Manifolds II

January 6, 2025

Recall: Tangent Bundle

Given a chart (U,ϕ) about a point p, we have coordinates $(x^1,...,x^n)$ and a basis for T_qM of $\left(\frac{\partial}{\partial x^1}|_q,...,\frac{\partial}{\partial x^n}|_q\right)$ for $q \in U$.

Then given $TM \xrightarrow{\pi} M$, we may write $v_q = v^i \frac{\partial}{\partial x^i}|_q$.

Definition:

For M a topological manifold. A (real) vector bndle of rank k over M is a topological space E with a surjective continuous map $\pi: E \to M$ such that

- 1. $\forall p \in M$, the fiber $\pi^{-1}(p) =: E_p$ is endowed with the structure of a (real) vector space of dimension k.
- 2. $\forall p \in M$, there exists a neighborhood U of p in M and a homeomorphism $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ called a local trivialization.

$$\Phi: \pi^{-1}(U) \xrightarrow{\pi} U \times \mathbb{R}^k$$

and $\Phi|_{E_q}: E_q \to \{q\} \times \mathbb{R}^k$ is a linear isometry.

Examples

- 1. $TM \stackrel{\pi}{\rightarrow} M$
- 2. $E = M \times \mathbb{R}^k$ with a global trivialization.
- 3. The Mobius bundle over S^1 . $\gamma: \mathbb{R}^2 \to \mathbb{R}^2$ by $(x,y) \mapsto (x+1,(-1)\cdot y)$. Then $\langle \gamma \rangle \cong \mathbb{Z}$ a subgroup acting freely and isometrically on \mathbb{R}^2 . Then $E = \mathbb{R}^2/\langle \gamma \rangle \stackrel{\pi}{\to} S^1 = \mathbb{R}/\mathbb{Z}$ by $\overline{(x,y)} \mapsto \overline{x}$ is a vector bundle.

IMAGE 1

• We want to show that $\pi^{-1}(U) \cong U \times \mathbb{R}$

$$\mathbb{R}^{2} \xrightarrow{q} E \qquad (x,y) \longmapsto \overline{(x,y)}$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi} \qquad \downarrow^{\pi}$$

$$\mathbb{R} \xrightarrow{\varepsilon} S^{1} \qquad x \longmapsto e^{(2\pi i)x}$$

Then let $p \in S^1$. We choose U a neighborhood of p such that U is evenly covered by ε . This means $\varepsilon^{-1}(U)$ is a disjoint union of open sets diffeomorphic to U.

IMAGE 2

1

Let \tilde{U} be a component in $\pi^{-1}(U)$. Then $\pi_1^{-1}(\tilde{U}) \cong \tilde{U} \times \mathbb{R}$ and $\pi^{-1}(U)$ is diffeomorphic to $U \times \mathbb{R}$.

Definition: Transition Function

Take $E \xrightarrow{\pi} M$ with $U, V \subseteq M$ admitting trivializations $\phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ and $\Psi : \pi^{-1}(V) \to V \times \mathbb{R}^k$. Let $w = U \cap V (\neq \emptyset)$.

$$\Phi \circ \Psi^{-1}: \qquad W \times \mathbb{R}^k \longrightarrow \pi^{-1}(W) \longrightarrow W \times \mathbb{R}^k$$

Then $\Phi \circ \Psi^{-1}|_{\{p\} \times \mathbb{R}^k}$ by $\{p\} \times \mathbb{R}^k \to \{p\} \times \mathbb{R}^k$ is a linear isomorphism. $\Phi \circ \Psi^{-1}(p, v) = (p, \tau(p)v)$ by $\tau : p \mapsto \tau(p)$ and $\tau(p) \in GL(k, \mathbb{R})$ gives a smooth map $W \to GL(k, \mathbb{R})$.

Definition:

Let $\{E_1, \ldots, E_k\}$ be a basis of \mathbb{R}^k . Then

$$\tau(p) \cdot E_i = \sum_j \tau(p)_i^j E_j$$

with $\tau(p) = (\tau(p)_i^j)$ and $\tau(p)_j^i \in \mathbb{R}$. It suffices to show each $\tau(*)_i^j$ mapping $W \to \mathbb{R}$ and $p \mapsto (\tau(p)_i^j)$ is smooth. Then if $\sigma(p, v) := \Phi \circ \Psi^{-1}(p, v)$, $\tau(p)_i^j = \pi_j(\sigma(p, E_i))$ and π_j is a projection to the j-th component in \mathbb{R}^k .

Lemma 10.6 (Vector Bundle Chart Lemma)

Given M a smooth manifold, suppose that $\forall p \in M$ we are given a vector space E_p of dimension k. Let $E = \coprod_{p \in M} E_p$ (as a set) and $\pi : E \to M$ a mapping E_p to p. Suppose also that we have

- 1. $\{U_{\alpha}\}_{\alpha\in A}$ an open cover of M with a countable subcover.
- 2. $\forall \alpha \in A$ we hav ea bijection $\Phi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ such that $\Phi_{\alpha}|_{E_{n}} : E_{p} \to \{p\} \times \mathbb{R}^{k}$ is a linear isomorphism.
- 3. $\forall \alpha, \beta \in A \text{ with } U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} \neq \emptyset \text{ we have a smooth map } \tau_{\alpha\beta} : U_{\alpha\beta} \to GL(k,\mathbb{R}) \text{ such that } \Phi_{\alpha} \circ \phi_{\beta}^{-1} : U_{\alpha\beta} \times \mathbb{R}^k \to U_{\alpha\beta} \times \mathbb{R}^k \text{ by } (p,v) \mapsto (p,\tau(p)v).$

Then $E \stackrel{\pi}{\to} M$ is a vector bundle.

Example (Whitney Sum):

Suppose we have $E' \stackrel{\pi'}{\to} M$ and $E'' \stackrel{\pi''}{\to} M$ two vector bundles over M. Define $E = E' \oplus E''$ a new vector bundle over M by $E_p = E_p' \oplus E_p''$. Let $\{U_\alpha\}_{\alpha \in A}$ be a countable open cover of M such that each U_α admits trivializations for E' and E''. Then for $\pi : E \to M$, define $\Phi_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times \mathbb{R}^{k'} \times \mathbb{R}^{k''}$ by $(v', v'')_p \mapsto (p, \pi_2 \circ \Phi_\alpha^{-1}(v'), \pi_2 \circ \Phi_\alpha''(v''))$ where

$$\pi'(U_{\alpha}) \stackrel{\Phi'_{\alpha}}{\to} U_{\alpha} \times \mathbb{R}^{k'} \stackrel{\pi_2}{\to} \mathbb{R}^{k'}$$

Note that π_2 is the projection into the second component. Then $\tau:U_{\alpha\beta}\to G(k'+k'',\mathbb{R})$ by

$$p \mapsto \begin{pmatrix} \tau'(p) & 0 \\ 0 & \tau''(p) \end{pmatrix}$$

Example

For $\tau_{\alpha\beta}: U_{\alpha\beta} \to GL(k,\mathbb{R})$ by $p \mapsto \tau_{\alpha\beta}(p)$, we can write $U_{\alpha\beta\gamma} = U_{\alpha} \cap U_{\beta} \cup U_{\gamma}(\neq \varnothing)$ and get $\tau_{\alpha\beta} \cdot \tau_{\beta\gamma} = \tau_{\alpha\gamma}$. Note that this is $\Phi_{\alpha} \circ (\phi_{\beta}^{-1} \circ \phi_{\beta}) \circ \Phi_{\gamma}^{-1}$.

Without loss of generality, we assume each U_{α} is a chart for M. Then we want to show that we satisfy Lemma 1.35 from Lee

$$\pi^{-1}(U_{\alpha}) \stackrel{\Phi_{\alpha}}{\to} U_{\alpha \times \mathbb{R}^k} \stackrel{\phi_{\alpha} \times \mathrm{id}}{\to} \phi_{\alpha}(U_{\alpha}) \times \mathbb{R}^k \subseteq \mathbb{R}^{n+k}$$

 $(\pi^{-1}(U_{\alpha}) \cdot \tilde{\phi}_{\alpha} = (\phi_{\alpha} \times id) \circ \Phi_{\alpha})_{\alpha \in A}$ which satisfies (1). Since

$$\pi^{-1}(U_{\alpha}) \cap \pi^{-1}(U_{\beta}) = \pi^{-1}(U_{\alpha} \cap U_{\beta}) \to \phi_{\alpha}(U_{\alpha\beta}) \times \mathbb{R}^{K}$$

we have that (2) is satisfied.

Finally, for (3),

$$\tilde{\phi_{\beta}} \circ \tilde{\phi_{\alpha}}^{-1} = (\Phi_{\beta} \circ (\phi_{\beta} \times id)) \circ ((\phi_{\alpha} \times id)^{-1} \circ \Phi_{\alpha}^{-1}) = \Phi_{\beta} \circ ((\phi_{\beta} \circ \phi_{\alpha}) \times id) \circ \Phi_{\alpha}^{-1}$$

gives $(x,c)\mapsto ((\phi_\beta\circ\phi_\alpha^{-1})x,(\Phi_\beta\circ\Phi_\alpha^{-1})\nu)$ a diffeomorphism.

(4) and (5) are trivial, and this is indeed a smooth manifold. Now we wish to show that it is a vector bundle. To show that $\pi: E \to M$ is smooth,

We have $\tilde{\phi}_{\alpha}^{-1} = (\phi_{\alpha} \times id)^{-1} \circ \Phi_{\alpha}^{-1}$.

$$\pi^{-1}(U_{lpha}) \stackrel{\Phi_{lpha}}{\longrightarrow} U_{lpha} imes \mathbb{R}^k \ \phi_{lpha}^{-1} \uparrow \qquad \qquad \downarrow \phi_{lpha} imes \mathrm{id} \ \phi_{lpha}(U_{lpha}) imes \mathbb{R}^k \qquad \qquad \phi_{lpha}(U_{lpha} imes \mathbb{R}^k)$$

Definition: Section of a Bundle

A (smooth) section of $E \xrightarrow{\pi} M$ is a (smooth) map $\sigma : M \to E$ such that $\pi \circ \sigma = \mathrm{id}_M$. $\Gamma(E) = \{\text{smooth sections of } E \xrightarrow{\pi} M \}$ and $\Gamma(E)$ is a $C^{\infty}(M)$ -module.

The zero section $Z: M \to E$ is given by $p \mapsto 0_p \in E_p$.

If *U* has a local trivialization, $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$.

$$\Phi: \qquad \pi^{-1}(U) \xrightarrow{\qquad \qquad} U \times \mathbb{R}^k \longleftarrow_{\Phi^{-1} \qquad \tilde{e}_i} (p, e_i)$$

Define $\sigma_i: U \to \pi^{-1}(U)$ by $\sigma_i = \Phi^{-1} \circ \tilde{e}_i$ gives a local section that is non-zero on U. $\{\sigma_1, \ldots, \sigma_n\}$ form a local frame on U (i.e. form a basis in E_p , $\forall p \in U$).

January 8, 2025

Recall

Last time we had a vector bundle $E \xrightarrow{\pi} M$ of rank k satisfying

- 1. $\pi^{-1}(p) = E_p$ has a (real) vector space structure of dimension k.
- 2. We have a local trivialization, $\forall p \in M$ there exists a neighborhood U and a diffeomorphism Φ

and $\Phi|_{E_p}: E_p \to \{p\} \times \mathbb{R}^k$ is a linear isomorphism. A section $\sigma: M \to E$ is a smooth map such that $\pi \circ \sigma = \mathrm{id}_M$.

We say that a collection of sections $\{\sigma_1, ..., \sigma_k : U \to E\}$ is linearly independent if $\{\sigma_1(x), ..., \sigma_k(x)\}$ is linearly independent for each $x \in U$. This is a (local) frame if it is a basis.

If $U \subseteq M$ admits a trivialization

$$\Phi: \qquad \pi^{-1}(U) \xrightarrow{\qquad \qquad } U \times \mathbb{R}^k$$

then there is a local frame $\{\sigma_1,\ldots,\sigma_k\}$ defined on U. Precisely, with $\tilde{e}_i(x)=(x,e_i),\,\sigma_i=\Phi^{-1}\circ\tilde{e}_i$.

Proposition 10.19

If $U \subseteq M$ admits a local frame, then $\pi^{-1}(U)$ admits a local trivialization.

Remember

If $E \stackrel{\pi}{\to} M$ admits a global frame, then $E = \pi^{-1}(M)$ has a trivialization. In other words, E is diffeomorphic to a trivial vector bundle $M \times \mathbb{R}^k$.

Examples

Example 1

Mobius bundle over S^1 .

IMAGE 1

To check whether it is a trivial bundle of S^1 , it suffices to check whether there exists a nowhere zero (global) section. This cannot happen (by itermediate value theorem), hence it is not $S^1 \times \mathbb{R}$.

4

Example 2

 TS^2 becasue there is no non-vanishing vector field over S^2 , hence $TS^2 \neq S^2 \times \mathbb{R}^2$.

Example 3

Let G be a Lie group. Every $X \in T_{\rho}G(\cong \mathfrak{q})$ uniquely determines a (left-invariant) vector field $\tilde{X} \in \mathfrak{X}(G)$. Starting with a basis $\{E_i\} \subseteq T_eG$ we get a global frame $\{\tilde{E}_i\}$ for TG. Hence TG is a trivial vector bundle $G \times \mathbb{R}^n$ $(n = \dim G)$. In particular, $TS^1 = S^1 \times \mathbb{R}$, $TS^3 = S^3 \times \mathbb{R}^3$.

Proof of Proposition

Define $\Psi:(x,v^1,\ldots,v^k)\in U\times\mathbb{R}^k\to\pi^{-1}(U)\ni v_x$ where $v_x=v^i\sigma_i(x)$.

 Ψ is a bijection. Note that $\Psi|_{E_x}: E_x \to \{x\} \times \mathbb{R}^k$ is a linear isomorphism because $\{\sigma_i(x)\}$ is a basis. Then to show that Ψ is a diffeomorphism, it suffices to show then that Ψ is a local diffeomorphism.

Let $x \in U$ and let V be a neighborhood of x such that $\pi^{-1}(V) \xrightarrow{\Phi} V \times \mathbb{R}^k$.

$$V \times \mathbb{R}^{k} \stackrel{\Psi|_{V \times \mathbb{R}^k}}{\to} \pi^{-1}(V) \stackrel{\Psi}{\to} V \times \mathbb{R}^k$$

We show that this composition is a diffeomorphism. Since $\Phi(\sigma_i(x)) = (x, \sigma_i^1(x), ..., \sigma_i^k(x))$

$$\Phi \circ \Psi|_{V \times \mathbb{R}^k}(x, v^1, \dots, v^k) = \Phi(v^i \sigma_i(x))$$
$$= (x, v^i \sigma_i^1(x), \dots, v^i \sigma_i^k(x))$$

Each $\sigma_i^j(x)$ is smooth. Hence $\Phi \circ \Psi|_{V \times \mathbb{R}^k}$ is smooth.

Let $\vec{v} = (v^1, \dots, v^k)$ and $\sum (x) = (\sigma_i^j(x))$, then $\Phi \circ \Psi(x, \vec{v}) = (x, \vec{v} \cdot \sum (x))$. Its inverse

$$\left(\Phi\circ\Psi\right)^{-1}(x,\vec{w})=\left(x,\vec{w}\cdot\sum(x)\right)$$

is also smooth. This shows that $\Phi \circ \Psi|_{V \times \mathbb{R}^k}$ is a diffeomorphism. Hence $\Psi|_{V \times \mathbb{R}^k}$ is a diffeomorphism $(V \subseteq U)$ and $\Psi: U \times \mathbb{R}^k \to \pi^{-1}(U)$ is also a diffeomorphism.

Definition: Bundle Morphism

A bundle morphism between is a pair of smooth maps (f,F) such that this diagram commutes

$$E \xrightarrow{F} E'$$

$$\downarrow_{\pi} \qquad \downarrow_{\pi'}$$

$$M \xrightarrow{f} M'$$

and $F|_{E_p}: E_p \to E'_{f(p)}$ is a linear map $(\forall p \in M)$. If it admits an inverse which is itself a bundle morphism, it is a unble isomorphism.

Remember that f is smooth because $f = \pi' \circ F \circ Z$

$$p \stackrel{Z}{\mapsto} 0_p \stackrel{F}{\mapsto} 0_{f(p)} \stackrel{\pi'}{\mapsto} f(p)$$

Remark

$$E \xrightarrow{F} E'$$

$$M$$

commutes and $F|_{E_p}: E_p \to E_p'$ is linear $(\forall p)$.

Remark

 $\operatorname{rank}(F|_{E_p})$ may depend on $p \in M$.

$$TM \xrightarrow{Df} TR$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi}$$

$$M \xrightarrow{f} \mathbb{R}$$

e.g. $M = \mathbb{R}^2$, $E = E' = TR^2 (= \mathbb{R}^4)$, $F((u, v)_{(x,y)}) = (u, xv)$. For $x \neq 0$, rank $(F|_{(x,y)}) = 2$ but for x = 0 rank $(F|_{(0,y)}) = 1$.

Proposition 10.26

If F is a bijective, smooth bundle homomorphism, then it is a bundle isomorphism. Proof left as an exercise. We need to show that F^{-1} is smooth.

Definition: Fiber Bundle

 $F \to E \xrightarrow{\pi} M$ with fiber F such that $E_x = \pi^{-1}(x)$ is diffeomorphic to F. This diagram commutes.

Fact

If $N \stackrel{F}{\rightarrow} M$ is a submersion from compact manifolds, then F is a fiber bundle.

Chapter 11: Cotangent Bundles

Review: Linear Algebra

Suppose we have a real vector space V of dimension n. Then $V^* = \{f : V \to \mathbb{R} \mid \text{linear}\}$.

If V has a basis $\{E_1, \ldots, E_n\}$, then we may define the dual basis for V^* $\{\epsilon^1, \ldots, \epsilon^n\}$ by $\epsilon^j(E_i) = \delta^j_i = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$.

Remember $V^{**} \cong V$ by $\xi: V \to V^{**}$ by $v \mapsto \xi(v): V^* \to \mathbb{R}$ and $\omega \mapsto \omega(v)$.

Remember also that if A is a linear map $V \to W$ then we may define $A^* : \omega \in W^* \to V^* \ni A^* \omega$ by $v \in V \to \mathbb{R} \ni \omega(Av)$ (ie. $(A^*\omega)(v) = \omega(Av)$).

6

Definition: Cotangent Bundle

Let M^n be a smooth manifold, and let (U, ϕ) be a chart. Then T_pM has a basis

$$\left\{ \frac{\partial}{\partial x^1} \Big|_p, \dots, \frac{\partial}{\partial x^n} \Big|_p \right\}$$

for every $p \in U$. Take its dual basis

$$\left\{\lambda^{1}|_{p},...,\lambda^{n}|_{p}\right\}$$

for T_p^*M . The cotangent bundle $T^*M = \coprod_{p \in M} T_p^*M$.

Similar to the TM case, if $T^*M \xrightarrow{\pi} M$, then $\omega|_p \in \pi^{-1}(U) \xrightarrow{\Phi} U \times \mathbb{R}^n \ni (p, a_1, \dots, a_n)$ where a_i is given by $\omega|_p = a_i \lambda^i|_p$. In other words, $a_i = \omega|_p \left(\frac{\partial}{\partial x^i}\Big|_p\right)$.

Computing Dual Transition

Suppose $(U,(x^1,...,x^n))$ and $(V,(y^1,...,y^n))$ are two charts $(W=U\cap V\neq\varnothing)$. Then $\left\{\frac{\partial}{\partial x^i}\Big|_p\right\}$ gives a dual $\{\lambda^i|_p\}$ and $\left\{\frac{\partial}{\partial y^i}\Big|_p\right\}$ gives $\{\mu^i|_p\}$.

Then, recall, $\frac{\partial}{\partial y^i}\Big|_p = \frac{\partial x^j}{\partial y^i} \frac{\partial}{\partial x^j}\Big|_p$ and $x^j(y^1, ..., y^n)$ is a j-component of $(y^1, ..., y^n) \to M \to (x^1, ..., x^n)$. If $\omega \in T_p^* M$, $\omega = a_i \lambda^i \Big|_p = b_j \mu^j \Big|_p$

$$a_{i} = \omega |_{p} \left(\frac{\partial}{\partial x^{i}} |_{p} \right) = \omega_{p} \left(\frac{\partial y^{j}}{\partial x_{i}} \frac{\partial}{\partial y^{j}} \right) = \frac{\partial y^{j}}{\partial x^{i}} \omega \left(\frac{\partial}{\partial y^{j}} \right) = \frac{\partial y^{j}}{\partial x^{i}} b_{j}$$

In particular, $\mu^j = \omega$, then $a_i = \frac{\partial y^k}{\partial x^i} b_k = \frac{\partial y^j}{\partial x^i}$. Hence $\mu^j = \omega = a_i \lambda^i = \frac{\partial y^i}{\partial x^i} \lambda^i$.

Definition: Smooth Covector Field

A smooth covector field is a smooth section of T^*M , call it $\Omega^1(M) = \Gamma(T^*M)$. Given $f \in C^{\infty}(M)$, we can define a smooth covector field $df \in \Omega^1(M)$ by $df(v|_p) = (v_p)(f)$. df(X) = Xf is smooth if X and f are smooth.

Differential

Given a local chart $(U,(x^1,...,x^n))$ and a smooth function $f:U\to\mathbb{R},\ df_p=a_i(p)\lambda^i|_p$.

$$\frac{\partial f}{\partial x^j} = df_p \left(\frac{\partial}{\partial x^j} \Big|_p \right) = a_i(p) \lambda^i \Big|_p \left(\frac{\partial}{\partial x^j} \Big|_p \right) = a_i(p) \delta^i_j = a_j(p)$$

That is, $df_p = \frac{\partial f}{\partial x^j}(p)\lambda^j|_p$. In particular, if we consider the coordinate function $x^i: U \to \mathbb{R}$, then $dx^i|_p = \frac{\partial x^i}{\partial x^j}(p)\lambda^j|_p = \lambda^i|_p$ for each $p \in U$ (i.e. $dx^i = \lambda^i$ on U).

With this, we can write $df = \frac{\partial f}{\partial x^i} dx^i$ and $dy^j = \frac{\partial y^j}{\partial x^i} \partial x^i$.

Proposition 11.22

For $f \in C^{\infty}(M)$, then df = 0 if and only if f is constant on every compnent of M.

Proof

- (\longleftarrow) is trivial.
- (\Longrightarrow) We assume M is connected. Fix $p \in M$, define $\mathcal{A} = \{q \in M : f(p) = f(q)\}$ is closed.

Now let $q \in A$ and U a local chart around q. Then $0 = df = \frac{\partial f}{\partial x^i} dx^i$ (i.e. $\frac{\partial f}{\partial x^i} \equiv 0$, $\forall i$). Hence f is constant on U and f(q) = f(p) for $U \in A$.

Proposition 11.23

Take $\gamma: J \to M$ a smooth curve $f \in C^{\infty}(M)$. Then $(df|_{\gamma(t)})(\gamma'(t)) = (\gamma'(t))f = (f \circ \gamma)'(t)$.

IMAGE 2

Recall that if $v \in T_p M$ and $f \in C^{\infty}(M)$ then $vf = (f \circ \gamma)'(0)$ where $\gamma : (-\varepsilon, \varepsilon) \to M$, $\gamma(0) = p$ and $\gamma'(0) = v$ $(f \circ \gamma : \mathbb{R} \to \mathbb{R}).$

January 13, 2025

Recall

 T^*M and $\Omega'(M) = \Gamma(T^*M)$. Let $(U,(x^1,\ldots,x^n))$ be a chart. Then inside U, we may write $\omega = \omega_i dx^i$. $\{dx^i|_p\}$ is a dual basis of $\{\frac{\partial}{\partial x^i} \subseteq T_pM\}$.

They are also $x^i: U \to \mathbb{R}$ coordinates functions where dx^i is the differential of x^i .

Given $f \in C^{\infty}(M)$ or $C^{\infty}(U)$, $df \in \Omega'(M)$ or $\Omega'(U)$ is defined by $df(X_p) = (Xf)(p)$.

Inside a chart, $df = \frac{\partial f}{\partial x^i} dx^i$.

We have a change of coordinates where $(U,(x^1,...,x^n))$ and $(V,(y^1,...,y^n))$ and $W=U\cap V\neq\emptyset$ gives $dy^j=\frac{\partial y^j}{\partial x^i}dx^i$.

Recall (Linear Algebra)

If $A:V\to W$ is a linear map with $w\in W^*$ and $v\in V$, then $A^*:W^*\to V^*$ is the dual map defined by $(A^*w)(v):=$ w(Av).

