

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

U.S. Patent Application

"Method and device for manipulating particles in microsystems"

Summary of DE 88 13 314

DE 88 13 314 discloses a device for implementing fusion experiments with biological cells in a state of reduced gravity. The container disclosed in DE 88 13 314 (see figure 1) comprises a cover 2 with ribs 3, with spaces 4, 5, 6 and 7 being arranged inside the container. The spaces are separated by separating walls which contain closing means 8, 9, 10 and 11, respectively. Reference numeral 12 refers to a second container forming a further space 13 for collecting samples. The fusion of cells is implemented in space 6 which contains fusion electrodes 17 and a temperature sensor 18.

In the container disclosed in DE 88 13 413, the biological cells are moved under the influence of centrifugal forces only. The provision of additional deflection forces whose direction differs from the direction of the centrifugal forces is not disclosed in DE 88 13 413.

B 01 E 5/10 C
14691 DE

© BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

② Gebrauchsmuster

U1

③

(11) Rollennummer G 88 13 314.1

(51) Hauptklasse G01N 33/48

Nebenklasse(n) G01N 3/00 3059 1/02

B01J 4/00 3043 5/10

C12M 3/00

(22) Anmeldetag 22.10.88

(47) Eintragungstag 12.01.89

(43) Bekanntmachung
im Patentblatt 23.02.89

(54) Bezeichnung des Gegenstandes
Vorrichtung zur Durchführung biologischer
Experimente

(71) Name und Wohnsitz des Inhabers
Erno Raumfahrttechnik GmbH, 2800 Bremen, DE

22.10.88

2

MBB

Patentabteilung

1

5

86-81 R

Hs / Sm/Uh

Bremen, 20.10.1988

10

ERNO - Raumfahrttechnik GmbH

15

Schutzzansprüche:

20

1. Vorrichtung zur Durchführung von biologischen Experimenten, insbesondere von Zellfusionsexperimenten unter dem Zustand der Schwerelosigkeit oder verminderter Schwerkraft, bestehend aus miteinander in Verbindung stehenden, Flüssigkeitsmedien enthaltenden Räumen, zwischen denen jeweils Absperrorgane angeordnet sind, d a d u r c h g e k e n n z e i c h n e t, daß wenigstens zwei voneinander getrennte Räume (4-7) in einem geschlossenen Behälter (1) angeordnet sind, zwischen denen Absperrorgane (8-10) in Form von Hähnen vorgesehen sind, deren Hahnküken (28, 29, 48) im Durchlaßbereich jeweils sacklochartige Bohrungen (30, 31, 40) aufweisen.

25

30

35

6813314

22.10.88

-2-

86-81 R

MBB

Patentabteilung

1 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die dem jeweils nachfolgenden Absperrorgan (8-11) zugeordneten Bereiche der Räume (4-7) jeweils trichterförmig in Richtung auf die Bohrungen (30, 31, 40) zulaufend ausgebildet sind.

5
10 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Bohrungen (30, 31, 40) jeweils konisch sich verengend ausgeführt sind.

15 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Behälter (1) eine zylindrische Form aufweist und daß die Einlaufbereiche der Hahnküken (28, 29) im Bereich der Mittelachse des Behälters (1) angeordnet sind.

20 5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Behälter (1) modulartig aufgebaut ist.

25 6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß jedes Modulelement (20, 21, 41) jeweils einen Raum (24, 25, 44, 45) sowie eine senkrecht zur Behälterlängsachse verlaufende Aufnahmebohrung (43) für ein Hahnküken (28, 29 48) enthält.

30

7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Behälter (1) insgesamt vier voneinander getrennte Modulelemente (4-7) aufweist.

35

8813314

22.10.88

4
86-81 R

MBB

Patentabteilung

8. Vorrichtung nach einem der Ansprüche 1 bis 7,
1 dadurch gekennzeichnet, daß einer der Räume
(4-7) als Fusionskammer (6) ausgebildet und mit Fusionselektroden
(17) versehen ist.

5

9. Vorrichtung nach Anspruch 8, dadurch gekenn-
z e i c h n e t, daß die Fusionskammer (6) ein Beobachtungs-
fenster (19) aufweist.

