# High-dimensional Cost-constrained Regression via Non-convex Optimization

### Guan Yu

June 5th, 2018

Department of Biostatistics
The State University of New York at Buffalo

This is joint work with Dr. Yufeng Liu and Dr. Haofa Fu

### Outline

- Research Problem
- Method
- Theoretical Properties
- Simulation Study
- Application to a diabetes study

### High Dimensional Cost-constrained Regression

Consider the following linear regression model

$$y = x^T \beta^0 + \epsilon,$$

where

$$x = (x_1, x_2, \dots, x_p)^T$$
,  $E(x) = 0$ ,  $Cov(x) = \Sigma$ ,  $E(\epsilon) = 0$ ,  $Var(\epsilon) = \sigma^2$ .

In practice, we need to spend money on collecting data. Suppose we need to spend  $c_j$  dollars on collecting the value of the j-th predictor  $x_j$  and our budget is C dollars. Assume that C is small and therefore our proposed model can only use a few predictors.

### Question:

How to find a predictive linear model that satisfies the budget constraint and has good prediction performance?

### High Dimensional Cost-constrained Regression

The regression coefficient vector of the best cost-constrained regression model is

$$\beta^* \in \arg\min_{\beta} \mathbb{E}[(y - \sum_{j=1}^p x_j \beta_j)^2] \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\beta_j) \le C$$

$$= \arg\min_{\beta} \mathbb{E}[(\sum_{j=1}^p x_j \beta_j^0 + \epsilon - \sum_{j=1}^p x_j \beta_j)^2] \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\beta_j) \le C$$

$$= \arg\min_{\beta} (\beta - \beta^0)^T \mathbf{\Sigma}(\beta - \beta^0) \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\beta_j) \le C,$$

where  $\mathcal{I}(\beta_j)$  is an indicator function which equals to 1 if  $\beta_j \neq 0$  and 0 otherwise.

### High Dimensional Cost-constrained Regression

Given the training data  $\{Y, \mathbf{X}\}$ , it is natural to estimate  $\beta^*$  by solving the following sample-average approximation (SAA) problem

$$\min_{\beta} \frac{1}{2n} \|Y - \mathbf{X}\beta\|_2^2 \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\beta_j) \le C.$$

- This problem can be viewed as a generalized best subset selection problem (the case with  $c_1 = c_2 = \cdots = c_p$ ).
- The constraint  $\sum_{j=1}^{p} c_j \mathcal{I}(\beta_j) \leq C$  makes this problem NP-hard.
- Even for the best subset selection problem, in order to find the global solution, most state-of-the-art algorithms do not scale to problems with more than 30 variables (Bertsimas et al. (2016)).

# The difference between $\beta^*$ and $\beta^0$

Since we aim to find the best cost-constrained regression model, the parameter of interest is  $\beta^*$  rather than  $\beta^0$  in the true linear model.

$$\beta^* = \arg\min_{\beta} (\beta - \beta^0)^T \mathbf{\Sigma} (\beta - \beta^0) \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\beta_j) \le C,$$

Denote  $S = \{j : \beta_j^0 \neq 0\}.$ 

- If  $\sum_{j=1}^{p} c_j \mathcal{I}(\beta_j^0) = \sum_{j \in S} c_j \leq C$ , then we know that  $\beta^0$  is a feasible solution and  $\beta^* = \beta^0$ .
- If  $\sum_{j \in S} c_j > C$  and  $Cov(x_S, x_{S^c}) = 0$ , we can prove that  $\beta_{S^c}^* = 0$  and

$$\beta_S^* = \arg\min_{\beta} (\beta_S - \beta_S^0)^T \mathbf{\Sigma}_{SS} (\beta_S - \beta_S^0)$$
subject to 
$$\sum_{j \in S} c_j \mathcal{I}(\beta_j) \le C.$$

# Could we use a two-step method?

For the above two cases, we have  $\beta_{S^c}^* = \beta_{S^c}^0 = 0$ .

