- □ En LDP, una PDU está formada por:
 - Cabecera LDP.
 - Uno o más mensajes LDP que puede que no estén relacionados entre sí.

- □ Cabecera LDP:
 - Versión (16b): contiene la versión del protocolo.
 - Longitud de la PDU (16b): contiene la longitud en octetos de la PDU
 - Sin incluir los campos de versión y el propio de la longitud.
 - Identificador de LDP (48b): contiene el LDP id, con la forma <LSRid : número de espacio de etiquetas>.

- Mensaje LDP:
 - Cabecera.
 - Parámetros obligatorios y opcionales.
 - Tanto la cabecera como los parámetros se codifican mediante un esquema TLV (*Type-Length-Value*).

- □ Formato del mensaje LDP:
 - Bit U (*Unknown message bit*): se emplea cuando se recibe un mensaje desconocido.
 - Si U=0: se envía una notificación al origen de que se ha recibido un mensaje desconocido.
 - Si U=1: se ignora dicho mensaje.
 - Tipo de mensaje (15b).

Octetos	1		3	4								
	U	Tipo de mensaje	Longitud	d del mensaje								
	ID de mensaje											
	Parámetros obligatorios											
	Parámetros opcionales											

- □ Formato del mensaje LDP:
 - Longitud del mensaje (16b): longitud en octetos de los campos:
 - ID de mensaje + parámetros obligatorios + parámetros opcionales.
 - □ ID de mensaje (32b): Número que identifica el mensaje.
 - Los siguientes mensajes que estén relacionados con este tendrán el mismo identificador.
 - Los campos de parámetros se estudian para cada mensaje.

Octetos	1	2		3	4							
	U	Tipo de mensaje		Longitud d	el mensaje							
	ID de mensaje											
	Parámetros obligatorios											
	Parámetros opcionales											

- □ El formato de los parámetros más comunes (tipo TLV):
 - Bit U (*Unknown TLV bit*): se emplea cuando se recibe un TLV desconocido.
 - Si U=0: se envía una notificación al origen de que se ha recibido un TLV desconocido.
 - Si U=1: se ignora dicho TLV y se procesa el resto del mensaje como si ese TLV no existiera.
 - Bit F (*Forward unknown TLV bit*): se emplea solo cuando U=1 y el mensaje LDP conteniendo el TLV desconocido debe reenviarse.
 - Si F=0: el TLV desconocido no debe reenviarse con el resto del mensaje.
 - Si F=1: el TLV desconocido debe reenviarse con el resto del mensaje.

- □ El formato de los parámetros más comunes (tipo TLV):
 - Campo Tipo (14b): describe como debe interpretarse el campo Valor.
 - Campo Longitud (16b): incluye la longitud del campo Valor medido en octetos.
 - Campo Valor: contiene información que se interpreta en función del campo Tipo.
 - Puede contener otro TLV anidado.

- Notificación
- □ Hello
- ☐ Inicialización
- □ *KeepAlive*
- □ Dirección
- □ Desistimiento de dirección
- Mapeo de etiqueta
- □ Solicitud de etiqueta
- □ Solicitud de anulación de etiqueta
- □ Desistimiento de etiqueta
- □ Liberación de etiqueta

- Mensaje de notificación:
 - Para informar a un peer de un error fatal, avisar respecto al procesamiento de un mensaje, avisar del estado de una sesión LDP...
 - Algunos de los más habituales son:
 - PDU o mensaje mal formados.
 - TLV mal formado o desconocido.
 - Expiración del temporizador de mantenimiento de sesión (keepalive).
 - Cierre unilateral de sesión.
 - Mensajes de eventos de inicialización.
 - Eventos que son resultado de otros errores.

