Fasit til utvalgte oppgaver MAT1110, uka 15-19/2

Øyvind Ryan (oyvindry@ifi.uio.no)

February 19, 2010

Oppgave 3.6.1

Vi ser på ligningen

$$4x^2 + 9y^2 + 32x - 18y + 37 = 0.$$

Vi fullfører kvadratene:

$$4(x^{2} + 8x + 16) - 64 + 9(y^{2} - 2y + 1) - 9 + 37 = 0$$

$$4(x + 4)^{2} + 9(y - 1)^{2} = 36$$

$$\frac{(x + 4)^{2}}{3^{2}} + \frac{(y - 1)^{2}}{2^{2}} = 1.$$

Ser fra Setning 3.6.3 at dette er en ellipse med sentrum i (-4,1) og halvakser a=3 og b=2. Siden a>b har vi at brennvidden er gitt ved

$$c = \sqrt{a^2 - b^2} = \sqrt{3^2 - 2^2} = \sqrt{5}.$$

Brennpunktene blir da $(-4,1) \pm (\sqrt{5},0)$, som blir $(-4-\sqrt{5},1)$ og $(-4+\sqrt{5},1)$.

Oppgave 3.6.2

Vi ser på ligningen

$$y^2 - 4x - 2y - 7 = 0.$$

Vi fullfører det ene kvadratet:

$$(y-1)^2 - 4x - 8 = 0,$$

som også kan skrives $(y-1)^2 = 4(x+2)$. Fra setning 3.6.1 har vi at dette er en parabel med toppunkt (-2,1) med brennvidde 1. Brennpunktet er (-1,1).

Oppgave 3.6.3

Vi fullfører kvadratene i likningen:

$$x^{2} - y^{2} - 2x + 4y - 7 = x^{2} - 2x + 1 - y^{2} + 4y - 4 - 1 + 4 - 7$$
$$= (x - 1)^{2} - (y - 2)^{2} - 4$$
$$= 0.$$

Derfor har vi at $\frac{(x-1)^2}{2^2} - \frac{(y-2)^2}{2^2} = 1$. På grunn av Setning 3.6.5 fremstiller derfor likningen en hyperbel med halvakse 2, og med åpning mot venstre/høyre. Brennvidden blir

$$c = \sqrt{a^2 + b^2} = \sqrt{2^2 + 2^2} = 2\sqrt{2}.$$

Sentrum i hyperbelen er (1,2). Brennpunkter blir $(1,2) \pm (2\sqrt{2},0)$, som blir $(1-2\sqrt{2},2)$ og $(1+2\sqrt{2},2)$. Asymptotene er $y=\pm(x-1)+2$.

Oppgave 3.6.4

Vi fullfører kvadratene i likningen:

$$16y^{2} - 9x^{2} + 32y + 54x - 209$$

$$= 16y^{2} + 32y + 16 - 9x^{2} + 54x - 81 - 16 + 81 - 209$$

$$= 16(y+1)^{2} - 9(x-3)^{2} - 144$$

$$= 0.$$

Derfor har vi at $\frac{16}{144}(y+1)^2 - \frac{9}{144}(x-3)^2 = \frac{(y+1)^2}{3^2} - \frac{(x-3)^2}{4^2} = 1$. På grunn av Setning 3.6.5 fremstiller derfor likningen en hyperbel med halvakse b=3, og med åpning opp/ned. Sentrum i hyperbelen blir (3,-1). Brennvidden blir

$$c = \sqrt{a^2 + b^2} = \sqrt{3^2 + 4^2} = 5.$$

Brennpunkter blir $(3,-1)\pm(0,5)$, som blir (3,4) og (3,-6). Asymptotene blir $y=\frac{3}{4}\pm(x-3)-1$.

