Name:	Exercise T	ype:
J#:	Quiz	
Date: 2017 July 21		
Standard: This student is able to		Mark:
C11: LineInt. Compute and apply line integrals.		
4/4	* reattempt due on:	
'	1	

Calculate $\int_C \langle y, 2x \rangle \cdot \mathbf{T} \, ds$ where C is the parabolic arc $y = x^2$ from $\langle -1, 1 \rangle$ to $\langle 2, 4 \rangle$.

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 July 21		
Standard: This student is able to C12: FundThmLine. Apply the Fundamental Theorem of Line Integrals.		Mark:
3/4 * reat	tempt due on:	

Compute the work done by the force vector field $\langle 2xyz+3z^2, x^2z, 6xz+x^2y \rangle$ along any path that begins and ends at the same point.

Name:	Exercise 7	Type:
J#:	Quiz	
Date: 2017 July 20		
Standard: This student is able to S09: ParamSurf. Parametrize surfaces in three-dimensional parametrize surfaces in three-dimensional parametrize surfaces.	onal	Mark:
Euclidean space. $2/3 \times re$	eattempt due on:	

Use the cylindrical coordinate transformation $\mathbf{c}(r,\theta,z) = \langle r\cos\theta,r\sin\theta,z\rangle$ to find a parametrization $\mathbf{r}(r,\theta)$ for the conical surface $z=\sqrt{x^2+y^2}$ inside the cylinder $x^2+y^2=25$. You may orient this surface however you like, but make sure to give appropriate bounds for r,θ .

Name:	Exercise T	ype:
J#:	Quiz	
Date: 2017 July 20		
Standard: This student is able to S10: SurfInt. Compute and apply surface integrals.		Mark:
1/3	\star reattempt due on:	

The function $\mathbf{r}(x,y) = \langle x,y,x^2+y^2\rangle$ parametrizes the elliptical paraboloid $z=x^2+y^2$. Give a double iterated integral equal to the area of this surface where $0 \le x \le 3$ and $0 \le y \le 3$. (Do not simplify or solve this integral.)