■ Mensaje Hello:

- Se intercambian para el descubrimiento de adyacencias LDP.
- Pueden ser 'link hellos' o 'targeted hellos'.
- □ Tipo de mensaje: 0x0100.
- Parámetros obligatorios (parámetros *hello* comunes):
 - Hold time: tiempo que el LSR emisor mantendrá su registro de hellos del LSR receptor sin la recepción de otro hello.
 - Si Hold time = 0 → Se emplea el valor por defecto (15s para link hellos y 45s para targeted hellos).
 - Hay un temporizador que se resetea cada vez que se recibe un mensaje hello.
 - Si expira el temporizador → Se borra la adyacencia.
 - Bit T: especifica el tipo de mensaje hello:
 - T=1: targeted hello.
 - T=0: link hello
 - Bit R: solicitud de envío de mensajes targeted hellos.
 - R=1: se le solicita al receptor que envíe mensajes targeted hello de forma periódica al origen de este hello.
 - R=0: no se hace tal petición.

Universidad

LDP: mensajes

- ☐ Mensaje de inicialización:
 - Para solicitar el establecimiento de una sesión LDP.
 - □ Tipo de mensaje: 0x0200.
 - Se especifican algunos parámetros importantes como:
 - Tiempo keepAlive: número máximo de segundos que pueden transcurrir entre la recepción de dos PDUs de LDP consecutivas.
 - El temporizador *keepAlive* se resetea cada vez que se recibe una nueva PDU de LDP.
 - Bit A: indica el tipo de anuncio:
 - A=0: downstream unsolicited.
 - A=1: downstream on demand
 - Bit D: se emplea para la detección de bucles.
 - Límite del vector de camino (PVLim): número máximo de LSRs grabados en el vector de camino empleado para la detección de bucles.
 - Longitud máxima de PDU: por defecto, la longitud máxima de PDU permitida es de 4096 octetos.
 - Identificador de receptor LDP: identifica el espacio de etiquetas del receptor.
 Distribución de etiquetas en MPLS

- Mensaje KeepAlive:
 - Parte del mecanismo para monitorizar la integridad de una sesión LDP.
 - Tipo de mensaje: 0x0201.
 - No tiene parámetros obligatorios ni opcionales.
- Mensajes de dirección y de desistimiento de dirección:
 - Antes de enviar los mensajes de mapeo y de solicitud de etiquetas, un LSR anuncia las direcciones de sus interfaces usando mensajes de dirección.
 - Las direcciones que han sido anunciadas previamente pueden anularse usando un mensaje de desistimiento de dirección.

- ☐ Mensaje de mapeo de etiquetas (*Label Mapping*):
 - Un LSR emplea este mensaje para anunciar a los peers LDP acerca del mapeo de una etiqueta a un determinado FEC.
 - □ Tipo de mensaje: 0x0400.
 - El mensaje contiene dos TLVs obligatorios:
 - TLV FEC:
 - Un FEC puede ser el prefijo de una dirección IP o puede ser la dirección completa de un host destino.
 - TLV etiqueta:
 - Especifica la etiqueta asociada con el FEC dado.
 - TLVs opcionales:
 - Label Request Message ID TLV:
 - Si el mapeo es la respuesta a un mensaje de solicitud, debe incluir el id del mensaje al cual está respondiendo.
 - Hop Count TLV:
 - Especifica el número de saltos del LSP que está siendo establecido.
- Universidad Path Vector TLV:

Distribución de etiquetas en MPLS

Indica el vector de LSRs por los que pasa el LSP que está siendo establecido.

☐ Mensaje de solicitud de etiqueta (Label Request):

- Un LSR envía un mensaje de solicitud de etiqueta a un peer LDP para solicitar el mapeo para un FEC determinado.
- □ Tipo de mensaje: 0x0401.
- Como parámetro obligatorio se tiene TLV FEC (igual que el definido para el mensaje de mapeo de etiquetas).
- Un LSR puede transmitir un mensaje de solicitud de etiqueta bajo las siguientes condiciones:
 - Se reconoce un nuevo FEC a través de la tabla de reenvío, el siguiente salto es un peer LDP y no se dispone de un mapeo para el siguiente salto de dicho FEC.
 - El siguiente salto para un FEC cambia y el LSR todavía no tiene un mapeo para el FEC dado.
 - El LSR recibe una solicitud de etiqueta para un FEC desde un peer LDP *upstream*, el siguiente salto del FEC es un peer LDP y el LSR todavía no tiene un mapeo del siguiente salto.

