Prova scritta di Logica Matematica 21 luglio 2014

Cognome Nome Matricola

Scrivete **subito** il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

1. $(r \to q) \land \neg p \models \neg (p \lor (q \land r)).$	$\mathbf{V} \mathbf{F}$	1pt
2. L'algoritmo di Fitting per la forma normale congiuntiva		
gode della proprietà della terminazione forte.	$\mathbf{V} \mathbf{F}$	1pt
3. Se $F \models G$ e G è valida, allora anche F è valida.	$\mathbf{V} \mathbf{F}$	1pt
4. Quante delle seguenti formule sono enunciati?		
$\forall y p(y) \to \exists x r(x, f(y)), \exists w r(w, f(w)) \land \forall y \neg r(x, f(y)),$		
	2 3 4	1pt
5. Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = 0, f^I(1) = 3,$		
$f^{I}(2) = 1, f^{I}(3) = 0, p^{I} = \{0, 2\}, r^{I} = \{(0, 0), (1, 2), (2, 2), (3, 1),$	$\{3,2\}$.	
Allora $I \models \forall x (\neg r(f(x), x) \rightarrow \neg (p(x) \lor p(f(x)))).$	$\mathbf{V} \mathbf{F}$	1pt
6. $\forall x q(x, y) \to \exists x p(x) \equiv \exists x (q(x, y) \to p(x)).$	$ \mathbf{V} \mathbf{F} $	$1 \mathrm{pt}$
7. Esiste un insieme di Hintikka che contiene gli enunciati		
$\exists x p(x), \forall z q(z) \in \forall x (p(x) \to \neg q(x)).$	$\mathbf{V} \mathbf{F}$	1pt
8. Se $\Gamma \models_{\underline{=}} F$ allora $\Gamma \models F$.	$ \mathbf{V} \mathbf{F} $	1pt
9. Se $\Gamma \models_{\underline{=}} F$ allora $\Gamma \triangleright_{\underline{=}} F$.	$\mathbf{V} \left[\mathbf{F} \right]$	1pt
SECONDA PARTE		

10. Sul retro del foglio dimostrate che l'enunciato

$$\forall x\, r(x,a) \land \forall y\, \forall z (r(f(y),z) \to \neg p(y) \lor p(z)) \to (\exists y\, p(y) \to p(a))$$
è valido.

4pt

4pt

11. Sia $\mathcal{L} = \{f, r\}$ un linguaggio in cui f è un simbolo di funzione unario e r è un simbolo di relazione binario. Sia I l'interpretazione per \mathcal{L} definita da

$$D^{I} = \{A, B, C, D, E\}; \qquad r^{I} = \{(B, A), (B, C), (B, E), (D, B), (D, D)\}$$
$$f^{I}(A) = C; \quad f^{I}(B) = D; \quad f^{I}(C) = C; \quad f^{I}(D) = E; \quad f^{I}(E) = A.$$

Sul retro del foglio definite una relazione di congruenza \sim su I che abbia tre classi d'equivalenza, giustificando la vostra risposta.

(Se si descrive l'interpretazione quoziente I/\sim , 1pt in più.)

- 12. Sia $\mathcal{L} = \{a, b, m, s, \ell, c, =\}$ un linguaggio con uguaglianza dove a e b sono simboli di costante, m è un simbolo di funzione unario, s e ℓ sono simboli di relazione unari e c è un simbolo di relazione unario. Interpretando a come "Arianna", b come "Boris", m(x) come "la madre di x", s(x) come "x è uno scienziato", $\ell(x)$ come "x è un letterato", c(x,y) come "x conosce y" traducete le seguenti frasi:
 - (i) la madre di Boris è uno scienziato che conosce la madre di Arianna; 3pt
 - (ii) ogni letterato conosciuto dalla madre di Arianna conosce scienziati diversi dalla madre di Boris. 3pt
- 13. Mostrate che 3pt

$$F \lor (G \to H), F \to \neg G \rhd \neg (G \land \neg H).$$

Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)

14. Usando il metodo dei tableaux stabilite sul retro del foglio che 5pt

$$\forall x (\forall z \neg r(z, x) \rightarrow p(x)) \models \forall y \exists x \, r(x, y) \lor \exists x \, p(x).$$

(Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale disgiuntiva la formula

$$\neg ((p \land \neg q) \lor r \to \neg (s \to \neg (\neg t \land u))).$$

Soluzioni

- 1. F come si verifica per esempio con le tavole di verità: l'interpretazione $v(p) = \mathbf{F}, v(q) = \mathbf{V}, v(r) = \mathbf{V}$ soddisfa la formula a sinistra del simbolo di conseguenza logica, ma non quella a destra.
- 2. V è parte del lemma 3.25 delle dispense.
- **3. F** considerare ad esempio il caso in cui $F \in G$ sono rispettivamente $p \in p \vee \neg p$.
- **4.** 1 solo la terza formula è un enunciato: nelle altre le variabili libere sono rispettivamente $y, x \in x$.
- **5.** F si ha $I, \sigma[x/3] \models \neg r(f(x), x)$ (perché $f^I(3) = 0$ e $(0, 3) \notin r^I$) e $I, \sigma[x/3] \nvDash \neg (p(x) \lor p(f(x)))$ (perchè $0 \in p^I$); quindi $I, \sigma[x/3] \nvDash \neg r(f(x), x) \to \neg (p(x) \lor p(f(x)))$ e perciò $I \nvDash \forall x (\neg r(f(x), x) \to \neg (p(x) \lor p(f(x))))$.
- 6. V è un'applicazione del lemma 7.55 delle dispense.
- 7. **F** ogni insieme di Hintikka Γ che contiene $\exists x \, p(x)$ deve contenere anche p(c) per qualche costante c; se $\forall x (p(x) \to \neg q(x)) \in \Gamma$ allora $p(c) \to \neg q(c) \in \Gamma$ e, dato che $\neg p(c) \notin \Gamma$, deve essere $\neg q(c) \in \Gamma$, che è incompatibile con $\forall z \, q(z) \in \Gamma$.
- 8. F vedere l'esempio 7.100 delle dispense.
- 9. V è il teorema di correttezza per la deduzione naturale con uguaglianza (teorema 11.50 delle dispense).
- **10.** L'enunciato ha la forma $F \wedge G \to (H \to p(a))$. Dobbiamo dimostrare che esso è soddisfatto in qualunque interpretazione I: dato che se I non soddisfa una qualunque tra F, G e H l'enunciato è soddisfatto, possiamo supporre che $I \models F, G, H$ con l'obiettivo di dimostrare che $I \models p(a)$.

