CS 83: Computer Vision

Winter 2024

Quiz 6 — 02/22/2024

Prof. Pediredla

Student: Amittai Siavava

Credit Statement

I discussed solution ideas with:

- 1. Ivy (Aiwei) Zhang
- 2. Angelic McPherson

However, all typed work is my own, with reference to class notes.

Problem 1.

You will derive the <u>Lucas Kanade</u> (or forward-additive) image alignment algorithm by replicating the derivation learned in class. Consider first a *warp function* $\mathbf{W}(\mathbf{x}; \mathbf{p})$ that maps coordinate vectors $\mathbf{x} \in \mathbb{R}^2$ to other coordinate vectors in \mathbb{R}^2 , with the mapping depending on a set of parameters $\mathbf{p} \in \mathbb{R}^N$. Given an image $I(\mathbf{x})$ and a template $T(\mathbf{x})$, we want to find the parameters \mathbf{p} such that the warp function $\mathbf{W}(\mathbf{x}; \mathbf{p})$ best aligns the image with the template in terms of sum-of-squared differences (SSD) error. That is, we want to find the parameters \mathbf{p} that minimize the loss function:

$$\min_{\mathbf{p}} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}) \right]^{2}$$
(1.1)

The Lucas-Kanade alignment algorithm minimizes Equation (1.1) using the Gauss-Newton algorithm. To this end, given some initial set of parameters \mathbf{p}_0 , they are updated iteratively as:

$$\mathbf{p}^{t+1} = \mathbf{p}^t + \Delta \mathbf{p}^t \tag{1.2}$$

for t = 0, 1, 2, ..., T, where the number of iterations T can be selected based on any of the common convergence criteria. Then, the Gauss-Newton algorithm corresponds to selecting a specific form for the update vector $\Delta \mathbf{p}^t$, which you will derive below step-by-step. (i) Use the first-order Taylor expansion to linearize the composite function $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$ with respect to \mathbf{p} around the value \mathbf{p}^t . Write out the expression for this Taylor expansion.

The general form of the first-order Taylor expansion of a function f around a point x is given by:

$$f(x+h) \approx f(x) + f'(x) \cdot h$$
.

Plugging in the composite function $I(\mathbf{W}(\mathbf{x}; \mathbf{p}))$ and centering the expansion at \mathbf{p}^t , the approximation for \mathbf{p} in the neighborhood of \mathbf{p}^t is given by:

$$I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \approx I(\mathbf{W}(\mathbf{x}; \mathbf{p}^t)) + \frac{\mathrm{d}I}{\mathrm{d}\mathbf{p}}(\mathbf{W}(\mathbf{x}; \mathbf{p}^t)) [\mathbf{p} - \mathbf{p}^t].$$
 (1.3)

(ii) Combine the Taylor expansion expression with Equation (1.2) to obtain an approximation for $I(\mathbf{W}(\mathbf{x}; \mathbf{p}^t + \Delta \mathbf{p}^t))$.

Substituting $\mathbf{p} \coloneqq \mathbf{p}^t + \Delta \mathbf{p}^t$ into the first-order Taylor expansion (1.3) gives:

$$I(\mathbf{W}(\mathbf{x}; \mathbf{p}^{t+1})) = I(\mathbf{W}(\mathbf{x}; \mathbf{p}^t + \Delta \mathbf{p}^t)) \approx I(\mathbf{W}(\mathbf{x}; \mathbf{p}^t)) + \frac{dI}{d\mathbf{p}}(\mathbf{W}(\mathbf{x}; \mathbf{p}^t))\Delta \mathbf{p}^t, \tag{1.4}$$

where $\frac{\mathrm{d}I}{\mathrm{d}\mathbf{p}}$ is the image gradient with respect to the warp parameters, equivalent to $\nabla I \left[\frac{\mathrm{d}\mathbf{W}}{\mathrm{d}\mathbf{p}} \right]$.

(iii) Show that, using this approximation, the approximation problem of Equation (1.1) can be written in the form:

$$\min_{\Delta \mathbf{p}^t} \left\| I(\mathbf{W}(\mathbf{x}; \mathbf{p}^t + \Delta \mathbf{p}^t)) - T(\mathbf{x}) \right\|^2$$
(1.5)

for some matrix **A** and vector **b**.

