

computing lexicographic parsings

Dominik Köppl Tokyo Medical and Dental University

DCC 2022

- text factorization $T = \begin{bmatrix} F_1 & F_2 & ... \end{bmatrix}$
- usable for lossless text compression
- uses lexicographic order of suffixes of input text
- special kind of bidirectional parse [Storer, Szymanski 1978]
- introduced by Navarro+ '21 (arXiv preprint: '18)

bidirectional parse

- factorizes T
- represent a factor $F = T[i..i+\ell-1]$ as
 - a single character ($\ell=1$), or
 - a pair (reference j, length ℓ) where $F = T[j..j+\ell-1]$

example text

text T = bananaban

replace factors by pair-representation

replace factors by pair-representation

replace factors by pair-representation

- replace factors by pair-representation
- self-references are allowed

- replace factors by pair-representation
- self-references are allowed

- replace factors by pair-representation
- self-references are allowed

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline a & n & (2,3) & b & a & n \end{bmatrix}$$

notation

- T: input text
- n: length of T, i.e., n := |T|
- σ : alphabet size
- T[i..]: suffix of T starting at position i

- process T from left to right
- when computing factor starting at T[i]: select suffix T[j..] directly lexicographically preceding T[i..],
 - *j* becomes reference,
 - the factor length is the longest common prefix of T[i...] and T[j...]


```
• T[7..] < T[1..] and
```

• there is no j with T[7...] < T[j...] < T[1...]

- T[7..] < T[1..] and
- there is no j with T[7...] < T[j...] < T[1...]

copy 3 characters from position 7

- T[7..] < T[1..] and
- there is no j with T[7...] < T[j...] < T[1...]

copy 3 characters from position 7

- T[7..] < T[1..] and
- there is no j with T[7...] < T[j...] < T[1...]

copy 3 characters from position 7 copy 2 characters from position 8

decompressible

lexparse does not produce cycles

- reference is always the starting position of a lexicographically preceding suffix
- the lexicographic order induces a ranking (= total order) on all suffixes
- total orders are transitive

[Dinklage+ '17]

aim of this talk

question:

Within O(n) time, in what space can we compute lexparse ?

known solution:

- O(n) time and
- O(n log n) bits of space

aim of this talk

aim of this talk

Definition of SA

1 2 3 4 5 6 7 8 9

T = b a n a n a b a n

```
1 2 3 4 5 6 7 8 9
T = b a n a n a b a n
       n a n a b a n
    b
     a
       n a n a b a n
      a
        n a n a b a n
          a n a b a n
            n a b a n
              a b a n
                 b a n
                   a
                     n
```

```
4 5
          6
                       for visualization,
 a n a n a b a n
                       left-align all suffixes
    n a n a b a
b
                        bananaba
  a
                      2 a n a n a b
     a n a b a n
    n
  a
        n a b a n
                      3 nanaba
      a
    n
                      4 a n a b a n
          a b a n
      a
        n
                       n a b a
            b a
        n
          a
                      6 a b a n
            b a
          a
             b a
                      7 b a n
                n
                      8
                       a
                         n
                 n
               a
                        n
                 n
```

14 / 40

sort lexicographically

```
b a
                           b
  a
                             a
                               n a n
8
  a
                              a n a b
    n
                          a
                             n
                                         a
         b a
  a
      a
                              n a b a
    n
                           n a
                                        n
         naban
                          a n a b a
    n
      a
                                     n
  b
    a
                            a b <u>a</u>
      n
                           n
                                   n
        anaban
                          a b a n
  n
                           b
                            a
                              n
      b
         a
  n
    a
                           a
                            n
         a b a
                           n
```

```
store starting positions
                            → suffix array SA
of the suffixes
     a b a n
                                    6
   8
     a
                                    8
       n
       naban
     a
                                    4
       nanaban
                                    2
     b
       a
         n
     bananaban
                                    1
     n
                                    9
          b a
     n a
          n a b a n
        a
```

construction of SA

- enumerating all suffixes takes $\Omega(n^2)$ time
- however, there are O(n)-time algorithms constructing SA with enumeration

[Ko, Aluru '05]

suffix array SA

known solution: compute lexparse

- in O(*n*) time
- with O(n log n) bits

SA-based computation of lexparse

SA-based computation of lexparse

SA-based computation of lexparse

SA-based computation of lexparse

suffix array SA

ISA / LCP

- to compute factor F starting at T[i], we need to know index p with i = SA[p]
- for that use inverse suffix array ISA with SA[ISA[i]] = i such that ISA[i] = p
 - \Rightarrow reference of F is SA[p-1] = SA[ISA[i]-1]
- length of reference given by LCP array storing, for every p, the longest common prefix of T[SA[p] ...] and T[SA[p-1]...] in LCP[p]
 - \Rightarrow LCP[ISA[i]] = LCP[p] is the length of F

known algorithm

- construct SA, ISA, LCP in O(n) time
- compute factor starting at T[i] in constant time:
 - reference: SA[ISA[i] 1]
 - length : max(LCP[i], 1)
- O(n) total time
- pseudo code :
 i = 1; while i < n :
 - if LCP[i] = 0: report T[i]; $i \leftarrow i + 1$
 - else: report pair (SA[ISA[i]-1], LCP[i]); $i \leftarrow i + LCP[i]$

