MOTOROLA SEMICONDUCTOR TECHNICAL DATA

MC68HC11D3 MC68HC11D0

Technical Summary 8-Bit Microcontroller

Introduction

The MC68HC11D3 and MC68HC11D0, high-performance microcontroller units (MCUs), are based on the MC68HC11E9 design. The chips offer high speed, low power consumption, multiplexed buses capable of running at up to 3 MHz, and a fully static design that allows operations at frequencies to dc. The Dx series comes from the same mask. The only difference between the units is whether the ROM has been tested and guaranteed.

The MC68HC11D3 and D0 are economical alternatives for applications in which the HC11 CPU is necessary, but where fewer peripheral functions and less memory are required. For detailed information on subsystems, programming, and the instruction set, refer to the *M68HC11 Reference Manual*, document number M68HC11 RM/AD.

Features

- MC68HC11 CPU
- Power Saving STOP and WAIT Modes
- 4K Bytes ROM (D3 Only)
- 192 Bytes On-Chip RAM (All Saved During Standby)
- 16-Bit Timer System
 - 3 Input Capture (IC) Channels/4 Output Compare (OC) Channels
 - Additional Channel; Software Selectable as Either Fourth IC or Fifth OC
- 8-Bit Pulse Accumulator
- Real-Time Interrupt Circuit
- Computer Operating Properly (COP) Watchdog System
- Synchronous Serial Peripheral Interface (SPI)
- Asynchronous Nonreturn to Zero (NRZ) Serial Communications Interface (SCI)
- 26 Input/Output (I/O) Pins
- 3 Input-Only Pins and 3 Output-Only Pins (1 Output-Only Pin in 40-Pin Package)
- Available in 44-Pin Plastic Leaded Chip Carrier (PLCC) and 40-Pin Plastic Dual In-Line Package (DIP)

Ordering Information

Package	Temperature	Description	Plastic
40-Pin DIP	-40° to + 85°C	BUFFALO ROM	MC68HC11D3P1
40-Pin DIP	-40° to + 85°C	No ROM	MC68HC11D0P
44-Pin PLCC	-40° to + 85°C	BUFFALO ROM	MC68HC11D3FN1
44-Pin PLCC	-40° to + 85°C	No ROM	MC68HC11D0FN

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Table of Contents

e	ection	Page
	Introduction	
	Features	1
	Ordering Information	1
	MC68HC11D3 Block Diagram	4
	Pin Assignments for 40-Pin DIP	
	Pin Assignments for 44-Pin PLCC	5
	Operating Modes and Memory Maps	6
	Memory Maps	7
	Registers	8
	Resets and Interrupts	13
	Parallel Input/Output	17
	Serial Communications Interface (SCI)	
	Serial Peripheral Interface (SPI)	
	Main Timer	31
	Pulse Accumulator	40

Register Index

Register		Addres	S	Page
PORTA	Port A Data	\$0000		17
PIOC	Parallel I/O Control	\$0002		17
PORTC	Port C Data	\$0003		17
PORTB	Port B Data	\$0004		18
DDRB	Data Direction Register for Port B	\$0006		18
	Data Direction Register for Port C			
	Port D Data			
DDRD	Data Direction Register for Port D	\$0009	1	19, 28
	Timer Compare Force			
	Output Compare 1 Mask			
	Output Compare 1 Data			
	Timer Count			
TIC1-TIC3	Timer Input Capture	\$0010-	\$0015	34
TOC1-TOC4	Timer Output Compare	\$0016-	\$001D	34
	Timer Input Capture 4/Output Compare 5			
TCTL1	Timer Control 1	\$0020		35
TCTL2	Timer Control 2	\$0021		35
TMSK1	Timer Interrupt Mask 1	\$0022		36
TFLG1	Timer Interrupt Flag 1	\$0023		36
TMSK2	Timer Interrupt Mask 2	\$0024		37, 41
TFLG2	Timer Interrupt Flag 2	\$0025		38, 41
PACTL	Pulse Accumulator Control	\$0026	19, 3	39, 42
PACNT	Pulse Accumulator Counter	\$0027		42
SPCR	Serial Peripheral Control	\$0028		22, 28
SPSR	Serial Peripheral Status	\$0029		29
SPDR	SPI Data	\$002A		30
BAUD	Baud Rate	\$002B		22
SCCR1	SCI Control 1	\$002C		24
SCCR2	SCI Control 2	\$002D		24
SCSR	SCI Status	\$002E		25
SCDR	SCI Data Register	\$002F		26
OPTION	System Configuration Options	\$0039		15
COPRST	Arm/Reset COP Timer Circuitry	\$003A		15
HPRIO	Highest Priority I-Bit Interrupt and Miscellaneous	\$003C		10, 16
INIT	RAM and I/O Mapping	\$003D		11
TEST1	Factory Test	\$003E		11
CONFIG	ROM Mapping, COP, ROM, Enables	\$003F		12, 16

MC68HC11D3 Block Diagram

Pin Assignments for 40-Pin DIP

Pin Assignments for 44-Pin PLCC

240°

Operating Modes and Memory Maps

In single-chip operating mode, the MC68HC11D3 is a monolithic microcontroller without external address or data buses.

In expanded multiplexed operating mode, the MCU can access a 64K-byte address space. The space includes the same on-chip memory addresses used for single-chip mode, in addition to external peripheral and memory devices. The expansion bus is composed of ports B and C and control signals AS and R/W. The address, R/W, and AS signals are active and valid for all bus cycles including accesses to internal memory locations. The following figure illustrates a recommended method of demultiplexing low order addresses from data at port C.

Address/Data Demultiplexing

Special bootstrap mode allows special purpose programs to be entered into internal RAM. The bootloader program uses the SCI to read programs up to 192 bytes into on-chip RAM at \$0040 through \$00FF. After receiving the character for address \$00FF or a four-character delay to allow a variable length download, control passes to the program loaded at \$0040.

Special test mode is used primarily for factory testing.

Memory Maps

Memory locations are the same for expanded multiplexed and single-chip modes, except for ROM in expanded mode and the bootloader ROM in bootstrap mode. The on-board 192-byte RAM is initially located at \$0040 after reset, but can be placed at any other 4K boundary (\$x040) by writing an appropriate value to the INIT register. The 64-byte register block originates at \$0000 after reset, but can be placed at any other 4K boundary (\$x000) after reset by writing an appropriate value to the INIT register.

The 4K-byte ROM is located at \$F000 through \$FFFF in all modes except expanded multiplexed, in which it is located at \$7000. The ROM can be located at \$F000 in expanded multiplexed mode by entering single-chip mode out of reset and setting the MDA bit in the HPRIO register to 1, thereby entering expanded mode from internal ROM. ROM is disabled by clearing the ROMON bit of the CONFIG register.

Hardware priority is built into the memory remapping. Registers and RAM have priority over ROM. In the event of conflicts, the higher priority resource covers the lower, making the underlying locations inaccessible.