Oppgave 3.6.8

Vi skal se på likningen til tangenten i (x_0, y_0) på ellipsen $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Deriverer vi begge sider med hensyn på x i punktet x_0 får vi at

$$\frac{2x_0}{a^2} + \frac{2y_0y'(x_0)}{b^2} = 0.$$

Vi ser da at $y'(x_0) = -\frac{b^2 x_0}{a^2 y_0}$. Likningen for tangen blir da

$$y = y'(x_0)(x - x_0) + y_0$$

$$= -\frac{b^2 x_0}{a^2 y_0}(x - x_0) + y_0$$

$$= -\frac{b^2 x_0 x}{a^2 y_0} + \frac{b^2 x_0^2}{a^2 y_0} + y_0$$

$$= -\frac{b^2 x_0 x}{a^2 y_0} + \frac{b^2}{y_0} \left(\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2}\right)$$

$$= -\frac{b^2 x_0 x}{a^2 y_0} + \frac{b^2}{y_0}.$$

Flytter vi over på venste side og ganger opp får vi

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1,$$

som var det vi skulle vise.

Oppgave 3.6.10

Den korteste veien fra et punkt P, via parabelen, til brennpunktet F, finner du ved å trekke en linje fra punktet mot l som står vinkelrett på l. For å se dette, la veien fra P til F punktet Q på parabelen. Da er den totale veien gitt ved |PQ| + |QF|. Dette er mindre enn eller lik avstanden fra P til styrelinjen l, med likhet kun når P og Q ligger på en linje parallell med parabelens akse (siden korteste vei mellom et punkt og en linje er en rett linje). Korteste veien inntreffer altså når vi beveger oss fra P parallelt med parabelens akse.

Oppgave 3.6.11

Lyset bruker like lang til fra A til B som fra A' til B'. For å se dette, skriv lengden lyset tilbakelegger fra A til B som

$$|AA_0| + |A_0F| + |FB_0| + |B_0B|,$$

der A_0 er første refleksjonspunkt på parabelen, B_0 er andre refleksjonspunkt på parabelen. Men dette kan også skrives

$$|AA_0| + |A_0A_l| + |B_0B_l| + |B_0B| = |AA_l| + |BB_l|,$$

der vi har brukt at avstanden fra et punkt på parabelen til brennpunktet er lik avstanden fra punktet til styrelinjen l, og der A_l og B_l er punktene på linjen l nærmest A og B. det er klart at $|AA_l| + |BB_l|$ er lik det dobbelte av avstanden fra linjen m til linjen l, uansett hvilket punkt A vi starter i, slik at lyset bruker like lang tid fra A til B som fra A' til B'.

Oppgave 3.6.12

a)

Det er to trykkfeil i oppgaveteksten her. Linjestykket F_2Q skal være linjestykket F_2A , og $|AF_1|$ skal være $|BF_1|$. Vi har at

$$|BF_1| + |BF_2| = 2a$$
 (siden B er definert til å ligge på parabelen)
 $|AB| + |BF_2| = 2a$ (ved definisjonen av A).

 $|AB| = |BF_1|$, som er det vi skal vise, følger umiddelbart ved å trekke disse likningene fra hverandre.

b)

t består av alle punkter Q like langt fra A og F_1 , det vil si at $|AQ| = |QF_1|$. Fra a) er B et slikt punkt, slik at B ligger på t.

c)

Hvis C ligger på t har vi at $|CF_1| = |CA|$. Hvis $C \neq B$ får vi

$$|F_2C| + |CF_1| = |F_2C| + |CA|$$

> $|F_2A|$
= $2a$,

der $|F_2A|=2a$ kommer fra definisjonen av A, og der $|F_2C|+|CA|>|F_2A|$ følger av at den korteste vei fra F_2 til A er en rett linje, og at C ikke ligger på den rette linjen mellom A og F_2 når $C\neq B$.

d)

Vi vet at

- B ligger på ellipsen per definisjon,
- fra b) at B ligger på t,
- \bullet fra c) at alle andre punkter på t ligger utenfor ellipsen.

Fra disse opplysningene er det klart at t tangerer ellipsen i B.

Oppgave 3.7.2

a)

Vi setter $f(x.y) = 2x^2 + y^2$.

