Separation Logic language is incomplete

The Hoare logic is a common tool for software verification. Its statements are written as triples like $\{P\}instr\{Q\}$. Such notation states that if P holds then after execution of instruction $instr\ Q$ will hold.

Unfortunately such approach complicates reasoning about complex programs. For example, one can easily prove that a single instruction doesn't overwrite all available memory but it's hard to prove the same for a large program.

We note though that a program can be usually split into functions that modify separate memory parts and therefore don't interfere with each other. It's easier to prove that if a property holds for such a function then it also holds for a whole program.

This idea underlies the separation logic. This is a Hoare logic extension which allows to express the fact that the memory is split between different functions. For example, the statement "the memory consists of exactly two locations with addresses x and y with values 1 and 2 correspondingly"can be rephrased as "the memory can be split into two disjoint parts, each consisting of a single location x (or y) and value 1 (or 2)". The latter statement can be written in the separation logic language as $(x \mapsto 1) * (y \mapsto 2)$.

The satisfiability of this language's formula depends on memory state. Notation $h \models \phi$ denotes that if memory is described with function $h:Addresses \rightarrow Values$ then the formula ϕ holds. It can be seen that the tautological formulas of FOL are similar to this language's valid statements — those that hold with any memory state.

For separation logic the validity problem is undecidable. It follows from the non-recursively-enumerability of this logic's language ¹.

The non-r.e. is proved by reduction from other non-r.e. language. It is the set of such formulas of FOL language with only one binary predicate that hold in every finite structure. The non-r.e. of this language has been shown by Trakhtenbrot.

For simpler versions of this language the validity problem is decidable though. For example, the validity for language without quantifiers and \mapsto predicate is NP-complete.

¹by Post theorem