Part 2b: Multivariate normal distributions

Textbook: pp. 41-45.

							ı										
Int	rodu	ıctic	n t	o th	e m	nulti	var	iate	nor	ma	I dis	strik	utio	on			
•	The	mul	tinc	rma	al dis	strib	utio	n is	the	"sta	nda	rd"	stat	istic	al m	node	эl
		data								_							
•	A da		natr	ix c	onta	ins	varia	able	s as	colu	ımn	s an	d ot	ser	vatio	ons	as
	row		+: ~			مرمام	o io ol	0 to t		ملطما							
	Obs Acc													ultiv	aria	to	
		mal					, ca	CIIO	ושכו	vat	1011 1	ias	a <mark>IIII</mark>	artiv	aria		
•	War						ate i	norn	nal d	distr	ibut	ion	is fo	rmı	ılate	ed as	Sã
		ımn															

				1	
Λ 👝	ہ ∔ا ہ	rnativ	,	f: `~ :+:	~ ~
An.	ane	rnanv	(10	1111111	()

Lemma 2.2 Let \mathbb{R}^d and $A \in \mathbb{R}^{d \times d}$ be invertible. Define $\Sigma = AA^{\mathsf{T}} \in \mathbb{R}^d$. Furthermore, let $X = (X_1, X_2, \dots, X_d) \in \mathbb{R}^d$ be a random vector such that $X_1, X_2, \dots, X_d \sim \mathcal{N}(0, 1)$ are independent. Then

$$AX + \mu \sim \mathcal{N}$$

on \mathbb{R}^d .

$$\overrightarrow{y} = \overrightarrow{A} \overrightarrow{x} + \overrightarrow{\mu} = g(\overrightarrow{x})$$

$$U(\overrightarrow{y}) = \overrightarrow{A}'(\overrightarrow{y} - \overrightarrow{\mu})$$

$$J_{W}(\overrightarrow{y}) = \overrightarrow{A}' \Rightarrow dut(J_{W}y) = dut(\overrightarrow{A}') = (dut(\Sigma))^{\frac{1}{2}}$$

$$\overrightarrow{S}_{\overline{X}}(\overrightarrow{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} = \frac{1}{(2\pi)} d_{i2} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2$$

				Τ.	Τ.													
Exp	ecta	ation	n ar	nd v	arıa	3nc	e											
Le	mm	a 2.3	Le	$\operatorname{st} X$	$\sim \mathcal{N}$	$(\mu,$	Σ) w	here	$\mu \in$	\mathbb{R}^d :	and Σ	$\Sigma =$	$(\sigma_{ij})_i$, j=1,	,n	$\in \mathbb{R}^d$	imes d. J	Γŀ
								$\mathbb{E}(.$	$X_i)$ =	$= \mu_i$								
and	1																	
		- .		-			C	Cov(X	X_i, X	$_{j}) =$	σ_{ij}							
for	all i	i, j =	: 1, 2	2,	d.													
	臣) .		5		Van	(Ž	\$) =	= J	_							
		\$ =				/												
		ÆÜ	3)	>	A	E	₹)	+}	=	W)							
		Va	(-)	<i>y</i> =	1	1 1	۱, (·	⇒)∤	- م ر	' = #	<i>†</i> A <i>t</i>	-	5					
		Va	(y .	ノ <u>ー</u>		1 V	m ()	<i>^,</i>	l	U	11.	_	<u></u>					

