Paper: https://arxiv.org/pdf/2509.15217.pdf

Summary: The research paper "GENERALIZABLE GEOMETRIC IMAGE CAPTION SYNTHESIS" explores the challenge of training multimodal large language models (MLLMs) to reason about complex geometric problems. The authors address a key issue in this area: the lack of high-quality image-text pair datasets that can enable MLLMs to solve geometric problems. The researchers introduce a novel method called Reinforcement Learning with Verifiable Rewards (RLVR) to generate high-quality geometric image captions. This method involves using mathematical problem-solving tasks to refine the captions synthesized from basic geometric relations. The main contributions of the paper are: 1. **RLVR data generation pipeline**: The authors develop a pipeline that combines reinforcement learning with verifiable rewards to generate high-quality geometric image captions. 2. **Task generalization**: The pipeline enables better task generalization, allowing the MLLMs to solve a wider range of geometric problems beyond the predefined templates. 3. **Improved MLLM performance**: The generated dataset enhances the general reasoning capabilities of MLLMs, leading to significant accuracy improvements (2.8%-4.8%) in various tasks, including visual question answering, visual grounding, and image captioning. The authors evaluate their method on several benchmarks, including MathVista, MathVerse, Art & Design, and Tech & Engineering tasks in MMMU. The results demonstrate that the RLVR data generation pipeline can improve MLLM performance even in out-of-distribution scenarios. The paper's findings suggest that the proposed pipeline can enable MLLMs to develop strong reasoning capabilities, which is crucial for extending the performance boundaries of these models in various tasks. The authors' contributions provide a new approach to generating high-quality datasets for training MLLMs to reason about geometric problems.

Paper: https://arxiv.org/pdf/2509.15172.pdf

Summary: This research paper proposes a new method called Multi-Agent Consensus Alignment (MACA) to improve the self-consistency of language models. Self-consistency refers to a model's ability to produce stable and reliable outputs across different sampling paths. The authors argue that current language models often struggle with self-consistency due to their exploratory sampling nature, which leads to contradictory responses to the same prompts. To address this issue, they formalize self-consistency as an intrinsic property of well-aligned reasoning models and introduce MACA, a reinforcement learning framework that post-trains models to favor reasoning trajectories aligned with their internal consensus. MACA works by creating multi-agent debate, where different agents (or models) ground reasoning in peer arguments, rather than simply aggregating independent attempts. This approach creates richer consensus signals, enabling agents to teach themselves to be more decisive and concise. The authors evaluate MACA on several benchmarks, including: 1. Self-consistency: MACA achieves a +27.6% improvement on GSM8K. 2. Single-agent reasoning: MACA achieves a +23.7% improvement on MATH. 3. Sampling-based inference: MACA achieves a +22.4% improvement on MATH (Pass@20). 4. Multi-agent ensemble decision-making: MACA achieves a +42.7% improvement on MathQA. Furthermore, the authors demonstrate robust generalization of MACA to unseen benchmarks, achieving +16.3% and +11.6% improvements on GPQA and CommonsenseQA, respectively. The main contributions of this paper are: 1. A formalization of self-consistency as an intrinsic property of well-aligned reasoning models. 2. A reinforcement learning framework, MACA, that post-trains models to favor reasoning trajectories aligned with their internal consensus. 3. Evaluations of MACA on several benchmarks, demonstrating robust improvements in self-consistency and related downstream tasks. Overall, this paper presents a novel approach to improving the self-consistency of language models, which is essential for building reliable and trustworthy AI systems.

