NetworkX Reference

Release 2.0.dev20150614000013

Aric Hagberg, Dan Schult, Pieter Swart

CONTENTS

1	Over	view 1
	1.1	Who uses NetworkX?
	1.2	Goals
	1.3	The Python programming language
	1.4	Free software
	1.5	History
2	Intro	duction
	2.1	NetworkX Basics
	2.2	Nodes and Edges
3		sh types
	3.1	Which graph class should I use?
	3.2	Basic graph types
4	A 1	100
4	_	rithms
	4.1	Approximation
	4.2	Assortativity
	4.3	Bipartite
	4.4	Blockmodeling
	4.5	Boundary
	4.6	Centrality
	4.7	Chordal
	4.8	Clique
	4.9	Clustering
	4.10	Coloring
	4.11	Communities
	4.12	Components
	4.13	Connectivity
	4.14	Cores
	4.15	Cycles
	4.16	Directed Acyclic Graphs
	4.17	Distance Measures
	4.18	Distance-Regular Graphs
	4.19	Dominance
	4.20	Dominating Sets
	4.21	Eulerian
	4.22	Flows
	4.23	Graphical degree sequence
	4.24	Hierarchy
		Hybrid
		· · · · · · · · · · · · · · · · · · ·

	4.26	Isolates	290
	4.27	Isomorphism	291
	4.28	Link Analysis	304
	4.29	Link Prediction	311
	4.30	Matching	318
	4.31	Minors	319
	4.32	Maximal independent set	
	4.33	Minimum Spanning Tree	
	4.34	Operators	
	4.35	Rich Club	
	4.36	Shortest Paths	
	4.37	Simple Paths	
	4.38	Swap	
	4.39	Traversal	
	4.40	Tree	
	4.41	Triads	
	4.42		
	4.42	Vitality	312
5	Func	tions	373
J	5.1	Graph	
	5.2	Nodes	
	5.3	Edges	
	5.4	Attributes	
	5.5	Freezing graph structure	380
6	Gran	oh generators	383
U	6.1	Atlas	
	6.2	Classic	
	6.3	Expanders	
	6.4	Small	
	6.5	Random Graphs	
	6.6	Degree Sequence	
	6.7	Random Clustered	
	6.8	Directed	
	6.9	Geometric	
	6.10	Line Graph	
	6.11	Ego Graph	
	6.12	Stochastic	420
		Intersection	
	6.14	Social Networks	
	6.15	Community	
	6.16	Non Isomorphic Trees	428
7	Lino	on algabra	431
/			431
	7.1		
	7.2	T	433
	7.3		435
	7.4	8	436
	7.5	Attribute Matrices	439
O	Com	anding to and from other data formeds	445
8		verting to and from other data formats	445
	8.1	To NetworkX Graph	445
		•	111
	8.2	Dictionaries	
		•	447

	8.5	Scipy	452
	8.6	Pandas	455
9	Read	ing and writing graphs	459
	9.1	Adjacency List	459
	9.2	Multiline Adjacency List	463
	9.3	Edge List	466
	9.4	GEXF	473
	9.5	GML	475
	9.6	Pickle	479
	9.7	GraphML	481
	9.8	JSON	482
	9.9	LEDA	487
	9.10	YAML	488
	9.10	SparseGraph6	490
	9.11	Pajek	490
	9.13	GIS Shapefile	497
10	Draw	ving	499
	10.1		499
	10.2	±	
	10.3	Graphviz with pydot	
		Graph Layout	
11	Exce	ptions	519
12	Utilit	ies	521
	12.1	Helper Functions	521
	12.2		522
	12.3	Random Sequence Generators	522
	12.4		525
		Context Managers	
13	Licen	ise	529
14	Citin	g	531
15	Consider	***	522
15	Cred		533
	15.1	Contributions	533
	15.2	Support	535
16	Gloss	sary	537
Bil	oliogra	aphy	539
Py	thon N	Module Index	551
Inc	Index		

CHAPTER

ONE

OVERVIEW

NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics, and function of complex networks.

With NetworkX you can load and store networks in standard and nonstandard data formats, generate many types of random and classic networks, analyze network structure, build network models, design new network algorithms, draw networks, and much more.

1.1 Who uses NetworkX?

The potential audience for NetworkX includes mathematicians, physicists, biologists, computer scientists, and social scientists. Good reviews of the state-of-the-art in the science of complex networks are presented in Albert and Barabási [BA02], Newman [Newman03], and Dorogovtsev and Mendes [DM03]. See also the classic texts [Bollobas01], [Diestel97] and [West01] for graph theoretic results and terminology. For basic graph algorithms, we recommend the texts of Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the survey of Brandes and Erlebach [BE05].

1.2 Goals

NetworkX is intended to provide

- tools for the study of the structure and dynamics of social, biological, and infrastructure networks,
- · a standard programming interface and graph implementation that is suitable for many applications,
- a rapid development environment for collaborative, multidisciplinary projects,
- an interface to existing numerical algorithms and code written in C, C++, and FORTRAN,
- the ability to painlessly slurp in large nonstandard data sets.

1.3 The Python programming language

Python is a powerful programming language that allows simple and flexible representations of networks, and clear and concise expressions of network algorithms (and other algorithms too). Python has a vibrant and growing ecosystem of packages that NetworkX uses to provide more features such as numerical linear algebra and drawing. In addition Python is also an excellent "glue" language for putting together pieces of software from other languages which allows reuse of legacy code and engineering of high-performance algorithms [Langtangen04].

Equally important, Python is free, well-supported, and a joy to use.

In order to make the most out of NetworkX you will want to know how to write basic programs in Python. Among the many guides to Python, we recommend the documentation at http://www.python.org and the text by Alex Martelli [Martelli03].

1.4 Free software

NetworkX is free software; you can redistribute it and/or modify it under the terms of the *BSD License*. We welcome contributions from the community. Information on NetworkX development is found at the NetworkX Developer Zone at Github https://github.com/networkx/networkx

1.5 History

NetworkX was born in May 2002. The original version was designed and written by Aric Hagberg, Dan Schult, and Pieter Swart in 2002 and 2003. The first public release was in April 2005.

Many people have contributed to the success of NetworkX. Some of the contributors are listed in the *credits*.

1.5.1 What Next

- A Brief Tour
- Installing
- Reference
- Examples

CHAPTER

TWO

INTRODUCTION

The structure of NetworkX can be seen by the organization of its source code. The package provides classes for graph objects, generators to create standard graphs, IO routines for reading in existing datasets, algorithms to analyse the resulting networks and some basic drawing tools.

Most of the NetworkX API is provided by functions which take a graph object as an argument. Methods of the graph object are limited to basic manipulation and reporting. This provides modularity of code and documentation. It also makes it easier for newcomers to learn about the package in stages. The source code for each module is meant to be easy to read and reading this Python code is actually a good way to learn more about network algorithms, but we have put a lot of effort into making the documentation sufficient and friendly. If you have suggestions or questions please contact us by joining the NetworkX Google group.

Classes are named using CamelCase (capital letters at the start of each word). functions, methods and variable names are lower_case_underscore (lowercase with an underscore representing a space between words).

2.1 NetworkX Basics

After starting Python, import the networkx module with (the recommended way)

```
>>> import networkx as nx
```

To save repetition, in the documentation we assume that NetworkX has been imported this way.

If importing networkx fails, it means that Python cannot find the installed module. Check your installation and your PYTHONPATH.

The following basic graph types are provided as Python classes:

Graph This class implements an undirected graph. It ignores multiple edges between two nodes. It does allow self-loop edges between a node and itself.

DiGraph Directed graphs, that is, graphs with directed edges. Operations common to directed graphs, (a subclass of Graph).

MultiGraph A flexible graph class that allows multiple undirected edges between pairs of nodes. The additional flexibility leads to some degradation in performance, though usually not significant.

MultiDiGraph A directed version of a MultiGraph.

Empty graph-like objects are created with

```
>>> G=nx.Graph()
>>> G=nx.DiGraph()
>>> G=nx.MultiGraph()
>>> G=nx.MultiDiGraph()
```

All graph classes allow any *hashable* object as a node. Hashable objects include strings, tuples, integers, and more. Arbitrary edge attributes such as weights and labels can be associated with an edge.

The graph internal data structures are based on an adjacency list representation and implemented using Python *dictionary* datastructures. The graph adjaceny structure is implemented as a Python dictionary of dictionaries; the outer dictionary is keyed by nodes to values that are themselves dictionaries keyed by neighboring node to the edge attributes associated with that edge. This "dict-of-dicts" structure allows fast addition, deletion, and lookup of nodes and neighbors in large graphs. The underlying datastructure is accessed directly by methods (the programming interface "API") in the class definitions. All functions, on the other hand, manipulate graph-like objects solely via those API methods and not by acting directly on the datastructure. This design allows for possible replacement of the 'dicts-of-dicts'-based datastructure with an alternative datastructure that implements the same methods.

2.1.1 Graphs

The first choice to be made when using NetworkX is what type of graph object to use. A graph (network) is a collection of nodes together with a collection of edges that are pairs of nodes. Attributes are often associated with nodes and/or edges. NetworkX graph objects come in different flavors depending on two main properties of the network:

- Directed: Are the edges **directed**? Does the order of the edge pairs (u,v) matter? A directed graph is specified by the "Di" prefix in the class name, e.g. DiGraph(). We make this distinction because many classical graph properties are defined differently for directed graphs.
- Multi-edges: Are multiple edges allowed between each pair of nodes? As you might imagine, multiple edges requires a different data structure, though tricky users could design edge data objects to support this functionality. We provide a standard data structure and interface for this type of graph using the prefix "Multi", e.g. MultiGraph().

The basic graph classes are named: Graph, DiGraph, MultiGraph, and MultiDiGraph

2.2 Nodes and Edges

The next choice you have to make when specifying a graph is what kinds of nodes and edges to use.

If the topology of the network is all you care about then using integers or strings as the nodes makes sense and you need not worry about edge data. If you have a data structure already in place to describe nodes you can simply use that structure as your nodes provided it is *hashable*. If it is not hashable you can use a unique identifier to represent the node and assign the data as a *node attribute*.

Edges often have data associated with them. Arbitrary data can associated with edges as an *edge attribute*. If the data is numeric and the intent is to represent a *weighted* graph then use the 'weight' keyword for the attribute. Some of the graph algorithms, such as Dijkstra's shortest path algorithm, use this attribute name to get the weight for each edge.

Other attributes can be assigned to an edge by using keyword/value pairs when adding edges. You can use any keyword except 'weight' to name your attribute and can then easily query the edge data by that attribute keyword.

Once you've decided how to encode the nodes and edges, and whether you have an undirected/directed graph with or without multiedges you are ready to build your network.

2.2.1 Graph Creation

NetworkX graph objects can be created in one of three ways:

- Graph generators standard algorithms to create network topologies.
- Importing data from pre-existing (usually file) sources.

Adding edges and nodes explicitly.

Explicit addition and removal of nodes/edges is the easiest to describe. Each graph object supplies methods to manipulate the graph. For example,

```
>>> import networkx as nx
>>> G=nx.Graph()
>>> G.add_edge(1,2) # default edge data=1
>>> G.add_edge(2,3,weight=0.9) # specify edge data
```

Edge attributes can be anything:

```
>>> import math
>>> G.add_edge('y','x',function=math.cos)
>>> G.add_node(math.cos) # any hashable can be a node
```

You can add many edges at one time:

```
>>> elist=[('a','b',5.0),('b','c',3.0),('a','c',1.0),('c','d',7.3)]
>>> G.add_weighted_edges_from(elist)
```

See the /tutorial/index for more examples.

Some basic graph operations such as union and intersection are described in the Operators module documentation.

Graph generators such as binomial_graph and powerlaw_graph are provided in the Graph generators subpackage.

For importing network data from formats such as GML, GraphML, edge list text files see the *Reading and writing graphs* subpackage.

2.2.2 Graph Reporting

Class methods are used for the basic reporting functions neighbors, edges and degree. Reporting of lists is often needed only to iterate through that list so we supply iterator versions of many property reporting methods. For example edges() and nodes() have corresponding methods edges_iter() and nodes_iter(). Using these methods when you can will save memory and often time as well.

The basic graph relationship of an edge can be obtained in two basic ways. One can look for neighbors of a node or one can look for edges incident to a node. We jokingly refer to people who focus on nodes/neighbors as node-centric and people who focus on edges as edge-centric. The designers of NetworkX tend to be node-centric and view edges as a relationship between nodes. You can see this by our avoidance of notation like G[u,v] in favor of G[u][v]. Most data structures for sparse graphs are essentially adjacency lists and so fit this perspective. In the end, of course, it doesn't really matter which way you examine the graph. G.edges() removes duplicate representations of each edge while G[u,v] is slightly faster but doesn't remove duplicates.

Any properties that are more complicated than edges, neighbors and degree are provided by functions. For example nx.triangles(G,n) gives the number of triangles which include node n as a vertex. These functions are grouped in the code and documentation under the term *algorithms*.

2.2.3 Algorithms

A number of graph algorithms are provided with NetworkX. These include shortest path, and breadth first search (see *traversal*), clustering and isomorphism algorithms and others. There are many that we have not developed yet too. If you implement a graph algorithm that might be useful for others please let us know through the NetworkX Google group or the Github Developer Zone.

As an example here is code to use Dijkstra's algorithm to find the shortest weighted path:

```
>>> G=nx.Graph()
>>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)]
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,'a','d'))
['a', 'c', 'd']
```

2.2.4 Drawing

While NetworkX is not designed as a network layout tool, we provide a simple interface to drawing packages and some simple layout algorithms. We interface to the excellent Graphviz layout tools like dot and neato with the (suggested) pygraphviz package or the pydot interface. Drawing can be done using external programs or the Matplotlib Python package. Interactive GUI interfaces are possible though not provided. The drawing tools are provided in the module *drawing*.

The basic drawing functions essentially place the nodes on a scatterplot using the positions in a dictionary or computed with a layout function. The edges are then lines between those dots.

```
>>> G=nx.cubical_graph()
>>> nx.draw(G)  # default spring_layout
>>> nx.draw(G,pos=nx.spectral_layout(G), nodecolor='r',edge_color='b')
```

See the examples for more ideas.

2.2.5 Data Structure

NetworkX uses a "dictionary of dictionaries of dictionaries" as the basic network data structure. This allows fast lookup with reasonable storage for large sparse networks. The keys are nodes so G[u] returns an adjacency dictionary keyed by neighbor to the edge attribute dictionary. The expression G[u][v] returns the edge attribute dictionary itself. A dictionary of lists would have also been possible, but not allowed fast edge detection nor convenient storage of edge data

Advantages of dict-of-dicts-of-dicts data structure:

- Find edges and remove edges with two dictionary look-ups.
- Prefer to "lists" because of fast lookup with sparse storage.
- Prefer to "sets" since data can be attached to edge.
- G[u][v] returns the edge attribute dictionary.
- n in G tests if node n is in graph G.
- for n in G: iterates through the graph.
- for nbr in G[n]: iterates through neighbors.

As an example, here is a representation of an undirected graph with the edges ('A','B'), ('B','C')

```
>>> G=nx.Graph()
>>> G.add_edge('A','B')
>>> G.add_edge('B','C')
>>> print(G.adj)
{'A': {'B': {}}, 'C': {'B': {}}, 'B': {'A': {}}, 'C': {}}}
```

The data structure gets morphed slightly for each base graph class. For DiGraph two dict-of-dicts structures are provided, one for successors and one for predecessors. For MultiGraph/MultiDiGraph we use a dict-of-dicts-

dicts-of-dicts ¹ where the third dictionary is keyed by an edge key identifier to the fourth dictionary which contains the edge attributes for that edge between the two nodes.

Graphs use a dictionary of attributes for each edge. We use a dict-of-dicts-of-dicts data structure with the inner dictionary storing "name-value" relationships for that edge.

```
>>> G=nx.Graph()
>>> G.add_edge(1,2,color='red',weight=0.84,size=300)
>>> print(G[1][2]['size'])
300
```

¹ "It's dictionaries all the way down."

GRAPH TYPES

NetworkX provides data structures and methods for storing graphs.

All NetworkX graph classes allow (hashable) Python objects as nodes. and any Python object can be assigned as an edge attribute.

The choice of graph class depends on the structure of the graph you want to represent.

3.1 Which graph class should I use?

Graph Type	NetworkX Class
Undirected Simple	Graph
Directed Simple	DiGraph
With Self-loops	Graph, DiGraph
With Parallel edges	MultiGraph, MultiDiGraph

3.2 Basic graph types

3.2.1 Graph – Undirected graphs with self loops

Overview

Graph (data=None, **attr)

Base class for undirected graphs.

A Graph stores nodes and edges with optional data, or attributes.

Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters data: input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also:

```
DiGraph, MultiGraph, MultiDiGraph
```

Examples

Create a graph object that tracks the order nodes are added.

Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are added.

```
>>> class OrderedGraph(nx.Graph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 2), (2, 1), (1, 1)]
```

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes.

```
>>> class ThinGraph(nx.Graph):
... all_edge_dict = {'weight': 1}
... def single_edge_dict(self):
... return self.all_edge_dict
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2,1)
>>> G.edges(data= True)
[(1, 2, {'weight': 1})]
>>> G.add_edge(2,2)
>>> G[2][1] is G[2][2]
True
```

Adding and removing nodes and edges

Graphinit([data])	Initialize a graph with edges, name, graph attributes.
<pre>Graph.add_node(n[, attr_dict])</pre>	Add a single node n and update node attributes.
<pre>Graph.add_nodes_from(nodes, **attr)</pre>	Add multiple nodes.
Graph.remove_node(n)	Remove node n.
	Continued on next pag

Table 3.1 – continued from previous page

Graph.remove_nodes_from(nodes)	Remove multiple nodes.
Graph.add_edge(u, v[, attr_dict])	Add an edge between u and v.
<pre>Graph.add_edges_from(ebunch[, attr_dict])</pre>	Add all the edges in ebunch.
<pre>Graph.add_weighted_edges_from(ebunch[, weight])</pre>	Add all the edges in ebunch as weighted edges with specified weights
Graph.remove_edge(u,v)	Remove the edge between u and v.
Graph.remove_edges_from(ebunch)	Remove all edges specified in ebunch.
Graph.add_star(nodes, **attr)	Add a star.
Graph.add_path(nodes, **attr)	Add a path.
<pre>Graph.add_cycle(nodes, **attr)</pre>	Add a cycle.
Graph.clear()	Remove all nodes and edges from the graph.

init

```
Graph.___init___(data=None, **attr)
```

Initialize a graph with edges, name, graph attributes.

Parameters data: input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

name : string, optional (default='')

An optional name for the graph.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also:

convert

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)] # list of edges
>>> G = nx.Graph(e)
```

Arbitrary graph attribute pairs (key=value) may be assigned

```
>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}
```

add node

```
Graph.add_node (n, attr_dict=None, **attr)
```

Add a single node n and update node attributes.

Parameters n: node

A node can be any hashable Python object except None.

attr_dict : dictionary, optional (default= no attributes)

Dictionary of node attributes. Key/value pairs will update existing data associated with the node.

attr: keyword arguments, optional

Set or change attributes using key=value.

See also:

```
add_nodes_from
```

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:

```
>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))
```

add nodes from

```
Graph.add_nodes_from (nodes, **attr)
Add multiple nodes.
```

Parameters nodes: iterable container

A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.

attr: keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

```
add_node
```

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
```

Use keywords to update specific node attributes for every node.

```
>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)
```

Use (node, attrdict) tuples to update attributes for specific nodes.

```
>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11
```

remove node

```
Graph.remove_node(n)
```

Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n: node

A node in the graph

Raises NetworkXError

If n is not in the graph.

See also:

```
remove nodes from
```

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]
```

remove_nodes_from

```
Graph.remove_nodes_from (nodes)
```

Remove multiple nodes.

Parameters nodes: iterable container

A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

```
remove_node
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]
```

add edge

```
Graph.add_edge (u, v, attr_dict=None, **attr)
```

Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters u,v: nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.

```
attr_dict : dictionary, optional (default= no attributes)
```

Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.

attr: keyword arguments, optional

Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

```
add_edges_from add a collection of edges
```

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'.

Examples

The following all add the edge e=(1,2) to graph G:

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container
```

Associate data to edges using keywords:

```
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add edges from

```
Graph.add_edges_from(ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.
```

Parameters ebunch: container of edges

Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data.

attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.

attr: keyword arguments, optional

Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

```
add_edge add a single edge
add_weighted_edges_from convenient way to add weighted edges
```

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges
>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
```

add weighted edges from

```
Graph.add_weighted_edges_from(ebunch, weight='weight', **attr)
```

Add all the edges in ebunch as weighted edges with specified weights.

Parameters ebunch: container of edges

Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

```
weight : string, optional (default= 'weight')
```

The attribute name for the edge weights to be added.

attr: keyword arguments, optional (default= no attributes)

Edge attributes to add/update for all edges.

See also:

```
add_edge add a single edge
add_edges_from add multiple edges
```

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
```

remove edge

```
Graph.remove\_edge(u, v)
```

Remove the edge between u and v.

Parameters u,v: nodes

Remove the edge between nodes u and v.

Raises NetworkXError

If there is not an edge between u and v.

See also:

```
remove_edges_from remove a collection of edges
```

```
>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple
```

remove edges from

```
Graph.remove_edges_from(ebunch)
```

Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples

Each edge given in the list or container will be removed from the graph. The edges can be:

- 2-tuples (u,v) edge between u and v.
- 3-tuples (u,v,k) where k is ignored.

See also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)
```

add star

```
Graph.add_star(nodes, **attr)
```

Add a star.

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters nodes: iterable container

A container of nodes.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to every edge in star.

See also:

```
add_path, add_cycle
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)
```

add_path

```
Graph.add_path (nodes, **attr)
Add a path.
```

Parameters nodes: iterable container

A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to every edge in path.

See also:

```
add_star, add_cycle
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)
```

add cycle

```
Graph.add_cycle (nodes, **attr)
Add a cycle.
```

Parameters nodes: iterable container

A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to every edge in cycle.

See also:

```
add_path, add_star
```

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)
```

clear

```
Graph.clear()
```

Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]
```

Iterating over nodes and edges

Graph.nodes([data])	Return a list of the nodes in the graph.
Graph.nodes_iter([data])	Return an iterator over the nodes.
Graphiter()	Iterate over the nodes.
<pre>Graph.edges([nbunch, data, default])</pre>	Return a list of edges.
<pre>Graph.edges_iter([nbunch, data, default])</pre>	Return an iterator over the edges.
<pre>Graph.get_edge_data(u, v[, default])</pre>	Return the attribute dictionary associated with edge (u,v).
Graph.neighbors(n)	Return a list of the nodes connected to the node n.
Graph.neighbors_iter(n)	Return an iterator over all neighbors of node n.
Graphgetitem(n)	Return a dict of neighbors of node n.
Graph.adjacency_list()	Return an adjacency list representation of the graph.
Graph.adjacency_iter()	Return an iterator of (node, adjacency dict) tuples for all nodes.
Graph.nbunch_iter([nbunch])	Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

Graph.nodes (data=False)

Return a list of the nodes in the graph.

Parameters data: boolean, optional (default=False)

If False return a list of nodes. If True return a two-tuple of node and node data dictionary

Returns nlist: list

A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
```

```
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]
```

nodes_iter

```
Graph.nodes_iter(data=False)
```

Return an iterator over the nodes.

Parameters data: boolean, optional (default=False)

If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary

Returns niter: iterator

An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression 'for n in G'.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]
```

iter

Graph.__iter__()

Iterate over the nodes. Use the expression 'for n in G'.

Returns niter: iterator

An iterator over all nodes in the graph.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
```

edges

```
Graph.edges (nbunch=None, data=False, default=None)
Return a list of edges.
```

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: bool, optional (default=False)

Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

Returns edge_list: list of edge tuples

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

edges_iter

```
Graph.edges_iter(nbunch=None, data=False, default=None)
```

Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: string or bool, optional (default=False)

The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v).

default: value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter: iterator

An iterator of (u,v) or (u,v,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

get_edge_data

```
Graph.get_edge_data(u, v, default=None)
```

Return the attribute dictionary associated with edge (u,v).

Parameters u,v: nodes

default: any Python object (default=None)

Value to return if the edge (u,v) is not found.

Returns edge_dict : dictionary

The edge attribute dictionary.

Notes

It is faster to use G[u][v].

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0][1]
{}
```

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

```
>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0
```

neighbors

Graph.neighbors (n)

Return a list of the nodes connected to the node n.

Parameters n: node

A node in the graph

Returns nlist: list

A list of nodes that are adjacent to n.

Raises NetworkXError

If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G[n]:

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}
```

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors(0)
[1]
```

neighbors_iter

Graph.neighbors_iter(n)

Return an iterator over all neighbors of node n.

Notes

It is faster to use the idiom "in G[0]", e.g.

```
>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]
```

getitem

```
Graph.___getitem___(n)
```

Return a dict of neighbors of node n. Use the expression 'G[n]'.

Parameters n : node

A node in the graph.

Returns adj_dict : dictionary

The adjacency dictionary for nodes connected to n.

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}
```

adjacency list

```
Graph.adjacency_list()
```

Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns adj list: lists of lists

The adjacency structure of the graph as a list of lists.

See also:

```
adjacency_iter
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]
```

adjacency iter

```
Graph.adjacency_iter()
```

Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns adj_iter: iterator

An iterator of (node, adjacency dictionary) for all nodes in the graph.

See also:

```
adjacency_list
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
```

nbunch iter

```
Graph.nbunch_iter(nbunch=None)
```

Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

Returns niter: iterator

An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Raises NetworkXError

If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:

```
Graph.__iter__
```

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

Graph.has_node(n)	Return True if the graph contains the node n.
Graphcontains(n)	Return True if n is a node, False otherwise.
Graph.has_edge(u, v)	Return True if the edge (u,v) is in the graph.
Graph.order()	Return the number of nodes in the graph.
Graph.number_of_nodes()	Return the number of nodes in the graph.
Graphlen()	Return the number of nodes.
Graph.degree([nbunch, weight])	Return the degree of a node or nodes.
<pre>Graph.degree_iter([nbunch, weight])</pre>	Return an iterator for (node, degree).
Graph.size([weight])	Return the number of edges.
Graph.number_of_edges([u, v])	Return the number of edges between two nodes.
Graph.nodes_with_selfloops()	Return a list of nodes with self loops.
Graph.selfloop_edges([data, default])	Return a list of selfloop edges.
Graph.number_of_selfloops()	Return the number of selfloop edges.
Graph.number_or_serrroops()	Return the number of semoop edges.

has_node

 $Graph.has_node(n)$

Return True if the graph contains the node n.

Parameters n: node

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True
```

It is more readable and simpler to use

```
>>> 0 in G
True
```

contains

```
Graph.__contains__(n)
```

Return True if n is a node, False otherwise. Use the expression 'n in G'.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True
```

has edge

```
Graph.has_edge (u, v)
```

Return True if the edge (u,v) is in the graph.

Parameters u,v: nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.

Returns edge_ind: bool

True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1)  # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e)  # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2])  # e is a 3-tuple (u,v,data_dictionary)
True
```

The following syntax are all equivalent:

```
>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True
```

order

```
Graph.order()
```

Return the number of nodes in the graph.

Returns nnodes: int

The number of nodes in the graph.

See also:

```
number_of_nodes, __len__
```

number of nodes

```
Graph.number_of_nodes()
```

Return the number of nodes in the graph.

Returns nnodes: int

The number of nodes in the graph.

See also:

```
order, __len__
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3
```

__len__

```
Graph.___len___()
```

Return the number of nodes. Use the expression 'len(G)'.

Returns nnodes: int

The number of nodes in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4
```

degree

Graph.degree (nbunch=None, weight=None)

Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight: string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd: dictionary, or number

A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]
```

degree iter

```
{\tt Graph.degree\_iter} \ (nbunch=None, weight=None)
```

Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight : string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter: an iterator

The iterator returns two-tuples of (node, degree).

See also:

degree

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]
```

size

```
Graph.size(weight=None)
```

Return the number of edges.

Parameters weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns nedges: int

The number of edges or sum of edge weights in the graph.

See also:

```
number_of_edges
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
```

number of edges

```
Graph.number of edges (u=None, v=None)
```

Return the number of edges between two nodes.

Parameters u,v: nodes, optional (default=all edges)

If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.

Returns nedges: int

The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

See also:

size

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
```

```
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1
```

nodes_with_selfloops

Graph.nodes_with_selfloops()

Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist: list

A list of nodes with self loops.

See also:

```
selfloop edges, number of selfloops
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]
```

selfloop_edges

Graph.selfloop_edges (data=False, default=None)

Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters data: string or bool, optional (default=False)

Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname')

default : value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns edgelist: list of edge tuples

A list of all selfloop edges.

See also:

```
nodes_with_selfloops, number_of_selfloops
```

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
```

number_of_selfloops

```
Graph.number_of_selfloops()
```

Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

Returns nloops: int

The number of selfloops.

See also:

```
nodes_with_selfloops, selfloop_edges
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1
```

Making copies and subgraphs

Graph.copy()	Return a copy of the graph.
Graph.to_undirected()	Return an undirected copy of the graph.
Graph.to_directed()	Return a directed representation of the graph.
Graph.subgraph(nbunch)	Return the subgraph induced on nodes in nbunch.

сору

```
Graph.copy()
```

Return a copy of the graph.

Returns G: Graph

A copy of the graph.

See also:

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()
```

to_undirected

Graph.to_undirected()

Return an undirected copy of the graph.

Returns G: Graph/MultiGraph

A deepcopy of the graph.

See also:

```
copy, add_edge, add_edges_from
```

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]
```

to_directed

Graph.to_directed()

Return a directed representation of the graph.

Returns G: DiGraph

A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u,v,data) and (v,u,data).

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed Graph to use dict-like objects in the data structure, those changes do not transfer to the DiGraph created by this method.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
```

subgraph

Graph.subgraph (nbunch)

>>> H.edges()
[(0, 1)]

Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch: list, iterable

A container of nodes which will be iterated through once.

Returns G: Graph

>>> H = G.to_directed()

A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)])

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]
```

3.2.2 DiGraph - Directed graphs with self loops

Overview

```
DiGraph (data=None, **attr)
```

Base class for directed graphs.

A DiGraph stores nodes and edges with optional data, or attributes.

DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters data: input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also:

```
Graph, MultiGraph, MultiDiGraph
```

Examples

Create a graph object that tracks the order nodes are added.

```
>>> from collections import OrderedDict
>>> class OrderedNodeGraph(nx.Graph):
... node_dict_factory=OrderedDict
>>> G=OrderedNodeGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 2), (1, 1)]
```

Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are added.

```
>>> class OrderedGraph(nx.Graph):
...     node_dict_factory = OrderedDict
...     adjlist_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 2), (2, 1), (1, 1)]
```

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes.

```
>>> class ThinGraph(nx.Graph):
... all_edge_dict = {'weight': 1}
... def single_edge_dict(self):
... return self.all_edge_dict
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2,1)
>>> G.edges(data= True)
[(1, 2, {'weight': 1})]
>>> G.add_edge(2,2)
>>> G[2][1] is G[2][2]
True
```

Adding and removing nodes and edges

DiGraphinit([data])	Initialize a graph with edges, name, graph attributes.
DiGraph.add_node(n[, attr_dict])	Add a single node n and update node attributes.
DiGraph.add_nodes_from(nodes, **attr)	Add multiple nodes.
DiGraph.remove_node(n)	Remove node n.
DiGraph.remove_nodes_from(nbunch)	Remove multiple nodes.
DiGraph.add_edge(u, v[, attr_dict])	Add an edge between u and v.
<pre>DiGraph.add_edges_from(ebunch[, attr_dict])</pre>	Add all the edges in ebunch.
<pre>DiGraph.add_weighted_edges_from(ebunch[, weight])</pre>	Add all the edges in ebunch as weighted edges with specified weighted
DiGraph.remove_edge (u, v)	Remove the edge between u and v.
DiGraph.remove_edges_from(ebunch)	Remove all edges specified in ebunch.
DiGraph.add_star(nodes, **attr)	Add a star.
DiGraph.add_path(nodes, **attr)	Add a path.
DiGraph.add_cycle(nodes, **attr)	Add a cycle.
DiGraph.clear()	Remove all nodes and edges from the graph.

init

```
DiGraph. init (data=None, **attr)
```

Initialize a graph with edges, name, graph attributes.

Parameters data: input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse

```
matrix, or a PyGraphviz graph.
```

name : string, optional (default='')

An optional name for the graph.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also:

convert

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)] # list of edges
>>> G = nx.Graph(e)
```

Arbitrary graph attribute pairs (key=value) may be assigned

```
>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}
```

add node

DiGraph.add_node (n, attr_dict=None, **attr)

Add a single node n and update node attributes.

Parameters n: node

A node can be any hashable Python object except None.

```
attr_dict : dictionary, optional (default= no attributes)
```

Dictionary of node attributes. Key/value pairs will update existing data associated with the node.

attr: keyword arguments, optional

Set or change attributes using key=value.

See also:

```
add_nodes_from
```

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:

```
>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))
```

add nodes from

```
DiGraph.add_nodes_from(nodes, **attr)
Add multiple nodes.
```

Parameters nodes: iterable container

A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.

attr: keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

```
add_node
```

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
```

Use keywords to update specific node attributes for every node.

```
>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)
```

Use (node, attrdict) tuples to update attributes for specific nodes.

```
>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11
```

remove node

```
{\tt DiGraph.remove\_node}\,(n)
```

Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n: node

A node in the graph

Raises NetworkXError

If n is not in the graph.

See also:

```
remove_nodes_from
```

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]
```

remove nodes from

```
DiGraph.remove_nodes_from(nbunch)
```

Remove multiple nodes.

Parameters nodes: iterable container

A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

```
remove_node
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]
```

add edge

```
DiGraph.add_edge (u, v, attr\_dict=None, **attr)
Add an edge between u and v.
```

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters u,v: nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.

```
attr_dict : dictionary, optional (default= no attributes)
```

Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.

attr: keyword arguments, optional

Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

```
add_edges_from add a collection of edges
```

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'.

Examples

The following all add the edge e=(1,2) to graph G:

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container
```

Associate data to edges using keywords:

```
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add_edges_from

```
DiGraph.add_edges_from(ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.
```

Parameters ebunch: container of edges

Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data.

attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.

attr: keyword arguments, optional

Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

```
add edge add a single edge
add_weighted_edges_from convenient way to add weighted edges
```

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally.

Examples

```
>>> G = nx.Graph()
                     # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3), range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
Associate data to edges
```

```
>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
```

add_weighted_edges_from

```
DiGraph.add weighted edges from (ebunch, weight='weight', **attr)
```

Add all the edges in ebunch as weighted edges with specified weights.

Parameters ebunch: container of edges

Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

```
weight: string, optional (default= 'weight')
```

The attribute name for the edge weights to be added.

attr: keyword arguments, optional (default= no attributes)

Edge attributes to add/update for all edges.

See also:

```
add edge add a single edge
add_edges_from add multiple edges
```

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
```

remove edge

```
DiGraph.remove_edge (u, v)
```

Remove the edge between u and v.

Parameters u,v: nodes

Remove the edge between nodes u and v.

Raises NetworkXError

If there is not an edge between u and v.

See also:

remove_edges_from remove a collection of edges

Examples

```
>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple
```

remove edges from

```
DiGraph.remove_edges_from(ebunch)
```

Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples

Each edge given in the list or container will be removed from the graph. The edges can be:

- 2-tuples (u,v) edge between u and v.
- 3-tuples (u,v,k) where k is ignored.

See also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)
```

add star

```
DiGraph.add_star(nodes, **attr)
Add a star.
```

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters nodes: iterable container

A container of nodes.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to every edge in star.

See also:

```
add_path, add_cycle
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)
```

add_path

```
DiGraph.add_path (nodes, **attr)
Add a path.
```

Parameters nodes: iterable container

A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to every edge in path.

See also:

```
add_star,add_cycle
```

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)
```

add_cycle

```
DiGraph.add_cycle (nodes, **attr)
Add a cycle.
```

Parameters nodes: iterable container

A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to every edge in cycle.

See also:

```
add_path, add_star
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12], weight=7)
```

clear

```
DiGraph.clear()
```

Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]
```

Iterating over nodes and edges

DiGraph.nodes([data])	Return a list of the nodes in the graph.	
DiGraph.nodes_iter([data])	Return an iterator over the nodes.	
		Continued on next page

Table 3.6 – continued from previous page

DiGraphiter()	Iterate over the nodes.
DiGraph.edges([nbunch, data, default])	Return a list of edges.
DiGraph.edges_iter([nbunch, data, default])	Return an iterator over the edges.
DiGraph.out_edges([nbunch, data, default])	Return a list of edges.
<pre>DiGraph.out_edges_iter([nbunch, data, default])</pre>	Return an iterator over the edges.
DiGraph.in_edges([nbunch, data])	Return a list of the incoming edges.
DiGraph.in_edges_iter([nbunch, data])	Return an iterator over the incoming edges.
DiGraph.get_edge_data(u, v[, default])	Return the attribute dictionary associated with edge (u,v).
DiGraph.neighbors(n)	Return a list of successor nodes of n.
DiGraph.neighbors_iter(n)	Return an iterator over successor nodes of n.
DiGraphgetitem(n)	Return a dict of neighbors of node n.
DiGraph.successors(n)	Return a list of successor nodes of n.
DiGraph.successors_iter(n)	Return an iterator over successor nodes of n.
DiGraph.predecessors(n)	Return a list of predecessor nodes of n.
DiGraph.predecessors_iter(n)	Return an iterator over predecessor nodes of n.
DiGraph.adjacency_list()	Return an adjacency list representation of the graph.
DiGraph.adjacency_iter()	Return an iterator of (node, adjacency dict) tuples for all nodes.
DiGraph.nbunch_iter([nbunch])	Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

DiGraph.nodes (data=False)

Return a list of the nodes in the graph.

Parameters data: boolean, optional (default=False)

If False return a list of nodes. If True return a two-tuple of node and node data dictionary

Returns nlist: list

A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]
```

nodes_iter

DiGraph.nodes_iter(data=False)

Return an iterator over the nodes.

Parameters data: boolean, optional (default=False)

If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary

Returns niter: iterator

An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression 'for n in G'.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]
```

__iter__

```
DiGraph.__iter__()
```

Iterate over the nodes. Use the expression 'for n in G'.

Returns niter: iterator

An iterator over all nodes in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
```

edges

DiGraph.edges (nbunch=None, data=False, default=None)

Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: bool, optional (default=False)

Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

Returns edge_list: list of edge tuples

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

edges_iter

DiGraph.edges_iter(nbunch=None, data=False, default=None)

Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: string or bool, optional (default=False)

The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v).

default: value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter: iterator

An iterator of (u,v) or (u,v,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

```
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

out edges

DiGraph.out_edges (nbunch=None, data=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: bool, optional (default=False)

Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

Returns edge_list: list of edge tuples

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
```

```
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

out edges iter

DiGraph.out_edges_iter(nbunch=None, data=False, default=None)

Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: string or bool, optional (default=False)

The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v).

default: value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter: iterator

An iterator of (u,v) or (u,v,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

in edges DiGraph.in_edges (nbunch=None, data=False) Return a list of the incoming edges. See also: edges return a list of edges in_edges_iter DiGraph.in_edges_iter(nbunch=None, data=False) Return an iterator over the incoming edges. **Parameters nbunch**: iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. data: bool, optional (default=False) If True, return edge attribute dict in 3-tuple (u,v,data). Returns in_edge_iter : iterator An iterator of (u,v) or (u,v,d) tuples of incoming edges. See also: edges_iter return an iterator of edges get_edge_data DiGraph.get_edge_data(u, v, default=None) Return the attribute dictionary associated with edge (u,v). Parameters u.v: nodes default: any Python object (default=None) Value to return if the edge (u,v) is not found. Returns edge_dict : dictionary The edge attribute dictionary. **Notes** It is faster to use G[u][v]. >>> G = nx.Graph()# or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3])

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

>>> G[0][1]

{ }

```
>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7
```

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0
```

neighbors

```
DiGraph.neighbors(n)
```

Return a list of successor nodes of n.

neighbors() and successors() are the same function.

neighbors iter

```
DiGraph.neighbors_iter(n)
```

Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

__getitem__

```
DiGraph.__getitem__(n)
```

Return a dict of neighbors of node n. Use the expression 'G[n]'.

Parameters n: node

A node in the graph.

Returns adj_dict : dictionary

The adjacency dictionary for nodes connected to n.

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}
```

successors

```
DiGraph.successors(n)
```

Return a list of successor nodes of n.

neighbors() and successors() are the same function.

successors iter

```
DiGraph.successors_iter(n)
```

Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

predecessors

```
DiGraph.predecessors(n)
```

Return a list of predecessor nodes of n.

predecessors_iter

```
DiGraph.predecessors_iter(n)
```

Return an iterator over predecessor nodes of n.

adjacency_list

```
DiGraph.adjacency_list()
```

Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

```
Returns adj_list: lists of lists
```

The adjacency structure of the graph as a list of lists.

See also:

```
adjacency_iter
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]
```

adjacency iter

DiGraph.adjacency_iter()

Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns adj_iter: iterator

An iterator of (node, adjacency dictionary) for all nodes in the graph.

See also:

```
adjacency_list
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
```

nbunch iter

DiGraph.nbunch_iter(nbunch=None)

Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

Returns niter: iterator

An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Raises NetworkXError

If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:

```
Graph.__iter__
```

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

DiGraph.has_node(n)	Return True if the graph contains the node n.
DiGraphcontains(n)	Return True if n is a node, False otherwise.
DiGraph.has_edge(u,v)	Return True if the edge (u,v) is in the graph.
DiGraph.order()	Return the number of nodes in the graph.
DiGraph.number_of_nodes()	Return the number of nodes in the graph.
DiGraphlen()	Return the number of nodes.
DiGraph.degree([nbunch, weight])	Return the degree of a node or nodes.
DiGraph.degree_iter([nbunch, weight])	Return an iterator for (node, degree).
DiGraph.in_degree([nbunch, weight])	Return the in-degree of a node or nodes.
DiGraph.in_degree_iter([nbunch, weight])	Return an iterator for (node, in-degree).
DiGraph.out_degree([nbunch, weight])	Return the out-degree of a node or nodes.
<pre>DiGraph.out_degree_iter([nbunch, weight])</pre>	Return an iterator for (node, out-degree).
DiGraph.size([weight])	Return the number of edges.
DiGraph.number_of_edges([u,v])	Return the number of edges between two nodes.
DiGraph.nodes_with_selfloops()	Return a list of nodes with self loops.
DiGraph.selfloop_edges([data, default])	Return a list of selfloop edges.
DiGraph.number_of_selfloops()	Return the number of selfloop edges.

has_node

```
DiGraph.has_node(n)
```

Return True if the graph contains the node n.

Parameters n: node

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True
```

It is more readable and simpler to use

```
>>> 0 in G
True
```

__contains__

```
DiGraph.__contains__(n)
```

Return True if n is a node, False otherwise. Use the expression 'n in G'.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True
```

has edge

```
DiGraph.has_edge (u, v)
```

Return True if the edge (u,v) is in the graph.

Parameters u,v: nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.

Returns edge_ind: bool

True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1)  # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e)  # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2])  # e is a 3-tuple (u,v,data_dictionary)
True
```

The following syntax are all equivalent:

```
>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True
```

order

```
DiGraph.order()
```

Return the number of nodes in the graph.

Returns nnodes: int

The number of nodes in the graph.

See also:

```
number_of_nodes, __len__
```

number of nodes

```
DiGraph.number_of_nodes()
```

Return the number of nodes in the graph.

Returns nnodes: int

The number of nodes in the graph.

See also:

```
order, __len__
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3
```

len

```
DiGraph.__len__()
```

Return the number of nodes. Use the expression 'len(G)'.

Returns nnodes: int

The number of nodes in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4
```

degree

```
DiGraph.degree (nbunch=None, weight=None)
```

Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight : string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd: dictionary, or number

A dictionary with nodes as keys and degree as values or a number if a single node is specified.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]
```

degree iter

```
DiGraph.degree_iter(nbunch=None, weight=None)
```

Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight : string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter: an iterator

The iterator returns two-tuples of (node, degree).

See also:

```
degree, in_degree, in_degree_iter, out_degree_iter
```

Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]
```

in_degree

```
DiGraph.in_degree (nbunch=None, weight=None)
```

Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd: dictionary, or number

A dictionary with nodes as keys and in-degree as values or a number if a single node is specified.

See also:

```
degree, out_degree, in_degree_iter
```

Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]
```

in degree iter

```
DiGraph.in_degree_iter(nbunch=None, weight=None)
```

Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight : string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd iter: an iterator

The iterator returns two-tuples of (node, in-degree).

See also:

```
degree, in_degree, out_degree_iter
```

Examples

```
>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.in_degree_iter(0)) # node 0 with degree 0
[(0, 0)]
>>> list(G.in_degree_iter([0,1]))
[(0, 0), (1, 1)]
```

out degree

```
DiGraph.out_degree (nbunch=None, weight=None)
```

Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight : string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd: dictionary, or number

A dictionary with nodes as keys and out-degree as values or a number if a single node is specified.

Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]
```

out degree iter

DiGraph.out_degree_iter(nbunch=None, weight=None)

Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight: string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter: an iterator

The iterator returns two-tuples of (node, out-degree).

See also:

```
degree, in_degree, out_degree, in_degree_iter
```

```
>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]
```

size

DiGraph.size(weight=None)

Return the number of edges.

Parameters weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns nedges: int

The number of edges or sum of edge weights in the graph.

See also:

```
number_of_edges
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
```

number of edges

```
DiGraph.number_of_edges(u=None, v=None)
```

Return the number of edges between two nodes.

Parameters u,v: nodes, optional (default=all edges)

If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.

Returns nedges: int

The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

See also:

size

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
```

nodes with selfloops

```
DiGraph.nodes_with_selfloops()
```

Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist: list

A list of nodes with self loops.

See also:

```
selfloop_edges, number_of_selfloops
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]
```

selfloop_edges

```
DiGraph.selfloop_edges(data=False, default=None)
```

Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters data: string or bool, optional (default=False)

Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname')

default: value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns edgelist: list of edge tuples

A list of all selfloop edges.

See also:

```
nodes_with_selfloops, number_of_selfloops
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
```

number_of_selfloops

```
DiGraph.number_of_selfloops()
```

Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

Returns nloops: int

The number of selfloops.

See also:

```
nodes_with_selfloops, selfloop_edges
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1
```

Making copies and subgraphs

DiGraph.copy()	Return a copy of the graph.
DiGraph.to_undirected([reciprocal])	Return an undirected representation of the digraph.
DiGraph.to_directed()	Return a directed copy of the graph.
DiGraph.subgraph(nbunch)	Return the subgraph induced on nodes in nbunch.
DiGraph.reverse([copy])	Return the reverse of the graph.

сору

```
DiGraph.copy()
```

Return a copy of the graph.

Returns G: Graph

A copy of the graph.

See also:

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()
```

to undirected

```
DiGraph.to_undirected(reciprocal=False)
```

Return an undirected representation of the digraph.

Parameters reciprocal: bool (optional)

If True only keep edges that appear in both directions in the original digraph.

Returns G: Graph

An undirected graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired.

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method.

to_directed

```
DiGraph.to_directed()
```

Return a directed copy of the graph.

Returns G: DiGraph

A deepcopy of the graph.

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
```

If already directed, return a (deep) copy

```
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]
```

subgraph

```
DiGraph.subgraph(nbunch)
```

Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch: list, iterable

A container of nodes which will be iterated through once.

Returns G: Graph

A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)])

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]
```

reverse

```
DiGraph.reverse(copy=True)
```

Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.

Parameters copy: bool optional (default=True)

If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph).

3.2.3 MultiGraph - Undirected graphs with self loops and parallel edges

Overview

```
MultiGraph (data=None, **attr)
```

An undirected graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

A MultiGraph holds undirected edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters data: input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also:

```
Graph, DiGraph, MultiDiGraph
```

Examples

Create a multigraph object that tracks the order nodes are added.

```
>>> from collections import OrderedDict
>>> class OrderedGraph(nx.MultiGraph):
... node_dict_factory = OrderedDict
>>> G = OrderedGraph()
```

```
>>> G.add_nodes_from( (2,1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1), (2,1), (1,1)) )
>>> G.edges()
[(2, 1), (2, 1), (2, 2), (1, 1)]
```

Create a multgraph object that tracks the order nodes are added and for each node track the order that neighbors are added and for each neighbor tracks the order that multiedges are added.

Adding and removing nodes and edges

MultiGraphinit([data])	
MultiGraph.add_node(n[, attr_dict])	Add a single node n and update node attributes.
MultiGraph.add_nodes_from(nodes, **attr)	Add multiple nodes.
MultiGraph.remove_node(n)	Remove node n.
MultiGraph.remove_nodes_from(nodes)	Remove multiple nodes.
MultiGraph.add_edge(u, v[, key, attr_dict])	Add an edge between u and v.
MultiGraph.add_edges_from(ebunch[, attr_dict])	Add all the edges in ebunch.
MultiGraph.add_weighted_edges_from(ebunch[,])	Add all the edges in ebunch as weighted edges with specified weig
MultiGraph.remove_edge(u,v[,key])	Remove an edge between u and v.
MultiGraph.remove_edges_from(ebunch)	Remove all edges specified in ebunch.
MultiGraph.add_star(nodes, **attr)	Add a star.
MultiGraph.add_path(nodes, **attr)	Add a path.
MultiGraph.add_cycle(nodes, **attr)	Add a cycle.
MultiGraph.clear()	Remove all nodes and edges from the graph.

```
__init__

MultiGraph.__init__ (data=None, **attr)

add_node

MultiGraph.add_node (n, attr_dict=None, **attr)

Add a single node n and update node attributes.

Parameters n: node
```

A node can be any hashable Python object except None.

attr_dict : dictionary, optional (default= no attributes)

Dictionary of node attributes. Key/value pairs will update existing data associated with the node.

attr: keyword arguments, optional

Set or change attributes using key=value.

See also:

```
add_nodes_from
```

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:

```
>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))
```

add nodes from

```
MultiGraph.add_nodes_from(nodes, **attr)
Add multiple nodes.
```

Parameters nodes: iterable container

A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.

attr : keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

```
add_node
```

Examples

```
>>> G = nx.Graph()
                    # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(), key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
Use keywords to update specific node attributes for every node.
>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)
Use (node, attrdict) tuples to update attributes for specific nodes.
>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
```

remove_node

11

```
MultiGraph.remove_node(n)
```

>>> H.node[1]['size']

Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n: node

A node in the graph

Raises NetworkXError

If n is not in the graph.

See also:

```
remove_nodes_from
```

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]
```

remove nodes from

```
MultiGraph.remove_nodes_from(nodes)
```

Remove multiple nodes.

Parameters nodes: iterable container

A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

```
remove node
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]
```

add_edge

```
MultiGraph.add_edge (u, v, key=None, attr_dict=None, **attr)
Add an edge between u and v.
```

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters u,v: nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.

key: hashable identifier, optional (default=lowest unused integer)

Used to distinguish multiedges between a pair of nodes.

```
attr_dict : dictionary, optional (default= no attributes)
```

Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.

attr: keyword arguments, optional

Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

```
add_edges_from add a collection of edges
```

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute 'weight' to enable weighted graph algorithms.

The following all add the edge e=(1,2) to graph G:

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container
```

Associate data to edges using keywords:

```
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add edges from

```
MultiGraph.add_edges_from(ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.
```

Parameters ebunch: container of edges

Each edge given in the container will be added to the graph. The edges can be:

- 2-tuples (u,v) or
- 3-tuples (u,v,d) for an edge attribute dict d, or
- 4-tuples (u,v,k,d) for an edge identified by key k

attr dict: dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.

attr: keyword arguments, optional

Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

```
add_edge add a single edge
add_weighted_edges_from convenient way to add weighted edges
```

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
```

Associate data to edges

```
>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
```

add_weighted_edges_from

MultiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)

Add all the edges in ebunch as weighted edges with specified weights.

Parameters ebunch: container of edges

Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

weight: string, optional (default= 'weight')

The attribute name for the edge weights to be added.

attr: keyword arguments, optional (default= no attributes)

Edge attributes to add/update for all edges.

See also:

```
add_edge add a single edge
add_edges_from add multiple edges
```

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
```

remove_edge

```
MultiGraph.remove_edge(u, v, key=None)
```

Remove an edge between u and v.

Parameters u,v: nodes

Remove an edge between nodes u and v.

key: hashable identifier, optional (default=None)

Used to distinguish multiple edges between a pair of nodes. If None remove a single (abritrary) edge between u and v.

Raises NetworkXError

If there is not an edge between u and v, or if there is no edge with the specified key.

See also:

remove_edges_from remove a collection of edges

Examples

```
>>> G = nx.MultiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
For multiple edges
                         # or MultiDiGraph, etc
>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2) # remove a single (arbitrary) edge
For edges with keys
>>> G = nx.MultiGraph()
                         # or MultiDiGraph, etc
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key='second')
>>> G.remove_edge(1,2,key='second')
```

remove edges from

```
MultiGraph.remove_edges_from(ebunch)
```

Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples

Each edge given in the list or container will be removed from the graph. The edges can be:

- 2-tuples (u,v) All edges between u and v are removed.
- 3-tuples (u,v,key) The edge identified by key is removed.
- 4-tuples (u,v,key,data) where data is ignored.

See also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)
```

Removing multiple copies of edges

```
>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> G.edges() # now empty graph
[]
```

add_star

```
{\tt MultiGraph.add\_star} \ (nodes,\ **attr)
```

Add a star.

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters nodes: iterable container

A container of nodes.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to every edge in star.

See also:

```
add_path, add_cycle
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)
```

add_path

```
MultiGraph.add_path (nodes, **attr)
Add a path.
```

Parameters nodes: iterable container

A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to every edge in path.

See also:

```
add_star,add_cycle
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12], weight=7)
```

add_cycle

```
MultiGraph.add_cycle (nodes, **attr) Add a cycle.
```

Parameters nodes: iterable container

A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to every edge in cycle.

See also:

```
add_path, add_star
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12], weight=7)
```

clear

```
MultiGraph.clear()
```

Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]
```

Iterating over nodes and edges

MultiGraph.nodes([data])	Return a list of the nodes in the graph.
MultiGraph.nodes_iter([data])	Return an iterator over the nodes.
MultiGraphiter()	Iterate over the nodes.
MultiGraph.edges([nbunch, data, keys, default])	Return a list of edges.
MultiGraph.edges_iter([nbunch, data, keys,])	Return an iterator over the edges.
MultiGraph.get_edge_data(u, v[, key, default])	Return the attribute dictionary associated with edge (u,v).
MultiGraph.neighbors(n)	Return a list of the nodes connected to the node n.
MultiGraph.neighbors_iter(n)	Return an iterator over all neighbors of node n.
	Continued on next page

Table 3.10 – continued from previous page

MultiGraphgetitem(n)	Return a dict of neighbors of node n.
MultiGraph.adjacency_list()	Return an adjacency list representation of the graph.
MultiGraph.adjacency_iter()	Return an iterator of (node, adjacency dict) tuples for all nodes.
MultiGraph.nbunch_iter([nbunch])	Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

MultiGraph.nodes (data=False)

Return a list of the nodes in the graph.

Parameters data: boolean, optional (default=False)

If False return a list of nodes. If True return a two-tuple of node and node data dictionary

Returns nlist: list

A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]
```

nodes iter

MultiGraph.nodes_iter(data=False)

Return an iterator over the nodes.

Parameters data: boolean, optional (default=False)

If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary

Returns niter: iterator

An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression 'for n in G'.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

__iter__

MultiGraph.__iter__()
Iterate over the nodes. Use the expression 'for n in G'.
```

Returns niter: iterator

An iterator over all nodes in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
```

edges

MultiGraph.edges (nbunch=None, data=False, keys=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: bool, optional (default=False)

Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

keys: bool, optional (default=False)

Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

Returns edge_list: list of edge tuples

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

```
>>> G = nx.MultiGraph()
                         # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True, keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

edges_iter

MultiGraph.edges_iter (nbunch=None, data=False, keys=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: string or bool, optional (default=False)

The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v).

default: value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

keys: bool, optional (default=False)

If True, return edge keys with each edge.

Returns edge iter: iterator

An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

```
>>> G = nx.MultiGraph()
                          # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True, keys=True))  # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

get edge data

MultiGraph.get_edge_data (u, v, key=None, default=None)Return the attribute dictionary associated with edge (u,v).

Parameters u,v: nodes

default: any Python object (default=None)

Value to return if the edge (u,v) is not found.

key: hashable identifier, optional (default=None)

Return data only for the edge with specified key.

Returns edge_dict : dictionary

The edge attribute dictionary.

Notes

It is faster to use G[u][v][key].

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key='a',weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7}
```

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

```
>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10
```

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0
```

neighbors

MultiGraph.neighbors(n)

Return a list of the nodes connected to the node n.

Parameters n: node

A node in the graph

Returns nlist: list

A list of nodes that are adjacent to n.

Raises NetworkXError

If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G[n]:

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors(0)
[1]
```

neighbors iter

```
MultiGraph.neighbors_iter(n)
```

Return an iterator over all neighbors of node n.

Notes

It is faster to use the idiom "in G[0]", e.g.

```
>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]
```

__getitem__

```
MultiGraph.__getitem__(n)
```

Return a dict of neighbors of node n. Use the expression 'G[n]'.

Parameters n: node

A node in the graph.

Returns adj_dict: dictionary

The adjacency dictionary for nodes connected to n.

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}
```

adjacency_list

```
MultiGraph.adjacency_list()
```

Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns adj_list : lists of lists

The adjacency structure of the graph as a list of lists.

See also:

```
adjacency_iter
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]
```

adjacency iter

```
MultiGraph.adjacency_iter()
```

Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns adj_iter: iterator

An iterator of (node, adjacency dictionary) for all nodes in the graph.

See also:

```
adjacency list
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
```

nbunch iter

```
MultiGraph.nbunch_iter(nbunch=None)
```

Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

Returns niter: iterator

An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Raises NetworkXError

If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:

```
Graph.__iter__
```

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

MultiGraph.has_node(n)	Return True if the graph contains the node n.	
MultiGraphcontains(n)	Return True if n is a node, False otherwise.	
MultiGraph.has_edge(u, v[, key])	Return True if the graph has an edge between nodes u and v.	
MultiGraph.order()	Return the number of nodes in the graph.	
MultiGraph.number_of_nodes()	Return the number of nodes in the graph.	
MultiGraphlen()	Return the number of nodes.	
MultiGraph.degree([nbunch, weight])	Return the degree of a node or nodes.	
MultiGraph.degree_iter([nbunch, weight])	Return an iterator for (node, degree).	
MultiGraph.size([weight])	Return the number of edges.	
MultiGraph.number_of_edges([u, v])	Return the number of edges between two nodes.	
MultiGraph.nodes_with_selfloops()	Return a list of nodes with self loops.	
MultiGraph.selfloop_edges([data, keys, default])	Return a list of selfloop edges.	
MultiGraph.number_of_selfloops()	Return the number of selfloop edges.	

has_node

```
MultiGraph.has_node(n)
```

Return True if the graph contains the node n.

Parameters n: node

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True
```

It is more readable and simpler to use

```
>>> 0 in G
True
```

__contains__

```
MultiGraph.__contains__(n)
```

Return True if n is a node, False otherwise. Use the expression 'n in G'.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True
```

has edge

```
MultiGraph.has_edge (u, v, key=None)
```

Return True if the graph has an edge between nodes u and v.

Parameters u,v: nodes

Nodes can be, for example, strings or numbers.

key: hashable identifier, optional (default=None)

If specified return True only if the edge with key is found.

Returns edge ind: bool

True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

```
>>> G = nx.MultiGraph()  # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1)  # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e)  # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a')  # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e)  # e is a 3-tuple (u,v,'a')
True
```

The following syntax are equivalent:

```
>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True
```

order

```
MultiGraph.order()
```

Return the number of nodes in the graph.

Returns nnodes: int

The number of nodes in the graph.

See also:

```
number_of_nodes, __len__
```

number of nodes

```
MultiGraph.number_of_nodes()
```

Return the number of nodes in the graph.

Returns nnodes: int

The number of nodes in the graph.

See also:

```
order, __len__
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3
```

__len__

```
MultiGraph.__len__()
```

Return the number of nodes. Use the expression 'len(G)'.

Returns nnodes: int

The number of nodes in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4
```

degree

MultiGraph.degree(nbunch=None, weight=None)

Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight: string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd: dictionary, or number

A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]
```

degree iter

```
MultiGraph.degree_iter(nbunch=None, weight=None)
```

Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight: string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter: an iterator

The iterator returns two-tuples of (node, degree).

See also:

degree

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]
```

size

```
MultiGraph.size(weight=None)
```

Return the number of edges.

Parameters weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns nedges: int

The number of edges or sum of edge weights in the graph.

See also:

```
number_of_edges
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
```

number of edges

```
MultiGraph.number_of_edges(u=None, v=None)
```

Return the number of edges between two nodes.

Parameters u,v: nodes, optional (default=all edges)

If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.

Returns nedges: int

The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

See also:

size

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
```

nodes with selfloops

```
MultiGraph.nodes_with_selfloops()
```

Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist: list

A list of nodes with self loops.

See also:

```
selfloop_edges, number_of_selfloops
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]
```

selfloop_edges

MultiGraph.selfloop_edges(data=False, keys=False, default=None)

Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters data: bool, optional (default=False)

Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname')

default : value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

keys: bool, optional (default=False)

If True, return edge keys with each edge.

Returns edgelist: list of edge tuples

A list of all selfloop edges.

See also:

```
nodes_with_selfloops, number_of_selfloops
```

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
```

```
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]
```

number of selfloops

```
MultiGraph.number_of_selfloops()
```

Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

Returns nloops: int

The number of selfloops.

See also:

```
nodes_with_selfloops, selfloop_edges
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1
```

Making copies and subgraphs

MultiGraph.copy()	Return a copy of the graph.
MultiGraph.to_undirected()	Return an undirected copy of the graph.
MultiGraph.to_directed()	Return a directed representation of the graph.
MultiGraph.subgraph(nbunch)	Return the subgraph induced on nodes in nbunch.

сору

```
MultiGraph.copy()
```

Return a copy of the graph.

Returns G: Graph

A copy of the graph.

See also:

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()
```

to_undirected

```
MultiGraph.to_undirected()
```

Return an undirected copy of the graph.

Returns G: Graph/MultiGraph

A deepcopy of the graph.

See also:

```
copy, add_edge, add_edges_from
```

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]
```

to_directed

```
MultiGraph.to_directed()
```

Return a directed representation of the graph.

Returns G: MultiDiGraph

A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u,v,data) and (v,u,data).

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
```

subgraph

```
MultiGraph.subgraph(nbunch)
```

>>> H = G.to_directed()

>>> H.edges()
[(0, 1)]

Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch: list, iterable

A container of nodes which will be iterated through once.

Returns G: Graph

A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)])

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]
```

3.2.4 MultiDiGraph - Directed graphs with self loops and parallel edges

Overview

```
MultiDiGraph (data=None, **attr)
```

A directed graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

A MultiDiGraph holds directed edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters data: input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See also:

```
Graph, DiGraph, MultiGraph
```

Examples

Create a multigraph object that tracks the order nodes are added.

```
>>> from collections import OrderedDict
>>> class OrderedGraph(nx.MultiDiGraph):
... node_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 1), (2, 2), (1, 1)]
```

Create a multdigraph object that tracks the order nodes are added and for each node track the order that neighbors are added and for each neighbor tracks the order that multiedges are added.

Adding and Removing Nodes and Edges

MultiDiGraphinit([data])	
MultiDiGraph.add_node(n[, attr_dict])	Add a single node n and update node attributes.
MultiDiGraph.add_nodes_from(nodes, **attr)	Add multiple nodes.
MultiDiGraph.remove_node(n)	Remove node n.
MultiDiGraph.remove_nodes_from(nbunch)	Remove multiple nodes.
MultiDiGraph.add_edge(u, v[, key, attr_dict])	Add an edge between u and v.
MultiDiGraph.add_edges_from(ebunch[, attr_dict])	Add all the edges in ebunch.
MultiDiGraph.add_weighted_edges_from(ebunch)	Add all the edges in ebunch as weighted edges with specified weight
$ ext{MultiDiGraph.remove_edge}(u, v[, key])$	Remove an edge between u and v.
MultiDiGraph.remove_edges_from(ebunch)	Remove all edges specified in ebunch.
MultiDiGraph.add_star(nodes, **attr)	Add a star.
MultiDiGraph.add_path(nodes, **attr)	Add a path.
MultiDiGraph.add_cycle(nodes, **attr)	Add a cycle.
MultiDiGraph.clear()	Remove all nodes and edges from the graph.

__init__

MultiDiGraph. init (data=None, **attr)

add_node

MultiDiGraph.add_node (n, attr_dict=None, **attr)

Add a single node n and update node attributes.

Parameters n: node

A node can be any hashable Python object except None.

attr_dict : dictionary, optional (default= no attributes)

Dictionary of node attributes. Key/value pairs will update existing data associated with the node.

attr: keyword arguments, optional

Set or change attributes using key=value.

See also:

 add_nodes_from

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:

```
>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))
```

add nodes from

```
MultiDiGraph.add_nodes_from(nodes, **attr)
Add multiple nodes.
```

Parameters nodes: iterable container

A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.

attr: keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

```
add node
```

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
```

Use keywords to update specific node attributes for every node.

```
>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)
```

Use (node, attrdict) tuples to update attributes for specific nodes.

```
>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11
```

remove_node

```
MultiDiGraph.remove_node(n)
```

Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n: node

A node in the graph

Raises NetworkXError

If n is not in the graph.

See also:

```
remove_nodes_from
```

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]
```

remove_nodes_from

```
MultiDiGraph.remove_nodes_from(nbunch)
```

Remove multiple nodes.

Parameters nodes: iterable container

A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

```
remove_node
```

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]
```

add_edge

```
MultiDiGraph.add_edge (u, v, key=None, attr_dict=None, **attr)
Add an edge between u and v.
```

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters u,v: nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.

key: hashable identifier, optional (default=lowest unused integer)

Used to distinguish multiedges between a pair of nodes.

```
attr_dict : dictionary, optional (default= no attributes)
```

Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.

attr: keyword arguments, optional

Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

```
add_edges_from add a collection of edges
```

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute 'weight' to enable weighted graph algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

```
>>> G = nx.MultiDiGraph()
>>> e = (1,2)
>>> G.add_edge(1, 2)  # explicit two-node form
>>> G.add_edge(*e)  # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container
```

Associate data to edges using keywords:

```
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add edges from

```
MultiDiGraph.add_edges_from(ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.
```

Parameters ebunch: container of edges

Each edge given in the container will be added to the graph. The edges can be:

- 2-tuples (u,v) or
- 3-tuples (u,v,d) for an edge attribute dict d, or
- 4-tuples (u,v,k,d) for an edge identified by key k

attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.

attr: keyword arguments, optional

Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

```
add_edge add a single edge
add_weighted_edges_from convenient way to add weighted edges
```

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
```

Associate data to edges

```
>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
```

add weighted edges from

MultiDiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)

Add all the edges in ebunch as weighted edges with specified weights.

Parameters ebunch: container of edges

Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

```
weight: string, optional (default= 'weight')
```

The attribute name for the edge weights to be added.

attr: keyword arguments, optional (default= no attributes)

Edge attributes to add/update for all edges.

See also:

```
add_edge add a single edge
add_edges_from add multiple edges
```

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
```

remove edge

```
MultiDiGraph.remove edge (u, v, key=None)
```

Remove an edge between u and v.

Parameters u,v: nodes

Remove an edge between nodes u and v.

key: hashable identifier, optional (default=None)

Used to distinguish multiple edges between a pair of nodes. If None remove a single (abritrary) edge between u and v.

Raises NetworkXError

If there is not an edge between u and v, or if there is no edge with the specified key.

See also:

remove_edges_from remove a collection of edges

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple

For multiple edges
>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2) # remove a single (arbitrary) edge

For edges with keys
>>> G = nx.MultiDiGraph()
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key='second')
>>> G.remove_edge(1,2,key='second')
```

remove edges from

```
MultiDiGraph.remove_edges_from(ebunch)
```

Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples

Each edge given in the list or container will be removed from the graph. The edges can be:

- 2-tuples (u,v) All edges between u and v are removed.
- 3-tuples (u,v,key) The edge identified by key is removed.
- 4-tuples (u,v,key,data) where data is ignored.

See also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)
```

Removing multiple copies of edges

```
>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> G.edges() # now empty graph
[]
```

add_star

```
MultiDiGraph.add_star(nodes, **attr)
Add a star.
```

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters nodes: iterable container

A container of nodes.

attr : keyword arguments, optional (default= no attributes)

Attributes to add to every edge in star.

See also:

```
add_path, add_cycle
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)
```

add_path

```
MultiDiGraph.add_path (nodes, **attr)
Add a path.
```

Parameters nodes: iterable container

A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to every edge in path.

See also:

```
add_star,add_cycle
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12], weight=7)
```

add cycle

```
MultiDiGraph.add_cycle (nodes, **attr) Add a cycle.
```

Parameters nodes: iterable container

A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.

attr: keyword arguments, optional (default= no attributes)

Attributes to add to every edge in cycle.

See also:

```
add_path, add_star
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12], weight=7)
```

clear

```
MultiDiGraph.clear()
```

Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]
```

Iterating over nodes and edges

MultiDiGraph.nodes([data])	Return a list of the nodes in the graph.
MultiDiGraph.nodes_iter([data])	Return an iterator over the nodes.
MultiDiGraphiter()	Iterate over the nodes.
MultiDiGraph.edges([nbunch, data, keys, default])	Return a list of edges.
MultiDiGraph.edges_iter([nbunch, data,])	Return an iterator over the edges.
MultiDiGraph.out_edges([nbunch, keys, data])	Return a list of the outgoing edges.
MultiDiGraph.out_edges_iter([nbunch, data,])	Return an iterator over the edges.
MultiDiGraph.in_edges([nbunch, keys, data])	Return a list of the incoming edges.
	Continued on next pa

Table 3.14 – continued from previous page

MultiDiGraph.in_edges_iter([nbunch, data, keys]) Return an iterator over the	Return an iterator over the incoming edges.	
MultiDiGraph.get_edge_data(u, v[, key, default]) Return the attribute diction	Return the attribute dictionary associated with edge (u,v).	
MultiDiGraph.neighbors(n) Return a list of successor r	Return a list of successor nodes of n.	
MultiDiGraph.neighbors_iter(n) Return an iterator over suc	ccessor nodes of n.	
MultiDiGraphgetitem(n) Return a dict of neighbors	of node n.	
MultiDiGraph.successors(n) Return a list of successor r	nodes of n.	
MultiDiGraph.successors_iter(n) Return an iterator over suc	Return an iterator over successor nodes of n.	
MultiDiGraph.predecessors(n) Return a list of predecesso	or nodes of n.	
MultiDiGraph.predecessors_iter(n) Return an iterator over pre		
MultiDiGraph.adjacency_list() Return an adjacency list re	Return an adjacency list representation of the graph.	
MultiDiGraph.adjacency_iter() Return an iterator of (node	Return an iterator of (node, adjacency dict) tuples for all nodes.	
MultiDiGraph.nbunch_iter([nbunch]) Return an iterator of nodes	s contained in nbunch that are also in the gra	

nodes

MultiDiGraph.nodes (data=False)

Return a list of the nodes in the graph.

Parameters data: boolean, optional (default=False)

If False return a list of nodes. If True return a two-tuple of node and node data dictionary

Returns nlist: list

A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]
```

nodes iter

MultiDiGraph.nodes_iter(data=False)

Return an iterator over the nodes.

Parameters data: boolean, optional (default=False)

If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary

Returns niter: iterator

An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression 'for n in G'.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

_iter__
```

MultiDiGraph.__iter__()

Iterate over the nodes. Use the expression 'for n in G'.

Returns niter: iterator

An iterator over all nodes in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
```

edges

MultiDiGraph.edges (nbunch=None, data=False, keys=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: bool, optional (default=False)

Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

keys: bool, optional (default=False)

Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

Returns edge_list: list of edge tuples

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True, keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

edges_iter

MultiDiGraph.edges_iter (nbunch=None, data=False, keys=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: string or bool, optional (default=False)

The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v).

keys: bool, optional (default=False)

If True, return edge keys with each edge.

default: value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns edge iter: iterator

An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, \{\}), (1, 2, \{\}), (2, 3, \{'weight': 5\})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True, keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

out_edges

MultiDiGraph.out_edges (nbunch=None, keys=False, data=False)

Return a list of the outgoing edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: bool, optional (default=False)

If True, return edge attribute dict with each edge.

keys: bool, optional (default=False)

If True, return edge keys with each edge.

Returns out_edges: list

An listr of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

See also:

in edges return a list of incoming edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs edges() is the same as out_edges().

out edges iter

MultiDiGraph.out_edges_iter (nbunch=None, data=False, keys=False, default=None) Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters nbunch: iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.

data: string or bool, optional (default=False)

The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v).

keys: bool, optional (default=False)

If True, return edge keys with each edge.

default: value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter : iterator

An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True, keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

in edges

MultiDiGraph.in_edges (nbunch=None, keys=False, data=False) Return a list of the incoming edges. **Parameters nbunch**: iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. data: bool, optional (default=False) If True, return edge attribute dict with each edge. keys: bool, optional (default=False) If True, return edge keys with each edge. Returns in edges: list A list of (u,v), (u,v,d) or (u,v,key,d) tuples of edges. See also: out_edges return a list of outgoing edges in edges iter MultiDiGraph.in_edges_iter(nbunch=None, data=False, keys=False) Return an iterator over the incoming edges. **Parameters nbunch**: iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. data: bool, optional (default=False) If True, return edge attribute dict with each edge. **keys**: bool, optional (default=False) If True, return edge keys with each edge. Returns in_edge_iter : iterator An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges. See also: edges_iter return an iterator of edges get edge data MultiDiGraph.get_edge_data(u, v, key=None, default=None) Return the attribute dictionary associated with edge (u,v). Parameters u,v: nodes **default:** any Python object (default=None) Value to return if the edge (u,v) is not found. key: hashable identifier, optional (default=None)

Return data only for the edge with specified key.

Returns edge_dict : dictionary

The edge attribute dictionary.

Notes

It is faster to use G[u][v][key].

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key='a',weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7}
```

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

```
>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10
```

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0
```

neighbors

```
MultiDiGraph.neighbors(n)
```

Return a list of successor nodes of n.

neighbors() and successors() are the same function.

neighbors iter

```
MultiDiGraph.neighbors_iter(n)
```

Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

```
getitem
MultiDiGraph.__getitem__(n)
     Return a dict of neighbors of node n. Use the expression 'G[n]'.
          Parameters n: node
                  A node in the graph.
          Returns adj_dict : dictionary
                  The adjacency dictionary for nodes connected to n.
     Notes
     G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.
     Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.
     Examples
     >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
     >>> G.add_path([0,1,2,3])
     >>> G[0]
      {1: {}}
successors
MultiDiGraph.successors(n)
     Return a list of successor nodes of n.
     neighbors() and successors() are the same function.
successors_iter
MultiDiGraph.successors_iter(n)
     Return an iterator over successor nodes of n.
     neighbors iter() and successors iter() are the same.
predecessors
MultiDiGraph.predecessors(n)
     Return a list of predecessor nodes of n.
predecessors_iter
```

MultiDiGraph.predecessors_iter(n)

Return an iterator over predecessor nodes of n.

adjacency list

```
MultiDiGraph.adjacency_list()
```

Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns adj list: lists of lists

The adjacency structure of the graph as a list of lists.

See also:

```
adjacency_iter
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]
```

adjacency_iter

```
MultiDiGraph.adjacency_iter()
```

Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns adj_iter: iterator

An iterator of (node, adjacency dictionary) for all nodes in the graph.

See also:

```
adjacency_list
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
```

nbunch iter

```
MultiDiGraph.nbunch_iter(nbunch=None)
```

Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

Returns niter: iterator

An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Raises NetworkXError

If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:

```
Graph.__iter__
```

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

MultiDiGraph.has_node(n)	Return True if the graph contains the node n.
MultiDiGraphcontains(n)	Return True if n is a node, False otherwise.
MultiDiGraph.has_edge(u, v[, key])	Return True if the graph has an edge between nodes u and v.
MultiDiGraph.order()	Return the number of nodes in the graph.
MultiDiGraph.number_of_nodes()	Return the number of nodes in the graph.
MultiDiGraphlen()	Return the number of nodes.
MultiDiGraph.degree([nbunch, weight])	Return the degree of a node or nodes.
MultiDiGraph.degree_iter([nbunch, weight])	Return an iterator for (node, degree).
MultiDiGraph.in_degree([nbunch, weight])	Return the in-degree of a node or nodes.
<pre>MultiDiGraph.in_degree_iter([nbunch, weight])</pre>	Return an iterator for (node, in-degree).
MultiDiGraph.out_degree([nbunch, weight])	Return the out-degree of a node or nodes.
<pre>MultiDiGraph.out_degree_iter([nbunch, weight])</pre>	Return an iterator for (node, out-degree).
MultiDiGraph.size([weight])	Return the number of edges.
$ exttt{MultiDiGraph.number_of_edges}([u,v])$	Return the number of edges between two nodes.
MultiDiGraph.nodes_with_selfloops()	Return a list of nodes with self loops.
MultiDiGraph.selfloop_edges([data, keys,])	Return a list of selfloop edges.
MultiDiGraph.number_of_selfloops()	Return the number of selfloop edges.

has_node

```
MultiDiGraph.has_node(n)
```

Return True if the graph contains the node n.

Parameters n: node

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

```
>>> G.has_node(0)
True
```

It is more readable and simpler to use

```
>>> 0 in G
True
```

contains

```
MultiDiGraph.__contains__(n)
```

Return True if n is a node, False otherwise. Use the expression 'n in G'.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True
```

has_edge

```
MultiDiGraph.has edge (u, v, key=None)
```

Return True if the graph has an edge between nodes u and v.

Parameters u,v: nodes

Nodes can be, for example, strings or numbers.

key: hashable identifier, optional (default=None)

If specified return True only if the edge with key is found.

Returns edge_ind: bool

True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

```
>>> G = nx.MultiGraph()  # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1)  # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e)  # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a')  # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e)  # e is a 3-tuple (u,v,'a')
True
```

The following syntax are equivalent:

```
>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True
```

order

```
MultiDiGraph.order()
```

Return the number of nodes in the graph.

Returns nnodes: int

The number of nodes in the graph.

See also:

```
number_of_nodes, __len__
```

number_of_nodes

```
MultiDiGraph.number_of_nodes()
```

Return the number of nodes in the graph.

Returns nnodes: int

The number of nodes in the graph.

See also:

```
order, __len__
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3
```

__len__

```
MultiDiGraph.__len__()
```

Return the number of nodes. Use the expression 'len(G)'.

Returns nnodes: int

The number of nodes in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4
```

degree

```
MultiDiGraph.degree (nbunch=None, weight=None)
```

Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight : string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd: dictionary, or number

A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]
```

degree_iter

```
MultiDiGraph.degree_iter (nbunch=None, weight=None)
```

Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight: string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights.