[Navarro+ '21]

known algorithm

- [Navarro+ '21]: O(n) time,
 3 integer arrays: SA, ISA, LCP
 concrete example
- byte alphabet (1 byte = 8 bits)
- entry of an integer array: 4 bytes (32 bits)
- for 200 MiB of input:
 2.6 GiB RAM are necessary

 $(1 \text{ MiB} = 1024^2 \text{ byte})$

200 MiB ASCII web pages

algorithmic flow chart

Kasai+ '01: LCP array construction algorithm

towards small memory

- drop LCP
- compute longest common prefix of T[i..] and T[SA[ISA[i]-1]..] naively
- given factor F_x has length $|F_x|$, then $\sum_x |F_x| = n$
- \Rightarrow O(n) time is needed

algorithmic flow chart

are SA / ISA necessary?

array

array

$$Φ[i] := SA[ISA[i] - 1]$$
 $Φ 7 4 5 8 9 - 2 6 1$

SA 6 8 4 2 7 1 9 5 3

ISA 6 4 9 3 8 1 5 2 7

1 2 3 4 5 6 7 8 9

b a n a n a b a n

$$\Phi[i] := SA[ISA[i] - 1]$$

application of Φ

7
 4
 5
 8
 9
 2
 6
 7
 8
 9
 a
 a
 a
 a

- $\Phi[i]$: reference
- factor length computed naively

application of Φ

- $\Phi[i]$: reference
- factor length computed naively

algorithmic flow chart

200 MiB ASCII web pages

39% of memory reduced

algorithmic flow chart

[Goto, Bannai '14]: construct Φ from input text directly with

- O(*n*) time and
- O(σ lg n) bits of additional working space

precomputation: max. memory usage

- 0) SA + ISA + LCP : 2.88 GiB
- 1) SA + ISA \rightarrow Φ : 1.76 GiB
- 2) only Φ : ~ 1 GiB

all methods are linear time, but 2) only needs 35% of the memory of 0)

compressed Φ representation

entries with $\Phi[i] = \Phi[i-1] + 1$ are prevalent for highly repetitive texts

⇒ allows for compression

Φ': sparse Φ

$$\Phi' \quad 7 \quad 4 \quad 8 \quad - \quad 2 \quad 6 \quad 1$$

$$i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$$

$$T = \mathbf{b} \quad \mathbf{a} \quad \mathbf{n} \quad \mathbf{a} \quad \mathbf{b} \quad \mathbf{a} \quad \mathbf{n}$$


```
query Φ[j],
      1 1 0
                 0 1 1 1
    B
    Φ'
      7 4 8
                    6
      7 4 5 8 9 -
    Φ
                         6
        2 3 4 5 6
                     7 8
                           9
```

if B[j] = 1, $\Phi[j] = \Phi'[B.rank_1(j)]$ where $rank_1(j)$ counts the '1's in B[1..j]

```
query Φ[j],
                      B[1..4] has 3 '1's
     B
                      0
               0
     Φ'
            4
               8
                          6
        7 4 5 8 9 -
     Φ
                                6
          2 3 4 5 6
                                   9
```

if B[j] = 1, $\Phi[j] = \Phi'[B]$. The stantage of B[j] where $A_1(j)$ counts the '1's in $A_2(j)$ in $A_3(j)$ counts the '1's in $A_3(j)$.

```
query Φ[j],
                       B[1..4] has 3 '1's
     B
                0
                8
     Φ'
                           6
            4 5 8 9 -
     Φ
                                  6
           2 3 4
```

if B[j] = 1, $\Phi[j] = \Phi'[B.rank_1(j)]$ where rank₁(j) counts the '1's in B[1..j]

```
query Φ[j],
                     B[1..3] has 2 '1's
                0
     B
     Φ'
                8
            4 5 8
     Φ
                                 6
           2 3 4 5 6
```

if B[j] = 0: $\Phi[j] = \Phi'[B.rank_1(j)] +$ $B.rank_0(j) - B.rank_0(B.select_1(B.rank_1(j)))$ where $B.select_1(k)$ gives the position of the k-th '1' in B

if B[j] = 0: $\Phi[j] = \Phi'[B.rank_1(j)] +$ $B.rank_0(j) - B.rank_0(B.select_1(B.rank_1(j)))$ where $B.select_1(k)$ gives the position of the k-th '1' in B

rank / select

construct rank/select data structure on bit vector B[1..n]

- O(n) construction time
- constant query time for rank / select
- n + o(n) bits of space (including B)

 [Jacobson '89, Clark '96]

space analysis

- number of entries i with Φ[i]≠ Φ[i-1] +1 is bounded by r, where r is #character runs in the Burrows-Wheeler transform [Kärkkäinen+ '16]
- $\Rightarrow r \lg n + n + o(n)$ bits of total space for Φ

summary

construct lexparse in O(n) time:

- only with Φ array
- represent Φ in $r \lg n + n + o(n)$ bits

open problems:

can we compute compressed Φ directly from text in compressed space?

implementation: https://tudocomp.github.io

questions are welcome!