Paper: https://arxiv.org/pdf/2509.15084.pdf

Summary: The academic research paper "From Sea to System: Exploring User-Centered Explainable Al for Maritime Decision Support" focuses on the integration of Explainable Artificial Intelligence (xAI) in the maritime industry. Here's a summary of the paper: **Background:** The maritime industry is undergoing a transformation due to advances in artificial intelligence, sensor fusion, and remote operation. This shift is creating new challenges, especially in a domain known for its conservatism. Explainable AI (xAI) offers a promising solution to address the trust gap between maritime professionals and AI systems. **Importance of Explainable AI (xAI):** The authors highlight the need for xAI in the maritime domain, where informed oversight and shared understanding are essential. xAI can make the rationale behind Al-driven decisions transparent and interpretable, fostering user confidence and supporting safe collaboration between human operators and intelligent systems. **Research Aim:** The study aims to evaluate maritime stakeholders' attitudes toward xAI, with a focus on trust, usability, and explainability. The authors propose a domain-specific survey designed to capture maritime professionals' perceptions and guide the development of user-centric xAI systems tailored to the needs of seafarers and maritime teams. **Key Challenges:** The integration of autonomous and hybrid systems into maritime operations presents unique challenges, including: 1. Trust gap between maritime professionals and AI systems 2. High decoupling between technical constraints and operational decisions at sea 3. Complex decision-making processes influenced by weather conditions, team dynamics, and seafaring practices **Potential Applications:** The study highlights the potential benefits of xAI in the maritime domain, including: 1. Clarifying how autonomous systems interpret International Regulations for Preventing Collisions at Sea (COLREGs) and adapt in real-time 2. Supporting safe collaboration between human operators and intelligent systems 3. Fostering user confidence and awareness in maritime professionals In summary, the paper presents a novel approach to evaluating maritime professionals' attitudes toward xAI, with a focus on trust, usability, and explainability. The study aims to guide the development of user-centric xAI systems tailored to the needs of seafarers and maritime teams.

Paper: https://arxiv.org/pdf/2509.15035.pdf

Summary: This research paper explores the use of generative artificial intelligence (GenAI) to support formative assessment through machine-generated reviews of peer reviews (meta-feedback) in graduate online courses at a public university in the United States. The researchers employed Systemic Functional Linguistics and Appraisal Theory to analyze 120 meta-reviews generated by GenAI. Their aim was to investigate how GenAI feedback constructs meaning across ideational, interpersonal, and textual dimensions. The findings suggest that GenAl can: 1. Approximate key rhetorical and relational features of effective human feedback, such as providing directive clarity while maintaining a supportive stance. 2. Balance praise and constructive critique. 3. Align with rubric expectations. 4. Structure feedback in a way that foregrounds student agency. The researchers conclude that calibrated GenAl, when embedded in thoughtfully designed workflows, can contribute to hybrid human-AI feedback ecosystems. However, they also highlight the need for critical attention to the limitations and contextual adaptations of GenAl in educational practice. The study's implications are significant, as they suggest that GenAl can be a valuable tool in supporting learner engagement with peer review and developing feedback literacy. The findings have implications for the design of educational technologies and the development of strategies to effectively integrate GenAl into educational settings. Key contributions of the study include: 1. Investigating the linguistic and rhetorical properties of GenAl feedback. 2. Exploring the potential benefits of GenAl in supporting formative assessment and feedback literacy. 3. Highlighting the need for a critical and context-dependent approach to the integration of GenAl in education. Future research directions may include: 1. Investigating the impact of GenAI on learner outcomes, such as academic performance and self-regulatory practices. 2. Developing more sophisticated GenAl systems that can take into account contextual factors and adapt to individual learners' needs. 3. Examining the role of human feedback in supplementing or complementing GenAl feedback in educational settings.

Paper: https://arxiv.org/pdf/2509.14998.pdf

Summary: The research paper "A Knowledge-driven Adaptive Collaboration of LLMs for Enhancing Medical Decision-making" proposes a framework called KAMAC (Knowledge-driven Adaptive Multi-Agent Collaboration) to improve medical decision-making through collaborative efforts of large language models (LLMs). The KAMAC framework is designed to address the limitations of existing multi-agent collaboration approaches, which are often static and pre-assign roles that hinder adaptability and dynamic knowledge integration. KAMAC is an adaptive framework that enables LLM agents to dynamically form and expand expert teams based on the evolving diagnostic context. Here's an overview of how KAMAC works: 1. **Initial Expert Teams**: KAMAC begins with one or more expert agents. 2. **Knowledge-driven Discussion**: The agents engage in a discussion to identify and fill knowledge gaps by recruiting additional specialists as needed. 3. **Flexibility and Scalability**: The framework supports flexible, scalable collaboration in complex clinical scenarios. 4. **Decision-making**: The decision is finalized through reviewing updated agent comments. The authors experiment with KAMAC on two real-world medical benchmarks and compare its performance with single-agent and advanced multi-agent methods. The results show that KAMAC significantly outperforms both single-agent and multi-agent methods, particularly in complex clinical scenarios that require dynamic, cross-specialty expertise. The key contributions of KAMAC are: * **Adaptability**: KAMAC enables LLM agents to dynamically form and expand expert teams based on the evolving diagnostic context. * **Flexibility and Scalability**: The framework supports flexible, scalable collaboration in complex clinical scenarios. * **Improved Performance**: KAMAC outperforms single-agent and multi-agent methods in complex clinical scenarios. The code for KAMAC is publicly available on GitHub, making it accessible for future research and implementation.

