Comprobar con QuickCheck que los elementos de
-- (moda xs) pertenecen a xs.
-- La propiedad es
prop moda pertenece :: [Int] -> Bool
prop moda_pertenece xs = and [x 'elem' xs | x <- moda xs]</pre>
-- La comprobación es
     ghci> quickCheck prop_moda_pertenece
     +++ OK, passed 100 tests.
__ _______
-- Ejercicio 1.3. Comprobar con QuickCheck que para cualquier elemento
-- de xs que no pertenezca a (moda xs), la cantidad de veces que aparece
-- x en xs es estrictamente menor que la cantidad de veces que aparece
-- el valor de la moda (para cualquier valor de la lista de elementos de
-- la moda).
  ______
-- La propiedad es
prop_modas_resto_menores :: [Int] -> Bool
prop modas resto menores xs =
```

```
and [ocurrencias x xs < ocurrencias m xs |
        X < - XS
        x 'notElem' ys,
        m < - ys
   where ys = moda xs
-- La comprobación es
     ghci> quickCheck prop_modas_resto_menores
     +++ OK, passed 100 tests.
-- Ejercicio 2.1. Representaremos un recorrido como una secuencia de
-- puntos en el espacio de dos dimensiones. Para ello utilizaremos la
-- siquiente definición
     data Recorrido = Nodo Double Double Recorrido
                    | Fin
                     deriving Show
-- De esta forma, el recorrido que parte del punto (0,0) pasa por el
-- punto (1,2) y termina en el (2,4) se representará como
     rec0 :: Recorrido
     rec0 = Nodo 0 0 (Nodo 1 2 (Nodo 2 4 Fin))
     A continuación se muestran otros ejemplos definidos
     rec1, rec2, rec3, rec4 :: Recorrido
     rec1 = Nodo 0 0 (Nodo 1 1 Fin)
     rec2 = Fin
     rec3 = Nodo 1 (-1) (Nodo 2 3 (Nodo 5 (-2) (Nodo 1 0 Fin)))
     rec4 = Nodo 0 0
             (Nodo 0 2
               (Nodo 2 0
                 (Nodo 0 0
                   (Nodo 2 2
                     (Nodo 2 0
                       (Nodo 0 0 Fin))))))
-- Definir la función
     distanciaRecorrido :: Recorrido -> Double
-- tal que (distanciaRecorrido ps) esla suma de las distancias de todos
-- los segmentos de un recorrido ps. Por ejemplo,
     distanciaRecorrido rec0
                               == 4.4721359549995
     distanciaRecorrido recl
                                == 1.4142135623730951
     distanciaRecorrido rec2
                                == 0.0
```

```
data Recorrido = Nodo Double Double Recorrido
               | Fin
                 deriving Show
rec0, rec1, rec2, rec3, rec4 :: Recorrido
rec0 = Nodo 0 0 (Nodo 1 2 (Nodo 2 4 Fin))
rec1 = Nodo 0 0 (Nodo 1 1 Fin)
rec2 = Fin
rec3 = Nodo 1 (-1) (Nodo 2 3 (Nodo 5 (-2) (Nodo 1 0 Fin)))
rec4 = Nodo 0 0
        (Nodo 0 2
          (Nodo 2 0
            (Nodo 0 0
              (Nodo 2 2
                (Nodo 2 0
                  (Nodo 0 0 Fin)))))
distanciaRecorrido :: Recorrido -> Double
distanciaRecorrido Fin = 0
distanciaRecorrido (Nodo _ _ Fin) = 0
distanciaRecorrido (Nodo x y r@(Nodo x' y' n)) =
    distancia (x,y) (x',y') + distanciaRecorrido r
-- (distancia p q) es la distancia del punto p al q. Por ejemplo,
      distancia (0,0) (3,4) == 5.0
distancia :: (Double, Double) -> (Double, Double) -> Double
distancia (x,y) (x',y') =
    sqrt ((x-x')^2 + (y-y')^2)
-- Ejercicio 2.2. Definir la función
      nodosDuplicados :: Recorrido -> Int
-- tal que (nodosDuplicados e) es el número de nodos por los que el
-- recorrido r pasa dos o más veces. Por ejemplo,
      nodosDuplicados rec3 == 0
      nodosDuplicados rec4 == 2
nodosDuplicados :: Recorrido -> Int
nodosDuplicados Fin = 0
nodosDuplicados (Nodo x y r)
    | existeNodo r \times y = 1 + nodosDuplicados (eliminaNodo r \times y)
                = nodosDuplicados r
    | otherwise
```

```
-- (existeNodo r x y) se verifica si el nodo (x,y) está en el recorrido
-- r. Por ejemplo,
     existeNodo rec3 2 3 == True
      existeNodo rec3 3 2 == False
existeNodo :: Recorrido -> Double -> Double -> Bool
existeNodo Fin _ _ = False
existeNodo (Nodo x y r) x' y'
           | x == x' \&\& y == y' = True
           | otherwise = existeNodo r x' y'
-- (eliminaNodo r x y) es el recorrido obtenido eliminando en r las
-- ocurrencias del nodo (x,y). Por ejemplo,
      ahci> rec3
      Nodo 1.0 (-1.0) (Nodo 2.0 3.0 (Nodo 5.0 (-2.0) (Nodo 1.0 0.0 Fin)))
      ghci> eliminaNodo rec3 2 3
      Nodo 1.0 (-1.0) (Nodo 5.0 (-2.0) (Nodo 1.0 0.0 Fin))
eliminaNodo :: Recorrido -> Double -> Recorrido
eliminaNodo Fin _ _ = Fin
eliminaNodo (Nodo x y r) x' y'
            | x == x' \& y == y' = eliminaNodo r x' y'
            | otherwise
                             = Nodo x y (eliminaNodo r x' y')
-- Ejercicio 3. Se dice que un polinomio es completo si todos los
-- coeficientes desde el término nulo hasta el término de mayor grado
-- son distintos de cero.
-- Para hacer este ejercicio se utilizará algunas de las
-- implementaciones del tipo abstracto de datos de polinomio definidas
-- en el tema 21 y los siguientes ejemplos,
      pol1, pol2, pol3 :: Polinomio Int
      pol1 = polCero
      pol2 = consPol 5 2 (consPol 3 1 (consPol 0 (-1) polCero))
      pol3 = consPol 3 1 (consPol 2 2 (consPol 1 3 (consPol 0 4 polCero)))
- -
-- Definir la función
      polinomioCompleto :: Num a => Polinomio a -> Bool
-- tal que (polinomioCompleto p) se verifica si p es un polinomio
-- completo. Por ejemplo,
      polinomioCompleto pol1 == False
      polinomioCompleto pol2 == False
     polinomioCompleto pol3 == True
```

```
pol1, pol2, pol3 :: Polinomio Int
pol1 = polCero
pol2 = consPol 5 2 (consPol 3 1 (consPol 0 (-1) polCero))
pol3 = consPol 3 1 (consPol 2 2 (consPol 1 3 (consPol 0 4 polCero)))
polinomioCompleto :: Num a => Polinomio a -> Bool
polinomioCompleto p = 0 'notElem' coeficientes p
-- (coeficientes p) es la lista de los coeficientes de p. Por ejemplo,
      coeficientes pol1 == [0]
      coeficientes pol2 == [2,0,1,0,0,-1]
     coeficientes pol3 == [1,2,3,4]
coeficientes :: Num a => Polinomio a -> [a]
coeficientes p = [coeficiente n p | n <- [g,g-1..0]]
   where g = grado p
-- (coeficiente k p) es el coeficiente del término de grado k
-- del polinomio p. Por ejemplo,
      pol2
                         == 2*x^5 + x^3 + -1
     coeficiente 5 pol2 == 2
     coeficiente 6 pol2 == 0
     coeficiente 4 pol2 == 0
     coeficiente 3 pol2 == 1
coeficiente :: Num a => Int -> Polinomio a -> a
coeficiente k p \mid k > n = 0
                | k == n = c
                | otherwise = coeficiente k r
               where n = grado p
                     c = coefLider p
                      r = restoPol p
```

3.4.6. Examen 6 (9 de Mayo de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 6º examen de evaluación continua (7 de mayo de 2012)
------
import Data.List
import Data.Array
import Test.QuickCheck
```

```
import PolRepTDA
import TablaConMatrices
-- Ejercicio 1. Definir la función
     aplicaT :: (Ix a, Num b) => Array a b -> (b -> c) -> Array a c
-- tal que (aplicaT t f) es la tabla obtenida aplicado la función f a
-- los elementos de la tabla t. Por ejemplo,
     ghci> aplicaT (array (1,5) [(1,6),(2,3),(3,-1),(4,9),(5,20)]) (+1)
     array (1,5) [(1,7),(2,4),(3,0),(4,10),(5,21)]
     qhci> :{
     *Main| aplicaT (array ((1,1),(2,3)) [((1,1),3),((1,2),-1),((1,3),0),
                                          ((2,1),0),((2,2),0),((2,3),-1)])
                    (*2)
     *Main|
     *Main| :}
     array ((1,1),(2,3)) [((1,1),6),((1,2),-2),((1,3),0),
                          ((2,1),0),((2,2),0),((2,3),-2)
aplicaT :: (Ix a, Num b) => Array a b -> (b -> c) -> Array a c
aplicaT t f = listArray (bounds t) [f e | e <- elems t]</pre>
__ _______
-- Ejercicio 2. En este ejercicio se usará el TAD de polinomios (visto
-- en el tema 21) y el de tabla (visto en el tema 18). Para ello, se
-- importan la librerías PolRepTDA y TablaConMatrices.
-- Definir la función
     polTabla :: Num a => Polinomio a -> Tabla Integer a
-- tal que (polTabla p) es la tabla con los grados y coeficientes de los
-- términos del polinomio p; es decir, en la tabla el valor del índice n
-- se corresponderá con el coeficiente del grado n del mismo
-- polinomio. Por ejemplo,
     ghci> polTabla (consPol 5 2 (consPol 3 (-1) polCero))
     Tbl (array (0,5) [(0,0),(1,0),(2,0),(3,-1),(4,0),(5,2)])
polTabla :: Num a => Polinomio a -> Tabla Integer a
polTabla p = tabla (zip [0..] [coeficiente c p | c <- [0..grado p]])
-- (coeficiente k p) es el coeficiente del término de grado k
-- del polinomio p. Por ejemplo,
     let pol = consPol 5 2 (consPol 3 1 (consPol 0 (-1) polCero))
```

```
2*x^5 + x^3 + -1
      pol
      coeficiente 5 pol
                             2
- -
      coeficiente 6 pol
                             0
      coeficiente 4 pol
                         == 0
      coeficiente 3 pol
                        == 1
coeficiente :: Num a => Int -> Polinomio a -> a
coeficiente k p \mid k > n
                            = 0
                | k == n
                            = c
                | otherwise = coeficiente k r
                where n = grado p
                      c = coefLider p
                      r = restoPol p
-- Ejercicio 3. Diremos que una matriz es creciente si para toda
-- posición (i,j), el valor de dicha posición es menor o igual que los
-- valores en las posiciones adyacentes de índice superior, es decir,
-- (i+1,j), (i,j+1) e (i+1,j+1) siempre y cuando dichas posiciones
-- existan en la matriz.
-- Definir la función
      matrizCreciente :: (Num a,Ord a) => Array (Int,Int) a -> Bool
-- tal que (matrizCreciente p) se verifica si la matriz p es
-- creciente. Por ejemplo,
      matrizCreciente p1 == True
      matrizCreciente p2 == False
  donde las matrices p1 y p2 están definidas por
      p1, p2 :: Array (Int,Int) Int
      p1 = array((1,1),(3,3))[((1,1),1),((1,2),2),((1,3),3),
                                ((2,1),2),((2,2),3),((2,3),4),
                                ((3,1),3),((3,2),4),((3,3),5)
      p2 = array((1,1),(3,3))[((1,1),1),((1,2),2),((1,3),3),
                                ((2,1),2),((2,2),1),((2,3),4),
                                ((3,1),3),((3,2),4),((3,3),5)
p1, p2 :: Array (Int,Int) Int
p1 = array((1,1),(3,3))[((1,1),1),((1,2),2),((1,3),3),
                          ((2,1),2),((2,2),3),((2,3),4),
                          ((3,1),3),((3,2),4),((3,3),5)
p2 = array((1,1),(3,3))[((1,1),1),((1,2),2),((1,3),3),
                          ((2,1),2),((2,2),1),((2,3),4),
                          ((3,1),3),((3,2),4),((3,3),5)
```

```
matrizCreciente :: (Num a,Ord a) => Array (Int,Int) a -> Bool
matrizCreciente p =
   and ([p!(i,j) \le p!(i,j+1) | i < [1..m], j < [1..n-1]] ++
        [p!(i,j) \le p!(i+1,j) | i < [1..m-1], j < [1..n]] ++
        [p!(i,j) \le p!(i+1,j+1) \mid i \le [1..m-1], j \le [1..n-1]])
   where (m,n) = snd (bounds p)
-- Ejercicio 4. Partiremos de la siguiente definición para el tipo de
-- datos de árbol binario:
     data Arbol = H
                | N Int Arbol Arbol
                deriving Show
-- Diremos que un árbol está balanceado si para cada nodo v la
-- diferencia entre el número de nodos (con valor) de sus ramas
-- izquierda y derecha es menor o igual que uno.
-- Definir la función
     balanceado :: Arbol -> Bool
-- tal que (balanceado a) se verifica si el árbol a está
-- balanceado. Por ejemplo,
     balanceado (N 5 (N 1 (N 5 H H) H) (N 4 H (N 5 H H))) == True
     balanceado (N 1 (N 2 (N 3 H H) H) H)
  ______
data Arbol = H
          | N Int Arbol Arbol
          deriving Show
balanceado :: Arbol -> Bool
balanceado H = True
balanceado (N _ i d) = abs (numeroNodos i - numeroNodos d) <= 1</pre>
-- (numeroNodos a) es el número de nodos del árbol a. Por ejemplo,
     numeroNodos (N 7 (N 1 (N 7 H H) H) (N 4 H (N 7 H H))) == 5
numeroNodos :: Arbol -> Int
numeroNodos H
                    = 0
numeroNodos (N i d) = 1 + numeroNodos i + numeroNodos d
```

-- Ejercicio 5. Hemos hecho un estudio en varias agencias de viajes

```
-- analizando las ciudades para las que se han comprado billetes de
-- avión en la última semana. Las siguientes listas muestran ejemplos de
-- dichos listados, donde es necesario tener en cuenta que en la misma
-- lista se puede repetir la misma ciudad en más de una ocasión, en cuyo
-- caso el valor total será la suma acumulada. A continuación se
-- muestran algunas de dichas listas:
      lista1, lista2, lista3, lista4 :: [(String,Int)]
      listal = [("Paris", 17), ("Londres", 12), ("Roma", 21), ("Atenas", 16)]
      lista2 = [("Roma", 5), ("Paris", 4)]
      lista3 = [("Atenas",2),("Paris",11),("Atenas",1),("Paris",5)]
      lista4 = [("Paris",5),("Roma",5),("Atenas",4),("Londres",6)]
-- Definir la función
      ciudadesOrdenadas :: [[(String,Int)]] -> [String]
-- tal que (ciudadesOrdenadas ls) es la lista de los nombres de ciudades
-- ordenadas según el número de visitas (de mayor a menor). Por ejemplo,
      ghci> ciudadesOrdenadas [listal]
      ["Roma", "Paris", "Atenas", "Londres"]
      ghci> ciudadesOrdenadas [lista1,lista2,lista3,lista4]
      ["Paris", "Roma", "Atenas", "Londres"]
lista1, lista2, lista3, lista4 :: [(String,Int)]
listal = [("Paris",17),("Londres",12),("Roma",21),("Atenas",16)]
lista2 = [("Roma",5),("Paris",4)]
lista3 = [("Atenas",2),("Paris",11),("Atenas",1),("Paris",5)]
lista4 = [("Paris",5),("Roma",5),("Atenas",4),("Londres",6)]
ciudadesOrdenadas :: [[(String,Int)]] -> [String]
ciudadesOrdenadas ls = [c | (c,v) <- ordenaLista (uneListas ls)]</pre>
-- (uneListas ls) es la lista obtenida uniendo las listas ls y
-- acumulando los resultados. Por ejemplo,
      ghci> uneListas [lista1,lista2]
      [("Paris", 21), ("Londres", 12), ("Roma", 26), ("Atenas", 16)]
uneListas :: [[(String,Int)]] -> [(String,Int)]
uneListas ls = acumulaLista (concat ls)
-- (acumulaLista cvs) es la lista obtenida acumulando el número de
-- visitas de la lista cvs. Por ejemplo,
      acumulaLista lista3 == [("Atenas",3),("Paris",16)]
acumulaLista :: [(String,Int)] -> [(String,Int)]
acumulaLista cvs =
```

reduccionesBasicasC n =

```
[(c,sum [t \mid (c',t) \leftarrow cvs, c' == c]) \mid c \leftarrow nub (map fst cvs)]
-- (ordenaLista cvs9 es la lista de los elementos de cvs ordenados por
-- el número de visitas (de mayor a menor). Por ejemplo,
      ghci> ordenaLista listal
      [("Roma",21),("Paris",17),("Atenas",16),("Londres",12)]
ordenaLista :: [(String,Int)] -> [(String,Int)]
ordenaLista cvs =
    reverse [(c,v) \mid (v,c) <- sort [(v',c') \mid (c',v') <- cvs]]
3.4.7. Examen 7 (11 de Junio de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 7º examen de evaluación continua (11 de junio de 2012)
import Data.List
import Data.Array
import Test.QuickCheck
import PolRepTDA
import GrafoConVectorDeAdyacencia
import ConjuntoConListasOrdenadasSinDuplicados
__ _______
-- Ejercicio 1. Diremos que una lista de números es una reducción
-- general de un número entero N si el sumatorio de L es igual a N y,
-- además, L es una lista de números enteros consecutivos y ascendente,
-- con más de un elemento. Por ejemplo, las listas [1,2,3,4,5], [4,5,6]
-- y [7,8] son reducciones generales de 15
-- Definir, por comprensión, la función
      reduccionesBasicas :: Integer -> [[Integer]]
-- tal que (reduccionesBasicas n) es la lista de reducciones de n cuya
-- longitud (número de elementos) sea menor o igual que la raíz cuadrada
-- de n. Por ejemplo,
      reduccionesBasicas 15 == [[4,5,6],[7,8]]
      reduccionesBasicas 232 == []
-- 1º definición:
reduccionesBasicasC :: Integer -> [[Integer]]
```

```
[[i..j] \mid i \leftarrow [1..n-1], j \leftarrow [i+1..i+r-1], sum [i..j] == n]
    where r = truncate (sqrt (fromIntegral n))
-- 2ª definición:
reduccionesBasicasC2 :: Integer -> [[Integer]]
reduccionesBasicasC2 n =
    [[i..j] \mid i \leftarrow [1..n-1], j \leftarrow [i+1..i+r-1], (i+j)*(1+j-i) 'div' 2 == n]
    where r = truncate (sqrt (fromIntegral n))
-- Ejercicio 2. Dada una matriz numérica A de dimensiones (m,n) y una
-- matriz booleana B de las mismas dimensiones, y dos funciones f y g,
-- la transformada de A respecto de B, f y g es la matriz C (de las
-- mismas dimensiones), tal que, para cada celda (i,j):
      C(i,j) = f(A(i,j)) si B(i,j) es verdadero
      C(i,j) = f(A(i,j)) si B(i,j) es falso
-- Por ejemplo, si A y B son las matrices
             |True False|
      |1 2|
              |False True |
      |3 4|
-- respectivamente, y f y g son dos funciones tales que f(x) = x+1 y
-- g(x) = 2*x, entonces la transformada de A respecto de B, f y g es
      [2 4]
      |6 5|
- -
-- En Haskell,
      a :: Array (Int,Int) Int
      a = array((1,1),(2,2))[((1,1),1),((1,2),2),((2,1),3),((2,2),4)]
      b :: Array (Int, Int) Bool
      b = array((1,1),(2,2))[((1,1),True),((1,2),False),((2,1),False),((2,2),True)]
-- Definir la función
      transformada :: Array (Int,Int) a -> Array (Int,Int) Bool ->
                       (a -> b) -> (a -> b) -> Array (Int, Int) b
-- tal que (transformada a b f g) es la transformada de A respecto de B,
-- f y g. Por ejemplo,
      ghci> transformada a b (+1) (*2)
      array ((1,1),(2,2)) [((1,1),2),((1,2),4),((2,1),6),((2,2),5)]
a :: Array (Int,Int) Int
a = array((1,1),(2,2))[((1,1),1),((1,2),2),((2,1),3),((2,2),4)]
```

```
b :: Array (Int, Int) Bool
b = array((1,1),(2,2))[((1,1),True),((1,2),False),((2,1),False),((2,2),True)]
transformada :: Array (Int,Int) a -> Array (Int,Int) Bool ->
                (a -> b) -> (a -> b) -> Array (Int, Int) b
transformada a b f q =
    array ((1,1),(m,n)) [((i,j),aplica i j) | i <- [1..m], j <- [1..m]]
    where (m,n) = snd (bounds a)
          aplica i j \mid b!(i,j) = f(a!(i,j))
                     | otherwise = g (a!(i,j))
-- Ejercicio 3. Dado un grafo dirigido G, diremos que un nodo está
-- aislado si o bien de dicho nodo no sale ninguna arista o bien no
-- llega al nodo ninguna arista. Por ejemplo, en el siguiente grafo
-- (Tema 22, pag. 31)
      g = creaGrafo D (1,6) [(1,2,0),(1,3,0),(1,4,0),(3,6,0),
                             (5,4,0),(6,2,0),(6,5,0)
-- podemos ver que del nodo 1 salen 3 aristas pero no llega ninguna, por
-- lo que lo consideramos aislado. Así mismo, a los nodos 2 y 4 llegan
-- aristas pero no sale ninguna, por tanto también estarán aislados.
- -
-- Definir la función
      aislados :: (Ix v, Num p) \Rightarrow Grafo v p \rightarrow [v]
-- tal que (aislados g) es la lista de nodos aislados del grafo g. Por
-- eiemplo,
      aislados g == [1,2,4]
g = creaGrafo D (1,6) [(1,2,0),(1,3,0),(1,4,0),(3,6,0),
                       (5,4,0),(6,2,0),(6,5,0)
aislados :: (Ix v, Num p) => Grafo v p -> [v]
aislados g = [n \mid n < - nodos g, adyacentes g n == [] || incidentes g n == [] ]
-- (incidentes g v) es la lista de los nodos incidentes con v en el
-- grafo g. Por ejemplo,
      incidentes g 2 == [1,6]
      incidentes q 1 == []
incidentes :: (Ix v, Num p) => Grafo v p -> v -> [v]
incidentes g v = [x \mid x < - nodos g, v 'elem' advacentes g x]
```

```
-- Ejercicio 4. Definir la función
      gradosCoeficientes :: (Ord a, Num a) =>
                             [Polinomio a] -> [(Int,Conj a)]
-- tal que (gradosCoeficientes ps) es una lista de pares, donde cada par
-- de la lista contendrá como primer elemento un número entero
-- (correspondiente a un grado) y el segundo elemento será un conjunto
-- que contendrá todos los coeficientes distintos de 0 que aparecen para
-- dicho grado en la lista de polinomios ps. Esta lista estará
-- ordenada de menor a mayor para todos los grados posibles de la lista de
-- polinomios. Por ejemplo, dados los siguientes polinomios
      p1, p2, p3, p4 :: Polinomio Int
      p1 = consPol 5 2 (consPol 3 (-1) polCero)
      p2 = consPol 7 (-2) (consPol 5 1 (consPol 4 5 (consPol 2 1 polCero)))
      p3 = polCero
      p4 = consPol 4 (-1) (consPol 3 2 (consPol 1 1 polCero))
-- se tiene que
      ghci> gradosCoeficientes [p1,p2,p3,p4]
      [(1, \{0,1\}), (2, \{0,1\}), (3, \{-1,0,2\}), (4, \{-1,0,5\}), (5, \{0,1,2\}),
       (6, \{0\}), (7, \{-2, 0\})]
p1, p2, p3, p4 :: Polinomio Int
p1 = consPol 5 2 (consPol 3 (-1) polCero)
p2 = consPol 7 (-2) (consPol 5 1 (consPol 4 5 (consPol 2 1 polCero)))
p3 = polCero
p4 = consPol 4 (-1) (consPol 3 2 (consPol 1 1 polCero))
gradosCoeficientes :: (Ord a, Num a) => [Polinomio a] -> [(Int,Conj a)]
gradosCoeficientes ps =
    [(k,foldr (inserta . coeficiente k) vacio ps) | k <- [1..m]]</pre>
    where m = maximum (map grado ps)
-- (coeficiente k p) es el coeficiente del término de grado k
-- del polinomio p. Por ejemplo,
      let pol = consPol 5 2 (consPol 3 1 (consPol 0 (-1) polCero))
                            2*x^5 + x^3 + -1
      log
      coeficiente 5 pol
                             2
      coeficiente 6 pol
                             0
      coeficiente 4 pol == 0
      coeficiente 3 pol ==
                             1
coeficiente :: Num a => Int -> Polinomio a -> a
coeficiente k p | k > n
                            = 0
                | k == n
                            = c
```

3.4.8. Examen 8 (29 de Junio de 2012)

El examen es común con el del grupo 1 (ver página 129).

3.4.9. Examen 9 (9 de Septiembre de 2012)

El examen es común con el del grupo 1 (ver página 134).

3.4.10. Examen 10 (10 de Diciembre de 2012)

El examen es común con el del grupo 1 (ver página 138).

4

Exámenes del curso 2012-13

4.1. Exámenes del grupo 1 (Antonia M. Chávez)

4.1.1. Examen 1 (7 de noviembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 1^{\circ} examen de evaluación continua (7 de noviembre de 2012)
-- Ejercicio 1. Definir la función ocurrenciasDelMaximo tal que
-- (ocurrenciasDelMaximo xs) es el par formado por el mayor de los
-- números de xs y el número de veces que este aparece en la lista
-- xs, si la lista es no vacía y es (0,0) si xs es la lista vacía. Por
-- ejemplo,
      ocurrenciasDelMaximo [1,3,2,4,2,5,3,6,3,2,1,8,7,6,5] == (8,1)
      ocurrenciasDelMaximo [1,8,2,4,8,5,3,6,3,2,1,8]
                                                            == (8,3)
      ocurrenciasDelMaximo [8,8,2,4,8,5,3,6,3,2,1,8]
                                                            == (8,4)
ocurrenciasDelMaximo [] = (0,0)
ocurrenciasDelMaximo xs = (maximum xs, sum [1 | y <- xs, y == maximum xs])
-- Ejercicio 2. Definir, por comprensión, la función tienenS tal que
-- (tienenS xss) es la lista de las longitudes de las cadenas de xss que
-- contienen el caracter 's' en mayúsculas o minúsculas. Por ejemplo,
      tienenS ["Este", "es", "un", "examen", "de", "hoy", "Suerte"] == [4,2,6]
```

```
tienenS ["Este"]
                                                                 [4]
     tienenS []
                                                                 []
     tienenS [" "]
                                                                 []
tienenS xss = [length xs | xs <- xss, (elem 's' xs) || (elem 'S' xs)]
-- Ejercicio 3. Decimos que una lista está algo ordenada si para todo
-- par de elementos consecutivos se cumple que el primero es menor o
-- igual que el doble del segundo. Definir, por comprensión, la función
-- (algoOrdenada xs) que se verifica si la lista xs está algo ordenada.
-- Por ejemplo,
     algoOrdenada [1,3,2,5,3,8] == True
     algoOrdenada [3,1] == False
algoOrdenada xs = and [x \le 2*y | (x,y) \le zip xs (tail xs)]
-- Ejercicio 4. Definir, por comprensión, la función tripletas tal que
-- (tripletas xs) es la listas de tripletas de elementos consecutivos de
-- la lista xs. Por ejemplo,
     tripletas [8,7,6,5,4] == [[8,7,6],[7,6,5],[6,5,4]]
     tripletas "abcd" == ["abc","bcd"]
tripletas [2,4,3] == [[2,3,4]]
     tripletas [2,4]
                         == []
-- lª definición:
tripletas xs =
   [[a,b,c] \mid ((a,b),c) \leftarrow zip (zip xs (tail xs)) (tail (tail xs))]
-- 2ª definición:
tripletas2 xs =
    [[xs!!n,xs!!(n+1),xs!!(n+2)] \mid n < -[0..length xs -3]]
-- 3ª definición:
tripletas3 xs = [take 3 (drop n xs) | n <- [0..(length xs - 3)]]
-- Se puede definir por recursión
tripletas4 (x1:x2:x3:xs) = [x1,x2,x3] : tripletas (x2:x3:xs)
tripletas4 _
                    = []
```

```
-- Ejercicio 5. Definir la función tresConsecutivas tal que
-- (tresConsecutivas x ys) se verifica si x tres veces seguidas en la
-- lista ys. Por ejemplo,
     tresConsecutivas 3 [1,4,2,3,3,4,3,5,3,4,6] == Falsese
     tresConsecutivas 'a' "abcaaadfg"
  ______
tresConsecutivas x ys = elem [x,x,x] (tripletas ys)
-- Ejercicio 6. Se dice que un número n es malo si el número 666 aparece
-- en 2^n. Por ejemplo, 157 y 192 son malos, ya que:
     2^157 = 182687704666362864775460604089535377456991567872
     2^192 = 6277101735386680763835789423207666416102355444464034512896
-- Definir una función (malo x) que se verifica si el número x es
-- malo. Por ejemplo,
     malo 157 == True
     malo 192 == True
     malo 221 == False
malo n = tresConsecutivas '6' (show (2^n))
4.1.2. Examen 2 (19 de diciembre de 2012)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 2º examen de evaluación continua (19 de diciembre de 2012)
import Test.QuickCheck
       -----
-- Ejercicio 1.1. Definir, por comprensión, la función
     maximaDiferenciaC :: [Integer] -> Integer
-- tal que (maximaDiferenciaC xs) es la mayor de las diferencias en
-- valor absoluto entre elementos consecutivos de la lista xs. Por
-- ejemplo,
     maximaDiferenciaC [2,5,-3]
- -
                                       == 8
     maximaDiferenciaC [1,5]
                                      == 4
```

```
maximaDiferenciaC [10, -10, 1, 4, 20, -2] == 22
maximaDiferenciaC :: [Integer] -> Integer
maximaDiferenciaC xs =
   maximum [abs (x-y) \mid (x,y) < -zip xs (tail xs)]
-- Ejercicio 1.2. Definir, por recursión, la función
     maximaDiferenciaR :: [Integer] -> Integer
-- tal que (maximaDiferenciaR xs) es la mayor de las diferencias en
-- valor absoluto entre elementos consecutivos de la lista xs. Por
-- ejemplo,
     maximaDiferenciaR [2,5,-3]
     maximaDiferenciaR [1,5]
     maximaDiferenciaR [10, -10, 1, 4, 20, -2] == 22
maximaDiferenciaR :: [Integer] -> Integer
maximaDiferenciaR[x,y] = abs(x - y)
maximaDiferenciaR (x:y:ys) = max (abs (x-y)) (maximaDiferenciaR (y:ys))
__ _______
-- Ejercicio 1.3. Comprobar con QuickCheck que las definiciones
-- maximaDiferenciaC y maximaDiferenciaR son equivalentes.
__ ______
-- La propiedad es
prop maximaDiferencia :: [Integer] -> Property
prop maximaDiferencia xs =
   length xs > 1 ==> maximaDiferenciaC xs == maximaDiferenciaR xs
-- La comprobación es
     ghci> quickCheck prop_maximaDiferencia
     +++ OK, passed 100 tests.
-- Ejercicio 2.1. Definir, por comprensión, la función acumuladaC tal
-- que (acumuladaC xs) es la lista que tiene en cada posición i el valor
-- que resulta de sumar los elementos de la lista xs desde la posicion 0
-- hasta la i. Por ejemplo,
     acumuladaC [2,5,1,4,3] == [2,7,8,12,15]
     acumuladaC [1,-1,1,-1] == [1,0,1,0]
```

```
acumuladaC xs = [sum (take n xs) | n <- [1..length xs]]
-- Ejercicio 2.2. Definir, por recursión, la función acumuladaR tal que
-- (acumuladaR xs) es la lista que tiene en cada posición i el valor que
-- resulta de sumar los elementos de la lista xs desde la posicion 0
-- hasta la i. Por ejemplo,
     acumuladaR [2,5,1,4,3] == [2,7,8,12,15]
     acumuladaR [1,-1,1,-1] == [1,0,1,0]
  _____
-- lª definición:
acumuladaR[] = []
acumuladaR xs = acumuladaR (init xs) ++ [sum xs]
-- 2ª definición:
acumuladaR2 [] = []
acumuladaR2 (x:xs) = reverse (aux xs [x])
   where aux [] ys = ys
        aux (x:xs) (y:ys) = aux xs (x+y:y:ys)
  ______
-- Ejercicio 3.1. Definir la función unitarios tal (unitarios n) es
-- la lista de números [n,nn, nnn, ....]. Por ejemplo.
     take 7 (unitarios 3) == [3,33,333,3333,33333,333333,333333]
     take 3 (unitarios 1) == [1,11,111]
unitarios x = [x*(div (10^n-1) 9) | n <- [1 ..]]
-- Ejercicio 3.2. Definir la función multiplosUnitarios tal que
-- (multiplosUnitarios x y n) es la lista de los n primeros múltiplos de
-- x cuyo único dígito es y. Por ejemplo,
     multiplosUnitarios 7 1 2 == [111111,1111111111]
    ___________
multiplosUnitarios x y n = take n [z \mid z < -unitarios y, mod z x == 0]
```

```
-- Ejercicio 4.1. Definir, por recursión, la función inicialesDistintosR
-- tal que (inicialesDistintosR xs) es el número de elementos que hay en
-- xs antes de que aparezca el primer repetido. Por ejemplo,
      inicialesDistintosR [1,2,3,4,5,3] == 2
      inicialesDistintosR [1,2,3]
      inicialesDistintosR "ahora"
      inicialesDistintosR "ahorA"
                                        == 5
inicialesDistintosR [] = 0
inicialesDistintosR (x:xs)
    \mid elem x xs = 0
    | otherwise = 1 + inicialesDistintosR xs
-- Ejercicio 4.2. Definir, por comprensión, la función
-- inicialesDistintosC tal que (inicialesDistintosC xs) es el número de
-- elementos que hay en xs antes de que aparezca el primer repetido. Por
-- ejemplo,
      inicialesDistintosC [1,2,3,4,5,3] == 2
      inicialesDistintosC [1,2,3]
      inicialesDistintosC "ahora"
                                        == 0
      inicialesDistintosC "ahorA"
                                        == 5
inicialesDistintosC xs =
    length (takeWhile (==1) (listaOcurrencias xs))
-- (listaOcurrencias xs) es la lista con el número de veces que aparece
-- cada elemento de xs en xs. Por ejemplo,
      listaOcurrencias [1,2,3,4,5,3] == [1,1,2,1,1,2]
      lista0currencias "repetidamente" == [1,4,1,4,2,1,1,1,1,4,1,2,4]
listaOcurrencias xs = [ocurrencias x xs | x <- xs]</pre>
-- (ocurrencias x ys) es el número de ocurrencias de x en ys. Por
-- ejemplo,
      ocurrencias 1 [1,2,3,1,5,3,3] == 2
      ocurrencias 3[1,2,3,1,5,3,3] == 3
ocurrencias x ys = length [y \mid y < -ys, x == y]
```

4.1.3. Examen 3 (6 de febrero de 2013)

El examen es común con el del grupo 2 (ver página 233).

4.1.4. Examen 4 (3 de abril de 2013)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 4º examen de evaluación continua (3 de abril de 2013)
import Test.QuickCheck
  ______
-- Ejercicio 1.1. Se denomina resto de una lista a una sublista no vacia
-- formada el último o últimos elementos. Por ejemplo, [3,4,5] es un
-- resto de lista [1,2,3,4,5].
-- Definir la función
     restos :: [a] -> [[a]]
-- tal que (restos xs) es la lista de los restos de la lista xs. Por
-- ejemplo,
     restos [2,5,6] == [[2,5,6],[5,6],[6]]
     restos [4,5]
                   == [[4,5],[5]]
     restos []
                    == []
restos :: [a] -> [[a]]
restos []
          = []
restos (x:xs) = (x:xs) : restos xs
-- Ejercicio 1.2. Se denomina corte de una lista a una sublista no vacía
-- formada por el primer elemento y los siguientes hasta uno dado.
-- Por ejemplo, [1,2,3] es un corte de [1,2,3,4,5].
-- Definir, por recursión, la función
     cortesR :: [a] -> [[a]]
-- tal que (cortesR xs) es la lista de los cortes de la lista xs. Por
-- ejemplo,
     cortesR []
                       ==
                           []
     cortesR [2,5]
                       == [[2],[2,5]]
     cortesR [4,8,6,0] = [[4],[4,8],[4,8,6],[4,8,6,0]]
```

```
-- lª definición:
cortesR :: [a] -> [[a]]
cortesR[] = []
cortesR (x:xs) = [x]: [x:y | y <- cortesR xs]
-- 2º definición:
cortesR2 :: [a] -> [[a]]
cortesR2 [] = []
cortesR2 (x:xs) = [x] : map (\y -> x:y) (cortesR2 xs)
-- Ejercicio 1.3. Definir, por composición, la función
     cortesC :: [a] -> [[a]]
-- tal que (cortesC xs) es la lista de los cortes de la lista xs. Por
-- ejemplo,
     cortesC []
                     == []
     cortesC [2,5] == [[2],[2,5]]
     cortesC [4,8,6,0] == [[4],[4,8],[4,8,6],[4,8,6,0]]
cortesC :: [a] -> [[a]]
cortesC = reverse . map reverse . restos . reverse
-- Ejercicio 2. Los árboles binarios se pueden representar con el de
-- dato algebraico
     data Arbol = H Int
               | N Arbol Int Arbol
               deriving (Show, Eq)
-- Por ejemplo, los árboles
          9
         / \
       8
           6
           / \
      /\
                       2 4
     3 2 4 5
                     3
-- se pueden representar por
     ej1, ej2:: Arbol
     ej1 = N (N (H 3) 8 (H 2)) 9 (N (H 4) 6 (H 5))
     ej2 = N (N (H 3) 7 (H 2)) 9 (N (H 4) 3 (H 7))
```

```
-- Decimos que un árbol binario es par si la mayoría de sus nodos son
-- pares e impar en caso contrario. Por ejemplo, el primer ejemplo es
-- par y el segundo es impar.
-- Para representar la paridad se define el tipo Paridad
      data Paridad = Par | Impar deriving Show
-- Definir la función
      paridad :: Arbol -> Paridad
-- tal que (paridad a) es la paridad del árbol a. Por ejemplo,
      paridad ej1 == Par
      paridad ej2 == Impar
data Arbol = H Int
           | N Arbol Int Arbol
           deriving (Show, Eq)
ej1, ej2:: Arbol
ej1 = N (N (H 3) 8 (H 2)) 9 (N (H 4) 6 (H 5))
ej2 = N (N (H 3) 7 (H 2)) 9 (N (H 4) 3 (H 7))
data Paridad = Par | Impar deriving Show
paridad :: Arbol -> Paridad
paridad a | x > y
          | otherwise = Impar
         where (x,y) = paridades a
-- (paridades a) es un par (x,y) donde x es el número de valores pares
-- en el árbol a e i es el número de valores impares en el árbol a. Por
-- ejemplo,
      paridades ej1 == (4,3)
      paridades ej2 == (2,5)
paridades :: Arbol -> (Int,Int)
paridades (H x) \mid even x = (1,0)
                \mid otherwise = (0,1)
paridades (N i x d) | even x = (1+a1+a2,b1+b2)
                    \mid otherwise = (a1+a2,1+b1+b2)
                    where (a1,b1) = paridades i
                          (a2,b2) = paridades d
```

```
-- Ejercicio 3. Según la Wikipedia, un número feliz se define por el
-- siquiente proceso. Se comienza reemplazando el número por la suma del
-- cuadrado de sus cifras y se repite el proceso hasta que se obtiene el
-- número 1 o se entra en un ciclo que no contiene al 1. Aquellos
-- números para los que el proceso termina en 1 se llaman números
-- felices y los que entran en un ciclo sin 1 se llaman números
-- desgraciados.
-- Por ejemplo, 7 es un número feliz porque
        7 ~> 7^2
                                           49
          ~> 4^2 + 9^2
                           = 16 + 81
                                         = 97
          ~> 9^2 + 7^2
                        = 81 + 49
                                         = 130
          \sim 1^2 + 3^2 + 0^2 = 1 + 9 + 0 =
          ~> 1^2 + 0^2
                            = 1 + 0
-- Pero 17 es un número desgraciado porque
     17 ~> 1^2 + 7^2
                          = 1 + 49
                                           50
        ~> 5^2 + 0^2
                          = 25 + 0
                                         = 25
        ~> 2^2 + 5^2
                          = 4 + 25
                                         = 29
        ~> 2^2 + 9^2
                          = 4 + 81
                                         = 85
        ~> 8^2 + 5^2
                          = 64 + 25
                                         = 89
        ~> 8^2 + 9^2
                          = 64 + 81
                                         = 145
        \sim 1^2 + 4^2 + 5^2 = 1 + 16 + 25 = 42
        ~> 4^2 + 2^2
                          = 16 + 4
                                           20
        ~> 2^2 + 0^2
                         = 4 + 0
                                            4
        ~> 4^2
                                         = 16
        ~> 1^2 + 6^2
                          = 1 + 36
                                         = 37
        ~> 3^2 + 7^2
                          = 9 + 49
                                         = 58
        ~> 5^2 + 8^2
                          = 25 + 64
                                           89
-- que forma un bucle al repetirse el 89.
-- El objetivo del ejercicio es definir una función que calcule todos
-- los números felices hasta un límite dado.
  ______
-- Ejercicio 3.1. Definir la función
     sumaCuadrados :: Int -> Int
-- tal que (sumaCuadrados n) es la suma de los cuadrados de los dígitos
-- de n. Por ejemplo,
     sumaCuadrados 145 == 42
```

sumaCuadrados :: Int -> Int

```
sumaCuadrados n = sum [x^2 | x <- digitos n]
-- (digitos n) es la lista de los dígitos de n. Por ejemplo,
     digitos 145 == [1,4,5]
digitos :: Int -> [Int]
digitos n = [read [x]|x<-show n]
-- Ejercicio 3.2. Definir la función
     caminoALaFelicidad :: Int -> [Int]
-- tal que (caminoALaFelicidad n) es la lista de los números obtenidos
-- en el proceso de la determinación si n es un número feliz: se
-- comienza con la lista [n], ampliando la lista con la suma del
-- cuadrado de las cifras de su primer elemento y se repite el proceso
-- hasta que se obtiene el número 1 o se entra en un ciclo que no
-- contiene al 1. Por ejemplo,
     ghci> take 20 (caminoALaFelicidad 7)
      [7,49,97,130,10,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
     ghci> take 20 (caminoALaFelicidad 17)
     [17,50,25,29,85,89,145,42,20,4,16,37,58,89,145,42,20,4,16,37]
caminoALaFelicidad :: Int -> [Int]
caminoALaFelicidad n =
   n : [sumaCuadrados x | x <- caminoALaFelicidad n]</pre>
-- Ejercicio 3.3. En el camino a la felicidad, pueden ocurrir dos casos:
-- * aparece un 1 y a continuación solo aparece 1,
-- * llegamos a 4 y se entra en el ciclo 4,16,37,58,89,145,42,20.
-- Definir la función
     caminoALaFelicidadFundamental :: Int -> [Int]
-- tal que (caminoALaFelicidadFundamental n) es el camino de la
-- felicidad de n hasta que aparece un 1 o un 4. Por ejemplo,
     caminoALaFelicidadFundamental 34 == [34,25,29,85,89,145,42,20,4]
     caminoALaFelicidadFundamental 203
                                       == [203, 13, 10, 1]
     caminoALaFelicidadFundamental 23018 == [23018,78,113,11,2,4]
   ______
caminoALaFelicidadFundamental :: Int -> [Int]
caminoALaFelicidadFundamental n = selecciona (caminoALaFelicidad n)
```

```
-- (selecciona xs) es la lista de los elementos hasta que aparece un 1 o
-- un 4. Por ejemplo,
     selecciona [3,2,1,5,4] == [3,2,1]
     selecciona [3,2] == [3,2]
selecciona [] = []
selecciona (x:xs) | x == 1 | | x == 4 = [x]
                 | otherwise
                                = x : selecciona xs
-- Ejercicio 3.4. Definir la función
     esFeliz :: Int -> Bool
-- tal que (esFeliz n) s verifica si n es feliz. Por ejemplo,
     esFeliz 7 == True
     esFeliz 17 == False
esFeliz :: Int -> Bool
esFeliz n = last (caminoALaFelicidadFundamental n) == 1
-- Ejercicio 3.5. Comprobar con QuickCheck que si n es es feliz,
-- entonces todos los números de (caminoALaFelicidadFundamental n)
-- también lo son.
-- ------------
-- La propiedad es
prop esFeliz :: Int -> Property
prop esFeliz n =
   n>0 && esFeliz n
   ==> and [esFeliz x | x <- caminoALaFelicidadFundamental n]
-- La comprobación es
     ghci> quickCheck prop esFeliz
     *** Gave up! Passed only 38 tests.
4.1.5. Examen 5 (15 de mayo de 2013)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 5º examen de evaluación continua (22 de mayo de 2013)
```

```
-- Importación de librerías
import Data.List
import Data.Array
import PolOperaciones
-- Ejercicio 1. Definir la función
      conFinales :: Int -> [Int] -> [Int]
-- tal que (conFinales x xs) es la lista de los elementos de xs que
-- terminan en x. Por ejemplo,
      confinales 2 [31,12,7,142,214] == [12,142]
-- Dar cuatro definiciones distintas: recursiva, por comprensión, con
-- filtrado y por plegado.
-- lª definición (recursiva):
conFinales1 :: Int -> [Int] -> [Int]
conFinales1 x [] = []
confinales1 x (y:ys) \mid mod y 10 == x = y : confinales1 x ys
                     | otherwise = conFinales1 x ys
-- 2ª definición (por comprensión):
conFinales2 :: Int -> [Int] -> [Int]
conFinales2 x xs = [y \mid y < -xs, mod y 10 == x]
-- 3ª definición (por filtrado):
conFinales3 :: Int -> [Int] -> [Int]
conFinales3 x xs = filter (\z -> mod z 10 == x) xs
-- 4º definición (por plegado):
conFinales4 :: Int -> [Int] -> [Int]
conFinales4 x = foldr f []
    where f y ys | mod y 10 == x = y:ys
                   | otherwise = ys
-- Ejercicio 2. (OME 2010) Una sucesión pucelana es una sucesión
-- creciente de dieciseis números impares positivos consecutivos, cuya
-- suma es un cubo perfecto.
-- Definir la función
```

```
pucelanasDeTres :: [[Int]]
-- tal que pucelanasDeTres es la lista de la sucesiones pucelanas
-- formadas por números de tres cifras. Por ejemplo,
     ghci> take 2 pucelanasDeTres
     [[241,243,245,247,249,251,253,255,257,259,261,263,265,267,269,271],
      [485,487,489,491,493,495,497,499,501,503,505,507,509,511,513,515]]
-- ¿Cuántas sucesiones pucelanas tienen solamente números de tres
-- cifras?
pucelanasDeTres :: [[Int]]
pucelanasDeTres = [[x,x+2 .. x+30] | x <- [101, 103 .. 999-30],
                                          esCubo (sum [x,x+2 .. x+30])]
esCubo x = or [y^3 == x | y <- [1..x]]
-- El número se calcula con
     ghci> length pucelanasDeTres
     3
-- Ejercicio 3.1. Definir la función:
     extraePares :: Polinomio Integer -> Polinomio Integer
-- tal que (extraePares p) es el polinomio que resulta de extraer los
-- monomios de grado par de p. Por ejemplo, si p es el polinomio
-- x^4 + 5*x^3 + 7*x^2 + 6*x, entonces (extraePares p) es
-- x^4 + 7*x^2.
     > let p1 = consPol 4 1 (consPol 3 5 (consPol 2 7 (consPol 1 6 polCero)))
     x^4 + 5*x^3 + 7*x^2 + 6*x
     > extraePares p1
     x^4 + 7*x^2
extraePares :: Polinomio Integer -> Polinomio Integer
extraePares p
    | esPolCero p = polCero
                = consPol n (coefLider p) (extraePares rp)
    | otherwise = extraePares rp
   where n = grado p
         rp = restoPol p
```

```
-- Ejercicio 3.2. Definir la función
      rellenaPol :: Polinomio Integer -> Polinomio Integer
-- tal que (rellenaPol p) es el polinomio obtenido completando con
-- monomios del tipo 1*x^n aquellos monomios de grado n que falten en
-- p. Por ejemplo,
      ghci> let p1 = consPol 4 2 (consPol 2 1 (consPol 0 5 polCero))
      qhci> p1
     2*x^4 + x^2 + 5
     ghci> rellenaPol p1
     2*x^4 + x^3 + x^2 + 1*x + 5
rellenaPol :: Polinomio Integer -> Polinomio Integer
rellenaPol p
    | n == 0 = p
    \mid n == grado r + 1 = consPol n c (rellenaPol r)
    | otherwise = consPol n c (consPol (n-1) 1 (rellenaPol r))
   where n = grado p
          c = coefLider p
          r = restoPol p
-- Ejercicio 4.1. Consideremos el tipo de las matrices
      type Matriz a = Array (Int,Int) a
  y, para los ejemplos, la matriz
     m1 :: Matriz Int
     m1 = array((1,1),(3,3))
                 [((1,1),1),((1,2),0),((1,3),1),
                  ((2,1),0),((2,2),1),((2,3),1),
                  ((3,1),1),((3,2),1),((3,3),1)])
-- Definir la función
      cambiaM :: (Int, Int) -> Matriz Int -> Matriz Int
-- tal que (cambiaM i p) es la matriz obtenida cambiando en p los
-- elementos de la fila y la columna en i transformando los 0 en 1 y
-- viceversa. El valor en i cambia solo una vez. Por ejemplo,
      ghci> cambiaM (2,3) m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),0),
                           ((2,1),1),((2,2),7),((2,3),0),
                           ((3,1),1),((3,2),1),((3,3),0)
```

```
type Matriz a = Array (Int,Int) a
ml :: Matriz Int
m1 = array((1,1),(3,3))
           [((1,1),1),((1,2),0),((1,3),1),
            ((2,1),0),((2,2),7),((2,3),1),
            ((3,1),1),((3,2),1),((3,3),1)]
cambiaM :: (Int, Int) -> Matriz Int -> Matriz Int
cambiaM (a,b) p = array (bounds p) [((i,j),f i j) | (i,j) <- indices p]
       where f i j | i == a | | j == b = cambia (p!(i,j))
                    | otherwise = p!(i,j)
             cambia x \mid x == 0
                      | x == 1
                      | otherwise = x
-- Ejercicio 4.2. Definir la función
      quitaRepetidosFila :: Int -> Matriz Int -> Matriz Int
-- tal que (quitaRepetidosFila i p) es la matriz obtenida a partir de p
-- eliminando los elementos repetidos de la fila i y rellenando con
-- ceros al final hasta completar la fila. Por ejemplo,
      qhci> m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),1),((3,3),1)
      ghci> quitaRepetidosFila 1 m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),0),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),1),((3,3),1)]
      ghci> quitaRepetidosFila 2 m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),1),((3,3),1)]
      ghci> quitaRepetidosFila 3 m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),0),((3,3),0)
quitaRepetidosFila :: Int -> Matriz Int -> Matriz Int
quitaRepetidosFila x p =
    array (bounds p) [((i,j),f i j) | (i,j) <- indices p]
```

```
where f i j | i == x = (cambia (fila i p)) !! (j-1)
                | otherwise = p!(i,j)
-- (fila i p) es la fila i-ésima de la matriz p. Por ejemplo,
      ghci> m1
      array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                           ((2,1),0),((2,2),7),((2,3),1),
                           ((3,1),1),((3,2),1),((3,3),1)]
      ghci> fila 2 m1
      [0,7,1]
fila :: Int -> Matriz Int -> [Int]
fila i p = [p!(i,j) | j < -[1..n]]
    where (\_,(\_,n)) = bounds p
-- (cambia xs) es la lista obtenida eliminando los elementos repetidos
-- de xs y completando con ceros al final para que tenga la misma
-- longitud que xs. Por ejemplo,
    cambia [2,3,2,5,3,2] == [2,3,5,0,0,0]
cambia :: [Int] -> [Int]
cambia xs = ys ++ replicate (n-m) 0
    where ys = nub xs
          n = length xs
          m = length ys
```

4.1.6. Examen 6 (13 de junio de 2013)

```
-- de xs. Por ejemplo,
      ghci> numerosAlternados [21..50]
      [21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 50]
-- Usando la definición de numerosAlternados calcular la cantidad de
-- números alternados de 3 cifras.
-- 1ª definición (por comprension):
numerosAlternados :: [Integer] -> [Integer]
numerosAlternados xs = [n | n <- xs, esAlternado (cifras n)]</pre>
-- (esAlternado xs) se verifica si los elementos de xs son par/impar
-- alternativamente. Por ejemplo,
    esAlternado [1,2,3,4,5,6]
                                 == True
     esAlternado [2,7,8,5,4,1,0] == True
esAlternado :: [Integer] -> Bool
esAlternado [ ] = True
esAlternado xs = and [odd (x+y) | (x,y) <- zip xs (tail xs)]
-- (cifras x) es la lista de las cifras del n?mero x. Por ejemplo,
      cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras x = [read [d] | d <- show x]
-- El cálculo es
      ghci> length (numerosAlternados [100..999])
      225
-- 2ª definición (por filtrado):
numerosAlternados2 :: [Integer] -> [Integer]
numerosAlternados2 = filter (\n -> esAlternado (cifras n))
-- la definición anterior se puede simplificar:
numerosAlternados2' :: [Integer] -> [Integer]
numerosAlternados2' = filter (esAlternado . cifras)
-- 3ª definición (por recursion):
numerosAlternados3 :: [Integer] -> [Integer]
numerosAlternados3 [] = []
numerosAlternados3 (n:ns)
  | esAlternado (cifras n) = n : numerosAlternados3 ns
  | otherwise
                          = numerosAlternados3 ns
```

```
-- 4ª definición (por plegado):
numerosAlternados4 :: [Integer] -> [Integer]
numerosAlternados4 = foldr f []
  where f n ns \mid esAlternado (cifras n) = n : ns
               | otherwise
                                         = ns
-- Ejercicio 2. Definir la función
      borraSublista :: Eq a => [a] -> [a] -> [a]
-- tal que (borraSublista xs ys) es la lista que resulta de borrar la
-- primera ocurrencia de la sublista xs en ys. Por ejemplo,
      borraSublista [2,3] [1,4,2,3,4,5] == [1,4,4,5] borraSublista [2,4] [1,4,2,3,4,5] == [1,4,2,3,4,5]
      borraSublista [2,3] [1,4,2,3,4,5,2,3] == [1,4,4,5,2,3]
borraSublista :: Eq a => [a] -> [a] -> [a]
borraSublista [] ys = ys
borraSublista _ [] = []
borraSublista (x:xs) (y:ys)
    | esPrefijo (x:xs) (y:ys) = drop (length xs) ys
    | otherwise
                             = y : borraSublista (x:xs) ys
-- (esPrefijo xs ys) se verifica si xs es un prefijo de ys. Por ejemplo,
      esPrefijo [2,5] [2,5,7,9] == True
      esPrefijo [2,5] [2,7,5,9] == False
      esPrefijo [2,5] [7,2,5,9] == False
esPrefijo :: Eq a => [a] -> [a] -> Bool
esPrefijo [] ys
                       = True
esPrefijo _ []
                        = False
esPrefijo (x:xs) (y:ys) = x==y && esPrefijo xs ys
-- Ejercicio 3. Dos números enteros positivos a y b se dicen "parientes"
-- si la suma de sus divisores coincide. Por ejemplo, 16 y 25 son
-- parientes ya que sus divisores son [1,2,4,8,16] y [1,5,25],
-- respectivamente, y 1+2+4+8+16 = 1+5+25.
-- Definir la lista infinita
       parientes :: [(Int,Int)]
-- que contiene los pares (a,b) de números parientes tales que
-- 1 <= a < b. Por ejemplo,
-- take 5 parientes == [(6,11),(14,15),(10,17),(14,23),(15,23)]
```

```
parientes :: [(Int,Int)]
parientes = [(a,b) \mid b \leftarrow [1..], a \leftarrow [1..b-1], sonParientes a b]
-- (sonParientes a b) se verifica si a y b son parientes. Por ejemplo,
     sonParientes 16 25 == True
sonParientes :: Int -> Int -> Bool
sonParientes a b = sum (divisores a) == sum (divisores b)
-- (divisores a) es la lista de los divisores de a. Por ejemplo,
     divisores 16 = [1,2,4,8,16]
     divisores 25 == [1,5,25]
divisores :: Int -> [Int]
divisores a = [x \mid x < [1..a], rem a x == 0]
-- Ejercicio 4.1. Los árboles binarios se pueden representar con el de
-- dato algebraico
     data Arbola = Ha
                 | N a (Arbol a) (Arbol a)
-- Por ejemplo, los árboles
          9
         /\
       8
            6
                       7
      /\
           /\
        2 4
               5
-- se pueden representar por
     ej1, ej2:: Arbol Int
     ej1 = N 9 (N 8 (H 3) (H 2)) (N 6 (H 4) (H 5))
     ei2 = N 9 (N 7 (H 3) (H 2)) (N 9 (H 9) (H 7))
-- Definir la función
     nodosInternos :: Arbol t -> [t]
-- tal que (nodosInternos a) es la lista de los nodos internos del
-- árbol a. Por ejemplo,
     nodosInternos ej1 == [9,8,6]
     nodosInternos ej2 == [9,7,9]
  data Arbol a = H a
            | N a (Arbol a) (Arbol a)
```

```
ej1, ej2:: Arbol Int
ej1 = N 9 (N 8 (H 3) (H 2)) (N 6 (H 4) (H 5))
ej2 = N 9 (N 7 (H 3) (H 2)) (N 9 (H 9) (H 7))
nodosInternos (H ) = []
nodosInternos (N x i d) = x : (nodosInternos i ++ nodosInternos d)
-- Ejercicio 4.2. Definir la función
      ramaIguales :: Eq t => Arbol t -> Bool
-- tal que (ramaIguales a) se verifica si el árbol a contiene al menos
-- una rama tal que todos sus elementos son iguales. Por ejemplo,
      ramaIguales ej1 == False
      ramaIguales ej2 == True
-- lª definición:
ramaIguales :: Eq a => Arbol a -> Bool
ramaIguales (H _) = True
ramaIguales (N x i d) = aux x i || aux x d
   where aux x (H y) = x == y
          aux x (N y i d) = x == y \&\& (aux x i || aux x d)
-- 2º definición:
ramaIquales2 :: Eq a => Arbol a -> Bool
ramaIguales2 a = or [iguales xs | xs <- ramas a]</pre>
-- (ramas a) es la lista de las ramas del árbol a. Por ejemplo,
      ramas ej1 == [[9,8,3],[9,8,2],[9,6,4],[9,6,5]]
      ramas ej2 == [[9,7,3],[9,7,2],[9,9,9],[9,9,7]]
ramas :: Arbol a -> [[a]]
ramas (H x)
               = [[x]]
ramas (N \times i d) = map(x:) (ramas i) ++ map(x:) (ramas d)
-- (iquales xs) se verifica si todos los elementos de xs son
-- iguales. Por ejemplo,
      iguales [5,5,5] == True
      iquales [5,2,5] == False
iguales :: Eq a => [a] -> Bool
iguales (x:y:xs) = x == y \& iguales (y:xs)
iguales _ = True
```

```
-- Otra definición de iguales, por comprensión, es
iguales2 :: Eq a => [a] -> Bool
iguales2 [] = True
iguales2 (x:xs) = and [x == y | y <- xs]
-- Otra, usando nub, es
iguales3 :: Eq a \Rightarrow [a] \Rightarrow Bool
iguales3 xs = length (nub xs) <= 1
-- 3ª solución:
ramaIguales3 :: Eq a => Arbol a -> Bool
ramaIguales3 = any iguales . ramas
-- Ejercicio 5. Las matrices enteras se pueden representar mediante
-- tablas con índices enteros:
      type Matriz = Array (Int,Int) Int
-- Por ejemplo, la matriz
      |0 1 3|
      |1 2 0|
      |0 5 7|
-- se puede definir por
     m :: Matriz
     m = listArray ((1,1),(3,3)) [0,1,3, 1,2,0, 0,5,7]
-- Definir la función
      sumaVecinos :: Matriz -> Matriz
-- tal que (sumaVecinos p) es la matriz obtenida al escribir en la
-- posicion (i,j) la suma de los todos vecinos del elemento que ocupa
-- el lugar (i,j) en la matriz p. Por ejemplo,
      ghci> sumaVecinos m
      array ((1,1),(3,3)) [((1,1),4),((1,2),6),((1,3),3),
                            ((2,1),8),((2,2),17),((2,3),18),
                            ((3,1),8),((3,2),10),((3,3),7)
type Matriz = Array (Int,Int) Int
m :: Matriz
m = listArray((1,1),(3,3))[0,1,3,1,2,0,0,5,7]
sumaVecinos :: Matriz -> Matriz
sumaVecinos p =
```

4.1.7. Examen 7 (3 de julio de 2013)

El examen es común con el del grupo 2 (ver página 248).

4.1.8. Examen 8 (13 de septiembre de 2013)

El examen es común con el del grupo 2 (ver página 254).

4.1.9. Examen 9 (20 de noviembre de 2013)

El examen es común con el del grupo 2 (ver página 258).

4.2. Exámenes del grupo 2 (José A. Alonso y Miguel A. Martínez)

4.2.1. Examen 1 (8 de noviembre de 2012)

primosEntre $x y = [n \mid n < -[x..y], primo n]$

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (8 de noviembre de 2012)
-- Ejercicio 1. Definir la función primosEntre tal que (primosEntre x y)
-- es la lista de los número primos entre x e y (ambos inclusive). Por
-- ejemplo,
-- primosEntre 11 44 == [11,13,17,19,23,29,31,37,41,43]
```

```
-- (primo x) se verifica si x es primo. Por ejemplo,
     primo 30 == False
     primo 31 == True
primo n = factores n == [1, n]
-- (factores n) es la lista de los factores del número n. Por ejemplo,
      factores 30 \valor [1,2,3,5,6,10,15,30]
factores n = [x \mid x < [1..n], n 'mod' x == 0]
-- Ejercicio 2. Definir la función posiciones tal que (posiciones x ys)
-- es la lista de las posiciones ocupadas por el elemento x en la lista
-- ys. Por ejemplo,
     posiciones 5 [1,5,3,5,5,7] == [1,3,4]
     posiciones 'a' "Salamanca" == [1,3,5,8]
posiciones x xs = [i \mid (x',i) < -zip xs [0..], x == x']
-- Ejercicio 3. El tiempo se puede representar por pares de la forma
-- (m,s) donde m representa los minutos y s los segundos. Definir la
-- función duracion tal que (duracion t1 t2) es la duración del
-- intervalo de tiempo que se inicia en t1 y finaliza en t2. Por
-- ejemplo,
     duracion (2,15) (6,40) == (4,25)
     duracion (2,40) (6,15) == (3,35)
tiempo (m1,s1) (m2,s2)
       | s1 \le s2 = (m2-m1, s2-s1)
       | otherwise = (m2-m1-1,60+s2-s1)
-- Ejercicio 4. Definir la función cortas tal que (cortas xs) es la
-- lista de las palabras más cortas (es decir, de menor longitud) de la
-- lista xs. Por ejemplo,
     ghci> cortas ["hoy", "es", "un", "buen", "dia", "de", "sol"]
      ["es","un","de"]
                      -----
cortas xs = [x \mid x < -xs, length x == n]
```

```
where n = minimum [length x | x <- xs]
```

4.2.2. Examen 2 (20 de diciembre de 2012)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (20 de diciembre de 2012)
__ ______
-- Ejercicio 1. Un entero positivo n es libre de cuadrado si no es
-- divisible por ningún m^2 > 1. Por ejemplo, 10 es libre de cuadrado
-- (porque 10 = 2*5) y 12 no lo es (ya que es divisible por 2^2).
-- Definir la función
     libresDeCuadrado :: Int -> [Int]
-- tal que (libresDeCuadrado n) es la lista de los primeros n números
-- libres de cuadrado. Por ejemplo,
     libresDeCuadrado 15 == [1,2,3,5,6,7,10,11,13,14,15,17,19,21,22]
libresDeCuadrado :: Int -> [Int]
libresDeCuadrado n =
   take n [n | n <- [1..], libreDeCuadrado n]
-- (libreDeCuadrado n) se verifica si n es libre de cuadrado. Por
-- ejemplo,
     libreDeCuadrado 10 == True
     libreDeCuadrado 12 == False
libreDeCuadrado :: Int -> Bool
libreDeCuadrado n =
   null [m \mid m < -[2..n], rem n (m^2) == 0]
-- Ejercicio 2. Definir la función
     duplicaPrimo :: [Int] -> [Int]
-- tal que (duplicaPrimo xs) es la lista obtenida sustituyendo cada
-- número primo de xs por su doble. Por ejemplo,
     duplicaPrimo [2,5,9,7,1,3] == [4,10,9,14,1,6]
  -----
duplicaPrimo :: [Int] -> [Int]
duplicaPrimo [] = []
duplicaPrimo (x:xs) | primo x = (2*x) : duplicaPrimo xs
```

```
| otherwise = x : duplicaPrimo xs
-- (primo x) se verifica si x es primo. Por ejemplo,
     primo 7 == True
     primo 8 == False
primo :: Int -> Bool
primo x = divisores x == [1,x]
-- (divisores x) es la lista de los divisores de x. Por ejemplo,
     divisores 30 = [1,2,3,5,6,10,15,30]
divisores :: Int -> [Int]
divisores x = [y \mid y \leftarrow [1..x], rem x y == 0]
-- Ejercicio 3. Definir la función
     ceros :: Int -> Int
-- tal que (ceros n) es el número de ceros en los que termina el número
-- n. Por ejemplo,
     ceros 3020000 == 4
ceros :: Int -> Int
ceros n | rem n 10 /= 0 = 0
       | otherwise = 1 + ceros (div n 10)
-- Ejercicio 4. [Problema 387 del Proyecto Euler]. Un número de Harshad
-- es un entero divisible entre la suma de sus dígitos. Por ejemplo, 201
-- es un número de Harshad porque es divisible por 3 (la suma de sus
-- dígitos). Cuando se elimina el último dígito de 201 se obtiene 20 que
-- también es un número de Harshad. Cuando se elimina el último dígito
-- de 20 se obtiene 2 que también es un número de Harshad. Los números
-- como el 201 que son de Harshad y que los números obtenidos eliminando
-- sus últimos dígitos siguen siendo de Harshad se llaman números de
-- Harshad hereditarios por la derecha. Definir la función
     numeroHHD :: Int -> Bool
-- tal que (numeroHHD n) se verifica si n es un número de Harshad
-- hereditario por la derecha. Por ejemplo,
     numeroHHD 201 == True
     numeroHHD 140 == False
     numeroHHD 1104 == False
-- Calcular el mayor número de Harshad hereditario por la derecha con
-- tres dígitos.
```

-- sumaP :: Num a => [[a]] -> a

```
-- (numeroH n) se verifica si n es un número de Harshad.
      numeroH 201 == True
numeroH :: Int -> Bool
numeroH n = rem n (sum (digitos n)) == 0
-- (digitos n) es la lista de los dígitos de n. Por ejemplo,
      digitos 201 == [2,0,1]
digitos :: Int -> [Int]
digitos n = [read [d] | d <- show n]
numeroHHD :: Int -> Bool
numeroHHD n \mid n < 10
                      = True
            | otherwise = numeroH n && numeroHHD (div n 10)
-- El cálculo es
     ghci> head [n | n <- [999,998..100], numeroHHD n]</pre>
     902
4.2.3.
        Examen 3 ( 6 de febrero de 2013)
-- Informática (1º del Grado en Matemáticas)
-- 3º examen de evaluación continua (6 de febrero de 2013)
-- Ejercicio 1.1. Definir, por recursión, la función
     sumaR :: Num a => [[a]] -> a
-- tal que (sumaR xss) es la suma de todos los elementos de todas las
-- listas de xss. Por ejemplo,
     sumaR [[1,3,5],[2,4,1],[3,7,9]] == 35
sumaR :: Num a => [[a]] -> a
sumaR [] = 0
sumaR (xs:xss) = sum xs + sumaR xss
-- Ejercicio 1.2. Definir, por plegado, la función
```

```
-- tal que (sumaP xss) es la suma de todos los elementos de todas las
-- listas de xss. Por ejemplo,
     sumaP [[1,3,5],[2,4,1],[3,7,9]] == 35
  ______
sumaP :: Num a => [[a]] -> a
sumaP = foldr (\x y -> (sum x) + y) 0
-- Ejercicio 2. Definir la función
     raicesEnteras :: Int -> Int -> [Int]
-- tal que (raicesEnteras a b c) es la lista de las raices enteras de la
-- ecuación ax^2+bx+c = 0. Por ejemplo,
     raicesEnteras 1 (-6) 9
                               == [3]
     raicesEnteras 1 (-6) 0
                              == [0,6]
     raicesEnteras 5 (-6) 0
                              == [0]
     raicesEnteras 1 1 (-6)
                              == [2, -3]
     raicesEnteras 2 (-1) (-6) == [2]
     raicesEnteras 2 0 0
                               == [0]
     raicesEnteras 6 5 (-6)
                              == []
-- Usando raicesEnteras calcular las raíces de la ecuación
-- 7x^2-11281x+2665212 = 0.
  ______
raicesEnteras :: Int -> Int -> Int -> [Int]
raicesEnteras a b c
 | b == 0 \&\& c == 0
  | c == 0 \&\& rem b a /= 0 = [0]
  | c == 0 \& \text{em b a} == 0 = [0, -b 'div' a]
  | otherwise
                       = [x \mid x < - \text{ divisores c, } a^*(x^2) + b^*x + c == 0]
-- (divisores n) es la lista de los divisores enteros de n. Por ejemplo,
     divisores (-6) = [1,2,3,6,-1,-2,-3,-6]
divisores :: Int -> [Int]
divisores n = ys ++ (map (0-) ys)
 where ys = [x \mid x < [1..abs n], mod n x == 0]
-- Una definición alternativa es
raicesEnteras2 a b c = [floor x \mid x < - raices a b c, esEntero x]
-- (esEntero x) se verifica si x es un número entero.
esEntero x = ceiling x == floor x
```

```
-- (raices a b c) es la lista de las raices reales de la ecuación
-- ax^2+b*x+c = 0.
                        = []
raices a b c \mid d < 0
             | d == 0 = [y1]
             \mid otherwise = [y1,y2]
 where d = b^2 - 4*a*c
        y1 = ((-b) + sqrt d)/(2*a)
        y2 = ((-b) - sqrt d)/(2*a)
-- Ejercicio 3. Definir la función
      segmentos :: (a -> Bool) -> [a] -> [[a]]
-- tal que (segmentos p xs) es la lista de los segmentos de xs cuyos
-- elementos no verifican la propiedad p. Por ejemplo,
      segmentos odd [1,2,0,4,5,6,48,7,2] == [[],[2,0,4],[6,48],[2]]
      segmentos odd [8,6,1,2,0,4,5,6,7,2] == [[8,6],[2,0,4],[6],[2]]
segmentos :: (a -> Bool) -> [a] -> [[a]]
segmentos [] = []
segmentos p xs =
  takeWhile (not.p) xs : (segmentos p (dropWhile p (dropWhile (not.p) xs)))
-- Ejercicio 4.1. Un número n es especial si al concatenar n y n+1 se
-- obtiene otro número que es divisible entre la suma de n y n+1. Por
-- ejemplo, 1, 4, 16 y 49 son especiales ya que
          1+2 divide a
                          12
                                         12/3 = 4
         4+5 divide a
                          45
                                        45/9 = 5
        16+17 divide a 1617
                                      1617/33 = 49
        49+50 divide a 4950
                                     4950/99 = 50
                               -
-- Definir la función
      esEspecial :: Integer -> Bool
-- tal que (esEspecial n) se verifica si el número obtenido concatenando
-- n y n+1 es divisible entre la suma de n y n+1. Por ejemplo,
     esEspecial 4 == True
      esEspecial 7 == False
esEspecial :: Integer -> Bool
esEspecial n = pegaNumeros n (n+1) 'rem' (2*n+1) == 0
-- (pegaNumeros x y) es el número resultante de "pegar" los
```

```
-- números x e y. Por ejemplo,
      pegaNumeros 12 987
                           == 12987
      pegaNumeros 1204 7
                           == 12047
      pegaNumeros 100 100 == 100100
pegaNumeros :: Integer -> Integer -> Integer
pegaNumeros x y
    | y < 10
                = 10*x+y
    | otherwise = 10 * pegaNumeros x (y 'div' 10) + (y 'mod' 10)
-- Ejercicio 4.2. Definir la función
      especiales :: Int -> [Integer]
-- tal que (especiales n) es la lista de los n primeros números
-- especiales. Por ejemplo,
      especiales 5 == [1,4,16,49,166]
especiales :: Int -> [Integer]
especiales n = take \ n \ [x \mid x < - [1..], esEspecial x]
4.2.4.
         Examen 4 (21 de marzo de 2013)
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (21 de marzo de 2013)
-- Ejercicio 1. [2.5 puntos] Los pares de números impares se pueden
-- ordenar según su suma y, entre los de la misma suma, su primer
-- elemento como sigue:
      (1,1),(1,3),(3,1),(1,5),(3,3),(5,1),(1,7),(3,5),(5,3),(7,1),\ldots
-- Definir la función
       paresDeImpares :: [(Int,Int)]
-- tal que paresDeImpares es la lista de pares de números impares con
-- dicha ordenación. Por ejemplo,
      ghci> take 10 paresDeImpares
      [(1,1),(1,3),(3,1),(1,5),(3,3),(5,1),(1,7),(3,5),(5,3),(7,1)]
-- Basándose en paresDeImpares, definir la función
      posicion
-- tal que (posicion p) es la posición del par p en la sucesión. Por
-- ejemplo,
      posicion (3,5) == 7
```

```
paresDeImpares :: [(Int,Int)]
paresDeImpares =
  [(x,n-x) \mid n \leftarrow [2,4..], x \leftarrow [1,3..n]]
posicion :: (Int,Int) -> Int
posicion (x,y) =
  length (takeWhile (/=(x,y)) paresDeImpares)
-- Ejercicio 2. [2.5 puntos] Definir la constante
     cuadradosConcatenados :: [(Integer,Integer,Integer)]
-- de forma que su valor es la lista de ternas (x,y,z) de tres cuadrados
-- perfectos tales que z es la concatenación de x e y. Por ejemplo,
    ghci> take 5 cuadradosConcatenados
    [(4,9,49),(16,81,1681),(36,100,36100),(1,225,1225),(4,225,4225)]
__ ______
cuadradosConcatenados :: [(Integer,Integer,Integer)]
cuadradosConcatenados =
  [(x,y,concatenacion x y) | y <- cuadrados,
                            x < - [1..y],
                            esCuadrado x,
                            esCuadrado (concatenacion x y)]
-- cuadrados es la lista de los números que son cuadrados perfectos. Por
-- ejemplo,
     take 5 cuadrados == [1,4,9,16,25]
cuadrados :: [Integer]
cuadrados = [x^2 | x < [1..]]
-- (concatenacion x y) es el número obtenido concatenando los números x
-- e y. Por ejemplo,
     concatenacion 3252 476 == 3252476
concatenacion :: Integer -> Integer -> Integer
concatenacion x y = read (show x ++ show y)
-- (esCuadrado x) se verifica si x es un cuadrado perfecto; es decir,
-- si existe un y tal que y^2 es igual a x. Por ejemplo,
     esCuadrado 16 == True
     esCuadrado 17 == False
esCuadrado :: Integer -> Bool
```

```
esCuadrado x = y^2 == x
 where y = round (sqrt (fromIntegral x))
-- Ejercicio 3. [2.5 puntos] La expresiones aritméticas se pueden
-- representar mediante el siguiente tipo
     data Expr = V Char
               | N Int
               | S Expr Expr
               | P Expr Expr
-- por ejemplo, la expresión "z*(3+x)" se representa por
-- (P (V 'z') (S (N 3) (V 'x'))).
-- Definir la función
     sumas :: Expr -> Int
-- tal que (sumas e) es el número de sumas en la expresión e. Por
-- ejemplo,
     sumas (P (V 'z') (S (N 3) (V 'x'))) ==
                                             1
     sumas (S (V 'z') (S (N 3) (V 'x'))) ==
     sumas (P (V 'z') (P (N 3) (V 'x'))) == 0
data Expr = V Char
         | N Int
         | S Expr Expr
         | P Expr Expr
sumas :: Expr -> Int
sumas (V )
           = 0
sumas (N_{-}) = 0
sumas (S x y) = 1 + sumas x + sumas y
sumas (P \times y) = sumas \times + sumas y
-- Ejercicio 4. [2.5 puntos] Los árboles binarios se pueden representar
-- mediante el tipo Arbol definido por
     data Arbol = H2 Int
                | N2 Int Arbol Arbol
-- Por ejemplo, el árbol
          1
         / \
       2
```

-- 2ª definición: Por filtrado:

```
/\ /\
     3 4 6 7
-- se puede representar por
     N2 1 (N2 2 (H2 3) (H2 4)) (N2 5 (H2 6) (H2 7))
-- Definir la función
     ramas :: Arbol -> [[Int]]
-- tal que (ramas a) es la lista de las ramas del árbol. Por ejemplo,
     ghci> ramas (N2 1 (N2 2 (H2 3) (H2 4)) (N2 5 (H2 6) (H2 7)))
     [[1,2,3],[1,2,4],[1,5,6],[1,5,7]]
data Arbol = H2 Int
         | N2 Int Arbol Arbol
ramas :: Arbol -> [[Int]]
ramas (H2 x) = [[x]]
ramas (N2 x i d) = [x:r \mid r < -ramas i + +ramas d]
4.2.5. Examen 5 ( 9 de mayo de 2013)
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (16 de mayo de 2013)
import Data.Array
-- -----
-- Ejercicio 1. Definir la función
     empiezanPorUno :: [Int] -> [Int]
-- tal que (empiezanPorUno xs) es la lista de los elementos de xs que
-- empiezan por uno. Por ejemplo,
     empiezanPorUno [31,12,7,143,214] == [12,143]
-- 1ª definición: Por comprensión:
empiezanPorUno1 :: [Int] -> [Int]
empiezanPorUno1 xs =
 [x \mid x < -xs, head (show x) == '1']
```

```
empiezanPorUno2 :: [Int] -> [Int]
empiezanPorUno2 xs =
 filter empiezaPorUno xs
empiezaPorUno :: Int -> Bool
empiezaPorUno x =
 head (show x) == '1'
-- 3ª definición: Por recursión:
empiezanPorUno3 :: [Int] -> [Int]
empiezanPorUno3 [] = []
empiezanPorUno3 (x:xs) | empiezaPorUno x = x : empiezanPorUno3 xs
                       | otherwise = empiezanPorUno3 xs
-- 4º definición: Por plegado:
empiezanPorUno4 :: [Int] -> [Int]
empiezanPorUno4 = foldr f []
 where f x ys | empiezaPorUno x = x : ys
               | otherwise
-- Ejercicio 2. Esta semana A. Helfgott ha publicado la primera
-- demostración de la conjetura débil de Goldbach que dice que todo
-- número impar mayor que 5 es suma de tres números primos (puede
-- repetirse alguno).
-- Definir la función
      sumaDe3Primos :: Int -> [(Int,Int,Int)]
-- tal que (sumaDe3sPrimos n) es la lista de las distintas
-- descomposiciones de n como suma de tres números primos. Por ejemplo,
      sumaDe3Primos 7 == [(2,2,3)]
      sumaDe3Primos 9 == [(2,2,5),(3,3,3)]
-- Calcular cuál es el menor número que se puede escribir de más de 500
-- formas como suma de tres números primos.
sumaDe3Primos :: Int -> [(Int,Int,Int)]
sumaDe3Primos n =
    [(x,y,n-x-y) \mid y < - primosN,
                   x <- takeWhile (<=y) primosN,
                   x+y \le n,
                   y \le n-x-y,
                   elem (n-x-y) primosN]
```

```
where primosN = takeWhile (<=n) primos
-- (esPrimo n) se verifica si n es primo.
esPrimo :: Int-> Bool
esPrimo n = [x | x < [1..n], rem n x == 0] == [1,n]
-- primos es la lista de los números primos.
primos :: [Int]
primos = 2 : [n | n < - [3,5..], esPrimo n]
-- El cálculo es
      ghci> head [n \mid n < [1..], length (sumaDe3Primos n) > 500]
      587
-- Ejercicio 3. Los polinomios pueden representarse de forma densa. Por
-- ejemplo, el polinomio 6x^4-5x^2+4x-7 se puede representar por
-- [(4,6),(2,-5),(1,4),(0,-7)].
-- Definir la función
      suma :: (Num \ a, Eq \ a) \Rightarrow [(Int,a)] \rightarrow [(Int,a)] \rightarrow [(Int,a)]
-- tal que (suma p q) es suma de los polinomios p y q representados de
  forma densa. Por ejemplo,
      ghci> suma [(5,3),(1,2),(0,1)] [(1,6),(0,4)]
      [(5,3),(1,8),(0,5)]
      ghci> suma [(1,6),(0,4)] [(5,3),(1,2),(0,1)]
      [(5,3),(1,8),(0,5)]
      ghci> suma [(5,3),(1,2),(0,1)] [(5,-3),(1,6),(0,4)]
      [(1,8),(0,5)]
      ghci> suma [(5,3),(1,2),(0,1)] [(5,4),(1,-2),(0,4)]
      [(5,7),(0,5)]
suma :: (Num \ a, Eq \ a) \Rightarrow [(Int,a)] \rightarrow [(Int,a)] \rightarrow [(Int,a)]
suma [] q = q
suma p [] = p
suma ((n,b):p) ((m,c):q)
    | n > m
                = (n,b) : suma p ((m,c):q)
    | n < m = (m,c) : suma ((n,b):p) q
    | b + c == 0 = suma p q
    | otherwise = (n,b+c) : suma p q
```

```
-- Ejercicio 4. Se define el tipo de las matrices enteras por
      type Matriz = Array (Integer, Integer) Integer
-- Definir la función
      borraCols :: Integer -> Integer -> Matriz -> Matriz
  tal que (borraCols j1 j2 p) es la matriz obtenida borrando las
   columnas j1 y j2 (con j1 < j2) de la matriz p. Por ejemplo,
      ghci> let p = listArray((1,1),(2,4)) [1..8]
      ghci> p
      array ((1,1),(2,4)) [((1,1),1),((1,2),2),((1,3),3),((1,4),4),
                            ((2,1),5),((2,2),6),((2,3),7),((2,4),8)
      ghci> borraCols 1 3 p
      array ((1,1),(2,2)) [((1,1),2),((1,2),4),((2,1),6),((2,2),8)]
      ghci> borraCols 2 3 p
      array ((1,1),(2,2)) [((1,1),1),((1,2),4),((2,1),5),((2,2),8)]
type Matriz = Array (Integer, Integer) Integer
-- 1º definición:
borraCols :: Integer -> Integer -> Matriz -> Matriz
borraCols j1 j2 p =
  borraCol (j2-1) (borraCol j1 p)
-- (borraCol j1 p) es la matriz obtenida borrando la columna j1 de la
-- matriz p. Por ejemplo,
      qhci> let p = listArray ((1,1),(2,4)) [1..8]
      ghci> borraCol 2 p
      array ((1,1),(2,3)) [((1,1),1),((1,2),3),((1,3),4),((2,1),5),((2,2),7),((2,2),7)]
      ghci> borraCol 3 p
      array ((1,1),(2,3)) [((1,1),1),((1,2),2),((1,3),4),((2,1),5),((2,2),6),((2,2),6)]
borraCol :: Integer -> Matriz -> Matriz
borraCol j1 p =
  array ((1,1),(m,n-1))
        [((i,j), f i j)| i <- [1..m], j <- [1..n-1]]
 where (,(m,n)) = bounds p
        f i j | j < j1
                          = p!(i,j)
              | otherwise = p!(i,j+1)
-- 2º definición:
borraCols2 :: Integer -> Integer -> Matriz -> Matriz
borraCols2 j1 j2 p =
  array ((1,1),(m,n-2))
        [((i,j), f i j)| i \leftarrow [1..m], j \leftarrow [1..n-2]]
```

```
where (\_,(m,n)) = bounds p
        f i j | j < j1 = p!(i,j)
              | j < j2-1 = p!(i,j+1)
              | otherwise = p!(i,j+2)
-- 3º definición:
borraCols3 :: Integer -> Integer -> Matriz -> Matriz
borraCols3 j1 j2 p =
 listArray ((1,1),(n,m-2)) [p!(i,j) | i <- [1..n], j <- [1..m], j/=j1 && j/=j2]
 where (\_,(n,m)) = bounds p
         Examen 6 (13 de junio de 2013)
4.2.6.
-- Informática (1º del Grado en Matemáticas)
-- 6º examen de evaluación continua (13 de junio de 2013)
import Data.Array
-- Ejercicio 1. [2 puntos] Un número es creciente si cada una de sus
-- cifras es mayor o igual que su anterior. Definir la función
      numerosCrecientes :: [Integer] -> [Integer]
-- tal que (numerosCrecientes xs) es la lista de los números crecientes
-- de xs. Por ejemplo,
      ghci> numerosCrecientes [21..50]
      [22,23,24,25,26,27,28,29,33,34,35,36,37,38,39,44,45,46,47,48,49]
-- Usando la definición de numerosCrecientes calcular la cantidad de
-- números crecientes de 3 cifras.
-- lª definición (por comprensión):
numerosCrecientes :: [Integer] -> [Integer]
numerosCrecientes xs = [n | n <- xs, esCreciente (cifras n)]</pre>
-- (esCreciente xs) se verifica si xs es una sucesión cerciente. Por
-- ejemplo,
      esCreciente [3,5,5,12] == True
      esCreciente [3,5,4,12] == False
esCreciente :: Ord a => [a] -> Bool
esCreciente (x:y:zs) = x \le y \& esCreciente (y:zs)
esCreciente _ = True
```

```
-- (cifras x) es la lista de las cifras del número x. Por ejemplo,
     cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras x = [read [d] | d <- show x]
-- El cálculo es
      ghci> length (numerosCrecientes [100..999])
      165
-- 2ª definición (por filtrado):
numerosCrecientes2 :: [Integer] -> [Integer]
numerosCrecientes2 = filter (\n -> esCreciente (cifras n))
-- 3ª definición (por recursión):
numerosCrecientes3 :: [Integer] -> [Integer]
numerosCrecientes3 [] = []
numerosCrecientes3 (n:ns)
  | esCreciente (cifras n) = n : numerosCrecientes3 ns
  | otherwise
                           = numerosCrecientes3 ns
-- 4º definición (por plegado):
numerosCrecientes4 :: [Integer] -> [Integer]
numerosCrecientes4 = foldr f []
 where f n ns \mid esCreciente (cifras n) = n : ns
               | otherwise
                                        = ns
-- Ejercicio 2. [2 puntos] Definir la función
      sublistasIguales :: Eq a => [a] -> [[a]]
-- tal que (sublistasIquales xs) es la listas de elementos consecutivos
-- de xs que son iquales. Por ejemplo,
      ghci> sublistasIguales [1,5,5,10,7,7,7,2,3,7]
      [[1],[5,5],[10],[7,7,7],[2],[3],[7]]
-- 1º definición:
sublistasIguales :: Eq a => [a] -> [[a]]
sublistasIquales [] = []
sublistasIguales (x:xs) =
  (x : takeWhile (==x) xs) : sublistasIguales (dropWhile (==x) xs)
-- 2ª definición:
```

```
sublistasIguales2 :: Eq a => [a] -> [[a]]
sublistasIguales2 []
                      = []
sublistasIguales2 [x]
                       = [[x]]
sublistasIguales2 (x:y:zs)
           = (x:u:us):vss
  | x == u
  | otherwise = [x]:((u:us):vss)
 where ((u:us):vss) = sublistasIguales2 (y:zs)
-- Ejercicio 3. [2 puntos] Los árboles binarios se pueden representar
-- con el de dato algebraico
      data Arbola = H
                   | N a (Arbol a) (Arbol a)
                   deriving Show
  Por ejemplo, los árboles
           9
          /\
       8
             6
                        8
      /\
            / \
                          2 4
      3 2 4
               5
-- se pueden representar por
     ej1, ej2:: Arbol Int
      ej1 = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
     ej2 = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 7 H H))
-- Un árbol binario ordenado es un árbol binario (ABO) en el que los
-- valores de cada nodo es mayor o igual que los valores de sus
-- hijos. Por ejemplo, ej1 es un ABO, pero ej2 no lo es.
-- Definir la función esABO
      esABO :: Ord t => Arbol t -> Bool
-- tal que (esABO a) se verifica si a es un árbol binario ordenado. Por
-- ejemplo.
      esABO ej1 == True
      esABO ej2 == False
data Arbol a = H
             | N a (Arbol a) (Arbol a)
            deriving Show
ej1, ej2 :: Arbol Int
ej1 = N 9 (N 8 (N 3 H H) (N 2 H H))
```

```
(N 6 (N 4 H H) (N 5 H H))
ej2 = N 9 (N 8 (N 3 H H) (N 2 H H))
          (N 6 (N 4 H H) (N 7 H H))
-- lª definición
esABO :: Ord a => Arbol a -> Bool
esABO H
                                = True
                                = True
esABO (N x H H)
esABO (N \times m1@(N \times 1 \text{ al b1}) H) = x >= x1 \&\& esABO m1
esABO (N \times H m2@(N \times 2 a2 b2)) = x >= x2 \&\& esABO m2
esABO (N \times m1@(N \times 1 \text{ al b1}) m2@(N \times 2 \text{ a2 b2})) =
      x >= x1 \&\& esAB0 m1 \&\& x >= x2 \&\& esAB0 m2
-- 2ª definición
esABO2 :: Ord a => Arbol a -> Bool
esABO2 H
               = True
esABO2 (N x i d) = mayor x i && mayor x d && esABO2 i && esABO2 d
       where mayor x H
                                  = True
              mayor x (N y _ ) = x >= y
-- Ejercicio 4. [2 puntos] Definir la función
      paresEspecialesDePrimos :: Integer -> [(Integer,Integer)]
-- tal que (paresEspecialesDePrimos n) es la lista de los pares de
-- primos (p,q) tales que p < q y q-p es divisible por n. Por ejemplo,
      ghci> take 9 (paresEspecialesDePrimos 2)
      [(3,5),(3,7),(5,7),(3,11),(5,11),(7,11),(3,13),(5,13),(7,13)]
      ghci> take 9 (paresEspecialesDePrimos 3)
      [(2,5),(2,11),(5,11),(7,13),(2,17),(5,17),(11,17),(7,19),(13,19)]
paresEspecialesDePrimos :: Integer -> [(Integer,Integer)]
paresEspecialesDePrimos n =
  [(p,q) \mid (p,q) \leftarrow paresPrimos, rem (q-p) n == 0]
-- paresPrimos es la lista de los pares de primos (p,q) tales que p < q.
-- Por ejemplo,
      ghci> take 9 paresPrimos
      [(2,3),(2,5),(3,5),(2,7),(3,7),(5,7),(2,11),(3,11),(5,11)]
paresPrimos :: [(Integer,Integer)]
paresPrimos = [(p,q) | q <- primos, p <- takeWhile (<q) primos]</pre>
```

```
-- primos es la lista de primos. Por ejemplo,
      take 9 primos == [2,3,5,7,11,13,17,19,23]
primos :: [Integer]
primos = criba [2..]
criba :: [Integer] -> [Integer]
criba (p:xs) = p : criba [x \mid x <- xs, x \text{ 'mod' p /= 0}]
-- Ejercicio 5. Las matrices enteras se pueden representar mediante
-- tablas con índices enteros:
      type Matriz = Array (Int,Int) Int
-- Definir la función
      ampliaColumnas :: Matriz -> Matriz -> Matriz
-- tal que (ampliaColumnas p q) es la matriz construida añadiendo las
-- columnas de la matriz q a continuación de las de p (se supone que
-- tienen el mismo número de filas). Por ejemplo, si p y q representa
-- las dos primeras matrices, entonces (ampliaColumnas p q) es la
-- tercera
                         |0 1 4 5 6|
      0 1
               |4 5 6|
              |7 8 9|
      |2 3|
                         [2 3 7 8 9]
type Matriz = Array (Int,Int) Int
ampliaColumnas :: Matriz -> Matriz -> Matriz
ampliaColumnas p1 p2 =
  array ((1,1),(m,n1+n2)) [((i,j),fij) | i <- [1..m], j <- [1..n1+n2]]
    where ((\_,\_),(m,n1)) = bounds p1
          ((\_,\_),(\_,n2)) = bounds p2
          f i j | j \le n1 = p1!(i,j)
                | otherwise = p2!(i,j-n1)
-- Ejemplo
      ghci> let p = listArray((1,1),(2,2))[0...3]:: Matriz
      ghci> let q = listArray((1,1),(2,3))[4..9]:: Matriz
      ghci> ampliaColumnas p q
      array ((1,1),(2,5))
            [((1,1),0),((1,2),1),((1,3),4),((1,4),5),((1,5),6),
             ((2,1),2),((2,2),3),((2,3),7),((2,4),8),((2,5),9)
```

4.2.7. Examen 7 (3 de julio de 2013)

```
-- Informática (1º del Grado en Matemáticas)
-- 7º examen de evaluación continua (3 de julio de 2013)
import Data.List
import Data.Array
-- Ejercicio 1. [2 puntos] Dos listas son cíclicamente iguales si tienen
-- el mismo número de elementos en el mismo orden. Por ejemplo, son
-- cíclicamente iguales los siguientes pares de listas
      [1,2,3,4,5] y [3,4,5,1,2],
      [1,1,1,2,2] y [2,1,1,1,2],
      [1,1,1,1,1] y [1,1,1,1,1]
-- pero no lo son
      [1,2,3,4] y [1,2,3,5],
      [1,1,1,1] y [1,1,1],
      [1,2,2,1] y [2,2,1,2]
-- Definir la función
      iguales :: Eq a => [a] -> [a] -> Bool
-- tal que (iguales xs ys) se verifica si xs es ys son cíclicamente
-- iguales. Por ejemplo,
      iguales [1,2,3,4,5] [3,4,5,1,2] == True
      iguales [1,1,1,2,2] [2,1,1,1,2] ==
                                          True
      iguales [1,1,1,1,1] [1,1,1,1,1] == True
      iguales [1,2,3,4] [1,2,3,5] == False
      iguales [1,1,1,1] [1,1,1]
                                      == False
      iguales [1,2,2,1] [2,2,1,2]
                                   == False
-- 1ª solución
-- =========
iguales1 :: Ord a => [a] -> [a] -> Bool
iquales1 xs ys =
    permutacionApares xs == permutacionApares ys
-- (permutacionApares xs) es la lista ordenada de los pares de elementos
-- consecutivos de elementos de xs. Por ejemplo,
      permutacionApares [2,1,3,5,4] = [(1,3),(2,1),(3,5),(4,2),(5,4)]
permutacionApares :: Ord a => [a] -> [(a, a)]
```

```
permutacionApares xs =
    sort (zip xs (tail xs) ++ [(last xs, head xs)])
-- 2ª solucion
- - -----
-- (iguales2 xs ys) se verifica si las listas xs e ys son cíclicamente
-- iguales. Por ejemplo,
iguales2 :: Eq a => [a] -> [a] -> Bool
iguales2 xs ys =
    elem ys (ciclos xs)
-- (ciclo xs) es la lista obtenida pasando el último elemento de xs al
-- principio. Por ejemplo,
     ciclo [2,1,3,5,4] == [4,2,1,3,5]
ciclo :: [a] -> [a]
ciclo xs = (last xs): (init xs)
-- (kciclo k xs) es la lista obtenida pasando los k últimos elementos de
-- xs al principio. Por ejemplo,
      kciclo 2 [2,1,3,5,4] == [5,4,2,1,3]
kciclo :: (Eq a, Num a) => a -> [a1] -> [a1]
kciclo 1 xs = ciclo xs
kciclo k \times s = kciclo (k-1) (ciclo \times s)
-- (ciclos xs) es la lista de las listas cíclicamente iguales a xs. Por
-- ejemplo,
      ghci> ciclos [2,1,3,5,4]
      [[4,2,1,3,5],[5,4,2,1,3],[3,5,4,2,1],[1,3,5,4,2],[2,1,3,5,4]]
ciclos :: [a] -> [[a]]
ciclos xs = [kciclo k xs | k < [1..length xs]]
-- 3º solución
-- ========
iguales3 :: Eq a => [a] -> [a] -> Bool
iguales3 xs ys =
    length xs == length ys && isInfix0f xs (ys ++ ys)
-- Ejercicio ?. Un número natural n es casero respecto de f si las
-- cifras de f(n) es una sublista de las de n. Por ejemplo,
-- * 1234 es casero repecto de resto de dividir por 173, ya que el resto
```

```
de dividir 1234 entre 173 es 23 que es una sublista de 1234;
-- * 1148 es casero respecto de la suma de cifras, ya que la suma de las
-- cifras de 1148 es 14 que es una sublista de 1148.
-- Definir la función
     esCasero :: (Integer -> Integer) -> Integer -> Bool
-- tal que (esCasero f x) se verifica si x es casero respecto de f. Por
-- ejemplo,
     esCasero (\xspace x -> rem x 173) 1148 == False
     esCasero sumaCifras 1148
                                      == True
     esCasero sumaCifras 1234
                                      == False
-- donde (sumaCifras n) es la suma de las cifras de n.
-- ¿Cuál es el menor número casero respecto de la suma de cifras mayor
-- que 2013?
esCasero :: (Integer -> Integer) -> Integer -> Bool
esCasero f x =
   esSublista (cifras (f x)) (cifras x)
-- (esSublista xs ys) se verifica si xs es una sublista de ys; es decir,
-- si existen dos listas as y bs tales que
     ys = as ++ xs ++ bs
esSublista :: Eq a => [a] -> [a] -> Bool
esSublista = isInfixOf
-- Se puede definir por
esSublista2 :: Eq a => [a] -> [a] -> Bool
esSublista2 xs ys =
   or [esPrefijo xs zs | zs <- sufijos ys]
-- (esPrefijo xs ys) se verifica si xs es un prefijo de ys. Por
-- ejemplo,
     esPrefijo "ab" "abc" == True
     esPrefijo "ac" "abc" == False
     esPrefijo "bc" "abc" == False
esPrefijo :: Eq a => [a] -> [a] -> Bool
esPrefijo []
                      = True
esPrefijo _ []
                       = False
esPrefijo (x:xs) (y:ys) = x == y \& \text{isPrefixOf xs ys}
-- (sufijos xs) es la lista de sufijos de xs. Por ejemplo,
```

```
sufijos "abc" == ["abc","bc","c",""]
sufijos :: [a] -> [[a]]
sufijos xs = [drop i xs | i < [0..length xs]]
-- (cifras x) es la lista de las cifras de x. Por ejemplo,
     cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras x = [read [d] | d <- show x]
-- (sumaCifras x) es la suma de las cifras de x. Por ejemplo,
     sumaCifras 325 == 10
sumaCifras :: Integer -> Integer
sumaCifras = sum . cifras
-- El cálculo del menor número casero respecto de la suma mayor que 2013
-- es
     ghci> head [n | n <- [2014..], esCasero sumaCifras n]</pre>
     2099
-- Ejercicio 3. [2 puntos] Definir la función
     interseccion :: Ord a => [a] -> [a] -> [a]
-- tal que (intersección xs ys) es la intersección de las dos listas,
-- posiblemente infinitas, ordenadas de menor a mayor xs e ys. Por ejemplo,
     take 5 (intersection [2,4...] [3,6...]) == [6,12,18,24,30]
  ______
interseccion :: Ord a => [a] -> [a] -> [a]
interseccion [] = []
interseccion _ [] = []
interseccion (x:xs) (y:ys)
    | x == y = x : interseccion xs ys
    | x < y = interseccion (dropWhile (<y) xs) (y:ys)
    | otherwise = interseccion (x:xs) (dropWhile (<x) ys)
-- Ejercicio 4. [2 puntos] Los árboles binarios se pueden representar
-- mediante el tipo Arbol definido por
     data Arbol = H Int
                | N Int Arbol Arbol
-- Por ejemplo, el árbol
          1
         / \
```

```
2 5
      /\ /\
     3 4 6
-- se puede representar por
     N 1 (N 2 (H 3) (H 4)) (N 5 (H 6) (H 7))
-- Definir la función
     esSubarbol :: Arbol -> Arbol -> Bool
-- tal que (esSubarbol a1 a2) se verifica si a1 es un subárbol de
-- a2. Por ejemplo,
     esSubarbol (H 2) (N 2 (H 2) (H 4))
                                                  == True
     esSubarbol (H 5) (N 2 (H 2) (H 4))
                                                  == False
     esSubarbol (N 2 (H 2) (H 4)) (N 2 (H 2) (H 4)) == True
     esSubarbol (N 2 (H 4) (H 2)) (N 2 (H 2) (H 4)) == False
data Arbol= H Int
         | N Int Arbol Arbol
esSubarbol :: Arbol -> Arbol -> Bool
esSubarbol (H x) (H y) = x == y
esSubarbol a@(H x) (N y i d) = esSubarbol a i || esSubarbol a d
esSubarbol (N _ _ ) (H _) = False
esSubarbol a@(N r1 i1 d1) (N r2 i2 d2)
    | r1 == r2 = (igualArbol i1 i2 \& igualArbol d1 d2) ||
                esSubarbol a i2 || esSubarbol a d2
    | otherwise = esSubarbol a i2 || esSubarbol a d2
-- (iqualArbol a1 a2) se verifica si los árboles a1 y a2 son iquales.
igualArbol :: Arbol -> Arbol -> Bool
igualArbol (H x) (H y) = x == y
igualArbol (N r1 i1 d1) (N r2 i2 d2) =
    r1 == r2 && igualArbol i1 i2 && igualArbol d1 d2
igualArbol _ _ = False
__ _______
-- Ejercicio 5. [2 puntos] Las matrices enteras se pueden representar
-- mediante tablas con índices enteros:
     type Matriz = Array (Int,Int) Int
-- Por ejemplo, las matrices
     | 1 2 3 4 5 |
                       | 1 2 3 |
     | 2 6 8 9 4 | | 2 6 8 |
-- | 3 8 0 8 3 | | 3 8 0 |
```

```
| 4 9 8 6 2 |
      | 5 4 3 2 1 |
-- se puede definir por
     ejM1, ejM2 :: Matriz
      ejM1 = listArray ((1,1),(5,5)) [1,2,3,4,5,
                                      2,6,8,9,4,
                                      3,8,0,8,3,
                                      4,9,8,6,2,
                                      5,4,3,2,1]
      ejM2 = listArray((1,1),(3,3))[1,2,3,
                                      2,6,8,
                                      3,8,0]
-- Una matriz cuadrada es bisimétrica si es simétrica respecto de su
-- diagonal principal y de su diagonal secundaria. Definir la función
      esBisimetrica :: Matriz -> Bool
-- tal que (esBisimetrica p) se verifica si p es bisimétrica. Por
-- ejemplo,
      esBisimetrica ejM1 == True
      esBisimetrica ejM2 == False
type Matriz = Array (Int,Int) Int
ejM1, ejM2 :: Matriz
ejM1 = listArray((1,1),(5,5))[1,2,3,4,5,
                                2,6,8,9,4,
                                3,8,0,8,3,
                                4,9,8,6,2,
                                5,4,3,2,1]
eiM2 = listArray ((1,1),(3,3)) [1,2,3,
                                2,6,8,
                                3,8,0]
-- lª definición:
esBisimetrica :: Matriz -> Bool
esBisimetrica p =
    and [p!(i,j) == p!(j,i) | i <- [1..n], j <- [1..n]] &&
    and [p!(i,j) == p!(n+1-j,n+1-i) | i <- [1..n], j <- [1..n]]
   where ((_,_),(n,_)) = bounds p
-- 2º definición:
```

```
esBisimetrica2 :: Matriz -> Bool
esBisimetrica2 p = p == simetrica p && p == simetricaS p
-- (simetrica p) es la simétrica de la matriz p respecto de la diagonal
-- principal. Por ejemplo,
      ghci> simetrica (listArray ((1,1),(4,4)) [1..16])
      array ((1,1),(4,4)) [((1,1),1),((1,2),5),((1,3),9),((1,4),13),
                            ((2,1),2),((2,2),6),((2,3),10),((2,4),14),
                            ((3,1),3),((3,2),7),((3,3),11),((3,4),15),
                            ((4,1),4),((4,2),8),((4,3),12),((4,4),16)
simetrica :: Matriz -> Matriz
simetrica p =
    array ((1,1),(n,n)) [((i,j),p!(j,i)) | i <- [1..n], j <- [1..n]]
    where ((\_,\_),(n,\_)) = bounds p
-- (simetricaS p) es la simétrica de la matriz p respecto de la diagonal
-- secundaria. Por ejemplo,
      ghci> simetricaS (listArray ((1,1),(4,4)) [1..16])
      array ((1,1),(4,4)) [((1,1),16),((1,2),12),((1,3),8),((1,4),4),
                            ((2,1),15),((2,2),11),((2,3),7),((2,4),3),
                            ((3,1),14),((3,2),10),((3,3),6),((3,4),2),
                            ((4,1),13),((4,2),9),((4,3),5),((4,4),1)
simetricaS :: Matriz -> Matriz
simetricaS p =
    array ((1,1),(n,n)) [((i,j),p!(n+1-j,n+1-i)) | i <- [1..n], j <- [1..n]]
    where ((\underline{\ },\underline{\ }),(n,\underline{\ })) = bounds p
4.2.8.
         Examen 8 (13 de septiembre de 2013)
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 2º convocatoria (13 de septiembre de 2013)
import Data.List
import Data.Array
```

```
-- Ejercicio 1.1. [1 punto] Las notas se pueden agrupar de distinta
-- formas. Una es por la puntuación; por ejemplo,
-- [(4,["juan","ana"]),(9,["rosa","luis","mar"])]
-- Otra es por nombre; por ejemplo,
-- [("ana",4),("juan",4),("luis",9),("mar",9),("rosa",9)]
```

```
-- Definir la función
     transformaPaN :: [(Int,[String])] -> [(String,Int)]
-- tal que (transformaPaN xs) es la agrupación de notas por nombre
-- correspondiente a la agrupación de notas por puntuación xs. Por
-- ejemplo,
     > transformaPaN [(4,["juan","ana"]),(9,["rosa","luis","mar"])]
     [("ana",4),("juan",4),("luis",9),("mar",9),("rosa",9)]
-- 1ª definición (por comprensión):
transformaPaN :: [(Int,[String])] -> [(String,Int)]
transformaPaN xs = sort [(a,n) | (n,as) <- xs, a <- as]
-- 2ª definición (por recursión):
transformaPaN2 :: [(Int,[String])] -> [(String,Int)]
transformaPaN2 []
                       = []
transformaPaN2 ((n,xs):ys) = [(x,n)|x<-xs] ++ transformaPaN2 ys
__ ______
-- Ejercicio 1.2. [1 punto] Definir la función
     transformaNaP :: [(String,Int)] -> [(Int,[String])]
-- tal que (transformaPaN xs) es la agrupación de notas por nombre
-- correspondiente a la agrupación de notas por puntuación xs. Por
-- ejemplo,
     > transformaNaP [("ana",4),("juan",4),("luis",9),("mar",9),("rosa",9)]
     [(4,["ana","juan"]),(9,["luis","mar","rosa"])]
transformaNaP :: [(String,Int)] -> [(Int,[String])]
transformaNaP xs = [(n, [a \mid (a,n') \leftarrow xs, n' == n]) \mid n \leftarrow notas]
   where notas = sort (nub [n | (,n) <- xs])
__ _______
-- Ejercicio 2. [2 puntos] Definir la función
     multiplosCon9 :: Integer -> [Integer]
-- tal que (multiplosCon9 n) es la lista de los múltiplos de n cuya
-- única cifra es 9. Por ejemplo,
     take 3 (multiplosCon9 3) == [9,99,999]
     -- Calcular el menor múltiplo de 2013 formado sólo por nueves.
```

```
multiplosCon9 :: Integer -> [Integer]
multiplosCon9 n = [x \mid x < - numerosCon9, rem x n == 0]
-- numerosCon9 es la lista de los número cuyas cifras son todas iguales
-- a 9. Por ejemplo,
     take 5 numerosCon9 == [9,99,999,9999,99999]
numerosCon9 :: [Integer]
numerosCon9 = [10^n-1 | n <- [1..]]
-- 2ª definición (por recursión):
numerosCon9R :: [Integer]
numerosCon9R = 9 : sig 9
   where sig x = (10*x+9) : sig (10*x+9)
-- El cálculo es
     ghci> head (multiplosCon9 2013)
     __ ______
-- Ejercicio 3. [2 puntos] Una sucesión es suave si valor absoluto de la
-- diferencia de sus términos consecutivos es 1. Definir la función
     suaves :: Int -> [[Int]]
-- tal que (suaves n) es la lista de las sucesiones suaves de longitud n
-- cuyo último término es 0. Por ejemplo,
     suaves 2 = [[1,0],[-1,0]]
     suaves 3 = [[2,1,0],[0,1,0],[0,-1,0],[-2,-1,0]]
suaves :: Int -> [[Int]]
suaves 0 = []
suaves 1 = [[0]]
suaves n = concat [[x+1:x:xs,x-1:x:xs] | (x:xs) <- suaves (n-1)]
__ _______
-- Ejercicio 4. [2 puntos] Los árboles binarios se pueden representar
-- mediante el tipo Arbol definido por
     data Arbola = Ha
                | N a (Arbol a) (Arbol a)
                deriving Show
-- Por ejemplo, el árbol
         1
         /\
- -
```

```
- -
        4
              6
             / \
        /\
          7 4
      0
-- se puede definir por
     ej1 :: Arbol Int
      ej1 = N 1 (N 4 (H 0) (H 7)) (N 6 (H 4) (H 3))
-- Definir la función
      algunoArbol :: Arbol t -> (t -> Bool) -> Bool
-- tal que (algunoArbol a p) se verifica si algún elemento del árbol a
-- cumple la propiedad p. Por ejemplo,
      algunoArbol ej1 (>9) == False
      algunoArbol ej1 (>5) == True
data Arbola = Ha
             | N a (Arbol a) (Arbol a)
             deriving Show
eil :: Arbol Int
ej1 = N 1 (N 4 (H 0) (H 7)) (N 6 (H 4) (H 3))
algunoArbol :: Arbol a -> (a -> Bool) -> Bool
algunoArbol (H x) p = p x
algunoArbol (N x i d) p = p x \mid\mid algunoArbol i p \mid\mid algunoArbol d p
-- Ejercicio 5. [2 puntos] Las matrices enteras se pueden representar
-- mediante tablas con índices enteros:
      type Matriz = Array (Int,Int) Int
-- Definir la función
      matrizPorBloques :: Matriz -> Matriz -> Matriz -> Matriz
-- tal que (matrizPorBloques p1 p2 p3 p4) es la matriz cuadrada de orden
-- 2nx2n construida con las matrices cuadradas de orden nxn p1, p2 p3 y
-- p4 de forma que p1 es su bloque superior izquierda, p2 es su bloque
-- superior derecha, p3 es su bloque inferior izquierda y p4 es su bloque
-- inferior derecha. Por ejemplo, si p1, p2, p3 y p4 son las matrices
-- definidas por
      p1, p2, p3, p4 :: Matriz
      p1 = listArray ((1,1),(2,2)) [1,2,3,4]
      p2 = listArray ((1,1),(2,2)) [6,5,7,8]
     p3 = listArray((1,1),(2,2))[0,6,7,1]
```

```
p4 = listArray((1,1),(2,2))[5,2,8,3]
-- entonces
      ghci> matrizPorBloques p1 p2 p3 p4
      array ((1,1),(4,4)) [((1,1),1),((1,2),2),((1,3),6),((1,4),5),
                           ((2,1),3),((2,2),4),((2,3),7),((2,4),8),
                           ((3,1),0),((3,2),6),((3,3),5),((3,4),2),
                           ((4,1),7),((4,2),1),((4,3),8),((4,4),3)
type Matriz = Array (Int,Int) Int
p1, p2, p3, p4 :: Matriz
p1 = listArray ((1,1),(2,2)) [1,2,3,4]
p2 = listArray ((1,1),(2,2)) [6,5,7,8]
p3 = listArray((1,1),(2,2))[0,6,7,1]
p4 = listArray((1,1),(2,2))[5,2,8,3]
matrizPorBloques :: Matriz -> Matriz -> Matriz -> Matriz -> Matriz
matrizPorBloques p1 p2 p3 p4 =
  array ((1,1),(m,m)) [((i,j), f i j) | i <- [1..m], j <- [1..m]]
 where ((\_,\_),(n,\_)) = bounds p1
        m = 2*n
        f i j | i \le n \& j \le n = p1!(i,j)
              | i \le n \& j > n = p2!(i,j-n)
              | i > n \& j <= n = p3!(i-n,j)
              | i > n \& j > n = p4!(i-n,j-n)
```

4.2.9. Examen 9 (20 de noviembre de 2013)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 3º convocatoria (20 de noviembre de 2012)

import Data.List
import Data.Array

-- Ejercicio 1. [2 puntos] Definir la función
-- mayorProducto :: Int -> [Int] -> Int
-- tal que (mayorProducto n xs) es el mayor producto de una sublista de
-- xs de longitud n. Por ejemplo,
-- mayorProducto 3 [3,2,0,5,4,9,1,3,7] == 180
```

```
-- ya que de todas las sublistas de longitud 3 de [3,2,0,5,4,9,1,3,7] la
-- que tiene mayor producto es la [5,4,9] cuyo producto es 180.
mayorProducto :: Int -> [Int] -> Int
mayorProducto n cs
    \mid length cs < n = 1
    otherwise = maximum [product xs | xs <- segmentos n cs]
  where segmentos n cs = [take n xs | xs <- tails cs]
-- Ejercicio 2. Definir la función
      sinDobleCero :: Int -> [[Int]]
-- tal que (sinDobleCero n) es la lista de las listas de longitud n
-- formadas por el 0 y el 1 tales que no contiene dos ceros
-- consecutivos. Por ejemplo,
      ghci> sinDobleCero 2
      [[1,0],[1,1],[0,1]]
      ghci> sinDobleCero 3
      [[1,1,0],[1,1,1],[1,0,1],[0,1,0],[0,1,1]]
      ghci> sinDobleCero 4
      [[1,1,1,0],[1,1,1,1],[1,1,0,1],[1,0,1,0],[1,0,1,1],
      [0,1,1,0],[0,1,1,1],[0,1,0,1]]
sinDobleCero :: Int -> [[Int]]
sinDobleCero 0 = [[]]
sinDobleCero 1 = [[0],[1]]
sinDobleCero n = [1:xs | xs <- sinDobleCero (n-1)] ++</pre>
                 [0:1:ys | ys <- sinDobleCero (n-2)]
-- Ejercicio 3. [2 puntos] La sucesión A046034 de la OEIS (The On-Line
-- Encyclopedia of Integer Sequences) está formada por los números tales
-- que todos sus dígitos son primos. Los primeros términos de A046034
-- son
      2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223
-- Definir la constante
      numerosDigitosPrimos :: [Int]
-- cuyos elementos son los términos de la sucesión A046034. Por ejemplo,
      ghci> take 22 numerosDigitosPrimos
      [2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223]
```

```
-- ¿Cuántos elementos hay en la sucesión menores que 2013?
__ ______
numerosDigitosPrimos :: [Int]
numerosDigitosPrimos =
   [n \mid n < -[2..], digitosPrimos n]
-- (digitosPrimos n) se verifica si todos los dígitos de n son
-- primos. Por ejemplo,
     digitosPrimos 352 == True
     digitosPrimos 362 == False
digitosPrimos :: Int -> Bool
digitosPrimos n = all ('elem' "2357") (show n)
-- 2ª definición de digitosPrimos:
digitosPrimos2 :: Int -> Bool
digitosPrimos2 n = subconjunto (cifras n) [2,3,5,7]
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
cifras :: Int -> [Int]
cifras n = [read [x] | x <-show n]
-- (subconjunto xs ys) se verifica si xs es un subconjunto de ys. Por
-- ejemplo,
subconjunto :: Eq a => [a] -> [a] -> Bool
subconjunto xs ys = and [elem x ys | x <- xs]
-- El cálculo es
     ghci> length (takeWhile (<2013) numerosDigitosPrimos)</pre>
     84
-- Ejercicio 4. [2 puntos] Entre dos matrices de la misma dimensión se
-- puede aplicar distintas operaciones binarias entre los elementos en
-- la misma posición. Por ejemplo, si a y b son las matrices
     |3 4 6|
                 |1 4 2|
- -
     |5 6 7|
                |2 1 2|
-- entonces a+b y a-b son, respectivamente
     |4 8 8|
               [2 0 4]
     |7 7 9| |3 5 5|
-- Las matrices enteras se pueden representar mediante tablas con
-- índices enteros:
```

```
type Matriz = Array (Int,Int) Int
-- y las matrices anteriores se definen por
      a, b :: Matriz
      a = listArray((1,1),(2,3))[3,4,6,5,6,7]
      b = listArray((1,1),(2,3))[1,4,2,2,1,2]
-- Definir la función
      opMatriz :: (Int -> Int -> Int) -> Matriz -> Matriz -> Matriz
-- tal que (opMatriz f p q) es la matriz obtenida aplicando la operación
-- f entre los elementos de p y q de la misma posición. Por ejemplo,
      ghci> opMatriz (+) a b
      array ((1,1),(2,3)) [((1,1),4),((1,2),8),((1,3),8),
                           ((2,1),7),((2,2),7),((2,3),9)
     ghci> opMatriz (-) a b
     array ((1,1),(2,3)) [((1,1),2),((1,2),0),((1,3),4),
                           ((2,1),3),((2,2),5),((2,3),5)]
type Matriz = Array (Int,Int) Int
a, b :: Matriz
a = listArray((1,1),(2,3))[3,4,6,5,6,7]
b = listArray((1,1),(2,3))[1,4,2,2,1,2]
-- 1º definición
opMatriz :: (Int -> Int -> Int) -> Matriz -> Matriz -> Matriz
opMatriz f p q =
    array ((1,1),(m,n)) [((i,j), f(p!(i,j)) (q!(i,j)))
                      | i <- [1..m], j <- [1..n]]
    where (\_,(m,n)) = bounds p
-- 2ª definición
opMatriz2 :: (Int -> Int -> Int) -> Matriz -> Matriz -> Matriz
opMatriz2 f p q =
    listArray (bounds p) [f x y | (x,y) <- zip (elems p) (elems q)]
-- Ejercicio 5. [2 puntos] Las expresiones aritméticas se pueden definir
-- usando el siguiente tipo de datos
      data Expr = N Int
                | X
                | S Expr Expr
                | R Expr Expr
```

```
| P Expr Expr
                | E Expr Int
                deriving (Eq, Show)
-- Por ejemplo, la expresión
      3*x - (x+2)^7
-- se puede definir por
     R (P (N 3) X) (E (S X (N 2)) 7)
-- Definir la función
     maximo :: Expr -> [Int] -> (Int,[Int])
-- tal que (maximo e xs) es el par formado por el máximo valor de la
-- expresión e para los puntos de xs y en qué puntos alcanza el
-- máximo. Por ejemplo,
      ghci> maximo (E (S (N 10) (P (R (N 1) X) X)) 2) [-3..3]
      (100, [0,1])
data Expr = N Int
          | X
          | S Expr Expr
          | R Expr Expr
          | P Expr Expr
          | E Expr Int
          deriving (Eq, Show)
maximo :: Expr -> [Int] -> (Int,[Int])
maximo e ns = (m,[n \mid n < -ns, valor e n == m])
    where m = maximum [valor e n | n <- ns]
valor :: Expr -> Int -> Int
valor (N \times) = x
valor X
          n = n
valor (S e1 e2) n = (valor e1 n) + (valor e2 n)
valor (R e1 e2) n = (valor e1 n) - (valor e2 n)
valor (P e1 e2) n = (valor e1 n) * (valor e2 n)
valor (Ee m) n = (valor e n)^m
```

4.3. Exámenes del grupo 3 (María J. Hidalgo)

4.3.1. Examen 1 (16 de noviembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 1º examen de evaluación continua (15 de noviembre de 2012)
__ ______
-- Ejercicio 1. Definir la función numeroPrimos, donde (numeroPrimos m n)
-- es la cantidad de número primos entre 2<sup>m</sup> y 2<sup>n</sup>. Por ejemplo,
    numerosPrimos 2 6
                      == 16
    numerosPrimos 2 7 == 29
    numerosPrimos 10 12 == 392
  -----
numerosPrimos:: Int -> Int -> Int
numerosPrimos m n = length [x \mid x < -[2^m..2^n], primo x]
-- (primo x) se verifica si x es primo. Por ejemplo,
     primo 30 == False
     primo 31 == True
primo n = factores n == [1, n]
-- (factores n) es la lista de los factores del número n. Por ejemplo,
     factores 30 = [1,2,3,5,6,10,15,30]
factores n = [x \mid x < [1..n], n 'rem' x == 0]
-- Ejercicio 2. Definir la función masOcurrentes tal que
-- (masOcurrentes xs) es la lista de los elementos de xs que ocurren el
-- máximo número de veces. Por ejemplo,
     mas0currentes [1,2,3,4,3,2,3,1,4] == [3,3,3]
     mas0currentes [1,2,3,4,5,2,3,1,4] == [1,2,3,4,2,3,1,4]
     masOcurrentes "Salamanca"
                               == "aaaa"
mas0currentes xs = [x \mid x < -xs, ocurrencias x xs == m]
   where m = maximum [ocurrencias x xs | x <-xs]
-- (ocurrencias x xs) es el número de ocurrencias de x en xs. Por
-- ejemplo,
```

```
ocurrencias 1 [1,2,3,4,3,2,3,1,4] == 2
ocurrencias x xs = length [x' | x' <- xs, x == x']
-- Ejercicio 3.1. En este esjercicio se consideran listas de ternas de
-- la forma (nombre, edad, población).
-- Definir la función puedenVotar tal que (puedenVotar t) es la
-- lista de las personas de t que tienen edad para votar. Por ejemplo,
      ghci> :{
      *Main| puedenVotar [("Ana", 16, "Sevilla"), ("Juan", 21, "Coria"),
                          ("Alba", 19, "Camas"), ("Pedro", 18, "Sevilla")]
      *Main|
      *Main| :}
      ["Juan","Alba","Pedro"]
puedenVotar t = [x \mid (x,y,) < -t, y >= 18]
-- Ejercicio 3.2. Definir la función puedenVotarEn tal que (puedenVotar
-- t p) es la lista de las personas de t que pueden votar en la
-- población p. Por ejemplo,
      qhci> :{
      *Main| puedenVotarEn [("Ana", 16, "Sevilla"), ("Juan", 21, "Coria"),
                            ("Alba", 19, "Camas"),("Pedro",18,"Sevilla")]
      *Main|
      *Main|
                           "Sevilla"
      *Main| :}
      ["Pedro"]
puedenVotarEn t c = [x \mid (x,y,z) <- t, y >= 18, z == c]
-- Ejercicio 4. Dos listas xs, ys de la misma longitud son
-- perpendiculares si el producto escalar de ambas es 0, donde el
-- producto escalar de dos listas de enteros xs e ys viene
-- dado por la suma de los productos de los elementos correspondientes.
-- Definir la función perpendiculares tal que (perpendiculares xs yss)
-- es la lista de los elementos de yss que son perpendiculares a xs.
-- Por ejemplo,
      ghci> perpendiculares [1,0,1] [[0,1,0], [2,3,1], [-1,7,1],[3,1,0]]
      [[0,1,0],[-1,7,1]]
```

cifras:: Integer -> [Integer]

perpendiculares xs yss = [ys | ys <-yss, productoEscalar xs ys == 0]</pre> -- (productoEscalar xs ys) es el producto escalar de xs por ys. Por -- ejemplo, productoEscalar [2,3,5] [6,0,2] == 22productoEscalar xs ys = sum $[x*y \mid (x,y) <- zip xs ys]$ 4.3.2. Examen 2 (21 de diciembre de 2012) -- Informática (1º del Grado en Matemáticas, Grupo 3) -- 2º examen de evaluación continua (21 de diciembre de 2012) import Test.QuickCheck import Data.List -- Ejercicio 1. Definir la función f -- f :: Int -> Integer -- tal que (f k) es el menor número natural x tal que x^k comienza -- exactamente por k unos. Por ejemplo, f 3 = 481f 4 = 1826f :: Int -> Integer f 1 = 1 $f k = head [x | x < [1..], empiezaCon1 k (x^k)]$ -- (empiezaCon1 k n) si el número x empieza exactamento con k unos. Por -- ejemplo, empiezaCon1 3 111461 == True empiezaCon1 3 111146 == False empiezaCon1 3 114116 == False empiezaCon1 :: Int -> Integer -> Bool empiezaCon1 k n = length (takeWhile (==1) (cifras n)) == k -- (cifras n) es la lista de las cifras de n. Por ejemplo, cifras 111321 == [1,1,1,3,2,1]

```
cifras n = [read [x] | x <- show n]
-- Ejercicio 2.1. Definir la función verificaE tal que
-- (verificaE k ps x) se cumple si x verifica exactamente k propiedades
-- de la lista ps. Por ejemplo,
     verificaE 2 [(>0), even, odd] 5 == True
     verificaE 1 [(>0), even, odd] 5 == False
verificaE :: Int -> [t -> Bool] -> t -> Bool
verificaE k ps x = length [p | p <- ps, p x] == k
-- Ejercicio 2.2. Definir la función verificaA tal que
-- (verificaA k ps x) se cumple si x verifica, como máximo, k
-- propiedades de la lista ps. Por ejemplo,
     verificaA 2 [(>10),even,(<20)] 5
                                    == True
     verificaA 2 [(>0), even, odd, (<20)] 5 == False
verificaA :: Int -> [t -> Bool] -> t -> Bool
verificaA k ps x = length [p | p <- ps, p x] <= k
-- Ejercicio 2.3. Definir la función verificaE tal que
-- (verificaE k ps x) se cumple si x verifica, al menos, k propiedades
-- de la lista ps. Por ejemplo,
     verificaM 2 [(>0), even, odd, (<20)] 5 == True
     verificaM 4 [(>0), even, odd, (<20)] 5 == False
verificaM :: Int -> [t -> Bool] -> t -> Bool
verificaM k ps x = length [p | p <- ps, p x] >= k
-- Nota: Otra forma de definir las funciones anteriores es la siguiente
verificaE2 k ps x = verifica ps x == k
verificaA2 k ps x = verifica ps x >= k
verificaM2 k ps x = verifica ps x <= k
```

```
-- donde (verifica ps x) es el número de propiedades de ps que verifica
-- el elemento x. Por ejemplo,
     verifica [(>0), even, odd, (<20)] 5 == 3
verifica ps x = sum [1 | p <- ps, p x]
__ ______
-- Ejercicio 3. Definir la función intercalaDigito tal que
-- (intercalaDigito d n) es el número que resulta de intercalar el
-- dígito d delante de los dígitos de n menores que d. Por ejemplo,
     intercalaDigito 5 1263709 == 51526537509
     intercalaDigito 5 6798 == 6798
intercalaDigito :: Integer -> Integer
intercalaDigito d n = listaNumero (intercala d (cifras n))
-- (intercala y xs) es la lista que resulta de intercalar el
-- número y delante de los elementos de xs menores que y. Por ejemplo,
     intercala 5 [1,2,6,3,7,0,9] == [5,1,5,2,6,5,3,7,5,0,9]
intercala y [] = []
intercala y (x:xs) \mid x < y = y : x : intercala y xs
                 | otherwise = x : intercala y xs
-- (listaNumero xs) es el número correspondiente a la lista de dígitos
-- xs. Por ejemplo,
     listaNumero [5,1,5,2,6,5,3,7,5,0,9] == 51526537509
listaNumero :: [Integer] -> Integer
listaNumero xs = sum [x*(10^k) | (x,k) <- zip (reverse xs) [0..n]]
   where n = length xs -1
-- Ejercicio 4.1. (Problema 302 del Proyecto Euler) Un número natural n
-- es se llama fuerte si p^2 es un divisor de n, para todos los factores
-- primos de n.
-- Definir la función
     esFuerte :: Int -> Bool
-- tal que (esFuerte n) se verifica si n es fuerte. Por ejemplo,
     esFuerte 800
                    == True
     esFuerte 24
                     == False
     esFuerte 14567429 == False
```

```
-- 1º definición (directa)
esFuerte :: Int -> Bool
esFuerte n = and [rem n (p*p) == 0 | p <- xs]
    where xs = [p \mid p < -takeWhile (<=n) primos, rem n p == 0]
-- primos es la lista de los números primos.
primos :: [Int]
primos = 2 : [x \mid x < -[3,5..], esPrimo x]
-- (esPrimo x) se verifica si x es primo. Por ejemplo,
- -
      esPrimo 7 == True
      esPrimo 9 == False
esPrimo :: Int -> Bool
esPrimo x = [n \mid n < [1..x], rem x n == 0] == [1,x]
-- 2ª definición (usando la factorización de n)
esFuerte2 :: Int -> Bool
esFuerte2 n = and [rem n (p*p) == 0 | (p,_) <- factorizacion n]
-- (factorización n) es la factorización de n. Por ejemplo,
      factorizacion 300 == [(2,2),(3,1),(5,2)]
factorizacion :: Int -> [(Int,Int)]
factorizacion n =
    [(head xs, fromIntegral (length xs)) | xs <- group (factorizacion' n)]</pre>
-- (factorizacion' n) es la lista de todos los factores primos de n; es
-- decir, es una lista de números primos cuyo producto es n. Por ejemplo,
      factorizacion 300 == [2,2,3,5,5]
factorizacion' :: Int -> [Int]
factorizacion' n | n == 1
                          = []
                 | otherwise = x : factorizacion' (div n x)
                 where x = menorFactor n
-- (menorFactor n) es el menor factor primo de n. Por ejemplo,
      menorFactor 15 == 3
      menorFactor 16 == 2
      menorFactor 17 == 17
menorFactor :: Int -> Int
menorFactor n = head [x \mid x < - [2..], rem n x == 0]
```

```
-- Comparación de eficiencia:
ghci> :set +s
     ghci> esFuerte 14567429
     False
     (0.90 secs, 39202696 bytes)
    ghci> esFuerte2 14567429
    False
     (0.01 secs, 517496 bytes)
-- Ejercicio 4.2. Definir la función
     esPotencia:: Int -> Bool
-- tal que (esPotencia n) se verifica si n es potencia de algún número
-- entero. Por ejemplo,
  esPotencia 81
                 == True
    esPotencia 1234 == False
__ ______
-- 1º definición:
-- ==========
esPotencia:: Int -> Bool
esPotencia n = esPrimo n || or [esPotenciaDe n m | m <- [0..n-1]]
-- (esPotenciaDe n m) se verifica si n es una potencia de m. Por
-- ejemplo,
     esPotenciaDe 16 2 == True
     esPotenciaDe 24 2 == False
esPotenciaDe:: Int -> Int -> Bool
esPotenciaDe n m = or [m^k == n \mid k < [0..n]]
-- 2ª definición
-- ==========
esPotencia2 :: Int -> Bool
esPotencia2 1 = True
esPotencia2 n = or [esPotenciaDe2 n m | m <- [2..n-1]]
-- (esPotenciaDe2 n m) se verifica si n es una potencia de m. Por
-- ejemplo,
```

```
esPotenciaDe2 16 2 == True
      esPotenciaDe2 24 2 == False
esPotenciaDe2 :: Int -> Int -> Bool
esPotenciaDe2 n 1 = n == 1
esPotenciaDe2 n m = aux 1
 where aux k \mid y == n
                         = True
                        = False
              | y > n
              | otherwise = aux (k+1)
             where y = m^k
-- 3ª definición
-- =========
esPotencia3 :: Int -> Bool
esPotencia3 n = todosIguales [x | (,x) <- factorizacion n]
-- (todosIguales xs) se verifica si todos los elementos de xs son
-- iquales. Por ejemplo,
     todosIguales [2,2,2] == True
      todosIguales [2,3,2] == False
todosIguales :: [Int] -> Bool
todosIquales []
todosIguales [ ] = True
todosIguales (x:y:xs) = x == y \&\& todosIguales (y:xs)
-- Comparación de eficiencia
ghci> :set +s
      ghci> esPotencia 1234
- -
     False
      (16.87 secs, 2476980760 bytes)
      ghci> esPotencia2 1234
     False
      (0.03 secs, 1549232 bytes)
      ghci> esPotencia3 1234
     True
- -
      (0.01 secs, 520540 bytes)
-- Ejercicio 4.3. Un número natural se llama número de Aquiles si es
-- fuerte, pero no es una potencia perfecta; es decir, no es potencia de
-- un número. Por ejemplo, 864 y 1800 son números de Aquiles, pues
-- 864 = 2^5 \cdot 3^3 y 1800 = 2^3 \cdot 3^2 \cdot 5^2.
```

```
-- Definir la función
      esAquileo:: Int -> Bool
-- tal que (esAquileo n) se verifica si n es fuerte y no es potencia
-- perfecta. Por ejemplo,
      esAquileo 864 == True
      esAquileo 865 == False
-- lª definición:
esAquileo :: Int -> Bool
esAquileo n = esFuerte n && not (esPotencia n)
-- 2º definición:
esAquileo2 :: Int -> Bool
esAquileo2 n = esFuerte2 n && not (esPotencia2 n)
-- 3ª definición:
esAquileo3 :: Int -> Bool
esAquileo3 n = esFuerte2 n && not (esPotencia3 n)
-- Comparación de eficiencia
ghci> take 10 [n | n <- [1..], esAquileo n]</pre>
      [72, 108, 200, 288, 392, 432, 500, 648, 675, 800]
      (24.69 secs, 3495004684 bytes)
      ghci> take 10 [n \mid n \leftarrow [1..], esAquileo2 n]
      [72, 108, 200, 288, 392, 432, 500, 648, 675, 800]
- -
      (0.32 secs, 12398516 bytes)
      ghci> take 10 [n \mid n \leftarrow [1..], esAquileo3 n]
      [72, 108, 144, 200, 288, 324, 392, 400, 432, 500]
      (0.12 secs, 3622968 bytes)
```

4.3.3. Examen 3 (6 de febrero de 2013)

El examen es común con el del grupo 2 (ver página 233).

4.3.4. Examen 4 (22 de marzo de 2013)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 4^\circ examen de evaluación continua (22 de marzo de 2013)
```

import Data.List import Test.QuickCheck __ ______ -- Ejercicio 1.1. Consideremos un número n y sumemos reiteradamente sus -- cifras hasta un número de una única cifra. Por ejemplo, 477 -> 18 -> 9 478 -> 19 -> 10 -> 1 -- El número de pasos se llama la persistencia aditiva de n y el último -- número su raíz digital. Por ejemplo, la persistencia aditiva de 477 es 2 y su raíz digital es 9; la persistencia aditiva de 478 es 3 y su raíz digital es 1. -- Definir la función persistenciaAditiva :: Integer -> Int -- tal que (persistenciaAditiva n) es el número de veces que hay que -- reiterar el proceso anterior hasta llegar a un número de una -- cifra. Por ejemplo, persistenciaAditiva 477 == persistenciaAditiva 478 == 3 ______ -- 1º definición -- ========= persistenciaAditiva :: Integer -> Int persistenciaAditiva n = length (listaSumas n) -1 -- (listaSumas n) es la lista de las sumas de las cifras de los números -- desde n hasta su raíz digital. Por ejemplo, listaSumas 477 == [477, 18, 9]listaSumas 478 = [478, 19, 10, 1]listaSumas :: Integer -> [Integer] listaSumas $n \mid n < 10 = [n]$ | otherwise = n: listaSumas (sumaCifras n) -- (sumaCifras) es la suma de las cifras de n. Por ejemplo, sumaCifras 477 == 18sumaCifras :: Integer -> Integer sumaCifras = sum . cifras

```
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
      cifras 477 == [4,7,7]
cifras:: Integer -> [Integer]
cifras n = [read [x] | x <- show n]
-- 2º definición
-- ==========
persistenciaAditiva2 :: Integer -> Int
persistenciaAditiva2 n
    | n < 10
             = 0
    | otherwise = 1 + persistenciaAditiva2 (sumaCifras n)
-- Ejercicio 1.2. Definir la función
      raizDigital :: Integer -> Integer
-- tal que (raizDigital n) es la raíz digital de n. Por ejemplo,
    raizDigital 477 == 9
      raizDigital 478 == 1
-- 1º definición:
raizDigital :: Integer -> Integer
raizDigital n = last (listaSumas n)
-- 2ª definición:
raizDigital2 :: Integer -> Integer
raizDigital2 n
    | n < 10
                = n
    | otherwise = raizDigital2 (sumaCifras n)
-- Ejercicio 1.3. Comprobar experimentalmente que si n/=0 es múltiplo de
-- 9, entonces la raíz digital n es 9; y en los demás casos, es el resto
-- de la división de n entre 9.
-- La propiedad es
prop raizDigital :: Integer -> Property
prop_raizDigital n =
    n > 0 ==>
    if n 'rem' 9 == 0 then raizDigital n == 9
                      else raizDigital n == rem n 9
```

```
-- La comprobación es
    ghci> quickCheck prop raizDigital
    +++ OK, passed 100 tests.
-- Ejercicio 1.4. Basándose en estas propiedades, dar una nueva
-- definición de raizDigital.
__ ______
raizDigital3 :: Integer -> Integer
raizDigital3 n | r \neq 0 = r
           | otherwise = 9
           where r = n 'rem' 9
-- Puede definirse sin condicionales:
raizDigital3' :: Integer -> Integer
raizDigital3' n = 1 + (n-1) 'rem' 9
__ _______
-- Ejercicio 1.5. Comprobar con QuickCheck que las definiciones de raíz
-- digital son equivalentes.
-- La propiedad es
prop equivalencia raizDigital :: Integer -> Property
prop equivalencia raizDigital n =
   n > 0 ==>
   raizDigital2 n == x &&
   raizDigital3 n == x \&\&
   raizDigital3' n == x
   where x = raizDigital n
-- La comprobación es
    ghci> quickCheck prop equivalencia raizDigital
    +++ OK, passed 100 tests.
-- Ejercicio 1.6. Con las definiciones anteriores, calcular la raíz
-- digital del número 987698764521^23456 y comparar su eficiencia.
__ ______
-- ghci> :set +s
```

```
-- ghci> raizDigital (987698764521^23456)
-- 9
-- (6.55 secs, 852846660 bytes)
-- ghci> raizDigital2 (987698764521^23456)
-- 9
-- (6.42 secs, 852934412 bytes)
-- ghci> raizDigital3 (987698764521^23456)
-- (0.10 secs, 1721860 bytes)
-- ghci> raizDigital3' (987698764521^23456)
-- 9
-- (0.10 secs, 1629752 bytes)
-- Ejercicio 2. Definir la función
      interVerifican :: Eq a => (b -> Bool) -> (b -> a) -> [[b]] -> [a]
-- tal que (interVerifican p f xss) calcula la intersección de las
-- imágenes por f de los elementos de las listas de xss que verifican p.
-- Por ejemplo,
      interVerifican even (x -> x+1) [[1,3,4,2], [4,8], [9,4]] == [5]
      interVerifican even (x -> x+1) [[1,3,4,2], [4,8], [9]] == []
-- 1ª definición (por comprensión):
interVerifican :: Eq a => (b -> Bool) -> (b -> a) -> [[b]] -> [a]
interVerifican p f xss = interseccion [[f x | x <- xs, p x] | xs <- xss]</pre>
-- (interseccion xss) es la intersección de los elementos de xss. Por
-- ejemplo,
      intersection [[1,3,4,2], [4,8,3], [9,3,4]] == [3,4]
interseccion :: Eq a => [[a]] -> [a]
interseccion [] = []
intersection (xs:xss) = [x \mid x<-xs, and [x 'elem' ys| ys <-xss]]
-- 2ª definición (con map y filter):
interVerifican2 :: Eq a => (b -> Bool) -> (b -> a) -> [[b]] -> [a]
interVerifican2 p f = interseccion . map (map f . filter p)
-- Ejercicio 3.1. La sucesión autocontadora
      1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, ...
-- está formada por 1 copia del 1, 2 copias del 2, 3 copias del 3, ...
```

```
-- Definir la constante
     autocopiadora :: [Integer]
-- tal que autocopiadora es lista de los términos de la sucesión
-- anterior. Por ejemplo,
     take 20 autocopiadora == [1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6]
autocopiadora :: [Integer]
autocopiadora = concat [genericReplicate n n | n <- [1..]]</pre>
-- Ejercicio 3.2. Definir la función
     terminoAutocopiadora :: Integer -> Integer
-- tal que (terminoAutocopiadora n) es el lugar que ocupa en la sucesión
-- la primera ocurrencia de n. Por ejemplo,
     terminoAutocopiadora 4 == 6
     terminoAutocopiadora 5 == 10
     terminoAutocopiadora 10 == 45
__ _______
-- lª definición (por comprensión):
terminoAutocopiadora :: Integer -> Integer
terminoAutocopiadora x =
   head [n | n <- [1..], genericIndex autocopiadora n == x]
-- 2ª definición (con takeWhile):
terminoAutocopiadora2 :: Integer -> Integer
terminoAutocopiadora2 x = genericLength (takeWhile (/=x) autocopiadora)
-- 3ª definición (por recursión)
terminoAutocopiadora3 :: Integer -> Integer
terminoAutocopiadora3 \times = aux \times autocopiadora 0
 where aux x (y:ys) k | x == y = k
                     | otherwise = aux x ys (k+1)
-- 4ª definición (sumando):
terminoAutocopiadora4 :: Integer -> Integer
terminoAutocopiadora4 x = sum [1..x-1]
-- 5ª definición (explícitamente):
terminoAutocopiadora5 :: Integer -> Integer
terminoAutocopiadora5 x = (x-1)*x 'div' 2
```

```
-- Ejercicio 3.3. Calcular el lugar que ocupa en la sucesión la
-- primera ocurrencia de 2013. Y también el de 20132013.
-- El cálculo es
      terminoAutocopiadora5 2013 == 2025078
      terminoAutocopiadora5 20132013 == 202648963650078
-- Ejercicio 4. Se consideran los árboles binarios definidos por
      data Arbol = H Int
                 | N Arbol Int Arbol
                 deriving (Show, Eq)
  Por ejemplo, los árboles siguientes
           5
                          8
        9
             7
                      9
                          3
                                           2
                        4 6
         4 6
                     1
  se representan por
      arbol1, arbol2, arbol3, arbol4 :: Arbol
      arbol1 = N (N (H 1) 9 (H 4)) 5 (N (H 6) 7 (H 8))
     arbol2 = N (N (H 1) 9 (H 4)) 8 (N (H 6) 3 (H 2))
      arbol3 = N (N (H 1) 9 (H 4)) 5 (H 2)
      arbol4 = N (H 4) 5 (N (H 6) 7 (H 2))
-- Observad que los árboles arbol1 y arbol2 tiene la misma estructura,
-- pero los árboles arbol1 y arbol3 o arbol1 y arbol4 no la tienen
-- Definir la función
      igualEstructura :: Arbol -> Arbol -> Bool
-- tal que (igualEstructura al al) se verifica si los árboles al y a2
-- tienen la misma estructura. Por ejemplo,
      igualEstructura arbol1 arbol2 == True
      igualEstructura arbol1 arbol3 == False
      igualEstructura arbol1 arbol4 == False
data Arbol = H Int
           | N Arbol Int Arbol
           deriving (Show, Eq)
```

4.3.5. Examen 5 (10 de mayo de 2013)

numeroTG :: Integer -> Int

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 5º examen de evaluación continua (10 de mayo de 2013)
import Data.Array
import Data.Ratio
import PolOperaciones
__ _______
-- Ejercicio 1 (370 del Proyecto Euler). Un triángulo geométrico es un
-- triángulo de lados enteros, representados por la terna (a,b,c) tal
-- que a ≤ b ≤ c y están en progresión geométrica, es decir,
-- b^2 = a*c. Por ejemplo, un triángulo de lados a = 144, b = 156 y
-- c = 169.
-- Definir la función
     numeroTG :: Integer -> Int
-- tal que (numeroTG n) es el número de triángulos geométricos de
-- perímetro menor o igual que n. Por ejemplo
      numeroTG 10 == 4
      numeroTG 100 == 83
      numeroTG 200 == 189
-- lª definición:
```

```
numeroTG n =
    length [(a,b,c) | c <- [1..n],
                      b < - [1..c],
                      a < - [1..b],
                      a+b+c <= n,
                      b^2 == a*c
-- 2º definición:
numeroTG2 :: Integer -> Int
numeroTG2 n =
    length [(a,b,c) | c <- [1..n],
                      b < - [1..c],
                      b^2 \cdot rem' c == 0,
                      let a = b^2 'div' c,
                      a+b+c <= n1
-- 3ª definición:
numeroTG3 :: Integer -> Int
numeroTG3 n =
    length [(b^2 'div' c,b,c) | c <- [1..n],
                                 b < - [1..c],
                                 b^2 'rem' c == 0,
                                 (b^2 'div' c)+b+c \le n
-- Comparación de eficiencia:
      ghci> numeroTG 200
      189
      (2.32 secs, 254235740 bytes)
      ghci> numeroTG2 200
      189
      (0.06 secs, 5788844 bytes)
      ghci> numeroTG3 200
      189
      (0.06 secs, 6315900 bytes)
-- Ejercicio 2 (Cálculo numérico) El método de la bisección para
-- calcular un cero de una función en el intervalo [a,b] se basa en el
-- teorema de Bolzano:
      "Si f(x) es una función continua en el intervalo [a, b], y si,
      además, en los extremos del intervalo la función f(x) toma valores
      de signo opuesto (f(a) * f(b) < 0), entonces existe al menos un
      valor c en (a, b) para el que f(c) = 0".
```

```
-- La idea es tomar el punto medio del intervalo c = (a+b)/2 y
-- considerar los siguientes casos:
-- * Si f(c) ~= 0, hemos encontrado una aproximación del punto que
    anula f en el intervalo con un error aceptable.
-- * Si f(c) tiene signo distinto de f(a), repetir el proceso en el
  intervalo [a,c].
-- * Si no, repetir el proceso en el intervalo [c,b].
-- Definir la función
     ceroBiseccionE :: (Float -> Float -> Float -> Float -> Float
-- tal que (ceroBiseccionE f a b e) es una aproximación del punto
-- del intervalo [a,b] en el que se anula la función f, con un error
-- menor que e, aplicando el método de la bisección (se supone que
-- f(a)*f(b)<0). Por ejemplo,
     let f1 x = 2 - x
     let f2 x = x^2 - 3
     ceroBiseccionE f1 0 3 0.0001 == 2.000061
     ceroBiseccionE f2 0 2 0.0001 == 1.7320557
     ceroBiseccionE f2 (-2) 2 0.00001 == -1.732048
     ceroBiseccionE cos 0 2 0.0001 == 1.5708008
ceroBiseccionE :: (Float -> Float) -> Float -> Float -> Float
ceroBiseccionE f a b e = aux a b
   where aux c d \mid aceptable m = m
                 | fc * fm < 0 = aux c m
                 | otherwise
                               = aux m d
             where m = (c+d)/2
                   aceptable x = abs (f x) < e
-- Ejercicio 3 Definir la función
     numeroAPol :: Int -> Polinomio Int
-- tal que (numeroAPol n) es el polinomio cuyas raices son las
-- cifras de n. Por ejemplo,
    numeroAPol 5703 == x^4 + -15*x^3 + 71*x^2 + -105*x
__ _______
numeroAPol :: Int -> Polinomio Int
numeroAPol n = numerosAPol (cifras n)
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
```

```
cifras 5703 == [5,7,0,3]
cifras :: Int -> [Int]
cifras n = [read [c] | c <- show n]
-- (numeroAPol xs) es el polinomio cuyas raices son los elementos de
-- xs. Por ejemplo,
     numerosAPol [5,7,0,3] == x^4 + -15*x^3 + 71*x^2 + -105*x
numerosAPol :: [Int] -> Polinomio Int
numerosAPol [] = polUnidad
numerosAPol(x:xs) =
   multPol (consPol 1 1 (consPol 0 (-x) polCero))
           (numerosAPol xs)
-- La función anterior se puede definir mediante plegado
numerosAPol2 :: [Int] -> Polinomio Int
numerosAPol2 =
    foldr (\ x -> multPol (consPol 1 1 (consPol 0 (-x) polCero)))
          polUnidad
-- Eiercicio 4.1. Consideremos el tipo de los vectores y de las matrices
     type Vector a = Array Int a
     type Matriz a = Array (Int,Int) a
-- y los ejemplos siguientes:
     p1 :: (Fractional a, Eq a) => Matriz a
     p1 = listArray((1,1),(3,3))[1,0,0,0,0,1,0,1,0]
     v1,v2 :: (Fractional a, Eq a) => Vector a
     v1 = listArray (1,3) [0,-1,1]
- -
     v2 = listArray (1,3) [1,2,1]
-- Definir la función
     esAutovector :: (Fractional a, Eq a) =>
                    Vector a -> Matriz a -> Bool
-- tal que (esAutovector v p) compruebe si v es un autovector de p
-- (es decir, el producto de v por p es un vector proporcional a
-- v). Por ejemplo,
     esAutovector v2 p1 == False
     esAutovector v1 p1 == True
  -----
type Vector a = Array Int a
type Matriz a = Array (Int,Int) a
```

```
pl:: (Fractional a, Eq a) => Matriz a
p1 = listArray ((1,1),(3,3)) [1,0,0,0,0,1,0,1,0]
v1,v2:: (Fractional a, Eq a) => Vector a
v1 = listArray (1,3) [0,-1,1]
v2 = listArray (1,3) [1,2,1]
esAutovector :: (Fractional a, Eq a) => Vector a -> Matriz a -> Bool
esAutovector v p = proporcional (producto p v) v
-- (producto p v) es el producto de la matriz p por el vector v. Por
-- ejemplo,
      producto p1 v1 = array (1,3) [(1,0.0),(2,1.0),(3,-1.0)]
      producto p1 v2 = array (1,3) [(1,1.0),(2,1.0),(3,2.0)]
producto :: (Fractional a, Eq a) => Matriz a -> Vector a -> Vector a
producto p v =
    array (1,n) [(i, sum [p!(i,j)*v!j | j <- [1..n]]) | i <- [1..m]]
    where ( ,n)
               = bounds v
          (,(m,)) = bounds p
-- (proporcional v1 v2) se verifica si los vectores v1 y v2 son
-- proporcionales. Por ejemplo,
      proporcional v1 v1
                                                   = True
      proporcional v1 v2
                                                   = False
      proporcional v1 (listArray (1,3) [0,-5,5])
                                                   = True
      proporcional v1 (listArray (1,3) [0,-5,4])
                                                   = False
      proporcional (listArray (1,3) [0,-5,5]) v1
                                                   = True
      proporcional v1 (listArray (1,3) [0,0,0])
                                                 = True
      proporcional (listArray (1,3) [0,0,0]) v1
                                                   = False
proporcional :: (Fractional a, Eq a) => Vector a -> Vector a -> Bool
proporcional v1 v2
    | esCero v1 = esCero v2
    | otherwise = and [v2!i == k*(v1!i) | i <- [1..n]]
    where (,n) = bounds v1
               = minimum [i | i <- [1..n], v1!i /= 0]
          k
               = (v2!j) / (v1!j)
-- (esCero v) se verifica si v es el vector 0.
esCero :: (Fractional a, Eq a) => Vector a -> Bool
esCero v = null [x \mid x <- elems v, x /= 0]
```

```
-- Ejercicio 4.2. Definir la función
      autovalorAsociado :: (Fractional a, Eq a) =>
                           Matriz a -> Vector a -> Maybe a
-- tal que si v es un autovector de p, calcule el autovalor asociado.
-- Por ejemplo,
     autovalorAsociado p1 v1 == Just (-1.0)
      autovalorAsociado p1 v2 == Nothing
autovalorAsociado :: (Fractional a, Eq a) =>
                     Matriz a -> Vector a -> Maybe a
autovalorAsociado p v
    | esAutovector v p = Just (producto p v ! j / v ! j)
    otherwise = Nothing
    where (\_,n) = bounds v
          j = minimum [i | i <- [1..n], v!i /= 0]
         Examen 6 (13 de junio de 2013)
4.3.6.
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 6º examen de evaluación continua (13 de junio de 2013)
import Data.Array
-- Ejercicio 1. Un número es creciente si cada una de sus cifras es
-- mayor o igual que su anterior.
-- Definir la función
      numerosCrecientes :: [Integer] -> [Integer]
-- tal que (numerosCrecientes xs) es la lista de los números crecientes
-- de xs. Por ejemplo,
      ghci> numerosCrecientes [21..50]
      [22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49]
-- Usando la definición de numerosCrecientes calcular la cantidad de
-- números crecientes de 3 cifras.
-- lª definición (por comprensión):
numerosCrecientes :: [Integer] -> [Integer]
numerosCrecientes xs = [n | n <- xs, esCreciente (cifras n)]</pre>
```

```
-- (esCreciente xs) se verifica si xs es una sucesión cerciente. Por
-- ejemplo,
     esCreciente [3,5,5,12] == True
      esCreciente [3,5,4,12] == False
esCreciente :: Ord a => [a] -> Bool
esCreciente (x:y:zs) = x \le y \&\& esCreciente (y:zs)
esCreciente _
                     = True
-- (cifras x) es la lista de las cifras del número x. Por ejemplo,
      cifras 325 == [3,2,5]
cifras :: Integer -> [Integer]
cifras x = [read [d] | d <- show x]
-- El cálculo es
      ghci> length (numerosCrecientes [100..999])
      165
-- 2ª definición (por filtrado):
numerosCrecientes2 :: [Integer] -> [Integer]
numerosCrecientes2 = filter (\n -> esCreciente (cifras n))
-- 3ª definición (por recursión):
numerosCrecientes3 :: [Integer] -> [Integer]
numerosCrecientes3 [] = []
numerosCrecientes3 (n:ns)
  | esCreciente (cifras n) = n : numerosCrecientes3 ns
  | otherwise
                           = numerosCrecientes3 ns
-- 4ª definición (por plegado):
numerosCrecientes4 :: [Integer] -> [Integer]
numerosCrecientes4 = foldr f []
 where f n ns \mid esCreciente (cifras n) = n : ns
               | otherwise
-- Ejercicio 2. Definir la función
      sublistasIguales :: Eq a => [a] -> [[a]]
-- tal que (sublistasIquales xs) es la listas de elementos consecutivos
-- de xs que son iguales. Por ejemplo,
     ghci> sublistasIguales [1,5,5,10,7,7,7,2,3,7]
      [[1],[5,5],[10],[7,7,7],[2],[3],[7]]
```

```
-- lª definición:
sublistasIguales :: Eq a => [a] -> [[a]]
sublistasIguales [] = []
sublistasIguales (x:xs) =
  (x : takeWhile (==x) xs) : sublistasIguales (dropWhile (==x) xs)
-- 2º definición:
sublistasIguales2 :: Eq a => [a] -> [[a]]
sublistasIguales2 [] = []
sublistasIguales2 [x]
                       = [[x]]
sublistasIguales2 (x:y:zs)
  | x == u
           = (x:u:us):vss
  | otherwise = [x]:((u:us):vss)
 where ((u:us):vss) = sublistasIguales2 (y:zs)
-- Ejercicio 3. Los árboles binarios se pueden representar con el de
-- dato algebraico
      data Arbol a = H
                   | N a (Arbol a) (Arbol a)
                   deriving Show
-- Por ejemplo, los árboles
           9
          / \
       8
              6
                        8
      /\
      3 2 4 5
   se pueden representar por
      ej1, ej2:: Arbol Int
      eil = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
      ej2 = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 7 H H))
-- Un árbol binario ordenado es un árbol binario (ABO) en el que los
-- valores de cada nodo es mayor o igual que los valores de sus
-- hijos. Por ejemplo, ej1 es un ABO, pero ej2 no lo es.
-- Definir la función esABO
      esABO :: Ord t => Arbol t -> Bool
-- tal que (esABO a) se verifica si a es un árbol binario ordenado. Por
-- ejemplo.
      esABO ej1 == True
     esABO ej2 == False
```

```
data Arbol a = H
             | N a (Arbol a) (Arbol a)
            deriving Show
ej1, ej2 :: Arbol Int
ej1 = N 9 (N 8 (N 3 H H) (N 2 H H))
          (N 6 (N 4 H H) (N 5 H H))
ej2 = N 9 (N 8 (N 3 H H) (N 2 H H))
          (N 6 (N 4 H H) (N 7 H H))
-- lª definición
esABO :: Ord a => Arbol a -> Bool
esABO H
                              = True
esABO (N \times H H)
                             = True
esABO (N x m1@(N x1 a1 b1) H) = x \ge x1 \& esABO m1
esABO (N \times H m2@(N \times 2 a2 b2)) = x >= x2 \&\& esABO m2
esABO (N \times m1@(N \times 1 \text{ al b1}) m2@(N \times 2 \text{ a2 b2})) =
     x >= x1 \&\& esAB0 m1 \&\& x >= x2 \&\& esAB0 m2
-- 2ª definición
esABO2 :: Ord a => Arbol a -> Bool
esAB02 H
           = True
esABO2 (N x i d) = mayor x i && mayor x d && esABO2 i && esABO2 d
                        = True
       where mayor x H
              mayor x (N y _ ) = x >= y
-- Ejercicio 4. Definir la función
      paresEspecialesDePrimos :: Integer -> [(Integer,Integer)]
-- tal que (paresEspecialesDePrimos n) es la lista de los pares de
-- primos (p,q) tales que p < q y q-p es divisible por n. Por ejemplo,
      ghci> take 9 (paresEspecialesDePrimos 2)
      [(3,5),(3,7),(5,7),(3,11),(5,11),(7,11),(3,13),(5,13),(7,13)]
      ghci> take 9 (paresEspecialesDePrimos 3)
      [(2,5),(2,11),(5,11),(7,13),(2,17),(5,17),(11,17),(7,19),(13,19)]
  ______
paresEspecialesDePrimos :: Integer -> [(Integer,Integer)]
paresEspecialesDePrimos n =
  [(p,q) \mid (p,q) \leftarrow paresPrimos, rem (q-p) n == 0]
```

```
-- paresPrimos es la lista de los pares de primos (p,q) tales que p < q.
-- Por ejemplo,
     ghci> take 9 paresPrimos
     [(2,3),(2,5),(3,5),(2,7),(3,7),(5,7),(2,11),(3,11),(5,11)]
paresPrimos :: [(Integer,Integer)]
paresPrimos = [(p,q) | q <- primos, p <- takeWhile (<q) primos]</pre>
-- primos es la lista de primos. Por ejemplo,
     take 9 primos == [2,3,5,7,11,13,17,19,23]
primos :: [Integer]
primos = 2 : [n | n < - [3,5..], esPrimo n]
-- (esPrimo n) se verifica si n es primo. Por ejemplo,
     esPrimo 7 == True
     esPrimo 9 == False
esPrimo :: Integer -> Bool
esPrimo n = [x \mid x < [1..n], rem n x == 0] == [1,n]
__ _______
-- Ejercicio 5. Las matrices enteras se pueden representar mediante
-- tablas con índices enteros:
     type Matriz = Array (Int,Int) Int
-- Definir la función
     ampliaColumnas :: Matriz -> Matriz -> Matriz
-- tal que (ampliaColumnas p q) es la matriz construida añadiendo las
-- columnas de la matriz q a continuación de las de p (se supone que
-- tienen el mismo número de filas). Por ejemplo, si p y q representa
-- las dos primeras matrices, entonces (ampliaColumnas p q) es la
-- tercera
     0 1
              |4 5 6|
                        [0 1 4 5 6]
              [7 8 9] [2 3 7 8 9]
     [2 3]
-- En Haskell,
     ghci> :{
     *Main| ampliaColumnas (listArray ((1,1),(2,2)) [0..3])
     *Main|
                           (listArray ((1,1),(2,3)) [4..9])
     *Main| :}
     array ((1,1),(2,5))
           [((1,1),0),((1,2),1),((1,3),4),((1,4),5),((1,5),6),
            ((2,1),2),((2,2),3),((2,3),7),((2,4),8),((2,5),9)
```

4.3.7. Examen 7 (3 de julio de 2013)

El examen es común con el del grupo 2 (ver página 248).

