

Volume: 04 Issue: 05 | Sep-Oct 2023 ISSN: 2660-4159

http://cajmns.centralasianstudies.org

Ассоциированные Гены Полиморфизма Фолатного Обмена С Когнитивным Дефицитом У Детей С ДЦП

- 1. Нурматова Шоира Октябревна
- 2. Рахимова Камола Эсанбаевна
- 3. Омонова Умида Тулкиновна

Received 2nd Aug 2023, Accepted 19th Aug 2023, Online 20th Sep 2023

¹ PhD, Главный врач РДПНБ имени У.К.Курбанова, Ташкентский Педиатрический медицинский институт

Аннотация: Для изучения поставленной цели были изучены мутации полиморфизмы генов фолатного цикла C677T в гене MTHFR, A1298C в гене MTHFR, A276G в гене MTR, II22Met в гене MTRR. На результатов основании полученных данных полиморфизмов оценка влияния нарушения когнитивных функций у детей с ДЦП. Исследовательскую группу составили 97 детей в возрасте от 2х до 10 лет, с различными формами ДЦП. Половое соотношение 3:2, 62 мальчиков и 35 девочек, состоящие на учете в Республиканской детской психоневрологической больнице имени У.К. Курбанова за период 2019-2022 годы. Группу контроля составили 90 здоровых детей. Диагноз был основании неврологического, выставлен психологического статуса и МРТ головного мозга.

Ключевые слова: церебральный паралич, полиморфизм генов фолатного цикла, GMFCS, MTHFR, MTRR, MTR, задержка этапов развития, умственная отсталость, специфические расстройства развития школьных навыков.

Актуальность.

Детский церебральный паралич (ДЦП), при котором отмечаются нарушения развития моторики и поддержания позы приводящие к ограничению функциональной активности [1,3,4,7]. Так же у детей с ДЦП кроме этого встречается сочетание с нарушения сенсорных систем (наиболее часто зрения и слуха), когнитивных дисфункций, нарушения речи и развития ребенка, симптоматической эпилепсией, вегетативными расстройствами, вторичными ортопедическими проблемами [5,6,8].

Исследования показали среди факторов развития ДЦП пренатальные занимают 37-60%, интранатальные – в 27-40% и постнатальные – в 3,6-25%»1, но более чем у половины доношенных детей выявить этиологический фактор развития заболевания не удаётся. В связи с

² PhD, Заведующая поликлиники РДПНБ имени У.К.Курбанова, Ташкентский Педиатрический медицинский институт

³ д.м.н., доцент кафедры неврологии, детской неврологии и медицинской генетики, Ташкентского педиатрического медицинского института, Ташкентский Педиатрический медицинский институт

этим мировое научное сообщество направляет свои усилия к исследованию генетической детерминированности данной патологии. В мире проводится ряд научных исследований, посвященных изучению клинических, генетических аспектов и достижению высокой эффективности новых подходов к диагностики детского церебрального паралича, в частности, эти исследования направлены на выявление частоты значимых факторов риска развития ДЦП. Особое значение имеет оценка факторов риска развития, клинико-неврологических особенностей, проведение генетического анализа, определение полиморфных вариантов отдельных генов, оценить клинико-генетические аспекты, разработать критерии ранней диагностики. В связи с этим необходим дальнейший анализ влияния этиопатогенетических, генетичсеких факторов, а также уровня гомоцистеина у беременной женщины, что является важным звеном в патогенетическом механизме нарушения онтогенеза плода. Оценка клиникогенетической корреляции позволит улучшить тактику ведения и лечения больных с детском церебральным параличом. [11,12].

исследования: на основе проведения генетического анализа полиморфизмов гена фолатного цикла в формировании и его влияние на нарушение интеллекта у детей с детским церебральным параличем.

Материалы и методы:

Для изучения поставленной цели были изучены мутации полиморфизмы генов фолатного цикла C677T в гене MTHFR, A1298C в гене MTHFR, A276G в гене MTR, II22Met в гене MTRR. На основании полученных результатов проведена оценка влияния данных полиморфизмов на нарушения когнитивных функций у детей с ДЦП. Исследовательскую группу составили 97 детей в возрасте от 2х до 10 лет, с различными формами ДЦП. Половое соотношение 3:2, 62 мальчиков и 35 девочек, состоящие на учете в Республиканской детской психоневрологической больнице имени У.К. Курбанова за период 2019-2022 годы. Группу контроля составили 90 здоровых детей. Диагноз был выставлен на основании неврологического, психологического статуса и МРТ головного мозга.

Важным вопросом исследований генетической предрасположенности многофакторных заболеваний является изучение влияния полиморфизмов генов на интеллектуальные нарушения. В связи с чем на данном этапе работы проведена стратификация по уровню нарушения интеллекта на 3 группы: 1)дети с задержкой этапов развития и специфическими расстройствами развития школьных навыков n=49 детей с ДЦП; 2) дети с сохранным интеллектом, n=13; 3) дети с умственной отсталостью (легкой, умеренной, тяжелой) n= 35. Исследования доказали, влияние 2x полиморфизмов C677T A в гене MTHFR, A2756G в гене MTR являются значимыми в развитии нарушения интеллекта у обследованных детей с ДЦП.

