Census ensemble methods

November 19, 2022

Import necessary Libraries

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
[2]: data = pd.read_csv('adult.csv',sep=',')
[3]: data.head()
[3]:
        age workclass
                       fnlwgt
                                  education
                                             education.num marital.status
     0
         90
                        77053
                                    HS-grad
                                                          9
                                                                   Widowed
     1
                                    HS-grad
         82
              Private
                       132870
                                                          9
                                                                   Widowed
     2
         66
                       186061
                               Some-college
                                                         10
                                                                   Widowed
     3
         54
             Private
                       140359
                                    7th-8th
                                                          4
                                                                  Divorced
     4
         41
              Private
                       264663
                               Some-college
                                                         10
                                                                 Separated
               occupation
                            relationship
                                           race
                                                     sex
                                                         capital.gain
     0
                           Not-in-family White
                                                 Female
                                                                     0
     1
          Exec-managerial
                           Not-in-family
                                          White
                                                 Female
                                                                     0
     2
                                                                     0
                               Unmarried Black
                                                 Female
     3
        Machine-op-inspct
                               Unmarried White
                                                 Female
                                                                     0
     4
           Prof-specialty
                               Own-child White
                                                 Female
                     hours.per.week native.country income
        capital.loss
     0
                                  40 United-States <=50K
                4356
                4356
     1
                                  18 United-States <=50K
     2
                4356
                                  40 United-States <=50K
     3
                3900
                                  40 United-States <=50K
     4
                3900
                                  40 United-States <=50K
    Data Pre-Processing & Statistics
[4]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 32561 entries, 0 to 32560
    Data columns (total 15 columns):
                         Non-Null Count Dtype
         Column
```

0	age	32561 non-null	int64			
1	workclass	32561 non-null	object			
2	fnlwgt	32561 non-null	int64			
3	education	32561 non-null	object			
4	education.num	32561 non-null	int64			
5	marital.status	32561 non-null	object			
6	occupation	32561 non-null	object			
7	relationship	32561 non-null	object			
8	race	32561 non-null	object			
9	sex	32561 non-null	object			
10	capital.gain	32561 non-null	int64			
11	capital.loss	32561 non-null	int64			
12	hours.per.week	32561 non-null	int64			
13	native.country	32561 non-null	object			
14	income	32561 non-null	object			
dtypes int64(6) object(9)						

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

[5]: data.describe(include='all')

5-3								,
[5]:		age wor		•	education			\
	count	32561.000000	32561	3.256100e+04		32561.	000000	
	unique	NaN	9	Nal	J 16		NaN	
	top	NaN P	rivate	Nal	W HS-grad		NaN	
	freq	NaN	22696	Nal	N 10501		NaN	
	mean	38.581647	NaN	1.897784e+0	5 NaN	10.	080679	
	std	13.640433	NaN	1.055500e+0	5 NaN	2.	572720	
	min	17.000000	NaN	1.228500e+04	1 NaN	1.	000000	
	25%	28.000000	NaN	1.178270e+0	5 NaN	9.	000000	
	50%	37.000000	NaN	1.783560e+0	5 NaN	10.	000000	
	75%	48.000000	NaN	2.370510e+0	5 NaN	12.	000000	
	max	90.000000	NaN	1.484705e+06	S NaN	16.	000000	
		marital.status 32561 7 Married-civ-spouse P		occupation 1	relationship	race	sex	\
	count			32561		32561	32561	
	unique			15	6	5	2	
	top			f-specialty	Husband	White	Male	
	freq			4140		27816	21790	
	mean		IaN	NaN		NaN	NaN	
	std	N	IaN	NaN	NaN	NaN	NaN	
	min		JaN	NaN	NaN	NaN	NaN	
	25%		JaN	NaN	NaN	NaN	NaN	
	50%		JaN	NaN	NaN	NaN	NaN	
	75%		laN	NaN	NaN NaN	NaN	NaN	
			ian Ian	NaN NaN	NaN	NaN NaN	NaN NaN	
	max	1\	Ian	Ivalv	nan	Ivalv	NaN	

	capital.gain	capital.loss	hours.per.week	<pre>native.country</pre>	income
count	32561.000000	32561.000000	32561.000000	32561	32561
unique	NaN	NaN	NaN	42	2
top	NaN	NaN	NaN	United-States	<=50K
freq	NaN	NaN	NaN	29170	24720
mean	1077.648844	87.303830	40.437456	NaN	NaN
std	7385.292085	402.960219	12.347429	NaN	NaN
min	0.000000	0.000000	1.000000	NaN	NaN
25%	0.000000	0.000000	40.000000	NaN	NaN
50%	0.000000	0.000000	40.000000	NaN	NaN
75%	0.000000	0.000000	45.000000	NaN	NaN
max	99999.000000	4356.000000	99.000000	NaN	NaN

[6]: data.describe().T

[6]:		count	mean	std	min	25%	\
	age	32561.0	38.581647	13.640433	17.0	28.0	
	fnlwgt	32561.0	189778.366512	105549.977697	12285.0	117827.0	
	education.num	32561.0	10.080679	2.572720	1.0	9.0	
	capital.gain	32561.0	1077.648844	7385.292085	0.0	0.0	
	capital.loss	32561.0	87.303830	402.960219	0.0	0.0	
	hours.per.week	32561.0	40.437456	12.347429	1.0	40.0	

	50%	75%	max
age	37.0	48.0	90.0
fnlwgt	178356.0	237051.0	1484705.0
education.num	10.0	12.0	16.0
capital.gain	0.0	0.0	99999.0
capital.loss	0.0	0.0	4356.0
hours.per.week	40.0	45.0	99.0

[7]: data.isnull().sum()

0 [7]: age workclass 0 fnlwgt 0 0 education education.num 0 0 marital.status occupation0 0 relationship0 race 0 sex capital.gain 0 capital.loss 0 hours.per.week 0 native.country 0