Returns nd_iter: an iterator

The iterator returns two-tuples of (node, degree).

See also:

degree

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]
```

in degree

MultiDiGraph.in_degree (nbunch=None, weight=None)

Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd: dictionary, or number

A dictionary with nodes as keys and in-degree as values or a number if a single node is specified.

See also:

```
degree, out degree, in degree iter
```

Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]
```

in_degree_iter

```
MultiDiGraph.in_degree_iter(nbunch=None, weight=None)
```

Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

weight : string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter: an iterator

The iterator returns two-tuples of (node, in-degree).

See also:

```
degree, in_degree, out_degree_iter
```

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.in_degree_iter(0)) # node 0 with degree 0
[(0, 0)]
>>> list(G.in_degree_iter([0,1]))
[(0, 0), (1, 1)]
```

out degree

MultiDiGraph.out_degree (nbunch=None, weight=None)

Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight : string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd: dictionary, or number

A dictionary with nodes as keys and out-degree as values or a number if a single node is specified.

Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]
```

out_degree_iter

```
MultiDiGraph.out_degree_iter (nbunch=None, weight=None)
Return an iterator for (node, out-degree).
```

The node out-degree is the number of edges pointing out of the node.

Parameters nbunch: iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

```
weight: string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights.

Returns nd_iter: an iterator

The iterator returns two-tuples of (node, out-degree).

See also:

```
degree, in_degree, out_degree, in_degree_iter
```

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]
```

size

MultiDiGraph.size(weight=None)

Return the number of edges.

Parameters weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns nedges: int

The number of edges or sum of edge weights in the graph.

See also:

```
number_of_edges
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
```

```
>>> G.size(weight='weight')
6.0
```

number_of_edges

```
MultiDiGraph.number of edges (u=None, v=None)
```

Return the number of edges between two nodes.

Parameters u,v: nodes, optional (default=all edges)

If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.

Returns nedges: int

The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

See also:

size

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
```

nodes with selfloops

```
MultiDiGraph.nodes_with_selfloops()
```

Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist: list

A list of nodes with self loops.

See also:

```
selfloop_edges, number_of_selfloops
```

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]
```

selfloop edges

```
MultiDiGraph.selfloop_edges (data=False, keys=False, default=None) Return a list of selfloop edges.
```

A selfloop edge has the same node at both ends.

Parameters data: bool, optional (default=False)

Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname')

default: value, optional (default=None)

Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

keys: bool, optional (default=False)

If True, return edge keys with each edge.

Returns edgelist: list of edge tuples

A list of all selfloop edges.

See also:

```
nodes_with_selfloops, number_of_selfloops
```

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]
```

number_of_selfloops

```
MultiDiGraph.number_of_selfloops()
```

Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

Returns nloops: int

The number of selfloops.

See also:

```
nodes_with_selfloops, selfloop_edges
```

Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1
```

Making copies and subgraphs

MultiDiGraph.copy()	Return a copy of the graph.
MultiDiGraph.to_undirected([reciprocal])	Return an undirected representation of the digraph.
MultiDiGraph.to_directed()	Return a directed copy of the graph.
MultiDiGraph.subgraph(nbunch)	Return the subgraph induced on nodes in nbunch.
MultiDiGraph.reverse([copy])	Return the reverse of the graph.

сору

```
MultiDiGraph.copy()
```

Return a copy of the graph.

Returns G: Graph

A copy of the graph.

See also:

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()
```

to_undirected

MultiDiGraph.to_undirected(reciprocal=False)

Return an undirected representation of the digraph.

Parameters reciprocal: bool (optional)

If True only keep edges that appear in both directions in the original digraph.

Returns G: MultiGraph

An undirected graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired.

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method.

to directed

```
MultiDiGraph.to_directed()
```

Return a directed copy of the graph.

Returns G: MultiDiGraph

A deepcopy of the graph.

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
```

If already directed, return a (deep) copy

```
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1])
>>> H = G.to_directed()
```

```
>>> H.edges()
[(0, 1)]
```

subgraph

```
MultiDiGraph.subgraph(nbunch)
```

Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch: list, iterable

A container of nodes which will be iterated through once.

Returns G: Graph

A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]
```

reverse

```
MultiDiGraph.reverse(copy=True)
```

Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.

Parameters copy: bool optional (default=True)

If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph).

CHAPTER

FOUR

ALGORITHMS

4.1 Approximation

4.1.1 Connectivity

Fast approximation for node connectivity

all_pairs_node_connectivity($G[$, $nbunch$, $cutoff[$)	Compute node connectivity between all pairs of nodes.
$local_node_connectivity(G, source, target[,])$	Compute node connectivity between source and target.
$node_connectivity(G[,s,t])$	Returns an approximation for node connectivity for a graph or digraph

all_pairs_node_connectivity

all pairs node connectivity (G, nbunch=None, cutoff=None)

Compute node connectivity between all pairs of nodes.

Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of nodes that must be removed (minimum separating cutset) to disconnect them. By Menger's theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target). Which is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes [R184]. It works for both directed and undirected graphs.

Parameters G: NetworkX graph

nbunch: container

Container of nodes. If provided node connectivity will be computed only over pairs of nodes in nbunch.

cutoff: integer

Maximum node connectivity to consider. If None, the minimum degree of source or target is used as a cutoff in each pair of nodes. Default value None.

Returns K: dictionary

Dictionary, keyed by source and target, of pairwise node connectivity

See also:

local_node_connectivity, all_pairs_node_connectivity

References

[R184]

local_node_connectivity

local_node_connectivity(G, source, target, cutoff=None)

Compute node connectivity between source and target.

Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of nodes that must be removed (minimum separating cutset) to disconnect them. By Menger's theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target). Which is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes [R185]. It works for both directed and undirected graphs.

Parameters G: NetworkX graph

source: node

Starting node for node connectivity

target: node

Ending node for node connectivity

cutoff: integer

Maximum node connectivity to consider. If None, the minimum degree of source or target is used as a cutoff. Default value None.

Returns k: integer

pairwise node connectivity

See also:

```
all_pairs_node_connectivity, node_connectivity
```

Notes

This algorithm [R185] finds node independents paths between two nodes by computing their shortest path using BFS, marking the nodes of the path found as 'used' and then searching other shortest paths excluding the nodes marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound on node connectivity.

Note that the authors propose a further refinement, losing accuracy and gaining speed, which is not implemented yet.

References

[R185]

Examples

```
>>> # Platonic icosahedral graph has node connectivity 5
>>> # for each non adjacent node pair
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.local_node_connectivity(G, 0, 6)
5
```

node_connectivity

```
node_connectivity(G, s=None, t=None)
```

Returns an approximation for node connectivity for a graph or digraph G.

Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. By Menger's theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target).

If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G.

This algorithm is based on a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes [R186]. It works for both directed and undirected graphs.

Parameters G: NetworkX graph

Undirected graph

s: node

Source node. Optional. Default value: None.

t: node

Target node. Optional. Default value: None.

Returns K: integer

Node connectivity of G, or local node connectivity if source and target are provided.

See also:

```
all_pairs_node_connectivity, local_node_connectivity
```

Notes

This algorithm [R186] finds node independents paths between two nodes by computing their shortest path using BFS, marking the nodes of the path found as 'used' and then searching other shortest paths excluding the nodes marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound on node connectivity.

References

[R186]

Examples

```
>>> # Platonic icosahedral graph is 5-node-connected
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.node_connectivity(G)
5
```

4.1.2 K-components

Fast approximation for k-component structure

k_components(G[, min_density]) Returns the approximate k-component structure of a graph G.

k components

k_components (*G*, *min_density*=0.95)

Returns the approximate k-component structure of a graph G.

A k-component is a maximal subgraph of a graph G that has, at least, node connectivity k: we need to remove at least k nodes to break it into more components. k-components have an inherent hierarchical structure because they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which can contain one or more 3-components, and so forth.

This implementation is based on the fast heuristics to approximate the *k*-component sturcture of a graph [R189]. Which, in turn, it is based on a fast approximation algorithm for finding good lower bounds of the number of node independent paths between two nodes [R190].

```
Parameters G: NetworkX graph
```

Undirected graph

min_density: Float

Density relaxation treshold. Default value 0.95

Returns k_components: dict

Dictionary with connectivity level k as key and a list of sets of nodes that form a k-component of level k as values.

See also:

k_components

Notes

The logic of the approximation algorithm for computing the k-component structure [R189] is based on repeatedly applying simple and fast algorithms for k-cores and biconnected components in order to narrow down the number of pairs of nodes over which we have to compute White and Newman's approximation algorithm for finding node independent paths [R190]. More formally, this algorithm is based on Whitney's theorem, which states an inclusion relation among node connectivity, edge connectivity, and minimum degree for any graph G. This theorem implies that every k-component is nested inside a k-edge-component, which in turn, is contained in a k-core. Thus, this algorithm computes node independent paths among pairs of nodes in each biconnected part of each k-core, and repeats this procedure for each k from 3 to the maximal core number of a node in the input graph.

Because, in practice, many nodes of the core of level k inside a bicomponent actually are part of a component of level k, the auxiliary graph needed for the algorithm is likely to be very dense. Thus, we use a complement graph data structure (see AntiGraph) to save memory. AntiGraph only stores information of the edges that are not present in the actual auxiliary graph. When applying algorithms to this complement graph data structure, it behaves as if it were the dense version.

References

```
[R189], [R190], [R191]
```

Examples

```
>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
>>> from networkx.algorithms import approximation as apxa
>>> G = nx.petersen_graph()
>>> k_components = apxa.k_components(G)
```

4.1.3 Clique

Cliques.

max_clique(G)	Find the Maximum Clique
clique_removal(G)	Repeatedly remove cliques from the graph.

max clique

```
\max_{clique(G)}
```

Find the Maximum Clique

Finds the $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set in the worst case.

Parameters G: NetworkX graph

Undirected graph

Returns clique: set

The apx-maximum clique of the graph

Notes

A clique in an undirected graph G = (V, E) is a subset of the vertex set $C \subseteq V$, such that for every two vertices in C, there exists an edge connecting the two. This is equivalent to saying that the subgraph induced by C is complete (in some cases, the term clique may also refer to the subgraph).

A maximum clique is a clique of the largest possible size in a given graph. The clique number $\omega(G)$ of a graph G is the number of vertices in a maximum clique in G. The intersection number of G is the smallest number of cliques that together cover all edges of G.

http://en.wikipedia.org/wiki/Maximum_clique

References

[R182]

clique_removal

clique_removal(G)

Repeatedly remove cliques from the graph.

Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique & independent set. Returns the largest independent set found, along with found maximal cliques.

Parameters G: NetworkX graph

Undirected graph

Returns max_ind_cliques: (set, list) tuple

Maximal independent set and list of maximal cliques (sets) in the graph.

References

[R181]

4.1.4 Clustering

average_clustering(G[, trials]) Estimates the average clustering coefficient of G.

average_clustering

average clustering(G, trials=1000)

Estimates the average clustering coefficient of G.

The local clustering of each node in G is the fraction of triangles that actually exist over all possible triangles in its neighborhood. The average clustering coefficient of a graph G is the mean of local clusterings.

This function finds an approximate average clustering coefficient for G by repeating n times (defined in trials) the following experiment: choose a node at random, choose two of its neighbors at random, and check if they are connected. The approximate coefficient is the fraction of triangles found over the number of trials [R183].

Parameters G: NetworkX graph

trials: integer

Number of trials to perform (default 1000).

Returns c: float

Approximated average clustering coefficient.

References

[R183]

4.1.5 Dominating Set

Functions for finding node and edge dominating sets.

A 'dominating set'_[1] for an undirected graph *G with vertex set V and edge set E is a subset D of V such that every vertex not in D is adjacent to at least one member of D. An 'edge dominating set'_[2] is a subset *F of E such that every edge not in F is incident to an endpoint of at least one edge in F.

min_weighted_dominating_set(G[, weight]) Returns a dominating set that approximates the minimum weight node domin min_edge_dominating_set(G) Return minimum cardinality edge dominating set.

min_weighted_dominating_set

min_weighted_dominating_set(G, weight=None)

Returns a dominating set that approximates the minimum weight node dominating set.

Parameters G: NetworkX graph

Undirected graph.

weight: string

The node attribute storing the weight of an edge. If provided, the node attribute with this key must be a number for each node. If not provided, each node is assumed to have weight one.

Returns min_weight_dominating_set : set

A set of nodes, the sum of whose weights is no more than $(\log w(V))w(V^*)$, where w(V) denotes the sum of the weights of each node in the graph and $w(V^*)$ denotes the sum of the weights of each node in the minimum weight dominating set.

Notes

This algorithm computes an approximate minimum weighted dominating set for the graph G. The returned solution has weight $(\log w(V))w(V^*)$, where w(V) denotes the sum of the weights of each node in the graph and $w(V^*)$ denotes the sum of the weights of each node in the minimum weight dominating set for the graph.

This implementation of the algorithm runs in O(m) time, where m is the number of edges in the graph.

References

[R187]

min_edge_dominating_set

$min_edge_dominating_set(G)$

Return minimum cardinality edge dominating set.

Parameters G: NetworkX graph

Undirected graph

Returns min_edge_dominating_set : set

Returns a set of dominating edges whose size is no more than 2 * OPT.

4.1. Approximation 129

Notes

The algorithm computes an approximate solution to the edge dominating set problem. The result is no more than 2 * OPT in terms of size of the set. Runtime of the algorithm is O(|E|).

4.1.6 Independent Set

Independent Set

Independent set or stable set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set I of vertices such that for every two vertices in I, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in I. The size of an independent set is the number of vertices it contains.

A maximum independent set is a largest independent set for a given graph G and its size is denoted $\alpha(G)$. The problem of finding such a set is called the maximum independent set problem and is an NP-hard optimization problem. As such, it is unlikely that there exists an efficient algorithm for finding a maximum independent set of a graph.

http://en.wikipedia.org/wiki/Independent_set_(graph_theory)

Independent set algorithm is based on the following paper:

 $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set.

Boppana, R., & Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180–196. Springer. doi:10.1007/BF01994876

 $maximum_independent_set(G)$ Return an approximate maximum independent set.

maximum independent set

maximum independent set(G)

Return an approximate maximum independent set.

Parameters G: NetworkX graph

Undirected graph

Returns iset: Set

The apx-maximum independent set

Notes

Finds the $O(|V|/(loq|V|)^2)$ apx of independent set in the worst case.

References

[R188]

4.1.7 Matching

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex.

http://en.wikipedia.org/wiki/Matching_(graph_theory)

4.1. Approximation 131

 $min_maximal_matching(G)$ Returns the minimum maximal matching of G.

min_maximal_matching

$min_maximal_matching(G)$

Returns the minimum maximal matching of G. That is, out of all maximal matchings of the graph G, the smallest is returned.

Parameters G: NetworkX graph

Undirected graph

Returns min_maximal_matching : set

Returns a set of edges such that no two edges share a common endpoint and every edge not in the set shares some common endpoint in the set. Cardinality will be 2*OPT in the worst case.

Notes

The algorithm computes an approximate solution fo the minimum maximal cardinality matching problem. The solution is no more than 2 * OPT in size. Runtime is O(|E|).

References

[R192]

4.1.8 Ramsey

Ramsey numbers.

ramsey_R2(G) Approximately computes the Ramsey number R(2; s, t) for graph.

ramsey R2

$ramsey_R2(G)$

Approximately computes the Ramsey number R(2; s, t) for graph.

Parameters G: NetworkX graph

Undirected graph

Returns max_pair: (set, set) tuple

Maximum clique, Maximum independent set.

4.1.9 Vertex Cover

Given an undirected graph G=(V,E) and a function w assigning nonnegative weights to its vertices, find a minimum weight subset of V such that each edge in E is incident to at least one vertex in the subset.

http://en.wikipedia.org/wiki/Vertex_cover

min_weighted_vertex_cover(G[, weight]) 2-OPT Local Ratio for Minimum Weighted Vertex Cover

min_weighted_vertex_cover

min_weighted_vertex_cover(G, weight=None)

2-OPT Local Ratio for Minimum Weighted Vertex Cover

Find an approximate minimum weighted vertex cover of a graph.

Parameters G: NetworkX graph

Undirected graph

weight: None or string, optional (default = None)

If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.

Returns min_weighted_cover : set

Returns a set of vertices whose weight sum is no more than 2 * OPT.

Notes

Local-Ratio algorithm for computing an approximate vertex cover. Algorithm greedily reduces the costs over edges and iteratively builds a cover. Worst-case runtime is O(|E|).

References

[R193]

4.2 Assortativity

4.2.1 Assortativity

$\texttt{degree_assortativity_coefficient}(G[,x,y,])$	Compute degree assortativity of graph.
attribute_assortativity_coefficient(G, attribute)	Compute assortativity for node attributes.
<pre>numeric_assortativity_coefficient(G, attribute)</pre>	Compute assortativity for numerical node attributes.
$degree_pearson_correlation_coefficient(G[,])$	Compute degree assortativity of graph.

degree_assortativity_coefficient

degree_assortativity_coefficient (G, x='out', y='in', weight=None, nodes=None)

Compute degree assortativity of graph.

Assortativity measures the similarity of connections in the graph with respect to the node degree.

Parameters G: NetworkX graph

x: string ('in','out')

4.2. Assortativity 133

The degree type for source node (directed graphs only).

```
y: string ('in','out')
```

The degree type for target node (directed graphs only).

```
weight: string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

nodes: list or iterable (optional)

Compute degree assortativity only for nodes in container. The default is all nodes.

Returns r: float

Assortativity of graph by degree.

See also:

```
attribute_assortativity_coefficient, numeric_assortativity_coefficient, neighbor_connectivity, degree_mixing_dict, degree_mixing_matrix
```

Notes

This computes Eq. (21) in Ref. [R197], where e is the joint probability distribution (mixing matrix) of the degrees. If G is directed than the matrix e is the joint probability of the user-specified degree type for the source and target.

References

```
[R197], [R198]
```

Examples

```
>>> G=nx.path_graph(4)
>>> r=nx.degree_assortativity_coefficient(G)
>>> print("%3.1f"%r)
-0.5
```

attribute assortativity coefficient

```
attribute_assortativity_coefficient(G, attribute, nodes=None)
```

Compute assortativity for node attributes.

Assortativity measures the similarity of connections in the graph with respect to the given attribute.

```
Parameters G: NetworkX graph
```

attribute: string

Node attribute key

nodes: list or iterable (optional)

Compute attribute assortativity for nodes in container. The default is all nodes.

Returns r: float

Assortativity of graph for given attribute

Notes

This computes Eq. (2) in Ref. [R194], trace(M)-sum(M))/(1-sum(M), where M is the joint probability distribution (mixing matrix) of the specified attribute.

References

[R194]

Examples

```
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edges_from([(0,1),(2,3)])
>>> print(nx.attribute_assortativity_coefficient(G,'color'))
1.0
```

numeric_assortativity_coefficient

```
numeric_assortativity_coefficient(G, attribute, nodes=None)
```

Compute assortativity for numerical node attributes.

Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute.

```
Parameters G: NetworkX graph
```

 $attribute: {\tt string}$

Node attribute key

nodes: list or iterable (optional)

Compute numeric assortativity only for attributes of nodes in container. The default is all nodes.

Returns r: float

Assortativity of graph for given attribute

Notes

This computes Eq. (21) in Ref. [R202], for the mixing matrix of of the specified attribute.

References

[R202]

4.2. Assortativity 135

Examples

```
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],size=2)
>>> G.add_nodes_from([2,3],size=3)
>>> G.add_edges_from([(0,1),(2,3)])
>>> print(nx.numeric_assortativity_coefficient(G,'size'))
1.0
```

degree_pearson_correlation_coefficient

```
degree_pearson_correlation_coefficient (G, x='out', y='in', weight=None, nodes=None)
Compute degree assortativity of graph.
```

Assortativity measures the similarity of connections in the graph with respect to the node degree.

This is the same as degree_assortativity_coefficient but uses the potentially faster scipy.stats.pearsonr function.

```
Parameters G: NetworkX graph
```

```
x: string ('in','out')
```

The degree type for source node (directed graphs only).

```
y: string ('in','out')
```

The degree type for target node (directed graphs only).

```
weight: string or None, optional (default=None)
```

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

nodes: list or iterable (optional)

Compute pearson correlation of degrees only for specified nodes. The default is all nodes.

Returns r: float

Assortativity of graph by degree.

Notes

This calls scipy.stats.pearsonr.

References

```
[R199], [R200]
```

Examples

```
>>> G=nx.path_graph(4)
>>> r=nx.degree_pearson_correlation_coefficient(G)
>>> print("%3.1f"%r)
-0.5
```

4.2.2 Average neighbor degree

 $\verb|average_neighbor_degree| (G[, source, target, ...])| \\ | Returns the average degree of the neighborhood of each node.$

average_neighbor_degree

average_neighbor_degree (G, source='out', target='out', nodes=None, weight=None)

Returns the average degree of the neighborhood of each node.

The average degree of a node i is

$$k_{nn,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j$$

where N(i) are the neighbors of node i and k_j is the degree of node j which belongs to N(i). For weighted graphs, an analogous measure can be defined [R196],

$$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$

where s_i is the weighted degree of node i, w_{ij} is the weight of the edge that links i and j and N(i) are the neighbors of node i.

Parameters G: NetworkX graph

source: string ("in"l"out")

Directed graphs only. Use "in"- or "out"-degree for source node.

target : string ("in"|"out")

Directed graphs only. Use "in"- or "out"-degree for target node.

nodes: list or iterable, optional

Compute neighbor degree for specified nodes. The default is all nodes in the graph.

weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns d: dict

A dictionary keyed by node with average neighbors degree value.

See also:

```
average_degree_connectivity
```

Notes

For directed graphs you can also specify in-degree or out-degree by passing keyword arguments.

References

[R196]

4.2. Assortativity 137

Examples

```
>>> G=nx.path_graph(4)
>>> G.edge[0][1]['weight'] = 5
>>> G.edge[2][3]['weight'] = 3

>>> nx.average_neighbor_degree(G)
{0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0}
>>> nx.average_neighbor_degree(G, weight='weight')
{0: 2.0, 1: 1.1666666666666666667, 2: 1.25, 3: 2.0}

>>> G=nx.DiGraph()
>>> G=nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> nx.average_neighbor_degree(G, source='in', target='in')
{0: 1.0, 1: 1.0, 2: 1.0, 3: 0.0}

>>> nx.average_neighbor_degree(G, source='out', target='out')
{0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0}
```

4.2.3 Average degree connectivity

average_degree_connectivity

average_degree_connectivity (*G*, source='in+out', target='in+out', nodes=None, weight=None) Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in [R195], for a node i, as:

$$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$

where s_i is the weighted degree of node i, w_{ij} is the weight of the edge that links i and j, and N(i) are the neighbors of node i.

Parameters G: NetworkX graph

source : "in"|"out"|"in+out" (default:"in+out")

Directed graphs only. Use "in"- or "out"-degree for source node.

target: "in"|"out"|"in+out" (default:"in+out"

Directed graphs only. Use "in"- or "out"-degree for target node.

nodes: list or iterable (optional)

Compute neighbor connectivity for these nodes. The default is all nodes.

weight : string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns d: dict

A dictionary keyed by degree k with the value of average connectivity.

See also:

```
neighbors_average_degree
```

Notes

This algorithm is sometimes called "k nearest neighbors" and is also available as k_nearest_neighbors.

References

[R195]

Examples

```
>>> G=nx.path_graph(4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')
{1: 2.0, 2: 1.75}
```

k nearest neighbors

k_nearest_neighbors (*G*, source='in+out', target='in+out', nodes=None, weight=None) Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in [R201], for a node i, as:

$$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$

where s_i is the weighted degree of node i, w_{ij} is the weight of the edge that links i and j, and N(i) are the neighbors of node i.

Parameters G: NetworkX graph

```
source: "in"|"out"|"in+out" (default:"in+out")
```

Directed graphs only. Use "in"- or "out"-degree for source node.

target: "in"|"out"|"in+out" (default:"in+out"

Directed graphs only. Use "in"- or "out"-degree for target node.

nodes: list or iterable (optional)

Compute neighbor connectivity for these nodes. The default is all nodes.

weight: string or None, optional (default=None)

4.2. Assortativity 139

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns d: dict

A dictionary keyed by degree k with the value of average connectivity.

See also:

```
neighbors_average_degree
```

Notes

This algorithm is sometimes called "k nearest neighbors" and is also available as k_nearest_neighbors.

References

[R201]

Examples

```
>>> G=nx.path_graph(4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')
{1: 2.0, 2: 1.75}
```

4.2.4 Mixing

attribute_mixing_matrix(G, attribute[,])	Return mixing matrix for attribute.
$degree_mixing_matrix(G[, x, y, weight,])$	Return mixing matrix for attribute.
$degree_mixing_dict(G[, x, y, weight, nodes,])$	Return dictionary representation of mixing matrix for degree.
attribute_mixing_dict(G, attribute[, nodes,])	Return dictionary representation of mixing matrix for attribute.

attribute_mixing_matrix

```
Parameters G: graph
```

NetworkX graph object.

attribute: string

Node attribute key.

nodes: list or iterable (optional)

Use only nodes in container to build the matrix. The default is all nodes.

mapping: dictionary, optional

```
Mapping from node attribute to integer index in matrix. If not specified, an arbitrary ordering will be used.
```

normalized: bool (default=False)

Return counts if False or probabilities if True.

Returns m: numpy array

Counts or joint probability of occurrence of attribute pairs.

degree mixing matrix

```
degree_mixing_matrix (G, x='out', y='in', weight=None, nodes=None, normalized=True)

Return mixing matrix for attribute.
```

```
Parameters G: graph
```

NetworkX graph object.

x: string ('in','out')

The degree type for source node (directed graphs only).

y: string ('in','out')

The degree type for target node (directed graphs only).

nodes: list or iterable (optional)

Build the matrix using only nodes in container. The default is all nodes.

weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

normalized: bool (default=False)

Return counts if False or probabilities if True.

Returns m: numpy array

Counts, or joint probability, of occurrence of node degree.

degree mixing dict

```
degree_mixing_dict(G, x='out', y='in', weight=None, nodes=None, normalized=False)
Return dictionary representation of mixing matrix for degree.
```

Parameters G: graph

NetworkX graph object.

x: string ('in','out')

The degree type for source node (directed graphs only).

y: string ('in','out')

The degree type for target node (directed graphs only).

weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

4.2. Assortativity 141

```
normalized: bool (default=False)
```

Return counts if False or probabilities if True.

Returns d: dictionary

Counts or joint probability of occurrence of degree pairs.

attribute mixing dict

```
attribute_mixing_dict (G, attribute, nodes=None, normalized=False)
Return dictionary representation of mixing matrix for attribute.
```

Parameters G: graph

NetworkX graph object.

attribute: string

Node attribute key.

nodes: list or iterable (optional)

Unse nodes in container to build the dict. The default is all nodes.

normalized: bool (default=False)

Return counts if False or probabilities if True.

Returns d: dictionary

Counts or joint probability of occurrence of attribute pairs.

Examples

```
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edge(1,3)
>>> d=nx.attribute_mixing_dict(G,'color')
>>> print(d['red']['blue'])
1
>>> print(d['blue']['red']) # d symmetric for undirected graphs
```

4.3 Bipartite

This module provides functions and operations for bipartite graphs. Bipartite graphs B=(U,V,E) have two node sets U,V and edges in E that only connect nodes from opposite sets. It is common in the literature to use an spatial analogy referring to the two node sets as top and bottom nodes.

The bipartite algorithms are not imported into the networkx namespace at the top level so the easiest way to use them is with:

```
>>> import networkx as nx
>>> from networkx.algorithms import bipartite
```

NetworkX does not have a custom bipartite graph class but the Graph() or DiGraph() classes can be used to represent bipartite graphs. However, you have to keep track of which set each node belongs to, and make sure that there is no edge between nodes of the same set. The convention used in NetworkX is to use a node attribute named "bipartite" with values 0 or 1 to identify the sets each node belongs to.

For example:

```
>>> B = nx.Graph()
>>> B.add_nodes_from([1,2,3,4], bipartite=0) # Add the node attribute "bipartite"
>>> B.add_nodes_from(['a','b','c'], bipartite=1)
>>> B.add_edges_from([(1,'a'), (1,'b'), (2,'b'), (2,'c'), (3,'c'), (4,'a')])
```

Many algorithms of the bipartite module of NetworkX require, as an argument, a container with all the nodes that belong to one set, in addition to the bipartite graph B. If B is connected, you can find the node sets using a two-coloring algorithm:

```
>>> nx.is_connected(B)
True
>>> bottom_nodes, top_nodes = bipartite.sets(B)
```

list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) ['a', 'c', 'b']

However, if the input graph is not connected, there are more than one possible colorations. Thus, the following result is correct:

```
>>> B.remove_edge(2,'c')
>>> nx.is_connected(B)
False
>>> bottom_nodes, top_nodes = bipartite.sets(B)
```

list(top_nodes) [1, 2, 4, 'c'] list(bottom_nodes) ['a', 3, 'b']

Using the "bipartite" node attribute, you can easily get the two node sets:

```
>>> top_nodes = set(n for n,d in B.nodes(data=True) if d['bipartite']==0)
>>> bottom_nodes = set(B) - top_nodes
```

```
list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) ['a', 'c', 'b']
```

So you can easily use the bipartite algorithms that require, as an argument, a container with all nodes that belong to one node set:

```
>>> print(round(bipartite.density(B, bottom_nodes),2))
0.42
>>> G = bipartite.projected_graph(B, top_nodes)
>>> G.edges()
[(1, 2), (1, 4)]
```

All bipartite graph generators in NetworkX build bipartite graphs with the "bipartite" node attribute. Thus, you can use the same approach:

```
>>> RB = bipartite.random_graph(5, 7, 0.2)
>>> RB_top = set(n for n,d in RB.nodes(data=True) if d['bipartite']==0)
>>> RB_bottom = set(RB) - RB_top
>>> list(RB_top)
[0, 1, 2, 3, 4]
>>> list(RB_bottom)
[5, 6, 7, 8, 9, 10, 11]
```

For other bipartite graph generators see the bipartite section of *Graph generators*.

4.3.1 Basic functions

is_bipartite(G)	Returns True if graph G is bipartite, False if not.
is_bipartite_node_set(G, nodes)	Returns True if nodes and G/nodes are a bipartition of G.
sets(G)	Returns bipartite node sets of graph G.
color(G)	Returns a two-coloring of the graph.
density(B, nodes)	Return density of bipartite graph B.
degrees(B, nodes[, weight])	Return the degrees of the two node sets in the bipartite graph B.

is_bipartite

$is_bipartite(G)$

Returns True if graph G is bipartite, False if not.

Parameters G: NetworkX graph

See also:

```
color, is_bipartite_node_set
```

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> print(bipartite.is_bipartite(G))
True
```

is_bipartite_node_set

is_bipartite_node_set(G, nodes)

Returns True if nodes and G/nodes are a bipartition of G.

Parameters G: NetworkX graph

nodes: list or container

Check if nodes are a one of a bipartite set.

Notes

For connected graphs the bipartite sets are unique. This function handles disconnected graphs.

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X = set([1,3])
>>> bipartite.is_bipartite_node_set(G,X)
True
```

sets

sets(G)

Returns bipartite node sets of graph G.

Raises an exception if the graph is not bipartite.

Parameters G: NetworkX graph **Returns** (X,Y): two-tuple of sets

One set of nodes for each part of the bipartite graph.

See also:

color

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X, Y = bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list(Y)
[1, 3]
```

color

$\mathtt{color}\left(G\right)$

Returns a two-coloring of the graph.

Raises an exception if the graph is not bipartite.

Parameters G: NetworkX graph

Returns color: dictionary

A dictionary keyed by node with a 1 or 0 as data for each node color.

Raises NetworkXError if the graph is not two-colorable.

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> c = bipartite.color(G)
>>> print(c)
{0: 1, 1: 0, 2: 1, 3: 0}

You can use this to set a node attribute indicating the biparite set:
>>> nx.set_node_attributes(G, 'bipartite', c)
>>> print(G.node[0]['bipartite'])
1
>>> print(G.node[1]['bipartite'])
```

density

```
density (B, nodes)
Return density of bipartite graph B.

Parameters G: NetworkX graph
nodes: list or container
Nodes in one set of the bipartite graph.

Returns d: float
The bipartite density

See also:
color
```

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> X=set([0,1,2])
>>> bipartite.density(G,X)
1.0
>>> Y=set([3,4])
>>> bipartite.density(G,Y)
1.0
```

degrees

```
degrees (B, nodes, weight=None)
```

Return the degrees of the two node sets in the bipartite graph B.

Parameters G: NetworkX graph

nodes: list or container

Nodes in one set of the bipartite graph.

weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns (degX,degY): tuple of dictionaries

The degrees of the two bipartite sets as dictionaries keyed by node.

See also:

```
color, density
```

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> Y=set([3,4])
>>> degX,degY=bipartite.degrees(G,Y)
>>> degX
{0: 2, 1: 2, 2: 2}
```

4.3.2 Matching

Provides functions for computing a maximum cardinality matching in a bipartite graph.

If you don't care about the particular implementation of the maximum matching algorithm, simply use the maximum_matching(). If you do care, you can import one of the named maximum matching algorithms directly.

For example, to find a maximum matching in the complete bipartite graph with two vertices on the left and three vertices on the right:

```
>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> left, right = nx.bipartite.sets(G)
>>> list(left)
[0, 1]
>>> list(right)
[2, 3, 4]
>>> nx.bipartite.maximum_matching(G)
{0: 2, 1: 3, 2: 0, 3: 1}
```

The dictionary returned by maximum_matching() includes a mapping for vertices in both the left and right vertex sets.

${ t eppstein_matching}(G)$	Returns the maximum cardinality matching of the bipartite graph G .
$hopcroft_karp_matching(G)$	Returns the maximum cardinality matching of the bipartite graph G .
to_vertex_cover(G, matching)	Returns the minimum vertex cover corresponding to the given maximum matching of the bipar

eppstein_matching

$eppstein_matching(G)$

Returns the maximum cardinality matching of the bipartite graph G.

Parameters G: NetworkX graph

Undirected bipartite graph

Returns matches: dictionary

The matching is returned as a dictionary, matches, such that matches [v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate.

See also:

hopcroft_karp_matching

Notes

This function is implemented with David Eppstein's version of the algorithm Hopcroft-Karp algorithm (see hopcroft_karp_matching()), which originally appeared in the Python Algorithms and Data Structures

library (PADS).

hopcroft_karp_matching

$hopcroft_karp_matching(G)$

Returns the maximum cardinality matching of the bipartite graph G.

Parameters G: NetworkX graph

Undirected bipartite graph

Returns matches: dictionary

The matching is returned as a dictionary, matches, such that matches [v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate.

See also:

eppstein_matching

Notes

This function is implemented with the Hopcroft–Karp matching algorithm for bipartite graphs.

References

[R212]

to_vertex_cover

to_vertex_cover(G, matching)

Returns the minimum vertex cover corresponding to the given maximum matching of the bipartite graph G.

Parameters G: NetworkX graph

Undirected bipartite graph

matching: dictionary

A dictionary whose keys are vertices in G and whose values are the distinct neighbors comprising the maximum matching for G, as returned by, for example, maximum_matching(). The dictionary *must* represent the maximum matching.

Returns vertex_cover: set

The minimum vertex cover in G.

Notes

This function is implemented using the procedure guaranteed by Konig's theorem, which proves an equivalence between a maximum matching and a minimum vertex cover in bipartite graphs.

Since a minimum vertex cover is the complement of a maximum independent set for any graph, one can compute the maximum independent set of a bipartite graph this way:

```
>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> matching = nx.bipartite.maximum_matching(G)
>>> vertex_cover = nx.bipartite.to_vertex_cover(G, matching)
>>> independent_set = set(G) - vertex_cover
>>> print(list(independent_set))
[2, 3, 4]
```

4.3.3 Matrix

biadjacency_matrix(G, row_order[,])	Return the biadjacency matrix of the bipartite graph G.
<pre>from_biadjacency_matrix(A[, create_using,])</pre>	Creates a new bipartite graph from a biadjacency matrix given as a SciPy

biadjacency matrix

biadjacency_matrix (*G*, row_order, column_order=None, dtype=None, weight='weight', format='csr') Return the biadjacency matrix of the bipartite graph G.

Let G=(U,V,E) be a bipartite graph with node sets $U=u_1,...,u_r$ and $V=v_1,...,v_s$. The biadjacency matrix [R213] is the $r \times s$ matrix B in which $b_{i,j}=1$ if, and only if, $(u_i,v_j) \in E$. If the parameter weight is not None and matches the name of an edge attribute, its value is used instead of 1.

Parameters G: graph

A NetworkX graph

row_order: list of nodes

The rows of the matrix are ordered according to the list of nodes.

column_order : list, optional

The columns of the matrix are ordered according to the list of nodes. If column_order is None, then the ordering of columns is arbitrary.

dtype: NumPy data-type, optional

A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used.

weight: string or None, optional (default='weight')

The edge data key used to provide each value in the matrix. If None, then each edge has weight 1.

```
format: str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}
```

The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See [R214] for details.

Returns M : SciPy sparse matrix

Biadjacency matrix representation of the bipartite graph G.

See also:

```
adjacency_matrix, from_biadjacency_matrix
```

Notes

No attempt is made to check that the input graph is bipartite.

For directed bipartite graphs only successors are considered as neighbors. To obtain an adjacency matrix with ones (or weight values) for both predecessors and successors you have to generate two biadjacency matrices where the rows of one of them are the columns of the other, and then add one to the transpose of the other.

References

[R213], [R214]

from_biadjacency_matrix

from_biadjacency_matrix(A, create_using=None, edge_attribute='weight')

Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix.

Parameters A: scipy sparse matrix

A biadjacency matrix representation of a graph

create_using: NetworkX graph

Use specified graph for result. The default is Graph()

edge attribute: string

Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)).

See also:

biadjacency_matrix, from_numpy_matrix

Notes

The nodes are labeled with the attribute bipartite set to an integer 0 or 1 representing membership in part 0 or part 1 of the bipartite graph.

If $create_u sing$ is an instance of networkx. MultiGraph or networkx. MultiDiGraph and the entries of A are of type int, then this function returns a multigraph (of the same type as $create_u sing$) with parallel edges. In this case, $edge_a ttribute$ will be ignored.

References

[1] http://en.wikipedia.org/wiki/Adjacency matrix#Adjacency matrix of a bipartite graph

4.3.4 Projections

One-mode (unipartite) projections of bipartite graphs.

<pre>projected_graph(B, nodes[, multigraph])</pre>	Returns the projection of B onto one of its node sets.
<pre>weighted_projected_graph(B, nodes[, ratio])</pre>	Returns a weighted projection of B onto one of its node sets.
	Continued on next page

Table 4.18 – continued from previous page

collaboration_weighted_projected_graph(B, nodes)	Newman's weighted projection of B onto one of its node sets.
overlap_weighted_projected_graph(B, nodes[,])	Overlap weighted projection of B onto one of its node sets.
<pre>generic_weighted_projected_graph(B, nodes[,])</pre>	Weighted projection of B with a user-specified weight function.

projected graph

projected_graph (B, nodes, multigraph=False)

Returns the projection of B onto one of its node sets.

Returns the graph G that is the projection of the bipartite graph B onto the specified nodes. They retain their attributes and are connected in G if they have a common neighbor in B.

Parameters B: NetworkX graph

The input graph should be bipartite.

nodes: list or iterable

Nodes to project onto (the "bottom" nodes).

multigraph: bool (default=False)

If True return a multigraph where the multiple edges represent multiple shared neighbors. They edge key in the multigraph is assigned to the label of the neighbor.

Returns Graph: NetworkX graph or multigraph

A graph that is the projection onto the given nodes.

See also:

```
is_bipartite, is_bipartite_node_set, sets, weighted_projected_graph,
collaboration_weighted_projected_graph,
generic_weighted_projected_graph
```

Notes

No attempt is made to verify that the input graph B is bipartite. Returns a simple graph that is the projection of the bipartite graph B onto the set of nodes given in list nodes. If multigraph=True then a multigraph is returned with an edge for every shared neighbor.

Directed graphs are allowed as input. The output will also then be a directed graph with edges if there is a directed path between the nodes.

The graph and node properties are (shallow) copied to the projected graph.

Examples

```
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges())
[(1, 3)]
```

If nodes a, and b are connected through both nodes 1 and 2 then building a multigraph results in two edges in the projection onto [a, b]:

```
>>> B = nx.Graph()
>>> B.add_edges_from([('a', 1), ('b', 1), ('a', 2), ('b', 2)])
>>> G = bipartite.projected_graph(B, ['a', 'b'], multigraph=True)
>>> print([sorted((u,v)) for u,v in G.edges()])
[['a', 'b'], ['a', 'b']]
```

weighted_projected_graph

weighted_projected_graph (B, nodes, ratio=False)

Returns a weighted projection of B onto one of its node sets.

The weighted projected graph is the projection of the bipartite network B onto the specified nodes with weights representing the number of shared neighbors or the ratio between actual shared neighbors and possible shared neighbors if ratio=True [R217]. The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph.

Parameters B: NetworkX graph

The input graph should be bipartite.

nodes: list or iterable

Nodes to project onto (the "bottom" nodes).

ratio: Bool (default=False)

If True, edge weight is the ratio between actual shared neighbors and possible shared neighbors. If False, edges weight is the number of shared neighbors.

Returns Graph: NetworkX graph

A graph that is the projection onto the given nodes.

See also:

```
is_bipartite, is_bipartite_node_set, sets, collaboration_weighted_projected_graph,
overlap_weighted_projected_graph,
projected_graph
```

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

References

[R217]

Examples

```
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.weighted_projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges(data=True))
[(1, 3, {'weight': 1})]
>>> G = bipartite.weighted_projected_graph(B, [1,3], ratio=True)
>>> print(G.edges(data=True))
[(1, 3, {'weight': 0.5})]
```

collaboration weighted projected graph

$\verb|collaboration_weighted_projected_graph| (B, nodes)$

Newman's weighted projection of B onto one of its node sets.

The collaboration weighted projection is the projection of the bipartite network B onto the specified nodes with weights assigned using Newman's collaboration model [R215]:

$$w_{v,u} = \sum_{k} \frac{\delta_v^w \delta_w^k}{k_w - 1}$$

where v and u are nodes from the same bipartite node set, and w is a node of the opposite node set. The value k_w is the degree of node w in the bipartite network and δ_v^w is 1 if node v is linked to node w in the original bipartite graph or 0 otherwise.

The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph.

Parameters B: NetworkX graph

The input graph should be bipartite.

nodes: list or iterable

Nodes to project onto (the "bottom" nodes).

Returns Graph: NetworkX graph

A graph that is the projection onto the given nodes.

See also:

```
is_bipartite, is_bipartite_node_set, overlap_weighted_projected_graph, projected_graph
sets, weighted_projected_graph, generic_weighted_projected_graph,
```

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

References

[R215]

Examples

```
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> B.add_edge(1,5)
>>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5])
>>> print(G.nodes())
[0, 2, 4, 5]
>>> for edge in G.edges(data=True): print(edge)
...
(0, 2, {'weight': 0.5})
(0, 5, {'weight': 0.5})
(2, 4, {'weight': 1.0})
(2, 5, {'weight': 0.5})
```

overlap_weighted_projected_graph

overlap_weighted_projected_graph (B, nodes, jaccard=True)

Overlap weighted projection of B onto one of its node sets.

The overlap weighted projection is the projection of the bipartite network B onto the specified nodes with weights representing the Jaccard index between the neighborhoods of the two nodes in the original bipartite network [R216]:

$$w_{v,u} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$

or if the parameter 'jaccard' is False, the fraction of common neighbors by minimum of both nodes degree in the original bipartite graph [R216]:

$$w_{v,u} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$

The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph.

Parameters B: NetworkX graph

The input graph should be bipartite.

nodes: list or iterable

Nodes to project onto (the "bottom" nodes).

jaccard: Bool (default=True)

Returns Graph: NetworkX graph

A graph that is the projection onto the given nodes.

See also:

```
is_bipartite, is_bipartite_node_set, sets, weighted_projected_graph,
collaboration_weighted_projected_graph,
projected_graph
```

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

References

[R216]

Examples

```
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4])
>>> print(G.nodes())
[0, 2, 4]
>>> print(G.edges(data=True))
[(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})]
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4], jaccard=False)
>>> print(G.edges(data=True))
[(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})]
```

generic_weighted_projected_graph

```
generic_weighted_projected_graph (B, nodes, weight_function=None)
```

Weighted projection of B with a user-specified weight function.

The bipartite network B is projected on to the specified nodes with weights computed by a user-specified function. This function must accept as a parameter the neighborhood sets of two nodes and return an integer or a float.

The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph.

Parameters B: NetworkX graph

The input graph should be bipartite.

nodes: list or iterable

Nodes to project onto (the "bottom" nodes).

weight function: function

This function must accept as parameters the same input graph that this function, and two nodes; and return an integer or a float. The default function computes the number of shared neighbors.

Returns Graph: NetworkX graph

A graph that is the projection onto the given nodes.

See also:

```
is_bipartite, is_bipartite_node_set, sets, weighted_projected_graph,
collaboration_weighted_projected_graph, overlap_weighted_projected_graph,
projected_graph
```

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

Examples

```
>>> from networkx.algorithms import bipartite
>>> # Define some custom weight functions
>>> def jaccard(G, u, v):
       unbrs = set(G[u])
       vnbrs = set(G[v])
       return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs)
. . .
>>> def my_weight(G, u, v, weight='weight'):
       w = 0
        for nbr in set(G[u]) & set(G[v]):
           w += G.edge[u][nbr].get(weight, 1) + G.edge[v][nbr].get(weight, 1)
        return w
. . .
>>> # A complete bipartite graph with 4 nodes and 4 edges
>>> B = nx.complete_bipartite_graph(2,2)
>>> # Add some arbitrary weight to the edges
>>> for i, (u, v) in enumerate(B.edges()):
        B.edge[u][v]['weight'] = i + 1
>>> for edge in B.edges(data=True):
       print (edge)
. . .
(0, 2, {'weight': 1})
(0, 3, {'weight': 2})
(1, 2, {'weight': 3})
(1, 3, {'weight': 4})
>>> # Without specifying a function, the weight is equal to # shared partners
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1])
>>> print (G.edges (data=True))
[(0, 1, {'weight': 2})]
>>> # To specify a custom weight function use the weight_function parameter
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=jaccard)
>>> print (G.edges (data=True))
[(0, 1, {'weight': 1.0})]
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=my_weight)
>>> print (G.edges (data=True))
[(0, 1, {'weight': 10})]
```

4.3.5 Spectral

Spectral bipartivity measure.

```
spectral_bipartivity(G[, nodes, weight]) Returns the spectral bipartivity.
```

spectral bipartivity

```
spectral_bipartivity (G, nodes=None, weight='weight')
Returns the spectral bipartivity.
```

Parameters G: NetworkX graph

nodes: list or container optional(default is all nodes)

Nodes to return value of spectral bipartivity contribution.

weight: string or None optional (default = 'weight')

Edge data key to use for edge weights. If None, weights set to 1.

Returns sb: float or dict

A single number if the keyword nodes is not specified, or a dictionary keyed by node with the spectral bipartivity contribution of that node as the value.

See also:

color

Notes

This implementation uses Numpy (dense) matrices which are not efficient for storing large sparse graphs.

References

[R219]

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> bipartite.spectral_bipartivity(G)
1 0
```

4.3.6 Clustering

npute a bipartite clustering coefficient for nodes.	clustering(G[, nodes, mode])
npute the average bipartite clustering coefficient.	$average_clustering(G[, nodes, mode])$
npute a bipartite clustering coefficient for nodes.	$latapy_clustering(G[, nodes, mode])$
npute the bipartite clustering of G.	${\tt robins_alexander_clustering}(G)$
1 1	3 ()

clustering

clustering(G, nodes=None, mode='dot')

Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density of connections defined as [R207]:

$$c_u = \frac{\sum_{v \in N(N(v))} c_{uv}}{|N(N(u))|}$$

where N(N(u)) are the second order neighbors of u in G excluding u, and c_{uv} is the pairwise clustering coefficient between nodes u and v.

The mode selects the function for c_{uv} which can be:

dot:

$$c_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$

min:

$$c_{uv} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$

max:

$$c_{uv} = \frac{|N(u) \cap N(v)|}{max(|N(u)|, |N(v)|)}$$

Parameters G: graph

A bipartite graph

nodes: list or iterable (optional)

Compute bipartite clustering for these nodes. The default is all nodes in G.

mode: string

The pariwise bipartite clustering method to be used in the computation. It must be "dot", "max", or "min".

Returns clustering: dictionary

A dictionary keyed by node with the clustering coefficient value.

See also:

robins_alexander_clustering, square_clustering, average_clustering

References

[R207]

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G, mode='min')
>>> c[0]
1.0
```

average_clustering

average_clustering(G, nodes=None, mode='dot')

Compute the average bipartite clustering coefficient.

A clustering coefficient for the whole graph is the average,

$$C = \frac{1}{n} \sum_{v \in G} c_v,$$

where n is the number of nodes in G.

Similar measures for the two bipartite sets can be defined [R206]

$$C_X = \frac{1}{|X|} \sum_{v \in X} c_v,$$

where X is a bipartite set of G.

Parameters G: graph

a bipartite graph

nodes: list or iterable, optional

A container of nodes to use in computing the average. The nodes should be either the entire graph (the default) or one of the bipartite sets.

mode: string

The pariwise bipartite clustering method. It must be "dot", "max", or "min"

Returns clustering: float

The average bipartite clustering for the given set of nodes or the entire graph if no nodes are specified.

See also:

clustering

Notes

The container of nodes passed to this function must contain all of the nodes in one of the bipartite sets ("top" or "bottom") in order to compute the correct average bipartite clustering coefficients.

References

[R206]

Examples

```
>>> from networkx.algorithms import bipartite
>>> G=nx.star_graph(3) # star graphs are bipartite
>>> bipartite.average_clustering(G)
0.75
>>> X,Y=bipartite.sets(G)
>>> bipartite.average_clustering(G,X)
0.0
>>> bipartite.average_clustering(G,Y)
1.0
```

latapy clustering

```
latapy_clustering(G, nodes=None, mode='dot')
```

Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density of connections defined as [R208]:

$$c_u = \frac{\sum_{v \in N(N(v))} c_{uv}}{|N(N(u))|}$$

where N(N(u)) are the second order neighbors of u in G excluding u, and c_{uv} is the pairwise clustering coefficient between nodes u and v.

The mode selects the function for c_{uv} which can be:

dot:

$$c_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$

min:

$$c_{uv} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$

max:

$$c_{uv} = \frac{|N(u) \cap N(v)|}{max(|N(u)|, |N(v)|)}$$

Parameters G: graph

A bipartite graph

nodes: list or iterable (optional)

Compute bipartite clustering for these nodes. The default is all nodes in G.

mode: string

The pariwise bipartite clustering method to be used in the computation. It must be "dot", "max", or "min".

Returns clustering: dictionary

A dictionary keyed by node with the clustering coefficient value.

See also:

robins_alexander_clustering, square_clustering, average_clustering

References

[R208]

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G, mode='min')
>>> c[0]
1.0
```

robins alexander clustering

$robins_alexander_clustering(G)$

Compute the bipartite clustering of G.

Robins and Alexander [R209] defined bipartite clustering coefficient as four times the number of four cycles C_4 divided by the number of three paths L_3 in a bipartite graph:

$$CC_4 = \frac{4 * C_4}{L_3}$$

Parameters G: graph

a bipartite graph

Returns clustering: float

The Robins and Alexander bipartite clustering for the input graph.

See also:

latapy_clustering, square_clustering

References

[R209]

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.davis_southern_women_graph()
>>> print(round(bipartite.robins_alexander_clustering(G), 3))
0.468
```

4.3.7 Redundancy

Node redundancy for bipartite graphs.

node_redundancy(G[, nodes]) Computes the node redundancy coefficients for the nodes in the bipartite graph G.

node_redundancy

node_redundancy (G, nodes=None)

Computes the node redundancy coefficients for the nodes in the bipartite graph G.

The redundancy coefficient of a node v is the fraction of pairs of neighbors of v that are both linked to other nodes. In a one-mode projection these nodes would be linked together even if v were not there.

More formally, for any vertex v, the redundancy coefficient of 'v' is defined by

$$rc(v) = \frac{|\{\{u, w\} \subseteq N(v), \exists v' \neq v, (v', u) \in E \text{ and } (v', w) \in E\}|}{\frac{|N(v)|(|N(v)| - 1)}{2}},$$

where N(v) is the set of neighbors of v in G.

Parameters G: graph

A bipartite graph

nodes: list or iterable (optional)

Compute redundancy for these nodes. The default is all nodes in G.

Returns redundancy: dictionary

A dictionary keyed by node with the node redundancy value.

Raises NetworkXError

If any of the nodes in the graph (or in nodes, if specified) has (out-)degree less than two (which would result in division by zero, according to the definition of the redundancy coefficient).

References

[R218]

Examples

Compute the redundancy coefficient of each node in a graph:

```
>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> rc[0]
1.0
```

Compute the average redundancy for the graph:

```
>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> sum(rc.values()) / len(G)
1.0
```

Compute the average redundancy for a set of nodes:

```
>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> nodes = [0, 2]
>>> sum(rc[n] for n in nodes) / len(nodes)
1.0
```

4.3.8 Centrality

<pre>closeness_centrality(G, nodes[, normalized])</pre>	Compute the closeness centrality for nodes in a bipartite network.
degree_centrality(G, nodes)	Compute the degree centrality for nodes in a bipartite network.
betweenness_centrality(G, nodes)	Compute betweenness centrality for nodes in a bipartite network.

closeness centrality

closeness_centrality(G, nodes, normalized=True)

Compute the closeness centrality for nodes in a bipartite network.

The closeness of a node is the distance to all other nodes in the graph or in the case that the graph is not connected to all other nodes in the connected component containing that node.

Parameters G: graph

A bipartite network

nodes: list or container

Container with all nodes in one bipartite node set.

normalized: bool, optional

If True (default) normalize by connected component size.

Returns closeness: dictionary

Dictionary keyed by node with bipartite closeness centrality as the value.

See also:

betweenness_centrality, degree_centrality, sets, is_bipartite

Notes

The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets.

Closeness centrality is normalized by the minimum distance possible. In the bipartite case the minimum distance for a node in one bipartite node set is 1 from all nodes in the other node set and 2 from all other nodes in its own set [R204]. Thus the closeness centrality for node v in the two bipartite sets U with v nodes and v with v nodes is

$$c_v = \frac{m+2(n-1)}{d}$$
, for $v \in U$, $c_v = \frac{n+2(m-1)}{d}$, for $v \in V$,

where d is the sum of the distances from v to all other nodes.

Higher values of closeness indicate higher centrality.

As in the unipartite case, setting normalized=True causes the values to normalized further to n-1 / size(G)-1 where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately.

References

[R204]

degree centrality

degree_centrality(G, nodes)

Compute the degree centrality for nodes in a bipartite network.

The degree centrality for a node v is the fraction of nodes connected to it.

Parameters G: graph

A bipartite network **nodes**: list or container

Container with all nodes in one bipartite node set.

Returns centrality: dictionary

Dictionary keyed by node with bipartite degree centrality as the value.

See also:

betweenness_centrality, closeness_centrality, sets, is_bipartite

Notes

The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains all nodes from both bipartite node sets.

For unipartite networks, the degree centrality values are normalized by dividing by the maximum possible degree (which is n-1 where n is the number of nodes in G).

In the bipartite case, the maximum possible degree of a node in a bipartite node set is the number of nodes in the opposite node set [R205]. The degree centrality for a node v in the bipartite sets U with n nodes and V with m nodes is

$$d_v = \frac{deg(v)}{m}, \text{for} v \in U,$$

$$d_v = \frac{deg(v)}{n}, \text{for} v \in V,$$

where deg(v) is the degree of node v.

References

[R205]

betweenness centrality

betweenness_centrality(G, nodes)

Compute betweenness centrality for nodes in a bipartite network.

Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v.

Values of betweenness are normalized by the maximum possible value which for bipartite graphs is limited by the relative size of the two node sets [R203].

Let n be the number of nodes in the node set U and m be the number of nodes in the node set V, then nodes in U are normalized by dividing by

$$\frac{1}{2}[m^2(s+1)^2 + m(s+1)(2t-s-1) - t(2s-t+3)],$$

where

$$s = (n-1) \div m, t = (n-1) \mod m,$$

and nodes in V are normalized by dividing by

$$\frac{1}{2}[n^2(p+1)^2 + n(p+1)(2r-p-1) - r(2p-r+3)],$$

where,

$$p = (m-1) \div n, r = (m-1) \mod n.$$

Parameters G: graph

A bipartite graph

nodes: list or container

Container with all nodes in one bipartite node set.

Returns betweenness: dictionary

Dictionary keyed by node with bipartite betweenness centrality as the value.

See also:

degree_centrality, closeness_centrality, sets, is_bipartite

Notes

The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets.

References

[R203]

4.3.9 Generators

Generators and functions for bipartite graphs.

<pre>complete_bipartite_graph(n1, n2[, create_using])</pre>	Return the complete bipartite graph K_{n_1,n_2} .
<pre>configuration_model(aseq, bseq[,])</pre>	Return a random bipartite graph from two given degree sequences.
havel_hakimi_graph(aseq, bseq[, create_using])	Return a bipartite graph from two given degree sequences using a Ha
reverse_havel_hakimi_graph(aseq, bseq[,])	Return a bipartite graph from two given degree sequences using a Ha
alternating_havel_hakimi_graph(aseq, bseq[,])	Return a bipartite graph from two given degree sequences using an al
<pre>preferential_attachment_graph(aseq, p[,])</pre>	Create a bipartite graph with a preferential attachment model from a
random_graph(n, m, p[, seed, directed])	Return a bipartite random graph.
gnmk_random_graph(n, m, k[, seed, directed])	Return a random bipartite graph G_{n,m,k}.

complete bipartite graph

```
complete_bipartite_graph (n1, n2, create_using=None)
```

Return the complete bipartite graph K_{n_1,n_2} .

Composed of two partitions with n_1 nodes in the first and n_2 nodes in the second. Each node in the first is connected to each node in the second.

Parameters n1 : integer

Number of nodes for node set A.

n2: integer

Number of nodes for node set B.

create_using: NetworkX graph instance, optional

Return graph of this type.

Notes

Node labels are the integers 0 to $n_1 + n_2 - 1$.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

configuration_model

configuration_model (aseq, bseq, create_using=None, seed=None)

Return a random bipartite graph from two given degree sequences.

Parameters aseq: list

Degree sequence for node set A.

bseq: list

Degree sequence for node set B.

create_using: NetworkX graph instance, optional

Return graph of this type.

seed: integer, optional

Seed for random number generator.

Nodes from the set A are connected to nodes in the set B by choosing randomly from the possible free stubs, one in A and one in B.

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

havel_hakimi_graph

havel_hakimi_graph (aseq, bseq, create_using=None)

Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the highest degree nodes in set B until all stubs are connected.

Parameters aseq: list

Degree sequence for node set A.

bseq: list

Degree sequence for node set B.

create_using: NetworkX graph instance, optional

Return graph of this type.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

reverse_havel_hakimi_graph

reverse_havel_hakimi_graph (aseq, bseq, create_using=None)

Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

Nodes from set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the lowest degree nodes in set B until all stubs are connected.

Parameters aseq: list

Degree sequence for node set A.

bseq: list

Degree sequence for node set B.

create_using: NetworkX graph instance, optional

Return graph of this type.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

alternating_havel_hakimi_graph

alternating_havel_hakimi_graph (aseq, bseq, create_using=None)

Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to alternatively the highest and the lowest degree nodes in set B until all stubs are connected.

Parameters aseq: list

Degree sequence for node set A.

bseq: list

Degree sequence for node set B.

create_using: NetworkX graph instance, optional

Return graph of this type.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

preferential attachment graph

$\verb|preferential_attachment_graph| (aseq, p, create_using=None, seed=None)|$

Create a bipartite graph with a preferential attachment model from a given single degree sequence.

Parameters aseq: list

Degree sequence for node set A.

p: float

Probability that a new bottom node is added.

create_using: NetworkX graph instance, optional

Return graph of this type.

seed: integer, optional

Seed for random number generator.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

References

[R210]

random graph

```
random_graph (n, m, p, seed=None, directed=False)
```

Return a bipartite random graph.

This is a bipartite version of the binomial (Erdős-Rényi) graph.

Parameters n: int

The number of nodes in the first bipartite set.

m: int

The number of nodes in the second bipartite set.

p: float

Probability for edge creation.

seed: int, optional

Seed for random number generator (default=None).

directed: bool, optional (default=False)

If True return a directed graph

See also:

```
gnp_random_graph, configuration_model
```

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

The bipartite random graph algorithm chooses each of the n*m (undirected) or 2*nm (directed) possible edges with probability p.

This algorithm is O(n+m) where m is the expected number of edges.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

References

[R211]

gnmk random graph

```
gnmk_random_graph(n, m, k, seed=None, directed=False)
```

Return a random bipartite graph $G_{n,m,k}$.

Produces a bipartite graph chosen randomly out of the set of all graphs with n top nodes, m bottom nodes, and k edges.

Parameters n: int

The number of nodes in the first bipartite set.

m: int

The number of nodes in the second bipartite set.

k: int

The number of edges

seed: int, optional

Seed for random number generator (default=None).

directed : bool, optional (default=False)

If True return a directed graph

See also:

gnm_random_graph

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

If k > m * n then a complete bipartite graph is returned.

This graph is a bipartite version of the G_{nm} random graph model.

Examples

from networkx.algorithms import bipartite $G = bipartite.gnmk_random_graph(10,20,50)$

4.4 Blockmodeling

Functions for creating network blockmodels from node partitions.

Created by Drew Conway created by Drew Conway created by Drew Brown <a href="mailto:created-by-co

blockmodel(G, partitions[, multigraph]) Returns a reduced graph constructed using the generalized block modeling technique.

4.4.1 blockmodel

blockmodel (*G*, partitions, multigraph=False)

Returns a reduced graph constructed using the generalized block modeling technique.

The blockmodel technique collapses nodes into blocks based on a given partitioning of the node set. Each partition of nodes (block) is represented as a single node in the reduced graph.

Edges between nodes in the block graph are added according to the edges in the original graph. If the parameter multigraph is False (the default) a single edge is added with a weight equal to the sum of the edge weights between nodes in the original graph The default is a weight of 1 if weights are not specified. If the parameter multigraph is True then multiple edges are added each with the edge data from the original graph.

Parameters G: graph

A networkx Graph or DiGraph

partitions: list of lists, or list of sets

The partition of the nodes. Must be non-overlapping.

multigraph: bool, optional

If True return a MultiGraph with the edge data of the original graph applied to each corresponding edge in the new graph. If False return a Graph with the sum of the edge weights, or a count of the edges if the original graph is unweighted.

Returns blockmodel: a Networkx graph object

References

[R220]

Examples

```
>>> G=nx.path_graph(6)
>>> partition=[[0,1],[2,3],[4,5]]
>>> M=nx.blockmodel(G,partition)
```

4.5 Boundary

Routines to find the boundary of a set of nodes.

Edge boundaries are edges that have only one end in the set of nodes.

Node boundaries are nodes outside the set of nodes that have an edge to a node in the set.

```
edge_boundary(G, nbunch1[, nbunch2]) Return the edge boundary.

node_boundary(G, nbunch1[, nbunch2]) Return the node boundary.
```

4.5.1 edge_boundary

```
edge_boundary (G, nbunch1, nbunch2=None) Return the edge boundary.
```

4.5. Boundary 171

Edge boundaries are edges that have only one end in the given set of nodes.

Parameters G: graph

A networkx graph

nbunch1: list, container

Interior node set

nbunch2: list, container

Exterior node set. If None then it is set to all of the nodes in G not in nbunch1.

Returns elist: list

List of edges

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here.

4.5.2 node boundary

node_boundary (G, nbunch1, nbunch2=None)

Return the node boundary.

The node boundary is all nodes in the edge boundary of a given set of nodes that are in the set.

Parameters G: graph

A networkx graph

nbunch1: list, container

Interior node set

nbunch2: list, container

Exterior node set. If None then it is set to all of the nodes in G not in nbunch1.

Returns nlist: list

List of nodes.

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here.

4.6 Centrality

4.6.1 Degree

4.6. Centrality 173

degree_centrality(G)	Compute the degree centrality for nodes.
$in_degree_centrality(G)$	Compute the in-degree centrality for nodes.
<pre>out_degree_centrality(G)</pre>	Compute the out-degree centrality for nodes.

degree_centrality

$degree_centrality(G)$

Compute the degree centrality for nodes.

The degree centrality for a node v is the fraction of nodes it is connected to.

Parameters G: graph

A networkx graph

Returns nodes: dictionary

Dictionary of nodes with degree centrality as the value.

See also:

betweenness_centrality, load_centrality, eigenvector_centrality

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible.

in_degree_centrality

in_degree_centrality(G)

Compute the in-degree centrality for nodes.

The in-degree centrality for a node v is the fraction of nodes its incoming edges are connected to.

Parameters G: graph

A NetworkX graph

Returns nodes: dictionary

Dictionary of nodes with in-degree centrality as values.

Raises NetworkXError

If the graph is undirected.

See also:

degree_centrality, out_degree_centrality

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible.

out_degree_centrality

out degree centrality (G)

Compute the out-degree centrality for nodes.

The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to.

Parameters G: graph

A NetworkX graph

Returns nodes: dictionary

Dictionary of nodes with out-degree centrality as values.

Raises NetworkXError

If the graph is undirected.

See also:

degree_centrality, in_degree_centrality

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible.

4.6.2 Closeness

closeness_centrality(G[, u, distance, ...]) Compute closeness centrality for nodes.

closeness_centrality

 $closeness_centrality(G, u=None, distance=None, normalized=True)$

Compute closeness centrality for nodes.

Closeness centrality [R226] of a node u is the reciprocal of the sum of the shortest path distances from u to all n-1 other nodes. Since the sum of distances depends on the number of nodes in the graph, closeness is normalized by the sum of minimum possible distances n-1.

$$C(u) = \frac{n-1}{\sum_{v=1}^{n-1} d(v, u)},$$

where d(v, u) is the shortest-path distance between v and u, and n is the number of nodes in the graph.

Notice that higher values of closeness indicate higher centrality.

Parameters G: graph

A NetworkX graph

u: node, optional

Return only the value for node u

distance: edge attribute key, optional (default=None)

Use the specified edge attribute as the edge distance in shortest path calculations

normalized: bool, optional

If True (default) normalize by the number of nodes in the connected part of the graph.

Returns nodes: dictionary

Dictionary of nodes with closeness centrality as the value.

See also:

```
betweenness_centrality, load_centrality, eigenvector_centrality, degree_centrality
```

Notes

The closeness centrality is normalized to (n-1)/(|G|-1) where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately.

If the 'distance' keyword is set to an edge attribute key then the shortest-path length will be computed using Dijkstra's algorithm with that edge attribute as the edge weight.

References

[R226]

4.6.3 Betweenness

betweenness_centrality($G[, k, normalized,]$)	Compute the shortest-path betweenness centrality for nodes.
edge_betweenness_centrality($G[, k,]$)	Compute betweenness centrality for edges.

betweenness_centrality

betweenness_centrality (G, k=None, normalized=True, weight=None, endpoints=False, seed=None) Compute the shortest-path betweenness centrality for nodes.

Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v:

$$c_B(v) = \sum_{s,t \in V} \frac{\sigma(s,t|v)}{\sigma(s,t)}$$

where V is the set of nodes, $\sigma(s,t)$ is the number of shortest (s,t)-paths, and $\sigma(s,t|v)$ is the number of those paths passing through some node v other than s,t. If s=t, $\sigma(s,t)=1$, and if $v\in s,t$, $\sigma(s,t|v)=0$ [R223].

Parameters G: graph

A NetworkX graph

k: int, optional (default=None)

If k is not None use k node samples to estimate betweenness. The value of $k \le n$ where n is the number of nodes in the graph. Higher values give better approximation.

normalized: bool, optional

If True the betweenness values are normalized by 2/((n-1)(n-2)) for graphs, and 1/((n-1)(n-2)) for directed graphs where n is the number of nodes in G.

weight: None or string, optional

If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

endpoints: bool, optional

If True include the endpoints in the shortest path counts.

Returns nodes: dictionary

Dictionary of nodes with betweenness centrality as the value.

See also:

edge_betweenness_centrality, load_centrality

Notes

The algorithm is from Ulrik Brandes [R222]. See [R225] for the original first published version and [R223] for details on algorithms for variations and related metrics.

For approximate betweenness calculations set k=#samples to use k nodes ("pivots") to estimate the betweenness values. For an estimate of the number of pivots needed see [R224].

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes.

References

[R222], [R223], [R224], [R225]

edge betweenness centrality

Betweenness centrality of an edge e is the sum of the fraction of all-pairs shortest paths that pass through e:

- $\sigma(s|t|e)$

 $c_B(e) = \sum_{s,t \in V} \frac{\sigma(s,t|e)}{\sigma(s,t)}$

where V is the set of nodes, 'sigma(s, t)' is the number of shortest (s,t)-paths, and $\sigma(s,t|e)$ is the number of those paths passing through edge e [R241].

Parameters G: graph

A NetworkX graph

k: int, optional (default=None)

If k is not None use k node samples to estimate betweenness. The value of $k \le n$ where n is the number of nodes in the graph. Higher values give better approximation.

normalized: bool, optional

If True the betweenness values are normalized by 2/(n(n-1)) for graphs, and 1/(n(n-1)) for directed graphs where n is the number of nodes in G.

weight: None or string, optional

If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

Returns edges: dictionary

Dictionary of edges with betweenness centrality as the value.

See also:

betweenness_centrality, edge_load

Notes

The algorithm is from Ulrik Brandes [R240].

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes.

References

[R240], [R241]

4.6.4 Current Flow Closeness

 $current_flow_closeness_centrality(G[,...])$ Compute current-flow closeness centrality for nodes.

current_flow_closeness_centrality

 $current_flow_closeness_centrality$ (G, weight='weight', dtype=< type 'float'>, solver='lu')

Compute current-flow closeness centrality for nodes.

Current-flow closeness centrality is variant of closeness centrality based on effective resistance between nodes in a network. This metric is also known as information centrality.

Parameters G: graph

A NetworkX graph

dtype: data type (float)

Default data type for internal matrices. Set to np.float32 for lower memory consumption.

solver: string (default='lu')

Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory).

Returns nodes: dictionary

Dictionary of nodes with current flow closeness centrality as the value.

See also:

```
closeness_centrality
```

Notes

The algorithm is from Brandes [R237].

See also [R238] for the original definition of information centrality.

References

[R237], [R238]

4.6.5 Current-Flow Betweenness

${\tt current_flow_betweenness_centrality}(G[,])$	Compute current-flow betweenness centrality for nodes.
${ t edge_current_flow_betweenness_centrality} (G)$	Compute current-flow betweenness centrality for edges.
approximate_current_flow_betweenness_centrality(G)	Compute the approximate current-flow betweenness cent

current flow betweenness centrality

Compute current-flow betweenness centrality for nodes.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality [R236].

Parameters G: graph

A NetworkX graph

normalized: bool, optional (default=True)

If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G.

weight : string or None, optional (default='weight')

Key for edge data used as the edge weight. If None, then use 1 as each edge weight.

dtype: data type (float)

Default data type for internal matrices. Set to np.float32 for lower memory consumption

solver: string (default='lu')

Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory).

Returns nodes: dictionary

Dictionary of nodes with betweenness centrality as the value.

See also:

```
approximate_current_flow_betweenness_centrality, betweenness_centrality,
edge_betweenness_centrality
```

Notes

Current-flow betweenness can be computed in $O(I(n-1) + mn \log n)$ time [R235], where I(n-1) is the time needed to compute the inverse Laplacian. For a full matrix this is $O(n^3)$ but using sparse methods you can achieve $O(nm\sqrt{k})$ where k is the Laplacian matrix condition number.

The space required is O(nw) where w is the width of the sparse Laplacian matrix. Worse case is w=n for $O(n^2)$.

If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1

References

[R235], [R236]

edge_current_flow_betweenness_centrality

```
\begin{tabular}{ll} edge\_current\_flow\_betweenness\_centrality (G, normalized=True, weight='weight', \\ dtype=<type 'float'>, solver='full') \end{tabular}
```

Compute current-flow betweenness centrality for edges.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality [R243].

Parameters G: graph

A NetworkX graph

normalized : bool, optional (default=True)

If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G.

weight: string or None, optional (default='weight')

Key for edge data used as the edge weight. If None, then use 1 as each edge weight.

dtype: data type (float)

Default data type for internal matrices. Set to np.float32 for lower memory consumption.

```
solver: string (default='lu')
```

Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory).

Returns nodes: dictionary

Dictionary of edge tuples with betweenness centrality as the value.

See also:

betweenness_centrality,edge_betweenness_centrality,current_flow_betweenness_centrality

Notes

Current-flow betweenness can be computed in $O(I(n-1) + mn \log n)$ time [R242], where I(n-1) is the time needed to compute the inverse Laplacian. For a full matrix this is $O(n^3)$ but using sparse methods you can achieve $O(nm\sqrt{k})$ where k is the Laplacian matrix condition number.

The space required is O(nw)where'w is the width of the sparse Laplacian matrix. Worse case is w=n for $O(n^2)$.

If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1.

References

[R242], [R243]

approximate current flow betweenness centrality

Compute the approximate current-flow betweenness centrality for nodes.

Approximates the current-flow betweenness centrality within absolute error of epsilon with high probability [R221].

Parameters G: graph

A NetworkX graph

normalized: bool, optional (default=True)

If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G.

weight : string or None, optional (default='weight')

Key for edge data used as the edge weight. If None, then use 1 as each edge weight.

dtype: data type (float)

Default data type for internal matrices. Set to np.float32 for lower memory consumption.

solver: string (default='lu')

Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory).

epsilon: float

Absolute error tolerance.

kmax: int

Maximum number of sample node pairs to use for approximation.

Returns nodes: dictionary

Dictionary of nodes with betweenness centrality as the value.

See also:

```
current flow betweenness centrality
```

Notes

The running time is $O((1/\epsilon^2)m\sqrt{k}\log n)$ and the space required is O(m) for n nodes and m edges.

If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1.

References

[R221]

4.6.6 Eigenvector

eigenvector_centrality(G[, max_iter, tol,])	Compute the eigenvector centrality for the graph G.
$\verb"eigenvector_centrality_numpy" (G[, weight])$	Compute the eigenvector centrality for the graph G.
<pre>katz_centrality(G[, alpha, beta, max_iter,])</pre>	Compute the Katz centrality for the nodes of the graph G.
$katz_centrality_numpy(G[, alpha, beta,])$	Compute the Katz centrality for the graph G.

eigenvector centrality

eigenvector_centrality(G, max_iter=100, tol=1e-06, nstart=None, weight='weight')

Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvector centrality for node i is

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

where A is the adjacency matrix of the graph G with eigenvalue λ . By virtue of the Perron–Frobenius theorem, there is a unique and positive solution if λ is the largest eigenvalue associated with the eigenvector of the adjacency matrix A ([R245]).

Parameters G: graph

A networkx graph

max_iter: integer, optional

Maximum number of iterations in power method.

tol: float, optional

Error tolerance used to check convergence in power method iteration.

nstart: dictionary, optional

Starting value of eigenvector iteration for each node.

weight: None or string, optional

If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

Returns nodes: dictionary

Dictionary of nodes with eigenvector centrality as the value.

See also:

```
eigenvector_centrality_numpy, pagerank, hits
```

Notes

The measure was introduced by [R244].

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes (G) *tol has been reached.

For directed graphs this is "left" eigenvector centrality which corresponds to the in-edges in the graph. For out-edges eigenvector centrality first reverse the graph with G.reverse().

References

```
[R244], [R245]
```

Examples

```
>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']
```

eigenvector_centrality_numpy

```
eigenvector_centrality_numpy(G, weight='weight')
```

Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvector centrality for node i is

```
\mathbf{A}\mathbf{x} = \lambda\mathbf{x}
```

where A is the adjacency matrix of the graph G with eigenvalue λ . By virtue of the Perron–Frobenius theorem, there is a unique and positive solution if λ is the largest eigenvalue associated with the eigenvector of the adjacency matrix A ([R247]).

Parameters G: graph

A networkx graph

weight: None or string, optional

The name of the edge attribute used as weight. If None, all edge weights are considered equal.

Returns nodes: dictionary

Dictionary of nodes with eigenvector centrality as the value.

See also:

```
eigenvector_centrality, pagerank, hits
```

Notes

The measure was introduced by [R246].

This algorithm uses the SciPy sparse eigenvalue solver (ARPACK) to find the largest eigenvalue/eigenvector pair.

For directed graphs this is "left" eigenvector centrality which corresponds to the in-edges in the graph. For out-edges eigenvector centrality first reverse the graph with G.reverse().

References

```
[R246], [R247]
```

Examples

```
>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality_numpy(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']
```

katz_centrality

Compute the Katz centrality for the nodes of the graph G.

Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node i is

$$x_i = \alpha \sum_j A_{ij} x_j + \beta,$$

where A is the adjacency matrix of the graph G with eigenvalues λ .

The parameter β controls the initial centrality and

$$\alpha < \frac{1}{\lambda_{max}}.$$

Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter β . Connections made with distant neighbors are, however, penalized by an attenuation factor α which should be strictly less than the inverse largest

eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in [R249].

Parameters G: graph

A NetworkX graph

alpha: float

Attenuation factor

beta: scalar or dictionary, optional (default=1.0)

Weight attributed to the immediate neighborhood. If not a scalar, the dictionary must have an value for every node.

max_iter : integer, optional (default=1000)

Maximum number of iterations in power method.

tol: float, optional (default=1.0e-6)

Error tolerance used to check convergence in power method iteration.

nstart: dictionary, optional

Starting value of Katz iteration for each node.

normalized : bool, optional (default=True)

If True normalize the resulting values.

weight: None or string, optional

If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

Returns nodes: dictionary

Dictionary of nodes with Katz centrality as the value.

Raises NetworkXError

If the parameter beta is not a scalar but lacks a value for at least one node

See also:

```
katz_centrality_numpy, eigenvector_centrality, eigenvector_centrality_numpy,
pagerank, hits
```

Notes

Katz centrality was introduced by [R250].

This algorithm it uses the power method to find the eigenvector corresponding to the largest eigenvalue of the adjacency matrix of G. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for the algorithm to converge. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

When $\alpha = 1/\lambda_{max}$ and $\beta = 0$, Katz centrality is the same as eigenvector centrality.

For directed graphs this finds "left" eigenvectors which corresponds to the in-edges in the graph. For out-edges Katz centrality first reverse the graph with G.reverse().

References

[R249], [R250]

Examples

```
>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality(G,1/phi-0.01)
>>> for n,c in sorted(centrality.items()):
... print("%d %0.2f"%(n,c))
0 0.37
1 0.60
2 0.60
3 0.37
```

katz_centrality_numpy

 $katz_centrality_numpy$ (G, alpha=0.1, beta=1.0, normalized=True, weight='weight') Compute the Katz centrality for the graph G.

Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node i is

$$x_i = \alpha \sum_j A_{ij} x_j + \beta,$$

where A is the adjacency matrix of the graph G with eigenvalues λ .

The parameter β controls the initial centrality and

$$\alpha < \frac{1}{\lambda_{max}}.$$

Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter β . Connections made with distant neighbors are, however, penalized by an attenuation factor α which should be strictly less than the inverse largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in [R251].

Parameters G: graph

A NetworkX graph

alpha: float

Attenuation factor

beta: scalar or dictionary, optional (default=1.0)

Weight attributed to the immediate neighborhood. If not a scalar the dictionary must have an value for every node.

normalized: bool

If True normalize the resulting values.

```
weight: None or string, optional
```

If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

Returns nodes: dictionary

Dictionary of nodes with Katz centrality as the value.

Raises NetworkXError

If the parameter beta is not a scalar but lacks a value for at least one node

See also:

```
katz_centrality, eigenvector_centrality_numpy, eigenvector_centrality,
pagerank, hits
```

Notes

Katz centrality was introduced by [R252].

This algorithm uses a direct linear solver to solve the above equation. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for there to be a solution. When $\alpha=1/\lambda_{max}$ and $\beta=0$, Katz centrality is the same as eigenvector centrality.

For directed graphs this finds "left" eigenvectors which corresponds to the in-edges in the graph. For out-edges Katz centrality first reverse the graph with G.reverse().

References

```
[R251], [R252]
```

Examples

```
>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality_numpy(G,1/phi)
>>> for n,c in sorted(centrality.items()):
... print("%d %0.2f"%(n,c))
0 0.37
1 0.60
2 0.60
3 0.37
```

4.6.7 Communicability

$ ext{communicability}(G)$	Return communicability between all pairs of nodes in G.
$ ext{communicability}_{ ext{exp}}(G)$	Return communicability between all pairs of nodes in G.
$ exttt{communicability_centrality}(G)$	Return communicability centrality for each node in G.
$ exttt{communicability_centrality_exp}(G)$	Return the communicability centrality for each node of G
	Continued on next page

Table 4.32 – continued from previous page

	$\verb communicability_betweenness_centrality (G[,]) \\$	Return communicability betweenness for all pairs of nodes in G.
_	$estrada_index(G)$	Return the Estrada index of a the graph G.

communicability

communicability(G)

Return communicability between all pairs of nodes in G.

The communicability between pairs of nodes in G is the sum of closed walks of different lengths starting at node u and ending at node v.

Parameters G: graph

Returns comm: dictionary of dictionaries

Dictionary of dictionaries keyed by nodes with communicability as the value.

Raises NetworkXError

If the graph is not undirected and simple.

See also:

communicability_centrality_exp Communicability centrality for each node of G using matrix exponential.

communicability_centrality Communicability centrality for each node in G using spectral decomposition.

communicability Communicability between pairs of nodes in G.

Notes

This algorithm uses a spectral decomposition of the adjacency matrix. Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v based on the graph spectrum is [R227]

$$C(u,v) = \sum_{j=1}^{n} \phi_j(u)\phi_j(v)e^{\lambda_j},$$

where $\phi_j(u)$ is the uth element of the jth orthonormal eigenvector of the adjacency matrix associated with the eigenvalue λ_j .

References

[R227]

Examples

```
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability(G)
```

communicability exp

$communicability_exp(G)$

Return communicability between all pairs of nodes in G.

Communicability between pair of node (u,v) of node in G is the sum of closed walks of different lengths starting at node u and ending at node v.

Parameters G: graph

Returns comm: dictionary of dictionaries

Dictionary of dictionaries keyed by nodes with communicability as the value.

Raises NetworkXError

If the graph is not undirected and simple.

See also:

communicability_centrality_exp Communicability centrality for each node of G using matrix exponential.

communicability_centrality Communicability centrality for each node in G using spectral decomposition.

communicability_exp Communicability between all pairs of nodes in G using spectral decomposition.

Notes

This algorithm uses matrix exponentiation of the adjacency matrix.

Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v is [R234],

$$C(u,v) = (e^A)_{uv},$$

where A is the adjacency matrix of G.

References

[R234]

Examples

```
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability\_exp(G)
```

communicability_centrality

$communicability_centrality(G)$

Return communicability centrality for each node in G.

Communicability centrality, also called subgraph centrality, of a node n is the sum of closed walks of all lengths starting and ending at node n.

Parameters G: graph

Returns nodes: dictionary

Dictionary of nodes with communicability centrality as the value.

Raises NetworkXError

If the graph is not undirected and simple.

See also:

communicability Communicability between all pairs of nodes in G.

communicability_centrality Communicability centrality for each node of G.

Notes

This version of the algorithm computes eigenvalues and eigenvectors of the adjacency matrix.

Communicability centrality of a node u in G can be found using a spectral decomposition of the adjacency matrix [R230] [R231],

$$SC(u) = \sum_{j=1}^{N} (v_j^u)^2 e^{\lambda_j},$$

where v_j is an eigenvector of the adjacency matrix A of G corresponding corresponding to the eigenvalue λ_j .

References

[R230], [R231]

Examples

```
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability\_centrality(G)
```

communicability centrality exp

$communicability_centrality_exp(G)$

Return the communicability centrality for each node of G

Communicability centrality, also called subgraph centrality, of a node n is the sum of closed walks of all lengths starting and ending at node n.

Parameters G: graph

Returns nodes: dictionary

Dictionary of nodes with communicability centrality as the value.

Raises NetworkXError

If the graph is not undirected and simple.

See also:

communicability Communicability between all pairs of nodes in G.

communicability_centrality Communicability centrality for each node of G.

Notes

This version of the algorithm exponentiates the adjacency matrix. The communicability centrality of a node u in G can be found using the matrix exponential of the adjacency matrix of G [R232] [R233],

$$SC(u) = (e^A)_{uu}$$
.

References

[R232], [R233]

Examples

```
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability_centrality_exp(G)
```

communicability_betweenness_centrality

communicability_betweenness_centrality(G, normalized=True)

Return communicability betweenness for all pairs of nodes in G.

Communicability betweenness measure makes use of the number of walks connecting every pair of nodes as the basis of a betweenness centrality measure.

Parameters G: graph

Returns nodes: dictionary

Dictionary of nodes with communicability betweenness as the value.

Raises NetworkXError

If the graph is not undirected and simple.

See also:

communicability Communicability between all pairs of nodes in G.

communicability_centrality Communicability centrality for each node of G using matrix exponential.

communicability_centrality_exp Communicability centrality for each node in G using spectral decomposition.

Notes

Let G = (V, E) be a simple undirected graph with n nodes and m edges, and A denote the adjacency matrix of G.

Let G(r) = (V, E(r)) be the graph resulting from removing all edges connected to node r but not the node itself.

The adjacency matrix for G(r) is A + E(r), where E(r) has nonzeros only in row and column r.

The communicability betweenness of a node r is [R229]

$$\omega_r = \frac{1}{C} \sum_{p} \sum_{q} \frac{G_{prq}}{G_{pq}}, p \neq q, q \neq r,$$

where $G_{prq}=(e_{pq}^A-(e^{A+E(r)})_{pq}$ is the number of walks involving node r, $G_{pq}=(e^A)_{pq}$ is the number of closed walks starting at node p and ending at node q, and $C=(n-1)^2-(n-1)$ is a normalization factor equal to the number of terms in the sum.

The resulting ω_r takes values between zero and one. The lower bound cannot be attained for a connected graph, and the upper bound is attained in the star graph.

References

[R229]

Examples

```
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> cbc = nx.communicability_betweenness_centrality(G)
```

estrada_index

estrada index(G)

Return the Estrada index of a the graph G.

Parameters G: graph

Returns estrada index: float

Raises NetworkXError

If the graph is not undirected and simple.

See also:

```
estrada_index_exp
```

Notes

Let G=(V,E) be a simple undirected graph with n nodes and let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be a non-increasing ordering of the eigenvalues of its adjacency matrix A. The Estrada index is

$$EE(G) = \sum_{j=1}^{n} e^{\lambda_j}.$$

References

[R248]

Examples

```
>>> G=nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> ei=nx.estrada_index(G)
```

4.6.8 Load

<pre>load_centrality(G[, v, cutoff, normalized,])</pre>	Compute load centrality for nodes.
$edge_load(G[, nodes, cutoff])$	Compute edge load.

load_centrality

load_centrality(G, v=None, cutoff=None, normalized=True, weight=None)

Compute load centrality for nodes.

The load centrality of a node is the fraction of all shortest paths that pass through that node.

Parameters G: graph

A networkx graph

normalized: bool, optional

If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number of nodes in G.

weight: None or string, optional

If None, edge weights are ignored. Otherwise holds the name of the edge attribute used as weight.

cutoff : bool, optional

If specified, only consider paths of length <= cutoff.

Returns nodes: dictionary

Dictionary of nodes with centrality as the value.

See also:

```
betweenness_centrality
```

Notes

Load centrality is slightly different than betweenness. It was originally introduced by [R254]. For this load algorithm see [R253].

References

[R253], [R254]

edge load

```
edge_load (G, nodes=None, cutoff=False)
```

Compute edge load.

WARNING:

This module is for demonstration and testing purposes.

4.6.9 Dispersion

dispersion(G[, u, v, normalized, alpha, b, c]) Calculate dispersion between u and v in G.

dispersion

dispersion (G, u=None, v=None, normalized=True, alpha=1.0, b=0.0, c=0.0) Calculate dispersion between u and v in G.

A link between two actors (u and v) has a high dispersion when their mutual ties (s and t) are not well connected with each other.

Parameters G: graph

A NetworkX graph.

 \mathbf{u} : node, optional

The source for the dispersion score (e.g. ego node of the network).

v : node, optional

The target of the dispersion score if specified.

normalized: bool

If True (default) normalize by the embeddeness of the nodes (u and v).

Returns nodes: dictionary

If u (v) is specified, returns a dictionary of nodes with dispersion score for all "target" ("source") nodes. If neither u nor v is specified, returns a dictionary of dictionaries for all nodes 'u' in the graph with a dispersion score for each node 'v'.

Notes

This implementation follows Lars Backstrom and Jon Kleinberg [R239]. Typical usage would be to run dispersion on the ego network G_u if u were specified. Running dispersion () with neither u nor v specified can take some time to complete.

References

[R239]

4.7 Chordal

Algorithms for chordal graphs.

A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle). http://en.wikipedia.org/wiki/Chordal_graph

is_chordal(G)	Checks whether G is a chordal graph.
chordal_graph_cliques(G)	Returns the set of maximal cliques of a chordal graph.
chordal_graph_treewidth(G)	Returns the treewidth of the chordal graph G.
<pre>find_induced_nodes(G, s, t[, treewidth_bound])</pre>	Returns the set of induced nodes in the path from s to t.

4.7.1 is_chordal

$is_chordal(G)$

Checks whether G is a chordal graph.

A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle).

Parameters G: graph

A NetworkX graph.

Returns chordal: bool

True if G is a chordal graph and False otherwise.

Raises NetworkXError

The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised.

Notes

The routine tries to go through every node following maximum cardinality search. It returns False when it finds that the separator for any node is not a clique. Based on the algorithms in [R257].

References

[R257]

Examples

```
>>> import networkx as nx
>>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
>>> G=nx.Graph(e)
>>> nx.is_chordal(G)
True
```

4.7. Chordal 195

4.7.2 chordal graph cliques

${\tt chordal_graph_cliques}\,(G)$

Returns the set of maximal cliques of a chordal graph.

The algorithm breaks the graph in connected components and performs a maximum cardinality search in each component to get the cliques.

Parameters G: graph

A NetworkX graph

Returns cliques: A set containing the maximal cliques in G.

Raises NetworkXError

The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised.

Examples

```
>>> import networkx as nx
>>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> setlist = nx.chordal_graph_cliques(G)
```

4.7.3 chordal graph treewidth

$chordal_graph_treewidth(G)$

Returns the treewidth of the chordal graph G.

Parameters G: graph

A NetworkX graph

Returns treewidth: int

The size of the largest clique in the graph minus one.

Raises NetworkXError

The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised.

References

[R255]

Examples

```
>>> import networkx as nx
>>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> nx.chordal_graph_treewidth(G)
3
```

4.7.4 find induced nodes

find_induced_nodes (*G*, *s*, *t*, *treewidth_bound=9223372036854775807*)

Returns the set of induced nodes in the path from s to t.

Parameters G: graph

A chordal NetworkX graph

s: node

Source node to look for induced nodes

t: node

Destination node to look for induced nodes

treewith_bound: float

Maximum treewidth acceptable for the graph H. The search for induced nodes will end as soon as the treewidth_bound is exceeded.

Returns I: Set of nodes

The set of induced nodes in the path from s to t in G

Raises NetworkXError

The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised.

Notes

G must be a chordal graph and (s,t) an edge that is not in G.

If a treewidth_bound is provided, the search for induced nodes will end as soon as the treewidth_bound is exceeded.

The algorithm is inspired by Algorithm 4 in [R256]. A formal definition of induced node can also be found on that reference.

References

[R256]

4.7. Chordal 197

Examples

```
>>> import networkx as nx
>>> G=nx.Graph()
>>> G = nx.generators.classic.path_graph(10)
>>> I = nx.find_induced_nodes(G,1,9,2)
>>> list(I)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```

4.8 Clique

Find and manipulate cliques of graphs.

Note that finding the largest clique of a graph has been shown to be an NP-complete problem; the algorithms here could take a long time to run.

http://en.wikipedia.org/wiki/Clique_problem

enumerate_all_cliques(G)	Returns all cliques in an undirected graph.
find_cliques(G)	Search for all maximal cliques in a graph.
$make_max_clique_graph(G[, create_using, name])$	Create the maximal clique graph of a graph.
$make_clique_bipartite(G[, fpos,])$	Create a bipartite clique graph from a graph G.
<pre>graph_clique_number(G[, cliques])</pre>	Return the clique number (size of the largest clique) for G.
<pre>graph_number_of_cliques(G[, cliques])</pre>	Returns the number of maximal cliques in G.
node_clique_number(G[, nodes, cliques])	Returns the size of the largest maximal clique containing each given node
<pre>number_of_cliques(G[, nodes, cliques])</pre>	Returns the number of maximal cliques for each node.
<pre>cliques_containing_node(G[, nodes, cliques])</pre>	Returns a list of cliques containing the given node.

4.8.1 enumerate all cliques

$enumerate_all_cliques(G)$

Returns all cliques in an undirected graph.

This method returns cliques of size (cardinality) k = 1, 2, 3, ..., maxDegree - 1.

Where maxDegree is the maximal degree of any node in the graph.

Parameters G: undirected graph

Returns generator of lists: generator of list for each clique.

Notes

To obtain a list of all cliques, use list (enumerate_all_cliques(G)).

Based on the algorithm published by Zhang et al. (2005) [R258] and adapted to output all cliques discovered.

This algorithm is not applicable on directed graphs.

This algorithm ignores self-loops and parallel edges as clique is not conventionally defined with such edges.

There are often many cliques in graphs. This algorithm however, hopefully, does not run out of memory since it only keeps candidate sublists in memory and continuously removes exhausted sublists.

References

[R258]

4.8.2 find cliques

$find_cliques(G)$

Search for all maximal cliques in a graph.

Maximal cliques are the largest complete subgraph containing a given node. The largest maximal clique is sometimes called the maximum clique.

Returns generator of lists: genetor of member list for each maximal clique

See also:

find_cliques_recursive, A

Notes

To obtain a list of cliques, use list(find_cliques(G)).

Based on the algorithm published by Bron & Kerbosch (1973) [R259] as adapted by Tomita, Tanaka and Takahashi (2006) [R260] and discussed in Cazals and Karande (2008) [R261]. The method essentially unrolls the recursion used in the references to avoid issues of recursion stack depth.

This algorithm is not suitable for directed graphs.

This algorithm ignores self-loops and parallel edges as clique is not conventionally defined with such edges.

There are often many cliques in graphs. This algorithm can run out of memory for large graphs.

References

[R259], [R260], [R261]

4.8.3 make max clique graph

make_max_clique_graph (G, create_using=None, name=None)

Create the maximal clique graph of a graph.

Finds the maximal cliques and treats these as nodes. The nodes are connected if they have common members in the original graph. Theory has done a lot with clique graphs, but I haven't seen much on maximal clique graphs.

Notes

This should be the same as make_clique_bipartite followed by project_up, but it saves all the intermediate steps.

4.8. Clique 199

4.8.4 make clique bipartite

make_clique_bipartite(G, fpos=None, create_using=None, name=None)

Create a bipartite clique graph from a graph G.

Nodes of G are retained as the "bottom nodes" of B and cliques of G become "top nodes" of B. Edges are present if a bottom node belongs to the clique represented by the top node.

Returns a Graph with additional attribute dict B.node_type which is keyed by nodes to "Bottom" or "Top" appropriately.

if fpos is not None, a second additional attribute dict B.pos is created to hold the position tuple of each node for viewing the bipartite graph.

4.8.5 graph_clique_number

graph_clique_number(G, cliques=None)

Return the clique number (size of the largest clique) for G.

An optional list of cliques can be input if already computed.

4.8.6 graph_number_of_cliques

graph_number_of_cliques(G, cliques=None)

Returns the number of maximal cliques in G.

An optional list of cliques can be input if already computed.

4.8.7 node clique number

node_clique_number(G, nodes=None, cliques=None)

Returns the size of the largest maximal clique containing each given node.

Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.8.8 number_of_cliques

number_of_cliques (G, nodes=None, cliques=None)

Returns the number of maximal cliques for each node.

Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.8.9 cliques containing node

cliques_containing_node(G, nodes=None, cliques=None)

Returns a list of cliques containing the given node.

Returns a single list or list of lists depending on input nodes. Optional list of cliques can be input if already computed.

4.9 Clustering

Algorithms to characterize the number of triangles in a graph.

triangles(G[, nodes])	Compute the number of triangles.
transitivity(G) Compute graph transitivity, the fraction of all possible triangles present	
clustering(G[, nodes, weight])	Compute the clustering coefficient for nodes.
average_clustering(G[, nodes, weight,])	Compute the average clustering coefficient for the graph G.
$square_clustering(G[, nodes])$	Compute the squares clustering coefficient for nodes.

4.9.1 triangles

triangles (G, nodes=None)

Compute the number of triangles.

Finds the number of triangles that include a node as one vertex.

Parameters G: graph

A networkx graph

nodes: container of nodes, optional (default= all nodes in G)

Compute triangles for nodes in this container.

Returns out : dictionary

Number of triangles keyed by node label.

Notes

When computing triangles for the entire graph each triangle is counted three times, once at each node. Self loops are ignored.

Examples

```
>>> G=nx.complete_graph(5)
>>> print(nx.triangles(G,0))
6
>>> print(nx.triangles(G))
{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
>>> print(list(nx.triangles(G,(0,1)).values()))
[6, 6]
```

4.9.2 transitivity

transitivity(G)

Compute graph transitivity, the fraction of all possible triangles present in G.

Possible triangles are identified by the number of "triads" (two edges with a shared vertex).

The transitivity is

$$T = 3 \frac{\#triangles}{\#triads}.$$

4.9. Clustering 201

Parameters G: graph

Returns out: float

Transitivity

Examples

```
>>> G = nx.complete_graph(5)
>>> print(nx.transitivity(G))
1.0
```

4.9.3 clustering

clustering(G, nodes=None, weight=None)

Compute the clustering coefficient for nodes.

For unweighted graphs, the clustering of a node u is the fraction of possible triangles through that node that exist.

$$c_u = \frac{2T(u)}{deg(u)(deg(u) - 1)},$$

where T(u) is the number of triangles through node u and deg(u) is the degree of u.

For weighted graphs, the clustering is defined as the geometric average of the subgraph edge weights [R264],

$$c_u = \frac{1}{deg(u)(deg(u) - 1)} \sum_{uv} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}.$$

The edge weights \hat{w}_{uv} are normalized by the maximum weight in the network $\hat{w}_{uv} = w_{uv}/\max(w)$.

The value of c_u is assigned to 0 if deg(u) < 2.

Parameters G: graph

nodes: container of nodes, optional (default=all nodes in G)

Compute clustering for nodes in this container.

weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns out: float, or dictionary

Clustering coefficient at specified nodes

Notes

Self loops are ignored.

References

[R264]

Examples

```
>>> G=nx.complete_graph(5)
>>> print(nx.clustering(G,0))
1.0
>>> print(nx.clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
```

4.9.4 average clustering

average_clustering(G, nodes=None, weight=None, count_zeros=True)

Compute the average clustering coefficient for the graph G.

The clustering coefficient for the graph is the average,

$$C = \frac{1}{n} \sum_{v \in G} c_v,$$

where n is the number of nodes in G.

Parameters G: graph

nodes: container of nodes, optional (default=all nodes in G)

Compute average clustering for nodes in this container.

weight: string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

count_zeros : bool

If False include only the nodes with nonzero clustering in the average.

Returns avg: float

Average clustering

Notes

This is a space saving routine; it might be faster to use the clustering function to get a list and then take the average.

Self loops are ignored.

References

```
[R262], [R263]
```

Examples

```
>>> G=nx.complete_graph(5)
>>> print(nx.average_clustering(G))
1.0
```

4.9. Clustering 203

4.9.5 square clustering

square_clustering(G, nodes=None)

Compute the squares clustering coefficient for nodes.

For each node return the fraction of possible squares that exist at the node [R265]

$$C_4(v) = \frac{\sum_{u=1}^{k_v} \sum_{w=u+1}^{k_v} q_v(u, w)}{\sum_{u=1}^{k_v} \sum_{w=u+1}^{k_v} [a_v(u, w) + q_v(u, w)]},$$

where $q_v(u, w)$ are the number of common neighbors of u and w other than v (ie squares), and $a_v(u, w) = (k_u - (1 + q_v(u, w) + \theta_{uv}))(k_w - (1 + q_v(u, w) + \theta_{uw}))$, where $\theta_{uw} = 1$ if u and w are connected and 0 otherwise.

Parameters G: graph

nodes: container of nodes, optional (default=all nodes in G)

Compute clustering for nodes in this container.

Returns c4: dictionary

A dictionary keyed by node with the square clustering coefficient value.

Notes

While $C_3(v)$ (triangle clustering) gives the probability that two neighbors of node v are connected with each other, $C_4(v)$ is the probability that two neighbors of node v share a common neighbor different from v. This algorithm can be applied to both bipartite and unipartite networks.

References

[R265]

Examples

```
>>> G=nx.complete_graph(5)
>>> print(nx.square_clustering(G,0))
1.0
>>> print(nx.square_clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
```

4.10 Coloring

greedy_color(G[, strategy, interchange]) Color a graph using various strategies of greedy graph coloring.

4.10.1 greedy_color

greedy_color (*G*, strategy=<function strategy_largest_first at 0x2129c08>, interchange=False)

Color a graph using various strategies of greedy graph coloring. The strategies are described in [R266].

Attempts to color a graph using as few colors as possible, where no neighbours of a node can have same color as the node itself.

Parameters G: NetworkX graph

```
strategy : function(G, colors)
```

A function that provides the coloring strategy, by returning nodes in the ordering they should be colored. G is the graph, and colors is a dict of the currently assigned colors, keyed by nodes.

You can pass your own ordering function, or use one of the built in:

- strategy_largest_first
- · strategy_random_sequential
- strategy_smallest_last
- strategy_independent_set
- strategy_connected_sequential_bfs
- · strategy_connected_sequential_dfs
- strategy_connected_sequential_bfs)
- strategy_saturation_largest_first (also known as DSATUR)

interchange: bool

Will use the color interchange algorithm described by [R267] if set to true.

Note that saturation largest first and independent set do not work with interchange. Furthermore, if you use interchange with your own strategy function, you cannot rely on the values in the colors argument.

Returns A dictionary with keys representing nodes and values representing corresponding coloring.

References

```
[R266], [R267]
```

Examples

```
>>> G = nx.cycle_graph(4)
>>> d = nx.coloring.greedy_color(G, strategy=nx.coloring.strategy_largest_first)
>>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}]
True
```

4.11 Communities

4.11.1 K-Clique

k clique communities(G, k[, cliques]) Find k-clique communities in graph using the percolation method.

4.11. Communities 205

k clique communities

k_clique_communities (*G*, *k*, *cliques=None*)

Find k-clique communities in graph using the percolation method.

A k-clique community is the union of all cliques of size k that can be reached through adjacent (sharing k-1 nodes) k-cliques.

```
Parameters G: NetworkX graph
```

 \mathbf{k} : int

Size of smallest clique

cliques: list or generator

Precomputed cliques (use networkx.find_cliques(G))

Returns Yields sets of nodes, one for each k-clique community.

References

[R268]

Examples

```
>>> G = nx.complete_graph(5)
>>> K5 = nx.convert_node_labels_to_integers(G, first_label=2)
>>> G.add_edges_from(K5.edges())
>>> c = list(nx.k_clique_communities(G, 4))
>>> list(c[0])
[0, 1, 2, 3, 4, 5, 6]
>>> list(nx.k_clique_communities(G, 6))
[]
```

4.12 Components

4.12.1 Connectivity

Connected components.

is_connected(G)	Return True if the graph is connected, false otherwise.
$number_connected_components(G)$	Return the number of connected components.
$ ext{connected_components}(G)$	Generate connected components.
$connected_component_subgraphs(G[, copy])$	Generate connected components as subgraphs.
$node_connected_component(G, n)$	Return the nodes in the component of graph containing node n.

is_connected

$is_connected(G)$

Return True if the graph is connected, false otherwise.

Parameters G: NetworkX Graph

An undirected graph.

Returns connected: bool

True if the graph is connected, false otherwise.

See also:

```
connected_components
```

Notes

For undirected graphs only.

Examples

```
>>> G = nx.path_graph(4)
>>> print(nx.is_connected(G))
True
```

number connected components

$number_connected_components(G)$

Return the number of connected components.

Parameters G: NetworkX graph

An undirected graph.

Returns n: integer

Number of connected components

See also:

```
connected_components
```

Notes

For undirected graphs only.

connected_components

$connected_components(G)$

Generate connected components.

Parameters G: NetworkX graph

An undirected graph

Returns comp: generator of sets

A generator of sets of nodes, one for each component of G.

See also:

```
strongly_connected_components
```

4.12. Components 207

Notes

For undirected graphs only.

Examples

Generate a sorted list of connected components, largest first.

```
>>> G = nx.path_graph(4)
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
[4, 3]
```

If you only want the largest connected component, it's more efficient to use max instead of sort.

```
>>> largest_cc = max(nx.connected_components(G), key=len)
```

connected_component_subgraphs

```
connected_component_subgraphs (G, copy=True)
```

Generate connected components as subgraphs.

Parameters G: NetworkX graph

An undirected graph.

copy: bool (default=True)

If True make a copy of the graph attributes

Returns comp: generator

A generator of graphs, one for each connected component of G.

See also:

```
connected_components
```

Notes

For undirected graphs only. Graph, node, and edge attributes are copied to the subgraphs by default.

Examples

```
>>> G = nx.path_graph(4)
>>> G.add_edge(5,6)
>>> graphs = list(nx.connected_component_subgraphs(G))
```

If you only want the largest connected component, it's more efficient to use max than sort.

```
>>> Gc = max(nx.connected_component_subgraphs(G), key=len)
```

node connected component

$node_connected_component(G, n)$

Return the nodes in the component of graph containing node n.

Parameters G: NetworkX Graph

An undirected graph.

n: node label

A node in G

Returns comp: set

A set of nodes in the component of G containing node n.

See also:

connected_components

Notes

For undirected graphs only.

4.12.2 Strong connectivity

Strongly connected components.

$is_strongly_connected(G)$	Test directed graph for strong connectivity.
$\verb number_strongly_connected_components (G)$	Return number of strongly connected components in graph.
${\sf strongly_connected_components}(G)$	Generate nodes in strongly connected components of graph.
$strongly_connected_component_subgraphs(G[,copy])$	Generate strongly connected components as subgraphs.
${\sf strongly_connected_components_recursive}(G)$	Generate nodes in strongly connected components of graph.
$\verb kosaraju_strongly_connected_components (G[,])$	Generate nodes in strongly connected components of graph.
$ ext{condensation}(G[, ext{scc}])$	Returns the condensation of G.

is_strongly_connected

$\verb|is_strongly_connected|(G)$

Test directed graph for strong connectivity.

Parameters G: NetworkX Graph

A directed graph.

Returns connected: bool

True if the graph is strongly connected, False otherwise.

See also:

strongly_connected_components

Notes

For directed graphs only.

4.12. Components 209

number_strongly_connected_components

${\tt number_strongly_connected_components}\ (G)$

Return number of strongly connected components in graph.

Parameters G: NetworkX graph

A directed graph.

Returns n: integer

Number of strongly connected components

See also:

connected_components

Notes

For directed graphs only.

strongly_connected_components

$strongly_connected_components(G)$

Generate nodes in strongly connected components of graph.

Parameters G: NetworkX Graph

An directed graph.

Returns comp: generator of sets

A generator of sets of nodes, one for each strongly connected component of G.

Raises NetworkXNotImplemented:

If G is undirected.

See also:

connected_components, weakly_connected_components

Notes

Uses Tarjan's algorithm with Nuutila's modifications. Nonrecursive version of algorithm.

References

[R274], [R275]

Examples

Generate a sorted list of strongly connected components, largest first.

```
>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.strongly_connected_components(G),
... key=len, reverse=True)]
[4, 3]
```

If you only want the largest component, it's more efficient to use max instead of sort.

```
>>> largest = max(nx.strongly_connected_components(G), key=len)
```

strongly connected component subgraphs

strongly_connected_component_subgraphs (G, copy=True)

Generate strongly connected components as subgraphs.

Parameters G: NetworkX Graph

A directed graph.

copy: boolean, optional

if copy is True, Graph, node, and edge attributes are copied to the subgraphs.

Returns comp: generator of graphs

A generator of graphs, one for each strongly connected component of G.

See also:

connected_component_subgraphs, weakly_connected_component_subgraphs

Examples

Generate a sorted list of strongly connected components, largest first.

If you only want the largest component, it's more efficient to use max instead of sort.

```
>>> Gc = max(nx.strongly_connected_component_subgraphs(G), key=len)
```

strongly_connected_components_recursive

$\verb|strongly_connected_components_recursive| (G)$

Generate nodes in strongly connected components of graph.

Recursive version of algorithm.

Parameters G: NetworkX Graph

An directed graph.

Returns comp: generator of sets

A generator of sets of nodes, one for each strongly connected component of G.

4.12. Components 211

Raises NetworkXNotImplemented:

If G is undirected

See also:

```
connected_components
```

Notes

Uses Tarjan's algorithm with Nuutila's modifications.

References

```
[R276], [R277]
```

Examples

Generate a sorted list of strongly connected components, largest first.

If you only want the largest component, it's more efficient to use max instead of sort.

```
>>> largest = max(nx.strongly_connected_components_recursive(G), key=len)
```

kosaraju_strongly_connected_components

$\verb|kosaraju_strongly_connected_components| (G, source=None)$

Generate nodes in strongly connected components of graph.

Parameters G: NetworkX Graph

An directed graph.

Returns comp: generator of sets

A genrator of sets of nodes, one for each strongly connected component of G.

Raises NetworkXNotImplemented:

If G is undirected.

See also:

```
connected_components, weakly_connected_components
```

Notes

Uses Kosaraju's algorithm.

Examples

Generate a sorted list of strongly connected components, largest first.

If you only want the largest component, it's more efficient to use max instead of sort.

```
>>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len)
```

condensation

```
condensation(G, scc=None)
```

Returns the condensation of G.

The condensation of G is the graph with each of the strongly connected components contracted into a single node.

Parameters G: NetworkX DiGraph

A directed graph.

scc: list or generator (optional, default=None)

Strongly connected components. If provided, the elements in scc must partition the nodes in G. If not provided, it will be calculated as $scc=nx.strongly_connected_components(G)$.

Returns C: NetworkX DiGraph

The condensation graph C of G. The node labels are integers corresponding to the index of the component in the list of strongly connected components of G. C has a graph attribute named 'mapping' with a dictionary mapping the original nodes to the nodes in C to which they belong. Each node in C also has a node attribute 'members' with the set of original nodes in G that form the SCC that the node in C represents.

Raises NetworkXNotImplemented:

If G is not directed

Notes

After contracting all strongly connected components to a single node, the resulting graph is a directed acyclic graph.

4.12.3 Weak connectivity

Weakly connected components.

$is_weakly_connected(G)$	Test directed graph for weak connectivity.
${\tt number_weakly_connected_components}(G)$	Return the number of weakly connected components in G.
	Continued on next page

4.12. Components 213

Table 4.42 – continued from previous page

${\tt weakly_connected_components}(G)$	Generate weakly connected components of G.
weakly_connected_component_subgraphs($G[, copy]$)	Generate weakly connected components as subgraphs.

is_weakly_connected

$is_weakly_connected(G)$

Test directed graph for weak connectivity.

A directed graph is weakly connected if, and only if, the graph is connected when the direction of the edge between nodes is ignored.

Parameters G: NetworkX Graph

A directed graph.

Returns connected: bool

True if the graph is weakly connected, False otherwise.

See also:

is_strongly_connected, is_semiconnected, is_connected

Notes

For directed graphs only.

number weakly connected components

$number_weakly_connected_components(G)$

Return the number of weakly connected components in G.

Parameters G: NetworkX graph

A directed graph.

Returns n: integer

Number of weakly connected components

See also:

connected_components

Notes

For directed graphs only.

weakly_connected_components

${\tt weakly_connected_components}\,(G)$

Generate weakly connected components of G.

Parameters G: NetworkX graph

A directed graph

Returns comp: generator of sets

A generator of sets of nodes, one for each weakly connected component of G.

See also:

```
strongly_connected_components
```

Notes

For directed graphs only.

Examples

Generate a sorted list of weakly connected components, largest first.

If you only want the largest component, it's more efficient to use max instead of sort.

```
>>> largest_cc = max(nx.weakly_connected_components(G), key=len)
```

weakly_connected_component_subgraphs

weakly_connected_component_subgraphs (G, copy=True)

Generate weakly connected components as subgraphs.

Parameters G: NetworkX graph

A directed graph.

copy: bool (default=True)

If True make a copy of the graph attributes

Returns comp: generator

A generator of graphs, one for each weakly connected component of G.

See also:

```
strongly_connected_components, connected_components
```

Notes

For directed graphs only. Graph, node, and edge attributes are copied to the subgraphs by default.

Examples

Generate a sorted list of weakly connected components, largest first.

4.12. Components 215

If you only want the largest component, it's more efficient to use max instead of sort.

```
>>> Gc = max(nx.weakly_connected_component_subgraphs(G), key=len)
```

4.12.4 Attracting components

Attracting components.

! t t t (C)	Determs True if Consists of a sixele attractive assument
${ ilde{ iny G}}$	Returns True if G consists of a single attracting component.
${ t number_attracting_components}(G)$	Returns the number of attracting components in G .
$\operatorname{attracting_components}(G)$	Generates a list of attracting components in G .
$attracting_component_subgraphs(G[,copy])$	Generates a list of attracting component subgraphs from G .

is_attracting_component

$is_attracting_component(G)$

Returns True if G consists of a single attracting component.

Parameters G: DiGraph, MultiDiGraph

The graph to be analyzed.

Returns attracting: bool

True if G has a single attracting component. Otherwise, False.

See also:

attracting_components, number_attracting_components, attracting_component_subgraphs

number_attracting_components

number_attracting_components(G)

Returns the number of attracting components in G.

 $\textbf{Parameters} \ \ \textbf{G} : DiGraph, MultiDiGraph$

The graph to be analyzed.

Returns n: int

The number of attracting components in G.

See also:

 $\verb|attracting_components|, \verb|is_attracting_component|, \verb|attracting_component_subgraphs| \\$

attracting_components

$attracting_components(G)$

Generates a list of attracting components in G.

An attracting component in a directed graph G is a strongly connected component with the property that a random walker on the graph will never leave the component, once it enters the component.

The nodes in attracting components can also be thought of as recurrent nodes. If a random walker enters the attractor containing the node, then the node will be visited infinitely often.

Parameters G: DiGraph, MultiDiGraph

The graph to be analyzed.

Returns attractors: generator of sets

A generator of sets of nodes, one for each attracting component of G.

See also:

```
number_attracting_components,
attracting_component_subgraphs
```

is_attracting_component,

attracting component subgraphs

attracting_component_subgraphs(G, copy=True)

Generates a list of attracting component subgraphs from G.

Parameters G: DiGraph, MultiDiGraph

The graph to be analyzed.

Returns subgraphs: list

A list of node-induced subgraphs of the attracting components of G.

copy: bool

If copy is True, graph, node, and edge attributes are copied to the subgraphs.

See also:

attracting_components, number_attracting_components, is_attracting_component

4.12.5 Biconnected components

Biconnected components and articulation points.

$is_biconnected(G)$	Return True if the graph is biconnected, False otherwise.
$ ext{biconnected_components}(G)$	Return a generator of sets of nodes, one set for each biconnected
${\tt biconnected_component_edges}(G)$	Return a generator of lists of edges, one list for each biconnected compor
$\verb biconnected_component_subgraphs (G[,copy])$	Return a generator of graphs, one graph for each biconnected component
$\operatorname{articulation_points}(G)$	Return a generator of articulation points, or cut vertices, of a graph.

is_biconnected

$is_biconnected(G)$

Return True if the graph is biconnected, False otherwise.

A graph is biconnected if, and only if, it cannot be disconnected by removing only one node (and all edges incident on that node). If removing a node increases the number of disconnected components in the graph, that node is called an articulation point, or cut vertex. A biconnected graph has no articulation points.

Parameters G: NetworkX Graph

4.12. Components 217

An undirected graph.

Returns biconnected: bool

True if the graph is biconnected, False otherwise.

Raises NetworkXNotImplemented:

If the input graph is not undirected.

See also:

```
biconnected_components, articulation_points, biconnected_component_edges, biconnected_component_subgraphs
```

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

[R273]

Examples

```
>>> G = nx.path_graph(4)
>>> print(nx.is_biconnected(G))
False
>>> G.add_edge(0, 3)
>>> print(nx.is_biconnected(G))
True
```

biconnected components

$\verb|biconnected_components|(G)$

Return a generator of sets of nodes, one set for each biconnected component of the graph

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters G: NetworkX Graph

An undirected graph.

Returns nodes: generator

Generator of sets of nodes, one set for each biconnected component.

Raises NetworkXNotImplemented:

If the input graph is not undirected.

See also:

```
is_biconnected, articulation_points, biconnected_component_edges, biconnected_component_subgraphs
```

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

[R272]

Examples

```
>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
```

You can generate a sorted list of biconnected components, largest first, using sort.

```
>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
[5, 2]
```

If you only want the largest connected component, it's more efficient to use max instead of sort.

```
>>> Gc = max(nx.biconnected_components(G), key=len)
```

biconnected_component_edges

$biconnected_component_edges(G)$

Return a generator of lists of edges, one list for each biconnected component of the input graph.

4.12. Components 219

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. However, each edge belongs to one, and only one, biconnected component.

Notice that by convention a dyad is considered a biconnected component.

Parameters G: NetworkX Graph

An undirected graph.

Returns edges: generator of lists

Generator of lists of edges, one list for each bicomponent.

Raises NetworkXNotImplemented:

If the input graph is not undirected.

See also:

```
is_biconnected, biconnected_components, articulation_points, biconnected component subgraphs
```

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

[R270]

Examples

```
>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
5
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
```

biconnected_component_subgraphs

biconnected_component_subgraphs (G, copy=True)

Return a generator of graphs, one graph for each biconnected component of the input graph.

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters G: NetworkX Graph

An undirected graph.

Returns graphs: generator

Generator of graphs, one graph for each biconnected component.

Raises NetworkXNotImplemented:

If the input graph is not undirected.

See also:

```
is_biconnected, articulation_points, biconnected_component_edges, biconnected components
```

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

Graph, node, and edge attributes are copied to the subgraphs.

References

[R271]

Examples

```
>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_component_subgraphs(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents = list(nx.biconnected_component_subgraphs(G))
>>> len(bicomponents)
```

You can generate a sorted list of biconnected components, largest first, using sort.

4.12. Components 221

```
>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_component_subgraphs(G),
... key=len, reverse=True)]
[5, 2]
```

If you only want the largest connected component, it's more efficient to use max instead of sort.

```
>>> Gc = max(nx.biconnected_component_subgraphs(G), key=len)
```

articulation_points

articulation_points(G)

Return a generator of articulation points, or cut vertices, of a graph.

An articulation point or cut vertex is any node whose removal (along with all its incident edges) increases the number of connected components of a graph. An undirected connected graph without articulation points is biconnected. Articulation points belong to more than one biconnected component of a graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters G: NetworkX Graph

An undirected graph.

Returns articulation points: generator

generator of nodes

Raises NetworkXNotImplemented:

If the input graph is not undirected.

See also:

```
is_biconnected, biconnected_components, biconnected_component_edges, biconnected component subgraphs
```

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

[R269]

Examples

```
>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> len(list(nx.articulation_points(G)))
```

```
4
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> len(list(nx.articulation_points(G)))
```

4.12.6 Semiconnectedness

Semiconnectedness.

is_semiconnected(G) Return True if the graph is semiconnected, False otherwise.

is semiconnected

is semiconnected(G)

Return True if the graph is semiconnected, False otherwise.

A graph is semiconnected if, and only if, for any pair of nodes, either one is reachable from the other, or they are mutually reachable.

Parameters G: NetworkX graph

A directed graph.

Returns semiconnected: bool

True if the graph is semiconnected, False otherwise.

Raises NetworkXNotImplemented:

If the input graph is not directed.

Network XPointless Concept:

If the graph is empty.

See also:

```
is_strongly_connected, is_weakly_connected
```

Examples

```
>>> G=nx.path_graph(4,create_using=nx.DiGraph())
>>> print(nx.is_semiconnected(G))
True
>>> G=nx.DiGraph([(1, 2), (3, 2)])
>>> print(nx.is_semiconnected(G))
False
```

4.13 Connectivity

Connectivity and cut algorithms

4.13.1 K-node-components

Moody and White algorithm for k-components

 $k_components(G[, flow_func])$ Returns the k-component structure of a graph G.

k components

k_components (*G*, *flow_func=None*)

Returns the k-component structure of a graph G.

A k-component is a maximal subgraph of a graph G that has, at least, node connectivity k: we need to remove at least k nodes to break it into more components. k-components have an inherent hierarchical structure because they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which can contain one or more 3-components, and so forth.

Parameters G: NetworkX graph

flow_func : function

Function to perform the underlying flow computations. Default value edmonds_karp(). This function performs better in sparse graphs with right tailed degree distributions. shortest_augmenting_path() will perform better in denser graphs.

Returns k_components: dict

Dictionary with all connectivity levels k in the input Graph as keys and a list of sets of nodes that form a k-component of level k as values.

Raises NetworkXNotImplemented:

If the input graph is directed.

See also:

```
node_connectivity, all_node_cuts
```

Notes

Moody and White [R289] (appendix A) provide an algorithm for identifying k-components in a graph, which is based on Kanevsky's algorithm [R290] for finding all minimum-size node cut-sets of a graph (implemented in all_node_cuts() function):

- 1. Compute node connectivity, k, of the input graph G.
- 2.Identify all k-cutsets at the current level of connectivity using Kanevsky's algorithm.
- 3.Generate new graph components based on the removal of these cutsets. Nodes in a cutset belong to both sides of the induced cut.
- 4.If the graph is neither complete nor trivial, return to 1; else end.

This implementation also uses some heuristics (see [R291] for details) to speed up the computation.

References

[R289], [R290], [R291]

Examples

```
>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
>>> G = nx.petersen_graph()
>>> k_components = nx.k_components(G)
```

4.13.2 K-node-cutsets

Kanevsky all minimum node k cutsets algorithm.

all_node_cuts(G[, k, flow_func]) Returns all minimum k cutsets of an undirected graph G.

all_node_cuts

all_node_cuts (G, k=None, flow_func=None)

Returns all minimum k cutsets of an undirected graph G.

This implementation is based on Kanevsky's algorithm [R292] for finding all minimum-size node cut-sets of an undirected graph G; ie the set (or sets) of nodes of cardinality equal to the node connectivity of G. Thus if removed, would break G into two or more connected components.

Parameters G: NetworkX graph

Undirected graph

k: Integer

Node connectivity of the input graph. If k is None, then it is computed. Default value: None.

flow_func : function

Function to perform the underlying flow computations. Default value edmonds_karp. This function performs better in sparse graphs with right tailed degree distributions. shortest_augmenting_path will perform better in denser graphs.

Returns cuts: a generator of node cutsets

Each node cutset has cardinality equal to the node connectivity of the input graph.

See also:

```
\verb|node_connectivity|, edmonds_karp|, \verb|shortest_augmenting_path|
```

Notes

This implementation is based on the sequential algorithm for finding all minimum-size separating vertex sets in a graph [R292]. The main idea is to compute minimum cuts using local maximum flow computations among a set of nodes of highest degree and all other non-adjacent nodes in the Graph. Once we find a minimum cut, we add an edge between the high degree node and the target node of the local maximum flow computation to make sure that we will not find that minimum cut again.

References

[R292]

Examples

```
>>> # A two-dimensional grid graph has 4 cutsets of cardinality 2
>>> G = nx.grid_2d_graph(5, 5)
>>> cutsets = list(nx.all_node_cuts(G))
>>> len(cutsets)
4
>>> all(2 == len(cutset) for cutset in cutsets)
True
>>> nx.node_connectivity(G)
2
```

4.13.3 Flow-based Connectivity

Flow based connectivity algorithms

average_node_connectivity(G[, flow_func])	Returns the average connectivity of a graph G.
all_pairs_node_connectivity($G[$, $nbunch$,])	Compute node connectivity between all pairs of nodes of G.
$\verb edge_connectivity (G[, s, t, flow_func])$	Returns the edge connectivity of the graph or digraph G.
$local_edge_connectivity(G, u, v[,])$	Returns local edge connectivity for nodes s and t in G.
$local_node_connectivity(G, s, t[,])$	Computes local node connectivity for nodes s and t.
<pre>node_connectivity(G[, s, t, flow_func])</pre>	Returns node connectivity for a graph or digraph G.

average_node_connectivity

average_node_connectivity(G, flow_func=None)

Returns the average connectivity of a graph G.

The average connectivity $\bar{\kappa}$ of a graph G is the average of local node connectivity over all pairs of nodes of G [R278] .

$$\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_G(u,v)}{\binom{n}{2}}$$

Parameters G: NetworkX graph

Undirected graph

flow_func : function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See local_node_connectivity() for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns K: float

Average node connectivity

See also:

References

[R278]

all pairs node connectivity

all_pairs_node_connectivity(G, nbunch=None, flow_func=None)

Compute node connectivity between all pairs of nodes of G.

Parameters G: NetworkX graph

Undirected graph

nbunch: container

Container of nodes. If provided node connectivity will be computed only over pairs of nodes in nbunch.

flow func: function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns all_pairs: dict

A dictionary with node connectivity between all pairs of nodes in G, or in nbunch if provided.

See also:

```
local_node_connectivity(), edge_connectivity(), local_edge_connectivity(),
maximum_flow(),edmonds_karp(),preflow_push(),shortest_augmenting_path()
```

edge connectivity

```
edge_connectivity(G, s=None, t=None, flow_func=None)
```

Returns the edge connectivity of the graph or digraph G.

The edge connectivity is equal to the minimum number of edges that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local edge connectivity: the minimum number of edges that must be removed to break all paths from source to target in G.

Parameters G: NetworkX graph

Undirected or directed graph

s: node

Source node. Optional. Default value: None.

t: node

Target node. Optional. Default value: None.

flow func: function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns K: integer

Edge connectivity for G, or local edge connectivity if source and target were provided

See also:

```
local_edge_connectivity(), local_node_connectivity(), node_connectivity(),
maximum_flow(),edmonds_karp(),preflow_push(),shortest_augmenting_path()
```

Notes

This is a flow based implementation of global edge connectivity. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in [R279]) and computing local maximum flow (see local_edge_connectivity()) between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in [R279]. For directed graphs, the algorithm does n calls to the maximum flow function. This is an implementation of algorithm 8 in [R279].

References

[R279]

Examples

```
>>> # Platonic icosahedral graph is 5-edge-connected
>>> G = nx.icosahedral_graph()
>>> nx.edge_connectivity(G)
5
```

You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path)
5
```

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity.

```
>>> nx.edge_connectivity(G, 3, 7)
5
```

If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See <code>local_edge_connectivity()</code> for details.

local edge connectivity

 $\begin{tabular}{l} \textbf{local_edge_connectivity} (\textit{G}, \textit{u}, \textit{v}, \textit{flow_func=None}, \textit{auxiliary=None}, \textit{residual=None}, \textit{cutoff=None}) \\ \textbf{Returns local edge connectivity for nodes s and t in G}. \\ \end{tabular}$

Local edge connectivity for two nodes s and t is the minimum number of edges that must be removed to disconnect them.

This is a flow based implementation of edge connectivity. We compute the maximum flow on an auxiliary digraph build from the original network (see below for details). This is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [R280].

Parameters G: NetworkX graph

Undirected or directed graph

s: node

Source node

t: node

Target node

flow_func: function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

auxiliary: NetworkX DiGraph

Auxiliary digraph for computing flow based edge connectivity. If provided it will be reused instead of recreated. Default value: None.

residual: NetworkX DiGraph

Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None.

cutoff: integer, float

If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: edmonds_karp() and shortest_augmenting_path(). Other algorithms will ignore this parameter. Default value: None.

Returns K: integer

local edge connectivity for nodes s and t.

See also:

```
edge_connectivity(), local_node_connectivity(), node_connectivity(),
maximum_flow(),edmonds_karp(),preflow_push(),shortest_augmenting_path()
```

Notes

This is a flow based implementation of edge connectivity. We compute the maximum flow using, by default, the edmonds_karp() algorithm on an auxiliary digraph build from the original input graph:

If the input graph is undirected, we replace each edge (u, v) with two reciprocal arcs (u, v) and (v, u) and then we set the attribute 'capacity' for each arc to 1. If the input graph is directed we simply add the 'capacity' attribute. This is an implementation of algorithm 1 in [R280].

The maximum flow in the auxiliary network is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

References

[R280]

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package:

```
>>> from networkx.algorithms.connectivity import local_edge_connectivity
```

We use in this example the platonic icosahedral graph, which has edge connectivity 5.

```
>>> G = nx.icosahedral_graph()
>>> local_edge_connectivity(G, 0, 6)
5
```

If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity, and the residual network for the underlying maximum flow computation.

Example of how to compute local edge connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures.

```
>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
       build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
       k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)
       result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True
```

You can also use alternative flow algorithms for computing edge connectivity. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5
```

local node connectivity

local_node_connectivity (*G*, *s*, *t*, *flow_func=None*, *auxiliary=None*, *residual=None*, *cutoff=None*) Computes local node connectivity for nodes s and t.

Local node connectivity for two non adjacent nodes s and t is the minimum number of nodes that must be removed (along with their incident edges) to disconnect them.

This is a flow based implementation of node connectivity. We compute the maximum flow on an auxiliary digraph build from the original input graph (see below for details).

Parameters G: NetworkX graph

Undirected graph

s: node

Source node

t: node

Target node

flow_func: function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

auxiliary: NetworkX DiGraph

Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None.

residual: NetworkX DiGraph

Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None.

cutoff: integer, float

If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: edmonds_karp() and shortest_augmenting_path(). Other algorithms will ignore this parameter. Default value: None.

Returns K: integer

local node connectivity for nodes s and t

See also:

Notes

This is a flow based implementation of node connectivity. We compute the maximum flow using, by default, the edmonds_karp() algorithm (see: maximum_flow()) on an auxiliary digraph build from the original input graph:

For an undirected graph G having n nodes and m edges we derive a directed graph H with 2n nodes and 2m+n arcs by replacing each original node v with two nodes v_A , v_B linked by an (internal) arc in H. Then for each edge (u, v) in G we add two arcs (u_B, v_A) and (v_B, u_A) in H. Finally we set the attribute capacity = 1 for each arc in H [R282].

For a directed graph G having n nodes and m arcs we derive a directed graph H with 2n nodes and m + n arcs by replacing each original node v with two nodes v_A , v_B linked by an (internal) arc (v_A, v_B) in H. Then for each arc (u, v) in G we add one arc (u_B, v_A) in H. Finally we set the attribute capacity = 1 for each arc in H.

This is equal to the local node connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut.

References

[R282]

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package:

```
>>> from networkx.algorithms.connectivity import local_node_connectivity
```

We use in this example the platonic icosahedral graph, which has node connectivity 5.

```
>>> G = nx.icosahedral_graph()
>>> local_node_connectivity(G, 0, 6)
5
```

If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity, and the residual network for the underlying maximum flow computation.

Example of how to compute local node connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures.

```
>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_node_connectivity)
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
```

```
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)
... result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True
```

You can also use alternative flow algorithms for computing node connectivity. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5
```

node_connectivity

```
node_connectivity (G, s=None, t=None, flow_func=None) Returns node connectivity for a graph or digraph G.
```

Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G.

Parameters G: NetworkX graph

Undirected graph

 \mathbf{s} : node

Source node. Optional. Default value: None.

t: node

Target node. Optional. Default value: None.

flow func: function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns K: integer

Node connectivity of G, or local node connectivity if source and target are provided.

See also:

```
local_node_connectivity(), edge_connectivity(), maximum_flow(),
edmonds_karp(),preflow_push(),shortest_augmenting_path()
```

Notes

This is a flow based implementation of node connectivity. The algorithm works by solving $O((n-\delta-1+\delta(\delta-1)/2))$ maximum flow problems on an auxiliary digraph. Where δ is the minimum degree of G. For details about the auxiliary digraph and the computation of local node connectivity see <code>local_node_connectivity()</code>. This implementation is based on algorithm 11 in [R283].

References

[R283]

Examples

```
>>> # Platonic icosahedral graph is 5-node-connected
>>> G = nx.icosahedral_graph()
>>> nx.node_connectivity(G)
5
```

You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.node_connectivity(G, flow_func=shortest_augmenting_path)
5
```

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local node connectivity.

```
>>> nx.node_connectivity(G, 3, 7)
5
```

If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See local node connectivity() for details.

4.13.4 Flow-based Minimum Cuts

Flow based cut algorithms

	$minimum_edge_cut(G[, s, t, flow_func])$	Returns a set of edges of minimum cardinality that disconnects G.
	$minimum_node_cut(G[, s, t, flow_func])$	Returns a set of nodes of minimum cardinality that disconnects G.
	$minimum_st_edge_cut(G, s, t[, flow_func,])$	Returns the edges of the cut-set of a minimum (s, t)-cut.
,	<pre>minimum_st_node_cut(G, s, t[, flow_func,])</pre>	Returns a set of nodes of minimum cardinality that disconnect source from target

minimum_edge_cut

```
minimum_edge_cut (G, s=None, t=None, flow_func=None)
```

Returns a set of edges of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the set of edges of minimum cardinality that, if

removed, would break all paths among source and target in G. If not, it returns a set of edges of minimum cardinality that disconnects G.

Parameters G: NetworkX graph

s: node

Source node. Optional. Default value: None.

t · node

Target node. Optional. Default value: None.

flow_func: function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns cutset: set

Set of edges that, if removed, would disconnect G. If source and target nodes are provided, the set contians the edges that if removed, would destroy all paths between source and target.

See also:

Notes

This is a flow based implementation of minimum edge cut. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in [R284]) and computing the maximum flow between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in [R284]. For directed graphs, the algorithm does n calls to the max flow function. It is an implementation of algorithm 8 in [R284].

References

[R284]

Examples

```
>>> # Platonic icosahedral graph has edge connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_edge_cut(G))
5
```

You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path))
5
```

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity.

```
>>> nx.edge_connectivity(G, 3, 7)
5
```

If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See local_edge_connectivity() for details.

minimum node cut

```
minimum_node_cut (G, s=None, t=None, flow_func=None)
```

Returns a set of nodes of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in G. If not, it returns a set of nodes of minimum cardinality that disconnects G.

Parameters G: NetworkX graph

s: node

Source node. Optional. Default value: None.

t: node

Target node. Optional. Default value: None.

flow_func: function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns cutset: set

Set of nodes that, if removed, would disconnect G. If source and target nodes are provided, the set contians the nodes that if removed, would destroy all paths between source and target.

See also:

```
minimum_st_node_cut(), minimum_cut(), minimum_edge_cut(), stoer_wagner(),
node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()
```

Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that

corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation is based on algorithm 11 in [R285].

References

[R285]

Examples

```
>>> # Platonic icosahedral graph has node connectivity 5
>>> G = nx.icosahedral_graph()
>>> node_cut = nx.minimum_node_cut(G)
>>> len(node_cut)
5
```

You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path)
True
```

If you specify a pair of nodes (source and target) as parameters, this function returns a local st node cut.

```
>>> len(nx.minimum_node_cut(G, 3, 7))
5
```

If you need to perform several local st cuts among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See minimum_st_node_cut() for details.

minimum st edge cut

```
minimum_st_edge_cut(G, s, t, flow_func=None, auxiliary=None, residual=None)
Returns the edges of the cut-set of a minimum (s, t)-cut.
```

This function returns the set of edges of minimum cardinality that, if removed, would destroy all paths among source and target in G. Edge weights are not considered

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.

s: node

Source node for the flow.

t: node

Sink node for the flow.

auxiliary: NetworkX DiGraph

Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None.

flow_func : function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See node_connectivity() for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

residual: NetworkX DiGraph

Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None.

Returns cutset: set

Set of edges that, if removed from the graph, will disconnect it.

See also:

```
minimum_cut(), minimum_node_cut(), minimum_edge_cut(), stoer_wagner(),
node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()
```

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package:

```
>>> from networkx.algorithms.connectivity import minimum_st_edge_cut
```

We use in this example the platonic icosahedral graph, which has edge connectivity 5.

```
>>> G = nx.icosahedral_graph()
>>> len(minimum_st_edge_cut(G, 0, 6))
5
```

If you need to compute local edge cuts on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity, and the residual network for the underlying maximum flow computation.

Example of how to compute local edge cuts among all pairs of nodes of the platonic icosahedral graph reusing the data structures.

```
>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
```

```
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R))
... result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True
```

You can also use alternative flow algorithms for computing edge cuts. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5
```

minimum_st_node_cut

minimum_st_node_cut (G, s, t, flow_func=None, auxiliary=None, residual=None)

Returns a set of nodes of minimum cardinality that disconnect source from target in G.

This function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in G.

Parameters G: NetworkX graph

s: node

Source node.

t: node

Target node.

flow_func: function

A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

auxiliary: NetworkX DiGraph

Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None.

residual: NetworkX DiGraph

Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None.

Returns cutset: set

Set of nodes that, if removed, would destroy all paths between source and target in G.

See also:

```
minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(),
edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(),
shortest_augmenting_path()
```

Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation is based on algorithm 11 in [R287].

References

[R287]

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package:

```
>>> from networkx.algorithms.connectivity import minimum_st_node_cut
```

We use in this example the platonic icosahedral graph, which has node connectivity 5.

```
>>> G = nx.icosahedral_graph()
>>> len(minimum_st_node_cut(G, 0, 6))
5
```

If you need to compute local st cuts between several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity and node cuts, and the residual network for the underlying maximum flow computation.

Example of how to compute local st node cuts reusing the data structures:

```
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_node_connectivity)
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R))
```

You can also use alternative flow algorithms for computing minimum st node cuts. For instance, in dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5
```

4.13.5 Stoer-Wagner minimum cut

Stoer-Wagner minimum cut algorithm.

stoer_wagner(G[, weight, heap]) Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

stoer wagner

 $\verb|stoer_wagner| (G, weight='weight', heap=<\!class' inetwork x.utils.heaps.Binary Heap'>)|$

Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

Determine the minimum edge cut of a connected graph using the Stoer-Wagner algorithm. In weighted cases, all weights must be nonnegative.

The running time of the algorithm depends on the type of heaps used:

Type of heap	Running time
Binary heap	$O(n(m+n)\log n)$
Fibonacci heap	$O(nm + n^2 \log n)$
Pairing heap	$O(2^{2\sqrt{\log\log n}}nm + n^2\log n)$

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute named by the weight parameter below. If this attribute is not present, the edge is considered to have unit weight.

weight: string

Name of the weight attribute of the edges. If the attribute is not present, unit weight is assumed. Default value: 'weight'.

heap: class

Type of heap to be used in the algorithm. It should be a subclass of MinHeap or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is recommeded over PairingHeap for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default value: BinaryHeap.

Returns cut_value: integer or float

The sum of weights of edges in a minimum cut.

partition: pair of node lists

A partitioning of the nodes that defines a minimum cut.

Raises NetworkXNotImplemented

If the graph is directed or a multigraph.

NetworkXError

If the graph has less than two nodes, is not connected or has a negative-weighted edge.

Examples

```
>>> G = nx.Graph()
>>> G.add_edge('x','a', weight=3)
>>> G.add_edge('x','b', weight=1)
>>> G.add_edge('a','c', weight=3)
>>> G.add_edge('b','c', weight=5)
>>> G.add_edge('b','d', weight=4)
>>> G.add_edge('d','e', weight=2)
>>> G.add_edge('c','y', weight=2)
>>> G.add_edge('e','y', weight=3)
>>> cut_value, partition = nx.stoer_wagner(G)
```

4.13.6 Utils for flow-based connectivity

Utilities for connectivity package

```
build_auxiliary_edge_connectivity(G) Auxiliary digraph for computing flow based edge connectivity

build_auxiliary_node_connectivity(G) Creates a directed graph D from an undirected graph G to compute flow based
```

build_auxiliary_edge_connectivity

$build_auxiliary_edge_connectivity(G)$

Auxiliary digraph for computing flow based edge connectivity

If the input graph is undirected, we replace each edge (u, v) with two reciprocal arcs (u, v) and (v, u) and then we set the attribute 'capacity' for each arc to 1. If the input graph is directed we simply add the 'capacity' attribute. Part of algorithm 1 in [R293].

References

[R293]

build auxiliary node connectivity

build_auxiliary_node_connectivity(G)

Creates a directed graph D from an undirected graph G to compute flow based node connectivity.

For an undirected graph G having n nodes and m edges we derive a directed graph D with 2n nodes and 2m+n arcs by replacing each original node v with two nodes vA, vB linked by an (internal) arc in D. Then for each edge (u, v) in G we add two arcs (uB, vA) and (vB, uA) in D. Finally we set the attribute capacity = 1 for each arc in D [R294].

For a directed graph having n nodes and m arcs we derive a directed graph D with 2n nodes and m+n arcs by replacing each original node v with two nodes vA, vB linked by an (internal) arc (vA, vB) in D. Then for each arc (u, v) in G we add one arc (uB, vA) in D. Finally we set the attribute capacity = 1 for each arc in D.

A dictionary with a mapping between nodes in the original graph and the auxiliary digraph is stored as a graph attribute: H.graph['mapping'].

References

[R294]

4.14 Cores

Find the k-cores of a graph.

The k-core is found by recursively pruning nodes with degrees less than k.

See the following reference for details:

An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003. http://arxiv.org/abs/cs.DS/0310049

core_number(G)	Return the core number for each vertex.
	Return the core number for each vertex.
$k_core(G[, k, core_number])$	Return the k-core of G.
$k_{shell}(G[, k, core_number])$	Return the k-shell of G.
k_crust(G[, k, core_number])	Return the k-crust of G.
k_corona(G, k[, core_number])	Return the k-corona of G.

4.14.1 core_number

$core_number(G)$

Return the core number for each vertex.

A k-core is a maximal subgraph that contains nodes of degree k or more.

The core number of a node is the largest value k of a k-core containing that node.

Parameters G: NetworkX graph

A graph or directed graph

Returns core_number: dictionary

A dictionary keyed by node to the core number.

Raises NetworkXError

The k-core is not defined for graphs with self loops or parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

References

[R295]

4.14. Cores 243

4.14.2 k core

k_core (*G*, *k=None*, *core_number=None*)

Return the k-core of G.

A k-core is a maximal subgraph that contains nodes of degree k or more.

Parameters G: NetworkX graph

A graph or directed graph

k: int, optional

The order of the core. If not specified return the main core.

core_number: dictionary, optional

Precomputed core numbers for the graph G.

Returns G: NetworkX graph

The k-core subgraph

Raises NetworkXError

The k-core is not defined for graphs with self loops or parallel edges.

See also:

core number

Notes

The main core is the core with the largest degree.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

References

[R296]

4.14.3 k shell

```
k\_shell(G, k=None, core\_number=None)
```

Return the k-shell of G.

The k-shell is the subgraph of nodes in the k-core but not in the (k+1)-core.

Parameters G: NetworkX graph

A graph or directed graph.

k: int, optional

The order of the shell. If not specified return the main shell.

core_number: dictionary, optional

Precomputed core numbers for the graph G.

Returns G: NetworkX graph

The k-shell subgraph

Raises NetworkXError

The k-shell is not defined for graphs with self loops or parallel edges.

See also:

```
core number, k corona, -----
```

Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154

http://www.pnas.org/content/104/27/11150.full

Notes

This is similar to k_corona but in that case only neighbors in the k-core are considered.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

4.14.4 k crust

k_crust (*G*, *k=None*, *core_number=None*)

Return the k-crust of G.

The k-crust is the graph G with the k-core removed.

Parameters G: NetworkX graph

A graph or directed graph.

k: int, optional

The order of the shell. If not specified return the main crust.

core_number : dictionary, optional

Precomputed core numbers for the graph G.

Returns G: NetworkX graph

The k-crust subgraph

Raises NetworkXError

The k-crust is not defined for graphs with self loops or parallel edges.

See also:

core_number

4.14. Cores 245

Notes

This definition of k-crust is different than the definition in [R298]. The k-crust in [R298] is equivalent to the k+1 crust of this algorithm.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

References

[R298]

4.14.5 k corona

k_corona (G, k, core_number=None)

Return the k-corona of G.

The k-corona is the subgraph of nodes in the k-core which have exactly k neighbours in the k-core.

Parameters G: NetworkX graph

A graph or directed graph

k: int

The order of the corona.

core_number: dictionary, optional

Precomputed core numbers for the graph G.

Returns G: NetworkX graph

The k-corona subgraph

Raises NetworkXError

The k-cornoa is not defined for graphs with self loops or parallel edges.

See also:

```
core_number
```

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

References

[R297]

4.15 Cycles

$cycle_basis(G[,root])$	Returns a list of cycles which form a basis for cycles of G.
$simple_cycles(G)$	Find simple cycles (elementary circuits) of a directed graph.
find_cycle(G[, source, orientation])	Returns the edges of a cycle found via a directed, depth-first traversal.

4.15.1 cycle basis

cycle_basis(G, root=None)

Returns a list of cycles which form a basis for cycles of G.

A basis for cycles of a network is a minimal collection of cycles such that any cycle in the network can be written as a sum of cycles in the basis. Here summation of cycles is defined as "exclusive or" of the edges. Cycle bases are useful, e.g. when deriving equations for electric circuits using Kirchhoff's Laws.

Parameters G: NetworkX Graph

root: node, optional

Specify starting node for basis.

Returns A list of cycle lists. Each cycle list is a list of nodes

which forms a cycle (loop) in G.

See also:

```
simple_cycles
```

Notes

This is adapted from algorithm CACM 491 [R299].

References

[R299]

Examples

```
>>> G=nx.Graph()
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([0,3,4,5])
>>> print(nx.cycle_basis(G,0))
[[3, 4, 5, 0], [1, 2, 3, 0]]
```

4.15.2 simple_cycles

$simple_cycles(G)$

Find simple cycles (elementary circuits) of a directed graph.

An simple cycle, or elementary circuit, is a closed path where no node appears twice, except that the first and last node are the same. Two elementary circuits are distinct if they are not cyclic permutations of each other.

4.15. Cycles 247

This is a nonrecursive, iterator/generator version of Johnson's algorithm [R300]. There may be better algorithms for some cases [R301] [R302].

Parameters G: NetworkX DiGraph

A directed graph

Returns cycle_generator: generator

A generator that produces elementary cycles of the graph. Each cycle is a list of nodes with the first and last nodes being the same.

See also:

```
cycle_basis
```

Notes

The implementation follows pp. 79-80 in [R300].

The time complexity is O((n+e)(c+1)) for n nodes, e edges and c elementary circuits.

References

```
[R300], [R301], [R302]
```

Examples

```
>>> G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)])
>>> len(list(nx.simple_cycles(G)))
5
```

To filter the cycles so that they don't include certain nodes or edges, copy your graph and eliminate those nodes or edges before calling

```
>>> copyG = G.copy()
>>> copyG.remove_nodes_from([1])
>>> copyG.remove_edges_from([(0, 1)])
>>> len(list(nx.simple_cycles(copyG)))
2
```

4.15.3 find cycle

find_cycle (G, source=None, orientation='original')

Returns the edges of a cycle found via a directed, depth-first traversal.

Parameters G: graph

A directed/undirected graph/multigraph.

source: node, list of nodes

The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched.

```
orientation: 'original' | 'reverse' | 'ignore'
```

For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to 'reverse', then every edge will be traversed in the reverse direction. When set to 'ignore', then each directed edge is treated as a single undirected edge that can be traversed in either direction. For undirected graphs and undirected multigraphs, this parameter is meaningless and is not consulted by the algorithm.

Returns edges: directed edges

A list of directed edges indicating the path taken for the loop. If no cycle is found, then edges will be an empty list. For graphs, an edge is of the form (u, v) where u and v are the tail and head of the edge as determined by the traversal. For multigraphs, an edge is of the form (u, v, key), where key is the key of the edge. When the graph is directed, then u and v are always in the order of the actual directed edge. If orientation is 'ignore', then an edge takes the form (u, v, key, direction) where direction indicates if the edge was followed in the forward (tail to head) or reverse (head to tail) direction. When the direction is forward, the value of direction is 'forward'. When the direction is reverse, the value of direction is 'reverse'.

Examples

In this example, we construct a DAG and find, in the first call, that there are no directed cycles, and so an exception is raised. In the second call, we ignore edge orientations and find that there is an undirected cycle. Note that the second call finds a directed cycle while effectively traversing an undirected graph, and so, we found an "undirected cycle". This means that this DAG structure does not form a directed tree (which is also known as a polytree).

