2. Groups and Functions between Groups

2.1 Groups

A group is a nonempty set G with a law of composition $G \times G \to G$, $(g_1,g_2) \mapsto g_1g_2$, satisfying:

- 1. Associative: $\forall g1,g2,g3 \in G$, (g1g2)g3=g1(g2g3)
- 2. Identity: $1 \in G$ s.t. $\forall g \in G, g1 = 1g = g$
- 3. Inverse: $\forall g \in G, \exists g^{-1} \in G \text{ s.t. } gg^{-1} = g^{-1}g = 1$

Examples: \mathbb{Z}^+ , \mathbb{Q}^{\times} , S_n , A_n , $\mathbb{Z}/n\mathbb{Z}$, $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$

If the law of composition is commutative, i.e. $\forall g_1,g_2\in G$, $g_1g_2=g_2g_1$, then G is an abelian group. \iff multiplication table is symmetric along diagonal

Prop. A group G admits the Cancellation Law: $ac = bc \rightarrow a = b$

The order of a group G is the number of elements in its underlying set, and is denoted by |G|. If $|G| < \infty$, G is a finite group; otherwise infinite group.

2.2 Permutations

Let X be a set. The set of all bijections of X, $P(X) = \{f : X \to X | f \text{ is bijective}\}$ with the law of composition the composition of functions form a group, called the permutation group on X:

- 1. Composition of functions is associative
- 2. The identity element is the identity function on X
- 3. The inverse of $f \in P(X)$ is its inverse function f^{-1}

If $X = \{1, 2, ..., n\}$, we call the permutation group of n letters S_n .

A cycle $(a_1,...,a_k) \in S_n$, where $a_1,...,a_k$ are distinct numbers between 1 and n, is the function sending a_1 to a_2 , a_2 to $a_3,...,a_k$ to a_1 , while keeping the other numbers fixed.

Two cycles $(a_1,...,a_k)$ and $(b_1...b_m)$ in S_n are disjoint if $a_1,...,a_k$, $b_1,...,b_m$ are all distinct numbers.

$$S_2 = \{id, (12)\}$$

$$S_3 = \{id, (12), (13), (23), (123), (132)\}$$

2.3 Subgroups

A subgroup H of a group G is a subset of G satisfying:

- 1. Closure: $\forall a,b \in H \rightarrow ab \in H$
- 2. Identity: $1 \in H$
- 3. Inverse: $\forall a \in H \rightarrow a^{-1} \in H$

Prop. A nonempty subset H is a subgroup of $G \iff \forall a,b \in H \to a^{-1}b \in H.$

Examples: G and $\{1\}$; $G=\mathbb{R}^+$, $H=\mathbb{Z}$

$$GL_n(\mathbb{R})$$
; $SL_n(\mathbb{R})=\{A\in GL_n(\mathbb{R})|\det(A)=1\}$ is a subgroup, since $\det(A^{-1}B)=\det(A^{-1})\det(B)=1$

2.4 Subgroups of Z

If H is a subgroup of \mathbb{Z} , then $H = a\mathbb{Z}$ for some $a \in \mathbb{N}$.

Given two integers a,b. Define the greatest common divisor of a and b to be the positive integer d such that $d\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}$ (which is a subgroup of \mathbb{Z}).

Prop. If $d = \gcd(a, b)$ then:

- 1. $d \mid a, d \mid b$.
- 2. $\exists r, s \in \mathbb{Z}$ s.t. ar + bs = d.
- 3. If $c \mid a, c \mid b$, then $c \mid d$.

Two nonzero integers a, b are relatively prime if their $\gcd(a,b)=1$, i.e., $a\mathbb{Z}+b\mathbb{Z}=\mathbb{Z}$.

Cor. relatively prime $\iff \exists r,s \in \mathbb{Z} \text{ s.t. } ar+bs=1$

Cor. p is a prime number and $a,b\in\mathbb{Z}$. If $p\mid ab$, then $p\mid a$ or $p\mid b$.

2.5 Cyclic Groups and Cyclic Subgroups

G is a group. $x \in G$. The cyclic subgroup of G generated by x is the set of all powers of x: $< x > = \{x^k \in G | k \in \mathbb{Z}\}.$

Prop. $x \in G$. Let $S = \{k \in \mathbb{Z} | x^k = 1\}$, then S is a subgroup of \mathbb{Z} .

H is a subgroup of G. Define the order of H to be the number of elements in H, denoted by |H|.

The order of an element g in G is defined as the order of the cyclic subgroup it generates, i.e., |g| = | < g > |.

$$|g|=egin{cases} \min\{k\in\mathbb{Z}|k>0,g^k=1\} & ext{if the set is nonempty and thus has a min} \ \infty & ext{otherwise} \end{cases}$$

When $|g| < \infty, < g >= \{1, g, g^2, ..., g^{|g|-1}\}.$

When $|g|=\infty$, $< g>=\{...,g^{-2},g^{-1},1,g,g^2,...\}.$

Prop. If |g|=n, then $g^k=1\iff n\mid k$. $g^l=g^m\iff n\mid l-m$.

