Nombre: Christofer Fabián Chávez Carazas

4 Actividades

4.1.Construir una red básica clase C (192.168.20.0) con un switch y dos hosts con el Packet Tracer, pruebe la conexión desde PC0 hacia las demás PC indicando si es exitosa o fallida usando el ping de *cmd*, use la máscara por defecto, describa los paquetes que circulan por la red

4.1.a Con un Hub.

Estructura de la Red

```
Packet Tracer PC Command Line 1.0
PC>ping 192.168.100.115

Pinging 192.168.100.115 with 32 bytes of data:

Reply from 192.168.100.115: bytes=32 time=1ms TTL=128
Reply from 192.168.100.115: bytes=32 time=0ms TTL=128
Reply from 192.168.100.115: bytes=32 time=0ms TTL=128
Reply from 192.168.100.115: bytes=32 time=0ms TTL=128
Ping statistics for 192.168.100.115:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
PC>
```

Ping de PC0 a PC1

4.1.b Con un Switch

Estructura de la red con Switch y la descripción del paquete enviado.

Estructura del paquete enviado

Estructura del paquete STP

Simulación del envio del paquete

 $4.2~\mathrm{Modifique}$ la máscara a $25~\mathrm{bits}$ y repita el ping probando la conexión, describa los paquetes que circulan por la red

Dos subredes. Ping entre PC0 y PC1

4.3 Usando una máscara de 25 bits reasigne las direcciones IP para obtener conectividad, considere la tabla

Estructura de la red. Ping desde PC0 a PC1

4.4 Considerando la siguiente tabla que resume la creación de subredes usando 2 bits, construya la red 192.168.10.0, usando al menos 4 hosts, observe que direcciones IP y máscaras debe usar, para activar las dos subredes indicadas

Estructura de la Red

Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	
•	Successful	PC0	PC1	ICMP		0.000	N	
-	Successful	PC2	PC3	ICMP		0.000	N	
	Failed	PC0	PC3	ICMP		0.000	N	
								_

Mensajes enviados

PC	N° subred	Rango IP	Máscara	Sub fijo	Hosts		Condición de nectividad hacia		
						PC 1	Valida		
PC0	2		255.255.255. 192		62	PC 2	No Valida		
		.64 a .127				PC 3	No Valida		
		.04 a .127				PC 0	Valida		
PC1	2		255.255.255. 192 /26		//n	/26	/26 62	PC 2	No Valida
						PC 3	No Valida		
			255.255.255. 192 /26	//h			PC 0	No Valida	
PC2	3					/26	62	PC 1	No Valida
		.128 a .192				PC 3	Valida		
		.120 d .132	255.255.255. 192 /26			PC 0	No Valida		
PC3	3			/26	62	PC 1	No Valida		
						PC 2	Valida		

4.5 Añada dos hosts adicionales con direcciones IP de la subred 1, prueba la conectividad desde PC0, explique los resultados y describa los paquetes que circularon por la red

Estructura de la red

Mensajes Enviados

Al estar en diferentes redes, no existe conectividad.

Descripción de los paquetes enviados

4.6 Demuestre a través de una AND entre la máscara y la dirección IP que las PCs con direcciones 192.168.20.10 y 192.168.20.22 pueden conectarse (esta operación es implementada por los elementos de interconexión física) usando una máscara de 24 o 25 bits indistintamente

CONVERSIÓN A BINARIO

192.168.20.10	>> 11000000.10101000.00010100 <mark>.00001010</mark>
255.255.255.0	>> 11111111111111111111111111111111111

La red se obtiene poniendo a cero todos los bits de host. En este caso la red se corresponde con:

RED IP

CONVERSIÓN A BINARIO

La red se obtiene poniendo a cero todos los bits de host. En este caso la red se corresponde con:

RED IP

Con /24 las Ip de las redes son las mismas, entonces se encuentran en la misma red.