Dual of the Tangent Space

Let $F: M \to N$ be a smooth map between manifolds.

$$DF_p: T_pM \to T_{F(p)}N$$
$$(DF_p)^*: T_{F(p)}^*M \to T_p^*N$$

and $(DF_p^*\omega)(v) = \omega(DF_p(v))$ for $\omega \in T_{F(p)}^*N$ and $v \in T_pM$.

Definition: Pullback

Given $\omega \in \Omega'(N)$, we can define $F^*\omega$, a section of T^*M , by $(F^*\omega)_p(\nu) = \omega(DF_p(\nu))$ or $(F^*\omega)_p = DF_p^*\omega$. We call this the pullback of ω by F.

Recall that for $u \in C^{\infty}(N)$, $M \xrightarrow{F} N \xrightarrow{u} \mathbb{R}$. Then we can define $F^*u \in C^{\infty}(M)$ by $F^*u = u \circ F$.

Proposition

If $F: M \to N$ is smooth, $u \in C^{\infty}(N)$ and $\omega \in \Omega'(N)$, then

1.
$$F^*(u\omega) = (F^*u)(F^*\omega)$$
.

2.
$$F^*(du) = d(F^*u)$$
.

Proof of 1

 $\forall p \in M, \forall v \in T_pM$

$$(F^*(u\omega))_p(v) = DF_p^*(u\omega)(v) = u_{F(p)}\omega_{F(p)}(DF_p(v)) = (u \circ F(p))\omega(DF_p(v)) = (F^*u)(F^*\omega)$$

Proof of 2

$$(F^*(du))(v) = du(DF_p(v)) = (DF_p(v))u = (du)_{F(p)}DF_p(v) = d(u \circ F)(v) = d(F^*u)(v)$$

Change of Coordinates

Locally, $F: M \to N$. Let $(U, (x^1, ..., x^n))$ be a chart around p and $(V, (y^1, ..., y^n))$ a chart around F(p). For $\omega \in \Omega'(N)$, in $V = \omega_i dy^i$ and

$$F^*\omega = F^*(\omega_i dy^i) = (F^*\omega_i)(F^*dy^i) = (F^*\omega_i)d(F^*y^i) = (\omega_i \circ F)(dF^i)$$

where $F^i = y^i \circ F$ is the *i*th component of F.

When F is smooth and $\omega \in \Omega'(N)$, then $F^*\omega \in \Omega'(M)$. In fact, locally, $F^*\omega = (\omega_i \circ F)d(F^i)$. Hence $F^*\omega$ is smooth.

Example 1

Take $F: \mathbb{R}^3 \to \mathbb{R}^2$ by $(x, y, z) \mapsto (u(x, y, z), v(x, y, z)) = (x^2 y, y \sin(z))$. Then $\omega = u \, dv + v \, du \in \Omega'(\mathbb{R}^2)$. So

$$F^*\omega = F^*(u \, dv + v \, du)$$

$$= (F^*u)d(F^*v) + (F^*v)d(F^*u)$$

$$= x^2y \, d(y\sin(z)) + (y\sin(z)) \, d(x^2y)$$

$$= x^2y(\sin(z) \, dy + y\cos(z) \, dz) + y\sin(z)(2xy \, dx + x^2 \, dy)$$

Example 2

$$M = \mathbb{R}^2 - \{0\}$$
 and $\gamma : [0, 2\pi] \to M$ by $t \mapsto (r\cos(t), r\sin(t))$ for $t > 0$. Take $\omega = \frac{x \, dy - y \, dx}{x^2 + y^2} \in \Omega'(M)$

$$\gamma^* \omega = \frac{1}{r^2} (r \cos(t) d(r \sin(t)) - r \sin(t) d(r \cos(t))$$
$$= \cos(t) (\cos(t)) dt - \sin(t) (\sin(t)) dt$$
$$= dt$$

Definition: Line Integral

If $\eta \in \Omega'(\mathbb{R})$ or $\Omega'(I)$ (where $I \subseteq \mathbb{R}$) is an interval), η can be written as $\eta(t) = f(t) dt$ and define

$$\int_{I} \eta = \int_{a}^{b} f(t) dt$$

Let $\gamma:[a,b]\to M$ be a smooth curve on M. Let $\omega\in\Omega'(t)$. Define

$$\int_{\gamma} \omega = \int_{a}^{b} \gamma^* \omega$$

with $\gamma^*(\omega) \in \Omega'([a,b])$.

Proposition 11.31

Take $\phi: I \to J$ a diffeomorphism between intervals with $\phi' > 0$. Then

$$\int_{J} \phi^* \omega = \int_{\phi(J)} \omega$$

Write s for coordinates on I and t for coordinates on I. Then $\omega = f(t) dt \in \Omega^1(I)$ and

$$\phi^* \omega = (\phi^* f) \ d(\phi^* t) = (f \circ \phi) \ d(t \circ \phi) = f(\phi(s)) \ d(\phi(s)) = f(\phi(s)) \phi'(s) \ ds$$

Then

$$\int_{I} \phi^{*} \omega = \int_{I} f(\phi(s)) \phi'(s) ds \stackrel{t=\phi(s)}{=} \int_{I} f(t) dt = \int_{I} \omega$$

Proposition 11.37: Independence of Reparameterization

Suppose $\gamma:I\to M$ is a smooth curve and $\phi:J\to I$ is a diffeomorphism with $\phi'>0$. Then $\tilde{\gamma}:=\gamma\circ\phi:J\to M$ is a reparameterization of γ and

$$\int_{\gamma} \omega = \int_{\tilde{\gamma}} \omega$$

If $\phi' < 0$, then $\int_{\gamma} \omega = -\int_{\tilde{\gamma}} \omega$.

Proof

$$\int_{\gamma}\omega=\int_{I}\gamma^{*}\omega\int_{J}\phi^{*}\gamma^{*}\omega=\int_{J}(\gamma\circ\phi)^{*}\omega=\int_{\tilde{\gamma}}\omega$$

Example

Take $\gamma:[0,2\pi]\to M=\mathbb{R}^2-\{0\}$ by $t\mapsto (r\cos(t),r\sin(t))$ with t>0. If $\omega=\frac{x\,dy-y\,dx}{x^2+y^2}$, then $\gamma^*\omega=dt$ and

$$\int_{\gamma} \omega = \int_{0}^{2\pi} \gamma^* \omega = \int_{0}^{2\pi} dt = 2\pi$$

Proposition 11.38

For $\gamma: I \to M$

$$\int_{\gamma} \omega = \int_{I} \omega_{\gamma(t)}(\gamma'(t)) dt$$

Proof

In a local chart $(U,(x^1,\ldots,x^n))$, we can write $\omega=\omega_idx^i$. Then $\gamma(t)=(\gamma^1(t),\ldots,\gamma^n(t))$ and

$$\gamma^* \omega = \gamma^* (\omega_i dx^i)$$

$$= (\gamma^* \omega_i) d(\gamma^* x^i)$$

$$= (\omega_i \circ \gamma) d\gamma^i$$

$$= \omega_i (\gamma(t)) \frac{d\gamma^i}{dt} dt$$

$$= \omega_i (\gamma(t)) \dot{\gamma}^i(t) dt$$

Since $\omega = \omega_i dx^i$ and $\dot{\gamma}(t) = (\dot{\gamma}^1(t), \dots, \dot{\gamma}^n(t)) = \dot{\gamma}^i(t) \frac{\partial}{\partial x^i}, \, \omega_{\gamma(t)}(\dot{\gamma}(t)) = \omega_i(\gamma(t))\dot{\gamma}^i(t)$ and

$$\omega_i(\gamma(t))\dot{\gamma}^i(t)dt = \omega_{\gamma(t)}(\dot{\gamma}(t))dt$$

Hence $\int_{\gamma} \omega = \int_{I} \gamma^* \omega = \int_{I} \omega_{\gamma(t)}(\dot{\gamma}(t)) \ dt$.

Corollary

Then, if $f: M \to \mathbb{R}$ is a smooth function,

$$\int_{\gamma} df = \int_{I} (df)_{\gamma(t)} (\dot{\gamma}(t)) dt = \int_{I} (f \circ \gamma)'(t) dt = f(\gamma(b)) - f(\gamma(a))$$

Therefore $\int_{\gamma} df$ only depends on the value of f at the endpoints of γ .

Definition: Exact and Conservative Forms

Let $\omega \in \Omega^1(M)$. We say that ω is. . .

- 1. exact if there exists $f \in C^{\infty}(M)$ such that $\omega = df$.
- 2. conservative if $\int_C \omega$ = 0 for any closed, piecewise-smooth curve in M

f is called the potential of ω .

Remark

If $\int_C \omega = 0$, we may write C as the concatenation of curves γ then $-\sigma$. Then

$$0 = \int_{C} \omega = \int_{\gamma} \omega + \int_{-\sigma} \omega = \int_{\gamma} \omega - \int_{\sigma} \omega$$

Remark

Exact implies conservative.

Theorem

If $\omega \in \Omega^1(M)$ is conservative, then it is exact.

Proof

Fix a bse point $p_0 \in M$.

We have that $\int_{p}^{q} \omega = \int_{\gamma} \omega$ is well-defined by the conservative assumption, and we define $f(p) = \int_{p_0}^{p} \omega$.

Let $q_0 \in M$ and let $(U, (x^1, ..., x^n))$ be a chart centered at q_0 . Inside $U, \omega = \omega_i dx^i$ and $df = \frac{\partial f}{\partial x^i} dx^i$.

We need to show that $\frac{\partial f}{\partial x^i} = \omega_i$ for each i. Fix an index i and consider a curve $\sigma: (-\varepsilon, \varepsilon) \to U$ by $t \mapsto (0, ..., t, ..., 0)$.

IMAGE 1

Let $q_{-} = \sigma(-\varepsilon)$, then

$$f(q_0) = \int_{p_0}^{q} \omega = \int_{p_0}^{q_-} \omega + \int_{q_-}^{q} \omega =: \tilde{f}(q)$$

so $f(q_0) = \operatorname{constant} + \tilde{f}(q)$. Hence $\frac{\partial f}{\partial x^j} = \frac{\partial \tilde{f}}{\partial x^j}$ in U. Therefore

$$\tilde{f}(\sigma(s)) = \int_{q_{-}}^{\sigma(s)} \omega$$

$$= \int_{\sigma|_{[-\varepsilon,s]}}^{s} \omega$$

$$= \int_{-\varepsilon}^{s} \omega_{\sigma(t)}(\dot{\sigma}(t)) dt$$

$$= \int_{-\varepsilon}^{s} \omega_{\sigma(t)} \left(\frac{\partial}{\partial x^{i}}\right) dt$$

$$= \int_{-\varepsilon}^{s} \omega_{i}(\sigma(t)) dt$$

and

$$\left. \frac{\partial f}{\partial x^i} \right|_{q_0} = \left. \frac{\partial \tilde{f}}{\partial x^i} \right|_{q_0} = (\tilde{f} \circ \sigma)'(0) = \frac{d}{ds} \Big|_{s=0} \left(\int_{-\varepsilon}^s \omega_i(\sigma(t)) dt \right) = \omega_i(\sigma(0)) = \omega_i(q_0)$$

Remark

Take $\omega = df \in \Omega^1(M)$ which is $\omega_i dx^i$ locally or $\omega_i = \frac{\partial f}{\partial x^i}$ when exact.

$$\frac{\partial \omega_i}{\partial x^j} = \frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial \omega_j}{\partial x^i}$$

Note: $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$ does not, in general, imply $\omega = df$.

January 15, 2025

Recall

If $\omega \in \Omega^1(M)$ and $\gamma : \mathbb{R} \supseteq I \to M$ a (piecewise) smooth curve, then

$$\int_{\gamma} \omega = \int_{I} \gamma^* \omega$$

If df is the differential of a smooth function, then

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a))$$

only depends on endpoints. In particular, along a closed (piecewise) smooth curve

$$\int_C df = 0$$

We have that ω is exact if $\omega=df$ and conservative if $\int_C \omega=0$ for every closed curve. ω is exact if and only if it is also conservative.

Recall: Checking Exactness

Take $\omega \in \Omega^1(M)$,

$$\omega_i dx^i = \omega = df = \frac{\partial f}{\partial x^i} dx^i$$

Then

$$\frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2}{\partial x^j \partial x^i}$$

That is, $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$.

Definition: Closed 1-Form

We say $\omega \in \Omega^1(M)$ is closed if in every chart $(U,(x^i))$, $\omega = \omega_i dx^i$ satisfies $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$. Exact implies closed, however the converse is not true in general.

Example

 $\exists \omega \in \Omega^1(\mathbb{R}^2 - \{0\})$ such that ω is closed but $\int_C \omega = 2\pi$.

Corollary 11.50

If $\omega \in \Omega^1(M)$ is closed, then $\forall p \in M$ there exists a chart U at p such that $\omega_U = df$ for some $f \in C^\infty(U)$

Proposition 11.45

For $\omega \in \Omega^1(M)$, the following are equivalent

- 1. ω is closed.
- 2. ω satisfies $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$ in some chart at every point.
- 3. For every open $U \subseteq M$ and $X, Y \in \mathfrak{X}(U)$, it holds that

$$X(\omega(Y)) - Y(\omega(X)) = \omega([X, Y])$$

The proof that 1 implies 2 is trivial.

Proof 3 Implies 1

Pick U as a chart, $X = \frac{\partial}{\partial x^i}$, and $Y = \frac{\partial}{\partial x^j}$. Then, since $\omega = \omega_i dx^i$,

$$X(\omega(Y)) = X(\omega_j) = \frac{\partial w_j}{\partial x^i}$$

Similarly, $Y(\omega(X)) = \frac{\partial \omega_i}{\partial x^j}$. Then $[X,Y] = \left[\frac{\partial}{\partial x^i},\frac{\partial}{\partial x^j}\right] = 0$ and

$$\frac{\partial \omega_j}{\partial x^i} - \frac{\partial \omega_i}{\partial x^j} = 0$$

Proof 2 Implies 3

Fix any $p \in U$. We have a chart $(V, (x^i))$ at p such that $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$. Then

$$X(\omega(y)) = X\left((\omega_i dx^i)\left(Y^j \frac{\partial}{\partial x^j}\right)\right) = X(\omega_i Y^i) = (X\omega_i)Y^i + \omega_i(XY^i) = x^j \frac{\partial w_i}{\partial x^j}Y^i + \omega_i(XY^i) = X^j Y^i \frac{\partial \omega_j}{\partial x^i}$$

Similarly,

$$Y(\omega(X)) = Y(\omega_i x^i) = Y^j \frac{\partial \omega_i}{\partial x^j} x^i - \omega_i (YX^i) = X^i Y^j \frac{\partial \omega_i}{\partial x^j}$$

which is equivalent under a change of indicies. Hence

$$X(\omega(Y)) - Y(\omega(X)) = \omega_i(XY^i) - \omega_i(YX^i) = \omega_i(XY^i - YX^i) = \omega([X, Y])$$

Lemma

Suppose $F:M\to N$ is a local diffeomorphism. Then $F^*:\Omega^1(N)\to\Omega^1(M)$ sends exact (or closed) 1-forms to exact (or closed) ones.

Proof of Exact

If $\omega = df \in \Omega^1(N)$, then $F^*\omega = F^*(df) = d(F^*f)$ is exact on M.

Proof of Closed

If $\omega \in \Omega^1(N)$ is closed, then $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$ in every chart of N. For any $p \in M$, we consider a chart at p by $(V, \phi \circ F)$

IMAGE 1

Therefore $\phi \circ F \circ (\phi \circ F)^{-1} = \mathrm{id}$ and $F^* = \mathrm{id}$ so $F^* \omega$ is closed.

Poincaré Lemma

Let $\omega \in \Omega^1(M)$ be closed. Fix $p \in M$, and let (U, ϕ) be a chart at p such that $\phi(U) = B_1(0) \subseteq \mathbb{R}^n$.

IMAGE 2

Assuming the above, every closed 1-form on $B_1(0)$ is exact. $(\phi^{-1})^*(\omega|_U) = df$ for some $f \in C^{\infty}(B_1(0))$ where $\omega|_U = \phi^*(df) = d(\phi^*f) \in C^{\infty}(U)$

Definition: Star-Shaped Domain

We say that $U \subseteq \mathbb{R}^n$ open is star-shaped with a center $c \in U$ (wlog c = 0) if for any $x \in U$, the segment γ_x from c to x is contained in U.

IMAGE 3

If
$$x = (x^i)$$
, then $\gamma_x(t) = (tx^i)$.

Theorem 11.49 (Poincaré Lemma)

If $U \subseteq \mathbb{R}^n$ is star-shaped, then every closed 1-form is exact.

Recall

If ω is an exact 1-form, then $f(q) = \int_{p_0}^p \omega$ is a potential. We also have that $\int_{\gamma} \omega = \int_I \omega_{\gamma(t)}(\dot{\gamma}(t)) \ dt$.

Proof

Let $\omega \in \Omega^1(U)$ be a closed 1-form.

We need to construct $f \in C^{\infty}(U)$ such that $df = \omega$. That is, for all i, $\frac{\partial f}{\partial x^i} = \omega^i$. Define

$$f(x) = \int_{\gamma_x} \omega = \int_0^1 \omega_{\gamma_x(t)}(\dot{\gamma}_x(t)) dt = \int_0^1 \omega_i|_{\gamma_x(t)} dx^i(x^1, ..., x^n) dt = \int_0^1 \omega_i|_{tx} x^i dt$$

Since everything is smooth,

$$\frac{\partial f}{\partial x^{j}}(x) = \int_{0}^{1} \frac{\partial}{\partial x^{j}} (\omega_{i}(tx) \cdot x^{i}) dt$$

$$= \int_{0}^{1} \frac{\partial \omega_{i}(tx)}{\partial x^{j}} \cdot x^{i} + \omega_{i}(tx) \frac{\partial x^{i}}{\partial x^{j}} dt$$

$$= \int_{0}^{1} \left(\frac{\partial w_{i}}{\partial x^{j}} \right) \Big|_{(tx)} tx^{i} + \omega_{j}(tx) dt$$

$$= \int_{0}^{1} \frac{\partial \omega_{j}}{\partial x^{i}} \Big|_{tx} tx^{i} + \omega_{j}(tx) dt$$

$$= \int_{0}^{1} \frac{d}{dt} (t\omega_{j}(tx)) dt$$

$$= t\omega_{j}(tx) \Big|_{0}^{1}$$

$$= \omega_{j}(x)$$

Tensors: Multilinear Maps

All vector spaces will be finite dimensional in our consideration.

$$F: V_1 \times \cdots \times V_k \to W$$

linear in every component. Denote $L(V_1,\ldots,V_k;W)$ to be the set of all such multilinear maps. Given $\omega\in L(V_1;\mathbb{R})=V_1^*$ and $\eta\in V_2^*$, we can define $\omega\otimes\eta\in L(V_1,V_2;\mathbb{R})$ by $\omega\otimes\eta(v_1,v_2)=\omega(v_1)\cdot\eta(v_2)$.

Remark

 $(2\omega) \otimes \eta = \omega \otimes (2\eta)$. We assume $\otimes_{\mathbb{R}}$.

Similarly, given $\omega_i \in V_i^*$, we can define $\omega_1 \otimes \cdots \otimes \omega_k \in L(V_1, \ldots, V_K; \mathbb{R})$.

Proposition

Let V_j with dimension n_j (j=1,...,k). Each V_j has a basis $\{E_1^{(j)},...,E_{n_j}^{(j)}\}$. Its dual basis $\{\varepsilon_{(j)}^1,...,\varepsilon_{(j)}^{n_j}\}\subseteq V_j^*$. Then $L(V_1,...,V_k;\mathbb{R})$ has a basis

$$\mathcal{B} = \left\{ \varepsilon_{(1)}^{i_1} \otimes \cdots \otimes \varepsilon_{(k)}^{i_k} : 1 \leq i_j \leq n_j \right\}$$

Proof

For a multi-index $I=(i_1,\ldots,i_k)$ with $i\leq i_j\leq n_j$, we write $\varepsilon^I=\varepsilon^{i_1}_{(1)}\otimes\cdots\otimes\varepsilon^{i_k}_{(k)}$. For any $F\in L(V_1,\ldots,V_k;\mathbb{R})$, define $F_I=F(E^{(1)}_{i_1},\ldots,E^{(k)}_{i_k})$. We claim that $F=F_I\varepsilon^I$. In fact, for $(v_1,\ldots,v_k)\in V_1\times\cdots\times V_k$, $v_j=v^i_jE^{(j)}_i$. We may check that $F(v_1,\ldots,v_k)=F_I\varepsilon^I(v_1,\ldots,v_k)$. Therefore $\mathcal B$ spans $L(V_1,\ldots,V_k;\mathbb{R})$. Then, if $F_I\varepsilon^I=0$, then applying it to $(E^{(1)}_{i_1},\ldots E^{(k)}_{i_k})$ gives $F_I=0$. Therefore $\mathcal B$ is linearly independent. In particular, $\dim L(V_1,\ldots,V_k;\mathbb{R})=\prod_{j=1}^k n_j=\prod_{j=1}^k \dim V_j$.

Definition: Formal Linear Combination

Let S be a set. Define

$$\mathcal{F}(S) = \left\{ \sum_{i=1}^{m} a_i s_i : a_i \in \mathbb{R}, s_i \in S \right\}$$

This is the free (real) vector space on S containing formal linear combinations of elements of S. Define $V_1 \otimes \cdots \otimes V_k = \mathcal{F}(V_1 \times \cdots \times V_k)/R$ where R is generated by

$$(v_1, ..., v_j + v'_j, ..., v_k) \sim (v_1, ..., v_j, ..., v_k) + (v_1, ..., v'_j, ..., v_k)$$

 $(v_1, ..., cv_j, ..., v_k) \sim c(v_1, ..., v_k)$

In other words, in the quotient $v_1 \otimes \cdots \otimes v_k = \prod (V_1, \dots, v_k)$.

Proposition

 $V_1 \otimes \cdots \otimes V_k \text{ has a basis } \Big\{ E_{i_1}^{(1)} \otimes \cdots \otimes E_{i_k}^{(k)} \, : \, 1 \leq i_j \leq n_j \Big\}.$

Proposition

There exists a canonical isomorphism $(V_1 \otimes V_2) \otimes V_3 \cong V_1 \otimes (V_2 \otimes V_3)$ by sending $(v_1 \otimes v_2) \otimes v_3 \mapsto v_1 \otimes (v_2 \otimes v_3)$.

Proposition

$$L(V_1,\ldots,V_k;\mathbb{R})\cong V_1^*\otimes\cdots\otimes V_k^*$$
.

Proof Sketch

Define $\Phi: V_1^* \times \cdots \times V_k^* \to L(V_1, \dots, V_k; \mathbb{R})$ by $(\omega^1, \dots, \omega^k) \mapsto \omega^1 \otimes \cdots \otimes \omega^k$. By multilinear, this induces an isomorphism

$$\Phi: {V_1^*} \otimes \cdots \otimes {V_k^*} \cong L(V_1, \dots, V_k; \mathbb{R})$$

Recall

 $V^{**} \cong V$ for finite dimensional vector spaces, so $V_1 \otimes \cdots \otimes V_k = L(V_1^*, \dots, V_k^*; \mathbb{R})$.

Definition: Tensor

A tensor of (k, l)-type is an element in $\underbrace{V \otimes \cdots \otimes V}_{k} \otimes \underbrace{V^* \otimes \cdots \otimes V^*}_{l}$.

The collection of such elements in $T^{(k,l)}V$. Most of the time we consider $T^{(0,l)}V$.

Examples

A vector in V is a (1,0)-tensor.

A covector in V^* is a (0,1)-tensor.

A linear map $A \in L(V)$ is a (1,1)-tensor.

An inner product is a (0,2)-tensor.

Symmetric Tensor

We say that $\alpha \in T^{(0,l)}V$ is symmetric if $\alpha(\ldots, v_i, \ldots, v_j, \ldots) = \alpha(\ldots, v_j, \ldots, v_i, \ldots)$.

Alternating Tensor

We say that $\alpha \in T^{(0,l)}V$ is alternating if $\alpha(\ldots, \nu_i, \ldots, \nu_j, \ldots) = -\alpha(\ldots, \nu_j, \ldots, \nu_i, \ldots)$.

January 22, 2024

Alternating/Symmetric Tensors

Let $\sigma \in S_l$ and $\alpha \in T^{(0,l)}V$.

Define σ_{α} or $(\sigma \cdot \alpha)$ as a new (0, l)-tensor by $(\sigma \cdot \alpha)(v_1, \ldots, v_l) := \alpha(v_{\sigma(1)}, \ldots, v_{\sigma(l)})$.

Then α is symmetric if and only if $\sigma \cdot \alpha = \alpha$.

