최단경로알고리즘

최단 경로 문제

최단 경로 문제: 가중 그래프에서 간선의 가중치의 합이 최소가 되는 경로를 찾는 문제

- o 단일 출발 (single-source) 최단 경로: 어떤 하나의 정점에서 출발하여 나머지 모든 정점까지의 최단 경로를 찾는다.
- o 단일 도착 (single-destination) 최단 경로 : 모든 정점에서 출발하여 어떤 하나의 정점까지의 최단 경로를 찾는다.

-> 그래프 내의 간선들을 뒤집으면 단일 출발 최단 경로 문제로 바뀔 수 있다.

- o 단일 쌍 (single-pair) 최단 경로 : 어떤 정점 v에서 v'로 가는 최단 경로를 찾는다.
- o 전체 쌍 (all-pair) 최단 경로: 모든 정점 쌍들 사이의 최단 경로를 찾는다.

<최단 경로 문제를 해결하는 알고리즘>

- o **다익스트라 알고리즘** : 음이 아닌 가중 그래프에서의 단일 출발, 단일 도착, 단일 쌍 최단 경로 문제
- o 벨만-포드 알고리즘: 가중 그래프에서의 단일 출발, 단일 도착, 단일 쌍 최단 경로 문제
- o 플로이드-워셜 알고리즘: 전체 쌍 최단 경로 문제
- ** BFS : 가중치가 없거나 가중치가 동일한 그래프에서 최단 경로를 찾는 경우 가장 빠르다.

다익스트라

다익스트라 알고리즘 (Dijkstra Algorithm)

그래프 G = (V, E) 에서 특정 출발 정점(S)에서 다른 모든 정점까지의 최단 경로를 구하는 알고리즘이다. 음의 가중치를 가지는 간선이 없을 때 정상적으로 동작한다.

<알고리즘>

- 1. 출발 노드 S를 설정한다.
- 2. 출발 노드 S에서 모든 노드들까지의 최단 거리를 저장하는 배열 D를 초기화한다.
- 3. 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택한다. (D 배열 검사)
- 4. 해당 노드를 거쳐 다른 노드로 가는 비용을 계산하여 최단 거리 배열 D를 갱신한다.
- 5. 모든 노드를 방문할 때까지 3, 4 과정을 반복한다.

<특징>

- o 각 정점을 최대 한 번씩만 방문하여 최단 거리를 확정한다.
- o 아직 방문하지 않은 정점들 중 최단 거리인 정점을 찾아 방문하는 식으로 진행된다.
 - o 이 때, 최단 거리가 최소인 정점을 찾는 과정에서 PriorityQueue 또는 Heap 자료구조를 이용하면 더욱 개선된 알고리즘이 가능하다.
- o 매 순간마다 최단 거리의 정점을 선택하는 과정을 반복하므로 그리디 알고리즘으로 분류된다.
- o 총 V x V 번 연산이 필요하므로 **O(V^2)**의 시간복잡도를 가진다.

7개의 정점과 음의 가중치를 갖지 않는 12개의 간선으로 이루어진 가중 그래프 G 정점 1에서 나머지 정점까지의 최단 거리를 구하여라.

방문 정점 \ K	1	2	3	4	5	6	7
초기상태	0	∞	∞	∞	∞	∞	∞

7개의 정점과 음의 가중치를 갖지 않는 12개의 간선으로 이루어진 가중 그래프 G 정점 1에서 나머지 정점까지의 최단 거리를 구하여라.

방문 정점 \ K	1	2	3	4	5	6	7
초기상태	0	∞	∞	∞	∞	∞	∞
1	0	7	5	3	∞	∞	∞

7개의 정점과 음의 가중치를 갖지 않는 12개의 간선으로 이루어진 가중 그래프 G 정점 1에서 나머지 정점까지의 최단 거리를 구하여라.

방문 정점 \ K	1	2	3	4	5	6	7
초기상태	0	∞	∞	∞	∞	∞	∞
1	0	7	5	3	∞	∞	∞
4	0	7	5	3	3 + 9 = 12	∞	3 + 7 = 10

7개의 정점과 음의 가중치를 갖지 않는 12개의 간선으로 이루어진 가중 그래프 G 정점 1에서 나머지 정점까지의 최단 거리를 구하여라.

방문 정점 \ K	1	2	3	4	5	6	7
초기상태	0	8	∞	8	8	8	∞
1	0	7	5	3	∞	8	∞
4	0	7	5	3	12	8	10
3	0	7	5	3	5 + 3 = 8	8	10

← 기존에 저장된 값과 비교하여 더 작은 값을 넣음

7개의 정점과 음의 가중치를 갖지 않는 12개의 간선으로 이루어진 가중 그래프 G 정점 1에서 나머지 정점까지의 최단 거리를 구하여라.