- $2x^2 + y^2 = c$ gir ellipse med store halvakse \sqrt{c} , lille halvakse $\sqrt{\frac{c}{2}}$.
- Skjæring med xz-planet: $z = 2x^2$.
- Skjæring med yz-planet: $z = y^2$.

b)

 $y^2-x=c$ gir en nivåkurve som er en "liggende parabel". Toppunktet blir i(c,0).

c)

Vi setter $f(x,y) = \sin(x^2 + y^2)$.

- $\sin(x^2 + y^2) = c$ gir at $x^2 + y^2 = \arcsin c$.
- Når 0 < c < 1 så er dette en sirkel med radius $\sqrt{\arcsin c}$.
- For c = 0 er det bare punktet **0**.
- Nivåkurvene inneholder ingen punkter når c > 1 eller c < 0.
- Skjæring med xz-planet: Setter vi y = 0 får vi at $z = \sin(x^2)$.

Oppgave 3.7.3 a)

$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{r}.$$

Oppgave 3.7.3 b)

 $f(x,y) = \frac{x}{x^2 + y^2} = \frac{r\cos\theta}{r^2} = \frac{1}{r}\cos\theta$. Holder vi θ konstant, ser vi at vi får hyperbelen $z = \frac{\cos\theta}{r}$. Dette hjelper oss til å kunne tegne opp flaten.

 $z=\frac{\cos\theta}{r}$. Dette hjelper oss til å kunne tegne opp flaten. Nivåkurvene er her sirkler: Setter vi $c=\frac{x}{x^2+y^2}$ får vi at $x^2+y^2=\frac{x}{c}$. Det er her greit at vi fullfører kvadratet i x for å se at vi får sirkler som er nivåkurver.

Oppgave 3.7.4 a)

Sylinderkoordinater:

$$f(x, y, z) = (x^2 + y^2)e^{-z^2} = r^2e^{-z^2}.$$

Kulekoordinater:

$$f(x, y, z) = (\rho^2 \cos^2 \theta \sin^2 \phi + \rho^2 \sin^2 \theta \sin^2 \phi) e^{-\rho^2 \cos^2 \phi} = \rho^2 \sin^2 \phi e^{-\rho^2 \cos^2 \phi}.$$

Begge typene koordinater er like informativt her, siden poenget er at funksjonen ikke avhenger av θ , som er en av koordinatene som brukes i både kulekoordinater og sylinderkoordinater.

4

Oppgave 3.7.4 b)

Sylinderkoordinater:

$$f(x,y,z) = \frac{1}{x^2 + y^2 + z^2} = \frac{1}{r^2 + z^2}.$$

Kulekoordinater:

$$f(x, y, z) = \frac{1}{\rho^2}.$$

Kulekoordinater er mest informativt her, siden ϕ og θ ikke inngår i uttrykket for f.

Oppgave 3.7.5 a)

Vi har $f(x,y) = x^2y$, og skal finne tangentplanet i (1,-2). Vi har at f(1,-2) = -2, og at $\nabla f(1,-2) = (-4,1)$. Ligningen for tangentplanet blir dermed

$$z = f(1,-2) + \frac{\partial f}{\partial x}(1,-2)(x-1) + \frac{\partial f}{\partial y}(1,-2)(y+2)$$

= -2 - 4(x - 1) + (y + 2)
= -4x + y + 4.

Oppgave 3.9.1

Vi ser på paraboloiden $z = x^2 + y^2$. Parametrisering med vanlige koordinater er

$$\mathbf{r}(x,y) = x\mathbf{i} + y\mathbf{j} + (x^2 + y^2)\mathbf{k}$$

for $x,y\in\mathbb{R}$. Siden $x=r\cos\theta,\,y=r\sin\theta,\,$ og $x^2+y^2=r^2,$ så blir en parametrisering med polarkoordinater

$$\mathbf{r}(r,\theta) = r\cos\theta\mathbf{i} + r\sin\theta\mathbf{j} + (r^2\cos^2\theta + r^2\sin^2\theta)\mathbf{k}$$
$$= r\cos\theta\mathbf{i} + r\sin\theta\mathbf{j} + r^2\mathbf{k}$$

