Матанализ. Конспект 2 сем.

Мастера Конспектов

(по материалам лекций Белова Ю. С., а также других источников)

16 февраля 2021 г.

Некоторые записи по матанализу.

Содержание

1	Лекция 1.	3
2	Лекция 2.	4
3	Лекция 3.	6
4	Лекция 4.	8
5	Покима Л	a

1 Лекция 1.

В этом чеместре мы будем занимать анализом функций от многих переменных, то есть, $f: \mathbb{R}^n \to \mathbb{R}^m$, и если m=1, то такая функция называется функцией многих переменных.

Определение 1. Кривые в \mathbb{R}^n - непрерывное отображение $f:[a,b]\to\mathbb{R}^n$.

Основная проблема состоит в том, что образ может выглядеть очень и очень сложно, потому нам хотелось бы более точно понять, как всё это устроено. Потому начнём рассматривать *спрямляемые кривые*, то есть, кривые с конечной длиной. Введём следующее определение:

Определение 2. Вариация функции - $V_f([a,b]) = \sup_{a=x_0 < x_2 < ... < x_n = b} \sum_{k=0}^{\infty} |f(x_{k+1}) - f(x_k)|.$

(x-y) - евклидово расстояние.

Утверждение 1. Если $f:\mathbb{R}\to\mathbb{R}$ монотонна, то $V_f([a,b])=|f(a)-f(b)|.$

Утверждение 2. $V_f([a,b]) = 0 \Leftrightarrow f = \text{const.}$

Утверждение 3. $V_{f+g} \leq V_f + V_g$.

Утверждение 4. V_f аддитивна на промежутке: $a \leq b \leq c$, тогда $V_f([a,c]) = V_f([a,b]) + V_f([b,c])$.

Определение 3. Вариация ограничена, если $V_f < \infty$ на [a, b].

Лемма 1.

- ullet $\mathbb{R} o \mathbb{R}, \ f_1 \ u \ f_2$ монотонны, тогда $f_1 f_2$ имеют ограниченную вариацию.
- f имеет ограниченную вариацию тогда и только тогда, когда $f = f_1 f_2$ на отрезке [a,b], причём эти две функции монотонно возрастают.

Доказательство. Пусть у нас есть f, а также $V_f([a,b]) < \infty$. Рассмотрим $\varphi(x) = V_f([a,x])$. φ определа корректно, причём возрастает. $f = \varphi - (\varphi - f)$, скажем, что $(\varphi - f) = h$, тогда $h(x) \le h(y)$ при $x \le y$. Но это нетрудно показать, $\varphi(x) - f(x) \le \varphi(y) - f(y)$ равносильно $f(y) - f(x) \le \varphi(y - \varphi(x)) = V_f([x,y])$.

По сути, если понимать определение вариации геометрически, то это просто длина кривой на отрезке. Перейдём теперь к способам обхода кривой.

Лемма 2. Пусть $g:[a,b] \to [c,d]$ - непрерывная биекция (тогда и монотонная). Тогда $V_f[c,d] = V_{f \circ g}([a,b]).$

Доказательство. Левая и правая части равны соответственно $\sup \sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)|$ и $\sup \sum_{k=0}^{n-1} |f(g(y_{k+1})) - f(g(y_k))|$. Это, очевидно, одно и то же.

Теперь стоит задаться вопросом: а когда же это V_f (или же, длину кривой) можно посчитать. Если f - гладкая функция (гладкая покоординатно f_k). $f:=[a,b]\to\mathbb{R}^n,\ f=(f_1,\ldots,f_n),\ f_k:[a,b]\to\mathbb{R}$. Тогда

$$V_f([a,b]) = \int_a^b \sqrt{(f_1')^2(x) + \ldots + (f_n')^2(x)} dx.$$

Рассмотрим

$$\sup_{a=x_0,\dots,x_n=b} \sum_{k=0}^{n-1} \sqrt{(f_1(x_{k+1}) - f_1(x_k))^2 + \dots + f_n(x_{k+1}) - f_n(x_k))^2} =$$

$$= \sum_{k=0}^{n-1} (x_k + 1 - x_k) \sqrt{f_1'^2(\xi_{1,k}) + \dots + f_n'^2(\xi_{n,k})}$$

