

🦠 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170604603

FCC REPORT

(WIFI)

Applicant: NEXUS TELECOM SERVICES (HK) LIMITED

Address of Applicant: R112, 11/F Hollywood Plaza, Mangkok, Kowloon, Hong Kong

Equipment Under Test (EUT)

Product Name: 3G SMART PHONE

Model No.: GO503

Trade mark: GOMOBILE

FCC ID: 2AHDFGO503

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 June, 2017

Date of Test: 12 June, to 11 July, 2017

Date of report issued: 11 July, 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	11 July, 2017	Original

Tested by:	Mike.ou	Date:	11 July, 2017	
	Test Engineer			
Reviewed by:	2 Man Lee	Date:	11 July 2017	

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		ITENTS	
4	TFS.	T SUMMARY	4
5		ERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	18
	6.5	POWER SPECTRAL DENSITY	25
	6.6	BAND EDGE	29
	6.6.1	Conducted Emission Method	29
	6.6.2	Radiated Emission Method	32
	6.7	Spurious Emission	45
	6.7.1	Conducted Emission Method	45
	6.7.2	Radiated Emission Method	52
7	TES	T SETUP PHOTO	59
R	FUT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	NEXUS TELECOM SERVICES (HK) LIMITED		
Address of Applicant:	R112, 11/F Hollywood Plaza, Mangkok, Kowloon, Hong Kong		
Manufacturer:	FORTUNE SHIP INTERNATIONAL INDUSTRIAL LIMITED		
Address of Manufacturer:	Suite A 11/F HO LEE COMM BLDG 38-44 D'AGUILAR ST CENTRAL HongKong		
Factory:	GUIZHOU FORTUNE SHIP INTELLIGENT TERMINAL INDUSTRIAL PARK		
Address of Factory:	GUIZHOU FORTUNE SHIP, XINPU ECONOMIC DEVELOPMENT ZONE, ZUNYI, GUIZHOU, CHINA		

5.2 General Description of E.U.T.

Product Name:	3G SMART PHONE		
Model No.:	GO503		
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))		
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)		
Channel separation:	5MHz		
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)		
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)		
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps		
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps		
Data speed (IEEE 802.11n):	Up to 150Mbps		
Antenna Type:	Internal Antenna		
Antenna gain:	0.3dBi		
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh		
AC adapter:	Model: GO503 Input: AC100-240V 50/60Hz 0.1A Output: DC 5.0V, 1A		

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4 2427MHz 7 2442MHz 10 245		2457MHz				
2 2417MHz 5 2432MHz 8 2447MHz 11 2462I		2462MHz						
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

Report No: CCISE170604603

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(H20)	6.5Mbps		

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)		
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)		
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)		

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE170604603

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018		
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018		
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018		

Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018		
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018		
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.3 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207					
Test Method:	ANSI C63.4: 2014						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 k	 Hz					
Limit:	Frequency range	Limit (c	dBuV)				
Cirriic.	(MHz)	Quasi-peak Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the log	arithm of the frequency.					
	50ohm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. ling interference. In order positions of equipments	a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).					
Test setup:	AUX Equipment Test table/Insula Remark E U.T. Equipment Under LISN Line Impedence St Test table height=0.8m	E.U.T EMI Receiver	Ilter — AC power				
Test Instruments:	Refer to section 5.6 for d	etails					
Test mode:	Refer to section 5.3 for d	etails					
Test results:	Passed						

Measurement Data:

Neutral:

Trace: 17

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 3G SMART PHONE Condition

EUT

: G0503 Model Test Mode : Wifi mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