- ☐ Mensaje de solicitud de anulación de etiqueta:
 - Para abortar un mensaje de solicitud de etiqueta pendiente.
 - Por ejemplo, si cambia el siguiente salto para un determinado FEC, ya no estamos interesados en la información.
- Mensaje de desistimiento de etiqueta:
 - Un LSR A usa un mensaje de este tipo para avisar a un LSR B que no puede continuar usando un mapeo FEC-etiqueta concreto que A había anunciado previamente.
- Mensaje de liberación de etiqueta:
 - Un LSR A envía un mensaje de este tipo a un LSR B para indicar a LSR B que LSR A no necesita un mapeo específico FEC-etiqueta que fue anteriormente solicitado y/o anunciado por el peer.

CR-LDP: Contrained-based Routing LDP

- □ Temas a tratar:
 - Introducción.
 - CR-LSP.
 - Características básicas.
 - Establecimiento de CR-LSP.
 - Mensaje de solicitud de etiqueta.
 - Mensaje de mapeo de etiqueta.
 - TLV de parámetros de tráfico.
 - Clases de servicio.

CR-LDP: introducción

- CR-LDP: LDP para encaminamiento basado en restricciones.
- □ RFC 3212, RFC3213 y RFC3214 (2002).
- □ CR-LDP es un protocolo de señalización basado en LDP.
- Se emplea para establecer un LSP unidireccional punto a punto que siga una ruta explícita, llamado LSP con encaminamiento con restricciones (CR-LSP).
- □ Un LSP bidireccional se establece creando dos LSPs separados, uno en cada dirección.

CR-LDP: CR-LSP

- Un LSP se establece como resultado de la información de encaminamiento de una red IP usando el algoritmo de ruta más corta.
- Un CR-LSP se calcula en el origen basándose en información no solo del encaminamiento IP sino que puede indicarse una ruta explícita o basada en QoS.
- □ La ruta se señaliza a los nodos por los que pasa.
- □ Esta técnica de encaminamiento se llama "source routing".

- □ CR-LDP puede usarse, por ejemplo, para:
 - Balancear la carga en una red IP.
 - El objetivo es distribuir la carga por la red de manera que parte de la carga de los enlaces más utilizados se distribuya por los enlaces menos utilizados.
 - Creación de túneles para VPNs basadas en MPLS.
 - Emplear rutas basadas en un criterio de QoS como:
 - Mínimo número de saltos.
 - Mínimo retardo extremo a extremo.
 - Máximo throughput.

□ Ejemplo:

- La ruta que devuelve OSPF para ir de LSR1 a LSR7 es LSR5→LSR6.
- Usando CR-LDP se puede establecer una ruta que, por ejemplo, tenga un retardo extremo a extremo inferior, como podría ser LSR2→LSR3→LSR4.
 - Pese a tener un mayor número de saltos, si estos enlaces no tienen una utilización alta pueden ser más rápidos.

CR-LDP: Características básicas

□ Características básicas de CR-LDP:

- CR-LDP se basa en LDP, usando TCP por fiabilidad.
- La máquina de estados de CR-LDP no requiere el refresco periódico.
- Permite la definición de rutas de manera tanto estricta como imprecisa:
 - Permite que el nodo de ingreso a la red tenga cierto grado de desconocimiento de la topología de la red.
 - Route pinning: fija el camino a través de una ruta definida de manera imprecisa, aunque esta ruta no cambia aun cuando se disponga de un mejor camino disponible.
- Permite la especificación de parámetros de tráfico:
 - Tasa de pico, tasa comprometida...
 - ... y funciones policía.
- Permite desalojo de otras rutas (preemption):
 - Si no se encuentra una ruta para un CR-LSP de alta prioridad pueden reencaminarse CR-LSP de menor prioridad para que la primera pueda establecerse.
- Clasificación de recursos:
 - El operador de red puede clasificar los recursos de red en clases llamadas "colores" o "grupos administrativos".
 - Cuando se establece un CR-LSP se puede especificar qué clases de recursos pueden emplearse.

