PHYS11 CH:1-3: Introduction to Physics and 1D Kinematics

From Core Concepts to Equations of Motion

Mr. Gullo

July 23, 2025

Learning Objectives I

After this lesson, you will be able to:

- Define physics and its role as a fundamental science.
- Describe the scientific method.
- Differentiate between physical quantities, units, accuracy, and precision.
- Explain the rules for significant figures in calculations.
- Distinguish between distance and displacement, and speed and velocity.
- Analyze motion using position vs. time and velocity vs. time graphs.
- Define acceleration as the rate of change of velocity.
- Apply kinematic equations to solve problems involving one-dimensional motion with constant acceleration.

What is Physics? (Sec 1.1)

• **Physics** is the most fundamental of the sciences, concerning itself with energy, matter, space and time, and their interactions.

What is Physics? (Sec 1.1)

- **Physics** is the most fundamental of the sciences, concerning itself with energy, matter, space and time, and their interactions.
- Modern Physics includes two revolutionary theories:
 - Relativity: Describes how time, space, and gravity can be different for different observers.
 - Quantum Mechanics: Describes the behavior of subatomic particles.

What is Physics? (Sec 1.1)

- **Physics** is the most fundamental of the sciences, concerning itself with energy, matter, space and time, and their interactions.
- Modern Physics includes two revolutionary theories:
 - Relativity: Describes how time, space, and gravity can be different for different observers.
 - Quantum Mechanics: Describes the behavior of subatomic particles.
- Physics provides the fundamental principles that underlie all other sciences, including chemistry, biology, and geology.

The Scientific Method (Sec 1.2)

Science is a process for discovering the order and simplicity in nature.

• **Process:** Observation \rightarrow Hypothesis \rightarrow Experiment \rightarrow Conclusion.

The Scientific Method (Sec 1.2)

Science is a process for discovering the order and simplicity in nature.

- **Process:** Observation \rightarrow Hypothesis \rightarrow Experiment \rightarrow Conclusion.
- Theory: A scientific explanation that is supported by a large body of experimental results. A theory is a powerful and well-substantiated explanation.
 - Example: The Theory of General Relativity

The Scientific Method (Sec 1.2)

Science is a process for discovering the order and simplicity in nature.

- ullet Process: Observation o Hypothesis o Experiment o Conclusion.
- Theory: A scientific explanation that is supported by a large body of experimental results. A theory is a powerful and well-substantiated explanation.
 - Example: The Theory of General Relativity
- Law: A concise description of a universally true aspect of the universe. Laws often take the form of mathematical equations.
 - Example: Newton's Second Law of Motion (F = ma)

Physical Quantities and Units (Sec 1.3)

- A **physical quantity** is a property of an object that can be measured.
 - Examples: length, mass, time, velocity.

Physical Quantities and Units (Sec 1.3)

- A **physical quantity** is a property of an object that can be measured.
 - Examples: length, mass, time, velocity.
- We will use the SI (Système International) units, which are part of the metric system.
- The four fundamental units for this course are:
 - Length: meter (m)
 - Mass: kilogram (kg)
 - Time: second (s)
 - Electric Current: ampere (A)

Physical Quantities and Units (Sec 1.3)

- A **physical quantity** is a property of an object that can be measured.
 - Examples: length, mass, time, velocity.
- We will use the SI (Système International) units, which are part of the metric system.
- The four fundamental units for this course are:
 - Length: meter (m)
 - Mass: kilogram (kg)
 - Time: second (s)
 - Electric Current: ampere (A)
- The metric system uses powers of 10 for easy conversion between different scales (e.g., 1 kilometer = 10^3 meters).

Accuracy and Precision (Context)

In physics, measurements are key. Two terms describe the quality of measurements:

- Accuracy: How close a measurement is to the true or accepted value.
 - Are your measurements correct?

Accuracy and Precision (Context)

In physics, measurements are key. Two terms describe the quality of measurements:

- Accuracy: How close a measurement is to the true or accepted value.
 - Are your measurements correct?
- Precision: How close a series of measurements are to each other.
 - Are your measurements repeatable?

An ideal measurement is both accurate and precise. Let's visualize this idea.

Visualizing Accuracy and Precision

[Image of four targets showing: (a) High accuracy, high precision; (b) Low accuracy, high precision; (c) High accuracy, low precision; (d) Low accuracy, low precision]

The classic target analogy for accuracy and precision.