частоте встречаемости среди стратифицированных групп мутантный аллель полиморфизма C677T A в гене MTHFR статистически значимо в 5 раз чаще встречается у детей с ДЦП с сохраненным интеллектом чем в популяционной выборке: OR=4,9, 95%CI: 2,09-11,52; γ2=15,14, p<0,001. Гомозиготное носительство полиморфного аллеля увеличивает риск ДЦП с сохраненным интеллектом почти в 8 раз: OR=7,64,95%CI: 1,73-33,69; χ 2=9,19, p=0,003. В двух других подгруппах с более тяжелым нарушением интеллекта с задержкой этапов развития и умственной отсталостью значимо отличались от частот аллелей и генотипов в группе ИС, поэтому далее сопоставлены данные между группой с сохранным интеллектом против группы с нарушенным интеллектом. Результат статистических сопоставлений показал, что Т аллель полиморфизма C677T A в гене MTHFR встречается у детей со средними и тяжелыми нарушениями интеллекта при ДЦП и почти в 3,5 раза меньше, чем у больных детей с сохранным интеллектом (OR=0,29, 95%CI: 0,12-0,67; χ 2=9.12, p=0,003), а при гомозиготном носительстве – в 5 раз меньше (OR=0,21, 95%CI: 0,05-0,84; χ 2=5,64, p=0,018). В результате носительство полиморфного аллеля является прогностически благоприятным фактором ДЦП, свидетельствующем о большей вероятности течения заболевания с сохранным интеллектом. С учетом отсутствия различий между популяционной выборкой и детей со средними и тяжелыми нарушениями интеллекта при ДЦП по полиморфизму C677T A в гене MTHFR можно сделать вывод, что данный полиморфизм является фактором риска ДЦП с сохранным интеллектом.

При оценке частоты встречаемости полиморфизма A2756G в гене MTR, выявлена связь с нарушением интеллекта. Статистически значимо мутантный G аллель является фактором грубого нарушения интеллекта у детей с ДЦП: в вероятность обнаружения у больных с умственно отсталостью полиморфного аллеля G увеличивается в 3 раза (OR=3,12, 95%CI: 1,67-5,83; χ 2=13,33, p=0,0004) и в 5,5 раз - гомозиготного генотипа G/G (OR=5,44, 95%CI: 1,48-19,96; $\chi 2=6,17, p=0,013$).

При сопоставлении данных по распределению аллелей и генотипов по данному полиморфизму среди больных детей объединенных в одну группу как задержка этапов развития +специфические расстройства развития школьных навыков+ сохранный интеллект=62(n=62) показало, что G аллель статистически значимо более чем в 2 раза встречается реже, чем в группе УО (OR=0,47, 95%CI: 0,25-0,90; χ 2=5,32, p=0,022), характеризуя данный полиморфизм как фактор риска ДЦП с грубым нарушением интеллекта.

Выводы:

- 1) полиморфизм A2756G в гене MTR является фактором риска развития ДЦП с грубым нарушением интеллекта.
- 2) Полиморфизм C677T A в гене MTHFR является фактором риска ДЦП с сохранным интеллектом
- 3) Определение значимых в развитии интеллекта полиморфизмов генов фолатного цикла С677Т в гене MTHFR, A2756G в гене MTR способствуют прогнозу ранней диагностики и своевременному введению психологической коррекции у детей с ДЦП. Так как уровень нарушения интеллекта в последующем определяет тяжесть данной патологии.

Список литературы.

- 1. Федеральные клинические рекомендации по оказанию медицинской помощи детям с детским церебральным параличом. М.: СПР. 2013:28 с.
- 2. Aboutorabi A., Arazpour M., Ahmadi Bani M., Saeedi H., Head J.S. Efficacy of ankle foot orthoses types on walking in children with cerebral palsy: a systematic review. Ann. Phys. Rehabil. Med. 2017; 60(6): 393-402.
- 3. Andrew MJ, Parr JR, Montague-Johnson C, et al. Optimising nutrition to improve growth and reduce neurodisabilities in neonates at risk of neurological impairment, and children with suspected or confirmed cerebral palsy. BMC Pediatr 2015; 15:22.
- 4. Blair E. A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev. Med. Child Neurol. 2013; vol. 55(6): 499-508.
- 5. Das J., Lilleker J., Shereef H., Ealing J. Missense mutation in the ITPR1 gene presenting with ataxic cerebral palsy: description of an affected family and literature review. Neurol. Neurochir. Pol. 2017; vol. 51(6): 497-500.
- 6. Ellenberg J.H., Nelson K.B. The association of cerebral palsy with birth asphyxia: a definitional quagmire. Dev. Med. Child Neurol. 2013; vol. 55(3): 210-6.

- 7. Ganesan V. Outcome and rehabilitation after childhood stroke. Handb. Clin. Neurol. 2013; vol. 112: 1079-83.
- 8. Gibson C.S., Maclennan A.H., Dekker G.A., Goldwater P.N., Sullivan T.R., Munroe D.J., Tsang S., Stewart C., Nelson K. Candidate genes and cerebral palsy: a population-based study. Pediatrics. 2008; vol.122(5): 1079-85.
- 9. Resch B., Müller W.D. Interleukin-6-174 CC polymorphism is associated with clinical chorioamnionitis and cerebral palsy. Ann. Neurol. 2010; vol. 68(5): 768-9.
- 10. Schiariti V., Fowler E., Brandenburg J.E., Levey E., Mcintyre S., Sukal-Moulton T., Ramey S.L., Rose J., Sienko S., Stashinko E., Vogtle L., Feldman R.S., Koenig J.I. A common data language for clinical research studies: the National Institute of Neurological Disorders and Stroke and American Academy for Cerebral Palsy and Developmental Medicine Cerebral Palsy Common Data Elements Version 1.0 recommendations. Dev. Med. Child Neurol. 2018; vol. 60(10): 976-986

