Milieux : interactions, interfaces, homogénéité, ruptures

Les poutres en génie civil

L'objectif est de déterminer les critères de résistance!!

plan I- Expérience

II- Modélisation

- 1- approche dynamique :
- a)Résolution analytique
- b) Résolution numérique
- c) Résultats
- 2- Approche statique:
- 1) Résolutions analytique

I. Essai de traction par fendage :

Matériels:

Presse Controlab de capacité de 2000 kN;

Dispositif d'essai de traction par fendage;

Eprouvettes (16/32).

Poids (Kg)	Charge de rupture en (KN)	Resistance en traction par fendage(Mpa)
15.000	289.644	1.339

matériels:

- -Presse Chinoise de capacité de 2000 KN
- -Dispositif d'essai de traction par déflexion
- -Eprouvettes (60*15*15).

matériels:

- -Presse Chinoise de capacité de 2000 KN;
- -Eprouvettes (16*32).

Poids(Kg)	Charge de rupture(KN)	Compression (MPa)
14,765	440	22

charge de rupture(KN)
Résistance :

section(cm)

modélisation:

Résolution analytique

Le but est de chercher les valeurs propres

- La modélisation conduise a une équation de la forme:
- $\rho S \partial 2 y \partial t2 + IE \partial 4 y \partial x4 = 0$
- Avec
- ρ: masse volumique
- S:surface
- I:le moment quadratique
- E:module d'Young

méthode de séparation de variable

- on obtient la résultats :
- $f(x) = A \cos(\beta x) + B \sin(\beta x) + C \cosh(\beta x) + D \sinh(\beta x)$
- Avec A,B,C et D sont des constantes d'intégration
- Les condition au limites
- y|x=0,t=y|x=L,t=0
- et ∂ 2 y ∂ x2 x=0,t = ∂ 2 y ∂ x2 x=L,t = 0.

Résultats final

Données sous la forme:

$$w(x,t) = \sum_{n=1}^{\infty} (A_n \sin \omega_n t + B_n \cos \omega_n t) \sin \frac{n\pi x}{l}$$
$$\omega_n = \left(\frac{n\pi}{l}\right)^2 \sqrt{\frac{EI}{\rho A}}$$

Résolution numérique

 Implémentation avec Python donne un Code permettant de visualiser les modes avec séparation des variables

2- Approche statique:

Les hypothèses:

- une section plane reste plane et normale à la fibre moyenne
- une section plane reste plane
- une section plane peut se voile

la rigidité équivalent de la section droite sera variable

Méthode de résolution:

• - bilan des actions :

une liaison encastrement

un torseur de chargement

Suit de méthode de resolution

– calcul du torseur des efforts intérieurs

$$\{\tau_H\} = \left\{ \begin{array}{c} F\vec{j} \\ \breve{0} \end{array} \right\}_B = \left\{ \begin{array}{c} F\vec{j} \\ F(l-s)\breve{k} \end{array} \right\}_H = \left\{ \begin{array}{c} F\vec{y} \\ F(l-s)\breve{z} \end{array} \right\}_H$$

• - la contrainte: donnée par

$$\sigma_{xx}(0, -r) = \frac{Flr}{\pi r^4/4} = \frac{4Fl}{\pi r^3},$$

Résultats final:

$$F < \frac{24010^6 \pi r^3}{4l}$$

r: rayon du poutre

l: longueur

F:force admissible