 α is alternating if and only if $\sigma \cdot \alpha = (\operatorname{sign} \sigma) \cdot \alpha$.

Define Sym: $T^{(0,l)}V \to S^lV$ by

$$\operatorname{Sym}(\alpha) = \frac{1}{l!} \sum_{\sigma \in S^l} (\sigma \cdot \alpha)$$

Then $\operatorname{Sym}(\alpha)$ is symmetric for all $\tau \in S^l$.

Define Alt: $T^{(0,l)}V \to \Lambda^l V$, the set of alternating (anti)-tensors by

$$Alt(\alpha) = \frac{1}{l!} \sum_{\sigma \in S^l} (sign \sigma)(\sigma \cdot \alpha)$$

Definition: Tensor Bundles

Recall that $T_pM \rightsquigarrow TM = \coprod_{p \in M} T_pM$ and $T_p^*M \rightsquigarrow T^*M$.

Then $T^{(k,l)}T_pM \rightsquigarrow T^{(k,l)}TM = \coprod_{p \in M} T^{(k,l)}T_pM$ a tensor bundle.

Mostly, we will consider $T^{(0,l)}TM$.

Inside a chart $(U,(x^1,...,x^n))$, $T^{(k,l)}TM$ has a local frame

$$\left\{\frac{\partial}{\partial x^{i1}}\otimes\cdots\otimes\frac{\partial}{\partial x^{ik}}\otimes dx^{j1}\otimes\cdots\otimes dx^{jl}\right\}$$

Definition: Smooth Tensor Field

A smooth tensor field of type (k, l) is a smooth section of $T^{(k, l)}TM$. To check that a (o, l)-tensor field A is smooth, we can do either of the following

- 1. Write A in a local chart, then $A = A_I dx^I$ where A_I are functions in U and $dx^I = dx^{i1} \otimes dx^{il}$ with I = (i1, ..., il). Then A is smooth if and only if A_I is smooth for all I.
- 2. Check A testing on any l many smooth vector fields results in a smooth function.

Remark

Every (0, l)-tensor field A defines a map

$$\mathcal{A} = \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{l} \to C^{\infty}(M)$$

by $A(x_1,...,X_l)(p) = A_p(X_1(p),...,X_l(p))$. This map \mathcal{A} is $C^{\infty}(M)$ -multilinear.

Lemma 12.24

Every $C^{\infty}(M)$ -multilinear map $\mathcal{A}:\mathfrak{X}(M)\times\cdots\times\mathfrak{X}(M)\to\mathbb{C}^{\infty}(M)$ defines a smooth (0,l)-tensor field

$$A_p(v_1,\ldots,v_l) = (\mathcal{A}(X_1,\ldots,X_l))(p)$$

Example

Given $\omega \in \Omega^1(M)$, define $\mathcal{A}: \mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to \mathbb{C}^{\infty}(M)$ by $(X,Y) \mapsto \omega(L_XY)$. If X,Y and X',Y' only agree at a point p, then in general $(L_XY)(p) \neq (L_{X'}Y')(p)$.

Proof

 \mathcal{A} acts locally only depending on the value of X_1,\ldots,X_l in a neighborhood of p, call it U. It suffices to show that if $X_i=0$ for some i on U, then $\mathcal{A}(X_1,\ldots,X_l)(p)=0$. Let ψ be a bump function with $\sup \psi \subseteq U$ and $\psi(p)=1$. Let also $V\subseteq U$ such that $\overline{V}\subseteq U$. Then $\psi X_i\equiv 0$ on M. Then

$$0 = \mathcal{A}(X_1, ..., \psi X_i, ..., X_l)(p) = \psi(p) A(X_1, ..., X_l)(p) = \mathcal{A}(X_1, ..., X_l)(p)$$

Now \mathcal{A} acts pointwisely. Write $X_i = a_i^j \frac{\partial}{\partial x^j}$ in U.

Extend each $\frac{\partial}{\partial x^j}\Big|_V$ to $E_j \in \mathfrak{X}(M)$ and each $a_i^j|_V$ to $f_i^j \in C^{\infty}(M)$. Then inside V.

$$A(X_1,...,X_l)(p) = A(X_1,...,f_i^j E_j,...,X_l)(p) = f_i^j(p)A(X_1,...,X_l)(p)$$

Now let $v_1, ..., v_l \in T_pM$. Define A a (0, l)-tensor field by $A_p(v_1, ..., v_l) = \mathcal{A}(X_1, ..., X_l)$ where $X_i \in \mathfrak{X}(M)$ extends v_i . By assumption, $A(X_1, ..., X_l)$ is a smooth function if $X_1, ..., X_l \in \mathfrak{X}(M)$ hence A is a smooth (0, l)-tensor field.

Definition:

Write $\mathcal{T}^{(0,l)}M = \Gamma(T^{(0,l)}TM)$ where Γ is the section.

Then for $F: M \to N$ a smooth map and $A \in \mathcal{T}^{(0,l)}N$, for $\nu_i \in T_pM$ define $F^*A \in \mathcal{T}^{(0,l)}M$ by

$$(F^*A)_p(v_1,...,v_l) := A_{F(p)}(DF_p(v_1),...,DF_p(v_l))$$

Lie Derivatives

Recall that if $X, Y \in \mathfrak{X}(M)$, we define $(L_X Y)_p$ where X generates a flow $\phi_t : M \to N$

IMAGE 1

 $(\phi_{-t})_* Y_{\phi_t(p)} = ((\phi_{-t})_* Y)_p \in T_p M \text{ for } Y_p \in T_p M. \text{ Then } L_X Y = \frac{d}{dt} \Big|_{t=0} ((\phi_{-t})_* Y)_p.$ If $A \in \mathcal{T}^{(0,l)} M$,

IMAGE 2

$$(\phi_t^* A)_p = (\phi_t)^* (A_{\phi_t(p)} \in T^{(0,l)} T_p M$$

So $L_V A = \frac{d}{dt} \Big|_{t=0} (\phi_t^* A)_p$.

Properties

1. $L_V f = V f$ (where $f \in C^{\infty}(M)$ can be thought of as a smooth (0,0)-tensor field). Then

$$(L_{\nu}f)(p) = \frac{d}{dt}\Big|_{t=0} (\phi_t^* f)_p = \frac{d}{dt}\Big|_{t=0} (f \circ \phi_t(p)) = (Vf)_p$$

- 1. $L_V(fA) = (Vf)A + fL_VA$.
- 2. $L_V(A \otimes B) = (L_V A) \otimes B + A \otimes (L_V B)$.
- 3. $L_V(A(X_1,...,X_l)) = (L_VA)(X_1,...,X_l) + A(L_VX_1,...,X_l) + ... + A(X_1,...,L_VX_l)$ for $A \in \mathcal{T}^{(o,l)}M$ and $X_i \in \mathfrak{X}(M)$.

Proof of 2

We have $O := \{ p \in M : V_p \neq 0 \}$ open in M and supp $V = \overline{\{ p \in M : V_p \neq 0 \}}$.

1. (2) holds on O.

Recall that if $V_p \neq 0$, then there exists a local chart $(U,(x^i))$ centered at p such that on $U,V=\frac{\partial}{\partial x^1}$. In particular, its flow ϕ_t is $(x^1,\ldots,x^n)\mapsto (x^1+t,x^2,\ldots,x^n)$.

Then take some chart $U \subseteq O$ centered at p such that $V = \frac{\partial}{\partial x^1}$ in U. Inside U, write $A = A_I dx^I$, and

$$\phi_t^*(fA) = (\phi_t^* f)(\phi_t^* f)(\phi_t^* A)$$

$$= (f \circ \phi_t)\phi_t^* (A_I dx^I)$$

$$= f(x^1 + t, x^2, ..., x^n)A_I(x^1 + t, ..., x^n)\phi_t^* dx^I$$

$$= f(x^1 + t, x^2, ..., x^n)A_I(x^1 + t, ..., x^n)dx^I$$

- 2. (2) holds on supp V by taking limits.
- 3. (2) holds outside supp V, since $V \equiv 0$ on open $M \setminus \text{supp } V$ and hence $\phi_t \equiv \text{id}$. So both sides are identically zero.

January 27, 2025

Recall: Prop 12.32(2)

$$L_V(fA) = (Vf)A + fL_VA$$

Proof Step 1:

Show that he equality holds on $\{p \in M : V(p) \neq 0\}$.

Let $p \in M$ with $V(p) \neq 0$.

Take any chart (U, x^i) centered at p such that $V = \frac{\partial}{\partial x^i}$ on U. Then its flow is

$$\theta_t : (x^1, ..., x^n) \mapsto (x^1 + t, x^2, ..., x^n)$$

in *U*. In *U*, we write $A = A_I dx^I$ (where $dx^I = dx^{i1} \otimes \cdots \otimes dx^{il}$). Recall that

$$\theta_t^*(dx^i) = d(\theta_t^*x^i) = d(x^i\theta_t) = \begin{cases} d(x^1 + t) = dx^1 & i = 1\\ d(x^i) & i \neq 1 \end{cases}$$

Write the pullback of θ_t

$$\theta_t^*(fA) = (\theta_t^* f)(\theta_t^* A_I dx^I)$$

$$= (f \circ \theta_t)(A_I \circ \theta_t)(dx^I)$$

$$= f(x^1 + t, x^2, ..., x^n)A_I(x^1 + t, ..., x^n)dx^I$$

So for $p = (x^i)$,

$$(L_{V}(fA))_{p} = \frac{d}{dt}\Big|_{t=0} f(x^{1} + t, x^{2}, ..., x^{n}) A_{I}(x^{1} + t, ..., x^{n}) dx^{I}$$

$$= \underbrace{\frac{\partial f}{\partial x^{1}}(x^{1}, ..., x^{n})}_{Vf} \underbrace{A_{I}(x^{1}, ..., x^{n}) dX^{I}}_{\theta_{t}^{*}A} + f(x^{1}, ..., x^{n}) \frac{\partial A_{I}}{\partial x^{1}(x^{1}, ..., x^{n}) dx^{I}}$$

inside U. Hence $Vf = \frac{\partial f}{\partial x^1}$.

Corollary

 $L_V(df) = d(L_v f)$ for $f \in C^{\infty}(M)$.

Proof

For all $X \in \mathfrak{X}(M)$,

$$(L_V(df))(X) = V(df(X)) - df(L_VX) = VXf - \lceil V, X \rceil f = VXf - (VXf - XVf) = XVf$$

and

$$(d(L_V f))(X) = X(L_V f) = XV f.$$

Proof Step 2:

Show that the equality holds on $\overline{\{p \in M : V(p) \neq 0\}}$.

Proof Step 3:

Show that the equality holds elsewhere.

Recall: Invariance

For two vector fields, X and Y, Y is invariant under the flow of X if $L_XY \equiv 0$.

We say a (0, l)-tensor field A is invariant under a map $F: M \to M$ if $F^*A = A$. Equivalently, if under a flow $\theta_t: M \to M$ if $\theta_t^*A = A$ for all t.

Theorem 12.37

A is invariant under θ_t , $\forall t$, if and only if $L_V A = 0$.

Note

$$\frac{d}{dt}\Big|_{t=t_0} (\theta_t^* A)_p = (\theta_{t_0}^* (L_v A))_p = \theta_{t_0})^* (L_V A)_{\theta_{t_0}^* (p)}$$

So

$$\frac{d}{dt}\Big|_{t=t_{0}}(\theta_{t}^{*}A)_{p} = \frac{d}{dt}\Big|_{t=t_{0}}(\theta_{t}^{*})A_{\theta_{t}(p)}$$

$$\stackrel{t=s+t_{0}}{=} \frac{d}{ds}\Big|_{s=0}\theta_{s+t}^{*}A_{\theta_{s+t_{0}}(p)}$$

$$= \frac{d}{ds}\Big|_{s=0}\theta_{t_{0}}^{*} \circ \theta_{s}^{*}A_{\theta_{t_{0}}(\theta_{s}(p))}$$

$$= \theta_{t_{0}}^{*}(L_{V}A)_{\theta_{t_{0}}^{*}(p)}$$

Therefore, if A is invariant under θ_t , then $\theta_t^* = A$ and

$$L_V A = \frac{d}{dt}\Big|_{t=0} (\theta_t^* A)_p = \frac{d}{dt}\Big|_{t=0} A_p = 0.$$

In the other direction, if $L_V A \equiv 0$, we show that $(\theta_t^* A)_p = A_p$ for every p and each t. From above,

$$\frac{d}{dt}\Big|_{t=t_0}(\theta_t^*A)_p = \theta_{t_0}^*\underbrace{(L_VA)_{\theta_{t_0}(p)}}_{=0} = 0$$

Hence $(\theta_t^* A)_p$ is a constant A_p .

Special Tensors (for this course)

Riemannian Metric

g a (0,2)-tensor, symmetric and positive definite. That is, at each point p

$$g_p:T_pM\times T_pM\to\mathbb{R}$$

which is bilinear, symmetric and positive definite. This is an inner product.

K (Differential) Form

 ω a (0, k)-tensor, alternating.

Riemannian Metric

In a chart $(U,(x^i))$, $g = g_{ij} dx^i \otimes dx^j$.

Since it is symmetric, $g(\partial_i, \partial_j) = g(\partial_j, \partial_i)$ (i.e. $g_{ij} = g_{ji}$). We write $dx^i dx^j = \text{Sym}(dx^i \otimes dx^j)$. In this case

$$Sym(dx^{i} \otimes dx^{j}) = \frac{1}{2} \left(dx^{i} \otimes dx^{j} + dx^{j} \otimes dx^{i} \right)$$

So we may write $g = g_{ij} dx^i dx^j$ and, sometimes, $(dx^1)^2 = dx^1 dx^1$.

We have also that g_{ij} correspinds to a positive definite, symmetric $n \times n$ matrix.

Example

In \mathbb{R}^n , $g_E = \delta_{ij} dx^i dx^j$. For $v = v^k \partial_k$ and $w = w^l \partial_l$,

$$g_E(v,w) = \delta_{ij} dx^i dx^j (v^k \partial_k w^l \partial_l) = v^k w^l \delta_{ij} \underbrace{dx^i (\partial_k)}_{\delta_k^i} \underbrace{dx^j (\partial_l)}_{\delta_l^i} = v^1 w^1 + \dots + v^n w^n$$

Example

Consider $S^2 \subseteq \mathbb{R}^3$ embedded such that $T_p S^2 \hookrightarrow T_p \mathbb{R}^3 \cong \mathbb{R}^3$.

Then $g_p(v, w) = v \cdot w$ defines a Riemannian metric on S^2 .

Proposition

Any smooth manifold admits a Riemannian metric.

Proof 1

Embed M into \mathbb{R}^N with N sufficiently large. Then M is an embedded submanifold in \mathbb{R}^N which induces a Riemannian metric on M.

Proof 2

Let $\{U_i\}$ be a countable cover of M (with each U_i a chart) and $\{\psi_i\}$ be a partition of unity with respect to this cover.

IMAGE 1

So $\phi_i^* g_E$ defines a Riemannian metric on U_i and we construct $\sum_i \psi_i(\phi_i^* g_E)$.

Example: Metric Product

Take (M_1,g_1) and (M_2,g_2) and construct $g_1\oplus g_2$ on $M_1\times M_2$ by either

$$g_1 \oplus g_2 = \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}$$

or

$$(g_1 + g_2)((v_1, v_1), (w_1, w_2)) = g_1(v_1, w_1) + g_2(v_2, w_2)$$

e.g. $S^1 \subseteq \mathbb{R}^2$ gives (S^1, g_1) , then on the *n*-torus we construct $(\mathbb{T}^n, g_1 \oplus \cdots \oplus g_1)$.

Example: Warped Product

IMAGE 2

Take $f: M \to \mathbb{R}^+$ smooth, (M, g) and (N, h). Define a new metric \tilde{g} on $M \times N$ by

$$\tilde{g}_{(x,y)} = g_x + f(x)h_y$$

An example in polar coordinates is

$$(dx)^{2} + (dy)^{2} = (d(r\cos\theta))^{2} + (d(r\sin\theta))^{2} = (\cos\theta \, dr - r\sin\theta \, d\theta)^{2} + (\sin\theta \, dr + r\cos\theta \, d\theta)^{2} = dr^{2} + r^{2} \, d\theta^{2}$$

Imagine fixing a direction r and at each point attaching a circle of radius r.

IMAGE 3

Recall: Gradient

If $f \in C^{\infty}(\mathbb{R}^n)$, then

$$\nabla f = \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^i}$$

Note that this violates our Einstein summation.

If $f \in C^{\infty}(M)$, its differential df is a 1-form and not a vector field. Why? Because in \mathbb{R}^n we are implicitly using the Euclidean metric.

If we have an inner product on a TVS, say $(V, (\cdot, \cdot))$, then we can construct an isomorphism $V \cong V^*$ by $v \mapsto (v, \cdot)$.

On (M,g) we use g to construct a bundle isomorphism between TM and T^*M by $(p,v)\mapsto g_p(v,\cdot)$.

With this, given $df \in \Omega^1(M)$, we can define a vector field $\nabla f \in \mathfrak{X}(M)$ by

$$g(\nabla f, X) = (df)(X) = Xf$$

In a chart $(U,(x^i))$, set $\nabla f = b^i \frac{\partial}{\partial x^i}$. Then

$$g\left(\nabla f, \frac{\partial}{\partial x^{j}}\right) = g\left(b^{i} \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) = b^{i} g_{ij} = (df)\left(\frac{\partial}{\partial x^{j}}\right) = \frac{\partial f}{\partial x^{j}}$$

Let g^{ij} be the inverse of g_{ij} , then

$$b^{k} = b^{i} \delta_{i}^{k} = b^{i} g_{ij} g^{jk} = \frac{\partial f}{\partial x^{j}} g$$

$$\nabla f = b^k \frac{\partial}{\partial x^k} = \frac{\partial f}{\partial x^j} g^{jk} \frac{\partial}{\partial x^k}$$

Then from above, we actually have

$$\nabla f = \frac{\partial f}{\partial x^i} \delta_{ij} \frac{\partial}{\partial x^j}$$

which satisfies our summation convention.

Example

If $g_E = dr^2 + r^2 d\theta^2$ in polar coordinates,

$$(g_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$
 and $(g^{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & 1/r^2 \end{pmatrix}$

So

$$\nabla f = \frac{\partial f}{\partial x^{j}} g^{jk} \frac{\partial}{\partial x^{k}} = \frac{\partial f}{\partial r} \frac{\partial}{\partial r} + \frac{\partial f}{\partial \theta} \frac{1}{r^{2}} \frac{\partial}{\partial \theta}$$

Isometric Metrics

We say that (M,g) and (N,h) are isometric if there is a diffeomorphism $F:M\to N$ such that $F^*h=g$. With g, we can define (for $v\in T_pM$), $||v||_g=(g_p(v,v))^{1/2}$ and (for $v,w\in T_pM$)

$$\cos(v, w) = \frac{g_p(v, w)}{||w||_g ||w||_g}$$

Definition: Length

Let $\gamma: I \to M$ be a (piecewise) smooth curve.

Define length_g(γ) = $\int_I ||\gamma'(t)||_g dt$.

Remember that $\operatorname{length}_g(\gamma)$ is independent of reparameterization. That is

$$J \xrightarrow{\phi} I \xrightarrow{\gamma} M$$
 with $\tilde{\gamma} = \gamma \circ \phi$ we have

$$\int_{J} ||\tilde{\gamma}'(t)|| dt = \int_{J} ||(\gamma \circ \phi)'(t)|| dt$$

$$= \int_{J} ||\gamma'(\phi(t)) \cdot \phi'(t)|| dt$$

$$\stackrel{\phi'>0}{=} \int_{J} ||\gamma'(\phi(t))|| \phi'(t) dt$$

$$\stackrel{s=\phi(t)}{=} \int_{I} ||\gamma'(s)|| ds$$

Definition: Distance

Given (M, g), define

$$d_g(p,q) = \inf \{ \operatorname{length}_g(\gamma) : \gamma \text{ is piecewise smooth from } p \text{ to } q \}$$

Theorem

 (M, d_g) is a metric space.

Moreover, it induces a metric topology that coincides with the manifold topology.

Theorem: Hopf-Rinow

The following are equivalent.

- 1. (M, d_g) is a complete metric space.
- 2. $\forall p, q \in M$, there exists a length-minimizing curve (a geodesic) from p to q.

Definition: Geodesic

A curve such that the second derivative along $\gamma \equiv 0$.

February 3, 2025

Recall: Wedge Product

$$\bigwedge^{k} V^{*} \times \bigwedge^{l} V^{*} \to \bigwedge^{k+l} V^{*}$$
$$(\omega, \eta) \mapsto \omega \wedge \eta$$

By
$$\frac{(k+l)!}{k!l!} \operatorname{Alt}(\omega \otimes \eta) = \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} (\sigma \cdot (\omega \otimes \eta)).$$

 $\epsilon^I \in \bigwedge^k V^*$, so

$$\epsilon^{I}(v_1, \dots, v_k) = \det \begin{pmatrix} \epsilon^{i_1}(v_1) & \cdots & \epsilon^{i_1}(v_k) \\ \vdots & & \vdots \\ \epsilon^{i_k}(v_1) & \cdots & \epsilon^{i_k}(v_k) \end{pmatrix}$$

26

We have a V basis $\{E_I\}$ and a V^* dual basis $\{\epsilon^I\}$ with $I=(i_1,\ldots,i_k)$. We also have that $\epsilon^I(E_{j_1},\ldots,E_{j_k})=\delta^I_J$. Then $\mathcal{B}=\{E^I:I \text{ is strictly increasing}\}$ is a basis for $\bigwedge^k V^*$.

Lemma 14.10

$$e^{I} \wedge e^{J} = e^{IJ}$$

Proof

We show that $\epsilon^I \wedge \epsilon^J(E_{p_k}, \dots, E_{p_{k+l}}) = \epsilon^{IJ}(E_{p_1}, \dots, E_{p_{k+l}})$, $P = (p_1, \dots, p_{k+l})$. If $I \cup J \neq P$, then both sides are zero.

If IJ or P has repeated index, then both sides are zero.

Then the only nontrivial case is when P = IJ without repeated indecies. Write $IJ = \{i_1, ..., i_k, j_1, ..., j_l\}$ such that we can apply a permutation $\gamma \in S_{k+l}$ to generate a strictly increasing $P = \{p_1, ..., p_{k+l}\}$. Then write $P_1 = \{p_1, ..., p_k\}$ and $P_2 = \{p_{k+1}, ..., p_{k+l}\}$, and compute

$$\epsilon^{P} = \epsilon^{P_{1}} \wedge \epsilon^{P_{2}}$$

$$= \frac{1}{k! l!} \sum_{\sigma \in S_{k+l}} (\operatorname{sign} \sigma) \cdot (\sigma(\epsilon^{P_{1}} \otimes \epsilon^{P_{2}}))$$

$$= \frac{1}{k! l!} \sum_{\sigma' \in S_{k+l}} (\operatorname{sign} \sigma') (\operatorname{sign} \gamma) ((\gamma \cdot \sigma')(\epsilon^{P_{1}} \otimes \epsilon^{P_{2}}))$$

$$= \operatorname{sign} \gamma(\epsilon^{I} \wedge \epsilon^{J})$$

Proposition 14.11

1. If $\omega^i \in V^*$ and $v_j \in V$, then $\omega^1 \wedge \cdots \wedge \omega^k(v_1, \dots, v_k) = \det(w^i(v_j))$.

Proof

It suffices to check (assuming *I*, *J* strictly increasing)

$$(\epsilon^{i_1} \wedge \cdots \wedge \epsilon^{i_k})(E_{j_1}, \dots, E_{j_k}) = \epsilon^I(E_{j_1}, \dots, E_{j_k}) = \delta^I_J = \det(\epsilon^{i_p}(E_{j_q})).$$

Definition: Graded Algebra

Write $\bigwedge V^* = \bigoplus_{k=0}^n \bigwedge^k V^*$ with $\dim \bigwedge V^* = 2^n$. Remember that $\dim \bigwedge^k V^* = \binom{n}{k}$. It is graded if $(\bigwedge^k) \wedge (\bigwedge^l) \subseteq \bigwedge^{k+l}$.

Differential Forms on Manifolds

Given a manifold M, a k-form on $M \wedge^k (T^*M) = \coprod_{p \in M} (\bigwedge^k T_p^*M)$ is a section of the bundle $\bigwedge^k (T^*M) \to M$. $\Omega^k(M)$ is the collection of k-forms on M.

Locally, $\omega \in \Omega^k(M)$ may be written $\omega = \sum \omega_I dx^I$ for a chart $(U,(x^i))$. Summing over strictly increasing $I, dx^I = dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ and $\omega_I = \omega \left(\frac{\partial}{\partial x^{i_1}}, \ldots, \frac{\partial}{\partial x^{i_k}} \right)$.

