Universidad de los Andes

Monograph

Orbits of black holes in triaxial potentials

Author:
Juan BARBOSA

Advisor: Jaime FORERO, Ph.D.

Monograph presented for the degree of physicist

Departamento de Física Facultad de Ciencias Universidad de los Andes

> Bogotá, Colombia March 6, 2019

Contents

1	Intr	n	1	
2	Met	hodolo	gy	3
	1	Units		3
		1.1	Universal gravitational constant	4
		1.2	Hubble parameter	4
	2	Critica	al density and Virial Radius	4
	3	Equati	ion of motion	5
		3.1	Dynamical friction	6
		3.2	Accretion onto the black hole	7
		3.3	Initial conditions and numerical integration	8
	4	Defini ^e	tions	8
		4.1	Escape velocity	8
		4.2	Time of return	8
3	Sph	erical s	tudy	9
	1	Setup		9
		1.1	Virial radius	10
		1.2	Dark matter halo	10
		1.3	Stellar profile	11
		1.4	Gas profile	12
	2	Result	s	13
		2.1	Effect of the baryonic fraction	14
		2.2	Effect of the power law exponent	14
		2.3	Effect of the stellar fraction	14
4	Tria	xial stu	dy	17
	1	Setup		17
		1.1	Dark matter halo	19
		1.2	Stellar profile	19
		1.3	Gas profile	19
	2	Result	•	19

References 21

List of Figures

2.1	Floating point precision for different values, for a 32 bit and 64 bit holders	3
2.2	Dependency of the Hubble parameter with redshift	5
3.1	NGC4414 galaxy as seen by the Hubble telescope.	9
3.2	Dark matter concentration parameter as a function of the halo mass and the red-	
	shift	11
3.3	Mass distributions for $R_{\text{vir}} = 0.69$ kpc (red line), $c = 4$, and $f_b = 0.156$	12
3.4	Upper two plots show the output of a single simulation, while the lower one	
	shows most the local properties per data point	13
3.5		14
3.6		14
3.7		15
4.1	Although the cumulative mass at the orange and blue dots is the same, the effec-	
	tive gravitational mass is different.	18
42		19

Chapter 1

Introduction

The Theory of General Relativity by Albert Einstein was published in 1915, from which arise predictions such as gravitational waves, gravitational lenses, and time dilation. The term "gravitational waves" was introduced for the first time in a Henri Poincaré publication of 1905, in which he proposed the first equation for an invariant gravitational field before Lorentz transformations [1, 2]. At present, gravitational waves are understood as the periodic variations of the geometry of space-time, and have their origin in that the energy and moment density of a gravitational field act in turn as sources of gravity [3]. Although more than 100 years have passed since the publication of the theory, even today there are gaps in the understanding and implications of Einstein's equations. The foregoing is due, in part, to the difficulty of solving the equations for physical situations of interest. For example, gravitational waves can only be solved analytically for weak fields by using a linear form of these equations. However, at the experimental level it is only possible to detect gravitational waves from highly massive bodies, such as binary black hole systems, which only have strong fields. In 2016 a gravitational wave was detected for the first time in the history of mankind, and this discovery was recognized by the scientific community in 2017 with the Nobel Prize in Physics [4].

In particular for binary systems (two bodies orbiting around their center of mass), there is a phenomenon known as *recoil* or *kick*. This is because when considering General Relativity, the movement of bodies generates waves that carry momentum and energy, and that alters the trajectories previously predicted by Universal Gravitation, where the solution to the equations of motion are elliptical trajectories in accordance with the laws of Kepler [3–5]. This causes that little by little the orbit decays and the two objects merge into a single body. At the moment the fusion takes place, the amplitude of the wave increases considerably. This implies that there will be a movement of the new body in the direction opposite to the propagation of the wave, given by the conservation of linear momentum. It is to this movement that it is known by the name of recoil or kick and was described by Bonnor and Rotenberg in 1966 [5, 6].

The fusion of two black holes of a binary system gives rise to a new one, this being one of the mechanisms by which supermassive black holes are generated. This type of black hole has been found in almost all galaxies, and is characterized by having masses between $10^4~M_{\odot}$ to $10^{10}~M_{\odot}(M_{\odot}$, solar masses). It has also been found that its mass correlates with properties of

the galaxy among which are the speed of dispersion, luminosity and the mass of the galactic bulb. It has even been thought that these correlations show a co-evolution process of black holes and their galaxies. Among the effects of setbacks on black holes, we find that they limit the formation of these to masses less than $10^{10}~M_{\odot}[7]$.

