SEQUENCE LISTING

<110>	Clevenger, Charles V Kline, J. Bradford											
<120>	Composition and Method for Modulating Somatolactogenic Function											
<130>	PENN-0795											
	60/258,285 2000-12-22											
<160>	4											
<170>	PatentIn version 3.1											
<210><211><211><212><213>												
<220> <223>	Synthetic											
<400> 1 cgaattccag ttacctcctg ga 22												
<210><211><212><213>	24											
<220> <223>	Synthetic											
	<400> 2 gctcgagtca tgtatcattc tggt 2-											
<210><211><211><212><213>	210											
<400>	3											
Met Ly 1	ys Glu Asn Val Ala Ser Ala Thr Val Phe Thr Leu Leu Leu Phe 5 10 15											
Leu As	sn Thr Cys Leu Leu Asn Gly Gln Leu Pro Pro Gly Lys Pro Glu 20 25 30											
Ile P	he Lys Cys Arg Ser Pro Asn Lys Glu Thr Phe Thr Cys Trp Trp 35 40 45											

Silver and a

Arg	Pro 50	Gly	Thr	Asp	Gly	Gly 55	Leu	Pro	Thr	Asn	Tyr 60	Ser	Leu	Thr	Tyr	
His 65	Arg	Glu	Gly	Glu	Thr 70	Leu	Met	His	Glu	Cys 75	Pro	Asp	Tyr	Ile	Thr 80	
Gly	Gly	Pro	Asn	Ser 85	Cys	His	Phe	Gly	Lys 90	Gln	Tyr	Thr	Ser	Met 95	Trp	
Arg	Thr	Tyr	Ile 100	Met	Met	Val	Asn	Ala 105	Thr	Gln	Met	Gly	Ser 110	Ser	Phe	
Ser	Asp	Glu 115		Tyr	Val	Asp	Val 120	Thr	Tyr	Ile	Val	Gln 125	Pro	Asp	Pro	
Pro	Leu 130		Leu	Ala	Val	Glu 135	Val	Lys	Gln	Pro	Glu 140	Asp	Arg	Lys	Pro	
Tyr 145		Trp	Ile	Lys	Trp 150		Pro	Pro	Thr	Leu 155	Ile	Asp	Leu	Lys	Thr 160	
Gly	Trp	Phe	Thr	Leu 165		Tyr	Glu	. Ile	Arg		Lys	Pro	Glu	Lys 175	Ala	
Ala	. Glu	Trp	Glu 180		His	Phe	· Ala	Gly 185		. Gln	. Thr	Glu	. Phe 190	. Lys	Ile	
Leu	. Ser	: Leu 195		Pro	Gly	Gln G	Lys 200		Leu	ı Val	. Glr	val 205	. Arg	l Càs	. Lys	
Pro	210															
<21 <21	10> 11> 12> 13>	4 633 DNA Homo	sa <u>r</u>	pien												
<40 ato	00> gaagg	4 gaaa	atgi	zggca	atc 1	gcaa	accgi	tt ti	tcact	cctgo	c tac	cttti	tct	caa	cacctgc	60
															tcccaat	120
aa	ggaa	acat	tca	cctg	ctg (gtgga	aggc	ct g	ggac	agato	g ga	ggac	ttcc	tac	caattat	180
tc	actg	actt	acc	acag	gga i	agga	gaga	ca c	tcat	gcat	g aa	tgtc	caga	cta	cataacc	240
99	tggc	ccca	act	cctg	cca	cttt	ggca	ag c	agta	cacci	t ac	atgt	ggag	gac	atacatc	300

er attimene ammende dichen en energie

atgatggtca	atgccactaa	ccagatggga	agcagtttct	cggatgaact	ttatgtggac	360
gtgacttaca	tagttcagcc	agaccctcct	ttggagctgg	ctgtggaagt	aaaacagcca	420
gaagacagaa	aaccctacct	gtggattaaa	tggtctccac	ctaccctgat	tgacttaaaa	480
actggttggt	tcacgctcct	gtatgaaatt	cgattaaaac	ccgagaaagc	agctgagtgg	540
gagatccatt	ttgctgggca	gcaaacagag	tttaagattc	tcagcctaca	tccaggacag	600
aaataccttg	tccaggttcg	ctgcaaacca	gac			633