방문 정점 \ K	1	2	3	4	5	6	7
초기상태	0	8	∞	∞	∞	∞	∞
1	0	7	5	3	∞	∞	∞
4	0	7	5	3	12	∞	10
3	0	7	5	3	8	∞	10
2	0	7	5	3	8	∞	10

7개의 정점과 음의 가중치를 갖지 않는 12개의 간선으로 이루어진 가중 그래프 G 정점 1에서 나머지 정점까지의 최단 거리를 구하여라.

방문 정점 \ K	1	2	3	4	5	6	7
초기상태	0	∞	∞	∞	∞	∞	8
1	0	7	5	3	∞	∞	∞
4	0	7	5	3	12	∞	10
3	0	7	5	3	8	∞	10
2	0	7	5	3	8	∞	10
5	0	7	5	3	8	∞	8 + 1 = 9

7개의 정점과 음의 가중치를 갖지 않는 12개의 간선으로 이루어진 가중 그래프 G 정점 1에서 나머지 정점까지의 최단 거리를 구하여라.

방문 정점 \ K	1	2	3	4	5	6	7
초기상태	0	8	∞	∞	∞	∞	∞
1	0	7	5	3	∞	∞	∞
4	0	7	5	3	12	∞	10
3	0	7	5	3	8	∞	10
2	0	7	5	3	8	∞	10
5	0	7	5	3	8	∞	9
7	0	7	5	3	8	∞	9

7개의 정점과 음의 가중치를 갖지 않는 12개의 간선으로 이루어진 가중 그래프 G 정점 1에서 나머지 정점까지의 최단 거리를 구하여라.

방문 정점 \ K	1	2	3	4	5	6	7
초기상태	0	∞	∞	∞	∞	∞	8
1	0	7	5	3	∞	∞	∞
4	0	7	5	3	12	∞	10
3	0	7	5	3	8	∞	10
2	0	7	5	3	8	∞	10
5	0	7	5	3	8	∞	9
7	0	7	5	3	8	∞	9

벨만-포드

벨만-포드 알고리즘 (Bellman-Ford-Moore Algorithm)

그래프 G = (V, E) 에서 특정 출발 정점(S)에서 다른 모든 정점까지의 최단 경로를 구하는 알고리즘이다. 다익스트라 알고리즘과 달리, 음의 가중치를 가지는 간선도 가능하다.

<알고리즘>

가중 그래프 (V, E)에서 **어떤 정점 A에서 정점 B까지의 최단 거리는 최대 V - 1개의 간선을 사용**한다. (= 시작 정점 A를 포함하여 최대 V개의 정점을 지난다.)

- 1. 출발 노드 S를 설정한다.
- 2. 출발 노드 S에서 모든 노드들까지의 최단 거리를 저장하는 배열 D를 초기화한다.
- 3. 그래프의 모든 간선을 돌면서 각 노드로 가는 비용을 계산하여 최단 거리 배열 D를 갱신한다.
- 4. 3 과정을 (노드의 개수 1)번, 즉 V-1번 반복한다.
- 5. 3 과정을 한 번 더 반복하였을 때, 배열 D가 갱신되면 음의 사이클이 있는 것으로 판단한다.

<특징>

- o 음의 가중치를 가지는 간선도 가능하므로, 음의 사이클의 존재 여부를 따져야 한다.
- o 최단 거리를 구하기 위해서 V 1번 E개의 모든 간선을 확인한다.
- o 음의 사이클 존재 여부를 확인하기 위해서 한 번 더 (V번째) E개의 간선을 확인한다. 이 때 거리 배열이 갱신되었다면, 그래프 G는 음의 사이클을 가진다.
- o 따라서 총 V x E 번 연산하므로 O(VE)의 시간복잡도를 가진다.

간선 사용 횟수 \ K	1	2	3	4	5
초기상태	0	∞	∞	∞	8

D[K] : 출발 정점 S에서 정점 K까지의 최단 거리를 저장하는 배열

간선 사용 횟수 \ K	1	2	3	4	5
초기상태	0	∞	∞	8	8
1	0	7	5	3	8

D[K] : 출발 정점 S에서 정점 K까지의 최단 거리를 저장하는 배열

간선 사용 횟수 \ K	1	2	3	4	5
초기상태	0	∞	∞	∞	∞
1	0	7	5	3	∞
2	0	3 + 3 = 6	5	3	3 + (-6) = -3

D[K] : 출발 정점 S에서 정점 K까지의 최단 거리를 저장하는 배열

간선 사용 횟수 \ K	1	2	3	4	5
초기상태	0	∞	8	∞	8
1	0	7	5	3	8
2	0	6	5	3	-3
3	0	6	(-3) + 2 = -1	3	-3