CR-LDP: Características básicas

- □ CR-LDP necesita los siguientes mensajes y funcionalidades de LDP:
 - Mecanismo de descubrimiento básico y/o extendido.
 - Mecanismo de detección de bucles para encaminamiento impreciso.
 - Mensajes:
 - Mensaje de solicitud de etiqueta para DoD con control ordenado.
 - Mensaje de asociación de etiqueta para DoD con control ordenado.
 - Mensajes de notificación.
 - Mensajes de desistimiento y liberación.

CR-LDP: Establecimiento de CR-LSP

- □ Los CR-LSP se establecen usando DoD con control ordenado.
- □ Ejemplo:

CR-LDP: Establecimiento de CR-LSP

- □ El LSR de entrada calcula la ruta explícita:
 - Usando información de un sistema de gestión, una aplicación o una tabla de rutas.
- □ El LSR de entrada genera el mensaje de solicitud de etiqueta.
 - □ Contiene el TLV llamado ER-TLV → Explicit Route TLV.
 - ER-TLV contiene la ruta.
- □ El LSR de entrada envía el mensaje de solicitud de etiqueta al primer LSR indicado en ER-TLV.
- □ El LSR receptor reenvía el mensaje al siguiente LSR de la lista en ER-TLV → Este paso se repite hasta que llega el LSR de salida.
- □ El LSR de salida devuelve un mensaje de mapeo de etiqueta que atraviesa la red en sentido contrario y formando el camino CR-LSP.

□ F(ormato):			1									2										3	
0 1 2	3 4 5	6	7 8	9		1 2	3	4	5 (5 7	,	8	9	0	1	2	3	4	5	6	7	8	9	0	1
0	Lab	el re	equest	t (0x	(04 ()1)									M	ess	sag	e le	ng	th					
Message id																									
FEC TLV																									
LSPID TLV (mandatory)																									
ER-TLV (optional)																									
Traffic parameters TLV (optional)																									
Pinning TLV (optional)																									
Resource class TLV (optional)																									
Preemption TLV (optional)																									

□ LSPID TLV:

- LSPID: identificador único de un CR-LSP.
- El LSPID se compone del ID del LSR de entrada (o alguna de sus direcciones IPv4) junto con un ID de CR-LSP que es localmente único a ese LSR de entrada.
- Es útil para:
 - Gestión de red.
 - La reparación de un CR-LSP.
 - Puede emplearse para usar un CR-LSP ya establecido como un salto en un ER-TLV.

- □ *Explicit Route* TLV (ER-TLV):
 - Especifica el camino del LSP.
 - Se compone de uno o más *ER-hops* (saltos ER).

0	1								2										3												
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
0	0												Le	ng	th																
	ER-hop TLV 1																														
	•																														
	• •																														
	ER-hop TLV n																														

- □ *ER-hops TLV*:
 - Especifica el valor de cada salto.

- Tipo: puede ser uno de los siguientes valores:
 - Prefijo IPv4, prefijo IPv6, número de sistema autónomo o LSPID.
- Longitud del contenido.
- Bit L:
 - 0: se trata de un salto definido de forma estricta.
 - 1: se trata de un salto definido de forma imprecisa.
- Valor: nodo o conjunto de nodos.

- □ Resource class TLV:
 - Indica las clases de recursos (enlaces) que pueden emplearse para establecer el CR-LSP.
- □ Preemption TLV (desalojo):
 - Para asignar una prioridad en el establecimiento (*SetPrio*) y en el mantenimiento (*HoldPrio*) del CR-LSP.
 - Estas prioridades se emplean para determinar si un nuevo CR-LSP puede desalojar a otro CR-LSP ya existente:
 - Asignar un alta prioridad de mantenimiento indica que el CR-LSP, una vez establecido, tiene menos probabilidad de ser desalojado.
 - Asignar una alta prioridad de establecimiento indica que, en el caso de escasez de recursos, el CR-LSP tiene una alta probabilidad de desalojar a otros CR-LSP ya existentes.