Pullback

For $F: M \to N$ and $\omega \in \Omega^k(N)$, we define $(F^*\omega) \in \Omega^k(M)$ by

$$(F^*\omega)(v_1,\ldots,v_k)=\omega(DF(v_1),\ldots,DF(v_k)).$$

It follows that

$$F^*(\omega \wedge \eta) = (F^*\omega) \wedge (F^*\eta)$$

and

$$F^*\left(\sum_{I}^{I}\omega_{I}dx^{I}\right) = \sum_{I}^{I}(F^*\omega_{I})F^*(dx^{i_1}\wedge\cdots\wedge dx^{i_k})$$

$$= \sum_{I}^{I}(\omega_{I}\circ F)(d(x^{i_1}\circ F)\wedge\cdots\wedge d(x^{i_k}\circ F))$$

$$= \sum_{I}^{I}(\omega_{I}\circ F)dF^{i_1}\wedge\cdots\wedge dF^{i_k}$$

Example

For $F: \mathbb{R}^2 \to \mathbb{R}^3$ by $F(u, v) = (u, v, u^2 - v^2)$ and $\omega = y \, dx \wedge dz \in \Omega^2(\mathbb{R}^3)$.

$$F^*\omega = F^*(y \, dx \wedge dz) = v \, du \wedge d(u^2 - v^2) = v \, du \wedge (2u \, du - 2v \, dv = -2v^2 \, du \wedge dv$$

Proposition 14.20

For $F: M^n \to N^n$ with local coordinates (x^i) and (y^i) respectively, if $u \in C^{\infty}(N)$ then

$$F^*(u dy^1 \wedge \cdots \wedge dy^n) = (u \circ F) \det DF$$

Proof

Write F in components $(F^1, ..., F^n)$ where $F^i = y^i \circ F$

$$F^*(u \, dy^1 \wedge \dots \wedge dy^n) = (u \circ F) dF^1 \wedge \dots \wedge dF^n \left(\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n} \right)$$
$$= (u \circ F) \det \left(dF^i \left(\frac{\partial}{\partial x^j} \right) \right)$$
$$= (u \circ F) \det(DF)$$

If $(U,(x^i))$ and $(\tilde{U},(\tilde{x}^i))$ are local charts with $U\cap \tilde{U}\neq \emptyset$, then using $F=\mathrm{id}_{U\cap \tilde{U}}$ we have that $F^*=\mathrm{id}_{U\cap \tilde{U}}$

$$d\tilde{x}^i \wedge \dots \wedge d\tilde{x}^n = \det\left(\frac{\partial \tilde{x}^j}{\partial x^i}\right) dx^1 \wedge \dots \wedge dx^n$$

Definition: Exterior Derivative

For $\omega \in \Omega^k(U)$, $U \subseteq \mathbb{R}^n$ open, $\omega = \sum_I' \omega_I dx^I$ define $d : \omega^k(U) \to \omega^{k+1}(U)$ by $\omega \mapsto d\omega$. Then

$$d\omega = \sum_{I}^{I} \underbrace{d\omega_{I}}_{\in \Omega^{1}(U)} \wedge \underbrace{dx^{I}}_{\in \Omega^{k}(U)}$$

Example

 $\omega \in \Omega^1(U), \, \omega = \sum_{i=1}^n \omega_i dx^i.$

$$d\omega = \sum_{i=1}^{n} d\omega_{i} \wedge dx^{i} = \sum_{i,j=1}^{n} \frac{\partial \omega_{i}}{\partial x^{j}} dx^{j} \wedge dx^{i} = \sum_{i < j} \left(\frac{\partial \omega_{j}}{\partial x^{i}} - \frac{\partial \omega_{i}}{\partial x^{j}} \right) dx^{i} \wedge dx^{j}$$

For $\omega = df \in \Omega^1(M)$, $d(df) = \sum_{i < j} \left(\frac{\partial^2 f}{\partial x^j \partial x^i} - \frac{\partial^2 f}{\partial x^i \partial x^j} \right) dx^i \wedge dx^j = 0$. That is, $(d \circ d)(f) = 0$ for any smooth function $f \in C^{\infty}(M)$.

Proposition

- 1. d is \mathbb{R} -linear.
- 2. $d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^k \omega \wedge (d\eta)$ with $k = \deg \omega$.
- 3. $d \circ d = 0$.
- 4. $F^*(d\omega) = d(F^*\omega)$.

Proof of b

Write $\omega = u \, dx^I$ and $\eta = v \, dx^J$.

Claim: $d(u dx^I) = du \wedge dx^I$ for any index (perhaps not strictly increasing) I.

If *I* has a repeated index, both sides are zero.

If not, let $\sigma \in S_k$ such that $I_{\sigma} = J$ strictly increasing.

$$d(u\,dx^I) = d((\operatorname{sign}\sigma)u\,dx^J) = \operatorname{sign}\sigma \cdot du \wedge dx^J = du \wedge (\operatorname{sign}\sigma \cdot dx^J) = du \wedge dx^I$$

Then

$$d(\omega \wedge \eta) = d(u \, dx^I \wedge v \, dx^J) = d(uv \, dx^I \wedge dx^J) = d(uv \, dx^{IJ}) = d(uv) \wedge dx^{IJ} = (u \, dv + v \, du) \wedge (dx^I \wedge dx^J)$$

So

$$d\omega \wedge \eta + (-1)^k \omega \wedge d\eta = du \wedge dx^I \wedge (v dx^J) + (-1)^k u dx^I \wedge (dv \wedge dx^J)$$

and it suffices to show that $dv \wedge dx^I \wedge dx^J = (-1)^k dx^I \wedge dv \wedge dx^J$.

Proof b Implies c

Write

$$d \circ d(\omega_I dx^I) = d(d\omega_I \wedge dx^I) = d(d\omega_I) \wedge dx^I + (-1)^I d\omega_I \wedge d(dx^I) = 0$$

Proof of d

Write $\omega = u \, dx^I$ such that $d\omega = du \wedge dx^I$.

$$F^*(d\omega) = F^*(du \wedge dx^I) = d(u \circ F) \wedge dF^{i_1} \wedge \cdots \wedge dF^{i_k}$$

and

$$d(F^*\omega) = d((u \circ F)dF^{i_1} \wedge \cdots \wedge dF^{i_k} = d(u \circ F) \wedge dF^{i_1} \wedge \cdots \wedge dF^{i_k}$$

February 5, 2025

Theorem 14.24

There is a unique map $d: \Omega^*(M) \to \Omega^*(M)$ with $d(\Omega^k(M)) \subseteq \Omega^{k+1}(M)$ such that

- 1. d is \mathbb{R} -linear
- 2. $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$
- 3. $d \circ d = 0$
- 4. df(X) = Xf for all $f \in \Omega^0(M) = C^{\infty}(M)$ and $X \in \mathfrak{X}(M)$.

Proof: Existence

Let $\omega \in \Omega^k(M)$. Then $\omega|_U \in \Omega^k(U)$. We have that $\varphi^{-1*}\omega \in \Omega^k(\varphi(U))$, $d(\varphi^{-1*}\omega) \in \Omega^{k+1}(\varphi(U))$, and $d\omega := \varphi^*d(\varphi^{-1*}\omega) \in \Omega^{k+1}(U)$ on U.

IMAGE 1

Proof: Well-defined

If (V, ψ) is another chart with $U \cap V \neq \emptyset$, we need to show that $\psi^*(d(\psi^{-1*}\omega)) = \varphi^*(d\varphi^{-1*}\omega)$. This is equivalent to

$$\iff d(\psi^{-1*}\omega) = \psi^{-1*}\varphi^*(d(\varphi^{-1*}\omega))$$

$$\iff d(\psi^{-1*}\omega = (\varphi \circ \psi^{-1})^*d(\varphi^{-1*}\omega)$$

where

$$(\varphi \circ \psi^{-1})^* d(\varphi^{-1*} \omega) = d((\varphi \circ \psi^{-1})^* \varphi^{-1*} \omega) = d(\psi^{-1*} \circ \varphi^* \circ \varphi^{-1*} \omega) = d(\psi^{-1*} \omega)$$

Proof: Uni!

For any $d: \Omega^*(M) \to \Omega^*(M)$ with the property $(d\omega)_p$ only depends on $\omega|_U$ where $p \in U$. Suppose $\omega_1 = \omega_2$ on U. We need to show that $(d\omega_1)_p = (d\omega_2)_p$. So set $\eta = \omega_1 - \omega_2$. Then $\omega \equiv 0$ on U, and we need to show that $(d\eta)_p = 0$. Let ψ be a bump function such that $\operatorname{supp} \psi \subseteq U$ and $\psi(p) = 1$. Then $\psi \eta = 0 \in \Omega^k(M)$.

$$0 = d(\psi \eta) = d\psi \wedge \eta + (-1)^0 \psi \wedge d\eta$$

At point p, it reads

$$0 = 0 \wedge \eta_p + \overbrace{\psi(p)}^{=1} \wedge d\eta_p$$

That is, $0=d\eta_p$. Let $p\in M$, U a chart around p, say $(U,(x^i))$, and $\omega\in\Omega^k(U)$. We know that $(d\omega)_p$ only depends on $\omega|_U=\sum_I'\omega_Idx^I$. Then for $p\in V\subseteq \overline{V}\subseteq U$, $\omega|_U$ extends functions $\omega_I,x^I\in C^\infty(V)$ to globally defined functions $\tilde{\omega}_I,\tilde{x}^I\in C^\infty(M)$. Therefore

$$d(\omega|_{U}) = \sum_{I}^{I} d(\omega_{I} dx^{I})$$

$$= \sum_{I}^{I} d(\tilde{\omega}_{I} \tilde{x}^{I})$$

$$= \sum_{I}^{I} (d\tilde{\omega}_{I} \wedge d\tilde{x}^{I} + \omega_{I} \wedge d(d\tilde{x}^{i_{1}} \wedge \cdots \wedge d\tilde{x}^{i_{k}}))$$

$$= \sum_{I}^{I} d\omega_{I} \wedge dx^{I}$$

which is the same formula for \mathbb{R}^n .

Proposition: 14.26

 $F^*(d\omega) = d(F^*\omega).$

Proposition: 14.32

 $\mathcal{L}_V(\omega \wedge \eta) = (\mathcal{L}_V \omega) \wedge \eta + \omega \wedge (\mathcal{L}_V \eta).$

Corollary

 $\mathcal{L}_V(d\omega) = d(\mathcal{L}_V\omega).$

Definition: Interior Multiplication

Given $\omega \in \bigwedge^k V^*$ and $v \in V$, define $\iota_V \omega \in \bigwedge^{k-1} V^*$ (sometimes written $V \sqcup \omega$).

$$(\iota_v\omega)(u_1,\dots,u_{k-1})=\omega(v,u_1,\dots,u_{k-1})$$

This defines $\iota_V : \bigwedge^k V^* \to \bigwedge^{k-1} V^*$, and we have $\iota_V \circ \iota_V = 0$.

$$\iota_{\nu}(\omega \wedge \eta) = (\iota_{V}\omega) \wedge \eta + (-1)^{k}\omega \wedge (\iota_{V}\eta)$$

Proof

It suffices to show that for $\omega^1, \dots, \omega^k \in V^*$

$$\iota_{V}(\omega^{1} \wedge \cdots \wedge \omega^{k}) = \sum_{i=1}^{k} (-1)^{i-1} \omega^{i}(v) \omega^{1} \wedge \cdots \wedge \hat{\omega}^{i} \wedge \cdots \wedge \omega^{k}$$

Where $\hat{\omega}^i$ is meant to denots "forgetting" a term in the wedge product. That is, the first term has no ω^1 , the second no ω^2 , etc.

Assuming this, it suffices to consider $\omega = \omega^1 \wedge \cdots \wedge \omega^k$ and $\eta = \eta^1 \wedge \cdots \wedge \eta^l$. Then

$$\iota_{V}(\omega \wedge \eta) = \iota_{V}(\omega^{1} \wedge \cdots \omega^{k} \wedge \eta^{1} \wedge \cdots \wedge \eta^{l})$$

$$= \sum_{i=1}^{k} (-1)^{i-1} \omega^{i}(v) \omega^{1} \wedge \cdots \wedge \hat{\omega}^{i} \wedge \cdots \wedge \omega^{k} \wedge \eta^{1} \wedge \cdots \wedge \eta^{l} + \sum_{i=1}^{l} (-1)^{k+i-1} \eta^{i}(v) \omega^{1} \wedge \cdots \wedge \omega^{k} \wedge \eta^{1} \wedge \cdots \wedge \eta^{l}$$

$$= (\iota_{V}\omega) \wedge \eta + (-1)^{k} \omega \wedge (\iota_{V}\eta)$$

Write $v_1 = v$, and apply both sides to $(v_2, ..., v_k)$. The left hand side is

$$\omega^{1} \wedge \cdots \omega^{k}(v_{1}, \dots, v_{k}) = \det(\omega^{i}(v_{j})) = \det\begin{pmatrix} \omega^{1}(v_{1}) & \cdots & \omega^{i}(v_{1}) & \cdots & \omega^{k}(v_{1}) \\ \vdots & & & \vdots \\ \omega^{1}(v_{k}) & \cdots & \omega^{i}(v_{1}) & \cdots & \omega^{k}(v_{k}) \end{pmatrix}$$

The right hand side is given by

$$\sum_{i=1}^{k} (-1)^{i-1} \omega^{i}(v_{1})(\omega^{1} \wedge \cdots \wedge \hat{\omega}^{i} \wedge \cdots \wedge \omega^{k})(v_{1}, \dots, v_{k})$$

which, when expanded, gives $\det(\omega^i(v_i))$ along the first row.

Proposition 14.35 (Cartan)

If $V \in \mathfrak{X}(M)$ and $\omega \in \Omega^k(M)$, then

$$\mathcal{L}_V\omega = V \, \lrcorner \, (d\omega) + d(V \, \lrcorner \, \omega)$$

Corollary

$$\mathcal{L}_V(d\omega) = d(\mathcal{L}_V\omega)$$

Proof

By assuming Cartan's formula, the left hand side is

$$V = \overbrace{(d \circ d\omega)}^{=0} + d(V - d\omega)$$

and the right hand side is

$$d(V \rfloor d\omega + d(V \rfloor \omega)) = d(V \rfloor d\omega) + d \circ d(v \rfloor \omega)$$

Proof (of Cartan's Formula)

We prove by induction on $\deg(\omega)$. When ω is a function $f \in C^{\infty}(M) = \Omega^{0}(M)$, the left hand side is

$$\mathcal{L}_V f = V f$$

and the right hand side is

$$V \perp (df) + d(V) = df(V) = Vf$$

since ι_V maps Ω^k to Ω^{k-1} .

Assuming it holds for k-1 forms, we consider $\omega \in \Omega^k(M)$ and locally write $\omega = \sum_{i=1}^{l} \omega_I dx^I$. It suffices to show that the formula holds for $\omega = du \wedge \beta$, $u \in C^{\infty}(M)$, $\beta \in \Omega^{k-1}(M)$.

$$(\omega_I dx^{i_1} \wedge \cdots \wedge dx^{i_k} = \underbrace{dx^{i_1}}_{du} \wedge \underbrace{(\omega_I dx^{i_1} \wedge \cdots \wedge dx^{i_k})}_{\beta})$$

The left hand side is

$$\mathcal{L}_{V}(du \wedge \beta) = \mathcal{L}_{V}du) \wedge \beta + du \wedge \mathcal{L}_{V}\beta$$

$$= d(\mathcal{L}_{V}u) \wedge \beta + du \wedge (V \perp d\beta + d(V \perp \beta))$$

$$= d(Vu) \wedge \beta + du \wedge (V \perp d\beta) + du \wedge d(V \perp \beta)$$

and the right hand side is

$$V \rfloor (d(du \land \beta)) + d(V \rfloor (du \land \beta)) = V \rfloor ((d \land du) \land \beta + (-1)du \land d\beta + d((V \rfloor du) \land \beta + du \land (V \rfloor \beta))$$
$$= (-1)(Vu)d\beta + d(Vu) \land \beta + (Vu)d\beta$$

Proposition 14.32

$$d\omega(X_1,\ldots,X_{k+1}) = \sum_{1 \leq i \leq k+1} (-1)^{i-1} X_i(\omega(X_1,\ldots,\hat{x}_i,\ldots,X_{k+1})) + \sum_{1 \leq i \leq j \leq k+1} (-1)^{i+j} \omega([X_i,X_j],X_1,\ldots,\hat{X}_i,\ldots,\hat{X}_j,\ldots,X_{k+1})$$

When $\omega \in \Omega^1$, it reads

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega(\lceil X, Y \rceil)$$

In particular, for ω closed,

$$X(\omega(Y)) - Y(\omega(X)) = \omega([X, Y])$$

Proof

It suffices to prove that for $\omega = udv$, $u, v \in C^{\infty}(M)$ that

$$d(\omega) = d(udv) = du \wedge dv$$

The left hand side

$$(du \wedge dv)(X,Y) = \det\begin{pmatrix} du(X) & du(Y) \\ dv(X) & dv(Y) \end{pmatrix} = \det\begin{pmatrix} X_u & Y_u \\ X_v & Y_v \end{pmatrix}$$

and the right hand side

$$\begin{split} X(udv(Y)) - Y(udv(X)) - u(dv([X,Y]) &= X(u(Yv)) - Y(u(Xv)) - u([X,Y]v) \\ &= (Xu)(Yv) + u(XYv) - (Yu)(Xv) - u(YXv) - u([X,Y]v) \\ &= \det\begin{pmatrix} X_u & Y_u \\ X_v & Y_v \end{pmatrix} \end{split}$$

Example

For $f \in \Omega^*(\mathbb{R}^3)$ and $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz \in \Omega^{*+1}(\mathbb{R}^3)$, write Pdx + Qdy + Rdz and

$$\begin{split} d(Pdx + Qdy + Rdz) &= \left(\frac{\partial P}{\partial y}dy + \frac{\partial P}{\partial z}dz\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial z}dz\right) \wedge dy + \left(\frac{\partial R}{\partial x}dx + \frac{\partial R}{\partial y}dy\right) \wedge dz \\ &= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}dx \wedge dy\right) + \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}dy \wedge dz\right) + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}dz \wedge dx\right) \end{split}$$

Recall that for $X = (P, Q, R) \in \mathfrak{X}(\mathbb{R}^3)$, this is the curl of X. Let $\omega = udx \wedge dy + vdy \wedge dz + wdz \wedge dx$, then

$$d\omega = \frac{\partial u}{\partial z} dz \wedge dx \wedge dy + \frac{\partial v}{\partial z} dx \wedge dy \wedge dz + \frac{\partial w}{\partial z} dy \wedge dz \wedge dx$$
$$= \left(\frac{\partial V}{\partial x} + \frac{\partial W}{\partial y} + \frac{\partial U}{\partial z}\right) dx \wedge dy \wedge dz$$

Recall that this is divergence. We can also look at the gradient

grad
$$f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

we have

$$\operatorname{grad} f \cdot X = Xf = df(X) = \sum_{i} \frac{\partial f}{\partial x^{i}} \cdot x^{i}$$

Putting this together,

$$C^{\infty}(\mathbb{R}^{3}) \xrightarrow{\operatorname{grad}} \mathfrak{X}(M) \xrightarrow{\operatorname{curl}} \mathfrak{X}(M) \xrightarrow{\operatorname{div}} C^{\infty}(\mathbb{R}^{3})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega^{0}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{1}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{2}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{3}(\mathbb{R}^{3})$$

February 10, 2025

Orientation. Lee pages 378 to 390.

February 12, 2025

Recall

$$[E_1, E_2, \ldots, E_n]$$

and $\omega \in \Lambda^n V^* - \{0\}$

On a manifold, we say that $\omega \in \Omega^n(M)$ is nonvanishing if and only if

- · the manifold has an orientation if and only if
- · the manfiold admits an ordered atlas

For $S^{n-1} \hookrightarrow M^n$, if N is a vector field along S and nowhere tangent to S and M has an orientation given by $\omega \in \Omega^n(M)$, then S has an induced orientation $(N \sqcup \omega) \in \Omega^{n-1}(S)$. In particular, $\partial M \to M$ is oriented for N outwarding vector field along ∂M , we have induced orientation given by $(N \sqcup \omega) \in \Omega^{n-1}(\partial M)$.

$$F:(M^n,O_m)\to (N^n,O_N)$$

is a local diffeormorphism and orientation preserving if $F^*O_N = O_M$. It is orientation reserving if $F^*O_N = -O_M$. F^*O_N is given the pullback $F^*\omega$, where $\omega \in \Omega^n(N)$ is non-vanishing and matching with O_N .

Example 1

For example, $A: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ by $(x^i) \mapsto (-x^i)$ has orientation $[E_1, \dots, E_{n+1}]$. Then

$$[AE_1, ..., AE_{n+1}] = [E_1, ..., E_{n+1}] = (-1)^{n+1} [E_1, ..., E_n]$$

and A is orientation preserving if and only if n is odd. Instead, if we consider forms $\omega = \varepsilon^1 \wedge \cdots \wedge \varepsilon^{n+1}$ then we have

$$A^*\omega(X_1,...,X_{n+1}) = \omega(AX_1,...,AX_{n+1}) = (\det A)(\omega(X_1,...,X_{n+1}))$$

so $A^*\omega = (\det A)\omega = (-1)^{n+1}\omega$.

Example 2

Consider $S^N \hookrightarrow \mathbb{R}^{n+1}$ and $A: S^n \to S^n$ by $x \mapsto -x$.

IMAGE 1

 $A_*N=N.$

Then S^n has an induced orientation $(N \sqcup \omega) \in \Omega^{n-1}(S)$ where $\omega = \varepsilon^1 \wedge \cdots \wedge \varepsilon^{n+1} \in \Omega^{n+1}\mathbb{R}^{n+1}$. Compute

$$A^{*}(N \sqcup \omega)(X_{1},...,X_{n}) = (N \sqcup \omega)(A_{*}X_{1},...,A_{*}X_{n})$$

$$= \omega(N, A_{*}X_{1},...,A_{*}X_{n})$$

$$= \omega(A_{*}N, A_{*}X_{1},...,A_{*}X_{n})$$

$$= \det(DA)\omega(N, X_{1},...,X_{n})$$

$$= (-1)^{n+1}(N \sqcup \omega)(X_{1},...,X_{n})$$

Therefore $A^*(N \sqcup \omega) = (-1)^{n+1}(N \sqcup \omega)$ and $A: S^n \to S^n$ is orientation preserving when n is odd.

An aside about covering maps

Consider all φ such that this diagram

commutes. Then take $\operatorname{Aut}(\pi) = \{\varphi : \hat{M} \to \hat{M} \text{ diffeomorphic } : \pi = \pi \circ \varphi\}$. Then $\varphi \in \operatorname{Aut}(\pi)$ preserves the preimage $\pi^{-1}(x)$.

IMAGE 2

IMAGE 3

So $\operatorname{Aut}(\pi) = \mathbb{Z}_2$. For example, $S^n \xrightarrow{\pi} \mathbb{R}P^n$, $\operatorname{Aut}(\pi) = \mathbb{Z}_2 = \{\operatorname{id}, A\}$. By theorem, $\mathbb{R}P^n$ is orientable if and only if

- $A: S^n \to S^n$ is orientation perserving if and only if
- *n* is odd.

In the case of the Mobius band,

IMAGE 4

 $\operatorname{Aut}(\pi) = \langle \gamma \rangle$ where $\gamma : (x, y) \mapsto (x + 1, -y)$ is orientation reversing. This implies that M is not orientable.

Theorem 15.36

Let $\pi: \hat{M} \to M$ be a covering map.

- 1. If M is orientable, then \hat{M} is orientable.
- 2. If \hat{M} is orientable, what about M?

M is orientable if and only $Aut(\pi)$ acts as an orientation preserving idffeomorphism on \hat{M} .

Proof

(\longleftarrow) On M, we start with an atlas $\{V_{\beta}\}$ such that each V_{β} is evenly covered by π with $\pi^{-1}(V) = \bigcup_i U_i$

IMAGE 5

Each U_i carries an orientation (coming from $O_{\hat{M}}$).