When a black hole experiences a kick on it, the gravitational force, the dynamic friction, the accretion and the cosmological acceleration act. The dynamic friction is due to the interaction of a body in movement with the surrounding non-empty space, which generates drag on it decreasing its speed. On the other hand, given the gravitational field of the black hole, small bodies that are in its path will be incorporated increasing the mass of the same, which causes a decrease in the speed for conservation of the moment. Finally, the cosmological acceleration is due to the expansion of the universe and has a constant value for a given redshift (z) [7].

The effect of these on the trajectory of *kick* has been previously studied by Choksi et al., finding that variations in the value of the cosmological acceleration have little effect on the simulations [7]. For the accretion they determined that the increase of this decreases the time it takes for the black hole to return to its initial pocisión, being its most relevant effect for small-mass black holes. With respect to dynamic friction, they opted for a hybrid description between the models proposed by Ostriker and Escala et al., managing to take into account both the subsonic range and the highly supersonic range of the drag force [8, 9]. Finally, in their study they considered a spherically symmetric potential for the halo of the galaxy, bringing together the contributions of dark matter and visible matter in the same potential as mass distributions [7].

In this work we seek to analyze the effect of different triaxial potentials for a range of initial velocities of the black hole. The above is of particular importance because with these potentials the angular momentum is not always conserved, the trajectories are not closed and the phase space is chaotic. The latter means that small variations in the initial conditions give rise to completely different final results. In addition, these potentials are observed in elliptical galaxies that rotate slowly [10, 11]. The chaotic component represents a challenge for the integration methods of the motion equation, since a numerical error is not different from a change in an initial condition. For this reason it is sought to perform each simulation using different numerical integrators, available in the Python and C library, REBOUND [12].

Chapter 2

Methodology

Some of the simulation parameters are dependent of the cosmological model used, unless otherwise specified, all data is acquired using the Λ -CDM model with a matter density parameter $\Omega_M = 0.309$, $\Omega_{\Lambda} = 0.6911$, and a baryonic fraction $f_b = 0.156$ [7].

1 Units

Computer simulations are sensitive to rounding errors due to the lack of infinite precision when representing decimal numbers. Really small numbers as well as really big ones tend to have bigger errors than those close to the unity, as can be seen on Figure 2.1.

FIGURE 2.1: Floating point precision for different values, for a 32 bit and 64 bit holders.

Under the International System of Units, distances are measured on meters, times on seconds, and masses on kilograms, nevertheless black holes are too heavy to be measured on kilograms, galaxies sizes too big to be quantified on meters, and time scales too large for a second. Because of that, the following units will be used throughout this document:

Physical property	unit
Length	1 kilo-parsec (kpc)
Mass	10^5 solar masses ($10^5~M_{\odot}$)
Time	1 giga-year (Gyr)

TABLE 2.1: Units of measure used on the simulations.

Along with the change of units, the universal gravitational constant and the Hubble parameter values are required to change.

1.1 Universal gravitational constant

First quantified by Henry Cavendish the gravitational constant has a value of $G_0 = 6.67408 \times 10^{-11}$ on SI units of m³s⁻²kg⁻¹. With the units of length, mass and time on Table 2.1, the constant of gravity used is given by:

$$G = G_0 \left(\frac{1 \text{ kpc}^3}{(3.0857 \times 10^{19})^3 \text{ m}^3} \right) \left(\frac{(3.154 \times 10^{16})^2 \text{ s}^2}{1 \text{ Gyr}^2} \right) \left(\frac{1.98847 \times 10^{35} \text{ kg}}{10^5 M_{\theta}} \right)$$

$$= 0.4493 \frac{\text{kpc}^3}{\text{Gyr}^2 10^5 M_{\odot}}$$
(2.1)

1.2 Hubble parameter

The Hubble constant is frequently used as $H_0 = 67.66 \pm 0.42 \text{ kms}^{-1}\text{Mpc}^{-1}$ [13], stating the speed of an astronomical body on kms⁻¹ at a distance of 1 Mpc. Nevertheless, the hubble constant has units of 1/time, thus, taking into account the units on Table 2.1 one gets:

$$H = H_0 \left(\frac{1 \text{ kpc}}{3.0857 \times 10^{16} \text{ km}} \right) \left(\frac{3.154 \times 10^{16} \text{ s}}{1 \text{ Gyr}} \right) \left(\frac{1 \text{ Mpc}}{1000 \text{ kpc}} \right)$$

$$\approx 1.023 H_0 \times 10^{-3} \text{ Gyr}^{-1}$$

$$= 6.916 \times 10^{-2} \text{ Gyr}^{-1}$$
(2.2)

Although the Hubble parameter is often called Hubble constant, its value changes with time as can be seen on Figure 2.2.

