

第三屆 全国网络与信息安全防护峰会

对话:交流:宣作

Defense Matrix

Alan Qian 华为技术有限公司

对话・交流・合作

Agenda

- 攻防对抗中的难题
- 防御矩阵
- 安全智能

攻防对抗中的难题

攻防对抗中的难题

1、原罪: (系统 &人)的脆弱性

2、利益: 预期收益 vs 预期风险

3、思维: 主动与被动

4、技术: 宏观策略、拥有信息、攻守界面、微观技术

5、失衡: 攻防态势的不对称性

原罪: 脆弱性(OS)

原罪: 脆弱性(人)

Because there is no patch to human stupidity...

眼耳鼻舌身意 色声香味触法 **贪嗔痴慢疑**

黑客思维

• 求异思维:寻求否定之否定

• 迷宫模式:入口_@\$%&*出口

• 实用主义: "意有定向,招无定式"

• 反功能: misuse, abuse

• 隐藏与混淆

拟人拟态

• 社会工程学

编程大师说: "任何一个程序,无论它多么小,总存在着错误。" 初学者不相信大师的话,他问: "如果一个程序小得只执行一个简单的功能,那会怎样?"

"这样的一个程序没有意义,"大师说,"但如果这样的程序存在的话,操作系统最后将失效,产生一个错误。"

但初学者不满足,他问:"如果操作系统不失效,那么会怎样?"

"没有不失效的操作系统,"大师说,"但如果这样的操作系统存在的话,硬件最后将失效,产生一个错误。"初学者仍不满足,再问: "如果硬件不失效,那么会怎样?"

大师长叹一声道:"没有不失效的硬件。但如果这样的硬件存在的话,用户就会想让那个程序做一件不同的事,这件事也是一个错误。"

没有错误的程序世间难求。

[Geoffrey James 1999 《编程之道》]

黑客思维

前提	思考过程	结论
No	???	Yes / No
对某一个前提的否定	努力思考	对自己的肯定或否定

技术难点

- 人机分别
- 相似度判断
- 相关性分析
- 语义理解
- 信誉评估
- 自动化提取特征或生成模型

Agenda

- 攻防对抗中的难题
- 防御矩阵
- 安全智能

防御矩阵(时空纬度)

	事前	事中	事后			
> 终端	监控实施	行为/意图	调查			
报文	特征更新	内容过滤	分析			
流量	基线学习	异常/基线	审计			
实体	信誉更新	信誉筛查	评估			

防御矩阵(KillChain纬度))Def 2014

引诱最终用户阶段 / 渗入系统阶段 / 安装后门阶段 / 建立隐秘诵道 / 尝试窃取机察

)	113/1/4/2	70F7ITX 1	X 4X/L	II JENITA '	在下於水田屋	7 云 帆 奶 牧 7 6 五
应用管控	阻断高危APP					阻断C&C链 接/异常链接	
信誉过滤	阻断已知 恶意网站					阻断恶意软件 恶意域名	智能 协同
入侵防御		阻断漏洞	攻击				
木马检测						○阻断Spyware /C&C链接	基于 特征 信誉 行为
病毒查杀				阻断 恶意	已知 软件		
DLP内容过滤				阻断偷	渡下载	阻断非法外传	检测 阻断
沙箱行为分 析		16 April -1		检测 恶意	未知软件		检测 阻断 活动 攻击
大数据分析		检测术 恶意流	知 <mark>建</mark>	位侧: 恶意	木州 软件	阻断未知 C&C流量	

防御矩阵(信息流纬度)

防御矩阵 (演进实例)

#	信誉模型	特征库模型
时间 成本	低。依据访问对象的可信程度进行预判,在 检测链上的最前端起作用。	高。根据数据内部特征进行检测。在检测链 上的中段起作用。
资源 成本	低。基于最少的信息量作决策,资源最节约。可处理大部分常见的可信与不可信链接。	高。需要解析报文内容,需要大量的 CPU 与 内存。较难适应流量模型的变化。
智能 协同	好。 检测结果通过信誉反馈对防御能力形成 贡献。	差。缺少信誉反馈,防御能力无法闭环提升。

Agenda

- 攻防对抗中的难题
- 防御矩阵
- •安全智能

安全智能

1、安全的服务对象是"被攻击者", 安全能力的<mark>服务</mark>对象是"攻击者"。 服务的内容是提供知识与防护手段。

2、安全的价值在于迅速将不安全的状态转换为安全,并尽量提高攻击成本。 对已知威胁根据风险与成本取舍。 对未知威胁提升免疫力降低风险。

3、安全是模式的科学,其核心工作 是构建安全知识系统。 安全技术通过模式的挖掘,把潜在的 威胁呈现出来。

4、大数据改变了安全知识挖掘的方式, 从实验模拟发展到密集计算,进一步 完善了安全知识的积累手段,是安全 智能化的基础。

安全智能

安全 信誉

安全 模型

安全 特征

威胁 分析

样本

知识的涌现

知识的涌现

上一代与下一代

这一代 在哪儿? [汗...]

关联分析 **→** 大数据

固态执行 → 环境感知

流→应用

特征 → 行为意图

黑白名单→安全信誉

下下一代: HumanWall?

Thanks!