 $\mod 0 \le \theta \le 2\pi, \, r \ge 0.$

Oppgave 3.9.2

Området i første oktant som ligger på kuleflaten kan beskrives i kulekoordinater ved $0 \le \theta \le \frac{\pi}{2}, \ 0 \le \phi \le \frac{\pi}{2}, \ \rho = 2$. En parametrsisering ved kulekoodinater blir derfor

$$\mathbf{r}(\phi,\theta) = (2\cos\theta\sin\phi, 2\sin\theta\sin\phi, 2\cos\phi), \ 0 \le \theta \le \frac{\pi}{2}, \ 0 \le \phi \le \frac{\pi}{2}.$$

Oppgave 3.9.5

Vi kan skrive

$$\mathbf{r}(y,z) = (\sqrt{y^2 + z^2}, y, z)$$

Oppgave 3.9.8

Skjæringen mellom kjeglen og kulen kan vi finne ved å løse

$$z^2 = 3(x^2 + y^2) = 3(4 - z^2),$$

som gir at $4z^2 = 12$, og at $z = \pm \sqrt{3}$. Siden vi er interessert i en del over xy-planet må vi ha at $z = \sqrt{3}$. Da er $x^2 + y^2 + z^2 = r^2 + z^2 = r^2 + 3 = 4$, slik at r = 1. Dette svarer til at vinkelen ϕ er gitt ved $\arcsin(r/2) = \arcsin(1/2) = \frac{\pi}{6}$. Det er dermed klart at følgende er en parametrisering av området i kulekoordinater:

$$\mathbf{r}(\theta,\phi) = (2\cos\theta\sin\phi, 2\sin\theta\sin\phi, 2\cos\phi), \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \frac{\pi}{6}.$$

