COMP 3225

Natural Language Processing Word2Vec

Stuart E. Middleton

sem03@soton.ac.uk

University of Southampton

Overview

- Word2Vec
- <break discussion point>
- Visualizing Embeddings
- Semantic Properties of Embeddings
- Bias and Embeddings

- Dense embeddings work better than sparse embeddings
 - It is still not 100% clear why, but the weight of evidence is strong

Static embeddings

- Word2Vec embeddings are static embeddings, with a single embedding per word that does not change
- This contrasts to contextual embeddings such as BERT where the vector for a word varies based on its context

Self-supervision

- Train a binary classifier to predict is word A is likely to show up near word B
- No need for tagged training datasets, this problem formulation can be run on an unlabeled corpus
- The classifier is not relevant, we want the learnt embedding weights

- Word2Vec classifier uses a skip-gram model
 - Skip-gram algorithm is part of the word2vec package
- Implementations
 - Tensorflow https://www.tensorflow.org/tutorials/text/word2vec
 - Gensim https://radimrehurek.com/gensim/models/word2vec.html
- Skip-gram model
 - Target words + neighbouring context words are positive examples
 - Random sampling to create negative examples
 - Logistic regression to train classifier
 - Learned weights provide the embeddings

 Input is a target word w and a window of L words to make some context words c

```
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 w c3 c4
```

- P(+|w,c) = probability c is a context word for w
- P(-|w,c) = probability c is not a context word for w

$$P(+|w,c)$$
 $P(-|w,c) = 1 - P(+|w,c)$

- Probability is based on embedding vector similarity of w and c
 - Dot product + logistic function σ to make it into a probability

$$\sigma(x) = \frac{1}{1 + \exp(-x)} \qquad P(+|w,c) = \sigma(c \cdot w) = \frac{1}{1 + \exp(-c \cdot w)}$$

$$P(-|w,c) = 1 - P(+|w,c)$$

$$= \sigma(-c \cdot w) = \frac{1}{1 + \exp(c \cdot w)}$$

 Simplifying assumption that all context words are independent allows us to just multiple the probabilities for all of window L

$$P(+|w,c_{1:L}) = \prod_{i=1}^{L} \sigma(c_i \cdot w)$$

$$\log P(+|w,c_{1:L}) = \sum_{i=1}^{L} \log \sigma(c_i \cdot w)$$

 Skip-gram model stores an target embedding matrix W for target words and an context embedding matrix C for context and noise words

Embedding matrices have a dimension d whose size is found

empirically

- Learning skip-gram embeddings
- A context window L = 2 would provide 4 context words per target word. This yields 4 positive training examples
- We create negative context words by randomly sampling for corpus lexicon (minus the real context words) to provide k negative examples
- Example below with k = 2 (2 negative examples for 1 positive)

gative examples -

w	$c_{ m pos}$	W	c_{neg}	W	c_{neg}
apricot	tablespoon	apricot	aardvark	apricot	seven
apricot	of	apricot	my	apricot	forever
apricot	jam	apricot	where	apricot	dear
apricot	a	apricot	coaxial	apricot	if

• To avoid a strong bias towards common words for noise an α weighted unigram sample frequency is used to select noise words

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w'} count(w')^{\alpha}}$$

 Embeddings are learnt by minimizing a loss function using stochastic gradient decent

- Given target w, positive context c_{pos}, (negative context c_{neg}) x k
- Loss function >> max(prob target is close to pos example) AND
 max(prob target is not close to neg example)

$$L_{CE} = -\log \left[P(+|w, c_{pos}) \prod_{i=1}^{k} P(-|w, c_{neg_i}) \right]$$

$$= -\left[\log P(+|w, c_{pos}) + \sum_{i=1}^{k} \log P(-|w, c_{neg_i}) \right]$$

$$= -\left[\log P(+|w, c_{pos}) + \sum_{i=1}^{k} \log \left(1 - P(+|w, c_{neg_i}) \right) \right]$$

$$= -\left[\log \sigma(c_{pos} \cdot w) + \sum_{i=1}^{k} \log \sigma(-c_{neg_i} \cdot w) \right]$$

Move 'apricot' weights closer to 'jam' and further from 'matrix'

- Target matrix W and context matrix C are randomly initialized prior to training
- Word embedding matrix = W + C, or sometimes just W

- There are other types of static embeddings
 - Fasttext uses subword models (character n-grams) to help overcome out of vocabulary and rare word problems
 - https://github.com/facebookresearch/fastText
 - https://fasttext.cc
 - Pre-trained models for Wikipedia and Web Crawl for 157 languages
 - Global Vectors (GloVe) uses ratios of probabilities from the word-word cooccurrence matrix applied to a large global corpus
 - https://nlp.stanford.edu/projects/glove/
 - Pre-trained models for Wikipedia, Gigaword (news), Common Crawl (web) and Twitter (social media)

Break

- Panopto Quiz discussion point
- Which of these models use static embeddings?