Если f_i непрерывна, то f_i^2 равномерно непрерывна. $f_i'^2(\xi_{i,k}) \leq \min_{[x_k,x_{k+1}]} f_i'^2 + \varepsilon^2$ (для достаточно мелких разбиений и любого эпсилон, большего нуля). Тогда можно получить верхнюю оценку: $\leq \sum_{k=0}^{n-1} (x_{k+1} - x_k) \sqrt{\sum_{l=1}^n \min_{[x_k]} (f_l'^2)} + \varepsilon \sqrt{n} (b-a) \leq \int_a^b \sqrt{\ldots} + \varepsilon \sqrt{n} (b-a)$ (устремляем разбиение к бесконечно малому). А затем делаем аналогично снизу и получаем требуемое равенство.

2 Лекция 2.

Пусть φ - функция, которая определялась на прошлой лекции, а ψ - обратная ей. ψ - биекция, рассматриваем $f \circ \psi$. Посмотрим на $\psi([0,\beta]) = [a,b]$, тогда для любых $c,d \in [0,b]$ $V_{f \circ \psi}([c,d]) = d-c$.

Естественная параметризация гладкого пути практически не отличается от того, что мы уже рассматривали за одним небольшим исключением.

$$\varphi(x) = V_f([a, x]) = \int_a^x |f'(s)| ds = \int_a^x \sqrt{f_1'^2 + \dots + f_n'^2} ds,$$

причём предпоследнее вырежение равно $|(f_1',\ldots,f_n')|$, а под корнем все функции от s. Рассмотрим опять ψ , и как выглядит вектор $f(\psi(x))=(f_1(\psi(x)),\ldots,f_n(\psi(x)))$, рассмотрим его производную, берём покоординатно: $f'(\psi(x))=(f_1'(\psi(x)),\ldots,f_n'(\psi(x)))$. Но $\psi'(x)=\frac{1}{\varphi(\psi(x))}$, тогда $\varphi(s)=|f'(s)|$, а также $|f'(\psi(x))|=1$.

Примечание 1. Если f - гладкая на [a,b) и существует $\int_a^b |f'(s)| ds$, тогда выполнено то же самое, просто $\varphi(x) = \int_a^x |f'(s)| ds$.

Перейдём теперь к тригонометрии. Рассмотрим окружность $x^2+y^2=1$, мы планируем её обходить (то есть, через каждую точку по разу, с одинаковой скоростью, и так далее). Введём попутно также комплексное обозначение (мы не будем заниматься комплексным анализом, просто это удобно). Отождествим \mathbb{R}^2 с \mathbb{C} понятно каким образом. Тогда какое вращение мы хотим? Мы хотим найти функцию $\Gamma: \mathbb{R} \to \mathbb{T} = \{z: |z| = 1$ или $x^2 + y^2 = 1, z = x + iy\}$, а хотим потребовать также следующее:

- $\Gamma \in C^1$ (гладкая),
- $\Gamma(0) = 1$, $\Gamma'(0) = i$ (место старта и начальная скорость, с которой мы идём),
- $|\Gamma'(t)| = 1$ для любого t (постоянная скорость 1).

Сформулируем теорему:

Теорема 1. Функция с данными свойствами существует и единственна.

Доказательство. $\Gamma(t)\in\mathbb{T}$ тогда и только тогда, когда $\Gamma(t)\overline{\Gamma(t)}=1$. Продифференцируем последнее, получим

$$\Gamma'(t)\overline{\Gamma(t)} + \Gamma(t)\overline{\Gamma'(t)} = 0,$$

что также равно

$$2\operatorname{Re}(\overline{\Gamma'(t)}\Gamma(t)) = 0.$$

То есть, мы получили, что $\Gamma(t)\overline{\Gamma'(t)}=ih(t),\ h(t)\in\mathbb{R}$. Применим теперь оставшееся неиспользованное условие: $|\Gamma(t)|=1$, а чтобы параметризация была естественна, $|\Gamma(t)|$ должно быть равно 1. То есть, $h(t)=\pm 1$. Подставим теперь нуль и получим, что функция в этой точке должна быть равна единице, а производная - i. Тогда остаётся один вариант: $h(t)\equiv 1$.