Matlab-kode

```
% Oppgave 3.7.2 a)
r=-2:0.05:2;
s=-2:0.05:2;
[x,y]=meshgrid(r,s);
z=2*x.^2+y.^2;
mesh(x,y,z);
title('Oppgave 3.7.2a')
% Oppgave 3.7.2 b)
z=y.^2-x;
figure(2)
mesh(x,y,z);
title('Oppgave 3.7.2b')
% Oppgave 3.7.2 c)
r=-4:0.1:4;
s=-4:0.1:4;
[x,y] = me shgrid(r,s);
z=\sin(x.^2+y.^2);
figure(3)
mesh(x,y,z);
title('Oppgave 3.7.2c')
% Oppgave 3.7.2 d)
r=-5:0.05:5;
s=-5:0.05:5;
[x,y] = me shgrid(r,s);
z=x.^2 - 4*y.^2;
figure(4);
mesh(x,y,z);
title('Oppgave 3.7.2d');
% Oppgave 3.7.2 e)
r=-5:0.05:5;
s=-5:0.05:5;
[x,y]=meshgrid(r,s);
figure(5);
z=log(x.*y);
mesh(x,y,z);
title('Oppgave 3.7.2e');
```

```
% Oppgave 3.7.3 a)

u=-0.5:0.03:0.5;

v=-0.5:0.03:0.5;

[x,y]=meshgrid(u,v);
```

```
z=1./sqrt(x.^2 + y.^2);
mesh(x,y,z);
title('Oppgave 3.7.3a')
% Oppgave 3.7.3 b)
u=-0.5:0.03:0.5;
v=-0.5:0.03:0.5;
[x,y]=meshgrid(u,v);
z=x./(x.^2 + y.^2)
figure(2)
mesh(x,y,z)
title('Oppgave 3.7.3b')
% Oppgave 3.7.3 c)
u=-0.5:0.03:0.5;
v=-0.5:0.03:0.5;
[x,y]=meshgrid(u,v);
z=y./x;
figure(3)
mesh(x,y,z)
title('Oppgave 3.7.3c')
% Oppgave 3.7.3 d) u=-1:0.05:1;
v=-1:0.05:1;
[x,y] = me shgrid(u,v);
figure(4)
z=x.^2-4*y.^2
mesh(x,y,z)
title('Oppgave 3.7.3d')
% Oppgave 3.7.3 e)
u=-1:0.05:1;
v=-1:0.05:1;
[x,y]=meshgrid(u,v);
figure(5)
z=exp(x.*y)
mesh(x,y,z)
title('Oppgave 3.7.3e')
```

```
% Oppgave 3.7.6
r=-2:0.02:2;
s=-2:0.02:2;
[x,y]=meshgrid(r,s);
z=x.^2.*y./(x.^2+y.^2);
figure(6)
mesh(x,y,z)
hold on
t=linspace(0,2,100);
plot3(t,t.^2,0.5*ones(1,length(t)))
title('Oppgave 3.7.6')
hold off
figure(7)
contour(x,y,z);
title('Oppgave 3.7.6')
contour(x,y,z,[0.5 0.5]);
title('Oppgave 3.7.6')
```

```
% Oppgave 3.8.1 a)
r=linspace(0,2*pi,30);
```

```
s=linspace(0,2*pi,30);
[x,y] = meshgrid(r,s);
u=cos(x);
v=sin(x);
figure(8)
quiver(x,y,u,v);
title('Oppgave 3.8.1a');
figure (9)
streamline (x,y,u,v,0,1);
hold on
streamline (x,y,u,v,0,0.5);
title('Oppgave 3.8.1a');
hold off
% Oppgave 3.8.1 b)
r=linspace(-0.3,0.3,30);
s=linspace(-0.3,0.3,30);
[x,y]=meshgrid(r,s);
u=-x./(x.^2+y.^2).^(3/2);
v=-y./(x.^2+y.^2).^(3/2);
figure(10)
quiver(x,y,u,v)
title('Oppgave 3.8.1b');
figure(11)
streamline(x,y,u,v,-0.3,0.3);
hold on
streamline(x,y,u,v,0.3,0.3);
title('Oppgave 3.8.1b');
hold off
% Oppgave 3.8.1 c)
r=linspace(-2,2,30);
s=linspace(-1,1,30);
[x,y] = me shgrid(r,s);
u=(1-x)./((x-1).^2+y.^2) + (1+x)./((x+1).^2+y.^2);
v=-y./((x-1).^2+y.^2) + y./((x+1).^2 + y.^2);
figure(12)
quiver(x,y,u,v)
title('Oppgave 3.8.1c');
figure (13)
streamline(x,y,u,v,1.5,1);
hold on
streamline(x,y,u,v,0.5,1);
title('Oppgave 3.8.1c');
hold off
```

```
% Oppgave 3.8.3 a)
r=-2:0.25:2; %lager oppdeling av x-aksen
s=-2:0.25:2; %lager oppdeling av y-aksen
[x,y]=meshgrid(r,s);
u=3.*x-y;
v=x+2.*y;
figure(14)
plot(u,v,u',v')
title('Oppgave 3.8.3a');
% Oppgave 3.8.3 b)
r=0:0.25:5;
s=0:0.25:(2*pi);
[x,y]=meshgrid(r,s);
u = x.*cos(y);
v = x.*sin(y);
figure(15)
plot(u,v,u',v');
title('Oppgave 3.8.3b');
```

```
% Oppgave 3.8.3 c)
u=sqrt(x./y);
v=sqrt(x.*y);
figure(16)
plot(u,v,u',v');
title('Oppgave 3.8.3c');
```

```
% Oppgave 3.9.11

r=-1:0.05:1;
s=0:0.05:3;
[u,v]=meshgrid(r,s);
figure(17)
mesh(u.*v.^2,u,sin(u.*v))
title('Oppgave 3.9.11');
```

```
% Oppgave 10.1
function ret=oppg101(a,b,c,d)
ret = a*d-b*c;
```

```
% Oppgave 10.2
function [x,y]=oppg102(a,b,c,d,e,f)
  determinant = oppg101(a,b,c,d);
  if determinant ~=0
    v = [a b;c d]\[e; f];
    x=v(1);
    y=v(2);
  else
    disp('Likningssettet har ikke entydig løsning');
  end
```