2 Critical density and Virial Radius

Mass distributions used for the simulation of the host galaxy, are divergent for distances up to infinity. Because of this, the cumulative mass of all bodies within a given distance is called the virial mass and its value is taken as the mass of the whole system. The distance taken to

FIGURE 2.2: Dependency of the Hubble parameter with redshift.

calculate the virial mass is called virial radius (R_{vir}), and it is defined as the distance at which the average density of the galaxy is 200 times the critical density of the universe (ρ_{crit}).

$$\rho_{\rm crit} = \frac{3H(t)^2}{8\pi G} \tag{2.3}$$

$$\frac{M(R_{\text{vir}})}{V(R_{\text{vir}})} = \bar{\rho}(R_{\text{vir}}) = 200\rho_{\text{crit}} = 75\frac{H(t)^2}{\pi G}$$
(2.4)

where $M(R_{vir})$ is the cumulative mass, and $V(R_{vir})$: the volume

The relation on Equation 2.3 is found by considering the case where the geometry of the universe is flat, as a consequence it is said that the critical density is the minimum density required to stop the expansion of the universe [14].

3 Equation of motion

Trajectories of the kicked black holes were obtained by numerically solving the equation of motion on Equation 2.5, where the first term on the right side of the equation is acceleration due to gravity, the second accounts for the drag of dynamical friction, while the third one is the deaceleration due to mass accretion of the black hole [7, 15].

$$\ddot{\vec{x}} = a_{\text{grav}}(\vec{x})\hat{x} + \left(a_{\text{DF}}(\vec{x}, \dot{\vec{x}}) - \dot{x}\frac{\dot{M}_{\bullet}(x, \dot{x})}{M_{\bullet}}\right)\dot{\hat{x}} \quad \text{where } M_{\bullet} \text{ is the black hole mass}$$
 (2.5)

3.1 Dynamical friction

As the black hole travels through the galaxy, dark matter, stars and gaseous materials from the medium interact with the black hole adding a drag force due to friction. Drag force is different in nature depending on its source, collisionless components, such as dark matter and stars, apply a drag force to the black hole that follows the standard Chandrasekhar formula [7, 14–16].

$$a_{\mathrm{DF}}^{\mathrm{cl}}(\vec{x}, \dot{\vec{x}}) = -\frac{4\pi G^2}{\dot{x}^2} M_{\bullet} \rho(\vec{x}) \ln \Lambda \left(\mathrm{erf} \left(X \right) - \frac{2}{\sqrt{\pi}} X e^{-X^2} \right), \quad \rho(\vec{x}) = \rho_{\mathrm{DM}}(\vec{x}) + \rho_{\mathrm{stars}}(\vec{x}) \quad (2.6)$$

$$X \equiv \frac{|\dot{x}|}{\sqrt{2}\sigma_{\rm DM}}$$
 with $\sigma_{\rm DM} = \sqrt{\frac{GM_{\rm DM}}{2R_{\rm vir}}}$ (2.7)

 σ_{DM} is called the local velocity dispersion of the dark matter halo, and since varies little over the entire host, can be taken as constant [7, 15]. The Coulomb logarithm (ln Λ) is not known but authors take it in the range of 2 - 4 [7]. Gas on the other hand is collisional, special care must be taken since gas can cool behind a passing object, such as a black hole [7]. A hybrid model for the drag force was proposed by Tanaka and Haiman, in which both subsonic and supersonic velocities are possible. To do so, a mach number was defined as:

$$\mathcal{M}(\dot{x}) \equiv \frac{|\dot{x}|}{c_s} \tag{2.8}$$

where c_s is the local sound speed, which depends on local temperature. It was found that temperature inside the halo varies less than a factor of 3, thus on the simulation it is assumed that the entire halo is isothermal at the virial temperature ($T_{\rm vir}$) [7]. The isothermal sound speed is [17]:

$$c_s = \sqrt{\frac{\gamma R}{\mathcal{M}_w} T_{\text{vir}}} = \sqrt{\frac{\gamma R}{\mathcal{M}_w} \left(\frac{\mu m_p G M_h}{2k_B R_{\text{vir}}}\right)} = \sqrt{\frac{\gamma R \mu m_p G}{2\mathcal{M}_w k_B}} \sqrt{\frac{M_h}{R_{\text{vir}}}} \approx 0.614 \sqrt{\frac{M_h}{R_{\text{vir}}}} \text{ kpcGyr}^{-1}$$
 (2.9)

