

# Quick Protocol for Monarch® PCR & DNA Cleanup Kit (5 μg) (NEB #T1030)

# **New England Biolabs**

## **Abstract**

This is the "quick" version of Monarch® PCR & DNA Cleanup Kit (5  $\mu$ g) Protocol (NEB #T1030). For the full protocol, please click here.

Citation: New England Biolabs Quick Protocol for Monarch® PCR & DNA Cleanup Kit (5 µg) (NEB #T1030). protocols.io

dx.doi.org/10.17504/protocols.io.ejxbcpn

Published: 30 Mar 2016

# **Guidelines**

For detailed protocol and more information, visit <a href="https://www.neb.com/T1030">www.neb.com/T1030</a>

The full protocol is available <u>here.</u>

The video protocol is available here.

# **Before start**

Add 4 volumes of ethanol (≥ 95%) to one volume of DNA Wash Buffer.

- For 50-prep kit, add 20 ml of ethanol to 5 ml of Monarch DNA Wash Buffer
- For 250-prep, kit add 100 ml of ethanol to 25 ml of Monarch DNA Wash Buffer

All centrifugation steps should be carried out at  $16,000 \times g$  (~13,000 RPM).

#### **Materials**

Monarch® PCR & DNA Cleanup Kit (5 μg) T1030 by New England Biolabs

## **Protocol**

## Step 1.

Dilute sample with DNA Cleanup Binding Buffer according to the table below. Mix well by pipetting up and down or flicking the tube. Do not vortex. A sample volume of 20–100  $\mu$ l is recommended. For smaller samples, TE can be used to adjust the volume. For diluted samples larger than 800  $\mu$ l, load a portion of the sample, proceed with step 2, and then repeat as necessary.

Sample Type

1

| dsDNA > 2 kb (plasmids, gDNA) | 2:1            | 200 μl: 100 μl |
|-------------------------------|----------------|----------------|
| dsDNA < 2 kb (some amplicons, | fragments) 5:1 | 500 μl: 100 μl |
| ssDNA (cDNA, M13)             | 7:1            | 700 μl: 100 μl |

#### NOTES

### New England Biolabs 17 Feb 2016

A sample volume of 20–100  $\mu$ l is recommended. For smaller samples, TE can be used to adjust the volume. For diluted samples larger than 800  $\mu$ l, load a portion of the sample, proceed with step 2, and then repeat as necessary.

# Step 2.

Insert column into collection tube and load sample onto column. Spin for 1 minute at  $16,000 \times g$ , then discard flow-through.

**O DURATION** 

00:01:00

# Step 3.

Re-insert column into collection tube. Add 200  $\mu$ l DNA Wash Buffer (with ethanol added) and spin for 1 minute at 16,000 x g. Discarding flow-through is optional.

© DURATION

00:01:00

## Step 4.

**Repeat Step 3.** (Step 3: Re-insert column into collection tube. Add 200  $\mu$ l DNA Wash Buffer and spin for 1 minute at 16,000 x g. Discarding flow-through is optional).

© DURATION

00:01:00

#### Step 5.

**Transfer column to a clean 1.5 ml microfuge tube.** Use care to ensure that the tip of the column does not come into contact with the flow-through. If in doubt, re-spin for 1 minute.

#### NOTES

#### **New England Biolabs** 17 Feb 2016

Use care to ensure that the tip of the column does not come into contact with the flow-through. If in doubt, re-spin for 1 minute.

#### Step 6.

Add  $\geq$  6  $\mu$ l of DNA Elution Buffer to the center of the matrix. Wait for 1 minute, then spin for 1 minute at 16,000 x g to elute the DNA.

© DURATION

00:02:00

# NOTES

#### **New England Biolabs** 17 Feb 2016

Typical elution volumes are 6–20  $\mu$ l. Nuclease-free water (pH 7–8.5) can also be used to elute the DNA. Yield may slightly increase if a larger volume of DNA Elution Buffer is used, but the DNA will be less concentrated. For larger size DNA ( $\geq$  10 kb), heating the elution buffer to 50°C prior to use can improve yield.