4.3.8. Examen 8 (13 de septiembre de 2013)

El examen es común con el del grupo 2 (ver página 254).

4.3.9. Examen 9 (20 de noviembre de 2013)

El examen es común con el del grupo 2 (ver página 258).

4.4. Exámenes del grupo 4 (Andrés Cordón e Ignacio Pérez)

4.4.1. Examen 1 (12 de noviembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 1º examen de evaluación continua (12 de noviembre de 2012)
-- -- Ejercicio 1.1. Dada una ecuación de tercer grado de la forma
-- x^3 + ax^2 + bx + c = 0,
-- donde a, b y c son números reales, se define el discriminante de la
-- ecuación como
-- d = 4p^3+ 27q^2,
-- donde p = b - a^3/3 y q = 2a^3/27 - ab/3 + c.
```

numDiv :: Int -> Int

```
-- Definir la función
    disc :: Float -> Float -> Float
-- tal que (disc a b c) es el discriminante de la ecuación
-- x^3 + ax^2 + bx + c = 0. Por ejemplo,
    disc 1 (-11) (-9) == -5075.9995
 ______
disc :: Float -> Float -> Float
disc a b c = 4*p^3 + 27*q^2
  where p = b - (a^3)/3
       q = (2*a^3)/27 - (a*b)/3 + c
-- Ejercicio 1.2. El signo del discriminante permite determinar el
-- número de raíces reales de la ecuación:
    d > 0 : 1 \text{ solución,}
    d = 0 : 2  soluciones y
    d < 0 : 3 soluciones
-- Definir la función
    numSol :: Float -> Float > Float -> Int
-- tal que (numSol a b c) es el número de raíces reales de la ecuación
-- x^3 + ax^2 + bx + c = 0. Por ejemplo,
   numSol 1 (-11) (-9) == 3
 ______
numSol :: Float -> Float -> Int
numSol a b c
   | d > 0
           = 1
   | d == 0 = 2
   | otherwise = 3
   where d = disc a b c
-- Ejercicio 2.1. Definir la función
    numDiv :: Int -> Int
-- tal que (numDiv x) es el número de divisores del número natural
-- x. Por ejemplo,
    numDiv 11 == 2
    numDiv 12 == 6
```

```
numDiv x = length [n | n < [1..x], rem x n == 0]
-- Ejercicio 2.2. Definir la función
     entre :: Int -> Int -> [Int]
-- tal que (entre a b c) es la lista de los naturales entre a y b con,
-- al menos, c divisores. Por ejemplo,
     entre 11 16 5 == [12, 16]
entre :: Int -> Int -> [Int]
entre a b c = [x \mid x \leftarrow [a..b], numDiv x >= c]
-- Ejercicio 3.1. Definir la función
     conPos :: [a] -> [(a,Int)]
-- tal que (conPos xs) es la lista obtenida a partir de xs especificando
-- las posiciones de sus elementos. Por ejemplo,
     conPos [1,5,0,7] == [(1,0),(5,1),(0,2),(7,3)]
conPos :: [a] -> [(a,Int)]
conPos xs = zip xs [0..]
__ _______
-- Ejercicio 3.1. Definir la función
     pares :: String -> String
-- tal que (pares cs) es la cadena formada por los caracteres en
-- posición par de cs. Por ejemplo,
     pares "el cielo sobre berlin" == "e il or eln"
pares :: String -> String
pares cs = [c \mid (c,n) \leftarrow conPos \ cs, even n]
-- Ejercicio 4. Definir el predicado
     comparaFecha :: (Int,String,Int) -> (Int,String,Int) -> Bool
-- que recibe dos fechas en el formato (dd, "mes", aaaa) y se verifica si
-- la primera fecha es anterior a la segunda. Por ejemplo:
     comparaFecha (12, "noviembre", 2012) (01, "enero", 2015) == True
     comparaFecha (12, "noviembre", 2012) (01, "enero", 2012) == False
```

```
comparaFecha :: (Int,String,Int) -> (Int,String,Int) -> Bool
comparaFecha (d1,m1,a1) (d2,m2,a2) =
    (a1, mes m1, d1) < (a2, mes m2, d2)
    where mes "enero"
                           = 1
          mes "febrero"
                            = 2
          mes "marzo"
                            = 3
          mes "abril"
                           = 5
          mes "mayo"
          mes "junio"
                           = 6
          mes "julio"
                           = 7
          mes "agosto"
                           = 8
          mes "septiembre" = 9
          mes "octubre"
                           = 10
          mes "noviembre" = 11
          mes "diciembre" = 12
```

4.4.2. Examen 2 (17 de diciembre de 2012)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 2º examen de evaluación continua (17 de diciembre de 2012)
-- Ejercicio 1. Definir, usando funciones de orden superior (map,
-- filter, ... ), la función
      sumaCuad :: [Int] -> (Int,Int)
-- tal que (sumaCuad xs) es el par formado porla suma de los cuadrados
-- de los elementos pares de xs, por una parte, y la suma de los
-- cuadrados de los elementos impares, por otra. Por ejemplo,
      sumaCuad [1,3,2,4,5] == (20,35)
-- 1ª definición (por comprensión):
sumaCuad1 :: [Int] -> (Int,Int)
sumaCuad1 xs =
    (sum [x^2 | x <- xs, even x], sum [x^2 | x <- xs, odd x])
-- 2º definición (con filter):
sumaCuad2 :: [Int] -> (Int,Int)
sumaCuad2 xs =
    (sum [x^2 | x \leftarrow filter even xs], sum [x^2 | x \leftarrow filter odd xs])
```

```
-- 3ª definición (con map yfilter):
sumaCuad3 :: [Int] -> (Int,Int)
sumaCuad3 xs =
   (sum (map (^2) (filter even xs)), sum (map (^2) (filter odd xs)))
-- 4ª definición (por recursión):
sumaCuad4 :: [Int] -> (Int,Int)
sumaCuad4 xs = aux xs (0,0)
   where aux [] (a,b) = (a,b)
         aux (x:xs) (a,b) \mid even x = aux xs (x^2+a,b)
                        | otherwise = aux xs (a,x^2+b)
-- Ejercicio 2.1. Definir, por recursión, el predicado
     alMenosR :: Int -> [Int] -> Bool
-- tal que (alMenosR k xs) se verifica si xs contiene, al menos, k
-- números primos. Por ejemplo,
     alMenosR 1 [1,3,7,10,14] == True
     alMenosR 3 [1,3,7,10,14] == False
alMenosR :: Int -> [Int] -> Bool
alMenosR 0 = True
alMenosR [] = False
alMenosR k (x:xs) | esPrimo x = alMenosR (k-1) xs
                | otherwise = alMenosR k xs
-- (esPrimo x) se verifica si x es primo. Por ejemplo,
     esPrimo 7 == True
     esPrimo 9 == False
esPrimo :: Int -> Bool
esPrimo x =
   [n \mid n < [1..x], rem x n == 0] == [1,x]
__ ______
-- Ejercicio 2.2. Definir, por comprensión, el predicado
     alMenosC :: Int -> [Int] -> Bool
-- tal que (alMenosC k xs) se verifica si xs contiene, al menos, k
-- números primos. Por ejemplo,
     alMenosC 1 [1,3,7,10,14] == True
     alMenosC 3 [1,3,7,10,14] == False
```

```
alMenosC :: Int -> [Int] -> Bool
alMenosC k xs = length [x | x <- xs, esPrimo x] >= k

-- Ejercicio 3. Definir la La función
-- alternos :: (a -> b) -> (a -> b) -> [a] -> [b]
-- tal que (alternos f g xs) es la lista obtenida aplicando
-- alternativamente las funciones f y g a los elementos de la lista
-- xs. Por ejemplo,
-- ghci> alternos (+1) (*3) [1,2,3,4,5]
-- [2,6,4,12,6]
-- ghci> alternos (take 2) reverse ["todo","para","nada"]
-- ["to","arap","na"]
-- alternos :: (a -> b) -> (a -> b) -> [a] -> [b]
alternos _ _ [] = []
alternos f g (x:xs) = f x : alternos g f xs
```

4.4.3. Examen 3 (6 de febrero de 2013)

El examen es común con el del grupo 2 (ver página 233).

4.4.4. Examen 4 (18 de marzo de 2013)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 4º examen de evaluación continua (18 de marzo de 2013)
-- Ejercicio 1.1. Definir, por comprensión, la función
-- filtraAplicaC :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaC f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
-- filtraAplicaC (4+) (< 3) [1..7] == [5,6]

filtraAplicaC :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaC f p xs = [f x | x <- xs, p x]
```

```
-- Ejercicio 1.2. Definir, usando map y filter, la función
      filtraAplicaMF :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaMF f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
      filtraAplicaMF (4+) (< 3) [1..7] == [5,6]
filtraAplicaMF :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaMF f p = (map f) . (filter p)
-- Ejercicio 1.3. Definir, por recursión, la función
      filtraAplicaR :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaR f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
      filtraAplicaR (4+) (< 3) [1..7] == [5,6]
filtraAplicaR :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaR _ _ [] = []
filtraAplicaR f p (x:xs) | p x = f x : filtraAplicaR f p xs
                         | otherwise = filtraAplicaR f p xs
-- Ejercicio 1.4. Definir, por plegado, la función
      filtraAplicaP :: (a -> b) -> (a -> Bool) -> [a] -> [b]
-- tal que (filtraAplicaP f p xs) es la lista obtenida aplicándole a los
-- elementos de xs que cumplen el predicado p la función f. Por ejemplo,
      filtraAplicaP (4+) (< 3) [1..7] == [5,6]
filtraAplicaP :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaP f p = foldr g []
    where g x y | p x
                            = f x : y
                | otherwise = y
-- Se puede usar lambda en lugar de la función auxiliar
filtraAplicaP' :: (a -> b) -> (a -> Bool) -> [a] -> [b]
filtraAplicaP' f p = foldr (x y \rightarrow f p x then f x : y else y) []
-- Ejercicio 2. Los árboles binarios se pueden representar con el de
```

```
-- tipo de dato algebraico
      data Arbola = Ha
                   | N a (Arbol a) (Arbol a)
-- Por ejemplo, los árboles
           9
       8
             8
             / \
          2 4
                          2 5
                5
                       3
-- se pueden representar por
     ej1, ej2:: Arbol Int
      eil = N 9 (N 8 (H 3) (H 2)) (N 8 (H 4) (H 5))
      ej2 = N 9 (N 4 (H 3) (H 2)) (N 8 (H 5) (H 7))
-- Se considera la definición de tipo de dato:
-- Definir el predicado
      contenido :: Eq a => Arbol a -> Arbol a -> Bool
-- tal que (contenido al a2) es verdadero si todos los elementos que
-- aparecen en el árbol al también aparecen en el árbol a2. Por ejemplo,
      contenido ej1 ej2 == True
      contenido ej2 ej1 == False
data Arbol a = H a
             | N a (Arbol a) (Arbol a)
ej1, ej2:: Arbol Int
ej1 = N 9 (N 8 (H 3) (H 2)) (N 8 (H 4) (H 5))
ej2 = N 9 (N 4 (H 3) (H 2)) (N 8 (H 5) (H 7))
contenido :: Eq a => Arbol a -> Arbol a -> Bool
contenido (H x) a = pertenece x a
contenido (N x i d) a = pertenece x a && contenido i a && contenido d a
-- (pertenece x a) se verifica si x pertenece al árbol a. Por ejemplo,
      pertenece 8 ej1 == True
      pertenece 7 ej1 == False
pertenece x (H y)
                   = x == y
pertenece x (N y i d) = x == y \mid \mid pertenece x i \mid \mid pertenece x d
```

```
-- Ejercicio 3.1. Definir la función
     esCubo :: Int -> Bool
-- tal que (esCubo x) se verifica si el entero x es un cubo
-- perfecto. Por ejemplo,
     esCubo 27 == True
     esCubo 50 == False
-- lª definición:
esCubo :: Int -> Bool
esCubo x = y^3 == x
   where y = ceiling ((fromIntegral x)**(1/3))
-- 2º definición:
esCubo2 :: Int -> Bool
esCubo2 x = elem x (takeWhile (<=x) [i^3 | i <- [1..]])
-- Ejercicio 3.2. Definir la lista (infinita)
     soluciones :: [Int]
-- cuyos elementos son los números naturales que pueden escribirse como
-- suma de dos cubos perfectos, al menos, de dos maneras distintas. Por
-- ejemplo,
     take 3 soluciones == [1729,4104,13832]
soluciones :: [Int]
soluciones = [x \mid x \leftarrow [1..], length (sumas x) >= 2]
-- (sumas x) es la lista de pares de cubos cuya suma es x. Por ejemplo,
     sumas 1729 = [(1,1728),(729,1000)]
sumas :: Int -> [(Int,Int)]
sumas x = [(a^3, x-a^3) \mid a <- [1..cota], a^3 <= x-a^3, esCubo (x-a^3)]
   where cota = floor ((fromIntegral x)**(1/3))
-- La definición anterior se pued simplificar:
sumas2 :: Int -> [(Int,Int)]
sumas2 x = [(a^3, x-a^3) | a <- [1..cota], esCubo (x-a^3)]
   where cota = floor ((fromIntegral x / 2)**(1/3))
__ _______
-- Ejercicio 4. Disponemos de una mochila que tiene una capacidad
-- limitada de c kilos. Nos encontramos con una serie de objetos cada
```

```
-- uno con un valor v y un peso p. El problema de la mochila consiste en
-- escoger subconjuntos de objetos tal que la suma de sus valores sea
-- máxima y la suma de sus pesos no rebase la capacidad de la mochila.
-- Se definen los tipos sinónimos:
      type Peso a = [(a,Int)]
      type Valor a = [(a,Int)]
-- para asignar a cada objeto, respectivamente, su peso o valor.
-- Definir la función:
      mochila :: Eq a => [a] -> Int -> Peso a -> Valor a -> [[a]]
-- tal que (mochila xs c ps vs) devuelve todos los subconjuntos de xs
-- tal que la suma de sus valores sea máxima y la suma de sus pesos sea
-- menor o igua que cota c. Por ejemplo,
      qhci> :{
      *Main| mochila ["linterna", "oro", "bocadillo", "apuntes"] 10
                     [("oro",7),("bocadillo",1),("linterna",2),("apuntes",5)]
      *Mainl
                     [("apuntes",8),("linterna",1),("oro",100),("bocadillo",10)]
      *Main|
      *Main| :}
type Peso a = [(a,Int)]
type Valor a = [(a,Int)]
mochila :: Eq a => [a] -> Int -> Peso a -> Valor a -> [[a]]
mochila xs c ps vs = [ys | ys <- rellenos, pesoTotal ys vs == maximo]</pre>
    where rellenos = posibles xs c ps
                   = maximum [pesoTotal ys vs | ys <- rellenos]</pre>
-- (posibles xs c ps) es la lista de objetos de xs cuyo peso es menor o
-- igual que c y sus peso están indicada por ps. Por ejemplo,
      ghci> posibles ["a","b","c"] 9 [("a",3),("b",7),("c",2)]
      [[],["c"],["b"],["b","c"],["a"],["a","c"]]
posibles :: Eq a => [a] -> Int -> Peso a -> [[a]]
posibles xs c ps = [ys | ys <- subconjuntos xs, pesoTotal ys ps <= c]</pre>
-- (subconjuntos xs) es la lista de los subconjuntos de xs. Por ejemplo,
      subconjuntos [2,5,3] = [[],[3],[5],[5,3],[2],[2,3],[2,5],[2,5,3]]
subconjuntos :: [a] -> [[a]]
subconjuntos []
                    = [[]]
subconjuntos (x:xs) = subconjuntos xs ++ [x:ys | ys <- subconjuntos xs]</pre>
-- (pesoTotal xs ps) es el peso de todos los objetos de xs tales que los
```

```
-- pesos de cada uno están indicado por ps. Por ejemplo,
-- pesoTotal ["a","b","c"] [("a",3),("b",7),("c",2)] == 12
pesoTotal :: Eq a => [a] -> Peso a -> Int
pesoTotal xs ps = sum [peso x ps | x <- xs]

-- (peso x ps) es el peso de x en la lista de pesos ps. Por ejemplo,
-- peso "b" [("a",3),("b",7),("c",2)] == 7
peso :: Eq a => a -> [(a,b)] -> b
peso x ps = head [b | (a,b) <- ps, a ==x]
```

4.4.5. Examen 5 (6 de mayo de 2013)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 5º examen de evaluación continua (6 de mayo de 2013)
import Data.List
-- Ejercicio 1.1. Definir, por recursión, la función
      borra :: Eq a => a -> [a] -> [a]
-- tal que (borra x xs) es la lista obtenida borrando la primera
-- ocurrencia del elemento x en la lista xs. Por ejemplo,
      borra 'a' "salamanca" == "slamanca"
borra :: Eq a => a -> [a] -> [a]
borra _ [] = []
borra x (y:ys) | x == y = ys
               | otherwise = y : borra x ys
-- Ejercicio 1.2. Definir, por recursión, la función
      borraTodos :: Eq a => a -> [a] -> [a]
-- tal que (borraTodos x xs) es la lista obtenida borrando todas las
-- ocurrencias de x en la lista xs. Por ejemplo,
      borraTodos 'a' "salamanca" == "slmnc"
borraTodos :: Eq a => a -> [a] -> [a]
borraTodos _ [] = []
```

```
borraTodos x (y:ys) | x == y = borraTodos x ys
                    | otherwise = y : borraTodos x ys
-- Ejercicio 1.3. Definir, por plegado, la función
      borraTodosP :: Eq a => a -> [a] -> [a]
-- tal que (borraTodosP x xs) es la lista obtenida borrando todas las
-- ocurrencias de x en la lista xs. Por ejemplo,
      borraTodosP 'a' "salamanca" == "slmnc"
borraTodosP :: Eq a => a -> [a] -> [a]
borraTodosP x = foldr f []
    where f y ys \mid x == y
                 | otherwise = y:ys
-- usando funciones anónimas la definición es
borraTodosP' :: Eq a => a -> [a] -> [a]
borraTodosP' x = foldr (\ y \ z \rightarrow if \ x == y then z else (y:z)) []
-- Ejercicio 1.4. Definir, por recursión, la función
      borraN :: Eq a => Int -> a -> [a] -> [a]
-- tal que (borraN n x xs) es la lista obtenida borrando las n primeras
-- ocurrencias de x en la lista xs. Por ejemplo,
      borraN 3 'a' "salamanca" == "slmnca"
borraN :: Eq a => Int -> a -> [a] -> [a]
borraN _ _ [] = []
borraN 0 - xs = xs
borraN n x (y:ys) | x == y = borraN (n-1) x ys
                  | otherwise = y : borraN n x ys
-- Ejercicio 2.1. Un número entero positivo x se dirá especial si puede
-- reconstruirse a partir de las cifras de sus factores primos; es decir
-- si el conjunto de sus cifras es igual que la unión de las cifras de
-- sus factores primos. Por ejemplo, 11913 es especial porque sus cifras
-- son [1,1,1,3,9] y sus factores primos son: 3, 11 y 19.
-- Definir la función
-- esEspecial :: Int -> Bool
```

```
-- tal que (esEspecial x) se verifica si x es especial. Por ejemplo,
      ???
-- Calcular el menor entero positivo especial que no sea un número
esEspecial :: Int -> Bool
esEspecial x =
    sort (cifras x) == sort (concat [cifras n | n <- factoresPrimos x])</pre>
-- (cifras x) es la lista de las cifras de x. Por ejemplo,
      cifras 11913 == [1,1,9,1,3]
cifras :: Int -> [Int]
cifras x = [read [i] | i <- show x]
-- (factoresPrimos x) es la lista de los factores primos de x. Por ejemplo,
      factoresPrimos 11913 == [3,11,19]
factoresPrimos :: Int -> [Int]
factoresPrimos x = filter primo (factores x)
-- (factores x) es la lista de los factores de x. Por ejemplo,
      ghci> factores 11913
      [1,3,11,19,33,57,209,361,627,1083,3971,11913]
factores :: Int -> [Int]
factores x = [i \mid i < [1..x], mod x i == 0]
-- (primo x) se verifica si x es primo. Por ejemplo,
      primo 7 == True
      primo 9 == False
primo :: Int -> Bool
primo x = factores x == [1,x]
-- El cálculo es
      ghci> head [x \mid x \leftarrow [1..], esEspecial x, not (primo x)]
-- Ejercicio 3. Una lista de listas de xss se dirá encadenada si el
-- último elemento de cada lista de xss coincide con el primero de la
-- lista siguiente. Por ejemplo, [[1,2,3],[3,4],[4,7]] está encadenada.
-- Definir la función
     encadenadas :: Eq a => [[a]] -> [[[a]]]
```

```
-- tal que (encadenadas xss) es la lista de las permutaciones de xss que
-- son encadenadas. Por ejemplo,
      ghci> encadenadas ["el","leon","ruge","nicanor"]
      [["ruge","el","leon","nicanor"],
      ["leon", "nicanor", "ruge", "el"],
      ["el","leon","nicanor","ruge"],
       ["nicanor","ruge","el","leon"]]
encadenadas :: Eq a => [[a]] -> [[[a]]]
encadenadas xss = filter encadenada (permutations xss)
encadenada :: Eq a => [[a]] -> Bool
encadenada xss = and [last xs == head ys | (xs,ys) <- zip xss (tail xss)]</pre>
-- Ejercicio 4. Representamos los polinomios de una variable mediante un
-- tipo algebraico de datos como en el tema 21 de la asignatura:
      data Polinomio a = PolCero | ConsPol Int a (Polinomio a)
-- Por ejemplo, el polinomio x^3 + 4x^2 + x - 6 se representa por
      ej :: Polinomio Int
      ej = ConsPol 3 1 (ConsPol 2 4 (ConsPol 1 1 (ConsPol 0 (-6) PolCero)))
-- Diremos que un polinomio es propio si su término independiente es no
-- nulo.
-- Definir la función
      raices :: Polinomio Int -> [Int]
-- tal que (raices p) es la lista de todas las raíces enteras del
-- polinomio propio p. Por ejemplo,
      raices ej == [1, -2, -3]
data Polinomio a = PolCero | ConsPol Int a (Polinomio a)
ej :: Polinomio Int
ej = ConsPol 3 1 (ConsPol 2 4 (ConsPol 1 1 (ConsPol 0 (-6) PolCero)))
raices :: Polinomio Int -> [Int]
raices p = [z \mid z < -factoresEnteros (termInd p), valor z p == 0]
-- (termInd p) es el término independiente del polinomio p. Por ejemplo,
      termInd (ConsPol 3 1 (ConsPol 0 5 PolCero)) == 5
```

4.4.6. Examen 6 (13 de junio de 2013)

El examen es común con el del grupo 1 (ver página 223).

4.4.7. Examen 7 (3 de julio de 2013)

El examen es común con el del grupo 2 (ver página 248).

4.4.8. Examen 8 (13 de septiembre de 2013)

El examen es común con el del grupo 2 (ver página 254).

4.4.9. Examen 9 (20 de noviembre de 2013)

El examen es común con el del grupo 2 (ver página 258).

5

Exámenes del curso 2013-14

5.1. Exámenes del grupo 1 (María J. Hidalgo)

5.1.1. Examen 1 (7 de Noviembre de 2013)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (7 de noviembre de 2013)
  ______
-- Ejercicio 1 [Del problema 21 del Proyecto Euler]. Sea d(n) la suma de
-- los divisores propios de n. Si d(a) = b y d(b) = a, siendo a \ne b,
-- decimos que a y b son un par de números amigos. Por ejemplo, los
-- divisores propios de 220 son 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y
-- 110; por tanto, d(220) = 284. Los divisores propios de 284 son 1, 2,
--4, 71 y 142; por tanto, d(284) = 220. Luego, 220 y 284 son dos
-- números amigos.
-- Definir la función amigos tal que (amigos a b) se verifica si a y b
-- son números amigos. Por ejemplo,
     amigos 6 6
                    == False
     amigos 220 248 == False
     amigos 220 284 == True
     amigos 100 200
                     == False
     amigos 1184 1210 == True
amigos a b = sumaDivisores a == b && sumaDivisores b == a
```

where sumaDivisores $n = sum [x \mid x < -[1..n-1], n 'rem' x == 0]$

```
-- Ejercicio 2. Una representación de 20 en base 2 es [0,0,1,0,1] pues
--20 = 1*2^2 + 1*2^4. Y una representación de 46 en base 3 es [1,0,2,1]
-- pues 46 = 1*3^0 + 0*3^1 + 2*3^2 + 1*3^3.
-- Definir la función deBaseABase10 tal que (deBaseABase10 b xs) es el
-- número n tal que su representación en base b es xs. Por ejemplo,
      deBaseABase10 2 [0,0,1,0,1]
      deBaseABase10 2 [1,1,0,1]
                                       == 11
      deBaseABase10 3 [1,0,2,1]
                                      == 46
      deBaseABase10 5 [0,2,1,3,1,4,1] == 29160
deBaseABase10 b xs = sum [y*b^n | (y,n) <- zip xs [0..]]
-- Ejercicio 3. [De la IMO-1996-S-21]. Una sucesión [a(0),a(1),...,a(n)]
-- se denomina cuadrática si para cada i ∈ {1, 2,..., n} se cumple que
      |a(i) - a(i-1)| = i^2.
-- Definir una función esCuadratica tal que (esCuadratica xs) se
-- verifica si xs cuadrática. Por ejemplo,
      esCuadratica [2,1,-3,6]
                                                    == True
      esCuadratica [2,1,3,5]
                                                    == False
      esCuadratica [3,4,8,17,33,58,94,45,-19,-100] == True
esCuadratica xs =
    and [abs (y-x) == i^2 \mid ((x,y),i) <- zip (adyacentes xs) [1..]]
advacentes xs = zip xs (tail xs)
-- Ejercicio 4.1. Sea t una lista de pares de la forma
      (nombre, [(asig1, nota1),...,(asigk, notak)])
-- Por ejemplo,
      t1 = [("Ana",[("Algebra",1),("Calculo",3),("Informatica",8),("Fisica",2)]),
            ("Juan", [("Algebra", 5), ("Calculo", 1), ("Informatica", 2), ("Fisica", 9)])
            ("Alba",[("Algebra",5),("Calculo",6),("Informatica",6),("Fisica",5)])
            ("Pedro", [("Algebra", 9), ("Calculo", 5), ("Informatica", 3), ("Fisica", 1)]
-- Definir la función calificaciones tal que (calificaciones t p) es la
-- lista de las calificaciones de la persona p en la lista t. Por
-- ejemplo,
     ghci> calificaciones t1 "Pedro"
```

```
[("Algebra",9),("Calculo",5),("Informatica",3),("Fisica",1)]
t1 = [("Ana",[("Algebra",1),("Calculo",3),("Informatica",8),("Fisica",2)]),
      ("Juan", [("Algebra", 5), ("Calculo", 1), ("Informatica", 2), ("Fisica", 9)]),
      ("Alba",[("Algebra",5),("Calculo",6),("Informatica",6),("Fisica",5)]),
     ("Pedro",[("Algebra",9),("Calculo",5),("Informatica",3),("Fisica",1)])]
calificaciones t p = head [xs | (x,xs) < -t, x == p]
-- Ejercicio 3.2. Definir la función todasAprobadas tal que
-- (todasAprobadas t p) se cumple si en la lista t, p tiene todas las
-- asignaturas aprobadas. Por ejemplo,
     todasAprobadas t1 "Alba" == True
     todasAprobadas t1 "Pedro" == False
todasAprobadas t p = numeroAprobados t p == numeroAsignaturas t p
numeroAprobados t p = length [n \mid (\_,n) < - calificaciones t p, n >= 5]
numeroAsignaturas t p = length (calificaciones t p)
apruebanTodo t = [p | (p, ) <- t, todasAprobadas t p]</pre>
5.1.2. Examen 2 (19 de Diciembre de 2013)
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (19 de diciembre de 2013)
import Data.List
import Test.QuickCheck
-- -----
-- Ejercicio 1.1. Definir la función
      bocata :: Eq a => a -> a -> [a] -> [a]
-- tal que (bocata x y zs) es la lista obtenida colocando y delante y
-- detrás de todos los elementos de zs que coinciden con x. Por ejemplo,
      > bocata "chorizo" "pan" ["jamon", "chorizo", "queso", "chorizo"]
```

["jamon", "pan", "chorizo", "pan", "queso", "pan", "chorizo", "pan"]

```
> bocata "chorizo" "pan" ["jamon", "queso", "atun"]
      ["jamon","queso","atun"]
bocata :: Eq a => a -> a -> [a] -> [a]
bocata _ _ [] = []
bocata x y (z:zs) \mid z == x = y : z : y : bocata x y zs
                 | otherwise = z : bocata x y zs
-- Ejercicio 1.2. Comprobar con QuickCheck que el número de elementos de
-- (bocata a b xs) es el número de elementos de xs más el doble del
-- número de elementos de xs que coinciden con a.
-- La propiedad es
prop bocata :: String -> String -> [String] -> Bool
prop bocata a b xs =
   length (bocata a b xs) == length xs + 2 * length (filter (==a) xs)
-- La comprobación es
     ghci> quickCheck prop_bocata
     +++ OK, passed 100 tests.
__ ______
-- Ejercicio 2. Definir la función
     mezclaDigitos :: Integer -> Integer -> Integer
-- tal que (mezclaDigitos n m) es el número formado intercalando los
-- dígitos de n y m, empezando por los de n. Por ejemplo,
     mezclaDigitos 12583 4519 == 142551893
     mezclaDigitos 12583 4519091256 == 142551893091256
mezclaDigitos :: Integer -> Integer
mezclaDigitos n m =
   read (intercala (show n) (show m))
-- (intercala xs ys) es la lista obtenida intercalando los elementos de
-- xs e ys. Por ejemplo,
     intercala [2,5,3] [4,7,9,6,0] == [2,4,5,7,3,9,6,0]
     intercala [4,7,9,6,0] [2,5,3] == [4,2,7,5,9,3,6,0]
intercala :: [a] -> [a] -> [a]
intercala [] ys = ys
```

```
intercala xs [] = xs
intercala (x:xs) (y:ys) = x : y : intercala xs ys
-- Ejercicio 3. (Problema 211 del proyecto Euler) Dado un entero
-- positivo n, consideremos la suma de los cuadrados de sus divisores,
-- Por ejemplo,
     f(10) = 1 + 4 + 25 + 100 = 130
     f(42) = 1 + 4 + 9 + 36 + 49 + 196 + 441 + 1764 = 2500
-- Decimos que n es especial si f(n) es un cuadrado perfecto. En los
-- ejemplos anteriores, 42 es especial y 10 no lo es.
-- Definir la función
     especial:: Int -> Bool
-- tal que (especial x) se verifica si x es un número es especial. Por
-- ejemplo,
     especial 42 == True
     especial 10 == False
-- Calcular todos los números especiales de tres cifras.
__ ______
especial:: Int -> Bool
especial n = esCuadrado (sum (map (^2) (divisores n)))
-- (esCuadrado n) se verifica si n es un cuadrado perfecto. Por ejemplo,
     esCuadrado 36 == True
     esCuadrado 40 == False
esCuadrado :: Int -> Bool
esCuadrado n = y^2 == n
   where y = floor (sqrt (fromIntegral n))
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
     divisores 36 = [1,2,3,4,6,9,12,18,36]
divisores :: Int -> [Int]
divisores n = [x \mid x \leftarrow [1..n], rem n x == 0]
                               -- Ejercicio 4. Definir la función
     verificaMax :: (a -> Bool) -> [[a]] -> [a]
-- tal que (verificaMax p xss) es la lista de xss con mayor número de
-- elementos que verifican la propiedad p. Por ejemplo,
     ghci> verificaMax even [[1..5], [2,4..20], [3,2,1,4,8]]
     [2,4,6,8,10,12,14,16,18,20]
```

```
-- ghci> verificaMax even [[1,2,3], [6,8], [3,2,10], [3]]
-- [6,8]
-- Nota: En caso de que haya más de una lista, obtener la primera.

verificaMax :: (a -> Bool) -> [[a]] -> [a]

verificaMax p xss = head [xs | xs <- xss, test xs]

where f xs = length [x | x <- xs, p x]

m = maximum [f xs | xs <-xss]

test xs = f xs == m
```

5.1.3. Examen 3 (23 de Enero de 2014)

```
-- Informática: 3º examen de evaluación continua (23 de enero de 2014)
__ _______
-- Puntuación: Cada uno de los 4 ejercicios vale 2.5 puntos.
-- § Librerías auxiliares
__ _______
import Data.List
__ _______
-- Ejercicio 1.1. Definir la función
    divisoresConUno :: Integer -> Bool
-- tal que (divisoresConUno n) se verifica si todos sus divisores
-- contienen el dígito 1. Por ejemplo,
    divisoresConUno 671 == True
    divisoresConUno 100 == False
-- ya que los divisores de 671 son 1, 11, 61 y 671 y todos contienen el
-- número 1; en cambio, 25 es un divisor de 100 que no contiene el
-- dígito 1.
__ _______
divisoresConUno :: Integer -> Bool
divisoresConUno n = all contieneUno (divisores n)
-- 2ª definición (sin all)
```

```
divisoresConUno2 :: Integer -> Bool
divisoresConUno2 n = and [contieneUno x | x <- divisores n]
-- 3ª definición (por recursión)
divisoresConUno3 :: Integer -> Bool
divisoresConUno3 n = aux (divisores n)
   where aux [] = True
         aux (x:xs) = contieneUno x && aux xs
-- 4ª definición (por plegado)
divisoresConUno4 :: Integer -> Bool
divisoresConUno4 n = foldr f True (divisores n)
   where f x y = contieneUno x && y
-- 5ª definición (por plegado y lambda)
divisoresConUno5 :: Integer -> Bool
divisoresConUno5 n =
   foldr (x y \rightarrow contieneUno x & y) True (divisores n)
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
     divisores 12 = [1,2,3,4,6,12]
divisores :: Integer -> [Integer]
divisores n = [x \mid x < [1..n], rem n x == 0]
-- (contienUno n) se verifica si n contiene el dígito 1. Por ejemplo,
     contieneUno 214 == True
     contieneUno 234 == False
contieneUno :: Integer -> Bool
contieneUno n = elem '1' (show n)
-- 2º definición (por recursión sin show)
contieneUno2 :: Integer -> Bool
contieneUno2 1 = True
contieneUno2 n \mid n < 10
              | n 'rem' 10 == 1 = True
              | otherwise = contieneUno2 (n 'div' 10)
-- Ejercicio 1.2. ¿Cuál será el próximo año en el que todos sus divisores
-- contienen el dígito 1? ¿y el anterior?
__ _______
-- El cálculo es
```

```
ghci> head [n | n <- [2014..], divisoresConUno n]</pre>
      2017
- -
      ghci> head [n | n <- [2014,2013..], divisoresConUno n]</pre>
      2011
-- Ejercicio 2.1. Un elemento de una lista es permanente si ninguno de
-- los siguientes es mayor que él.
-- Definir, por recursión, la función
      permanentesR :: [Int] -> [Int]
-- tal que (permanentesR xs) es la lista de los elementos permanentes de
-- xs. Por ejemplo,
      permanentesR [80,1,7,8,4] == [80,8,4]
-- lª definición:
permanentesR :: [Int] -> [Int]
permanentesR [] = []
permanentesR (x:xs) \mid x == maximum (x:xs) = x:permanentesR xs
                    | otherwise
                                        = permanentesR xs
-- 2ª definición (sin usar maximum):
permanentesR2 :: [Int] -> [Int]
permanentesR2 [] = []
permanentesR2 (x:xs) | and [x>=y|y<-xs] = x:permanentesR2 xs
                     | otherwise = permanentesR2 xs
-- Nota: Comparación de eficiencia
      ghci> let xs = [1..1000] in last (permanentesR (xs ++ reverse xs))
      (0.22 secs, 41105812 bytes)
      ghci> let xs = [1..1000] in last (permanentesR2 (xs ++ reverse xs))
      (0.96 secs, 31421308 bytes)
-- Ejercicio 2.2. Definir, por plegado, la función
      permanentesP :: [Int] -> [Int]
-- tal que (permanentesP xs) es la lista de los elementos permanentes de
-- xs. Por ejemplo,
      permanentesP [80,1,7,8,4] == [80,8,4]
```

```
-- lª definición:
permanentesP :: [Int] -> [Int]
permanentesP = foldr f []
   where f x ys | x == maximum (x:ys) = x:ys
               | otherwise
                                   = ys
-- 2º definición:
permanentesP2 :: [Int] -> [Int]
permanentesP2 xs = foldl f [] (reverse xs)
   where f ac x \mid x == \max (x:ac) = x:ac
               | otherwise
-- Nota: Comparación de eficiencia
     ghci> let xs = [1..1000] in last (permanentesP (xs ++ reverse xs))
- -
     (0.22 secs, 52622056 bytes)
     ghci> let xs = [1..1000] in last (permanentesP2 (xs ++ reverse xs))
     1
     (0.23 secs, 52918324 bytes)
__ _______
-- Ejercicio 3. Definir la función
     especial :: Int -> [[Int]] -> Bool
-- tal que (especial k xss) se verifica si cada uno de los diez dígitos
-- 0, 1, 2,..., 9 aparece k veces entre todas las listas de xss. Por
-- ejemplo,
     especial 1 [[12,40],[5,79,86,3]]
                                                           == True
     especial 2 [[107,32,89],[58,76,94],[63,120,45]]
                                                           == True
     especial 3 [[1329,276,996],[534,867,1200],[738,1458,405]] == True
__ _______
-- 1ª definición (por comprensión):
especial :: Int -> [[Int]] -> Bool
especial k xss =
   sort (concat [show n | xs <- xss, n <- xs])</pre>
   == concat [replicate k d | d <- ['0'...'9']]
-- 2ª definición (con map)
especial2 :: Int -> [[Int]] -> Bool
especial2 k xss =
   sort (concat (concat (map (map cifras) xss)))
   == concat [replicate k d | d <- [0..9]]
```

```
cifras:: Int -> [Int]
cifras n = [read [x] | x <-show n]
__ ______
-- Ejercicio 4. Definir la función
     primosConsecutivosConIgualFinal :: Int -> [Integer]
-- tal que (primosConsecutivosConIgualFinal n) es la lista de los
-- primeros n primos consecutivos que terminan en el mismo dígito. Por
-- ejemplo,
     primosConsecutivosConIgualFinal 2 == [139, 149]
     primosConsecutivosConIgualFinal 3 == [1627, 1637, 1657]
  ______
primosConsecutivosConIgualFinal :: Int -> [Integer]
primosConsecutivosConIgualFinal n = consecutivosConPropiedad p n primos
   where p []
                 = True
         p(x:xs) = and [r == rem y 10 | y <- xs]
             where r = rem \times 10
-- (consecutivosConPropiedad p n xs) es la lista con los n primeros
-- elementos consecutivos de zs que verifican la propiedad p. Por
-- eiemplo,
     ghci> consecutivosConPropiedad (xs -> sum xs > 20) 2 [5,2,1,17,4,25]
     [17,4]
consecutivosConPropiedad :: ([a] -> Bool) -> Int -> [a] -> [a]
consecutivosConPropiedad p n zs =
   head [xs | xs <- [take n ys | ys <- tails zs], p xs]
-- primos es la lista de los números primos. Por ejemplo,
     ghci> take 20 primos
     [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71]
primos :: [Integer]
primos = [n \mid n < -2:[3,5..], primo n]
-- (primo n) se verifica si n es un número primo. Por ejemplo,
     primo 7 == True
     primo 8 == False
primo :: Integer -> Bool
primo n = [x \mid x < [1..n], rem n x == 0] == [1,n]
```

5.1.4. Examen 4 (20 de Marzo de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (20 de marzo de 2014)
import Test.QuickCheck
import Data.Ratio
import Data.List
import PolOperaciones
-- Ejercicio 1.1. Consideremos la sucesión siguiente
      a0 = 1
      a1 = 1
      an = 7*a(n-1) - a(n-2) - 2
-- Definir, por recursión, la función
      suc :: Integer -> Integer
-- tal que (suc n) es el n-ésimo término de la sucesión anterior. Por
-- ejemplo,
      suc 1 == 1
      suc 4 == 169
      suc 8 == 372100
-- Por ejemplo,
     ghci > [suc n | n < -[0..10]]
     [1,1,4,25,169,1156,7921,54289,372100,2550409,17480761]
  ______
suc :: Integer -> Integer
suc 0 = 1
suc 1 = 1
suc n = 7*(suc (n-1)) - (suc (n-2)) - 2
-- Ejercicio 1.2. Definir, usando evaluación perezosa. la función
      suc' :: Integer -> Integer
-- tal que (suc n) es el n-ésimo término de la sucesión anterior. Por
-- ejemplo,
      suc 1 == 1
      suc 4 == 169
      suc 8 == 372100
-- Por ejemplo,
```

```
ghci> [suc n | n <-[0..10]]
      [1,1,4,25,169,1156,7921,54289,372100,2550409,17480761]
- -
      ghci> suc' 30
      915317035111995882133681
-- La sucesión es
sucesion:: [Integer]
sucesion = 1:1:zipWith f (tail sucesion) sucesion
    where f x y = 7*x-y-2
-- Por ejemplo, el cálculo de los 4 primeros términos es
      take 4 sucesion
      = take 4 (1:1:zipWith f (tail sucesion) sucesion)
     = 1:take 3 (1:zipWith f (tail sucesion) sucesion)
     = 1:1:take 2 (zipWith f (tail sucesion) sucesion)
     = 1:1:take 2 (zipWith f (1:R2) (1:1:R2))
     = 1:1:take 2 (4:zipWith f R2 (1:R2))
     = 1:1:4:take 1 (zipWith f (4:R3) (1:4:R3))
     = 1:1:4:take 1 (25:zipWith f R3 (4:R3))
     = 1:1:4:25:take 0 (25:zipWith f R3 (4:R3))
    = 1:1:4:25:[]
     = [1,1,4,25]
suc' :: Integer -> Integer
suc' n = sucesion 'genericIndex' n
-- Ejercicio 1.3. Calcular el término 100 de la sucesión anterior.
-- El cálculo es
      ghci> suc' 100
      300684343490825938802118062949475967529205466257891810825055230703212868076
-- Ejercicio 1.4. Comprobar que los primeros 30 términos de la sucesión
-- son cuadrados perfectos.
esCuadrado :: (Integral a) => a -> Bool
esCuadrado n = y*y == n
    where y = floor (sqrt (fromIntegral n))
```

```
-- La comprobación es
      ghci> and [esCuadrado (suc' n) | n <-[0..30]]</pre>
-- Ejercicio 2. Consideremos los árboles binarios definidos por el tipo
-- siguiente:
      data Arbol t = Hoja t
                 | Nodo (Arbol t) t (Arbol t)
                 deriving (Show, Eq)
-- y el siguiente ejemplo de árbol
      ejArbol :: Arbol Int
      ejArbol = Nodo (Nodo (Hoja 1) 3 (Hoja 4))
                     (Nodo (Hoja 6) 7 (Hoja 9))
-- Definir la función
      transforma :: (t -> Bool) -> Arbol t -> Arbol (Maybe t)
-- tal que (transforma p a) es el árbol con la misma estructura que a,
-- en el que cada elemento x que verifica el predicado p se sustituye por
-- (Just x) y los que no lo verifican se sustituyen por Nothing. Por
-- eiemplo,
      ghci> transforma even ejArbol
      Nodo (Nodo (Hoja Nothing) Nothing (Hoja (Just 4)))
           Nothing
           (Nodo (Hoja (Just 6)) Nothing (Hoja Nothing))
data Arbol t = Hoja t
           | Nodo (Arbol t) t (Arbol t)
           deriving (Show, Eq)
ejArbol :: Arbol Int
ejArbol = Nodo (Nodo (Hoja 1) 3 (Hoja 4))
               (Nodo (Hoja 6) 7 (Hoja 9))
transforma :: (t -> Bool) -> Arbol t -> Arbol (Maybe t)
transforma p (Hoja r) | p r
                                  = Hoja (Just r)
                     | otherwise = Hoja Nothing
transforma p (Nodo i r d)
                = Nodo (transforma p i) (Just r) (transforma p d)
    | p r
```

```
| otherwise = Nodo (transforma p i) Nothing (transforma p d)
__ _______
-- Ejercicio 3. El método de la bisección para calcular un cero de una
-- función en el intervalo [a,b] se basa en el Teorema de Bolzano: "Si
-- f(x) es una función continua en el intervalo [a, b], y si, además, en
-- los extremos del intervalo la función f(x) toma valores de signo
-- opuesto (f(a) * f(b) < 0), entonces existe al menos un valor c en (a,
-- b) para el que f(c) = 0".
-- La idea es tomar el punto medio del intervalo c = (a+b)/2 y
-- considerar los siguientes casos:
-- (*) Si f(c) ~= 0, hemos encontrado una aproximación del punto que
      anula f en el intervalo con un error aceptable.
-- (*) Si f(c) tiene signo distinto de f(a), repetir el proceso en el
      intervalo [a,c].
-- (*) Si no, repetir el proceso en el intervalo [c,b].
-- Definir la función
     ceroBiseccionE :: (Double -> Double) ->
                      Double -> Double -> Double
-- tal que (ceroBiseccionE f a b e) calcule una aproximación del punto
-- del intervalo [a,b] en el que se anula la función f, con un error
-- menor que e, aplicando el método de la bisección. Por ejemplo,
-- si fl y f2 son las funciones definidas por
     f1 x = 2 - x
     f2 x = x^2 - 3
-- entonces
     ceroBiseccionE fl 0 3 0.0001
                                   == 2.00006103515625
                                  == 1.7320556640625
     ceroBiseccionE f2 0 2 0.0001
     ceroBiseccionE f2 (-2) 2 0.00001 == -1.732048
     ceroBiseccionE cos 0 2 0.0001
                                     == -1.7320480346679688
f1 x = 2 - x
f2 x = x^2 - 3
ceroBiseccionE :: (Double -> Double) ->
                 Double -> Double -> Double
ceroBiseccionE f a b e = aux a b
   where aux c d | aceptable m
                                 = m
                 | (f c)*(f m) < 0 = aux c m
                 | otherwise = aux m d
```

```
where m = (c+d)/2
                  aceptable x = abs (f x) < e
__ _______
-- Ejercicio 4.1. Los polinomios de Fibonacci se definen como sique
     P \ 0 = 0
     P_1 = 1
     P_n = x*P_(n-1) + P_(n-2)
-- Definir la función
     polFibonnaci :: Integer -> Polinomio Rational
-- tal que (polFibonnaci n) es el n-ésimo polinomio de Fibonacci. Por
-- ejemplo,
     polFibonnaci 2 == 1 % 1*x
     polFibonnaci 3 == x^2 + 1 \% 1
     polFibonnaci 4 == x^3 + 2 % 1*x
     polFibonnaci 5 == x^4 + 3 \% 1*x^2 + 1 \% 1
__ ______
-- 1ª solución (por recursión)
polFibonnaci :: Integer -> Polinomio Rational
polFibonnaci 0 = polCero
polFibonnaci 1 = polUnidad
polFibonnaci n =
   sumaPol (multPol (creaPolDispersa [1,0]) (polFibonnaci (n-1)))
           (polFibonnaci (n-2))
-- 2º solución (evaluación perezosa)
polFibonnaciP :: Integer -> Polinomio Rational
polFibonnaciP n = sucPolinomiosFibonacci 'genericIndex' n
sucPolinomiosFibonacci :: [Polinomio Rational]
sucPolinomiosFibonacci =
   polCero:polUnidad:zipWith f (tail sucPolinomiosFibonacci)
                             sucPolinomiosFibonacci
       where f p q = sumaPol (multPol (creaPolDispersa [1,0]) p) q
-- Ejercicio 4.2. Comprobar que P 2 divide a los polinomios de Fibonacci
-- de índice par hasta n = 20.
divide :: (Fractional a, Eq a) => Polinomio a -> Polinomio a -> Bool
```

```
divide p q = esPolCero (resto q p)
-- La comprobación es
-- ghci> and [divide (polFibonnaciP 2) (polFibonnaciP (2*k)) | k <- [2..20]]
-- True</pre>
```

5.1.5. Examen 5 (15 de Mayo de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (15 de mayo de 2014)
-- § Librerías auxiliares
  ______
import Data.List
import Data.Array
__ ______
-- Ejercicio 1. Definir la función
      separados :: Eq a => a -> a -> [a] -> Bool
-- tal que (separados x y xs) se verifica si a y b no son elementos
-- consecutivos en xs. Por ejemplo,
     separados 4 6 [1..20]
                           == True
     separados 4 6 [2,4..20] == False
     separados 'd' 'a' "damas" == False
     separados 'd' 'a' "ademas" == False
     separados 'd' 'm' "ademas" == True
-- 1ª solución
separados :: Eq a => a -> a -> [a] -> Bool
separados a b zs = and [(x,y) /= (a,b) && (x,y) /= (b,a) |
                     (x,y) \leftarrow zip zs (tail zs)
-- 2ª solución
separados2 :: Eq a => a -> a -> [a] -> Bool
separados2 a b zs =
   (a,b) 'notElem' consecutivos && (b,a) 'notElem' consecutivos
```

```
where consecutivos = zip zs (tail zs)
-- Ejercicio 2. Definir la función
      subcadenasNoVacias :: [a] -> [[a]]
-- tal que (subcadenasNoVacias xs) es la lista de las subcadenas no
-- nulas de xs. Por ejemplo,
      ghci> subcadenasNoVacias "Hola"
      ["H","Ho","Hol","Hola","o","ol","ola","l","la","a"]
-- 1ª solución
subcadenasNoVacias :: [a] -> [[a]]
subcadenasNoVacias []
subcadenasNoVacias (x:xs) = tail (inits (x:xs)) ++ subcadenasNoVacias xs
-- 2ª solución
subcadenasNoVacias2 :: [a] -> [[a]]
subcadenasNoVacias2 xs =
    [take i (drop j xs) | j <- [0..n], i <- [1..n-j]]
   where n = length xs
-- Ejercicio 3.1. Partiendo de un número d, se construye la sucesión que
-- empieza en d y cada término se obtiene sumándole al anterior el
-- producto de sus dígitos no nulos. Por ejemplo:
-- * Si empieza en 1, la sucesión es 1,2,4,8,16,22,26,38,62,74,...
-- * Si empieza en 30, la sucesión es 30,33,42,50,55,80,88,152,162,174,...
-- Definir la función
      sucesion :: Integer -> [Integer]
-- tal que (sucesion d) es la sucesión que empieza en d. Por ejemplo,
      ghci> take 10 (sucesion 1)
      [1,2,4,8,16,22,26,38,62,74]
      ghci> take 10 (sucesion 3)
      [3,6,12,14,18,26,38,62,74,102]
      ghci> take 10 (sucesion 30)
      [30,33,42,50,55,80,88,152,162,174]
      ghci> take 10 (sucesion 10)
      [10, 11, 12, 14, 18, 26, 38, 62, 74, 102]
```

-- lª definición

```
sucesion :: Integer -> [Integer]
sucesion d = iterate f d
   where f x = x + productoDigitosNN x
-- (productoDigitosNN x) es el producto de los dígitos no nulos de
-- x. Por ejemplo,
      productoDigitosNN 306 == 18
productoDigitosNN :: Integer -> Integer
productoDigitosNN = product . digitosNoNulos
-- (digitosNoNulos x) es la lista de los dígitos no nulos de x. Por
-- ejemplo,
      digitosNoNulos 306 == [3,6]
digitosNoNulos:: Integer -> [Integer]
digitosNoNulos n = [read [x] | x <- show n, x /= '0']
-- 2ª definición
sucesion2 :: Integer -> [Integer]
sucesion2 d = [aux n | n < - [0..]]
   where aux 0 = d
          aux n = x + productoDigitosNN x
              where x = aux (n-1)
-- Ejercicio 3.2. Las sucesiones así construidas tienen un elemento
-- común, a partir del cual los términos coinciden. Por ejemplo,
      take 7 (sucesion 3) == [3,6,
                                     12,14,18,26,38]
      take 7 (sucesion 5) == [5,10,11,12,14,18,26]
-- se observa que las sucesiones que empiezan en 3 y 5, respectivamente,
-- coinciden a partir del término 12.
-- Definir la función
       comun :: Integer -> Integer
-- tal que (comun x y) es el primer elemento común de las sucesiones que
-- empiezan en x e y, respectivamente. Por ejemplo,
      comun 3 5
                    == 12
      comun 3 4
                    == 26
      comun 3 8
                    == 26
      comun 3 20
                    == 26
      comun 3 34
                    == 126
      comun 234 567 == 1474
```

```
comun :: Integer -> Integer -> Integer
comun x y =
    head [n | n <- sucesion x, n 'elem' takeWhile (<=n) (sucesion y)]
-- Ejercicio 3.3. Definir la función
       indicesComun :: Integer -> Integer -> (Integer, Integer)
-- tal que (indicesComun x y) calcula los índices a partir de los cuales
-- las sucesiones con valores iniciales x e y coinciden. Por ejemplo,
       indicesComun 3 4
                          == (6,5)
       indicesComun 3 5
                          == (3,4)
       indicesComun 3 8 == (6,4)
      indicesComun 3 20
                         == (6,3)
      indicesComun 3 34 == (15,5)
       indicesComun 234 567 == (16,19)
indicesComun :: Integer -> Integer -> (Integer, Integer)
indicesComun \times y = (i,j)
    where z = comun \times y
          i = head [k \mid (a,k) <- zip (sucesion x) [1..], a == z]
          j = head [k \mid (a,k) <- zip (sucesion y) [1..], a == z]
-- Ejercicio 4. Se consideran los árboles binarios definidos por
      data Arbol a = Hoja | Nodo a (Arbol a) (Arbol a)
                     deriving Show
-- Por ejemplo, el árbol
              5
         1
       / \
-- se representa por
      arbol1 = Nodo 5 (Nodo 4 (Nodo 1 Hoja Hoja) Hoja )
                      (Nodo 7 Hoja (Nodo 8 Hoja Hoja))
-- Definir la función
     takeArbolWhile :: (a -> Bool) -> Arbol a -> Arbol a
```

```
-- tal que (takeArbolWhile p ar) es el subárbol de ar empezando desde la
-- raiz mientras se verifique p. Por ejemplo,
    takeArbolWhile odd arbol1
                              == Nodo 5 Hoja (Nodo 7 Hoja Hoja)
    takeArbolWhile even arbol1 == Hoja
    takeArbolWhile (< 6) arbol1 == Nodo 5 (Nodo 4 (Nodo 1 Hoja Hoja) Hoja
data Arbol a = Hoja | Nodo a (Arbol a) (Arbol a)
              deriving Show
arbol1 = Nodo 5 (Nodo 4 (Nodo 1 Hoja Hoja) Hoja )
               (Nodo 7 Hoja (Nodo 8 Hoja Hoja))
takeArbolWhile :: (a -> Bool) -> Arbol a -> Arbol a
takeArbolWhile p Hoja = Hoja
takeArbolWhile p (Nodo a x y)
              = Nodo a (takeArbolWhile p x) (takeArbolWhile p y)
    | otherwise = Hoja
__ _______
-- Ejercicio 5. Los vectores son tablas cuyos índices son números
-- naturales.
     type Vector a = Array Int a
-- Las matrices son tablas cuyos índices son pares de números naturales.
     type Matriz a = Array (Int,Int) a
-- Por ejemplo,
     c1, c2:: Matriz Double
     c1 = listArray((1,1),(4,4))[1,3,0,0,
                                  -1, 1, -1, 1,
                                  1,-1, 1,-1,
                                  1, 1, -1, 1
     c2 = listArray((1,1),(2,2))[1,1,1,-1]
-- Definir la función
      determinante:: Matriz Double -> Double
-- tal que (determinante p) es el determinante de la matriz p,
-- desarrollándolo por los elementos de una fila. Por ejemplo,
      determinante c1 == 0.0
      determinante c2 == -2.0
```

type Vector a = Array Int a

```
type Matriz a = Array (Int,Int) a
c1, c2:: Matriz Double
c1 = listArray ((1,1),(4,4)) [1,3,0,0,
                              -1, 1, -1, 1,
                              1, -1, 1, -1,
                              1, 1, -1, 1]
c2 = listArray((1,1),(2,2))[1,1,1,-1]
determinante:: Matriz Double -> Double
determinante p
    | (m,n) == (1,1) = p!(1,1)
    | otherwise =
        sum [((-1)^{(i+1)})*(p!(i,1))*determinante (submatriz i 1 p)
                 | i < [1..m]]
            where (,(m,n)) = bounds p
-- (submatriz i j p) es la submatriz de p obtenida eliminado la fila i y
-- la columna j. Por ejemplo,
      submatriz 2 3 (listArray ((1,1),(3,3)) [2,1,5,1,2,3,5,4,2])
      array ((1,1),(2,2)) [((1,1),2),((1,2),1),((2,1),5),((2,2),4)]
      submatriz 2 3 (listArray ((1,1),(3,3)) [1..9])
      array ((1,1),(2,2)) [((1,1),1),((1,2),2),((2,1),7),((2,2),8)]
submatriz :: Num a => Int -> Int -> Matriz a -> Matriz a
submatriz i j p = array ((1,1), (m-1,n-1))
                  [((k,l), p ! f k l) | k <- [1..m-1], l <- [1..n-1]]
                      where (,(m,n)) = bounds p
                            f k l | k < i & l < j = (k, l)
                                   | k >= i \& k | < j = (k+1,l)
                                   | k < i \& k | >= j = (k, l+1)
                                   \mid otherwise = (k+1, l+1)
```

5.1.6. Examen 6 (18 de Junio de 2014)

```
import Data.List
import Data.Array
-- Ejercicio 1 [2 puntos]. Definir la función
       siembra :: [a] -> [[a]] -> [[a]]
-- tal que (siembra xs yss) es la lista obtenida introduciendo cada uno
-- de los elementos de xs en la lista correspondiente de yss; es decir,
-- el primer elemento de xs en la primera lista de yss, el segundo
-- elemento de xs en la segunda lista de yss, etc. Por ejemplo,
      siembra [1,2,3] [[4,7],[6],[9,5,8] == [[1,4,7],[2,6],[3,9,5,8]]
      siembra [1,2] [[4,7],[6],[9,5,8] == [[1,4,7],[2,6],[9,5,8]]
     siembra [1,2,3] [[4,7],[6]]
                                         == [[1,4,7],[2,6]]
siembra :: [a] -> [[a]] -> [[a]]
siembra [] yss = yss
siembra xs [] = []
siembra (x:xs) (ys:yss) = (x:ys) : siembra xs yss
-- Ejercicio 2 [2 puntos]. Definir la función
      primosEquidistantes :: Integer -> [(Integer,Integer)]
-- tal que (primosEquidistantes k) es la lista de los pares de primos
-- consecutivos cuya diferencia es k. Por ejemplo,
      take 3 (primosEquidistantes 2) == [(3,5),(5,7),(11,13)]
     take 3 (primosEquidistantes 4) == [(7,11),(13,17),(19,23)]
     take 3 (primosEquidistantes 6) == [(23,29),(31,37),(47,53)]
     take 3 (primosEquidistantes 8) == [(89,97),(359,367),(389,397)]
primosEquidistantes :: Integer -> [(Integer,Integer)]
primosEquidistantes k = aux primos
   where aux (x:y:ps) \mid y - x == k = (x,y) : aux (y:ps)
                      | otherwise = aux (y:ps)
-- (primo x) se verifica si x es primo. Por ejemplo,
      primo 7 == True
      primo 8 == False
primo :: Integer -> Bool
primo x = [y \mid y < [1..x], x 'rem' y == 0] == [1,x]
-- primos es la lista de los números primos. Por ejemplo,
```

```
take 10 primos == [2,3,5,7,11,13,17,19,23,29]
primos :: [Integer]
primos = 2 : [x | x < - [3,5..], primo x]
-- Ejercicio 3 [2 puntos]. Se consideran los árboles con operaciones
-- booleanas definidos por
      data ArbolB = H Bool
                  | Conj ArbolB ArbolB
                  | Disy ArbolB ArbolB
                  | Neg ArbolB
  Por ejemplo, los árboles
                  Conj
                                                  Conj
             Disy
                       Conj
                                                       Conj
                                             Disy
                        / \
         Conj
                Neg
                       Neg True
                                         Conj
                                                 Neg
                                                       Neg True
      True False False
                                    True False True
                                                       False
  se definen por
      ej1, ej2:: ArbolB
      ej1 = Conj (Disy (Conj (H True) (H False))
                       (Neg (H False)))
                 (Conj (Neg (H False))
                       (H True))
     ej2 = Conj (Disy (Conj (H True) (H False))
                       (Neg (H True)))
                 (Conj (Neg (H False))
                       (H True))
-- Definir la función
      valor:: ArbolB -> Bool
-- tal que (valor ar) es el resultado de procesar el árbol realizando
-- las operaciones booleanas especificadas en los nodos. Por ejemplo,
      valor ej1 == True
      valor ej2 == False
```

```
| Conj ArbolB ArbolB
            | Disy ArbolB ArbolB
            | Neg ArbolB
ej1, ej2:: ArbolB
ej1 = Conj (Disy (Conj (H True) (H False))
                 (Neg (H False)))
           (Conj (Neg (H False))
                 (H True))
ej2 = Conj (Disy (Conj (H True) (H False))
                 (Neg (H True)))
           (Conj (Neg (H False))
                 (H True))
valor:: ArbolB -> Bool
valor (H x)
              = X
valor (Neg a) = not (valor a)
valor (Conj i d) = (valor i) && (valor d)
valor (Disy i d) = (valor i) || (valor d)
-- Ejercicio 4 [2 puntos]. La matriz de Vandermonde generada por
-- [a(1),a(2),a(3),...,a(n)] es la siguiente
      |1 a(1) a(1)^2 \dots a(1)^{n-1}|
      |1 a(2) a(2)^2 \dots a(2)^{n-1}|
      |1 \ a(3) \ a(3)^2 \dots \ a(3)^{n-1}|
      |. .
      1. .
      |1 a(n) a(n)^2 ... a(n)^{n-1}|
-- Las matrices se representan con tablas cuyos índices son pares de
-- números naturales.
     type Matriz a = Array (Int,Int) a
-- Definir la función
      vandermonde:: [Integer] -> Matriz Integer
-- tal que (vandermonde xs) es la matriz de Vandermonde cuyos
-- generadores son los elementos de xs. Por ejemplo,
      ghci> vandermonde [5,2,3,4]
      array ((1,1),(4,4)) [((1,1),1),((1,2),5),((1,3),25),((1,4),125),
                           ((2,1),1),((2,2),2),((2,3),4),((2,4),8),
```

```
((3,1),1),((3,2),3),((3,3),9),((3,4),27),
                          ((4,1),1),((4,2),4),((4,3),16),((4,4),64)
type Matriz a = Array (Int,Int) a
-- 1ª solución
-- ========
vandermondel :: [Integer] -> Matriz Integer
vandermondel xs = array((1,1), (n,n))
                 [((i,j), f i j) | i \leftarrow [1..n], j \leftarrow [1..n]]
     where n
                = length xs
           f i j = (xs!!(i-1))^{(j-1)}
-- 2ª solución
-- ========
vandermonde2 :: [Integer] -> Matriz Integer
vandermonde2 xs = listArray ((1,1),(n,n)) (concat (listaVandermonde xs))
   where n = length xs
-- (listaVandermonde xs) es la lista correspondiente a la matriz de
-- Vandermonde generada por xs. Por ejemplo,
     ghci> listaVandermonde [5,2,3,4]
      [[1,5,25,125],[1,2,4,8],[1,3,9,27],[1,4,16,64]]
listaVandermonde :: [Integer] -> [[Integer]]
listaVandermonde xs = [[x^i \mid i \leftarrow [0..n-1]] \mid x \leftarrow xs]
   where n = length xs
-- Ejercicio 5 [2 puntos]. El número 595 es palíndromo y, además, es
-- suma de cuadrados consecutivos, pues
     595 = 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2.
-- Definir la función
     sucesion:: [Integer]
-- tal que sucesion es la lista de los números que son palíndromos y
-- suma de cuadrados consecutivos. Por ejemplo,
     take 10 sucesion == [1,4,5,9,55,77,121,181,313,434]
     take 15 sucesion == [1,4,5,9,55,77,121,181,313,434,484,505,545,595,636]
```

```
sucesion:: [Integer]
sucesion = [x \mid x < -[1..], palindromo x, esSumaCuadradosConsecutivos x]
palindromo :: Integer -> Bool
palindromo n = show n == reverse (show n)
sucSumaCuadradosDesde :: Integer -> [Integer]
sucSumaCuadradosDesde k = scanl (\s n -> s + n^2) 0 [k..]
esSumaCuadradosConsecutivos n =
    or [pertenece n (sucSumaCuadradosDesde k) | k <- [1..m]]
    where pertenece x \times s = elem \times (takeWhile (<=x) \times s)
                          = floor (sqrt (fromIntegral n))
-- 2ª solución para esSumaCuadradosConsecutivos:
esSumaCuadradosConsecutivos2 n = any (==n) (map sum yss)
    where m = floor (sqrt (fromIntegral n))
          xss = segmentos [1..m]
          yss = map (map (^2)) xss
segmentos :: [a] -> [[a]]
segmentos xs = concat [tail (inits ys) | ys <- init (tails xs)]</pre>
sucesion2:: [Integer]
sucesion2 = [x \mid x < -[1..], palindromo x, esSumaCuadradosConsecutivos2 x]
```

5.1.7. Examen 7 (4 de Julio de 2014)

El examen es común con el del grupo 3 (ver página 373).

5.1.8. Examen 8 (10 de Septiembre de 2014)

El examen es común con el del grupo 3 (ver página 379).

5.1.9. Examen 9 (20 de Noviembre de 2014)

El examen es común con el del grupo 3 (ver página 383).

5.2. Exámenes del grupo 2 (Antonia M. Chávez)

5.2.1. Examen 1 (6 de Noviembre de 2013)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (6 de noviembre de 2013)
__ ______
-- Ejercicio 1.1. Se dice que dos números son hermanos si tienen el
-- mismo número de divisores propios. Por ejemplo, 6 y 22 son hermanos
-- porque ambos tienen tres divisores propios.
-- Definir la función hermanos tal que (hermanos x y) se verifica si x e
-- y son hermanos. Por ejemplo,
     hermanos 6 10 == True
     hermanos 3 4 == False
hermanos x y = length (divisoresProp x) == length (divisoresProp y)
divisoresProp x = [y \mid y < [1 ... x-1], mod x y == 0]
-- Ejercicio 1.2. Definir la función hermanosHasta tal que
-- (hermanosHasta n) es la lista de los pares de números hermanos
-- menores o iguales a n. Por ejemplo,
     hermanosHasta 4 = [(1,1),(2,2),(2,3),(3,2),(3,3),(4,4)]
hermanosHasta n = [(x,y) \mid x < [1 .. n], y < [1 .. n], hermanos x y]
-- Ejercicio 1.3. Definir la propiedad prop hermanos1 tal que
-- (prop_hermanos1 x y) se verifica si se cumple que x es hermano de y
-- si, y sólo si, y es hermano de x.
prop_hermanos1 x y = hermanos x y == hermanos y x
```

```
-- Ejercicio 1.4. Definir la propiedad prop hermanos2 tal
-- (prop hermanos2 x) se verifica si x es hermano de sí mismo.
prop_hermanos2 x = hermanos x x
-- Ejercicio 1.5. Definir la función primerosHermanos tal que
-- (primerosHermanos k) es la lista de los primeros k pares de números
-- hermanos tales que el primero es menor que el segundo. Por ejemplo,
      ghci> primerosHermanos 10
      [(2,3),(2,5),(3,5),(2,7),(3,7),(5,7),(6,8),(4,9),(6,10),(8,10)]
primerosHermanos k =
    take k[(x,y) | y <- [1..], x <- [1..y-1], hermanos x y]
-- Ejercicio 2. Definir la función superDiv tal que (superDiv n) es la
-- lista de listas que contienen los divisores de cada uno de los
-- divisores de n. Por ejemplo,
      superDiv 10 == [[1],[1,2],[1,5],[1,2,5,10]]
      superDiv 12 == [[1],[1,2],[1,3],[1,2,4],[1,2,3,6],[1,2,3,4,6,12]]
divisores n = [x \mid x < [1..n], mod n x == 0]
superDiv n = [divisores x | x <- divisores n]</pre>
-- Ejercicio 2.2. Definir una funcion noPrimos tal que (noPrimos n)
-- es la lista que resulta de sustituir cada elemento de (superDiv n)
-- por el número de números no primos que contiene. Por ejemplo.
      noPrimos 10 == [1,1,1,2]
      noPrimos 12 == [1,1,1,2,2,4]
noPrimos n =
    [length [x \mid x \leftarrow xs, not (primo x)] \mid xs \leftarrow superDiv n]
primo n = divisores n == [1, n]
```

```
-- Ejercicio 3. Una lista es genial si la diferencia en valor absoluto
-- entre cualesquiera dos términos consecutivos es siempre mayor o igual
-- que la posición del primero de los dos. Por ejemplo, [1,3,-4,1] es
-- genial ya que
     11-31
            = 2 >= 0 = posición del 1,
     |3-(-4)| = 7 >= 1 = posición del 3,
     |(-4)-1| = 5 >= 2 = posición del -4.
-- en cambio, [1,3,0,1,2] no es genial ya que
     |1-0| = 1 < 2 = posición del 1.
-- Definir por comprensión la función genial tal que (genial xs) se
-- verifica si xs es una lista genial. Por ejemplo,
     genial[1,3,-4,1] == True
     genial [1,3,0,1,2] == False
genial :: [Int] -> Bool
genial xs =
   and [abs (x-y) >= n \mid ((x,y),n) <- zip (zip xs (tail xs)) [0..]]
-- 2º definición:
genial2 :: [Int] -> Bool
genial2 xs =
   and [abs (x-y) >= n \mid (x,y,n) <- zip3 xs (tail xs) [0..]]
5.2.2. Examen 2 (4 de Diciembre de 2013)
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (4 de diciembre de 2013)
  -- § Librerías auxiliares
import Test.QuickCheck
```

-- Ejercicio 1. Definir, sin usar recursión, la función intro tal que -- (intro x n xs) es la lista que resulta de introducir x en el lugar n -- de la lista xs. Si n es negativo, x se introducirá como primer

__ _______

```
-- elemento; si n supera la longitud de xs, x aparecerá al final de
-- xs. Por ejemplo,
     intro 5 1 [1,2,3]
                        == [1,5,2,3]
     intro 'd' 2 "deo" == "dedo"
     intro 5 (-3) [1,2,3] == [5,1,2,3]
     intro 5 10 [1,2,3] == [1,2,3,5]
intro x n xs = take n xs ++ [x] ++ drop n xs
-- Ejercicio 2. Definir, por recursión, la función introR tal que sea
-- equivalenta a la función intro del ejercicio anterior.
introR \times n [] = [x]
introR x n (y:xs) \mid n \le 0
                                    = x:y:xs
                 \mid n > length (y:xs) = (y:xs) ++ [x]
                 | otherwise
                                  = y : introR \times (n-1) \times s
-- Ejercicio 3. Definir la función primerosYultimos tal que
-- (primerosYultimos xss) es el par formado por la lista de los
-- primeros elementos de las listas no vacías de xss y la lista de los
-- últimos elementos de las listas no vacías de xs. Por ejemplo,
     ghci> primerosYultimos [[1,2],[5,3,4],[],[0,8,7,6],[],[9]]
     ([1,5,0,9],[2,4,6,9])
primerosYultimos xss =
    ([head xs | xs <- xss, not (null xs)],
    [last xs | xs <- xss, not (null xs)])</pre>
-- Ejercicio 4. El número personal se calcula sumando las cifras del
-- día/mes/año de nacimiento sucesivamente hasta que quede un solo
-- dígito. Por ejemplo, el número personal de los que han nacido el
-- 29/10/1994 se calcula por
     29/10/1994 --> 2+9+1+0+1+9+4
                = 26
                --> 2+6
                = 8
```

```
-- Definir la función personal tal que (personal x y z) es el número
-- personal de los que han nacido el día x del mes y del año z. Por
-- ejemplo,
     personal 29 10 1994 == 8
personal x y z =
    reduce (sum (concat [digitos x, digitos y, digitos z]))
digitos n \mid n < 10 = [n]
          | otherwise = n 'rem' 10 : digitos (n 'div' 10)
reduce x \mid x < 10 = x
         | otherwise = reduce (sum (digitos x))
-- Ejercicio 5. Definir, por recursión, la función parMitad tal que
-- (parMitad xs) es la lista obtenida sustituyendo cada numero par de la
-- lista xs por su mitad. Por ejemplo,
      parMitad [1,2,3,4,5,6] = [1,1,3,2,5,3]
parMitad [] = []
parMitad (x:xs) | even x = x 'div' 2 : parMitad xs
                | otherwise = x : parMitad xs
-- Ejercicio 6. Definir la funcion parMitad1 que sea equivalente a
-- parMitad, pero no recursiva.
parMitad1 = map f
    where f x \mid even x = div x 2
              | otherwise = x
-- Ejercicio 7. Comprobar con QuickCheck que las funciones parMitad y
-- parMitad1 son equivalentes.
-- La propiedad es
prop_parMitad xs = parMitad xs == parMitad1 xs
```

```
-- La comprobación es
-- ghci> quickCheck prop_parMitad
-- +++ 0K, passed 100 tests.
```

5.2.3. Examen 3 (23 de Enero de 2014)

El examen es común con el del grupo 3 (ver página 353).

5.2.4. Examen 4 (24 de Marzo de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (24 de marzo de 2014)
  ______
-- § Librerías auxiliares
import Test.QuickCheck
import Data.List (nub, sort)
-- Ejercicio 1.1. Los polinomios se pueden representar mediante el
-- siguiente tipo algebraico
     data Polinomio = Indep Int | Monomio Int Int Polinomio
                     deriving (Eq, Show)
-- Por ejemplo, el polinomio 3x^2+2x-5 se representa por
     ej1 = Monomio 3 2 (Monomio 2 1 (Indep (-5)))
-- y el polinomio 4x^3-2x por
     ej2 = Monomio 4 3 (Monomio (-2) 1 (Indep 0))
-- Observa que si un monomio no aparece en el polinomio, en su
-- representación tampoco aparece; es decir, el coeficiente de un
-- monomio en la representación no debe ser cero.
-- Definir la función
     sPol :: Polinomio -> Polinomio -> Polinomio
-- tal que (sPol p q) es la suma de p y q. Por ejemplo,
     sPol ej1 ej2 == Monomio 4 3 (Monomio 3 2 (Indep (-5)))
     sPol ej1 ej1 == Monomio 6 2 (Monomio 4 1 (Indep (-10)))
```

data Polinomio = Indep Int | Monomio Int Int Polinomio

```
deriving (Eq, Show)
ej1 = Monomio 3 2 (Monomio 2 1 (Indep (-5)))
ej2 = Monomio 4 3 (Monomio (-2) 1 (Indep 0))
sPol :: Polinomio -> Polinomio -> Polinomio
sPol (Indep 0) q = q
sPol p (Indep 0) = p
sPol (Indep n) (Indep m) = Indep (m+n)
sPol (Indep n) (Monomio c g p)= Monomio c g (sPol p (Indep n))
sPol (Monomio c g p) (Indep n) = Monomio c g (<math>sPol p (Indep n))
sPol pl@(Monomio c1 g1 r1) p2@(Monomio c2 g2 r2)
    | g1 > g2 = Monomio c1 g1 (sPol r1 p2)
    | g1 < g2 = Monomio c2 g2 (sPol p1 r2)
    | c1+c2 /= 0 = Monomio (c1+c2) g1 (sPol r1 r2)
    | otherwise = sPol r1 r2
-- Ejercicio 1.2. Los polinomios también se pueden representar mediante
-- la lista de sus coeficientes. Por ejemplo, el polinomio ej1 se
-- representa por [3,2,-5] y el polinomio ej2 vendrá por [4,0,-2,0].
- -
-- Definir la función
      cambia :: Polinomio -> [Int]
-- tal que (cambia p) es la lista de los coeficientes de p. Por ejemplo,
      cambia ej1 == [3,2,-5]
      cambia ej2 == [4,0,-2,0]
cambia :: Polinomio -> [Int]
cambia (Indep n) = [n]
cambia (Monomio c q (Indep n)) = (c:(replicate 0 (q-1)))++[n]
cambia (Monomio c1 g1 (Monomio c2 g2 p)) =
    (c1:(replicate (g1-g2-1) 0)) ++ cambia (Monomio c2 g2 p)
-- Ejercicio 2. Los árboles binarios se pueden representar mediante el
-- siguiente tipo de datos
      data Arbol a = H a
                   | N a (Arbol a) (Arbol a)
                   deriving (Show, Eq)
-- Definir la función
```

```
profundidades :: (Num t, Eq t) => Arbol t -> t -> [t]
-- tal que (profundidades a x) es la lista de las profundidades que ocupa x
-- en el árbol a. Por ejemplo,
      profundidades (N 1 (H 1) (N 3 (H 1) (H 2))) 1 == [1,2,3]
      profundidades (N 1 (H 1) (N 3 (H 1) (H 2))) 2 ==
                                                         [3]
      profundidades (N 1 (H 1) (N 3 (H 1) (H 2))) 3 ==
                                                         [2]
      profundidades (N 1 (H 1) (N 3 (H 1) (H 2))) 4 == []
data Arbola = Ha
             | N a (Arbol a) (Arbol a)
             deriving (Show, Eq)
profundidades :: (Num t, Eq t) => Arbol t -> t -> [t]
profundidades (H y) x \mid x == y = [1]
                      | otherwise = []
profundidades (N y i d) x
             = 1:[n+1 | n <- profundidades i x ++ profundidades d x]
    | otherwise = [n+1 | n < - profundidades i x ++ profundidades d x]
-- Ejercicio 3.1. La sucesión de Phill esta definida por
     x \theta = 2
     x 1 = 7
     x 3 = 2*x (n-1) - x (n-2), si n > 1.
-- Definir, por recursión, la función
      phill :: Integer -> Integer
-- tal que (phill n) es el n-ésimo término de la sucesión de Phill. Por
-- ejemplo,
      phill 8 == 42
phill :: Integer -> Integer
phill 0 = 2
phill 1 = 7
phill n = 2*(phill (n-1)) - phill (n-2)
-- Ejercicio 3.2. Definir, por comprensión, la función
      phills :: [Integer]
-- tal que phills es la sucesión de Phill. Por ejemplo,
     take 8 phills == [2,7,12,17,22,27,32,37]
```

```
__ _______
phills :: [Integer]
phills = [phill n \mid n < - [0..]]
__ ______
-- Ejercicio 3.3. Definir, por recursión (evaluación perezosa) la
-- función
    phills1 :: [Integer]
-- tal que phills1 es la sucesion de Phill. Por ejemplo,
    take 8 phills1 == [2,7,12,17,22,27,32,37]
-- Nota: Dar dos definiciones, una sin usar zipWith o otra usándola.
-- Sin zipWith:
phills1 :: [Integer]
phills1 = aux 2 7
   where aux x y = x : aux y (2*y-x)
-- Con zipWith:
phills2 :: [Integer]
phills2 = 2:7:zipWith f phills2 (tail phills2)
   where f x y = 2*y-x
__ _______
-- Ejercicio 3.4. Definir la función
    unidades :: [Integer]
-- tal que unidades es la lista de los últimos dígitos de cada término de
-- la sucesión de Phills. Por ejemplo,
    take 15 unidades == [2,7,2,7,2,7,2,7,2,7,2,7,2,7,2]
unidades :: [Integer]
unidades = map ('mod' 10) phills2
__ ______
-- Ejercicio 3.5. Definir, usando unidades, la propiedad
    propPhill :: Int -> Bool
-- tal que (propPhill n) se verifica si el término n-ésimo de la
-- sucesión de Phill termina en 2 o en 7 según n sea par o impar.
-- Comprobar la propiedad para los 500 primeros términos.
```

```
propPhill :: Int -> Bool
propPhill n | even n = unidades !! n == 2
           | otherwise = unidades !! n == 7
-- La comprobación es
     ghci> and [propPhill n |n <- [0 .. 499]]
     True
5.2.5. Examen 5 (19 de Mayo de 2014)
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (19 de mayo de 2014)
 . ......
-- § Librerías auxiliares
import Data.List
import Data.Array
-- Ejercicio 1. De una lista se pueden extraer los elementos
-- consecutivos repetidos indicando el número de veces que se repite
-- cada uno. Por ejemplo, la lista [1,1,7,7,7,5,5,7,7,7,7] comienza con
-- dos 1, seguido de tres 7, dos 5 y cuatro 7; por tanto, la extracción
-- de consecutivos repetidos devolverá [(2,1),(3,7),(2,5),(4,7)]. En
-- [1,1,7,5,7,7,7,7], la extracción será [(2,1),(4,7)] ya que el primer
-- 7 y el 5 no se repiten.
-- Definir la funcion
     extraer :: Eq a => [a] -> [(Int,a)]
-- tal que (extraer xs) es la lista que resulta de la extracción de
-- consecutivos repetidos en la lista xs. Por ejemplo,
     extraer [1,1,7,7,7,5,5,7,7,7,7] == [(2,1),(3,7),(2,5),(4,7)]
     extraer "HHoollla" == [(2,'H'),(2,'o'),(4,'l')]
-- 1ª definición (por comprensión)
```

```
extraer :: Eq a => [a] -> [(Int,a)]
extraer xs = [(length (y:ys),y) | (y:ys) <- group xs, not (null ys)]
-- 2º definición (por recursión)
extraer2 :: Eq a => [a] -> [(Int,a)]
extraer2 [] = []
extraer2 (x:xs) \mid n == 0 = extraer2 (drop n xs)
                | otherwise = (1+n,x) : extraer2 (drop n xs)
    where n = length (takeWhile (==x) xs)
-- Ejercicio 2.1. Partiendo de un número a, se construye la sucesión
-- de listas [xs(1), xs(2) ,xs(3), ...] tal que
      * xs(1) = [x(1,1), x(1,2), x(1,3), ....], donde
        x(1,1) = a + el primer primo mayor que a,
        x(1,2) = a + el segundo primo mayor que a, ...
      * xs(2) = [x(2,1), x(2,2), x(2,3), ....], donde
        x(2,i) = x(1,i) + el primer primo mayor que x(1,1),
      * xs(3) = [x(2,1), x(2,2), x(3,3), ....], donde
        x(3,i) = x(2,i) + el primer primo mayor que x(2,1),
-- Por ejemplo, si empieza con a = 15, la sucesión es
      [[15+17, 15+19, 15+23, ...],
       [(15+17)+37, (15+19)+37, (15+23)+41, \ldots],
       [((15+17)+37)+71, \ldots]]
     = [[32,34,38,\ldots],[69,71,79,\ldots],[140,144,162,\ldots],\ldots]
-- Definir la función
      sucesionN :: Integer -> Int -> [Integer]
-- tal que (sucesionN x n) es elemento n-ésimo de la sucesión que
-- empieza por a. Por ejemplo,
      take 10 (sucesionN 15 2) == [69,71,79,91,93,105,115,117,129,139]
sucesionN :: Integer -> Int -> [Integer]
sucesionN x 1 = [x+y | y < -primos, y > x]
sucesionN x n = zipWith (+) (map menorPrimoMayor (sucesionN x (n-1)))
                             (sucesionN \times (n-1))
menorPrimoMayor :: Integer -> Integer
menorPrimoMayor x = head [y | y <- primos, y > x]
```

```
primos :: [Integer]
primos = [x \mid x \leftarrow [1 ..], factores x == [1,x]]
factores :: Integer -> [Integer]
factores x = [y \mid y < -[1 ..x], mod x y == 0]
-- Ejercicio 2.2. Definir la función
     sucesion :: Integer -> [[Integer]]
-- tal que (sucesion a) es la sucesión construida a partir de a. Por
-- ejemplo,
     ghci> take 5 (map (take 4)(sucesion 15))
     [[32,34,38,44],[69,71,79,91],[140,144,162,188],[289,293,325,379],
     [582,600,656,762]]
sucesion :: Integer -> [[Integer]]
sucesion a = [sucesionN \ a \ n \mid n < - [1..]]
-- Ejercicio 2.3. Definir la función
     cuenta :: Integer -> Integer -> Int -> [Int]
-- tal que (cuenta a b n) es la lista del número de elementos de las
-- primeras n listas de la (sucesion a) que son menores que b. Por
-- ejemplo,
     ghci> cuenta 15 80 5
     [12,3,0,0,0]
cuenta :: Integer -> Integer -> Int -> [Int]
cuenta a b n =
   map (length . takeWhile (< b)) [sucesionN a m | m <- [1 .. n]]</pre>
-- Ejercicio 3. Definir la función
     simetricos:: Eq a => [a] -> [a]
-- tal que (simetricos xs) es la lista de los elementos de xs que
-- coinciden con su simétricos. Por ejemplo,
     simetricos [1,2,3,4,3,2,1]
                               == [1,2,3]
     simetricos [1,2,5,4,3,4,3,2,1] == [1,2,4]
     simetricos "amiima"
                                 == "ami"
                                 == "a"
     simetricos "ala"
     simetricos [1..20]
                                  == []
```

```
simetricos:: Eq a => [a] -> [a]
simetricos xs =
    [x \mid (x,y) \leftarrow zip (take m xs) (take m (reverse xs)), x==y]
    where m = div (length xs) 2
-- Ejercicio 4. La matrices piramidales son las formadas por unos y ceros
-- de forma que los unos forman una pirámide. Por ejemplo,
                     |0 0 1 0 0|
     |1|
           |0 1 0|
                                    [0 0 0 1 0 0 0]
           |1 1 1|
                     |0 1 1 1 0 |
                                    |0 0 1 1 1 0 0 |
                     |1 1 1 1 1 |
                                    |0 1 1 1 1 1 0 |
                                    |1 1 1 1 1 1 1 1
-- El tipo de las matrices se define por
      type Matriz a = Array (Int,Int) a
-- Por ejemplo, las matrices anteriores se definen por
      p1, p2, p3 :: Matriz Int
      p1 = listArray((1,1),(1,1))[1]
      p2 = listArray((1,1),(2,3))[0,1,0,
                                     1, 1, 1
      p3 = listArray ((1,1),(3,5)) [0,0,1,0,0,
                                    0,1,1,1,0,
                                     1,1,1,1,1
-- Definir la función
      esPiramidal :: (Eq a, Num a) => Matriz a -> Bool
-- tal que (esPiramidal p) se verifica si la matriz p es piramidal. Por
-- ejemplo,
      esPiramidal p3
                                                                 True
      esPiramidal (listArray ((1,1),(2,3)) [0,1,0, 1,5,1])
                                                             == False
      esPiramidal (listArray ((1,1),(2,3)) [0,1,1, 1,1,1])
                                                             == False
      esPiramidal (listArray ((1,1),(2,3)) [0,1,0, 1,0,1]) ==
type Matriz a = Array (Int,Int) a
p1, p2, p3 :: Matriz Int
p1 = listArray((1,1),(1,1))[1]
p2 = listArray((1,1),(2,3))[0,1,0,
                              1, 1, 1
p3 = listArray ((1,1),(3,5)) [0,0,1,0,0,
```

```
0,1,1,1,0,
                              1,1,1,1,1
esPiramidal :: (Eq a, Num a) => Matriz a -> Bool
esPiramidal p =
    p == listArray ((1,1),(n,m)) (concat (filasPiramidal n))
   where (,(n,m)) = bounds p
-- (filasPiramidal n) es la lista dela filas de la matriz piramidal de n
-- filas. Por ejemplo,
      filasPiramidal 1 ==
                            [[1]]
      filasPiramidal 2 ==
                            [[0,1,0],[1,1,1]]
      filasPiramidal 3 == [[0,0,1,0,0],[0,1,1,1,0],[1,1,1,1,1]]
filasPiramidal 1 = [[1]]
filasPiramidal n = [0:xs++[0] \mid xs < -filasPiramidal (n-1)] ++
                   [replicate (2*n-1) 1]
-- 2ª definición
-- ==========
esPiramidal2 :: (Eq a, Num a) => Matriz a -> Bool
esPiramidal2 p =
    p == piramidal n
   where (,(n,)) = bounds p
-- (piramidal n) es la matriz piramidal con n filas. Por ejemplo,
      ghci> piramidal 3
      array ((1,1),(3,5)) [((1,1),0),((1,2),0),((1,3),1),((1,4),0),((1,5),0),
                           ((2,1),0),((2,2),1),((2,3),1),((2,4),1),((2,5),0),
                           ((3,1),1),((3,2),1),((3,3),1),((3,4),1),((3,5),1)]
piramidal :: (Eq a, Num a) => Int -> Matriz a
piramidal n =
    array ((1,1),(n,2*n-1)) [((i,j),f i j) | i <- [1..n], j <- [1..2*n-1]]
    where f i j | j \le n-i = 0
                | j < n+i = 1
                | otherwise = 0
-- Ejercicio 5. Los árboles se pueden representar mediante el siguiente
-- tipo de dato
      data Arbol a = N a [Arbol a]
                         deriving Show
-- Por ejemplo, los árboles
```

```
1
                        3
                                         3
- -
                       /|\
- -
          3
                      / | \
                     5 4 7
          5
                                         4 7
          4
                                         6
                          2 1
                                     6
                                         1 2
                                        / \
                                       2
                                           3
                                           ı
                                           4
   se representan por
      ej1, ej2,ej3 :: Arbol Int
      ej1 = N 1 [N 2 [], N 3 [N 4 []]]
      ej2 = N 3 [N 5 [N 6 []],
                 N 4 [],
                 N 7 [N 2 [], N 1 []]]
      ej3 = N 3 [N 5 [N 6 []],
                 N 4 [N 1 [N 2 [], N 3 [N 4 []]]],
                 N 7 [N 2 [], N 1 []]]
-- Definir la función
       ramifica :: Arbol a -> Arbol a -> (a -> Bool) -> Arbol a
-- tal que (ramifica al a2 p) el árbol que resulta de añadir una copia
-- del árbol a2 a los nodos de a1 que cumplen un predicado p. Por
-- ejemplo,
      ghci> ramifica (N 3 [N 5 [N 6 []],N 4 [],N 7 [N 2 [],N 1 []]]) (N 8 []) (>5
      N 3 [N 5 [N 6 [N 8 []]], N 4 [], N 7 [N 2 [], N 1 [], N 8 []]]
data Arbol a = N a [Arbol a]
                   deriving Show
ej1, ej2,ej3 :: Arbol Int
ej1 = N 1 [N 2 [], N 3 [N 4 []]]
ej2 = N 3 [N 5 [N 6 []],
           N 4 [],
           N 7 [N 2 [], N 1 []]]
ej3 = N 3 [N 5 [N 6 []],
           N 4 [N 1 [N 2 [], N 3 [N 4 []]]],
           N 7 [N 2 [], N 1 []]]
ramifica (N x xs) a2 p
```

```
| p x = N x ([ramifica a a2 p | a <- xs] ++ [a2])
| otherwise = N x [ramifica a a2 p | a <- xs]
```

5.2.6. Examen 6 (18 de Junio de 2014)

El examen es común con el del grupo 3 (ver página 365).

5.2.7. Examen 7 (4 de Julio de 2014)

El examen es común con el del grupo 3 (ver página 373).

5.2.8. Examen 8 (10 de Septiembre de 2014)

El examen es común con el del grupo 3 (ver página 379).

5.2.9. Examen 9 (20 de Noviembre de 2014)

El examen es común con el del grupo 3 (ver página 383).

5.3. Exámenes del grupo 3 (José A. Alonso y Luis Valencia)

5.3.1. Examen 1 (5 de Noviembre de 2013)

divisoresPrimos $x = [n \mid n < - \text{ divisores } x, \text{ primo } n]$

```
-- (divisores n) es la lista de los divisores del número n. Por ejemplo,
     divisores 30 = [1,2,3,5,6,10,15,30]
divisores :: Integer -> [Integer]
divisores n = [x \mid x < -[1..n], n 'mod' x == 0]
-- (primo n) se verifica si n es primo. Por ejemplo,
     primo 30 == False
     primo 31 == True
primo :: Integer -> Bool
primo n = divisores n == [1, n]
  ______
-- Ejercicio 2. [2.5 puntos] La multiplicidad de x en y es la mayor
-- potencia de x que divide a y. Por ejemplo, la multiplicidad de 2 en
-- 40 es 3 porque 40 es divisible por 2^3 y no lo es por 2^4. Además, la
-- multiplicidad de 1 en cualquier número se supone igual a 1.
-- Definir la función
     multiplicidad :: Integer -> Integer -> Integer
-- tal que (multiplicidad x y) es la
-- multiplicidad de x en y. Por ejemplo,
     multiplicidad 2 40 == 3
     multiplicidad 5 40 == 1
     multiplicidad 3 40 == 0
     multiplicidad 1 40 == 1
multiplicidad :: Integer -> Integer -> Integer
multiplicidad 1 = 1
multiplicidad x y =
   head [n \mid n < [0..], y 'rem' (x^n) == 0, y 'rem' (x^(n+1)) /= 0]
-- Ejercicio 3. [2.5 puntos] Un número es libre de cuadrados si no es
-- divisible el cuadrado de ningún entero mayor que 1. Por ejemplo, 70
-- es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70; en
-- cambio, 40 no es libre de cuadrados porque es divisible por 2^2.
-- Definir la función
     libreDeCuadrados :: Integer -> Bool
-- tal que (libreDeCuadrados x) se verifica si x es libre de cuadrados.
-- Por ejemplo,
```

```
libreDeCuadrados 70 == True
     libreDeCuadrados 40 == False
-- Calcular los 10 primeros números libres de cuadrado de 3 cifras.
-- lª definición:
libreDeCuadrados :: Integer -> Bool
libreDeCuadrados x = x == product (divisoresPrimos x)
-- NOTA: La función primo está definida en el ejercicio 1.
-- 2ª definición
libreDeCuadrados2 :: Integer -> Bool
libreDeCuadrados2 x =
   and [multiplicidad n x == 1 \mid n < - \text{ divisores } x]
-- 3ª definición
libreDeCuadrados3 :: Integer -> Bool
libreDeCuadrados3 n =
   null [x \mid x < -[2..n], rem n (x^2) == 0]
-- El cálculo es
     ghci> take 10 [n | n <- [100..], libreDeCuadrados n]</pre>
      [101, 102, 103, 105, 106, 107, 109, 110, 111, 113]
-- Ejercicio 4. [2.5 puntos] La distancia entre dos números es el valor
-- absoluto de su diferencia. Por ejemplo, la distancia entre 2 y 5 es
-- 3.
-- Definir la función
     cercanos :: [Int] -> [Int] -> [(Int,Int)]
-- tal que (cercanos xs ys) es la lista de pares de elementos de xs e ys
-- cuya distancia es mínima. Por ejemplo,
     cercanos [3,7,2,1] [5,11,9] == [(3,5),(7,5),(7,9)]
cercanos :: [Int] -> [Int] -> [(Int,Int)]
cercanos xs ys =
    [(x,y) | (x,y) < - pares, abs (x-y) == m]
   where pares = [(x,y) | x <- xs, y <- ys]
         m = minimum [abs (x-y) | (x,y) <- pares]
```

5.3.2. Examen 2 (17 de Diciembre de 2013)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (17 de diciembre de 2013)
import Test.QuickCheck
import Data.List (sort)
-- Ejercicio 1. [2.5 puntos] Definir la función
     expandida :: [Int] -> [Int]
-- tal que (expandida xs) es la lista obtenida duplicando cada uno de
-- los elementos pares de xs. Por ejemplo,
    expandida [3,5,4,6,6,1,0] == [3,5,4,4,6,6,6,6,1,0,0]
     expandida [3,5,4,6,8,1,0] == [3,5,4,4,6,6,8,8,1,0,0]
expandida :: [Int] -> [Int]
expandida [] = []
expandida (x:xs) | even x = x : x : expandida xs
              | otherwise = x : expandida xs
-- Ejercicio 2. [2.5 puntos] Comprobar con QuickCheck que el número de
-- elementos de (expandida xs) es el del número de elementos de xs más
-- el número de elementos pares de xs.
-- -----
prop expandida :: [Int] -> Bool
prop_expandida xs =
   length (expandida xs) == length xs + length (filter even xs)
-- La comprobación es
     ghci> quickCheck prop_expandida
    +++ OK, passed 100 tests.
-- Ejercicio 3. [2.5 puntos] Definir la función
    digitosOrdenados :: Integer -> Integer
-- tal que (digitosOrdenados n) es el número obtenido ordenando los
-- dígitos de n de mayor a menor. Por ejemplo,
    digitosOrdenados 325724237 == 775433222
```

```
digitosOrdenados :: Integer -> Integer
digitosOrdenados n = read (ordenados (show n))
ordenados :: Ord a \Rightarrow [a] \rightarrow [a]
ordenados [] = []
ordenados (x:xs) =
    ordenados mayores ++ [x] ++ ordenados menores
    where mayores = [y \mid y < -xs, y > x]
         menores = [y \mid y < -xs, y <=x]
-- Nota: La función digitosOrdenados puede definirse por composición
digitosOrdenados2 :: Integer -> Integer
digitosOrdenados2 = read . ordenados . show
-- Nota: La función digitosOrdenados puede definirse por composición y
-- también usando sort en lugar de ordenados
digitosOrdenados3 :: Integer -> Integer
digitosOrdenados3 = read . reverse . sort . show
__ _______
-- Ejercicio 4. [2.5 puntos] Sea f la siguiente función, aplicable a
-- cualquier número entero positivo:
-- * Si el número es par, se divide entre 2.
-- * Si el número es impar, se multiplica por 3 y se suma 1.
-- La carrera de Collatz consiste en, dada una lista de números ns,
-- sustituir cada número n de ns por f(n) hasta que alguno sea igual a
-- 1. Por ejemplo, la siguiente sucesión es una carrera de Collatz
     [ 3, 6,20, 49, 73]
     [10, 3, 10, 148, 220]
     [ 5,10, 5, 74,110]
     [16, 5, 16, 37, 55]
     [ 8,16, 8,112,166]
     [ 4, 8, 4, 56, 83]
- -
     [ 2, 4, 2, 28,250]
     [ 1, 2, 1, 14,125]
-- En esta carrera, los ganadores son 3 y 20.
-- Definir la función
     ganadores :: [Int] -> [Int]
     ganadores [3,6,20,49,73] == [3,20]
```

```
ganadores :: [Int] -> [Int]
ganadores xs = selecciona xs (final xs)
-- (final xs) es el estado final de la carrera de Collatz a partir de
-- xs. Por ejemplo,
     final [3,6,20,49,73] == [1,2,1,14,125]
final :: [Int] -> [Int]
final xs \mid elem 1 xs = xs
        | otherwise = final [siguiente x | x <- xs]
-- (siguiente x) es el siguiente de x en la carrera de Collatz. Por
-- ejemplo,
     siguiente 3 == 10
     siguiente 6 == 3
siguiente :: Int -> Int
siguiente x \mid even x = x 'div' 2
           | otherwise = 3*x+1
-- (selecciona xs ys) es la lista de los elementos de xs cuyos tales que
-- los elementos de ys en la misma posición son iguales a 1. Por ejemplo,
     selecciona [3,6,20,49,73] [1,2,1,14,125] == [3,20]
selecciona :: [Int] -> [Int] -> [Int]
selecciona xs ys =
   [x \mid (x,y) < -zip xs ys, y == 1]
        Examen 3 (23 de Enero de 2014)
5.3.3.
-- Informática (1º del Grado en Matemáticas)
-- 3º examen de evaluación continua (23 de enero de 2014)
-- Ejercicio 1. El factorial de 7 es
     7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 = 5040
-- por tanto, el último dígito no nulo del factorial de 7 es 4.
-- Definir la función
     ultimoNoNuloFactorial :: Integer -> Integer
-- tal que (ultimoNoNuloFactorial n) es el último dígito no nulo del
-- factorial de n. Por ejemplo,
```

```
ultimoNoNuloFactorial 7 == 4
ultimoNoNuloFactorial :: Integer -> Integer
ultimoNoNuloFactorial n = ultimoNoNulo (factorial n)
-- (ultimoNoNulo n) es el último dígito no nulo de n. Por ejemplo,
     ultimoNoNulo 5040 == 4
ultimoNoNulo :: Integer -> Integer
ultimoNoNulo n \mid m \mid = 0 = m
             | otherwise = ultimoNoNulo (n 'div' 10)
             where m = n 'rem' 10
-- 2ª definición (por comprensión)
ultimoNoNulo2 :: Integer -> Integer
ultimoNoNulo2 n = read [head (dropWhile (=='0') (reverse (show n)))]
-- (factorial n) es el factorial de n. Por ejemplo,
     factorial 7 == 5040
factorial :: Integer -> Integer
factorial n = product [1..n]
__ ______
-- Ejercicio 2.1. Una lista se puede comprimir indicando el número de
-- veces consecutivas que aparece cada elemento. Por ejemplo, la lista
-- comprimida de [1,1,7,7,7,5,5,7,7,7,7] es [(2,1),(3,7),(2,5),(4,7)],
-- indicando que comienza con dos 1, seguido de tres 7, dos 5 y cuatro
-- 7.
-- Definir, por comprensión, la función
     expandidaC :: [(Int,a)] -> [a]
-- tal que (expandidaC ps) es la lista expandida correspondiente a ps
-- (es decir, es la lista xs tal que la comprimida de xs es ps). Por
-- ejemplo,
     expandidaC [(2,1),(3,7),(2,5),(4,7)] == [1,1,7,7,7,5,5,7,7,7,7]
expandidaC :: [(Int,a)] -> [a]
-- Ejercicio 2.2. Definir, por recursión, la función
     expandidaR :: [(Int,a)] -> [a]
```

```
-- tal que (expandidaR ps) es la lista expandida correspondiente a ps
-- (es decir, es la lista xs tal que la comprimida de xs es ps). Por
-- ejemplo,
    expandidaR [(2,1),(3,7),(2,5),(4,7)] == [1,1,7,7,7,5,5,7,7,7,7]
expandidaR :: [(Int,a)] -> [a]
expandidaR [] = []
expandidaR ((n,x):ps) = replicate n x ++ expandidaR ps
-- Ejercicio 3.1. Un número n es de Angelini si n y 2n tienen algún
-- dígito común. Por ejemplo, 2014 es un número de Angelini ya que 2014
-- y su doble (4028) comparten los dígitos 4 y 0.
-- Definir la función
      angelini :: Integer -> Bool
-- tal que (angelini n) se verifica si n es un número de Angelini. Por
-- ejemplo,
      angelini 2014 == True
      angelini 2067 == False
-- la definición (con any)
angelini :: Integer -> Bool
angelini n = any ('elem' (show (2*n))) (show n)
-- 2ª definición (por comprensión)
angelini2 :: Integer -> Bool
angelini2 n = not (null [x \mid x < - \text{ show n, } x \text{ 'elem' show } (2*n)])
-- 3ª definición (por recursión)
angelini3 :: Integer -> Bool
angelini3 n = aux (show n) (show (2*n))
    where aux [] = False
          aux (x:xs) ys = x 'elem' ys || aux xs ys
-- 4ª definición (por plegado)
angelini4 :: Integer -> Bool
angelini4 n = aux (show n)
    where aux = foldr f False
          f \times y = x 'elem' show (2*n) \mid \mid y
```

```
-- Ejercicio 3.2. ¿Cuál es el primer año que no será de Angelini?
__ _______
-- El cálculo es
     ghci> head [n | n <- [2014..], not (angelini n)]</pre>
     2057
-- Ejercicio 4.1. El número 37 es primo y se puede escribir como suma de
-- primos menores distintos (en efecto, los números 3, 11 y 23 son
-- primos y su suma es 37.
- -
-- Definir la función
     primoSumaDePrimos :: Integer -> Bool
-- tal que (primoSumaDePrimos n) se verifica si n es primo y se puede
-- escribir como suma de primos menores que n. Por ejemplo,
     primoSumaDePrimos 37 == True
     primoSumaDePrimos 39 == False
     primoSumaDePrimos 11 == False
primoSumaDePrimos :: Integer -> Bool
primoSumaDePrimos n = primo n && esSumaDePrimos n
-- (esSumaDePrimos n) se verifica si n es una suma de primos menores que
-- n. Por ejemplo,
     esSumaDePrimos 37 == True
     esSumaDePrimos 11 == False
esSumaDePrimos :: Integer -> Bool
esSumaDePrimos n = esSuma n [x \mid x <- 2:[3,5..n-1], primo x]
-- (primo n) se verifica si n es primo. Por ejemplo,
     primo 37 == True
     primo 38 == False
primo :: Integer -> Bool
primo n = [x \mid x < [1..n], n 'rem' x == 0] == [1,n]
-- (esSuma n xs) s verifica si n es suma de elementos de xs. Por ejemplo,
     esSuma 20 [4,2,7,9] == True
     esSuma 21 [4,2,7,9] == False
esSuma :: Integer -> [Integer] -> Bool
esSuma 0
                         = True
```

interpretaciones [] = [[]]

```
esSuma n []
                          = False
esSuma n (x:xs) | n == x = True
               \mid n > x = esSuma n xs \mid \mid esSuma (n-x) xs
               | otherwise = esSuma n xs
-- Ejercicio 4.2. ¿Cuál será el próximo año primo suma de primos? ¿y el
-- anterior?
-- El cálculo es
     ghci> head [p | p <- [2014..], primoSumaDePrimos p]</pre>
     ghci> head [p | p <- [2014,2013..], primoSumaDePrimos p]</pre>
     2011
       Examen 4 (21 de Marzo de 2014)
-- Informática (1º del Grado en Matemáticas)
-- 4^{\circ} examen de evaluación continua (21 de marzo de 2014)
-- Ejercicio 1. [2.5 puntos] Definir la función
     interpretaciones :: [a] -> [[(a,Int)]]
-- tal que (interpretaciones xs) es la lista de las interpretaciones
-- sobre la lista de las variables proposicionales xs sobre los valores
-- de verdad 0 y 1. Por ejemplo,
     ghci> interpretaciones "A"
     [[('A',0)],[('A',1)]]
     ghci> interpretaciones "AB"
     [[('A',0),('B',0)],[('A',0),('B',1)],
      [('A',1),('B',0)],[('A',1),('B',1)]]
     ghci> interpretaciones "ABC"
     [[('A',0),('B',0),('C',0)],[('A',0),('B',0),('C',1)],
      [('A',0),('B',1),('C',0)],[('A',0),('B',1),('C',1)],
      [('A',1),('B',0),('C',0)],[('A',1),('B',0),('C',1)],
      [('A',1),('B',1),('C',0)],[('A',1),('B',1),('C',1)]]
interpretaciones :: [a] -> [[(a,Int)]]
```

```
interpretaciones (x:xs) =
    [(x,0):i \mid i < -is] ++ [(x,1):i \mid i < -is]
    where is = interpretaciones xs
-- Ejercicio 2. [2.5 puntos] Los números de Hamming forman una sucesión
-- estrictamente creciente de números que cumplen las siguientes
-- condiciones:
      * El número 1 está en la sucesión.
      * Si x está en la sucesión, entonces 2x, 3x y 5x también están.
     * Ningún otro número está en la sucesión.
-- Los primeros términos de la sucesión de Hamming son
      1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, ...
-- Definir la función
      siguienteHamming :: Int -> Int
-- tal que (siguienteHamming x) es el menor término de la sucesión de
-- Hamming mayor que x. Por ejemplo,
      siguienteHamming 10 ==
      siguienteHamming 12 == 15
      siguienteHamming 15 == 16
siguienteHamming :: Int -> Int
siguienteHamming x = head (dropWhile (<=x) hamming)
-- hamming es la sucesión de Hamming. Por ejemplo,
      take 12 hamming == [1,2,3,4,5,6,8,9,10,12,15,16]
hamming :: [Int]
hamming = 1 : mezcla3 [2*i | i <- hamming]</pre>
                      [3*i | i <- hamming]
                      [5*i | i <- hamming]
-- (mezcla3 xs ys zs) es la lista obtenida mezclando las listas
-- ordenadas xs, ys y zs y eliminando los elementos duplicados. Por
-- ejemplo,
      ghci> mezcla3 [2,4,6,8,10] [3,6,9,12] [5,10]
      [2,3,4,5,6,8,9,10,12]
mezcla3 :: [Int] -> [Int] -> [Int]
mezcla3 xs ys zs = mezcla2 xs (mezcla2 ys zs)
-- (mezcla2 xs ys zs) es la lista obtenida mezclando las listas
-- ordenadas xs e ys y eliminando los elementos duplicados. Por ejemplo,
```

```
ghci> mezcla2 [2,4,6,8,10,12] [3,6,9,12]
      [2,3,4,6,8,9,10,12]
mezcla2 :: [Int] -> [Int] -> [Int]
mezcla2 p@(x:xs) q@(y:ys) | x < y
                                    = x:mezcla2 xs q
                          | x > y = y:mezcla2 p ys
                          | otherwise = x:mezcla2 xs ys
mezcla2 []
                уs
                                     = ys
mezcla2 xs
                []
                                     = xs
                             -- Ejercicio 3. [2.5 puntos] Las operaciones de suma, resta y
-- multiplicación se pueden representar mediante el siguiente tipo de
-- datos
      data Op = S \mid R \mid M
-- La expresiones aritméticas con dichas operaciones se pueden
-- representar mediante el siguiente tipo de dato algebraico
     data Expr = N Int | A Op Expr Expr
-- Por ejemplo, la expresión
      (7-3)+(2*5)
-- se representa por
     A S (A R (N 7) (N 3)) (A M (N 2) (N 5))
-- Definir la función
     valor :: Expr -> Int
-- tal que (valor e) es el valor de la expresión e. Por ejemplo,
     valor (A S (A R (N 7) (N 3)) (A M (N 2) (N 5))) == 14
     valor (A M (A R (N 7) (N 3)) (A S (N 2) (N 5))) == 28
data Op = S \mid R \mid M
data Expr = N Int | A Op Expr Expr
valor :: Expr -> Int
valor(N x) = x
valor (A o e1 e2) = aplica o (valor e1) (valor e2)
aplica :: Op -> Int -> Int -> Int
aplica S \times y = x+y
aplica R \times y = x-y
aplica M \times y = x*y
```

```
-- Ejercicio 4. [2.5 puntos] Los polinomios con coeficientes naturales
-- se pueden representar mediante el siguiente tipo algebraico
     data Polinomio = 0 | C Int Int Polinomio
-- Por ejemplo, el polinomio 2x^5 + 4x^3 + 2x se representa por
      C 2 5 (C 4 3 (C 2 1 0))
-- También se pueden representar mediante listas no crecientes de
-- naturales. Por ejemplo, el polinomio 2x^5 + 4x^3 + 2x se representa
-- por
      [5,5,3,3,3,3,1,1]
-- en la lista anterior, el número de veces que aparece cada número n es
-- igual al coeficiente de x^n en el polinomio.
-- Definir la función
      transformaPol :: Polinomio -> [Int]
-- tal que (transformaPol p) es el polinomio obtenido transformado el
-- polinomio p de la primera representación a la segunda. Por ejemplo,
     transformaPol(C 2 5 (C 4 3 (C 2 1 0))) == [5,5,3,3,3,3,1,1]
      transformaPol (C 2 100 (C 3 1 0))
                                         == [100, 100, 1, 1, 1]
data Polinomio = 0 | C Int Int Polinomio
transformaPol :: Polinomio -> [Int]
transformaPol 0
transformaPol (C a n p) = replicate a n ++ transformaPol p
```

5.3.5. Examen 5 (16 de Mayo de 2014)

-- Informática (1º del Grado en Matemáticas)

```
-- 5º examen de evaluación continua (16 de mayo de 2014)

import Data.Array

-- Ejercicio 1. [2 puntos] Un mínimo local de una lista es un elemento
-- de la lista que es menor que su predecesor y que su sucesor en la
-- lista. Por ejemplo, 1 es un mínimo local de [3,2,1,3,7,7,1,0,2] ya
-- que es menor que 2 (su predecesor) y que 3 (su sucesor).
--
-- Definir la función
```

```
minimosLocales :: Ord a => [a] -> [a]
-- tal que (minimosLocales xs) es la lista de los mínimos locales de la
-- lista xs. Por ejemplo,
     minimosLocales [3,2,1,3,7,7,9,6,8] == [1,6]
     minimosLocales [1..100]
     minimosLocales "mqexvzat"
                                       == "eva"
-- 1ª definición (por recursión):
minimosLocales1 :: Ord a => [a] -> [a]
minimosLocales1 (x:y:z:xs) | y < x \& y < z = y: minimosLocales1 (z:xs)
                         | otherwise = minimosLocales1 (y:z:xs)
minimosLocales1 _
                                        = []
-- 2ª definición (por comprensión):
minimosLocales2 :: Ord a => [a] -> [a]
minimosLocales2 xs =
   [y \mid (x,y,z) \leftarrow zip3 xs (tail xs) (drop 2 xs), y < x, y < z]
-- Ejercicio 2. [2 puntos] Definir la función
     sumaExtremos :: Num a => [a] -> [a]
-- tal que (sumaExtremos xs) es la lista sumando el primer elemento de
-- xs con el último, el segundo con el penúltimo y así
-- sucesivamente. Por ejemplo,
     sumaExtremos [6,5,3,1]
                                       == [7,8]
     sumaExtremos [6,5,3]
                                       == [9,10]
     sumaExtremos [3,2,3,2]
                                       == [5,5]
     sumaExtremos [6,5,3,1,2,0,4,7,8,9] == [15,13,10,5,2]
-- 1ª definición (por recursión):
sumaExtremos1 :: Num a => [a] -> [a]
sumaExtremos1 [] = []
sumaExtremos1[x] = [x+x]
sumaExtremos1 (x:xs) = (x + last xs) : sumaExtremos1 (init xs)
-- 2ª definición (por recursión):
sumaExtremos2 :: Num a => [a] -> [a]
sumaExtremos2 xs = aux (take n xs) (take n (reverse xs))
   where aux [] []
         aux (x:xs) (y:ys) = x+y : aux xs ys
```

```
m = length xs
           n \mid even m = m'div' 2
             | otherwise = 1 + (m 'div' 2)
-- 3ª definición (con zip):
sumaExtremos3 :: Num a => [a] -> [a]
sumaExtremos3 xs = take n [x+y | (x,y) <- zip xs (reverse xs)]
    where m = length xs
           n \mid even m = m'div' 2
             | otherwise = 1 + (m 'div' 2)
-- 4ª definición (con zipWith):
sumaExtremos4 :: Num a => [a] -> [a]
sumaExtremos4 xs = take n (zipWith (+) xs (reverse xs))
    where m = length xs
           n \mid even m = m'div' 2
             | otherwise = 1 + (m 'div' 2)
-- Ejercicio 3. [2 puntos] Definir la función
      listaRectangular :: Int -> Int -> a -> [a] -> [[a]]
-- tal que (listaRectangular m n x xs) es una lista de m listas de
-- longitud n formadas con los elementos de xs completada con x, si no
-- xs no tiene suficientes elementos. Por ejemplo,
      listaRectangular 2 4 7 [0,3,5,2,4] = [[0,3,5,2],[4,7,7,7]]
      listaRectangular 4 2 7 [0,3,5,2,4] = [[0,3],[5,2],[4,7],[7,7]]
      listaRectangular 2 3 7 [0..] == [[0,1,2],[3,4,5]]
listaRectangular 3 2 7 [0..] == [[0,1],[2,3],[4,5]
      listaRectangular 3 2 7 [0..] == [[0,1],[2,3],[4,5]]
listaRectangular 3 2 'p' "eva" == ["ev","ap","pp"]
listaRectangular 3 2 'p' ['e'..] == ["ef","gh","ij"]
-- 1ª definición (por recursión):
listaRectangular1 :: Int -> Int -> a -> [a] -> [[a]]
listaRectangular1 m n x xs =
    take m (grupos n (xs ++ repeat x))
-- (grupos n xs) es la lista obtenida agrupando los elementos de xs en
-- grupos de n elementos, salvo el último que puede tener menos. Por
-- ejemplo,
      grupos 2 [4,2,5,7,6] == [[4,2],[5,7],[6]]
      take 3 (grupos 3 [1..]) == [[1,2,3],[4,5,6],[7,8,9]]
grupos :: Int -> [a] -> [[a]]
```

```
grupos _ [] = []
grupos n xs = take n xs : grupos n (drop n xs)
-- 2ª definición (por comprensión)
listaRectangular2 :: Int -> Int -> a -> [a] -> [[a]]
listaRectangular2 m n x xs =
   take m [take n ys \mid m <- [0,n..n^2],
                       ys <- [drop m xs ++ (replicate m x)]]
-- 3ª definición (por iteración):
listaRectangular3 :: Int -> Int -> a -> [a] -> [[a]]
listaRectangular3 m n x xs =
   take n [take n ys | ys <- iterate (drop n) (xs ++ repeat x)]
-- 4º definición (sin el 4º argumento):
listaRectangular4 :: Int -> Int -> a -> [a] -> [[a]]
listaRectangular4 m n x =
   take m . map (take n) . iterate (drop n) . (++ repeat x)
__ _______
-- Ejercicio 4 [2 puntos] Las expresiones aritméticas se pueden definir
-- usando el siguiente tipo de datos
     data Expr = N Int
               | S Expr Expr
               | P Expr Expr
               deriving (Eq, Show)
-- Por ejemplo, la expresión
     3*5 + 6*7
-- se puede definir por
     S (P (N 3) (N 5)) (P (N 6) (N 7))
-- Definir la función
     aplica :: (Int -> Int) -> Expr -> Expr
-- tal que (aplica f e) es la expresión obtenida aplicando la función f
-- a cada uno de los números de la expresión e. Por ejemplo,
     ghci> aplica (+2) (S (P (N 3) (N 5)) (P (N 6) (N 7)))
     S (P (N 5) (N 7)) (P (N 8) (N 9))
     ghci> aplica (*2) (S (P (N 3) (N 5)) (P (N 6) (N 7)))
     S (P (N 6) (N 10)) (P (N 12) (N 14))
data Expr = N Int
         | S Expr Expr
```

```
| P Expr Expr
          deriving (Eq, Show)
aplica :: (Int -> Int) -> Expr -> Expr
aplica f (N x)
                = N (f x)
aplica f (S e1 e2) = S (aplica f e1) (aplica f e2)
aplica f (P e1 e2) = P (aplica f e1) (aplica f e2)
-- Ejercicio 5. [2 puntos] Las matrices enteras se pueden representar
-- mediante tablas con índices enteros:
      type Matriz = Array (Int,Int) Int
-- Por ejemplo, la matriz
      |4 1 3|
      |1 2 8|
      |6 5 7|
-- se puede definir por
      listArray ((1,1),(3,3)) [4,1,3, 1,2,8, 6,5,7]
-- Definir la función
      sumaColumnas :: Matriz -> Matriz
-- tal que (sumaColumnas p) es la matriz obtenida sumando a cada columna
-- la anterior salvo a la primera que le suma la última columna. Por
-- ejemplo,
      ghci> sumaColumnas (listArray ((1,1),(3,3)) [4,1,3, 1,2,8, 6,5,7])
      array ((1,1),(3,3)) [((1,1),7),((1,2),5),((1,3),4),
                           ((2,1),9), ((2,2),3), ((2,3),10),
                           ((3,1),13),((3,2),11),((3,3),12)
-- es decir, el resultado es la matriz
      | 7 5 4|
      | 9 3 10|
      |13 11 12|
type Matriz = Array (Int,Int) Int
sumaColumnas :: Matriz -> Matriz
sumaColumnas p =
    array ((1,1),(m,n))
          [((i,j), f i j) | i <- [1..m], j <- [1..n]]
    where (\_,(m,n)) = bounds p
          f i 1 = p!(i,1) + p!(i,m)
          f i j = p!(i,j) + p!(i,j-1)
```

5.3.6. Examen 6 (18 de Junio de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 6º examen de evaluación continua (18 de junio de 2014)
-- Librería auxiliar
-- ===========
import Data.Array
__ _______
-- Ejercicio 1 [2 puntos]. Definir la función
     divisiblesPorPrimero :: [Int] -> Bool
-- tal que (divisibles xs) se verifica si todos los elementos positivos
-- de xs son divisibles por el primero. Por ejemplo,
     divisiblesPorPrimero [2,6,-3,0,18,-17,10] == True
     divisiblesPorPrimero [-13]
                                            == True
     divisiblesPorPrimero [-3,6,1,-3,9,18]
                                           == False
     divisiblesPorPrimero [5,-2,-6,3]
     divisiblesPorPrimero []
                                           == False
     divisiblesPorPrimero [0,2,4]
                                            == False
-- la definición (por comprensión)
divisiblesPorPrimerol :: [Int] -> Bool
divisiblesPorPrimero1 []
divisiblesPorPrimero1 (0: ) = False
divisiblesPorPrimerol (x:xs) = and [y 'rem' x == 0 \mid y <- xs, y > 0]
-- 2ª definición (por recursión)
divisiblesPorPrimero2 :: [Int] -> Bool
divisiblesPorPrimero2 [] = False
divisiblesPorPrimero2 (0:_) = False
divisiblesPorPrimero2 (x:xs) = aux xs
   where aux [] = True
         aux (y:ys) | y > 0 = y 'rem' x == 0 && aux ys
                   | otherwise = aux ys
-- Ejercicio 2 [2 puntos]. Definir la constante
     primosConsecutivosConMediaCapicua :: [(Int,Int,Int)]
-- tal que primosConsecutivosConMediaCapicua es la lista de las ternas
-- (x,y,z) tales que x e y son primos consecutivos tales que su media,
```

```
-- z, es capicúa. Por ejemplo,
      ghci> take 5 primosConsecutivosConMediaCapicua
      [(3,5,4),(5,7,6),(7,11,9),(97,101,99),(109,113,111)]
-- Calcular cuántos hay anteriores a 2014.
primosConsecutivosConMediaCapicua :: [(Int,Int,Int)]
primosConsecutivosConMediaCapicua =
    [(x,y,z) \mid (x,y) < -zip primos (tail primos),
               let z = (x + y) 'div' 2,
               capicua z]
-- (primo x) se verifica si x es primo. Por ejemplo,
      primo 7 == True
      primo 8 == False
primo :: Int -> Bool
primo x = [y \mid y < [1..x], x 'rem' y == 0] == [1,x]
-- primos es la lista de los números primos mayores que 2. Por ejemplo,
      take 10 primos == [3,5,7,11,13,17,19,23,29]
primos :: [Int]
primos = [x | x < - [3,5..], primo x]
-- (capicua x) se verifica si x es capicúa. Por ejemplo,
capicua :: Int -> Bool
capicua x = ys == reverse ys
    where ys = show x
-- El cálculo es
      ghci> length (takeWhile (\(x,y,z) -> y < 2014) primosConsecutivosConMediaCa
      20
-- Ejercicio 3 [2 puntos]. Un elemento x de un conjunto xs es minimal
-- respecto de una relación r si no existe ningún elemento y en xs tal
-- que (r y x). Por ejemplo,
-- Definir la función
      minimales :: Eq a => (a -> a -> Bool) -> [a] -> [a]
-- tal que (minimales xss) es la lista de los elementos minimales de
-- xs. Por ejemplo,
      ghci> minimales (x y -> y \text{ 'rem' } x == 0) [2,3,6,12,18]
     [2,3]
```

```
ghci> minimales (x y -> x \text{ 'rem' } y == 0) [2,3,6,12,18]
      [12, 18]
- -
      ghci> minimales (\x y -> maximum x < maximum y) ["ac","cd","aacb"]</pre>
      ["ac", "aacb"]
      ghci> minimales (\xs ys -> all ('elem' ys) xs) ["ab","c","abc","d","dc"]
      ["ab","c","d"]
minimales :: Eq a => (a -> a -> Bool) -> [a] -> [a]
minimales r xs = [x \mid x < -xs, esMinimal r xs x]
-- (esMinimal r xs x) s verifica si xs no tiene ningún elemento menor
-- que x respecto de la relación r.
esMinimal :: Eq a => (a -> a -> Bool) -> [a] -> a -> Bool
esMinimal r xs x = null [y | y <- xs, y /= x, r y x]
-- Ejercicio 4 [2 puntos]. Una matriz es monomial si en cada una de sus
-- filas y columnas todos los elementos son nulos excepto 1. Por
-- ejemplo, de las matrices
      0 0 3 0
                     [0 0 3 0]
                     |0 -2 0 0|
      [0 -2 0 0]
      |1 0 0 0 |
                     |1 0 0 0 |
      0 0 0 1
                     |0 1 0 1|
-- la primera es monomial y la segunda no lo es.
-- Las matrices puede representarse mediante tablas cuyos
-- índices son pares de números naturales:
      type Matriz = Array (Int,Int) Int
  Por ejemplo, las matrices anteriores se pueden definir por
      ej1, ej2 :: Matriz
      eil = listArray((1,1),(4,4))[0,
                                         0, 3, 0,
                                      0, -2, 0, 0,
                                      1,
                                         0, 0, 0,
                                          0, 0, 11
                                      0,
     ej2 = listArray((1,1),(4,4))[0, 0, 3, 0,
                                      0, -2, 0, 0,
                                         0, 0, 0,
                                      1,
                                         1, 0, 1]
                                      0,
-- Definir la función
      esMonomial :: Matriz -> Bool
-- tal que (esMonomial p) se verifica si la matriz p es monomial. Por
-- ejemplo,
```

```
esMonomial ej1 == True
      esMonomial ej2 == False
type Matriz = Array (Int,Int) Int
ej1, ej2 :: Matriz
ej1 = listArray((1,1),(4,4))[0, 0, 3, 0,
                              0, -2, 0, 0,
                               1, 0, 0, 0,
                               0, 0, 0, 11
ej2 = listArray((1,1),(4,4))[0, 0, 3, 0,
                              0, -2, 0, 0,
                               1, 0, 0, 0,
                               [0, 1, 0, 1]
esMonomial :: Matriz -> Bool
esMonomial p = all esListaMonomial (filas p ++ columnas p)
-- (filas p) es la lista de las filas de la matriz p. Por ejemplo,
      filas ej1 == [[0,0,3,0],[0,-2,0,0],[1,0,0,0],[0,0,0,1]]
filas :: Matriz -> [[Int]]
filas p = [[p!(i,j) | j <- [1..n]] | i <- [1..m]]
   where (,(m,n)) = bounds p
-- (columnas p) es la lista de las columnas de la matriz p. Por ejemplo,
      columnas ej1 == [[0,0,1,0],[0,-2,0,0],[3,0,0,0],[0,0,0,1]]
columnas :: Matriz -> [[Int]]
columnas p = [[p!(i,j) | i <- [1..m]] | j <- [1..n]]
   where (,(m,n)) = bounds p
-- (esListaMonomial xs) se verifica si todos los elementos de xs excepto
-- uno son nulos. Por ejemplo,
      esListaMonomial [0,3,0,0] == True
     esListaMonomial [0,3,0,2] == False
      esListaMonomial [0,0,0,0] == False
esListaMonomial :: [Int] -> Bool
esListaMonomial xs = length (filter (/=0) xs) == 1
-- Ejercicio 5 [2 puntos]. Se consideran las expresiones vectoriales
-- formadas por un vector, la suma de dos expresiones vectoriales o el
-- producto de un entero por una expresión vectorial. El siguiente tipo
```

```
-- de dato define las expresiones vectoriales
     data ExpV = Vec Int Int
- -
               | Sum ExpV ExpV
               | Mul Int ExpV
               deriving Show
-- Definir la función
     valor :: ExpV -> (Int,Int)
-- tal que (valor e) es el valor de la expresión vectorial c. Por
-- ejemplo,
     valor (Vec 1 2)
                                                    == (1,2)
     valor (Sum (Vec 1 2 ) (Vec 3 4))
                                                        (4,6)
     valor (Mul 2 (Vec 3 4))
                                                    == (6,8)
     valor (Mul 2 (Sum (Vec 1 2 ) (Vec 3 4)))
                                                    == (8,12)
     valor (Sum (Mul 2 (Vec 1 2)) (Mul 2 (Vec 3 4))) == (8,12)
  ______
data ExpV = Vec Int Int
         | Sum ExpV ExpV
         | Mul Int ExpV
         deriving Show
-- 1ª solución
-- ========
valor :: ExpV -> (Int,Int)
valor (Vec x y) = (x,y)
valor (Sum e1 e2) = (x1+x2,y1+y2) where (x1,y1) = valor e1
                                      (x2,y2) = valor e2
valor (Mul n e) = (n*x,n*y) where (x,y) = valor e
-- 2ª solución
-- ========
valor2 :: ExpV -> (Int,Int)
valor2 (Vec a b) = (a, b)
valor2 (Sum e1 e2) = suma (valor2 e1) (valor2 e2)
valor2 (Mul n e1) = multiplica n (valor2 e1)
suma :: (Int,Int) -> (Int,Int) -> (Int,Int)
suma (a,b) (c,d) = (a+c,b+d)
multiplica :: Int -> (Int, Int) -> (Int, Int)
multiplica n (a,b) = (n*a,n*b)
```

5.3.7. Examen 7 (4 de Julio de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 1º convocatoria (4 de julio de 2014)
-- § Librerías auxiliares
import Data.List
import Data.Array
-- Ejercicio 1. [2 puntos] Una lista de longitud n > 0 es completa si el
-- valor absoluto de las diferencias de sus elementos consecutivos toma
-- todos los valores entre 1 y n-1 (sólo una vez). Por ejemplo,
-- [4,1,2,4] es completa porque los valores absolutos de las diferencias
-- de sus elementos consecutivos es [3,1,2].
-- Definir la función
     esCompleta :: [Int] -> Bool
-- tal que (esCompleta xs) se verifica si xs es completa. Por ejemplo,
     esCompleta [4,1,2,4] == True
     esCompleta [6]
                          == True
     esCompleta [6,7]
                          == True
     esCompleta [6,8]
                          == False
     esCompleta [6,7,9]
                          == True
     esCompleta [8,7,5]
                          == True
esCompleta :: [Int] -> Bool
esCompleta xs =
   sort [abs (x-y) \mid (x,y) < -zip xs (tail xs)] == [1..length xs - 1]
-- Ejercicio 2. Definir la función
     unionG :: Ord a => [[a]] -> [a]
-- tal que (unionG xss) es la unión de xss cuyos elementos son listas
-- estrictamente crecientes (posiblemente infinitas). Por ejemplo,
     ghci> take 10 (unionG [[2,4..],[3,6..],[5,10..]])
     [2,3,4,5,6,8,9,10,12,14]
     ghci> take 10 (unionG [[2,5..],[3,8..],[4,10..],[16..]])
```

```
[2,3,4,5,8,10,11,13,14,16]
     ghci> unionG [[3,8],[4,10],[2,5],[16]]
     [2,3,4,5,8,10,16]
-- -----
-- la definición (por recursión)
unionG1 :: Ord a => [[a]] -> [a]
unionG1 []
                = []
unionG1 [xs]
                = xs
unionG1 (xs:ys:zss) = xs 'unionB' unionG1 (ys:zss)
unionB :: Ord a => [a] -> [a] -> [a]
unionB [] ys = ys
unionB xs[] = xs
unionB (x:xs) (y:ys) | x < y = x : unionB xs <math>(y:ys)
                  | x > y = y : unionB (x:xs) ys
                  | otherwise = x : unionB xs ys
-- 2ª definición (por plegado)
unionG2 :: Ord a => [[a]] -> [a]
unionG2 = foldr unionB []
-- ------
-- Ejercicio 3. [2 puntos] Definir la función
     noEsSuma :: [Integer] -> Integer
-- tal que (noEsSuma xs) es el menor entero positivo que no se puede
-- expresar como suma de elementos de la lista creciente de números
-- positivos xs (ningún elemento se puede usar más de una vez). Por
-- ejemplo,
     noEsSuma [1,2,3,8] == 7
     noEsSuma (1:[2,4..10]) == 32
  -----
-- lª solución
-- ========
noEsSuma1 :: [Integer] -> Integer
noEsSuma1 xs = head [n | n <- [1..], n 'notElem' sumas1 xs]
-- (sumas1 xs) es la lista de las sumas con los elementos de xs, donde
-- cada elemento se puede sumar como máximo una vez. Por ejemplo,
-- sumas1 [3,8] == [11,3,8,0]
```

```
sumas1 [3,8,17] == [28,11,20,3,25,8,17,0]
      sumas1 [1,2,3,8] = [14,6,11,3,12,4,9,1,13,5,10,2,11,3,8,0]
sumas1 :: [Integer] -> [Integer]
sumas1 [] = [0]
sumas1 (x:xs) = [x+y | y <- ys] ++ ys
    where ys = sumas1 xs
-- 2ª solución
-- ========
noEsSuma2 :: [Integer] -> Integer
noEsSuma2 xs = head [n | n <- [1..], not (esSuma n xs)]
esSuma :: Integer -> [Integer] -> Bool
esSuma n [] = n == 0
esSuma n (x:xs) \mid n < x
                          = False
                | n == x = True
                | otherwise = esSuma (n-x) xs | esSuma n xs
-- 3ª solución
-- ========
noEsSuma3 :: [Integer] -> Integer
noEsSuma3 xs = aux xs 0
   where aux [] n
                   = n+1
          aux (x:xs) n | x <= n+1 = aux xs (n+x)
                       | otherwise = n+1
-- Comparaciones de eficiencia
-- Las comparaciones son
      ghci> noEsSuma1 ([1..10]++[12..20])
      (8.28 secs, 946961604 bytes)
      ghci> noEsSuma2 ([1..10]++[12..20])
      (2.52 secs, 204156056 bytes)
      ghci> noEsSuma3 ([1..10]++[12..20])
      200
      (0.01 secs, 520348 bytes)
     ghci> noEsSuma2 (1:[2,4..30])
      242
      (4.97 secs, 399205788 bytes)
- -
```

```
ghci > noEsSuma3 (1:[2,4..30])
      242
- -
      (0.01 secs, 514340 bytes)
      ghci> noEsSuma3 (1:[2,4..2014])
      1015058
      (0.01 secs, 1063600 bytes)
-- Ejercicio 4. [2 puntos] Los divisores medios de un número son los que
-- ocupan la posición media entre los divisores de n, ordenados de menor
-- a mayor. Por ejemplo, los divisores de 60 son
-- [1,2,3,4,5,6,10,12,15,20,30,60] y sus divisores medios son 6 y 10.
-- El árbol de factorización de un número compuesto n se construye de la
-- siguiente manera:
      * la raíz es el número n.
      * la rama izquierda es el árbol de factorización de su divisor
        medio menor y
      * la rama derecha es el árbol de factorización de su divisor
        medio mayor
-- Si el número es primo, su árbol de factorización sólo tiene una hoja
  con dicho número. Por ejemplo, el árbol de factorización de 60 es
         60
         / \
       6
           10
            / \
      / \
        3 2
-- Los árboles se representarán por
      data Arbol = H Int
                 | N Int Arbol Arbol
                 deriving Show
-- Definir la función
      arbolFactorizacion :: Int -> Arbol
-- tal que (arbolFactorización n) es el árbol de factorización de n. Por
-- ejemplo,
      ghci> arbolFactorizacion 60
      N 60 (N 6 (H 2) (H 3)) (N 10 (H 2) (H 5))
      ghci> arbolFactorizacion 45
     N 45 (H 5) (N 9 (H 3) (H 3))
     ghci> arbolFactorizacion 7
```

```
H 7
     ghci> arbolFactorizacion 14
- -
     N 14 (H 2) (H 7)
     ghci> arbolFactorizacion 28
     N 28 (N 4 (H 2) (H 2)) (H 7)
     ghci> arbolFactorizacion 84
     N 84 (H 7) (N 12 (H 3) (N 4 (H 2) (H 2)))
data Arbol = H Int
           | N Int Arbol Arbol
           deriving Show
-- lª definición
-- =========
arbolFactorizacion :: Int -> Arbol
arbolFactorizacion n
    \mid esPrimo n = H n
    | otherwise = N n (arbolFactorizacion x) (arbolFactorizacion y)
   where (x,y) = divisoresMedio n
-- (esPrimo n) se verifica si n es primo. Por ejemplo,
      esPrimo 7 == True
      esPrimo 9 == False
esPrimo :: Int -> Bool
esPrimo n = divisores n == [1,n]
-- (divisoresMedio n) es el par formado por los divisores medios de
-- n. Por ejemplo,
     divisoresMedio 30 == (5,6)
     divisoresMedio 7 == (1,7)
divisoresMedio :: Int -> (Int,Int)
divisoresMedio n = (n 'div' x,x)
   where xs = divisores n
         x = xs !! (length xs 'div' 2)
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
     divisores 30 = [1,2,3,5,6,10,15,30]
divisores :: Int -> [Int]
divisores n = [x \mid x < -[1..n], n 'rem' x == 0]
-- 2ª definición
-- =========
```

```
arbolFactorizacion2 :: Int -> Arbol
arbolFactorizacion2 n
    | x == 1
                = H n
    | otherwise = N n (arbolFactorizacion x) (arbolFactorizacion y)
    where (x,y) = divisoresMedio n
-- (divisoresMedio2 n) es el par formado por los divisores medios de
-- n. Por ejemplo,
      divisoresMedio2 30 == (5,6)
      divisoresMedio2 7 == (1,7)
divisoresMedio2 :: Int -> (Int,Int)
divisoresMedio2 n = (n 'div' x,x)
    where m = ceiling (sqrt (fromIntegral n))
          x = head [y | y <- [m..n], n 'rem' y == 0]
-- Ejercicio 5. [2 puntos] El triángulo de Pascal es un triángulo de
-- números
            1
           1 1
          1 2 1
        1 3 3 1
       1 4 6 4 1
      1 5 10 10 5 1
     . . . . . . . . . . . . . . . .
-- construido de la siguiente forma
-- * la primera fila está formada por el número 1;
-- * las filas siguientes se construyen sumando los números adyacentes
     de la fila superior y añadiendo un 1 al principio y al final de la
     fila.
-- La matriz de Pascal es la matriz cuyas filas son los elementos de la
-- correspondiente fila del triángulo de Pascal completadas con
-- ceros. Por ejemplo, la matriz de Pascal de orden 6 es
      110 0 0 0 0 0
      |1 1 0 0 0 0 0 |
      |1 2 1 0 0 0 |
      |13 3 1 0 0 |
      |1 4 6 4 1 0 |
      |1 5 10 10 5 1|
-- Las matrices se definen mediante el tipo
      type Matriz = Array (Int,Int) Int
```

```
-- Definir la función
     matrizPascal :: Int -> Matriz
-- tal que (matrizPascal n) es la matriz de Pascal de orden n. Por
-- ejemplo,
     ghci> matrizPascal 5
      array ((1,1),(5,5))
            [((1,1),1),((1,2),0),((1,3),0),((1,4),0),((1,5),0),
             ((2,1),1),((2,2),1),((2,3),0),((2,4),0),((2,5),0),
             ((3,1),1),((3,2),2),((3,3),1),((3,4),0),((3,5),0),
             ((4,1),1),((4,2),3),((4,3),3),((4,4),1),((4,5),0),
             ((5,1),1),((5,2),4),((5,3),6),((5,4),4),((5,5),1)
type Matriz = Array (Int,Int) Int
-- lª solución
- - ========
matrizPascal1 :: Int -> Matriz
matrizPascal1 1 = array ((1,1),(1,1)) [((1,1),1)]
matrizPascal1 n =
    array ((1,1),(n,n)) [((i,j), f i j) | i <- [1..n], j <- [1..n]]
   where f i j | i < n && j < n = p!(i,j)
                | i < n \& \& j == n = 0
                | j == 1 || j == n = 1
                | otherwise = p!(i-1,j-1) + p!(i-1,j)
          p = matrizPascal2 (n-1)
-- 2ª solución
-- =========
matrizPascal2 :: Int -> Matriz
matrizPascal2 n = listArray ((1,1),(n,n)) (concat xss)
   where yss = take n pascal
         xss = map (take n) (map (++ (repeat 0)) yss)
pascal :: [[Int]]
pascal = [1] : map f pascal
    where f xs = zipWith (+) (0:xs) (xs++[0])
-- 2ª solución
```

-- ========

```
matrizPascal3 :: Int -> Matriz
matrizPascal3 n =
   array ((1,1),(n,n)) [((i,j), f i j) | i <- [1..n], j <- [1..n]]
   where f i j | i >= j = comb (i-1) (j-1)
              | otherwise = 0
-- (comb n k) es el número de combinaciones (o coeficiente binomial) de
-- n sobre k. Por ejemplo,
comb :: Int -> Int -> Int
comb n k = product [n,n-1..n-k+1] 'div' product [1..k]
5.3.8. Examen 8 (10 de Septiembre de 2014)
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 2º convocatoria (10 de septiembre de 2014)
__ ______
-- § Librerías auxiliares
import Data.List
import Data.Array
-- Ejercicio 1. [2 puntos] En una Olimpiada matemática de este año se
-- planteó el siguiente problema
     Determinar el menor entero positivo M que tiene las siguientes
     propiedades a la vez:
     * El producto de los dígitos de M es 112.
     * El producto de los dígitos de M+6 también es 112.
-- Definir la función
     especiales :: Int -> Int -> [Int]
-- tal que (especiales k a) es la lista de los números naturales n tales
-- que
     * El producto de los dígitos de n es a.
     * El producto de los dígitos de n+k también es a.
-- Por ejemplo,
     take 3 (especiales 8 24) == [38,138,226]
```

```
-- En efecto, 3*8 = 24, 38+8 = 46 y 4*6 = 24
            2*2*6 = 24, 226+8 = 234 y 2*3*4 = 24
-- Usando la función especiales, calcular la solución del problema.
especiales :: Int -> Int -> [Int]
especiales k a =
   [n \mid n \leftarrow [1..], product (digitos n) == a,
                  product (digitos (n+k)) == a]
digitos :: Int -> [Int]
digitos n = [read [c] | c <- show n]
-- La solución del problema es
     ghci> head (especiales 6 112)
     2718
__ ______
-- Ejercicio 2. [2 puntos] Las expresiones aritméticas pueden
-- representarse usando el siguiente tipo de datos
     data Expr = N Int | S Expr Expr | P Expr Expr
              deriving Show
-- Por ejemplo, la expresión 2*(3+7) se representa por
     P (N 2) (S (N 3) (N 7))
-- La dual de una expresión es la expresión obtenida intercambiando las
-- sumas y los productos. Por ejemplo, la dual de 2*(3+7) es 2+(3*7).
-- Definir la función
     dual :: Expr -> Expr
-- tal que (dual e) es la dual de la expresión e. Por ejemplo,
-- dual (P(N 2) (S(N 3) (N 7))) == S(N 2) (P(N 3) (N 7))
__ ______
data Expr = N Int | S Expr Expr | P Expr Expr
        deriving Show
dual :: Expr -> Expr
dual(N x) = N x
dual (S e1 e2) = P (dual e1) (dual e2)
dual (P e1 e2) = S (dual e1) (dual e2)
```

```
-- Ejercicio 3. [2 puntos] La sucesión con saltos se obtiene a partir de
-- los números naturales saltando 1, cogiendo 2, saltando 3, cogiendo 4,
-- saltando 5, etc. Por ejemplo,
      (1), 2,3, (4,5,6), 7,8,9,10, (11,12,13,14,15), 16,17,18,19,20,21,
-- en la que se ha puesto entre paréntesis los números que se salta; los
-- que quedan son
     2,3, 7,8,9,10, 16,17,18,19,20,21, ...
-- Definir la función
      saltos :: [Integer]
-- tal que saltos es la lista de los términos de la sucesión con saltos.
-- Por ejemplo,
     ghci> take 22 saltos
      [2,3, 7,8,9,10, 16,17,18,19,20,21, 29,30,31,32,33,34,35,36, 46,47]
-- 1º solución:
saltos :: [Integer]
saltos = aux (tail (scanl (+) 0 [1..]))
    where aux (a:b:c:ds) = [a+1..b] ++ aux (c:ds)
-- 2ª solución:
saltos2 :: [Integer]
saltos2 = aux [1..] [1..]
    where aux (m:n:ns) xs = take n (drop m xs) ++ aux ns (drop (m+n) xs)
-- 3ª solución:
saltos3 :: [Integer]
saltos3 = aux pares [1..]
    where pares
                            = [(x,x+1) \mid x < -[1,3..]]
          aux ((m,n):ps) xs = take n (drop m xs) ++ aux ps (drop (m+n) xs)
-- 4ª solución:
saltos4 :: [Integer]
saltos4 = concat (map sig pares)
    where pares = [(x,x+1) | x < -[1,3..]]
          sig (m,n) = take n (drop (m*(m+1) 'div' 2) [1..])
-- Ejercicio 4. [2 puntos] (Basado en el problema 362 del proyecto
-- Euler). El número 54 se puede factorizar de 7 maneras distintas con
-- factores mayores que 1
      54, 2×27, 3×18, 6×9, 3×3×6, 2×3×9 y 2×3×3×3.
```

```
-- Si exigimos que los factores sean libres de cuadrados (es decir, que
-- no se puedan dividir por ningún cuadrado), entonces sólo quedan dos
-- factorizaciones
      3\times3\times6 y 2\times3\times3\times3.
-- Definir la función
      factorizacionesLibresDeCuadrados :: Int -> [[Int]]
-- tal que (factorizacionesLibresDeCuadrados n) es la lista de las
-- factorizaciones de n libres de cuadrados. Por ejemplo,
      factorizacionesLibresDeCuadrados 54 == [[2,3,3,3],[3,3,6]]
factorizacionesLibresDeCuadrados :: Int -> [[Int]]
factorizacionesLibresDeCuadrados n =
    [xs | xs <- factorizaciones n, listaLibreDeCuadrados xs]</pre>
-- (factorizaciones n) es la lista creciente de números mayores que 1
-- cuyo producto es n. Por ejemplo,
      factorizaciones 12 = [[2,2,3],[2,6],[3,4],[12]]
      factorizaciones 54 = [[2,3,3,3],[2,3,9],[2,27],[3,3,6],[3,18],[6,9],[54]
factorizaciones :: Int -> [[Int]]
factorizaciones n = aux n 2
    where aux 1 = [[]]
          aux n a = [m:xs | m < - [a..n],
                             n \cdot rem \cdot m == 0,
                             xs <- aux (n 'div' m) m]</pre>
-- (listaLibreDeCuadrados xs) se verifica si todos los elementos de xs
-- son libres de cuadrados. Por ejemplo,
      listaLibreDeCuadrados [3,6,15,10] == True
      listaLibreDeCuadrados [3,6,15,20] == False
listaLibreDeCuadrados :: [Int] -> Bool
listaLibreDeCuadrados = all libreDeCuadrado
-- (libreDeCuadrado n) se verifica si n es libre de cuadrado. Por
-- ejemplo,
      libreDeCuadrado 10 == True
      libreDeCuadrado 12 == False
libreDeCuadrado :: Int -> Bool
libreDeCuadrado n =
    null [m \mid m < -[2..n], rem n (m^2) == 0]
```

```
-- Ejercicio 5. [2 puntos] (Basado en el problema 196 del proyecto
-- Euler). Para cada número n la matriz completa de orden n es la matriz
-- cuadrada de orden n formada por los números enteros consecutivos. Por
-- ejemplo, la matriz completa de orden 3 es
      1 2 3
      |4 5 6|
      17 8 91
-- las ternas primas de orden n son los listas formadas por un
-- elemento de la matriz junto con dos de sus vecinos de manera que los
-- tres son primos. Por ejemplo, en la matriz anterior una terna prima
-- es [2,3,5] (formada por el elemento 2, su vecino derecho 3 y su
-- vecino inferior 5), otra es [5,2,7] (formada por el elemento 5, su
-- vecino superior 2 y su vecino inferior-izquierda 7) y otra es [5,3,7]
-- (formada por el elemento 5, su vecino superior-derecha 3 y y su
-- vecino inferior-izquierda 7).
-- Definir la función
      ternasPrimasOrden :: Int -> [[Int]]
-- tal que (ternasPrimasOrden n) es el conjunto de las ternas primas de
-- la matriz completa de orden n. Por ejemplo,
      ghci> ternasPrimasOrden 3
      [[2,3,5],[3,2,5],[5,2,3],[5,2,7],[5,3,7]]
      ghci> ternasPrimasOrden 4
      [[2,3,5],[2,3,7],[2,5,7],[3,2,7],[7,2,3],[7,2,11],[7,3,11]]
import Data.Array
import Data.List
type Matriz = Array (Int,Int) Int
ternasPrimasOrden :: Int -> [[Int]]
ternasPrimasOrden = ternasPrimas . matrizCompleta
-- (ternasPrimas p) es la lista de las ternas primas de p. Por ejemplo,
      ghci> ternasPrimas (listArray ((1,1),(3,3)) [2,3,7,5,4,1,6,8,9])
      [[2,3,5],[3,2,7],[3,2,5],[3,7,5],[5,2,3]]
ternasPrimas :: Matriz -> [[Int]]
ternasPrimas p =
    [xs | xs <- ternas p, all esPrimo xs]</pre>
-- (ternas p) es la lista de las ternas de p formadas por un elemento de
```

```
-- p junto con dos vecinos. Por ejemplo,
      ghci> ternas (listArray ((1,1),(3,3)) [2,3,7,5,4,0,6,8,9])
       [[2,3,5],[2,3,4],[2,5,4],[3,2,7],[3,2,5],[3,2,4],[3,2,0],[3,7,5],
        [3,7,4], [3,7,0], [3,5,4], [3,5,0], [3,4,0], [7,3,4], [7,3,0], [7,4,0],
        [5,2,3],[5,2,4],[5,2,6],[5,2,8],[5,3,4],[5,3,6],[5,3,8],[5,4,6],
        [5,4,8],[5,6,8],[4,2,3],[4,2,7],[4,2,5],[4,2,0],[4,2,6],[4,2,8],
        [4,2,9], [4,3,7], [4,3,5], [4,3,0], [4,3,6], [4,3,8], [4,3,9], [4,7,5],
        [4,7,0],[4,7,6],[4,7,8],[4,7,9],[4,5,0],[4,5,6],[4,5,8],[4,5,9],
        [4,0,6],[4,0,8],[4,0,9],[4,6,8],[4,6,9],[4,8,9],[0,3,7],[0,3,4],
        [0,3,8],[0,3,9],[0,7,4],[0,7,8],[0,7,9],[0,4,8],[0,4,9],[0,8,9],
        [6,5,4], [6,5,8], [6,4,8], [8,5,4], [8,5,0], [8,5,6], [8,5,9], [8,4,0],
        [8,4,6],[8,4,9],[8,0,6],[8,0,9],[8,6,9],[9,4,0],[9,4,8],[9,0,8]]
ternas :: Matriz -> [[Int]]
ternas p =
    [[p!(i1,j1),p!(i2,j2),p!(i3,j3)] |
     (i1,j1) < - indices p,
     ((i2,j2):ps) \leftarrow tails (vecinos (i1,j1) n),
     (i3,j3) <- ps]
    where (\_,(n,\_)) = bounds p
-- (vecinos (i,j) n) es la lista de las posiciones vecinas de la (i,j)
-- en una matriz cuadrada de orden n. Por ejemplo,
      vecinos (2,3) 4 == [(1,2),(1,3),(1,4),(2,2),(2,4),(3,2),(3,3),(3,4)]
      vecinos (2,4) 4 == [(1,3),(1,4),(2,3),(3,3),(3,4)]
      vecinos (1,4) 4 == [(1,3),(2,3),(2,4)]
vecinos :: (Int,Int) -> Int -> [(Int,Int)]
vecinos (i,j) n = [(a,b) | a < - [max 1 (i-1)..min n (i+1)],
                            b \leftarrow [max 1 (j-1)..min n (j+1)],
                            (a,b) /= (i,j)]
-- (esPrimo n) se verifica si n es primo. Por ejemplo,
      esPrimo 7 == True
      esPrimo 15 ==
                      False
esPrimo :: Int -> Bool
esPrimo n = [x \mid x < [1..n], n 'rem' x == 0] == [1,n]
   (matrizCompleta n) es la matriz completa de orden n. Por ejemplo,
      ghci> matrizCompleta 3
      array ((1,1),(3,3)) [((1,1),1),((1,2),2),((1,3),3),
                            ((2,1),4),((2,2),5),((2,3),6),
                            ((3,1),7),((3,2),8),((3,3),9)
matrizCompleta :: Int -> Matriz
matrizCompleta n =
```

```
listArray ((1,1),(n,n)) [1..n*n]
-- 2º definición
-- =========
ternasPrimasOrden2 :: Int -> [[Int]]
ternasPrimasOrden2 = ternasPrimas2 . matrizCompleta
ternasPrimas2 :: Matriz -> [[Int]]
ternasPrimas2 p =
    [[p!(i1,j1),p!(i2,j2),p!(i3,j3)] |
     (i1,j1) <- indices p,
     esPrimo (p!(i1,j1)),
     ((i2,j2):ps) \leftarrow tails (vecinos (i1,j1) n),
     esPrimo (p!(i2,j2)),
     (i3,j3) <- ps,
     esPrimo (p!(i3,j3))]
    where (,(n,)) = bounds p
-- Comparación:
      ghci> length (ternasPrimasOrden 30)
      51
      (5.52 secs, 211095116 bytes)
      ghci> length (ternasPrimasOrden2 30)
      51
      (0.46 secs, 18091148 bytes)
```

5.3.9. Examen 9 (20 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 3º convocatoria (20 de noviembre de 2014)
-- § Librerías auxiliares
-- import Data.List
import Data.Array
-- Ejercicio 1. Definir la función
```

