泛函分析作业

章亦流 V21914009

题号为黑色的题为丁超老师所布置的, 题号为蓝色的为本人自行添加的. 证明中蓝色部分通常为附注, 红色部分为尚未解决的部分. 课本如有错漏部分将直接在题干上更改, 不作另行标注.

目录

 1 第一章

 2 第二章

 3 第三章

 5 第五章

 6 第六章

1 第一章

习题 1(例 1.1.25) 设 (E,d) 是一个度量空间, $F \subset E, d_F$ 是距离 d 在 F 上的限制,那么当 E 和 F 分别赋予距离 d 和 d_F 诱导的拓扑,则 F 是 E 的拓扑子空间.

证明. 首先有

$$\forall x \in F$$
, $F \cap \{y : d(x,y) < \delta\} = \{y : d(x,y) < \delta \land y \in F\} = \{y \in F : d_F(x,y) < \delta\}$

故

$$\forall \texttt{\textit{H}} \pounds U \subset F: U = \bigcup_{i \in I} \{y \in F: d_F(x_i, y) < \delta_i\} = \bigcup_{i \in I} F \cap \{y: d(x_i, y) < \delta_i\} = F \cap \bigcup_{i \in I} B(x_i, \delta_i)$$

后者是 E 中开集, 即 F 中开集为 E 中开集与 F 的交, 得证,

习题 2(注 1.2.7) 用连续映射定义证明:f 在点 x 连续且 $x_n \to x$, 则 $f(x_n) \to f(x)$.

证明. 首先有

$$\forall O(f(x)) \in N(f(x)) \exists O(x) \in N(x) : f(O(x)) \subset O(f(x)), \quad \forall O(x) \exists N \forall n \geq N : x_n \in O(x)$$

因此

$$\forall O(f(x)) \exists O(x) \exists N \forall n \ge N : f(x_n) \in f(O(x)) \subset O(f(x))$$

即
$$f(x_n) \to f(x)$$
, 得证.

习题 3(注 1.2.10) E 上有两拓扑 $\tau, \tau'. \tau$ 是 τ' 的强拓扑 \iff $\mathrm{id}_E : (E, \tau) \to (E, \tau'), x \mapsto x$ 连续.

证明. 若
$$\mathrm{id}_E$$
 连续, 则 $\forall U \in \tau' : f^{-1}(U) = U \in \tau$. 此即强拓扑的定义, 得证.

1.3 设 $E \in \mathbb{R}^* = \mathbb{R} - \{0\}$ 和另外两个不同的点构成的并集, 如 $E = \mathbb{R}^* \cup \{-\infty, +\infty\}$. 并设 $\tau \in E$ 中满足如下条件的子集 U 构成的集族:(i) 在 \mathbb{R}^* 中的拓扑下, $U \cap \mathbb{R}^*$ 开于 \mathbb{R}^* ;(ii) 若 $-\infty \in U \lor +\infty \in U$, 则 U 包含一个形如 $\mathbb{R}^* \cap V$ 的集合, 其中 $V \in \mathbb{R}$ 中零点的一个邻域.

证明:1. τ 是 E 上的拓扑;2. τ 不是 Hausdorff 空间;3. $\forall a \in E$ 的所有邻域的交集为 $\{a\}$.

证明. 1. 即证 (1) 对 τ 中任意个元素 $\{U_i\}_{i\in I}$ 有 $\mathbb{R}^*\cap\bigcup_{i\in I}U_i=\bigcup_{i\in I}\mathbb{R}^*\cap U$ 开于 \mathbb{R}^* . 若 $-\infty\in U\vee+\infty\in U$, 则

$$U_i\supset\mathbb{R}^*\cap V\implies\bigcup_{i\in I}U_i\supset\bigcup_{i\in I}\mathbb{R}^*\cap V_i=\mathbb{R}^*\cap\bigcup_{i\in I}V_i$$

后者依然是 0 的一个邻域, 故 $\bigcup_{i \in I} U_i \in \tau$.

- (2) 对 τ 中有限元素 $\{U_i\}_{i\in[n]}$ 同理, 故 $\bigcap U_i \in \tau$.
- $(3)\emptyset \ \text{开于} \ \mathbb{R}^* \ \underline{1} \ \pm \infty \notin \emptyset, \ \text{故} \ \emptyset \in \tau; E \cap \mathbb{R}^* = \mathbb{R}^* \ \text{开于} \ \mathbb{R}^*, E \supset \mathbb{R}^* \supset \mathbb{R}^* \cap V, \ \text{故} \ E \in \tau. \ \text{综上,} \tau \ \underline{E} \text{个拓扑}.$ 2. 考虑 $E = \mathbb{R}^* \cup \{-\infty, +\infty\}, \ \underline{M}$

$$\forall O(+\infty), O(-\infty) \exists V_-, V_+ \in N_{\mathbb{R}}(0) : \mathbb{R}^* \cap V_- \subset O(a), \mathbb{R}^* \cap V_+ \subset O(-\infty) \implies O(a) \cap O(-\infty) = \mathbb{R}^* \cap V_- \cap V_+ \neq \emptyset$$

故 (E,τ) 不是 Hausdorff 空间.

$$3. \forall x \in \mathbb{R}^*: \bigcap_{O(x) \in N_{\mathbb{R}^*}(x)} O(x) = \{x\},$$
 否则 $\forall O(x) \in N_{\mathbb{R}^*} \exists x' \in O(x),$ 但 $x' \notin B(x, |x' - x|).$

$$\overrightarrow{m} \ \forall a \in E - \mathbb{R}^* \cup \pm \infty : a \in \bigcap_{O(a) \in N(a)} O(a) \subset \{a\} \cup \left(\bigcap_{U \in \tau} U \cap \mathbb{R}^*\right) = \{a\}.$$

最后
$$\forall a = \pm \infty$$
:
$$\bigcap_{O(a) \in N(a)} O(a) = \{a\} \cup \left(\bigcap_{V \in N_{\mathbb{R}}(0)} \cap \mathbb{R}^*\right) = \{a\} \cup (\{0\} \cap \mathbb{R}^*) = \{a\}.$$

1.4 证明紧空间中的任意序列有粘着点.

证明. 序列 $\{x_n\}$ 的粘着点 x 定义为 $\forall O(x) \in N(x) \forall N \in \mathbb{N} \exists n \geq N : x_n \in O(x)$.

有引理 (课本定理 1.2.4): 对序列 $\{x_n\}$ 定义 $A_n = \{x_m : m \ge n\}, \{x_n\}$ 的粘着点全体为 $\bigcap_{n \in \mathbb{Z}} \overline{A_n}$.

由空间是紧的, 故取闭集族 $\{\overline{A_n}\}$, 对任意一个有限指标集 $J \subset \mathbb{N}$ 有 $\bigcap_{i \in I} \overline{A_i} \neq \emptyset$, 这是因为

$$\forall n \ge \max_{j \in J} j : x_n \in \bigcap_{i \in J} A_i \subset \bigcap_{i \in J} \overline{A_i}$$

因此 $\bigcap \overline{A_i}$ 非空, 即存在粘着点.

 $i \in \mathbb{N}$ 下证引理.

$$x \in \overline{A_n} \iff \forall O(x) \exists x_m \in A_n : x_m \in O(x)$$

因此

$$x \in \bigcap_{n \in \mathbb{N}} \overline{A_n} \iff \forall O(x) \forall n \in \mathbb{N} \exists x_m \in A_n : x_m \in O(x)$$

而 $x_m \in A_n \iff m \ge n$, 故得证.

2 第二章

- **2.1** 1. 设函数 $\phi(x) = \frac{x}{1+|x|}$, $x \in \mathbb{R}$ 并定义 $d: (x,y) \mapsto |\phi(x) \phi(y)|$. 证明由此定义的 d 是 \mathbb{R} 上距离并与 \mathbb{R} 上通常的拓扑一致,但 d 不完备.
- 2. 更一般地, 设 $O \subseteq E$ 为完备度量空间 (E,d) 上的开子集, 定义

$$\phi: O \to E \times \mathbb{R}, x \mapsto \left(x, \frac{1}{d(x, O^c)}\right) := (x, \rho(x)), \quad \forall x \in O$$

证明 ϕ 是从 O 到 $E \times \mathbb{R}$ 上一个闭子集的同胚, 并由此导出 O 上存在一个完备的距离, 由其诱导的拓扑和 d 在 O 中诱导的拓扑一致.

证明. 1. 首先证明 $d(\cdot,\cdot)$ 是一个度量. 其非负性与对称性显然, 正定性由

$$d(x,y) = |\phi(x) - \phi(y)| = 0 \iff \phi(x) = \phi(y) \iff x = y$$

得到. 最后由

$$d(x,z) = |\phi(x) - \phi(z)| \le |\phi(x) - \phi(y)| + |\phi(y) - \phi(z)| = d(x,y) + d(y,z)$$

可知三角不等式成立.

其次取 $B_d(x,\delta) = \{y : |\phi(x) - \phi(y)| < \delta\}$, $B(x,\varepsilon) = \{y : |x-y| < \varepsilon\}$. 由 $\phi(x)$ 严格单调可知其有反函数 $\phi^{-1}(x)$,

$$y \in B_d(x, \delta) \iff |\phi(x) - \phi(y)| < \delta \iff y \in (\phi^{-1}(\phi(x) - \delta), \phi^{-1}(\phi(x) + \delta))$$

取 m_x, M_x 为 $x - \phi^{-1}(\phi(x) - \delta)$ 和 $\phi^{-1}(\phi(x) + \delta) - x$ 的较小值和较大值, 则有

$$\forall x \in \mathbb{R} \forall \delta > 0 \exists m_x, M_x : B(x, m_x) \subset B_d(x, \delta) \subset B(x, M_x)$$

而 $\{B(x,\delta): x \in \mathbb{R}, \delta > 0\}$ 是 \mathbb{R} 上的一个拓扑基,因此 $\{B_d(x,\delta): x \in \mathbb{R}, \delta > 0\}$ 也是,故其生成同一个拓扑. 最后,取 $a_n = n$,则

$$\forall \varepsilon > 0 \exists N = \lfloor 1/\varepsilon \rfloor \ \forall n \geq N \ \forall p \in \mathbb{N} : |\phi(a_n) - \phi(a_{n+p})| = \frac{n+p}{1+n+p} - \frac{n}{1+n} < 1 - \frac{n}{1+n} = \frac{1}{n+1} < \varepsilon$$

而 $a_n \to +\infty$ 不收敛于 \mathbb{R} 中.

2.2 (E,d) 完备 $\iff \forall \{x_n\} \forall n \in \mathbb{N} : d(x_n, x_{n+1}) \leq 2^{-n}$ 则 $\{x_n\}$ 收敛.

证明. \Longrightarrow : $\{x_n\}$ 是 Cauchy 列, 因为

$$\forall \varepsilon \in (0,1) \exists N = \lceil -\log_2 \varepsilon \rceil \, \forall n,m \ge N : d(x_n,x_m) \le \sum_{k=n}^m 2^{-k} < 2^{1-n} < 2^{-N} < \varepsilon$$

 \Leftarrow : 取 (E,d) 中 Cauchy 列 $\{x_n\}$, $\forall \varepsilon = 2^{-k} \exists N_k \forall n, m \geq N_k : d(x_n, x_m) < 2^{-k}$, 取子列使得

$$n_1 < N_1 < n_2 < \dots < n_k < N_k < n_{k+1} < \dots$$

有 $\forall k \in \mathbb{N} : d(x_{n_k}, x_{n_{k+1}}) < 2^{-k}$. 其收敛, 即 Cauchy 列的收敛子列, 故 Cauchy 列收敛于同极限, 故空间完备.

2.3 度量空间 (E,d) 中有 Cauchy 列 $\{x_n\}.A \subset E, \overline{A}$ 完备, $d(x_n,A) \to 0$, 求证 x_n 在 E 中收敛.

证明. 取 $\{x_i\}$ 的子列 $\{y_i\}$, $y_i = x_{n_i}$, 使得 $d(y_n, A) < 1/n$. 取点列 $\{a_n\}$ 使得 $a_n \in B(y_n, 1/n) \cap A$. 这是 Cauchy 列, 因为

$$\forall \varepsilon \exists N \forall n, m \geq N : d(y_n, y_m) < \varepsilon$$

$$\forall \varepsilon \exists N' = \max \left\{ \left\lceil \frac{2}{\varepsilon} \right\rceil, N \right\} \forall n, m \ge N' : d(a_n, a_m) < \frac{1}{n} + \frac{1}{m} + d(y_n, y_m) < \frac{2}{N'} + \varepsilon < 2\varepsilon$$

故 a_n 收敛, 设极限为 $a \in \overline{A}$. 而 $d(a_n, y_n) \to 0$ 故 $y_n \to a$. 由 Cauchy 列的有收敛子列则其收敛, 故得证.

2.4 (E,d) 是度量空间, $A \subset E, \alpha > 0. \forall x, y \in A : x \neq y \implies d(x,y) \geq \alpha$. 求证 A 完备.

证明. A 中任意 Cauchy 列在某项后必为同一元素. 否则, 在每项后都有不同的元素, 即

$$\forall N \exists n, m \ge N : x_n \ne x_m \implies d(x_n, x_m) > \frac{\alpha}{2}$$

与 Cauchy 列定义矛盾.

而这样的序列必然收敛, 故 A 中任意 Cauchy 列收敛, 即得证.