Substituting the approximation from Equation (1.4) into the loss function of Equation (1.1) gives:

$$\begin{split} \min_{\Delta \mathbf{p}^{t}} \left\| I(\mathbf{W}(\mathbf{x}; \mathbf{p}^{t} + \Delta \mathbf{p}^{t})) - T(\mathbf{x}) \right\|^{2} &\approx \min_{\Delta \mathbf{p}^{t}} \left\| I(\mathbf{W}(\mathbf{x}; \mathbf{p}^{t})) + \frac{\mathrm{d}I}{\mathrm{d}\mathbf{p}} (\mathbf{W}(\mathbf{x}; \mathbf{p}^{t})) \Delta \mathbf{p}^{t} - T(\mathbf{x}) \right\|^{2} \\ &\approx \min_{\Delta \mathbf{p}^{t}} \left\| \frac{\mathrm{d}I}{\mathrm{d}\mathbf{p}} (\mathbf{W}(\mathbf{x}; \mathbf{p}^{t})) \Delta \mathbf{p}^{t} - \left[T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}^{t})) \right] \right\|^{2} \\ &\approx \min_{\Delta \mathbf{p}^{t}} \left\| \mathbf{A} \Delta \mathbf{p}^{t} - \mathbf{b} \right\|^{2}, \end{split}$$

where

$$\mathbf{A} \coloneqq \frac{\mathrm{d}I}{\mathrm{d}\mathbf{p}}(\mathbf{W}(\mathbf{x}; \mathbf{p}^t)) = \begin{bmatrix} \frac{\partial I_x}{\partial p_1} & \frac{\partial I_x}{\partial p_2} & \dots & \frac{\partial I_x}{\partial p_N} \\ \frac{\partial I_y}{\partial p_1} & \frac{\partial I_y}{\partial p_2} & \dots & \frac{\partial I_y}{\partial p_N} \end{bmatrix} (\mathbf{W}(\mathbf{x}; \mathbf{p}^t)) \quad \text{and} \quad \mathbf{b} \coloneqq T(\mathbf{x}) - I(\mathbf{W}(\mathbf{x}; \mathbf{p}^t)).$$

Note that $x \in \mathbb{R}^2$ and $\mathbf{p} \in \mathbb{R}^N$, so **A** is not necessarily square!

(iv) Show how to solve the optimization problem of Equation (1.5) for the parameter update $\Delta \mathbf{p}^t$, and write out an expression for this solution.

The solution to the optimization problem of Equation (1.5) is given by the least-squares solution to the linear system $\mathbf{A}\Delta\mathbf{p}^t = \mathbf{b}$. This solution is given by:

$$\mathbf{A}\Delta\mathbf{p}^t - b = 0$$

$$\mathbf{A}\Delta\mathbf{p}^t = \mathbf{b}$$

$$\underbrace{\mathbf{A}^T\mathbf{A}}_{2\times 2}\Delta\mathbf{p}^t = \mathbf{A}^T\mathbf{b}$$

$$\Delta\mathbf{p}^t = \left[\mathbf{A}^T\mathbf{A}\right]^{-1}\mathbf{A}^T\mathbf{b}.$$

Thus, we can solve for the parameter update $\Delta\mathbf{p}^t$ using the expression

$$\Delta \mathbf{p}^t = \left[\mathbf{A}^T \mathbf{A} \right]^{-1} \mathbf{A}^T \mathbf{b}. \tag{1.6}$$

(v) Finally, explain how this expression for $\Delta \mathbf{p}^t$ can be evaluated, using image convolutions, warps, element-wise operations, and matrix-vector operations. You can either explain this in words or provide pseudocode, but make sure to explain each step clearly.

