ECON 3140: Introduction to Econometrics Part 6: Discrete Regressors and Outcomes

© Jörg Stoye. Do not distribute.

March 6, 2025

Regression with Binary Outcomes

We now switch gears and put an indicator variable on the left-hand side.

This is extremely important in economics because many decisions are binary. Economists try to explain:

- entry/exit to and from the labor force,
- entry/exit into and from a specific market,
- fertility decisions,
- the decision to smoke,...

It also raises many novel issues.

In particular, appropriate models are frequently nonlinear.

Regression with Binary Outcomes

Let's first discuss this in the abstract. Say we have the model:

$$y = \beta_0 + \beta_1 x + u$$

and we assume that assumptions SLR.1-4 hold.

A question of interpretation:

What does the fitted value \hat{y} from this regression estimate?

- (A) E(y|x).
- (B) $\Pr(y = 1|x)$.
- (C) Both.
- (D) Neither.

Regression with Binary Outcomes

Let's first discuss this in the abstract. Say we have the model:

$$y = \beta_0 + \beta_1 x + u$$

and we assume that assumptions SLR.1-4 hold.

A question of interpretation:

What does the fitted value \hat{y} from this regression estimate?

- (A) E(y|x).
- (B) Pr(y = 1|x).
- (C) Both.
- (D) Neither.

Answer:

Both. Recall that if y can only take value 0 or 1, then E(y) = Pr(y = 1).

But this prediction is:

- typically a value that y cannot actually take,
- sometimes not even in [0, 1].

Regression with Binary Outcomes

Let's first discuss this in the abstract. Say we have the model:

$$y = \beta_0 + \beta_1 x + u$$

and we assume that assumptions SLR.1-4 hold.

First issue: The predicted y may be neither 0 nor 1

In economic applications, this is typically not an issue.

For understanding how x affects the expected value of y, it does not matter.

It is also fine for prediction under square loss.

Regression with Binary Outcomes

Let's first discuss this in the abstract. Say we have the model:

$$y = \beta_0 + \beta_1 x + u$$

and we assume that assumptions **SLR.1-4** hold.

Second issue: The predicted y may be outside [0,1]

This is a real issue because the fitted value is now not interpretable.

It is a major reason why nonlinear models for this setting were developed.

The above model (which is called **Linear Probability Model**) should not be used if the issue is pervasive in the data at hand.

The Linear Probability Model

$$y = \beta_0 + \beta_1 x + u$$

We said we assume **SLR.1-4**.

However, note these are quite restrictive.

They imply that $Pr(y = 1|x) = \beta_0 + \beta_1 x$.

If $\beta_1 \neq 0$, this is only logically possible if the possible values of x are retsricted.

In this same case of $\beta_1 \neq 0$, what about assumptions **SLR.5** (homoskedasticity) and **SLR.6** (normality)?

- (A) Homoskedasticity may or may not hold.
- (B) Homoskedasticity cannot possibly hold.

The Linear Probability Model

$$y = \beta_0 + \beta_1 x + u$$

We said we assume **SLR.1-4**.

However, note these are quite restrictive.

They imply that $Pr(y = 1|x) = \beta_0 + \beta_1 x$.

If $\beta_1 \neq 0$, this is only logically possible if the possible values of x are retsricted.

In this same case of $\beta_1 \neq 0$, what about assumptions **SLR.5** (homoskedasticity) and **SLR.6** (normality)?

- (A) Homoskedasticity may or may not hold.
- (B) Homoskedasticity cannot possibly hold.

Homoskedasticity cannot hold:

As (y|x) is binary with $Pr(y=1|x)=\beta_0+\beta_1x$,

$$Var(y|x) = (\beta_0 + \beta_1 x)(1 - \beta_0 - \beta_1 x).$$

The Linear Probability Model

$$y = \beta_0 + \beta_1 x + u$$

We said we assume **SLR.1-4**.

However, note these are quite restrictive.

They imply that $Pr(y = 1|x) = \beta_0 + \beta_1 x$.

If $\beta_1 \neq 0$, this is only logically possible if the possible values of x are retsricted.

In this same case of $\beta_1 \neq 0$, what about assumptions **SLR.5** (homoskedasticity) and **SLR.6** (normality)?

- (A) Homoskedasticity may or may not hold.
- (B) Homoskedasticity cannot possibly hold.

