Análise Matemática B

— folha 4 — Integração múltipla — 2011'12 — 20

- 1. Calcule o valor do integral $\int_{\mathcal{A}} f$, onde:
 - (a) $f(x,y) = x^3 + y^2$ e $\mathcal{A} = [0,1] \times [0,1]$;
 - (b) $f(x,y) = e^{x+y} \in A = [-1,0] \times [0,2];$
 - (c) $f(x, y, z) = xy^2 2z$ e $\mathcal{A} = [-1, 1] \times [0, 2] \times [2, 3]$;
 - (d) $f(x,y,z) = \frac{x}{y} 3zx^2 \in \mathcal{A} = [-1,1] \times [1,e] \times [2,3];$
- 2. Calcule o valor do integral $\int_{\mathcal{A}} f$, onde:
 - (a) $f(x,y) = x^3 + y^2$ e $\mathcal{A} = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, x \le y \le -x^2 + 4x\};$
 - (b) $f(x,y) = e^{x+y} e \mathcal{A} = \{(x,y) \in \mathbb{R}^2 : x \ge 0, x \le y \le -x + 2\};$
 - (c) $f(x,y,z)=xy^2-2z$ e $\mathcal{A}=\{(x,y,z)\in\mathbb{R}^3:0\leq x\leq 2,\ 1\leq y\leq 2,\ 0\leq z\leq x^2+y^2\};$
 - (d) $f(x,y) = x^2 + y^2$ e $\mathcal{A} = \{(x,y) \in \mathbb{R}^2 : x^2 2x \le y \le -x + 2\};$
- 3. Identifique o domínio de integração e inverta a ordem de integração nos seguintes integrais:
 - (a) $\int_0^1 \int_y^{y+3} f(x,y) \, dx dy$;
- (b) $\int_{-2}^{2} \int_{0}^{4-x^2} f(x,y) \, dy dx;$
- (c) $\int_0^1 \int_{y^2}^{2-y} f(x,y) \, dx dy;$
- (d) $\int_0^1 \int_{-x^2}^{x^2} f(x,y) \, dy dx;$
- (e) $\int_{1}^{2} \int_{x^{2}}^{x^{3}} f(x, y) \, dy dx;$
- (f) $\int_{0}^{2} \int_{x}^{\sqrt{4x-x^2}} f(x,y) \, dy dx$.
- 4. Invertendo a ordem de integração, calcule:
 - (a) $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \sqrt{1-y^2} \, dy dx$;
- (b) $\int_{1}^{e^3} \int_{\log y}^{3} dx dy;$
- (c) $\int_0^1 \int_{\sqrt{y}}^1 e^{x^3} dx dy$;
- (d) $\int_1^e \int_{\log y}^1 \frac{(x^2+1)^{13}}{y} dx dy$.

- 5. Usando integrais duplos, calcule a área de cada uma das regiões planas ${\cal R}$ que se seguem:
 - (a) $R = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 2, e^{-x} \le y \le e^x\};$
 - (b) $R = \{(x,y) \in \mathbb{R}^2 : y \ge 0, y \le -2x^2 x + 3, y \le -x + 1\};$
 - (c) $R = \{(x, y) \in \mathbb{R}^2 : y \ge x^2, y \le 4 x^2\};$
- 6. Usando integrais duplos, calcule o volume de cada um dos sólidos ${\cal S}$ que se seguem:
 - (a) $R = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 2, e^{-x} \le y \le e^x, 0 \le z \le x + y\};$
 - (b) $R = \{(x, y, z) \in \mathbb{R}^3 : y \ge 0, y \le x^2 2x, x y \le z \le x + y\};$
 - (c) $R = \{(x, y, z) \in \mathbb{R}^3 : x \le 0, \ x \le y^2 y, \ x \le z + y, \ y \le -x z\}.$
- 7. Determine as coordenadas polares dos pontos cuja representação cartesiana é

$$A = (3, \sqrt{3}), B = (0, 2), C = (0, -2), D = (-4, -4), E = (1, 1).$$

8. Determine as coordenadas cartesianas dos pontos cuja representação polar é

$$A = \left(1, \frac{\pi}{4}\right), \quad B = \left(2, \frac{3\pi}{2}\right), \quad C = (5, 0), \quad D = \left(5, \frac{\pi}{2}\right), \quad E = \left(3, \frac{11\pi}{6}\right).$$