In special bootstrap mode, a bootloader ROM is enabled at locations \$BF40 through \$BFFF.

In special test and special bootstrap modes, reset and interrupt vectors are located at \$BFC0 through \$BFFF.

MC68HC11D3 Memory Map

Registers (1 of 2)

(The register block can be remapped to any 4K boundary) Bit 7 6 5 Bit 0 PA6 PA₃ PA2 PA₁ PAO PORTA \$0000 PA7 PA5 PA4 \$0001 Reserved \$0002 **CWOM** PIOC PC0 \$0003 PC7 PC4 PC3 PC2 PC₁ **PORTC** PC6 PC5 **PORTB** \$0004 PB7 PB6 PB₅ PB4 PB3 PB₂ PB₁ PB₀ \$0005 Reserved DDB7 \$0006 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 **DDB0 DDRB** DDC7 \$0007 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 **DDRC** \$0008 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PDO PORTD \$0009 DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 **DDD0** DDRD \$000A Reserved \$000B FOC1 FOC2 FOC3 FOC4 FOC5 CFORC 0 0 0 OC1M7 \$000C OC1M6 OC1M5 OC1M4 OC1M3 0 0 0 OC1M

1.1	0	_	0	D	0		A
IVI	0	P	U	H	U	L	A
0							

\$000D

\$000E

\$000F

\$0010

\$0011

\$0012

\$0013

\$0014

\$0015

\$0016

\$0017

\$0018

\$0019

\$001A

\$001B

\$001C

\$001D

OC1D7

Bit 15

Bit 7

OC1D6

14

6

14

6

14

6

14

6

14

6

14

6

14

6

14

6

OC1D5

13

5

13

5

13

5

13

5

13

5

13

5

13

5

13

5

OC1D4

12

4

12

4

12

4

12

4

12

4

12

4

12

4

12

4

OC1D3

11

3

11

3

11

3

11

3

11

3

11

3

11

3

11

3

0

10

2

10

2

10

2

10

2

10

2

10

2

10

2

10

2

0

9

1

9

1

9

1

9

1

9

1

9

1

9

1

9

1

0

Bit 8

Bit 0

OC1D

TCNT (High)

TCNT (Low)

TIC1 (High)

TIC1 (Low)

TIC2 (High)

TIC2 (Low)

TIC3 (High)

TIC3 (Low)

TOC1(High)

TOC1 (Low)

TOC2 (High)

TOC2 (Low)

TOC3 (High)

TOC3 (Low)

TOC4 (High)

TOC4 (Low)

Registers (2 of 2)

	Bit 7	6	5	4	3	2	1	Bit 0	
001E	Bit 15	14	13	12	11	10	9	Bit 8	TI405 (Hig
\$ 0 01F	Bit 7	6	5	4	3	2	1	Bit 0	TI4O5 (Lo
\$ 0 020	OM2	OL2	ОМЗ	OL3	OM4	OL4	OM5	OL5	TCTL1
\$ 0 021	EDG4B	EDG4A	EDG1B	EDG1A	EDG2B	EDG2A	EDG3B	EDG3A	TCTL2
\$ 0 022	OC1I	OC2I	OC3I	OC4I	14051	IC1I	IC2I	IC3I	TMSK1
\$ 0 023	OC1F	OC2F	OC3F	OC4F	1405F	IC1F	IC2F	IC3F	TFLG1
\$ 0 024	TOI	RTII	PAOVI	PAII	0	0	PR1	PR0	TMSK2
\$ 0 025	TOF	RTIF	PAOVF	PAIF	0	0	0	0	TFLG2
\$ 0 026	DDRA7	PAEN	PAMOD	PEDGE	DDRA3	14/05	RTR1	RTR0	PACTL
\$ 0 027	Bit 7	6	5	4	3	2	1 1 1	Bit 0	PACNT
\$ 0 028	SPIE	SPE	DWOM	MSTR	CPOL	СРНА	SPR1	SPR0	SPCR
\$ 0 029	SPIF	WCOL	0	MODF	0	0	0	0	SPSR
002A	Bit 7	6	5	4	3	2	0.01	Bit 0	SPDR
0 02B	TCLR	0	SCP1	SCP0	RCKB	SCR2	SCR1	SCR0	BAUD
\$ 0 02C	R8	T8	0	М	WAKE	0	0	0	SCCR1
0 02D	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	SCCR2
002E	TDRE	TC	RDRF	IDLE	OR	NF	FE	0	SCSR
\$ 0 02F	R7/T7	R6/T6	R5/T5	R4/T4	R3/T3	R2/T2	R1/T1	R0/T0	SCDR
\$ 0 030				entre by against					Reserved
to \$ 0 038	Percu obs	Artes Inc		econd feelb	eter and main	214/981 S	Intiffunction		Reserved
\$ 0 039	0	0	IRQE	DLY	CME	0	CR1	CR0	OPTION
6003A	Bit 7	6	5	4	3	2	1	Bit 0	COPRST
0 03B				1000					Reserved
003C	RBOOT	SMOD	MDA	IRVNE	PSEL3	PSEL2	PSEL1	PSELO	HPRIO
0 03D	RAM3	RAM2	RAM1	RAMO	REG3	REG2	REG1	REG0	INIT
003E	TILOP	0	OCCR	CBYP	DISR	FCM	FCOP	0	TEST1
\$ 0 03F	0	0	0	0	0	NOCOP	ROMON	0	CONFIG

HPRIO — Highest Priority I-Bit Interrupt and Miscellaneous

	Bit 7	6	5	4	3	2	1	Bit 0	
	RBOOT	SMOD	MDA	IRVNE	PSEL3	PSEL2	PSEL1	PSEL0	1314 01000
RESETS:									
	0	0	0	0	0	1	0	1	Single-Chip Mode
	0	0	1	0	0	1	0	1	Exp'd NonMux'd
	1	1	0	0	0	1	0	1	Bootstrap
	0	1	1	1	0	1	0	1	Special Test

RBOOT, SMOD, MDA, AND IRVNE reset depend on mode selected at power-up.

RBOOT — Read Bootstrap ROM

Valid only when SMOD is set to one (special bootstrap or special test mode). Can only be written in special modes.

- 0 = Bootloader ROM disabled and not in map
- 1 = Bootloader ROM enabled and in map at \$BF40-\$BFFF

SMOD and MDA — Special Mode Select and Mode Select A

These two bits can be read at any time. They reflect the status of the MODB and MODA pins at the rising edge of reset. SMOD can only be written in special modes. MDA can be written at any time in special modes, but only once in normal modes.

Inp	uts	D DIAW I	Latched at Reset		
MODB	MODA	Mode	RBOOT	SMOD	MDA
1	0	Single-Chip	0	0	0
1	1	Expanded Multiplexed	0	0	1
0	0	Special Bootstrap	. 1	1	0
0	1	Special Test	0	1	1

IRVNE — Internal Read Visibility/Not E (IRVNE can be written once in any mode.)