NORGEN	Freq	Read Level	LISN Factor		Level	Limit Line		Remark
-	MHz	dBuV	ďB	₫₿	dBu₹	dBu∜	₫₿	
1	0.170	33.23	0.13	10.77	44.13	64.94	-20.81	QP
2	0.170	20.12	0.13	10.77	31.02	54.94	-23.92	Average
3	0.214	29.80	0.16	10.76	40.72	63.05	-22.33	QP
1 2 3 4 5 6 7 8 9	0.258	26.46	0.17	10.75	37.38	61.51	-24.13	QP
5	0.302	15.86	0.19	10.74	26.79	50.19	-23.40	Average
6	0.381	17.33	0.22	10.72	28.27	48.25	-19.98	Average
7	0.426	26.92	0.23	10.73	37.88		-19.45	
8	0.426	16.93	0.23	10.73	27.89	47.33	-19.44	Average
9	0.471	16.41	0.24	10.75	27.40	46.49	-19.09	Average
10	0.474	26.30	0.24	10.75	37.29	56.45	-19.16	QP
11	0.598	12.66	0.29	10.77	23.72	46.00	-22.28	Average
12	0.809	24.25		10.81	35.36		-20.64	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 3G SMART PHONE Site Condition EUT

Model G0503

Test Mode : Wifi mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

:	120.0		2000		311730		
Freq			Loss	Level	Limit		Remark
MHz	dBu∀	₫₿	₫B	dBu∀	dBu∜	dB	
0.170	33.14	0.14	10.77	44.05	64.94	-20.89	QP
0.170	19.39	0.14	10.77	30.30	54.94	-24.64	Average
0.214	29.52	0.15	10.76	40.43	63.05	-22.62	QP
0.299	16.37	0.16	10.74	27.27	50.28	-23,01	Average
0.431	29.26	0.24	10.73	40.23	57.24	-17.01	QP
0.431	17.44	0.24	10.73	28.41	47.24	-18.83	Average
0.471	28.70	0.24	10.75	39.69	56.49	-16.80	QP
0.471	16.04	0.24	10.75	27.03	46.49	-19.46	Average
0.598	13.92	0.28	10.77	24.97			
0.641	26.12	0.30	10.77	37.19	56.00	-18.81	QP
0.857	13.10	0.29	10.83	24.22	46.00	-21.78	Average
0.904	25.71	0.28	10.84	36.83			
	MHz 0.170 0.170 0.214 0.299 0.431 0.431 0.471 0.471 0.598 0.641 0.857	Read Freq Level MHz dBuV 0.170 33.14 0.170 19.39 0.214 29.52 0.299 16.37 0.431 29.26 0.431 17.44 0.471 28.70 0.471 28.70 0.471 16.04 0.598 13.92 0.641 26.12 0.857 13.10	Read LISN Freq Level Factor MHz dBuV dB 0.170 33.14 0.14 0.170 19.39 0.14 0.214 29.52 0.15 0.299 16.37 0.16 0.431 29.26 0.24 0.431 17.44 0.24 0.471 28.70 0.24 0.471 16.04 0.24 0.598 13.92 0.28 0.641 26.12 0.30 0.857 13.10 0.29	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB 0.170 33.14 0.14 10.77 0.170 19.39 0.14 10.77 0.214 29.52 0.15 10.76 0.299 16.37 0.16 10.74 0.431 29.26 0.24 10.73 0.431 17.44 0.24 10.73 0.471 28.70 0.24 10.75 0.471 16.04 0.24 10.75 0.598 13.92 0.28 10.77 0.641 26.12 0.30 10.77 0.857 13.10 0.29 10.83	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dBuV 0.170 33.14 0.14 10.77 44.05 0.170 19.39 0.14 10.77 30.30 0.214 29.52 0.15 10.76 40.43 0.299 16.37 0.16 10.74 27.27 0.431 29.26 0.24 10.73 40.23 0.431 17.44 0.24 10.73 28.41 0.471 28.70 0.24 10.75 39.69 0.471 16.04 0.24 10.75 39.69 0.471 16.04 0.24 10.75 27.03 0.598 13.92 0.28 10.77 24.97 0.641 26.12 0.30 10.77 37.19 0.857 13.10 0.29 10.83 24.22	Read LISN Cable Limit Freq Level Factor Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.170 33.14 0.14 10.77 44.05 64.94 0.170 19.39 0.14 10.77 30.30 54.94 0.214 29.52 0.15 10.76 40.43 63.05 0.299 16.37 0.16 10.74 27.27 50.28 0.431 29.26 0.24 10.73 40.23 57.24 0.431 17.44 0.24 10.73 28.41 47.24 0.471 28.70 0.24 10.75 39.69 56.49 0.471 16.04 0.24 10.75 27.03 46.49 0.598 13.92 0.28 10.77 24.97 46.00 0.598 13.92 0.28 10.77 24.97 46.00 0.641 26.12 0.30 10.77 37.19 56.00 0.857 13.10 0.29 10.83 24.22 46.00	Read LISN Cable Limit Over Line Limit