Посмотрим теперь ещё раз на начальные уравнение: $\Gamma'(t)\overline{\Gamma(t)} \equiv i$, то есть,

$$\Gamma'(t) = i\Gamma(t). \tag{1}$$

Таким образом, мы уже пришли к тому, что если вращение существует, то оно должно удовлетворять последнему уравнению, а также $\Gamma(0) = 1$. Это означает, что вращение, которое мы получаем, будет дифференцируемо бесконечно много раз.

Пока что, казалось бы, ни единственности, ни существования, однако из последних утверждений легко получается единственность. Пусть у нас есть $\Gamma_{1,2}$ - два простых вращения. Дначит, они оба удовлетворяют (1). Тогда завайте запишем их частное через со-

пряжённые и возьмём производную:
$$\left(\Gamma_1(t)\overline{\Gamma_2(t)}\right)' = \Gamma_1'(t)\overline{\Gamma_2(t)} + \Gamma_1(1)\overline{\Gamma_2'(t)}$$
, что равно $i\Gamma_1\overline{\Gamma_2} + \Gamma_1\overline{i\Gamma_2} = 0$.

Таким образом, мы получили, что $\Gamma_1\Gamma_2={\rm const}$, но поскольку $\Gamma(0)=1$, то эта константа и равна единице. То есть, $\Gamma_1\overline{\Gamma_2}=1$, следовательно, эти функции равны, единственность доказана.

Докажем теперь существование. Предъявим сначала произвольную параметрицацию окружности, а затем постараемся сделать в ней замену переменной, чтобы получить хорошую функцию (которая должна быть, конечно, гладкой). Давайте параметризуем верхнюю половину $\mathbb T$ самым естественным образом: примем $x=t,\ y=\sqrt{1-t^2},\ -1\leq t\leq 1$ (двигаемся по часовой стрелке). Теперь нам нужно отпараметризовать нижнюю половину, возьмём для этого $x=-t,\ y=-\sqrt{1-t^2},\ -1\leq t\leq 1$, двигаться мы теперь будем по нижней половине, но в другом направлении, то есть, одну из половин нужно перевернутьт и "склеить" в один целостный проход. Тогда в нижней половине "сдвинем" рассмотрение на $1\leq t\leq 3$, и преобразуем: $y=-\sqrt{1-(2-t)^2}$.

Осталось проверить, что полученная функция гладкая. Вообще, это почти везде очевидно, кроме ± 1 , это и проверим. $f(t)=(t,\sqrt{1-t^2})$, а вектор $f'(t)=(1,\frac{-t}{\sqrt{1-t^2}})$. Функция $\varphi(x)$ на (-1,1) выглядит как

$$\int_{-1}^{x} |f'(s)| ds = \int_{-1}^{x} \sqrt{1 + \frac{t^2}{1 - t^2}} dt = \int_{-1}^{x} \frac{dt}{\sqrt{1 - t^2}}.$$

Функция $\varphi(x)$ - возрастающая биекция, значит, мы можем посмотреть на обратную функцию $\psi(x) = \varphi^{-1}(x)$. Рассмотрим теперь для $x \in (-1,1)$,

$$(f^{-1}(\psi(x)))' = (f_1'(\psi(x))\psi'(x), f_2'(\psi(x))\psi'(x)).$$

Тогда, так как $\psi'(x) = \frac{1}{\varphi'(\varphi(x))}$, это также и равно $\sqrt{1-\psi^2(x)}$, что также равно

$$(\psi'(x), \frac{-\psi(x)}{\sqrt{1-\psi(x)}}\sqrt{1-\psi^2(x)}).$$

В последнем также можно сократить числитель и знаменатель. Итого, $f(\psi(x))$ - гладкая на (-1,1), и более того, если $x\to\pm 1$, производная имеет конечный предел. Получается, дифференцируема на интервале, и производная имеет предел в крайних точках, тогда она в них также дифференцируема. Таким образом, для верхней половины мы всё показали, для нижней - аналогично, всего лишь с линейной заменой.