The expression for $\Delta \mathbf{p}^t$ in Equation (1.6) can be evaluated using the following steps:

- **1.** Warp the image $I(\mathbf{x})$ using the current warp parameters \mathbf{p}^t to obtain the warped image $I(\mathbf{W}(\mathbf{x};\mathbf{p}^t))$.
- 2. Compute the image gradients $\nabla I(\mathbf{x}') \coloneqq \begin{bmatrix} I_x(\mathbf{x}') \\ I_y(\mathbf{x}') \end{bmatrix}$ by convolving the warped image with the appropriate filters, such as the Sobel kernel. Note that $\mathbf{x}' = \mathbf{W}(\mathbf{x}; \mathbf{p}^t)$.
- 3. Compute the Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$, by taking the partial derivatives of the warp function $\mathbf{W}(\mathbf{x}; \mathbf{p}^t)$ with respect to the warp parameters \mathbf{p}^t .
- **4.** Compute the *matrix* of image gradients with respect to the warp parameters, $\frac{dI}{d\mathbf{p}} = (\nabla I) \frac{\partial \mathbf{W}}{\partial \mathbf{p}}$.
- 5. Compute the Jacobian matrix $\bf A$ by taking the partial derivatives of the image I with respect to the warp parameters $\bf p$. This can be done by convolving the image with the appropriate kernel, such as the Sobel kernel, to compute the image gradients I_x and I_y . Then, the Jacobian matrix is the cross-product of the image gradients with the partial-derivative operators for the warp parameters:

$$\mathbf{A} = \begin{bmatrix} I_x(\mathbf{W}(\mathbf{x}; \mathbf{p}^t)) \\ I_y(\mathbf{W}(\mathbf{x}; \mathbf{p}^t)) \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial p_1} & \frac{\partial}{\partial p_2} & \cdots & \frac{\partial}{\partial p_N} \end{bmatrix}.$$

- **6.** Compute the residual vector \mathbf{b} by taking the difference between the template $T(\mathbf{x})$ and the warped image $I(\mathbf{W}(\mathbf{x}; \mathbf{p}^t))$.
- 7. Compute the matrix $\mathbf{A}^T \mathbf{A}$ and the vector $\mathbf{A}^T \mathbf{b}$.
- **8.** Solve the linear system $\mathbf{A}\Delta\mathbf{p}^t = \mathbf{b}$ by solving Equation (1.6);

$$\Delta \mathbf{p}^t = \left[\mathbf{A}^T \mathbf{A} \right]^{-1} \mathbf{A}^T \mathbf{b}.$$

Problem 2.

In this question, we will derive the <u>Baker-Matthews</u> (or inverse compositional) image alignment algorithm for a simpler case. Consider first the *warp function* $\mathbf{W}(\mathbf{x}; \mathbf{p})$ that maps coordinate vectors $\mathbf{x} \in \mathbb{R}^2$ to other coordinate vectors in \mathbb{R}^2 :

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} p_1 & 0 \\ 0 & p_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p_1 x \\ p_2 y \end{bmatrix} \quad \text{where} \quad \mathbf{p} := \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}, \mathbf{x} := \begin{bmatrix} x \\ y \end{bmatrix}, \tag{2.1}$$

where the mapping depends on a set of parameters $\mathbf{p} \in \mathbb{R}^2$. Given an image $I(\mathbf{x})$ and a template $T(\mathbf{x})$, we want to find the parameters \mathbf{p} such that the warp function $\mathbf{W}(\mathbf{x}; \mathbf{p})$ (representing a scaling operation) best aligns the image with the template in terms of sum-of-squared differences (SSD) error.

The idea behind the Baker-Matthews alignment algorithm is to iteratively find incremental warp parameter $\Delta \mathbf{p}$ that minimize the following objective:

$$\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \left[T(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p})) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right]^{2}.$$
 (2.2)

We will use the Gauss-Newton algorithm to solve this non-linear and non-parametric least-squares problem to compute the incremental warp parameters $\Delta \mathbf{p}$.

(i) The <u>Baker-Matthews</u> alignment algorithm assumes that $\mathbf{W}(\mathbf{x}; \mathbf{0})$ is the identity warp, i.e., $\mathbf{W}(\mathbf{x}; \mathbf{0}) = \mathbf{x}$. However, the current warp function in Equation (2.1) does not satisfy this property. Propose a modified form of this scaling warp function that satisfies the identity assumption and write out its corresponding Jacobian $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$.

