Chapter 20

stevenjin8

June 26, 2021

Comments

I did not retain much from this chapter...

Exercises

Exercise 3

a. We first use Bayes law to "flip" the conditionals and then compute the marginals:

$$p(G_1|X_2 = 50) \propto p(X_2 = 50|G_1)p(G_1)$$

$$\propto p(X_2 = 50|G_1)$$

$$\propto p(X_2 = 50|G_2 = 1)p(G_2 = 1|G_1) + p(X_2 = 50|G_2 = 2)p(G_2 = 2|G_1)$$

Plugging in the numbers, we get $p(G_1|X_2 = 50) = [0.895, 1.05]$.

b. The key realization here is that $p(X_2|G1) = p(X_3|G_1)$ since the transition matrices are equal. Thus,

$$p(G_1 = 1|X_2 = 50, X_3 = 50) = p(X_2 = 50, X_3 = 50|G_1 = 1)$$

$$= p(X_2 = 50|G_1 = 1)p(X_3 = 50|G_1 = 1)$$

$$= p(X_2 = 50|G_1 = 1)^2,$$

$$p(G_1|X_2 = 50, X_3 = 50) = [0.986, 0.014].$$

It makes sense that $p(G_1 = 1|X_2 = 50, X_3 = 50) > p(G_1 = 1|X_2 = 50)$, since, in the former case, there is more evidence for $G_1 = 1$.

- c. Now, there is equal evidence that $G_1 = 0$ as there was for $G_1 = 1$ in part b, and the prior distribution for G_1 is uniform. Thus, we can flip the distribution and $p(G_1|X_2 = 60, X_3 = 60) = [0.014, 0.986]$.
- d. I think the author meant to ask for $p(G_1|X_2 = 50, X_3 = 60)$. If that is the case, there is equal evidence for G = 1 and $G_1 = 0$. Thus, the posterior of G_1 is just its prior: $p(G_1|X_2 = 50, X_3 = 60) = [0.5, 0.5]$.