```
>>> import networkx as nx
>>> G = nx.DiGraph([(0,1), (0,2), (1,2)])
>>> try:
... find_cycle(G, orientation='original')
... except:
... pass
...
>>> list(find_cycle(G, orientation='ignore'))
[(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')]
```

4.16 Directed Acyclic Graphs

ancestors(G, source)	Return all nodes having a path to <i>source</i> in G.
descendants(G, source)	Return all nodes reachable from source in G.
topological_sort(G[, nbunch, reverse])	Return a list of nodes in topological sort order.
topological_sort_recursive(G[, nbunch, reverse])	Return a list of nodes in topological sort order.
$is_directed_acyclic_graph(G)$	Return True if the graph G is a directed acyclic graph (DAG) or False
is_aperiodic(G)	Return True if G is aperiodic.
transitive_closure(G)	Returns transitive closure of a directed graph
antichains(G)	Generates antichains from a DAG.
$dag_longest_path(G)$	Returns the longest path in a DAG
$dag_longest_path_length(G)$	Returns the longest path length in a DAG

4.16.1 ancestors

ancestors(G, source)

Return all nodes having a path to source in G.

Parameters G: NetworkX DiGraph

source: node in G

Returns ancestors: set()

The ancestors of source in G

4.16.2 descendants

descendants (G, source)

Return all nodes reachable from source in G.

Parameters G: NetworkX DiGraph

source : node in G

Returns des: set()

The descendants of source in G

4.16.3 topological_sort

topological_sort (G, nbunch=None, reverse=False)

Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order.

Parameters G: NetworkX digraph

A directed graph

nbunch: container of nodes (optional)

Explore graph in specified order given in nbunch

reverse: bool, optional

Return postorder instead of preorder if True. Reverse mode is a bit more efficient.

Raises NetworkXError

Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised.

NetworkXUnfeasible

If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkX-Unfeasible exception is raised.

See also:

is_directed_acyclic_graph

Notes

This algorithm is based on a description and proof in The Algorithm Design Manual [R305].

References

[R305]

4.16.4 topological_sort_recursive

topological_sort_recursive(G, nbunch=None, reverse=False)

Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order.

Parameters G: NetworkX digraph

nbunch: container of nodes (optional)

Explore graph in specified order given in nbunch

reverse: bool, optional

Return postorder instead of preorder if True. Reverse mode is a bit more efficient.

Raises NetworkXError

Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised.

NetworkXUnfeasible

If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkX-Unfeasible exception is raised.

See also:

```
topological_sort, is_directed_acyclic_graph
```

Notes

This is a recursive version of topological sort.

4.16.5 is directed acyclic graph

$is_directed_acyclic_graph(G)$

Return True if the graph G is a directed acyclic graph (DAG) or False if not.

Parameters G: NetworkX graph

A graph

Returns is_dag: bool

True if G is a DAG, false otherwise

4.16.6 is aperiodic

$is_aperiodic(G)$

Return True if G is aperiodic.

A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph.

Parameters G: NetworkX DiGraph

Graph

Returns aperiodic: boolean

True if the graph is aperiodic False otherwise

Raises NetworkXError

If G is not directed

Notes

This uses the method outlined in [R304], which runs in O(m) time given m edges in G. Note that a graph is not aperiodic if it is acyclic as every integer trivial divides length 0 cycles.

References

[R304]

4.16.7 transitive closure

$transitive_closure(G)$

Returns transitive closure of a directed graph

The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that for all v,w in V there is an edge (v,w) in E+ if and only if there is a non-null path from v to w in G.

Parameters G: NetworkX DiGraph

Graph

Returns TC: NetworkX DiGraph

Graph

Raises NetworkXNotImplemented

If G is not directed

References

[R306]

4.16.8 antichains

antichains(G)

Generates antichains from a DAG.

An antichain is a subset of a partially ordered set such that any two elements in the subset are incomparable.

Parameters G: NetworkX DiGraph

Graph

Returns antichain: generator object
Raises NetworkXNotImplemented

If G is not directed

NetworkXUnfeasible

If G contains a cycle

Notes

This function was originally developed by Peter Jipsen and Franco Saliola for the SAGE project. It's included in NetworkX with permission from the authors. Original SAGE code at:

https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py

References

[R303]

4.16.9 dag_longest_path

$dag_longest_path(G)$

Returns the longest path in a DAG

Parameters G: NetworkX DiGraph

Graph

Returns path: list

Longest path

Raises NetworkXNotImplemented

If G is not directed

See also:

dag_longest_path_length

4.16.10 dag_longest_path_length

dag longest path length(G)

Returns the longest path length in a DAG

Parameters G: NetworkX DiGraph

Graph

Returns path_length: int

Longest path length

Raises NetworkXNotImplemented

If G is not directed

See also:

dag_longest_path

4.17 Distance Measures

Graph diameter, radius, eccentricity and other properties.

center(G[,e])	Return the center of the graph G.
diameter(G[,e])	Return the diameter of the graph G.
eccentricity($G[, v, sp]$)	Return the eccentricity of nodes in G.
periphery(G[,e])	Return the periphery of the graph G.
radius(G[,e])	Return the radius of the graph G.

4.17.1 center

center(G, e=None)

Return the center of the graph G.

The center is the set of nodes with eccentricity equal to radius.

Parameters G: NetworkX graph

A graph

e: eccentricity dictionary, optional

A precomputed dictionary of eccentricities.

Returns c: list

List of nodes in center

4.17.2 diameter

diameter(G, e=None)

Return the diameter of the graph G.

The diameter is the maximum eccentricity.

Parameters G: NetworkX graph

A graph

e: eccentricity dictionary, optional

A precomputed dictionary of eccentricities.

Returns d: integer

254

Diameter of graph

See also:

eccentricity

4.17.3 eccentricity

eccentricity(G, v=None, sp=None)

Return the eccentricity of nodes in G.

The eccentricity of a node v is the maximum distance from v to all other nodes in G.

Parameters G: NetworkX graph

A graph

v: node, optional

Return value of specified node

sp: dict of dicts, optional

All pairs shortest path lengths as a dictionary of dictionaries

Returns ecc: dictionary

A dictionary of eccentricity values keyed by node.

4.17.4 periphery

periphery(G, e=None)

Return the periphery of the graph G.

The periphery is the set of nodes with eccentricity equal to the diameter.

Parameters G: NetworkX graph

A graph

e: eccentricity dictionary, optional

A precomputed dictionary of eccentricities.

Returns p: list

List of nodes in periphery

4.17.5 radius

radius(G, e=None)

Return the radius of the graph G.

The radius is the minimum eccentricity.

Parameters G: NetworkX graph

A graph

e: eccentricity dictionary, optional

A precomputed dictionary of eccentricities.

Returns r: integer

Radius of graph

4.18 Distance-Regular Graphs

is_distance_regular(G)	Returns True if the graph is distance regular, False otherwise.
$intersection_array(G)$	Returns the intersection array of a distance-regular graph.
${ t global_parameters(b,c)}$	Return global parameters for a given intersection array.

4.18.1 is distance regular

$is_distance_regular(G)$

Returns True if the graph is distance regular, False otherwise.

A connected graph G is distance-regular if for any nodes x,y and any integers i,j=0,1,...,d (where d is the graph diameter), the number of vertices at distance i from x and distance j from y depends only on i,j and the graph distance between x and y, independently of the choice of x and y.

Parameters G: Networkx graph (undirected)

Returns bool

True if the graph is Distance Regular, False otherwise

See also:

```
intersection_array, global_parameters
```

Notes

For undirected and simple graphs only

References

[R309], [R310]

Examples

```
>>> G=nx.hypercube_graph(6)
>>> nx.is_distance_regular(G)
True
```

4.18.2 intersection array

$intersection_array(G)$

Returns the intersection array of a distance-regular graph.

Given a distance-regular graph G with integers b_i , c_i , i = 0,...,d such that for any 2 vertices x,y in G at a distance i=d(x,y), there are exactly c_i neighbors of y at a distance of i-1 from x and b_i neighbors of y at a distance of i+1 from x.

A distance regular graph's intersection array is given by, [b_0,b_1,....b_{d-1};c_1,c_2,....c_d]

Parameters G: Networkx graph (undirected)

Returns b,c: tuple of lists

See also:

```
global parameters
```

References

[R308]

Examples

```
>>> G=nx.icosahedral_graph()
>>> nx.intersection_array(G)
([5, 2, 1], [1, 2, 5])
```

4.18.3 global_parameters

global_parameters(b, c)

Return global parameters for a given intersection array.

Given a distance-regular graph G with integers b_i , c_i , i = 0,...,d such that for any 2 vertices x,y in G at a distance i=d(x,y), there are exactly c_i neighbors of y at a distance of i-1 from x and b_i neighbors of y at a distance of i+1 from x.

Thus, a distance regular graph has the global parameters, $[[c_0,a_0,b_0],[c_1,a_1,b_1],....,[c_d,a_d,b_d]]$ for the intersection array $[b_0,b_1,....b_{d-1};c_1,c_2,....c_d]$ where $a_i+b_i+c_i=k$, k=degree of every vertex.

Parameters b,c: tuple of lists

Returns p : list of three-tuples

See also:

```
intersection_array
```

References

[R307]

Examples

```
>>> G=nx.dodecahedral_graph()
>>> b,c=nx.intersection_array(G)
>>> list(nx.global_parameters(b,c))
[(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)]
```

4.19 Dominance

Dominance algorithms.

<pre>immediate_dominators(G, start)</pre>	Returns the immediate dominators of all nodes of a directed graph.
dominance_frontiers(G, start)	Returns the dominance frontiers of all nodes of a directed graph.

4.19.1 immediate_dominators

immediate_dominators(G, start)

Returns the immediate dominators of all nodes of a directed graph.

Parameters G: a DiGraph or MultiDiGraph

The graph where dominance is to be computed.

start: node

The start node of dominance computation.

Returns idom: dict keyed by nodes

A dict containing the immediate dominators of each node reachable from start.

Raises NetworkXNotImplemented

If G is undirected.

NetworkXError

If start is not in G.

Notes

Except for start, the immediate dominators are the parents of their corresponding nodes in the dominator tree.

References

[R312]

Examples

```
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted(nx.immediate_dominators(G, 1).items())
[(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)]
```

4.19.2 dominance frontiers

dominance_frontiers(G, start)

Returns the dominance frontiers of all nodes of a directed graph.

Parameters G: a DiGraph or MultiDiGraph

The graph where dominance is to be computed.

start: node

The start node of dominance computation.

Returns df: dict keyed by nodes

A dict containing the dominance frontiers of each node reachable from start as lists.

Raises NetworkXNotImplemented

If G is undirected.

NetworkXError

If start is not in G.

References

[R311]

Examples

```
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items())
[(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])]
```

4.20 Dominating Sets

$dominating_set(G[, start_with])$	Finds a dominating set for the graph G.
<pre>is_dominating_set(G, nbunch)</pre>	Checks if nodes in nbunch are a dominating set for G.

4.20.1 dominating_set

dominating_set (G, start_with=None)

Finds a dominating set for the graph G.

A dominating set for a graph G = (V, E) is a node subset D of V such that every node not in D is adjacent to at least one member of D [R313].

Parameters G: NetworkX graph

start_with : Node (default=None)

Node to use as a starting point for the algorithm.

Returns D: set

A dominating set for G.

See also:

```
is_dominating_set
```

Notes

This function is an implementation of algorithm 7 in [R314] which finds some dominating set, not necessarily the smallest one.

References

[R313], [R314]

4.20.2 is dominating set

is_dominating_set(G, nbunch)

Checks if nodes in nbunch are a dominating set for G.

A dominating set for a graph G = (V, E) is a node subset D of V such that every node not in D is adjacent to at least one member of D [R315].

Parameters G: NetworkX graph

nbunch: Node container

See also:

dominating_set

References

[R315]

4.21 Eulerian

Eulerian circuits and graphs.

is_eulerian(G)	Return True if G is an Eulerian graph, False otherwise.
<pre>eulerian_circuit(G[, source])</pre>	Return the edges of an Eulerian circuit in G.

4.21.1 is_eulerian

$\verb"is_eulerian"\,(G)$

Return True if G is an Eulerian graph, False otherwise.

An Eulerian graph is a graph with an Eulerian circuit.

Parameters G: graph

A NetworkX Graph

Notes

This implementation requires the graph to be connected (or strongly connected for directed graphs).

Examples

```
>>> nx.is_eulerian(nx.DiGraph({0:[3], 1:[2], 2:[3], 3:[0, 1]}))
True
>>> nx.is_eulerian(nx.complete_graph(5))
True
>>> nx.is_eulerian(nx.petersen_graph())
False
```

4.21.2 eulerian circuit

```
eulerian_circuit (G, source=None)
```

Return the edges of an Eulerian circuit in G.

An Eulerian circuit is a path that crosses every edge in G exactly once and finishes at the starting node.

Parameters G: NetworkX Graph or DiGraph

A directed or undirected graph

source: node, optional

Starting node for circuit.

Returns edges: generator

A generator that produces edges in the Eulerian circuit.

Raises NetworkXError

If the graph is not Eulerian.

See also:

```
is_eulerian
```

Notes

Linear time algorithm, adapted from [R316]. General information about Euler tours [R317].

References

```
[R316], [R317]
```

Examples

```
>>> G=nx.complete_graph(3)
>>> list(nx.eulerian_circuit(G))
[(0, 2), (2, 1), (1, 0)]
>>> list(nx.eulerian_circuit(G, source=1))
[(1, 2), (2, 0), (0, 1)]
>>> [u for u,v in nx.eulerian_circuit(G)] # nodes in circuit
[0, 2, 1]
```

4.21. Eulerian 261

4.22 Flows

4.22.1 Maximum Flow

<pre>maximum_flow(G, s, t[, capacity, flow_func])</pre>	Find a maximum single-commodity flow.
$maximum_flow_value(G, s, t[, capacity,])$	Find the value of maximum single-commodity flow.
minimum_cut(G, s, t[, capacity, flow_func])	Compute the value and the node partition of a minimum (s, t)-cut.
<pre>minimum_cut_value(G, s, t[, capacity, flow_func])</pre>	Compute the value of a minimum (s, t)-cut.

maximum flow

maximum_flow (*G*, *s*, *t*, *capacity='capacity'*, *flow_func=None*, **kwargs) Find a maximum single-commodity flow.

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.

s: node

Source node for the flow.

t: node

Sink node for the flow.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

flow func: function

A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None.

kwargs: Any other keyword parameter is passed to the function that

computes the maximum flow.

Returns flow_value: integer, float

Value of the maximum flow, i.e., net outflow from the source.

flow dict: dict

A dictionary containing the value of the flow that went through each edge.

Raises NetworkXError

The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

NetworkXUnbounded

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

```
maximum_flow_value(), minimum_cut(), minimum_cut_value(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()
```

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
```

maximum_flow returns both the value of the maximum flow and a dictionary with all flows.

```
>>> flow_value, flow_dict = nx.maximum_flow(G, 'x', 'y')
>>> flow_value
3.0
>>> print(flow_dict['x']['b'])
1.0
```

You can also use alternative algorithms for computing the maximum flow by using the flow_func parameter.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow(G, 'x', 'y',
...
flow_func=shortest_augmenting_path)[0]
True
```

maximum flow value

```
maximum_flow_value (G, s, t, capacity='capacity', flow\_func=None, **kwargs) Find the value of maximum single-commodity flow.
```

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.

s: node

Source node for the flow.

t: node

Sink node for the flow.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

flow_func: function

A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None.

kwargs: Any other keyword parameter is passed to the function that

computes the maximum flow.

Returns flow_value: integer, float

Value of the maximum flow, i.e., net outflow from the source.

Raises NetworkXError

The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

NetworkXUnbounded

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

```
maximum_flow(), minimum_cut(), minimum_cut_value(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()
```

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
```

maximum flow value computes only the value of the maximum flow:

```
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
```

You can also use alternative algorithms for computing the maximum flow by using the flow_func parameter.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow_value(G, 'x', 'y',
...
flow_func=shortest_augmenting_path)
True
```

minimum cut

```
minimum_cut (G, s, t, capacity='capacity', flow_func=None, **kwargs)
```

Compute the value and the node partition of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow.

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.

s: node

Source node for the flow.

t: node

Sink node for the flow.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

flow_func: function

A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None.

kwargs: Any other keyword parameter is passed to the function that

computes the maximum flow.

Returns cut_value: integer, float

Value of the minimum cut.

partition: pair of node sets

A partitioning of the nodes that defines a minimum cut.

Raises NetworkXUnbounded

If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a NetworkXError.

See also:

```
maximum_flow(), maximum_flow_value(), minimum_cut_value(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()
```

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G

For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)
```

minimum cut computes both the value of the minimum cut and the node partition:

```
>>> cut_value, partition = nx.minimum_cut(G, 'x', 'y')
>>> reachable, non_reachable = partition
```

'partition' here is a tuple with the two sets of nodes that define the minimum cut. You can compute the cut set of edges that induce the minimum cut as follows:

```
>>> cutset = set()
>>> for u, nbrs in ((n, G[n]) for n in reachable):
...     cutset.update((u, v) for v in nbrs if v in non_reachable)
>>> print(sorted(cutset))
[('c', 'y'), ('x', 'b')]
>>> cut_value == sum(G.edge[u][v]['capacity'] for (u, v) in cutset)
True
```

You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> cut_value == nx.minimum_cut(G, 'x', 'y',
...
flow_func=shortest_augmenting_path)[0]
True
```

minimum cut value

```
minimum\_cut\_value(G, s, t, capacity='capacity', flow\_func=None, **kwargs)
Compute the value of a minimum (s, t)-cut.
```

Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow.

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.

s: node

Source node for the flow.

t: node

Sink node for the flow.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

flow func: function

A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None.

kwargs: Any other keyword parameter is passed to the function that

computes the maximum flow.

Returns cut_value: integer, float

Value of the minimum cut.

Raises NetworkXUnbounded

If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a NetworkXError.

See also:

```
maximum_flow(), maximum_flow_value(), minimum_cut(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()
```

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G

For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)
```

minimum_cut_value computes only the value of the minimum cut:

```
>>> cut_value = nx.minimum_cut_value(G, 'x', 'y')
>>> cut_value
3.0
```

You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter.

```
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> cut_value == nx.minimum_cut_value(G, 'x', 'y',
...
flow_func=shortest_augmenting_path)
True
```

4.22.2 Edmonds-Karp

edmonds_karp(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

edmonds_karp

edmonds_karp (*G*, *s*, *t*, *capacity='capacity'*, *residual=None*, *value_only=False*, *cutoff=None*) Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of $O(nm^2)$ for n nodes and m edges.

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.

s: node

Source node for the flow.

t: node

Sink node for the flow.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

residual: NetworkX graph

Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None.

value_only: bool

If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable.

cutoff: integer, float

If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None.

Returns R: NetworkX DiGraph

Residual network after computing the maximum flow.

Raises NetworkXError

The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

NetworkXUnbounded

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

```
maximum_flow(), minimum_cut(), preflow_push(), shortest_augmenting_path()
```

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut.

Examples

```
>>> import networkx as nx
>>> from networkx.algorithms.flow import edmonds_karp
```

The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package.

```
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('b','d', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('c','y', capacity=3.0)
>>> R = edmonds_karp(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value = R.graph['flow_value']
True
```

4.22.3 Shortest Augmenting Path

shortest_augmenting_path(G, s, t[, ...]) Find a maximum single-commodity flow using the shortest augmenting path algorithms.

shortest_augmenting_path

```
\begin{tabular}{ll} \textbf{shortest\_augmenting\_path} (G, s, t, capacity='capacity', residual=None, value\_only=False, \\ two\_phase=False, cutoff=None) \end{tabular}
```

Find a maximum single-commodity flow using the shortest augmenting path algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of $O(n^2m)$ for n nodes and m edges.

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.

s: node

Source node for the flow.

t: node

Sink node for the flow.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

residual: NetworkX graph

Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None.

value_only: bool

If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable.

two_phase: bool

If True, a two-phase variant is used. The two-phase variant improves the running time on unit-capacity networks from O(nm) to $O(\min(n^{2/3}, m^{1/2})m)$. Default value: False.

cutoff: integer, float

If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None.

Returns R: NetworkX DiGraph

Residual network after computing the maximum flow.

Raises NetworkXError

The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

NetworkXUnbounded

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

```
maximum_flow(), minimum_cut(), edmonds_karp(), preflow_push()
```

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut.

Examples

```
>>> import networkx as nx
>>> from networkx.algorithms.flow import shortest_augmenting_path
```

The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package.

```
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
```

```
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = shortest_augmenting_path(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
>>> flow_value == R.graph['flow_value']
True
```

4.22.4 Preflow-Push

preflow_push(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using the highest-label preflow-push algorithms are similar to the sin

preflow push

 $preflow_push(G, s, t, capacity='capacity', residual=None, global_relabel_freq=1, value_only=False)$ Find a maximum single-commodity flow using the highest-label preflow-push algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of $O(n^2\sqrt{m})$ for n nodes and m edges.

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.

s: node

Source node for the flow.

t: node

Sink node for the flow.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

residual: NetworkX graph

Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None.

global_relabel_freq: integer, float

Relative frequency of applying the global relabeling heuristic to speed up the algorithm. If it is None, the heuristic is disabled. Default value: 1.

value_only: bool

If False, compute a maximum flow; otherwise, compute a maximum preflow which is enough for computing the maximum flow value. Default value: False.

Returns R: NetworkX DiGraph

Residual network after computing the maximum flow.

Raises NetworkXError

The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

NetworkXUnbounded

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

```
maximum_flow(), minimum_cut(), edmonds_karp(), shortest_augmenting_path()
```

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each node u in R, R. node [u] ['excess'] represents the difference between flow into u and flow out of u.

For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut.

Examples

274

```
>>> import networkx as nx
>>> from networkx.algorithms.flow import preflow_push
```

The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package.

```
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = preflow_push(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value == R.graph['flow_value']
>>> # preflow push also stores the maximum flow value
>>> # in the excess attribute of the sink node t
>>> flow_value == R.node['y']['excess']
>>> # For some problems, you might only want to compute a
```

```
>>> # maximum preflow.
>>> R = preflow_push(G, 'x', 'y', value_only=True)
>>> flow_value == R.graph['flow_value']
True
>>> flow_value == R.node['y']['excess']
True
```

4.22.5 Utils

build residual network(G, capacity) Build a residual network and initialize a zero flow.

build residual network

build residual network(G, capacity)

Build a residual network and initialize a zero flow.

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] = -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. If cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut.

4.22.6 Network Simplex

<pre>network_simplex(G[, demand, capacity, weight])</pre>	Find a minimum cost flow satisfying all demands in digraph G.
min_cost_flow_cost(G[, demand, capacity, weight])	Find the cost of a minimum cost flow satisfying all demands in digraph
min_cost_flow(G[, demand, capacity, weight])	Return a minimum cost flow satisfying all demands in digraph G.
<pre>cost_of_flow(G, flowDict[, weight])</pre>	Compute the cost of the flow given by flowDict on graph G.
<pre>max_flow_min_cost(G, s, t[, capacity, weight])</pre>	Return a maximum (s, t)-flow of minimum cost.

network_simplex

network_simplex (*G*, *demand='demand'*, *capacity='capacity'*, *weight='weight'*) Find a minimum cost flow satisfying all demands in digraph G.

This is a primal network simplex algorithm that uses the leaving arc rule to prevent cycling.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters G: NetworkX graph

DiGraph on which a minimum cost flow satisfying all demands is to be found.

demand: string

Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

weight: string

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'.

Returns flowCost: integer, float

Cost of a minimum cost flow satisfying all demands.

flowDict: dictionary

Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Raises NetworkXError

This exception is raised if the input graph is not directed, not connected or is a multi-graph.

NetworkXUnfeasible

This exception is raised in the following situations:

- The sum of the demands is not zero. Then, there is no flow satisfying all demands.
- There is no flow satisfying all demand.

NetworkXUnbounded

This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

See also:

```
cost_of_flow, max_flow_min_cost, min_cost_flow, min_cost_flow_cost
```

Notes

This algorithm is not guaranteed to work if edge weights are floating point numbers (overflows and roundoff errors can cause problems).

References

[R318], [R319]

Examples

A simple example of a min cost flow problem.

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand=-5)
>>> G.add_node('d', demand=5)
>>> G.add_edge('a', 'b', weight=3, capacity=4)
>>> G.add_edge('a', 'c', weight=6, capacity=10)
>>> G.add_edge('b', 'd', weight=1, capacity=9)
>>> G.add_edge('c', 'd', weight=2, capacity=5)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}}
```

The mincost flow algorithm can also be used to solve shortest path problems. To find the shortest path between two nodes u and v, give all edges an infinite capacity, give node u a demand of -1 and node v a demand a 1. Then run the network simplex. The value of a min cost flow will be the distance between u and v and edges carrying positive flow will indicate the path.

```
>>> G=nx.DiGraph()
>>> G.add_weighted_edges_from([('s', 'u' ,10), ('s' ,'x' ,5),
                                ('u', 'v',1), ('u','x',2),
                                ('v', 'y', 1), ('x', 'u', 3),
. . .
                                ('x', 'v', 5), ('x', 'y', 2),
. . .
                                ('y', 's',7), ('y','v',6)])
\rightarrow G.add_node('s', demand = -1)
>>> G.add_node('v', demand = 1)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost == nx.shortest_path_length(G, 's', 'v', weight='weight')
>>> sorted([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0])
[('s', 'x'), ('u', 'v'), ('x', 'u')]
>>> nx.shortest_path(G, 's', 'v', weight = 'weight')
['s', 'x', 'u', 'v']
```

It is possible to change the name of the attributes used for the algorithm.

```
>>> G = nx.DiGraph()
>>> G.add_node('p', spam=-4)
>>> G.add_node('q', spam=2)
>>> G.add_node('a', spam=-2)
>>> G.add_node('d', spam=-1)
>>> G.add_node('t', spam=2)
>>> G.add_node('w', spam=3)
>>> G.add_edge('p', 'q', cost=7, vacancies=5)
>>> G.add_edge('p', 'a', cost=1, vacancies=4)
>>> G.add_edge('q', 'd', cost=2, vacancies=3)
>>> G.add_edge('t', 'q', cost=1, vacancies=2)
>>> G.add_edge('a', 't', cost=2, vacancies=4)
>>> G.add_edge('d', 'w', cost=3, vacancies=4)
>>> G.add_edge('t', 'w', cost=4, vacancies=1)
>>> flowCost, flowDict = nx.network_simplex(G, demand='spam',
                                             capacity='vacancies',
. . .
                                             weight='cost')
. . .
>>> flowCost
```

```
37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w':
```

min cost flow cost

min_cost_flow_cost(G, demand='demand', capacity='capacity', weight='weight')

Find the cost of a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters G: NetworkX graph

DiGraph on which a minimum cost flow satisfying all demands is to be found.

demand: string

Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

weight: string

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'.

Returns flowCost: integer, float

Cost of a minimum cost flow satisfying all demands.

Raises NetworkXError

This exception is raised if the input graph is not directed or not connected.

NetworkXUnfeasible

This exception is raised in the following situations:

- The sum of the demands is not zero. Then, there is no flow satisfying all demands.
- There is no flow satisfying all demand.

NetworkXUnbounded

This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

See also:

```
cost_of_flow, max_flow_min_cost, min_cost_flow, network_simplex
```

Examples

A simple example of a min cost flow problem.

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost = nx.min_cost_flow_cost(G)
>>> flowCost
```

min_cost_flow

```
min_cost_flow (G, demand='demand', capacity='capacity', weight='weight')

Return a minimum cost flow satisfying all demands in digraph G.
```

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters G: NetworkX graph

DiGraph on which a minimum cost flow satisfying all demands is to be found.

demand: string

Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

weight: string

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'.

Returns flowDict: dictionary

Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Raises NetworkXError

This exception is raised if the input graph is not directed or not connected.

NetworkXUnfeasible

This exception is raised in the following situations:

- The sum of the demands is not zero. Then, there is no flow satisfying all demands.
- There is no flow satisfying all demand.

NetworkXUnbounded

This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

See also:

```
cost_of_flow, max_flow_min_cost, min_cost_flow_cost, network_simplex
```

Examples

A simple example of a min cost flow problem.

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowDict = nx.min_cost_flow(G)
```

cost of flow

```
cost_of_flow(G, flowDict, weight='weight')
```

Compute the cost of the flow given by flowDict on graph G.

Note that this function does not check for the validity of the flow flowDict. This function will fail if the graph G and the flow don't have the same edge set.

Parameters G: NetworkX graph

DiGraph on which a minimum cost flow satisfying all demands is to be found.

weight: string

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'.

flowDict: dictionary

Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Returns cost: Integer, float

The total cost of the flow. This is given by the sum over all edges of the product of the edge's flow and the edge's weight.

See also:

```
max_flow_min_cost, min_cost_flow, min_cost_flow_cost, network_simplex
```

max flow min cost

```
max_flow_min_cost (G, s, t, capacity='capacity', weight='weight')

Return a maximum (s, t)-flow of minimum cost.
```

G is a digraph with edge costs and capacities. There is a source node s and a sink node t. This function finds a maximum flow from s to t whose total cost is minimized.

Parameters G: NetworkX graph

DiGraph on which a minimum cost flow satisfying all demands is to be found.

s: node label

Source of the flow.

t: node label

Destination of the flow.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

weight: string

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'.

Returns flowDict: dictionary

Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Raises NetworkXError

This exception is raised if the input graph is not directed or not connected.

NetworkXUnbounded

This exception is raised if there is an infinite capacity path from s to t in G. In this case there is no maximum flow. This exception is also raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow is unbounded below.

See also:

```
cost of flow, min cost flow cost, network simplex
```

Examples

4.22.7 Capacity Scaling Minimum Cost Flow

capacity_scaling(G[, demand, capacity, ...]) Find a minimum cost flow satisfying all demands in digraph G.

capacity_scaling

```
capacity\_scaling(G, demand='demand', capacity='capacity', weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>)
```

Find a minimum cost flow satisfying all demands in digraph G.

This is a capacity scaling successive shortest augmenting path algorithm.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters G: NetworkX graph

DiGraph or MultiDiGraph on which a minimum cost flow satisfying all demands is to be found.

demand: string

Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'.

capacity: string

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

weight: string

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'.

heap : class

Type of heap to be used in the algorithm. It should be a subclass of MinHeap or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is recommeded over PairingHeap for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default value: BinaryHeap.

Returns flowCost: integer

Cost of a minimum cost flow satisfying all demands.

flowDict: dictionary

Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v) if G is a digraph.

Dictionary of dictionaries of dictionaries keyed by nodes such that flowDict[u][v][key] is the flow edge (u, v, key) if G is a multidigraph.

Raises NetworkXError

This exception is raised if the input graph is not directed, not connected.

NetworkXUnfeasible

This exception is raised in the following situations:

- The sum of the demands is not zero. Then, there is no flow satisfying all demands.
- There is no flow satisfying all demand.

NetworkXUnbounded

This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

See also:

```
network_simplex()
```

Notes

This algorithm does not work if edge weights are floating-point numbers.

Examples

A simple example of a min cost flow problem.

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost, flowDict = nx.capacity_scaling(G)
>>> flowCost
```

4.22. Flows 283

{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}

```
It is possible to change the name of the attributes used for the algorithm.
>>> G = nx.DiGraph()
>>> G.add_node('p', spam = -4)
>>> G.add_node('q', spam = 2)
>>> G.add_node('a', spam = -2)
\rightarrow \rightarrow G.add_node('d', spam = -1)
>>> G.add_node('t', spam = 2)
>>> G.add_node('w', spam = 3)
>>> G.add_edge('p', 'q', cost = 7, vacancies = 5)
>>> G.add_edge('p', 'a', cost = 1, vacancies = 4)
>>> G.add_edge('q', 'd', cost = 2, vacancies = 3)
>>> G.add_edge('t', 'q', cost = 1, vacancies = 2)
>>> G.add_edge('a', 't', cost = 2, vacancies = 4)
>>> G.add_edge('d', 'w', cost = 3, vacancies = 4)
>>> G.add_edge('t', 'w', cost = 4, vacancies = 1)
>>> flowCost, flowDict = nx.capacity_scaling(G, demand = 'spam',
                                                capacity = 'vacancies',
. . .
                                                weight = 'cost')
>>> flowCost
37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w':
```

4.23 Graphical degree sequence

Test sequences for graphiness.

>>> flowDict

<pre>is_graphical(sequence[, method])</pre>	Returns True if sequence is a valid degree sequence.
is_digraphical(in_sequence, out_sequence)	Returns True if some directed graph can realize the in- and out-degree so
is_multigraphical(sequence)	Returns True if some multigraph can realize the sequence.
is_pseudographical(sequence)	Returns True if some pseudograph can realize the sequence.
is_valid_degree_sequence_havel_hakimi()	Returns True if deg_sequence can be realized by a simple graph.
is_valid_degree_sequence_erdos_gallai()	Returns True if deg_sequence can be realized by a simple graph.

4.23.1 is_graphical

is_graphical (sequence, method='eg')

Returns True if sequence is a valid degree sequence.

A degree sequence is valid if some graph can realize it.

Parameters sequence: list or iterable container

A sequence of integer node degrees

method: "eg" | "hh"

The method used to validate the degree sequence. "eg" corresponds to the Erdős-Gallai algorithm, and "hh" to the Havel-Hakimi algorithm.

Returns valid: bool

True if the sequence is a valid degree sequence and False if not.

References

Erdős-Gallai [EG1960], [choudum1986]

Havel-Hakimi [havel1955], [hakimi1962], [CL1996]

Examples

```
>>> G = nx.path_graph(4)
>>> sequence = G.degree().values()
>>> nx.is_valid_degree_sequence(sequence)
True
```

4.23.2 is digraphical

is_digraphical (in_sequence, out_sequence)

Returns True if some directed graph can realize the in- and out-degree sequences.

Parameters in_sequence: list or iterable container

A sequence of integer node in-degrees

out_sequence: list or iterable container

A sequence of integer node out-degrees

Returns valid: bool

True if in and out-sequences are digraphic False if not.

Notes

This algorithm is from Kleitman and Wang [R320]. The worst case runtime is O(s * log n) where s and n are the sum and length of the sequences respectively.

References

[R320]

4.23.3 is_multigraphical

is_multigraphical(sequence)

Returns True if some multigraph can realize the sequence.

Parameters deg_sequence : list

A list of integers

Returns valid: bool

True if deg_sequence is a multigraphic degree sequence and False if not.

Notes

The worst-case run time is O(n) where n is the length of the sequence.

References

[R321]

4.23.4 is pseudographical

is_pseudographical(sequence)

Returns True if some pseudograph can realize the sequence.

Every nonnegative integer sequence with an even sum is pseudographical (see [R322]).

Parameters sequence: list or iterable container

A sequence of integer node degrees

Returns valid: bool

True if the sequence is a pseudographic degree sequence and False if not.

Notes

The worst-case run time is O(n) where n is the length of the sequence.

References

[R322]

4.23.5 is_valid_degree_sequence_havel_hakimi

is_valid_degree_sequence_havel_hakimi (deg_sequence)

Returns True if deg_sequence can be realized by a simple graph.

The validation proceeds using the Havel-Hakimi theorem. Worst-case run time is: O(s) where s is the sum of the sequence.

Parameters deg_sequence : list

A list of integers where each element specifies the degree of a node in a graph.

Returns valid: bool

True if deg_sequence is graphical and False if not.

Notes

The ZZ condition says that for the sequence d if

$$|d| > = \frac{(\max(d) + \min(d) + 1)^2}{4 * \min(d)}$$

then d is graphical. This was shown in Theorem 6 in [R325].

References

[havel1955], [hakimi1962], [CL1996] [R325]

4.23.6 is valid degree sequence erdos gallai

is_valid_degree_sequence_erdos_gallai(deg_sequence)

Returns True if deg_sequence can be realized by a simple graph.

The validation is done using the Erdős-Gallai theorem [EG1960].

Parameters deg_sequence: list

A list of integers

Returns valid: bool

True if deg_sequence is graphical and False if not.

Notes

This implementation uses an equivalent form of the Erdős-Gallai criterion. Worst-case run time is: O(n) where n is the length of the sequence.

Specifically, a sequence d is graphical if and only if the sum of the sequence is even and for all strong indices k in the sequence,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{j=k+1}^{n} \min(d_i, k) = k(n-1) - (k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j)$$

A strong index k is any index where $d_k \ge k$ and the value n_j is the number of occurrences of j in d. The maximal strong index is called the Durfee index.

This particular rearrangement comes from the proof of Theorem 3 in [R324].

The ZZ condition says that for the sequence d if

$$|d| > = \frac{(\max(d) + \min(d) + 1)^2}{4 * \min(d)}$$

then d is graphical. This was shown in Theorem 6 in [R324].

References

[EG1960], [choudum1986]

[R323], [R324]

4.24 Hierarchy

Flow Hierarchy.

4.24. Hierarchy 287

 $flow_hierarchy(G[, weight])$ Returns the flow hierarchy of a directed network.

4.24.1 flow_hierarchy

flow_hierarchy(G, weight=None)

Returns the flow hierarchy of a directed network.

Flow hierarchy is defined as the fraction of edges not participating in cycles in a directed graph [R326].

Parameters G: DiGraph or MultiDiGraph

A directed graph

weight : key,optional (default=None)

Attribute to use for node weights. If None the weight defaults to 1.

Returns h: float

Flow heirarchy value

Notes

The algorithm described in [R326] computes the flow hierarchy through exponentiation of the adjacency matrix. This function implements an alternative approach that finds strongly connected components. An edge is in a cycle if and only if it is in a strongly connected component, which can be found in O(m) time using Tarjan's algorithm.

References

[R326]

4.25 Hybrid

Provides functions for finding and testing for locally (k, l)-connected graphs.

kl_connected_subgraph(G, k, l[, low_memory,])	Returns the maximum locally (k,l) -connected subgraph of G.
is_kl_connected(G, k, l[, low_memory])	Returns True if and only if G is locally (k, l) -connected.

4.25.1 kl_connected_subgraph

 $kl_connected_subgraph (G, k, l, low_memory=False, same_as_graph=False)$

Returns the maximum locally (k, l)-connected subgraph of G.

A graph is locally (k, l)-connected if for each edge (u, v) in the graph there are at least l edge-disjoint paths of length at most k joining u to v.

Parameters G: NetworkX graph

The graph in which to find a maximum locally (k, l)-connected subgraph.

k: integer

The maximum length of paths to consider. A higher number means a looser connectivity requirement.

1: integer

The number of edge-disjoint paths. A higher number means a stricter connectivity requirement.

low_memory : bool

If this is True, this function uses an algorithm that uses slightly more time but less memory.

same_as_graph : bool

If this is True then return a tuple of the form (H, is_same), where H is the maximum locally (k,l)-connected subgraph and is_same is a Boolean representing whether G is locally (k,l)-connected (and hence, whether H is simply a copy of the input graph G).

Returns NetworkX graph or two-tuple

If same_as_graph is True, then this function returns a two-tuple as described above. Otherwise, it returns only the maximum locally (k, l)-connected subgraph.

See also:

is_kl_connected

References

[R328]

4.25.2 is kl connected

is kl connected (G, k, l, low memory=False)

Returns True if and only if G is locally (k, l)-connected.

A graph is locally (k, l)-connected if for each edge (u, v) in the graph there are at least l edge-disjoint paths of length at most k joining u to v.

Parameters G: NetworkX graph

The graph to test for local (k, l)-connectedness.

k: integer

The maximum length of paths to consider. A higher number means a looser connectivity requirement.

1: integer

The number of edge-disjoint paths. A higher number means a stricter connectivity requirement.

low memory: bool

If this is True, this function uses an algorithm that uses slightly more time but less memory.

Returns bool

Whether the graph is locally (k, l)-connected subgraph.

4.25. Hybrid 289

See also:

```
kl_connected_subgraph
```

References

[R327]

4.26 Isolates

Functions for identifying isolate (degree zero) nodes.

is_isolate(G, n)	Determine of node n is an isolate (degree zero).
isolates(G)	Return list of isolates in the graph.

4.26.1 is_isolate

$is_isolate(G, n)$

Determine of node n is an isolate (degree zero).

Parameters G: graph

A networkx graph

n: node

A node in G

Returns isolate: bool

True if n has no neighbors, False otherwise.

Examples

```
>>> G=nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.is_isolate(G,2)
False
>>> nx.is_isolate(G,3)
True
```

4.26.2 isolates

$\verb"isolates" (G)$

Return list of isolates in the graph.

Isolates are nodes with no neighbors (degree zero).

Parameters G: graph

A networkx graph

Returns isolates: list

List of isolate nodes.

Examples

```
>>> G = nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.isolates(G)
```

To remove all isolates in the graph use >>> G.remove_nodes_from(nx.isolates(G)) >>> G.nodes() [1, 2]

For digraphs isolates have zero in-degree and zero out_degre >>> $G = nx.DiGraph([(0,1),(1,2)]) >>> G.add_node(3) >>> nx.isolates(G) [3]$

4.27 Isomorphism

is_isomorphic(G1, G2[, node_match, edge_match])	Returns True if the graphs G1 and G2 are isomorphic and False otherwise
$\texttt{could_be_isomorphic}(G1,G2)$	Returns False if graphs are definitely not isomorphic.
$fast_could_be_isomorphic(G1, G2)$	Returns False if graphs are definitely not isomorphic.
faster_could_be_isomorphic(G1, G2)	Returns False if graphs are definitely not isomorphic.

4.27.1 is isomorphic

is_isomorphic(G1, G2, node_match=None, edge_match=None)

Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

Parameters G1, G2: graphs

The two graphs G1 and G2 must be the same type.

node match: callable

A function that returns True if node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. If node_match is not specified then node attributes are not considered.

The function will be called like

```
node_match(G1.node[n1], G2.node[n2]).
```

That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs.

edge_match: callable

A function that returns True if the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. If edge_match is not specified then edge attributes are not considered.

The function will be called like

```
edge_match(G1[u1][v1], G2[u2][v2]).
```

That is, the function will receive the edge attribute dictionaries of the edges under consideration.

4.27. Isomorphism

See also:

```
numerical_node_match, numerical_edge_match, numerical_multiedge_match, categorical_node_match, categorical_edge_match, categorical_multiedge_match
```

Notes

Uses the vf2 algorithm [R329].

References

[R329]

Examples

```
>>> import networkx.algorithms.isomorphism as iso
```

For digraphs G1 and G2, using 'weight' edge attribute (default: 1)

```
>>> G1 = nx.DiGraph()
>>> G2 = nx.DiGraph()
>>> G1.add_path([1,2,3,4],weight=1)
>>> G2.add_path([10,20,30,40],weight=2)
>>> em = iso.numerical_edge_match('weight', 1)
>>> nx.is_isomorphic(G1, G2) # no weights considered
True
>>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights
False
```

For multidigraphs G1 and G2, using 'fill' node attribute (default: '')

```
>>> G1 = nx.MultiDiGraph()
>>> G2 = nx.MultiDiGraph()
>>> G1.add_nodes_from([1,2,3],fill='red')
>>> G2.add_nodes_from([10,20,30,40],fill='red')
>>> G1.add_path([1,2,3,4],weight=3, linewidth=2.5)
>>> G2.add_path([10,20,30,40],weight=3)
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, node_match=nm)
True
```

For multidigraphs G1 and G2, using 'weight' edge attribute (default: 7)

```
>>> G1.add_edge(1,2, weight=7)
>>> G2.add_edge(10,20)
>>> em = iso.numerical_multiedge_match('weight', 7, rtol=1e-6)
>>> nx.is_isomorphic(G1, G2, edge_match=em)
True
```

For multigraphs G1 and G2, using 'weight' and 'linewidth' edge attributes with default values 7 and 2.5. Also using 'fill' node attribute with default value 'red'.

```
>>> em = iso.numerical_multiedge_match(['weight', 'linewidth'], [7, 2.5])
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm)
True
```

4.27.2 could be isomorphic

$could_be_isomorphic(G1, G2)$

Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism.

Parameters G1, G2: graphs

The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree, triangle, and number of cliques sequences.

4.27.3 fast_could_be_isomorphic

$fast_could_be_isomorphic(G1, G2)$

Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

Parameters G1, G2 : graphs

The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree and triangle sequences.

4.27.4 faster could be isomorphic

$faster_could_be_isomorphic(G1, G2)$

Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

Parameters G1, G2: graphs

The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree sequences.

4.27.5 Advanced Interface to VF2 Algorithm

VF2 Algorithm

An implementation of VF2 algorithm for graph ismorphism testing.

The simplest interface to use this module is to call networkx.is_isomorphic().

4.27. Isomorphism 293

Introduction

The GraphMatcher and DiGraphMatcher are responsible for matching graphs or directed graphs in a predetermined manner. This usually means a check for an isomorphism, though other checks are also possible. For example, a subgraph of one graph can be checked for isomorphism to a second graph.

Matching is done via syntactic feasibility. It is also possible to check for semantic feasibility. Feasibility, then, is defined as the logical AND of the two functions.

To include a semantic check, the (Di)GraphMatcher class should be subclassed, and the semantic_feasibility() function should be redefined. By default, the semantic feasibility function always returns True. The effect of this is that semantics are not considered in the matching of G1 and G2.

Examples

Suppose G1 and G2 are isomorphic graphs. Verification is as follows:

```
>>> from networkx.algorithms import isomorphism
>>> G1 = nx.path_graph(4)
>>> G2 = nx.path_graph(4)
>>> GM = isomorphism.GraphMatcher(G1,G2)
>>> GM.is_isomorphic()
True
```

GM.mapping stores the isomorphism mapping from G1 to G2.

```
>>> GM.mapping {0: 0, 1: 1, 2: 2, 3: 3}
```

Suppose G1 and G2 are isomorphic directed graphs graphs. Verification is as follows:

```
>>> G1 = nx.path_graph(4, create_using=nx.DiGraph())
>>> G2 = nx.path_graph(4, create_using=nx.DiGraph())
>>> DiGM = isomorphism.DiGraphMatcher(G1,G2)
>>> DiGM.is_isomorphic()
True
```

DiGM.mapping stores the isomorphism mapping from G1 to G2.

```
>>> DiGM.mapping {0: 0, 1: 1, 2: 2, 3: 3}
```

Subgraph Isomorphism

Graph theory literature can be ambiguious about the meaning of the above statement, and we seek to clarify it now.

In the VF2 literature, a mapping M is said to be a graph-subgraph isomorphism iff M is an isomorphism between G2 and a subgraph of G1. Thus, to say that G1 and G2 are graph-subgraph isomorphic is to say that a subgraph of G1 is isomorphic to G2.

Other literature uses the phrase 'subgraph isomorphic' as in 'G1 does not have a subgraph isomorphic to G2'. Another use is as an in adverb for isomorphic. Thus, to say that G1 and G2 are subgraph isomorphic is to say that a subgraph of G1 is isomorphic to G2.

Finally, the term 'subgraph' can have multiple meanings. In this context, 'subgraph' always means a 'node-induced subgraph'. Edge-induced subgraph isomorphisms are not directly supported, but one should be able to perform the

check by making use of nx.line_graph(). For subgraphs which are not induced, the term 'monomorphism' is preferred over 'isomorphism'. Currently, it is not possible to check for monomorphisms.

Let G=(N,E) be a graph with a set of nodes N and set of edges E.

- If G'=(N',E') is a subgraph, then: N' is a subset of N E' is a subset of E
- If G'=(N',E') is a node-induced subgraph, then: N' is a subset of N E' is the subset of edges in E relating nodes in N'
- If G'=(N',E') is an edge-induced subgrpah, then: N' is the subset of nodes in N related by edges in E' E' is a subset of E

References

- [1] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, "A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367-1372, Oct., 2004. http://ieeexplore.ieee.org/iel5/34/29305/01323804.pdf
- [2] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf

See Also

syntactic_feasibliity(), semantic_feasibility()

Notes

Modified to handle undirected graphs. Modified to handle multiple edges.

In general, this problem is NP-Complete.

Graph Matcher

GraphMatcherinit(G1, G2[, node_match,])	Initialize graph matcher.
GraphMatcher.initialize()	Reinitializes the state of the algorithm.
<pre>GraphMatcher.is_isomorphic()</pre>	Returns True if G1 and G2 are isomorphic graphs.
<pre>GraphMatcher.subgraph_is_isomorphic()</pre>	Returns True if a subgraph of G1 is isomorphic to G2.
<pre>GraphMatcher.isomorphisms_iter()</pre>	Generator over isomorphisms between G1 and G2.
<pre>GraphMatcher.subgraph_isomorphisms_iter()</pre>	Generator over isomorphisms between a subgraph of G1 and G2.
GraphMatcher.candidate_pairs_iter()	Iterator over candidate pairs of nodes in G1 and G2.
GraphMatcher.match()	Extends the isomorphism mapping.
GraphMatcher.semantic_feasibility(G1_node,)	Returns True if mapping G1_node to G2_node is semantically fea
GraphMatcher.syntactic_feasibility(G1_node,)	Returns True if adding (G1_node, G2_node) is syntactically feasible

__init_

GraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)
Initialize graph matcher.

Parameters G1, G2: graph

The graphs to be tested.

4.27. Isomorphism 295

node match: callable

A function that returns True iff node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. The function will be called like:

```
node_match(G1.node[n1], G2.node[n2])
```

That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism.

edge_match: callable

A function that returns True iff the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. The function will be called like:

```
edge_match(G1[u1][v1], G2[u2][v2])
```

That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism.

initialize

```
GraphMatcher.initialize()
```

Reinitializes the state of the algorithm.

This method should be redefined if using something other than GMState. If only subclassing GraphMatcher, a redefinition is not necessary.

is isomorphic

```
GraphMatcher.is_isomorphic()
```

Returns True if G1 and G2 are isomorphic graphs.

subgraph is isomorphic

```
GraphMatcher.subgraph_is_isomorphic()
```

Returns True if a subgraph of G1 is isomorphic to G2.

$isomorphisms_iter$

```
GraphMatcher.isomorphisms_iter()
```

Generator over isomorphisms between G1 and G2.

subgraph isomorphisms iter

```
{\tt GraphMatcher.subgraph\_isomorphisms\_iter}\,()
```

Generator over isomorphisms between a subgraph of G1 and G2.

candidate_pairs_iter

```
GraphMatcher.candidate_pairs_iter()
```

Iterator over candidate pairs of nodes in G1 and G2.

match

GraphMatcher.match()

Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

semantic_feasibility

```
GraphMatcher.semantic_feasibility(Gl_node, G2_node)
```

Returns True if mapping G1_node to G2_node is semantically feasible.

syntactic_feasibility

GraphMatcher.syntactic_feasibility(G1_node, G2_node)

Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found.

DiGraph Matcher

DiGraphMatcher. $_$ init $_$ (G1, G2[,])	Initialize graph matcher.
DiGraphMatcher.initialize()	Reinitializes the state of the algorithm.
DiGraphMatcher.is_isomorphic()	Returns True if G1 and G2 are isomorphic graphs.
DiGraphMatcher.subgraph_is_isomorphic()	Returns True if a subgraph of G1 is isomorphic to G2.
DiGraphMatcher.isomorphisms_iter()	Generator over isomorphisms between G1 and G2.
DiGraphMatcher.subgraph_isomorphisms_iter()	Generator over isomorphisms between a subgraph of G1 and G2
DiGraphMatcher.candidate_pairs_iter()	Iterator over candidate pairs of nodes in G1 and G2.
DiGraphMatcher.match()	Extends the isomorphism mapping.
DiGraphMatcher.semantic_feasibility(G1_node,)	Returns True if mapping G1_node to G2_node is semantically fe
DiGraphMatcher.syntactic_feasibility()	Returns True if adding (G1_node, G2_node) is syntactically feas

__init__

DiGraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)
Initialize graph matcher.

Parameters G1, G2: graph

The graphs to be tested.

node match: callable

A function that returns True iff node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. The function will be called like:

```
node_match(G1.node[n1], G2.node[n2])
```

That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism.

edge_match: callable

A function that returns True iff the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test.

4.27. Isomorphism

The function will be called like:

```
edge_match(G1[u1][v1], G2[u2][v2])
```

That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism.

initialize

```
DiGraphMatcher.initialize()
```

Reinitializes the state of the algorithm.

This method should be redefined if using something other than DiGMState. If only subclassing GraphMatcher, a redefinition is not necessary.

is_isomorphic

```
DiGraphMatcher.is_isomorphic()
```

Returns True if G1 and G2 are isomorphic graphs.

subgraph_is_isomorphic

```
DiGraphMatcher.subgraph_is_isomorphic()
```

Returns True if a subgraph of G1 is isomorphic to G2.

isomorphisms_iter

```
DiGraphMatcher.isomorphisms_iter()
```

Generator over isomorphisms between G1 and G2.

subgraph_isomorphisms_iter

```
DiGraphMatcher.subgraph_isomorphisms_iter()
```

Generator over isomorphisms between a subgraph of G1 and G2.

candidate_pairs_iter

```
DiGraphMatcher.candidate_pairs_iter()
```

Iterator over candidate pairs of nodes in G1 and G2.

match

```
DiGraphMatcher.match()
```

Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

semantic_feasibility

```
{\tt DiGraphMatcher.semantic\_feasibility} \ (Gl\_node, \ G2\_node)
```

Returns True if mapping G1_node to G2_node is semantically feasible.

syntactic_feasibility

DiGraphMatcher.syntactic_feasibility(G1_node, G2_node)

Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found.

Match helpers

categorical_node_match(attr, default)	Returns a comparison function for a categorical node attribute.
categorical_edge_match(attr, default)	Returns a comparison function for a categorical edge attribute.
<pre>categorical_multiedge_match(attr, default)</pre>	Returns a comparison function for a categorical edge attribute.
<pre>numerical_node_match(attr, default[, rtol, atol])</pre>	Returns a comparison function for a numerical node attribute.
<pre>numerical_edge_match(attr, default[, rtol, atol])</pre>	Returns a comparison function for a numerical edge attribute.
<pre>numerical_multiedge_match(attr, default[,])</pre>	Returns a comparison function for a numerical edge attribute.
<pre>generic_node_match(attr, default, op)</pre>	Returns a comparison function for a generic attribute.
<pre>generic_edge_match(attr, default, op)</pre>	Returns a comparison function for a generic attribute.
<pre>generic_multiedge_match(attr, default, op)</pre>	Returns a comparison function for a generic attribute.

categorical_node_match

categorical_node_match (attr, default)

Returns a comparison function for a categorical node attribute.

The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True.

Parameters attr: string | list

The categorical node attribute to compare, or a list of categorical node attributes to compare.

default : value | list

The default value for the categorical node attribute, or a list of default values for the categorical node attributes.

Returns match: function

The customized, categorical $node_match$ function.

Examples

```
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_node_match('size', 1)
>>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2])
```

categorical_edge_match

categorical_edge_match (attr, default)

Returns a comparison function for a categorical edge attribute.

The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True.

Parameters attr: string | list

The categorical edge attribute to compare, or a list of categorical edge attributes to compare.

default: value | list

The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes.

Returns match: function

The customized, categorical $edge_match$ function.

Examples

```
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_edge_match('size', 1)
>>> nm = iso.categorical_edge_match(['color', 'size'], ['red', 2])
```

categorical_multiedge_match

```
categorical_multiedge_match (attr, default)
```

Returns a comparison function for a categorical edge attribute.

The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True.

Parameters attr: string | list

The categorical edge attribute to compare, or a list of categorical edge attributes to compare.

default: value | list

The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes.

Returns match: function

The customized, categorical $edge_match$ function.

Examples

```
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_multiedge_match('size', 1)
>>> nm = iso.categorical_multiedge_match(['color', 'size'], ['red', 2])
```

$numerical_node_match$

```
numerical_node_match (attr, default, rtol=1e-05, atol=1e-08)
```

Returns a comparison function for a numerical node attribute.

The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True.

Parameters attr: string | list

The numerical node attribute to compare, or a list of numerical node attributes to compare.

default : value | list

The default value for the numerical node attribute, or a list of default values for the numerical node attributes.

rtol: float

The relative error tolerance.

atol: float

The absolute error tolerance.

Returns match: function

The customized, numerical $node_match$ function.

Examples

```
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_node_match('weight', 1.0)
>>> nm = iso.numerical_node_match(['weight', 'linewidth'], [.25, .5])
```

numerical_edge_match

```
numerical_edge_match (attr, default, rtol=1e-05, atol=1e-08)
```

Returns a comparison function for a numerical edge attribute.

The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True.

Parameters attr: string | list

The numerical edge attribute to compare, or a list of numerical edge attributes to compare.

default: value | list

The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes.

rtol: float

The relative error tolerance.

atol: float

The absolute error tolerance.

Returns match: function

The customized, numerical $edge_match$ function.

Examples

```
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_edge_match('weight', 1.0)
>>> nm = iso.numerical_edge_match(['weight', 'linewidth'], [.25, .5])
```

numerical multiedge match

```
numerical_multiedge_match (attr, default, rtol=1e-05, atol=1e-08)
```

Returns a comparison function for a numerical edge attribute.

The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True.

Parameters attr: string | list

The numerical edge attribute to compare, or a list of numerical edge attributes to compare.

default: value | list

The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes.

rtol: float

The relative error tolerance.

atol: float

The absolute error tolerance.

Returns match: function

The customized, numerical $edge_match$ function.

Examples

```
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_multiedge_match('weight', 1.0)
>>> nm = iso.numerical_multiedge_match(['weight', 'linewidth'], [.25, .5])
```

generic_node_match

```
generic_node_match (attr, default, op)
```

Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True.

Parameters attr: string | list

The node attribute to compare, or a list of node attributes to compare.

default: value | list

The default value for the node attribute, or a list of default values for the node attributes.

op: callable | list

The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute.

Returns match: function

The customized, generic $node_match$ function.

Examples

```
>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match
>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq])
```

generic_edge_match

```
generic edge match(attr, default, op)
```

Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True.

Parameters attr: string | list

The edge attribute to compare, or a list of edge attributes to compare.

```
default: value | list
```

The default value for the edge attribute, or a list of default values for the edge attributes.

```
op: callable | list
```

The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute.

Returns match: function

The customized, generic $edge_match$ function.

Examples

```
>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_edge_match
>>> nm = generic_edge_match('weight', 1.0, close)
>>> nm = generic_edge_match('color', 'red', eq)
>>> nm = generic_edge_match(['weight', 'color'], [1.0, 'red'], [close, eq])
```

generic_multiedge_match

```
generic_multiedge_match(attr, default, op)
```

Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. Potentially, the constructed edge_match function can be slow since it must verify that no isomorphism exists between the multiedges before it returns False.

Parameters attr: string | list

The edge attribute to compare, or a list of node attributes to compare.

default : value | list

The default value for the edge attribute, or a list of default values for the dgeattributes.

op: callable | list

The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute.

Returns match: function

The customized, generic $edge_match$ function.

Examples

4.28 Link Analysis

4.28.1 PageRank

PageRank analysis of graph structure.

pagerank(G[, alpha, personalization,])	Return the PageRank of the nodes in the graph.
pagerank_numpy(G[, alpha, personalization,])	Return the PageRank of the nodes in the graph.
pagerank_scipy(G[, alpha, personalization,])	Return the PageRank of the nodes in the graph.
<pre>google_matrix(G[, alpha, personalization,])</pre>	Return the Google matrix of the graph.

pagerank

 $\label{eq:pagerank} \begin{subarray}{ll} \textbf{pagerank} (\textit{G}, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, nstart=None, weight='weight', \\ & \textit{dangling=None}) \end{subarray}$

Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

Parameters G: graph

A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge.

alpha: float, optional

Damping parameter for PageRank, default=0.85.

personalization: dict, optional

The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used.

max_iter: integer, optional

Maximum number of iterations in power method eigenvalue solver.

tol: float, optional

Error tolerance used to check convergence in power method solver.

nstart: dictionary, optional

Starting value of PageRank iteration for each node.

weight: key, optional

Edge data key to use as weight. If None weights are set to 1.

dangling: dict, optional

The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified). This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict.

Returns pagerank: dictionary

Dictionary of nodes with PageRank as value

See also:

```
pagerank_numpy, pagerank_scipy, google_matrix
```

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max iter iterations or an error tolerance of number of nodes(G)*tol has been reached.

The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs by converting each edge in the directed graph to two edges.

References

```
[R336], [R337]
```

Examples

```
>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank(G, alpha=0.9)
```

pagerank numpy

```
pagerank_numpy (G, alpha=0.85, personalization=None, weight='weight', dangling=None)
Return the PageRank of the nodes in the graph.
```

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

Parameters G: graph

A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge.

alpha: float, optional

Damping parameter for PageRank, default=0.85.

personalization: dict, optional

The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used.

weight: key, optional

Edge data key to use as weight. If None weights are set to 1.

dangling: dict, optional

The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict.

Returns pagerank: dictionary

Dictionary of nodes with PageRank as value.

See also:

```
pagerank, pagerank_scipy, google_matrix
```

Notes

The eigenvector calculation uses NumPy's interface to the LAPACK eigenvalue solvers. This will be the fastest and most accurate for small graphs.

This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes.

References

```
[R338], [R339]
```

Examples

```
>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_numpy(G, alpha=0.9)
```

pagerank scipy

```
\label{eq:pagerank_scipy} $$ (G, alpha=0.85, personalization=None, max\_iter=100, tol=1e-06, weight='weight', dangling=None) $$ Return the PageRank of the nodes in the graph.
```

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

Parameters G: graph

A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge.

alpha: float, optional

Damping parameter for PageRank, default=0.85.

personalization: dict, optional

The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used.

max_iter: integer, optional

Maximum number of iterations in power method eigenvalue solver.

tol: float, optional

Error tolerance used to check convergence in power method solver.

weight: key, optional

Edge data key to use as weight. If None weights are set to 1.

dangling: dict, optional

The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict.

Returns pagerank: dictionary

Dictionary of nodes with PageRank as value

See also:

pagerank, pagerank_numpy, google_matrix

Notes

The eigenvector calculation uses power iteration with a SciPy sparse matrix representation.

This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes.

References

[R340], [R341]

Examples

```
>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_scipy(G, alpha=0.9)
```

google_matrix

 $google_matrix(G, alpha=0.85, personalization=None, nodelist=None, weight='weight', dan-gling=None)$

Return the Google matrix of the graph.

Parameters G: graph

A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge.

alpha: float

The damping factor.

personalization: dict, optional

The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used.

nodelist: list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

weight: key, optional

Edge data key to use as weight. If None weights are set to 1.

dangling: dict, optional

The outedges to be assigned to any "dangling" nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes below). It may be common to have the dangling dict to be the same as the personalization dict.

Returns A: NumPy matrix

Google matrix of the graph

See also:

pagerank, pagerank_numpy, pagerank_scipy

Notes

The matrix returned represents the transition matrix that describes the Markov chain used in PageRank. For PageRank to converge to a unique solution (i.e., a unique stationary distribution in a Markov chain), the transition matrix must be irreducible. In other words, it must be that there exists a path between every pair of nodes in the graph, or else there is the potential of "rank sinks."

This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes.

4.28.2 Hits

Hubs and authorities analysis of graph structure.

hits(G[, max_iter, tol, nstart, normalized])	Return HITS hubs and authorities values for nodes.
hits_numpy(G[, normalized])	Return HITS hubs and authorities values for nodes.
hits_scipy(G[, max_iter, tol, normalized])	Return HITS hubs and authorities values for nodes.
hub_matrix(G[, nodelist])	Return the HITS hub matrix.
$authority_matrix(G[, nodelist])$	Return the HITS authority matrix.

hits

hits (G, max_iter=100, tol=1e-08, nstart=None, normalized=True)

Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

Parameters G: graph

A NetworkX graph

max_iter: interger, optional

Maximum number of iterations in power method.

tol: float, optional

Error tolerance used to check convergence in power method iteration.

nstart: dictionary, optional

Starting value of each node for power method iteration.

normalized : bool (default=True)

Normalize results by the sum of all of the values.

Returns (hubs, authorities): two-tuple of dictionaries

Two dictionaries keyed by node containing the hub and authority values.

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.

References

[R330], [R331]

4.28. Link Analysis 309

Examples

```
>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)
```

hits_numpy

hits_numpy (G, normalized=True)

Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

Parameters G: graph

A NetworkX graph

normalized : bool (default=True)

Normalize results by the sum of all of the values.

Returns (hubs,authorities): two-tuple of dictionaries

Two dictionaries keyed by node containing the hub and authority values.

Notes

The eigenvector calculation uses NumPy's interface to LAPACK.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.

References

```
[R332], [R333]
```

Examples

```
>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)
```

hits scipy

```
hits_scipy (G, max_iter=100, tol=1e-06, normalized=True)
```

Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

Parameters G: graph

A NetworkX graph

max_iter: interger, optional

Maximum number of iterations in power method.

tol: float, optional

Error tolerance used to check convergence in power method iteration.

nstart: dictionary, optional

Starting value of each node for power method iteration.

normalized : bool (default=True)

Normalize results by the sum of all of the values.

Returns (hubs,authorities): two-tuple of dictionaries

Two dictionaries keyed by node containing the hub and authority values.

Notes

This implementation uses SciPy sparse matrices.

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.

References

```
[R334], [R335]
```

Examples

```
>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)
```

hub matrix

```
hub_matrix (G, nodelist=None)
Return the HITS hub matrix.
```

authority matrix

```
authority_matrix (G, nodelist=None)
Return the HITS authority matrix.
```

4.29 Link Prediction

Link prediction algorithms.

```
{\tt resource\_allocation\_index}(G[, ebunch]) \\ {\tt Compute the resource allocation index of all node pairs in ebunch.}
```

4.29. Link Prediction 311

Table 4.77 – continued from previous page

$_{ m jaccard_coefficient}(G[,ebunch])$	Compute the Jaccard coefficient of all node pairs in ebunch.
$adamic_adar_index(G[,ebunch])$	Compute the Adamic-Adar index of all node pairs in ebunch.
$preferential_attachment(G[,ebunch])$	Compute the preferential attachment score of all node pairs in ebunch.
$cn_soundarajan_hopcroft(G[, ebunch, community])$	Count the number of common neighbors of all node pairs in ebunch us
ra_index_soundarajan_hopcroft($G[$, ebunch,])	Compute the resource allocation index of all node pairs in ebunch usin
within_inter_cluster($G[$, ebunch, delta,])	Compute the ratio of within- and inter-cluster common neighbors of al

4.29.1 resource_allocation_index

resource_allocation_index(G, ebunch=None)

Compute the resource allocation index of all node pairs in ebunch.

Resource allocation index of u and v is defined as

$$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|}$$

where $\Gamma(u)$ denotes the set of neighbors of u.

Parameters G: graph

A NetworkX undirected graph.

ebunch: iterable of node pairs, optional (default = None)

Resource allocation index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

Returns piter: iterator

An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their resource allocation index.

References

[R347]

Examples

```
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.resource_allocation_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.75000000'
'(2, 3) -> 0.75000000'
```

4.29.2 jaccard coefficient

jaccard_coefficient(G, ebunch=None)

Compute the Jaccard coefficient of all node pairs in ebunch.

Jaccard coefficient of nodes u and v is defined as

$$\frac{|\Gamma(u)\cap\Gamma(v)|}{|\Gamma(u)\cup\Gamma(v)|}$$

where $\Gamma(u)$ denotes the set of neighbors of u.

Parameters G: graph

A NetworkX undirected graph.

ebunch: iterable of node pairs, optional (default = None)

Jaccard coefficient will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

Returns piter: iterator

An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Jaccard coefficient.

References

[R344]

Examples

```
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.jaccard_coefficient(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.60000000'
'(2, 3) -> 0.60000000'
```

4.29.3 adamic adar index

adamic_adar_index(G, ebunch=None)

Compute the Adamic-Adar index of all node pairs in ebunch.

Adamic-Adar index of u and v is defined as

$$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}$$

where $\Gamma(u)$ denotes the set of neighbors of u.

Parameters G: graph

NetworkX undirected graph.

4.29. Link Prediction 313

ebunch: iterable of node pairs, optional (default = None)

Adamic-Adar index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

Returns piter: iterator

An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Adamic-Adar index.

References

[R342]

Examples

```
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 2.16404256'
'(2, 3) -> 2.16404256'
```

4.29.4 preferential attachment

```
preferential_attachment(G, ebunch=None)
```

Compute the preferential attachment score of all node pairs in ebunch.

Preferential attachment score of u and v is defined as

```
|\Gamma(u)||\Gamma(v)|
```

where $\Gamma(u)$ denotes the set of neighbors of u.

Parameters G: graph

NetworkX undirected graph.

ebunch: iterable of node pairs, optional (default = None)

Preferential attachment score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

Returns piter: iterator

An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their preferential attachment score.

References

[R345]

Examples

```
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
...    '(%d, %d) -> %d' % (u, v, p)
...
'(0, 1) -> 16'
'(2, 3) -> 16'
```

4.29.5 cn_soundarajan_hopcroft

cn_soundarajan_hopcroft (G, ebunch=None, community='community')

Count the number of common neighbors of all node pairs in ebunch using community information.

For two nodes u and v, this function computes the number of common neighbors and bonus one for each common neighbor belonging to the same community as u and v. Mathematically,

$$|\Gamma(u)\cap\Gamma(v)|+\sum_{w\in\Gamma(u)\cap\Gamma(v)}f(w)$$

where f(w) equals 1 if w belongs to the same community as u and v or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of u.

Parameters G: graph

A NetworkX undirected graph.

ebunch: iterable of node pairs, optional (default = None)

The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

```
community : string, optional (default = 'community')
```

Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'.

Returns piter: iterator

An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score.

References

[R343]

Examples

```
>>> import networkx as nx
>>> G = nx.path_graph(3)
>>> G.node[0]['community'] = 0
```

4.29. Link Prediction 315

```
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 0
>>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])
>>> for u, v, p in preds:
...     '(%d, %d) -> %d' % (u, v, p)
...
'(0, 2) -> 2'
```

4.29.6 ra_index_soundarajan_hopcroft

ra_index_soundarajan_hopcroft (G, ebunch=None, community='community')

Compute the resource allocation index of all node pairs in ebunch using community information.

For two nodes u and v, this function computes the resource allocation index considering only common neighbors belonging to the same community as u and v. Mathematically,

$$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|}$$

where f(w) equals 1 if w belongs to the same community as u and v or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of u.

Parameters G: graph

A NetworkX undirected graph.

ebunch: iterable of node pairs, optional (default = None)

The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

```
community : string, optional (default = 'community')
```

Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'.

Returns piter: iterator

An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score.

References

[R346]

Examples

```
>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 1
>>> G.node[3]['community'] = 0
```

```
>>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 3) -> 0.500000000'
```

4.29.7 within_inter_cluster

within_inter_cluster(G, ebunch=None, delta=0.001, community='community')

Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch.

For two nodes u and v, if a common neighbor w belongs to the same community as them, w is considered as within-cluster common neighbor of u and v. Otherwise, it is considered as inter-cluster common neighbor of u and v. The ratio between the size of the set of within- and inter-cluster common neighbors is defined as the WIC measure. [R348]

Parameters G: graph

A NetworkX undirected graph.

ebunch: iterable of node pairs, optional (default = None)

The WIC measure will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

```
delta: float, optional (default = 0.001)
```

Value to prevent division by zero in case there is no inter-cluster common neighbor between two nodes. See [R348] for details. Default value: 0.001.

```
community : string, optional (default = 'community')
```

Nodes attribute name containing the community information. G[u][community] identifies which community u belongs to. Each node belongs to at most one community. Default value: 'community'.

Returns piter: iterator

An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their WIC measure.

References

[R348]

Examples

```
>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 1
>>> G.node[2]['community'] = 0
>>> G.node[3]['community'] = 0
>>> G.node[4]['community'] = 0
>>> preds = nx.within_inter_cluster(G, [(0, 4)])
```

4.29. Link Prediction 317

```
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 4) -> 1.99800200'
>>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 4) -> 1.333333333'
```

4.30 Matching

$ exttt{maximal_matching}(G)$	Find a maximal cardinality matching in the graph.
$max_weight_matching(G[, maxcardinality])$	Compute a maximum-weighted matching of G.

4.30.1 maximal_matching

$maximal_matching(G)$

Find a maximal cardinality matching in the graph.

A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the number of matched edges.

Parameters G: NetworkX graph

Undirected graph

Returns matching: set

A maximal matching of the graph.

Notes

The algorithm greedily selects a maximal matching M of the graph G (i.e. no superset of M exists). It runs in O(|E|) time.

4.30.2 max weight matching

max_weight_matching(G, maxcardinality=False)

Compute a maximum-weighted matching of G.

A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the number of matched edges. The weight of a matching is the sum of the weights of its edges.

Parameters G: NetworkX graph

Undirected graph

maxcardinality: bool, optional

If maxcardinality is True, compute the maximum-cardinality matching with maximum weight among all maximum-cardinality matchings.

Returns mate: dictionary

The matching is returned as a dictionary, mate, such that mate[v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate.

Notes

If G has edges with 'weight' attribute the edge data are used as weight values else the weights are assumed to be 1

This function takes time O(number of nodes ** 3).

If all edge weights are integers, the algorithm uses only integer computations. If floating point weights are used, the algorithm could return a slightly suboptimal matching due to numeric precision errors.

This method is based on the "blossom" method for finding augmenting paths and the "primal-dual" method for finding a matching of maximum weight, both methods invented by Jack Edmonds [R349].

Bipartite graphs can also be matched using the functions present in networkx.algorithms.bipartite.matching.

References

[R349]

4.31 Minors

Provides functions for computing minors of a graph.

contracted_edge(G, edge[, self_loops])	Returns the graph that results from contracting the specified edge.
$contracted_nodes(G, u, v[, self_loops])$	Returns the graph that results from contracting u and v.
$identified_nodes(G, u, v[, self_loops])$	Returns the graph that results from contracting u and v.
quotient_graph(G, node_relation[,])	Returns the quotient graph of G under the specified equivalence relation on nodes.

4.31.1 contracted_edge

contracted_edge (G, edge, self_loops=True)

Returns the graph that results from contracting the specified edge.

Edge contraction identifies the two endpoints of the edge as a single node incident to any edge that was incident to the original two nodes. A graph that results from edge contraction is called a *minor* of the original graph.

Parameters G: NetworkX graph

The graph whose edge will be contracted.

edge: tuple

Must be a pair of nodes in G.

self_loops: Boolean

If this is True, any edges (including edge) joining the endpoints of edge in G become self-loops on the new node in the returned graph.

Returns Networkx graph

4.31. Minors 319

A new graph object of the same type as G (leaving G unmodified) with endpoints of edge identified in a single node. The right node of edge will be merged into the left one, so only the left one will appear in the returned graph.

Raises ValueError

If edge is not an edge in G.

See also:

```
contracted_nodes, quotient_graph
```

Examples

Attempting to contract two nonadjacent nodes yields an error:

```
>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> nx.contracted_edge(G, (1, 3))
Traceback (most recent call last):
...
ValueError: Edge (1, 3) does not exist in graph G; cannot contract it
```

Contracting two adjacent nodes in the cycle graph on n nodes yields the cycle graph on n - 1 nodes:

```
>>> import networkx as nx
>>> C5 = nx.cycle_graph(5)
>>> C4 = nx.cycle_graph(4)
>>> M = nx.contracted_edge(C5, (0, 1), self_loops=False)
>>> nx.is_isomorphic(M, C4)
True
```

4.31.2 contracted nodes

```
contracted nodes (G, u, v, self loops=True)
```

Returns the graph that results from contracting u and v.

Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original two nodes.

Parameters G: NetworkX graph

The graph whose nodes will be contracted.

```
u, v: nodes
```

Must be nodes in G.

```
self loops: Boolean
```

If this is True, any edges joining u and v in G become self-loops on the new node in the returned graph.

Returns Networkx graph

A new graph object of the same type as G (leaving G unmodified) with u and v identified in a single node. The right node v will be merged into the node u, so only u will appear in the returned graph.

See also:

```
contracted_edge, quotient_graph
```

Notes

This function is also available as identified nodes.

Examples

Contracting two nonadjacent nodes of the cycle graph on four nodes C_4 yields the path graph (ignoring parallel edges):

```
>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True
```

4.31.3 identified nodes

identified_nodes (G, u, v, self_loops=True)

Returns the graph that results from contracting u and v.

Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original two nodes.

Parameters G: NetworkX graph

The graph whose nodes will be contracted.

```
u, v : nodes
```

Must be nodes in G.

```
self_loops: Boolean
```

If this is \mathtt{True} , any edges joining u and v in G become self-loops on the new node in the returned graph.

Returns Networkx graph

A new graph object of the same type as G (leaving G unmodified) with u and v identified in a single node. The right node v will be merged into the node u, so only u will appear in the returned graph.

See also:

```
contracted_edge, quotient_graph
```

Notes

This function is also available as identified_nodes.

4.31. Minors 321

Examples

Contracting two nonadjacent nodes of the cycle graph on four nodes C_4 yields the path graph (ignoring parallel edges):

```
>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True
```

4.31.4 quotient_graph

quotient_graph (*G*, node_relation, edge_relation=None, create_using=None)

Returns the quotient graph of G under the specified equivalence relation on nodes.

Parameters G: NetworkX graph

The graph for which to return the quotient graph with the specified node relation.

node_relation: Boolean function with two arguments

This function must represent an equivalence relation on the nodes of G. It must take two arguments u and v and return True exactly when u and v are in the same equivalence class. The equivalence classes form the nodes in the returned graph.

edge relation: Boolean function with two arguments

This function must represent an edge relation on the *blocks* of G in the partition induced by node_relation. It must take two arguments, B and C, each one a set of nodes, and return True exactly when there should be an edge joining block B to block C in the returned graph.

If edge_relation is not specified, it is assumed to be the following relation. Block B is related to block C if and only if some node in B is adjacent to some node in C, according to the edge set of G.

create_using : NetworkX graph

If specified, this must be an instance of a NetworkX graph class. The nodes and edges of the quotient graph will be added to this graph and returned. If not specified, the returned graph will have the same type as the input graph.

Returns NetworkX graph

The quotient graph of G under the equivalence relation specified by node_relation.

Examples

The quotient graph of the complete bipartite graph under the "same neighbors" equivalence relation is K_2 . Under this relation, two nodes are equivalent if they are not adjacent but have the same neighbor set:

```
>>> nx.is_isomorphic(Q, K2)
True
```

The quotient graph of a directed graph under the "same strongly connected component" equivalence relation is the condensation of the graph (see condensation()). This example comes from the Wikipedia article 'Strongly connected component':

Node identification can be represented as the quotient of a graph under the equivalence relation that places the two nodes in one block and each other node in its own singleton block:

```
>>> import networkx as nx
>>> K24 = nx.complete_bipartite_graph(2, 4)
>>> K34 = nx.complete_bipartite_graph(3, 4)
>>> C = nx.contracted_nodes(K34, 1, 2)
>>> nodes = {1, 2}
>>> is_contracted = lambda u, v: u in nodes and v in nodes
>>> Q = nx.quotient_graph(K34, is_contracted)
>>> nx.is_isomorphic(Q, C)
True
>>> nx.is_isomorphic(Q, K24)
```

4.32 Maximal independent set

Algorithm to find a maximal (not maximum) independent set.

maximal_independent_set(G[, nodes]) Return a random maximal independent set guaranteed to contain a given set of node

4.32.1 maximal_independent_set

```
maximal_independent_set (G, nodes=None)
```

Return a random maximal independent set guaranteed to contain a given set of nodes.

An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A maximal independent set is an independent set such that it is not possible to add a new node and still get an independent set.

Parameters G: NetworkX graph

nodes: list or iterable

Nodes that must be part of the independent set. This set of nodes must be independent.

Returns indep_nodes: list

List of nodes that are part of a maximal independent set.

Raises NetworkXUnfeasible

If the nodes in the provided list are not part of the graph or do not form an independent set, an exception is raised.

Notes

This algorithm does not solve the maximum independent set problem.

Examples

```
>>> G = nx.path_graph(5)
>>> nx.maximal_independent_set(G)
[4, 0, 2]
>>> nx.maximal_independent_set(G, [1])
[1, 3]
```

4.33 Minimum Spanning Tree

Computes minimum spanning tree of a weighted graph.

<pre>minimum_spanning_tree(G[, weight])</pre>	Return a minimum spanning tree or forest of an undirected weighted graph.
	Generate edges in a minimum spanning forest of an undirected weighted graph.

4.33.1 minimum_spanning_tree

```
minimum_spanning_tree(G, weight='weight')
```

Return a minimum spanning tree or forest of an undirected weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights.

If the graph is not connected a spanning forest is constructed. A spanning forest is a union of the spanning trees for each connected component of the graph.

```
Parameters G: NetworkX Graph
```

weight: string

Edge data key to use for weight (default 'weight').

Returns G: NetworkX Graph

A minimum spanning tree or forest.

Notes

Uses Kruskal's algorithm.

If the graph edges do not have a weight attribute a default weight of 1 will be used.

Examples

```
>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> T=nx.minimum_spanning_tree(G)
>>> print(sorted(T.edges(data=True)))
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
```

4.33.2 minimum_spanning_edges

```
minimum_spanning_edges (G, weight='weight', data=True)
```

Generate edges in a minimum spanning forest of an undirected weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph.

```
Parameters G: NetworkX Graph
```

weight: string

Edge data key to use for weight (default 'weight').

data: bool, optional

If True yield the edge data along with the edge.

Returns edges: iterator

A generator that produces edges in the minimum spanning tree. The edges are three-tuples (u,v,w) where w is the weight.

Notes

Uses Kruskal's algorithm.

If the graph edges do not have a weight attribute a default weight of 1 will be used.

Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/

Examples

```
>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> mst=nx.minimum_spanning_edges(G,data=False) # a generator of MST edges
>>> edgelist=list(mst) # make a list of the edges
>>> print(sorted(edgelist))
[(0, 1), (1, 2), (2, 3)]
```

4.34 Operators

Unary operations on graphs

4.34. Operators 325

complement(G[, name])	Return the graph complement of G.
reverse(G[, copy])	Return the reverse directed graph of G.

4.34.1 complement

complement(G, name=None)

Return the graph complement of G.

Parameters G: graph

A NetworkX graph

name: string

Specify name for new graph

Returns GC: A new graph.

Notes

Note that complement() does not create self-loops and also does not produce parallel edges for MultiGraphs.

Graph, node, and edge data are not propagated to the new graph.

4.34.2 reverse

reverse(G, copy=True)

Return the reverse directed graph of G.

 $Parameters \;\; G: \hbox{directed graph}$

A NetworkX directed graph

copy: bool

If True, then a new graph is returned. If False, then the graph is reversed in place.

Returns H: directed graph

The reversed G.

Operations on graphs including union, intersection, difference.

compose(G, H[, name])	Return a new graph of G composed with H.	
union(G, H[, rename, name])	Return the union of graphs G and H.	
disjoint_union(G, H)	Return the disjoint union of graphs G and H.	
intersection(G, H)	Return a new graph that contains only the edges that exist in both G and H.	
difference(G, H)	Return a new graph that contains the edges that exist in G but not in H.	
$symmetric_difference(G, H)$	Return new graph with edges that exist in either G or H but not both.	

4.34.3 compose

compose(G, H, name=None)

Return a new graph of G composed with H.

Composition is the simple union of the node sets and edge sets. The node sets of G and H do not need to be

disjoint.

Parameters G,H: graph

A NetworkX graph

name: string

Specify name for new graph

Returns C: A new graph with the same type as G

Notes

It is recommended that G and H be either both directed or both undirected. Attributes from H take precedent over attributes from G.

4.34.4 union

union (G, H, rename=(None, None), name=None)

Return the union of graphs G and H.

Graphs G and H must be disjoint, otherwise an exception is raised.

Parameters G,H: graph

A NetworkX graph

create_using : NetworkX graph

Use specified graph for result. Otherwise

rename : bool , default=(None, None)

Node names of G and H can be changed by specifying the tuple rename=('G-','H-') (for example). Node "u" in G is then renamed "G-u" and "v" in H is renamed "H-v".

name: string

Specify the name for the union graph

Returns U: A union graph with the same type as G.

See also:

```
disjoint_union
```

Notes

To force a disjoint union with node relabeling, use disjoint_union(G,H) or convert_node_labels_to integers().

Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used.

4.34.5 disjoint_union

$disjoint_union(G, H)$

Return the disjoint union of graphs G and H.

This algorithm forces distinct integer node labels.

4.34. Operators 327

Parameters G,H: graph

A NetworkX graph

Returns U: A union graph with the same type as G.

Notes

A new graph is created, of the same class as G. It is recommended that G and H be either both directed or both undirected.

The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are relabeled len(G) to len(G)+len(H)-1.

Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used.

4.34.6 intersection

intersection(G, H)

Return a new graph that contains only the edges that exist in both G and H.

The node sets of H and G must be the same.

Parameters G,H: graph

A NetworkX graph. G and H must have the same node sets.

Returns GH: A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the intersection of G and H with the attributes (including edge data) from G use remove_nodes_from() as follows

```
>>> G=nx.path_graph(3)
>>> H=nx.path_graph(5)
>>> R=G.copy()
>>> R.remove nodes from(n for n in G if n not in H)
```

4.34.7 difference

difference(G, H)

Return a new graph that contains the edges that exist in G but not in H.

The node sets of H and G must be the same.

Parameters G,H: graph

A NetworkX graph. G and H must have the same node sets.

Returns D: A new graph with the same type as G.

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the difference of G and H with with the attributes (including edge data) from G use remove_nodes_from() as follows:

```
>>> G = nx.path_graph(3)
>>> H = nx.path_graph(5)
>>> R = G.copy()
>>> R.remove_nodes_from(n for n in G if n in H)
```

4.34.8 symmetric_difference

$symmetric_difference(G, H)$

Return new graph with edges that exist in either G or H but not both.

The node sets of H and G must be the same.

Parameters G,H: graph

A NetworkX graph. G and H must have the same node sets.

Returns D: A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph.

Operations on many graphs.

compose_all(graphs[, name])	Return the composition of all graphs.
union_all(graphs[, rename, name])	Return the union of all graphs.
disjoint_union_all(graphs)	Return the disjoint union of all graphs.
intersection_all(graphs)	Return a new graph that contains only the edges that exist in all graphs.

4.34.9 compose all

```
{\tt compose\_all}~(\textit{graphs}, \textit{name} = None)
```

Return the composition of all graphs.

Composition is the simple union of the node sets and edge sets. The node sets of the supplied graphs need not be disjoint.

Parameters graphs: list

List of NetworkX graphs

name: string

Specify name for new graph

Returns C: A graph with the same type as the first graph in list

4.34. Operators 329

It is recommended that the supplied graphs be either all directed or all undirected.

Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used.

4.34.10 union_all

union_all (graphs, rename=(None,), name=None)

Return the union of all graphs.

The graphs must be disjoint, otherwise an exception is raised.

Parameters graphs: list of graphs

List of NetworkX graphs

rename: bool, default=(None, None)

Node names of G and H can be changed by specifying the tuple rename=('G-','H-') (for example). Node "u" in G is then renamed "G-u" and "v" in H is renamed "H-v".

name: string

Specify the name for the union graph@not_implemnted_for('direct

Returns U: a graph with the same type as the first graph in list

See also:

```
union, disjoint_union_all
```

Notes

To force a disjoint union with node relabeling, use disjoint_union_all(G,H) or convert_node_labels_to integers().

Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used.

4.34.11 disjoint_union_all

disjoint_union_all(graphs)

Return the disjoint union of all graphs.

This operation forces distinct integer node labels starting with 0 for the first graph in the list and numbering consecutively.

Parameters graphs: list

List of NetworkX graphs

Returns U: A graph with the same type as the first graph in list

It is recommended that the graphs be either all directed or all undirected.

Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used.

4.34.12 intersection_all

intersection_all (graphs)

Return a new graph that contains only the edges that exist in all graphs.

All supplied graphs must have the same node set.

Parameters graphs_list: list

List of NetworkX graphs

Returns R: A new graph with the same type as the first graph in list

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph.