После доказательства теоремы, можно, наконец, ввести определения:

Определение 4.

$$\cos(x) = \operatorname{Re}(\Gamma(x)),$$

$$\sin(x) = \operatorname{Im}(\Gamma(x)).$$

Далее уже можно поговорить о бесконечной дифференцируемомти и формуле Муавра, этим, вместе с доказательством, что мы нашли привычные функции, мы, кажется, и планируем заниматься далее.

3 Лекция 3.

Для начала, закончим с тригонометрией. Мы научились строить синус и косинус через вращение окружности. Немного не помню, обговаривали ли мы это на прошлой лекции, но Юрий Сергеевич кратуо цпомянул, что мы можем разложить $\Gamma(x)$ в ряд Тэйлора в $\sum_{n=0}^{\infty} \frac{(ix)^n}{n!}$ в силу свойства $\Gamma'(x) = i\Gamma(x)$ и того, что остаточный член в форме Лагранжа будет стремиться к нулю при стремлении n к бесконечности.

Тогда

$$\cos x = \operatorname{Re} \Gamma(x) \Rightarrow \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} (-1)^n$$

и аналогично синус по нечётным степеням.

Мнимая экспонента обладает свойствами, аналогичным обыкновенной экспоненте, поэтому покажем, что $\Gamma(x+y)=\Gamma(x)\Gamma(y)$. Рассмотрим $\Gamma(x+y)\overline{\Gamma(y)}$ - функцию от x, а y - параметр. Это - некоторый обход окружности, который также удовлетворяет всем нормировочным условиям. $\varphi(0)=1,\ |\varphi'(x|=1,\$ и, наконец, $\varphi'(0)=\Gamma'(0)=i.$

Теперь все прекрасные формулы косинуса и синуса суммы и разностей легко выводятся из доказанной формулы. Через мнимую экспоненту запишем: $e^{i(x+y)=e^{ix}\cdot e^{iy}}$, а там уже просто надо посмотреть на мнимые и действительные части.

Из полученных свойств получим, что $\Gamma(x)\Gamma(-x)=\Gamma(0=1)$, тогда $\Gamma(-x)=\overline{\Gamma(x)}$, откуда мы получаем чётность косинуса и нечётность синуса.

Можно упомянуть и формулу муавра. Распишем

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}, \ \sin(x) = \frac{e^{ix} - e^{-ix}}{2i},$$

это формулы Муавра. Также можно получить и периодичность, это, вообщем-то очевидно и завершает наш разговор об элементарных функциях.

Перейдём теперь к многочерному анализу. Мы бы хотели точно также уметь анализировать функции и делать всё то, что мы уже умеем делать для одномерных функций, в том числе, решать экстремальные задачи. Нас интересуют функции $f:\mathbb{R}^m \to \mathbb{R}^n$.

Начнём с того, что в евклидовом пространстве \mathbb{R}^m расстояние задаётся как

$$d(x,y) = \sqrt{\sum_{k=1}^{m} (x_k - y_k)^2} = ||x - y||.$$

И если у нас имеется точка $x=(x_1,\ldots,x_m)$, то её норма есть $||x||=\sqrt{\sum_{k=1}^m x_k^2}$. Вообще, норму можно задать как угодно, если она удовлетворяет таким свойствам:

- норма функция $\mathbb{R}^m \to \mathbb{R}_{+,0}$,
- $||x|| = 0 \Leftrightarrow x \equiv (0, \dots, 0),$
- $||\alpha x|| = |\alpha| \cdot ||x||, \ \alpha \in \mathbb{R},$
- $||x+y|| \le ||x|| + ||y||$.

Разберёмся с понятием гладкости. Для начала, алгебраически. Пусть у нас есть функция нескольких переменных $f: \mathbb{R}^m \to \mathbb{R}, f(x_1, \dots, x_m)$.

Определение 5. f дифференцируема в точке (x_1, \ldots, x_m) , если f(y) = f(x) + L(y - x) + o(||x - y||), где L - линейное отображение $\mathbb{R}^m \to \mathbb{R}$, причём однородное, то есть, L(0) = 0.

Определение 6. Это линейное отображение L называется $\partial u \phi \phi$ регициалом в точке x.

На топологии мы доказывали, что в конечномерном пространстве различные норма липшицево-эквивалентны, потому мы просто во всех рассуждениях будем испоьзовать именно евклидовы нормы, потому что они удобные. А теперь перейдём к базовым свойствам.

