第三章 运输规划简介

- ▶运输问题及其数学模型
- 产销平衡问题的表上作业法
- >产销不平衡问题
- >有转运问题
- ▶应用举例

问题提出

数学模型

产销平衡问题的一般模型

$$\min z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{n} x_{ij} = a_{i}$$

$$\sum_{i=1}^{m} x_{ij} = b_{j}$$

$$x_{ij} \ge 0 \qquad i = 1, 2, ..., m; \qquad j = 1, 2, ..., n$$

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$
产销平衡约束

问题的特点

1.A矩阵稀疏

$$P_{ij} = [0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0]^{T}$$

2.基变量只有m+n-1个

3.一定存在(有界)最优解

$$x_{ij} = \frac{a_i b_j}{\sum_{i=1}^{m} a_i} = \frac{a_i b_j}{\sum_{j=1}^{n} b_j}$$
 可行解

运输表上的单纯形法

销地产地	B_1	B_2	• • •	B_n	产量
A_1	$\begin{bmatrix} c_{11} \end{bmatrix} x_{11}$	c_{12} x_{12}	• • •	$\begin{bmatrix} c_{1n} \\ x_{1n} \end{bmatrix}$	a_1
A_2	$c_{21} x_{21}$	c_{22} x_{22}	• • •	c_{2n} x_{2n}	a_2
•	•	•	• • •	•	•
A_m	$\begin{bmatrix} c_{m1} \\ x_{m1} \end{bmatrix}$	$\begin{bmatrix} c_{m2} \\ x_{m2} \end{bmatrix}$	• • •	$\begin{bmatrix} c_{mn} \\ x_{mn} \end{bmatrix}$	a_m
销量	b_1	b_2	• • •	b_n	

初始基可行解

销产地	地		1		,	2			3		4	4	产量
1		6		14	7			5			3		14
2		8			4			2			7		27
				8-		→ 1	 3		→ (6			
2		5			9			10	,		6		10
3									(6 –		→13	19
销量	<u>=</u> ,	2	22		1	3		1	2		1	3	

最优性检验

销地产地	1	2	3	4	产量
1	6	7 5	5 5	3 7	14
2	8	4 13 -	2 6	7 9	27
3	5 -1	9 -3	10 6	6 13	19
销量	22	13	12	13	

$$\sigma_{32} = c_{32} - c_{22} + c_{23} - c_{33} = 9 - 4 + 2 - 10 = -3$$

位势法

■ 对偶问题:

$$\max w = \sum_{i=1}^{m} a_{i} u_{i} + \sum_{j=1}^{n} b_{j} v_{j}$$

s.t.
$$u_i + v_j \le c_{ij}$$
 $i = 1, 2, ..., m;$ $j = 1, 2, ..., n$ u_i, v_j free

检验数:
$$\sigma_{ij} = c_{ij} - \mathbf{y}^T \mathbf{p}_{ij} = c_{ij} - (u_i + v_j)$$

基变量部分: $u_i + v_j = c_{ij}$ 对偶解不唯一,称为位势

等价性

问题: 位势法所得的检验数是否唯一?

$$\sigma_{32} = c_{32} - c_{22} + c_{23} - c_{33}$$

$$= c_{32} - (u_2 + v_2) + (u_2 + v_3) - (u_3 + v_3)$$

$$= c_{32} - (u_3 + v_2)$$

解的改进

销地产地	1	2	3	4	产量
1	6 14	7 5	5 5	7	14
2	8 8-	4 13	2 6	7 9	27
3	5 -11	9 (-3)	10 6	13	19
销量	22	13	12	13	

改进后运输表

销地产地	1		2			3	۷	产量	
1	6	14-	7	(5)	5	(5)	3	(-4)	14
2	8	2	4	13	2	12	7		27
3	5	6 –	9	8	10		6	-13	19
销量	2	2	13		12		1	3	

最终运输表

销地产地	1		2		3		4		产量
1	6	1	7	5	5	5	3	13	14
2	8	2	4	13	2	12	7	2	27
2	5		9	13	10	12	6		10
3		19		8		11		4	19
销量	2	2	13		12		13		

产销不平衡问题的数学模型

$$\sum_{i=1}^{m} a_i > \sum_{j=1}^{n} b_j$$
 产大于销问题

$$\min z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\mathbf{S.t.} \qquad \sum_{j=1}^{n} x_{ij} \le a_i$$

$$\sum_{i=1}^{m} x_{ij} = b_j$$

$$x_{ij} \ge 0$$
 $i = 1, 2, ..., m;$ $j = 1, 2, ..., n$

标准化

思路: 化为平衡问题

方法:增加一个假象的销地 n+1,

$$\min z = \sum_{i=1}^{m} \sum_{j=1}^{n+1} c_{ij} x_{ij} \quad c_{i,n+1} = 0 \quad i = 1, ..., m$$

s.t.
$$\sum_{j=1}^{n+1} x_{ij} = a_i$$

$$\sum_{i=1}^{m} x_{ij} = b_j \qquad b_{n+1} = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j$$

$$x_{ij} \ge 0 \qquad i = 1, 2, ..., m; \quad j = 1, 2, ..., n+1$$

产小于销问题

思路: 如果产小于销问题如何处理?

方法:增加一个假象的产地 m+1,

$$\min z = \sum_{i=1}^{m+1} \sum_{j=1}^{n} c_{ij} x_{ij} \quad c_{m+1,j} = 0 \quad i = j, ..., n$$

S.t.
$$\sum_{j=1}^{n+1} x_{ij} = a_i \qquad a_{m+1} = \sum_{j=1}^{n} b_j - \sum_{i=1}^{m} a_i$$
$$\sum_{i=1}^{m} x_{ij} = b_j$$
$$x_{ij} \ge 0 \qquad i = 1, 2, ..., m; \quad j = 1, 2, ..., n+1$$

有转运问题

新增"产地": $a_{m+j}=0$ j=1,2,...,n 新增"销地": $b_i=0$ i=1,2,...,m

有转运问题的数学模型

$$\min z = \sum_{\substack{i=1\\i\neq j}}^{m+n} \sum_{j=1}^{m+n} c_{ij} x_{ij} + \sum_{i=1}^{m+n} c_{i} t_{i}$$

$$\text{s.t.} \quad \sum_{j=1, j\neq i}^{m+n} x_{ij} = a_i + t_i$$

$$\sum_{i=1}^{m+n} x_{ij} = b_j + t_j$$

$$x_{ij} \ge 0$$
 $i, j = 1, 2, ..., m + n; i \ne j$

$$(t_i) \ge 0$$
 $i = 1, 2, ..., m + n$ 第 i 个节点的转运量

产销平衡问题

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = Q$$

问题: 能否取 $x_{ii}=t_i$?

问题: 能否取 $x_{ii} = -t_i$?

有转运问题的标准化

$$\min z = \sum_{i=1}^{m+n} \sum_{j=1}^{m+n} c_{ij} x_{ij} + \sum_{i=1}^{m+n} c_i Q$$

s.t.
$$\sum_{j=1}^{m+n} x_{ij} = a_i + Q \qquad i = 1, 2, ..., m+n$$

$$\sum_{j=1}^{m+n} x_{ij} = b_j + Q \qquad j = 1, 2, ..., m+n$$

$$x_{ij} \ge 0$$
 $i, j = 1, 2, ..., m + n$

$$t_i \ge 0$$
 $i = 1, 2, ..., m + n$ 第 i 个节点的转运量

产销平衡问题

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = Q$$

$$c_{ii} \triangleq -c_i \qquad x_{ii} \triangleq Q - t_i$$