QR Decomposition by Householder Reflectors

Let
$$u \in \mathbb{R}^n \setminus \{0\}$$
 and $H = \{u\}^{\perp}$. Then

$$\mathbb{R}^n = \operatorname{span}\{u\} \oplus H.$$

For each $x \in \mathbb{R}^n$ there exists unique $a \in \mathbb{R}$ and $v \in H$ (satisfying $v^T u = 0$) such that

$$x = au + v$$
.

Let
$$u \in \mathbb{R}^n \setminus \{0\}$$
 and $H = \{u\}^{\perp}$. Then

$$\mathbb{R}^n = \operatorname{span}\{u\} \oplus H$$
.

For each $x \in \mathbb{R}^n$ there exists unique $a \in \mathbb{R}$ and $v \in H$ (satisfying $v^T u = 0$) such that

$$x = au + v$$
.

Suppose $Q \in \mathbb{R}^{n \times n}$ such that Qu = -u and Qw = w for all $w \in H$. Then

$$Qx = -au + v$$

which is the reflection of *x* through *H*.

Let $u \in \mathbb{R}^n \setminus \{0\}$ and $H = \{u\}^{\perp}$. Then

$$\mathbb{R}^n = \operatorname{span}\{u\} \oplus H$$
.

For each $x \in \mathbb{R}^n$ there exists unique $a \in \mathbb{R}$ and $v \in H$ (satisfying $v^T u = 0$) such that

$$x = au + v$$
.

Suppose $Q \in \mathbb{R}^{n \times n}$ such that Qu = -u and Qw = w for all $w \in H$. Then

$$Qx = -au + v$$

which is the reflection of *x* through *H*.

What is the form of Q?

What is the form of Q?

$$Q = I_n - \frac{2}{\|u\|^2} u u^T$$
!

What is the form of Q?

$$Q = I_n - \frac{2}{\|u\|^2} u u^T !$$

This is called the Householder reflector associated with any multiple of u. Q is

What is the form of Q?

$$Q = I_n - \frac{2}{\|u\|^2} u u^T$$
!

This is called the Householder reflector associated with any multiple of u. Q is

Symmetric

What is the form of Q?

$$Q = I_n - \frac{2}{\|u\|^2} u u^T$$
!

This is called the Householder reflector associated with any multiple of u. Q is

- Symmetric
- Orthogonal

What is the form of Q?

$$Q = I_n - \frac{2}{\|u\|^2} u u^T !$$

This is called the Householder reflector associated with any multiple of u. Q is

- Symmetric
- Orthogonal
- ▶ an involution, i. e., $Q = Q^{-1}$.

What is the form of Q?

$$Q = I_n - \frac{2}{\|u\|^2} u u^T$$
!

This is called the Householder reflector associated with any multiple of u. Q is

- Symmetric
- Orthogonal
- ▶ an involution, i. e., $Q = Q^{-1}$.

Theorem Let $x, y \in \mathbb{R}^n$ such that $x \neq y$ and $||x||_2 = ||y||_2$. Then there exists a unique Householder reflector $Q \in \mathbb{R}^{n \times n}$ such that Qx = y.

What is the form of Q?

$$Q = I_n - \frac{2}{\|u\|^2} u u^T$$
!

This is called the Householder reflector associated with any multiple of u. Q is

- Symmetric
- Orthogonal
- ▶ an involution, i. e., $Q = Q^{-1}$.

Theorem Let $x, y \in \mathbb{R}^n$ such that $x \neq y$ and $||x||_2 = ||y||_2$. Then there exists a unique Householder reflector $Q \in \mathbb{R}^{n \times n}$ such that Qx = y.

Proof: Since $||x||_2 = ||y||_2$, $(x - y)^T (x + y) = 0$. Let $u = \frac{1}{2}(x - y)$. Then $u \neq 0$ as $x \neq y$ and $v := \frac{1}{2}(x + y) \in \{u\}^{\perp}$. Now x = u + v and the reflector $Q = I - \frac{2}{\|u\|_2^2} u u^T$ is such that Qx = -u + v = y.

Creating zeroes in vectors by using Householder Reflectors

Corollary Let $x \in \mathbb{R}^n \setminus \{0\}$. There exists a Householder reflector $Q = I_n - \gamma u u^T \in \mathbb{R}^{n \times n}$ such that $Qx = [-\tau \ 0 \cdots \ 0]^T$ where $\tau = \|x\|_2$ or $-\|x\|_2$. Also γ , u and τ can be computed in O(n) flops.

Creating zeroes in vectors by using Householder Reflectors

Corollary Let $x \in \mathbb{R}^n \setminus \{0\}$. There exists a Householder reflector $Q = I_n - \gamma u u^T \in \mathbb{R}^{n \times n}$ such that $Qx = [-\tau \ 0 \cdots \ 0]^T$ where $\tau = \|x\|_2$ or $-\|x\|_2$. Also γ , u and τ can be computed in O(n) flops.

Proof: Suppose $x = [x_1 \cdots x_n]^T$ and assume without loss of generality that $x_j \neq 0$ for some $j = \{0, \dots, n\}$. Let $y = [-\tau \ 0 \cdots 0]^T$ where $\tau = \text{sign}(x_1) \|x\|_2$. The choice of the sign of τ avoids catastrophic cancellation in computing the first entry of x - y wich is $x_1 + \tau$. As $x \neq y$ and $\|x\|_2 = \|y\|_2$, the Householder reflector $Q = I - \frac{2}{\|x - y\|_2^2} (x - y)(x - y)^T$ is such that Qx = y.

Suppose $u = \frac{1}{x_1 + \tau}(x - y)$. Then $Q = I - \gamma u u^T$ where $\gamma = \frac{2}{\|u\|_2^2} = \frac{\tau + x_1}{\tau}$. Clearly, γ , u and τ can all be computed in O(n) flops.

QR decomposition via Householder Reflectors

Let $A \in \mathbb{R}^{n \times m}$, $n \geq m$. Let Q_1 be a reflector such that

$$Q_1A(:,1) = \begin{bmatrix} \pm ||A(:,1)||_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Then,

$$Q_{1}A = \underbrace{ \begin{bmatrix} \pm \|A(:,1)\|_{2} & a_{12}^{(1)} & \cdots & a_{1m}^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2m}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nm}^{(1)} \end{bmatrix}}_{-\cdot A_{*}}$$

QR Decomposition by Reflectors

Then,

$$Q_2A_1(:,2) = \begin{bmatrix} a_{12}^{(1)} \\ \pm \|A_1(2:n,2)\|_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

and

$$Q_2A_1 = \begin{bmatrix} \pm \|A(:,1)\|_2 & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1m}^{(1)} \\ 0 & \pm \|A_1(2:n,2)\|_2 & a_{23}^{(2)} & \cdots & a_{2m}^{(2)} \\ 0 & 0 & a_{33}^{(2)} & \cdots & a_{3m}^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_{n3}^{(2)} & \cdots & a_{nm}^{(2)} \end{bmatrix}$$

QR Decomposition by Reflectors

Thus there exist reflectors

$$Q_i = \begin{bmatrix} I_{i-1} & 0 \\ 0 & I_{n-i+1} - \frac{2}{\|u^{(i)}\|_2^2} u^{(i)} u^{(i)T} \end{bmatrix}, i = 1, 2, \dots, p,$$

(where p = m if n > m and p = n - 1 otherwise) such that

$$Q_p^T \cdots Q_2^T Q_1^T A = R$$
 is upper triangular

Hence, A = QR where $Q = Q_1 Q_2 \cdots Q_p$.

Flop count of computing the R of a QR Decomposition by Reflectors

Let $Q = I_n - \gamma u u^T$ be an $n \times n$ reflector and B be an $n \times m$ matrix. $W := QB = B - \gamma u u^T B$ may be computed in a number of ways.

Flop count of computing the R of a QR Decomposition by Reflectors

Let $Q = I_n - \gamma u u^T$ be an $n \times n$ reflector and B be an $n \times m$ matrix. $W := QB = B - \gamma u u^T B$ may be computed in a number of ways.

Bad idea:

$$\left(B - \left(\left((\gamma u)u^{T}\right)B\right)\right)$$

```
Find v := \gamma u. (Costs n flops)
Find W := vu^T. (Costs n^2 flops)
Find G := WB. (Costs 2n^2m flops)
Find B - G. (Cost nm flops)
```

Flop count of computing the R of a QR Decomposition by Reflectors

Let $Q = I_n - \gamma u u^T$ be an $n \times n$ reflector and B be an $n \times m$ matrix. $W := QB = B - \gamma u u^T B$ may be computed in a number of ways.

Bad idea:

$$\left(B - \left(\left((\gamma u)u^{T}\right)B\right)\right)$$

Find $v := \gamma u$. (Costs n flops) Find $W := vu^T$. (Costs n^2 flops) Find G := WB. (Costs $2n^2m$ flops) Find B - G. (Cost nm flops)

Total cost is $n^2(2m+1) + nm + n$ flops.

But $W = B - \gamma u u^T B$ may also be computed as follows:

Good idea:

$$(B - ((\gamma u)(u^T B)))$$

```
Find v := \gamma u. (Costs n flops)
Find w^T := u^T B. (Costs 2nm flops)
Find C := vw^T. (Costs nm flops)
Find W := B - C. (Costs nm flops)
```

But $W = B - \gamma u u^T B$ may also be computed as follows:

Good idea:

$$\left(B - \left((\gamma u)(u^T B)\right)\right)$$

Find $v := \gamma u$. (Costs n flops) Find $w^T := u^T B$. (Costs 2nm flops) Find $C := vw^T$. (Costs nm flops) Find W := B - C. (Costs nm flops)

Total cost is $4nm + n \approx 4nm$ flops.

Let $A \in \mathbb{R}^{n \times m}$, $n \geq m$. Finding reflector Q_1 such that

$$Q_1A(:,1) = \begin{bmatrix} \pm ||A(:,1)||_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

costs O(n) flops. Computing

$$Q_1 A = \begin{bmatrix} \pm ||A(:,1)||_2 & a_{12}^{(1)} & \cdots & a_{1m}^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2m}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nm}^{(1)} \end{bmatrix}$$

Finding
$$Q_2 = \begin{bmatrix} 1 & 0 \\ 0 & \frac{I_{n-1} - \frac{2}{\|u^{(2)}\|_2^2} u^{(2)} u^{(2)T}}{\vdots = \tilde{Q}_2} \end{bmatrix}$$
 such that

$$\tilde{Q}_2 A(2:n,2) = [\pm ||A(2:n,2)||_2, 0, \cdots, 0]^T,$$

costs O(n-1) flops. Computing,

$$Q_2A_1 = \underbrace{ \begin{bmatrix} \pm \|A(:,1)\|_2 & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1m}^{(1)} \\ 0 & \pm \|A_1(2:n,2)\|_2 & a_{23}^{(2)} & \cdots & a_{2m}^{(2)} \\ 0 & 0 & a_{33}^{(2)} & \cdots & a_{3m}^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_{n3}^{(2)} & \cdots & a_{nm}^{(2)} \end{bmatrix}}_{=:A_2}$$

costs 4(n-1)(m-2) flops.

Setting p = n - 1 if n = m and p = m if n > m, the total costs of finding the p reflectors is

$$\Sigma_{k=1}^{p}O(n-k+1)=\left\{\begin{array}{ll}O(n^{2}) & \text{if } n=m,\\O(nm)+O(m^{2}) & \text{if } n>m.\end{array}\right.$$

The cost of applying the *p* reflectors is $4\sum_{k=1}^{p} (n-k+1)(m-k)$.

Setting p = n - 1 if n = m and p = m if n > m, the total costs of finding the p reflectors is

$$\Sigma_{k=1}^{p}O(n-k+1) = \begin{cases} O(n^2) & \text{if } n=m, \\ O(nm) + O(m^2) & \text{if } n > m. \end{cases}$$

The cost of applying the *p* reflectors is $4\sum_{k=1}^{p} (n-k+1)(m-k)$.

Exercise: Show that the flop count of finding the R of a QR decomposition of $A \in \mathbb{R}^{n \times m}$ by reflectors is $2nm^2 - \frac{2}{3}m^3 + O(nm) + O(m^2)$ flops if n > m and $\frac{4}{3}n^3 + O(n^2)$ flops if n = m.

Given $A \in \mathbb{R}^{n \times m}$, n > m, the flop count for finding the isometry Q of a condensed QR decomposition is equal to that of finding R if it is done efficiently.

Given $A \in \mathbb{R}^{n \times m}$, n > m, the flop count for finding the isometry Q of a condensed QR decomposition is equal to that of finding R if it is done efficiently.

Let \hat{Q} be the orthogonal matrix in the full QR decomposition of A.

Then
$$\hat{Q} = Q_1 Q_2 \cdots Q_m$$
 and $Q = \left[\hat{Q} e_1 \cdots \hat{Q} e_m \right]$.

Given $A \in \mathbb{R}^{n \times m}$, n > m, the flop count for finding the isometry Q of a condensed QR decomposition is equal to that of finding R if it is done efficiently.

Let \hat{Q} be the orthogonal matrix in the full QR decomposition of A.

Then
$$\hat{Q} = Q_1 Q_2 \cdots Q_m$$
 and $Q = \left[\hat{Q}e_1 \cdots \hat{Q}e_m\right]$. Since,

$$Q_{i} = \begin{bmatrix} I_{i-1} & 0 \\ 0 & I_{n-i+1} - \frac{2}{\|u^{(i)}\|_{2}^{2}} u^{(i)} u^{(i)T} \end{bmatrix}, i = 1, 2, \dots, p,$$

$$\hat{Q}e_k = Q_1Q_2\cdots Q_ke_k, \ k=1,\ldots,m,$$

Given $A \in \mathbb{R}^{n \times m}$, n > m, the flop count for finding the isometry Q of a condensed QR decomposition is equal to that of finding R if it is done efficiently.

Let \hat{Q} be the orthogonal matrix in the full QR decomposition of A.

Then
$$\hat{Q} = Q_1 Q_2 \cdots Q_m$$
 and $Q = \left[\hat{Q}e_1 \cdots \hat{Q}e_m\right]$. Since,

$$Q_{i} = \begin{bmatrix} I_{i-1} & 0 \\ 0 & I_{n-i+1} - \frac{2}{\|u^{(i)}\|_{2}^{2}} u^{(i)} u^{(i)T} \end{bmatrix}, i = 1, 2, \dots, p,$$

 $\hat{Q}e_k=Q_1Q_2\cdots Q_ke_k,\ k=1,\ldots,m,$ and the flop count of finding Q is

$$\sum_{k=1}^{m} \sum_{i=1}^{k} 4(n-j+1) = 2nm^2 - (2m^3)/3 + O(nm) + O(m^2)$$

which is equal to that of computing R.

Given $A \in \mathbb{R}^{n \times m}$, n > m, the flop count for finding the isometry Q of a condensed QR decomposition is equal to that of finding R if it is done efficiently.

Let \hat{Q} be the orthogonal matrix in the full QR decomposition of A.

Then $\hat{Q} = Q_1 Q_2 \cdots Q_m$ and $Q = \left[\hat{Q}e_1 \cdots \hat{Q}e_m\right]$. Since,

$$Q_{i} = \begin{bmatrix} I_{i-1} & 0 \\ 0 & I_{n-i+1} - \frac{2}{\|u^{(i)}\|_{2}^{2}} u^{(i)} u^{(i)T} \end{bmatrix}, i = 1, 2, \dots, p,$$

 $\hat{Q}e_k=Q_1Q_2\cdots Q_ke_k,\ k=1,\ldots,m,$ and the flop count of finding Q is

$$\sum_{k=1}^{m} \sum_{i=1}^{k} 4(n-j+1) = 2nm^2 - (2m^3)/3 + O(nm) + O(m^2)$$

which is equal to that of computing R.

Exercise: Prove that finding a QR decomposition of $A \in \mathbb{R}^{n \times n}$ costs $(8n^3)/3 + O(n^2)$ flops.

Practice exercises

Exercise: Let A be a $n \times n$ nonsingular real or complex matrix. Prove the following.

- 1. A has a unique QR decomposition such the diagonal entries of R are positive.
- 2. If $A = Q_1R_1$ and $A = Q_2R_2$ be two QR decompositions of A, and $A_1 := Q_1^*AQ_1$, and $A_2 := Q_2^*AQ_2$, then there exists a unitary diagonal matrix D, such that $A_2 = D^*A_1D$.

Solve all problems on pages 206-210 and pages 236-239 of *Fundamentals of Matrix Computations*, by D. S. Watkins, (2nd edition).