2.5 (E,d) 是度量空间, $A \subset E$. 若 A 中任意 Cauchy 列收敛于 E, 则 \overline{A} 完备.

证明. A 中收敛列收敛于 \overline{A} (由闭包性质), 故 A 中任意 Cauchy 列收敛于 \overline{A} . 考虑 \overline{A} 中的 Cauchy 列 $\{x_n\}$, 则可以构造 A 中 Cauchy 列 $\{y_n\}$:

$$y_n = \begin{cases} x_n & x_n \in A \\ x'_n & x_n \in \overline{A}, d(x_n, x'_n) < 1/n, x'_n \in A \end{cases}$$

有 $d(x_n, y_n) \to 0$ 且 y_n 收敛 (证明方法同 2.3), 故 x_n 收敛. 因此 \overline{A} 完备.

2.6 (E,d) 是度量空间, $\{x_n\}$ 是 E 中发散 Cauchy 列.

求证 $(1)\forall x \in E : d(x, x_n)$ 收敛于一个正数, 记为 $g(x);(2)x \mapsto 1/g(x)$ 连续;(3)1/g 无界.

证明. 1. 仅需证 $\{d(x,x_n)\}$ 是 Cauchy 列.

$$\forall \varepsilon \exists N \forall n, m \ge N : d(x_n, x_m) < \varepsilon \quad \forall \varepsilon \exists N \forall n, m \ge N : |d(x, x_n) - d(x, x_m)| \le d(x_n, x_m) < \varepsilon$$

而 $d(x,x_n) > 0 \implies g(x) \ge 0$,而 $g(x) = 0 \iff d(x,x_n) \to 0 \iff x_n \to x$,这是不可能的.

2. 仅需证 *g* 连续. 由

$$|g(x) - g(y)| = \left| \lim_{n \to \infty} d(x, x_n) - d(y, x_n) \right| \le \lim_{n \to \infty} |d(x, y)| = d(x, y)$$

故

$$\forall \varepsilon \exists \delta = \varepsilon \forall y : d(x,y) < \delta \implies |g(x) - g(y)| < d(x,y) < \varepsilon$$

因此 g 连续,1/g 连续.

3. 取
$$\{g(x_n)\}$$
, 有 $\lim_{n\to\infty} g(x_n) = \lim_{n,m\to\infty} d(x_n,x_m) = 0$, 故 $g(x_n)\to 0$, 相应的 $1/g(x_n)\to +\infty$.

2.7 $(E, d_E), (F, d_F)$ 是度量空间, $f: E \to F$ 和 f^{-1} 均为一致连续双射, 求证 $\forall A \subset E: A$ 完备 $\iff f(A)$ 完备.

证明. 仅需证 \implies ,反方向仅需考虑 B = f(A) 完备 $\implies f^{-1}(B) = A$ 完备即可. 即证任意 Cauchy 列 $\{y_n\} \subset f(A)$ 收敛于 f(A) 中. 考虑 $\{x_n\} \subset A$,其中 $x_n = f^{-1}(y_n) \in A$. 首先证明这是一个 Cauchy 列:

由 $\{y_n\}$ 是 Cauchy 列, 有

$$\forall \varepsilon \exists N_{\varepsilon} \forall n, m \geq N_{\varepsilon} : |y_n - y_m| < \varepsilon$$

由 f^{-1} 是一致连续函数, 因此有

$$\forall \varepsilon \exists \delta \exists N_{\delta} \forall n, m \ge N_{\delta} : |y_n - y_m| < \delta \implies |f^{-1}(y_n) - f^{-1}(y_m)| = |x_n - x_m| < \varepsilon$$

即

$$\forall \varepsilon \exists N = N_{\delta} \forall n, m \geq N : |x_n - x_m| < \varepsilon$$

因此 $\{x_n\}$ 是 Cauchy 列. 而由 A 的完备性, $x_n \to x \in A$, 下证 $y_n \to y = f(x) \in f(A)$.

同上, 取 N_{ε} 为使 $\forall n \geq N_{\varepsilon} : |x_n - x| < \varepsilon$ 的数, 由 f 的连续性有:

$$\forall \varepsilon \exists \delta \exists N_{\delta} \forall n \geq N_{\delta} : |x_n - x| < \delta \implies |y_n - y| < \varepsilon$$

因此 $\{y_n\}$ 收敛于 f(A) 中, 故得证.

2.8 $f: \mathbb{R}^n \to \mathbb{R}$ 一致连续, 证明 $\exists a, b \geq 0: |f(x)| \leq a ||x|| + b$. 其中 ||x|| 为 x 的 Euclidean 范数.

证明. 首先取 $\varepsilon=1, \forall x,y\in\mathbb{R}^n \exists \delta: d(x,y)<\delta \implies |f(x)-f(y)|<1$. 再考虑 0 与点 x 的连线上有点 a_x 满足

$$||x|| = \frac{\delta}{2}n_x + ||x - a_x||, t_x = ||x - a_x|| \in \left[0, \frac{\delta}{2}\right), \qquad n_x = \frac{2}{\delta}(||x|| - t_x) \le \frac{2||x||}{\delta}$$

而

$$t_x = ||x - a_x|| < \delta \implies |f(x) - f(a_x)| < 1$$

对 a_x 与 0 间 n_x 段距离 $<\frac{\delta}{2}$ 的线段应用这一不等式, 因此有

$$|f(x)| \le |f(a_x) - f(0)| + |f(x) - f(a_x)| + |f(0)| \le n_x + 1 + |f(0)| \le \frac{2}{\delta} ||x|| + 1 + |f(0)|$$

取
$$a = \frac{2}{\delta}, b = 1 + |f(0)|$$
 即可.

- **2.9** $f: E \to F$ 是两度量空间间的连续映射, 且 f 在 E 的每个有界子集上一致连续.
- 1. 证明 f 将 E 中 Cauchy 列映为 F 中 Cauchy 列;
- 2. 设 E 在度量空间 \tilde{E} 中稠密且 F 完备, 证明 f 可唯一延拓为连续映射 $\tilde{f}: \tilde{E} \to F$.

证明. 1. 考虑 E 中 Cauchy 列 $\{x_n\}$, 则首先考虑 $\forall \varepsilon \exists N \forall n, \geq N : d_E(x_n, x_m) < \varepsilon$, 则 $\{x_n\} \subset B_E(x_N, \varepsilon) \cup \bigcup_{k \in [N]} \{x_k\}$, 而后者有界, 故 f 在其上一致连续.

记
$$\{y_n\} \subset F, y_n = f(x_n)$$
. 有

$$\forall \varepsilon \exists \delta \exists N_{\delta} \forall n, m \geq N_{\delta} : d_{E}(x_{n}, x_{m}) < \delta \implies d_{F}(y_{n}, y_{m}) < \varepsilon$$

故 $\{y_n\}$ 也是 Cauchy 列.

2. 考虑
$$\tilde{f}(x) = \begin{cases} f(x) & x \in E \\ \lim f(x_n) & x \in \tilde{E} - E, x_n \to x \end{cases}$$
 . 由于 $\forall x \in \tilde{E} - E$, 一定有收敛列 $\{x_n\}$ 使 $x_n \to x$, 而收敛列是

Cauchy 列. 由 1. 的结论, $\{f(x_n)\}$ 也是, 故有极限, 即 \tilde{f} 在 $\tilde{E}-E$ 上有定义.

首先考虑这一定义是否良定,即 $\lim x_n = \lim x_n' = x \implies \lim f(x_n) = \lim f(x_n') = f(x)$. 由 $d_E(x_n, x_n') \to 0$ 和 f 的一致连续性,有

$$\forall \varepsilon \exists \delta \exists N_{\delta} \forall n > N_{\delta} : d_{E}(x_{n}, x'_{n}) < \delta \implies d_{E}(f(x_{n}), f(x'_{n})) < \varepsilon$$

故 $d_F(f(x_n), f(x'_n)) \to 0$,而 $d(\cdot, \cdot)$ 连续,故 $\lim d_F(f(x_n), f(x'_n)) = d_F(\lim f(x_n), \lim f(x'_n)) = 0$,故极限相同,即良定. 再证明其连续.考虑

$$\forall x, x' \in \tilde{E} \exists \{x_n\}, \{x'_n\} \subset E \exists N_{\varepsilon} \forall n \geq N_{\varepsilon} : d_E(x_n, x) < \varepsilon \land d_E(x', x'_n) < \varepsilon$$
$$\forall \varepsilon \exists \delta : d_E(x_n, x'_n) < \delta \implies d_F(f(x_n), f(x'_n)) < \varepsilon$$

因此

$$\forall x \in \tilde{E} \forall \varepsilon \exists \delta \forall x' \in B_{\tilde{E}}\left(x, \frac{\delta}{3}\right) \exists \left\{x_n\right\}, \left\{x_n'\right\} \subset E \exists N_{\delta/3} \forall n \geq N_{\delta/3} :$$

$$d_E(x_n, x_n') \le d_E(x_n, x) + d_E(x, x') + d_E(x', x_n') \le \delta \implies d_F(f(x_n), f(x_n')) < \varepsilon$$

由 $d(\cdot,\cdot)$ 连续, 则取 $n \to +\infty$, $\tilde{f}(x) = \lim f(x_n)$, $\tilde{f}(x') = \lim f(x'_n)$, 有

$$d_F(\tilde{f}(x), \tilde{f}(x')) = \lim d_F(f(x_n), f(x'_n)) \le \varepsilon$$

即

$$\forall x \in \tilde{E} \forall \varepsilon \exists \delta \forall x' \in \tilde{E} : d_{\tilde{E}}(x, x') < \frac{\delta}{3} \implies d_F(\tilde{f}(x), \tilde{f}(x')) \leq \varepsilon < 2\varepsilon$$

故连续性得证. 最后证明其唯一性. 假设连续映射 $\tilde{f}': \tilde{E} \to F$, 且同样有 $\tilde{f}'|_E = \tilde{f}|_E = f$, 则由连续性有

$$\forall x \in \tilde{E} \exists \{x_n\} \subset E : x_n \to x, \qquad \tilde{f}'(x) = \lim \tilde{f}'(x_n) = \lim f(x_n) = \tilde{f}(x)$$

故得证.

2.10 构造反例说明, 在不动点定理中, 若减弱 f 条件为

$$d(f(x), f(y)) < d(x, y), \quad \forall x, y \in E \land x \neq y$$

则结论不成立.(HINT: $f(x) = \sqrt{x^2 + 1}, x \in [0, +\infty)$.)

证明. 由 HINT, 考虑在 \mathbb{R} 上 $\forall y > x \geq 0$:

$$\sqrt{y^2 + 1} - \sqrt{x^2 + 1} < y - x \iff \sqrt{y^2 + 1} - y < \sqrt{x^2 + 1} - x$$

即证 $g(x) = \sqrt{x^2 + 1} - x$ 严格单调递减. 而 $g'(x) = \frac{x}{\sqrt{x^2 + 1}} - 1 < 1 - 1 = 0$, 故 f 满足 d(f(x), f(y)) < d(x, y), 但 f(x) = x 无解.

2.11 完备度量空间 (E,d) 上映射 f 满足 $f^n = \underbrace{f \circ \cdots \circ f}_{n \land x}$ 为压缩映射 (n 为常数). 证明 f 有唯一不动点,并举一 f 不 连续的例子.

证明. 设 a 为 f^n 的不动点, $f(a) = f(f^n(a)) = f^{n+1}(a) = f^n(f(a))$, 而 f^n 仅有唯一不动点 a, 故 f(a) = a, a 是 f 的一个不动点. 若有另一个不动点 a', 则 $f^n(a') = a'$, 而 f^n 仅有唯一不动点 a, 则 a = a'.

- **2.12** 记 $I = (0, +\infty)$ 上通常拓扑为 τ .
- 1. 证明 τ 可被完备距离 $d:(x,y)\mapsto |\ln x \ln y|$ 诱导;
- 2. 设 $f \in C^1(I)$ 满足 $\exists \lambda < 1 \forall x \in I : x | f'(x) | \leq \lambda f(x)$, 证明 f 在 I 上有唯一不动点.

证明. 1. 容易验证 $d(\cdot,\cdot)$ 是一个距离. 设 $B(x,\varepsilon)=\{y>0:|x-y|<\varepsilon\}$, $B_d(x,\varepsilon)=\{y>0:|\ln x-\ln y|<\varepsilon\}$. 而

$$y \in B_d(x, \delta) \iff |\ln x - \ln y| < \delta \implies y \in (e^{\ln x - \delta}, e^{\ln x + \delta}) = (e^{-\delta}x, e^{\delta}x)$$

而 $e^{\delta} - x \ge x - e^{-\delta}$ (由 $(e^{\delta} - 1)^2 \ge 0$),故 $B(x, e^{-\delta}x) \subset B_d(x, \delta) \subset B(x, e^{\delta}x)$,因此它们诱导同一度量拓扑,下证 $d(\cdot, \cdot)$ 是完备的距离. 考虑 $\{x_n\}$ 是 d 下的 Cauchy 列,即

$$\forall \varepsilon \exists N \forall n, m \geq N : |\ln x_n - \ln x_m| < \varepsilon, x_m \in B_d(x_n, \varepsilon) \subset B(x_n, e^{\varepsilon} x_n)$$

即

$$\forall \varepsilon \exists N \forall n, m \ge N : |x_n - x_m| < e^{\varepsilon} x_n \le M e^{\varepsilon}, \qquad M = \sup_{n \in \mathbb{N}} x_n \in B_d(x_N, 2\varepsilon) < +\infty$$

因此 $\{x_n\}$ 是 Cauchy 列, 其收敛, 故 d 完备.