CR-LDP: Mensaje de mapeo de etiqueta

■ Label request message id: si este mensaje es la respuesta a un mensaje de solicitud de etiqueta previo, debe contener su "message id".

- Describe los parámetros de tráfico del CR-LSP que se está solicitando (solicitud de etiqueta) o estableciendo (mapeo de etiqueta).
- □ Formato:

0	1	2									
0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	6 7 8 9 0 1 2 3	4 5 6 7 8 9 0 1								
0 0 Type (0x0810)	Length									
Flags	Flags Frequency Reserved Weight										
Peak data rate (PDR)											
Peak burst size (PBS)											
	Committed data rate (CDR)										
Committed burst size (CBS)											
Excess burst size (EBS)											

- □ Peak Data Rate (PDR) y Peak Burst Size (PBS):
 - Definen la tasa máxima (en bytes/s) a la que se envía tráfico al CR-LSP.
 - Se define mediante un token bucket P:
 - Tamaño del token bucket (bytes): PBS.
 - Tasa de relleno del token bucket (bytes/s): PDR.

□ Ejemplo de *token bucket* P con llegada superior a PDR:

- □ Commited Data Rate (CDR) y Commited Burst Size (CBS):
 - El tráfico que sale de P entra a la red y pasa por una función policía definida mediante el token bucket C:
 - Tamaño del token bucket (bytes): CBS.
 - Tasa de relleno del token bucket (bytes/s): CDR.
 - La salida de C cumple con la tasa comprometida (commited rate) y es la cantidad de ancho de banda que debe reservarse al CR-LSP.

- □ Además del token bucket C es posible emplear un segundo token bucket que haga de función policía: token bucket E o token bucket de exceso:
 - Tamaño del token bucket (bytes): EBS.
 - Tasa de relleno del token bucket (bytes/s): CDR.
 - C y E conjuntamente funcionan del siguiente modo:
 - Los paquetes pasan primero por C y, si no lo superan, pasan a E.
 - La acción a tomar cuando el tamaño de un paquete recibido supera el contador de token depende de la implementación, pero una opción razonable es:
 - Si el paquete supera C → Entra en la red.
 - Si el paquete no supera C pero supera E → Marcamos el paquete como eligible de descarte (o de baja prioridad).
 - Si el paquete no supera C ni después E porque no quedan tokens → Se descarta.

□ Ejemplo de *token buckets* C y E:

CR-LDP: TLV de parámetros de tráfico

□ Flags:

- Indican si los parámetros de tráfico solicitados son negociables (flag=1) o no (*flag*=0).
- El mensaje de mapeo de etiqueta puede reemplazar algún valor solicitado (PDR, PBS, CDR, CBS, EBS o peso) por un valor inferior.

■ 8 bits:

F2 | F1 | F5 F4 | F3 | F6 Resv

F1: corresponde a PDR. F2: corresponde a PBS.

F3: corresponde a CDR.

F4: corresponde a CBS.

F5: corresponde a EBS.

F6: corresponde al peso.

☐ Peso:

- Indica el peso del CR-LSP cuando hay exceso de ancho de banda por encima de la tasa comprometida a compartir.
- Entre 1 y 255 (0 indica que no se le aplica el peso).

CR-LDP: clases de servicio

- □ Podemos crear diferentes clases de servicio:
 - Configurando PDR, PBS, CDR, CBS y EBS.
 - Determinando las reglas de marcado y descarte de paquetes.
- □ Ejemplos:
 - Servicio sensible al retardo: la red se compromete a transmitir paquetes con tasa PDR con un retardo mínimo. Los paquetes que superen PDR se descartan.
 - Servicio sensible al throughput: la red se compromete a transmitir paquetes con una tasa de al menos CDR. El usuario puede transmitir con una tasa superior a CDR pero los paquetes que excedan esa tasa tienen una menor probabilidad de ser transmitidos.
 - Best effort: no hay garantías de servicio.