Graph products.

cartesian_product(G, H)	Return the Cartesian product of G and H.
lexicographic_product(G, H)	Return the lexicographic product of G and H.
$strong_product(G, H)$	Return the strong product of G and H.
tensor_product(G, H)	Return the tensor product of G and H.
power(G, k)	Returns the specified power of a graph.

4.34.13 cartesian_product

$cartesian_product(G, H)$

Return the Cartesian product of G and H.

The tensor product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P)=V(G) imes V(H). P has an edge ((u,v),(x,y)) if and only if (u,v) is an edge in G and x==y or and (x,y) is an edge in H and u==v. and (x,y) is an edge in H.

Parameters G, H: graphs

Networkx graphs.

Returns P: NetworkX graph

The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Raises NetworkXError

If G and H are not both directed or both undirected.

4.34. Operators 331

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

```
For example >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add\_node(0,a1=True) >>> H.add\_node(`a',a2=`Spam') >>> P = nx.cartesian\_product(G,H) >>> P.nodes()[(0, `a')]
```

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.14 lexicographic product

$lexicographic_product(G, H)$

Return the lexicographic product of G and H.

The lexicographical product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P)=V(G) imes V(H). P has an edge ((u,v),(x,y)) if and only if (u,v) is an edge in G or u==v and (x,y) is an edge in H.

Parameters G, H: graphs

Networkx graphs.

Returns P: NetworkX graph

The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Raises NetworkXError

If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

```
For example >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add\_node(0,a1=True) >>> H.add\_node(`a',a2=`Spam') >>> P = nx.lexicographic\_product(G,H) >>> P.nodes()[(0, `a')]
```

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.15 strong product

$strong_product(G, H)$

Return the strong product of G and H.

The strong product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P)=V(G) imes V(H). P has an edge ((u,v),(x,y)) if and only if u==v and (x,y) is an edge in H, or x==y and (u,v) is an edge in G, or (u,v) is an edge in G and (x,y) is an edge in H.

Parameters G, H: graphs

Networkx graphs.

Returns P: NetworkX graph

The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Raises NetworkXError

If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

```
For example >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,a1=True) >>> H.add_node('a',a2='Spam') >>> P = nx.strong_product(G,H) >>> P.nodes() [(0, 'a')]
```

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.16 tensor_product

$tensor_product(G, H)$

Return the tensor product of G and H.

The tensor product P of the graphs G and H has a node set that is the Cartesian product of the node sets, V(P)=V(G) times V(H). P has an edge ((u,v),(x,y)) if and only if (u,v) is an edge in G and (x,y) is an edge in H.

Sometimes referred to as the categorical product.

Parameters G, H: graphs

Networkx graphs.

Returns P: NetworkX graph

The tensor product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Raises NetworkXError

If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

```
For example >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add\_node(0,a1=True) >>> H.add\_node(`a',a2=`Spam') >>> P = nx.tensor\_product(G,H) >>> P.nodes()[(0, `a')]
```

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.17 power

power(G, k)

Returns the specified power of a graph.

The k-th power of a simple graph G = (V, E) is the graph G^k whose vertex set is V, two distinct vertices u, v are adjacent in G^k if and only if the shortest path distance between u and v in G is at most k.

Parameters G: graph

A NetworkX simple graph object.

k: positive integer

4.34. Operators 333

The power to which to raise the graph G.

Returns NetworkX simple graph

G to the k-th power.

Raises :exc:'ValueError'

If the exponent k is not positive.

NetworkXError

If G is not a simple graph.

Notes

Exercise 3.1.6 of *Graph Theory* by J. A. Bondy and U. S. R. Murty [R350].

References

[R350]

Examples

```
>>> G = nx.path_graph(4)
>>> nx.power(G,2).edges()
[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)]
>>> nx.power(G,3).edges()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
```

A complete graph of order n is returned if k is greater than equal to n/2 for a cycle graph of even order n, and if k is greater than equal to (n-1)/2 for a cycle graph of odd order.

```
>>> G = nx.cycle_graph(5)
>>> nx.power(G,2).edges() == nx.complete_graph(5).edges()
True
>>> G = nx.cycle_graph(8)
>>> nx.power(G,4).edges() == nx.complete_graph(8).edges()
True
```

4.35 Rich Club

 $\mbox{rich_club_coefficient}(G[,\mbox{normalized},Q])$ Return the rich-club coefficient of the graph G.

4.35.1 rich club coefficient

```
rich_club_coefficient (G, normalized=True, Q=100)
```

Return the rich-club coefficient of the graph G.

The rich-club coefficient is the ratio, for every degree k, of the number of actual to the number of potential edges

for nodes with degree greater than k:

$$\phi(k) = \frac{2Ek}{Nk(Nk - 1)}$$

where Nk is the number of nodes with degree larger than k, and Ek be the number of edges among those nodes.

Parameters G: NetworkX graph

normalized: bool (optional)

Normalize using randomized network (see [R351])

Q: float (optional, default=100)

If normalized=True build a random network by performing Q*M double-edge swaps, where M is the number of edges in G, to use as a null-model for normalization.

Returns rc: dictionary

A dictionary, keyed by degree, with rich club coefficient values.

Notes

The rich club definition and algorithm are found in [R351]. This algorithm ignores any edge weights and is not defined for directed graphs or graphs with parallel edges or self loops.

Estimates for appropriate values of Q are found in [R352].

References

[R351], [R352]

Examples

```
>>> G = nx.Graph([(0,1),(0,2),(1,2),(1,3),(1,4),(4,5)])
>>> rc = nx.rich_club_coefficient(G,normalized=False)
>>> rc[0]
0.4
```

4.36 Shortest Paths

Compute the shortest paths and path lengths between nodes in the graph.

These algorithms work with undirected and directed graphs.

<pre>shortest_path(G[, source, target, weight])</pre>	Compute shortest paths in the graph.
all_shortest_paths(G, source, target[, weight])	Compute all shortest paths in the graph.
<pre>shortest_path_length(G[, source, target, weight])</pre>	Compute shortest path lengths in the graph.
$average_shortest_path_length(G[, weight])$	Return the average shortest path length.
has_path(G, source, target)	Return True if G has a path from source to target, False otherwise.

4.36.1 shortest path

shortest_path (*G*, *source=None*, *target=None*, *weight=None*) Compute shortest paths in the graph.

Parameters G: NetworkX graph

```
source: node, optional
```

Starting node for path. If not specified, compute shortest paths using all nodes as source nodes.

target: node, optional

Ending node for path. If not specified, compute shortest paths using all nodes as target nodes

```
weight: None or string, optional (default = None)
```

If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.

Returns path: list or dictionary

All returned paths include both the source and target in the path.

If the source and target are both specified, return a single list of nodes in a shortest path from the source to the target.

If only the source is specified, return a dictionary keyed by targets with a list of nodes in a shortest path from the source to one of the targets.

If only the target is specified, return a dictionary keyed by sources with a list of nodes in a shortest path from one of the sources to the target.

If neither the source nor target are specified return a dictionary of dictionaries with path[source][target]=[list of nodes in path].

See also:

```
all_pairs_shortest_path, all_pairs_dijkstra_path, single_source_shortest_path, single_source_dijkstra_path
```

Notes

There may be more than one shortest path between a source and target. This returns only one of them.

Examples

```
>>> G=nx.path_graph(5)
>>> print(nx.shortest_path(G,source=0,target=4))
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,source=0) # target not specified
>>> p[4]
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,target=4) # source not specified
>>> p[0]
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G) # source, target not specified
```

```
>>> p[0][4]
[0, 1, 2, 3, 4]
```

4.36.2 all shortest paths

all_shortest_paths (G, source, target, weight=None)

Compute all shortest paths in the graph.

Parameters G: NetworkX graph

source: node

Starting node for path.

target: node

Ending node for path.

weight: None or string, optional (default = None)

If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.

Returns paths: generator of lists

A generator of all paths between source and target.

See also:

```
shortest_path, single_source_shortest_path, all_pairs_shortest_path
```

Notes

There may be many shortest paths between the source and target.

Examples

```
>>> G=nx.Graph()
>>> G.add_path([0,1,2])
>>> G.add_path([0,10,2])
>>> print([p for p in nx.all_shortest_paths(G,source=0,target=2)])
[[0, 1, 2], [0, 10, 2]]
```

4.36.3 shortest path length

 $\verb|shortest_path_length| (G, source=None, target=None, weight=None)|$

Compute shortest path lengths in the graph.

Parameters G: NetworkX graph

source: node, optional

Starting node for path. If not specified, compute shortest path lengths using all nodes as source nodes.

target: node, optional

Ending node for path. If not specified, compute shortest path lengths using all nodes as target nodes.

```
weight: None or string, optional (default = None)
```

If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.

Returns length: int or dictionary

If the source and target are both specified, return the length of the shortest path from the source to the target.

If only the source is specified, return a dictionary keyed by targets whose values are the lengths of the shortest path from the source to one of the targets.

If only the target is specified, return a dictionary keyed by sources whose values are the lengths of the shortest path from one of the sources to the target.

If neither the source nor target are specified return a dictionary of dictionaries with path[source][target]=L, where L is the length of the shortest path from source to target.

Raises NetworkXNoPath

If no path exists between source and target.

See also:

```
all_pairs_shortest_path_length, all_pairs_dijkstra_path_length, single_source_dijkstra_path_length
```

Notes

The length of the path is always 1 less than the number of nodes involved in the path since the length measures the number of edges followed.

For digraphs this returns the shortest directed path length. To find path lengths in the reverse direction use G.reverse(copy=False) first to flip the edge orientation.

Examples

```
>>> G=nx.path_graph(5)
>>> print(nx.shortest_path_length(G,source=0,target=4))
4
>>> p=nx.shortest_path_length(G,source=0) # target not specified
>>> p[4]
4
>>> p=nx.shortest_path_length(G,target=4) # source not specified
>>> p[0]
4
>>> p=nx.shortest_path_length(G) # source,target not specified
>>> p[0][4]
4
```

4.36.4 average_shortest_path_length

```
average_shortest_path_length (G, weight=None)
Return the average shortest path length.
```

The average shortest path length is

$$a = \sum_{s,t \in V} \frac{d(s,t)}{n(n-1)}$$

where V is the set of nodes in G, d(s,t) is the shortest path from s to t, and n is the number of nodes in G.

Parameters G: NetworkX graph

weight: None or string, optional (default = None)

If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.

Raises NetworkXError:

if the graph is not connected.

Examples

```
>>> G=nx.path_graph(5)
>>> print(nx.average_shortest_path_length(G))
2.0
```

For disconnected graphs you can compute the average shortest path length for each component: >>> G=nx.Graph([(1,2),(3,4)]) >>> for g in $nx.connected_component_subgraphs(G)$: ... $print(nx.average_shortest_path_length(g))$ 1.0 1.0

4.36.5 has_path

has_path(G, source, target)

Return True if G has a path from source to target, False otherwise.

Parameters G: NetworkX graph

source: node

Starting node for path

target: node

Ending node for path

4.36.6 Advanced Interface

Shortest path algorithms for unweighted graphs.

_		
	$\verb single_source_shortest_path (G, source[, cutoff]) \\$	Compute shortest path between source and all other nodes reachable
	$single_source_shortest_path_length(G, source)$	Compute the shortest path lengths from source to all reachable nodes
	${ t all_pairs_shortest_path}(G[,cutoff])$	Compute shortest paths between all nodes.
	$all_pairs_shortest_path_length(G[,cutoff])$	Computes the shortest path lengths between all nodes in G.
-	predecessor(G, source[, target, cutoff,])	Returns dictionary of predecessors for the path from source to all no

single source shortest path

single_source_shortest_path(G, source, cutoff=None)

Compute shortest path between source and all other nodes reachable from source.

Parameters G: NetworkX graph

source: node label

Starting node for path

cutoff: integer, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns lengths: dictionary

Dictionary, keyed by target, of shortest paths.

See also:

shortest_path

Notes

The shortest path is not necessarily unique. So there can be multiple paths between the source and each target node, all of which have the same 'shortest' length. For each target node, this function returns only one of those paths.

Examples

```
>>> G=nx.path_graph(5)
>>> path=nx.single_source_shortest_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
```

single_source_shortest_path_length

$\verb|single_source_shortest_path_length| (\textit{G}, \textit{source}, \textit{cutoff=None})$

Compute the shortest path lengths from source to all reachable nodes.

Parameters G : NetworkX graph

source : node

Starting node for path

cutoff: integer, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns lengths: dictionary

Dictionary of shortest path lengths keyed by target.

See also:

```
shortest_path_length
```

Examples

```
>>> G=nx.path_graph(5)
>>> length=nx.single_source_shortest_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
```

all_pairs_shortest_path

all_pairs_shortest_path(G, cutoff=None)

Compute shortest paths between all nodes.

Parameters G: NetworkX graph

cutoff : integer, optional

Depth at which to stop the search. Only paths of length at most cutoff are returned.

Returns lengths: dictionary

Dictionary, keyed by source and target, of shortest paths.

See also:

```
floyd_warshall
```

Examples

```
>>> G = nx.path_graph(5)
>>> path = nx.all_pairs_shortest_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]
```

all_pairs_shortest_path_length

all_pairs_shortest_path_length(G, cutoff=None)

Computes the shortest path lengths between all nodes in G.

Parameters G: NetworkX graph

cutoff: integer, optional

Depth at which to stop the search. Only paths of length at most cutoff are returned.

Returns lengths: dictionary

Dictionary of shortest path lengths keyed by source and target.

Notes

The dictionary returned only has keys for reachable node pairs.

Examples

```
>>> G = nx.path_graph(5)
>>> length = nx.all_pairs_shortest_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}
```

predecessor

predecessor (*G*, *source*, *target=None*, *cutoff=None*, *return_seen=None*)

Returns dictionary of predecessors for the path from source to all nodes in G.

Parameters G : NetworkX graph

source: node label

Starting node for path

target: node label, optional

Ending node for path. If provided only predecessors between source and target are returned

cutoff : integer, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns pred: dictionary

Dictionary, keyed by node, of predecessors in the shortest path.

Examples

```
>>> G=nx.path_graph(4)
>>> print(G.nodes())
[0, 1, 2, 3]
>>> nx.predecessor(G,0)
{0: [], 1: [0], 2: [1], 3: [2]}
```

Shortest path algorithms for weighed graphs.

<pre>dijkstra_path(G, source, target[, weight])</pre>	Returns the shortest path from source to target in a weighted graph G
<pre>dijkstra_path_length(G, source, target[, weight])</pre>	Returns the shortest path length from source to target in a weighted g
$single_source_dijkstra_path(G, source[,])$	Compute shortest path between source and all other reachable nodes
$single_source_dijkstra_path_length(G, source)$	Compute the shortest path length between source and all other reacha
$all_pairs_dijkstra_path(G[, cutoff, weight])$	Compute shortest paths between all nodes in a weighted graph.
all_pairs_dijkstra_path_length($G[, cutoff,]$)	Compute shortest path lengths between all nodes in a weighted graph
single_source_dijkstra(G, source[, target,])	Compute shortest paths and lengths in a weighted graph G.
$\verb bidirectional_dijkstra (G, source, target[,]) $	Dijkstra's algorithm for shortest paths using bidirectional search.
$dijkstra_predecessor_and_distance(G, source)$	Compute shortest path length and predecessors on shortest paths in w
bellman_ford(G, source[, weight])	Compute shortest path lengths and predecessors on shortest paths in
$negative_edge_cycle(G[, weight])$	Return True if there exists a negative edge cycle anywhere in G.
johnson(G[, weight])	Compute shortest paths between all nodes in a weighted graph using

dijkstra_path

```
dijkstra_path(G, source, target, weight='weight')
     Returns the shortest path from source to target in a weighted graph G.
          Parameters G: NetworkX graph
              source: node
                  Starting node
              target: node
                  Ending node
              weight: string, optional (default='weight')
                  Edge data key corresponding to the edge weight
          Returns path: list
                  List of nodes in a shortest path.
          Raises NetworkXNoPath
                  If no path exists between source and target.
     See also:
     bidirectional_dijkstra
     Notes
     Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
     Examples
     >>> G=nx.path_graph(5)
     >>> print (nx.dijkstra_path(G,0,4))
     [0, 1, 2, 3, 4]
dijkstra_path_length
```

Parameters G: NetworkX graph

source: node label

starting node for path

target: node label

ending node for path

weight: string, optional (default='weight')

Edge data key corresponding to the edge weight

Returns the shortest path length from source to target in a weighted graph.

dijkstra_path_length(G, source, target, weight='weight')

Returns length: number

Shortest path length.

Raises NetworkXNoPath

If no path exists between source and target.

See also:

```
bidirectional dijkstra
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Examples

```
>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path_length(G,0,4))
```

single_source_dijkstra_path

```
single_source_dijkstra_path(G, source, cutoff=None, weight='weight')
```

Compute shortest path between source and all other reachable nodes for a weighted graph.

```
Parameters G: NetworkX graph
```

source: node

Starting node for path.

weight: string, optional (default='weight')

Edge data key corresponding to the edge weight

cutoff: integer or float, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns paths: dictionary

Dictionary of shortest path lengths keyed by target.

See also:

```
single_source_dijkstra
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Examples

```
>>> G=nx.path_graph(5)
>>> path=nx.single_source_dijkstra_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
```

single_source_dijkstra_path_length

```
single_source_dijkstra_path_length(G, source, cutoff=None, weight='weight')
```

Compute the shortest path length between source and all other reachable nodes for a weighted graph.

```
Parameters G: NetworkX graph
```

source: node label

Starting node for path

weight: string, optional (default='weight')

Edge data key corresponding to the edge weight.

cutoff: integer or float, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns length: dictionary

Dictionary of shortest lengths keyed by target.

See also:

```
single_source_dijkstra
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Examples

```
>>> G=nx.path_graph(5)
>>> length=nx.single_source_dijkstra_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
```

all_pairs_dijkstra_path

```
all_pairs_dijkstra_path(G, cutoff=None, weight='weight')
```

Compute shortest paths between all nodes in a weighted graph.

Parameters G: NetworkX graph

weight: string, optional (default='weight')

Edge data key corresponding to the edge weight

cutoff: integer or float, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns distance: dictionary

Dictionary, keyed by source and target, of shortest paths.

See also:

```
floyd_warshall
```

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Examples

```
>>> G=nx.path_graph(5)
>>> path=nx.all_pairs_dijkstra_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]
```

all_pairs_dijkstra_path_length

```
\verb"all_pairs_dijkstra_path_length" (\textit{G}, \textit{cutoff=None}, \textit{weight='weight'})
```

Compute shortest path lengths between all nodes in a weighted graph.

```
Parameters G: NetworkX graph
```

```
weight: string, optional (default='weight')
```

Edge data key corresponding to the edge weight

cutoff: integer or float, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns distance: dictionary

Dictionary, keyed by source and target, of shortest path lengths.

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

The dictionary returned only has keys for reachable node pairs.

Examples

```
>>> G=nx.path_graph(5)
>>> length=nx.all_pairs_dijkstra_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}
```

single source dijkstra

```
single_source_dijkstra(G, source, target=None, cutoff=None, weight='weight')
```

Compute shortest paths and lengths in a weighted graph G.

Uses Dijkstra's algorithm for shortest paths.

Parameters G: NetworkX graph

source: node label

```
Starting node for path
```

target : node label, optional

Ending node for path

cutoff: integer or float, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns distance, path: dictionaries

Returns a tuple of two dictionaries keyed by node. The first dictionary stores distance from the source. The second stores the path from the source to that node.

See also:

```
single_source_dijkstra_path, single_source_dijkstra_path_length
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Based on the Python cookbook recipe (119466) at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems).

Examples

```
>>> G=nx.path_graph(5)
>>> length,path=nx.single_source_dijkstra(G,0)
>>> print(length[4])
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
>>> path[4]
[0, 1, 2, 3, 4]
```

bidirectional_dijkstra

```
bidirectional_dijkstra (G, source, target, weight='weight')

Dijkstra's algorithm for shortest paths using bidirectional search.
```

Parameters G: NetworkX graph

source : node

Starting node.

target : node

Ending node.

weight: string, optional (default='weight')

Edge data key corresponding to the edge weight

Returns length: number

Shortest path length.

Returns a tuple of two dictionaries keyed by node.

The first dictionary stores distance from the source.

The second stores the path from the source to that node.

Raises NetworkXNoPath

If no path exists between source and target.

See also:

```
shortest_path, shortest_path_length
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

In practice bidirectional Dijkstra is much more than twice as fast as ordinary Dijkstra.

Ordinary Dijkstra expands nodes in a sphere-like manner from the source. The radius of this sphere will eventually be the length of the shortest path. Bidirectional Dijkstra will expand nodes from both the source and the target, making two spheres of half this radius. Volume of the first sphere is pi*r*r while the others are 2*pi*r/2*r/2, making up half the volume.

This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems).

Examples

```
>>> G=nx.path_graph(5)
>>> length,path=nx.bidirectional_dijkstra(G,0,4)
>>> print(length)
4
>>> print(path)
[0, 1, 2, 3, 4]
```

dijkstra predecessor and distance

```
\label{linear_distance} \begin{tabular}{ll} \bf dijkstra\_predecessor\_and\_distance (\it{G}, source, cutoff=None, weight='weight') \\ \end{tabular}
```

Compute shortest path length and predecessors on shortest paths in weighted graphs.

```
Parameters G: NetworkX graph
source: node label
```

Starting node for path

weight: string, optional (default='weight')

Edge data key corresponding to the edge weight

cutoff: integer or float, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns pred, distance: dictionaries

Returns two dictionaries representing a list of predecessors of a node and the distance to each node.

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

The list of predecessors contains more than one element only when there are more than one shortest paths to the key node.

bellman ford

```
bellman_ford(G, source, weight='weight')
```

Compute shortest path lengths and predecessors on shortest paths in weighted graphs.

The algorithm has a running time of O(mn) where n is the number of nodes and m is the number of edges. It is slower than Dijkstra but can handle negative edge weights.

Parameters G: NetworkX graph

The algorithm works for all types of graphs, including directed graphs and multigraphs.

source: node label

Starting node for path

```
weight: string, optional (default='weight')
```

Edge data key corresponding to the edge weight

Returns pred, dist: dictionaries

Returns two dictionaries keyed by node to predecessor in the path and to the distance from the source respectively.

Raises NetworkXUnbounded

If the (di)graph contains a negative cost (di)cycle, the algorithm raises an exception to indicate the presence of the negative cost (di)cycle. Note: any negative weight edge in an undirected graph is a negative cost cycle.

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

The dictionaries returned only have keys for nodes reachable from the source.

In the case where the (di)graph is not connected, if a component not containing the source contains a negative cost (di)cycle, it will not be detected.

Examples

```
>>> import networkx as nx
>>> G = nx.path_graph(5, create_using = nx.DiGraph())
>>> pred, dist = nx.bellman_ford(G, 0)
>>> sorted(pred.items())
[(0, None), (1, 0), (2, 1), (3, 2), (4, 3)]
>>> sorted(dist.items())
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
```

```
>>> from nose.tools import assert_raises
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> G[1][2]['weight'] = -7
>>> assert_raises(nx.NetworkXUnbounded, nx.bellman_ford, G, 0)
```

negative_edge_cycle

```
negative_edge_cycle (G, weight='weight')
```

Return True if there exists a negative edge cycle anywhere in G.

Parameters G: NetworkX graph

weight: string, optional (default='weight')

Edge data key corresponding to the edge weight

Returns negative_cycle: bool

True if a negative edge cycle exists, otherwise False.

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

This algorithm uses bellman_ford() but finds negative cycles on any component by first adding a new node connected to every node, and starting bellman_ford on that node. It then removes that extra node.

Examples

```
>>> import networkx as nx
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> print(nx.negative_edge_cycle(G))
False
>>> G[1][2]['weight'] = -7
>>> print(nx.negative_edge_cycle(G))
True
```

johnson

```
johnson (G, weight='weight')
```

Compute shortest paths between all nodes in a weighted graph using Johnson's algorithm.

Parameters G: NetworkX graph

```
weight: string, optional (default='weight')
```

Edge data key corresponding to the edge weight.

Returns distance: dictionary

Dictionary, keyed by source and target, of shortest paths.

Raises NetworkXError

If given graph is not weighted.

See also:

```
floyd_warshall_predecessor_and_distance, floyd_warshall_numpy, all_pairs_shortest_path, all_pairs_dijkstra_path, bellman_ford floyd_warshall_numpy, all_pairs_shortest_path_length,
```

Notes

Johnson's algorithm is suitable even for graphs with negative weights. It works by using the Bellman–Ford algorithm to compute a transformation of the input graph that removes all negative weights, allowing Dijkstra's algorithm to be used on the transformed graph.

It may be faster than Floyd - Warshall algorithm in sparse graphs. Algorithm complexity: $O(V^2 * logV + V * E)$

Examples

```
>>> import networkx as nx
>>> graph = nx.DiGraph()
>>> graph.add_weighted_edges_from([('0', '3', 3), ('0', '1', -5),
... ('0', '2', 2), ('1', '2', 4), ('2', '3', 1)])
>>> paths = nx.johnson(graph, weight='weight')
>>> paths['0']['2']
['0', '1', '2']
```

4.36.7 Dense Graphs

Floyd-Warshall algorithm for shortest paths.

floyd_warshall(G[, weight])	Find all-pairs shortest path lengths using Floyd's algorithm.
floyd_warshall_predecessor_and_distance $(G[,])$	Find all-pairs shortest path lengths using Floyd's algorithm.
floyd_warshall_numpy(G[, nodelist, weight])	Find all-pairs shortest path lengths using Floyd's algorithm.

floyd warshall

```
floyd_warshall (G, weight='weight')
```

Find all-pairs shortest path lengths using Floyd's algorithm.

Parameters G: NetworkX graph

```
weight: string, optional (default= 'weight')
```

Edge data key corresponding to the edge weight.

Returns distance: dict

A dictionary, keyed by source and target, of shortest paths distances between nodes.

See also:

Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$.

floyd warshall predecessor and distance

```
floyd_warshall_predecessor_and_distance(G, weight='weight')
```

Find all-pairs shortest path lengths using Floyd's algorithm.

Parameters G: NetworkX graph

weight: string, optional (default= 'weight')

Edge data key corresponding to the edge weight.

Returns predecessor, distance: dictionaries

Dictionaries, keyed by source and target, of predecessors and distances in the shortest path.

See also:

```
floyd_warshall, floyd_warshall_numpy, all_pairs_shortest_path,
all_pairs_shortest_path_length
```

Notes

Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$.

floyd_warshall_numpy

 $\verb|floyd_warshall_numpy| (G, nodelist=None, weight='weight')|$

Find all-pairs shortest path lengths using Floyd's algorithm.

Parameters G: NetworkX graph

nodelist: list, optional

The rows and columns are ordered by the nodes in nodelist. If nodelist is None then the ordering is produced by G.nodes().

weight: string, optional (default= 'weight')

Edge data key corresponding to the edge weight.

Returns distance: NumPy matrix

A matrix of shortest path distances between nodes. If there is no path between to nodes the corresponding matrix entry will be Inf.

Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $O(n^3)$ with running space of $O(n^2)$.

4.36.8 A* Algorithm

Shortest paths and path lengths using A* ("A star") algorithm.

```
astar_path(G, source, target[, heuristic, ...]) Return a list of nodes in a shortest path between source and target using the A* ("A-satar_path_length(G, source, target[, ...]) Return the length of the shortest path between source and target using the A* ("A-satar_path_length(G, source, target[, ...])
```

astar_path

```
astar\_path (G, source, target, heuristic=None, weight='weight')
```

Return a list of nodes in a shortest path between source and target using the A* ("A-star") algorithm.

There may be more than one shortest path. This returns only one.

```
Parameters G: NetworkX graph
```

```
source: node
```

Starting node for path

target: node

Ending node for path

heuristic: function

A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number.

```
weight: string, optional (default='weight')
```

Edge data key corresponding to the edge weight.

Raises NetworkXNoPath

If no path exists between source and target.

See also:

```
shortest_path, dijkstra_path
```

Examples

```
>>> G=nx.path_graph(5)
>>> print(nx.astar_path(G,0,4))
[0, 1, 2, 3, 4]
>>> G=nx.grid_graph(dim=[3,3]) # nodes are two-tuples (x,y)
>>> def dist(a, b):
... (x1, y1) = a
... (x2, y2) = b
... return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
```

```
>>> print(nx.astar_path(G,(0,0),(2,2),dist))
[(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)]
```

astar path length

astar_path_length(G, source, target, heuristic=None, weight='weight')

Return the length of the shortest path between source and target using the A* ("A-star") algorithm.

Parameters G: NetworkX graph

source: node

Starting node for path

target: node

Ending node for path

heuristic: function

A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number.

Raises NetworkXNoPath

If no path exists between source and target.

See also:

astar_path

4.37 Simple Paths

all_simple_paths(G, source, target[, cutoff])	Generate all simple paths in the graph G from source to target.
<pre>shortest_simple_paths(G, source, target[,])</pre>	Generate all simple paths in the graph G from source to target, starting from

4.37.1 all_simple_paths

all_simple_paths (G, source, target, cutoff=None)

Generate all simple paths in the graph G from source to target.

A simple path is a path with no repeated nodes.

Parameters G: NetworkX graph

source: node

Starting node for path

target: node

Ending node for path

cutoff : integer, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

Returns path_generator: generator

A generator that produces lists of simple paths. If there are no paths between the source and target within the given cutoff the generator produces no output.

See also:

```
all_shortest_paths, shortest_path
```

Notes

This algorithm uses a modified depth-first search to generate the paths [R353]. A single path can be found in O(V+E) time but the number of simple paths in a graph can be very large, e.g. O(n!) in the complete graph of order n.

References

[R353]

Examples

```
>>> G = nx.complete_graph(4)
>>> for path in nx.all_simple_paths(G, source=0, target=3):
...     print(path)
...
[0, 1, 2, 3]
[0, 1, 3]
[0, 2, 1, 3]
[0, 2, 3]
[0, 3]
>>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2)
>>> print(list(paths))
[[0, 1, 3], [0, 2, 3], [0, 3]]
```

4.37.2 shortest_simple_paths

shortest_simple_paths (G, source, target, weight=None)

Generate all simple paths in the graph G from source to target, starting from shortest ones.

A simple path is a path with no repeated nodes.

If a weighted shortest path search is to be used, no negative weights are allawed.

```
Parameters G: NetworkX graph
```

```
source : node
Starting node for path
target : node
Ending node for path
weight : string
```

Name of the edge attribute to be used as a weight. If None all edges are considered to have unit weight. Default value None.

4.37. Simple Paths 355

Returns path_generator: generator

A generator that produces lists of simple paths, in order from shortest to longest.

Raises NetworkXNoPath

If no path exists between source and target.

NetworkXError

If source or target nodes are not in the input graph.

Network XN ot Implemented

If the input graph is a Multi[Di]Graph.

See also:

```
all_shortest_paths, shortest_path, all_simple_paths
```

Notes

This procedure is based on algorithm by Jin Y. Yen [R354]. Finding the first K paths requires O(KN^3) operations.

References

[R354]

Examples

```
>>> G = nx.cycle_graph(7)
>>> paths = list(nx.shortest_simple_paths(G, 0, 3))
>>> print(paths)
[[0, 1, 2, 3], [0, 6, 5, 4, 3]]
```

You can use this function to efficiently compute the k shortest/best paths between two nodes.

```
>>> from itertools import islice
>>> def k_shortest_paths(G, source, target, k, weight=None):
...    return list(islice(nx.shortest_simple_paths(G, source, target, weight=weight), k))
>>> for path in k_shortest_paths(G, 0, 3, 2):
...    print(path)
[0, 1, 2, 3]
[0, 6, 5, 4, 3]
```

4.38 Swap

Swap edges in a graph.

double_edge_swap(G[, nswap, max_tries])	Swap two edges in the graph while keeping the node degrees fixed.	
connected_double_edge_swap(G[, nswap,])	Attempts the specified number of double-edge swaps in the graph G.	

4.38.1 double_edge_swap

```
double_edge_swap (G, nswap=1, max_tries=100)
```

Swap two edges in the graph while keeping the node degrees fixed.

A double-edge swap removes two randomly chosen edges u-v and x-y and creates the new edges u-x and v-y:

If either the edge u-x or v-y already exist no swap is performed and another attempt is made to find a suitable edge pair.

Parameters G: graph

An undirected graph

nswap : integer (optional, default=1)

Number of double-edge swaps to perform

max_tries : integer (optional)

Maximum number of attempts to swap edges

Returns G: graph

The graph after double edge swaps.

Notes

Does not enforce any connectivity constraints.

The graph G is modified in place.

4.38.2 connected_double_edge_swap

```
connected_double_edge_swap (G, nswap=1, _window_threshold=3)
```

Attempts the specified number of double-edge swaps in the graph G.

A double-edge swap removes two randomly chosen edges (u, v) and (x, y) and creates the new edges (u, x) and (v, y):

```
u--v u v
becomes | |
x--y x y
```

If either (u, x) or (v, y) already exist, then no swap is performed so the actual number of swapped edges is always at most nswap.

$Parameters \ G: graph$

An undirected graph

nswap : integer (optional, default=1)

Number of double-edge swaps to perform

_window_threshold : integer

4.38. Swap 357

The window size below which connectedness of the graph will be checked after each swap.

The "window" in this function is a dynamically updated integer that represents the number of swap attempts to make before checking if the graph remains connected. It is an optimization used to decrease the running time of the algorithm in exchange for increased complexity of implementation.

If the window size is below this threshold, then the algorithm checks after each swap if the graph remains connected by checking if there is a path joining the two nodes whose edge was just removed. If the window size is above this threshold, then the algorithm performs do all the swaps in the window and only then check if the graph is still connected.

Returns int

The number of successful swaps

Raises NetworkXError

If the input graph is not connected, or if the graph has fewer than four nodes.

Notes

The initial graph G must be connected, and the resulting graph is connected. The graph G is modified in place.

References

[R355]

4.39 Traversal

4.39.1 Depth First Search

Basic algorithms for depth-first searching the nodes of a graph.

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

dfs_edges(G[, source])	Produce edges in a depth-first-search (DFS).
dfs_tree(G, source)	Return oriented tree constructed from a depth-first-search from source.
$dfs_predecessors(G[, source])$	Return dictionary of predecessors in depth-first-search from source.
$dfs_successors(G[, source])$	Return dictionary of successors in depth-first-search from source.
$dfs_preorder_nodes(G[, source])$	Produce nodes in a depth-first-search pre-ordering starting from source.
$dfs_postorder_nodes(G[, source])$	Produce nodes in a depth-first-search post-ordering starting from source.
$dfs_{abeled_edges}(G[, source])$	Produce edges in a depth-first-search (DFS) labeled by type.

dfs_edges

dfs_edges (G, source=None)

Produce edges in a depth-first-search (DFS).

Parameters G: NetworkX graph

source: node, optional

Specify starting node for depth-first search and return edges in the component reachable from source.

Returns edges: generator

A generator of edges in the depth-first-search.

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_edges(G,0)))
[(0, 1), (1, 2)]
```

dfs tree

```
dfs_tree(G, source)
```

Return oriented tree constructed from a depth-first-search from source.

Parameters G: NetworkX graph

source: node, optional

Specify starting node for depth-first search.

Returns T : NetworkX DiGraph

An oriented tree

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> T = nx.dfs_tree(G,0)
>>> print(T.edges())
[(0, 1), (1, 2)]
```

dfs_predecessors

```
dfs_predecessors(G, source=None)
```

Return dictionary of predecessors in depth-first-search from source.

Parameters G: NetworkX graph

source: node, optional

4.39. Traversal 359

Specify starting node for depth-first search and return edges in the component reachable from source.

Returns pred: dict

A dictionary with nodes as keys and predecessor nodes as values.

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.dfs_predecessors(G,0))
{1: 0, 2: 1}
```

dfs successors

```
dfs_successors(G, source=None)
```

Return dictionary of successors in depth-first-search from source.

Parameters G: NetworkX graph

source: node, optional

Specify starting node for depth-first search and return edges in the component reachable from source.

Returns succ: dict

A dictionary with nodes as keys and list of successor nodes as values.

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.dfs_successors(G,0))
{0: [1], 1: [2]}
```

dfs_preorder_nodes

dfs_preorder_nodes (G, source=None)

Produce nodes in a depth-first-search pre-ordering starting from source.

Parameters G: NetworkX graph

source: node, optional

Specify starting node for depth-first search and return edges in the component reachable from source.

Returns nodes: generator

A generator of nodes in a depth-first-search pre-ordering.

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_preorder_nodes(G,0)))
[0, 1, 2]
```

dfs_postorder_nodes

dfs_postorder_nodes (G, source=None)

Produce nodes in a depth-first-search post-ordering starting from source.

Parameters G: NetworkX graph

source: node, optional

Specify starting node for depth-first search and return edges in the component reachable from source.

Returns nodes: generator

A generator of nodes in a depth-first-search post-ordering.

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

4.39. Traversal 361

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_postorder_nodes(G,0)))
[2, 1, 0]
```

dfs_labeled_edges

dfs_labeled_edges(G, source=None)

Produce edges in a depth-first-search (DFS) labeled by type.

Parameters G: NetworkX graph

source: node, optional

Specify starting node for depth-first search and return edges in the component reachable from source.

Returns edges: generator

A generator of edges in the depth-first-search labeled with 'forward', 'nontree', and 'reverse'.

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> edges = (list(nx.dfs_labeled_edges(G,0)))
```

4.39.2 Breadth First Search

Basic algorithms for breadth-first searching the nodes of a graph.

<pre>bfs_edges(G, source[, reverse])</pre>	Produce edges in a breadth-first-search starting at source.	
<pre>bfs_tree(G, source[, reverse])</pre>	Return an oriented tree constructed from of a breadth-first-search starting at source.	
bfs_predecessors(G, source)	Return dictionary of predecessors in breadth-first-search from source.	
bfs_successors(G, source)	Return dictionary of successors in breadth-first-search from source.	

bfs_edges

```
\verb|bfs_edges| (G, source, reverse = False)|
```

Produce edges in a breadth-first-search starting at source.

Parameters G: NetworkX graph

source: node

Specify starting node for breadth-first search and return edges in the component reachable from source.

reverse: bool, optional

If True traverse a directed graph in the reverse direction

Returns edges: generator

A generator of edges in the breadth-first-search.

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004.

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0)))
[(0, 1), (1, 2)]
```

bfs_tree

```
bfs_tree (G, source, reverse=False)
```

Return an oriented tree constructed from of a breadth-first-search starting at source.

Parameters G: NetworkX graph

source: node

Specify starting node for breadth-first search and return edges in the component reachable from source.

reverse: bool, optional

If True traverse a directed graph in the reverse direction

Returns T: NetworkX DiGraph

An oriented tree

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004.

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0)))
[(0, 1), (1, 2)]
```

4.39. Traversal 363

bfs_predecessors

bfs_predecessors(G, source)

Return dictionary of predecessors in breadth-first-search from source.

Parameters G: NetworkX graph

source: node

Specify starting node for breadth-first search and return edges in the component reachable from source.

Returns pred: dict

A dictionary with nodes as keys and predecessor nodes as values.

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004.

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_predecessors(G,0))
{1: 0, 2: 1}
```

bfs successors

bfs_successors(G, source)

Return dictionary of successors in breadth-first-search from source.

Parameters G: NetworkX graph

source: node

Specify starting node for breadth-first search and return edges in the component reachable from source.

Returns succ: dict

A dictionary with nodes as keys and list of successors nodes as values.

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004.

Examples

```
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_successors(G,0))
{0: [1], 1: [2]}
```

4.39.3 Depth First Search on Edges

Algorithms for a depth-first traversal of edges in a graph.

edge_dfs(G[, source, orientation]) A directed, depth-first traversal of edges in G, beginning at source.

edge_dfs

```
edge_dfs (G, source=None, orientation='original')
```

A directed, depth-first traversal of edges in G, beginning at source.

Parameters G: graph

A directed/undirected graph/multigraph.

```
source: node, list of nodes
```

The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched.

```
orientation: 'original' | 'reverse' | 'ignore'
```

For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to 'reverse', then every edge will be traversed in the reverse direction. When set to 'ignore', then each directed edge is treated as a single undirected edge that can be traversed in either direction. For undirected graphs and undirected multigraphs, this parameter is meaningless and is not consulted by the algorithm.

See also:

```
dfs_edges
```

Notes

The goal of this function is to visit edges. It differs from the more familiar depth-first traversal of nodes, as provided by $networkx.algorithms.traversal.depth_first_search.dfs_edges(), in that it does not stop once every node has been visited. In a directed graph with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited if not for the functionality provided by this function.$

Examples

```
>>> import networkx as nx
>>> nodes = [0, 1, 2, 3]
>>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]
>>> list(nx.edge_dfs(nx.Graph(edges), nodes))
[(0, 1), (1, 2), (1, 3)]
>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes))
[(0, 1), (1, 0), (2, 1), (3, 1)]
>>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)]
```

4.39. Traversal 365

```
>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)]
>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')]
>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 0, 'forward'), (1, 0, 0, 'forward'), (1, 0, 1, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 1, 1)
```

4.40 Tree

4.40.1 Recognition

Recognition Tests

A *forest* is an acyclic, undirected graph, and a *tree* is a connected forest. Depending on the subfield, there are various conventions for generalizing these definitions to directed graphs.

In one convention, directed variants of forest and tree are defined in an identical manner, except that the direction of the edges is ignored. In effect, each directed edge is treated as a single undirected edge. Then, additional restrictions are imposed to define *branchings* and *arborescences*.

In another convention, directed variants of forest and tree correspond to the previous convention's branchings and arborescences, respectively. Then two new terms, *polyforest* and *polytree*, are defined to correspond to the other convention's forest and tree.

Summarizing:

Each convention has its reasons. The first convention emphasizes definitional similarity in that directed forests and trees are only concerned with acyclicity and do not have an in-degree constraint, just as their undirected counterparts do not. The second convention emphasizes functional similarity in the sense that the directed analog of a spanning tree is a spanning arborescence. That is, take any spanning tree and choose one node as the root. Then every edge is assigned a direction such there is a directed path from the root to every other node. The result is a spanning arborescence.

NetworkX follows convention "A". Explicitly, these are:

undirected forest An undirected graph with no undirected cycles.

undirected tree A connected, undirected forest.

directed forest A directed graph with no undirected cycles. Equivalently, the underlying graph structure (which ignores edge orientations) is an undirected forest. In convention B, this is known as a polyforest.

directed tree A weakly connected, directed forest. Equivalently, the underlying graph structure (which ignores edge orientations) is an undirected tree. In convention B, this is known as a polytree.

branching A directed forest with each node having, at most, one parent. So the maximum in-degree is equal to 1. In convention B, this is known as a forest.

arborescence A directed tree with each node having, at most, one parent. So the maximum in-degree is equal to 1. In convention B, this is known as a tree.

For trees and arborescences, the adjective "spanning" may be added to designate that the graph, when considered as a forest/branching, consists of a single tree/arborescence that includes all nodes in the graph. It is true, by definition, that every tree/arborescence is spanning with respect to the nodes that define the tree/arborescence and so, it might seem redundant to introduce the notion of "spanning". However, the nodes may represent a subset of nodes from a larger graph, and it is in this context that the term "spanning" becomes a useful notion.

is_tree(G)	Returns True if G is a tree.
is_forest(G)	Returns True if G is a forest.
is_arborescence(G)	Returns True if G is an arborescence.
is_branching(G)	Returns True if G is a branching.

is tree

$is_tree(G)$

Returns True if G is a tree.

A tree is a connected graph with no undirected cycles.

For directed graphs, G is a tree if the underlying graph is a tree. The underlying graph is obtained by treating each directed edge as a single undirected edge in a multigraph.

Parameters G: graph

The graph to test.

Returns b: bool

A boolean that is True if G is a tree.

See also:

is_arborescence

Notes

In another convention, a directed tree is known as a *polytree* and then *tree* corresponds to an *arborescence*.

is_forest

$is_forest(G)$

Returns True if G is a forest.

A forest is a graph with no undirected cycles.

For directed graphs, G is a forest if the underlying graph is a forest. The underlying graph is obtained by treating each directed edge as a single undirected edge in a multigraph.

Parameters G: graph

The graph to test.

Returns b: bool

A boolean that is True if G is a forest.

4.40. Tree 367

See also:

```
is_branching
```

Notes

In another convention, a directed forest is known as a polyforest and then forest corresponds to a branching.

is_arborescence

$is_arborescence(G)$

Returns True if G is an arborescence.

An arborescence is a directed tree with maximum in-degree equal to 1.

Parameters G: graph

The graph to test.

Returns b: bool

A boolean that is True if G is an arborescence.

See also:

is_tree

Notes

In another convention, an arborescence is known as a tree.

is_branching

is branching(G)

Returns True if G is a branching.

A branching is a directed forest with maximum in-degree equal to 1.

Parameters G: directed graph

The directed graph to test.

Returns b: bool

A boolean that is True if G is a branching.

See also:

is_forest

Notes

In another convention, a branching is also known as a forest.

4.40.2 Branchings and Spanning Arborescences

Algorithms for finding optimum branchings and spanning arborescences.

This implementation is based on:

J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Standards 71B (1967), 233–240. URL: http://archive.org/details/jresv71Bn4p233

branching_weight(G[, attr, default])	Returns the total weight of a branching.
<pre>greedy_branching(G[, attr, default, kind])</pre>	Returns a branching obtained through a greedy algorithm.
$maximum_branching(G[, attr, default])$	Returns a maximum branching from G.
$minimum_branching(G[, attr, default])$	Returns a minimum branching from G.
$maximum_spanning_arborescence(G[, attr, default])$	Returns a maximum spanning arborescence from G.
$minimum_spanning_arborescence(G[, attr, default])$	Returns a minimum spanning arborescence from G.
Edmonds(G[, seed])	Edmonds algorithm for finding optimal branchings and spanning arbo

branching weight

 ${\tt branching_weight}~(G, attr='weight', default=1)$

Returns the total weight of a branching.

greedy_branching

greedy_branching(G, attr='weight', default=1, kind='max')

Returns a branching obtained through a greedy algorithm.

This algorithm is wrong, and cannot give a proper optimal branching. However, we include it for pedagogical reasons, as it can be helpful to see what its outputs are.

The output is a branching, and possibly, a spanning arborescence. However, it is not guaranteed to be optimal in either case.

Parameters G: DiGraph

The directed graph to scan.

attr: str

The attribute to use as weights. If None, then each edge will be treated equally with a weight of 1.

default : float

When attr is not None, then if an edge does not have that attribute, default specifies what value it should take.

kind: str

The type of optimum to search for: 'min' or 'max' greedy branching.

Returns B: directed graph

The greedily obtained branching.

4.40. Tree 369

maximum_branching

maximum_branching(G, attr='weight', default=1)

Returns a maximum branching from G.

Parameters G: (multi)digraph-like

The graph to be searched.

attr: str

The edge attribute used to in determining optimality.

default: float

The value of the edge attribute used if an edge does not have the attribute attr.

Returns B: (multi)digraph-like

A maximum branching.

minimum_branching

```
minimum_branching(G, attr='weight', default=1)
```

Returns a minimum branching from G.

Parameters G: (multi)digraph-like

The graph to be searched.

attr: str

The edge attribute used to in determining optimality.

default : float

The value of the edge attribute used if an edge does not have the attribute attr.

Returns B: (multi)digraph-like

A minimum branching.

maximum spanning arborescence

```
maximum_spanning_arborescence (G, attr='weight', default=1)
```

Returns a maximum spanning arborescence from G.

Parameters G: (multi)digraph-like

The graph to be searched.

attr : str

The edge attribute used to in determining optimality.

default: float

The value of the edge attribute used if an edge does not have the attribute attr.

Returns B: (multi)digraph-like

A maximum spanning arborescence.

Raises NetworkXException

If the graph does not contain a maximum spanning arborescence.

minimum_spanning_arborescence

minimum_spanning_arborescence(G, attr='weight', default=1)

Returns a minimum spanning arborescence from G.

Parameters G: (multi)digraph-like

The graph to be searched.

attr: str

The edge attribute used to in determining optimality.

default: float

The value of the edge attribute used if an edge does not have the attribute attr.

Returns B: (multi)digraph-like

A minimum spanning arborescence.

Raises NetworkXException

If the graph does not contain a minimum spanning arborescence.

Edmonds

```
class Edmonds (G, seed=None)
```

Edmonds algorithm for finding optimal branchings and spanning arborescences.

```
___init___(G, seed=None)
```

Methods

```
__init__(G[, seed])
find_optimum([attr, default, kind, style]) Returns a branching from G.
```

4.41 Triads

Functions for analyzing triads of a graph.

triadic_census(G) Determines the triadic census of a directed graph.

4.41.1 triadic census

$triadic_census(G)$

Determines the triadic census of a directed graph.

The triadic census is a count of how many of the 16 possible types of triads are present in a directed graph.

Parameters G: digraph

A NetworkX DiGraph

4.41. Triads 371

Returns census: dict

Dictionary with triad names as keys and number of occurrences as values.

Notes

This algorithm has complexity O(m) where m is the number of edges in the graph.

References

[R356]

4.42 Vitality

Vitality measures.

 $closeness_vitality(G[, weight])$ Compute closeness vitality for nodes.

4.42.1 closeness_vitality

closeness_vitality(G, weight=None)

Compute closeness vitality for nodes.

Closeness vitality of a node is the change in the sum of distances between all node pairs when excluding that node.

Parameters G: graph

weight: None or string (optional)

The name of the edge attribute used as weight. If None the edge weights are ignored.

Returns nodes: dictionary

Dictionary with nodes as keys and closeness vitality as the value.

See also:

```
closeness_centrality
```

References

[R357]

Examples

```
>>> G=nx.cycle_graph(3)
>>> nx.closeness_vitality(G)
{0: 4.0, 1: 4.0, 2: 4.0}
```

CHAPTER

FIVE

FUNCTIONS

Functional interface to graph methods and assorted utilities.

5.1 Graph

degree(G[, nbunch, weight])	Return degree of single node or of nbunch of nodes.
$ ext{degree_histogram}(G)$	Return a list of the frequency of each degree value.
density(G)	Return the density of a graph.
info(G[, n])	Print short summary of information for the graph G or the node n.
<pre>create_empty_copy(G[, with_nodes])</pre>	Return a copy of the graph G with all of the edges removed.
is_directed(G)	Return True if graph is directed.

5.1.1 degree

degree (G, nbunch=None, weight=None)

Return degree of single node or of nbunch of nodes. If nbunch is ommitted, then return degrees of all nodes.

5.1.2 degree_histogram

${\tt degree_histogram}\,(G)$

Return a list of the frequency of each degree value.

Parameters G: Networkx graph

A graph

Returns hist: list

A list of frequencies of degrees. The degree values are the index in the list.

Notes

Note: the bins are width one, hence len(list) can be large (Order(number_of_edges))

5.1.3 density

$\mathtt{density}\,(G)$

Return the density of a graph.

The density for undirected graphs is

$$d = \frac{2m}{n(n-1)},$$

and for directed graphs is

$$d = \frac{m}{n(n-1)},$$

where n is the number of nodes and m is the number of edges in G.

Notes

The density is 0 for a graph without edges and 1 for a complete graph. The density of multigraphs can be higher than 1.

Self loops are counted in the total number of edges so graphs with self loops can have density higher than 1.

5.1.4 info

info(G, n=None)

Print short summary of information for the graph G or the node n.

Parameters G: Networkx graph

A graph

n: node (any hashable)

A node in the graph G

5.1.5 create_empty_copy

create_empty_copy (G, with_nodes=True)

Return a copy of the graph G with all of the edges removed.

Parameters G: graph

A NetworkX graph

with_nodes : bool (default=True)

Include nodes.

Notes

Graph, node, and edge data is not propagated to the new graph.

5.1.6 is directed

$is_directed(G)$

Return True if graph is directed.

5.2 Nodes

5.2. Nodes 375

nodes(G)	Return a copy of the graph nodes in a list.
$number_of_nodes(G)$	Return the number of nodes in the graph.
$nodes_iter(G)$	Return an iterator over the graph nodes.
<pre>all_neighbors(graph, node)</pre>	Returns all of the neighbors of a node in the graph.
non_neighbors(graph, node)	Returns the non-neighbors of the node in the graph.
${\tt common_neighbors}(G, u, v)$	Return the common neighbors of two nodes in a graph.

5.2.1 nodes

nodes(G)

Return a copy of the graph nodes in a list.

5.2.2 number of nodes

$number_of_nodes(G)$

Return the number of nodes in the graph.

5.2.3 nodes iter

$nodes_iter(G)$

Return an iterator over the graph nodes.

5.2.4 all_neighbors

all_neighbors (graph, node)

Returns all of the neighbors of a node in the graph.

If the graph is directed returns predecessors as well as successors.

Parameters graph: NetworkX graph

Graph to find neighbors.

node: node

The node whose neighbors will be returned.

Returns neighbors: iterator

Iterator of neighbors

5.2.5 non_neighbors

non_neighbors (graph, node)

Returns the non-neighbors of the node in the graph.

Parameters graph: NetworkX graph

Graph to find neighbors.

node: node

The node whose neighbors will be returned.

Returns non_neighbors: iterator

Iterator of nodes in the graph that are not neighbors of the node.

5.2.6 common_neighbors

```
common neighbors (G, u, v)
```

Return the common neighbors of two nodes in a graph.

Parameters G: graph

A NetworkX undirected graph.

u, **v** : nodes

Nodes in the graph.

Returns cnbors: iterator

Iterator of common neighbors of u and v in the graph.

Raises NetworkXError

If u or v is not a node in the graph.

Examples

```
>>> G = nx.complete_graph(5)
>>> sorted(nx.common_neighbors(G, 0, 1))
[2, 3, 4]
```

5.3 Edges

edges(G[, nbunch])	Return list of edges incident to nodes in nbunch.	
$ ext{number_of_edges}(G)$	Return the number of edges in the graph.	
<pre>edges_iter(G[, nbunch])</pre>	Return iterator over edges incident to nodes in nbunch.	
non_edges(graph)	Returns the non-existent edges in the graph.	

5.3.1 edges

```
edges (G, nbunch=None)
```

Return list of edges incident to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out_edges

5.3.2 number_of_edges

${\tt number_of_edges}\,(G)$

Return the number of edges in the graph.

5.3. Edges 377

5.3.3 edges iter

```
edges_iter(G, nbunch=None)
```

Return iterator over edges incident to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out_edges

5.3.4 non_edges

```
non_edges (graph)
```

Returns the non-existent edges in the graph.

Parameters graph: NetworkX graph.

Graph to find non-existent edges.

Returns non_edges: iterator

Iterator of edges that are not in the graph.

5.4 Attributes

set_node_attributes(G, name, values)	Set node attributes from dictionary of nodes and values
<pre>get_node_attributes(G, name)</pre>	Get node attributes from graph
set_edge_attributes(G, name, values)	Set edge attributes from dictionary of edge tuples and values.
<pre>get_edge_attributes(G, name)</pre>	Get edge attributes from graph

5.4.1 set node attributes

```
\verb"set_node_attributes" (\textit{G}, name, values")
```

Set node attributes from dictionary of nodes and values

Parameters G: NetworkX Graph

name: string
Attribute name

values: dict

Dictionary of attribute values keyed by node. If values is not a dictionary, then it is treated as a single attribute value that is then applied to every node in G.

Examples

```
>>> G = nx.path_graph(3)
>>> bb = nx.betweenness_centrality(G)
>>> nx.set_node_attributes(G, 'betweenness', bb)
>>> G.node[1]['betweenness']
1.0
```

5.4.2 get node attributes

get_node_attributes (G, name)

Get node attributes from graph

Parameters G: NetworkX Graph

name: string

Attribute name

Returns Dictionary of attributes keyed by node.

Examples

```
>>> G=nx.Graph()
>>> G.add_nodes_from([1,2,3],color='red')
>>> color=nx.get_node_attributes(G,'color')
>>> color[1]
'red'
```

5.4.3 set_edge_attributes

set_edge_attributes (G, name, values)

Set edge attributes from dictionary of edge tuples and values.

Parameters G: NetworkX Graph

name: string

Attribute name

values : dict

Dictionary of attribute values keyed by edge (tuple). For multigraphs, the keys tuples must be of the form (u, v, key). For non-multigraphs, the keys must be tuples of the form (u, v). If values is not a dictionary, then it is treated as a single attribute value that is then applied to every edge in G.

Examples

```
>>> G = nx.path_graph(3)
>>> bb = nx.edge_betweenness_centrality(G, normalized=False)
>>> nx.set_edge_attributes(G, 'betweenness', bb)
>>> G[1][2]['betweenness']
2.0
```

5.4.4 get edge attributes

get_edge_attributes(G, name)

Get edge attributes from graph

Parameters G: NetworkX Graph

name: string

5.4. Attributes 379

Attribute name

Returns Dictionary of attributes keyed by edge. For (di)graphs, the keys are 2-tuples of the form: (u,v). For multi(di)graphs, the keys are 3-tuples of the form: (u, v, key).

Examples

```
>>> G=nx.Graph()
>>> G.add_path([1,2,3],color='red')
>>> color=nx.get_edge_attributes(G,'color')
>>> color[(1,2)]
'red'
```

5.5 Freezing graph structure

freeze(G)	Modify graph to prevent further change by adding or removing nodes or edges.
is_frozen(G)	Return True if graph is frozen.

5.5.1 freeze

freeze(G)

Modify graph to prevent further change by adding or removing nodes or edges.

Node and edge data can still be modified.

Parameters G: graph

A NetworkX graph

See also:

```
is frozen
```

Notes

To "unfreeze" a graph you must make a copy by creating a new graph object:

```
>>> graph = nx.path_graph(4)
>>> frozen_graph = nx.freeze(graph)
>>> unfrozen_graph = nx.Graph(frozen_graph)
>>> nx.is_frozen(unfrozen_graph)
False
```

Examples

```
>>> G=nx.Graph()
>>> G.add_path([0,1,2,3])
>>> G=nx.freeze(G)
>>> try:
... G.add_edge(4,5)
```

```
... except nx.NetworkXError as e:
... print(str(e))
Frozen graph can't be modified
```

5.5.2 is_frozen

$is_frozen(G)$

Return True if graph is frozen.

 $Parameters \ G: graph$

A NetworkX graph

See also:

freeze

CHAPTER

SIX

GRAPH GENERATORS

6.1 Atlas

Generators for the small graph atlas.

See "An Atlas of Graphs" by Ronald C. Read and Robin J. Wilson, Oxford University Press, 1998.

Because of its size, this module is not imported by default.

graph_atlas_g() Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas.

6.1.1 graph_atlas_g

graph_atlas_g()

Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas. G0,G1,...,G1252 are all graphs with up to 7 nodes.

The graphs are listed:

- 1. in increasing order of number of nodes;
- 2. for a fixed number of nodes, in increasing order of the number of edges;
- 3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example 111223 < 112222;
- 4. for fixed degree sequence, in increasing number of automorphisms.

Note that indexing is set up so that for GAG=graph_atlas_g(), then G123=GAG[123] and G[0]=empty_graph(0)

6.2 Classic

Generators for some classic graphs.

The typical graph generator is called as follows:

```
>>> G=nx.complete_graph(100)
```

returning the complete graph on n nodes labeled 0,...,99 as a simple graph. Except for empty_graph, all the generators in this module return a Graph class (i.e. a simple, undirected graph).

balanced_tree(r, h[, create_using])

Return the perfectly balanced r-tree of height h.

Con

Table 6.2 -	continued	from	previous page
I GOIO O.L	Continuou		providuo pago

<pre>barbell_graph(m1, m2[, create_using])</pre>	Return the Barbell Graph: two complete graphs connected by a path.
<pre>complete_graph(n[, create_using])</pre>	Return the complete graph K_n with n nodes.
complete_multipartite_graph(*block_sizes)	Returns the complete multipartite graph with the specified block sizes.
circular_ladder_graph(n[, create_using])	Return the circular ladder graph CL_n of length n.
cycle_graph(n[, create_using])	Return the cycle graph C_n over n nodes.
${\tt dorogovtsev_goltsev_mendes_graph(n[,])}$	Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.
<pre>empty_graph([n, create_using])</pre>	Return the empty graph with n nodes and zero edges.
<pre>grid_2d_graph(m, n[, periodic, create_using])</pre>	Return the 2d grid graph of mxn nodes, each connected to its nearest neight
<pre>grid_graph(dim[, periodic])</pre>	Return the n-dimensional grid graph.
hypercube_graph(n)	Return the n-dimensional hypercube.
ladder_graph(n[, create_using])	Return the Ladder graph of length n.
lollipop_graph(m, n[, create_using])	Return the Lollipop Graph; K_m connected to P_n .
null_graph([create_using])	Return the Null graph with no nodes or edges.
<pre>path_graph(n[, create_using])</pre>	Return the Path graph P_n of n nodes linearly connected by n-1 edges.
star_graph(n[, create_using])	Return the Star graph with n+1 nodes: one center node, connected to n oute
trivial_graph([create_using])	Return the Trivial graph with one node (with integer label 0) and no edges.
<pre>wheel_graph(n[, create_using])</pre>	Return the wheel graph: a single hub node connected to each node of the (n

6.2.1 balanced_tree

balanced_tree (r, h, create_using=None)

Return the perfectly balanced r-tree of height h.

Parameters r: int

Branching factor of the tree

h: int

Height of the tree

create_using : NetworkX graph type, optional

Use specified type to construct graph (default = networkx.Graph)

Returns G: networkx Graph

A tree with n nodes

Notes

This is the rooted tree where all leaves are at distance h from the root. The root has degree r and all other internal nodes have degree r+1.

Node labels are the integers 0 (the root) up to number_of_nodes - 1.

Also refered to as a complete r-ary tree.

6.2.2 barbell graph

barbell_graph (m1, m2, create_using=None)

Return the Barbell Graph: two complete graphs connected by a path.

For m1 > 1 and m2 >= 0.

Two identical complete graphs K_{m1} form the left and right bells, and are connected by a path P_{m2} .

The 2*m1+m2 nodes are numbered 0,...,m1-1 for the left barbell, m1,...,m1+m2-1 for the path, and m1+m2,...,2*m1+m2-1 for the right barbell.

The 3 subgraphs are joined via the edges (m1-1,m1) and (m1+m2-1,m1+m2). If m2=0, this is merely two complete graphs joined together.

This graph is an extremal example in David Aldous and Jim Fill's etext on Random Walks on Graphs.

6.2.3 complete graph

```
complete_graph (n, create_using=None)
```

Return the complete graph K_n with n nodes.

Node labels are the integers 0 to n-1.

6.2.4 complete_multipartite_graph

```
complete_multipartite_graph(*block_sizes)
```

Returns the complete multipartite graph with the specified block sizes.

Parameters block_sizes : tuple of integers

The number of vertices in each block of the multipartite graph. The length of this tuple is the number of blocks.

Returns G: NetworkX Graph

Returns the complete multipartite graph with the specified block sizes.

For each node, the node attribute 'block' is an integer indicating which block contains the node.

See also:

```
complete_bipartite_graph
```

Notes

This function generalizes several other graph generator functions.

- •If no block sizes are given, this returns the null graph.
- •If a single block size n is given, this returns the empty graph on n nodes.
- •If two block sizes m and n are given, this returns the complete bipartite graph on m + n nodes.
- •If block sizes 1 and n are given, this returns the star graph on n + 1 nodes.

Examples

Creating a complete tripartite graph, with blocks of one, two, and three vertices, respectively.

```
>>> import networkx as nx
>>> G = nx.complete_multipartite_graph(1, 2, 3)
>>> [G.node[u]['block'] for u in G]
[0, 1, 1, 2, 2, 2]
>>> G.edges(0)
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
```

6.2. Classic 385

```
>>> G.edges(2)
[(2, 0), (2, 3), (2, 4), (2, 5)]
>>> G.edges(4)
[(4, 0), (4, 1), (4, 2)]
```

6.2.5 circular_ladder_graph

```
circular_ladder_graph (n, create_using=None)
```

Return the circular ladder graph CL_n of length n.

CL_n consists of two concentric n-cycles in which each of the n pairs of concentric nodes are joined by an edge.

Node labels are the integers 0 to n-1

6.2.6 cycle graph

```
cycle_graph (n, create_using=None)
```

Return the cycle graph C_n over n nodes.

C_n is the n-path with two end-nodes connected.

Node labels are the integers 0 to n-1 If create_using is a DiGraph, the direction is in increasing order.

6.2.7 dorogovtsev goltsev mendes graph

```
dorogovtsev_goltsev_mendes_graph (n, create_using=None)
```

Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

n is the generation. See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.

6.2.8 empty graph

```
empty graph (n=0, create using=None)
```

Return the empty graph with n nodes and zero edges.

Node labels are the integers 0 to n-1

For example: >>> G=nx.empty_graph(10) >>> G.number_of_nodes() 10 >>> G.number_of_edges() 0

The variable create_using should point to a "graph"-like object that will be cleaned (nodes and edges will be removed) and refitted as an empty "graph" with n nodes with integer labels. This capability is useful for specifying the class-nature of the resulting empty "graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).

The variable create_using has two main uses: Firstly, the variable create_using can be used to create an empty digraph, network,etc. For example,

```
>>> n=10
>>> G=nx.empty_graph(n,create_using=nx.DiGraph())
```

will create an empty digraph on n nodes.

Secondly, one can pass an existing graph (digraph, pseudograph, etc.) via create_using. For example, if G is an existing graph (resp. digraph, pseudograph, etc.), then empty_graph(n,create_using=G) will empty G (i.e. delete all nodes and edges using G.clear() in base) and then add n nodes and zero edges, and return the modified graph (resp. digraph, pseudograph, etc.).

See also create_empty_copy(G).

6.2.9 grid_2d_graph

grid_2d_graph (m, n, periodic=False, create_using=None)

Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors. Optional argument periodic=True will connect boundary nodes via periodic boundary conditions.

6.2.10 grid_graph

grid_graph (dim, periodic=False)

Return the n-dimensional grid graph.

The dimension is the length of the list 'dim' and the size in each dimension is the value of the list element.

E.g. G=grid_graph(dim=[2,3]) produces a 2x3 grid graph.

If periodic=True then join grid edges with periodic boundary conditions.

6.2.11 hypercube_graph

$hypercube_graph(n)$

Return the n-dimensional hypercube.

Node labels are the integers 0 to 2**n - 1.

6.2.12 ladder graph

ladder_graph (n, create_using=None)

Return the Ladder graph of length n.

This is two rows of n nodes, with each pair connected by a single edge.

Node labels are the integers 0 to 2*n - 1.

6.2.13 lollipop graph

lollipop_graph (m, n, create_using=None)

Return the Lollipop Graph; K_m connected to P_n .

This is the Barbell Graph without the right barbell.

For m>1 and n>=0, the complete graph K_m is connected to the path P_n. The resulting m+n nodes are labelled 0,...,m-1 for the complete graph and m,...,m+n-1 for the path. The 2 subgraphs are joined via the edge (m-1,m). If n=0, this is merely a complete graph.

Node labels are the integers 0 to number_of_nodes - 1.

(This graph is an extremal example in David Aldous and Jim Fill's etext on Random Walks on Graphs.)

6.2. Classic 387

6.2.14 null graph

null_graph (create_using=None)

Return the Null graph with no nodes or edges.

See empty_graph for the use of create_using.

6.2.15 path_graph

path_graph (n, create_using=None)

Return the Path graph P_n of n nodes linearly connected by n-1 edges.

Node labels are the integers 0 to n - 1. If create_using is a DiGraph then the edges are directed in increasing order.

6.2.16 star_graph

star_graph (n, create_using=None)

Return the Star graph with n+1 nodes: one center node, connected to n outer nodes.

Node labels are the integers 0 to n.

6.2.17 trivial_graph

trivial_graph (create_using=None)

Return the Trivial graph with one node (with integer label 0) and no edges.

6.2.18 wheel graph

wheel_graph (n, create_using=None)

Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph.

Node labels are the integers 0 to n - 1.

6.3 Expanders

Provides explicit constructions of expander graphs.

<pre>margulis_gabber_galil_graph(n[, create_using])</pre>	Return the Margulis-Gabber-Galil undirected MultiGraph on n^2 nodes.
<pre>chordal_cycle_graph(p[, create_using])</pre>	Return the chordal cycle graph on p nodes.

6.3.1 margulis_gabber_galil_graph

margulis_gabber_galil_graph (n, create_using=None)

Return the Margulis-Gabber-Galil undirected MultiGraph on n^2 nodes.

The undirected MultiGraph is regular with degree 8. Nodes are integer pairs. The second-largest eigenvalue of the adjacency matrix of the graph is at most $5\sqrt{2}$, regardless of n.

Parameters n: int

Determines the number of nodes in the graph: n^2 .

create_using: graph-like

A graph-like object that receives the constructed edges. If None, then a MultiGraph instance is used.

Returns G: graph

The constructed undirected multigraph.

Raises NetworkXError

If the graph is directed or not a multigraph.

6.3.2 chordal_cycle_graph

chordal_cycle_graph (p, create_using=None)

Return the chordal cycle graph on p nodes.

The returned graph is a cycle graph on p nodes with chords joining each vertex x to its inverse modulo p. This graph is a (mildly explicit) 3-regular expander [R378].

p must be a prime number.

Parameters p: a prime number

The number of vertices in the graph. This also indicates where the chordal edges in the cycle will be created.

create_using: graph-like

A graph-like object that receives the constructed edges. If None, then a MultiGraph instance is used.

Returns G: graph

The constructed undirected multigraph.

Raises NetworkXError

If the graph provided in create_using is directed or not a multigraph.

References

[R378]

6.4 Small

Various small and named graphs, together with some compact generators.

<pre>make_small_graph(graph_description[,])</pre>	Return the small graph described by graph_description.
LCF_graph(n, shift_list, repeats[, create_using])	Return the cubic graph specified in LCF notation.
bull_graph([create_using])	Return the Bull graph.
chvatal_graph([create_using])	Return the Chvátal graph.
cubical_graph([create_using])	Return the 3-regular Platonic Cubical graph.
desargues_graph([create_using])	Return the Desargues graph.
	Continued on next page

6.4. Small 389

Table 6.4 – continued from previous page	
diamond_graph([create_using])	Return the Diamond graph.
dodecahedral_graph([create_using])	Return the Platonic Dodecahedral graph.
<pre>frucht_graph([create_using])</pre>	Return the Frucht Graph.
heawood_graph([create_using])	Return the Heawood graph, a (3,6) cage.
house_graph([create_using])	Return the House graph (square with triangle on top).
house_x_graph([create_using])	Return the House graph with a cross inside the house square.
icosahedral_graph([create_using])	Return the Platonic Icosahedral graph.
<pre>krackhardt_kite_graph([create_using])</pre>	Return the Krackhardt Kite Social Network.
<pre>moebius_kantor_graph([create_using])</pre>	Return the Moebius-Kantor graph.
octahedral_graph([create_using])	Return the Platonic Octahedral graph.
pappus_graph()	Return the Pappus graph.
<pre>petersen_graph([create_using])</pre>	Return the Petersen graph.
sedgewick_maze_graph([create_using])	Return a small maze with a cycle.
tetrahedral_graph([create_using])	Return the 3-regular Platonic Tetrahedral graph.
truncated_cube_graph([create_using])	Return the skeleton of the truncated cube.
truncated_tetrahedron_graph([create_using])	Return the skeleton of the truncated Platonic tetrahedron.
tutte_graph([create_using])	Return the Tutte graph.

Table 6.4 – continued from previous page

6.4.1 make_small_graph

make_small_graph (graph_description, create_using=None)

Return the small graph described by graph_description.

graph_description is a list of the form [ltype,name,n,xlist]

Here ltype is one of "adjacencylist" or "edgelist", name is the name of the graph and n the number of nodes. This constructs a graph of n nodes with integer labels 0,..,n-1.

If ltype="adjacencylist" then xlist is an adjacency list with exactly n entries, in with the j'th entry (which can be empty) specifies the nodes connected to vertex j. e.g. the "square" graph C_4 can be obtained by

```
>>> G=nx.make_small_graph(["adjacencylist", "C_4", 4, [[2,4],[1,3],[2,4],[1,3]]])
```

or, since we do not need to add edges twice,

```
>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[3],[4],[]]])
```

If ltype="edgelist" then xlist is an edge list written as [[v1,w2],[v2,w2],...,[vk,wk]], where vj and wj integers in the range 1,..,n e.g. the "square" graph C_4 can be obtained by

```
>>> G=nx.make_small_graph(["edgelist","C_4",4,[[1,2],[3,4],[2,3],[4,1]]])
```

Use the create_using argument to choose the graph class/type.

6.4.2 LCF_graph

LCF_graph (*n*, *shift_list*, *repeats*, *create_using=None*)

Return the cubic graph specified in LCF notation.

LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed notation used in the generation of various cubic Hamiltonian graphs of high symmetry. See, for example, dodecahedral_graph, desargues_graph, hea-wood_graph and pappus_graph below.

n (number of nodes) The starting graph is the n-cycle with nodes 0,...,n-1. (The null graph is returned if n < 0.)

```
shift_list = [s1, s2, ..., sk], a list of integer shifts mod n,
```

repeats integer specifying the number of times that shifts in shift_list are successively applied to each v_current in the n-cycle to generate an edge between v_current and v_current+shift mod n.

For v1 cycling through the n-cycle a total of k*repeats with shift cycling through shiftlist repeats times connect v1 with v1+shift mod n

```
The utility graph K_{3,3}

>>> G=nx.LCF_graph(6,[3,-3],3)

The Heawood graph

>>> G=nx.LCF_graph(14,[5,-5],7)
```

See http://mathworld.wolfram.com/LCFNotation.html for a description and references.

6.4.3 bull graph

```
bull_graph (create_using=None)
Return the Bull graph.
```

6.4.4 chvatal graph

```
chvatal_graph (create_using=None) Return the Chvátal graph.
```

6.4.5 cubical graph

```
cubical_graph (create_using=None)
    Return the 3-regular Platonic Cubical graph.
```

6.4.6 desargues_graph

```
desargues_graph (create_using=None)
Return the Desargues graph.
```

6.4.7 diamond graph

```
diamond_graph (create_using=None)
Return the Diamond graph.
```

6.4.8 dodecahedral_graph

```
dodecahedral_graph (create_using=None)
Return the Platonic Dodecahedral graph.
```

6.4. Small 391

6.4.9 frucht graph

frucht_graph (create_using=None)

Return the Frucht Graph.

The Frucht Graph is the smallest cubical graph whose automorphism group consists only of the identity element.

6.4.10 heawood_graph

heawood_graph (create_using=None)

Return the Heawood graph, a (3,6) cage.

6.4.11 house graph

house_graph (create_using=None)

Return the House graph (square with triangle on top).

6.4.12 house x graph

house_x_graph (create_using=None)

Return the House graph with a cross inside the house square.

6.4.13 icosahedral_graph

icosahedral_graph (create_using=None)

Return the Platonic Icosahedral graph.

6.4.14 krackhardt kite graph

krackhardt_kite_graph(create_using=None)

Return the Krackhardt Kite Social Network.

A 10 actor social network introduced by David Krackhardt to illustrate: degree, betweenness, centrality, closeness, etc. The traditional labeling is: Andre=1, Beverley=2, Carol=3, Diane=4, Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.

6.4.15 moebius kantor graph

moebius_kantor_graph (create_using=None)

Return the Moebius-Kantor graph.

6.4.16 octahedral_graph

octahedral_graph (create_using=None)

Return the Platonic Octahedral graph.

6.4.17 pappus_graph

pappus_graph ()
 Return the Pappus graph.

6.4.18 petersen graph

petersen_graph (create_using=None)
Return the Petersen graph.

6.4.19 sedgewick_maze_graph

sedgewick_maze_graph (create_using=None)

Return a small maze with a cycle.

This is the maze used in Sedgewick,3rd Edition, Part 5, Graph Algorithms, Chapter 18, e.g. Figure 18.2 and following. Nodes are numbered 0,..,7

6.4.20 tetrahedral_graph

tetrahedral_graph (create_using=None)
Return the 3-regular Platonic Tetrahedral graph.

6.4.21 truncated_cube_graph

truncated_cube_graph (create_using=None)
Return the skeleton of the truncated cube.

6.4.22 truncated tetrahedron graph

truncated_tetrahedron_graph (create_using=None)
Return the skeleton of the truncated Platonic tetrahedron.

6.4.23 tutte graph

tutte_graph (create_using=None)
Return the Tutte graph.

6.5 Random Graphs

Generators for random graphs.

<pre>fast_gnp_random_graph(n, p[, seed, directed])</pre>	Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or
<pre>gnp_random_graph(n, p[, seed, directed])</pre>	Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or
dense_gnm_random_graph(n, m[, seed])	Returns a $G_{n,m}$ random graph.
gnm_random_graph(n, m[, seed, directed])	Returns a $G_{n,m}$ random graph.

Table 6.5 –	continued	from	nrevious	nane
1401 0 0.5 –	CONTINUEU	11 0111	previous	paye

Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or
Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or
Return a Newman–Watts–Strogatz small-world graph.
Return a Watts-Strogatz small-world graph.
Returns a connected Watts-Strogatz small-world graph.
Returns a random d-regular graph on n nodes.
Returns a random graph according to the Barabási-Albert preferential a
Holme and Kim algorithm for growing graphs with powerlaw degree di
Returns an undirected graph using the duplication-divergence model.
Returns a random lobster graph.
Returns a random shell graph for the constructor given.
Returns a tree with a power law degree distribution.
Returns a degree sequence for a tree with a power law distribution.

6.5.1 fast_gnp_random_graph

fast_gnp_random_graph (n, p, seed=None, directed=False)

Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph.

Parameters n: int

The number of nodes.

p: float

Probability for edge creation.

seed: int, optional

Seed for random number generator (default=None).

directed : bool, optional (default=False)

If True, this function returns a directed graph.

See also:

gnp_random_graph

Notes

The $G_{n,p}$ graph algorithm chooses each of the [n(n-1)]/2 (undirected) or n(n-1) (directed) possible edges with probability p.

This algorithm runs in O(n+m) time, where m is the expected number of edges, which equals pn(n-1)/2. This should be faster than gnp_random_graph () when p is small and the expected number of edges is small (that is, the graph is sparse).

References

[R398]

6.5.2 gnp random graph

```
gnp_random_graph (n, p, seed=None, directed=False)
     Returns a G_{n,p} random graph, also known as an Erdős-Rényi graph or a binomial graph.
     The G_{n,p} model chooses each of the possible edges with probability p.
     The functions binomial_graph() and erdos_renyi_graph() are aliases of this function.
          Parameters n: int
                  The number of nodes.
               p: float
                   Probability for edge creation.
               seed: int, optional
                   Seed for random number generator (default=None).
               directed: bool, optional (default=False)
                  If True, this function returns a directed graph.
     See also:
     fast_gnp_random_graph
     Notes
     This algorithm runs in O(n^2) time.
                                               For sparse graphs (that is, for small values of p),
     fast_gnp_random_graph() is a faster algorithm.
     References
     [R399], [R400]
6.5.3 dense gnm random graph
dense_gnm_random_graph (n, m, seed=None)
     Returns a G_{n,m} random graph.
     In the G_{n,m} model, a graph is chosen uniformly at random from the set of all graphs with n nodes and m edges.
     This algorithm should be faster than <code>gnm_random_graph()</code> for dense graphs.
          Parameters n: int
                   The number of nodes.
               m: int
                   The number of edges.
               seed: int, optional
                   Seed for random number generator (default=None).
```

gnm_random_graph

See also:

Notes

Algorithm by Keith M. Briggs Mar 31, 2006. Inspired by Knuth's Algorithm S (Selection sampling technique), in section 3.4.2 of [R394].

References

[R394]

6.5.4 gnm random graph

```
{\tt gnm\_random\_graph}\ (n,m,seed=None,directed=False)
```

Returns a $G_{n,m}$ random graph.

In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set of all graphs with n nodes and m edges.

This algorithm should be faster than dense_gnm_random_graph() for sparse graphs.

