1.1 Calculation in finite fields

Evaluate the following polynomials:

1.1.1 Evaluate the polynomial r(X)

$$r(X) = 3 \cdot X^3 + 2 \cdot X^2 + X$$
 $\in GF(5)[X] \text{ at } X = 2$
 $r(X) = (3 \cdot 2^3 + 2 \cdot 2^2 + 2) \mod 5$ because $p = 5$ is prime
 $= (24 + 8 + 2) \mod 5$
 $= 34 \mod 5$
 $= 4$

1.1.2 Evaluate the polynomial s(X)

$$\begin{split} s(X) &= (1+\alpha) \cdot X^3 + \alpha \cdot X^2 + X \\ s(X) &= (1+\alpha) \cdot \alpha^3 + \alpha \cdot \alpha^2 + \alpha \\ &= (1+\alpha) \cdot \alpha \cdot \alpha \cdot \alpha + \alpha \cdot \alpha + \alpha \\ &= (1+\alpha) \cdot \alpha \cdot \alpha \cdot \alpha + \alpha \cdot \alpha + \alpha \\ &= 1 \cdot \alpha \cdot \alpha + (1+\alpha) \cdot \alpha + \alpha \\ &= \alpha \cdot \alpha + 1 + \alpha \\ &= (1+\alpha) + 1 + \alpha \\ &= (1+\alpha) + 1 + \alpha \\ &= \alpha + \alpha \\ &= 0 \end{split} \qquad \qquad \begin{array}{l} \in GF(4)[X] \ at \ X = \alpha \\ \text{because } (1+\alpha) \cdot \alpha = 1 \ and \ \alpha \cdot \alpha = 1 + \alpha \\ \text{because } (1+\alpha) \cdot \alpha = 1 \ and \ (1+\alpha) \cdot \alpha = 1 \\ \text{because } \alpha \cdot \alpha = (1+\alpha) \\ \text{because } (1+\alpha) + 1 = \alpha \\ \text{becau$$

1.2 Trivial functions for secure computation

- a) is trivial
- b) is non-trivial, because if the value of x is greater than the value of y, e.g. x = 5 in $\mathbb{GF}(5)$, we cannot determine whether y was, e.g. 2 or 3.
- c) is non-trivial, because if the value of x is 0, then no matter which value was assigned to y, there is no way to determine that value after the computation, because f will return 0.
- d) is trivial
- e) is non-trivial, because there can be more than one value which is greater or less than the chosen value x in the finite field $\mathbb{GF}(5)$, e.g. x=3 then y could be 2 or 1 to produce the output 1.

1.3 Non-trivial functions and an embedded OR

b) The corresponding table looks as follows:

max(x,y)	0	1	2	3	4
0	0	1	2	3	4
1	1	1	2	3	$\mid 4 \mid$
2	2	2	2	3	4
3	3	3	3	3	4
4	4	4	4	4	$\mid 4 \mid$

As one can see, when the value 4 is picked for x we cannot determine whether y was e.g. 2 or 3, because the output will always be 4.

c) The corresponding table looks as follows:

$x \cdot y$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

As one can see, when the value 0 is picked for x we cannot determine whether y was e.g. 2 or 3, because the output will always be 0.

e) The corresponding table looks as follows:

e(x,y)	0	1	2	3	4
0	1	1	1	1	1
1	0	1	1	1	1
2	0	0	1	1	1
3	0	0	0	1	1
4	0	0	0	0	1

As one can see, when the value 2 is picked for x and the output of the function is 1, we cannot determine whether the value y was 0 or 1 (or even 2).