where μ is the value of the mean molecular weight of the gas (\mathcal{M}_w) , m_p is the proton mass and γ is the adiabatic index [17]. Approximating the gas to a monoatomic one $\gamma \approx 5/3$, yields the last expression on Equation 2.9. By knowing \mathcal{M} , the acceleration caused by gas can be written as [7, 15]:

$$a_{\mathrm{DF}}^{\mathrm{c}}(\vec{x}, \dot{\vec{x}}) = -\frac{4\pi G^2}{\dot{x}^2} M_{\bullet} \rho_{\mathrm{gas}}(\vec{x}) f(\mathcal{M})$$
 (2.10)

with

$$f(\mathcal{M}) = \begin{cases} 0.5 \ln \Lambda \left[\operatorname{erf} \left(\frac{\mathcal{M}}{\sqrt{2}} \right) - \sqrt{\frac{2}{\pi}} \mathcal{M} e^{-\mathcal{M}^{2}/2} \right] & \text{if } \mathcal{M} \leq 0.8 \\ 1.5 \ln \Lambda \left[\operatorname{erf} \left(\frac{\mathcal{M}}{\sqrt{2}} \right) - \sqrt{\frac{2}{\pi}} \mathcal{M} e^{-\mathcal{M}^{2}/2} \right] & \text{if } 0.8 < \mathcal{M} \leq \mathcal{M}_{eq} \end{cases}$$

$$0.5 \ln \left(1 - \mathcal{M}^{-2} \right) + \ln \Lambda \qquad \text{if } \mathcal{M} > \mathcal{M}_{eq}$$

$$(2.11)$$

 M_{eq} is the mach number that fulfills the following equation:

$$\ln \Lambda \left[1.5 \left(\operatorname{erf} \left(\frac{\mathcal{M}}{\sqrt{2}} \right) - \sqrt{\frac{2}{\pi}} \mathcal{M} e^{-\mathcal{M}^2/2} \right) - 1 \right] - 0.5 \ln \left(1 - \mathcal{M}^{-2} \right) = 0$$
 (2.12)

Numerically solving Equation 2.12, yields $M_{eq} \approx 1.731$ for a value of the Coulomb logarithm $\ln \Lambda = 2.3$. The full acceleration due to dynamical friction is given by the sum of the noncollisional drag on Equation 2.6 and Equation 2.10:

$$a_{\rm DF}(\vec{x}, \dot{\vec{x}}) = a_{\rm DF}^{\rm cl}(\vec{x}, \dot{\vec{x}}) + a_{\rm DF}^{\rm c}(\vec{x}, \dot{\vec{x}})$$
 (2.13)

3.2 Accretion onto the black hole

As the black hole accretes matter from the surroundings, an acceleration appears, due to the second law of Newton:

$$\vec{F} = \frac{d\vec{P}}{dt} = \dot{\vec{x}}\dot{M}_{\bullet} + M_{\bullet}\dot{\vec{x}}$$
 (2.14)

By considering conservation of momentum:

$$\ddot{\vec{x}} = -\dot{\vec{x}}\frac{\dot{M}_{\bullet}}{M_{\bullet}} \tag{2.15}$$

Two schemes describe the speed at which the black hole gains mass, on the first one the black hole undergoes Bondi-Hoyle-Littleton accretion [7, 15]:

$$\dot{M}_{\bullet}^{\text{BHL}}(\vec{x}, \dot{\vec{x}}) = \frac{4\pi G^2 \rho_G(\vec{x}) M_{\bullet}^2}{(c_s^2 + \dot{x}^2)^{3/2}} \quad \text{with } \rho_B(\vec{x}) = \rho_{\text{stars}}(\vec{x}) + \rho_{\text{gas}}(\vec{x})$$
 (2.16)

There is a limit of accretion for the black hole given by the Eddington luminosity:

$$\dot{M}_{\bullet}^{\rm Edd} = \frac{(1 - \epsilon)M_{\bullet}}{\epsilon t_{\rm Edd}} \qquad \epsilon = 0.1, \quad t_{\rm Edd} = 0.44 \, {\rm Gyr}$$
 (2.17)

Final accretion rate is given by:

$$\dot{M}_{\bullet}(\vec{x}, \dot{\vec{x}}) = \begin{cases} \dot{M}_{\bullet}^{\text{BHL}}(\vec{x}, \dot{\vec{x}}) & \text{if } \dot{M}_{\bullet}^{\text{BHL}} < \dot{M}_{\bullet}^{\text{Edd}} \\ \dot{M}_{\bullet}^{\text{Edd}} & \text{else} \end{cases}$$
(2.18)

3.3 Initial conditions and numerical integration

For all simulations the virial radius remains constant through the simulation. The virial radius is fixed at the start of every simulation depending on the redshift at which the kick occurs, the chosen densities profiles and the mass of the host galaxy. Sound speed also remains constant for a simulation, as it depends on R_{vir} and the mass of the host. Cosmological acceleration is ignored at all times as in Tanaka and Haiman, as it has been found that it only marginally affects black hole orbits [7]. The initial position of the black hole is always $\vec{x} = (0,0,0)$ kpc.