CONVERSIÓN A BINARIO

La red se obtiene poniendo a cero todos los bits de host. En este caso la red se corresponde con:

RED IP

CONVERSIÓN A BINARIO

La red se obtiene poniendo a cero todos los bits de host. En este caso la red se corresponde con:

RED IP

```
192.168.20.0/25 >> 11000000.10101000.00010100.00000000
```

Con /25 las Ip de las redes son las mismas, entonces se encuentran en la misma red.

4.7 Demuestre a través de una AND entre la máscara y la dirección IP que las PCs con direcciones 192.168.20.10 y 192.168.20.180 no pueden conectarse si la máscara es de 25 bits y si lo hacen si la máscara es de 24 bits, explique.

CONVERSIÓN A BINARIO

192.168.20.10	>> 11000000.10101000.00010100 <mark>.00001010</mark>
255.255.255.0	>> 11111111111111111111111111111111111

La red se obtiene poniendo a cero todos los bits de host. En este caso la red se corresponde con:

RED IP

CONVERSIÓN A BINARIO

La red se obtiene poniendo a cero todos los bits de host. En este caso la red se corresponde con:

RED IP

```
192.168.20.0/24 >> 11000000.10101000.00010100.0000000
```

Con /24 las Ip de las redes son las mismas, entonces se encuentran en la misma red.

CONVERSIÓN A BINARIO

La red se obtiene poniendo a cero todos los bits de host. En este caso la red se corresponde con:

RED IP

CONVERSIÓN A BINARIO

La red se obtiene poniendo a cero todos los bits de host. En este caso la red se corresponde con:

RED IP

```
192.168.20.128/25 >> 11000000.10101000.00010100.1000.1
```

Con /25 las Ip de las redes son diferentes, se encuentran en diferentes subredes.

4.8 Elabore una tabla similar a la TABLA 2 considerando el uso de 3 bits, la que generará 8 subredes.

N° subred	Rango de IPs	Máscara	Subfijo	Hosts	Condición
1	.0 a .31	255.255.255.224	/27	30	No válida
2	.32 a .63	255.255.255.224	/27	30	Válida
3	.64 a .95	255.255.255.224	/27	30	<u>Válida</u>
4	.96 a .127	255.255.255.224	/27	30	<u>Válida</u>
5	.128 a .159	255.255.255.224	/27	30	Válida
6	.160 a .191	255.255.255.224	/27	30	<u>Válida</u>
7	.192 a .224	255.255.255.224	/27	30	Válida
8	.224 a .255	255.255.255.224	/27	30	No válida

4.9 Verifique sus resultados usando una calculadora IP, indicando el número de bits de subneteo, el máximo número de subredes conseguidos, y en cada fila el rango de direcciones IP para los hosts conectados, el subnet ID y la dirección IP de Broadcast, haga capturas de pantalla que demuestren el uso de la calculadora.

Primera red

Subnet Calculator	
Network Class	First Octet Range
A O B O C •	192 - 223
IP Address	Hex IP Address
192.168.0.33	C0.A8.00.21
Subnet Mask	Wildcard Mask
255.255.255.224 ▼	0.0.0.31
Subnet Bits	Mask Bits
3 ▼	27 ▼
Maximum Subnets	Hosts per Subnet
8	30 ▼
Host Address Range	
192.168.0.3	33 - 192.168.0.62
Subnet ID	Broadcast Address
192.168.0.32	192.168.0.63
Subnet Bitmap	
110nnnnn.nnnnnn	nn.nnnnnnn.ssshhhhh

Segunda Red

Tercera Red

Cuarta Red

Quinta Red

Sexta Red

Setipma Red

Octava Red

4.10 onstruya la red 192.168.20.0 con 2 switchs y 6 PCs por cada switch. Determine el direccionamiento usando números IP clase C para segmentar la red en:

a) 2 subredes de 6 PCs cada una.