Therefore, if  $\beta^0$  is sparse, we can use the following two-step method:

- Step 1: Perform a screening to find a subset  $\hat{S}$  which contains the true subset S with high probability and let  $\hat{\beta}_{\hat{S}c}^* = 0$ ;
- Step 2: Solve the following optimization problem

$$\hat{\beta}_{\hat{S}}^* = \arg\min_{\beta_{\hat{S}}} \frac{1}{2n} \|Y - \mathbf{X}_{\hat{S}} \beta_{\hat{S}}\|_2^2$$
subject to 
$$\sum_{j \in \hat{S}} c_j \mathcal{I}(\beta_j) \le C.$$

### Could we use a two-step method?

However, in many cases,  $\beta_{S^c}^*$  is not equal to 0 and therefore, we can not use the two-step method.

Let  $p = 3, \beta = (\beta_1, \beta_2, \beta_3)^T$  and  $\beta^0 = (t_0, t_0, 0)$  where  $t_0 > 0$ . Assume that the covariance matrix

$$\Sigma = \left( \begin{array}{ccc} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{array} \right)$$

If  $-\frac{1}{2} < \rho < -\frac{1}{3}$ , we can show that  $\beta^* = (0, 0, 2\rho t_0)$ .

Therefore,  $\{j: \beta_j^0 \neq 0\} \cap \{j: \beta_j^* \neq 0\}$  is an empty set!

### Method: Orthogonal Case

Assume that n > p and  $\mathbf{X}^T \mathbf{X} = n \mathbf{I}_n$ . Under these assumptions, we can show that

$$\begin{split} \frac{1}{2n} \|Y - \mathbf{X}\beta\|_2^2 &= \frac{1}{2n} \|Y - \mathbf{X}\tilde{\beta}\|_2^2 + \frac{1}{2n} \|\mathbf{X}\beta - \mathbf{X}\tilde{\beta}\|_2^2 \\ &= \frac{1}{2n} \|Y - \mathbf{X}\tilde{\beta}\|_2^2 + \frac{1}{2} \|\beta - \tilde{\beta}\|_2^2, \end{split}$$

where  $\tilde{\beta} = \mathbf{X}^T Y/n$  is the least squares estimate of the true regression coefficient  $\beta^0$ .

Therefore, the original problem is equivalent to the following optimization problem

$$\min_{\beta} \|\beta - \tilde{\beta}\|_{2}^{2} \text{ subject to } \sum_{j=1}^{p} c_{j} \mathcal{I}(\beta_{j}) \leq C.$$
 (1)

### How to solve problem (1)?

If  $\hat{\beta}$  is an optimal solution to the following problem

$$\min_{\beta} \|\beta - a\|_2^2 \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\beta_j) \le C,$$

then  $\hat{\beta} = a \circ \hat{Z}$  where  $\circ$  denotes the entrywise product of two vectors, and  $\hat{Z} = (\hat{z}_1, \hat{z}_2, \dots, \hat{z}_p)$  is the solution to the following 0-1 knapsack problem

$$\max_{z_1, z_2, \dots, z_p} \sum_{j=1}^p a_j^2 z_j \quad \text{subject to } \sum_{j=1}^p c_j z_j \le C, \text{ and } z_1, z_2, \dots, z_p \in \{0, 1\}.$$

Therefore, to solve problem (1), we only need to solve a 0-1 knapsack problem.

### 0-1 knapsack problem and dynamic programming

#### 0-1 Knapsack Problem

$$\max_{z_1, z_2, \dots, z_p} \sum_{j=1}^p v_j z_j$$
  
subject to 
$$\sum_{j=1}^p c_j z_j \le C,$$
  
and  $z_1, z_2, \dots, z_p \in \{0, 1\}.$ 



#### Dynamic Programming

Denote f[j, w] be the maximum value that can be attained with weight less than or equal to w using items up to j. We can define f[j, w] recursively as follows:

- f[0, w] = 0;
- f[j, w] = f[j-1, w] if  $c_j > w$ ;
- $f[j, w] = \max(f[j-1, w], f[j-1, w-c_j] + v_j)$  if  $c_j \le w$ .

