ස්යාලු ම හිමිකම්	<i>ආවිර්ම් முழுப்</i>	பதிப்புரிமையுடை	யது/All Righ	ts Reserved

\$ ලංකා වත්ත දෙපාර්තමේත්තුව \$ ලංකා විතාන දෙපාර්තම<mark>ෙන් දෙපාර්තමේ</mark>න්න සුදුද්දු ප්රචාර්තමේත්තුව නි ලංකා විතාන දෙපාර්තමේත්තුව \$ ලංකා විතාන දෙපාර්තමේත්තුව නි ලංකා විතාන දෙපාර්තමේත්තුව නි ලංකා විතාන දෙපාර්තමේත්තුව නි ලංකා විතාන දෙපාර්තමේත්තුව නි ලංකා විතාන දෙපාර්තමේත්තුව ද ලංකා විතාන දෙපාර්තමේත්තුව ද ලංකා විතාන දෙපාර්තමේත්තුව ද ලංකා විතාන ද ලක්ක ද

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics

2018.08.06 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය

මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

🔆 B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පනුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය I		
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	Ÿ
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශත ය	

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්ෂ	ක	
පරීක්ෂා කලේ:	1	
	2	
අධීක්ෂණය කළේ:		

	<u>A</u> කොටස
1.	ගණිත අභපුභන මූලධර්මය භාවිතයෙන්, සියලු $n\!\in\!\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n r^3 = \frac{1}{4}n^2(n+1)^2$ බව සාධනය කරන්න.
2.	එක ම රූප සටහනක $y=3- x $ හා $y= x-1 $ හි පුස්තාරවල දළ සටහන් අඳින්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාන්න්වික අගයන්
	මසායන්න.

විභාග අංකය

3.	අාගන්ඪ සටහනක, $\operatorname{Arg}(z-3i)=-rac{\pi}{3}$ සපුරාලන z සංකීර්ණ සංඛ z ා නිරූපණය කරන ලක්ෂාවල පථයෙහි
	දළ සටහනක් අඳින්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $\operatorname{Arg}(\overline{z}+3i)=rac{\pi}{3}$ වන පරිදි $ z-1 $ හි අවම අගය සොයන්න.
4.	$\left(x^2+rac{3k}{x} ight)^8$ හි ද්වීපද පුසාරණයේ x හා x^4 හි සංගුණක සමාන වේ. k නියතයෙහි අගය සොයන්න.
	,

	$1-\cos\left(\frac{\pi x}{x}\right)$
5.	$\lim_{x \to 0} \frac{1 - \cos\left(\frac{\pi x}{4}\right)}{x^2 (x+1)} = \frac{\pi^2}{32} \ \ \text{බව ලපත්වන්න.}$
6.	$y=e^{2x},\;y=e^{3-x},\;x=0,\;x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඵලය, වර්ග ඒකක $\frac{3}{2}(e^2-1)$
٠.	$\frac{1}{2}$
.	$\frac{y-e}{2}$, $y-e$, $x=0$, $x=3$ හා $y=0$ වනු මහත ආවෘත පෙරෙලසහ වටගවලය, වරග එකක $\frac{1}{2}(e^{e}-1)$ බව පෙන්වන්න.
•	බව පෙන්වන්න.
•	බව පෙන්වන්න.
	බව පෙන්වන්න.
	බව පෙන්වන්න
	බව පෙන්වන්න
	බව පෙන්වන්න.
	බව පෙන්වන්න
	බව පෙන්වන්න
	බව පෙන්වන්න
	න ප
	න ප්රත්ර නිය කියි. ම න න න න න න න න න න න න න න න න න න
	බව පෙන්වන්න.
	カード・サード・スー・リスー・リード の の の の の の の の の の の の の の の の の の の
	3, T C , Y - C , X - 3, X - 3, 3, Y - 0, Oign each quality described by the control of the contr
	90 eerstestes.
	බව පෙන්වන්න. බව දැන් දැන් දැන් වෙන් දැන් දැන් දැන් දැන් දැන් දැන් දැන් දැ

7.	$\frac{\pi}{2} < t < \pi$ සඳහා $x = \ln\left(\tan\frac{t}{2}\right)$ හා $y = \sin t$ පරාමිතික සමීකරණ මගින් C වකුයක් දෙනු ලැබේ.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos t \sin t$ බව ලෙන්වන්න.
	$t=rac{2\pi}{3}$ ට අනුරූප ලක්ෂායෙහි දී C වකුයට ඇඳි ස්පර්ශ රේඛාවෙහි අනුකුමණය $-rac{\sqrt{3}}{4}$ බව අපෝහන ර
	කරන්න.
8.	l_1 යනු $x+y-5=0$ සරල රේඛාව යැයි ගනිමු. $P\equiv (3,4)$ ලක්ෂාය හරහා යන හා l_1 ට ලම්බ වූ l_2 සරල
	් යද් $l_1 = (3,4)$ ලක්ෂය හටහා යන හා l_1 ට ලමන වූ l_2 සරල රේඛාවෙහි සමීකරණය සොයන්න.
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න.
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද

9.	$P\equiv (1,2)$ හා $Q\equiv (7,10)$ යැයි ගනිමු. P හා Q ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S\equiv (x-1)(x-a)+(y-2)(y-b)=0$ වන පරිදි a හා b නියතවල අගයන් ලියා දක්වන්න.
	$S'\equiv S+\lambda(4x-3y+2)=0$ යැයි ගනිමු; මෙහි $\lambda\!\in\!\mathbb{R}$ වේ. P හා Q ලක්ෂා $S'=0$ වෘත්තය මත පිහිටන බව පෙන්වා, මෙම වෘත්තය $R\equiv(1,4)$ ලක්ෂාය හරහා යන පරිදි λ හි අගය සොයන්න.
10.	$x \neq (2n+1)\frac{\pi}{2}$ සඳහා $\sec^3 x + 2\sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1-\sin x)^2}$ බව පෙන්වන්න; මෙහි $n \in \mathbb{Z}$ වේ.
	•••••••••••••••••••••••••••••••••••••••
	!