Python-kode

```
# Oppgave 3.7.2 a)
r=arange(-2,2,0.05,float)
s=arange(-2,2,0.05,float)
x,y=meshgrid(r,s,sparse=False,indexing='ij')
z=2*x**2+y**2
mesh(x,y,z)
title('Oppgave 3.7.2a')

# Oppgave 3.7.2 b)
z=y**2-x
figure(2)
mesh(x,y,z)
title('Oppgave 3.7.2b')

# Oppgave 3.7.2 c)
r=arange(-4,4,0.01,float)
```

```
s=arange(-4,4,0.01,float)
x,y=meshgrid(r,s,sparse=False,indexing='ij')
z = \sin(x * * 2 + y * * 2)
figure(3)
mesh(x,y,z)
title('Oppgave 3.7.2c')
# Oppgave 3.7.2 d)
r=arange(-5,5,0.05,float)
s=arange(-5,5,0.05,float)
x,y=meshgrid(r,s,sparse=False,indexing='ij')
z=x**2 - 4*y**2
figure(4)
mesh(x,y,z)
title('Oppgave 3.7.2d')
# Oppgave 3.7.2 e)
r=arange(-2,2,0.05,float)
s=arange(-2,2,0.05,float)
x,y=meshgrid(r,s,sparse=False,indexing='ij')
figure(5)
z=log(x*y)
mesh(x,y,z)
title('Oppgave 3.7.2e')
```

```
# Oppgave 3.7.3 a)
u=arange(-0.5,100,0.03,float)
v=arange(-0.5,0.5,0.03,float)
x,y=meshgrid(u,v,sparse=False,indexing='ij')
z=1.0/sqrt(x**2+y**2)
mesh(x,y,z)
title('Oppgave 3.7.3a')
# Oppgave 3.7.3 b)
u=arange(-0.5,0.5,0.03,float)
v=arange(-0.5,0.5,0.03,float)
x,y=meshgrid(u,v,sparse=False,indexing='ij')
z=x/(x**2+y**2)
figure(2)
mesh(x,y,z)
title('Oppgave 3.7.3b')
# Oppgave 3.7.3 c)
u=arange(-0.5,0.5,0.03,float)
v=arange(-0.5,0.5,0.03,float)
x,y=meshgrid(u,v,sparse=False,indexing='ij')
z=y/x
figure(3)
mesh(x,y,z);
title('Oppgave 3.7.3c')
# Oppgave 3.7.3 d)
u=arange(-1,1,0.05,float)
v=arange(-1,1,0.05,float)
figure(4)
x,y=meshgrid(u,v,sparse=False,indexing='ij')
z=x**2-4*y**2
mesh(x,y,z);
title('Oppgave 3.7.3d')
# Oppgave 3.7.3 e)
u=arange(-1,1,0.05,float)
v=arange(-1,1,0.05,float)
x,y=meshgrid(u,v,sparse=False,indexing='ij')
figure(5)
```

```
z=exp(x*y)
mesh(x,y,z)
title('Oppgave 3.7.3e')
```

```
from math import *
from numpy import *
from scitools.easyviz import *
# Oppgave 3.7.6
r=arange(-2,2,0.02,float)
s=arange(-2,2,0.02,float)
x,y=meshgrid(r,s,sparse=False,indexing='ij')
z=x**2*y/(x**2+y**2)
figure(6)
mesh(x,y,z)
hold('on')
t=linspace(0,2,100)
plot3(t,t**2,0.5*ones(100))
title('Oppgave 3.7.6')
hold('off')
figure(7)
contour(x,y,z)
title('Oppgave 3.7.6')
contour(x,y,z,[0.5,0.5])
title('Oppgave 3.7.6')
```

```
from math import *
from numpy import *
from scitools.easyviz import *
# Oppgave 3.8.1 a)
r=linspace(0,2*pi,30)
s=linspace(0,2*pi,30)
x,y=meshgrid(r,s,sparse=False,indexing='ij')
u=cos(x)
v=sin(x)