Примечание 2. L - единственно.

Примечание 3. Если у нас есть две функции: f и g, то дифференциал $\alpha f + \beta g$, α , $\beta \in \mathbb{R}$ есть $\alpha L_1 + \beta L_2$, где L_1 и L_2 - дифференциалы f и g.

Рассмотрим теперь отображение общего вида: $f: \mathbb{R}^m \to \mathbb{R}^n$. Тогда

Определение 7. (Гладкость). f(y) = f(x) + L(y-x) + o(||x-y||), где L - линейное отображение $\mathbb{R}^m \to \mathbb{R}^n$, L(x+y) = L(x) + L(y). о-малое в данном случае можно понять как

$$\frac{f(y) - f(x) - L(y - x)}{||y - x||} \to 0,$$

то есть, элемент \mathbb{R}^n стремится у нулю, но для удобства можно взять евклидову норму этого выражения.

Какой вид имеет общее линейное отображение из $\mathbb{R}^m \to \mathbb{R}^n$? Естественно, это - матрица, это мы знаем из алгебры и умеем расписывать переход в тривиальном базисе.

Перейдём к свойствам линейных отображений. Мы умеем их складывать, умножать, а также, совершать композиции в случае согласованности размерностей, которая соответствует перемножению матриц.

Пусть теперь, опять же, у нас есть отображение $L: \mathbb{R}^m \to \mathbb{R}^n$, то $L(\mathbb{R}^m) \subset \mathbb{R}^n$ - подпространство, которое имеет размерность от 0 до n, эту размерность мы понимаем как ранг линейного отображения. Если же мы берём композицию линейных отображений, то ранг не может вырасти (куда растягивать-то). Также, легоко видеть, что если m < n, то $\dim(L(\mathbb{R}^m)) \leq m < n$.

Зададимся теперь вопросом, какая существует естественная метрика на линейных отображениях $\mathbb{R}^m \to \mathbb{R}^n$. По сути, эти линейные отображения представляют собой евклидово пространство размерности $m \cdot n$. Задать на нём мы можем евклидову метрику: под корнем будут квадраты всех матричных элементов. Эта норма вычисляется проще, но зато гораздо менее естественна, чем следующая (например, относительно вопроса о композиции). $||L|| = \sup_{||x|| < 1} ||Lx||, \ x \in \mathbb{R}^m, \ LX \in \mathbb{R}^n$. Эта вещь конечна, так как она не превосходит $\sum_{k=1}^m ||Le_k||$, а также выполняются все свойства нормы.

Геометрический смысл у данной нормы очень простой: мы смотрим, насколько сильно она растягивает расстояние в зависимости от направления.

Завершаем лекцию несколькими переопределениями нормы:

- $\sup_{||x||<1} ||Lx||$,
- $\sup_{||x|| \le 1} ||Lx||$,
- $\sup_{||x|| \neq 0} \frac{||Lx||}{||x||}$,
- $\bullet \sup_{||x|| < =} ||Lx||.$

4 Лекция 4.

Продолжаем с операторами, пусть $A:\mathbb{R}^n\to\mathbb{R}^n$ - линейный, $||A||=\sup_{||x||\leq 1}||Ax||$ - норма, где ||x|| - Евклидово. $A\cong\mathbb{R}^{nm}$, так как можно выносить константу, не меньше нуля (притом равна тогда и только тогда, когда сам оператор - нуль), а также, норма суммы не превосходит сумму норм.

Определение 8. ||A|| - *операторная норма*, притом супремум всегда достигается.

Операторная норма есть самое большое по модулю собственное число. Предположим, что у A есть n различных λ_i собственных чисел, у которых есть соответственные x^i собственные векторы. Запишем тогда $x = \sum_{k=1}^n a_k x^k$, $Ax = \sum_{k=1}^n \lambda_k a_k x^k$, тогда $||Ax|| \le \max_k |\lambda_k| \cdot ||x||$, но это мы объяснить не смогли.

Однако разговор сейчас шёл о различных собственных числах, бывают же *кратные* собственные числа. Что происходит?

