TRISAZO COMPOUND OR SALT THEREOF AND DYE-BASED POLARIZING FILM CONTAINING THE SAME

Publication number: JP2002105348 Publication date:

2002-04-10

Inventor:

OTA YOSHITERU; HAYASHI SHIGETOSHI

Applicant:

SUMITOMO CHEMICAL CO

Classification:

- international:

G02B5/30; C09B31/00; (IPC1-7): C09B31/20; G02B5/30

C09B31/20; G02B5/30; C09B31/20; C09B31/00;

- european:

Application number: JP20000303254 20001003 Priority number(s): JP20000303254 20001003

Report a data error here

Abstract of JP2002105348

PROBLEM TO BE SOLVED: To provide a dye covering a wavelength region of 500-560 nm in a polarizing film with high dyeability, durability and light resistance intended for liquid crystal projectors. SOLUTION: The objective trisazo compound (or a salt thereof) is shown by the formula (I) (A is a phenyl group having one or two group(s) selected from sulfo and carboxy and optionally having one or two group(s) selected from alkyl and alkoxy groups; R1 and R2 are each H, an alkyl or alkoxy; and B is aminophenyl).

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-105348 (P2002-105348A)

(43)公開日 平成14年4月10日(2002.4.10)

(51) Int. Cl. 7

識別記号

FΙ

テーマコード (参考)

C09B 31/20

G02B 5/30

C09B 31/20 G02B 5/30 2H049

審査請求 未請求 請求項の数4 OL (全5頁)

(21)出願番号	特願2000-303254(P2000-303254)	(71)出願人 000002093
		住友化学工業株式会社
(22)出願日	平成12年10月3日(2000.10.3)	大阪府大阪市中央区北浜4丁目5番33号
		(72)発明者 太田 義輝
		大阪市此花区春日出中3丁目1番98号 住
		友化学工業株式会社内
		(72)発明者 林 成年
		大阪府高槻市塚原2丁目10番1号 住友化
		学工業株式会社内
		(74)代理人 100093285
		弁理士 久保山 隆 (外2名)
		F ターム(参考) 2H049 BA02 BA26 BB43 BC03 BC22

(54) 【発明の名称】トリスアゾ化合物又はその塩及びそれらを含有する染料系偏光膜

(57)【要約】

【課題】 染色性、耐久性、耐光性に優れた液晶プロジェクター用の偏光膜において、500~560 n mの範囲の領域をカバーする染料の提供。

【解決手段】 下式(I)

【化1】

$$A-N=N \longrightarrow N=N \longrightarrow N=N \longrightarrow N+CO-B$$
 (I)

(Aはスルホ及びカルボキシルから選ばれる $1\sim2$ 個の基を有し、更にアルキル及びアルコキシから選ばれる $1\sim2$ 個の基を有してもよいフェニル、R'及びR'は水素、アルキル、アルコキシ、Bはアミノフェニルを表す。)で示されるトリスアゾ化合物又はその塩。

2

[特許請求の範囲] 【請求項1】下式(1)

【化1】

(式中、Aは、スルホ及びカルポキシルから選ばれる1 若しくは2個の基を有し、更に、低級アルキル及び低級 アルコキシから選ばれる1若しくは2個の基を有してい 10 てもよいフェニルを表し、R'及びR'は、同一又は相異 なり、水素、低級アルキル又は低級アルコキシを表し、 Bはアミノフェニルを表す。) で示されるトリスアゾ化 合物又はその塩。

【請求項2】R'及びR'が、同一又は相異なり、水素、 メチル又はメトキシである請求項1に記載のトリスアゾ 化合物又はその塩。

【請求項3】請求項1又は2に記載のトリスアゾ化合物 又はその塩を偏光膜基材に含有してなる染料系偏光膜。

【請求項4】偏光膜基材が、ポリビニルアルコール系の 20 樹脂からなるフィルムである請求項3に記載の染料系偏 光膜。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、トリスアゾ化合物 又はその塩及びそれらを含有してなる染料系偏光膜に関 するものである。

[0002]

【従来の技術】偏光膜は、延伸配向したポリビニルアル コール系のフィルム又は、ポリ塩化ビニルフィルムの脱 30 塩酸若しくはポリビニルアルコール系フィルムの脱水に よりポリエンを生成して配向せしめたポリエン系のフィ ルムなどの偏光膜基材に、偏光素子としてヨウ素や二色 性染料を含有させて製造される。これらのうち、ヨウ素

系偏光膜は、初期偏光性能には優れるものの、熱に対す る耐久性や水に対する耐久性が劣るため、高温・高湿の 状態ではその性能が低下するという問題がある。このよ うな耐久性を向上させるために、ホルムアルデヒド又は ホウ酸を含む水溶液で処理する方法や、透湿度の低い高 分子フィルムを保護膜として用いる方法などが考えられ ているが、未だ十分とはいえない。

