

Vorlesung Computational Intelligence:

Teil 3: Künstliche Neuronale Netze

Kohonen-Karten, Deep Learning, Kommentare

Ralf Mikut, Wilfried Jakob, Markus Reischl

Karlsruher Institut für Technologie, Institut für Automation und angewandte Informatik E-Mail: ralf.mikut@kit.edu, wilfried.jakob@kit.edu

jeden Donnerstag 14:00-15:30 Uhr, Nusselt-Hörsaal

Gliederung

3	Künstliche Neuronale Netze
3.1	Vom Biologischen zum Künstlichen Neuronalen Netz
3.2	Struktur
3.3	Lernverfahren (Fortsetzung)
3.4	Multi-Layer-Perceptron-Netze (MLP-Netze)
3.5	Radial-Basis-Funktions-Netze (RBF-Netze)
3.6	Kohonen-Karten
3.7	Deep Learning & Convolutional Neural Networks
3.8	Kommentare

Kohonen-Karten

- Synonyme
 - Self-Organizing Map (SOM)
 - Self-Organizing Feature Map (SOFM)
- Biologische Motivation:
 - Aufbau und Funktion der (menschlichen) Hirnrinde (cerebral cortex)
 - nur ca. 2 mm dick, enthält Milliarden von Neuronen und Hunderte von Milliarden von Synapsen
 - Bereiche k\u00f6nnen bestimmten senso-motorischen Funktionen zugeordnet werden, z. B. dem H\u00f6ren, dem Sehen, der Motorik.
 - Ähnliche Muster werden auf räumlich benachbarte Neuronen abgebildet
- Hieraus wurde durch Kohonen das Prinzip der Bildung topografischer Karten abgeleitet:
 - Die räumliche Lage eines Ausgangsneurons in der topografischen Karte entspricht einem Bereich oder einem Merkmal in den Eingangsdaten.
- Durch SOM werden Eingangsdaten mit hoher Dimension (viele Einzelmerkmale)
 häufig auf Karten niederer Dimension (meist ein- oder zweidimensional)
 abgebildet.

Aufbau und Funktionsweise von SOMs

- Entsprechend dem biologischen Vorbild werden in einem SOM die Ausgangsneuronen in einem ein- oder zweidimensionalen Gitter angeordnet.
- Eingangsneuronen

- Feedforward-Netz
- Der Eingangsvektor x hat s Komponenten.
 Dementsprechend hat der Parametervektor des j-ten Ausgangsneurons w_i die Dimension s.

Zweidimensionales Gitter der Ausgangsneuronen

- Wird dem SOM ein Eingangsvektor vorgelegt, wird bei einem angelernten Netz lediglich eine Gruppe benachbarter Ausgangsneuronen aktiviert.
- Berechnung des Zustands:
 - über Distanz, meist Verwendung des Euklidischen Abstands: $z_j = ||\mathbf{x} \mathbf{w}_j||$
 - Alternative: Verwendung des inneren Produkts bei normalisierten Gewichtsvektoren **w** und Eingangsvektoren **x**: $z_j = \mathbf{x}^T \mathbf{w}_j$
- Ausgang des Netzes: Gewinnerneuron j(x) (winner-takes-all-Prinzip) ergibt sich mit j(x)=argmin z_j.

Nachbarschaften

- Nachbarschaftsstruktur ist fest vorgegeben
- Beispiel:
 - zweidimensional
 - je 5 Neuronen pro Dimension
 - Neuronen in der Mitte haben6 Nachbarn
 - Neuronen am Rand haben2-4 Nachbarn

SOM Neighbor Connections

Lernverfahren für SOMs

- 1. Festlegen der Dimension des Gitters und der Anzahl der Ausgangsneuronen
- 2. zufällige Initialisierung der Gewichte $\mathbf{w}_{SOM,i}[0]$
- 3. zufällige Auswahl eines Datentupels x[n]
- 4. Bestimmung des Gewinnerneuron wird für dieses Datentupel bestimmt
- 5. Bestimmung der Nachbarn für das Gewinnerneuron
- 6. Gewinnerneuron (besonders stark) und dessen Nachbarn (etwas weniger) werden in Richtung von x[n] verschoben, k: Iterationsschritt:

$$\mathbf{w}_{SOM,i}[k+1] = \mathbf{w}_{SOM,i}[k] + \rho_{i,i_G[k]}[k](\mathbf{x}[k] - \mathbf{w}_{SOM,i}[k])$$

$$i_G[k] = \operatorname{argmin}_i d(\mathbf{w}_{SOM,i}[k], \mathbf{x}[k])$$

$$\rho_{i,j}[k] = \rho_0[k] \cdot \exp(-d(\mathbf{p}_i, \mathbf{p}_j)) \text{ mit } \rho_{i_G[k],i_G[k]}[k] = \rho_0[k] \ge \rho_{i,i_G}[k]$$