In expanded modes, IRVNE determines whether IRV is on or off. In special test mode IRVNE is set to 1; in all other modes IRVNE is reset to 0.

- 0 = No internal read visibility on external bus
- 1 = Data from internal reads is driven out the external data bus

In single-chip modes this bit determines whether the E-clock drives out of the chip.

- 0 = E is driven out from the chip
- 1 = E pin is driven low

Mode	IRVNE Out of Reset	E-Clock Out of Reset	IRV Out of Reset	IRVNE Affects Only
Single-Chip	0	On	Off	Е
Expanded	0	On	Off	IRV
Boot	0	On	Off	Е
Special Test	1	On	On	IRV

Bits 3-0 — Refer to Resets and Interrupts.

INIT — RAM and I/O Mapping

\$003D

	Bit 7	6	5	4	3	2	1	Bit 0
	RAM3	RAM2	RAM1	RAM0	REG3	REG2	REG1	REG0
RESET:	0	0	0	0	0	0	0	0

RAM3-RAM0 — 192-Byte Internal RAM Map Position

REG3-REG0 — 64-Byte Register Block Map Position

NOTE

Can be written only once in first 64 cycles out of reset in normal modes, or at any time in special modes. Refer to **Operating Modes and Memory Maps** for more information.

TEST1 — Factory Test

\$003E

	Bit 7	6	5	4	3	2	1	Bit 0
	TILOP	0	OCCR	CBYP	DISR	FCM	FCOP	0
RESET:	0	0	0	0	_	0	0	0

Test Modes Only

TILOP — Test Illegal Opcode

Bits 6 and 0 — Not implemented; always read zero

OCCR — Output Condition Code Register to Timer Port and Ports D4 and D5 on 40-Pin DIP

CBYP — Timer Divider Chain Bypass

DISR — Disable Resets from COP and Clock Monitor

FCM — Force Clock Monitor Failure

FCOP — Force COP Watchdog Failure

CONFIG — ROM Mapping, COP, ROM, Enables

\$003F

	Bit 7	6	5	4	3	2	1	Bit 0
	0	0	0	0	0	NOCOP	ROMON	0
RESET:	0	0	0	0	0	_ 9	1	0

Bits 7-3 and 0 - Not implemented; always read zero

Bit 2 — Refer to Resets and Interrupts.

ROMON - ROM Enable

In all modes ROMON is forced to one out of reset. Writable once in normal modes and writable at any time in special modes.

0 = ROM removed from the memory map

1 = ROM present in the memory map

NOTE

In expanded mode, the ROM is located at \$7000–\$7FFF out of reset. In all other modes, the ROM is located at \$F000–\$FFFF.

Resets and Interrupts

The MC68HC11D3 and D0 have 3 reset vectors and 18 interrupt vectors. The reset vectors are as follows:

- RESET or Power-On Reset
- Clock Monitor Fail
- COP Failure

The 18 interrupt vectors service 22 interrupt sources, 3 non-maskable and 19 maskable. The 3 non-maskable interrupt vectors are as follows:

- Illegal Opcode Trap
- Software Interrupt
- XIRQ Pin (Pseudo Non-Maskable Interrupt)

On-chip peripheral systems generate maskable interrupts, which are recognized only if the global interrupt mask bit (I) in the condition code register (CCR) is clear. Nineteen interrupt sources in the MC68HC11D3 and D0 are subject to masking by a global interrupt mask bit (I-bit in the CCR). Maskable interrupts are prioritized according to a default arrangement; however, any one source can be elevated to the highest maskable priority position by a software-accessible control register, HPRIO. The HPRIO register can be written at any time, provided the I-bit in the CCR is set.

In addition to the global I-bit, all of these sources except the external interrupt (IRQ pin) are controlled by local enable bits in control registers. Most interrupt sources in the M68HC11 have separate interrupt vectors and there is usually no need for software to poll control registers to determine the cause of an interrupt. Refer to the table of interrupt and reset vector assignments.

Interrupt and Reset Vector Assignments

Vector Address	Interrupt Source	CC Register Mask	Local Mask
FFC0, C1 — FFD4, D5	Reserved	CMOT IN THESE	pt - = = = = = = = = = = = = = = = = = =
FFD6, D7	SCI Serial System	I-Bit	_
	SCI Transmit Complete		TCIE
	SCI Transmit Data Register Empty		TIE
	SCI Idle Line Detect	v launem ekte	ILIE
	SCI Receiver Overrun	平 种种 的 相	RIE
	SCI Receive Data Register Full	T sbeecQ lagell	RIE
FFD8, D9	SPI Serial Transfer Complete	I-Bit	SPIE
FFDA, DB	Pulse Accumulator Input Edge	I-Bit	PAII
FFDC, DD	Pulse Accumulator Overflow	I-Bit	PAOVI
FFDE, DF	Timer Overflow	I-Bit	TOI
FFE0, E1	Timer Input Capture 4/Output Compare 5	I-Bit	14051
FFE2, E3	Timer Output Compare 4	I-Bit	OC4I
FFE4, E5	Timer Output Compare 3	I-Bit	OC3I
FFE6, E7	Timer Output Compare 2	I-Bit	OC2I
FFE8, E9	Timer Output Compare 1	I-Bit	OC1I
FFEA, EB	Timer Input Capture 3	I-Bit	IC3I
FFEC, ED	Timer Input Capture 2	I-Bit	IC2I
FFEE, EF	Timer Input Capture 1	I-Bit	IC1I
FFF0, F1	Real-Time Interrupt	I-Bit	RTII
FFF2, F3	IRQ (External Pin)	I-Bit	None
FFF4, F5	XIRQ Pin	I-Bit	None
FFF6, F7	Software Interrupt	None	None
FFF8, F9	Illegal Opcode Trap	None	None
FFFA, FB	COP Failure	None	NOCOP
FFFC, FD	Clock Monitor Fail	None	CME
FFFE, FF	RESET	None	None

For some interrupt sources, such as the SCI interrupts, the flags are automatically cleared during the normal course of responding to the interrupt requests. For example, the RDRF flag in the SCI system is cleared by the automatic clearing mechanism, consisting of a read of the SCI status register while RDRF is set, followed by a read of the SCI data register. The normal response to an RDRF interrupt request is to read the SCI status register to check for receive errors, then read the received data from the SCI data register. These two steps satisfy the automatic clearing mechanism without requiring any special instructions.

OPTION — System Configuration Options

\$0039

	Bit 7	6	5	4	3	2	1	Bit 0
	0	0	IRQE*	DLY*	CME	0	CR1*	CR0*
RESET:	0	0	0	. 1	0	0	0	0

^{*}Can be written only once in first 64 cycles out of reset in normal modes, or at any time in special modes.