The solution can then be found by calculating f[p, C]. The 0-1 knapsack problem can be solved in pseudo-polynomial time (O(pC)) using dynamic programming.

# Special case: $c_1 = c_2 = \cdots = c_p = 1$

### (Bertsimas et al. (2016), Annals of Statistics)

If  $\hat{\beta}$  is an optimal solution to the following problem:

$$\hat{\beta} \in \arg\min_{\|\beta\|_0 \le C} \|\beta - \tilde{\beta}\|_2^2,$$

then it can be computed as follows: if  $|\tilde{\beta}_{(1)}| \geq |\tilde{\beta}_{(2)}| \geq \cdots \geq |\tilde{\beta}_{(p)}|$  denote the ordered values of the absolute values of the vector  $\tilde{\beta}$ , then

$$\hat{\beta}_j = \begin{cases} \tilde{\beta}_j, & \text{if } j \in \{(1), (2), \dots, (C)\}, \\ 0, & \text{otherwise.} \end{cases}$$

### Method: General Case

To solve the general high-dimensional cost-constrained regression problem, we use projected gradient descent methods.

• Denote  $g(\beta) = \frac{1}{2n} ||Y - \mathbf{X}\beta||_2^2$  and  $L = \lambda_{max}(\frac{\mathbf{X}^T\mathbf{X}}{n})$ , we have

$$g(\eta) \le Q_L(\eta, \beta) := g(\beta) + \frac{L}{2} \|\eta - \beta\|_2^2 + \langle \nabla g(\beta), \eta - \beta \rangle$$

for all  $\beta$ ,  $\eta$  with equality holding at  $\beta = \eta$ .

• Given a current solution  $\beta^{(m)}$ , we upper bound the function  $g(\eta)$  by the function  $Q_L(\eta, \beta^{(m)})$ , and update the solution by

$$\beta^{(m+1)} = \arg\min_{\eta} Q_L(\eta, \beta^{(m)}) \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\eta_j) \leq C.$$

### Method: General Case

We can show that

$$\beta^{(m+1)} = \arg\min_{\eta} Q_L(\eta, \beta^{(m)}) \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\eta_j) \le C$$
$$= \arg\min_{\eta} \|\eta - (\beta^{(m)} - \frac{1}{L} \nabla g(\beta^{(m)}))\|_2^2$$
subject to 
$$\sum_{j=1}^p c_j \mathcal{I}(\eta_j) \le C.$$

Therefore, we can use the result shown in Theorem 1 to solve the above problem. As shown in our theoretical study, the sequence  $g(\beta^{(m)}) = \frac{1}{2n} ||Y - X\beta^{(m)}||_2^2$  is decreasing and the sequence  $\{\beta^{(m)}\}$  converges to a near optimal solution.

### High-dimensional Cost-constrained Regression (HCR)

#### High-dimensional Cost-constrained Regression (HCR)

- Step 1: Choose  $\delta > 0$ ,  $L > \ell = \lambda_{max}(\frac{1}{n}\mathbf{X}^T\mathbf{X})$ , and initialize  $\beta^{(1)}$  such that  $\sum_{j=1}^p c_j \mathcal{I}(\beta_j^{(1)}) \leq C$ .
- Step 2: For  $m \ge 1$ , denote  $\mu^{(m)} = \beta^{(m)} + \frac{1}{nL} \mathbf{X}^T (Y \mathbf{X}\beta^{(m)})$ , apply dynamic programming to find

$$\beta^{(m+1)} \in \arg\min_{\eta} \|\eta - \mu^{(m)}\|_{2}^{2} \text{ subject to } \sum_{j=1}^{p} c_{j} \mathcal{I}(\eta_{j}) \leq C$$

