Final project

Objective

The **final project** is the summarizing assignment where students apply all their knowledge of computer vision to solve a practical or research problem. The project is carried out in a team.

Students can choose one of two formats:

- ① **Practical Project** → Development of a complete solution that can be used in real-world conditions. Examples include an image classifier, an object recognition system, or an image processing service. This format includes deployment, API, or user interface implementation.
- ② **Research Project** → Conducting an analytical study where a new model or approach is tested. Examples include comparing different neural network architectures or investigating the impact of data augmentation on model performance. This format includes metrics and analysis.

* Team collaboration

Since this project is completed as a team, the presentation should include a separate slide with a table showing the task distribution among team members

Name + Surname	Tasks completed
Participant 1	• — • — • —
Participant 2	 - - - -
Participant 3	• — • — • —
Participant 4	 - - - -

Structure of practical project

1. Introduction

- Description of the problem being solved.
- Why this is needed (potential users, application cases).

- Problem definition (what data will be used, what methods).
- Technology stack.
- Project stages.

2. Review of Existing Solutions

- What approaches and algorithms are already used to solve this problem?
- Why were the proposed methods chosen?

3. Data Preparation

- Description of the selected dataset: source, quantity, format.
- Data preprocessing: normalization, cleaning, augmentation, anomaly detection.
- Visualization of key data aspects.

4. Model Development

- Which algorithm/neural network architecture was used?
- Why was this method chosen?
- Hyperparameters, training strategy.

5. Implementation and Training

- Code and environment description (frameworks, libraries).
- Training process:
 - Number of epochs
 - Loss function
 - o Optimizer
 - Performance metrics
 - Training graphs (errors, accuracy, etc.).

6. Model Evaluation

- Metrics (accuracy, precision, recall, F1-score, IoU, etc.).
- Confusion matrix and error interpretation.
- Testing on new data.

7. Deployment and Demonstration

- How can the model be used in production?
- Development of an API/web interface/mobile application.
- Demo video or interactive prototype.

8. Conclusions and Future Perspectives

- Key project results.
- What problems remain unsolved?
- Ways to improve the model.

Final Products:

- **Report in PDF format** (using Jupyter Notebook for combining code and explanations is recommended).
- **Project presentation** for the final defense.
- Repository with code (GitHub).
- Demo version (if possible).

Evaluation criteria

Points	Criteria
0-4	 Functionality and Deployment: 4 points: The project is fully functional, correctly performs the stated functions, and includes a demonstration (API, web interface, or video). 3 points: The project works but has minor issues or partial implementation. 2 points: The project's core functions do not work, or a demonstration is missing. 1 point: The code contains serious errors, and the project does not fulfill its intended purpose. 0 points: The project is not implemented or does not run.
0-2	 Code Quality and Technical Implementation: 2 points: Well-structured, and documented code with logical architectural decisions. 1 point: The code works but has inconsistencies, suboptimal solutions, or lacks comments. 0 points: The code does not work or is missing.
0-2	 Depth of Analysis and Model Quality: 2 points: Model choice is justified, with relevant metrics, error analysis, and comparison with alternative approaches. 1 point: Some analysis is provided, but it is superficial or has deficiencies. 0 points: No analysis is conducted.
0-2	 2 points: The report is logically structured, includes all required sections (problem definition, implementation, testing, conclusions). The presentation is clear, and answers to questions are well-reasoned. 1 point: The report is present but missing explanations, visualizations, or analysis. The presentation is logical, but some answers are incomplete. 0 points: The report is absent or extremely weak.

Опоздание при сдаче работы <u>штрафуется</u>. Опоздание в пределах

- от 1 дня до недели минус 1 балл
- более одной недели минус 2 балла

Плагиат: Работы, содержащие плагиат, оцениваются в 0 баллов.

Late Submission Penalties

- from 1 day to 1 week late \rightarrow -1 point
- More than 1 week late → **-2 points**

Plagiarism Policy: Submissions containing plagiarism will receive 0 points.

Structure of the Research Project

1. Introduction and Hypothesis Statement

- What research problem is being addressed?
- Hypothesis: How does the experimental model differ from the baseline?
- Expected results.

2. Data Analysis

- Which dataset is used and why?
- Data visualization and pattern detection.
- Data processing specifics (cleaning, augmentation, etc.).

3. Methodology

- What algorithm or model is being studied?
- What modifications are made compared to existing approaches?
- How will testing be conducted?

4. Experiments

- Definition of control and test models.
- Conducting multiple experimental runs.
- Training graphs, error analysis, and metric evaluation.

5. Results Analysis

- Comparison of different models/approaches.
- Which hypotheses were confirmed/rejected?
- Interpretation of metrics and findings.

6. Conclusions and Future Directions

- Final research results.
- Future research prospects.
- Potential further experiments.

Final Products:

- Report in PDF format (using Jupyter Notebook for explanations and code is recommended).
- Project presentation for the final defense.
- Repository with code (GitHub).
- Graphs, metrics, and comparative analysis.

Evaluation criteria

Points	Criteria
0-4	Depth of Literature and Approaches Review:
	 4 points: Multiple approaches (more than 2) are reviewed, with references to research and comparisons.

- **3 points:** 1-2 approaches are described but without in-depth analysis.
- **2 points:** A brief review is present but lacks comparison.
- 1 point: Only one method is mentioned, with no critical analysis.
- **O points:** No literature review.

0-2 Methodology and Hypothesis Statement:

- 2 points: Clearly defined hypothesis, justified methodology, and logically described experiments.
- **1 point:** The methodology is described but weakly justified or has gaps.
- **O points:** No clear hypothesis or experimental plan.

0-2 Depth of Analysis and Interpretation of Results:

- **2 points:** Comparative analysis of models, with meaningful conclusions.
- **1 point:** Some analysis is provided but lacks depth or justification.
- **0 points:** No analysis.

0-2 Report Formatting Quality:

- **2 points**: Well-structured report with graphs, metrics, and explanations. The presentation is clear, and answers to questions are correct.
- **1 point:** The report contains all key elements but has shortcomings. The presentation is logical, but some answers are incomplete.
- **O points:** The report is absent or extremely weak.

Late Submission Penalties

- from 1 day to 1 week late \rightarrow -1 point
- More than 1 week late → -2 points

Plagiarism Policy: Submissions containing plagiarism will receive 0 points.