CR-LDP: clases de servicio

Parámetros de tráfico	Sensible al retardo	Sensible al throughput	Best effort
PDR	-	-	Infinito
PBS	-	-	Infinito
CDR	PDR	-	Infinito
CBS	PBS	-	Infinito
EBS	0	0	0
Descarte/ marcado	Descarte > PDR	Descarte > PDR,PBS Marcado >CDR. CBS	Ninguno

□ Temas a tratar:

- Introducción.
- Estilos de reserva.
- Nuevos objetos RSVP-TE.
- Extensiones RSVP-TE.

- □ RSVP-TE es una extensión de RSVP.
- □ RFC 3209, "RSVP-TE: extensions to RSVP for LSP tunnels" (2001).
- □ RSVP es un protocolo de señalización usado para el establecimiento y mantenimiento de reserva de recursos tanto para aplicaciones unicast como multicast.
- □ RSVP se diseñó para soportar la arquitectura IntServ, aunque puede usarse para transportar otros tipos de información de control → Se propuso su uso en MPLS.
- □ Concepto de sesión:
 - RSVP: flujo de datos con una dirección IP destino e id de protocolo.

- □ RSVP-TE usa DoD con control ordenado para establecer LSPs.
 - Implementado usando los mensajes PATH y RESV aumentados con nuevos objetos.
- □ RSVP-TE puede usarse para establecer LSPs que usen las tablas de rutas o para rutas explícitas.
 - Las rutas explícitas se definen usando un nuevo objeto: EXPLICIT_ROUTE.
 - EXPLICIT_ROUTE encapsula los saltos que determinan un camino.
 - Se permiten rutas estrictas o imprecisas.
- RSVP-TE permite la reserva de recursos para el LSP usando reservas RSVP estándar junto con las clases de servicio de IntServ.
 - La reserva de recursos es opcional.
 - Ejemplos de LSPs que no requieren reserva de recursos:
 - Para tráfico best effort.
 - Implementar caminos de respaldo (backup).

□ Establecimiento de un LSP:

- □ LSR de entrada:
 - Manda un mensaje PATH con el objeto LABEL REQUEST: nuevo objeto que indica la solicitud de una asociación de etiqueta.
 - Si se solicita una ruta explícita, en el mensaje PATH se inserta el objeto EXPLICIT_ROUTE.
- LSR siguiente salto:
 - Se reenvía el mensaje PATH al siguiente salto, que puede ser:
 - El indicado en las tablas de rutas.
 - El indicado en EXPLICIT_ROUTE.
 - Si es incapaz de aceptar el nuevo LSP devuelve un mensaje PATHERR.

- □ Establecimiento de un LSP (cont.):
 - □ LSR de salida:
 - Responde al mensaje PATH con un mensaje RESV que contiene el objeto LABEL y que se envía por el camino inverso al seguido por PATH.
 - LSR de siguiente salto:
 - Cada LSR que recibe el mensaje RESV con un objeto LABEL usa esa etiqueta para el tráfico de salida asociado con el LSP.
 - Genera una nueva etiqueta y la pone en el objeto LABEL y reenvía el mensaje RESV al salto anterior del LSP.
 - Acaba el establecimiento del LSP cuando el LSR de entrada recibe el mensaje RESV.

65

RSVP-TE: Estilos de reserva

- ☐ Estilos de reserva RSVP:
 - Wildcard-Filter (WF)
 - Fixed-Filter (FF)
 - Shared Explicit (SE).
- WF no se usa en RSVP-TE.
- □ El LSR de salida puede usar FF o SE para un LSP, pudiendo escoger diferentes estilos para diferentes LSPs.

RSVP-TE: Estilos de reserva

☐ Estilo FF:

- Cada LSP tiene su propia reserva en cada LSR del camino.
- Cada LSR emplea una etiqueta única para cada LSR de entrada.

☐ Estilo SE:

- Permite al LSR de salida especificar en una lista explícitamente los LSRs a ser incluidos en una misma reserva.
- Hay una reserva única en cada LSR para todos los LSRs especificados en esa lista.
- Pueden crearse LSPs multipunto a punto o un único LSP por LSR de entrada.