Define an orientation by V such that $\pi|_{U_i}: U_i \to V$ is orientation preserving (i.e. $\pi^*O_V = O_{U_i}$). For a different U_i ,

$$\pi^* O_v = (\pi \circ \varphi)^* O_V = \varphi^* \pi^* O_V = \varphi^* O_{U_i} = O_{U_i}$$

 (\Longrightarrow) As M is orientable, it has two orientations. Fix $\hat{p} \in \hat{M}$, $p = \pi(\hat{p}) \in M$. Choose the orientation on M such that $d\pi_{\hat{p}} : T_{\hat{p}}\hat{M} \to T_pM$ is orientation perserving. With this orientation O_M , we have

$$O_{\hat{M}} = \pi^* O_M = (\pi \circ \varphi)^* O_M = \varphi^* \pi^* O_M \varphi^* O_{\hat{M}}$$

so any $\varphi \in Aut(\pi)$ is orientation preserving.

Orientation Covering Space

If M is a connected un-orientable manifold, then there exists $\pi: \hat{M} \to M$ a 2-folded (2-sheet) covering map – in the sense that $\#\pi^{-1}(x) = 2$ (e.g. $S^2 \to \mathbb{R}P^2$) – such that \hat{M} is orientable.

Example: Mobius Band

We have $\pi/\langle \gamma \rangle \to M$

IMAGE 6

and $\gamma^2:(x,y)\mapsto (x+2,y)$ which gives a cylinder with $\overline{\gamma}:(\theta,y)\mapsto (-\theta,-y)$.

Construction

Let M be connected. We construct

$$\hat{M} = \{(p, O_p) : p \in M, O_p \text{ is an orientation on } T_pM\}$$

where $\pi: \hat{M} \to M$ is given by $(p, O_p) \mapsto p$ which is 2-folded.

- 1. \hat{M} has a smooth structure.
- 2. with this smooth structure, π is a smooth covering map.
- 3. $U \subseteq M$ (not necessarily a chart) is evenly covered by π if and only if U is orientable.

Given (U, O) where U is a chart in M and O is an orientation on U, we define $\hat{U}_O \subseteq \hat{M}$ by

$$\hat{U}_O = \{(p, O_p) \in \hat{M} : p \in U \text{ and } O_p \text{ matches with } O\}$$

Consider a basis

$$\mathcal{B} = \{\hat{U}_O : U \subseteq M \text{ a chart, and } O \text{ an orienation on } U\}$$

- 1. \mathcal{B} covers \hat{M}
- 2. For $\hat{U}_O \cap \hat{U}_O' \neq \emptyset$, we have (p, O_p) such that $p \in U \cap U'$ and O_p matches with both $O_{U'}$ and O_U . Choose $V \subseteq U \cap U'$ and an orienation O_V such that O_V matches with O_p . Then O_V matches with oth O_U and $O_{U'}$, $\hat{V}_0 \subseteq \hat{U}_O \cap \hat{U}_{O'}'$.

So $\pi:\hat{U}_O\to U$ by $(p,O_p)\mapsto p$ is a bijective homeomorphism, and it defines a smooth structure on \hat{M} such that $\{\hat{U}_O\}$ is an atlas. Then π is a smooth covering map. In fact, every chart $U\subseteq M$ is evenly covered by \hat{U}_O and \hat{U}_{-O} . To show that \hat{M} is orientable, at each point $\hat{p}=(p,O_p)\in \hat{M}$ we give an orientation at $T_{\hat{p}}\hat{M}$ such that $d\pi_{\hat{p}}:T_{\hat{p}}\hat{M}\to (T_pM,O_p)$ is orientation preserving. We need to show that this pointwise orientation is continuous.

We have that $\hat{p} = (p, O_p) \in \hat{U}_O$ for the orientation of O on U matching with O_p . Then $\pi : \hat{U}_O \to (U, O)$ is orientation perserving (i.e. the orientation on \hat{U}_O is π^*O).

Finally, we need to show that if $U \subseteq M$ is open and evenly covered, then U is orientable. In fact, $\pi^{-1}(U) = V_1 \cup V_2 \subseteq \hat{M}$ where $\pi: V_i \to U$ is a diffeomorphism. Since \hat{M} is orientable, it induces an orientation on V_1 . Then we get an orientation on U through the diffeomorphism π .

Conversely, if U is orientable then it has two orientations – call them O and O. So we can construct \hat{U}_O and \hat{U}_{-O} not necessarily charts where $\pi^{-1}(U) = \hat{U}_O \cup \hat{U}_{-O}$.

Connectedness

So far, we have $\pi: \hat{M} \to M$ a 2-folded covering with M connected.

1. if M is orientable, then \hat{M} is two copies of M (i.e. \hat{M} is not connected).

From above, we have that $\pi^{-1}(M)$ is the disjoint union of two copies of M.

2. if instead M is un-orientable, then \hat{M} is connected.

Fact: $\pi: \hat{M} \to M$ a covering map with M connected, then $\#\pi^{-1}(x)$ is constant on M. Suppose \hat{M} is not connected, then let W be components with $\pi|_W: W \to M$ covering maps. $\#(\pi|_W)^{-1}(x)$ is either one or two. If it is one, then $\pi|_W: W \to M$ is a diffeomorphism. However W is orientable while M is not, a contradiction. If instead the cardinality is two, then $W = \hat{M}$ and hence \hat{M} is connected.

Corollary

If M is simply connected (i.e. $\pi_1 = \{e\}$), then M is orientable. In fact, if M is orientable then $\pi: \hat{M} \to M$ is a 2-folded covering with \hat{M} connected. If M is simply connected, then $\hat{M} = M$ a contradiction.

Remark

If $\pi_1(M)$ does not have a subgroup of index 2, then M is orientable. For example, $\pi_1(\mathbb{R}P^2) = \operatorname{Aut}(\pi) = \mathbb{Z}^2$ with $\pi: S^2 \to \mathbb{R}P^2$ and, for the Mobius band M, $\pi_1(M) = \operatorname{Aut}(\pi) = \mathbb{Z} = \langle \gamma \rangle$ has a subgroup $\langle \gamma^2 \rangle$ and $2\mathbb{Z} \leq \mathbb{Z}$ is a subgroup with index 2.

February 19, 2025

Integration in Rn

In \mathbb{R}^n , let $\omega \in \Omega^n(\mathbb{R}^n)$ and suppose that a domain D is "good" and compact. Then $\omega = f \, dx^1 \wedge \cdots \wedge dx^n$ and

$$\int_D \omega := \int_D f \, dx^1 \wedge \dots \wedge dx^n.$$

Proposition 16.1

Suppose we have domains $D, E \in \mathbb{R}^n$ and a diffeomorphism $G : \overline{D} \to \overline{E}$. If $\omega \in \Omega^n(\overline{E})$, then $G^*\omega \in \Omega^n(\overline{D})$ and

$$\int_D G^* \omega = \pm \int_E \omega$$

where \pm depends on whether G preserves orientations (i.e. $\det(DG) > 0$ or $\det(DG) < 0$).

Proof

Write $G: \overline{D} \to \overline{E}$ as $(x^1, ..., x^n) \mapsto (y^1, ..., y^n)$ and $\omega = f(y^1, ..., y^n) dy^1 \wedge \cdots \wedge dy^n$. Then since

$$y^{i} = G^{i}(x^{i},...,x^{n})$$
 and $dy^{1} \wedge \cdots \wedge dy^{n} = dG^{1} \wedge \cdots \wedge dG^{n}$,

we have

$$\int_{E} \omega = \int_{E} f(y^{1}, \dots, y^{n}) dy^{1} \wedge \dots \wedge dy^{n}$$

$$y^{i} = y^{i} (x^{1}, \dots, x^{n}) \int_{D} f \circ G(x^{1}, \dots, x^{n}) |\det(DG)| dx^{1} \wedge \dots \wedge dx^{n}$$

$$= \pm \int_{D} (f \circ G) \cdot \det(DG) dx^{1} \wedge \dots \wedge dx^{n}$$

$$= \pm \int_{D} G^{*} \omega$$

$$= G^{*} (f dy^{1} \wedge \dots \wedge dy^{n})$$

$$= (f \circ G) G^{*} (dy^{1} \wedge \dots \wedge dy^{n})$$

More Generally

If $\omega \in \Omega^n(\mathbb{R}^n)$ with compact suppoert, then we can pick a "good" domain D such that $\operatorname{supp} \omega \subseteq D$ and \overline{D} is compact. Define

$$\int_{\mathbb{R}^n} \omega := \int_D \omega$$

This works similarly on any open set $U \supseteq \operatorname{supp} \omega$. Pick a good domain D such that $\operatorname{supp} \omega \subseteq D \subseteq U$ with \overline{D} compact. Then

$$\int_U \omega := \int_D \omega$$

where U may be chosen to be an open ball $B_r^n(0)$.

Integration on Manifolds

On a manifold M^n with $\omega \in \Omega^n(M)$, we first consider the case where supp $\omega \subseteq U$ for U a chart.

IMAGE 1

$$\int_{M} \omega := \pm_{\phi(U)} (\phi^{-1})^* \omega$$

where \pm depends on whether $\phi: (U, O|_U) \to (\phi(U), O_E)$ is orientation preserving. This is well defined

IMAGE 2

Since $\psi(W) = \psi \circ \phi^{-1}(\phi(W)),$

$$\int_{\psi(W)} (\psi^{-1})^* \omega = \int_{\psi \circ \phi^{-1}(\phi(W))} (\psi^{-1})^* \omega = \int_{\phi(W)} (\psi \circ \phi^{-1})^* (\psi^{-1})^* \omega = \int_{\phi(W)} (\phi^{-1})^* \omega$$

General Case

Suppose M^n is oriented with $\omega \in \Omega^n(M)$ having comapct support.

Let $\{U_i\}$ be a finite open cover of $\operatorname{supp}\omega$ such that each U_i is a chart, and ψ_i a partition of unity subordinated to U_i (i.e. $\operatorname{supp}\psi_i\subseteq U_i$). Assume further that $\phi_i:(U_i,O|_{U_i})\to (\phi_i(U_i),O_E)$ is orientation preserving (reversing introduces a sign). Define

$$\int_{M} \omega := \sum_{i=1}^{n} \int_{M} \psi_{i} \omega$$

This is well defined. Suppose $\{\tilde{U}_j\}$ is another open cover and $\tilde{\psi}_j$ another partition of unity with respect to $\{\tilde{U}_j\}$. Then

$$\int_{M} \psi_{i} \omega = \int_{M} \left(\sum_{j} \tilde{\psi}_{j} \right) \psi_{i} \omega = \sum_{j} \int_{M} \tilde{\psi}_{j} \psi_{i} \omega.$$

Summing over i,

$$\sum_i \int_M \psi_i \omega = \sum_{i,j} \int_M \tilde{\psi}_j \psi_i \omega = \sim_j \int_M \tilde{\psi}_j \left(\sum_i \psi_i \right) \omega = \sum_j \int_M \tilde{\psi}_j \omega.$$

Integration over Parameterizations

Take M^n oriented and $\omega \in \Omega^n(M^n)$ with comapct support. Suppose D_1, \ldots, D_k are open domains in \mathbb{R}^n and $F_i : \overline{D}_i \to M$ such that

- 1. $F_i|_{D_i}$ is a diffeomorphism onto its image $W_i := F_i(D_i)$.
- 2. $W_i \cap W_j = \emptyset$, $\forall i, j$, and
- 3. $\bigcup_i \overline{W}_i = M$.

Then

$$\int_{M} \omega = \sum_{i=1}^{n} \int_{W_{i}} \omega = \sum_{i=1}^{n} \int_{D_{i}} F_{i}^{*} \omega.$$

Example

$$\omega = x dy \wedge dz + y dz \wedge dx + z dx \wedge dy$$

on $S^2 \subseteq \mathbb{R}^3$. Parameterize S^2 by $F : [0, \pi] \times [0, 2\pi] \to S^2$ by $(\varphi, \theta) \mapsto (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$.

IMAGE 3

Orient S^2 by an outward normal vector field N (i.e. the induced orientation on S^2 is $N \perp (e^1 \wedge e^2 \wedge e^3)$. Then we need to show that $(N \perp (e^1 \wedge e^2 \wedge e^3) \Big(DF \Big(\frac{\partial}{\partial \varphi} \Big), DF \Big(\frac{\partial}{\partial \theta} \Big) \Big) > 0$.

$$DF\left(\frac{\partial}{\partial \varphi}\right) = \frac{\partial F}{\partial \phi} = (\cos \phi \cos \theta, \cos \phi \sin \phi, -\sin \phi)$$
$$DF\left(\frac{\partial}{\partial \theta}\right) = \frac{\partial F}{\partial \theta} = (-\sin \phi \sin \theta, \sin \phi \cos \phi, 0)$$

At $q = (0, 1, 0) \in S^2$, $q = F(\frac{\pi}{2}, \frac{\pi}{2})$ so

$$DF\left(\frac{\partial}{\partial \varphi}\right) = (0, 0, -1)$$
$$DF\left(\frac{\partial}{\partial \theta}\right) = (-1, 0, 0)$$

while N=(0,1,0). So we compute $(e^1 \wedge e^2 \wedge e^3) \left(N, DF\left(\frac{\partial}{\partial \varphi}\right), DF\left(\frac{\partial}{\partial \theta}\right)\right)$ is

$$\det \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix} = 1$$

and preserves orientation. So $\int_{S^2} \omega = \int_D F^* \omega$ and

 $F^*dx = d(F^*x) = d(x \circ F) = d(\sin\varphi\cos\theta) = \sin\varphi\,d\cos\theta + \cos\theta\,d\sin\varphi = -\sin\varphi\sin\theta\,d\theta + \cos\varphi\cos\theta\,d\varphi$ Similarly,

$$F^*(dy) = d(\sin\varphi\sin\theta) = \sin\varphi \, d\sin\theta + \sin\theta \, d\sin\varphi = \sin\varphi\cos\theta \, d\theta + \cos\varphi\sin\theta \, d\varphi$$

Finally, $F^*dz = d\cos\varphi = -\sin\varphi \ d\phi$, so

$$F^*\omega = (\sin\varphi\cos\theta) \cdot (\sin^2\varphi\cos\theta \, d\varphi \wedge d\theta) + (\sin\varphi\sin\theta) \cdot (\sin^2\varphi\sin\theta \, d\varphi \wedge d\theta)$$
$$+ \cos\varphi(\sin^2\theta\sin\varphi\cos\varphi \, d\varphi \wedge d\theta) + \cos^2\theta\sin\varphi\cos\varphi \, d\varphi \wedge d\theta$$
$$= (\sin^3\varphi\cos^2\theta + \sin^3\varphi\sin^2\theta) \, d\varphi \wedge d\theta + (\cos^2\varphi\sin\varphi) \, d\varphi \wedge d\theta$$
$$= \sin\varphi \, d\varphi \wedge d\theta$$

We conclude

$$\int_{S^2} \omega = \int_D F^* \omega = \int_D \sin \varphi \ d\phi d\theta = \int_0^{\pi} \sin \varphi \ d\phi \int_0^{2\pi} \ d\theta = 2 \cdot 2\pi = 4\pi.$$

Stokes' Theorem

For M^n with boundary ∂M (dim $\partial M = n - 1$),

$$\int_{M} d\omega = \int_{\partial M} \omega$$

for all $\omega \in \Omega^{n-1}(M)$ where ∂M has outward orientation.

Example

Take $\omega \in \Omega^2(B_1^3)$, then

$$d\omega = dx \wedge dy \wedge dz + dy \wedge dz \wedge dx + dx \wedge dx \wedge dy = 3dx \wedge dy \wedge dz.$$

Since $S^2 = \partial B_1^3$,

$$\int_{S^2} \omega = \int_{\partial B_1^3} \omega = \int_{B_1^3} d\omega = \int_{B_1^3} 3 dx \wedge dy \wedge dz = 3 \cdot \text{vol}(B_1^3) = 3 \cdot \frac{4}{3} \pi = 4\pi.$$

Example

Take $M = [a, b] \subseteq \mathbb{R}^1$ with orientation dt

IMAGE 4

We have that $\partial M = \{a\} \cup \{b\}$. So, at $a\left(-\frac{\partial}{\partial t}\right) \, \lrcorner \, (d\,t) = -1$ and at $b\left(\frac{\partial}{\partial t}\right) \, \lrcorner \, (d\,t) = 1$. So

$$\int_{a}^{b} f'(t) dt = \int_{M} d\omega = \int_{\partial M} \omega = -f(a) + f(b).$$

Example

Take a line integral along $\gamma: [0,1] \to M$ with $\omega \in \Omega^1(M)$. Suppose $\omega = df$. Then

$$\int_{\gamma} \omega = \int_{\gamma} df = \int_{\partial \gamma} f = f(\gamma(b)) - f(\gamma(a)).$$

Consequences

If M^n is compact, oriented and without boundary, then

$$\int_{m} d\omega = \int_{\partial M} \omega = 0$$

for $\omega\in\Omega^{n-1}(M)$. That is to say integrating an exact form over a closed manifold returns zero. If M^n is compact and oriented with $\omega\in\Omega^{n-1}(M)$ satisfying $d\omega=0$ (i.e. closed), then

$$\int_{\partial M} \omega = \int_M d\omega = 0.$$

Remark

If we write $(M, \omega) := \int_M \omega$, then Stokes' theorem says $(\partial M, \omega) = (M, d\omega)$.

Proof

In the special case that $M = \mathbb{R}^n$ with $\omega \in \Omega^{n-1}(\mathbb{R}^n)$ having compact support. Cover the support of ω by a large cube $[-R,R]^n$. Then

$$\omega = \omega_i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n$$

$$d\omega = \sum_i \frac{\partial \omega_i}{\partial x^i} dx^i \wedge dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n$$

$$= \sum_{i=1}^n (-1)^{i-1} \frac{\partial \omega_i}{\partial x^i} dx^1 \wedge \dots \wedge dx^n.$$

It follows that from Frobenius and the Fundamental Theorem of Calculus that

$$\int_{\mathbb{R}^{n}} d\omega = \sum_{i=1}^{n} (-1)^{i-1} \int_{[-R,R]^{n}} \frac{\partial \omega_{i}}{\partial x^{i}} dx^{1} \wedge \cdots \wedge dx^{n}$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \int_{-R}^{R} \cdots \left(\int_{-R}^{R} \frac{\partial \omega_{i}}{\partial x^{i}} dx^{i} \right) \cdots$$

$$= \cdots (\omega_{i}(\cdots, R, \cdots) - \omega_{i}(\cdots, -R, \cdots)) \cdots$$

$$= 0$$

In the special case that $M = \mathbb{H}^n$ with $\omega \in \Omega^{n-1}(\mathbb{H}^n)$ having compact support. Covering the support of ω by $[-R,R]^{n-1} \times [0,R]$,

$$\int_{\mathbb{H}^{n}} d\omega = \sum_{i=1}^{n} (-1)^{i-1} \int_{[-R,R]^{n-1} \times [0,R]} \frac{\partial \omega_{i}}{\partial x^{i}} dx^{1} \cdots dx^{n}$$

$$= (-1)^{n-1} \int_{[-R,R]^{n-1} \times [0,R]} \frac{\partial \omega_{n}}{\partial x^{n}} dx^{1} \cdots dx^{n}$$

$$= (-1)^{n-1} \int_{-R}^{R} \cdots \int_{-R}^{R} \left(\int_{0}^{R} \frac{\partial \omega_{n}}{\partial x^{n}} dx^{n} \right) dx^{1} \cdots dx^{n} \right)$$

$$= (-1)^{n} \int_{-R}^{R} \cdots \int_{-R}^{R} \omega_{n}(x^{1}, \dots, x^{n-1}, 0) dx^{1} \cdots dx^{n-1}$$

$$= (-1)^{n} \int_{\partial \mathbb{H}^{n} \cap \text{supp } \omega} \omega_{n} dx^{1} \wedge \cdots \wedge dx^{n-1}$$

Recall that the induced orientation on the boundary $\partial \mathbb{H}^n$ matches with the standard orientation on \mathbb{R}^{n-1} if and only if n is even. So

$$\int_{\partial \mathbb{H}^n} \omega = \sum_{i} \int_{\partial \mathbb{H}^n} \omega_i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n$$
$$= \int_{\partial \mathbb{H}^n} \omega_n dx^1 \wedge \dots \wedge dx^{n-1}$$

which matches our previous calculation since $(-1)^n = 1$ for n even.

Green's Theorem

If $D \subseteq \mathbb{R}^2$ is a domain with \overline{D} compact, then

$$\int_{\partial D} P \, dx + q \, dy = \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

and $\omega = P dx + Q dy \in \Omega^1(\mathbb{R}^2)$ so

$$d\omega = \frac{\partial P}{\partial y} dy \wedge dx + \frac{\partial Q}{\partial x} dx \wedge dy = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy$$

Therefore

$$\int_{\partial D} \omega \int_{D} d\omega = \int \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right); dx dy$$

with ∂D outward oriented.

February 24, 2025

Recall: Stoke's Theorem

For \boldsymbol{M}^n a smooth manifold and $\omega \in \Omega^{n-1}_C(M)$ with compact support,

$$\int_{M} d\omega = \int_{\partial M} \omega.$$

- 1. $\omega \in \omega_C^{n-1}(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} d\omega = 0$.
- 2. $\omega \in \omega_C^{n-1}(\mathbb{H}^n)$, $\int_{\mathbb{H}^n} d\omega = \int_{\partial \mathbb{H}^n} \omega$.

Special Case

If supp $\omega \subseteq (U, \phi)$ a chart, then supp $(d\omega) \subseteq U$.

IMAGE 1

$$\int_{M} d\omega = \int_{U} \varphi \omega = \int_{\varphi(U)} (\varphi^{-1})^{*} d\omega = \int_{\varphi(U)} d(\varphi^{-1*} \omega).$$

So

$$\int_{\mathbb{R}^n} d(\varphi^{-*}\omega) = 0$$

and

$$\int_{\mathbb{H}^n} d(\varphi^{-1*}\omega \int_{\partial \mathbb{H}^n} \varphi^{-1*}\omega = \int_{\partial \mathbb{H}^n \cap \omega(U)} \varphi^{-1*}\omega = \int_{\partial M \cap U} \omega = \int_{\partial M} \omega$$

Stoke's Theorem: General CAse

In general, $\omega \in \Omega_C^{n-1}(M)$.

Let $\{\psi_i\}_i$ be a partition of unity with respect to a countable cover of M by charts. Then, recalling that $d(\omega \wedge \eta) =$ $(d\omega) \wedge \eta + (-1)^k \omega \wedge d\eta$ with $k = \deg \omega$,

$$\int_{\partial M} \omega = \sum_{i} \int_{\partial M} \psi_{i} \omega = \sum_{i} \int_{M} d(\psi_{i} \omega) = \sum_{i} \int_{M} d\psi_{i} \wedge \omega + \psi_{i} d\omega = \int_{M} d\left(\sum_{i} \frac{1}{\psi_{i}}\right) \wedge \omega + \int_{M} \left(\sum_{i} \frac{1}{\psi_{i}}\right) d\omega = \int_{M} d\omega$$

Integration on Riemannian Manifolds

Recall

For (M^n, g) oriented, the volume form ω_g is an n-form such that $\omega_g(E_1, \dots, E_n) = 1$ for all positively oriented orthonormal frame $\{E_1,\ldots,E_n\}$. Inside a chart $(U_i,(x^1,\ldots,x^n))$ it has the formula

$$\omega_g = \sqrt{\det g} \cdot dx^1 \wedge \dots \wedge dx^n$$

where $\det g = \det(g_{ij})$.

Definition:

Let $f \in C_C^{\infty}(M)$. Define

$$\int_{M} f = \int_{m} f \omega_{g}$$

Remarks

- 1. $vol(M) = \int_{M} 1$
- 2. $\omega_g \in \Omega^n(M)$ is usually written as dV_g or $d \operatorname{vol}_g$.

Proposition

For (M,g) oriented and $f \in C_C^{\infty}(M)$, if $f \ge 0$ then $\int_M f \ge 0$. Equality holds if and only if $f \equiv 0$ on M.

Proof

$$\int_{M} f = \int_{m} f \, \omega_{g} = \sum_{i} \int_{U_{i}} \psi_{i} f \omega_{g} = \sum_{i} \int_{U_{i}} \psi_{i} f \sqrt{\det g_{ij}} \, dx^{1} \wedge \dots \wedge dx^{n}$$

where each term is greater than or equal to zero (assuming positive orientation on each U_i).

On Manifolds with Boundary

Take $\partial M \subseteq M^n$ with outward orientation.

Recall that for N an outward pointing vector field along ∂M , if M has an orientation n-form ω , then ∂M has an induced orientation given by

$$(N \sqcup \omega) \in \omega^{n-1}(\partial M).$$

If (M, g) is an oriented Riemannian manifold with boundary ∂M , ω_g a volume form and N a unit outward pointing vector field orthogonal to ∂M .

