

### **Education**

2018-present Ph.D, Physics, Princeton University.

2018 **B.A.** Summa Cum Laude, **Physics**, Boston University.

### **Publications**

#### 2020

New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds

A. P. M. Place, L. V. H. Rodgers, ..., S. Sussman, et al.

arXiv, 2003.00024

### 2019

Sensitivity of Super-Kamiokande with Gadolinium to Low Energy Anti-neutrinos from

Pre-supernova Emission

Super-Kamiokande Collaboration: C. Simpson, ..., S. Sussman, et al.

The Astrophysical Journal, Volume 885, Number 2

Measurement of neutrino-oxygen neutral-current quasi-elastic cross section using

atmospheric neutrinos at Super-Kamiokande

Super-Kamiokande Collaboration: L. Wan, ..., S. Sussman, et al.

Phys. Rev. D 99, 032005

Atmospheric Neutrino Oscillation Analysis With Improved Event Reconstruction

in Super-Kamiokande IV

 $Super-Kamiokande\ Collaboration:\ M.\ Jiang,\ ...,\ S.\ Sussman,\ et\ al.$ 

Progress of Theoretical and Experimental Physics, Volume 2019, Issue 5.

#### 2018

Dinucleon and Nucleon Decay to Two-Body Final States with no Hadrons

in Super-Kamiokande

Super-Kamiokande Collaboration: S. Sussman, et al.

arXiv, 1811.12430

# **Experience**

### **Professional**

2019-present **Graduate Researcher**, Princeton University.

Work on the fabrication and control of superconducting qubits under the supervision of

Andrew Houck, specializing in FPGA/SoC-based control.

2019-present Lab Instructor and Teaching Assistant, Princeton University.

2016-2018 Undergraduate Researcher, Boston University.

Worked on prototyping FPGA-based front-end electronics and upgrading the high voltage system of

the Super-Kamiokande neutrino detector under the supervision of Ed Kearns.

2016 Undergraduate Researcher, Harvard University.

Created a website and algorithms for ATLAS collaborators to find potentially malfunctioning hardware

in the muon spectrometer under the supervision of Melissa Franklin.

#### Miscellaneous

2018-present Organizer, Princeton Women in Physics, Princeton University.

### **Awards**

| 2020      | National Defense Science and Engineering Graduate Fellowship, Department of Defense |
|-----------|-------------------------------------------------------------------------------------|
| 2020      | Graduate Research Fellowship, National Science Foundation                           |
| 2018-2019 | Van Zandt Williams, Sr., *41 Fellowship, Princeton University                       |
| 2018      | Joseph Henry Merit Prize, Princeton University                                      |
| 2018      | College Prize in Physics, Boston University                                         |

| 2017 | 3rd Prize at the International Neutrino Summer School Poster Competition, Fermilab |
|------|------------------------------------------------------------------------------------|
| 2017 | 2nd Prize at the International Neutrino Summer School Oral Presentations, Fermilab |

## **Presentations**

| 2019 Nov | <b>Talk,</b> Towards FPGA-based Optimal Control of Superconducting Qubits Princeton Physics Ph.D. Experimental Project Seminar, Princeton, New Jersey.       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2018 Apr | <b>Talk,</b> Dinucleon and Nucleon Decay into Two-Body Final States with No Hadrons APS April Meeting, Columbus, Ohio.                                       |
| 2017 Oct | <b>Talk,</b> Prototype Front-End Electronics for Hyper-Kamiokande QTC-TDC Board BU Advanced Lab Seminar, Boston, Massachusetts.                              |
| 2017 Aug | <b>Poster,</b> Multi-GeV Multi-Ring Event Reconstruction in Super-Kamiokande International Neutrino Summer School at Fermilab, Batavia, Illinois.            |
| 2017 Aug | <b>Talk,</b> Side By Side By Side: $\nu$ Event Simulation in Super-K, NOvA and ArgoNeuT International Neutrino Summer School at Fermilab, Batavia, Illinois. |

## **Skills**

Hardware: RF data acquisition and timing systems, digital and analog circuits, high voltage systems.

Programming: C/C++, Python, Verilog, VHDL, Mathematica, MATLAB. Software: Xilinx Vivado Design Suite, ExpressPCB, Intel Quartus Prime.

Microfab: Photolithography (photomask and direct write), wet/dry etching, metal deposition,

surface metrology (profilometer), imaging (x-ray photoelectron spectroscopy,

scanning electron microscopy).

# **Courses Taught**

2020 Spring Princeton PHY 109: Mechanics and Electromagnetism - TA
2019 Fall Princeton ELE 308: Electronic and Photonic Devices - TA

2019 Summer Princeton EGR 150: Foundations of Engineering - Lab Instructor (link)

## Volunteer Work

2018-2019 Undergraduate Women in Physics Mentorship Program, Princeton University