PHÂN TÍCH ĐỘ PHỨC TẠP CỦA THUẬT TOÁN KHÔNG ĐỆ QUY

NHÓM 10:

- Trần Nhật Anh 21521841
- Phan Thị Ngọc Trinh 21522720
- Nguyễn Như Hà 21522028

Bài 1:

```
ALGORITHM Mystery(n)

//Input: A nonnegative integer n
S \leftarrow 0

for i \leftarrow 1 to n do
S \leftarrow S + i * i

return S
```

- a) Output của thuật toán này là tổng bình phương các số từ 1 đến n: $S = 1^2 + 2^2 + 3^2 + \dots + n^2$.
- b) Basic operation của thuật toán này là phép bình phương i^2.
- c) Trong mỗi vòng lặp có n phép tính i^2 , vậy C(n) = n.
- d) Lớp hiệu năng của thuật toán là θ (n).
- e) Đề xuất một thuật toán tốt hơn là dùng công thức $S = \frac{n(n+1)(2n+1)}{6}$. Thuật toán này có lớp hiệu năng là Θ (1).

Bài 2:

```
ALGORITHM Secret(A[0..n-1])

//Input: An array A[0..n-1] of n real numbers minval \leftarrow A[0]; maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] < minval

minval \leftarrow A[i]

if A[i] > maxval

maxval \leftarrow A[i]

return maxval - minval
```

- a) Trả về giá trị của hiệu giá trị lớn nhất và giá trị nhỏ nhất trong mảng
- b) Basic operation gồm 2 phép so sánh (A[i] < minval) và (A[i] > maxval)
- c) Thuật toán lặp từ chỉ số 1 đến chỉ số cuối của mảng nên C(n) = 2(n-1)
- d) Lớp hiệu năng của thuật toán: Θ (n)
- e) Không có thuật toán tối ưu hơn

Bài 3:

```
ALGORITHM Enigma(A[0..n-1, 0..n-1])

//Input: A matrix A[0..n-1, 0..n-1] of real numbers for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i,j] \neq A[j,i]

return false
```

return true

- a) Output thuật toán: kiểm tra ma trận nhập vào có phải ma trận đối xứng không. Trả về false nếu không đối xứng ngược lại true.
- b) Basic operation của thuật toán: phép so sánh trong lệnh If.
- c) Số lần thực thi basic operation:

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = (n-1) + (n-2) + \dots + 1 = \frac{n(n-1)}{2}$$

- d) Lớp hiệu năng của thuật toán là $\Theta(n^2)$
- e) Cải thiện hoặc đề xuất một thuật toán tốt hơn và xác định lớp hiệu năng: không có.

Bài 4:

ALGORITHM
$$GE(A[0..n-1, 0..n])$$

//Input: An $n \times (n+1)$ matrix $A[0..n-1, 0..n]$ of real numbers
for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
for $k \leftarrow i$ to n do
 $A[j,k] \leftarrow A[j,k] - A[i,k] * A[j,i] / A[i,i]$

- a) Lớp hiệu năng của thuật toán là O(n^3) do có 3 vòng lặp for.
- b) Ở vòng lặp trong cùng, việc tính giá trị $\frac{A[j,i]}{A[i,i]}$ được lặp lại liên tục trong khi giá trị này không đổi trong vòng lặp k. Hơn nữa, chưa có cách kiểm chứng giá trị của A[i,i] có khác 0 không.

Để tối ưu thuật toán ta gán giá trị $\frac{A[j,i]}{A[i,i]}$ bằng một biến temp để ở ngoài vòng lặp k, đồng thời kiểm tra giá trị A[i,i] có khác 0 không rồi mới thực hiện tính và gán giá trị temp.

if
$$(A[i,i] != 0)$$

temp $\leftarrow \frac{A[j,i]}{A[i,i]}$
for $k \leftarrow i$ to n do
 $A[j,k] \leftarrow A[j,k] - A[i,k] / temp$