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Maximum	Conducted Output Pov	utput Power (dBm) Limit(dBm)			
Test Off	802.11b	802.11g	802.11n(H20)	Limit(dDin)	Result	
Lowest	15.54	14.40	12.70			
Middle	15.05	14.90	12.11	30.00	Pass	
Highest	15.10	15.05	12.53			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

medodi ement bata.									
Test CH	6dB	Emission Bandwidth (I	MHz)	Limit(kHz)	Result				
1031 011	802.11b	802.11g	802.11n(H20)	Ell'Ill(KHZ)	Nosuit				
Lowest	9.76	16.00	17.28						
Middle	10.24	16.24	17.60	>500	Pass				
Highest	10.24	16.24	17.36						
Test CH	99%	Limit(kHz)	Result						
1031 011	802.11b	802.11g	802.11n(H20)	Ell'III(KI 12)	resuit				
Lowest	12.88	19.60	17.68						
Middle	12.80	19.76	17.68	N/A	N/A				
Highest	12.96	19.84	17.76						

Test plot as follows:

6dB EBW

Date: 16.JUN.2017 21:52:10

Lowest channel

Date: 16.JUN.2017 21:53:12

Middle channel

Date: 16.JUN.2017 21:54:39

Highest channel

Date: 16.JUN.2017 21:55:43

Lowest channel

Date: 16.JUN.2017 21:56:32

Middle channel

Date: 16.JUN.2017 21:57:17

Highest channel

Date: 16.JUN.2017 22:00:13

Lowest channel

Date: 16.JUN.2017 21:59:18

Middle channel

Date: 16.JUN.2017 21:58:17

Highest channel

Date: 16.JUN.2017 21:44:32

Lowest channel

Date: 16.JUN.2017 21:44:58

Middle channel

Date: 16.JUN.2017 21:45:18

Highest channel

Date: 16.JUN.2017 21:49:37

Lowest channel

Date: 19.JUN.2017 15:39:19

Middle channel

Date: 19.JUN.2017 15:40:36

Highest channel

Date: 16.JUN.2017 21:44:02

Lowest channel

Date: 16.JUN.2017 21:43:33

Middle channel

Date: 16.JUN.2017 21:42:55

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Pow	er Spectral Density (c	lBm)	Limit(dBm)	Result
1631 011	802.11b	802.11g	802.11n(H20)	Limit(abin)	Nesuit
Lowest	5.94	3.91	1.21		
Middle	5.30	4.53	0.73	8.00	Pass
Highest	5.55	4.91	0.83		

Test plot as follows:

Date: 16.JUN.2017 21:18:02

Lowest channel

Date: 16.JUN.2017 21:19:01

Middle channel

Date: 16.JUN.2017 21:19:22

Highest channel

Date: 16.JUN.2017 21:20:47

Lowest channel

Date: 16.JUN.2017 21:20:26

Middle channel

Date: 16.JUN.2017 21:19:55

Highest channel

Date: 16.JUN.2017 21:21:30

Lowest channel

Date: 16.JUN.2017 21:22:03

Middle channel

Date: 16.JUN.2017 21:22:27

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Took Door increasely	FOO Don't 45 O Continue 45 047 (d)			
Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 2			E coot	ion 12 :	1
			00 00007400310	5 Seci	.1011 12.	1
Test Frequency Range:	2.3GHz to 2.5G					
Test site:	Measurement D		T			T
Receiver setup:	Frequency Detector RBW VBW Remark					
	Above 1GHz	Peak RMS	1MHz 1MHz		<u>ИНz</u> ИНz	Peak Value Average Value
Limit:	Frequenc		imit (dBuV/m @	•	VII IZ	Remark
Lillit.	•		54.00	0111)	A	verage Value
	Above 1GH	1z	74.00			Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 					
Test setup:	150cm	AE EUT (Turntable)	Hor Sm Ground Reference Plane	rn Anlenna Pre- Pre- Pre- Pre- Pre- Pre- Pre- Pre-	Antenna Tor	wer
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section	5.3 for deta	ils			
Test results:	Passed					
	1					