Numerical integration is carried out using a leapfrog scheme on REBOUND with the C programming language [12], with time steps of a thousand years, the simulations are stopped when the system destabilizes and starts gaining energy, due to singularities at $x \to 0$ and $\dot{x} \to 0$, or if they simply last more than the age of the universe.

4 Definitions

4.1 Escape velocity

Minimum initial velocity required for the maximum distance of a single orbit of the black hole to stay outside $0.1R_{vir}$ after z = 0, z = 6 or 10 % of the age of the universe at the moment of the kick [7, 15].

4.2 Time of return

Time required by the black hole to orbit with maximum distances of less than $0.01R_{\rm vir}$.

Chapter 3

Spherical study

1 Setup

The host galaxy has two mass distributions that are superimposed, one for dark matter and the other one for all the luminous or baryonic matter.

FIGURE 3.1: NGC4414 galaxy as seen by the Hubble telescope.

The dark matter halo used, follows a NFW (Navarro–Frenk–White) profile, baryonic matter is divided in stars and gas, for gas a power law profile with $r^{-2.2}$ is used, while for stars a Hernquist model is applied [7, 15]. The sum of all these components accounts for the total mass of the host (M_h), which remains constant through a simulation. The amount of baryonic matter is given by the baryonic fraction parameter (f_b), and the mass of stars by the stellar fraction parameter (f_s). Cumulative masses at the virial radius are defined as follows:

$$M_{\rm DM}(R_{\rm vir}) = (1 - f_b)M_h$$
 (3.1)

$$M_{\text{stars}}(R_{\text{vir}}) = f_s f_b M_h \tag{3.2}$$

$$M_{\text{gas}}(R_{\text{vir}}) = (1 - f_s)f_b M_h \tag{3.3}$$

1.1 Virial radius

Since all of the density profiles are spherically symmetrical, it follows from Equation 2.4 that:

$$\frac{M_h}{4/3\pi R_{\rm vir}^3} = 75 \frac{H(t)^2}{\pi G} \tag{3.4}$$

$$R_{\rm vir} = \left(\frac{M_h G}{100 H(t)^2}\right)^{1/3} \tag{3.5}$$

1.2 Dark matter halo

For a dark matter halo following a NFW profile, the density at some distance *r* is given by the formula:

$$\rho_{\rm DM}(r) = \frac{\rho_0^{\rm DM}}{\frac{r}{R_s} \left(1 + \frac{r}{R_s}\right)^2} \tag{3.6}$$

Where R_s and $\rho_0^{\rm DM}$ are constants for a given dark matter halo. Using the density, the cumulative mass $M_{\rm DM}(r)$ within some radius r is given by the integral of the density over a volume, since Equation 3.6 is spherically symmetrical, the only dependance of the integral is with distance. On Equation 3.7 the r'^2 comes from the Jacobian of spherical coordinates, and the 4π from the solid angle.

$$M_{DM}(r) = \int_{0}^{r} 4\pi r'^{2} \rho_{DM}(r') dr' = 4\pi \rho_{0}^{DM} R_{s}^{3} \left[\ln \left(\frac{R_{s} + r}{R_{s}} \right) - \frac{r}{R_{s} + r} \right]$$
(3.7)

Considering a concentration parameter $c(M_h, z)$ of dark matter in the halo, the following relation holds for the viral radius R_{vir} and the scale radius R_s :

$$R_{\rm vir} = c(M_h, z)R_{\rm s} \tag{3.8}$$

Where the concentration parameter, dependence with the dark matter halo mass (M_h) and redshift is given by:

$$c(M_h, z) = c_0(z) \left(\frac{M_h}{10^{13} M_{\theta}}\right)^{\alpha(z)}$$
 (3.9)

where $\alpha(z)$ and $c_0(z)$ were fitted using simulation data to the following functions [7]:

$$c_0(z) = \frac{4.58}{2} \left[\left(\frac{1+z}{2.24} \right)^{0.107} + \left(\frac{1+z}{2.24} \right)^{-1.29} \right]$$
 (3.10)

$$\alpha(z) = -0.0965 \exp\left(-\frac{z}{4.06}\right) \tag{3.11}$$

1. Setup 11

FIGURE 3.2: Dark matter concentration parameter as a function of the halo mass and the redshift.