```
mayorProducto :: Int -> [Int] -> Int
-- tal que (mayorProducto n xs) es el mayor producto de una sublista de
-- xs de longitud n. Por ejemplo,
     mayorProducto 3 [3,2,0,5,4,9,1,3,7] == 180
-- ya que de todas las sublistas de longitud 3 de [3,2,0,5,4,9,1,3,7] la
-- que tiene mayor producto es la [5,4,9] cuyo producto es 180.
______
mayorProducto :: Int -> [Int] -> Int
mayorProducto n cs
    | length cs < n = 1
    | otherwise = maximum [product xs | xs <- segmentos n cs]
  where segmentos n cs = [take n xs | xs <- tails cs]
-- Ejercicio 2. Definir la función
     sinDobleCero :: Int -> [[Int]]
-- tal que (sinDobleCero n) es la lista de las listas de longitud n
-- formadas por el 0 y el 1 tales que no contiene dos ceros
  consecutivos. Por ejemplo,
     ghci> sinDobleCero 2
     [[1,0],[1,1],[0,1]]
     ghci> sinDobleCero 3
     [[1,1,0],[1,1,1],[1,0,1],[0,1,0],[0,1,1]]
     ghci> sinDobleCero 4
     [[1,1,1,0],[1,1,1,1],[1,1,0,1],[1,0,1,0],[1,0,1,1],
      [0,1,1,0],[0,1,1,1],[0,1,0,1]]
sinDobleCero :: Int -> [[Int]]
sinDobleCero 0 = [[]]
sinDobleCero\ 1 = [[0],[1]]
sinDobleCero n = [1:xs | xs <- sinDobleCero (n-1)] ++</pre>
                [0:1:ys | ys <- sinDobleCero (n-2)]
-- Ejercicio 3. La sucesión A046034 de la OEIS (The On-Line Encyclopedia
-- of Integer Sequences) está formada por los números tales que todos
-- sus dígitos son primos. Los primeros términos de A046034 son
     2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223
-- Definir la constante
     numerosDigitosPrimos :: [Int]
```

```
-- cuyos elementos son los términos de la sucesión A046034. Por ejemplo,
      ghci> take 22 numerosDigitosPrimos
      [2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223]
-- ¿Cuántos elementos hay en la sucesión menores que 2013?
numerosDigitosPrimos :: [Int]
numerosDigitosPrimos =
    [n \mid n < -[2..], digitosPrimos n]
-- (digitosPrimos n) se verifica si todos los dígitos de n son
-- primos. Por ejemplo,
     digitosPrimos 352 == True
      digitosPrimos 362 == False
digitosPrimos :: Int -> Bool
digitosPrimos n = all ('elem' "2357") (show n)
-- 2ª definición de digitosPrimos:
digitosPrimos2 :: Int -> Bool
digitosPrimos2 n = subconjunto (cifras n) [2,3,5,7]
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
cifras :: Int -> [Int]
cifras n = [read [x] | x <-show n]
-- (subconjunto xs ys) se verifica si xs es un subconjunto de ys. Por
-- ejemplo,
subconjunto :: Eq a => [a] -> [a] -> Bool
subconjunto xs ys = and [elem x ys | x <- xs]
-- El cálculo es
      ghci> length (takeWhile (<2013) numerosDigitosPrimos)</pre>
      84
-- Ejercicio 4. Entre dos matrices de la misma dimensión se puede
-- aplicar distintas operaciones binarias entre los elementos en la
-- misma posición. Por ejemplo, si a y b son las matrices
      |3 4 6|
                 |1 4 2|
      |5 6 7|
               |2 1 2|
-- entonces a+b y a-b son, respectivamente
   |4 8 8| |2 0 4|
- -
-- |7 7 9| |3 5 5|
```

```
-- Las matrices enteras se pueden representar mediante tablas con
-- índices enteros:
      type Matriz = Array (Int,Int) Int
-- y las matrices anteriores se definen por
      a, b :: Matriz
      a = listArray((1,1),(2,3))[3,4,6,5,6,7]
      b = listArray((1,1),(2,3))[1,4,2,2,1,2]
-- Definir la función
      opMatriz :: (Int -> Int -> Int) -> Matriz -> Matriz -> Matriz
-- tal que (opMatriz f p q) es la matriz obtenida aplicando la operación
-- f entre los elementos de p y q de la misma posición. Por ejemplo,
      ghci> opMatriz (+) a b
      array ((1,1),(2,3)) [((1,1),4),((1,2),8),((1,3),8),
                           ((2,1),7),((2,2),7),((2,3),9)
     ghci> opMatriz (-) a b
     array ((1,1),(2,3)) [((1,1),2),((1,2),0),((1,3),4),
                           ((2,1),3),((2,2),5),((2,3),5)]
type Matriz = Array (Int,Int) Int
a, b :: Matriz
a = listArray((1,1),(2,3))[3,4,6,5,6,7]
b = listArray((1,1),(2,3))[1,4,2,2,1,2]
-- lª definición
opMatriz :: (Int -> Int -> Int) -> Matriz -> Matriz -> Matriz
opMatriz f p q =
    array ((1,1),(m,n)) [((i,j), f(p!(i,j)) (q!(i,j)))
                      | i < [1..m], j < [1..n]]
   where (,(m,n)) = bounds p
-- 2ª definición
opMatriz2 :: (Int -> Int -> Int) -> Matriz -> Matriz -> Matriz
opMatriz2 f p q =
    listArray (bounds p) [f x y | (x,y) <- zip (elems p) (elems q)]
-- Ejercicio 5. Las expresiones aritméticas se pueden definir usando el
-- siguiente tipo de datos
     data Expr = N Int
```

```
| X
                | S Expr Expr
                | R Expr Expr
                | P Expr Expr
                | E Expr Int
                deriving (Eq, Show)
-- Por ejemplo, la expresión
      3*x - (x+2)^7
-- se puede definir por
     R (P (N 3) X) (E (S X (N 2)) 7)
-- Definir la función
      maximo :: Expr -> [Int] -> (Int,[Int])
-- tal que (maximo e xs) es el par formado por el máximo valor de la
-- expresión e para los puntos de xs y en qué puntos alcanza el
-- máximo. Por ejemplo,
      ghci> maximo (E (S (N 10) (P (R (N 1) X) X)) 2) [-3..3]
      (100,[0,1])
data Expr = N Int
          | X
          | S Expr Expr
          | R Expr Expr
          | P Expr Expr
          | E Expr Int
          deriving (Eq, Show)
maximo :: Expr -> [Int] -> (Int,[Int])
maximo e ns = (m,[n \mid n <- ns, valor e n == m])
    where m = maximum [valor e n | n <- ns]
valor :: Expr -> Int -> Int
valor (N x) = x
valor X
           n = n
valor (S e1 e2) n = (valor e1 n) + (valor e2 n)
valor (R e1 e2) n = (valor e1 n) - (valor e2 n)
valor (P e1 e2) n = (valor e1 n) * (valor e2 n)
valor (Ee m) n = (valor e n)^m
```

5.4. Exámenes del grupo 4 (Francisco J. Martín)

5.4.1. Examen 1 (5 de Noviembre de 2013)

```
-- Informática (1º del Grado en Matemáticas y en Estadística)
-- 1º examen de evaluación continua (11 de noviembre de 2013)
-- Ejercicio 1. Definir la función listaIgualParidad tal que al
-- evaluarla sobre una lista de números naturales devuelva la lista de
-- todos los elementos con la misma paridad que la posición que ocupan
-- (contada desde 0); es decir, todos los pares en una posición par y
-- todos los impares en una posición impar. Por ejemplo,
     listaIgualParidad [1,3,5,7] == [3,7]
     listaIgualParidad [2,4,6,8] == [2,6]
     listaIgualParidad [1..10] == []
     listaIgualParidad [0..10] = [0,1,2,3,4,5,6,7,8,9,10]
     listaIqualParidad []
                                == []
listaIgualParidad xs = [x \mid (x,i) < -zip xs [0..], even x == even i]
-- Ejercicio 2. Decimos que una lista está equilibrada si el número de
-- elementos de la lista que son menores que la media es igual al número
-- de elementos de la lista que son mayores.
-- Definir la función listaEquilibrada que comprueba dicha propiedad
-- para una lista. Por ejemplo,
     listaEquilibrada [1,7,1,6,2] == False
     listaEquilibrada [1,7,4,6,2] == True
     listaEquilibrada [8,7,4,6,2] == False
     listaEquilibrada []
_____
listaEquilibrada xs =
   length [y \mid y < -xs, y < media xs] ==
   length [y \mid y < -xs, y > media xs]
-- (media xs) es la media de xs. Por ejemplo,
```

```
media [6, 3, 9] == 6.0
media xs = sum xs / fromIntegral (length xs)
-- Ejercicio 3. El trozo inicial de los elementos de una lista que
-- cumplen una propiedad es la secuencia de elementos de dicha lista
-- desde la posición O hasta el primer elemento que no cumple la
-- propiedad, sin incluirlo.
-- Definirla función trozoInicialPares que devuelve el trozo inicial de
-- los elementos de una lista que son pares. Por ejemplo,
      trozoInicialPares []
                                   == []
     trozoInicialPares [1,2,3,4] == []
     trozoInicialPares [2,4,3,2] == [2,4]
      trozoInicialPares [2,4,6,8] == [2,4,6,8]
trozoInicialPares xs = take (posicionPrimerImpar xs) xs
-- (posicionPrimerImpar xs) es la posición del primer elemento impar de
-- la lista xs o su longitud si no hay ninguno. Por ejemplo,
      posicionPrimerImpar [2,4,3,2] == 2
      posicionPrimerImpar [2,4,6,2] == 4
posicionPrimerImpar xs =
    head ([i \mid (x,i) < -zip xs [0..], odd x] ++ [length xs])
-- La función anterior se puede definir por recursión
posicionPrimerImpar2 [] = 0
posicionPrimerImpar2 (x:xs)
    I odd x
                = 0
    | otherwise = 1 + posicionPrimerImpar2 xs
-- 2ª definición (por recursión).
trozoInicialPares2 [] = []
trozoInicialPares2 (x:xs) | odd x = []
                          | otherwise = x : trozoInicialPares2 xs
-- Ejercicio 4.1. El registro de entradas vendidas de un cine se
-- almacena en una lista en la que cada elemento tiene el título de una
-- película, a continuación el número de entradas vendidas sin promoción
-- a 6 euros y por último el número de entradas vendidas con alguna de las
-- promociones del cine (menores de 4 años, mayores de 60, estudiantes
```

```
-- con carnet) a 4 euros. Por ejemplo,
      entradas = [("Gravity", 22,13),("Séptimo",18,6), ("Turbo",19,0),
                  ("Gravity", 10,2), ("Séptimo", 22,10), ("Turbo", 32,10),
                  ("Gravity", 18,8), ("Séptimo", 20,14), ("Turbo", 18,10)]
-- Definir la función ingresos tal que (ingresos bd) sea el total de
-- ingresos obtenidos según la información sobre entradas vendidas
-- almacenada en la lista 'bd'. Por ejemplo,
      ingressos entradas = 1366
entradas = [("Gravity", 22,13), ("Séptimo", 18,6), ("Turbo", 19,0),
            ("Gravity", 10,2), ("Séptimo", 22,10), ("Turbo", 32,10),
            ("Gravity", 18,8), ("Séptimo", 20,14), ("Turbo", 18,10)]
ingresos bd = sum [6*y+4*z | (_,y,z) <- bd]
-- Ejercicio 4.2. Definir la función ingresosPelicula tal que
-- (ingresos bd p) sea el total de ingresos obtenidos en las distintas
-- sesiones de la película p según la información sobre entradas
-- vendidas almacenada en la lista bd. Por ejemplo,
      ingresosPelicula entradas "Gravity"
                                                392
      ingresosPelicula entradas "Séptimo"
                                                480
      ingresosPelicula entradas "Turbo"
                                                494
ingresosPelicula bd p = sum [6*y+4*z \mid (x,y,z) < -bd, x == p]
```

5.4.2. Examen 2 (16 de Diciembre de 2013)

```
-- Informática (1º del Grado en Matemáticas y en Estadística)
-- 2º examen de evaluación continua (16 de diciembre de 2013)
-----
import Test.QuickCheck

prop_equivalencia :: [Int] -> Bool

prop_equivalencia xs =
    numeroConsecutivosC xs == numeroConsecutivosC2 xs
```

```
-- Ejercicio 1.1. Definir, por comprensión, la función
-- numeroConsecutivosC tal que (numeroConsecutivosC xs) es la cantidad
-- de números
-- consecutivos que aparecen al comienzo de la lista xs. Por ejemplo,
      numeroConsecutivosC [1,3,5,7,9]
      numeroConsecutivosC[1,2,3,4,5,7,9] == 5
      numeroConsecutivosC []
     numeroConsecutivosC [4,5]
                                          == 2
     numeroConsecutivosC [4,7]
                                           == 1
      numeroConsecutivosC [4,5,0,4,5,6]
                                           == 2
-- 1º solución (con índices)
numeroConsecutivosC :: (Num a, Eq a) => [a] -> Int
numeroConsecutivosC xs
    | \text{ null ys} | = \text{length xs}
    | otherwise = head ys
    where ys = [n \mid n < -[1..length xs -1], xs !! n /= 1 + xs !! (n-1)]
-- 2ª solución (con zip3)
numeroConsecutivosC2 :: (Num a, Eq a) => [a] -> Int
numeroConsecutivosC2 [] = 0
numeroConsecutivosC2 [x] = 1
numeroConsecutivosC2 [x,y] | x+1 == y = 2
                           | otherwise = 1
numeroConsecutivosC2 xs =
    head [k \mid (x,y,k) < -zip3 xs (tail xs) [1..], y /= x+1]
-- 3º solución (con takeWhile)
numeroConsecutivosC3 [] = 0
numeroConsecutivosC3 xs =
    1 + length (takeWhile (==1) [y-x | (x,y) <- zip xs (tail xs)])
-- Ejercicio 1.2. Definir, por recursión, la función numeroConsecutivosR
-- tal que (numeroConsecutivosR xs) es la cantidad de números
-- consecutivos que aparecen al comienzo de la lista xs. Por ejemplo,
      numeroConsecutivosC [1,3,5,7,9]
                                               1
      numeroConsecutivosC [1,2,3,4,5,7,9] ==
                                               5
     numeroConsecutivosC []
                                               0
                                           == 2
     numeroConsecutivosC [4,5]
```

```
numeroConsecutivosC [4,7]
      numeroConsecutivosC [4,5,0,4,5,6] == 2
numeroConsecutivosR [] = 0
numeroConsecutivosR[x] = 1
numeroConsecutivosR (x:y:ys)
    | y == x+1 = 1 + numeroConsecutivosR (y:ys)
    | otherwise = 1
-- Ejercicio 2.1. Una sustitución es una lista de parejas
-- [(x1,y1),...,(xn,yn)] que se usa para indicar que hay que reemplazar
-- cualquier ocurrencia de cada uno de los xi, por el correspondiente
-- yi. Por ejemplo,
      sustitucion = [('1', 'a'), ('2', 'n'), ('3', 'v'), ('4', 'i'), ('5', 'd')]
-- es la sustitución que reemplaza '1' por 'a', '2' por 'n', ...
-- Definir, por comprensión, la función sustitucionEltC tal que
-- (sustitucionEltC xs z) es el resultado de aplicar la sustitución xs
-- al elemento z. Por ejemplo,
      sustitucionEltC sustitucion '4' == 'i'
      sustitucionEltC sustitucion '2' ==
      sustitucionEltC sustitucion '0' == '0'
sustitucion = [('1','a'),('2','n'),('3','v'),('4','i'),('5','d')]
sustitucionEltC xs z = head[y \mid (x,y) <- xs, x == z] ++ [z]
-- Ejercicio 2.2. Definir, por recursión, la función sustitucionEltR tal
-- que (sustitucionEltR xs z) es el resultado de aplicar la sustitución
-- xs al elemento z. Por ejemplo,
      sustitucionEltR sustitucion '4' ==
      sustitucionEltR sustitucion '2' == 'n'
      sustitucionEltR sustitucion '0' ==
                                           '0'
sustitucionEltR[]z = z
sustitucionEltR ((x,y):xs) z
    | x == z = y
    | otherwise = sustitucionEltR xs z
```

```
-- Ejercicio 2.3, Definir, por comprensión, la función sustitucionLstC
-- tal que (sustitucionLstC xs zs) es el resultado de aplicar la
-- sustitución xs a los elementos de la lista zs. Por ejemplo,
     sustitucionLstC sustitucion "2151"
     sustitucionLstC sustitucion "3451"
     sustitucionLstC sustitucion "2134515" == "navidad"
sustitucionLstC xs zs = [sustitucionEltC xs z | z <- zs]</pre>
-- Ejercicio 2.4. Definir, por recursión, la función sustitucionLstR tal
-- que (sustitucionLstR xs zs) es el resultado de aplicar la sustitución
-- xs a los elementos de la lista zs. Por ejemplo,
     sustitucionLstR sustitucion "2151"
     sustitucionLstR sustitucion "3451"
     sustitucionLstR sustitucion "2134515" == "navidad"
sustitucionLstR xs [] = []
sustitucionLstR xs (z:zs) =
    sustitucionEltR xs z : sustitucionLstR xs zs
-- Ejercicio 3. Definir, por recursión, la función sublista tal que
-- (sublista xs ys) se verifica si todos los elementos de xs aparecen en
-- ys en el mismo orden aunque no necesariamente consecutivos. Por ejemplo,
     sublista "meta"
                       "matematicas" == True
     sublista "temas" "matematicas" == True
     sublista "mitica" "matematicas" == False
sublista [] ys = True
sublista (x:xs) [] = False
sublista (x:xs) (y:ys)
    | x == y
                     = sublista xs ys
    -- Ejercicio 4. Definir, por recursión, la función numeroDigitosPares
-- tal que (numeroDigitosPares n) es la cantidad de dígitos pares que
```

```
-- hay en el número natural n. Por ejemplo,
      numeroDigitosPares
                              0 ==
                                      1
      numeroDigitosPares
                              1
                                      0
      numeroDigitosPares
                                     3
                            246
      numeroDigitosPares
                            135
                                 ==
      numeroDigitosPares 123456
numeroDigitosPares2 n
    | n < 10
                = aux n
    | otherwise = (aux n 'rem' 10) + numeroDigitosPares2 (n 'div' 10)
    where aux n | even n
                            = 1
                | otherwise = 0
```

5.4.3. Examen 3 (23 de Enero de 2014)

El examen es común con el del grupo 1 (ver página 312).

5.4.4. Examen 4 (20 de Marzo de 2014)

```
-- Informática (1º del Grado en Matemáticas y en Matemáticas y Estadística)
-- 4º examen de evaluación continua (20 de marzo de 2014)
  _____
-- Ejercicio 1. Se consideran los árboles binarios representados
-- mediante el tipo Arbol definido por
     data Arbol = Hoja Int
               | Nodo Int Arbol Arbol
               deriving Show
-- Por ejemplo, el árbol
         1
       3
            2
      / \
       4 6
     5
-- se puede representar por
     Nodo 1 (Nodo 3 (Hoja 5) (Hoja 4)) (Nodo 2 (Hoja 6) (Hoja 7))
-- En los ejemplos se usarán los árboles definidos por
     ej1 = Nodo 1 (Nodo 3 (Hoja 5) (Hoja 4)) (Nodo 2 (Hoja 6) (Hoja 7))
```

```
ej2 = Nodo 3 (Hoja 1) (Hoja 4)
     ej3 = Nodo 2 (Hoja 3) (Hoja 5)
- -
      ej4 = Nodo 1 (Hoja 2) (Nodo 2 (Hoja 3) (Hoja 3))
      ej5 = Nodo 1 (Nodo 2 (Hoja 3) (Hoja 5)) (Hoja 2)
-- Las capas de un árbol binario son las listas de elementos que están a
-- la misma profundidad. Por ejemplo, las capas del árbol
           1
        3
              2
      5 4 6 7
-- son: [1], [3,2] y [5,4,6,7]
-- Definir la función
     capas :: Arbol -> [[Int]]
-- tal que (capas a) es la lista de las capas de dicho árbol ordenadas
-- según la profunidad. Por ejemplo,
      capas ej1 == [[1],[3,2],[5,4,6,7]]
      capas ej2 == [[3],[1,4]]
      capas ej3 == [[2],[3,5]]
      capas ej4 == [[1],[2,2],[3,3]]
      capas ej5 == [[1],[2,2],[3,5]]
data Arbol = Hoja Int
           | Nodo Int Arbol Arbol
           deriving Show
ej1 = Nodo 1 (Nodo 3 (Hoja 5) (Hoja 4)) (Nodo 2 (Hoja 6) (Hoja 7))
ei2 = Nodo 3 (Hoia 1) (Hoia 4)
ej3 = Nodo 2 (Hoja 3) (Hoja 5)
ej4 = Nodo 1 (Hoja 2) (Nodo 2 (Hoja 3) (Hoja 3))
ej5 = Nodo 1 (Nodo 2 (Hoja 3) (Hoja 5)) (Hoja 2)
capas :: Arbol -> [[Int]]
capas (Hoja n) = [[n]]
capas (Nodo n i d) = [n] : union (capas i) (capas d)
-- (union xss yss) es la lista obtenida concatenando los
-- correspondientes elementos de xss e yss. Por ejemplo,
      union [[3,4],[2]] [[5],[7,6,8]] == [[3,4,5],[2,7,6,8]]
```

```
union [[3,4]]
                    [[5],[7,6,8]] == [[3,4,5],[7,6,8]]
      union [[3,4],[2]] [[5]]
                                       == [[3,4,5],[2]]
union :: [[a]] -> [[a]] -> [[a]]
union [] yss = yss
union xss [] = xss
union (xs:xss) (ys:yss) = (xs ++ ys) : union xss yss
-- Ejercicio 2. Un árbol es subárbol de otro si se puede establecer una
-- correspondencia de los nodos del primero con otros mayores o iguales
-- en el segundo, de forma que se respeten las relaciones de
-- descendencia. Este concepto se resume en varias situaciones posibles:
-- * El primer árbol es subárbol del hijo izquierdo del segundo
    árbol. De esta forma ej2 es subárbol de ej1.
-- * El primer árbol es subárbol del hijo derecho del segundo árbol. De
    esta forma ej3 es subárbol de ej1.
-- * La raíz del primer árbol es menor o igual que la del segundo, el
    hijo izquierdo del primer árbol es subárbol del hijo izquierdo del
    segundo y el hijo derecho del primer árbol es subárbol del hijo
    derecho del segundo. De esta forma ej4 es subárbol de ej1.
-- Definir la función
      subarbol :: Arbol -> Arbol -> Bool
-- tal que (subarbol al a2) se verifica si al es subárbol de a2. Por
-- ejemplo,
      subarbol ei2 ei1 == True
     subarbol ej3 ej1 == True
     subarbol ej4 ej1 == True
     subarbol ej5 ej1 == False
subarbol :: Arbol -> Arbol -> Bool
subarbol (Hoja n) (Hoja m) =
    n \le m
subarbol (Hoja n) (Nodo m i d) =
    n <= m || subarbol (Hoja n) i || subarbol (Hoja n) d
subarbol (Nodo _ _ _) (Hoja _) =
    False
subarbol (Nodo n i1 d1) (Nodo m i2 d2) =
    subarbol (Nodo n i1 d1) i2 ||
    subarbol (Nodo n i1 d1) d2 ||
    n \le m \&\& (subarbol i1 i2) \&\& (subarbol d1 d2)
```

```
-- Ejercicio 3.1 (1.2 puntos): Definir la función
     intercalaRep :: Eq a => a -> [a] -> [[a]]
-- tal que (intercalaRep x ys), es la lista de las listas obtenidas
-- intercalando x entre los elementos de ys, hasta la primera ocurrencia
-- del elemento x en ys. Por ejemplo,
     intercalaRep 1 []
     intercalaRep 1 [1]
                            == [[1,1]]
     intercalaRep 1 [2]
                            == [[1,2],[2,1]]
     intercalaRep 1 [1,1] == [[1,1,1]]
     intercalaRep 1 [1,2]
                            == [[1,1,2]]
     intercalaRep 1 [2,1]
                             == [[1,2,1],[2,1,1]]
     intercalaRep 1 [1,2,1] == [[1,1,2,1]]
     intercalaRep 1 [2,1,1] = [[1,2,1,1],[2,1,1,1]]
     intercalaRep 1 [1,1,2] == [[1,1,1,2]]
     intercalaRep 1 [1,2,2] == [[1,1,2,2]]
- -
     intercalaRep 1 [2,1,2] = [[1,2,1,2],[2,1,1,2]]
     intercalaRep 1 [2,2,1] = [[1,2,2,1],[2,1,2,1],[2,2,1,1]]
-- lª definición (con map):
intercalaRep :: Eq a => a -> [a] -> [[a]]
intercalaRep x [] = [[x]]
intercalaRep x (y:ys)
    | x == y = [x:y:ys]
    | otherwise = (x:y:ys) : (map (y:) (intercalaRep x ys))
-- 2ª definición (sin map):
intercalaRep2 :: Eq a => a -> [a] -> [[a]]
intercalaRep2 x [] = [[x]]
intercalaRep2 x (y:ys)
    | x == y = [x:y:ys]
    | otherwise = (x:y:ys) : [y:zs | zs <- intercalaRep2 x ys]
-- Ejercicio 3.2.Definir la función
     permutacionesRep :: Eq a => [a] -> [[a]]
-- tal que (permutacionesRep xs) es la lista (sin elementos repetidos)
-- de todas las permutaciones con repetición de la lista xs. Por
-- ejemplo,
                               == [[]]
     permutacionesRep []
     permutacionesRep [1]
                               == [[1]]
- -
     permutacionesRep [1,1] == [[1,1]]
```

```
permutacionesRep [1,2]
                                == [[1,2],[2,1]]
     permutacionesRep [1,2,1]
                                == [[1,2,1],[2,1,1],[1,1,2]]
- -
     permutacionesRep [1,1,2]
                                == [[1,1,2],[1,2,1],[2,1,1]]
     permutacionesRep [2,1,1]
                                == [[2,1,1],[1,2,1],[1,1,2]]
     permutacionesRep [1,1,1]
                                == [[1,1,1]]
     permutacionesRep [1,1,2,2] = [[1,1,2,2],[1,2,1,2],[2,1,1,2],
                                     [1,2,2,1],[2,1,2,1],[2,2,1,1]]
permutacionesRep :: Eq a => [a] -> [[a]]
permutacionesRep []
                    = [[]]
permutacionesRep [x] = [[x]]
permutacionesRep (x:xs) =
   concat (map (intercalaRep x) (permutacionesRep xs))
-- Ejercicio 4. Un montón de barriles se construye apilando unos encima
-- de otros por capas, de forma que en cada capa todos los barriles
-- están apoyados sobre dos de la capa inferior y todos los barriles de
-- una misma capa están pegados unos a otros. Por ejemplo, los
-- siguientes montones son válidos:
                    y los siguientes no son válidos:
-- Se puede comprobar que el número de formas distintas de construir
-- montones con n barriles en la base M n viene dado por la siguiente
-- fórmula:
               (n-1)
    M n = 1 + (n-j) * M j
```

```
j = 1
-- Definir la función
     montones :: Integer -> Integer
-- tal que (montones n) es el número de formas distintas de construir
-- montones con n barriles en la base. Por ejemplo,
                  ==
     montones 1
                      1
     montones 10 == 4181
     montones 20 == 63245986
     montones 30 == 956722026041
-- Calcular el número de formas distintas de construir montones con 50
-- barriles en la base.
montones :: Integer -> Integer
montones 1 = 1
montones n = 1 + sum [(n-j)*(montones j) | j <- [1..n-1]]
-- 2º definición, a partir de la siguiente observación
     M(1) = 1
     M(2) = 1 + M(1)
                                       = M(1) + M(1)
     M(3) = 1 + 2*M(1) + M(2)
                                       = M(2) + (M(1) + M(2))
     M(4) = 1 + 3*M(1) + 2*M(2) + M(3) = M(3) + (M(1) + M(2) + M(3))
montones2 :: Int -> Integer
montones2 n = montonesSuc !! (n-1)
montonesSuc :: [Integer]
montonesSuc = 1 : zipWith (+) montonesSuc (scanl1 (+) montonesSuc)
-- 3º definición
montones3 :: Integer -> Integer
montones3 0 = 0
montones3 n = head (montonesAcc [] n)
montonesAcc :: [Integer] -> Integer -> [Integer]
montonesAcc ms 0 = ms
montonesAcc ms n =
    montonesAcc ((1 + sum (zipWith (*) ms [1..])):ms) (n-1)
```

```
-- El cálculo es
-- ghci> montones2 50
-- 218922995834555169026
```

5.4.5. Examen 5 (22 de Mayo de 2014)

```
-- Informática (1º del Grado en Matemáticas y en Matemáticas y Estadística)
-- 5º examen de evaluación continua (22 de mayo de 2014)
  ______
  ______
-- § Librerías auxiliares
import Data.Array
import GrafoConListas
import Data.List
-- Ejercicio 1. Una sucesión creciente es aquella en la que todo
-- elemento es estrictamente mayor que el anterior. Una sucesión
-- super-creciente es una sucesión creciente en la que la diferencia
-- entre un elemento y el siguiente es estrictamente mayor que la
-- diferencia entre dicho elemento y el anterior. Por ejemplo, [1,2,4,7]
-- es una sucesión super-creciente, pero [1,4,8,12] no. Otra
-- caracterización de las sucesiones super-crecientes es que la sucesión
-- de las diferencias entre elementos consecutivos es creciente.
-- Definir, utilizando exclusivamente recursión en todas las
-- definiciones (incluyendo auxiliares), la función
     superCrecienteR :: (Num a, Ord a) => [a] -> Bool
-- tal que (superCrecienteR xs) se verifica si la secuencia xs es
-- super-creciente. Por ejemplo,
     superCrecienteR [1,2,4,7] == True
     superCrecienteR [1,4,8,12] == False
-- 1ª solución de superCrecienteR:
superCrecienteR :: (Num a, Ord a) => [a] -> Bool
superCrecienteR xs = crecienteR (diferenciasR xs)
crecienteR :: Ord a => [a] -> Bool
```

```
crecienteR (x1:x2:xs) = x1 < x2 \&\& crecienteR (x2:xs)
crecienteR _
                     = True
diferenciasR :: Num a => [a] -> [a]
diferenciasR (x1:x2:xs) = x2-x1 : diferenciasR (x2:xs)
diferenciasR _
                       = []
-- 2ª solución de superCrecienteR:
superCrecienteR2 :: (Num a, Ord a) => [a] -> Bool
superCrecienteR2 [x1,x2] = x1 < x2
superCrecienteR2 (x1:x2:x3:xs) = x1 < x2 \&\& x2-x1 < x3-x2 \&\&
                                  superCrecienteR2 (x2:x3:xs)
superCrecienteR2 _
                               = True
-- Ejercicio 2. Definir sin utilizar recursión en ninguna de las definiciones
-- (incluyendo auxiliares), la función
      superCrecienteC :: (Num a, Ord a) => [a] -> Bool
-- tal que (superCrecienteC xs) se verifica si la secuencia xs es
-- super-creciente. Por ejemplo,
     superCrecienteC [1,2,4,7]
                                  == True
      superCrecienteC [1,4,8,12] == False
-- 1ª definición de superCrecienteC:
superCrecienteC :: (Num a, Ord a) => [a] -> Bool
superCrecienteC xs = crecienteC (diferenciasC xs)
crecienteC :: Ord a => [a] -> Bool
crecienteC xs = and [x1 < x2 \mid (x1,x2) < -zip xs (tail xs)]
diferenciasC :: Num t \Rightarrow [t] \rightarrow [t]
diferenciasC xs = zipWith (-) (tail xs) xs
-- 2ª definición de superCrecienteC:
superCrecienteC2 :: (Num a, Ord a) => [a] -> Bool
superCrecienteC2 xs =
    and [x1 < x2 \&\& x2-x1 < x3-x2]
         (x1,x2,x3) \leftarrow zip3 xs (tail xs) (drop 2 xs)
-- Ejercicio 3. Se considera la secuencia infinita de todos los números
-- naturales.
```

```
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,...]
-- Si todos los números de esta secuencia se descomponen en sus dígitos,
-- se obtiene la secuencia infinita:
     [1,2,3,4,5,6,7,8,9,1,0,1,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,2,,\ldots]
-- Definir la función
     secuenciaDigitosNaturales :: [Int]
-- tal que su valor es la secuencia infinita de los dígitos de todos los
-- elementos de la secuencia de números naturales. Por ejemplo,
     take 11 secuenciaDigitosNaturales == [1,2,3,4,5,6,7,8,9,1,0]
  ______
secuenciaDigitosNaturales :: [Int]
secuenciaDigitosNaturales = [read [c] | n <- [1..], c <- show n]</pre>
-- Ejercicio 4. Consideremos las matrices representadas como tablas
-- cuyos índices son pares de números naturales.
     type Matriz a = Array (Int,Int) a
-- La dimensión de una matriz es el par formado por el número de filas y
-- el número de columnas:
     dimension :: Num a => Matriz a -> (Int,Int)
     dimension = snd . bounds
-- Una matriz tridiagonal es aquella en la que sólo hay elementos distintos de
-- O en la diagonal principal o en las diagonales por encima y por debajo de la
-- diagonal principal. Por ejemplo,
     (120000)
     (345000)
     (067800)
     (009120)
     (000345)
     (000067)
-- Definir la función
     creaTridiagonal :: Int -> Matriz Int
-- tal que (creaTridiagonal n) es la siguiente matriz tridiagonal
-- cuadrada con n filas y n columnas:
     (110000...0
     (122000...0
                           )
     (023300...00)
     (003440...00)
     (000455...00)
```

```
(000056...00)
      ( ..... )
      (000000...nn)
      ( 0 0 0 0 0 0 ... n n+1 )
-- Por ejemplo,
     ghci> creaTridiagonal 4
      array ((1,1),(4,4)) [((1,1),1),((1,2),1),((1,3),0),((1,4),0),
                           ((2,1),1),((2,2),2),((2,3),2),((2,4),0),
                           ((3,1),0),((3,2),2),((3,3),3),((3,4),3),
                           ((4,1),0),((4,2),0),((4,3),3),((4,4),4)
type Matriz a = Array (Int,Int) a
dimension :: Num a => Matriz a -> (Int,Int)
dimension = snd . bounds
creaTridiagonal :: Int -> Matriz Int
creaTridiagonal n =
    array ((1,1),(n,n))
          [((i,j), valores i j) | i <- [1..n], j <- [1..n]]
   where valores i j | i == j
                      | i == j+1 = j
                      | i+1 == j = i
                      | otherwise = 0
-- Ejercicio 5. Definir la función
      esTridiagonal :: Matriz Int -> Bool
-- tal que (esTridiagonal m) se verifica si la matriz m es tridiagonal. Por
-- ejemplo,
      ghci> esTridiagonal (listArray ((1,1),(3,3)) [1..9])
      False
      ghci> esTridiagonal (creaTridiagonal 5)
esTridiagonal :: Matriz Int -> Bool
esTridiagonal m =
    and [m!(i,j) == 0 \mid i \leftarrow [1..p], j \leftarrow [1..q], (j < i-1 \mid j > i+1)]
   where (p,q) = dimension m
```

```
-- Ejercicio 6. Consideremos una implementación del TAD de los grafos,
-- por ejemplo en la que los grafos se representan mediante listas. Un
-- ejemplo de grafo es el siguiente:
     g0 :: Grafo Int Int
     g0 = creaGrafo D (1,6) [(1,3,2),(1,5,4),(3,5,6),(5,1,8),(5,5,10),
                             (2,4,1),(2,6,3),(4,6,5),(4,4,7),(6,4,9)
-- Definir la función
     conectados :: Grafo Int Int -> Int -> Bool
-- tal que (conectados g v1 v2) se verifica si los vértices v1 y v2
-- están conectados en el grafo g. Por ejemplo,
     conectados g0\ 1\ 3 == True
     conectados q0 1 4 == False
     conectados q0 6 2 == False
     conectados g0\ 2\ 6 == True
q0 :: Grafo Int Int
g0 = creaGrafo D (1,6) [(1,3,2),(1,5,4),(3,5,6),(5,1,8),(5,5,10),
                       (2,4,1),(2,6,3),(4,6,5),(4,4,7),(6,4,9)
conectados :: Grafo Int Int -> Int -> Bool
conectados g v1 v2 = elem v2 (conectadosAux g [] [v1])
conectadosAux :: Grafo Int Int -> [Int] -> [Int]
conectadosAux q vs [] = vs
conectadosAux g vs (w:ws)
    | elem w vs = conectadosAux g vs ws
    | otherwise = conectadosAux g (union [w] vs) (union ws (advacentes g w))
```

5.4.6. Examen 6 (18 de Junio de 2014)

El examen es común con el del grupo 1 (ver página 328).

5.4.7. Examen 7 (4 de Julio de 2014)

El examen es común con el del grupo 3 (ver página 373).

5.4.8. Examen 8 (10 de Septiembre de 2014)

El examen es común con el del grupo 3 (ver página 379).

5.4.9. Examen 9 (20 de Noviembre de 2014)

El examen es común con el del grupo 3 (ver página 383).

5.5. Exámenes del grupo 5 (Andrés Cordón y Miguel A. Martínez)

5.5.1. Examen 1 (5 de Noviembre de 2013)

-- Ejercicio 4.2. Definir la función

```
-- Informática (1º del Grado en Matemáticas y en Física)
-- 1º examen de evaluación continua (4 de noviembre de 2013)
-- Ejercicio 1.1. Un año es bisiesto si, o bien es divisible por 4 pero no
-- por 100, o bien es divisible por 400. En cualquier otro caso, no lo
-- es.
-- Definir el predicado
      bisiesto :: Int -> Bool
-- tal que (bisiesto a) se verifica si a es un año bisiesto. Por ejemplo:
      bisiesto 2013 == False bisiesto 2012 == True
      bisiesto 1700 == False
                                     bisiesto 1600 == True
-- 1ª definición:
bisiesto :: Int -> Bool
bisiesto x = (\text{mod } \times 4 == 0 \& \text{ mod } \times 100 /= 0) \mid \mid \text{mod } \times 400 == 0
-- 2ª definición (con guardas):
bisiesto2 :: Int -> Bool
bisiesto2 x | mod x 4 == 0 \& \mod x 100 /= 0 = True
             | \mod \times 400 == 0
                                                = True
             | otherwise
                                                = False
```

```
entre :: Int -> Int -> [Int]
-- tal que (entre a b) devuelve la lista de todos los bisiestos entre
-- los años a y b. Por ejemplo:
     entre 2000 2019 == [2000, 2004, 2008, 2012, 2016]
entre :: Int -> Int -> [Int]
entre a b = [x \mid x < -[a..b], bisiesto x]
-- Ejercicio 2. Definir el predicado
     coprimos :: (Int,Int) -> Bool
-- tal que (coprimos (a,b)) se verifica si a y b son primos entre sí;
-- es decir, no tienen ningún factor primo en común. Por ejemplo,
     coprimos (12,25) == True
     coprimos (6,21) == False
     coprimos (1,5) == True
-- Calcular todos los números de dos cifras coprimos con 30.
-- lª definición
coprimos :: (Int,Int) -> Bool
coprimos (a,b) = and [mod a x /= 0 | x <- factores b]
   where factores x = [z \mid z < [2..x], \mod x z == 0]
-- 2º definición
coprimos2 :: (Int,Int) -> Bool
coprimos2 (a,b) = gcd a b == 1
-- El cálculo es
     ghci> [x \mid x < [10..99], coprimos (x,30)]
     [11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97]
-- Ejercicio 3. Definir la función
     longCamino :: [(Float,Float)] -> Float
-- tal que (longCamino xs) es la longitud del camino determinado por los
-- puntos del plano listados en xs. Por ejemplo,
     longCamino [(0,0),(1,0),(2,1),(2,0)] == 3.4142137
longCamino :: [(Float,Float)] -> Float
longCamino xs =
```

```
sum [ sqrt ((a-c)^2+(b-d)^2) | ((a,b),(c,d)) <- zip xs (tail xs) ]
__ _______
-- Ejercicio 4.1. Se quiere poner en marcha un nuevo servicio de correo
-- electrónico. Se requieren las siguientes condiciones para las
-- contraseñas: deben contener un mínimo de 8 caracteres, al menos deben
-- contener dos números, y al menos deben contener una letra
-- mayúscula. Se asume que el resto de caracteres son letras del
-- abecedario sin tildes.
-- Definir la función
     claveValida :: String -> Bool
-- tal que (claveValida xs) indica si la contraseña es válida. Por
-- ejemplo,
     claveValida "EstoNoVale" == False
     claveValida "Tampoco7"
                             == False
     claveValida "SiVale23" == True
claveValida :: String -> Bool
claveValida xs =
   length xs >= 8 \&\&
   length [x \mid x < -xs, x 'elem' ['0'...'9']] > 1 &&
   [x \mid x <- xs, x 'elem' ['A'..'Z']] /= []
-- Ejercicio 4.2. Definir la función
     media :: [String] -> Float
-- tal que (media xs) es la media de las longitudes de las contraseñas
-- válidas de xs. Por ejemplo,
     media ["EstoNoVale", "Tampoco7", "SiVale23", "grAnada1982"] == 9.5
-- Indicación: Usar fromIntegral.
media :: [String] -> Float
media xss =
   fromIntegral (sum [length xs | xs <- validas]) / fromIntegral (length validas</pre>
   where validas = [xs | xs <- xss, claveValida xs]
```

5.5.2. Examen 2 (16 de Diciembre de 2013)

```
-- Informática (1º del Grado en Matemáticas y en Física)
-- 2º examen de evaluación continua (16 de diciembre de 2013)
import Data.Char
-- Ejercicio 1. Definir las funciones
     ultima, primera :: Int -> Int
-- que devuelven, respectivamente, la última y la primera cifra de un
-- entero positivo, Por ejemplo:
     ultima 711 = 1
     primera 711 = 7
ultima, primera :: Int -> Int
ultima n = n \text{ 'rem' } 10
primera n = read [head (show n)]
__ ______
-- Ejercicio 1.2. Definir, por recursión, el predicado
     encadenadoR :: [Int] -> Bool
-- tal que (encadenadoR xs) se verifica si xs es una lista de
-- enteros positivos encadenados (es decir, la última cifra de cada
-- número coincide con la primera del siguiente en la lista). Por ejemplo:
    encadenadoR [711,1024,413,367] == True
    encadenadoR [711,1024,213,367] == False
  ______
encadenadoR :: [Int] -> Bool
encadenadoR (x:y:zs) = ultima x == primera y && encadenadoR <math>(y:zs)
encadenadoR
                  = True
-- Ejercicio 1.3. Definir, por comprensión, el predicado
     encadenadoC :: [Int] -> Bool
-- tal que (encadenadoC xs) se verifica si xs es una lista de
-- enteros positivos encadenados (es decir, la última cifra de cada
-- número coincide con la primera del siguiente en la lista). Por ejemplo:
    encadenadoC [711,1024,413,367] == True
    encadenadoC [711,1024,213,367] == False
```

```
encadenadoC :: [Int] -> Bool
encadenadoC xs = and [ultima x == primera y | (x,y) <- zip xs (tail xs)]
-- Ejercicio 2.1. Un entero positivo se dirá semiperfecto si puede
-- obtenerse como la suma de un subconjunto de sus divisores propios (no
-- necesariamente todos). Por ejemplo, 18 es semiperfecto, pues sus
-- divisores propios son 1, 2, 3, 6 y 9 y además 18 = 1+2+6+9.
-- Define el predicado
     semiperfecto :: Int -> Bool
-- tal que (semiperfecto x) se verifica si x es semiperfecto. Por
-- ejemplo,
-- semiperfecto 18 == True
    semiperfecto 15 == False
semiperfecto :: Int -> Bool
semiperfecto n = not (null (sublistasConSuma (divisores n) n))
-- (divisores x) es la lista de los divisores propios de x. Por ejemplo,
    divisores 18 = [1,2,3,6,9]
divisores :: Int -> [Int]
divisores x = [y \mid y < [1..x-1], x 'rem' y == 0]
-- (sublistasConSuma xs n) es la lista de las sublistas de la lista de
-- números naturales xs que suman n. Por ejemplo,
    sublistasConSuma [1,2,3,6,9] 18 == [[1,2,6,9],[3,6,9]]
sublistasConSuma :: [Int] -> Int -> [[Int]]
sublistasConSuma [] 0 = [[]]
sublistasConSuma [] = []
sublistasConSuma (x:xs) n
   | x > n = sublistasConSuma xs n
   | otherwise = [x:ys | ys <- sublistasConSuma xs (n-x)] ++
                sublistasConSuma xs n
-- Ejercicio 2.2. Definir la función
     semiperfectos :: Int -> [Int]
-- tal que (semiperfectos n) es la lista de los n primeros números
-- semiperfectos. Por ejemplo:
```

```
semiperfectos 10 == [6,12,18,20,24,28,30,36,40,42]
semiperfectos :: Int -> [Int]
semiperfectos n = take \ n \ [x \mid x < - [1..], semiperfecto x]
-- Ejercicio 3. Formatear una cadena de texto consiste en:
      1. Eliminar los espacios en blanco iniciales.
      2. Eliminar los espacios en blanco finales.
      3. Reducir a 1 los espacios en blanco entre palabras.
     4. Escribir la primera letra en mayúsculas, si no lo estuviera.
-- Definir la función
      formateada :: String -> String
-- tal que (formateada cs) es la cadena cs formateada. Por ejemplo,
      formateada " la palabra precisa" == "La palabra precisa"
formateada :: String -> String
formateada cs = toUpper x : xs
    where (x:xs) = unwords (words cs)
-- Ejercicio 4.1. El centro de masas de un sistema discreto es el punto
-- geométrico que dinámicamente se comporta como si en él estuviera
-- aplicada la resultante de las fuerzas externas al sistema.
-- Representamos un conjunto de n masas en el plano mediante una lista
-- de n pares de la forma ((ai,bi),mi) donde (ai,bi) es la posición y mi
-- la masa puntual. Las coordenadas del centro de masas (a,b) se
-- calculan por
      a = (a1*m1+a2*m2+ ... an*mn)/(m1+m2+...mn)
      b = (b1*m1+b2*m2+ ... bn*mn)/(m1+m2+...mn)
-- Definir la función
     masaTotal :: [((Float,Float),Float)] -> Float
-- tal que (masaTotal xs) es la masa total de sistema xs. Por ejemplo,
     masaTotal [((-1,3),2),((0,0),5),((1,3),3)] == 10
masaTotal :: [((Float,Float),Float)] -> Float
masaTotal xs = sum [m | (,m) <- xs]
```

5.5.3. Examen 3 (23 de Enero de 2014)

El examen es común con el del grupo 1 (ver página 312).

5.5.4. Examen 4 (19 de Marzo de 2014)

```
ordenados :: [Integer]
ordenados = [n | n <- [1..], esOrdenado n]
-- (esOrdenado x) se verifica si el número x es ordenado. Por ejemplo,
     esOrdenado 359 == True
     esOrdenado 395 == False
esOrdenado :: Integer -> Bool
esOrdenado = esOrdenada . show
-- (esOrdenada xs) se verifica si la lista xs está ordenada. Por
-- ejemplo,
     esOrdenada [3,5,9] == True
     esOrdenada [3,9,5] == False
     esOrdenada "359" == True
     esOrdenada "395" == False
esOrdenada :: Ord a => [a] -> Bool
esOrdenada (x:y:xs) = x \le y \& esOrdenada (y:xs)
es0rdenada
                   = True
-- -----
-- Ejercicio 1.2. Calcular en qué posición de la lista aparece el número
-- 13333.
-- El cálculo es
     ghci> length (takeWhile (<=13333) ordenados)</pre>
     1000
-- Ejercicio 2.1. Una lista se dirá comprimida si sus elementos
-- consecutivos han sido agrupados. Por ejemplo, la comprimida de
-- "aaabcccc" es [(3,'a'),(1,'b'),(4,'c')].
-- Definir la función
     comprimida :: Eq a \Rightarrow [a] \Rightarrow [(a,Int)]
-- tal que (comprimida xs) es la comprimida de la lista xs. Por ejemplo,
     comprimida "aaabcccc" == [(3, 'a'), (1, 'b'), (4, 'c')]
__ _______
-- 2ª definición (por recursión usando takeWhile):
comprimida :: Eq a \Rightarrow [a] \Rightarrow [(Int,a)]
comprimida [] = []
comprimida (x:xs) =
```

```
(1 + length (takeWhile (==x) xs),x) : comprimida (dropWhile (==x) xs)
-- 2º definición (por recursión sin takeWhile)
comprimida2 :: Eq a => [a] -> [(Int,a)]
comprimida2 xs = aux xs 1
   where aux (x:y:zs) n | x == y = aux (y:zs) (n+1)
                         | otherwise = (n,x) : aux (y:zs) 1
          aux [x]
                       n
                                     = [(n,x)]
-- Ejercicio 2.2. Definir la función
      expandida :: [(Int,a)] -> [a]
-- tal que (expandida ps) es la lista expandida correspondiente a ps (es
-- decir, es la lista xs tal que la comprimida de xs es ps). Por
-- ejemplo,
      expandida [(2,1),(3,7),(2,5),(4,7)] == [1,1,7,7,7,5,5,7,7,7,7]
-- 1ª definición (por comprensión)
expandida :: [(Int,a)] -> [a]
expandida ps = concat [replicate k x | (k,x) <- ps]
-- 2ª definición (por recursión)
expandida2 :: [(Int,a)] -> [a]
expandida2 [] = []
expandida2 ((n,x):ps) = replicate n x ++ expandida2 ps
-- Ejercicio 3.1. Los árboles binarios pueden representarse mediante el
-- tipo de dato
      data Arbol a = Hoja a | Nodo a (Arbol a) (Arbol a)
-- Un ejemplo de árbol es
      ejArbol = Nodo 7 (Nodo 2 (Hoja 5) (Hoja 4)) (Hoja 9)
-- Un elemento de un árbol se dirá de nivel k si aparece en el árbol a
-- distancia k de la raíz.
-- Definir la función
      nivel :: Int -> Arbol a -> [a]
-- tal que (nivel k a) es la lista de los elementos de nivel k del árbol
-- a. Por ejemplo,
     nivel 0 ejArbol == [7]
     nivel 1 ejArbol == [2,9]
```

```
nivel 2 ejArbol == [5,4]
     nivel 3 ejArbol == []
data Arbol a = Hoja a | Nodo a (Arbol a) (Arbol a)
ejArbol = Nodo 7 (Nodo 2 (Hoja 5) (Hoja 4)) (Hoja 9)
nivel :: Int -> Arbol a -> [a]
nivel k (Hoja _ ) = []
nivel k (Nodo i d) = nivel (k-1) i ++ nivel (k-1) d
-- Ejercicio 3.2. Definir la función
     todosDistintos :: Eq a => Arbol a -> Bool
-- tal que (todosDistintos a) se verifica si todos los elementos del
-- árbol a son distintos entre sí. Por ejemplo,
     todosDistintos ejArbol
     todosDistintos (Nodo 7 (Hoja 3) (Nodo 4 (Hoja 7) (Hoja 2))) == False
  ______
todosDistintos :: Eq a => Arbol a -> Bool
todosDistintos a = xs == nub xs
   where xs = preorden a
preorden :: Arbol a -> [a]
preorden (Hoja x) = [x]
preorden (Nodo x i d) = x: (preorden i ++ preorden d)
-- Ejercicio 4.1. En un colisionador de partículas se disponen m placas,
-- con n celdillas cada una. Cada celdilla detecta si alguna partícula
-- ha pasado por ella (1 si ha detectado una partícula, 0 en caso
-- contrario). El siguiente ejemplo muestra 5 placas con 9 celdillas
-- cada una:
     experimento:: [[Int]]
     experimento = [[0, 0, 1, 1, 0, 1, 0, 0, 1],
                   [0, 1, 0, 1, 0, 1, 0, 1, 0],
                   [1, 0, 1, 0, 0, 0, 1, 0, 0],
                   [0, 1, 0, 0, 0, 1, 0, 1, 0],
                   [1, 0, 0, 0, 1, 0, 0, 0, 1]]
```

```
-- Se quiere reconstruir las trayectorias que han realizado las
-- partículas que atraviesan dichas placas.
-- Una trayectoria de una partícula vendrá dada por un par, donde la
-- primera componente indica la celdilla por la que pasó en la primera
-- placa y la segunda componente será una lista que indica el camino
-- seguido en las sucesivas placas. Es decir, cada elemento de la lista
-- indicará si de una placa a la siguiente, la partícula se desvió una
-- celdilla hacia la derecha (+1), hacia la izquierda (-1) o pasó por la
-- misma celdilla (0). Por ejemplo, una trayectoria en el ejemplo
-- anterior sería:
          [(2,[-1,1,-1,-1])]
-- Se puede observar que es posible crear más de una trayectoria para la
-- misma partícula.
-- Definir la función
      calculaTrayectorias :: [[Int]] -> [(Int,[Int])]
-- que devuelva una lista con todas las trayectorias posibles para un
-- experimento. Por ejemplo,
      ghci> calculaTrayectorias experimento
      [(2,[-1,-1,1,-1]),
                         (2,[-1,1,-1,-1]), (2,[1,-1,-1,-1]),
       (3,[0,-1,-1,-1]),
       (5,[0,1,-1,-1]), (5,[0,1,1,1]),
       (8,[-1,-1,-1,-1]), (8,[-1,-1,1,1])]
experimento:: [[Int]]
experimento = [[0, 0, 1, 1, 0, 1, 0, 0, 1],
               [0, 1, 0, 1, 0, 1, 0, 1, 0],
               [1, 0, 1, 0, 0, 0, 1, 0, 0],
               [0, 1, 0, 0, 0, 1, 0, 1, 0],
               [1, 0, 0, 0, 1, 0, 0, 0, 1]]
calculaTrayectorias :: [[Int]] -> [(Int,[Int])]
calculaTrayectorias [] = []
calculaTrayectorias (xs:xss) =
    [(i,ys) | (i,e) <- zip [0..] xs, e==1, ys <- posiblesTrayectorias i xss]</pre>
-- Solución 1, con recursión
posiblesTrayectorias :: Int -> [[Int]] -> [[Int]]
posiblesTrayectorias i [] = [[]]
posiblesTrayectorias i (xs:xss) =
    [desp:ys | desp < [-1,0,1],
```

```
i+desp >= 0 \&\& i+desp < length xs,
               xs!!(i+desp) == 1,
               ys <- posiblesTrayectorias (i+desp) xss]</pre>
-- Solución 2, con recursión con acumulador
posiblesTrayectorias' i xss = posiblesTrayectoriasRecAcum i [[]] xss
posiblesTrayectoriasRecAcum i yss [] = yss
posiblesTrayectoriasRecAcum i yss (xs:xss) =
  concat[posiblesTrayectoriasRecAcum idx [ys++[idx-i] | ys <- yss] xss</pre>
        | idx < [i-1..i+1], idx >= 0 \&\& idx < length xs, xs!!idx == 1]
-- Ejercicio 4.2. Consideraremos una trayectoria válida si no cambia de
-- dirección. Esto es, si una partícula tiene una trayectoria hacia la
-- izquierda, no podrá desviarse a la derecha posteriormenete y vice versa.
-- Definir la función
      trayectoriasValidas :: [(Int,[Int])] -> [(Int,[Int])]
-- tal que (trayectoriasValidas xs) es la lista de las trayectorias de
-- xs que son válidas. Por ejemplo,
      ghci> trayectoriasValidas (calculaTrayectorias experimento)
      [(3,[0,-1,-1,-1]),(5,[0,1,1,1]),(8,[-1,-1,-1,-1])]
trayectoriasValidas :: [(Int,[Int])] -> [(Int,[Int])]
trayectoriasValidas xss = [(i,xs) | (i,xs) < - xss, trayectoriaValida3 xs]
-- 1º definición (con recursión)
trayectoriaValida :: [Int] -> Bool
trayectoriaValida [] = True
trayectoriaValida (x:xs) | x == 0 = trayectoriaValida xs
                         \mid x == -1 = notElem 1 xs
                         \mid x == 1 = notElem(-1) xs
-- 2º definición (con operaciones lógicas)
trayectoriaValida2 :: [Int] -> Bool
trayectoriaValida2 xs = (dirDer 'xor' dirIzq) || dirRec
    where xor x y = x/=y
          dirDer = elem 1 xs
          dirIzq = elem(-1)xs
          dirRec = elem 0 xs && not dirDer && not dirIzq
```

```
-- 3ª definición
trayectoriaValida3 :: [Int] -> Bool
trayectoriaValida3 xs = not (1 'elem' xs && (-1) 'elem' xs)
```

5.5.5. Examen 5 (21 de Mayo de 2014)

```
-- Informática (1º Grado Matemáticas y doble Grado Matemáticas y Física)
-- 5º examen de evaluación continua (21 de mayo de 2014)
 -- § Librerías auxiliares
import Data.Array
-- Eiercicio 1.1. Definir la función
    subcadena :: String -> String -> Int
-- tal que (subcadena xs ys) es el número de veces que aparece la cadena
-- xs dentro de la cadena ys. Por ejemplo,
    subcadena "abc" "abclablclabcl" == 2
    subcadena "abc" "alb1bc" == 0
 subcadena :: String -> String -> Int
subcadena [] = 0
subcadena xs cs@(y:ys)
   \mid xs == take \ n \ cs = 1 + subcadena \ xs \ (drop \ n \ cs)
   where n = length xs
-- Ejercicio 1.2. Definir la función
    ocurrencias :: Int -> (Integer -> Integer) -> Integer -> Int
-- tal que (ocurrencias n f x) es el número de veces que aparecen las
-- cifras de n como subcadena de las cifras del número f(x). Por
-- ejemplo,
    ocurrencias 0 (1+) 399
    ocurrencias 837 (2^{\circ}) 1000 == 3
```

```
ocurrencias :: Int -> (Integer -> Integer) -> Integer -> Int
ocurrencias n f x = subcadena (show n) (show (f x))
-- Ejercicio 2.1. Representamos árboles binarios mediante el tipo de
-- dato
      data Arbol a = Hoja a | Nodo a (Arbol a) (Arbol a)
-- Por ejemplo, los árboles
          5
                     5
        / \
                    / \
       5 3
                   5 3
      2
          5
                  2
-- se representan por
     arbol1, arbol2 :: Arbol Int
      arbol1 = (Nodo 5 (Nodo 5 (Hoja 2) (Hoja 5)) (Hoja 3))
      arbol2 = (Nodo 5 (Nodo 5 (Hoja 2) (Hoja 1)) (Hoja 3))
-- Definir el predicado
      ramaIgual :: Eq a => Arbol a -> Bool
-- tal que (ramaIgual t) se verifica si el árbol t contiene, al menos,
-- una rama con todos sus elementos iguales. Por ejemplo,
      ramaIgual arbol1 == True
      ramaIqual arbol2 == False
data Arbol a = Hoja a | Nodo a (Arbol a) (Arbol a)
arbol1, arbol2 :: Arbol Int
arbol1 = (Nodo 5 (Nodo 5 (Hoja 2) (Hoja 5)) (Hoja 3))
arbol2 = (Nodo 5 (Nodo 5 (Hoja 2) (Hoja 1)) (Hoja 3))
ramaIqual :: Eq a => Arbol a -> Bool
ramaIgual t = or [todosI xs | xs <- ramas t]</pre>
-- (ramas t) es la lista de las ramas del árbol t. Por ejemplo,
      ramas arbol1 == [[5,5,2],[5,5,5],[5,3]]
      ramas arbol2 == [[5,5,2],[5,5,1],[5,3]]
ramas (Hoja x) = [[x]]
ramas (Nodo x i d) = map (x:) (ramas i ++ ramas d)
-- (todosI xs) se verifica si todos los elementos de xs son iguales. Por
-- ejemplo,
```

```
todosI [6,6,6] == True
     todosI [6,9,6] == False
todosI :: Eq a => [a] -> Bool
todosI(x:y:xs) = x == y \&\& todosI(y:xs)
todosI _
             = True
-- Ejercicio 2.2 Definir el predicado
     ramasDis :: Eq a => Arbol a -> Bool
-- tal que (ramasDis t) se verifica si todas las ramas del árbol t
-- contienen, al menos, dos elementos distintos. Por ejemplo:
     ramasDis arbol2 == True
     ramasDis arbol1 == False
ramasDis :: Eq a => Arbol a -> Bool
ramasDis = not . ramaIqual
-- Ejercicio 3. Representamos polinomios en una variable mediante el
-- tipo de dato
     data Pol a = PolCero | Cons Int a (Pol a) deriving Show
-- Por ejemplo, el polinomio 3x^5 - x^3 + 7x^2 se representa por
     pol :: Pol Int
     pol = Cons 5 3 (Cons 3 (-1) (Cons 2 7 PolCero))
-- Definir la función
     derivadaN :: Num a => Int -> Pol a -> Pol a
-- tal que (derivadaN n p) es la derivada n-ésima del polinomio p. Por
-- ejemplo,
     derivadaN 1 pol == Cons 4 15 (Cons 2 (-3) (Cons 1 14 PolCero))
     derivadaN 2 pol == Cons 3 60 (Cons 1 (-6) (Cons 0 14 PolCero))
     derivadaN 3 pol == Cons 2 180 (Cons 0 (-6) PolCero)
     derivadaN 1 (Cons 5 3.2 PolCero) == Cons 4 16.0 PolCero
data Pol a = PolCero | Cons Int a (Pol a) deriving Show
pol :: Pol Int
pol = Cons 5 3 (Cons 3 (-1) (Cons 2 7 PolCero))
derivadaN :: Num a => Int -> Pol a -> Pol a
derivadaN n p = (iterate derivada p)!!n
```

```
derivada :: Num a => Pol a -> Pol a
derivada PolCero
                      = PolCero
derivada (Cons 0 \times p) = PolCero
derivada (Cons n \times p) = Cons (n-1) (x * fromIntegral n) (derivada p)
-- Ejercicio 4. El algoritmo de Jacobi se utiliza para calcular el
-- gradiente de temperatura en una malla de cuerpos dispuestos en dos
-- dimensiones. Se emplea para ello una matriz con el siguiente contenido:
      a) Se define una frontera, que son los elementos de la primera fila,
         primera columna, última fila y última columna. Estos elementos
         indican la temperatura exterior, y su valor es siempre constante.
      b) Los elementos del interior indican la temperatura de cada
         cuerpo.
-- En cada iteración del algoritmo la matriz p se transforma en otra q,
-- de la misma dimensión, cuyos elementos son:
      a) Elementos de la frontera:
            q(i,j)=p(i,j).
      b) Elementos del interior:
            q(i,j)=0.2*(p(i,j)+p(i+1,j)+p(i-1,j)+p(i,j+1)+p(i,j-1))
-- Por ejemplo, la transformada de la matriz de la izquierda es la de la
  derecha
      [2, 2, 2, 2, 2]
                               [2.0, 2.0, 2.0, 2.0, 2.0]
      [2, 0, 0, 0, 2]
                               [2.0, 0.8, 0.4, 0.8, 2.0]
      [2, 0, 0, 0, 2]
                               [2.0, 0.4, 0.0, 0.4, 2.0]
      [2, 0, 0, 0, 2]
                               [2.0, 0.8, 0.4, 0.8, 2.0]
      [2, 2, 2, 2, 2]
                               [2.0, 2.0, 2.0, 2.0, 2.0]
  Representaremos la matriz con el tipo de dato:
      type Matriz = Array (Int,Int) Float
  La dos matrices anteriores se representan por
      matriz1, matriz2 :: Matriz
      matriz1 = listArray((1,1),(5,5))([2, 2, 2, 2, 2,
                                           2, 0, 0, 0, 2,
                                           2, 0, 0, 0, 2,
                                           2, 0, 0, 0, 2,
                                           2, 2, 2, 2, 2])
     matriz2 = listArray((1,1),(5,5))([2.0, 2.0, 2.0, 2.0, 2.0,
                                           2.0, 0.8, 0.4, 0.8, 2.0,
                                           2.0, 0.4, 0.0, 0.4, 2.0,
                                           2.0, 0.8, 0.4, 0.8, 2.0,
                                           2.0, 2.0, 2.0, 2.0, 2.0])
```

```
-- Definir la función
                iteracion_jacobi:: Matriz -> Matriz
-- tal que (iteracion jacobi p) es la matriz obtenida aplicándole una
-- transformación de Jacobi a la matriz p. Por ejemplo,
                iteracion jacobi matriz1 == matriz2
type Matriz = Array (Int,Int) Float
matriz1 :: Matriz
matriz1 = listArray((1,1),(5,5))([2, 2, 2, 2, 2,
                                                                                                  2, 0, 0, 0, 2,
                                                                                                  2, 0, 0, 0, 2,
                                                                                                  2, 0, 0, 0, 2,
                                                                                                  2, 2, 2, 2, 2])
matriz2 :: Matriz
matriz2 = listArray((1,1),(5,5))([2.0, 2.0, 2.0, 2.0, 2.0,
                                                                                                  2.0, 0.8, 0.4, 0.8, 2.0,
                                                                                                  2.0, 0.4, 0.0, 0.4, 2.0,
                                                                                                  2.0, 0.8, 0.4, 0.8, 2.0,
                                                                                                  2.0, 2.0, 2.0, 2.0, 2.0])
-- lª definición:
iteracion_jacobi :: Matriz -> Matriz
iteracion_jacobi p = array((1,1),(n,m))[((i,j), f i j) | i <- [1..n], j <- [1..m]
          where (\_,(n,m)) = bounds p
                           f i j \mid frontera(i,j) = p!(i,j)
                                            | otherwise = 0.2*(p!(i,j)+p!(i+1,j)+p!(i-1,j)+p!(i,j+1)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,j)+p!(i+1,
                           frontera (i,j) = i == 1 || i == n || j == 1 || j == m
-- 2ª definición:
iteracion_jacobi2 :: Matriz -> Matriz
iteracion jacobi2 p =
           array ((1,1),(n,m))
                           ([((i,j), 0.2*(p!(i,j)+p!(i+1,j)+p!(i-1,j)+p!(i,j+1)+p!(i,j-1))))
                                 i \leftarrow [2..n-1], j \leftarrow [2..m-1] ++
                              [((i,j),p!(i,j)) | i \leftarrow [1,n], j \leftarrow [1..m]]++
                              [((i,j),p!(i,j)) \mid i \leftarrow [1..n], j \leftarrow [1,m]])
          where (\_,(n,m)) = bounds p
```

5.5.6. Examen 6 (18 de Junio de 2014)

El examen es común con el del grupo 1 (ver página 328).

5.5.7. Examen 7 (4 de Julio de 2014)

El examen es común con el del grupo 3 (ver página 373).

5.5.8. Examen 8 (10 de Septiembre de 2014)

El examen es común con el del grupo 3 (ver página 379).

5.5.9. Examen 9 (20 de Noviembre de 2014)

El examen es común con el del grupo 3 (ver página 383).

Exámenes del curso 2014-15

6.1. Exámenes del grupo 1 (Francisco J. Martín)

6.1.1. Examen 1 (3 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 1^{\circ} examen de evaluación continua (3 de noviembre de 2014)
-- Ejercicio 1.1. El módulo de un vector de n dimensiones,
-- xs = (x1, x2, ..., xn), es la raíz cuadrada de la suma de los cuadrados
-- de sus componentes. Por ejemplo,
     el módulo de (1,2) es 2.236068
     el módulo de (1,2,3) es 3.7416575
-- El normalizado de un vector de n dimensiones, xs = (x1, x2, ..., xn), es
-- el vector que se obtiene dividiendo cada componente por su módulo. De
-- esta forma, el módulo del normalizado de un vector siempre es 1. Por
-- ejemplo,
     el normalizado de (1,2) es (0.4472136,0.8944272)
     el normalizado de (1,2,3) es (0.26726124,0.5345225,0.8017837)
-- Definir, por comprensión, la función
     modulo :: [Float] -> Float
-- tal que (modulo xs) es el módulo del vector xs. Por ejemplo,
     modulo [1,2] == 2.236068
     modulo [1,2,3] == 3.7416575
```

```
modulo [1,2,3,4] == 5.477226
modulo :: [Float] -> Float
modulo xs = sqrt (sum [x^2 | x <- xs])
-- Ejercicio 1.2. Definir, por comprensión, la función
     normalizado :: [Float] -> [Float]
-- tal que (normalizado xs) es el vector resultado de normalizar el
-- vector xs. Por ejemplo,
     normalizado [1,2]
                           == [0.4472136,0.8944272]
     [0.26726124, 0.5345225, 0.8017837]
     normalizado [1,2,3,4] == [0.18257418,0.36514837,0.5477225,0.73029673]
normalizado :: [Float] -> [Float]
normalizado xs = [x / modulo xs | x <- xs]
__ ______
-- Ejercicio 2.1. En un bloque de pisos viven "Ana", "Beatriz", "Carlos"
-- y "Daniel", cada uno de ellos tiene ciertos alimentos en sus
-- respectivas despensas. Esta información está almacenada en una lista
-- de asociación de la siguiente forma: (<nombre>,<despensa>)
     datos = [("Ana",["Leche","Huevos","Sal"]),
              ("Beatriz",["Jamon","Lechuga"]),
              ("Carlos", ["Atun", "Tomate", "Jamon"]),
              ("Daniel",["Salmon","Huevos"])]
-- Definir, por comprensión, la función
     tienenProducto :: String -> [(String,[String])] -> [String]
-- tal que (tienenProducto x ys) es la lista de las personas que tienen el
-- producto x en sus despensas. Por ejemplo,
     tienenProducto "Lechuga" datos == ["Beatriz"]
     tienenProducto "Huevos" datos == ["Ana","Daniel"]
     tienenProducto "Pan"
                             datos == []
datos = [("Ana",["Leche","Huevos","Sal"]),
        ("Beatriz",["Jamon","Lechuga"]),
        ("Carlos", ["Atun", "Tomate", "Jamon"]),
        ("Daniel",["Salmon","Huevos"])]
```

```
tienenProducto :: String -> [(String,[String])] -> [String]
tienenProducto x ys = [z \mid (z,ds) <- ys, x 'elem' ds]
-- Ejercicio 2.2. Definir, por comprensión, la función
      proveedores :: String -> [(String,[String])] -> [String]
-- tal que (proveedores xs ys) es la lista de las personas que pueden
-- proporcionar algún producto de los de la lista xs. Por ejemplo,
      proveedores ["Leche", "Jamon"] datos == ["Ana", "Beatriz", "Carlos"]
      proveedores ["Sal","Atun"] datos == ["Ana","Carlos"]
      proveedores ["Leche", "Sal"] datos == ["Ana"]
proveedores :: [String] -> [(String,[String])] -> [String]
proveedores xs ys =
    [z | (z,ds) <- ys, not (null [d | d <- ds, d 'elem' xs])]
-- Ejercicio 3. Definir, por recursión, la función
      intercalaNumeros :: Integer -> Integer
-- tal que (intercalaNumeros n m) es el número resultante de
-- "intercalar" las cifras de los números 'n' y 'm'. Por ejemplo, el
-- resultado de intercalar las cifras de los números 123 y 768 sería:
       1 2 3
        7 6 8
      -----
       172638
-- Si uno de los dos números tiene más cifras que el otro, simplemente
-- se ponen todas al principio en el mismo orden. Por ejemplo, el
-- resultado de intercalar las cifras de los números 1234 y 56 sería:
       1 2 3 4
            5 6
      _____
       1 2 3546
-- De esta forma:
      intercalaNumeros 123 768 == 172638
      intercalaNumeros 1234 56 == 123546
      intercalaNumeros 56 1234 == 125364
-- 1º definición:
intercalaNumeros :: Integer -> Integer -> Integer
intercalaNumeros 0 y = y
```

```
intercalaNumeros x \theta = x
intercalaNumeros x y =
   let rx = mod x 10
       dx = div \times 10
       ry = mod y 10
       dy = div y 10
   in (intercalaNumeros dx dy)*100 + rx*10 + ry
-- 2º definición:
intercalaNumeros2 :: Integer -> Integer
intercalaNumeros2 0 y = y
intercalaNumeros2 x \theta = x
intercalaNumeros2 x y = 100 * intercalaNumeros2 dx dy + <math>10*rx + ry
   where (dx,rx) = divMod x 10
         (dy,ry) = divMod y 10
__ _______
-- Ejercicio 4. La carga de una lista es el número de elementos
-- estrictamente positivos menos el número de elementos estrictamente
-- negativos.
-- Definir, por recursión, la función
     carga :: [Integer] -> Integer
-- tal que (carga xs) es la carga de la lista xs. Por ejemplo,
     carga [1,2,0,-1]
                        == 1
     carga [1,0,2,0,3]
     carga [1,0,-2,0,3] == 1
     carga [1,0,-2,0,-3] == -1
     carga [1,0,-2,2,-3] == 0
carga :: [Integer] -> Integer
carga[] = 0
carga (x:xs)
   | x > 0
            = 1 + carga xs
   | x == 0 = carga xs
    | otherwise = carga xs - 1
```

6.1.2. Examen 2 (1 de Diciembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (1 de diciembre de 2014)
-- § Librería auxiliar
import Test.QuickCheck
-- Ejercicio 1.1. Decimos que una lista está equilibrada con respecto a
-- una propiedad si el número de elementos de la lista que cumplen la
-- propiedad es igual al número de elementos de la lista que no la
-- cumplen. Por ejemplo, la lista [1,2,3,4,5,6,7,8] está equilibrada con
-- respecto a la propiedad 'ser par' y con respecto a la propiedad 'ser
-- primo', pero no con respecto a la propiedad 'ser múltiplo de 3'.
-- Definir, por comprensión, la función
     listaEquilibradaC :: [a] -> (a -> Bool) -> Bool
-- tal que (listaEquilibradaC xs p) se verifica si la lista xs está
-- equilibrada con respecto a la propiedad p. Por ejemplo,
     listaEquilibradaC [1..8] even
     listaEquilibradaC [1..8] (x \rightarrow mod \times 3 == 0) == False
  -----
listaEquilibradaC :: [a] -> (a -> Bool) -> Bool
listaEquilibradaC xs p =
   length [x \mid x < -xs, p x] == length [x \mid x < -xs, not (p x)]
-- Ejercicio 1.2. Definir, usando funciones de orden superior, la
-- función
     listaEquilibradaS :: [a] -> (a -> Bool) -> Bool
-- tal que (listaEquilibradaS xs p) se verifica si la lista xs está
-- equilibrada con respecto a la propiedad 'p'. Por ejemplo,
     listaEquilibradaS [1..8] even
     listaEquilibradaS [1..8] (\ x -> mod x 3 == 0) == False
  listaEquilibradaS :: [a] -> (a -> Bool) -> Bool
```

```
listaEquilibradaS xs p =
   length (filter p xs) == length (filter (not . p) xs)
-- Ejercicio 1.3. Comprobar con QuickCheck que la longitud de las listas
-- que están equilibradas respecto a la propiedad 'ser impar' es pae
__ _______
-- La propiedad es
prop listaEquilibradaImpar :: [Int] -> Property
prop listaEquilibradaImpar xs =
   listaEquilibradaC xs odd ==> even (length xs)
-- La comprobación es
     ghci> quickCheck prop_listaEquilibradaImpar
     +++ OK, passed 100 tests.
-- Ejercicio 2.1. Definir, por recursión, la función
     diferenciasParidadR :: [Int] -> [Int]
-- tal que (diferenciasParidadR xs) es la lista de las diferencias entre
-- elementos consecutivos de xs que tengan la misma paridad. Por ejemplo,
     diferenciasParidadR [1,2,3,4,5,6,7,8]
                                           == []
     diferenciasParidadR [1,2,4,5,9,6,12,9] == [2,4,6]
     diferenciasParidadR [1,7,3]
                                                [6,-4]
-- lª definición:
diferenciasParidadR :: [Int] -> [Int]
diferenciasParidadR (x1:x2:xs)
    | even x1 == even x2 = x2-x1 : differenciasParidadR (x2:xs)
    | otherwise
                       = diferenciasParidadR (x2:xs)
diferenciasParidadR = []
-- 2ª definición:
diferenciasParidadR2 :: [Int] -> [Int]
diferenciasParidadR2 xs = aux (zip xs (tail xs))
   where aux [] = []
         aux ((x,y):ps) \mid even x == even y = y-x : aux ps
                        | otherwise
-- Ejercicio 2.2. Definir, usando plegado con flodr, la función
```

```
diferenciasParidadP :: [Int] -> [Int]
-- tal que (diferenciasParidadP xs) es la lista de las diferencias entre
-- elementos consecutivos de xs que tengan la misma paridad. Por ejemplo,
     diferenciasParidadP [1,2,3,4,5,6,7,8] == []
     diferenciasParidadP [1,2,4,5,9,6,12,9] == [2,4,6]
     diferenciasParidadP [1,7,3]
                                            == [6, -4]
-- lª definición:
diferenciasParidadP :: [Int] -> [Int]
diferenciasParidadP xs =
   foldr (\ (x,y) r -> if even x == even y
                       then y-x : r
                       else r) [] (zip xs (tail xs))
-- 2ª definición:
diferenciasParidadP2 :: [Int] -> [Int]
diferenciasParidadP2 xs =
   foldr f [] (zip xs (tail xs))
   where f(x,y) r \mid even x == even y = y-x : r
                   | otherwise
-- Ejercicio 2.3. Comprobar con QuickCheck que todos los elementos de la
-- lista de las diferencias entre elementos consecutivos de xs que
-- tengan iqual paridad son pares.
-- La propiedad es
prop diferenciasParidad :: [Int] -> Bool
prop diferenciasParidad xs =
   all even (diferenciasParidadP xs)
-- La comprobación es
     ghci> quickCheck prop diferenciasParidad
     +++ OK, passed 100 tests.
-- Ejercicio 3. La sucesión generalizada de Fibonacci de grado N
-- (N >= 1) se construye comenzando con el número 1 y calculando el
-- resto de términos como la suma de los N términos anteriores (si
-- existen). Por ejemplo,
-- + la sucesión generalizada de Fibonacci de grado 2 es:
```

```
1, 1, 2, 3, 5, 8, 13, 21, 34, 55
-- + la sucesión generalizada de Fibonacci de grado 4 es:
       1, 1, 2, 4, 8, 15, 29, 56, 108, 208
-- + la sucesión generalizada de Fibonacci de grado 6 es:
       1, 1, 2, 4, 8, 16, 32, 63, 125, 248
-- Ejercicio 3.1. Definir, por recursión con acumulador, la función
     fibsGenAR :: Int -> Int -> Int
-- tal que (fibsGenAR n m) es el término m de la sucesión generalizada
-- de Fibonacci de grado n. Por ejemplo,
     fibsGenAR 4 3 ==
     fibsGenAR 4 4 ==
     fibsGenAR 4 5 == 15
     fibsGenAR 4 6 == 29
     fibsGenAR 4 7 == 56
fibsGenAR :: Int -> Int -> Int
fibsGenAR = fibsGenARAux [1]
fibsGenARAux :: [Int] -> Int -> Int -> Int
fibsGenARAux ac 0 = head ac
fibsGenARAux ac n m =
   fibsGenARAux (sum (take n ac) : ac) n (m-1)
__ _______
-- Ejercicio 3.2. Definir, usando plegado con foldl, la función
     fibsGenAP :: Int -> Int -> Int
-- tal que (fibsGenAP n m) es el término m de la sucesión generalizada
-- de Fibonacci de grado n. Por ejemplo,
     fibsGenAP 4 3 == 4
     fibsGenAP 4 4 == 8
     fibsGenAP 4 5 == 15
     fibsGenAP 4 6 == 29
     fibsGenAP 4 7 == 56
fibsGenAP :: Int -> Int -> Int
fibsGenAP n m =
   head (foldl (\ac x -> (sum (take n ac): ac)) [1] [1..m])
-- Ejercicio 4. Definir, por recursión, la función
```

6.1.3. Examen 3 (23 de enero de 2015)

El examen es común con el del grupo 5 (ver página 524).

6.1.4. Examen 4 (16 de marzo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (16 de marzo de 2015)
-- § Librerías auxiliares
import Data.Char
import Data.Array
import I1M.Pol
import Data.Numbers.Primes
import Test.QuickCheck
-- Ejercicio 1. Se dice que dos números naturales son parientes si
-- tienen exactamente un factor primo en común, independientemente de su
-- multiplicidad. Por ejemplo,
-- + Los números 12 (2^2*3) y 40 (2^3*5) son parientes, pues tienen al 2
-- como único factor primo en común.
-- + Los números 49 (7^2) y 63 (3^2*7) son parientes, pues tienen al 7
```

```
-- como único factor primo en común.
-- + Los números 12 (2^2*3) y 30 (2*3*5) no son parientes, pues tienen
-- dos factores primos en común.
-- + Los números 49 (7^2) y 25 (5^2) no son parientes, pues no tienen
    factores primos en común.
-- Se dice que una lista de números naturales es una secuencia de
-- parientes si cada par de números consecutivos son parientes. Por ejemplo,
-- + La lista [12,40,35,28] es una secuencia de parientes.
-- + La lista [12,30,21,49] no es una secuencia de parientes.
-- Definir la función
     secuenciaParientes :: [Int] -> Bool
-- tal que (secuenciaParientes xs) se verifica si xs es una secuencia de
-- parientes. Por ejemplo,
     secuenciaParientes [12,40,35,28] == True
     secuenciaParientes [12,30,21,49] == False
__ ______
parientes :: Int -> Int -> Bool
parientes x y =
   length [p \mid p \leftarrow takeWhile (<= d) primes, d 'mod' p == 0] == 1
   where d = gcd \times y

    Definiciones de secuenciaParientes

-- la definición (por recursión)
secuenciaParientes :: [Int] -> Bool
secuenciaParientes []
                            = True
secuenciaParientes [x]
                           = True
secuenciaParientes (x1:x2:xs) =
   parientes x1 x2 && secuenciaParientes (x2:xs)
-- 2ª definición (por recursión con 2 ecuaciones)
secuenciaParientes2 :: [Int] -> Bool
secuenciaParientes2 (x1:x2:xs) =
   parientes x1 x2 && secuenciaParientes2 (x2:xs)
secuenciaParientes2
                           = True
-- 3º definición (sin recursión):
secuenciaParientes3 :: [Int] -> Bool
secuenciaParientes3 xs = all (\((x,y) -> parientes x y) (zip xs (tail xs))
```

```
-- 4º definición
secuenciaParientes4 :: [Int] -> Bool
secuenciaParientes4 xs = all (uncurry parientes) (zip xs (tail xs))
-- Equivalencia de las 4 definiciones
prop secuenciaParientes :: [Int] -> Bool
prop secuenciaParientes xs =
    secuenciaParientes2 xs == ys &&
    secuenciaParientes3 xs == ys &&
    secuenciaParientes4 xs == vs
    where ys = secuenciaParientes xs
-- La comprobación es
      ghci> quickCheck prop_secuenciaParientes
      +++ OK, passed 100 tests.
-- Ejercicio 2. En lógica temporal la expresión AFp significa que en
-- algún momento en el futuro se cumple la propiedad p. Trasladado a
-- su interpretación en forma de árbol lo que quiere decir es que en
-- todas las ramas (desde la raíz hasta una hoja) hay un nodo que cumple
-- la propiedad p.
-- Consideramos el siguiente tipo algebraico de los árboles binarios:
      data Arbola = Ha
                   | N a (Arbol a) (Arbol a)
                     deriving (Show, Eq)
-- y el siguiente árbol
      al :: Arbol Int
      a1 = N 9 (N 3 (H 2) (N 4 (H 1) (H 5))) (H 8)
-- En este árbol se cumple (AF par); es decir, en todas las ramas hay un
-- número par; pero no se cumple (AF primo); es decir, hay ramas en las
-- que no hay ningún número primo. Donde una rama es la secuencia de
-- nodos desde el nodo inicial o raíz hasta una hoja.
-- Definir la función
      propiedadAF :: (a -> Bool) -> Arbol a -> Bool
-- tal que (propiedadAF p a) se verifica si se cumple (AF p) en el árbol
-- a; es decir, si en todas las ramas hay un nodo (interno u hoja) que
-- cumple la propiedad p. Por ejemplo
      propiedadAF even al
      propiedadAF isPrime a1 == False
```

```
data Arbol a = H a
            | N a (Arbol a) (Arbol a)
           deriving (Show, Eq)
al :: Arbol Int
a1 = N 9 (N 3 (H 2) (N 4 (H 1) (H 5))) (H 8)
propiedadAF :: (a -> Bool) -> Arbol a -> Bool
propiedadAF p (H a) = p a
propiedadAF p (N a i d) = p a || (propiedadAF p i && propiedadAF p d)
    ______
-- Ejercicio 3. Consideramos las matrices representadas como tablas
-- cuyos índices son pares de números naturales.
     type Matriz a = Array (Int,Int) a
-- Una matriz cruzada es una matriz cuadrada en la que sólo hay elementos
-- distintos de 0 en las diagonales principal y secundaria. Por ejemplo
     | 1 0 0 0 3 |
                     | 1003|
                    | 0 2 3 0 |
     | 0 2 0 1 0 |
     0 0 3 0 0 |
                    | 0 4 5 0 |
     | 0 2 0 1 0 |
                     | 2003|
     | 10003|
-- Definir la función
     creaCruzada :: Int -> Matriz Int
-- tal que (creaCruzada n) es la siquiente matriz cruzada con n filas y n
-- columnas:
     | 1 0
             0
                     0
                        0 1 |
     | 0 2
             0
               . . .
                     0
     100
             3
     | 0 0 n-2 ... n-2 0 0 |
     1 0 n-1 0
               ... 0
                       n-1 0 l
               . . .
                    0
                        0 n |
     | n 0
             0
-- Es decir, los elementos de la diagonal principal son [1,...,n], en
-- orden desde la primera fila hasta la última; y los elementos de la
-- diagonal secundaria son [1,...,n], en orden desde la primera fila
-- hasta la última.
```

```
type Matriz a = Array (Int,Int) a
creaCruzada :: Int -> Matriz Int
creaCruzada n =
    array ((1,1),(n,n))
          [((i,j), valores n i j) | i <- [1..n], j <- [1..n]]
    where valores n i j | i == j
                        | i+j == n+1 = i
                        | otherwise = 0
-- Ejercicio 4. Consideramos el TAD de los polinomios y los siguientes
-- ejemplos de polinomios
      p1 = 4*x^4 + 6*x^3 + 7*x^2 + 5*x + 2
      p2 = 6*x^5 + 2*x^4 + 8*x^3 + 5*x^2 + 8*x + 4
-- En Haskell,
      p1, p2 :: Polinomio Int
      p1 = consPol 4 4
                   (consPol 3 6
                            (consPol 2 7
                                     (consPol 1 5 (consPol 0 2 polCero))))
      p2 = consPol 5 6
                   (consPol 4 2
                            (consPol 3 8
                                     (consPol 2 5
                                              (consPol 1 8
                                                        (consPol 0 4 polCero)))))
-- El cociente entero de un polinomio P(x) por un monomio ax^n es el
-- polinomio que se obtiene a partir de los términos de P(x) con un
-- grado mayor o igual que n, realizando la división entera entre sus
-- coeficientes y el coeficiente del monomio divisor y restando el valor
-- de n al de sus grados. Por ejemplo,
-- + El cociente entero de 4x^4 + 6x^3 + 7x^2 + 5x + 2 por el monomio
     3x^2 se obtiene a partir de los términos 4x^4 + 6x^3 + 7x^2
     realizando la división entera entre sus coeficientes y el número 3
     y restando 2 a sus grados. De esta forma se obtiene 1x^2 + 2x + 2
-- + El cociente entero de 6x^5 + 2x^4 + 8x^3 + 5x^2 + 8x + 4 por el
    monomio 4x^3 se obtiene a partir de los términos 6x^5 + 2x^4 + 8x^3
     realizando la división entera entre sus coeficientes y el número 4
    y restando 3 a sus grados. De esta forma se obtiene 1x^2 + 2
-- Definir la función
```

```
cocienteEntero :: Polinomio Int -> Int -> Int -> Polinomio Int
-- tal que (cocienteEntero p a n) es el cociente entero del polinomio p
-- por el monomio de grado n y coeficiente a. Por ejemplo,
      cocienteEntero p1 3 2 \Rightarrow x^2 + 2*x + 2
      cocienteEntero p2 4 3 \Rightarrow x^2 + 2
-- Nota: Este ejercicio debe realizarse usando únicamente las funciones
-- de la signatura del tipo abstracto de dato Polinomio.
p1, p2 :: Polinomio Int
p1 = consPol 4 4
             (consPol 3 6
                      (consPol 2 7
                                (consPol 1 5 (consPol 0 2 polCero))))
p2 = consPol 5 6
             (consPol 4 2
                      (consPol 3 8
                                (consPol 2 5
                                         (consPol 1 8
                                                  (consPol 0 4 polCero)))))
cocienteEntero :: Polinomio Int -> Int -> Int -> Polinomio Int
cocienteEntero p a n
    | grado p < n = polCero
    | otherwise = consPol (grado p - n) (coefLider p 'div' a)
                            (cocienteEntero (restoPol p) a n)
-- Ejercicio 5. Decimos que un número es de suma prima si la suma de
-- todos sus dígitos es un número primo. Por ejemplo el número 562 es de
-- suma prima pues la suma de sus dígitos es el número primo 13; sin
-- embargo, el número 514 no es de suma prima pues la suma de sus
-- dígitos es 10, que no es primo.
-- Decimos que un número es de suma prima hereditario por la derecha si
-- es de suma prima y los números que se obtienen eliminando sus últimas
-- cifras también son de suma prima. Por ejemplo 7426 es de suma prima
-- hereditario por la derecha pues 7426, 742, 74 y 7 son todos números
-- de suma prima.
-- Definir la constante (función sin argumentos)
      listaSumaPrimaHD :: [Integer]
-- cuyo valor es la lista infinita de los números de suma prima
```

```
-- hereditarios por la derecha. Por ejemplo,
      take 10 listaSumaPrimaHD == [2,3,5,7,20,21,23,25,29,30]
-- (digitos n) es la lista de los dígitos de n. Por ejemplo,
     digitos 325 == [3,2,5]
-- 1ª definición de digitos
digitos1 :: Integer -> [Integer]
digitos1 n = map (read . (:[])) (show n)
-- 2ª definición de digitos
digitos2 :: Integer -> [Integer]
digitos2 = map (read . (:[])) . show
-- 3º definición de digitos
digitos3 :: Integer -> [Integer]
digitos3 n = [read [d] | d <- show n]
-- 4ª definición de digitos
digitos4 :: Integer -> [Integer]
digitos4 n = reverse (aux n)
   where aux n \mid n < 10 = [n]
                | otherwise = rem n 10 : aux (div n 10)
-- 5ª definición de digitos
digitos5 :: Integer -> [Integer]
digitos5 = map (fromIntegral . digitToInt) . show
-- Se usará la 1ª definición
digitos :: Integer -> [Integer]
digitos = digitos1
-- (sumaPrima n) se verifica si n es un número de suma prima. Por
-- ejemplo,
     sumaPrima 562 == True
      sumaPrima 514 == False
-- lª definición de sumaPrima
sumaPrima :: Integer -> Bool
sumaPrima n = isPrime (sum (digitos n))
-- 2º definición de sumaPrima
```

```
sumaPrima2 :: Integer -> Bool
sumaPrima2 = isPrime . sum . digitos
-- (sumaPrimaHD n) se verifica si n es de suma prima hereditario por la
-- derecha. Por ejemplo,
     sumaPrimaHD 7426 == True
      sumaPrimaHD 7427 == False
sumaPrimaHD n
    \mid n < 10 = isPrime n
    | otherwise = sumaPrima n && sumaPrimaHD (n 'div' 10)
-- 1ª definición de listaSumaPrimaHD
listaSumaPrimaHD1 :: [Integer]
listaSumaPrimaHD1 = filter sumaPrimaHD [1..]
-- 2ª definición de listaSumaPrimaHD
listaSumaPrimaHD2 :: [Integer]
listaSumaPrimaHD2 = map fst paresSumaPrimaHDDigitos
paresSumaPrimaHDDigitos :: [(Integer, Integer)]
paresSumaPrimaHDDigitos =
    paresSumaPrimaHDDigitosAux 1 [(2,2),(3,3),(5,5),(7,7)]
paresSumaPrimaHDDigitosAux :: Integer -> [(Integer,Integer)] ->
                             [(Integer, Integer)]
paresSumaPrimaHDDigitosAux n ac =
    ac ++ paresSumaPrimaHDDigitosAux (n+1)
                                    (concatMap extiendeSumaPrimaHD ac)
extiendeSumaPrimaHD :: (Integer,Integer) -> [(Integer,Integer)]
extiendeSumaPrimaHD (n,s) = [(n*10+k,s+k) \mid k < [0..9], isPrime <math>(s+k)]
-- 3º definición de listaSumaPrimaHD
listaSumaPrimaHD3 :: [Integer]
listaSumaPrimaHD3 =
    map fst (concat (iterate (concatMap extiendeSumaPrimaHD3)
                            [(2,2),(3,3),(5,5),(7,7)]))
extiendeSumaPrimaHD3 :: (Integer,Integer) -> [(Integer,Integer)]
```

```
extiendeSumaPrimaHD3 (n,s) = [(n*10+k,s+k) \mid k < - extensiones ! s]
extensiones :: Array Integer [Integer]
extensiones = array(1,1000)
               [(n,[k \mid k \leftarrow [0..9], isPrime (n+k)]) \mid n \leftarrow [1..1000]]
-- Comparación de eficiencia
      ghci> listaSumaPrimaHD1 !! 600
      34004
      (2.47 secs, 1565301720 bytes)
      ghci> listaSumaPrimaHD2 !! 600
- -
      34004
      (0.02 secs, 7209000 bytes)
      ghci> listaSumaPrimaHD3 !! 600
      34004
      (0.01 secs, 1579920 bytes)
      ghci> listaSumaPrimaHD2 !! 2000000
      3800024668046
      (45.41 secs, 29056613824 bytes)
      ghci> listaSumaPrimaHD3 !! 2000000
      3800024668046
- -
      (4.29 secs, 973265400 bytes)
```

6.1.5. Examen 5 (5 de mayo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (4 de mayo de 2015)
-- § Librerías auxiliares
-- import Data.Array
import Data.Char
import Data.List
import Data.Numbers.Primes
import I1M.Grafo
import Test.QuickCheck
import qualified Data.Matrix as M
import qualified Data.Set as S
```

```
-- Ejercicio 1. Dado dos números n y m, decimos que m es un múltiplo
-- especial de n si m es un múltiplo de n y m no tiene ningún factor
-- primo que sea congruente con 1 módulo 3.
-- Definir la función
     multiplosEspecialesCota :: Int -> Int -> [Int]
-- tal que (multiplosEspecialesCota n l) es la lista ordenada de todos los
-- múltiplos especiales de n que son menores o iguales que l. Por ejemplo,
     multiplosEspecialesCota 5 50 == [5,10,15,20,25,30,40,45,50]
     multiplosEspecialesCota 7 50 == []
multiplosEspecialesCota :: Int -> Int -> [Int]
multiplosEspecialesCota n l =
    [m \mid m < - [k*n \mid k < - [1..l 'div' n]],
        all (p \rightarrow p \pmod{3} = 1) (primeFactors m)]
-- Ejercicio 2. Dado un grafo no dirigido G, un camino en G es una
-- secuencia de nodos [v(1),v(2),v(3),...,v(n)] tal que para todo i
-- entre 1 y n-1, (v(i),v(i+1)) es una arista de G. Por ejemplo, dados
-- los grafos
     g1 = creaGrafo ND (1,3) [(1,2,0),(1,3,0),(2,3,0)]
     g2 = creaGrafo \ ND \ (1,4) \ [(1,2,0),(1,3,0),(1,4,0),(2,4,0),(3,4,0)]
-- la lista [1,2,3] es un camino en g1, pero no es un camino en g2
-- puesto que la arista (2,3) no existe en g2.
-- Definir la función
     camino :: (Ix a, Num t) => (Grafo a t) -> [a] -> Bool
-- tal que (camino q vs) se verifica si la lista de nodos vs es un camino
-- en el grafo q. Por ejemplo,
     camino g1 [1,2,3] == True
     camino g2 [1,2,3]
                       == False
g1 = creaGrafo ND (1,3) [(1,2,0),(1,3,0),(2,3,0)]
g2 = creaGrafo \ ND (1,4) [(1,2,0),(1,3,0),(1,4,0),(2,4,0),(3,4,0)]
camino :: (Ix a, Num t) => (Grafo a t) -> [a] -> Bool
camino g vs = all (aristaEn g) (zip vs (tail vs))
```

```
-- Ejercicio 3. Una relación binaria homogénea R sobre un conjunto A se
-- puede representar mediante un par (xs,ps) donde xs es el conjunto de
-- los elementos de A (el universo de R) y ps es el conjunto de pares de
-- R (el grafo de R). El tipo de las relaciones binarias se define por
      type Rel a = (S.Set a, S.Set (a,a))
-- Algunos ejemplos de relaciones binarias homogéneas son
      r1 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(1,3),(4,3)])
      r2 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(3,3),(4,3)])
      r3 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(1,4),(4,3)])
      r4 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(3,4),(4,3)])
-- Una relación binaria homogénea R = (U,G) es inyectiva si para todo x
-- en U hay un único y en U tal que (x,y) está en G. Por ejemplo, las
-- relaciones r2 y r4 son inyectivas, pero las relaciones r1 y r3 no.
-- Una relación binaria homogénea R = (U,G) es sobreyectiva si para todo
-- y en U hay algún x en U tal que (x,y) está en G. Por ejemplo, las
-- relaciones r3 y r4 son sobreyectivas, pero las relaciones r1 y r2
-- no.
-- Una relación binaria homogénea R = (U,G) es biyectiva si es inyectiva y
-- sobreyectiva. Por ejemplo, la relación r4 es biyectiva, pero las
-- relaciones r1, r2 y r3 no.
-- Definir la función
      biyectiva :: (Ord a, Eq a) => Rel a -> Bool
-- tal que (biyectiva r) si verifica si la relación r es biyectiva. Por
-- ejemplo,
      biyectiva r1 == False
      biyectiva r2 == False
      biyectiva r3 == False
      biyectiva r4 ==
                        True
type Rel a = (S.Set a, S.Set (a,a))
r1 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(1,3),(4,3)])
r2 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(3,3),(4,3)])
r3 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(1,4),(4,3)])
r4 = (S.fromList [1..4], S.fromList [(1,2),(2,1),(3,4),(4,3)])
biyectiva :: (Ord a, Eq a) => Rel a -> Bool
```

```
biyectiva (u,g) = S.map fst g == u \&\& S.map snd g == u
-- Ejercicio 4. La visibilidad de una lista es el número de elementos
-- que son estrictamente mayores que todos los anteriores. Por ejemplo,
-- la visibilidad de la lista [1,2,5,2,3,6] es 4.
-- La visibilidad de una matriz P es el par formado por las
-- visibilidades de las filas de P y las visibilidades de las
-- columnas de P. Por ejemplo, dada la matriz
          (421)
      Q = (325)
          (618)
-- la visibilidad de Q es ([1,2,2],[2,1,3]).
-- Definir las funciones
      visibilidadLista :: [Int] -> Int
      visibilidadMatriz :: M.Matrix Int -> ([Int],[Int])
-- tales que
  + (visibilidadLista xs) es la visibilidad de la lista xs. Por
     ejemplo,
        visibilidadLista [1,2,5,2,3,6]
        visibilidadLista [0,-2,5,1,6,6] == 3

    -- + (visibilidadMatriz p) es la visibilidad de la matriz p. Por ejemplo,

        ghci> visibilidadMatriz (M.fromLists [[4,2,1],[3,2,5],[6,1,8]])
        ([1,2,2],[2,1,3])
        ghci> visibilidadMatriz (M.fromLists [[0,2,1],[0,2,5],[6,1,8]])
        ([2,3,2],[2,1,3])
visibilidadLista :: [Int] -> Int
visibilidadLista xs =
    length [x \mid (ys,x) \leftarrow zip (inits xs) xs, all (<x) ys]
visibilidadMatriz :: M.Matrix Int -> ([Int],[Int])
visibilidadMatriz p =
    ([visibilidadLista [p M.! (i,j) | j <- [1..n]] | i <- [1..m]],
     [visibilidadLista [p M.! (i,j) \mid i < [1..m]] | j < [1..n]])
    where m = M.nrows p
           n = M.ncols p
```

-- Ejercicio 5. Decimos que un número es alternado si no tiene dos

```
-- cifras consecutivas iguales ni tres cifras consecutivas en orden
-- creciente no estricto o decreciente no estricto. Por ejemplo, los
-- números 132425 y 92745 son alternados, pero los números 12325 y 29778
-- no. Las tres primeras cifras de 12325 están en orden creciente y
-- 29778 tiene dos cifras iguales consecutivas.
-- Definir la constante
      alternados :: [Integer]
-- cuyo valor es la lista infinita de los números alternados. Por ejemplo,
     take 10 alternados
                                              == [0,1,2,3,4,5,6,7,8,9]
     length (takeWhile (< 1000) alternados) ==</pre>
                                                  616
     alternados !! 1234567
                                                  19390804
-- 1º definición
-- =========
-- (cifras n) es la lista de las cifras de n. Por ejemplo.
      cifras 325 == [3,2,5]
cifras :: Integer -> [Int]
cifras n = map digitToInt (show n)
-- (cifrasAlternadas xs) se verifica si las lista de cifras xs es
-- alternada. Por ejemplo,
     cifrasAlternadas [1,3,2,4,2,5] == True
     cifrasAlternadas [9,2,7,4,5]
                                      == True
     cifrasAlternadas [1,2,3,2,5]
                                     == False
      cifrasAlternadas [2,9,7,7,8]
                                      == False
cifrasAlternadas :: [Int] -> Bool
cifrasAlternadas [x1,x2] = x1 /= x2
cifrasAlternadas (x1:x2:x3:xs) =
    not (((x1 \le x2) \&\& (x2 \le x3)) || ((x1 \ge x2) \&\& (x2 \ge x3))) \&\&
    cifrasAlternadas (x2:x3:xs)
cifrasAlternadas _ = True
-- (alternado n) se verifica si n es un número alternado. Por ejemplo,
      alternado 132425 == True
     alternado 92745
                        == True
     alternado 12325 == False
      alternado 29778
                        == False
alternado :: Integer -> Bool
alternado n = cifrasAlternadas (cifras n)
```

```
alternados1 :: [Integer]
alternados1 = filter alternado [0..]
-- 2ª definición
- - -----
-- (extiendeAlternado n) es la lista de números alternados que se pueden
-- obtener añadiendo una cifra al final del número alternado n. Por
-- ejemplo,
      extiendeAlternado 7
                            == [70,71,72,73,74,75,76,78,79]
      extiendeAlternado 24 == [240,241,242,243]
      extiendeAlternado 42 = [423,424,425,426,427,428,429]
extiendeAlternado :: Integer -> [Integer]
extiendeAlternado n
    | n < 10 |
                = [n*10+h \mid h < -[0..n-1]++[n+1..9]]
                = [n*10+h \mid h < - [0..c-1]]
    | otherwise = [n*10+h | h <- [c+1..9]]
    where c = n \pmod{10}
          d = (n \text{ 'mod' } 100) \text{ 'div' } 10
alternados2 :: [Integer]
alternados2 = concat (iterate (concatMap extiendeAlternado) [0])
```

6.1.6. Examen 6 (15 de junio de 2015)

El examen es común con el del grupo 4 (ver página 509).

6.1.7. Examen 7 (3 de julio de 2015)

El examen es común con el del grupo 5 (ver página 542).

6.1.8. Examen 8 (4 de septiembre de 2015)

El examen es común con el del grupo 5 (ver página 549).

6.1.9. Examen 9 (4 de diciembre de 2015)

El examen es común con el del grupo 5 (ver página 559).

6.2. Exámenes del grupo 2 (Antonia M. Chávez)

6.2.1. Examen 1 (6 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (6 de noviembre de 2014)
__ ______
-- Ejercicio 1. Definir por comprensión, recursión y con funciones de
-- orden superior, la función
     escalonada :: (Num a, Ord a) => [a] -> Bool
-- tal que (escalonada xs) se verifica si la diferencia entre números
-- consecutivos de xs es siempre, en valor absoluto, mayor que 2. Por
-- ejemplo,
     escalonada [1,5,8,23,5] == True
     escalonada [3,6,8,1] == False
     escalonada [-5,-2,4] == True
     escalonada [5,2] == True
-- lª definición (por comprensión):
escalonadaC :: (Num a, Ord a) => [a] -> Bool
escalonadaC xs = and [abs (x-y) > 2 | (x,y) <- zip xs (tail xs)]
-- 2ª definición (por recursión):
escalonadaR :: (Num a, Ord a) => [a] -> Bool
escalonadaR (x:y:zs) = abs (x-y) > 2 \&\& escalonadaR (y:zs)
escalonadaR _
                   = True
-- 3ª definición (con funciones de orden superior):
escalonada0 :: (Num a, Ord a) => [a] -> Bool
escalonada0 xs = all ((>2) . abs) (zipWith (-) xs (tail xs))
-- Ejercicio 2. Definir la función
     elementos :: Ord a => [a] -> [a] -> Int
-- tal que (elementos xs ys) es el número de elementos de xs son menores
-- que los correpondientes de ys hasta el primero que no lo sea. Por
-- ejemplo,
     elementos "prueba" "suspenso"
```

```
elementos [1,2,3,4,5] [2,3,4,3,8,9] == 3
-- lª definición (por recursión):
elementosR :: Ord a => [a] -> [a] -> Int
elementosR (x:xs) (y:ys) | x < y = 1 + elementosR xs ys
                      | otherwise = 0
elementosR _{-} = 0
-- 2º definición (con funciones de orden superior):
elementos0 :: Ord a => [a] -> [a] -> Int
elementos0 xs ys = length (takeWhile menor (zip xs ys))
   where menor (x,y) = x < y
-- Ejercicio 3. Definir por comprensión y recursión la función
     sumaPosParR :: Int -> Int
-- tal que (sumaPosParR x) es la suma de los dígitos de x que ocupan
-- posición par. Por ejemplo,
     sumaPosPar 987651 = 8+6+1 = 15
     sumaPosPar 98765 = 8+6 = 14
     sumaPosPar 9876 = 8+6 = 14
     sumaPosPar 987 = 8 = 8
                           = 0
    sumaPosPar 9
-- lª definición (por recursión):
sumaPosParR :: Int -> Int
sumaPosParR x
   | even (length (digitos x )) = aux x
   | otherwise
                             = aux (div x 10)
   where aux x \mid x < 10 = 0
              | otherwise = mod \times 10 + sumaPosParR (div \times 10)
digitos :: Int -> [Int]
digitos x = [read [y] | y <- show x]
-- 2ª definición (por comprensión):
sumaPosParC :: Int -> Int
sumaPosParC x = sum [y | (y,z) <- zip (digitos x) [1 ..], even z]
 ______
-- Ejercicio 3. Define la función
```

```
sinCentrales :: [a] -> [a]
-- tal que (sinCentrales xs) es la lista obtenida eliminando el elemento
-- central de xs si xs es de longitud impar y sus dos elementos
-- centrales si es de longitud par. Por ejemplo,
     sinCentrales [1,2,3,4] == [1,4]
     sinCentrales [1,2,3] == [1,3]
     sinCentrales [6,9]
                           == []
     sinCentrales [7]
                          == []
     sinCentrales []
                          == []
sinCentrales :: [a] -> [a]
sinCentrales [] = []
sinCentrales xs | even n = init ys ++ zs
               | otherwise = ys ++ zs
     where n = length xs
           (ys,z:zs) = splitAt (n 'div' 2) xs
```

6.2.2. Examen 2 (4 de Diciembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (4 de diciembre de 2014)
__ ______
-- Ejercicio 1. Definir la función
     vuelta :: [Int] -> [a] -> [a]
-- tal que (vuelta ns xs) es la lista que resulta de repetir cada
-- elemento de xs tantas veces como indican los elementos de ns
-- respectivamente. Por ejemplo,
     vuelta [1,2,3,2,1] "ab" == "abbaaabba"
vuelta [2,3,1,5] [6,5,7] == [6,6,5,5,5,7,6,6,6,6,6]
     take 13 (vuelta [1 ..] [6,7]) == [6,7,7,6,6,6,7,7,7,7,6,6,6]
-- 1ª definición (por recursión):
vuelta :: [Int] -> [a] -> [a]
vuelta (n:ns) (x:xs) = replicate n x ++ vuelta ns (xs++[x])
vuelta [] _ = []
-- 2ª definición (por comprensión):
vuelta2 :: [Int] -> [a] -> [a]
```

```
vuelta2 ns xs = concat [replicate n x | (n,x) < -zip ns (rep xs)]
-- (rep xs) es la lista obtenida repitiendo los elementos de xs. Por
-- ejemplo,
      take 20 (rep "abbccc") == "abbcccabbcccabbcccab"
rep xs = xs ++ rep xs
-- Ejercicio 2.1. Definir (por comprensión, recursión y plegado por la
-- derecha, acumulador y plegado por la izquierda) la funcion
      posit :: ([Int] -> Int) -> [[Int]] -> [[Int]]
-- tal que (posit f xss) es la lista formada por las listas de xss tales
-- que, al evaluar f sobre ellas, devuelve un valor positivo. Por
-- ejemplo,
      posit head [[1,2],[0,-4],[2,-3]] == [[1,2],[2,-3]]
      posit sum [[1,2],[9,-4],[-8,3]] == [[1,2],[9,-4]]
-- lª definición (por comprensión):
positC :: ([Int] -> Int) -> [[Int]] -> [[Int]]
positC f xss = [xs | xs <- xss, f xs > 0]
-- 2ª definición (por recursión):
positR :: ([Int] -> Int) -> [[Int]] -> [[Int]]
positR f [] = []
positR f (xs:xss) | f xs > 0 = xs : positR f xss
                  | otherwise = positR f xss
-- 3ª definición (por plegado por la derecha):
positP :: ([Int] -> Int) -> [[Int]] -> [[Int]]
positP f = foldr g []
    where q \times s \times s = 1 f \times s > 0 = xs : yss
                   | otherwise = yss
-- 4ª definición (con acumulador):
positAC :: ([Int] -> Int) -> [[Int]] -> [[Int]]
positAC f xss = reverse (aux f xss [])
    where aux f [] yss = yss
          aux f (xs:xss) yss | f xs > 0 = aux f xss (xs:yss)
                             | otherwise = aux f xss yss
-- 5ª definición (por plegado por la izquierda):
positPL :: ([Int] -> Int) -> [[Int]] -> [[Int]]
```

```
positPL f xss = reverse (foldl g [] xss)
    where g yss xs | f xs > 0 = xs : yss
                   | otherwise = yss
-- Ejercicio 2.2. Definir, usando la función posit,
      p1 :: [[Int]]
-- tal que p1 es la lista de listas de [[1,2,-3],[4,-5,-1],[4,1,2,-5,-6]]
-- que cumplen que la suma de los elementos que ocupan posiciones pares
-- es negativa o cero.
p1 :: [[Int]]
p1 = [xs | xs <- l, xs 'notElem' positP f l]
    where l = [[1,2,-3],[4,-5,-1],[4,1,2,-5,-6]]
          f []
          f [x]
                   = X
          f(x: :xs) = x + fxs
-- El cálculo es
      ghci> p1
      [[1,2,-3],[4,1,2,-5,-6]]
-- Ejercicio 3. Definir la función
      maxCumplen :: (a -> Bool) -> [[a]] -> [a]
-- tal que (maxCumplen p xss) es la lista de xss que tiene más elementos
-- que cumplen el predicado p. Por ejemplo,
      \max Cumplen even [[3,2],[6,8,7],[5,9]] == [6,8,7]
     \max Cumplen odd [[3,2],[6,8,7],[5,9]] == [5,9]
     \max Cumplen (<5) [[3,2],[6,8,7],[5,9]] == [3,2]
maxCumplen :: (a -> Bool) -> [[a]] -> [a]
maxCumplen p xss = head [xs | xs <- xss, f xs == m]</pre>
    where m = maximum [f xs | xs <- xss]
          f xs = length (filter p xs)
```

6.2.3. Examen 3 (23 de enero de 2015)

El examen es común con el del grupo 4 (ver página 488).

6.2.4. Examen 4 (12 de marzo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (12 de marzo de 2015)
-- Librerías auxiliares
import Data.Array
import Data.List
import I1M.PolOperaciones
import Test.QuickCheck
-- Ejercicio 1. Dado un polinomio p con coeficientes enteros, se
-- llama parejo si está formado exclusivamente por monomios de grado par.
-- Definir la funcion
     parejo :: Polinomio Int -> Bool
-- tal que (parejo p) se verifica si el polinomio p es parejo. Por
-- ejemplo,
     ghci> let p1 = consPol 3 2 (consPol 4 1 polCero)
     ghci> parejo pl
    False
     ghci> let p2 = consPol 6 3 (consPol 4 1 (consPol 0 5 polCero))
    ghci> parejo p2
    True
__ _______
parejo :: Polinomio Int -> Bool
parejo p = all even (grados p)
grados p \mid esPolCero p = [0]
       | otherwise = grado p : grados (restoPol p)
  ______
-- Ejercicio 2 . Las matrices pueden representarse mediante tablas cuyos
-- indices son pares de numeros naturales:
    type Matriz a = Array (Int,Int) a
-- Definir la funcion
```

```
mayorElem :: Matriz -> Matriz
-- tal que (mayorElem p) es la matriz obtenida añadiéndole al principio
-- una columna con el mayor elemento de cada fila. Por ejemplo,
-- aplicando mayorElem a las matrices
      |1 8 3|
                   |1 2|
      |4 5 6|
                   |7 4|
                   |5 6|
-- se obtienen, respectivamente
                  |2 1 2|
      |8 1 8 3|
      |6 4 5 6|
                  |7 7 4|
                  [6 5 6]
-- En Haskell,
      ghci> mayorElem (listArray ((1,1),(2,3)) [1,8,3, 4,5,6])
            array ((1,1),(2,4))
            [((1,1),8),((1,2),1),((1,3),8),((1,4),3),
             ((2,1),6),((2,2),4),((2,3),5),((2,4),6)
      ghci> mayorElem (listArray ((1,1),(3,2)) [1,2, 7,4, 5,6])
            array ((1,1),(3,3))
            [((1,1),2),((1,2),1),((1,3),2),
             ((2,1),7),((2,2),7),((2,3),4),
             ((3,1),6),((3,2),5),((3,3),6)
type Matriz a = Array (Int,Int) a
mayorElem :: Matriz Int -> Matriz Int
mayorElem p = listArray ((1,1),(m,n+1))
                        [f i j | i < [1..m], j < [1..n+1]]
    where
      m = fst(snd(bounds p))
      n = snd(snd(bounds p))
      f i j | j > 1 = p! (i,j-1)
                      = \max [p!(i,j)|j<-[1..n]]
-- Ejercicio 3. Definir la sucesion (infinita)
      numerosConDigitosPrimos :: [Int]
-- tal que sus elementos son los números enteros positivos con todos sus
-- dígitos primos. Por ejemplo,
      ghci> take 22 numerosConDigitosPrimos
      [2,3,5,7,22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,222,223]
```

```
numerosConDigitosPrimos :: [Int]
numerosConDigitosPrimos =
   [n \mid n < -[2..], digitosPrimos n]
-- (digitosPrimos n) se verifica si todos los digitos de n son
-- primos. Por ejemplo,
     digitosPrimos 352
                      ==
     digitosPrimos 362 == False
digitosPrimos :: Int -> Bool
digitosPrimos n = all ('elem' "2357") (show n)
-- Ejercicio 4. Definir la función
     alterna :: Int -> Int -> Matriz Int
  tal que (alterna n x) es la matriz de dimensiones nxn que contiene el
  valor x alternado con 0 en todas sus posiciones. Por ejemplo,
     ghci> alterna 4 2
     array ((1,1),(4,4)) [((1,1),2),((1,2),0),((1,3),2),((1,4),0),
                          ((2,1),0),((2,2),2),((2,3),0),((2,4),2),
                          ((3,1),2),((3,2),0),((3,3),2),((3,4),0),
                          ((4,1),0),((4,2),2),((4,3),0),((4,4),2)
     ghci>alterna 3 1
     array ((1,1),(3,3)) [((1,1),1),((1,2),0),((1,3),1),
                          ((2,1),0),((2,2),1),((2,3),0),
                          ((3,1),1),((3,2),0),((3,3),1)
alterna :: Int -> Int -> Matriz Int
alterna n x =
   array ((1,1),(n,n)) [((i,j),f i j) | i <- [1..n], j <- [1..n]]
   where f i j \mid even (i+j) = x
               | otherwise = 0
     -- Ejercicio 5. Los árboles binarios con datos en nodos y hojas se
-- define por
     data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
-- Por ejemplo, el árbol
            3
        /\ /\
```

```
5 0 0
- -
      /\
- -
      2
         0
-- se representa por
     ejArbol :: Arbol Integer
      ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
-- Definir la función
      caminos :: Eq a => a -> Arbol a -> [[a]]
-- tal que (caminos x ar) es la lista de caminos en el arbol ar hasta
-- llegar a x. Por ejemplo
     caminos 0 ejArbol == [[3,4,5,0],[3,4,0],[3,7,0]]
      caminos 3 ejArbol == [[3],[3,7,3]]
     caminos 1 ejArbol == []
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
ejArbol :: Arbol Integer
ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
caminos :: Eq a => a -> Arbol a -> [[a]]
caminos x (H y) | x == y = [[y]]
               | otherwise = []
caminos x (N y i d)
    | x == y = [y] : [y:xs | xs <- caminos x i ++ caminos x d]
    | otherwise = [y:xs | xs <- caminos x i ++ caminos x d]
```

6.2.5. Examen 5 (7 de mayo de 2015)

```
-- Ejercicio 1.1. Un número tiene una inversión cuando existe un dígito
-- x a la derecha de otro dígito de forma que x es menor que y. Por
-- ejemplo, en el número 1745 hay dos inversiones ya que 4 es menor
-- que 7 y 5 es menor que 7 y están a la derecha de 7.
-- Definir la función
      nInversiones :: Integer -> Int
-- tal que (nInversiones n) es el número de inversiones de n. Por
-- ejemplo,
-- nInversiones 1745 == 2
-- 1º definición
-- ==========
nInversiones1 :: Integer -> Int
nInversiones1 = length . inversiones . show
-- (inversiones xs) es la lista de las inversiones de xs. Por ejemplo,
      inversiones "1745" == [('7', '4'), ('7', '5')]
      inversiones "cbafd" == [('c','b'),('c','a'),('b','a'),('f','d')]
inversiones :: Ord a \Rightarrow [a] \rightarrow [(a,a)]
inversiones []
               = []
inversiones (x:xs) = [(x,y) | y < -xs, y < x] ++ inversiones xs
-- 2ª definición
-- ==========
nInversiones2 :: Integer -> Int
nInversiones2 = aux . show
   where aux [] = 0
          aux (y:ys) | null xs = aux ys
                     | otherwise = length xs + aux ys
                     where xs = [x \mid x < -ys, x < y]
-- 3º solución
-- =========
nInversiones3 :: Integer -> Int
nInversiones3 x = sum $ map f xss
    where xss = init $ tails (show x)
          f(x:xs) = length $ filter (<x) xs
```

```
-- Comparación de eficiencia
-- La comparación es
     ghci> let f1000 = product [1..1000]
     ghci> nInversiones1 f1000
     1751225
     (2.81 secs, 452526504 bytes)
     ghci> nInversiones2 f1000
     1751225
     (2.45 secs, 312752672 bytes)
     ghci> nInversiones3 f1000
     1751225
     (0.71 secs, 100315896 bytes)
-- En lo sucesivo, se usa la 3º definición
nInversiones :: Integer -> Int
nInversiones = nInversiones3
  ______
-- Ejercicio 1.2. Calcular cuántos números hay de 4 cifras con más de
-- dos inversiones.
-- El cálculo es
     ghci> length [x \mid x \leftarrow [1000 ...9999], nInversiones x > 2]
     5370
-- Ejercicio 2. La notas de un examen se pueden representar mediante un
-- vector en el que los valores son los pares formados por los nombres
-- de los alumnos y sus notas.
-- Definir la función
     aprobados :: (Num a, Ord a) => Array Int (String,a) -> Maybe [String]
-- tal que (aprobados p) es la lista de los nombres de los alumnos que
  han aprobado y Nothing si todos están suspensos. Por ejemplo,
     ghci> aprobados (listArray (1,3) [("Ana",5),("Pedro",3),("Lucia",6)])
     Just ["Ana","Lucia"]
     ghci> aprobados (listArray (1,3) [("Ana",4),("Pedro",3),("Lucia",4.9)])
     Nothing
```

```
aprobados :: (Num a, Ord a) => Array Int (String,a) -> Maybe [String]
                      = Nothing
aprobados p | null xs
            | otherwise = Just xs
    where xs = [x \mid i < -indices p]
                  , let (x,n) = p!i
                  , n >= 5
-- Ejercicio 3.1. Definir la función
      refina :: Ord a => Monticulo a -> [a -> Bool] -> Monticulo a
-- tal que (refina m ps) es el formado por los elementos del montículo m
-- que cumplen todos predicados de la lista ps. Por ejemplo,
      ghci> refina (foldr inserta vacio [1..22]) [(<7), even]</pre>
      M 2 1 (M 4 1 (M 6 1 Vacio Vacio) Vacio) Vacio
      ghci> refina (foldr inserta vacio [1..22]) [(<1), even]</pre>
      Vacio
refina :: Ord a => Monticulo a -> [a-> Bool] -> Monticulo a
refina m ps | esVacio m = vacio
            | cumple x ps = inserta x (refina r ps)
            | otherwise = refina r ps
            where x = menor m
                  r = resto m
-- (cumple x ps) se verifica si x cumple todos los predicados de ps. Por
-- ejemplo,
      cumple 2 [(<7), even] == True
      cumple 3 [(<7), even] == False
      cumple 8 [(<7), even] == False
cumple :: a -> [a -> Bool] -> Bool
cumple x ps = and [p x | p <- ps]
-- La función 'cumple'se puede definir por recursión:
cumple2 x []
                 = True
cumple2 \times (p:ps) = p \times \&\& cumple \times ps
-- Ejercicio 3.2. Definir la función
      diferencia :: Ord a => Monticulo a -> Monticulo a -> Monticulo a
-- tal que (diferencia m1 m2) es el montículo formado por los elementos
-- de m1 que no están en m2. Por ejemplo,
     ghci> diferencia (foldr inserta vacio [7,5,6]) (foldr inserta vacio [4,5])
```

```
M 6 1 (M 7 1 Vacio Vacio) Vacio
diferencia :: Ord a => Monticulo a -> Monticulo a -> Monticulo a
diferencia m1 m2
   | esVacio m1
                        = vacio
   | esVacio m2
                        = m1
   | menor m1 < menor m2 = inserta (menor m1) (diferencia (resto m1) m2)</pre>
   | menor m1 == menor m2 = diferencia (resto m1) (resto m2)
   | menor m1 > menor m2 = diferencia m1 (resto m2)
-- Ejercicio 4. Una matriz latina de orden n es una matriz cuadrada de
-- orden n tal que todos sus elementos son cero salvo los de su fila y
-- columna central, si n es impar; o los de sus dos filas y columnas
-- centrales, si n es par.
-- Definir la función
     latina :: Int -> Array (Int,Int) Int
  tal que (latina n) es la siguiente matriz latina de orden n:
  + Para n impar:
       0 0 ... 0 1
                     0 ... 0
                               0|
       0 0... 0 2
                     0 ... 0
                               0|
       0 0 . . . 0 3
                     0 ... 0
                               0|
       | ......
       | 1 2....n-1
       | .......
       | 0 0... 0 n-2 0 ... 0
       | 0 0... 0 n-1 0 ... 0
                               0 |
       | 0 0... 0 n
                     0 ... 0
  + Para n par:
           0... 0 1
       | 0
                          0 ...
                                     0 |
                     n
       0 0... 0 2
                     n-1 0 ...
                                     0|
       0 0... 0 3
                     n-2 0 ...
                                     01
       | .....
       | 1 2.....n-1
                                     n l
       | n n-1 ..... 2
       | ......
       1 0 0... 0 n-2 3
                          0 . . .
                                     0|
                      2
                          0 ...
       | 0 0... 0 n-1
                                 0
                                     0 |
       | 0 0... 0 n
                          0 ...
                                     0|
-- Por ejemplo,
     ghci> elems (latina 5)
```

```
[0,0,1,0,0,
       0,0,2,0,0,
       1,2,3,4,5,
       0,0,4,0,0,
       [0,0,5,0,0]
      ghci> elems (latina 6)
      [0,0,1,6,0,0,
       0,0,2,5,0,0,
       1,2,3,4,5,6,
       6,5,4,3,2,1,
       0,0,5,2,0,0,
       0,0,6,1,0,0
latina :: Int -> Array (Int,Int) Int
latina n | even n
                   = latinaPar n
         | otherwise = latinaImpar n
-- (latinaImpar n) es la matriz latina de orden n, siendo n un número
   impar. Por ejemplo,
      ghci> elems (latinaImpar 5)
      [0,0,1,0,0,
       0,0,2,0,0,
       1,2,3,4,5,
       0,0,4,0,0,
       [0,0,5,0,0]
latinaImpar :: Int -> Array (Int,Int) Int
latinaImpar n =
    array ((1,1),(n,n)) [((i,j),f i j) | i <- [1..n], j <- [1..n]]
    where c = 1 + (n 'div' 2)
          fij | i == c
                            = j
                            = i
                | j == c
                | otherwise = 0
-- (latinaPar n) es la matriz latina de orden n, siendo n un número
-- par. Por ejemplo,
      ghci> elems (latinaPar 6)
      [0,0,1,6,0,0,
       0,0,2,5,0,0,
       1,2,3,4,5,6,
       6,5,4,3,2,1,
       0,0,5,2,0,0,
       0,0,6,1,0,0]
```

```
latinaPar :: Int -> Array (Int,Int) Int
latinaPar n =
    array ((1,1),(n,n)) [((i,j),f i j) | i <- [1..n], j <- [1..n]]
    where c = n 'div' 2
          fij | i == c = j
                | i == c+1 = n-j+1
                | j == c = i
                | j == c+1 = n-i+1
                | otherwise = 0
-- Ejercicio 5. Definir las funciones
      grafo :: [(Int,Int)] -> Grafo Int Int
      caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
  tales que
  + (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por
     ejemplo,
        ghci> grafo [(2,4),(4,5)]
        G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  + (caminos g a b) es la lista los caminos en el grafo g desde a hasta
     b sin pasar dos veces por el mismo nodo. Por ejemplo,
        ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7
        [[1,3,7],[1,3,5,7]]
        ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7
        [[2,5,7],[2,5,3,7]]
        ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2
        [[1,3,7,5,2],[1,3,5,2]]
        ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) <- as]
    where ns = map fst as ++ map snd as
         m = minimum ns
          n = maximum ns
caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos q a b = reverse (aux b a [])
    where aux a b vs
              | a == b
                         = [[b]]
              | otherwise = [b:xs | c <- adyacentes g b
                                  , c 'notElem' vs
```

6.2.6. Examen 6 (15 de junio de 2015)

El examen es común con el del grupo 4 (ver página 509).

6.2.7. Examen 7 (3 de julio de 2015)

El examen es común con el del grupo 5 (ver página 542).

6.2.8. Examen 8 (4 de septiembre de 2015)

El examen es común con el del grupo 5 (ver página 549).

6.2.9. Examen 9 (4 de diciembre de 2015)

El examen es común con el del grupo 5 (ver página 559).

6.3. Exámenes del grupo 3 (Andrés Cordón)

6.3.1. Examen 1 (4 de Noviembre de 2014)

```
-- Informática (1^{\circ} del Grado en Matemáticas)
-- 1^{\circ} examen de evaluación continua (4 de noviembre de 2014)
```

```
__ _______
import Test.QuickCheck
__ _______
-- Ejercicio 1.1. Definir, usando listas por comprensión, la función
      mulPosC :: Int -> [Int] -> [Int]
-- tal que (mulPosC x xs) es la lista de los elementos de xs que son
-- múltiplos positivos de x. Por ejemplo,
    mulPosC 3 [1,6,-5,-9,33] == [6,33]
  ______
mulPosC :: Int -> [Int] -> [Int]
mulPosC x xs = [y \mid y \leftarrow xs, y > 0, rem y x == 0]
-- Ejercicio 1.1. Definir, por recursión, la función
    mulPosR :: Int -> [Int] -> [Int]
-- tal que (mulPosR x xs) es la lista de los elementos de xs que son
-- múltiplos positivos de x. Por ejemplo,
    mulPosR 3 [1,6,-5,-9,33] == [6,33]
mulPosR :: Int -> [Int] -> [Int]
mulPosR [] = []
mulPosR x (y:ys) | y > 0 && rem y x == 0 = y : mulPosR x ys
             | otherwise = mulPosR \times vs
-- Ejercicio 2.1. Diremos que una lista numérica es muy creciente si
-- cada elemento es mayor estricto que el doble del anterior.
-- Definir el predicado
    muyCreciente :: (Ord a, Num a) => [a] -> Bool
-- tal que (muyCreciente xs) se verifica si xs es una lista muy
-- creciente. Por ejemplo,
    muyCreciente [3,7,100,220] == True
    muyCreciente [1,5,7,1000] == False
muyCreciente :: (Ord a, Num a) => [a] -> Bool
muyCreciente xs = and [y > 2*x \mid (x,y) <-zip xs (tail xs)]
```

```
__ _______
-- Ejercicio 2.2. Para generar listas muy crecientes, consideramos la
-- función
     f :: Integer -> Integer
-- dada por las ecuaciones recursivas:
     f(x,0) = x
     f(x,n) = 2*f(x,n-1) + 1, si n > 0
   Definir la función
     lista :: Int -> Integer -> [Integer]
-- tal que (lista n x) es la lista [f(x,0),f(x,1),...,f(x,n)]
-- Por ejemplo,
     lista 5 4 == [4,9,19,39,79]
f :: Integer -> Integer -> Integer
f \times 0 = x
f x n = 2 * f x (n-1) + 1
lista :: Int -> Integer -> [Integer]
lista n \times x = take n [f \times i | i < - [0..]]
-- -----
-- Ejercicio 3.1. Representamos un conjunto de n masas en el plano
-- mediante una lista de n pares de la forma ((ai,bi),mi) donde (ai,bi)
-- es la posición y mi es la masa puntual.
-- Definir la función
     masaTotal :: [((Float,Float),Float)] -> Float
-- tal que (masaTotal xs) es la masa total del conjunto xs. Por ejemplo,
     masaTotal [((-1,3),2),((0,0),5),((1,4),3)] == 10.0
masaTotal :: [((Float,Float),Float)] -> Float
masaTotal xs = sum [m | (,m) <- xs]
-- Ejercicio 3.2. Se define el diámetro de un conjunto de puntos del
-- plano como la mayor distancia entre dos puntos del conjunto.
-- Definir la función
     diametro :: [[(Float,Float),Float)] -> Float
-- tal que (diametro xs) es el diámetro del conjunto de masas xs. Por
```

```
-- ejemplo,
      diametro [((-1,3),2),((0,0),5),((1,4),3)] == 4.1231055
diametro :: [((Float,Float),Float)] -> Float
diametro xs = maximum [dist p q | (p,_) <- xs, (q,_) <- xs]
    where dist (a,b) (c,d) = sqrt ((a-c)^2+(b-d)^2)
-- Ejercicio 4. Se define el grado de similitud entre dos cadenas de
-- texto como la menor posición en la que ambas cadenas difieren, o bien
-- como la longitud de la cadena menor si una cadena es una segmento
-- inicial de la otra.
-- Definir la función:
      grado :: String -> String -> Int
-- tal que (grado xs ys) es el grado de similitud entre las cadenas xs e ys.
-- Por ejemplo,
     grado "cadiz" "calamar" == 2
     grado "sevilla" "betis" == 0
     grado "pi" "pitagoras" == 2
-- lª definición:
grado :: String -> String -> Int
grado xs ys | null zs = min (length xs) (length ys)
           | otherwise = head zs
   where zs = [i \mid ((x,y),i) < -zip (zip xs ys) [0..], x /= y]
-- 2ª definición:
grado2 :: String -> String -> Int
grado2 xs ys = length (takeWhile (\(x,y) -> x == y) (zip xs ys))
6.3.2.
         Examen 2 (5 de Diciembre de 2014)
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (5 de diciembre de 2014)
import Test.QuickCheck
```

```
-- Ejercicio 1.1. Definir, por comprensión, la función
     cuentaC :: Ord a => a -> a -> [a] -> Int
-- tal que (cuentaC x y xs) es el número de elementos de la lista xs que
-- están en el intervalo [x,y]. Por ejemplo,
     cuentaC 50 150 [12,3456,100,78,711] == 2
cuentaC :: Ord a => a -> a -> [a] -> Int
cuentaC x y xs = length [z \mid z \leftarrow xs, x \leftarrow z & z \leftarrow y]
-- Ejercicio 1.2. Definir, usando orden superior (map, filter, ...), la
-- función
     cuentaS :: Ord a => a -> a -> [a] -> Int
-- tal que (cuentaS x y xs) es el número de elementos de la lista xs que
-- están en el intervalo [x,y]. Por ejemplo,
     cuentaS 50 150 [12,3456,100,78,711] == 2
cuentaS :: Ord a => a -> a -> [a] -> Int
cuentaS x y = length . filter (>=x) . filter (<=y)
__ ______
-- Ejercicio 1.3. Definir, por recursión, la función
     cuentaR :: Ord a => a -> a -> [a] -> Int
-- tal que (cuentaR x y xs) es el número de elementos de la lista xs que
-- están en el intervalo [x,y]. Por ejemplo,
     cuentaR 50 150 [12,3456,100,78,711] == 2
cuentaR :: Ord a => a -> a -> [a] -> Int
cuentaR _{-} [] = 0
cuentaR x y (z:zs) | x \leq z \leq y = 1 + cuentaR x y zs
                  | otherwise = cuentaR x y zs
-- Ejercicio 1.4. Definir, por plegado (foldr), la función
     cuentaP :: Ord a => a -> a -> [a] -> Int
-- tal que (cuentaP x y xs) es el número de elementos de la lista xs que
-- están en el intervalo [x,y]. Por ejemplo,
     cuentaP 50 150 [12,3456,100,78,711] == 2
```

```
-- lª definición:
cuentaP :: Ord a => a -> a -> [a] -> Int
cuentaP x y = foldr (\z u -> if x <= z && z <= y then 1 + u else u) 0
-- 2ª definición:
cuentaP2 :: Ord a => a -> a -> [a] -> Int
cuentaP2 x y = foldr f 0
   where f z u | x \leq z \& z \leq y = 1 + u
               | otherwise
-- Ejercicio 1.5. Comprobar con QuickCheck que las definiciones de
-- cuenta son equivalentes.
-- La propiedad es
prop cuenta :: Int -> Int -> [Int] -> Bool
prop cuenta x y zs =
   cuentaS x y zs == n &&
   cuentaR x y zs == n &&
   cuentaP x y zs == n
   where n = cuentaC \times y zs
-- La comprobación es
     ghci> quickCheck prop cuenta
     +++ OK, passed 100 tests.
-- Ejercicio 2. Definir la función
     mdp :: Integer -> Integer
-- tal que (mdp x) es el mayor divisor primo del entero positivo x. Por
-- ejemplo,
     mdp 100 == 5
     mdp 45
              == 9
     mdp 12345 == 823
__ ______
mdp :: Integer -> Integer
\operatorname{mdp} x = \operatorname{head} [i \mid i < [x,x-1..2], \operatorname{rem} x i == 0, \operatorname{primo} i]
primo :: Integer -> Bool
primo x = divisores x == [1,x]
  where divisores x = [y \mid y < -[1..x], rem x y == 0]
```

```
-- Ejercicio 2.2. Definir la función
      busca :: Integer -> Integer -> Integer
-- tal que (busca a b) es el menor entero por encima de a cuyo mayor
-- divisor primo es mayor o igual que b. Por ejemplo,
      busca 2014 1000 == 2017
      busca 2014 10000 == 10007
   ----
busca :: Integer -> Integer -> Integer
busca a b = head [i \mid i \leftarrow [max \ a \ b..], \ mdp \ i >= b]
-- Ejercicio 3.1. Consideramos el predicado
      comun :: Eq b => (a -> b) -> [a] -> Bool
-- tal que (comun f xs) se verifica si al aplicar la función f a los
-- elementos de xs obtenemos siempre el mismo valor. Por ejemplo,
      comun (^2) [1,-1,1,-1]
                                             == True
                                             == False
      comun (+1) [1,2,1]
     comun length ["eva","iba","con","ana"] == True
-- Definir, por recursión, el predicado comun.
-- lª definición
comunR :: Eq b \Rightarrow (a \Rightarrow b) \Rightarrow [a] \Rightarrow Bool
comunR f (x:y:xs) = f x == f y \&\& comunR f (y:xs)
                 = True
comunR
-- 2ª definición:
comunR2 :: Eq b \Rightarrow (a \rightarrow b) \rightarrow [a] \rightarrow Bool
comunR2 _ [] = True
comunR2 f (x:xs) = aux xs
    where z
         aux [] = True
          aux (y:ys) = f y == z \&\& aux ys
-- Comparación de eficiencia:
      ghci> comunR (\n -> product [1..n]) (replicate 20 20000)
     True
      (39.71 secs, 11731056160 bytes)
```

```
ghci> comunR2 (\n -> product [1..n]) (replicate 20 20000)
     True
- -
     (20.36 secs, 6175748288 bytes)
-- Ejercicio 3.2. Definir, por comprensión, el predicado comun.
-- -----
-- lª definición
comunC :: Eq b \Rightarrow (a \Rightarrow b) \Rightarrow [a] \Rightarrow Bool
comunC f xs = and [f a == f b | (a,b) <- zip xs (tail xs)]
-- 2ª definición
comunC2 :: Eq b => (a -> b) -> [a] -> Bool
comunC2 _ [] = True
comunC2 f (x:xs) = and [f y == z | y <- xs]
   where z = f x
-- Comparación de eficiencia:
- -
     ghci> comunC (\n -> product [1..n]) (replicate 20 20000)
     True
     (39.54 secs, 11731056768 bytes)
     ghci> comunC2 (\n -> product [1..n]) (replicate 20 20000)
     True
- -
     (20.54 secs, 6175747048 bytes)
-- Ejercicio 4. Definir la función
     extension :: String -> (String, String)
-- tal que (extension cs) es el par (nombre, extensión) del fichero
-- cs. Por ejemplo,
     extension "examen.hs" == ("examen",hs")
     extension "index.html" == ("index","html")
     extension "sinExt"
                              == ("sinExt","")
     extension "raro.pdf.ps" == ("raro","pdf.ps")
extension :: String -> (String, String)
extension cs
    | '.' 'notElem' cs = (cs,"")
    | otherwise = (takeWhile (/='.') cs, tail (dropWhile (/='.') cs))
```

```
-- Ejercicio 5.1. Un entero positivo x es especial si en x y en x^2
-- aparecen los mismos dígitos. Por ejemplo, 10 es especial porque en 10
-- y en 10^2 = 100 aparecen los mismos dígitos (0 \text{ y } 1). Asimismo,
-- 4762 es especial porque en 4762 y en 4762^2 = 22676644 aparecen los
-- mismos dígitos (2, 4, 6 y 7).
-- Definir el predicado
     especial :: Integer -> Bool
-- tal que (especial x) se verifica si x es un entero positivo especial.
__ ______
especial :: Integer -> Bool
especial x = digitos x == digitos (x^2)
   where digitos z = [d \mid d \leftarrow ['0'...'9'], d 'elem' show z]
__ _______
-- Ejercicio 5.2. Definir la función
     especiales :: Int -> [Integer]
-- tal que (especiales x) es la lista de los x primeros números
-- especiales que no son potencias de 10. Por ejemplo,
     espaciales 5 == [4762, 4832, 10376, 10493, 11205]
  ______
especiales :: Int -> [Integer]
especiales x = take x [i | i < [1..], not (pot10 i), especial i]
   where pot10 z = z 'elem' takeWhile (\leq z) (map (10^\circ) [0 ..])
```

6.3.3. Examen 3 (23 de enero de 2015)

El examen es común con el del grupo 4 (ver página 488).