- 9. Passando para coordenadas polares, calcule $\int \int_{\mathcal{D}} f(x,y) \, d(x,y)$, onde:
 - (a) $f(x,y) = (x^2 + y^2)^{-\frac{3}{2}}$ e $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 5\};$
 - (b) $f(x,y)=(x^2+y^2)^{-1}\log{(x^2+y^2)}$ e $\mathcal D$ é a região do primeiro quadrante limitada pelas circunferências de equações $x^2+y^2=4$ e $x^2+y^2=9$;
 - (c) $f(x,y) = \operatorname{arctg}\left(\frac{y}{x}\right) \in \mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 9, \sqrt{3}y \ge x, \sqrt{3}x \ge y\};$
 - (d) $f(x,y) = x^2 + y^2$ e $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 2, \ 0 \le y \le \sqrt{2x x^2} \};$
 - (e) $f(x,y) = (x^2 + y^2)^{-\frac{1}{2}}$ e $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : y \le x, y \ge x^2, x \ge 0\}.$
- 10. Usando integrais duplos, calcule a área de cada uma das regiões planas R que se seguem:
 - (a) $R = \{(x, y) \in \mathbb{R}^2 : y \ge -x, y \le x, x^2 + y^2 \le 9\};$
 - (b) $R = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4, \ y \le x, \ x \ge 0\};$
 - (c) $R = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 16, (x+2)^2 + y^2 \ge 4, y \ge 0\}.$

- 11. Usando integrais duplos, calcule o volume dos seguintes sólidos:
 - (a) $A = \{(x, y, z) \in \mathbb{R}^3 : 1 \le x^2 + y^2 \le 4, \ 0 \le z \le x^2 + y^2 \};$
 - (b) $B = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 2, 0 \le y \le 2, z \ge 0, y + z \le 2\};$
 - (c) $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z \ge 0, y + z \le 3\}.$
- 12. Determine as coordenadas cilíndricas dos pontos cuja representação cartesiana é
 - $A=(1,\sqrt{3},-1), \qquad B=(2,0,0), \qquad C=(0,-5,3) \quad {\rm e} \qquad D=(3,-3,2).$
- 13. Usando coordenadas cilíndricas, calcule $\int \int \int_{\mathcal{R}} \, f(x,y,z) \, d(x,y,z)$, para
 - (a) f(x,y,z) = x e $\mathcal{R} = \{(x,y,z) \in \mathbb{R}^3 : 0 \le z \le 3, x^2 + y^2 \le z\};$
 - (b) $f(x,y,z) = z e^{x^2+y^2}$ e $\mathcal{R} = \{(x,y,z) \in \mathbb{R}^3 : 2 \le z \le 3, \ x^2+y^2 \le 4\};$
 - (c) $f(x,y,z)=z\,\sqrt{x^2+y^2}\,$ e \mathcal{R} a região do primeiro octante limitada pelas superfícies cilíndricas de equações $x^2+y^2=1\,$ e $x^2+y^2=9\,$ e pelos planos de equações z=0, z=1, x=0 e x=y.
- 14. Determine as coordenadas esféricas dos pontos cuja representação cartesiana é

$$A=(1,-1,0), \qquad B=(1,1,\sqrt{2}), \qquad C=(-1,-1,\sqrt{2}) \quad {\rm e} \qquad D=(0,1,-1).$$

- 15. Calcule o volume da esfera de centro na origem e raio 2.
- 16. Usando coordenadas esféricas, calcule o valor do integral

$$\int \int \int_{\mathcal{S}} \frac{1}{x^2 + y^2 + z^2} d(x, y, z),$$

onde
$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + (z - 2)^2 \le 4 \}.$$

- 17. Calcule o volume do sólido que é:
 - (a) definido pelas condições $3z \ge x^2 + y^2$ e $x^2 + y^2 + z^2 \le 4$;
 - (b) definido pelas condições $x^2 + y^2 \le z \le \sqrt{x^2 + y^2}$;
 - (c) limitado pela superfície esférica de equação $\rho=1$ e pela superfície cónica de equação $\varphi=\frac{\pi}{4}.$