- Berechnung eines Gütekriteriums (basierend auf dem durchschnittlichen Abstand der letzten Datentupel zum Gewinnerneuron)
- 8. Abbruch, wenn Güteanforderung erfüllt, sonst k=k+1 und Fortsetzen mit 3. Erweiterungen möglich, z.B. Änderung Nachbarschaft über k usw.

Ergebnisse

- Neuronen werden in die N\u00e4he von Datentupeln gezogen
- Gewichte w_{SOM,i} werden so bestimmt, dass sie wichtige Bereiche des Eingangsraum abdecken
- 1D- bzw. 2D-Verbindungsstruktur bleibt erhalten: "Topologieerhaltende Abbildung"
- projiziert bei Bedarf höherdimensionale auf niedrigdimensionale Eingangsräume
- Ergebnis kann im Bereich der Verbindungsstruktur analysiert werden, z.B. wieviele Datentupel pro Neuron (siehe Beispiel)

1D- und 2D-SOMs

2

4

0

Anwendungen für SOMs

- Problemtypen
 - Dimensionsreduktion bei h\u00f6herdimensionalen Merkmalsr\u00e4umen: z. B. in der Spracherkennung, Klassifizierung von Phonemen (Transformation der durch Fourier-Transformation gewonnen Merkmale auf zweidimensionale Phonemkarte)
 - Approximation und Visualisierung von h\u00f6herdimensionalen nichtlinearen Zusammenh\u00e4ngen: z. B. Robotersteuerungen
- Anwendungsfelder
 - Sprachverarbeitung
 - Bildverarbeitung
 - Robotik/autonome Systeme
 - Telekommunikation

Beispiel: Spracherkennung

Finnische Phonemkarte

Bildquelle: http://www.scholarpedia.org/article/Kohonen_network

(Teuvo Kohonen) Links: Spektrum

Rechts: Phoneme (# Stoppkonsonanten k,p,t)

Beispiel: Visualisierung von Prozessphasen (1)

Quelle:

Frey, C.: Prozessdiagnose und Monitoring feldbusbasierter Automatisierungsanlagen mittels selbstorganisierender Karten und Watershed-Transformation. *at-Automatisierungstechnik*, *Oldenbourg*, **2008**, *56*, 374-380

Eingang:

Rohdaten aus einem Prozess

Ausgang:

Visualisierung via SOM

CI NEURO_C11 | R Mikut | IAI

Beispiel: Visualisierung von Prozessphasen (2)

Frey, C.: Prozessdiagnose und Monitoring feldbusbasierter Automatisierungsanlagen mittels selbstorganisierender Karten und Watershed-Transformation. *at-Automatisierungstechnik, Oldenbourg,* **2008**, *56*, 374-380

Beispiel: Visualisierung von Prozessphasen (3)

Frey, C.: Prozessdiagnose und Monitoring feldbusbasierter Automatisierungsanlagen mittels selbstorganisierender Karten und Watershed-Transformation. *at-Automatisierungstechnik, Oldenbourg,* **2008**, *56*, 374-380

Gliederung

3	Künstliche Neuronale Netze
3.1	Vom Biologischen zum Künstlichen Neuronalen Netz
3.2	Struktur
3.3	Lernverfahren (Fortsetzung)
3.4	Multi-Layer-Perceptron-Netze (MLP-Netze)
3.5	Radial-Basis-Funktions-Netze (RBF-Netze)
3.6	Kohonen-Karten
3.7	Deep Learning & Convolutional Neural Networks
3.8	Kommentare

Deep Learning (Historie)

Geschichte

- 2006 Prägung des Begriffs (Deep Belief Networks)
- 2010: ImageNet Competition (große Bilddatenbank)
- 2012 AlexNet: Durchbruch neuronaler Strukturen im Maschinellen Sehen
- 2014: VGG
- 2015: ResNet, Inception etc.
- 2016: Alpha Go