6.3.4. Examen 4 (18 de marzo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (18 de marzo de 2015)
-- -- § Librerías auxiliares
```

```
import Data.List
import Data.Array
import I1M.Pol
import Data.Numbers.Primes
-- Ejercicio 1.1. Definir la función
      agrupa :: Eq a => [a] -> [(a,Int)]
-- tal que (agrupa xs) es la lista obtenida agrupando las ocurrencias
-- consecutivas de elementos de xs junto con el número de dichas
-- ocurrencias. Por ejemplo:
      agrupa "aaabzzaa" == [('a',3),('b',1),('z',2),('a',2)]
-- 1º definición (por recursión)
agrupa :: Eq a => [a] -> [(a,Int)]
agrupa xs = aux xs 1
   where aux (x:y:zs) n | x == y = aux (y:zs) (n+1)
                         | otherwise = (x,n) : aux (y:zs) 1
          aux [x]
                       n
                                     = [(x,n)]
-- 2º definición (por recursión usando takeWhile):
agrupa2 :: Eq a => [a] -> [(a,Int)]
agrupa2 [] = []
agrupa2 (x:xs) =
    (x,1 + length (takeWhile (==x) xs)) : agrupa2 (dropWhile (==x) xs)
-- 3ª definición (por comprensión usando group):
agrupa3 :: Eq a => [a] -> [(a,Int)]
agrupa3 xs = [(head ys,length ys) | ys <- group xs]
-- 4ª definición (usando map y group):
agrupa4 :: Eq a => [a] -> [(a,Int)]
agrupa4 = map (\xs -> (head xs, length xs)) . group
-- Ejercicio 1.2. Definir la función expande
      expande :: [(a,Int)] -> [a]
-- tal que (expande xs) es la lista expandida correspondiente a ps (es
-- decir, es la lista xs tal que la comprimida de xs es ps. Por ejemplo,
      expande [('a',2),('b',3),('a',1)] == "aabbba"
```

```
-- 1ª definición (por comprensión)
expande :: [(a,Int)] -> [a]
-- 2º definición (por concatMap)
expande2 :: [(a,Int)] -> [a]
expande2 = concatMap (\((x,k) -> replicate k x))
-- 3ª definición (por recursión)
expande3 :: [(a,Int)] -> [a]
expande3 [] = []
expande3 ((x,n):ps) = replicate n x ++ expande3 ps
-- Ejercicio 2.2. Dos enteros positivos a y b se dirán relacionados
-- si poseen, exactamente, un factor primo en común. Por ejemplo, 12 y
-- 14 están relacionados pero 6 y 30 no lo están.
-- Definir la lista infinita
     paresRel :: [(Int,Int)]
-- tal que paresRel enumera todos los pares (a,b), con 1 <= a < b,
-- tal que a y b están relacionados. Por ejemplo,
     ghci> take 10 paresRel
     [(2,4),(2,6),(3,6),(4,6),(2,8),(4,8),(6,8),(3,9),(6,9),(2,10)]
-- ¿Qué lugar ocupa el par (51,111) en la lista infinita paresRel?
paresRel :: [(Int,Int)]
paresRel = [(a,b) | b <- [1..], a <- [1..b-1], relacionados a b]
relacionados :: Int -> Int -> Bool
relacionados a b =
   length (nub (primeFactors a 'intersect' primeFactors b)) == 1
-- El cálculo es
     ghci> 1 + length (takeWhile (/=(51,111)) paresRel)
     2016
-- Ejercicio 3. Representamos árboles binarios con elementos en las
-- hojas y en los nodos mediante el tipo de dato
```

```
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
-- Por ejemplo,
     ej1 :: Arbol Int
      ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
-- Definir la función
      ramasCon :: Eq a => Arbol a -> a -> [[a]]
-- tal que (ramasCon a x) es la lista de las ramas del árbol a en las
-- que aparece el elemento x. Por ejemplo,
-- ramasCon ej1 2 == [[5,2,1],[5,2,2],[5,3,2]]
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
ej1 :: Arbol Int
ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
-- lª definición
-- ==========
ramasCon :: Eq a => Arbol a -> a -> [[a]]
ramasCon a x = [ys \mid ys < - ramas a, x 'elem' ys]
ramas :: Arbol a -> [[a]]
ramas (H x) = [[x]]
ramas (N x i d) = [x:ys \mid ys <- ramas i ++ ramas d]
-- 2ª definición
-- =========
ramasCon2 :: Eq a => Arbol a -> a -> [[a]]
ramasCon2 a x = filter(x 'elem') (ramas2 a)
ramas2 :: Arbol a -> [[a]]
ramas2 (H x)
               = [[x]]
ramas2 (N x i d) = map (x:) (ramas2 i ++ ramas2 d)
-- Ejercicio 4. Representamos matrices mediante el tipo de dato
     type Matriz a = Array (Int,Int) a
-- Por ejemplo,
     ejM :: Matriz Int
     ejM = listArray ((1,1),(2,4)) [1,2,3,0,4,5,6,7]
```

```
-- representa la matriz
      |1 2 3 0|
- -
      |4 5 6 7|
-- Definir la función
      ampliada :: Num a => Matriz a -> Matriz a
-- tal que (ampliada p) es la matriz obtenida al añadir una nueva fila
-- a p cuyo elemento i-ésimo es la suma de la columna i-ésima de p.
-- Por ejemplo,
      |1 2 3 0|
                       |1 2 3 0|
      |4 5 6 7| ==>
                       |4 5 6 7|
                       [5 7 9 7]
-- En Haskell,
      ghci> ampliada ejM
      array ((1,1),(3,4)) [((1,1),1),((1,2),2),((1,3),3),((1,4),0),
                           ((2,1),4),((2,2),5),((2,3),6),((2,4),7),
                           ((3,1),5),((3,2),7),((3,3),9),((3,4),7)
type Matriz a = Array (Int,Int) a
ejM :: Matriz Int
ejM = listArray ((1,1),(2,4)) [1,2,3,0,4,5,6,7]
ampliada :: Num a => Matriz a -> Matriz a
ampliada p =
    array ((1,1),(m+1,n)) [((i,j),f i j) | i <- [1..m+1], j <- [1..n]]
    where (\_,(m,n)) = bounds p
          fij | i \le m
                          = p!(i,j)
                | otherwise = sum [p!(i,j) | i <- [1..m]]
-- Ejercicio 5. Un polinomio de coeficientes enteros se dirá par si
-- todos sus coeficientes son números pares. Por ejemplo, el polinomio
--2*x^3 - 4*x^2 + 8 es par y el x^2 + 2*x + 10 no lo es.
-- Definir el predicado
      parPol :: Integral a => Polinomio a -> Bool
  tal que (parPol p) se verifica si p es un polinomio par. Por ejemplo,
      ghci> parPol (consPol 3 2 (consPol 2 (-4) (consPol 0 8 polCero)))
      ghci> parPol (consPol 2 1 (consPol 1 2 (consPol 0 10 polCero)))
      False
```

```
parPol :: Integral a => Polinomio a -> Bool
parPol p = esPolCero p || (even (coefLider p) && parPol (restoPol p))
        Examen 5 (6 de mayo de 2015)
6.3.5.
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (6 de mayo de 2015)
import Data.List
import I1M.Pol
import Data.Matrix
import I1M.Grafo
import I1M.BusquedaEnEspaciosDeEstados
import qualified Debug. Trace as T
-- Ejercicio 1. Definir la función
     conUno :: [Int] -> [Int]
-- tal que (conUno xs) es la lista de los elementos de xs que empiezan
-- por 1. Por ejemplo,
-- conUno [123,51,11,711,52] == [123,11]
conUno :: [Int] -> [Int]
conUno xs = [x \mid x < -xs, head (show x) == '1']
-- Ejercicio 2. Representamos los árboles binarios con elementos en las
-- hojas y en los nodos mediante el tipo de dato
     data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
- -
-- Definir la función
     aplica :: (a -> a) -> (a -> a) -> Arbol a -> Arbol a
-- tal que (aplica f q a) devuelve el árbol obtenido al aplicar la
-- función f a las hojas del árbol a y la función g a los nodos
-- interiores. Por ejemplo,
     ghci> aplica (+1)(*2) (N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2)))
     N 10 (N 4 (H 2) (H 3)) (N 6 (H 5) (H 3))
```

```
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
aplica :: (a -> a) -> (a -> a) -> Arbol a -> Arbol a
aplica f g (H x) = H (f x)
aplica f g (N \times i d) = N (g \times) (aplica f g i) (aplica f g d)
-- Ejercicio 3. Representamos los polinomios mediante el TAD de los
-- Polinomios (I1M.Pol). La parte par de un polinomio de coeficientes
-- enteros es el polinomio formado por sus monomios cuyos coeficientes
-- son números pares. Por ejemplo, la parte par de 4x^3+x^2-7x+6 es
--4x^3+6.
-- Definir la función
      partePar :: Integral a => Polinomio a -> Polinomio a
-- tal que (partePar p) es la parte par de p. Por ejemplo,
     ghci> partePar (consPol 3 4 (consPol 2 1 (consPol 0 6 polCero)))
      4*x^3 + 6
partePar :: Integral a => Polinomio a -> Polinomio a
partePar p
    | esPolCero p = polCero
    | even b = consPol n b (partePar r)
    | otherwise = partePar r
   where n = grado p
          b = coefLider p
          r = restoPol p
-- Ejercicio 4.1. Representaremos las matrices mediante la librería de
-- Haskell Data.Matrix.
-- Las posiciones frontera de una matriz de orden mxn son aquellas que
-- están en la fila 1 o la fila m o la columna 1 o la columna n. El
-- resto se dirán posiciones interiores. Observa que cada elemento en
-- una posición interior tiene exactamente 8 vecinos en la matriz.
-- Definir la función
     marco :: Int -> Int -> Integer -> Matrix Integer
-- tal que (marco m n z) genera la matriz de dimensión mxn que
-- contiene el entero z en las posiciones frontera y 0 en las posiciones
```

```
-- interiores. Por ejemplo,
     ghci> marco 5 5 1
     (111111)
     (10001)
     (10001)
     (10001)
     (111111)
marco :: Int -> Int -> Integer -> Matrix Integer
marco m n z = matrix m n f
   where f(i,j) \mid frontera m n(i,j) = 1
                | otherwise
-- (frontera m n (i,j)) se verifica si (i,j) es una posición de la
-- frontera de las matrices de dimensión mxn.
frontera :: Int -> Int -> (Int,Int) -> Bool
frontera m n (i,j) = i == 1 || i == m || j == 1 || j == n
-- ------
-- Ejercicio 4.2. Dada una matriz, un paso de transición genera una
-- nueva matriz de la misma dimensión pero en la que se ha sustituido
-- cada elemento interior por la suma de sus 8 vecinos. Los elementos
-- frontera no varían.
-- Definir la función
    paso :: Matrix Integer -> Matrix Integer
-- tal que (paso t) calcula la matriz generada tras aplicar un paso de
-- transición a la matriz t. Por ejemplo,
     ghci> paso (marco 5 5 1)
     (111111)
     (15351)
     (13031)
     (15351)
     (111111)
paso :: Matrix Integer -> Matrix Integer
paso p = matrix m n f where
   m = nrows p
   n = ncols p
   f(i,j)
       | frontera m n (i,j) = 1
```

```
| otherwise
                             = sum [p!(u,v) \mid (u,v) \leftarrow vecinos m n (i,j)]
-- (vecinos m n (i,j)) es la lista de las posiciones de los vecinos de
-- (i,j) en las matrices de dimensión mxn.
vecinos :: Int -> Int -> (Int,Int) -> [(Int,Int)]
vecinos m n (i,j) = [(a,b) \mid a < -[max 1 (i-1)..min m (i+1)]
                           , b < - [max 1 (j-1)..min n (j+1)]
                           (a,b) /= (i,j)
-- Ejercicio 4.3. Definir la función
      itPasos :: Int -> Matrix Integer -> Matrix Integer
-- tal que (itPasos k t) es la matriz obtenida tras aplicar k pasos de
-- transición a partir de la matriz t. Por ejemplo,
      ghci> itPasos 10 (marco 5 5 1)
              1
                      1
                              1
                                      1
                                              1)
              1 4156075 5878783 4156075
                                              1)
              1 5878783 8315560 5878783
                                              1)
              1 4156075 5878783 4156075
                                              1)
              1
                    1
                             1
                                      1
                                              1)
itPasos :: Int -> Matrix Integer -> Matrix Integer
itPasos k t = (iterate paso t) !! k
-- Ejercicio 4.4. Definir la función
      pasosHasta :: Integer -> Int
-- tal que (pasosHasta k) es el número de pasos de transición a partir
-- de la matriz (marco 5 5 1) necesarios para que en la matriz
-- resultante aparezca un elemento mayor que k. Por ejemplo,
      pasosHasta 4
                           == 1
      pasosHasta 6
      pasosHasta (2^2015) == 887
pasosHasta :: Integer -> Int
pasosHasta k =
    length (takeWhile (\t -> menores t k) (iterate paso (marco 5 5 1)))
-- (menores p k) se verifica si los elementos de p son menores o
-- iguales que k. Por ejemplo,
     menores (itPasos 1 (marco 5 5 1)) 6 == True
```

```
menores (itPasos 1 (marco 5 5 1)) 4 == False
menores :: Matrix Integer -> Integer -> Bool
menores p k = and [p!(i,j) \le k | i < [1..m], j < [1..n]]
   where m = nrows p
          n = ncols p
-- Ejercicio 5.1. Representaremos los grafos mediante el TAD de los
-- grafos (I1M.Grafo).
-- Dado un grafo G, un ciclo en G es una secuencia de nodos de G
-- [v(1),v(2),v(3),...,v(n)] tal que:
      1) (v(1),v(2)), (v(2),v(3)), (v(3),v(4)), \ldots, (v(n-1),v(n)) son
         aristas de G,
      2) v(1) = v(n), y
      3) salvo v(1) = v(n), todos los v(i) son distintos entre sí.
- -
-- Definir la función
      esCiclo :: [Int] -> Grafo Int Int -> Bool
-- tal que (esCiclo xs g) se verifica si xs es un ciclo de g. Por
-- ejemplo, si gl es el grafo definido por
      g1 :: Grafo Int Int
      g1 = creaGrafo D (1,4) [(1,2,0),(2,3,0),(2,4,0),(4,1,0)]
-- entonces
     esCiclo [1,2,4,1] g1 == True
     esCiclo [1,2,3,1] g1 == False
     esCiclo [1,2,3] g1
                          == False
                            == False
     esCiclo [1,2,1] g1
g1 :: Grafo Int Int
g1 = creaGrafo D (1,4) [(1,2,0),(2,3,0),(2,4,0),(4,1,0)]
esCiclo :: [Int] -> Grafo Int Int -> Bool
esCiclo vs g =
    all (aristaEn g) (zip vs (tail vs)) &&
    head vs == last vs &&
    length (nub vs) == length vs - 1
-- Ejercicio 5.2. El grafo rueda de orden k es un grafo no dirigido
-- formado por
      1) Un ciclo con k nodos [1,2,...,k], y
```

```
2) un nodo central k+1 unido con cada uno de los k nodos del
        ciclo:
- -
     3) y con peso 0 en todas sus aristas.
- -
-- Definir la función
     rueda :: Int -> Grafo Int Int
-- tal que (rueda k) es el grafo rueda de orden k. Por ejemplo,
     ghci> rueda 3
     G D (array (1,4) [(1,[(2,0)]),(2,[(3,0)]),(3,[(1,0)]),
              (4,[(1,0),(2,0),(3,0)])])
rueda :: Int -> Grafo Int Int
rueda k = creaGrafo D (1,k+1) ([(i,i+1,0) | i <- [1..k-1]] ++
                             [(k,1,0)] ++
                             [(k+1,i,0) | i <- [1..k]])
-- Ejercicio 5.3. Definir la función
     contieneCiclo :: Grafo Int Int -> Int -> Bool
-- tal que (contieneCiclo g k) se verifica si el grafo g contiene algún
-- ciclo de orden k. Por ejemplo,
     contieneCiclo g1 4 == True
     contieneCiclo g1 3
                             == False
     contieneCiclo (rueda 5) 6 == True
__ ______
contieneCiclo :: Grafo Int Int -> Int -> Bool
contieneCiclo g k = not (null (ciclos g k))
-- (caminosDesde g k v) es la lista de los caminos en el grafo g, de
-- longitud k, a partir del vértice v. Por ejemplo
     caminosDesde g1 3 1 == [[1,2,3],[1,2,4]]
caminosDesdel :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesdel g k v = map reverse (aux [[v]])
   where aux [] = []
         aux ((x:vs):vss)
             | length (x:vs) == k = (x:vs) : aux vss
             | length (x:vs) > k = aux vss
             | otherwise = aux ([y:x:vs | y <- adyacentes g x] ++ vss)
caminosDesde2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesde2 g k v = map (reverse . snd) (aux [(1,[v])])
```

```
where aux [] = []
          aux ((n,(x:vs)):vss)
              \mid n == k = (n,(x:vs)) : aux vss
              | n > k = aux vss
              | otherwise = aux ([(n+1,y:x:vs) | y <- adyacentes g x] ++ vss)
-- 3º definición de caminosDesde (con búsqueda en espacio de estados):
caminosDesde3 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesde3 g k v = map reverse (buscaEE sucesores esFinal inicial)
    where inicial
                           = length vs == k
          esFinal vs
          sucesores (x:xs) = [y:x:xs | y <- adyacentes g x]
-- 4ª definición de caminosDesde (con búsqueda en espacio de estados):
caminosDesde4 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesde4 g k v = map (reverse . snd) (buscaEE sucesores esFinal inicial)
    where inicial
                             = (1, [v])
          esFinal (n, )
                             = n == k
          sucesores (n,x:xs) = [(n+1,y:x:xs) | y <- adyacentes g x]
-- Comparación
      ghci> let n = 10000 in length (caminosDesdel (rueda n) (n+1) 1)
      (3.87 secs, 20713864 bytes)
      ghci> let n = 10000 in length (caminosDesde2 (rueda n) (n+1) 1)
      (0.10 secs, 18660696 bytes)
      ghci> let n = 10000 in length (caminosDesde3 (rueda n) (n+1) 1)
      (0.42 secs, 16611272 bytes)
      ghci> let n = 10000 in length (caminosDesde4 (rueda n) (n+1) 1)
      (0.10 secs, 20118376 bytes)
-- En lo sucesivo usamos la 4º definición
caminosDesde :: Grafo Int Int -> Int -> Int -> [[Int]]
caminosDesde = caminosDesde4
-- (ciclosDesde g k v) es la lista de los ciclos en el grafo g de orden
-- k a partir del vértice v. Por ejemplo,
      ciclosDesde g1 4 1 == [[1,2,4,1]]
ciclosDesde :: Grafo Int Int -> Int -> Int -> [[Int]]
ciclosDesde g k v = [xs | xs <- caminosDesde g k v
```

```
, esCiclo xs g]
-- (ciclos g k) es la lista de los ciclos en el grafo g de orden
-- k. Por ejemplo,
      ciclos g1 4 == [[1,2,4,1],[2,4,1,2],[4,1,2,4]]
ciclos :: Grafo Int Int -> Int -> [[Int]]
ciclos g k = concat [ciclosDesde g k v | v <- nodos g]</pre>
caminosDesde5 :: Grafo Int Int -> Int -> [[Int]]
caminosDesde5 g v = map (reverse . fst) (buscaEE sucesores esFinal inicial)
   where inicial
                              = ([v],[v])
          esFinal (x:\_,ys) = all ('elem' ys) (adyacentes g x)
          sucesores (x:xs,ys) = [(z:x:xs,z:ys) | z <- advacentes g x
                                               , z 'notElem' ys]
      caminos g1 == [[1,2,3],[1,2,4],[2,3],[2,4,1],[3],[4,1,2,3]]
caminos :: Grafo Int Int -> [[Int]]
caminos g = concatMap (caminosDesde5 g) (nodos g)
      todosCiclos g1 == [[1,2,4,1],[2,4,1,2]]
todosCiclos :: Grafo Int Int -> [[Int]]
todosCiclos g = [ys | (x:xs) <- caminos g
                    , let ys = (x:xs) ++ [x]
```

6.3.6. Examen 6 (15 de junio de 2015)

, esCiclo ys g]

El examen es común con el del grupo 4 (ver página 509).

6.3.7. Examen 7 (3 de julio de 2015)

El examen es común con el del grupo 5 (ver página 542).

6.3.8. Examen 8 (4 de septiembre de 2015)

El examen es común con el del grupo 5 (ver página 549).

6.3.9. Examen 9 (4 de diciembre de 2015)

El examen es común con el del grupo 5 (ver página 559).

6.4. Exámenes del grupo 4 (María J. Hidalgo)

6.4.1. Examen 1 (6 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (6 de noviembre de 2014)
__ _______
import Test.QuickCheck
import Data.List
-- Ejercicio 1. La suma de la serie
     1/1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 \dots
-- es 2.
-- Definir la función
     aproxima2:: Integer -> Float
-- tal que (aproxima2 n) es la aproximación de 2 obtenida mediante n
-- términos de la serie. Por ejemplo,
     aproxima2 10 == 1.9990234
     aproxima2 100 == 2.0
aproxima2:: Integer -> Float
aproxima2 n = sum [1 / (2^k) | k < [0..n]]
-- Ejercicio 2.1. Decimos que los números m y n están relacionados si
-- tienen los mismos divisores primos.
-- Definir la función
     relacionados :: Integer -> Integer -> Bool
-- tal que (relacionados m n) se verifica si m y n están relacionados.
-- Por ejemplo,
     relacionados 24 32 == False
     relacionados 24 12 == True
     relacionados 24 2 == False
     relacionados 18 12 == True
relacionados:: Integer -> Integer -> Bool
```

```
relacionados m n =
   nub (divisoresPrimos n) == nub (divisoresPrimos m)
divisoresPrimos :: Integer -> [Integer]
divisoresPrimos n =
   [x \mid x < [1..n], n 'rem' x == 0, esPrimo x]
esPrimo :: Integer -> Bool
esPrimo n = divisores n == [1,n]
divisores :: Integer -> [Integer]
divisores n =
   [x \mid x < [1..n], n 'rem' x == 0]
-- Ejercicio 2.2. ¿Es cierto que si dos enteros positivos están
-- relacionados entonces uno es múltiplo del otro? Comprobarlo con
-- QuickCheck.
__ _______
-- La propiedad es
prop_rel :: Integer -> Integer -> Property
prop rel m n =
   m > 0 \& k n > 0 \& k relacionados m n ==>
   rem m n == 0 \mid \mid rem n m == 0
-- La comprobación es
     ghci> quickCheck prop rel
     *** Failed! Falsifiable (after 20 tests):
     18
     12
__ _______
-- Ejercicio 2.3. Comprobar con QuickCheck que si p es primo, los
-- números relacionados con p son las potencias de p.
-- La propiedad es
prop rel primos :: Integer -> Integer -> Property
prop rel primos p n =
   esPrimo p ==> esPotencia n p == relacionados n p
esPotencia :: Integer -> Integer -> Bool
```

```
esPotencia n p = nub (divisoresPrimos n) == [p]
-- La comprobación es
     ghci> quickCheck prop rel primos
     +++ OK, passed 100 tests.
-- Ejercicio 3.1. Definir la función
     mcdLista :: [Integer] -> Integer
-- tal que (mcdLista xs) es el máximo común divisor de los elementos de
-- xs. Por ejemplo,
     mcdLista [3,4,5] == 1
     mcdLista [6,4,12] == 2
mcdLista :: [Integer] -> Integer
mcdLista [x]
             = X
mcdLista (x:xs) = gcd x (mcdLista xs)
-- Ejercicio 3.2. Comprobar con QuickCheck que el resultado de
-- (mcdLista xs) divide a todos los elementos de xs, para cualquier
-- lista de enteros.
-- La propiedad es
prop mcd 1 :: [Integer] -> Bool
prop mcd 1 xs = and [rem x d == 0 \mid x <- xs]
   where d = mcdLista xs
-- La comprobación es
     ghci> quickCheck prop mcd 1
     +++ OK, passed 100 tests.
-- Ejercicio 3.3. Comprobar con QuickCheck que, para n > 1, el máximo
-- común divisor de los n primeros primos es 1.
-- La propiedad es
prop_mcd_2 :: Int -> Property
prop_mcd_2 n = n > 1 ==> mcdLista (take n primos) == 1
```

```
primos = [x \mid x < -[2..], esPrimo x]
-- La comprobación es
     ghci> quickCheck prop mcd 2
     +++ OK, passed 100 tests.
-- Ejercicio 4.1. Definir la función
     menorLex:: (0rd a) => [a] -> [a] -> Bool
-- tal que menorLex sea el orden lexicográfico entre listas. Por
-- ejemplo,
     menorLex "hola" "adios"
                                    == False
     menorLex "adios" "antes"
                                   == True
     menorLex "antes" "adios"
                                    == False
     menorLex [] [3,4]
                                    == True
     menorLex [3,4] []
                                    == False
     menorLex [1,2,3] [1,3,4,5]
                                   == True
     menorLex [1,2,3,3,3,3] [1,3,4,5] == True
menorLex:: Ord a => [a] -> [a] -> Bool
menorLex [] _
                    = True
                   = False
menorLex []
menorLex (x:xs) (y:ys) = x < y \mid \mid (x == y \&\& menorLex xs ys)
     -- Ejercicio 4.2. Comprobar con QuickCheck que menorLex coincide con la
-- relación predefinida <=.
-- La propiedad es
prop :: Ord a => [a] -> [a] -> Bool
prop xs ys = menorLex xs ys == (xs <= ys)
-- La comprobación es:
     quickCheck prop
     +++ OK, passed 100 tests.
```

6.4.2. Examen 2 (4 de Diciembre de 2014)

```
    Informática (1º del Grado en Matemáticas)
    2º examen de evaluación continua (4 de diciembre de 2014)
```

```
import Data.List
import Data.Char
import Test.QuickCheck
-- Ejercicio 1. Definir la función
      seleccionaDiv :: [Integer] -> [Integer] -> [Integer]
-- tal que (seleccionaDiv xs ys) es la lista de los elementos de xs que
-- son divisores de los correspondientes elementos de ys. Por ejemplo,
      seleccionaDiv [1..5] [7,8,1,2,3]
                                           == [1,2]
      seleccionaDiv [2,5,3,7] [1,3,4,5,0,9] == []
     seleccionaDiv (repeat 1) [3,5,8] == [1,1,1]
      seleccionaDiv [1..4] [2,4..]
                                    == [1,2,3,4]
-- Por comprensión:
seleccionaDiv :: [Integer] -> [Integer] -> [Integer]
selectionaDiv xs ys = [x \mid (x,y) < -zip xs ys, rem y x == 0]
-- Por recursión:
seleccionaDivR :: [Integer] -> [Integer] -> [Integer]
seleccionaDivR (x:xs) (y:ys) | rem y x == 0 = x: seleccionaDivR xs ys
                             | otherwise = seleccionaDivR xs ys
seleccionaDivR _ _ = []
-- Ejercicio 2.1. Un número es especial si se cumple que la suma de cada
-- dos dígitos consecutivos es primo. Por ejemplo,
      4116743 es especial pues 4+1, 1+1, 1+6, 6+7, 7+4 y 4+3 son primos.
      41167435 no es especial porque 3+5 no es primo.
-- Definir la función
     especial :: Integer -> Bool
-- tal que (especial n) se verifica si n es especial. Por ejemplo,
     especial 4116743 == True
      especial 41167435 == False
especial :: Integer -> Bool
especial n = all esPrimo (zipWith (+) xs (tail xs))
   where xs = digitos n
```

```
digitos :: Integer -> [Integer]
digitos n = [read [x] | x <- show n]
esPrimo :: Integer -> Bool
esPrimo x = x 'elem' takeWhile (\leq x) primos
primos:: [Integer]
primos = criba [2..]
   where criba (p:ps) = p: criba [x \mid x <-ps, rem x p /= 0]
-- Ejercicio 2.2. Calcular el menor (y el mayor) número especial con 6
-- cifras.
-- El cálculo es
     ghci> head [n \mid n \leftarrow [10^5..], especial n]
     ghci> head [n \mid n < [10^6, 10^6 - 1..], especial n]
     989898
-- Ejercicio 3.1. Definir la función
     productoDigitosNN :: Integer -> Integer
-- tal que (productoDigitosNN n) es el producto de los dígitos no nulos
-- de n.
     productoDigitosNN 2014 == 8
productoDigitosNN :: Integer -> Integer
productoDigitosNN = product . filter (/=0) . digitos
-- Ejercicio 3.2. Consideremos la sucesión definida a partir de un
-- número d, de forma que cada elemento es la suma del anterior más el
-- producto de sus dígitos no nulos. Por ejemplo,
     Si d = 1, la sucesión es 1,2,4,8,16,22,26,38,62,74,102,104,...
     Si d = 15, la sucesión es 15,20,22,26,38,62,74,102,104,108,...
-- Definir, usando iterate, la función
     sucesion :: Integer -> [Integer]
-- tal que (sucesion d) es la sucesión anterior, empezando por d. Por
```

```
-- ejemplo,
     take 10 (sucesion 1) == [1,2,4,8,16,22,26,38,62,74]
     take 10 (sucesion 15) == [15,20,22,26,38,62,74,102,104,108]
sucesion :: Integer -> [Integer]
sucesion = iterate f
 where f x = x + productoDigitosNN x
-- Ejercicio 3.3. Llamamos sucesionBase a la sucesión que empieza en
-- 1. Probar con QuickCheck que cualquier otra sucesión que empiece en
-- d, con d > 0, tiene algún elemento común con la sucesionBase.
-- La propiedad es
prop sucesion :: Integer -> Property
prop sucesion d =
   d > 0 ==>
   [n | n <- sucesion d, n 'elem' takeWhile (<=n) sucesionBase] /= []</pre>
   where sucesionBase = sucesion 1
-- La comprobación es
     ghci> quickCheck prop sucesion
     +++ OK, passed 100 tests.
  ______
-- Ejercicio 4. Consideremos el tipo de dato árbol, definido por
    data Arbol a = H a | N a (Arbol a) (Arbol a)
-- y los siguientes ejemplos de árboles
     ej1 = N 9 (N 3 (H 2) (H 4)) (H 7)
     ei2 = N 9 (N 3 (H 2) (N 1 (H 4) (H 5))) (H 7)
-- Definir la función
     allArbol :: (t -> Bool) -> Arbol t -> Bool
-- tal que (allArbol p a) se verifica si todos los elementos del árbol
-- verifican p. Por ejemplo,
     allArbol even ej1 == False
     allArbol (>0) ej1 == True
data Arbol a = H a | N a (Arbol a) (Arbol a)
```

```
ej1 = N 9 (N 3 (H 2) (H 4)) (H 7)
ej2 = N 9 (N 3 (H 2) (N 1 (H 4) (H 5))) (H 7)
allArbol :: (t -> Bool) -> Arbol t -> Bool
allArbol p (H x) = p x
allArbol p (N r i d) = p r && allArbol p i && allArbol p d
-- Ejercicio 5. Definir la función
     listasNoPrimos :: [[Integer]]
-- tal que listasNoPrimos es lista formada por las listas de números
-- no primos consecutivos. Por ejemplo,
     take 7 listasNoPrimos == [[1],[4],[6],[8,9,10],[12],[14,15,16],[18]]
listasNoPrimos :: [[Integer]]
listasNoPrimos = aux [1..]
   where aux xs = takeWhile (not . esPrimo) xs :
                aux (dropWhile esPrimo (dropWhile (not . esPrimo ) xs))
6.4.3. Examen 3 (23 de enero de 2015)
-- Informática: 3º examen de evaluación continua (23 de enero de 2014)
-- Puntuación: Cada uno de los 5 ejercicios vale 2 puntos.
import Data.List
-- Ejercicio 1. Definir la función
     sumaSinMuliplos :: Int -> [Int] -> Int
-- tal que (sumaSinMuliplos n xs) es la suma de los números menores o
-- iguales a n que no son múltiplos de ninguno de xs. Por ejemplo,
     sumaSinMuliplos 10 [2,5] == 20
     sumaSinMuliplos 10 [2,5,6] == 20
     sumaSinMuliplos 10 [2,5,3] == 8
sumaSinMuliplos :: Int -> [Int] -> Int
```

sumaSinMuliplos n xs = sum $[x \mid x < -[1..n]$, sinMultiplo x xs]

```
-- lª definición
sinMultiplo :: Int -> [Int] -> Bool
sinMultiplo\ n\ xs = all\ (\x -> n\ 'mod'\ x /= 0)\ xs
-- 2ª definición (por comprensión):
sinMultiplo2 :: Int -> [Int] -> Bool
sinMultiplo2 \ n \ xs = and [n 'mod' x /= 0 | x <- xs]
-- 3ª definición (por recursión):
sinMultiplo3 :: Int -> [Int] -> Bool
sinMultiplo3 n [] = True
sinMultiplo3 \ n \ (x:xs) = n \ 'mod' \ x /= 0 \&\& \ sinMultiplo3 \ n \ xs
-- Ejercicio 2. Definir la función
      menorFactorial :: (Int -> Bool) -> Int
-- tal que (menorFactorial p) es el menor n tal que n! cumple la
-- propiedad p. Por ejemplo,
      menorFactorialP (>5)
      menorFactorialP (\xspace x - x \pmod{21} == 0) == 7
-- 1ª solución
-- =========
menorFactorial :: (Int -> Bool) -> Int
menorFactorial p = head [n | (n,m) <- zip [0..] factoriales, p m]</pre>
    where factoriales = scanl (*) 1 [1..]
-- 2ª solución
-- ========
menorFactorial2 :: (Int -> Bool) -> Int
menorFactorial2 p = 1 + length (takeWhile (not . p) factoriales)
factoriales :: [Int]
factoriales = [factorial n | n <- [1..]]</pre>
factorial :: Int -> Int
factorial n = product [1..n]
```

```
-- Ejercicio 3. Las expresiones aritméticas se pueden representar como
-- árboles con números en las hojas y operaciones en los nodos. Por
-- ejemplo, la expresión "9-2*4" se puede representar por el árbol
       /\
      9
        2
-- Definiendo el tipo de dato Arbol por
      data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
-- la representación del árbol anterior es
      N(-)(H 9)(N(*)(H 2)(H 4))
-- Definir la función
      valor :: Arbol -> Int
-- tal que (valor a) es el valor de la expresión aritmética
-- correspondiente al árbol a. Por ejemplo,
      valor (N (-) (H 9) (N (*) (H 2) (H 4)))
                                                     1
      valor (N (+) (H 9) (N (*) (H 2) (H 4)))
                                                     17
      valor (N (+) (H 9) (N (div) (H 4) (H 2))) ==
                                                     11
      valor (N (+) (H 9) (N (max) (H 4) (H 2)))
data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
valor :: Arbol -> Int
valor (H x)
               = X
valor(N f i d) = f(valor i)(valor d)
-- Ejercicio 4.1. Se dice que el elemento y es un superior de x en una
-- lista xs si y > x y la posición de y es mayor que la de x en xs. Por
-- ejemplo, los superiores de 5 en [7,3,5,2,8,5,6,9,1] son el 8, el 6 y
-- el 9. El número de superiores de cada uno de sus elementos se
-- representa en la siguiente tabla
      elementos:
                             [7, 3, 5, 2, 8, 5, 6, 9, 1]
      número de superiores:
                               2 5 3 4 1 2 1
-- El elemento con máximo número de superiores es el 3 que tiene 5
-- superiores.
-- Definir la función
     maximoNumeroSup :: Ord a => [a] -> Int
```

```
-- tal que (maximoNumeroSup xs) es el máximo de los números de
-- superiores de los elementos de xs. Por ejemplo,
    maximoNumeroSup [7,3,5,2,8,4,6,9,1] == 5
    maximoNumeroSup "manifestacion"
-- 1ª solución
-- ========
maximoNumeroSup :: Ord a => [a] -> Int
maximoNumeroSup[] = 0
maximoNumeroSup xs = maximum [length (filter (z<) zs) | z:zs <- tails xs]</pre>
-- 2º solución
-- ========
maximoNumeroSup2 :: Ord a => [a] -> Int
maximoNumeroSup2 = maximum . numeroSup
-- (numeroSup xs) es la lista de los números de superiores de cada
-- elemento de xs. Por ejemplo,
      numeroSup [7,3,5,2,8,5,6,9,1] == [2,5,3,4,1,2,1,0,0]
numeroSup :: Ord a => [a] -> [Int]
numeroSup []
               = []
numeroSup [] = [0]
numeroSup(x:xs) = length(filter(>x) xs): numeroSup xs
-- Ejercicio 4.2. Comprobar con QuickCheck que (maximoNumeroSup xs) es
-- igual a cero si, y sólo si, xs está ordenada de forma no decreciente.
-- La propiedad es
prop_maximoNumeroSup :: [Int] -> Bool
prop maximoNumeroSup xs = (maximoNumeroSup xs == 0) == ordenada xs
    where ordenada xs = and (zipWith (>=) xs (tail xs))
-- La comprobación es
      ghci> quickCheck prop maximoNumeroSup
     +++ OK, passed 100 tests.
-- Ejercicio 5. En la siguiente figura, al rotar girando 90º en el
```

```
-- sentido del reloj la matriz de la izquierda se obtiene la de la
-- derecha
     1 2 3
                  7 4 1
     4 5 6
                  8 5 2
     7 8 9
                  9 6 3
-- Definir la función
     rota :: [[a]] -> [[a]]
-- tal que (rota xss) es la matriz obtenida girando 90º en el sentido
-- del reloj la matriz xss, Por ejemplo,
     rota [[1,2,3],[4,5,6],[7,8,9]] == [[7,4,1],[8,5,2],[9,6,3]]
      rota ["abcd","efgh","ijkl"] == ["iea","jfb","kgc","lhd"]
rota :: [[a]] -> [[a]]
rota [] = []
rota ([]: ) = []
rota xss = reverse (map head xss) : rota (map tail xss)
       Examen 4 (12 de marzo de 2015)
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (12 de marzo de 2015)
-- § Librerías auxiliares
import Data.List
import Data.Array
import I1M.PolOperaciones
-- Ejercicio 1.1. En este ejercicio, representemos las fracciones
-- mediante pares de números de enteros.
-- Definir la función
     fracciones :: Integer -> [(Integer,Integer)]
-- tal que (fracciones n) es la lista con las fracciones propias
-- positivas, con denominador menor o igual que n. Por ejemplo,
     fracciones 4 == [(1,2),(1,3),(2,3),(1,4),(3,4)]
```

```
fracciones 5 == [(1,2),(1,3),(2,3),(1,4),(3,4),(1,5),(2,5),(3,5),(4,5)]
fracciones :: Integer -> [(Integer,Integer)]
fracciones n = [(x,y) \mid y \leftarrow [2..n], x \leftarrow [1..y-1], gcd x y == 1]
-- Ejercicio 1.2. Definir la función
     fraccionesOrd :: Integer -> [(Integer,Integer)]
-- tal que (fraccionesOrd n) es la lista con las fracciones propias
-- positivas ordenadas, con denominador menor o igual que n. Por
-- ejemplo,
     fracciones0rd 4 == [(1,4),(1,3),(1,2),(2,3),(3,4)]
     fracciones0rd 5 == [(1,5), (1,4), (1,3), (2,5), (1,2), (3,5), (2,3), (3,4), (4,5)]
   ______
fraccionesOrd :: Integer -> [(Integer,Integer)]
fraccionesOrd n = sortBy comp (fracciones n)
    where comp (a,b) (c,d) = compare (a*d) (b*c)
-- Ejercicio 2. Todo número par se puede escribir como suma de números
-- pares de varias formas. Por ejemplo:
     8 = 8
      = 6 + 2
       = 4 + 4
      = 4 + 2 + 2
       = 2 + 2 + 2 + 2
-- Definir la función
     descomposicionesDecrecientes:: Integer -> [[Integer]]
-- tal que (descomposicionesDecrecientes n) es la lista con las
-- descomposiciones de n como suma de pares, en forma decreciente. Por
-- ejemplo,
     ghci> descomposicionesDecrecientes 8
     [[8],[6,2],[4,4],[4,2,2],[2,2,2,2]]
     ghci> descomposicionesDecrecientes 10
     [[10], [8,2], [6,4], [6,2,2], [4,4,2], [4,2,2,2], [2,2,2,2,2]]
-- Calcular el número de descomposiciones de 40.
descomposicionesDecrecientes:: Integer -> [[Integer]]
```

```
descomposicionesDecrecientes 0 = [[0]]
descomposicionesDecrecientes n = aux n [n, n-2..2]
   where aux _{-} [] = []
          aux n (x:xs) | x > n = aux n xs
                       | x == n = [n] : aux n xs
                       | otherwise = map (x:) (aux (n-x) (x:xs)) ++ aux n xs
-- El cálculo es
      ghci> length (descomposicionesDecrecientes 40)
      627
-- Ejercicio 3. Consideremos los árboles binarios con etiquetas en las
-- hojas y en los nodos. Por ejemplo,
            5
           / \
         2 4
            / \
            7 1
-- Un camino es una sucesión de nodos desde la raiz hasta una hoja. Por
-- ejemplo, [5,2] y [5,4,1,2] son caminos que llevan a 2, mientras que
-- [5,4,1] no es un camino, pues no lleva a una hoja.
-- Definimos el tipo de dato Arbol y el ejemplo por
      data Arbol = H Int | N Arbol Int Arbol
                   deriving Show
     arb1:: Arbol
     arb1 = N (H 2) 5 (N (H 7) 4 (N (H 2) 1 (H 3)))
-- Definir la función
     maxLong :: Int -> Arbol -> Int
  tal que (maxLong x a) es la longitud máxima de los caminos que
-- terminan en x. Por ejemplo,
     maxLong 3 arb1 == 4
     maxLong 2 arb1 == 4
     maxLong 7 arb1 == 3
```

deriving Show

```
arb1:: Arbol
arb1 = N (H 2) 5 (N (H 7) 4 (N (H 2) 1 (H 3)))
-- 1º solución (calculando los caminos)
-- (caminos x a) es la lista de los caminos en el árbol a desde la raíz
-- hasta las hojas x. Por ejemplo,
      caminos 2 arb1 == [[5,2],[5,4,1,2]]
      caminos 3 arb1 == [[5,4,1,3]]
      caminos 1 arb1 == []
caminos :: Int -> Arbol -> [[Int]]
caminos x (H y) | x == y = [[x]]
                | otherwise = []
caminos x (N i r d) = map (r:) (caminos x i ++ caminos x d)
maxLong1 :: Int -> Arbol -> Int
maxLong1 \times a = maximum (0: map length (caminos \times a))
-- 2ª solución
-- ------
maxLong2 :: Int -> Arbol -> Int
\max Long2 \times a = \max imum (0 : aux \times a)
    where aux x (H y) | x == y
                      | otherwise = []
          aux x (N i r d) = map (+1) (aux x i ++ aux x d)
-- Ejercicio 4. Un elemento de una matriz es un máximo local si es un
-- elemento interior, que es mayor que todos sus vecinos. Por ejemplo,
-- en la matriz
       [[1,0,0,1],
        [0,2,0,3],
        [0,0,0,5],
        [3,5,7,6],
        [1,2,3,4]
-- los máximos locales son 2 (en la posición (2,2)) y 7 (en la posición
-- (4,3)).
-- Definimos el tipo de las matrices, mediante
```

```
type Matriz a = Array (Int,Int) a
-- y el ejemplo anterior por
      ej1 :: Matriz Int
      ej1 = listArray ((1,1),(5,4)) (concat [[1,0,0,1],
                                              [0,2,0,3],
                                              [0,0,0,5],
                                              [3,5,7,6],
                                              [1,2,3,4]]
-- Definir la función
      maximosLocales :: Matriz Int -> [((Int,Int),Int)]
-- tal que (maximosLocales p) es la lista de las posiciones en las que
-- hay un máximo local, con el valor correspondiente. Por ejemplo,
     maximosLocales ej1 == [((2,2),2),((4,3),7)]
type Matriz a = Array (Int,Int) a
ejl :: Matriz Int
ej1 = listArray ((1,1),(5,4)) (concat [[1,0,0,1],
                                       [0,2,0,3],
                                        [0,0,0,5],
                                        [3,5,7,6],
                                        [1,2,3,4]
maximosLocales :: Matriz Int -> [((Int,Int),Int)]
maximosLocales p =
    [((i,j),p!(i,j)) \mid i < [1..m], j < [1..n], posicionMaxLocal (i,j) p]
        where (,(m,n)) = bounds p
-- (posicionMaxLocal (i,j) p) se verifica si (i,j) es la posición de un
-- máximo local de la matriz p. Por ejemplo,
      posicionMaxLocal (2,2) ej1 == True
      posicionMaxLocal (2,3) ej1 == False
posicionMaxLocal :: (Int,Int) -> Matriz Int -> Bool
posicionMaxLocal (i,j) p =
    esInterior (i,j) p && all (< p!(i,j)) (vecinosInterior (i,j) p)
-- (esInterior (i,j) p) se verifica si (i,j) es una posición interior de
-- la matriz p.
esInterior:: (Int,Int) -> Matriz a -> Bool
esInterior (i,j) p = i /= 1 \&\& i /= m \&\& j /= 1 \&\& j /= n
```

```
where (,(m,n)) = bounds p
-- (indicesVecinos (i,j)) es la lista de las posiciones de los
-- vecinos de la posición (i,j). Por ejemplo,
      ghci> indicesVecinos (2,2)
      [(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)]
indicesVecinos :: (Int,Int) -> [(Int,Int)]
indicesVecinos (i,j) =
    [(i+a,j+b) \mid a < [-1,0,1], b < [-1,0,1], (a,b) /= (0,0)]
-- (vecinosInterior (i,j) p) es la lista de los valores de los vecinos
-- de la posición (i,j) en la matriz p. Por ejemplo,
      vecinosInterior (4,3) ej1 == [0,0,5,5,6,2,3,4]
vecinosInterior (i,j) p =
    [p!(k,l) \mid (k,l) < - indices Vecinos (i,j)]
-- Ejercicio 5. Los polinomios de Bell forman una sucesión de
-- polinomios, definida como sigue:
      B O(x) = 1 (polinomio unidad)
      B n(x) = x*[B n(x) + B n'(x)]
-- Por ejemplo,
      B \theta(x) = 1
      B 1(x) = x*(1+0)
                                          = X
      B 2(x) = x*(x+1)
                                          = x^2+x
      B 3(x) = x*(x^2+x + 2x+1)
                                          = x^3+3x^2+x
      B 4(x) = x*(x^3+3x^2+x + 3x^2+6x+1) = x^4+6x^3+7x^2+x
-- Definir la función
      polBell :: Int -> Polinomio Int
-- tal que (polBell n) es el polinomio de Bell de grado n. Por ejemplo,
      polBell1 4 == x^4 + 6*x^3 + 7*x^2 + 1*x
-- Calcular el coeficiente de x^2 en el polinomio B 30.
-- 1º solución (por recursión)
polBell1 :: Integer -> Polinomio Integer
polBell1 0 = polUnidad
polBell1 n = multPol (consPol 1 1 polCero) (sumaPol p (derivada p))
    where p = polBell1 (n-1)
-- 2ª solución (evaluación perezosa)
```

```
polBell2 :: Integer -> Polinomio Integer
polBell2 n = sucPolinomiosBell 'genericIndex' n
sucPolinomiosBell :: [Polinomio Integer]
sucPolinomiosBell = iterate f polUnidad
    where f p = multPol (consPol 1 1 polCero) (sumaPol p (derivada p))
-- El cálculo es
      ghci> coeficiente 2 (polBellP1 30)
      536870911
         Examen 5 (30 de abril de 2015)
6.4.5.
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (30 de abril de 2015)
-- § Librerías auxiliares
import Data.Numbers.Primes
import Test.QuickCheck
import Data.List
import Data.Array
import I1M.Grafo
import I1M.Monticulo
-- Ejercicio 1.1. Un número n es especial si al unir las cifras de sus
-- factores primos, se obtienen exactamente las cifras de n, aunque
-- puede ser en otro orden. Por ejemplo, 1255 es especial, pues los
-- factores primos de 1255 son 5 y 251.
- -
-- Definir la función
     esEspecial :: Integer -> Bool
-- tal que (esEspecial n) se verifica si un número n es especial. Por
-- ejemplo,
     esEspecial 1255 == True
     esEspecial 125 == False
```

```
esEspecial :: Integer -> Bool
esEspecial n =
   sort (show n) == sort (concatMap show (nub (primeFactors n)))
-- Ejercicio 1.2. Comprobar con QuickCheck que todo número primo es
-- especial.
-- La propiedad es
prop primos:: Integer -> Property
prop_primos n =
   isPrime (abs n) ==> esEspecial (abs n)
-- La comprobación es
     ghci> quickCheck prop_primos
     +++ OK, passed 100 tests.
__ _______
-- Ejercicio 1.3. Calcular los 5 primeros números especiales que no son
-- primos.
-- El cálculo es
     ghci> take 5 [n | n <- [2..], esEspecial n, not (isPrime n)]</pre>
     [735, 1255, 3792, 7236, 11913]
-- Ejercicio 2. Consideremos las relaciones binarias homogéneas,
-- representadas por el siguiente tipo
     type Rel a = ([a],[(a,a)])
-- y las matrices, representadas por
     type Matriz a = Array (Int,Int) a
-- Dada una relación r sobre un conjunto de números enteros, la matriz
-- asociada a r es una matriz booleana p (cuyos elementos son True o
-- False), tal que p(i,j) = True si y sólo si i está relacionado con j
-- mediante la relación r.
-- Definir la función
     matrizRB:: Rel Int -> Matriz Bool
-- tal que (matrizRB r) es la matriz booleana asociada a r. Por ejemplo,
     ghci> matrizRB ([1..3],[(1,1), (1,3), (3,1), (3,3)])
```

```
array ((1,1),(3,3)) [((1,1),True),((1,2),False),((1,3),True),
                           ((2,1),False),((2,2),False),((2,3),False),
- -
                           ((3,1),True) ,((3,2),False),((3,3),True)]
      ghci> matrizRB ([1..3],[(1,3), (3,1)])
      array ((1,1),(3,3)) [((1,1),False),((1,2),False),((1,3),True),
                           ((2,1),False),((2,2),False),((2,3),False),
                           ((3,1),True) ,((3,2),False),((3,3),False)]
-- Nota: Construir una matriz booleana cuadrada, de dimensión nxn,
-- siendo n el máximo de los elementos del universo de r.
type Rel a = ([a],[(a,a)])
type Matriz a = Array (Int,Int) a
-- 1ª definición (con array, universo y grafo):
matrizRB:: Rel Int -> Matriz Bool
matrizRB r =
    array ((1,1),(n,n))
          [((a,b), (a,b) 'elem' grafo r) | a <- [1..n], b <- [1..n]]
    where n = maximum (universo r)
universo :: Eq a => Rel a -> [a]
universo(us,) = us
grafo :: Eq a => Rel a -> [(a,a)]
grafo(_,ps) = ps
-- 2ª definición (con listArray y sin universo ni grafo):
matrizRB2:: Rel Int -> Matriz Bool
matrizRB2 r =
    listArray ((1,1),(n,n))
              [(a,b) 'elem' snd r | a <- [1..n], b <- [1..n]]
    where n = maximum (fst r)
-- Ejercicio 3.1. Dado un grafo G = (V, E),
      + la distancia entre dos nodos de G es el valor absoluto de su
        diferencia.
- -
      + la anchura de un nodo x es la máxima distancia entre x y todos
        los nodos adyacentes y
     + la anchura del grafo es la máxima anchura de sus nodos.
- -
```

```
-- Definir la función
     anchuraG :: Grafo Int Int -> Int
-- tal que (anchuraG g) es la anchura del grafo g. Por ejemplo, si g es
-- el grafo definido a continuación,
     g :: Grafo Int Int
     g = creaGrafo ND (1,5) [(1,2,12),(1,3,34),(1,5,78),
                           (2,4,55),(2,5,32),
                           (3,4,61),(3,5,44),
                           (4,5,93)
-- entonces
     anchuraG g == 4
g :: Grafo Int Int
g = creaGrafo ND (1,5) [(1,2,12),(1,3,34),(1,5,78),
                      (2,4,55),(2,5,32),
                      (3,4,61),(3,5,44),
                      (4,5,93)
anchuraG :: Grafo Int Int -> Int
anchuraG g = maximum [abs(a-b) | (a,b,_) <- aristas g]</pre>
-- -----
-- Ejercicio 3.2. Comprobar experimentalmente que la anchura del grafo
-- cíclico de orden n (para n entre 1 y 20) es n-1.
-- La propiedad es
propG :: Int -> Bool
propG n = anchuraG (grafoCiclo n) == n-1
grafoCiclo :: Int -> Grafo Int Int
grafoCiclo n = creaGrafo ND (1,n) ([(x,x+1,0) | x <- [1..n-1]] ++ [(n,1,0)])
-- La comprobación es
     ghci> and [propG n | n <- [2..10]]
     True
__ _______
-- Ejercicio 4.1. Definir la función
      mayor :: Ord a => Monticulo a -> a
-- tal que (mayor m) es el mayor elemento del montículo m. Por ejemplo,
      mayor (foldr inserta vacio [1,8,2,4,5]) == 8
```

```
-- lª solución
mayor :: Ord a => Monticulo a -> a
mayor m | esVacio r = menor m
       | otherwise = mayor r
      where r = resto m
-- 2ª solución
mayor2 :: Ord a => Monticulo a -> a
mayor2 m = last (monticulo2Lista m)
monticulo2Lista :: Ord a => Monticulo a -> [a]
monticulo2Lista m | esVacio m = []
               | otherwise = menor m : monticulo2Lista (resto m)
-- Ejercicio 4.2. Definir la función
     minMax :: Ord a => Monticulo a -> Maybe (a, a)
-- tal que (minMax m) es justamente el par formado por el menor y el
-- mayor elemento de m, si el montículo m es no vacío. Por ejemplo,
     minMax (foldr inserta vacio [4,8,2,1,5]) == Just (1,8)
     minMax (foldr inserta vacio [4])
                                         == Just (4,4)
     minMax vacio
                                         == Nothing
  ______
minMax :: (Ord a) => Monticulo a -> Maybe (a, a)
minMax m | esVacio m = Nothing
       | otherwise = Just (menor m, mayor m)
__ ______
-- Ejercicio 5.1. Dada una lista de números naturales xs, la
-- codificación de Gödel de xs se obtiene multiplicando las potencias de
-- los primos sucesivos, siendo los exponentes los elementos de xs. Por
-- ejemplo, si xs = [6,0,4], la codificación de xs es
     2^6 * 3^0 * 5^4 = 64 * 1 * 625 = 40000.
-- Definir la función
     codificaG :: [Integer] -> Integer
-- tal que (codificaG xs) es la codificación de Gödel de xs. Por
-- ejemplo,
     codificaG [6,0,4]
                            == 40000
     codificaG [3,1,1] == 120
```

```
codificaG [3,1,0,0,0,0,0,1] == 456
     codificaG [1..6] == 4199506113235182750
codificaG :: [Integer] -> Integer
codificaG xs = product (zipWith (^) primes xs)
-- Se puede eliminar el argumento:
codificaG2 :: [Integer] -> Integer
codificaG2 = product . zipWith (^) primes
-- Ejercicio 5.2. Definir la función
      decodificaG :: Integer -> [Integer]
-- tal que (decodificaG n) es la lista xs cuya codificación es n. Por
-- ejemplo,
     decodificaG 40000
                                     == [6,0,4]
     decodificaG 120
                                     == [3,1,1]
     decodificaG 456
                                     == [3,1,0,0,0,0,0,1]
     decodificaG 4199506113235182750 == [1,2,3,4,5,6]
decodificaG :: Integer -> [Integer]
decodificaG n = aux primes (group $ primeFactors n)
 where aux [] = []
       aux (x:xs) (y:ys) | x == head y = genericLength y : aux xs ys
                         | otherwise = 0 : aux xs (y:ys)
-- Ejercicio 5.3. Comprobar con QuickCheck que ambas funciones son
-- inversas.
-- Las propiedades son
propCodifical :: [Integer] -> Bool
propCodifical xs =
    decodificaG (codificaG ys) == ys
   where ys = map((+1) \cdot abs) xs
propCodifica2:: Integer -> Property
propCodifica2 n =
    n > 0 ==> codificaG (decodificaG n) == n
```

```
-- Las comprobaciones son
-- ghci> quickCheck propCodifica1
-- +++ OK, passed 100 tests.
-- ghci> quickCheck propCodifica2
-- +++ OK, passed 100 tests.
```

6.4.6. Examen 6 (15 de junio de 2015)

```
-- Informática: 6º examen de evaluación continua (15 de junio de 2015)
  ______
-- § Librerías auxiliares
import Data.Numbers.Primes
import Data.List
import I1M.PolOperaciones
import Test.QuickCheck
import Data.Array
import Data.Char
import Data.Matrix
  ______
-- Ejercicio 1. Sea p(n) el n-ésimo primo y sea r el resto de dividir
-- (p(n)-1)^n + (p(n)+1)^n \text{ por } p(n)^2. Por ejemplo,
     \sin n = 3, entonces p(3) = 5 y r = (4^3 + 6^3) mod (5^2) = 1
     \sin n = 7, entonces p(7) = 17 y r = (16^7 + 18^7) mod (17^2) = 238
-- Definir la función
     menorPR :: Integer -> Integer
-- tal que (menorPR x) es el menor n tal que el resto de dividir
-- (p(n)-1)^n + (p(n)+1)^n por p(n)^2 es mayor que x. Por ejemplo,
     menorPR 100
                   == 5
     menorPR 345
                   == 9
     menorPR 1000
                  == 13
     menorPR (10^9) = 7037.
     menorPR (10^10) = 21035
     menorPR (10^12) == 191041
```

```
-- 1ª solución
-- =========
menorPR1 :: Integer -> Integer
menorPR1 x =
    head [n \mid (n,p) < -zip [1..] primes
            (((p-1)^n + (p+1)^n) \text{ 'mod' } (p^2)) > x]
-- Segunda solución (usando el binomio de Newton)
-- Desarrollando por el binomio de Newton
      (p+1)^n = C(n,0)p^n + C(n,1)p^(n-1) + ... + C(n,n-1)p + 1
      (p-1)^n = C(n,0)p^n - C(n,1)p^(n-1) + ... + C(n,n-1)p + (-1)^n
-- Sumando se obtiene (según n sea par o impar)
     2*C(n,0)p^n + 2*C(n,n-2)p^(n-1) + ... + 2*C(n,2)p^2 + 2
     2*C(n,0)p^n + 2*C(n,n-2)p^(n-1) + ... + 2*C(n,1)p^1
-- Al dividir por p^2, el resto es (según n sea par o impar) 2 ó 2*C(n,1)p
-- (restoM n p) es el resto de de dividir (p-1)^n + (p+1)^n por p^2.
restoM :: Integer -> Integer -> Integer
restoM n p \mid even n = 2
          | otherwise = 2*n*p 'mod'(p^2)
menorPR2 :: Integer -> Integer
menorPR2 x = head [n | (n,p) <- zip [1..] primes, restoM n p > x]
-- Comparación de eficiencia
     ghci> menorPR1 (3*10^8)
     3987
     (2.44 secs, 120291676 bytes)
     ghci> menorPR2 (3*10^8)
     3987
     (0.04 secs, 8073900 bytes)
-- Ejercicio 2. Definir la función
     sumaPosteriores :: [Int] -> [Int]
-- tal que (sumaPosteriores xs) es la lista obtenida sustituyendo cada
-- elemento de xs por la suma de los elementos posteriores. Por ejemplo,
     sumaPosteriores [1..8]
                             == [35,33,30,26,21,15,8,0]
     sumaPosteriores [1,-3,2,5,-8] == [-4,-1,-3,-8,0]
```

```
-- Comprobar con QuickCheck que el último elemento de la lista
-- (sumaPosteriores xs) siempre es 0.
-- lª definición (por recursión):
sumaPosteriores1 :: [Int] -> [Int]
sumaPosteriores1 [] = []
sumaPosteriores1 (x:xs) = sum xs : sumaPosteriores1 xs
-- 2ª definición (sin argumentos)
sumaPosteriores2 :: [Int] -> [Int]
sumaPosteriores2 = map sum . tail . tails
-- 3ª definición (con scanr)
sumaPosteriores3 :: [Int] -> [Int]
sumaPosteriores3 = tail . scanr (+) 0
-- La propiedad es
propSumaP:: [Int] -> Property
propSumaP xs = not (null xs) ==> last (sumaPosteriores1 xs) == 0
-- La comprobación es
     ghci> quickCheck propSumaP
     +++ OK, passed 100 tests.
-- Ejercicio 3.1. Definir la constante
     sucesionD :: String
-- tal que su valor es la cadena infinita "1234321234321234321..."
-- formada por la repetición de los dígitos 123432. Por ejemplo,
     ghci> take 50 sucesionD
     "12343212343212343212343212343212343212343212"
__ _______
-- 1ª definición (con cycle):
sucesionD :: String
sucesionD = cycle "123432"
-- 2º definición (con repeat):
sucesionD2 :: String
sucesionD2 = concat $ repeat "123432"
-- 3ª definición (por recursión):
```

```
sucesionD3 :: String
sucesionD3 = "123432" ++ sucesionD4
-- Comparación de eficiencia
      ghci> sucesionD !! (2*10^7)
      (0.16 secs, 1037132 bytes)
      ghci> sucesionD2 !! (2*10^7)
      (3.28 secs, 601170876 bytes)
      ghci> sucesionD3 !! (2*10^7)
      '3'
      (0.17 secs, 1033344 bytes)
-- Ejercicio 3.2. La sucesión anterior se puede partir en una sucesión
-- de números, de forma que la suma de los dígitos de dichos números
-- forme la sucesión de los números naturales, como se observa a
-- continuación:
       1, 2, 3, 4, 32, 123, 43, 2123, 432, 1234, 32123, ...
       1, 2, 3, 4, 5, 6, 7, 8, 9,
                                             10,
                                                    11, ...
-- Definir la sucesión
      sucesionN :: [Integer]
-- tal que sus elementos son los números de la partición anterior. Por
-- ejemplo,
     ghci> take 11 sucesionN
      [1,2,3,4,32,123,43,2123,432,1234,32123]
sucesionN :: [Int]
sucesionN = aux [1..] sucesionD
    where aux (n:ns) xs = read ys : aux ns zs
              where (ys,zs) = prefijoSuma n xs
-- (prefijoSuma n xs) es el par formado por el primer prefijo de xs cuyo
-- suma es n y el resto de xs. Por ejemplo,
      prefijoSuma 6 "12343" == ("123","43")
prefijoSuma :: Int -> String -> (String,String)
prefijoSuma n xs =
    head [(us,vs) | (us,vs) <- zip (inits xs) (tails xs)
                  , sumaD us == n]
```

```
-- (sumaD xs) es la suma de los dígitos de xs. Por ejemplo,
     sumaD "123" == 6
sumaD :: String -> Int
sumaD = sum . map digitToInt
__ _______
-- Ejercicio 4. El polinomio cromático de un grafo calcula el número de
-- maneras en las cuales puede ser coloreado el grafo usando un número
-- de colores dado, de forma que dos vértices adyacentes no tengan el
-- mismo color.
-- En el caso del grafo completo de n vértices, su polinomio cromático
-- es P(n,x) = x(x-1)(x-2) \dots (x-(n-1)). Por ejemplo,
     P(3,x) = x(x-1)(x-2)
                           = x^3 - 3*x^2 + 2*x
     P(4,x) = x(x-1)(x-2)(x-3) = x^4 - 6*x^3 + 11*x^2 - 6*x
-- Lo que significa que P(4)(x) es el número de formas de colorear el
-- grafo completo de 4 vértices con x colores. Por tanto,
     P(4,2) = 0 (no se puede colorear con 2 colores)
     P(4,4) = 24 (hay 24 formas de colorearlo con 4 colores)
-- Definir la función
       polGC:: Int -> Polinomio Int
-- tal que (polGC n) es el polinomio cromático del grafo completo de n
-- vértices. Por ejemplo,
       polGC 4 == x^4 + -6*x^3 + 11*x^2 + -6*x
       polGC 5 == x^5 + -10*x^4 + 35*x^3 + -50*x^2 + 24*x
-- Comprobar con QuickCheck que si el número de colores (x) coincide con
-- el número de vértices del grafo (n), el número de maneras de colorear
-- el grafo es n!.
-- Nota. Al hacer la comprobación limitar el tamaño de las pruebas como
-- se indica a continuación
     ghci> quickCheckWith (stdArgs {maxSize=7}) prop_polGC
     +++ OK, passed 100 tests.
-- 1ª solución
-- =========
polGC :: Int -> Polinomio Int
polGC 0 = consPol 0 1 polCero
polGC \ n = multPol \ (polGC \ (n-1)) \ (consPol \ 1 \ 1 \ (consPol \ 0 \ (-n+1) \ polCero))
```

```
-- 2ª solución
-- ========
polGC2 :: Int -> Polinomio Int
polGC2 n = multLista (map polMon [0..n-1])
-- (polMon n) es el monomio x-n. Por ejemplo,
     polMon 3 == 1*x + -3
polMon:: Int -> Polinomio Int
polMon n = consPol 1 1 (consPol 0 (-n) polCero)
-- (multLista ps) es el producto de la lista de polinomios ps.
multLista :: [Polinomio Int] -> Polinomio Int
multLista []
               = polUnidad
multLista (p:ps) = multPol p (multLista ps)
-- La función multLista se puede definir por plegado
multLista2 :: [Polinomio Int] -> Polinomio Int
multLista2 = foldr multPol polUnidad
-- La propiedad es
prop_polGC :: Int -> Property
prop polGC n =
   n > 0 ==> valor (polGC n) n == product [1..n]
-- La comprobación es
     ghci> quickCheckWith (stdArgs {maxSize=7}) prop polGC
     +++ OK, passed 100 tests.
     (0.04 secs, 7785800 bytes)
__ ______
-- Ejercicio 5:
-- Consideramos un tablero de ajedrez en el que hay un único caballo y
-- lo representamos por una matriz con ceros en todas las posiciones,
-- excepto en la posición del caballo que hay un 1.
-- Definimos el tipo de las matrices:
type Matriz a = Array (Int,Int) a
-- (a) Definir una función
```

```
matrizC:: (Int,Int) -> Matriz Int
-- tal que, dada la posición (i,j) donde está el caballo, obtiene la
-- matriz correspondiente. Por ejemplo,
     elems (matrizC (1,1))
    [1,0,0,0,0,0,0,0,0,
     0,0,0,0,0,0,0,0,0,
     0,0,0,0,0,0,0,0,0,
     0,0,0,0,0,0,0,0,0,
     0,0,0,0,0,0,0,0,0,
- -
     0,0,0,0,0,0,0,0,0,
     0,0,0,0,0,0,0,0,0,
     0,0,0,0,0,0,0,0,0]
matrizC:: (Int,Int) -> Matrix Int
matrizC (i,j) = setElem 1 (i,j) (zero 8 8)
-- (b) Definir una función
       posicionesC :: (Int,Int) -> [(Int,Int)]
-- tal que dada la posición (i,j) de un caballo, obtiene la lista
-- con las posiciones posibles a las que se puede mover el caballo.
-- Por ejemplo,
-- posicionesC (1,1) == [(2,3),(3,2)]
-- posicionesC (3,4) == [(2,2),(2,6),(4,2),(4,6),(1,3),(1,5),(5,3),(5,5)]
posicionesC :: (Int,Int) -> [(Int,Int)]
posicionesC(i,i) =
    filter p [(i-1,j-2),(i-1,j+2),(i+1,j-2),(i+1,j+2),
              (i-2,j-1),(i-2,j+1),(i+2,j-1),(i+2,j+1)
    where p (x,y) = x >= 1 \&\& x <= 8 \&\& y >= 1 \&\& y <= 8
-- (c) Definir una función
       saltoC:: Matriz Int -> (Int,Int) -> [Matriz Int]
-- tal que, dada una matriz m con un caballo en la posición (i,j),
-- obtiene la lista con las matrices que representan cada una de los
-- posibles movimientos del caballo.
saltoC:: Matrix Int -> (Int,Int) -> [Matrix Int]
saltoC m (i,j) = map matrizC (posicionesC (i,j))
-- o bien, sin usar matrizC
saltoC':: Matrix Int -> (Int,Int) -> [Matrix Int]
saltoC' m (i,j) = map f (posicionesC (i,j))
```

```
where f(k,l) = setElem 0 (i,j) (setElem 1 (k,l) m)
-- También se puede definir obviando la matriz:
saltoCI:: (Int,Int) -> [Matrix Int]
saltoCI = map matrizC . posicionesC
-- saltoC m1 (1,1)
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 1 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 1 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- ( 0 0 0 0 0 0 0 0 )
-- (d) Definir una función
        juego:: IO ()
-- que realice lo siguiente: pregunte por la posición del caballo en el
-- tablero y por la casilla hacia la que queremos moverlo y nos devuelva
-- en pantalla "Correcta" o "Incorrecta". Por ejemplo,
     Introduce la posición actual del caballo
     fila: 1
- -
     columna: 1
     Introduce la posición hacia la que quieres moverlo
     fila: 4
- -
     columna: 2
- -
     Incorrecta
     juego
```

```
Introduce la posición actual del caballo
    fila: 3
- -
    columna: 4
- -
    Introduce la posición hacia la que quieres moverlo
    fila: 1
    columna: 5
    Correcta
juego :: IO ()
juego = do putStrLn "Introduce la posición actual del caballo "
          putStr "fila: "
          a <- getLine
          let i = read a
          putStr "columna: "
          b <- getLine
          let j = read b
          putStrLn "Introduce la posición hacia la que quieres moverlo "
          putStr "fila: "
          a2 <- getLine
          let k = read a2
          putStr "columna: "
          b2 <- getLine
          let l = read b
          putStrLn (if (k,l) 'elem' posicionesC (i,j)
                    then "Correcta"
                    else "Incorrecta")
-- Ejercicio 5: Con Array. Matrices. Entrada/salida
-- Los mismos ejercicios, pero usando Array en vez de la librería de
-- matrices.
matrizC2:: (Int,Int) -> Array (Int,Int) Int
matrizC2 (i,j) = array ((1,1), (8,8)) [((k,l), f(k,l)) | k < -[1..8],
                                                        l <- [1..8]]
   where f(k,l) | (k,l) == (i,j) = 1
                 | otherwise
                                 = 0
-- Ejemplo:
m1_2:: Array (Int,Int) Int
m1 2 = matrizC2 (1,1)
```

```
saltoC2:: Array (Int,Int) Int -> (Int,Int) -> [Array (Int,Int) Int]
saltoC2 m (i,j) = map matrizC2 (posicionesC (i,j))
saltoCI2:: (Int,Int) -> [Array (Int,Int) Int]
saltoCI2 = map matrizC2 . posicionesC
```

6.4.7. Examen 7 (3 de julio de 2015)

El examen es común con el del grupo 5 (ver página 542).

6.4.8. Examen 8 (4 de septiembre de 2015)

El examen es común con el del grupo 5 (ver página 542).

6.4.9. Examen 9 (4 de diciembre de 2015)

El examen es común con el del grupo 5 (ver página 559).

6.5. Exámenes del grupo 5 (José A. Alonso y Luis Valencia)

6.5.1. Examen 1 (5 de Noviembre de 2014)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (5 de noviembre de 2014)
-- import Data.Char
import Test.QuickCheck
-- Ejercicio 1.1. Definir la función
-- esPotencia :: Integer -> Integer -> Bool
-- tal que (esPotencia x a) se verifica si x es una potencia de a. Por
-- ejemplo,
-- esPotencia 32 2 == True
-- esPotencia 42 2 == False
```

```
-- lª definición (por comprensión):
esPotencia :: Integer -> Integer -> Bool
esPotencia x a = x 'elem' [a^n | n <- [0..x]]
-- 2ª definición (por recursión):
esPotencia2 :: Integer -> Integer -> Bool
esPotencia2 x a = aux x a 0
    where aux x a b \mid b > x
                                 = False
                    | otherwise = x == a ^ b || aux x a (b+1)
-- 3ª definición (por recursión):
esPotencia3 :: Integer -> Integer -> Bool
esPotencia3 0 _ = False
esPotencia3 1 a = True
esPotencia3 _ 1 = False
esPotencia3 x a = rem x a == 0 \& esPotencia3 (div x a) a
-- La propiedad de equivalencia es
prop equiv esPotencia :: Integer -> Integer -> Property
prop equiv esPotencia x a =
    x > 0 \&\& a > 0 ==>
    esPotencia2 x a == b &&
    esPotencia3 \times a == b
    where b = esPotencia \times a
-- La comprobación es
      ghci> quickCheck prop equiv esPotencia
      +++ OK, passed 100 tests.
-- Ejercicio 1.2. Comprobar con QuickCheck que, para cualesquiera números
-- enteros positivos x y a, x es potencia de a si y sólo si x² es
-- potencia de a<sup>2</sup>.
-- Propiedad de potencia
prop_potencia :: Integer -> Integer -> Property
prop potencia x a =
    x > 0 \& a > 0 ==> esPotencia x a == esPotencia (x*x) (a*a)
-- Ejercicio 2.1. Definir la función
```

```
intercambia :: String -> String
-- tal que (intercambia xs) es la cadena obtenida poniendo la mayúsculas
-- de xs en minúscula y las minúsculas en mayúscula. Por ejemplo,
      intercambia "Hoy es 5 de Noviembre" == "hOY ES 5 DE nOVIEMBRE"
      intercambia "hOY ES 5 DE nOVIEMBRE" == "Hoy es 5 de Noviembre"
intercambia :: String -> String
intercambia xs = [intercambiaCaracter x | x <- xs]
intercambiaCaracter :: Char -> Char
intercambiaCaracter c | isLower c = toUpper c
                     | otherwise = toLower c
-- Ejercicio 2.2. Comprobar con QuickCheck que, para cualquier cadena xs
-- se tiene que (intercambia (intercambia ys)) es igual a ys, siendo ys
-- la lista de las letras (mayúsculas o minúsculas no acentuadas) de xs.
prop intercambia :: String -> Bool
prop_intercambia xs = intercambia (intercambia ys) == ys
   where ys = [x \mid x < -xs, x 'elem' ['a'..'z'] + + ['A'..'Z']]
-- Ejercicio 3.1. Definir la función
      primosEquidistantes :: Integer -> [(Integer,Integer)]
-- tal que (primosEquidistantes n) es la lista de pares de primos
-- equidistantes de n y con la primera componente menor que la
-- segunda. Por ejemplo,
      primosEquidistantes 8 = [(3,13),(5,11)]
      primosEquidistantes 12 = [(5,19),(7,17),(11,13)]
-- lª definición (por comprensión):
primosEquidistantes :: Integer -> [(Integer,Integer)]
primosEquidistantes n =
    [(x,n+(n-x)) \mid x < -[2..n-1], esPrimo x, esPrimo (n+(n-x))]
esPrimo :: Integer -> Bool
esPrimo n = [x \mid x < [1..n], rem n x == 0] == [1,n]
-- 2ª definición (con zip):
```

```
primosEquidistantes2 :: Integer -> [(Integer,Integer)]
primosEquidistantes2 n =
    reverse [(x,y) \mid (x,y) < -zip [n-1,n-2..1] [n+1..], esPrimo x, esPrimo y]
-- Propiedad de equivalencia de las definiciones:
prop equiv primosEquidistantes :: Integer -> Property
prop equiv primosEquidistantes n =
    n > 0 ==> primosEquidistantes n == primosEquidistantes2 n
-- La comprobación es
      ghci> quickCheck prop equiv primosEquidistantes
      +++ OK, passed 100 tests.
-- Ejercicio 3.2. Comprobar con QuickCheck si se cumple la siguiente
-- propiedad: "Todo número entero positivo mayor que 4 es equidistante
-- de dos primos"
-- La propiedad es
prop suma2Primos :: Integer -> Property
prop suma2Primos n =
    n > 4 ==> primosEquidistantes n /= []
-- La comprobación es
      ghci> quickCheck prop suma2Primos
      +++ OK, passed 100 tests.
-- Ejercicio 4.1. Definir la función
      triangulo :: [a] -> [(a,a)]
-- tal que (triangulo xs) es la lista de los pares formados por cada uno
-- de los elementos de xs junto con sus siguientes en xs. Por ejemplo,
      ghci> triangulo [3,2,5,9,7]
      [(3,2),(3,5),(3,9),(3,7),
             (2,5),(2,9),(2,7),
                   (5,9),(5,7),
                         (9,7)
-- 1ª solución
triangulo :: [a] -> [(a,a)]
triangulo [] = []
```

trenza [5,1] [2,7,4]

trenza [5,1,7] [2..] trenza [2..] [5,1,7]

take 8 (trenza [2,4...] [1,5...]) == [2,1,4,5,6,9,8,13]

```
triangulo (x:xs) = [(x,y) \mid y < -xs] + + triangulo xs
-- 2ª solución
triangulo2 :: [a] -> [(a,a)]
triangulo2 [] = []
triangulo2 (x:xs) = zip (repeat x) xs ++ triangulo2 xs
-- Ejercicio 4.2. Comprobar con QuickCheck que la longitud de
-- (triangulo xs) es la suma desde 1 hasta n-1, donde n es el número de
-- elementos de xs.
-- La propiedad es
prop_triangulo :: [Int] -> Bool
prop_triangulo xs =
   length (triangulo xs) == sum [1..length xs - 1]
-- La comprobación es
     ghci> quickCheck prop triangulo
     +++ OK, passed 100 tests.
6.5.2. Examen 2 (3 de Diciembre de 2014)
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (3 de diciembre de 2014)
__ ______
import Test.QuickCheck
-- Ejercicio 1.1. Definir la función
     trenza :: [a] -> [a] -> [a]
-- tal que (trenza xs ys) es la lista obtenida intercalando los
-- elementos de xs e ys. Por ejemplo,
```

== [5,2,1,7]

== [5,2,1,3,7,4]== [2,5,3,1,4,7]

```
-- lª definición (por comprensión):
trenza :: [a] -> [a] -> [a]
trenza xs ys = concat [[x,y] | (x,y) <- zip xs ys]
-- 2ª definición (por zipWith):
trenza2 :: [a] -> [a] -> [a]
trenza2 xs ys = concat (zipWith par xs ys)
   where par x y = [x,y]
-- 3ª definición (por zipWith y sin argumentos):
trenza3 :: [a] -> [a] -> [a]
trenza3 = (concat .) . zipWith par
   where par x y = [x,y]
-- 4ª definición (por recursión):
trenza4 :: [a] -> [a] -> [a]
trenza4 (x:xs) (y:ys) = x : y : trenza xs ys
trenza4
                   = []
-- Ejercicio 1.2. Comprobar con QuickCheck que el número de elementos de
-- (trenza xs ys) es el doble del mínimo de los números de elementos de
-- xs e vs.
-- La propiedad es
prop_trenza :: [Int] -> [Int] -> Bool
prop_trenza xs ys =
   length (trenza xs ys) == 2 * min (length xs) (length ys)
-- La comprobación es
     ghci> quickCheck prop trenza
     +++ OK, passed 100 tests.
-- Ejercicio 2.1. Dado un número cualquiera, llamamos MDI de ese número
-- a su mayor divisor impar. Así, el MDI de 12 es 3 y el MDI de 15 es 15.
-- Definir la función
     mdi :: Int -> Int
-- tal que (mdi n) es el mayor divisor impar de n. Por ejemplo,
     mdi 12 == 3
     mdi 15 == 15
```

```
mdi :: Int -> Int
mdi n | odd n
      | otherwise = head [x | x < [n-1, n-3...1], n 'rem' x == 0]
-- Ejercicio 2.2. Comprobar con QuickCheck que la suma de los MDI de los
-- números n+1, n+2, ..., 2n de cualquier entero positivo n siempre da
-- n^2.
-- Nota. Al hacer la comprobación limitar el tamaño de las pruebas como
-- se indica a continuación
      ghci> quickCheckWith (stdArgs {maxSize=5}) prop mdi
     +++ OK, passed 100 tests.
-- La propiedad es
prop_mdi :: Int -> Property
prop_mdi n =
    n > 0 ==> sum [mdi x | x <- [n+1..2*n]] == n^2
prop mdi2 :: Int -> Property
prop mdi2 n =
    n > 0 ==> sum (map mdi [n+1..2*n]) == n^2
-- La comprobación es
     ghci> quickCheckWith (stdArgs {maxSize=5}) prop mdi
     +++ OK, passed 100 tests.
-- Ejercicio 3.1. Definir la función
      reiteracion :: Int -> (a -> a) -> a -> a
-- tal que (reiteracion n f x) es el resultado de aplicar n veces la
-- función f a x. Por ejemplo,
      reiteracion 10 (+1) 5 == 15
      reiteracion 10 (+5) 0 == 50
      reiteracion 4 (*2) 1 == 16
      reiteracion 4 (5:) [] == [5,5,5,5]
-- 1ª definición (por recursión):
```

```
reiteracion :: Int -> (a -> a) -> a -> a
reiteracion 0 f x = x
reiteracion n f x = f (reiteracion (n-1) f x)
-- 2ª definición (por recursión sin el 3ª argumento):
reiteracion2 :: Int -> (a -> a) -> a -> a
reiteracion2 0 f = id
reiteracion2 n f = f . reiteracion2 (n-1) f
-- 3ª definición (con iterate):
reiteracion3 :: Int -> (a -> a) -> a -> a
reiteracion3 n f x = (iterate f x) !! n
-- Ejercicio 3.2. Comprobar con QuickCheck que se verifican las
-- siguientes propiedades
     reiteracion 10 (+1) x == 10 + x
     reiteracion 10 (+x) 0 == 10 * x
     reiteracion 10 (x:) [] == replicate 10 x
  ______
-- La propiedad es
prop reiteracion :: Int -> Bool
prop reiteracion x =
   reiteracion 10 (+1) x == 10 + x \&\&
   reiteracion 10 (+x) 0 == 10 * x \&\&
   reiteracion 10 (x:) [] == replicate 10 x
-- La comprobación es
     ghci> quickCheck prop reiteracion
     +++ OK, passed 100 tests.
__ _______
-- Ejercicio 4.1. Definir la constante
     cadenasDeOy1 :: [String]
-- tal que cadenasDeOy1 es la lista de todas las cadenas de ceros y
-- unos. Por ejemplo,
     ghci> take 10 cadenasDe0y1
     ["","0","1","00","10","01","11","000","100","010"]
cadenasDeOy1 :: [String]
cadenasDe0y1 = "" : concat [['0':cs, '1':cs] | cs <- cadenasDe0y1]
```

```
-- Ejercicio 4.2. Definir la función
       posicion :: String -> Int
-- tal que (posicion cs) es la posición de la cadena cs en la lista
-- cadenasDeOy1. Por ejemplo,
       posicion "1"
       posicion "010" == 9
posicion :: String -> Int
posicion cs =
    length (takeWhile (/= cs) cadenasDe0y1)
-- Ejercicio 5. El siguiente tipo de dato representa expresiones
-- construidas con números, variables, sumas y productos
     data Expr = N Int
                | V String
                | S Expr Expr
                | P Expr Expr
-- Por ejemplo, x*(5+z) se representa por (P (V "x") (S (N 5) (V "z")))
-- Definir la función
      reducible :: Expr -> Bool
-- tal que (reducible a) se verifica si a es una expresión reducible; es
-- decir, contiene una operación en la que los dos operandos son números.
-- Por ejemplo,
      reducible (S (N 3) (N 4))
                                           == True
      reducible (S (N 3) (V "x"))
                                           == False
     reducible (S (N 3) (P (N 4) (N 5))) == True
      reducible (S (V "x") (P (N 4) (N 5))) == True
      reducible (S (N 3) (P (V "x") (N 5))) == False
     reducible (N 3)
                                            == False
      reducible (V "x")
                                            == False
data Expr = N Int
          | V String
          | S Expr Expr
          | P Expr Expr
reducible :: Expr -> Bool
```

6.5.3. Examen 3 (23 de enero de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 3º examen de evaluación continua (23 de enero de 2015)
import Data.List
import Data.Array
__ ______
-- Eiercicio 1. Definir la función
     divisiblesPorAlguno :: [Int] -> [Int]
-- tal que (divisiblesPorAlguno xs) es la lista de los números que son
-- divisibles por algún elemento de xs. Por ejemplo,
     take 10 (divisiblesPorAlguno [2,3]) == [2,3,4,6,8,9,10,12,14,15]
     take 10 (divisiblesPorAlguno [2,4,3]) == [2,3,4,6,8,9,10,12,14,15]
     take 10 (divisiblesPorAlguno [2,5,3]) == [2,3,4,5,6,8,9,10,12,14]
divisiblesPorAlguno :: [Int] -> [Int]
divisiblesPorAlguno xs = [n \mid n \leftarrow [1..], divisiblePorAlguno <math>xs \mid n]
-- lª definición (con any)
divisiblePorAlguno :: [Int] -> Int -> Bool
divisiblePorAlguno xs n = any (x -> n \pmod x == 0) xs
-- 2ª definición (por comprensión)
divisiblePorAlguno1 :: [Int] -> Int -> Bool
divisiblePorAlguno1 xs n = or [n \text{ 'mod' } x == 0 | x <- xs]
-- 3ª definición (por recursión)
divisiblePorAlguno2 :: [Int] -> Int -> Bool
divisiblePorAlguno2 [] = False
divisiblePorAlguno2 (x:xs) n = n \pmod{x} = 0 \mid divisiblePorAlguno2 xs n
```

```
-- Ejercicio 2. Las matrices pueden representarse mediante tablas cuyos
-- índices son pares de números naturales:
     type Matriz = Array (Int,Int) Int
-- Definir la función
     ampliada :: Matriz -> Matriz
-- tal que (ampliada p) es la matriz obtenida ampliando p añadiéndole
-- al final una columna con la suma de los elementos de cada fila y
-- añadiéndole al final una fila con la suma de los elementos de cada
-- columna. Por ejemplo, al ampliar las matrices
     |1 2 3|
                 |1 2|
     |4 5 6|
                 |3 4|
                 15 61
-- se obtienen, respectivamente
     |1 2 3 6|
                 |1 2 3|
     |4 5 6 15|
                 |3 4 7|
     |5 7 9 21|
                 |5 6 11|
                 |9 12 21|
-- En Haskell,
     ghci> ampliada (listArray ((1,1),(2,3)) [1,2,3, 4,5,6])
     array ((1,1),(3,4)) [((1,1),1),((1,2),2),((1,3),3),((1,4),6),
                         ((2,1),4),((2,2),5),((2,3),6),((2,4),15),
                         ((3,1),5),((3,2),7),((3,3),9),((3,4),21)
     ghci> ampliada (listArray ((1,1),(3,2)) [1,2, 3,4, 5,6])
     array ((1,1),(4,3)) [((1,1),1),((1,2),2),((1,3),3),
                         ((2,1),3),((2,2),4),((2,3),7),
                         ((3,1),5),((3,2),6),((3,3),11),
                         ((4,1),9),((4,2),12),((4,3),21)
type Matriz = Array (Int,Int) Int
ampliada :: Matriz -> Matriz
ampliada p = array((1,1),(m+1,n+1))
                 [((i,j),f i j) | i <- [1..m+1], j <- [1..n+1]]
   where
     (_,(m,n)) = bounds p
     f i j | i <= m
                     && j \le n = p!(i,j)
                     && j == n+1 = sum [p!(i,j) | j <- [1..n]]
           | i <= m
```

```
-- Ejercicio 3. El siguiente tipo de dato representa expresiones
-- construidas con variables, sumas y productos
      data Expr = Var String
                | S Expr Expr
                | P Expr Expre
                deriving (Eq, Show)
-- Por ejemplo, x*(y+z) se representa por (P (V "x") (S (V "v") (V "z")))
-- Una expresión está en forma normal si es una suma de términos. Por
-- ejemplo, x^*(y^*z) y x+(y^*z) está en forma normal; pero x^*(y+z) y
-- (x+y)*(x+z) no lo están.
- -
-- Definir la función
      normal :: Expr -> Expr
-- tal que (normal e) es la forma normal de la expresión e obtenida
-- aplicando, mientras que sea posible, las propiedades distributivas:
      (a+b)*c = a*c+b*c
      c*(a+b) = c*a+c*b
  Por ejemplo,
      ghci> normal (P (S (V "x") (V "y")) (V "z"))
      S (P (V "x") (V "z")) (P (V "y") (V "z"))
      ghci> normal (P (V "z") (S (V "x") (V "y")))
      S (P (V "z") (V "x")) (P (V "z") (V "y"))
      ghci> normal (P (S (V "x") (V "y")) (S (V "u") (V "v")))
      S (S (P (V "x") (V "u")) (P (V "x") (V "v")))
        (S (P (V "y") (V "u")) (P (V "y") (V "v")))
      ghci> normal (S (P (V "x") (V "y")) (V "z"))
      S (P (V "x") (V "y")) (V "z")
      ghci> normal (V "x")
     V "x"
data Expr = V String
          | S Expr Expr
          | P Expr Expr
          deriving (Eq, Show)
normal :: Expr -> Expr
normal(V v) = V v
normal(Sab) = S(normala)(normalb)
normal(Pab) = p(normala)(normalb)
   where p(Sab)c = S(pac)(pbc)
```

pa(Sbc) = S(pab)(pac)

```
= Pab
          pab
-- Ejercicio 4. Los primeros números de Fibonacci son
      1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
-- tales que los dos primeros son iguales a 1 y los siguientes se
-- obtienen sumando los dos anteriores.
-- El teorema de Zeckendorf establece que todo entero positivo n se
-- puede representar, de manera única, como la suma de números de
-- Fibonacci no consecutivos decrecientes. Dicha suma se llama la
-- representación de Zeckendorf de n. Por ejemplo, la representación de
-- Zeckendorf de 100 es
      100 = 89 + 8 + 3
-- Hay otras formas de representar 100 como sumas de números de
-- Fibonacci; por ejemplo,
      100 = 89 + 8 + 2 + 1
      100 = 55 + 34 + 8 + 3
-- pero no son representaciones de Zeckendorf porque 1 y 2 son números
-- de Fibonacci consecutivos, al igual que 34 y 55.
- -
-- Definir la función
      zeckendorf :: Integer -> [Integer]
-- tal que (zeckendorf n) es la representación de Zeckendorf de n. Por
-- ejemplo,
     zeckendorf 100
                      == [89,8,3]
      zeckendorf 2014
                         == [1597, 377, 34, 5, 1]
     zeckendorf 28656 == [17711,6765,2584,987,377,144,55,21,8,3,1]
      zeckendorf 14930396 = [14930352, 34, 8, 2]
-- 1ª solución
-- =========
zeckendorf1 :: Integer -> [Integer]
zeckendorf1 n = reverse (head (aux n (tail fibs)))
   where aux 0 = [[]]
         aux n (x:y:zs)
              | x \le n = [x:xs | xs \le aux (n-x) zs] ++ aux n (y:zs)
              | otherwise = []
-- fibs es la sucesión de los números de Fibonacci. Por ejemplo,
     take 14 fibs == [1,1,2,3,5,8,13,21,34,55,89,144,233,377]
```

```
fibs :: [Integer]
fibs = 1 : scanl (+) 1 fibs
-- 2ª solución
- - -----
zeckendorf2 :: Integer -> [Integer]
zeckendorf2 n = aux n (reverse (takeWhile (<= n) fibs))</pre>
   where aux 0 = []
         aux n (x:xs) = x : aux (n-x) (dropWhile (>n-x) xs)
-- 3ª solución
-- ========
zeckendorf3 :: Integer -> [Integer]
zeckendorf3 0 = []
zeckendorf3 n = x : zeckendorf3 (n - x)
   where x = last (takeWhile (<= n) fibs)
-- Comparación de eficiencia
-- La comparación es
     ghci> zeckendorf1 300000
     [196418,75025,17711,6765,2584,987,377,89,34,8,2]
     (0.72 secs, 58478576 bytes)
     ghci> zeckendorf2 300000
     [196418,75025,17711,6765,2584,987,377,89,34,8,2]
     (0.00 secs, 517852 bytes)
     ghci> zeckendorf3 300000
     [196418,75025,17711,6765,2584,987,377,89,34,8,2]
- -
     (0.00 secs, 515360 bytes)
-- Se observa que las definiciones más eficientes son la 2º y la 3º.
__ _______
-- Ejercicio 5. Definir la función
     maximoIntercambio :: Int -> Int
-- tal que (maximoIntercambio x) es el máximo número que se puede
-- obtener intercambiando dos dígitos de x. Por ejemplo,
     maximoIntercambio 983562 == 986532
     maximoIntercambio 31524
                              == 51324
     maximoIntercambio 897
                              == 987
```

-- lª definición

```
-- =========
maximoIntercambio :: Int -> Int
maximoIntercambio = maximum . intercambios
-- (intercambios x) es la lista de los números obtenidos intercambiando
-- dos dígitos de x. Por ejemplo,
     intercambios 1234 == [2134, 3214, 4231, 1324, 1432, 1243]
intercambios :: Int -> [Int]
intercambios x = [intercambio i j x | i <- [0..n-2], j <- [i+1..n-1]]
   where n = length (show x)
-- (intercambio i j x) es el número obtenido intercambiando las cifras
-- que ocupan las posiciones i y j (empezando a contar en cero) del
-- número x. Por ejemplo,
     intercambio 2 5 123456789 == 126453789
intercambio :: Int -> Int -> Int
intercambio i j x = read (concat [as,[d],cs,[b],ds])
   where xs
                   = show x
          (as,b:bs) = splitAt i xs
         (cs,d:ds) = splitAt (j-i-1) bs
-- 2º definición (con vectores)
maximoIntercambio2 :: Int -> Int
maximoIntercambio2 = read . elems . maximum . intercambios2
-- (intercambios2 x) es la lista de los vectores obtenidos
-- intercambiando dos elementos del vector de dígitos de x. Por ejemplo,
     ghci> intercambios2 1234
      [array (0,3) [(0,'2'),(1,'1'),(2,'3'),(3,'4')],
      array (0,3) [(0,'3'),(1,'2'),(2,'1'),(3,'4')],
      array (0,3) [(0,'4'),(1,'2'),(2,'3'),(3,'1')],
      array (0,3) [(0,'1'),(1,'3'),(2,'2'),(3,'4')],
      array (0,3) [(0,'1'),(1,'4'),(2,'3'),(3,'2')],
      array (0,3) [(0,'1'),(1,'2'),(2,'4'),(3,'3')]]
intercambios2 :: Int -> [Array Int Char]
intercambios2 x = [intercambioV i j v | i <- [0..n-2], j <- [i+1..n-1]]
   where xs = show x
         n = length xs
         v = listArray (0, n-1) xs
-- (intercambioV i j v) es el vector obtenido intercambiando los
```

```
-- elementos de v que ocupan las posiciones i y j. Por ejemplo,

-- ghci> intercambioV 2 4 (listArray (0,4) [3..8])

-- array (0,4) [(0,3),(1,4),(2,7),(3,6),(4,5)]

intercambioV i j v = v // [(i,v!j),(j,v!i)]
```

6.5.4. Examen 4 (9 de marzo de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (9 de marzo de 2015)
import I1M.PolOperaciones
import Data.List
import Data.Array
__ ______
-- Ejercicio 1. Un capicúa es un número que es igual leído de izquierda
-- a derecha que de derecha a izquierda.
-- Definir la función
     mayorCapicuaP :: Integer -> Integer
-- tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de
-- dos números de n cifras. Por ejemplo,
     mayorCapicuaP 2 == 9009
     mayorCapicuaP 3 == 906609
     mayorCapicuaP 4 == 99000099
     mayorCapicuaP 5 == 9966006699
-- 1ª solución
- - =========
mayorCapicuaP1 :: Integer -> Integer
mayorCapicuaP1 n = maximum [x*y \mid x <- [a,a-1..b],
                               y <- [a,a-1..b],
                               esCapicua (x*y)]
   where a = 10^n-1
         b = 10^{(n-1)}
-- (esCapicua x) se verifica si x es capicúa. Por ejemplo,
     esCapicua 353 == True
     esCapicua 357 == False
```

```
esCapicua :: Integer -> Bool
esCapicua n = xs == reverse xs
    where xs = show n
-- 2ª solución
-- ========
mayorCapicuaP2 :: Integer -> Integer
mayorCapicuaP2 n = maximum [x | y <- [a..b],
                                 z < - [y..b],
                                 let x = y * z,
                                 let s = show x,
                                 s == reverse s]
     where a = 10^{(n-1)}
           b = 10^n-1
-- Ejercicio 2. Sea (b(i) \mid i \ge 1) una sucesión infinita de números
-- enteros mayores que 1. Entonces todo entero x mayor que cero se puede
-- escribir de forma única como
      x = x(0) + x(1)b(1) + x(2)b(1)b(2) + ... + x(n)b(1)b(2)...b(n)
-- donde cada x(i) satisface la condición 0 \le x(i) < b(i+1). Se dice
-- que [x(n),x(n-1),...,x(2),x(1),x(0)] es la representación de x en la
-- base (b(i)). Por ejemplo, la representación de 377 en la base
-- (2*i | i >= 1) es [7,5,0,1] ya que
      377 = 1 + 0*2 + 5*2*4 + 7*2*4*6
-- y, además, 0 \le 1 < 2, 0 \le 0 < 4, 0 \le 5 < 6 y 0 \le 7 < 8.
-- Definir las funciones
      decimalAmultiple :: [Integer] -> Integer -> [Integer]
      multipleAdecimal :: [Integer] -> [Integer] -> Integer
-- tales que (decimalAmultiple bs x) es la representación del número x
   en la base bs y (multipleAdecimal bs cs) es el número decimal cuya
   representación en la base bs es cs. Por ejemplo,
      decimalAmultiple [2,4..] 377
                                                              [7,5,0,1]
      multipleAdecimal [2,4..] [7,5,0,1]
                                                              377
                                                          ==
                                                              [4,5,3,1]
      decimalAmultiple [2,5..] 377
                                                          ==
      multipleAdecimal [2,5..] [4,5,3,1]
                                                              377
      decimalAmultiple [2^n \mid n < [1..]] 2015
                                                              [1,15,3,3,1]
- -
      multipleAdecimal [2<sup>n</sup> | n <- [1..]] [1,15,3,3,1]
                                                              2015
      decimalAmultiple (repeat 10) 2015
                                                              [2,0,1,5]
      multipleAdecimal (repeat 10) [2,0,1,5]
                                                              2015
```

```
-- 1º definición de decimalAmultiple (por recursión)
decimalAmultiple :: [Integer] -> Integer -> [Integer]
decimalAmultiple bs n = reverse (aux bs n)
    where aux 0 = []
          aux (b:bs) n = r : aux bs q
              where (q,r) = quotRem n b
-- 2ª definición de decimalAmultiple (con acumulador)
decimalAmultiple2 :: [Integer] -> Integer -> [Integer]
decimalAmultiple2 bs n = aux bs n []
    where aux 0 xs = xs
          aux (b:bs) n xs = aux bs q (r:xs)
              where (q,r) = quotRem n b
-- 1º definición multipleAdecimal (por recursión)
multipleAdecimal :: [Integer] -> [Integer] -> Integer
multipleAdecimal xs ns = aux xs (reverse ns)
    where aux (x:xs) (n:ns) = n + x * (aux xs ns)
          aux _ _
                            = 0
-- 2ª definición multipleAdecimal (con scanl1)
multipleAdecimal2 :: [Integer] -> [Integer] -> Integer
multipleAdecimal2 bs xs =
    sum (zipWith (*) (reverse xs) (1 : scanl1 (*) bs))
-- Ejercicio 3. Las expresiones aritméticas pueden representarse usando
-- el siguiente tipo de datos
      data Expr = N Int | S Expr Expr | P Expr Expr
                  deriving (Eq, Show)
-- Por ejemplo, la expresión 2*(3+7) se representa por
      P (N 2) (S (N 3) (N 7))
-- Definir la función
      subexpresiones :: Expr -> [Expr]
-- tal que (subexpresiones e) es el conjunto de las subexpresiones de
-- e. Por ejemplo,
      ghci> subexpresiones (S (N 2) (N 3))
      [S (N 2) (N 3), N 2, N 3]
      ghci> subexpresiones (P (S (N 2) (N 2)) (N 7))
      [P (S (N 2) (N 2)) (N 7), S (N 2) (N 2), N 2, N 7]
```

```
data Expr = N Int | S Expr Expr | P Expr Expr
            deriving (Eq, Show)
subexpresiones :: Expr -> [Expr]
subexpresiones = nub . aux
    where aux (N x) = [N x]
          aux (S i d) = S i d : (subexpresiones i ++ subexpresiones d)
          aux (P i d) = P i d : (subexpresiones i ++ subexpresiones d)
-- Ejercicio 4. Definir la función
      diagonalesPrincipales :: Array (Int,Int) a -> [[a]]
-- tal que (diagonalesPrincipales p) es la lista de las diagonales
-- principales de p. Por ejemplo, para la matriz
      1 2 3 4
- -
      5 6 7 8
      9 10 11 12
-- la lista de sus diagonales principales es
      [[9], [5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4]]
-- En Haskell,
      ghci> diagonalesPrincipales (listArray ((1,1),(3,4)) [1..12])
      [[9],[5,10],[1,6,11],[2,7,12],[3,8],[4]]
diagonalesPrincipales :: Array (Int,Int) a -> [[a]]
diagonalesPrincipales p =
    [[p!ij1 | ij1 <- extension ij] | ij <- iniciales]</pre>
    where (,(m,n)) = bounds p
          iniciales = [(i,1) \mid i \leftarrow [m,m-1..2]] ++ [(1,j) \mid j \leftarrow [1..n]]
          extension (i,j) = [(i+k,j+k) | k < [0..min (m-i) (n-j)]]
-- Ejercicio 5. Dado un polinomio p no nulo con coeficientes enteros, se
-- llama contenido de p al máximo común divisor de sus coeficientes. Se
-- dirá que p es primitivo si su contenido es 1.
-- Definir la función
      primitivo :: Polinomio Int -> Bool
-- tal que (primitivo p) se verifica si el polinomio p es primitivo. Por
-- ejemplo,
      ghci> let listaApol xs = foldr((n,b) \rightarrow consPol n b) polCero xs
      ghci> primitivo (listaApol [(6,2),(4,3)])
```

6.5.5. Examen 5 (29 de abril de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (29 de abril de 2015)
import Data.Array
import Data.List
import Data. Numbers. Primes
import I1M.Grafo
import I1M.Monticulo
import I1M.PolOperaciones
import Test.QuickCheck
-- Ejercicio 1. Una propiedad del 2015 es que la suma de sus dígitos
-- coincide con el número de sus divisores; en efecto, la suma de sus
-- dígitos es 2+0+1+5=8 y tiene 8 divisores (1, 5, 13, 31, 65, 155, 403
-- y 2015).
-- Definir la sucesión
     especiales :: [Int]
-- formada por los números n tales que la suma de los dígitos de n
```

```
-- coincide con el número de divisores de n. Por ejemplo,
     take 12 especiales == [1,2,11,22,36,84,101,152,156,170,202,208]
-- Calcular la posición de 2015 en la sucesión de especiales.
especiales :: [Int]
especiales = [n \mid n < [1..], sum (digitos n) == length (divisores n)]
digitos :: Int -> [Int]
digitos n = [read [d] | d <- show n]
divisores :: Int -> [Int]
divisores n = n : [x \mid x < [1..n 'div' 2], n 'mod' x == 0]
-- El cálculo de número de años hasta el 2015 inclusive que han cumplido
-- la propiedad es
     ghci> length (takeWhile (<=2015) especiales)</pre>
     59
-- Ejercicio 2. Definir la función
     posicion :: Array Int Bool -> Maybe Int
-- tal que (posicion v) es la menor posición del vector de booleanos v
-- cuyo valor es falso y es Nothing si todos los valores son
-- verdaderos. Por ejemplo,
     posicion (listArray (0,4) [True,True,False,True,False]) == Just 2
     posicion (listArray (0,4) [i <= 2 | i <- [0..4]]) == Just 3
     posicion (listArray (0,4) [i <= 7 | i <- [0..4]]) == Nothing
__ ______
-- 1ª solución
posicion :: Array Int Bool -> Maybe Int
posicion v \mid p > n = Nothing
         | otherwise = Just p
   where p = (length . takeWhile id . elems) v
         (\_,n) = bounds v
-- 2ª solución:
posicion2 :: Array Int Bool -> Maybe Int
posicion2 v | null xs = Nothing
           | otherwise = Just (head xs)
   where xs = [i \mid i < -indices v, v!i]
```

```
-- Ejercicio 3. Definir la función
      todos :: Ord a => (a -> Bool) -> Monticulo a -> Bool
-- tal que (todos p m) se verifica si todos los elementos del montículo
  m cumple la propiedad p, Por ejemplo,
      todos (>2) (foldr inserta vacio [6,3,4,8]) == True
      todos even (foldr inserta vacio [6,3,4,8]) == False
todos :: Ord a => (a -> Bool) -> Monticulo a -> Bool
todos p m
    | esVacio m = True
    | otherwise = p (menor m) && todos p (resto m)
-- Ejercicio 4. El complementario del grafo G es un grafo G' del mismo
-- tipo que G (dirigido o no dirigido), con el mismo conjunto de nodos y
-- tal que dos nodos de G' son adyacentes si y sólo si no son adyacentes
-- en G. Los pesos de todas las aristas del complementario es igual a 0.
-- Definir la función
      complementario :: Grafo Int Int -> Grafo Int Int
  tal que (complementario g) es el complementario de g. Por ejemplo,
      ghci> complementario (creaGrafo D (1,3) [(1,3,0),(3,2,0),(2,2,0),(2,1,0)])
      G D (array (1,3) [(1,[(1,0),(2,0)]),(2,[(3,0)]),(3,[(1,0),(3,0)])])
      ghci> complementario (creaGrafo D (1,3) [(3,2,0),(2,2,0),(2,1,0)])
      G D (array (1,3) [(1,[(1,0),(2,0),(3,0)]),(2,[(3,0)]),(3,[(1,0),(3,0)])])
complementario :: Grafo Int Int -> Grafo Int Int
complementario g =
    creaGrafo d (1,n) [(x,y,0) | x <- xs, y <- xs, not (aristaEn g (x,y))]
    where d = if dirigido g then D else ND
          xs = nodos g
          n = length xs
-- Ejercicio 5. En 1772, Euler publicó que el polinomio n<sup>2</sup> + n + 41
-- genera 40 números primos para todos los valores de n entre 0 y
-- 39. Sin embargo, cuando n=40, 40^2+40+41 = 40(40+1)+41 es divisible
-- por 41.
- -
```

```
-- Definir la función
      generadoresMaximales :: Integer -> (Int,[(Integer,Integer)])
-- tal que (generadoresMaximales n) es el par (m,xs) donde
      + xs es la lista de pares (x,y) tales que n²+xn+y es uno de los
        polinomios que genera un número máximo de números primos
        consecutivos a partir de cero entre todos los polinomios de la
        forma n^2+an+b, con |a| \le n y |b| \le n y
      + m es dicho número máximo.
-- Por ejemplo,
      generadoresMaximales
                              4 == (3,[(-2,3),(-1,3),(3,3)])
      generadoresMaximales
                             6
                                == (5,[(-1,5),(5,5)])
      generadoresMaximales
                             50
                                 == (43, [(-5, 47)])
      generadoresMaximales 100 = (48, [(-15, 97)])
      generadoresMaximales 200 == (53, [(-25, 197)])
      generadoresMaximales 1650 == (80, [(-79, 1601)])
-- 1ª solución
  ========
generadoresMaximales1 :: Integer -> (Int,[(Integer,Integer)])
generadoresMaximales1 n =
    (m,[((a,b)) \mid a < [-n..n], b < [-n..n], nPrimos a b == m])
    where m = maximum  nPrimos a b | a <- [-n..n], b <- [-n..n]]
-- (nPrimos a b) es el número de primos consecutivos generados por el
-- polinomio n<sup>2</sup> + an + b a partir de n=0. Por ejemplo,
      nPrimos 1 41
      nPrimos (-79) 1601 == 80
nPrimos :: Integer -> Integer -> Int
nPrimos a b =
    length $ takeWhile isPrime [n*n+a*n+b | n <- [0..]]</pre>
-- 2ª solución (reduciendo las cotas)
-- Notas:
-- 1. Se tiene que b es primo, ya que para n=0, se tiene que 0^2+a*0+b=
      b es primo.
-- 2. Se tiene que 1+a+b es primo, ya que es el valor del polinomio para
generadoresMaximales2 :: Integer -> (Int,[(Integer,Integer)])
```

```
generadoresMaximales2 n = (m, map snd zs)
    where xs = [(nPrimos a b,(a,b)) | b <- takeWhile (<=n) primes,
                                      a <- [-n..n],
                                      isPrime(1+a+b)]
          ys = reverse (sort xs)
          m = fst (head ys)
          zs = takeWhile (\(k, ) -> k == m) ys
-- 3º solución (con la librería de polinomios)
  generadoresMaximales3 :: Integer -> (Int,[(Integer,Integer)])
generadoresMaximales3 n = (m, map snd zs)
    where xs = [(nPrimos2 \ a \ b,(a,b)) \ | \ b < - \ takeWhile (<=n) \ primes,
                                      a <- [-n..n],
                                      isPrime(1+a+b)]
          ys = reverse (sort xs)
          m = fst (head ys)
          zs = takeWhile (\(k, ) -> k == m) ys
-- (nPrimos2 a b) es el número de primos consecutivos generados por el
-- polinomio n² + an + b a partir de n=0. Por ejemplo,
      nPrimos2 1 41
                           == 40
      nPrimos2 (-79) 1601 == 80
nPrimos2 :: Integer -> Integer -> Int
nPrimos2 a b =
    length $ takeWhile isPrime [valor p n | n <- [0..]]</pre>
    where p = consPol 2 1 (consPol 1 a (consPol 0 b polCero))
-- Comparación de eficiencia
      ghci> generadoresMaximales1 200
      (53, [(-25, 197)])
      (3.06 secs, 720683776 bytes)
      ghci> generadoresMaximales1 300
      (56, [(-31, 281)])
      (6.65 secs, 1649274220 bytes)
      ghci> generadoresMaximales2 200
      (53, [(-25, 197)])
      (0.25 secs, 94783464 bytes)
      ghci> generadoresMaximales2 300
      (56, [(-31, 281)])
- -
      (0.51 secs, 194776708 bytes)
```

```
-- ghci> generadoresMaximales3 200
-- (53,[(-25,197)])
-- (0.20 secs, 105941096 bytes)
-- ghci> generadoresMaximales3 300
-- (56,[(-31,281)])
-- (0.35 secs, 194858344 bytes)
```

6.5.6. Examen 6 (15 de junio de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 6º examen de evaluación continua (15 de junio de 2015)
import Data.List
import qualified Data. Map as M
import I1M.BusquedaEnEspaciosDeEstados
import I1M.Grafo
-- Ejercicio 1. Una inversión de una lista xs es un par de elementos
-- (x,y) de xs tal que y está a la derecha de x en xs y además y es
-- menor que x. Por ejemplo, en la lista [1,7,4,9,5] hay tres
-- inversiones: (7,4), (7,5) y (9,5).
-- Definir la función
      inversiones :: Ord a \rightarrow [a] \rightarrow [(a,a)]
-- tal que (inversiones xs) es la lista de las inversiones de xs. Por
-- ejemplo,
      inversiones [1,7,4,9,5] = [(7,4),(7,5),(9,5)]
      inversiones "esto" == [('s', 'o'), ('t', 'o')]
inversiones :: Ord a \Rightarrow [a] \rightarrow [(a,a)]
inversiones [] = []
inversiones (x:xs) = [(x,y) | y <- xs, y < x] ++ inversiones xs
-- Ejercicio 2. Las expresiones aritméticas se pueden representar como
-- árboles con números en las hojas y operaciones en los nodos. Por
-- ejemplo, la expresión "9-2*4" se puede representar por el árbol
```

```
Definiendo el tipo de dato Arbol por
      data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
-- la representación del árbol anterior es
      N(-)(H9)(N(*)(H2)(H4))
-- Definir la función
      valor :: Arbol -> Int
-- tal que (valor a) es el valor de la expresión aritmética
-- correspondiente al árbol a. Por ejemplo,
      valor (N (-) (H 9) (N (*) (H 2) (H 4)))
                                                      1
      valor (N (+) (H 9) (N (*) (H 2) (H 4)))
                                                      17
      valor (N (+) (H 9) (N (div) (H 4) (H 2))) == 11
      valor (N (+) (H 9) (N (max) (H 4) (H 2))) == 13
data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
valor :: Arbol -> Int
valor (H x)
             = X
valor (N f i d) = f (valor i) (valor d)
-- Ejercicio 3. Definir la función
      agrupa :: 0rd c \Rightarrow (a \rightarrow c) \rightarrow [a] \rightarrow M.Map c [a]
-- tal que (agrupa f xs) es el diccionario obtenido agrupando los
  elementos de xs según sus valores mediante la función f. Por ejemplo,
      ghci> agrupa length ["hoy", "ayer", "ana", "cosa"]
      fromList [(3,["hoy","ana"]),(4,["ayer","cosa"])]
      ghci> agrupa head ["claro", "ayer", "ana", "cosa"]
      fromList [('a',["ayer","ana"]),('c',["claro","cosa"])]
      ghci> agrupa length (words "suerte en el examen")
      fromList [(2,["en","el"]),(6,["suerte","examen"])]
-- la definición (por recursión)
agrupa1 :: Ord c => (a -> c) -> [a] -> M.Map c [a]
agrupa1 [] = M.empty
agrupal f (x:xs) = M.insertWith (++) (f x) [x] (agrupal f xs)
```

```
-- 2ª definición (por plegado)
agrupa2 :: Ord c => (a -> c) -> [a] -> M.Map c [a]
agrupa2 f = foldr (\xspace x -> M.insertWith (++) (f x) [x]) M.empty
-- Ejercicio 4. Los primeros términos de la sucesión de Fibonacci son
     0, 1, 1, 2, 3, 5, 8, 13, 21, 34
-- Se observa que el 6º término de la sucesión (comenzando a contar en
-- 0) es el número 8.
-- Definir la función
     indiceFib :: Integer -> Maybe Integer
-- tal que (indiceFib x) es justo el número n si x es el n-ésimo
-- términos de la sucesión de Fibonacci o Nothing en el caso de que x no
-- pertenezca a la sucesión. Por ejemplo,
     indiceFib 8
                        == Just 6
     indiceFib 9
                        == Nothing
     indiceFib 21
                        == Just 8
     indiceFib 22
                       == Nothing
     indiceFib 9227465 == Just 35
     indiceFib 9227466 == Nothing
indiceFib :: Integer -> Maybe Integer
indiceFib x | y == x = Just n
           | otherwise = Nothing
   where (y,n) = head (dropWhile (\(z,m) -> z < x) fibsNumerados)
-- fibs es la lista de los términos de la sucesión de Fibonacci. Por
-- ejemplo,
     take 10 fibs == [0,1,1,2,3,5,8,13,21,34]
fibs :: [Integer]
fibs = 0:1:[x+y \mid (x,y) < -zip fibs (tail fibs)]
-- fibsNumerados es la lista de los términos de la sucesión de Fibonacci
-- juntos con sus posiciones. Por ejemplo,
     ghci> take 10 fibsNumerados
     [(0,0),(1,1),(1,2),(2,3),(3,4),(5,5),(8,6),(13,7),(21,8),(34,9)]
fibsNumerados :: [(Integer,Integer)]
fibsNumerados = zip fibs [0..]
```

```
-- Ejercicio 5. Definir las funciones
            :: [(Int,Int)] -> Grafo Int Int
      caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
-- tales que
-- + (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por
     ejemplo,
        ghci> grafo [(2,4),(4,5)]
        G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
-- + (caminos g a b) es la lista los caminos en el grafo g desde a hasta
     b sin pasar dos veces por el mismo nodo. Por ejemplo,
        ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
        [[1,3,5,7],[1,3,7]]
        ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
        [[2,5,3,7],[2,5,7]]
        ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
        [[1,3,5,2],[1,3,7,5,2]]
        ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) <- as]
    where ns = map fst as ++ map snd as
         m = minimum ns
          n = maximum ns
-- lª solución (mediante espacio de estados)
caminos1 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos1 q a b = buscaEE sucesores esFinal inicial
   where inicial
                           = [b]
          sucesores (x:xs) = [z:x:xs | z <- adyacentes g x
                                     , z 'notElem' (x:xs)]
          esFinal(x:xs) = x == a
-- 2ª solución (sin espacio de estados)
caminos2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos2 g a b = aux [[b]] where
    aux [] = []
    aux ((x:xs):yss)
        | x == a = (x:xs) : aux yss
        | otherwise = aux ([z:x:xs | z <- adyacentes g x
                                   , z 'notElem' (x:xs)]
                           ++ yss)
```

-- Tipos de ejercicios | E1 | E2 | E3 | E4 | E5 | |-----| R: Recursión | R | R | R | R | R | | C: Comprensión | C | | TDA: Tipo de datos algebraicos | | TDA | | OS: Orden superior | 0S | | D: Diccionarios l D | P: Plegado | P | M: Maybe | M | | LI: Listas infinitas | LI | | PD: Programación dinámica | PD | | E: Emparejamiento con zip | E | | G: Grafos | G | EE: Espacio de estados I EE I

|-----

6.5.7. Examen 7 (3 de julio de 2015)

minimales :: Eq a => [[a]] -> [[a]]

```
minimales xss =
    [xs | xs <- xss, null [ys | ys <- xss, subconjuntoPropio xs ys]]</pre>
-- (subconjuntoPropio xs ys) se verifica si xs es un subconjunto propio
-- de ys. Por ejemplo,
     subconjuntoPropio [1,3] [3,1,3]
                                       == False
      subconjuntoPropio [1,3,1] [3,1,2] ==
subconjuntoPropio :: Eq a => [a] -> [a] -> Bool
subconjuntoPropio xs ys = subconjuntoPropio' (nub xs) (nub ys)
   where
      subconjuntoPropio' xs [] = False
      subconjuntoPropio' [] _ys = True
      subconjuntoPropio' (x:xs) ys =
          x 'elem' ys && subconjuntoPropio xs (delete x ys)
-- Ejercicio 2. Un mínimo local de una lista es un elemento de la lista
-- que es menor que su predecesor y que su sucesor en la lista. Por
-- ejemplo, 1 es un mínimo local de [8,2,1,3,7,6,4,0,5] ya que es menor
-- que 2 (su predecesor) y que 3 (su sucesor).
-- Análogamente se definen los máximos locales. Por ejemplo, 7 es un
-- máximo local de [8,2,1,3,7,6,4,0,5] ya que es mayor que 7 (su
-- predecesor) y que 6 (su sucesor).
-- Los extremos locales están formados por los mínimos y máximos
-- locales. Por ejemplo, los extremos locales de [8,2,1,3,7,6,4,0,5] son
-- el 1, el 7 y el 0.
-- Definir la función
     extremos :: 0rd a => [a] -> [a]
-- tal que (extremos xs) es la lista de los extremos locales de la
-- lista xs. Por ejemplo,
     extremos [8,2,1,3,7,6,4,0,5] == [1,7,0]
     extremos [8,2,1,3,7,7,4,0,5] == [1,7,0]
-- 1º definición (por comprensión)
extremos1 :: Ord a => [a] -> [a]
extremos1 xs =
    [y \mid (x,y,z) < -zip3 xs (tail xs) (drop 2 xs), extremo x y z]
```

```
-- (extremo x y z) se verifica si y es un extremo local de [x,y,z]. Por
-- ejemplo,
      extremo 2 1 3 == True
      extremo 3 7 6 ==
                         True
      extremo 7 6 4 == False
      extremo 5 6 7 == False
      extremo 5 5 7 == False
extremo :: Ord a => a -> a -> Bool
extremo x y z = (y < x & y < z) | (y > x & y > z)
-- 2ª definición (por recursión)
extremos2 :: Ord a => [a] -> [a]
extremos2 (x:y:z:xs)
    \mid extremo x y z = y : extremos2 (y:z:xs)
                  = extremos2 (y:z:xs)
    | otherwise
extremos2 = []
-- Ejercicio 3. Los árboles, con un número variable de hijos, se pueden
-- representar mediante el siguiente tipo de dato
      data Arbol a = N a [Arbol a]
                     deriving Show
-- Por ejemplo, los árboles
        1
      /\
                       /|\setminus
      6
          3
                      / | \
                     5 4 7
          1
          5
                          2
-- se representan por
      ej1, ej2 :: Arbol Int
      ej1 = N 1 [N 6 [], N 3 [N 5 []]]
     ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]
-- Definir la función
      emparejaArboles :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c
-- tal que (emparejaArboles f al a2) es el árbol obtenido aplicando la
-- función f a los elementos de los árboles al y a2 que se encuentran en
-- la misma posición. Por ejemplo,
      ghci> emparejaArboles (+) (N 1 [N 2 [], N 3[]]) (N 1 [N 6 []])
     N 2 [N 8 []]
```

```
ghci> emparejaArboles (+) ej1 ej2
     N 4 [N 11 [],N 7 []]
- -
      ghci> emparejaArboles (+) ej1 ej1
      N 2 [N 12 [], N 6 [N 10 []]]
data Arbol a = N a [Arbol a]
               deriving (Show, Eq)
emparejaArboles :: (a -> b -> c) -> Arbol a -> Arbol b -> Arbol c
emparejaArboles f (N \times l1) (N y l2) =
    N (f x y) (zipWith (emparejaArboles f) l1 l2)
-- Ejercicio 4. Definir la lista
      antecesoresYsucesores :: [[Integer]]
-- cuyos elementos son
      [[1],[0,2],[-1,1,1,3],[-2,2,0,0,2,0,2,2,4],...]
-- donde cada una de las listas se obtiene de la anterior sustituyendo
-- cada elemento por su antecesor y su sucesor; es decir, el 1 por el 0
-- y el 2, el 0 por el -1 y el 1, el 2 por el 1 y el 3, etc. Por
-- ejemplo,
      ghci> take 4 antecesoresYsucesores
      [[1],[0,2],[-1,1,1,3],[-2,0,0,2,0,2,2,4]]
-- Comprobar con Quickcheck que la suma de los elementos de la lista
-- n-ésima de antecesores Ysucesores es 2^n.
-- Nota. Limitar la búsqueda a ejemplos pequeños usando
      quickCheckWith (stdArgs {maxSize=7}) prop suma
-- lª solución
antecesoresYsucesores :: [[Integer]]
antecesoresYsucesores =
    [1]: map (concatMap (x \rightarrow [x-1,x+1])) antecesores
-- 2ª solución
antecesoresYsucesores2 :: [[Integer]]
antecesoresYsucesores2 =
    iterate (concatMap (\xspace x - 1, x+1)) [1]
-- La propiedad es
```

```
prop_suma :: Int -> Property
prop suma n =
    n \ge 0 = \infty sum (antecesoresYsucesores2 !! n) == 2^n
-- La comprobación es
      ghci> quickCheckWith (stdArgs {maxSize=7}) prop suma
      +++ OK, passed 100 tests.
-- Ejercicio 5.1. Los grafos no dirigidos puede representarse mediante
-- matrices de adyacencia y también mediante listas de adyacencia. Por
-- ejemplo, el grafo
      1 ---- 2
      | \
         3
      | /
      4 ---- 5
-- se puede representar por la matriz de adyacencia
      |0\ 1\ 1\ 1\ 0|
      |1 0 0 0 1 |
      |1 0 0 1 0 |
      |1 0 1 0 1|
      |0 1 0 1 0 |
-- donde el elemento (i,j) es 1 si hay una arista entre los vértices i y
-- j y es 0 si no la hay. También se puede representar por la lista de
-- advacencia
      [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
-- donde las primeras componentes son los vértices y las segundas
-- la lista de los vértices conectados.
-- Definir la función
      matrizAlista :: Matrix Int -> [(Int,[Int])]
-- tal que (matrizAlista a) es la lista de adyacencia correspondiente a
-- la matriz de adyacencia a. Por ejemplo, definiendo la matriz anterior
  por
      ejMatriz :: Matrix Int
      ejMatriz = fromLists [[0,1,1,1,0],
                             [1,0,0,0,1],
                             [1,0,0,1,0],
                             [1,0,1,0,1],
                             [0,1,0,1,0]
-- se tiene que
     ghci> matrizAlista ejMatriz
```

```
[(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
ejMatriz :: Matrix Int
ejMatriz = fromLists [[0,1,1,1,0],
                      [1,0,0,0,1],
                      [1,0,0,1,0],
                      [1,0,1,0,1],
                      [0,1,0,1,0]
matrizAlista :: Matrix Int -> [(Int,[Int])]
matrizAlista a =
    [(i,[j \mid j \leftarrow [1..n], a!(i,j) == 1]) \mid i \leftarrow [1..n]]
    where n = nrows a
-- Ejercicio 5.2. Definir la función
      listaAmatriz :: [(Int,[Int])] -> Matrix Int
-- tal que (listaAmatriz ps) es la matriz de adyacencia correspondiente
   a la lista de adyacencia ps. Por ejemplo,
      ghci> listaAmatriz [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
      (01110)
      (10001)
      (10010)
      (10101)
      (01010)
     ghci> matrizAlista it
      [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
listaAmatriz :: [(Int,[Int])] -> Matrix Int
listaAmatriz ps = fromLists [fila n xs | ( ,xs) <- sort ps]</pre>
    where n = length ps
          fila n xs = [f i | i < [1..n]]
              where f i \mid i \text{ 'elem' } xs = 1
                        | otherwise = 0
```

6.5.8. Examen 8 (4 de septiembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de septiembre (4 de septiembre de 2015)
```

```
import Data.List
import Data.Array
import Test.QuickCheck
import I1M.PolOperaciones
-- Ejercicio 1. Definir la función
      numeroBloquesRepeticion :: Eq a => [a] -> Int
-- tal que (numeroBloquesRepeticion xs) es el número de bloques de
-- elementos consecutivos repetidos en 'xs'. Por ejemplo,
      numeroBloquesRepeticion [1,1,2,2,3,3] ==
      numeroBloquesRepeticion [1,1,1,2,3,3] == 2
      numeroBloquesRepeticion [1,1,2,3]
      numeroBloquesRepeticion [1,2,3]
                                             == 0
-- 1º definición
numeroBloquesRepeticion1 :: Eq a => [a] -> Int
numeroBloquesRepeticion1 xs =
    length (filter (\ys -> length ys > 1) (group xs))
-- 2ª definición (por recursión):
numeroBloquesRepeticion2 :: Eq a => [a] -> Int
numeroBloquesRepeticion2 (x:y:zs)
              = 1 + numeroBloquesRepeticion2 (dropWhile (==x) zs)
    | otherwise = numeroBloquesRepeticion2 (y:zs)
numeroBloquesRepeticion2 = 0
-- Ejercicio 2.1. Los grafos se pueden representar mediante una lista de
-- pares donde las primeras componentes son los vértices y las segundas
-- la lista de los vértices conectados. Por ejemplo, el grafo
      1 ---- 2
      | \
      | 3
      | /
     4 ---- 5
-- se representa por
      [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3,5]),(5,[2,4])]
-- En Haskell se puede definir el tipo de los grafos por
     type Grafo a = [(a,[a])]
-- y el ejemplo anterior se representa por
```

```
ejGrafo :: Grafo Int
     ejGrafo = [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3]),(5,[2,4])]
- -
-- Definir la función
     aristas :: Ord a => Grafo a -> [(a,a)]
-- tal que (aristas g) es la lista de aristas del grafo g. Por ejemplo,
     aristas ejGrafo == [(1,2),(1,3),(1,4),(2,5),(3,4)]
type Grafo a = [(a,[a])]
ejGrafo :: Grafo Int
ejGrafo = [(1,[2,3,4]),(2,[1,5]),(3,[1,4]),(4,[1,3]),(5,[2,4])]
aristas :: Ord a => Grafo a -> [(a,a)]
aristas g = [(x,y) | (x,ys) <- g, y <- ys, x < y]
-- Ejercicio 2.2. El grafo línea de un grafo G es el grafo L(G) tal que
-- + los vértices de L(G) son las aristas de G y
-- + dos vértices de L(G) son adyacentes si y sólo si sus aristas
    correspondientes tienen un extremo común en G.
-- Definir la función
     grafoLinea :: Ord a => Grafo a -> Grafo (a,a)
-- tal que (grafoLinea g) es el grafo línea de g. Por ejemplo
     ghci> grafoLinea ejGrafo
      [((1,2),[(1,3),(1,4),(2,5)]),
      ((1,3),[(1,2),(1,4),(3,4)]),
      ((1,4),[(1,2),(1,3),(3,4)]),
      ((2,5),[(1,2)]),
      ((3,4),[(1,3),(1,4)])
   ______
grafoLinea :: Ord a => Grafo a -> Grafo (a,a)
grafoLinea g =
   [(a1,[a2 \mid a2 \leftarrow as, conExtremoComun a1 a2, a1 /= a2]) \mid a1 \leftarrow as]
   where as = aristas g
conExtremoComun :: Eq a => (a,a) -> (a,a) -> Bool
conExtremoComun (x1,y1) (x2,y2) =
   not (null ([x1,y1] 'intersect' [x2,y2]))
```

```
-- Ejercicio 3.1. La sucesión de polinomios de Fibonacci se define por
     p(0) = 0
     p(1) = 1
     p(n) = x*p(n-1) + p(n-2)
-- Los primeros términos de la sucesión son
     p(2) = x
     p(3) = x^2 + 1
     p(4) = x^3 + 2*x
     p(5) = x^4 + 3*x^2 + 1
-- Definir la lista
     sucPolFib :: [Polinomio Integer]
-- tal que sus elementos son los polinomios de Fibonacci. Por ejemplo,
     ghci> take 6 sucPolFib
     [0,1,1*x,x^2 + 1,x^3 + 2*x,x^4 + 3*x^2 + 1]
-- 1ª solución
-- ========
sucPolFib :: [Polinomio Integer]
sucPolFib = [polFibR n | n <- [0..]]
polFibR :: Integer -> Polinomio Integer
polFibR 0 = polCero
polFibR 1 = polUnidad
polFibR n =
   sumaPol (multPol (consPol 1 1 polCero) (polFibR (n-1)))
          (polFibR (n-2))
-- 2º definición (dinámica)
- - ==============
sucPolFib2 :: [Polinomio Integer]
sucPolFib2 =
   polCero : polUnidad : zipWith f (tail sucPolFib2) sucPolFib2
   where f p = sumaPol (multPol (consPol 1 1 polCero) p)
-- Ejercicio 3.2. Comprobar con QuickCheck que el valor del n-ésimo
-- término de sucPolFib para x=1 es el n-ésimo término de la sucesión de
-- Fibonacci 0, 1, 1, 2, 3, 5, 8, ...
```

```
-- Nota. Limitar la búsqueda a ejemplos pequeños usando
     quickCheckWith (stdArgs {maxSize=5}) prop polFib
-- La propiedad es
prop polFib :: Integer -> Property
prop polFib n =
   n >= 0 ==> valor (polFib n) 1 == fib n
   where polFib n = sucPolFib2 'genericIndex' n
                 = fibs 'genericIndex' n
         fib n
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
-- La comprobación es
     ghci> quickCheckWith (stdArgs {maxSize=5}) prop polFib
     +++ OK, passed 100 tests.
  ______
-- Ejercicio 4. Los números triangulares se forman como sique
     1
           3
                  6
-- La sucesión de los números triangulares se obtiene sumando los
  números naturales. Así, los 5 primeros números triangulares son
      1 = 1
      3 = 1+2
      6 = 1+2+3
     10 = 1+2+3+4
     15 = 1+2+3+4+5
-- Definir la función
     descomposicionesTriangulares :: Int -> [(Int, Int, Int)]
-- tal que (descomposicionesTriangulares n) es la lista de las
-- ternas correspondientes a las descomposiciones de n en tres sumandos,
-- como máximo, formados por números triangulares. Por ejemplo,
     ghci> descomposicionesTriangulares 6
     [(0,0,6),(0,3,3)]
     ghci> descomposicionesTriangulares 26
```

```
[(1,10,15),(6,10,10)]
      ghci> descomposicionesTriangulares 96
- -
      [(3,15,78),(6,45,45),(15,15,66),(15,36,45)]
descomposicionesTriangulares :: Int -> [(Int, Int, Int)]
descomposicionesTriangulares n =
    [(x,y,n-x-y) \mid x < -xs,
                   y <- dropWhile (<x) xs,
                   n-x-y 'elem' dropWhile (<y) xs]</pre>
    where xs = takeWhile (<=n) triangulares
-- triangulares es la lista de los números triangulares. Por ejemplo,
      take 10 triangulares == [0,1,3,6,10,15,21,28,36,45]
triangulares :: [Int]
triangulares = scanl(+) 0 [1..]
-- Ejercicio 5. En este problema se consideran matrices cuyos elementos
-- son 0 y 1. Los valores 1 aparecen en forma de islas rectangulares
-- separadas por 0 de forma que como máximo las islas son diagonalmente
  adyacentes. Por ejemplo,
      ej1, ej2 :: Array (Int, Int) Int
      ej1 = listArray ((1,1),(6,3))
                      [0,0,0,
                       1,1,0,
                       1,1,0,
                       0,0,1,
                       0,0,1,
                       1,1,0]
      ej2 = listArray ((1,1),(6,6))
                      [1,0,0,0,0,0,
                       1,0,1,1,1,1,
                       0,0,0,0,0,0,
                       1,1,1,0,1,1,
                       1,1,1,0,1,1,
                       0,0,0,0,1,1
-- Definir la función
      numeroDeIslas :: Array (Int,Int) Int -> Int
-- tal que (numeroDeIslas p) es el número de islas de la matriz p. Por
-- ejemplo,
      numeroDeIslas ej1 == 3
```

```
numeroDeIslas ej2 == 4
type Matriz = Array (Int,Int) Int
ej1, ej2 :: Array (Int,Int) Int
ej1 = listArray ((1,1),(6,3))
                [0,0,0,
                 1,1,0,
                 1,1,0,
                 0,0,1,
                 0,0,1,
                 1,1,0]
ej2 = listArray ((1,1),(6,6))
                [1,0,0,0,0,0,0,
                 1,0,1,1,1,1,
                 0,0,0,0,0,0,
                 1,1,1,0,1,1,
                 1,1,1,0,1,1,
                 0,0,0,0,1,1
numeroDeIslas :: Array (Int,Int) Int -> Int
numeroDeIslas p =
    length [(i,j) | (i,j) < - indices p,
                     verticeSuperiorIzquierdo p (i,j)]
-- (verticeSuperiorIzquierdo p (i,j)) se verifica si (i,j) es el
-- vértice superior izquierdo de algunas de las islas de la matriz p,
-- Por ejemplo,
      ghci> [(i,j) | (i,j) <- indices ejl, verticeSuperiorIzquierdo ejl (i,j)]</pre>
      [(2,1),(4,3),(6,1)]
      ghci> [(i,j) | (i,j) <- indices ej2, verticeSuperiorIzquierdo ej2 (i,j)]</pre>
      [(1,1),(2,3),(4,1),(4,5)]
verticeSuperiorIzquierdo :: Matriz -> (Int,Int) -> Bool
verticeSuperiorIzquierdo p (i,j) =
    enLadoSuperior p (i,j) && enLadoIzquierdo p (i,j)
-- (enLadoSuperior p (i,j)) se verifica si (i,j) está en el lado
   superior de algunas de las islas de la matriz p, Por ejemplo,
      ghci> [(i,j) | (i,j) <- indices ej1, enLadoSuperior ej1 (i,j)]</pre>
      [(2,1),(2,2),(4,3),(6,1),(6,2)]
      ghci> [(i,j) | (i,j) <- indices ej2, enLadoSuperior ej2 (i,j)]</pre>
      [(1,1),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,5),(4,6)]
```

```
enLadoSuperior :: Matriz -> (Int,Int) -> Bool
enLadoSuperior p(1,j) = p!(1,j) == 1
enLadoSuperior p (i,j) = p!(i,j) == 1 \& p!(i-1,j) == 0
-- (enLadoIzquierdo p (i,j)) se verifica si (i,j) está en el lado
-- izquierdo de algunas de las islas de la matriz p, Por ejemplo,
      ghci> [(i,j) | (i,j) <- indices ej1, enLadoIzquierdo ej1 (i,j)]</pre>
      [(2,1),(3,1),(4,3),(5,3),(6,1)]
      ghci> [(i,j) | (i,j) <- indices ej2, enLadoIzquierdo ej2 (i,j)]</pre>
      [(1,1),(2,1),(2,3),(4,1),(4,5),(5,1),(5,5),(6,5)]
enLadoIzquierdo :: Matriz -> (Int,Int) -> Bool
enLadoIzquierdo p (i,1) = p!(i,1) == 1
enLadoIzquierdo p (i,j) = p!(i,j) == 1 \& p!(i,j-1) == 0
-- 2ª solución
-- ========
numeroDeIslas2 :: Array (Int,Int) Int -> Int
numeroDeIslas2 p =
    length [(i,j) | (i,j) < - indices p,
                    p!(i,j) == 1,
                    i == 1 \mid \mid p!(i-1,j) == 0,
                    j == 1 \mid \mid p!(i,j-1) == 0
```

6.5.9. Examen 9 (4 de diciembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 3º convocatoria (4 de diciembre de 2015)
-- Puntuación: Cada uno de los 5 ejercicios vale 2 puntos.
-- § Librerías auxiliares
-- import Data.List
import Data.Matrix
import Data.Numbers.Primes
import I1M.BusquedaEnEspaciosDeEstados
import I1M.Grafo
```

import I1M.PolOperaciones __ _______ -- Ejercicio 1. Un número tiene factorización capicúa si puede escribir -- como un producto de números primos tal que la concatenación de sus -- dígitos forma un número capicúa. Por ejemplo, el 2015 tiene -- factorización capicúa ya que 2015 = 13*5*31, los factores son primos -- y su concatenación es 13531 que es capicúa. -- Definir la sucesión conFactorizacionesCapicuas :: [Int] -- formada por los números que tienen factorización capicúa. Por -- ejemplo, ghci> take 20 conFactorizacionesCapicuas [1,2,3,4,5,7,8,9,11,12,16,18,20,25,27,28,32,36,39,44] -- Usando conFactorizacionesCapicuas calcular cuál será el siguiente año -- con factorización capicúa. -- lª definición -- ========== conFactorizacionesCapicuas :: [Int] conFactorizacionesCapicuas = [n | n <- [1..], not (null (factorizacionesCapicua n))]</pre> -- (factorizacionesCapicua n) es la lista de las factorizaciones -- capicúas de n. Por ejemplo, factorizacionesCapicua 2015 == [[13,5,31],[31,5,13]]factorizacionesCapicua :: Int -> [[Int]] factorizacionesCapicua n = [xs | xs <- permutations (factorizacion n),</pre> esCapicuaConcatenacion xs] -- (factorizacion n) es la lista de todos los factores primos de n; es -- decir, es una lista de números primos cuyo producto es n. Por ejemplo, factorizacion 300 = [2,2,3,5,5]factorizacion :: Int -> [Int] factorizacion n | n == 1 = []

| otherwise = x : factorizacion (div n x)

where x = menorFactor n

```
-- (menorFactor n) es el menor factor primo de n. Por ejemplo,
      menorFactor 15 == 3
      menorFactor 16 == 2
      menorFactor 17 == 17
menorFactor :: Int -> Int
menorFactor n = head [x | x < [2..], rem n x == 0]
-- (esCapicuaConcatenación xs) se verifica si la concatenación de los
-- números de xs es capicúa. Por ejemplo,
      esCapicuaConcatenacion [13,5,31]
                                             True
      esCapicuaConcatenacion [135,31]
                                         == True
      esCapicuaConcatenacion [135,21]
                                         == False
esCapicuaConcatenacion :: [Int] -> Bool
esCapicuaConcatenacion xs = ys == reverse ys
    where ys = concatMap show xs
-- 2ª definición
- - ==========
conFactorizacionesCapicuas2 :: [Int]
conFactorizacionesCapicuas2 =
    [n | n <- [1..], not (null (factorizacionesCapicua2 n))]</pre>
-- (factorizacionesCapicua2 n) es la lista de las factorizaciones
-- capicúas de n. Por ejemplo,
      factorizacionesCapicua2 2015 == [[13,5,31],[31,5,13]]
factorizacionesCapicua2 :: Int -> [[Int]]
factorizacionesCapicua2 n =
    [xs | xs <- permutations (primeFactors n),</pre>
          esCapicuaConcatenacion xs]
-- 3ª definición
  =========
conFactorizacionesCapicuas3 :: [Int]
conFactorizacionesCapicuas3 =
    [n | n <- [1..], conFactorizacionCapicua n]</pre>
-- (conFactorizacionCapicua n) se verifica si n tiene factorización
-- capicúa. Por ejemplo,
      factorizacionesCapicua2 2015 == [[13,5,31],[31,5,13]]
conFactorizacionCapicua :: Int -> Bool
conFactorizacionCapicua n =
```

```
any listaCapicua (permutations (primeFactors n))
listaCapicua :: Show a => [a] -> Bool
listaCapicua xs = ys == reverse ys
    where ys = concatMap show xs
-- El cálculo es
      ghci> head (dropWhile (<=2015) conFactorizacionesCapicuas)</pre>
      2023
-- Ejercicio 2. Los árboles binarios se pueden representar mediante el
-- tipo Arbol definido por
      data Arbol a = H a
                   | N a (Arbol a) (Arbol a)
                   deriving Show
-- Por ejemplo, el árbol
           "C"
              "Δ"
       "B"
     "A" "B" "B" "C"
-- se puede definir por
      eil :: Arbol String
      ei1 = N "C" (N "B" (H "A") (H "B")) (N "A" (H "B") (H "C"))
-- Definir la función
      renombraArbol :: Arbol t -> Arbol Int
-- tal que (renombraArbol a) es el árbol obtenido sustituyendo el valor
-- de los nodos y hojas por números tales que tengan el mismo valor si y
-- sólo si coincide su contenido. Por ejemplo,
      ghci> renombraArbol ej1
      N 2 (N 1 (H 0) (H 1)) (N 0 (H 1) (H 2))
-- Gráficamente,
            2
          1
```

```
-- Nótese que los elementos del árbol pueden ser de cualquier tipo. Por
-- ejemplo,
     ghci> renombraArbol (N 9 (N 4 (H 8) (H 4)) (N 8 (H 4) (H 9)))
     N 2 (N 0 (H 1) (H 0)) (N 1 (H 0) (H 2))
     ghci> renombraArbol (N True (N False (H True) (H False)) (H True))
     N 1 (N 0 (H 1) (H 0)) (H 1)
     ghci> renombraArbol (N False (N False (H True) (H False)) (H True))
     N 0 (N 0 (H 1) (H 0)) (H 1)
     ghci> renombraArbol (H False)
     H 0
     ghci> renombraArbol (H True)
     H 0
        _____
data Arbola = Ha
            | N a (Arbol a) (Arbol a)
            deriving (Show, Eq)
ej1 :: Arbol String
eil = N "C" (N "B" (H "A") (H "B")) (N "A" (H "B") (H "C"))
renombraArbol :: Ord t => Arbol t -> Arbol Int
renombraArbol a = aux a
   where ys
                      = valores a
         aux (H x) = H (posicion x ys)
         aux (N x i d) = N (posicion x ys) (aux i) (aux d)
-- (valores a) es la lista de los valores en los nodos y las hojas del
-- árbol a. Por ejemplo,
     valores ej1 == ["A","B","C"]
valores :: Ord a => Arbol a -> [a]
valores a = sort (nub (aux a))
   where aux (H x) = [x]
         aux (N x i d) = x : (aux i ++ aux d)
-- (posicion x ys) es la posición de x en ys. Por ejemplo.
     posicion 7 [5,3,7,8] == 2
posicion :: Eq a => a -> [a] -> Int
posicion x ys = head [n \mid (y,n) < -zip ys [0..], y == x]
__ _______
-- Ejercicio 3. El buscaminas es un juego cuyo objetivo es despejar un
-- campo de minas sin detonar ninguna.
```

```
-- El campo de minas se representa mediante un cuadrado con NxN
-- casillas. Algunas casillas tienen un número, este número indica las
-- minas que hay en todas las casillas vecinas. Cada casilla tiene como
-- máximo 8 vecinas. Por ejemplo, el campo 4x4 de la izquierda
-- contiene dos minas, cada una representada por el número 9, y a la
-- derecha se muestra el campo obtenido anotando las minas vecinas de
-- cada casilla
     9 0 0 0
                   9 1 0 0
     0 0 0 0
                   2 2 1 0
     0 9 0 0
                   1910
     0 0 0 0
                   1 1 1 0
-- de la misma forma, la anotación del siguiente a la izquierda es el de
-- la derecha
     9 9 0 0 0
                   9 9 1 0 0
     0 0 0 0
                   3 3 2 0 0
     0 9 0 0 0
                   1 9 1 0 0
-- Utilizando la librería Data.Matrix, los campos de minas se
   representan mediante matrices:
     type Campo = Matrix Int
  Por ejemplo, los anteriores campos de la izquierda se definen por
     ejCampo1, ejCampo2 :: Campo
     ejCampol = fromLists [[9,0,0,0],
                            [0,0,0,0],
                            [0,9,0,0],
                            [0,0,0,0]
     ejCampo2 = fromLists [[9,9,0,0,0],
                            [0,0,0,0,0],
                            [0,9,0,0,0]
-- Definir la función
      buscaminas :: Campo -> Campo
-- tal que (buscaminas c) es el campo obtenido anotando las minas
-- vecinas de cada casilla. Por ejemplo,
     ghci> buscaminas ejCampol
      (9100)
      (2210)
      (1910)
      (1110)
     ghci> buscaminas ejCampo2
     (99100)
- -
```

```
(33200)
      (19100)
type Campo
            = Matrix Int
type Casilla = (Int,Int)
ejCampo1, ejCampo2 :: Campo
ejCampol = fromLists [[9,0,0,0],
                      [0,0,0,0],
                      [0,9,0,0],
                      [0,0,0,0]
ejCampo2 = fromLists [[9,9,0,0,0],
                      [0,0,0,0,0],
                      [0,9,0,0,0]
-- lª solución
- - =========
buscaminas1 :: Campo -> Campo
buscaminas1 c = matrix m n ((i,j) \rightarrow minas c (i,j))
    where m = nrows c
          n = ncols c
-- (minas c (i,j)) es el número de minas en las casillas vecinas de la
-- (i,j) en el campo de mina c y es 9 si en (i,j) hay una mina. Por
-- ejemplo,
     minas ejCampo (1,1) ==
     minas ejCampo (1,2)
     minas ejCampo (1,3) == 0
     minas ejCampo (2,1) == 2
minas :: Campo -> Casilla -> Int
minas c (i,j)
    | c!(i,j) == 9 = 9
    | otherwise
                  = length (filter (==9)
                            [c!(x,y) | (x,y) < - vecinas m n (i,j)])
                     where m = nrows c
                           n = ncols c
-- (vecinas m n (i,j)) es la lista de las casillas vecinas de la (i,j) en
-- un campo de dimensiones mxn. Por ejemplo,
      vecinas 4 (1,1) == [(1,2),(2,1),(2,2)]
     vecinas 4 (1,2) = [(1,1),(1,3),(2,1),(2,2),(2,3)]
```

```
vecinas 4 (2,3) = [(1,2),(1,3),(1,4),(2,2),(2,4),(3,2),(3,3),(3,4)]
vecinas :: Int -> Int -> Casilla -> [Casilla]
vecinas m n (i,j) = [(a,b) \mid a < - [max 1 (i-1)..min m (i+1)],
                             b < - [max 1 (j-1)..min n (j+1)],
                             (a,b) /= (i,j)
-- 2ª solución
-- ========
buscaminas2 :: Campo -> Campo
buscaminas2 c = matrix m n (\((i,j) -> minas (i,j))
    where m = nrows c
          n = ncols c
          minas :: Casilla -> Int
          minas (i,j)
              | c!(i,j) == 9 = 9
              | otherwise
                  length (filter (==9) [c!(x,y) | (x,y) < - vecinas (i,j)])
          vecinas :: Casilla -> [Casilla]
          vecinas (i,j) = [(a,b) \mid a < -[max 1 (i-1)..min m (i+1)],
                                    b \leftarrow [max 1 (j-1)..min n (j+1)],
                                    (a,b) /= (i,j)
-- Ejercicio 4. La codificación de Fibonacci de un número n es una
-- cadena d = d(0)d(1)...d(k-1)d(k) de ceros y unos tal que
      n = d(0)*F(2) + d(1)*F(3) + ... + d(k-1)*F(k+1)
      d(k-1) = d(k) = 1
-- donde F(i) es el i-ésimo término de la sucesión de Fibonacci
      0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
-- Por ejemplo, la codificación de Fibonacci de 4 es "1011" ya que los
-- dos últimos elementos son iguales a 1 y
      1*F(2) + 0*F(3) + 1*F(4) = 1*1 + 0*2 + 1*3 = 4
-- La codificación de Fibonacci de los primeros números se muestra en la
-- siquiente tabla
       1 = 1
                  = F(2)
                                   ≡
                                            11
       2 = 2
                  = F(3)
                                           011
                                   ≡
       3 = 3
                  = F(4)
                                          0011
                                   ≡
       4 = 1+3
                  = F(2)+F(4)
                                          1011
                                   ≡
       5 = 5
                  = F(5)
                                         00011
       6 = 1+5
                  = F(2)+F(5)
                                   ≡
                                         10011
       7 = 2+5
                  = F(3)+F(5)
                                         01011
                                   ≡
       8 = 8
                  = F(6)
                                       000011
                                   ≡
```

```
9 = 1+8
- -
                  = F(2)+F(6)
                                       100011
      10 = 2+8
                  = F(3)+F(6)
                                       010011
                                   ≡
- -
                  = F(4)+F(6)
      11 = 3+8
                                       001011
                                   ≡
      12 = 1+3+8 = F(2)+F(4)+F(6) \equiv 101011
      13 = 13
                 = F(7)
                                  \equiv 0000011
      14 = 1+13 = F(2)+F(7)
                                   = 1000011
-- Definir la función
      codigoFib :: Integer -> String
-- tal que (codigoFib n) es la codificación de Fibonacci del número
-- n. Por ejemplo,
      ghci> codigoFib 65
      "0100100011"
      ghci> [codigoFib n | n <- [1..7]]
      ["11","011","0011","1011","00011","10011","01011"]
codigoFib :: Integer -> String
codigoFib = (concatMap show) . codificaFibLista
-- (codificaFibLista n) es la lista correspondiente a la codificación de
-- Fibonacci del número n. Por ejemplo,
      ghci> codificaFibLista 65
      [0,1,0,0,1,0,0,0,1,1]
      ghci> [codificaFibLista n | n <- [1..7]]</pre>
      [[1,1],[0,1,1],[0,0,1,1],[1,0,1,1],[0,0,0,1,1],[1,0,0,1,1],[0,1,0,1,1]]
codificaFibLista :: Integer -> [Integer]
codificaFibLista n = map f [2..head xs] ++ [1]
    where xs = map fst (descomposicion n)
          fi \mid elem i xs = 1
              | otherwise = 0
-- (descomposicion n) es la lista de pares (i,f) tales que f es el
-- i-ésimo número de Fibonacci y las segundas componentes es una
-- sucesión decreciente de números de Fibonacci cuya suma es n. Por
-- ejemplo,
      descomposicion 65 = [(10,55),(6,8),(3,2)]
      descomposicion 66 = [(10,55),(6,8),(4,3)]
descomposicion :: Integer -> [(Integer, Integer)]
descomposicion 0 = []
descomposicion 1 = [(2,1)]
descomposicion n = (i,x): descomposicion (n-x)
    where (i,x) = fibAnterior n
```

```
-- (fibAnterior n) es el mayor número de Fibonacci menor o igual que
-- n. Por ejemplo,
      fibAnterior 33 == (8,21)
      fibAnterior 34 == (9,34)
fibAnterior :: Integer -> (Integer, Integer)
fibAnterior n = last (takeWhile p fibsConIndice)
    where p(i,x) = x <= n
-- fibsConIndice es la sucesión de los números de Fibonacci junto con
-- sus índices. Por ejemplo,
      ghci> take 10 fibsConIndice
      [(0,0),(1,1),(2,1),(3,2),(4,3),(5,5),(6,8),(7,13),(8,21),(9,34)]
fibsConIndice :: [(Integer, Integer)]
fibsConIndice = zip [0..] fibs
-- fibs es la sucesión de Fibonacci. Por ejemplo,
     take 10 fibs == [0,1,1,2,3,5,8,13,21,34]
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
-- Ejercicio 5. Definir las funciones
      grafo :: [(Int,Int)] -> Grafo Int Int
      caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
-- tales que
  + (grafo as) es el grafo no dirigido definido cuyas aristas son as. Por
     ejemplo,
        ghci> grafo [(2,4),(4,5)]
        G ND (array (2,5) [(2,[(4,0)]),(3,[]),(4,[(2,0),(5,0)]),(5,[(4,0)])])
  + (caminos g a b) es la lista los caminos en el grafo g desde a hasta
     b sin pasar dos veces por el mismo nodo. Por ejemplo,
        ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 7)
        [[1,3,5,7],[1,3,7]]
        ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 2 7)
        [[2,5,3,7],[2,5,7]]
        ghci> sort (caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 2)
        [[1,3,5,2],[1,3,7,5,2]]
        ghci> caminos (grafo [(1,3),(2,5),(3,5),(3,7),(5,7)]) 1 4
        ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
        109601
```

```
grafo :: [(Int,Int)] -> Grafo Int Int
grafo as = creaGrafo ND (m,n) [(x,y,0) | (x,y) <- as]
   where ns = map fst as ++ map snd as
         m = minimum ns
         n = maximum ns
-- 1ª solución
-- ========
caminos :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos g a b = aux [[b]] where
   aux [] = []
   aux ((x:xs):yss)
       | x == a = (x:xs) : aux yss
       | otherwise = aux ([z:x:xs | z <- adyacentes g x
                                 , z 'notElem' (x:xs)]
                          ++ yss)
-- 2º solución (mediante espacio de estados)
-- -----
caminos2 :: Grafo Int Int -> Int -> Int -> [[Int]]
caminos2 g a b = buscaEE sucesores esFinal inicial
   where inicial
                          = [b]
         sucesores (x:xs) = [z:x:xs | z < - adyacentes g x]
                                   , z 'notElem' (x:xs)]
         esFinal(x:xs) = x == a
-- Comparación de eficiencia
- - ===============
     ghci> length (caminos (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
     109601
     (3.57 secs, 500533816 bytes)
     ghci> length (caminos2 (grafo [(i,j) | i <- [1..10], j <- [i..10]]) 1 10)
     109601
- -
     (3.53 secs, 470814096 bytes)
```

7

Exámenes del curso 2015-16

7.1. Exámenes del grupo 1 (María J. Hidalgo)

7.1.1. Examen 1 (3 de Noviembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (3 de noviembre de 2015)
 ______
import Test.QuickCheck
import Data.List
-- Ejercicio 1.1. La suma de la serie
     1/3 + 1/15 + 1/35 + 1/63 + \ldots + 1/(4*x^2-1) + \ldots
-- es 1/2.
-- Definir la función
     sumaS2:: Double -> Double
-- tal que (sumaS2 n) es la aproximación de 1/2 obtenida mediante n
-- términos de la serie. Por ejemplo,
     sumaS2\ 10 == 0.4761904761904761
    sumaS2\ 100 == 0.49751243781094495
sumaS2 :: Double -> Double
sumaS2 n = sum [1/(4*x^2-1) | x <- [1..n]]
-- Ejercicio 1.2. Comprobar con QuickCheck que la sumas finitas de la
```

```
-- serie siempre son menores que 1/2.
-- La propiedad es
propSumaS2 :: Double -> Bool
propSumaS2 n = sumaS2 n < 0.5
-- La comprobación es
     ghci> quickCheck propSumaS2
     +++ OK, passed 100 tests.
-- Ejercicio 1.3. Definir la función
     menorNError :: Double -> Double
-- tal que (menorNError x) es el menor número de términos de la serie
-- anterior necesarios para obtener 1/2 con un error menor que x. Por
-- ejemplo,
     menorNError 0.01 == 25.0
     menorNError 0.001 == 250.0
menorNError :: Double -> Double
menorNError x =
   head [n \mid n < [1..], 0.5 - sumaS2 n < x]
-- -----
-- Ejercicio 2.1. Decimos que un número n es "muy divisible por 3" si es
-- divisible por 3 y sigue siendo divisible por 3 si vamos quitando
-- dígitos por la derecha. Por ejemplo, 96060 es muy divisible por 3
-- porque 96060, 9606, 960, 96 y 9 son todos divisibles por 3.
-- Definir la función
     muyDivPor3 :: Integer -> Bool
-- tal que (muyDivPor3 n) se verifica si n es muy divisible por 3. Por
-- ejemplo,
     muyDivPor3 96060 == True
     muyDivPor3 90616 == False
muyDivPor3 :: Integer -> Bool
muyDivPor3 n
    | n < 10
               = n \text{ 'rem' } 3 == 0
    | otherwise = n 'rem' 3 == 0 && muyDivPor3 (n 'div' 10)
```

```
-- Ejercicio 2.2. Definir la función
     numeroMuyDivPor3Cifras :: Integer -> Integer
-- tal que (numeroMuyDivPor3CifrasC k) es la cantidad de números de k
-- cifras muy divisibles por 3. Por ejemplo,
     numeroMuyDivPor3Cifras 5 == 768
     numeroMuyDivPor3Cifras 7 == 12288
     numeroMuyDivPor3Cifras 9 == 196608
-- lª definición
numeroMuyDivPor3Cifras :: Integer -> Integer
numeroMuyDivPor3Cifras k =
   genericLength [x \mid x \leftarrow [10^{(k-1)}..10^{k-1}], muyDivPor3 x]
-- 2ª definición
numeroMuyDivPor3Cifras2 :: Integer -> Integer
numeroMuyDivPor3Cifras2 k =
   genericLength [x \mid x < [n,n+3...10^k-1], muyDivPor3 x]
   where n = k*10^{(k-1)}
-- 3ª definición
- - ==========
numeroMuyDivPor3Cifras3 :: Integer -> Integer
numeroMuyDivPor3Cifras3 k = genericLength (numeroMuyDivPor3Cifras3' k)
numeroMuyDivPor3Cifras3' :: Integer -> [Integer]
numeroMuyDivPor3Cifras3' 1 = [3,6,9]
numeroMuyDivPor3Cifras3' k =
    [10*x+y | x <- numeroMuyDivPor3Cifras3' (k-1),
             y < -[0,3..9]
-- 4ª definición
numeroMuyDivPor3Cifras4 :: Integer -> Integer
numeroMuyDivPor3Cifras4 1 = 3
numeroMuyDivPor3Cifras4 k = 4 * numeroMuyDivPor3Cifras4 (k-1)
-- 5º definición
numeroMuyDivPor3Cifras5 :: Integer -> Integer
numeroMuyDivPor3Cifras5 k = 3 * 4^{(k-1)}
```

```
-- Comparación de eficiencia
  _____
      ghci> numeroMuyDivPor3Cifras 6
      3072
- -
      (3.47 secs, 534,789,608 bytes)
      ghci> numeroMuyDivPor3Cifras2 6
      2048
      (0.88 secs, 107,883,432 bytes)
      ghci> numeroMuyDivPor3Cifras3 6
      3072
      (0.01 secs, 0 bytes)
      ghci> numeroMuyDivPor3Cifras2 7
      0
      (2.57 secs, 375,999,336 bytes)
      ghci> numeroMuyDivPor3Cifras3 7
      12288
      (0.02 \text{ secs}, 0 \text{ bytes})
      ghci> numeroMuyDivPor3Cifras4 7
      12288
      (0.00 secs, 0 bytes)
      ghci> numeroMuyDivPor3Cifras5 7
      12288
      (0.01 \text{ secs}, 0 \text{ bytes})
      ghci> numeroMuyDivPor3Cifras4 (10^5) 'rem' 100000
      32032
      (5.74 secs, 1,408,600,592 bytes)
      ghci> numeroMuyDivPor3Cifras5 (10^5) 'rem' 100000
      32032
      (0.02 secs, 0 bytes)
-- Ejercicio 3. Definir una función
      intercala:: [a] -> [a] -> [a]
-- tal que (intercala xs ys) es la lista que resulta de intercalar los
-- elementos de xs con los de ys. Por ejemplo,
      intercala [1..7] [9,2,0,3] == [1,9,2,2,3,0,4,3,5,6,7]
      intercala [9,2,0,3] [1..7] == [9,1,2,2,0,3,3,4,5,6,7]
      intercala "hola" "adios" == "haodliaos"
```

```
intercala :: [a] -> [a] -> [a]
intercala [] ys = ys
intercala xs [] = xs
intercala (x:xs) (y:ys) = x : y : intercala xs ys
-- Ejercicio 4. La diferencia simétrica de dos conjuntos es el conjunto
-- cuyos elementos son aquellos que pertenecen a alguno de los conjuntos
-- iniciales, sin pertenecer a ambos a la vez. Por ejemplo, la
-- diferencia simétrica de {2,5,3} y {4,2,3,7} es {5,4,7}.
-- Definir la función
      diferenciaSimetrica :: Eq a => [a] -> [a] -> [a]
-- tal que (diferenciaSimetrica xs ys) es la diferencia simétrica de xs
-- e ys. Por ejemplo,
      diferenciaSimetrica [2,5,3] [4,2,3,7]
                                              == [5,4,7]
      diferenciaSimetrica [2,5,3] [5,2,3]
                                               == []
     diferenciaSimetrica [2,5,2] [4,2,3,7] == [5,4,3,7] diferenciaSimetrica [2,5,2] [4,2,4,7] == [5,4,4,7]
      diferenciaSimetrica [2,5,2,4] [4,2,4,7] == [5,7]
diferenciaSimetrica :: Eq a => [a] -> [a] -> [a]
diferenciaSimetrica xs ys =
    [x \mid x \leftarrow xs, x \text{ 'notElem' ys}] ++ [y \mid y \leftarrow ys, y \text{ 'notElem' xs}]
-- Ejercicio 5. (Basado en el problema 4 del Proyecto Euler)
-- El número 9009 es capicúa y es producto de dos números de dos dígitos,
-- pues 9009 = 91*99.
-- Definir la función
      numerosC2Menores :: Int -> [Int]
-- tal que (numerosC2Menores n) es la lista de números capicúas menores
-- que n que son producto de 2 números de dos dígitos. Por ejemplo,
      numerosC2Menores 100
                                     == []
                                     == [121,242,252,272,323,363]
      numerosC2Menores 400
      length (numerosC2Menores 1000) == 38
numerosC2Menores :: Int -> [Int]
numerosC2Menores n = [x \mid x < - productos n, esCapicua x]
```

7.1.2. Examen 2 (3 de Diciembre de 2015)

```
-- (divisores n) es la lista de los divisores de n.
divisores :: Integer -> [Integer]
divisores n = [x \mid x \leftarrow [1..n], n \text{ 'rem' } x == 0]
__ _______
-- Ejercicio 1.2. La suma de los cuadrados de los divisores de un número
-- se puede calcular a partir de su factorización prima. En efecto, si
-- la factorización prima de n es
      a^x*b^y*...*c^z
-- entonces, la suma de los divisores de n es
    (1+a+a^2+...+a^x) * (1+b+b^2+...+b^y) *...* (1+c+c^2+...+c^z)
-- es decir,
-- ((a^{(x+1)-1)/(a-1)}) * ((b^{(y+1)-1)/(b-1)}) * ... * ((c^{(z+1)-1)/(c-1)})
-- Por tanto, la suma de sus cuadrados de los divisores de n
-- ((a^{(2*(x+1))-1)}/(a^{2}-1)) * ((b^{(2*(y+1))-1)}/(b^{2}-1)) *...*
-- Definir, a partir de la nota anterior, la función
      sumaCuadradosDivisores2 :: Int -> Integer
-- tal que (sumaCuadradosDivisores2 n) es la suma de los cuadrados de
-- los divisores de n. Por ejemplo,
      sumaCuadradosDivisores2 6 == 50
sumaCuadradosDivisores2 :: Integer -> Integer
sumaCuadradosDivisores2 n =
    product [(a^{(2*(m+1))-1}) 'div' (a^2-1) | (a,m) <- factorizacion n]
-- (factorización n) es la factorización prima de n.
factorizacion :: Integer -> [(Integer,Integer)]
factorizacion n =
    [(head xs, genericLength xs) | xs <- group (primeFactors n)]</pre>
-- Ejercicio 1.3. Comparar las estadísticas del cálculo de las
-- siguientes expresiones
      sumaCuadradosDivisores1 1000000
      sumaCuadradosDivisores2 1000000
-- El cálculo es
     ghci> sumaCuadradosDivisores1 1000000
      1388804117611
     (2.91 secs, 104321520 bytes)
     ghci> sumaCuadradosDivisores2 1000000
     1388804117611
```

```
(0.01 secs, 550672 bytes)
-- Ejercicio 2: Definir la función
     cerosDelFactorial :: Integer -> Integer
-- tal que (cerosDelFactorial n) es el número de ceros en que termina el
-- factorial de n. Por ejemplo,
     cerosDelFactorial 24
                                                 == 4
     cerosDelFactorial 25
                                                     6
     length (show (cerosDelFactorial (1234^5678))) == 17552
-- 1º definición
-- ==========
cerosDelFactorial1 :: Integer -> Integer
cerosDelFactorial1 n = ceros (factorial n)
-- (factorial n) es el factorial n. Por ejemplo,
     factorial 3 == 6
factorial :: Integer -> Integer
factorial n = product [1..n]
-- (ceros n) es el número de ceros en los que termina el número n. Por
-- ejemplo,
     ceros 320000 == 4
ceros :: Integer -> Integer
ceros n | rem n 10 /= 0 = 0
       | otherwise = 1 + ceros (div n 10)
-- 2ª definición
-- =========
cerosDelFactorial2 :: Integer -> Integer
cerosDelFactorial2 n = ceros2 (factorial n)
-- (ceros n) es el número de ceros en los que termina el número n. Por
-- ejemplo,
     ceros 320000 == 4
ceros2 :: Integer -> Integer
ceros2 n = genericLength (takeWhile (=='0') (reverse (show n)))
-- 3º definición
```

-- ========== cerosDelFactorial3 :: Integer -> Integer cerosDelFactorial3 n | n < 5</pre> | otherwise = m + cerosDelFactorial3 m where m = n 'div' 5-- Comparación de la eficiencia ghci> cerosDelFactorial1 (3*10^4) 7498 (3.96 secs, 1,252,876,376 bytes) ghci> cerosDelFactorial2 (3*10^4) 7498 (3.07 secs, 887,706,864 bytes) ghci> cerosDelFactorial3 (3*10^4) 7498 (0.03 secs, 9,198,896 bytes) -- Ejercicio 3.1. El Triángulo de Floyd, llamado así en honor a Robert -- Floyd, es un triángulo rectángulo formado con números naturales. Para -- crear un triángulo de Floyd, se comienza con un 1 en la esquina -- superior izquierda, y se continúa escribiendo la secuencia de los -- números naturales de manera que cada línea contenga un número más que -- la anterior: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 -- Definir la función trianguloFloyd :: [[Int]] -- tal que trianguloFloyd es la lista formada por todas las líneas del -- triángulo. Por ejemplo, ghci> take 10 trianguloFloyd [[1],[2,3], [4,5,6],[7,8,9,10], [11,12,13,14,15],[16, 17, 18, 19, 20, 21],

```
[22,23,24,25,26,27,28],
      [29,30,31,32,33,34,35,36],
      [37,38,39,40,41,42,43,44,45],
      [46,47,48,49,50,51,52,53,54,55]]
trianguloFloyd :: [[Integer]]
trianguloFloyd = iterate siguiente [1]
siguiente :: [Integer] -> [Integer]
siguiente xs = [a..a+n]
 where a = 1 + last xs
       n = genericLength xs
-- Ejercicio 3.2. Definir la función
    filaTrianguloFloyd :: Int -> [Int]
-- tal que (filaTrianguloFloyd n) es la n-sima fila del triángulo de
-- Floyd. Por ejemplo,
    filaTrianguloFloyd 6 == [16,17,18,19,20,21]
filaTrianguloFloyd :: Integer -> [Integer]
filaTrianguloFloyd n = trianguloFloyd 'genericIndex' (n - 1)
-- Ejercicio 3.3. Comprobar con QuickCheck la siguiente propiedad: la
-- suma de los números de la línea n es n(n^2 + 1)/2 .
-- La propiedad es
prop trianguloFloyd n =
  n > 0 ==> sum (filaTrianguloFloyd n) == (n*(n^2+1)) 'div' 2
-- La comprobación es
     ghci> quickCheck prop trianguloFloyd
     +++ OK, passed 100 tests.
__ _______
-- Ejercicio 4. Los árboles binarios con valores en las hojas y en los
-- nodos se definen por
     data Arbol a = H a
                  | N a (Arbol a) (Arbol a)
```

```
deriving Show
  Por ejemplo, los árboles
           5
                          8
                         /\
                               2
         4 6
                     1
                         4 6
   se pueden representar por
      ej3arbol1, ej3arbol2, ej3arbol3, ej3arbol4 :: Arbol Int
      ej3arbol1 = N 5 (N 9 (H 1) (H 4)) (N 7 (H 6) (H 8))
      ej3arbol2 = N 8 (N 9 (H 1) (H 4)) (N 3 (H 6) (H 2))
      ej3arbol3 = N 5 (N 9 (H 1) (H 4)) (H 2)
      ej3arbol4 = N 5 (H 4) (N 7 (H 6) (H 2))
-- Definir la función
      iqualEstructura :: Arbol -> Arbol -> Bool
-- tal que (igualEstructura al al) se verifica si los árboles al y a2
-- tienen la misma estructura. Por ejemplo,
      igualEstructura ej3arbol1 ej3arbol2 == True
      igualEstructura ej3arbol1 ej3arbol3 == False
      igualEstructura ej3arbol1 ej3arbol4 == False
data Arbola = Ha
              | N a (Arbol a) (Arbol a)
              deriving Show
ej3arbol1, ej3arbol2, ej3arbol3, ej3arbol4 :: Arbol Int
ej3arbol1 = N 5 (N 9 (H 1) (H 4)) (N 7 (H 6) (H 8))
ej3arbol2 = N 8 (N 9 (H 1) (H 4)) (N 3 (H 6) (H 2))
ej3arbol3 = N 5 (N 9 (H 1) (H 4)) (H 2)
ej3arbol4 = N 5 (H 4) (N 7 (H 6) (H 2))
igualEstructura :: Arbol a -> Arbol a -> Bool
igualEstructura (H ) (H ) = True
igualEstructura (N r1 i1 d1) (N r2 i2 d2) =
    igualEstructura i1 i2 && igualEstructura d1 d2
igualEstructura _ _
                                          = False
```

7.1.3. Examen 3 (25 de enero de 2016)

El examen es común con el del grupo 4 (ver página 638).