(Note that there are multiple valid solutions for this part of the quiz.)

The current warp function W(x; p) in Equation (2.1) has the problem that

$$\mathbf{W}(\mathbf{x}; \mathbf{0}) = \begin{bmatrix} 0x \\ 0y \end{bmatrix} = \mathbf{0} \neq \mathbf{x}.$$

To make it satisfy the identity assumption, we can add a translation term to the warp function:

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} p_1 & 0 \\ 0 & p_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} p_1 & 0 \\ 0 & p_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} p_1 + 1 & 0 \\ 0 & p_2 + 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

The Jacobian of this modified warp function with respect to the warp parameters **p** is given by:

$$\frac{\partial \mathbf{W}}{\partial \mathbf{p}} = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}. \tag{2.3}$$

(ii) Use the first-order Taylor expansion to linearize the composite function $T(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}))$ with respect to $\Delta \mathbf{p}$ around the value $\mathbf{0}$. Write out the expression for this Taylor expansion. Plug this expression back into Equation (2.2).

The general form of the first-order Taylor expansion of a function f around a point x is given by:

$$f(x+h) \approx f(x) + f'(x) \cdot h$$
.

Plugging in the composite function $T(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}))$ and centering the expansion at $\mathbf{0}$, the approximation for $\Delta \mathbf{p}$ in the neighborhood of $\mathbf{0}$ is given by:

$$T(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p})) \approx T(\mathbf{W}(\mathbf{x}; \mathbf{0})) + \frac{dT}{d\mathbf{p}}(\mathbf{W}(\mathbf{x}; \mathbf{0}))\Delta p$$
$$\approx T(\mathbf{x}) + \frac{dT}{d\mathbf{p}}(\mathbf{x})\Delta \mathbf{p} \qquad \text{since } \mathbf{W}(\mathbf{x}; \mathbf{0}) = \mathbf{x}$$

where $\frac{\mathrm{d}T}{\mathrm{d}\mathbf{p}}$ is the template gradient with respect to the warp parameters, equivalent to:

$$\frac{\mathrm{d}T}{\mathrm{d}\mathbf{p}}(\mathbf{x}) = \nabla T(\mathbf{x}) \frac{\mathrm{d}\mathbf{W}}{\mathrm{d}\mathbf{p}} = \nabla T(\mathbf{x}) \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}.$$

Thus, we can solve the optimization problem of Equation (2.2) by solving the following optimization problem:

$$\mathbb{E} = \min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \| T(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p})) - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \|^{2}$$

$$= \min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \| T(\mathbf{W}(\mathbf{x}; \mathbf{0})) + \frac{dT}{d\mathbf{p}} (\mathbf{W}(\mathbf{x}; \mathbf{0})) \Delta \mathbf{p} - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \|^{2}$$

$$= \min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \| T(\mathbf{x}) + \frac{dT}{d\mathbf{p}} (\mathbf{x}) \Delta \mathbf{p} - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \|^{2} \quad \text{since } \mathbf{W}(\mathbf{x}; \mathbf{0}) = \mathbf{x}.$$

(iii) Show that this approximation to the optimization problem can be rewritten in the form:

$$\min_{\Delta \mathbf{p}} \| \mathbf{A} \Delta \mathbf{p} - \mathbf{b} \|^2, \tag{2.4}$$

for some matrix A and vector b. Show how to solve the optimization problem of Equation (2.4) for the parameter update Δp , and write out an expression for this solution.