2.

$$\forall x,y \in I: \frac{d(f(x),f(y))}{d(x,y)} = \left|\frac{\ln f(x) - \ln f(y)}{\ln x - \ln y}\right| = \left|\frac{f'(\xi)/f(\xi)}{1/\xi}\right| = \frac{\xi \left|f'(\xi)\right|}{f(\xi)} \leq \lambda$$

故 f 是压缩映射, 故在 I 上有唯一不动点.

2.13 对可数集
$$E = \{a_1, a_2, \dots\}$$
 定义 $d(a_p, a_q) = \begin{cases} 0 & p = q, \\ 10 + \frac{1}{p} + \frac{1}{q} & p \neq q \end{cases}$.

1. 证明 $d \in E$ 上距离, 且 (E,d) 为完备度量空间;

 $2.f: E \to E, a_p \mapsto a_{p+1}$, 证明 $p \neq q$ 时 $d(f(a_p), f(a_q)) < d(a_p, a_q)$, 但 f 无不动点.

证明. 1. 显然 d 非负, 正定, 对称, 下证三角不等式:

$$d(a_p, a_r) = 10 + \frac{1}{p} + \frac{1}{q} \le \left(10 + \frac{1}{p} + \frac{1}{q}\right) + \left(10 + \frac{1}{q} + \frac{1}{r}\right) = d(a_p, a_q) + d(a_q, a_r)$$

再证其完备. $\forall a_p, a_q \in E : a_p \neq a_q \implies d(a_p, a_q) > 10$, 根据 2.4,(E, d) 完备.

2. 有

$$d(f(a_p), f(a_q)) = d(a_{p+1}, a_{q+1}) = 10 + \frac{1}{p+1} + \frac{1}{q+1} < 10 + \frac{1}{p} + \frac{1}{q} = d(a_p, a_q)$$

而 $f(a_p) = a_{p+1} \neq a_p$, 即无不动点.

2.14 本题是为了给出压缩映射原理的另一个证明, 故默认不使用定理的结论.

设 (E,d) 为非空完备度量空间, $f: E \to E$ 为压缩映射. $\forall R \ge 0: A_R := \{x \in E: d(x,f(x)) \le R\}$.

证明: $1.f(A_R) \subset A_{\lambda R}$;

2.R > 0 时 A_R 是 E 中非空闭子集;

 $3. \forall x, y \in A_R : d(x, y) \leq 2R + d(f(x), f(y)),$ 并导出 $\operatorname{diam}(A_R) \leq \frac{2R}{1 - \lambda};$ 4. A_0 非容.

证明. 1. 即 $x \in A_R \implies f(x) \in A_{\lambda R}.d(x,f(x)) \le R \implies d(f(x),f^2(x)) \le \lambda d(x,f(x)) < \lambda R$, 其中 λ 为 f 的 Lipschitz 常数, $\lambda < 1$.

2. 即证: 对 A_R 中任意收敛列 $\{x_n\}$ 有 $x_n \to x, d(x, f(x)) \le R$. 由

$$\forall \varepsilon \exists N \forall n \geq N : d(x_n, x) < \varepsilon, d(f(x_n), f(x)) < \lambda \varepsilon$$

因此 $d(x, f(x)) \le d(x, x_n) + d(x_n, f(x_n)) + d(f(x_n), f(x)) < (1 + \lambda)\varepsilon + R$. 取 $\varepsilon \to 0$, 有 $d(x, f(x)) \le R$. $3.d(x, y) \le d(x, f(x)) + d(f(x), f(y)) + d(f(y), y) = 2R + d(f(x), f(y)) \le 2R + \lambda d(x, y) \implies d(x, y) \le \frac{2R}{1 - \lambda}$, 因此 $diam(A_R) = \sup_{x,y \in A_R} d(x, y) \le \frac{2R}{1 - \lambda}$.

4. 首先显然 $R \geq r \implies A_R \supset A_r$. 而 $R \to 0$, $\operatorname{diam}(A_R) \to 0$. 因此由闭集套定理, $\bigcap_{n \in \mathbb{N}} A_{\frac{1}{n}}$ 非空且仅有一个元素 a, 其 $\forall n \in \mathbb{N} : d(a, f(a)) \leq n^{-1}$, 故 $d(a, f(a)) = 0, a \in A_0$.

2.15 设 (E,d) 为完备度量空间, f,g 为 E 上可交换的压缩映射. 证明 f,g 有唯一且共同的不动点. 并通过反例说明, 去掉可交换条件则结论不成立.

证明. 首先 f,g 均有唯一不动点, 记为 a,b. 而 $g(a)=g(f(a))=f(g(a)) \implies g(a)=a \implies a=b$, 故其不动点相同. 不交换的反例如 \mathbb{R} 上 $f:x\mapsto 2$ 与 $g:x\mapsto 3,f\circ g=f\neq g=g\circ f$, 其不动点分别为 2 和 3.

- **2.16** 设 (E,d) 为完备度量空间, 定义 $A \subset E$ 的距离函数 $d_A(x) := d(x,A)$, 并设 C 为 E 的所有紧子集构成的集族, 且定义 $\forall A, B \in C : h(A,B) = \sup_{x \in B} |d_A(x) d_B(x)|$.
- 1. 证明 h 为 C 上的一个距离;
- $2.\forall F \subset E: F_{\varepsilon} := \{x: d_F(x) \leq \varepsilon\}.$ 证明 $h(A, B) = \inf\{\varepsilon \geq 0: A \subset B_{\varepsilon}, B \subset A_{\varepsilon}\};$
- 3. 证明 (C,h) 完备;
- 4. 取 $E \perp n$ 个压缩映射 $\{f_i\}_{i=1}^n$, 定义 (\mathcal{C},h) 上映射

$$T: A \mapsto \bigcup_{k=1}^{n} f_k(A), \qquad A \in \mathcal{C}$$

证明 T 是压缩映射, 并由此导出存在唯一的紧子集 K 使 T(K) = K.

证明. 1. 非负与对称性显然, 正定性有 $\sup_{x\in E}|d_A(x)-d_B(x)|=0 \implies \forall x\in E: d_A(x)=d_B(x) \implies A=B$. 三角不等式有:

$$h(A,C) = \sup_{x \in E} |d_A(x) - d_C(x)| \le \sup_{x \in E} (|d_A(x) - d_B(x)| + |d_B(x) - d_C(x)|)$$

$$\le \sup_{x \in E} |d_A(x) - d_B(x)| + \sup_{x \in E} |d_B(x) - d_C(x)| = h(A,B) + h(B,C)$$

故 h 为 C 上的距离.

2.# Unsolved

3 第三章

 $\mathbf{3.1} \quad \forall f \in C[0,1]: \left\| f \right\|_{\infty} = \sup_{t \in [0,1]} \left| f(t) \right|, \left\| f \right\|_{1} = \int_{0}^{1} \left| f(t) \right| \mathrm{d}t.$

证明 $1.\|\cdot\|_{\infty}$, $\|\cdot\|_{1}$ 都是 C[0,1] 的范数;2.C[0,1] 关于 $\|\cdot\|_{\infty}$ 完备;3.C[0,1] 关于 $\|\cdot\|_{1}$ 不完备.

证明. 1. 显然有正定, 正齐, 三角不等式.

2. 考虑 Cauchy 列 $\{f_n\}$,

$$\forall \varepsilon \exists N \forall n, m \ge N : \|f_n - f_m\|_{\infty} = \sup_{t \in [0,1]} |f_n(t) - f_m(t)| < \varepsilon$$

此即一致收敛定义. 考虑 $f(x) = \lim_{n \to \infty} f_n(x)$, 则首先 $\forall x \in [0,1] : f(x)$ 存在. 其次证明其连续性.

$$\forall x \in [0,1] \forall \varepsilon \exists \delta \exists N \forall n \ge N \forall y \in B(x,\delta) : |f_n(x) - f(x)| < \varepsilon, |f_n(x) - f_n(y)| < \varepsilon, |f_n(y) - f(y)| < \varepsilon$$

因此 $\forall x \in [0,1] \forall \varepsilon \exists \delta \forall y \in B(x,\delta) : |f(x) - f(y)| < 3\varepsilon$, 即 $f \in C[0,1]$.

3. 考虑 Cauchy 列 $\{f_n\}$,

$$\forall \varepsilon \exists N \forall n, m \ge N : \|f_n - f_m\|_1 = \int_0^1 |f_n(t) - f_m(t)| \, \mathrm{d}t < \varepsilon$$

取 $f_n(x) = x^n$, 则 $\int_0^1 |f_n(t) - f_m(t)| dt \le \frac{1}{1 + \max\{n, m\}} \to 0$, 但 $f_n(x) \to 1_{\{1\}}(x)$ 不连续. 题解认为 $\{x^n\}$ 虽然逐点收敛到不连续函数,但在 L^1 范数下收敛到 f = 0, 因此函数列极限在 C[0, 1] 中存在. 题

解给出的函列为
$$f_n(x) = \begin{cases} -1 & x \in \left[0, \frac{1}{2} - \frac{1}{n}\right) \\ n\left(t - \frac{1}{2}\right) & x \in \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}\right]. \end{cases}$$

- **3.2** $\forall P \in \mathbb{R}[x] : ||P||_{\infty} := \max_{x \in [0,1]} |P(x)|.$
- 1. 证明 $\|\cdot\|_{\infty}$ 是 $\mathbb{R}[x]$ 上范数;
- $2. \forall a \in \mathbb{R}$ 定义 $L_a : \mathbb{R}[x] \to \mathbb{R}, P \mapsto P(a)$. 证明 L_a 连续 $\iff a \in [0,1]$, 且给出 $\|L_a\|$;
- 3. 设 a < b, 定义 $L_{a,b}: \mathbb{R}[x] \to \mathbb{R}, P \mapsto \int_a^b P(x) dx$. 求 $A \subset \mathbb{R}$ 使 $a, b \in A \iff L_{a,b}$ 连续, 然后确定 $||L_{a,b}||$.

证明. 1. 首先正定性显然, 正齐性由 $\max_{x \in [0,1]} |P(x)| = 0 \implies |P(x)| \le 0 \implies P(x) = 0$ 得到. $\|\lambda P\|_{\infty} = |\lambda| \|P\|_{\infty}$ 显然. 三角不等式由

$$\|P+Q\|_{\infty} = \max_{x \in [0,1]} |P(x)+Q(x)| \leq \max_{x \in [0,1]} (|P(x)|+|Q(x)|) \leq \max_{x \in [0,1]} |P(x)| + \max_{x \in [0,1]} |Q(x)| = \|P\|_{\infty} + \|Q\|_{\infty}$$

故 $\|\cdot\|_{\infty}$ 是 $\mathbb{R}[x]$ 上的一个范数.

2. 容易证明 L_a 是一个线性函数, 因此 L_a 连续 $\iff \exists C \geq 0 \forall P \in \mathbb{R}[x] : |P(a)| \leq C ||P||_{\infty}$. 考虑 $P_n(x)=(2x-1)^n,$ 则 $\exists C\geq 0 \forall n\in\mathbb{N}: |P_n(a)|=|2a-1|^n\leq C\cdot \|P_n\|_{\infty}=C\iff |2a-1|\leq 1\iff a\in[0,1].$

另一方面,
$$a \in [0,1]$$
 时必然成立 $|P(a)| \le \|P\|_{\infty}$, 因此 L_a 连续 $\iff a \in [0,1]$. 最后, 取 $P=1$ 则 $\|L_a\| \ge 1$, 而 $\|L_a\| = \sup_{P \in \mathbb{R}[x]-\{0\}} \frac{|P(a)|}{\|P\|_{\infty}} \le \sup_{P \in \mathbb{R}[x]-\{0\}} \frac{\|P\|_{\infty}}{\|P\|_{\infty}} = 1$, 故 $\|L_a\| = 1$.

3. 容易证明
$$L_{a,b}$$
 是一个线性函数,则 $L_{a,b}$ 连续 $\iff \exists C \geq 0 \forall P \in \mathbb{R}[x] : \left| \int_a^b P(x) dx \right| \leq C \|P\|_{\infty}$.
仍考虑 $P_n(x) = (2x-1)^n$,则 $\left| \int_a^b P_n(x) dx \right| = \frac{|(2b-1)^{n+1} - (2a-1)^{n+1}|}{2(n+1)}$ 有界 $\iff 2a-1, 2b-1 \in [0,1]$,即 $a,b \in [0,1]$. 而 $a,b \in [-1,1]$ 时 $\left| \int_a^b P(x) dx \right| \leq (b-a) \|P\|_{\infty}$,故 $a,b \in [0,1]$ $\iff L_{a,b}$ 连续.

最后有

$$b - a = \frac{\left| \int_a^b 1 dx \right|}{1} \le \|L_{a,b}\| = \sup_{P \in \mathbb{R}[x] - \{0\}} \frac{\left| \int_a^b P(x) dx \right|}{\|P\|_{\infty}} \le \sup_{P \in \mathbb{R}[x] - \{0\}} \frac{\int_a^b \|P\|_{\infty} dx}{\|P\|_{\infty}} = b - a$$

故 $||L_{a,b}|| = b - a$.