7.1.4. Examen 4 (3 de marzo de 2016)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (3 de marzo de 2016)
__ ______
import Data.List
import Data.Numbers.Primes
import Data.Array
import Test.QuickCheck
  ______
-- Ejercicio 1.1. [2.5 puntos] Un número es libre de cuadrados si no es
-- divisible por el cuadrado de ningún entero mayor que 1. Por ejemplo,
-- 70 es libre de cuadrado porque sólo es divisible por 1, 2, 5, 7 y 70;
-- en cambio, 40 no es libre de cuadrados porque es divisible por 2<sup>2</sup>.
-- Definir la función
     libreDeCuadrados :: Integer -> Bool
-- tal que (libreDeCuadrados x) se verifica si x es libre de
-- cuadrados. Por ejemplo,
     libreDeCuadrados 70
                                    == True
     libreDeCuadrados 40
                                    == False
     libreDeCuadrados 510510
     libreDeCuadrados (((10^10)^10)^10) = False
__ ______
-- 1ª definición
libreDeCuadrados :: Integer -> Bool
libreDeCuadrados n = all (==1) (map length $ group $ primeFactors n)
-- 2ª definición
libreDeCuadrados2 :: Integer -> Bool
libreDeCuadrados2 n = nub ps == ps
   where ps = primeFactors n
-- Ejercicio 1.2. Un número de Lucas-Carmichael es un entero positivo n
```

```
-- compuesto, impar, libre de cuadrados y tal que si p es un factor
-- primo de n, entonces p + 1 es un factor de n + 1.
-- Definir la función
     lucasCarmichael :: [Integer]
-- que calcula la sucesión de los números de Lucas-Carmichael. Por
-- ejemplo,
     take 8 lucasCarmichael == [399,935,2015,2915,4991,5719,7055,8855]
lucasCarmichael:: [Integer]
lucasCarmichael =
   [x \mid x < - [2..],
        let ps = primeFactors x,
        and [mod (x+1) (p+1) == 0 | p <- ps],
        nub ps == ps,
        not (isPrime x),
        odd x]
-- Ejercicio 1.3. Calcular el primer número de Lucas-Carmichael con 5
-- factores primos.
  ______
-- El cálculo es
     ghci> head [x \mid x \leftarrow lucasCarmichael, length (primeFactors x) == 5]
     588455
-- Ejercicio 2. [2 puntos] Representamos los árboles binarios con
-- elementos en las hojas y en los nodos mediante el tipo de dato
     data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
-- Por ejemplo,
     ej1 :: Arbol Int
     ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
-- Definir la función
     ramasCon :: Eq a => Arbol a -> a -> [[a]]
-- tal que (ramasCon a x) es la lista de las ramas del árbol a en las
-- que aparece el elemento x. Por ejemplo,
-- ramasCon ej1 2 == [[5,2,1],[5,2,2],[5,3,2]]
```

```
data Arbol a = H a | N a (Arbol a) (Arbol a)
               deriving Show
ej1 :: Arbol Int
ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
ramasCon :: Eq a => Arbol a -> a -> [[a]]
ramasCon a x = [ys \mid ys < - ramas a, x 'elem' ys]
ramas :: Arbol a -> [[a]]
ramas (H x)
                = [[x]]
ramas (N x i d) = [x:ys \mid ys < - ramas i ++ ramas d]
-- Ejercicio 3. [2 puntos] Representamos las matrices mediante el tipo
-- de dato
      type Matriz a = Array (Int,Int) a
-- Por ejemplo,
      ejM :: Matriz Int
      ejM = listArray ((1,1),(2,4)) [1,2,3,0,4,5,6,7]
-- representa la matriz
      |1 2 3 0|
      |4 5 6 7|
-- Definir la función
      ampliada :: Num a => Matriz a -> Matriz a
-- tal que (ampliada p) es la matriz obtenida al añadir una nueva fila a
-- p cuyo elemento i-ésimo es la suma de la columna i-ésima de p. Por
-- ejemplo,
      |1 2 3 0|
                       |1 2 3 0|
      |4 5 6 7| ==>
                       |4 5 6 7|
                       |5 7 9 7|
-- En Haskell,
      ghci> ampliada ejM
      array ((1,1),(3,4)) [((1,1),1),((1,2),2),((1,3),3),((1,4),0),
                            ((2,1),4),((2,2),5),((2,3),6),((2,4),7),
                            ((3,1),5),((3,2),7),((3,3),9),((3,4),7)
```

type Matriz a = Array (Int,Int) a

```
ejM :: Matriz Int
ejM = listArray ((1,1),(2,4)) [1,2,3,0,4,5,6,7]
ampliada :: Num a => Matriz a -> Matriz a
ampliada p =
    array ((1,1),(m+1,n)) [((i,j),f i j) | i <- [1..m+1], j <- [1..n]]
    where (,(m,n)) = bounds p
          f i j | i \le m = p!(i,j)
                | otherwise = sum [p!(i,j) | i <- [1..m]]
-- Ejercicio 4. [2 puntos] Definir la función
      acumulaSumas :: [[Int]] -> [Int]
-- tal que (acumulaSumas xss) calcula la suma de las listas de xss de
-- forma acumulada. Por ejemplo,
     acumulaSumas [[1,2,5],[3,9],[1,7,6,2]] == [8,20,36]
-- 1º definición
acumulaSumas :: [[Int]] -> [Int]
acumulaSumas xss = acumula $ map sum xss
acumula :: [Int] -> [Int]
acumula [] = []
acumula (x:xs) = x:(map (+x) \$ acumula xs)
-- 2ª definición
acumulaSumas2 :: [[Int]] -> [Int]
acumulaSumas2 xss = scanl1 (+) $ map sum xss
-- 3ª definición
acumulaSumas3 :: [[Int]] -> [Int]
acumulaSumas3 = scanl1 (+) . map sum
-- Ejercicio 5 (en Maxima). [1.5 puntos] Construir un programa que
-- calcule la suma de todos los números primos menores que n. Por
-- ejemplo,
      sumaPrimosMenores (10) = 17
      sumaPrimosMenores (200000) = 1709600813
```

7.1.5. Examen 5 (5 de mayo de 2016)

```
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (5 de mayo de 2016)
-- Librerías auxiliares
import Data.Array
import Data.Maybe
import I1M.Pila
import I1M.PolOperaciones
import Test.QuickCheck
import qualified Data. Matrix as M
import qualified I1M.Cola as C
-- Ejercicio 1.1. Los números felices se caracterizan por lo siguiente:
-- dado n > 0, se reemplaza el número por la suma de los cuadrados de
-- sus dígitos, y se repite el proceso hasta que el número es igual a 1
-- o hasta que se entra en un bucle que no incluye el 1. Por ejemplo,
     49 \rightarrow 4^2 + 9^2 = 97 \rightarrow 9^2 + 7^2 = 130 \rightarrow 1^3 + 3^2 = 10 \rightarrow 1^2 = 1
-- Los números que al finalizar el proceso terminan con 1, son conocidos
-- como números felices. Los que no, son conocidos como números
-- infelices (o tristes).
-- Definir la función
       orbita:: Int -> [Int]
-- tal que (orbita n) es la sucesión de números obtenidos a partir de
-- n. Por ejemplo:
       take 10 (orbita 49) == [49,97,130,10,1,1,1,1,1,1]
       take 20 (orbita 48)
       [48,80,64,52,29,85,89,145,42,20,4,16,37,58,89,145,42,20,4,16]
digitos :: Int -> [Int]
digitos n = [read [x] | x <- show n]
sig :: Int -> Int
sig = sum . (map (^2)) . digitos
```

```
orbita:: Int -> [Int]
orbita n = iterate sig n
-- Ejercicio 1.2. Se observan las siguientes ropiedades de la órbita de
-- un número natural n:
-- (*) O bien aparece un 1, en cuyo caso todos los siguientes son 1 y el
      número es feliz.
-- (*) O bien, a partir de un término se repite periódicamente con un
      periodo de longitud 8 (4,16,37,58,89,145,42,20)
-- Definir la constante
     numerosFelices:: [Int]
-- que es la sucesión de números felices. Por ejemplo,
     take 20 numerosFelices
     [1,7,10,13,19,23,28,31,32,44,49,68,70,79,82,86,91,94,97,100]
-- Nota: Para determinar la felicidad de un número n, es suficiente recorrer
-- su órbita hasta encontrar un 1 o un 4.
-- 1º solución
felicidad :: Int -> Maybe Bool
felicidad n = aux (orbita n)
   where aux (x:xs) \mid x == 1 = Just True
                    | x == 4 = Just False
                    | otherwise = aux xs
esFeliz :: Int -> Bool
esFeliz = fromJust . felicidad
numerosFelices:: [Int]
numerosFelices = filter esFeliz [1..]
-- 2ª solución
esFeliz2 :: Int -> Bool
esFeliz2 n = head (until p tail (orbita n)) == 1
   where p (x:xs) = x == 1 | | x == 4
-- Ejercicio 2. Definir las funciones
-- colaApila:: C.Cola a -> Pila a
```

```
pilaAcola:: Pila a -> C.Cola a
-- tales que (colaApila c) transforma la cola c en una pila y pilaAcola
   realiza la transformación recíproca. Por ejemplo,
     ghci> let p = foldr apila vacia [3,8,-1,0,9]
    ghci> p
    3|8|-1|0|9|-
    ghci> let c = pilaAcola p
    qhci> c
    C[3,8,-1,0,9]
- -
    ghci> colaApila c
    3|8|-1|0|9|-
    ghci> colaApila (pilaAcola p) == p
    ghci> pilaAcola (colaApila c) == c
colaApila:: C.Cola a -> Pila a
colaApila c | C.esVacia c = vacia
            | otherwise = apila x (colaApila q)
    where x = C.primero c
          q = C.resto c
pilaAcola:: Pila a -> C.Cola a
pilaAcola p = aux p C.vacia
    where aux q c | esVacia q = c
                  | otherwise = aux (desapila q) (C.inserta (cima q) c)
-- Ejercicio 3. Definir la función
      polDiagonal :: M.Matrix Int -> Polinomio Int
-- tal que (polDiagonal p) es el polinomio cuyas raíces son los
-- elementos de la diagonal de la matriz cuadrada p. Por ejemplo,
      ghci> polDiagonal (M.fromLists[[1,2,3],[4,5,6],[7,8,9]])
      x^3 + -15*x^2 + 59*x + -45
polDiagonal :: M.Matrix Int -> Polinomio Int
polDiagonal m = multListaPol (map f (diagonal m))
    where f a = consPol 1 1 (consPol 0 (-a) polCero)
-- (diagonal p) es la lista de los elementos de la diagonal de la matriz
-- p. Por ejemplo,
```

```
diagonal (M.fromLists[[1,2,3],[4,5,6],[7,8,9]]) == [1,5,9]
diagonal :: Num a => M.Matrix a -> [a]
diagonal p = [p M.! (i,i) | i <- [1..min m n]]
    where m = M.nrows p
          n = M.ncols p
-- (multListaPol ps) es el producto de los polinomios de la lista ps.
multListaPol :: [Polinomio Int] -> Polinomio Int
multListaPol []
                   = polUnidad
multListaPol (p:ps) = multPol p (multListaPol ps)
-- 2ª definición de multListaPol
multListaPol2 :: [Polinomio Int] -> Polinomio Int
multListaPol2 = foldr multPol polUnidad
-- Ejercicio 4. El algoritmo de Damm (http://bit.ly/1SyWhFZ) se usa en
-- la detección de errores en códigos numéricos. Es un procedimiento
-- para obtener un dígito de control, usando la siguiente matriz, como
-- describimos en los ejemplos
       0
           1
               2
                   3
                       4
                           5
                               6
                                   7
                                       8
                                           9
-- 0 |
                   7
                       5
                           9
                                           2
       0
           3
               1
                               8
                                   6
-- 1 |
                   2
                           5
       7
           0
               9
                       1
                               4
                                   8
                                           3
                                       6
-- 2 I
       4
           2
               0
                   6
                       8
                           7
                               1
                                   3
                                           9
          7
                       9
-- 3 | 1
                   0
                                           6
-- 4 | 6
               2
                   3
                       0
                              5
                                   9
                                       7
          1
                           4
                                           8
                       2
                                   5
-- 5 | 3
          6 7 4
                           0
                               9
                                       8
                                          1
-- 6 | 5
           8
               6
                   9 7
                           2
                               0
                                   1
                                       3
                                           4
               4 5
                               2
-- 7 | 8
           9
                       3
                           6
                                   0 1
                                           7
-- 8 |
       9
           4
               3
                   8
                       6
                           1
                               7
                                   2
                                       0
                                           9
-- 9 I
       2
           5
               8
                   1
                       4
                           3
                                   7
                                       9
                                           0
-- Ejemplo 1: cálculo del dígito de control de 572
     + se comienza con la fila 0 y columna 5 de la matriz -> 9
     + a continuación, la fila 9 y columna 7 de la matriz -> 7
     + a continuación, la fila 7 y columna 2 de la matriz -> 4
-- con lo que se llega al final del proceso. Entonces, el dígito de
-- control de 572 es 4.
-- Ejemplo 2: cálculo del dígito de control de 57260
     + se comienza con la fila 0 y columna 5 de la matriz -> 9
```

```
+ a continuación, la fila 9 y columna 7 de la matriz -> 7
      + a continuación, la fila 9 y columna 2 de la matriz -> 4
      + a continuación, la fila 6 y columna 4 de la matriz -> 5
      + a continuación, la fila 5 y columna 0 de la matriz -> 3
-- con lo que se llega al final del proceso. Entonces, el dígito de
   control de 57260 es 3.
  Representamos las matrices como tablas cuyos índices son pares de
  números naturales.
      type Matriz a = Array (Int,Int) a
  Definimos la matriz:
      mDamm :: Matriz Int
      mDamm = listArray ((0,0),(9,9)) [0,3,1,7,5,9,8,6,4,2,
                                       7,0,9,2,1,5,4,8,6,3,
                                       4,2,0,6,8,7,1,3,5,9,
                                       1,7,5,0,9,8,3,4,2,6,
                                       6,1,2,3,0,4,5,9,7,8,
                                       3,6,7,4,2,0,9,5,8,1,
                                       5,8,6,9,7,2,0,1,3,4,
                                       8,9,4,5,3,6,2,0,1,7,
                                       9,4,3,8,6,1,7,2,0,9,
                                       2,5,8,1,4,3,6,7,9,0]
  Definir la función
      digitoControl :: Int -> Int
  tal que (digitoControl n) es el dígito de control de n. Por ejemplo:
      digitoControl 572
                                 == 4
      digitoControl 57260
                                 == 3
- -
      digitoControl 12345689012 == 6
      digitoControl 5724
                                 ==0
      digitoControl 572603
                                 == 0
      digitoControl 123456890126 == 0
type Matriz a = Array (Int,Int) a
mDamm :: Matriz Int
mDamm = listArray ((0,0),(9,9)) [0,3,1,7,5,9,8,6,4,2,
                                 7,0,9,2,1,5,4,8,6,3,
                                 4,2,0,6,8,7,1,3,5,9,
                                 1,7,5,0,9,8,3,4,2,6,
                                 6,1,2,3,0,4,5,9,7,8,
```

```
3,6,7,4,2,0,9,5,8,1,
                                 5,8,6,9,7,2,0,1,3,4,
                                 8,9,4,5,3,6,2,0,1,7,
                                 9,4,3,8,6,1,7,2,0,9,
                                 2,5,8,1,4,3,6,7,9,0]
-- 1ª solución
digitoControl :: Int -> Int
digitoControl n = aux (digitos n) 0
    where aux [] d = d
          aux (x:xs) d = aux xs (mDamm ! (d,x))
-- 2ª solución:
digitoControl2 :: Int -> Int
digitoControl2 n = last (scanl f 0 (digitos n))
    where f d x = mDamm ! (d,x)
-- Ejercicio 4.2. Comprobar con QuickCheck que si añadimos al final de
-- un número n su dígito de control, el dígito de control del número que
-- resulta siempre es 0.
-- La propiedad es
prop DC :: Int -> Property
prop DC n = n >= 0 ==> digitoControl m == 0
    where m = read (show n ++ show (digitoControl n))
-- La comprobación es
      ghci> quickCheck prop DC
     +++ OK, passed 100 tests.
-- 2º expresión de la propiedad
prop DC2 :: Int -> Bool
prop DC2 n = digitoControl m == 0
    where m = read (show (abs n) ++ show (digitoControl (abs n)))
-- La comprobación es
      ghci> quickCheck prop DC2
      +++ OK, passed 100 tests.
-- 3º expresión de la propiedad
prop DC3 :: Int -> Bool
```

```
prop_DC3 n = digitoControl (10 * n1 + digitoControl n1) == 0
    where n1 = abs n

-- La comprobación es
-- ghci> quickCheck prop_DC3
-- +++ OK, passed 100 tests.

-- 4ª expresión de la propiedad
prop_DC4 :: (Positive Int) -> Bool
prop_DC4 (Positive n) =
    digitoControl2 (10 * n + digitoControl2 n) == 0

-- La comprobación es
-- ghci > quickCheck prop_DC4
-- +++ OK, passed 100 tests.
```

7.1.6. Examen 6 (7 de junio de 2016)

El examen es común con el del grupo 4 (ver página 664).

7.1.7. Examen 7 (23 de junio de 2016)

El examen es común con el del grupo 4 (ver página 673).

7.1.8. Examen 8 (01 de septiembre de 2016)

El examen es común con el del grupo 4 (ver página 682).

7.2. Exámenes del grupo 2 (Antonia M. Chávez)

7.2.1. Examen 1 (6 de Noviembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (6 de noviembre de 2015)
-- -- Ejercicio 1.1. Definir, por comprensión, la función
```

```
tieneRepeticionesC :: Eq a => [a] -> Bool
-- tal que (tieneRepeticionesC xs) se verifica si xs tiene algún
  elemento repetido. Por ejemplo,
     tieneRepeticionesC [3,2,5,2,7]
                                           == True
     tieneRepeticionesC [3,2,5,4]
                                            == False
     tieneRepeticionesC (5:[1..2000000000]) == True
     tieneRepeticionesC [1..20000]
                                            == False
tieneRepeticionesC :: Eq a => [a] -> Bool
tieneRepeticionesC xs =
 or [ocurrencias x \times s > 1 \mid x < - xs]
 where ocurrencias x xs = length [y | y <- xs, x == y]
-- Ejercicio 1.1. Definir, por comprensión, la función
     tieneRepeticionesR :: Eq a => [a] -> Bool
-- tal que (tieneRepeticionesR xs) se verifica si xs tiene algún
-- elemento repetido. Por ejemplo,
     tieneRepeticionesR [3,2,5,2,7]
                                            == True
     tieneRepeticionesR [3,2,5,4]
                                               False
     tieneRepeticionesR (5:[1..2000000000]) == True
     tieneRepeticionesR [1..20000]
                                            == False
__ ______
tieneRepeticionesR :: Eq a => [a] -> Bool
tieneRepeticionesR [] = False
tieneRepeticionesR (x:xs) = elem x xs || tieneRepeticionesR xs
-- Ejercicio 2. Definir, por recursión, la función
     sinRepetidos :: Eq a => [a] -> [a]
-- tal que (sinRepetidos xs) es la lista xs sin repeticiones, da igual
-- el orden. Por ejemplo,
     sinRepetidos [1,1,1,2]
                                      == [1,2]
     sinRepetidos [1,1,2,1,1] == [2,1]
     sinRepetidos [1,2,4,3,4,2,5,3,4,2] == [1,5,3,4,2]
sinRepetidos :: Eq a => [a] -> [a]
sinRepetidos [] = []
sinRepetidos (x:xs)
  | x 'elem' xs = sinRepetidos xs
```

```
| otherwise = x : sinRepetidos xs
-- Ejercicio 3. Definir, por recursión, la función
      reparte :: [a] -> [Int] -> [[a]]
-- tal que (reparte xs ns) es la partición de xs donde las longitudes de
-- las partes las indican los elementos de ns. Por ejemplo,
      reparte [1..10] [2,5,0,3] == [[1,2],[3,4,5,6,7],[],[8,9,10]]
      reparte [1..10] [1,4,2,3] == [[1],[2,3,4,5],[6,7],[8,9,10]]
reparte :: [a] -> [Int] -> [[a]]
reparte []
reparte []
                = []
reparte xs (n:ns) = take n xs : reparte (drop n xs) ns
-- Ejercicio 4. Definir la función
      agrupa :: Eq a => (b -> a) -> [b] -> [(a, [b])]
-- tal que (agrupa f xs) es la lista de pares obtenida agrupando los
-- elementos de xs según sus valores mediante la función f. Por ejemplo,
-- si queremos agrupar los elementos de la lista ["voy", "ayer", "ala",
-- "losa"] por longitudes, saldrá que hay dos palabras de longitud 3 y
-- otras dos de longitud 4
      ghci> agrupa length ["voy", "ayer", "ala", "losa"]
      [(3,["voy","ala"]),(4,["ayer","losa"])]
-- Si queremos agrupar las palabras de la lista ["claro", "ayer", "ana",
-- "cosa"] por su inicial, salen dos por la 'a' y otras dos por la 'c'.
      ghci> agrupa head ["claro", "ayer", "ana", "cosa"]
      [('a',["ayer","ana"]),('c',["claro","cosa"])]
agrupa :: Eq a => (b -> a) -> [b] -> [(a, [b])]
agrupa f xs =
  [(i,[y \mid y < -xs, f y == i]) \mid i < -yss]
 where yss = sinRepetidos [f y | y <- xs]
```

7.2.2. Examen 2 (4 de Diciembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (4 de diciembre de 2015)
```

```
-- Ejercicio 1. Definir la función
      inserta :: [a] -> [[a]] -> [[a]]
-- tal que (inserta xs yss) es la lista obtenida insertando
-- + el primer elemento de xs como primero en la primera lista de yss,
-- + el segundo elemento de xs como segundo en la segunda lista de yss
   (si la segunda lista de yss tiene al menos un elemento),
-- + el tercer elemento de xs como tercero en la tercera lista de yss
     (si la tercera lista de yss tiene al menos dos elementos),
-- y así sucesivamente. Por ejemplo,
      inserta [1,2,3] [[4,7],[6],[9,5,8] == [[1,4,7],[6,2],[9,5,3,8]]
      inserta [1,2,3] [[4,7],[], [9,5,8]] == [[1,4,7],[], [9,5,3,8]]
      inserta [1,2]
                    [[4,7],[6],[9,5,8]] == [[1,4,7],[6,2],[9,5,8]]
      inserta [1,2,3] [[4,7],[6]]
                                           == [[1,4,7],[6,2]]
      inserta "tad" ["odo","pra","naa"] == ["todo","para","nada"]
inserta :: [a] -> [[a]] -> [[a]]
inserta xs yss = aux xs yss 0 where
    aux [] yss _ = yss
    aux xs [] _ = []
    aux (x:xs) (ys:yss) n
        | length us == n = (us ++ x : vs) : aux xs yss (n+1)
        otherwise = ys : aux xs yss (n+1)
        where (us, vs) = splitAt n ys
-- Ejercicio 2. El siguiente tipo de dato representa expresiones
   construidas con variables, sumas y productos
      data Expr = Var String
                | S Expr Expr
                | P Expr Expre
               deriving (Eq, Show)
-- Por ejemplo, x^*(y+z) se representa por (P (V "x") (S (V "y") (V "z")))
-- Una expresión es un término si es un producto de variables. Por
-- ejemplo, x^*(y^*z) es un término pero x+(y^*z) ni x^*(y+z) lo son.
-- Una expresión está en forma normal si es una suma de términos. Por
-- ejemplo, x^*(y^*z) y x+(y^*z) está en forma normal; pero x^*(y+z) y
-- (x+y)*(x+z) no lo están.
```

```
-- Definir la función
     normal :: Expr -> Expr
-- tal que (normal e) es la forma normal de la expresión e obtenida
-- aplicando, mientras que sea posible, las propiedades distributivas:
      (a+b)*c = a*c+b*c
     c*(a+b) = c*a+c*b
-- Por ejemplo,
     ghci> normal (P (S (V "x") (V "y")) (V "z"))
     S (P (V "x") (V "z")) (P (V "y") (V "z"))
     ghci> normal (P (V "z") (S (V "x") (V "y")))
     S (P (V "z") (V "x")) (P (V "z") (V "y"))
     ghci> normal (P (S (V "x") (V "y")) (S (V "u") (V "v")))
     S (S (P (V "x") (V "u")) (P (V "x") (V "v")))
        (S (P (V "y") (V "u")) (P (V "y") (V "v")))
     ghci> normal (S (P (V "x") (V "y")) (V "z"))
     S (P (V "x") (V "y")) (V "z")
     ghci> normal (V "x")
     V "x"
data Expr = V String
         | S Expr Expr
         | P Expr Expr
         deriving (Eq, Show)
esTermino :: Expr -> Bool
esTermino (V _) = True
esTermino (S _ _) = False
esTermino (P a b) = esTermino a && esTermino b
esNormal :: Expr -> Bool
esNormal (S a b) = esNormal a && esNormal b
esNormal a = esTermino a
normal :: Expr -> Expr
normal(V v) = V v
normal(S a b) = S(normal a)(normal b)
normal(Pab) = p(normala)(normalb)
   where p(Sab)c = S(pac)(pbc)
         pa(Sbc) = S(pab)(pac)
         pab = Pab
```

```
-- Ejercicio 2.1. Un elemento de una lista es punta si ninguno de los
-- siguientes es mayor que él.
-- Definir la función
      puntas :: [Int] -> [Int]
-- tal que (puntas xs) es la lista de los elementos puntas de xs. Por
-- ejemplo,
      puntas [80,1,7,8,4] == [80,8,4]
-- lª definición:
puntas1 :: [Int] -> [Int]
puntas1[] = []
puntas1 (x:xs) \mid x == maximum (x:xs) = x : puntas1 xs
               | otherwise
                            = puntas1 xs
-- 2ª definición (sin usar maximum):
puntas2 :: [Int] -> [Int]
puntas2 [] = []
puntas2 (x:xs) | all (<=x) xs = x : puntas2 xs
               | otherwise = puntas2 xs
-- 3ª definición (por plegado):
puntas3 :: [Int] -> [Int]
puntas3 = foldr f []
    where f \times ys \mid all (<= x) ys = x:ys
                | otherwise = ys
-- 4ª definición (por plegado y acumulador):
puntas4 :: [Int] -> [Int]
puntas4 xs = foldl f [] (reverse xs)
    where f ac x \mid all (<=x) ac = x:ac
                 | otherwise = ac
-- Nota: Comparación de eficiencia
      ghci> let xs = [1..4000] in last (puntas1 (xs ++ reverse xs))
- -
      (3.58 secs, 2,274,856,232 bytes)
      ghci> let xs = [1..4000] in last (puntas2 (xs ++ reverse xs))
- -
      (2.27 secs, 513,654,880 bytes)
      ghci> let xs = [1..4000] in last (puntas3 (xs ++ reverse xs))
      1
- -
```

```
(2.54 secs, 523,669,416 bytes)
     ghci> let xs = [1..4000] in last (puntas4 (xs ++ reverse xs))
- -
     (2.48 secs, 512,952,728 bytes)
-- Ejercicio 4. Consideremos el tipo de los árboles binarios con enteros
-- en las hojas y nodos, definido por:
     data Arbol1 = H1 Int
                 | N1 Int Arboll Arbol
                 deriving (Eq, Show)
-- y el tipo de árbol binario de hojas vacías y enteros en los nodos,
-- definido por
     data Arbol2 = H2
                 | N2 Int Arbol2 Arbol2
                 deriving (Eq, Show)
-- Por ejemplo, los árboles
          5
                                     10
       3
             7
                                        15
            / \
      / \
         4 6
     1
-- se definen por
     eiArbol1 :: Arbol1
     ejArbol1 = N1 5 (N1 3 (H1 1) (H1 4)) (N1 7 (H1 6) (H1 9))
     ejArbol2 :: Arbol2
     ejArbol2 = N2 10 (N2 5 H2 H2) (N2 15 H2 H2)
-- Definir la función
     comprime :: Arbol1 -> Arbol2
  tal que (comprime a) es el árbol obtenido sustituyendo cada nodo por
  la suma de sus hijos. Por ejemplo,
     ghci> comprime ejArbol1
     N2 10 (N2 5 H2 H2) (N2 15 H2 H2)
     ghci> comprime ejArbol1 == ejArbol2
     True
   ______
data Arbol1 = H1 Int
           | N1 Int Arboll Arboll
           deriving (Eq, Show)
```

```
data Arbol2 = H2
          | N2 Int Arbol2 Arbol2
          deriving (Eq, Show)
ejArbol1 :: Arbol1
ejArbol1 = N1 5 (N1 3 (H1 1) (H1 4)) (N1 7 (H1 6) (H1 9))
ejArbol2 :: Arbol2
ejArbol2 = N2 10 (N2 5 H2 H2) (N2 15 H2 H2)
comprime :: Arbol1 -> Arbol2
comprime (H1 x) = H2
comprime (N1 \times i \ d) = N2 \ (raiz \ i + raiz \ d) \ (comprime \ i) \ (comprime \ d)
raiz :: Arbol1 -> Int
raiz (H1 x) = x
raiz (N1 \times _ _ ) = x
        Examen 3 (25 de enero de 2016)
7.2.3.
-- Informática (1º del Grado en Matemáticas)
-- 3º examen de evaluación continua (25 de enero de 2016)
__ ______
-- Librerías auxiliares
import Data.Char
import Data.List
import Data.Numbers.Primes
__ _______
-- Ejercicio 1.1. Un número n es autodescriptivo cuando para cada posición
-- k de n (empezando a contar las posiciones a partir de 0), el dígito
-- en la posición k es igual al número de veces que ocurre k en n. Por
-- ejemplo, 1210 es autodescriptivo porque tiene 1 dígito igual a "0", 2
-- dígitos iguales a "1", 1 dígito igual a "2" y ningún dígito igual a
-- "3".
-- Definir la función
```

```
autodescriptivo :: Integer -> Bool
-- tal que (autodescriptivo n) se verifica si n es autodescriptivo. Por
-- ejemplo,
     autodescriptivo 1210
                                              == True
     [x \mid x < [1..100000], autodescriptivo x] == [1210,2020,21200]
     autodescriptivo 9210000001000
                                              == True
-- 1ª solución
-- ========
autodescriptivo1 :: Integer -> Bool
autodescriptivol n = autodescriptiva (digitos n)
digitos :: Integer -> [Integer]
digitos n = [read [d] | d <- show n]
autodescriptiva :: [Integer] -> Bool
autodescriptiva ns =
   and [x == ocurrencias k ns | (k,x) <- zip [0..] ns]
ocurrencias :: Integer -> [Integer] -> Integer
ocurrencias x ys = genericLength (filter (==x) ys)
-- 2ª solución
-- =========
autodescriptivo2 :: Integer -> Bool
autodescriptivo2 n =
   and [length [y | y <- xs, read [y] == k] == read [x] |
         (x,k) <- zip xs [0..]]
   where xs = show n
-- Comparación de eficiencia
     ghci> [x \mid x \leftarrow [1..100000], autodescriptivol x]
     [1210,2020,21200]
     (6.94 secs, 3,380,620,264 bytes)
     ghci> [x \mid x \leftarrow [1..100000], autodescriptivo2 x]
     [1210,2020,21200]
     (7.91 secs, 4,190,791,608 bytes)
```

```
-- Ejercicio 1.2. Definir el procedimiento
      autodescriptivos :: IO ()
-- que pregunta por un número n y escribe la lista de los n primeros
-- números autodescriptivos. Por ejemplo,
      ghci> autodescriptivos
      Escribe un numero: 2
      Los 2 primeros numeros autodescriptivos son [1210,2020]
     ghci> autodescriptivos
     Escribe un numero: 3
     Los 3 primeros numeros autodescriptivos son [1210,2020,21200]
autodescriptivos :: IO ()
autodescriptivos = do
  putStr "Escribe un numero: "
  xs <- getLine
  putStr ("Los " ++ xs ++ " primeros numeros autodescriptivos son ")
  putStrLn (show (take (read xs) [a | a <- [1..], autodescriptivol a]))</pre>
-- Ejercicio 2. Dos enteros positivos a y b se dirán relacionados si
-- poseen, exactamente, un factor primo en común. Por ejemplo, 12 y 20
-- están relacionados, pero 6 y 30 no lo están.
-- Definir la lista infinita
      paresRel :: [(Int,Int)]
-- tal que paresRel enumera todos los pares (a,b), con 1 <= a < b,
-- tal que a y b están relacionados. Por ejemplo,
     ghci> take 10 paresRel
      [(2,4),(2,6),(3,6),(4,6),(2,8),(4,8),(6,8),(3,9),(6,9),(2,10)]
-- ¿Qué lugar ocupa el par (51,111) en la lista infinita paresRel?
-- lª solución
-- ========
paresRel1 :: [(Int,Int)]
paresRel1 = [(a,b) | b <- [1..], a <- [1..b-1], relacionados a b]
relacionados :: Int -> Int -> Bool
relacionados a b =
```

```
length (nub (primeFactors a 'intersect' primeFactors b)) == 1
-- El cálculo es
      ghci> 1 + length (takeWhile (/=(51,111)) paresRel1)
      2016
-- 2ª solución
  ========
paresRel2 :: [(Int,Int)]
paresRel2 = [(x,y) | y < -[4..], x < -[2..y-2], rel x y]
    where rel x y = m /= 1 && all (== head ps) ps
              where m = gcd \times y
                    ps = primeFactors m
-- 3ª solución
-- ========
paresRel3 :: [(Int,Int)]
paresRel3 =
    [(x,y) \mid y < [2..], x < [2..y-1], relacionados3 x y]
relacionados3 :: Int -> Int -> Bool
relacionados3 x y =
    length (group (primeFactors (gcd x y))) == 1
-- Comparación de eficiencia
      ghci> paresRel1 !! 40000
      (216,489)
      (3.19 secs, 1,825,423,056 bytes)
      ghci> paresRel2 !! 40000
      (216,489)
      (0.96 secs, 287,174,864 bytes)
      ghci> paresRel3 !! 40000
      (216,489)
      (0.70 secs, 264,137,928 bytes)
-- Ejercicio 3. Definir la función
      agrupa :: (a -> Bool) -> [a] -> [a]
-- tal que (agrupa p xs) es la lista obtenida separando los elementos
-- consecutivos de xs que verifican la propiedad p de los que no la
-- verifican. Por ejemplo,
```

```
agrupa odd [1,2,0,4,9,6,4,5,7,2]
                                        == [[1],[2,0,4],[9],[6,4],[5,7],[2]]
      agrupa even [1,2,0,4,9,6,4,5,7,2]
                                        == [[],[1],[2,0,4],[9],[6,4],[5,7],[2]]
- -
      agrupa (>4) [1,2,0,4,9,6,4,5,7,2] == [[],[1,2,0,4],[9,6],[4],[5,7],[2]]
      agrupa (<4) [1,2,0,4,9,6,4,5,7,2] == [[1,2,0],[4,9,6,4,5,7],[2]]
agrupa :: (a -> Bool) -> [a] -> [[a]]
agrupa p [] = []
agrupa p xs = takeWhile p xs : agrupa (not . p) (dropWhile p xs)
-- Ejercicio 4. Los árboles binarios con datos en nodos y hojas se
-- definen por
      data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
  Por ejemplo, el árbol
             3
               7
          4
       5 0 0
      / \
      2
          0
-- se representa por
      ejArbol :: Arbol Integer
      ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
-- Definir la función
      sucesores :: Arbol a -> [(a,[a])]
-- tal que (sucesores t) es la lista de los pares formados por los
-- elementos del árbol t junto con sus sucesores. Por ejemplo,
      ghci> sucesores ejArbol
      [(3,[4,7]),(4,[5,0]),(5,[2,0]),(2,[]),(0,[]),(0,[]),
      (7,[0,3]),(0,[]),(3,[])]
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
ejArbol :: Arbol Integer
ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
sucesores :: Arbol a -> [(a,[a])]
sucesores (H x) = [(x,[])]
```

```
sucesores (N x i d) = (x, [raiz i, raiz d]) : sucesores i ++ sucesores d raiz :: Arbol a -> a raiz (H x) = x raiz (N x _{-}) = x
```

7.2.4. Examen 4 (11 de marzo de 2016)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 4º examen de evaluación continua (11 de marzo de 2016)
-- Librerías auxiliares
import Data.List
import I1M.Cola
import Data.Array
import qualified Data.Matrix as M
import Data.Set (fromList, notMember)
-- Ejercicio 1.1. En la siguiente figura, al rotar girando 90 grados en
-- el sentido del reloj la matriz de la izquierda, obtenemos la de la
-- derecha
      1 2 3
                   7 4 1
      4 5 6
                   8 5 2
      7 8 9
                   9 6 3
-- Definir la función
      rotal :: Array (Int, Int) Int -> Array (Int, Int) Int
-- tal que (rota p) es la matriz obtenida girando en el sentido del
   reloj la matriz cuadrada p. Por ejemplo,
      ghci> elems (rotal (listArray ((1,1),(3,3))[1..9]))
      [7,4,1,8,5,2,9,6,3]
      ghci> elems (rotal (listArray ((1,1),(3,3))[7,4,1,8,5,2,9,6,3]))
      [9,8,7,6,5,4,3,2,1]
```

```
rotal :: Array (Int,Int) Int -> Array (Int,Int) Int
rotal p =
   array ((1,1),(n,m)) [((j,n+1-i),p!(i,j)) | i <- [1..m], j <- [1..n]]
   where (,(m,n)) = bounds p
__ _______
-- Ejercicio 1.2. Definir la función
     rota2 :: M.Matrix Int -> M.Matrix Int
-- tal que (rota p) es la matriz obtenida girando en el sentido del
-- reloj la matriz cuadrada p. Por ejemplo,
     ghci> rota2 (M.fromList 3 3 [1..9])
     (741)
     (852)
     (963)
     ghci> rota2 (M.fromList 3 3 [7,4,1,8,5,2,9,6,3])
     (987)
     (654)
     (321)
rota2 :: M.Matrix Int -> M.Matrix Int
rota2 p = M.matrix n m (\((i,j) -> p M.! (n+1-j,i)))
   where m = M.nrows p
         n = M.ncols p
-- Ejercicio 2.1. Se dice que un número tiene una bajada cuando existe
-- un par de dígitos (a,b) tales que b está a la derecha de a y b es
-- menor que a. Por ejemplo, 4312 tiene 5 bajadas ((4,3), (4,1), (4,2),
-- (3,1) y (3,2)).
-- Definir la función
     bajadas :: Int -> Int
-- tal que (bajadas n) es el número de bajadas de n. Por ejemplo,
     bajadas 4312 == 5
     bajadas 2134 == 1
bajadas :: Int -> Int
bajadas n = sum (map aux (tails (show n)))
   where aux []
                   = 0
         aux (x:xs) = length (filter (<x) xs)
```

```
-- Ejercicio 2.2. Calcular cuántos números hay de 4 cifras con más de
-- dos bajadas.
-- El cálculo es
     ghci> length [n \mid n < [1000..9999], bajadas n > 2]
     5370
-- Ejercicio 3. Definir la función
     penultimo :: Cola a -> a
-- tal que (penultimo c) es el penúltimo elemento de la cola c. Si
-- la cola esta vacía o tiene un sólo elemento, dará el error
-- correspondiente, "cola vacia" o bien "cola unitaria". Por ejemplo,
     ghci> penultimo vacia
     *** Exception: cola vacia
     ghci> penultimo (inserta 2 vacia)
     *** Exception: cola unitaria
     ghci> penultimo (inserta 3 (inserta 2 vacia))
     ghci> penultimo (inserta 5 (inserta 3 (inserta 2 vacia)))
penultimo :: Cola a -> a
penultimo c
   | esVacia c = error "cola vacia"
   | esVacia rc = error "cola unitaria"
   | esVacia rrc = primero c
   | otherwise = penultimo rc
   where rc = resto c
         rrc = resto rc
__ ______
-- Ejercicio 4. Sea xs una lista y n su longitud. Se dice que xs es casi
-- completa si sus elementos son los numeros enteros entre 0 y n excepto
-- uno. Por ejemplo, la lista [3,0,1] es casi completa.
-- Definir la función
     ausente :: [Integer] -> Integer
-- tal que (ausente xs) es el único entero (entre 0 y la longitud de xs)
```

```
-- que no pertenece a la lista casi completa xs. Por ejemplo,
      ausente [3,0,1]
     ausente [1,2,0]
     ausente (1+10^7:[0..10^7-1]) == 10000000
-- 1º definición
ausente1 :: [Integer] -> Integer
ausentel xs =
    head [n | n <- [0..], n 'notElem' xs]
-- 2ª definición
ausente2 :: [Integer] -> Integer
ausente2 xs =
    head [n \mid n \leftarrow [0..], n 'notMember' ys]
   where ys = fromList xs
-- 3ª definición (lineal)
ausente3 :: [Integer] -> Integer
ausente3 xs =
    ((n * (n+1)) 'div' 2) - sum xs
   where n = genericLength xs
-- 4ª definición
ausente4 :: [Integer] -> Integer
ausente4 xs =
    ((n * (n+1)) 'div' 2) - foldl' (+) 0 xs
   where n = genericLength xs
-- Comparación de eficiencia
ghci> let n = 10^5 in ausentel (n+1:[0..n-1])
      100000
      (68.51 secs, 25,967,840 bytes)
      ghci> let n = 10^5 in ausente2 (n+1:[0..n-1])
      100000
      (0.12 secs, 123,488,144 bytes)
      ghci> let n = 10^5 in ausente3 (n+1:[0..n-1])
      100000
      (0.07 secs, 30,928,384 bytes)
      ghci> let n = 10^5 in ausente4 (n+1:[0..n-1])
      100000
- -
```

```
-- (0.02 secs, 23,039,904 bytes)
-- ghci> let n = 10^7 in ausente2 (n+1:[0..n-1])
-- 10000000
-- (14.32 secs, 15,358,509,280 bytes)
-- ghci> let n = 10^7 in ausente3 (n+1:[0..n-1])
-- 10000000
-- (5.57 secs, 2,670,214,936 bytes)
-- ghci> let n = 10^7 in ausente4 (n+1:[0..n-1])
-- 10000000
-- (3.36 secs, 2,074,919,184 bytes)
```

7.2.5. Examen 5 (6 de mayo de 2016)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 5º examen de evaluación continua (6 de mayo de 2016)
-- Librerías auxiliares
import Data.List (nub, isPrefixOf)
import Data.Ix
import Test.OuickCheck
import Data.Matrix
import I1M.Grafo
__ _______
-- Ejercicio 1. Los números ondulados son aquellos tales que sólo tienen
-- dos dígitos distintos como máximo que se repiten periódicamente. Por
-- ejemplo, 23232, 8989, 363, 38 son ondulados.
-- Definir la función
     esOndulado :: Integer -> Bool
-- tal que (esOndulado n) se verifica si n es ondulado. Por ejemplo,
    esOndulado 12
                    = True
     esOndulado 312
                    = False
     esOndulado 313
                   = True
     esOndulado 313131 = True
    esOndulado 54543 = False
- -
     esOndulado 3
                 = True
- -
```

```
esOndulado :: Integer -> Bool
esOndulado n =
 length (nub xs) \leq 2 &&
 xs 'isPrefixOf' (cycle (take 2 xs))
 where xs = show n
-- Ejercicio 2. Definir la funcion
     onda :: Integer -> Matrix Integer
-- tal que (onda x) es la matriz cuadrada cuyas filas son los dígitos de
-- x. Por ejemplo,
     ghci> onda 323
     (323)
     (323)
     (323)
     ghci> onda 46464
     (46464)
     (46464)
     (46464)
     (46464)
     (46464)
onda :: Integer -> Matrix Integer
onda x = fromLists (replicate n ds)
 where ds = digitos x
       n = length ds
digitos :: Integer -> [Integer]
digitos n = [read [c] | c <- show n]
-- Ejercicio 3.1. Definir la funcion
     esOnda :: Matrix Integer -> Bool
-- tal que (esOnda p) se verifica si es existe un número ondulado x tal
-- que p es (onda x). Por ejemplo.
     esOnda (fromLists [[3,2,3],[3,2,3],[3,2,3]]) == True
     esOnda (fromLists [[3,2,2],[3,2,2],[3,2,2]]) == False
     esOnda (fromLists [[3,2,3],[3,2,3]]) == False
```

```
esOnda :: Matrix Integer -> Bool
esOnda p = esOndulado x \&\& p == onda x
 where x = digitosAnumero [p!(1,j) | j <- [1..ncols p]]
-- (digitosAnumero xs) es el número cuyos dígitos son los elementos de
-- xs. Por ejemplo,
     digitosAnumero [3,2,5] == 325
digitosAnumero :: [Integer] -> Integer
digitosAnumero xs =
  read (concatMap show xs)
  ______
-- Ejercicio 3.2. Comprobar con QuickCheck que toda matriz generada por
-- un número onduladoa es una onda.
-- ondulado es un generador de números ondulados. Por ejemplo,
     ghci> sample genOndulado
     2
     757
     16161
     6
     86
     686
     4646
     5959595
     56565656565
     2929292929292
     8585858585
ondulado :: Gen Integer
ondulado = do
 x <- choose (1,9)
 y <- choose (0,9)
 n <- arbitrary</pre>
  return (digitosAnumero (take (1 + abs n) (cycle [x,y])))
-- La propiedad es
prop ondas :: Property
prop ondas =
 forAll ondulado (\x -> esOnda (onda x))
-- La comprobación es
```

```
ghci> quickCheck prop_ondas
     +++ OK, passed 100 tests.
-- Ejercicio 4. Los árboles binarios con datos en los nodos y hojas se
  definen por
     data Arbol a = H
                   | N a (Arbol a) (Arbol a)
                     deriving (Eq, Show)
  Por ejemplo, el árbol
             3
     2
         0
  se representa por
     ejArbol :: Arbol Integer
     ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
  Si asociamos a cada elemento del árbol anterior su profundidad dentro
  del mismo, se obtiene el árbol siguiente
     profundidad 0:
                              (3,0)
     profundidad 1:
                          (4,1)
                                   (7,1)
                           / \
     profundidad 2:
                        (5,2)(0,2)(0,2)(3,2)
                         / \
     profundidad 3: (2,3) (0,3)
-- Definir la función
     profArbol :: Arbol a -> Arbol (a,Int)
-- tal que (profArbol x) es el árbol obtenido asociando los elementos de
  x a su profundidad. Por ejemplo,
    ghci> profArbol ejArbol
    N(3,0)
      (N(4,1)
         (N (5,2) (H (2,3)) (H (0,3)))
```

```
(H(0,2))
      (N (7,1) (H (0,2)) (H (3,2)))
data Arbola = Ha
             | N a (Arbol a) (Arbol a)
             deriving (Eq, Show)
ejArbol :: Arbol Integer
ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
profArbol :: Arbol a -> Arbol (a,Int)
profArbol (H x) = H (x,0)
profArbol (N x i d) = aux (N x i d) 0
 where aux (H x) n = H (x,n)
        aux (N x i d) n = N (x,n) (aux i (n+1)) (aux d (n+1))
-- Ejercicio 5.1. Dado un grafo no dirigido G, un camino en G es una
-- secuencia de nodos [v(1),v(2),v(3),...,v(n)] tal que para todo i
-- entre 1 y n-1, (v(i),v(i+1)) es una arista de G. Por ejemplo, dados
-- los grafos
      g1 = creaGrafo ND (1,3) [(1,2,3),(1,3,2),(2,3,5)]
      g2 = creaGrafo \ ND \ (1,4) \ [(1,2,3),(1,3,2),(1,4,5),(2,4,7),(3,4,0)]
-- la lista [1,2,3] es un camino en g1, pero no es un camino en g2
-- puesto que la arista (2,3) no existe en g2.
-- Definir la función
      camino :: (Ix a, Num t) => (Grafo a t) -> [a] -> Bool
-- tal que (camino g vs) se verifica si la lista de nodos vs es un camino
-- en el grafo g. Por ejemplo,
      camino q1 [1,2,3] == True
      camino q2 [1,2,3] == False
g1 = creaGrafo ND (1,3) [(1,2,3),(1,3,2),(2,3,5)]
g2 = creaGrafo \ ND \ (1,4) \ [(1,2,3),(1,3,2),(1,4,5),(2,4,7),(3,4,0)]
camino :: (Ix a, Num t) => (Grafo a t) -> [a] -> Bool
camino g vs = all (aristaEn g) (zip vs (tail vs))
-- Ejercicio 5.2. Definir la función
```

7.2.6. Examen 6 (7 de junio de 2016)

El examen es común con el del grupo 4 (ver página 664).

7.2.7. Examen 7 (23 de junio de 2016)

El examen es común con el del grupo 4 (ver página 673).

7.2.8. Examen 8 (01 de septiembre de 2016)

El examen es común con el del grupo 4 (ver página 682).

7.3. Exámenes del grupo 3 (Francisco J. Martín)

7.3.1. Examen 1 (27 de Octubre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (27 de octubre de 2015)
-- -- Ejercicio 1. Definir por comprensión la función
-- posiciones :: Int -> [Int]
-- tal que (posiciones x xs) es la lista de las posiciones (contando desde 0)
```

```
-- de las ocurrencias del elemento x en la lista xs. Por ejemplo,
     posiciones 2 [1,2,3,4]
                                          == [1]
     posiciones 2 [1,2,3,4,1,2,3,1]
                                         == [1,5]
     posiciones 2 [1,2,3,4,1,2,3,1,3,2,4,2] == [1,5,9,11]
posiciones :: Int -> [Int] -> [Int]
posiciones x xs =
   [i \mid (y,i) < -zip xs [0..], x == y]
-- Ejercicio 2. Una forma de aproximar el número pi es usando la
-- siguiente igualdad:
                           1*2 1*2*3
             рi
                      1
                                           1*2*3*4
            --- = 1 + --- + ----- + ------ + ------ + ....
                                   3*5*7
             2
                     3
                           3*5
                                            3*5*7*9
-- Es decir, la serie cuyo término general n-ésimo es el cociente entre el
  producto de los primeros n números y los primeros n números impares:
                       Product i
            s(n) = \cdots
                    Product (2*i+1)
-- Definir por comprensión la función:
     aproximaPi :: Double -> Double
-- tal que (aproximaPi n) es la aproximación del número pi calculada con la
-- serie anterior hasta el término n-ésimo. Por ejemplo,
                  == 3.141106021601377
     aproximaPi 10
     aproximaPi 30
                    == 3.1415926533011587
                  == 3.1415926535897922
     aproximaPi 50
aproximaPi :: Double -> Double
aproximaPi n =
   2*(sum [product [1..m] / product [2*i+1 | i <- [1..m]] | m <- [0..n] ])
__ _______
-- Ejercicio 3.1. Definir por recursión la función
     subPar :: Integer -> Integer
-- tal que (subPar n) es el número formado por las cifras que ocupan una
-- posición par (contando desde 0 por las unidades) en n en el mismo
```

```
-- orden. Por ejemplo,
      subPar 123
                              13
                       ==
                      ==
     subPar 123456
                              246
      subPar 123456789 == 13579
-- 1º solución
subPar :: Integer -> Integer
subPar 0 = 0
subPar n = (subPar (n 'div' 100))*10 + (n 'mod' 10)
-- 2ª solución
subPar2 :: Integer -> Integer
subPar2 n = read (reverse (aux (reverse (show n))))
    where aux (x:y:zs) = x : aux zs
          aux xs
                      = xs
-- 3ª solución
subPar3 :: Integer -> Integer
subPar3 n = aux (digitos n)
   where aux []
         aux[x] = x
          aux (x:y:zs) = x + 10 * aux zs
digitos :: Integer -> [Integer]
digitos n \mid n < 10 = [n]
          | otherwise = n 'rem' 10 : digitos (n 'div' 10)
-- Ejercicio 3.2. Definir por recursión la función
      subImpar :: Integer -> Integer
-- tal que (subImpar n) es el número formado por las cifras que ocupan una
-- posición impar (contando desde 0 por las unidades) en n en el mismo
-- orden. Por ejemplo,
     subImpar 123
                                 2
     subImpar 123456 ==
                              135
     subImpar 123456789 == 2468
-- 1º solución
subImpar :: Integer -> Integer
subImpar 0 = 0
subImpar n = (subImpar (n 'div' 100))*10 + ((n 'mod' 100) 'div' 10)
```

```
-- 2ª solución
subImpar2 :: Integer -> Integer
subImpar2 n = read (reverse (aux (reverse (show n))))
   where aux (x:y:zs) = y : aux zs
         aux xs
                = []
-- 3º solución
subImpar3 :: Integer -> Integer
subImpar3 n = aux (digitos n)
   where aux []
         aux [x]
                     = 0
         aux (x:y:zs) = y + 10 * aux zs
-- Ejercicio 4. Una forma de aproximar el número e es usando la
-- siquiente iqualdad:
                       1 1 1
             e = 1 + --- + --- + --- + ....
                           2! 3!
                       1!
                                       4!
-- Es decir, la serie cuyo término general n-ésimo es el recíproco del
-- factorial de n:
            s(n) = ---
                     n!
-- Definir por recursión la función:
     aproximaE :: Double -> Double
-- tal que (aproximaE n) es la aproximación del número e calculada con la
-- serie anterior hasta el término n-ésimo. Por ejemplo,
     aproximaE 5
                  == 2.716666666666663
     aproximaE 10 == 2.7182818011463845
     aproximaE 15 == 2.718281828458995
     aproximaE 20 == 2.7182818284590455
aproximaE :: Double -> Double
aproximaE 0 = 1
aproximaE n = (1/(product [1..n])) + aproximaE (n-1)
```

7.3.2. Examen 2 (2 de Diciembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (2 de diciembre de 2015)
-- § Librerías auxiliares
import Data.List
import Test.QuickCheck
-- Ejercicio 1.1. Una lista hermanada es una lista de números
-- estrictamente positivos en la que cada elemento tiene algún factor
-- primo en común con el siguiente, en caso de que exista, o alguno de
-- los dos es un 1. Por ejemplo,
     + [2,6,3,9,1,5] es una lista hermanada pues 2 y 6 tienen un factor
       en común (2); 6 y 3 tienen un factor en común (3); 3 y 9 tienen un
       factor en común (3); de 9 y 1 uno es el número 1; y de 1 y 5 uno
       es el número 1.
     + [2,3,5] no es una lista hermanada pues 2 y 3 no tienen ningún
       factor primo en común.
-- Definir, por comprensión, la función
     hermanadaC :: [Int] -> Bool
-- tal que (hermanada xs) se verifica si la lista xs es hermanada según la
-- definición anterior. Por ejemplo,
     hermanadaC [2,6,3,9,1,5] == True
     hermanadaC [2,3,5]
                             == False
hermanadaC :: [Int] -> Bool
hermanadaC xs = and [hermanos p | p <- zip xs (tail xs)]
-- (hermanos (x,y)) se verifica si x e y son hermanos; es decir, alguno es
-- igual a 1 o tienen algún factor primo en común
hermanos :: (Int, Int) -> Bool
hermanos (x,y) = x == 1 \mid \mid y == 1 \mid \mid \gcd x y /= 1
     -- Ejercicio 1.2. Definir, usando funciones de orden superior, la función
```

```
hermanadaS :: [Int] -> Bool
-- tal que (hermanada xs) se verifica si la lista xs es hermanada según la
-- definición anterior. Por ejemplo,
     hermanadaS [2,6,3,9,1,5] == True
     hermanadaS [2,3,5] == False
hermanadaS :: [Int] -> Bool
hermanadaS xs = all hermanos (zip xs (tail xs))
-- Ejercicio 1.3. Definir, por recursión, la función
     hermanadaR :: [Int] -> Bool
-- tal que (hermanada xs) se verifica si la lista xs es hermanada según la
-- definición anterior. Por ejemplo,
     hermanadaR [2,6,3,9,1,5] == True
     hermanadaR [2,3,5] == False
hermanadaR :: [Int] -> Bool
hermanadaR (x1:x:xs) = hermanos (x1,x) && hermanadaR (x:xs)
hermanadaR _ = True
__ _______
-- Ejercicio 1.4. Definir, por plegado, la función
     hermanadaP :: [Int] -> Bool
-- tal que (hermanada xs) se verifica si la lista xs es hermanada según la
-- definición anterior. Por ejemplo,
     hermanadaP [2,6,3,9,1,5] == True
     hermanadaP [2,3,5] == False
hermanadaP :: [Int] -> Bool
hermanadaP xs =
   foldl (\ws p -> hermanos p && ws) True (zip xs (tail xs))
__ ______
-- Ejercicio 2. Definir, por recursión con acumulador, la función
     sumaEnPosicion :: [Int] -> [Int] -> Int
-- tal que (sumaEnPosicion xs ys) es la suma de todos los elementos de xs
-- cuyas posiciones se indican en ys. Si alguna posición no existe en xs
-- entonces el valor se considera nulo. Por ejemplo,
-- sumaEnPosicion [1,2,3] [0,2] == 4
```

```
sumaEnPosicion [4,6,2] [1,3] == 6
      sumaEnPosicion [3,5,1] [0,1] == 8
sumaEnPosicion :: [Int] -> [Int] -> Int
sumaEnPosicion xs ys = aux xs [y \mid y \leftarrow ys, 0 \leftarrow y, y \leftarrow n] 0
    where n = length xs
          aux _ [] r = r
          aux xs (y:ys) r = aux xs ys (r + xs!!y)
-- Ejercicio 3. Definir la función
      productoInfinito :: [Int] -> [Int]
-- tal que (productoInfinito xs) es la lista infinita que en la posición
-- N tiene el producto de los N primeros elementos de la lista infinita
-- xs. Por ejemplo,
     take 5 (productoInfinito [1..]) == [1,2,6,24,120]
     take 5 (productoInfinito [2,4...]) == [2,8,48,384,3840]
      take 5 (productoInfinito [1,3...]) == [1,3,15,105,945]
-- lª definición (por comprensión):
productoInfinito1 :: [Integer] -> [Integer]
productoInfinito1 xs = [product (take n xs) | n <- [1..]]</pre>
-- 2ª definición (por recursión)
productoInfinito2 :: [Integer] -> [Integer]
productoInfinito2 (x:y:zs) = x : productoInfinito2 (x*y:zs)
-- 2º definición (por recursión y map)
productoInfinito3 :: [Integer] -> [Integer]
productoInfinito3 [] = [1]
productoInfinito3 (x:xs) = map (x^*) (1 : productoInfinito3 xs)
-- 4º definición (con scanl1)
productoInfinito4 :: [Integer] -> [Integer]
productoInfinito4 = scanl1 (*)
-- Comparación de eficiencia
      ghci> take 20 (show (productoInfinito1 [2,4..] !! 10000))
      "11358071114466915693"
    (0.35 secs, 98,287,328 bytes)
     ghci> take 20 (show (productoInfinito2 [2,4..] !! 10000))
```

```
"11358071114466915693"
      (0.35 secs, 98,840,440 bytes)
- -
      ghci> take 20 (show (productoInfinito3 [2,4..] !! 10000))
      "11358071114466915693"
      (7.36 secs, 6,006,360,472 bytes)
      ghci> take 20 (show (productoInfinito4 [2,4..] !! 10000))
      "11358071114466915693"
      (0.34 secs, 96,367,000 bytes)
-- Ejercicio 4. Definir la función
      siembra :: [Int] -> [Int]
-- tal que (siembra xs) es la lista ys obtenida al repartir cada
-- elemento x de la lista xs poniendo un 1 en las x siguientes
-- posiciones de la lista ys. Por ejemplo,
      siembra [4]
                       == [0,1,1,1,1]
      siembra [0,2]
                       == [0,0,1,1]
      siembra [4,2]
                       == [0,1,2,2,1]
-- El tercer ejemplo se obtiene sumando la siembra de 4 en la posición 0
-- (como el ejemplo 1) y el 2 en la posición 1 (como el ejemplo 2).
-- Otros ejemplos son
      siembra [0,4,2] == [0,0,1,2,2,1]
      siembra [3]
                       == [0,1,1,1]
      siembra [3,4,2] == [0,1,2,3,2,1]
      siembra [3,2,1] == [0,1,2,3]
-- Comprobar con QuickCheck que la suma de los elementos de (siembra xs)
-- es igual que la suma de los de xs.
-- Nota: Se supone que el argumento es una lista de números no negativos
-- y que se puede ampliar tanto como sea necesario para repartir los
-- elementos.
siembra :: [Int] -> [Int]
siembra [] = []
siembra (x:xs) = mezcla (siembra Elemento x) (0 : siembra xs)
siembraElemento :: Int -> [Int]
siembraElemento x = 0 : replicate x \cdot 1
mezcla :: [Int] -> [Int] -> [Int]
mezcla xs ys =
```

7.3.3. Examen 3 (25 de enero de 2016)

El examen es común con el del grupo 2 (ver página 594).

7.3.4. Examen 4 (15 de marzo de 2016)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (15 de marzo de 2016)
-- § Librerías auxiliares
 ______
import Data.List
import Data.Array
import qualified Data.Matrix as M
import Test.QuickCheck
-- Ejercicio 1. Definir la función
    sumaMaxima :: [Integer] -> Integer
-- tal que (sumaMaxima xs) es el valor máximo de la suma de elementos
-- consecutivos de la lista xs. Por ejemplo,
    sumaMaxima []
    sumaMaxima [-1,-2,-3]
                        == -1
- -
    sumaMaxima [2,-2,3,-3,4] == 4
    sumaMaxima [2,-1,3,-2,3] == 5
```

```
sumaMaxima [1,-1,3,-2,4] == 5
     sumaMaxima [2,-1,3,-2,4] == 6
-- 1ª definición
-- =========
sumaMaximal :: [Integer] -> Integer
sumaMaxima1 [] = 0
sumaMaxima1 xs =
   maximum (map sum [sublista xs i j | i <- [0..length xs - 1],
                                        j <- [i..length xs - 1]])</pre>
sublista :: [Integer] -> Int -> Int -> [Integer]
sublista xs i j =
    [xs!!k | k < - [i..j]]
-- 2ª definición
-- =========
sumaMaxima2 :: [Integer] -> Integer
sumaMaxima2 [] = 0
sumaMaxima2 xs
    | m <= 0 = m
    | otherwise = sumaMaximaAux 0 0 xs
   where m = maximum xs
sumaMaximaAux :: Integer -> Integer -> [Integer] -> Integer
sumaMaximaAux m v [] =
    max m v
sumaMaximaAux m v (x:xs)
    | x >= 0 = sumaMaximaAux m (v+x) xs
    | v+x > 0 = sumaMaximaAux (max m v) (v+x) xs
    | otherwise = sumaMaximaAux (max m v) 0 xs
-- 3º definición
-- =========
sumaMaxima3 :: [Integer] -> Integer
sumaMaxima3 [] = 0
sumaMaxima3 xs = maximum (map sum (segmentos xs))
-- (segmentos xs) es la lista de los segmentos de xs. Por ejemplo
```

```
segmentos "abc" == ["a", "ab", "abc", "b", "bc", "c"]
segmentos :: [a] -> [[a]]
segmentos xs =
    concat [tail (inits ys) | ys <- init (tails xs)]</pre>
-- 4º definición
-- =========
sumaMaxima4 :: [Integer] -> Integer
sumaMaxima4 [] = 0
sumaMaxima4 xs =
    maximum (concat [scanl1 (+) ys | ys <- tails xs])</pre>
-- Comprobación
-- =========
-- La propiedad es
prop sumaMaxima :: [Integer] -> Bool
prop_sumaMaxima xs =
    sumaMaxima2 xs == n \&\&
    sumaMaxima3 xs == n \&\&
    sumaMaxima4 xs == n
    where n = sumaMaximal xs
-- La comprobación es
      ghci> quickCheck prop sumaMaxima
      +++ OK, passed 100 tests.
-- Comparación de eficiencia
ghci> let n = 10^2 in sumaMaxima1 [-n..n]
      5050
- -
      (2.10 secs, 390,399,104 bytes)
      ghci> let n = 10^2 in sumaMaxima2 [-n..n]
      5050
- -
      (0.02 secs, 0 bytes)
      ghci> let n = 10^2 in sumaMaxima3 [-n..n]
      5050
- -
      (0.27 secs, 147,705,184 bytes)
      ghci> let n = 10^2 in sumaMaxima4 [-n..n]
      5050
      (0.04 secs, 11,582,520 bytes)
- -
```

```
-- Ejercicio 2.1. Una matriz de tipo par-nula es una matriz en la que
-- todas las posiciones cuya suma de índices es par tienen un valor
-- 0. Por ejemplo,
         (030)
         (502)
         (03)
         (50)
         (04)
         (030)
         (502)
         (040)
-- Representaremos las matrices mediante tablas de dos dimensiones cuyos
-- índices son pares de números naturales comenzando desde 1.
-- Definir la función
     matrizParNula :: (Eq a,Num a) => Matriz a -> Bool
-- tal que (matrizParNula m) se verifica si la matriz m es de tipo
-- par-nula. Por ejemplo,
     matrizParNula (listArray ((1,1),(2,3)) [0,3,0,5,0,2])
                                                              == True
     matrizParNula (listArray ((1,1),(2,3)) [0,3,5,0,0,4])
                                                              == False
     matrizParNula (listArray ((1,1),(3,2)) [0,3,5,0,0,4])
                                                              == True
     matrizParNula (listArray ((1,1),(3,2)) [0,3,0,5,0,2])
                                                              == False
     matrizParNula (listArray ((1,1),(3,3)) [0,3,0,5,0,2,0,4,0]) == True
type Matriz a = Array (Int,Int) a
matrizParNula :: (Eq a, Num a) => Matriz a -> Bool
matrizParNula m =
   all (== 0) [m!(i,j) | i <- [1..p], j <- [1..q], even (i+j)]
   where (p,q) = snd (bounds m)
-- Ejercicio 2.2. Definir la función
     matrizParNulaDistancias :: Int -> Int -> Matriz Int
-- tal que (matrizParNulaDistancias p q) es la matriz de tipo par-nula que en
-- las posiciones no nulas tiene la distancia (número de casillas contando la
```

```
-- inicial) más corta desde dicha posición hasta uno de los bordes de la propia
  matriz. Por ejemplo,
     matrizParNulaDistancias 3 3 =>
        (010)
         (101)
         (010)
     matrizParNulaDistancias 3 5 =>
        (01010)
         (10201)
        (01010)
     matrizParNulaDistancias 5 5 =>
         (01010)
        (10201)
        (02020)
        (10201)
         (01010)
matrizParNulaDistancias :: Int -> Int -> Matriz Int
matrizParNulaDistancias p g =
   array ((1,1),(p,q))
         [((i,j),if odd (i+j)
                 then minimum [i,j,p+1-i,q+1-j]
                 else 0) | i <- [1..p], j <- [1..q]]
-- Ejercicio 3. Definir la función
     permutacionesM :: (Eq a) => [a] -> [[a]]
-- tal que (permutacionesM xs) es la lista de las permutaciones de la
-- lista xs sin elementos consecutivos iguales. Por ejemplo,
                            == ["abab","baba"]
     permutacionesM "abab"
     permutacionesM "abc"
                             == ["abc", "acb", "bac", "bca", "cab", "cba"]
     permutacionesM "abcab" == ["abcab", "abcba", "abacb", "ababc", "acbab",
                                  "bacab", "bacba", "babca", "babac", "bcaba",
                                  "cabab", "cbaba"]
permutacionesM :: (Eq a) => [a] -> [[a]]
permutacionesM [] = [[]]
permutacionesM xs =
   concat [map (x:) (filter (\ ys -> null ys || head ys /= x)
                            (permutacionesM (borra x xs))) | x <- nub xs]</pre>
```

```
borra :: (Eq a) => a -> [a] -> [a]
borra x [] = []
borra x (y:xs)
    | x == y = xs
    | otherwise = y : borra x xs
-- Ejercicio 4.1. Un árbol de Fibonacci de grado N es un árbol binario
-- construido de la siguiente forma:
  + El árbol de Fibonacci de grado 0 es una hoja con dicho valor:
        (0)
   + El árbol de Fibonacci de grado 1 es:
           (1)
        (0)
              (0)
   + El árbol de Fibonacci de grado N (> 1) es el árbol que en su raíz
     tiene el valor N, su hijo izquierdo es el árbol de Fibonacci de
     grado (N-2) y su hijo derecho es el árbol de Fibonacci de grado
     (N-1).
   De esta forma, el árbol de Fibonacci de grado 2 es:
           (2)
          /
              \
        (0)
              (1)
           (0)
                 (0)
   el árbol de Fibonacci de grado 3 es:
                 (3)
           (1)
                        (2)
        (0)
              (0)
                     (0)
                           (1)
                        (0)
                              (0)
   y el árbol de Fibonacci de grado 4 es:
                         (4)
              (2)
                                   (3)
           (0)
                 (1)
                             (1)
                                         (2)
```

(0)

(0)

```
(0)
                             (0)
                                   (0) \qquad (1)
                                      (0) \qquad (0)
-- Definir la función
     esArbolFib :: Arbol -> Bool
-- tal que (esArbolFib a) comprueba si el árbol a es un árbol de Fibonacci.
-- Por ejemplo,
     esArbolFib (H 0)
                                             == True
     esArbolFib (H 1)
                                             == False
     esArbolFib (N 1 (H 0) (H 0))
                                             == True
     esArbolFib (N 2 (H 0) (H 1))
                                             == False
     esArbolFib (N 2 (H 0) (N 1 (H 0) (H 0))) == True
     esArbolFib (N 3 (H 0) (N 1 (H 0) (H 0))) == False
data Arbol = H Int
          | N Int Arbol Arbol
          deriving (Show, Eq)
raiz :: Arbol -> Int
raiz (H n) = n
raiz (N n _ ) = n
esArbolFib :: Arbol -> Bool
esArbolFib (H 0) = True
esArbolFib (N 1 (H 0) (H 0)) = True
esArbolFib (N n ai ad) =
   (n > 1) \&\& raiz ai == n-2 \&\& raiz ad == n-1 \&\&
   esArbolFib ai && esArbolFib ad
esArbolFib _ = False
-- Ejercicio 4.2. Definir la constante
     arbolesFib :: [Arbol]
-- tal que (arbolesFib) es la lista infinita que en la posición N tiene
-- el árbol de Fibonacci de grado N. Por ejemplo,
     arbolesFib!!0 == H 0
     arbolesFib!!1 == N 1 (H 0) (H 0)
     arbolesFib!!2 == N 2 (H 0) (N 1 (H 0) (H 0))
     arbolesFib!!3 == N 3 (N 1 (H 0) (H 0)) (N 2 (H 0) (N 1 (H 0)))
```

```
-- 1ª solución
-- ========
arbolFib1 :: Int -> Arbol
arbolFib1 0 = H 0
arbolFib1 1 = N 1 (H 0) (H 0)
arbolFib1 n = N n (arbolFib1 (n-2)) (arbolFib1 (n-1))
arbolesFib1 :: [Arbol]
arbolesFib1 =
    [arbolFib1 k \mid k < [0..]]
-- 2ª solución
-- =========
arbolesFib2 :: [Arbol]
arbolesFib2 =
    H 0 :
    N 1 (H 0) (H 0):
    zipWith3 N [2..] arbolesFib2 (tail arbolesFib2)
```

7.3.5. Examen 5 (3 de mayo de 2016)

```
-- considera un término con dicho grado cuyo coeficiente es el producto
-- de los coeficientes de dichos términos. Se muestran algunos ejemplos
-- de producto de grado entre polinomios:
-- + Dos polinomios con un único término con el mismo grado
        2*x^2 (o) 3*x^2 = 6*x^2
-- + Dos polinomios entre los que no hay términos con el mismo grado
        2*x^2 + 1 (o) 3*x^3 - x = 0
-- + Dos polinomios entre los que hay dos pares de términos con el mismo grado
        2*x^2 + x + 2 (o) 3*x^2 - 4*x = 6*x^2 - 4*x
-- Definir la función
      productoDeGrado :: Polinomio Int -> Polinomio Int -> Polinomio Int
-- tal que (productoDeGrado p q) es el producto de grado de los polinomios
-- p y q. Por ejemplo, dados los polinomios
      pol1 = 4*x^4 + 5*x^3 + 1
      pol2 = 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1
- -
      pol3 = -3*x^7 + 3*x^6 + -2*x^4 + 2*x^3 + -1*x + 1
      pol4 = -1*x^6 + 3*x^4 + -3*x^2 + 1
-- entonces
      productoDeGrado pol1 pol1 \Rightarrow 16*x^4 + 25*x^3 + 1
      productoDeGrado pol1 pol2 => 20*x^4 + 20*x^3 + 1
      productoDeGrado pol1 pol3 \Rightarrow -8*x^4 + 10*x^3 + 1
      productoDeGrado pol3 pol4 => -3*x^6 + -6*x^4 + 1
listaApol :: [Int] -> Polinomio Int
listaApol xs = foldr (\ (n,c) p \rightarrow consPol n c p)
                     polCero
                     (zip [0..] xs)
pol1, pol2, pol3, pol4 :: Polinomio Int
pol1 = listaApol [1,0,0,5,4,0]
pol2 = listaApol [1,2,3,4,5,6]
pol3 = listaApol [1, -1, 0, 2, -2, 0, 3, -3]
pol4 = listaApol [1,0,-3,0,3,0,-1]
productoDeGrado :: Polinomio Int -> Polinomio Int -> Polinomio Int
productoDeGrado p q
    | esPolCero p = polCero
    | esPolCero q = polCero
                = productoDeGrado p rq
    | gp < gq
    gq < gp = productoDeGrado rp q
    | otherwise = consPol gp (cp*cq) (productoDeGrado rp rq)
```

```
where gp = grado p
          gq = grado q
          cp = coefLider p
          cq = coefLider q
          rp = restoPol p
          rq = restoPol q
-- Ejercicio 4.1. Una posición (i,j) de una matriz p es un cruce si
-- todos los elementos de p que están fuera de la fila i y fuera de la
-- columna j son nulos. Una matriz cruz es una matriz que tiene algún
-- cruce. Por ejemplo, las siguientes matrices cruces
      (0020)
                      (00100)
                                         (00600)
      (3342)
                      (00200)
                                          (00200)
      (0000)
                      (33120)
                                          (35125)
                      (00900)
      (0090)
-- ya que la 1^{\underline{a}} tiene un cruce en (2,3), la 2^{\underline{a}} en (3,3) y la 3^{\underline{a}} en
-- (3,3).
-- Utilizaremos la librería Matrix para desarrollar este ejercicio.
-- Definir la función
      esMatrizCruz :: Matrix Int -> Bool
-- tal que (esMatrizCruz m) comprueba si la matriz m es una matriz cruz.
-- Por ejemplo, dadas las matrices
      p1 = M.matrix 3 3 (\ (i,j) \rightarrow (if any even [i,j] then 1 else 0))
      p2 = M.matrix 3 4 ((i,j) -> (i+j))
-- entonces
     esMatrizCruz p1 == True
      esMatrizCruz p2 == False
p1, p2 :: M.Matrix Int
p1 = M.matrix 3 3 (\ (i,j) \rightarrow (if any even [i,j] then 1 else 0))
p2 = M.matrix 3 4 (uncurry (+))
-- 1º definición
-- =========
esMatrizCruz :: M.Matrix Int -> Bool
esMatrizCruz p =
    or [esCruce p m n (i,j) \mid i < [1..m], j < [1..n]]
   where m = M.nrows p
```

```
n = M.ncols p
-- (esCruce p m n (i,j)) se verifica si (i,j) es un cruce de p (que
-- tiene m filas y n columnas)
esCruce :: M.Matrix Int -> Int -> Int -> (Int,Int) -> Bool
esCruce p m n (i,j) =
   all (== 0) [p M.! (x,y) \mid x < [1..i-1]++[i+1..m],
                             y \leftarrow [1..j-1]++[j+1..n]
-- 2ª definición de esCruce
esCruce2 :: M.Matrix Int -> Int -> Int -> (Int,Int) -> Bool
esCruce2 p m n (i,j) =
   M.minorMatrix i j p == M.zero (m-1) (n-1)
-- Ejercicio 4.2. Definir la función
     matrizCruz :: Int -> Int -> Int -> M.Matrix Int
-- tal que (matrizCruz m n i j) es la matriz cruz de dimensión (m,n) con
-- respecto a la posición (i,j), en la que el valor de cada elemento no
-- nulo es la distancia en línea recta a la posición (i,j), contando
-- también esta última. Por ejemplo,
     ghci> matrizCruz 3 3 (2,2)
     (020)
     (212)
     (020)
     ghci> matrizCruz 4 5 (2,3)
     (00200)
     (32123)
- -
     (00200)
- -
    (00300)
     ghci> matrizCruz 5 3 (2,3)
     (002)
- -
     (321)
     (002)
     (003)
     (004)
```

7.3.6. Examen 6 (7 de junio de 2016)

El examen es común con el del grupo 4 (ver página 664).

7.3.7. Examen 7 (23 de junio de 2016)

El examen es común con el del grupo 4 (ver página 673).

7.3.8. Examen 8 (01 de septiembre de 2016)

El examen es común con el del grupo 4 (ver página 682).

7.4. Exámenes del grupo 4 (José A. Alonso y Luis Valencia)

7.4.1. Examen 1 (6 de Noviembre de 2015)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 1º examen de evaluación continua (6 de noviembre de 2015)
-- -- § Librerías auxiliares
-- import Test.QuickCheck
-- Ejercicio 1.1. Definir la función
```

```
repiteElementos :: Int -> [a] -> [a]
-- tal que (repiteElementos k xs) es la lista obtenida repitiendo cada
-- elemento de xs k veces. Por ejemplo,
      repiteElementos 3 [5,2,7,4] = [5,5,5,2,2,2,7,7,7,4,4,4]
-- 1ª definición (por comprensión):
repiteElementos1 :: Int -> [a] -> [a]
repiteElementos1 k xs = concat [replicate k x | x <- xs]</pre>
-- 2ª definición (con map)
repiteElementos2 :: Int -> [a] -> [a]
repiteElementos2 k xs = concat (map (replicate k) xs)
-- 3ª definición (con concatMap):
repiteElementos3 :: Int -> [a] -> [a]
repiteElementos3 k = concatMap (replicate k)
-- 4ª definición (por recursión):
repiteElementos4 :: Int -> [a] -> [a]
repiteElementos4 k [] = []
repiteElementos4 k (x:xs) = replicate k x ++ repiteElementos4 k xs
-- 5ª definición (por plegado):
repiteElementos5 :: Int -> [a] -> [a]
repiteElementos5 k = foldr ((++) . replicate k) []
-- Ejercicio 1.2. Comprobar con QuickCheck que, para todo número natural
-- k y toda lista xs, el número de elementos de (repiteElementos k xs)
-- es k veces el número de elementos de xs.
-- Nota. Al hacer la comprobación limitar el tamaño de las pruebas como
-- se indica a continuación
      quickCheckWith (stdArgs {maxSize=7}) prop repiteElementos
-- La propiedad es
prop repiteElementos :: Int -> [Int] -> Property
prop repiteElementos k xs =
    k >= 0 ==> length (repiteElementos1 k xs) == k * length xs
-- La comprobación es
```

```
ghci> quickCheckWith (stdArgs {maxSize=7}) prop repiteElementos
     +++ OK, passed 100 tests.
-- Ejercicio 2. Todo número entero positivo n se puede escribir como
-- 2^k*m, con m impar. Se dice que m es la parte impar de n. Por
-- ejemplo, la parte impar de 40 es 5 porque 40 = 5*2^3.
-- Definir la función
      parteImpar :: Integer -> Integer
-- tal que (parteImpar n) es la parte impar de n. Por ejemplo,
      parteImpar 40 == 5
parteImpar :: Integer -> Integer
parteImpar n | even n = parteImpar (n 'div' 2)
             | otherwise = n
-- Ejercicio 3. Definir la función
      refinada :: [Float] -> [Float]
-- tal que (refinada xs) es la lista obtenida intercalando entre cada
-- dos elementos consecutivos de xs su media aritmética. Por ejemplo,
      refinada [2,7,1,8] = [2.0,4.5,7.0,4.0,1.0,4.5,8.0]
      refinada [2]
                         == [2.0]
      refinada []
                          == []
-- 1ª definición (por recursión):
refinada :: [Float] -> [Float]
refinada (x:y:zs) = x : (x+y)/2 : refinada (y:zs)
refinada xs
                 = xs
-- 2ª definición (por comprensión);
refinada2 :: [Float] -> [Float]
refinada2 []
              = []
refinada2 (x:xs) = x : concat [[(a+b)/2,b] | (a,b) <- zip (x:xs) xs]
-- Ejercicio 4. Se dice que en una sucesión de números x(1), x(2), \ldots, x(n)
-- hay una inversión cuando existe un par de números x(i) > x(j), siendo
-- i < j. Por ejemplo, en la sucesión 2, 1, 4, 3 hay dos inversiones (2
-- antes que 1 y 4 antes que 3) y en la sucesión 4, 3, 1, 2 hay cinco
```

```
-- inversiones (4 antes 3, 4 antes 1, 4 antes 2, 3 antes 1, 3 antes 2).
-- Definir la función
     numeroInversiones :: Ord a => [a] -> Int
-- tal que (numeroInversiones xs) es el número de inversiones de xs. Por
-- ejemplo,
     numeroInversiones [2,1,4,3] ==
     numeroInversiones [4,3,1,2] == 5
  -----
-- 1ª solución (por recursión)
numeroInversiones1 :: Ord a => [a] -> Int
numeroInversiones1 [] = 0
numeroInversiones1 (x:xs) =
   length [y \mid y < -xs, y < x] + numeroInversiones1 xs
-- 2ª solución (por comprensión)
numeroInversiones2 :: Ord a => [a] -> Int
numeroInversiones2 xs =
   length [(i,j) \mid i \leftarrow [0..n-2], j \leftarrow [i+1..n-1], xs!!i > xs!!j]
   where n = length xs
__ _______
-- Ejercicio 5.1. Definir la función
     producto :: [[a]] -> [[a]]
-- tal que (producto xss) es el producto cartesiano de los conjuntos xss.
-- Por ejemplo,
     ghci> producto [[1,3],[2,5]]
     [[1,2],[1,5],[3,2],[3,5]]
     ghci> producto [[1,3],[2,5],[6,4]]
     [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
     ghci> producto [[1,3,5],[2,4]]
     [[1,2],[1,4],[3,2],[3,4],[5,2],[5,4]]
     ghci> producto []
     [[]]
- -
     ghci> producto [[x] | x <- [1..10]]
     [[1,2,3,4,5,6,7,8,9,10]]
producto :: [[a]] -> [[a]]
producto []
             = [[]]
producto (xs:xss) = [x:ys | x <- xs, ys <- producto xss]</pre>
```

```
-- Ejercicio 5.2. Comprobar con QuickCheck que el número de elementos de
-- (producto xss) es el producto de los números de elementos de los
-- elementos de xss.
-- Nota. Al hacer la comprobación limitar el tamaño de las pruebas como
-- se indica a continuación
     quickCheckWith (stdArgs {maxSize=7}) prop_producto
  _____
-- La propiedad es
prop_producto :: [[Int]] -> Bool
prop producto xss =
   length (producto xss) == product [length xs | xs <- xss]</pre>
-- La comprobación es
     ghci> quickCheckWith (stdArgs {maxSize=7}) prop producto
     +++ OK, passed 100 tests.
        Examen 2 (4 de Diciembre de 2015)
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 2º examen de evaluación continua (4 de diciembre de 2015)
__ ______
  ______
-- § Librerías auxiliares
import Data.Numbers.Primes
import Data.List
-- Ejercicio 1. Definir la función
     listasDecrecientesDesde :: Int -> [[Int]]
-- tal que (listasDecrecientesDesde n) es la lista de las sucesiones
-- estrictamente decrecientes cuyo primer elemento es n. Por ejemplo,
     ghci> listasDecrecientesDesde 2
     [[2],[2,1],[2,1,0],[2,0]]
     ghci> listasDecrecientesDesde 3
     [[3], [3,2], [3,2,1], [3,2,1,0], [3,2,0], [3,1], [3,1,0], [3,0]]
```

```
-- 1ª solución
listasDecrecientesDesde :: Int -> [[Int]]
listasDecrecientesDesde 0 = [[0]]
listasDecrecientesDesde n =
    [n] : [n:ys | m <- [n-1,n-2..0], ys <- listasDecrecientesDesde m]</pre>
-- 2ª solución
listasDecrecientesDesde2 :: Int -> [[Int]]
listasDecrecientesDesde2 n =
    [n : xs \mid xs < -subsequences [n-1,n-2..0]]
-- Ejercicio 2. Una propiedad del 2015 es que la suma de sus dígitos
-- coincide con el número de sus divisores; en efecto, la suma de sus
-- dígitos es 2+0+1+5=8 y tiene 8 divisores (1, 5, 13, 31, 65, 155, 403
-- y 2015).
-- Definir la sucesión
     especiales :: [Int]
-- formada por los números n tales que la suma de los dígitos de n
-- coincide con el número de divisores de n. Por ejemplo,
     take 12 especiales == [1,2,11,22,36,84,101,152,156,170,202,208]
-- Usando la sucesión, calcular cuál será el siguiente al 2015 que
-- cumplirá la propiedad.
especiales :: [Int]
especiales = [n \mid n < -[1..], sum (digitos n) == length (divisores n)]
digitos :: Int -> [Int]
digitos n = [read [d] | d <- show n]
divisores :: Int -> [Int]
divisores n = n : [x \mid x < [1..n 'div' 2], n 'mod' x == 0]
-- El cálculo del siguiente al 2015 que cumplirá la propiedad es
     ghci> head (dropWhile (<=2015) especiales)</pre>
     2101
```

-- Ejercicio 3. Las expresiones aritméticas se pueden representar como

```
-- árboles con números en las hojas y operaciones en los nodos. Por
-- ejemplo, la expresión "9-2*4" se puede representar por el árbol
      /\
      9 *
-- Definiendo el tipo de dato Arbol por
     data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
-- la representación del árbol anterior es
     N(-)(H9)(N(*)(H2)(H4))
-- Definir la función
     valor :: Arbol -> Int
-- tal que (valor a) es el valor de la expresión aritmética
-- correspondiente al árbol a. Por ejemplo,
      valor (N (-) (H 9) (N (*) (H 2) (H 4)))
                                                == 1
      valor (N (+) (H 9) (N (*) (H 2) (H 4)))
                                                    17
     valor (N (+) (H 9) (N (div) (H 4) (H 2))) == 11
     valor (N (+) (H 9) (N (max) (H 4) (H 2))) == 13
data Arbol = H Int | N (Int -> Int -> Int) Arbol Arbol
valor :: Arbol -> Int
valor(Hx) = x
valor (N f i d) = f (valor i) (valor d)
-- Ejercicio 4. Un número x cumple la propiedad de Roldán si la suma de
-- x y el primo que sique a x es un número primo. Por ejemplo, el número
-- 8 es un número de Roldán porque su siguiente primo es 11 y
-- 8+11=19 es primo. El 12 no es un número de Roldán porque su siguiente
-- primo es 13 y 12+13=25 no es primo.
- -
-- Definir la sucesión
       roldanes :: [Integer]
-- cuyo elementos son los números de Roldán. Por ejemplo,
      ghci> take 20 roldanes
      [0,1,2,6,8,14,18,20,24,30,34,36,38,48,50,54,64,68,78,80]
      ghci> roldanes3 !! 2015
     18942
```

```
-- lª definición
-- =========
roldanes :: [Integer]
roldanes = 0: 1: [x \mid x < [2,4..], primo(x + siguientePrimo x)]
primo :: Integer -> Bool
primo x = [y \mid y < -[1..x], x 'rem' y == 0] == [1,x]
siguientePrimo :: Integer -> Integer
siguientePrimo x = head [y | y <- [x+1..], primo y]
-- 2ª definición (por recursión)
roldanes2 :: [Integer]
roldanes2 = 0 : 1 : 2: aux [2,4..] primos where
   aux (x:xs) (y:ys)
       | y < x
                          = aux (x:xs) ys
       | (x+y)  'pertenece' ys = x : aux xs (y:ys)
       | otherwise = aux xs (y:ys)
   pertenece x ys = x == head (dropWhile (<x) ys)
primos :: [Integer]
primos = 2 : [x | x < - [3,5..], primo x]
-- 3ª definición (con la librería de primos)
roldanes3 :: [Integer]
roldanes3 = 0: 1: [x \mid x < [2,4..], isPrime (x + siguientePrimo3 x)]
siguientePrimo3 x = head [y | y <- [x+1..], isPrime y]
-- 4ª definición (por recursión con la librería de primos)
-- -----
roldanes4 :: [Integer]
roldanes4 = 0 : 1 : 2: aux [2,4..] primes where
   aux (x:xs) (y:ys)
       | y < x
                           = aux (x:xs) ys
```

```
| (x+y)  'pertenece' ys = x : aux xs (y:ys)
        | otherwise = aux xs (y:ys)
    pertenece x ys = x == head (dropWhile (<x) ys)
-- 5ª definición
-- ==========
roldanes5 :: [Integer]
roldanes5 = [a | q <- primes,</pre>
                let p = siguientePrimo3 (q 'div' 2),
                let a = q-p,
                siguientePrimo3 a == p]
-- 6º definición
-- =========
roldanes6 :: [Integer]
roldanes6 = [x \mid (x,y) < -zip [0..] ps, isPrime (x+y)]
    where ps = 2:2:concat (zipWith f primes (tail primes))
          f p q = genericReplicate (q-p) q
-- 7º definición
-- =========
roldanes7 :: [Integer]
roldanes7 = 0:1:(aux primes (tail primes) primes)
    where aux (x:xs) (y:ys) zs
              | null rs = aux xs ys zs2
              | otherwise = [r-y | r <- rs] ++ (aux xs ys zs2)
              where a = x+y
                    b = 2*y-1
                    zs1 = takeWhile (<=b) zs</pre>
                    rs = [r | r < - [a..b], r 'elem' zs1]
                    zs2 = dropWhile (<=b) zs</pre>
-- Comparación de eficiencia
      ghci> :set +s
- -
      ghci> roldanes !! 700
- -
      5670
      (12.72 secs, 1245938184 bytes)
     ghci> roldanes2 !! 700
- -
```

```
5670
- -
      (8.01 secs, 764775268 bytes)
- -
      ghci> roldanes3 !! 700
      5670
      (0.22 secs, 108982640 bytes)
      ghci> roldanes4 !! 700
      5670
      (0.20 secs, 4707384 bytes)
      ghci> roldanes5 !! 700
      5670
      (0.17 secs, 77283064 bytes)
      ghci> roldanes6 !! 700
      5670
      (0.08 secs, 31684408 bytes)
      ghci> roldanes7 !! 700
      5670
      (0.03 secs, 4651576 bytes)
      ghci> roldanes3 !! 2015
      18942
      (1.78 secs, 1,065,913,952 bytes)
      ghci> roldanes4 !! 2015
      18942
      (2.85 secs, 0 bytes)
      ghci> roldanes5 !! 2015
      18942
      (1.17 secs, 694,293,520 bytes)
      ghci> roldanes6 !! 2015
- -
      18942
      (0.48 secs, 248,830,328 bytes)
      ghci> roldanes7 !! 2015
      18942
      (0.11 secs, 0 bytes)
```

7.4.3. Examen 3 (25 de enero de 2016)

```
-- Informática: 3º examen de evaluación continua (25 de enero de 2016)
-- Puntuación: Cada uno de los 4 ejercicios vale 2.5 puntos.
import Test.QuickCheck
import Data.Numbers.Primes
-- Ejercicio 1. Los máximos y mínimos de una función son sus valores
-- óptimos respecto de las relaciones > y <, respectivamente. Por
-- ejemplo, para la lista xs = ["ab", "c", "de", "f"], la función longitud
-- alcanza sus valores máximos (es decir, óptimos respecto >) en "ab" y
-- "de" (que son los elementos de xs de mayor longitud) y alcanza sus
-- valores mínimos (es decir, óptimos respecto <) en "c" y "f" (que son
-- los elementos de xs de menor longitud).
-- Definir la función
      optimos :: Eq b => (b -> b -> Bool) -> (a -> b) -> [a] -> [a]
-- tal que (optimos r f xs) es la lista de los elementos de xs donde la
-- función f alcanza sus valores óptimos respecto de la relación r. Por
-- ejemplo,
      optimos (>) length ["ab","c","de","f"] == ["ab","de"]
      optimos (<) length ["ab","c","de","f"] == ["c","f"]
-- -----
optimos :: Eq a => (b -> b -> Bool) -> (a -> b) -> [a] -> [a]
optimos r f xs =
    [x \mid x <- xs, null [y \mid y <- xs, x /= y, r (f y) (f x)]]
-- Ejercicio 2. Los árboles se pueden representar mediante el siguiente
-- tipo de datos
     data Arbol a = N a [Arbol a]
                    deriving Show
-- Por ejemplo, los árboles
- -
       1
                       3
      /\
                      /|\
- -
```

```
2
          3
                     / | \
                     5 4 7
          4
                          2 1
-- se representan por
      ej1, ej2 :: Arbol Int
      ei1 = N 1 [N 2 [], N 3 [N 4 []]]
      ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]
-- Definir la función
      mayorProducto :: (Ord a, Num a) => Arbol a -> a
-- tal que (mayorProducto a) es el mayor producto de las ramas del árbol
  a. Por ejemplo,
      ghci> mayorProducto (N 1 [N 2 [], N 3 []])
      ghci> mayorProducto (N 1 [N 8 [], N 4 [N 3 []]])
      ghci> mayorProducto (N 1 [N 2 [],N 3 [N 4 []]])
      12
      ghci> mayorProducto (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
data Arbol a = N a [Arbol a]
               deriving Show
-- 1º definición
mayorProducto1 :: (Ord a, Num a) => Arbol a -> a
mayorProducto1 (N x []) = x
mayorProductol (N x xs) = x * maximum [mayorProductol a | a <- xs]
-- Se puede usar map en lugar de comprensión:
mayorProductola :: (Ord a, Num a) => Arbol a -> a
mayorProducto1a (N \times []) = x
mayorProductola (N x xs) = x * maximum (map mayorProductola xs)
-- 2ª definición
mayorProducto2 :: (Ord a, Num a) => Arbol a -> a
mayorProducto2 a = maximum [product xs | xs <- ramas a]</pre>
-- (ramas a) es la lista de las ramas del árbol a. Por ejemplo,
      ghci> ramas (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
      [[3,5,6],[3,4],[3,7,2],[3,7,1]]
```

```
ramas :: Arbol b -> [[b]]
ramas (N \times []) = [[x]]
ramas (N \times as) = [x : xs \mid a <- as, xs <- ramas a]
-- En la definición de mayorProducto2 se puede usar map en lugar de
-- comprensión.
mayorProducto2a :: (Ord a, Num a) => Arbol a -> a
mayorProducto2a a = maximum (map product (ramas a))
-- Ejercicio 3.1. Definir la sucesión
      sumasDeDosPrimos :: [Integer]
-- cuyos elementos son los números que se pueden escribir como suma de
-- dos números primos. Por ejemplo,
      ghci> take 20 sumasDeDosPrimos
      [4,5,6,7,8,9,10,12,13,14,15,16,18,19,20,21,22,24,25,26]
      ghci> sumasDeDosPrimos !! 2016
      3146
-- lª definición
-- ==========
sumasDeDosPrimos1 :: [Integer]
sumasDeDosPrimos1 =
    [n | n <- [1..], not (null (sumaDeDosPrimos1 n))]</pre>
-- (sumasDeDosPrimos1 n) es la lista de pares de primos cuya suma es
-- n. Por ejemplo,
      sumaDeDosPrimos 9 = [(2,7),(7,2)]
      sumaDeDosPrimos 16 = [(3,13),(5,11),(11,5),(13,3)]
      sumaDeDosPrimos 17 == []
sumaDeDosPrimos1 :: Integer -> [(Integer,Integer)]
sumaDeDosPrimos1 n =
    [(x,n-x) \mid x < - primosN, isPrime (n-x)]
    where primosN = takeWhile (< n) primes
-- 2ª definición
-- ==========
sumasDeDosPrimos2 :: [Integer]
sumasDeDosPrimos2 =
    [n | n <- [1..], not (null (sumaDeDosPrimos2 n))]</pre>
```

```
-- (sumasDeDosPrimos2 n) es la lista de pares (x,y) de primos cuya suma
-- es n y tales que x <= y. Por ejemplo,
      sumaDeDosPrimos2 9 == [(2,7)]
      sumaDeDosPrimos2\ 16 == [(3,13),(5,11)]
      sumaDeDosPrimos2 17 == []
sumaDeDosPrimos2 :: Integer -> [(Integer,Integer)]
sumaDeDosPrimos2 n =
    [(x,n-x) \mid x < - primosN, isPrime (n-x)]
   where primosN = takeWhile (<= (n 'div' 2)) primes
-- 3ª definición
 - =========
sumasDeDosPrimos3 :: [Integer]
sumasDeDosPrimos3 = filter esSumaDeDosPrimos3 [4..]
-- (esSumaDeDosPrimos3 n) se verifica si n es suma de dos primos. Por
-- ejemplo,
      esSumaDeDosPrimos3 9 == True
      esSumaDeDosPrimos3 16 ==
                                True
      esSumaDeDosPrimos3 17 == False
esSumaDeDosPrimos3 :: Integer -> Bool
esSumaDeDosPrimos3 n
             = isPrime (n-2)
    odd n
    | otherwise = any isPrime [n-x | x <- takeWhile (<= (n 'div' 2)) primes]
-- 4º definición
-- ==========
-- Usando la conjetura de Goldbach que dice que "Todo número par mayor
-- que 2 puede escribirse como suma de dos números primos".
sumasDeDosPrimos4 :: [Integer]
sumasDeDosPrimos4 = filter esSumaDeDosPrimos4 [4..]
-- (esSumaDeDosPrimos4 n) se verifica si n es suma de dos primos. Por
-- ejemplo,
      esSumaDeDosPrimos4 9 ==
                                True
      esSumaDeDosPrimos4 16 ==
                                True
      esSumaDeDosPrimos4 17 == False
esSumaDeDosPrimos4 :: Integer -> Bool
esSumaDeDosPrimos4 n = even n || isPrime (n-2)
```

termino = do

```
-- Comparación de eficiencia
ghci> sumasDeDosPrimos1 !! 3000
- -
     (6.66 secs, 3,278,830,304 bytes)
     ghci> sumasDeDosPrimos2 !! 3000
     4731
     (3.69 secs, 1,873,984,088 bytes)
     ghci> sumasDeDosPrimos3 !! 3000
     4731
     (0.35 secs, 175,974,016 bytes)
     ghci> sumasDeDosPrimos4 !! 3000
     (0.07 secs, 18,396,432 bytes)
     ghci> sumasDeDosPrimos3 !! 30000
     49785
     (6.65 secs, 3,785,736,416 bytes)
     ghci> sumasDeDosPrimos4 !! 30000
     49785
- -
     (1.06 secs, 590,767,736 bytes)
-- En lo que sigue usaremos la 1ª definición
sumasDeDosPrimos :: [Integer]
sumasDeDosPrimos = sumasDeDosPrimos1
-- Ejercicio 3.2. Definir el procedimiento
     termino :: IO ()
-- que pregunta por una posición y escribe el término de la sucesión
  sumasDeDosPrimos en dicha posición. Por ejemplo,
     ghci> termino
     Escribe la posicion: 5
     El termino en la posicion 5 es 9
     ghci> termino
     Escribe la posicion: 19
     El termino en la posicion 19 es 26
  _____
termino :: IO ()
```

```
putStr "Escribe la posicion: "
 xs <- getLine
 let n = read xs
 putStr "El termino en la posicion "
 putStr xs
 putStr " es "
 putStrLn (show (sumasDeDosPrimos !! n))
-- Ejercicio 4.1. Una función f entre dos conjuntos A e B se puede
-- representar mediante una lista de pares de AxB tales que para cada
-- elemento a de A existe un único elemento b de B tal que (a,b)
-- pertenece a f. Por ejemplo,
     + [(1,2),(3,6)] es una función de [1,3] en [2,4,6];
     + [(1,2)] no es una función de [1,3] en [2,4,6], porque no tiene
       ningún par cuyo primer elemento sea igual a 3;
     + [(1,2),(3,6),(1,4)] no es una función porque hay dos pares
       distintos cuya primera coordenada es 1.
-- Definir la función
     funciones :: [a] -> [a] -> [[(a,a)]]
-- tal que (funciones xs ys) es el conjunto de las funciones de xs en
  ys. Por ejemplo,
     ghci> funciones [] [2,4,6]
     [[]]
     ghci> funciones [3] [2,4,6]
     [[(3,2)],[(3,4)],[(3,6)]]
     ghci> funciones [1,3] [2,4,6]
     [[(1,2),(3,2)],[(1,2),(3,4)],[(1,2),(3,6)],[(1,4),(3,2)],[(1,4),(3,4)],
      [(1,4),(3,6)], [(1,6),(3,2)], [(1,6),(3,4)], [(1,6),(3,6)]]
funciones :: [a] -> [a] -> [[(a,a)]]
funciones [] = [[]]
funciones [x] ys = [[(x,y)] | y <- ys]
funciones (x:xs) ys = [((x,y):f) | y <- ys, f <- fs]
   where fs = funciones xs ys
-- Ejercicio 4.2. Comprobar con QuickCheck que si xs es un conjunto con n
-- elementos e ys un conjunto con m elementos, entonces (funciones xs ys)
-- tiene m^n elementos.
```

```
-- Nota. Al hacer la comprobación limitar el tamaño de las pruebas como
-- se indica a continuación
    ghci> quickCheckWith (stdArgs {maxSize=7}) prop funciones
    +++ OK, passed 100 tests.
prop funciones :: [Int] -> [Int] -> Bool
prop funciones xs ys =
   length (funciones xs ys) == (length ys)^(length xs)
7.4.4. Examen 4 (16 de marzo de 2016)
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 4^{\circ} examen de evaluación continua (16 de marzo de 2016)
  ______
__ _______
-- § Librerías auxiliares
  ______
import Data.Array
import Data.Char
import Data.Numbers.Primes
import qualified Data.Matrix as M
 ______
-- Ejercicio 1. Definir la función
    siguiente :: Eq a => a -> [a] -> Maybe a
-- tal que (siguiente x ys) es justo el elemento siguiente a la primera
-- ocurrencia de x en ys o Nothing si x no pertenece a ys. Por ejemplo,
    siguiente 5 [3,5,2,5,7]
                                          == Just 2
    siguiente 9 [3,5,2,5,7]
                                          == Nothing
    siguiente 'd' "afdegdb"
                                         == Just 'e'
    siguiente "todo" ["En","todo","la","medida"] == Just "la"
    siguiente "nada" ["En","todo","la","medida"] == Nothing
    siguiente 999999 [1..1000000]
                                         == Just 1000000
    siguiente 1000000 [1..1000000]
                                         == Nothing
  ______
-- 1º solución (por recursión):
siguientel :: Eq a => a -> [a] -> Maybe a
siguientel x (y1:y2:ys) | x == y1 = Just y2
```

```
| otherwise = siguientel x (y2:ys)
siguientel x = Nothing
-- 2ª solución (por comprensión):
siguiente2 :: Eq a => a -> [a] -> Maybe a
siguiente2 x ys
    | null zs
              = Nothing
    | otherwise = Just (snd (head zs))
   where zs = [(u,v) \mid (u,v) < -zip ys (tail ys), u == x]
-- 3ª solución (con dropWhile)
siguiente3 :: Eq a => a -> [a] -> Maybe a
siguiente3 x = aux \cdot drop 1 \cdot dropWhile (/=x)
   where aux []
                = Nothing
         aux (y:_) = Just y
-- Comparación de eficiencia
- - -----
-- La comparación es
     ghci> let n=10^6 in siguientel (n-1) [1..n]
     Just 1000000
     (1.34 secs, 277352616 bytes)
     ghci> let n=10^6 in siguiente2 (n-1) [1..n]
     Just 1000000
     (1.45 secs, 340836576 bytes)
     ghci> let n=10^6 in siguiente3 (n-1) [1..n]
     Just 1000000
     (0.26 secs, 84987544 bytes)
__ _______
-- Ejercicio 2. Un número n es k-belga si la sucesión cuyo primer
-- elemento es k y cuyos elementos se obtienen sumando reiteradamente
-- los dígitos de n contiene a n. Por ejemplo,
-- + El 18 es 0-belga, porque a partir del 0 vamos a ir sumando
    sucesivamente 1, 8, 1, 8, ... hasta llegar o sobrepasar el 18: 0, 1,
    9, 10, 18, ... Como se alcanza el 18, resulta que el 18 es 0-belga.
-- + El 19 no es 1-belga, porque a partir del 1 vamos a ir sumando
    sucesivamente 1, 9, 1, 9, ... hasta llegar o sobrepasar el 18: 1, 2,
    11, 12, 21, 22, ... Como no se alcanza el 19, resulta que el 19 no es
- -
    1-belga.
```

```
-- Definir la función
     esBelga :: Int -> Int -> Bool
-- tal que (esBelga k n) se verifica si n es k-belga. Por ejemplo,
     esBelga 0 18
                                            == True
     esBelga 1 19
                                            == False
     esBelga 0 2016
                                            == True
     [x \mid x < [0..30], esBelga 7 x]
                                            == [7,10,11,21,27,29]
     [x \mid x < [0..30], esBelga 10 x]
                                           == [10,11,20,21,22,24,26]
     length [n \mid n < [1..9000], esBelga 0 n] == 2857
__ ______
-- 1ª solución
-- =========
esBelgal :: Int -> Int -> Bool
esBelga1 k n =
   n == head (dropWhile (<n) (scanl (+) k (cycle (digitos n))))</pre>
digitos :: Int -> [Int]
digitos n = map digitToInt (show n)
-- 2ª solución
- - ========
esBelga2 :: Int -> Int -> Bool
esBelga2 k n =
   k \le n \& n == head (dropWhile (< n) (scanl (+) (k + q * s) ds))
   where ds = digitos n
         s = sum ds
         q = (n - k) 'div' s
-- Comparación de eficiencia
ghci> length [n | n <- [1..9000], esBelgal 0 n]
     2857
- -
     (2.95 secs, 1,115,026,728 bytes)
     ghci> length [n | n <- [1..9000], esBelga2 0 n]
     2857
     (0.10 secs, 24,804,480 bytes)
```

```
-- Ejercicio 3. Los árboles binarios con datos en los nodos y hojas se
-- definen por
      data Arbola = Ha
                   | N a (Arbol a) (Arbol a)
                   deriving (Eq, Show)
  Por ejemplo, el árbol
             3
            / \
            0 0
      2
  se representa por
      ejArbol :: Arbol Integer
      ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
  Anotando cada elemento del árbol anterior con su profundidad, se
  obtiene el árbol siguiente
             3-0
             / \
        4-1
                 7-1
      5-2 0-2 0-2 3-2
      / \
    2-3 0-3
  Definir la función
      anotado :: Arbol a -> Arbol (a,Int)
  tal que (anotado x) es el árbol obtenido anotando los elementos de x
   con su profundidad. Por ejemplo,
      ghci> anotado ejArbol
      N(3,0)
        (N(4,1)
           (N (5,2) (H (2,3)) (H (0,3)))
           (H(0,2))
        (N (7,1) (H (0,2)) (H (3,2)))
```

```
| N a (Arbol a) (Arbol a)
            deriving (Eq, Show)
ejArbol :: Arbol Integer
ejArbol = N 3 (N 4 (N 5 (H 2)(H 0)) (H 0)) (N 7 (H 0) (H 3))
-- 1ª solución
-- ========
anotado1 :: Arbol a -> Arbol (a,Int)
               = H (x,0)
anotado1 (H x)
anotado1 (N \times i d) = aux (N \times i d) 0
   where aux (H x) n = H (x,n)
         aux (N x i d) n = N (x,n) (aux i (n+1)) (aux d (n+1))
-- 2ª solución
anotado2 :: Arbol a -> Arbol (a, Int)
anotado2 a = aux a [0..]
                    (n:\_) = H(a,n)
   where aux (H a)
         aux (N a i d) (n:ns) = N (a,n) (aux i ns) (aux d ns)
__ _______
-- Ejercicio 4. El pasado 11 de marzo se ha publicado el artículo
-- "Unexpected biases in the distribution of consecutive primes" en el
-- que muestra que los números primos repelen a otros primos que
-- terminan en el mismo dígito.
-- La lista de los últimos dígitos de los 30 primeros números es
     [2,3,5,7,1,3,7,9,3,9,1,7,1,3,7,3,9,1,7,1,3,9,3,9,7,1,3,7,9,3]
-- Se observa que hay 6 números que su último dígito es un 1 y de sus
-- consecutivos 4 terminan en 3 y 2 terminan en 7.
-- Definir la función
     distribucionUltimos :: Int -> M.Matrix Int
-- tal que (distribucionUltimos n) es la matriz cuyo elemento (i,j)
-- indica cuántos de los n primeros números primos terminan en i y su
-- siguiente número primo termina en j. Por ejemplo,
     ghci> distribucionUltimos 30
     (004000200)
     (001000000)
     (000010404)
    (0000000000)
-- (000000100)
```

```
(0000000000)
     (401000002)
- -
     (0000000000)
     (203000100)
     ghci> distribucionUltimos (10^5)
     ( 4104
               0 7961
                        0
                             0
                                  0 8297
                                           0 4605 )
               0
                   1
                        0
                             0
          0
                                  0
                                       0
                                           0
                                                0)
     (5596
               0 3604
                                  0 7419
                                           0 8387 )
                        0
                             1
- -
               0
                   0
                        0
                            0
                                  0
                                       0
                                           0
                                                0 )
          0
                     0
                             0
                                  0
                                       1
                                           0
                                                0)
          0
               0
                    0
                        0
               0
                    0
                             0
                                  0
                                       0
                                           0
                                                0 )
          0
     ( 6438
               0 6928
                     0
                             0
                                  0 3627
                                           0 8022 )
          0
                    0
                        0
                             0
                                  0
                                       0
                                           0
                                                0)
               0 6513
                        0
                             0
                                  0 5671
                                           0 3995 )
     (8830
-- Nota: Se observa cómo se "repelen" ya que en las filas del 1, 3, 7 y
-- 9 el menor elemento es el de la diagonal.
-- 1ª solución
-- ========
distribucionUltimos1 :: Int -> M.Matrix Int
distribucionUltimos1 n =
   M.matrix 9 9
            ((i,j) \rightarrow length (filter (==(i,j)) (take n ultimosConsecutivos)))
-- (ultimo n) es el último dígito de n.
ultimo :: Int -> Int
ultimo n = n \pmod{10}
-- ultimos es la lista de el último dígito de los primos.
     ghci> take 20 ultimos
     [2,3,5,7,1,3,7,9,3,9,1,7,1,3,7,3,9,1,7,1]
ultimos :: [Int]
ultimos = map ultimo primes
-- ultimosConsecutivos es la lista de los últimos dígitos de los primos
-- consecutivos.
     ghci> take 10 ultimosConsecutivos
     [(2,3),(3,5),(5,7),(7,1),(1,3),(3,7),(7,9),(9,3),(3,9),(9,1)]
ultimosConsecutivos :: [(Int,Int)]
```

```
ultimosConsecutivos = zip ultimos (tail ultimos)
-- 2ª solución
-- =========
distribucionUltimos2 :: Int -> M.Matrix Int
distribucionUltimos2 n =
    M.fromList 9 9
                (elems (histograma ((1,1),(9,9)) (take n ultimosConsecutivos)))
-- (histograma r is) es el vector formado contando cuantas veces
-- aparecen los elementos del rango r en la lista de índices is. Por
-- ejemplo,
      ghci> histograma (0,5) [3,1,4,1,5,4,2,7]
      array (0,5) [(0,0),(1,2),(2,1),(3,1),(4,2),(5,1)]
histograma :: (Ix a, Num b) \Rightarrow (a,a) \rightarrow [a] \rightarrow Array a b
histograma r is =
    accumArray (+) 0 r [(i,1) | i <- is, inRange r i]
-- 3º definición
-- ==========
distribucionUltimos3 :: Int -> M.Matrix Int
distribucionUltimos3 n
    | n < 4 = distribucionUltimos1 n
    | otherwise = M.matrix 9 9 ((i,j) \rightarrow f i j)
    where f i j | elem (i,j) [(2,3),(3,5),(5,7)] = 1
                 | even i | even j = 0
                 | otherwise = length (filter (==(i,j))
                                                (take n ultimosConsecutivos))
-- Comparación de eficiencia
      ghci> distribucionUltimos1 (10^5)
      (4104
                0 7961
                           0
                                0
                                      0 8297
                                                0 4605 )
- -
                                      0
                0
                           0
                                0
                                                0
                                                      0)
           0
                      1
                                           0
      (5596
                0 3604
                           0
                                1
                                      0 7419
                                                0 8387 )
                                      0
           0
                0
                      0
                           0
                                0
                                           0
                                                0
                                                      0)
           0
                0
                      0
                           0
                                0
                                      0
                                           1
                                                0
                                                      0)
           0
                      0
                           0
                                0
                                           0
                                                      0)
      ( 6438
                0 6928
                           0
                                0
                                      0 3627
                                                0 8022 )
                           0
                                0
                                      0
                                                      0)
           0
                      0
                                           0
- -
```

```
(8830
                                                   0 3995 )
                 0 6513
                            0
                                  0
                                        0 5671
- -
      (3.51 secs, 941,474,520 bytes)
      ghci> distribucionUltimos2 (10^5)
      (4104
                 0 7961
                            0
                                  0
                                        0 8297
                                                   0 4605 )
                 0
                       1
                            0
                                  0
                                        0
            0
                                             0
                                                        0)
      (5596
                 0 3604
                            0
                                  1
                                       0 7419
                                                  0 8387 )
                 0
                       0
                            0
                                  0
                                       0
                                             0
                                                   0
                                                        0)
            0
                                             1
            0
                 0
                       0
                            0
                                  0
                                       0
                                                  0
                                                        0)
            0
                 0
                       0
                            0
                                  0
                                       0
                                             0
                                                   0
                                                        0)
      (6438
                 0 6928
                            0
                                  0
                                       0 3627
                                                   0 8022 )
                            0
                                  0
                                        0
                                             0
                                                        0 )
                       0
      (8830
                 0 6513
                            0
                                  0
                                        0 5671
                                                   0 3995 )
      (1.75 secs, 560,891,792 bytes)
      ghci> distribucionUltimos3 (10^5)
      (4104
                 0 7961
                            0
                                  0
                                       0 8297
                                                  0 4605 )
                            0
                                  0
            0
                 0
                       1
                                        0
                                             0
                                                        0)
      (5596
                 0 3604
                            0
                                  1
                                       0 7419
                                                   0 8387 )
            0
                       0
                            0
                                  0
                                       0
                                             0
                                                   0
                                                        0)
                                             1
            0
                 0
                       0
                            0
                                  0
                                       0
                                                   0
                                                        0)
                       0
                            0
                                  0
                                                        0)
            0
                 0
                                       0
                                             0
                                                   0
       6438
                 0 6928
                                       0 3627
                            0
                                  0
                                                   0 8022 )
                                  0
                                        0
            0
                       0
                            0
                                             0
                                                   0
                                                        0)
                                       0 5671
                                                  0 3995 )
      (8830
                 0 6513
                            0
                                  0
- -
      (1.70 secs, 623,371,360 bytes)
```

7.4.5. Examen 5 (4 de mayo de 2016)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 5º examen de evaluación continua (4 de mayo de 2016)
-- - § Librerías auxiliares --
```

import Data.Numbers.Primes
import Data.Matrix
import Test.QuickCheck

```
import qualified Data. Set as S
import qualified Data. Map as M
-- Ejercicio 1.1. Un número entero positivo n es balanceado si n = 1 o
-- se puede escribir como un producto de un número par de factores
-- primos (no necesariamente distintos).
-- Definir la función
      balanceado :: Int -> Bool
-- tal que (balanceado n) se verifica si n es balanceado. Por ejemplo,
      balanceado 34 == True
      balanceado 35 ==
                         True
      balanceado 44 == False
balanceado :: Int -> Bool
balanceado 1 = True
balanceado n = n > 1 \& even (length (primeFactors n))
-- Ejercicio 1.2. Un par (a,b) de enteros positivos es un balanceador
-- del número x si el producto (x+a)*(x+b) es balanceado.
-- Definir la función
      balanceadores :: Int -> [(Int,Int)]
-- tal que (balanceadores x) es la lista de los balanceadores de x. Por
-- ejemplo,
      take 5 (balanceadores 3) == [(1,1),(1,3),(2,2),(3,1),(2,4)]
      take 5 (balanceadores 5) == [(1,1),(2,2),(1,4),(2,3),(3,2)]
balanceadores :: Int -> [(Int,Int)]
balanceadores x =
    [(a,b) \mid (a,b) < - enteros,
             balanceado ((x+a)*(x+b))]
      ghci> take 10 enteros
      [(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1)]
enteros :: [(Int,Int)]
enteros = [(a,n-a) | n < - [1..],
                     a <- [1..n-1]]
```

```
-- Ejercicio 1.3. Comprobar con QuickCheck si para cualquier entero
-- positivo x, la lista (balanceadores x) contiene a todos los pares
-- (a,a) con a mayor que 0.
prop balanceadores :: Positive Int-> Int -> Property
prop balanceadores (Positive x) a =
    a > 0 ==> balanceado ((x+a)*(x+a))
      ghci> quickCheck prop balanceadores
      +++ OK, passed 100 tests.
-- Ejercicio 2. Un sistema de ecuaciones lineales Ax = b es triangular
-- inferior si todos los elementos de la matriz A que están por encima
-- de la diagonal principal son nulos; es decir, es de la forma
      a(1,1)*x(1)
                                                                 = b(1)
      a(2,1)*x(1) + a(2,2)*x(2)
                                                                 = b(2)
      a(3,1)*x(1) + a(3,2)*x(2) + a(3,3)*x(3)
                                                                 = b(3)
      a(n,1)*x(1) + a(n,2)*x(2) + a(n,3)*x(3) + ... + a(x,x)*x(n) = b(n)
-- El sistema es compatible si, y sólo si, el producto de los elementos
-- de la diagonal principal es distinto de cero. En este caso, la
  solución se puede calcular mediante el algoritmo de bajada:
      x(1) = b(1) / a(1,1)
      x(2) = (b(2) - a(2,1)*x(1)) / a(2,2)
      x(3) = (b(3) - a(3,1)*x(1) - a(3,2)*x(2)) / a(3,3)
      x(n) = (b(n) - a(n,1)*x(1) - a(n,2)*x(2) - ... - a(n,n-1)*x(n-1)) / a(n,n)
-- Definir la función
      bajada :: Matrix Double -> Matrix Double -> Matrix Double
-- tal que (bajada a b) es la solución, mediante el algoritmo de bajada,
-- del sistema compatible triangular superior ax = b. Por ejemplo,
      ghci> let a = fromLists [[2,0,0],[3,1,0],[4,2,5.0]]
      ghci> let b = fromLists [[3],[6.5],[10]]
      ghci> bajada a b
      (1.5)
      (2.0)
      (0.0)
-- Es decir, la solución del sistema
```

```
2x
                  = 3
     3x + y = 6.5
     4x + 2y + 5z = 10
-- es x = 1.5, y = 2 y z = 0.
bajada :: Matrix Double -> Matrix Double -> Matrix Double
bajada a b = fromLists [[x i] | i < [1..m]]
    where m = nrows a
         x k = (b!(k,1) - sum [a!(k,j) * x j | j <- [1..k-1]]) / a!(k,k)
-- Ejercicio 3. Definir la función
     clasesEquivalencia :: Ord a =>
                           S.Set a -> (a -> a -> Bool) -> S.Set (S.Set a)
-- tal que (clasesEquivalencia xs r) es la lista de las clases de
-- equivalencia de xs respecto de la relación de equivalencia r. Por
-- ejemplo,
     ghci> let c = S.fromList [-3..3]
     ghci> clasesEquivalencia c (x y -> x \text{ 'mod' } 3 == y \text{ 'mod' } 3)
     fromList [fromList [-3,0,3], fromList [-2,1], fromList [-1,2]]
     ghci> clasesEquivalencia c (x y -> (x - y) \pmod{2} == 0)
     fromList [fromList [-3,-1,1,3], fromList [-2,0,2]]
__ _______
clasesEquivalencia :: Ord a =>
                     S.Set a -> (a -> a -> Bool) -> S.Set (S.Set a)
clasesEquivalencia xs r
    | S.null xs = S.empty
    | otherwise = us 'S.insert' clasesEquivalencia vs r
   where (y,ys) = S.deleteFindMin xs
          (us, vs) = S.partition (r y) xs
-- Eiercicio 4.1. Los polinomios se pueden representar mediante
-- diccionarios con los exponentes como claves y los coeficientes como
-- valores. El tipo de los polinomios con coeficientes de tipo a se
-- define por
     type Polinomio a = M.Map Int a
-- Dos ejemplos de polinomios (que usaremos en los ejemplos) son
     3 + 7x - 5x^3
     4 + 5x^3 + x^5
-- se definen por
```

```
ejPol1, ejPol2 :: Polinomio Int
     ejPol1 = M.fromList [(0,3),(1,7),(3,-5)]
- -
     ejPol2 = M.fromList [(0,4),(3,5),(5,1)]
-- Definir la función
      sumaPol :: (Num a, Eq a) => Polinomio a -> Polinomio a
-- tal que (sumaPol p q) es la suma de los polinomios p y q. Por ejemplo,
     ghci> sumaPol ejPol1 ejPol2
     fromList [(0,7),(1,7),(5,1)]
    ghci> sumaPol ejPol1 ejPol1
    fromList [(0,6),(1,14),(3,-10)]
type Polinomio a = M.Map Int a
ejPol1, ejPol2 :: Polinomio Int
eiPol1 = M.fromList[(0,3),(1,7),(3,-5)]
ejPol2 = M.fromList [(0,4),(3,5),(5,1)]
sumaPol :: (Num a, Eq a) => Polinomio a -> Polinomio a -> Polinomio a
sumaPol p q =
    M.filter (/=0) (M.unionWith (+) p q)
-- Ejercicio 4.2. Definir la función
     multPorTerm :: Num a => (Int,a) -> Polinomio a -> Polinomio a
-- tal que (multPorTerm (n,a) p) es el producto del término ax^n por
-- p. Por ejemplo,
    ghci> multPorTerm (2,3) (M.fromList [(0,4),(2,1)])
     fromList [(2,12),(4,3)]
multPorTerm :: Num a => (Int,a) -> Polinomio a -> Polinomio a
multPorTerm (n,a) p =
   M.map (*a) (M.mapKeys (+n) p)
-- Ejercicio 4.3. Definir la función
     multPol :: (Eq a, Num a) => Polinomio a -> Polinomio a -> Polinomio a
-- tal que (multPol p q) es el producto de los polinomios p y q. Por
-- ejemplo,
     ghci> multPol ejPol1 ejPol2
     fromList [(0,12),(1,28),(3,-5),(4,35),(5,3),(6,-18),(8,-5)]
```

```
ghci> multPol ejPol1 ejPol1
    fromList [(0,9),(1,42),(2,49),(3,-30),(4,-70),(6,25)]
- -
    ghci> multPol ejPol2 ejPol2
    from List [(0,16),(3,40),(5,8),(6,25),(8,10),(10,1)]
multPol :: (Eq a, Num a) => Polinomio a -> Polinomio a -> Polinomio a
multPol p q
    | M.null p = M.empty
    | otherwise = sumaPol (multPorTerm t q) (multPol r q)
   where (t,r) = M.deleteFindMin p
       Examen 6A (25 de mayo de 2016)
7.4.6.
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 6º examen de evaluación continua (25 de mayo de 2016)
-- § Librerías auxiliares
import Data.List
import Data.Matrix
import Data.Numbers.Primes
import Test.QuickCheck
-- Ejercicio 1. Definir la función
      seccion :: Eq a => [a] -> [a]
-- tal que (seccion xs) es la mayor sección inicial de xs que no
-- contiene ningún elemento repetido. Por ejemplo:
      seccion [1,2,3,2,4,5]
                                                 == [1,2,3]
     seccion "caceres"
                                                 == "ca"
     length (seccion ([1..7531] ++ [1..10^9])) == 7531
-- 1º solución
-- ========
seccion1 :: Eq a => [a] -> [a]
seccion1 = last . filter (\ys -> nub ys == ys) . inits
```

```
-- 2ª solución
-- =========
seccion2 :: Eq a => [a] -> [a]
seccion2 xs = aux xs []
    where aux [] ys = reverse ys
          aux (x:xs) ys | x 'elem' ys = reverse ys
                        | otherwise = aux xs (x:ys)
-- Comparación de eficiencia
      ghci> last (seccion1 [1..10^3])
- -
      (6.19 secs, 59,174,640 bytes)
      ghci> last (seccion2 [1..10^3])
      1000
      (0.04 secs, 0 bytes)
-- Ejercicio 2.1. Un número n es especial si al unir las cifras de sus
-- factores primos, se obtienen exactamente las cifras de n, aunque
-- puede ser en otro orden. Por ejemplo, 1255 es especial, pues los
-- factores primos de 1255 son 5 y 251.
-- Definir la función
      esEspecial :: Integer -> Bool
-- tal que (esEspecial n) se verifica si un número n es especial. Por
-- ejemplo,
      esEspecial 1255 == True
      esEspecial 125 == False
      esEspecial 132 == False
esEspecial :: Integer -> Bool
esEspecial n =
    sort (show n) == sort (concatMap show (primeFactors n))
-- Ejercicio 2.2. Comprobar con QuickCheck que todo número primo es
-- especial.
```

```
-- La propiedad es
prop_primos:: Integer -> Property
prop primos n =
   isPrime (abs n) ==> esEspecial (abs n)
-- La comprobación es
     ghci> quickCheck prop_primos
     +++ OK, passed 100 tests.
-- Ejercicio 2.3. Calcular los 5 primeros números especiales que no son
-- primos.
-- El cálculo es
     ghci> take 5 [n | n <- [2..], esEspecial n, not (isPrime n)]</pre>
     [1255, 12955, 17482, 25105, 100255]
  ______
-- Ejercicio 3. Los árboles binarios se pueden representar mediante el
-- tipo Arbol definido por
     data Arbola = Ha
                  | N a (Arbol a) (Arbol a)
                  deriving Show
-- Por ejemplo, el árbol
          "B"
    "A" "B" "C" "C"
-- se puede definir por
     ej1 :: Arbol String
     ej1 = N "B" (N "B" (H "A") (H "B")) (N "A" (H "C") (H "C"))
-- Definir la función
     enumeraArbol :: Arbol t -> Arbol Int
-- tal que (enumeraArbol a) es el árbol obtenido numerando las hojas y
-- los nodos de a desde la hoja izquierda hasta la raíz. Por ejemplo,
     ghci> enumeraArbol ej1
     N 6 (N 2 (H 0) (H 1)) (N 5 (H 3) (H 4))
```

```
-- Gráficamente,
            6
        2
          1
              3
data Arbola = Ha
             | N a (Arbol a) (Arbol a)
             deriving (Show, Eq)
ej1 :: Arbol String
ej1 = N "B" (N "B" (H "A") (H "B")) (N "A" (H "C") (H "C"))
enumeraArbol1 :: Arbol t -> Arbol Int
enumeraArboll a = fst (aux a 0)
    where aux :: Arbol a -> Int -> (Arbol Int,Int)
          aux (H_n) n = (H_n, n+1)
          aux (N \times i d) n = (N n2 i' d', 1+n2)
              where (i', n1) = aux i n
                    (d', n2) = aux d n1
-- Ejercicio 4. El buscaminas es un juego cuyo objetivo es despejar un
-- campo de minas sin detonar ninguna.
-- El campo de minas se representa mediante un cuadrado con NxN
-- casillas. Algunas casillas tienen un número, este número indica las
-- minas que hay en todas las casillas vecinas. Cada casilla tiene como
-- máximo 8 vecinas. Por ejemplo, el campo 4x4 de la izquierda
-- contiene dos minas, cada una representada por el número 9, y a la
-- derecha se muestra el campo obtenido anotando las minas vecinas de
-- cada casilla
      9 0 0 0
                    9 1 0 0
      0 0 0 0
                    2 2 1 0
      0 9 0 0
                    1910
      0 0 0 0
                    1 1 1 0
-- de la misma forma, la anotación del siguiente a la izquierda es el de
-- la derecha
     9 9 0 0 0
                9 9 1 0 0
```

```
0 0 0 0 0
                   3 3 2 0 0
     0 9 0 0 0
                   1 9 1 0 0
-- Utilizando la librería Data. Matrix, los campos de minas se
-- representan mediante matrices:
     type Campo = Matrix Int
  Por ejemplo, los anteriores campos de la izquierda se definen por
     ejCampol, ejCampo2 :: Campo
     ejCampol = fromLists [[9,0,0,0],
                           [0,0,0,0],
                           [0,9,0,0],
                           [0,0,0,0]]
     ejCampo2 = fromLists [[9,9,0,0,0],
                           [0,0,0,0,0]
                           [0,9,0,0,0]
-- Definir la función
     buscaminas :: Campo -> Campo
  tal que (buscaminas c) es el campo obtenido anotando las minas
  vecinas de cada casilla. Por ejemplo,
     ghci> buscaminas ejCampol
      (9100)
      (2210)
      (1910)
     (1110)
     ghci> buscaminas ejCampo2
     (99100)
      (33200)
      (19100)
type Campo
            = Matrix Int
type Casilla = (Int,Int)
ejCampol, ejCampo2 :: Campo
ejCampo1 = fromLists [[9,0,0,0],
                     [0,0,0,0],
                     [0,9,0,0],
                     [0,0,0,0]
ejCampo2 = fromLists [[9,9,0,0,0],
                     [0,0,0,0,0],
                     [0,9,0,0,0]
```

```
-- lª solución
-- =========
buscaminas1 :: Campo -> Campo
buscaminas1 c = matrix m n (\((i,j) -> minas c (i,j))
    where m = nrows c
          n = ncols c
-- (minas c (i,j)) es el número de minas en las casillas vecinas de la
-- (i,j) en el campo de mina c y es 9 si en (i,j) hay una mina. Por
-- ejemplo,
     minas ejCampo (1,1) == 9
     minas ejCampo (1,2) == 1
     minas ejCampo (1,3) == 0
     minas ejCampo (2,1) == 2
minas :: Campo -> Casilla -> Int
minas c (i,j)
    | c!(i,j) == 9 = 9
    | otherwise = length (filter (==9)
                            [c!(x,y) | (x,y) < - vecinas m n (i,j)])
    where m = nrows c
          n = ncols c
-- (vecinas m n (i,j)) es la lista de las casillas vecinas de la (i,j) en
-- un campo de dimensiones mxn. Por ejemplo,
      vecinas 4 (1,1) = [(1,2),(2,1),(2,2)]
      vecinas 4 (1,2) = [(1,1),(1,3),(2,1),(2,2),(2,3)]
      vecinas 4 (2,3) = [(1,2),(1,3),(1,4),(2,2),(2,4),(3,2),(3,3),(3,4)]
vecinas :: Int -> Int -> Casilla -> [Casilla]
vecinas m n (i,j) = [(a,b) \mid a < - [max 1 (i-1)..min m (i+1)],
                             b < - [max 1 (j-1)..min n (j+1)],
                             (a,b) /= (i,j)]
-- 2ª solución
- - ========
buscaminas2 :: Campo -> Campo
buscaminas2 c = matrix m n (\((i,j)) -> minas (i,j))
    where m = nrows c
          n = ncols c
          minas :: Casilla -> Int
          minas (i,j)
```

```
 \mid c!(i,j) == 9 = 9 \\ \mid otherwise = length (filter (==9) \\ \quad [c!(x,y) \mid (x,y) <- vecinas (i,j)]) \\ vecinas :: Casilla -> [Casilla] \\ vecinas (i,j) = [(a,b) \mid a <- [max 1 (i-1)..min m (i+1)], \\ \quad b <- [max 1 (j-1)..min n (j+1)], \\ \quad (a,b) /= (i,j)]
```

7.4.7. Examen 6B (7 de junio de 2016)

```
-- Informática (1º del Grado en Matemáticas)
-- 6º examen de evaluación continua (7 de junio de 2016)
-- Puntuación: Cada uno de los 5 ejercicios vale 2 puntos.
-- § Librerías auxiliares
import Data.Numbers.Primes
import Data.List
import I1M.Grafo
import I1M.PolOperaciones
import Test.QuickCheck
-- Ejercicio 1.1. Definir la función
      esSumaP :: Integer -> Integer -> Bool
-- tal que (esSumaP k n) se verifica si n es suma de k primos (no
-- necesariamente distintos). Por ejemplo,
      esSumaP 3 10 == True
     esSumaP 3 2 == False
     esSumaP 10 21 == True
     esSumaP 21 10 == False
     take 3 [n \mid n \leftarrow [1..], esSumaP 18 n] == [36,37,38]
-- 1º definición
-- =========
esSumaP1 :: Integer -> Integer -> Bool
```

```
esSumaP1 k n =
    n 'elem' [sum xs | xs <- combinacionesR k (takeWhile (<=n) primes)]</pre>
-- (combinacionesR k xs) es la lista de las combinaciones orden k de los
-- elementos de xs con repeticiones. Por ejemplo,
      ghci> combinacionesR 2 "abc"
      ["aa","ab","ac","bb","bc","cc"]
      ghci> combinacionesR 3 "bc"
      ["bbb","bbc","bcc","ccc"]
      ghci> combinacionesR 3 "abc"
      ["aaa", "aab", "aac", "abb", "abc", "acc", "bbb", "bbc", "bcc", "ccc"]
combinacionesR :: Integer -> [a] -> [[a]]
combinacionesR _ [] = []
combinacionesR 0 = [[]]
combinacionesR k (x:xs) =
    [x:ys | ys <- combinacionesR (k-1) (x:xs)] ++ combinacionesR k xs
-- 2ª definición
-- ==========
esSumaP2 :: Integer -> Integer -> Bool
esSumaP2 k n = esSuma k n (takeWhile (<=n) primes)</pre>
esSuma :: Integer -> Integer -> [Integer] -> Bool
esSuma 0 \times  = \times == 0
esSuma k 0 = k == 0
esSuma _ _ [] = False
esSuma k x (y:ys)
             = False
    | x < y
    | otherwise = esSuma (k-1) (x-y) (y:ys) || esSuma k x ys
-- 3ª definición
- - ==========
esSumaP3 :: Integer -> Integer -> Bool
esSumaP3 1 n = isPrime n
esSumaP3 k n = any (esSumaP3 (k-1)) (map (n-) (takeWhile (< n) primes))
-- Equivalencia
-- =========
prop_equiv_esSumaP :: Positive Integer -> Bool
prop equiv esSumaP (Positive x) =
```

```
esSumaP2 3 x == v
    && esSumaP2 3 x == v
    where v = esSumaP1 3 x
-- La comprobación es
      ghci> quickCheck prop equiv esSumaP
      +++ OK, passed 100 tests.
-- Eficiencia
-- ========
      ghci> [x \mid x < -[1..], esSumaP1 10 x] !! 700
- -
      720
      (3.94 secs, 3,180,978,848 bytes)
      ghci> [x \mid x < -[1..], esSumaP2 10 x] !! 700
      720
      (0.76 secs, 410,235,584 bytes)
      ghci> [x \mid x < [1..], esSumaP3 10 x] !! 700
      720
      (0.10 secs, 102,200,384 bytes)
      ghci> take 3 [n | n <- [1..], esSumaP2 18 n]
- -
      [36,37,38]
      (0.02 secs, 0 bytes)
      ghci> take 3 [n | n <- [1..], esSumaP3 18 n]
- -
      [36,37,38]
      (2.91 secs, 5,806,553,024 bytes)
-- Ejercicio 1.2. Comprobar con QuickCheck que el menor número n para el
-- que se cumple la condición (esSumaP k n) es 2*k.
-- Nota. Al hacer la comprobación limitar el tamaño de las pruebas como
-- se indica a continuación
      ghci> quickCheckWith (stdArgs {maxSize=7}) prop menor esSuma
      +++ OK, passed 100 tests.
-- La propiedad es
prop_menor_esSuma :: Integer -> Integer -> Property
prop menor esSuma k n =
    k > 0 \&\& n > 0 ==>
      head [x \mid x < [1..], esSumaP3 k x] == 2*k
```

```
-- La comprobación es
      ghci> quickCheckWith (stdArgs {maxSize=7}) prop_menor_esSuma
      +++ OK, passed 100 tests.
      (0.03 secs, 0 bytes)
-- Ejercicio 2.1. Se consideran los árboles binarios representados
  mediante el tipo Arbol definido por
      data Arbola = Ha
                   | N a (Arbol a) (Arbol a)
                     deriving (Show, Eq)
  Por ejemplo, el árbol
           9
          /\
        3
      2 4
        1
            5
-- se puede representar por
      al :: Arbol Int
      a1 = N 9 (N 3 (H 2) (N 4 (H 1) (H 5))) (H 8)
-- En el árbol al se cumple que todas sus ramas tiene un número par;
-- pero no se cumple que todas sus ramas tenga un número primo.
-- Definir la función
      propiedadAE :: (a -> Bool) -> Arbol a -> Bool
-- tal que (propiedadAE p a) se verifica si en todas las ramas de a hay
-- algún nodo que cumple la propiedad p. Por ejemplo,
      propiedadAE even a1 == True
      propiedadAE (<7) a1 == False</pre>
data Arbola = Ha
             | N a (Arbol a) (Arbol a)
             deriving (Show, Eq)
al :: Arbol Int
a1 = N 9 (N 3 (H 2) (N 4 (H 1) (H 5))) (H 8)
```

```
-- lª definición
propiedadAE :: (a -> Bool) -> Arbol a -> Bool
propiedadAE p (H x)
                       = p x
propiedadAE p (N x i d) = p x || (propiedadAE p i && propiedadAE p d)
-- 2º definición
propiedadAE2 :: (a -> Bool) -> Arbol a -> Bool
propiedadAE2 p x = all (any p) (ramas x)
ramas :: Arbol a => [[a]]
ramas (H x)
            = [[x]]
ramas (N \times i d) = map(x:) (ramas i ++ ramas d)
-- ---------
-- Ejercicio 2.2. Definir la función
     propiedadEA :: (a -> Bool) -> Arbol a -> Bool
-- tal que (propiedadEA p a) se verifica si el árbol a tiene alguna rama
-- en la que todos sus nodos cumplen la propiedad p. Por ejemplo,
     propiedadEA (>0) a1 == True
     propiedadEA even a1 == False
     propiedadEA (>7) a1 == True
-- 1º definición
propiedadEA :: (a -> Bool) -> Arbol a -> Bool
propiedadEA p (H x) = p x
propiedadEA p (N x i d) = p x && (propiedadEA p i \parallel propiedadEA p d)
-- 2º definición
propiedadEA2 :: (a -> Bool) -> Arbol a -> Bool
propiedadEA2 p x = any (all p) (ramas x)
-- Ejercicio 3. Un clique de un grafo no dirigido G es un conjunto de
-- vértices V tal que el subgrafo de G inducido por V es un grafo
-- completo. Por ejemplo, en el grafo,
     6
      /
       4 ---- 5
      | 1
             | /
    3 ---- 2
```

```
-- el conjunto de vértices {1,2,5} es un clique y el conjunto {2,3,4,5}
-- no lo es.
-- En Haskell se puede representar el grafo anterior por
     gl :: Grafo Int Int
     g1 = creaGrafo ND
                     (1,6)
                     [(1,2,0),(1,5,0),(2,3,0),(3,4,0),(5,2,0),(4,5,0),(4,6,0)]
-- Definir la función
     esClique :: Grafo Int Int -> [Int] -> Bool
-- tal que (esClique g xs) se verifica si xs es un clique de g. Por
-- ejemplo,
      esClique g1 [1,2,5] == True
      esClique g1 [2,3,4,5] == False
q1 :: Grafo Int Int
g1 = creaGrafo ND
               [(1,2,0),(1,5,0),(2,3,0),(3,4,0),(5,2,0),(4,5,0),(4,6,0)]
esClique :: Grafo Int Int -> [Int] -> Bool
esClique g xs = all (aristaEn g) [(x,y) | x <- ys, y <- ys, y < x]
   where ys = sort xs
-- Ejercicio 4.1. Definir la función
      polNumero :: Integer -> Polinomio Integer
-- tal que (polNumero n) es el polinomio cuyos coeficientes son los
-- dígitos de n. Por ejemplo, si n = 5703, el polinomio es
-- 5x^3 + 7x^2 + 3. En Haskell,
     ghci> polNumero 5703
      5*x^3 + 7*x^2 + 3
polNumero :: Integer -> Polinomio Integer
polNumero n = aux (zip [0..] (reverse (digitos n)))
   where aux [] = polCero
          aux ((m,a):ps) = consPol m a (aux ps)
digitos :: Integer -> [Integer]
digitos n = [read [x] | x <- show n]
```

```
-- Ejercicio 4.2. Definir la función
     zeta :: Integer -> Int
-- tal que (zeta n) es el número de enteros positivos k <= n, tales que
-- el polinomio (polNumero k) tiene alguna raíz entera. Por ejemplo,
     zeta 100
               == 33
     zeta 100000 == 14696
zeta :: Integer -> Int
zeta n = length [k | k <- [1..n], tieneRaizEntera k]</pre>
tieneRaizEntera :: Integer -> Bool
tieneRaizEntera n = or [esRaiz c p | c <- ds]
   where p = polNumero n
         t = n \pmod{10}
         ds = 0 : divisores t
divisores :: Integer -> [Integer]
divisores n = concat [[x,-x] | x <- [1..n], rem n x == 0]
__ _______
-- Ejercicio 4.3. Comprobar con QuickCheck las siguientes propiedades:
-- + El valor de (polNumero n) en 0 es igual al último dígito de n
-- + El valor de (polNumero n) en 1 es igual a la suma de los dígitos de n.
-- + El valor de (polNumero n) en 10 es igual a n.
-- La propiedad es
prop_polNumero :: Integer -> Property
prop polNumero n =
   n > 0 ==> valor (polNumero n) 0 == last ds &&
             valor (polNumero n) 1 == sum ds &&
             valor (polNumero n) 10 == n
   where ds = digitos n
-- Ejercicio 5.1. Para cada número n con k dígitos se define una sucesión
-- de tipo Fibonacci cuyos k primeros elementos son los dígitos de n y
-- los siguientes se obtienen sumando los k anteriores términos de la
-- sucesión. Por ejemplo, la sucesión definida por 197 es
     1, 9, 7, 17, 33, 57, 107, 197, ...
```

```
-- Definir la función
     fibGen :: Integer -> [Integer]
-- tal que (fibGen n) es la sucesión de tipo Fibonacci definida por
-- n. Por ejemplo,
     ghci> take 10 (fibGen 197)
     [1,9,7,17,33,57,107,197,361,665]
-- 1º definición
fibGen1 :: Integer -> [Integer]
fibGen1 n = suc
   where ds
              = digitos n
             = genericLength ds
         aux xs = sum (take k xs) : aux (tail xs)
         suc = ds ++ aux suc
-- 2ª definición
fibGen2 :: Integer -> [Integer]
fibGen2 n = ds ++ map head (tail sucLista)
            = digitos n
   where ds
         sig xs = sum xs : init xs
         sucLista = iterate sig (reverse ds)
-- 3ª definición
fibGen3 :: Integer -> [Integer]
fibGen3 n = ds ++ map last (tail sucLista)
   where ds
             = digitos n
         sig' xs = tail xs ++ [sum xs]
         sucLista = iterate sig' ds
__ ______
-- Ejercicio 5.2. Un número n > 9 es un número de Keith si n aparece en
-- la sucesión de tipo Fibonacci definida por n. Por ejemplo, 197 es un
-- número de Keith.
-- Definir la función
     esKeith :: Integer -> Bool
-- tal que (esKeith n) se verifica si n es un número de Keith. Por
-- ejemplo,
    esKeith 197 == True
     esKeith 54798 == False
```

```
esKeith :: Integer -> Bool
esKeith n = n == head (dropWhile (< n) $ fibGen1 n)
-- Ejercicio 5.3. Calcular todos los número se Keith con 5 dígitos.
_______
-- El cálculo es
     ghci> filter esKeith [10^4..10^5-1]
     [31331,34285,34348,55604,62662,86935,93993]
      Examen 7 (23 de junio de 2016)
7.4.8.
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 1º convocatoria (23 de junio de 2016)
-- § Librerías auxiliares
  ______
import Data.Array
import Data.List
import Test.QuickCheck
import qualified Data. Set as S
import Data.Numbers.Primes
__ _______
-- Ejercicio 1. Definir la función
     particiones :: [a] -> Int -> [[[a]]]
-- tal que (particiones xs k) es la lista de las particiones de xs en k
  subconjuntos disjuntos. Por ejemplo,
     ghci> particiones [2,3,6] 2
     [[[2],[3,6]],[[2,3],[6]],[[3],[2,6]]]
     ghci> particiones [2,3,6] 3
     [[[2],[3],[6]]]
- -
     ghci> particiones [4,2,3,6] 3
     [[[4],[2],[3,6]],[[4],[2,3],[6]],[[4],[3],[2,6]],
      [[4,2],[3],[6]],[[2],[4,3],[6]],[[2],[3],[4,6]]]
     ghci> particiones [4,2,3,6] 1
```

```
[[[4,2,3,6]]]
     ghci> particiones [4,2,3,6] 4
     [[[4],[2],[3],[6]]]
particiones :: [a] -> Int -> [[[a]]]
particiones [] _
particiones _ 0
particiones xs 1
                    = [[xs]]
particiones (x:xs) k = [[x]:ys \mid ys <- particiones xs (k-1)] ++
                      concat [inserciones x ys | ys <- particiones xs k]</pre>
-- (inserciones x yss) es la lista obtenida insertando x en cada uno de los
-- conjuntos de yss. Por ejemplo,
     inserciones 4 [[3],[2,5]] == [[[4,3],[2,5]],[[3],[4,2,5]]]
inserciones :: a -> [[a]] -> [[[a]]]
inserciones x []
                      = []
inserciones x (ys:yss) = ((x:ys):yss) : [ys:zss | zss <- inserciones x yss]</pre>
  ______
-- Ejercicio 2.1. Las expresiones aritméticas con números enteros, sumas
-- y restas se puede representar con el tipo de datos Expr definido por
     data Expr = N Int
               | S Expr Expr
               | R Expr Expr
       deriving (Eq, Show)
-- Por ejemplo, la expresión 3+(4-2) se representa por
-- (S (N 3) (R (N 4) (N 2)))
-- Definir la función
     expresiones :: [Int] -> [Expr]
-- tal que (expresiones ns) es la lista de todas las expresiones
-- que se pueden construir intercalando las operaciones de suma o resta
-- entre los números de ns. Por ejemplo,
    ghci> expresiones [2,3,5]
     [S (N 2) (S (N 3) (N 5)), R (N 2) (S (N 3) (N 5)), S (N 2) (R (N 3) (N 5)),
     R (N 2) (R (N 3) (N 5)), S (S (N 2) (N 3)) (N 5), R (S (N 2) (N 3)) (N 5),
     S (R (N 2) (N 3)) (N 5), R (R (N 2) (N 3)) (N 5)]
     > length (expresiones [2,3,5,9])
     40
```

```
| S Expr Expr
          | R Expr Expr
 deriving (Eq, Show)
expresiones :: [Int] -> [Expr]
expresiones [] = []
expresiones [n] = [N n]
expresiones ns = [e \mid (is,ds) <- divisiones ns
                     , i
                            <- expresiones is
                              <- expresiones ds
                     , d
                              <- combina i d]
-- (divisiones xs) es la lista de las divisiones de xs en dos listas no
-- vacías. Por ejemplo,
     divisiones "bcd" == [("b","cd"),("bc","d")]
      divisiones "abcd" == [("a","bcd"),("ab","cd"),("abc","d")]
divisiones :: [a] -> [([a],[a])]
divisiones [] = []
divisiones [] = []
divisiones (x:xs) = ([x],xs) : [(x:is,ds) | (is,ds) <- divisiones xs]
-- (combina el e2) es la lista de las expresiones obtenidas combinando
-- las expresiones el y e2 con una operación. Por ejemplo,
      combina (N \ 2) \ (N \ 3) == [S \ (N \ 2) \ (N \ 3), R \ (N \ 2) \ (N \ 3)]
combina :: Expr -> Expr -> [Expr]
combina e1 e2 = [S e1 e2, R e1 e2]
-- Ejercicio 2.2. Definir la función
     valores :: [Int] -> [Int]
-- tal que (valores n) es el conjunto de los valores de las expresiones
-- que se pueden construir intercalando las operaciones de suma o resta
-- entre los números de ns. Por ejemplo,
     valores [2,3,5] == [-6,0,4,10]
      valores [2,3,5,9] = [-15,-9,-5,1,3,9,13,19]
valores :: [Int] -> [Int]
valores ns = sort (nub (map valor (expresiones ns)))
-- (valor e) es el valor de la expresión e. Por ejemplo,
      valor(S(R(N2)(N3))(N5)) == 4
valor :: Expr -> Int
```

```
valor(N n) = n
valor(Sid) = valori + valord
valor(Rid) = valori - valord
__ ______
-- Ejercicio 3. Dada una matriz cuyos elementos son 0 ó 1, su relleno es
-- la matriz obtenida haciendo iguales a 1 los elementos de las filas y
-- de las columna que contienen algún uno. Por ejemplo, el relleno de la
-- matriz de la izquierda es la de la derecha:
     0 0 0 0 0
                10010
     0 0 0 0 0
                1 0 0 1 0
     0 0 0 1 0
                1 1 1 1 1
     1 0 0 0 0
              1 1 1 1 1
     0 0 0 0 0
              10010
-- Las matrices se pueden representar mediante tablas cuyos índices son
-- pares de enteros
     type Matriz = Array (Int,Int) Int
-- por ejemplo, la matriz de la izquierda de la figura anterior se
-- define por
     ej :: Matriz
     ej = listArray((1,1),(5,5))[0, 0, 0, 0, 0, 0]
                                0, 0, 0, 0, 0,
                                0, 0, 0, 1, 0,
                                1, 0, 0, 0, 0,
                                0, 0, 0, 0, 0]
  Definir la función
     relleno :: Matriz -> Matriz
  tal que (relleno p) es el relleno de la matriz p. Por ejemplo,
     ghci> elems (relleno ej)
     [1,0,0,1,0,
     1,0,0,1,0,
      1,1,1,1,1,
      1,1,1,1,1,
      1,0,0,1,0]
  ______
type Matriz = Array (Int,Int) Int
ej :: Matriz
ej = listArray ((1,1),(5,5)) [0, 0, 0, 0, 0,
                           0, 0, 0, 0, 0,
                           0, 0, 0, 1, 0,
```

```
1, 0, 0, 0, 0,
                              0, 0, 0, 0, 0]
-- 1ª solución
  _____
relleno1 :: Matriz -> Matriz
relleno1 p =
    array ((1,1),(m,n)) [((i,j),f i j) | i <- [1..m], j <- [1..n]]
    where (\_,(m,n)) = bounds p
          f i j | 1 'elem' [p!(i,k) | k <- [1..n]] = 1
                | 1 \text{ 'elem' } [p!(k,j) | k <- [1..m]] = 1
                | otherwise
-- 2ª solución
-- ========
relleno2 :: Matriz -> Matriz
relleno2 p =
    array ((1,1),(m,n)) [((i,j),f i j) | i <- [1..m], j <- [1..n]]
    where (\_,(m,n)) = bounds p
          filas = filasConUno p
          columnas = columnasConUno p
          f i j | i 'elem' filas
                | j 'elem' columnas = 1
                | otherwise
                                    = 0
-- (filasConUno p) es la lista de las filas de p que tienen algún
-- uno. Por ejemplo,
      filasConUno ej == [3,4]
filasConUno :: Matriz -> [Int]
filasConUno p = [i \mid i \leftarrow [1..m], filaConUno p i]
    where (,(m,n)) = bounds p
-- (filaConUno p i) se verifica si p tiene algún uno en la fila i. Por
-- ejemplo,
      filaConUno ej 3 == True
      filaConUno ej 2 == False
filaConUno :: Matriz -> Int -> Bool
filaConUno p i = any (==1) [p!(i,j) | j <- [1..n]]
    where (\_,(\_,n)) = bounds p
```

-- (columnasConUno p) es la lista de las columnas de p que tienen algún

```
-- uno. Por ejemplo,
      columnasConUno ej == [1,4]
columnasConUno :: Matriz -> [Int]
columnasConUno p = [j | j <- [1..n], columnaConUno p j]</pre>
   where (_,(m,n)) = bounds p
-- (columnaConUno p i) se verifica si p tiene algún uno en la columna i. Por
-- ejemplo,
      columnaConUno ej 1 == True
      columnaConUno ej 2 == False
columnaConUno :: Matriz -> Int -> Bool
columnaConUno p j = any (==1) [p!(i,j) | i <- [1..m]]
   where (\_,(m,\_)) = bounds p
-- 3ª solución
-- ========
relleno3 :: Matriz -> Matriz
relleno3 p = p // ([((i,j),1) | i <- filas, j <- [1..n]] ++
                  [((i,j),1) \mid i < [1..m], j < columnas])
 where (\_,(m,n)) = bounds p
        filas
                 = filasConUno p
        columnas = columnasConUno p
-- Comparación de eficiencia
ghci> let f i j = if i == j then 1 else 0
      ghci> let q n = array ((1,1),(n,n)) [((i,j),f i j) | i <- [1..n], j <- [1..
      ghci> sum (elems (relleno1 (q 200)))
- -
      40000
      (6.90 secs, 1,877,369,544 bytes)
      ghci> sum (elems (relleno2 (q 200)))
- -
      40000
- -
      (0.46 secs, 57,354,168 bytes)
      ghci> sum (elems (relleno3 (q 200)))
      40000
      (0.34 secs, 80,465,144 bytes)
- -
```

```
ghci> sum (elems (relleno2 (q 500)))
      250000
- -
      (4.33 secs, 353,117,640 bytes)
      ghci> sum (elems (relleno3 (q 500)))
      250000
      (2.40 secs, 489,630,048 bytes)
-- Ejercicio 4. Un número natural n es una potencia perfecta si existen
-- dos números naturales m > 1 y k > 1 tales que n = m^k. Las primeras
-- potencias perfectas son
      4 = 2^2, 8 = 2^3, 9 = 3^2, 16 = 2^4, 25 = 5^2, 27 = 3^3, 32 = 2^5,
      36 = 6^2, 49 = 7^2, 64 = 2^6, ...
-- Definir la sucesión
      potenciasPerfectas :: [Integer]
-- cuyos términos son las potencias perfectas. Por ejemplo,
      take 10 potenciasPerfectas == [4,8,9,16,25,27,32,36,49,64]
      potenciasPerfectas !! 100 == 6724
-- lª definición
- - =========
potenciasPerfectas1 :: [Integer]
potenciasPerfectas1 = filter esPotenciaPerfecta [4..]
-- (esPotenciaPerfecta x) se verifica si x es una potencia perfecta. Por
-- ejemplo,
      esPotenciaPerfecta 36 == True
      esPotenciaPerfecta 72 == False
esPotenciaPerfecta :: Integer -> Bool
esPotenciaPerfecta = not . null. potenciasPerfectasDe
-- (potenciasPerfectasDe x) es la lista de pares (a,b) tales que
-- x = a^b. Por ejemplo,
      potenciasPerfectasDe 64 == [(2,6),(4,3),(8,2)]
      potenciasPerfectasDe 72 == []
potenciasPerfectasDe :: Integer -> [(Integer,Integer)]
potenciasPerfectasDe n =
    [(m,k) \mid m \leftarrow takeWhile (\x -> x*x <= n) [2..]
           , k \leftarrow takeWhile (\x -> m^x <= n) [2..]
```

```
, m^k == n
-- 2ª solución
-- =========
potenciasPerfectas2 :: [Integer]
potenciasPerfectas2 = [x \mid x < -[4..], esPotenciaPerfecta2 x]
-- (esPotenciaPerfecta2 x) se verifica si x es una potencia perfecta. Por
-- ejemplo,
      esPotenciaPerfecta2 36 == True
      esPotenciaPerfecta2 72 == False
esPotenciaPerfecta2 :: Integer -> Bool
esPotenciaPerfecta2 x = mcd (exponentes x) > 1
-- (exponentes x) es la lista de los exponentes de l factorización prima
-- de x. Por ejemplos,
      exponentes 36 == [2,2]
      exponentes 72 == [3,2]
exponentes :: Integer -> [Int]
exponentes x = [length ys | ys <- group (primeFactors x)]
-- (mcd xs) es el máximo común divisor de la lista xs. Por ejemplo,
     mcd [4,6,10] == 2
     mcd [4,5,10] == 1
mcd :: [Int] -> Int
mcd = foldl1 qcd
-- 3ª definición
-- ==========
potenciasPerfectas3 :: [Integer]
potenciasPerfectas3 = mezclaTodas potencias
-- potencias es la lista las listas de potencias de todos los números
-- mayores que 1 con exponentes mayores que 1. Por ejemplo,
      ghci> map (take 3) (take 4 potencias)
      [[4,8,16],[9,27,81],[16,64,256],[25,125,625]]
potencias:: [[Integer]]
potencias = [[n^k | k \leftarrow [2..]] | n \leftarrow [2..]]
-- (mezclaTodas xss) es la mezcla ordenada sin repeticiones de las
-- listas ordenadas xss. Por ejemplo,
```

```
take 7 (mezclaTodas potencias) == [4,8,9,16,25,27,32]
mezclaTodas :: Ord a => [[a]] -> [a]
mezclaTodas = foldr1 xmezcla
   where xmezcla (x:xs) ys = x : mezcla xs ys
-- (mezcla xs ys) es la mezcla ordenada sin repeticiones de las
-- listas ordenadas xs e ys. Por ejemplo,
      take 7 (mezcla [2,5...] [4,6...]) == [2,4,5,6,8,10,11]
mezcla :: Ord a => [a] -> [a] -> [a]
mezcla (x:xs) (y:ys) | x < y = x : mezcla xs (y:ys)
                     | x == y = x : mezcla xs ys
                     | x > y = y : mezcla (x:xs) ys
-- Comparación de eficiencia
      ghci> potenciasPerfectas1 !! 100
      6724
      (3.39 secs, 692758212 bytes)
      ghci> potenciasPerfectas2 !! 100
      6724
      (0.29 secs, 105,459,200 bytes)
      ghci> potenciasPerfectas3 !! 100
      6724
      (0.01 secs, 1582436 bytes)
-- Ejercicio 5. Definir la función
     minimales :: Ord a => S.Set (S.Set a) -> S.Set (S.Set a)
-- tal que (minimales xss) es el conjunto de los elementos de xss que no
-- están contenidos en otros elementos de xss. Por ejemplo,
      ghci> minimales (S.fromList (map S.fromList [[1,3],[2,3,1],[3,2,5]]))
      fromList [fromList [1,3],fromList [2,3,5]]
      ghci> minimales (S.fromList (map S.fromList [[1,3],[2,3,1],[3,1],[3,2,5]]))
      fromList [fromList [1,3],fromList [2,3,5]]
      ghci> minimales (S.fromList (map S.fromList [[1,3],[2,3,1],[3,1,3],[3,2,5]]
      fromList [fromList [1,3],fromList [2,3,5]]
minimales :: Ord a => S.Set (S.Set a) -> S.Set (S.Set a)
minimales xss = S.filter esMinimal xss
    where esMinimal xs = S.null (S.filter ('S.isProperSubsetOf' xs) xss)
```

7.4.9. Examen 8 (1 de septiembre de 2016)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 2º convocatoria (1 de septiembre de 2016)
-- § Librerías auxiliares
__ _______
import Data.List
import Data.Numbers.Primes
import Data.Matrix
import Test.QuickCheck
-- Ejercicio 1. Un primo cubano es un número primo que se puede escribir
-- como diferencia de dos cubos consecutivos. Por ejemplo, el 61 es un
-- primo cubano porque es primo y 61 = 5^3 - 4^3.
-- Definir la sucesión
     cubanos :: [Integer]
-- tal que sus elementos son los números cubanos. Por ejemplo,
     ghci> take 15 cubanos
     [7,19,37,61,127,271,331,397,547,631,919,1657,1801,1951,2269]
-- 1ª solución
-- =========
cubanos1 :: [Integer]
cubanos1 = filter isPrime (zipWith (-) (tail cubos) cubos)
 where cubos = map (^3) [1..]
-- 2ª solución
-- =========
cubanos2 :: [Integer]
cubanos2 = filter isPrime [(x+1)^3 - x^3 | x < [1..]]
-- 3ª solución
-- ========
```

```
cubanos3 :: [Integer]
cubanos3 = filter isPrime [3*x^2 + 3*x + 1 | x < -[1..]]
-- Ejercicio 2. Definir la función
      segmentos :: (Enum a, Eq a) => [a] -> [[a]]
-- tal que (segmentos xss) es la lista de los segmentos maximales (es
-- decir, de máxima longitud) de xss formados por elementos
-- consecutivos. Por ejemplo,
      segmentos [1,2,5,6,4]
                              == [[1,2],[5,6],[4]]
      segmentos [1,2,3,4,7,8,9] = [[1,2,3,4],[7,8,9]]
      segmentos "abbccddeeebc" == ["ab","bc","cd","de","e","e","bc"]
-- Nota: Se puede usar la función succ tal que (succ x) es el sucesor de
-- x. Por ejemplo,
      succ 3 == 4
      succ 'c' == 'd'
-- 1º definición (por recursión):
segmentos1 :: (Enum a, Eq a) => [a] -> [[a]]
segmentos1 [] = []
segmentos1 [x] = [[x]]
segmentos1 (x:xs) | y == succ x = (x:y:ys):zs
                  | otherwise = [x] : (y:ys):zs
    where ((y:ys):zs) = segmentos1 xs
-- 2ª definición.
segmentos2 :: (Enum a, Eq a) => [a] -> [[a]]
segmentos2 [] = []
segmentos2 xs = ys : segmentos2 zs
  where ys = inicial xs
        n = length ys
        zs = drop n xs
-- (inicial xs) es el segmento inicial de xs formado por elementos
-- consecutivos. Por ejemplo,
      inicial [1,2,5,6,4] == [1,2]
      inicial "abccddeeebc" == "abc"
inicial :: (Enum a, Eq a) \Rightarrow [a] \rightarrow [a]
inicial[] = []
inicial(x:xs) =
  [y | (y,z) \leftarrow takeWhile ((u,v) \rightarrow u == v) (zip (x:xs) [x..])]
```

```
-- Ejercicio 3. Los árboles se pueden representar mediante el siguiente
-- tipo de datos
      data Arbol a = N a [Arbol a]
                     deriving Show
-- Por ejemplo, los árboles
      1
      / \
                       /|\
          3
                     / | \
      2
                     5 4 7
          1
          4
                     6
                          2 1
-- se representan por
     ej1, ej2 :: Arbol Int
      ej1 = N 1 [N 2 [], N 3 [N 4 []]]
      ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]
-- Definir la función
      ramasLargas :: Arbol b -> [[b]]
-- tal que (ramasLargas a) es la lista de las ramas más largas del árbol
-- a. Por ejemplo,
      ramas ej1 == [[1,3,4]]
      ramas ej2 == [[3,5,6],[3,7,2],[3,7,1]]
data Arbol a = N a [Arbol a]
  deriving Show
ej1, ej2 :: Arbol Int
ej1 = N 1 [N 2 [], N 3 [N 4 []]]
ej2 = N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]]
ramasLargas :: Arbol b -> [[b]]
ramasLargas a = [xs | xs <- todasRamas,</pre>
                      length xs == m]
 where todasRamas = ramas a
        m = maximum (map length todasRamas)
-- (ramas a) es la lista de todas las ramas del árbol a. Por ejemplo,
      ramas ej1 == [[1,2],[1,3,4]]
      ramas ej2 == [[3,5,6],[3,4],[3,7,2],[3,7,1]]
ramas :: Arbol b -> [[b]]
```

```
ramas (N \times []) = [[x]]
ramas (N \times as) = [x : xs \mid a <- as, xs <- ramas a]
-- 2ª solución:
ramas2 :: Arbol b -> [[b]]
ramas2 (N x []) = [[x]]
ramas2 (N \times as) = concatMap (map (x:)) (map ramas2 as)
-- Ejercicio 4.1. El problema de las N torres consiste en colocar N
-- torres en un tablero con N filas y N columnas de forma que no haya
-- dos torres en la misma fila ni en la misma columna.
-- Cada solución del problema de puede representar mediante una matriz
-- con ceros y unos donde los unos representan las posiciones ocupadas
-- por las torres y los ceros las posiciones libres. Por ejemplo,
     (010)
     (100)
     (001)
-- representa una solución del problema de las 3 torres.
-- Definir la función
     torres :: Int -> [Matrix Int]
-- tal que (torres n) es la lista de las soluciones del problema de las
-- n torres. Por ejemplo,
        ghci> torres 3
        [(100)]
         (010)
         (001)
        ,(100)
         (001)
        (010)
        ,(010)
        (100)
        (001)
        ,(010)
        (001)
        (100)
        ,(001)
         (100)
        (010)
        (001)
        (010)
```

```
(100)
    donde se ha indicado con 1 las posiciones ocupadas por las torres.
  ______
-- 1º definición
-- =========
torres1 :: Int -> [Matrix Int]
torres1 n =
  [permutacionAmatriz n p | p <- sort (permutations [1..n])]</pre>
permutacionAmatriz :: Int -> [Int] -> Matrix Int
permutacionAmatriz n p =
 matrix n n f
 where f(i,j) \mid (i,j) 'elem' posiciones = 1
               | otherwise
                                       = 0
       posiciones = zip [1..n] p
-- 2ª definición
-- ==========
torres2 :: Int -> [Matrix Int]
torres2 = map fromLists . permutations . toLists . identity
-- El cálculo con la definición anterior es:
     ghci> identity 3
     (100)
     (010)
     (001)
     ghci> toLists it
- -
     [[1,0,0],[0,1,0],[0,0,1]]
     ghci> permutations it
     [[[1,0,0],[0,1,0],[0,0,1]],
      [[0,1,0],[1,0,0],[0,0,1]],
      [[0,0,1],[0,1,0],[1,0,0]],
      [[0,1,0],[0,0,1],[1,0,0]],
      [[0,0,1],[1,0,0],[0,1,0]],
      [[1,0,0],[0,0,1],[0,1,0]]]
     ghci> map fromLists it
- -
```

```
[(100)
     (010)
- -
     (001)
     ,(010)
     (100)
     (001)
     ,(001)
     (010)
     (100)
     ,(010)
     (001)
     (100)
     ,(001)
     (100)
     (010)
     ,(100)
- -
     (001)
     (010)
-- Ejercicio 4.2. Definir la función
     nTorres :: Int -> Integer
-- tal que (nTorres n) es el número de soluciones del problema de las n
-- torres. Por ejemplo,
       ghci> nTorres 3
       ghci> length (show (nTorres (10^4)))
-- 1ª definición
-- =========
nTorres1 :: Int -> Integer
nTorres1 = genericLength . torres1
-- 2ª definición de nTorres
- - =============
nTorres2 :: Int -> Integer
nTorres2 n = product [1..fromIntegral n]
```

```
-- Comparación de eficiencia
  _____
     ghci> nTorres1 9
     362880
     (4.22 secs, 693,596,128 bytes)
     ghci> nTorres2 9
     362880
     (0.00 secs, 0 bytes)
-- Ejercicio 5.1. El conjunto de todas las palabras se puede ordenar
  como se muestra a continuación:
       a,
           b, ..., z, A,
                               B, ...,
                                        Ζ,
           ab, ..., az, aA, aB, ...,
      aa,
                                       aΖ,
      ba,
           bb, ..., bz, bA,
                              bB, ...,
                                       bΖ,
           zb, ..., zz, zA, zB, ..., zZ,
      za,
     aaa, aab, ..., aaz, aaA, aaB, ..., aaZ,
     baa, bab, ..., baz, baA, baB, ..., baZ,
     . . .
-- Definir la función
     palabras :: [String]
-- tal que palabras es la lista ordenada de todas las palabras. Por
  ejemplo,
       ghci> take 10 (drop 100 palabras)
       ["aW","aX","aY","aZ","ba","bb","bc","bd","be","bf"]
       ghci> take 10 (drop 2750 palabras)
       ["ZU","ZV","ZW","ZX","ZY","ZZ","aaa","aab","aac","aad"]
       ghci> palabras !! (10^6)
       "geP0"
               ______
-- 1º definición
  =========
palabras1 :: [String]
palabras1 = concatMap palabrasDeLongitud [1..]
-- (palabrasDeLongitud n) es la lista ordenada de palabras longitud
-- n. Por ejemplo,
     take 3 (palabrasDeLongitud 2) == ["aa","ab","ac"]
```

```
take 3 (palabrasDeLongitud 3) == ["aaa","aab","aac"]
palabrasDeLongitud :: Integer -> [String]
palabrasDeLongitud 1 = [[x] | x <- letras]
palabrasDeLongitud n = [x:ys | x <- letras,</pre>
                               ys <- palabrasDeLongitud (n-1)]
-- letras es la lista ordenada de las letras.
letras :: [Char]
letras = ['a'..'z'] ++ ['A'..'Z']
-- 2ª definición
-- =========
palabras2 :: [String]
palabras2 = concat (iterate f elementales)
 where f = concatMap (\x -> map (x++) elementales)
-- elementales es la lista de las palabras de una letra.
elementales :: [String]
elementales = map (:[]) letras
-- 3ª definición
-- =========
palabras3 :: [String]
palabras3 = tail $ map reverse aux
 where aux = "" : [c:cs | cs <- aux, c <- letras]
-- Comparación
-- =========
      ghci> palabras1 !! (10^6)
      "geP0"
      (0.87 secs, 480,927,648 bytes)
      ghci> palabras2 !! (10^6)
      "geP0"
- -
      (0.11 secs, 146,879,840 bytes)
      ghci> palabras3 !! (10^6)
      "geP0"
- -
      (0.25 secs, 203,584,608 bytes)
-- Ejercicio 5.2. Definir la función
```

```
posicion :: String -> Integer
-- tal que (posicion n) es la palabra que ocupa la posición n en la lista
-- ordenada de todas las palabras. Por ejemplo,
     posicion "c"
     posicion "ab"
                                        53
     posicion "ba"
                                    == 104
     posicion "eva"
                                    == 14664
     posicion "adan"
                                    == 151489
     posicion "HoyEsMartes"
                                    == 4957940944437977046
     posicion "EnUnLugarDeLaMancha" == 241779893912461058861484239910864
-- 1º definición
-- ==========
posicion1 :: String -> Integer
posicion1 cs = genericLength (takeWhile (/=cs) palabras1)
-- 2ª definición
-- ==========
posicion2 :: String -> Integer
posicion2 "" = -1
posicion2 (c:cs) = (1 + posicionLetra c) * 52^(length cs) + posicion2 cs
posicionLetra :: Char -> Integer
posicionLetra c = genericLength (takeWhile (/=c) letras)
-- Ejercicio 5.3. Comprobar con QuickCheck que para todo entero positivo
-- n se verifica que
     posicion (palabras 'genericIndex' n) == n
-- La propiedad es
prop palabras :: (Positive Integer) -> Bool
prop_palabras (Positive n) =
 posicion2 (palabras3 'genericIndex' n) == n
-- La comprobación es
     ghci> quickCheck prop_palabras
     +++ 0K, passed 100 tests.
```

7.5. Exámenes del grupo 5 (Andrés Cordón)

7.5.1. Examen 1 (12 de Noviembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (3 de noviembre de 2015)
import Test.QuickCheck
-- Ejercicio 1.1. Definir, por comprensión, la función
     selecC :: Int -> Int -> [Int] -> [Int]
-- tal que (selecC a b xs) es la lista de los elementos de que son
-- múltiplos de a pero no de b. Por ejemplo,
    selecc 3 2 [8,9,2,3,4,5,6,10] == [9,3]
    selecC 2 3 [8,9,2,3,4,5,6,10] == [8,2,4,10]
  ______
selecC :: Int -> Int -> [Int] -> [Int]
selecC a b xs = [x \mid x < -xs, rem x a == 0, rem x b /= 0]
-- Ejercicio 1.2. Definir, por recursión, la función
     selecR :: Int -> Int -> [Int] -> [Int]
-- tal que (selecR a b xs) es la lista de los elementos de que son
-- múltiplos de a pero no de b. Por ejemplo,
    selecR 3 2 [8,9,2,3,4,5,6,10] == [9,3]
    selecR 2 3 [8,9,2,3,4,5,6,10] == [8,2,4,10]
selecR :: Int -> Int -> [Int] -> [Int]
selecR _ _ [] = []
selecR a b (x:xs)
   \mid rem x a == 0 && rem x b /= 0 = x : selecR a b xs
   | otherwise
                              = selecR a b xs
```

```
-- Ejercicio 2. Definir la función
      mismaLongitud :: [[a]] -> Bool
-- tal que (mismaLongitud xss) se verifica si todas las listas de la
-- lista de listas xss tienen la misma longitud. Por ejemplo,
     mismaLongitud [[1,2],[6,4],[0,0],[7,4]] == True
     mismaLongitud [[1,2],[6,4,5],[0,0]] == False
-- lª solución:
mismaLongitud1 :: [[a]] -> Bool
mismaLongitud1 [] = True
mismaLongitud1 (xs:xss) = and [length ys == n | ys <- xss]
    where n = length xs
-- 2ª solución:
mismaLongitud2 :: [[a]] -> Bool
mismaLongitud2 xss =
    and [length xs == length ys | (xs,ys) <- zip xss (tail xss)]
-- 3º solución:
mismaLongitud3 :: [[a]] -> Bool
mismaLongitud3 (xs:ys:xss) =
    length xs == length ys && mismaLongitud3 (ys:xss)
mismaLongitud3 = True
-- 4ª solución:
mismaLongitud4 :: [[a]] -> Bool
mismaLongitud4 [] = True
mismaLongitud4 (xs:xss) =
    all (\ys -> length ys == n) xss
   where n = length xs
-- Comparación de eficiencia
      ghci> mismaLongitud1 (replicate 20000 (replicate 20000 5))
      True
      (5.05 secs, 0 bytes)
      ghci> mismaLongitud2 (replicate 20000 (replicate 20000 5))
- -
     True
      (9.98 secs, 0 bytes)
      ghci> mismaLongitud3 (replicate 20000 (replicate 20000 5))
     True
      (10.17 secs, 0 bytes)
- -
      ghci> mismaLongitud4 (replicate 20000 (replicate 20000 5))
```

```
True
      (5.18 secs, 0 bytes)
-- Ejercicio 3. Los resultados de las votaciones a delegado en un grupo
-- de clase se recogen mediante listas de asociación. Por ejemplo,
      votos :: [(String,Int)]
      votos = [("Ana Perez",10),("Juan Lopez",7), ("Julia Rus", 27),
               ("Pedro Val",1), ("Pedro Ruiz",27),("Berta Gomez",11)]
-- Definir la función
      qanadores :: [(String,Int)] -> [String]
-- tal que (ganadores xs) es la lista de los estudiantes con mayor
-- número de votos en xs. Por ejemplo,
       ganadores votos == ["Julia Rus", "Pedro Ruiz"]
votos :: [(String,Int)]
votos = [("Ana Perez",10),("Juan Lopez",7), ("Julia Rus", 27),
         ("Pedro Val",1), ("Pedro Ruiz",27),("Berta Gomez",11)]
ganadores :: [(String,Int)] -> [String]
ganadores xs = [c \mid (c,x) < -xs, x == maxVotos]
    where maxVotos = maximum [j \mid (i,j) <- xs]
-- Ejercicio 4.1. Un entero positivo x se dirá muy par si tanto x como
-- x^2 sólo contienen cifras pares. Por ejemplo, 200 es muy par porque
-- todas las cifras de 200 y 200^2 = 40000 son pares; pero 26 no lo es
-- porque 26^2 = 767 tiene cifras impares.
-- Definir la función
      muyPar :: Integer -> Bool
-- tal que (muyPar x) se verifica si x es muy par. por ejemplo,
      muyPar 200
                           == True
      muyPar 26
                           == False
     muyPar 828628040080 == True
muyPar :: Integer -> Bool
muyPar n = all even (digitos n) && all even (digitos <math>(n*n))
digitos :: Integer -> [Int]
```

```
digitos n = [read [d] | d <- show n]
-- Ejercicio 4.2. Definir la función
     siguienteMuyPar :: Integer -> Integer
-- tal que (siguienteMuyPar x) es el primer número mayor que x que es
-- muy par. Por ejemplo,
siguienteMuyPar 300siguienteMuyPar 668
                                   668
                                    680
     siguienteMuyPar 828268400000 == 828268460602
siguienteMuyPar :: Integer -> Integer
siguienteMuyPar x =
   head [n \mid n < [y,y+2..], muyPar n]
   where y = siguientePar x
-- (siguientePar x) es el primer número mayor que x que es par. Por
-- ejemplo,
     siquientePar 3 == 4
     siguientePar 4 == 6
siguientePar :: Integer -> Integer
siguientePar x \mid odd x = x+1
             | otherwise = x+2
-- Ejercicio 5.1. Definir la función
     transformada :: [a] -> [a]
-- tal que (transformada xs) es la lista obtenida repitiendo cada
-- elemento tantas veces como indica su posición en la lista. Por
-- ejemplo,
     transformada [7,2,5] == [7,2,2,5,5,5]
     transformada "eco" == "eccooo"
transformada :: [a] -> [a]
transformada xs = concat [replicate n x | (n,x) <- zip [1..] xs]
-- Ejercicio 5.2. Comprobar con QuickCheck si la transformada de una
-- lista de n números enteros, con n \ge 2, tiene menos de n^3 elementos.
```

```
-- La propiedad es
prop_transformada :: [Int] -> Property
prop_transformada xs = n >= 2 ==> length (transformada xs) < n^3
    where n = length xs

-- La comprobación es
-- ghci> quickCheck prop_transformada
-- +++ OK, passed 100 tests.
```

7.5.2. Examen 2 (17 de Diciembre de 2015)

```
-- Informática (1º del Grado en Matemáticas)
-- 1º examen de evaluación continua (7 de diciembre de 2015)
__ ______
-- Ejercicio 1.1. Definir, por comprensión, la función
     sumaDivC :: Int -> [Int] -> Int
-- tal que (SumaDivC x xs) es la suma de los cuadrados de los
-- elementos de xs que son divisibles por x. Por ejemplo,
     sumaDivC 3 [1..7] == 45
     sumaDivC 2 [1..7] == 56
sumaDivC :: Int -> [Int] -> Int
sumaDivC x xs = sum [y^2 | y <- xs, rem y x == 0]
-- Ejercicio 1.2. Definir, usando funciones de orden superior, la
-- función
     sumaDivS :: Int -> [Int] -> Int
-- tal que (SumaDivS x xs) es la suma de los cuadrados de los
-- elementos de xs que son divisibles por x. Por ejemplo,
     sumaDivS 3 [1..7] == 45
     sumaDivS 2 [1..7] == 56
  ______
sumaDivS :: Int -> [Int] -> Int
sumaDivS x = sum \cdot map(^2) \cdot filter( y -> rem y x == 0)
-- Ejercicio 1.3. Definir, por recursión, la función
```

```
sumaDivR :: Int -> [Int] -> Int
-- tal que (SumaDivR x xs) es la suma de los cuadrados de los
-- elementos de xs que son divisibles por x. Por ejemplo,
      sumaDivR 3 [1..7] == 45
      sumaDivR 2 [1..7] == 56
sumaDivR :: Int -> [Int] -> Int
sumaDivR _ [] = 0
sumaDivR x (y:xs) | rem y x == 0 = y^2+sumaDivR x xs
                  | otherwise = sumaDivR x xs
-- Ejercicio 1.4. Definir, por plegado, la función
      sumaDivP :: Int -> [Int] -> Int
-- tal que (SumaDivP x xs) es la suma de los cuadrados de los
-- elementos de xs que son divisibles por x. Por ejemplo,
      sumaDivP 3 [1..7] == 45
      sumaDivP 2 [1..7] == 56
sumaDivP :: Int -> [Int] -> Int
sumaDivP x = foldr (\y z -> if rem y x == 0 then y^2+z else z) 0
-- Ejercicio 2. Una lista de enteros positivos se dirá encadenada si el
-- último dígito de cada elemento coincide con el primer dígito del
-- siguiente; y el último dígito del último número coincide con el
-- primer dígito del primer número.
-- Definir la función
     encadenada :: [Int] -> Bool
-- tal que (encadenada xs) se verifica si xs está encadenada. Por
-- ejemplo,
     encadenada [92,205,77,72] == False
      encadenada [153,32,207,71] == True
     encadenada [153,32,207,75] == False
     encadenada [123]
                                == False
     encadenada [121]
                                 == True
encadenada :: [Int] -> Bool
encadenada (x:xs) =
```

```
and [last (show a) == head (show b) | (a,b) <- zip (x:xs) (xs++[x])]
-- Ejercicio 3.1. Un entero positivo se dirá especial si la suma de sus
-- dígitos coincide con el número de sus divisores. Por ejemplo, 2015 es
-- especial, puesto que la suma de sus dígitos es 2+0+1+5=8 y tiene 8
-- divisores (1,5,13,31,65,155,403 y 2015).
-- Definir la sucesión infinita
      especiales :: [Int]
-- formada por todos los números especiales. Por ejemplo:
      take 12 especiales == [1,2,11,22,36,84,101,152,156,170,202,208]
especiales :: [Int]
especiales = [x \mid x < -[1..], sum (digitos x) == length (divisores x)]
divisores :: Int -> [Int]
divisores x = [y \mid y < -[1..x], rem x y == 0]
digitos :: Int -> [Int]
digitos x = [read [c] | c <- show x]
-- Ejercicio 3.2. Definir la función
      siquienteEspecial :: Int -> Int
-- tal que (siguienteEspecial x) es el primer entero mayor que x que es
-- especial. Por ejemplo,
      siguienteEspecial 2015 == 2101
siguienteEspecial :: Int -> Int
siguienteEspecial x = head (dropWhile (<=x) especiales)
-- Ejercicio 4. Definir la función
      palabras :: String -> [String]
-- tal que (palabras xs) es la lista de las palabras que aparecen en xs,
-- eliminando los espacios en blanco. Por ejemplo,
      ghci> palabras " el lagarto
      ["el","lagarto","esta","llorando"]
```

```
palabras :: String -> [String]
palabras [] = []
palabras (x:xs)
  | x == ' ' = palabras (dropWhile (== ' ') xs)
  | otherwise = (x:takeWhile (/=' ') xs):palabras (dropWhile (/=' ') xs)
-- Ejercicio 5.1. Los árboles binarios se representan mediante el tipo de
-- datos
     data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
-- Definir la función
     maxHojas :: Ord a => Arbol a -> a
-- tal que (maxHojas t) es el mayor valor que aparece en una hoja del
-- árbol t. Por ejemplo,
     ghci> maxHojas (N 14 (N 2 (H 7) (H 10)) (H 3))
     10
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
maxHojas :: Ord a => Arbol a -> a
maxHojas (H x) = x
maxHojas (N i d) = max (maxHojas i) (maxHojas d)
-- Ejercicio 5.2. Definir la función
     sumaValor :: Num a => a -> Arbol a -> Arbol a
-- tal que (sumaValor v t) es el árbol obtenido a partir de t al sumar v
-- a todos sus nodos. Por ejemplo,
     ghci> sumaValor 7 (N 14 (N 2 (H 7) (H 10)) (H 3))
     N 21 (N 9 (H 14) (H 17)) (H 10)
  ______
sumaValor :: Num a => a -> Arbol a -> Arbol a
sumaValor v (H x) = H (v+x)
sumaValor v (N x i d) = N (v+x) (sumaValor v i) (sumaValor v d)
```

7.5.3. Examen 3 (25 de enero de 2016)

El examen es común con el del grupo 2 (ver página 594).