Estructura de la Red

Ping desde PC0 a PC2

```
PC>ping 192.168.20.30

Pinging 192.168.20.30 with 32 bytes of data:

Reply from 192.168.20.30: bytes=32 time=0ms TTL=128

Ping statistics for 192.168.20.30:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

PC>
```

Ping desde PC0 a PC6

```
PC>ping 192.168.20.150
Pinging 192.168.20.150 with 32 bytes of data:
Request timed out.
Request timed out.
Ping statistics for 192.168.20.150:
    Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),
Control-C
^C
PC>
```

```
PC>ping 192.168.20.190

Pinging 192.168.20.190 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.190:

Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C

C
PC>
```

HOST	RED	RANGO DE DIRECCIONES DE LA SUBRED	NÚMERO DE HOSTS EN LA SUBRED	DIR. IP	MASCARA	SUBFIJO	HOSTs CON CONECTIVID AD HABILITADA
PC0	192.168.20.0	.1126	126	192.168.20.2	255.255.255.128	\25	SI:PC2,PC4 NO:PC3,PC5
PC1	192.168.20.128	.129254	126	192.168.20.150	255.255.255.128	\25	SI:PC3,PC5 NO:PC2,PC4
PC2	192.168.20.0	.1126	126	192.168.20.10	255.255.255.128	\25	SI:PC0,PC4 NO:PC3,PC5
PC3	192.168.20.128	.129254	126	192.168.20.160	255.255.255.128	\25	SI:PC5,PC7 NO:PC2,PC4
PC4	192.168.20.0	.1126	126	192.168.20.20	255.255.255.128	\25	SI:PC6,PC8 NO:PC1,PC3
PC5	192.168.20.128	.129254	126	192.168.20.170	255.255.255.128	\25	SI:PC1,PC3 NO:PC6,PC8
PC6	192.168.20.0	.1126	126	192.168.20.30	255.255.255.128	\25	SI:PC8,PC10 NO:PC1,PC3
PC7	192.168.20.128	.129254	126	192.168.20.180	255.255.255.128	\25	SI:PC1,PC3 NO:PC2,PC4
PC8	192.168.20.0	.1126	126	192.168.20.40	255.255.255.128	\25	SI:PC4,PC6 NO:PC1,PC3
PC9	192.168.20.128	.129254	126	192.168.20.190	255.255.255.128	\25	SI:PC1,PC3 NO:PC8,PC10
PC10	192.168.20.0	.1126	126	192.168.20.50	255.255.255.128	\25	SI:PC8,PC10 NO:PC5,PC11
PC11	192.168.20.128	.129254	126	192.168.20.200	255.255.255.128	\@5	SI:PC9,PC7 NO:PC10,PC8

b) 3 subredes de 4 PCs cada una.

Estructura de la Red

```
Physical Config Desktop Software/Services

Command Prompt

Packet Tracer PC Command Line 1.0
PC>ping 192.168.20.20

Pinging 192.168.20.20 with 32 bytes of data:

Reply from 192.168.20.20: bytes=32 time=lms TTL=128
Reply from 192.168.20.20: bytes=32 time=0ms TTL=128

Ping statistics for 192.168.20.20:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms

PC>
```

Ping desde PC0 a PC4

```
Pinging 192.168.20.40 with 32 bytes of data:

Reply from 192.168.20.40: bytes=32 time=1ms TTL=128
Reply from 192.168.20.40: bytes=32 time=0ms TTL=128
Reply from 192.168.20.40: bytes=32 time=0ms TTL=128
Reply from 192.168.20.40: bytes=32 time=0ms TTL=128

Ping statistics for 192.168.20.40:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms

PC>
```

Ping desde PC0 a PC8

```
PC>ping 192.168.20.70

Pinging 192.168.20.70 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.70:

Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C

^C
PC>
```

```
PC>ping 192.168.20.80

Pinging 192.168.20.80 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.80:

Packets: Sent = 3, Received = 0, Lost = 3 (100% loss),

Control-C

^C
PC>
```

Ping desde PC0 a PC5

```
PC>ping 192.168.20.130

Pinging 192.168.20.130 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.130:

Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C

C
PC
```

```
PC>ping 192.168.20.160

Pinging 192.168.20.160 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.160:

Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C

^C
PC>
```