$$= \mu^{(m)} \circ Z^{(m)} = (\mu_{1}^{(m)} z_{1}^{(m)}, \mu_{2}^{(m)} z_{2}^{(m)}, \dots, \mu_{p}^{(m)} z_{p}^{(m)}), \text{ where}$$

$$Z^{(m)} \in \arg\max_{z_1, z_2, \dots, z_p} \sum_{j=1}^p (\mu_j^{(m)})^2 z_j \text{ subject to } \sum_{j=1}^p c_j z_j \leq C.$$

Step 3: Repeat Step 2, until  $g(\beta^{(m)}) - g(\beta^{(m+1)}) \le \delta$ .

### Extension 1: p is much larger than n and $\beta^0$ is sparse

We aim to develop a linear model that will

- satisfy the budget constraint;
- have good prediction performance.

Since some feasible models may have k (k > n) variables, we need to use regularization techniques to solve the overfitting problem.

We propose to estimate the regression coefficient vector by

$$\hat{\beta} \in \arg\min_{\beta} \frac{1}{2n} \|Y - \mathbf{X}\beta\|_{2}^{2} + \sum_{j=1}^{p} \lambda(\alpha|\beta_{j}| + \frac{1-\alpha}{2}\beta_{j}^{2})$$
subject to 
$$\sum_{j=1}^{p} c_{j} \mathcal{I}(\beta_{j}) \leq C.$$

# Extension 1: p is much larger than n and $\beta^0$ is sparse

How to solve the optimization problem?

If  $\hat{\beta}$  is an optimal solution to the following problem

$$\min_{\beta} \frac{1}{2} \|\beta - a\|_2^2 + \sum_{j=1}^p \lambda(\alpha |\beta_j| + \frac{1-\alpha}{2} \beta_j^2) \quad \text{subject to } \sum_{j=1}^p c_j \mathcal{I}(\beta_j) \le C,$$

then 
$$\hat{\beta} = \frac{1}{1+\lambda(1-\alpha)} \cdot \operatorname{sign}(a - \alpha\lambda) \circ (|a| - \alpha\lambda)_{+} \circ \hat{Z},$$

where  $\hat{Z}=(\hat{z}_1,\hat{z}_2,\dots,\hat{z}_p)$  is the solution to the following 0-1 knapsack problem

$$\max_{z_1, z_2, \dots, z_p} \sum_{j=1}^{p} \frac{a_j^2 - 2\alpha\lambda |a_j| + \alpha^2 \lambda^2}{2(1 + \lambda(1 - \alpha))} \cdot \frac{1 + \text{sign}(|a_j| - \alpha\lambda)}{2} \cdot z_j$$
subject to 
$$\sum_{j=1}^{p} c_j z_j \le C, \text{ and } z_1, z_2, \dots, z_p \in \{0, 1\}.$$

# Extension 2: Convex differential loss functions with Lipschitz continuous gradient

Denote  $f = \sum_{i=1}^{p} x_i \beta_i$  and let  $\psi(y, f)$  be the loss function used to fit the model.

If the gradient of the convex differential loss function  $\psi(y,f)$  satisfis the following Lipschitz condition

$$\left|\frac{\partial \psi}{\partial f}(y, f_1) - \frac{\partial \psi}{\partial f}(y, f_2)\right| \le M_1 |f_1 - f_2|,$$

for any  $y, f_1, f_2$ , and a positive constant  $M_1$  (e.g., the squared hinge loss),

#### OR

 $\frac{\partial \psi^2(y,f)}{\partial f^2}$  exists and  $\frac{\partial \psi^2(y,f)}{\partial f^2} \leq M_2$  for any y and f, and a positive constant  $M_2$  (e.g., the logistic regression loss),

if  $L \geq 2M_1 \cdot \lambda_{max}(\frac{\mathbf{X}^T\mathbf{X}}{n})$  or  $L \geq M_2 \cdot \lambda_{max}(\frac{\mathbf{X}^T\mathbf{X}}{n})$ , we can also show that

$$g(\eta) \le Q_L(\eta, \beta) = g(\beta) + \frac{L}{2} \|\eta - \beta\|_2^2 + \langle \nabla g(\beta), \eta - \beta \rangle,$$

for all  $\beta$ ,  $\eta$  with equality holding at  $\beta = \eta$ .