Bits 7, 6, and 2 — Not implemented; always read zero

IRQE — IRQ Select Edge-Sensitive Only

0 = Low level recognition

1 = Falling edge recognition

DLY — Enable Oscillator Start-Up Delay on Exit from STOP

0 = No stabilization delay on exit from STOP

1 = Stabilization delay enabled on exit from STOP

CME - Clock Monitor Enable

0 = Clock monitor disabled; slow clocks can be used

1 = Slow or stopped clocks cause clock failure reset

CR1, CR0 — COP Timer Rate Select

COP Timer Rate Select

CR [1:0]	Divide E/2 ¹⁵ By	XTAL = 4.0 MHz Timeout -0/+32.8 ms	XTAL = 8.0 MHz Timeout -0/+16.4 ms	XTAL = 12.0 MHz Timeout -0/+10.9 ms
0.0	1 1 1	32.768 ms	16.384 ms	10.923 ms
01	4	131.07 ms	65.536 ms	43.691 ms
10	16	524.29 ms	262.14 ms	174.76 ms
11	64	2.097 sec	1.049 sec	699.05 ms
	E=	1.0 MHz	2.0 MHz	3.0 MHz

COPRST — Arm/Reset COP Timer Circuitry

\$003A

	Bit 7	6	5	4	3	2	1	Bit 0
100	7	6	5	4	3	2	1	0
RESET:	0	0	0	0	0	0	0	0

Write \$55 to COPRST to arm COP watchdog clearing mechanism. Write \$AA to COPRST to reset COP watchdog.

HPRIO — Highest Priority I-Bit Interrupt and Miscellaneous

\$003C

	Bit 7	6	5	4	3	2	1	Bit 0
	RBOOT	SMOD	MDA	IRVNE	PSEL3	PSEL2	PSEL1	PSEL0
RESET:				_ 0	0	1	0	1

Bits 7-4 — Refer to Operating Modes and Memory Maps.

PSEL3-PSEL0 — Priority Select Bits 3-0

Writable only while the I-bit in the CCR is set (interrupts disabled). These bits select one interrupt source to be elevated above all other I-bit related sources.

PSEL [3:0]	Interrupt Source Promoted
0000	Timer Overflow
0001	Pulse Accumulator Overflow
0010	Pulse Accumulator Input Edge
0011	SPI Serial Transfer Complete
0100	SCI Serial System
0101	Reserved (Default to IRQ)
0110	IRQ (External Pin)
0111	Real-Time Interrupt
1000	Timer Input Capture 1
1001	Timer Input Capture 2
1010	Timer Input Capture 3
1011	Timer Output Compare 1
1100	Timer Output Compare 2
1101	Timer Output Compare 3
1110	Timer Output Compare 4
1111	Timer Output Compare 5/Input Capture 4

CONFIG — ROM Mapping, COP, ROM, Enables

\$003F

AE 001	Bit 7	6	5	4	3	2	ONO 1	Bit 0
	0	0	0	0	0	NOCOP	ROMON	0
RESET:	0	0	0	0	0		1	0

Bits 7–3 and 0 — Not implemented; always read zero

NOCOP — COP system disable

Cleared out of reset in normal modes, enabling COP system. Set out of reset in special modes. Writable once in normal modes and writable at any time in special modes.

0 = COP enabled (forces reset on timeout)

1 = COP disabled (does not force reset on timeout)

Bit 1 — Refer to Operating Modes and Memory Maps.

Parallel Input/Output

The MC68HC11D3 has four 8-bit I/O ports — A, B, C, and D. Note that in the 40-pin package, port A bits 4 and 6 are not connected to pins. In single-chip and bootstrap modes, all ports are parallel I/O data ports. In expanded multiplexed and test modes, ports B and C and lines D6/AS and D7/R/W are a memory expansion bus with port B as the high-order address bus, port C as the multiplexed address and data bus, AS as the demultiplexing signal, and R/W as the data bus direction control.

Port	Input Pins	Output Pins	Bidirectional pins	Shared Functions
Port A	3	3	2	Timer
Port B		<u> </u>	8	High Order Address
Port C	_	<u> </u>	8	Low Order Address and Data Bus
Port D		W	8	SCI, SPI, AS, and R/W

PORTA — Port A Data

\$0000

	Bit 7	6	5	4	3	2	1	Bit 0	
	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	
RESET:	HIZ	0	0	0	HIZ	HiZ	HIZ	HIZ	1000
Alt. Pin Func.:	PAI	OC2	ОСЗ	OC4	OC5/IC4	IC1	IC2	IC3	
And/or:	OC1	OC1	OC1	OC1	OC1	_	for Post C	tale <u>pa</u> F	

PIOC — Parallel I/O Control

\$0002

	Bit 7	6	5	4	3	2	1	Bit 0
	0	0	CWOM	0	0	0	0	0
RESET:	0	0	0	0	0	0	0	0

CWOM — Port C Wire-OR Mode (Affects All Eight Port C Pins)

0 = Port C outputs are normal CMOS outputs

1 = Port C outputs are open-drain outputs

PORTC - Port C Data

\$0003

	Bit 7	6	5	4	3	2	1 3	Bit 0
	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
S. Chip or Boot: RESET:	PC7	PC6	PC5 Reset	PC4	PC3 pins as Hiz	PC2 Z inputs	PC1	PC0
Expan. or Test: RESET:	A7/D7	A6/D6 Reset confi	A5/D5	A4/D4 as multiple	A3/D3 exed, low-c	A2/D2 order addre	A1/D1	A0/D0