```
0
      income
      dtype: int64
 [8]: data.isna().sum()
 [8]: age
                        0
      workclass
                        0
                        0
      fnlwgt
      education
                        0
      education.num
                        0
      marital.status
      occupation
                        0
      relationship
                        0
                        0
      race
      sex
                        0
      capital.gain
                        0
      capital.loss
                        0
      hours.per.week
                        0
      native.country
                        0
      income
                        0
      dtype: int64
 [9]: # Check for '?' in dataset
      round((data.isin(['?']).sum() / data.shape[0])
            * 100, 2).astype(str) + ' %'
 [9]: age
                         0.0 %
      workclass
                        5.64 %
                         0.0 %
      fnlwgt
      education
                         0.0 %
      education.num
                         0.0 %
      marital.status
                         0.0 %
      occupation
                        5.66 %
                         0.0 %
      relationship
      race
                         0.0 %
                         0.0 %
      sex
                         0.0 %
      capital.gain
      capital.loss
                         0.0 %
                         0.0 %
      hours.per.week
      native.country
                         1.79 %
                         0.0 %
      income
      dtype: object
[10]: # Checking the counts of label categories
      income = data['income'].value_counts(normalize=True)
      round(income * 100, 2).astype('str') + ' %'
```

```
[10]: <=50K
              75.92 %
     >50K
              24.08 %
     Name: income, dtype: object
```

[11]: data.corr()

[11]:		age	${ t fnlwgt}$	education.num	capital.gain	capital.loss	\
	age	1.000000	-0.076646	0.036527	0.077674	0.057775	
	fnlwgt	-0.076646	1.000000	-0.043195	0.000432	-0.010252	
	education.num	0.036527	-0.043195	1.000000	0.122630	0.079923	
	capital.gain	0.077674	0.000432	0.122630	1.000000	-0.031615	
	capital.loss	0.057775	-0.010252	0.079923	-0.031615	1.000000	
	hours.per.week	0.068756	-0.018768	0.148123	0.078409	0.054256	

hours.per.week 0.068756 age fnlwgt -0.018768 education.num 0.148123 capital.gain 0.078409 capital.loss 0.054256 hours.per.week 1.000000

Heatmap

```
[12]: plt.figure(figsize=(20,15))
      sns.heatmap(data.corr(),annot= True,linewidths=1, linecolor="white", cbar=True,
                  cmap = "CMRmap",xticklabels="auto", yticklabels="auto")
      plt.savefig('heatmap.png')
```



```
[13]: from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()

[14]: data['income'] = le.fit_transform(data['income'])

[15]: columns_with_nan = ['workclass', 'occupation', 'native.country']

[16]: for col in columns_with_nan:
    data[col].fillna(data[col].mode()[0], inplace=True)

[17]: from sklearn.preprocessing import LabelEncoder
    for col in data.columns:
        if data[col].dtypes == 'object':
            encoder = LabelEncoder()
            data[col] = encoder.fit_transform(data[col])

