If w is an optimal solution, then $\delta = 1/\|w\|$ is the shortest distance from the support vectors to the separating hyperplane $H_{w,b}$ of equation $w^{\top}x - b = 0$. If we consider the two hyperplanes $H_{w,b+1}$ and $H_{w,b-1}$ of equations

$$w^{\top}x - b - 1 = 0$$
 and $w^{\top}x - b + 1 = 0$.

then $H_{w,b+1}$ and $H_{w,b-1}$ are two hyperplanes parallel to the hyperplane $H_{w,b}$ and the distance between them is 2δ . Furthermore, $H_{w,b+1}$ contains the support vectors u_i , $H_{w,b-1}$ contains the support vectors v_j , and there are no data points u_i or v_j in the open region between these two hyperplanes containing the separating hyperplane $H_{w,b}$ (called a "slab" by Boyd and Vandenberghe; see [29], Section 8.6). This situation is illustrated in Figure 50.14.

Figure 50.14: In \mathbb{R}^3 , the solution to Hard Margin SVM_{h2} is the purple plane sandwiched between the red plane $w^{\top}x - b + 1 = 0$ and the blue plane $w^{\top}x - b - 1 = 0$, each of which contains the appropriate support vectors u_i and v_j .

Even if p = 1 and q = 2, a solution is not obvious. In the plane, there are four possibilities:

- (1) If u_1 is on the segment (v_1, v_2) , there is no solution.
- (2) If the projection h of u_1 onto the line determined by v_1 and v_2 is between v_1 and v_2 , that is $h = (1 \alpha)v_1 + \alpha_2v_2$ with $0 \le \alpha \le 1$, then it is the line parallel to $v_2 v_1$ and equidistant to u and both v_1 and v_2 , as illustrated in Figure 50.15.
- (3) If the projection h of u_1 onto the line determined by v_1 and v_2 is to the right of v_2 , that is $h = (1 \alpha)v_1 + \alpha_2v_2$ with $\alpha > 1$, then it is the bisector of the line segment (u_1, v_2) .
- (4) If the projection h of u_1 onto the line determined by v_1 and v_2 is to the left of v_1 , that is $h = (1 \alpha)v_1 + \alpha_2 v_2$ with $\alpha < 0$, then it is the bisector of the line segment (u_1, v_1) .