Idee:

- Vorverarbeitung (z.B. bei Bildern, Zeitreihen, Strukturen) nicht manuell vorgeben, sondern mitlernen
- Netze mit vielen verdeckten Schichten
- spezielle Netzstrukturen und Lernstrategien

Deep Learning Struktur

- oftmals Feedforward-Netze
- auf hochdimensionale Eingangsgrößen (meistens Bilder) angepasst, Pixel sind Eingang des Netzes
- Ausgang je nach Netz: Label für ganzes Bild, lokalisierte Objekte oder pixelweise Segmentierung
- geschickte Verbindung der Layer mit Vorstrukturierung:
 - Faltung (Convolution) mit gekoppelten Parametern und lokaler Zuweisung
 - Downsampling: Max-Pooling zur Reduktion der Auflösung
 - ReLU (weniger beteiligte Neuronen)
 - "Fully Connected Layer" als MLP
 - Wiederholung gleicher Layer

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." *arXiv preprint arXiv:1409.1556* (2014).

Deep Learning (Strukturelemente)

- Faltung (Convolution+Stride):
 Zusammenfassen benachbarter
 Regionen (Parameter:
 Wichtungsmatrizen der CNN Schichten, Stride: Schrittweite der
 Faltungsmatrix)
- Batch-Normalization: Verbesserung der Parameteroptimierung
- Max–Pooling: Reduktion der Auflösung
- voll-vernetzte Schichten: "Interpretation / Abstraktion" der erhaltenen Datenströme

Deep Learning (Beispiel)

Karlsruher Institut für Technologie

Training:

- Backpropagation wird auf mehreren Bildern (Batch) parallel berechnet
- verschiedene Gütemaße: Loss (spezielle Maße, verschiedene Varianten) und Accuracy (1-Klassifikationsfehler)
- ein Durchgang über alle Bilder ist eine Epoche

Zeitaufwand:

- abhängig von Daten und Architektur
- Beispiel:
 - 10000 Bilder
 - 1 High-End GPU
 - typisch: einige Minuten/ Epoche

Typischer Verlauf für ein Training über eine Bildklassifikation mit Backpropagation, Quelle: http://florianmuellerklein.github.io/cnn_streetview/

Quelle: http://cs231n.github.io/convolutional-networks/

Datenaugmentierung

häufige Probleme:

- zu hohe Anzahl an Parametern
- Datensatz zu klein für verlässliche Schätzung

Idee:

- Erzeugen zusätzlicher Bilder beim Training oder beim Testen ("Test-Time-Augmentation")
- Maßnahmen: z.B. Rauschen, Drehen, Rotieren, Scharfzeichnen usw.
- Ziel:
 - Training: kleinerer Klassifikationsfehler der Bilder durch größere Robustheit
 - Testen: Validieren, ob immer das gleiche Ergebnis rauskommt

Rauschen

Rotation

Scherung

Übersättigung

Weichzeichnung

Scharfzeichnen

Verfügbare öffentlich zugängliche Datensätze

Autonomes Fahren/Objekterkennung

Bildklassifikation (weit verbreitete Benchmarks)

Datensatz	Ground truth
MNIST	Bild-Labelhttp://yann.lecun.com/exdb/mnist/
CIFAR	Bild-Labelhttps://www.cs.toronto.edu/~kriz/cifar.html
IM. GENET	Bild-LabelBounding Boxhttp://www.image-net.org/

größte Herausforderung: Bilder müssen gelabelt sein!

Autonomes Fanren/Objekterkennung				
Dataset	Ground truth			
The KITTI Vision Benchmark Suite A project of Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago	 3D/2D Object detection 3D Object tracking SLAM/visual odometry Optical/scene flow Depth Lane detection, road estimation http://www.cvlibs.net/datasets/kitti/ 			
CITYSCAPES DATASET Semantic Understanding of Urban Street Scenes	Object detectionSemantic segmentationhttps://www.cityscapes-dataset.com/			
DeepDrive	 Object detection Freespace detection Lane markings Instance segmentation https://bair.berkeley.edu/blog/2018/05/30/bdd/ 			
Mapillary	 Object detection Semantic segmentation Instance segmentation https://www.mapillary.com/ 			
apollo scape	 Semantic segmentation Object detection Lane segmentation Self localization Car instance segmentation Depth estimation http://apolloscape.auto/ 			
COCO Common Objects in Context	 Object detection Object regocnition Localization Semantic segmentation http://cocodataset.org/ 			

