Seminar 3

Exercise 1 Let $M \subseteq \mathbb{R}^n$ be a nonempty convex set, let $f_i : M \to \mathbb{R}$, $i = \overline{1, k}$, be convex functions, and let $\alpha_i \geq 0$, $i = \overline{1, k}$ $(k \in \mathbb{N}^*)$. Define the functions $f, g, h : M \to \mathbb{R}$ for every $x \in M$ by:

$$f(x) := \max\{f_1(x), \dots, f_k(x)\},\$$

 $g(x) := \min\{f_1(x), \dots, f_k(x)\},\$
 $h(x) := \alpha_1 f_1(x) + \dots + \alpha_k f_k(x).$

- a) Show that epi $f = \bigcap_{i=1}^k \text{epi } f_i$.
- b) Prove that f is convex.
- c) Study the convexity of g and h.

Solution. a) The equality follows from the fact that for $x \in M$ and $\lambda \in \mathbb{R}$ the inequality $f(x) \leq \lambda$ holds if and only if $f_i(x) \leq \lambda$, for every $i \in \{1, ..., k\}$.

- b) By Theorem 5.5 of Lecture 5 (characterization of convex functions by means of their epigraph), the sets epi f_i , $i = \overline{1, k}$, are convex. Thus their intersection is also convex. Also, the equality from (a) yields the convexity of f by Theorem 5.5 of Lecture 5.
 - c) The function g is not necessarily convex, as the following example shows:

Let $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ be the functions defined by $f_1(x) := x$ and $f_2(x) := 0$, for every $x \in \mathbb{R}$. Then $g = \min\{f_1, f_2\} : \mathbb{R} \to \mathbb{R}$ is defined by

$$g(x) = \begin{cases} x & \text{if } x \le 0 \\ 0 & \text{if } x > 0. \end{cases}$$

Since $g(\frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1) = 0 > -\frac{1}{2} = \frac{1}{2}g(-1) + \frac{1}{2}g(1)$, g is not convex.

We are going to show that function h is convex. Let $x^1, x^2 \in M$ and $t \in [0, 1]$. By convexity of f_i , $i = \overline{1, k}$, we get

$$f_i((1-t)x^1 + tx^2) \le (1-t)f_i(x^1) + tf_i(x^2),$$

for every $i \in \{1, ..., k\}$. Multiplying the above inequality by the nonnegative number α_i , and summing up the resulting inequalities, we get that $h((1-t)x^+tx^2) \leq (1-t)h(x^1) + th(x^2)$. This shows that h is convex.

Exercise 2 Let $\emptyset \neq M_1 \subseteq \mathbb{R}$ and $\emptyset \neq M_2 \subseteq \mathbb{R}^n$ be convex sets, and let $g: M_1 \to \mathbb{R}$ and $h: M_2 \to \mathbb{R}$ be functions such that $h(M_2) \subseteq M_1$. Prove that:

- a) If g is convex and nondecreasing, and h is convex, then $g \circ h$ is convex.
- b) If g is convex and nonincreasing, and h is concave, then $g \circ h$ is convex.

Proof. Put $f := g \circ h \colon M_2 \to \mathbb{R}$.

a) Consider $x^1, x^2 \in M_2$ and $t \in [0, 1]$. Then, by convexity of h, we obtain

$$h((1-t)x^{1} + tx^{2}) \le (1-t)h(x^{1}) + th(x^{2}). \tag{3.1}$$

Since the set M_2 is convex and $h(M_2) \subseteq M_1$, we obtain that $h((1-t)x^1+tx^2), h(x^1), h(x^2) \in M_1$. By convexity of M_1 , it follows that $(1-t)h(x^1)+th(x^2) \in M_1$. Using now the fact that g is convex and nondecreasing, we obtain from (3.1) that

$$g(h((1-t)x^1+tx^2)) \le g((1-t)h(x^1)+th(x^2)) \le (1-t)g(h(x^1))+tg(h(x^2)),$$

hence $f((1-t)x^+tx^2) \leq (1-t)f(x^1) + tf(x^2)$. This yields the convexity of f.

b) The conclusion follows by a similar argument as above.

Exercise 3 Let $M \subseteq \mathbb{R}^n$ be a nonempty convex set, let $h: M \to \mathbb{R}$ be a convex function, and let $f: M \to \mathbb{R}$ be the map defined for all $x \in M$ by $f(x) := [h(x)]^2$.

- a) Prove that if $h(M) \subseteq \mathbb{R}_+$, then the map f is convex.
- b) Show that if h is affine, then f is convex (even if $h(M) \not\subseteq \mathbb{R}_+$).
- c) Is f convex even if $h(M) \not\subseteq \mathbb{R}_+$?

Solution. a) The map $g: \mathbb{R}_+ \to \mathbb{R}_+$ defined by $g(x) = x^2$ is convex and increasing, and $f = g \circ h$. The convexity of f follows now from Exercise 2 (a).

b) Let $x^1, x^2 \in M$ and $t \in [0, 1]$. Since h is affine, we have that

$$h((1-t)x^{1}+tx^{2}) = (1-t)h(x^{1}) + th(x^{2}),$$

hence

$$f((1-t)x^{1} + tx^{2}) = (1-t)^{2}f(x^{1}) + 2(1-t)th(x^{1})h(x^{2}) + t^{2}f(x^{1})$$

$$= (1-t)f(x^{1}) + tf(x^{2}) - t(1-t)(h(x^{1}) - h(x^{2}))^{2}$$

$$\leq (1-t)f(x^{1}) + tf(x^{2}).$$

Thus f is convex.

c) If $h(M) \not\subseteq \mathbb{R}_+$, then f may be not convex. For example, let $h \colon \mathbb{R} \to \mathbb{R}$ be defined for all $x \in \mathbb{R}$ by $h(x) = x^2 - 1$. This map is convex by Exercise 1, since $h = f_1 + f_2$, where f_1 is the square of the identity function (notice that f_1 is convex, according to (b)), and f_2 is the constant function -1 (which is obviously convex). However, $f = h^2 \colon \mathbb{R} \to \mathbb{R}$ is not convex, because $\frac{9}{16} = f((1 - \frac{1}{2})0 + \frac{1}{2} \cdot 1) \not\subseteq (1 - \frac{1}{2})f(0) + \frac{1}{2}f(1) = \frac{1}{2}$.