டு குடை சிலக දෙපාර්තමේන්තුව දී குடை சிலக දෙපාර්ත අඩු இது இது இது இது இது கொண்டிக்கார். இலங்கைப் புரின்சத் திணைக்களர் இலங்கைப் புரின்சத் தினணக்களர் இலங்கைப் புதின் தினைக்கூரும் இது நினைக்களர். இலங்கைப் புரின்சத் திணைக்களர். Department of Examinations. Sri Lanka Department ம**இலங்கைப**து பூரிய இது நினைக்கியில், Sri Lanka Department of Examinations. Sri Lanka G குடை சிலக செரிய முறின்ற குடிய இது நினைக்கும் இலங்கைப் புரின்ற குறும் குடிய இலங்கைப் புரின்ற குறும் குடிய இலங்கைப் புரின்ற குறும் குடிய இலங்கைப் புரின்ற குறும் குறைக்கு குறும் குறைக்கு குறும் குற

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය இணைந்த கணிதம்

Combined Mathematics

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. (a) $a,b\in\mathbb{R}$ ගැයි ගනිමු. $3x^2-2$ (a+b) x+ab=0 සමීකරණයේ විවේචකය a හා b ඇසුරෙන් ලියා දක්වා **ඒ නයින්**, මෙම සමීකරණයේ මුල තාත්ත්වික බව පෙන්වන්න.

මෙම මුල lpha හා eta යැයි ගනිමු. a හා b අදසුරෙන් lpha+eta හා lphaeta ලියා දක්වන්න.

දැන්, $\beta = \alpha + 2$ යැයි ගනිමු. $a^2 - ab + b^2 = 9$ බව පෙන්වා,

 $|a| \leq \sqrt{12}$ බව **අපෝහනය** කර, a ඇසුරෙන් b සොයන්න.

- (b) c
 eq 0) හා d තාත්ත්වික සංඛාහ යැයි ද $f(x) = x^3 + 4x^2 + cx + d$ යැයි ද ගනිමු. (x+c) මගින් f(x) බෙදූ විට ශේෂය $-c^3$ වේ. තව ද (x-c) යන්න f(x) හි සාධකයක් වේ. c=-2 හා d=-12 බව පෙන්වන්න. c හා d හි මෙම අගයන් සඳහා (x^2-4) මගින් f(x) බෙදු විට ශේෂය සොයන්න.
- $12.\ (a)$ එක එකක පිරිමි ළමයින් තිදෙනකු හා ගැහැනු ළමයින් දෙදෙනකු සිටින කණ්ඩායම් දෙකක සාමාජිකයන් අතුරෙන්, සාමාජිකයන් හයදෙනකුගෙන් යුත් කමිටුවක් තෝරා ගත යුතුව ඇත්තේ කමිටුවේ සිටින ගැහැනු ළමයින් සංඛයාව වැඩි තරමින් දෙදෙනකු වන පරිදි ය.
 - (i) කමිටුවට එක් එක් කණ්ඩායමෙන් සාමාජිකයන් ඉරට්ටේ සංඛාාවක් තෝරා ගත යුතු නම්,
 - (ii) කම්ටුවට එක් ගැහැනු ළමයකු පමණක් තෝරා ගත යුතු නම්,

සෑදිය හැකි එවැනි වෙනස් කමිටු ගණන සොයන්න.

$$(b) \ r \in \mathbb{Z}^+$$
 සඳහා $f(r) = \frac{1}{(r+1)^2}$ සහ $U_r = \frac{(r+2)}{(r+1)^2(r+3)^2}$ ගැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $f(r) - f(r+2) = 4U_r$ බව පෙන්වන්න.

ඒ නයින්,
$$n\in \mathbb{Z}^+$$
සඳහා $\sum_{r=1}^n U_r = \frac{13}{144} - \frac{1}{4(n+2)^2} - \frac{1}{4(n+3)^2}$ බව පෙන්වන්න.

 $\sum U_r$ අපරිමිත ශේුණිය අභිසාරී බව **අපෝහනය** කර එහි ඓකාසය සොයන්න.

$$n\!\in\! {f Z}^+$$
 සඳහා $t_n=\sum_{r=n}^{2n}U_r$ යැයි ගනිමු.

 $\lim t_n = 0$ බව පෙන්වන්න.

$$egin{aligned} {f 13.} & (a) & {f A} = \left(egin{array}{ccc} 1 & 1 & 0 \ 2 & 4 & -1 \end{array}
ight)$$
 හා ${f B} = \left(egin{array}{ccc} 3 & 2a \ -1 & 0 \ 1 & 3a \end{array}
ight)$ යැයි ගනිමු; මෙහි $a \in \mathbb{R}$ වේ.

 ${f P}={f A}{f B}$ මගින් අර්ථ දැක්වෙන ${f P}$ නාහසය සොයා, a හි කිසිදු අගයකට ${f P}^{-1}$ නොපවතින බව පෙන්වන්න.

$$\mathbf{P}igg(egin{array}{c} 1 \ 2 \end{array}igg)=5igg(egin{array}{c} 2 \ 1 \end{array}igg)$$
 නම්, $a=2$ බව පෙන්වන්න.

a සඳහා මෙම අගය සහිත ව, $\mathbf{Q} = \mathbf{P} + \mathbf{I}$ යැයි ගතිමු; මෙහි \mathbf{I} යනු ගණය 2 වන ඒකක නාහසයයි.

$$\mathbf{Q}^{-1}$$
 ලියා දක්වා $\mathbf{A}\mathbf{A}^{\mathrm{T}} - \frac{1}{2}\,\mathbf{R} \,= \left(\frac{1}{5}\,\mathbf{Q}\right)^{-1}$ වන පරිදි \mathbf{R} නාහසය සොයන්න.