Ping desde PC0 a PC3

HOST	RED	RANGO DE DIRECCIONES DE LA SUBRED	NÚMERO DE HOSTS EN LA SUBRED	DIR. IP	MASCARA	SUBFIJO	HOSTs CON CONECTIVIDAD HABILITADA
PC0	192.168.20.0	.163	62	192.168.20.2	255.255.255.192	/26	SI:PC4,PC8 NO:PC1,PC5,PC2,PC3
PC1	192.168.20.64	.65127	62	192.168.20.70	255.255.255.192	/26	SI:PC5,PC9 NO:PC2,PC3,PC0,PC4
PC2	192.168.20.128	.129191	62	192.168.20.130	255.255.255.192	/26	SI:PC3,PC6 NO:PC0,PC4,PC1,PC5
PC3	192.168.20.128	.129191	62	192.168.20.160	255.255.255.192	/26	SI:PC2,PC6 NO:PC0,PC8,PC1,PC5
PC4	192.168.20.0	.163	62	192.168.20.20	255.255.255.192	/26	SI:PC0,PC8 NO:PC1,PC5,PC2,PC3
PC5	192.168.20.64	.65127	62	192.168.20.80	255.255.255.192	/26	SI:PC1,PC9 NO:PC0,PC4,PC2,PC3
PC6	192.168.20.128	.129191	62	192.168.20.140	255.255.255.192	/26	SI:PC7,PC2 NO:PC0,PC4,PC1,PC5
PC7	192.168.20.128	.129191	62	192.168.20.150	255 255.255.192	/26	SI:PC6,PC3 NO:PC4,PC8,PC5,PC9
PC8	192.168.20.0	.163	62	192.168.20.40	255.255.255.192	/26	SI:PC11,PC4 NO:PC9,PC10,PC6,PC7
PC9	192.168.20.64	.65127	62	192.168.20.90	255.255.255.192	/26	SI:PC10,PC5 NO:PC8,PC11,PC6,PC7
PC10	192.168.20.64	.65127	62	192.168.20.100	255.255.255.192	/26	SI:PC9,PC5 NO:PC8,PC11,PC6,PC7
PC11	192.168.20.0	.163	62	192.168.20.50	255.255.255.192	/26	SI:PC8,PC4 NO:PC9,PC10,PC6,PC7

c) 4 subredes de 3 PCs cada una

Estructura de la Red


```
PC>ping 192.168.20.40

Pinging 192.168.20.40 with 32 bytes of data:

Reply from 192.168.20.40: bytes=32 time=2ms TTL=128
Reply from 192.168.20.40: bytes=32 time=0ms TTL=128
Reply from 192.168.20.40: bytes=32 time=0ms TTL=128
Reply from 192.168.20.40: bytes=32 time=0ms TTL=128

Ping statistics for 192.168.20.40:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 2ms, Average = 0ms

PC>
```

Ping desde PC0 a PC10

```
PC>ping 192.168.20.70

Pinging 192.168.20.70 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.70:

Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C

^C
PC>
```

Ping desde PC0 a PC1

```
PC>ping 192.168.20.90

Pinging 192.168.20.90 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.90:

Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C

^C
PC>
```

```
PC>ping 192.168.20.100

Pinging 192.168.20.100 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.100:

Packets: Sent = 3, Received = 0, Lost = 3 (100% loss),

Control-C

CC
PC>
```

```
PC>ping 192.168.20.130

Pinging 192.168.20.130 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.130:

Packets: Sent = 3, Received = 0, Lost = 3 (100% loss),

Control-C

^C
PC>
```

Ping desde PC0 a PC2

```
PC>ping 192.168.20.160

Pinging 192.168.20.160 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.160:

Packets: Sent = 3, Received = 0, Lost = 3 (100% loss),

Control-C

^C
PC>
```

Ping desde PC0 a PC11

```
PC>ping 192.168.20.200

Pinging 192.168.20.200 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.200:

Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C

^C
PC>
```

```
PC>ping 192.168.20.210

Pinging 192.168.20.210 with 32 bytes of data:

Request timed out.

Request timed out.

Ping statistics for 192.168.20.210:

Packets: Sent = 2, Received = 0, Lost = 2 (100% loss),

Control-C

^C
PC>
```