Let \tilde{g} be the induced Riemannian metric on ∂M , we observe that

$$\omega_{\tilde{g}} = N \, \lrcorner \, \omega_{g}$$

Let $\{E_1, ..., E_{n-1}\}$ be a (locally defined) orthonormal frame on ∂M . $\{E_1, ..., E_n\}$ being positively oriented on ∂M means that

$$(N \sqcup \omega_g)(E_1,\ldots,E_n) = 1$$

Lemma 16.30

For (M,g) oriented and $(\partial M, \tilde{g})$, if $X \in \mathfrak{X}(\partial M)$, then $(X \sqcup \omega_g)|_{\partial M} = g(X,N)\omega_{\tilde{g}}$.

Proof

Decompose $X = X^T + X^{\perp}$ where $X^{\perp} = g(X, N)N$ and $X^T = X - X^{\perp}$. Write

$$(X^{\perp} \sqcup \omega_g)|_{\partial M} = g(X, N)(N \sqcup \omega_g)|_{\partial M} = g(X, N)\omega_{\tilde{g}}$$

and

$$(X^T \sqcup \omega_g)|_{\partial M}(E_1, ..., E_{n-1}) = \omega_g(X^T, E_1, ..., E_{n-1}) = 0$$

Generalized Stokes on Manifold with Boundary

Take $X \in \mathfrak{X}(M)$, $(X \sqcup \omega_g) \in \Omega^{n-1}(M)$ and $d(X \sqcup \omega_g) \in \Omega^n(M)$. Write

$$\int_{M} d(X \, \lrcorner \, \omega_{g}) = \int_{\partial M} X \, \lrcorner \, \omega_{g} = \int_{\partial M} g(X, N) \omega_{\tilde{g}} = \int_{\partial M} g(X, N).$$

Definition: Divergence

Let $\operatorname{div} X \in \operatorname{C}^{\infty}(M)$ defined by $d(X \sqcup \omega_g) = \operatorname{div} X \cdot \omega_g$. Then

$$\int_{M} d(X \, \omega_{g}) = \int_{M} \operatorname{div} X \cdot \omega_{g} = \int_{M} \operatorname{div} X$$

Theorem: Divergence Theorem

$$\int_X \operatorname{div} X = \int_{\partial M} g(X, N)$$

Remark

Inside \mathbb{R}^n , $X = X^i \frac{\partial}{\partial X^i} \in \mathfrak{X}(\mathbb{R}^n)$, then $\operatorname{div} X = \frac{\partial}{\partial X^i} (X^i)$.

Problem 16-11

$$\operatorname{div}\left(X^{i}\frac{\partial}{\partial X^{i}}\right) = \frac{1}{\sqrt{\det g}}\frac{\partial}{\partial X^{i}}\left(X^{i}\sqrt{\det g}\right)$$

For (\mathbb{R}^n, g_E) , $g_{ij} = \delta_{ij}$ and $\sqrt{\det g} = 1$. Then $\operatorname{div}\left(X^i \frac{\partial}{\partial X^i}\right) = \frac{\partial}{\partial X^i}(X^i)$.

Problem 16-9

$$\omega = |x|^{-n} \sum_{i=1}^{n} (-1)^{i-1} x^{i} dx^{1} \wedge \cdots dx^{i} \wedge \cdots \wedge dx^{n} \in \Omega^{n-1} (\mathbb{R}^{n} - \{0\})$$

and

$$\omega|_{S^{n-1}} = \sum_{i=1}^{n} (-1)^{i-1} x^{i} dx^{1} \wedge \cdots \wedge \hat{dx^{i}} \wedge \cdots \wedge dx^{n}$$

For example

$$n = 2 \quad \omega|_{S^1} = x \, dy - y \, dx$$

$$n = 3 \quad \omega|_{S^2} = x \, dy \wedge dz \underbrace{-y \, dx \wedge dz}_{+y \, dz \wedge dx} + z \, dx \wedge dy$$

Claim: $\omega|_{S^{n-1}}$ is the standard volume form on S^{n-1} ($S^{n-1} \hookrightarrow \mathbb{R}^n$ or $S^{n-1} = \partial B_1^n$). We need to check that $\omega_{S^{n-1}} = (N \sqcup \omega_E)$ We have that N is (x^1, \dots, x^n) at the point (x^1, \dots, x^n) (i.e. $N = x^i \frac{\partial}{\partial x^i}$ on S^{n-1}). Write

$$(N \sqcup \omega_E) = \left(x^i \frac{\partial}{\partial x^i}\right) \sqcup (dx^1 \wedge \dots \wedge dx^n) = x^i \left(\frac{\partial}{\partial x^i} \sqcup (dx^1 \wedge \dots \wedge dx^n)\right)$$

Compute

$$\left(\frac{\partial}{\partial x^{1}} \rfloor (dx^{1} \wedge \dots \wedge dx^{n})(E_{1}, \dots, E_{n-1}) = dx^{1} \wedge \dots \wedge dx^{n} \left(\frac{\partial}{\partial x^{1}}, E_{1}, \dots, E_{n-1}\right)$$

$$= \det \begin{pmatrix} dx^{1} \left(\frac{\partial}{\partial x^{1}}\right) & \overset{=0}{dx^{2}} \left(\frac{\partial}{\partial x^{1}}\right) & \cdots & \overset{=0}{dx^{n}} \left(\frac{\partial}{\partial x^{1}}\right) \\ dx^{1} (E_{1}) & \cdots dx^{2} (E_{1}) & \cdots & dx^{n} (E_{1}) \\ \vdots & & & \vdots \\ dx^{1} (E_{n-1}) & \cdots dx^{2} (E_{n-1}) & \cdots & dx^{n} (E_{n-1}) \end{pmatrix}$$

$$= dx^{2} \wedge \cdots \wedge dx^{n} (E_{1}, \dots, E_{n-1})(-1)^{i-1}$$

In general,

Conclusion

 $\omega|_{S^{n-1}}$ is the volume form on S^{n-1} , $0 < \int_{S^{n-1}} \omega|_{S^{n-1}}$.

- 1. $\omega|_{S^{n-1}} \in \Omega^{n-1}(S^{n-1})$ is not exact (if it is, $\omega = d\eta$ and $\int_{S^{n-1}} \omega = \int_{S^{n-1}} d\eta = 0$)
- 2. $\omega|_{S^{n-1}}$ is closed (By direct calculation on $d\omega$ on $\mathbb{R}^n \{0\}$).

Proposition 16.33

Let (M,g) be an oriented Riemannian manifold and $X \in \mathfrak{X}(M)$ a complete vector field. Let θ be the flow of X. Then $\operatorname{div} X \equiv 0$ if and only if θ_t is volume preserving for all time.

Proof

Let $D \subseteq M$ be any compact domain.

$$\operatorname{vol}(\theta_t(D)) = \int_{\theta_t(D)} \omega_g = \int_D \theta_t^* \omega_g$$

Recall Cartan's Formula: $\mathcal{L}_X = i_X \circ d + d \circ i_X$. So

$$\mathcal{L}_X(\omega_g) = X \, \lrcorner \, (\overrightarrow{d\omega_g}) + d(X \, \lrcorner \, \omega_g) = \operatorname{div} X \cdot \omega g$$

Therefore

$$\begin{aligned} \frac{d}{dt}\Big|_{t=t_0} \operatorname{vol}(\theta_t(D)) &= \int_D \frac{d}{dt}\Big|_{t=t_0} \theta_t^* \omega_g \\ &= \int_D \theta_t^* (\mathcal{L}_X \omega_g) \\ &= \int_D \theta_{t_0}^* (\operatorname{div} X \cdot \omega_g) \\ &= \int_{\theta_{t_0}(D)} \operatorname{div} X \cdot \omega_g \end{aligned}$$

If $\operatorname{div} X \equiv 0$ on M, then the right hand side is zero. Hence $\operatorname{vol}(\theta_t(D))$ is a constant function (i.e. θ_t is volume preserving everywhere).

If instead θ_t is assumed to be volume preserving, then the left hand side is zero for all times t_0 and any domain D. Then, without loss of generality for $t_0 = 0$, $\int_D \operatorname{div} X = 0$ (i.e. $\operatorname{div} X \equiv 0$).

Remark

For
$$f \in C^{\infty}(M)$$
, grad $f \in \mathfrak{X}(M)$, $\Delta f := \operatorname{div}(\operatorname{grad} f) \in C^{\infty}(M)$.
In (\mathbb{R}^n, g_E) , grad $f = \frac{\partial f}{\partial x^i} \cdot \frac{\partial}{\partial x^i}$ and $\Delta f := \operatorname{div}(\operatorname{grad} f) = \sum_{i=1}^n \frac{\partial^2 f}{\partial (x^i)^2}$.

Recall: Poincaré Lemma

Recall that if $U \subseteq \mathbb{R}^n$ is star-shaped, then $\omega \in \Omega^1(U)$ is closed if and only if ω is exact. For (\longleftarrow) , this is always true; for (\Longrightarrow) we need star-shaped.

Definition: Path-homotopic

 $\gamma_0, \gamma_1: I \to M$ continuous such that $\gamma_0(a) = \gamma_1(a) = p$ and $\gamma_0(b) = \gamma_1(b) = q$.

IMAGE 2

A path-homotopy between γ_0 and γ_1 is a continuous map $H: I \times [0,1] \to M$ such that

$$H(\cdot,0) = \gamma_0$$
 $H(a,\cdot) = p$
 $H(\cdot,1) = \gamma_1$ $H(b,\cdot) = q$

Proposition

Let $\gamma_0, \gamma_1 : [a, b] \to M$ be smooth path-homotopic, and let $\omega \in \Omega^1(M)$ be closed. Then $\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$.

Proof

Assume a = 0 and b = 1, then noting that faces 2 and 4 (see above) collapse to points with integral zero,

$$0 = \int_{H(I)}^{=0} d\omega = \int_{I^{2}} H^{*}(d\omega)$$

$$= \int_{I^{2}} d(H^{*}\omega)$$

$$= \int_{\partial I^{2}} H^{*}\omega$$

$$= \int_{i=1}^{4} \int_{F^{i}} H^{*}\omega$$

$$= \sum_{i=1}^{4} \int_{H(F_{i})} \omega$$

$$= \int_{H(F_{1})} \omega + \int_{H(F_{3})} \omega$$

$$= \int_{\gamma_{0}} \omega - \int_{\gamma_{1}} \omega$$

Corollary

For M with $\pi_1(M) = e$ (i.e. every closed curve is path-homotopic to a point), then every closed 1-form is exact.

February 26, 2025

Corollary

If $\omega \in \Omega^1(M)$ is closed with γ_0 and γ_1 path-homotopic to each other, then $\int_{\gamma_0} \omega = \int_{\gamma_1} \omega . \langle$

Corollary

If $\pi_1(M) = e$ (i.e. every closed curve in M is path-homotopic to a point), then every closed 1-form on M is exact.

Definition: Manifold with Corners

Let $\mathbb{R}_+ = (0, +\infty)$, $\overline{\mathbb{R}}_+^n = ([0, +\infty))^n = \{(x^1, ..., x^n) : x^1 \ge 0, ..., x^n \ge 0\}$, and $\partial \overline{\mathbb{R}}_+^n = \bigcup_{i=1}^n H_i$ where $H_i = \{(x^1, ..., x^n) \in \overline{\mathbb{R}}_+^n : x^i = 0\}$.

In \mathbb{R}^n_+ , a corner point is $(x^1, ..., x^n) \in \mathbb{R}^n_+$ such that at least two components are zero.

IMAGE 1

Definition: Corner Chart

Let M be a Hausdorff, second countable topological space. A corner chart (U, φ) where $U \subseteq M$ open and $\varphi : U \to \mathbb{R}^n_+$ homeomorphic to $\varphi(U)$.

A point p on M is called a corner point if it has a chart (U, φ) centered at p such that $\varphi(p)$ is a corner point in $\overline{\mathbb{R}}_+^n$.

Proposition: Invariance of Corner Points

IMAGE 2

If the above happens, $\psi(p) \in \mathbb{H}^n$ with $\psi(W)$ an open set in \mathbb{H}^n , and $\varphi(p) \in \overline{\mathbb{R}}^n_+$ as a corner point. Let S be an open subset of a (n-1)-dimensional plane through $\psi(p)$ such that $\psi(W) \supseteq S$. Then $F = \varphi \circ \psi^{-1}$ is a diffeomorphism and, at $\psi(p)$, $d(F|_S): T_{\psi(p)}S \to T_{\phi(p)}(F(S)) \subseteq \mathbb{R}^n$ is injective. We have also that $\dim(\operatorname{im} dF|_S) = \dim T_{\psi(p)}S = n-1$. Therefore we may pick a vector $v \in \mathbb{R}^n$ such that $v = (v^1, \dots, v^n)$ with $v^{n-1} \cdot v^n \neq 0$ and $v \in \operatorname{im} dF|_S$. Without loss of genreality, we may assume $v^n < 0$. There is $w \in T_{\psi(p)}S$ such that dF(w) = v. Let $\gamma : (-\varepsilon, \varepsilon) \to S$ be a curve with $\gamma(0) = \psi(p)$ and $\gamma'(0) = w$. Then $\beta = F \circ \gamma$ is a smooth curve with $\beta(0) = \phi(p)$ ($\phi(p) = (x^1, \dots, x^{n-1}, 0, 0)$) and $\beta'(0) = v = (v^1, \dots, v^n)$ with $v^n < 0$. Then by calculus there exists $\delta \in (0, \varepsilon)$ such that $\beta(\delta) \notin \overline{\mathbb{R}}^n_+$. This is a contradiction.

Integration on Manifolds with Corners

Observe that $\partial \overline{\mathbb{R}}^n_+ = \bigcup_{i=1}^n H_i$ where $H_i = \{(x^1, \dots, x^n) \in \overline{\mathbb{R}}^n_+ : x^i = 0\} \cong \overline{\mathbb{R}}^{n-1}_+$.

Suppose $\omega \in \Omega^{n-1}_C(M)$ for M a manifold with corners, and consider the special case where $\operatorname{supp} \omega \subseteq (U, \varphi)$ is a corner chart.

$$\int_{\partial M} \omega := \sum_{i=1}^{n} (\phi^{-1})^* \omega$$

The general case may be done by partitions of unity.

In the orientation case, H_i has induced outward orientation (i.e. $-\frac{\partial}{\partial x^i} = N$).

$$\left(-\frac{\partial}{\partial x^i}\right) \, \lrcorner \, (dx^1 \wedge \dots \wedge dx^n)$$

Where $H_i = \{(x^1, \dots, x^n \in \overline{\mathbb{R}}^n_+ : x^i = 0\} \cong \overline{\mathbb{R}}^{n-1}_+ \subseteq \mathbb{R}^{n-1}$ carries the normal orientation by $dx^1 \wedge \cdots \widehat{dx^i} \wedge \cdots \wedge dx^n$.

$$(dx^{1} \wedge \cdots \wedge \widehat{dx^{i}} \wedge \cdots \wedge dx^{n}) \left(\frac{\partial}{\partial x^{1}}, \cdots, \widehat{\frac{\partial}{\partial x^{i}}}, \cdots, \frac{\partial}{\partial x^{n}}\right) = 1$$

and

$$\left(\left(-\frac{\partial}{\partial x^{i}}\right) \rfloor (dx^{1} \wedge \cdots \wedge dx^{n})\right) \left(\frac{\partial}{\partial x^{1}}, \cdots, \frac{\widehat{\partial}}{\partial x^{i}}, \cdots, \frac{\partial}{\partial x^{n}}\right) = (-1)dx^{1} \wedge \cdots \wedge dx^{n} \left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{1}}, \cdots, \frac{\widehat{\partial}}{\partial x^{i}}, \cdots, \frac{\partial}{\partial x^{n}}\right) = (-1) \cdot (-1)^{i-1} = (-1)^{i}$$

Standard orientation on H_i and induced boundary orientation on H_i agree if and only if i is even. Then for

$$\int_{M} d\omega = \int_{\partial M} \omega$$

with induced boundary orienation, it suffices to consider a corner chart. $\omega \in \Omega_C^{n-1}(M)$ with $\operatorname{supp} \omega \subseteq (U, \varphi)$ and $\varphi: U \to \overline{\mathbb{R}}^n_+$.

It suffices to consider $M = \overline{\mathbb{R}}_+^n$ and $\omega \in \Omega_C^{n-1}(\overline{\mathbb{R}}_+^n)$.

$$\omega = \omega_i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n$$

$$d\omega = \frac{\partial \omega_i}{\partial x^i} dx^i \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n = \sum_i (-1)^{i-1} \frac{\partial \omega_i}{\partial x^i} dx^1 \wedge \dots \wedge dx^n$$

Pick R > 0 large such that supp $\omega \subseteq [0, R]^n$, then

$$\int_{\mathbb{R}^{n+}} d\omega = \sum_{i=1}^{n} (-1)^{i-1} \int_{[0,R]^n} \frac{\partial \omega_i}{\partial x^i} dx^1 \wedge \dots \wedge dx^n$$

$$= \sum_{i=1}^{n} (-1)^{i-1} \int_0^R \dots \left(\int_0^R \frac{\partial \omega_i}{\partial x^i} dx^i \right) dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n$$

$$= \sum_{i=1}^{n} (-1)^i \int_0^R \dots \int_0^R \omega_i (x^1, \dots, 0, \dots, x^n) dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n$$

$$= \sum_{i=1}^{n} (-1)^i \int_{H_i} \omega_i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n \quad \text{(with standard orientation)}$$

$$= \sum_{i=1}^{n} \int_{H_i} \omega_i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n = \int_{\partial \mathbb{R}^n_+} \omega$$

Example

Let $M=I^2$ and $\omega\in\Omega^1(M)$ closed (i.e. $\int_{\partial_M}\omega=\int_Md\omega=0$)

IMAGE 3
$$\int_{\partial M} \omega = \sum_{i=1}^{4} \int_{F_i} \omega$$

$$N \sqcup (dx \wedge dy) = (dx \wedge dy)(N, _)$$

Definition: Homotopy

We say that $F,G:M\to N$ are (smoothly) homotopic if there is a smooth homotopy $H:M\times I\to N$ such that

$$H(\cdot,0) = F(\cdot)$$
 and $H(\cdot,1) = G(\cdot)$.

Write $F \simeq G$.

Example: Problem 16-5

Let M^n , N^n be oriented, compact, connected without boundary. Take $F, G: M \to N$ local diffeomorphisms and suppose $F \simeq G$. Then F is orientation preserving if and only if G is orientation preserving.

Proof

Let ω_N be the orientation form on N^n with $d\omega_N = 0$. The homotopy $H: M \times I \to N$

$$0 = \int_{M \times I} H^*(d\omega_N) = \int_{M \times I} d(H^*\omega) = \int_{\partial(M \times I)} H^*\omega = \int_{M \times \{0\}} F^*\omega + \int_{M \times \{1\}} G^*\omega$$
IMAGE 4

Let $\omega_{M\times I}$ be the orientation form on $M\times I$ ($\omega_{M\times I}=\omega_M\wedge dt$).

On $M \times \{0\}$ orientable, $-\frac{\partial}{\partial t} \, \lrcorner \, \omega_{M \times I}$ and on $M \times \{1\} \, \frac{\partial}{\partial t} \, \lrcorner \, \omega_{M \times I}$. Therefore $\int_M F^* \omega = \int_M G^* \omega$.

Example: Problem 16-6

 S^n admits a nonvanishing vector field if and only if n is odd.

Proof

 (\longleftarrow) suppose n odd. In the n=1 case

IMAGE 5

Write $V(x^1, x^2) = (-x^2, x^1)$. In general, when $S^n \subseteq \mathbb{R}^{n+1}$ for n odd

$$\vec{z} = (x^1, y^1, x^2, y^2, \dots, x^{2k}, y^{2k})$$

gives

$$V(\vec{z}) = -y^1, x^1, -y^2, x^2, \dots, -y^{2k}, x^{2k}$$

with $V \in \mathfrak{X}(S^n)$ nonvanishing.

(\Longrightarrow) Suppose $V \in \mathfrak{X}(S^n)$ nonvanishing. Then for any ν , rewrite as $\frac{\nu}{||\nu||}$ such that without loss of generality ||1|| = 1.

IMAGE 6

Next, we use V(x) to construct a homotopy between id_{S^n} and (the antipodal map) $-\mathrm{id}_{S^n}$. Construct a homotopy $H: S^n \times I \to S^n$ by $H(x,t) = (\cos t)x + (\sin t)V(x)$ with ||H(x,t)|| = 1, H(x,0) = x, $H(x,\pi) = -x$.

Hence H is a smooth homotpy between id_{S^n} and $-\mathrm{id}_{S^n}$. Hence the antipodal map on S^n is orientation preserving and n is odd.

March 3, 2025

Chapter 7: De Rahm Cohomology

Let M^n be smooth and write $Z^k(M) = \{\omega \in \Omega^k(M) : d\omega = 0\}$, the set of closed k-forms, with $B^k(M) = \{\omega \in \Omega^k(M) : \omega = d\eta, \ \eta \in \Omega^{k-1}(M)\}$, the set of exact k-forms. Note that $B^k(M) \subseteq Z^k(M)$, since $d(d\eta) = 0$. We may also write

$$\Omega^*(M) = \bigoplus_{k=0}^n \Omega^k(M)$$
 and

$$0 \xrightarrow{d} \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n}(M) \xrightarrow{d} 0$$

with $d^2 = 0$. Finally, we have the k-th de Rahm

cohomology group $H_{dR}^k(M) = Z^k(M)/B^k(M)$ as a \mathbb{R} -vector space.

Fact: If M^n is closed, then $H^k_{dR}(M)$ is finite dimensional for all k.

Example

If M^n is connected and has $\pi_1(M) = \{e\}$ (i.e. every smooth loop is contractible to a point), then $\omega \in \Omega^1(M)$ is closed if and only if ω is exact. That is to say that $Z^1(M) = B^1(M)$ and $H^1_{\mathsf{dR}}(M) = 0$.

Example

If $M=S^1\subseteq\mathbb{R}^2$ and $\omega=\frac{x\,dy-y\,dx}{x^2+y^2}\in\Omega^1(\mathbb{R}^2-\{0\})$, then ω is closed but not exact $(\int_{S^1}\omega\neq 0)$.

Hence, ω gives a non-trivial element in $H^1(S^1)$ (i.e. $H^1(S^1) \neq \{0\}$.

Similarly, on $S^{n-1} \subseteq \mathbb{R}^n$ with $\omega = |x|^{-n} \sum_{i=1}^n (-1)^{i-1} x^i dx^i \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^n \in \Omega^{n-1}(\mathbb{R}^n - \{0\})$, we have that $d\omega = 0$, ω is not exact $(\int_{S^n} \omega \neq 0)$ and that $H^{n-1}(S^{n-1}) \neq \{0\}$.

Notation

Given $\omega \in Z^k(M)$, we write the de Rahm cohomology class $[\omega]$. The corresponding element in $H^k_{dR}(M)$, $[\omega_1] = [\omega_2]$ in $H^k_{dR}(M)$ means ω_1 and ω_2 differ by an exact form (i.e. $\omega_2 = \omega_1 + d\eta$ for some $\eta \in \Omega^{k-1}(M)$.

Proposition

If $F: M \to N$ is a diffeomorphism, it induces $F^*: \Omega^*(N) \to \Omega^*(M)$ which maps $Z^*(N) \to Z^*(M)$ and $B^*(N) \to B^*(M)$.

- Proof
 - For $\omega \in Z^*(N)$ with $d\omega = 0$, $d(F^*\omega) = F^*(d\omega) = 0$. So $F^*\omega$ is closed.
 - For $\omega \in B^*(N)$ with $\omega = d\eta$, $F^*\omega = F^*(d\eta) = d(F^*\eta)$. So $F^*\omega$ is exact.

Therefore, $F^*: H^k_{dR}(N) \to H^k_{dR}(M)$.

For $F \circ G = \operatorname{id}$ and $G \circ F = \operatorname{id}$, the descend to $F^* \circ G^* = \operatorname{id}$ and $G^* \circ F^* = \operatorname{id}$ on H^k_{dR} . Hence $F^* : H^*_{dR}(N) \to H^*_{dR}(M)$ is an isomorphism.

Proposition 17.5

Let $M^n = \coprod_j M_j$ be a disjoint union of at most countably many connected manifolds, (the inclusion map) $\iota_j : M_j \to M$ induces $\iota_j^* : \Omega^k(M) \to \Omega^k(M_j)$ by $\omega \mapsto \omega|_{M_j}$. Define $\Phi : \Omega^k(M) \to \prod_j \Omega^k(M_j)$ by $\omega \mapsto (\iota_1^*\omega, \ldots, \iota_j^*\omega, \ldots) = (\omega|_{M_1}, \ldots, \omega|_{M_j}, \ldots)$. Φ induces an isomorphism $\Phi : H^k_{\mathsf{dR}}(M) \to \prod_j H^k_{\mathsf{dR}}(M_j)$.