- (b) z=x+iy යැයි ගනිමු; මෙහි x,y∈ \mathbb{R} වේ. z හි, මාපාංකය |z| හා පුතිබද්ධය \overline{z} අර්ථ දක්වන්න.
 - (i) $z\overline{z} = |z|^2$,
 - (ii) $z + \overline{z} = 2 \operatorname{Re} z$ so $z \overline{z} = 2i \operatorname{Im} z$
 - බව පෙන්වන්න.

$$z \neq 1$$
 හා $w = \frac{1+z}{1-z}$ යැයි ගනිමු. $\operatorname{Re} w = \frac{1-\left|z\right|^2}{\left|1-z\right|^2}$ හා $\operatorname{Im} w = \frac{2\operatorname{Im} z}{\left|1-z\right|^2}$ බව පෙන්වන්න.

 $z=\coslpha\,+\,i\,\sinlpha\,(0<lpha<2\pi)$ නම්, $w=i\cotrac{lpha}{2}$ බව තව දුරටත් පෙන්වන්න.

- (c) ආගන්ඩ් සටහනක, A හා B ලක්ෂා පිළිවෙළින් -3i හා 4 සංකීර්ණ සංඛාා නිරූපණය කරයි. C හා D ලක්ෂා පළමුවන වෘත්ත පාදකයේ පිහිටන්නේ ABCD රොම්බසයක් හා $B\hat{A}D = \theta$ වන පරිදි ය; මෙහි $\theta = \sin^{-1}\left(\frac{7}{25}\right)$ වේ. C හා D ලක්ෂා මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාා සොයන්න.
- **14.** (a) $x \neq -1$, $\frac{1}{3}$ සඳහා $f(x) = \frac{16(x-1)}{(x+1)^2(3x-1)}$ යැයි ගනිමු.

 $x \neq -1$, $\frac{1}{3}$ සඳහා f(x)හි වසුත්පන්නය, f'(x) යන්න $f'(x) = \frac{-32x(3x-5)}{(x+1)^3(3x-1)^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝත්මුඛ හා හැරුම් ලක්ෂx දක්වමිත් y=f(x) හි පුස්තාරයේ දළ සටහතක් අඳින්න.

පුස්තාරය භාවිතයෙන්, $k(x+1)^2\,(3x-1)=16\,(x-1)$ සමීකරණයට හරියටම එක් මූලයක් පවතින පරිදි $k\!\in\!{\bf R}$ හි අගයන් සොයන්න.

(b) අරය $3r \, {\rm cm} \, {\rm sn} \, {\rm cm} \, {\rm sn} \, {\rm cm} \, {\rm sn} \, {\rm cn} \, {\rm sn} \, {\rm sn$

15. (a) (i) x^2, x^1 හා x^0 හි සංගුණක සැසඳීමෙන්,

සියලු $x \in \mathbb{R}$ සඳහා $Ax^2(x-1) + Bx(x-1) + C(x-1) - Ax^3 = 1$ වන පරිදි A,B හා C නියතවල අගයන් සොයන්න.

ඒ නයින්, $\frac{1}{x^3(x-1)}$ යන්න හින්න භාග වලින් ලියා දක්වා $\int \frac{1}{x^3(x-1)} \, \mathrm{d}x$ සොයන්න.

(ii) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int x^2 \cos 2x \,\mathrm{d}x$ සොයන්න.

$$(b)$$
 $\theta = an^{-1}(\cos x)$ ආලේශය භාවිතයෙන්, $\int\limits_0^\pi rac{\sin x}{\sqrt{1+\cos^2 x}} \; \mathrm{d}x = 2 \ln \left(1+\sqrt{2}
ight)$ බව පෙන්වන්න.

a නියනයක් වන $\int\limits_0^a f(x)\,\mathrm{d}x = \int\limits_0^a f(a-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්, $\int\limits_0^\pi \frac{x\sin x}{\sqrt{1+\cos^2 x}}\,\mathrm{d}x$ සොයන්න.

 $A\equiv (-2,-3)$ හා $B\equiv (4,5)$ යැයි ගනිමු. AB රේඛාව සමග l_1 හා l_2 රේඛා එක එකක් සාදන සුළු කෝණය $rac{\pi}{4}$ වන පරිදි A ලක්ෂාය හරහා යන l_1 හා l_2 රේඛාවල සමීකරණ සොයන්න.

P හා Q ලක්ෂා පිළිවෙළින් l_1 හා l_2 මත ගෙන ඇන්නේ APBQ සමචතුරසුයක් වන පරිදි ය.

PQ හි සමීකරණය සොයා, P හා Q හි ඛණ්ඩාංක සොයන්න.

තව c A, P, B හා Q ලක්ෂා හරහා යන S වෘත්තයේ සමීකරණය සොයන්න.

 $\lambda>1$ යැයි ගතිමු. $R\equiv (4\lambda\,,5\lambda\,)$ ලක්ෂාය, S වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න.

R ලක්ෂායේ සිට S වෘත්තයට ඇඳි ස්පර්ශකවල ස්පර්ශ ජාහයේ සමීකරණය සොයන්න.

 $\lambda(>1)$ වීචලනය වන විට, මෙම ස්පර්ශ ජාහයන් අචල ලක්ෂායක් හරහා යන බව පෙන්වන්න.