Важный момент, почему важна операторная норма. Пусть $A:\mathbb{R}^n \to \mathbb{R}^m, \ B:\mathbb{R}^m \to \mathbb{R}^k$, тогда $||BA|| \leq ||B|| \cdot ||A||$, так как левая часть по определению равна $\sup_{||x|| \leq 1(\mathbb{B}\mathbb{R}^n)} \leq \sup_{||y|| \leq ||A||} ||By|| \leq ||B|| \cdot ||A||$. Заметим также две следующие вещи для линейного $A:\mathbb{R}^n \to \mathbb{R}^m$ равносильны:

- $\ker A = \{0\}$
- $||Ax|| \ge \varepsilon ||x||, \exists \varepsilon > 0.$

Доказательство. $\{x: ||x||=1\}$ - единичная сфера в \mathbb{R}^n . Пусть $f(x): x \to ||Ax||, f$ - непрерывная $(?), f \neq 0$ на единичной сфере, тогда $f \geq \varepsilon > 0, ||Ax|| \geq \varepsilon ||x||, ||x|| = 1$.

Вообще, нам все эти операторы нужны для рассуждений о гладкости, сформулируем теорему:

Теорема 2. $f: G \to \mathbb{R}^m, G \subset \mathbb{R}^n$ - открытое, f - гладкая в окрестности x^0 (верхние индексы), $y^0 = f(x^0), g: V_{f(x^0)} \to \mathbb{R}^k$, гладкая в $f(x^0)$, для f и g существуют линейные операторы A (x_0 0) и B ($f(x_0)$). Тогда g(f(x)) - гладкое (?) отображение в x_0 с линейным оператором (?) $BA: \mathbb{R}^n \to \mathbb{R}^k$.

Доказательство. Мы знаем, что существует представление $f(x) = f(x^0) + A(x-x^0) + o(||x-x^0||)$. Применим g, получим

$$g(f(x)) = g(y^{0} + A(x - x^{0}) + o(||x - x^{0}||)).$$
(2)

Также мы знаем, что g гладкая, то есть, также представима в виде $g(y) = g(y^0) + B(y - y^0) + o(||y - y^0||)$, тогда приняв аргумент правой части (1) за y, получим продолжение тождества:

$$g(y^{0}) + B(A(x - x^{0}) + o(||x - x^{0}||)) + o(A(x - x^{0}) + o(||x - x^{0}||)) = g(y^{0}) + BA(x - x^{0}) + o(||x - x^{0}||).$$
(3)

Нам много чего хочется от анализа многих переменных, но тут всё, конечно, гораздо сложнее. Перейдём к *частным производным*.

Примечание 4. $f: \mathbb{R}^n \to \mathbb{R}^m$ - гладкая в x^0 тогда и только тогда, когда при записи $(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))$ f_k - гладкая $\mathbb{R}^n \to \mathbb{R}$ для всех k (можно написать доказательство).

Определение 9. Частная производная. Пусть имеется $f: \mathbb{R} \to \mathbb{R}$, $f(x_1, \dots, x_n)$, $x^0 = (x_1^0, \dots, x_n^0)$. Тогда частная производная по x_k , $f(x_1^0, \dots, x_{k-1}^0, x, x_{k+1}^0, \dots, x_m^0) = g(x), g'(x_k^0)$. $\frac{\partial f}{\partial x_k}\Big|_{x^0} := g'(x_k^0) = \lim_{\varepsilon \to 0} \frac{f(\dots, x_k^0 + \varepsilon, \dots) - f(\dots)}{\varepsilon}$.

Рассмотрим теперь *производную по направлению*. Пусть направление задаётся $e \in \mathbb{R}^n$, $||e||=1,\ f$ - дифференцируема по направлению e, если $g(t)=f(x^0+te),\ t\in\mathbb{R}$ и существует g'(0), то производная по направлению e - $g'(0)=\lim_{t\to 0}\frac{f(x^0+te)-f(x^0)}{t}$.

5 Лекция 4.

