Jarzynski Equality

Jarzynski & Crooks

(a) Christopher Jarzynski

(b) Gavin E. Crooks

正则系综与自由能

当系统与一个温度为 T 的大热库有热接触时, 平衡态系综的微观态分布满足,

$$\rho(\mathbf{x}) = e^{\beta(F - H(\mathbf{x}))}, \quad \int_{\Gamma} d\mathbf{x} \ \rho(\mathbf{x}) = 1, \quad \beta = \frac{1}{k_B T}$$
 (1.1)

F 为自由能, 由归一化决定,

$$e^{-\beta F} = \int_{\Gamma} dx \ e^{-\beta H(x)} \tag{1.2}$$

更加普适的定义是,

$$F = \langle H \rangle - TS, \quad S = -\int_{\Gamma} d\mathbf{x} \ \rho(\mathbf{x}) \ln \rho(\mathbf{x})$$
 (1.3)

热力学第二定律

热力学第二定律,

$$dQ \leqslant TdS \tag{1.4}$$

当系统和大热库始终处于热平衡的情况下, 从 $A \rightarrow B$,

$$F_B - F_A = \Delta F \leqslant W^F \tag{1.5}$$

统计解释,

$$\Delta F \leqslant \langle W^F \rangle = \int W \rho^F(W) dW$$
 (1.6)

图 1: 哈密顿量参数空间

热力学第二定理

我们考虑一下逆过程, $B \to A$,

$$F_A - F_B \leqslant \langle W^R \rangle = \int W \rho^R(W) dW$$
 (1.7)

把两个过程放在一起观察,

$$-\left\langle W^{R}\right\rangle \leqslant \Delta F \leqslant \left\langle W^{F}\right\rangle \tag{1.8}$$

热力学第二定理

我们考虑一下逆过程, $B \rightarrow A$,

$$F_A - F_B \leqslant \langle W^R \rangle = \int W \rho^R(W) dW$$
 (1.7)

把两个过程放在一起观察,

$$-\left\langle W^{R}\right\rangle \leqslant \Delta F \leqslant \left\langle W^{F}\right\rangle \tag{1.8}$$

图 2: 概率分布

主要结论

Jarzynski Equality(JE):

$$\left\langle e^{-\beta W}\right\rangle = e^{-\beta \Delta F}$$
 (1.9)

Crooks Fluctuation Theorrem(CFT):

$$\frac{P^F(\omega)}{P^R(-\omega)} = e^{\omega} \quad \Rightarrow \quad \frac{\rho^F(W)}{\rho^R(-W)} = e^{\beta(W - \Delta F)}$$
 (1.10)

Jarzynski Equality

将一个与温度为 T 的大热库热接触的系统, 改变系统的宏观参数, 从 $A \rightarrow B$, A 和 B 都是平衡态, 对于各种可能的做功, 我们有,

$$\left\langle e^{-\beta W}\right\rangle = e^{-\beta \Delta F}$$
 (1.11)

Jarzynski 在 1997 年的 PRL 中实际上只给出了一种特殊情形下的证明, 我们考虑一个系统, 刚开始时和大热库处于热平衡, 满足正则系综, 然后进行控制参数的改变, 改变过程中和热库之间没有热量交换, 也无需处于平衡态, 结束之后, 保持控制参数不变, 系统和热库接触, 回到温度 *T*.

哈密顿量 $H = H(\mathbf{x}, \lambda)$, 对于每一个参数 λ , 都可以得到一个自由能 F_{λ} ,

$$e^{-\beta F_{\lambda}} = \int d\mathbf{x} \ e^{-\beta H(\mathbf{x},\lambda)} \tag{1.12}$$

证明

系统哈密顿量变化,

$$dH = dQ + dW \quad \Leftrightarrow \quad dH(x(t), \lambda(t)) = dx \frac{\partial H}{\partial x} + d\lambda \frac{\partial H}{\partial \lambda}$$
 (1.13)

可以知道做功 W,

$$W = \int_0^{t_s} dt \, \dot{\lambda} \frac{\partial H}{\partial \lambda} = H(\mathbf{x}(t_s), B) - H(\mathbf{x}(0), A)$$
 (1.14)

