

7
Securizarea rețelei

17-18 noiembrie 2015

Obiective

- TCP şi UDP pe scurt
- Ce este un firewall
- Filtrarea pachetelor
- Iptables
- SSH

Cursul 7

Nivelul transport – Scurtă descriere

- Rol
- Definiția unui port
- Protocoale
- Exemple

TCP/IP **Adresare** OSI 7. Aplicație 6. Prezentare Aplicație 5. Sesiune 4. Transport Transport Port Adresă IP 3. Rețea Internet 2. Legătură de date Adresă MAC Acces la mediu 1. Fizic

Rolurile nivelului transport

 Atenție: nu toate protocoalele de nivel 4 au toate aceste funcționalități!

TCP

- Transmission Control Protocol
- Orientat conexiune
- Protocol sigur (reliable)
 - datele ajung garantat la destinație
 - datele ajung în ordine la destinație
- Controlul fluxului
- Controlul congestiei
- Controlul erorii
- Exemple:
 - SSH
 - HTTP

UDP

- User Datagram Protocol
- Neorientat conexiune
- Nesigur (unreliable)
 - segmente pierdute
- Fără controlul fluxului
 - segmente fără ordine
- Exemple
 - IPTV
 - VoIP

Antetul TCP – flag-uri

- Grup de 8 biţi din antetul TCP
- Identifică diverse stări ale protocolului
- Câteva flag-uri importante sunt:

– ACK

activare câmp "Număr de confirmare"

– SYN

protocolul de inițiere a conexiunii (handshake)

stabilirea/sincronizarea numerelor de secvenţă

– FIN

- protocolul de încheiere a conexiunii
- încheierea transmisiei de la FIN-sender

Inițierea conexiunii TCP

Încheierea conexiunii

Rolul unui firewall

- Definiție
- Funcții în rețea
- Exemple

Ce este un firewall

- Mecanism folosit pentru blocarea traficul nedorit din rețea
- Poate fi implementat:
 - Pe un dispozitiv de rețea
 - Ruter Cisco
 - Ca un dispozitiv dedicat
 - Cisco ASA
 - Fortinet Fortigate

- ZoneAlarm
- Windows Firewall
- Netfilter/iptables

De ce avem nevoie de firewall-uri

- Internetul nu este un loc sigur
- Rețeaua locală poate fi oricând ținta unui atac:
 - De recunoaștere
 - Ping sweep
 - Sniffing
 - Port scan
 - De DoS (Denial of Service) sau DDoS (Distributed DoS)
 - Smurf attack
 - SYN flood
 - De acces
 - Atacarea unei parole (cu dicționar sau brute-force)
 - Buffer overflow
 - Man-in-the-middle

Rolul unui firewall

- Atac de recunoaștere
 - Atacatorul încearcă să descopere mașini și serviciile de pe acestea
 - Exemplu: ICMP echo request către o adresă de broadcast descoperă toate mașinile din rețea
 - Un Firewall poate:
 - Bloca porturile vulnerabile
 - Bloca iniţierea din exterior a conexiunilor
 - Bloca răspunsul la ICMP echo request

Rolul unui firewall

- Atac DoS sau DDoS
 - În general bazate pe generarea unei cantități mari de trafic ce supraîncarcă rețeaua sau serverul
 - Din cauza supraîncărcării, traficul riscă să fie ignorat
 - Un Firewall poate:
 - Monitoriza numărul sesiunilor TCP Half-Open către un server și le poate închide dacă trec de un prag
 - Bloca directed broadcasts

Tipuri de firewall

Stateless firewall

- 7. Aplicație
- 6. Prezentare
- 5. Sesiune
- 4. Transport
- 3. Rețea
- 2. Legătură de date
- 1. Fizic

Stateful firewall

- 7. Aplicație
- 6. Prezentare
- 5. Sesiune
- 4. Transport
- 3. Rețea
- 2. Legătură de date
- 1. Fizic

Firewall de nivel aplicație (Proxy firewall)

- 7. Aplicație
- 6. Prezentare
- 5. Sesiune
- 4. Transport
- 3. Rețea
- 2. Legătură de date
- 1. Fizic

iptables

- Funcții
- Structură
- Tabelele iptables
- Lanţuri predefinite
- Exerciții

iptables

- Utilitar Linux
- Face parte din proiectul Netfilter
- Permite unei mașini Linux să:
 - Filtreze pachetele
 - Translateze adrese
 - Rescrie câmpurile unui pachet
- Configurat prin scrierea de reguli
- Regulile iptables sunt compuse din două secțiuni principale:
 - Şablon ce valori trebuie să aibă câmpurile din pachet pentru a se acționa asupra lor
 - Acţiune ce operaţie va efectua maşina Linux asupra pachetului

