

```
Sets Ex 1.7 Q2(iii)
```

LHS =
$$A \land (A \lor B')$$

= $A \land (A \land B')$
= $(A \land A') \land B'$
= $\phi \land B'$
= ϕ

[By De-morgan's law]

[By associative law]

$$\left[\because A \cap A' = \phi \right]$$

∴ LHS = RHS Proved.

= RHS

Sets Ex 1.7 Q2(iv)

RHS =
$$A\Delta (A \cap B)$$

= $(A - (A \cap B)) \cup (A \cap B - A)$
= $(A \cap (A \cap B)') \cup (A \cap B \cap A')$
= $(A \cap (A' \cup B')) \cup (A \cap A' \cap B)$
= $(A \cap A') \cup (A \cap B') \cup (\emptyset \cap B)$
= $\emptyset \cup (A \cap B') \cup \emptyset$
= $A \cap B'$
= $A \cap B$
= LHS

$\left[\because E \Delta F = \left(E - F \right) \lor \left(F - E \right) \right]$

 $\left[\because E - F = E \land F' \right]$

By De-morgan's law & associative law

 $\begin{bmatrix} \cdots \land \text{ distributes over } \lor \text{ and} \\ A \land A' = \emptyset \end{bmatrix}$

 $\left[\because\phi \land B=\phi\right]$

 $[\because \phi \cup x = x \text{ for any set } x]$

 $\left[\because A \land B^{\top} = A - B \right]$

\therefore LHS = RHS Proved.

Sets Ex 1.7 Q3

We have, ACB

To show: $C - B \subset C - A$

Let, $x \in C - B$

⇒ ×∈Cand×∉B

⇒ ×∈Cand×∉A

 $\Rightarrow x \in C - A$

$[\because A \subset B]$

Thus,
$$x \in C - B \Rightarrow x \in C - A$$

This is true for all $x \in C - B$

$\therefore C-B \subset C-A$

Sets Ex 1.7 Q4(i)

i.
$$(A \cup B) - B = (A - B) \cup (B - B)$$

= $(A - B) \cup \phi$
= $A - B$

Sets Ex 1.7 Q4(ii)

ii.
$$A - (A \cap B) = (A - A) \cap (A - B)$$

= $\phi \cap (A - B)$
= $A - B$

Sets Ex 1.7 Q4(iii)