$egin{array}{ll} { m Econ} \; 103 - { m Quiz} \; 5 \end{array}$	
Name:	
Instructions: This is closed-book, closed-notes quiz. Please write your answers in the blanks provided. Each questic s worth one point but no partial credit will be awarded. Non-programmable calculators are permitted.	эn
1. True or false: a Type I error is when you fail to reject a null that is false	
1	
2. Steve wants to test the null hypothesis that freshman students weigh on average 170 pounds against the two-side alternative. Write down the null hypothesis and alternative hypothesis, where μ is the true average weight in the population.	
2	
3. Following on from the previous question, to test this hypothesis Steve gathered data on 9 students. We assume the weights collected come from a normal distribution: $X_1X_9 \sim iidN(\mu, \sigma^2)$. He calculates the sample mean weight \bar{X} . We assume that he knows the variance σ^2 . Write down an expression for an appropriate test statistic if he want to test the null hypothesis $\mu = \mu_0$.	ht,
3	
4. Suppose you are testing $\mu = \mu_0$ when $X_1, X_n \sim N(\mu, \sigma^2)$. Which of the following will be our rejection criterion we are testing against the two sided alternative hypothesis $\mu \neq \mu_0$ with a significance level of α ?	if
1. $\left \frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}}\right > \operatorname{qnorm}(1 - \alpha/2).$	
2. $\frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}} > \operatorname{qnorm}(\alpha)$.	
3. $\frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}} < \operatorname{qnorm}(1 - \alpha)$.	
4. $\frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}} > \operatorname{qnorm}(\alpha/2)$.	
4	
5. Which of the following is true about <i>p</i> values?	
a. The p value gives the probability that the null hypothesis is true.	
b. The p value is the probability under the null hypothesis of observing a test statistic at least as aberrant as the or actually obtained.	ne
c. The p value gives us reliable results in the sense that, if we could repeat the experiment a great number of time we would obtain a significant results on $100p\%$ of those occasions.	es,
d. The p value can be used to disprove the null hypothesis.	

6. Suppose that we observe a sample proportion of $\hat{p}=0.6$ with a sample size of 100 and want to test H_0 : p=0.5 against the one-sided alternative that p<0.5 at the 5% significance level. Calculate the value of the test statistic, fully imposing the null (i.e. using the value of p from our null hypothesis wherever possible)?

6

1. Г	Following on from the previous question, should we reject the null hypothesis?
	7
F S le	Kevin and Sara poll a random sample of 100 Penn Undergraduates to find out the proportion who prefer Coke to Pepsi. Unbeknownst to them, the true proportion is exactly 65%. Using the exact same dataset, both Kevin and Sara carry out two-sided hypothesis tests of the null hypothesis H_0 : $p=0.5$. Whereas Sara uses a 5% significance evel for her test, Kevin uses a 1% significance level. Whose test has more power? A. Kevin's Test B. Sara's Test C. Both have Equal Power D. Not Enough Information to Determine