Substituting the approximation from Equation (2.5) into the loss function of Equation (2.2) gives:

$$\min_{\Delta \mathbf{p}} \left\| T(\mathbf{x}) + \frac{dT}{d\mathbf{p}}(\mathbf{x}) \Delta \mathbf{p} - I(\mathbf{W}(\mathbf{x}; \mathbf{p})) \right\|^{2} \approx \min_{\Delta \mathbf{p}} \left\| \frac{dT}{d\mathbf{p}}(\mathbf{x}) \Delta \mathbf{p} - (I(\mathbf{W}(\mathbf{x}; \mathbf{p}) - T(\mathbf{x}))) \right\|^{2} \\
\approx \min_{\Delta \mathbf{p}} \left\| \mathbf{A} \Delta \mathbf{p} - \mathbf{b} \right\|^{2},$$

where $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ is the image point and \mathbf{A} is the Jacobian matrix $\frac{dT}{d\mathbf{p}}(\mathbf{x})$ given by

$$\mathbf{A} \coloneqq \frac{\mathrm{d}T}{\mathrm{d}\mathbf{p}}(\mathbf{x}) = \nabla T(\mathbf{x}) \begin{bmatrix} \frac{\partial \mathbf{W}}{\partial p_1} \\ \frac{\partial \mathbf{W}}{\partial p_2} \end{bmatrix} = \nabla T(\mathbf{x}) \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} T_x(\mathbf{x}) \cdot x \\ T_y(\mathbf{x}) \cdot y \end{bmatrix}$$

and \mathbf{b} is the residual vector

$$\mathbf{b} \coloneqq I(\mathbf{W}(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}).$$

The solution to the optimization problem of Equation (2.4) is given by:

$$\Delta \mathbf{p} = \left[\mathbf{A}^T \mathbf{A} \right]^{-1} \mathbf{A}^T \mathbf{b}. \tag{2.5}$$

(iv) Finally, you will need to compute your new warp parameter \mathbf{p}' by using the following update rule for the inverse compositional algorithm:

$$\mathbf{W}(\mathbf{x}; \mathbf{p}') \leftarrow \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p})^{-1}. \tag{2.6}$$

Given your modified warp function from part 1, write down an expression for the new parameters \mathbf{p}' in terms of \mathbf{p} and $\Delta \mathbf{p}$.

The warp function $\mathbf{W}(\mathbf{x}; \mathbf{p}')$ is given by:

$$\mathbf{W}(\mathbf{x}; \mathbf{p}') = \mathbf{W}(\mathbf{x}; \mathbf{p}) \circ \mathbf{W}(\mathbf{x}; \Delta \mathbf{p})^{-1}$$

$$= \mathbf{W}(\mathbf{W}(\mathbf{x}; \Delta \mathbf{p}); \mathbf{p})$$

$$= \mathbf{W}(\begin{bmatrix} \Delta p_1 + 1 & 0 \\ 0 & \Delta p_2 + 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}; \mathbf{p})$$

$$= \mathbf{W}(\begin{bmatrix} \Delta p_1 x + x \\ \Delta p_2 y + y \end{bmatrix}; \mathbf{p})$$

$$= \begin{bmatrix} p_1 + 1 & 0 \\ 0 & p_2 + 1 \end{bmatrix} \begin{bmatrix} \Delta p_1 x + x \\ \Delta p_2 y + y \end{bmatrix}$$

$$= \begin{bmatrix} (p_1 + 1)(\Delta p_1 x + x) \\ (p_2 + 1)(\Delta p_2 y + y) \end{bmatrix}$$

$$= \begin{bmatrix} p_1 \Delta p_1 x + p_1 x + \Delta p_1 x + x \\ p_2 \Delta p_2 y + p_2 y + \Delta p_2 y + y \end{bmatrix}$$

$$= \begin{bmatrix} (p_1 \cdot \Delta p_1 + 1)x + x \\ (p_2 \cdot \Delta p_2 + 1)y + y \end{bmatrix}$$

$$= \begin{bmatrix} (p_1 \cdot \Delta p_1 + 1) + 1 \\ (p_2 \cdot \Delta p_2 + 1) + 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \mathbf{W}(\mathbf{x}; \mathbf{p} \cdot \Delta \mathbf{p} + 1).$$

Thus, the new warp parameters \mathbf{p}' are given by

$$\mathbf{p}' = \mathbf{p} \cdot \Delta \mathbf{p} + \mathbf{1},\tag{2.7}$$

where (·) denotes element-wise multiplication of the vectors (i.e. $\begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ab \\ cd \end{bmatrix}$).