Tabele iptables

Filter

- Conține reguli ce spun ce trafic poate să treacă şi ce trafic trebuie aruncat
- Exemplu:
 - O adresă externă a eșuat în mod repetat să se conecteze la un server Linux prin SSH
 - Se adaugă o regulă de filtrare care blochează orice trafic de la adresa respectivă

Nat

- Conține reguli pentru translatarea adreselor în procesul de NAT
- Exemplu:
 - O adresă privată trebuie să acceseze un server din Internet
 - Se adaugă o regulă de NAT care rescrie adresa sursă privată cu o adresă publică
 - La întoarcere, pachetul va fi rescris invers
 - (Mult) mai multe detalii în cursul viitor

Mangle

Conține reguli pentru alterarea specializată a pachetelor

Lanțuri iptables

Liste de reguli aplicate implicit unui anumit subset de trafic

Regulile sunt configurate de fapt prin comenzi iptables

- Tabela este implicit filter
 - Regula putea fi deci scurtată ca fiind:

```
ubuntu# iptables -A INPUT -s 10.0.0.0/8 -p icmp -j DROP
```

- Opţiunile permise pentru acest parametru sunt:
 - filter
 - nat
 - mangle
 - raw
 - Folosită pentru configurarea excepţiilor de monitorizare a conexiunilor

- INPUT poate fi înlocuit cu orice alt lanţ predefinit
 - Pot fi create și lanțuri noi de către administrator
- Operaţiile permise sunt:

-A	append	Adăugarea unei reguli la final
-D	delete	Ștergerea unei reguli
-L	list	Afișarea regulilor
-F	flush	Ștergerea tuturor regulilor
-N	new-chain	Crearea unui lanț nou
-X	delete-chain	Ștergerea unui lanț
-P	policy	Schimbarea politicii implicite

- Selectarea traficului se face pe baza informaţiilor din pachet
- Fără specificarea unui protocol, se pot face reguli conținând:
 - Interfața de intrare (-i)
 - Interfața de ieșire (-o)
 - Adresa IP destinație (-d)
 - Adresa IP sursă (-s)

- Reprezintă operația ce va fi făcută asupra pachetului
- În terminologia iptables, j vine de la jump și DROP este un target
- Poate fi omisă
 - În acest caz regula nu face nimic, însă contorul regulii va fi incrementat
- Target-uri uzuale sunt:
 - ACCEPT: pachetul este acceptat
 - DROP: pachetul este aruncat
 - LOG: este adăugată în log-urile sistemului o înregistrare

Exercițiul 1

- Să se scrie o regulă iptables care permite trecerea traficului de la stația 192.168.10.1 către serverul 192.168.10.40.
 - R: iptables -A FORWARD -s 192.168.10.1 -d 192.168.10.40 -j ACCEPT
- Să se scrie o regulă care blochează orice trafic destinat ruterului R1 de la stațiile din rețeaua LAN1. Traficul ce doar tranzitează ruterul trebuie să fie permis.
 - R: iptables -A INPUT -s 192.168.0.0/28 -j DROP

Cum funcționează iptables

- La întâlnirea unui pachet, acesta este evaluat secvențial conform fiecărei reguli dintr-un lanț
- Dacă se face match pe o regulă cu un target ACCEPT sau DROP, procesarea se termină și pachetul este acceptat sau aruncat
- Ce se întâmplă dacă nu se face match pe nicio regulă?

IP Sursă: 192.168.0.1 IP Destinație: 10.0.0.6

Tabelă: filter

Lanț: FORWARD

-s 192.168.0.5 -j DROP

-s 192.168.0.1 d 10.0.0.0/30 j DROP

-s 192.168.0.0/24 -d 10.0.0.4/30 -j ACCEPT

-s 192.168.0.0/24 -j ACCEPT

Politici iptables

- Fiecare lanţ predefinit are o politică implicită
 - Lanţurile create de utilizator NU pot avea politică implicită
- Politica este un target ce este ales pentru fiecare pachet ce nu face match pe niciuna din regulile lanţului
- Politicile implicite sunt ACCEPT
- Politica unui lanţ poate fi modificată:
 - iptables -P FORWARD DROP