【0003】一方、偏光素子として二色性染料を用いた 染料系偏光膜は、ヨウ素系偏光膜に比べて熱及び水に対 する耐久性に優れるものの、一般に初期偏光性能が劣る 傾向があり、特に初期偏光性能に優れた偏光膜用染料が 要望されている。

[0004]

【発明が解決しようとする課題】本発明者は、偏光膜製 造時の染色性が良好であり、偏光性能や、高温、高湿条 件における耐久性及び耐光性に優れ、且つ、高分子フィ ルムに2種類以上の二色性染料を吸着配向させてなる液 晶プロジェクター用途等の偏光膜において、500~5 60nmの範囲の領域をカバーする染料を探索した結果、 特定のトリスアゾ化合物又はその塩が上記目的を達成す ることを見出して、本発明を完成するに至った。

[0005]

【課題を解決するための手段】すなわち、本発明は、

(イ)下式(1)

[0006]

【化2】

【0007】(式中、Aは、スルホ及びカルポキシルか 40 ら選ばれる1若しくは2個の基を有し、更に、低級アル キル及び低級アルコキシから選ばれる1若しくは2個の 基を有していてもよいフェニルを表し、R'及びR'は、 同一又は相異なり、水素、低級アルキル又は低級アルコ キシを表し、Bはアミノフェニルを表す。) で示される トリスアゾ化合物又はその塩、並びに、(ロ)上記

(イ) のトリスアゾ化合物又はその塩を偏光膜基材に含 有してなる染料系偏光膜を提供するものである。

[0008]

及びカルボキシルから選ばれる基を1若しくは2個有し ており、更に、低級アルキル及び低級アルコキシから選 ばれる1若しくは2個の基を有していてもよいフェニル である。上記Aで示されるフェニルとしては、例えば2 -、3-又は4-スルホフェニル、2-、3-又は4-カルボキシフェニル、2,4-又は2,5-ジスルホフ エニル、3,5-ジカルボキシフェニル、2-カルボキ シー4-又は-5-スルホフェニル、2-又は3-メチ ルー4-スルホフェニル、2-又は3-メチル-4-カ ルポキシフェニル、2,5-ジメチル-4-スルホフェ 【発明の実施の形態】上式 (I) におけるAは、スルホ 50 ニル、2, 5-ジメチル-4-カルボキシフェニル、2

-又は3-メトキシ-4-スルホフェニル、2-又は3 ーメトキシー4-カルボキシフェニル、2,5-ジメト キシー4-スルホフェニル、及び、2,5-ジメトキシ - 4 - カルボキシフェニル等が挙げられる。

【0009】R'及びR'は、同一又は相異なり、水素、 低級アルキル又は低級アルコキシであり、該低級アルキ ル及び低級アルコキシとしては、炭素数1~4の直鎖も しくは分岐状のものが好ましい。低級アルキルの具体例 としては、メチル、エチル及びプロピルなどが挙げられ る。また、低級アルコキシの具体例としては、メトキ シ、エトキシ及びプロポキシ等が挙げられる。上記のR '及びR'としては、水素、メチル又はメトキシが好まし く、中でも水素又はメチルが好ましい。

【0010】トリスアゾ化合物 (I) 又はその塩は、例 えば、以下に述べる方法によって製造することができ る。即ち、先ず、下式 (11)

[0011] 【化3】

$$A-N=N \longrightarrow N=N \longrightarrow NH_2 \quad \text{(II)}$$

【0012】(式中、A、R'及びR'は前記の意味を表 す。) で示される化合物を、酸性の水性媒体中、5~4 0℃の条件下で亜硝酸ナトリウムと反応させて、ジアゾ 化する。得られたジアゾ化物を、下式(ІІІ)

[0013]

【化4】

【0014】(式中、Bは前記の意味を表す。)で示さ れる化合物と、水性媒体中、5~40℃、pH6~9の 条件下でカップリング反応させることにより、式(I) で示されるトリスアゾ化合物又はその塩を得ることがで きる。

【0015】上記トリスアゾ化合物(I)が塩の形で存 リウムやカリウム塩のようなアルカリ金属塩、アンモニ ウム塩、及び、エタノールアミン塩やアルキルアミン塩 の様な有機アミン塩等が挙げられる。トリスアゾ化合物 (I) を偏光膜基材に含有させる場合は、ナトリウム塩 の形で用いるのが好ましい。

【0016】トリスアゾ化合物(I)又はその塩を偏光 膜基材に含有させて偏光膜とする場合は、他の有機染料 と併用することにより、色相を補正し、偏光性能を向上 させることができる。この場合に用いられる有機染料と

いが、特に耐光性に優れる染料を選択することにより、 液晶プロジェクター用途に適した偏光膜とすることがで

【0017】かかる有機染料の具体例としては、容易に 入手可能な市販品であり、カラー・インデックス・ジェ ネリック・ネーム (Color Index Generic Name) と商品 名で表して、以下のものが例示され、各商品名のもの は、住友化学工業(株)から販売されている。

[0018]

10 シー・アイ・ダイレクト・イエロー 12 (商品名 Chrysophenine)

シー・アイ・ダイレクト・イエロー 28

(商品名 Sumilight Supra Yellow BC conc.)