7.5.4. Examen 4 (10 de marzo de 2016)

```
-- Informática (1º del Grado en Matemáticas, Grupo 5)
-- 4º examen de evaluación continua (10 de marzo de 2016)
-- § Librerías auxiliares
import Data.List
import Data.Numbers.Primes
import Data.Array
-- Ejercicio 1.1. Definir la lista infinita
     paresRel :: [(Int,Int)]
-- tal que paresRel enumera todos los pares de enteros positivos (a,b),
-- con 1 <= a < b, tales que a y b tienes los mismos divisores primos.
-- Por ejemplo,
     ghci> take 10 paresRel
     [(2,4),(2,8),(4,8),(3,9),(6,12),(2,16),(4,16),(8,16),(6,18),(12,18)]
paresRel :: [(Int,Int)]
paresRel = [(a,b) | b <- [1..], a <- [1..b-1], p a b]
   where p a b = nub (primeFactors a) == nub (primeFactors b)
-- Ejercicio 1.2. ¿Qué lugar ocupa el par (750,1080) en la lista
-- infinita paresRel?
-- El cálculo es
     ghci> 1 + length (takeWhile (/=(750,1080)) paresRel)
     1492
-- Ejercicio 2.1. Definir la función
     segmento :: Eq a => [a] -> [a]
-- tal que (segmento xs) es el mayor segmento inicial de xs que no
-- contiene ningún elemento repetido. Por ejemplo:
     segmento [1,2,3,2,4,5] == [1,2,3]
```

```
-- segmento "caceres" == "ca"
-- 1ª solución
- - -----
segmentol :: Eq a \Rightarrow [a] \Rightarrow [a]
segmento1 = last . filter (\ys -> nub ys == ys) . inits
-- 2ª solución
-- ========
segmento2 :: Eq a => [a] -> [a]
segmento2 xs = aux xs []
   where aux [] ys = reverse ys
        aux (x:xs) ys | x 'elem' ys = reverse ys
                    | otherwise = aux xs (x:ys)
-- Comparación de eficiencia
ghci> last (segmento1 [1..10^3])
     1000
     (6.19 secs, 59,174,640 bytes)
     ghci> last (segmento2 [1..10^3])
     1000
     (0.04 secs, 0 bytes)
-- Solución
-- =======
-- En lo que sigue usaremos la 2ª definición
segmento :: Eq a => [a] -> [a]
segmento = segmento2
__ ______
-- Ejercicio 2.2. Se observa que 10! = 3628800 comienza con 4 dígitos
-- distintos (después se repite el dígito 8).
-- Calcular el menor número natural cuyo factorial comienza con 9
-- dígitos distintos.
```

```
factorial :: Integer -> Integer
factorial x = product [1..x]
-- El cálculo es
      ghci> head [x \mid x < [0..], length (segmento (show (factorial x))) == 9]
      314
-- Ejercicio 3.1. Las expresiones aritméticas se pueden definir mediante
-- el siguiente tipo de dato
      data Expr = N Int | V Char | Sum Expr Expr | Mul Expr Expr
                  deriving Show
-- Por ejemplo, (x+3)+(7*y) se representa por
     ejExpr :: Expr
     ejExpr = Sum (Sum (V 'x') (N 3))(Mul (N 7) (V 'y'))
-- Definir el predicado
     numerico :: Expr -> Bool
-- tal que (numerico e) se verifica si la expresión e no contiene ninguna
-- variable. Por ejemplo,
    numerico ejExpr
                               == False
    numerico (Sum (N 7) (N 9)) == True
   _____
data Expr = N Int | V Char | Sum Expr Expr | Mul Expr Expr
            deriving Show
ejExpr :: Expr
ejExpr = Sum (Sum (V 'x') (N 3))(Mul (N 7) (V 'y'))
numerico :: Expr -> Bool
numerico (N )
                    = True
numerico (V _)
                    = False
numerico (Sum el e2) = numerico el && numerico e2
numerico (Mul el e2) = numerico el && numerico e2
-- Ejercicio 3.2. Definir la función
      evalua :: Expr -> Maybe Int
-- tal que (evalua e) devuelve 'Just v' si la expresión e es numérica y
-- v es su valor, o bien 'Nothing' si e no es numérica. Por ejemplo:
     evalua ejExpr
                             == Nothing
     evalua (Sum (N 7) (N 9)) == Just 16
```

__ _______ -- lª solución evalual :: Expr -> Maybe Int evalua1 e | null (aux e) = Nothing | otherwise = Just (head (aux e)) where aux (N x)= [x]= [] aux (V _) aux (Sum e1 e2) = [x+y| x <- aux e1, y <- aux e2]aux (Mul e1 e2) = [x*y| x <- aux e1, y <- aux e2]-- 2ª solución evalua2 :: Expr -> Maybe Int evalua2 e | numerico e = Just (valor e) | otherwise = Nothing where valor $(N \times)$ valor (Sum e1 e2) = valor e1 + valor e2 valor (Mul e1 e2) = valor e1 * valor e2 __ _______ -- Ejercicio 4.1. Los vectores y matrices se definen usando tablas como -- sigue: type Vector a = Array Int a type Matriz a = Array (Int,Int) a -- Un elemento de un vector es un máximo local si no tiene ningún -- elemento adyacente mayor o igual que él. -- Definir la función posMaxVec :: Ord a => Vector a -> [Int] -- tal que (posMaxVec p) devuelve las posiciones del vector p en las que -- p tiene un máximo local. Por ejemplo: posMaxVec (listArray (1,6) [3,2,6,7,5,3]) == [1,4]type Vector a = Array Int a type Matriz a = Array (Int,Int) a -- 1º definición posMaxVec :: Ord a => Vector a -> [Int] posMaxVec p = (if p!1 > p!2 then [1] else []) ++ $[i \mid i \leftarrow [2..n-1], p!(i-1) < p!i \& p!(i+1) < p!i] ++$

```
(if p!(n-1) < p!n then [n] else [])
    where (,n) = bounds p
-- 2ª definición
posMaxVec2 :: Ord a => Vector a -> [Int]
posMaxVec2 p =
    [1 \mid p \mid 1 > p \mid 2] ++
    [i \mid i \leftarrow [2..n-1], p!(i-1) < p!i & p!(i+1) < p!i] ++
    [n \mid p ! (n - 1) 
    where (\_,n) = bounds p
-- 3ª definición
posMaxVec3 :: Ord a => Vector a -> [Int]
posMaxVec3 p =
    [i | i < -[1..n],
         all (<p!i) [p!j | j <- vecinos i]]
    where (,n) = bounds p
          vecinos 1 = [2]
          vecinos j \mid j == n = [n-1]
                    \mid otherwise = [j-1,j+1]
-- Ejercicio 4.2. Un elemento de una matriz es un máximo local si no
-- tiene ningún vecino mayor o igual que él.
-- Definir la función
      posMaxMat :: Ord a => Matriz a -> [(Int,Int)]
-- tal que (posMaxMat p) es la lista de las posiciones de la matriz p en
-- las que p tiene un máximo local. Por ejemplo,
      ghci> posMaxMat (listArray ((1,1),(3,3)) [1,20,15,4,5,6,9,8,7])
      [(1,2),(3,1)]
posMaxMat :: Ord a => Matriz a -> [(Int,Int)]
posMaxMat p = [(x,y) | (x,y) < -indices p, all (<(p!(x,y))) (vs x y)]
   where (,(n,m)) = bounds p
         vs x y = [p!(x+i,y+j) | i < [-1..1], j < [-1..1],
                                  (i,j) /= (0,0),
                                  (x+i) 'elem' [1..n],
                                  (y+j) 'elem' [1..m]]
```

-- Ejercicio 5. Escribir una función Haskell

```
fun :: (Int -> Int) -> IO ()
-- que actúe como la siguente función programada en Maxima:
     fun(f) := block([a,b], a:0, b:0,
                    x:read("Escribe un natural" ),
                    while b \le x do (a:a+f(b),b:b+1),
                    print(a))$
fun :: (Int -> Int) -> IO ()
fun f = do putStr "Escribe un natural: "
          xs <- getLine
          let a = sum [f i | i <- [0..read xs]]</pre>
-- Por ejemplo,
     ghci> fun (^2)
     Escribe un natural: 5
     55
        Examen 5 (5 de mayo de 2016)
7.5.5.
-- Informática (1º del Grado en Matemáticas, Grupo 5)
-- 5º examen de evaluación continua (5 de mayo de 2016)
  ______
-- Librerías auxiliares
import Data.List
import Data. Numbers. Primes
import Data.Matrix
import I1M.Pila
import I1M.Pol
-- Ejercicio 1. Un entero positivo se dirá muy primo si tanto él como
-- todos sus segmentos iniciales son números primos. Por ejemplo, 7193
-- es muy primo pues 7,71,719 y 7193 son todos primos.
-- Definir la lista
     muyPrimos :: [Integer]
```

```
-- de todos los números muy primos. Por ejemplo,
      ghci> take 20 muyPrimos
      [2,3,5,7,23,29,31,37,53,59,71,73,79,233,239,293,311,313,317,373]
  ______
muyPrimos :: [Integer]
muyPrimos = filter muyPrimo [1..]
 where muyPrimo = all isPrime . takeWhile (/=0) . iterate ('div' 10)
-- Ejercicio 2. Un bosque es una lista de árboles binarios.
-- Representaremos los árboles y los bosques mediante los siguientes
-- tipo de dato
      data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
      data Bosque a = B [Arbol a] deriving Show
-- Define la función
     cuentaBosque :: Eq a => a - > Bosque a -> Int
-- tal que (cuentaBosque x b) es el número de veces que aparece el
-- elemento x en el bosque b. Por ejemplo:
      ghci> let t1 = N \ 7 \ (N \ 9 \ (H \ 1) \ (N \ 5 \ (H \ 7) \ (H \ 6))) \ (H \ 5)
      ghci > let t2 = N 8 (H 7) (H 7)
      ghci> let t3 = N \ 0 \ (H \ 4) \ (N \ 6 \ (H \ 8) \ (H \ 9))
     ghci> cuentaBosque 7 (B [t1,t2,t3])
     ghci> cuentaBosque 4 (B [t2,t2,t3,t3])
      2
data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
data Bosque a = B [Arbol a] deriving Show
cuentaBosque :: Eq a => a -> Bosque a -> Int
cuentaBosque x (B ts) = sum (map (cuentaArbol x) ts)
cuentaArbol :: Eq a => a -> Arbol a -> Int
cuentaArbol x (H z)
             = 1
  | x == z
  | otherwise = 0
cuentaArbol x (N z i d)
  | x == z = 1 + cuentaArbol x i + cuentaArbol x d
  | otherwise = cuentaArbol x i + cuentaArbol x d
```

```
-- Ejercicio 3. Representamos las pilas mediante el TAD de las pilas
-- (I1M.Pila).
-- Definir la función
     alternaPila :: (a -> b) -> (a -> b) -> Pila a -> Pila b
-- tal que (alternaPila f g p) devuelve la pila obtenida al aplicar las
-- funciones f y g, alternativamente y empezando por f, a los elementos
-- de la pila p. Por ejemplo:
    ghci> alternaPila (*2) (+1) (foldr apila vacia [1,2,3,4,5,6])
    2|3|6|5|10|7|-
  _____
alternaPila :: (a -> b) -> (a -> b) -> Pila a -> Pila b
alternaPila f g p
  | esVacia p = vacia
  | otherwise = apila (f (cima p)) (alternaPila g f (desapila p))
__ _______
-- Ejercicio 4.1. Representaremos las matrices mediante la librería de
-- Haskell Data.Matrix.
-- Definir la función
      acumula :: Num a => Matrix a -> Matrix a
-- tal que (acumula p) devuelve la matriz obtenida al sustituir cada
-- elemento x de la matriz p por la suma del resto de elementos que
-- aparecen en la fila y en la columna de x. Por ejemplo,
             (1 2 2 2)
                                    8 4 10 12 )
- -
                                  (
                                  ( 3 3 7 11 )
     acumula ( 1 0 1 0 ) ==>
             (1-1 4 7)
                            ( 12 14 10 6 )
-- En Haskell,
     ghci> acumula (fromLists [[1,2,2,2],[1,0,1,0],[1,-1,4,7]])
     (8 4 10 12)
        3 3 7 11 )
     (12 14 10 6)
acumula :: Num a => Matrix a -> Matrix a
acumula p = matrix n m f where
   n = nrows p
   m = ncols p
   f(i,j) = sum [p!(k,j) | k <- [1..n], k /= i] +
```

```
sum [p!(i,k) | k <- [1..m], k /= j]
-- Ejercicio 4.2. Definir la función
     filasEnComun :: Eq a => Matrix a -> Matrix a -> Matrix a
-- tal que (filasEnComun p q) devuelve la matriz formada por las filas
-- comunes a p y q, ordenadas según aparecen en la matriz p (suponemos
-- que ambas matrices tienen el mismo número de columnas y que tienen
-- alguna fila en común). Por ejemplo,
                  (1212)
                                 (937-1) (1212)
                  (0110)
                                 (5760) ==> (937-1)
    filasEnComun
                  (937-1)
                                 (1212)
                  (5700)
-- En Haskell,
     ghci> let m1 = fromLists [[1,2,1,2],[0,1,1,0],[9,3,7,-1],[5,7,0,0]]
     ghci> let m2 = fromLists [[9,3,7,-1],[5,7,6,0],[1,2,1,2]]
     ghci> filasEnComun m1 m2
     (1212)
     (937-1)
filasEnComun :: Eq a => Matrix a -> Matrix a -> Matrix a
filasEnComun p q =
 fromLists (toLists q 'intersect' toLists p)
-- Ejercicio 5.1. Representamos los polinomios mediante el TAD de los
-- Polinomios (I1M.Pol).
-- Un polinomio se dirá completo si los exponentes de su variable van
-- sucesivamente desde su grado hasta cero, sin faltar ninguno. Por
-- ejemplo, 5*x^3+x^2-7*x+1 es completo.
-- Definir la función
     completo :: (Num a,Eq a) => Polinomio a -> Bool
-- tal que (completo p) se verifica si p es completo. Por ejemplo,
     completo (consPol 2 5 (consPol 1 7 polCero)) == True
     completo (consPol 3 5 (consPol 1 7 polCero)) == False
```

```
completo :: (Num a, Eq a) => Polinomio a -> Bool
completo p
  | esPolCero p = True
  | grado p == 0 = True
  | otherwise = grado rp == grado p - 1 && completo rp
 where rp = restoPol p
-- Ejercicio 5.2. Definir la función
      interPol :: (Num a, Eq a) => Polinomio a -> Polinomio a
-- tal que (interPol p q) es el polinomio formado por términos comunes a
-- los polinomios p y q. Por ejemplo, si p1 es 2*x^6-x^4-8*x^2+9 y p2
-- es 2*x^6+x^4+9, entonces (interPol p1 p2) es 2*x^6+9. En Haskell,
      ghci> let p1 = consPol 6 2 (consPol 4 1 (consPol 2 8 (consPol 0 9 polCero))
      ghci> let p2 = consPol 6 2 (consPol 4 1 (consPol 0 9 polCero))
     ghci> interPol p1 p2
      2*x^6 + 9
interPol :: (Num a,Eq a) => Polinomio a -> Polinomio a -> Polinomio a
interPol p q
  | esPolCero p = polCero
  | esPolCero q = polCero
  | gp > gq = interPol rp q
| gp < gq = interPol p rq
  | cp == cq = consPol gp cp (interPol rp rq)
  | otherwise = interPol rp rq
 where gp = grado p
        gq = grado q
        cp = coefLider p
        cq = coefLider q
        rp = restoPol p
        rq = restoPol q
```

7.5.6. Examen 6 (7 de junio de 2016)

El examen es común con el del grupo 4 (ver página 664).

7.5.7. Examen 7 (23 de junio de 2016)

El examen es común con el del grupo 4 (ver página 673).

7.5.8. Examen 8 (01 de septiembre de 2016)

El examen es común con el del grupo 4 (ver página 682).

Exámenes del curso 2016-17

8.1. Exámenes del grupo 1 (María J. Hidalgo)

8.1.1. Examen 1 (3 de noviembre de 2016)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 1º examen de evaluación continua (3 de noviembre de 2016)
  ______
-- § Librerías auxiliares
import Data.List
import Test.QuickCheck
-- Ejercicio 1.1. La intersección de dos listas xs, ys es la lista
-- formada por los elementos de xs que también pertenecen a ys.
-- Definir, por comprensión, la función
     interseccionC :: Eq a => [a] -> [a] -> [a]
-- tal que (interseccionC xs ys) es la intersección de xs e ys. Por
-- ejemplo,
     intersectionC [2,7,4,1] [1,3,6] == [1]
     intersectionC [2..10] [3..12] == [3,4,5,6,7,8,9,10]
     interseccionC [2..10] [23..120] == []
  ______
interseccionC :: Eq a => [a] -> [a] -> [a]
```

```
intersectionC xs ys = [x \mid x < -xs, x 'elem' ys]
__ _______
-- Ejercicio 1.2. Definir, por recursión, la función
     interseccionR :: Eq a => [a] -> [a] -> [a]
-- tal que (interseccionR xs ys) es la intersección de xs e ys. Por
-- ejemplo,
    intersectionR [2,7,4,1] [1,3,6] == [1]
    intersectionR [2..10] [3..12] == [3,4,5,6,7,8,9,10]
    interseccionR [2..10] [23..120] == []
__ ______
interseccionR ::Eq a => [a] -> [a] -> [a]
interseccionR [] ys = []
interseccionR (x:xs) ys
 \mid x \text{ 'elem' ys} = x : interseccionR xs ys
 | otherwise = interseccionR xs ys
-- Ejercicio 1.3. Comprobar con QuikCheck que ambas definiciones
-- coinciden.
-- La propiedad es
prop interseccion :: (Eq a) => [a] -> [a] -> Bool
prop interseccion xs ys =
 interseccionC xs ys == interseccionR xs ys
-- La comprobación es
    ghci> quickCheck prop_interseccion
    +++ OK, passed 100 tests.
-- Ejercicio 2.1. El doble factorial de un número n se define por
    n!! = n*(n-2)* ... * 3 * 1, si n es impar
    n!! = n*(n-2)* ... * 4 * 2, si n es par
    1!! = 1
    0!! = 1
-- Por ejemplo,
    8!! = 8*6*4*2 = 384
    9!! = 9*7*5*3*1 = 945
-- Definir, por comprensión, la función
```

```
dobleFactorialC :: Integer -> Integer
-- tal que (dobleFactorialC n) es el doble factorial de n. Por ejemplo,
     dobleFactorialC 8 == 384
     dobleFactorialC 9 == 945
dobleFactorialC :: Integer -> Integer
dobleFactorialC n = product [n,n-2..2]
  ______
-- Ejercicio 2.2. Definir, por recursión, la función
     dobleFactorialR :: Integer -> Integer
-- tal que (dobleFactorialR n) es el doble factorial de n. Por ejemplo,
     dobleFactorialR 8 == 384
     dobleFactorialR 9 == 945
dobleFactorialR :: Integer -> Integer
dobleFactorialR 0 = 1
dobleFactorialR 1 = 1
dobleFactorialR n = n * dobleFactorialR (n-2)
-- Ejercicio 2.3. Comprobar con QuikCheck que ambas definiciones
-- coinciden para n >= 0.
-- La propiedad es
prop dobleFactorial :: Integer -> Property
prop dobleFactorial n =
 n >= 0 ==> dobleFactorialC n == dobleFactorialR n
-- La comprobación es
     ghci> quickCheck prop_dobleFactorial
     +++ OK, passed 100 tests.
-- Ejercicio 3. Un número n es especial si es mayor que 9 y la suma de
-- cualesquiera dos dígitos consecutivos es un número primo. Por
-- ejemplo, 4116743 es especial pues se cumple que la suma de dos
-- dígitos consecutivos es un primo, ya que 4+1, 1+1, 1+6, 6+7, 7+4 y
-- 4+3 son primos.
```

```
-- Definir una función
      especial :: Integer -> Bool
-- tal que (especial n) reconozca si n es especial. Por ejemplo,
     especial 4116743 == True
      especial 41167435 == False
-- 1º definición
-- ==========
especial1 :: Integer -> Bool
especial1 n =
 n > 9 \& and [primo (x+y) | (x,y) <- zip xs (tail xs)]
 where xs = digitos n
-- (digitos n) es la lista con los dígitos de n. Por ejemplo,
     digitos 325 == [3,2,5]
digitos :: Integer -> [Int]
digitos n = [read [x] | x <- show n]
-- (primo x) se verifica si x es primo. Por ejemplo,
      primo 7 == True
      primo 9 == False
primo :: Int -> Bool
primo x = factores x == [1,x]
-- (factores x) es la lista de los factores de x. Por ejemplo,
      factores 12 = [1,2,3,4,6,12]
factores :: Int -> [Int]
factores x = [y \mid y < -[1..x], x 'rem', y == 0]
-- 2º definición
-- =========
especial2 :: Integer -> Bool
especial2 n = n > 9 \&\& all primo (zipWith (+) xs (tail xs))
 where xs = digitos n
-- Ejercicio 4. Definir la función
     acumula :: Num a => [a] -> [a]
-- tal que (acumula xs) es la lista obtenida sumando a cada elemento de
```

```
-- xs todos los posteriores. Por ejemplo:
     acumula [1..5] == [15,14,12,9,5]
     acumula [3,5,1,2] == [11,8,3,2]
     acumula [-1,0] == [-1,0]
-- 1ª definición (por recursión):
acumula :: Num a => [a] -> [a]
acumula []
          = []
acumula (x:xs) = (x + sum xs): acumula xs
-- 2ª definición (por comprensión):
acumula2 :: Num a => [a] -> [a]
acumula2 xs = [sum (drop k xs) | k < [0..length xs - 1]]
-- 3ª definición (por composición):
acumula3 :: Num a => [a] -> [a]
acumula3 = init . map sum . tails
```

Examen 2 (1 de diciembre de 2016) 8.1.2.

```
import Data.List
import Data.Numbers.Primes
import Test.QuickCheck
-- Ejercicio 1. Definir la función
    menorFactorialDiv :: Integer -> Integer
-- tal que (menorFactorialDiv n) es el menor m tal que n divide a m!
-- Por ejemplo,
    menorFactorialDiv 10 == 5
    menorFactorialDiv 25 == 10
    menorFactorialDiv 10000 == 20
    menorFactorialDiv1 1993 == 1993
-- ¿Cuáles son los números n tales que (menorFactorialDiv n) == n?
__ ______
-- 1ª solución
-- ========
```

menorFactorialDiv1 :: Integer -> Integer

```
menorFactorialDiv1 n =
 head [x \mid x < [1..], product [1..x] 'mod' n == 0]
-- Los números n tales que
      (menorFactorialDiv n) == n
-- son el 1, el 4 y los números primos, lo que permite la segunda
-- definición.
-- 2ª solución
-- ========
menorFactorialDiv2 :: Integer -> Integer
menorFactorialDiv2 n
  I is P rime n = n
  | otherwise = head [x \mid x < [1..], product [1..x] 'mod' n == 0]
-- -----
-- Ejercicio 2. Dado un entero positivo n, consideremos la suma de los
-- cuadrados de sus divisores. Por ejemplo,
     f(10) = 1 + 4 + 25 + 100 = 130
      f(42) = 1 + 4 + 9 + 36 + 49 + 196 + 441 + 1764 = 2500
-- Decimos que n es un número "sumaCuadradoPerfecto" si f(n) es un
-- cuadrado perfecto. En los ejemplos anteriores, 42 es
-- sumaCuadradoPerfecto y 10 no lo es.
-- Definir la función
     sumaCuadradoPerfecto:: Int -> Bool
-- tal que (sumaCuadradoPerfecto x) se verifica si x es un número es
-- sumaCuadradoPerfecto. Por ejemplo,
     sumaCuadradoPerfecto 42 == True
     sumaCuadradoPerfecto 10 == False
     sumaCuadradoPerfecto 246 == True
-- Calcular todos los números sumaCuadradoPerfectos de tres cifras.
-- 1º definición
-- ==========
sumaCuadradoPerfecto :: Int -> Bool
sumaCuadradoPerfecto n =
 esCuadrado (sum (map (^2) (divisores n)))
```

```
-- 2ª definición
-- =========
sumaCuadradoPerfecto2 :: Int -> Bool
sumaCuadradoPerfecto2 =
  esCuadrado . sum . map (^2) . divisores
-- (esCuadrado n) se verifica si n es un cuadrado perfecto. Por ejemplo,
     esCuadrado 36 == True
     esCuadrado 40 == False
esCuadrado :: Int -> Bool
esCuadrado n = y^2 == n
 where y = floor (sqrt (fromIntegral n))
-- (divisores n) es la lista de los divisores de n. Por ejemplo,
     divisores 36 = [1,2,3,4,6,9,12,18,36]
divisores :: Int -> [Int]
divisores n = [x \mid x \leftarrow [1..n], rem n x == 0]
-- El cálculo es
     ghci> filter sumaCuadradoPerfecto [100..999]
     [246, 287, 728]
__ ______
-- Ejercicio 3.1. Un lista de números enteros se llama alternada si sus
-- elementos son alternativamente par/impar o impar/par.
-- Definir la función
     alternada :: [Int] -> Bool
-- tal que (alternada xs) se verifica si xs es una lista alternada. Por
-- ejemplo,
     alternada [1,2,3]
                      == True
     alternada [1,2,3,4] == True
     alternada [8,1,2,3,4] == True
     alternada [8,1,2,3] == True
     alternada [8]
                          == True
- -
     alternada [7]
                          == True
-- lª solución
-- =========
alternada1 :: [Int] -> Bool
```

```
alternada1 (x:y:xs)
  | even x = odd y && alternadal (y:xs)
  | otherwise = even y && alternada1 (y:xs)
alternada1 = True
-- 2ª solución
-- =========
alternada2 :: [Int] -> Bool
alternada2 xs = all odd (zipWith (+) xs (tail xs))
-- Ejercicio 3.2. Generalizando, una lista es alternada respecto de un
-- predicado p si sus elementos verifican alternativamente el predicado
-- p.
-- Definir la función
     alternadaG :: (a -> Bool) -> [a] -> Bool
-- tal que (alternadaG p xs) compruebe se xs es una lista alternada
-- respecto de p. Por ejemplo,
      alternadaG (>0) [-2,1,3,-9,2] == False
      alternadaG (>0) [-2,1,-3,9,-2] == True
     alternadaG (<0) [-2,1,-3,9,-2] == True
     alternadaG even [8,1,2,3] == True
alternadaG :: (a -> Bool) -> [a] -> Bool
alternadaG p (x:y:xs)
  | p x = not (p y) && alternadaG p (y:xs)
  | otherwise = p y && alternadaG p (y:xs)
alternadaG _ _ = True
-- Ejercicio 3.3. Redefinir la función alternada usando alternadaG y
-- comprobar con QuickCheck que ambas definiciones coinciden.
alternada3 :: [Int] -> Bool
alternada3 = alternadaG even
-- La propiedad es
propAlternada :: [Int] -> Bool
propAlternada xs = alternada1 xs == alternada3 xs
```

```
-- Su comprobación es
     ghci> quickCheck propAlternada
     +++ OK, passed 100 tests.
-- Ejercicio 4. Una lista de listas es engarzada si el último elemento
-- de cada lista coincide con el primero de la siguiente.
-- Definir la función
     engarzada :: Eq a => [[a]] -> Bool
-- tal que (engarzada xss) se verifica si xss es una lista engarzada.
-- Por ejemplo,
     engarzada [[1,2,3], [3,5], [5,9,0]] == True
     engarzada [[1,4,5], [5,0], [1,0]] == False
     engarzada [[1,4,5], [], [1,0]] == False
     engarzada [[2]]
                                        == True
-- 1º solución:
engarzada :: Eq a => [[a]] -> Bool
engarzada (xs:ys:xss) =
    not (null xs) && not (null ys) && last xs == head ys
 && engarzada (ys:xss)
engarzada _ = True
-- 2ª solución:
engarzada2 :: Eq a \Rightarrow [[a]] \rightarrow Bool
engarzada2 (xs:ys:xss) =
  and [ not (null xs)
     , not (null ys)
      , last xs == head ys
      , engarzada2 (ys:xss) ]
engarzada2 _ = True
-- 3º solución:
engarzada3 :: Eq a \Rightarrow [[a]] -> Bool
engarzada3 xss =
 and [ not (null xs) && not (null ys) && last xs == head ys
      | (xs,ys) <- zip xss (tail xss)]</pre>
-- 4ª solución:
engarzada4 :: Eq a => [[a]] -> Bool
```

```
engarzada4 xss =
 all engarzados (zip xss (tail xss))
 where engarzados (xs,ys) =
        not (null xs) && not (null ys) && last xs == head ys
-- Ejercicio 5.1. La sucesión de números de Pell se construye de la
-- forma siguiente:
     P(0) = 0
     P(1) = 1
     P(n) = 2*P(n-1) + P(n-2)
-- Sus primeros términos son
     0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461,...
-- Definir la constante
    sucPell :: [Integer]
-- tal que sucPell es la lista formada por los términos de la
-- sucesión. Por ejemplo,
     ghci> take 15 sucPell
     [0,1,2,5,12,29,70,169,408,985,2378,5741,13860,33461,80782]
sucPell :: [Integer]
sucPell = 0 : 1 : zipWith (+) sucPell (map (2*) (tail sucPell))
-- Ejercicio 5.2. Definir la función
     pell :: Int -> Integer
-- tal que (pell n) es el n-ésimo número de Pell. Por ejemplo,
     pell 0 == 0
     pell 10 == 2378
     pell 100 == 66992092050551637663438906713182313772
pell :: Int -> Integer
pell n = sucPell !! n
-- Ejercicio 5.3. Los números de Pell verifican que los cocientes
     ((P(m-1) + P(m))/P(m)
-- proporcionan una aproximación de la raiz cuadrada de 2.
-- Definir la función
```

```
aproxima :: Int -> [Double]
-- tal que (aproxima n) es la lista de las sucesivas aproximaciones
  a la raíz de 2, desde m = 1 hasta n. Por ejemplo,
     aproxima 3 == [1.0, 1.5, 1.4]
     aproxima 4 = [1.0, 1.5, 1.4, 1.41666666666666667]
     aproxima 10 == [1.0, 1.5, 1.4,
                   1.4166666666666667, 1.4137931034482758,
                   1.4142857142857144, 1.4142011834319526,
                   1.4142156862745099, 1.4142131979695431,
                   1.4142136248948696]
aproxima :: Int -> [Double]
aproxima n = map aprox2 [1..n]
 where aprox2 n =
        fromIntegral (pell (n-1) + pell n) / fromIntegral (pell n)
8.1.3. Examen 3 (31 de enero de 2017)
-- Informática (1º del Grado en Matemáticas)
-- 3º examen de evaluación continua (31 de enero de 2017)
-- Librerías auxiliares
import Data.List
import Test.QuickCheck
__ ______
-- Ejercicio 1. [2.5 puntos] Definir la lista
     ternasCoprimas :: [(Integer,Integer,Integer)]
-- cuyos elementos son ternas de primos relativos (a,b,c) tales que
-- a < b y a + b = c. Por ejemplo,
    take 7 ternasCoprimas
     [(1,2,3),(1,3,4),(2,3,5),(1,4,5),(3,4,7),(1,5,6),(2,5,7)]
    ternasCoprimas !! 300000
     (830,993,1823)
```

-- =========

```
-- 1ª solución
ternasCoprimas :: [(Integer,Integer,Integer)]
ternasCoprimas = [(x,y,z) | y <- [1..]
                           , x < [1..y-1]
                           , gcd \times y == 1
                           , let z = x+y
                           , gcd \times z == 1
                           , gcd y z == 1
-- 2^{\underline{a}} solución (Teniendo en cuenta que es suficiente que gcd x y == 1).
ternasCoprimas2 :: [(Integer,Integer,Integer)]
ternasCoprimas2 =
  [(x,y,x+y) | y < - [1..]
             , x < [1..y-1]
             , gcd \times y == 1
-- Ejercicio 2. [2.5 puntos] Un entero positivo n es pandigital en base
-- b si su expresión en base b contiene todos los dígitos de 0 a b-1 al
-- menos una vez. Por ejemplo,
      el 2 es pandigital en base 2 porque 2 en base 2 es 10,
      el 11 es pandigital en base 3 porque 11 en base 3 es 102 y
      el 75 es pandigital en base 4 porque 75 en base 4 es 1023.
-- Un número n es super pandigital de orden m si es pandigital en todas
-- las bases desde 2 hasta m. Por ejemplo, 978 es super pandigital de
-- orden 5 pues
      en base 2 es: 1111010010
      en base 3 es: 1100020
      en base 4 es: 33102
      en base 5 es: 12403
-- Definir la función
      superPandigitales :: Integer -> [Integer]
-- tal que (superPandigitales m) es la lista de los números super
-- pandigitales de orden m. Por ejemplo,
      take 3 (superPandigitales 3) == [11,19,21]
      take 3 (superPandigitales 4) == [75,99,114]
      take 3 (superPandigitales 5) == [978, 1070, 1138]
-- 1º definición
```

```
superPandigitales :: Integer -> [Integer]
superPandigitales m =
  [n \mid n < - [1..]
     , and [pandigitalBase b n | b <- [2..m]]]
-- (pandigitalBase b n) se verifica si n es pandigital en base la base
-- b. Por ejemplo,
      pandigitalBase 4 75 == True
      pandigitalBase 4 76 == False
pandigitalBase :: Integer -> Integer -> Bool
pandigitalBase b n = [0..b-1] 'esSubconjunto' enBase b n
-- (enBase b n) es la lista de los dígitos de n en base b. Por ejemplo,
      enBase 4 75 == [3,2,0,1]
      enBase 4 76 == [0,3,0,1]
enBase :: Integer -> Integer -> [Integer]
enBase b n | n < b
                      = [n]
           | otherwise = n 'mod' b : enBase b (n 'div' b)
-- (esSubconjunto xs ys) se verifica si xs es un subconjunto de ys. Por
-- ejemplo,
      esSubconjunto [1,5] [5,2,1] == True
      esSubconjunto [1,5] [5,2,3] == False
esSubconjunto :: Eq a => [a] -> [a] -> Bool
esSubconjunto xs ys = all ('elem' ys) xs
-- 2º definición
-- ==========
superPandigitales2 :: Integer -> [Integer]
superPandigitales2 a = foldl' f ys [a-1,a-2..2]
 where ys = filter (pandigitalBase a) [1..]
        f xs b = filter (pandigitalBase b) xs
pandigitalBase2 :: Integer -> Integer -> Bool
pandigitalBase2 b n = sort (nub xs) == [0..(b-1)]
 where xs = enBase b n
-- Ejercicio 3. [2.5 puntos] Definir la sucesión
      sucFinalesFib :: [(Integer,Integer)]
-- cuyos elementos son los pares (n,x), donde x es el n-ésimo término de
```

```
-- la sucesión de Fibonacci, tales que la terminación de x es n. Por
-- ejemplo,
      ghci> take 6 sucFinalesFib
      [(0,0),(1,1),(5,5),(25,75025),(29,514229),(41,165580141)]
      ghci> head [(n,x) \mid (n,x) < - sucFinalesFib, n > 200]
      (245,712011255569818855923257924200496343807632829750245)
      ghci> head [n \mid (n, ) \leftarrow sucFinalesFib, n > 10^4]
      10945
sucFinalesFib :: [(Integer, Integer)]
sucFinalesFib =
  [(n, fib n) | n < - [0..]
              , show n 'isSuffixOf' show (fib n)]
-- (fib n) es el n-ésimo término de la sucesión de Fibonacci.
fib :: Integer -> Integer
fib n = sucFib 'genericIndex' n
-- sucFib es la sucesión de Fibonacci.
sucFib :: [Integer]
sucFib = 0 : 1 : zipWith (+) sucFib (tail sucFib)
-- 2ª definición de sucFib
sucFib2 :: [Integer]
sucFib2 = 0 : scanl (+) 1 sucFib2
-- Ejercicio 4. [2.5 puntos] Los árboles se pueden representar mediante
-- el siguiente tipo de datos
      data Arbol a = N a [Arbol a]
        deriving Show
-- Por ejemplo, los árboles
        1
                  1
                                 1
       / \
                 / \
      8
          3
                5 3
                               5
          1
                   /||
                             /|\
          4
                  4 7 6
                            4 7 6 7
-- se representan por
      ej1, ej2, ej3 :: Arbol Int
      ej1 = N 1 [N 8 [], N 3 [N 4 []]]
     ej2 = N 1 [N 5 [], N 3 [N 4 [], N 7 [], N 6 []]]
      ej3 = N 1 [N 5 [N 4 [], N 7 [], N 6 []], N 3 [N 7 []]]
```

```
-- Definir la función
     minimaSuma :: Arbol Int -> Int
-- tal que (minimaSuma a) es el mínimo de las sumas de las ramas del
-- árbol a. Por ejemplo,
     minimaSuma ej1 == 8
     minimaSuma ej2 == 6
     minimaSuma ej3 == 10
data Arbol a = N a [Arbol a]
  deriving Show
ej1, ej2, ej3 :: Arbol Int
ej1 = N 1 [N 8 [], N 3 [N 4 []]]
ej2 = N 1 [N 5 [], N 3 [N 4 [], N 7 [], N 6 []]]
ej3 = N 1 [N 5 [N 4 [], N 7 [], N 6 []], N 3 [N 7 []]]
-- lª definición
-- =========
minimaSuma :: Arbol Int -> Int
minimaSuma a = minimum [sum xs | xs <- ramas a]
-- (ramas a) es la lista de las ramas del árbol a. Por ejemplo,
      ghci> ramas (N 3 [N 5 [N 6 []], N 4 [], N 7 [N 2 [], N 1 []]])
      [[3,5,6],[3,4],[3,7,2],[3,7,1]]
ramas :: Arbol b -> [[b]]
ramas (N \times []) = [[x]]
ramas (N \times as) = [x : xs \mid a <- as, xs <- ramas a]
-- 2ª definición (Como composición de funciones):
minimaSuma2 :: Arbol Int -> Int
minimaSuma2 = minimum . map sum . ramas
-- 3ª definición
-- ==========
minimaSuma3 :: Arbol Int -> Int
minimaSuma3 (N x []) = x
minimaSuma3 (N \times as) = \times + minimum [minimaSuma3 a | a <- as]
```

```
-- 4º definición
-- ==========
minimaSuma4 :: Arbol Int -> Int
minimaSuma4 (N x []) = x
minimaSuma4 (N x as) = x + minimum (map minimaSuma4 as)
8.1.4.
       Examen 4 (14 de marzo de 2017)
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (14 de marzo de 2017)
-- Librerías auxiliares
__ ______
import Graphics. Gnuplot. Simple
import Data.Numbers.Primes
import Data.Matrix
__ ______
-- Ejercicio 1. Decimos que una lista de números enteros es un camino
-- primo si todos sus elementos son primos y cada uno se diferencia del
-- anterior en un único dígito. Por ejemplo,
     [1033, 1733, 3733, 3739, 3779, 8779, 8179] es un camino primo, y
     [1033, 1733, 3733, 3739, 3793, 4793] no lo es.
-- Definir la función
     caminoPrimo:: [Integer] -> Bool
-- tal que (caminoPrimo xs) se verifica si xs es un camino primo. Por
-- ejemplo,
     caminoPrimo [1033, 1733, 3733, 3739, 3779, 8779, 8179] == True
     caminoPrimo [1033, 1733, 3733, 3739, 3793, 4793] == False
caminoPrimo :: [Integer] -> Bool
caminoPrimo ps = all pred (zip ps (tail ps))
 where pred (x,y) = isPrime \times \&\& isPrime y \&\& unDigitoDistinto x y
unDigitoDistinto :: Integer -> Bool
```

```
unDigitoDistinto n m = aux (show n) (show m)
 where aux (x:xs) (y:ys) | x \neq y = xs == ys
                          | otherwise = aux xs ys
        aux _ _ = False
-- Ejercicio 2. Consideramos el siguiente tipo algebraico de los árboles
-- binarios:
      data Arbola = Ha
                   | N a (Arbol a) (Arbol a)
         deriving (Show, Eq)
-- y el árbol
      al:: Arbol Int
      a1 = N 9 (N 3 (H 2) (N 4 (H 1) (H 5))) (H 8)
                        9
-- En este árbol hay una rama en la que todos sus elementos son mayores
-- que 7, pero no hay ninguna rama en la que todos sus elementos sean
-- pares.
- -
-- Definir la función
      propExisteTodos :: (a -> Bool) -> Arbol a -> Bool
-- tal que (propExisteTodos p a) se verifica si hay una rama en la que
-- todos sus nodos (internos u hoja) cumple la propiedad p. Por ejemplo
      propExisteTodos even a1 == False
      propExisteTodos (>7) a1 ==
      propExisteTodos (<=9) a1 == True</pre>
data Arbola = Ha
             | N a (Arbol a) (Arbol a)
  deriving (Show,Eq)
al :: Arbol Int
a1 = N 9 (N 3 (H 2) (N 4 (H 1) (H 5))) (H 8)
```

```
propiedadEA :: (a -> Bool) -> Arbol a -> Bool
propiedadEA p a = any (all p) (ramas a)
ramas :: Arbol a -> [[a]]
ramas (H x)
                = [[x]]
ramas (N \times i d) = [x:ys \mid ys < - ramas i ++ ramas d]
-- Ejercicio 3.1. Representamos un tablero del juego de los barcos
-- mediante una matriz de 0 y 1, en la que cada barco está formado por
-- uno o varios 1 consecutivos, tanto en horizontal como en vertical.
-- Por ejemplo, las siguientes matrices representan distintos tableros:
      ej1, ej2, ej3, ej4 :: Matrix Int
      ej1 = fromLists [[0,0,1,1],
                       [1,0,1,0],
                       [0,0,0,1],
                       [1,1,0,1]
     ej2 = fromLists [[0,0,0,1],
                       [1,0,0,0],
                       [0,0,1,1],
                       [1,0,0,1]
      ej3 = fromLists [[1,1,0,0],
                       [0,1,0,1],
                       [1,1,1,0],
                       [0,0,1,0]
      ej4 = joinBlocks (ej1,ej3,ej2,ej3)
-- Definir la función
      posicionesComunes :: Matrix Int -> Matrix Int -> [(Int,Int)]
  tal que (posicionesComunes p q) es la lista con las posiciones
  comunes ocupadas por algún barco en ambas matrices. Por ejemplo,
      posicionesComunes ej1 ej2 == [(1,4),(2,1),(3,4),(4,1),(4,4)]
      posicionesComunes ej1 ej3 == []
      posicionesComunes ej2 ej3 == [(3,3)]
ej1, ej2, ej3, ej4 :: Matrix Int
ej1 = fromLists [[0,0,1,1],
                 [1,0,1,0],
                 [0,0,0,1],
                 [1,1,0,1]
ej2 = fromLists [[0,0,0,1],
                 [1,0,0,0],
```

```
[0,0,1,1],
                 [1,0,0,1]]
ej3 = fromLists [[1,1,0,0],
                 [0,1,0,1],
                 [1,1,1,0],
                 [0,0,1,0]]
ej4 = joinBlocks (ej1,ej3,ej2,ej3)
-- lª definición:
posicionesComunes :: Matrix Int -> Matrix Int -> [(Int,Int)]
posicionesComunes p q =
  [(i,j) \mid i \leftarrow [1..m], j \leftarrow [1..n], a ! (i,j) == 2]
 where m = nrows p
        n = ncols p
        a = p + q
-- 2º definición:
posicionesComunes2 :: Matrix Int -> Matrix Int -> [(Int,Int)]
posicionesComunes2 p q =
  [(i,j) \mid i \leftarrow [1..m], j \leftarrow [1..n], p ! (i,j) == 1 \&\& q!(i,j) == 1]
 where m = nrows p
        n = ncols p
-- Ejercicio 3.2 Definir una función
      juego :: Matrix Int -> IO ()
-- que pregunte al usuario por una posición y devuelva "Tocado" o
-- "Agua" según lo que haya en esa posición en el tablero ej4. Una
-- posible sesión puede ser la siguiente.
      ghci> juego ej4
      Elije una fila:
      Elije una columna:
      3
     Agua
               _____
juego :: Matrix Int -> IO ()
juego p =
    do putStrLn "Elije una fila: "
       ci <- getLine
       let i = read ci
       putStrLn "Elije una columna: "
```

```
cj <- getLine
      let j = read cj
      if p ! (i,j) == 1
        then (putStrLn "Tocado")
        else (putStrLn "Agua")
-- Ejercicio 4.1. La fracción continua determinada por las sucesiones
  as = [a1,a2,a3,...] y bs = [b1,b2,b3,...] es la siguiente
                   b1
      al + -----
                       b2
           a2 + -----
                             b3
                a3 + -----
                                  b4
                      a4 + -----
                                        b5
                           a5 + -----
-- Definir la función
     aproxFracionContinua:: [Int] -> [Int] -> Int -> Double
-- tal que (aproxFracionContinua xs ys n) es la aproximación con n
-- términos de la fracción contínua determinada por xs e ys. Por
-- eiemplo,
                                          == 1.5414940825367982
     aproxFracionContinua [1,3..] [2,4..] 100
     aproxFracionContinua (repeat 1) (repeat 3) 100 == 2.302775637731995
aproxFracionContinua :: [Int] -> [Int] -> Int -> Double
aproxFracionContinua xs ys n = foldl f (a + b) (zip as bs)
 where (a:as) = map fromIntegral (reverse (take n xs))
       (b:bs) = map fromIntegral (reverse (take n ys))
       f z (x,y) = x + y/z
-- Ejercicio 4.2. Una aproximación de pi mediante fracciones continuas
-- es la siguiente:
     4
                       1^2
     -- = 1 + ------
                            2^2
     рi
```

```
3 + -----
                             3^2
                5 + -----
                     7 + -----
                          9 + -----
-- Definir la función
    aproximacionPi :: Int -> Double
-- tal que (aproximacionPi n) es la n-ésima aproximación de pi, mediante
-- la expresión anterior. Por ejemplo,
    aproximacionPi 100 == 3.141592653589793
  ------
aproximacionPi :: Int -> Double
aproximacionPi n = 4/(aproxFracionContinua as bs n)
 where as = [1,3..]
      bs = map (^2) [1..]
-- Ejercicio 4.3. Definir la función
    grafica :: [Int] -> IO ()
-- tal que (grafica ns) dibuja la gráfica de las k-ésimas aproximaciones
-- de pi donde k toma los valores de la lista ns.
grafica :: [Int] -> IO ()
grafica ns = plotList [] $ map aproximacionPi ns
```

8.1.5. Examen 5 (21 de abril de 2017)

```
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (21 de abril de 2017)
-- -----
```

```
-- Librerías auxiliares
import Data.List
import I1M.PolOperaciones
import I1M.Pila
import Graphics.Gnuplot.Simple
import qualified Data.Matrix as M
import qualified Data.Set
import qualified Data. Vector as V
-- Ejercicio 1. Los números 181 y 1690961 son ambos palíndromos y suma
-- de cuadrados consecutivos, pues 181 = 9^2 + 10^2 y
--1690961 = 919^2 + 920^2
-- Definir la constante
     sucesion :: [Integer]
-- tal que sucesion es la lista de los números que son suma de cuadrados
-- consecutivos y palíndromos. Por ejemplo,
     take 10 sucesion
     [1,5,181,313,545,1690961,3162613,3187813,5258525,5824285]
   ______
sucesion :: [Integer]
sucesion = filter palindromo sucSumaCuadradosConsecutivos
palindromo :: Integer -> Bool
palindromo n = xs == reverse xs
 where xs = show n
-- sucSumaCuadradosConsecutivos es la sucesión de los números que son
-- sumas de los cuadrados de dos números consecutivos. Por ejemplo,
     ghci> take 10 sucSumaCuadradosConsecutivos
     [1,5,13,25,41,61,85,113,145,181]
sucSumaCuadradosConsecutivos :: [Integer]
sucSumaCuadradosConsecutivos = map (\x -> 2*x^2+2*x+1) [0..]
-- 2ª definición
sucSumaCuadradosConsecutivos2 :: [Integer]
sucSumaCuadradosConsecutivos2 =
  [x^2 + (x+1)^2 | x < [0..]]
```

```
-- 3ª definición
sucSumaCuadradosConsecutivos3 :: [Integer]
sucSumaCuadradosConsecutivos3 =
  zipWith (+) cuadrados (tail cuadrados)
cuadrados :: [Integer]
cuadrados = map (^2) [0..]
-- Comparación de eficiencia
     ghci> maximum (take (10^6) sucSumaCuadradosConsecutivos)
     1999998000001
     (1.47 secs, 912,694,568 bytes)
     ghci> maximum (take (10^6) sucSumaCuadradosConsecutivos2)
     1999998000001
     (1.79 secs, 1,507,639,560 bytes)
     ghci> maximum (take (10^6) sucSumaCuadradosConsecutivos3)
     1999998000001
     (1.29 secs, 840,488,376 bytes)
__ _______
-- Eiercicio 2. Se define la relación de orden entre las pilas como el
-- orden lexicográfico. Es decir, la pila p1 es "menor" que p2 si la
-- cima de p1 es menor que la cima de p2, o si son iguales, la pila que
-- resulta de desapilar p1 es "menor" que la pila que resulta de
-- desapilar p2.
-- Definir la función
     menorPila :: Ord a => Pila a -> Pila a -> Bool
-- tal que (menorPila p1 p2) se verifica si p1 es "menor" que p2. Por
-- ejemplo, para la pilas
     p1 = foldr apila vacia [1..20]
     p2 = foldr apila vacia [1..5]
     p3 = foldr apila vacia [3..10]
     p4 = foldr apila vacia [4,-1,7,3,8,10,0,3,3,4]
-- se verifica que
     menorPila p1 p2 == True
     menorPila p2 p1
                      == False
     menorPila p3 p4
                       == True
     menorPila vacia p1 == True
     menorPila p1 vacia == False
```

```
menorPila p1 p2 | esVacia p1 = True
                 | esVacia p2 = False
                 \mid a1 < a2 = True
                 | a1 > a2
                              = False
                 | otherwise = menorPila r1 r2
  where a1 = cima p1
        a2 = cima p2
        r1 = desapila p1
        r2 = desapila p2
p1, p2, p3, p4 :: Pila Int
p1 = foldr apila vacia [1..20]
p2 = foldr apila vacia [1..5]
p3 = foldr apila vacia [3..10]
p4 = foldr apila vacia [4,-1,7,3,8,10,0,3,3,4]
-- Ejercicio 3.1. Definir la función
      polM:: M.Matrix Int -> Polinomio Int
-- tal que (polM m) es el polinomio cuyas raices son los elementos de la
-- diagonal de la matriz m. Por ejemplo, para la matriz definida por
      m1 :: M.Matrix Int
      m1 = M.fromLists [[1, 2, 3,4],
                         [0,-1, 0,5],
                         [0, 0, -2, 9],
                         [0, 0, 0, 3]]
-- se tiene
      ghci> polM m1
      x^4 + -1*x^3 + -7*x^2 + 1*x + 6
ml :: M.Matrix Int
m1 = M.fromLists [[1, 2, 3,4],
                   [0,-1, 0,5],
                   [0, 0, -2, 9],
                   [0, 0, 0, 3]]
polM :: M.Matrix Int -> Polinomio Int
polM m = foldr multPol polUnidad ps
  where ds = V.toList (M.getDiag m)
        ps = [consPol \ 1 \ 1 \ (consPol \ 0 \ (-d) \ polCero) \ | \ d <- \ ds]
```

```
-- Ejercicio 3.2. Definir la función
     dibPol :: M.Matrix Int -> [Int] -> IO ()
-- tal que (dibPol m xs) dibuje la gráfica del polinomio (polM m)
-- tomando los valores en la lista xs. Evaluar (dibPol m1 [-10..10]).
dibPol :: M.Matrix Int -> [Int] -> IO ()
dibPol m xs =
  plotList [Key Nothing]
          (zip xs (map (valor (polM m)) xs))
-- Ejercicio 4.1. La sucesión de Recamán está definida como sigue:
     a(0) = 0
     a(n) = a(n-1) - n, si a(n-1) > n y no figura ya en la sucesión
     a(n) = a(n-1) + n, en caso contrario.
-- Definir la constante
     sucRecaman :: [Int]
-- tal que sucRecaman es la sucesión anterior. Por ejemplo,
     ghci> take 21 sucRecaman
     [0,1,3,6,2,7,13,20,12,21,11,22,10,23,9,24,8,25,43,62,42]
     ghci> sucRecaman !! (10^3)
     3686
     ghci> sucRecaman !! (10^4)
     18658
-- 1ª solución
-- =========
sucRecaman1:: [Int]
sucRecaman1 = map suc1 [0..]
suc1 :: Int -> Int
suc1 0 = 0
sucl n \mid y > n \& y - n 'notElem' ys = y - n
      | otherwise
 where y = sucl (n - 1)
       ys = [suc1 k | k < - [0..n - 1]]
-- 2ª solución (ev. perezosa)
```

```
sucRecaman2 :: [Int]
sucRecaman2 = 0:zipWith3 f sucRecaman [1..] (repeat sucRecaman)
  where f y n ys | y > n \& y - n 'notElem' take n ys = y - n
                 | otherwise
                                                       = y + n
-- 3ª solución (ev. perezosa y conjuntos)
sucRecaman3 :: [Int]
sucRecaman3 = 0 : recaman (S.singleton 0) 1 0
recaman :: S.Set Int -> Int -> [Int]
recaman s n x
  | x > n \& (x-n) 'S.notMember' s =
    (x-n): recaman (S.insert (x-n) s) (n+1) (x-n)
  | otherwise =
    (x+n):recaman (S.insert (x+n) s) (n+1) (x+n)
-- Comparación de eficiencia:
      ghci> sucRecaman1 !! 25
      17
- -
      (3.76 secs, 2,394,593,952 bytes)
      ghci> sucRecaman2 !! 25
      17
      (0.00 secs, 0 bytes)
      ghci> sucRecaman3 !! 25
      17
      (0.00 secs, 0 bytes)
      ghci> sucRecaman2 !! (2*10^4)
      14358
      (2.69 secs, 6,927,559,784 bytes)
      ghci> sucRecaman3 !! (2*10^4)
      14358
      (0.04 secs, 0 bytes)
-- En lo que sigue se usará la 3ª definición.
sucRecaman :: [Int]
sucRecaman = sucRecaman3
```

-- Ejercicio 4.2. Se ha conjeturado que cualquier entero positivo

```
-- aparece en la sucesión de Recaman.
-- Definir la función
     conjetura Recaman :: Int -> Bool
-- tal que (conjetura_Recaman n) comprueba la conjetura para x <= n. Por
-- ejemplo,
     conjeturaRecaman 30 == True
     conjeturaRecaman 100 == True
__ ______
-- 1º definición
conjeturaRecaman :: Int -> Bool
conjeturaRecaman n =
 and [not $ null $ filter (==x) sucRecaman | x <- [1..n]]
-- 3ª definición
conjeturaRecaman2 :: Int -> Bool
conjeturaRecaman2 n =
 all ('elem' sucRecaman3) [1..n]
-- Comparación de eficiencia
     ghci> conjeturaRecaman 100 == True
     True
     (0.44 secs, 249,218,152 bytes)
     ghci> conjeturaRecaman2 100 == True
     True
     (0.02 \text{ secs}, 0 \text{ bytes})
-- Ejercicio 4.3. Definir la función
     invRecaman :: Int -> Int
-- tal que (invRecaman n) es la posición de n en la sucesión de
-- Recaman. Por ejemplo,
     invRecaman 10 == 12
     invRecaman 100 == 387
  ______
-- lª definición
invRecaman :: Int -> Int
invRecaman n = head [m \mid m < - [0..], sucRecaman !! m == n]
-- 2ª definición
invRecaman2 :: Int -> Int
```

mu 3426 == -1

```
invRecaman2 n =
  length (takeWhile (/=n) sucRecaman)
-- Comparación de eficiencia
      ghci> invRecaman 10400
      50719
      (3.13 secs, 42,679,336 bytes)
      ghci> invRecaman2 10400
      50719
      (0.00 secs, 0 bytes)
         Examen 6 (12 de junio de 2017)
8.1.6.
-- Informática (1º del Grado en Matemáticas)
-- 6º examen de evaluación continua (12 de junio de 2017)
-- Librerías auxiliares
import Data.List
import Data.Array
import Data.Numbers.Primes
import Test.QuickCheck
import Graphics. Gnuplot. Simple
-- Ejercicio 1.1. La función de Möebius, está definida para todos
-- los enteros positivos ncomo sigue:
      mu(n) = 1 si n es libre de cuadrados y tiene un número par de
                factores primos distintos.
     mu(n) = -1 si n es libre de cuadrados y tiene un número impar de
                factores primos distintos.
     mu(n) = 0 si n es divisible por algún cuadrado.
-- Definir la función
     mu :: Int -> Int
-- tal que (mu n) es el valor mu(n). Por ejemplo:
     mu 1
            == 1
     mu 1000 == 0
- -
```

```
-- lª definición
-- =========
mu1 :: Int -> Int
mul n \mid divisibleAlgunCuadrado n = 0
     l even k
     | otherwise
                               = -1
 where k = length (map fst (factorizacion n))
factorizacion :: (Integral t) => t -> [(t,t)]
factorizacion n = [(head ps, genericLength ps) | ps <- pss]</pre>
 where pss = group (primeFactors n)
divisibleAlgunCuadrado :: Int -> Bool
divisibleAlgunCuadrado = any (>1) . map snd . factorizacion
libreDeCuadrados :: Int -> Bool
libreDeCuadrados = not . divisibleAlgunCuadrado
-- 2ª definición
-- =========
mu2 :: Int -> Int
mu2 n | any (>1) es = 0
     \mid even k = 1
     | otherwise = -1
 where ps = factorizacion n
       k = length (map fst ps)
       es = map snd ps
__ _______
-- Ejercicio 1.2. Comprobar con QuickCheck que se verifica la siguiente
-- propiedad: la suma de mu(d), siendo d los divisores positivos de n, es
-- cero excepto cuando n = 1.
-- La propiedad es
prop mu :: Int -> Property
prop_mu n = abs n /= 1 ==> sum (map mu2 (divisores n)) == 0
 where divisores x = [y \mid y < -[1..abs x], x 'mod' y == 0]
```

```
-- La comprobación es
     ghci> quickCheck prop mu
     +++ OK, passed 100 tests.
-- Ejercicio 1.3. Definir la función
     graficaMu :: [Int] -> IO ()
-- tal que (graficaMu ns) dibuje la gráfica de la función tomando los
-- valores en la lista ns.
graficaMu :: [Int] -> IO ()
graficaMu ns = plotList [] $ map mu2 ns
-- Ejercicio 2. Se dice que un número es generable si se puede escribir
-- como una sucesión (quizá vacía) de multiplicaciones por 3 y sumas de
-- 5 al número 1.
-- Definir las siguientes funciones
      generables :: [Integer]
      generable
                    :: Integer -> Bool
-- tales que
-- + generables es la sucesión de los números generables. Por ejemplo,
        ghci> take 20 generables
        [1,3,6,8,9,11,13,14,16,18,19,21,23,24,26,27,28,29,31,32]
        ghci> generables !! (10^6)
        1250008
-- + (generable x) se verifica si x es generable. Por ejemplo,
        generable 23
                         == True
        generable 77
                          == True
        generable 15
                          == False
        generable 1250008 == True
        generable 1250010 == False
-- 1ª definición
-- =========
generables :: [Integer]
generables = 1 : mezcla [3 * x | x < - generables]
                        [5 + x | x < - generables]
```

```
-- (mezcla xs ys) es la lista ordenada obtenida mezclando las dos listas
-- ordenadas xs e ys, suponiendo que ambas son infinitas. Por ejemplo,
      take 10 (mezcla [2,12..] [5,15..]) == [2,5,12,15,22,25,32,35,42,45]
      take 10 (mezcla [2,22..] [5,15..]) == [2,5,15,22,25,35,42,45,55,62]
mezcla :: Ord a => [a] -> [a] -> [a]
mezcla us@(x:xs) vs@(y:ys)
  | x < y = x : mezcla xs vs
  | x == y = x : mezcla xs ys
  | otherwise = y : mezcla us ys
generable :: Integer -> Bool
generable x =
  x == head (dropWhile (<x) generables)</pre>
-- 2ª definición
-- =========
generable2 :: Integer -> Bool
generable2 1 = True
generable2 x = (x \text{ 'mod' } 3 == 0 \&\& generable2 (x 'div' 3))
               | | (x > 5 \&\& generable2 (x - 5)) |
generables2 :: [Integer]
generables2 = filter generable2 [1..]
-- Ejercicio 3. Consideramos el siguiente tipo algebraico de los árboles
      data Arbol a = N a [Arbol a]
                     deriving Show
-- Por ejemplo, el árbol
-- se define por
      ej1:: Arbol Int
      ej1 = N 1 [N 4 [N 3 [], N 7 []],
                 N 5 [],
                 N 2 [N 6 []]]
-- A partir de él, podemos construir otro árbol en el que, para cada
-- nodo de ej1, calculamos el número de nodos del subárbol que lo tiene
```

```
-- como raíz. Obtenemos el árbol siguiente:
                       7
                       1
                           1
                     1
-- Definir la función
       arbolNN :: Arbol a -> Arbol Int
-- tal que (arbolNN x) es un árbol con la misma estructura que x, de
-- forma que en cada nodo de (arbolNN x) aparece el número de nodos del
-- subárbol correspondiente en x. Por ejemplo,
       arbolNN ej1 == N 7 [N 3 [N 1 [], N 1 []],
                           N 1 [],
                           N 2 [N 1 []]]
data Arbol a = N a [Arbol a]
             deriving Show
ej1 :: Arbol Int
ej1 = N 1 [N 4 [N 3 [], N 7 []],
           N 5 [],
           N 2 [N 6 []]]
raiz :: Arbol a -> a
raiz (N r _) = r
arbolNN :: Arbol a -> Arbol Int
arbolNN (N r []) = N 1 []
arbolNN (N r as) = N (s+1) bs
 where bs = map arbolNN as
        rs = map raiz bs
        s = sum rs
-- Ejercicio 4. El procedimiento de codificación matricial se puede
-- entender siguiendo la codificación del mensaje "todoparanada" como se
-- muestra a continuación:
       Se calcula la longitud L del mensaje. En el ejemplo es L es 12.
       Se calcula el menor entero positivo N cuyo cuadrado es mayor o
```

igual que L. En el ejemplo N es 4. Se extiende el mensaje con

```
N<sup>2</sup>-L asteriscos. En el ejemplo, el mensaje extendido es
       "todoparanada****" Con el mensaje extendido se forma una matriz
       cuadrada NxN. En el ejemplo la matriz es
        | todo|
        | para|
        | nada |
        | * * * * |
       Se rota 90º la matriz del mensaje extendido. En el ejemplo, la
       matriz rotada es
        | * n p t |
        | * a a o |
        | * d r d |
        | * a a o |
       Se calculan los elementos de la matriz rotada. En el ejemplo, los
       elementos son "*npt*aap*drd*aao" El mensaje codificado se obtiene
       eliminando los asteriscos de los elementos de la matriz
       rotada. En el ejemplo, "nptaapdrdaao".
-- Definir la función
      codificado :: String -> String
-- tal que (codificado cs) es el mensaje obtenido aplicando la
-- codificación matricial al mensaje cs. Por ejemplo,
      codificado "todoparanada" == "nptaaodrdaao"
      codificado "nptaaodrdaao"
                                   == "danaopadtora"
      codificado "danaopadtora"
                                   == "todoparanada"
      codificado "entodolamedida"
                                   == "dmdeaeondltiao"
codificado :: String -> String
codificado cs =
  filter (/='*') (elems (rota p))
 where n = ceiling (sqrt (genericLength cs))
        p = listArray ((1,1),(n,n)) (cs ++ repeat '*')
rota :: Array (Int,Int) Char -> Array (Int,Int) Char
rota p = array d [((i,j),p!(n+1-j,i)) | (i,j) <- indices p]
 where d = bounds p
       n = fst (snd d)
```

8.1.7. Examen 7 (29 de junio de 2017)

El examen es común con el del grupo 4 (ver página 806).

8.1.8. Examen 8 (8 de septiembre de 2017)

El examen es común con el del grupo 4 (ver página 812).

8.1.9. Examen 9 (21 de noviembre de 2017)

El examen es común con el del grupo 4 (ver página 819).

8.2. Exámenes del grupo 2 (Francisco J. Martín)

8.2.1. Examen 1 (26 de octubre de 2016)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 1º examen de evaluación continua (26 de octubre de 2015)
-- Ejercicio 1. Consideremos las siguientes regiones del plano:
     R1: Puntos (x,y) tales que |x| + |y| \le 1 (rombo unidad)
     R2: Puntos (x,y) tales que x^2 + y^2 \le 1
                                                 (círculo unidad)
     R3: Puntos (x,y) tales que max(|x|,|y|) \le 1 (cuadrado unidad)
-- donde |x| es el valor absoluto del número x.
-- Se cumple que la región R1 está contenida en la región R2 y la región
-- R2 está contenida en la región R3, pero ninguna de ellas son iguales.
-- Definir la función
     numeroRegiones :: (Float, Float) -> Int
-- tal que (numeroRegiones p) es el número de regiones R1, R2 y R3 en
-- las que está contenido el punto p. Por ejemplo,
     numeroRegiones (0.2,0.3)
                                      3
     numeroRegiones (-0.5,0.6)
                                  == 2
     numeroRegiones (0.8,-0.8)
     numeroRegiones (-0.9, -1.2) == 0
```

```
-- lª solución
numeroRegiones :: (Float, Float) -> Int
numeroRegiones (x,y)
  \mid abs x + abs y <= 1
                                 3
  | x^2 + y^2 \le 1
  | max (abs x) (abs y) \le 1 = 1
  | otherwise
-- 2ª solución
numeroRegiones2 :: (Float, Float) -> Int
numeroRegiones2 (x,y) =
  sum [1 | c <- [ abs x + abs y <= 1]
                , x^2 + y^2 <= 1
                , max (abs x) (abs y) \ll 1,
           c]
-- Ejercicio 2. Dos números A y B son coprimos si no tienen ningún
-- factor primo común. Por ejemplo los números 15 y 49 son coprimos, ya
-- que los factores primos de 15 son 3 y 5; y el único factor primo de
-- 49 es 7. Por otro lado, los números 15 y 35 no son coprimos, ya que
-- ambos son divisibles por 5.
-- Definir por comprensión la función
      primerParCoprimos :: [Integer] -> (Integer,Integer)
-- tal que (primerParCoprimos xs) es el primer par de números
-- consecutivos en la lista xs que son coprimos entre sí. Si en la
-- lista no hay números coprimos consecutivos el resultado debe ser
-- (0,0). Por ejemplo,
      primerParCoprimos [3,9,13,26]
                                      == (9,13)
      primerParCoprimos [3,6,1,7,14] == (6,1)
      primerParCoprimos [3,6,9,12]
                                          (0,0)
primerParCoprimos :: [Integer] -> (Integer,Integer)
primerParCoprimos xs =
  head ([(x,y) | (x,y) < -zip xs (tail xs), gcd x y == 1] ++ [(0,0)])
-- Ejercicio 3.1. Una forma de aproximar el logaritmo de 2 es usando la
-- siguiente igualdad:
```

```
1
                             1
                                   1
           ln 2 = 1 - --- + ---
                       2
                             3
                                         5
                                   4
-- Es decir, la serie cuyo término general n-ésimo es el cociente entre
  (-1)^(n+1) y el propio número n:
                      (-1)^{n+1}
             s(n) = -----
                          n
-- Definir por comprensión la función:
      aproximaLn2C :: Double -> Double
-- tal que (aproximaLn2C n) es la aproximación del logaritmo de 2
-- calculada con la serie anterior hasta el término n-ésimo. Por
-- ejemplo,
      aproximaLn2C 10 == 0.6456349206349207
      aproximaLn2C 30 == 0.6687714031754279
      aproximaLn2C 50 == 0.6767581376913979
aproximaLn2C :: Double -> Double
aproximaLn2C n =
  sum [(-1)**(i+1) / i | i <- [1..n]
-- Ejercicio 3.2. Definir por recursión la función:
      aproximaLn2R :: Double -> Double
-- tal que (aproximaLn2R n) es la aproximación del logaritmo de 2
-- calculada con la serie anterior hasta el término n-ésimo. Por
-- ejemplo,
      aproximaLn2R 10 == 0.6456349206349207
      aproximaLn2R 30 == 0.6687714031754279
      aproximaLn2R 50 == 0.6767581376913979
aproximaLn2R :: Double -> Double
aproximaLn2R 1 = 1
aproximaLn2R n = ((-1)**(n+1) / n) + aproximaLn2R (n-1)
-- Ejercicio 4. Dado un número natural cualquiera, N, podemos formar
-- otros dos números, uno a partir de las cifras pares de N y otro a
```

```
-- partir de las cifras impares de N, a los que llamaremos
-- respectivamente componente par de N y componente impar de N. Por
-- ejemplo, la componente par del número 1235678 es 268 y la componente
-- impar es 1357.
-- Definir por recursión la función
      componentePar :: Integer -> Integer
-- tal que (componentePar n) es la componente par del número natural
-- n. En el caso en que n no tenga cifras pares el resultado debe ser
-- 0. Por ejemplo,
      componentePar 1235678 == 268
      componentePar 268
                                 268
      componentePar 375
componentePar :: Integer -> Integer
componentePar n
  | null pares = 0
  | otherwise = read pares
 where pares = [c \mid c < - show n]
                   , c 'elem' "02468"]
         Examen 2 (30 de noviembre de 2016)
-- Informática (1º del Grado en Matemáticas)
```

```
-- + Al 1 no le sigue ningún elemento estrictamente menor
-- + Al 7 le siguen 2 elementos consecutivos estrictamente menores (6 y 2)
-- + Al 6 le sigue 1 elemento consecutivo estrictamente menor (2)
-- + Al 2 no le sigue ningún elemento estrictamente menor
-- + Al 8 no le sigue ningún elemento.
-- Definir la función
    listaDegradacion :: [Int] -> [Int]
-- tal que (listaDegradacion ns) es la lista de degradación de la lista
-- ns. Por ejemplo,
    listaDegradacion [5,3,1,7,6,2,8] = [2,1,0,2,1,0,0]
    listaDegradacion [1,2,3,4,5]
                                       == [0,0,0,0,0]
    listaDegradacion [5,4,3,2,1]
                                      == [4,3,2,1,0]
    listaDegradacion [9,7,1,4,8,4,0] == [6,2,0,0,2,1,0]
listaDegradacion :: [Int] -> [Int]
listaDegradacion xs =
  [length (takeWhile (<y) ys) | (y:ys) <- init (tails xs)]</pre>
-- Ejercicio 2. Una lista de números se puede describir indicando
-- cuantas veces se repite cada elemento. Por ejemplo la lista
-- [1,1,1,3,3,2,2] se puede describir indicando que hay 3 unos, 2 treses
-- y 2 doses. De esta forma, la descripción de una lista es otra lista
-- en la que se indica qué elementos hay en la primera y cuántas veces
-- se repiten. Por ejemplo, la descripción de la lista [1,1,1,3,3,2,2]
-- es [3,1,2,3,2,2]. Ocasionalmente, la descripción de una lista es más
-- corta que la propia lista.
-- Se considera la función
    originalDescripcion :: [Int] -> [Int]
-- tal que (originalDescripcion xs) es la lista ys tal que la descripción
-- de ys es la lista xs. Es decir, la lista xs indica qué elementos hay
-- en ys y cuántas veces se repiten. Por ejemplo,
    originalDescripcion [3,1,2,3,2,2] == [1,1,1,3,3,2,2]
     originalDescripcion [1,1,3,2,2,3] == [1,2,2,2,3,3]
    originalDescripcion [2,1,3,3,3,1] == [1,1,3,3,3,1,1,1]
originalDescripcion :: [Int] -> [Int]
originalDescripcion (n:x:xs) =
  replicate n x ++ originalDescripcion xs
```

```
originalDescripcion _ = []
__ _______
-- Ejercicio 3. Se dice que un elemento x de una lista xs respeta la
-- ordenación si x es mayor o igual que todos lo que tiene delante en xs
-- y es menor o igual que todos lo que tiene detrás en xs. Por ejemplo,
-- en la lista lista [3,2,1,4,6,5,7,9,8] el número 4 respeta la
-- ordenación pero el número 5 no la respeta (porque es mayor que el 6
-- que está delante).
-- Definir la función
     respetuosos :: Ord a => [a] -> [a]
-- tal que (respetuosos xs) es la lista de los elementos de xs que
-- respetan la ordenación. Por ejemplo,
     respetuosos [3,2,1,4,6,4,7,9,8] == [4,7]
     respetuosos [2,1,3,4,6,4,7,8,9] == [3,4,7,8,9]
     respetuosos "abaco"
                                    == "aco"
     respetuosos "amor"
                                    == "amor"
     respetuosos "romanos"
                                     == "s"
     respetuosos [1..9]
                                    == [1,2,3,4,5,6,7,8,9]
     respetuosos [9,8..1]
-- lª definición (por comprensión):
respetuosos :: Ord a => [a] -> [a]
respetuosos xs =
  [z \mid k < - [0..n-1]
     , let (ys,z:zs) = splitAt k xs
     , all (<=z) ys
     , all (>=z) zs]
 where n = length xs
-- 2ª definición (por recursión):
respetuosos2 :: Ord a => [a] -> [a]
respetuosos2 = aux [] []
 where aux zs []
                        = reverse zs
       aux zs ys (x:xs)
         | all (\leqx) ys && all (>=x) xs = aux (x:zs) (x:ys) xs
         | otherwise
                                       = aux zs  (x:ys) xs
-- 2ª definición
respetuosos3 :: Ord a => [a] -> [a]
respetuosos3 xs = [x \mid (ys,x,zs) < -zip3 (inits xs) xs (tails xs)
```

```
, all (<=x) ys
                       , all (x<=) zs ]
-- 4ª solución
respetuosos4 :: Ord a \Rightarrow [a] \Rightarrow [a]
respetuosos4 xs =
  [x \mid (a, x, b) \leftarrow zip3 (scanl1 max xs) xs (scanr1 min xs)
     , a \le x \&\& x \le b
-- Comparación de eficiencia
      ghci> length (respetuosos [1..3000])
      3000
      (3.31 secs, 1,140,407,224 bytes)
      ghci> length (respetuosos2 [1..3000])
      (2.85 secs, 587,082,160 bytes)
      ghci> length (respetuosos3 [1..3000])
      3000
      (2.12 secs, 785,446,880 bytes)
      ghci> length (respetuosos4 [1..3000])
      3000
      (0.02 secs, 0 bytes)
-- Ejercicio 4. Un número equilibrado es aquel en el que la suma de
-- los dígitos que ocupan una posición par es igual a la suma de los
-- dígitos que ocupan una posición impar.
-- Definir la constante
      equilibrados :: [Int]
-- cuyo valor es la lista infinita de todos los números equilibrados. Por
-- ejemplo,
      take 13 equilibrados ==
                                 [0,11,22,33,44,55,66,77,88,99,110,121,132]
      equilibrados!!1000
                                 15345
                             ==
      equilibrados!!2000
                                 31141
                             ==
      equilibrados!!3000
                             == 48686
equilibrados :: [Int]
equilibrados =
  filter equilibrado [0..]
equilibrado :: Int -> Bool
```

```
equilibrado n =
   sum (zipWith (*) (digitos n) (cycle [1,-1])) == 0

digitos :: Int -> [Int]
digitos n =
  [read [c] | c <- show n]</pre>
```

8.2.3. Examen 3 (31 de enero de 2017)

El examen es común con el del grupo 4 (ver página 780).

8.2.4. Examen 4 (8 de marzo de 2017)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (8 de marzo de 2017)
-- Librerías auxiliares
  ______
import Data.Array
import qualified Data. Set as S
-- Ejercicio 1. Un número paritario es aquel que tiene una cantidad par
-- de cifras pares y una cantidad impar de cifras impares. Por ejemplo,
-- 111, 290, 11690, 29451 y 1109871 son paritarios, mientras que 21,
-- 2468 y 11358 no lo son.
-- Definir la constante
    numerosParitarios :: [Integer]
-- cuyo valor es la lista ordenada de todos los números paritarios. Por
-- ejemplo,
    take 10 numerosParitarios == [1,3,5,7,9,100,102,104,106,108]
    numerosParitarios !! 10
                          == 111
    numerosParitarios !! 100
                          == 290
    numerosParitarios !! 1000
                          == 11090
    numerosParitarios !! 10000 == 29091
```

```
numerosParitarios :: [Integer]
numerosParitarios =
  filter numeroParitario [1..]
numeroParitario :: Integer -> Bool
numeroParitario n =
  even (length ps) && odd (length is)
 where ns = show n
        ps = filter ('elem' "02468") ns
        is = filter ('elem' "13579") ns
-- Ejercicio 2. Definir la función
      subconjuntosSinConsecutivos :: [Int] -> [[Int]]
-- tal que (subconjuntosSinConsecutivos xs) es la lista de los
-- subconjuntos de la lista xs en los que no haya números consecutivos.
-- Por ejemplo,
      subconjuntosSinConsecutivos [2..4]
                                           == [[2,4],[2],[3],[4],[]]
      subconjuntosSinConsecutivos [2,4,3] == [[2,4],[2],[4],[3],[]]
      subconjuntosSinConsecutivos [1..5]
                                           ==
         [[1,3,5],[1,3],[1,4],[1,5],[1],[2,4],[2,5],[2],[3,5],[3],[4],[5],[]]
      subconjuntosSinConsecutivos [5,2,4,1,3] ==
         [[5,2],[5,1,3],[5,1],[5,3],[5],[2,4],[2],[4,1],[4],[1,3],[1],[3],[]]
subconjuntosSinConsecutivos :: [Int] -> [[Int]]
subconjuntosSinConsecutivos [] = [[]]
subconjuntosSinConsecutivos (x:xs) =
  [x:ys \mid ys <- yss]
        , x-1 'notElem' ys
        , x+1 'notElem' ys]
 ++ yss
 where yss = subconjuntosSinConsecutivos xs
-- Ejercicio 3. Definir la función
      matrizBloque :: Int -> Int -> Int -> Int -> Matriz a -> Matriz a
-- tal que (matrizBloque il i2 jl j2 m) es la submatriz de la matriz m
-- formada por todos los elementos en las filas desde la il hasta la i2
-- y en las columnas desde la j1 hasta la j2. Por ejemplo, si
     m1 = array((1,1),(9,9))[((i,j),i*10+j) | i <- [1..9], j <- [1..9]]
-- entonces
     matrizBloque 3 6 7 9 m1 ==
```

```
array ((1,1),(4,3)) [((1,1),37),((1,2),38),((1,3),39),
                               ((2,1),47),((2,2),48),((2,3),49),
                               ((3,1),57),((3,2),58),((3,3),59),
                               ((4,1),67),((4,2),68),((4,3),69)
- -
      matrizBloque 2 7 3 6 m1
         array ((1,1),(6,4)) [((1,1),23),((1,2),24),((1,3),25),((1,4),26),
                               ((2,1),33),((2,2),34),((2,3),35),((2,4),36),
                               ((3,1),43),((3,2),44),((3,3),45),((3,4),46),
                               ((4,1),53),((4,2),54),((4,3),55),((4,4),56),
                               ((5,1),63),((5,2),64),((5,3),65),((5,4),66),
                               ((6,1),73),((6,2),74),((6,3),75),((6,4),76)]
type Matriz a = Array (Int,Int) a
m1 :: Matriz Int
m1 = array((1,1),(9,9))[((i,j),i*10+j) | i <- [1..9], j <- [1..9]]
matrizBloque :: Int -> Int -> Int -> Int -> Matriz a -> Matriz a
matrizBloque i1 i2 j1 j2 m
  | 1 <= i1 && i1 <= i2 && i2 <= p &&
    1 \le j1 \& j1 \le j2 \& j2 \le q =
      array ((1,1),(i2-i1+1,j2-j1+1))
            [((i,j),m!(i+i1-1,j+j1-1)) \mid i < - [1..i2-i1+1],
                                          j < [1..j2-j1+1]
  otherwise = error "La operación no se puede realizar"
 where (_,(p,q)) = bounds m
-- Ejercicio 4. Se dice que una operador @ es interno en un conjunto A
-- si al aplicar @ sobre elementos de A se obtiene como resultado
-- otro elemento de A. Por ejemplo, la suma es un operador interno en el
-- conjunto de los números naturales pares. La clausura de un conjunto A
-- con respecto a un operador @ es el menor conjunto B tal que A está
-- contenido en B y el operador @ es interno en el conjunto B. Por
-- ejemplo, la clausura del conjunto {2} con respecto a la suma es el
-- conjunto de los números pares positivos:
      \{2, 4, 6, 8, \ldots\} = \{2*k \mid k < -[1..]\}
- -
-- Definir la función
      clausuraOperador :: (Int -> Int -> Int) -> S.Set Int -> S.Set Int
-- tal que (clausuraOperador op xs) es la clausura del conjunto xs con
-- respecto a la operación op. Por ejemplo,
```

```
clausuraOperador gcd (S.fromList [6,9,10])
        fromList [1,2,3,6,9,10]
- -
     clausuraOperador gcd (S.fromList [42,70,105])
        fromList [7,14,21,35,42,70,105]
     clausuraOperador lcm (S.fromList [6,9,10])
        fromList [6,9,10,18,30,90]
     clausuraOperador lcm (S.fromList [2,3,5,7])
        fromList [2,3,5,6,7,10,14,15,21,30,35,42,70,105,210]
        _____
clausuraOperador :: (Int -> Int -> Int) -> S.Set Int -> S.Set Int
clausuraOperador op =
 until (\ xs -> null [(x,y) \mid x <- S.elems xs,
                           y <- S.elems xs,
                           S.notMember (op x y) xs])
       (\ xs -> S.union xs (S.fromList [op x y | x < S.elems xs,
                                            y <- S.elems xs]))</pre>
8.2.5.
       Examen 5 (24 de abril de 2017)
-- Informática (1º del Grado en Matemáticas - Grupo 2)
-- 5º examen de evaluación continua (24 de abril de 2017)
  ______
-- § Librerías auxiliares
__ ______
import Data.List
import Data.Array
import qualified Data.Matrix as M
import Data.Number.CReal
import I1M.PolOperaciones
import I1M.Grafo
-- Ejercicio 1. El cociente entre dos números se puede calcular con el
-- operador de división (/), obteniendo tantos decimales como nos
-- permita la representación de los números reales. Por ejemplo,
     123/11 = 11.181818181818182
     123/13 = 9.461538461538462
     123/15 = 8.2
```

```
123/17 = 7.235294117647059
      123/19 = 6.473684210526316
- -
-- Definir la función:
      division :: Integer -> Integer -> [Integer]
-- tal que (division n m) es la lista (posiblemente infinita) cuyo
-- primer elemento es el cociente entero de la división del número
-- natural n entre el número natural m; y los demás elementos son todas
-- las cifras de la parte decimal de la división de n entre m. Por
-- ejemplo,
      take 10 (division 123 11)
                                 == [11,1,8,1,8,1,8,1,8,1]
      take 10 (division 123 13)
                                      [9,4,6,1,5,3,8,4,6,1]
                                 ==
      division 123 15
                                      [8,2]
      take 30 (division 123 17)
         [7,2,3,5,2,9,4,1,1,7,6,4,7,0,5,8,8,2,3,5,2,9,4,1,1,7,6,4,7,0]
      take 30 (division 123 19)
         [6,4,7,3,6,8,4,2,1,0,5,2,6,3,1,5,7,8,9,4,7,3,6,8,4,2,1,0,5,2]
division :: Integer -> Integer -> [Integer]
division x y
  | r == 0
              = [q]
  | otherwise = q : division (r*10) y
 where (q,r) = quotRem \times y
-- Ejercicio 2. Definir la función
      mapPol :: (Num a, Eq a) =>
                (a -> a) -> (Int -> Int) -> Polinomio a -> Polinomio a
-- tal que (mapPol f g p) es el polinomio construido a partir de los
-- términos del polinomio p, tomando como nuevos coeficientes el
-- resultado de evaluar la función f sobre los coeficientes de los
-- términos de p y tomando como nuevos grados el resultado de evaluar la
-- función g sobre los grados de los términos de p. Por ejemplo, si pl
-- es el polinomio definido por
      p1 :: Polinomio Int
      p1 = consPol 4 3 (consPol 2 (-5) (consPol 0 3 polCero))
-- entonces
                                  => 3*x^4 + -5*x^2 + 3
      p1
- -
      mapPol (+1) (+1) pl
                                 => 4*x^5 + -4*x^3 + 4*x
     mapPol (+2) (*2) p1
                                 \Rightarrow 5*x^8 + -3*x^4 + 5
     mapPol (+(-2)) (*2) p1
                                 \Rightarrow x^8 + -7*x^4 + 1
- -
      mapPol (+(-2)) (*(-2)) p1 => -5
```

```
mapPol (+0) (*0) p1
-- Nota: Si al aplicar una función al exponente el resultado es
-- negativo, se cambia el resultado por cero.
p1 :: Polinomio Int
p1 = consPol 4 3 (consPol 2 (-5) (consPol 0 3 polCero))
mapPol :: (Num a, Eq a) =>
          (a -> a) -> (Int -> Int) -> Polinomio a -> Polinomio a
mapPol f g p
  | esPolCero p = polCero
  | otherwise = consPol (max \ 0 \ (g \ n)) \ (f \ b) \ (mapPol \ f \ g \ r)
 where n = grado p
        b = coefLider p
        r = restoPol p
-- Ejercicio 3. Dado un grafo no dirigido G, decimos que tres vértices
-- (v1,v2,v3) de G forman un triángulo si hay en G una arista entre
-- cada par de ellos; es decir, una arista de v1 a v2, otra de v2 a v3 y
-- una tercera de v3 a v1.
-- Definir la función
      verticesSinTriangulo :: (Ix v,Num p) => Grafo v p -> [v]
-- tal que (verticesSinTriangulo q) es la lista de todos los vértices
-- del grafo g que no están en ningún triángulo. Por ejemplo, si gl y g2
-- son los grafos definidos por
      q1, q2 :: Grafo Int Int
      g1 = creaGrafo \ ND \ (1,6) \ [(1,2,0),(1,3,0),(1,4,0),(3,6,0),
                                (5,4,0),(6,2,0),(6,4,0),(6,5,0)
     q2 = creaGrafo ND (1,6) [(1,3,0),(1,5,0),(3,5,0),(5,6,0),
                                (2,4,0),(2,6,0),(4,6,0)
-- entonces,
     verticesSinTriangulo g1 == [1,2,3]
      verticesSinTriangulo g2 == []
q1, q2 :: Grafo Int Int
g1 = creaGrafo \ ND \ (1,6) \ [(1,2,0),(1,3,0),(1,4,0),(3,6,0),
                         (5,4,0),(6,2,0),(6,4,0),(6,5,0)
g2 = creaGrafo \ ND \ (1,6) \ [(1,3,0),(1,5,0),(3,5,0),(5,6,0),
                         (2,4,0),(2,6,0),(4,6,0)
```

```
verticesSinTriangulo :: (Ix v,Num p) => Grafo v p -> [v]
verticesSinTriangulo g =
  [x \mid x < - nodos g, sinTriangulo g x]
-- (sinTriangulo g x) se verifica si no hay ningún triángulo en el grafo
-- g que contenga al vértice x. Por ejemplo,
      sinTriangulo g1 2 == True
      sinTriangulo g1 5 == False
sinTriangulo :: (Ix v,Num p) => Grafo v p -> v -> Bool
sinTriangulo g x = null (triangulos g x)
-- (triangulos g x) es la lista de los pares de vértices (y,z) tales que
-- (x,y,z) es un triángulo en el grafo g. Por ejemplo,
      triangulos g1 5 == [(6,4),(4,6)]
      triangulos g1 2 == []
triangulos :: (Ix v, Num p) \Rightarrow Grafo v p \rightarrow v \rightarrow [(v,v)]
triangulos g x =
  [(y,z) \mid y \leftarrow ns
         , z <- ns
         , aristaEn g (y,z)]
 where ns = adyacentes g x
-- Ejercicio 4. El recorrido en ZigZag de una matriz consiste en pasar
-- de la primera fila hasta la última, de izquierda a derecha en las
-- filas impares y de derecha a izquierda en las filas pares, como se
-- indica en la figura.
            | 1 -> 2 -> 3 |
            | 4 <- 5 <- 6 |
                            => Recorrido ZigZag: [1,2,3,6,5,4,7,8,9]
            | 7 -> 8 -> 9 |
-- Definir la función
      recorridoZigZag :: M.Matrix a -> [a]
-- tal que (recorridoZigZag m) es la lista con los elementos de la
-- matriz m cuando se recorre esta en ZigZag. Por ejemplo,
```

8.2.6. Examen 6 (12 de junio de 2017)

El examen es común con el del grupo 4 (ver página 800).

8.2.7. Examen 7 (29 de junio de 2017)

El examen es común con el del grupo 4 (ver página 806).

8.2.8. Examen 8 (8 de septiembre de 2017)

El examen es común con el del grupo 4 (ver página 812).

8.2.9. Examen 9 (21 de noviembre de 2017)

El examen es común con el del grupo 4 (ver página 819).

8.3. Exámenes del grupo 3 (Antonia M. Chávez)

8.3.1. Examen 1 (28 de octubre de 2016)

-- § Librerías auxiliares

```
__ _______
import Data.List
import Test.QuickCheck
__ ______
-- Ejercicio 1.1. Decimos el número y es colega de x si la suma de los
-- dígitos de x coincide con el producto de los dígitos de y. Por
-- ejemplo, 24 es colega de 23.
-- Definir la función
    esColega :: Int -> Int -> Bool
-- tal que (esColega x y) que se verifique si y es colega de x. Por
-- ejemplo,
    esColega 24 23 == True
    esColega 23 24 == False
    esColega 24 611 == True
__ ______
esColega :: Int -> Int -> Bool
esColega \times y = sum (digitos \times) == product (digitos y)
digitos :: Int -> [Int]
digitos n = [read [x] | x <- show n]
__ ______
-- Ejercicio 1.2. Definir la función
    colegas3 :: Int -> [Int]
-- tal que (colegas3 x) es la lista de los colegas de x con tres
-- dígitos. Por ejemplo,
    colegas3 24 == [116,123,132,161,213,231,312,321,611]
-- 1º solución
colegas3 :: Int -> [Int]
colegas3 x = [y | y < -[100 ... 999], esColega x y]
-- 2ª solución
colegas3b :: Int -> [Int]
colegas3b x = filter (x 'esColega') [100 .. 999]
-- Ejercicio 1.3. Definir la función
```

```
colegasN :: Int -> Int -> [Int]
-- tal que (colegasN x n) es la lista de colegas de x con menos de n
-- dígitos. Por ejemplo,
     ghci> colegasN 24 4
     [6, 16, 23, 32, 61, 116, 123, 132, 161, 213, 231, 312, 321, 611]
-- 1º solución
colegasN :: Int -> Int -> [Int]
colegasN x n = [y | y < [1..10^{(n-1)-1}], esColega x y]
-- 2ª solución
colegasN2 :: Int -> Int -> [Int]
colegasN2 \times n = filter (x 'esColega') [1..10^(n-1)-1]
-- Ejercicio 2.1. Definir, usando condicionales sin guardas, la función
     divideMitad1 :: [a] -> ([a],[a])
-- tal que (divideMitad1 xs) es el par de lista de igual longitud en que
-- se divide la lista xs (eliminando el elemento central si la longitud
-- de xs es impar). Por ejemplo,
     divideMitad1 [2,3,5,1] == ([2,3],[5,1])
     divideMitad1 [2,3,5] == ([2],[5])
     divideMitad1 [2]
                           == ([],[])
divideMitad1 :: [a] -> ([a], [a])
divideMitad1 xs =
 if even (length xs)
 then (take n xs, drop n xs)
 else (take n xs, drop (n+1) xs)
 where n = div (length xs) 2
-- Ejercicio 2.2. Definir, usando guardas sin condicionales, la función
     divideMitad2 :: [a] -> ([a],[a])
-- tal que (divideMitad2 xs) es el par de lista de igual longitud en que
-- se divide la lista xs (eliminando el elemento central si la longitud
-- de xs es impar). Por ejemplo,
     divideMitad2 [2,3,5,1] == ([2,3],[5,1])
     divideMitad2 [2,3,5] == ([2],[5])
     divideMitad2 [2]
                           == ([],[])
```

```
divideMitad2 :: [a] -> ([a], [a])
divideMitad2 xs
  | even (length xs) = (take n xs, drop n xs)
  | otherwise = (take n xs, drop (n+1) xs)
 where n = div (length xs) 2
-- Ejercicio 2.3. Comprobar con QuickCheck que las funciones
-- divideMitad1 y divideMitad2 son equivalentes para listas de números
-- enteros.
-- La propiedad es
prop_divideMitad :: [Int] -> Bool
prop_divideMitad xs =
 divideMitad1 xs == divideMitad2 xs
-- La comprobacion es:
     ghci> quickCheck prop divideMitad
     +++ OK, passed 100 tests.
-- Ejercicio 3. Definir la función
     inserta :: [a] -> [[a]] -> [[a]]
-- tal que (inserta xs yss) es la lista obtenida insertando
-- + el primer elemento de xs como primero en la primera lista de yss,
-- + el segundo elemento de xs como segundo en la segunda lista de yss
-- (si la segunda lista de yss tiene al menos un elemento),
-- + el tercer elemento de xs como tercero en la tercera lista de yss
  (si la tercera lista de yss tiene al menos dos elementos),
-- y así sucesivamente. Por ejemplo,
     inserta [1,2,3] [[4,7],[6],[9,5,8] == [[1,4,7],[6,2],[9,5,3,8]]
     inserta [1,2,3] [[4,7],[], [9,5,8]] == [[1,4,7],[], [9,5,3,8]]
     inserta [1,2] [[4,7],[6],[9,5,8]] == [[1,4,7],[6,2],[9,5,8]]
     inserta [1,2,3] [[4,7],[6]]
                                        == [[1,4,7],[6,2]]
     inserta "tad" ["odo","pra","naa"] == ["todo","para","nada"]
inserta :: [a] -> [[a]] -> [[a]]
inserta xs yss = aux xs yss 0 where
   aux [] yss _ = yss
   aux xs [] _ = []
```

```
aux (x:xs) (ys:yss) n
       | length us == n = (us ++ x : vs) : aux xs yss (n+1)
       | otherwise = ys : aux xs yss (n+1)
       where (us, vs) = splitAt n ys
__ ______
-- Ejercicio 4. Un elemento de una lista es un pivote si ninguno de
-- los siguientes en la lista es mayor que él.
-- Definirla función
     pivotes :: 0rd a => [a] -> [a]
-- tal que (pivotes xs) es la lista de los pivotes de xs. Por
-- ejemplo,
     pivotes [80,1,7,8,4] == [80,8,4]
-- lª definición (por comprensión)
pivotes :: Ord a => [a] -> [a]
pivotes xs = [x \mid (x,n) < -zip xs [1 ..], esMayor x (drop n xs)]
-- (esMayor x ys) se verifica si x es mayor que todos los elementos de
-- ys. Por ejemplo,
esMayor :: Ord a \Rightarrow a \rightarrow [a] \rightarrow Bool
esMayor x xs = and [x > y | y <- xs]
-- 2ª definición (por recursión)
pivotes2 :: 0rd a => [a] -> [a]
pivotes2 [] = []
pivotes2 (x:xs) | esMayor2 x xs = x : pivotes2 xs
              | otherwise = pivotes2 xs
esMayor2 :: Ord a => a -> [a] -> Bool
esMayor2 \times xs = all (x>) xs
-- 3º definición
-- =========
pivotes3 :: Ord a => [a] -> [a]
pivotes3 xs =
```

```
[y | (y:ys) <- init (tails xs)
   , y 'esMayor' ys]</pre>
```

8.3.2. Examen 2 (2 de diciembre de 2016)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (2 de diciembre de 2016)
-- § Librerías auxiliares
import Test.QuickCheck
-- Ejercicio 1. Definir la función
     elevaSumaR :: [Integer] -> [Integer] -> Integer
-- tal que (elevaSuma xs ys) es la suma de la potencias de los elementos
-- de xs elevados a los elementos de ys respectivamente. Por ejemplo,
     elevaSuma [2,6,9] [3,2,0] = 8 + 36 + 1
     elevaSuma [10,2,5] [3,4,1,2] = 1000 + 16 + 5 = 1021
-- 1º definición (Por recursión)
elevaSumaR :: [Integer] -> [Integer] -> Integer
elevaSumaR [] = 0
elevaSumaR _{-} [] = 0
elevaSumaR (x:xs) (y:ys) = x^y + elevaSumaR xs ys
-- 2ª definición (Por plegado a la derecha)
elevaSumaPR :: [Integer] -> [Integer] -> Integer
elevaSumaPR xs ys = foldr f 0 (zip xs ys)
   where f(a,b) ys = a^b + ys
-- 3ª definición (Por comprensión)
elevaSumaC :: [Integer] -> [Integer] -> Integer
elevaSumaC xs ys = sum [a^b | (a,b) <- zip xs ys]
-- 4ª definición (Con orden superior)
elevaSumaS :: [Integer] -> [Integer] -> Integer
elevaSumaS xs ys = sum (map f (zip xs ys))
```

```
where f(x,y) = x^y
-- 5ª definición (Con acumulador)
elevaSumaA :: [Integer] -> [Integer] -> Integer
elevaSumaA xs ys = aux (zip xs ys) 0
 where aux [] ac = ac
        aux ((a,b):ps) ac = aux ps (a^b + ac)
-- 6ª definición (Por plegado a la izquierda)
elevaSumaPL :: [Integer] -> [Integer] -> Integer
elevaSumaPL xs ys = foldl f 0 (zip xs ys)
    where f ac (a,b) = ac + (a^b)
-- Ejercicio 2. Una lista de números es prima si la mayoría de sus
-- elementos son primos.
-- Definir la función
      listaPrima:: [Int] -> Bool
-- tal que (listaPrima xs) se verifica si xs es prima. Por ejemplo,
      listaPrima [3,2,6,1,5,11,19] == True
      listaPrima [80,12,7,8,3]
                                  == False
      listaPrima [1,7,8,4]
                                   == False
-- la definición (por comprensión):
listaPrimaC :: [Int] -> Bool
listaPrimaC xs =
  length [x \mid x < -xs, esPrimo x] > length xs 'div' 2
esPrimo :: Int -> Bool
esPrimo n = factores n == [1, n]
factores :: Int -> [Int]
factores n = [x \mid x < [1 .. n], mod n x == 0]
-- 2ª definición (con filter)
listaPrimaS :: [Int] -> Bool
listaPrimaS xs =
  length (filter esPrimo xs) > length xs 'div' 2
-- 3ª definición (usando recursión):
listaPrimaR :: [Int] -> Bool
```

```
listaPrimaR xs = length (aux xs) > length xs 'div' 2
 where aux [] = []
         aux (x:xs) | esPrimo x = x : aux xs
                    | otherwise = aux xs
-- 4ª definición (con plegado a la derecha):
listaPrimaPR :: [Int] -> Bool
listaPrimaPR xs = length (foldr f [] xs) > length xs 'div' 2
 where f x ys | esPrimo x = x:ys
               | otherwise = ys
-- 5ª definición (usando acumuladores)
listaPrimaA :: [Int] -> Bool
listaPrimaA xs = length (aux xs []) > length xs 'div' 2
 where aux [] ac = ac
        aux (y:ys) ac | esPrimo y = aux ys (ac ++ [y])
                      | otherwise = aux ys ac
-- 6ª definición (usando plegado a la izquierda):
listaPrimaPL :: [Int] -> Bool
listaPrimaPL xs = length (foldl g [] xs) > length xs 'div' 2
 where g acum prim | esPrimo prim = acum ++ [prim]
                    | otherwise = acum
```

8.3.3. Examen 3 (31 de enero de 2017)

El examen es común con el del grupo 1 (ver página 716).

8.3.4. Examen 4 (13 de marzo de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 4º examen de evaluación continua (13 de marzo de 2017)
-- Librerías auxiliares -- 
import Data.List
import Data.Numbers.Primes
import Data.Char
import Data.Array
```

```
-- Ejercicio 1.1. Un número primo se dice que es doble primo si se le
-- puede anteponer otro primo con igual número de dígitos obteniéndose
-- un número primo. Por ejemplo, el 3 es dobleprimo ya que 23,53,73 son
-- primos. También lo es 19 ya que, por ejemplo, 1319 es primo.
-- Definir la función
      prefijoPrimo :: Integer -> [Integer]
-- tal que (prefijoPrimo x) es la lista de los primos de igual longitud
-- que x tales que al anteponerlos a x se obtiene un primo. Por ejemplo,
      prefijoPrimo 3 = [2,5,7]
      prefijoPrimo 19 = [13,31,37,67,79,97]
      prefijoPrimo 2 = []
prefijoPrimo :: Integer -> [Integer]
prefijoPrimo x =
  [y \mid y < [10^{n-1}..10^n]
     , isPrime y
     , isPrime (pega y x)]
 where n = numDigitos x
pega :: Integer -> Integer -> Integer
pega a b = read (show a ++ show b)
numDigitos :: Integer -> Int
numDigitos y = length (show y)
-- Ejercicio 1.2. Definir la sucesión
     doblesprimos :: [Integer]
-- tal que sus elementos son los dobles primos. Por ejemplo,
      take 15 doblesprimos == [3,7,11,13,17,19,23,29,31,37,41,43,47,53,59]
      doblesprimos !! 500 == 3593
doblesPrimos :: [Integer]
doblesPrimos = [x \mid x \leftarrow primes, esDoblePrimo x]
esDoblePrimo :: Integer -> Bool
esDoblePrimo x = isPrime x && not (null (prefijoPrimo x))
```

```
-- Ejercicio 2. Representamos los árboles binarios con
-- elementos en las hojas y en los nodos mediante el tipo de dato
      data Arbola = Ha
                    | N a (Arbol a) (Arbol a)
        deriving Show
-- Por ejemplo,
      ej1 :: Arbol Integer
      ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
-- Definir la función
      numeros :: Arbol Integer-> Array Integer String -> Arbol String
-- tal que (numeros a v) es el árbol obtenido al sustituir los números
-- del árbol a por su valor en el vector v. Por ejemplo, para
      v1 = listArray (0,10)
                     ["cero", "uno", "dos", "tres", "cuatro", "cinco", "seis",
                      "siete", "ocho", "nueve", " diez"]
      v2 = listArray (0,20)
                     [if even x then "PAR" else "IMPAR" | x < [0..19]]
  tenemos:
      numeros ej1 v1 = N "cinco"
                          (N "dos"
                             (H "uno")
                             (H "dos"))
                          (N "tres"
                             (H "cuatro")
                             (H "dos"))
      numeros ej1 v2 = N "IMPAR"
                          (N "PAR" (H "IMPAR") (H "PAR"))
                          (N "IMPAR" (H "PAR") (H "PAR"))
data Arbol a = H a
             | N a (Arbol a) (Arbol a)
  deriving Show
ej1 :: Arbol Integer
ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
v1 = listArray (0,10)
               ["cero", "uno", "dos", "tres", "cuatro", "cinco", "seis",
                "siete", "ocho", "nueve", " diez"]
v2 = listArray (0,20)
```

```
[if even x then "PAR" else "IMPAR" | x < [0..19]]
numeros :: Arbol Integer -> Array Integer String -> Arbol String
numeros (H x) v = H (v!x)
numeros (N x i d) v = N (v!x) (numeros i v) (numeros d v)
  ______
-- Ejercicio 3.1. Observemos la siguiente secuencia de matrices:
-- (1 2) pos (1,1) (9 2) pos (1,2) (9 16) pos (2,1) (9 16) pos(2,2)(10 16)
-- (3 4) ->
                 (34)
                         ->
                                (3 4) ->
                                                (29 \ 4)
                                                          ->
                                                               (2954)
    m0
                   m1
                                  m2
                                                  m3
                                                                m4
-- Una matriz en el paso n se obtiene cambiando en la matriz del
-- paso anterior el elemento n-ésimo por la suma de sus vecinos.
-- La idea es
     m\Theta = m
     m1 = es m pero en (1,1) tiene la suma de sus vecinos en m,
     m2 = es m1 pero en (1,2) tiene la suma de sus vecinos en <math>m1,
     m3 = es m2 pero en (2,1) tiene la suma de sus vecinos en m2,
     m4 = es m3 pero en (2,2) tiene la suma de sus vecinos en m3.
-- Definir la función
     sumaVecinos :: (Integer,Integer) ->
                   Array (Integer, Integer) Integer ->
                   Integer
-- tal que (sumaVecinos x p) es la suma de los vecinos del elemento de p
-- que está en la posición x. En el ejemplo,
     sumaVecinos (2,1) m2 == 29
sumaVecinos :: (Int,Int) -> Array (Int, Int) Int -> Int
sumaVecinos(i,j)p =
 sum [p!(i+a,j+b) | a <- [-1..1]
                 , b <- [-1..1]
                  , a /= 0 || b /= 0
                  , inRange (bounds p) (i+a,j+b)]
     _____
                                 ______
-- Ejercicio 3.2. Definir la función
     transformada :: Array (Integer, Integer) Integer
                    -> Int
                    -> Array (Integer, Integer) Integer
```

```
-- tal que (transformada p n) es la matriz que se obtiene en el paso n a
-- partir de la matriz inicial p. Es decir, en el ejemplo de arriba,
     transformada m 0 = m0
     transformada m 1 = m1
transformada :: Array (Int, Int) Int -> Int -> Array (Int, Int) Int
transformada p \theta = p
transformada p n =
 transformada p (n-1)
 // [(indices p !! (n-1),
      sumaVecinos (indices p !! (n-1)) (transformada p (n-1)))]
-- Ejercicio 3.3. Definir la función
     secuencia :: Array (Integer, Integer) Integer
                  -> [Array (Integer, Integer) Integer]
-- tal que (secuencia p) es la lista que contiene todas las matrices que
-- se obtienen a partir de la matriz inicial p. En el ejemplo,
-- (secuencia m) será la lista [m0, m1, m2, m3, m4]
     ghci> map elems (secuencia (listArray ((1,1),(2,2))[1,2,3,4]))
     [[1,2,3,4],[9,2,3,4],[9,16,3,4],[9,16,29,4],[9,16,29,54]]
secuencia :: Array (Int, Int) Int -> [Array (Int, Int) Int]
secuencia p = [transformada p n | n <- [0 .. rangeSize (bounds p)]]</pre>
        Examen 5 (24 de abril de 2017)
8.3.5.
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (23 de abril de 2017)
-- § Librerías auxiliares
import Data.Array
import Data.List (nub, sort)
import Data.Numbers.Primes (isPrime, primeFactors)
import I1M.Pol
import I1M.Cola
```

```
import Test.QuickCheck
-- -----
-- Ejercicio 1. Los vectores se definen usando tablas como sigue:
     type Vector a = Array Int a
-- Un elemento de un vector es un máximo local si no tiene ningún
-- elemento adyacente mayor o igual que él.
-- Definir la función
     posMaxVec :: Ord a => Vector a -> [Int]
-- tal que (posMaxVec p) es la lista de posiciones del vector p en las
  que p tiene un máximo local. Por ejemplo,
     posMaxVec (listArray (1,6) [3,2,6,7,5,3]) == [1,4]
     posMaxVec (listArray (1,2) [6,4])
                                              == 2]
     posMaxVec (listArray (1,2) [5,6])
     posMaxVec (listArray (1,2) [5,5])
                                              == []
     posMaxVec (listArray (1,1) [5])
                                              == [1]
type Vector a = Array Int a
posMaxVec :: Ord a => Vector a -> [Int]
posMaxVec v =
  [k \mid k < - [1..n]
     , and [v!j < v!k \mid j < - posAdyacentes k]]
 where (\_,n) = bounds v
       posAdyacentes k = [k-1 | k > 1] ++ [k+1 | k < n]
-- Ejercicio 2. Los árboles binarios se pueden representar con el tipo
-- de dato algebraico
     data Arbol a = H | N a (Arbol a) (Arbol a)
                     deriving Show
-- Por ejemplo, los árboles
          9
                           9
         /\
       8
            6
      / \
            / \
         2 4
               5
-- se pueden representar por
```

```
ej1, ej2:: Arbol Int
      ej1 = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
- -
      ej2 = N 9 (N 8 (N 3 H H) (N 2 H H)) H
-- Para indicar las posiciones del árbol se define el tipo
      type Posicion = [Direccion]
-- donde
      data Direccion = D | I deriving Eq
-- representa un movimiento hacia la derecha (D) o a la izquierda. Por
-- ejemplo, las posiciones de los elementos del ej1 son
-- + el 9 tiene posición []
-- + el 8 tiene posición [I]
-- + el 3 tiene posición [I,I]
-- + el 2 tiene posición [I,D]
-- + el 6 tiene posición [D]
-- + el 4 tiene posición [D,I]
-- + el 5 tiene posición [D,D]
-- Definir la función
      sustitucion :: Posicion -> a -> Arbol a -> Arbol a
-- tal que (sustitucion ds z x) es el árbol obtenido sustituyendo el
-- elemento del arbol x en la posición ds por z. Por ejemplo,
      ghci> sustitucion [I,D] 7 ej1
      N 9 (N 8 (N 3 H H) (N 7 H H)) (N 6 (N 4 H H) (N 5 H H))
      ghci> sustitucion [D,D] 7 ej1
      N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 7 H H))
      ghci> sustitucion [I] 7 ej1
      N 9 (N 7 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
      ghci> sustitucion [] 7 ej1
     N 7 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
data Arbol a = H | N a (Arbol a) (Arbol a)
                deriving Show
ej1, ej2:: Arbol Int
ej1 = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
ej2 = N 9 (N 8 (N 3 H H) (N 2 H H)) H
type Posicion = [Direccion]
data Direccion = D | I deriving Eq
```

```
sustitucion :: Posicion -> a -> Arbol a -> Arbol a
sustitucion (I:ds) z (N x i d) = N x (sustitucion ds z i) d
sustitucion (D:ds) z (N x i d) = N x i (sustitucion ds z d)
              z(N i d) = N z i d
sustitucion []
                 _ H
sustitucion
  ______
-- Ejercicio 3. Un número n es especial si al unir los dígitos de sus
-- factores primos, se obtienen exactamente los dígitos de n, aunque
-- puede ser en otro orden. Por ejemplo, 1255 es especial, pues los
-- factores primos de 1255 son 5 y 251.
-- Definir la función
     esEspecial :: Integer -> Bool
-- tal que (esEspecial n) se verifica si un número n es especial. Por
-- ejemplo,
     esEspecial 1255 == True
     esEspecial 125 == False
     esEspecial 132 == False
-- Comprobar con QuickCheck que todo número primo es especial.
-- Calcular los 5 primeros números especiales que no son primos.
esEspecial :: Integer -> Bool
esEspecial n =
 sort (show n) == sort (concatMap show (primeFactors n))
-- La propiedad es
prop_primos :: Integer -> Property
prop_primos n =
 isPrime (abs n) ==> esEspecial (abs n)
-- La comprobación es
     ghci> quickCheck prop primos
     +++ OK, passed 100 tests.
-- El cálculo es
     ghci> take 5 [n | n <- [2..], esEspecial n, not (isPrime n)]</pre>
     [1255, 12955, 17482, 25105, 100255]
-- Ejercicio 4. Un polinomio no nulo con coeficientes enteros es primo
```

```
-- si el máximo común divisor de sus coeficientes es 1.
-- Definir la función
     primo :: Polinomio Int -> Bool
-- tal que (primo p) se verifica si el polinomio p es primo. Por ejemplo,
     ghci> primo (consPol 6 2 (consPol 5 3 (consPol 4 8 polCero)))
     True
     ghci> primo (consPol 6 2 (consPol 5 6 (consPol 4 8 polCero)))
     False
primo :: Polinomio Int -> Bool
primo p = foldl1 gcd (coeficientes p) == 1
coeficientes :: (Num a, Eq a) => Polinomio a -> [a]
coeficientes p = [coeficiente k p | k <- [n,n-1..0]]</pre>
 where n = grado p
coeficiente :: (Num a, Eq a) => Int -> Polinomio a -> a
coeficiente k p \mid k == n
                                    = coefLider p
              | k > grado (restoPol p) = 0
              | otherwise
                                    = coeficiente k (restoPol p)
   where n = grado p
-- Ejercicio 5. Definir la función
     penultimo :: Cola a -> a
-- tal que (penultimo c) es el penúltimo elemento de la cola c. Si la
-- cola está vacía o tiene un sólo elemento, dará el error
-- correspondiente, "cola vacia" o bien "cola unitaria". Por ejemplo,
     ghci> penultimo (inserta 3 (inserta 2 vacia))
     ghci> penultimo (inserta 5 (inserta 3 (inserta 2 vacia)))
     ghci> penultimo vacia
     *** Exception: cola vacia
     ghci> penultimo (inserta 2 vacia)
     *** Exception: cola unitaria
  ______
penultimo :: Cola a -> a
penultimo c = aux (reverse (cola2Lista c))
 where aux [] = error "cola vacia"
```

8.3.6. Examen 6 (12 de junio de 2017)

El examen es común con el del grupo 1 (ver página 733).

8.3.7. Examen 7 (29 de junio de 2017)

El examen es común con el del grupo 4 (ver página 806).

8.3.8. Examen 8 (8 de septiembre de 2017)

El examen es común con el del grupo 4 (ver página 812).

8.3.9. Examen 9 (21 de noviembre de 2017)

El examen es común con el del grupo 4 (ver página 819).

8.4. Exámenes del grupo 4 (José A. Alonso)

8.4.1. Examen 1 (26 de octubre de 2016)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 1º examen de evaluación continua (26 de octubre de 2016)
```

-- Ejercicio 1. Definir la función

```
ceros :: Int -> Int
-- tal que (ceros n) es el número de ceros en los que termina el número
-- n. Por ejemplo,
     ceros 30500 == 2
     ceros 30501 == 0
-- 1ª definición (por recursión):
ceros :: Int -> Int
ceros n | n 'rem' 10 == 0 = 1 + ceros (n 'div'10)
       | otherwise = 0
-- 2ª definición (por comprensión):
ceros2 :: Int -> Int
ceros2 0 = 1
ceros2 n = head [x \mid x < - [0..]
                 , n 'rem' (10^x) /= 0] - 1
-- Ejercicio 2. Una representación de 46 en base 3 es [1,0,2,1] pues
     46 = 1*3^0 + 0*3^1 + 2*3^2 + 1*3^3.
-- Una representación de 20 en base 2 es [0,0,1,0,1] pues
     20 = 1*2^2 + 1*2^4.
-- Definir la función
     enBase :: Int -> [Int] -> Int
-- tal que (enBase b xs) es el número n tal que su representación en
-- base b es xs. Por ejemplo,
     enBase 3 [1,0,2,1]
                             == 46
                            == 20
     enBase 2 [0,0,1,0,1]
     enBase 2 [1,1,0,1]
                            == 11
     enBase 5 [0,2,1,3,1,4,1] == 29160
enBase :: Int -> [Int] -> Int
enBase b xs = sum [y*b^n | (y,n) <- zip xs [0..]]
-- Ejercicio 3. Definir la función
     repetidos :: Eq a => [a] -> [a]
-- tal que (repetidos xs) es la lista de los elementos repetidos de
-- xs. Por ejemplo,
-- repetidos [1,3,2,1,2,3,4] == [1,3,2]
```

```
repetidos [1,2,3] == []
repetidos :: Eq a => [a] -> [a]
repetidos [] = []
repetidos (x:xs) | x 'elem' xs = x : repetidos xs
                 | otherwise = repetidos xs
-- Ejercicio 4. [Problema 37 del proyecto Euler] Un número
-- primo es truncable si los números que se obtienen eliminado cifras,
-- de derecha a izquierda, son primos. Por ejemplo, 599 es un primo
-- truncable porque 599, 59 y 5 son primos; en cambio, 577 es un primo
-- no truncable porque 57 no es primo.
-- Definir la función
      primoTruncable :: Int -> Bool
-- tal que (primoTruncable x) se verifica si x es un primo
-- truncable. Por ejemplo,
      primoTruncable 599 == True
      primoTruncable 577 == False
primoTruncable :: Int -> Bool
primoTruncable x
  | x < 10
           = primo x
  | otherwise = primo x && primoTruncable (x 'div' 10)
-- (primo x) se verifica si x es primo.
primo :: Int -> Bool
primo x = factores x == [1,x]
-- (factores x) es la lista de los factores de x.
factores :: Int -> [Int]
factores x = [y \mid y < -[1..x]]
                , x 'rem' y == 0]
```

8.4.2. Examen 2 (29 de noviembre de 2016)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 2º examen de evaluación continua (29 de noviembre de 2016)
```

```
-- § Librerías auxiliares
  ______
import Debug.Trace
import Data.List
import Data.Numbers.Primes
-- Ejercicio 1. [2 puntos] La persistencia multiplicativa de un número
-- es la cantidad de pasos requeridos para reducirlo a una dígito
-- multiplicando sus dígitos. Por ejemplo, la persistencia de 39 es 3
-- porque 3*9 = 27, 2*7 = 14 y 1*4 = 4.
-- Definir la función
                     :: Integer -> Integer
     persistencia
  tale que (persistencia x) es la persistencia de x. Por ejemplo,
       persistencia 39
                                                      3
       persistencia 2677889
                                                      8
       persistencia 26888999
                                                      9
                                                  ==
       persistencia 3778888999
                                                     10
       persistencia 277777788888899
                                                     11
       persistencia 7777773333222222222222222 ==
                                                     11
persistencia :: Integer -> Integer
persistencia x
  | x < 10
           = 0
  | otherwise = 1 + persistencia (productoDigitos x)
productoDigitos :: Integer -> Integer
productoDigitos x
  | x < 10
  | otherwise = r * productoDigitos y
 where (y,r) = quotRem \times 10
-- Ejercicio 2. [2 puntos] Definir la función
     intercala :: [a] -> [a] -> [[a]]
-- tal que (intercala xs ys) es la lista obtenida intercalando los
-- elementos de ys entre los de xs. Por ejemplo,
```

```
ghci> intercala "79" "15"
     ["719","759"]
- -
     ghci> intercala "79" "154"
     ["719","759","749"]
     ghci> intercala "796" "15"
     ["71916","71956","75916","75956"]
     ghci> intercala "796" "154"
     ["71916","71956","71946",
      "75916","75956","75946",
      "74916","74956","74946"]
intercala :: [a] -> [a] -> [[a]]
intercala []
              _ = []
intercala [x] = [[x]]
intercala (x:xs) ys = [x:y:zs | y <- ys
                            , zs <- intercala xs ys]
__ ______
-- Ejercicio 2. [2 puntos] Un número primo se dice que es un primo de
-- Kamenetsky si al anteponerlo cualquier dígito se obtiene un número
-- compuesto. Por ejemplo, el 5 es un primo de Kamenetsky ya que 15, 25,
-- 35, 45, 55, 65, 75, 85 y 95 son compuestos. También lo es 149 ya que
-- 1149, 2149, 3149, 4149, 5149, 6149, 7149, 8149 y 9149 son compuestos.
-- Definir la sucesión
     primosKamenetsky :: [Integer]
-- tal que sus elementos son los números primos de Kamenetsky. Por
-- ejemplo,
     take 5 primosKamenetsky == [2,5,149,401,509]
primosKamenetsky :: [Integer]
primosKamenetsky =
  [x \mid x < - primes]
    , esKamenetsky x]
esKamenetsky :: Integer -> Bool
esKamenetsky x =
 all (not . isPrime) [read (d:xs) | d <- "123456789"]
 where xs = show x
```

```
-- Ejercicio 4. [2 puntos] Representamos los árboles binarios con
-- elementos en las hojas y en los nodos mediante el tipo de dato
      data Arbola = Ha
                   | N a (Arbol a) (Arbol a)
                   deriving Show
-- Por ejemplo,
      ej1 :: Arbol Int
      ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
-- Definir la función
      ramasCon :: Eq a => Arbol a -> a -> [[a]]
-- tal que (ramasCon a x) es la lista de las ramas del árbol a en las
-- que aparece el elemento x. Por ejemplo,
     ramasCon ej1 2 == [[5,2,1],[5,2,2],[5,3,2]]
data Arbol a = H a
             | N a (Arbol a) (Arbol a)
             deriving Show
ej1 :: Arbol Int
ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
ramasCon :: Eq a => Arbol a -> a -> [[a]]
ramasCon a x = [ys \mid ys < - ramas a, x 'elem' ys]
ramas :: Arbol a -> [[a]]
ramas (H x)
                = [[x]]
ramas (N \times i d) = [x:ys \mid ys < - ramas i ++ ramas d]
-- Ejercicio 5. [2 puntos] El valor máximo de la suma de elementos
-- consecutivos de la lista [3,-4,4,1] es 5 obtenido sumando los
-- elementos del segmento [4,1] y para la lista [-2,1,4,-3,5,-7,6] es 7
-- obtenido sumando los elementos del segmento [1,4,-3,5].
-- Definir la función
      sumaMaxima :: [Integer] -> Integer
-- tal que (sumaMaxima xs) es el valor máximo de la suma de elementos
-- consecutivos de la lista xs. Por ejemplo,
      sumaMaxima1 [3, -4, 4, 1]
      sumaMaxima1 [-2,1,4,-3,5,-7,6] ==
                                           7
      sumaMaxima []
                                           0
```

```
sumaMaxima [2,-2,3,-3,4]
                                          4
      sumaMaxima [-1,-2,-3]
                                          0
- -
      sumaMaxima [2,-1,3,-2,3]
                                      == 5
      sumaMaxima [1,-1,3,-2,4]
                                      == 5
      sumaMaxima [2,-1,3,-2,4]
                                      == 6
                                      == 500000500000
      sumaMaxima [1..10^6]
-- lª definición
-- =========
sumaMaximal :: [Integer] -> Integer
sumaMaxima1 [] = 0
sumaMaxima1 xs =
    maximum (0 : map sum [sublista xs i j | i <- [0..length xs - 1],
                                            j <- [i..length xs - 1]])</pre>
sublista :: [Integer] -> Int -> Int -> [Integer]
sublista xs i j =
    [xs!!k | k < - [i..j]]
-- 2ª definición
-- =========
sumaMaxima2 :: [Integer] -> Integer
sumaMaxima2 [] = 0
sumaMaxima2 xs = sumaMaximaAux 0 0 xs
   where m = maximum xs
sumaMaximaAux :: Integer -> Integer -> [Integer] -> Integer
sumaMaximaAux m v xs | trace ("aux " ++ show m ++ " " ++ show v ++ " " ++ show xs
sumaMaximaAux m v [] = max m v
sumaMaximaAux m v (x:xs)
    | x >= 0 = sumaMaximaAux m (v+x) xs
    | v+x > 0 = sumaMaximaAux (max m v) (v+x) xs
    | otherwise = sumaMaximaAux (max m v) 0 xs
-- 3ª definición
- - ==========
sumaMaxima3 :: [Integer] -> Integer
sumaMaxima3 [] = 0
sumaMaxima3 xs = maximum (map sum (segmentos xs))
```

```
-- (segmentos xs) es la lista de los segmentos de xs. Por ejemplo
      segmentos "abc" == ["", "a", "ab", "abc", "b", "bc", "c"]
segmentos :: [a] -> [[a]]
segmentos xs =
    [] : concat [tail (inits ys) | ys <- init (tails xs)]
-- 4º definición
-- ==========
sumaMaxima4 :: [Integer] -> Integer
sumaMaxima4 [] = 0
sumaMaxima4 xs =
    maximum (concat [scanl (+) 0 ys | ys <- tails xs])</pre>
-- Comparación de eficiencia
ghci> let n = 10^2 in sumaMaxima1 [-n..n]
- -
      5050
      (2.10 secs, 390,399,104 bytes)
      ghci> let n = 10^2 in sumaMaxima2 [-n..n]
      5050
      (0.02 secs, 0 bytes)
      ghci> let n = 10^2 in sumaMaxima3 [-n..n]
      (0.27 secs, 147,705,184 bytes)
      ghci> let n = 10^2 in sumaMaxima4 [-n..n]
      5050
- -
      (0.04 secs, 11,582,520 bytes)
```

8.4.3. Examen 3 (31 de enero de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupos 2 y 4)
-- 3º examen de evaluación continua (31 de enero de 2017)
-- -- § Librerías auxiliares
```

```
import Data.List
import Test.QuickCheck
-- Ejercicio 1. (2.5 puntos) Se observa que en la cadena "aabbccddeffgg"
-- todos los caracteres están duplicados excepto el 'e'. Al añadirlo
-- obtenemos la cadena "aabbccddeeffgg" y se dice que esta última está
-- duplicada.
-- También se observa que la cadena "aaaabbbccccdd" no está duplicada
-- (porque hay un número impar de 'b' consecutivas). Añadiendo una 'b'
-- se obtiene la cadena "aaaabbbbccccdd" que sí está duplicada.
-- Definir la función
      duplica :: Eq a => [a] -> [a]
-- tal que (duplica xs) es la lista obtenida duplicando los elementos de
-- xs que no lo están. Por ejemplo,
      duplica "b"
      duplica "abba"
                        ==
                             "aabbaa"
     duplica "Betis"
                        == "BBeettiiss"
     duplica [1,1,1]
                        == [1,1,1,1]
      duplica [1,1,1,1] == [1,1,1,1]
-- lª definición
duplica :: Eq a => [a] -> [a]
              = []
duplica []
duplica [x]
              = [x,x]
duplica (x:y:zs) | x == y = x : x : duplica zs
                 | otherwise = x : x : duplica (y:zs)
-- 2ª definición
duplica2 :: Eq a => [a] -> [a]
duplica2 xs = concatMap dupl (group xs)
 where dupl ys@(y:) \mid (even.length) ys = ys
                      | otherwise = y : ys
-- Ejercicio 2. (2.5 puntos) Las matrices se pueden representar mediante
-- listas de listas. Por ejemplo, la matriz
     |1 2 5|
      |3 0 7|
-- |9 1 6|
```

```
|6 4 2|
-- se puede representar por
     ej :: [[Int]]
      ej = [[1,2,5],
            [3,0,7],
            [9,1,6],
            [6,4,2]]
-- Definir la función
      ordenaPor :: Ord a => [[a]] -> Int -> [[a]]
-- tal que (ordenaPor xss k) es la matriz obtenida ordenando la matriz
-- xss por los elementos de la columna k. Por ejemplo,
      ordenaPor ej 0 == [[1,2,5],[3,0,7],[6,4,2],[9,1,6]]
      ordenaPor ej 1 == [[3,0,7],[9,1,6],[1,2,5],[6,4,2]]
      ordenaPor ej 2 == [[6,4,2],[1,2,5],[9,1,6],[3,0,7]]
ej :: [[Int]]
ej = [[1,2,5],
      [3,0,7],
      [9,1,6],
      [6,4,2]]
-- 1ª definición
ordenaPor :: Ord a => [[a]] -> Int -> [[a]]
ordenaPor xss k =
  map snd (sort [(xs!!k,xs) | xs <- xss])
-- 2º definición
ordenaPor2 :: Ord a => [[a]] -> Int -> [[a]]
ordenaPor2 xss k =
  map snd (sort (map (xs \rightarrow (xs!!k, xs)) xss))
-- 4º definición
ordenaPor4 :: Ord a => [[a]] -> Int -> [[a]]
ordenaPor4 xss k =
  map snd (sort (zip (map (!! k) xss) xss))
-- 5º definición
ordenaPor5 :: Ord a => [[a]] -> Int -> [[a]]
ordenaPor5 xss k = sortBy comp xss
 where comp ys zs = compare (ys!!k) (zs!!k)
```

```
-- Ejercicio 3. (2.5 puntos) Definir la función
      sumas3Capicuas :: Integer -> [(Integer, Integer, Integer)]
-- tal que (sumas3Capicuas n) es la lista de las descomposiciones del
-- número natural n como suma de tres números capicúas (con los sumandos
-- no decrecientes). Por ejemplo,
      sumas3Capicuas 0
                                   == [(0,0,0)]
      sumas3Capicuas 1
                                   == [(0,0,1)]
      sumas3Capicuas 2
                                   == [(0,0,2),(0,1,1)]
      sumas3Capicuas 3
                                   == [(0,0,3),(0,1,2),(1,1,1)]
      sumas3Capicuas 4
                                   == [(0,0,4),(0,1,3),(0,2,2),(1,1,2)]
      length (sumas3Capicuas 17)
                                   == 17
      length (sumas3Capicuas 2017) == 47
-- Comprobar con QuickCheck que todo número natural se puede escribir
-- como suma de tres capicúas.
sumas3Capicuas :: Integer -> [(Integer, Integer, Integer)]
sumas3Capicuas x =
  [(a,b,c) | a <- as
           , b <- dropWhile (< a) as
           , let c = x - a - b
           , b <= c
           , esCapicua c]
  where as = takeWhile (<= x) capicuas
-- capicuas es la sucesión de los números capicúas. Por ejemplo,
      ghci> take 45 capicuas
      [0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131,
       141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292,
       303,313,323,333,343,353]
capicuas :: [Integer]
capicuas = capicuas1
-- lª definición de capicuas
- - ==============
capicuas1 :: [Integer]
capicuas1 = [n \mid n < -[0..]
               , esCapicua n]
-- (esCapicua x) se verifica si x es capicúa. Por ejemplo,
```

```
esCapicua 353
                     == True
      esCapicua 3553 ==
                         True
- -
      esCapicua 3535 == False
esCapicua :: Integer -> Bool
esCapicua x =
 xs == reverse xs
 where xs = show x
-- 2ª definición de capicuas
- - ==============
capicuas2 :: [Integer]
capicuas2 = capicuasImpares 'mezcla' capicuasPares
-- capicuasPares es la sucesión del cero y las capicúas con un número
-- par de dígitos. Por ejemplo,
     ghci> take 17 capicuasPares
      [0,11,22,33,44,55,66,77,88,99,1001,1111,1221,1331,1441,1551,1661]
capicuasPares :: [Integer]
capicuasPares =
  [read (ns ++ reverse ns) \mid n <- [0..]
                           , let ns = show n
-- capicuasImpares es la sucesión de las capicúas con un número
-- impar de dígitos a partir de 1. Por ejemplo,
      ghci> take 20 capicuasImpares
      [1,2,3,4,5,6,7,8,9,101,111,121,131,141,151,161,171,181,191,202]
capicuasImpares :: [Integer]
capicuasImpares =
  [1..9] ++ [read (ns ++ [z] ++ reverse ns)
            | n <- [1..]
            , let ns = show n
            , z <- "0123456789"]
-- (mezcla xs ys) es la lista ordenada obtenida mezclando las dos listas
-- ordenadas xs e ys, suponiendo que ambas son infinitas y con elementos
-- distintos. Por ejemplo,
      take 10 (mezcla [2,12..] [5,15..]) == [2,5,12,15,22,25,32,35,42,45]
      take 10 (mezcla [2,22..] [5,15..]) == [2,5,15,22,25,35,42,45,55,62]
mezcla :: Ord a => [a] -> [a] -> [a]
mezcla us@(x:xs) vs@(y:ys)
  | x < y = x : mezcla xs vs
```

```
| otherwise = y : mezcla us ys
-- 3ª definición de capicuas
capicuas3 :: [Integer]
capicuas3 = iterate sigCapicua 0
-- (sigCapicua x) es el capicúa siguiente del número x. Por ejemplo,
     sigCapicua 12321
                             == 12421
     sigCapicua 1298921
                              == 1299921
     sigCapicua 999
                               == 1001
     sigCapicua 9999
                              == 10001
     sigCapicua 898
                               == 909
     sigCapicua 123456777654321 == 123456787654321
sigCapicua :: Integer -> Integer
sigCapicua n = read cs
   where l = length (show (n+1))
         k = l 'div' 2
         xs = show ((n 'div' (10^k)) + 1)
         cs = xs ++ drop (l 'rem' 2) (reverse xs)
-- 4º definición de capicuas
- - -----
capicuas4 :: [Integer]
capicuas4 =
 concatMap generaCapicuas4 [1..]
generaCapicuas4 :: Integer -> [Integer]
generaCapicuas4 1 = [0..9]
generaCapicuas4 n
  even n
           = [read (xs ++ reverse xs)
              | xs <- map show [10^{(m-1)}..10^{m-1}]|
  | otherwise = [read (xs ++ (y : reverse xs))
               | xs <- map show [10^{(m-1)}..10^{m-1}]
               , y <- "0123456789"]
 where m = n 'div' 2
-- 5ª definición de capicuas
capicuas5 :: [Integer]
```

```
capicuas5 = 0 : aux 1
 where aux n =
                  [read (show x ++ tail (reverse (show x)))
                  | x < [10^{(n-1)}..10^{n-1}]|
               ++ [read (show x ++ reverse (show x))
                  | x < [10^{(n-1)}..10^{n-1}]|
               ++ aux (n+1)
-- 6ª definición de capicuas
capicuas6 :: [Integer]
capicuas6 = 0 : map read (capicuas6Aux [1..9])
capicuas6Aux :: [Integer] -> [String]
capicuas6Aux xs = map duplical xs'
              ++ map duplica2 xs'
               ++ capicuas6Aux [head xs * 10 .. last xs * 10 + 9]
 where
   xs'
               = map show xs
   duplical cs = cs ++ tail (reverse cs)
   duplica2 cs = cs ++ reverse cs
-- 7º definición de capicuas
- - -----
capicuas7 :: [Integer]
capicuas7 = 0 : map read (capicuas7Aux [1..9])
capicuas7Aux :: [Integer] -> [String]
capicuas7Aux xs = map duplica1 xs'
               ++ map duplica2 xs'
               ++ capicuas7Aux [head xs * 10 .. last xs * 10 + 9]
 where
            = map show xs
   duplical = (++) <$> id <*> tail . reverse
   duplica2 = (++) < > id < * > reverse
-- Comprobación de equivalencia
-- La propiedad es
prop_capicuas :: (Positive Int) -> Bool
prop capicuas (Positive k) =
```

```
all (== capicuas1 !! k) [f !! k | f <- [ capicuas2
                                           , capicuas3
                                           , capicuas4
                                           , capicuas5
                                           , capicuas6
                                           , capicuas7]]
-- La comprobación es
      ghci> quickCheck prop capicuas
      +++ OK, passed 100 tests.
-- Comparación de eficiencia
  _____
      ghci> capicuas1 !! 2000
      1001001
- -
      (2.25 secs, 598,879,552 bytes)
      ghci> capicuas2 !! 2000
      1001001
      (0.05 secs, 28,630,552 bytes)
      ghci> capicuas3 !! 2000
      1001001
- -
      (0.06 secs, 14,721,360 bytes)
      ghci> capicuas4 !! 2000
      1001001
- -
      (0.01 secs, 0 bytes)
      ghci> capicuas5 !! 2000
      1001001
      (0.01 secs, 0 bytes)
- -
      ghci> capicuas6 !! 2000
      1001001
      (0.01 secs, 0 bytes)
      ghci> capicuas7 !! 2000
      1001001
      (0.01 secs, 0 bytes)
      ghci> capicuas2 !! (10<sup>5</sup>)
      900010009
      (2.03 secs, 1,190,503,952 bytes)
- -
      ghci> capicuas3 !! (10<sup>5</sup>)
      900010009
      (5.12 secs, 1,408,876,328 bytes)
      ghci> capicuas4 !! (10<sup>5</sup>)
```

```
900010009
- -
      (0.21 secs, 8,249,296 bytes)
- -
      ghci> capicuas5 !! (10^5)
      900010009
      (0.10 secs, 31,134,176 bytes)
      ghci> capicuas6 !! (10^5)
      900010009
      (0.14 secs, 55,211,272 bytes)
      ghci> capicuas7 !! (10<sup>5</sup>)
      900010009
      (0.03 \text{ secs}, 0 \text{ bytes})
-- La propiedad es
prop sumas3Capicuas :: Integer -> Property
prop sumas3Capicuas x =
  x >= 0 ==> not (null (sumas3Capicuas x))
-- La comprobación es
      ghci> quickCheck prop_sumas3Capicuas
      +++ OK, passed 100 tests.
-- Ejercicio 4. (2.5 puntos) Los árboles se pueden representar mediante
-- el siguiente tipo de datos
      data Arbol a = N a [Arbol a]
        deriving Show
-- Por ejemplo, los árboles
                                 1
        1
                 1
       / \
                / \
      8
          3
                8 3
                               8
                              /|\ |
          1
                  /|\
          4
                  4 5 6
                             4 5 6 7
-- se pueden representar por
      ej1, ej2, ej3 :: Arbol Int
      ej1 = N 1 [N 8 [], N 3 [N 4 []]]
      ej2 = N 1 [N 8 [], N 3 [N 4 [], N 5 [], N 6 []]]
      ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 7 []]]
-- Definir la función
      nodos :: Int -> Arbol a -> [a]
-- tal que (nodos k t) es la lista de los nodos del árbol t que tienen k
-- sucesores. Por ejemplo,
      nodos 0 ej1 == [8,4]
```

```
nodos 1 ej1 == [3]
     nodos 2 ej1 == [1]
- -
     nodos 3 ej1 == []
     nodos 3 ej2 == [3]
data Arbol a = N a [Arbol a]
 deriving Show
ej1, ej2, ej3 :: Arbol Int
ej1 = N 1 [N 8 [], N 3 [N 4 []]]
ej2 = N 1 [N 8 [], N 3 [N 4 [], N 5 [], N 6 []]]
ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 7 []]]
-- lª definición
nodos :: Int -> Arbol a -> [a]
nodos k (N x ys)
  | k == length ys = x : concatMap (nodos k) ys
  | otherwise = concatMap (nodos k) ys
-- 2ª definición
nodos2 :: Int -> Arbol a -> [a]
nodos2 k (N x ys)
  \mid k == length ys = x : zs
  | otherwise = zs
 where zs = concat [nodos2 k y | y <- ys]
-- 3º definición
nodos3 :: Int -> Arbol a -> [a]
nodos3 k (N x ys)
 = [x \mid k == length ys]
   ++ concat [nodos3 k y | y <- ys]
```

