Decision Trees and Ensemble Learning

Wenting Tu

SHUFE, SIME

Machine Learning and Deep Lerning

Course No. 1638

Outline

Decision Trees

Ensemble Learning

• Definition

A classical decision tree classifies data cases using a conjunction of rules organized into a binary tree structure.

Definition

Each internal node in a classical decision tree contains a rule of the form $x_d \le \theta$ or $x_d = \theta$ that tests a single data dimension d against a single value θ and assigns the data case to it's left or right sub-tree according to the result.

Definition

A data case is routed through the tree from the root to a leaf. Each leaf node is associated with a class, and a data case is assigned the class of the leaf node it is routed to.

• Partitioning of the Input Space

 Typically, Decision trees are learned using recursive greedy algorithms that select the variable and threshold at each node from top to bottom.

• The learning algorithm begins with all data cases at the root of the tree.

- The algorithm selects a variable and a threshold to split on according to a heuristic.
- The algorithm applies the chosen rule and assigns each data case to the left or right sub-tree.

• The algorithm then recurses on the child nodes until a given stopping condition is satisfied.

- The algorithm then recurses on the child nodes until a given stopping condition is satisfied.
- When the stopping condition is satisfied, the current node is a leaf in the tree. It is typically assigned a label that corresponds to the most common label of the data cases it contains.

- Top-down greedy algorithm
 - · Start with a single leaf node containing all data
 - · Loop through the following steps:
 - Pick the leaf to split that reduces uncertainty the most.
 - Figure out the split rule on one of the dimensions.

Decision Function for Classification Trees

$$y(x_n) = \sum_{m=1}^{M} c_m \cdot \mathbb{I}\left\{x_{n \in R_m}\right\}$$

or

$$\widehat{p}\left(\mathcal{C}_{k}|x_{n}\right) = \sum_{m=1}^{M} p_{k}^{m} \cdot \mathbb{I}\left\{x_{n \in R_{m}}\right\}$$

Solution for Classification Trees

$$\{R_{1}, \dots, R_{M}\} \longrightarrow c_{m} \text{ or } p_{k}^{m}?$$

$$c_{m} = \max_{k} \sum_{x_{n} \in R_{m}} \mathbb{I} \{t_{n} = k\}$$

$$p(C_{k}|\mathbf{x}) = \sum_{m=1}^{M} p_{k}^{m} \cdot \mathbb{I} \{\mathbf{x} \in R_{m}\}$$

$$p_{k}^{m} = \frac{1}{|R_{m}|} \sum_{x_{n} \in R_{m}} \mathbb{I} \{t_{n} = k\}$$

Solution for Classification Trees

$$p_k^m \longrightarrow \{R_1,\ldots,R_M\}$$
?

which (j, s) is best?

$$R^{-}(j,s) = \{x_i \in R | x_i(j) \le s\}$$

$$R^{+}(j,s) = \{x_i \in R | x_i(j) > s\}$$

Loss Function for Classification Trees

Choices for
$$E(R_m)$$
, given $p_k^m = \frac{1}{|R_m|} \sum_{x_n \in R_m} \mathbb{I}\{t_n = k\}$

- · Classification error $1 \max_k p_k^m$
- · Entropy $-\sum_k p_k^m \ln p_k^m$
- · Gini index $1 \sum_{k} (p_k^m)^2$

Solution for Classification Trees

$$p_{k}^{m} \longrightarrow \{R_{1}, \dots, R_{M}\}?$$

$$p_{k}^{m}, p_{k}^{m+}, p_{k}^{m-} \longrightarrow E(R_{m}), E(R_{m}^{+}), E(R_{m}^{-})$$

$$L(j, s) = \left(p_{R_{m}^{-}} \cdot E(R_{m}^{-}) + p_{R_{m}^{+}} \cdot E(R_{m}^{+})\right) - E(R_{m})$$

$$(j^{*}, s^{*}) = \underset{(j, s)}{\operatorname{arg min}} L(j, s)$$

(j,s)

$$R^{-}(j,s) = \{x_i \in R | x_i(j) \le s\}$$

 $R^{+}(j,s) = \{x_i \in R | x_i(j) > s\}$

Stopping Criteria

• The main stopping criteria used are all data cases assigned to a node have the same label, the node is at the maximum allowable depth...