シー・アイ・ダイレクト・イエロー 44

(商品名 Direct Fast Yellow GC)

シー・アイ・ダイレクト・オレンジ 26

(商品名 Direct Fast Orange S) シー・アイ・ダイレクト・オレンジ 39

(商品名 Sumilight Supra Orange 2GL 125%)

20 シー・アイ・ダイレクト・オレンジ 107

(商品名 Sumilight Supra Orange GD extra conc.)

シー・アイ・ダイレクト・レッド 2

(商品名 Benzopurpurine 4B)

シー・アイ・ダイレクト・レッド 31

(商品名 Nippon Fast Red BB conc.)

シー・アイ・ダイレクト・レッド 79

(商品名 Sumilight Supra Red 4BL 170%)

シー・アイ・ダイレクト・レッド 81

(商品名 Sumilight Red 4B)

30 シー・アイ・ダイレクト・レッド 247

(商品名 Japanol Fast Red FA)

【0019】本発明の染料系偏光膜(口)は、トリスア ゾ化合物(I)又はその塩からなる、或いは、さらに他 の有機染料を含んでなる二色性染料を偏光膜基材である 高分子フィルムに公知の方法で含有させることにより、 製造することができる。この高分子フィルムとしては、 例えば、ポリビニルアルコール系の樹脂、ポリ酢酸ビニ ル樹脂、エチレン/酢酸ピニル(EVA)樹脂、ナイロ ン樹脂、ポリエステル樹脂などからなるものが利用され 在する場合、その塩としては、例えば、リチウム、ナト 40 る。ここでいうポリビニルアルコール系の樹脂には、ポ リ酢酸ビニルの部分又は完全ケン化物であるポリビニル アルコール自体のほか、ケン化EVA樹脂のような、酢 酸ビニルと他の共重合可能な単量体、例えば、エチレン やプロピレンのようなオレフィン類、クロトン酸やアク リル酸、メタクリル酸、マレイン酸のような不飽和カル ボン酸類、不飽和スルホン酸類、ビニルエーテル類など との共重合体のケン化物、さらにはポリピニルアルコー ルをアルデヒドで変性したポリピニルホルマールやポリ ピニルアセタールなども包含される。偏光膜基材として しては、二色性の高いものであればいかなる染料でもよ 50 は、ポリピニルアルコール系のフィルム、特にポリビニ

5

ルアルコールフィルムが、染料の吸着性及び配向性の点 から、好適に用いられる。

【0020】このような高分子フィルムに二色性染料を 含有させるにあたっては、通常、高分子フィルムを染色 する方法が採用される。染色は、例えば次のようにして 行うことができる。まず、二色性染料を水に溶解して染 浴を調製する。染浴中の染料濃度は特に制限されない が、通常は0.0001~10重量%の範囲から選択さ れる。また、必要により染色助剤を用いてもよく、例え ば、芒硝を染浴中で1~10重量%用いるのが好適であ 10 る。このようにして調製した染浴に高分子フィルムを浸 漬し、染色を行う。染色温度は、好ましくは40~80 ℃である。二色性染料の配向は、高分子フィルムを延伸 することによって行われる。延伸する方法としては、例 えば湿式法や乾式法など、公知のいずれの方法を採用し てもよい。高分子フィルムの延伸は、染色の前に行って も、染色の後に行ってもよい。

【0021】二色性染料を含有させ、配向させた高分子 フィルムは、必要に応じて、公知の方法によりホウ酸処 理などの後処理が施される。このような後処理は、偏光 20 膜の光線透過率、偏光度及び耐久性を向上させる目的で 行われる。ホウ酸処理の条件は、用いる高分子フィルム の種類や用いる染料の種類によって異なるが、一般的に

は、ホウ酸水溶液のホウ酸濃度を1~15重量%、好ま しくは5~10重量%の範囲とし、処理は30~80 ℃、好ましくは50~80℃の温度範囲で行われる。さ らには必要に応じて、カチオン系高分子化合物を含む水 溶液でフィックス処理を併せて行ってもよい。

【0022】このようにして得られる染料系偏光膜は、 その片面又は両面に、光学的透明性及び機械的強度に優 れる保護膜を貼合して、偏光板とすることができる。保 護膜を形成する材料は、従来から使用されているもので よく、例えば、セルロースアセテート系フィルムやアク リル系フィルムのほか、四フッ化エチレン/六フッ化プ ロピレン共重合体のようなフッ素樹脂系フィルム、ポリ エステル系フィルム、ポリオレフィン系フィルム、ポリ アミド系フィルムなどが用いられる。