Exercițiul 2

- Ruterele de la marginea unei rețele private implementează de obicei antispoofing:
 - Nu permit intrarea în rețea a pachetelor cu adrese private
 - Nu permit ieșirea din rețea a pachetelor cu adrese private
- Configurați o politică antispoofing folosind iptables
 - R:
 - iptables -A FORWARD -s 192.168.0.0/16 -j DROP
 - iptables –A FORWARD –s 172.16.0.0/12 –j DROP
 - iptables –A FORWARD –s 10.0.0.0/8 –j DROP
 - iptables –A FORWARD –d 192.168.0.0/16 –j DROP
 - iptables –A FORWARD –d 172.16.0.0/12 –j DROP
 - iptables –A FORWARD –d 10.0.0.0/8 –j DROP

Extensii iptables

- Adesea adresele IP şi interfețele fizice nu sunt suficiente pentru a implementa cerințele de securitate
 - Se poate permite accesul doar către serviciul de HTTP?
 - Se poate permite stabilirea conexiunilor TCP doar într-o direcţie?
 - Se pot bloca ping-urile către interior păstrând încă posibilitatea de a da ping către exterior?
- Iptables permite activarea de extensii, module ce oferă noi posibilități în specificarea regulilor
- Extensiile se activează cu –p (protocol) sau –m (module)
- Extensiile cele mai importante sunt:
 - tcp
 - udp
 - icmp

Extensii iptables

- Extensia tcp permite filtrarea traficului după:
 - Port destinație --dport --destination-port
 - Port sursă --sport --source-port
 - Flag-uri TCP (SYN, ACK, FIN, etc.) --tcp-flags, --syn
- Extensia icmp permite filtrarea traficului după:
 - Tipul pachetului ICMP --icmp-type <type> unde type poate fi:
 - echo-request
 - echo-reply
 - time-exceeded
 - Pentru toate valorile lui type, puteți rula:

linux# iptables -p icmp -h

SSH

- Rol
- Etapele stabilirii unei conexiuni
- Diffie-Hellman
- Conectarea prin chei

- Secure SHell
- Protocol folosit pentru accesul sigur la distanță
- Permite execuția de comenzi pe mașina accesată
- Două versiuni majore existente: SSH-1 și SSH-2
 - SSH-1 are vulnerabilități majore
 - Cursul va aborda în continuare versiunea SSH-2
- Rol similar cu protocolul Telnet
- Funcționează pe portul TCP 22

Conceptele securității

Autentificare

Sursa şi destinaţia sunt cine spun că sunt

Confidențialitate

 Doar sursa şi destinaţia pot vizualiza informaţia

Integritate

 Mesajul ajuns la destinație nu a fost modificat pe parcurs

Funcții SSH – Confidențialitate

- Sunt folosiți algoritmi de criptare simetrică
 - AES: Advanced Encryption Standard
 - 3DES: Triple Data Encryption Standard
 - IDEA, DES, ARCFOUR, BLOWFISH, TSS
- Criptare simetrică = cheie comună
- 3DES este o variantă populară
 - Necesită o cheie comună pe 168, 112 sau 56 de biți
- Nu vrem să trimitem cheia pe canal pentru a nu fi interceptată
 - Trebuie stabilită o cheie comună fără ca aceasta să fie transmisă
 - Soluție: Diffie-Hellman Key Exchange

Funcții SSH – Confidențialitate cu DF

 Serverul SSH ţine o listă de perechi (p, g) cu proprietăţi matematice speciale

Funcții SSH – Autentificare

- Două metode principale de autentificare:
 - Prin parolă
 - Prin chei asimetrice
- Autentificarea are loc după stabilirea unui canal criptat cu Diffie-Hellman
- Având în vedere că parola este transmisă printr-un canal criptat, vedeți vreo problemă cu această metodă?
 - R: Serverul va decripta parola pentru a valida autentificarea; dacă serverul e compromis, parola va fi descoperită
 - R: Parolele sigure sunt greu de ţinut minte
- Este preferată folosirea cheilor asimetrice

Chei asimetrice

- Se bazează pe perechi de chei aflate într-o relație matematică:
 - Cheia publică (K^+)
 - Cheia privată (K⁻)
- Dându-se un mesaj M, există următoarea relații:

$$K^+(K^-(M)) = M$$

$$K^-(K^+(M)) = M$$

- Cu alte cuvinte, un client poate:
 - Avea configurată pe server cheia sa publică K^+ (de un administrator de exemplu)
 - Cripta un mesaj cu K⁻
 - Serverul va putea decripta mesajul cu K^+
- Exemplu de algoritm: RSA

1. DH

Pasul 1:

Sesiunea sigură este stabilită prin Diffie-Hellman

1. DH

Clientul cere autentificarea cu user-ul foo

Pasul 4:

1. DH

- Clientul criptează challenge-ul cu cheia sa privată
- Răspunsul său poartă numele de authenticator