### Extension 3: Predictors are collected group-by-group

Suppose that we have G groups. For the g-th group, we need to spend  $\tilde{c}_g$  dollars to simultaneously collect the values of all  $p_g$  variables in the g-th group  $\mathcal{A}_g$ .

We propose to estimate the regression coefficient vector by

$$\hat{\beta} \in \arg\min_{\beta} \frac{1}{2n} \|Y - \mathbf{X}\beta\|_{2}^{2} + \sum_{j=1}^{p} \lambda(\alpha|\beta_{j}| + \frac{1-\alpha}{2}\beta_{j}^{2})$$
subject to 
$$\sum_{g=1}^{G} \tilde{c}_{g} [1 - \prod_{j \in \mathcal{A}_{g}} (1 - \mathcal{I}(\beta_{j}))] \leq C.$$

Note that we assume that we always need to spend  $\tilde{c}_g$  dollars if there is at least one variable in the g-th group  $\mathcal{A}_g$  with a nonzero regression coefficient.

### Extension 3: predictors are collected group-by-group

If  $\hat{\beta}$  is an optimal solution to the following problem

$$\min_{\beta} \|\beta - a\|_2^2 \text{ subject to } \sum_{g=1}^G \tilde{c}_g [1 - \prod_{j \in \mathcal{A}_g} (1 - \mathcal{I}(\beta_j))] \le C,$$

then  $\hat{\beta} = a \circ \hat{Z}$  where  $\circ$  denotes the entrywise product of two vectors,  $\hat{Z} = (\hat{z}_1 \mathbf{1}_{p_1}, \hat{z}_2 \mathbf{1}_{p_2}, \dots, \hat{z}_g \mathbf{1}_{p_g})^T$ ,  $\mathbf{1}_{p_g}$  is a row vector of  $p_g$  1's, and  $\hat{z}_1, \hat{z}_2, \dots, \hat{z}_g$  is the solution to the following 0-1 knapsack problem

$$\max_{z_1, z_2, \dots, z_g} \sum_{g=1}^G \left(\sum_{j \in \mathcal{A}_g} a_j^2\right) z_g$$
subject to 
$$\sum_{g=1}^G \tilde{c}_g z_g \le C, \text{ and } z_1, z_2, \dots, z_g \in \{0, 1\}.$$

### Extension 3: predictors are collected group-by-group

If  $\hat{\beta}$  is an optimal solution to the following problem

$$\min_{\beta} \frac{1}{2} \|\beta - a\|_2^2 + \sum_{j=1}^p \lambda(\alpha |\beta_j| + \frac{1-\alpha}{2} \beta_j^2)$$
subject to 
$$\sum_{g=1}^G \tilde{c}_g [1 - \prod_{j \in \mathcal{A}_g} (1 - \mathcal{I}(\beta_j))] \le C,$$

then  $\hat{\beta} = \frac{1}{1+\lambda(1-\alpha)} \cdot \text{sign}(a-\alpha\lambda) \circ (|a|-\alpha\lambda)_{+} \circ \hat{Z}$ , where  $\hat{Z} = (\hat{z}_{1}\mathbf{1}_{p_{1}}, \hat{z}_{2}\mathbf{1}_{p_{2}}, \dots, \hat{z}_{g}\mathbf{1}_{p_{g}})^{T}$  and  $\hat{z}_{1}, \hat{z}_{2}, \dots, \hat{z}_{g}$  is the solution to the following 0-1 knapsack problem