- 17. (a) $0 \le \theta \le \pi$ සඳහා $\cos 2\theta + \cos 3\theta = 0$ විසඳන්න. $\cos \theta$ අදසුරෙන් $\cos 2\theta$ හා $\cos 3\theta$ ලියා දක්වා, $\cos 2\theta + \cos 3\theta = 4t^3 + 2t^2 3t 1$ බව පෙන්වන්න; මෙහි $t = \cos \theta$ වේ.
 - **ඒ නයින්**, $4t^3+2t^2-3t-1=0$ සමීකරණයෙහි මූල තුන ලියා දක්වා $4t^2-2t-1=0$ සමීකරණයෙහි මූල $\cos\frac{\pi}{5}$ හා $\cos\frac{3\pi}{5}$ බව පෙන්වන්න. $\cos\frac{3\pi}{5}=\frac{1-\sqrt{5}}{4}$ බව **අපෝහන**ය කරන්න.
 - (b) ABC තිකෝණයක් යැයි ද D යනු BD:DC=m:n වන පරිදි BC මත වූ ලක්ෂාය යැයි ද ගනිමු; මෙහි m,n>0 වේ. $B\hat{A}D=\alpha$ හා $D\hat{A}C=\beta$ බව දී ඇත. BAD හා DAC තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $\frac{mb}{nc}=\frac{\sin\alpha}{\sin\beta}$ බව පෙන්වන්න; මෙහි b=AC හා c=AB වේ.
 - ඒ නයින්. $\frac{mb-nc}{mb+nc}=\tan\left(\frac{\alpha-\beta}{2}\right)\cot\left(\frac{\alpha+\beta}{2}\right)$ බව පෙන්වන්න.
 - (c) $2 \tan^{-1} \left(\frac{1}{3}\right) + \tan^{-1} \left(\frac{4}{3}\right) = \frac{\pi}{2}$ බව පෙන්වන්න.

AL/2018/10/S-II	_				
යියලු ම හිමිකම් ඇට්ඊනි / ගුගු	ப் பதிப்புரிமையுடை	_யது/All Rig	hts Reserved)		
(2) (2) (2) (2) (2) (3) (3) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	து குண்டிகள்ள இல் வகை செரு வர்க்கள்ள இல் வகை செரு	repartment coppa	ூல்ல இச ்சிரை இதிக்க ் இரை இரு		
Ge Ge	vவாப பொதுத் neral Certificate	தராதரப	பத்திர (உயிர் தர)ப் பரீட்சை, 2018 ஓக்ஸ்ற் tion (Adv. Level) Examination, August 2018		
සංයුක්ත ගණිතුර		1	2018.08.08 / 0830 - 1140		
இணைந்த கணித Combined Mathe	ematics II				
் குக வி மூன்று மணித்திய	<i>ராலம்</i>		අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes		
Three hours					
අමතර කියවීම් කා	ලය උශ්න පතු ය කි	යවා පුශ්න ගෙ කර ග	ත්රා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය ගැනීමටත් යොදාගන්න.		
	විභාග අංක	X.5			
උපදෙස්:		യയുള്ള അ	මන්වීන ලව්:		
	ා පනුය කොටස් ගත්ත L 100 ක		3 (පුශ්න 11 - 17).		
	.පුශන I - 10 <i>)</i> ස	(a) (b) @@ JOC	(Goses 11 17).		
※ A කොටස:	Laborate Beneda	nesses references	ක් එක් පුශ්තය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න.		
සයලු ම පුශ වැඩිපුර ඉඩ	නවලට පළතුවැ) අවශය වේ නඡ්	සපයනනා. ප එ, ඔබට අමෑ	තර ලියන කඩදාසි භාවිත කළ හැකි ය.		
🔆 B කොටස:					
			න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.		
* නියමිත ක	ාලය අවසන් වූ ව	පසු 🗚 කොට	ා යෙහි පිළිතුරු පතුය , B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින සිදුක්සිට කර ලබන්න		
			ාධිපතිට භාර දෙන්න. oo ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.		
_			ජ ත්වරණය දැක්වෙයි.		
* 999 902			ග් පුයෝජනය සඳහා පමණි.		
(10)	සංයුක්ත ගණිතය				
(10) කොටස	පුශ්න අංකය	ලකුණු	I පනුය		
92000	1	0-0-3			
	2		<u>II පනුය</u>		
	3	-	වකතුව		
	4		අවසාන ලකුණු		
A	5				
	7	<u> </u>			
	8				
	9		අවසාන ලකුණු 		
	10				
	11		අකුරෙන්		
12 සංකේත අංක					
13					
В	14				
	16		පරීක්ෂා කළේ:		
	17				
<u> </u>	 		ු අධීක්ෂණය කළේ:		

එකතුව පුතිශතය

AL	/2018/10/S-II - 2 -
[A කොටස
1.	සුමට තිරස් මේසයක් මත එකම සරල රේඛාවක් දිගේ එකිනෙක දෙසට එකම u වේගයෙන් චලනය වෙමින තිබෙන, ස්කන්ධ පිළිවෙළින් $2m$ හා m වූ A හා B අංශු දෙකක් සරල ලෙස ගැටේ. ගැටුමෙන් මොහොතකර
	පසු A අංශුව නිශ්චලතාවට පැමිණෙයි. පුතාහාගති සංගුණකය $rac{1}{2}$ බව ද ගැටුම නිසා B මත යෙදෙන ආවේගයෙහි විශාලත්වය $2mu$ බව ද පෙන්වන්න.
2.	තිරස් බිම මත වූ ලක්ෂායක සිට තිරසට $lpha\Big(0 කෝණයකින් u=\sqrt{2gR} ආරම්භක වේගයෙන්$
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මන පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	පුක්ෂේපණ දිශා දෙක අතර කෝණය $rac{\pi}{3}$ බව පෙන්වන්න.
	······································