Sentiment analysis model fine tuning pre-trained BERT word embeddings Music recommender system using word embeddings loaded from a skip-gram model pre-trained on Spotify corpus

Legal document classifier using a sentence embedding pre-trained on Wikipedia Legal document classifier using a sentence embedding pre-trained on Wikipedia and then fine tuned with legal text

Break

- Panopto Quiz discussion point
- Which of these models use static embeddings?

Sentiment analysis model fine tuning pre-trained BERT word embeddings Music recommender system using word embeddings loaded from a skip-gram model pre-trained on Spotify corpus

Legal document classifier using a sentence embedding pre-trained on Wikipedia Legal document classifier using a sentence embedding pre-trained on Wikipedia and then fine tuned with legal text

Static embeddings are pretrained and fixed, often using a model different from the target problem model (e.g. with a skip-gram model on Wikipedia corpus)

Contextual embeddings are usually the hidden layers trained (or 'fine tuned') for the target problem (contextually trained using a target domain corpus)

Static embeddings which are allowed to change will become contextual embeddings (e.g. fine tuning BERT embeddings on a specific problem corpus such as sentiment analysis)

Visualizing Embeddings

- Given a target word print top N closest words
- Hierarchical clustering of embedding space

to

that

than

by

now

with

's

you

is

are

2D projections of N dimensional embedding space

incredibly good very good amazing fantastic wonderful terrific nice good

not good

dislike

2D projection of embeddings trained for sentiment analysis

Semantic Properties of
Embeddings

- Context window size L is based on desired goals
- Similarity
 - Small L (2-4) captures similar words (e.g. list of similar things)
- Association
 - Larger L (5+) captures longer distance topical relationships

Word2Vec trained on Wikipedia

Target Word	BoW5	BoW2
	nightwing	superman
	aquaman	superboy
batman	catwoman	aquaman
	superman	catwoman
	manhunter	batgirl
	dumbledore	evernight
	hallows	sunnydale
hogwarts	half-blood	garderobe
	malfoy	blandings
	snape	collinwood
	nondeterministic	non-deterministic
	non-deterministic	finite-state
turing	computability	nondeterministic
	deterministic	buchi
	finite-state	primality
	gainesville	fla
	fla	alabama
florida	jacksonville	gainesville
	tampa	tallahassee
	lauderdale	texas
	aspect-oriented	aspect-oriented
	smalltalk	event-driven
object-oriented	event-driven	objective-c
-	prolog	dataflow
	domain-specific	4gl
	singing	singing
	dance	dance
dancing	dances	dances
_	dancers	breakdancing
	tap-dancing	clowning
14	1 – 5	1 - 2 17

Semantic Properties of Embeddings

Analogy

- A is to B; as C is to?
- Compute vector offset of A -> B
- Apply vector offset to C to discover ?

Single layer RNN trained on Broadcast News (right) gender relation (left) single/plural relation

- Need to exclude morphological variants of target word e.g. cherry -> red; potato -> potato | potatoes | brown
- Works best for frequent words with lots of examples and small L sizes

Bias and Embeddings

- Embeddings encode the bias within the training sets used to compute them
- A historical news corpus will encode the bias of that time
 - Man -> Computer Programmer; Woman -> Homemaker
- Allocation harm
 - Biases in algorithms which result in unfair real world outcomes (e.g. load application pre-filtering algorithm)
- Bias amplification
 - Embeddings tend to exaggerate patterns making encoded bias more extreme than the original training resource
 - Implicit bias can be captured in embeddings and exaggerated (e.g. racial bias, ageism)

Bias and Embeddings

- Representational harm
 - Harm caused by a system demeaning or even ignoring some social groups
- Debiasing
 - Manipulating embeddings to remove unwelcome stereotypes
 - May reduce bias, but will not eliminate it >> open problem
- Be mindful about bias in algorithms
 - Training data questions (historical? partial demographic? extreme views?)
 - Algorithms questions (patterns linking to stereotypes? uncertainty reported? unbiased ground truth available? explainable results?)
 - Check for bias
 - Mitigate bias if you can
 - Declare bias if you cannot
 - Decision makers using algorithms need to be aware of bias in results

Required Reading

- Vector Semantics and Embeddings
 - Jurafsky and Martin, Speech and Language Processing, 3rd edition (online)
 >> chapter 6

Questions

Panopto Quiz - 1 minute brainstorm for interactive questions

Please write down in Panopto quiz in **1 minute** two or three questions that you would like to have answered at the next interactive session.

Do it **right now** while its fresh.

Take a screen shot of your questions and **bring them with you** at the interactive session so you have something to ask.