Decision Function for Regression Trees

$$y(x_n) = \sum_{m=1}^{M} c_m \cdot \mathbb{I}\left\{x_{n \in R_m}\right\}$$

Decision Function for Regression Trees

$$y(x_n) = \sum_{m=1}^{M} c_m \cdot \mathbb{I}\left\{x_{n \in R_m}\right\}$$

Decision Function for Regression Trees

$$y(x_n) = \sum_{m=1}^{M} c_m \cdot \mathbb{I}\left\{x_{n \in R_m}\right\}$$

Solution for Regression Trees

$$\{R_1,\ldots,R_M\}\longrightarrow c_m$$

Solution for Regression Trees

$$c_{m} \longrightarrow (R_{1}, \dots, R_{M})$$

$$E(R_{m}) = \sum_{x_{n \in R_{m}}} (t_{n} - c_{m})^{2} = \sum_{x_{n \in R_{m}}} (t_{n} - \operatorname{ave}(t_{n} \mid x_{n \in R_{m}}))^{2}$$

$$c_{m}, c_{m+}, c_{m-} \longrightarrow E(R_{m}), E(R_{m}^{+}), E(R_{m}^{-})$$

$$L(j, s) = \left(p_{R_{m}^{-}} \cdot E(R_{m}^{-}) + p_{R_{m}^{+}} \cdot E(R_{m}^{+})\right) - E(R_{m})$$

$$(j^{*}, s^{*}) = \underset{(j, s)}{\operatorname{arg min}} L(j, s)$$

(j,s)

$$R^{-}(j,s) = \{x_i \in R | x_i(j) \le s\}$$

$$R^{+}(j,s) = \{x_i \in R | x_i(j) > s\}$$

Pre-pruning/Early stopping
 Stop splitting when not statistically significant

• Post-pruning

Grow, then post-prune

Outline

Decision Trees

Ensemble Learning

Ensemble Learning

Stacking

Bagging

Random Forest

Boosting

$$Y_M(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^M \alpha_m y_m(\mathbf{x})\right)$$

1. Initialize the data weighting coefficients $\{w_n\}$ by setting $w_n^{(1)} = 1/N$ for $n = 1, \dots, N$

- 2. For m = 1, ..., M:
- (a) Fit a classifier $y_m(x)$ to the training data by minimizing the weighted error function

$$J_{m} = \sum_{n=1}^{N} w_{n}^{(m)} I\left(y_{m}\left(\mathbf{x}_{n}\right) \neq t_{n}\right)$$

where $I\left(y_m\left(\mathbf{x}_n\right) \neq t_n\right)$ is the indicator function and equals 1 when $y_m\left(\mathbf{x}_n\right) \neq t_n$ and 0 otherwise.

- 2. For m = 1, ..., M:
- (b) Evaluate the quantities

$$\epsilon_{m} = \frac{\sum_{n=1}^{N} w_{n}^{(m)} I\left(y_{m}\left(\mathbf{X}_{n}\right) \neq t_{n}\right)}{\sum_{n=1}^{N} w_{n}^{(m)}}$$

and then use these to evaluate

$$\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}$$

- 2. For m = 1, ..., M:
- (c) Update the data weighting coefficients

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{\alpha_m I\left(y_m\left(\mathbf{x}_n\right) \neq t_n\right)\right\}$$

3. Make predictions using the final model, which is given by

$$Y_M(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^M \alpha_m y_m(\mathbf{x})\right)$$

Gradient Boosting

Gradient Boosting for Regression

$$J = \sum_{i} L(t_i, F(x_i))$$

$$L(t, F(x)) = (t - F(x))^2/2$$

$$F(x))^2/$$

$$\frac{\partial J}{\partial F(x_i)} = \frac{\partial \sum_{i} L(t_i, F(x_i))}{\partial F(x_i)} = \frac{\partial L(t_i, F(x_i))}{\partial F(x_i)} = F(x_i) - t_i$$

$$\frac{\partial J}{\partial \overline{J}}$$

$$t_i - F(x_i) = -\frac{\partial J}{\partial F(x_i)}$$

$$\mathbf{F}(\mathbf{r}_i)$$

$$f\left(x_{i}\right)=t_{i}-F\left(x_{i}\right)$$

Update
$$F: F^{new}(x) = F^{old}(x) + f(x)$$

Gradient Boosting

- LightGBM [link]
- Xgboost [link]

Thanks

Some images and slides are from the internet. If related to copyright, please contact me.

tu.wenting@mail.shufe.edu.cn