W与路径无关, $W = W((x_0))$,

$$\left\langle e^{-\beta W} \right\rangle = \int d\mathbf{x}(0) \; \frac{e^{-\beta H(\mathbf{x}(0),A)}}{Z_A} \cdot e^{H(\mathbf{x}(t_s),B) - H(\mathbf{x}(0),A)} = \int d\mathbf{x}(0) \; \frac{e^{-\beta H(\mathbf{x}(t_s),B)}}{Z_A} \quad (1.15)$$

证明

根据 Liouville 定理,

$$\left\langle e^{-\beta W} \right\rangle = \int d\mathbf{x}(t_s) \cdot \left| \frac{\partial \mathbf{x}(t_s)}{\partial \mathbf{x}(0)} \right|^{-1} \cdot \frac{e^{-\beta H(\mathbf{x}(t_s), B)}}{Z_A} = \frac{Z_B}{Z_A}$$

$$\Rightarrow \left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F} \tag{1.16}$$

系统演化

之前从哈密顿正则方程出发的演化方式,相当于基于微正则系综.这种方式的计算显然是有局限性的.在之前的情形中,若要考虑热量交换,就必须考虑相互作用,

$$G(x,x') = H(x) + H'(x') + h_{int}(x,x')$$
(1.17)

事情变得非常复杂, 我们需要寻找新的角度来考察系统的演化.

Markov Chain

有一列随机变量 $\{X_0, X_1, X_2, \dots\}$, 若满足下式, 则称之为 Markov 链

$$\Pr(X_{n+1} = a_{n+1} | X_n = a_n, X_{n-1} = a_{n-1}, \ldots) = \Pr(X_{n+1} = a_{n+1} | X_n = a_n)$$
 (1.18)

对于离散变量空间和离散时间的情形,我们只需要知道每一步的转移矩阵 M_n ,就知道系统的演化,

$$M_{n,ij} = \Pr(X_{n+1} = x_i | X_n = x_j), \sum_i M_{n,ij} = 1$$
 (1.19)

若 X_n 的概率分布是 $\pi^{(n)} = [\pi_1^{(n)}, \pi_2^{(n)}, \dots]^T$, 那么,

$$\boldsymbol{\pi}^{(n+1)} = M_n \boldsymbol{\pi}^{(n)} = M_n M_{n-1} \cdots M_0 \boldsymbol{\pi}^{(0)}$$
(1.20)

对于连续变量和连续时间的情形,

$$\rho(\mathbf{x},t) = \int p(\mathbf{x},t;\mathbf{x}',t')\rho(\mathbf{x}',t')d\mathbf{x}'$$
(1.21)

如果一个演化方式和初始时间无关,只和时间差有关,我们称这样的 Markov 链是时 齐的 (time homogeneous).

$$p(\mathbf{x}, t; \mathbf{x}', t') = p(\mathbf{x}' \to \mathbf{x}, \Delta t)$$
(1.22)

如果有一个分布在演化下保持不变, 这就是平衡态, 他应该满足,

$$\rho(\mathbf{x}) = \int p(\mathbf{x}' \to \mathbf{x}, t) \rho(\mathbf{x}') d\mathbf{x}', \quad \forall t > 0$$
(1.23)

显然平衡态对于转移概率 $p(x' \to x, t)$ 的约束在数学上并不那么强, 我们基于物理的 考虑给他赋予一些新的性质.