3.3 设 $(\mathbb{R}[x], \|\cdot\|_{\infty})$ 为上题定义的赋范空间, 设 $E_0 \subset \mathbb{R}[x]$ 为全体无常数项多项式构成的向量子空间.

- 1. 证明 $N(P) := \|P'\|_{\infty}$ 定义 E_0 上一个范数, 且 $\forall P \in E_0 : \|P\|_{\infty} \le N(P)$.
- 2. 证明 $L(P) = \int_0^1 \frac{P(x)}{x} dx$ 定义了 E_0 关于 N 的连续线性泛函, 并求 ||N||.
- $4.\|\cdot\|_{\infty}$ 和 N 在 E_0 上是否等价?

证明. 1. 首先证明 N(P) 是一个范数:

$$N(P) \ge 0; N(P) = ||P'||_{\infty} = 0 \iff P' = 0 \land P \in E_0 \iff P = 0; N(\lambda P) = ||\lambda P'||_{\infty} = |\lambda| ||P||_{\infty}$$
$$N(P+Q) = ||P'+Q'||_{\infty} \le ||P'||_{\infty} + ||Q'||_{\infty} = N(P) + N(Q)$$

而由 Lagrange 中值定理有 $\forall P \in E_0 \forall x \in [0,1]: \left| \frac{P(x) - P(0)}{x - 0} \right| = |P'(\xi)| \le \max_{x \in [0,1]} |P'(x)| = N(P),$ 故 $|P(x)| \le \max_{x \in [0,1]} |P'(x)| = N(P)$

$$|P'(\xi)| |x| \le |P'(\xi)| \le N(P), \text{ if } ||P||_{\infty} \le N(P).$$

$$2. \text{ if } |E| \le L(\lambda P + \mu Q) = \int_0^1 \frac{\lambda P(x) + \mu Q(x)}{x} dx = \lambda \int_0^1 \frac{P(x)}{x} dx + \mu \int_0^1 \frac{Q(x)}{x} dx = \lambda L(P) + \mu L(Q).$$

因此 L 连续 $\iff \exists C \geq 0 \forall P \in E_0 : \left| \int_0^1 \frac{P(x)}{x} \mathrm{d}x \right| \leq C \cdot N(P)$. 而同上使用 Lagrange 中值定理, 有

$$\left| \int_0^1 \frac{P(x)}{x} dx \right| \le \max_{x \in [0,1]} \left| \frac{P(x)}{x} \right| \le \max_{x \in [0,1]} |P'(x)| = N(P)$$

故 L 连续. 最后

$$1 = \frac{\int_0^1 1 dx}{1} = ||N|| = \sup_{P \in E_0 - \{0\}} \frac{\left| \int_0^1 \frac{P(x)}{x} dx \right|}{||P'||_{\infty}} \le \sup_{P \in E_0 - \{0\}} \frac{||P(x)/x||_{\infty}}{||P'||_{\infty}} \le 1$$

因此 ||N|| = 1.

- 3. 考虑 $P_n(x) = nx^n$, 则 $L(P_n) = \left| \int_0^1 \frac{P_n(x)}{x} dx \right| = 1, \|P_n\|_{\infty} = n$, 因此 $\frac{L(P)}{\|P\|_{\infty}}$ 无界, 即 L 关于 $\|\cdot\|_{\infty}$ 不连续.
- 4. 考虑 $P_n(x) = x^n$, 则 $\|P_n\|_{\infty} = 1$, $N(P_n) = n$, 因此不存在常数使得范数等价
- **3.4** 在 C[0,1] 上定义范数 $||f||_1 = \int_0^1 |f(x)| \, \mathrm{d}x, N(f) = \int_0^1 x \, |f(x)| \, \mathrm{d}x.$
- 1. 验证 N 是 C[0,1] 上范数且 $N \leq \|\cdot\|_1$.
- $2.f_n(x) = \begin{cases} n n^2 x & x \in [0, n^{-1}] \\ 0 & \text{else} \end{cases}$. 证明在 (C[0, 1], N) 中 $f_n \to 0$, 并问: $\{f_n\}$ 在 $(C[0, 1], \|\cdot\|_1)$ 中是否收敛? 这两个范

数在 C[0,1] 上诱导的拓扑是否相同?

3. 取 $a \in (0,1]$, 设 $B = \{f \in C[0,1] : \forall x \in [0,a] : f(x) = 0\}$, 证明这两个范数在 B 上诱导相同拓扑.

证明. 1. 首先证明 N 是一个范数:

$$0 \le N(f) = 0 \iff f = 0, \qquad N(\lambda f) = \lambda \int_0^1 x |f(x)| \, \mathrm{d}x = \lambda N(f),$$

$$N(f+g) = \int_0^1 x |f(x) + g(x)| \, \mathrm{d}x \le \int_0^1 x |f(x)| \, \mathrm{d}x + \int_0^1 x |g(x)| \, \mathrm{d}x = N(f) + N(g)$$

其次有 $\forall f \in C[0,1]$ $\exists \xi \in (0,1): N(f) = \int_0^1 x |f(x)| dx = \xi \int_0^1 |f(x)| dx \le ||f||_1$, 因此 $N \le ||\cdot||_1$.

$$2.N(f_n) = \int_0^{1/n} x(n-n^2x) dx = \frac{1}{6n} \to 0$$
, 因此 $\{f_n\}$ 在 N 下收敛.

而
$$||f_n - f||_1 = \int_0^{1/n} |n - n^2x - f(x)| \, dx + \int_{1/n}^1 |f(x)| \, dx \ge \int_{1/n}^1 |f(x)| \, dx \to \int_0^1 |f(x)| \, dx$$
. 因此 $||f_n - f||_1 \to 0$ \Longrightarrow

f = 0,但 $||f_n||_1 = \int_0^{1/n} n - n^2 x dx = \frac{1}{2}$,因此在 $||\cdot||_1$ 下不收敛. 也因此 $\forall \varepsilon > 0 \exists n : f_n \in B_N(0, \varepsilon)$,但 $f_n \notin B_1(0, 1/2)$,故 $\exists \varepsilon > 0 : B_N(0, \varepsilon) \not\subset B_1(0, 1/2)$,即拓扑不等价.

3. 仅需证明两范数等价. 有
$$\forall f \in B \exists \xi \in (a,1) : N(f) = \int_a^1 x |f(x)| \, \mathrm{d}x = \xi \int_a^1 |f(x)| \, \mathrm{d}x \in [a \, \|f\|_1 \, , \|f\|_1],$$
 得证. \Box

3.5 $\varphi: [0,1] \to [0,1]$ 连续且不恒为 1. 取 $\alpha \in \mathbb{R}$, 定义 $T: C[0,1] \to C[0,1], f(x) \mapsto \alpha + \int_{0}^{x} f(\varphi(t)) dt$. 证明 T^{2} 是压缩 映射. 由此证明

$$f(0) = \alpha, \qquad f'(x) = f(\varphi(x)), \qquad x \in [0, 1]$$

有唯一解.

证明. 首先
$$T^2(f)(x) = \alpha + \int_0^x \left(\alpha + \int_0^{\varphi(t)} f(\varphi(s)) ds\right) dt, (T^2(f) - T^2(g))(x) = \int_0^x dt \int_0^{\varphi(t)} (f - g)(\varphi(s)) ds.$$
 而
$$\int_0^{\varphi(t)} (f - g)(\varphi(s)) ds = (f - g)(\varphi(\xi))\varphi(t) \le \|f - g\|_{\infty} \varphi(t), \qquad \xi \in (0, \varphi(t))$$

$$\|T^2(f) - T^2(g)\|_{\infty} = \max_{x \in [0, 1]} \left| \int_0^x dt \int_0^{\varphi(t)} (f - g)(\varphi(s)) ds \right| \le \max_{x \in [0, 1]} \left| \|f - g\|_{\infty} \int_0^x \varphi(t) dt \right| \le \lambda \|f - g\|_{\infty}$$

其中 $\lambda = \left| \int_0^1 \varphi(t) dt \right| < 1$, 因此 T^2 为压缩映射. 又由 2.11,T 有唯一不动点, 即 $f(x) = \alpha + \int_0^x f(\varphi(t)) dt$ 有唯一解, 而 此方程等价于题干中方程组

需要注意的是,T 不是压缩映射, 如取 f(x) = b, g(x) = a.

3.6 设 $\alpha \in \mathbb{R}, a > 0, b > 1$. 考察微分方程

$$f(0) = \alpha,$$
 $f'(x) = af(x^b),$ $x \in [0, 1]$

- 1. 取 M>0, 验证 $(C[0,1],\|\cdot\|)$ 是 Banach 空间, 其中 $\|f\|=\sup_{x\in[0,1]}|f(x)|\,\mathrm{e}^{-Mx}$.
- 2. 定义 $T:C[0,1]\to C[0,1], f\mapsto \alpha+\int_0^x af(t^b)\mathrm{d}t,$ 证明选择合适的 M 可使 T 为压缩映射.
- 3. 证明此微分方程有唯一解.

证明. 1. 考虑 $(C[0,1],\|\cdot\|)$ 中 Cauchy 列 $\{f_n\}_{n\in\mathbb{N}}$,则 $\mathrm{e}^{-M}\|f_n-f_m\|_{\infty} \leq \|f_n-f_m\| < \varepsilon$,故 $\forall \varepsilon \exists N \forall n,m \geq N$: $||f_n - f_m|| < e^M \varepsilon$, 即 $\{f_n\}$ 也是 $||\cdot||_{\infty}$ 下的 Cauchy 列. 因此其收敛, 即 $(C[0,1],||\cdot||)$ 完备.

$$\begin{split} \|T(f) - T(g)\| &= \max_{x \in [0,1]} \left| \int_0^x a(f-g)(t^b) \mathrm{d}t \right| \mathrm{e}^{-Mx} = a \max_{x \in [0,1]} \left| f(\xi^b) - g(\xi^b) \right| x \mathrm{e}^{-Mx} \\ &\leq a \bigg(\max_{x \in [0,1]} \left| f(\xi^b) - g(\xi^b) \right| \mathrm{e}^{-M\xi^b} \bigg) \bigg(\max_{x \in [0,1]} x \mathrm{e}^{M(\xi^b - x)} \bigg) \leq a \, \|f - g\| \max_{x \in [0,1]} \mathrm{e}^{M(\xi^b - x)} \bigg) \end{split}$$

若希望使得 $\|T(f) - T(g)\| \le \lambda \|f - g\|$, 则需 $\lambda = a \max_{x \in [0,1]} \mathrm{e}^{M(\xi^b - x)} < 1$. 取 $x_0 = \arg\max \mathrm{e}^{M(\xi^b - x)}$, 此时 $\xi = \xi_0$, 则 $M > \frac{\ln a}{x_0 - \xi_0^b}$ 时成立.

3. 由 T 在适当情况下为压缩映射, 故 T(f) = f 有唯一解, 而此式等价于上述微分方程, 故得证.

- **3.7** 设 E 是数域 \mathbb{F} 上的无限维向量空间,设 $\{e_i\}_{i\in I}$ 是其中一组向量. 若 E 中任一向量可被 $\{e_i\}_{i\in I}$ 中有限个向量唯一线性表示,则称 $\{e_i\}_{i\in I}$ 是 E 中的一组 Hamel 基.
- 1. 由 Zorn 引理证明 E 中有一组 Hamel 基.
- 2. 若 E 是赋范空间,则 E 上必存在不连续的线性泛函.
- 3. 证明在任一无限维赋范空间上, 一定存在一个比原来范数严格强的范数. 由此证明, 若向量空间 E 上任意两个范数诱导同一拓扑, 则 E 必为有限维空间.
- 证明. 1. 考虑 E 中线性无关组全体 E' 中的偏序关系 \subset . 对 E' 中任意链 $e^1 \subset e^2 \subset \cdots$ 考虑 $e = \bigcup_{n \geq 1} e^n$ 为其一个上界.

这是因为 $\forall n \geq 1: e^n \subset e$,且 e 中任意有限子集 $\{e_j\}_{j \in J}$ 含于某一 e^n ,故 $\{e_j\}_{j \in J}$ 线性无关,故 e 线性无关, $e \subset E'$. 而由 Zorn 引理,E' 中存在一个极大元 ϵ .

下证 $E = \operatorname{span}(\epsilon)$. 若否, 则 $\exists v \in E$ 不能被 ϵ 表出, 即 $\epsilon \cup \{v\}$ 线性无关. 这与 ϵ 在 E' 中的极大性矛盾.

最后证明 ϵ 是 E 的 Hamel 基. 若有 $v \in E$ 不能被 ϵ 中有限向量线性表示, 则考虑 $\epsilon' = \epsilon \cup \{v\}$, 其中有限子集若不含 v 则含于 ϵ , 线性无关; 若含 v 则 v 不能被剩下向量线性表示, 线性无关. 因此 ϵ' 线性无关, 而这与 ϵ 的极大性矛盾.