8.4.4. Examen 4 (22 de marzo de 2017)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (22 de marzo de 2017)
-- -- § Librerías auxiliares
```

```
import Data.List
import Data.Matrix
__ _______
-- Ejercicio 1. Definir la función
     reducida :: Eq a => [a] -> [a]
-- tal que (reducida xs) es la lista obtenida a partir de xs de forma
-- que si hay dos o más elementos idénticos consecutivos, borra las
-- repeticiones y deja sólo el primer elemento. Por ejemplo,
     ghci> reducida "eesssooo essss toodddooo"
     "eso es todo"
-- 1ª solución (por recursión):
reducidal :: Eq a \Rightarrow [a] \Rightarrow [a]
reducida1 []
              = []
reducidal (x:xs) = x : reducidal (dropWhile (==x) xs)
-- 2ª solución (por comprensión):
reducida2 :: Eq a => [a] -> [a]
reducida2 xs = [x \mid (x:) < -group xs]
-- 3ª solución (sin argumentos):
reducida3 :: Eq a \Rightarrow [a] \rightarrow [a]
reducida3 = map head . group
-- Ejercicio 2. La codificación de Luka consiste en añadir detrás de
-- cada vocal la letra 'p' seguida de la vocal. Por ejemplo, la palabra
-- "elena" se codifica como "epelepenapa" y "luisa" por "lupuipisapa".
-- Definir la función
     codifica
               :: String -> String
-- tal que (codifica cs) es la codificación de Luka de la cadena cs. Por
-- ejemplo,
     ghci> codifica "elena admira a luisa"
     "epelepenapa apadmipirapa apa lupuipisapa"
     ghci> codifica "todo para nada"
     "topodopo paparapa napadapa"
```

```
codifica :: String -> String
codifica "" = ""
codifica (c:cs) | esVocal c = c : 'p' : c : codifica cs
                | otherwise = c : codifica cs
esVocal :: Char -> Bool
esVocal c = c 'elem' "aeiou"
-- Ejercicio 3. Un elemento de una matriz es un máximo local si es mayor
-- que todos sus vecinos. Por ejemplo, sea ejM la matriz definida por
      ejM :: Matrix Int
      ejM = fromLists [[1,0,0,8],
                       [0,2,0,3],
                       [0,0,0,5],
                       [3,5,7,6],
                       [1,2,3,4]
-- Los máximos locales de ejM son 8 (en la posición (1,4)), 2 (en la
-- posición (2,2)) y 7 (en la posición (4,3)).
-- Definir la función
      maximosLocales :: Matrix Int -> [((Int,Int),Int)]
-- tal que (maximosLocales p) es la lista de las posiciones en las que
-- hay un máximo local, con el valor correspondiente. Por ejemplo,
      maximosLocales ejM == [((1,4),8),((2,2),2),((4,3),7)]
ejM :: Matrix Int
ejM = fromLists [[1,0,0,8],
                 [0,2,0,3],
                 [0,0,0,5],
                 [3,5,7,6],
                 [1,2,3,4]]
maximosLocales :: Matrix Int -> [((Int,Int),Int)]
maximosLocales p =
    [((i,j),p!(i,j)) | i <- [1..m]
                     , j <- [1..n]
                     , and [p!(a,b) < p!(i,j) | (a,b) < - vecinos (i,j)]]
    where m = nrows p
          n = ncols p
          vecinos (i,j) = [(a,b) \mid a < - [max 1 (i-1)..min m (i+1)]
                                  , b <- [\max 1 (j-1)..\min n (j+1)]
```

```
(a,b) /= (i,j)
  Ejercicio 4. Los árboles binarios se pueden representar con el de
-- dato algebraico
      data Arbol a = H
                   | N a (Arbol a) (Arbol a)
                   deriving Show
  Por ejemplo, los árboles
           9
          / \
       8
              6
                         8
      / \
            / \
      3 2 4
                5
  se pueden representar por
      ej1, ej2:: Arbol Int
      ej1 = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
      ej2 = N 9 (N 8 (N 3 H H) (N 2 H H)) H
-- Para indicar las posiciones del árbol se define el tipo
     type Posicion = [Direccion]
-- donde
    data Direccion = D | I
      deriving Eq
  representa un movimiento hacia la derecha (D) o a la izquierda (I). Por
  ejemplo, las posiciones de los elementos del ej1 son
    9 []
    8 [I]
    3 [I,I]
    2 [I,D]
    6 [D]
    4 [D,I]
    5 [D,D]
-- Definir la función
      sustitucion :: Posicion -> a -> Arbol a -> Arbol a
-- tal que (sustitucion ds z x) es el árbol obtenido sustituyendo el
-- elemento de x en la posición ds por z. Por ejemplo,
    ghci> sustitucion [I,D] 7 ej1
    N 9 (N 8 (N 3 H H) (N 7 H H)) (N 6 (N 4 H H) (N 5 H H))
    ghci> sustitucion [D,D] 7 ej1
```

N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 7 H H))

```
ghci> sustitucion [I] 7 ej1
     N 9 (N 7 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
- -
     ghci> sustitucion [] 7 ej1
     N 7 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
data Arbol a = H | N a (Arbol a) (Arbol a)
  deriving (Eq, Show)
ej1, ej2:: Arbol Int
ej1 = N 9 (N 8 (N 3 H H) (N 2 H H)) (N 6 (N 4 H H) (N 5 H H))
ej2 = N 9 (N 8 (N 3 H H) (N 2 H H)) H
data Direccion = D | I
  deriving Eq
type Posicion = [Direccion]
sustitucion :: Posicion -> a -> Arbol a -> Arbol a
sustitucion (I:ds) z (N x i d) = N x (sustitucion ds z i) d
sustitucion (D:ds) z (N \times i d) = N \times i (sustitucion ds z d)
sustitucion [] z (N _ i d) = N z i d
                           = H
sustitucion _
                  _ H
```

8.4.5. Examen 5 (28 de abril de 2017)

```
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (28 de abril de 2017)
-- § Librerías auxiliares
-- import Data.Char
import Data.Matrix
-- Ejercicio 1. Las rotaciones de 928160 son 928160, 281609, 816092,
-- 160928, 609281 y 92816. De las cuales, las divisibles por 4 son
```

```
-- 928160, 816092, 160928 y 92816.
-- Definir la función
     nRotacionesDivisibles :: Integer -> Int
-- tal que (nRotacionesDivisibles n) es el número de rotaciones del
-- número n divisibles por 4. Por ejemplo,
     nRotacionesDivisibles 928160
                                             4
     nRotacionesDivisibles 44
                                         == 2
     nRotacionesDivisibles (1234^1000) == 746
     nRotacionesDivisibles (1234^100000) == 76975
__ ______
-- 1º definición
-- ==========
nRotacionesDivisibles :: Integer -> Int
nRotacionesDivisibles n =
 length [x \mid x < - rotacionesNumero n, x 'mod' 4 == 0]
-- (rotacionesNumero) es la lista de la rotaciones del número n. Por
-- ejemplo,
     rotacionesNumero 235 == [235,352,523]
rotacionesNumero :: Integer -> [Integer]
rotacionesNumero = map read . rotaciones . show
-- (rotaciones xs) es la lista de las rotaciones obtenidas desplazando
-- el primer elemento xs al final. Por ejemplo,
     rotaciones [2,3,5] = [[2,3,5],[3,5,2],[5,2,3]]
rotaciones :: [a] -> [[a]]
rotaciones xs = take (length xs) (iterate rota xs)
-- (rota xs) es la lista añadiendo el primer elemento de xs al
-- final. Por ejemplo,
     rota [3,2,5,7] == [2,5,7,3]
rota :: [a] -> [a]
rota (x:xs) = xs ++ [x]
-- 2º definición
- - ==========
nRotacionesDivisibles2 :: Integer -> Int
nRotacionesDivisibles2 n =
  length [x \mid x < -pares n, x 'mod' 4 == 0]
```

```
-- (pares n) es la lista de pares de elementos consecutivos, incluyendo
-- el último con el primero. Por ejemplo,
      pares 928160 == [9,92,28,81,16,60]
pares :: Integer -> [Int]
pares n =
  read [last ns,head ns] : [read [a,b] | (a,b) <- zip ns (tail ns)]</pre>
 where ns = show n
-- 3ª definición
-- =========
nRotacionesDivisibles3 :: Integer -> Int
nRotacionesDivisibles3 n =
  ( length
  . filter (0 ==)
  . map ('mod' 4)
  . zipWith (x y \rightarrow 2*x + y) d
  . tail
  (++[i]) d
 where
    d@(i:dn) = (map digitToInt . show) n
-- Comparación de eficiencia
      ghci> nRotacionesDivisibles (123^1500)
      803
      (8.15 secs, 7,109,852,800 bytes)
      ghci> nRotacionesDivisibles2 (123^1500)
      803
      (0.05 \text{ secs}, 0 \text{ bytes})
      ghci> nRotacionesDivisibles3 (123^1500)
      803
      (0.02 secs, 0 bytes)
      ghci> nRotacionesDivisibles2 (1234^50000)
- -
      38684
      (2.24 secs, 1,160,467,472 bytes)
      ghci> nRotacionesDivisibles3 (1234^50000)
      38684
      (0.31 secs, 68,252,040 bytes)
```

```
-- Ejercicio 2. Los árboles binarios se pueden representar con el tipo
-- de dato algebraico Arbol definido por
      data Arbola = H
                   | N a (Arbol a) (Arbol a)
                   deriving (Show, Eq)
  Por ejemplo, los árboles
          3
       2
                         5
      1 3 5
                       6 4 10
-- se representan por
     ej1, ej2 :: Arbol Int
- -
      ej1 = N 3 (N 2 (N 1 H H) (N 3 H H)) (N 4 H (N 5 H H))
     ej2 = N 7 (N 5 (N 6 H H) (N 4 (N 9 H H) H)) (N 8 H (N 10 (N 1 H H) H))
-- Definir la función
      aplica :: (a -> b) -> (a -> b) -> Arbol a -> Arbol b
-- tal que (aplica f g) es el árbol obtenido aplicando la función f a
-- los nodos que están a una distancia par de la raíz del árbol y la
-- función g a los nodos que están a una distancia impar de la raíz. Por
-- ejemplo,
      qhci> aplica (+1) (*10) ej1
      N 4 (N 20 (N 2 H H) (N 4 H H)) (N 40 H (N 6 H H))
      ghci> aplica even odd ej2
      N False (N True (N True H H) (N True (N True H H) H))
              (N False H (N True (N True H H) H))
      ghci> let ej3 = (N "bac" (N "de" (N "tg" (N "hi" H H) (N "js" H H)) H) H)
      ghci> aplica head last ej3
      N 'b' (N 'e' (N 't' (N 'i' H H) (N 's' H H)) H) H
data Arbol a = H
             | N a (Arbol a) (Arbol a)
             deriving (Show, Eq)
ej1, ej2 :: Arbol Int
ej1 = N 3 (N 2 (N 1 H H) (N 3 H H)) (N 4 H (N 5 H H))
ej2 = N 7 (N 5 (N 6 H H) (N 4 (N 9 H H) H)) (N 8 H (N 10 (N 1 H H) H))
```

```
aplica :: (a -> b) -> (a -> b) -> Arbol a -> Arbol b
aplica _ _ H
                    = H
aplica f g (N \times i d) = N (f \times) (aplica g f i) (aplica g f d)
-- Ejercicio 3. Definir, usando Data.Matrix, la función
     ampliaMatriz :: Matrix a -> Int -> Int -> Matrix a
-- tal que (ampliaMatriz p f c) es la matriz obtenida a partir de p
-- repitiendo cada fila f veces y cada columna c veces. Por ejemplo, si
-- ejM es la matriz definida por
     ejM :: Matrix Char
     ejM = fromLists [" x ",
                      "x x",
                      " x "1
-- entonces
     ghci> ampliaMatriz ejM 1 2
      ( ' ' ' ' x' 'x' ' ' ' ' )
     ( 'x' 'x' ' ' ' ' 'x' 'x' )
      ('''x''x''x'')
     ghci> ampliaMatriz ejM 2 1
      ( ' ' 'x' ' )
      ( ' 'x' ')
      ( 'x' ' 'x')
     ( 'x' ' 'x')
      ( ' ' 'x' ' ')
     ( ' ' 'x' ' ')
ejM :: Matrix Char
ejM = fromLists [" x ",
                "x x",
                " x "1
-- lª definición
-- ==========
ampliaMatriz :: Matrix a -> Int -> Int -> Matrix a
ampliaMatriz p f =
 ampliaColumnas (ampliaFilas p f)
ampliaFilas :: Matrix a -> Int -> Matrix a
ampliaFilas p f =
```

```
matrix (f*m) n ((i,j) \rightarrow p!(1 + (i-1) 'div' f, j))
 where m = nrows p
       n = ncols p
ampliaColumnas :: Matrix a -> Int -> Matrix a
ampliaColumnas p c =
 matrix m (c*n) ((i,j) \rightarrow p!(i,1+(j-1) 'div' c))
 where m = nrows p
       n = ncols p
-- 2ª definición
-- =========
ampliaMatriz2 :: Matrix a -> Int -> Int -> Matrix a
ampliaMatriz2 p f c =
 ( fromLists
  . concatMap (replicate f . concatMap (replicate c))
  . toLists) p
-- Comparación de eficiencia
ejemplo :: Int -> Matrix Int
ejemplo n = fromList n n [1..]
     ghci> maximum (ampliaMatriz (ejemplo 10) 100 200)
     100
     (6.44 secs, 1,012,985,584 bytes)
     ghci> maximum (ampliaMatriz2 (ejemplo 10) 100 200)
- -
     100
     (2.38 secs, 618,096,904 bytes)
__ _______
-- Ejercicio 4. Una serie de potencias es una serie de la forma
     a(0) + a(1)x + a(2)x^2 + a(3)x^3 + ...
-- Las series de potencias se pueden representar mediante listas
-- infinitas. Por ejemplo, la serie de la función exponencial es
     e^x = 1 + x + x^2/2! + x^3/3! + ...
-- se puede representar por [1, 1, 1/2, 1/6, 1/24, 1/120, ...]
-- Las operaciones con series se pueden ver como una generalización de
-- las de los polinomios.
```

```
-- Definir la función
     producto :: Num a => [a] -> [a] -> [a]
-- tal que (producto xs ys) es el producto de las series xs e ys. Por
-- ejemplo,
     ghci> take 15 (producto [3,5..] [2,4..])
     [6,22,52,100,170,266,392,552,750,990,1276,1612,2002,2450,2960]
     ghci> take 14 (producto [10,20..] [1,3..])
     [10,50,140,300,550,910,1400,2040,2850,3850,5060,6500,8190,10150]
     ghci> take 16 (producto [1..] primes)
     [2,7,17,34,62,103,161,238,338,467,627,824,1062,1343,1671,2052]
     ghci> take 16 (producto [1,1..] primes)
     [2,5,10,17,28,41,58,77,100,129,160,197,238,281,328,381]
     ghci> take 16 (scanl1 (+) primes)
     [2,5,10,17,28,41,58,77,100,129,160,197,238,281,328,381]
  ______
producto :: Num a => [a] -> [a] -> [a]
producto (x:xs) zs@(y:ys) =
 x*y: suma (producto xs zs) (map (x*) ys)
-- (suma xs ys) es la suma de las series xs e ys. Por ejemplo,
     ghci> take 7 (suma [1,3..] [2,4..])
     [3,7,11,15,19,23,27]
suma :: Num a => [a] -> [a]
suma = zipWith (+)
        Examen 6 (12 de junio de 2017)
-- Informática (1º del Grado en Matemáticas)
-- 6º examen de evaluación continua (12 de junio de 2017)
-- Librerías auxiliares
import Data.List
import Data.Matrix
import Data.Numbers.Primes
import Test.QuickCheck
```

```
-- Ejercicio 1. Definir las siguientes funciones
      potenciasDe2 :: Integer -> [Integer]
      menorPotenciaDe2 :: Integer -> Integer
-- tales que
  + (potenciasDe2 a) es la lista de las potencias de 2 que comienzan
    por a. Por ejemplo,
        ghci> take 5 (potenciasDe2 3)
        [32,32768,33554432,34359738368,35184372088832]
        ghci> take 2 (potenciasDe2 102)
        [1024,102844034832575377634685573909834406561420991602098741459288064]
        ghci> take 2 (potenciasDe2 40)
        [4096,40564819207303340847894502572032]
  + (menorPotenciaDe2 a) es la menor potencia de 2 que comienza con
    el número a. Por ejemplo,
        ghci> menorPotenciaDe2 10
        1024
        ghci> menorPotenciaDe2 25
        256
        ghci> menorPotenciaDe2 62
        6277101735386680763835789423207666416102355444464034512896
        ghci> menorPotenciaDe2 425
        42535295865117307932921825928971026432
        ghci> menorPotenciaDe2 967140655691
        9671406556917033397649408
        ghci> [menorPotenciaDe2 a | a <- [1..10]]</pre>
        [1,2,32,4,512,64,70368744177664,8,9007199254740992,1024]
-- Comprobar con QuickCheck que, para todo entero positivo a, existe una
-- potencia de 2 que empieza por a.
-- 1º definición de potenciasDe2
potenciasDe2A :: Integer -> [Integer]
potenciasDe2A a =
  [x \mid x < - potenciasA]
     , a 'esPrefijo' x]
potenciasA :: [Integer]
potenciasA = [2^n | n < - [0..]]
```

```
esPrefijo :: Integer -> Integer -> Bool
esPrefijo x y = show x 'isPrefixOf' show y
-- 2ª definición de potenciasDe2
potenciasDe2 :: Integer -> [Integer]
potenciasDe2 a = filter (a 'esPrefijo') potenciasA
-- 3ª definición de potenciasDe2
potenciasDe2C :: Integer -> [Integer]
potenciasDe2C a = filter (a 'esPrefijo') potenciasC
potenciasC :: [Integer]
potenciasC = iterate (*2) 1
-- Comparación de eficiencia
-- ghci> length (show (head (potenciasDe2A 123456)))
-- 19054
-- (7.17 secs, 1,591,992,792 bytes)
-- ghci> length (show (head (potenciasDe2 123456)))
-- 19054
-- (5.96 secs, 1,273,295,272 bytes)
-- ghci> length (show (head (potenciasDe2C 123456)))
-- 19054
-- (6.24 secs, 1,542,698,392 bytes)
-- Definición de menorPotenciaDe2
menorPotenciaDe2 :: Integer -> Integer
menorPotenciaDe2 = head . potenciasDe2
-- Propiedad
prop_potenciasDe2 :: Integer -> Property
prop_potenciasDe2 a =
 a > 0 ==> not (null (potenciasDe2 a))
-- Comprobación
     ghci> quickCheck prop_potenciasDe2
     +++ OK, passed 100 tests.
```

```
-- Ejrcicio 2. Un número natural n es una potencia perfecta si existen
-- dos números naturales m > 1 y k > 1 tales que n = m^k. Las primeras
-- potencias perfectas son
      4 = 2^2, 8 = 2^3, 9 = 3^2, 16 = 2^4, 25 = 5^2, 27 = 3^3, 32 = 2^5,
      36 = 6^2, 49 = 7^2, 64 = 2^6, ...
-- Definir la sucesión
      potenciasPerfectas :: [Integer]
-- cuyos términos son las potencias perfectas. Por ejemplo,
      take 10 potenciasPerfectas == [4,8,9,16,25,27,32,36,49,64]
      144 'elem' potenciasPerfectas == True
      potenciasPerfectas !! 100
                                     == 6724
-- lª definición
- - =========
potenciasPerfectas1 :: [Integer]
potenciasPerfectas1 = filter esPotenciaPerfecta [4..]
-- (esPotenciaPerfecta x) se verifica si x es una potencia perfecta. Por
-- ejemplo,
      esPotenciaPerfecta 36 == True
      esPotenciaPerfecta 72 == False
esPotenciaPerfecta :: Integer -> Bool
esPotenciaPerfecta = not . null. potenciasPerfectasDe
-- (potenciasPerfectasDe x) es la lista de pares (a,b) tales que
-- x = a^b. Por ejemplo,
      potenciasPerfectasDe 64 = [(2,6),(4,3),(8,2)]
      potenciasPerfectasDe 72 == []
potenciasPerfectasDe :: Integer -> [(Integer,Integer)]
potenciasPerfectasDe n =
    [(m,k) \mid m \leftarrow takeWhile (\x -> x*x <= n) [2..]
           , k \leftarrow \text{takeWhile } (\x -> \text{m}^x \leftarrow \text{n}) [2..]
           , m^k == n
-- 2ª solución
-- ========
potenciasPerfectas2 :: [Integer]
```

```
potenciasPerfectas2 = [x \mid x < -[4..], esPotenciaPerfecta2 x]
-- (esPotenciaPerfecta2 x) se verifica si x es una potencia perfecta. Por
-- ejemplo,
      esPotenciaPerfecta2 36 == True
      esPotenciaPerfecta2 72 == False
esPotenciaPerfecta2 :: Integer -> Bool
esPotenciaPerfecta2 x = mcd (exponentes x) > 1
-- (exponentes x) es la lista de los exponentes de l factorización prima
-- de x. Por ejemplos,
     exponentes 36 == [2,2]
      exponentes 72 == [3,2]
exponentes :: Integer -> [Int]
exponentes x = [length ys | ys <- group (primeFactors x)]
-- (mcd xs) es el máximo común divisor de la lista xs. Por ejemplo,
     mcd [4,6,10] == 2
     mcd [4,5,10] == 1
mcd :: [Int] -> Int
mcd = foldl1 gcd
-- 3ª definición
- - ==========
potenciasPerfectas :: [Integer]
potenciasPerfectas = mezclaTodas potencias
-- potencias es la lista las listas de potencias de todos los números
-- mayores que 1 con exponentes mayores que 1. Por ejemplo,
     ghci> map (take 3) (take 4 potencias)
      [[4,8,16],[9,27,81],[16,64,256],[25,125,625]]
potencias :: [[Integer]]
potencias = [[n^k | k < -[2..]] | n < -[2..]]
-- (mezclaTodas xss) es la mezcla ordenada sin repeticiones de las
-- listas ordenadas xss. Por ejemplo,
      take 7 (mezclaTodas potencias) == [4,8,9,16,25,27,32]
mezclaTodas :: Ord a => [[a]] -> [a]
mezclaTodas = foldr1 xmezcla
   where xmezcla (x:xs) ys = x : mezcla xs ys
-- (mezcla xs ys) es la mezcla ordenada sin repeticiones de las
```

```
-- listas ordenadas xs e ys. Por ejemplo,
     take 7 (mezcla [2,5...] [4,6...]) == [2,4,5,6,8,10,11]
mezcla :: Ord a => [a] -> [a] -> [a]
mezcla (x:xs) (y:ys) | x < y = x : mezcla xs (y:ys)
                    | x == y = x : mezcla xs ys
                    | x > y = y : mezcla (x:xs) ys
-- Comparación de eficiencia
ghci> potenciasPerfectas1 !! 100
     6724
      (3.39 secs, 692758212 bytes)
     ghci> potenciasPerfectas2 !! 100
      (0.29 secs, 105,459,200 bytes)
     ghci> potenciasPerfectas3 !! 100
     6724
      (0.01 secs, 1582436 bytes)
-- Ejercicio 3. Los árboles binarios se pueden representar con el de
-- tipo de dato algebraico
     data Arbol a = H
                  | N a (Arbol a) (Arbol a)
       deriving Show
  Por ejemplo, los árboles
         3
        / \
           4
                        5
       2
      /\
     1 3 5
-- se representan por
     ej1, ej2 :: Arbol Int
     ej1 = N 3 (N 2 (N 1 H H) (N 3 H H)) (N 4 H (N 5 H H))
     ei2 = N 7 (N 5 (N 6 H H) (N 4 H H)) (N 8 H (N 10 H H))
-- Un árbol binario es continuo si el valor absoluto de la
-- diferencia de los elementos adyacentes es 1. Por ejemplo, el árbol ej1
-- es continuo ya que el valor absoluto de sus pares de elementos
-- adyacentes son
     |3-2| = |2-1| = |2-3| = |3-4| = |4-5| = 1
-- En cambio, el ej2 no lo es ya que |8-10| = -1.
```

```
-- Definir la función
-- esContinuo :: (Num a, Eq a) => Arbol a -> Bool
-- tal que (esContinuo x) se verifica si el árbol x es continuo. Por
-- ejemplo,
     esContinuo ej1 == True
      esContinuo ej2 == False
data Arbol a = H
             | N a (Arbol a) (Arbol a)
  deriving Show
ej1, ej2 :: Arbol Int
ej1 = N 3 (N 2 (N 1 H H) (N 3 H H)) (N 4 H (N 5 H H))
ej2 = N 7 (N 5 (N 6 H H) (N 4 H H)) (N 8 H (N 10 H H))
-- 1ª solución
-- ========
esContinuo :: (Num a, Eq a) => Arbol a -> Bool
esContinuo H
                     = True
esContinuo (N _ H H) = True
esContinuo (N \times i@(N y _ ) H) =
  abs (x - y) == 1 \&\& esContinuo i
esContinuo (N \times H d@(N y \_ )) =
  abs (x - y) == 1 \&\& esContinuo d
esContinuo (N x i@(N y _ _ ) d@(N z _ _ )) =
  abs (x - y) == 1 \&\& esContinuo i \&\& abs <math>(x - z) == 1 \&\& esContinuo d
-- 2ª solución
-- ========
esContinuo2 :: (Num a, Eq a) => Arbol a -> Bool
esContinuo2 x =
  all esContinua (ramas x)
-- (ramas x) es la lista de las ramas del árbol x. Por ejemplo,
      ramas ej1 == [[3,2,1],[3,2,3],[3,4,5]]
      ramas ej2 == [[7,5,6],[7,5,4],[7,8,10]]
ramas :: Arbol a -> [[a]]
          = []
ramas H
ramas (N \times H H) = [[x]]
```

```
ramas (N \times i d) = [x : xs | xs < - ramas i ++ ramas d]
-- (esContinua xs) se verifica si el valor absoluto de la diferencia de
-- los elementos adyacentes de xs es 1. Por ejemplo,
     esContinua [3,2,3]
                         == True
     esContinua [7,8,10] == False
esContinua :: (Num a, Eq a) => [a] -> Bool
esContinua xs =
  and [abs (x - y) == 1 \mid (x, y) <- zip xs (tail xs)]
-- Ejercicio 4. El problema de las N torres consiste en colocar N torres
-- en un tablero con N filas y N columnas de forma que no haya dos
-- torres en la misma fila ni en la misma columna.
-- Cada solución del problema de puede representar mediante una matriz
-- con ceros y unos donde los unos representan las posiciones ocupadas
-- por las torres y los ceros las posiciones libres. Por ejemplo,
     (010)
     (100)
     (001)
-- representa una solución del problema de las 3 torres.
-- Definir las funciones
     torres :: Int -> [Matrix Int]
     nTorres :: Int -> Integer
-- tales que
-- + (torres n) es la lista de las soluciones del problema de las n
    torres. Por ejemplo,
        ghci> torres 3
        [(100)
         (010)
         (001)
        (100)
         (001)
         (010)
        (010)
         (100)
         (001)
        ,(010)
         (001)
         (100)
        ,(001)
```

```
(100)
         (010)
        ,(001)
        (010)
         (100)
    donde se ha indicado con 1 las posiciones ocupadas por las torres.
-- + (nTorres n) es el número de soluciones del problema de las n
    torres. Por ejemplo,
        ghci> nTorres 3
        ghci> length (show (nTorres (10<sup>4</sup>)))
        35660
-- lª definición de torres
torres1 :: Int -> [Matrix Int]
torres1 n =
   [permutacionAmatriz n p \mid p <- sort (permutations [1..n])]
permutacionAmatriz :: Int -> [Int] -> Matrix Int
permutacionAmatriz n p =
   matrix n n f
   where f(i,j) \mid (i,j) 'elem' posiciones = 1
                | otherwise
         posiciones = zip [1..n] p
-- 2ª definición de torres
- - ===============
torres :: Int -> [Matrix Int]
torres = map fromLists . permutations . toLists . identity
-- El cálculo con la definición anterior es:
     ghci> identity 3
     (100)
     (010)
     (001)
     ghci> toLists it
-- [[1,0,0],[0,1,0],[0,0,1]]
```

```
ghci> permutations it
     [[[1,0,0],[0,1,0],[0,0,1]],
- -
      [[0,1,0],[1,0,0],[0,0,1]],
      [[0,0,1],[0,1,0],[1,0,0]],
      [[0,1,0],[0,0,1],[1,0,0]],
      [[0,0,1],[1,0,0],[0,1,0]],
      [[1,0,0],[0,0,1],[0,1,0]]]
     ghci> map fromLists it
     [(100)
- -
      (010)
      (001)
- -
     ,(010)
     (100)
     (001)
     (001)
     (010)
- -
     (100)
     ,(010)
- -
      (001)
- -
     (100)
     ,(001)
     (100)
     (010)
     ,(100)
     (001)
- -
      (010)
     1
-- 1ª definición de nTorres
  nTorres1 :: Int -> Integer
nTorres1 = genericLength . torres1
-- 2ª definición de nTorres
  _____
nTorres :: Int -> Integer
nTorres n = product [1..fromIntegral n]
-- Comparación de eficiencia
```

```
-- ghci> nTorres1 9

-- 362880

-- (4.22 secs, 693,596,128 bytes)

-- ghci> nTorres2 9

-- 362880

-- (0.00 secs, 0 bytes)
```

8.4.7. Examen 7 (29 de junio de 2017)

```
-- Informática (1º del Grado en Matemáticas)
-- 7º examen de evaluación continua (29 de junio de 2017)
-- Librerías auxiliares
import Data.Array
import Data.List
import Data.Numbers.Primes
import Test.QuickCheck
-- Ejercicio 1. Definir la función
     segmentos :: (Enum a, Eq a) \Rightarrow [a] \rightarrow [[a]]
-- tal que (segmentos xss) es la lista de los segmentos maximales de xss
-- formados por elementos consecutivos. Por ejemplo,
                          == [[1,2],[5,6],[4]]
     segmentos [1,2,5,6,4]
     segmentos [1,2,3,4,7,8,9] = [[1,2,3,4],[7,8,9]]
     segmentos "abbccddeeebc" == ["ab","bc","cd","de","e","e","bc"]
-- Nota: Se puede usar la función succ tal que (succ x) es el sucesor de
-- x. Por ejemplo,
     succ 3
              ==
     succ 'c' == 'd'
-- Comprobar con QuickCheck que para todo segmento maximal ys de una
-- lista se verifica que la diferencia entre el último y el primer
-- elemento de ys es igual a la longitud de ys menos 1.
-- 1ª definición (por recursión)
```

segmentos1 :: (Enum a, Eq a) => [a] -> [[a]] segmentos1 [] = []segmentos1[x] = [[x]]segmentos1 (x:xs) | y == succ x = (x:y:ys):zs| otherwise = [x] : (y:ys):zswhere ((y:ys):zs) = segmentos1 xs-- 2ª definición segmentos2 :: (Enum a, Eq a) => [a] -> [[a]] segmentos2 [] = []segmentos $2 \times s = ys : segmentos 2 \times s$ where ys = inicial xsn = length yszs = drop n xs-- (inicial xs) es el segmento inicial de xs formado por elementos -- consecutivos. Por ejemplo, inicial [1,2,5,6,4] == [1,2]inicial "abccddeeebc" == "abc" inicial :: $(Enum a, Eq a) \Rightarrow [a] \rightarrow [a]$ inicial[] = []inicial(x:xs) =[y | $(y,z) \leftarrow takeWhile ((u,v) \rightarrow u == v) (zip (x:xs) [x..])]$ -- Comparación de eficiencia ghci> length (segmentos1 (show (5^(10^6)))) 636114 (2.05 secs, 842,837,680 bytes) ghci> length (segmentos2 (show (5^(10^6)))) 636114 (1.21 secs, 833,432,080 bytes) -- La propiedad es prop_segmentos :: [Int] -> Bool prop segmentos xs = all (\ys -> last ys - head ys == length ys - 1) (segmentos2 xs) -- La comprobación es

```
ghci> quickCheck prop segmentos
      +++ OK, passed 100 tests.
-- Ejercicio 2. Un número de la suerte es un número natural que se
-- genera por una criba, similar a la criba de Eratóstenes, como se
-- indica a continuación:
-- Se comienza con la lista de los números enteros a partir de 1:
      1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25...
-- Se eliminan los números de dos en dos
      1, 3, 5, 7, 9,
                           11,
                                 13,
                                       15,
                                             17,
                                                   19,
                                                          21,
-- Como el segundo número que ha quedado es 3, se eliminan los números
-- restantes de tres en tres:
                                 13,
                                       15,
                                                    19,
      1, 3,
                  7, 9,
                                                          21,
                                                                      25...
-- Como el tercer número que ha quedado es 7, se eliminan los números
-- restantes de siete en siete:
      1, 3,
                  7, 9,
                                 13,
                                       15,
                                                          21,
                                                                      25...
-- Este procedimiento se repite indefinidamente y los supervivientes son
-- los números de la suerte:
      1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75,79
-- Definir la sucesión
      numerosDeLaSuerte :: [Int]
  cuyos elementos son los números de la suerte. Por ejemplo,
      ghci> take 20 numerosDeLaSuerte
      [1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75,79]
      ghci> numerosDeLaSuerte !! 1500
      13995
-- lª definición
numerosDeLaSuerte :: [Int]
numerosDeLaSuerte = criba 3 [1,3..]
 where
    criba i (n:s:xs) =
      n : criba (i + 1) (s : [x | (n, x) <- zip [i..] xs
                                 , rem n s /= 0])
-- 2ª definición
numerosDeLaSuerte2 :: [Int]
numerosDeLaSuerte2 = 1 : criba 2 [1, 3..]
```

```
where criba k \times s = z : criba (k + 1) (aux \times s)
         where z = xs !! (k - 1)
                aux ws = us ++ aux vs
                  where (us, :vs) = splitAt (z - 1) ws
  Comparación de eficiencia
     ghci> numerosDeLaSuerte2 !! 300
     2217
      (3.45 secs, 2,873,137,632 bytes)
     ghci> numerosDeLaSuerte !! 300
     2217
      (0.04 secs, 22,416,784 bytes)
  Los árboles se pueden representar mediante el siguiente tipo de datos
     data Arbol a = N a [Arbol a]
                     deriving Show
  Por ejemplo, los árboles
       1
                  1
                                1
      / \
                               /\
     2
         3
                2 3
                              2
                   /|\
                             /1\
                  4 5 6
                            4 5 6 7
          4
  se representan por
     ej1, ej2, ej3 :: Arbol Int
     ej1 = N 1 [N 2 [], N 3 [N 4 []]]
     ej2 = N 1 [N 2 [], N 3 [N 4 [], N 5 [], N 6 []]
     ej3 = N 1 [N 2 [N 4 [], N 5 [], N 6 []], N 3 [N 7 []]]
-- En el primer ejemplo la máxima ramificación es 2 (en el nodo 1 que
-- tiene 2 hijos), la del segundo es 3 (en el nodo 3 que tiene 3
  hijos) y la del tercero es 3 (en el nodo 3 que tiene 3 hijos).
-- Definir la función
     maximaRamificacion :: Arbol a -> Int
-- tal que (maximaRamificacion a) es la máxima ramificación del árbol
-- a. Por ejemplo,
     maximaRamificacion ej1
     maximaRamificacion ej2
     maximaRamificacion ej3 == 3
```

```
data Arbol a = N a [Arbol a]
 deriving Show
ej1, ej2 :: Arbol Int
ej1 = N 1 [N 2 [], N 3 [N 4 []]]
ej2 = N 1 [N 2 [], N 3 [N 4 [], N 5 [], N 6 []]]
ej3 = N 1 [N 2 [N 4 [], N 5 [], N 6 []], N 3 [N 7 []]]
maximaRamificacion :: Arbol a -> Int
maximaRamificacion (N []) = 0
maximaRamificacion (N x xs) =
 max (length xs) (maximum (map maximaRamificacion xs))
-- Ejercicio 4. Un mapa con dos tipos de regiones (por ejemplo, tierra y
-- mar) se puede representar mediante una matriz de ceros y unos.
-- Para los ejemplos usaremos los mapas definidos por
    type Punto = (Int,Int)
    type Mapa = Array Punto Int
- -
    mapa1, mapa2 :: Mapa
    mapa1 = listArray ((1,1),(3,4))
                 [1,1,0,0,
                  0,1,0,0,
                  1,0,0,0]
    mapa2 = listArray ((1,1),(10,20))
                 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,
                  -- Definir las funciones
    alcanzables :: Mapa -> Punto -> [Punto]
    esAlcanzable :: Mapa -> Punto -> Punto -> Bool
-- tales que
```

```
-- + (alcanzables p) es la lista de los puntos de mapa m que se pueden
    alcanzar a partir del punto p moviéndose en la misma región que p
    (es decir, a través de ceros si el elemento de m en p es un cero o a
   través de unos, en caso contrario) y los movimientos permitidos son
- -
   ir hacia el norte, sur este u oeste (pero no en diagonal). Por
   ejemplo,
      alcanzables mapa1 (1,1) ==
                            [(2,2),(1,2),(1,1)]
      alcanzables mapal (1,2)
                            [(2,2),(1,1),(1,2)]
                         ==
      alcanzables mapa1 (1,3)
                            [(3,2),(3,4),(3,3),(2,3),(2,4),(1,4),(1,3)]
                        ==
      alcanzables mapa1 (3,1) == [(3,1)]
  + (esAlcanzable m p1 p2) se verifica si el punto p1 es alcanzable
    desde el p1 en el mapa m. Por ejemplo,
      esAlcanzable mapal (1,4) (3,2)
                                  True
      esAlcanzable mapal (1,4) (3,1)
                                == False
      esAlcanzable mapa2 (2,3) (8,16)
                                == True
      esAlcanzable mapa2 (8,1) (7,3)
                                ==
                                   True
      esAlcanzable mapa2(1,1)(10,20)
                                == False
type Punto = (Int,Int)
type Mapa = Array Punto Int
mapa1, mapa2 :: Mapa
mapa1 = listArray ((1,1),(3,4))
              [1,1,0,0,
              0,1,0,0,
              1,0,0,0]
mapa2 = listArray ((1,1),(10,20))
              1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,
              alcanzables :: Mapa -> Punto -> [Punto]
alcanzables mapa p = aux [p] []
 where region = mapa ! p
      (,(m,n)) = bounds mapa
```

8.4.8. Examen 8 (8 de septiembre de 2017)

```
-- Informática (1º del Grado en Matemáticas)
-- Examen de la convocatoria de Septiembre (8 de septiembre de 2017)
__ ______
-- Librerías auxiliares
__ _______
import Data.Array
import Data.List
import Data. Numbers. Primes
import Test.QuickCheck
-- Ejercicio 1. La órbita prima de un número n es la sucesión construida
-- de la siguiente forma:
-- + si n es compuesto su órbita no tiene elementos
-- + si n es primo, entonces su órbita está formada por n y la órbita del
    número obtenido sumando n y sus dígitos.
-- Por ejemplo, para el número 11 tenemos:
    11 es primo, consideramos 11+1+1=13
    13 es primo, consideramos 13+1+3 = 17
    17 es primo, consideramos 17+1+7 = 25
    25 es compuesto, su órbita está vacía
-- Así, la órbita prima de 11 es [11, 13, 17].
-- Definir la función
```

```
orbita :: Integer -> [Integer]
-- tal que (orbita n) es la órbita prima de n. Por ejemplo,
     orbita 11 == [11,13,17]
     orbita 59 == [59,73,83]
-- Calcular el menor número cuya órbita prima tiene más de 3 elementos.
-- la definición (por recursión)
orbita :: Integer -> [Integer]
orbita n | not (isPrime n) = []
       | otherwise
                   = n : orbita (n + sum (cifras n))
-- (cifras n) es la lista de las cifras de n. Por ejemplo,
    cifras 32542 == [3,2,5,4,2]
cifras :: Integer -> [Integer]
cifras n = [read [x] | x <- show n]
-- 2º definición (con iterate)
- - ===============
orbita2 :: Integer -> [Integer]
orbita2 n = takeWhile isPrime (iterate f n)
 where f x = x + sum (cifras x)
-- Comprobación de la equivalencia de las definiciones de 'orbita'
> quickCheck prop_equiv_orbita
     +++ OK, passed 100 tests.
prop equiv orbita :: Integer -> Bool
prop_equiv_orbita n =
 orbita n == orbita2 n
-- El cálculo es
    > head [x | x <- [1,3..], length (orbita x) > 3]
     277
- -
    > orbita 277
    [277,293,307,317]
```

```
-- Ejercicio 2. Definir la función
     sumas :: (Num a, Ord a) => Int -> [a] -> a -> [[a]]
-- tal que (sumas n ns x) es la lista de las descomposiciones de x como
-- sumas de n sumandos de la lista ns. Por ejemplo,
     sumas 2 [1,2] 3 == [[1,2]]
     sumas 2[-1](-2) == [[-1,-1]]
     sumas 2 [-1,3,-1] 2 == [[-1,3]]
     sumas 2 [1,2] 4
                    == [[2,2]]
     sumas 2 [1,2] 5
                        == []
                       == [[1,2,2]]
     sumas 3 [1,2] 5
     sumas 3 [1,2] 6 == [[2,2,2]]
     sumas 2 [1,2,5] 6 == [[1,5]]
     sumas 2 [1,2,3,5] 4 == [[1,3],[2,2]]
     sumas 2 [1..5] 6 == [[1,5],[2,4],[3,3]]
sumas 3 [1..5] 7 == [[1,1,5],[1,2,4],[1,3,3],[2,2,3]]
     sumas 3 [1..200] 4 == [[1,1,2]]
__ _______
-- lª definición (fuerza bruta)
sumas1 :: (Num a, Ord a) => Int -> [a] -> a -> [[a]]
sumas1 n ns x =
  [xs | xs <- combinacionesR n (nub (sort ns))</pre>
     , sum xs == x1
-- (combinacionesR k xs) es la lista de las combinaciones orden
-- k de los elementos de xs con repeticiones. Por ejemplo,
     combinacionesR 2 "abc" == ["aa","ab","ac","bb","bc","cc"]
     combinacionesR 3 "bc" == ["bbb","bbc","bcc","ccc"]
     combinacionesR 3 "abc" == ["aaa","aab","aac","abb","abc","acc",
                               "bbb", "bbc", "bcc", "ccc"]
combinacionesR :: Int -> [a] -> [[a]]
combinacionesR [] = []
combinacionesR 0 = [[]]
combinacionesR k (x:xs) =
  [x:ys | ys <- combinacionesR (k-1) (x:xs)] ++ combinacionesR k xs
-- 2ª definición (divide y vencerás)
sumas2 :: (Num a, Ord a) => Int -> [a] -> a -> [[a]]
```

```
sumas2 n ns x = \text{nub} (sumasAux n ns x)
 where sumasAux :: (Num a, Ord a) => Int -> [a] -> a -> [[a]]
       sumasAux 1 ns' x'
          | x' 'elem' ns' = [[x']]
          | otherwise = []
       sumasAux n' ns' x' =
         concat [[y:zs \mid zs <- sumasAux (n'-1) ns' (x'-y)]
                       , y <= head zs]
                | y <- ns']
-- 3ª definición
-- =========
sumas3 :: (Num a, Ord a) => Int -> [a] -> a -> [[a]]
sumas3 n ns x = \text{nub} \$ \text{aux n (sort ns) } x
 where aux 0 = []
       aux _ [] _ = []
       aux 1 ys x | x 'elem' ys = [[x]]
                  | otherwise = []
       aux n (y:ys) x = aux n ys x ++
                        map (y:) (aux (n - 1) (y : ys) (x - y))
-- Equivalencia de las definiciones
- - -----
-- (prop equiv sumas n ns x) se verifica si las definiciones de
-- 'sumas' son equivalentes para n, ns y x. Por ejemplo,
     > quickCheckWith (stdArgs {maxSize=7}) prop_equiv_sumas
     +++ OK, passed 100 tests.
prop equiv sumas :: Positive Int -> [Int] -> Int -> Bool
prop_equiv_sumas (Positive n) ns x =
 all (== normal (sumas1 n ns x))
      [ normal (sumas2 n ns x)
      , normal (sumas3 n ns x)]
 where normal = sort . map sort
-- Comparación de eficiencia
> sumas1 3 [1..200] 4
     [[1,1,2]]
     (2.52 secs, 1,914,773,472 bytes)
  > sumas2 3 [1..200] 4
```

```
[[1,1,2]]
      (0.17 secs, 25,189,688 bytes)
      ghci> sumas3 3 [1..200] 4
      [[1,1,2]]
      (0.08 secs, 21,091,368 bytes)
-- Ejercicio 3. Definir la función
      diagonalesPrincipales :: Array (Int,Int) a -> [[a]]
-- tal que (diagonalesPrincipales p) es la lista de las diagonales
-- principales de la matriz p. Por ejemplo, para la matriz
         2
           3
              4
      5 6
           7 8
      9 10 11 12
-- la lista de sus diagonales principales es
      [[9],[5,10],[1,6,11],[2,7,12],[3,8],[4]]
-- En Haskell,
     > diagonalesPrincipales (listArray ((1,1),(3,4)) [1..12])
      [[9], [5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4]]
diagonalesPrincipales :: Array (Int,Int) a -> [[a]]
diagonalesPrincipales p =
    [[p!ij1 | ij1 <- extension ij] | ij <- iniciales]</pre>
    where (,(m,n)) = bounds p
          iniciales = [(i,1) \mid i < [m,m-1..2]] ++ [(1,j) \mid j < [1..n]]
          extension (i,j) = [(i+k,j+k) | k < [0..min (m-i) (n-j)]]
-- Ejercicio 4. Las expresiones aritméticas formadas por sumas de
-- números y variables se pueden representar mediante el siguiente tipo
-- de datos
      data Exp = N Int
               | V String
               | S Exp Exp
        deriving Show
-- Por ejemplo, la expresión "(x + 3) + (2 + y)" se representa por
      S (S (V "x") (N 3)) (S (N 2) (V "y"))
-- Definir la función
      simplificada :: Exp -> Exp
-- tal que (simplificada e) es una expresión equivalente a la expresión
-- e pero sólo con un número como máximo. Por ejemplo,
```

```
> simplificada (S (S (V "x") (N 3)) (S (N 2) (V "y")))
     S (N 5) (S (V "x") (V "y"))
- -
     > simplificada (S (S (S (V "x") (N 3)) (S (N 2) (V "y"))) (N (-5)))
     S (V "x") (V "y")
      ghci> simplificada (S (V "x") (V "y"))
      S (V "x") (V "y")
      ghci> simplificada (S (N 2) (N 3))
      N 5
data Exp = N Int
         | V String
         | S Exp Exp
 deriving Show
simplificada :: Exp -> Exp
simplificada e
  | \text{null vs} = N x
  | x == 0 = e1
  | otherwise = S(N x) e1
 where x = numero e
       vs = variables e
        e1 = sumaVariables vs
-- (numero e) es el número obtenido sumando los números de la expresión
-- e. Por ejemplo,
      numero (S (S (V "x") (N 3)) (S (N 2) (V "y")))
                                                                  == 5
      numero (S (S (S (V "x") (N 3)) (S (N 2) (V "y"))) (N (-5)) == 0
      numero (S (V "x") (V "y"))
numero :: Exp -> Int
numero (N x)
               = X
numero (V )
                = 0
numero (S e1 e2) = numero e1 + numero e2
-- (variables e) es la lista de las variables de la expresión e. Por
-- ejemplo,
      variables (S (S (V "x") (N 3)) (S (N 2) (V "y"))) == ["x","y"]
      variables (S (S (V "x") (N 3)) (S (V "y") (V "x"))) == ["x","y","x"]
      variables (S (N 2) (N 3))
                                                          == []
variables :: Exp -> [String]
variables (N _) = []
variables (V x) = [x]
variables (S e1 e2) = variables e1 ++ variables e2
```

```
-- (sumaVariables xs) es la expresión obtenida sumando las variables
-- xs. Por ejemplo,
     ghci> sumaVariables ["x","y","z"]
     S (V "x") (S (V "y") (V "z"))
     ghci> sumaVariables ["x"]
     V "x"
sumaVariables :: [String] -> Exp
sumaVariables [x]
                   = V x
sumaVariables (x:xs) = S (V x) (sumaVariables xs)
        Examen 9 (21 de noviembre de 2017)
8.4.9.
-- Informática (1º del Grado en Matemáticas)
-- Convocatoria de diciembre (21 de noviembre de 2017)
__ _______
-- § Librerías
import Data.List
import Data.Matrix
-- Ejercicio 1. Dado un conjunto A de enteros positivos, una partición
-- de A son dos conjuntos disjuntos y no vacíos A1 y A2 cuya unión es
-- A. Decimos que una partición es "buena" si el mínimo común múltiplo
-- de los elementos de Al coincide con el máximo común divisor de los
-- elementos de A2.
-- Definir la función
     particionesBuenas :: [Int] -> [([Int],[Int])]
-- tal que (particionesBuenas xs) es la lista de las particiones buenas
-- de xs. Por ejemplo,
     particionesBuenas [1,2,3,6] = [([1],[2,3,6]),([1,2,3],[6])]
     particionesBuenas [1..10] = [([1],[2,3,4,5,6,7,8,9,10])]
     particionesBuenas [2..10] == []
-- 1ª definición de particionesBuenas
```

particionesBuenas :: [Int] -> [([Int],[Int])]

```
particionesBuenas xs =
  [p | p <- particiones xs</pre>
     , esBuena p]
-- 2ª definición de particionesBuenas
particionesBuenas2 :: [Int] -> [([Int],[Int])]
particionesBuenas2 xs =
  filter esBuena (particiones xs)
-- 3ª definición de particionesBuenas
particionesBuenas3 :: [Int] -> [([Int],[Int])]
particionesBuenas3 =
  filter esBuena . particiones
-- (particiones xs) es la lista de las particiones de xs. Por ejemplo,
- -
      ghci> particiones [3,2,5]
      [([],[3,2,5]),
       ([3],[2,5]),
       ([2],[3,5]),
       ([3,2],[5]),
       ([5],[3,2]),
       ([3,5],[2]),
       ([2,5],[3]),
- -
       ([3,2,5],[])]
-- lª definición de particiones
particiones1 :: [Int] -> [([Int],[Int])]
particiones1 xs = [(ys,xs \\ ys) | ys <- subsequences xs]</pre>
-- 2ª definición de particiones
particiones2 :: [Int] -> [([Int],[Int])]
particiones2 xs = map f (subsequences xs)
 where f ys = (ys, xs \setminus ys)
-- 3ª definición de particiones
particiones3 :: [Int] -> [([Int],[Int])]
particiones3 xs = map (\ys -> (ys, xs \\ ys)) (subsequences xs)
-- Comparación de eficiencia de particiones
      ghci> length (particiones1 [1..24])
      16777216
      (3.04 secs, 4,160,894,648 bytes)
      ghci> length (particiones2 [1..24])
```

```
16777216
      (0.72 secs, 3,221,368,088 bytes)
- -
      ghci> length (particiones3 [1..24])
      16777216
      (0.72 secs, 3,221,367,168 bytes)
-- Usaremos la 3º definición de particiones
particiones :: [Int] -> [([Int],[Int])]
particiones = particiones3
-- (esBuena (xs,ys)) se verifica si las listas xs e ys son no vacía y el
-- mínimo comúm múltiplo de xs es igual al máximo común divisor de ys.
esBuena :: ([Int],[Int]) -> Bool
esBuena (xs,ys) =
    not (null xs)
  && not (null ys)
 && mcmL xs == mcdL ys
-- (mcdL xs) es el máximo común divisor de xs.
-- 1º definición de mcdL
mcdL1 :: [Int] -> Int
mcdL1 [x] = x
mcdL1 (x:y:xs) = gcd x (mcdL (y:xs))
-- 2ª definición de mcdL
mcdL2 :: [Int] -> Int
mcdL2 = foldl1' gcd
-- Comparación de eficiencia de mcdL
      ghci> mcdL1 [1..3*10^6]
      (2.02 secs, 1,770,213,520 bytes)
      ghci> mcdL2 [1..3*10^6]
      (0.50 secs, 1,032,135,400 bytes)
      ghci> mcdL1 [1..5*10^6]
      *** Exception: stack overflow
      ghci> mcdL2 [1..5*10^6]
      (1.42 secs, 1,720,137,128 bytes)
```

```
-- Usaremos la 2ª definición de mcdL
mcdL :: [Int] -> Int
mcdL = mcdL2
-- (mcmL xs) es el mínimo común múltiplo de xs.
-- 1º definición de mcmL
mcmL1 :: [Int] -> Int
mcmL1 [x] = x
mcmL1 (x:y:xs) = lcm x (mcmL1 (y:xs))
-- 2º definición de mcmL
mcmL2 :: [Int] -> Int
mcmL2 = foldl1' lcm
-- Comparación de eficiencia de mcmL
      ghci> mcmL1 [1..5*10^6]
      505479828665794560
      (6.18 secs, 7,635,567,360 bytes)
      ghci> mcmL2 [1..5*10^6]
      26232203725766656
      (2.71 secs, 5,971,248,720 bytes)
      ghci> mcmL1 [1..10<sup>7</sup>]
      *** Exception: stack overflow
      ghci> mcmL2 [1..10^7]
      1106056739033186304
      (5.99 secs, 12,269,073,648 bytes)
-- Usaremos la 2ª definición de mcmL
mcmL :: [Int] -> Int
mcmL = mcdL2
-- Ejercicio 2. Un número natural n se puede descomponer de varias
-- formas como suma de potencias k-ésimas de números naturales. Por
-- ejemplo, 100 se puede descomponer en potencias cuadradas
      100 = 1 + 9 + 16 + 25 + 49
          = 36 + 64
          = 100
-- O bien como potencias cúbicas,
      100 = 1 + 8 + 27 + 64
-- No hay ninguna descomposición de 100 como potencias cuartas.
```

```
-- Definir la función
      descomPotencia :: Int -> Int -> [[Int]]
-- tal que (descomPotencia n k) es la lista de las descomposiciones de n
-- como potencias k-ésimas de númenos naturales. Por ejemplo,
      descomPotencia 100 2 == [[1,9,16,25,49],[36,64],[100]]
      descomPotencia 100 3 == [[1,8,27,64]]
      descomPotencia 100 4 == []
descomPotencia :: Int -> Int -> [[Int]]
descomPotencia x n =
  descomposiciones x (takeWhile (\leqx) (map (^n) [1..]))
descomposiciones :: Int -> [Int] -> [[Int]]
descomposiciones n [] = []
descomposiciones n (x:xs)
             = []
  | x > n
  | x == n
              = [[n]]
  | otherwise = map (x:) (descomposiciones (n-x) xs)
                ++ descomposiciones n xs
-- Ejercicio 3. El triángulo de Pascal es un triángulo de números
            1
           1 1
          1 2 1
        1 3 3 1
       1 4 6 4 1
      1 5 10 10 5 1
     . . . . . . . . . . . . . . . .
-- construido de la siguiente forma
-- + la primera fila está formada por el número 1;
-- + las filas siguientes se construyen sumando los números adyacentes
     de la fila superior y añadiendo un 1 al principio y al final de la
     fila.
_ _
-- La matriz de Pascal es la matriz cuyas filas son los elementos de la
-- correspondiente fila del triángulo de Pascal completadas con
-- ceros. Por ejemplo, la matriz de Pascal de orden 6 es
      110 0 0 0 0 0
      |1 1 0 0 0 0 0 |
     |1 2 1 0 0 0 |
-- |1 3 3 1 0 0|
```

```
|1 4 6 4 1 0|
     |1 5 10 10 5 1|
- -
-- Definir la función
     matrizPascal :: Int -> Matriz Int
-- tal que (matrizPascal n) es la matriz de Pascal de orden n. Por
-- ejemplo,
     ghci> matrizPascal 5
     (10000)
     (11000)
    (12100)
     (13310)
     (14641)
matrizPascal :: Int -> Matrix Int
matrizPascal n = fromLists xss
   where yss = take n pascal
         xss = map (take n) (map (++ (repeat 0)) yss)
pascal :: [[Int]]
pascal = [1] : map f pascal
   where f xs = zipWith (+) (0:xs) (xs++[0])
-- Ejercicio 4. Los árboles se pueden representar mediante el siguiente
-- tipo de datos
     data Arbol a = N a [Arbol a]
       deriving Show
-- Por ejemplo, los árboles
       1
                1
                               1
      /\
         3
               5 3
                  /|\setminus
         /|\
         4
                 4 7 6
                           4 7 6 7
-- se representan por
     ej1, ej2, ej3 :: Arbol Int
     ej1 = N 1 [N 8 [], N 3 [N 4 []]]
     ej2 = N 1 [N 5 [], N 3 [N 4 [], N 7 [], N 6 []]]
     ej3 = N 1 [N 5 [N 4 [], N 7 [], N 6 []], N 3 [N 7 []]]
-- El peso de una rama de un árbol es la suma de los valores en sus
```

```
-- nodos y en sus hojas. Por ejemplo, en el primer árbol su rama
-- izquierda pesa 9 (1+8) y su rama derecha pesa 8 (1+3+4).
-- Definir la función
     minimoPeso :: Arbol Int -> Int
-- tal que (minimoPeso x) es el mínimo de los pesos de la rama del árbol
-- x. Por ejemplo,
     minimoPeso eil == 8
     minimoPeso ej2 == 6
     minimoPeso ej3 == 10
__ _______
data Arbol a = N a [Arbol a]
 deriving Show
ej1, ej2, ej3 :: Arbol Int
ej1 = N 1 [N 8 [], N 3 [N 4 []]]
ej2 = N 1 [N 5 [], N 3 [N 4 [], N 7 [], N 6 []]]
ej3 = N 1 [N 5 [N 4 [], N 7 [], N 6 []], N 3 [N 7 []]]
-- lª definición
-- =========
minimoPeso :: Arbol Int -> Int
minimoPeso x = minimum (map sum (ramas x))
-- (ramas x) es la lista de las ramas del árbol x. Por ejemplo,
     ramas ej1 == [[1,8],[1,3,4]]
     ramas ej2 == [[1,5],[1,3,4],[1,3,7],[1,3,6]]
     ramas ej3 == [[1,5,4],[1,5,7],[1,5,6],[1,3,7]]
ramas :: Arbol a -> [[a]]
ramas (N r []) = [[r]]
ramas (N r as) = [(r:rs) | a<-as, rs <-ramas a]
-- 2ª definición
-- ==========
minimoPeso2 :: Arbol Int -> Int
minimoPeso2 = minimum . map sum . ramas
-- 3ª definición
-- ==========
```

```
minimoPeso3 :: Arbol Int -> Int
minimoPeso3 (N r []) = r
minimoPeso3 (N r as) = r + minimum (map minimoPeso3 as)
```

8.5. Exámenes del grupo 5 (Andrés Cordón y Antonia M. Chávez)

8.5.1. Examen 1 (26 de octubre de 2016)

```
-- Informática (1º del Grado en Matemáticas, Grupo 5)
-- 1º examen de evaluación continua (26 de octubre de 2016)
-- § Librerías auxiliares
import Data.List
import Test.QuickCheck
-- Ejercicio 1.1. La sombra de un número x es el que se obtiene borrando
-- las cifras de x que ocupan lugares impares. Por ejemplo, la sombra de
-- 123 es 13 ya que borrando el 2, que ocupa la posición 1, se obtiene
-- el 13.
-- Definir la función
     sombra :: Int -> Int
-- tal que (sombra x) es la sombra de x. Por ejemplo,
     sombra 4736 == 43
     sombra 473 == 43
     sombra 47
               == 4
     sombra 4
                == 4
-- 1º definición (por comprensión)
sombra :: Int -> Int
sombra n = read [x | (x,n) <- zip (show n) [0..], even n]
```

```
-- 2ª definición (por recursión)
sombra2 :: Int -> Int
sombra2 n = read (elementosEnPares (show n))
-- (elementosEnPares xs) es la lita de los elementos de xs en posiciones
-- pares. Por ejemplo,
     elementosEnPares [4,7,3,6] == [4,3]
     elementosEnPares [4,7,3]
                             == [4,3]
     elementosEnPares [4,7]
                             == [4]
     elementosEnPares [4]
                             == [4]
     elementosEnPares []
                             == []
elementosEnPares :: [a] -> [a]
elementosEnPares (x:y:zs) = x : elementosEnPares zs
elementosEnPares xs
                   = xs
-- 3ª definición (por recursión y composición)
-- -----
sombra3 :: Int -> Int
sombra3 = read . elementosEnPares . show
prop sombra :: Int -> Property
prop sombra x =
 x >= 0 ==>
 nDigitos (sombra x) == ceiling (fromIntegral (nDigitos x) / 2)
nDigitos n = length (show n)
__ _______
-- Ejercicio 1.2. Definir la función
     esSombra :: Int -> Int -> Bool
-- tal que (esSombra x y) se verifica si y es sombra de x. Por ejemplo,
     esSombra 72941 791 == True
     esSombra 72941 741 == False
esSombra :: Int -> Int -> Bool
esSombra x y = sombra x == y
```

```
-- Ejercicio 1.3. Definir la función
      conSombra :: Int -> [Int]
-- tal que (conSombra x n) es la lista de números con el menor número
-- posible de cifras cuya sombra es x. Por ejemplo,
      ghci> conSombra 2
      [2]
      ghci> conSombra 23
      [203,213,223,233,243,253,263,273,283,293]
      ghci> conSombra 234
      [20304, 20314, 20324, 20334, 20344, 20354, 20364, 20374, 20384, 20394,
       21304, 21314, 21324, 21334, 21344, 21354, 21364, 21374, 21384, 21394,
       22304, 22314, 22324, 22334, 22344, 22354, 22364, 22374, 22384, 22394,
       23304, 23314, 23324, 23334, 23344, 23354, 23364, 23374, 23384, 23394,
       24304, 24314, 24324, 24334, 24344, 24354, 24364, 24374, 24384, 24394,
       25304, 25314, 25324, 25334, 25344, 25354, 25364, 25374, 25384, 25394,
       26304, 26314, 26324, 26334, 26344, 26354, 26364, 26374, 26384, 26394,
       27304, 27314, 27324, 27334, 27344, 27354, 27364, 27374, 27384, 27394,
       28304, 28314, 28324, 28334, 28344, 28354, 28364, 28374, 28384, 28394,
       29304, 29314, 29324, 29334, 29344, 29354, 29364, 29374, 29384, 29394]
conSombra :: Int -> [Int]
conSombra x =
  [read ys | ys <- intercala (show x) ['0'...'9']]
-- (intercala xs ys) es la lista obtenida intercalando los elementos de
-- xs entre los de ys. Por ejemplo,
      ghci> intercala "79" "15"
      ["719","759"]
      ghci> intercala "79" "154"
      ["719","759","749"]
      ghci> intercala "796" "15"
      ["71916","71956","75916","75956"]
      ghci> intercala "796" "154"
      ["71916","71956","71946",
       "75916", "75956", "75946",
       "74916", "74956", "74946"]
intercala :: [a] -> [a] -> [[a]]
                  _ = []
intercala []
                  _{-} = [[x]]
intercala [x]
intercala (x:xs) ys = [x:y:zs | y <- ys
                                , zs <- intercala xs ys]
```

```
-- Ejercicio 2. Definir la función
     mezcla :: [a] -> [a] -> [a]
-- tal que (mezcla xs ys) es la lista obtenida alternando cada uno de
-- los elementos de xs con los de ys. Por ejemplo,
     mezcla [1,2,3] [4,7,3,2,4] == [1,4,2,7,3,3,2,4] mezcla [4,7,3,2,4] [1,2,3] == [4,1,7,2,3,3,2,4]
     mezcla [1,2,3] [4,7]
                                  == [1,4,2,7,3]
     mezcla "E er eSnRqe" "lprod a ou" == "El perro de San Roque"
     mezcla "et" "so sobra" == "esto sobra"
__ ______
-- 1ª definición (por comprensión)
mezcla :: [a] -> [a] -> [a]
mezcla xs ys =
 concat [[x,y] \mid (x,y) <- zip xs ys]
 ++ drop (length xs) ys
 ++ drop (length ys) xs
-- 2ª definición (por recursión)
mezcla2 :: [a] -> [a] -> [a]
mezcla2 [] ys = ys
mezcla2 xs [] = xs
mezcla2 (x:xs) (y:ys) = x : y : mezcla2 xs ys
__ ______
-- Ejercicio 3. Un elemento de una lista es una cresta si es mayor que
-- todos los anteriores a ese elemento en la lista.
-- Definir la función
    crestas :: Ord a => [a] -> [a]
-- tal que (crestas xs) es la lista de las crestas de xs. Por
-- ejemplo,
    crestas [80,1,7,8,4] == [80]
     crestas [1,7,8,4] == [1,7,8]
     crestas [3,2,6,1,5,9] == [3,6,9]
-- lª definición
-- =========
crestas :: Ord a => [a] -> [a]
crestas xs = [x \mid (x,n) \leftarrow zip xs [1 ..]
```

```
, esMayor x (take (n-1) xs)]
esMayor :: Ord a => a -> [a] -> Bool
esMayor x xs = and [x > y | y < -xs]
-- 2º definición
-- ==========
crestas2 :: Ord a => [a] -> [a]
crestas2 xs = [x \mid (x,ys) < -zip xs (inits xs)]
                 , esMayor x ys]
-- 3ª definición
-- ==========
crestas3 :: Ord a => [a] -> [a]
crestas3 xs = aux xs []
 where aux [] = []
        aux (x:xs) ys | esMayor x ys = x : aux xs (x:ys)
                      | otherwise = aux xs (x:ys)
-- Ejercicio 4. Definir la función
      posicion :: (Float,Float) -> Float -> String
-- tal que (posicion p z) es la posición del punto p respecto del
-- cuadrado de lado l y centro (0,0). Por ejemplo,
      posicion (-1, 1) 6 == "Interior"
      posicion (-1, 2) 6 == "Interior"
      posicion (0,-3) 6 == "Borde"
      posicion (3,-3) 6 == "Borde"
      posicion (3, 1) 6 == "Borde"
      posicion (-1, 7) 6 == "Exterior"
      posicion (-1, 4) 6 == "Exterior"
posicion :: (Float, Float) -> Float -> String
posicion (x,y) z
    | abs x < z/2 \&\& abs y < z/2 = "Interior"
    | abs x > z/2 || abs y > z/2 = "Exterior"
                                 = "Borde"
    | otherwise
```

8.5.2. Examen 2 (30 de noviembre de 2016)

```
-- Informática (1º del Grado en Matemáticas)
-- 2º examen de evaluación continua (30 de noviembre de 2016)
__ _______
-- § Librerías auxiliares
__ ______
import Test.QuickCheck
-- Ejercicio 1. Definir la función
     cuadrado :: [Integer] -> Integer
-- tal que (cuadrado xs) es el número obtenido uniendo los cuadrados de
-- los números de la lista xs. Por ejemplo,
-- cuadrado [2.6.9] == 43681
     cuadrado [10] == 100
-- 1ª definición (usando recursión)
cuadrado1 :: [Integer] -> Integer
cuadradol xs = read (aux xs)
 where aux [] = ""
       aux (y:ys) = show (y^2) ++ aux ys
-- 2ª definición (plegado a la derecha)
cuadrado2 :: [Integer] -> Integer
cuadrado2 = read . aux
 where aux = foldr f ""
       f \times y = show (x^2) ++ y
-- 3ª definición (por comprensión)
cuadrado3 :: [Integer] -> Integer
cuadrado3 ys = read (concat [show (y^2) | y <- ys])
-- 4º definición (con orden superior)
cuadrado4 :: [Integer] -> Integer
cuadrado4 = read . concatMap (show . (^2))
-- 5ª definición (con acumulador)
cuadrado5 :: [Integer] -> Integer
```

```
cuadrado5 xs = read (aux xs "")
 where aux [] ys
                  = ys
        aux (x:xs) ys = aux xs (ys ++ show (x^2))
-- 6ª definición (con plegado a la izquierda)
cuadrado6 :: [Integer] -> Integer
cuadrado6 xs = read (foldl g "" xs)
 where g ys x = ys ++ show (x^2)
-- Ejercicio 2. Un elemento de una lista es una cima si es mayor que los
-- que tiene más cerca, su antecesor y su sucesor.
- -
-- Definir la función
     cimas:: [Int] -> [Int]
-- tal que (cimas xs) es la lista de las cimas de xs. Por ejemplo,
    cimas [80,1,7,5,9,1] == [7,9]
     cimas [1,7,8,4]
                            == [8]
     cimas [3,2,6,1,5,4] == [6,5]
-- 1º definición (por comprensión)
cimasC :: [Int] -> [Int]
cimasC xs = [x \mid (y,x,z) \leftarrow trozos xs, y < x, x > z]
trozos :: [a] -> [(a,a,a)]
trozos (x:y:z:zs) = (x,y,z) : trozos (y:z:zs)
trozos _
                = []
-- 2ª definición (orden superior)
cimasS :: [Int] -> [Int]
cimasS xs = concatMap f (trozos xs)
 where f (a,b,c) \mid a < b \& \& b > c = [b]
                  otherwise = []
-- 3ª definición (por recursión)
cimasR :: [Int] -> [Int]
cimasR (x:y:z:xs) \mid x < y \& y > z = y : cimasR (y:z:xs)
                  otherwise = cimasR (y:z:xs)
cimasR = []
-- 4ª definición (plegado a la derecha)
cimasPR :: [Int] -> [Int]
```

```
cimasPR xs = concat (foldr f [] (trozos xs))
    where f (a,b,c) ys | a < b && b > c = [b] : ys
                      | otherwise = [] : ys
-- 5º definición (con acumuladores)
cimasA :: [Int] -> [Int]
cimasA xs = concat (aux (trozos xs) [[]])
 where aux [] ac = ac
       aux ((a,b,c):ts) ac
         | a < b \& b > c = aux ts (ac ++ [[b]])
          | otherwise = aux ts (ac ++ [[]])
-- 6ª definición (por plegado a la izquierda)
cimasPL :: [Int] -> [Int]
cimasPL xs = concat (foldl g [] (trozos xs))
   where g acum (a,b,c)
            | a < b \& b > c = acum ++ [[b]]
            | otherwise = acum ++ [[]]
```

8.5.3. Examen 3 (31 de enero de 2017)

El examen es común con el del grupo 1 (ver página 716).

8.5.4. Examen 4 (15 de marzo de 2017)

```
-- Informática (1º del Grado en Matemáticas)
-- 4º examen de evaluación continua (15 de marzo de 2017)
-- § Librerías auxiliares
-- import Data.List
import Data.Array
import Data.Maybe
-- Ejercicio 1.1. Definir el predicado
-- relacionados :: Int -> Int -> Bool
-- tal que (relacionados x y) se verifica si los enteros positivos x e y
```

```
-- contienen los mismos dígitos (sin importar el orden o la repetición
-- de los mismos). Por ejemplo:
     relacionados 12 1121
                        == True
     relacionados 12 123
                        == False
  ______
relacionados :: Int -> Int -> Bool
relacionados x y =
 sort (nub (show x)) == sort (nub (show y))
-- Ejercicio 1.2. Definir la lista infinita
     paresRel :: [(Int,Int)]
-- cuyo elementos son los pares de enteros positivos (a,b), con
-- 1 <= a < b, tales que a y b están relacionados. Por ejemplo,
     ghci> take 8 paresRel
     [(1,11),(12,21),(2,22),(13,31),(23,32),(3,33),(14,41),(24,42)]
paresRel :: [(Int,Int)]
paresRel = [(a,b) | b < - [2..]
               , a <- [1..b-1]
               , relacionados a b]
-- Ejercicio 1.3. Definir la función
     lugar :: Int -> Int -> Maybe Int
-- tal que (lugar x y) es el lugar que ocupa el par (x,y) en la lista
-- infinita paresRel o bien Nothing si dicho par no está en la lista.
-- Por ejemplo,
     lugar 4 44 == Just 10
     lugar 5 115 == Nothing
  ______
lugar :: Int -> Int -> Maybe Int
lugar x y \mid relacionados x y = Just z
        | otherwise = Nothing
  where z = 1 + length (takeWhile (/=(x,y)) paresRel)
-- Ejercicio 2. Representamos los árboles binarios con elementos en las
-- hojas y en los nodos mediante el tipo de dato
-- data Arbol a = H a
```

```
| N a (Arbol a) (Arbol a)
        deriving Show
-- Por ejemplo,
      ejl :: Arbol Int
      ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
-- Definir la función
      ramasCon :: Eq a => Arbol a -> a -> [[a]]
-- tal que (ramasCon a x) es la lista de las ramas del árbol a en las
-- que aparece el elemento x. Por ejemplo,
     ramasCon ej1 2 == [[5,2,1],[5,2,2],[5,3,2]]
data Arbol a = H a
             | N a (Arbol a) (Arbol a)
  deriving Show
eil :: Arbol Int
ej1 = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
ramasCon :: Eq a => Arbol a -> a -> [[a]]
ramasCon a x = filter(x 'elem') (ramas a)
ramas :: Arbol a -> [[a]]
ramas (H x)
                = [[x]]
ramas (N \times i d) = map(x:) (ramas i) ++ map(x:) (ramas d)
-- Ejercicio 3.1. Representamos las matrices mediante el tipo de dato
      type Matriz a = Array (Int,Int) a
-- Por ejemplo,
      ejm :: matriz int
      ejm = listarray ((1,1),(3,4)) [1,2,3,0,4,5,6,7,7,5,1,11]
-- representa la matriz
      |1 2 3 0 |
      |4 5 6 7 |
      |7 5 1 11|
- -
-- definir la función
     cruz :: (eq a,num a) => matriz a -> int -> int -> matriz a
-- tal que (cruz p i j) es la matriz obtenida anulando todas las
-- posiciones de p excepto las de la fila i y la columna j. por ejmplo,
     ghci> cruz ejM 2 3
```

```
array ((1,1),(3,4)) [((1,1),0),((1,2),0),((1,3),3),((1,4),0),
                           ((2,1),4),((2,2),5),((2,3),6),((2,4),7),
- -
                           ((3,1),0),((3,2),0),((3,3),1),((3,4),0)
      ghci> elems (cruz ejM 2 3)
      [0,0,3,0,
      4,5,6,7,
       [0,0,1,0]
type Matriz a = Array (Int,Int) a
ejM :: Matriz Int
ejM = listArray ((1,1),(3,4)) [1,2,3,0,4,5,6,7,7,5,1,11]
cruz :: Num a => Matriz a -> Int -> Int -> Matriz a
cruz p fil col =
  array (bounds p) [((i,j), f i j) | (i,j) < - indices p]
 where f i j | i == fil || j == col = p!(i,j)
              | otherwise = 0
-- 2º definición
cruz2 :: Num a => Matriz a -> Int -> Int -> Matriz a
cruz2 p fil col =
  p // [((i,j),0) | (i,j) <- indices p, i /= fil, j /= col]
-- Ejercicio 3.2. Una matriz está ordenada por columnas si cada una de
-- sus columnas está ordenada en orden creciente.
-- Definir la función
      ordenadaCol :: Ord a => Matriz a -> Bool
-- tal que (ordenadaCol p) se verifica si la matriz p está ordenada por
-- columnas. Por ejemplo,
      ghci> ordenadaCol (listArray ((1,1),(3,4)) [1..12])
      ghci> ordenadaCol (listArray ((1,1),(3,4)) [1,2,3,0,4,5,6,7,7,5,1,11])
      False
ordenadaCol :: Ord a => Matriz a -> Bool
ordenadaCol p = and [xs == sort xs | xs <- columnas p]
columnas :: Matriz a -> [[a]]
```

```
columnas p = [[p!(i,j) | i <- [1..n]] | j <- [1..m]]
  where (n,m) = snd (bounds p)
-- Ejercicio 4.1. Representamos los pesos de un conjunto de objetos
-- mediante una lista de asociación (objeto, peso). Por ejemplo,
     ejLista :: [(Char,Int)]
     ejLista = [('a',10),('e',5),('i',7),('l',2),('s',1),('v',4)]
-- Definir la función
     peso :: Eq a => [(a,Int)] -> [a] -> Int
-- tal que (peso xs as) es el peso del conjunto xs de acuerdo con la
-- lista de asociación as. Por ejemplo:
     peso ejLista "sevilla" == 31
ejLista :: [(Char,Int)]
ejLista = [('a',10),('e',5),('i',7),('l',2),('s',1),('v',4)]
peso :: Eq a => [(a,Int)] -> [a] -> Int
peso as xs = sum [busca x as | x <- xs]
 where busca x as = head [z \mid (y,z) <- as, y == x]
-- 2ª definición
peso2 :: Eq a => [(a,Int)] -> [a] -> Int
peso2 as xs = sum [fromJust (lookup x as) | x <- xs]
-- 3º definición
peso3 :: Eq a => [(a,Int)] -> [a] -> Int
peso3 as = sum . map (fromJust . ('lookup' as))
-- Ejercicio 4.2. Definir la función
     conPeso :: Eq a => Int -> [(a,Int)] -> [a] -> [[a]]
-- tal que (conPeso x as xs) es la lista de los subconjuntos de xs con
-- peso x de acuerdo con la asignación as. Por ejemplo:
     conPeso 10 ejLista "sevilla" == ["sev", "sell", "sil", "a"]
  ______
conPeso :: Eq a => Int -> [(a,Int)] -> [a] -> [[a]]
conPeso x as xs =
  [ys | ys <- subsequences xs, peso as ys == x]
```

8.5.5. Examen 5 (26 de abril de 2017)

```
-- Informática (1º del Grado en Matemáticas)
-- 5º examen de evaluación continua (26 de abril de 2017)
-- § Librerías auxiliares
__ ______
import Data.List
import Data.Matrix
import qualified Data. Vector as V
import I1M.Pila
import I1M.PolOperaciones
-- Ejercicio 1.1. Un número natural x es un cuadrado perfecto si x = b^2
-- para algún número natural b <= x. Por ejemplo, 25 es un cuadrado
-- perfecto y 24 no lo es.
- -
-- Un número natural se dirá equilibrado si contiene una cantidad par de
-- cifras pares y una cantidad impar de cifras impares. Por ejemplo,
-- 124, 333 y 20179 son equilibrados, mientras que 1246, 2333 y 2017 no
-- lo son.
-- Definir la lista infinita
     equilibradosPerf :: [Integer]
-- de todos los cuadrados perfectos que son equilibrados. Por ejemplo
     ghci> take 15 equilibradosPerf
     [1,9,100,144,225,256,289,324,441,625,676,784,841,900,10000]
equilibradosPerf :: [Integer]
equilibradosPerf = filter esEquilibrado cuadrados
-- cuadrados es la lista de los cuadrados perfectos. Por ejemplo,
     take 10 cuadrados == [0,1,4,9,16,25,36,49,64,81]
cuadrados :: [Integer]
cuadrados = [x^2 | x < [0..]]
-- (esEquilibrado x) se verifica si x es equilibrado. Por ejemplo,
     esEquilibrado 124 == True
```

```
esEquilibrado 1246 == False
esEquilibrado :: Integer -> Bool
esEquilibrado x = even a \&\& odd (n-a) where
 cs = show x
 n = length cs
 a = length (filter ('elem' "02468") cs)
-- Ejercicio 1.2. Calcular el mayor cuadrado perfecto equilibrado de 9
-- cifras.
-- El cálculo es
     ghci> last (takeWhile (<=999999999) equilibradosPerf)</pre>
     999950884
-- Ejercicio 2. Representamos los árboles binarios con elementos en las
-- hojas y en los nodos mediante el tipo de dato
     data Arbol a = H a
                  | N a (Arbol a) (Arbol a)
                  deriving Show
-- Por ejemplo,
     ejArbol :: Arbol Int
     ejArbol = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
-- Definir la función
     todasHojas :: (a -> Bool)-> Arbol a -> Bool
-- tal que (todasHojas p a) se verifica si todas las hojas del árbol a
-- satisfacen el predicado p. Por ejemplo,
     todasHojas even ejArbol == False
     todasHojas (<5) ejArbol == True
  ______
data Arbol a = H a
            | N a (Arbol a) (Arbol a)
            deriving Show
ejArbol :: Arbol Int
ejArbol = N 5 (N 2 (H 1) (H 2)) (N 3 (H 4) (H 2))
todasHojas :: (a -> Bool) -> Arbol a -> Bool
todasHojas p (H x) = p x
```

```
todasHojas p (N _ i d) = todasHojas p i && todasHojas p d
-- Ejercicio 3. Representamos las pilas mediante el TAD definido en la
-- librería I1M.Pila. Por ejemplo,
-- Definir la función
      elemPila :: Int -> Pila a -> Maybe a
-- tal que (elemPila k p) es el k-ésimo elemento de la pila p, si un tal
-- elemento existe y Nothing, en caso contrario. Por ejemplo, para la
-- pila definida por
      ejPila :: Pila Int
      ejPila = foldr apila vacia [2,4,6,8,10]
-- se tiene
     elemPila 2 ejPila ==
                              Just 4
      elemPila 5 ejPila ==
                              Just 10
      elemPila 7 ejPila ==
                              Nothing
eiPila :: Pila Int
ejPila = foldr apila vacia [2,4,6,8,10]
elemPila :: Int -> Pila a -> Maybe a
elemPila k p
  | esVacia p = Nothing
  | k <= 0
           = Nothing
  | k == 1
            = Just (cima p)
  | otherwise = elemPila (k-1) (desapila p)
-- Ejercicio 4. Representamos las matrices mediante la librería
-- Data.Matrix. Por ejemplo,
      ejMat :: Matrix Int
      ejMat = fromLists [[1,2,3,0],[4,2,6,7],[7,5,1,11]]
-- representa la matriz
      |1 2 3 0 |
      |4 2 6 7 |
     |7 5 1 11|
-- Definir la función
     ampliada :: Ord a => Matrix a -> Matrix a
-- tal que (ampliada p) es la matriz obtenida al ampliar cada fila de p
-- con sus elementos mínimo y máximo, respectivamente. Por ejemplo,
```

```
> ampliada ejMat
      (123003)
     (426727)
     (7511111)
ejMat :: Matrix Int
ejMat = fromLists [[1,2,3,0],[4,2,6,7],[7,5,1,11]]
ampliada :: Ord a => Matrix a -> Matrix a
ampliada p = matrix n (m+2) f where
 n = nrows p
 m = ncols p
 f(i,j) | j \le m = p!(i,j)
         | j == m+1 = minimum (fila i p)
          | j == m+2 = maximum (fila i p)
  fila i p = [p ! (i,k) | k < - [1..m]]
-- 2ª definición
-- =========
ampliada2 :: Ord a => Matrix a -> Matrix a
ampliada2 p = p < | > minMax p
-- (minMax p) es la matriz cuyas filas son los mínimos y los máximos de
-- la matriz p. Por ejemplo,
     ghci> minMax ejMat
     ( 0 3)
      (27)
      ( 1 11 )
minMax :: Ord a => Matrix a -> Matrix a
minMax p =
  fromLists [[V.minimum f, V.maximum f] | i <- [1..nrows p]</pre>
                                       , let f = getRow i p]
-- Ejercicio 5.1. Representamos los polinomios mediante el TAD definido
-- en la librería I1M.Pol. Por ejemplo,
     ejPol :: Polinomio Int
     ejPol = consPol 4 5 (consPol 3 6 (consPol 2 (-1) (consPol 0 7 polCero)))
-- Definir la función
     partePar :: (Eq a,Num a) => Polinomio a -> Polinomio a
-- tal que (partePar p) es el polinomio formado por los términos de
```

```
-- grado par del polinomio p. Por ejemplo,
     ghci> partePar ejPol
     5*x^4 + -1*x^2 + 7
partePar :: (Eq a,Num a) => Polinomio a -> Polinomio a
partePar p
  | esPolCero p = polCero
  even n
           = consPol n a (partePar r)
  | otherwise = partePar r
 where n = grado p
        a = coefLider p
        r = restoPol p
-- Ejercicio 5.2. Definir la función
      generaPol :: [Int] -> Polinomio Int
-- tal que (generaPol xs) es el polinomio de coeficientes enteros de
-- grado la longitud de xs y cuyas raíces son los elementos de xs. Por
-- ejemplo,
      ghci> generaPol [1,-1]
     x^2 + -1
     ghci> generaPol [0,1,1]
     x^3 + -2*x^2 + 1*x
     ghci> generaPol [1,1,3,-4,5]
     x^5 + -6*x^4 + -8*x^3 + 90*x^2 + -137*x + 60
-- 1º solución
generaPol :: [Int] -> Polinomio Int
generaPol [] = polUnidad
generaPol (r:rs) = multPol (creaFactor r) (generaPol rs)
 where creaFactor r = consPol \ 1 \ 1 \ (consPol \ 0 \ (-r) \ polCero)
-- 2ª solución
generaPol2 :: [Int] -> Polinomio Int
generaPol2 xs =
  foldr multPol polUnidad ps
 where ps = [consPol \ 1 \ 1 \ (consPol \ 0 \ (-x) \ polCero) \ | \ x <- \ xs]
```

8.5.6. Examen 6 (12 de junio de 2017)

El examen es común con el del grupo 1 (ver página 733).

8.5.7. Examen 7 (29 de junio de 2017)

El examen es común con el del grupo 4 (ver página 806).

8.5.8. Examen 8 (8 de septiembre de 2017)

El examen es común con el del grupo 4 (ver página 812).

8.5.9. Examen 9 (21 de noviembre de 2017)

El examen es común con el del grupo 4 (ver página 819).

9

Exámenes del curso 2017-18

9.1. Exámenes del grupo 1 (María J. Hidalgo)

9.1.1. Examen 1 (2 de noviembre de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 1º examen de evaluación continua (2 de noviembre de 2017)
__ ______
-- § Librerías
import Test.QuickCheck
import Data.List
import Data. Numbers. Primes
-- Ejercicio 1.1. La suma de la serie
     1/1 - 1/2 + 1/3 - 1/4 + ... + (-1)^n/(n+1) + ...
-- es log 2.
-- Definir la función
     sumaSL :: Double -> Double
-- tal que (sumaSL n) es la aproximación de (log 2) obtenida mediante n
-- términos de la serie. Por ejemplo,
     sumaSL 10 == 0.7365440115440116
     sumaSL 100 == 0.6931471805599453
```

```
-- Indicaciones:
-- + en Haskell (log x) es el logaritmo neperiano de x; por ejemplo,
       log (exp 1) == 1.0
-- + usar la función (**) para la potencia.
sumaSL :: Double -> Double
sumaSL n = sum [(-1)**k/(k+1) | k <- [0..n]]
-- Ejercicio 1.2. Definir la función
      errorSL :: Double -> Double
-- tal que (errorSL x) es el menor número de términos de la serie
-- anterior necesarios para obtener su límite con un error menor que
-- x. Por ejemplo,
     errorSL 0.1
                     == 4.0
     errorSL 0.01 == 49.0
     errorSL 0.001 == 499.0
errorSL :: Double -> Double
errorSL x = head [m \mid m < - [1..]
                    , abs (sumaSL m - log 2) < x]
-- Ejercicio 2. Se define la raizS de un número natural como sique. Dado
-- un número natural N, sumamos todos sus dígitos, y repetimos este
-- procedimiento hasta que quede un solo dígito al cual llamamos raizS
-- de N. Por ejemplo para 9327: 3+2+7 = 21 y 2+1 = 3. Por lo tanto, la
-- raizS de 9327 es 3.
-- Definir la función
      raizS :: Integer -> Integer
-- tal que (raizS n) es la raizS de n. Por ejemplo.
    raizS 9327
    raizS 932778214521
    raizS 93277821452189123561 == 5
raizS :: Integer -> Integer
raizS n \mid n < 10
        | otherwise = raizS (sum (digitos n))
```

```
digitos :: Integer -> [Integer]
digitos n = [read [x] | x <- show n]
-- Ejercicio 3.1. Definir la función
     alterna :: [a] -> [a] -> [a]
-- tal que (alterna xs ys) es la lista obtenida intercalando los
-- elementos de xs e ys. Por ejemplo,
    alterna [5,1] [2,7,4,9]
                             == [5,2,1,7,4,9]
    alterna [5,1,7] [2..10]
                            == [5,2,1,3,7,4,5,6,7,8,9,10]
    alterna [2..10] [5,1,7] == [2,5,3,1,4,7,5,6,7,8,9,10]
    alterna [2,4..12] [1,5..30] == [2,1,4,5,6,9,8,13,10,17,12,21,25,29]
alterna :: [a] -> [a] -> [a]
alterna [] ys
                   = ys
alterna xs []
                   = xs
alterna (x:xs) (y:ys) = x:y:alterna xs ys
__ ______
-- Ejercicio 3.2. Comprobar con QuickCheck que el número de elementos de
-- (alterna xs ys) es la suma de los números de elementos de xs e ys.
propAlterna :: [a] -> [a] -> Bool
propAlterna xs ys = length (alterna xs ys) == length xs + length ys
-- La comprobación es
     ghci> quickCheck propAlterna
     +++ OK, passed 100 tests.
-- Ejercicio 4. La sucesión de los números triangulares se obtiene
-- sumando los números naturales. Así, el 7º número triangular es
     1 + 2 + 3 + 4 + 5 + 6 + 7 = 28.
-- Los primeros 10 números triangulares son
     1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
-- Los divisores de los primeros 7 números triangulares son:
      1: 1
      3: 1,3
  6: 1,2,3,6
```

```
10: 1,2,5,10
      15: 1,3,5,15
- -
      21: 1,3,7,21
      28: 1,2,4,7,14,28
-- Como se puede observar, 28 es el menor número triangular con más de 5
-- divisores.
-- Definir la función
     menorTND :: Int -> Integer
-- tal que (menorTND n) es el menor número triangular que tiene al menos
-- n divisores. Por ejemplo,
- -
     menorTND 5 == 28
     menorTND 10 == 120
     menorTND 50 == 25200
-- 1ª solución
-- ========
menorTND1 :: Int -> Integer
menorTND1 x = head \$ filter ((> x) . numeroDiv1) triangulares1
triangulares1 :: [Integer]
triangulares1 = [sum [1..n] | n <- [1..]]
numeroDiv1 :: Integer -> Int
numeroDiv1 n = length [x \mid x < [1..n], rem n x == 0]
-- 2ª solución
-- ========
menorTND2 :: Int -> Integer
menorTND2 x = head \$ filter ((> x) . numeroDiv2) triangulares2
triangulares2 :: [Integer]
triangulares2 = [(n*(n+1)) 'div' 2 | n <- [1..]]
numeroDiv2 :: Integer -> Int
numeroDiv2 n = 2 + length [x \mid x \leftarrow [2..n 'div' 2], rem n x == 0]
-- 3ª solución
-- ========
```

```
menorTND3 :: Int -> Integer
menorTND3 x = head \$ filter ((> x) . numeroDiv3) triangulares3
triangulares3 :: [Integer]
triangulares 3 = scanl(+) 1 [2...]
numeroDiv3 :: Integer -> Int
numeroDiv3 n = product $ map ((+1) . length) $ group $ primeFactors n
-- Comparación de eficiencia
    ghci> menorTND1 100
    73920
- -
    (3.44 secs, 1,912,550,376 bytes)
    ghci> menorTND2 100
    73920
    (1.72 secs, 951,901,856 bytes)
    ghci> menorTND3 100
    73920
    (0.02 secs, 7,430,752 bytes)
9.1.2. Examen 2 (5 de diciembre de 2017)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 2º examen de evaluación continua (5 de diciembre de 2017)
__ ______
-- Nota: La puntuación de cada ejercicio es 2.5 puntos.
-- § Librerías
  import Data.List
import Data.Maybe
import Test.QuickCheck
-- Ejercico 1. Definir la función
    sublistasSuma :: (Num a, Eq a) => [a] -> a -> [[a]]
```

-- lª solución

```
-- tal que (sublistasSuma xs m) es la lista de sublistas de xs cuya suma
-- es m. Por ejemplo,
     sublistasSuma [1..5] 10 == [[2,3,5],[1,4,5],[1,2,3,4]]
     sublistasSuma [1..5] 23 == []
     length (sublistasSuma [1..20] 145) == 5337
-- 1ª solución (por orden superior):
sublistasSuma1 :: (Num a, Eq a) => [a] -> a -> [[a]]
sublistasSuma1 xs m = filter ((==m) . sum) (subsequences xs)
-- 2ª solución (por recursión:
sublistasSuma2 :: [Int] -> Int -> [[Int]]
sublistasSuma2 xs = aux (sort xs)
 where aux [] m = []
       aux (y:ys) m | y == m = [[m]]
                    | y > m = []
                    | otherwise = aux ys m ++ map (y:) (aux ys (m-y))
  ______
-- Ejercicio 2.1. La sucesión de Padovan es la secuencia de números
-- enteros P(n) definida por los valores iniciales
     P(0) = P(1) = P(2) = 1,
-- y por la relación
     P(n) = P(n-2) + P(n-3).
-- Los primeros valores de P(n) son
     1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37,...
-- Definir la funciones
     padovan :: Int -> Integer
     sucPadovan :: [Integer]
-- tales que
     sucPadovan es la sucesión así construida, y
     (padovan n) es el término n-simo de la sucesión
-- Por ejemplo,
     padovan 10
                                 == 12
     padovan 100
                                 == 1177482265857
     length $ show $ padovan 1000 == 122
     take 14 sucPadovan
                                 == [1,1,1,2,2,3,4,5,7,9,12,16,21,28]
```

```
-- =========
padovan1 :: Int -> Integer
padovan1 n | n \le 2
          | otherwise = padovan1 (n-2) + padovan1 (n-3)
sucPadovan1 :: [Integer]
sucPadovan1 = map padovan1 [0..]
-- 2ª solución
-- ========
sucPadovan2 :: [Integer]
sucPadovan2 = 1:1:1: zipWith (+) sucPadovan2 (tail sucPadovan2)
padovan2 :: Int -> Integer
padovan2 n = sucPadovan2 'genericIndex' n
-- Comparación de eficiencia
ghci> sucPadovan1 !! 60
     15346786
     (12.53 secs, 6,752,729,800 bytes)
     ghci> sucPadovan2 !! 60
     15346786
     (0.00 secs, 152,648 bytes)
-- Ejercicio 2.2. Comprobar con QuickCheck la siguiente propiedad:
                 n
                - - -
                    P(j) = P(n+4) - 2
                j=0
-- La propiedad es
propPadovan :: Int -> Bool
propPadovan n = sum (take m sucPadovan2) == padovan2 (m+4) - 2
 where m = abs n
```

```
-- La comprobación es
      ghci> quickCheck propPadovan
      +++ OK, passed 100 tests.
-- Ejercicio 3. Los árboles con un número variable de sucesores se
-- pueden representar mediante el siguiente tipo de dato
      data Arbol a = N a [Arbol a]
        deriving Show
-- Por ejemplo, los árboles
        1
                 1
                                1
       / \
                 / \
      8
          3
                8 3
                              8 3
          I
                   /|\
                             /|\ |
          4
                  4 5 6
                            4 5 6 7
-- se representan por
      ej1, ej2, ej3 :: Arbol Int
      ej1 = N 1 [N 8 [], N 3 [N 4 []]]
      ej2 = N 1 [N 8 [], N 3 [N 4 [], N 5 [], N 6 []]]
      ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 7 []]]
-- Definir la función
       caminosDesdeRaiz :: Arbol a -> [[a]]
-- tal que (caminosDesdeRaiz x) es la lista de todos los caminos desde
-- la raiz. Por ejemplo,
       caminosDesdeRaiz ej1 == [[1,8],[1,3,4]]
       caminosDesdeRaiz ej2 == [[1,8],[1,3,4],[1,3,5],[1,3,6]]
       caminosDesdeRaiz ej3 == [[1,8,4],[1,8,5],[1,8,6],[1,3,7]]
data Arbol a = N a [Arbol a]
  deriving Show
ej1, ej2, ej3 :: Arbol Int
ej1 = N 1 [N 8 [], N 3 [N 4 []]]
ej2 = N 1 [N 8 [], N 3 [N 4 [], N 5 [], N 6 []]]
ej3 = N 1 [N 8 [N 4 [], N 5 [], N 6 []], N 3 [N 7 []]]
caminosDesdeRaiz :: Arbol a -> [[a]]
caminosDesdeRaiz (N r []) = [[r]]
caminosDesdeRaiz (N r as) = map (r:) (concatMap caminosDesdeRaiz as)
```

```
-- Ejercicio 4.1. La lista [7, 10, 12, 1, 2, 4] no está ordenada, pero si
-- consideramos las listas que se pueden formar cíclicamente a partir de
-- cada elemento, obtenemos:
      [7, 10, 12, 1, 2, 4]
      [10, 12, 1, 2, 4, 7]
      [12, 1, 2, 4, 7, 10]
      [1, 2, 4, 7, 10, 12]
                           ** ordenada **
      [2, 4, 7, 10, 12, 1]
      [4, 7, 10, 12, 1, 2]
-- Se observa que una de ellas está ordenada.
-- Se dice que una lista [x(0), \ldots, x(n)] es cíclicamente ordenable
-- si existe un índice i tal que la lista
      [x(i), x(i+1), ..., x(n), x(0), ..., x(i-1)]
-- está ordenada.
-- Definir la función
      ciclicamenteOrdenable :: Ord a => [a] -> Bool
-- tal que (ciclicamenteOrdenable xs) se verifica si xs es una lista
-- cíclicamente ordenable. Por ejemplo,
      ciclicamenteOrdenable [7,10,12,1,2,4] == True
      ciclicamenteOrdenable [7,20,12,1,2,4] == False
ciclicamenteOrdenable :: Ord a => [a] -> Bool
ciclicamenteOrdenable xs =
  any ordenada (zipWith (++) (tails xs) (inits xs))
ordenada :: Ord a => [a] -> Bool
ordenada xs = and (zipWith (<=) xs (tail xs))
-- Ejercicio 4.2. Definir la función
      posicionOC :: Ord a => [a] -> Maybe Int
-- tal que (posicionOC xs) es (Just i) si i es el índice a partir del
-- cual la lista xs está ordenada cíclicamente; o bien Nothing, en caso
-- contrario. Por ejemplo,
      posicionOC [7,10,12,1,2,4]
                                           == Just 3
      posicionOC [4,5,6,1,2,3]
                                           == Just 3
      posicionOC [4,5,6,1,2,3,7]
                                            == Nothing
      posicionOC ([10^3..10^4] ++ [1..999]) == Just 9001
```

```
-- 1ª solución
-- ========
posicionOC :: Ord a => [a] -> Maybe Int
posicionOC xs | null is = Nothing
              | otherwise = Just (head is)
 where is = ciclosOrdenados xs
-- (cicloOrdenado xs i) se verifica si el ciclo i-ésimo de xs está
-- ordenado; es decir, si
      [x(i), x(i+1), ..., x(n), x(0), ..., x(i-1)]
-- está ordenado. Por ejemplo,
      cicloOrdenado [4,5,6,1,2,3] 3 == True
      cicloOrdenado [4,5,6,1,2,3] 2 == False
      cicloOrdenado [4,5,6,1,2,3] 4 == False
cicloOrdenado :: Ord a => [a] -> Int -> Bool
cicloOrdenado xs i = ordenada (drop i xs ++ take i xs)
-- (ciclosOrdenados xs) es el conjunto de índices i tales que el ciclo
-- i-ésimo de xs está ordenado. Por ejemplo,
      ciclosOrdenados [7,10,12,1,2,4] == [3]
      ciclosOrdenados [7,20,12,1,2,4] == []
ciclosOrdenados :: Ord a => [a] -> [Int]
ciclosOrdenados xs =
  [i | i < [0..length xs - 1]
     , cicloOrdenado xs il
-- 2ª solución
-- ========
posicionOC2 :: Ord a => [a] -> Maybe Int
posicionOC2 = listToMaybe . ciclosOrdenados
```

9.1.3. Examen 3 (30 de enero de 2018)

```
-- Informática (1º del Grado en Matemáticas, Grupos 1, 2 y 3)
-- 3º examen de evaluación continua (30 de enero de 2018)
```

```
-- § Librerías auxiliares
import Data.List
import Test.QuickCheck
-- Ejercicio 1. Una secuencia de números es estrictamente oscilante
-- si el orden relativo entre términos consecutivos se va alternando. Se
-- pueden dar dos casos de secuencias estrictamente oscilantes:
-- + El primer término es estrictamente menor que el segundo, el segundo
     es estrictamente mayor que el tercero, el tercero es estrictamente
     menor que el cuarto, el cuarto es estrictamente mayor que el
     quinto, y así sucesivamente. Por ejemplo las secuencias
        0, 1, -1, 2, -2, 3, -3, 4, -4
        1, 10, 5, 28, 3, 12, 4
-- + El primer término es estrictamente mayor que el segundo, el segundo
     es estrictamente menor que el tercero, el tercero es estrictamente
     mayor que el cuarto, el cuarto es estrictamente menor que el
     quinto, y así sucesivamente. Por ejemplo las secuencias
        0, -1, 1, -2, 2, -3, 3, -4, 4
        10, 5, 28, 3, 12, 4, 24
-- Definir la función
     estrictamenteOscilante :: [Int] -> Bool
-- tal que (estrictamenteOscilante xs) se cumple si y sólo si la
-- secuencia de números enteros xs es estrictamente oscilante. Por
-- ejemplo,
    estrictamenteOscilante [0,1,-1,2,-2,3,-3,4,-4] ==
                                                         True
     estrictamenteOscilante [1,10,5,28,3,12,4]
                                                         True
    estrictamenteOscilante [0,-1,1,-2,2,-3,3,-4,4] == True
    estrictamenteOscilante [10,5,28,3,12,4,24]
                                                     == True
    estrictamenteOscilante [1,1,1,1,1]
                                                     == False
    estrictamenteOscilante [1,2,3,4,5,6]
                                                         False
-- 1ª solución
-- =========
estrictamenteOscilante :: [Int] -> Bool
estrictamenteOscilante xs =
  signosAlternados [x-y \mid (x,y) < -zip xs (tail xs)]
```

```
signosAlternados xs =
  and [x*y < 0 \mid (x,y) < -zip xs (tail xs)]
-- 2ª solución
- - -----
estrictamenteOscilante2 :: [Int] -> Bool
estrictamenteOscilante2 (x:y:z:xs) =
  signum (x-y) /= signum (y-z) && estrictamenteOscilante2 (y:z:xs)
estrictamenteOscilante2 _ = True
-- 3ª solución
-- ========
estrictamenteOscilante3 :: [Int] -> Bool
estrictamenteOscilante3 xs =
  all (== (-1)) (signos (*) (signos (-) xs))
signos :: (Int -> Int -> Int) -> [Int] -> [Int]
signos f xs =
  [signum (f y x) | (x,y) < -zip xs (tail xs)]
-- 4ª solución
- - =========
estrictamenteOscilante4 :: [Int] -> Bool
estrictamenteOscilante4 = all (-1 ==) . signos (*) . signos (-)
-- Ejercicio 2.1. Cualquier número natural admite una representación en
-- base 3; es decir, se puede escribir como combinación lineal de
-- potencias de 3, con coeficientes 0, 1 ó 2. Por ejemplo,
      46 = 1*3^0 + 0*3^1 + 2*3^2 + 1*3^3
     111 = 0*3^0 + 1*3^1 + 0*3^2 + 1*3^3 + 1*3^4
-- Esta representación se suele expresar como la lista de los
-- coeficientes de las potencias sucesivas de 3. Así, 46 es [1,0,2,1] y
-- 111 es [0,1,0,1,1].
-- De esta forma, los números que no tienen el 2 en su representación en
-- base 3 son:
     0 [0], 1 [1],
      3 [0,1], 4 [1,1],
     9 [0,0,1], 10 [1,0,1], 12 [0,1,1], 13 [1,1,1], ...
```

```
-- Definir la lista infinita
     sin2enBase3 :: [Integer]
-- cuyo valor es la lista formada por los números naturales que no tienen
-- el 2 en su representación en base 3. Por ejemplo,
     λ> take 22 sin2enBase3
      [0,1,3,4,9,10,12,13,27,28,30,31,36,37,39,40,81,82,84,85,90,91]
-- 1ª solución
-- ========
sin2enBase3 :: [Integer]
sin2enBase3 = map base3Adecimal (filter (all (/=2)) enBase3)
-- enBase3 es la lista de los números enteros en base 3. Por ejemplo,
     \lambda> take 10 enBase3
      [[0],[1],[2],[0,1],[1,1],[2,1],[0,2],[1,2],[2,2],[0,0,1]]
enBase3 :: [[Integer]]
enBase3 = map decimalAbase3 [0..]
-- (decimalAbase3 n) es la representación de n en base 3. Por
-- ejemplo,
     decimalAbase3 34 == [1,2,0,1]
-- ya que 1*3^0 + 2*3^1 + 0*3^2 + 1*3^3 = 34.
decimalAbase3 :: Integer -> [Integer]
decimalAbase3 n
  | n < 3 = [n]
  | otherwise = n 'mod' 3 : decimalAbase3 (n 'div' 3)
-- (base3Adecimal xs) es el número decimal cuya representación
-- en base 3b es xs. Por ejemplo,
      base3Adecimal [1,2,0,1] == 34
-- ya que 1*3^0 + 2*3^1 + 0*3^2 + 1*3^3 = 34.
base3Adecimal :: [Integer] -> Integer
base3Adecimal xs = sum (zipWith (x k - x*3^k) xs [0..])
-- Otra definición de la función anterior es
base3Adecimal2 :: [Integer] -> Integer
base3Adecimal2 = foldr (x a -> x+3*a) 0
-- 2ª solución
-- ========
```

```
sin2enBase3b :: [Integer]
sin2enBase3b = map base3Adecimal (filter (notElem 2) enBase3)
-- 3ª solución
-- ========
sin2enBase3c :: [Integer]
sin2enBase3c =
 0 : aux 0 [0]
 where aux n ns = map ((3^n)+) ns ++ aux (n+1) (ns ++ map ((3^n)+) ns)
-- 4ª solución
-- =========
sin2enBase3d :: [Integer]
sin2enBase3d =
 0:1:concatMap(n \rightarrow [3*n,3*n+1]) (tail sin2enBase3d)
-- 5º solución
-- =========
sin2enBase3e :: [Integer]
sin2enBase3e = 0 : aux
 where aux = 1 : concat [[3*n, 3*n+1] | n <- aux]
-- 6ª solución
-- =========
sin2enBase3f :: [Integer]
sin2enBase3f = map base3Adecimal enBase3sin2
-- enBase3sin2 es la lista de los números en base 3 que no tienen el
-- dígito 2. Por ejemplo,
     λ> take 9 enBase3sin2
     [[0],[1],[0,1],[1,1],[0,0,1],[1,0,1],[0,1,1],[1,1,1],[0,0,0,1]]
enBase3sin2 :: [[Integer]]
enBase3sin2 = [0] : aux
 where aux = [1] : concat [[0:xs,1:xs] \mid xs <- aux]
-- Ejercicio 2.2. ¿Cuál será el próximo año que no tenga 2 en su
-- representación en base 3?
```

```
-- El cálculo es
      \lambda> head (dropWhile (<2018) sin2enBase3)
      2187
-- Ejercicio 3.1 Definir la función
      listasParciales :: [a] -> [[a]]
-- tal que (listasParciales xs) es la lista obtenida agrupando los
-- elementos de la lista infinita xs de forma que la primera tiene 0
-- elementos; la segunda, el primer elemento de xs; la tercera, los dos
-- siguientes; y así sucesivamente. Por ejemplo,
      λ> take 6 (listasParciales [1..])
      [[],[1],[2,3],[4,5,6],[7,8,9,10],[11,12,13,14,15]]
      \lambda> take 6 (listasParciales [1,3..])
      [[],[1],[3,5],[7,9,11],[13,15,17,19],[21,23,25,27,29]]
-- 1º solución
listasParciales :: [a] -> [[a]]
listasParciales = aux 0
 where aux n xs = ys : aux (n+1) zs
          where (ys,zs) = splitAt n xs
-- 2ª solución
listasParciales2 :: [a] -> [[a]]
listasParciales2 = aux 0
  where aux n xs = ys : aux (n+1) zs
          where (ys,zs) = (take n xs, drop n xs)
-- 3ª solución
listasParciales3 :: [a] -> [[a]]
listasParciales3 xs = aux xs 0
  where aux xs n = take n xs : aux (drop n xs) (n+1)
-- Ejercicio 3.2 Definir la función
      sumasParciales :: [Int] -> [Int]
-- tal que (sumasParciales xs) es la lista de las sumas de las listas
-- parciales de la lista infinita xs. Por ejemplo,
      \lambda> take 15 (sumasParciales [1..])
      [0,1,5,15,34,65,111,175,260,369,505,671,870,1105,1379]
```

```
\lambda> take 15 (sumasParciales [1,3..])
     [0,1,8,27,64,125,216,343,512,729,1000,1331,1728,2197,2744]
-- 1ª solución
sumasParciales :: [Int] -> [Int]
sumasParciales xs = map sum (listasParciales xs)
-- 2ª solución
sumasParciales2 :: [Int] -> [Int]
sumasParciales2 = map sum . listasParciales
-- Ejercicio 3.3 Comprobar con QuickChek que, para todo número natural
-- n, el término n-ésimo de (sumasParciales [1,3..]) es n^3.
__ ______
-- 1ª solución
-- ========
-- La propiedad es
prop_sumasParciales :: Int -> Property
prop sumasParciales n =
 n \ge 0 = \infty (sumasParciales [1,3..] !! n = \infty n^3)
-- La comprobación es
     λ> quickCheck prop sumasParciales
     +++ OK, passed 100 tests.
-- 2ª solución
-- =========
-- La propiedad es
prop_sumasParciales2 :: Positive Int -> Bool
prop sumasParciales2 (Positive n) =
  sumasParciales [1,3..] !! n == n^3
-- La comprobación es
     λ> quickCheck prop sumasParciales2
     +++ OK, passed 100 tests.
-- Ejercicio 4. Los árboles se pueden representar mediante el siguiente
```

```
-- tipo de datos
      data Arbol a = N a [Arbol a]
                     deriving Show
  Por ejemplo, los árboles
        1
                       /|\
       / \
                      / | \
      2
          3
                     5 4 7
          4
                          /|\setminus
                         2 8 1
   se representan por
      ej1, ej2 :: Arbol Int
      ej1 = N 1 [N 2 [], N 3 [N 4 []]]
      ej2 = N 3 [N 5 [N 6 []],
                 N 4 [],
                 N 7 [N 2 [], N 8 [], N 1 []]]
-- Definir la función
      nodosConNHijosMaximales :: Arbol a -> [a]
-- tal que (nodosConNHijosMaximales x) es la lista de los nodos del
-- árbol x que tienen una cantidad máxima de hijos. Por ejemplo,
      nodosConNHijosMaximales ej1 == [1]
      nodosConNHijosMaximales ej2 == [3,7]
data Arbol a = N a [Arbol a]
  deriving Show
ej1, ej2, ej3 :: Arbol Int
ej1 = N 1 [N 2 [], N 3 [N 4 []]]
ej2 = N 3 [N 5 [N 6 []],
           N 4 [],
           N 7 [N 2 [], N 8 [], N 1 []]]
ej3 = N 3 [N 5 [N 6 []],
           N 4 [N 1 [N 2 [], N 8 [N 9 []]]],
           N 12 [N 20 [], N 0 [], N 10 []]]
-- 1ª solución
-- =========
nodosConNHijosMaximales :: Arbol a -> [a]
nodosConNHijosMaximales x =
  let nh = nHijos x
```

import Data.Array

```
m = maximum (map fst nh)
 in map snd (filter (\ (l,v) -> m == l) (nHijos x))
-- (nHijos x) es la lista de los pares (k,n) donde n es un nodo del
-- árbol x y k es su número de hijos. Por ejemplo,
     λ> nHijos ej1
     [(2,1),(0,2),(1,3),(0,4)]
     λ> nHijos ej2
     [(3,3),(1,5),(0,6),(0,4),(3,7),(0,2),(0,8),(0,1)]
nHijos :: Arbol a -> [(Int,a)]
nHijos(N r []) = [(0,r)]
nHijos (N r xs) = (length xs, r) : concatMap nHijos xs
-- 2ª solución
-- ========
nodosConNHijosMaximales2 :: Arbol a -> [a]
nodosConNHijosMaximales2 x =
  [y \mid (n,y) <- nh, n == m]
 where nh = nHijos x
       m = maximum (map fst nh)
-- 3ª solución
- - =========
nodosConNHijosMaximales3 :: Ord a => Arbol a -> [a]
nodosConNHijosMaximales3 =
 map snd . head . groupBy eq . sortBy (flip compare) . nHijos
 where eq (a,b) (c,d) = a == c
9.1.4. Examen 4 (15 de marzo de 2018)
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 4º examen de evaluación continua (15 de marzo de 2018)
-- § Librerías auxiliares
import Data.List
```

import Graphics. Gnuplot. Simple -- Ejercicio 1.1. Sea a(0), a(1), a(2), ... una sucesión de enteros -- definida por: -- + a(0) = 1 y-- + a(n) es la suma de los dígitos de todos los términos anteriores, para $n \ge 1$. -- Los primeros términos de la sucesión son: 1, 1, 2, 4, 8, 16, 23, 28, 38, 49, ... -- Definir la constante sucSumaDigitos :: [Integer] -- tal que sucSumaDigitos es la sucesión anterior. Por ejemplo, take 10 sucSumaDigitos == [1,1,2,4,8,16,23,28,38,49]sucSumaDigitos !! (10³) == 16577 $sucSumaDigitos !! (10^4) == 213677$ sucSumaDigitos !! (10⁵) == 2609882 sucSumaDigitos !! (10⁶) == 31054319 -- 1ª definición - - ========== sucSumaDigitos1 :: [Integer] sucSumaDigitos1 = map termino [0..] termino :: Integer -> Integer termino 0 = 1termino n = sum [sumaDigitos (termino k) | k <- [0..n-1]]-- 2º definición -- ========= sucSumaDigitos2 :: [Integer] sucSumaDigitos2 = 1 : iterate f 1 where f x = x + sumaDigitos xsumaDigitos :: Integer -> Integer sumaDigitos $x \mid x < 10 = x$ | otherwise = $x \pmod{10}$ + sumaDigitos ($x \pmod{10}$)

```
-- 3ª definición
-- ==========
sucSumaDigitos3 :: [Integer]
sucSumaDigitos3 = 1 : unfoldr (\x -> Just (x, f x)) 1
 where f x = x + sumaDigitos x
-- Comparación de eficiencia
 λ> maximum (take 23 sucSumaDigitos1)
      161
      (11.52 secs, 1,626,531,216 bytes)
      λ> maximum (take 23 sucSumaDigitos2)
      161
      (0.01 secs, 153,832 bytes)
      λ> maximum (take 23 sucSumaDigitos3)
      161
      (0.01 secs, 153,072 bytes)
     λ> maximum (take 200000 sucSumaDigitos2)
     5564872
      (1.72 secs, 233,208,200 bytes)
     λ> maximum (take 200000 sucSumaDigitos3)
      5564872
      (3.46 secs, 438,250,928 bytes)
-- Ejercicio 1.2. Definir la función
      grafica :: Integer -> IO ()
-- tal que (grafica n) es la gráfica de los primeros n términos de la
-- sucesión anterior.
grafica :: Integer -> IO ()
grafica n =
 plotList [Key Nothing] (genericTake n sucSumaDigitos2)
-- Ejercicio 2.1. La suma de las sumas de los cuadrados de los
-- divisores de los 6 primeros números enteros positivos es
        1^2 + (1^2+2^2) + (1^2+3^2) + (1^2+2^2+4^2) + (1^2+5^2) + (1^2+2^2+3^2+6^2)
```

```
+ 10 + 21 + 26
     = 1 + 5
                                                    + 50
     = 113
-- Definir la función
      sumaSumasCuadradosDivisores :: Integer -> Integer
-- tal que (sumaSumasCuadradosDivisores n) es la suma de las sumas de
-- los cuadrados de los divisores de los n primeros números enteros
-- positivos. Por ejemplo,
      sumaSumasCuadradosDivisores 6
                                             113
      sumaSumasCuadradosDivisores (10^3) == 401382971
      sumaSumasCuadradosDivisores (10^6) == 400686363385965077
-- 1º definición
sumaSumasCuadradosDivisores1 :: Integer -> Integer
sumaSumasCuadradosDivisores1 n =
  sum (map (^2) (concatMap divisores [1..n]))
-- (divisores x) es la lista de divisores de n. Por ejemplo,
      divisores 6 == [1,2,3,6]
divisores :: Integer -> [Integer]
divisores n = [y \mid y < -[1..n], n 'mod' y == 0]
-- 2ª definición
sumaSumasCuadradosDivisores2 :: Integer -> Integer
sumaSumasCuadradosDivisores2 x =
  sum (zipWith (*) (map (x 'div') xs) (map (^2) xs))
 where xs = [1..x]
-- 3ª definición
sumaSumasCuadradosDivisores3 :: Integer -> Integer
sumaSumasCuadradosDivisores3 n =
  sum $ zipWith (*) ((map (^2) xs)) (zipWith div (repeat n) xs)
 where xs = takeWhile (<= n) [1..]
-- 4º definición
sumaSumasCuadradosDivisores4 :: Integer -> Integer
sumaSumasCuadradosDivisores4 n =
  sum [k^2 * (n 'div' k) | k <- [1..n]]
-- Comparación de eficiencia
```

```
λ> sumaSumasCuadradosDivisores1 (2*10^3)
     3208172389
     (3.10 secs, 412,873,104 bytes)
     λ> sumaSumasCuadradosDivisores2 (2*10^3)
     3208172389
     (0.03 secs, 2,033,352 bytes)
     λ> sumaSumasCuadradosDivisores3 (2*10^3)
     3208172389
     (0.03 secs, 2,178,496 bytes)
     λ> sumaSumasCuadradosDivisores4 (2*10^3)
     3208172389
     (0.03 secs, 1,924,072 bytes)
     λ> sumaSumasCuadradosDivisores2 (4*10^5)
     25643993117893355
     (1.93 secs, 378,385,664 bytes)
     λ> sumaSumasCuadradosDivisores3 (4*10^5)
     25643993117893355
     (2.08 secs, 407,185,792 bytes)
     λ> sumaSumasCuadradosDivisores4 (4*10^5)
     25643993117893355
__ _______
-- Ejercicio 2.2. Definir la función
     sumaSumasCuadradosDivisoresInter :: IO ()
-- que realice lo mismo que la función sumaSumasCuadradosDivisores, pero
-- de forma interactiva. Por ejemplo,
     λ> sumaSumasCuadradosDivisoresInter
        Escribe un número:
        1234
        La suma de los cuadrados de sus divisores es: 753899047
sumaSumasCuadradosDivisoresInter :: IO ()
sumaSumasCuadradosDivisoresInter = do
 putStrLn "Escribe un número: "
 c <- getLine
 let n = read c
 putStrLn ("La suma de los cuadrados de sus divisores es: "
           ++ show (sumaSumasCuadradosDivisores4 n))
```

```
-- Ejercicio 3. Dados los vectores v = [1,2,3,4] y w = [1,-2,5,0] con
-- el primer elemento común, construimos una matriz 4x4, cuya primera
-- fila es v, su primera columna es w, y de forma que cada elemento es
-- la suma de sus tres vecinos que ya tienen un valor.
-- La matriz se construye de forma incremental como sigue:
      1 2 3 4
                    1 2 3 4
                                      1 2 3 4
                                                      1 2
     - 2
                      -2 1
                                      -2 1 6
                                                      -2 1
                                                              6
                                                                 13
      5
                      5
                                     5 4
                                                      5 4 11
      0
                                                       0
                                                         9
                       0
                                      0
-- Definir la función
     matrizG :: Array Int Int -> Array Int Int -> Array (Int,Int) Int
-- tal que (matrizG v w) es la matriz cuadrada generada por los vectores
  v y w (que se supone que tienen la misma dimensión). Por ejemplo,
     \lambda > \text{matrizG (listArray (1,4) [1..4]) (listArray (1,4) [1,-2,5,0])}
     array ((1,1),(4,4)) [((1,1),1),((1,2),2),((1,3),3),((1,4),4),
                          ((2,1),-2),((2,2),1),((2,3),6),((2,4),13),
                          ((3,1), 5), ((3,2),4), ((3,3),11), ((3,4),30),
                          ((4,1), 0), ((4,2),9), ((4,3),24), ((4,4),65)]
matrizG :: Array Int Int -> Array Int Int -> Array (Int,Int) Int
matrizG v w = p
 where p = array((1,1), (n,n))
                 [((i,j), f i j) | i \leftarrow [1..n], j \leftarrow [1..n]]
       n = snd $ bounds v
       f 1 j = v ! j
       f i 1 = w ! i
       f i j = p ! (i-1,j-1) + p!(i-1,j) + p!(i,j-1)
__ _______
-- Ejercicio 4.1. Los árboles se pueden representar mediante
-- el siguiente tipo de datos
     data Arbol a = N a [Arbol a]
                    deriving Show
-- Por ejemplo, los árboles
      1
                  1
                               1
      / \
                  /\
                              /|\setminus
    2 3
                2
                     3
                             / | \
                            2 7 3
    /\
-- 4 5
                 4
                          / \
```

```
4
                                5
-- se representan por
      ej1, ej2, ej3 :: Arbol Int
      ej1 = N 1 [N 2 [N 4 [], N 5 []], N 3 []]
      ej2 = N 1 [N 2 [N 4 []], N 3 []]
      ej3 = N 1 [N 2 [N 4 [], N 5 []], N 7 [], N 3 []]
-- Definir la función
      descomposicion :: Arbol t -> [(t, [t])]
-- tal que (descomposicion ar) es una lista de pares (x,xs) donde x es
  un nodo y xs es la lista de hijos de x. Por ejemplo,
      descomposicion ej1 == [(1,[2,3]),(2,[4,5]),(4,[]),(5,[]),(3,[])]
      descomposicion ej2 == [(1,[2,3]),(2,[4]),(4,[]),(3,[])]
      descomposicion ej3 == [(1,[2,7,3]),(2,[4,5]),(4,[]),(5,[]),
                             (7,[]),(3,[])]
data Arbol a = N a [Arbol a]
  deriving (Show, Eq)
ej1, ej2, ej3 :: Arbol Int
ei1 = N 1 [N 2 [N 4 [], N 5 []], N 3 []]
ej2 = N 1 [N 2 [N 4 []], N 3 []]
ej3 = N 1 [N 2 [N 4 [], N 5 []], N 7 [], N 3 []]
descomposicion :: Arbol t -> [(t, [t])]
descomposicion (N r []) = [(r,[])]
descomposicion (N r as) = (r, map raiz as) : concatMap descomposicion as
-- (raiz t) es la raíz del árbol t. Por ejemplo,
      raiz (N 8 [N 2 [N 4 []], N 3 []]) == 8
raiz :: Arbol t -> t
raiz (N r) = r
-- Ejercicio 4.2. Definir la función recíproca
      descAarbol :: Eq t \Rightarrow [(t, [t])] \rightarrow Arbol t
-- tal que (descAarbol ps) es el árbol correspondiente a ps. Ejemplos,
      (descAarbol (descomposicion ej1) == ej1) == True
      (descAarbol (descomposicion ej2) == ej2) == True
      (descAarbol (descomposicion ej3) == ej3) == True
```

```
descAarbol :: Eq t => [(t, [t])] -> Arbol t
descAarbol ps@((r,xs):qs) = aux r ps
  where aux r [] = N r []
    aux r ps = N r [aux h qs | h <- hs]
    where hs = head [xs | (x,xs) <- ps, x == r]
    qs = delete (r,hs) ps</pre>
```

9.1.5. Examen 5 (3 de mayo de 2018)

```
-- Informática (1º del Grado en Matemáticas, Grupo 1)
-- 5º examen de evaluación continua (3 de mayo de 2018)
 . ......
-- § Librerías auxiliares
__ _______
import Data.List
import I1M.Cola
import qualified Data.Matrix as M
import Data.Array
import Test.QuickCheck
import Data. Numbers. Primes
-- Ejercicio 1.1. Un número entero n es muy primo si es n primo y todos
-- los números que resultan de ir suprimimiendo la última cifra también
-- son primos. Por ejemplo, 7193 es muy primo pues los números 7193,
-- 719, 71 y 7 son todos primos.
-- Definir la función
    muyPrimo :: Int -> Bool
-- que (muyPrimo n) se verifica si n es muy primo. Por ejemplo,
    muyPrimo 7193 == True
    muyPrimo 71932 == False
muyPrimo :: Int -> Bool
muyPrimo n | n < 10
                = isPrime n
         | otherwise = isPrime n && muyPrimo (n 'div' 10)
```

```
-- Ejercicio 1.2. ¿Cuántos números de cinco cifras son muy primos?
-- El cálculo es
     \lambda> length (filter muyPrimo [10^4..99999])
     15
-- Ejercicio 1.3. Definir la función
     muyPrimosF :: FilePath -> FilePath -> IO ()
-- tal que al evaluar (muyPrimosF f1 f2) lee el contenido del fichero
-- fl (que estará compuesto por números, cada uno en una línea) y
-- escribe en el fichero f2 los números de f1 que son muy primos, cada
-- uno en una línea. Por ejemplo, si el contenido de ej.txt es
      7193
      1870
      271891
      23993
      1013
-- y evaluamos (muyPrimosF "ej.txt" "sol.txt"), entonces el contenido
-- del fichero "sol.txt" será
      7193
      23993
muyPrimosF :: FilePath -> FilePath -> IO ()
muyPrimosF f1 f2 = do
 cs <- readFile f1
 writeFile f2 (( unlines
               . map show
               . filter muyPrimo
               . map read
               . lines )
               cs)
-- Ejercicio 2. Se define la relación de orden entre las colas como el
-- orden lexicográfico. Es decir, la cola c1 es "menor" que c2 si el
-- primer elemento de c1 es menor que el primero de c2, o si son
-- iguales, el resto de la cola c1 es "menor" que el resto de la cola
-- c2.
```

```
-- Definir la función
     menorCola :: Ord a => Cola a -> Cola a -> Bool
-- tal que (menorCola c1 c2) se verifica si c1 es "menor" que c2. Por
-- ejemplo, para las colas
      c1 = foldr inserta vacia [1..20]
      c2 = foldr inserta vacia [1..5]
      c3 = foldr inserta vacia [3..10]
      c4 = foldr inserta vacia [4,-1,7,3,8,10,0,3,3,4]
-- se verifica que
     menorCola c1 c2
                        == False
     menorCola c2 c1
                         == True
     menorCola c4 c3
                         == True
      menorCola vacia c1 == True
      menorCola c1 vacia == False
menorCola :: Ord a => Cola a -> Cola a -> Bool
menorCola c1 c2 | esVacia c1 = True
                | esVacia c2 = False
                | a1 < a2
                             = True
                \mid a1 > a2 = False
                | otherwise = menorCola r1 r2
 where a1 = primero c1
        a2 = primero c2
        r1 = resto c1
        r2 = resto c2
c1, c2, c3, c4 :: Cola Int
c1 = foldr inserta vacia [1..20]
c2 = foldr inserta vacia [1..5]
c3 = foldr inserta vacia [3..10]
c4 = foldr inserta vacia [4,-1,7,3,8,10,0,3,3,4]
-- Ejercicio 3.1. Una triangulación de un polígono es una división del
-- área en un conjunto de triángulos, de forma que la unión de todos
-- ellos es igual al polígono original, y cualquier par de triángulos es
-- disjunto o comparte únicamente un vértice o un lado. En el caso de
-- polígonos convexos, la cantidad de triangulaciones posibles depende
-- únicamente del número de vértices del polígono.
-- Si llamamos T(n) al número de triangulaciones de un polígono de n
```

```
-- vértices, se verifica la siguiente relación de recurrencia:
       T(2) = 1
       T(n) = T(2)*T(n-1) + T(3)*T(n-2) + ... + T(n-1)*T(2)
-- Definir la función
      numeroTriangulaciones :: Integer -> Integer
-- tal que (numeroTriangulaciones n) es el número de triangulaciones de
-- un polígono convexo de n vértices. Por ejemplo,
      numeroTriangulaciones 3 == 1
      numeroTriangulaciones 5
      numeroTriangulaciones 6 == 14
      numeroTriangulaciones 7 == 42
      numeroTriangulaciones 50 == 131327898242169365477991900
      numeroTriangulaciones 100
            57743358069601357782187700608042856334020731624756611000
-- 1ª solución (por recursión)
numeroTriangulaciones :: Integer -> Integer
numeroTriangulaciones 2 = 1
numeroTriangulaciones n = sum (zipWith (*) ts (reverse ts))
 where ts = [numeroTriangulaciones k | k <- [2..n-1]]
-- 2ª solución
-- ========
numeroTriangulaciones2 :: Integer -> Integer
numeroTriangulaciones2 n =
  head (sucNumeroTriangulacionesInversas 'genericIndex' (n-2))
      λ> mapM print (take 10 sucNumeroTriangulacionesInversas)
      [1]
      [1,1]
      [2,1,1]
      [5,2,1,1]
      [14,5,2,1,1]
      [42,14,5,2,1,1]
- -
      [132,42,14,5,2,1,1]
      [429,132,42,14,5,2,1,1]
      [1430, 429, 132, 42, 14, 5, 2, 1, 1]
- -
      [4862,1430,429,132,42,14,5,2,1,1]
```

```
sucNumeroTriangulacionesInversas :: [[Integer]]
sucNumeroTriangulacionesInversas = iterate f [1]
 where f ts = sum (zipWith (*) ts (reverse ts)) : ts
-- 3ª solución (con programación dinámica)
numeroTriangulaciones3 :: Integer -> Integer
numeroTriangulaciones3 n = vectorTriang n ! n
     λ> vectorTriang 9
     array (2,9) [(2,1),(3,1),(4,2),(5,5),(6,14),(7,42),(8,132),(9,429)]
vectorTriang :: Integer -> Array Integer Integer
vectorTriang n = v
 where v = array(2,n)[(i, fi) | i < -[2..n]]
       f 2 = 1
       f i = sum [v!j*v!(i-j+1) | j <-[2..i-1]]
-- Comparación de eficiencia
λ> numeroTriangulaciones 22
     6564120420
     (3.97 secs, 668,070,936 bytes)
     λ> numeroTriangulaciones2 22
     6564120420
     (0.01 secs, 180,064 bytes)
     λ> numeroTriangulaciones3 22
     6564120420
     (0.01 secs, 285,792 bytes)
     λ> length (show (numeroTriangulaciones2 800))
     476
     (0.59 secs, 125,026,824 bytes)
     λ> length (show (numeroTriangulaciones3 800))
     476
- -
     (1.95 secs, 334,652,936 bytes)
-- Ejercicio 3.2. Comprobar con QuickCheck que se verifica la siquiente
-- propiedad: el número de triangulaciones posibles de un polígono
-- convexo de n vértices es igual al (n-2)-simo número de Catalan, donde
```

```
(2n)!
     C(n) = ----
            (n+1)! n!
propNumeroTriangulaciones :: Integer -> Property
propNumeroTriangulaciones n =
 n > 1 ==> numeroTriangulaciones2 n == numeroCatalan (n-2)
numeroCatalan :: Integer -> Integer
numeroCatalan n = factorial (2*n) 'div' (factorial (n+1) * factorial n)
factorial :: Integer -> Integer
factorial n = product [1..n]
-- La comprobación es
     λ> quickCheck propNumeroTriangulaciones
     +++ OK, passed 100 tests.
-- Ejercicio 4. En el siguiente gráfico se representa en una cuadrícula
-- el plano de Manhattan. Cada línea es una opción a seguir; el número
-- representa las atracciones que se pueden visitar si se elige esa
-- opción.
      * _____ * ____ * ____ * ____ * ____ *
                      4
                                     2
      * _____ * ____ * ____ * ____ * ____ *
              6 5
                                12
                                         11
          0 | 7 | 3
                      |5
             |4
                                12
                                         |1
      | 3 | 3
                      0
      |5
2 |
                                        |3
```

```
-- El turista entra por el extremo superior izquierda y sale por el
-- extremo inferior derecha. Sólo puede moverse en las direcciones Sur y
-- Este (es decir, hacia abajo o hacia la derecha).
-- Representamos el mapa mediante una matriz p tal que p(i,j) = (a,b),
-- donde a = n^{\circ} de atracciones si se va hacia el sur y b = n^{\circ} de
-- atracciones si se va al este. Además, ponemos un 0 en el valor del
-- número de atracciones por un camino que no se puede elegir. De esta
-- forma, el mapa anterior se representa por la matriz siguiente:
      ((1,3)
                (0,2)
                        (2,4)
                                (4,0)
                                        (3,0)
      ((4,3)
                (6,2)
                        (5,4)
                                (2,2)
                                        (1,0)
      ((4,0)
                (4,7)
                        (5,3)
                                (2,4)
                                       (1,0)
      ((5,3)
                (6,3)
                        (8,0)
                                (5,2)
                                        (3,0)
      ((0,1)
                (0,3)
                        (0,2)
                                (0,2)
                                        (0,0)
- -
-- En este caso, si se hace el recorrido
      [S, E, S, E, S, S, E, E],
  el número de atracciones es
       1 3 6 7 5 8 2 2
-- cuya suma es 34.
-- Definir la función
     mayorNumeroV:: M.Matrix (Int,Int) -> Int
-- tal que (mayorNumeroV p) es el máximo número de atracciones que se
-- pueden visitar en el plano representado por la matriz p. Por ejemplo,
  si se define la matriz anterior por
      ejlb :: M.Matrix (Int,Int)
      ej1b = M.fromLists
                          [[(1,3),(0,2),(2,4),(4,0),(3,0)],
                           [(4,3),(6,2),(5,4),(2,2),(1,0)],
                           [(4,0),(4,7),(5,3),(2,4),(1,0)],
                           [(5,3),(6,3),(8,0),(5,2),(3,0)],
                           [(0,1),(0,3),(0,2),(0,2),(0,0)]]
-- entonces
     mayorNumeroV ej1b == 34
     mayorNumeroV (M.fromLists [[(1,3),(0,0)],
                                 [(0,3),(0,0)]]) == 4
     mayorNumeroV (M.fromLists [[(1,3),(0,2),(2,0)],
- -
                                 [(4,3),(6,2),(5,0)],
                                 [(0,0),(0,7),(0,0)]]) == 17
```

```
ejlb :: M.Matrix (Int,Int)
ej1b = M.fromLists
                  [[(1,3),(0,2),(2,4),(4,0),(3,0)],
                    [(4,3),(6,2),(5,4),(2,2),(1,0)],
                    [(4,0),(4,7),(5,3),(2,4),(1,0)],
                    [(5,3),(6,3),(8,0),(5,2),(3,0)],
                    [(0,1),(0,3),(0,2),(0,2),(0,0)]]
-- 1ª definición (por recursión)
 mayorNumeroV1 :: M.Matrix (Int,Int) -> Int
mayorNumeroV1 p = aux m n
 where m = M.nrows p
       n = M.ncols p
       aux 1 1 = 0
       aux 1 j = sum [snd (p M.!(1,k)) | k <-[1..j-1]]
       aux i 1 = sum [fst (p M.!(k,1)) | k <-[1..i-1]]
       aux i j = max (aux (i-1) j + fst (p M.!(i-1,j)))
                     (aux i (j-1) + snd (p M.!(i,j-1)))
-- 2ª solución (con programación dinámica)
mayorNumeroV :: M.Matrix (Int,Int) -> Int
mayorNumeroV p = matrizNumeroV p M.! (m,n)
 where m = M.nrows p
       n = M.ncols p
matrizNumeroV :: M.Matrix (Int,Int) -> M.Matrix Int
matrizNumeroV p = q
 where m = M.nrows p
       n = M.ncols p
       q = M.matrix m n f
         where f(1,1) = 0
               f(1,j) = sum [snd (p M.!(1,k)) | k <-[1..j-1]]
               f(i,1) = sum [fst (p M.!(k,1)) | k <-[1..i-1]]
               f(i,j) = max (q M.!(i-1,j) + fst (p M.!(i-1,j)))
                            (q M.!(i,j-1) + snd (p M.!(i,j-1)))
-- Comparación de eficiencia
```

```
\lambda> mayorNumeroVR (M.fromList 12 12 [(n,n+1) | n <- [1..]])
      2200
- -
      (7.94 secs, 1,348,007,672 bytes)
      \lambda> mayorNumeroV (M.fromList 12 12 [(n,n+1) | n <- [1..]])
      2200
      (0.01 secs, 348,336 bytes)
         Examen 6 (12 de junio de 2018)
9.1.6.
-- Informática (1º del Grado en Matemáticas, Grupos 1, 2 y 3)
-- 6º examen de evaluación continua (12 de junio de 2018)
-- § Librerías auxiliares
import Data.Array
import Data.List
import Data.Matrix
import Test.QuickCheck
-- Ejercicio 1.1. Decimos que una lista de números enteros está reducida
-- si no tiene dos elementos consecutivos tales que uno sea el sucesor
-- del otro. Por ejemplo, la lista [-6,-8,-7,3,2,4] no está reducida
-- porque tiene dos elementos consecutivos (el -8 y el -7) tales que -7
-- es el sucesor de -8 (también el 3 y el 2).
-- Una forma de reducir la lista es repetir el proceso de sustituir el
-- primer par de elementos consecutivos de la lista por el mayor de los
-- dos hasta que la lista quede reducida. Por ejemplo,
          [-6, -8, -7, 3, 2, 4]
                -7,3,2,4]
      ==> [-6,
      ==> [-6,
                    3,2,4
                    3, 4]
      ==> [-6,
                        41
      ==> [-6,
-- Definir la función
      reducida :: (Num a, Ord a) \Rightarrow [a] \rightarrow [a]
-- tal que (reducida xs) es la lista reducida obtenida a partir de
-- xs. Por ejemplo,
```

```
reducida [-6, -8, -7, 3, 2, 4] == [-6, 4]
      reducida [4,-7,-6,4,4,3,5] == [4,-6,5]
      reducida [3,4,5,4,3,4] == [5]
      reducida [1..10]
                                 == [10]
      reducida [1,3..15]
                             = [1,3,5,7,9,11,13,15]
reducida :: (Num a, Ord a) => [a] -> [a]
reducida = until esReducida reduce
-- (esReducida xs) se verifica si xs es una lista reducida. Por ejemplo,
      esReducida [-6,-9,-7,2,0,4] == True
      esReducida [-6, -8, -7, 2, 3, 4] == False
esReducida :: (Num a, Ord a) => [a] -> Bool
esReducida xs =
  reduce xs == xs
reduce :: (Num a, Ord a) => [a] -> [a]
reduce [] = []
reduce [x] = [x]
reduce (x:y:xs) | abs (x-y) == 1 = max x y : xs
                | otherwise = x : reduce (y:xs)
-- Ejercicio 1.2. Comprobar con QuickCheck que, si n es un número
-- positivo, la reducida de la lista [1..n] es la lista [n].
-- La propiedad es
propReducida :: Int -> Property
propReducida n =
 n > 0 ==> reducida [1..n] == [n]
-- La comprobación es
     λ> quickCheck propReducida
      +++ OK, passed 100 tests.
-- Ejercicio 2.1 Para cada número n con k dígitos se define una sucesión
-- de tipo Fibonacci cuyos k primeros elementos son los dígitos de n y
-- los siguientes se obtienen sumando los k anteriores términos de la
-- sucesión. Por ejemplo, la sucesión definida por 197 es
      1, 9, 7, 17, 33, 57, 107, 197, ...
```

```
-- Definir la función
     sucFG :: Integer -> [Integer]
-- tal que (sucFG n) es la sucesión de tipo Fibonacci definida por
-- n. Por ejemplo,
     take 10 (sucFG 197) == [1,9,7,17,33,57,107,197,361,665]
-- 1ª solución
-- ========
sucFG :: Integer -> [Integer]
sucFG k = suc
 where ks = digitos k
       d = length ks
        suc = ks ++ aux [drop r suc | r <- [0..d-1]]
         where aux xss = sum (map head xss) : aux (map tail xss)
digitos :: Integer -> [Integer]
digitos n = [read [x] | x <- show n]
-- 2ª solución
-- ========
sucFG2 :: Integer -> [Integer]
sucFG2 k = init ks ++ map last (iterate f ks)
 where ks = digitos k
        f xs = tail xs ++ [sum xs]
-- Comparación de eficiencia
- - ===============
     \lambda> length (show (sucFG 197 !! 60000))
      15880
      (2.05 secs, 475,918,520 bytes)
     \lambda> length (show (sucFG2 197 !! 60000))
      15880
      (1.82 secs, 451,127,104 bytes)
-- Ejercicio 2.2. Un número n > 9 es un número de Keith si n aparece en
-- la sucesión de tipo Fibonacci definida por n. Por ejemplo, 197 es un
-- número de Keith.
```

```
-- Definir la función
     esKeith :: Integer -> Bool
-- tal que (esKeith n) se verifica si n es un número de Keith. Por
-- ejemplo,
     esKeith 197 == True
     esKeith 54798 == False
esKeith :: Integer -> Bool
esKeith n = n == head (dropWhile (< n) (sucFG n))
-- Ejercicio 3.1. Las expresiones aritméticas construidas con una
-- variable, los números enteros y las operaciones de sumar y
-- multiplicar se pueden representar mediante el tipo de datos Exp
-- definido por
     data Exp = Var | Const Int | Sum Exp Exp | Mul Exp Exp
       deriving Show
-- Por ejemplo, la expresión 3+5x^2 se puede representar por
     exp1 :: Exp
     exp1 = Sum (Const 3) (Mul Var (Mul Var (Const 5)))
-- Por su parte, los polinomios se pueden representar por la lista de
-- sus coeficientes. Por ejemplo, el polinomio 3+5x^2 se puede
-- representar por [3,0,5].
-- Definir la función
     valorE :: Exp -> Int -> Int
-- tal que (valorE e n) es el valor de la expresión e cuando se
-- sustituye su variable por n. Por ejemplo,
     λ> valorE (Sum (Const 3) (Mul Var (Mul Var (Const 5)))) 2
     23
data Exp = Var | Const Int | Sum Exp Exp | Mul Exp Exp
 deriving Show
valorE :: Exp -> Int -> Int
valorE Var n
valorE (Const c) n = c
valorE (Sum e1 e2) n = valorE e1 n + valorE e2 n
```

```
valorE (Mul e1 e2) n = valorE e1 n * valorE e2 n
-- Ejercicio 3.2. Definir la función
    expresion :: [Int] -> Exp
-- tal que (expresion p) es una expresión aritmética equivalente al
-- polinomio p. Por ejemplo,
     \lambda> expresion [3,0,5]
     Sum (Const 3) (Mul Var (Sum (Const 0) (Mul Var (Const 5))))
expresion :: [Int] -> Exp
expresion [] = Const 0
expresion [c] = Const c
expresion (x:xs) = Sum (Const x) (Mul Var (expresion xs))
__ ______
-- Ejercicio 3.3. Definir la función
    valorP :: [Int] -> Int -> Int
-- tal que (valorP p n) es el valor del polinomio p cuando se sustituye
-- su variable por n. Por ejemplo,
    valorP [3,0,5] 2 == 23
  ______
-- 2ª solución
valorP :: [Int] -> Int -> Int
valorP xs n = valorE (expresion xs) n
-- 2ª solución
valorP2 :: [Int] -> Int -> Int
valorP2 = valorE . expresion
-- 3ª solución
valorP3 :: [Int] -> Int -> Int
valorP3 xs n = foldr f 0 xs
 where f x y = x + y*n
-- Ejercicio 4.1. Dado n, consideremos la matriz cuadrada (nxn) cuyas
-- diagonales secundarias están formadas por los números 1,2..,2*n-1.
-- Por ejemplo, \sin n = 5,
```

```
(12345)
    (23456)
- -
    (34567)
    (45678)
    (56789)
-- Definir la función
     matrizDiagS :: Integer -> Matrix Integer
  tal que (matrizDiagS n) construya dicha matriz de dimensión
  (nxn). Por ejemplo,
     λ> matrizDiagS 3
     (123)
     (234)
     (345)
     λ> matrizDiagS 10
        1
           2
              3 4 5 6 7 8 9 10 )
        2
           3 4 5 6 7 8 9 10 11 )
        3 4 5 6 7 8 9 10 11 12 )
        4 5 6 7 8 9 10 11 12 13 )
        5 6 7 8 9 10 11 12 13 14 )
        6 7 8 9 10 11 12 13 14 15 )
       7 8 9 10 11 12 13 14 15 16 )
        8 9 10 11 12 13 14 15 16 17 )
        9 10 11 12 13 14 15 16 17 18 )
     ( 10 11 12 13 14 15 16 17 18 19 )
matrizDiagS :: Integer -> Matrix Integer
matrizDiagS n = fromLists xss
 where xss = genericTake n (iterate (map (+1)) [1..n])
-- Con Data.Array
matrizDiagS_b :: Integer -> Array (Integer, Integer) Integer
matrizDiagS b n =
 listArray ((1,1),(n,n)) (concat [[i .. i+n-1] | i <- [1 .. n]])
-- Ejercicio 4.2. Definir la función
     sumaMatrizDiagS :: Integer -> Integer
-- tal que (sumaMatrizDiagS n) es la suma de los elementos
-- (matrizDiagS n). Por ejemplo,
     sumaMatrizDiagS 3
                        == 27
```

```
sumaMatrizDiagS (10^3) == 10000000000
-- 1ª solución
- - -----
sumaMatrizDiagS1 :: Integer -> Integer
sumaMatrizDiagS1 = sum . toList . matrizDiagS
-- Con Data.Array
sumaMatrizDiagS b :: Integer -> Integer
sumaMatrizDiagS_b = sum . elems . matrizDiagS_b
-- 2ª solución
-- ========
sumaMatrizDiagS2 :: Integer -> Integer
sumaMatrizDiagS2 = sum . matrizDiagS
-- 3ª solución
-- =========
-- Contando cuántas veces aparece cada número
sumaMatrizDiagS3 :: Integer -> Integer
sumaMatrizDiagS3 n =
  sum (zipWith (*) [1..2*n-1] ([1..n] ++ [n-1,n-2..1]))
-- Comparación de eficiencia
- - ===============
      λ> sumaMatrizDiagS1 (10<sup>3</sup>)
      1000000000
      (2.85 secs, 466,422,504 bytes)
      λ> sumaMatrizDiagS2 (10<sup>3</sup>)
      1000000000
      (2.63 secs, 418,436,656 bytes)
      λ> sumaMatrizDiagS3 (10<sup>3</sup>)
      1000000000
- -
      (0.03 secs, 900,464 bytes)
```

9.1.7. Examen 7 (27 de junio de 2018)

El examen es común con el del grupo 1 (ver página 956).

9.2. Exámenes del grupo 2 (Antonia M. Chávez)

9.2.1. Examen 1 (30 de octubre de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 1º examen de evaluación continua (30 de octubre de 2017)
-- § Librerías
import Test.QuickCheck
-- Ejercicio 1. Un número es defectivo si es mayor que la suma de sus
-- divisores propios positivos. Por ejemplo, 15 tiene 3 divisores
-- propios (1, 3 y 5) cuya suma es 9 que es menor que 15. Por tanto, el
-- número 15 es defectivo.
-- Definir la función
     esDefectivo :: Int -> Bool
-- tal que (esDefectivo x) se verifica si x es defectivo. Por ejemplo,
     esDefectivo 15 == True
     esDefectivo 17 == True
     esDefectivo 18 == False
esDefectivo :: Int -> Bool
esDefectivo x = x > sum (divisoresPropios x)
divisoresPropios :: Int -> [Int]
divisoresPropios x = [y \mid y \leftarrow [1..x-1], x \text{ 'rem' } y == 0]
-- Ejercicio 2. Definir la función
```

```
defectivosMenores :: Int -> [Int]
-- tal que (defectivosMenores n) es la lista de los números defectivos
-- menores que n. Por ejemplo,
     defectivosMenores 20 = [1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19]
-- lª definición
defectivosMenores :: Int -> [Int]
defectivosMenores n = [x \mid x < [1 ...n-1], esDefectivo x]
-- 2ª definición
defectivosMenores2 :: Int -> [Int]
defectivosMenores2 n = filter esDefectivo [1..n-1]
-- Ejercicio 3. Definir la función
     defectivosConCifra :: Int -> Int -> [Int]
-- tal que (defectivosConCifra n x) es la lista de los n primeros
-- números defectivos que contienen la cifra x. Por ejemplo,
     defectivosConCifra\ 10\ 3 == [3,13,23,31,32,33,34,35,37,38]
     defectivosConCifra 10 0 == [10,50,101,103,105,106,107,109,110,130]
  ______
defectivosConCifra :: Int -> Int -> [Int]
defectivosConCifra n x =
 take n [y | y < -[1..]
           , esDefectivo y
           , c 'elem' show y]
 where c = head (show x)
-- Ejercicio 4. Comprobar con QuickCheck que los números primos son
-- defectivos.
-- La propiedad es
prop_primosSonDefectivos :: Int -> Property
prop_primosSonDefectivos x =
 esPrimo x ==> esDefectivo x
esPrimo :: Int -> Bool
esPrimo x = divisoresPropios x == [1]
```

```
-- La comprobación es
     ghci> quickCheck prop primosSonDefectivos
     +++ OK, passed 100 tests.
__ _______
-- Ejercicio 5. Definir, por comprension, la función
     lugarPar :: [a] -> [a]
-- tal que (lugarPar xs) es la lista de los elementos de xs que ocupan
-- las posiciones pares. Por ejemplo,
     lugarPar [0,1,2,3,4] == [0,2,4]
     lugarPar "ahora si" == "aoas"
-- lª definición
lugarPar :: [a] -> [a]
lugarPar xs =
  [xs!!n \mid n < -[0,2 .. length xs - 1]]
-- 2ª definición
lugarPar2 :: [a] -> [a]
lugarPar2 xs =
  [x \mid (x,n) < -zip xs [0..], even n]
-- Comparación de eficiencia
     ghci> maximum (lugarPar [1..10^5])
     99999
     (5.80 secs, 22,651,424 bytes)
     ghci> maximum (lugarPar2 [1..10^5])
     99999
     (0.06 secs, 48,253,456 bytes)
-- Ejercicio 6. Definir la función
     pares0impares :: [a] -> [a]
-- tal que (pares0impares xs) es la lista de los elementos que ocupan
-- las posiciones pares en xs, si la longitud de xs es par y, en caso
-- contrario, es la lista de los elementos que ocupan posiciones
  impares en xs. Por ejemplo,
     pares0impares [1,2,3,4,5]
                                    == [2,4]
     pares0impares [1,2,3,4]
                                     == [1,3]
     pares0impares "zorro y la loba" == "or alb"
     pares0impares "zorro y la lob" == "zroyl o"
```

```
pares0impares :: [a] -> [a]
pares0impares xs
  | even (length xs) = lugarPar2 xs
  | otherwise = lugarImpar xs

lugarImpar :: [a] -> [a]
lugarImpar xs =
  [x | (x,n) <- zip xs [0..], odd n]</pre>
```

9.2.2. Examen 2 (27 de noviembre de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 2º examen de evaluación continua (27 de noviembre de 2017)

-- § Librerías
-- Ejercicio 1. Un número es un escalón en una lista si todos los que le
-- siguen en la lista son mayores que él. Por ejemplo, 3 es un escalón
-- en la lista [4,3,6,5,8] porque 6, 5 y 8 son mayores, pero 4 no es un
-- escalón ya que el 3 le sigue y no es mayor que 4.

-- Definir la función
-- escalones :: [Int] -> [Int]
-- tal que (escalones xs) es la lista de los escalones de la lista
-- xs. Por ejemplo,
-- escalones [5,3,6,5,8] == [3,5,8]
-- escalones [4,6,0] == [0]
```

```
escalones1 :: [Int] -> [Int]
escalones1 xs =
  [y \mid (y:ys) < - init (tails xs)]
    , all (>y) ys]
-- 2ª solución (por recursión)
escalones2 :: [Int] -> [Int]
escalones2 [] = []
escalones2 (x:xs) | all (>x) xs = x : escalones2 xs
                 | otherwise = escalones2 xs
-- Ejercicio 2. Definir la función
     sumaNum :: [Int] -> [Int] -> Int
-- tal (sumaNum xs ns) es la suma de los elementos de la lista xs que
-- ocupan las posiciones que se indican en la lista de números no
-- negativos ns. Por ejemplo,
-- + sumaNum [1,2,4,3,6] [0,1,4] es 1+2+6, ya que 1, 2 y 6 son los
    números de la lista que están en las posiciones 0,1 y 4.
-- + sumaNum [1,2,5,3,9] [4,6,2] es 9+0+5 ya que el 9 y el 5 están en
    las posiciones 4 y 2 pero en la posicion 6 no aparece ningún
    elemento.
-- Ejemplos:
     sumaNum [1,2,4,3,6] [2,4,6] == 10
     sumaNum [1,2,4,3,6] [0,1,4] == 9
     sumaNum [1,2,5,3,9] [4,6,2] == 14
-- lª definición (por comprensión)
sumaNum1 :: [Int] -> [Int] -> Int
sumaNum1 xs ns = sum [xs!!n | n <- ns, n < length xs]
-- 2ª definición (por recursión)
sumaNum2 :: [Int] -> [Int] -> Int
sumaNum2 [] = 0
sumaNum2 xs (n:ns) | n < length xs = xs!!n + sumaNum2 xs ns
                  | otherwise = sumaNum2 xs ns
-- 3º definición (por recursión final)
```

```
sumaNum3 :: [Int] -> [Int] -> Int
sumaNum3 xs ns = aux ns 0
   where aux [] ac = ac
          aux (y:ys) ac | y < length xs = aux ys (ac + <math>(xs!!y))
                        | otherwise = aux ys ac
-- Ejercicio 3. Consideremos la sucesión construida a partir de un
-- número n, sumando los factoriales de los dígitos de n, y repitiendo
-- sobre el resultado dicha operación. Por ejemplo, si comenzamos en 69,
-- obtendremos:
      69
--363600 (porque 6! + 9! = 363600)
          (porque 3! + 6! + 3! + 6! + 0! + 0! = 1454)
    1454
          (porque 1! + 4! + 5! + 4! = 169)
      169
-- 363601
          (porque 1! + 6! + 9! = 363601)
    1454 (porque 3! + 6! + 3! + 6! + 0! + 1! = 1454)
-- .....
-- La cadena correspondiente a un número n son los términos de la
-- sucesión que empieza en n hasta la primera repetición de un elemento
-- en la sucesión. Por ejemplo, la cadena de 69 es
    [69,363600,1454,169,363601]
-- ya que el siguiente número sería 1454, que ya está en la lista.
-- Definir la función cadena
    cadena :: Int -> [Int]
-- tal que (cadena n) es la cadena correspondiente al número n. Por
-- ejemplo,
-- cadena 69
                == [69,363600,1454,169,363601]
-- cadena 145
                == [145]
-- cadena 78
                == [78,45360,871,45361]
-- cadena 569
                == [569,363720,5775,10320,11,2]
-- cadena 3888 == [3888,120966,364324,782,45362,872]
-- length (cadena 1479) == 60
cadena :: Int -> [Int]
cadena x = aux x [x]
 where aux y ac \mid elem (f y) ac = ac
                 | otherwise = aux (f y) (ac ++[f y])
                = sum [fac x \mid x <- digitos x]
```

```
digitos x = [read [y] | y <- show x]
fac n = product [1..n]
```

9.2.3. Examen 3 (30 de enero de 2018)

El examen es común con el del grupo 1 (ver página 854).