10

10. Vorrichtung nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, daß an den Behälter
(1) ein weiterer Behälter (12) ansetzbar ist, der mit einem der
im Behälter (1) befindlichen Räume (7) verbindbar ist.
15

20

11. Vorrichtung nach Anspruch 10, dadurch gekenn-
z e i c h n e t, daß zwischen dem ersten Behälter (1) und dem
zweiten Behälter (12) ein Septum (15) angeordnet ist.

25

12. Vorrichtung nach einem der Ansprüche 1 bis 11,
dadurch gekennzeichnet, daß dem Behälter (1)
eine Zentrifugiereinheit zugeordnet ist.

30

13. Vorrichtung nach einem der Ansprüche 1 bis 12,
dadurch gekennzeichnet, daß an den Behälter
(1) eine Vibrationseinrichtung ankoppelbar ist.

35

14. Vorrichtung nach einem der Ansprüche 1 bis 13,
dadurch gekennzeichnet, daß der Behälter (1)
aus einem Kunststoff besteht.

8813314

22.10.86

- 4 -

86-81 R

MBB

Patentabteilung

1 15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der Behälter (1) aus Acrylglas besteht.

5 16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der oberste der im Behälter (1) angeordneten Räume (4-7) durch einen mit Rippen (3) versehenen Stahldeckel (2) verschlossen ist.

10

17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Hahnküken (28, 29) der Absperrorgane (8-10) sowie die diese aufnehmenden Bohrungen konisch ausgebildet sind, wobei die Längsachse der Bohrungen angenähert senkrecht zur Längsachse des Behälters (1) verläuft.

15 18. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Hahnküken (48) sowie die diese aufnehmenden Bohrungen (43) zylindrisch ausgebildet sind und daß die Hahnküken in axialer Richtung verschieblich gehalten sind.

25

19. Vorrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Hahnküken (28, 29, 48) aus Stahl bestehen und mit einer Beschichtung aus einem Kunststoff versehen sind.

30

20. Vorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Hahnküken (28, 48) verschließbare Kanäle zum Befüllen der Räume besitzen.

35

6613314

22.10.86

6

MBB

Patentabteilung

- 5 -

86-81 R

1 21. Vorrichtung nach einem der Ansprüche 1 bis 20,
d a d u r c h g e k e n n z e i c h n e t, daß der Transfer von
Material von einem Innenraum (4, 5, 6, 7) zum benachbarten durch
Drehen der Ventilküken (28, 48) geschieht.

5

10 22. Vorrichtung nach einem der Ansprüche 1 bis 21,
d a d u r c h g e k e n n z e i c h n e t, daß sich innerhalb
eines Modulelementes zwei Räume befinden.

10

15 23. Vorrichtung nach einem der Ansprüche 1 bis 22,
d a d u r c h g e k e n n z e i c h n e t, daß sich innerhalb
der Fusionskammer (6) ein elektrisch anregbarer Schwingquarz
befindet.

15

20

25

30

35

8813314

22.10.88

- 6 -
86-81 R

Vorrichtung zur Durchführung biologischer Experimente

Die Erfindung betrifft eine Vorrichtung zur Durchführung von biologischen Experimenten, insbesondere von Zellfusionsexperimenten unter dem Zustand der Schwerelosigkeit oder verminderter Schwerkraft, bestehend aus miteinander in Verbindung stehenden, Flüssigkeitsmedien enthaltenden Räumen, zwischen den jeweils Absperrorgane angeordnet sind.

Bei der Durchführung von Zellfusionsexperimenten werden in einer Transportlösung bereitgehaltene biologische Zellen unterschiedlichen Typs in einer Fusionskammer zusammengebracht. Dabei besteht das Problem, daß ein Transfer des Zellmaterials zwischen den einzelnen Räumen und den darin befindlichen unterschiedlichen Flüssigkeitsmedien erfolgen muß, wodurch stets die Gefahr einer Kontamination gegeben ist. Dies gilt insbesondere bei Zellfusionsexperimenten, die unter dem Zustand verminderter Schwerkraft bzw. unter Schwerelosigkeit durchgeführt werden.

Aufgabe der Erfindung ist es daher, eine Vorrichtung der eingangs genannten Art so auszubilden, daß die Durchführung von Fusionsexperimenten möglich ist, ohne daß es hierbei zu einer Vermischung der in den einzelnen Räumen befindlichen Flüssigkeiten oder zu einer Exposition gegenüber der Außenumgebung kommt.

