Introduction to Organic Chemistry

Organic Compounds

Elements that most organic compounds contain:

- All organic compounds contain carbon.
- Most also contain hydrogen
- Others may contain elements such as oxygen, nitrogen or a halogen.

Homologous Series

- A homologous series is a family of compounds with the **same general formula and similar chemical properties.**
- Each homologous series has a general formula.
 - Subsequent members of organic compounds in the same homologous series differ by a chemical formula of \ce{-CH_2}

Functional Group

- A functional group is a group of atoms that are bonded together in a way that is unique
 to that particular homologous series. The functional group is responsible for a
 compound's characteristic chemical properties.
- As they possess the same functional group, members of the same homologous series will react in a similar way to one another.

Alkanes and Alkenes

Properties

	Alkane	Alkene
Saturated or Unsaturated?	Saturated hydrocarbon. An alkane contains only single covalent bonds between carbon atoms, \ce{C-C}.	Unsaturated hydrocarbon. An alkene contains a double covalent bond between carbon atoms, \ce{C=C}
General Formula	\ce{C_nH_{2n + 2}}	\ce{C_nH_{2n+2}}

Using Prefixes to Name Organic Compounds

Prefix	Number of Carbon	Name of Alkane	Name of Alkene
meth-	1	methane	-
eth-	2	ethane	ethene

Prefix	Number of Carbon	Name of Alkane	Name of Alkene
prop-	3	propane	propene
but-	4	butane	butene
pent-	5	pentane	pentene

Properties

- E.g. Boiling point, Melting point, Electrical conductivity (physical properties).
- For Organic Chemistry: Viscosity (physical) and Flammability (Chemical)

Viscosity

- Measure of "thickness" and stickiness of a liquid
- · Ability of fluid to flow

Flammability

- Chemical property: The ability of a chemical to burn or ignite, causing fire or combustion.
- Can compare flashpoints: GENERALLY higher flashpoint, lower flammability.

Trends: MP and BP (physical)

Trend and Explanation

The melting points and boiling points of the alkanes generally increases as *relative molecular mass* increases.

- Larger molecules have stronger intermolecular forces of attraction.
- More energy is required to overcome the stronger intermolecular forces of attraction.
- higher MP and BP.

Trends: Flammability (chemical)

Trend and Explanation

The flashpoints of the alkanes and alkenes generally increases as *relative molecular mass* increases \rightarrow flammability decreases.

- larger molecules have stronger intermolecular forces of attraction, thus less volatile (likelihood of existing as a gas)
- larger molecules also have higher percentage of carbon → requires more oxygen to burn → less flammable.

Trends: Viscosity (Physical)

Trend and Explanation

As relative molecular mass increases, the liquid alkanes and alkenes have higher viscosity.

- larger molecules have stronger intermolecular forces of attraction.
- harder for liquid containing larger molecules to flow.

Summary

The gradual change in properties can be observed in **all** homologous series as a result of the *increase in molecular mass of molecules down the homologous series*.

Isomerism

Definition

Isomerism is the phenomenon where **compounds (isomers) have the same molecular** formula but different structural formulae.

- Do not have to be of the same homologous series.
- Different homologous series can have the same molecular formula.