Ping desde PC0 a PC4

HOST	RED	RANGO DE	NÚMERO DE	DIR. IP	MASCARA	SUBFIJO	HOSTs CON
		DIRECCIONES	HOSTS EN				CONECTIVIDAD
		163	LASUBRED 62	192.168.20.2	255,255,255,192	/26	HABILITADA SI:PC5.PC10
PC0	192.168.20.0	.103	02	172.100.20.2	255.255.255.172	720	NO:PC1,PC6,PC2,PC7,PC3,
							PC4
		.65127	62	192.168.20.70	255.255.255.192	/26	SI:PC6,PC9
PC1	192.168.20.64						NO:PC0,PC5,PC2,PC7,PC3,
						1= -	PC4
nco.	102 168 20 128	.129191	62	192.168.20.130	255.255.255.192	/26	SI:PC7,PC11
PC2	192.168.20.128						NO:PC0,PC5,PC1,PC9,PC3, PC4
		.193255	62	192.168.20.200	255,255,255,192	/26	SI:PC4.PC8
PC3	192.168.20.192	.175255	02	172.100.20.200	200.200.200.102	120	NO:PC0,PC5,PC1,PC6,PC2,
							PC7
		.193255	62	192.168.20.210	255.255.255.192	/26	SI:PC3,PC8
PC4	192.168.20.192						NO:PC0,PC5,PC1,PC6,PC2,
							PC7
	102 100 20 0	.163	62	192.168.20.30	255.255.255.192	/26	SI:PC0,PC10
PC5	192.168.20.0						NO:PC1,PC6,PC2,PC7,PC3, PC4
		.65127	62	192.168.20.90	255,255,255,192	/26	SI:PC1,PC9
PC6	192.168.20.64			172.100.20170	200.200.200.102	120	NO:PC0,PC5,PC2,PC7,PC3,
							PC4
		.129191	62	192.168.20.150	255.255.255.192	/26	SI:PC2,PCl1
PC7	192.168.20.128						NO:PC0,PC5,PC1,PC9,PC3,
							PC4
D.C.O.	102 160 20 102	.193255	62	192.168.20.220	255.255.255.192	/26	SI:PC3,PC4
PC8	192.168.20.192						NO:PC0,PC5,PC1,PC6,PC2, PC7
		.65127	62	192.168.20.100	255,255,255,192	/26	SI:PCI.PC6
PC9	192.168.20.64		02	192.10020.100	200.200.200.102	120	NO:PC0,PC5,PC2,PC7,PC3,
							PC4
		.163	62	192.168.20.40	255.255.255.192	/26	SI:PC5,PC0
PC10	192.168.20.0						NO:PC1,PC6,PC2,PC7,PC3,
						17.0	PC4
BCI1	102 169 20 120	.129191	62	192.168.20.160	255.255.255.192	/26	SI:PC2,PC7
PC11	192.168.20.128						NO:PC0,PC5,PC1,PC9,PC3, PC4
		l			1		ru-

4.12 Considere la tabla, que corresponde a 4.10.c (note que la subred 3 se ha desdoblado en dos subredes y note además la variación de la máscara). Construya la red apropiada.

Estructura de la Red

Fire	Last Status	Source	Destination	Туре	Color	Time(sec)	Periodic	
•	Successful	PC4	PC6	ICMP		0.000	N	
-	Successful	PC0	PC2	ICMP		0.000	N	
	Successful	PC7	PC9	ICMP		0.000	N	
								_

Paquetes de Prueba

4.13 Desdoble la subred 4 para generar tres subredes. Construya una tabla similar. Haga pruebas añadiendo PCs y colocando números IP fuera del rango de cada subred. Analice y obtenga las conclusiones del caso, muestre las capturas de pantalla de los escenarios de prueba.