Pasul 5:

1. DH

 Serverul folosește cheia publică preconfigurată a clientului și verifică $K^+(K^-(asdfgh)) = asdfgh$

2. Cerere

K = 6

Diffie-Hellman

3. Challenge

Cerere conectare: user=foo

4. Authenticator

Bun. Criptează-mi string-ul "asdfgh"

5. Reply

Uite string-ul criptat: K⁻(asdfgh)

Totul pare în regulă

- Doar challenge-ul este criptat cu cheia privată
 - Cu alte cuvinte, este folosită strict pentru operațiile de autentificare
- Motivul este eficiența:
 - Cheile asimetrice sunt ineficiente în operațiile de criptare/decriptare
 - Impactul criptării asimetrice a întregului trafic este mult prea mare

Funcții SSH – Integritate

- Funcție realizată prin MAC
 - Message Authentication Code
 - Este de fapt un hash cu cheie

- Spre deosebire de semnături digitale, cheia folosită este comună
- SHA-1 și MD5 sunt algoritmii de hashing folosiți

Funcții SSH – Integritate

SSH – Exemplu client

Putty este un client ssh pentru Windows, disponibil sub licenţa
 MIT

SSH – Captură trafic

SSH – Captură trafic

- SSH is a big topic
- Dacă doriți să aflați mai multe detalii, puteți încerca:
 - Daniel J. Barrett, Richard E. Silverman, and Robert G. Byrnes, SSH: The Secure Shell (The Definitive Guide), O'Reilly 2005 (2nd edition)

Are 668 de pagini 🙂

- Fie topologia de mai jos
 - Ruterul este o maşină Linux ce a fost deja configurată cu regulile iptables din stânga
 - Determinați comenzile necesare pentru a rezolva fiecare "ticket"

Switch-ul reprezintă o rețea de host-uri cu adresare DHCP

Chain: INPUT; Policy: ACCEPT
-i eth0 -j DROP

Chain: FORWARD; Policy: DROP

-i eth0 -j ACCEPT

- Ticket #1
 - Staţiile din LAN nu pot comunica cu Server.
 - Care este motivul? Care este soluția?

linux# iptables -P FORWARD ACCEPT

Chain: INPUT; Policy: ACCEPT
-i eth0 -j DROP

Chain: FORWARD; Policy: DROP ACCEPT

-i eth0 -j ACCEPT

- Ticket #2
 - Configurați iptables a.î. doar stațiile din LAN să poată folosi serviciul de HTTP de pe Server.

```
linux# iptables -F FORWARD
```

linux# iptables -A FORWARD -s 142.31.16.128/25 -p tcp --dport 80 -j ACCEPT

linux# iptables -A FORWARD -d 142.31.16.9 -p tcp --dport 80 -j DROP

Chain: INPUT; Policy: ACCEPT

-i eth0 -j DROP

Chain: FORWARD; Policy: ACCEPT

i eth0 j ACCEPT

-s 142.31.16.128/25 -p tcp --dport 80 -j ACCEPT

-d 142.31.16.9 -p tcp --dport 80 -j DROP

- Ticket #3
 - Configurați iptables a.î. doar Admin să poată accesa prin SSH ruterul

```
linux# iptables -F INPUT
linux# iptables -A INPUT -s 214.13.177.2 -p tcp --dport 22 -j ACCEPT
linux# iptables -A INPUT -p tcp --dport 22 -j DROP
```

Chain: INPUT; Policy: ACCEPT

i cth0 j DROP

-s 214.13.177.2 -p tcp --dport 22 -j ACCEPT

-p tcp --dport 22 -j DROP

Chain: FORWARD; Policy: ACCEPT

-s 142.31.16.128/25 -p tcp --dport 80 -j ACCEPT

-d 142.31.16.9 -p tcp --dport 80 -j DROP

- Ticket #4
 - Configurați iptables a.î. sesiunile TCP din LAN să poată fi inițiate doar dinspre interior

linux# iptables -A FORWARD -p tcp --syn -j DROP ???
linux# iptables -A FORWARD -i eth0 -p tcp --syn -j DROP

Chain: INPUT; Policy: ACCEPT

-s 214.13.177.2 -p tcp --dport 22 -j ACCEPT

-p tcp --dport 22 -j DROP

Chain: FORWARD; Policy: ACCEPT

-s 142.31.16.128/25 -p tcp --dport 80 -j ACCEPT

-d 142.31.16.9 -p tcp --dport 80 -j DROP

-i eth0 -p tcp --syn -j DROP

Cuvinte cheie