Paper: https://arxiv.org/pdf/2509.14963.pdf

Summary: The academic research paper by Naudot et al. focuses on quantitative bipolar argumentation, which involves using graphs to represent arguments and their relationships through support and attack relations with numerical weights. The study introduces set contribution functions, which quantify the contribution of a set of arguments to the final strength of another argument of interest (the topic). These functions are a generalization of existing single-argument contribution functions. The researchers also introduce new principles specific to set-based functions, which focus on properties related to the interaction of arguments within a set. They provide a principle-based analysis of the set contribution functions and demonstrate how these principles play out across different functions using a recommendation system application scenario. The motivation behind this research is to address scenarios where meta-reasoning is required to quantify the contribution of multiple arguments to the final strength of a topic. The scenarios presented in the paper include: 1. Identifying marginal changes in initial strengths that can achieve a desired change in the topic's final strength. 2. Determining how a set of arguments collectively contributes to the final strength of a topic. 3. Analyzing how changes in the relationships between arguments affect the final strength of a topic. The research contributes to the field of quantitative argumentation theory, provide new tools for understanding the impact of multiple arguments on the final strength of a topic, and can be applied in real-world scenarios, such as recommendation systems. Key contributions of the research include: * Introducing set contribution functions, which generalize existing single-argument contribution functions * Developing new principles specific to set-based functions, which focus on the interaction of arguments within a set * Analyzing how these principles play out across different set contribution functions * Demonstrating the application of these functions and principles in a recommendation system scenario

Paper: https://arxiv.org/pdf/2509.14956.pdf

Summary: Here's a summary of the academic research paper: **Title:** SENTINELAGENTS FOR SECURE AND TRUSTWORTHY AGENTIC AI IN MULTI-AGENT SYSTEMS **Authors:** Diego

Gosmar and Deborah A. Dahl **Objective:** The paper proposes a novel architectural framework to enhance security and reliability in multi-agent systems (MAS). The framework consists of a network of Sentinel Agents that integrate various security mechanisms and a Coordinator Agent that oversees policy implementation and threat containment. **Key Components:** 1. **Sentinel Agents:** A distributed security layer that integrates techniques such as semantic analysis via large language models (LLMs), behavioral analytics, retrieval-augmented verification, and cross-agent anomaly detection. Sentinel Agents can monitor inter-agent communications, identify potential threats, enforce privacy and access controls, and maintain comprehensive audit records. 2. **Coordinator Agent:** Supervises policy implementation, manages agent participation, and ingests alerts from Sentinel Agents. Based on these alerts, it can adapt policies, isolate or quarantine misbehaving agents, and contain threats to maintain the integrity of the MAS ecosystem. **Security Approach:** The proposed dual-layered security approach combines continuous monitoring of Sentinel Agents with the governance functions of Coordinator Agents. This approach supports dynamic and adaptive defense mechanisms against various threats, including: * Prompt injection * Collusive agent behavior * Hallucinations generated by LLMs * Privacy breaches * Coordinated multi-agent attacks **Simulation Study:** A simulation study was conducted where 162 synthetic attacks of different families (prompt injection, hallucination, and data exfiltration) were injected into a multi-agent conversational environment. The Sentinel Agents successfully detected the attack attempts, confirming the practical feasibility of the proposed monitoring approach. **Key Benefits:** * Enhanced system observability Supports regulatory compliance * Enables policy evolution over time **Conclusion:** The proposed framework provides a novel and comprehensive approach to ensure the security and reliability of MAS. The integration of Sentinel Agents and Coordinator Agents offers a robust defense mechanism against various threats, enabling the development of trustworthy and secure Agentic Al MAS.