$$\max_{z_1, z_2, \dots, z_g} \sum_{g=1}^G \left( \sum_{j \in \mathcal{A}_g} \frac{a_j^2 - 2\alpha\lambda |a_j| + \alpha^2\lambda^2}{2(1 + \lambda(1 - \alpha))} \cdot \frac{1 + \operatorname{sign}(|a_j| - \alpha\lambda)}{2} \right) z_g$$

subject to  $\sum_{g=1}^{G} \tilde{c}_{g} z_{g} \leq C$ , and  $z_{1}, z_{2}, \dots, z_{g} \in \{0, 1\}$ .

(a) For any  $L > \ell = \lambda_{max}(\frac{\mathbf{X}^T\mathbf{X}}{n})$ , the sequence

$$g(\beta^{(m)}) = \frac{1}{2n} ||Y - \mathbf{X}\beta^{(m)}||_2^2$$

is decreasing, converges and satisfies

$$g(\beta^{(m)}) - g(\beta^{(m+1)}) \ge \frac{L-\ell}{2} \|\beta^{(m+1)} - \beta^{(m)}\|_2^2.$$

Since the function  $g(\beta)$  is nonnegative and convex, we know that the proposed algorithm will converge.

(b) If 
$$L > \ell = \lambda_{max}(\frac{\mathbf{X}^T\mathbf{X}}{n})$$
, then 
$$\beta^{(m+1)} - \beta^{(m)} \to 0 \text{ as } m \to \infty.$$

**Definition 1:** Given an  $L \ge \lambda_{max}(\frac{\mathbf{X}^T\mathbf{X}}{n})$ , the vector  $\eta \in \mathbb{R}^p$  is said to be a first-order stationary point of our optimization problem

$$\min_{\beta} g(\beta) = \frac{1}{2n} \|Y - \mathbf{X}\beta\|_2^2 \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\beta_j) \le C$$

if

$$\sum_{j=1}^{p} c_j \mathcal{I}(\eta_j) \le C$$

and

$$\eta = \arg\min_{\beta} \|\beta - (\eta - \frac{1}{L} \nabla g(\eta))\|_{2}^{2} \text{ subject to } \sum_{j=1}^{p} c_{j} \mathcal{I}(\beta_{j}) \leq C$$

(c) If  $\hat{\beta}$  is a global minimizer of the optimization problem

$$\min_{\beta} g(\beta) = \frac{1}{2n} \|Y - \mathbf{X}\beta\|_2^2 \text{ subject to } \sum_{j=1}^p c_j \mathcal{I}(\beta_j) \le C,$$

then it is a first-order stationary point.

(d) If  $\eta$  is a first-order stationary point and

$$(\max_{i \in A} c_i) + \sum_{i \in A^c} c_i \le C,$$

where  $A = \{i : \eta_i = 0\}$ , then  $\eta$  is a global minimizer.

(e) If 
$$L > \lambda_{max}(\frac{\mathbf{X}^T\mathbf{X}}{n})$$
 and 
$$\lim\inf_{m\to\infty} \min_{1\leq j\leq p} \{\max\{|\beta_j^{(m)}|, 0\}\} > 0,$$

#### then

- The sparsity pattern sequence  $Z^{(m)}$  converges after finitely many steps, that is, there exists an iteration index  $M^*$  such that  $Z^{(m)} = Z^{(m+1)}$  for all  $m > M^*$ .
- The sequence  $\beta^{(m)}$  is bounded and converges to a first-order stationary point.

The above theoretical properties about our HCR algorithm are similar to the theoretical results shown in Bertsimas et al. (2016) for the best subset selection.