- 2. 对 E 中 Hamel 基 ϵ 取一可数子集 $\{e_i\}_{i\geq 1}$ 及线性泛函 $f:(E,\|\cdot\|)\to \mathbb{F},$ $\begin{cases} e_n\mapsto n, & e_n\in\{e_i\}_{i\geq 1}\\ e\mapsto 1, & e\in\epsilon-\{e_i\}_{i\geq 1} \end{cases}$,因此 $\forall C\exists n>C:|f(e_n)|=n>C$. 因此 f 不连续.
- 3. 考虑 $\|\cdot\|_1: x \mapsto \|x\| + |f(x)|$, 容易证明这是一个范数,且 $\|x\| \le \|x\|_1$. 而由上可知 $\forall C > 0 \exists e_n: \|e_n\|_1 = \|e_n\| + n > \|e_n\|$, 因此 $\|\cdot\|_1$ 严格强于 $\|\cdot\|$.
- **3.8** 设 E 是数域 \mathbb{F} 上 n 维向量空间 $(n < +\infty), e = \{e_i\}_{i \in [n]}$ 为 E 上的一组基. 记 [u] 为 $u \in \text{hom}(E)$ 在基 e 下对应的矩阵.
- 1. 证明 $\varphi: u \mapsto [u]$ 给出 $hom(E) \to M_n(\mathbb{F})$ 间的一个同构映射.
- 2. 若 $E = \mathbb{F}^n$, e 是经典基, 其上取范数 $\|\cdot\|_2$. 证明若 u(或等价地 [u]) 可正交相似对角化, 则 $\|u\| = \max_{\lambda \in u \text{ obs} \text{ first } i} |\lambda|$.
- 3. 基 e 如上, 试由 [u] 中元素分别确定 $p=1,\infty$ 时 $u:(\mathbb{F}^n,\|\cdot\|_p)\to(\mathbb{F}^n,\|\cdot\|_p)$ 的范数 $\|u\|$.
- 证明. 1. 仅需证明 φ 为线性双射. 首先记 $u(e_j) = \sum_{i \in [n]} u_{ij}e_i, x = \sum_{i \in [n]} a_ie_i, [u]x = u(x) = \sum_{i \in [n]} a_iu(e_i) = \sum_{i \in [n]} a_i \sum_{j \in [n]} u_{ji}e_j = \sum_{i,j \in [n]} a_ju_{ij}e_i$. 因此 $[\lambda u + \mu v]x = \sum_{i,j \in [n]} a_j(\lambda u_{ij} + \mu v_{ij})e_i = \lambda \sum_{i,j \in [n]} a_ju_{ij}e_i + \mu \sum_{i,j \in [n]} a_jv_{ij}e_i = (\lambda[u] + \mu[v])x$. 单射: $[u] = [v] \iff \forall \{a_j\}_{j \in [n]} \subset \mathbb{F}: \sum_{i,j \in [n]} a_ju_{ij}e_i = \sum_{i,j \in [n]} a_jv_{ij}e_i \iff \forall x \in E: u(x) = v(x) \iff u = v,$

满射: $\forall [u] \in M_n(\mathbb{F}) \exists \{u_{ij}\} \subset \mathbb{F} \forall x \in E : u(x) = [u]x$. 因此 φ 为线性双射, 即同构.

2.u 可正交相似对角化, 即可在 E 中取正交基 $\{\epsilon_i\}_{i\in[n]}$ 有 $[u]\epsilon_i=\lambda_i\epsilon_i$, 其中 λ_i 为 [u] 的特征值. 因此

$$\forall x \in E : x = \sum_{i \in [n]} a_i \epsilon_i, \|u(x)\|_2 = \left\| \sum_{i \in [n]} a_i u(\epsilon_i) \right\|_2 = \left\| \sum_{i \in [n]} a_i \lambda_i \epsilon_i \right\|_2$$

而由 $\{\epsilon_i\}_{i\in[n]}$ 是正交基, 即 $\langle \epsilon_i, \epsilon_j \rangle = \delta_{ij}$. 故

$$\left\| \sum_{i \in [n]} c_i \epsilon_i \right\|_2^2 = \left\| \sum_{i \in [n-1]} c_i \epsilon_i \right\|_2^2 + \left\| c_n \epsilon_n \right\|_n^2 + 2 \left\langle \sum_{i \in [n-1]} c_i \epsilon_i, c_n \epsilon_n \right\rangle = \left\| \sum_{i \in [n-1]} c_i \epsilon_i \right\|_2^2 + c_n^2 + 2 \sum_{i \in [n-1]} c_i c_n \left\langle \epsilon_i, \epsilon_n \right\rangle$$

$$= \left\| \sum_{i \in [n-1]} c_i \epsilon_i \right\|_2^2 + c_n^2 = \sum_{i \in [n]} c_n^2$$

因此

$$||u|| = \sup_{x \in E - \{0\}} \frac{||u(x)||}{||x||} = \sqrt{\frac{\sum_{i \in [n]} a_i^2 \lambda_i^2}{\sum_{i \in [n]} a_i^2}} \le \max_{i \in [n]} |\lambda_i|$$

设上式取到极大值时的指标为 i', 则 $\|u\| \geq \frac{\|u(\epsilon_{i'})\|}{\|\epsilon_{i'}\|} = \lambda_{i'} = \max_{i \in [n]} \lambda_i$. 因此 $\|u\| = \max_{i \in [n]} \lambda_i$.

答案给出一个
$$u$$
 仅能对角化而不能正交相似对角化时的反例。考虑 $[u] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $P = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$,此时 $P^{-1}[u]P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$,即 $[u]$ 的特征值为 $\lambda_1 = 1, \lambda_2 = 0$. 而 $x = 2P^{(1)} + P^{(2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 时, $\|u\| \ge \frac{\|[u](1,1)^T\|_2^2}{\|(1,1)^T\|_2^2} = \frac{2}{\sqrt{2}} = \sqrt{2} > 1 = \max\{\lambda_1,\lambda_2\}$.
$$3.p = 1$$
:由 $x = \sum_{i \in [n]} a_i e_i, u(x) = \sum_{i \in [n]} a_i u(e_i) = \sum_{i \in [n]} a_i \sum_{j \in [n]} u_{ji} e_j = \sum_{j \in [n]} e_j \sum_{i \in [n]} a_i u_{ji}$,故
$$\|u(x)\|_1 = \sum_{j \in [n]} \left| \sum_{i \in [n]} a_i u_{ji} \right| \le \sum_{i,j \in [n]} |a_i| |u_{ji}| = \sum_{i \in [n]} |a_i| \sum_{j \in [n]} |u_{ji}| \le \max_{i \in [n]} \sum_{j \in [n]} |u_{ji}| \sum_{i \in [n]} |a_i| = \max_{i \in [n]} \sum_{j \in [n]} |u_{ji}| \|x\|_1$$

因此 $||u|| \le \max_{i \in [n]} \sum_{j \in [n]} |u_{ji}|$. 设上式取最大值时的指标为 i', 则 $x = e_{i'}$ 时, $||u|| \ge \frac{||u(e_{i'})||_1}{||e_{i'}||_1} = \sum_{i \in [n]} |u_{ji'}| = \max_{i \in [n]} \sum_{j \in [n]} |u_{ji}|$.

因此 $||u|| = \max_{i \in [n]} \sum_{j \in [n]} |u_{ji}|.$ $p = \infty:$

$$||u(x)||_{\infty} = \max_{j \in [n]} \left| \sum_{i \in [n]} a_i u_{ji} \right| \le \max_{j \in [n]} \sum_{i \in [n]} |a_i| |u_{ji}| \le \max_{j \in [n]} \sum_{i \in [n]} |u_{ji}| \max_{i \in [n]} |a_i| = \max_{j \in [n]} \sum_{i \in [n]} |u_{ji}| ||x||_{\infty}$$

因此 $||u|| \le \max_{j \in [n]} \sum_{i \in [n]} |u_{ji}|$. 设上式取最大值时的指标为 j', 则 $x = (\operatorname{sgn} u_{j'1}, \operatorname{sgn} u_{j'2}, \cdots, \operatorname{sgn} u_{j'n})^T$, $||x||_{\infty} = 1$,

$$\|u(x)\|_{\infty} = \left| \sum_{i \in [n]} (\operatorname{sgn} u_{j'i}) u_{j'i} \right| = \left| \sum_{i \in [n]} |u_{j'i}| \right| = \sum_{i \in [n]} |u_{j'i}| = \max_{j \in [n]} \sum_{i \in [n]} |u_{ji}| \implies \|u\| \ge \frac{\|u(x)\|_{\infty}}{\|x\|_{\infty}} = \max_{j \in [n]} \sum_{i \in [n]} |u_{ji}|$$

因此
$$||u|| = \max_{i \in [n]} \sum_{j \in [n]} |u_{ij}|.$$

3.9 *E* 是 Banach 空间.

- 1. 设 $u \in \mathcal{B}(E), \|u\| < 1$, 证明 $\mathrm{id}_E u$ 在 $\mathcal{B}(E)$ 中可逆.HINT: 考虑 $\mathcal{B}(E)$ 中级数 $\sum u^n$.
- 2. 记 GL(E) 为 $\mathcal{B}(E)$ 中全体可逆元构成的集合, 证明 GL(E) 关于复合运算成群, 且为 $\mathcal{B}(E)$ 上开集.
- 3. 证明 $u \mapsto u^{-1}$ 是 GL(E) 上的同胚映射.

证明.
$$1.\sum_{n\geq 0}\|u^n\|\leq \sum_{n\geq 0}\|u\|^n=\frac{1}{1-\|u\|}$$
 收敛, 即 $\sum_{n\geq 1}u^n$ 绝对收敛. 由 E 是 Banach 空间知其收敛, 即 $\sum_{n\geq 0}u^n\in\mathcal{B}(E)$.

而
$$(\mathrm{id}_E - u) \circ \left(\sum_{n \geq 0} u^n\right) = \left(\sum_{n \geq 0} u^n\right) \circ (\mathrm{id}_E - u) = \mathrm{id}_E$$
, 因此 $\mathrm{id}_E - u$ 在 $\mathcal{B}(E)$ 中可逆.

 $2.\forall u, v, w \in \mathrm{GL}(E)$:

$$((u \circ v) \circ (v^{-1} \circ u^{-1}))(x) = (u \circ v)(v^{-1}(u^{-1}(x))) = u(v(v^{-1}(u^{-1}(x)))) = u(u^{-1}(x)) = x \implies u \circ v \in GL(E)$$

$$u \circ id_E = id_E \circ u = u, \qquad \exists u^{-1} : u \circ u^{-1} = u^{-1} \circ u = id_E$$

$$((u \circ v) \circ w)(x) = u(v(w(x))) = (u \circ (v \circ w))(x)$$

因此 $(GL(E), \circ)$ 是群. 而 $\forall u \in GL(E) \exists \varepsilon = \frac{1}{\|u^{-1}\|} \forall v \in \mathcal{B}(E) : \|u - v\| < \frac{1}{\|u^{-1}\|} \implies \|\mathrm{id}_E - u^{-1}v\| \le \|u^{-1}\| \|u - v\| < \|u\|$ $1 \implies u^{-1}v$ 可逆 $\implies v$ 可逆. 因此 GL(E) 是 $\mathcal{B}(E)$ 中开集.

3. 由于 $\varphi:u\mapsto u^{-1}$ 为双射且 $\varphi=\varphi^{-1}$, 故 φ 连续则 φ^{-1} 连续, 故仅需证明 φ 连续:

$$\forall u \in GL(E) \forall \varepsilon \exists \delta < \frac{\varepsilon}{\|u^{-1}\|^2 + \|u^{-1}\| \varepsilon} \forall v \in GL(E) : \|u - v\| < \delta \implies \|u^{-1} - v^{-1}\| = \|u^{-1}v^{-1}(u - v)\| < \|u^{-1}\| \|v^{-1}\| \delta$$

因此

$$\left\| \left(\mathrm{id}_E - (u - v)u^{-1} \right)^{-1} \right\| = \left\| \sum_{n \ge 0} \left((u - v)u^{-1} \right)^n \right\| \le \sum_{n \ge 0} \left\| (u - v)u^{-1} \right\|^n = \frac{1}{1 - \left\| (u - v)u^{-1} \right\|} < \frac{1}{1 - \left\| u^{-1} \right\| \delta}$$

代入可得:
$$||u^{-1} - v^{-1}|| < \frac{||u^{-1}|| \delta}{1 - ||u^{-1}|| \delta} = \frac{1}{1 - ||u^{-1}|| \delta} - 1 < \frac{\varepsilon}{||u^{-1}||},$$
 故 φ 连续.

3.10 $f \in L^2(\mathbb{R}), g(x) = \frac{1_{[1,+\infty)}(x)}{x}$, 证明 $fg \in L^1(\mathbb{R})$. 举例说明 $f_1, f_2 \in L^1(\mathbb{R}), f_1 f_2 \notin L^1(\mathbb{R})$.

证明. 由 Hölder 不等式,

$$||fg||_1 \le ||f||_2 ||g||_2 = \int_1^{+\infty} \frac{\mathrm{d}x}{x^2} ||f||_2 = ||f||_2 < \infty$$

因此 $fg \in L^1(\mathbb{R})$.

考虑
$$f(x) = x^{-\frac{1}{2}} 1_{(0,1]}(x), \|f\|_1 = 2, \|f^2\|_1 = +\infty.$$

- **3.11** $(\Omega, \mathcal{A}, \mu)$ 为有限测度空间.
- 1. 证明 $0 则 <math>L^q(\Omega) \subset L^p(\Omega)$. 举反例说明 $\mu(\Omega) = \infty$ 时结论不成立.
- 2. 证明若 $f \in L^{\infty}(\Omega)$ 则 $f \in \bigcap_{p < \infty} L^{p}(\Omega)$ 且 $||f||_{\infty} = \lim_{p \to \infty} ||f||_{p}$.