figure(8)
quiver(x,y,u,v)
title('Oppgave 3.8.1a')
# streamline does not work properly in Python at the moment
# figure(9)
# streamline(x,y,u,v,0,1)
# hold('on')
# streamline(x,y,u,v,0,0.5)
# title('Oppgave 3.8.1a')
# hold('off')
# Oppgave 3.8.1 b)
r=linspace(-0.3,0.3,30)
s=linspace(-0.3,0.3,30)
x,y=meshgrid(r,s,sparse=False,indexing='ij')
u=-x/(x**2+y**2)**(3.0/2)
v=-y/(x**2+y**2)**(3.0/2)
figure(10)
quiver(x,y,u,v)
title('Oppgave 3.8.1b')
# streamline does not work properly in Python at the moment
# figure(11)
# streamline(x,y,u,v,-0.3,0.3)
# hold('on')
```

```
# streamline(x,y,u,v,0.3,0.3)
# title('Oppgave 3.8.1b')
# hold('off')
# Oppgave 3.8.1 c)
r=linspace(-2,2,30)
s=linspace(-1,1,30)
x,y=meshgrid(r,s,sparse=False,indexing='ij')
u=(1-x)/((x-1)**2+y**2) + (1+x)/((x+1)**2+y**2)
v=-y/((x-1)**2+y**2) + y/((x+1)**2 + y**2)
figure(12)
quiver(x,y,u,v)
title('Oppgave 3.8.1c')
# streamline does not work properly in Python at the moment
# figure(13)
# streamline(x,y,u,v,1.5,1)
# hold('on')
# streamline(x,y,u,v,0.5,1)
# title('Oppgave 3.8.1c')
# hold('off')
```

```
from math import *
from numpy import *
from scitools.easyviz import *
# Oppgave 3.8.3 a)
r=arange(-2,2,0.25,float) # lager oppdeling av x-aksen
s=arange(-2,2,0.25,float) # lager oppdeling av y-aksen
x,y=meshgrid(r,s,sparse=False,indexing='ij')
u=3*x-y
v=x+2*y
figure(14)
plot(u,v,u.T,v.T)
title('Oppgave 3.8.3a')
# Oppgave 3.8.3 b)
r=arange(0,5,0.25,float)
s=arange(0,2*pi,0.25,float)
x,y=meshgrid(r,s,sparse=False,indexing='ij')
u = x*cos(y)
v = x*sin(y)
figure(15)
plot(u,v,u.T,v.T)
title('Oppgave 3.8.3b')
# Oppgave 3.8.3 c)
u=sqrt(x/y)
v=sqrt(x*y)
figure (16)
plot(u,v,u.T,v.T)
title('Oppgave 3.8.3c')
```

```
from math import *
from numpy import *
from scitools.easyviz import *

# Oppgave 3.9.11
r=arange(-1,1,0.05,float)
s=arange(0,3,0.05,float)
u,v=meshgrid(r,s,sparse=False,indexing='ij')
```

```
figure(17)
mesh(u*v**2,u,sin(u*v))
title('Oppgave 3.9.11')
```

```
#Oppgave 10.1
def determinant(a,b,c,d):
   return a*d-b*d
```

```
#Oppgave 10.2
# coding=utf-8
from oppg101 import *
from numpy import *

def oppg102(a,b,c,d,e,f):
    determinant = oppg101(a,b,c,d)
    if determinant !=0:
        v = linalg.solve( matrix([[a,b],[c,d]]) , matrix([[e],[f]]) )
        return v[0,0],v[1,0]
    else:
        print 'Likningssettet har ikke entydig løsning'
```