Symmetric & Orthogonal Spectra Name:

Due at the beginning of class on 15 April 2024

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: [Mal23, Sections 6.1 and 6.2] and [Sch23, Section 1].

- (1) Let X be a symmetric spectrum such that Σ_n acts trivially on X_n for all n.
 - (a) Prove that the orbit space $(S^n)_{\Sigma_n}$ is contractible for all $n \ge 2$, with Σ_n -action on S^n by permutation of coordinates, viewing S^n as the one-point compactification of \mathbb{R}^n .
 - (b) Show that the (naive) homotopy groups of X are trivial.
- (2) A symmetric ring spectrum is a symmetric spectrum R together with $\Sigma_n \times \Sigma_m$ -equivariant multiplication maps $\mu_{n,m} \colon R_n \wedge R_m \to R_{n+m}$ and unit maps $\iota_0 \colon S^0 \to R_0$ and $\iota_1 \colon S^1 \to R_1$ satisfying associativity, unit, multiplicativity, and centrality conditions (see [Sch07, Definition 1.3]).
 - Show that an orthogonal ring spectrum in the sense above is a monoid in the monoidal category of symmetric spectra, with smash product as in [Mal23, Definition 6.2.1].
- (3) Cobordism of manifolds is captured by the spectrum MO. Read about this spectrum in [Mal23, Example 2.1.20] and [Sch07, Example 1.16].
 - (a) Prove that there is a pullback square of vector bundles

$$\begin{array}{ccc} \gamma_{\mathfrak{n}} \oplus \gamma_{\mathfrak{m}} & \longrightarrow & \gamma_{\mathfrak{n}+\mathfrak{m}} \\ & & & \downarrow \\ & & & \downarrow \\ BO(\mathfrak{n}) \times BO(\mathfrak{m}) & \longrightarrow & BO(\mathfrak{n}+\mathfrak{m}), \end{array}$$

where $\gamma_k \to BO(k)$ is the tautological bundle.

- (b) Use the pullback square to produce maps $MO(n) \wedge MO(m) \rightarrow MO(n+m)$ for all $n, m \geq 0$.
- (c) Define unit maps $\iota_0 \colon S^0 \to MO(0)$ and $\iota_1 \colon S^1 \to MO(1)$.

REFERENCES

- [Mal23] Cary Malkiewich. Spectra and stable homotopy theory. http://people.math.binghamton.edu/malkiewich/spectra_book_draft.pdf, October 2023.
- [Sch07] Stefan Schwede. An untitled book project about symmetric spectra. http://www.math.uni-bonn.de/people/schwede/SymSpec.pdf, 2007.
- [Sch23] Stefan Schwede. Lectures on equivariant stable homotopy theory. http://www.math.uni-bonn.de/people/schwede/equivariant.pdf, 2023.