3.	ස්කන්ධය m වූ P අංශුවක් හා ස්කන්ධය λm වූ Q අංශුවක් අවල, සුමට කප්පියක් උඩින් යන සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව
	තදව ඇතිව, පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලබයි. P අංශුව $rac{g}{2}$ ත්වරණයකින්
	පහළට චලනය වේ. $\lambda=rac{1}{3}$ බව පෙන්වන්න.
	P අංශුව ති්රස් අපුතනය්ථ ගෙබීමක v වේගයෙන් ගැටෙයි නම් හා Q අංශුව කිසිවිටෙකන් $\bigcirc \lambda m$
	කප්පිය කරා ළඟා නොවේ නම්, P අංශුව බිම ගැටුණු මොහොතේ සිට Q අංශුව උපරිම
	උසට ළඟා වීමට ගන්නා කාලය සොයන්න. $\bigcirc m$
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිියා විරහිත කර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජූ පාරක් දිරෙ
	පහළට යම් නියන වේගයකින් චලනය වේ; මෙහි $\sin lpha = \frac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g = 10~{ m m s^{-2}}$ ලෙ
	ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න.
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	-
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි
	කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}\mathrm{ms}^{-2}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විදි

5.	සුපුරුදු අංකනයෙන්, $3i$ හා $2i+3j$ යනු O අවල මූලයකට අනුබද්ධයෙන් පිළිවෙළින් A හා B ලක්ෂා දෙකක පිහිටුම් දෙශික යැයි ගනිමු. C යනු $O\hat{C}A=\frac{\pi}{2}$ වන පරිදි OB සරල රේඛාව මත පිහිටි ලක්ෂාය යැයි ගනිමු. \overrightarrow{OC} දෛශිකය i හා j ඇසුරෙන් සොයන්න.
	······································
	······
6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක්, BC සැහැල්ලු අවිතනා තන්තුවක් $UU44UU$
	මගින් හා A කෙළවරේ දී යොදන ලද P තිරස් බලයක් මගින් රූපයේ
	දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45°
	කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන $ heta$ කෝණය $B/ heta$
	an heta=2 මගින් දෙනු ලබන බව පෙන්වන්න.
	මෙම පිහිටීමේ දී තන්තුවේ ආතතිය W ඇසුරෙන් සොයන්න. $P = A A A A A A A A A A A A A A A A A A $
	•

7.	A හා B යනු S නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=\frac{1}{3}$, $P(B)=\frac{1}{4}$ හා $P(A\cap B)=\frac{1}{6}$ වේ. $P(A B')$, $P(A'\cap B')$ හා $P(B' A')$ සොයන්න; මෙහි A' හා B' මගින් පිළිවෙළින් A හා B' සිද්ධිවල අනුපූරක සිද්ධි දැක්වේ.
	<u></u>
•	පාටින් හැර අන් සෑම අයුරකින්ම සමාන වූ රතු බෝල 4 ක් හා කළු බෝල 3 ක් මල්ලක අඩංගු වේ. වරකට
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
8.	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ. (i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,

9.	එක එකක් 8 ට අඩු ධන නිඛීල පහකට එක මාතයක් පමණක් ඇත. ඒවායේ මධාෘනායය, මාතය හා මධාඃස්ථය
	6: 10: 5 අනුපාතවලට පිහිටයි. මෙම නිඛ්ල පහ සොයන්න.
	······································
	·····
	······································
	······································
10.	එක්තරා නගරයක උෂ්ණත්වය දින 20ක් සඳහා දිනපතා වාර්තාගත කරන ලදී. මෙම දත්ත කුලකය සඳහා
10.	
10.	
10.	මධ $ m s$ නාසය μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}{ m C}$ හා $4^{\circ}{ m C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත්
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
10.	මධානාංග μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත් ඉහත උෂ්ණත්වවලින් දෙකක් $35^{\circ}\mathrm{C}$ හා $21^{\circ}\mathrm{C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව

ස්යාල ම හිමිකම් ඇවරිණි / மුඟුට පුණුට්පුණිනාව up. way / All Rights Reserved | ල් ලංකා විභාග දෙපාර්තමේන්තුව ල් ලංකා විභාග දෙපාර්**ලේ අවසා වෙන්න කිරීමාන දෙපාර්තමේ**න්තුව ල් ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் புடின்சத் திணைக்கபும் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கைப் Sri Linka இலங்கைப் இலங்கைப் பரிட்சைத் திணைக்களம்** இ ஒவ் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சுத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம்

අධායක පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය H இணைந்த கணிதம் II Combined Mathematics

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

B කොටස

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

 $\mathbf{11}.(a)$ මීටර 4d ගැඹුරු පතලක චලනය වන සෝපානයක් t=0 කාලයේ දී A ලක්ෂායකින් නිශ්චලතාවේ සිට සිරස් ව පහළට චලනය වීමට පටන් ගනී. එය, පළමුව $\frac{g}{2}$ m s $^{-2}$ නියත ත්වරණයෙන් මීටර d දුරක් චලනය වී ඊළඟට එම චලිතය අවසානයේ ලබාගත් පුවේගයෙන් තව මීටර d දුරක් චලනය වේ. සෝපානය ඉන්පසු A සිට මීටර 4d දුරක් පහළින් පිහිටි B ලක්ෂායේ දී නිශ්චලතාවට පැමිණෙන පරිදි නියත මන්දනයකින් ඉතිරි දුර ද පලනය වේ.

සෝපානයෙහි චලිතය සඳහා පුවේග-කාල වකුයේ දළ සටහනක් අදින්න.