Dato che $I \models H$ esiste $d_0 \in D^I$ tale che $I, \sigma[x/d_0] \models p(x)$, cioè $d_0 \in p^I$. Dato che $I \models F$ si ha in particolare $I, \sigma[x/f^I(d_0)] \models r(x, a)$, cioè $(f^I(d_0), a^I) \in r^I$.

Dato che $I \models G$ si ha in particolare $I, \sigma[y/d_0, z/a^I] \models r(f(y), z) \rightarrow \neg p(y) \lor p(z)$. Da quanto osservato sopra segue $I, \sigma[y/d_0, z/a^I] \models \neg p(y) \lor p(z)$. Si hanno dunque due possibilità: nella prima $d_0 \notin p^I$ mentre nella seconda $a^I \in p^I$.

Il primo caso contraddice quanto ottenuto in precedenza, e perciò deve valere il secondo, cioè $I \models p(a)$ e la dimostrazione è completata.

11. Definiamo \sim in modo che le sue classi d'equivalenza siano $\{A,C,E\}$, $\{B\}$ e $\{D\}$. Bisogna verificare le condizioni della definizione di relazione di congruenza.

In oltre $D^I=\{[A],[B],[D]\},\ r^{I/\sim}=\{([B],[A]),([D],[B]),([D],[D])\},$ $f^{I/\sim}([A])=[A],\ f^{I/\sim}([B])=[D],\ f^{I/\sim}([D])=[A].$

- **12.** (i) $s(m(b)) \wedge c(m(b), m(a));$
 - (ii) $\forall x (\ell(x) \land c(m(a), x) \rightarrow \exists y (c(x, y) \land s(y) \land y \neq m(b))).$

13. Ecco una deduzione naturale che mostra quanto richiesto:

Si noti l'uso di (MT) nel passaggio in cui $G \to H$ è un'ipotesi.

14. Per stabilire la conseguenza logica utilizziamo l'algoritmo 10.48 delle dispense e costruiamo un tableau chiuso con la radice etichettata dall'enunciato a sinistra del simbolo di conseguenza logica e dalla negazione di quello a destra. Indichiamo con F, G e H le γ -formule $\forall x(\forall z \neg r(z, x) \rightarrow p(x))$, $\neg \exists x \, p(x)$ e $\neg \exists x \, r(x, a)$. Utilizziamo la convenzione 10.22 delle dispense e in ogni passaggio sottolineiamo la formula su cui agiamo.

$$F, \underline{\neg(\forall y \,\exists x \, r(x,y) \vee \exists x \, p(x))} \\ | \\ F, \underline{\neg \forall y \,\exists x \, r(x,y)}, G \\ | \\ \underline{F}, H, G \\ | \\ F, \underline{\forall z \, \neg r(z,a) \rightarrow p(a)}, H, G \\ | \\ F, \underline{\neg \forall z \, \neg r(z,a)}, H, G \quad F, p(a), H, \underline{G} \\ | \\ F, r(b,a), \underline{H}, G \quad F, p(a), H, G, \neg p(a) \\ | \\ & \\ F, r(b,a), H, \neg r(b,a), G \\ \bigotimes$$

15.

$$\begin{split} \left[\left\langle \neg \left((p \wedge \neg q) \vee r \rightarrow \neg (s \rightarrow \neg (\neg t \wedge u)) \right) \right\rangle \right] \\ \left[\left\langle (p \wedge \neg q) \vee r, s \rightarrow \neg (\neg t \wedge u) \right\rangle \right] \\ \left[\left\langle p \wedge \neg q, s \rightarrow \neg (\neg t \wedge u) \right\rangle, \left\langle r, s \rightarrow \neg (\neg t \wedge u) \right\rangle \right] \\ \left[\left\langle p, \neg q, s \rightarrow \neg (\neg t \wedge u) \right\rangle, \left\langle r, s \rightarrow \neg (\neg t \wedge u) \right\rangle \right] \\ \left[\left\langle p, \neg q, \neg s \right\rangle, \left\langle p, \neg q, \neg (\neg t \wedge u) \right\rangle, \left\langle r, \neg s \right\rangle, \left\langle r, \neg (\neg t \wedge u) \right\rangle \right] \\ \left[\left\langle p, \neg q, \neg s \right\rangle, \left\langle p, \neg q, t \right\rangle, \left\langle p, \neg q, \neg u \right\rangle, \left\langle r, \neg s \right\rangle, \left\langle r, t \right\rangle, \left\langle r, \neg u \right\rangle \right] \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(p \land \neg q \land \neg s) \lor (p \land \neg q \land t) \lor (p \land \neg q \land \neg u) \lor (r \land \neg s) \lor (r \land t) \lor (r \land \neg u).$$