- Proof
 - Φ is injective. If $\Phi[\omega] = 0$, then $\left[\omega|_{M_j}\right] = 0$. So ω is exact on M_j for each j, exact on M and $\left[\omega\right] = 0$.

- Φ is surjective. Given any $([\omega_1], ..., [\omega_j], ...)$, define $\omega \in \Omega^k(M)$ by $\omega|_{M_i} = \omega_j$. Then $\Phi[\omega] = ([\omega_1], ..., [\omega_j], ...)$.

Proposition 17.6

If M^n is connected, then $H^0_{dR}(M) \cong \mathbb{R}$.

Proof

$$H^{0}_{\mathsf{dR}}(M) = Z^{0}(M)/B^{0}(M) \text{ where } Z^{0}(M) = \{ f \in C^{\infty}(M) : df = 0 \} = \{ f \in c^{\infty}(M) : f \equiv c \} \text{ and } B^{0}(M) = \{ 0 \}.$$

$$0 \xrightarrow{d} \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M)$$
Hence $H^{0}_{\mathsf{dR}}(M) \cong \mathbb{R}$.

Homotopy Invariance

Given $F,G:M\to N$, we say F and G are smoothly homotopic to eachother if there exists a smooth map $H:M\times[0,1]\to N$ such that $H(\cdot,0)=F(\cdot)$ and $H(\cdot,1)=G(\cdot)$.

They induce F^* , G^* : $H^*_{dR}(N) \to H^*_{dR}(M)$.

Proposition 17.10

For $F, G: M \to N$, if $F \simeq G$, then $F^* = G^*: H^*_{dR}(N) \to H^*_{dR}(M)$.

Goal

 $[F^*\omega] = F^*[\omega] = G^*[\omega] = [G^*\omega]$ with ω closed in N. That is, $F^*\omega$ and $G^*\omega$ differ by an exact form, $G^*\omega - F^*\omega = d\eta$ with $\eta \in \Omega^{k-1}(M)$.

This gives a map $h: \mathbb{Z}^k(N) \to \Omega^{k-1}(M)$ by $\omega \mapsto \eta$.

In fact, we will construct a map $h: \Omega^k(N) \to \Omega^{k-1}(M)$ such that $G^*\omega - F^*\omega = d(h(\omega)) + h(d\omega)$. Then for any closed k-form ω , $G^*\omega - F^*\omega = d(h(\omega)) + 0$, $[G^*\omega] = [F^*\omega]$ in $H^k_{\mathsf{dR}}(M)$ and $G^* = F^*$.

Lemma 17.9

Given $\iota_0, \iota_1: M \hookrightarrow M \times [0,1]$ (where clearly $\iota_0 \simeq \iota_1$), then there exists $h: \Omega^k(M \times [0,1]) \to \Omega^{k-1}(M)$ such that $\iota_1^* \omega - \iota_0^* \omega = d(h(\omega)) + h(d\omega)$ for all $\omega \in \Omega^k(M \times [0,1])$. Assuming that 17.9 holds, 17.10 follows.

IMAGE 1

 $F = h \circ \iota_0$, $G = H \circ \iota_1$. At the H^*_{dR} level,

$$F^* = (h \circ \iota_0)^* = \iota_0^* \circ h^* = \iota_1^* \circ h^* = (h \circ \iota_1)^* = G^*.$$

Proof of 17.9

Consider $V = \frac{\partial}{\partial t} \in \mathfrak{X}(M \times [0,1])$ with flow $\theta_t(x,s) = (x,s+t)$, so $\theta_t \circ \iota_0 = \iota_t$ and $\iota_0^* \circ \theta_t^* = \iota_t^*$ at the Ω^* -level. Compute

$$\begin{split} \iota_1^* \omega - \iota_0^* \omega &= \int_0^1 \frac{d}{dt} (\iota_t^* \omega) \, dt \\ &= \int_0^1 \frac{d}{dt} \left(i_0^* \circ \theta_t^* (\omega) \right) \, dt \\ &= \int_0^1 \iota_0^* \left(\frac{d}{dt} \theta_t^* (\omega) \right) \, dt \\ &= \int_0^1 \iota_0^* \left(\theta_t^* (\mathcal{L}_V \omega) \right) \, dt \\ &= \int_0^1 \iota_t^* (\mathcal{L}_V \omega) \, dt + \int_0^1 \iota_t^* (V \, \Box \, d\omega) \, dt \\ &= d \left(\int_0^1 \iota_t^* (V \, \Box \, \omega) \, dt \right) + \int_0^1 \iota_t^* (V \, \Box \, d\omega) \, dt \end{split}$$

Then we may define $h: \Omega^k(M \times [0,1]) \to \Omega^{k-1}(M)$ by $h(\omega) = \int_0^1 \iota_t^*(V \sqcup \omega) \ dt$. Then

$$\iota_1^* \omega - \iota_0^* \omega = d(h(\omega)) + h(d\omega).$$

More precisely, for $q \in M$,

$$h(\omega)_{q} = \int_{0}^{1} \underbrace{\iota_{t}^{*} \underbrace{(V \cup \omega_{(q,t)})}_{\in \Lambda^{k-1} T_{q} M}} dt$$

Corollary

If M and N are homotopic to each other, then $H^k_{dR}(M) \cong H^k_{dR}(N)$. That is, there exist maps $F: M \to N$, $G: N \to M$ such that $G \circ F \simeq \mathrm{id}_M$ and $F \circ G \simeq \mathrm{id}_N$. Therefore,

$$F^* \circ G^* = (G \circ F)^* = (\mathrm{id}_M)^* = \mathrm{id}_{H^*_{\mathsf{dR}}(M)}$$

 $G^* \circ F^* = (F \circ G)^* = (\mathrm{id}_N)^* = \mathrm{id}_{H^*_{\mathsf{dR}}(N)}$

and both F^* and G^* are isomorphisms.

Example

 \mathbb{R}^n is homotopic to $\{0\}$

$$F: \mathbb{R}^n \to 0$$

$$x \mapsto 0$$

$$G: 0 \to \mathbb{R}^n$$

$$0 \mapsto 0$$

so $F \circ G : 0 \to 0$ (id₀), $G \circ F : \mathbb{R}^n \to \mathbb{R}^n$ by $x \mapsto 0$ ($\simeq \mathrm{id}_{\mathbb{R}^n}$). Consider $H : \mathbb{R}^n \times [0,1] \to \mathbb{R}^n$ by $(x,t) \mapsto tx$ with $H(\cdot,0) = 0$ and $H(\cdot,1) = \mathrm{id}_{\mathbb{R}^n}$. More generally, if $U \subseteq \mathbb{R}^n$ is star shaped then U is homotopic to $\{p\}$.

Definition: Contractible

We say that M is contractible if M is homotopic to a point

$$H_{\mathsf{dR}}^{k}(p) = \begin{cases} 0 & k \neq 0 \\ \mathbb{R} & k = 0 \end{cases}.$$

Corollary

M is contractible (e.g. $M = \mathbb{R}^n$ or $M = \mathbb{H}^n$), then

$$H_{\mathsf{dR}}^k(M) = \begin{cases} 0 & k \neq 0 \\ \mathbb{R} & k = 0 \end{cases}.$$

In particular, on such an M, $\omega \in \Omega^k(M)$ $(k \ge 1)$ is closed if and only if ω is exact. In fact, $H^k_{dB}(M) = 0$ $(k \ge 1)$ means $B^k(M) = Z^k(M)$.

Mayer-Vietoris Sequence

Setup

Take M covered by two open sets U, V.

Consider a short exact sequence

$$0 \longrightarrow \Omega^{k}(M) \xrightarrow{k^{*} \oplus l^{*}} \Omega^{k}(U) \oplus \Omega^{k}(V) \xrightarrow{i^{*} - j^{*}} \Omega^{k}(U \cap V) \longrightarrow 0$$

$$\omega \longmapsto (\omega|_{U}, \omega|_{V}) \longrightarrow 0$$

$$(\omega,\eta) \longmapsto (\omega|_{U\cap V} - \eta|_{U\cap V})$$
To show $0 \mapsto \Omega^k(M) \mapsto \Omega^k(U) \oplus \Omega^k(V)$

is exact, we need to show that $k^* \oplus l^*$ is injective.

Suppose $(\omega|_U, \omega|_V) = (0,0)$. Since $U \cap V = M$, $\omega \equiv 0$ on M. Therefore $k^* \oplus l^*$ is injective.

To show $\Omega^k(M) \mapsto \Omega^k(U) \oplus \Omega^k(V) \mapsto \Omega^K(U \cap V)$, $\ker(i^* - j^*) \supseteq \operatorname{im}(k^* \oplus l^*)$. In fact, if $(\omega|_U, \omega|_V) \in \operatorname{im}(k^* \oplus l^*)$, then $\omega|_{U \cap V} = \omega|_{U \cap V}$ and $(i^* - j^*)(\omega|_U, \omega|_V) = 0$.

For $\operatorname{im}(k^* \oplus l^*) \supseteq \ker(i^* - j^*)$, let $(\omega, \eta) \in \ker(i^* - j^*)$. Then $\omega|_{U \cap V} - \eta|_{U \cap V} = 0$. Define $\sigma \in \Omega^k(M)$ by

$$\sigma = \begin{cases} \omega & \text{on } U \\ \eta & \text{on } V \end{cases}$$

Then $(\omega,\eta)=(k^*\oplus l^*)(\sigma)$. Finally, to show $\Omega^k(U)\oplus\Omega^k(V)\to\Omega^k(U\cap V)\to 0$, we need to show that i^*-j^* is surjective.

Let $\omega \in \Omega^k(U \cap V)$, and let $\{\varphi_U, \varphi_V\}$ be a partiation of unity with respect to $\{U, V\}$.

IMAGE 2

Define $\eta_U = \varphi_U \omega \in \Omega^k(U)$ on U and $\eta_V = -\varphi_V \omega \in \Omega^k(V)$ on V. Then on $U \cap V$,

$$\eta_U - \eta_V = (\varphi_U + \varphi_V)\omega = \omega$$

That is, $(i^* - j^*)(\eta_u, \eta_v) = \omega$.

March 5, 2025

Recall

 $0 \longrightarrow \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{n}(M) \xrightarrow{d} 0$ With $d \circ d = 0$, $Z^k(M)$ the set of closed k-forms, $B^k(M)$ the set of exact k-forms, and the de Rahm cohomology $H^k_{dR}(M) = Z^k(M)/B^k(M)$.

- 1. M is connected, then $H^0_{dR}(M) = \mathbb{R}$.
- 2. If M is contractible, then $H^k_{dR}(M) = H^k_{dR}(p)$ for p a point in M.

Recall also the Mayer-Vietoris setup (see above).

Mayer-Vietoris

The short exact sequence

$$0 \, \longrightarrow \, \Omega^k(M) \, \xrightarrow{k^* \oplus l^*} \, \Omega^k(U) \oplus \Omega^k(V) \, \xrightarrow{i^*-j^*} \, \Omega^k(U \cap V) \, \longrightarrow \, 0$$

induces a long exact sequence

$$\cdots \xrightarrow{\delta} H^k_{\mathsf{dR}}(M) \xrightarrow{} H^k_{\mathsf{dR}}(U) \oplus H^k_{\mathsf{dR}}(V) \xrightarrow{} H^k_{\mathsf{dR}}(U \cap V)$$

$$\stackrel{\delta}{\longrightarrow} H^{k+1}_{\mathsf{dR}}(M) \, \longrightarrow \, H^{k+1}_{\mathsf{dR}}(U) \oplus H^{k+1}_{\mathsf{dR}}(V) \, \longrightarrow \, H^{k+1}_{\mathsf{dR}}(U \cap V)$$

 $\longrightarrow \cdots$

Definition: Chain COmplex

A chain complex A^i is a \mathbb{R} -vector group

$$0 \longrightarrow A^n \stackrel{\partial}{\longrightarrow} A^{n-1} \stackrel{\partial}{\longrightarrow} \cdots \stackrel{\partial}{\longrightarrow} A^1 \stackrel{\partial}{\longrightarrow} A^0 \stackrel{\partial}{\longrightarrow} 0$$
 with $\partial \circ \partial = 0$.

A cochain complex is

$$0 \longrightarrow A^0 \xrightarrow{d} A^1 \xrightarrow{d} \cdots \xrightarrow{d} A^{n-1} \xrightarrow{d} A^n \xrightarrow{d} 0$$
 with $d \circ d = 0$ and the k -th cohomology is ker / im

We write the cochain complex as A^* . A short exact sequence of cochain complexes

$$0 \longrightarrow \Omega^*(M) \longrightarrow \Omega^*(U) \oplus \Omega^*(V) \longrightarrow \Omega^*(U \cap V) \longrightarrow 0$$

$$0 \longrightarrow A^* \longrightarrow B^* \longrightarrow C^* \longrightarrow 0$$

Theorem

A short exact sequence of cochain complexes

$$0 \longrightarrow A^* \longrightarrow B^* \longrightarrow C^* \longrightarrow 0$$
 induces a long exact sequence of cohomoology groups

$$\cdots \longrightarrow H^k(A) \longrightarrow H^k(B) \longrightarrow H^k(C)$$

$$\longrightarrow H^{k+1}(A) \longrightarrow H^{k+1}(B) \longrightarrow H^{k+1}(C)$$

$$\longrightarrow \cdots$$

Proof

We want
$$\delta: H^k(C) \to H^{k+1}(A)$$

Given $a \in C^k$ with dc = 0, we need to come up with some $a \in A^{k+1}$ with da = 0.

$$\begin{array}{ccc}
b &\longmapsto c &\longmapsto 0 \\
\downarrow & & \downarrow_d \\
a' &\longmapsto b' &\longmapsto 0
\end{array}$$

So define $\delta(c) = a'$.

Cochain Complexes

The full picture is given by

Then we have for $\omega = \eta_U - \eta_V$ on $U \cap V$.

$$(\eta_{u},\eta_{v}) \longmapsto \omega \in Z^{k}(U \cap V)$$

$$\downarrow$$

$$\sigma \longmapsto (d\eta_{U},d\eta_{V})$$

Since $\sigma|_{U} = d\eta_{U}$ and $\sigma|_{V} = d\eta_{V}$.

Example

Let $M=S^n$. Then $U=S^n-\{\text{north pole}\}$, $V=S^n-\{\text{south pole}\}$ and U,V are diffeomorphic to \mathbb{R}^n . It follows that $U\cap V=S^n-\{\text{two poles}\}\cong\mathbb{R}^n-\{0\}\simeq S^{n-1}$ and

$$H_{\mathsf{dR}}^{k}(U) = H_{\mathsf{dR}}^{k}(V) = \begin{cases} 0 & k \neq 0 \\ \mathbb{R} & k = 0 \end{cases}$$

Then for $k \ge 1$,

$$\cdots \longrightarrow H^{k}_{\mathsf{dR}}(S^{n}) \longrightarrow H^{k}_{\mathsf{dR}}(U) \oplus H^{k}_{\mathsf{dR}}(V) \longrightarrow H^{k}_{\mathsf{dR}}(U \cap V)$$

$$\longrightarrow H^{k+1}_{\mathsf{dR}}(S^n) \longrightarrow H^{k+1}_{\mathsf{dR}} \oplus H^{k+1}_{\mathsf{dR}}(V) \longrightarrow \cdots$$

and we have a short exact sequence $0 \rightarrow A \rightarrow$

 $B \to 0$ such that $A \cong B$. It follows that $H^{k+1}_{\mathsf{dR}}(S^n) \cong H^k_{\mathsf{dR}}(U \cap V) \cong H^k_{\mathsf{dR}}(S^{n-1})$.

IMAGE 1

$$0 \, \longrightarrow \, H^0_{\mathsf{dR}}(S^1) \, \longrightarrow \, H^0_{\mathsf{dR}}(U) \oplus H^0_{\mathsf{dR}}(V) \, \longrightarrow \, H^0_{\mathsf{dR}}(U \cap V)$$

$$\longrightarrow H^1_{\mathsf{dR}}(S^1) \longrightarrow H^1_{\mathsf{dR}}(U) \oplus H^1_{\mathsf{dR}}(V)$$

Which gives

$$0 \longrightarrow \mathbb{R} \xrightarrow{\operatorname{im}\cong\mathbb{R}} \mathbb{R}^2 \xrightarrow{\operatorname{ker}\cong\mathbb{R}} \mathbb{R}^2 \xrightarrow{\operatorname{ker}\cong\mathbb{R}} \overrightarrow{H^1_{\mathsf{dR}}(S^1)} \longrightarrow 0$$

$$H_{\mathsf{dR}}^{k}(S^{1}) = \begin{cases} \mathbb{R} & k \in \{0, 1\} \\ 0 & k \notin \{0, 1\} \end{cases}.$$

For $n \ge Z$, $U \cap V$ continuous

$$0 \longrightarrow H^0_{\mathsf{dR}}(S^n) \longrightarrow H^0_{\mathsf{dR}}(U) \oplus H^0_{\mathsf{dR}}(V) \longrightarrow H^0_{\mathsf{dR}}(U \cap V)$$

$$\longrightarrow H^1_{\mathsf{dR}}(S^n) \longrightarrow H^1_{\mathsf{dR}}(U) \oplus H^1_{\mathsf{dR}}(V)$$

and

$$0 \longrightarrow \mathbb{R} \xrightarrow{\operatorname{im}\cong\mathbb{R}} \mathbb{R}^2 \xrightarrow{\operatorname{ker}\cong\mathbb{R}} \mathbb{R} \xrightarrow{\operatorname{ker}\cong\mathbb{R}} \overrightarrow{H^1_{\mathsf{dR}}(S^n)} \longrightarrow 0$$

Therefore, $H_{dR}^{0}(S^{3}) = \mathbb{R}$, $H_{dR}^{1}(S^{3}) = 0$, $H_{dR}^{2}(S^{3}) \cong H_{dR}^{1}(S^{2}) = 0$

0 and $H^3_{dR}(S^3) \cong H^2_{dR}(S^2) \cong \mathbb{R}$. By induction, we conclude that

$$H_{\mathsf{dR}}^{k}(S^{n}) = \begin{cases} \mathbb{R} & k \in \{0, n\} \\ 0 & k \notin \{0, n\} \end{cases}.$$

Corollary

Take $\omega \in \Omega^n(S^n)$ closed where $\omega = |x|^{-n} \sum_i (-1) x^i dx^i \wedge \cdots \wedge \widehat{dx^i} \wedge \cdots \wedge dx^n$. Then $\omega|_{S^n}$ is closed but not exact. Hence $[\omega] \in H^n_{\mathsf{dR}}(S^0) = \mathbb{R}$ is a non-trivial element. Since $H^n_{\mathsf{dR}}(S^n) = \mathbb{R}$, and element in $H^n_{\mathsf{dR}}(S^n)$ is of the form $[c\omega]$ for $c \in \mathbb{R}$.

Corollary

 $\omega \in \Omega^n(S^n)$ is exact if and only if $\int_{S^n} \omega = 0$.

Proof

 $\implies \text{if } \omega = d\eta, \text{ then } \int_{S^n} d\eta = \int_{\partial S^n} \eta = 0 \text{ by Stokes' theorem.} \\ \longleftarrow \text{ If } I: \Omega^n(S^n) \to \mathbb{R} \text{ by } \omega \mapsto \int_{S^n} \omega \text{ then, since } \Omega^n(S^n) = Z^n(S^n) \text{ and } I(B^n(S^n)) = 0 \text{ by Stokes', it induces}$

$$I: \overline{H_{\mathsf{dR}}^{n}(S^{n})} \to \mathbb{R}$$
$$[\omega] \to \int_{S^{n}} \omega$$

I is surjective, hence *I* is an isomorphism. In particular $\ker I = \{0\}$. That is, $\int_{S^n \omega = 0}$ implies ω is exact.

Corollary

Let $U \subseteq \mathbb{R}^n$ be an open subset and $x \in U$. Then $H_{dB}^{n-1}(U - \{x\} \neq 0)$.

Proof

Let S^{n-1} be a sphere in $U - \{x\}$ which encloses x. Then we have inclusion $\iota : S \to (U - \{x\})$ and radial projection $r : (U - \{x\}) \to S$.

IMAGE 2

So $r \circ \iota = id_S$ and

$$\iota^* \circ r^* = (r \circ \iota)^* = id : H_{dB}^{n-1}(S) \to H_{dB}^{n-1}(S^{n-1})$$

which implies that

$$r^* = H_{\mathsf{dR}}^{n-1}(S) \to H_{\mathsf{dR}}^{n-1}(U - \{x\})$$

is injective.

Theorem 17.26: Topological Invariance of Dimension

Let $U \subseteq \mathbb{R}^n$ and $V \in \mathbb{R}^m$ be open (n < m). Then U is nothomeomorphic to V.

Proof

Suppose *U* is homeomorphic to *V* by φ . Then $U - \{x\}$ is homeomorphic to $V - \{\varphi(x)\}$.

We have that if $W = B_r^n(0) \subseteq U$, then $\varphi(W)$ is open in \mathbb{R}^m and, therefore, $W = B_r^n(0)$ is homeomorphic to both \mathbb{R}^n and $\varphi(W) \subseteq \mathbb{R}^m$.

 $\varphi(W) \subseteq \mathbb{R}^m$. Therefore $H_{dR}^{m-1}(\mathbb{R}^n - \{x\}) = H_{dR}^{m-1}(S^{n-1}) = 0$ but $H_{dR}^{m-1}(V - \{\varphi(x)\}) \neq 0$.

Compactly Supported de Rahm Cohomology

Let $\Omega_C^k(M) = \{ \omega \in \Omega^k(M) : \omega \text{ is compactly supported} \}.$

$$0 \stackrel{d}{\longrightarrow} \Omega^0_C(M) \longrightarrow \cdots \longrightarrow \Omega^n_C(M) \longrightarrow 0$$
 If $\omega = d\eta$, can we choose $\eta \in \Omega^{k-1}_C(M)$?

Lemma 17.27: Poincaré Lemma

Let $\omega \in \Omega^k_C(\mathbb{R}^n)$ be a closed k-form and, for k=n, further assume that $\int_{\mathbb{R}^n} \omega = 0$.

Then there exists $\eta \in \Omega_C^{k-1}(M)$ such that $d\eta = \omega$.

Proof

If n = k = 1 and $\omega \in \Omega^1_C(\mathbb{R})$, $\omega = f(t) dt$ for $f \in C^\infty_C(M)$ and $\int_{\mathbb{R}} f = 0$.

We need to show $F \in C_C^{\infty}(M)$ such that $dF = \omega$ (i.e. F'(t) dt = f(t) dt or F'(t) = f(t)). Set

$$F(t) = \int_{-\infty}^{t} f(t) dt \bigg(= \int_{-R}^{t} f(t) dt \bigg).$$

where supp $f \subseteq (-R, R)$. F'(t) = f(t) - f(-R) = f(t). So supp $F \subseteq (-R, R)$.

For $n \ge 2$, $\omega \in \Omega_C^k(M)$ closed and $\operatorname{supp} \omega \subseteq B_R(0)$, by the usual Poncaré lemma, there is $\eta_0 \in \Omega^{k-1}(M)$ such that $d\eta_0 = \omega$.

Our goal is to find $\eta \in \Omega_C^{k-1}(M)$ such that $d\eta = d\eta_0 (= \omega)$.

If k = 1, $\omega \in \Omega_C^1(M)$, $\eta_0 \in C_C^\infty(M)$ such that $d\eta_0 = \omega$, and $\operatorname{supp} \omega \subseteq B_R(0)$. Hence outside $B_R(0)$, $d\eta_0 = \omega = 0$ and $\eta_0 = c$ on $\mathbb{R}^n - B_R(0)$.

Consider $\eta = \eta_0 - c \in C_C^{\infty}(\mathbb{R}^n)$. Then $d\eta = d\eta_0 = \omega$.

If $1 \le k \le n-1$, $\omega \in \Omega_C^k(\mathbb{R}^n)$ closed, and $\eta_0 \in \Omega^{k-1}(\mathbb{R}^n)$ such that $d\eta_0 = \omega$, on $\mathbb{R}^n - B_R(0)$ where $\sup \omega \subseteq B_R(0)$ we have that $d\eta_0 = \omega = 0$. That is, $\eta_0 \in Z^{k-1}(\mathbb{R}^n - B_R(0))$. We know that $\mathbb{R}^n - B_R(0) \simeq S^{n-1}$ and $H_{\mathsf{dR}}^{k-1}(\mathbb{R}^n - B_r(0)) = H_{\mathsf{dR}}^{k-1}(S^{n-1}) = 0$.

