Capstone Project

Juliana Maia

Drivvo is a mobile app to record and keep track of vehicle expenses and keep on top of regular maintenance.

How can I add value to the app?

GOAL

Making it more consultative, predicting when the vehicle will need a service.

FIRST STEP: GET THE DATA

Data collection

- MySQL Workbench
- PostgreSQL
 - o 30+ tables
- Select data to work with
 - What could influence the need for vehicle services?

Data Collection

- Brazil
 - largest number of users(23,4%)
- CSV
- Jupyter Notebook

800K+ entries

```
SELECT
s.odometro AS odometer,
s.data AS date,
sts.id_tipo_servico AS service_id,
ts.nome AS service,
v.id_veiculo AS vehicle_id,
v.id_tipo_veiculo AS vehicle_type,
v.id marca AS brand,
v.ano AS vehicle_year,
v.modelo AS model.
v.id_tipo_combustivel AS fuel_type,
v.volume_tanque AS fuel_volume,
v.volume tangue dois AS fuel volume2,
v.unidade_distancia AS distance_unity,
conf.formato_valor AS currency,
conf.idioma AS language_,
u.country,
u.latitude,
u.longitude
FROM servico s
INNER JOIN servico_tipo_servico sts ON s.id_servico = sts.id_servico
INNER JOIN tipo_servico ts ON sts.id_tipo_servico = ts.id_tipo_servico
INNER JOIN veiculo v ON s.id_veiculo = v.id_veiculo
INNER JOIN usuario u ON ts.id_usuario_acao = u.id_usuario
INNER JOIN configuração conf ON u.id_usuario = conf.id_usuario_acao
WHERE conf.formato_valor LIKE '%BR%' OR conf.formato_valor LIKE '%pt_BR%'
AND conf.idioma LIKE '%br%'
```

Initial Idea

Predict the next Oil Change

```
cross_val_score(model, X_train, y_train, cv=5).mean()

evecuted in 176ms finished 14:25:47.2019-09-05

-9.205705430825014e+25
```

First Lesson

Unique models

In [15]: len(models)

Out[15]: 12415


```
SELECT
s.odometro AS odometer
s.data AS date,
sts.id_tipo_servico AS service_id,
ts.nome AS service,
v.id_veiculo AS vehicle_id,
v.id_tipo_veiculo AS vehicle_type,
v.id marca AS brand,
v.ano AS vehicle vear
v.modelo AS model.
v.id_tipo_combustivel AS fuel_type_
v.volume_tangue AS fuel_volume,
v.volume tangue dois AS fuel volume2,
v.unidade_distancia AS distance_unity,
conf.formato_valor AS currency,
conf.idioma AS language_,
u.country,
u.latitude,
u.longitude
FROM servico s
INNER JOIN servico_tipo_servico sts ON s.id_servico = sts.id_servico
INNER JOIN tipo_servico ts ON sts.id_tipo_servico = ts.id_tipo_servico
INNER JOIN veiculo v ON s.id_veiculo = v.id_veiculo
INNER JOIN usuario u ON ts.id_usuario_acao = u.id_usuario
INNER JOIN configuração conf ON u.id_usuario = conf.id_usuario_acao
WHERE conf.formato_valor LIKE '%BR%' OR conf.formato_valor LIKE '%pt_BR%'
AND conf.idioma LIKE '%br%'
```

SECOND STEP: DATA CLEANING (and extraction)

Why Extraction?

• Get as much information as possible from the users inputs

ecuted in 1	3ms, finished 19:	26:17 2019-09-12
0	61457	
12.0	9045	-
11.0	8464	
13.0	8463	
14.0	7844	

	model	vehicle_year	year_extract	year
4	Corsa Sedan	2003.0	NaN	2003.0
7	Jlx	1997.0	NaN	1997.0
12	1.4	2009.0	NaN	2009.0
14	Fox	2011.0	NaN	2011.0
17	Gol G4	2007.0	NaN	2007.0
18	Authentique	2013.0	NaN	2013.0
22	Cobalt LTZ 1.4 2013/2014	0.0	2013.0	2013.0
24	Fusion	0.0	NaN	NaN

Data Cleaning

	~	EDA
	>	Data Dictionary
	>	Setting the Country
	>	Setting the service type
	>	Cleaning the vehicle_year column
	>	Cleaning the fuel_volume variable
	>	Cleaning the odometer readings
	>	Adding the fuel variable
	>	Creating the target variable - Difference in odometer readings
	>	Cleaning the brands
an	d:	Some More Cleaning and Plotting - Data Visualization
) ·	Target
	>	Predictors

THIRD STEP: TARGET AND PREDICTORS

Defining the Target

- Main goal:
 - Predict when a vehicle will need the next oil change

Defining the Target

Attention to autocorrelation

Defining the Target

Predictors vs. Target

Predictors vs. Target

Correlation Heatmap

FOURTH STEP: MODELING

Linear Regression

Ridge

Lasso

Gradient Boosting

K Neighbors

Decision Tree

Bagging

Random Forest

	Train score	Test score	Mean CV score
Random Forest	0.616977	0.583469	0.586130
Boosting	0.610185	0.576208	0.587032
Decision Tree	0.596377	0.563090	0.571497
KNeighbors	0.596074	0.556887	0.563399
Linear Regression CV	0.554143	0.548932	0.549049
Ridge CV	0.554081	0.548825	NaN
Lasso CV	0.553741	0.548214	NaN
Bagging	0.660333	0.540167	0.543935

around 58% of the variation on target is explained by the independent variables Good at generalizing

Test score: 0.548932

Test score: 0.548825

Test score: 0.548214

NEXT STEPS

Next Steps

- Investigate further the role of the features on vehicle performance
- Expand the model for other countries
- Create model for different services
- Improve the user interaction inside the app (and hopefully get better data)

Thank you