ero	Bit 7	6	5	4	3	2	podned	Bit 0	
	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	
S. Chip or Boot: RESET:	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	
Expan.		enullana.	116361	comigures	pilla da Filz	. Inputs	(agtic	Total State	
or Test:	A15	A14 Rese	A13 et configure	A12 es pins as h	A11 nigh-order a	A10 address ou	A9 tputs	A8	
DRB —	- Data Dire	ection Reg	jister for F	Port B					\$000
	Bit 7	6	5	4	3	2	1	Bit 0	
	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	
RESET:	0	0	0	0	0	0	0	0	
0		ure corres ure corres				19 10 1 1	19 L a	BASE	
0	= Config		sponding I	/O pin for		24 00	3 O	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$000
0	= Config - Data Dire	ection Reg	sponding I	O pin for	output 3	2	0 8	Bit 0	\$000
0 1 DDRC—	= Config Data Direct Bit 7 DDC7	ection Reg	pister for P 5 DDC5	O pin for	output 3 DDC3	2 DDC2	1 DDC1	Bit 0	\$000
ODRC— RESET:	= Config Data Dire Bit 7 DDC7 0	ection Reg 6 DDC6	pister for P 5 DDC5	O pin for	3 DDC3 0	2	0 8	Bit 0	\$000
ODRC— RESET: ODCx 0	Bit 7 DDC7 0 Config	ection Reg	pister for P 5 DDC5 0 ponding I	Port C 4 DDC4 0 /O pin for	3 DDC3 0 input	2 DDC2	1 DDC1 0	Bit 0 DDC0 0	\$000
DDRC— RESET: DDCx 0 1	Bit 7 DDC7 0 Config	ection Reg 6 DDC6 0 ure corres	pister for P 5 DDC5 0 ponding I	Port C 4 DDC4 0 /O pin for	3 DDC3 0 input	2 DDC2 0	1 DDC1 0	Bit 0 DDC0 0	\$000
DDRC— RESET: DDCx 0 1	Bit 7 DDC7 0 Config Config Config	ection Reg 6 DDC6 0 ure corres ure corres	pister for P 5 DDC5 0 sponding I	Port C 4 DDC4 0 /O pin for /O pin for	3 DDC3 0 input output	2 DDC2 0	1 DDC1 0	Bit 0 DDC0 0	\$000
ODRC— RESET: ODCx 0 1	Bit 7 DDC7 0 = Config = Config	ection Reg 6 DDC6 0 ure corres	pister for P 5 DDC5 0 ponding I	Port C 4 DDC4 0 /O pin for	3 DDC3 0 input output	2 DDC2 0	1 DDC1 0	Bit 0 DDC0 0	\$000
DDRC— RESET: DDCx 0 1	= Config - Data Dire Bit 7 DDC7 0 - Config - Config - Port D Bit 7	ection Reg 6 DDC6 0 ure corres ure corres Data 6	pister for P 5 DDC5 0 sponding I sponding I sponding I	O pin for Oort C 4 DDC4 0 O pin for O pin for	3 DDC3 0 input output	2 DDC2 0	1 DDC1 0	Bit 0 DDC0 0	\$000

DDRD — Data Direction Register for Port D

\$0009

	Bit 7	6	5	4	3	2	1	Bit 0
	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0
RESET:	0	0	0	0	0	0	0	0

In expanded modes, Port D bits 6 and 7 are AS and R/W outputs.

DDDx

- 0 = Configure corresponding I/O pin for input
- 1 = Configure corresponding I/O pin for output

PACTL — Pulse Accumulator Control

\$0026

	Bit 7	6	5	4	3	2	1	Bit 0
	DDRA7	PAEN	PAMOD	PEDGE	DDRA3	14/05	RTR1	RTR0
RESET:	0	0	0	0	0	0	0	0

DDRA7 — Data Direction for Port A Bit 7

- 0 = Input only
- 1 = Output

Bits 6-4 - Refer to Pulse Accumulator.

DDRA3 - Data Direction for Port A Bit 3

- 0 = Input only
- 1 = Output

14/O5 — Input Capture 4 or Output Compare 5 (IC4 or OC5)

- 0 = OC5 (No IC4)
- 1 = IC4 (No OC5)

Bits 1-0 - Refer to Main Timer.

Serial Communications Interface (SCI)

The SCI, a universal asynchronous receiver transmitter (UART) serial communications interface, is one of two independent serial I/O subsystems in the MC68HC11D3. It has a standard nonreturn to zero (NRZ) format (one start, eight or nine data and one stop bit) and several different baud rates. The SCI transmitter and receiver are independent, but use the same data format and bit rate.

SCI Transmitter Block Diagram

SCI Receiver Block Diagram

SPCR — Serial Peripheral Control

\$0028

	Bit 7	6	5	4	3	2	1	Bit 0
	SPIE	SPE	DWOM	MSTR	CPOL	СРНА	SPR1	SPR0
RESET:	0	0	0	0	0	1	U	U

Bits 7-6 and 4-0 — Refer to Serial Peripheral Interface (SPI).

DWOM — Port D Wired-OR Mode Option for Pins PD5-PD0

0 = Normal CMOS outputs

1 = Open-drain outputs

BAUD — Baud Rate

\$002B

	Bit 7	6	5	4	3	2	1	Bit 0
	TCLR	0	SCP1	SCP0	RCKB	SCR2	SCR1	SCR0
RESET:	0	0	0	0	0	U	U	U

TCLR — Clear Baud Rate Counters (Test)

Bit 6 — Not implemented; always reads zero

SCP1, SCP0 — SCI Baud Rate Prescaler Selects

Refer to the baud rate prescaler and baud rate selection tables.

RCKB — SCI Baud Rate Clock Check (Test)

SCR2, SCR1, and SCR0 — SCI Baud Rate Selects

Selects receiver and transmitter baud rate. Refer to the functional schematic of the baud rate clock divider chain.

Baud Rate Prescaler Sets Highest Rate

	Divide	Crystal Frequency in MHz						
SCP [1:0]	Internal Clock By	4.0 MHz (Baud)	8.0 MHz (Baud)	10.0 MHz (Baud)	12.0 MHz (Baud)			
0.0	1	62.50K	125.0K	156.25K	187.5K			
01	3	20.83K	41.67K	52.08K	62.5K			
10	4	15.625K	31.25K	38.4K	46.88K			
11	13	4800	9600	12.02K	14.42K			

Baud Rate Selection

	Divide Prescaler	Highest Baud Rate (Prescaler Output from Previous Table)					
SCR [2:0]	Ву	4800	9600	38.4K			
000	1	4800	9600	38.4K			
001	2	2400	4800	19.2K			
010	4	1200	2400	9600			
011	8	600	1200	4800			
100	16	300	600	2400			
101	32	150	300	1200			
110	64		150	600			
111	128	<u>PERSONAL PROPERTY OF THE PERSON NAMED AND ADDRESS OF THE PERS</u>	alco L <u>u</u> rtar P	300			

Baud Rate Clock Diagram

SCCR1 — SCI Control 1

\$002C

	Bit 7	6	5	4	3	2	1	Bit 0
	R8	T8	0	М	WAKE	0	0	0
RESET:	0	0	0	0	0	0	0	0

R8 — Receive Data Bit 8

If M bit is set, R8 stores ninth bit in receive data character.

T8 — Transmit Data Bit 8

If M bit is set, T8 stores ninth bit in transmit data character.

Bits 5 and 2-0 — These bits are not implemented; always read zero

M — Mode (Select Character Format)

0 = Start, 8 data bits, 1 stop bit

1 = Start, 9 data bits, 1 stop bit

WAKE — Wake-Up by Address Mark/Idle

0 = Wake-up by IDLE line recognition

1 = Wake-up by address mark (most significant data bit set)

SCCR2 — SCI Control 2

\$002D

	Bit 7	6	5	4	3	2	1	Bit 0	
	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	1
RESET:	0	0	0	0	0	0	0	0	

TIE — Transmit Interrupt Enable

0 = TDRE interrupts disabled

1 = SCI interrupt requested when TDRE status flag is set

TCIE — Transmit Complete Interrupt Enable

0 = TC interrupts disabled

1 = SCI interrupt requested when TC status flag is set

RIE — Receiver Interrupt Enable

0 = RDRF and OR interrupts disabled

1 = SCI interrupt requested when RDRF flag or the OR status flag is set

ILIE — Idle Line Interrupt Enable

0 = IDLE interrupts disabled

1 = SCI interrupt requested when IDLE status flag is set

TE — Transmitter Enable

When TE goes from zero to one, one unit of idle character time (logic one) is queued as a preamble.