Die Erfindung löst diese Aufgabe, indem sie vorsieht, daß wenigstens zwei voneinander getrennte Räume in einem geschlossenen Behälter angeordnet sind, zwischen denen Absperrorgane in Form von Hähnen vorgesehen sind, deren Hahnköken im Durchlaßbereich jeweils sacklochartige Bohrungen aufweisen.

6813314

22.10.80

8

- 7 -

86-81 R

Dadurch ist es möglich, die für das Experiment vorgesehenen Zellen innerhalb eines hermetisch geschlossenen Systems zu lagern und ohne eine mögliche Kontaminationsgefahr bzw. eine Vermischung von Flüssigkeiten von einem Raum in einen zweiten zu transferieren.

In vorteilhafter Weiterbildung der erfindungsgemäßen Vorrichtung ist es dabei ferner möglich, innerhalb des Behälters eine Reihe weiterer Räume mit unterschiedlichen Lösungen, insbesondere Nährlösungen für die Vor- und Nachbehandlung des Zellmaterials, im Rahmen der eigentlichen Fusion vorzusehen. Diese Räume sind ebenfalls durch die erfindungsgemäß vorgesehenen Absperrorgane voneinander getrennt und werden von Zellmaterial durch das Öffnen der entsprechenden Absperrorgane sukzessive durchlaufen.

Die in den weiteren Ansprüchen angegebenen Maßnahmen betreffen in erster Linie Ausgestaltungen der Absperrorgane, die sich als besonders vorteilhaft sowohl hinsichtlich des vorgesehenen Einsatzes unter dem Zustand der Schwerelosigkeit als auch hinsichtlich eines zugleich einfachen und funktionstüchtigen Aufbaus erwiesen haben.

Im folgenden soll die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert werden. Es zeigen:

Fig. 1 eine Vorrichtung zur Durchführung von Zellfusionsexperimenten in schematischer, geschnittener Darstellung,

Fig. 2 eine Detaildarstellung des oberen Teils der in Fig. 1 schematisch dargestellten Anordnung,

Fig. 3 die Anordnung nach Fig. 2 in einer anderen Be-tätigungsstellung und

8810314

22.10.88

86-81 R

Fig. 4 ein weiteres Absperrorgan.

Bei der in Fig. 1 in schematischer Darstellung gezeigten Anordnung handelt es sich um eine sogenannte Combi-Kammer für Zellfusionsexperimente, die unter dem Zustand der Schwerelosigkeit bzw. verminderter Schwerkraft durchgeführt werden. Die Kammer besteht aus einem zylindrischen Behälter 1, der im Fall des hier dargestellten Ausführungsbeispiels aus Acrylglass gefertigt ist und der durch einen Stahldeckel 2 verschlossen ist, welcher mit Rippen 3 versehen ist. Im Innern des Behälters 1 sind eine Reihe von einzelnen Räumen 4 bis 7 vorgesehen, die übereinanderliegend angeordnet sind.

In den Trennwänden zwischen den Räumen 4 bis 7 sind jeweils Absperrorgane 8 bis 10 angeordnet, die dem Transfer von Zellmaterial zwischen den einzelnen Räumen dienen und deren Aufbau nachfolgend noch näher erläutert wird.

Die die einzelnen Räume 4 bis 7 begrenzenden Trennwände sind in Richtung auf die jeweils im Bereich der Mittelachse des Behälters 1 angeordneten Absperrorgane 8 bis 10 konisch zulaufend ausgebildet. Im Boden des Behälters 1 ist ein weiteres Absperrorgan 11 vorgesehen, über das der Raum 7 mit einem in einem zweiten Behälter 12 befindlichen weiteren Raum 13 verbindbar ist. Zwischen dem Boden des Behälters 1 und dem zweiten Behälter 12 ist auf einer Trägerplatte 14 ein Septum 15 angeordnet, durch das eine unter dem Absperrorgan 11 gehaltene Nadel 16 in den darunter befindlichen Raum 13 führt, in dem in diesem Fall ein Silikon-Beutel angeordnet ist.