Deep Learning Software inkl. GPU-Unterstützung

- Python-Bibliotheken
 - integrierte GPU/TPU Unterstützung
- Tensorflow
 - Große Community
 - Gute Unterstützung für Hardware
- Keras Keras
 - High-level Bibliothek für Tensorflow und Microsoft Cognitive Toolkit
 - sehr kompakte Schreibweise
- PyTorch
 - Fokus auf wissenschaftliche Anwendungen


```
model = Sequential()
                  model.add(Conv2D(32, kernel_size=(3, 3),
                                   activation='relu',
                                   input_shape=input_shape))
                  model.add(Conv2D(64, (3, 3), activation='relu'))
        Model
                  model.add(MaxPooling2D(pool_size=(2, 2)))
   Architektur
                  model.add(Dropout(0.25))
                  model.add(Flatten())
                  model.add(Dense(128, activation='relu'))
                  model.add(Dropout(0.5))
                  model.add(Dense(num_classes, activation='softmax'))
Erstellung des )
                  model.compile(loss=keras.losses.categorical_crossentropy,
Rechengraphs \
                                 optimizer=keras.optimizers.Adadelta(),
                                 metrics=['accuracy'])
                  model.fit(x_train, y_train,
                            batch_size=batch_size,
                            epochs=epochs,
Model Training
                            verbose=1,
                            validation_data=(x_test, y_test))
                  score = model.evaluate(x_test, y_test, verbose=0)
```

Weitere Umgebungen: Microsoft Cognitive Toolkit , Caffe, Deeplearning4j, ...

Einsatzszenarien

Anwendung:

- Segmentierung
- Objekterkennung
- Autonomes Fahren
- Beispiel Architekturen:
 - ResNeXt
 - Faster R-CNN
 - Mask R-CNN
 - → Gute Verfügbarkeit von Daten

Quelle: Cityscapes, https://www.cityscapes-dataset.com/

Anwendungen:

- Zellsegmentierung
- Gewebeerkennung
- Beispiel Architekturen:
 - U-Net
 - Segnet
 - → Umfangreiche und gute Datensets schlecht verfügbar (auch immer für eigene Probleme!)

GAN: Generative Adversarial Networks (1)

Ziel: Synthetisierung von Bildern, die von realen Bildern nicht unterscheidbar sind

Modell besteht aus 2 Netzen:

- G: Generator, der Bilder auf Basis von zufälligem Rauschen erstellt
- D: Diskriminator, binäre Klassifikation zwischen echten und generierten Bildern

Training:

- D: Binäre Klassifikation zwischen echten und von G generierten Bildern
- G: Anpassen der Gewichte, so dass der Diskriminator getäuscht wird
- abwechselndes Trainieren von G und D
- da die beiden Modelle gegensätzliche Ziele haben, spricht man von adversarial network.
- im Optimalfall werden beide Netze kontinuierlich besser und die Qualität der erzeugten Bilder steigt.

GAN: Generative Adversarial Networks (2)

Anwendung

- Style-Transfer
- Erstellung von natürlichen Bildern
- Super-Resolution (Erhöhung der Auflösung von Bildern)
- Label2Image (https://phillipi.github.io/pix2pix/)

- Vid2Vid <u>https://github.com/NVIDIA/vid2vid</u>
- CycleGAN
 https://github.com/junyanz/CycleGAN

Style-Transfer: Quelle:Jun-Yan Zhu et al. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", ICCV, 2017

Überinterpretation & Inceptionism

Ähnlich wie Style-Transfer ("Deep Dream"):

- Eingang: Wolkenbild (oben)
- Netz: Trainiert auf Tieren
- Ausgang: Wolkenbild mit Tiermuster
- Lernstrategie: Modifizieren des EINGANGSBILDES so, dass es dem gewünschten Ausgang eines Netzes (vorletzte Schicht) nahe kommt
- Quelle: <u>https://research.googleblog.com/20</u> <u>15/06/inceptionism-going-deeper-into-neural.html</u>

Ergebnis

Quelle: https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Was hat sich geändert, was vorher nicht ging?