```
Parameters n: int
```

The number of nodes.

m: int

The number of edges.

seed: int, optional

Seed for random number generator (default=None).

directed: bool, optional (default=False)

If True return a directed graph

See also:

dense_gnm_random_graph

6.5.5 erdos renyi graph

```
erdos_renyi_graph (n, p, seed=None, directed=False)
```

Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph.

The $G_{n,p}$ model chooses each of the possible edges with probability p.

The functions binomial_graph() and erdos_renyi_graph() are aliases of this function.

Parameters n: int

The number of nodes.

p: float

Probability for edge creation.

seed: int, optional

Seed for random number generator (default=None).

directed: bool, optional (default=False)

If True, this function returns a directed graph.

See also:

```
fast_gnp_random_graph
```

Notes

This algorithm runs in $O(n^2)$ time. For sparse graphs (that is, for small values of p), fast_gnp_random_graph() is a faster algorithm.

References

[R396], [R397]

6.5.6 binomial_graph

binomial_graph (n, p, seed=None, directed=False)

Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph.

The $G_{n,p}$ model chooses each of the possible edges with probability p.

The functions binomial_graph() and erdos_renyi_graph() are aliases of this function.

Parameters n: int

The number of nodes.

p: float

Probability for edge creation.

seed: int, optional

Seed for random number generator (default=None).

directed: bool, optional (default=False)

If True, this function returns a directed graph.

See also:

```
fast_gnp_random_graph
```

Notes

This algorithm runs in $O(n^2)$ time. For sparse graphs (that is, for small values of p), fast_gnp_random_graph() is a faster algorithm.

References

[R392], [R393]

6.5.7 newman watts strogatz graph

```
newman_watts_strogatz_graph(n, k, p, seed=None)
```

Return a Newman-Watts-Strogatz small-world graph.

Parameters n: int

The number of nodes.

k: int

Each node is joined with its k nearest neighbors in a ring topology.

p: float

The probability of adding a new edge for each edge.

seed: int, optional

The seed for the random number generator (the default is None).

See also:

```
watts_strogatz_graph
```

Notes

First create a ring over n nodes. Then each node in the ring is connected with its k nearest neighbors (or k-1 neighbors if k is odd). Then shortcuts are created by adding new edges as follows: for each edge (u, v) in the underlying "n-ring with k nearest neighbors" with probability p add a new edge (u, w) with randomly-chosen existing node w. In contrast with watts_strogatz_graph(), no edges are removed.

References

[R401]

6.5.8 watts_strogatz_graph

```
watts\_strogatz\_graph(n, k, p, seed=None)
```

Return a Watts-Strogatz small-world graph.

Parameters n: int

The number of nodes

k: int

Each node is joined with its k nearest neighbors in a ring topology.

p: float

The probability of rewiring each edge

seed: int, optional

Seed for random number generator (default=None)

See also:

```
newman_watts_strogatz_graph, connected_watts_strogatz_graph
```

Notes

First create a ring over n nodes. Then each node in the ring is joined to its k nearest neighbors (or k-1 neighbors if k is odd). Then shortcuts are created by replacing some edges as follows: for each edge (u, v) in the underlying "n-ring with k nearest neighbors" with probability p replace it with a new edge (u, w) with uniformly random choice of existing node w.

In contrast with <code>newman_watts_strogatz_graph()</code>, the random rewiring does not increase the number of edges. The rewired graph is not guaranteed to be connected as in <code>connected_watts_strogatz_graph()</code>.

References

[R405]

6.5.9 connected_watts_strogatz_graph

```
connected_watts_strogatz_graph (n, k, p, tries=100, seed=None)
```

Returns a connected Watts-Strogatz small-world graph.

Attempts to generate a connected graph by repeated generation of Watts–Strogatz small-world graphs. An exception is raised if the maximum number of tries is exceeded.

Parameters n: int

The number of nodes

k: int

Each node is joined with its k nearest neighbors in a ring topology.

p: float

The probability of rewiring each edge

tries: int

Number of attempts to generate a connected graph.

seed: int, optional

The seed for random number generator.

See also:

```
newman_watts_strogatz_graph, watts_strogatz_graph
```

6.5.10 random_regular_graph

```
random_regular_graph (d, n, seed=None)
```

Returns a random d-regular graph on n nodes.

The resulting graph has no self-loops or parallel edges.

Parameters d: int

The degree of each node.

n: integer

The number of nodes. The value of $n \star d$ must be even.

seed: hashable object

The seed for random number generator.

Raises NetworkXError

If n * d is odd or d is greater than or equal to n.

Notes

The nodes are numbered from 0 to n - 1.

Kim and Vu's paper [R404] shows that this algorithm samples in an asymptotically uniform way from the space of random graphs when $d = O(n^{1/3-\epsilon})$.

References

[R403], [R404]

6.5.11 barabasi_albert_graph

barabasi_albert_graph (n, m, seed=None)

Returns a random graph according to the Barabási-Albert preferential attachment model.

A graph of n nodes is grown by attaching new nodes each with m edges that are preferentially attached to existing nodes with high degree.

Parameters n: int

Number of nodes

m: int

Number of edges to attach from a new node to existing nodes

seed: int, optional

Seed for random number generator (default=None).

Returns G: Graph

Raises NetworkXError

If m does not satisfy $1 \le m \le n$.

References

[R391]

6.5.12 powerlaw cluster graph

powerlaw_cluster_graph (n, m, p, seed=None)

Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering.

Parameters n: int

the number of nodes

m: int

the number of random edges to add for each new node

p: float,

Probability of adding a triangle after adding a random edge

seed: int, optional

Seed for random number generator (default=None).

Raises NetworkXError

If m does not satisfy $1 \le m \le n$ or p does not satisfy $0 \le p \le 1$.

Notes

The average clustering has a hard time getting above a certain cutoff that depends on m. This cutoff is often quite low. The transitivity (fraction of triangles to possible triangles) seems to decrease with network size.

It is essentially the Barabási–Albert (BA) growth model with an extra step that each random edge is followed by a chance of making an edge to one of its neighbors too (and thus a triangle).

This algorithm improves on BA in the sense that it enables a higher average clustering to be attained if desired.

It seems possible to have a disconnected graph with this algorithm since the initial m nodes may not be all linked to a new node on the first iteration like the BA model.

References

[R402]

6.5.13 duplication_divergence_graph

duplication_divergence_graph (n, p, seed=None)

Returns an undirected graph using the duplication-divergence model.

A graph of n nodes is created by duplicating the initial nodes and retaining edges incident to the original nodes with a retention probability p.

Parameters n: int

The desired number of nodes in the graph.

p: float

The probability for retaining the edge of the replicated node.

seed: int, optional

A seed for the random number generator of random (default=None).

Returns G: Graph

Raises NetworkXError

If p is not a valid probability. If n is less than 2.

References

[R395]

6.5.14 random_lobster

```
random_lobster (n, p1, p2, seed=None)
```

Returns a random lobster graph.

A lobster is a tree that reduces to a caterpillar when pruning all leaf nodes. A caterpillar is a tree that reduces to a path graph when pruning all leaf nodes; setting p2 to zero produces a caterillar.

Parameters n: int

The expected number of nodes in the backbone

p1: float

Probability of adding an edge to the backbone

p2: float

Probability of adding an edge one level beyond backbone

seed: int, optional

Seed for random number generator (default=None).

6.5.15 random shell graph

```
random shell graph(constructor, seed=None)
```

Returns a random shell graph for the constructor given.

Parameters constructor: list of three-tuples

Represents the parameters for a shell, starting at the center shell. Each element of the list must be of the form (n, m, d), where n is the number of nodes in the shell, m is the number of edges in the shell, and d is the ratio of inter-shell (next) edges to intrashell edges. If d is zero, there will be no intra-shell edges, and if d is one there will be all possible intra-shell edges.

seed: int, optional

Seed for random number generator (default=None).

Examples

```
>>> constructor = [(10, 20, 0.8), (20, 40, 0.8)]
>>> G = nx.random_shell_graph(constructor)
```

6.5.16 random_powerlaw_tree

random_powerlaw_tree (n, gamma=3, seed=None, tries=100)

Returns a tree with a power law degree distribution.

Parameters n: int

The number of nodes.

gamma: float

Exponent of the power law.

seed: int, optional

Seed for random number generator (default=None).

tries: int

Number of attempts to adjust the sequence to make it a tree.

Raises NetworkXError

If no valid sequence is found within the maximum number of attempts.

Notes

A trial power law degree sequence is chosen and then elements are swapped with new elements from a powerlaw distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes).

6.5.17 random powerlaw tree sequence

random_powerlaw_tree_sequence (n, gamma=3, seed=None, tries=100)

Returns a degree sequence for a tree with a power law distribution.

Parameters n: int,

The number of nodes.

gamma: float

Exponent of the power law.

seed: int, optional

Seed for random number generator (default=None).

tries: int

Number of attempts to adjust the sequence to make it a tree.

Raises NetworkXError

If no valid sequence is found within the maximum number of attempts.

Notes

A trial power law degree sequence is chosen and then elements are swapped with new elements from a power law distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes).

6.6 Degree Sequence

Generate graphs with a given degree sequence or expected degree sequence.

<pre>configuration_model(deg_sequence[,])</pre>	Return a random graph with the given degree sequence.
directed_configuration_model([,])	Return a directed_random graph with the given degree sequences.
<pre>expected_degree_graph(w[, seed, selfloops])</pre>	Return a random graph with given expected degrees.
havel_hakimi_graph(deg_sequence[, create_using])	Return a simple graph with given degree sequence constructed using
directed_havel_hakimi_graph(in_deg_sequence,)	Return a directed graph with the given degree sequences.
degree_sequence_tree(deg_sequence[,])	Make a tree for the given degree sequence.
random_degree_sequence_graph(sequence[,])	Return a simple random graph with the given degree sequence.

6.6.1 configuration model

configuration_model (deg_sequence, create_using=None, seed=None)

Return a random graph with the given degree sequence.

The configuration model generates a random pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequence.

Parameters deg_sequence : list of integers

Each list entry corresponds to the degree of a node.

create_using : graph, optional (default MultiGraph)

Return graph of this type. The instance will be cleared.

seed: hashable object, optional

Seed for random number generator.

Returns G: MultiGraph

A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.

Raises NetworkXError

If the degree sequence does not have an even sum.

See also:

is_valid_degree_sequence

Notes

As described by Newman [R366].

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequence does not have an even sum.

This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified.

The density of self-loops and parallel edges tends to decrease as the number of nodes increases. However, typically the number of self-loops will approach a Poisson distribution with a nonzero mean, and similarly for the number of parallel edges. Consider a node with k stubs. The probability of being joined to another stub of the same node is basically (k-1)/N where k is the degree and N is the number of nodes. So the probability of a self-loop scales like c/N for some constant c. As N grows, this means we expect c self-loops. Similarly for parallel edges.

References

[R366]

Examples

```
>>> from networkx.utils import powerlaw_sequence
>>> z=nx.utils.create_degree_sequence(100,powerlaw_sequence)
>>> G=nx.configuration_model(z)

To remove parallel edges:
>>> G=nx.Graph(G)

To remove self loops:
>>> G.remove_edges_from(G.selfloop_edges())
```

6.6.2 directed configuration model

Return a directed_random graph with the given degree sequences.

The configuration model generates a random directed pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequences.

Parameters in_degree_sequence : list of integers

Each list entry corresponds to the in-degree of a node.

out_degree_sequence : list of integers

Each list entry corresponds to the out-degree of a node.

create_using : graph, optional (default MultiDiGraph)

Return graph of this type. The instance will be cleared.

seed: hashable object, optional

Seed for random number generator.

Returns G: MultiDiGraph

A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.

Raises NetworkXError

If the degree sequences do not have the same sum.

See also:

configuration_model

Notes

Algorithm as described by Newman [R367].

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequences does not have the same sum.

This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases.

References

[R367]

Examples

```
>>> D=nx.DiGraph([(0,1),(1,2),(2,3)]) # directed path graph
>>> din=list(D.in_degree().values())
>>> dout=list(D.out_degree().values())
>>> din.append(1)
>>> dout[0]=2
>>> D=nx.directed_configuration_model(din,dout)

To remove parallel edges:
>>> D=nx.DiGraph(D)

To remove self loops:
>>> D.remove_edges_from(D.selfloop_edges())
```

6.6.3 expected degree graph

expected_degree_graph (w, seed=None, selfloops=True)

Return a random graph with given expected degrees.

Given a sequence of expected degrees $W=(w_0,w_1,\ldots,w_{n-1})$ of length n this algorithm assigns an edge between node u and node v with probability

$$p_{uv} = \frac{w_u w_v}{\sum_k w_k}.$$

Parameters w: list

The list of expected degrees.

selfloops: bool (default=True)

Set to False to remove the possibility of self-loop edges.

seed: hashable object, optional

The seed for the random number generator.

Returns Graph

Notes

The nodes have integer labels corresponding to index of expected degrees input sequence.

The complexity of this algorithm is O(n+m) where n is the number of nodes and m is the expected number of edges.

The model in [R369] includes the possibility of self-loop edges. Set selfloops=False to produce a graph without self loops.

For finite graphs this model doesn't produce exactly the given expected degree sequence. Instead the expected degrees are as follows.

For the case without self loops (selfloops=False),

$$E[deg(u)] = \sum_{v \neq u} p_{uv} = w_u \left(1 - \frac{w_u}{\sum_k w_k} \right).$$

NetworkX uses the standard convention that a self-loop edge counts 2 in the degree of a node, so with self loops (selfloops=True),

$$E[deg(u)] = \sum_{v \neq u} p_{uv} + 2p_{uu} = w_u \left(1 + \frac{w_u}{\sum_k w_k}\right).$$

References

[R369], [R370]

Examples

```
>>> z=[10 for i in range(100)]
>>> G=nx.expected_degree_graph(z)
```

6.6.4 havel hakimi graph

havel_hakimi_graph (deg_sequence, create_using=None)

Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm.

Parameters deg_sequence: list of integers

Each integer corresponds to the degree of a node (need not be sorted).

create_using : graph, optional (default Graph)

Return graph of this type. The instance will be cleared. Directed graphs are not allowed.

Raises NetworkXException

For a non-graphical degree sequence (i.e. one not realizable by some simple graph).

Notes

The Havel-Hakimi algorithm constructs a simple graph by successively connecting the node of highest degree to other nodes of highest degree, resorting remaining nodes by degree, and repeating the process. The resulting

graph has a high degree-associativity. Nodes are labeled 1,.., len(deg_sequence), corresponding to their position in deg_sequence.

The basic algorithm is from Hakimi [R371] and was generalized by Kleitman and Wang [R372].

References

[R371], [R372]

6.6.5 directed havel hakimi graph

directed_havel_hakimi_graph (*in_deg_sequence*, *out_deg_sequence*, *create_using=None*)

Return a directed graph with the given degree sequences.

Parameters in_deg_sequence : list of integers

Each list entry corresponds to the in-degree of a node.

out_deg_sequence : list of integers

Each list entry corresponds to the out-degree of a node.

create_using : graph, optional (default DiGraph)

Return graph of this type. The instance will be cleared.

Returns G: DiGraph

A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence

Raises NetworkXError

If the degree sequences are not digraphical.

See also:

```
configuration model
```

Notes

Algorithm as described by Kleitman and Wang [R368].

References

[R368]

6.6.6 degree sequence tree

degree_sequence_tree (deg_sequence, create_using=None)

Make a tree for the given degree sequence.

A tree has #nodes-#edges=1 so the degree sequence must have len(deg_sequence)-sum(deg_sequence)/2=1

6.6.7 random degree sequence graph

random_degree_sequence_graph (sequence, seed=None, tries=10)

Return a simple random graph with the given degree sequence.

If the maximum degree d_m in the sequence is $O(m^{1/4})$ then the algorithm produces almost uniform random graphs in $O(md_m)$ time where m is the number of edges.

Parameters sequence: list of integers

Sequence of degrees

seed: hashable object, optional

Seed for random number generator

tries: int, optional

Maximum number of tries to create a graph

Returns G: Graph

A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in the sequence.

Raises NetworkXUnfeasible

If the degree sequence is not graphical.

NetworkXError

If a graph is not produced in specified number of tries

See also:

```
is_valid_degree_sequence, configuration_model
```

Notes

The generator algorithm [R373] is not guaranteed to produce a graph.

References

[R373]

Examples

```
>>> sequence = [1, 2, 2, 3]
>>> G = nx.random_degree_sequence_graph(sequence)
>>> sorted(G.degree().values())
[1, 2, 2, 3]
```

6.7 Random Clustered

Generate graphs with given degree and triangle sequence.

random_clustered_graph(joint_degree_sequence) Generate a random graph with the given joint independent edge degree ar

6.7.1 random_clustered_graph

random_clustered_graph (joint_degree_sequence, create_using=None, seed=None)

Generate a random graph with the given joint independent edge degree and triangle degree sequence.

This uses a configuration model-like approach to generate a random graph (with parallel edges and self-loops) by randomly assigning edges to match the given joint degree sequence.

The joint degree sequence is a list of pairs of integers of the form $[(d_{1,i}, d_{1,t}), \dots, (d_{n,i}, d_{n,t})]$. According to this list, vertex u is a member of $d_{u,t}$ triangles and has $d_{u,i}$ other edges. The number $d_{u,t}$ is the *triangle degree* of u and the number $d_{u,i}$ is the *independent edge degree*.

Parameters joint_degree_sequence : list of integer pairs

Each list entry corresponds to the independent edge degree and triangle degree of a node.

create_using : graph, optional (default MultiGraph)

Return graph of this type. The instance will be cleared.

seed: hashable object, optional

The seed for the random number generator.

Returns G: MultiGraph

A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.

Raises NetworkXError

If the independent edge degree sequence sum is not even or the triangle degree sequence sum is not divisible by 3.

Notes

As described by Miller [R389] (see also Newman [R390] for an equivalent description).

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the independent degree sequence does not have an even sum or the triangle degree sequence sum is not divisible by 3.

This configuration model-like construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases.

References

[R389], [R390]

Examples

```
>>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
>>> G = nx.random_clustered_graph(deg)

To remove parallel edges:
>>> G = nx.Graph(G)

To remove self loops:
>>> G.remove_edges_from(G.selfloop_edges())
```

6.8 Directed

Generators for some directed graphs, including growing network (GN) graphs and scale-free graphs.

_		
	<pre>gn_graph(n[, kernel, create_using, seed])</pre>	Return the growing network (GN) digraph with n nodes.
	<pre>gnr_graph(n, p[, create_using, seed])</pre>	Return the growing network with redirection (GNR) digraph with n nodes and
	gnc_graph(n[, create_using, seed])	Return the growing network with copying (GNC) digraph with n nodes.
	<pre>scale_free_graph(n[, alpha, beta, gamma,])</pre>	Returns a scale-free directed graph.

6.8.1 gn_graph

 $\verb"gn_graph" (n, kernel=None, create_using=None, seed=None)$

Return the growing network (GN) digraph with n nodes.

The GN graph is built by adding nodes one at a time with a link to one previously added node. The target node for the link is chosen with probability based on degree. The default attachment kernel is a linear function of the degree of a node.

The graph is always a (directed) tree.

Parameters n: int

The number of nodes for the generated graph.

kernel: function

The attachment kernel.

create_using : graph, optional (default DiGraph)

Return graph of this type. The instance will be cleared.

seed: hashable object, optional

The seed for the random number generator.

References

[R374]

6.8. Directed 411

Examples

To create the undirected GN graph, use the to_directed() method:

```
>>> D = nx.gn_graph(10)  # the GN graph
>>> G = D.to_undirected()  # the undirected version
```

To specify an attachment kernel, use the kernel keyword argument:

```
>>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5) # A_k = k^1.5
```

6.8.2 gnr_graph

```
gnr_graph (n, p, create_using=None, seed=None)
```

Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p.

The GNR graph is built by adding nodes one at a time with a link to one previously added node. The previous target node is chosen uniformly at random. With probability p the link is instead "redirected" to the successor node of the target.

The graph is always a (directed) tree.

Parameters n: int

The number of nodes for the generated graph.

p: float

The redirection probability.

create_using : graph, optional (default DiGraph)

Return graph of this type. The instance will be cleared.

seed: hashable object, optional

The seed for the random number generator.

References

[R376]

Examples

To create the undirected GNR graph, use the to_directed() method:

```
>>> D = nx.gnr_graph(10, 0.5) # the GNR graph
>>> G = D.to_undirected() # the undirected version
```

6.8.3 gnc graph

```
gnc_graph (n, create_using=None, seed=None)
```

Return the growing network with copying (GNC) digraph with n nodes.

The GNC graph is built by adding nodes one at a time with a link to one previously added node (chosen uniformly at random) and to all of that node's successors.

Parameters n: int

The number of nodes for the generated graph.

create_using : graph, optional (default DiGraph)

Return graph of this type. The instance will be cleared.

seed: hashable object, optional

The seed for the random number generator.

References

[R375]

6.8.4 scale free graph

```
scale_free_graph (n, alpha=0.41, beta=0.54, gamma=0.05, delta_in=0.2, delta_out=0, cre-ate_using=None, seed=None)

Returns a scale-free directed graph.
```

Parameters n: integer

Number of nodes in graph

alpha: float

Probability for adding a new node connected to an existing node chosen randomly according to the in-degree distribution.

beta: float

Probability for adding an edge between two existing nodes. One existing node is chosen randomly according the in-degree distribution and the other chosen randomly according to the out-degree distribution.

gamma: float

Probability for adding a new node conecgted to an existing node chosen randomly according to the out-degree distribution.

delta_in: float

Bias for choosing ndoes from in-degree distribution.

delta_out: float

Bias for choosing ndoes from out-degree distribution.

create_using : graph, optional (default MultiDiGraph)

Use this graph instance to start the process (default=3-cycle).

seed: integer, optional

Seed for random number generator

Notes

The sum of alpha, beta, and gamma must be 1.

6.8. Directed 413

References

[R377]

Examples

Create a scale-free graph on one hundred nodes:

```
>>> G = nx.scale_free_graph(100)
```

6.9 Geometric

Generators for geometric graphs.

random_geometric_graph(n, radius[, dim, pos])	Returns a random geometric graph in the unit cube.
<pre>geographical_threshold_graph(n, theta[,])</pre>	Returns a geographical threshold graph.
<pre>waxman_graph(n[, alpha, beta, L, domain])</pre>	Return a Waxman random graph.
$navigable_small_world_graph(n[, p, q, r,])$	Return a navigable small-world graph.

6.9.1 random geometric graph

random_geometric_graph (n, radius, dim=2, pos=None)

Returns a random geometric graph in the unit cube.

The random geometric graph model places n nodes uniformly at random in the unit cube. Two nodes are joined by an edge if the Euclidean distance between the nodes is at most radius.

Parameters n: int

Number of nodes

radius: float

Distance threshold value

dim: int, optional

Dimension of graph

pos: dict, optional

A dictionary keyed by node with node positions as values.

Returns Graph

Notes

This algorithm currently only supports Euclidean distance.

This uses an $O(n^2)$ algorithm to build the graph. A faster algorithm is possible using k-d trees.

The pos keyword argument can be used to specify node positions so you can create an arbitrary distribution and domain for positions.

For example, to use a 2D Gaussian distribution of node positions with mean (0, 0) and standard deviation 2:

```
>>> import random
>>> n = 20
>>> p = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> G = nx.random_geometric_graph(n, 0.2, pos=p)
```

References

[R383]

Examples

Create a random geometric graph on twenty nodes where nodes are joined by an edge if their distance is at most 0.1:

```
>>> G = nx.random_geometric_graph(20, 0.1)
```

6.9.2 geographical threshold graph

geographical_threshold_graph (*n*, theta, alpha=2, dim=2, pos=None, weight=None) Returns a geographical threshold graph.

The geographical threshold graph model places n nodes uniformly at random in a rectangular domain. Each node u is assigned a weight w_u . Two nodes u and v are joined by an edge if

$$w_u + w_v \ge \theta r^{\alpha}$$

where r is the Euclidean distance between u and v, and θ , α are parameters.

```
Parameters n: int
```

Number of nodes

theta: float

Threshold value

alpha: float, optional

Exponent of distance function

dim: int, optional

Dimension of graph

pos: dict

Node positions as a dictionary of tuples keyed by node.

weight: dict

Node weights as a dictionary of numbers keyed by node.

Returns Graph

6.9. Geometric 415

Notes

If weights are not specified they are assigned to nodes by drawing randomly from the exponential distribution with rate parameter $\lambda = 1$. To specify weights from a different distribution, use the weight keyword argument:

```
>>> import random
>>> n = 20
>>> w = {i: random.expovariate(5.0) for i in range(n)}
>>> G = nx.geographical_threshold_graph(20, 50, weight=w)
```

If node positions are not specified they are randomly assigned from the uniform distribution.

References

```
[R379], [R380]
```

Examples

```
>>> G = nx.geographical_threshold_graph(20, 50)
```

6.9.3 waxman graph

```
\mathbf{waxman\_graph} \; (n, alpha=0.4, beta=0.1, L=None, domain=(0, 0, 1, 1))
```

Return a Waxman random graph.

The Waxman random graph model places n nodes uniformly at random in a rectangular domain. Each pair of nodes at Euclidean distance d is joined by an edge with probability

$$p = \alpha \exp(-d/\beta L)$$
.

This function implements both Waxman models, using the L keyword argument.

- •Waxman-1: if L is not specified, it is set to be the maximum distance between any pair of nodes.
- •Waxman-2: if L is specified, the distance between a pair of nodes is chosen uniformly at random from the interval [0, L].

Parameters n: int

Number of nodes

alpha: float

Model parameter

beta: float

Model parameter

L: float, optional

Maximum distance between nodes. If not specified, the actual distance is calculated.

domain: four-tuple of numbers, optional

Domain size, given as a tuple of the form $(x_m in, y_m in, x_m ax, y_m ax)$.

Returns G: Graph

References

[R384]

6.9.4 navigable small world graph

```
navigable\_small\_world\_graph (n, p=1, q=1, r=2, dim=2, seed=None)
```

Return a navigable small-world graph.

A navigable small-world graph is a directed grid with additional long-range connections that are chosen randomly.

[...] we begin with a set of nodes [...] that are identified with the set of lattice points in an nimesn square, $\{(i,j):i\in\{1,2,\ldots,n\},j\in\{1,2,\ldots,n\}\}$, and we define the lattice distance between two nodes (i,j) and (k,l) to be the number of "lattice steps" separating them: d((i,j),(k,l))=|k-i|+|l-j|. For a universal constant $p\geq 1$, the node u has a directed edge to every other node within lattice distance p— these are its local contacts. For universal constants $q\geq 0$ and $r\geq 0$ we also construct directed edges from u to q other nodes (the long-range contacts) using independent random trials; the i-thdirectededge f-rom u has endpoint v with probability proportional to $[d(u,v)]^{-r}$.

—[R381]

Parameters n: int

The number of nodes.

p: int

The diameter of short range connections. Each node is joined with every other node within this lattice distance.

 $\mathbf{q}: int$

The number of long-range connections for each node.

r: float

Exponent for decaying probability of connections. The probability of connecting to a node at lattice distance d is $1/d^r$.

dim: int

Dimension of grid

seed: int, optional

Seed for random number generator (default=None).

References

[R381]

6.10 Line Graph

Functions for generating line graphs.

6.10. Line Graph 417

line_graph(G[, create_using]) Returns the line graph of the graph or digraph G.

6.10.1 line_graph

line_graph(G, create_using=None)

Returns the line graph of the graph or digraph G.

The line graph of a graph G has a node for each edge in G and an edge joining those nodes if the two edges in G share a common node. For directed graphs, nodes are adjacent exactly when the edges they represent form a directed path of length two.

The nodes of the line graph are 2-tuples of nodes in the original graph (or 3-tuples for multigraphs, with the key of the edge as the third element).

For information about self-loops and more discussion, see the **Notes** section below.

Parameters G: graph

A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph.

Returns L: graph

The line graph of G.

Notes

Graph, node, and edge data are not propagated to the new graph. For undirected graphs, the nodes in G must be sortable, otherwise the constructed line graph may not be correct.

Self-loops in undirected graphs

For an undirected graph G without multiple edges, each edge can be written as a set $\{u,v\}$. Its line graph L has the edges of G as its nodes. If x and y are two nodes in L, then $\{x,y\}$ is an edge in L if and only if the intersection of x and y is nonempty. Thus, the set of all edges is determined by the set of all pairwise intersections of edges in G.

Trivially, every edge in G would have a nonzero intersection with itself, and so every node in L should have a self-loop. This is not so interesting, and the original context of line graphs was with simple graphs, which had no self-loops or multiple edges. The line graph was also meant to be a simple graph and thus, self-loops in L are not part of the standard definition of a line graph. In a pairwise intersection matrix, this is analogous to excluding the diagonal entries from the line graph definition.

Self-loops and multiple edges in G add nodes to L in a natural way, and do not require any fundamental changes to the definition. It might be argued that the self-loops we excluded before should now be included. However, the self-loops are still "trivial" in some sense and thus, are usually excluded.

Self-loops in directed graphs

For a directed graph G without multiple edges, each edge can be written as a tuple (u,v). Its line graph L has the edges of G as its nodes. If x and y are two nodes in L, then (x,y) is an edge in L if and only if the tail of x matches the head of y, for example, if x=(a,b) and y=(b,c) for some vertices a, b, and c in G.

Due to the directed nature of the edges, it is no longer the case that every edge in G should have a self-loop in G. Now, the only time self-loops arise is if a node in G itself has a self-loop. So such self-loops are no longer "trivial" but instead, represent essential features of the topology of G. For this reason, the historical development of line digraphs is such that self-loops are included. When the graph G has multiple edges, once again only superficial changes are required to the definition.

References

- •Harary, Frank, and Norman, Robert Z., "Some properties of line digraphs", Rend. Circ. Mat. Palermo, II. Ser. 9 (1960), 161–168.
- •Hemminger, R. L.; Beineke, L. W. (1978), "Line graphs and line digraphs", in Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory, Academic Press Inc., pp. 271–305.

Examples

```
>>> import networkx as nx
>>> G = nx.star_graph(3)
>>> L = nx.line_graph(G)
>>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3
[[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]]
```

6.11 Ego Graph

Ego graph.

ego_graph(G, n[, radius, center, ...]) Returns induced subgraph of neighbors centered at node n within a given radius.

6.11.1 ego graph

ego_graph (G, n, radius=1, center=True, undirected=False, distance=None) Returns induced subgraph of neighbors centered at node n within a given radius.

Parameters G: graph

A NetworkX Graph or DiGraph

n: node

A single node

radius: number, optional

Include all neighbors of distance<=radius from n.

center: bool, optional

If False, do not include center node in graph

undirected: bool, optional

If True use both in- and out-neighbors of directed graphs.

distance: key, optional

Use specified edge data key as distance. For example, setting distance='weight' will use the edge weight to measure the distance from the node n.

6.11. Ego Graph 419

Notes

For directed graphs D this produces the "out" neighborhood or successors. If you want the neighborhood of predecessors first reverse the graph with D.reverse(). If you want both directions use the keyword argument undirected=True.

Node, edge, and graph attributes are copied to the returned subgraph.

6.12 Stochastic

Functions for generating stochastic graphs from a given weighted directed graph.

stochastic_graph(G[, copy, weight]) Returns a right-stochastic representation of the directed graph G.

6.12.1 stochastic_graph

stochastic_graph(G, copy=True, weight='weight')

Returns a right-stochastic representation of the directed graph G.

A right-stochastic graph is a weighted digraph in which for each node, the sum of the weights of all the outedges of that node is 1. If the graph is already weighted (for example, via a 'weight' edge attribute), the reweighting takes that into account.

Parameters G: directed graph

A NetworkX DiGraph

copy: boolean, optional

If this is True, then this function returns a new instance of networkx.Digraph. Otherwise, the original graph is modified in-place (and also returned, for convenience).

weight : edge attribute key (optional, default='weight')

Edge attribute key used for reading the existing weight and setting the new weight. If no attribute with this key is found for an edge, then the edge weight is assumed to be 1. If an edge has a weight, it must be a positive number.

6.13 Intersection

Generators for random intersection graphs.

uniform_random_intersection_graph $(n, m, p[,])$	Return a uniform random intersection graph.
$k_{random_intersection_graph(n, m, k)}$	Return a intersection graph with randomly chosen attribute sets for e
<pre>general_random_intersection_graph(n, m, p)</pre>	Return a random intersection graph with independent probabilities f

6.13.1 uniform random intersection graph

uniform_random_intersection_graph (n, m, p, seed=None)

Return a uniform random intersection graph.

Parameters n: int

```
The number of nodes in the first bipartite set (nodes)
```

m: int

The number of nodes in the second bipartite set (attributes)

p: float

Probability of connecting nodes between bipartite sets

seed: int, optional

Seed for random number generator (default=None).

See also:

```
gnp_random_graph
```

References

[R387], [R388]

6.13.2 k random intersection graph

$k_random_intersection_graph(n, m, k)$

Return a intersection graph with randomly chosen attribute sets for each node that are of equal size (k).

Parameters n: int

The number of nodes in the first bipartite set (nodes)

 \mathbf{m} : int

The number of nodes in the second bipartite set (attributes)

k: float

Size of attribute set to assign to each node.

seed: int, optional

Seed for random number generator (default=None).

See also:

```
gnp_random_graph, uniform_random_intersection_graph
```

References

[R386]

6.13.3 general random intersection graph

```
{\tt general\_random\_intersection\_graph}\ (n,m,p)
```

Return a random intersection graph with independent probabilities for connections between node and attribute sets.

Parameters n: int

The number of nodes in the first bipartite set (nodes)

6.13. Intersection 421

m: int

The number of nodes in the second bipartite set (attributes)

p: list of floats of length m

Probabilities for connecting nodes to each attribute

seed: int, optional

Seed for random number generator (default=None).

See also:

```
gnp_random_graph, uniform_random_intersection_graph
```

References

[R385]

6.14 Social Networks

Famous social networks.

karate_club_graph()	Return Zachary's Karate Club graph.
davis_southern_women_graph()	Return Davis Southern women social network.
florentine_families_graph()	Return Florentine families graph.

6.14.1 karate_club_graph

karate_club_graph()

Return Zachary's Karate Club graph.

Each node in the returned graph has a node attribute 'club' that indicates the name of the club to which the member represented by that node belongs, either 'Mr. Hi' or 'Officer'.

References

[R408], [R409]

Examples

To get the name of the club to which a node belongs:

```
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> G.node[5]['club']
'Mr. Hi'
>>> G.node[9]['club']
'Officer'
```

6.14.2 davis_southern_women_graph

davis_southern_women_graph()

Return Davis Southern women social network.

This is a bipartite graph.

References

[R406]

6.14.3 florentine_families_graph

florentine_families_graph()

Return Florentine families graph.

References

[R407]

6.15 Community

Generators for classes of graphs used in studying social networks.

$ ext{caveman_graph}(l,k)$	Returns a caveman graph of 1 cliques of size k.
$ ext{connected_caveman_graph}(l,k)$	Returns a connected caveman graph of 1 cliques of size k.
relaxed_caveman_graph(l, k, p[, seed])	Return a relaxed caveman graph.
<pre>random_partition_graph(sizes, p_in, p_out[,])</pre>	Return the random partition graph with a partition of sizes.
<pre>planted_partition_graph(l, k, p_in, p_out[,])</pre>	Return the planted l-partition graph.
<pre>gaussian_random_partition_graph(n, s, v,)</pre>	Generate a Gaussian random partition graph.

6.15.1 caveman_graph

$caveman_graph(l, k)$

Returns a caveman graph of 1 cliques of size k.

Parameters 1: int

Number of cliques

 \mathbf{k} : int

Size of cliques

Returns G: NetworkX Graph

caveman graph

See also:

 ${\tt connected_caveman_graph}$

6.15. Community 423

Notes

This returns an undirected graph, it can be converted to a directed graph using $nx.to_directed()$, or a multigraph using $nx.MultiGraph(nx.caveman_graph(l, k))$. Only the undirected version is described in [R359] and it is unclear which of the directed generalizations is most useful.

References

[R359]

Examples

```
\rightarrow \rightarrow G = nx.caveman_graph(3, 3)
```

6.15.2 connected caveman graph

$connected_caveman_graph(l, k)$

Returns a connected caveman graph of 1 cliques of size k.

The connected caveman graph is formed by creating n cliques of size k, then a single edge in each clique is rewired to a node in an adjacent clique.

```
Parameters 1: int
```

number of cliques

 $\mathbf{k}: int$

size of cliques

Returns G: NetworkX Graph

connected caveman graph

Notes

This returns an undirected graph, it can be converted to a directed graph using $nx.to_directed()$, or a multigraph using $nx.MultiGraph(nx.caveman_graph(l, k))$. Only the undirected version is described in [R360] and it is unclear which of the directed generalizations is most useful.

References

[R360]

Examples

```
>>> G = nx.connected_caveman_graph(3, 3)
```

6.15.3 relaxed caveman graph

```
relaxed\_caveman\_graph(l, k, p, seed=None)
```

Return a relaxed caveman graph.

A relaxed caveman graph starts with 1 cliques of size k. Edges are then randomly rewired with probability p to link different cliques.

```
Parameters 1: int
```

Number of groups

k: int

Size of cliques

p: float

Probabilty of rewiring each edge.

seed: int,optional

Seed for random number generator(default=None)

Returns G: NetworkX Graph

Relaxed Caveman Graph

Raises NetworkXError:

If p is not in [0,1]

References

[R365]

Examples

```
>>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42)
```

6.15.4 random_partition_graph

random_partition_graph (sizes, p_in, p_out, seed=None, directed=False)

Return the random partition graph with a partition of sizes.

A partition graph is a graph of communities with sizes defined by s in sizes. Nodes in the same group are connected with probability p_in and nodes of different groups are connected with probability p_out.

Parameters sizes: list of ints

Sizes of groups

p_in: float

probability of edges with in groups

p_out: float

probability of edges between groups **directed**: boolean optional, default=False

6.15. Community 425

Whether to create a directed graph

seed: int optional, default None

A seed for the random number generator

Returns G: NetworkX Graph or DiGraph

random partition graph of size sum(gs)

Raises NetworkXError

If p_in or p_out is not in [0,1]

Notes

This is a generalization of the planted-l-partition described in [R364]. It allows for the creation of groups of any size.

The partition is store as a graph attribute 'partition'.

References

[R364]

Examples

```
>>> G = nx.random_partition_graph([10,10,10],.25,.01)
>>> len(G)
30
>>> partition = G.graph['partition']
>>> len(partition)
3
```

6.15.5 planted partition graph

```
planted_partition_graph (l, k, p_in, p_out, seed=None, directed=False) Return the planted l-partition graph.
```

This model partitions a graph with n=1*k vertices in 1 groups with k vertices each. Vertices of the same group are linked with a probability p in, and vertices of different groups are linked with probability p out.

```
Parameters 1: int
```

```
Number of groups
```

k: int

Number of vertices in each group

p_in: float

probability of connecting vertices within a group

p_out: float

probability of connected vertices between groups

seed: int,optional

```
Seed for random number generator(default=None)
```

directed: bool,optional (default=False)

If True return a directed graph

Returns G: NetworkX Graph or DiGraph

planted 1-partition graph

Raises NetworkXError:

If p_in,p_out are not in [0,1] or

See also:

random_partition_model

References

[R362], [R363]

Examples

```
>>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1, seed=42)
```

6.15.6 gaussian random partition graph

gaussian_random_partition_graph (n, s, v, p_in, p_out, directed=False, seed=None)

Generate a Gaussian random partition graph.

A Gaussian random partition graph is created by creating k partitions each with a size drawn from a normal distribution with mean s and variance s/v. Nodes are connected within clusters with probability p_in and between clusters with probability p_out[1]

Parameters n: int

Number of nodes in the graph

s: float

Mean cluster size

 \mathbf{v} : float

Shape parameter. The variance of cluster size distribution is s/v.

p_in: float

Probabilty of intra cluster connection.

p_out: float

Probability of inter cluster connection.

directed: boolean, optional default=False

Whether to create a directed graph or not

seed: int

Seed value for random number generator

6.15. Community 427

Returns G : NetworkX Graph or DiGraph

gaussian random partition graph

Raises NetworkXError

If s is > n If p_in or p_out is not in [0,1]

See also:

```
random_partition_graph
```

Notes

Note the number of partitions is dependent on s,v and n, and that the last partition may be considerably smaller, as it is sized to simply fill out the nodes [1]

References

[R361]

Examples

```
>>> G = nx.gaussian_random_partition_graph(100,10,10,.25,.1)
>>> len(G)
100
```

6.16 Non Isomorphic Trees

Implementation of the Wright, Richmond, Odlyzko and McKay (WROM) algorithm for the enumeration of all non-isomorphic free trees of a given order. Rooted trees are represented by level sequences, i.e., lists in which the i-th element specifies the distance of vertex i to the root.

<pre>nonisomorphic_trees(order[, create])</pre>	Returns a list of nonisomporphic trees
<pre>number_of_nonisomorphic_trees(order)</pre>	Returns the number of nonisomorphic trees

6.16.1 nonisomorphic trees

```
nonisomorphic_trees (order, create='graph')
```

Returns a list of nonisomporphic trees

Parameters order: int

order of the desired tree(s)

create : graph or matrix (default="Graph)

If graph is selected a list of trees will be returned, if matrix is selected a list of adjancency matrix will be returned

Returns G: List of NetworkX Graphs

M: List of Adjacency matrices

6.16.2 number_of_nonisomorphic_trees

${\tt number_of_nonisomorphic_trees}\ (order)$

Returns the number of nonisomorphic trees

Parameters order: int

order of the desired tree(s)

Returns length: Number of nonisomorphic graphs for the given order

LINEAR ALGEBRA

7.1 Graph Matrix

Adjacency matrix and incidence matrix of graphs.

adjacency_matrix(G[, nodelist, weight])	Return adjacency matrix of G.
<pre>incidence_matrix(G[, nodelist, edgelist,])</pre>	Return incidence matrix of G.

7.1.1 adjacency_matrix

 $\verb"adjacency_matrix" (G, nodelist=None, weight='weight')$

Return adjacency matrix of G.

Parameters G: graph

A NetworkX graph

nodelist: list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

weight : string or None, optional (default='weight')

The edge data key used to provide each value in the matrix. If None, then each edge has weight 1.

Returns A : SciPy sparse matrix

Adjacency matrix representation of G.

See also:

```
to_numpy_matrix, to_scipy_sparse_matrix, to_dict_of_dicts
```

Notes

For directed graphs, entry i,j corresponds to an edge from i to j.

If you want a pure Python adjacency matrix representation try networkx.convert.to_dict_of_dicts which will return a dictionary-of-dictionaries format that can be addressed as a sparse matrix.

For MultiGraph/MultiDiGraph with parallel edges the weights are summed. See to_numpy_matrix for other options.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the edge weight attribute (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows:

```
>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.adjacency_matrix(G)
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]
```

7.1.2 incidence_matrix

incidence_matrix (G, nodelist=None, edgelist=None, oriented=False, weight=None)
Return incidence matrix of G.

The incidence matrix assigns each row to a node and each column to an edge. For a standard incidence matrix a 1 appears wherever a row's node is incident on the column's edge. For an oriented incidence matrix each edge is assigned an orientation (arbitrarily for undirected and aligning to direction for directed). A -1 appears for the tail of an edge and 1 for the head of the edge. The elements are zero otherwise.

Parameters G: graph

A NetworkX graph

nodelist: list, optional (default= all nodes in G)

The rows are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

edgelist: list, optional (default= all edges in G)

The columns are ordered according to the edges in edgelist. If edgelist is None, then the ordering is produced by G.edges().

oriented: bool, optional (default=False)

If True, matrix elements are +1 or -1 for the head or tail node respectively of each edge. If False, +1 occurs at both nodes.

weight : string or None, optional (default=None)

The edge data key used to provide each value in the matrix. If None, then each edge has weight 1. Edge weights, if used, should be positive so that the orientation can provide the sign.

Returns A : SciPy sparse matrix

The incidence matrix of G.

Notes

For MultiGraph/MultiDiGraph, the edges in edgelist should be (u,v,key) 3-tuples.

"Networks are the best discrete model for so many problems in applied mathematics" [R410].

References

[R410]

7.2 Laplacian Matrix

Laplacian matrix of graphs.

laplacian_matrix(G[, nodelist, weight])	Return the Laplacian matrix of G.
normalized_laplacian_matrix(G[, nodelist,])	Return the normalized Laplacian matrix of G.
directed_laplacian_matrix(G[, nodelist,])	Return the directed Laplacian matrix of G.

7.2.1 laplacian_matrix

laplacian_matrix (G, nodelist=None, weight='weight')

Return the Laplacian matrix of G.

The graph Laplacian is the matrix L = D - A, where A is the adjacency matrix and D is the diagonal matrix of node degrees.

Parameters G: graph

A NetworkX graph

nodelist: list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

weight: string or None, optional (default='weight')

The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns L : SciPy sparse matrix

The Laplacian matrix of G.

See also:

to_numpy_matrix, normalized_laplacian_matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.

7.2.2 normalized_laplacian_matrix

normalized_laplacian_matrix(G, nodelist=None, weight='weight')

Return the normalized Laplacian matrix of G.

The normalized graph Laplacian is the matrix

$$N = D^{-1/2}LD^{-1/2}$$

where L is the graph Laplacian and D is the diagonal matrix of node degrees.

Parameters G: graph

A NetworkX graph

nodelist: list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

weight : string or None, optional (default='weight')

The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns N: NumPy matrix

The normalized Laplacian matrix of G.

See also:

laplacian_matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

If the Graph contains selfloops, D is defined as diag(sum(A,1)), where A is the adjacency matrix [R413].

References

[R412], [R413]

7.2.3 directed laplacian matrix

directed_laplacian_matrix (*G*, nodelist=None, weight='weight', walk_type=None, alpha=0.95)

Return the directed Laplacian matrix of G.

The graph directed Laplacian is the matrix

$$L = I - (\Phi^{1/2}P\Phi^{-1/2} + \Phi^{-1/2}P^T\Phi^{1/2})/2$$

where I is the identity matrix, P is the transition matrix of the graph, and Φ a matrix with the Perron vector of P in the diagonal and zeros elsewhere.

Depending on the value of walk_type, P can be the transition matrix induced by a random walk, a lazy random walk, or a random walk with teleportation (PageRank).

Parameters G: DiGraph

A NetworkX graph

nodelist: list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

weight: string or None, optional (default='weight')

The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

walk_type : string or None, optional (default=None)

If None, P is selected depending on the properties of the graph. Otherwise is one of 'random', 'lazy', or 'pagerank'

alpha: real

(1 - alpha) is the teleportation probability used with pagerank

Returns L: NumPy array

Normalized Laplacian of G.

Raises NetworkXError

If NumPy cannot be imported

NetworkXNotImplemnted

If G is not a DiGraph

See also:

laplacian_matrix

Notes

Only implemented for DiGraphs

References

[R411]

7.3 Spectrum

Eigenvalue spectrum of graphs.

laplacian_spectrum($G[$, weight])	Return eigenvalues of the Laplacian of G
adjacency_spectrum(G[, weight])	Return eigenvalues of the adjacency matrix of G.

7.3.1 laplacian_spectrum

laplacian_spectrum(G, weight='weight')

Return eigenvalues of the Laplacian of G

Parameters G: graph

A NetworkX graph

weight: string or None, optional (default='weight')

The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns evals: NumPy array

Eigenvalues

7.3. Spectrum 435

See also:

laplacian_matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

7.3.2 adjacency_spectrum

```
adjacency_spectrum(G, weight='weight')
```

Return eigenvalues of the adjacency matrix of G.

Parameters G: graph

A NetworkX graph

weight: string or None, optional (default='weight')

The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns evals: NumPy array

Eigenvalues

See also:

adjacency_matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

7.4 Algebraic Connectivity

Algebraic connectivity and Fiedler vectors of undirected graphs.

$algebraic_connectivity(G[,weight,])$	Return the algebraic connectivity of an undirected graph.
fiedler_vector(G[, weight, normalized, tol,])	Return the Fiedler vector of a connected undirected graph.
$spectral_ordering(G[, weight, normalized,])$	Compute the spectral_ordering of a graph.

7.4.1 algebraic_connectivity

algebraic_connectivity (G, weight='weight', normalized=False, tol=1e-08, method='tracemin') Return the algebraic connectivity of an undirected graph.

The algebraic connectivity of a connected undirected graph is the second smallest eigenvalue of its Laplacian matrix.

Parameters G: NetworkX graph

An undirected graph.

weight: object, optional

The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None.

normalized: bool, optional

Whether the normalized Laplacian matrix is used. Default value: False.

tol: float, optional

Tolerance of relative residual in eigenvalue computation. Default value: 1e-8.

method: string, optional

Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'.

The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used.

Value	Solver
'tracemin_pcg'	Preconditioned conjugate gradient method
'tracemin_chol'	Cholesky factorization
'tracemin_lu'	LU factorization

Returns algebraic_connectivity: float

Algebraic connectivity.

Raises NetworkXNotImplemented

If G is directed.

NetworkXError

If G has less than two nodes.

See also:

laplacian_matrix

Notes

Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed.

7.4.2 fiedler_vector

fiedler_vector (*G*, weight='weight', normalized=False, tol=1e-08, method='tracemin')

Return the Fiedler vector of a connected undirected graph.

The Fiedler vector of a connected undirected graph is the eigenvector corresponding to the second smallest eigenvalue of the Laplacian matrix of of the graph.

Parameters G: NetworkX graph

An undirected graph.

weight: object, optional

The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None.

normalized: bool, optional

Whether the normalized Laplacian matrix is used. Default value: False.

tol: float, optional

Tolerance of relative residual in eigenvalue computation. Default value: 1e-8.

method: string, optional

Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'.

The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used.

Value	Solver
'tracemin_pcg'	Preconditioned conjugate gradient method
'tracemin_chol'	Cholesky factorization
'tracemin_lu'	LU factorization

Returns fiedler_vector : NumPy array of floats.

Fiedler vector.

Raises NetworkXNotImplemented

If G is directed.

NetworkXError

If G has less than two nodes or is not connected.

See also:

laplacian matrix

Notes

Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed.

7.4.3 spectral_ordering

 $\begin{tabular}{ll} \textbf{spectral_ordering} (G, weight='weight', normalized=False, tol=1e-08, method='tracemin') \\ \textbf{Compute the spectral_ordering of a graph.} \end{tabular}$

The spectral ordering of a graph is an ordering of its nodes where nodes in the same weakly connected components appear contiguous and ordered by their corresponding elements in the Fiedler vector of the component.

Parameters G: NetworkX graph

A graph.

weight: object, optional

The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None.

normalized: bool, optional

Whether the normalized Laplacian matrix is used. Default value: False.

tol: float, optional

Tolerance of relative residual in eigenvalue computation. Default value: 1e-8.

method: string, optional

Method of eigenvalue computation. It should be one of 'tracemin' (TraceMIN), 'lanczos' (Lanczos iteration) and 'lobpcg' (LOBPCG). Default value: 'tracemin'.

The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used.

Value	Solver
'tracemin_pcg'	Preconditioned conjugate gradient method
'tracemin_chol'	Cholesky factorization
'tracemin_lu'	LU factorization

Returns spectral_ordering: NumPy array of floats.

Spectral ordering of nodes.

Raises NetworkXError

If G is empty.

See also:

laplacian_matrix

Notes

Edge weights are interpreted by their absolute values. For MultiGraph's, weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed.

7.5 Attribute Matrices

Functions for constructing matrix-like objects from graph attributes.

<pre>attr_matrix(G[, edge_attr, node_attr,])</pre>	Returns a NumPy matrix using attributes from G.
attr_sparse_matrix(G[, edge_attr,])	Returns a SciPy sparse matrix using attributes from G.

7.5.1 attr_matrix

 $attr_matrix(G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None, order=None)$

Returns a NumPy matrix using attributes from G.

If only G is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute $node_a ttr$. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge e=(u,v) in G and consider the value of the edge attribute $edge_a ttr$. If ua and va are the values of the node attribute $node_a ttr$ for u and v, respectively, then the value of the edge attribute is added to the matrix element at (ua, va).

Parameters G: graph

7.5. Attribute Matrices 439

The NetworkX graph used to construct the NumPy matrix.

```
edge_attr: str, optional
```

Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matrix. The attribute must be present for all edges in the graph. If no attribute is specified, then we just count the number of edges whose node attributes correspond to the matrix element.

```
node attr: str, optional
```

Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph.

normalized: bool, optional

If True, then each row is normalized by the summation of its values.

```
rc_order: list, optional
```

A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value).

Returns M: NumPy matrix

The attribute matrix.

ordering: list

If rc_order was specified, then only the matrix is returned. However, if rc_order was None, then the ordering used to construct the matrix is returned as well.

Other Parameters dtype: NumPy data-type, optional

A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.

```
order: {'C', 'F'}, optional
```

Whether to store multidimensional data in C- or Fortran-contiguous (row- or columnwise) order in memory. This parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.

Examples

Construct an adjacency matrix:

Alternatively, we can obtain the matrix describing edge thickness.

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:

 $Pr(v \text{ has color } Y \mid u \text{ has color } X)$

For example, the above tells us that for all edges (u,v):

```
Pr(v \text{ is red} \mid u \text{ is red}) = 1/3 Pr(v \text{ is blue} \mid u \text{ is red}) = 2/3
```

 $Pr(v \text{ is red} \mid u \text{ is blue}) = 1 Pr(v \text{ is blue} \mid u \text{ is blue}) = 0$

Finally, we can obtain the total weights listed by the node colors.

Thus, the total weight over all edges (u,v) with u and v having colors:

(red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges (0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is 0 # there are no edges with blue endpoints

7.5.2 attr sparse matrix

Returns a SciPy sparse matrix using attributes from G.

If only G is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute $node_attr$. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge e=(u,v) in G and consider the value of the edge attribute $edge_attr$. If ua and va are the values of the node attribute $node_attr$ for u and v, respectively, then the value of the edge attribute is added to the matrix element at (ua, va).

Parameters G: graph

The NetworkX graph used to construct the NumPy matrix.

```
edge_attr : str, optional
```

Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matrix. The attribute must be present for all edges in the graph. If no attribute is specified, then we just count the number of edges whose node attributes correspond to the matrix element.

node_attr: str, optional

7.5. Attribute Matrices 441

Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph.

normalized: bool, optional

If True, then each row is normalized by the summation of its values.

```
rc order: list, optional
```

A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value).

Returns M : SciPy sparse matrix

The attribute matrix.

ordering: list

If rc_order was specified, then only the matrix is returned. However, if rc_order was None, then the ordering used to construct the matrix is returned as well.

Other Parameters dtype: NumPy data-type, optional

A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.

Examples

Construct an adjacency matrix:

Alternatively, we can obtain the matrix describing edge thickness.

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:

Pr(v has color Y | u has color X)

```
>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> M = nx.attr_sparse_matrix(G, node_attr='color',
```

normalized

For example, the above tells us that for all edges (u,v):

```
Pr(v \text{ is red} \mid u \text{ is red}) = 1/3 Pr(v \text{ is blue} \mid u \text{ is red}) = 2/3
```

 $Pr(v \text{ is red} \mid u \text{ is blue}) = 1 Pr(v \text{ is blue} \mid u \text{ is blue}) = 0$

Finally, we can obtain the total weights listed by the node colors.

Thus, the total weight over all edges (u,v) with u and v having colors:

(red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges (0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is 0 # there are no edges with blue endpoints

node_attr=

7.5. Attribute Matrices 443

CHAPTER

EIGHT

CONVERTING TO AND FROM OTHER DATA FORMATS

8.1 To NetworkX Graph

Functions to convert NetworkX graphs to and from other formats.

The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically.

8.1.1 Examples

Create a graph with a single edge from a dictionary of dictionaries

```
>>> d={0: {1: 1}} # dict-of-dicts single edge (0,1) >>> G=nx.Graph(d)
```

8.1.2 See Also

nx_pygraphviz, nx_pydot

to_networkx_graph(data[, create_using, ...]) Make a NetworkX graph from a known data structure.

8.1.3 to networkx graph

 $\verb"to_networkx_graph" (data, create_using=None, multigraph_input=False)$

Make a NetworkX graph from a known data structure.

The preferred way to call this is automatically from the class constructor

```
>>> d={0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)
instead of the equivalent
>>> G=nx.from_dict_of_dicts(d)
```

Parameters data: a object to be converted

Current known types are: any NetworkX graph dict-of-dicts dist-of-lists list of edges numpy matrix numpy ndarray scipy sparse matrix pygraphviz agraph

create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created.

```
multigraph input: bool (default False)
```

If True and data is a dict_of_dicts, try to create a multigraph assuming dict_of_dict_of_lists. If data and create_using are both multigraphs then create a multigraph from a multigraph.

8.2 Dictionaries

to_dict_of_dicts(G[, nodelist, edge_data])	Return adjacency representation of graph as a dictionary of dictionaries.
<pre>from_dict_of_dicts(d[, create_using,])</pre>	Return a graph from a dictionary of dictionaries.

8.2.1 to dict of dicts

```
to_dict_of_dicts (G, nodelist=None, edge_data=None)
```

Return adjacency representation of graph as a dictionary of dictionaries.

Parameters G: graph

A NetworkX graph

nodelist : list

Use only nodes specified in nodelist

edge_data: list, optional

If provided, the value of the dictionary will be set to edge_data for all edges. This is useful to make an adjacency matrix type representation with 1 as the edge data. If edgedata is None, the edgedata in G is used to fill the values. If G is a multigraph, the edgedata is a dict for each pair (u,v).

8.2.2 from dict of dicts

from_dict_of_dicts (d, create_using=None, multigraph_input=False)

Return a graph from a dictionary of dictionaries.

Parameters d: dictionary of dictionaries

A dictionary of dictionaries adjacency representation.

create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created.

multigraph input: bool (default False)

When True, the values of the inner dict are assumed to be containers of edge data for multiple edges. Otherwise this routine assumes the edge data are singletons.

Examples

```
>>> dod= {0: {1:{'weight':1}}} # single edge (0,1)
>>> G=nx.from_dict_of_dicts(dod)
```

or >>> G=nx.Graph(dod) # use Graph constructor

8.3 Lists

to_dict_of_lists(G[, nodelist])	Return adjacency representation of graph as a dictionary of lists.
<pre>from_dict_of_lists(d[, create_using])</pre>	Return a graph from a dictionary of lists.
$to_edgelist(G[, nodelist])$	Return a list of edges in the graph.
<pre>from_edgelist(edgelist[, create_using])</pre>	Return a graph from a list of edges.

8.3.1 to_dict_of_lists

to_dict_of_lists(G, nodelist=None)

Return adjacency representation of graph as a dictionary of lists.

Parameters G: graph

A NetworkX graph

nodelist: list

Use only nodes specified in nodelist

Notes

Completely ignores edge data for MultiGraph and MultiDiGraph.

8.3.2 from_dict_of_lists

from_dict_of_lists(d, create_using=None)

Return a graph from a dictionary of lists.

Parameters d: dictionary of lists

A dictionary of lists adjacency representation.

create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created.

Examples

```
>>> dol= {0:[1]} # single edge (0,1)
>>> G=nx.from_dict_of_lists(dol)
```

or >>> G=nx.Graph(dol) # use Graph constructor

8.3.3 to edgelist

to_edgelist(G, nodelist=None)

Return a list of edges in the graph.

Parameters G: graph

8.3. Lists 447

A NetworkX graph

nodelist: list

Use only nodes specified in nodelist

8.3.4 from_edgelist

```
from_edgelist (edgelist, create_using=None)
```

Return a graph from a list of edges.

Parameters edgelist: list or iterator

Edge tuples

create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created.

Examples

```
>>> edgelist= [(0,1)] # single edge (0,1)
>>> G=nx.from_edgelist(edgelist)
```

or >>> G=nx.Graph(edgelist) # use Graph constructor

8.4 Numpy

Functions to convert NetworkX graphs to and from numpy/scipy matrices.

The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically.

8.4.1 Examples

Create a 10 node random graph from a numpy matrix

```
>>> import numpy
>>> a = numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10))
>>> D = nx.DiGraph(a)

or equivalently
>>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph())
```

8.4.2 See Also

nx_pygraphviz, nx_pydot

to_numpy_matrix(G[, nodelist, dtype, order,])	Return the graph adjacency matrix as a NumPy matrix.
to_numpy_recarray(G[, nodelist, dtype, order])	Return the graph adjacency matrix as a NumPy recarray.
from_numpy_matrix(A[, parallel_edges,])	Return a graph from numpy matrix.

8.4.3 to numpy matrix

 $\label{local_constraint} \begin{tabular}{ll} \textbf{to_numpy_matrix} (G, nodelist=None, dtype=None, order=None, multigraph_weight=
built-in function sum>, weight='weight', nonedge=0.0) \end{tabular}$

Return the graph adjacency matrix as a NumPy matrix.

Parameters G: graph

The NetworkX graph used to construct the NumPy matrix.

nodelist: list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

dtype: NumPy data type, optional

A valid single NumPy data type used to initialize the array. This must be a simple type such as int or numpy.float64 and not a compound data type (see to_numpy_recarray) If None, then the NumPy default is used.

order: {'C', 'F'}, optional

Whether to store multidimensional data in C- or Fortran-contiguous (row- or columnwise) order in memory. If None, then the NumPy default is used.

multigraph_weight : {sum, min, max}, optional

An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges.

weight : string or None optional (default = 'weight')

The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead.

nonedge: float (default = 0.0)

The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan.

Returns M : NumPy matrix

Graph adjacency matrix

See also:

```
to_numpy_recarray, from_numpy_matrix
```

Notes

The matrix entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the multigraph_weight parameter. The default is to sum the weight attributes for each of the parallel edges.

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

8.4. Numpy 449

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Numpy matrix can be modified as follows:

```
>>> import numpy as np
>>> G = nx.Graph([(1, 1)])
>>> A = nx.to_numpy_matrix(G)
>>> A
matrix([[ 1.]])
>>> A.A[np.diag_indices_from(A)] *= 2
>>> A
matrix([[ 2.]])
```

Examples

8.4.4 to numpy recarray

to_numpy_recarray (*G*, nodelist=None, dtype=[('weight', <type 'float'>)], order=None)
Return the graph adjacency matrix as a NumPy recarray.

Parameters G: graph

The NetworkX graph used to construct the NumPy matrix.

nodelist: list, optional

The rows and columns are ordered according to the nodes in *nodelist*. If *nodelist* is None, then the ordering is produced by G.nodes().

```
dtype: NumPy data-type, optional
```

A valid NumPy named dtype used to initialize the NumPy recarray. The data type names are assumed to be keys in the graph edge attribute dictionary.

```
order: {'C', 'F'}, optional
```

Whether to store multidimensional data in C- or Fortran-contiguous (row- or columnwise) order in memory. If None, then the NumPy default is used.

Returns M: NumPy recarray

The graph with specified edge data as a Numpy recarray

Notes

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

Examples

```
>>> G = nx.Graph()
>>> G.add_edge(1,2,weight=7.0,cost=5)
>>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)])
>>> print(A.weight)
[[ 0.    7.]
   [ 7.   0.]]
>>> print(A.cost)
[[ 0   5]
   [5   0]]
```

8.4.5 from_numpy_matrix

from_numpy_matrix(A, parallel_edges=False, create_using=None)

Return a graph from numpy matrix.

The numpy matrix is interpreted as an adjacency matrix for the graph.

Parameters A: numpy matrix

An adjacency matrix representation of a graph

parallel_edges: Boolean

If this is True, create_using is a multigraph, and A is an integer matrix, then entry (i, j) in the matrix is interpreted as the number of parallel edges joining vertices i and j in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices.

create_using : NetworkX graph

Use specified graph for result. The default is Graph()

See also:

```
to_numpy_matrix, to_numpy_recarray
```

Notes

If create_using is an instance of networkx.MultiGraph or networkx.MultiDiGraph, parallel_edges is True, and the entries of A are of type int, then this function returns a multigraph (of the same type as create_using) with parallel edges.

If $create_using$ is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix A will be added to the graph.

If the numpy matrix has a single data type for each matrix entry it will be converted to an appropriate Python data type.

If the numpy matrix has a user-specified compound data type the names of the data fields will be used as attribute keys in the resulting NetworkX graph.

Examples

Simple integer weights on edges:

8.4. Numpy 451

```
>>> import numpy
>>> A=numpy.matrix([[1, 1], [2, 1]])
>>> G=nx.from_numpy_matrix(A)
```

If create_using is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges):

```
>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}
```

If create_using is a multigraph and the matrix has only integer entries but parallel_edges is True, then the entries will be interpreted as the number of parallel edges joining those two vertices:

```
>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> temp = nx.MultiGraph()
>>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp)
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}
```

User defined compound data type on edges:

```
>>> import numpy
>>> dt = [('weight', float), ('cost', int)]
>>> A = numpy.matrix([[(1.0, 2)]], dtype = dt)
>>> G = nx.from_numpy_matrix(A)
>>> G.edges()
[(0, 0)]
>>> G[0][0]['cost']
2
>>> G[0][0]['weight']
1.0
```

8.5 Scipy

```
to_scipy_sparse_matrix(G[, nodelist, dtype, ...]) Return the graph adjacency matrix as a SciPy sparse matrix.

from_scipy_sparse_matrix(A[, ...]) Creates a new graph from an adjacency matrix given as a SciPy sparse matrix.
```

8.5.1 to_scipy_sparse_matrix

to_scipy_sparse_matrix (*G*, nodelist=None, dtype=None, weight='weight', format='csr')
Return the graph adjacency matrix as a SciPy sparse matrix.

Parameters G: graph

The NetworkX graph used to construct the NumPy matrix.

nodelist: list, optional

The rows and columns are ordered according to the nodes in *nodelist*. If *nodelist* is None, then the ordering is produced by G.nodes().

dtype: NumPy data-type, optional

A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used.

```
weight : string or None optional (default='weight')
```

The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1.

```
format: str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}
```

The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See [R358] for details.

Returns M : SciPy sparse matrix

Graph adjacency matrix.

Notes

The matrix entries are populated using the edge attribute held in parameter weight. When an edge does not have that attribute, the value of the entry is 1.

For multiple edges the matrix values are the sums of the edge weights.

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

Uses coo_matrix format. To convert to other formats specify the format= keyword.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows:

```
>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.to_scipy_sparse_matrix(G)
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]
```

References

[R358]

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2])
>>> print(S.todense())
[[0 2 0]
  [1 0 0]
  [0 0 4]]
```

8.5. Scipy 453

8.5.2 from scipy sparse matrix

from_scipy_sparse_matrix (A, parallel_edges=False, create_using=None, edge_attribute='weight')

Creates a new graph from an adjacency matrix given as a SciPy sparse matrix.

Parameters A: scipy sparse matrix

An adjacency matrix representation of a graph

```
parallel edges: Boolean
```

If this is True, $create_u sing$ is a multigraph, and A is an integer matrix, then entry (i, j) in the matrix is interpreted as the number of parallel edges joining vertices i and j in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices.

create_using: NetworkX graph

Use specified graph for result. The default is Graph()

edge_attribute: string

Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)).

Notes

If $create_u sing$ is an instance of networkx. MultiGraph or networkx. MultiDiGraph, $parallel_e dges$ is True, and the entries of A are of type int, then this function returns a multigraph (of the same type as $create_u sing$) with parallel edges. In this case, $edge_a ttribute$ will be ignored.

If $create_u sing$ is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix A will be added to the graph.

Examples

```
>>> import scipy.sparse
>>> A = scipy.sparse.eye(2,2,1)
>>> G = nx.from_scipy_sparse_matrix(A)
```

If $create_u sing$ is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges):

```
>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}
```

If $create_u sing$ is a multigraph and the matrix has only integer entries but $parallel_e dges$ is True, then the entries will be interpreted as the number of parallel edges joining those two vertices:

```
>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, parallel_edges=True,
```

```
create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}
```

8.6 Pandas

to_pandas_dataframe($G[$, nodelist,])	Return the graph adjacency matrix as a Pandas DataFrame.
<pre>from_pandas_dataframe(df, source, target[,])</pre>	Return a graph from Pandas DataFrame.

8.6.1 to pandas dataframe

 $\begin{tabular}{ll} \textbf{to_pandas_dataframe} (G, & nodelist=None, & multigraph_weight=<built-in & function & sum>, \\ & weight='weight', nonedge=0.0) \\ & \textbf{Return the graph adjacency matrix as a Pandas DataFrame}. \\ \end{tabular}$

Parameters G: graph

The NetworkX graph used to construct the Pandas DataFrame.

nodelist: list, optional

The rows and columns are ordered according to the nodes in *nodelist*. If *nodelist* is None, then the ordering is produced by G.nodes().

multigraph_weight: {sum, min, max}, optional

An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges.

weight: string or None, optional

The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead.

nonedge: float, optional

The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan.

Returns df: Pandas DataFrame

Graph adjacency matrix

Notes

The DataFrame entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the 'multigraph_weight' parameter. The default is to sum the weight attributes for each of the parallel edges.

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

8.6. Pandas 455

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Pandas DataFrame can be modified as follows:

Examples

8.6.2 from pandas dataframe

from_pandas_dataframe (*df*, *source*, *target*, *edge_attr=None*, *create_using=None*)
Return a graph from Pandas DataFrame.

The Pandas DataFrame should contain at least two columns of node names and zero or more columns of node attributes. Each row will be processed as one edge instance.

Note: This function iterates over DataFrame.values, which is not guaranteed to retain the data type across columns in the row. This is only a problem if your row is entirely numeric and a mix of ints and floats. In that case, all values will be returned as floats. See the DataFrame.iterrows documentation for an example.

Parameters df: Pandas DataFrame

An edge list representation of a graph

source: str or int

A valid column name (string or iteger) for the source nodes (for the directed case).

target: str or int

A valid column name (string or iteger) for the target nodes (for the directed case).

edge attr: str or int, iterable, True

A valid column name (str or integer) or list of column names that will be used to retrieve items from the row and add them to the graph as edge attributes. If True, all of the remaining columns will be added.

create_using : NetworkX graph

Use specified graph for result. The default is Graph()

See also:

```
to_pandas_dataframe
```

Examples

Simple integer weights on edges:

```
>>> import pandas as pd
>>> import numpy as np
>>> r = np.random.RandomState(seed=5)
>>> ints = r.random_integers(1, 10, size=(3,2))
>>> a = ['A', 'B', 'C']
>>> b = ['D', 'A', 'E']
>>> df = pd.DataFrame(ints, columns=['weight', 'cost'])
>>> df[0] = a
>>> df['b'] = b
>>> df
   weight cost 0 b
            7 A D
       4
1
       7
            1 B A
            9 C E
      10
>>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost'])
>>> G['E']['C']['weight']
>>> G['E']['C']['cost']
```

8.6. Pandas 457

NetworkX Reference, Release 2.0.dev201506	614000013			
459	Chapter 9	Converting to a	and from other	data farmata

CHAPTER

NINE

READING AND WRITING GRAPHS

9.1 Adjacency List

Read and write NetworkX graphs as adjacency lists.

Adjacency list format is useful for graphs without data associated with nodes or edges and for nodes that can be meaningfully represented as strings.

9.1.1 Format

The adjacency list format consists of lines with node labels. The first label in a line is the source node. Further labels in the line are considered target nodes and are added to the graph along with an edge between the source node and target node.

The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a line is a comment):

```
a b c # source target target
d e
```

read_adjlist(path[, comments, delimiter,])	Read graph in adjacency list format from path.
<pre>write_adjlist(G, path[, comments,])</pre>	Write graph G in single-line adjacency-list format to path.
<pre>parse_adjlist(lines[, comments, delimiter,])</pre>	Parse lines of a graph adjacency list representation.
<pre>generate_adjlist(G[, delimiter])</pre>	Generate a single line of the graph G in adjacency list format.

9.1.2 read adjlist

read_adjlist (path, comments='#', delimiter=None, create_using=None, nodetype=None, encoding='utf-8')

Read graph in adjacency list format from path.

Parameters path: string or file

Filename or file handle to read. Filenames ending in .gz or .bz2 will be uncompressed.

create_using: NetworkX graph container

Use given NetworkX graph for holding nodes or edges.

nodetype : Python type, optionalConvert nodes to this type.comments : string, optional

Marker for comment lines

delimiter: string, optional

Separator for node labels. The default is whitespace.

create_using: NetworkX graph container

Use given NetworkX graph for holding nodes or edges.

Returns G: NetworkX graph

The graph corresponding to the lines in adjacency list format.

See also:

```
write_adjlist
```

Notes

This format does not store graph or node data.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G, "test.adjlist")
>>> G=nx.read_adjlist("test.adjlist")
```

The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in 'rb' mode.

```
>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_adjlist(fh)
```

Filenames ending in .gz or .bz2 will be compressed.

```
>>> nx.write_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_adjlist("test.adjlist.gz")
```

The optional nodetype is a function to convert node strings to nodetype.

For example

```
>>> G=nx.read_adjlist("test.adjlist", nodetype=int)
```

will attempt to convert all nodes to integer type.

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.)

The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use

```
>>> G=nx.read_adjlist("test.adjlist", create_using=nx.DiGraph())
```

9.1.3 write adjlist

```
write_adjlist (G, path, comments='#', delimiter=' ', encoding='utf-8')
Write graph G in single-line adjacency-list format to path.
```

Parameters G: NetworkX graph

path: string or file

Filename or file handle for data output. Filenames ending in .gz or .bz2 will be compressed.

comments: string, optional

Marker for comment lines

delimiter: string, optional

Separator for node labels

encoding: string, optional

Text encoding.

See also:

```
read_adjlist, generate_adjlist
```

Notes

This format does not store graph, node, or edge data.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G,"test.adjlist")
```

The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in 'wb' mode.

```
>>> fh=open("test.adjlist",'wb')
>>> nx.write_adjlist(G, fh)
```

9.1.4 parse adjlist

```
parse_adjlist (lines, comments='#', delimiter=None, create_using=None, nodetype=None)
Parse lines of a graph adjacency list representation.
```

Parameters lines: list or iterator of strings

Input data in adjlist format

create_using: NetworkX graph container

Use given NetworkX graph for holding nodes or edges.

nodetype: Python type, optional

Convert nodes to this type.

comments: string, optional

Marker for comment lines

delimiter: string, optional

Separator for node labels. The default is whitespace.

create_using: NetworkX graph container

Use given NetworkX graph for holding nodes or edges.

Returns G: NetworkX graph

The graph corresponding to the lines in adjacency list format.

See also:

```
read_adjlist
```

Examples

9.1.5 generate_adjlist

```
generate_adjlist(G, delimiter=' ')
```

Generate a single line of the graph G in adjacency list format.

Parameters G: NetworkX graph

delimiter: string, optional

Separator for node labels

Returns lines: string

Lines of data in adjlist format.

See also:

```
write_adjlist, read_adjlist
```

Examples

9.2 Multiline Adjacency List

Read and write NetworkX graphs as multi-line adjacency lists.

The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With this format simple edge data can be stored but node or graph data is not.

9.2.1 Format

The first label in a line is the source node label followed by the node degree d. The next d lines are target node labels and optional edge data. That pattern repeats for all nodes in the graph.

The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a line is a comment):

```
# example.multiline-adjlist
a 2
b
c
d 1
```

read_multiline_adjlist(path[, comments,])	Read graph in multi-line adjacency list format from path.
write_multiline_adjlist(G, path[,])	Write the graph G in multiline adjacency list format to path
<pre>parse_multiline_adjlist(lines[, comments,])</pre>	Parse lines of a multiline adjacency list representation of a graph.
<pre>generate_multiline_adjlist(G[, delimiter])</pre>	Generate a single line of the graph G in multiline adjacency list format.

9.2.2 read_multiline_adjlist

Parameters path: string or file

Filename or file handle to read. Filenames ending in .gz or .bz2 will be uncompressed.

create_using: NetworkX graph container

Use given NetworkX graph for holding nodes or edges.

nodetype: Python type, optional Convert nodes to this type.

edgetype: Python type, optional

Convert edge data to this type.

comments: string, optional

Marker for comment lines

delimiter: string, optional

Separator for node labels. The default is whitespace.

create_using: NetworkX graph container

Use given NetworkX graph for holding nodes or edges.

Returns G: NetworkX graph

See also:

```
write_multiline_adjlist
```

Notes

This format does not store graph, node, or edge data.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")
>>> G=nx.read_multiline_adjlist("test.adjlist")
```

The path can be a file or a string with the name of the file. If a file s provided, it has to be opened in 'rb' mode.

```
>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_multiline_adjlist(fh)
```

Filenames ending in .gz or .bz2 will be compressed.

```
>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_multiline_adjlist("test.adjlist.gz")
```

The optional nodetype is a function to convert node strings to nodetype.

For example

```
>>> G=nx.read_multiline_adjlist("test.adjlist", nodetype=int)
```

will attempt to convert all nodes to integer type.

The optional edgetype is a function to convert edge data strings to edgetype.

```
>>> G=nx.read_multiline_adjlist("test.adjlist")
```

The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use

```
>>> G=nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph())
```

9.2.3 write_multiline_adjlist

```
write_multiline_adjlist (G, path, delimiter=' ', comments='#', encoding='utf-8')
Write the graph G in multiline adjacency list format to path
```

```
Parameters G: NetworkX graph
comments: string, optional
Marker for comment lines
delimiter: string, optional
Separator for node labels
encoding: string, optional
```

Text encoding.

See also:

```
read_multiline_adjlist
```

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")
```

The path can be a file handle or a string with the name of the file. If a file handle is provided, it has to be opened in 'wb' mode.

```
>>> fh=open("test.adjlist",'wb')
>>> nx.write_multiline_adjlist(G,fh)
```

Filenames ending in .gz or .bz2 will be compressed.

```
>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")
```

9.2.4 parse multiline adjlist

```
parse_multiline_adjlist(lines, comments='#', delimiter=None, create_using=None, node-
type=None, edgetype=None)
```

Parse lines of a multiline adjacency list representation of a graph.

Parameters lines: list or iterator of strings

Input data in multiline adjlist format

create_using: NetworkX graph container

Use given NetworkX graph for holding nodes or edges.

nodetype: Python type, optional

Convert nodes to this type.

comments: string, optional

Marker for comment lines

delimiter: string, optional

Separator for node labels. The default is whitespace.

create_using: NetworkX graph container

Use given NetworkX graph for holding nodes or edges.

Returns G: NetworkX graph

The graph corresponding to the lines in multiline adjacency list format.