- **ඒ නයින්**, A සිට B දක්වා පහළට චලිතය සඳහා සෝපානය ගනු ලබන මුළු කාලය සොයන්න.
- (b) පොළොවට සාපේක්ෂව u km h^{-1} ඒකාකාර චේගයකින් උතුරු දිශාවට නැවක් යානුා කරයි. එක්තරා මොහොතක දී නැවේ සිට, දකුණෙන් නැගෙනහිරට $oldsymbol{eta}$ කෝණයකින්, **නැවේ පෙතෙහි සිට** p km දුරකින් B_1 බෝට්ටුවක් නිරීක්ෂණය කරනු ලැබේ. මෙම මොහොතේ දී ම, B_2 බෝට්ටුවක් නැවේ සිට බටහිරින් q km දුරකින් නිරීක්ෂණය කරනු ලැබේ. බෝට්ටු දෙකම පොළොවට සාපේක්ෂව v (> u) km h $^{-1}$ ඒකාකාර වේගයෙන් සරල රේඛීය පෙත්වල, නැව අල්ලා ගැනීමේ අපේක්ෂාවෙන් යාතුා කරයි. පොළොවට සාපේක්ෂව බෝට්ටුවල පෙත් නිර්ණය කිරීම සඳහා පුවේග තුිකෝණවල දළ සටහන් එකම රූපයක අඳින්න. පොළොවට සාපේක්ෂව B_1 බෝට්ටුවේ පෙන උතුරෙන් බටහිරට $eta=\sin^{-1}\left(rac{u\sineta}{v}
 ight)$ කෝණයක් සාදන බව පෙන්වා, පොළොවට සාපේක්ෂව B_{γ} බෝට්ටුවේ පෙන සොයන්න.

 $eta=rac{\pi}{3}$ හා $v=\sqrt{3}u$ යැයි ගනිමු. $3q^2>8p^2$ නම්, B_1 බෝට්ටූව B_2 බෝට්ටූවට පෙර නැව අල්ලා ගන්නා

බව පෙන්වන්න.

12.(a) AB=a හා $B\hat{A}D=rac{\pi}{6}$ වන පරිදි වූ රූපයේ දැක්වෙන ABCD තුපීසියම, ස්කන්ධය 2m වූ සුමට ඒකාකාර කුට්ටියක ගුරුත්ව කේන්දුය තුළින් වූ සිරස් හරස්කඩකි. AD හා BC රේඛා සමාන්තර වන අතර ABමර්ධාව එය අඩංගු මුහුණතෙහි උපරිම බෑවුම් රේඛාවකි. AD අයත් මුහුණත සුමට තිරස් ගෙබිමක් මත ඇතිව කුට්ටිය තබනු ලබයි. රූපයේ දැක්වෙන පරිදි ස්කන්ධය m වූ P අංශුවක් A ලක්ෂායෙහි තබා, එයට \overrightarrow{AB} දිගේ u පුවේගයක් දෙනු ලබයි; මෙහි $u^2=\frac{7ga}{3}$ වේ. කුට්ටියට සාපේක්ෂව P හි මන්දනය $\frac{2g}{3}$ බව පෙන්වා, P අංශුව B කරා ළඟා වන විට, කුට්ටියට සාපේක්ෂව P අංශුවෙහි පුවේගය සොයන්න.

තව ද $BE=rac{\sqrt{3}\,a}{2}$ වන පරිදි කුට්ටියෙහි උඩත් මුහුණතෙහි BC මත වූ E ලක්ෂායේ කුඩා සිදුරක් ඇත. කුට්ටියට සාපේක්ෂව චලිතය සැලකීමෙන්, P අංශුව E හි ඇති සිදුරට වැටෙන බව පෙන්වන්න.

(b) දිග a වූ සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් O අවල ලක්ෂායකට ද අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ද ඇඳා ඇත. අංශුව O ට සිරස් ව පහළින් නිශ්චලව එල්ලී තිබෙන අතර එයට විශාලත්වය $u=\sqrt{kag}$ වූ තිරස් පුවේගයක් දෙනු ලැබේ; මෙහි 2< k<5 වේ. තන්තුව θ කෝණයකින් හැරී තවමත් නොබුරුල්ව තිබෙන විට අංශුවේ v වේගය $v^2=(k-2)ag+2ag\cos\theta$ මගින් දෙනු ලබන බව පෙන්වන්න.

මෙම පිහිටීමේ දී තන්තුවේ ආතතිය සොයන්න.

heta=lpha වන විට තන්තුව බුරුල් වන බව **අපෝගනය** කරන්න; මෙහි $\coslpha=rac{2-k}{3}$ වේ.

13. ස්කන්ධය m වූ P අංශුවක් එක එකක ස්වාභාවික දිග a හා මාපාංකය mg වූ සමාන සැහැල්ලු ප්‍රතාස්ථ තත්තු දෙකක කෙළවර දෙකකට ඇඳා ඇත. එක තන්තුවක නිදහස් කෙළවර A අවල ලක්ෂායකට හා අනික් තන්තුවේ නිදහස් කෙළවර A ට සිරස් ව පහළින් 4a දුරකින් පිහිටි B අවල ලක්ෂායකට ඇඳා ඇත. (රූපය බලන්න.) තන්තු දෙකම නොබුරුල්ව, A ට 5a/2 දුරක් පහළින් අංශුව සමතුලිතව තිබෙන බව පෙන්වන්න.

 $P = \frac{1}{4a-x}$

P අංශුව දැන්, AB හි මධ්න ලක්ෂායට ඔසවා එම පිහිටීමේ දී නිසලනාවේ සිට සීරුවෙන් මුදාහරිනු ලැබේ. තන්තු දෙකම නොබුරුල් හා AP තන්තුවේ දිග x වන විට, $\ddot{x}+\frac{2g}{a}\Big(x-\frac{5a}{2}\Big)=0$ බව පෙන්වන්න.

මෙම සමීකරණය $\ddot{X}+\omega^2X=0$ ආකාරයෙන් නැවත ලියන්න; මෙහි $X=x-\frac{5a}{2}$ හා $\omega^2=\frac{2g}{a}$ වේ.

 $\dot{X}^2 = \omega^2 \, (c^2 - X^2)$ සූතුය භාවිතයෙන් මෙම චලිතයේ විස්තාරය c සොයන්න.

P අංශුව එහි පහත් ම පිහිටීමට ළඟා වන මොහොතේ දී PB තන්තුව කපනු ලැබේ. නව චලිතයේ දී x=a වන විට අංශුව එහි උච්චතම පිහිටීමට ළඟා වන බව පෙන්වන්න.

P අංශුව x=2a හි වූ එහි ආරම්භක පිහිටීමේ සිට පහළට a දුරක් ද ඊළඟට ඉහළට $\frac{a}{2}$ දුරක් ද චලනය වීමට ගනු ලබන මුළු කාලය $\frac{\pi}{3}\sqrt{\frac{a}{2g}}\left(3+\sqrt{2}\right)$ බව නව දුරටත් පෙන්වන්න.

14.(a) OAB තුිකෝණයක් යැයි ද D යනු AB හි මධා ලක්ෂාය යැයි ද E යනු OD හි මධා ලක්ෂාය යැයි ද ගතිමු. F ලක්ෂාය OA මත පිහිටා ඇත්තේ OF:FA=1:2 වන පරිදි ය. O අනුබද්ධයෙන් A හා B හි පිහිටුම් දෛශික පිළිවෙළින් a හා b වේ. \overrightarrow{BE} හා \overrightarrow{BF} දෙශික a හා b ඇසුරෙන් පුකාශ කරන්න.

 $B,\,E$ හා F ඒකරේබීය බව **අපෝහනය** කර, BE:EF අනුපාතය සොයන්න.

 $\overrightarrow{BF}\cdot\overrightarrow{DF}$ අදිශ ගුණිතය $|\mathbf{a}|$ හා $|\mathbf{b}|$ ඇසුරෙන් සොයා, $|\mathbf{a}|=3|\mathbf{b}|$ නම, \overrightarrow{BF} යන්න \overrightarrow{DF} ට ලම්බ වන බව පෙන්වන්න.

(b) Oxy-තලයේ වූ බල පද්ධතියක් පිළිවෙළින් (-a, 2a), (0, a) හා (-a, 0) ලක්ෂාවල දී කිුියාකරන $3P\mathbf{i} + 2P\mathbf{j}$, $2P\mathbf{i} - P\mathbf{j}$ හා $-P\mathbf{i} + 2P\mathbf{j}$ යන බල තුනෙන් සමන්විත චේ; මෙහි P හා a යනු පිළිවෙළින් නිව්ටන හා මීටරවලින් මනින ලද ධන රාශි චේ. O මූලය වටා, පද්ධතියේ දක්ෂිණාවර්ත සූර්ණය, 12Pa N m බව පෙන්වන්න.

නව ද පද්ධතිය, විශාලත්වය 5P N වූ නනි සම්පුයුක්ත බලයකට තුලs වන බව පෙන්වා, එහි දිශාව හා කිුයා රේඛාවේ සමීකරණය සොයන්න.

දැන්, අතිරේක බලයක් පද්ධතියට ඇතුළත් කරනු ලබන්නේ නව පද්ධතිය දක්ෂිණාවර්ත සූර්ණය $24Pa~{
m N\,m}$ වූ යුග්මයකට තුලා වන පරිදි ය. අතිරේක බලයෙහි විශාලත්වය, දිශාව හා කිුයා රේඛාවේ සමීකරණය සොයන්න.

- 15.(a) බර W හා දිග 2a වූ ඒකාකාර AB දණ්ඩක A කෙළවර රළු තිරස් බිමක් මත හා B කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව තබා ඇත. දණ්ඩ බිත්තියට ලම්බ සිරස් තලයක පිහිටන අතර, එය තිරස සමග θ කෝණයක් සාදයි; මෙහි $\tan\theta=\frac{3}{4}$ වේ. AC=x ලෙස දණ්ඩ මත වූ C ලක්ෂයයට බර W වූ අංශුවක් සවිකර ඇත. අංශුව සහිත දණ්ඩ සමතුලිතතාවයේ ඇත. දණ්ඩ හා බිම අතර ශර්ෂණ සංගුණකය $\frac{5}{6}$ වේ. $x \leq \frac{3a}{2}$ බව පෙන්වත්ත.
 - (b) යාබද රූපයෙහි පෙන්වා ඇති රාමු සැකිල්ල, AB,BC,AC,CD හා AD සැහැල්ලු දඬු පහක් ඒවායේ කෙළවරවලින් නිදහසේ සන්ධ කර සාදා ඇත. AB = a,BC = 2a,AC = CD හා $C\widehat{A}D = 30^\circ$ බව දී ඇත. බර W වූ භාරයක් D හි එල්ලෙන අතර පිළිවෙළින් A හා B හි දී **රූපයේ දක්වා ඇති දිශාවලට** කිුයාකරන P හා Q සිරස් බලවල ආාධාරයෙන් AB තිරස් ව හා AC සිරස් ව රාමු සැකිල්ල සිරස් තලයක සමතුලිතව තිබේ. Q හි අගය W ඇසුරෙන් සොයන්න. බෝ අංකනය භාවිතයෙන් පුතුයාබල සටහනක් ඇඳ, **ඒ හයින්**, දඬු

බෝ අංකනය භාවිතයෙන් පුතුහාබල සටහනක් ඇඳ, **ඒ නයින්**, දඬු පහේ පුතුහාබල සොයා, මෙම පුතුහාබල ආතති ද තෙරපුම් ද යන්න පුකාශ කරන්න.

16.අරය a වූ ඒකාකාර ඝන අර්ධ ගෝලයක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $rac{3}{8}a$ දුරකින් පිහිටන බව පෙන්වන්න.

අරය a, උස a හා සනත්වය P වූ ඒකාකාර සන සෘජු වෘත්තාකාර සිලින්ඩරයකින් අරය a වූ අර්ධ ගෝලාකාර කොටසක් කපා ඉවත් කරනු ලැබේ. දැන්, යාබද රූපයේ දැක්වෙන පරිදි සිලින්ඩරයේ ඉතිරි කොටසෙහි වෘත්තාකාර මුහුණතට අරය a හා සනත්වය λP වූ ඒකාකාර සන අර්ධ ගෝලයක වෘත්තාකාර මුහුණත සවි කරනු ලබන්නේ, ඒවායේ සම්මිතික අක්ෂ දෙක සම්පාත වන පරිදි ය. මෙලෙස සාදාගනු ලබන S වස්තුවෙහි ස්කන්ධ කේන්දුය, එහි සම්මිතික අක්ෂය මත, ගැටියේ O කේන්දුයේ සිට $\frac{(11\lambda+3)a}{4(2\lambda+1)}$ දුරකින් පිහිටන බව පෙන්වන්න.

 $\lambda=2$ යැයි ද A යනු S වස්තුවෙහි වෘත්තාකාර ගැටිය මත වූ ලක්ෂපයක් යැයි ද ගනිමු.

මෙම S වස්තුව රළු සිරස් බිත්තියකට එරෙහිව සමතුලිනව තබා ඇත්තේ, A ලක්ෂායට හා සිරස් බිත්තිය මත වූ B අවල ලක්ෂායකට ඇදා ඇති සැහැල්ලු අවිතනා තත්තුවක ආධාරයෙනි. මෙම සමතුලිත පිහිටීමේ දී S හි සමමිතික අක්ෂය බිත්තියට ලම්බව පිහිටන අතර S හි අර්ධ ගෝලාකාර පෘෂ්ඨය B ලක්ෂායට 3a දුරක් සිරස් ව පහළිත් වූ C ලක්ෂායේ දී බිත්තිය ස්පර්ශ කරයි. (යාබද රූපය බලත්ත.) O,A,B හා C ලක්ෂා බිත්තියට ලම්බ සිරස් තලයක පිහිටයි.

 μ යනු බිත්තිය හා Sහි අර්ධ ගෝලීය පෘෂ්ඨය අතර ඝර්ෂණ සංගුණකය නම්, $\mu \geq 3$ බව පෙන්වන්න.

- 17.(a) ආයතනයක එක්තරා රැකියාවකට අයදුම් කරන සියලු ම අයදුම්කරුවන් අනියෝගානා පරීක්ෂණයකට පෙනීසිටීම අවශා වේ. මෙම අභියෝගාතා පරීක්ෂණයෙන් A ශේණියක් ලබන අය රැකියාව සඳහා තෝරාගනු ලබන අතර, ඉතිරි අයදුම්කරුවන් සම්මුඛ පරීක්ෂණයකට මුහුණ දිය යුතු ය. අයදුම්කරුවන්ගෙන් 60% ක් A ශේණි ලබන බව ද ඒ අයගෙන් 40% ක් ගැහැනු අය බව ද සමීක්ෂණයක දී සොයා ගෙන ඇත. සම්මුඛ පරීක්ෂණයට මුහුණ දෙන අයදුම්කරුවන්ගෙන් 10% ක් පමණක් තෝරාගනු ලබන අතර එයින් 70% ක් ගැහැනු අය වෙති.
 - (i) මෙම රැකියාව සඳහා පිරිමි අයකු තෝරාගනු ලැබීමේ,
 - (ii) රැකියාවට තෝරාගනු ලැබූ පිරිම් අයකු අභියෝගානා පරීක්ෂණයට A ශ්‍රේණියක් ලබා තිබීමේ, සම්භාවිතාව සොයන්න.
 - (b) එක්තරා රෝහලක රෝගීන් 100 දෙනකුගේ පුතිකාර ලබා ගැනීමට පෙර රැදී සිටි කාල (මිනිත්තුවලින්) එක් රැස් කරනු ලැබේ. එම එක් එක් කාලයෙන් මිනිත්තු 20ක් අඩු කිරීමෙන් ලැබෙන අත්තර එක එකක් 10න් බෙදීමෙන් ලැබෙන අගයන්ගේ වසාප්තිය පහත වගුවෙන් දෙයි.

අගයන්ගේ පරාසය	රෝගීන් ගණන
-2 - 0	30
0 - 2	40
2 – 4	15
4 6	10
6 - 8	5

මෙම වගුවෙහි දී ඇති වහාප්තියෙහි මධෳනෳය හා සම්මත අපගමනය නිමානය කරන්න.

ඒ නයින්, රෝගීන් 100 දෙනා රැඳී සිටි කාලවල මධ්යනයය μ සහ සම්මත අපගමනය σ නිමානය කරන්න. තව ද $\kappa = \frac{\mu - M}{\sigma}$ මගින් අර්ථ දක්වනු ලබන කුටිකතා සංගුණකය κ නිමානය කරන්න; මෙහි M යනු රෝගීන් 100 දෙනා රැඳී සිටි කාලවල මානය වේ.