N° SUBRED	RANGO DE IPS	MÁSCARA	SUBFIJO	HOSTS	CONDICIÓN
1	.0 a .63	255.255.255.192	/26	62	No válida
2	.64 a .127	255.255.255.192	/26	62	Válida
3.1	.128 a .159	255.255.255.224	/27	30	Válida
3.2	160 a 191	255.255.255.224	/27	30	Válida
4.1	.192 a .207	255.255.255.240	/28	14	Válida
4.2	.208 a .223	255.255.255.240	/28	14	Válida
4.3	.224 a .239	255.255.255.240	/28	14	Válida
4.4	.240 a .255	255.255.255.240	/28	14	No Válida

Estructura de la Red

```
Packet Tracer PC Command Line 1.0
PC>ping 192.168.20.210

Pinging 192.168.20.210 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.20.210:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Ping entre PC10 (red 4.1) y Ping entre PC11 (fuera de rango, red 4.2)

```
Packet Tracer PC Command Line 1.0
PC>ping 192.168.20.215

Pinging 192.168.20.215 with 32 bytes of data:

Reply from 192.168.20.215: bytes=32 time=0ms TTL=128
Ping statistics for 192.168.20.215:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

PC>
```

Ping entre PC11 (Fuera de rango, red 4.2) y PC12 (red 4.2)

4.14 Desdoble la subred 3.1 para generar tres subredes. Construya una tabla similar. Haga pruebas añadiendo PCs y colocando números IP fuera del rango de cada subred. Analice y obtenga las conclusiones del caso, muestre las capturas de pantalla de los escenarios de prueba.

N° SUBRED	RANGO DE IPS	MÁSCARA	SUBFIJO	HOSTS	CONDICIÓN
1	.0 a .63	255.255.255.192	/26	62	No válida
2	.64 a .127	255.255.255.192	/26	62	Válida
3.1.1	.128 a .135	255.255.255.248	/29	6	Válida
3.1.2	.136 a .143	255.255.255.248	/29	6	Válida
3.1.3	.144 a .151	255.255.255.248	/29	6	Válida
3.1.4	.152 a .159	255.255.255.248	/29	6	Válida
3.2	160 a 191	255.255.255.224	/27	30	Válida
4.1	.192 a .207	255.255.255.240	/28	14	Válida
4.2	.208 a .223	255.255.255.240	/28	14	Válida
4.3	.224 a .239	255.255.255.240	/28	14	Válida
4.4	.240 a .255	255.255.255.240	/28	14	No Válida

Estructura de la Red

```
Packet Tracer PC Command Line 1.0
PC>ping 192.168.20.138

Pinging 192.168.20.138 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.20.138:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
PC>
```

Ping desde PC17 (red 3.1.1) a PC16(Fuera de rango, red 3.1.2)

```
PC>ping 192.168.20.140

Pinging 192.168.20.140 with 32 bytes of data:

Reply from 192.168.20.140: bytes=32 time=0ms TTL=128

Ping statistics for 192.168.20.140:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