Paper: https://arxiv.org/pdf/2509.14942.pdf

Summary: **Study Title: ** Explainable AI for Infection Prevention and Control: Modeling CPE Acquisition and Patient Outcomes in an Irish Hospital with Transformers **Summary:** This research paper presents an Explainable AI (XAI) framework for analyzing Electronic Medical Records (EMR) data to predict Carbapenemase-Producing Enterobacteriace (CPE) acquisition and patient outcomes in an Irish hospital. The study focuses on identifying key risk factors for CPE acquisition and its associated complications, such as readmission, mortality, and extended length of stay. **Methodology:** 1. **Dataset:** The researchers analyzed inpatient data from an Irish acute hospital between 2018 and 2022. 2. **Features:** The dataset included diagnostic codes, ward transitions, patient demographics, infection-related variables, and contact network features. 3. **Machine Learning Models:** The study compared the performance of traditional machine learning models with Transformers-based architectures, including TabTransformer and TabNet. 4. **Explainability Techniques:** XAI methods were applied to interpret model decisions and identify key risk factors. **Results:** 1. **Model Performance:** The Transformer-based models, particularly TabTransformer, outperformed traditional machine learning models across multiple clinical prediction tasks, including CPE acquisition. 2. **Feature Importance:** The study found that infection-related features, such as historical hospital exposure, admission context, and network centrality measures, were highly influential in predicting patient outcomes and CPE acquisition risk. 3. **Explainability Insights:** The XAI approach revealed that features like "Area of Residence," "Admission Ward," and prior admissions were key risk factors for CPE acquisition. Network variables, such as "Ward PageRank," also ranked highly, indicating the value of structural exposure information. **Conclusion:** This study demonstrates the utility of Explainable AI for analyzing complex EMR data to identify key risk factors and predict CPE-related outcomes. The findings highlight the superior performance of Transformer models and the importance of diverse clinical and network features. The transparent interpretability offered by the XAI approach provides actionable insights for infection prevention and control, enabling more targeted interventions and ultimately enhancing patient safety in acute healthcare settings.

Paper: https://arxiv.org/pdf/2509.14778.pdf

Summary: The research paper introduces a new framework called OpenLens AI, designed for fully automated health informatics research. The framework aims to address the challenges of diverse data modalities, rapid knowledge expansion, and the need to integrate insights in biomedical science, data analytics, and clinical practice. The authors highlight the limitations of existing large language model (LLM)-based agents in health informatics research, which lack the ability to interpret medical visualizations and often overlook domain-specific quality requirements. In contrast, OpenLens Al integrates specialized agents for: 1. Literature review 2. Data analysis 3. Code generation 4. Manuscript preparation Additionally, OpenLens AI incorporates vision-language feedback for medical visualization and quality control measures for reproducibility. The framework automates the entire research pipeline, producing publication-ready LaTeX manuscripts with transparent and traceable workflows. This domain-adapted solution is designed to advance health informatics research by: * Automating labor-intensive tasks * Enhancing analytical capacity * Streamlining research workflows The authors mention the potential of OpenLens AI to enable faster and more scalable scientific discovery, and invite readers to try the framework through its website and application. Key benefits of OpenLens AI include: * Fully automated research pipeline * Integration of specialized agents for literature review, data analysis, code generation, and manuscript preparation * Vision-language feedback for medical visualization * Quality control measures for reproducibility * Production of publication-ready LaTeX manuscripts with transparent and traceable workflows.

Paper: https://arxiv.org/pdf/2509.14750.pdf

Summary: This academic research paper proposes a novel framework called Adversarial Collaboration RAG (AC-RAG) to address the problems of "Retrieval Hallucinations" and "Semantic Discrepancy" in Retrieval-Augmented Generation (RAG) systems. **Main Problems:** 1. **Retrieval Hallucinations:** Fine-tuned Large Language Models (LLMs) fail to recognize and act upon poor-quality retrieved documents, leading to decreased performance. 2. **Semantic Discrepancy:** Retriever models optimized for semantic similarity may retrieve incorrect or misleading information due to a gap between similarity and relevance. **Proposed Solution:** AC-RAG employs two heterogeneous agents: 1. **Generalist Detector:** Identifies knowledge gaps and asks questions to challenge the Resolver's expertise. 2. **Domain-Specialized Resolver:** Provides precise solutions and answers to the Detector's questions. 3. **Moderator:** Guides the collaboration between the Detector and Resolver, promoting iterative problem dissection and refined knowledge retrieval. **Key Innovations:** * **Adversarial Collaboration:** The Detector's persistent questioning challenges the Resolver's expertise, enabling refined knowledge retrieval and addressing Retrieval Hallucinations. * **Iterative Problem Dissection:** Multiple interactions between the Detector and Resolver allow for a more thorough problem understanding. **Experiments and Results:** The paper presents extensive experiments demonstrating that AC-RAG significantly improves retrieval accuracy and outperforms state-of-the-art RAG methods across various vertical domains. **Key Findings:** * AC-RAG improves retrieval accuracy and addresses Retrieval Hallucinations. * The adversarial collaboration between the Detector and Resolver yields refined knowledge retrieval. **Code Availability:** The paper provides a link to the code implementation of AC-RAG, enabling readers to replicate the experiments and results.