802.11b

Test channel: Lowest

Horizontal:

: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G SMART PHONE Condition

EUT

: G0503 Model

Test mode : 802,11b-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Mike REMARK :

L6J	NA :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/a	dB	dB	dBuV/m	dBu∀/m	₫₿	
i i	2390.000	26.08	23.68	4.69	0.00	54.45	74.00	-19.55	Peak
2	2390.000	15.95	23.68	4.69	0.00	44.32	54.00	-9.68	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G SMART PHONE Condition

EUT

: GO503 Model

Test mode : 802.11b-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK

MAR	v :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	─dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390,000								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G SMART PHONE Condition

EUT

Model : GO503

Test mode : 802.11b-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK

444.5		Read Level	Antenna Factor	enna Cable Pr ctor Loss Fa		Level	Limit Line	Over Limit	Remark	
	MHz	dBu∀	dB/m	dB	dB	dBu∀/m	dBuV/m	<u>d</u> B		
	2483.500 2483.500									

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Vertical:

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL
EUT : 3G SMART PHONE
Model : G0503
Test mode : 802.11b-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Mike REMARK :

CHICLE	LA .								
			Ant enna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	₫B	dBu∀/m	dBuV/m	₫B	
1 2	2483.500 2483.500					64.72 46.70			Peak Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G SMART PHONE Condition

EUT

Model : GO503

Test mode : 802.11g-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Mike REMARK :

an	K :								
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line		
	MHz	dBu∀	$\overline{-dB/n}$	₫₿	₫B	dBuV/m	dBuV/m	dB	
	2390,000 2390,000					60.84 43.63			Peak Average

Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G SMART PHONE Condition

EUT Model : G0503 Test mode : 802.11g-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Mike REMARK :

arch!	Α	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu∇	−dB/m	dB	<u>dB</u>	dBuV/n	dBuV/m	<u>d</u> B	
1 2	2390.000 2390.000					60.81 43.65			Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G SMART PHONE Condition

EUT

rest mode : 802.11g-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK :

TO MICH.		ReadAntenna Freq Level Factor		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/n	dB	<u>dB</u>	dBuV/n	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1706046

Page 39 of 60

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G SMART PHONE Condition

EUT

Test mode : 802.11g-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Mike REMARK

EMAR	к :	Read	Ant enna	Cable	Presmn		Limit	Over	
	Freq		Factor						
	MHz	dBu₹	dB/m	dB	−−−−dB	dBuV/m	dBuV/m	dB	
1 2	2483,500 2483,500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G SMART PHONE Condition

EUT

: GO503 Model

Test mode : 802.11n20-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

CHWI/L									
	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	
-	MHz	dBu₹	dB/m	−−−dB	<u>dB</u>	dBuV/m	dBu√/m	dB	
1	2389.312	34.65	23.68	4.69	0.00	63.02	74.00	-10.98	Peak
2	2389.312	19.27	23.68	4.69	0.00	47.64	54.00	-6.36	Average
2	2390.000	32.68	23.68	4.69	0.00	61.05	74.00	-12.95	Peak
4	2390.000	18.72	23.68	4.69					Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G SMART PHONE : GO503 Condition

EUT

Model

Test mode : 802.11n20-L Mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

nam	ı.								
		Read	ReadAnt enna		Cable Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫₿	₫B	dBuV/m	dBuV/m	₫B	
1	2390.000	30.17	23.68	4.69	0.00	58.54	74.00	-15.46	Peak
2	2390,000	16.71	23.68	4.69	0.00	45, 08	54 00	-8.92	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 3G SMART PHONE : GO503 Condition

EUT

Model

Test mode : 802.11n20-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5 C Huni:55%

Test Engineer: Mike REMARK :

