FastCampus Pytorch

Ch10. Generative Adversarial Netowkrs

HARRY KIM

Lecture Content

- Limit of Auto-Encoder
 - 2 Adversarial Networks
 - 3 DCGAN
- 4 cGAN
- 5 Recent Works

GAN

DCGAN

cGAN

Recent Works

■ 강의 자료

- Online
 - NIPS 2016 Tutorial: Generative Adversarial Networks [https://arxiv.org/pdf/1701.00160.pdf]
 - UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL
 NETWORKS [https://arxiv.org/pdf/1511.06434.pdf]
 - Conditional Generative Adversarial Nets [https://arxiv.org/pdf/1411.1784.pdf]
 - Pix2Pix [https://arxiv.org/pdf/1611.07004.pdf]
 - Progressive Growing of GANs for Improved Quality, Stability, and Variation [https://arxiv.org/pdf/1710.10196.pdf]
 - UVA DEEP LEARNING COURSE [University of Amsterdam, 2018]

GAN

DCGAN

cGAN

Recent Works

1. Limit of Auto-Encoder

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Auto-Encoder

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Variational Auto-Encoder

- Variational Inference
- Reparameterization trick
- $z = \mu(x) + \sigma(x) * \varepsilon$, $\varepsilon \sim N(0,1)$
- Z가 zero-mean Gaussian일 때,
- $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) = D_{KL}[N(\mu_q(x), \Sigma_q(x))||N(0,1)]$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Other limitation

■ 그림이 Blur하게 출력됨

GAN

DCGAN

cGAN

Recent Works

2. GAN(Generative Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)
 - 생성을 '적대적'으로 하겠다

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)
 - 생성을 '적대적'으로 하겠다

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)
 - 생성을 '적대적'으로 하겠다

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)
 - 생성을 '적대적'으로 하겠다

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)
 - 생성을 '적대적'으로 하겠다

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)
 - 생성을 '적대적'으로 하겠다

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)
 - 생성을 '적대적'으로 하겠다

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)
 - 생성을 '적대적'으로 하겠다

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)
 - 생성을 '적대적'으로 하겠다

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

- 위조 지폐범 = Generator
- 경찰 = Discriminator

"위조 지폐범"을 학습시켜 경찰을 헷갈리게 만듦

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

- 적대적 생성(Adversarial Networks)의 학습
 - 목적함수는 다음과 같이 설정 가능
 - Generator는 Discriminator를 속이는 그림을 만들고
 - Discriminator는 그림을 완벽히 판별할 줄 알아야함
 - 이를 수학적으로 표현하면,

$$\min_{G} \max_{D} V(G, D) = E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_{z}(z)} \log (1 - D(G(z)))$$

- G(z): 만든 위조 그림, D(x): 제대로 판별할 확률
- D를 우선적으로 극대화 시킨 후, G에 대해 학습

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)의 학습

■ max *D*

$$E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_z(z)} \log (1 - D(G(z)))$$

■ D(x): x가 진짜라고 판단되면 1 / 가짜라고 판단되면 0

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)의 학습

lacktriangledown max D

$$E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_z(z)} \log (1 - D(G(z)))$$

- D(x): x가 진짜라고 판단되면 1 / 가짜라고 판단되면 0
- Discriminator가 완벽히 구분할 수 있다면?

$$log D(x) = log(1) = 0 \& log(1 - D(G(z))) = log(1) = 0$$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)의 학습

■ max *D*

$$E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_z(z)} \log (1 - D(G(z)))$$

- D(x): x가 진짜라고 판단되면 1 / 가짜라고 판단되면 0
- Discriminator가 완벽히 구분할 수 있다면?

$$log D(x) = log(1) = 0 \& log(1 - D(G(z))) = log(1) = 0$$

■ Discriminator가 구분 못할 경우?

$$log D(x) = log(\sim 0) = -\infty \& log \left(1 - D(G(z))\right) = log(\sim 0) = -\infty$$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)의 학습

 \bullet min G

$$E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_z(z)} \log (1 - D(G(z)))$$

■ G(x): D(G(z))를 1로 만들기 위해 노력

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)의 학습

lacktriangle min G

$$E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_z(z)} \log (1 - D(G(z)))$$

• G(x): D(G(z))를 1로 만들기 위해 노력

■ Generator가 완벽히 모방할 수 있다면?

$$log(1 - D(G(z))) = log(\sim 0) = -\infty$$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)의 학습

 \bullet min G

$$E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_z(z)} \log (1 - D(G(z)))$$

- G(x): D(G(z))를 1로 만들기 위해 노력
- Generator가 완벽히 모방할 수 있다면?

$$log(1 - D(G(z))) = log(\sim 0) = -\infty$$

■ Generator가 모방 못할 경우?

$$log(1 - D(G(z))) = log(1) = 0$$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)의 학습

lacktriangleq min G

$$E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_z(z)} \log (1 - D(G(z)))$$

 \blacksquare = min *G*

$$E_{z \sim p_z(z)} log(1 - D(G(z)))$$

 \blacksquare = max G

$$E_{z \sim p_z(z)} log(D(G(z)))$$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

- 적대적 생성(Adversarial Networks)의 학습
 - \blacksquare max G

$$E_{z \sim p_z(z)} log(D(G(z)))$$

- 처음 D를 학습할 때는 G가 엉뚱한 이미지를 생성
- 따라서, D가 매우 쉽게 판별 (= D(G(z))는 0)
- 초기 함수의 0 부근에서 움직임 (= 이 때 기울기 작음)
- 즉, 학습이 더딤
- 하지만 위와 같이 설정할 경우,
- 0부근에서의 기울기가 큼
- 따라서 학습을 빠르게 진행할 수 있음