Введём несколько дополнительных терминологий. Пусть у нас есть отображение $f: \mathbb{R}^n \to \mathbb{R}^m$, $f = (f_1, \dots, f_m)$, $\frac{\partial f_k}{\partial x_l}$, $1 \le k \le m$, $1 \le l \le n$, тогда матрица Якоби выглядит как

Теорема 3. Пусть у нас есть отображение $f: \mathbb{R}^n \to \mathbb{R}^m$, $V_{x_0} \to \mathbb{R}^m$, причём существуют все частные производные в V_{x^0} и они непрерывные в x^0 . Тогда f дифференцируема в точке x^0 .

Доказательство. Для начала, мы можем полагать, что m=1, так как можно доказывать, по сути, покомпонентно. Пусть $x^0=(x_1^0,x_2^0,x_3^0)$ (докажем для 3, потом обсудим общий случай), ну а $x=(x_1,x_2,x_3)$. Нас интересует $f(x_1,x_2,x_3)-f(x_1^0,x_2^0,x_3^0)$. Действуем стандартным образом, будем двигать координаты по одной (так как все сразу двигать не можем). Меняя по одной координате, представим разности из частных производных. Разность равна

$$f(x_1, x_2, x_3) - f(x_1^0, x_2, x_3) + f(x_1^0, x_2, x_3) - f(x_1^0, x_2^0, x_3^0)$$

Разбивается в две подряд идещие разности, достаточно удобные, но последняя всё равно "не айс":

$$f(x_1, x_2, x_3) - f(x_1^0, x_2, x_3) + f(x_1^0, x_2, x_3) - f(x_1^0, x_2^0, x_3) + f(x_1^0, x_2^0, x_3) - f(x_1^0, x_2^0, x_3) - f(x_1^0, x_2^0, x_3) + f(x_1^0, x_2^0, x_3^0, x_3^0) + f(x_1^0, x_2^0, x_3^0, x_3^0, x_3^0) + f(x_1^0, x_2^0, x_3^0, x_3^0, x_3^0, x_3^0) + f(x_1^0, x_2^0, x_3^0, x_3^0, x_3^0, x_3^0) + f(x_1^0, x_2^0, x_3^0, x_3^0, x_3^0, x_3^0, x_3^0) + f(x_1^0, x_2^0, x_3^0, x_3^0$$

Теперь уже три удобные разности, так и запишем равенство далее:

$$= \frac{\partial f}{\partial x_{1}}\Big|_{(\xi_{1},x_{2},x_{3})_{\xi \in [x_{1}^{0},x_{1}]}} (x_{1} - x_{1}^{0}) + \frac{\partial f}{\partial x_{2}}\Big|_{(x_{1},\xi_{2},x_{3})} (x_{2} - x_{2}^{0}) + \frac{\partial f}{\partial x_{3}}\Big|_{(x_{1},x_{2},\xi_{3})} (x_{3} - x_{3}^{0}) =$$

$$= \frac{\partial f}{\partial x_{1}}\Big|_{(x_{1}^{0},x_{2}^{0},x_{3}^{0})} (x_{1} - x_{1}^{0}) + \frac{\partial f}{\partial x_{2}}\Big|_{(x_{1}^{0},x_{2}^{0},x_{3}^{0})} (x_{2} - x_{2}^{0}) + \frac{\partial f}{\partial x_{3}}\Big|_{(x_{1}^{0},x_{2}^{0},x_{3}^{0})} (x_{3} - x_{3}^{0}) +$$

$$+ \left(\frac{\partial f}{\partial x_{1}}\Big| - \frac{\partial f}{\partial x_{1}}\right) (x_{1} - x_{1}^{0}) + \left(\frac{\partial f}{\partial x_{2}}\Big| - \frac{\partial f}{\partial x_{2}}\right) (x_{2} - x_{2}^{0}) + \left(\frac{\partial f}{\partial x_{3}}\Big| - \frac{\partial f}{\partial x_{3}}\right) (x_{3} - x_{3}^{0})$$

Последние три слагаемых - остаток, R(x), тогда $\forall \varepsilon>0,\ \exists \delta\ ||x-x^0||<\delta,\ |R(x)|<\varepsilon||x-x^0||.$

Теорема 4. Пусть $f: \mathbb{R}^n \to \mathbb{R}$, f - гладкая на G - открытое(???). Я нихуя не могу прочитать, что тут написано.