9.2.4. Examen 4 (12 de marzo de 2018)

```
-- Informática (1º del Grado en Matemáticas, Grupo 2)
-- 4º examen de evaluación continua (12 de marzo de 2018)
-- § Librerías
    ______
import Data.List
import Data.Array
-- import Data.Matrix as M
-- import Data. Vector
-- Ejercicio 1. Hay 3 números (el 2, 3 y 4) cuyos factoriales son
-- divisibles por 2 pero no por 5. Análogamente, hay números 5 (el 5, 6,
-- 7, 8, 9) cuyos factoriales son divisibles por 15 pero no por 25.
-- Definir la función
     nNumerosConFactorialesDivisibles :: Integer -> Integer -> Integer
-- tal que (nNumerosConFactorialesDivisibles x y) es la cantidad de
-- números cuyo factorial es divisible por x pero no por y. Por ejemplo,
    nNumerosConFactorialesDivisibles 2 5
    nNumerosConFactorialesDivisibles 15 25
    nNumerosConFactorialesDivisibles 100 2000 == 5
-- lª solución
-- ========
```

nNumerosConFactorialesDivisibles :: Integer -> Integer -> Integer

```
nNumerosConFactorialesDivisibles x y =
  genericLength (numerosConFactorialesDivisibles x y)
-- (numerosConFactorialesDivisibles x y) es la lista de números
-- divisibles por el factorial de x pero no divisibles por el
-- factorial de y. Por ejemplo,
    numerosConFactorialesDivisibles 2 5 == [2,3,4]
     numerosConFactorialesDivisibles 15 25 == [5,6,7,8,9]
numerosConFactorialesDivisibles :: Integer -> Integer -> [Integer]
numerosConFactorialesDivisibles x y =
  [z \mid z < [0..y-1]
     , factorial z \pmod{x} == 0
     , factorial z 'mod' y /= 0]
-- (factorial n) es el factorial de n. Por ejemplo,
     factorial 4 == 24
factorial :: Integer -> Integer
factorial n = product [1..n]
-- 2ª solución (usando la función de Smarandache)
nNumerosConFactorialesDivisibles2 :: Integer -> Integer -> Integer
nNumerosConFactorialesDivisibles2 x y =
  \max 0 (smarandache y - smarandache x)
--(smarandache n) es el menor número cuyo factorial es divisible por
-- n. Por ejemplo,
      smarandache 8
      smarandache 10 == 5
      smarandache 16 == 6
smarandache :: Integer -> Integer
smarandache x =
  head [n | (n,y) <- zip [0..] factoriales
          , y \text{ 'mod' } x == 0
-- factoriales es la lista de los factoriales. Por ejemplo,
      λ> take 12 factoriales
      [1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800]
factoriales :: [Integer]
factoriales = 1 : scanl1 (*) [1..]
-- Comparación de ediciencia
```

```
λ> nNumerosConFactorialesDivisibles 100 2000
- -
      (2.70 secs, 3,933,938,648 bytes)
      λ> nNumerosConFactorialesDivisibles2 100 2000
      (0.01 secs, 148,200 bytes)
-- Ejercicio 2. Una matriz centro simétrica es una matriz cuadrada que
-- es simétrica respecto de su centro. Por ejemplo, de las siguientes
-- matrices, las dos primeras son simétricas y las otras no lo son
              (1 \ 2 \ 3)
                        (1 \ 2 \ 3)
                                   (1 \ 2 \ 3)
      (1\ 2)
      (2\ 1)
              (4 5 4) (4 5 4)
                                   (454)
              (3\ 2\ 1) (3\ 2\ 2)
-- Definir la función
      esCentroSimetrica :: Eq t => Array (Int,Int) t -> Bool
-- tal que (esCentroSimetrica a) se verifica si la matriz a es centro
-- simétrica. Por ejemplo,
      \lambda> esCentroSimetrica (listArray ((1,1),(2,2)) [1,2, 2,1])
      \lambda> esCentroSimetrica (listArray ((1,1),(3,3)) [1,2,3, 4,5,4, 3,2,1])
      \lambda> esCentroSimetrica (listArray ((1,1),(3,3)) [1,2,3, 4,5,4, 3,2,2])
      False
      \lambda> esCentroSimetrica (listArray ((1,1),(2,3)) [1,2,3, 4,5,4])
      False
esCentroSimetrica :: Eq t => Array (Int,Int) t -> Bool
esCentroSimetrica a =
  n == m \&\& and [a!(i,j) == a!(n-i+1,n-j+1) | i <- [1..n], j <- [i..n]]
 where (,(n,m)) = bounds a
-- Ejercicio 3. Los árboles binarios con valores en las hojas y en los
-- nodos se definen por
      data Arbola = Ha
                    | N a (Arbol a) (Arbol a)
        deriving (Eq, Show)
-- Por ejemplo, el árbol
            10
```

```
8
                2
       3 5 2
                  0
  se pueden representar por
      ejArbol :: Arbol Int
      ejArbol = N 10 (N 8 (H 3) (H 5))
                     (N 2 (H 2) (H 0))
-- Un árbol cumple la propiedad de la suma si el valor de cada nodo es
-- igual a la suma de los valores de sus hijos. Por ejemplo, el árbol
-- anterior cumple la propiedad de la suma.
-- Definir la función
      propSuma :: Arbol Int -> Bool
-- tal que (propSuma a) se verifica si el árbol a cumple la propiedad de
-- la suma. Por ejemplo,
      \lambda> propSumaG (NG 10 [NG 8 [NG 3 [], NG 5 [] ], NG 2 [NG 2 [], NG 0 []]])
      \lambda> propSumaG (NG 10 [NG 8 [NG 4 [], NG 5 [] ], NG 2 [NG 2 [], NG 0 []]])
      False
      \lambda> propSumaG (NG 10 [NG 8 [NG 3 [], NG 5 [] ], NG 2 [NG 2 [], NG 1 []]])
      False
data Arbola = Ha
             | N a (Arbol a) (Arbol a)
  deriving Show
propSuma :: Arbol Int -> Bool
propSuma (H )
                 = True
propSuma (N x i d) = x == raiz i + raiz d && propSuma i && propSuma d
raiz :: Arbol Int -> Int
raiz (H x)
raiz (N \times _ ) = x
-- Ejercicio 4. Los árboles generales se pueden definir mediante el
-- siguiente tipo de datos
      data ArbolG a = NG a [ArbolG a] deriving Show
-- Por ejemplo, el árbol
```

```
10
         8
       3
           5 2
-- se puede representar por
      ejArbolG :: ArbolG Int
      ejArbolG = NG 10 [NG 8 [NG 3 [], NG 5 [] ], NG 2 [NG 2 [], NG 0 []]]
-- Definir la función
      propSumaG :: ArbolG Int -> Bool
-- tal que (propSumaG a) se verifica si el árbol general a cumple la
-- propiedad de la suma. Por ejemplo,
      \lambda> propSuma (N 10 (N 8 (H 3) (H 5)) (N 2 (H 2) (H 0)))
      True
- -
      \lambda> propSuma (N 10 (N 8 (H 4) (H 5)) (N 2 (H 2) (H 0)))
      False
      \lambda> propSuma (N 10 (N 8 (H 3) (H 5)) (N 2 (H 2) (H 1)))
      False
data ArbolG a = NG a [ArbolG a] deriving Show
propSumaG :: ArbolG Int -> Bool
propSumaG (NG _ []) = True
propSumaG (NG x as) = x == sum [raizG a | a <- as]
                      && all propSumaG as
raizG :: ArbolG a -> a
raizG (NG x _) = x
```

9.2.5. Examen 5 (30 de abril de 2018)

```
-- Informática (1º del Grado en Matemáticas) Grupo 2
-- 5º examen de evaluación continua (30 de abril de 2018)
-- -- Librerías auxiliares
```

```
import Data.List
import I1M.Grafo
import I1M.Pila
import I1M.PolOperaciones
-- Ejercicio 1. El número 545 es a la vez capicúa y suma de dos
-- cuadrados consecutivos: 545 = 16^2 + 17^2
-- Definir la lista
      sucesion :: [Integer]
-- cuyos elementos son los números que son suma de cuadrados
-- consecutivos y capicúas. Por ejemplo,
      \lambda> take 10 sucesion
      [1,5,181,313,545,1690961,3162613,3187813,5258525,5824285]
sucesion :: [Integer]
sucesion = filter capicua sucSumaCuadConsec
-- sucSumaCuadConsec es la sucesión de los números que son
-- suma de los cuadrados de dos números consecutivos. Por ejemplo,
      ghci> take 10 sucSumaCuadConsec
      [1,5,13,25,41,61,85,113,145,181]
sucSumaCuadConsec :: [Integer]
sucSumaCuadConsec =
  [x^2 + (x+1)^2 | x < [0..]]
-- (capicua n) se verifica si n es capicúa. Por ejemplo,
      capicua 252
                         True
                     ==
      capicua 2552
                     == True
      capicua 25352 == True
      capicua 25342 == False
capicua :: Integer -> Bool
capicua n = xs == reverse xs
 where xs = show n
-- Ejercicio 2. Consideremos las pilas ordenadas según el orden
-- lexicográfico. Es decir, la pila p1 es "menor" que p2 si la
-- cima de p1 es menor que la cima de p2 y, en caso de coincidir, la
```

-- pila que resulta de desapilar p1 es "menor" que la pila que resulta

```
-- de desapilar p2.
-- Definir la función
      esPilaMenor :: Ord a => Pila a -> Pila a -> Bool
-- tal que (esPilaMenor p1 p2) se verifica si p1 es "menor" que p2. Por
  ejemplo, para la pilas
      p1 = foldr apila vacia [1..20]
      p2 = foldr apila vacia [1..5]
      p3 = foldr apila vacia [3..10]
      p4 = foldr apila vacia [4,-1,7,3,8,10,0,3,3,4]
-- se verifica que
      esPilaMenor p1 p2
                           == False
      esPilaMenor p2 p1
                          == True
      esPilaMenor p3 p4
                          == True
      esPilaMenor vacia p1 == True
      esPilaMenor p1 vacia == False
p1, p2, p3, p4 :: Pila Int
p1 = foldr apila vacia [1..20]
p2 = foldr apila vacia [1..5]
p3 = foldr apila vacia [3..10]
p4 = foldr apila vacia [4,-1,7,3,8,10,0,3,3,4]
esPilaMenor :: Ord a => Pila a -> Pila a -> Bool
esPilaMenor p1 p2
  | esVacia p1 = True
   esVacia p2 = False
  | a1 < a2
              = True
  | a1 > a2
               = False
  | otherwise = esPilaMenor r1 r2
 where a1 = cima p1
        a2 = cima p2
        r1 = desapila p1
        r2 = desapila p2
-- Ejercicio 3. Dados dos polinomios P y Q, la suma en grados de P y Q
-- es el polinomio que resulta de conservar los términos de ambos
-- polinomios que coinciden en grado pero sumando sus coeficientes y
-- eliminar el resto. Por ejemplo, dados los polinomios
      pol1 = 4*x^4 + 5*x^3 + 1
      pol2 = 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1
```

```
-- la suma en grados de pol1 y pol2 será: 9*x^4 + 9*x^3 + 2
-- Definir la función
      sumaEnGrados :: Polinomio Int -> Polinomio Int -> Polinomio Int
-- tal que (sumaEnGrados p q) es la suma en grados de los polinomios
-- p y q. Por ejemplo, dados los polinomios
      pol1 = 4*x^4 + 5*x^3 + 1
      pol2 = 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1
      pol3 = -3*x^7 + 3*x^6 + -2*x^4 + 2*x^3 + -1*x + 1
      pol4 = -1*x^6 + 3*x^4 + -3*x^2
-- se tendrá:
      sumaEnGrados pol1 pol1 \Rightarrow 8*x^4 + 10*x^3 + 2
      sumaEnGrados pol1 pol2 \Rightarrow 9*x^4 + 9*x^3 + 2
      sumaEnGrados pol1 pol3 \Rightarrow 2*x^4 + 7*x^3 + 2
      sumaEnGrados pol3 pol4 \Rightarrow 2*x^6 + x^4
listaApol :: [Int] -> Polinomio Int
listaApol xs = foldr (\ (n,c) p \rightarrow consPol n c p)
                     polCero
                     (zip [0..] xs)
pol1, pol2, pol3, pol4 :: Polinomio Int
pol1 = listaApol [1,0,0,5,4,0]
pol2 = listaApol [1,2,3,4,5,6]
pol3 = listaApol [1, -1, 0, 2, -2, 0, 3, -3]
pol4 = listaApol [0,0,-3,0,3,0,-1]
sumaEnGrados :: Polinomio Int -> Polinomio Int -> Polinomio Int
sumaEnGrados p q
  | esPolCero p = polCero
  | esPolCero q = polCero
              = sumaEnGrados p rq
  | gp < gq
               = sumaEnGrados rp q
  | gq < gp
  | otherwise = consPol gp (cp+cq) (sumaEnGrados rp rq)
 where gp = grado p
        gq = grado q
        cp = coefLider p
        cq = coefLider q
        rp = restoPol p
        rq = restoPol q
```

```
-- Ejercicio 4. Un clique de un grafo no dirigido G es un conjunto de
-- vértices V tal que para todo par de vértices de V, existe una arista
-- en G que los conecta. Por ejemplo, en el grafo:
        4 ---- 5
               | \
               | /
        3 ---- 2
-- el conjunto de vértices {1,2,5} es un clique y el conjunto {2,3,4,5}
-- no lo es.
-- En Haskell se puede representar el grafo anterior por
      g1 :: Grafo Int Int
      g1 = creaGrafo ND
                     [(1,2,0),(1,5,0),(2,3,0),(3,4,0),(5,2,0),(4,5,0),(4,6,0)]
-- Definir la función
      esClique :: Grafo Int Int -> [Int] -> Bool
-- tal que (esClique g xs) se verifica si xs es un clique de g. Por
-- ejemplo,
      esClique g1 [1,2,5] == True
      esClique g1 [2,3,4,5] == False
g1 :: Grafo Int Int
q1 = creaGrafo ND
               (1,6)
               [(1,2,0),(1,5,0),(2,3,0),(3,4,0),(5,2,0),(4,5,0),(4,6,0)]
esClique :: Grafo Int Int -> [Int] -> Bool
esClique g xs = all (aristaEn g) [(x,y) | x <- ys, y <- ys, y < x]
 where ys = sort xs
```

9.2.6. Examen 6 (12 de junio de 2018)

El examen es común con el del grupo 1 (ver página 869).

9.2.7. Examen 7 (27 de junio de 2018)

El examen es común con el del grupo 4 (ver página 956).

9.3. Exámenes del grupo 3 (Francisco J. Martín)

9.3.1. Examen 1 (2 de noviembre de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 1^{\circ} examen de evaluación continua (2 de noviembre de 2017)
-- Ejercicio 1. Consideremos las regiones del plano delimitadas por
-- las rectas x = 1, x = -1, y = 1 e y = -1. Diremos que dos regiones
-- son vecinas si comparten una frontera distinta de un punto; es decir.
-- no son vecinas dos regiones con un único punto de contacto.
-- En este ejercicio se pretende contar el número de regiones vecinas de
-- aquella en la que está un punto dado. Por ejemplo, el punto (0,0)
-- está en la region central, que tiene 4 regiones vecinas; el punto
-- (2,2) está en la región superior derecha, que tiene 2 regiones
-- vecinas; y el punto (2,0) está en la región media derecha, que tiene
-- 3 regiones vecinas. Para cualquier punto que se encuentre en las
-- rectas x = 1, x = -1, y = 1 e y = -1, el resultado debe ser 0.
-- Definir la función
      numeroRegionesVecinas :: (Float, Float) -> Int
-- tal que (numeroRegionesVecinas (x,y)) es el número de regiones
-- vecinas de aquella en la que está contenido el punto (x,y). Por
-- ejemplo,
      numeroRegionesVecinas (0,0)
      numeroRegionesVecinas (2,2) == 2
      numeroRegionesVecinas (2,0)
      numeroRegionesVecinas (1,0)
numeroRegionesVecinas :: (Float, Float) -> Int
numeroRegionesVecinas (x,y)
  | x' < 1 \& y' < 1 = 4
```

```
| x' == 1 | | y' == 1 = 0
  | x' > 1 \& y' > 1 = 2
  | otherwise
 where x' = abs x
       y' = abs y
-- Ejercicio 2. Una secuencia de números es de signo alternado si en
-- ella se alternan los números positivos y negativos. Se pueden dar dos
-- casos de secuencias de signo alternado:
-- + El primer término es positivo, el segundo es negativo, el tercero
    es positivo, el cuarto es negativo, y así sucesivamente. Por
    ejemplo, la secuencia
       1, -1, 2, -2, 3, -3
-- + El primer término es negativo, el segundo es positivo, el tercero
    es negativo, el cuarto es positivo, y así sucesivamente. Por
    ejemplo, la secuencia
       -1, 1, -2, 2, -3, 3
-- Las secuencias que tengan un 0 entre sus elementos nunca son de signo
-- alternado.
-- Definir la función
     signosAlternados :: [Int] -> Bool
-- tal que (signosAlternados xs) se verifica si la secuencia de números
-- enteros xs es de signo alternado. Por ejemplo,
     signosAlternados [1,-1,2,-2,3,-3] ==
                                           True
     signosAlternados [-1,1,-2,2,-3,3] ==
                                           True
     signosAlternados [0,-1,1,-1,0] == False
     signosAlternados [1,2,-1,1,-5]
                                       == False
                                        == False
     signosAlternados [1,-2,1,-1,-5]
signosAlternados :: [Int] -> Bool
signosAlternados xs =
  and [x*y < 0 \mid (x,y) < -zip xs (tail xs)]
-- Ejercicio 3.1. Una forma de aproximar el valor del número e es usando
-- la siguiente igualdad:
                           2
                                     3
             e = ----- + ----- + ----- + ----- + ...
                  2*0!
                        2*1! 2*2! 2*3!
```

```
-- Es decir, la serie cuyo término general n-ésimo es el cociente entre
-- (n+1) yel doble del factorial de n:
                    n+1
            s(n) = -----
                    2*n!
-- Definir por comprensión la función:
     aproximaEC :: Double -> Double
-- tal que (aproximaEC n) es la aproximación del número e calculada con
-- la serie anterior hasta el término n-ésimo. Por ejemplo,
     aproximaEC 10 == 2.718281663359788
     aproximaEC 15 == 2.718281828458612
     aproximaEC 20 == 2.718281828459045
aproximaEC :: Double -> Double
aproximaEC n =
 sum [(i+1) / (2*product [1..i]) | i <- [0..n]]
-- Ejercicio 3.2. Definir por recursión la función:
     aproximaER :: Double -> Double
-- tal que (aproximaER n) es la aproximación del número e calculada con
-- la serie anterior hasta el término n-ésimo. Por ejemplo,
     aproximaER 10 == 2.718281663359788
     aproximaER 15 == 2.718281828458612
     aproximaER 20 == 2.718281828459045
aproximaER :: Double -> Double
aproximaER 0 = 1/2
aproximaER n =
  (n+1)/(2*product [1..n]) + aproximaER (n-1)
-- Ejercicio 4. Definición por recursión la función:
     restaCifrasDe2en2 :: Integer -> Integer
-- tal que (restaCifrasDe2en2 n) es el número obtenido a partir del
-- número n, considerando sus cifras de 2 en 2 y tomando el valor
-- absoluto de sus diferencias. Por ejemplo
     restaCifrasDe2en2 3
```

```
restaCifrasDe2en2 83
                                 == 5
      restaCifrasDe2en2 283
                                     25
                                 ==
      restaCifrasDe2en2 5283
                                 == 35
      restaCifrasDe2en2 2538
                                     35
      restaCifrasDe2en2 102583
                                     135
                                 ==
restaCifrasDe2en2 :: Integer -> Integer
restaCifrasDe2en2 n
  | n < 10
              = n
  | otherwise = 10 * restaCifrasDe2en2 (n 'div' 100) + abs (x-y)
 where x = n \pmod{10}
        y = (n \text{ 'mod' 100}) \text{ 'div' 10}
```

9.3.2. Examen 2 (30 de noviembre de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 2º examen de evaluación continua (30 de noviembre de 2017)
-- § Librerías
import Data.List
-- Ejercicio 1. Dados un número x, una relación r y una lista ys, el
-- índice de relación de x en ys con respecto a r, es el número de
-- elementos de ys tales que x está relacionado con y con respecto a
-- r. Por ejemplo, el índice de relación del número 2 en la lista
-- [1,2,3,5,1,4] con respecto a la relación < es 3, pues en la lista hay
-- 3 elementos (el 3, el 5 y el 4) tales que 2 < 3, 2 < 5 y 2 < 4.
-- Definir la función
      listaIndicesRelacion :: [Int] -> (Int -> Int -> Bool) -> [Int]
                              -> [Int]
-- tal que (listaIndicesRelacion xs r ys) es la lista de los índices de
-- relación de los elementos de la lista xs en la lista ys con respecto
-- a la relación r. Por ejemplo,
      ghci> listaIndicesRelacion [2] (<) [1,2,3,5,1,4]</pre>
```

```
[3]
      ghci> listaIndicesRelacion [4,2,5] (<) [1,6,3,6,2]</pre>
- -
      [2,3,2]
      ghci> listaIndicesRelacion [4,2,5] (/=) [1,6,3,6,2]
      [5,4,5]
      ghci> listaIndicesRelacion [4,2,5] (\ x y -> odd (x+y)) [1,6,3,6,2]
      [2,2,3]
-- 1ª solución
-- =========
listaIndicesRelacion :: [Int] -> (Int -> Int -> Bool) -> [Int] -> [Int]
listaIndicesRelacion xs r ys =
  [indice x r ys | x <- xs]
indice :: Int -> (Int -> Int -> Bool) -> [Int] -> Int
indice x r ys =
  length [y \mid y \leftarrow ys, r \times y]
-- 2ª solución
-- ========
listaIndicesRelacion2 :: [Int] -> (Int -> Int -> Bool) -> [Int] -> [Int]
listaIndicesRelacion2 xs r ys =
  map (\xspace x ->  length (filter (r x) ys)) xs
-- Ejercicio 2. Decimos que dos listas xs e ys encajan, si hay un trozo
-- no nulo al final de la lista xs que aparece al comienzo de la lista
-- ys. Por ejemplo [1,2,3,4,5,6] y [5,6,7,8] encajan, pues el trozo con
-- los dos últimos elementos de la primera lista, [5,6], aparece al
-- comienzo de la segunda lista.
-- Consideramos la función
     encajadas :: Eq a => [a] -> [a] -> [a]
-- tal que (encajadas xs ys) se verifica si las listas xs e ys encajan.
-- Por ejemplo,
     encajadas [1,2,3,4,5,6] [5,6,7,8] == True
     encajadas [4,5,6] [6,7,8]
                                         == True
     encajadas [4,5,6] [4,3,6,8]
                                       == False
    encajadas [4,5,6] [7,8]
                                         == False
```

```
-- 1º solución
encajadas1 :: Eq a => [a] -> [a] -> Bool
encajadas1 [] ys = False
encajadas1 (x:xs) ys =
  (x:xs) == take (length (x:xs)) ys || encajadas1 xs ys
-- 2ª solución
encajadas2 :: Eq a => [a] -> [a] -> Bool
encajadas2 xs ys = aux xs ys [1..length ys]
 where aux xs ys []
                      = False
        aux xs ys (n:ns) = drop (length xs - n) xs == take n ys ||
                           aux xs ys ns
-- 3ª solución
encajadas3 :: Eq a => [a] -> [a] -> Bool
encajadas3 xs ys =
  foldr (\ n r -> drop (length xs - n) xs == take n ys || r)
        False [1..length ys]
-- 4ª solución
encajadas4 :: Eq a => [a] -> [a] -> Bool
encajadas4 xs ys =
  any ('isPrefixOf' ys) (init (tails xs))
-- Ejercicio 3. Se considera la función
     repeticionesConsecutivas :: [Int] -> [Int]
-- tal que (repeticionesConsecutivas xs) es la lista con el número de
-- veces que se repiten los elementos de la lista xs de forma
-- consecutiva. Por ejemplo,
     repeticionesConsecutivas [1,1,1,3,3,2,2]
                                               == [3,2,2]
     repeticionesConsecutivas [1,2,2,2,3,3] == [1,3,2]
     repeticionesConsecutivas [1,1,3,3,3,1,1,1] == [2,3,3]
     repeticionesConsecutivas []
-- 1ª solución
repeticionesConsecutivas1 :: [Int] -> [Int]
repeticionesConsecutivas1 xs = [length ys | ys <- group xs]
-- 2ª solución
repeticionesConsecutivas2 :: [Int] -> [Int]
```

```
repeticionesConsecutivas2 = map length . group
-- 3ª solución
repeticionesConsecutivas3 :: [Int] -> [Int]
repeticionesConsecutivas3 [] = []
repeticionesConsecutivas3 (x:xs) =
  1 + length (takeWhile (==x) xs) :
  repeticionesConsecutivas3 (dropWhile (==x) xs)
-- 4ª solución
repeticionesConsecutivas4 :: [Int] -> [Int]
repeticionesConsecutivas4 []
repeticionesConsecutivas4 (x:xs) =
  1 + length ys : repeticionesConsecutivas3 zs
 where (ys,zs) = span (==x) xs
-- Ejercicio 4. Un número triangular es aquel que tiene la forma
-- n*(n+1)/2 para algún n. Un número pentagonal es aquel que tiene la
-- forma n*(3*n-1)/2 para algún n.
-- Definir la constante
    numerosTriangulares :: [Integer]
-- cuyo valor es la lista infinita de todos los números triangulares.
-- Por ejemplo,
    take 10 numerosTriangulares == [1,3,6,10,15,21,28,36,45,55]
     numerosTriangulares !! 1000 == 501501
-- Definir la constante
     numerosPentagonales :: [Integer]
-- cuyo valor es la lista infinita de todos los números pentagonales.
-- Por ejemplo,
     take 10 numerosPentagonales == [1,5,12,22,35,51,70,92,117,145]
    numerosPentagonales !! 1000 == 1502501
-- Calcular los 5 primeros números que son al mismo tiempo triangulares
-- y pentagonales.
numerosTriangulares :: [Integer]
numerosTriangulares =
  [n * (n + 1) 'div' 2 | n <- [1..]]
```

9.3.3. Examen 3 (30 de enero de 2018)

El examen es común con el del grupo 1 (ver página 854).

9.3.4. Examen 4 (8 de marzo de 2018)

```
-- Informática (1º del Grado en Matemáticas, Grupo 3)
-- 4º examen de evaluación continua (13 de marzo de 2018)
-- § Librerías
-- import Data.Matrix
import Data.List
-- Ejercicio 1. Una lista de números se puede describir indicando
-- cuantas veces se repite cada elemento. Por ejemplo la lista
-- [1,1,1,3,3,2,2] se puede describir indicando que hay 3 unos, 2 treses
-- y 2 doses. De esta forma, la descripción de una lista es otra lista
-- en la que se indica qué elementos hay y cuántas veces se repiten. Por
-- ejemplo, la descripción de la lista [1,1,1,3,3,2,2] es [3,1,2,3,2,2].
```

```
- -
-- La secuencia de listas que comienza en [1] y en la que cada una de
-- los demás elementos es la descripción de la lista anterior se llama
-- 'Look And Say'. Sus primeros términos son
     [1], [1,1], [2,1], [1,2,1,1], [1,1,1,2,2,1], [3,1,2,2,1,1], ...
-- Definir la constante
    lookAndSay :: [[Int]]
-- cuyo valor es la secuencia infinita 'Look And Say'. Por ejemplo,
    take 5 lookAndSay == [[1],[1,1],[2,1],[1,2,1,1],[1,1,1,2,2,1]]
                              == [3,1,1,3,1,2,1,1,1,3,1,2,2,1]
    lookAndSay !! 8
    length (lookAndSay !! 20) == 408
    sum (lookAndSay !! 20)
                            == 679
lookAndSay :: [[Int]]
lookAndSay =
  [1] : map describe lookAndSay
describe :: [Int] -> [Int]
describe xs =
  concatMap (\ g -> [length g,head g]) (group xs)
-- Ejercicio 2. La identidad
                        x-1
    (sqrt x) = 1 + \cdots
- -
                    1 + (sqrt x)
-- se puede usar para aproximar la raíz cuadrada de un número de la
-- siquiente forma:
    y(0)
          = 1
    y(n+1) = 1 + (x-1)/(1+y(n))
-- Definir la función
     aproximaRaiz :: Double -> Double
-- tal que (aproximaRaiz x) es la aproximación con 12 cifras decimales
-- exactas de la raíz cuadrada del número positivo x, calculada usando
-- el método anterior. Por ejemplo,
    aproximaRaiz 2
                    == 1.4142135623728214
    aproximaRaiz 3
                     == 1.7320508075686347
    aproximaRaiz 10 == 3.1622776601685203
```

```
-- 1º solución
-- =========
aproximaRaiz :: Double -> Double
aproximaRaiz x =
 aproximaRaizAux x 1
aproximaRaizAux :: Double -> Double -> Double
aproximaRaizAux x y
  | abs (x-y^2) < 10**(-12) = y
  | otherwise
                          = aproximaRaizAux x (1+(x-1)/(1+y))
-- 2ª solución
-- ========
aproximaRaiz2 :: Double -> Double
aproximaRaiz2 x =
 until (\y -> abs (x-y^2) < 10**(-12))
       (\y -> 1+(x-1)/(1+y))
       1
__ ______
-- Ejercicio 3. Definir la función
    permutaDos :: [a] -> [[a]]
-- tal que (permutaDos xs) es la familia de todas las permutaciones de
-- la lista xs en las que sólo hay dos elementos intercambiados. Por
-- ejemplo,
    permutaDos [1..3]
                               == [[1,3,2],[2,1,3],[3,2,1]]
    permutaDos [1..4]
                                   [[1,2,4,3],[1,3,2,4],[1,4,3,2],
                                    [2,1,3,4],[3,2,1,4],[4,2,3,1]]
    length (permutaDos [1..10]) == 45
    length (permutaDos [1..20]) == 190
permutaDos :: [a] -> [[a]]
permutaDos []
               = []
permutaDos [x] = []
permutaDos [x1,x2] = [[x2,x1]]
permutaDos (x:xs) =
 map (x:) (permutaDos xs) ++ intercambiaPrimero (x:xs)
```

matrizInclinada v p q =

```
-- (intercambiaPrimero xs) es la lista de las lista obtenidas
-- intercambiando el primer elemento de xs con cada uno de los
-- restantes. Por ejemplo,
     \lambda> intercambiaPrimero [1..5]
      [[2,1,3,4,5],[3,2,1,4,5],[4,2,3,1,5],[5,2,3,4,1]]
intercambiaPrimero :: [a] -> [[a]]
intercambiaPrimero [] = []
intercambiaPrimero (x:ys) =
  [(ys!!i : take i ys) ++ (x : drop (i+1) ys)]
  | i <- [0..length ys -1]]
-- Ejercicio 4.1. Consideremos el siguiente tipo de matriz:
      ( V1 V2 V3 V4 .. )
       ( V2
            V3 V4
                    ۷5
                       ..)
       ( V3 V4 V5 V6
      ( . .
            .. .. ..
-- donde todos los elementos de cualquier diagonal paralela a la diagonal
-- secundaria son iguales. Diremos que ésta es una matriz inclinada.
-- Definir la función:
    matrizInclinada :: Int -> Int -> Int -> Matrix Int
-- tal que (matrizInclinada v p q) es la matriz inclinada de p filas
-- por q columnas en la que cada valor Vi es igual a i*v. Por ejemplo,
     λ> matrizInclinada 1 3 5
      (12345)
     (23456)
     (34567)
     λ> matrizInclinada 2 4 2
     (24)
     (46)
        6 8)
     (810)
     λ> matrizInclinada (-2) 3 3
     (-2-4-6)
        -4 -6 -8)
        -6 -8 -10 )
matrizInclinada :: Int -> Int -> Int -> Matrix Int
```

```
matrix p q (\ (i,j) \rightarrow v*(i+j-1))
__ _______
-- Ejercicio 4.2. Definir la función:
    esMatrizInclinada :: Matrix Int -> Bool
-- tal que (esMatrizInclinada a) se verifica si a es una matriz
-- inclinada.
    esMatrizInclinada (matrizInclinada 1 3 5) == True
    esMatrizInclinada (identity 4)
                                             == False
esMatrizInclinada :: Matrix Int -> Bool
esMatrizInclinada a =
 all todosIguales (diagonalesSecundarias a)
-- (diagonalesSecundarias a) es la lista de las diagonales secundarias
-- de la matriz a. Por ejemplo,
     λ> diagonalesSecundarias ((matrizInclinada 1 3 5))
     [[1], [2,2], [3,3,3], [4,4,4], [5,5,5], [6,6], [7]]
diagonalesSecundarias :: Matrix Int -> [[Int]]
diagonalesSecundarias a =
  [[a ! (i,k-i) | i <- [1..m], 1+i <= k, k <= n+i]
  | k < [2..m+n]|
 where m = nrows a
       n = ncols a
-- (todosIguales xs) se verifica si todos los elementos de xs son
-- iguales. Por ejemplo,
     todosIquales [3,3,3] == True
     todosIguales [3,4,3] == False
todosIguales :: Eq a => [a] -> Bool
todosIguales []
                = True
todosIquales (x:xs) = all (==x) xs
        Examen 5 (26 de abril de 2018)
9.3.5.
```

```
import Data.Array
import Data.List
import I1M.Pol
import I1M.Grafo
-- import GrafoConMatrizDeAdyacencia
-- Ejercicio 1. La secuencia de Thue-Morse es una secuencia binaria
-- (formada por ceros y unos) infinita tal que el término n-ésimo se
-- define de forma recursiva de la siguiente forma:
- -
      d(0)
            = 0
      d(2n)
             = d(n)
      d(2n+1) = 1-d(n)
-- Por tanto, está secuencia comienza de la siguiente forma:
      "0110100110010110100101100110100110010110..."
-- Definir la constante
    thueMorse :: String
-- cuyo valor es la secuencia infinita de Thue-Morse. Por ejemplo,
    take 10 thueMorse == "0110100110"
    take 40 thueMorse == "01101001100101101001101001101001101"
complementario :: Char -> Char
complementario '0' = '1'
complementario '1' = '0'
thueMorse :: String
thueMorse = map thueMorseAux [0..]
thueMorseAux :: Int -> Char
thueMorseAux 0 = '0'
thueMorseAux n
  | even n = thueMorseAux (n 'div' 2)
  | otherwise = complementario (thueMorseAux (n 'div' 2))
-- Ejercicio 2. Los árboles genéricos se pueden representar con el
-- tipo de dato algebraico
     data ArbolG t = NG t [ArbolG t]
                      deriving (Show, Eq)
```

```
-- en la que un árbol se representa con el constructor NG seguido del
-- valor que tiene el nodo raíz del árbol y de la lista de las
-- representaciones de sus árboles hijos.
  Por ejemplo, los árboles
         3
                         3
                        /|\
        /|\
       / | \
                       / | \
      2 4 2
                      2 4 3
           / \
                        /|\
          3
              1
                       3 5 5
-- se representan por
      al, a2 :: ArbolG Int
      a1 = NG 3 [NG 2 [], NG 4 [], NG 2 [NG 3 [], NG 1 []]]
      a2 = NG \ 3 \ [NG \ 2 \ [], \ NG \ 4 \ [NG \ 3 \ [], \ NG \ 5 \ [], \ NG \ 5 \ []], \ NG \ 3 \ []]
-- En particular, en esta representación una hoja es un árbol genérico
-- con una lista vacía de hijos: NG x [].
-- Un árbol genérico es de salto fijo si el valor absoluto de la
-- diferencia de los elementos adyacentes (es decir, entre cualquier
-- nodo y cualquiera de sus hijos) es siempre la misma. Por ejemplo, el
-- árbol al es de salto fijo ya que el valor absoluto de sus pares de
-- elementos adyacentes son
      |3-2| = |3-4| = |3-2| = |2-3| = |2-1| = 1
-- En cambio, el árbol a2 no es de salto fijo ya que el nodo raíz tiene
-- dos hijos con los que la diferencia en valor absoluto no es la misma
      |3-2| = 1 = /= 0 = |3-3|
-- Definir la función
      esSaltoFijo :: (Num a, Eq a) => Arbol a -> Bool
-- tal que (esSaltoFijo a) se verifica si el árbol a es de salto fijo. Por
-- ejemplo,
      esSaltoFijo al == True
      esSaltoFijo a2 == False
data ArbolG t = NG t [ArbolG t]
  deriving (Show, Eq)
al, a2 :: ArbolG Int
a1 = NG \ 3 \ [NG \ 2 \ [], \ NG \ 4 \ [], \ NG \ 2 \ [NG \ 3 \ [], \ NG \ 1 \ []]]
a2 = NG 3 [NG 2 [], NG 4 [NG 3 [], NG 5 [], NG 5 []], NG 3 []]
```

polinomioRegresivo :: Polinomio Int -> Bool

```
esSaltoFijo :: (Num a, Eq a) => ArbolG a -> Bool
esSaltoFijo a =
  all (==1) (listaDiferencias a)
listaDiferencias :: (Num a, Eq a) => ArbolG a -> [a]
listaDiferencias (NG v []) = []
listaDiferencias (NG v ns) =
  map (\ (NG w ) \rightarrow abs (v-w)) ns ++
  concatMap listaDiferencias ns
-- Ejercicio 3.1. Decimos que un polinomio P es regresivo si está formado
-- por un único monomio o todo monomio no nulo de P es un múltiplo
-- entero (por un monomio de coefiente entero y grado positivo) del
-- monomio no nulo de grado inmediatamente inferior. Por ejemplo,
-- + El polinomio 3x^3 es regresivo.
-- + El polinomio 6x^2 + 3x + 1 es regresivo pues el monomio 6x^2 es un
     múltiplo entero de 3x (6x^2 = 2x * 3x) y éste es un múltiplo entero
     de 1 (3x = 3x * 1).
-- + El polinomio 6x^4 - 2x^2 - 2 es regresivo pues el monomio 6x^4 es
     un múltiplo entero de -2x^2 (6x<sup>4</sup> = (-2x<sup>2</sup>) * (-2x<sup>2</sup>)) y éste es un
     múltiplo entero de -2 (-2x^2 = x^2 * (-2)).
-- + El polinomio 6x^3 + 3x^2 + 2 no es regresivo pues el monomio 3x^2
     no es un múltiplo entero de 2 (3x^2 = 3/2x^2 * 2).
-- Definir la función
      polinomioRegresivo :: Polinomio Int -> Bool
-- tal que (polinomioRegresivo p) se cumple si el polinomio p es regresivo.
-- Por ejemplo:
      polinomioRegresivo p1 == True
      polinomioRegresivo p2 == True
      polinomioRegresivo p3 == True
      polinomioRegresivo p4 == False
p1, p2, p3, p4 :: Polinomio Int
p1 = consPol 3 3 polCero
p2 = foldr (\ (g,c) p -> consPol g c p) polCero [(2,6),(1,3),(0,1)]
p3 = foldr (\ (g,c) p -> consPol g c p) polCero [(4,6),(2,-2),(0,-2)]
p4 = foldr (\ (g,c) p -> consPol g c p) polCero [(3,6),(2,3),(0,2)]
```

```
polinomioRegresivo p =
  esPolCero p
  || esPolCero q
  || coefLider p 'mod' coefLider q == 0 && polinomioRegresivo q
 where q = restoPol p
-- Ejercicio 3.2. La regresión de un polinomio es el polinomio que se
-- obtiene haciendo el cociente entre monomios no nulos consecutivos. Si
-- un polinomio de coeficientes enteros es regresivo, entonces su
-- regresión también será un polinomio de coeficientes enteros. La
-- regresión de un polinomio formado por un único monomio es el
-- polinomio nulo.
-- Definir la función
      regresionPolinomio :: Polinomio Int -> Polinomio Int
-- tal que (regresionPolinomio p) es la regresión del polinomio regresivo
-- p. Por ejemplo,
      regresionPolinomio p1 => 0
      regresionPolinomio p2 => 5*x
      regresionPolinomio p3 \Rightarrow - 2*x^2
regresionPolinomio :: Polinomio Int -> Polinomio Int
regresionPolinomio p
  | esPolCero p || esPolCero q = polCero
  | otherwise = consPol (grado p - grado q)
                        (coefLider p 'div' coefLider q)
                        (regresionPolinomio q)
 where q = restoPol p
-- Ejercicio 4. Dado un grafo dirigido G, su grafo moral es un grafo no
-- dirigido construido con el mismo conjunto de nodos y cuyas aristas
-- son las del grafo original G (consideradas sin dirección), añadiendo
-- una arista entre cada dos nodos distintos que tengan un hijo en común
-- en G. Por ejemplo, si consideramos los siguientes grafos:
      g1 = creaGrafo D (1,3) [(1,3,0),(2,3,0)]
      q2 = creaGrafo D (1,4) [(1,2,0),(2,4,0),(1,3,0),(3,4,0)]
      g3 = creaGrafo D (1,4) [(1,4,0),(2,4,0),(3,4,0)]
-- + El grafo moral de g1 tiene las aristas originales junto con una
    arista nueva que une los nodos 1 y 2.
-- + El grafo moral de g2 tiene las aristas originales junto con una
```

```
arista nueva que une los nodos 2 y 3.
-- + El grafo moral de g3 tiene las aristas originales junto con aristas
     nuevas que unen los nodos 1 y 2; 1 y 3; y 2 y 3.
-- Definir la función
     grafoMoral :: (Ix v, Num p, Eq p) => Grafo v p -> Grafo v p
-- tal que (grafoMoral g) es el grafo moral del grafo g. Por ejemplo,
      λ> grafoMoral g1
      G ND (array (1,3) [(1,[(3,0),(2,0)]),
                         (2,[(1,0),(3,0)]),
                         (3,[(1,0),(2,0)]))
      \lambda> [(x,adyacentes (grafoMoral g1) x) | x <- nodos g1]
      [(1,[3,2]),(2,[1,3]),(3,[1,2])]
      \lambda> [(x,adyacentes (grafoMoral g2) x) | x <- nodos g2]
      [(1,[2,3]),(2,[1,4,3]),(3,[1,2,4]),(4,[2,3])]
      \lambda > [(x,adyacentes (grafoMoral g3) x) | x <- nodos g3]
- -
      [(1,[4,2,3]),(2,[1,4,3]),(3,[1,2,4]),(4,[1,2,3])]
g1, g2, g3 :: Grafo Int Int
g1 = creaGrafo D (1,3) [(1,3,0),(2,3,0)]
g2 = creaGrafo D (1,4) [(1,2,0),(2,4,0),(1,3,0),(3,4,0)]
g3 = creaGrafo D (1,4) [(1,4,0),(2,4,0),(3,4,0)]
grafoMoral :: (Ix v, Num p, Eq p) => Grafo v p -> Grafo v p
grafoMoral g =
  creaGrafo ND
            (minimum xs,maximum xs)
            (sinAristasSimetricas (aristas g 'union' aristasMorales g))
 where xs = nodos q
aristasMorales :: (Ix v, Num p) => Grafo v p -> [(v,v,p)]
aristasMorales q = [(x,y,0) | x <- xs
                             , y <- xs
                             , x /= y
                             , hijoComun g x y]
 where xs = nodos g
hijoComun :: (Ix v, Num p) => Grafo v p -> v -> v -> Bool
hijoComun q x y =
  not (null (adyacentes g x 'intersect' adyacentes g y))
-- (sinAristasSimetricas as) es la lista de aristas obtenida eliminando
```

```
-- las simétricas de as. Por ejemplo,

-- \lambda> sinAristasSimetricas [(1,3,0),(2,3,0),(1,2,0),(2,1,0)]

-- [(1,3,0),(2,3,0),(1,2,0)]

sinAristasSimetricas :: (Eq v, Eq p) => [(v,v,p)] -> [(v,v,p)]

sinAristasSimetricas [] = []

sinAristasSimetricas ((x,y,p):as) =

(x,y,p) : sinAristasSimetricas (as \\ [(y,x,p)])
```

9.3.6. Examen 6 (12 de junio de 2018)

El examen es común con el del grupo 1 (ver página 869).

9.3.7. Examen 7 (27 de junio de 2018)

El examen es común con el del grupo 1 (ver página 956).

9.4. Exámenes del grupo 4 (José A. Alonso)

9.4.1. Examen 1 (27 de octubre de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 1º examen de evaluación continua (27 de octubre de 2017)
-- Nota: La puntuación de cada ejercicio es 2.5 puntos.

-- § Librerías
-- import Test.QuickCheck
-- Ejercicio 1.1. La suma de la serie
-- 1/3 + 1/15 + 1/35 + 1/63 + ...+ 1/(4*x^2-1) + ...
-- es 1/2.
-- Definir la función
-- sumaSerie:: Double -> Double
-- tal que (sumaSerie n) es la aproximación de 1/2 obtenida mediante n
```

```
-- términos de la serie. Por ejemplo,
     sumaSerie 10 == 0.4761904761904761
     sumaSerie 100 == 0.49751243781094495
sumaSerie :: Double -> Double
sumaSerie n = sum [1/(4*x^2-1) | x <- [1..n]]
-- Ejercicio 1.2. Comprobar con QuickCheck que la sumas finitas de la
-- serie siempre son menores que 1/2.
-- La propiedad es
prop_SumaSerie :: Double -> Bool
prop SumaSerie n = sumaSerie n < 0.5</pre>
-- La comprobación es
     ghci> quickCheck prop SumaSerie
     +++ OK, passed 100 tests.
__ ______
-- Ejercicio 2. La sombra de un número x es el que se obtiene borrando
-- las cifras de x que ocupan lugares impares (empezando a contar en
-- 0). Por ejemplo, la sombra de 123 es 13 ya que borrando el 2, que
-- ocupa la posición 1, se obtiene el 13.
-- Definir la función
     sombra :: Int -> Int
-- tal que (sombra x) es la sombra de x. Por ejemplo,
     sombra 93245368790412345 == 925670135
     sombra 4736
                             == 43
     sombra 473
                            == 43
     sombra 47
     sombra 4
-- 1º definición (por comprensión)
sombra :: Int -> Int
sombra n = read [x | (x,n) <- zip (show n) [0..], even n]
```

```
-- 2ª definición (por recursión)
sombra2 :: Int -> Int
sombra2 n = read (elementosEnPares (show n))
-- (elementosEnPares xs) es la lita de los elementos de xs en posiciones
-- pares. Por ejemplo,
     elementosEnPares [4,7,3,6] == [4,3]
     elementosEnPares [4,7,3] = [4,3]
     elementosEnPares [4,7]
                             == [4]
     elementosEnPares [4]
                            == [4]
     elementosEnPares []
                             == []
elementosEnPares :: [a] -> [a]
elementosEnPares (x:y:zs) = x : elementosEnPares zs
elementosEnPares xs
                   = xs
__ ______
-- Ejercicio 3. Definir la función
     cerosDelFactorial :: Integer -> Integer
-- tal que (cerosDelFactorial n) es el número de ceros en que termina el
-- factorial de n. Por ejemplo,
    cerosDelFactorial 24 == 4
     cerosDelFactorial 25 == 6
__ ______
-- 1º definición
-- =========
cerosDelFactorial1 :: Integer -> Integer
cerosDelFactorial1 n = ceros (factorial n)
-- (factorial n) es el factorial n. Por ejemplo,
     factorial 3 == 6
factorial :: Integer -> Integer
factorial n = product [1..n]
-- (ceros n) es el número de ceros en los que termina el número n. Por
-- ejemplo,
    ceros 320000 == 4
ceros :: Integer -> Integer
ceros n | rem n 10 /= 0 = 0
```

```
| otherwise = 1 + ceros (div n 10)
-- 2º definición
-- ==========
cerosDelFactorial2 :: Integer -> Integer
cerosDelFactorial2 n \mid n < 5 = 0
                   | otherwise = m + cerosDelFactorial2 m
 where m = n 'div' 5
-- Comparación de la eficiencia
     ghci> cerosDelFactorial1 (3*10^4)
     7498
     (3.96 secs, 1,252,876,376 bytes)
     ghci> cerosDelFactorial2 (3*10^4)
     7498
     (0.03 secs, 9,198,896 bytes)
-- Ejercicio 4. Definir la función
     todosDistintos :: Eq a => [a] -> Bool
-- tal que (todosDistintos xs) se verifica si todos los elementos de xs
-- son distintos. Por ejemplo,
     todosDistintos [2,3,5,7,9]
                               == True
     todosDistintos [2,3,5,7,9,3] == False
     todosDistintos "Betis"
                               == True
     todosDistintos "Sevilla"
                               == False
todosDistintos :: Eq a => [a] -> Bool
todosDistintos [] = True
todosDistintos (x:xs) = x 'notElem' xs && todosDistintos xs
```

9.4.2. Examen 2 (29 de noviembre de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 2º examen de evaluación continua (29 de noviembre de 2017)
```

-- Nota: La puntuación de cada ejercicio es 2.5 puntos.

```
-- § Librerías
import Data.List
-- Ejercicio 1. Definir la función
     biparticiones :: Integer -> [(Integer,Integer)]
-- tal que (biparticiones n) es la lista de pares de números formados
-- por las primeras cifras de n y las restantes. Por ejemplo,
     biparticiones 2025 = [(202,5),(20,25),(2,25)]
     biparticiones 10000 = [(1000,0),(100,0),(10,0),(1,0)]
-- 1ª solución
-- ========
biparticiones1 :: Integer -> [(Integer,Integer)]
biparticiones1 x = [(read y, read z) | (y,z) <- biparticionesL1 xs]
 where xs = show x
-- (biparticionesL1 xs) es la lista de los pares formados por los
-- prefijos no vacío de xs y su resto. Por ejemplo,
     biparticionesL1 "2025" == [("2","025"),("20","25"),("202","5")]
biparticionesL1 :: [a] -> [([a],[a])]
biparticionesL1 xs = [splitAt \ k \ xs \mid k < - [1..length \ xs - 1]]
-- 2ª solución
-- =========
biparticiones2 :: Integer -> [(Integer,Integer)]
biparticiones2 x = [(read y, read z) | (y,z) <- biparticionesL2 xs]
 where xs = show x
-- (biparticionesL2 xs) es la lista de los pares formados por los
-- prefijos no vacío de xs y su resto. Por ejemplo,
     biparticionesL2 "2025" == [("2","025"),("20","25"),("202","5")]
biparticionesL2 :: [a] -> [([a],[a])]
biparticionesL2 xs =
 takeWhile (not . null . snd) [splitAt n xs | n <- [1..]]
-- 3º solución
```

```
-- ========
biparticiones3 :: Integer -> [(Integer,Integer)]
biparticiones3 a =
  takeWhile ((>0) . fst) [divMod a (10^n) | n <- [1..]]
-- 4ª solución
-- =========
biparticiones4 :: Integer -> [(Integer,Integer)]
biparticiones4 n =
  [quotRem n (10^x) \mid x < [1..length (show n) -1]]
-- 5ª solución
-- ========
biparticiones5 :: Integer -> [(Integer,Integer)]
biparticiones5 n =
 takeWhile (/= (0,n)) [divMod n (10^x) | x <- [1..]]
-- Comparación de eficiencia
ghci> numero n = (read (replicate n '2')) :: Integer
      (0.00 secs, 0 bytes)
- -
      ghci> length (biparticiones1 (numero 10000))
      9999
      (0.03 secs, 10,753,192 bytes)
      ghci> length (biparticiones2 (numero 10000))
- -
      9999
      (1.89 secs, 6,410,513,136 bytes)
      ghci> length (biparticiones3 (numero 10000))
- -
      9999
      (0.54 secs, 152,777,680 bytes)
      ghci> length (biparticiones4 (numero 10000))
      9999
- -
      (0.01 secs, 7,382,816 bytes)
- -
      ghci> length (biparticiones5 (numero 10000))
      9999
- -
      (2.11 secs, 152,131,136 bytes)
      ghci> length (biparticiones1 (numero (10^7)))
     9999999
- -
```

```
(14.23 secs, 10,401,100,848 bytes)
     ghci> length (biparticiones4 (numero (10^7)))
- -
     9999999
     (11.43 secs, 7,361,097,856 bytes)
-- Ejercicio 2. Definir la función
     producto :: [[a]] -> [[a]]
-- tal que (producto xss) es el producto cartesiano de los conjuntos
-- xss. Por ejemplo,
     ghci> producto [[1,3],[2,5]]
     [[1,2],[1,5],[3,2],[3,5]]
     ghci> producto [[1,3],[2,5],[6,4]]
     [[1,2,6],[1,2,4],[1,5,6],[1,5,4],[3,2,6],[3,2,4],[3,5,6],[3,5,4]]
     ghci> producto [[1,3,5],[2,4]]
     [[1,2],[1,4],[3,2],[3,4],[5,2],[5,4]]
     ghci> producto []
     [[]]
-- 1ª solución
producto :: [[a]] -> [[a]]
producto []
             = [[]]
producto (xs:xss) = [x:ys | x <- xs, ys <- producto xss]</pre>
-- 2ª solución
producto2 :: [[a]] -> [[a]]
producto2 = foldr f [[]]
 where f xs xss = [x:ys \mid x <- xs, ys <- xss]
-- 3ª solución
producto3 :: [[a]] -> [[a]]
producto3 = foldr aux [[]]
 where aux [] = []
       aux (x:xs) ys = map (x:) ys ++ aux xs ys
-- Ejercicio 3. Los árboles binarios con valores enteros se pueden
-- representar con el tipo de dato algebraico
     data Arbol = H
               | N a Arbol Arbol
-- Por ejemplo, los árboles
         3
```

```
/\
      1 3 5
                      6 4 10
                        9
                           1
-- se representan por
     ej1, ej2 :: Arbol
      ej1 = N 3 (N 2 (N 1 H H) (N 3 H H)) (N 4 H (N 5 H H))
      ej2 = N 7 (N 5 (N 6 H H) (N 4 (N 9 H H) H)) (N 8 H (N 10 (N 1 H H) H))
-- Definir la función
      suma :: Arbol -> Int
-- tal que (suma a) es la suma de todos los nodos a una distancia par
-- de la raíz del árbol a menos la suma de todos los nodos a una
-- distancia impar de la raíz. Por ejemplo,
      suma ei1 == 6
      suma ej2 == 4
-- ya que
      (3 + 1+3+5) - (2+4)
      (7 + 6+4+10) - (5+8 + 9+1) = 4
data Arbol = H
          | N Int Arbol Arbol
ej1, ej2 :: Arbol
ej1 = N 3 (N 2 (N 1 H H) (N 3 H H)) (N 4 H (N 5 H H))
ej2 = N 7 (N 5 (N 6 H H) (N 4 (N 9 H H) H)) (N 8 H (N 10 (N 1 H H) H))
suma :: Arbol -> Int
             = 0
suma H
suma (N \times i d) = x - suma i - suma d
-- Ejercicio 4. Definir la función
      cercano :: (a -> Bool) -> Int -> [a] -> Maybe a
-- tal que (cercano p n xs) es el elemento de xs más cercano a n que
-- verifica la propiedad p. La búsqueda comienza en n y los elementos se
-- analizan en el siguiente orden: n, n+1, n-1, n+2, n-2,... Por ejemplo,
      cercano ('elem' "aeiou") 6 "Sevilla"
                                             == Just 'a'
      cercano ('elem' "aeiou") 1 "Sevilla"
                                             == Just 'e'
     cercano ('elem' "aeiou") 2 "Sevilla" == Just 'i'
```

```
cercano ('elem' "aeiou") 5 "Sevilla"
                                              == Just 'a'
                                              == Just 'a'
      cercano ('elem' "aeiou") 9 "Sevilla"
- -
      cercano ('elem' "aeiou") (-3) "Sevilla"
                                              == Just 'e'
- -
      cercano ('elem' "obcd") 1 "Sevilla"
                                             == Nothing
      cercano (>100) 4 [200,1,150,2,4]
                                              == Just 150
      cercano even 5 [1,3..99]
                                              == Nothing
      cercano even 2 [1,4,6,8,0]
                                              == Just 6
     cercano even 2[1,4,7,8,0]
                                              == Just 8
     cercano even 2[1,4,7,5,0]
                                              == Just 4
      cercano even 2[1,3,7,5,0]
                                              == Just 0
-- 1ª solución
-- =========
cercano :: (a -> Bool) -> Int -> [a] -> Maybe a
cercano p n xs | null ys = Nothing
              | otherwise = Just (head ys)
    where ys = filter p (ordenaPorCercanos xs n)
-- (ordenaPorCercanos xs n) es la lista de los elementos de xs que
-- ocupan las posiciones n, n+1, n-1, n+2, n-2... Por ejemplo,
      ordenaPorCercanos [0..9] 4 == [4,5,3,6,2,7,1,8,0,9]
      ordenaPorCercanos [0..9] 7
                                  == [7,8,6,9,5,4,3,2,1,0]
     ordenaPorCercanos [0..9] 2 == [2,3,1,4,0,5,6,7,8,9]
      ordenaPorCercanos [0..9] (-3) == [0,1,2,3,4,5,6,7,8,9]
      ordenaPorCercanos [0..9] 20 == [9,8,7,6,5,4,3,2,1,0]
ordenaPorCercanos :: [a] -> Int -> [a]
ordenaPorCercanos xs n
    | n < 0
                    = xs
    | n >= length xs = reverse xs
    | otherwise = z : intercala zs (reverse ys)
   where (ys,(z:zs)) = splitAt n xs
-- (intercala xs ys) es la lista obtenida intercalando los elementos de
-- las lista xs e ys. Por ejemplo,
      intercala [1..4] [5..10] == [1,5,2,6,3,7,4,8,9,10]
      intercala [5..10] [1..4] == [5,1,6,2,7,3,8,4,9,10]
intercala :: [a] -> [a] -> [a]
intercala [] ys
                      = ys
intercala xs []
                      = xs
intercala (x:xs) (y:ys) = x : y : intercala xs ys
```

9.4.3. Examen 3 (30 de enero de 2018)

```
-- Informática (1º del Grado en Matemáticas, Grupos 4 y 5)
-- 3º examen de evaluación continua (30 de enero de 2018)
-- § Librerías auxiliares
import Data.Char
import Data.List
-- Ejercicio 1. Definir la función
     alternadas :: String -> (String, String)
-- tal que (alternadas cs) es el par de cadenas (xs,ys) donde xs es la
-- cadena obtenida escribiendo alternativamente en mayúscula o minúscula
-- las letras de la palabra cs (que se supone que es una cadena de
-- letras minúsculas) e ys se obtiene análogamente pero empezando en
-- minúscula. Por ejemplo,
     λ> alternadas "salamandra"
     ("SaLaMaNdRa", "sAlAmAnDrA")
     λ> alternadas "solosequenosenada"
     ("SoLoSeQuEnOsEnAdA", "sOlOsEqUeNoSeNaDa")
     λ> alternadas (replicate 30 'a')
     -- 1ª solución
alternadas :: String -> (String, String)
alternadas [] = ([],[])
alternadas (x:xs) = (toUpper x : zs, x : ys)
 where (ys,zs) = alternadas xs
```

```
-- 2ª solución
alternadas2 :: String -> (String,String)
alternadas2 xs =
  ( [f x | (f,x) <- zip (cycle [toUpper,id]) xs]
  , [f x | (f,x) <- zip (cycle [id,toUpper]) xs]</pre>
-- 3ª solución
alternadas3 :: String -> (String,String)
alternadas3 xs =
  ( zipWith ($) (cycle [toUpper,id]) xs
  , zipWith ($) (cycle [id,toUpper]) xs
  )
-- Ejercicio 2. Definir la función
      biparticiones :: Integer -> [(Integer,Integer)]
-- tal que (biparticiones n) es la lista de pares de números formados
-- por las primeras cifras de n y las restantes. Por ejemplo,
      biparticiones 2025 = [(202,5),(20,25),(2,25)]
      biparticiones 10000 = [(1000,0),(100,0),(10,0),(1,0)]
-- 1ª solución
-- =========
biparticiones :: Integer -> [(Integer,Integer)]
biparticiones x = [(read y, read z) | (y,z) <- biparticionesL1 xs]
 where xs = show x
-- (biparticionesL1 xs) es la lista de los pares formados por los
-- prefijos no vacío de xs y su resto. Por ejemplo,
      biparticionesL1 "2025" == [("2","025"),("20","25"),("202","5")]
biparticionesL1 :: [a] -> [([a],[a])]
biparticionesL1 xs = [splitAt k xs | k <- [1..length xs - 1]]</pre>
-- 2ª solución
-- =========
biparticiones2 :: Integer -> [(Integer,Integer)]
biparticiones2 x = [(read y, read z) | (y,z) <- biparticionesL2 xs]
 where xs = show x
```

```
-- (biparticionesL2 xs) es la lista de los pares formados por los
-- prefijos no vacío de xs y su resto. Por ejemplo,
      biparticionesL2 "2025" == [("2","025"),("20","25"),("202","5")]
biparticionesL2 :: [a] -> [([a],[a])]
biparticionesL2 xs =
  takeWhile (not . null . snd) [splitAt n xs | n <- [1..]]
-- 3º solución
-- ========
biparticiones3 :: Integer -> [(Integer,Integer)]
biparticiones3 a =
 takeWhile ((>0) . fst) [divMod a (10^n) | n <- [1..]]
-- 4º solución
-- ========
biparticiones4 :: Integer -> [(Integer,Integer)]
biparticiones4 n =
  [quotRem n (10^x) \mid x < [1..length (show n) -1]]
-- 5ª solución
-- ========
biparticiones5 :: Integer -> [(Integer,Integer)]
biparticiones5 n =
 takeWhile (/= (0,n)) [divMod n (10^x) | x <- [1..]]
-- Comparación de eficiencia
\lambda> numero n = (read (replicate n '2')) :: Integer
      (0.00 secs, 0 bytes)
      λ> length (biparticiones (numero 10000))
      (0.03 secs, 10,753,192 bytes)
     λ> length (biparticiones2 (numero 10000))
- -
      9999
      (1.89 secs, 6,410,513,136 bytes)
     λ> length (biparticiones3 (numero 10000))
      9999
      (0.54 secs, 152,777,680 bytes)
     λ> length (biparticiones4 (numero 10000))
- -
```

```
9999
      (0.01 secs, 7,382,816 bytes)
      λ> length (biparticiones5 (numero 10000))
      9999
      (2.11 secs, 152,131,136 bytes)
      \lambda> length (biparticiones1 (numero (10^7)))
      9999999
      (14.23 secs, 10,401,100,848 bytes)
      \lambda> length (biparticiones4 (numero (10^7)))
      9999999
      (11.43 secs, 7,361,097,856 bytes)
-- Ejercicio 3.1. Un número x es construible a partir de a y b si se
-- puede escribir como una suma cuyos sumandos son a o b (donde se
-- supone que a y b son números enteros mayores que 0). Por ejemplo, 7 y
-- 9 son construibles a partir de 2 y 3 ya que 7 = 2+2+3 y 9 = 3+3+3.
-- Definir la función
      construibles :: Integer -> Integer -> [Integer]
-- tal que (construibles a b) es la lista de los números construibles a
-- partir de a y b. Por ejemplo,
     take 5 (construibles 2 9) == [2,4,6,8,9]
      take 5 (construibles 6 4) == [4,6,8,10,12]
      take 5 (construibles 9 7) == [7,9,14,16,18]
-- 1º definición
construibles :: Integer -> Integer -> [Integer]
construibles a b = tail aux
  where aux = 0: mezcla[a + x | x <- aux]
                         [b + x \mid x < -aux]
mezcla :: [Integer] -> [Integer] -> [Integer]
mezcla p@(x:xs) q@(y:ys) | x < y
                                    = x : mezcla xs q
                                   = y : mezcla p ys
                         | x > y
                         | otherwise = x : mezcla xs ys
mezcla []
                                     = ys
                ys
mezcla xs
                []
                                     = xs
-- 2ª definición
construibles2 :: Integer -> Integer -> [Integer]
```

```
construibles2 a b = filter (esConstruible2 a b) [1..]
-- Comparación de eficiencia
     λ> construibles 2 9 !! 2000
     2005
     (0.02 secs, 1,133,464 bytes)
     λ> construibles2 2 9 !! 2000
     2005
     (3.70 secs, 639,138,544 bytes)
-- Ejercicio 3.2. Definir la función
     esConstruible :: Integer -> Integer -> Bool
-- tal que (esConstruible a b x) se verifica si x es construible a
-- partir de a y b. Por ejemplo,
     esConstruible 2 3 7 == True
     esConstruible 9 7 15 == False
-- 1º definición
esConstruible :: Integer -> Integer -> Bool
esConstruible a b x = x == y
 where (y:) = dropWhile (<x) (construibles a b)
-- 2ª definición
esConstruible2 :: Integer -> Integer -> Bool
esConstruible2 a b = aux
 where aux x
         | x < a \&\& x < b = False
          | otherwise = x == a || x == b || aux (x-a) || aux (x-b)
-- Ejercicio 4. Los árboles binarios con valores en las hojas y en los
-- nodos se definen por
     data Arbola = Ha
                  | N a (Arbol a) (Arbol a)
       deriving (Eq, Show)
-- Por ejemplo, el árbol
           10
          /
        8
```

```
/ \
             /\
       3 5 2
-- se pueden representar por
      ejArbol :: Arbol Int
      ejArbol = N 10 (N 8 (H 3) (H 5))
                     (N 2 (H 2) (H 0))
-- Un árbol cumple la propiedad de la suma si el valor de cada nodo es
-- igual a la suma de los valores de sus hijos. Por ejemplo, el árbol
-- anterior cumple la propiedad de la suma.
-- Definir la función
      propSuma :: Arbol Int -> Bool
-- tal que (propSuma a) se verifica si el árbol a cumple la propiedad de
-- la suma. Por ejemplo,
      \lambda> propSuma (N 10 (N 8 (H 3) (H 5)) (N 2 (H 2) (H 0)))
      \lambda> propSuma (N 10 (N 8 (H 4) (H 5)) (N 2 (H 2) (H 0)))
      False
      \lambda> propSuma (N 10 (N 8 (H 3) (H 5)) (N 2 (H 2) (H 1)))
data Arbol a = H a
             | N a (Arbol a) (Arbol a)
  deriving Show
ejArbol :: Arbol Int
ejArbol = N 10 (N 8 (H 3) (H 5))
               (N 2 (H 2) (H 0))
propSuma :: Arbol Int -> Bool
propSuma (H _) = True
propSuma (N x i d) = x == raiz i + raiz d && propSuma i && propSuma d
raiz :: Arbol Int -> Int
raiz (H x) = x
raiz (N \times \_ \_) = x
```

9.4.4. Examen 4 (14 de marzo de 2018)

```
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 4º examen de evaluación continua (14 de marzo de 2018)
-- § Librerías
import Data.List
import Data.Matrix
import Test.QuickCheck
import Graphics.Gnuplot.Simple
import Data. Function
-- Eiercicio 1.1. Definir la función
     menorPotencia :: Integer -> (Integer,Integer)
-- tal que (menorPotencia n) es el par (k,m) donde m es la menor
-- potencia de 2 que empieza por n y k es su exponentes (es decir,
-- 2^k = m). Por ejemplo,
     menorPotencia 3
                                == (5,32)
     menorPotencia 7
                                == (46,70368744177664)
     fst (menorPotencia 982)
                               == 3973
     fst (menorPotencia 32627)
                                == 28557
     fst (menorPotencia 158426) == 40000
-- 1ª definición
-- =========
menorPotencia :: Integer -> (Integer,Integer)
menorPotencia n =
 head [(k,m) \mid (k,m) \leftarrow zip [0..] potenciasDe2
             , cs 'isPrefixOf' show m]
 where cs = show n
-- potenciasDe 2 es la lista de las potencias de dos. Por ejemplo,
     take 12 potenciasDe2 == [1,2,4,8,16,32,64,128,256,512,1024,2048]
potenciasDe2 :: [Integer]
potenciasDe2 = iterate (*2) 1
```

```
-- 2ª definición
-- ==========
menorPotencia2 :: Integer -> (Integer,Integer)
menorPotencia2 n = aux (0,1)
 where aux (k,m) | cs 'isPrefixOf' show m = (k,m)
                                            = aux (k+1,2*m)
                  | otherwise
        cs = show n
-- 3º definición
-- =========
menorPotencia3 :: Integer -> (Integer,Integer)
menorPotencia3 n =
  until (isPrefixOf n1 . show . snd) (\((x,y) -> (x+1,2*y)) (0,1)
 where n1 = show n
-- Comparación de eficiencia
      \lambda> maximum [fst (menorPotencia n) | n <- [1..1000]]
      3973
      (3.69 secs, 1,094,923,696 bytes)
      \lambda> maximum [fst (menorPotencia2 n) | n <- [1..1000]]
      3973
      (5.13 secs, 1,326,382,872 bytes)
      \lambda> maximum [fst (menorPotencia3 n) | n <- [1..1000]]
      3973
      (4.71 secs, 1,240,498,128 bytes)
-- Ejercicio 1.2. Definir la función
      graficaMenoresExponentes :: Integer -> IO ()
-- tal que (graficaMenoresExponentes n) dibuja la gráfica de los
-- exponentes de 2 en las menores potencias de los n primeros números
-- enteros positivos.
graficaMenoresExponentes :: Integer -> IO ()
graficaMenoresExponentes n =
  plotList [ Key Nothing
           , PNG "Menor_potencia_de_2_que_comienza_por_n.png"
           1
```

```
(map (fst . menorPotencia) [1..n])
-- Ejercicio 2. Definir la función
     raizEnt :: Integer -> Integer
-- tal que (raizEnt x n) es la raíz entera n-ésima de x; es decir, el
-- mayor número entero y tal que y^n <= x. Por ejemplo,
     raizEnt 8 3
                          2
     raizEnt 9 3
     raizEnt 26 3
                      == 2
     raizEnt 27 3
                      == 3
     -- Comprobar con QuickCheck que para todo número natural n,
      raizEnt (10^{(2*n)}) 2 == 10^n
  -----
-- 1º definición
raizEnt1 :: Integer -> Integer -> Integer
raizEnt1 \times n =
 last (takeWhile (\y -> y^n \le x) [0..])
-- 2ª definición
raizEnt2 :: Integer -> Integer -> Integer
raizEnt2 \times n =
 floor ((fromIntegral x)**(1 / fromIntegral n))
-- Nota. La definición anterior falla para números grandes. Por ejemplo,
     \lambda> raizEnt2 (10^50) 2 == 10^25
     False
-- 3ª definición
raizEnt3 :: Integer -> Integer -> Integer
raizEnt3 x n = aux (1,x)
 where aux (a,b) \mid d == x = c
                 | c == a
                           = C
                 | d < x = aux (c,b)
                 | otherwise = aux (a,c)
         where c = (a+b) 'div' 2
               d = c^n
-- Comparación de eficiencia
     \lambda> raizEnt1 (10^14) 2
```

```
10000000
      (6.15 secs, 6,539,367,976 bytes)
- -
      \lambda> raizEnt2 (10^14) 2
      10000000
      (0.00 secs, 0 bytes)
      \lambda> raizEnt3 (10^14) 2
      10000000
      (0.00 secs, 25,871,944 bytes)
      \lambda> raizEnt2 (10<sup>50</sup>) 2
      99999999999998758486016
      (0.00 secs, 0 bytes)
      \lambda> raizEnt3 (10<sup>50</sup>) 2
      (0.00 secs, 0 bytes)
-- La propiedad es
prop raizEnt :: (Positive Integer) -> Bool
prop raizEnt (Positive n) =
  raizEnt3 (10^{(2*n)}) 2 == 10^n
-- La comprobación es
      λ> quickCheck prop raizEnt
      +++ OK, passed 100 tests.
-- Ejercicio 3. Los árboles se pueden representar mediante el siguiente
-- tipo de datos
      data Arbol a = N a [Arbol a]
                      deriving Show
-- Por ejemplo, los árboles
        1
                         3
       / \
                        /|\
      2
          3
                       / | \
                      5 4 7
          4
                           /|\setminus
                          2 8 6
  se representan por
      ejArbol1, ejArbol2 :: Arbol Int
      ejArbol1 = N 1 [N 2 [], N 3 [N 4 []]]
      ejArbol2 = N 3 [N 5 [N 6 []],
                       N 4 [],
                       N 7 [N 2 [], N 8 [], N 6 []]]
```

```
-- Definir la función
      nodosSumaMaxima :: (Num t, Ord t) => Arbol t -> [t]
-- tal que (nodosSumaMaxima a) es la lista de los nodos del
-- árbol a cuyos hijos tienen máxima suma. Por ejemplo,
      nodosSumaMaxima ejArbol1 == [1]
      nodosSumaMaxima ejArbol2 == [7,3]
data Arbol a = N a [Arbol a]
  deriving Show
ejArbol1, ejArbol2 :: Arbol Int
ejArbol1 = N 1 [N 2 [], N 3 [N 4 []]]
ejArbol2 = N 3 [N 5 [N 6 []],
                N 4 [],
                N 7 [N 2 [], N 8 [], N 6 []]]
-- 1ª solución
-- ========
nodosSumaMaxima :: (Num t, Ord t) => Arbol t -> [t]
nodosSumaMaxima a =
  [x \mid (s,x) < -ns, s == m]
  where ns = reverse (sort (nodosSumas a))
        m = fst (head ns)
-- (nodosSumas x) es la lista de los pares (s,n) donde n es un nodo del
-- árbol x y s es la suma de sus hijos. Por ejemplo,
      λ> nodosSumas ejArbol1
      [(5,1),(0,2),(4,3),(0,4)]
      λ> nodosSumas ejArbol2
      [(16,3),(6,5),(0,6),(0,4),(16,7),(0,2),(0,8),(0,6)]
nodosSumas :: Num t => Arbol t -> [(t,t)]
nodosSumas (N \times []) = [(0,x)]
nodosSumas (N x as) = (sum (raices as),x) : concatMap nodosSumas as
-- (raices b) es la lista de las raíces del bosque b. Por ejemplo,
      raices [ejArbol1,ejArbol2] == [1,3]
raices :: [Arbol t] -> [t]
raices = map raiz
-- (raiz a) es la raíz del árbol a. Por ejemplo,
```

```
raiz ejArbol1 == 1
      raiz ejArbol2 ==
raiz :: Arbol t -> t
raiz (N x) = x
-- 2ª solución
-- ========
nodosSumaMaxima2 :: (Num t, Ord t) => Arbol t -> [t]
nodosSumaMaxima2 a =
  [x | (s,x) < -ns, s == m]
 where ns = sort (nodos0pSumas a)
        m = fst (head ns)
-- (nodosOpSumas x) es la lista de los pares (s,n) donde n es un nodo del
-- árbol x y s es el opuesto de la suma de sus hijos. Por ejemplo,
      λ> nodosOpSumas ejArbol1
      [(-5,1),(0,2),(-4,3),(0,4)]
      λ> nodosOpSumas ejArbol2
      [(-16,3),(-6,5),(0,6),(0,4),(-16,7),(0,2),(0,8),(0,6)]
nodosOpSumas :: Num t => Arbol t -> [(t,t)]
nodosOpSumas (N x []) = [(0,x)]
nodosOpSumas (N \times as) = (-sum (raices as),x) : concatMap nodosOpSumas as
-- 3ª solución
-- ========
nodosSumaMaxima3 :: (Num t, Ord t) => Arbol t -> [t]
nodosSumaMaxima3 a =
  [x \mid (s,x) < -ns, s == m]
 where ns = sort (nodos0pSumas a)
        m = fst (head ns)
-- 4ª solución
-- =========
nodosSumaMaxima4 :: (Num t, Ord t) => Arbol t -> [t]
nodosSumaMaxima4 a =
  map snd (head (groupBy (p q \rightarrow fst p == fst q)
                         (sort (nodosOpSumas a))))
-- 5º solución
```

```
-- ========
nodosSumaMaxima5 :: (Num t, Ord t) => Arbol t -> [t]
nodosSumaMaxima5 a =
 map snd (head (groupBy ((==) 'on' fst)
                       (sort (nodos0pSumas a))))
-- 6º solución
-- ========
nodosSumaMaxima6 :: (Num t, Ord t) => Arbol t -> [t]
nodosSumaMaxima6 =
 map snd
  . head
  . groupBy ((==) 'on' fst)
 . sort
  . nodos0pSumas
-- Ejercicio 4. Definir la función
     ampliaMatriz :: Matrix a -> Int -> Int -> Matrix a
-- tal que (ampliaMatriz p f c) es la matriz obtenida a partir de p
-- repitiendo cada fila f veces y cada columna c veces. Por ejemplo, si
-- ejMatriz es la matriz definida por
     ejMatriz :: Matrix Char
     ejMatriz = fromLists [" x ",
                          "x x",
                          " x "]
-- entonces
     λ> ampliaMatriz ejMatriz 1 2
     ( ' ' ' ' ' X' 'X' ' ' ' ' )
     ( 'x' 'x' ' ' ' ' 'x' 'x' )
     ('''x''x''x'')
     λ> (putStr . unlines . toLists) (ampliaMatriz ejMatriz 1 2)
       XX
- -
     XX XX
- -
       XX
     λ> (putStr . unlines . toLists) (ampliaMatriz ejMatriz 2 1)
      Χ
      Χ
     X
     ХХ
```

```
- -
       Х
- -
       Χ
      λ> (putStr . unlines . toLists) (ampliaMatriz ejMatriz 2 2)
        XX
        XX
      XX XX
      XX XX
- -
        XX
        XX
      λ> (putStr . unlines . toLists) (ampliaMatriz ejMatriz 2 3)
         XXX
- -
         XXX
      XXX
            XXX
      XXX
            XXX
         XXX
         XXX
ejMatriz :: Matrix Char
ejMatriz = fromLists [" x ",
                      "x x",
                       " x "]
-- lª definición
-- =========
ampliaMatriz :: Matrix a -> Int -> Int -> Matrix a
ampliaMatriz p f c =
  ampliaColumnas (ampliaFilas p f) c
ampliaFilas :: Matrix a -> Int -> Matrix a
ampliaFilas p f =
 matrix (f*m) n ((i,j) \rightarrow p!(1 + (i-1) 'div' f, j))
 where m = nrows p
        n = ncols p
ampliaColumnas :: Matrix a -> Int -> Matrix a
ampliaColumnas p c =
  matrix m (c*n) ((i,j) \rightarrow p!(i,1 + (j-1) 'div' c))
 where m = nrows p
        n = ncols p
-- 2ª definición
```

```
-- =========
ampliaMatriz2 :: Matrix a -> Int -> Int -> Matrix a
ampliaMatriz2 p f c =
  ( fromLists
  . concatMap (map (concatMap (replicate c)) . replicate f)
  . toLists) p
-- Comparación de eficiencia
- - =============
ejemplo :: Int -> Matrix Int
ejemplo n = fromList n n [1..]
     λ> maximum (ampliaMatriz (ejemplo 10) 100 200)
     100
- -
     (6.44 secs, 1,012,985,584 bytes)
     λ> maximum (ampliaMatriz2 (ejemplo 10) 100 200)
     100
     (2.38 secs, 618,096,904 bytes)
        Examen 5 (2 de mayo de 2018)
9.4.5.
-- Informática (1º del Grado en Matemáticas, Grupo 4)
-- 5º examen de evaluación continua (2 de mayo de 2018)
-- § Librerías
import Data.List
import Data.Numbers.Primes
import Data.Array
import I1M.PolOperaciones
import qualified Data. Map as M
__ _______
-- Ejercicio 1. Se considera una enumeración de los números primos:
      p(1) = 2, p(2) = 3, p(3) = 5, p(4) = 7, p(5) = 11, ...
```

```
-- Dado un entero x > 1, su altura prima es el mayor i tal que el
-- primo p(i) aparece en la factorización de x en números primos. Por
-- ejemplo, la altura prima de 3500 es 4, pues 3500=2^2*5^3*7^1 y la de
-- 34 tiene es 7, pues 34 = 2*17. Ademas, la altura prima de 1 es 0.
-- Definir la función
      alturasPrimas
                         :: Integer -> [Integer]
-- tal que (alturasPrimas n) es la lista de las alturas primas de los
-- primeros n números enteros positivos. Por ejemplo,
      alturasPrimas 15 == [0,1,2,1,3,2,4,1,2,3,5,2,6,4,3]
     maximum (alturasPrimas 10000) == 1229
     maximum (alturasPrimas 20000) == 2262
-- 1º definición
-- ==========
alturasPrimas :: Integer -> [Integer]
alturasPrimas n = map alturaPrima [1..n]
-- (alturaPrima x) es la altura prima de x. Por ejemplo,
      alturaPrima 3500 == 4
      alturaPrima 34
alturaPrima :: Integer -> Integer
alturaPrima 1 = 0
alturaPrima n = indice (mayorFactorPrimo n)
-- (mayorFactorPrimo n) es el mayor factor primo de n. Por ejemplo,
     mayorFactorPrimo 3500 == 7
     mayorFactorPrimo 34
mayorFactorPrimo :: Integer -> Integer
mayorFactorPrimo = last . primeFactors
-- (indice p) es el índice de p en la sucesión de los números
-- primos. Por ejemplo,
      indice 7 == 4
      indice 17 == 7
indice :: Integer -> Integer
indice p = genericLength (takeWhile (<=p) primes)</pre>
-- 2ª definición
-- ==========
```

```
alturasPrimas2 :: Integer -> [Integer]
alturasPrimas2 n = map alturaPrima2 [1..n]
alturaPrima2 :: Integer -> Integer
alturaPrima2 n = v ! n
 where v = array(1,n)[(i,fi) | i <- [1..n]]
       f 1 = 0
        f k | isPrime k = indice2 k
            | otherwise = v ! k 'div' head (primeFactors k)
indice2 :: Integer -> Integer
indice2 p = head [n \mid (x,n) < - indicesPrimos, x == p]
-- indicesPrimos es la suceción formada por los números primos y sus
-- índices. Por ejemplo,
     λ> take 10 indicesPrimos
     [(2,1),(3,2),(5,3),(7,4),(11,5),(13,6),(17,7),(19,8),(23,9),(29,10)]
indicesPrimos :: [(Integer,Integer)]
indicesPrimos = zip primes [1..]
-- 3º definición
-- ==========
alturasPrimas3 :: Integer -> [Integer]
alturasPrimas3 n = elems v
 where v = array(1,n)[(i,fi) | i <- [1..n]]
       f 1 = 0
       f k | isPrime k = indice2 k
            | otherwise = v ! k 'div' head (primeFactors k)
-- Comparación de eficiencia
λ> maximum (alturasPrimas 5000)
      (2.30 secs, 1,136,533,912 bytes)
     λ> maximum (alturasPrimas2 5000)
     669
      (12.51 secs, 3,595,318,584 bytes)
     λ> maximum (alturasPrimas3 5000)
     669
      (0.27 secs, 75,110,896 bytes)
```

```
-- Ejercicio 2. Una partición prima de un número natural n es un
-- conjunto de primos cuya suma es n. Por ejemplo, el número 7 tiene 7
-- particiones primas ya que
     7 = 7 = 5 + 2 = 3 + 2 + 2
-- Definir la función
     particiones :: Int -> [[Int]]
-- tal que (particiones n) es el conjunto de las particiones primas de
-- n. Por ejemplo,
     particiones 7
                               == [[7],[5,2],[3,2,2]]
     particiones 8
                               == [[5,3],[3,3,2],[2,2,2,2]]
     particiones 9
                             == [[7,2],[5,2,2],[3,3,3],[3,2,2,2]]
     length (particiones 90) == 20636
     length (particiones 100) == 40899
-- 1ª solución
-- ========
particiones1 :: Int -> [[Int]]
particiones 0 = [[]]
particiones1 n = [x:y \mid x < -xs]
                       y <- particiones1 (n-x),
                       [x] >= take 1 y]
 where xs = reverse (takeWhile (<= n) primes)
-- 2ª solución (con programación dinámica)
particiones2 :: Int -> [[Int]]
particiones2 n = vectorParticiones n ! n
-- (vectorParticiones n) es el vector con índices de 0 a n tal que el
-- valor del índice k es la lista de las particiones primas de k. Por
-- ejemplo,
     λ> mapM_ print (elems (vectorParticiones 9))
     [[]]
     []
- -
     [[2]]
     [[3]]
     [[2,2]]
- -
-- [[5],[3,2]]
```

```
[[3,3],[2,2,2]]
      [[7],[5,2],[3,2,2]]
- -
      [[5,3],[3,3,2],[2,2,2,2]]
      [[7,2],[5,2,2],[3,3,3],[3,2,2,2]]
      \lambda> elems (vectorParticiones 9) == map particiones1 [0..9]
      True
vectorParticiones :: Int -> Array Int [[Int]]
vectorParticiones n = v where
  v = array (0,n) [(i,f i) | i <- [0..n]]
    where f 0 = [[]]
          f m = [x:y \mid x < -xs]
                        y < - v ! (m-x),
                       [x] >= take 1 y]
            where xs = reverse (takeWhile (<= m) primes)
-- Comparación de eficiencia
- - =============
      \lambda> length (particiones1 35)
      175
      (5.88 secs, 2,264,266,040 bytes)
      λ> length (particiones2 35)
      175
      (0.02 secs, 1,521,560 bytes)
-- Ejercicio 3. Definir la función
      polDiagonal :: Array (Int,Int) Int -> Polinomio Int
-- tal que (polDiagonal p) es el polinomio cuyas raíces son los
-- elementos de la diagonal de la matriz cuadrada p. Por ejemplo,
      \lambda> polDiagonal (listArray ((1,1),(2,2)) [1..])
      x^2 + -5*x + 4
-- ya que los elementos de la diagonal son 1 y 4 y
      (x - 1) * (x - 4) = x^2 + -5*x + 4
-- Otros ejemplos
      \lambda > polDiagonal (listArray ((1,1),(3,4)) [-12,-11..1])
      x^3 + 21*x^2 + 122*x + 168
      \lambda> polDiagonal (listArray ((1,1),(4,3)) [-12,-11..1])
      x^3 + 24*x^2 + 176*x + 384
polDiagonal :: Array (Int, Int) Int -> Polinomio Int
polDiagonal m = multListaPol (map f (diagonal m))
```

```
where f a = consPol 1 1 (consPol 0 (-a) polCero)
-- (diagonal p) es la lista de los elementos de la diagonal de la matriz
-- p. Por ejemplo,
      diagonal (listArray ((1,1),(3,3)) [1..]) == [1,5,9]
diagonal :: Num a => Array (Int,Int) a -> [a]
diagonal p = [p ! (i,i) | i <- [1..min m n]]
    where (\_,(m,n)) = bounds p
-- (multListaPol ps) es el producto de los polinomios de la lista ps.
multListaPol :: [Polinomio Int] -> Polinomio Int
multListaPol []
                     = polUnidad
multListaPol (p:ps) = multPol p (multListaPol ps)
-- 2º definición de multListaPol
multListaPol2 :: [Polinomio Int] -> Polinomio Int
multListaPol2 = foldr multPol polUnidad
-- Ejercicio 4. El inverso de un diccionario d es el diccionario que a
-- cada valor x le asigna la lista de claves cuyo valor en d es x. Por
-- ejemplo, el inverso de
      [("a",3),("b",2),("c",3),("d",2),("e",1)])
- -
-- es
      [(1,["e"]),(2,["d","b"]),(3,["c","a"])]
- -
-- Definir la función
      inverso :: (Ord k, Ord v) \Rightarrow M.Map k v \rightarrow M.Map v [k]
-- tal que (inverso d) es el inverso del diccionario d. Por ejemplo,
      \lambda > inverso (M.fromList [("a",3),("b",2),("c",3),("d",2),("e",1)])
      fromList [(1,["e"]),(2,["d","b"]),(3,["c","a"])]
      \lambda> inverso (M.fromList [(x,x^2) | x <- [-3,-2..3]])
      fromList [(0,[0]),(1,[1,-1]),(4,[2,-2]),(9,[3,-3])]
-- lª definición
inverso :: (Ord k, Ord v) \Rightarrow M.Map k v \rightarrow M.Map v [k]
inverso d = M.fromListWith (++) [(y,[x]) | (x,y) <- M.assocs d]
-- 2º definición
inverso2 :: (Ord k, Ord v) \Rightarrow M.Map k v \rightarrow M.Map v [k]
inverso2 d
  | M.null d = M.empty
```

```
| otherwise = M.insertWith (++) y [x] (inverso2 e)
where ((x,y),e) = M.deleteFindMin d
```

9.4.6. Examen 6 (12 de junio de 2018)

```
-- Informática (1º del Grado en Matemáticas, Grupos 4 y 5)
-- 6º examen de evaluación continua (12 de junio de 2018)
-- Nota: La puntuación de cada ejercicio es 2.5 puntos.
-- § Librerías
import Data.List
import Data.Matrix
import I1M.PolOperaciones
import Test.QuickCheck
import qualified Data. Set as S
__ ______
-- Ejercicio 1.1. La sucesión de polinomios de Fibonacci se define por
     p(0) = 0
     p(1) = 1
     p(n) = x*p(n-1) + p(n-2)
-- Los primeros términos de la sucesión son
     p(2) = x
     p(3) = x^2 + 1
     p(4) = x^3 + 2*x
     p(5) = x^4 + 3*x^2 + 1
-- Definir la lista
     sucPolFib :: [Polinomio Integer]
-- tal que sus elementos son los polinomios de Fibonacci. Por ejemplo,
     λ> take 7 sucPolFib
     [0,1,1*x,x^2 + 1,x^3 + 2*x,x^4 + 3*x^2 + 1,x^5 + 4*x^3 + 3*x]
-- 1ª solución
-- =========
```

```
sucPolFib :: [Polinomio Integer]
sucPolFib = [polFibR n | n <- [0..]]
polFibR :: Integer -> Polinomio Integer
polFibR 0 = polCero
polFibR 1 = polUnidad
polFibR n =
 sumaPol (multPol (consPol 1 1 polCero) (polFibR (n-1)))
         (polFibR (n-2))
-- 2ª definición (dinámica)
sucPolFib2 :: [Polinomio Integer]
sucPolFib2 =
 polCero : polUnidad : zipWith f (tail sucPolFib2) sucPolFib2
 where f p = sumaPol (multPol (consPol 1 1 polCero) p)
-- Ejercicio 1.2. Comprobar con QuickCheck que el valor del n-ésimo
-- término de sucPolFib para x=1 es el n-ésimo término de la sucesión de
-- Fibonacci 0, 1, 1, 2, 3, 5, 8, ...
-- Nota. Limitar la búsqueda a ejemplos pequeños usando
     quickCheckWith (stdArgs {maxSize=5}) prop polFib
__ ______
prop polFib :: Integer -> Property
prop polFib n =
 n >= 0 ==> valor (polFib n) 1 == fib n
 where polFib n = sucPolFib2 'genericIndex' n
       fib n = fibs 'genericIndex' n
fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
-- La comprobación es
     ghci> quickCheckWith (stdArgs {maxSize=5}) prop_polFib
     +++ OK, passed 100 tests.
-- Ejercicio 2. Las expresiones aritméticas pueden representarse usando
-- el siguiente tipo de datos
```

```
data Expr = N Int | S Expr Expr | P Expr Expr
        deriving (Eq, Ord, Show)
-- Por ejemplo, la expresión 2*(3+7) se representa por
      P (N 2) (S (N 3) (N 7))
-- Definir la función
      subexpresiones :: Expr -> S.Set Expr
  tal que (subexpresiones e) es el conjunto de las subexpresiones de
   e. Por ejemplo,
      \lambda> subexpresiones (S (N 2) (N 3))
      fromList [N 2,N 3,S (N 2) (N 3)]
      \lambda> subexpresiones (P (S (N 2) (N 2)) (N 7))
      fromList [N 2,N 7,S (N 2) (N 2),P (S (N 2) (N 2)) (N 7)]
data Expr = N Int | S Expr Expr | P Expr Expr
  deriving (Eq, Ord, Show)
subexpresiones :: Expr -> S.Set Expr
subexpresiones (N x) = S.singleton (N x)
subexpresiones (S i d) =
  S i d 'S.insert' (subexpresiones i 'S.union' subexpresiones d)
subexpresiones (P i d) =
  P i d 'S.insert' (subexpresiones i 'S.union' subexpresiones d)
-- Ejercicio 3. El triángulo de Pascal es un triángulo de números
            1
           1 1
          1 2 1
        1 3 3 1
       1 4 6 4 1
      1 5 10 10 5 1
     . . . . . . . . . . . . . . . .
-- construido de la siguiente forma
-- + la primera fila está formada por el número 1;
-- + las filas siguientes se construyen sumando los números adyacentes
     de la fila superior y añadiendo un 1 al principio y al final de la
     fila.
- -
-- La matriz de Pascal es la matriz cuyas filas son los elementos de la
-- correspondiente fila del triángulo de Pascal completadas con
-- ceros. Por ejemplo, la matriz de Pascal de orden 6 es
```

```
|100000|
     |1 1 0 0 0 0 0 |
- -
     |1 2 1 0 0 0 |
     |1 3 3 1 0 0 |
     |1 4 6 4 1 0|
     |1 5 10 10 5 1|
-- Definir la función
     matrizPascal :: Int -> Matriz Int
-- tal que (matrizPascal n) es la matriz de Pascal de orden n. Por
-- ejemplo,
     λ> matrizPascal 6
        1 0
             0
                0 0 0)
        1 1 0
                 0 0 0)
     (1 2 1 0 0 0)
     (133100)
     (1 4 6 4 1 0)
     ( 1 5 10 10 5 1)
-- 1ª solución
-- ========
matrizPascal :: Int -> Matrix Integer
matrizPascal 1 = fromList 1 1 [1]
matrizPascal n = matrix n n f
 where f(i,j) | i < n \& j < n = p!(i,j)
               | i < n \& j == n = 0
               | j == 1 | | j == n = 1
               | otherwise = p!(i-1,j-1) + p!(i-1,j)
       p = matrizPascal (n-1)
-- 2ª solución
-- ========
matrizPascal2 :: Int -> Matrix Integer
matrizPascal2 n = fromLists xss
 where yss = take n pascal
       xss = map (take n) (map (++ repeat 0) yss)
pascal :: [[Integer]]
pascal = [1] : map f pascal
   where f xs = zipWith (+) (0:xs) (xs ++ [0])
```

```
-- 3º solución
-- ========
matrizPascal3 :: Int -> Matrix Integer
matrizPascal3 n = matrix n n f
 where f (i,j) | i >= j = comb (i-1) (j-1)
                | otherwise = 0
-- (comb n k) es el número de combinaciones (o coeficiente binomial) de
-- n sobre k. Por ejemplo,
comb :: Int -> Int -> Integer
comb n k = product [n', n'-1..n'-k'+1] 'div' product [1..k']
 where n' = fromIntegral n
       k' = fromIntegral k
-- 4ª solución
- - ========
matrizPascal4 :: Int -> Matrix Integer
matrizPascal4 n = p
 where p = matrix n n ((i,j) \rightarrow f i j)
        f i 1 = 1
       fij
          | j > i
                    = 0
                    = 1
          | i == i
          | otherwise = p!(i-1,j) + p!(i-1,j-1)
-- Comparación de eficiencia
λ> maximum (matrizPascal 150)
     46413034868354394849492907436302560970058760
      (2.58 secs, 394,030,504 bytes)
     λ> maximum (matrizPascal2 150)
     46413034868354394849492907436302560970058760
      (0.03 secs, 8,326,784 bytes)
     λ> maximum (matrizPascal3 150)
     46413034868354394849492907436302560970058760
- -
      (0.38 secs, 250,072,360 bytes)
     λ> maximum (matrizPascal4 150)
     46413034868354394849492907436302560970058760
     (0.10 secs, 13,356,360 bytes)
- -
```

```
λ> length (show (maximum (matrizPascal2 300)))
- -
     (0.06 secs, 27,286,296 bytes)
     \lambda> length (show (maximum (matrizPascal3 300)))
     (2.74 secs, 2,367,037,536 bytes)
     λ> length (show (maximum (matrizPascal4 300)))
     (0.36 secs, 53,934,792 bytes)
     λ> length (show (maximum (matrizPascal2 700)))
     209
     (0.83 secs, 207,241,080 bytes)
     λ> length (show (maximum (matrizPascal4 700)))
     209
- -
     (2.22 secs, 311,413,008 bytes)
-- Ejercicio 4.1. Definir la función
     sumas :: Int -> [[Int]]
-- tal que (sumas n) es la lista de las descomposiciones de n como sumas
-- cuyos sumandos son 1 ó 2. Por ejemplo,
     sumas 1
                       == [[1]]
     sumas 2
                       == [[1,1],[2]]
                       == [[1,1,1],[1,2],[2,1]]
     sumas 3
     sumas 4
                       == [[1,1,1,1],[1,1,2],[1,2,1],[2,1,1],[2,2]]
-- lª definición
sumas1 :: Int -> [[Int]]
sumas1 0 = [[]]
sumas1 1 = [[1]]
sumas1 n = [1:xs | xs < - sumas1 (n-1)] + + [2:xs | xs < - sumas1 (n-2)]
-- 2º definición
sumas2 :: Int -> [[Int]]
sumas2 n = aux !! n
   where aux = [[]] : [[1]] : zipWith f (tail aux) aux
         f xs ys = map (1:) xs ++ map (2:) ys
-- Comparación de las definiciones de sumas
     ghci> length (sumas 25)
```

```
- -
      121393
      (1.84 secs, 378307888 bytes)
- -
      ghci> length (sumas 26)
      196418
- -
      (3.09 secs, 623707712 bytes)
      ghci> length (sumas2 25)
      121393
      (0.11 secs, 39984864 bytes)
     ghci> length (sumas2 26)
     196418
      (0.17 secs, 63880032 bytes)
-- La segunda definición es más eficiente y es la que usaremos en lo
-- sucesivo:
sumas :: Int -> [[Int]]
sumas = sumas2
-- Ejercicio 4.2. Definir la función
      nSumas :: Int -> Integer
-- tal que (nSumas n) es el número de descomposiciones de n como sumas
-- cuyos sumandos son 1 ó 2. Por ejemplo,
      nSumas 4 == 5
      nSumas 7 == 21
-- lª definición
nSumas1 :: Int -> Integer
nSumas1 = genericLength . sumas2
-- 2ª definición
nSumas2 :: Int -> Integer
nSumas2 0 = 1
nSumas2 1 = 1
nSumas2 n = nSumas2 (n-1) + nSumas2 (n-2)
-- 3ª definición
nSumas3 :: Int -> Integer
nSumas3 n = aux 'genericIndex' n
    where aux = 1 : 1 : zipWith (+) aux (tail aux)
-- Comparación de las definiciones de nSumas
     ghci> nSumas1 33
```

```
5702887
     (4.33 secs, 1831610456 bytes)
- -
     ghci> nSumas2 33
     5702887
     (12.33 secs, 1871308192 bytes)
     ghci> nSumas3 33
     5702887
     (0.01 secs, 998704 bytes)
-- Nota. El valor de (nSumas n) es el n-ésimo término de la sucesión de
-- Fibonacci 1, 1, 2, 3, 5, 8, ...
        Examen 7 (27 de junio de 2018)
9.4.7.
-- Informática (1º del Grado en Matemáticas)
-- Examen de la 1º convocatoria (27 de junio de 2018)
  ______
-- § Librerías auxiliares
import Data.Array
import Data.List
import Data.Matrix
import Data. Numbers. Primes
import Test.QuickCheck
-- Ejercicio 1. Un camino es una sucesión de pasos en una de las cuatros
-- direcciones Norte, Sur, Este, Oeste. Ir en una dirección y a
-- continuación en la opuesta es un esfuerzo que se puede reducir, Por
-- ejemplo, el camino [Norte, Sur, Este, Sur] se puede reducir a
-- [Este,Sur].
-- Un camino se dice que es reducido si no tiene dos pasos consecutivos
-- en direcciones opuesta.
-- En Haskell, las direcciones y los caminos se pueden definir por
     data Direccion = N | S | E | O deriving (Show, Eq)
     type Camino = [Direccion]
```

```
-- Definir la función
      reducido :: Camino -> Camino
-- tal que (reducido ds) es el camino reducido equivalente al camino
-- ds. Por ejemplo,
     reducido []
                                                  []
                                              ==
     reducido [N]
                                              == [N]
                                              == [N,0]
     reducido [N,0]
     reducido [N,0,E]
                                              == [N]
     reducido [N,0,E,S]
                                              == []
     reducido [N,0,S,E]
                                              == [N,0,S,E]
     reducido [S,S,S,N,N,N]
                                              == []
     reducido [N,S,S,E,O,N]
                                                  []
     reducido [N,S,S,E,0,N,0]
                                              == [0]
      reducido (take (10^7) (cycle [N,E,0,S])) == []
-- Nótese que en el penúltimo ejemplo las reducciones son
         [N,S,S,E,0,N,0]
     --> [S,E,0,N,0]
     --> [S,N,0]
     --> [0]
data Direccion = N | S | E | O deriving (Show, Eq)
type Camino = [Direccion]
-- la solución (por recursión)
reducido :: Camino -> Camino
reducido [] = []
reducido (d:ds) | null ds'
                                         = [d]
               | d == opuesta (head ds') = tail ds'
                | otherwise
                                       = d:ds'
   where ds' = reducido ds
opuesta :: Direccion -> Direccion
opuesta N = S
opuesta S = N
opuesta E = 0
opuesta 0 = E
```

```
-- 2ª solución (por plegado)
- - ===============
reducido2 :: Camino -> Camino
reducido2 = foldr aux []
 where aux N(S:xs) = xs
       aux S (N:xs) = xs
       aux E (0:xs) = xs
       aux 0 (E:xs) = xs
       aux x xs
                  = x:xs
-- 3ª solución
-- ========
reducido3 :: Camino -> Camino
reducido3 []
            = []
reducido3 (N:S:ds) = reducido3 ds
reducido3 (S:N:ds) = reducido3 ds
reducido3 (E:0:ds) = reducido3 ds
reducido3 (0:E:ds) = reducido3 ds
reducido3 (d:ds) | null ds'
                                         = [d]
                | d == opuesta (head ds') = tail ds'
                | otherwise
                                         = d:ds'
   where ds' = reducido3 ds
-- 4ª solución
-- ========
reducido4 :: Camino -> Camino
reducido4 ds = reverse (aux ([],ds)) where
 aux (N:xs, S:ys) = aux (xs,ys)
 aux (S:xs, N:ys) = aux (xs,ys)
 aux (E:xs, 0:ys) = aux (xs,ys)
 aux (0:xs, E:ys) = aux (xs,ys)
 aux (xs, y:ys) = aux (y:xs,ys)
 aux (xs, []) = xs
-- Comparación de eficiencia
\lambda> reducido (take (10^6) (cycle [N,E,0,S]))
     []
     (3.87 secs, 460160736 bytes)
```

```
\lambda> reducido2 (take (10^6) (cycle [N,E,0,S]))
      []
- -
      (1.16 secs, 216582880 bytes)
      \lambda> reducido3 (take (10^6) (cycle [N,E,0,S]))
      []
      (0.58 secs, 98561872 bytes)
      \lambda> reducido4 (take (10^6) (cycle [N,E,0,S]))
      []
      (0.64 secs, 176154640 bytes)
      \lambda> reducido3 (take (10^7) (cycle [N,E,0,S]))
- -
      []
      (5.43 secs, 962694784 bytes)
      \lambda> reducido4 (take (10^7) (cycle [N,E,0,S]))
      (9.29 secs, 1722601528 bytes)
      \lambda> length $ reducido3 (take 2000000 $ cycle [N,0,N,S,E,N,S,0,S,S])
- -
      400002
      (4.52 secs, 547004960 bytes)
      \lambda> length $ reducido4 (take 2000000 $ cycle [N,0,N,S,E,N,S,0,S,S])
      400002
      λ> let n=10^6 in reducido (replicate n N ++ replicate n S)
      []
- -
      (7.35 secs, 537797096 bytes)
      \lambda> let n=10^6 in reducido2 (replicate n N ++ replicate n S)
      []
      (2.30 secs, 244553404 bytes)
      \lambda> let n=10^6 in reducido3 (replicate n N ++ replicate n S)
      []
      (8.08 secs, 545043608 bytes)
      \lambda> let n=10^6 in reducido4 (replicate n N ++ replicate n S)
      []
      (1.96 secs, 205552240 bytes)
-- Ejercicio 2. Un capicúa es un número que es igual leído de izquierda
-- a derecha que de derecha a izquierda.
-- Definir la función
      mayorCapicuaP :: Integer -> Integer
-- tal que (mayorCapicuaP n) es el mayor capicúa que es el producto de
```

```
-- dos números de n cifras. Por ejemplo,
      mayorCapicuaP 2 ==
                           9009
- -
      mayorCapicuaP 3 == 906609
      mayorCapicuaP 4 == 99000099
      mayorCapicuaP 5 == 9966006699
-- 1º solución
-- =========
mayorCapicuaP :: Integer -> Integer
mayorCapicuaP n = head (capicuasP n)
-- (capicuasP n) es la lista de las capicúas de 2*n cifras que
-- pueden escribirse como productos de dos números de n cifras. Por
-- ejemplo, Por ejemplo,
      λ> capicuasP 2
      [9009,8448,8118,8008,7227,7007,6776,6336,6006,5775,5445,5335,
       5225,5115,5005,4884,4774,4664,4554,4224,4004,3773,3663,3003,
       2992, 2772, 2552, 2442, 2332, 2112, 2002, 1881, 1771, 1551, 1221, 1001]
capicuasP n = [x \mid x < - capicuas n,
                   not (null (productosDosNumerosCifras n x))]
-- (capicuas n) es la lista de las capicúas de 2*n cifras de mayor a
-- menor. Por ejemplo,
      capicuas 1
                           == [99,88,77,66,55,44,33,22,11]
      take 7 (capicuas 2) == [9999,9889,9779,9669,9559,9449,9339]
capicuas :: Integer -> [Integer]
capicuas n = [capicua x | x <- numerosCifras n]
-- (numerosCifras n) es la lista de los números de n cifras de mayor a
-- menor. Por ejemplo,
      numerosCifras 1
                                == [9,8,7,6,5,4,3,2,1]
      take 7 (numerosCifras 2) == [99,98,97,96,95,94,93]
      take 7 (numerosCifras 3) == [999,998,997,996,995,994,993]
numerosCifras :: Integer -> [Integer]
numerosCifras n = [a,a-1..b]
 where a = 10^n-1
        b = 10^{(n-1)}
-- (capicua n) es la capicúa formada añadiendo el inverso de n a
    continuación de n. Por ejemplo,
      capicua 93 == 9339
```

```
capicua :: Integer -> Integer
capicua n = read (xs ++ reverse xs)
 where xs = show n
-- (productosDosNumerosCifras n x) es la lista de los números y de n
-- cifras tales que existe un z de n cifras y x es el producto de y por
-- z. Por ejemplo,
      productosDosNumerosCifras 2 9009 == [99,91]
productosDosNumerosCifras n x = [y | y < - numeros,
                                     mod x y == 0,
                                     div x y 'elem' numeros]
 where numeros = numerosCifras n
-- 2ª solución
mayorCapicuaP2 :: Integer -> Integer
mayorCapicuaP2 n = maximum [x*y \mid x <- [a,a-1..b],
                                  y < - [a,a-1..b],
                                  esCapicua (x*y)]
 where a = 10^n-1
        b = 10^{(n-1)}
-- (esCapicua x) se verifica si x es capicúa. Por ejemplo,
      esCapicua 353 == True
      esCapicua 357 == False
esCapicua :: Integer -> Bool
esCapicua n = xs == reverse xs
 where xs = show n
-- 3ª solución
-- ========
mayorCapicuaP3 :: Integer -> Integer
mayorCapicuaP3 n = maximum [x*y \mid (x,y) < - pares a b,
                                  esCapicua (x*y)]
 where a = 10^n-1
        b = 10^{(n-1)}
-- (pares a b) es la lista de los pares de números entre a y b de forma
-- que su suma es decreciente. Por ejemplo,
      pares 9 7 == [(9,9),(8,9),(8,8),(7,9),(7,8),(7,7)]
pares a b = [(x,z-x) | z < - [a1,a1-1..b1],
```

```
x < - [a,a-1..b],
                       x \le z - x, z - x \le a]
 where a1 = 2*a
        b1 = 2*b
-- 4ª solución
-- ========
mayorCapicuaP4 :: Integer -> Integer
mayorCapicuaP4 n = maximum [x | y <- [a..b],
                                 z < - [y..b],
                                 let x = y * z,
                                 let s = show x,
                                 s == reverse s]
 where a = 10^{(n-1)}
        b = 10^n - 1
-- 5ª solución
-- ========
mayorCapicuaP5 :: Integer -> Integer
mayorCapicuaP5 n = maximum [x*y \mid (x,y) <- pares2 b a, esCapicua (x*y)]
 where a = 10^{(n-1)}
        b = 10^n - 1
-- (pares2 a b) es la lista de los pares de números entre a y b de forma
-- que su suma es decreciente. Por ejemplo,
      pares2 9 7 == [(9,9),(8,9),(8,8),(7,9),(7,8),(7,7)]
pares2 a b = [(x,y) | x < -[a,a-1..b], y < -[a,a-1..x]]
-- 6ª solución
- - ========
mayorCapicuaP6 :: Integer -> Integer
mayorCapicuaP6 n = maximum [x*y \mid x <- [a..b],
                                   y < - [x..b],
                                   esCapicua (x*y)]
 where a = 10^{(n-1)}
        b = 10^n - 1
-- (cifras n) es la lista de las cifras de n en orden inverso. Por
-- ejemplo,
-- cifras 325 == [5,2,3]
```

```
cifras :: Integer -> [Integer]
cifras n
 | n < 10
             = [n]
  | otherwise = ultima n : cifras (quitarUltima n)
-- (ultima n) es la última cifra de n. Por ejemplo,
     ultima 325 == 5
ultima :: Integer -> Integer
ultima n = n - (n 'div' 10)*10
-- (quitarUltima n) es el número obtenido al quitarle a n su última
-- cifra. Por ejemplo,
     quitarUltima 325 => 32
quitarUltima :: Integer -> Integer
quitarUltima n = (n - ultima n) 'div' 10
-- 7ª solución
- - ========
mayorCapicuaP7 :: Integer -> Integer
mayorCapicuaP7 n = head [x \mid x < - capicuas n, esFactorizable x n]
-- (esFactorizable x n) se verifica si x se puede escribir como producto
-- de dos números de n dígitos. Por ejemplo,
     esFactorizable 1219 2 == True
     esFactorizable 1217 2 == False
esFactorizable x n = aux i x
 where b = 10^n-1
       i = floor (sqrt (fromIntegral x))
       aux ix | i > b
                               = False
               | x \text{ 'mod' i } == 0 = x \text{ 'div' i } < b
               | otherwise
                            = aux (i+1) x
-- Comparación de soluciones
-- El tiempo de cálculo de (mayorCapicuaP n) para las 6 definiciones es
     +----+
     | Def. | 2 | 3 | 4
     |-----|
          1 | 0.01 | 0.13 | 1.39 |
          2 | 0.03 | 2.07 |
          3 | 0.05 | 3.86 |
```

```
4 | 0.01 | 0.89 |
           5 | 0.03 | 1.23 |
           6 | 0.02 | 1.03 |
           7 | 0.01 | 0.02 | 0.02 |
         ----+
  Ejercicio 3. Los árboles binarios con valores en las hojas y en los
   nodos se definen por
      data Arbol a = H a
                   | Nd a (Arbol a) (Arbol a)
        deriving (Eq, Show)
  Por ejemplo, el árbol
            1
              \
         2
               3
       4 5 6
          /\
         8
             9
  se pueden representar por
      ejArbol :: Arbol Int
      ejArbol = Nd 1 (Nd 2 (H 4))
                            (Nd 5 (H 8) (H 9)))
                     (Nd 3 (H 6) (H 7))
   Definir la función
      recorrido :: Arbol t -> [t]
  tal que (recorrido a) es el recorrido del árbol a por niveles desde
   la raíz a las hojas y de izquierda a derecha. Por ejemplo,
      \lambda> recorrido (Nd 1 (Nd 2 (H 4) (Nd 5 (H 8) (H 9))) (Nd 3 (H 6) (H 7)))
      [1,2,3,4,5,6,7,8,9]
      \lambda> recorrido (Nd 1 (Nd 3 (H 6) (H 7)) (Nd 2 (H 4) (Nd 5 (H 8) (H 9))))
      [1,3,2,6,7,4,5,8,9]
      \lambda> recorrido (Nd 1 (Nd 3 (H 6) (H 7)) (Nd 2 (H 4) (H 5)))
      [1,3,2,6,7,4,5]
      \lambda> recorrido (Nd 1 (Nd 2 (H 4) (H 5)) (Nd 3 (H 6) (H 7)))
      [1,2,3,4,5,6,7]
      \lambda> recorrido (Nd 1 (Nd 2 (H 4) (H 5)) (H 3))
      [1,2,3,4,5]
      \lambda> recorrido (Nd 1 (H 4) (H 3))
      [1,4,3]
- -
```

```
λ> recorrido (H 3)
      [3]
- -
data Arbola = Ha
             | Nd a (Arbol a) (Arbol a)
  deriving (Eq, Show)
ejArbol :: Arbol Int
ejArbol = Nd 1 (Nd 2 (H 4))
                     (Nd 5 (H 8) (H 9)))
               (Nd 3 (H 6) (H 7))
-- lª definición
-- =========
recorrido :: Arbol t -> [t]
recorrido = concat . niveles
-- (niveles a) es la lista de los niveles del árbol a. Por ejemplo,
      \lambda> niveles (Nd 1 (Nd 2 (H 4) (Nd 5 (H 8) (H 9))) (Nd 3 (H 6) (H 7)))
      [[1],[2,3],[4,5,6,7],[8,9]]
niveles :: Arbol t -> [[t]]
niveles (H x)
               = [[x]]
niveles (Nd x i d) = [x] : mezcla2 (niveles i) (niveles d)
-- (mezcla2 xss yss) es la lista obtenida concatenando los
-- correspondientes elementos de xss e yss. Por ejemplo,
      λ> mezcla2 [[1,3],[2,5,7]] [[4],[1,9],[0,14]]
      [[1,3,4],[2,5,7,1,9],[0,14]]
      \lambda > \text{mezcla2} [[1,3],[2,5,7]] [[4]]
      [[1,3,4],[2,5,7]]
mezcla2 :: [[a]] -> [[a]] -> [[a]]
mezcla2 [] yss
                          = yss
mezcla2 xss []
                          = xss
mezcla2 (xs:xss) (ys:yss) = (xs ++ ys) : mezcla2 xss yss
-- 2º definición
- - ==========
recorrido2 :: Arbol t -> [t]
recorrido2 = concat . niveles2
```

```
-- (niveles2 a) es la lista de los niveles del árbol a. Por ejemplo,
      \lambda> niveles2 (Nd 1 (Nd 2 (H 4) (Nd 5 (H 8) (H 9))) (Nd 3 (H 6) (H 7)))
      [[1],[2,3],[4,5,6,7],[8,9]]
niveles2 :: Arbol t -> [[t]]
niveles2 a = takeWhile (not . null) [nivel n a | n <- [0..]]</pre>
-- (nivel n a) es el nivel iésimo del árbol a. Por ejemplo,
      \lambda> nivel 2 (Nd 1 (Nd 2 (H 4) (Nd 5 (H 8) (H 9))) (Nd 3 (H 6) (H 7)))
      [4,5,6,7]
      \lambda> nivel 5 (Nd 1 (Nd 2 (H 4) (Nd 5 (H 8) (H 9))) (Nd 3 (H 6) (H 7)))
      []
nivel :: Int -> Arbol t -> [t]
nivel 0 (H x)
nivel n (H _)
nivel 0 (Nd \times _ _) = [\times]
nivel n (Nd x i d) = nivel (n-1) i ++ nivel (n-1) d
-- Ejercicio 4.1. Definir la función
      diagonalesDescendentes :: Int -> [[(Int,Int)]]
-- tal que (diagonalesDescendentes) es la lista de las posiciones de las
-- diagonales secundarias de una matriz cuadrada de orden n desde la
-- posición superior izquierda hasta la inferior derecha, recorriendo
-- las diagonales de arriba hacia abajo. Por ejemplo,
      \lambda> diagonalesDescendentes 4
      [[(1,1)],
      [(1,2),(2,1)],
       [(1,3),(2,2),(3,1)],
       [(1,4),(2,3),(3,2),(4,1)],
       [(2,4),(3,3),(4,2)],
       [(3,4),(4,3)],
       [(4,4)]
diagonalesDescendentes :: Int -> [[(Int,Int)]]
diagonalesDescendentes n =
  [[(i,m-i) \mid i < - [max 1 (m-n)..min n (m-1)]] \mid m < - [2..2*n]]
__ ______
-- Ejercicio 4.2. Definir la función
      diagonalesZigZag :: Int -> [[(Int,Int)]]
-- tal que (diagonalesZigZag n) es la lista de las posiciones de las
-- diagonales secundarias de una matriz cuadrada de orden n desde la
```

```
-- posición superior izquierda hasta la inferior derecha, recorriendo
-- las diagonales en zig zag; es decir, altenativamente de arriba hacia
-- abajo y de abajo hacia arriba. Por ejemplo,
      λ> diagonalesZigZag 4
      [[(1,1)],
      [(2,1),(1,2)],
       [(1,3),(2,2),(3,1)],
       [(4,1),(3,2),(2,3),(1,4)],
       [(2,4),(3,3),(4,2)],
       [(4,3),(3,4)],
       [(4,4)]
diagonalesZigZag :: Int -> [[(Int,Int)]]
diagonalesZigZag n =
  [f d | (f,d) <- zip (cycle [id,reverse]) (diagonalesDescendentes n)]</pre>
-- Ejercicio 4.3. Definir la función
      numeracion :: (Int -> [[(Int,Int)]]) -> Int -> Matrix Int
-- tal que (numeracion r n) es la matriz cuadrada de orden n obtenida
-- numerando sus elementos con los números del 0 al n^2-1 según su
  posición en el recorrido r. Por ejemplo,
      λ> numeracion diagonalesDescendentes 4
         0
           1 3 6)
      (
         2
           4 7 10 )
        5 8 11 13 )
      ( 9 12 14 15 )
     λ> numeracion diagonalesZigZag 4
      ( 0
           2
               3 9)
        1 4 8 10 )
        5 7 11 14 )
        6 12 13 15 )
      (
numeracion :: (Int -> [[(Int,Int)]]) -> Int -> Matrix Int
numeracion r n =
  fromList n n (elems (numeracionAux r n))
numeracionAux :: (Int -> [[(Int,Int)]]) -> Int -> Array (Int,Int) Int
numeracionAux r n =
 array ((1,1),(n,n)) (zip (concat (r n)) [0..])
```

```
-- Ejercicio 4.4. Comprobar con QuickCheck que para para cualquier
-- número natural n se verifica que son iguales las diagonales
-- principales de (numeracion r n) donde r es cualquiera de los dos
-- recorridos definidos (es decir, diagonalesDescendentes y
-- diagonalesZigZag).
-- La propiedad es
prop_numeracion :: Int -> Property
prop_numeracion n =
    n >= 0 ==>
    getDiag (numeracion diagonalesDescendentes n) ==
    getDiag (numeracion diagonalesZigZag n)
-- La comprobación es
-- \( \lambda \) quickCheck prop_numeracion
-- +++ OK, passed 100 tests.
```

9.5. Exámenes del grupo 5 (Andrés Cordón y Miguel A. Martínez)

9.5.1. Examen 1 (25 de octubre de 2017)

```
-- Informática (1º del Grado en Matemáticas, Grupo 5)
-- 1º examen de evaluación continua (25 de octubre de 2017)
-- § Librerías
-- import Test.QuickCheck
-- Ejercicio 1.1. La carga de una lista es el número de elementos
-- estrictamente positivos menos el número de elementos estrictamente
-- negativos.
```

```
-- Definir la función
      carga :: [Int] -> Int
-- tal que (carga xs) es la carga de la lista xs. Por ejemplo,
                          == 3
      carga [1,0,2,0,3]
      carga [1,0,-2,0,3] == 1
     carga [1,0,-2,0,-3] == -1
      carga [1,0,-2,2,-3] == 0
-- 1º definición
carga :: [Int] -> Int
carga xs = length [x \mid x \leftarrow xs, x > 0] - length [x \mid x \leftarrow xs, x < 0]
-- 2º definición
carga2 :: [Int] -> Int
carga2 xs = sum [signum x | x <- xs]
-- 3ª definición
carga3 :: [Int] -> Int
carqa3 [] = 0
carga3 (x:xs) = signum x + carga xs
-- 4º definición
carqa4 :: [Int] -> Int
carga4 = sum . map signum
-- Propiedad de equivalencia
prop_carga :: [Int] -> Bool
prop carga xs =
  carga xs == carga2 xs &&
  carga xs == carga3 xs &&
  carga xs == carga4 xs
-- La comprobación es
     ghci> quickCheck prop carga
     +++ OK, passed 100 tests.
-- Ejercicio 1.2. Una lista es equilibrada si el número de elementos
-- estrictamente positivos difiere en, a lo más, una unidad del número
-- de elementos estrictamente negativos.
-- Definir la función
```

```
equilibrada :: [Int] -> Bool
-- tal que (equilibrada xs) se verifica si xs es una lista
  equilibrada. Por ejemplo,
      equilibrada [1,0,2,0,3]
                                      False
      equilibrada [1,0,-2,0,3]
                                      True
                                 ==
      equilibrada [1,0,-2,0,-3] == True
      equilibrada [1,0,-2,2,-3] == True
equilibrada :: [Int] -> Bool
equilibrada xs = abs (carga xs) <= 1
-- Ejercicio 2. Definir la función
      triples :: Int -> [(Int,Int,Int)]
-- tal que (triples n) es la lista de todos los triples (x,y,z) con
-- 1 <= x, y, z <= n que están formados por coordenas distintas. Por
-- ejemplo,
      ghci> triples 3
      [(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)]
      ghci> triples 4
      [(1,2,3),(1,2,4),(1,3,2),(1,3,4),(1,4,2),(1,4,3),(2,1,3),(2,1,4),
       (2,3,1), (2,3,4), (2,4,1), (2,4,3), (3,1,2), (3,1,4), (3,2,1), (3,2,4),
       (3,4,1), (3,4,2), (4,1,2), (4,1,3), (4,2,1), (4,2,3), (4,3,1), (4,3,2)
triples :: Int -> [(Int,Int,Int)]
triples n = [(x,y,z) | x <- [1..n]
                     , y < - [1..n]
                     , z < -[1..n]
                     , x /= y
                     , y /= z
                      , \times /= z
-- Ejercicio 3.1. Los resultados de las votaciones a delegado en un
  grupo de clase se recogen mediante listas de asociación. Por ejemplo,
      votos :: [(String,Int)]
      votos = [("Ana Perez",10),("Juan Lopez",7), ("Julia Rus", 27),
                ("Pedro Val",1), ("Pedro Ruiz",27),("Berta Gomez",11)]
-- Definir la función
      mayorV :: [(String,Int)] -> Int
```

```
-- tal que (mayorV xs) es el número de votos obtenido por los ganadores
-- de la votación xs. Por ejemplo,
     mayorV votos == 27
votos :: [(String,Int)]
votos = [("Ana Perez",10),("Juan Lopez",7), ("Julia Rus", 27),
          ("Pedro Val",1), ("Pedro Ruiz",27),("Berta Gomez",11)]
-- 1ª definición
mayorV :: [(String,Int)] -> Int
mayorV xs = maximum [j | (_,j) <- xs]
-- 2º definición
mayorV2 :: [(String,Int)] -> Int
mayorV2 = maximum . map snd
-- Ejercicio 3.2. Definir la función
      ganadores :: [(String,Int)] -> [String]
-- tal que (ganadores xs) es la lista de los estudiantes con mayor
-- número de votos en xs. Por ejemplo,
      ganadores votos == ["Julia Rus", "Pedro Ruiz"]
ganadores :: [(String,Int)] -> [String]
ganadores xs = [c \mid (c,x) <- xs, x == maxVotos]
 where maxVotos = mayorV xs
-- Ejercicio 4.1. Una lista es muy creciente si cada elemento es mayor
-- estricto que el triple del siguiente.
-- Definir la función
     muyCreciente :: [Integer] -> Bool
-- tal que (muyCreciente xs) se verifica si xs es muy creciente. Por
-- ejemplo,
     muyCreciente [1,5,23,115] == True
     muyCreciente [1,2,7,14] == False
     muyCreciente [7]
                                 == True
     muyCreciente []
                                == True
```

```
muyCreciente :: [Integer] -> Bool
muyCreciente xs = and [3*x < y \mid (x,y) < -zip xs (tail xs)]
-- Ejercicio 4.2. Definir la función
     busca :: Integer -> Integer
-- tal que (busca n) devuelve el menor número natural de n o más cifras
-- no primo cuya lista de divisores es una lista muy creciente. Por
-- ejemplo,
     busca 2 == 25
     busca 3 == 115
     busca 6 == 100001
busca :: Integer -> Integer
busca n = head [i | i <- [10^{n-1}..10^{n-1}]
                 , muyCreciente (divisores i)
                 , not (primo i)]
divisores :: Integer -> [Integer]
divisores x = [i \mid i \leftarrow [1..x], rem x i == 0]
primo :: Integer -> Bool
primo x = divisores x == [1,x]
9.5.2.
        Examen 2 (18 de diciembre de 2017)
-- Informática (1º del Grado en Matemáticas), Grupo 5
-- 2º examen de evaluación continua (18 de diciembre de 2017)
-- Librerías auxiliares
import Data.List
import Data.Numbers.Primes
__ _______
-- Ejercicio 1.1. Un número entero positivo se dirá 2-pandigital si en
-- su cuadrado aparecen todos los dígitos del 0 al 9, al menos una vez.
-- Por ejemplo, 100287 es 2-pandigital porque 100287^2=10057482369.
```

```
-- Definir la lista infinita
     dosPandigitales :: [Integer]
-- cuyos elementos son los números 2-pandigitales. Por ejemplo,
-- take 10 dosPandigitales ==
    [32043, 32286, 33144, 35172, 35337, 35757, 35853, 37176, 37905, 38772]
dosPandigitales :: [Integer]
dosPandigitales = filter esPandigital [1..]
esPandigital :: Integer -> Bool
esPandigital x = all ('elem' xs) "0123456789"
 where xs = show (x^2)
-- Ejercicio 1.1. Calcular el menor número 2-pandigital que sea primo.
__ _______
-- El cálculo es
     ghci> head (filter isPrime dosPandigitales)
     101723
-- Ejercicio 2. Definir la función
    coincidencias :: Eq a => Int -> [a] -> Bool
-- tal que (coincidencias k xs ys) se verifica si las listas xs e ys
-- coinciden en, exactamente, k de sus posiciones. Por ejemplo,
     coincidencias 7 "salamanca" "salamandra" == True
-- 1ª solución
coincidencias1 :: Eq a => Int -> [a] -> [a] -> Bool
coincidencias1 n [] _
                                         = n == 0
coincidencias1 n []
                                         = n == 0
coincidencias1 n (x:xs) (y:ys) | x == y = coincidencias1 (n-1) xs ys
                             | otherwise = coincidencias1 n xs ys
-- 2ª solución
coincidencias2 :: Eq a => Int -> [a] -> Bool
coincidencias2 n xs ys =
  length (filter (\((a,b) -> a == b) (zip xs ys)) == n
```

```
-- 3ª solución
coincidencias3 :: Eq a => Int -> [a] -> Bool
coincidencias3 n xs ys =
  length (filter (uncurry (==)) (zip xs ys)) == n
__ _______
-- Ejercicio 3. Una lista de listas xss se dirá encadenada si todos sus
-- elementos son no vacíos, y el máximo de cada elemento coincide con el
-- mínimo del siguiente.
-- Definir la función
     encadenada :: Ord a => [[a]] -> Bool
-- tal que (encadenada xss) se verifica si xss es encadenada. Por
-- ejemplo,
     encadenada [[2,1],[2,5,3],[6,5]] == True
     encadenada [[2,1],[2,0,3],[6,5]] == False
     encadenada [[2,1],[],[6,5]]
                                  == False
-- 1º solución
encadenada1 :: Ord a => [[a]] -> Bool
encadenada1 xss =
    all (not . null) xss
 && and [maximum xs == minimum ys | (xs,ys) <- zip xss (tail xss)]
-- 2ª solución
encadenada2 :: Ord a => [[a]] -> Bool
encadenada2 [] = True
encadenada2 [xs] = not (null xs)
encadenada2 (xs:ys:zss) =
     not (null xs)
  && not (null ys)
  && maximum xs == minimum ys
  && encadenada2 (ys:zss)
-- Ejercicio 4.1. Representamos los árboles binarios mediante el tipo de
-- dato
     data Arbol a = H a | N a (Arbol a) (Arbol a)
       deriving (Show, Eq)
-- Por ejemplo, el árbol
          4
         /\
```

```
7
            1 6
              2
-- se define de la siguiente forma
      ejArbol :: Arbol Int
      ejArbol = N 4 (H 3) (N 7 (N 1 (H 0) (H 2)) (H 6))
-- Definir la función
      hojasProf :: Arbol a -> [a]
-- tal que (hojasProf t) es la lista de los pares formados por las hojas
-- de t junto con su profundidad. Por ejemplo,
      hojasProf (H 7) == [(7,0)]
      hojasProf ejArbol == [(3,1),(0,3),(2,3),(6,2)]
data Arbol a = H a | N a (Arbol a) (Arbol a)
  deriving (Show, Eq)
ejArbol :: Arbol Int
ejArbol = N 4 (H 3) (N 7 (N 1 (H 0) (H 2)) (H 6))
hojasProf :: Arbol a -> [(a,Int)]
hojasProf a = aux a 0
 where aux (H a) n
                      = [(a,n)]
        aux (N a i d) n = aux i (n+1) ++ aux d (n+1)
-- Ejercicio 4.2. Definir la función
      hojasMasProfundas:: Arbol a -> [a]
-- tal que (hojasMasProfundas t) es la lista de las hojas más profundas
-- del árbol t. Por ejemplo,
      hojasMasProfundas (H 7)
      hojasMasProfundas ejArbol == [0,2]
-- 1ª solución
hojasMasProfundas :: Arbol a -> [a]
hojasMasProfundas a = [i | (i,p) <- hojasProf a
                         , p == profundidad a]
```

9.5.3. Examen 3 (30 de enero de 2018)

El examen es común con el del grupo 4 (ver página 922).

9.5.4. Examen 4 (21 de marzo de 2018)

```
-- Informática (1º del Grado en Matemáticas), Grupo 5
-- 4º examen de evaluación continua (21 de marzo de 2018)
-- Librerías auxiliares
import Data.List
import Data.Numbers.Primes
import Data.Matrix
__ _______
-- Ejercicio 1.1. Se considera una enumeración de los números primos:
               p(2)=3, p(3)=5, p(4)=7, p(5)=11, p(6)=13, p(7)=17,...
      p(1)=2,
-- Dado un entero positivo x, definimos:
-- + longitud de x como el mayor i tal que el primo p(i) aparece en la
    factorización en números primos de x
-- + altura de x el mayor exponente n que aparece en la factorización
    en números primos de x
-- Por ejemplo, 3500 tiene longitud 4 y altura 3, pues 3500=2^2*5^3*7^1;
-- y 34 tiene longitud 7 y altura 1, pues 34 = 2*17.
-- Definir las funciones
```

```
longitud :: Integer -> Integer
             :: Integer -> Integer
     altura
-- que calculan la longitud y la altura, respectivamente, de un entero
-- positivo. Por ejemplo,
     longitud 3500 == 4
     altura 3500
                  == 3
longitud :: Integer -> Integer
longitud 1 = 0
longitud x = genericLength (takeWhile (<= last (primeFactors x)) primes)</pre>
altura :: Integer -> Integer
altura 1 = 0
altura x = maximum \quad (map genericLength (group (primeFactors <math>x)))
-- Ejercicio 1.2. Diremos que dos enteros positivos a y b están
-- relacionados si tienen la misma longitud y la misma altura.
-- Definir la lista infinita
     paresRel :: [(Integer,Integer)]
-- que enumera todos los pares (a,b), con 1<=a<b, tales que a y b están
-- relacionados. Por ejemplo,
     λ> take 9 paresRel
     [(3,6),(5,10),(9,12),(7,14),(5,15),(10,15),(9,18),(12,18),(7,21)]
__ ______
paresRel :: [(Integer,Integer)]
paresRel =
  [(a,b) \mid b < - [1..]
        , a < [1..b-1]
         , longitud a == longitud b
         , altura a == altura b]
-- Ejercicio 1.3. Calcular en qué posición aparece el par (31,310) en la
-- lista infinta ParesRel
-- El cálculo es
     \lambda > 1 + genericLength (takeWhile (/= (31,310)) paresRel)
     712
```

```
-- Ejercicio 2. Representamos los puntos del plano como pares de números
-- reales
     type Punto = (Float,Float)
-- y un camino de k pasos como una lista de k+1 puntos,
     xs = [x(0), x(1), ..., x(k)]
-- Por ejemplo, consideramos el siguiente camino de 4 pasos:
     camino :: [Punto]
     camino = [(0,0),(2,2),(5,2),(5,-1),(0,-1)]
-- Definir la función
     mediaPasos :: [Punto] -> Double
-- tal que (mediaPasos xs) es la media aritmética de las longitudes de
-- los pasos que conforman el camino xs. Por ejemplo
     mediaPasos camino == 3.4571068
type Punto =(Float,Float)
camino :: [Punto]
camino = [(0,0),(2,2),(5,2),(5,-1),(0,-1)]
mediaPasos :: [Punto] -> Float
mediaPasos xs =
 sum [distancia p q | (p,q) <- zip xs (tail xs)] / k</pre>
 where k = genericLength xs - 1
distancia :: Punto -> Punto -> Float
distancia (x1,y1) (x2,y2) = sqrt ((x1-x2)^2+(y1-y2)^2)
__ ______
-- Ejercicio 3. Representamos los árboles binarios mediante el tipo de
-- dato
     data Arbol a = H a | N a (Arbol a) (Arbol a) deriving Show
-- Una forma de ampliar un árbol binario es añadiendo un nuevo nivel donde
-- las nuevas hojas sean iguales a la suma de los valores de los nodos
-- desde el padre hasta llegar a la raíz (inclusives). Por ejemplo:
        5
                       5
                                        3
                                                         3
                                        /\
               ==>
                    2 0
                                      2 -9
                                               ==>
                                                     2 -9
                    / \ / \
                                                           / \
                                                     /\
                    7 7 5 5
                                                    5 5 -6 -6
```

```
/
                                                     6 6 5 5
-- Definir la función
      ampliaArbol:: Num a => Arbol a -> Arbol a
-- tal que (ampliaArbol a) es el árbol a ampliado en un nivel. Por
-- ejemplo,
      \lambda> ampliaArbol (N 5 (H 2)(H 0))
     N 5 (N 2 (H 7) (H 7)) (N 0 (H 5) (H 5))
     \lambda> ampliaArbol (H 1)
     N 1 (H 1) (H 1)
     \lambda> ampliaArbol N 1 (H 1) (H 1)
     N 1 (N 1 (H 2) (H 2)) (N 1 (H 2) (H 2))
data Arbol a = H a
             | N a (Arbol a) (Arbol a)
 deriving Show
ampliaArbol :: Num a => Arbol a -> Arbol a
ampliaArbol a = aux 0 a
 where aux n (H x) = N x (H (n+x)) (H (n+x))
        aux n (N x i d) = N x (aux (n+x) i) (aux (n+x) d)
-- Ejercicio 4.1. Representamos las matrices mediante la librería
-- Data.Matrix.
-- Definir la función
      ampliada :: Num a => Matrix a -> Matrix a
-- tal que (ampliada p) devuelve la matriz obtenida a partir de p
-- al ampliar cada fila con la suma de sus elementos. Por ejemplo,
    \lambda> ampliada (fromLists [[1,2,3],[1,-1,0],[2,2,5]])
     (1236)
       1 -1 0 0)
    (
     (2259)
ampliada :: Num a => Matrix a -> Matrix a
ampliada p = matrix n (m+1) f
 where n = nrows p
       m = ncols p
        f(i,j) | j \le m = p!(i,j)
```

```
| otherwise = sum [p!(i,z) \mid z \leftarrow [1..m]]
-- Ejercicio 4.2. Definir la función
      bordeNulo :: Num a => Matrix a -> Matrix a
-- tal que (bordeNulo p) se verifica si todos los elementos de los
-- bordes de la matriz p son nulos. Por ejemplo.
      \lambda> bordeNulo (fromLists [[0,0,0,0],[0,3,1,0],[0,0,0,0]])
      λ> bordeNulo (fromLists [[0,0,0,0],[0,3,1,0],[0,0,0,-1]])
      False
bordeNulo :: (Num a, Eq a) => Matrix a -> Bool
bordeNulo p = all (==0) ([p!(1,j) | j <- [1..m]] ++
                          [p!(n,j) | j < - [1..m]] ++
                         [p!(i,1) \mid i < -[2..n-1]] ++
                          [p!(i,m) \mid i < -[2..n-1]])
 where n = nrows p
        m = ncols p
         Examen 5 (7 de mayo de 2018)
9.5.5.
-- Informática (1º del Grado en Matemáticas) Grupo 5
-- 5º examen de evaluación continua (7 de mayo de 2018)
-- Librerías auxiliares
import Data.List
import Data.Matrix
import I1M.Pila
import I1M.PolOperaciones
-- Ejercicio 1.1. Un número natural x es un cuadrado perfecto si x = b^2
-- para algún natural b. Por ejemplo, 25 es un cuadrado perfecto y 24 no
-- lo es. Un número entero positivo se dirá regular si sus cifras están
-- ordenadas, ya sea en orden creciente o en orden decreciente. Por
```

```
-- ejemplo, 11468 y 974000 son regulares y 16832 no lo es.
-- Definir la lista infinita
     regularesPerfectos :: [Integer]
-- cuyos elementos son los cuadrados perfectos que son regulares. Por
-- ejemplo,
    λ> take 19 regularesPerfectos
     [1,4,9,16,25,36,49,64,81,100,144,169,225,256,289,400,441,841,900]
  ______
regularesPerfectos :: [Integer]
regularesPerfectos = filter regular [i^2 | i <- [1..]]
regular :: Integer -> Bool
regular x = cs == ds || cs == reverse ds
 where cs = cifras x
      ds = sort cs
cifras :: Integer -> [Int]
cifras x = [read [i] | i <- show x]
__ _______
-- Ejercicio 1.2. Calcula el mayor cuadrado perfecto regular de 7 cifras.
__ _______
-- El cálculo es
     λ> last (takeWhile (<=10^7-1) regularesPerfectos)</pre>
     9853321
-- Ejercicio 2. Definir la función
     posicionesPares :: Pila a -> Pila a
-- tal que (posicionesPares p) devuelve la pila obtenida tomando los elementos
-- que ocupan las posiciones pares en la pila p. Por ejemplo,
    λ> posicionesPares (foldr apila vacia [0..9])
     1|3|5|7|9|-
    λ> posicionesPares (foldr apila vacia "salamanca")
     'a'|'a'|'a'|'c'|-
posicionesPares :: Pila a -> Pila a
posicionesPares p
 | esVacia p = vacia
```

```
| esVacia q = vacia
  | otherwise = apila (cima q) (posicionesPares r)
 where q = desapila p
       r = desapila q
  -----
-- Ejercicio 3. Una matriz de enteros p se dirá segura para la torre si
     + p solo contiene ceros y unos;
     + toda fila de p contiene, a lo más, un 1;
     + toda columna de p contiene, a lo más, un 1.
   Definir la función
      seguraTorre :: Matrix Int -> Bool
   tal que (seguraTorre p) se verifica si la matriz p es segura para
   la torre según la definición anterior. Por ejemplo,
      λ> seguraTorre (fromLists [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1]])
- -
      True
      \lambda> seguraTorre (fromLists [[0,0,0,0],[0,1,0,0],[0,0,0,1],[0,1,1,0]])
      False
      \lambda> seguraTorre (fromLists [[0,1],[2,0]])
seguraTorre :: Matrix Int -> Bool
seguraTorre p =
 all ('elem' [0,1]) (toList p) &&
 all tieneComoMaximoUnUno filas &&
 all tieneComoMaximoUnUno columnas
 where m
                = nrows p
       n
                = ncols p
                = [[p!(i,j) | j <- [1..n]] | i <- [1..m]]
       columnas = [[p!(i,j) | i <- [1..m]] | j <- [1..n]]
tieneComoMaximoUnUno :: [Int] -> Bool
tieneComoMaximoUnUno xs = length (filter (==1) xs) <= 1
-- Ejercicio 4.1. Definir la función
     trunca :: (Eq a, Num a) => Int -> Polinomio a -> Polinomio a
-- tal que (trunca k p) es el polinomio formado por aquellos términos de
-- p de grado mayor o igual que k. Por ejemplo,
     λ> trunca 3 (consPol 5 2 (consPol 3 (-7) (consPol 2 1 polCero)))
     2*x^5 + -7*x^3
```

```
λ> trunca 2 (consPol 5 2 (consPol 3 (-7) (consPol 2 1 polCero)))
      2*x^5 + -7*x^3 + x^2
     λ> trunca 4 (consPol 5 2 (consPol 3 (-7) (consPol 2 1 polCero)))
trunca :: (Eq a, Num a) => Int -> Polinomio a -> Polinomio a
trunca k p
  | k < 0
              = polCero
  | esPolCero p = polCero
  | k > n
              = polCero
  | otherwise = consPol n a (trunca k (restoPol p))
 where n = grado p
        a = coefLider p
-- Ejercicio 4.2. Un polinomio de enteros se dirá impar si su término
-- independiente es impar y el resto de sus coeficientes (si los
-- hubiera) son pares.
-- Definir la función
      imparPol :: Integral a => Polinomio a -> Bool
-- tal que (imparPol p) se verifica si p es un polinomio impar de
-- acuerdo con la definición anterior. Por ejemplo,
      λ> imparPol (consPol 5 2 (consPol 3 6 (consPol 0 3 polCero)))
      True
     λ> imparPol (consPol 5 2 (consPol 3 6 (consPol 0 4 polCero)))
     λ> imparPol (consPol 5 2 (consPol 3 1 (consPol 0 3 polCero)))
     False
-- lª solución
-- ========
imparPol :: Integral a => Polinomio a -> Bool
imparPol p = odd (coeficiente 0 p) &&
            all even [coeficiente k p | k <- [1..grado p]]
coeficiente :: Integral a => Int -> Polinomio a -> a
coeficiente k p
  \mid esPolCero p = 0
  | k > n = 0
```

9.5.6. Examen 6 (12 de junio de 2018)

El examen es común con el del grupo 4 (ver página 944).

9.5.7. Examen 7 (27 de junio de 2018)

El examen es común con el del grupo 1 (ver página 956).

Apéndice A

Resumen de funciones predefinidas de Haskell

```
1. |x + y| es la suma de x e y.
 2. x - y es la resta de x e y.
 3. | x / y | es el cociente de x entre y.
    x ^y es x elevado a y.
 4.
 5.
     x == y se verifica si x es igual a y.
     x \neq y se verifica si x es distinto de y.
 6.
 7.
     x < y se verifica si x es menor que y.
     x \leftarrow y se verifica si x es menor o igual que y.
 8.
     x > y | se verifica si x es mayor que y.
 9.
     x >= y | se verifica si x es mayor o igual que y.
10.
11.
     x \& y es la conjunción de x e y.
     x | | y es la disyunción de x e y.
12.
13.
     x:ys es la lista obtenida añadiendo x al principio de ys.
14.
     xs ++ ys es la concatenación de xs e ys.
     xs !! n es el elemento n-ésimo de xs.
15.
16.
     f . g es la composición de f y g.
17.
     abs x es el valor absoluto de x.
     and xs es la conjunción de la lista de booleanos xs.
18.
19.
     ceiling x es el menor entero no menor que x.
20.
     chr n es el carácter cuyo código ASCII es n.
     concat xss es la concatenación de la lista de listas xss.
21.
22.
                 es x.
     const x y
```

- 23. curry f es la versión curryficada de la función f.
- 24. div x y es la división entera de x entre y.
- 25. drop n xs borra los n primeros elementos de xs.
- 26. dropWhile p xs borra el mayor prefijo de xs cuyos elementos satisfacen el predicado p.
- 27. $\begin{vmatrix} elem \times ys \end{vmatrix}$ se verifica si x pertenece a ys.
- 28. even x se verifica si x es par.
- 29. filter p xs es la lista de elementos de la lista xs que verifican el predicado p.
- 30. | flip f x y | es f y x.
- 31. | floor x | es el mayor entero no mayor que x.
- 32. foldl f e xs pliega xs de izquierda a derecha usando el operador f y el valor inicial e.
- 33. foldr f e xs pliega xs de derecha a izquierda usando el operador f y el valor inicial e.
- 34. fromIntegral x transforma el número entero x al tipo numérico correspondiente.
- 35. | fst p | es el primer elemento del par p.
- 36. $| gcd \times y |$ es el máximo común divisor de de x e y.
- 37. head xs es el primer elemento de la lista xs.
- 38. init xs es la lista obtenida eliminando el último elemento de xs.
- 39. iterate f x es la lista [x, f(x), f(f(x)), ...].
- 40. <u>last xs</u> es el último elemento de la lista xs.
- 41. length xs es el número de elementos de la lista xs.
- 42. map f xs es la lista obtenida aplicado f a cada elemento de xs.
- 43. max x y es el máximo de x e y.
- 44. maximum xs es el máximo elemento de la lista xs.
- 45. $min \times y$ es el mínimo de x e y.
- 46. minimum xs es el mínimo elemento de la lista xs.
- 47. $| mod \times y |$ es el resto de x entre y.
- 48. not x es la negación lógica del booleano x.
- 49. noElem x ys se verifica si x no pertenece a ys.
- 50. null xs se verifica si xs es la lista vacía.
- 51. $odd \times se verifica si \times es impar.$
- 52. or xs es la disyunción de la lista de booleanos xs.
- 53. ord c es el código ASCII del carácter c.

- 54. product xs es el producto de la lista de números xs.
- 55. read c es la expresión representada por la cadena c.
- 56. | rem x y | es el resto de x entre y.
- 57. | repeat x | es la lista infinita [x, x, x, ...].
- 58. | replicate n x | es la lista formada por n veces el elemento x.
- 59. reverse xs es la inversa de la lista xs.
- 60. round x es el redondeo de x al entero más cercano.
- 61. scanr f e xs es la lista de los resultados de plegar xs por la derecha con f y e.
- 62. show x es la representación de x como cadena.
- 63. $| signum \times | es 1 si \times es positivo, 0 si \times es cero y -1 si \times es negativo.$
- 64. snd p es el segundo elemento del par p.
- 65. splitAt n xs es (take n xs, drop n xs).
- 66. sqrt x es la raíz cuadrada de x.
- 67. sum xs es la suma de la lista numérica xs.
- 68. tail xs es la lista obtenida eliminando el primer elemento de xs.
- 69. take n xs es la lista de los n primeros elementos de xs.
- 70. takeWhile p xs es el mayor prefijo de xs cuyos elementos satisfacen el predicado p.
- 71. uncurry f es la versión cartesiana de la función f.
- 72. | until p f x | aplica f a x hasta que se verifique p.
- 73. zip xs ys es la lista de pares formado por los correspondientes elementos de xs e ys.
- 74. zipWith f xs ys se obtiene aplicando f a los correspondientes elementos de xs e ys.

A.1. Resumen de funciones sobre TAD en Haskell

A.1.1. Polinomios

- 1. polCero es el polinomio cero.
- 2. (esPolCero p) se verifica si p es el polinomio cero.
- 3. (consPol n b p) es el polinomio $bx^n + p$.
- 4. (grado p) es el grado del polinomio p.

- 5. (coefLider p) es el coeficiente líder del polinomio p.
- 6. (restoPol p) es el resto del polinomio p.

A.1.2. Vectores y matrices (Data.Array)

- 1. (range m n) es la lista de los índices del m al n.
- 2. (index (m,n) i) es el ordinal del índice i en (m,n).
- 3. (inRange (m,n) i) se verifica si el índice i está dentro del rango limitado por m y n.
- 4. (rangeSize (m,n)) es el número de elementos en el rango limitado por m y n.
- 5. (array (1,n) [(i, f i) | i <- [1..n]) es el vector de dimensión n cuyo elemento i-ésimo es f i.
- 6. (array ((1,1),(m,n)) [((i,j), f i j) | i <- [1..m], j <- [1..n]]) es la matriz de dimensión m.n cuyo elemento (i,j)-ésimo es f i j.
- 7. (array (m,n) ivs) es la tabla de índices en el rango limitado por m y n definida por la lista de asociación ivs (cuyos elementos son pares de la forma (índice, valor)).
- 8. (t ! i) es el valor del índice i en la tabla t.
- 9. | (bounds t) | es el rango de la tabla t.
- 10. (indices t) es la lista de los índices de la tabla t.
- 11. (elems t) es la lista de los elementos de la tabla t.
- 12. (assocs t) es la lista de asociaciones de la tabla t.
- 13. (t // ivs) es la tabla t asignándole a los índices de la lista de asociación ivs sus correspondientes valores.
- 14. (listArray (m,n) vs) es la tabla cuyo rango es (m,n) y cuya lista de valores es vs.
- 15. (accumArray f v (m,n) ivs) es la tabla de rango (m,n) tal que el valor del índice i se obtiene acumulando la aplicación de la función f al valor inicial v y a los valores de la lista de asociación ivs cuyo índice es i.

A.1.3. Tablas

- 1. (tabla ivs) es la tabla correspondiente a la lista de asociación ivs (que es una lista de pares formados por los índices y los valores).
- 2. (valor t i) es el valor del índice i en la tabla t.
- 3. (modifica (i,v) t) es la tabla obtenida modificando en la tabla t el valor de i por v.

A.1.4. Grafos

- 1. (creaGrafo d cs as) es un grafo (dirigido o no, según el valor de o), con el par de cotas cs y listas de aristas as (cada arista es un trío formado por los dos vértices y su peso).
- 2. (dirigido g) se verifica si g es dirigido.
- 3. (nodos g) es la lista de todos los nodos del grafo g.
- 4. (aristas g) es la lista de las aristas del grafo g.
- 5. (adyacentes g v) es la lista de los vértices adyacentes al nodo v en el grafo g.
- 6. (aristaEn g a) se verifica si a es una arista del grafo g.
- 7. (peso v1 v2 g) es el peso de la arista que une los vértices v1 y v2 en el grafo g.

Apéndice B

Método de Pólya para la resolución de problemas

B.1. Método de Pólya para la resolución de problemas matemáticos

Para resolver un problema se necesita:

Paso 1: Entender el problema

- ¿Cuál es la incógnita?, ¿Cuáles son los datos?
- ¿Cuál es la condición? ¿Es la condición suficiente para determinar la incógnita? ¿Es insuficiente? ¿Redundante? ¿Contradictoria?

Paso 2: Configurar un plan

- ¿Te has encontrado con un problema semejante? ¿O has visto el mismo problema planteado en forma ligeramente diferente?
- ¿Conoces algún problema relacionado con éste? ¿Conoces algún teorema que te pueda ser útil? Mira atentamente la incógnita y trata de recordar un problema que sea familiar y que tenga la misma incógnita o una incógnita similar.
- He aquí un problema relacionado al tuyo y que ya has resuelto ya. ¿Puedes utilizarlo? ¿Puedes utilizar su resultado? ¿Puedes emplear su método? ¿Te hace falta introducir algún elemento auxiliar a fin de poder utilizarlo?

- ¿Puedes enunciar al problema de otra forma? ¿Puedes plantearlo en forma diferente nuevamente? Recurre a las definiciones.
- Si no puedes resolver el problema propuesto, trata de resolver primero algún problema similar. ¿Puedes imaginarte un problema análogo un
 tanto más accesible? ¿Un problema más general? ¿Un problema más
 particular? ¿Un problema análogo? ¿Puede resolver una parte del problema? Considera sólo una parte de la condición; descarta la otra parte;
 ¿en qué medida la incógnita queda ahora determinada? ¿En qué forma
 puede variar? ¿Puedes deducir algún elemento útil de los datos? ¿Puedes
 pensar en algunos otros datos apropiados para determinar la incógnita?
 ¿Puedes cambiar la incógnita? ¿Puedes cambiar la incógnita o los datos,
 o ambos si es necesario, de tal forma que estén más cercanos entre sí?
- ¿Has empleado todos los datos? ¿Has empleado toda la condición? ¿Has considerado todas las nociones esenciales concernientes al problema?

Paso 3: Ejecutar el plan

- Al ejercutar tu plan de la solución, comprueba cada uno de los pasos
- ¿Puedes ver claramente que el paso es correcto? ¿Puedes demostrarlo?

Paso 4: Examinar la solución obtenida

- ¿Puedes verificar el resultado? ¿Puedes el razonamiento?
- ¿Puedes obtener el resultado en forma diferente? ¿Puedes verlo de golpe? ¿Puedes emplear el resultado o el método en algún otro problema?
- G. Polya "Cómo plantear y resolver problemas" (Ed. Trillas, 1978) p. 19

B.2. Método de Pólya para resolver problemas de programación

Para resolver un problema se necesita:

Paso 1: Entender el problema

- ¿Cuáles son las argumentos? ¿Cuál es el resultado? ¿Cuál es nombre de la función? ¿Cuál es su tipo?
- ¿Cuál es la especificación del problema? ¿Puede satisfacerse la especificación? ¿Es insuficiente? ¿Redundante? ¿Contradictoria? ¿Qué restricciones se suponen sobre los argumentos y el resultado?
- ¿Puedes descomponer el problema en partes? Puede ser útil dibujar diagramas con ejemplos de argumentos y resultados.

Paso 2: Diseñar el programa

- ¿Te has encontrado con un problema semejante? ¿O has visto el mismo problema planteado en forma ligeramente diferente?
- ¿Conoces algún problema relacionado con éste? ¿Conoces alguna función que te pueda ser útil? Mira atentamente el tipo y trata de recordar un problema que sea familiar y que tenga el mismo tipo o un tipo similar.
- ¿Conoces algún problema familiar con una especificación similar?
- He aquí un problema relacionado al tuyo y que ya has resuelto. ¿Puedes utilizarlo? ¿Puedes utilizar su resultado? ¿Puedes emplear su método? ¿Te hace falta introducir alguna función auxiliar a fin de poder utilizarlo?
- Si no puedes resolver el problema propuesto, trata de resolver primero algún problema similar. ¿Puedes imaginarte un problema análogo un tanto más accesible? ¿Un problema más general? ¿Un problema más particular? ¿Un problema análogo?
- ¿Puede resolver una parte del problema? ¿Puedes deducir algún elemento útil de los datos? ¿Puedes pensar en algunos otros datos apropiados para determinar la incógnita? ¿Puedes cambiar la incógnita? ¿Puedes cambiar la incógnita o los datos, o ambos si es necesario, de tal forma que estén más cercanos entre sí?
- ¿Has empleado todos los datos? ¿Has empleado todas las restricciones sobre los datos? ¿Has considerado todas los requisitos de la especificación?

Paso 3: Escribir el programa

- Al escribir el programa, comprueba cada uno de los pasos y funciones auxiliares.
- ¿Puedes ver claramente que cada paso o función auxiliar es correcta?
- Puedes escribir el programa en etapas. Piensas en los diferentes casos en los que se divide el problema; en particular, piensas en los diferentes casos para los datos. Puedes pensar en el cálculo de los casos independientemente y unirlos para obtener el resultado final
- Puedes pensar en la solución del problema descomponiéndolo en problemas con datos más simples y uniendo las soluciones parciales para obtener la solución del problema; esto es, por recursión.
- En su diseño se puede usar problemas más generales o más particulares. Escribe las soluciones de estos problemas; ellas puede servir como guía para la solución del problema original, o se pueden usar en su solución.
- ¿Puedes apoyarte en otros problemas que has resuelto? ¿Pueden usarse? ¿Pueden modificarse? ¿Pueden guiar la solución del problema original?

Paso 4: Examinar la solución obtenida

- ¿Puedes comprobar el funcionamiento del programa sobre una colección de argumentos?
- ¿Puedes comprobar propiedades del programa?
- ¿Puedes escribir el programa en una forma diferente?
- ¿Puedes emplear el programa o el método en algún otro programa?

Simon Thompson *How to program it*, basado en G. Polya *Cómo plantear y resolver problemas*.

Bibliografía

- [1] J. A. Alonso. Temas de programación funcional. Technical report, Univ. de Sevilla, 2012.
- [2] J. A. Alonso and M. J. Hidalgo. Piensa en Haskell (Ejercicios de programación funcional con Haskell). Technical report, Univ. de Sevilla, 2012.
- [3] R. Bird. *Introducción a la programación funcional con Haskell*. Prentice–Hall, 1999.
- [4] H. C. Cunningham. Notes on functional programming with Haskell. Technical report, University of Mississippi, 2010.
- [5] H. Daumé. Yet another Haskell tutorial. Technical report, University of Utah, 2006.
- [6] A. Davie. An introduction to functional programming systems using Haskell. Cambridge University Press, 1992.
- [7] K. Doets and J. van Eijck. *The Haskell road to logic, maths and programming*. King's College Publications, 2004.
- [8] J. Fokker. Programación funcional. Technical report, Universidad de Utrech, 1996.
- [9] P. Hudak. *The Haskell school of expression: Learning functional programming through multimedia*. Cambridge University Press, 2000.
- [10] P. Hudak. The Haskell school of music (From signals to symphonies). Technical report, Yale University, 2012.
- [11] G. Hutton. Programming in Haskell. Cambridge University Press, 2007.
- [12] B. O'Sullivan, D. Stewart, and J. Goerzen. *Real world Haskell*. O'Reilly, 2008.
- [13] G. Pólya. Cómo plantear y resolver problemas. Editorial Trillas, 1965.

984 Bibliografía

[14] F. Rabhi and G. Lapalme. *Algorithms: A functional programming approach*. Addison-Wesley, 1999.

- [15] B. C. Ruiz, F. Gutiérrez, P. Guerrero, and J. Gallardo. *Razonando con Haskell (Un curso sobre programación funcional)*. Thompson, 2004.
- [16] S. Thompson. *Haskell: The craft of functional programming*. Addison-Wesley, third edition, 2011.