[18]: corr_data = data.corr('spearman').stack().reset_index(name='corr')
    corr_data.loc[corr_data['corr'] == 1, 'corr'] = 0 # Remove diagonal
    # Use abs so that we can visualize the impact of negative correaltion
```

```
corr_data['abs'] = corr_data['corr'].abs()
      corr_data.sort_values('abs', ascending=False).head(n=5)
[18]:
                  level_0
                                  level_1
                                               corr
                                                           abs
      142
                             relationship -0.617570 0.617570
                      sex
      114
             relationship
                                      sex -0.617570 0.617570
      5
                      age marital.status -0.374850 0.374850
      75
           marital.status
                                      age -0.374850 0.374850
      217
                             relationship -0.329913 0.329913
                   income
[19]: X = data.drop('income', axis=1)
      Y = data['income']
[20]: from sklearn.model selection import train test split
      from sklearn.metrics import accuracy_score
      X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3,__
       \negrandom_state = 42)
     Model Building & Model Training
[21]: from sklearn.tree import ExtraTreeClassifier
      from sklearn.ensemble import BaggingClassifier
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.ensemble import VotingClassifier
      from sklearn.tree import DecisionTreeClassifier
[22]: extra model = ExtraTreeClassifier()
      extra model.fit(X,Y)
      feature_imp = extra_model.feature_importances_
[23]: for index, val in enumerate(feature_imp):
          print(index, round((val * 100), 2))
     0 13.63
     1 4.04
     2 16.31
     3 3.5
     4 9.02
     5 1.41
     6 7.23
     7 14.86
     8 1.56
     9 5.0
     10 9.06
     11 2.75
     12 9.78
     13 1.85
[24]: X.info()
```

```
RangeIndex: 32561 entries, 0 to 32560
     Data columns (total 14 columns):
          Column
                         Non-Null Count Dtype
          ----
                         -----
      0
                         32561 non-null int64
          age
      1
          workclass
                         32561 non-null int32
      2
          fnlwgt
                         32561 non-null int64
      3
                         32561 non-null int32
          education
      4
          education.num
                         32561 non-null int64
      5
          marital.status 32561 non-null int32
      6
                         32561 non-null int32
          occupation
      7
          relationship
                         32561 non-null int32
      8
                         32561 non-null int32
          race
      9
          sex
                         32561 non-null int32
      10 capital.gain
                         32561 non-null int64
      11 capital.loss
                         32561 non-null int64
      12 hours.per.week 32561 non-null int64
      13 native.country 32561 non-null int32
     dtypes: int32(8), int64(6)
     memory usage: 2.5 MB
[25]: X.columns
[25]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education.num',
             'marital.status', 'occupation', 'relationship', 'race', 'sex',
             'capital.gain', 'capital.loss', 'hours.per.week', 'native.country'],
           dtype='object')
[26]: X = X.drop(['workclass', 'education', 'race', 'sex',
                  'capital.loss', 'native.country'], axis=1)
[27]: rf = RandomForestClassifier()
     rf.fit(X_train,y_train)
[27]: RandomForestClassifier()
[28]: y_pred = rf.predict(X_test)
     RF Accuracy
[29]: accuracy_score(y_test,y_pred)
[29]: 0.8566895280990889
     Bagging Accuracy
[31]: cls = BaggingClassifier(rf, random_state=0).fit(X_train, y_train)
     cls.score(X_test, y_test)
```

<class 'pandas.core.frame.DataFrame'>

[31]: 0.858941549800389 Extra Tree Classifier Accuracy [32]: extra_tree = ExtraTreeClassifier(random_state=0) cls_extra = BaggingClassifier(extra_tree, random_state=0).fit(X_train, y_train) cls_extra.score(X_test, y_test) [32]: 0.8418466577950661 [33]: clf1 = ExtraTreeClassifier(random_state=0) clf2 = RandomForestClassifier() clf3 = DecisionTreeClassifier() Voting Classifier [34]: eclf1 = VotingClassifier(estimators=[('ETC', clf1), ('RF', clf2), ('DT', clf3), ('Bagging', cls)], voting='hard') [35]: eclf1 = eclf1.fit(X, Y) print(eclf1.predict(X)) [0 0 0 ... 1 0 0] [36]: eclf2 = VotingClassifier(estimators=[('ETC', clf1), ('RF', clf2), ('DT', clf3), ('Bagging', cls)], voting='soft') [37]: eclf2 = eclf2.fit(X, Y)print(eclf2.predict(X)) [0 0 0 ... 1 0 0]

[]: