Lista de Exercícios No. 2 - Soluções

- 1. Dada a função $f(x)=\cos \omega x$, definida no intervalo $0 \le x \le 2$:
- a) Gere um vetor contendo a amostragem da função nos pontos x=0 e x=1

$$f(x)=[1-1]$$

b) Calcule a DFT sobre o vetor

$$F(u)=[0, 1]$$

c) Baseado nos coeficientes encontrados, desenhe os componentes da série e a função reconstituída.

$$f(x)=[1, -1]$$

2. Faça o mesmo procedimento do item anterior para a função $f(x)=\cos 2\omega x$, definida no intervalo $0 \le x \le 4$ e amostrada nos pontos x=0, 1, 2 e 3. Compare os resultados obtidos.

a)
$$f(x)=[1, -1, 1, -1]$$

b)
$$F(u)=[0, 0, 1, 0]$$

3. Dados os espectros de Fourier abaixo, determine a imagem correspondente.

В

A	3.0	-0.5 +	-0.5 +	-0.5 -	-0.5 -
		0.69i	0.16i	l 0.16i	0.69i

1.5
$$\begin{vmatrix} -0.25 - \\ 0.25i \end{vmatrix}$$
 0 $\begin{vmatrix} -0.25 + \\ 0.25i \end{vmatrix}$

$$f_A(u)=[1\ 2\ 3\ 4\ 5]$$

 $f_B(u)=[1\ 2\ 2\ 1]$

4. Dadas as imagens abaixo, calcule a DFT correspondente. Calcule a IDFT sobre o resultado e compare com a imagem original.

A	1	3	2	4	1	В	1	3	0	4	0	0	3	2	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

$$F_A(u) = (1/5)*[1 -2.62-0.73i -0.38-3.08i -0.38+3.08i -2.62+0.73i]$$

 $F_B(u) = (1/8)*[13 1.71-0.54i -2+3i 0.29-6.54i -5 0.29+6.54i -2-3i 1.71+0.54i]$

As inversas sobre o resultado serão os vetores A e B.

5. Dadas as imagens abaixo, calcule a DFT correspondente. Compare as imagens e comente os resultados.

A	0	1	0	0	0	В	0	0	1	0	0

```
F_A(u)=(1/5)*[1 \ 0.31-0.95i \ -0.81-0.59i \ -0.81+0.59i \ 0.31+0.95i]

F_B(u)=(1/5)*[1 \ -0.81-0.59i \ 0.31+0.95i \ 0.31-0.95i \ -0.81+0.59i]
```

Houve uma rotação entre as frequências de módulo 1 e 2. Também vale a propriedade da translação.

6. Dadas as imagens abaixo, considerando pontos externos como possuindo valor 0:

A	1	2	0	2	1	В	3	2	1	2	3	C	1	2	D	1	2	1	
													2	3		2	8	2	
a)	Calc	، مارى	A * E	•												1	2	1	

a) Calcule A * B

b) Calcule B * A

c) Calcule C * D

d) Calcule D * C

e) Calcule a DFT para as imagens A e B. Calcule a DFT inversa sobre o resultado.

$$\begin{split} F_A(u) = & (1/5)[6 \ 0.31 + 0.22i \ -0.81 - 2.49i \ -0.81 + 2.49i \ 0.31 - 0.22i] \\ F_B(u) = & (1/5)[11 \ 2.12 + 1.54i \ -0.12 - 0.36i \ -0.12 + 0.36i \ 2.12 - 1.54i] \\ As inversas sobre o resultado serão os vetores A e B \end{split}$$

f) Aplique filtros passa-baixa nas imagens $\bf A$ $\bf e$ $\bf B$ com frequência de corte $|\bf u|$ <2.

Espectros de Fourier filtrados:

$$G_A(u) = (1/5)[6 \ 0.31 + 0.22i \ 0 \ 0 \ 0.31 - 0.22i]$$

 $G_B(u) = (1/5)[11 \ 2.12 + 1.54i \ 0 \ 0 \ 2.12 - 1.54i]$

funções resultantes (IDFT sobre G):

$$g_A(x)=[1.32 \ 1.15 \ 1.05 \ 1.15 \ 1.32]$$

 $g_B(x)=[3.05 \ 1.88 \ 1.15 \ 1.88 \ 3.05]$

Imagens resultantes:

g) Aplique filtros passa-alta nas imagens \mathbf{A} e \mathbf{B} com frequência de corte $|\mathbf{u}| > 1$.