For a fixed halo mass, as time passes (smaller redshift), concentration of dark matter will increase, as can be shown on Figure 3.2, nevertheless for high redshifts concentration is approximately constant at $c \approx 3$ for all halos [7]. By using Equation 3.8 one can obtain the value of $\rho_0^{\rm DM}$ by evaluating Equation 3.7 at $R_{\rm vir}$.

$$M_{\rm DM}(R_{\rm vir}) = 4\pi \rho_0^{\rm DM} R_s^3 \left[\ln \left(\frac{R_s + c(M_h, z) R_s}{R_s} \right) - \frac{c(M_h, z) R_s}{R_s + c(M_h, z) R_s} \right] = (1 - f_b) M_h \qquad (3.12)$$

$$\rho_0^{\text{DM}} = \frac{(1 - f_b) M_h}{4\pi \left(\frac{R_{\text{vir}}}{c(M_h, z)}\right)^3 \left[\ln\left(1 + c(M_h, z)\right) - \frac{c(M_h, z)}{1 + c(M_h, z)}\right]}$$
(3.13)

1.3 Stellar profile

Stellar density is modeled as a Hernquist profile with half-mass radius $R_{1/2} = 0.01R_{\rm vir}$, as in Choksi et al. Density for a Hernquist profile is given by [18]:

$$\rho_s(r) = \frac{f_s f_b M_h \mathcal{R}_s}{2\pi r (r + \mathcal{R}_s)^3} \qquad \mathcal{R}_s \text{ is known as scale length}$$
(3.14)

Integrating from 0 to *r* yields:

$$M_s(r) = \frac{f_s f_b M_h r^2}{(r + \mathcal{R}_s)^2}$$
 (3.15)

The half-mass radius, as the name implies, is the distance at which the cumulative mass is half the total mass [18].

$$R_{1/2} = \left(1 + \sqrt{2}\right) \mathcal{R}_s = 0.01 \left(\frac{M_h G}{100 H(t)^2}\right)^{1/3}$$
 (3.16)

From which the scale length can be set as a function of the time when the kick occurs, and the mass of the host, as:

$$\mathcal{R}_{s} = \frac{0.01}{\left(1 + \sqrt{2}\right)} \left(\frac{M_{h}G}{100H(t)^{2}}\right)^{1/3} \approx 6.835 \times 10^{-4} \left(\frac{M_{h}}{H(t)^{2}}\right)^{1/3} \tag{3.17}$$

FIGURE 3.3: Mass distributions for $R_{\rm vir}=0.69$ kpc (red line), c=4, and $f_b=0.156$.

1.4 Gas profile

For high redshift the baryonic profile resembles that of a gaseous galaxy, Choksi et al. use a constant density gas core of $r_0 = 1$ pc, followed by a power law of $r^n = r^{-2.2}$. The complete density is described as follows:

$$\rho_{\text{gas}}(r) = \begin{cases} \rho_0^{\text{gas}} & \text{if } r < r_0 \\ \rho_0^{\text{gas}} \left(\frac{r_0}{r}\right)^{-n} & \text{if } r \ge r_0 \end{cases}$$

$$(3.18)$$

The cumulative mass is found by integrating the density in spherical coordinates, which for $n \neq -3$ is equal to:

$$M_{\text{gas}}(r) = \begin{cases} \frac{4}{3}\pi\rho_0^{\text{gas}}r^3 & \text{if } r < r_0\\ 4\pi\rho_0^{\text{gas}}\left(\frac{(r^{3+n} - r_0^{3+n})}{(3+n)r_0^n} + \frac{r_0^3}{3}\right) & \text{if } r \ge r_0 \end{cases}$$
(3.19)

2. Results 13

The value of the constant ρ_0^{gas} is found using a similar process as in Equation 3.12 and 3.13.

$$M_{\rm gas}(R_{\rm vir}) = 4\pi \rho_0^{\rm gas} \left(\frac{\left(R_{\rm vir}^{3+n} - r_0^{3+n} \right)}{(3+n)r_0^n} + \frac{r_0^3}{3} \right) = (1-f_s)f_b M_h$$
 (3.20)

$$\rho_0^{\text{gas}} = \frac{(1 - f_s)f_b M_h}{4\pi \left(\frac{(R_{\text{vir}}^{3+n} - r_0^{3+n})}{(3+n)r_0^n} + \frac{r_0^3}{3}\right)} \quad \text{if } R_{\text{vir}} > r_0$$
(3.21)

All of the profiles are shown on Figure 3.3, where the effect of the stellar fraction can be seen.