Examples

9.2.5 generate_multiline_adjlist

```
\begin{tabular}{ll} \beg
```

Parameters G: NetworkX graph

delimiter: string, optional

Separator for node labels

Returns lines: string

Lines of data in multiline adjlist format.

See also:

```
write_multiline_adjlist, read_multiline_adjlist
```

Examples

```
>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_multiline_adjlist(G):
        print(line)
0 3
1 {}
2 {}
3 {}
1 2
2 {}
3 {}
2 1
3 {}
3 1
4 {}
4 1
5 {}
5 1
6 {}
6 0
```

9.3 Edge List

Read and write NetworkX graphs as edge lists.

The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With the edgelist format simple edge data can be stored but node or graph data is not. There is no way of representing isolated nodes unless the node has a self-loop edge.

9.3.1 Format

You can read or write three formats of edge lists with these functions.

Node pairs with no data:

1 2

Python dictionary as data:

```
1 2 {'weight':7, 'color':'green'}
```

Arbitrary data:

1 2 7 green

read_edgelist(path[, comments, delimiter,])	Read a graph from a list of edges.
<pre>write_edgelist(G, path[, comments,])</pre>	Write graph as a list of edges.
read_weighted_edgelist(path[, comments,])	Read a graph as list of edges with numeric weights.
<pre>write_weighted_edgelist(G, path[, comments,])</pre>	Write graph G as a list of edges with numeric weights.
<pre>generate_edgelist(G[, delimiter, data])</pre>	Generate a single line of the graph G in edge list format.
<pre>parse_edgelist(lines[, comments, delimiter,])</pre>	Parse lines of an edge list representation of a graph.

9.3.2 read_edgelist

 $\begin{tabular}{ll} \textbf{read_edgelist} (path, comments='\#', delimiter=None, create_using=None, nodetype=None, data=True, \\ edgetype=None, encoding='utf-8') \end{tabular}$

Read a graph from a list of edges.

Parameters path: file or string

File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed.

comments: string, optional

The character used to indicate the start of a comment.

delimiter: string, optional

The string used to separate values. The default is whitespace.

create_using: Graph container, optional,

Use specified container to build graph. The default is networkx. Graph, an undirected graph.

nodetype: int, float, str, Python type, optional

Convert node data from strings to specified type

data: bool or list of (label,type) tuples

Tuples specifying dictionary key names and types for edge data

edgetype: int, float, str, Python type, optional OBSOLETE

9.3. Edge List 467

Convert edge data from strings to specified type and use as 'weight'

encoding: string, optional

Specify which encoding to use when reading file.

Returns G: graph

A networkx Graph or other type specified with create using

See also:

```
parse_edgelist
```

Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.)

Examples

```
>>> nx.write_edgelist(nx.path_graph(4), "test.edgelist")
>>> G=nx.read_edgelist("test.edgelist")
>>> fh=open("test.edgelist", 'rb')
>>> G=nx.read_edgelist(fh)
>>> fh.close()
>>> G=nx.read_edgelist("test.edgelist", nodetype=int)
>>> G=nx.read_edgelist("test.edgelist",create_using=nx.DiGraph())
Edgelist with data in a list:
>>> textline = '1 2 3'
>>> fh = open('test.edgelist','w')
>>> d = fh.write(textline)
>>> fh.close()
>>> G = nx.read_edgelist('test.edgelist', nodetype=int, data=(('weight',float),))
>>> G.nodes()
[1, 2]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0})]
```

See parse_edgelist() for more examples of formatting.

9.3.3 write_edgelist

```
write_edgelist (G, path, comments='#', delimiter=' ', data=True, encoding='utf-8')
Write graph as a list of edges.
```

Parameters G: graph

A NetworkX graph

path: file or string

File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed.

```
comments: string, optional
```

The character used to indicate the start of a comment

delimiter: string, optional

The string used to separate values. The default is whitespace.

```
data: bool or list, optional
```

If False write no edge data. If True write a string representation of the edge data dictionary.. If a list (or other iterable) is provided, write the keys specified in the list.

encoding: string, optional

Specify which encoding to use when writing file.

See also:

```
write_edgelist, write_weighted_edgelist
```

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_edgelist(G, "test.edgelist")
>>> G=nx.path_graph(4)
>>> fh=open("test.edgelist",'wb')
>>> nx.write_edgelist(G, fh)
>>> nx.write_edgelist(G, "test.edgelist.gz")
>>> nx.write_edgelist(G, "test.edgelist.gz", data=False)
>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=7,color='red')
>>> nx.write_edgelist(G,'test.edgelist',data=False)
>>> nx.write_edgelist(G,'test.edgelist',data=['color'])
>>> nx.write_edgelist(G,'test.edgelist',data=['color','weight'])
```

9.3.4 read weighted edgelist

Parameters path: file or string

File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed.

comments: string, optional

The character used to indicate the start of a comment.

delimiter: string, optional

The string used to separate values. The default is whitespace.

create_using : Graph container, optional,

Use specified container to build graph. The default is networkx. Graph, an undirected graph.

nodetype: int, float, str, Python type, optional

9.3. Edge List 469

Convert node data from strings to specified type

encoding: string, optional

Specify which encoding to use when reading file.

Returns G: graph

A networkx Graph or other type specified with create using

Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.)

Example edgelist file format.

With numeric edge data:

```
# read with
# >>> G=nx.read_weighted_edgelist(fh)
# source target data
a b 1
a c 3.14159
d e 42
```

9.3.5 write_weighted_edgelist

```
write_weighted_edgelist (G, path, comments='#', delimiter=' ', encoding='utf-8')
Write graph G as a list of edges with numeric weights.
```

```
Parameters G: graph
```

A NetworkX graph

path: file or string

File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed.

comments: string, optional

The character used to indicate the start of a comment

delimiter: string, optional

The string used to separate values. The default is whitespace.

encoding: string, optional

Specify which encoding to use when writing file.

See also:

```
read_edgelist, write_edgelist, write_weighted_edgelist
```

Examples

```
>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=7)
>>> nx.write_weighted_edgelist(G, 'test.weighted.edgelist')
```

9.3.6 generate edgelist

generate_edgelist(G, delimiter=' ', data=True)

```
Generate a single line of the graph G in edge list format.
     Parameters G: NetworkX graph
         delimiter: string, optional
             Separator for node labels
         data: bool or list of keys
             If False generate no edge data. If True use a dictionary representation of edge data. If a
            list of keys use a list of data values corresponding to the keys.
     Returns lines: string
            Lines of data in adjlist format.
See also:
write_adjlist, read_adjlist
Examples
\rightarrow \rightarrow G = nx.lollipop_graph(4, 3)
>>> G[1][2]['weight'] = 3
>>> G[3][4]['capacity'] = 12
>>> for line in nx.generate_edgelist(G, data=False):
         print(line)
0 1
0 2
0 3
1 2
1 3
2 3
3 4
4 5
5 6
>>> for line in nx.generate_edgelist(G):
         print(line)
. . .
0 1 {}
0 2 {}
0 3 {}
1 2 {'weight': 3}
1 3 {}
2 3 {}
3 4 {'capacity': 12}
4 5 {}
5 6 {}
>>> for line in nx.generate_edgelist(G, data=['weight']):
         print(line)
0 1
0 2
```

9.3. Edge List 471

```
2 3
3 4
4 5
5 6
```

9.3.7 parse edgelist

```
parse_edgelist (lines, comments='#', delimiter=None, create_using=None, nodetype=None, data=True)
Parse lines of an edge list representation of a graph.

Parameters lines: list or iterator of strings
Input data in edgelist format
```

comments: string, optionalMarker for comment linesdelimiter: string, optionalSeparator for node labels

create_using: NetworkX graph container, optional

Use given NetworkX graph for holding nodes or edges.

nodetype: Python type, optional Convert nodes to this type.

data: bool or list of (label,type) tuples

If False generate no edge data or if True use a dictionary representation of edge data or a list tuples specifying dictionary key names and types for edge data.

Returns G: NetworkX Graph

The graph corresponding to lines

See also:

```
read weighted edgelist
```

Examples

Edgelist with no data:

Edgelist with data in Python dictionary representation:

```
>>> lines = ["1 2 {'weight':3}",
            "2 3 {'weight':27}",
            "3 4 {'weight':3.0}"]
>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})]
Edgelist with data in a list:
>>> lines = ["1 2 3",
             "2 3 27",
             "3 4 3.0"]
>>> G = nx.parse_edgelist(lines, nodetype = int, data=(('weight',float),))
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})]
```

9.4 GEXF

Read and write graphs in GEXF format.

GEXF (Graph Exchange XML Format) is a language for describing complex network structures, their associated data and dynamics.

This implementation does not support mixed graphs (directed and undirected edges together).

9.4.1 Format

GEXF is an XML format. See http://gexf.net/format/schema.html for the specification and http://gexf.net/format/basic.html for examples.

<pre>read_gexf(path[, node_type, relabel, version])</pre>	Read graph in GEXF format from path.
<pre>write_gexf(G, path[, encoding, prettyprint,])</pre>	Write G in GEXF format to path.
relabel_gexf_graph(G)	Relabel graph using "label" node keyword for node label.

9.4.2 read gexf

```
read_gexf (path, node_type=None, relabel=False, version='1.1draft')
Read graph in GEXF format from path.
```

"GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" [R414].

Parameters path: file or string

File or file name to write. File names ending in .gz or .bz2 will be compressed.

node_type: Python type (default: None)

Convert node ids to this type if not None.

relabel: bool (default: False)

9.4. GEXF 473

If True relabel the nodes to use the GEXF node "label" attribute instead of the node "id" attribute as the Network X node label.

Returns graph: NetworkX graph

If no parallel edges are found a Graph or DiGraph is returned. Otherwise a MultiGraph or MultiDiGraph is returned.

Notes

This implementation does not support mixed graphs (directed and undirected edges together).

References

[R414]

9.4.3 write_gexf

```
write_gexf (G, path, encoding='utf-8', prettyprint=True, version='1.1draft')
Write G in GEXF format to path.
```

"GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" [R415].

```
Parameters G: graph
```

A NetworkX graph

path: file or string

File or file name to write. File names ending in .gz or .bz2 will be compressed.

encoding : string (optional)

Encoding for text data.

prettyprint : bool (optional)

If True use line breaks and indenting in output XML.

Notes

This implementation does not support mixed graphs (directed and undirected edges together).

The node id attribute is set to be the string of the node label. If you want to specify an id use set it as node data, e.g. node['a']['id']=1 to set the id of node 'a' to 1.

References

[R415]

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_gexf(G, "test.gexf")
```

9.4.4 relabel gexf graph

```
relabel_gexf_graph(G)
```

Relabel graph using "label" node keyword for node label.

Parameters G: graph

A NetworkX graph read from GEXF data

Returns H: graph

A NetworkX graph with relabed nodes

Notes

This function relabels the nodes in a NetworkX graph with the "label" attribute. It also handles relabeling the specific GEXF node attributes "parents", and "pid".

9.5 GML

Read graphs in GML format.

"GML, the G>raph Modelling Language, is our proposal for a portable file format for graphs. GML's key features are portability, simple syntax, extensibility and flexibility. A GML file consists of a hierarchical key-value lists. Graphs can be annotated with arbitrary data structures. The idea for a common file format was born at the GD'95; this proposal is the outcome of many discussions. GML is the standard file format in the Graphlet graph editor system. It has been overtaken and adapted by several other systems for drawing graphs."

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

9.5.1 Format

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html for format specification.

Example graphs in GML format: http://www-personal.umich.edu/~mejn/netdata/

<pre>read_gml(path[, label, destringizer])</pre>	Read graph in GML format from path.
<pre>write_gml(G, path[, stringizer])</pre>	Write a graph G in GML format to the file or file handle path.
<pre>parse_gml(lines[, label, destringizer])</pre>	Parse GML graph from a string or iterable.
<pre>generate_gml(G[, stringizer])</pre>	Generate a single entry of the graph G in GML format.
literal_destringizer(rep)	Convert a Python literal to the value it represents.
literal_stringizer(value)	Convert a value to a Python literal in GML representation.

9.5. GML 475

9.5.2 read gml

```
read_gml (path, label='label', destringizer=None)
Read graph in GML format from path.
```

Parameters path: filename or filehandle

The filename or filehandle to read from.

label: string, optional

If not None, the parsed nodes will be renamed according to node attributes indicated by label. Default value: 'label'.

destringizer: callable, optional

A destringizer that recovers values stored as strings in GML. If it cannot convert a string to a value, a ValueError is raised. Default value: None.

Returns G: NetworkX graph

The parsed graph.

Raises NetworkXError

If the input cannot be parsed.

See also:

```
write_gml, parse_gml
```

Notes

The GML specification says that files should be ASCII encoded, with any extended ASCII characters (iso8859-1) appearing as HTML character entities.

References

 $GML\ specification:\ http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html$

Examples

```
>>> G = nx.path_graph(4)
>>> nx.write_gml(G, 'test.gml')
>>> H = nx.read_gml('test.gml')
```

9.5.3 write_gml

write_gml (G, path, stringizer=None)

Write a graph G in GML format to the file or file handle path.

Parameters G: NetworkX graph

The graph to be converted to GML.

path: filename or filehandle

The filename or filehandle to write. Files whose names end with .gz or .bz2 will be compressed.

stringizer: callable, optional

A stringizer which converts non-int/non-float/non-dict values into strings. If it cannot convert a value into a string, it should raise a ValueError to indicate that. Default value: None.

Raises NetworkXError

If stringizer cannot convert a value into a string, or the value to convert is not a string while stringizer is None.

See also:

```
read_gml, generate_gml
```

Notes

Graph attributes named 'directed', 'multigraph', 'node' or 'edge', node attributes named 'id' or 'label', edge attributes named 'source' or 'target' (or 'key' if G is a multigraph) are ignored because these attribute names are used to encode the graph structure.

Examples

```
>>> G = nx.path_graph(4)
>>> nx.write_gml(G, "test.gml")
```

Filenames ending in .gz or .bz2 will be compressed.

```
>>> nx.write_gml(G, "test.gml.gz")
```

9.5.4 parse_gml

```
parse_gml (lines, label='label', destringizer=None)
Parse GML graph from a string or iterable.
```

Parameters lines: string or iterable of strings

Data in GML format.

label: string, optional

If not None, the parsed nodes will be renamed according to node attributes indicated by label. Default value: 'label'.

destringizer: callable, optional

A destringizer that recovers values stored as strings in GML. If it cannot convert a string to a value, a ValueError is raised. Default value: None.

Returns G: NetworkX graph

The parsed graph.

Raises NetworkXError

If the input cannot be parsed.

9.5. GML 477

See also:

```
write_gml, read_gml
```

Notes

This stores nested GML attributes as dictionaries in the NetworkX graph, node, and edge attribute structures.

References

GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

9.5.5 generate_gml

generate_gml (G, stringizer=None)

Generate a single entry of the graph G in GML format.

Parameters G: NetworkX graph

The graph to be converted to GML.

stringizer: callable, optional

A stringizer which converts non-int/float/dict values into strings. If it cannot convert a value into a string, it should raise a ValueError raised to indicate that. Default value: None.

Returns lines: generator of strings

Lines of GML data. Newlines are not appended.

Raises NetworkXError

If stringizer cannot convert a value into a string, or the value to convert is not a string while stringizer is None.

Notes

Graph attributes named 'directed', 'multigraph', 'node' or 'edge', node attributes named 'id' or 'label', edge attributes named 'source' or 'target' (or 'key' if G is a multigraph) are ignored because these attribute names are used to encode the graph structure.

9.5.6 literal_destringizer

${\tt literal_destringizer}\ (\textit{rep})$

Convert a Python literal to the value it represents.

Parameters rep: string
A Python literal.

Returns value: object

The value of the Python literal.

Raises ValueError

If rep is not a Python literal.

9.5.7 literal_stringizer

literal stringizer(value)

Convert a value to a Python literal in GML representation.

Parameters value: object

The value to be converted to GML representation.

Returns rep: string

A double-quoted Python literal representing value. Unprintable characters are replaced by XML character references.

Raises ValueError

If value cannot be converted to GML.

Notes

literal_stringizer is largely the same as repr in terms of functionality but attempts prefix unicode and bytes literals with u and b to provide better interoperability of data generated by Python 2 and Python 3.

The original value can be recovered using the networkx.readwrite.gml.literal_destringizer function.

9.6 Pickle

Read and write NetworkX graphs as Python pickles.

"The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python object structure. "Pickling" is the process whereby a Python object hierarchy is converted into a byte stream, and "unpickling" is the inverse operation, whereby a byte stream is converted back into an object hierarchy."

Note that NetworkX graphs can contain any hashable Python object as node (not just integers and strings). For arbitrary data types it may be difficult to represent the data as text. In that case using Python pickles to store the graph data can be used.

9.6.1 Format

See http://docs.python.org/library/pickle.html

read_gpickle(path)	Read graph object in Python pickle format.
<pre>write_gpickle(G, path[, protocol])</pre>	Write graph in Python pickle format.

9.6.2 read gpickle

read_gpickle(path)

Read graph object in Python pickle format.

Pickles are a serialized byte stream of a Python object [R416]. This format will preserve Python objects used as

9.6. Pickle 479

nodes or edges.

Parameters path: file or string

File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed.

Returns G: graph

A NetworkX graph

References

[R416]

Examples

```
>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.gpickle")
>>> G = nx.read_gpickle("test.gpickle")
```

9.6.3 write_gpickle

```
write_gpickle (G, path, protocol=2)
```

Write graph in Python pickle format.

Pickles are a serialized byte stream of a Python object [R417]. This format will preserve Python objects used as nodes or edges.

```
Parameters G: graph
```

A NetworkX graph

path: file or string

File or filename to write. Filenames ending in .gz or .bz2 will be compressed.

protocol: integer

Pickling protocol to use. Default value: pickle.HIGHEST_PROTOCOL.

References

[R417]

Examples

```
>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.gpickle")
```

9.7 GraphML

Read and write graphs in GraphML format.

This implementation does not support mixed graphs (directed and unidirected edges together), hyperedges, nested graphs, or ports.

"GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a language core to describe the structural properties of a graph and a flexible extension mechanism to add application-specific data. Its main features include support of

- · directed, undirected, and mixed graphs,
- · hypergraphs,
- · hierarchical graphs,
- graphical representations,
- references to external data,
- · application-specific attribute data, and
- light-weight parsers.

Unlike many other file formats for graphs, GraphML does not use a custom syntax. Instead, it is based on XML and hence ideally suited as a common denominator for all kinds of services generating, archiving, or processing graphs."

http://graphml.graphdrawing.org/

9.7.1 Format

GraphML is an XML format. See http://graphml.graphdrawing.org/specification.html for the specification and http://graphml.graphdrawing.org/primer/graphml-primer.html for examples.

read_graphml(path[, node_type])	Read graph in GraphML format from path.
<pre>write_graphml(G, path[, encoding, prettyprint])</pre>	Write G in GraphML XML format to path

9.7.2 read_graphml

read_graphml (*path*, *node_type*=<*type* '*str*'>)
Read graph in GraphML format from path.

Parameters path: file or string

File or filename to write. Filenames ending in .gz or .bz2 will be compressed.

node_type: Python type (default: str)

Convert node ids to this type

Returns graph: NetworkX graph

If no parallel edges are found a Graph or DiGraph is returned. Otherwise a MultiGraph or MultiDiGraph is returned.

9.7. GraphML 481

Notes

This implementation does not support mixed graphs (directed and unidirected edges together), hypergraphs, nested graphs, or ports.

For multigraphs the GraphML edge "id" will be used as the edge key. If not specified then they "key" attribute will be used. If there is no "key" attribute a default NetworkX multigraph edge key will be provided.

Files with the yEd "yfiles" extension will can be read but the graphics information is discarded.

yEd compressed files ("file.graphmlz" extension) can be read by renaming the file to "file.graphml.gz".

9.7.3 write graphml

```
write_graphml (G, path, encoding='utf-8', prettyprint=True)
Write G in GraphML XML format to path

Parameters G: graph
A networkx graph
path: file or string
File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
encoding: string (optional)
Encoding for text data.
prettyprint: bool (optional)

If True use line breaks and indenting in output XML.
```

Notes

This implementation does not support mixed graphs (directed and unidirected edges together) hyperedges, nested graphs, or ports.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_graphml(G, "test.graphml")
```

9.8 JSON

Generate and parse JSON serializable data for NetworkX graphs.

These formats are suitable for use with the d3.js examples http://d3js.org/

The three formats that you can generate with NetworkX are:

- node-link like in the d3.js example http://bl.ocks.org/mbostock/4062045
- tree like in the d3.js example http://bl.ocks.org/mbostock/4063550
- adjacency like in the d3.js example http://bost.ocks.org/mike/miserables/

node_link_data(G[, attrs])	Return data in node-link format that is suitable for JSON serialization and use in Javascr
node_link_graph(data[, directed,])	Return graph from node-link data format.
adjacency_data(G[, attrs])	Return data in adjacency format that is suitable for JSON serialization and use in Javascr
adjacency_graph(data[, directed,])	Return graph from adjacency data format.
tree_data(G, root[, attrs])	Return data in tree format that is suitable for JSON serialization and use in Javascript do
tree_graph(data[, attrs])	Return graph from tree data format.

9.8.1 node_link_data

node_link_data (*G*, attrs={'source': 'source', 'target': 'target', 'key': 'key', 'id': 'id'})

Return data in node-link format that is suitable for JSON serialization and use in Javascript documents.

Parameters G: NetworkX graph

attrs: dict

A dictionary that contains four keys 'id', 'source', 'target' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', source='source', target='target', key='key').

If some user-defined graph data use these attribute names as data keys, they may be silently dropped.

Returns data: dict

A dictionary with node-link formatted data.

Raises NetworkXError

If values in attrs are not unique.

See also:

```
node_link_graph, adjacency_data, tree_data
```

Notes

Graph, node, and link attributes are stored in this format. Note that attribute keys will be converted to strings in order to comply with JSON.

The default value of attrs will be changed in a future release of NetworkX.

Examples

```
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)
To serialize with json
>>> import json
>>> s = json.dumps(data)
```

9.8. JSON 483

9.8.2 node link graph

```
node_link_graph (data, directed=False, multigraph=True, attrs={'source': 'source', 'target': 'target', 'key': 'key', 'id': 'id'})
Return graph from node-link data format.
```

Parameters data: dict

node-link formatted graph data

directed: bool

If True, and direction not specified in data, return a directed graph.

multigraph: bool

If True, and multigraph not specified in data, return a multigraph.

attrs: dict

A dictionary that contains four keys 'id', 'source', 'target' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. Default value: dict(id='id', source='source', target='target', key='key').

Returns G: NetworkX graph

A NetworkX graph object

See also:

```
node_link_data, adjacency_data, tree_data
```

Notes

The default value of attrs will be changed in a future release of NetworkX.

Examples

```
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)
>>> H = json_graph.node_link_graph(data)
```

9.8.3 adjacency_data

```
adjacency_data(G, attrs={'id': 'id', 'key': 'key'})
```

Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents.

Parameters G: NetworkX graph

attrs: dict

A dictionary that contains two keys 'id' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: $\dict(id='id', key='key')$.

If some user-defined graph data use these attribute names as data keys, they may be silently dropped.

Returns data: dict

A dictionary with adjacency formatted data.

Raises NetworkXError

If values in attrs are not unique.

See also:

```
adjacency_graph, node_link_data, tree_data
```

Notes

Graph, node, and link attributes will be written when using this format but attribute keys must be strings if you want to serialize the resulting data with JSON.

The default value of attrs will be changed in a future release of NetworkX.

Examples

```
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)

To serialize with json
>>> import json
>>> s = json.dumps(data)
```

9.8.4 adjacency_graph

adjacency_graph (data, directed=False, multigraph=True, attrs={'id': 'id', 'key': 'key'})
Return graph from adjacency data format.

Parameters data: dict

Adjacency list formatted graph data

Returns G: NetworkX graph

A NetworkX graph object

directed: bool

If True, and direction not specified in data, return a directed graph.

multigraph: bool

If True, and multigraph not specified in data, return a multigraph.

attrs: dict

A dictionary that contains two keys 'id' and 'key'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', key='key').

See also:

```
adjacency_graph, node_link_data, tree_data
```

9.8. JSON 485

Notes

The default value of attrs will be changed in a future release of NetworkX.

Examples

```
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)
>>> H = json_graph.adjacency_graph(data)
```

9.8.5 tree data

```
tree_data(G, root, attrs={'children': 'children', 'id': 'id'})
```

Return data in tree format that is suitable for JSON serialization and use in Javascript documents.

Parameters G: NetworkX graph

G must be an oriented tree

root: node

The root of the tree

attrs: dict

A dictionary that contains two keys 'id' and 'children'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', children='children').

If some user-defined graph data use these attribute names as data keys, they may be silently dropped.

Returns data: dict

A dictionary with node-link formatted data.

Raises NetworkXError

If values in attrs are not unique.

See also:

```
tree_graph, node_link_data, node_link_data
```

Notes

Node attributes are stored in this format but keys for attributes must be strings if you want to serialize with JSON.

Graph and edge attributes are not stored.

The default value of attrs will be changed in a future release of NetworkX.

Examples

```
>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)

To serialize with json
>>> import json
>>> s = json.dumps(data)
```

9.8.6 tree_graph

```
tree_graph (data, attrs={'children': 'children', 'id': 'id'})
Return graph from tree data format.
```

Parameters data: dict

Tree formatted graph data

Returns G: NetworkX DiGraph

attrs: dict

A dictionary that contains two keys 'id' and 'children'. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', children='children').

See also:

```
tree_graph, node_link_data, adjacency_data
```

Notes

The default value of attrs will be changed in a future release of NetworkX.

Examples

```
>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)
>>> H = json_graph.tree_graph(data)
```

9.9 LEDA

Read graphs in LEDA format.

LEDA is a C++ class library for efficient data types and algorithms.

9.9.1 Format

See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

9.9. LEDA 487

read_leda(path[, encoding])	Read graph in LEDA format from path.
parse_leda(lines)	Read graph in LEDA format from string or iterable.

9.9.2 read_leda

read_leda (path, encoding='UTF-8')

Read graph in LEDA format from path.

Parameters path: file or string

File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed.

Returns G: NetworkX graph

References

[R419]

Examples

G=nx.read_leda('file.leda')

9.9.3 parse_leda

parse_leda(lines)

Read graph in LEDA format from string or iterable.

Parameters lines: string or iterable

Data in LEDA format.

Returns G: NetworkX graph

References

[R418]

Examples

G=nx.parse_leda(string)

9.10 YAML

Read and write NetworkX graphs in YAML format.

"YAML is a data serialization format designed for human readability and interaction with scripting languages." See http://www.yaml.org for documentation.

9.10.1 Format

http://pyyaml.org/wiki/PyYAML

read_yaml(path)	Read graph in YAML format from path.
<pre>write_yaml(G, path[, encoding])</pre>	Write graph G in YAML format to path.

9.10.2 read_yaml

read_yaml (path)

Read graph in YAML format from path.

YAML is a data serialization format designed for human readability and interaction with scripting languages [R422].

Parameters path: file or string

File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed.

Returns G: NetworkX graph

References

[R422]

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')
>>> G=nx.read_yaml('test.yaml')
```

9.10.3 write yaml

```
\label{eq:write_yaml} \textbf{(}G, path, encoding = \text{'}UTF\text{-}8\text{'}, \text{ **}kwds\text{'})
```

Write graph G in YAML format to path.

YAML is a data serialization format designed for human readability and interaction with scripting languages [R423].

Parameters G: graph

A NetworkX graph

path: file or string

File or filename to write. Filenames ending in .gz or .bz2 will be compressed.

encoding: string, optional

Specify which encoding to use when writing file.

References

[R423]

9.10. YAML 489

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')
```

9.11 SparseGraph6

9.11.1 Graph6

Graph6

Read and write graphs in graph6 format.

Format

"graph6 and sparse6 are formats for storing undirected graphs in a compact manner, using only printable ASCII characters. Files in these formats have text type and contain one line per graph."

See http://cs.anu.edu.au/~bdm/data/formats.txt for details.

parse_graph6(string)	Read a simple undirected graph in graph6 format from string.
read_graph6(path)	Read simple undirected graphs in graph6 format from path.
$generate_graph6(G[, nodes, header])$	Generate graph6 format string from a simple undirected graph.
<pre>write_graph6(G, path[, nodes, header])</pre>	Write a simple undirected graph to path in graph6 format.

parse_graph6

parse_graph6 (string)

Read a simple undirected graph in graph6 format from string.

Parameters string: string

Data in graph6 format

Returns G: Graph

Raises NetworkXError

If the string is unable to be parsed in graph6 format

See also:

```
generate_graph6, read_graph6, write_graph6
```

References

Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

Examples

```
>>> G = nx.parse_graph6('A_')
>>> sorted(G.edges())
[(0, 1)]
```

read_graph6

read_graph6 (path)

Read simple undirected graphs in graph6 format from path.

Parameters path: file or string

File or filename to write.

Returns G: Graph or list of Graphs

If the file contains multiple lines then a list of graphs is returned

Raises NetworkXError

If the string is unable to be parsed in graph6 format

See also:

```
generate_graph6, parse_graph6, write_graph6
```

References

Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

Examples

```
>>> nx.write_graph6(nx.Graph([(0,1)]), 'test.g6')
>>> G = nx.read_graph6('test.g6')
>>> sorted(G.edges())
[(0, 1)]
```

generate_graph6

```
generate_graph6 (G, nodes=None, header=True)
```

Generate graph6 format string from a simple undirected graph.

Parameters G: Graph (undirected)

nodes: list or iterable

Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used.

header: bool

If True add '>>graph6<<' string to head of data

Returns s: string

String in graph6 format

Raises NetworkXError

If the graph is directed or has parallel edges

See also:

```
read_graph6, parse_graph6, write_graph6
```

Notes

The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are silently ignored.

References

Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

Examples

```
>>> G = nx.Graph([(0, 1)])
>>> nx.generate_graph6(G)
'>>graph6<<A_'</pre>
```

write_graph6

```
write_graph6 (G, path, nodes=None, header=True)
```

Write a simple undirected graph to path in graph6 format.

```
Parameters G: Graph (undirected)
```

path: file or string

File or filename to write.

nodes: list or iterable

Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used.

header: bool

If True add '>>graph6<<' string to head of data

Raises NetworkXError

If the graph is directed or has parallel edges

See also:

```
generate_graph6, parse_graph6, read_graph6
```

Notes

The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are silently ignored.

References

Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

Examples

```
>>> G = nx.Graph([(0, 1)])
>>> nx.write_graph6(G, 'test.g6')
```

9.11.2 Sparse6

Sparse6

Read and write graphs in sparse6 format.

Format

"graph6 and sparse6 are formats for storing undirected graphs in a compact manner, using only printable ASCII characters. Files in these formats have text type and contain one line per graph."

See http://cs.anu.edu.au/~bdm/data/formats.txt for details.

parse_sparse6(string)	Read an undirected graph in sparse6 format from string.
read_sparse6(path)	Read an undirected graph in sparse6 format from path.
$generate_sparse6(G[, nodes, header])$	Generate sparse6 format string from an undirected graph.
<pre>write_sparse6(G, path[, nodes, header])</pre>	Write graph G to given path in sparse6 format.

parse_sparse6

parse_sparse6 (string)

Read an undirected graph in sparse6 format from string.

Parameters string: string

Data in sparse6 format

Returns G: Graph

Raises NetworkXError

If the string is unable to be parsed in sparse6 format

See also:

```
generate_sparse6, read_sparse6, write_sparse6
```

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt

Examples

```
>>> G = nx.parse_sparse6(':A_')
>>> sorted(G.edges())
[(0, 1), (0, 1), (0, 1)]
```

read sparse6

read_sparse6 (path)

Read an undirected graph in sparse6 format from path.

Parameters path: file or string

File or filename to write.

Returns G: Graph/Multigraph or list of Graphs/MultiGraphs

If the file contains multple lines then a list of graphs is returned

Raises NetworkXError

If the string is unable to be parsed in sparse6 format

See also:

```
generate_sparse6, read_sparse6, parse_sparse6
```

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt

Examples

```
>>> nx.write_sparse6(nx.Graph([(0,1),(0,1),(0,1)]), 'test.s6')
>>> G = nx.read_sparse6('test.s6')
>>> sorted(G.edges())
[(0, 1)]
```

generate_sparse6

```
generate_sparse6 (G, nodes=None, header=True)
```

Generate sparse6 format string from an undirected graph.

Parameters G: Graph (undirected)

nodes: list or iterable

Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used.

header: bool

If True add '>>sparse6<<' string to head of data

Returns s: string

String in sparse6 format

Raises NetworkXError

If the graph is directed

See also:

```
read_sparse6, parse_sparse6, write_sparse6
```

Notes

The format does not support edge or node labels. References ———— Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

Examples

```
>>> G = nx.MultiGraph([(0, 1), (0, 1), (0, 1)])
>>> nx.generate_sparse6(G)
'>>sparse6<<:A_'</pre>
```

write_sparse6

```
write_sparse6 (G, path, nodes=None, header=True)
```

Write graph G to given path in sparse6 format. Parameters ———— G : Graph (undirected)

path [file or string] File or filename to write

nodes: list or iterable Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used.

header: bool If True add '>>sparse6<<' string to head of data

Raises NetworkXError

If the graph is directed

See also:

```
read_sparse6, parse_sparse6, generate_sparse6
```

Notes

The format does not support edge or node labels.

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

Examples

```
>>> G = nx.Graph([(0, 1), (0, 1), (0, 1)])
>>> nx.write_sparse6(G, 'test.s6')
```

9.12 Pajek

Read graphs in Pajek format.

This implementation handles directed and undirected graphs including those with self loops and parallel edges.

9.12. Pajek 495

9.12.1 Format

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

read_pajek(path[, encoding])	Read graph in Pajek format from path.
<pre>write_pajek(G, path[, encoding])</pre>	Write graph in Pajek format to path.
parse_pajek(lines)	Parse Pajek format graph from string or iterable.

9.12.2 read pajek

read_pajek (path, encoding='UTF-8')

Read graph in Pajek format from path.

Parameters path: file or string

File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed.

Returns G: NetworkX MultiGraph or MultiDiGraph.

References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")
>>> G=nx.read_pajek("test.net")
```

To create a Graph instead of a MultiGraph use

```
>>> G1=nx.Graph(G)
```

9.12.3 write_pajek

```
write_pajek (G, path, encoding='UTF-8')
```

Write graph in Pajek format to path.

Parameters G: graph

A Networkx graph

path: file or string

File or filename to write. Filenames ending in .gz or .bz2 will be compressed.

References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")
```

9.12.4 parse_pajek

```
parse_pajek (lines)
```

Parse Pajek format graph from string or iterable.

Parameters lines: string or iterable

Data in Pajek format.

Returns G: NetworkX graph

See also:

read_pajek

9.13 GIS Shapefile

Generates a networkx. DiGraph from point and line shapefiles.

"The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software. It is developed and regulated by Esri as a (mostly) open specification for data interoperability among Esri and other software products." See http://en.wikipedia.org/wiki/Shapefile for additional information.

read_shp(path[, simplify])	Generates a networkx.DiGraph from shapefiles.
write_shp(G, outdir)	Writes a networkx.DiGraph to two shapefiles, edges and nodes.

9.13.1 read_shp

read_shp (path, simplify=True)

Generates a networkx.DiGraph from shapefiles. Point geometries are translated into nodes, lines into edges. Coordinate tuples are used as keys. Attributes are preserved, line geometries are simplified into start and end coordinates. Accepts a single shapefile or directory of many shapefiles.

"The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software [R420]."

Parameters path: file or string

File, directory, or filename to read.

simplify: bool

If True, simplify line geometries to start and end coordinates. If False, and line feature geometry has multiple segments, the non-geometric attributes for that feature will be repeated for each edge comprising that feature.

Returns G: NetworkX graph

9.13. GIS Shapefile 497

References

[R420]

Examples

```
>>> G=nx.read_shp('test.shp')
```

9.13.2 write shp

write_shp(G, outdir)

Writes a networkx.DiGraph to two shapefiles, edges and nodes. Nodes and edges are expected to have a Well Known Binary (Wkb) or Well Known Text (Wkt) key in order to generate geometries. Also acceptable are nodes with a numeric tuple key (x,y).

"The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software [R421]."

Parameters outdir: directory path

Output directory for the two shapefiles.

Returns None

References

[R421]

Examples

nx.write_shp(digraph, '/shapefiles') # doctest +SKIP

CHAPTER

TEN

DRAWING

NetworkX provides basic functionality for visualizing graphs, but its main goal is to enable graph analysis rather than perform graph visualization. In the future, graph visualization functionality may be removed from NetworkX or only available as an add-on package.

Proper graph visualization is hard, and we highly recommend that people visualize their graphs with tools dedicated to that task. Notable examples of dedicated and fully-featured graph visualization tools are Cytoscape, Gephi, Graphviz and, for LaTeX typesetting, PGF/TikZ. To use these and other such tools, you should export your NetworkX graph into a format that can be read by those tools. For example, Cytoscape can read the GraphML format, and so, $networkx.write_q raphml(G)$ might be an appropriate choice.

10.1 Matplotlib

Draw networks with matplotlib.

10.1.1 See Also

matplotlib: http://matplotlib.org/

pygraphviz: http://pygraphviz.github.io/

draw(G[, pos, ax, hold])	Draw the graph G with Matplotlib.
draw_networkx(G[, pos, arrows, with_labels])	Draw the graph G using Matplotlib.
draw_networkx_nodes(G, pos[, nodelist,])	Draw the nodes of the graph G.
draw_networkx_edges(G, pos[, edgelist,])	Draw the edges of the graph G.
draw_networkx_labels(G, pos[, labels,])	Draw node labels on the graph G.
$draw_networkx_edge_labels(G, pos[,])$	Draw edge labels.
draw_circular(G, **kwargs)	Draw the graph G with a circular layout.
draw_random(G, **kwargs)	Draw the graph G with a random layout.
draw_spectral(G, **kwargs)	Draw the graph G with a spectral layout.
draw_spring(G, **kwargs)	Draw the graph G with a spring layout.
draw_shell(G, **kwargs)	Draw networkx graph with shell layout.
draw_graphviz(G[, prog])	Draw networkx graph with graphviz layout.

10.1.2 draw

draw (*G*, *pos=None*, *ax=None*, *hold=None*, **kwds)

Draw the graph G with Matplotlib.

Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis labels etc.

Parameters G: graph

A networkx graph

pos: dictionary, optional

A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.

ax : Matplotlib Axes object, optional

Draw the graph in specified Matplotlib axes.

hold: bool, optional

Set the Matplotlib hold state. If True subsequent draw commands will be added to the current axes.

**kwds: optional keywords

See networkx.draw_networkx() for a description of optional keywords.

See also:

```
draw_networkx, draw_networkx_nodes, draw_networkx_edges, draw_networkx_labels,
draw_networkx_edge_labels
```

Notes

This function has the same name as pylab.draw and pyplot.draw so beware when using

```
>>> from networkx import *
```

since you might overwrite the pylab.draw function.

With pyplot use

```
>>> import matplotlib.pyplot as plt
>>> import networkx as nx
>>> G=nx.dodecahedral_graph()
>>> nx.draw(G) # networkx draw()
>>> plt.draw() # pyplot draw()
```

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

```
>>> G=nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout
```

10.1.3 draw networkx

draw_networkx (G, pos=None, arrows=True, with_labels=True, **kwds)

Draw the graph G using Matplotlib.

Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing features. See draw() for simple drawing without labels or axes.

Parameters G: graph

A networkx graph

pos: dictionary, optional

A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.

arrows : bool, optional (default=True)

For directed graphs, if True draw arrowheads.

with_labels : bool, optional (default=True)

Set to True to draw labels on the nodes.

ax: Matplotlib Axes object, optional

Draw the graph in the specified Matplotlib axes.

nodelist : list, optional (default G.nodes())

Draw only specified nodes

edgelist : list, optional (default=G.edges())

Draw only specified edges

node_size: scalar or array, optional (default=300)

Size of nodes. If an array is specified it must be the same length as nodelist.

node_color: color string, or array of floats, (default='r')

Node color. Can be a single color format string, or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details.

node_shape : string, optional (default='o')

The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8'.

alpha: float, optional (default=1.0)

The node and edge transparency

cmap: Matplotlib colormap, optional (default=None)

Colormap for mapping intensities of nodes

vmin,vmax : float, optional (default=None)

Minimum and maximum for node colormap scaling

linewidths: [None | scalar | sequence]

Line width of symbol border (default =1.0)

10.1. Matplotlib 501

```
width: float, optional (default=1.0)
             Line width of edges
         edge_color : color string, or array of floats (default='r')
             Edge color. Can be a single color format string, or a sequence of colors with the same
             length as edgelist. If numeric values are specified they will be mapped to colors using
             the edge_cmap and edge_vmin,edge_vmax parameters.
         edge_cmap: Matplotlib colormap, optional (default=None)
             Colormap for mapping intensities of edges
         edge_vmin,edge_vmax : floats, optional (default=None)
             Minimum and maximum for edge colormap scaling
         style: string, optional (default='solid')
              Edge line style (solidldashedldotted,dashdot)
         labels: dictionary, optional (default=None)
             Node labels in a dictionary keyed by node of text labels
         font_size : int, optional (default=12)
             Font size for text labels
         font color: string, optional (default='k' black)
             Font color string
         font_weight : string, optional (default='normal')
             Font weight
         font_family : string, optional (default='sans-serif')
             Font family
         label: string, optional
             Label for graph legend
See also:
           draw networkx nodes,
                                            draw_networkx_edges,
                                                                            draw_networkx_labels,
draw_networkx_edge_labels
For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off
with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky.
Examples
>>> G=nx.dodecahedral_graph()
```

draw.

Notes

>>> nx.draw(G)

>>> import matplotlib.pyplot as plt >>> limits=plt.axis('off') # turn of axis

>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

10.1.4 draw_networkx_nodes

Draw the nodes of the graph G.

This draws only the nodes of the graph G.

Parameters G: graph

A networkx graph

pos: dictionary

A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2.

ax : Matplotlib Axes object, optional

Draw the graph in the specified Matplotlib axes.

nodelist: list, optional

Draw only specified nodes (default G.nodes())

node_size : scalar or array

Size of nodes (default=300). If an array is specified it must be the same length as nodelist.

node color: color string, or array of floats

Node color. Can be a single color format string (default='r'), or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details.

node_shape : string

The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8' (default='o').

alpha: float

The node transparency (default=1.0)

cmap: Matplotlib colormap

Colormap for mapping intensities of nodes (default=None)

vmin,vmax: floats

Minimum and maximum for node colormap scaling (default=None)

linewidths : [None | scalar | sequence]

Line width of symbol border (default =1.0)

label : [Nonel string]

Label for legend

Returns matplotlib.collections.PathCollection

10.1. Matplotlib 503

PathCollection of the nodes.

See also:

```
draw, draw_networkx, draw_networkx_edges, draw_networkx_labels,
```

Examples

```
>>> G=nx.dodecahedral_graph()
>>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G))
```

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

10.1.5 draw networkx edges

Draw the edges of the graph G.

This draws only the edges of the graph G.

```
Parameters G: graph
```

A networkx graph

pos: dictionary

A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2.

edgelist: collection of edge tuples

Draw only specified edges(default=G.edges())

width: float, or array of floats

Line width of edges (default=1.0)

edge_color: color string, or array of floats

Edge color. Can be a single color format string (default='r'), or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.

style: string

Edge line style (default='solid') (solidldashedldotted,dashdot)

alpha: float

The edge transparency (default=1.0)

edge_cmap: Matplotlib colormap

Colormap for mapping intensities of edges (default=None)

edge_vmin,edge_vmax: floats

Minimum and maximum for edge colormap scaling (default=None)

ax: Matplotlib Axes object, optional

Draw the graph in the specified Matplotlib axes.

arrows : bool, optional (default=True)

For directed graphs, if True draw arrowheads.

label: [Nonel string]

Label for legend

Returns matplotlib.collection.LineCollection

LineCollection of the edges

See also:

```
draw_networkx, draw_networkx_nodes, draw_networkx_labels, draw_networkx_edge_labels
```

Notes

For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky.

Examples

```
>>> G=nx.dodecahedral_graph()
>>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G))
```

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

10.1.6 draw networkx labels

arameters G. graph

A networkx graph

pos: dictionary

A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2.

labels : dictionary, optional (default=None)

Node labels in a dictionary keyed by node of text labels

font_size: int

Font size for text labels (default=12)

font_color: string

Font color string (default='k' black)

font_family: string

Font family (default='sans-serif')

10.1. Matplotlib 505

```
font_weight : string
```

Font weight (default='normal')

alpha: float

The text transparency (default=1.0)

ax : Matplotlib Axes object, optional

Draw the graph in the specified Matplotlib axes.

Returns dict

dict of labels keyed on the nodes

See also:

```
draw, draw_networkx, draw_networkx_nodes, draw_networkx_edges, draw_networkx_edge_labels
```

Examples

```
>>> G=nx.dodecahedral_graph()
>>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G))
```

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

10.1.7 draw networkx edge labels

```
\label{local_constraints}  \begin{aligned} \textbf{draw\_networkx\_edge\_labels} & (G, \quad pos, \quad edge\_labels=None, \quad label\_pos=0.5, \quad font\_size=10, \\ & \quad font\_color='k', \quad font\_family='sans-serif', \quad font\_weight='normal', \\ & \quad alpha=1.0, bbox=None, ax=None, rotate=True, **kwds) \end{aligned}
```

Draw edge labels.

Parameters G: graph

A networkx graph

pos: dictionary

A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2.

ax : Matplotlib Axes object, optional

Draw the graph in the specified Matplotlib axes.

alpha: float

The text transparency (default=1.0)

edge_labels : dictionary

Edge labels in a dictionary keyed by edge two-tuple of text labels (default=None). Only labels for the keys in the dictionary are drawn.

label_pos : float

Position of edge label along edge (0=head, 0.5=center, 1=tail)

font_size: int

Font size for text labels (default=12)

```
font_color: string
```

Font color string (default='k' black)

font_weight : string

Font weight (default='normal')

font_family: string

Font family (default='sans-serif')

bbox : Matplotlib bbox

Specify text box shape and colors.

clip_on: bool

Turn on clipping at axis boundaries (default=True)

Returns dict

dict of labels keyed on the edges

See also:

```
draw_networkx, draw_networkx_nodes, draw_networkx_edges, draw_networkx_labels
```

Examples

```
>>> G=nx.dodecahedral_graph()
>>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G))
```

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

10.1.8 draw_circular

```
draw circular(G, **kwargs)
```

Draw the graph G with a circular layout.

Parameters G: graph

A networkx graph

**kwargs: optional keywords

See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.

10.1.9 draw_random

```
draw_random(G, **kwargs)
```

Draw the graph G with a random layout.

Parameters G: graph

A networkx graph

**kwargs: optional keywords

10.1. Matplotlib 507

See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.

10.1.10 draw_spectral

draw_spectral(G, **kwargs)

Draw the graph G with a spectral layout.

Parameters G: graph

A networkx graph

**kwargs: optional keywords

See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.

10.1.11 draw_spring

draw_spring(G, **kwargs)

Draw the graph G with a spring layout.

Parameters G: graph

A networkx graph

**kwargs: optional keywords

See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.

10.1.12 draw shell

draw_shell(G, **kwargs)

Draw networkx graph with shell layout.

Parameters G: graph

A networkx graph

**kwargs: optional keywords

See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.

10.1.13 draw graphviz

draw_graphviz (G, prog='neato', **kwargs)

Draw networkx graph with graphviz layout.

Parameters G: graph

A networkx graph

prog: string, optional

Name of Graphviz layout program

**kwargs: optional keywords

See networkx.draw_networkx() for a description of optional keywords.

10.2 Graphviz AGraph (dot)

Interface to pygraphviz AGraph class.

10.2.1 Examples

```
>>> G=nx.complete_graph(5)
>>> A=nx.to_agraph(G)
>>> H=nx.from_agraph(A)
```

10.2.2 See Also

Pygraphviz: http://pygraphviz.github.io/

from_agraph(A[, create_using])	Return a NetworkX Graph or DiGraph from a PyGraphviz graph.
to_agraph (N)	Return a pygraphviz graph from a NetworkX graph N.
write_dot(G, path)	Write NetworkX graph G to Graphviz dot format on path.
read_dot(path)	Return a NetworkX graph from a dot file on path.
<pre>graphviz_layout(G[, prog, root, args])</pre>	Create node positions for G using Graphviz.
$pygraphviz_layout(G[, prog, root, args])$	Create node positions for G using Graphviz.

10.2.3 from_agraph

from_agraph (A, create_using=None)

Return a NetworkX Graph or DiGraph from a PyGraphviz graph.

Parameters A: PyGraphviz AGraph

A graph created with PyGraphviz

create_using : NetworkX graph class instance

The output is created using the given graph class instance

Notes

The Graph G will have a dictionary G.graph_attr containing the default graphviz attributes for graphs, nodes and edges.

Default node attributes will be in the dictionary G.node_attr which is keyed by node.

Edge attributes will be returned as edge data in G. With edge_attr=False the edge data will be the Graphviz edge weight attribute or the value 1 if no edge weight attribute is found.

```
>>> K5=nx.complete_graph(5)
>>> A=nx.to_agraph(K5)
>>> G=nx.from_agraph(A)
>>> G=nx.from_agraph(A)
```

10.2.4 to agraph

$to_agraph(N)$

Return a pygraphviz graph from a NetworkX graph N.

Parameters N: NetworkX graph

A graph created with NetworkX

Notes

If N has an dict N.graph_attr an attempt will be made first to copy properties attached to the graph (see from_agraph) and then updated with the calling arguments if any.

Examples

```
>>> K5=nx.complete_graph(5)
>>> A=nx.to_agraph(K5)
```

10.2.5 write dot

write_dot(G, path)

Write NetworkX graph G to Graphviz dot format on path.

Parameters G: graph

A networkx graph

path: filename

Filename or file handle to write

10.2.6 read_dot

read_dot (path)

Return a NetworkX graph from a dot file on path.

Parameters path: file or string

File name or file handle to read.

10.2.7 graphviz_layout

```
graphviz_layout (G, prog='neato', root=None, args='')
```

Create node positions for G using Graphviz.

Parameters G: NetworkX graph

A graph created with NetworkX

prog: string

Name of Graphviz layout program

root: string, optional

Root node for twopi layout

args: string, optional

Extra arguments to Graphviz layout program

Returns: dictionary

Dictionary of x,y, positions keyed by node.

Notes

This is a wrapper for pygraphviz_layout.

Examples

```
>>> G=nx.petersen_graph()
>>> pos=nx.graphviz_layout(G)
>>> pos=nx.graphviz_layout(G,prog='dot')
```

10.2.8 pygraphviz_layout

```
pygraphviz_layout (G, prog='neato', root=None, args='')

Create node positions for G using Graphviz.
```

Parameters G: NetworkX graph

A graph created with NetworkX

prog : string

Name of Graphviz layout program

root: string, optional

Root node for twopi layout

args: string, optional

Extra arguments to Graphviz layout program

Returns: dictionary

Dictionary of x,y, positions keyed by node.

```
>>> G=nx.petersen_graph()
>>> pos=nx.graphviz_layout(G)
>>> pos=nx.graphviz_layout(G,prog='dot')
```

10.3 Graphviz with pydot

Import and export NetworkX graphs in Graphviz dot format using pydot.

Either this module or nx_pygraphviz can be used to interface with graphviz.

10.3.1 See Also

Pydot: http://code.google.com/p/pydot/ Graphviz: http://www.research.att.com/sw/tools/graphviz/ DOT Language: http://www.graphviz.org/doc/info/lang.html

from_pydot(P)	Return a NetworkX graph from a Pydot graph.
to_pydot(N[, strict])	Return a pydot graph from a NetworkX graph N.
write_dot(G, path)	Write NetworkX graph G to Graphviz dot format on path.
read_dot(path)	Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.
$graphviz_layout(G[, prog, root])$	Create node positions using Pydot and Graphviz.
<pre>pydot_layout(G[, prog, root])</pre>	Create node positions using Pydot and Graphviz.

10.3.2 from_pydot

 $from_pydot(P)$

Return a NetworkX graph from a Pydot graph.

Parameters P: Pydot graph

A graph created with Pydot

Returns G: NetworkX multigraph

A MultiGraph or MultiDiGraph.

Examples

```
>>> K5=nx.complete_graph(5)
>>> A=nx.to_pydot(K5)
>>> G=nx.from_pydot(A) # return MultiGraph
>>> G=nx.Graph(nx.from_pydot(A)) # make a Graph instead of MultiGraph
```

10.3.3 to pydot

to_pydot (N, strict=True)

Return a pydot graph from a NetworkX graph N.

Parameters N: NetworkX graph

A graph created with NetworkX

```
>>> K5=nx.complete_graph(5)
>>> P=nx.to_pydot(K5)
```

10.3.4 write_dot

write_dot(G, path)

Write NetworkX graph G to Graphviz dot format on path.

Path can be a string or a file handle.

10.3.5 read dot

```
read_dot (path)
```

Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.

Parameters path: filename or file handle

Returns G: NetworkX multigraph

A MultiGraph or MultiDiGraph.

Notes

Use G=nx.Graph(nx.read_dot(path)) to return a Graph instead of a MultiGraph.

10.3.6 graphviz_layout

```
graphviz_layout (G, prog='neato', root=None, **kwds)
```

Create node positions using Pydot and Graphviz.

Returns a dictionary of positions keyed by node.

Notes

This is a wrapper for pydot_layout.

Examples

```
>>> G=nx.complete_graph(4)
>>> pos=nx.graphviz_layout(G)
>>> pos=nx.graphviz_layout(G,prog='dot')
```

10.3.7 pydot layout

```
pydot_layout (G, prog='neato', root=None, **kwds)
```

Create node positions using Pydot and Graphviz.

Returns a dictionary of positions keyed by node.

```
>>> G=nx.complete_graph(4)
>>> pos=nx.pydot_layout(G)
>>> pos=nx.pydot_layout(G,prog='dot')
```

10.4 Graph Layout

Node positioning algorithms for graph drawing.

circular_layout(G[, dim, scale, center])	Position nodes on a circle.
random_layout(G[, dim, center])	Position nodes uniformly at random in the unit square.
<pre>shell_layout(G[, nlist, dim, scale, center])</pre>	Position nodes in concentric circles.
spring_layout(G[, dim, k, pos, fixed,])	Position nodes using Fruchterman-Reingold force-directed algorithm.
spectral_layout(G[, dim, weight, scale, center])	Position nodes using the eigenvectors of the graph Laplacian.

10.4.1 circular_layout

```
circular_layout (G, dim=2, scale=1, center=None)
```

Position nodes on a circle.

Parameters G: NetworkX graph or list of nodes

dim: int

Dimension of layout, currently only dim=2 is supported

scale: float

Scale factor for positions **center**: array-like or None

Coordinate pair around which to center the layout.

Returns dict:

A dictionary of positions keyed by node

Notes

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.

Examples

```
>>> G=nx.path_graph(4)
>>> pos=nx.circular_layout(G)
```

10.4.2 random_layout

```
{\tt random\_layout}\;(G,dim{=}2,center{=}None)
```

Position nodes uniformly at random in the unit square.

For every node, a position is generated by choosing each of dim coordinates uniformly at random on the interval [0.0, 1.0).

NumPy (http://scipy.org) is required for this function.

Parameters G: NetworkX graph or list of nodes

A position will be assigned to every node in G.

dim: int

Dimension of layout.

center: array-like or None

Coordinate pair around which to center the layout.

Returns pos: dict

A dictionary of positions keyed by node

Examples

```
>>> G = nx.lollipop_graph(4, 3)
>>> pos = nx.random_layout(G)
```

10.4.3 shell_layout

```
shell_layout (G, nlist=None, dim=2, scale=1, center=None)
```

Position nodes in concentric circles.

Parameters G: NetworkX graph or list of nodes

nlist: list of lists

List of node lists for each shell.

dim: int

Dimension of layout, currently only dim=2 is supported

scale: float

Scale factor for positions

center: array-like or None

Coordinate pair around which to center the layout.

Returns dict:

A dictionary of positions keyed by node

Notes

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.

Examples

```
>>> G = nx.path_graph(4)
>>> shells = [[0], [1,2,3]]
>>> pos = nx.shell_layout(G, shells)
```

10.4. Graph Layout 515

10.4.4 spring layout

Position nodes using Fruchterman-Reingold force-directed algorithm.

Parameters G: NetworkX graph or list of nodes

dim: int

Dimension of layout

k: float (default=None)

Optimal distance between nodes. If None the distance is set to 1/sqrt(n) where n is the number of nodes. Increase this value to move nodes farther apart.

pos: dict or None optional (default=None)

Initial positions for nodes as a dictionary with node as keys and values as a list or tuple. If None, then use random initial positions.

fixed: list or None optional (default=None)

Nodes to keep fixed at initial position.

iterations: int optional (default=50)

Number of iterations of spring-force relaxation

weight: string or None optional (default='weight')

The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1.

scale : float (default=1.0)

Scale factor for positions. The nodes are positioned in a box of size [0,scale] x [0,scale].

center: array-like or None

Coordinate pair around which to center the layout.

Returns dict:

A dictionary of positions keyed by node

Examples

```
>>> G=nx.path_graph(4)
>>> pos=nx.spring_layout(G)
```

The same using longer function name >>> pos=nx.fruchterman_reingold_layout(G)

10.4.5 spectral layout

```
spectral_layout (G, dim=2, weight='weight', scale=1, center=None) Position nodes using the eigenvectors of the graph Laplacian.
```

Parameters G: NetworkX graph or list of nodes

dim: int

Dimension of layout

```
weight : string or None optional (default='weight')
```

The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1.

scale: float

Scale factor for positions

center: array-like or None

Coordinate pair around which to center the layout.

Returns dict:

A dictionary of positions keyed by node

Notes

Directed graphs will be considered as undirected graphs when positioning the nodes.

For larger graphs (>500 nodes) this will use the SciPy sparse eigenvalue solver (ARPACK).

Examples

```
>>> G=nx.path_graph(4)
>>> pos=nx.spectral_layout(G)
```

10.4. Graph Layout 517

CHAPTER

ELEVEN

EXCEPTIONS

Base exceptions and errors for NetworkX.

class NetworkXException

Base class for exceptions in NetworkX.

class NetworkXError

Exception for a serious error in NetworkX

class NetworkXPointlessConcept

Harary, F. and Read, R. "Is the Null Graph a Pointless Concept?" In Graphs and Combinatorics Conference, George Washington University. New York: Springer-Verlag, 1973.

class NetworkXAlgorithmError

Exception for unexpected termination of algorithms.

class NetworkXUnfeasible

Exception raised by algorithms trying to solve a problem instance that has no feasible solution.

class NetworkXNoPath

Exception for algorithms that should return a path when running on graphs where such a path does not exist.

class NetworkXUnbounded

Exception raised by algorithms trying to solve a maximization or a minimization problem instance that is unbounded.

TWELVE

UTILITIES

12.1 Helper Functions

Miscellaneous Helpers for NetworkX.

These are not imported into the base networkx namespace but can be accessed, for example, as

```
>>> import networkx
>>> networkx.utils.is_string_like('spam')
True
```

is_string_like(obj)	Check if obj is string.
flatten(obj[, result])	Return flattened version of (possibly nested) iterable object.
iterable(obj)	Return True if obj is iterable with a well-defined len().
is_list_of_ints(intlist)	Return True if list is a list of ints.
make_str(x)	Return the string representation of t.
<pre>generate_unique_node()</pre>	Generate a unique node label.
default_opener(filename)	Opens filename using system's default program.

12.1.1 is string like

```
is_string_like (obj)

Check if obj is string.
```

12.1.2 flatten

flatten (obj, result=None)

Return flattened version of (possibly nested) iterable object.

12.1.3 iterable

iterable(obj)

Return True if obj is iterable with a well-defined len().

12.1.4 is_list_of_ints

is_list_of_ints(intlist)

Return True if list is a list of ints.

12.1.5 make str

$make_str(x)$

Return the string representation of t.

12.1.6 generate_unique_node

generate_unique_node()

Generate a unique node label.

12.1.7 default_opener

default_opener (filename)

Opens *filename* using system's default program.

Parameters filename: str

The path of the file to be opened.

12.2 Data Structures and Algorithms

Union-find data structure.

UnionFind.union(*objects) Find the sets containing the objects and merge them all.

12.2.1 union

UnionFind.union(*objects)

Find the sets containing the objects and merge them all.

12.3 Random Sequence Generators

Utilities for generating random numbers, random sequences, and random selections.

<pre>create_degree_sequence(n[, sfunction, max_tries])</pre>	
<pre>pareto_sequence(n[, exponent])</pre>	Return sample sequence of length n from a Pareto distribution.
<pre>powerlaw_sequence(n[, exponent])</pre>	Return sample sequence of length n from a power law distribution.
uniform_sequence(n)	Return sample sequence of length n from a uniform distribution.
cumulative_distribution(distribution)	Return normalized cumulative distribution from discrete distribution.
discrete_sequence(n[, distribution,])	Return sample sequence of length n from a given discrete distribution or
<pre>zipf_sequence(n[, alpha, xmin])</pre>	Return a sample sequence of length n from a Zipf distribution with expo
zipf_rv(alpha[, xmin, seed])	Return a random value chosen from the Zipf distribution.
random_weighted_sample(mapping, k)	Return k items without replacement from a weighted sample.
weighted_choice(mapping)	Return a single element from a weighted sample.

522 Chapter 12. Utilities

12.3.1 create_degree_sequence

create_degree_sequence (n, sfunction=None, max_tries=50, **kwds)

12.3.2 pareto_sequence

pareto_sequence (n, exponent=1.0)

Return sample sequence of length n from a Pareto distribution.

12.3.3 powerlaw_sequence

powerlaw_sequence (n, exponent=2.0)

Return sample sequence of length n from a power law distribution.

12.3.4 uniform_sequence

$uniform_sequence(n)$

Return sample sequence of length n from a uniform distribution.

12.3.5 cumulative distribution

cumulative distribution (distribution)

Return normalized cumulative distribution from discrete distribution.

12.3.6 discrete_sequence

discrete_sequence (n, distribution=None, cdistribution=None)

Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution.

One of the following must be specified.

distribution = histogram of values, will be normalized

cdistribution = normalized discrete cumulative distribution

12.3.7 zipf_sequence

zipf_sequence (n, alpha=2.0, xmin=1)

Return a sample sequence of length n from a Zipf distribution with exponent parameter alpha and minimum value xmin.

See also:

zipf_rv

12.3.8 zipf rv

Raises ValueError:

If xmin < 1 or If alpha <= 1

Notes

The rejection algorithm generates random values for a the power-law distribution in uniformly bounded expected time dependent on parameters. See [1] for details on its operation.

References

..[1] Luc Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.

Examples

```
>>> nx.zipf_rv(alpha=2, xmin=3, seed=42)
```

12.3.9 random weighted sample

${\tt random_weighted_sample}\ (mapping, k)$

Return k items without replacement from a weighted sample.

The input is a dictionary of items with weights as values.

12.3.10 weighted_choice

weighted_choice (mapping)

Return a single element from a weighted sample.

The input is a dictionary of items with weights as values.

12.4 Decorators

open_file(path_arg[, mode]) Decorator to ensure clean opening and closing of files.

12.4.1 open_file

```
open_file (path_arg, mode='r')
```

Decorator to ensure clean opening and closing of files.

Parameters path_arg: int

Location of the path argument in args. Even if the argument is a named positional argument (with a default value), you must specify its index as a positional argument.

mode: str

String for opening mode.

Returns _open_file : function

Function which cleanly executes the io.

Examples

Decorate functions like this:

```
@open_file(0,'r')
def read_function(pathname):
    pass

@open_file(1,'w')
def write_function(G,pathname):
    pass

@open_file(1,'w')
def write_function(G, pathname='graph.dot')
    pass

@open_file('path', 'w+')
def another_function(arg, **kwargs):
    path = kwargs['path']
    pass
```

12.5 Cuthill-Mckee Ordering

Cuthill-McKee ordering of graph nodes to produce sparse matrices

$cuthill_mckee_ordering(G[, heuristic])$	Generate an ordering (permutation) of the graph nodes to make a sparse
reverse_cuthill_mckee_ordering($G[$, heuristic])	Generate an ordering (permutation) of the graph nodes to make a sparse

12.5.1 cuthill_mckee_ordering

cuthill_mckee_ordering(G, heuristic=None)

Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

Uses the Cuthill-McKee heuristic (based on breadth-first search) [R424].

Parameters G: graph

A NetworkX graph

heuristic: function, optional

Function to choose starting node for RCM algorithm. If None a node from a psuedoperipheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node.

Returns nodes: generator

Generator of nodes in Cuthill-McKee ordering.

See also:

```
reverse cuthill mckee ordering
```

Notes

The optimal solution the the bandwidth reduction is NP-complete [R425].

References

```
[R424], [R425]
```

Examples

```
>>> from networkx.utils import cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)
```

Smallest degree node as heuristic function:

```
>>> def smallest_degree(G):
... return min(G, key=G.degree)
>>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree))
```

12.5.2 reverse_cuthill_mckee_ordering

reverse_cuthill_mckee_ordering(G, heuristic=None)

Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

Uses the reverse Cuthill-McKee heuristic (based on breadth-first search) [R426].

Parameters G: graph

A NetworkX graph

heuristic: function, optional

Function to choose starting node for RCM algorithm. If None a node from a psuedoperipheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node.

Returns nodes: generator

Generator of nodes in reverse Cuthill-McKee ordering.

See also:

```
cuthill_mckee_ordering
```

Notes

The optimal solution the the bandwidth reduction is NP-complete [R427].

References

```
[R426], [R427]
```

Examples

```
>>> from networkx.utils import reverse_cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(reverse_cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)
```

Smallest degree node as heuristic function:

```
>>> def smallest_degree(G):
... return min(G, key=G.degree)
>>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))
```

12.6 Context Managers

reversed(*args, **kwds) A context manager for temporarily reversing a directed graph in place.

12.6.1 reversed

```
reversed(*args, **kwds)
```

A context manager for temporarily reversing a directed graph in place.

This is a no-op for undirected graphs.

Parameters G: graph

A NetworkX graph.

528 Chapter 12. Utilities

CHAPTER

THIRTEEN

LICENSE

NetworkX is distributed with the BSD license.

Copyright (C) 2004-2012, NetworkX Developers Aric Hagberg hagberg@lanl.gov
Dan Schult hall rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- * Neither the name of the NetworkX Developers nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

530 Chapter 13. License

CHAPTER

FOURTEEN

CITING

To cite NetworkX please use the following publication:

Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, "Exploring network structure, dynamics, and function using NetworkX", in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug 2008

532 Chapter 14. Citing

CHAPTER

FIFTEEN

CREDITS

NetworkX was originally written by Aric Hagberg, Dan Schult, and Pieter Swart, and has been developed with the help of many others. Thanks to everyone who has improved NetworkX by contributing code, bug reports (and fixes), documentation, and input on design, features, and the future of NetworkX.

15.1 Contributions

This section aims to provide a list of people and projects that have contributed to networkx. It is intended to be an *inclusive* list, and anyone who has contributed and wishes to make that contribution known is welcome to add an entry into this file. Generally, no name should be added to this list without the approval of the person associated with that name.

Creating a comprehensive list of contributors can be difficult, and the list within this file is almost certainly incomplete. Contributors include testers, bug reporters, contributors who wish to remain anonymous, funding sources, academic advisors, end users, and even build/integration systems (such as TravisCI, coveralls, and readthedocs).

Do you want to make your contribution known? If you have commit access, edit this file and add your name. If you do not have commit access, feel free to open an issue, submit a pull request, or get in contact with one of the official team members.

A supplementary (but still incomplete) list of contributors is given by the list of names that have commits in networkx's git repository. This can be obtained via:

```
git log --raw | grep "^Author: " | sort | uniq
```

A historical, partial listing of contributors and their contributions to some of the earlier versions of NetworkX can be found here.

15.1.1 Original Authors

Aric Hagberg Dan Schult Pieter Swart

15.1.2 Contributors

Optionally, add your desired name and include a few relevant links. The order is partially historical, and now, mostly arbitrary.

- Aric Hagberg, GitHub: hagberg
- Dan Schult, GitHub: dschult
- Pieter Swart
- Katy Bold
- · Hernan Rozenfeld
- · Brendt Wohlberg
- Jim Bagrow
- Holly Johnsen
- Arnar Flatberg
- Chris Myers
- Joel Miller
- Keith Briggs
- Ignacio Rozada
- Phillipp Pagel
- Sverre Sundsdal
- Ross M. Richardson
- Eben Kenah
- · Sasha Gutfriend
- Udi Weinsberg
- Matteo Dell'Amico
- · Andrew Conway
- Raf Guns
- Salim Fadhley
- Matteo Dell'Amico
- Fabrice Desclaux
- · Arpad Horvath
- Minh Van Nguyen
- Willem Ligtenberg
- Loïc Séguin-C.
- Paul McGuire
- Jesus Cerquides
- Ben Edwards
- Jon Olav Vik
- Hugh Brown
- Ben Reilly
- Leo Lopes

534 Chapter 15. Credits

- Jordi Torrents, GitHub: jtorrents
- · Dheeraj M R
- · Franck Kalala
- Simon Knight
- · Conrad Lee
- · Sérgio Nery Simões
- Robert King
- · Nick Mancuso
- · Brian Cloteaux
- Alejandro Weinstein
- Dustin Smith
- · Mathieu Larose
- · Vincent Gauthier
- Sérgio Nery Simões
- chebee7i, GitHub: chebee7i
- · Jeffrey Finkelstein
- Jean-Gabriel Young, Github: jg-you
- · Andrey Paramonov, http://aparamon.msk.ru
- Mridul Seth, GitHub: MridulS
- Thodoris Sotiropoulos, GitHub: theosotr
- Konstantinos Karakatsanis, GitHub: k-karakatsanis
- Ryan Nelson, GitHub: rnelsonchem

15.2 Support

networkx and those who have contributed to networkx have received support throughout the years from a variety of sources. We list them below. If you have provided support to networkx and a support acknowledgment does not appear below, please help us remedy the situation, and similarly, please let us know if you'd like something modified or corrected.

15.2.1 Research Groups

networkx acknowledges support from the following:

- Center for Nonlinear Studies, Los Alamos National Laboratory, PI: Aric Hagberg
- Open Source Programs Office, Google
- · Complexity Sciences Center, Department of Physics, University of California-Davis, PI: James P. Crutchfield
- Center for Complexity and Collective Computation, Wisconsin Institute for Discovery, University of Wisconsin-Madison, PIs: Jessica C. Flack and David C. Krakauer

15.2. Support 535

15.2.2 Funding

networkx acknowledges support from the following:

- Google Summer of Code via Python Software Foundation
- U.S. Army Research Office grant W911NF-12-1-0288
- DARPA Physical Intelligence Subcontract No. 9060-000709
- NSF Grant No. PHY-0748828
- John Templeton Foundation through a grant to the Santa Fe Institute to study complexity
- U.S. Army Research Laboratory and the U.S. Army Research Office under contract number W911NF-13-1-0340

536 Chapter 15. Credits

CHAPTER

SIXTEEN

GLOSSARY

dictionary A Python dictionary maps keys to values. Also known as "hashes", or "associative arrays". See http://docs.python.org/tutorial/datastructures.html#dictionaries

ebunch An iteratable container of edge tuples like a list, iterator, or file.

edge Edges are either two-tuples of nodes (u,v) or three tuples of nodes with an edge attribute dictionary (u,v,dict).

edge attribute Edges can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding an edge assigning to the G.edge[u][v] attribute dictionary for the specified edge u-v.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__() method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash value internally.

All of Python's immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal, and their hash value is their id().

Definition from http://docs.python.org/glossary.html

nbunch An nbunch is any iterable container of nodes that is not itself a node in the graph. It can be an iterable or an iterator, e.g. a list, set, graph, file, etc..

node A node can be any hashable Python object except None.

node attribute Nodes can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding a node or assigning to the G.node[n] attribute dictionary for the specified node n.

- [R184] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf
- [R185] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf
- [R186] White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf
- [R189] Torrents, J. and F. Ferraro (2015) Structural Cohesion: Visualization and Heuristics for Fast Computation. http://arxiv.org/pdf/1503.04476v1
- [R190] White, Douglas R., and Mark Newman (2001) A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035 http://eclectic.ss.uci.edu/~drwhite/working.pdf
- [R191] Moody. White (2003).hier-J. and D. Social cohesion and embeddedness: 103-28. archical conception of social groups. American Sociological Review 68(1),http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf
- [R182] Boppana, R., & Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180–196. Springer. doi:10.1007/BF01994876
- [R181] Boppana, R., & Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180–196. Springer.
- [R183] Schank, Thomas, and Dorothea Wagner. Approximating clustering coef-Universität Karlsruhe, Fakultät Informatik, 2004. ficient and transitivity. für http://www.emis.ams.org/journals/JGAA/accepted/2005/SchankWagner2005.9.2.pdf
- [R10] dominating set: https://en.wikipedia.org/wiki/Dominating_set
- [R11] edge dominating set: https://en.wikipedia.org/wiki/Edge_dominating_set
- [R187] Vazirani, Vijay V. Approximation Algorithms. Springer Science & Business Media, 2001.
- [R188] Boppana, R., & Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180–196. Springer.
- [R192] Vazirani, Vijay Approximation Algorithms (2001)
- [R193] Bar-Yehuda, R., & Even, S. (1985). A local-ratio theorem for approximating the weighted vertex cover problem. Annals of Discrete Mathematics, 25, 27–46 http://www.cs.technion.ac.il/~reuven/PDF/vc_lr.pdf
- [R197] M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003
- [R198] Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M. Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).
- [R194] M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003

- [R202] M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003
- [R199] M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003
- [R200] Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M. Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).
- [R196] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747–3752 (2004).
- [R195] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747–3752 (2004).
- [R201] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747–3752 (2004).
- [R212] John E. Hopcroft and Richard M. Karp. "An n^{5 / 2} Algorithm for Maximum Matchings in Bipartite Graphs" In: **SIAM Journal of Computing** 2.4 (1973), pp. 225–231. https://dx.doi.org/10.1137/0202019.
- [R213] http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
- [R214] Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html
- [R217] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications.
- [R215] Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
- [R216] Borgatti, S.P. and Halgin, D. In press. Analyzing Affiliation Networks. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications.
- [R219] E. Estrada and J. A. Rodríguez-Velázquez, "Spectral measures of bipartivity in complex networks", PhysRev E 72, 046105 (2005)
- [R207] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48.
- [R206] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48.
- [R208] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48.
- [R209] Robins, G. and M. Alexander (2004). Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Computational & Mathematical Organization Theory 10(1), 69–94.
- [R218] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48.
- [R204] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf
- [R205] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf
- [R203] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf
- [R210] Jean-Loup Guillaume and Matthieu Latapy, Bipartite structure of all complex networks, Inf. Process. Lett. 90, 2004, pg. 215-221 http://dx.doi.org/10.1016/j.ipl.2004.03.007

- [R211] Vladimir Batagelj and Ulrik Brandes, "Efficient generation of large random networks", Phys. Rev. E, 71, 036113, 2005.
- [R220] Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj "Generalized Blockmodeling", Cambridge University Press, 2004.
- [R226] Linton C. Freeman: Centrality in networks: I. Conceptual clarification. Social Networks 1:215-239, 1979. http://leonidzhukov.ru/hse/2013/socialnetworks/papers/freeman79-centrality.pdf
- [R222] Ulrik Brandes: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
- [R223] Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf
- [R224] Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007. http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf
- [R225] Linton C. Freeman: A set of measures of centrality based on betweenness. Sociometry 40: 35–41, 1977 http://moreno.ss.uci.edu/23.pdf
- [R240] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
- [R241] Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf
- [R237] Ulrik Brandes and Daniel Fleischer, Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
- [R238] Karen Stephenson and Marvin Zelen: Rethinking centrality: Methods and examples. Social Networks 11(1):1-37, 1989. http://dx.doi.org/10.1016/0378-8733(89)90016-6
- [R235] Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
- [R236] A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).
- [R242] Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
- [R243] A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).
- [R221] Ulrik Brandes and Daniel Fleischer: Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
- [R244] Phillip Bonacich: Power and Centrality: A Family of Measures. American Journal of Sociology 92(5):1170–1182, 1986 http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf
- [R245] Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, pp. 169.
- [R246] Phillip Bonacich: Power and Centrality: A Family of Measures. American Journal of Sociology 92(5):1170–1182, 1986 http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf
- [R247] Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, pp. 169.
- [R249] Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720.

- [R250] Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39–43, 1953 http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
- [R251] Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720.
- [R252] Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39–43, 1953 http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
- [R227] Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
- [R234] Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
- [R230] Ernesto Estrada, Juan A. Rodriguez-Velazquez, "Subgraph centrality in complex networks", Physical Review E 71, 056103 (2005). http://arxiv.org/abs/cond-mat/0504730
- [R231] Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
- [R232] Ernesto Estrada, Juan A. Rodriguez-Velazquez, "Subgraph centrality in complex networks", Physical Review E 71, 056103 (2005). http://arxiv.org/abs/cond-mat/0504730
- [R233] Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
- [R229] Ernesto Estrada, Desmond J. Higham, Naomichi Hatano, "Communicability Betweenness in Complex Networks" Physica A 388 (2009) 764-774. http://arxiv.org/abs/0905.4102
- [R248] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319, 713 (2000).
- [R253] Mark E. J. Newman: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E 64, 016132, 2001. http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.016132
- [R254] Kwang-Il Goh, Byungnam Kahng and Doochul Kim Universal behavior of Load Distribution in Scale-Free Networks. Physical Review Letters 87(27):1–4, 2001. http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
- [R239] Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook. Lars Backstrom, Jon Kleinberg. http://arxiv.org/pdf/1310.6753v1.pdf
- [R257] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), pp. 566–579.
- [R255] http://en.wikipedia.org/wiki/Tree_decomposition#Treewidth
- [R256] Learning Bounded Treewidth Bayesian Networks. Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699–2731, 2008. http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf
- [R258] Yun Zhang, Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J., Langston, M.A., Samatova, N.F., Genome-Scale Computational Approaches to Memory-Intensive Applications in Systems Biology. Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pp. 12, 12-18 Nov. 2005. doi: 10.1109/SC.2005.29. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559964&isnumber=33129
- [R259] Bron, C. and Kerbosch, J. 1973. Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16, 9 (Sep. 1973), 575-577. http://portal.acm.org/citation.cfm?doid=362342.362367
- [R260] Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi, The worst-case time complexity for generating all maximal cliques and computational experiments, Theoretical Computer Science, Volume 363, Issue 1, Computing and Combinatorics, 10th Annual International Conference on Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28-42 http://dx.doi.org/10.1016/j.tcs.2006.06.015
- [R261] F. Cazals, C. Karande, A note on the problem of reporting maximal cliques, Theoretical Computer Science, Volume 407, Issues 1-3, 6 November 2008, Pages 564-568, http://dx.doi.org/10.1016/j.tcs.2008.05.010

- [R264] Generalizations of the clustering coefficient to weighted complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007). http://jponnela.com/web_documents/a9.pdf
- [R262] Generalizations of the clustering coefficient to weighted complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007). http://jponnela.com/web_documents/a9.pdf
- [R263] Marcus Kaiser, Mean clustering coefficients: the role of isolated nodes and leafs on clustering measures for small-world networks. http://arxiv.org/abs/0802.2512
- [R265] Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005 Cycles and clustering in bipartite networks. Physical Review E (72) 056127.
- [R266] Adrian Kosowski, and Krzysztof Manuszewski, Classical Coloring of Graphs, Graph Colorings, 2-19, 2004. ISBN 0-8218-3458-4.
- [R267] Maciej M. Syslo, Marsingh Deo, Janusz S. Kowalik, Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983. ISBN 0-486-45353-7.
- [R268] Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek, Uncovering the overlapping community structure of complex networks in nature and society Nature 435, 814-818, 2005, doi:10.1038/nature03607
- [R274] Depth-first search and linear graph algorithms, R. Tarjan SIAM Journal of Computing 1(2):146-160, (1972).
- [R275] On finding the strongly connected components in a directed graph. E. Nuutila and E. Soisalon-Soinen Information Processing Letters 49(1): 9-14, (1994)..
- [R276] Depth-first search and linear graph algorithms, R. Tarjan SIAM Journal of Computing 1(2):146-160, (1972).
- [R277] On finding the strongly connected components in a directed graph. E. Nuutila and E. Soisalon-Soinen Information Processing Letters 49(1): 9-14, (1994)..
- [R273] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
- [R272] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
- [R270] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
- [R271] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
- [R269] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
- J. and D. White embeddedness: hier-[R289] Moody, (2003).Social cohesion and archical conception of social groups. American Sociological Review 68(1),103-28.http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf
- [R290] Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533–541. http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
- [R291] Torrents, J. and F. Ferraro (2015). Structural Cohesion: Visualization and Heuristics for Fast Computation. http://arxiv.org/pdf/1503.04476v1
- [R292] Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533–541. http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
- [R278] Beineke, L., O. Oellermann, and R. Pippert (2002). The average connectivity of a graph. Discrete mathematics 252(1-3), 31-45. http://www.sciencedirect.com/science/article/pii/S0012365X01001807

- [R279] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
- [R280] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
- [R282] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, 'Network Analysis: Methodological Foundations', Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
- [R283] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
- [R284] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
- [R285] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
- [R287] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
- [R293] Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a chapter, look for the reference of the book). http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
- [R294] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, 'Network Analysis: Methodological Foundations', Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph Connectivity.pdf
- [R295] An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003. http://arxiv.org/abs/cs.DS/0310049
- [R296] An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003. http://arxiv.org/abs/cs.DS/0310049
- [R298] A model of Internet topology using k-shell decomposition Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154 http://www.pnas.org/content/104/27/11150.full
- [R297] k -core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects, A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Phys. Rev. E 73, 056101 (2006) http://link.aps.org/doi/10.1103/PhysRevE.73.056101
- [R299] Paton, K. An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.
- [R300] Finding all the elementary circuits of a directed graph. D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975. http://dx.doi.org/10.1137/0204007
- [R301] Enumerating the cycles of a digraph: a new preprocessing strategy. G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982.
- [R302] A search strategy for the elementary cycles of a directed graph. J.L. Szwarcfiter and P.E. Lauer, BIT NUMER-ICAL MATHEMATICS, v. 16, no. 2, 192-204, 1976.
- [R305] Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998). http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/
- [R304] Jarvis, J. P.; Shier, D. R. (1996), Graph-theoretic analysis of finite Markov chains, in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling: A Multidisciplinary Approach, CRC Press.
- [R306] http://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py
- [R303] Free Lattices, by R. Freese, J. Jezek and J. B. Nation, AMS, Vol 42, 1995, p. 226.
- [R309] Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance-Regular Graphs. New York: Springer-Verlag, 1989.
- [R310] Weisstein, Eric W. "Distance-Regular Graph." http://mathworld.wolfram.com/Distance-RegularGraph.html

- [R308] Weisstein, Eric W. "Intersection Array." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/IntersectionArray.html
- [R307] Weisstein, Eric W. "Global Parameters." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/GlobalParameters.html
- [R312] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm. Software Practice & Experience, 4:110, 2001.
- [R311] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm. Software Practice & Experience, 4:110, 2001.
- [R313] http://en.wikipedia.org/wiki/Dominating_set
- [R314] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
- [R315] http://en.wikipedia.org/wiki/Dominating_set
- [R316] J. Edmonds, E. L. Johnson. Matching, Euler tours and the Chinese postman. Mathematical programming, Volume 5, Issue 1 (1973), 111-114.
- [R317] http://en.wikipedia.org/wiki/Eulerian_path
- [R318] Z. Kiraly, P. Kovacs. Efficient implementation of minimum-cost flow algorithms. Acta Universitatis Sapientiae, Informatica 4(1):67–118. 2012.
- [R319] R. Barr, F. Glover, D. Klingman. Enhancement of spanning tree labeling procedures for network optimization. INFOR 17(1):16–34. 1979.
- [R320] D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973)
- [R321] S. L. Hakimi. "On the realizability of a set of integers as degrees of the vertices of a linear graph", J. SIAM, 10, pp. 496-506 (1962).
- [R322] F. Boesch and F. Harary. "Line removal algorithms for graphs and their degree lists", IEEE Trans. Circuits and Systems, CAS-23(12), pp. 778-782 (1976).
- [R325] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992).
- [R323] A. Tripathi and S. Vijay. "A note on a theorem of Erdős & Gallai", Discrete Mathematics, 265, pp. 417-420 (2003).
- [R324] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992).
- [R326] Luo, J.; Magee, C.L. (2011), Detecting evolving patterns of self-organizing networks by flow hierarchy measurement, Complexity, Volume 16 Issue 6 53-61. DOI: 10.1002/cplx.20368 http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf
- [R329] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf
- [R336] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
- [R337] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
- [R338] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html

- [R339] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
- [R340] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
- [R341] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
- [R330] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
- [R331] Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-32, 1999. doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.
- [R332] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
- [R333] Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-32, 1999. doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.
- [R334] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
- [R335] Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-632, 1999. doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.
- [R347] T. Zhou, L. Lu, Y.-C. Zhang. Predicting missing links via local information. Eur. Phys. J. B 71 (2009) 623. http://arxiv.org/pdf/0901.0553.pdf
- [R344] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
- [R342] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
- [R345] D. Liben-Nowell, J. Kleinberg. The Link Prediction Problem for Social Networks (2004). http://www.cs.cornell.edu/home/kleinber/link-pred.pdf
- [R343] Sucheta Soundarajan and John Hopcroft. Using community information to improve the precision of link prediction methods. In Proceedings of the 21st international conference companion on World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608. http://doi.acm.org/10.1145/2187980.2188150
- [R346] Sucheta Soundarajan and John Hopcroft. Using community information to improve the precision of link prediction methods. In Proceedings of the 21st international conference companion on World Wide Web (WWW '12 Companion). ACM, New York, NY, USA, 607-608. http://doi.acm.org/10.1145/2187980.2188150
- [R348] Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes. Link prediction in complex networks based on cluster information. In Proceedings of the 21st Brazilian conference on Advances in Artificial Intelligence (SBIA'12) http://dx.doi.org/10.1007/978-3-642-34459-6_10
- [R349] "Efficient Algorithms for Finding Maximum Matching in Graphs", Zvi Galil, ACM Computing Surveys, 1986.
- [R350] 10. (a) Bondy, U. S. R. Murty, Graph Theory. Springer, 2008.
- [R351] Julian J. McAuley, Luciano da Fontoura Costa, and Tibério S. Caetano, "The rich-club phenomenon across complex network hierarchies", Applied Physics Letters Vol 91 Issue 8, August 2007. http://arxiv.org/abs/physics/0701290

- [R352] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon, "Uniform generation of random graphs with arbitrary degree sequences", 2006. http://arxiv.org/abs/cond-mat/0312028
- [R353] R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms", Addison Wesley Professional, 3rd ed., 2001.
- [R354] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a Network", Management Science, Vol. 17, No. 11, Theory Series (Jul., 1971), pp. 712-716.
- [R355] C. Gkantsidis and M. Mihail and E. Zegura, The Markov chain simulation method for generating connected power law random graphs, 2003. http://citeseer.ist.psu.edu/gkantsidis03markov.html
- [R356] Vladimir Batagelj and Andrej Mrvar, A subquadratic triad census algorithm for large sparse networks with small maximum degree, University of Ljubljana, http://vlado.fmf.uni-lj.si/pub/networks/doc/triads/triads.pdf
- [R357] Ulrik Brandes, Sec. 3.6.2 in Network Analysis: Methodological Foundations, Springer, 2005. http://books.google.com/books?id=TTNhSm7HYrIC
- [R378] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and invariant measures", volume 125 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1994.
- [R398] Vladimir Batagelj and Ulrik Brandes, "Efficient generation of large random networks", Phys. Rev. E, 71, 036113, 2005.
- [R399] 16. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
- [R400] 5. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
- [R394] Donald E. Knuth, The Art of Computer Programming, Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.
- [R396] 16. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
- [R397] 5. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
- [R392] 16. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
- [R393] 5. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
- [R401] M. E. J. Newman and D. J. Watts, Renormalization group analysis of the small-world network model, Physics Letters A, 263, 341, 1999. http://dx.doi.org/10.1016/S0375-9601(99)00757-4
- [R405] Duncan J. Watts and Steven H. Strogatz, Collective dynamics of small-world networks, Nature, 393, pp. 440–442, 1998.
- [R403] A. Steger and N. Wormald, Generating random regular graphs quickly, Probability and Computing 8 (1999), 377-396, 1999. http://citeseer.ist.psu.edu/steger99generating.html
- [R404] Jeong Han Kim and Van H. Vu, Generating random regular graphs, Proceedings of the thirty-fifth ACM symposium on Theory of computing, San Diego, CA, USA, pp 213–222, 2003. http://portal.acm.org/citation.cfm?id=780542.780576
- [R391] A. L. Barabási and R. Albert "Emergence of scaling in random networks", Science 286, pp 509-512, 1999.
- [R402] P. Holme and B. J. Kim, "Growing scale-free networks with tunable clustering", Phys. Rev. E, 65, 026107, 2002.
- [R395] I. Ispolatov, P. L. Krapivsky, A. Yuryev, "Duplication-divergence model of protein interaction network", Phys. Rev. E, 71, 061911, 2005.
- [R366] M.E.J. Newman, "The structure and function of complex networks", SIAM REVIEW 45-2, pp 167-256, 2003.
- [R367] Newman, M. E. J. and Strogatz, S. H. and Watts, D. J. Random graphs with arbitrary degree distributions and their applications Phys. Rev. E, 64, 026118 (2001)
- [R369] Fan Chung and L. Lu, Connected components in random graphs with given expected degree sequences, Ann. Combinatorics, 6, pp. 125-145, 2002.

- [R370] Joel Miller and Aric Hagberg, Efficient generation of networks with given expected degrees, in Algorithms and Models for the Web-Graph (WAW 2011), Alan Frieze, Paul Horn, and Paweł Prałat (Eds), LNCS 6732, pp. 115-126, 2011.
- [R371] Hakimi S., On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I, Journal of SIAM, 10(3), pp. 496-506 (1962)
- [R372] Kleitman D.J. and Wang D.L. Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
- [R368] D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
- [R373] Moshen Bayati, Jeong Han Kim, and Amin Saberi, A sequential algorithm for generating random graphs. Algorithmica, Volume 58, Number 4, 860-910, DOI: 10.1007/s00453-009-9340-1
- [R389] Joel C. Miller. "Percolation and epidemics in random clustered networks". In: Physical review. E, Statistical, nonlinear, and soft matter physics 80 (2 Part 1 August 2009).
- [R390] M. E. J. Newman. "Random Graphs with Clustering". In: Physical Review Letters 103 (5 July 2009)
- [R374] P. L. Krapivsky and S. Redner, Organization of Growing Random Networks, Phys. Rev. E, 63, 066123, 2001.
- [R376] P. L. Krapivsky and S. Redner, Organization of Growing Random Networks, Phys. Rev. E, 63, 066123, 2001.
- [R375] P. L. Krapivsky and S. Redner, Network Growth by Copying, Phys. Rev. E, 71, 036118, 2005k.},
- [R377] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, Directed scale-free graphs, Proceedings of the fourteenth annual ACM-SIAM Symposium on Discrete Algorithms, 132–139, 2003.
- [R383] Penrose, Mathew, Random Geometric Graphs, Oxford Studies in Probability, 5, 2003.
- [R379] Masuda, N., Miwa, H., Konno, N.: Geographical threshold graphs with small-world and scale-free properties. Physical Review E 71, 036108 (2005)
- [R380] Milan Bradonjić, Aric Hagberg and Allon G. Percus, Giant component and connectivity in geographical threshold graphs, in Algorithms and Models for the Web-Graph (WAW 2007), Antony Bonato and Fan Chung (Eds), pp. 209–216, 2007
- [R384] B. M. Waxman, Routing of multipoint connections. IEEE J. Select. Areas Commun. 6(9),(1988) 1617-1622.
- [R381] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000.
- [R387] K.B. Singer-Cohen, Random Intersection Graphs, 1995, PhD thesis, Johns Hopkins University
- [R388] Fill, J. A., Scheinerman, E. R., and Singer-Cohen, K. B., Random intersection graphs when m = !(n): An equivalence theorem relating the evolution of the g(n, m, p) and g(n, p) models. Random Struct. Algorithms 16, 2 (2000), 156–176.
- [R386] Godehardt, E., and Jaworski, J. Two models of random intersection graphs and their applications. Electronic Notes in Discrete Mathematics 10 (2001), 129–132.
- [R385] Nikoletseas, S. E., Raptopoulos, C., and Spirakis, P. G. The existence and efficient construction of large independent sets in general random intersection graphs. In ICALP (2004), J. D'1az, J. Karhum"aki, A. Lepist"o, and D. Sannella, Eds., vol. 3142 of Lecture Notes in Computer Science, Springer, pp. 1029–1040.
- [R408] Zachary, Wayne W. "An Information Flow Model for Conflict and Fission in Small Groups." *Journal of Anthropological Research*, 33, 452–473, (1977).
- [R409] Data file from: http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm
- [R406] A. Davis, Gardner, B. B., Gardner, M. R., 1941. Deep South. University of Chicago Press, Chicago, IL.

- [R407] Ronald L. Breiger and Philippa E. Pattison Cumulated social roles: The duality of persons and their algebras, 1 Social Networks, Volume 8, Issue 3, September 1986, Pages 215-256
- [R359] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999.
- [R360] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.' Amer. J. Soc. 105, 493-527, 1999.
- [R365] Santo Fortunato, Community Detection in Graphs, Physics Reports Volume 486, Issues 3-5, February 2010, Pages 75-174. http://arxiv.org/abs/0906.0612
- [R364] Santo Fortunato 'Community Detection in Graphs' Physical Reports Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612 http://arxiv.org/abs/0906.0612
- [R362] A. Condon, R.M. Karp, Algorithms for graph partitioning on the planted partition model, Random Struct. Algor. 18 (2001) 116-140.
- [R363] Santo Fortunato 'Community Detection in Graphs' Physical Reports Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612
- [R361] Ulrik Brandes, Marco Gaertler, Dorothea Wagner, Experiments on Graph Clustering Algorithms, In the proceedings of the 11th Europ. Symp. Algorithms, 2003.
- [R410] Gil Strang, Network applications: A = incidence matrix, http://academicearth.org/lectures/network-applications-incidence-matrix
- [R412] Fan Chung-Graham, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, Number 92, 1997.
- [R413] Steve Butler, Interlacing For Weighted Graphs Using The Normalized Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98, March 2007.
- [R411] Fan Chung (2005). Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics, 9(1), 2005
- [R358] Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html
- [R414] GEXF graph format, http://gexf.net/format/
- [R415] GEXF graph format, http://gexf.net/format/
- [R416] http://docs.python.org/library/pickle.html
- [R417] http://docs.python.org/library/pickle.html
- [R419] http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
- [R418] http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
- [R422] http://www.yaml.org
- [R423] http://www.yaml.org
- [R420] http://en.wikipedia.org/wiki/Shapefile
- [R421] http://en.wikipedia.org/wiki/Shapefile
- [R424] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969. http://doi.acm.org/10.1145/800195.805928
- [R425] Steven S. Skiena. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA.
- [R426] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969. http://doi.acm.org/10.1145/800195.805928
- [R427] Steven S. Skiena. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA.

```
а
                                         networkx.algorithms.chordal.chordal_alg,
networkx.algorithms.approximation, 123
networkx.algorithms.approximation.clique, networkx.algorithms.clique, 198
                                         networkx.algorithms.cluster, 201
networkx.algorithms.approximation.clusteleheneosesefelgosithms.coloring, 204
                                          networkx.algorithms.community, 205
networkx.algorithms.approximation.connectftwerkx.algorithms.community.kclique,
\verb"networkx.algorithms.approximation.domina \verb"engorithms.components", 206
                                         networkx.algorithms.components.attracting,
networkx.algorithms.approximation.independent set.
                                         networkx.algorithms.components.biconnected,
networkx.algorithms.approximation.kcomponents, 217
                                         networkx.algorithms.components.connected,
networkx.algorithms.approximation.matching,
                                          networkx.algorithms.components.semiconnected,
networkx.algorithms.approximation.ramsey,
                                          networkx.algorithms.components.strongly_connected,
networkx.algorithms.approximation.vertex cover.^{209}
                                          networkx.algorithms.components.weakly connected,
       132
networkx.algorithms.assortativity, 133
                                          networkx.algorithms.connectivity, 223
networkx.algorithms.bipartite, 142
                                         networkx.algorithms.connectivity.connectivity,
networkx.algorithms.bipartite.basic, 144
networkx.algorithms.bipartite.centrality,
                                          networkx.algorithms.connectivity.cuts,
networkx.algorithms.bipartite.cluster,
                                         networkx.algorithms.connectivity.kcomponents,
                                                224
networkx.algorithms.bipartite.generators,
                                          networkx.algorithms.connectivity.kcutsets,
networkx.algorithms.bipartite.matching,
                                          networkx.algorithms.connectivity.stoerwagner,
networkx.algorithms.bipartite.matrix,
                                         networkx.algorithms.connectivity.utils,
                                                242
networkx.algorithms.bipartite.projection,
                                          networkx.algorithms.core, 243
networkx.algorithms.bipartite.redundancy, networkx.algorithms.cycles, 247
                                          networkx.algorithms.dag, 249
                                         networkx.algorithms.distance measures,
networkx.algorithms.bipartite.spectral,
       156
                                          networkx.algorithms.distance_regular,
networkx.algorithms.block, 170
networkx.algorithms.boundary, 171
                                         networkx.algorithms.dominance, 258
networkx.algorithms.centrality, 173
```

```
d
networkx.algorithms.dominating, 259
networkx.algorithms.euler, 260
                                          networkx.drawing.layout, 514
networkx.algorithms.flow, 262
                                          networkx.drawing.nx agraph, 509
networkx.algorithms.graphical, 284
                                          networkx.drawing.nx_pydot,512
networkx.algorithms.hierarchy, 287
                                          networkx.drawing.nx_pylab, 499
networkx.algorithms.hybrid, 288
networkx.algorithms.isolate, 290
                                          e
networkx.algorithms.isomorphism, 291
                                          networkx.exception, 519
networkx.algorithms.isomorphism.isomorphvf2,
networkx.algorithms.link_analysis.hits
                                         alg.
networkx.generators.atlas,383
       309
                                          networkx.generators.classic, 383
networkx.algorithms.link_analysis.pagerank_alg_networkx.generators.community,423
                                          networkx.generators.degree seg, 403
networkx.algorithms.link_prediction, 311
                                          networkx.generators.directed, 411
networkx.algorithms.matching, 318
                                          networkx.generators.ego, 419
networkx.algorithms.minors, 319
                                          networkx.generators.expanders, 388
networkx.algorithms.mis, 323
                                          networkx.generators.geometric, 414
networkx.algorithms.mst, 324
                                          networkx.generators.intersection, 420
networkx.algorithms.operators.all, 329
                                          networkx.generators.line, 417
networkx.algorithms.operators.binary,
                                          networkx.generators.nonisomorphic_trees,
                                                 428
networkx.algorithms.operators.product,
                                          networkx.generators.random_clustered,
                                                 409
networkx.algorithms.operators.unary, 325
                                          networkx.generators.random_graphs, 393
networkx.algorithms.richclub, 334
                                          networkx.generators.small, 389
networkx.algorithms.shortest_paths.astar_hetworkx.generators.social,422
                                          networkx.generators.stochastic, 420
networkx.algorithms.shortest_paths.dense.
networkx.algorithms.shortest_paths.generic, networkx.linalg.algebraicconnectivity,
       335
                                                 436
networkx.algorithms.shortest_paths.unweighted, networkx.linalg.attrmatrix,439
networkx.algorithms.shortest_paths.weighted.networkx.linalg.laplacianmatrix,433
                                          networkx.linalg.graphmatrix,431
                                          networkx.linalg.spectrum, 435
networkx.algorithms.simple paths, 354
networkx.algorithms.swap, 356
networkx.algorithms.traversal.breadth_first_search, networkx.readwrite.adjlist,459
networkx.algorithms.traversal.depth_first_search.
                                          networkx'.readwrite.gexf,473
       358
                                          networkx.readwrite.gml, 475
networkx.algorithms.traversal.edgedfs,
                                          networkx.readwrite.gpickle, 479
       365
                                          networkx.readwrite.graph6,490
networkx.algorithms.tree.branchings, 369
                                          networkx.readwrite.graphml, 481
networkx.algorithms.tree.recognition,
                                          networkx.readwrite.json graph, 482
                                          networkx.readwrite.leda, 487
networkx.algorithms.triads, 371
                                          networkx.readwrite.multiline_adjlist,
networkx.algorithms.vitality, 372
                                                 463
                                          networkx.readwrite.nx_shp, 497
C
                                          networkx.readwrite.nx yaml, 488
networkx.classes.function, 373
                                          networkx.readwrite.pajek, 495
networkx.convert, 445
                                          networkx.readwrite.sparse6,493
networkx.convert_matrix,448
```

552 Python Module Index

u

```
networkx.utils.521
networkx.utils.contextmanagers,527
networkx.utils.decorators,525
networkx.utils.misc,521
networkx.utils.random_sequence,522
networkx.utils.rcm,525
networkx.utils.union_find,522
```

Python Module Index

554 Python Module Index

Symbols	add_node() (MultiDiGraph method), 92
contains() (DiGraph method), 54	add_node() (MultiGraph method), 66
contains() (Graph method), 27	add_nodes_from() (DiGraph method), 38
contains() (MultiDiGraph method), 111	add_nodes_from() (Graph method), 12
contains() (MultiGraph method), 82	add_nodes_from() (MultiDiGraph method), 93
getitem() (DiGraph method), 51	add_nodes_from() (MultiGraph method), 67
getitem() (Graph method), 24	add_path() (DiGraph method), 43
getitem() (Graph incurou), 24 getitem() (MultiDiGraph method), 108	add_path() (Graph method), 18
getitem() (MultiGraph method), 80	add_path() (MultiDiGraph method), 99
init() (DiGraph method), 36	add_path() (MultiGraph method), 73
init() (DiGraph Matcher method), 297	add_star() (DiGraph method), 43
init() (Edmonds method), 371	add_star() (Graph method), 17
init() (Caph method), 11	add_star() (MultiDiGraph method), 99
init() (Graph Matcher method), 295	add_star() (MultiGraph method), 73
init() (MultiDiGraph method), 92	add_weighted_edges_from() (DiGraph method), 41
init() (MultiGraph method), 66	add_weighted_edges_from() (Graph method), 16
	add_weighted_edges_from() (MultiDiGraph method), 97
iter() (DiGraph method), 46	add_weighted_edges_from() (MultiGraph method), 71
iter() (Graph method), 20 iter() (MultiDiGraph method), 102	adjacency_data() (in module net-
•	workx.readwrite.json_graph), 484
iter() (MultiGraph method), 76	adjacency_graph() (in module net-
len() (DiGraph method), 56	workx.readwrite.json_graph), 485
_len() (Graph method), 28	adjacency_iter() (DiGraph method), 53
len() (MultiDiGraph method), 112	adjacency_iter() (Graph method), 25
len() (MultiGraph method), 84	adjacency_iter() (MultiDiGraph method), 109
A	adjacency_iter() (MultiGraph method), 81
	adjacency_list() (DiGraph method), 52
adamic_adar_index() (in module net-	adjacency_list() (Graph method), 25
workx.algorithms.link_prediction), 313	adjacency_list() (MultiDiGraph method), 109
add_cycle() (DiGraph method), 44	adjacency_list() (MultiGraph method), 80
add_cycle() (Graph method), 18	adjacency_matrix() (in module net-
add_cycle() (MultiDiGraph method), 100	workx.linalg.graphmatrix), 431
add_cycle() (MultiGraph method), 74	adjacency_spectrum() (in module net-
add_edge() (DiGraph method), 40	workx.linalg.spectrum), 436
add_edge() (Graph method), 14	algebraic_connectivity() (in module net-
add_edge() (MultiDiGraph method), 95	workx.linalg.algebraicconnectivity), 436
add_edge() (MultiGraph method), 69	all_neighbors() (in module networkx.classes.function).
add_edges_from() (DiGraph method), 40	376
add_edges_from() (Graph method), 15	all_node_cuts() (in module net-
add_edges_from() (MultiDiGraph method), 96	workx.algorithms.connectivity.kcutsets),
add_edges_from() (MultiGraph method), 70	workx.aigorithms.connectivity.kcutsets), 225
add_node() (DiGraph method), 37	<i>LLJ</i>
add_node() (Graph method), 11	

all_pairs_dijkstra_path() module (in module average clustering() (in networkx.algorithms.shortest paths.weighted), workx.algorithms.approximation.clustering coefficient), 128 all_pairs_dijkstra_path_length() average_clustering() module (in module (in netnetworkx.algorithms.shortest paths.weighted), workx.algorithms.bipartite.cluster), 158 average clustering() (in module networkx.algorithms.cluster), 203 all pairs node connectivity() (in module networkx.algorithms.approximation.connectivity), average degree connectivity() module (in networkx.algorithms.assortativity), 138 average_neighbor_degree() all_pairs_node_connectivity() module (in module (in netnetworkx.algorithms.connectivity.connectivity), workx.algorithms.assortativity), 137 227 average_node_connectivity() (in module netall_pairs_shortest_path() (in module workx.algorithms.connectivity.connectivity), networkx.algorithms.shortest_paths.unweighted), 226 average_shortest_path_length() (in module networkx.algorithms.shortest_paths.generic), all_pairs_shortest_path_length() (in module networkx.algorithms.shortest_paths.unweighted), 338 341 В netall shortest paths() (in module workx.algorithms.shortest paths.generic), balanced_tree() (in module networkx.generators.classic), 337 384 all_simple_paths() (in module netbarabasi albert graph() (in module networkx.algorithms.simple_paths), 354 workx.generators.random graphs), 400 alternating_havel_hakimi graph() (in module barbell graph() (in module networkx.generators.classic), networkx.algorithms.bipartite.generators), 168 384 ancestors() (in module networkx.algorithms.dag), 250 bellman ford() (in module netantichains() (in module networkx.algorithms.dag), 253 workx.algorithms.shortest paths.weighted), approximate_current_flow_betweenness_centrality() (in 349 module networkx.algorithms.centrality), 181 betweenness centrality() (in module netarticulation points() (in module networkx.algorithms.bipartite.centrality), 164 workx.algorithms.components.biconnected), betweenness centrality() (in module net-222 workx.algorithms.centrality), 176 module astar_path() (in netbfs_edges() module (in workx.algorithms.shortest_paths.astar), 353 workx.algorithms.traversal.breadth_first_search), astar_path_length() module (in net-362 workx.algorithms.shortest_paths.astar), 354 bfs predecessors() (in module netattr matrix() (in module networkx.linalg.attrmatrix), 439 workx.algorithms.traversal.breadth_first_search), attr_sparse_matrix() (in module net-364 workx.linalg.attrmatrix), 441 module bfs_successors() (in netattracting_component_subgraphs() (in module workx.algorithms.traversal.breadth first search), networkx.algorithms.components.attracting), 217 bfs tree() (in module attracting components() (in module networkx.algorithms.traversal.breadth first search), workx.algorithms.components.attracting), 363 biadjacency_matrix() (in module netattribute_assortativity_coefficient() (in module networkx.algorithms.bipartite.matrix), 149 workx.algorithms.assortativity), 134 biconnected_component_edges() (in module netattribute_mixing_dict() (in module workx.algorithms.components.biconnected), networkx.algorithms.assortativity), 142 219 attribute_mixing_matrix() (in module netbiconnected_component_subgraphs() (in module networkx.algorithms.assortativity), 140 workx.algorithms.components.biconnected), authority matrix() (in module networkx.algorithms.link analysis.hits alg), biconnected_components() (in module net-311 workx.algorithms.components.biconnected),

218	cliques_containing_node() (in module net-
bidirectional_dijkstra() (in module net-	workx.algorithms.clique), 200
workx.algorithms.shortest_paths.weighted),	closeness_centrality() (in module net-
347	workx.algorithms.bipartite.centrality), 163
binomial_graph() (in module net-	closeness_centrality() (in module net-
workx.generators.random_graphs), 397	workx.algorithms.centrality), 175
blockmodel() (in module networkx.algorithms.block),	closeness_vitality() (in module net-
171	workx.algorithms.vitality), 372
branching_weight() (in module net-	clustering() (in module net-
workx.algorithms.tree.branchings), 369	workx.algorithms.bipartite.cluster), 157
build_auxiliary_edge_connectivity() (in module net-	clustering() (in module networkx.algorithms.cluster), 202
workx.algorithms.connectivity.utils), 242	cn_soundarajan_hopcroft() (in module net-
build_auxiliary_node_connectivity() (in module net-	workx.algorithms.link_prediction), 315
workx.algorithms.connectivity.utils), 242	collaboration_weighted_projected_graph() (in module
build_residual_network() (in module net-	networkx.algorithms.bipartite.projection), 153
workx.algorithms.flow), 275	color() (in module networkx.algorithms.bipartite.basic),
bull_graph() (in module networkx.generators.small), 391	145
С	common_neighbors() (in module net- workx.classes.function), 377
candidate_pairs_iter() (DiGraphMatcher method), 298	communicability() (in module net-
candidate_pairs_iter() (GraphMatcher method), 296	workx.algorithms.centrality), 188
capacity_scaling() (in module networkx.algorithms.flow),	communicability_betweenness_centrality() (in module
282	networkx.algorithms.centrality), 191
cartesian_product() (in module net-	communicability_centrality() (in module net-
workx.algorithms.operators.product), 331	workx.algorithms.centrality), 189
categorical_edge_match() (in module net-	communicability_centrality_exp() (in module net-
workx.algorithms.isomorphism), 299	workx.algorithms.centrality), 190
categorical_multiedge_match() (in module net-	communicability_exp() (in module net-
workx.algorithms.isomorphism), 300	workx.algorithms.centrality), 189
categorical_node_match() (in module net-	complement() (in module net-
workx.algorithms.isomorphism), 299	workx.algorithms.operators.unary), 326
caveman_graph() (in module net-	complete_bipartite_graph() (in module net-
workx.generators.community), 423	workx.algorithms.bipartite.generators), 166
center() (in module net-	complete_graph() (in module net-
workx.algorithms.distance_measures), 254	workx.generators.classic), 385
chordal_cycle_graph() (in module net-	complete_multipartite_graph() (in module net-
workx.generators.expanders), 389	workx.generators.classic), 385
chordal_graph_cliques() (in module net-	compose() (in module net-
workx.algorithms.chordal.chordal_alg), 196	workx.algorithms.operators.binary), 326
chordal_graph_treewidth() (in module net-	compose_all() (in module net-
workx.algorithms.chordal.chordal_alg), 196	workx.algorithms.operators.all), 329
chvatal_graph() (in module networkx.generators.small),	condensation() (in module net-
391	workx.algorithms.components.strongly_connected)
circular_ladder_graph() (in module net-	213
workx.generators.classic), 386	configuration_model() (in module net-
circular_layout() (in module networkx.drawing.layout),	workx.algorithms.bipartite.generators), 166
514	configuration_model() (in module net-
clear() (DiGraph method), 44	workx.generators.degree_seq), 404
clear() (Graph method), 19	connected_caveman_graph() (in module net-
clear() (MultiDiGraph method), 100	workx.generators.community), 424
clear() (MultiGraph method), 74	connected_component_subgraphs() (in module net-
clique_removal() (in module net-	workx.algorithms.components.connected),
workx.algorithms.approximation.clique),	208
128	

connected_components() (in module net-	degree_assortativity_coefficient() (in module net-
workx.algorithms.components.connected),	workx.algorithms.assortativity), 133
207	degree_centrality() (in module net-
connected_double_edge_swap() (in module net-	workx.algorithms.bipartite.centrality), 164
workx.algorithms.swap), 357	degree_centrality() (in module net-
connected_watts_strogatz_graph() (in module net-	workx.algorithms.centrality), 174
workx.generators.random_graphs), 399	degree_histogram() (in module net-
contracted_edge() (in module net-	workx.classes.function), 373
workx.algorithms.minors), 319	degree_iter() (DiGraph method), 57
contracted_nodes() (in module net-	degree_iter() (Graph method), 29
workx.algorithms.minors), 320	degree_iter() (MultiDiGraph method), 113
copy() (DiGraph method), 62	degree_iter() (MultiGraph method), 85
copy() (Graph method), 32	degree_mixing_dict() (in module net-
copy() (MultiDiGraph method), 119	workx.algorithms.assortativity), 141
copy() (MultiGraph method), 88	degree_mixing_matrix() (in module net-
core_number() (in module networkx.algorithms.core),	workx.algorithms.assortativity), 141
243	degree_pearson_correlation_coefficient() (in module net-
cost_of_flow() (in module networkx.algorithms.flow),	workx.algorithms.assortativity), 136
280	degree_sequence_tree() (in module net-
could_be_isomorphic() (in module net-	workx.generators.degree_seq), 408
workx.algorithms.isomorphism), 293	degrees() (in module net-
create_degree_sequence() (in module net-	workx.algorithms.bipartite.basic), 146
workx.utils.random_sequence), 523	dense_gnm_random_graph() (in module net-
create_empty_copy() (in module net-	workx.generators.random_graphs), 395
workx.classes.function), 374	density() (in module net-
cubical_graph() (in module networkx.generators.small),	workx.algorithms.bipartite.basic), 146
391	density() (in module networkx.classes.function), 373
cumulative_distribution() (in module net-	desargues_graph() (in module net-
workx.utils.random_sequence), 523	workx.generators.small), 391
current_flow_betweenness_centrality() (in module net-	descendants() (in module networkx.algorithms.dag), 250
workx.algorithms.centrality), 179	dfs_edges() (in module net-
current_flow_closeness_centrality() (in module net-	workx.algorithms.traversal.depth_first_search),
workx.algorithms.centrality), 178	358
cuthill_mckee_ordering() (in module net-	dfs_labeled_edges() (in module net-
workx.utils.rcm), 526	workx.algorithms.traversal.depth_first_search),
cycle_basis() (in module networkx.algorithms.cycles),	362
247	dfs_postorder_nodes() (in module net-
cycle_graph() (in module networkx.generators.classic),	workx.algorithms.traversal.depth_first_search),
386	361
	dfs_predecessors() (in module net-
D	workx.algorithms.traversal.depth_first_search),
dag_longest_path() (in module networkx.algorithms.dag),	359
253	dfs_preorder_nodes() (in module net-
	workx.algorithms.traversal.depth_first_search),
dag_longest_path_length() (in module net- workx.algorithms.dag), 253	361
<u> </u>	dfs_successors() (in module net-
davis_southern_women_graph() (in module net-	workx.algorithms.traversal.depth_first_search),
workx.generators.social), 423	360
default_opener() (in module networkx.utils.misc), 522	
degree() (DiGraph method), 56	_ ,
degree() (Graph method), 28	workx.algorithms.traversal.depth_first_search), 359
degree() (in module networkx.classes.function), 373	
degree() (MultiDiGraph method), 113	diameter() (in module net-
HARTER I INCHIENT TORR MAINAGE X/I	works argorithms (fistance measures) /34

diamond_graph() (in module networkx.generators.sma 391	all),	draw_random() (in module networkx.drawing.nx_pylab), 507
dictionary, 537		draw_shell() (in module networkx.drawing.nx_pylab),
	net-	508
workx.algorithms.operators.binary), 328	iict	draw_spectral() (in module networkx.drawing.nx_pylab),
DiGraph() (in module networkx), 35		508
_	nat	
• -	net-	draw_spring() (in module networkx.drawing.nx_pylab),
workx.algorithms.shortest_paths.weighted),	,	508
343		duplication_divergence_graph() (in module net-
3 <u> </u>	net-	workx.generators.random_graphs), 401
workx.algorithms.shortest_paths.weighted),	,	Г
343		E
dijkstra_predecessor_and_distance() (in module		ebunch, 537
workx.algorithms.shortest_paths.weighted),	,	eccentricity() (in module net-
348		workx.algorithms.distance_measures), 255
directed_configuration_model() (in module	net-	edge, 537
workx.generators.degree_seq), 405		edge attribute, 537
directed_havel_hakimi_graph() (in module	net-	edge_betweenness_centrality() (in module net-
workx.generators.degree_seq), 408		workx.algorithms.centrality), 177
directed_laplacian_matrix() (in module	net-	edge_boundary() (in module net-
workx.linalg.laplacianmatrix), 434		workx.algorithms.boundary), 171
	net-	edge_connectivity() (in module net-
workx.utils.random_sequence), 523		workx.algorithms.connectivity.connectivity),
	net-	227
workx.algorithms.operators.binary), 327	1100	
	net-	edge_current_flow_betweenness_centrality() (in module
workx.algorithms.operators.all), 330	iict	networkx.algorithms.centrality), 180
dispersion() (in module networkx.algorithms.centrali	ity)	edge_dfs() (in module net-
194	ıty),	workx.algorithms.traversal.edgedfs), 365
	nat	edge_load() (in module networkx.algorithms.centrality),
	net-	194
workx.generators.small), 391		edges() (DiGraph method), 46
_	net-	edges() (Graph method), 21
workx.algorithms.dominance), 258		edges() (in module networkx.classes.function), 377
E—	net-	edges() (MultiDiGraph method), 102
workx.algorithms.dominating), 259		edges() (MultiGraph method), 76
dorogovtsev_goltsev_mendes_graph() (in module	net-	edges_iter() (DiGraph method), 47
workx.generators.classic), 386		edges_iter() (Graph method), 21
	net-	edges_iter() (in module networkx.classes.function), 378
workx.algorithms.swap), 357		edges_iter() (MultiDiGraph method), 103
draw() (in module networkx.drawing.nx_pylab), 499		edges_iter() (MultiGraph method), 77
draw_circular() (in module networkx.drawing.nx_pyl	ab),	Edmonds (class in networkx.algorithms.tree.branchings),
507		371
draw_graphviz() (in module	net-	edmonds_karp() (in module networkx.algorithms.flow),
workx.drawing.nx_pylab), 508		269
draw_networkx() (in module	net-	ego_graph() (in module networkx.generators.ego), 419
workx.drawing.nx_pylab), 501		eigenvector_centrality() (in module net-
draw_networkx_edge_labels() (in module	net-	workx.algorithms.centrality), 182
workx.drawing.nx_pylab), 506		eigenvector_centrality_numpy() (in module net-
	net-	workx.algorithms.centrality), 183
workx.drawing.nx_pylab), 504	-	empty_graph() (in module networkx.generators.classic),
	net-	386
workx_drawing.nx_pylab), 505		
	net-	enumerate_all_cliques() (in module net-
workx.drawing.nx_pylab), 503	1101	workx.algorithms.clique), 198
works.drawing.ns_pyraoj, 505		

eppstein_matching() (in module net- workx.algorithms.bipartite.matching), 147	from_scipy_sparse_matrix() (in module networkx.convert_matrix), 454
erdos_renyi_graph() (in module net-	$frucht_graph() \ \ (in \ \ module \ \ network x. generators. small),$
workx.generators.random_graphs), 396	392
estrada_index() (in module net- workx.algorithms.centrality), 192	G
eulerian_circuit() (in module networkx.algorithms.euler),	
261	gaussian_random_partition_graph() (in module networkx.generators.community), 427
expected_degree_graph() (in module net-	general_random_intersection_graph() (in module net-
workx.generators.degree_seq), 406	workx.generators.intersection), 421
$\mathcal{E} = \mathcal{V}$	generate_adjlist() (in module networkx.readwrite.adjlist),
F	462
Fast_could_be_isomorphic() (in module net-	generate_edgelist() (in module net-
workx.algorithms.isomorphism), 293	workx.readwrite.edgelist), 471
Fast_gnp_random_graph() (in module net-	generate_gml() (in module networkx.readwrite.gml), 478
workx.generators.random_graphs), 394	generate_graph6() (in module net-
Faster_could_be_isomorphic() (in module net-	workx.readwrite.graph6), 491
workx.algorithms.isomorphism), 293	generate_multiline_adjlist() (in module net-
fiedler_vector() (in module net-	workx.readwrite.multiline_adjlist), 466
workx.linalg.algebraicconnectivity), 437	generate_sparse6() (in module net-
find_cliques() (in module networkx.algorithms.clique),	workx.readwrite.sparse6), 494
199	<pre>generate_unique_node() (in module networkx.utils.misc),</pre>
ind_cycle() (in module networkx.algorithms.cycles), 248	522
find_induced_nodes() (in module net-	generic_edge_match() (in module net-
workx.algorithms.chordal.chordal_alg), 197	workx.algorithms.isomorphism), 303
datten() (in module networkx.utils.misc), 521	generic_multiedge_match() (in module net-
dorentine_families_graph() (in module net-	workx.algorithms.isomorphism), 303
workx.generators.social), 423	generic_node_match() (in module net-
flow_hierarchy() (in module net-	workx.algorithms.isomorphism), 302 generic_weighted_projected_graph() (in module net-
workx.algorithms.hierarchy), 288	generic_weighted_projected_graph() (in module net- workx.algorithms.bipartite.projection), 155
loyd_warshall() (in module net-	geographical_threshold_graph() (in module net-
workx.algorithms.shortest_paths.dense), 351	workx.generators.geometric), 415
floyd_warshall_numpy() (in module net-	get_edge_attributes() (in module net-
workx.algorithms.shortest_paths.dense),	workx.classes.function), 379
352	get_edge_data() (DiGraph method), 50
doyd_warshall_predecessor_and_distance() (in module	get_edge_data() (Graph method), 22
networkx.algorithms.shortest_paths.dense),	get_edge_data() (MultiDiGraph method), 106
352	get_edge_data() (MultiGraph method), 78
Freeze() (in module networkx.classes.function), 380	get_node_attributes() (in module net-
from_agraph() (in module networkx.drawing.nx_agraph),	workx.classes.function), 379 global_parameters() (in module net-
509	global_parameters() (in module net- workx.algorithms.distance_regular), 257
from_biadjacency_matrix() (in module networkx.algorithms.bipartite.matrix), 150	gn_graph() (in module networkx.generators.directed),
From_dict_of_dicts() (in module networkx.convert), 446	411
From_dict_of_lists() (in module networkx.convert), 447	<pre>gnc_graph() (in module networkx.generators.directed),</pre>
From_edgelist() (in module networkx.convert), 448	412
from_numpy_matrix() (in module net-	gnm_random_graph() (in module net-
workx.convert_matrix), 451	workx.generators.random_graphs), 396
From_pandas_dataframe() (in module net-	gnmk_random_graph() (in module net-
workx.convert_matrix), 456	workx.algorithms.bipartite.generators), 170
from_pydot() (in module networkx.drawing.nx_pydot),	gnp_random_graph() (in module net-
512	workx.generators.random_graphs), 395

gnr_graph() (in module networkx.generators.direc	eted),	hopcroft_karp_matching() (in module	net-
		workx.algorithms.bipartite.matching), 148	11\
google_matrix() (in module	net-	house_graph() (in module networkx.generators.sm	iaii),
workx.algorithms.link_analysis.pagerank_	aig),	392	11)
308		house_x_graph() (in module networkx.generators.sm	nall),
Graph() (in module networkx), 9		392	
<pre>graph_atlas_g() (in module networkx.generators.a</pre>	tlas),	hub_matrix() (in module	net-
383		workx.algorithms.link_analysis.hits_alg),	
graph_clique_number() (in module	net-	311	
workx.algorithms.clique), 200		hypercube_graph() (in module	net-
graph_number_of_cliques() (in module	net-	workx.generators.classic), 387	
workx.algorithms.clique), 200			
graphviz_layout() (in module	net-		
workx.drawing.nx_agraph), 510		icosahedral_graph() (in module	net-
graphviz_layout() (in module	net-	workx.generators.small), 392	net
workx.drawing.nx_pydot), 513		identified_nodes() (in module	net-
greedy_branching() (in module	net-	workx.algorithms.minors), 321	nct-
workx.algorithms.tree.branchings), 369			mat
greedy_color() (in module	net-	_ ,	net-
workx.algorithms.coloring), 204	net	workx.algorithms.dominance), 258	
grid_2d_graph() (in module networkx.generators.clas	ecic)	in_degree() (DiGraph method), 57	
387	ssic),	in_degree() (MultiDiGraph method), 114	
	(منور	in_degree_centrality() (in module	net-
grid_graph() (in module networkx.generators.clas	ssic),	workx.algorithms.centrality), 174	
387		in_degree_iter() (DiGraph method), 58	
H		in_degree_iter() (MultiDiGraph method), 114	
		in_edges() (DiGraph method), 50	
has_edge() (DiGraph method), 55		in_edges() (MultiDiGraph method), 106	
has_edge() (Graph method), 27		in_edges_iter() (DiGraph method), 50	
has_edge() (MultiDiGraph method), 111		in_edges_iter() (MultiDiGraph method), 106	
has_edge() (MultiGraph method), 83		incidence_matrix() (in module	net-
has_node() (DiGraph method), 54		workx.linalg.graphmatrix), 432	
has_node() (Graph method), 26		info() (in module networkx.classes.function), 374	
has_node() (MultiDiGraph method), 110		initialize() (DiGraphMatcher method), 298	
has_node() (MultiGraph method), 82		initialize() (GraphMatcher method), 296	
has_path() (in module	net-	intersection() (in module	net-
workx.algorithms.shortest_paths.generic),		workx.algorithms.operators.binary), 328	
339		intersection_all() (in module	net-
hashable, 537		workx.algorithms.operators.all), 331	
havel_hakimi_graph() (in module	net-	intersection_array() (in module	net-
workx.algorithms.bipartite.generators), 16'		workx.algorithms.distance_regular), 256	1101
havel_hakimi_graph() (in module	net-	is_aperiodic() (in module networkx.algorithms.dag),	252
workx.generators.degree_seq), 407	1100	is_arborescence() (in module networks.argoriums.dag),	net-
heawood_graph() (in module networkx.generators.sn	nall)	workx.algorithms.tree.recognition), 368	nct-
392	iiiii),	is_attracting_component() (in module	nat
hits() (in module	net-		net-
workx.algorithms.link_analysis.hits_alg),	net	workx.algorithms.components.attracting),	
309		216	4
	not	is_biconnected() (in module	net-
hits_numpy() (in module workx.algorithms.link_analysis.hits_alg),	net-	workx.algorithms.components.biconnected	ι),
•		217	
310	m a t	is_bipartite() (in module	net-
hits_scipy() (in module	net-	workx.algorithms.bipartite.basic), 144	
workx.algorithms.link_analysis.hits_alg),		is_bipartite_node_set() (in module	net-
310		workx.algorithms.bipartite.basic), 144	

is_branching()	(in	module	net-	J	
workx.al	gorithms.tree.	recognition), 368		jaccard_coefficient() (in module	net-
is_chordal()	(in	module	net-	workx.algorithms.link_prediction), 313	
	-	dal.chordal_alg),			net-
is_connected()	(in	module	net-	workx.algorithms.shortest_paths.weighted),	
workx.al 206	gorithms.com	ponents.connected	1),	350	
is_digraphical()	(in	module	net-	K	
	gorithms.grap			k_clique_communities() (in module i	net-
is_directed() (in m				workx.algorithms.community.kclique), 206	
is_directed_acyclic		(in module	net-	= 1	net-
	gorithms.dag)			workx.algorithms.approximation.kcompone	nts),
is_distance_regula		module	net-	126	
	-	nce_regular), 256		= 1	net-
is_dominating_set	() (III gorithms.dom	module	net-	workx.algorithms.connectivity.kcomponents	s),
is_eulerian() (in m			260	224	
is_eulerlan() (iii iii is_forest()	(in	module	net-	k_core() (in module networkx.algorithms.core), 244	
		recognition), 367	net-	k_corona() (in module networkx.algorithms.core), 246)
is_frozen() (in mo			381	k_crust() (in module networkx.algorithms.core), 245	
is_graphical()	(in	module	net-	` ` `	net-
	gorithms.grap		net	workx.algorithms.assortativity), 139	
is_isolate() (in mo			e). 290	= = =E i	net-
is_isomorphic() (E			2), 220	workx.generators.intersection), 421	
is_isomorphic() (C				k_shell() (in module networkx.algorithms.core), 244 karate_club_graph() (in module	aet
is_isomorphic()	(in	module	net-		net-
- "	gorithms.isom			workx.generators.social), 422 katz_centrality() (in module	net-
is_kl_connected()	(in	module	net-	workx.algorithms.centrality), 184	ict-
	gorithms.hybr	rid), 289			net-
is_list_of_ints() (ii			521	workx.algorithms.centrality), 186	iot
is_multigraphical() (in	module	net-		net-
workx.al	gorithms.grap	hical), 285		workx.algorithms.hybrid), 288	
is_pseudographica		module	net-	kosaraju_strongly_connected_components()	
	gorithms.grap	hical), 286			net-
is_semiconnected(module	net-	workx.algorithms.components.strongly_con	nected)
	gorithms.com	ponents.semiconn	ected),	212	
223				krackhardt_kite_graph() (in module	net-
is_string_like() (in				workx.generators.small), 392	
is_strongly_conne	.,		net-	I.	
	gorithms.com	ponents.strongly_	connecte	ed <u>).</u>	
209	<i>(</i> :		4	ladder_graph() (in module networkx.generators.class	ic),
is_tree()	(in	module recognition), 367	net-	387	
workx.ai is_valid_degree_se			ıla nat	1 - '	net-
	gorithms.grap		ne net-	workx.linalg.laplacianmatrix), 433	
is_valid_degree_se			nodule	1 – 1 ,	net-
	x.algorithms.gi		Hoduic	workx.linalg.spectrum), 435	
is_weakly_connec		•	net-	17— 6	net-
workx.al			onnected	workx.algorithms.bipartite.cluster), 159	200
214	6	r :		d) CF_graph() (in module networkx.generators.small),	59U
isolates() (in modu	ıle networkx.a	lgorithms.isolate).	290	C 1 —	net-
isomorphisms_iter				workx.algorithms.operators.product), 332	0
isomorphisms_iter				line_graph() (in module networkx.generators.line), 41-literal_destringizer() (in module	
iterable() (in modu				literal_destringizer() (in module workx.readwrite.gml), 478	net-
		*		WOIKA.ICAUWIIIC.ZIIIIJ, 4/0	

literal_stringizer() (in module networkx.readwrite.gml),	
479	workx.algorithms.approximation.dominating_set)
load_centrality() (in module net-	129
workx.algorithms.centrality), 193	min_maximal_matching() (in module net-
local_edge_connectivity() (in module net-	workx.algorithms.approximation.matching),
workx.algorithms.connectivity.connectivity),	132
229	min_weighted_dominating_set() (in module net-
local_node_connectivity() (in module net-	workx.algorithms.approximation.dominating_set)
workx.algorithms.approximation.connectivity),	129
124	min_weighted_vertex_cover() (in module net-
local_node_connectivity() (in module net-	workx.algorithms.approximation.vertex_cover),
workx.algorithms.connectivity.connectivity),	133
231	minimum_branching() (in module net-
lollipop_graph() (in module networkx.generators.classic),	workx.algorithms.tree.branchings), 370
387 M	minimum_cut() (in module networkx.algorithms.flow), 265
	minimum_cut_value() (in module net-
make_clique_bipartite() (in module net-	workx.algorithms.flow), 267
workx.algorithms.clique), 200	minimum_edge_cut() (in module net-
make_max_clique_graph() (in module net-	workx.algorithms.connectivity.cuts), 234
workx.algorithms.clique), 199	minimum_node_cut() (in module net-
make_small_graph() (in module net-	workx.algorithms.connectivity.cuts), 236
workx.generators.small), 390	minimum_spanning_arborescence() (in module net-
make_str() (in module networkx.utils.misc), 522	workx.algorithms.tree.branchings), 371
margulis_gabber_galil_graph() (in module net-	minimum_spanning_edges() (in module net-
workx.generators.expanders), 388	workx.algorithms.mst), 325
match() (DiGraphMatcher method), 298	minimum_spanning_tree() (in module net-
match() (GraphMatcher method), 297	workx.algorithms.mst), 324
max_clique() (in module net-	minimum_st_edge_cut() (in module net-
workx.algorithms.approximation.clique),	workx.algorithms.connectivity.cuts), 237
127	minimum_st_node_cut() (in module net-
max_flow_min_cost() (in module net-	workx.algorithms.connectivity.cuts), 239
workx.algorithms.flow), 281	moebius_kantor_graph() (in module net-
max_weight_matching() (in module net-	workx.generators.small), 392
workx.algorithms.matching), 318	MultiDiGraph() (in module networkx), 91
maximal_independent_set() (in module net-	MultiGraph() (in module networkx), 65
workx.algorithms.mis), 323	N
maximal_matching() (in module networkx.algorithms.matching), 318	
G	navigable_small_world_graph() (in module net-
maximum_branching() (in module networkx.algorithms.tree.branchings), 370	workx.generators.geometric), 417
maximum_flow() (in module networkx.algorithms.flow),	nbunch, 537
262	nbunch_iter() (DiGraph method), 53
maximum_flow_value() (in module net-	nbunch_iter() (Graph method), 25
workx.algorithms.flow), 264	nbunch_iter() (MultiDiGraph method), 109 nbunch_iter() (MultiGraph method), 81
maximum_independent_set() (in module net-	negative_edge_cycle() (in module net-
workx.algorithms.approximation.independent_se	
130	350
maximum_spanning_arborescence() (in module net-	neighbors() (DiGraph method), 51
workx.algorithms.tree.branchings), 370	neighbors() (Graph method), 23
min_cost_flow() (in module networkx.algorithms.flow),	neighbors() (MultiDiGraph method), 107
279	neighbors() (MultiGraph method), 79
min_cost_flow_cost() (in module net-	neighbors_iter() (DiGraph method), 51
workx.algorithms.flow), 278	neighbors iter() (Graph method) 24

neighbors_iter() (MultiDiGraph method), 107	networkx.algorithms.components.weakly_connected
neighbors_iter() (MultiGraph method), 79	(module), 213
network_simplex() (in module net-	networkx.algorithms.connectivity (module), 223
workx.algorithms.flow), 275	networkx.algorithms.connectivity.connectivity (module),
networkx.algorithms.approximation (module), 123	226
networkx.algorithms.approximation.clique (module), 127	networkx.algorithms.connectivity.cuts (module), 234
$network x. algorithms. approximation. clustering_coefficient$	networkx.algorithms.connectivity.kcomponents (mod-
(module), 128	ule), 224
networkx.algorithms.approximation.connectivity (mod-	networkx.algorithms.connectivity.kcutsets (module), 225
ule), 123	networkx.algorithms.connectivity.stoerwagner (module),
networkx.algorithms.approximation.dominating_set	241
(module), 129	networkx.algorithms.connectivity.utils (module), 242
networkx.algorithms.approximation.independent_set	networkx.algorithms.core (module), 243
(module), 130	networkx.algorithms.cycles (module), 247
networkx.algorithms.approximation.kcomponents (mod-	networkx.algorithms.dag (module), 249
ule), 126	networkx.algorithms.distance_measures (module), 254
networkx.algorithms.approximation.matching (module),	networkx.algorithms.distance_regular (module), 256
130	networkx.algorithms.dominance (module), 258
networkx.algorithms.approximation.ramsey (module),	networkx.algorithms.dominating (module), 259
132	networkx.algorithms.euler (module), 260
networkx.algorithms.approximation.vertex_cover (mod-	networkx.algorithms.flow (module), 262
ule), 132	networkx.algorithms.graphical (module), 284
networkx.algorithms.assortativity (module), 133	networkx.algorithms.hierarchy (module), 287
networkx.algorithms.bipartite (module), 142	networkx.algorithms.hybrid (module), 288
networkx.algorithms.bipartite.basic (module), 144	networkx.algorithms.isolate (module), 290
networkx.algorithms.bipartite.centrality (module), 162	networkx.algorithms.isomorphism (module), 291
networkx.algorithms.bipartite.cluster (module), 157	networkx.algorithms.isomorphism.isomorphyf2 (mod-
networkx.algorithms.bipartite.generators (module), 165	ule), 293
networkx.algorithms.bipartite.matching (module), 147	networkx.algorithms.link_analysis.hits_alg (module),
networkx.algorithms.bipartite.matrix (module), 149	309
networkx.algorithms.bipartite.projection (module), 150	networkx.algorithms.link_analysis.pagerank_alg (mod-
networkx.algorithms.bipartite.redundancy (module), 161	ule), 304
networkx.algorithms.bipartite.spectral (module), 156	networkx.algorithms.link_prediction (module), 311
networkx.algorithms.block (module), 170	networkx.algorithms.matching (module), 318
networkx.algorithms.boundary (module), 171	networkx.algorithms.minors (module), 319
networkx.algorithms.centrality (module), 173	networkx.algorithms.mis (module), 323
networkx.algorithms.chordal.chordal_alg (module), 195	networkx.algorithms.mst (module), 324
networkx.algorithms.clique (module), 198	networkx.algorithms.operators.all (module), 329
networkx.algorithms.cluster (module), 201	networkx.algorithms.operators.binary (module), 326
networkx.algorithms.coloring (module), 204	networkx.algorithms.operators.product (module), 321
networkx.algorithms.community (module), 205	networkx.algorithms.operators.unary (module), 325
networkx.algorithms.community.kclique (module), 205	networkx.algorithms.richclub (module), 324
networkx.algorithms.components (module), 206	networkx.algorithms.shortest_paths.astar (module), 353
networkx.algorithms.components.attracting (module),	networkx.algorithms.shortest_paths.dense (module), 351
216	networkx.algorithms.shortest_paths.generic (module),
networkx.algorithms.components.biconnected (module),	335
217	networkx.algorithms.shortest_paths.unweighted (mod-
networkx.algorithms.components.connected (module),	ule), 339
206	
	networkx.algorithms.shortest_paths.weighted (module), 342
networkx.algorithms.components.semiconnected (mod-	
ule), 223	networkx.algorithms.simple_paths (module), 354
networkx.algorithms.components.strongly_connected	networkx.algorithms.swap (module), 356 networkx.algorithms.traversal.breadth_first_search (mod-
(module), 209	ule) 362
	IIIE J. 107/

networkx.algorithms.traversal.depth_first_search (mod-	networkx.utils.random_sequence (module), 522
ule), 358	networkx.utils.rcm (module), 525
networkx.algorithms.traversal.edgedfs (module), 365	networkx.utils.union_find (module), 522
networkx.algorithms.tree.branchings (module), 369	NetworkXAlgorithmError (class in networkx), 519
networkx.algorithms.tree.recognition (module), 366	NetworkXError (class in networkx), 519
networkx.algorithms.triads (module), 371	NetworkXException (class in networkx), 519
networkx.algorithms.vitality (module), 372	NetworkXNoPath (class in networkx), 519
networkx.classes.function (module), 373	NetworkXPointlessConcept (class in networkx), 519
networkx.convert (module), 445	NetworkXUnbounded (class in networkx), 519
networkx.convert_matrix (module), 448	NetworkXUnfeasible (class in networkx), 519
networkx.drawing.layout (module), 514	newman_watts_strogatz_graph() (in module net-
networkx.drawing.nx_agraph (module), 509	workx.generators.random_graphs), 398
networkx.drawing.nx_pydot (module), 512	node, 537
networkx.drawing.nx_pylab (module), 499	node attribute, 537
networkx.exception (module), 519	node_boundary() (in module net-
networkx.generators.atlas (module), 383	workx.algorithms.boundary), 172
networkx.generators.classic (module), 383	node_clique_number() (in module net-
networkx.generators.community (module), 423	workx.algorithms.clique), 200
networkx.generators.degree_seq (module), 403	node_connected_component() (in module net-
networkx.generators.directed (module), 411	workx.algorithms.components.connected),
networkx.generators.ego (module), 419	209
networkx.generators.expanders (module), 388	node_connectivity() (in module net-
networkx.generators.geometric (module), 414	workx.algorithms.approximation.connectivity),
networkx.generators.intersection (module), 420	125
networkx.generators.line (module), 417	node_connectivity() (in module net-
networks.generators.mic (module), 417 networks.generators.nonisomorphic_trees (module), 428	workx.algorithms.connectivity.connectivity),
networkx.generators.random_clustered (module), 409	233
networkx.generators.random_graphs (module), 393	node_link_data() (in module net-
networkx.generators.small (module), 389	workx.readwrite.json_graph), 483
networkx.generators.social (module), 422	node_link_graph() (in module net-
networkx.generators.stochastic (module), 422	workx.readwrite.json_graph), 484
networkx.linalg.algebraicconnectivity (module), 436	node_redundancy() (in module net-
networkx.linalg.atgrotateconnectivity (module), 439	workx.algorithms.bipartite.redundancy),
networkx.linalg.graphmatrix (module), 431	161
networkx.linalg.laplacianmatrix (module), 433	nodes() (DiGraph method), 45
networkx.linalg.spectrum (module), 435	nodes() (Graph method), 49
networkx.readwrite.adjlist (module), 459	nodes() (in module networkx.classes.function), 376
networkx.readwrite.edgelist (module), 456	nodes() (MultiDiGraph method), 101
networkx.readwrite.gexf (module), 473	nodes() (MultiGraph method), 75
networkx.readwrite.gext (module), 475	nodes_iter() (DiGraph method), 45
networkx.readwrite.giii (module), 479	nodes_iter() (Graph method), 20
==	nodes_iter() (Graph method), 20 nodes_iter() (in module networkx.classes.function), 376
networks.readwrite.graph6 (module), 490	nodes_iter() (MultiDiGraph method), 101
networkx.readwrite.graphml (module), 481 networkx.readwrite.json_graph (module), 482	nodes_iter() (MultiDiGraph method), 75
networkx.readwrite.leda (module), 482	nodes_with_selfloops() (DiGraph method), 61
networkx.readwrite.multiline_adjlist (module), 463 networkx.readwrite.nx_shp (module), 497	nodes_with_selfloops() (Graph method), 31 nodes_with_selfloops() (MultiDiGraph method), 117
<u> </u>	* " ' · · · · · · · · · · · · · · · · · ·
networky.readwrite.nx_yaml (module), 488	nodes_with_selfloops() (MultiGraph method), 87
networky readwrite sparse (module), 495	non_edges() (in module networkx.classes.function), 378
networkx.readwrite.sparse6 (module), 493	non_neighbors() (in module networkx.classes.function),
networks.utils (module), 521	376
networkx.utils.contextmanagers (module), 527	nonisomorphic_trees() (in module net-
networkx utils misc (module), 525	workx.generators.nonisomorphic_trees), 428
nerwork x .ums.musc unoquiet 57.1	470

$normalized_laplacian_matrix() \qquad (in \qquad module \qquad net-$	order() (MultiGraph method), 83
workx.linalg.laplacianmatrix), 433	out_degree() (DiGraph method), 59
$null_graph() \hspace{0.2cm} (in \hspace{0.2cm} module \hspace{0.2cm} network x. generators. classic),$	out_degree() (MultiDiGraph method), 115
388	out_degree_centrality() (in module net-
$number_attracting_components() (in module net-$	workx.algorithms.centrality), 175
workx.algorithms.components.attracting),	out_degree_iter() (DiGraph method), 59
216	out_degree_iter() (MultiDiGraph method), 115
$number_connected_components() (in module net-$	out_edges() (DiGraph method), 48
workx.algorithms.components.connected),	out_edges() (MultiDiGraph method), 104
207	out_edges_iter() (DiGraph method), 49
$number_of_cliques() \hspace{1cm} (in \hspace{1cm} module \hspace{1cm} net-$	out_edges_iter() (MultiDiGraph method), 105
workx.algorithms.clique), 200	overlap_weighted_projected_graph() (in module net-
number_of_edges() (DiGraph method), 60	workx.algorithms.bipartite.projection), 154
number_of_edges() (Graph method), 30	D
$number_of_edges() \hspace{1cm} (in \hspace{1cm} module \hspace{1cm} net-$	P
workx.classes.function), 377	pagerank() (in module net-
number_of_edges() (MultiDiGraph method), 117	workx.algorithms.link_analysis.pagerank_alg),
number_of_edges() (MultiGraph method), 86	304
number_of_nodes() (DiGraph method), 56	pagerank_numpy() (in module net-
number_of_nodes() (Graph method), 28	workx.algorithms.link_analysis.pagerank_alg),
$number_of_nodes() \hspace{1cm} (in \hspace{1cm} module \hspace{1cm} net-$	305
workx.classes.function), 376	pagerank_scipy() (in module net-
number_of_nodes() (MultiDiGraph method), 112	workx.algorithms.link_analysis.pagerank_alg),
number_of_nodes() (MultiGraph method), 84	306
$number_of_nonisomorphic_trees() (in module net-$	pappus_graph() (in module networkx.generators.small),
workx.generators.nonisomorphic_trees), 429	393
number_of_selfloops() (DiGraph method), 62	pareto_sequence() (in module net-
number_of_selfloops() (Graph method), 32	workx.utils.random_sequence), 523
number_of_selfloops() (MultiDiGraph method), 118	<pre>parse_adjlist() (in module networkx.readwrite.adjlist),</pre>
number_of_selfloops() (MultiGraph method), 88	461
number_strongly_connected_components()	<pre>parse_edgelist() (in module networkx.readwrite.edgelist),</pre>
(in module net-	472
workx.algorithms.components.strongly_connect	ed)arse_gml() (in module networkx.readwrite.gml), 477
210	<pre>parse_graph6() (in module networkx.readwrite.graph6),</pre>
number_weakly_connected_components()	490
(in module net-	parse_leda() (in module networkx.readwrite.leda), 488
workx.algorithms.components.weakly_connecte	
214	workx.readwrite.multiline_adjlist), 465
numeric_assortativity_coefficient() (in module net-	parse_pajek() (in module networkx.readwrite.pajek), 497
workx.algorithms.assortativity), 135	parse_sparse6() (in module networkx.readwrite.sparse6),
numerical_edge_match() (in module net-	493
workx.algorithms.isomorphism), 301	path_graph() (in module networkx.generators.classic),
numerical_multiedge_match() (in module net-	388
workx.algorithms.isomorphism), 302	periphery() (in module net-
numerical_node_match() (in module net-	workx.algorithms.distance_measures), 255
workx.algorithms.isomorphism), 300	petersen_graph() (in module networkx.generators.small),
0	393
	planted_partition_graph() (in module net-
octahedral_graph() (in module net-	workx.generators.community), 426
workx.generators.small), 392	power() (in module net-
open_file() (in module networkx.utils.decorators), 525	workx.algorithms.operators.product), 333
order() (DiGraph method), 55	powerlaw_cluster_graph() (in module net-
order() (Graph method), 28	workx.generators.random_graphs), 400
order() (MultiDiGraph method), 112	

1 0 0 11		1 11 10 2 11
` `	net-	random_shell_graph() (in module net-
workx.utils.random_sequence), 523	nat	workx.generators.random_graphs), 402
` `	net-	random_weighted_sample() (in module net-
workx.algorithms.shortest_paths.unweighte 342	eu),	workx.utils.random_sequence), 524 read_adjlist() (in module networkx.readwrite.adjlist), 459
predecessors() (DiGraph method), 52		read_dot() (in module networkx.drawing.nx_agraph), 510
predecessors() (MultiDiGraph method), 108		read_dot() (in module networkx.drawing.nx_agraph), 510
predecessors_iter() (DiGraph method), 52		read_edgelist() (in module networkx.readwrite.edgelist),
predecessors_iter() (MultiDiGraph method), 108		467
	net-	read_gexf() (in module networkx.readwrite.gexf), 473
workx.algorithms.link_prediction), 314	net	read_gml() (in module networkx.readwrite.gml), 476
<u> </u>	net-	read_gpickle() (in module networkx.readwrite.gpickle),
workx.algorithms.bipartite.generators), 168		479
preflow_push() (in module networkx.algorithms.fl-		read_graph6() (in module networkx.readwrite.graph6),
273	· · · /,	491
	net-	read_graphml() (in module networkx.readwrite.graphml),
workx.algorithms.bipartite.projection), 151		481
pydot_layout() (in module networkx.drawing.nx_pyd		read_leda() (in module networkx.readwrite.leda), 488
513	,,	read_multiline_adjlist() (in module net-
pygraphviz_layout() (in module	net-	workx.readwrite.multiline_adjlist), 463
workx.drawing.nx_agraph), 511		read_pajek() (in module networkx.readwrite.pajek), 496
		read_shp() (in module networkx.readwrite.nx_shp), 497
Q		read_sparse6() (in module networkx.readwrite.sparse6),
quotient_graph() (in module	net-	494
workx.algorithms.minors), 322		read_weighted_edgelist() (in module net-
_		workx.readwrite.edgelist), 469
R		read_yaml() (in module networkx.readwrite.nx_yaml),
ra_index_soundarajan_hopcroft() (in module	net-	489
workx.algorithms.link_prediction), 316		relabel_gexf_graph() (in module net-
radius() (in module	net-	workx.readwrite.gexf), 475
workx.algorithms.distance_measures), 255		relaxed_caveman_graph() (in module net-
ramsey_R2() (in module	net-	workx.generators.community), 425
workx.algorithms.approximation.ramsey),		remove_edge() (DiGraph method), 42
132		remove_edge() (Graph method), 16 remove_edge() (MultiDiGraph method), 97
,	net-	remove_edge() (MultiGraph method), 71
workx.generators.random_clustered), 410		remove_edges_from() (DiGraph method), 42
- C - 1 -C 1 · · ·	net-	remove_edges_from() (Graph method), 17
workx.generators.degree_seq), 409		remove_edges_from() (MultiDiGraph method), 98
_c _c ,	net-	remove_edges_from() (MultiGraph method), 72
workx.generators.geometric), 414		remove_node() (DiGraph method), 39
-E 1 V	net-	remove_node() (Graph method), 13
workx.algorithms.bipartite.generators), 169 random_layout() (in module networkx.drawing.layo		remove_node() (MultiDiGraph method), 94
514	out),	remove_node() (MultiGraph method), 68
	net-	remove_nodes_from() (DiGraph method), 39
workx.generators.random_graphs), 402	nct-	remove_nodes_from() (Graph method), 13
	net-	remove_nodes_from() (MultiDiGraph method), 94
workx.generators.community), 425		remove_nodes_from() (MultiGraph method), 68
•	net-	resource_allocation_index() (in module net-
workx.generators.random_graphs), 402		workx.algorithms.link_prediction), 312
	net-	reverse() (DiGraph method), 65
workx.generators.random_graphs), 403		reverse() (in module net-
	net-	workx.algorithms.operators.unary), 326
workx.generators.random_graphs), 399		reverse() (MultiDiGraph method), 121

reverse_cuthill_mckee_ordering() (in module networkx.utils.rcm), 526	single_source_shortest_path_length() (in module net- workx.algorithms.shortest_paths.unweighted),
reverse_havel_hakimi_graph() (in module net-	340
workx.algorithms.bipartite.generators), 167	size() (DiGraph method), 60
reversed() (in module networkx.utils.contextmanagers),	size() (Graph method), 30
527	size() (MultiDiGraph method), 116
	size() (MultiGraph method), 85
,	
workx.algorithms.richclub), 334	spectral_bipartivity() (in module net-
robins_alexander_clustering() (in module net-	workx.algorithms.bipartite.spectral), 156
workx.algorithms.bipartite.cluster), 161	spectral_layout() (in module networkx.drawing.layout),
S	516
3	spectral_ordering() (in module net-
scale_free_graph() (in module net-	workx.linalg.algebraicconnectivity), 438
workx.generators.directed), 413	spring_layout() (in module networkx.drawing.layout),
sedgewick_maze_graph() (in module net-	516
workx.generators.small), 393	square_clustering() (in module net-
selfloop_edges() (DiGraph method), 61	workx.algorithms.cluster), 204
selfloop_edges() (Graph method), 31	star_graph() (in module networkx.generators.classic), 388
selfloop_edges() (MultiDiGraph method), 118	stochastic_graph() (in module net-
selfloop_edges() (MultiGraph method), 87	workx.generators.stochastic), 420
semantic_feasibility() (DiGraphMatcher method), 298	stoer_wagner() (in module net-
semantic_feasibility() (GraphMatcher method), 297	workx.algorithms.connectivity.stoerwagner),
set_edge_attributes() (in module net-	241
workx.classes.function), 379	strong_product() (in module net-
set_node_attributes() (in module net-	workx.algorithms.operators.product), 332
workx.classes.function), 378	strongly_connected_component_subgraphs()
sets() (in module networkx.algorithms.bipartite.basic),	(in module net-
145	workx.algorithms.components.strongly_connected).
	211
shell_layout() (in module networkx.drawing.layout), 515	strongly_connected_components() (in module net-
shortest_augmenting_path() (in module net-	workx.algorithms.components.strongly_connected).
workx.algorithms.flow), 271	210
shortest_path() (in module net-	
workx.algorithms.shortest_paths.generic),	strongly_connected_components_recursive()
336	(in module net-
shortest_path_length() (in module net-	workx.algorithms.components.strongly_connected)
workx.algorithms.shortest_paths.generic),	211
337	subgraph() (DiGraph method), 64
$shortest_simple_paths() \hspace{1cm} (in \hspace{1cm} module \hspace{1cm} net-$	subgraph() (Graph method), 34
workx.algorithms.simple_paths), 355	subgraph() (MultiDiGraph method), 121
simple_cycles() (in module networkx.algorithms.cycles),	subgraph() (MultiGraph method), 90
247	subgraph_is_isomorphic() (DiGraphMatcher method),
single_source_dijkstra() (in module net-	298
workx.algorithms.shortest_paths.weighted),	subgraph_is_isomorphic() (GraphMatcher method), 296
346	subgraph_isomorphisms_iter() (DiGraphMatcher
single_source_dijkstra_path() (in module net-	method), 298
workx.algorithms.shortest_paths.weighted),	subgraph_isomorphisms_iter() (GraphMatcher method),
344	296
single_source_dijkstra_path_length() (in module net-	successors() (DiGraph method), 52
workx.algorithms.shortest_paths.weighted),	successors() (MultiDiGraph method), 108
345	successors_iter() (DiGraph method), 52
single_source_shortest_path() (in module net-	successors_iter() (MultiDiGraph method), 108
workx.algorithms.shortest_paths.unweighted),	symmetric_difference() (in module net-
340	workx.algorithms.operators.binary), 329
510	syntactic_feasibility() (DiGraphMatcher method), 299

syntactic_feasibility() (GraphMatcher method), 297	U
Т	uniform_random_intersection_graph() (in module networkx.generators.intersection), 420
tensor_product() (in module networkx.algorithms.operators.product), 333	uniform_sequence() (in module net- workx.utils.random_sequence), 523
tetrahedral_graph() (in module networkx.generators.small), 393	union() (in module networkx.algorithms.operators.binary), 327
to_agraph() (in module networkx.drawing.nx_agraph), 510	union() (UnionFind method), 522 union_all() (in module net-
to_dict_of_dicts() (in module networkx.convert), 446 to_dict_of_lists() (in module networkx.convert), 447	workx.algorithms.operators.all), 330
to_directed() (DiGraph method), 63	W
to_directed() (Graph method), 33 to_directed() (MultiDiGraph method), 120	watts_strogatz_graph() (in module net- workx.generators.random_graphs), 398
to_directed() (MultiGraph method), 89	waxman_graph() (in module net-
to_edgelist() (in module networkx.convert), 447	workx.generators.geometric), 416
to_networkx_graph() (in module networkx.convert), 445	weakly_connected_component_subgraphs()
to_numpy_matrix() (in module net-	
workx.convert_matrix), 449	(in module net-
to_numpy_recarray() (in module net-	workx.algorithms.components.weakly_connected), 215
workx.convert_matrix), 450	weakly_connected_components() (in module net-
to_pandas_dataframe() (in module net- workx.convert_matrix), 455	workx.algorithms.components.weakly_connected), 214
to_pydot() (in module networkx.drawing.nx_pydot), 512	weighted_choice() (in module net-
to_scipy_sparse_matrix() (in module net-	workx.utils.random_sequence), 525
workx.convert_matrix), 452	weighted_projected_graph() (in module net-
to_undirected() (DiGraph method), 63	workx.algorithms.bipartite.projection), 152
to_undirected() (Graph method), 33	wheel_graph() (in module networkx.generators.classic),
to_undirected() (MultiDiGraph method), 119	388
to_undirected() (MultiGraph method), 89	within_inter_cluster() (in module net-
to_vertex_cover() (in module net- workx.algorithms.bipartite.matching), 148	workx.algorithms.link_prediction), 317 write_adjlist() (in module networkx.readwrite.adjlist),
topological_sort() (in module networkx.algorithms.dag), 250	460 write_dot() (in module networkx.drawing.nx_agraph),
topological_sort_recursive() (in module net- workx.algorithms.dag), 251	510 write_dot() (in module networkx.drawing.nx_pydot), 513
transitive_closure() (in module net- workx.algorithms.dag), 252	write_edgelist() (in module networkx.readwrite.edgelist), 468
transitivity() (in module networkx.algorithms.cluster), 201	write_gexf() (in module networkx.readwrite.gexf), 474 write_gml() (in module networkx.readwrite.gml), 476
tree_data() (in module networkx.readwrite.json_graph), 486	write_gpickle() (in module networkx.readwrite.gpickle), 480
tree_graph() (in module networkx.readwrite.json_graph), 487	write_graph6() (in module networkx.readwrite.graph6), 492
triadic_census() (in module networkx.algorithms.triads), 371	write_graphml() (in module net- workx.readwrite.graphml), 482
triangles() (in module networkx.algorithms.cluster), 201	write_multiline_adjlist() (in module net-
trivial_graph() (in module networkx.generators.classic), 388	workx.readwrite.multiline_adjlist), 464
	write_pajek() (in module networkx.readwrite.pajek), 496
,	write_shp() (in module networkx.readwrite.nx_shp), 498
workx.generators.small), 393 truncated_tetrahedron_graph() (in module net-	write_sparse6() (in module networkx.readwrite.sparse6), 495
workx.generators.small), 393	write_weighted_edgelist() (in module net-
tutte_graph() (in module networkx.generators.small), 393	workx.readwrite.edgelist), 470

```
write_yaml() (in module networkx.readwrite.nx_yaml),
489
```

Z

zipf_rv() (in module networkx.utils.random_sequence), 524
zipf_sequence() (in module networkx.utils.random_sequence), 523