0 = Transmitter disabled

1 = Transmitter enabled

RE - Receiver Enable

- 0 = Receiver disabled
- 1 = Receiver enabled

RWU - Receiver Wake-Up Control

- 0 = Normal SCI receiver
- 1 = Wake-up enabled; inhibits receiver interrupts

SBK - Send Break

- 0 = Break generator off
- 1 = Break codes generated as long as SBK = 1

SCSR - SCI Status

\$002E

	Bit 7	6	5	4	3	2	1	Bit 0
	TDRE	TC	RDRF	IDLE	OR	NF	FE	0
RESET:	1	1	0	0	0	0	0	0

TDRE — Transmit Data Register Empty Flag

Set if transmit data can be written to SCDR; if TDRE = 0, transmit data register is busy. Cleared by SCSR read with TDRE set, followed by SCDR write.

TC — Transmit Complete Flag

Set if transmitter is idle (no data, preamble, or break transmission in progress). Cleared by SCSR read with TC set, followed by SCDR write.

RDRF — Receive Data Register Full Flag

Set if a received character is ready to be read from SCDR. Cleared by SCSR read with RDRF set, followed by SCDR read.

IDLE — Idle Line Detected Flag

Set if the RxD line is idle. Cleared by SCSR read with IDLE set, followed by SCDR read. Once cleared, IDLE is not set again until the RxD line has been active and becomes idle again.

OR — Overrun Error Flag

Set if a new character is received before a previously received character is read from SCDR. Cleared by SCSR read with OR set, followed by SCDR read.

NF - Noise Error Flag

Set if majority sample logic detects anything other than a unanimous decision. Cleared by SCSR read with NF set, followed by SCDR read.

FE — Framing Error

Set if a 0 is detected where a stop bit was expected. Cleared by SCSR read with FE set, followed by SCDR read.

Bit 0 — Not implemented; always reads zero

SCDR — SCI Data Register

\$002F

	Bit 7	6	5	4	3	2	1	Bit 0
	R7/T7	R6/T6	R5/T5	R4/T4	R3/T3	R2/T2	R1/T1	R0/T0
RESET:	U	U	U	U	U	U	U	U

NOTE

Receive and transmit are double buffered. Reads access the receive data buffer and writes access the transmit data buffer.

Serial Peripheral Interface (SPI)

The SPI is one of two independent serial communications subsystems that allow the MCU to communicate synchronously with peripheral devices and other microprocessors. The SPI protocol facilitates rapid exchange of serial data between devices in a control system. Each SPI compatible component in a system can be set up for master or slave operation. Data rates can be as high as one half of the E-clock rate when configured as master and as fast as the E-clock rate when configured as slave.

SPI Block Diagram

DDRD — Data Direction Register for Port D

\$0009

	Bit 7	6	5	4	3	2	me 1 - s	Bit 0
-340	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0
RESET:	0	0	0	0	0	0	0	0
Alt. Pin Func.:	R/W	AS	SS	SCK	MOSI	MISO	TxD	RxD

DDD7-DDD0 - Data Direction for Port D

When DDRD bit 5 is zero and MSTR = 1 in SPCR, PD5/SS is a general-purpose output and mode fault logic is disabled.

0 = Input

1 = Output

SPCR — Serial Peripheral Control

\$0028

	Bit 7	6	5	4	3	2	1	Bit 0
	SPIE	SPE	DWOM	MSTR	CPOL	СРНА	SPR1	SPR0
RESET:	0	0	0	0	0	1	U	U

SPIE — Serial Peripheral Interrupt Enable

0 = SPI interrupt disabled

1 = SPI interrupt enabled

SPE — Serial Peripheral System Enable

0 = SPI off

1 = SPI on

DWOM — Port D Wired-OR Mode Option for Pins PD5-PD0

0 = Normal CMOS outputs

1 = Open-drain outputs

MSTR — Master Mode Select

0 = Slave mode

1 = Master mode

CPOL, CPHA — Clock Phase, Clock Polarity (Refer to SPI Transfer Format table.)

NOTE: This figure shows the LSBF = 0 default case. If LSBF = 1, data is transferred in reverse order (LSB first).

SPI Transfer Format

SPR1 and SPR0 — SPI Clock Rate Selects

SPR [1:0]	E-Clock Divide By	Frequency at E = 2 MHz (Baud)
0.0	2	1.0 MHz
01	4	500 kHz
10	16	125 kHz
11	32	62.5 kHz

SPSR — Serial Peripheral Status

\$0029

	Bit 7	6	5	4	3	2	1	Bit 0
	SPIF	WCOL	0	MODF	0	0	0	0
RESET:	0	0	0	0	0	0	0	0

SPIF — SPI Transfer Complete Flag

Set when an SPI transfer is complete. Cleared by reading SPSR with SPIF set, followed by SPDR access.

WCOL - Write Collision

Set when SPDR is written while transfer is in progress. Cleared by SPSR with WCOL set, followed by SPDR access.

Bits 5 and 3-0 — Not Implemented; always read zero

MODF — Mode Fault (A Mode Fault Terminates SPI Operation)

Set when SS is pulled low while MSTR = 1. Cleared by SPSR read with MODF set, followed by SPCR write.

SPDR — SPI Data

\$002A

Bit 7	6	5	4	3	2	1	Bit 0
Bit 7	6	5	4	3	2	1	Bit 0

NOTE

SPI is double buffered in, single buffered out.

Main Timer

The main timer is based on a free-running 16-bit counter with a four-stage programmable prescaler. The timer shares port A pins, which can be configured for three timer input capture (IC) and four timer output compare (OC), and either a fourth IC or a fifth OC. A timer overflow function allows software to extend the system's timing capability beyond the counter's 16-bit range. Refer to the following timer summary table for crystal-related frequencies and periods.