Significant Figures (Sec 1.3)

Significant figures in a measurement express the precision of the measuring tool. When performing calculations, the result cannot be more precise than the least precise measurement. **Rules for Calculations:**

 Multiplication/Division: The final answer must have the same number of significant figures as the measurement with the fewest significant figures.

Significant Figures (Sec 1.3)

Significant figures in a measurement express the precision of the measuring tool. When performing calculations, the result cannot be more precise than the least precise measurement. **Rules for Calculations:**

- Multiplication/Division: The final answer must have the same number of significant figures as the measurement with the fewest significant figures.
- Addition/Subtraction: The final answer must have the same number of decimal places as the measurement with the fewest decimal places.

Distance vs. Displacement (Context)

Understanding the difference between distance and displacement is crucial for describing motion.

- **Distance (Scalar):** The total length of the path traveled. It has magnitude only.
 - "How much ground an object has covered."

Distance vs. Displacement (Context)

Understanding the difference between distance and displacement is crucial for describing motion.

- **Distance (Scalar):** The total length of the path traveled. It has magnitude only.
 - "How much ground an object has covered."
- **Displacement (Vector):** The change in an object's position. It has both magnitude and direction.
 - "How far out of place an object is."
 - Equation: $\Delta \vec{d} = \vec{d}_f \vec{d}_0$ (final position initial position)

Visualizing Distance and Displacement

[Diagram showing a winding path from point A to point B. The path length is labeled as 'distance'. A straight arrow from A to B is labeled as 'displacement'.]

Distance is the path taken; displacement is the straight-line change in position.

Speed vs. Velocity (Sec 2.2)

• Average Speed (Scalar): The rate at which distance is covered.

•
$$v_{avg} = \frac{\text{distance}}{\text{time}}$$

Speed vs. Velocity (Sec 2.2)

- Average Speed (Scalar): The rate at which distance is covered.
 - $V_{avg} = \frac{\text{distance}}{\text{time}}$
- **Velocity (Vector):** The rate of change of displacement. It includes speed *and* direction.
 - An object's velocity can change even if its speed is constant (e.g., a car turning a corner).

Speed vs. Velocity (Sec 2.2)

- Average Speed (Scalar): The rate at which distance is covered.
 - $V_{avg} = \frac{\text{distance}}{\text{time}}$
- **Velocity (Vector):** The rate of change of displacement. It includes speed *and* direction.
 - An object's velocity can change even if its speed is constant (e.g., a car turning a corner).
- Average Velocity (Vector): Displacement divided by the time interval.
 - $\bullet \ \vec{v}_{avg} = \frac{\Delta \vec{d}}{\Delta t} = \frac{\vec{d}_f \vec{d}_0}{t_f t_0}$

Position vs. Time Graphs (Context)

We can represent motion visually with graphs. For a position-time graph:

- The vertical axis (y-axis) is position (\vec{d}) .
- The horizontal axis (x-axis) is time (t).

Position vs. Time Graphs (Context)

We can represent motion visually with graphs. For a position-time graph:

- The vertical axis (y-axis) is position (\vec{d}) .
- The horizontal axis (x-axis) is time (t).
- The slope of the line gives the velocity.

• Slope =
$$\frac{\text{rise}}{\text{run}} = \frac{\Delta \vec{d}}{\Delta t} = \vec{v}$$

Position vs. Time Graphs (Context)

We can represent motion visually with graphs. For a position-time graph:

- The vertical axis (y-axis) is position (\vec{d}) .
- The horizontal axis (x-axis) is time (t).
- The slope of the line gives the velocity.
 - Slope = $\frac{\text{rise}}{\text{rup}} = \frac{\Delta \vec{d}}{\Delta t} = \vec{v}$
- A straight line means constant velocity.
- A horizontal line means zero velocity (the object is at rest).
- A curved line means the velocity is changing (acceleration).

Visualizing Position vs. Time

Velocity vs. Time Graphs (Context)

For a velocity-time graph:

- The vertical axis (y-axis) is velocity (\vec{v}) .
- The horizontal axis (x-axis) is time (t).