 3. 设 $f \in \bigcap_{p < \infty} L^{p}(\Omega)$ 且 $\overline{\lim}_{p \to \infty} ||f||_{p} < \infty$, 证明 $f \in L^{\infty}(\Omega)$.

证明. 1. 由 Hölder 不等式, 考虑 $p^{-1} = q^{-1} + s^{-1}$, 其中 $s = (p^{-1} - q^{-1})^{-1} \in (0, +\infty)$. 有

$$\forall f \in L^q(\Omega): \left\|f\right\|_p \leq \left\|f\right\|_q \left\|1\right\|_s = \mu(\Omega)^{\frac{1}{s}} \left\|f\right\|_q < \infty \implies f \in L^p(\Omega)$$

 $\mu(\Omega) = \infty \ \text{Iff}, \left\|1\right\|_{\infty} = 1, \left\|1\right\|_{p} = \mu(\Omega) = \infty.$

2. 由上,
$$\forall p \in (0,\infty): L^{\infty}(\Omega) \subset L^{p}(\Omega)$$
, 因此 $L^{\infty}(\Omega) \subset \bigcap_{i=1}^{n} L^{p}(\Omega)$.

而 $\|f\|_p \leq \mu(\Omega)^{\frac{1}{s}} \|f\|_{\infty}, q = \infty$ 时 s = p. 两端取 $p \to \infty$ 有 $\lim_{p \to \infty} \|f\|_p \leq \|f\|_{\infty}$.

另一方面, 设 $S_{\delta} = \{x \in \Omega : |f(x)| \ge ||f||_{\infty} - \delta\}, \delta \in (0, ||f||_{\infty}).$ 有

$$||f||_p \ge \left(\int_{S_\epsilon} (||f||_\infty - \delta)^p d\mu\right)^{1/p} = (||f||_\infty - \delta) \mu(S_\delta)^{1/p} \implies \lim_{p \to \infty} ||f||_p \ge ||f||_\infty - \delta$$

而 $\delta > 0$, 因此有 $\lim_{p \to \infty} \|f\|_p \ge \|f\|_\infty$. 综上, $\lim_{p \to \infty} \|f\|_p = \|f\|_\infty$.

3. 若否, 即对 $E_M = \{x \in \Omega : |f(x)| \ge M\}, \forall M > 0 : \mu(E_M) > 0, 则 \|f\|_p \ge \int_{E_M} |f|^p d\mu \ge M\mu(E_M)^{1/p}.$ 两端取 $p \to \infty$ 有 $\infty > \lim_{n \to \infty} \|f\|_p \ge M$. 由 M 的任意性, $\lim_{p \to \infty} \|f\|_p = \infty$, 矛盾.

 $\textbf{3.12} \quad 0 证明 <math>\forall f \in L^p(\Omega) \cap L^q(\Omega) : f \in L^s(\Omega), \|f\|_s \leq \|f\|_p^\theta \|f\|_q^{1-\theta}.$

证明. 若 $\theta=0$ 则 s=q, 此时 $f\in L^q(\Omega)=L^s(\Omega), \|f\|_s=\|f\|_q. \theta=1$ 时同理, 换 q 为 p 即可.

若 $\theta \in (0,1)$ 则 $\frac{s\theta}{n} + \frac{s(1-\theta)}{q} = 1$. 此时 $|f|^{s\theta} \in L^{\frac{p}{s\theta}}(\Omega), |f|^{s(1-\theta)} \in L^{\frac{q}{s(1-\theta)}}(\Omega)$, 故由 Hölder 不等式有:

$$\int_{\Omega}\left|f\right|^{s}=\left\|\left|f\right|^{s\theta}\left|f\right|^{s(1-\theta)}\right\|_{1}\leq\left\|\left|f\right|^{s\theta}\right\|_{\frac{p}{s\theta}}\left\|\left|f\right|^{s(1-\theta)}\right\|_{\frac{q}{s(1-\theta)}}=\left(\int_{\Omega}\left|f\right|^{p}\right)^{s\theta/p}\left(\int_{\Omega}\left|f\right|^{q}\right)^{s(1-\theta)/q}=\left\|f\right\|_{p}^{s\theta}\left\|f\right\|_{q}^{s(1-\theta)}$$

因此 $||f||_s \le ||f||_p^\theta ||f||_q^{1-\theta} < \infty, f \in L^s(\Omega).$

3.13 (广义 Minkowski 不等式) 设 σ -有限测度空间 $(\Omega_1, \mathcal{A}_1, \mu_1), (\Omega_2, \mathcal{A}_2, \mu_2), 0$

证明对任意可测函数 $f: (\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2) \to \mathbb{F}$ 有:

$$\left(\int_{\Omega_{2}} \left(\int_{\Omega_{1}} |f(x_{1}, x_{2})|^{p} d\mu_{1}(x_{1})\right)^{q/p} d\mu_{2}(x_{2})\right)^{1/q} \leq \left(\int_{\Omega_{1}} \left(\int_{\Omega_{2}} |f(x_{1}, x_{2})|^{q} d\mu_{2}(x_{2})\right)^{p/q} d\mu_{1}(x_{1})\right)^{1/p}$$

Proof in Folland Theorem 6.19 & Here. 首先我们设 $F(x_1,x_2) = |f(x_1,x_2)|^p$, $s = q/p \in (1,\infty)$, 则可改写不等式为:

$$\left(\int_{\Omega_2} \left(\int_{\Omega_1} F(x_1, x_2) d\mu_1(x_1)\right)^s d\mu_2(x_2)\right)^{1/s} \leq \int_{\Omega_1} \left(\int_{\Omega_2} F(x_1, x_2)^s d\mu_2(x_2)\right)^{1/s} d\mu_1(x_1)$$

考虑 s 的共轭数 r 及 $g \in L^r(\Omega_2)$, 有:

$$\int_{\Omega_{2}} \left(\int_{\Omega_{1}} F(x_{1}, x_{2}) d\mu_{1}(x_{1}) \right) |g(x_{2})| d\mu_{2}(x_{2}) \stackrel{\text{Tonelli}}{=} \stackrel{\text{fize}}{=} \int_{\Omega_{1} \times \Omega_{2}} F(x_{1}, x_{2}) |g(x_{2})| d\mu_{1}(x_{1}) d\mu_{2}(x_{2})$$

$$\stackrel{\text{H\"{o}lder } \mathcal{T} \H \Rightarrow \mathcal{I}}{\leq} \int_{\Omega_{1}} \|F(x_{1}, \cdot)\|_{s} \|g\|_{r} d\mu_{1}(x_{1}) = \|g\|_{r} \int_{\Omega_{1}} \left(\int_{\Omega_{2}} F(x_{1}, x_{2})^{s} d\mu_{2}(x_{2}) \right)^{1/s} d\mu_{1}(x_{1})$$

由 $L^s(\Omega_2) \to L^r(\Omega_2)^*$ 有一个同构 $f \mapsto \varphi(f)$, 其中 $\varphi(f) : g \mapsto \int_{\Omega_2} f(x_2)g(x_2) d\mu_2(x_2)$, 因此

$$\left(\int_{\Omega_2} \left(\int_{\Omega_1} F(x_1, x_2) d\mu_1(x_1) \right)^s d\mu_2(x_2) \right)^{1/s} = \left\| \int_{\Omega_1} F(x_1, \cdot) d\mu_1(x_1) \right\|_s = \left\| \varphi \left(\int_{\Omega_1} F(x_1, \cdot) d\mu_1(x_1) \right) \right\|_s$$

$$= \sup_{g \in L^r(\Omega_2)} \frac{1}{\|g\|_r} \left| \int_{\Omega_2} \left(\int_{\Omega_1} F(x_1, x_2) d\mu_1(x_1) \right) |g(x_2)| d\mu_2(x_2) \right| \le \int_{\Omega_1} \left(\int_{\Omega_2} F(x_1, x_2)^s d\mu_2(x_2) \right)^{1/s} d\mu_1(x_1)$$

3.14 设 $p \in (0, \infty)$.

1. 对 $\forall x = \{x_n\}_{n \in \mathbb{N}} \in \ell_p$ 定义 (0,1) 上函数 $T(x)(t) = \sum_{n \geq 1} (n(n+1))^{\frac{1}{p}} x_n 1_{\left(\frac{1}{n+1}, \frac{1}{n}\right)}(t)$.

证明 $T: \ell_p \to \operatorname{im}(T) \subset L^p(0,1)$ 是线性等距同构映射.

2. 若
$$p \ge 1$$
, $\frac{1}{p} + \frac{1}{q} = 1$, 对 $\forall f \in L^p(0,1) \forall n \ge 1$ 定义 $S(f)_n = (n(n+1))^{\frac{1}{q}} \int_{\frac{1}{n+1}}^{\frac{1}{n}} f(t) dt$.

证明 $S: L^p(0,1) \to \ell_p, f \mapsto \{S(f)_n\}_{n\geq 1}$ 是线性映射, 且 $S \circ T = \mathrm{id}_{\ell_p}$.

证明. 1. 首先

$$\|T(x)\|_p = \left(\int_0^1 \left(\sum_{n \geq 1} [n(n+1)]^{1/p} x_n 1_{\left(\frac{1}{n+1},\frac{1}{n}\right)}(t)\right)^p \mathrm{d}t\right)^{1/p} = \left(\sum_{n \geq 1} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \left([n(n+1)]^{1/p} x_n\right)^p \mathrm{d}t\right)^{1/p} = \left(\sum_{n \geq 1} x_n^p\right)^{1/p} = \|x\|_p$$

线性性和单射性显然,由定义,T线性等距双射,即得证.

2. 线性性显然.

$$S(T(x))_n = S\left(\sum_{n\geq 1} [n(n+1)]^{1/p} x_n \mathbf{1}_{\left(\frac{1}{n+1},\frac{1}{n}\right)}(\cdot)\right)_n = [n(n+1)]^{1/q} \int_{\frac{1}{n+1}}^{\frac{1}{n}} \sum_{n\geq 1} [n(n+1)]^{1/p} x_n \mathbf{1}_{\left(\frac{1}{n+1},\frac{1}{n}\right)}(t) dt$$

$$= [n(n+1)]^{1/q} \int_{\frac{1}{n+1}}^{\frac{1}{n}} [n(n+1)]^{1/p} x_n dt = [n(n+1)]^{1/q} \left(n^{\frac{1}{p}-1} (n+1)^{\frac{1}{p}} - n^{\frac{1}{p}} (n+1)^{\frac{1}{p}-1}\right) x_n = x_n$$

因此 $S \circ T = \mathrm{id}_{\ell_n}$.

3.15 1. 证明: 若 (E, d) 为可分度量空间,则 (F, d) 也是, $F \subset E$.

2. 证明 \mathbb{R}^n , c_0 , $\ell_p(p \in [1, \infty))$, $C([a, b], \mathbb{R})$, $C_0(\mathbb{R}, \mathbb{R})$, $L^p(0, 1)(p \in [1, \infty))$ 都是可分的.

3. 设 $C = \{\pm 1\}^{\mathbb{N}} \subset \ell_{\infty}$, 验证 $\forall x, y \in C : x \neq y \implies \|x - y\|_{\infty} = 2$, 再证明 C 不可数, 由此导出 ℓ_{∞} 不可分. 并类似证明 $L^{\infty}(0,1)$ 不可分.

证明. 1. 设 E 的可数稠密集为 A, 则 $\forall x \in F \forall \varepsilon > 0 \exists a \in A : x \in B(a, \varepsilon)$, 从中取 $x_a \in F \cap B(a, \varepsilon)$, 则 $B(a, \varepsilon) \subset B(x_a, 2\varepsilon)$, 因此 $A_F = \{x_a\}_{a \in A}$ 是一个可数集,且 $\forall x \in F \forall \varepsilon > 0 \exists x_a \in A_F : x \in B(x_a, 2\varepsilon)$,故 $\overline{A_F} = F$. $2.(1)\mathbb{R}^n = \overline{\mathbb{Q}^n}$;

 $(3)\forall x \in \ell_p \forall \varepsilon > 0 \exists N \in \mathbb{N} : \sum_{n>N} |x_n|^p < \frac{\varepsilon}{2}, \text{ 再取 } q = \{q_n\}_{n \in [N]} \subset \mathbb{Q} \text{ 有 } |x_n - q_n| < \left(\frac{\varepsilon}{2N}\right)^{1/p} (n \in [N]).$ 记 $A_n = \{\{q_1, \cdots, q_n, 0, \cdots\} : q_i \in \mathbb{Q}\} \subset \ell_p, \mathbb{M}$

$$\forall x \in \ell_p \forall \varepsilon > 0 \exists N \in \mathbb{N} \exists q \in A_N : \|x - q\|_p^p = \sum_{n > N} \left|x_n\right|^p + \sum_{n \leq N} \left|x_n - q_n\right|^p < \frac{\varepsilon}{2} + N \cdot \frac{\varepsilon}{2N} = \varepsilon$$

因此 $\forall x \in \ell_p \forall \varepsilon > 0 \exists q \in \bigcup_{n \geq 1} A_n : \|x - q\|_p < \varepsilon, \ \text{即} \ \overline{\bigcup_{n \geq 1} A_n} = \ell_p.$

 $n\geq 1$ (4) 首先由紧集上的 (一致) 连续性.

$$\forall f \in C[a,b] \forall \varepsilon \exists \delta \forall x,y \in [a,b] : |x-y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

可以考虑分划 $\{s_n\}_{n\in[N]}\subset[a,b]$, 其中 $s_0=a,s_N=b,s_{k+1}-s_k<\delta$. 依次用折线连接 $(s_k,f(s_k))$ 得到以折线连接的分 段函数 g, 则 $\forall x \in [s_k, s_{k+1}]$:

$$|f(x) - g(x)| = \left| \frac{f(s_{k+1}) - f(s_k)}{s_{k+1} - s_k} (x - s_k) + f(s_k) - f(x) \right| \le \left| \frac{x - s_k}{s_{k+1} - s_k} \right| |f(s_{k+1}) - f(s_k)| + |f(s_k) - f(x)| < 2\varepsilon$$

因此 [a,b] 上全体折线函数稠密于 C[a,b] 中. 而全体分段点 $(s_k,f(s_k))\in\mathbb{Q}^2$ 的折线函数稠密于前者, 该集合可数. 因此 得证.