Der Raum 6, der als eigentliche Fusionskammer dient, ist mit Fusionselektroden 17 und einem Temperatursensor 18 ausgestattet. Schließlich ist im Bereich der Fusionskammer 6 in der Außenwand

8813314

22.10.88

86-81 R

des Behälters 1 ein Fenster 19 für Beobachtungszwecke vorgesehen.

Der Aufbau der Absperrorgane ist aus den Figuren 2 und 3 ersichtlich. Diese Figuren zeigen den oberen Teil einer Anordnung, wie sie in Fig. 1 schematisch abgebildet ist. Der Behälter 1 ist bei dem hier dargestellten Ausführungsbeispiel modular aus einzelnen Elementen 20 und 21 zusammengesetzt und wird durch den Deckel 22 mit Rippen 23 nach oben abgeschlossen. Zwischen den in den Modulen 20 und 21 befindlichen Räumen 24 und 25 ist ein Absperrorgan angeordnet, daß nach Art eines Hahnes aufgebaut ist und dessen Gehäuse in den Modul 21 integriert ist.

Das konusförmige Hahnküken 28 weist, anstelle einer sonst bei derartigen Anordnungen gebräuchlichen Durchgangsbohrung, eine sacklochartige Bohrung 30 auf. Die Form dieser Bohrung 30 ist ebenfalls konisch gewählt, wobei die Symmetrieachse der Bohrung 30 mit der Mittelachse des gesamten zylindrischen Behälters 1 zusammenfällt. In gleicher Weise ist auch das ebenfalls in dieser Figur dargestellte zweite Absperrorgan 29 ausgehildet, das ebenfalls eine sacklochartige, konisch zulaufende Bohrung aufweist.

Schließlich sind auch die einzelnen Räume 24 und 25 jeweils in der Weise auf das nachfolgende Absperrorgan 28 bzw. 29 hin konisch ausgebildet, daß sie als trichterförmiger Einlauf für die zugeordnete Bohrung 30 bzw. 31 fungieren. Auch die den Absperroorganen nachgeordneten Ausläufe 32 sind im Fall des hier dargestellten Ausführungsbeispiels konisch ausgebildet. Die Durchmesser der Ein- bzw. Ausläufe sind dabei jeweils dem Durchmesser der Bohrung 30 bzw. 31 des zugeordneten Hahnkükens 28 bzw. 29 angepaßt.

Dem Behälter 1 sind ferner eine in der Zeichnung nicht dargestellte Zentrifugereinrichtung, mittels derer der gesamte Behälter zentrifugiert werden kann sowie ein ankoppelbarer Vibrationsmischer zugeordnet.

8610314

22.10.80

- 10 -

86-81 R

Zur Durchführung eines Zellfusionsexperimentes wird der oberste im Behälter 1 befindliche Raum 4 bzw. 24 mit Ausgangszellmaterial zweier unterschiedlicher Typen gefüllt, das sich in einer Transportlösung befindet. Die übrigen Räume 5, 7 und 13 werden mit spezifischen Nähr- bzw. Wachstumslösungen befüllt, während die Fusionskammer 6 ein spezielles Fusionsmedium enthält.

Durch Zentrifugieren, beispielsweise 10 Minuten bei einer Beschleunigung von etwa 200 g, wird das Zellmaterial als Pellet in der als Schale ausgebildeten Bohrung 30 des Hahnkükens 28 gesammelt. Indem nun das Hahnkücken von Hand um 180 Grad gedreht wird und so die in Fig. 3 dargestellte Position einnimmt, gelangt dieses Zellpellet in den nachfolgenden Raum 5 bzw. 25, der die erste Nährlösung enthält.

Nach dem Resuspensionsieren des Zellmaterials mit Hilfe des Vibrationsmischers und einer vorgesehenen Verweildauer in diesem Raum 5 bzw. 25 wird durch erneutes Zentrifugieren wiederum ein Zellpellet gebildet, das nunmehr in der Bohrung 31 des Hahnkükens 29 vorliegt. Durch Drehen dieses Kükens um ebenfalls 180 Grad wird das Zellmaterial in die eigentliche Fusionskammer 6 befördert, wo durch die Fusionselektroden 17 das für die Fusion erforderliche elektrische Spannungsfeld erzeugt wird. Der Ablauf des Fusionsexperimentes kann dabei über das Sichtfenster 19 mit Hilfe eines Mikroskops beobachtet werden.

