

Lecture 17

Eigenvalues

Dr. Ralph Chikhany

Strang Sections 6.1 – Introduction to Eigenvalues

In a population of rabbits:

- 1. half of the newborn rabbits survive their first year;
- 2. of those, half survive their second year;
- 3. their maximum life span is three years;
- 4. rabbits have 0, 6, 8 baby rabbits in their three years, respectively.

If you know the population one year, what is the population the next year?

 $f_n =$ first-year rabbits in year n

 $s_n =$ second-year rabbits in year n

 $t_n =$ third-year rabbits in year n

In a population of rabbits:

- 1. half of the newborn rabbits survive their first year;
- 2. of those, half survive their second year;
- 3. their maximum life span is three years;
- 4. rabbits have 0, 6, 8 baby rabbits in their three years, respectively.

If you know the population one year, what is the population the next year?

 $f_n =$ first-year rabbits in year n

 $s_n =$ second-year rabbits in year n

 $t_n = \text{third-year rabbits in year } n$

The rules say:

$$\begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix} = \begin{pmatrix} f_{n+1} \\ s_{n+1} \\ t_{n+1} \end{pmatrix}.$$

Let
$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$$
 and $v_n = \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix}$. Then $Av_n = v_{n+1}$.

The rules say:

$$\begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix} = \begin{pmatrix} f_{n+1} \\ s_{n+1} \\ t_{n+1} \end{pmatrix}.$$

Let
$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}$$
 and $v_n = \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix}$. Then $Av_n = v_{n+1}$.

v_0	v_{10}	v_{11}
$\sqrt{3}$	/30189	/61316
(7)	7761	15095
(9)	\ 1844 <i>]</i>	\ 3881 <i>]</i>
$\binom{1}{}$	/9459	(19222)
$\begin{pmatrix} 2 \end{pmatrix}$	2434	4729
$\backslash 3/$	\ 577 <i>\</i>	\ 1217 /
$\binom{4}{-}$	$\left\langle 28856\right\rangle$	$\left\langle 58550\right\rangle$
$\begin{pmatrix} 7 \\ 2 \end{pmatrix}$	7405	14428
(8)	\ 1765 <i>\</i>	\ 3703 <i>]</i>

Eigenvalues and Eigenvectors

Recall

- What happens when a square matrix acts on a vector?
 - The vector is stretched
 - The vector is shrunk
 - The vector is rotated

Eigenvectors and Eigenvalues

- What happens when a square matrix acts on a vector?
 - The vector is stretched
 - The vector is shrunk
 - The vector is rotated

• There are vectors known as eigenvectors of a square matrix, such that when the matrix acts on such vectors, they remain in the same direction.

$$A\vec{x} = \lambda \vec{x}$$

If $|\lambda| = 1 \implies$ the magnitude of \vec{x} is unchanged

If $|\lambda| < 1 \implies \vec{x}$ is shrunk

If $|\lambda| > 1 \implies \vec{x}$ is stretched

Let
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
, $\vec{u} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Are \vec{u} and \vec{v} eigenvectors of A ?

Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$. Show that $\lambda = 7$ is an eigenvalue of A, and find the corresponding eigenvector.

Find a basis for the 2-eigenspace of

$$A = \begin{pmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{pmatrix}.$$

A basis for the 2-eigenspace of
$$\begin{pmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{pmatrix}$$
 is $\left\{ \begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \right\}$.

Computing Eigenvalues and Eigenvectors

Summary

Let $A \in \mathbb{M}_{n \times n}(\mathbb{R})$

- An eigenvector of A is a non-zero vector $\vec{x} \in \mathbb{R}^n$ such that $A\vec{x} = \lambda \vec{x}$ for some $\lambda \in \mathbb{R}$.
- An eigenvalue of A is a value $\lambda \in \mathbb{R}$ such that the equation $A\vec{x} = \lambda \vec{x}$ has a nontrivial solution. In this case, we say λ is the eigenvalue associated with eigenvectos \vec{x} .

How to Compute Eigenvalues and Eigenvectors

$$A\vec{x} = \lambda \vec{x} \iff A\vec{x} = \lambda I\vec{x} \iff A\vec{x} - \lambda I\vec{x} = \vec{0}$$

$$\iff (A - \lambda I)\vec{x} = \vec{0}$$

Therefore, the eigenvector \vec{x} is in Nul $(A - \lambda I)$.

Recall that $\vec{x} \neq \vec{0}$

- If $\vec{x} = \vec{0}$ is the only solution, then $(A \lambda I)$ has linearly independent columns, i.e., no free columns, then the matrix $(A \lambda I)$ is invertible.
- If $\vec{x} \neq \vec{0}$, then the matrix $(A \lambda I)$ has free columns, i.e., it is not invertible.

$$\Longrightarrow \det(A-\lambda I)=0$$

Finding the eigenvalues and associated eigenvectors

Let
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
. Find the eigenvalues and eigenvectors.

Let
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
. Find the eigenvalues and eigenvectors.

Let
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
. Find the eigenvalues and eigenvectors.

More on Eigenvalues

Trace and Determinant

Def. The trace of an $n \times n$ matrix A is the sum of the diagonal entries of A.

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn}$$

Thm. If A is an $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, then

(i)
$$\det A = \lambda_1 \lambda_2 \dots \lambda_n$$

(ii)
$$tr(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

Invertibility and Eigenvalues

Invertible Matrix Theorem:

A is invertible if and only if 0 is not an eigenvalue of A

Linear Independence of Eigenvectors

 $\text{If } \vec{v}_1, v_2, \ldots, v_n \text{ are eigenvectors of a matrix } A \in \mathbb{M}_{n \times n}(\mathbb{R})$

associated with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$

then $\{\vec{v}_1, \vec{v_2}, \dots, \vec{v_n}\}$ is linearly independent.

Corollary: An $n \times n$ matrix has at most n distinct eigenvalues.