[0023]

【実施例】以下、実施例により本発明をさらに詳細に説 明するが、本発明はこれらの例により、何ら限定される ものではない。例中の「%」及び「部」は、特記ない限 り、重量%及び重量部である。

【0028】で示される化合物4.7部を水50部に加

30 えて、常温でpH7.5に調整した。攪拌下に、先に得

たジアゾ体を2時間かけて仕込み、更に2時間保温し

【0024】実施例1

下式 (1)

[0025]

て、下式 (3)

[0029]

【化7】

【化5】

$$NaO_3S \longrightarrow N=N \longrightarrow NH_2 \qquad (1)$$

【0026】で示される化合物4.5部と亜硝酸ナトリ ウム1.08部をを水90部とN-メチルピロリドン4 5部の混合液に加え、常温で攪拌しながら、35%塩酸 10部を加えて、2時間攪拌し、ジアゾ体を得た。他 方、遊離酸の形が下式 (2)

[0027]

【化6】

$$_{\text{HO}_{3}}$$
S $_{\text{NHCO}}$ $_{\text{NH}_{2}}$ $_{\text{NH}_{2}}$ $_{\text{NH}_{2}}$

$$_{\text{HO}_3}$$
S $_{\text{NHCO}}$ $_{\text{NH}_2}$ $^{\text{NH}_2}$ $^{\text{CH}}$

【0030】で示されるトリスアゾ化合物を得た。該化 合物は、水性媒体中で入max549nmを示した。

【0031】実施例2

原料化合物を変更する以外は、実施例1に準拠すること により、それぞれ、下式(4)、(5)、(6)、

(7) 及び(8) で示されるトリスアゾ化合物の塩を得 ることができる。

[0032]

(化8)

$$(1 \ 9)$$

$$N = N$$

$$N$$

$$\begin{array}{c} \text{(ft 1 0)} \\ \text{NaO}_{3}\text{S} \\ \text{NaO}_{3}\text{S} \\ \text{NaO}_{3}\text{S} \\ \text{NaO}_{3}\text{S} \\ \text{NHCO} \\ \text{NH}_{2} \\ \text{NH}_{2} \\ \text{NH}_{3}\text{C} \\ \text{NH}_{4}\text{C} \\ \text{NH}_{4}\text{C} \\ \text{NH}_{5}\text{C} \\ \text{N$$

$$(7)$$

$$(1 \times 1 \times 1)$$

$$(7)$$

$$(7)$$

$$(7)$$

[0036]

【0037】 実施例3

厚さ75μm のポリビニルアルコールフィルム [クラレ 30] ピニロン#7500、(株)クラレ製品]を縦一軸に5 倍延伸して、偏光膜基材とした。このポリビニルアルコ ールフィルムを緊張状態に保ったまま、実施例1で得ら れた式(3)で示されるトリスアゾ化合物の塩を0.0 25%、染色助剤である芒硝を2.0%の濃度とした7 0℃の水溶液に浸漬した。次に78℃の7.5%ホウ酸 水溶液に5分間浸漬したのち取り出して、20℃の水で 20秒間洗浄し、50℃で乾燥することにより、偏光膜 を得た。得られた偏光膜のAmax (膜の延伸方向の透過 率が最小となる波長) は550nmであり、この偏光膜は 40 高い偏光度を有し、高温・高湿の状態でも長時間にわた る耐久性を示した。また、長時間暴露に対する耐光性に も優れていた。

【0038】 実施例4

染色浴の温度を65℃に、またホウ酸処理の温度を73 ℃に変更して、実施例3と同様の処理を施すことにより

偏光膜を得た。得られた偏光膜の入max は550nmであ った。この偏光膜は高い偏光度を有し、高温・高湿の状 態でも長時間にわたる耐久性を示した。また、長時間暴 露に対する耐光性にも優れていた。

【0039】実施例5

式(3)で示されるトリスアゾ化合物の塩0.025% に加えて、シー・アイ・ダイレクト・オレンジ39を0. 01%用いた他は、実施例3と同様の方法により偏光膜 を得た。得られた偏光膜は、高い偏光度を有し、高温・ 高湿の条件下での耐久性と長時間暴露に対する耐光性に 優れていた。該偏光膜の入max は540nmであった。

[0040]

【発明の効果】本発明の染料系偏光膜は、沃素を用いた 偏光膜に匹敵する高い偏光性能を示し、又、耐久性と長 時間暴露に対する耐光性に優れるので、各種液晶表示 体、なかでも高い偏光性能と耐光性を必要とする液晶プ ロジェクター用途に好適である。