2 Results

For a single simulation, the following data is saved: iteration time, current position, speed, and the black hole mass. With these information, accelerations and densities can be later reconstructed as on Figure 3.4.

FIGURE 3.4: Upper two plots show the output of a single simulation, while the lower one shows most the local properties per data point.

2.1 Effect of the baryonic fraction

FIGURE 3.5: .

2.2 Effect of the power law exponent

FIGURE 3.6: .

2.3 Effect of the stellar fraction

2. Results

FIGURE 3.7: .

Chapter 4

Triaxial study

1 Setup

The host galaxy is modeled as a dark matter halo, stars and gas, just as the spherical case. Much of the profiles for each of the components remains the same, the only difference is that a thin shell of uniform density will have the geometry of an ellipsoid, and not that of a sphere. This is achieved by defining an ellipsoid radius m, that can be replaced for the spherical radius r, on equations 3.6, 3.14 and Equation 3.18. Using the Cartesian coordinates x_1 , x_2 , x_3 and a_1 , a_2 , a_3 the semi-axis of the ellipsoid, m is defined as follows:

$$m^{2}(\vec{x}) \equiv a_{1}^{2} \left[\left(\frac{x_{1}}{a_{1}} \right)^{2} + \left(\frac{x_{2}}{a_{2}} \right)^{2} + \left(\frac{x_{3}}{a_{3}} \right)^{2} \right] = x_{1}^{2} + \left(\frac{a_{1}}{a_{2}} \right)^{2} x_{2}^{2} + \left(\frac{a_{1}}{a_{3}} \right)^{2} x_{3}^{2}$$
(4.1)

A thin shell, whose inner and outer skins are the surfaces m and $m + \delta m$ is described by Equation 4.2, where $\tau \ge 0$ labels the surfaces [14].

$$m^{2}(\vec{x},\tau) = a_{1}^{2} \left(\frac{x_{1}^{2}}{\tau + a_{1}^{2}} + \frac{x_{2}^{2}}{\tau + a_{2}^{2}} + \frac{x_{3}^{2}}{\tau + a_{3}^{2}} \right)$$
(4.2)

Densities are used for the calculation of the dynamical friction and accretion onto the black hole. Although one might think that by integrating the density over an elliptical volume, the acceleration due to gravity would be given by $a_{grav} = GM(m)/m^2$, the later is not true because two points (x_1, x_2, x_3) and (x'_1, x'_2, x'_3) might have the same cumulative mass at m (black line), but the effective gravitational mass acting at each point is completely different (blue and orange lines) as it is shown in Figure 4.1.

Because of this, the potential due to a given triaxial density must be found. Calculating the gravitational potential for such configuration, challenged some great minds of the XVIII and XIX centuries [14]. To do so, the contributions of all ellipsoidal shells that make up the profile

FIGURE 4.1: Although the cumulative mass at the orange and blue dots is the same, the effective gravitational mass is different.

are taken into account, following Binney and Tremaine:

$$\psi(m) \equiv \int_{0}^{m^2} \rho(m^2) dm^2 = \int_{0}^{k=m^2} \rho(k) dk \qquad \text{defining } k \equiv m^2$$
 (4.3)

The potential of any body in which $\rho = \rho(m^2)$ is [14]:

$$\Phi(\vec{x}) = -\pi G \frac{a_2 a_3}{a_1} \int_0^\infty \frac{\psi(\infty) - \psi(m)}{\sqrt{(\tau + a_1^2)(\tau + a_2^2)(\tau + a_3^2)}} d\tau \qquad m = m(\vec{x}, \tau)$$
 (4.4)

Most of the triaxials potentials cannot be analytically integrated, nevertheless it can be done numerically if the integral is not improper and converges. To make the integral proper, the following change of variable is done:

$$\omega = \frac{\tau^{\gamma}}{\tau^{\gamma} + 1}, \qquad d\tau = \frac{d\omega}{(1 - \omega)^2} \tag{4.5}$$

Since the gravitational acceleration is given by the gradient of the potential, to numerically calculate the gradient, a total of 6 numerical integrals must be done (two for each dimension). Another option is to take advantage of the fact that \vec{x} and τ are independent variables, thus:

$$\nabla \int f(\vec{x}, \tau) d\tau = \int [\nabla f(\vec{x}, \tau)] d\tau \tag{4.6}$$

2. Results

By doing this, the number of numerical integrals reduces to 3. Defining a vector $\vec{\phi}$, whose components are given by:

$$\phi_i(x_i, \tau) = \frac{x_i}{\left(\tau + a_i^2\right)^{\frac{3}{2}} \prod_{i \neq j}^{3} \sqrt{\tau + a_j^2}}, \qquad \vec{\phi}(\vec{x}, \tau) = (\phi_1(x_1, \tau), \phi_2(x_2, \tau), \phi_3(x_3, \tau))$$
(4.7)

Potentials for each of the components of the galaxy are found by integrating ...