PC>
```

Ping desde PC16(Fuera de rango, red 3.1.2) a PC18(red 3.1.2)

5. Conclusiones

- El uso de un Hub está limitado a redes muy pequeñas, mientras más crezca la red con un hub, ésta se hace menos escalable. Por eso es muy recomendable el uso de un switch.
- Las tablas de direccionamiento con los datos de cada subred, son muy importantes a la hora de documentar la estructura de una red. Es de mucha utilidad cuando se va hacer mentenimiento a la red.
- El subneteo es muy importante cuando se quiere separar redes sin perder muchas direcciones en el proceso.
- Es importante tener este tipo de conocimientos, para saber que tipo de red utilizar de acuerdo a nuestras necesidades.
- Hay que tener en cuanta los rangos de las subredes, porque podemos poner una computadora en una subred que no corresponde o ponerle una dirección reservada como la dirección de broadcast
- Es importante dejar la primera y la última subred libres, ya que aquí se encuentras las dirección de red y la dirección de broadcast de la red.
- Las subredes de tamaño fijo son buenas para redes puedan crecer un un futuro, ya que deja varios hosts libres.
- Las subredes de tamaño variable aprobechan todos los host posibles, pero puede que no sirvan para cuando la red crezca.

6. Cuestionario

6.1 ¿A qué se denomina dominio de colisión y dominio de broadcast y como se soluciona?

Dominio de colisión: Grupo de dispositivos conectados al mismo medio físico, de tal manera que si dos dispositivos acceden al medio al mismo tiempo, el resultado será una colisión entre las dos señales. Como resultado de estas colisiones se produce un consumo inadecuado de recursos y de ancho de banda. Cuanto menor sea la cantidad de dispositivos afectados a un dominio de colisión mejor desempeño de la red.

Los switches reducen las colisiones y permiten una mejor utilización del ancho de banda en los segmentos de red, ya que ofrecen un ancho de banda dedicado para cada segmento de red. **Dominio de broadcast:** Grupo de dispositivos de la red que envían y reciben mensajes de difusión entre ellos. Una cantidad inapropiada de estos mensajes de broadcast provocara un bajo rendimiento en la red, una cantidad exagerada (tormenta de broadcast) dará como resultado el mal funcionamiento de la red hasta tal punto de poder dejarla completamente congestionada. Se utilizan encaminadores o enrutadores (*routers*) para segmentar los dominios de difusión.

6.2 ¿Por qué las subredes 1 y 4 de la TABLA 2 están consignadas como No Válidas?

Porque, en la práctica, no se deben usar. Esto debido a que, la primera subred contiene la dirección de la red, y la segunda subred contiene la dirección de broadcast de la red. Entonces, si se usan estas direcciones, cuando la red se conecte con el expterior, puede causar conflictos.

6.3 ¿Cómo se implementa subredes utilizando las direcciones IP de clase A y B? Muestre un ejemplo

Se implementa de la misma forma que se haría para una clase C, sólo se cambiaría En estas clases se tendrían más bits con los que poder trabajar. Por ejemplo, una máscara de red de clase A es: 255.0.0.0, se tienen 24 bits para formar subredes. Si queremos fromar dos subredes, entonces tendríamos que robar 1 bit, esto sería: 255.128.0.0 y así, igual como se haría con una clase C.

6.4 Haga el análisis respectivo para subredes con IPs de clase C mediante el "robo" de 4 y 5 bits

4 bits: Serían 16 subredes /28, cada una con 14 hosts. Su máscara sería 255.255.255.240. **5 bits:** Serían 32 subredes /29, cada una con 6 hosts. Su máscara sería 255.255.255.248.

6.5 ¿Por qué no se pueden crear subredes con IPs de clase C "robando" 1 bit o 7 bits?

Robando un bit no se podría porque sólo tendríamos 2 subredes, y, como se dijo en la pregunta 6.2, no se puede utilizar la primera ni la última subred, dejandonos sin ninguna subred para los host. Robando 7 bits sólo quedarían dos direcciones libres, que serían la dirección de subred y la dirección de broadcast de subret, dejandonos sin ninguna dirección para los host.

6.6 Diseñar una red de clase B en la que se debe crear tres subredes válidas con las siguientes características:

- Número de hosts de la subred 1: 300

- Número de hosts de la subred 2: 500

- Número de hosts de la subred 3: 200

N° SUBRED	RANGO DE IPS	MÁSCARA	SUBFIJO	HOSTS	CONDICIÓN
1	.0.0 a .1.255	255.255.254.0	/23	510	No válida
2	.2.0 a .3.255	255.255.254.0	/23	510	Válida
3	.4.0 a 5.255	255.255.254.0	/23	510	Válida
4.1	.6.0 a .6.255	255.255.255.0	/24	254	Válida
4.2	.7.0 a .7.255	255.25.255.0	/24	254	Válida

•

.

6.7 ¿Porque se dice que IPv4 era "fullclass"?

Porque antes, en la IPv4 no existía el subneteo, entonces se utilizaba una clase completa para armar una red y una subred.