D[K] : 출발 정점 S에서 정점 K까지의 최단 거리를 저장하는 배열

U	/	5	3	∞	0
0	6	5	3	-3	0
0	6	-1	3	-3	0 (
0	2 + 3 = 5	-1	(-1) + 3 = 2	2 + (-6) = -4	

D[K] : 출발 정점 S에서 정점 K까지의 최단 거리를 저장하는 배열

간선 사용 횟수 \ K

초기상태

간선 사용 횟수 \ K	1	2	3	4	5
초기상태	0	∞	8	8	8
1	0	7	5	3	8
2	0	6	5	3	-3
3	0	6	-1	3	-3
4	0	5	-1	2	-4
5	0	5	(-4) + 2 = -2	2	-4

→ 음의 사이클을 가짐

D[K] : 출발 정점 S에서 정점 K까지의 최단 거리를 저장하는 배열

간선 사용 횟수 \ K	1	2	3	4	5
초기상태	0	∞	∞	8	8
1	0	7	5	З	8
2	0	6	5	3	-3
3	0	6	-1	3	-3
4	0	5	-1	2	-4
5	0	5	-2	2	-4

D[K] : 출발 정점 S에서 정점 K까지의 최단 거리를 저장하는 배열

플로이드-워셜

플로이드-워셜 알고리즘 (Floyd-Warshall Algorithm)

그래프 G = (V, E) 에서 모든 정점 사이의 최단 경로를 구하는 알고리즘이다.

<알고리즘>

- o 어떤 두 정점 사이의 최단 경로는 어떤 경유지(K)를 거치거나, 거치지 않는 경로 중 하나이다. 즉 정점 A와 정점 B 사이의 최단 경로는 A-B 이거나 A-K-B 이다.
- o 만약 경유지(K)를 거친다면 최단 경로를 이루는 부분 경로 역시 최단 경로이다. 즉 A-B의 최단 경로가 A-K-B라면 A-K와 K-B도 각각 최단 경로이다.
- 1. 각 노드들 사이의 최단 거리를 저장하는 2차원 배열 D를 초기화한다.
- 2. 각 노드가 경유지 K를 지날 때마다 최단 경로를 계산하여 배열 D를 갱신한다.
- 3. 동적 계획법으로 해결하며, 점화식은 D[A][B] = min(D[A][B], D[A][K] + D[K][B] 이다.

<특징>

- o 사이클이 없다면 음수 가중치를 가져도 적용 가능하다.
- o 동적 계획법(Dynamic Programming)으로 접근한다.
- o 모든 가능한 경유지에 대해서 모든 정점 -> 모든 정점으로 가는 최단 거리를 확인하므로 연산 횟수는 V^3이고, 따라서 시간복잡도는 O(V^3)이다.

[Step 0. 초기 상태]

I\J	1	2	3	4	5
1	0	7	5	-3	8
2	∞	0	8	8	8
3	∞	∞	0	3	3
4	∞	3	∞	0	6
5	∞	∞	2	8	0

[Step 1. 경유지 K = 1] 점화식 : Dij = min(Dij, Di1 + D1j)

I\J	1	2	3	4	5
1	0	7	5	-3	∞
2	8	0	8	8	8
3	8	8	0	3	3
4	∞	3	8	0	6
5	∞	8	2	8	0

[Step 2. 경유지 K = 2] 점화식 : Dij = min(Dij, Di2 + D2j)

I\J	1	2	3	4	5
1	0	7	5	-3	8
2	∞	0	8	8	8
3	∞	∞	0	3	3
4	∞	3	8	0	6
5	∞	∞	2	8	0

[Step 3. 경유지 K = 3] 점화식 : Dij = min(Dij, Di3 + D3j)

I\J	1	2	3	4	5
1	0	7	5	-3	5 + 3 = 8
2	8	0	8	∞	8
3	8	∞	0	3	3
4	8	3	∞	0	6
5	∞	∞	2	2 + 3 = 5	0

[Step 4. 경유지 K = 4] 점화식 : Dij = min(Dij, Di4 + D4j)

I\J	1	2	3	4	5
1	0	-3 + 3 = 0	5	-3	-3 + 6 = 3
2	∞	0	8	8	8
3	∞	3 + 3 = 6	0	3	ω
4	∞	3	8	0	6
5	∞	5 + 3 = 8	2	5	0

[Step 5. 경유지 K = 5] 점화식 : Dij = min(Dij, Di5 + D5j)

Ι\J	1	2	3	4	5
1	0	0	5	-3	3
2	∞	0	∞	∞	∞
3	∞	6	0	3	3
4	∞	3	6 + 2 = 8	0	6
5	∞	8	2	5	0

[FINAL 최단 거리 배열]

Ι\J	1	2	3	4	5
1	0	0	5	-3	3
2	∞	0	8	8	8
3	∞	6	0	3	3
4	∞	3	8	0	6
5	∞	8	2	5	0