- geschickte Verbindung der Layer mit Vorstrukturierung
 - Nutzung bekannter Vorverarbeitungsstrategien (z.B. Faltung)
 - Erzwingen von niederdimensionalen Repräsentationen (z.B. Autoencoder)
- Reduzieren der zu lernenden Parameter:
 - feste Kopplung von Parametern (z.B. gleiche Faltung für lokale Bildbereiche)
 - Downsampling (Verringerung der Auflösung)
 - Lernen nur eines Teils der Parameter (z.B. Transfer Learning)
- spezielle Lernstrategien, um mit vorhandenen Daten auszukommen:
 - Datenaugmentierung
 - Reinforcement Learning & Verkopplung von Ein- und Ausgangsgrößen mehrerer Netze (z.B. in Generative Adversarial Networks)
 - Arbeiten zur Konvergenz der Aktivierungsfunktion
- große gelabelte Datensätze für Training (mit anderen Daten als in der eigentlichen Aufgabe!)
- spezielle Deep Learning Software inkl. GPU-Unterstützung

Gliederung

3.4 3.5	Multi-Layer-Perceptron-Netze (MLP-Netze) Radial-Basis-Funktions-Netze (RBF-Netze)
3.5	Kadiai-Basis-Funktions-Netze (RBF-Netze) Kohonen-Karten
3.7	Deep Learning & Convolutional Neural Networks
3.8	Kommentare

IAI

Kommentare

- Künstliche Neuronale Netze sind wegen ihrer Eigenschaft als "universelle Approximatoren" populär
- dann besonders sinnvoll, wenn strukturelle Zusammenhänge unbekannt sind
- Künstliche Neuronale Netze sind trotzdem eher kompliziert, deshalb unbedingt mit einfacheren Methoden (Polynomregression usw.) vergleichen
- MLP, RBF und SOM sind die Standardtypen für Künstliche Neuronale Netze
- Neuere Trends existieren, z.B. Deep Learning
- Rekurrente Netze stark umstritten
 - Pro: Abbildung dynamischer Zusammenhänge
 - Kontra: Konvergenzprobleme

Software Neuronale Netze (ohne Deep Learning)

Software

"Comparison of Neural Network Simulators" (U Colorado)
https://grey.colorado.edu/emergent/index.php/Comparison_of_Neural_Network_Simulators

MATLAB:

- Neuronale Netze Toolbox inkl. MLP, RBF, SOM usw., Hilfe mit
 >> help nnet
- SciXMiner Implementierungen
 - MLP, RBF, SOM: (frei verfügbar unter http://sourceforge.net/projects/scixminer)
 - Projekte im ILIAS:
 1D, 2D Regression (künstliche Testdatensätze)
 - Projekte in SciXMiner:
 Building-Datensatz für Energieverbrauch in einem Gebäude

Ankündigung Übung Computational Intelligence

- Zeit und Ort:
 - Selbststudium (mit Hinweisen in der Vorlesung)
 - Beratungstermine im SCC-Pool Geb. 20.21, Termin wird noch per ILIAS bekannt gegeben (Pools G&H, 3 Termine), ein Termin pro Studierendem buchbar
- Ziele:
 - Kennenlernen MATLAB-Toolbox SciXMiner
 - Anlernen von MLPs im ein- und zweidimensionalen Fall
 - Zusatzaufgabe: Regression des Energieverbrauchs von Gebäuden

ACHTUNG:

- im ILIAS: uebung_ci.zip
 - Aufgabenstellung inkl. Installationshinweise SciXMiner
 - Beispieldatensätze und Makros
- bei Variante mit Laptop: vor der Übung: S. 2 der Übungsanleitung (Installation auf eigenem Laptop) abarbeiten (sonst WLAN-Probleme)

Bedienung SciXMiner

- Funktionen über Menüs zugänglich (Callbacks...)
- Parameter über Oberfläche einstellbar (Callbacks...)
- Ergebnisse in Bilder und Dateien
- Englisch
- Automatisierung von Abläufen durch Makros
- Einbindung neuer Funktionen:
 - Makro
 - Plugin Merkmalsextraktion
 - Menüpunkt usw.
- Erweiterungen (Peptide, Bildverarbeitung, Datenqualität, Asphaltbilder usw.)
- Installationsdatei
- Handbuch (195 Seiten)

