Names Adwart Kulkain BUZD + U25712111

In-class Activity

ME 570 - Prof. Tron 2023-10-02

Problem 1: Gradients of attractive and repulsive potentials

In the next homework assignment we will use the following potentials.

Question 1.1. The expression for the attractive potential is

$$U_{\text{attr}}(x) = d^p(x, x_{\text{goal}}) = \|x - x_{\text{goal}}\|^p. \tag{1}$$

where p is a parameter to distinguish between conic (p = 1) and quadratic (p = 2) potentials.

Write an expression for the gradient ∇U_{attr} .

When p = 2When p = 1When p = 2When p = 2When p = 1When p = 2When p = 2When p = 2When p = 1When p = 2When p = 2When p = 1When p = 1When p = 2When p = 1When p = 2When p = 2When p = 1When p = 1When p = 2When p = 1When p = 1When p = 1When p = 2When p = 2When p = 1When p = 2When p = 1When p = 2When p = 1When p = 2When p = 2When p = 1When p = 2When p = 2When p = 1When p = 2When p = 2When

 $U_{\mathrm{rep},i}(x) = egin{cases} rac{1}{2} \left(rac{1}{d_i(x)} - rac{1}{d_{\mathrm{influence}}}
ight)^2 & ext{if } 0 < d_i(x) < d_{\mathrm{influence}}, \ 0 & ext{if } d_i(x) > d_{\mathrm{influence}}, \ \infty & ext{otherwise}, \end{cases}$

Write an expression for the gradient $\nabla U_{\text{rep.}}$ $\forall V_{\text{rep.}} = 2x \frac{1}{2} \cdot \left(\frac{1}{d(x)} - \frac{1}{d_{\text{inf.}}}\right) \nabla \left(\frac{1}{d(x)} - \frac{1}{d_{\text{inf.}}}\right)$ $\nabla \left(\frac{1}{\operatorname{dicx}} - \frac{1}{\operatorname{dinf}} \right) = \nabla \operatorname{di}^{\dagger}(x) - \left(\nabla \operatorname{dinf} \right)^{\geqslant 0} = -\frac{1}{\operatorname{di}^{2}(x)} \nabla \operatorname{di}(x)$

Problem 2: Potential methods for a one-link manipulator

Consider a 1-link manipulator shown in Figure 1 The kinematic map for the end effector p_{eff} shown in the figure is given by

$$\nabla V_{eep} = -\left(\frac{1}{di(x)} - \frac{1}{dinh}\right) \cdot \frac{1}{di^{2}(x)} \nabla di(x)$$
(3)

Figure 1: A 1-link manipulator

where r is a constant; note that (3) is the same as the definition of polar coordinates seen in a previous activity, except that r is not a variable coordinate but is constant.

Question 2.1. Write the Jacobian of (3) that maps $\dot{\theta}$ to ${}^{\mathcal{W}}\dot{p}_{\text{eff}}$. What are its dimensions?

$$J = \frac{\partial W_{\text{pels}}}{\partial O}$$
; $W_{\text{pell}} = \begin{bmatrix} 2\cos\theta & 0 \\ 2\sin\theta & 0 \end{bmatrix}$; $J = \begin{bmatrix} -2\sin\theta \\ 2\cos\theta & 0 \end{bmatrix}$
So Dimmension we 2×1

Question 2.2. Define a potential function in the task space, $U(p_{\text{eff}}) = ||p_{\text{eff}} - p_{\text{goal}}||$, where p_{goal} is an arbitrary fixed location. Imagine that the coordinate θ is given by a parametric curve $\theta(t)$. Compute $\frac{d}{dt}U$ using the chain rule and the Jacobian from Question 2.1.

Question 2.3. Write a command u that a potential planner can use to control θ and drive the end effector toward p_{goal} .

command $u = -K * \nabla V$ where u is the command to control angle θ K is a positive constant that shows the strength of potential field (gein)

If ∇V is gradient of the potential function U(Peff) with respect to variable θ .