Timer Summary

Figure 182		XTAL Free	quencies		
4 4	4.0 MHz	8.0 MHz	12.0 MHz	Other Rates	
Control	1.0 MHz	2.0 MHz	3.0 MHz	(E)	
Bits	1000 ns	500 ns	333 ns	(1/E)	
PR [1:0]		Main Timer C	ount Rates		
0.0				STANFORM TOP	
1 count overflow	1.0 μs 65.536 ms	500 ns 32.768 ms	333 ns 21.845 ms	(E/1) (E/2 ¹⁶)	
01					
1 count overflow	4.0 μs 262.14 ms	2.0 μs 131.07 ms	1.333 μs 87.381 ms	(E/4) (E/2 ¹⁸)	
1 0 1 count overflow	8.0 μs 524.29 ms	4.0 μs 262.14 ms	2.667 μs 174.76 ms	(E/8) (E/2 ¹⁹)	
11		1 60 11		LOCAL PART	
1 count overflow	16.0 μs 1.049 s	8.0 μs 524.29 ms	5.333 μs 349.52 ms	(E/16) (E/2 ²⁰)	
RTR [1:0]		Periodic (RTI) I	nterrupt Rates		
0 0 0 1 1 0 1 1	8.192 ms 16.384 ms 32.768 ms 65.536 ms	4.096 ms 8.192 ms 16.384 ms 32.768 ms	2.731 ms 5.461 ms 10.923 ms 21.845 ms	(E/2 ¹³) (E/2 ¹⁴) (E/2 ¹⁵) (E/2 ¹⁶)	
CR [1:0]		COP Watchdog	Timeout Rates		
0 0 0 1 1 0 1 1	32.768 ms 131.07 ms 524.29 ms 2.097 s	16.384 ms 65.536 ms 262.14 ms 1.049 s	10.923 ms 43.691 ms 174.76 ms 699.05 ms	(E/2 ¹⁵) (E/2 ¹⁷) (E/2 ¹⁹) (E/2 ²¹)	
Timeout Tolerance (-0 ms/+)	32.768 ms	16.4 ms	10.9 ms	(E/2 ¹⁵)	

Main Timer

NOTE: Port A pin actions are controlled by OC1M, OC1D, PACTL, TCTL1, and TCTL2 registers.

CFORC — Timer Compare Force

\$000B

	Bit 7	6	5	4	3	2	1	Bit 0	
	FOC1	FOC2	FOC3	FOC4	FOC5	0	0	0	
RESET:	0	0	0	0	0	0	0	0	

FOC5-FOC1 — Write Ones to Force Compare(s)

0 = Not affected

1 = Output compare x action occurs, but OCxF flag bit is not set

Bits 2 – 0 — Not implemented; always read zero

OC1M — Output Compare 1 Mask

RES

\$000C

	Bit 7	6	5	4	3	2	1	Bit 0
	OC1M7	OC1M6	OC1M5	OC1M4	OC1M3	0	0	0
SET:	0	0	0	0	0	0	0	0

Set bit(s) to enable OC1D to control corresponding pin(s) of port A.

OC1M7-OC1M3 - Output Compare Masks

0 = OC1 is disabled

1 = OC1 is enabled to control the corresponding pin(s) of port A

Bits 2-0 — Not implemented; always read zero

OC1D — Output Compare 1 Data

\$000D

	Bit 7	6	5	4	3	2	1	Bit 0
	OC1D7	OC1D6	OC1D5	OC1D4	OC1D3	0	0	0
RESET:	0	0	0	0	0	0	0	0

If OC1Mx is set, data in OC1Dx is output to port A bit-x on successful OC1D compares.

Bits 2-0 — Not implemented; always read zero

TCNT — Timer Count

\$000E, \$000F

\$000E	Bit 15	14	13	12	11	10	9	Bit 8	High	TCNT
\$000F	Bit 7	6	5	4	3	2	G 1 1 8	Bit 0	Low	

TCNT resets to \$0000. In normal modes, TCNT is read-only.

TIC1-TIC3 — Timer Input Capture

\$0010-\$0015

\$0010	Bit 15	14	13	12	11	10	9	Bit 8	High	TIC1
\$ 0 011	Bit 7	6	5	4	3	2	1	Bit 0	Low	
\$0012	Bit 15	14	13	12	11	10	9	Bit 8	High	TIC2
\$ 0 013	Bit 7	6	5	4	3	2	1	Bit 0	Low	
\$0014	Bit 15	14	13	12	11	10	9	Bit 8	High	TIC3
\$ 0 015	Bit 7	6	5	4	3	2	1	Bit 0	Low	

TICx not affected by reset.

TOC1-TOC4 — Timer Output Compare

\$0016-\$001D

\$ 0 016	Bit 15	14	13	12	11	10	9	Bit 8	High	TOC1
\$ 0 017	Bit 7	6	5	4	3	2	1	Bit 0	Low	
\$ 0 018	Bit 15	14	13	12	11	10	9	Bit 8	High	TOC2
\$ 0 019	Bit 7	6	5	4	3	2	1	Bit 0	Low	
\$001A	Bit 15	14	13	12	11	10	9	Bit 8	High	тосз
\$ 0 01B	Bit 7	6	5	4	3	2	1	Bit 0	Low	
\$001C	Bit 15	14	13	12	11	10	9	Bit 8	High	TOC4
\$ 0 01D	Bit 7	6	5	4	3	2	1	Bit 0	Low	

All TOCx register pairs reset to ones (\$FFFF).

TI405 — Timer Input Capture 4/Output Compare 5

\$001E, \$001F

\$001E	Bit 15	14	13	12	11	10	9	Bit 8	High	T1405
\$ 0 01F	Bit 7	6	5	4	3	2	1	Bit 0	Low	

TI4O5 register pairs reset to ones (\$FFFF).

TCTL1 — Timer Control 1

\$0020

	Bit 7	6	5	4	3	2	1	Bit 0
	OM2	OL2	ОМЗ	OL3	OM4	OL4	OM5	OL5
RESET:	0	0	0	0	0	0	0	0

OM2-OM5 - Output Mode

OL2-OL5 — Output Level

OMx	OLx	Action Taken on Successful Compare
0	0	Timer disconnected from output pin logic
0	1	Toggle OCx output line
1	0	Clear OCx output line to 0
1	1	Set OCx output line to 1

TCTL2 — Timer Control 2

\$0021

	Bit 7	6	5	4	3	2	1	Bit 0
	EDG4B	EDG4A	EDG1B	EDG1A	EDG2B	EDG2A	EDG3B	EDG3A
RESET:	0	0	0	0	0	0	0	0

Timer Control Configuration

EDGxB	EDGxA	Configuration			
0	0	Capture disabled			
0	1	Capture on rising edges only			
1	0	Capture on falling edges only			
1	1	Capture on any edge			

TMSK1 — Timer Interrupt Mask 1

\$0022

	Bit 7	6	5	4	3	2	. 1	Bit 0
	OC1I	OC2I	OC3I	OC4I	14051	IC1I	IC2I	IC3I
RESET:	0	0	0	0	0	0	0	0

OC1I-OC4I - Output Compare x Interrupt Enable

14O5I — Input Capture 4 or Output Compare 5 Interrupt Enable

IC1I-IC3I — Input Capture x Interrupt Enable

NOTE

Bits in TMSK1 correspond bit for bit with flag bits in TFLG1. Ones in TMSK1 enable the corresponding interrupt sources.

TFLG1 — Timer Interrupt Flag 1

\$0023

	Bit 7	6	5	4	3	2	1	Bit 0
	OC1F	OC2F	OC3F	OC4F	1405F	IC1F	IC2F	IC3F
RESET:	0	0	0	0	0	0	0	0

Cleared by writing a one to the corresponding bit position(s).

OC1F-OC4F - Output Compare x Flag

Set each time the counter matches output compare x value.