Detailed Balance

$$\rho(\hat{\mathbf{x}})p(\hat{\mathbf{x}} \to \hat{\mathbf{x}}', t) = \rho(\mathbf{x}')p(\mathbf{x}' \to \mathbf{x}, t)$$
(1.24)

 \hat{x} 表示时间反演, i.e. $q \to q, p \to -p$.(这也被称为微观可逆性)

对于不同的情况,

	微正则	正则	特殊 (p,T 确定)
$\frac{p(\hat{\mathbf{x}} \to \hat{\mathbf{x}}', t)}{p(\mathbf{x}' \to \mathbf{x}, t)}$	1	$e^{-\beta(H(\mathbf{x}')-H(\hat{\mathbf{x}}))}$	$e^{-\beta(\Delta H + p\Delta V)}$

概率密度

最后介绍一个求概率密度的公式,现在有一个变量 x 的概率分布为 f(x),对于一个新的变量 $\omega=\omega(x)$,它满足概率分布 $\rho(\omega)$,

$$\rho(\omega) = \int \delta(\omega(x) - \omega) f(x) dx$$
 (1.25)

CFT

Crooks Fluctuation Theorem

$$\frac{P^F(\omega)}{P^R(-\omega)} = e^{\omega} \tag{1.26}$$

系统和温度为 T 的大热库接触, ω 是一个确定参数变化过程 $\lambda(t)$)($t \in [0, \tau]$) 中整个体系的熵产生, P^F , P^R 是正过程和逆过程的熵产生分布函数.

$$k_B = 1$$

证明

对于相空间中某一条路径 x(t), 我们考虑沿这条路径的概率,

$$F: x(0) \xrightarrow{\lambda(t_{1})} x(t_{1}) \xrightarrow{\lambda(t_{2})} x(t_{2}) \cdots \xrightarrow{\lambda(\tau)} x(\tau)$$

$$R: \hat{x}(0) \xleftarrow{\lambda(t_{1})} \hat{x}(t_{1}) \xleftarrow{\lambda(t_{2})} \hat{x}(t_{2}) \cdots \xleftarrow{\lambda(\tau)} \hat{x}(\tau)$$

$$\mathcal{P}^{F}[\mathbf{x}(t)] d\mathbf{x}_{0} d\mathbf{x}_{1} \cdots d\mathbf{x}_{\tau} \approx \rho_{0}^{F}(\mathbf{x}_{0}) d\mathbf{x}_{0} p_{1}(\mathbf{x}_{0} \to \mathbf{x}_{1}, t_{1}) d\mathbf{x}_{1} \cdots p_{n}(\mathbf{x}_{n-1} \to \mathbf{x}_{\tau}, \tau - t_{n-1}) d\mathbf{x}_{\tau}$$

$$\mathcal{P}^{R}[\hat{\mathbf{x}}(\tau - t)] d\mathbf{x}_{0} d\mathbf{x}_{1} \cdots d\mathbf{x}_{\tau} \approx d\mathbf{x}_{0} p_{1}(\hat{\mathbf{x}}_{0} \leftarrow \hat{\mathbf{x}}_{1}, t_{1}) d\mathbf{x}_{1} \cdots p_{n}(\hat{\mathbf{x}}_{n-1} \leftarrow \hat{\mathbf{x}}_{\tau}, \tau - t_{n-1}) d\mathbf{x}_{\tau} \rho_{\tau}^{R}(\hat{\mathbf{x}}_{\tau})$$

$$(1.27)$$

 p_i 表示在 $\lambda(t_i)$ 的条件下进行演化. 利用之前的对于细致平衡的讨论,

$$\frac{p(\hat{\mathbf{x}} \to \hat{\mathbf{x}}', t)}{p(\mathbf{x}' \to \mathbf{x}, t)} = e^{-\beta(H(\mathbf{x}') - H(\hat{\mathbf{x}}))}$$

可以得到微观可逆性条件,

$$\frac{\mathcal{P}^{F}[\mathbf{x}(t)]}{\mathcal{P}^{R}[\hat{\mathbf{x}}(\tau - t)]} = \frac{\rho_{0}^{F}(\mathbf{x}_{0})}{\rho_{\tau}^{R}(\hat{\mathbf{x}}_{\tau})} \exp\left(-\beta \sum_{i} [H(\mathbf{x}_{i}, \lambda_{i}) - H(\mathbf{x}_{i-1}, \lambda_{i})]\right)$$

$$= \frac{\rho_{0}^{F}(\mathbf{x}_{0})}{\rho_{\tau}^{R}(\hat{\mathbf{x}}_{\tau})} \exp\left(-\beta \int dt \, \dot{\mathbf{x}} \frac{\partial H(\mathbf{x}, \lambda)}{\partial \mathbf{x}}\right)$$

$$= \frac{\rho_{0}^{F}(\mathbf{x}_{0})}{\rho_{\tau}^{R}(\hat{\mathbf{x}}_{\tau})} \exp(-\beta Q)$$
(1.28)

