

Geometry

- Ed Angel
- Professor of Computer Science, Electrical and Computer Engineering, and Media Arts
- University of New Mexico

Objectives

- Introduce the elements of geometry Scalars Vectors Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
 Line segments
 Polygons

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- · We will need three basic elements
 - **Scalars**
 - **Vectors**
 - **Points**

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach Points were at locations in space p=(x,y,z)
 - We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
 - Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

Scalars

- Need three basic elements in geometry Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

Vectors

- Physical definition: a vector is a quantity with two attributes
 Direction
 Magnitude
- Examples include Force
 - Velocity
 - Directed line segments
- Most important example for graphics
- Can map to other types

Vector Operations

- Every vector has an inverse
 Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 Zero magnitude, undefined orientation
- The sum of any two vectors is a vector Use head-to-tail axiom

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 Scalar-vector multiplication u=□v
 Vector-vector addition: w=u+v
- Expressions such as

$$v=u+2w-3r$$

Make sense in a vector space

Vectors Lack Position

 These vectors are identical Same length and magnitude

• Vectors :
Need points

ent for geometry

Points

- Location in space
- Operations allowed between points and vectors

Point-point subtraction yields a vector Equivalent to point-vector addition

Affine Spaces

- Point + a vector space
- Operations

Vector-vector addition
Scalar-vector multiplication
Point-vector addition
Scalar-scalar operations

For any point define

 $1 \cdot P = P$

 $0 \cdot P = 0$ (zero vector)

Lines

Consider all points of the form
 P(a)=P0 + a d
 Set of all points that pass through P0 in the
 direction of the vector d

Parametric Form

This form is known as the parametric form of the line

More robust and general than other forms Extends to curves and surfaces

Two-dimensional forms

Explicit: y = mx + hImplicit: ax + by + c = 0

Parametric:

x(a) = ax0 + (1-a)x1

y(a) = ay0 + (1-a)y1

Rays and Line Segments

 If a >= 0, then P(a) is the ray leaving P0 in the direction d
 If we use two points to define v, then

$$P(a) = Q + a (R-Q) = Q + av$$

$$=aR + (1-a)Q$$

For 0<=a<=1 we get all the points on the *line segment* joining R and Q

Convexity

 An object is convex iff for any two points in the object all points on the line segment between these points are also in the

Affine Sums

Consider the "sum"

$$P=a1P1+a2P2+....+anPn$$

Can show by induction that this sum makes sense iff

in which case we have the *affine sum* of the points P1,P2,.....Pn

• If, in addition, ai>=0, we have the *convex* hull of P1,P2,.....Pn

Convex Hull

 Smallest convex object containing P1,P2,....Pn

Form

Curves and Surfaces

- Curves are one parameter entities of the form P(a) where the function is nonlinear
- Surfaces are formed from two-parameter functions P(a, b)

Linear functions give planes and polygons

Planes

•A plane can be defined by a point and two vectors or by three points

P(a,b)=R+au+bv

P(a,b)=R+a(Q-R)+b(P-Q)

Triangles

for $0 \le a,b \le 1$, we get all points in triangle

Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point-two vector form P(a,b)=R+au+bv, we know we can use the cross product to find

 $= u \square v$ and the equivalent form

$$(P(a)-P) \sqcap n=0$$

n