Доказательство. grad $f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}), f$ - локальный максимум $f, x^0, \frac{\partial f}{\partial x_k} \bigg|_{x_0} \neq 0.$

$$(x_1^0, \dots, x_{k-1}^0, x, x_{k+1}^0, \dots, x_n^0) - (x_1^0, \dots, x_m^0) = \frac{\partial f}{\partial x_k} \Big|_{x^0} (x_k - x_k^0) + o(|x_k - x_k^0|).$$

причём первое слагаемое не нуль.

Нам бы ещё хотелось иметь теорему об обратном отображении.

Теорема 5. (Об обратном отображении). Пусть $f: G \to \mathbb{R}^n$, G - открыто в \mathbb{R}^n , y f есть гладкие частные производные (???), f - в точке x^0 дифференцируема A, A - (сука???????). Тогда V_{x^0} $\exists g$ - гладкая, (?????) $f(x^0)$, g(f(x)) = x, g - дифференцируема в $f(x^0) \Rightarrow A^{-1}$.

Доказательство. $(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$ - вспомнили, а теперь - к доказательству.

Утв. 1. f - гладкая в окрестности точки x^0 с непрерывными частными производными, тогда f липшицева, то есть, $|f(x) - f(y)| \le C||x - y||$. Если мы зафиксируем точку x, то $|f(x) - f(y)| \le (||A|| + \varepsilon)||x - y|| \; \forall \varepsilon > 0, \; A = A_x. \; ||A_x|| \le \sum_{k=1}^n \left|\frac{\partial f}{\partial x_k}\right|_{-1}$.

Утв. 2. Если к тому же $\operatorname{Ker}(A) = \{0\}$, то f - билиппицево (в окрестности x^0), $C_2||x-y|| \le |f(x)-f(y)| \le C_1||x-y||$. Докажем и его. $f(y)=f(x)+A_x(y-x)+o(||x-y||)$, тогда $||A_{x^0}z|| \ge \varepsilon ||z||$, $\forall z \in \mathbb{R}^n$, $||A_xz|| - A_xz = A_{x^0}z + (A_x-A_{x^0})z$. Первый элемент не меньше $\varepsilon ||z||$, а $||A_x-A_{x^0}||$ стремится к 0 в окрестности этой точки, тогда

$$|f(y) - f(x)| = |A_x(y - x) + o(||x - y||),$$

но каждый из них можно ограничить снизу $\frac{\varepsilon}{2}||x-y||$.

 \Box

Тогда $f: \mathbb{R}^n \to \mathbb{R}^m$, Ker $A = \{0\}$, тогда $n \leq m$.

Итого, у нас есть отображение $f: f(x) = f(x^0) + A(x-x^0) + o(||x-x^0||)$. Рассмотрим шарик $B_r(x^0) = \{x: ||x-x^0|| < r\}, f(B_r(x^0)), f$ - биективна. Проверим, что он содержится в каком-то $B_{r'}(f(x^0))$.

Утв. 3. В условиях теоремы для любого r существует r', $f(\overline{B_r(x^0)}) \supset \overline{B_{r'}(f(x^0))}$. Для любого $y \in B_{r'}(f(x^0))$ f(x) = y, хотим найти x. $F(x) = ||f(x) - y||^2$, гладкая в окрестности x^0 . Минимум этой функции где-то достигается (непрерывная на компакте). $F(x^0) = ||f(x^0) - y||^2 \le r'^2$, тогда минимум не может достигаться на границе, так как иначе $||x - x^0|| = r$. Тогда с одной стороны $||f(x) - y||^2 = ||f(x) - f(x^0) + f(x^0) - y||^2$. f билипшицева, поэтому разность первых двух можно оценить чнизу $\varepsilon||x - x^0||$, а разность последних двух можно ограничить сверху r'^2 , то есть, вся эта вещь как минимум r'^2 .

Пусть w - минимум F(x) на $B_r(x^0)$, тогда $\operatorname{grad} F(w)=0,=||f(x)-y||^2=\sum_{k=1}^n(f_k(x)-y_k)^2,$

$$\left. \frac{\partial F}{\partial x_l} \right|_w = \sum_{k=1}^n \frac{\partial f_k}{\partial x_l} \right|_w 2(f_k(x) - y_k),$$

Ну под конец не успел, слишком долго расшифровывать.