- (5) 由于 $\forall f \in C_0(\mathbb{R}) \exists N > 0 : \|f|_{\mathbb{R}-[-N,N]}\| < \varepsilon$, 因此 $\bigcup_{N \geq 0} C[-N,N]$ 稠密于 $C_0(\mathbb{R})$. 而 C[-N,N] 由 (4) 有一个可
- 数稠密集 B_N , 因此 $\overline{\bigcup_{N\geq 0}} B_N = C_0(\mathbb{R})$. (6) 由 $L^1(0,1)$ 中阶梯函数族稠密于 $L^p(0,1)$,而可以选取函数值为有理数和分段点为有理函数的阶梯函数稠密于
 - 前者, 因此 $L^p(0,1)$ 有可数稠密子集. $3. \forall x, y \in C: x \neq y \implies \|x - y\|_{\infty} = \sup_{n \geq 1} |x_n - y_n| = 2$,这是由于 $\exists N: x_N \neq y_N \implies |x_N - y_N| = |1 - (-1)| = 2$ 2.

而 $C \to \mathcal{P}\mathbb{N}, x = \{x_n\} \mapsto A \subset \mathbb{N}, x_n = 1 \iff n \in A$ 给出一个双射, 因此 $|C| = |\mathcal{P}\mathbb{N}| > \mathbb{N}$, 故不可数.

因此, 若 ℓ_{∞} 有可数稠密子集 A, 则 C 有可数稠密子集 $A\cap C$, 但 $\exists x\in C-A\cap C\exists \varepsilon<2\forall y\in A\cap C: \|x-y\|>\varepsilon$, 因 此 C 中不存在这样的稠密子集.

- 3.16 (卷积) 设 $f,g \in L^1(\mathbb{R})$.(下述积分为 Lebesgue 积分)
 1. 证明 $\int_{\mathbb{R}^2} f(u)g(v) du dv = \left(\int_{\mathbb{R}} f(u) du\right) \left(\int_{\mathbb{R}} g(v) dv\right) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x-y)g(y) dy\right) dx$, 由此导出 $x \mapsto \int_{\mathbb{R}} f(x-y)g(y) dy$
- 2. 定义卷积 $f * g(x) = \begin{cases} \int_{\mathbb{R}} f(x-y)g(y) dy, & \text{积分存在,} \\ 0 & \text{else.} \end{cases}$. 证明 $f * g \in L^1(\mathbb{R})$ 且 $\|f * g\|_1 \le \|f\|_1 \|g\|_1$.

证明. 1. 第一个等号由 Fubini 定理立得. 第二个等号:

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x-y)g(y) dy \right) dx = \int_{\mathbb{R}} g(y) \left(\int_{\mathbb{R}} f(x-y) dx \right) dy = \int_{\mathbb{R}} g(y) \left(\int_{\mathbb{R}} f(x-y) d(x-y) \right) dy$$
$$= \int_{\mathbb{R}} g(y) \left(\int_{\mathbb{R}} f(u) du \right) dy = \int_{\mathbb{R}^2} f(u)g(y) du dy$$

而 $\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x-y)g(y) dy \right) dx = \left(\int_{\mathbb{R}} f(u) du \right) \left(\int_{\mathbb{R}} g(v) dv \right) < \infty$, 因此 $\int_{\mathbb{R}} f(x-y)g(y) dy$ 在 \mathbb{R} 上 a.e. 有限, 故有定义.

$$\|f*g\|_1 = \int_{\mathbb{R}} |f*g(x)| \, \mathrm{d}x \leq \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x-y)| \, |g(y)| \, \mathrm{d}y \right) \, \mathrm{d}x = \left(\int_{\mathbb{R}} |f(x)| \, \mathrm{d}x \right) \left(\int_{\mathbb{R}} |g(y)| \, \mathrm{d}y \right) = \|f\|_1 \, \|g\|_1 < \infty$$

因此 $f * g \in L^1(\mathbb{R}), \|f * g\|_1 \le \|f\|_1 \|g\|_1$.

3. 由 $1_{[0,1]}(x-y)=1_{[x-1,x]}(y)$, 因此

$$f * f(x) = \int_{\mathbb{R}} 1_{[0,1]}(x-y) 1_{[0,1]}(y) dy = \int_{\mathbb{R}} 1_{[x-1,x]}(y) 1_{[0,1]}(y) dy = m([x-1,x] \cap [0,1]) = \begin{cases} x, & x \in [0,1] \\ 2-x, & x \in [1,2] \\ 0, & \text{else} \end{cases}$$

3.17 (Hardy 不等式) 在 \mathbb{R} 上考虑 Borel σ -代数和 Lebesgue 测度. 设 $p \in (1, \infty)$ 且 $f \in L^p(0, +\infty)$. 在 $(0,+\infty)$ 上定义 $F(x) = \frac{1}{x} \int_0^x f(t) dt$. 本题的目标是证明 Hardy 不等式:

$$\|F\|_p \le \frac{p}{p-1} \|f\|_p, \quad \forall f \in L^p(0,\infty)$$

1. 说明 F 在 $(0,+\infty)$ 上的定义是合理的, 且

$$\forall x_1, x_2 > 0 : |x_1 F(x_1) - x_2 F(x_2)| \le |x_1 - x_2|^{\frac{1}{q}} ||f||_p$$

其中 $\frac{1}{p} + \frac{1}{q} = 1$, 并由此证明 F 在 $0, +\infty$ 上连续, 故可测. 2. 若 f 是有紧支撑的非负连续函数, 证明 F 在 $(0, +\infty)$ 上连续可导, 且有

$$(p-1)\int_0^{+\infty} F(x)^p dx = p \int_0^{+\infty} F(x)^{p-1} f(x) dx$$

并由此导出 Hardy 不等式.

- 3. 证明 Hardy 不等式对所有 $f \in L^p(0, +\infty)$ 成立.
- 4. 用反例说明 p=1 时不等式不成立,即不存在任何常数 $C>0, \forall f\in L^p(0,+\infty): \|F\|_p \leq C \|f\|_p$
- 5. 证明 $\frac{p}{p-1}$ 是使不等式成立的最优常数, 即 $\|F\|_p \leq C \|f\|_p \implies C \geq \frac{p}{p-1}$.

HINT: 考虑 $f(x) = x^{-\frac{1}{p}} 1_{[1,n]}(x)$ 和极限 $\lim_{n \to \infty} ||F1_{[1,n]}(x)||_p / ||f||_p$.

证明. 1.

3.18 \Rightarrow *p* ∈ [2, +∞).

1. 首先证明 Clarkson 不等式:

$$\left\| \frac{f+g}{2} \right\|_{p}^{p} + \left\| \frac{f-g}{2} \right\|_{p}^{p} \le \frac{1}{2} \left(\|f\|_{p}^{p} + \|g\|_{p}^{p} \right), \qquad \forall f, g \in L^{p}(\mathbb{R})$$

- 1.1. 证明 $\forall s, t \in [0, +\infty) : s^p + t^p \le \left(s^2 + t^2\right)^{\frac{p}{2}}$. 1.2. 证明 $\forall a, b \in \mathbb{R} : \left|\frac{a+b}{2}\right|^p + \left|\frac{a-b}{2}\right|^p \le \frac{1}{2}(|a|^p + |b|^p)$.
- 1.3. 导出 Clarkson 不等式
 - 2. 设 C 为 $L^p(\mathbb{R})$ 中非空闭凸集, 且 $f \in L^p(\mathbb{R})$, 记 d = d(f,C). 下证: $\exists ! g_0 \in C : d = \|f g_0\|_p$.
- 2.1. 解释为什么存在 C 中序列 $\{g_n\}_{n\geq 1}$ 有 $\|f-g_n\|_p^p \leq d^p + \frac{1}{n}$.
- 2.2. 用 Clarkson 不等式证明 $\left\| \frac{g_n + g_m}{2} \right\|_p^p \le \frac{1}{2n} + \frac{1}{2m}$.
- 2.3. 导出存在函数 $g_0 \in C$ 使得 $d(f,C) = ||f g_0||_n$.
- 2.4. 证明上述 $g_0 \in C$ 唯一.
 - 3. 记上述 g_0 为 $P_C(f)$, 下证 $P_C: L^p(\mathbb{R}) \to C$ 连续.
- 3.1. 证明 $\forall f, g \in L^p(\mathbb{R}) : \|g P_C(g)\|_p \le \|f g\|_p + \|f P_C(f)\|_p$
- 3.2. 用 Clarkson 不等式证明

$$\forall f, g \in L^p(\mathbb{R}) : \left\| \frac{P_C(f) - P_C(g)}{2} \right\|_p^p \le \frac{1}{2} \left(\|f - P_C(g)\|_p^p - \|f - P_C(f)\|_p^p \right)$$

3.3. 最后导出 P_C 的连续性.

5 第五章

习题 1 设 $A = \{x(t) \in C^1[a,b] : |x(t)| \le M, |x'(t)| \le M_1\},$ 则 $A \in C[a,b]$ 中的列紧集.

证明. 仅需证明 A 等度连续, 这样由 A 一致有界 (即 $\forall t \in [a,b] \forall x \in A : |x(t)| \leq M$), 再由 Ascoli 定理得到 A 相对紧 (即列紧).

首先由 $\forall x \in A \forall t \in [a,b]: |x'(t)| \leq M_1$ 可以给出 $\forall t \in [a,b] \exists \delta_t > 0: |t-t_0| < \delta_t \implies |x(t)-x(t_0)| \leq M_1 |t-t_0|$. 用 $B(t,\delta_t/2)$ 覆盖 [a,b],由紧性可以得到有限个开球 $\left\{B\left(t_i,\frac{\delta_i}{2}\right)\right\}$ 覆盖 [a,b]. 令 $t_{n_1},t_{n_2},\cdots,t_{n_m}$ 依次是 t 到 t_0 之间 所有的开球中心 t_i ,因此有

$$\forall t, t_0 \in [a, b] : |x(t) - x(t_0)| \le |x(t) - x(t_{n_1})| + |x(t_{n_1}) - x(t_{n_2})| + \dots + |x(t_{n_m}) - x(t_0)|$$

$$\le M_1(|t - t_{n_1}| + |t_{n_1} - t_{n_2}| + \dots + |t_{n_m} - t_0|) = M_1 |t - t_0|$$

由 x 的任意性, 所以有

$$\forall t_0 \in [a, b] \forall \varepsilon > 0 \exists B \left(t_0, \frac{\varepsilon}{M_1} \right) \forall t \in B \left(t_0, \frac{\varepsilon}{M_1} \right) \forall x \in A : |x(t) - x(t_0)| \le M_1 |t - t_0| < \varepsilon$$

故等度连续得证.

习题 2 设 M 是 C[a,b] 中的有界集, 证明集合 $S = \left\{ F(x) = \int_a^x f(t) \mathrm{d}t : f \in M \right\}$ 是列紧集.

证明. 我们有

$$\forall F \in S \forall x \in [a, b] : F(x) \le \int_a^b |f(t)| \, \mathrm{d}t = \|f\|_1 \le (b - a) \, \|f\|_\infty$$
$$|F(x) - F(x_0)| = \left| \int_{x_0}^x f(t) \, \mathrm{d}t \right| \le \int_{x_0}^x |f(t)| \, \mathrm{d}t \le |x - x_0| \, \|f\|_\infty$$

因此在 M 关于 $\|\cdot\|_{\infty}$ 有界时,S 一致有界, 且 F 是 Lipschitz 映射, 故 S 等度连续.

最后由 Ascoli 定理,S 是列紧的.

习题 3 证明集合 $M=\{\sin nx:n\in\mathbb{Z}_{\geq 0}\}$ 在空间 $C[0,\pi]$ 中是有界集, 但不是列紧集.

证明. 显然 $\|\sin nx\|_{\infty}=1$, 但若 M 列紧, 则 $\exists \{n_i\}_{i\geq 1}\subset \mathbb{Z}_{\geq 0}\exists f\in C[0,\pi]:\sin n_ix \to f(x)$.

而 $\|f(x) - \sin n_i x\|_{\infty} \ge \left|f\left(\frac{k\pi}{n_i}\right)\right| \to 0, k \in [n_i]$, 因此在 $\left\{\frac{k\pi}{n_i}: i \in \mathbb{Z}_{\ge 0}, k \in [n_i]\right\}$ 上 f 取 0, 而这是一个稠密集,且 f 连续,故 f = 0. 但 $\|\sin n_i x\|_{\infty} = 1$,矛盾. 因此不存在这样的连续函数 f,即 M 不列紧.