Therefore, every closed (k-1)-form on $\mathbb{R}^n - B_R(0)$ is exact. Then there exists $\sigma \in \Omega^{k-2}(\mathbb{R}^n - B_R(0))$ such that $d\sigma = \eta_0$. PROOF TO BE CONTINUED

March 10, 2025

Recall

Poincaré lemma with compact support, $\omega \in \Omega^k_C(\mathbb{R}^n)$ closed.

If k=n, we also assume that $\int_{\mathbb{R}^n} \omega = 0$. Then $\eta \in \Omega_C^{k-1}(M)$ such that $d\eta = \omega$.

By Poincaré lemma, there is $\eta \in \Omega^{k-1}(M)$ such that $d\eta = \omega$. We need to modify this η .

Cases (1) k=n=1; and (2) $n\geq 2$, k=1 are above. If $\omega=0$ on $\mathbb{R}^n-B_R(0)$, then $dF=\omega\varnothing$ on $\mathbb{R}^n-B_R(0)$ with F constant on $\mathbb{R}^n-B_R(0)$. Then also $F-c\in\Omega^0_C(\mathbb{R}^n)$ such that $d(F-c)=dF=\omega$ on \mathbb{R}^n .

Poincaré Lemma (Continued)

Proof (Continued)

For $n \ge 2$ and $2 \le k \le n-1$, $\omega \in \Omega_C^k(\mathbb{R}^n)$ and $\operatorname{supp} \omega \subseteq B_r(0) \subseteq B_R(0)$.

By Poincaré lemma, there exists $\eta \in \Omega^{k-1}(\mathbb{R}^n)$ such that $d\eta = \omega$, $d\eta = \omega = 0$ on $\mathbb{R}^n - B_r(0)$ with $\eta \in \Omega^{k-1}(\mathbb{R}^n - B_r(0))$ closed.

We know that $(\mathbb{R}^n - B_r(0)) \simeq S^{n-1}$ and $H^{k-1}_{dR}(S^{n-1}) = 0$. Hence, $\eta \in \Omega^{k-1}(\mathbb{R}^n - B_r(0))$ is exact (i.e. $\eta = d\sigma$ for $\sigma \in \Omega^{k-2}(\mathbb{R}^n - B_r(0))$.

Let ψ be a bump function where $\psi \equiv 1$ on $\mathbb{R}^n - B_R(0)$. Define $\eta_0 = \eta - d(\psi\sigma)$. Then $d\eta_0 = d\eta - d^2(\psi\sigma) = \omega$.

On $\mathbb{R}^n - B_R(0)$, $\eta_0 = \eta - d(\psi\sigma) = \eta - d\sigma = 0$. Hence $\eta_0 \in \Omega_C^{k-1}(\mathbb{R}^n)$.

In the final case, $n \ge 2$, k = n, $\omega \in \Omega^n_C(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} \omega = 0$. Here the previous proof does not work because $H^{k-1}_{\mathsf{dR}}(S^{n-1}) = \mathbb{R} \ne 0$.

Let R > r > 0 such that supp $\omega B_r(0) \subseteq B_R(0)$.

$$0\int_{B_r(0)}\omega=\int_{B_r(0)}d\eta=\int_{\partial B_r(0)}\eta.$$

That is, we have $\eta \in \Omega^{n-1}(\mathbb{R}^n)$ such that $d\eta = \omega$ and $\int_{\partial B_r(0)} \eta = 0$. Recall that

$$H^{n-1}(S^{n-1}) \to \mathbb{R}$$
$$[\eta] \mapsto \int_{S^{n-1}} \eta$$

Hence $[\eta] = 0 \in H^{n-1}_{dR}(\mathbb{R}^n - B_r(0))$. Hence $\eta = d\sigma$ for some $\sigma \in \Omega^{n-2}(\mathbb{R}^n - B_r(0))$ and the proof proceeds as in the previous case.

Definition: Compactly Supported de Rahm Cohomology Group

For M^n ,

$$0 \longrightarrow \Omega^0_C(M) \stackrel{d}{\longrightarrow} \Omega^1_C(M) \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} \Omega^n_C(M) \stackrel{d}{\longrightarrow} 0$$
 where

$$H^k_C(M) = \frac{\text{closed } k\text{-forms with compact support}}{\text{exact } k\text{-forms with compact support}}.$$

Theorem 17.28

$$H_C^k(\mathbb{R}^n) = \begin{cases} 0 & 0 \le k \le n-1 \\ \mathbb{R} & k = n \end{cases}.$$

Remark

For k = n,

$$I: H_C^n \to \mathbb{R}$$
$$[\omega] \mapsto \int_{\mathbb{R}^n} \omega$$

is an isomorphism.

Remark

 H_{dB}^{k} is a homotopic invariance, but H_{C}^{k} is not.

Theorem 17.30

Let M^n be connected, oriented and without boundary. Then $H^n_C(M) = \mathbb{R}$. In particular, if M is closed (i.e. compact and without boundary), then $H^n_{d\mathbb{R}}(M) = H^n_C(M) = \mathbb{R}$.

Proof

Write

$$I: \Omega_C^n(M) \to \mathbb{R}$$
$$\omega \mapsto \int_M \omega$$

If $\omega = d\eta$ is exact, then

$$\int_{M} \omega = \int_{M} d\eta = \int_{\partial M} \eta = 0.$$

I induces

$$I: H_C^n \to \mathbb{R}$$
$$[\omega] \mapsto \int_M \omega$$

We want to show that I is an isomorphism. In the trivial case, n = 0, $M = \{point\}$ so I(f) = f(point).

$$H_C^0(\text{point}) = \Omega_C^0(\text{point}) = \{f : \text{point} \to \mathbb{R}\} \cong \mathbb{R}.$$

If $n \ge 1$, let $(U, (x^i))$ be a chart in $M, \theta \in \Omega^n_C(U)$ by $\theta = f dx^1 \wedge \cdots \wedge dx^n$ and $f \ge 0$ but not constantly zero on U. So $\int_U \theta = c > 0$ and $\theta \in \Omega^n_C(M)$ by extending as 0 outside of U. So I is surjective.

For injectivity, we need to show that if $\int_M \omega = 0$ then $\omega = d\eta$ for some $\eta \in \Omega_C^{n-1}(M)$. Cover M by open sets $\{U_i\}$ such that

- 1. each U_i is diffeomorphic to \mathbb{R}^n ,
- 2. $\operatorname{supp} \omega \subseteq \bigcup_{i=1}^k U_i$, and
- 3. relable $\{U_i\}_{i=1}^k$ if necessary.

Then write $M_j = \bigcup_{i=1}^j U_i$ which satisfies $M_j \cap U_{j+1} \neq \emptyset$. We will prove by induction that for each $j=1,\ldots,k$ such that if $\omega \in \Omega^n_C(M_j)$ and $\int_{M_i} \omega = 0$, there is $\eta \in \Omega^{n-1}_C(M_j)$ such that $d\eta = \omega$.

When j = 1, $M_1 \cong \mathbb{R}^n$ and this follows from the Poincaré lemma with compact support.

Consider the j+1 case with $\omega\in\Omega^n_C(M_{j+1})$ and $\int_{M_j}\omega=0$. Let $\{\varphi,\psi\}$ be a partition of unity with respect to $\{M_j,U_{j+1}\}$

 $(\operatorname{supp} \varphi \subseteq M_j \text{ and } \operatorname{supp} \psi \subseteq U_{j+1})$. Then $\varphi \omega \in \Omega^n_C(M_j)$. If $\int_{M_j} \varphi \omega = 0$, then by induction there exists $\alpha \in \Omega^{n-1}_C(M_j)$ such that $d\alpha = \varphi \omega$. By assumption

$$\int_{U_{j+1}} \psi \omega = \int_{M_{j+1}} \psi \omega = \int_{M_{j+1}} (1-\varphi) \omega = \int_{M_{j+1}} \omega - \int_{M_j} \varphi \omega = 0.$$

Then there exists $\beta \in \Omega^n_C(U_{j+1})$ such that $d\beta = \psi \omega$, and $\alpha + \beta \in \Omega^n_C(M_{j+1})$ has $d(\alpha + \beta) = (\varphi + \psi)\omega = \omega$. In general, $\int_{M_j} \varphi \omega = c$. Construct $\theta \in \Omega^n_C(M_j \cap U_{j+1})$ such that $\int_{M_j \cap U_{j+1}} \theta = 1$. Then $\int_{M_j} \varphi \omega - c\theta = 0$. By induction, there exists $\alpha \in \Omega^{n-1}_C(M_j)$ such that $d\alpha = \varphi \omega - c\theta$. Then for $\psi \omega + c\theta \in \Omega^n_C(U_{j+1})$,

$$\int_{U_{j+1}} \psi \omega + c\theta = \int_{M_{j+1}} \omega - \int_{M_j} \varphi \omega + \int_{U_{j+1}} c\theta = 0 - c + c = 0$$

Then there exists $\beta \in \Omega^n_C(U_{j+1})$ such that $d\beta = \psi\omega + c\theta$ and $\alpha + \beta \in \Omega^n_C(M_j + 1)$ has $d(\alpha + \beta) = (\varphi + \psi)\omega = \omega$.

Remark

For M^n oriented, connected and without boundary,

- 1. $H_C^n(M) \cong \mathbb{R}$ (in particular, if M is closed then $H_{dR}^n(M) \cong \mathbb{R}$).
- 2. If M is non-compact, then $H_{dR}^{n}(M) = 0$.

Proof of 2

The proof requires an "exhaustion function". That is, a smooth function $f: M \to \mathbb{R}$ such that

- 1. $\inf f > -\infty$ and
- 2. $f^{-1}(-\infty, c]$ is compact for every c.

This means $M = \bigcup_{k=0}^{\infty} f^{-1}(-\infty, k]$. As an example, consider $M = \mathbb{R}^n$ and $f(x) = x_1^2 + \dots + x_n^2$. Then $f^-(\infty, c] = \overline{B_C}(0)$ is compact.

Without loss of generality, let $\inf_M f = 0$. Then $M = f^{-1}([0, +\infty))$. Let $V_i = f^{-1}((i-2, i))$ for $i \in \mathbb{N}$. Then V_i only intersects V_{i-1} and V_{i+1} .

Let $\omega \in \Omega^n(M)$. Our goal is to find η such that $d\eta = \omega$. Let $\{\varphi_i\}$ be a partition of unity with respect to $\{V_i\}$. Then let $\omega_i = \varphi_i \omega \in \Omega^n_C(V_i)$. On V_1 , if $\int_{V_1} \omega_1 = 0$, then since $H^n_C(V_1) \cong \mathbb{R}$ we have that $\omega_1 = d\eta_1$ for some $\eta_1 \in \Omega^{n-1}_C(V_1)$.

If $\int_{V_1} \omega_1 = c_1 \neq 0$, we construct $\theta_1 \in \Omega^n_C(V_1 \cap V_2)$ such that $\int_{V_1 \cap V_2} \theta_1 = 1$. Then $\int_{V_1} \omega_1 - c_1 \theta_1 = 0$. Hence there exists $\eta_1 \in \Omega^{n-1}_C(V_1)$ such that $d\eta_1 = \omega_1 - c\theta_1$.

In general, on each $V_i \cap V_{i+1}$, we may construct $\theta_i \in \Omega^n_C(V_i \cap V_{i+1})$ such that $\int_{V_i \cap V_{i+1}} \theta_i = 1$. For i = 2, we choose c_2 suc that $\int_{V_2} \omega_2 + c_1 \theta_1 - c_2 \theta_2 = 0$. Then there exists $\eta_2 \in \Omega^{n-1}_C(V_2)$ such that $d\eta_2 = \omega_2 + c_1 \theta_1 - c_2 \theta_2$.

Inductively, we have $\omega_i = \varphi_i \omega$ with $\theta_i \in \Omega^n_C(V_i \cap V_{i+1})$ and $\eta_i \in \Omega^{n-1}_C(V_i)$ such that $d\eta_i = \omega_i + c_i \theta_i - c_{i+1} \theta_{i+1}$. Consider $\eta = \sum_{i=1}^{\infty} \eta_i$ which is a finite sum at any given point. This $\eta \in \Omega^{n-1}(M)$ satisfies $d\eta = d(\sum \eta_i) = d(\sum \varphi_i \omega) = \omega$.

Recall

If M is nonorientable, then there is a double cover $\pi: \hat{M} \to M$ such that \hat{M} is connected and orientable.

Lemma: 17.33

 $\pi^*: H^k_{dR}(M) \to H^k_{dR}(\hat{M})$ is injective. The same is true of $\pi^*: H^k_C(M) \to H^k_C(\hat{M})$.

Theorem: 17.34

If M^n is connected, non-oriented and without boundary, then $H^n_{dR}(M) = 0 = H^n_C(M)$.

Proof of First Equality

From above, if \hat{M} is non-compact, $H^n_{dR}(\hat{M}) = 0$. Because $\pi^* : H^n_{dR}(M) \to H^n_{dR}(\hat{M})$ is injective and $H^n_{dR}(M) = 0$.

March 12, 2025

Lemma

If $\pi: \hat{M} \to M$ is a double cover, then $\pi^*: H^k_{\mathsf{dR}}(M) \to H^k_{\mathsf{dR}}(\hat{M})$ is injective (holds equally for H^*_C).

Proof

Goal: If $[\omega] \in H_C^k(M)$ has $\pi^*[\omega] = 0 \in H_C^k(\hat{M})$, then $[\omega] = 0$. In other words, if $\omega \in \Omega_C^k(M)$ is closed and $\pi^*\omega = d\eta$ for some $\eta \in \Omega_C^{k-1}(\hat{M})$ then ω is exact.

Let $\Gamma = \{id_{\hat{M}}, \alpha\}$ be the group of covering transformations where $\alpha^2 = id_{\hat{M}}$ and

commutes. Then $\pi \circ \alpha = \pi$. Consider $\tilde{\eta} = \frac{1}{2}(\eta + \alpha^* \eta)$ which satisfies $\alpha^* \tilde{\eta} = \frac{1}{2}(\alpha^* \eta + \alpha^2 \eta) = \tilde{\eta}$.

Compute

$$d\tilde{\eta} = \frac{1}{2}(d\eta + \alpha^* d\eta) = \frac{1}{2}(\pi^* \omega + \alpha^* \pi^* \omega) = \frac{1}{2}(\pi^* \omega + (\pi \circ \alpha)^*)\omega = \pi^* \omega.$$

Excercise: since $\tilde{\eta}$ satisfies $\alpha^*\tilde{\eta} = \tilde{\eta}$, it descends to some well-defile $\sigma \in \Omega_C^{k-1}(M)$ such that $\pi^*\sigma = \tilde{\eta}$. For $U \in M$ open and $V_1, V_2 \in \hat{M}$ in the covers over U, write diffeomorphisms $\tau: U \to V_1$ and $\alpha \circ \tau: U \to V_2$. Then on V_1 we have $\tau^*(\tilde{\eta}|_{V_1}) = \sigma$ and

$$d\sigma = d(\tau^* \tilde{\eta}) = \tau^* (d\tilde{\eta}) = \tau^* \pi^* \omega = (\widetilde{\pi \circ \tau})^* \omega = \omega.$$

Remark

This lemma also holds for $\pi: \hat{M} \to M$ with finite sheets.

Example

 $S^n \xrightarrow{\pi} \mathbb{RP}^n$, $\pi^* : H^k_{dR}(\mathbb{RP}^n) \to H^k_{dR}(S^n)$ is injective when $k \neq 0$ or $k \neq n$.

Hence $H^{\widehat{k}}_{\mathsf{dR}}(\mathbb{RP}^n) = 0$. What about $H^n_{\mathsf{dR}}(\mathbb{RP}^n)$? When n is odd, \mathbb{RP}^n is orientable, then $H^n_{\mathsf{dR}}(\mathbb{RP}^n) \cong \mathbb{R}$. When n is even, \mathbb{RP}^n is non-orientable, then $H^n_{\mathsf{dR}}(\mathbb{RP}^n) = 0$.

Hint for Exam Problem 4

if $F: M \to N$ is a diffeomorphism, then

$$\int_{M} F^{*} \omega = \pm \int_{F(M)} \omega.$$

Theorem

Let M^n be a connected, non-orientable manifold without boundary, then $H_C^n(M^n) = 0 = H_{dR}^n(M^n)$.

Proof

Let $\pi: \hat{M} \to M$ be the orientation double cover where \hat{M} is connected and orientable.

 $\pi^*: H^n_C(M) \to H^n_C(\hat{M}) \cong \mathbb{R}$ is injective, so we want to show that π^* is the zero map. Therefore, we need to show that $\pi^*[\omega] = 0$ or equivalently that $\int_{\hat{M}} \pi^* \omega = 0$.

Let $\omega \in \Omega^n_C(M)$ and write $\pi^* \omega = \hat{\omega}$. Write $\alpha : \hat{M} \to \hat{M}$ a non-trivial covering transformation which reverses orientation. Then $\alpha^*\hat{\omega} = \alpha^*\pi^*\omega = \pi^*\omega = \hat{\omega}$ and we compute

$$\int_{\hat{M}} \pi^* \omega = \int_{\hat{M}} \hat{\omega} = \int_{\hat{M}} \alpha^* \hat{\omega} = -\int_{\hat{M}} \hat{\omega} = -\int_{\hat{M}} \pi^* \omega.$$

So it must be the case that $\int_{\hat{M}} \pi^* \omega = 0$.

If M is compact, then $H^n_{dR}(M) = H^n_C(M) = 0$. If M is non-compact, then $\pi^*: H^n_{dR}(M) \to H^n_{dR}(\hat{M}) = 0$ is injective.

Degree Theory

Suppose $F: M \to N$ for M^n, N^n closed and orientable.

Then F induces $F^*: \mathbb{R} \cong H^n_{dB}(N) \to H^n_{dB}(M) \cong \mathbb{R}$, so F^* is the multiplication by a number $k \in \mathbb{R}$.

$$\omega \xrightarrow{F^*} F^* \omega$$

$$\downarrow_I \qquad \downarrow_I$$

$$\int_N \omega \xrightarrow{k \cdot} k \cdot \int_N \omega = \int_M F^* \omega$$

To show that $k \in \mathbb{Z}$, we prove that if $q \in N$ is a regular value (i.e. $\forall p \in F^{-1}(q), DF_n$

is surjective). Then $k = \sum_{p \in F^{-1}(q)} \operatorname{sgn}(p)$ where

$$\operatorname{sgn}(p) = \begin{cases} 1 & \text{if } DF_p \text{ preserves orientation,} \\ -1 & \text{if } DF_p \text{ reverses orientation} \end{cases}.$$

Remark: $F^{-1}(q)$ is an embedded 0 dimensional submanifold (i.e. $F^{-1}(q)$ is a disjoint union of points).

Proof

Let $q \in N$ be a regular value. For each $p \in F^{-1}(p)$, $DF_p : T_pM \to T_qN$ is a linear isomorphism.

Then there is $p \in U$ and $q \in W$ such that $F: U \to W$ is a diffeomorphism.

Without loss of generality, for each $p_i \in F^{-1}(q)$ there is U_i such that $F: U_i \to W$ is a diffeomorphism.

Let $\omega \in \Omega^n(N)$ such that supp $\omega \subseteq W$ and $\int_N \omega = 1$. Then supp $F^*\omega \subseteq \bigcup_i U_i$, and

$$\int_{M} F^{*} \omega = \sum_{i} \int_{U_{i}} F^{*} \omega = \sum_{i} \operatorname{sgn}(p_{i}) \int_{F(U_{i})} \omega = \sum_{i} \operatorname{sgn}(p_{i}) \int_{W}^{=1} \omega.$$

On the other hand, $\int_M F^* \omega = k \cdot \int_N \omega = k$, so $k = \sum_i \operatorname{sgn}(p_i)$.

Remarks

(1)

If $F: M \to N$ is not surjective (e.g. $F: S^n \to S^n$ by sending everything to the north pole), then let $W \subseteq N$ open such that $F(M) \cap W = \emptyset$.

Let $\omega \in \Omega^n(N)$ such that supp $\omega \subseteq W$ and $\int_N \omega = 1$. Then

$$(F^*\omega)_p(X_1,...,X_n) = \omega_F(p)(F_*X_1,...,F_*X_n) = 0.$$

Hence $F^*\omega = 0$ and

$$0 = \int_{M} F^{*} \omega = \deg(F) \cdot \int_{N} \omega = \deg(F).$$

(2)

For $M \stackrel{F}{\to} N \stackrel{G}{\to} P$, $\deg(G \circ F) = (\deg G)(\deg F)$.

(3)

If F is a diffeomorphism, then $\deg F = \pm 1$.

(4)

If $F, G: M \to N$ and $F \simeq G$, then $\deg F = \deg G$ (because $F^* = G^*$ on H_{dR}^n).

Theorem (Hopf)

If $F, G: S^n \to S^n$ such that $\deg F = \deg G$, then $F \simeq G$.

Remarks: Whitney Approximation

If $F: M \to N$ is continuous, then by Whitney approximation there exists $F \simeq F': M \to N$. Then define $\deg F = \deg F'$ such that $F'' \simeq F \simeq F'$ is well-defined.

Theorem

Let N^n be closed and orientable and X^{n+1} compact, oriented and with boundary ∂X . If $f: \partial X \to N$ has an extension $\tilde{f}: X \to N$, then $\deg f = 0$.

Proof

Let $\omega \in \Omega^n(N)$, $d\omega = 0$ and $\int_N \omega = 1$. Then

$$\deg f = \deg f \cdot \int_{N} \omega = \int_{\partial Y} f^* \omega = \int_{Y} d(f^* \omega) = \int_{Y} f^* (d\omega) = 0.$$

This can be first proved in the smooth case and then approximated to the continuous case by Whiteny approximation.

Theorem

Any continuous map $F: \overline{B^n} \to \overline{B^n}$ has a fixed point.

Proof

Suppose *F* has no fixed points (i.e. $F(x) \neq x$, $\forall x \in \overline{B^n}$).

Define $G: B^n \to S^{n-1}$ by $x \mapsto \frac{x - F(x)}{||x - F(x)||}$. Let $g = G|_{S^{n-1}}: S^{n-1} \to S^{n-1}$, and note that $g \simeq \mathrm{id}_{S^{n-1}}$. In fact, we have $H: S^{n-1} \times [0,1] \to S^{n-1}$ by $H(x,t) = \frac{x - tF(x)}{||x - tF(x)||}$ well defined since |x| = 1 and by assumption $||tF(x)|| \le t < 1$. Then $H(\cdot,0) = \mathrm{id}_{S^{n-1}}$ and $H(\cdot,1) = g$.

Therefore $\deg g = \deg(\operatorname{id}_{S^{n-1}}) = 1$. On the other hand, $g: S^{n-1} \to S^{n-1}$ has an extension $G: \overline{B^n} \to S^{n-1}$. Hence $\deg g = 0$, a contradiction.

Laplacian on Forms

For $H_{dR}^k(M)$ with M closed and orientable, if M has additional structure then we can pick a unique representative in each class.

For (M,g) with a Riemannian metric and $\Delta f = -\operatorname{div}(\operatorname{grad} f)$, we can take $\omega \in \Omega^k(M)$.

Locally for $\{E_1, ..., E_n\}$ and $\{\epsilon^1, ..., \epsilon^n\}$ orthonormal frames, we can declare $\{\epsilon^I : I = (i_1, ..., i_k) \text{ strictly increasing}\}$ to be an orthonorma frame.

With this, we can calculate $g(\omega, \eta)$ for $\omega, \eta \in \Omega^k(M)$.

Define $\langle \omega, \eta \rangle = \int_M g_p(\omega, \eta) \ d \operatorname{Vol}_g$; define also $d^* : \Omega^{k+1} \to \Omega^k$ the adjoint to $d : \Omega^k \to \Omega^{k+1}$ (i.e. $\langle d\omega, \eta \rangle = \langle \omega, d^*\eta \rangle$. Then define the Lapalcian on forms $\Delta : \Omega^k \to \Omega^k$ by $\Delta = dd^* + d^*d$.

- 1. Δ is self-adjoint (i.e. $\Delta^* = \delta$).
- 2. $\Omega^k = \ker \Delta \oplus \operatorname{im} \Delta$.
- 3. We say ω is harmonic if $\Delta \omega = 0$, if and only if $d\omega = 0$ or $d^*\omega = 0$.

So H_{dR}^{k} is the set of harmonic k-forms (Hodge).

Lie Group Invariance

If M=G is a Lie group, $\omega\in\Omega^k(M)$ may be left-invariant, right-invariant or bi-invariant $(L_g^*\omega=R_h^*\omega=\omega.$

We have that $H^k_{dR}(G)$ is the set of bi-invariant k-forms (Cartan).

If G is a compact Lie group with a bi-invariant Riemannian metric, $\omega \in \Omega^k(M)$ is harmonic if and only if ω is bi-invariant.