M&C MID-II IMP BITS

1) If
$$u = \tan^{-1}(\frac{y}{x})$$
, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} =$

1) If
$$u = \tan^{-1}(\frac{y}{x})$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$

2) If $u = x^2 y \not O(\frac{y}{x})$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =$

$$3) \int_0^\infty x^3 e^{-x} \, dx = ----$$

4) If
$$f(0) = 1$$
, $f^{i}(0) = 1$, $f^{ii}(0) = 1$, $f^{iii}(0) = 1$ Then The Maclaurins Expansion of $f(x)$ is ______

5)The value of
$$f(7/2)$$

6) What is the value of c in Rolle's theorem for
$$f(x)=x+\frac{1}{x}$$
 in $[\frac{1}{2},2]$ is _____

7)
$$\int_0^1 \int_1^2 xy \, dy \, dx =$$

8) The value of C of Cauchy's mean value theorem for the functions
$$f(x) = e^x$$
 and $g(x) = e^{-x} \ln[a, b]$ is _____

9)
$$\int_0^{\frac{\pi}{2}} \sin^7\theta \ d\theta = ----$$

10) If
$$If u = \frac{y}{x}$$
, $v = xy$ Then $\frac{\partial(u,v)}{\partial(x,y)} = \cdots$

11)
$$\int_0^\infty x^6 e^{-2x} \, dx = ----$$

12)
$$\int_0^2 \int_0^x y \, dy \, dx = ----$$

13) The Value of
$$\int_0^1 x^7 (1-x)^3 dx$$
 is______

14) Evaluate
$$\int_0^\infty e^{-2x} x^4 dx =$$

15) If
$$u = 3x+5y$$
 and $v = 4x-3y$ then $\frac{\partial(u,v)}{\partial(x,y)} = \frac{du}{dx}$

16) The value of C of Cauchy's mean value theorem for the functions
$$f(x) = Sinx$$
 and $g(x) = Cosx$ in $[a, b]$ is ______

$$17)\frac{\partial(u,v)}{\partial(x,y)}*\frac{\partial(x,y)}{\partial(u,v)} = \underline{\hspace{1cm}}$$

18)
$$\int_0^1 \int_1^2 \int_2^3 xyz \ dy \ dx \ dz =$$

$$f(x) = \frac{-1}{1+x}, around x = 0 is _____$$

20) If z is a homogeneous function of degree n, then $x^2z_{xx}+2xyz_{xy}+y^2z_{yy}$ 21) The value of C of Lagrange's mean value theorem for $f(x) = e^x \text{ in}[0,1]$ 22) Use the Cauchy's mean value theorem for $f(x)=x^2$ and $g(x)=x^3$ defined in the interval 23) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin x^{7} dx =$ ______ 24) If $u = \frac{xy}{x+y}$, Then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \underline{\hspace{1cm}}$ 25) The minimum value of $x^2 + y^2 + z^2$ given that x + y + z = 3a is _____ 26) The degree of the Homogeneous Function $z = \frac{\sqrt{x} + \sqrt{y}}{x + y}$ 27) $\int_0^{\frac{\pi}{2}} Sin^2\theta \ Cos^4\theta \ d\theta = ----$ 28) Write the Relation Between Beta and Gamma function_____ 29) The value of C of Rolle's Theorem in (-1,1) for $f(x) = x^3 - x$ 30) If $u = x^2 - 2y$, v = x + y, then $\frac{\partial(u,v)}{\partial(x,y)}$ 31) The value of C of Lagrange's mean value theorem for $f(x) = x^2$ in [1,5] 32) The Value of Γ (4.5)_____ 33) If f(x, y) = xy + (x - y) The Stationary Points are____ 34) The value of B(1,2) + B(2,1) is_ 35) If $x = r\cos\theta$, $y = r\sin\theta$, $z = zfind \frac{\partial(x,y,z)}{\partial(r,\theta,z)} =$ ______ 36) $\int_0^3 \int_0^2 xy \, dx \, dy = -----$ 37) The Value of $\int_0^1 x^5 (1-x)^3 dx$ is ______ 38) If $ln - m^2 > 0$ and l < 0 at (a_1,b_1) _____