Espectros de Fourier filtrados:

$$G_A(u) = (1/5)[6 \ 0 \ -0.81-2.49i \ -0.81+2.49i \ 0]$$

 $G_B(u) = (1/5)[11 \ 0 \ -0.12-0.36i \ -0.12+0.36i \ 0]$

funções resultantes (IDFT sobre G):

$$g_A(x)=[0.88 \ 2.05 \ 0.15 \ 2.05 \ 0.88]$$

 $g_B(x)=[2.15 \ 2.32 \ 2.05 \ 2.32 \ 2.15]$

Imagens resultantes:

Prof. Alexei Machado

7. Para cada imagem abaixo, considerando pontos externos como indefinidos:

A	3	5	2	1	1
	1	4	6	2	1
	1	1	5	6	2
	1	1	1	1	1
	1	2	2	2	1

			_
1	2	1	8
6	5	6	1
1	8	7	7
1	2	8	8
8	2	1	1
	6 1 1	6 5 1 8 1 2	6 5 6 1 8 7 1 2 8

1	1	9	1	1
1	1	9	8	7
9	9	9	2	1
1	1	2	8	8
1	2	2	8	9

a. Determine o histograma de frequências

b. Aplique um filtro de suavização 3x3 pela média

$$[[3 \ 2 \ 2],$$

$$[[4 \ 4 \ 4],$$

c. Aplique um filtro de suavização 3x3 pela mediana

A:

[[3, 1, 1],

[4, 2, 2],

[2, 2, 2]

B:

[[5, 5, 2],

[5, 6, 2],

[6, 7, 7]

C:

[[9, 2, 2],

[8, 8, 2],

[7, 8, 8]]

d. Altere o contraste da imagem através da equalização do histograma. As novas intensidades devem variar entre 0 e 255.

A:

Trocar: 1 2 3 4 5 6

Por: 133 194 204 214 235 255

B:

Trocar: 1 2 5 6 7 8

Por: 71 112 133 173 204 255

C:

Trocar: 1 2 7 8 9

Por: 102 143 153 194 255

e) Realce as bordas da imagem, através de filtros de Sobel.

A:

[[20 24 6],

[10 22 14],

[28 18 16]]

B:

[[4 20 20],

[24 28 24],

[20 8 34]]

C:

[[48 16 32],

[16 14 28],

[22 18 24]]

8. O gráfico abaixo representa a função de transformação de histograma aplicada à imagem A.

a) Caracterize a imagem de saída quanto ao seu tamanho e conteúdo.

O tamanho será o mesmo, mas haverá mudanças de intensidade dos pixels: Os mais escuros ficam ainda mais escuros; os mais claros ainda mais claros; e os médios têm seu contraste aumentado.

b) Para que são usadas as funções de transformação de histograma?

Para alterar a distribuição de probabilidades dos tons de cinza, alterando principalmente o contraste da imagem.

c) É possível aplicar uma transformação de histograma na qual 2 pixels de tons de cinza diferentes da imagem de entrada passem a ter o mesmo valor após a transformação? Justifique.

Sim, qualquer uma que tenha um segmento de derivada 0 na sua curva, como por exemplo o fatiamento e a binarização.

9. Considere a imagem original A e as imagens B, C e D obtidas a partir de A:

a) Indique os elementos de baixa freqüência presentes na imagem original A.

Regiões com tonalidade homogênea ou suave variação, como o artefato do fundo da imagem na parte inferior.

- b) Indique os elementos de alta frequência presentes na imagem original A.
 - As bordas e o ruído do tipo "sal" na parte superior na imagem.
- c) Descreva o processo aplicado a A para se obter B. Justifique a resposta.

Foi passado um filtro da média (passa-baixa no domínio do espaço) pois a imagem teve seus elementos de alta frequência suavizados.

d) Descreva o processo aplicado a A para se obter C. Justifique a resposta.

Foi passado um filtro da mediana pois a imagem teve o ruído de alta frequência suavizado mas com as bordas preservadas.

e) Descreva o processo aplicado a A para se obter D. Justifique a resposta.

Foi passado um filtro de detecção de bordas com o de Sobel (passa-alta no domínio do espaço) pois a imagem teve seus elementos de alta frequência realçados e os de baixa frequência suavizados.