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

- 적대적 생성(Adversarial Networks)의 학습
 - 최종 목적함수를 연속적으로 표현하면 아래와 같음

$$\min_{G} \max_{D} V(G, D) = E_{x \sim p_{data}(x)} \log D(x) + E_{z \sim p_{z}(z)} \log (1 - D(G(z)))$$

$$= \int_{x} P_{data(x)} log D(x) + P_{g(x)} \left[log \left(1 - D(x) \right) \right] dx$$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ 적대적 생성(Adversarial Networks)의 학습

- 이를 그림으로 표현하면 아래와 같음
 - 파란선 : Discriminator
 - 녹색선 : Generator
 - 검정선 : Data

https://arxiv.org/pdf/1701.00160.pdf

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

3. DCGAN(Deep Convolutional GAN)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ GAN의 불안정성

- GAN은 Nash Equilibrium을 찾는 것이라 할 수 있는데,
- 어떨 때는 Gradient Descent를 통해 찾을 수 있는 반면, 찾을 수 없는 때도 많음
- 즉, Unstable하다고 할 수 있음

https://stats.stackexchange.com/questions/330834/gan-losses-balance-but-quality-of-generated-image-still-bad

Limit of **Auto-Encoder**

GAN

DCGAN

cGAN

Recent Works

GAN의 불안정성 해결 방법

- Convolution을 활용한 GAN의 탄생
 - 불필요한 정보를 버리고 중요한 Feature를 가지고 학습
 - 이미지 생성에 최적화

https://arxiv.org/pdf/1511.06434.pdf

Limit of **Auto-Encoder**

GAN

DCGAN

cGAN

Recent Works

GAN의 불안정성 해결 방법

- Batch Normalization을 추가
- 단, Generator의 Input과 Discriminator의 Input에는 도입 안 함
- 하지만 모든 딥러닝 학습이 그렇듯이, 항상 좋은 결과를 보장하지는 않음

https://arxiv.org/pdf/1511.06434.pdf

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ DCGAN의 도입

- GAN에 비해 훨씬 안정적
- ▶ Vector 연산이 가능 (Latent Vector z의 의미 부여)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

■ DCGAN의 결과

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

4. cGAN(Conditional GAN)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

cGAN

- GAN으로부터 특정 이미지를 생성해내고 싶다면?
- Label(c)을 입력해주자

 $https://github.com/hwalsuklee/tensorflow-generative-model-collections/blob/master/assets/etc/GAN_structure.png$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

cGAN

- GAN으로부터 특정 이미지를 생성해내고 싶다면?
- Label(c)을 입력해주자

$$\min_{G} \max_{D} V(G, D) = E_{x \sim p_{data}(x)} \log D(x, c) + E_{z \sim p_{Z}(z)} \log (1 - D(G(z, c), c))$$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

cGAN

- MNIST에서의 c?
- c는 0~9의 One-hot-encoding vector

https://arxiv.org/pdf/1411.1784.pdf

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Pix2pix

■ cGan을 Image-to-Image Translation으로 활용

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

- cGan을 Image-to-Image Translation으로 활용
- 즉, 기존 Label을 주는 것이 아니라 이미지를 전달하여 학습

$$\min_{G} \max_{D} V(G, D) = E_{x, y \sim p_{data}(x, y)} \log D(x, y) + E_{z \sim p_{Z}(z)} \log (1 - D(x, G(x, z)))$$

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

- 이러한 학습을 위해서는 다음과 같은 모델 변경 도입
 - Loss의 변경: L2 loss에서는 Blurry했는데, L1을 사용하여 덜 Blurry하게 만들 수 있음
 - U-Net 활용 : 입력값(x, z)가 필터를 통해 전달되면서 흐려지지 않게 함

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

- 이러한 학습을 위해서는 다음과 같은 모델 변경 도입
 - Loss의 변경: L2 loss에서는 Blurry했는데, L1을 사용하여 덜 Blurry하게 만들 수 있음
 - U-Net 활용 : 입력값(x, z)가 필터를 통해 전달되면서 흐려지지 않게 함

- PatchGAN 도입: Discriminator가 전체 그림이 아닌 부분적인 이미지들을 보고 판단 (조금 더 Detail)
- Classification을 활용한 Loss 추가 : Output의 Label을 판단하여 잘 되었는지 확인

Pix2pix

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

L1+cGAN L1 Encoder-decoder U-Net

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

5. Recent Works

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Recent Works

· GAN은 가장 각광받고 있는 딥러닝 모델이라고 해도 반박불가

https://deephunt.in/the-gan-zoo-79597dc8c347

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Recent Works

- InfoGAN
- ACGAN
- EBGAN
- CycleGAN
- wGAN
- Progressive GAN
- **=**

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Recent Works

Name	Paper Link
GAN	<u>Arxiv</u>
LSGAN	<u>Arxiv</u>
WGAN	<u>Arxiv</u>
WGAN_GP	<u>Arxiv</u>
DRAGAN	<u>Arxiv</u>
CGAN	<u>Arxiv</u>
infoGAN	<u>Arxiv</u>
ACGAN	<u>Arxiv</u>
EBGAN	<u>Arxiv</u>
BEGAN	<u>Arxiv</u>

TENSORFLOW: https://github.com/hwalsuklee/tensorflow-generative-model-collections

PYTORCH: https://github.com/eriklindernoren/PyTorch-GAN

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

InfoGAN

(a) Varying c_1 on InfoGAN (Digit type)

(b) Varying c_1 on regular GAN (No clear meaning)

(c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)

(d) Varying c_3 from -2 to 2 on InfoGAN (Width)

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

InfoGAN

라벨 뿐만이 아니라 다양한 특성 학습 가능

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Progressive GAN

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

Progressive GAN

Limit of Auto-Encoder

GAN

DCGAN

cGAN

Recent Works