1405F — Input Capture 4/Output Compare 5 Flag

Set by IC4 or OC5, depending on which function was enabled by I4O5 of PACTL.

IC1F-IC3F — Input Capture x Flag

Set each time a selected active edge is detected on the ICx input line.

TMSK2 — Timer Interrupt Mask 2

\$0024

	Bit 7	6	5	4	3	2	1	Bit 0
	TOI	RTII	PAOVI	PAII	0	0	PR1	PR0
RESET:	0	0	0	0	0	0	0	0

TOI — Timer Overflow Interrupt Enable

RTII — Real-Time Interrupt Enable

PAOVI — Pulse Accumulator Overflow Interrupt Enable

PAII — Pulse Accumulator Input Interrupt Enable

NOTE

Bits in TMSK2 correspond bit for bit with flag bits in TFLG2. Ones in TMSK2 enable the corresponding interrupt sources.

Bits 3-2 — Not implemented; always read zero

PR1 and PR0 — Timer Prescaler Select

In normal modes, PR1 and PR0 can only be written once, and the write must be within 64 cycles after reset. Refer to the timer summary table for specific timing values.

PR [1:0]	Prescaler (Divide E-Clock By)
0.0	1
01	4
10	8
11	16

TFLG2 — Timer Interrupt Flag 2

\$0025

	Bit 7	6	5	4	3	2	1	Bit 0
	TOF	RTIF	PAOVF	PAIF	0	0	0	0
RESET:	0	0	0	0	0	0	0	0

Cleared by writing a one to the corresponding bit position(s).

TOF — Timer Overflow Flag
Set when TCNT changes from \$FFFF to \$0000.

RTIF — Real-Time (Periodic) Interrupt Flag
Set periodically (Refer to RTR1:0 bits in PACTL register.)

PAOVF — Pulse Accumulator Overflow Flag
Set when PACNT changes from \$FF to \$00.

PAIF — Pulse Accumulator Input Edge Flag
Set each time a selected active edge is detected on the PAI input line.

Bits 3-0 — Not implemented; always read zero

PACTL — Pulse Accumulator Control

\$0026

	Bit 7	6	5	4	3	2	1	Bit 0
he-	DDRA7	PAEN	PAMOD	PEDGE	DDRA3	1405	RTR1	RTR0
RESET:	0	0	0	0	0	0	0	0

Bits 7 and 3-2 — Refer to Parallel I/O.

Bits 6-4 - Refer to Pulse Accumulator.

RTR1-RTR0 — RTI Interrupt Rate Selects

These two bits select one of four rates for the real time periodic interrupt circuit. Refer to the table of real-time interrupt rates.

Real-Time Interrupt Rates

RTR [1:0]	Divide E By	XTAL = 4.0 MHz	XTAL = 8.0 MHz	XTAL = 12.0 MHz	
0.0	213	8.19 ms	4.096 ms	2.731 ms	
01 214		16.38 ms	8.192 ms	5.461 ms	
10	10 215		16.384 ms	10.923 ms	
11	216	65.54 ms	32.768 ms	21.845 ms	
	E=	1.0 MHz	2.0 MHz	3.0 MHz	

Pulse Accumulator

The pulse accumulator system is based on an 8-bit counter, which can be configured to operate as a simple event counter or as a gated time accumulator. Unlike the main timer, the 8-bit pulse accumulator counter can be read or written at any time.

The port A bit 7 I/O pin (PA7/PAI/OC1) associated with the pulse accumulator can be configured to act as a clock (event counting mode) or as a gate signal, to enable a free-running E divided by 64 clock to the 8-bit counter (gated time accumulation mode).

Pulse Accumulator Timing

	Selected Crystal	Common XTAL Frequencies					
				8.0 MHz	12.0 MHz		
CPU Clock	(E)	1.0 MHz	2.0 MHz	3.0 MHz			
Cycle Time	(1/E)	1000 ns	500 ns	333 ns			
Pulse Accumulator (in	Gated Mode)						
(E/2 ⁶) (E/2 ¹⁴)	1 count overflow	64.0 μs 16.384 ms	32.0 μs 8.192 ms	21.33 μs 5.461 ms			

Pulse Accumulator System Block Diagram

TMSK2 — Timer Interrupt Mask 2

\$0024

	Bit 7	6	5	4	3	2	1	Bit 0	
14 192	TOI	RTII	PAOVI	PAII	0	0	PR1	PR0	
RESET:	0	0	0	0	0	0	0	0	

Bits 7-6 and 1-0 - Refer to Main Timer.

PAOVI — Pulse Accumulator Overflow Interrupt Enable

0 = Pulse accumulator overflow interrupt disabled

1 = Interrupt requested when bit PAOVF of TFLG2 is set

PAII — Pulse Accumulator Interrupt Enable

0 = Pulse accumulator interrupt disabled

1 = Interrupt requested when bit PAIF of TFLG2 is set

NOTE

Bits in TMSK2 correspond bit for bit with flag bits in TFLG2. Ones in TMSK2 enable the corresponding interrupt sources.

Bits 3-2 — Not implemented; always read zero

TFLG2 — Timer Interrupt Flag 2

\$0025

	Bit 7	6	5	4	3	2	1	Bit 0
	TOF	RTIF	PAOVF	PAIF	0	0	0	0
RESET:	0	0	0	0	0	0	0	0

Cleared by writing a one to the corresponding bit position(s).

Bits 7-6 — Refer to Main Timer.

PAOVF — Pulse Accumulator Overflow Flag Set when PACNT changes from \$FF to \$00.

PAIF — Pulse Accumulator Input Edge Flag
Set each time a selected active edge is detected on the PAI input line.

Bits 3-0 — Not implemented; always read zero

PACTL — Pulse Accumulator Control

\$0026

	Bit 7	6	5	4	3	2	1	Bit 0
	DDRA7	PAEN	PAMOD	PEDGE	DDRA3	14/05	RTR1	RTR0
RESET:	0	0	0	0	0	0	0	0

Bits 7 and 3-2 - Refer to Parallel I/O.

PAEN — Pulse Accumulator System Enable

0 = Pulse Accumulator disabled

1 = Pulse Accumulator enabled

PAMOD — Pulse Accumulator Mode

0 = Event counter

1 = Gated time accumulation

PEDGE — Pulse Accumulator Edge Control

0 = Falling edges increment counter — high level enables accumulation

1 = Rising edges increment counter — low level enables accumulation

PAMOD	PEDGE	Action on Clock			
0	0	PAI Falling Edge Increments the Counter			
0	1	PAI Rising Edge Increments the Counter A Zero on PAI Inhibits Counting			
1	0				
1	1	A One on PAI Inhibits Counting			

Bits 1-0 — Refer to Main Timer.

PACNT — Pulse Accumulator Counter

\$0027

Bit 7	6	5	4	3	2	1	Bit 0
Bit 7	6	5	4	3	2	1	Bit 0

Readable and writable.