Velocity vs. Time Graphs (Context)

For a velocity-time graph:

- The vertical axis (y-axis) is velocity (\vec{v}) .
- The horizontal axis (x-axis) is time (t).
- The slope of the line gives the acceleration.
 - Slope = $\frac{\text{rise}}{\text{run}} = \frac{\Delta \vec{v}}{\Delta t} = \vec{a}$

Velocity vs. Time Graphs (Context)

For a velocity-time graph:

- The vertical axis (y-axis) is velocity (\vec{v}) .
- The horizontal axis (x-axis) is time (t).
- The slope of the line gives the acceleration.
 - Slope = $\frac{\text{rise}}{\text{run}} = \frac{\Delta \vec{v}}{\Delta t} = \vec{a}$
- The area under the line gives the displacement.
 - Area = height \times width = $\vec{v} \times t = \Delta \vec{d}$

Visualizing Velocity vs. Time

Acceleration (Sec 3.1)

- Acceleration is the rate at which an object's velocity changes.
- It is a **vector** quantity, so it has both magnitude and direction.

Acceleration (Sec 3.1)

- Acceleration is the rate at which an object's velocity changes.
- It is a vector quantity, so it has both magnitude and direction.
- An object is accelerating if its:
 - speed is changing (speeding up or slowing down).
 - direction is changing.

Acceleration (Sec 3.1)

- Acceleration is the rate at which an object's velocity changes.
- It is a vector quantity, so it has both magnitude and direction.
- An object is accelerating if its:
 - speed is changing (speeding up or slowing down).
 - direction is changing.
- Average acceleration is calculated as:

$$ec{a}_{avg} = rac{\Delta ec{v}}{\Delta t} = rac{ec{v}_f - ec{v}_0}{t_f - t_0}$$

 The standard unit for acceleration is meters per second squared (m/s²).

Essential Equations (for constant acceleration)

These are the kinematic equations that relate displacement (d), time (t), initial velocity (v_0) , final velocity (v), and acceleration (a).

1 Velocity from acceleration:

$$v = v_0 + at$$

Use when you don't know displacement.

Essential Equations (for constant acceleration)

These are the kinematic equations that relate displacement (d), time (t), initial velocity (v_0) , final velocity (v), and acceleration (a).

1 Velocity from acceleration:

$$v = v_0 + at$$

Use when you don't know displacement.

② Displacement from time and velocity:

$$d = d_0 + v_0 t + \frac{1}{2} a t^2$$

Use when you don't know final velocity.

Essential Equations (for constant acceleration)

These are the kinematic equations that relate displacement (d), time (t), initial velocity (v_0) , final velocity (v), and acceleration (a).

1 Velocity from acceleration:

$$v = v_0 + at$$

Use when you don't know displacement.

2 Displacement from time and velocity:

$$d = d_0 + v_0 t + \frac{1}{2} a t^2$$

Use when you don't know final velocity.

Velocity from displacement:

$$v^2 = v_0^2 + 2a(d - d_0)$$

Use when you don't know time.

Essential Equations (for constant acceleration)

These are the kinematic equations that relate displacement (d), time (t), initial velocity (v_0) , final velocity (v), and acceleration (a).

1 Velocity from acceleration:

$$v = v_0 + at$$

Use when you don't know displacement.

2 Displacement from time and velocity:

$$d = d_0 + v_0 t + \frac{1}{2} a t^2$$

Use when you don't know final velocity.

3 Velocity from displacement:

$$v^2 = v_0^2 + 2a(d - d_0)$$

Use when you don't know time.

Oisplacement from average velocity:

$$d = d_0 + \left(\frac{v_0 + v}{2}\right)t$$

Example Problem (I do)

Problem: A sports car accelerates from rest to 27 m/s in 9.0 s. What is its average acceleration?

G - Givens:

- $v_0 = 0 \text{ m/s ("from rest")}$
- v = 27 m/s
- $\Delta t = 9.0 \text{ s}$

U - Unknown:

• a =?

E - Equation:

$$a = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{\Delta t}$$

S - Substitute:

$$a = \frac{27 \text{ m/s} - 0 \text{ m/s}}{9.0 \text{ s}}$$

S - Solve:

$$a = 3.0 \text{ m/s}^2$$

Problem: A dragster starts from rest and accelerates at a constant 10.0 m/s^2 for 4.0 s. How far does it travel in this time?

G - Givens:

- $v_0 = 0 \text{ m/s}$
- $a = 10.0 \text{ m/s}^2$
- t = 4.0 s
- $d_0 = 0 \text{ m}$

U - Unknown:

• *d* =?