- 200 training samples, 10000 testing samples;
- The dimension p = 1000 and  $(x_1, x_2, \dots, x_p)^T \sim N(0, \mathbf{I}_p)$ ;
- The model parameter  $\beta^0$ : the first 10 elements are randomly generated from N(4,1) and the other elements are 0;
- The costs of different variables are randomly selected from  $\{1, 2, 3\}$ . They are used for all the 100 experiments.
- The budget is C = 12 and the variance  $\sigma^2 = 0.25$ . Since the generated costs satisfy  $\sum_{j=1}^{10} c_j = 18 > C$ , the parameter of interest  $\beta^*$  is different from  $\beta^0$ .



- The predictors  $(x_1, x_2, ..., x_{10})^T \sim N(0, \mathbf{A})$  where  $a_{jt} = 0.2$  if  $j \neq t$  and 1 otherwise. The other p-10 predictors are generated from  $N(0, \mathbf{B})$  where  $b_{jt} = 0.2$  if  $j \neq t$  and 1 otherwise.
- The model parameter  $\beta^0$ : the first 10 elements are randomly generated from N(4,1) and the other elements are 0;
- The costs of different variables are randomly selected from  $\{1, 2, 3\}$ . They are used for all the 100 experiments.
- The budget is C = 12 and the variance  $\sigma^2 = 0.25$ . Since the generated costs satisfy  $\sum_{j=1}^{10} c_j = 18 > C$ , the parameter of interest  $\beta^*$  is different from  $\beta^0$ .



- The predictors  $(x_{i1}, x_{i2}, \dots, x_{ip})^T \sim N(0, \Sigma)$  where  $\sigma_{jt} = 0.5^{|j-t|}$ .
- The model parameter  $\beta^0$ : the first 10 elements are randomly generated from N(4,1) and the other elements are 0;
- The costs of different variables are randomly selected from  $\{1, 2, 3, ..., 10\}$ . They are used for all the 100 experiments.
- The budget is C = 100 and the variance  $\sigma^2 = 0.25$ . As C is equal to the cost of collecting all important variables, for this example, the true parameter of interest  $\beta^*$  is the same as  $\beta^0$ .



# Application to a diabetes study

- The glycated hemoglobin (HbA1c) is now recommended as a standard of care (SOC) for testing and monitoring diabetes, specifically the type 2 diabetes.
- In general, the higher the HbA1c, the greater the risk of developing diabetes-related complications.
- We are interested in developing a cost-effective model to predict the change in HbA1c using some demographical information and predictors from several clinical tests.

### Application to a diabetes study

- Our data are collected from 181 diabetes patients;
- The efficacy endpoint is the change in HbA1c from baseline to week 52;
- There are 20 predictors collected from 10 groups;
- We develop cost-constrained models for a sequence of budgets.

| Tri                           | -<br>tal Cholesterol |
|-------------------------------|----------------------|
| \$200 Tot<br>Tri <sub>i</sub> | tal Cholesterol      |
| Tot                           |                      |
|                               | alveoridos           |
| \$50 Cre                      | glycerides           |
|                               | eatinine             |
| \$20 Fas                      | ting BG              |
| \$30 Hb.                      | A1c                  |
| \$100 ALT                     | Γ                    |
| AS <sup>-</sup>               | Γ                    |
| \$100 GG                      | Т                    |
| C.P                           | eptide               |
| \$50 Fas                      | ting insulin test    |
| Age                           | е                    |
| \$20 We                       | eight                |
| BM                            | 11                   |
| Wa                            | iist                 |
| \$5 Du                        | raton of diabetes    |
| ВР                            | diastolic            |
| \$10 BP                       | Systolic             |
| Pul                           | se                   |

# Application to a diabetes study



### Summary

- The cardinality budget constraint makes the high-dimensional cost-constrained regression problem NP-hard.
- We propose a new discrete extension of the first-order continuous optimization methods to deliver a near optimal solution.
- Our HCR algorithm generates a series of estimates of the regression coefficient vector by solving a sequence of 0-1 knapsack problems that can be efficiently addressed by the dynamic programming.
- The proposed HCR method can be extended to the other statistical learning problems and problems with more complicated constraints.

# Thank you!