- □ Los mensajes en RSVP-TE son similares a los de RSVP, aunque conviene destacar los nuevos objetos definidos en RSVP-TE.
- □ RSVP-TE introduce 5 nuevos objetos respecto a RSVP:
 - LABEL (en RESV).
 - LABEL_REQUEST (en PATH).
 - EXPLICIT_ROUTE (en PATH).
 - RECORD_ROUTE (en PATH y RESV).
 - SESSION_ATTRIBUTE (en PATH).

□ Objeto LABEL:

- Se emplea en el mensaje RESV para anunciar una etiqueta.
- Las etiquetas recibidas en mensajes RESV por diferentes interfaces se consideran siempre diferentes aunque coincida su valor.

□ Objeto LABEL_REQUEST:

- Solicita una asociación de etiqueta para el camino.
- Contiene el tipo de etiqueta que se está solicitando:
 - Tipo 1: etiqueta genérica.
 - Tipo 2: etiqueta ATM.
 - Tipo 3: etiqueta *Frame Relay*.

□ Objeto EXPLICIT_ROUTE:

- Especifica los saltos de la ruta específica solicitada.
- □ Cada salto puede ser un LSR único (ruta estricta, bit L=0) o un grupo de LSRs (ruta imprecisa, bit L=1).

□ Objeto RECORD_ROUTE:

- Cuando se indica una ruta imprecisa pueden formarse bucles (especialmente en estados transitorios de los protocolos de encaminamiento).
- En este objeto puede guardarse la dirección IP de los LSRs que intervienen para detectar bucles.
- También pueden guardarse las etiquetas.
- Puede aparecer en los mensajes PATH y RESV.

□ Objeto SESSION_ATTRIBUTE:

Contiene información sobre la prioridad (entre 0 y 7, siendo 0 la máxima prioridad) de mantenimiento de reservas y la prioridad a la hora de reservar recursos, además de afinidad por ciertos recursos.

□ Ejemplo de establecimiento de ruta explícita con RSVP-TE:

RSVP-TE: Extensiones RSVP-TE

- □ RSVP se definió para la reserva de recursos para flujos de datos entre un origen y un destino.
- □ Conforme aumenta el número de flujos:
 - Se incrementa la sobrecarga de RSVP en la red debido a los mensajes de refresco continuos que son necesarios.
 - La memoria para almacenar información del estado de los caminos y la cantidad de procesamiento requerido en los routers también se incrementa.
 - RSVP no escala bien → RSVP-TE hereda dicho problema.
- □ Soluciones para aliviar los problemas de escalado:
 - Mecanismo de entrega fiable que reduce la necesidad de mensajes de refresco:
 - Se definen dos nuevos objetos: MESSAGE_ID y MESSAGE_ID_ACK.
 - Definición del mensaje Srefresh: nuevo mensaje que hace un resumen del refresco que debe realizarse.

CR-LDP vs. RSVP-TE

	CR-LDP	RSVP-TE
Transporte	TCP/UDP	IP
Encaminamiento explícito	Estricto e impreciso	Estricto e impreciso
Desalojo de LSPs	Basado en prioridades	Basado en prioridades
Mensajes	Label Request Label Mapping	PATH RESV
Modo establecimiento LSPs	DoD con control ordenado	DoD con control ordenado
Estado	Hard	Soft

□ El establecimiento de LSPs de manera explícita es la base de la ingeniería de tráfico (TE – *Traffic Engineering*) con MPLS.

Bibliografía

- □ H. Perros, "Connection-oriented Networks: SONET/SDH, ATM, MPLS and Optical Networks", John Wiley & Sons, 2005.
- □ L. De Ghein, "MPLS Fundamentals", Cisco Press, 2007.
- □ V. Alwayn, "Advanced MPLS Design and Implementation", Cisco Press, 2001.
- □ RFC 5036, "LDP specification", 2007.
- □ RFC 3212, "Constraint-base LSP setup using LDP", 2002.
- □ RFC 3209, "RSVP-TE: extensions to RSVP for LSP tunnels", 2001.