	Freq					Level			
14	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	d₿	
1 2	2483,500 2483,500								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 3G SMART PHONE : GO503 Condition

EUT

Model

Test mode : 802.11n20-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

mant's	•••	ReadAnt enna			Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/n	₫B		
1 2	2483.500 2483.500								Peak Average	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

Test mode: 802.11b

Date: 27.JUN.2017 23:06:47

30MHz~25GHz

Date: 18.JUN.2017 14:11:47

30MHz~25GHz

Date: 18.JUN.2017 14:12:16

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 18.JUN.2017 14:14:41

30MHz~25GHz

Date: 18.JUN.2017 14:14:05

30MHz~25GHz

Date: 18.JUN.2017 14:15:05

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 18.JUN.2017 14:15:55

30MHz~25GHz

Date: 18.JUN.2017 14:16:29

30MHz~25GHz

Date: 18.JUN.2017 14:16:55

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	ection 15	5.209 a	and 15.205			
Test Method:	ANSI C63.10:201	13					
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Dis	stance: 3r	m				
Receiver setup:	Frequency	Detect	tor	RBW	V	BW	Remark
·	30MHz-1GHz	Quasi-p	oeak	120KHz	300)KHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz		ИHz	Peak Value
	RMS 1MHz 3MHz Ave						Average Value
Limit:							Remark
							uasi-peak Value
							uasi-peak Value
	216MHz-960MHz 46.0 Quasi-peak						
	960MHz-1GH	Z		54.0			uasi-peak Value
	Above 1GHz	<u>:</u>		54.0 74.0		<i>'</i>	Average Value Peak Value
Test Procedure:	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the med. 4. For each suscase and the meters and to find the med. 5. The test-reconspecified Base. 6. If the emission the limit spend the EUT we have 10dB med.	(above 10 as rotated ation. It is set 3 m ich was not a height is to determinatel and voe asurements and with a rota taximum rever system on level of cified, the would be margin wo	GHz) d 360 neters mount s varie ine the vertical ent. emissi atenna able w readin tem w with M of the en test report ould be	above the gradegrees to degrees to degrees to degrees to degree degrees to degree degr	he into of a meter value s of the was a point of a mode stoppe the ne by	at a 3 aine the erferent variable to four of the fine ante errange phts frodegree tect Fude. Example was 1 oped and emission one us	meter chamber. e position of the ace-receiving le-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : 3G SMART PHONE Condition

EUT

Model : GO503 Test mode : Wifi Mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Mike REMARK:

21/PETER									
			Antenna Factor				Limit	Over	Remark
	rroq	HOVEL	1 40.01	2000	1 40 001	10401	2210	To Tallity C	HOMELE
-	MHz	dBu∜	dB/m	dB	₫₿	dBuV/n	dBuV/m	dB	
1	75.977	41.49	6.34	1.63	29.67	19.79	40.00	-20.21	QP
2	103.442	44.20	10.45	1.97	29.50	27.12	43.50	-16.38	QP
1 2 3 4 5	175.037	42.72	9.50	2.69	29.01	25.90	43.50	-17.60	QP
4	247.682	37.38	11.88	2.81	28.55	23.52	46.00	-22.48	QP
5	564.639	31.30	18.21	3.90	29.05	24.36	46.00	-21.64	QP
6	815.968	29,77	20,72	4, 30	28, 13	26, 66	46,00	-19.34	OP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : 3G SMART PHONE : GO503 Condition

EUT

: 00503
Test mode : Wifi Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK :

100 00 000									
	Free		Antenna Factor				Limit	Charles Control of the Control	Remark
	rred	rever	ractor	LUSS	ractor	rever	Line	TIMIC	Newark
-	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	46.503	42.84	16.96	1.28	29.85	31.23	40.00	-8.77	QP
1 2 3 4 5	135.506	43.94	11.98	2.35	29.30	28.97	43.50	-14.53	QP
3	148,963	49.14	10.77	2.51	29.23	33.19	43.50	-10.31	QP
4	155.364	43.72	10.24	2.55	29.17	27.34	43.50	-16.16	QP
5	336.035	33.23	13.76	3.05	28.53	21.51	46.00	-24.49	QP
6	545, 183	38.00	17.98	3, 86	29.08	30.76	46.00	-15.24	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nel: Lowest		Remark: Peak			
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polar.	
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
4824.00	53.95	36.06	6.81	41.82	55.00	74.00	-19.00	Vertical	
4824.00	55.58	36.06	6.81	41.82	56.63	74.00	-17.37	Horizontal	
Test	mode: 802.	11b	Te	st channel: L	owest	Remark: Average		age	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	41.28	36.06	6.81	41.82	42.33	54.00	-11.67	Vertical	
4824.00	43.11	36.06	6.81	41.82	44.16	54.00	-9.84	Horizontal	

Test mode: 8	02.11b		Test char	nnel: Middle		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	52.65	36.32	6.85	41.84	53.98	74.00	-20.02	Vertical
4874.00	55.59	36.32	6.85	41.84	56.92	74.00	-17.08	Horizontal
Test	mode: 802.	11b	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	41.65	36.32	6.85	41.84	42.98	54.00	-11.02	Vertical
4874.00	44.05	36.32	6.85	41.84	45.38	54.00	-8.62	Horizontal

Test mode: 80	Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	54.27	36.58	6.89	41.86	55.88	74.00	-18.12	Vertical	
4924.00	55.99	36.58	6.89	41.86	57.60	74.00	-16.40	Horizontal	
Test	mode: 802.	11b	Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	44.21	36.58	6.89	41.86	45.82	54.00	-8.18	Vertical	
4924.00	45.82	36.58	6.89	41.86	47.43	54.00	-6.57	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	50.19	36.06	6.81	41.82	51.24	74.00	-22.76	Vertical	
4824.00	49.34	36.06	6.81	41.82	50.39	74.00	-23.61	Horizontal	
Tes	t mode: 802.	11g	Tes	t channel: Lo	west	Rem	Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	45.62	36.06	6.81	41.82	46.67	54.00	-7.33	Vertical	
4824.00	42.36	36.06	6.81	41.82	43.41	54.00	-10.59	Horizontal	

Test mode: 80	Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.59	36.32	6.85	41.84	50.92	74.00	-23.08	Vertical	
4874.00	52.03	36.32	6.85	41.84	53.36	74.00	-20.64	Horizontal	
Tes	t mode: 802.	11g	Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	44.48	36.32	6.85	41.84	45.81	54.00	-8.19	Vertical	
4874.00	45.21	36.32	6.85	41.84	46.54	54.00	-7.46	Horizontal	

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.98	36.58	6.89	41.86	51.59	74.00	-22.41	Vertical
4924.00	52.49	36.58	6.89	41.86	54.10	74.00	-19.90	Horizontal
Tes	t mode: 802.	11g	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	42.24	36.58	6.89	41.86	43.85	54.00	-10.15	Vertical
4924.00	48.11	36.58	6.89	41.86	49.72	54.00	-4.28	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11n(H20)		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	50.03	36.06	6.81	41.82	51.08	74.00	-22.92	Vertical
4824.00	49.34	36.06	6.81	41.82	50.39	74.00	-23.61	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Lowest			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.49	36.06	6.81	41.82	46.54	54.00	-7.46	Vertical
4824.00	42.15	36.06	6.81	41.82	43.20	54.00	-10.80	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	49.62	36.32	6.85	41.84	50.95	74.00	-23.05	Vertical
4874.00	51.06	36.32	6.85	41.84	52.39	74.00	-21.61	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Middle			Rem	ark: Avera	age
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	44.21	36.32	6.85	41.84	45.54	54.00	-8.46	Vertical
4874.00	45.23	36.32	6.85	41.84	46.56	54.00	-7.44	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	49.87	36.58	6.89	41.86	51.48	74.00	-22.52	Vertical
4924.00	51.57	36.58	6.89	41.86	53.18	74.00	-20.82	Horizontal
Test m	ode: 802.11	n(H20)	Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	42.32	36.58	6.89	41.86	43.93	54.00	-10.07	Vertical
4924.00	48.16	36.58	6.89	41.86	49.77	54.00	-4.23	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.