Problem: A dragster starts from rest and accelerates at a constant 10.0 m/s^2 for 4.0 s. How far does it travel in this time?

G - Givens:

- $v_0 = 0 \text{ m/s}$
- $a = 10.0 \text{ m/s}^2$
- t = 4.0 s
- $d_0 = 0 \text{ m}$

U - Unknown:

- d = ?
- E Equation: Which equation should we use?
 - A) $v = v_0 + at$
 - B) $d = d_0 + v_0 t + \frac{1}{2} a t^2$
 - C) $v^2 = v_0^2 + 2a(d d_0)$

Problem: A dragster starts from rest and accelerates at a constant 10.0 m/s^2 for 4.0 s. How far does it travel in this time?

G - Givens:

- $v_0 = 0 \text{ m/s}$
- $a = 10.0 \text{ m/s}^2$
- t = 4.0 s
- $d_0 = 0 \text{ m}$

U - Unknown:

• d = ?

E - **Equation:** Which equation should we use?

- A) $v = v_0 + at$
- B) $d = d_0 + v_0 t + \frac{1}{2} a t^2$
- C) $v^2 = v_0^2 + 2a(d d_0)$

Correct Answer: B. It has all our givens and our unknown.

Problem: A dragster starts from rest and accelerates at a constant 10.0 m/s^2 for 4.0 s. How far does it travel in this time?

G - Givens:

- $v_0 = 0 \text{ m/s}$
- $a = 10.0 \text{ m/s}^2$
- t = 4.0 s
- $d_0 = 0 \text{ m}$

U - Unknown:

- d = ?
- **E Equation**: Which equation should we use?
 - A) $v = v_0 + at$
 - B) $d = d_0 + v_0 t + \frac{1}{2} a t^2$
 - C) $v^2 = v_0^2 + 2a(d d_0)$

Correct Answer: B. It has all our givens and our unknown.

S - Substitute:

Problem: A dragster starts from rest and accelerates at a constant 10.0 m/s^2 for 4.0 s. How far does it travel in this time?

G - Givens:

- $v_0 = 0 \text{ m/s}$
- $a = 10.0 \text{ m/s}^2$
- t = 4.0 s
- $d_0 = 0 \text{ m}$

U - Unknown:

- d = ?
- **E Equation**: Which equation should we use?
 - A) $v = v_0 + at$
 - B) $d = d_0 + v_0 t + \frac{1}{2} a t^2$
 - C) $v^2 = v_0^2 + 2a(d d_0)$

Correct Answer: B. It has all our givens and our unknown.

S - Substitute:

Independent Practice (You do)

Problem: A cyclist is traveling at 15 m/s. She applies the brakes, causing a constant negative acceleration, and comes to a stop in 3.0 s.

Part A: What was her acceleration?

Part B: How far did she travel while braking?

Use the GUESS method and the kinematic equations to solve.

Independent Practice (You do)

Problem: A cyclist is traveling at 15 m/s. She applies the brakes, causing a constant negative acceleration, and comes to a stop in 3.0 s.

Part A: What was her acceleration?

Part B: How far did she travel while braking?

Use the GUESS method and the kinematic equations to solve.

Answers:

- Part A: $a = -5.0 \text{ m/s}^2$
- Part B: d = 22.5 m

 Physics describes the fundamental rules of the universe. We use the scientific method to uncover these rules.

- Physics describes the fundamental rules of the universe. We use the scientific method to uncover these rules.
- We distinguish between **scalar** quantities (distance, speed) and **vector** quantities (displacement, velocity, acceleration).

- Physics describes the fundamental rules of the universe. We use the scientific method to uncover these rules.
- We distinguish between scalar quantities (distance, speed) and vector quantities (displacement, velocity, acceleration).
- Motion graphs are powerful tools:
 - Position-Time Graph: Slope is velocity.
 - Velocity-Time Graph: Slope is acceleration, area is displacement.

- Physics describes the fundamental rules of the universe. We use the scientific method to uncover these rules.
- We distinguish between scalar quantities (distance, speed) and vector quantities (displacement, velocity, acceleration).
- Motion graphs are powerful tools:
 - Position-Time Graph: Slope is velocity.
 - Velocity-Time Graph: Slope is acceleration, area is displacement.
- For motion with constant acceleration, we can use the kinematic equations to predict the future state of an object.