1.1 Dark matter halo

FIGURE 4.2: .

$$\nabla \Phi_{\rm DM}(\vec{x}) = \int_{0}^{\infty} \frac{2\pi G R_{s}^{3} \rho_{0} a_{1} a_{2} a_{3}}{m(\vec{x}, \tau) (R_{s} + m(\vec{x}, \tau))^{2}} \vec{\phi}(\vec{x}, \tau) d\tau$$

$$= 2\pi G R_{s}^{3} \rho_{0} a_{1} a_{2} a_{3} \int_{0}^{\infty} \frac{\vec{\phi}(\vec{x}, \tau) d\tau}{m(\vec{x}, \tau) (R_{s} + m(\vec{x}, \tau))^{2}}$$
(4.8)

1.2 Stellar profile

$$\nabla \Phi_{S}(\vec{x}) = \int_{0}^{\infty} \frac{GM_{s}a_{1}a_{2}a_{3}}{m(\vec{x},\tau) \left(\mathcal{R}_{f} + m(\vec{x},\tau)\right)^{3}} \vec{\phi}(\vec{x},\tau) d\tau$$

$$= GM_{s}a_{1}a_{2}a_{3} \int_{0}^{\infty} \frac{\vec{\phi}(\vec{x},\tau) d\tau}{m(\vec{x},\tau) \left(\mathcal{R}_{f} + m(\vec{x},\tau)\right)^{3}}$$

$$(4.9)$$

1.3 Gas profile

2 Results

References

- (1) Straumann, N., General relativity; Springer Science & Business Media: 2012.
- (2) Bassan, M. Astrophysics and Space Science Library 2014, 404, 275–290.
- (3) Hoyng, P. Relativistic Astrophysics and Cosmology: A Primer 2006, 133–154.
- (4) Brügmann, B. Science 2018, 361, 366–371.
- (5) Hughes, S. A.; Favata, M.; Holz, D. E. In *Growing Black Holes: Accretion in a Cosmological Context*; Springer: 2005, pp 333–339.
- (6) Bonnor, W.; Rotenberg, M. Proc. R. Soc. Lond. A 1966, 289, 247–274.
- (7) Choksi, N.; Behroozi, P.; Volonteri, M.; Schneider, R.; Ma, C.-P.; Silk, J.; Moster, B. *Monthly Notices of the Royal Astronomical Society* **2017**, 472, 1526–1537.
- (8) Ostriker, E. C. The Astrophysical Journal 1999, 513, 252.
- (9) Escala, A.; Larson, R. B.; Coppi, P. S.; Mardones, D. The Astrophysical Journal 2005, 630, 152.
- (10) Buote, D. A.; Jeltema, T. E.; Canizares, C. R.; Garmire, G. P. *The Astrophysical Journal* **2002**, *577*, 183.
- (11) Binney, J Comments on Astrophysics **1978**, *8*, 27–36.
- (12) Larson, J.; Sarid, G. In Lunar and Planetary Science Conference, 2017; Vol. 48.
- (13) Aghanim, N; Akrami, Y; Ashdown, M; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A.; Barreiro, R.; Bartolo, N; Basak, S, et al. *arXiv preprint arXiv:1807.06209* **2018**.
- (14) Binney, J.; Tremaine, S., Galactic dynamics; Princeton university press: 2011; Vol. 20.
- (15) Tanaka, T.; Haiman, Z. The Astrophysical Journal 2009, 696, 1798.
- (16) Madau, P.; Quataert, E. The Astrophysical Journal Letters 2004, 606, L17.
- (17) Barkana, R.; Loeb, A. Physics reports **2001**, 349, 125–238.
- (18) Hernquist, L. *The Astrophysical Journal* **1990**, *356*, 359–364.
- (19) Vogelsberger, M.; White, S. D.; Helmi, A.; Springel, V. Monthly Notices of the Royal Astronomical Society **2008**, 385, 236–254.