If G=< g> for some $g\in G$, we say G is a cyclic group generated by g, and g is a generator of G.

Examples: $\mathbb{Z}^+ = <1> = <-1>$; K_4 (4 elements) and S_3 (6 elements) are not cyclic

Prop. Every subgroup of a cyclic group is a cyclic subgroup. (pf. S is a subgroup of \mathbb{Z} .)

2.6 Homomorphisms and Normal Subgroups

G and G' are groups. A homomorphism $f:G\to G'$ is a function sayisfying $\forall a,b\in G$, f(ab)=f(a)f(b). That is, the function is compatible with the group structures.

Prop. A homomorphism $f: G \to G'$ maps identity to identity, and inverse to inverse:

1.
$$f(1) = 1'$$

2.
$$\forall g \in G, f(g)^{-1} = f(g^{-1})$$

f:G o G' is a homomorphism, define

the kernel of f to be $\ker(f) = \{g \in G | f(g) = 1'\}$

the image of f to be $Im(f)=\{f(g)\in G'|g\in G\}$

Prop. $\ker(f)$ is a subgroup of G, $\operatorname{Im}(f)$ is a subgroup of G'.

Prop. $f: G \to G'$ is a homomorphism, then f is injective $\iff \ker(f) = \{1\}$.

Example: $x \in G$, $f: Z \to G$, $f(k) = x^k$ is a homomorphism

$$\ker(f) = \{k \in \mathbb{Z} | x^k = 1\} = egin{cases} \{0\}, & |x| = \infty \ |x|\mathbb{Z}, & |x| < \infty \end{cases}$$

$$\operatorname{Im}(f) = \{x^k \in G | k \in \mathbb{Z}\} = < x >$$

Example: f:G o G', $f(g)=1'\ orall g\in G$ is a homomorphism

$$\ker(f) = G$$
, $\operatorname{Im}(f) = \{1'\}$ Note: $|\ker(f)| \cdot |\operatorname{Im}(f)| = |G|$

G is a group. The conjugation of $x \in G$ by $g \in G$ is the element $gxg^{-1} \in G$. We say x and gxg^{-1} are conjugate elements.

A subgroup N of G is called a normal subgroup if $\forall n \in N, \forall g \in G, gng^{-1} \in N$.

For a subgroup N of G, the following are equivalent:

- 1. N is a normal subgroup of G
- 2. $\forall g \in G, gNg^{-1} \subseteq N$ (equivalent to 1 by definition)
- 3. $\forall g \in G, gNg^{-1} = N$

Example: If G is an abelian group, then any subgroup of G is a normal subgroup of G.

Example: We have shown that $SLn(R)=\ker \det$, so by the above proposition, $SL_n(\mathbb{R})$ is a normal subgroup of $GL_n(\mathbb{R})$.

The centre of a group G is the subset $Z(G) = \{g \in G | gx = xg \text{ for any } x \in G\}$.

G is abelian $\iff Z(G) = G$.

Z(G) is a normal subgroup of G.

2.7 Isomorphisms and Automorphisms

An isomorphism is a bijective homomorphism.

Two groups G and G' are called isomorphic if there exists an isomorphism $\phi:G\to G'$, and we write $G\cong G'$. Intuitively, isomorphic groups have the same algebraic structures, and share all the algebraic properties. We can interpret an isomorphism as "a change of name" for the elements in the group.

Example: If G=< x> in an infinite cyclic group, then $\phi: \mathbb{Z} \to G$, $k\mapsto x^k$ is an isomorphism. We've proved ϕ is a homomorphism. $\ker(f)=\{k\in \mathbb{Z}|a^k=1\}=\{0\}$ \to injective. Definition of G=< x> \to surjective. So bijective homomorphism.

Examples: $Aut(\mathbb{Z}/n\mathbb{Z})\cong (\mathbb{Z}/n\mathbb{Z})^{\times}$

$$Aut(\mathbb{Z})\cong \{\pm 1\}$$

$$Aut(S_3) \cong S_3$$

Prop. The inverse of an isomorphism is also an isomorphism.

An isomorphism $\phi:G o G$ of a group to itself is called an automorphism of G.

Example: $\phi: \mathbb{Z} \to \mathbb{Z}$, $k \mapsto -k$ is an automorphism.

Example: If G is a group, $g \in G$, then there is an automorphism of G given by conjugation $\phi: G \to G$, $x \mapsto gxg^{-1}$.

The group of automorphisms of G, denoted by Aut(G), is the set of all automorphisms of G with the law of composition to be composition of functions,

Note: The identity of Aut(G) is id_G . The inverse of $f \in Aut(G)$ is its inverse function f^{-1} .

The inner automorphism group of a group G is the subgroup $Inn(G)=\{\phi_g\in Aut(G)|g\in G\}.$

where $\phi_g:G o G$, $x\mapsto gxg^{-1}$.

Inn(G) is a normal subgroup of Aut(G).