Nach erfolgter Fusion und erneutem Zentrifugieren wird das Zellgut über das Absperrorgan 10, das analog zu den beiden Absperrorganen 8 und 9 aufgebaut ist, in den Raum 7, der als Postfusions-Medium eine weitere Nährlösung enthält, transferiert, wo es erneut suspendiert wird.

Von hier aus gelangt das Zellmaterial schließlich über das Absperrorgan 11, bei dem es sich in diesem Fall um ein Hahnkücken

8813314

32.10.88

72

-11-

86-81 R

mit Durchgangsbohrung handelt, in den untersten Raum 13, wobei es über die Nadel 16 in den Silikonbeutel gelangt. Das Septum 15 dichtet dabei diesen Teil der Anordnung gegen den darüber befindlichen Raum ab. Soll nun bei Versuchsende das in diesem Raum 13 befindliche Probenmaterial entnommen werden, so wird die Nadel 16 aus dem Septum 15 gezogen, wodurch der unterste Bereich füssigkeitsdicht verschlossen ist.

Das in Fig. 4 dargestellte Absperrorgan weist gegenüber dem in den Fig. 2 und 3 dargestellten einen teilweise geänderten Aufbau auf. Auch hier ist in einem Modul 41 in einer Bohrung 43 ein Hahnküken 48 mit einer konischen, sacklochartigen Bohrung 40 angeordnet. Im Gegensatz zu der vorstehend beschriebenen Anordnung sind in diesem Fall das Hahnküken 48 sowie die diese aufnehmende Bohrung 43 zylindrisch ausgebildet. Das Hahnküken 48 ist in dieser Bohrung in axialer Richtung beweglich gehalten, wobei insgesamt drei O-Ringe 46, 47 und 49 für die erforderliche Abdichtung sorgen. Der in den Raum 45 führende Auslauf 42 ist bei dieser Anordnung gegenüber dem vom Raum 44 gebildeten Einlauftrichter um die Strecke, die der axialen Verschiebung des Hahnkükens 48 entspricht, versetzt angeordnet.

Um bei diesem Absperrorgan ein Zellpellet aus dem Raum 44 in den Raum 45 zu transferieren, muß zusätzlich zur Verdrehung des Hahnkükens 48 um 180 Grad eine Verschiebung in axialer Richtung durchgeführt werden. Die Vorteile dieser Anordnung gegenüber der in den Fig. 2 und 3 dargestellten liegen dabei in den besonders einfachen Herstellungsmöglichkeiten.

0813314

73
22.10.08

- 13 -

86-81 R

Zusammenfassung:

Vorrichtung zur Durchführung biologischer Experimente

Eine Vorrichtung, die zur Durchführung von biologischen Experimenten, und zwar insbesondere von Zellfusionsexperimenten unter dem Zustand der Schwerelosigkeit bzw. verminderter Schwerkraft, dient, besteht aus einem geschlossenen Behälter, in dem mehrere, durch Absperrorgane voneinander getrennte Räume vorgesehen sind. Die Absperrorgane weisen die Form von Hähnen auf, deren Hahnküken mit sacklochartigen Bohrungen versehen sind. Der Behälter besitzt eine vorzugsweise zylindrische Form, wobei die einzelnen Räume trichterförmige Bereiche aufweisen, die auf die Bohrungen der Hahnküken zulaufend ausgerichtet sind.

8813314

22.10.98

76
12
86-81 R

Bezugszeichenliste

1	Behälter
2, 22	Deckel
3, 23	Rippen
4-7, 24, 25, 44, 45	Räume
8-10,	
28, 29, 48	Absperrorgane
11	"
12	zweiter Behälter
13	weiterer Raum (Silikon-Beutel)
14	Trägerplatte
15	Septum
16	Nadel
17	Fusionselektroden
18	Temperatursensor
19	Beobachtungsfenster
30, 31, 40	Bohrung (Hahnküken)
43	Bohrung für Hahnküken
46, 47, 49	O-Ringe

8813314

46-81 R 1/2

8813314

22.10.00

80-11170

۷۵

FIG. 1

FIG. 3

0013314

22.10.13

86-87 R 22

76

FIG. 4

6613314