Problem Set 12

December 20, 2022

Problem 1. (2020 Fall Final Exam, 12 marks) Consider the quadratic form

$$f(x_1, x_2, x_3) = (x_1 - x_2 + x_3)^2 + (x_2 + x_3)^2 + (x_1 + ax_3)^2$$

where $a \in \mathbb{R}$ is a parameter.

- (a) What are the possible values of a if the quadratic form f is positive definite?
- (b) What are the possible values of a if the equation $f(x_1, x_2, x_3) = 0$ has infinitely many solutions.
- (c) Let y be a new system of variables and equation $f(x_1, x_2, x_3) = 0$ has infinitely many solutions. Find an invertible linear transformation y = Px, such that the quadratic form f has a diagonal form.

Solution 1.

(a) If the quadratic form f is positive definite, then $f(x_1, x_2, x_3) = 0$ if and only if x_1, x_2, x_3 all equal to 0. So the following equation system can only have zero solution.

$$\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

So the matrix must be a full-rank matrix, leading $a \neq 2$.

- (b) The above equation system should have infinitely many solutions, which means a = 2.
- (c) Let $y_1 = x_1 x_2 + x_3$, $y_2 = x_2 + x_3$, $y_3 = x_1 + 2x_3$, the quadratic form will be transformed to a standard form. The required matrix P:

$$P = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

Problem Set 12

December 20, 2022

Problem 2. (2019 Fall Final Exam, 15 marks) Consider the quadratic form

$$f(x_1, x_2, x_3) = -2x_1^2 - 4x_2^2 - 5x_3^2 + 4x_1x_3$$

- (a) Find the matrix A for the quadratic form $f(x_1, x_2, x_3)$.
- (b) Decide for or against the positive definiteness of A.
- (c) Find an orthogonal matrix Q to diagonalize A.
- (d) Is there a real solution to the quadratic form $f(x_1, x_2, x_3) = 1$? Explain why.

Solution 2.

(a)

$$A = \begin{bmatrix} -2 & 0 & 2 \\ 0 & -4 & 0 \\ 2 & 0 & -5 \end{bmatrix}$$

(b) Adding Row 1 to Row 3, giving 3 negative pivots, the matrix is negative definite.

(c)

$$\det (A - \lambda I) = \begin{bmatrix} -2 - \lambda & 0 & 2 \\ 0 & -4 - \lambda & 0 \\ 2 & 0 & -5 - \lambda \end{bmatrix} = -\lambda^3 - 11\lambda^2 - 34\lambda - 24 = -(\lambda + 6)(\lambda + 4)(\lambda + 1)$$

For eigenvalue $\lambda = -1$:

$$\begin{bmatrix} -1 & 0 & 2 \\ 0 & -3 & 0 \\ 2 & 0 & -4 \end{bmatrix} \Rightarrow a_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \Rightarrow q_1 = \begin{bmatrix} 2/\sqrt{5} \\ 0 \\ 1/\sqrt{5} \end{bmatrix}$$

For eigenvalue $\lambda = -4$:

$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & -1 \end{bmatrix} \Rightarrow a_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \Rightarrow q_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

For eigenvalue $\lambda = -6$:

$$\begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix} \Rightarrow a_3 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \Rightarrow q_3 = \begin{bmatrix} 1/\sqrt{5} \\ 0 \\ -2/\sqrt{5} \end{bmatrix}$$

$$\begin{bmatrix} -2 & 0 & 2 \\ 0 & -4 & 0 \\ 2 & 0 & -5 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & 0 & 1/\sqrt{5} \\ 0 & 1 & 0 \\ 1/\sqrt{5} & 0 & -2/\sqrt{5} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -6 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 0 & 1/\sqrt{5} \\ 0 & 1 & 0 \\ 1/\sqrt{5} & 0 & -2/\sqrt{5} \end{bmatrix}$$

(d) No. Negative definite, $f(x_1, x_2, x_3) \leq 0$.

Problem 3. (2020 Fall Final Exam, 4 marks) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}$. Find all the singular values of A.

Solution 3. The singular values are $\sqrt{2}$ and 2.