习题 4 设 (M,d) 是一个列紧距离空间, $E \subset C(M)$, 其中 C(M) 表示 M 上一切实值或复值连续函数全体,E 中函数一致有界并满足下列不等式

$$|x(t_1) - x(t_2)| \le c \cdot d(t_1, t_2)^{\alpha}, \quad \forall x \in E, t_1, t_2 \in M$$

其中 $0 < \alpha \le 1, c > 0$, 求证 E 在 C(M) 中是列紧集.

证明. 仅需证明 E 等度连续.

$$\forall t_0 \in M \forall \varepsilon \exists B \left(t_0, \sqrt[\alpha]{\frac{\varepsilon}{c}} \right) \forall t \in B \left(t_0, \sqrt[\alpha]{\frac{\varepsilon}{c}} \right) \forall x \in E : |x(t) - x(t_0)| \le c \cdot d(t, t_0)^{\alpha} < \varepsilon$$

5.3 拓扑空间 K 和度量空间 (E,d) 中, 若 $\{f_n\}$ 在 C(K,E) 中依一致范数收敛, 则 $\{f_n\}$ 等度连续.

证明. 若 $||f|| = \sup_{t \in K} |f(t)|$, $\exists f \in C(K, E) : ||f - f_n|| \to 0$, 则 $\forall \varepsilon > 0$, 取 $N \in \mathbb{Z}_{\geq 1}$, 有 $\forall n \geq N : ||f - f_n|| < \varepsilon$. 考虑 $\forall x_0 \in K \exists O(x) \forall x \in O(x_0) : d(f(x), f(x_0)) < \varepsilon$, 则 $\forall \varepsilon > 0 \forall x_0 \in K \exists O(x_0) \forall x \in O(x_0) \forall n \geq N$ 时有

$$d(f_n(x), f_n(x_0)) \le d(f_n(x), f(x)) + d(f(x), f(x_0)) + d(f(x_0), f_n(x_0)) \le 3\varepsilon$$

因此 $\{f_n\}_{n>N}$ 等度连续, 故 $\{f_n\}_{n>1} = \{f_n\}_{1 \le n \le N} \cup \{f_n\}_{n>N}$ 等度连续.

5.12 [0,1] 上所有偶多项式 Q 是否稠密于 $C([0,1],\mathbb{R})?[-1,1]$ 上所有偶多项式 R 是否稠密于 $C([-1,1],\mathbb{R})?$

证明. 首先
$$Q$$
 可分点, 仅需注意到 x^2 在 $[0,1]$ 上是双射. 其次, $\forall x \in [0,1]: x^2+1 \neq 0$. 最后证明 Q 是一个子代数: $\forall P,Q \in \mathcal{Q}, \forall c \in \mathbb{R},$ 记 $P = \sum_{k=0}^n a_k x^{2k}, Q = \sum_{k=0}^m b_k x^{2k},$

$$cP = \sum_{k=0}^{n} ca_k x^{2k} \in \mathcal{Q}, P + Q = \sum_{k=0}^{\max\{n,m\}} (a_k + b_k) x^{2k} \in \mathcal{Q}, PQ = \sum_{k=0}^{m+n} \left(\sum_{i+j=k} a_i b_j\right) x^k \in \mathcal{Q}$$

因此由 Stone-Weierstrass 定理可知 Q 稠密于 $C([0,1],\mathbb{R})$.

另一方面, \mathcal{R} 中的多项式都不是 [-1,1] 上的双射, 因为 $\forall P \in \mathcal{R} \forall x \in [0,1]: P(x) = P(-x)$. 因此不能用 Stone-Weierstrass 定理.

6 第六章

SJ 4.1 设 $\sup_{n>1} |\alpha_n| < \infty$, 在 ℓ^1 上定义 $T : \{\xi_k\} \mapsto \{\alpha_k \xi_k\}$. 证明 T 有界线性且 $||T|| = \sup_{n>1} |\alpha_n|$

证明.
$$T$$
 的线性性显然. 设 $a=\sup_{n\geq 1}|\alpha_n|$, $\xi=\{\xi_k\}_{k\geq 1}$, 有 $\|T\xi\|_1=\sum_{k\geq 1}|\alpha_k\xi_k|\leq a\sum_{k\geq 1}|\xi_k|=a$ $\|\xi\|_1$, 因此 $\|T\|\leq a$. 另一方面对 $\forall n\in\mathbb{Z}_{\geq 1}$, 仅需考虑 $\xi_k=\delta_{kn}$, $\|\xi\|_1=1$, $\|T\xi\|_1=|\alpha_n|$, $\|T\|\geq \sup_{n\geq 1}|\alpha_n|$. 故 $\|T\|=a$.

SJ 4.9 X, Y 是 Banach 空间, $T \in \mathcal{B}(X, Y)$. 若 T 是双射, 证明 $\exists a > 0 \exists b > 0 \forall x \in X : a ||x|| \le ||Tx|| \le b ||x||$.

证明. 考虑双射 $T^{-1}: Y \to X$, 首先 $\forall y_1, y_2 \in Y \forall a_1, a_2 \in \mathbb{F} \exists x_1, x_2 \in X$:

$$T^{-1}(a_1y_1 + a_2y_2) = T^{-1}(a_1T(x_1) + a_2T(x_2)) = T^{-1} \circ T(a_1x_1 + a_2x_2) = a_1T^{-1}(y_1) + a_2T^{-1}(y_2)$$

因此 T^{-1} 线性. 其次由开映射定理, $\exists r > 0: rB_Y \subset T(B_X) \implies rT^{-1}(B_Y) \subset B_X$,因此 $\|T^{-1}\| = \sup_{y \in B_X} \|T^{-1}(y)\| \leq r^{-1}$, 因此 $T^{-1} \in \mathcal{B}(X,Y)$,

$$\forall x \in X \exists y \in Y : \|x\| = \|T^{-1}(y)\| \le \|T^{-1}\| \|y\| \le r^{-1} \|Tx\| \implies r \|x\| \le \|Tx\|$$

因此仅需取 a = r, b = ||T|| 即可.

SJ 4.13 考虑 $T: C^1[-1,1] \to C[-1,1], x(t) \mapsto x'(t).$

- 1. 若 $C^1[-1,1]$ 中范数是 $\|x\|_1 = \max\left\{\max_{t\in[-1,1]}|x(t)|,\max_{t\in[-1,1]}|x'(t)|\right\}$, 则 T 是否有界? 2. 若 $C^1[-1,1]$ 中范数是 $\|x\|_2 = \max_{t\in[-1,1]}|x(t)|$, 则 T 是否有界?

证明.
$$1.\frac{\|Tx\|}{\|x\|_1} = \frac{\|x'\|_{\infty}}{\max\{\|x\|_{\infty}, \|x'\|_{\infty}\}} \le 1$$
, 因此 $\|T\| \le 1$, 有界.

证明.
$$1.\frac{\|Tx\|}{\|x\|_1} = \frac{\|x'\|_{\infty}}{\max\{\|x\|_{\infty}, \|x'\|_{\infty}\}} \le 1$$
, 因此 $\|T\| \le 1$, 有界.
$$2.\frac{\|Tx\|}{\|x\|_2} = \frac{\|x'\|_{\infty}}{\|x\|_{\infty}}$$
, 因此取 $x(t) = t^n$ 时, $\frac{\|Tx\|}{\|x\|_2} = n$, 由 n 任意性, 其无界.

SJ 4.14 定义 $T(f)(x) = \int_a^x f(t)dt, \forall f \in L^1[a,b]$. 证明:

证明.
$$1.\|Tf\|_{\infty} = \max_{x \in [a,b]} \left| \int_a^x f(t) \mathrm{d}t \right| \leq \max_{x \in [a,b]} \int_a^x |f(t)| \, \mathrm{d}t = \int_a^b |f(t)| \, \mathrm{d}t = \|f\|_1,$$
 因此 $\|T\| \leq 1.$

另一方面,
$$f(t) = \frac{1}{b-a}$$
, $\|Tf\|_{\infty} = \max_{x \in [a,b]} \left| \frac{x-a}{b-a} \right| = 1$, 因此 $\|T\| \ge 1$, 得证.

另一方面, 取
$$f_n(t) = n \cdot 1_{[a,a+\frac{1}{n}]}(t)$$
, $\|f_n\|_1 = 1$, $\|Tf\|_1 = b - a - \frac{1}{2n}$, 因此 $\|T\| \ge \sup_{n \ge 1} \frac{\|Tf_n\|_1}{\|f_n\|_1} = b - a$. 因此 $\|T\| = b - a$.

SJ 4.32 X 是 Banach 空间, X_0 是 X 的闭子空间, 定义 $\Phi: X \to X/X_0, x \mapsto [x]$, 其中 [x] 是含 x 的等价类, 求证 Φ 是开映射.

证明. 在 X/X_0 上定义 $\|[x]\| = \inf_{x \in [x]} \|x\|$, 容易证明这是一个范数.

其次, 取 X/X_0 中的 Cauchy 列 $\{[x_n]\}$, 容易选取子列 $\{[x_{n_k}]\}=\{[u_k]\}$ 使得

$$\forall k \in \mathbb{N}^* \exists N_k \forall n, m \ge N_k : ||[u_n] - [u_m]|| < 2^{-k}.$$

考虑 $u'_n \in [u_n], u'_{n+1} \in [u_{n+1}], v'_n \in X_0: \|u'_{n+1} - u'_n + v'_n\| < 2^{-n}$. 记 $w_n = u'_{n+1} - u'_n + v'_n, \sum_{n \ge 1} \|w_n\| = 1 < \infty$, 故 $\{w_n\}$ 绝对收敛. 由 X 完备,有 $\sum_{n \ge 1} w_k = w$. 令 $[u] = [w] + [u_1]$,有

$$\|[u_{n+1}] - [u]\| = \left\| \left[u_{n+1} - w - u_1 + \sum_{k=1}^n w_k \right] \right\| \le \left\| u_{n+1} - w - u_1 + \sum_{k=1}^n w_k \right\| = \left\| \sum_{k=1}^n w_k - w \right\| \to 0$$

因此 $[u_n] \to [u]$. 而 $\{[u_n]\}$ 是 $\{[x_n]\}$ 的收敛子列,因此 $[x_n] \to [u]$. 故其收敛,故 X/X_0 是 Banach 空间. 最后,显然有 $\|\Phi\| \le 1, \Phi \in \mathcal{B}(X, X/X_0)$ 且满,因此 Φ 是开映射.

SJ 4.33 设 X 是 ℓ^{∞} 中只有有限个非 0 项的序列构成的子空间. 定义 $T: X \to X, \{x_k\} \mapsto \left\{\frac{x_k}{k}\right\}$, 证明: $1.T \in \mathcal{B}(X)$, 并求出 ||T||; $2.T^{-1}$ 无界;

3. 这是否和 Banach 逆算子定理矛盾?

证明. T 显然线性, $x=\{x_1,x_2,\cdots,x_n,0,\cdots\}\in X, Tx=\left\{x_1,\frac{x_2}{2},\cdots,\frac{x_n}{n},0,\cdots\right\}\in X.\|Tx\|=\max_{k\in[n]}\frac{|x_k|}{k}\leq \max_{k\in[n]}\frac{\|x\|}{k}=\|x\|,\|T\|\leq 1.$ 而 $x'=\{1,\cdots,1,0,\cdots\}$ 时 $\|Tx'\|=1,\|T\|\geq \frac{1}{1}=1,$ 故 $\|T\|=1.$ $T^{-1}x=\{x_1,2x_2,\cdots,nx_n,0,\cdots\},\|T^{-1}x'\|=n,$ 因此 $\|T^{-1}\|\geq n,$ 由 n 任意可知 T^{-1} 无界.

这与 Banach 逆算子定理不矛盾, 因为 X 不完备. 如 $x_n = \left\{1, 2^{-1}, 3^{-1}, \cdots, n^{-1}, 0, \cdots\right\}, x = \left\{1, 2^{-1}, 3^{-1}, \cdots, n^{-1}, \cdots\right\}, \|x_n - x\|_{\infty} = \frac{1}{n+1} \to 0, x \notin X.$

 $\mathbf{SJ} \ \mathbf{4.36} \quad \diamondsuit \ \mathrm{Dom}(T) = \left\{ u \in L^2(\mathbb{R}) : \int_{\mathbb{R}} t^2 \left| u(t) \right|^2 \mathrm{d}t < \infty \right\}, \ \underline{\mathrm{H}} \ \forall u \in \mathrm{Dom}(T) : T(u)(t) = tu(t). \ \ddot{\mathrm{U}} \ \mathrm{H} \ T \ \mathrm{\mathcal{T}} \ \mathrm{\mathcal{F}} \ \underline{\mathrm{H}} \ \mathrm{H} \ \mathrm{H}.$

证明. 首先取 $u(t)=\mathrm{e}^{-|t|/n}, n>0, \|u\|_2^2=n, \|Tu\|_2^2=\frac{n^3}{2}, \|T\|\geq \frac{n}{\sqrt{2}},$ 由 n 任意可知 T 无界.

要说明 $G(T) = \{(u, Tu) \in L^2(\mathbb{R}) \times L^2(\mathbb{R}) : u \in \text{Dom}(T)\}$ 闭, 需要说明 G(T) 中的收敛列 $(u_n, Tu_n) \to (u, v) \in G(T)$. 而 $T(u_n - u) = tu_n(t) - tu(t)$, $\int_{\mathbb{R}} t^2(u_n - u)(t)^2 dt$