证明

我们认为 $S = \sum_{\mathbf{x}} -\rho(\mathbf{x}) \ln \rho(\mathbf{x})$, 正向熵产生 ω^F ,

$$\omega^F = \ln \rho_0^F(\mathbf{x}(0)) - \ln \rho_\tau^F(\mathbf{x}(\tau)) - \beta Q$$
(1.29)

从而,

$$e^{\omega^F} = \frac{\rho_{\tau}^R(\hat{\mathbf{x}}(\tau))}{\rho_{\tau}^F(\mathbf{x}(\tau))} \cdot \frac{\mathcal{P}^F[\mathbf{x}(t)]}{\mathcal{P}^R[\hat{\mathbf{x}}(\tau-t)]} = \frac{\mathcal{P}^F[\mathbf{x}(t)]}{\mathcal{P}^R[\hat{\mathbf{x}}(\tau-t)]}$$
(1.30)

最后一个等号我们假设有一个时间反演对称性,

$$\rho^F(\mathbf{x}) = \rho^R(\hat{\mathbf{x}}) \tag{1.31}$$

也可以得到 $\omega^R = -\omega^F$

证明

至此, 我们可以求出 $P^F(\omega)$,

$$P^{F}(\omega) = \int \delta(\omega - \omega^{F}) \mathcal{P}^{F}[\mathbf{x}(t)] \mathcal{D}[\mathbf{x}(t)]$$

$$= e^{\omega} \int \delta(\omega + \omega^{R}) \mathcal{P}^{R}[\hat{\mathbf{x}}(\tau - t)] \mathcal{D}[\mathbf{x}(t)]$$

$$= e^{\omega} P^{R}(-\omega)$$
(1.32)

CFT→**JE**

对于初末态是正则系综平衡态的情形,

$$\rho_0^F(\mathbf{x}) = e^{\beta(F_A - H(\mathbf{x}, A))}, \quad \rho_\tau^F(\mathbf{x}) = e^{\beta(F_B - H(\mathbf{x}, B))}$$
(1.33)

从而, 熵产生为,

$$\omega^{F} = \ln \rho_{0}^{F}(\mathbf{x}(0)) - \ln \rho_{\tau}^{F}(\mathbf{x}(\tau)) - \beta Q$$

$$= \beta (H(\mathbf{x}(0), B) - H(\mathbf{x}(\tau), A) - Q) - \beta (F_{B} - F_{A})$$

$$= \beta (W - \Delta F)$$
(1.34)

因此可以知道,

$$\frac{P^F(\omega)}{P^R(-\omega)} = e^{\omega} \quad \Rightarrow \quad \frac{\rho^F(W)}{\rho^R(-W)} = e^{\beta(W-\Delta F)}$$
 (1.35)

CFT→**JE**

$$\left\langle e^{\beta(-W+\Delta F)} \right\rangle_F = \int dW \rho^F(W) e^{\beta(-W+\Delta F)} = \int dW \rho^R(-W) = 1$$
 (1.36)

CFT→**JE**

$$\left\langle e^{\beta(-W+\Delta F)} \right\rangle_F = \int dW \rho^F(W) e^{\beta(-W+\Delta F)} = \int dW \rho^R(-W) = 1$$
 (1.36)

热力学第二定律

热力学第二定理统计解释,

$$\langle e^{-\omega} \rangle = \int d\omega P^F(\omega) e^{-\omega} = \int d\omega P^R(-\omega) = 1$$
 (1.37)

利用 Jensen 不等式,

$$1 = \langle e^{-\omega} \rangle \geqslant e^{-\langle \omega \rangle} \quad \Rightarrow \quad \langle \omega \rangle \geqslant 0$$
 (1.38)

Experiment