Homoskedasticity cannot hold:

As (y|x) is binary with $\Pr(y=1|x)=\beta_0+\beta_1 x$,

$$Var(y|x) = (\beta_0 + \beta_1 x)(1 - \beta_0 - \beta_1 x).$$

- (A) Normality may or may not hold.
- (B) Normality cannot possibly hold.

The Linear Probability Model

$$y = \beta_0 + \beta_1 x + u$$

We said we assume **SLR.1-4**.

However, note these are quite restrictive.

They imply that $Pr(y = 1|x) = \beta_0 + \beta_1 x$.

If $\beta_1 \neq 0$, this is only logically possible if the possible values of x are retsricted.

In this same case of $\beta_1 \neq 0$, what about assumptions **SLR.5** (homoskedasticity) and **SLR.6** (normality)?

- (A) Homoskedasticity may or may not hold.
- (B) Homoskedasticity cannot possibly hold.

Homoskedasticity cannot hold:

As (y|x) is binary with $\Pr(y=1|x)=\beta_0+\beta_1 x$,

$$Var(y|x) = (\beta_0 + \beta_1 x)(1 - \beta_0 - \beta_1 x).$$

- (A) Normality may or may not hold.
- (B) Normality cannot possibly hold.

Normality cannot possibly hold because y is discrete.

The Linear Probability Model

Despite these misgivings, the linear probability model is popular in practice and we will now look at an example.

Technically, this is just OLS, the novelty is entirely in the interpretation.

Note the following:

- The model necessarily has heteroskedasticity, so standard errors should reflect that (not always done in practice).
- Since we have an exact model of heteroskedasticty:

$$Var(y) = E(y)(1 - E(y)),$$

could consider FGLS, estimating weights from fitted values in a preliminary OLS regression.

This is rarely done in practice because even one fitted value outside [0,1] leads to ill-defined weights.

• In "nice" cases where all fitted values are well interior to [0, 1], none of this really matters.

Empirical Example: Female Labor Force Participation

Econometrica, Vol. 55, No. 4 (July, 1987), 765-799

THE SENSITIVITY OF AN EMPIRICAL MODEL OF MARRIED WOMEN'S HOURS OF WORK TO ECONOMIC AND STATISTICAL ASSUMPTIONS

By Thomas A. Mroz1

This study undertakes a systematic analysis of several theoretic and statistical assumptions used in many empirical models of female labor supply. Using a single data set (PSID 1975 labor supply data) we are able to replicate most of the range of estimated income and substitution effects found in previous studies in this field. We undertake extensive specification tests and find that most of this range should be rejected due to statistical and model misspecifications. The two most important assumptions appear to be (i) the Tobit assumption used to control for self-selection into the labor force and (ii) exogeneity assumptions on the wife's wage rate and her labor market experience. The Tobit models exaggerate both the income and wage effects. The exogeneity assumptions induce an upwards bias in the estimated wage effect: the bias due to the exogeneity assumption on the wife's labor market experience, however, substantially diminishes when one controls for self-selection into the labor force through the use of unrestricted generalized Tobit procedures. An examination of the maintained assumptions in previous studies further supports these results. These inferences suggest that the small responses to variations in wage rates and nonwife income found here provide a more accurate description of the behavioral responses of working married women than those found in most previous studies.

KEYWORDS: Female labor supply, specification tests, sample selection biases, taxes and labor supply.

We will illustrate with data from the above paper.

The original data source is the *Panel Study of Income Dynamics* (PSID).

Empirical Example: Female Labor Force Participation

Source	SS	df	MS	Number of obs	= 753
+				F(7, 745)	= 38.22
Model	48.8080578	7	6.97257969	Prob > F	= 0.0000
Residual	135.919698	745	.182442547	R-squared	= 0.2642
+				Adj R-squared	= 0.2573
Total	184.727756	752	.245648611	Root MSE	= .42713
inlf	Coef.	Std. Err.	t P	> t [95% Co:	nf. Interval]
+					
nwifeinc	0034052	.0014485	-2.35 0	.019006248	80005616
educ	.0379953	.007376	5.15 0	.000 .02351	5 .0524756
exper	.0394924	.0056727	6.96 0	.000 .028356	1 .0506287
expersq	0005963	.0001848	-3.23 0	.001000959	10002335
age	0160908	.0024847	-6.48 0	.000020968	6011213
kidslt6	2618105	.0335058	-7.81 0	.000327587	51960335
kidsge6	.0130122	.013196	0.99 0	.324012893	5 .0389179
cons	.5855192	.154178	3.80 0	.000 .282844	2 .8881943

This is plain vanilla MLS.

It successfully replicates a display in the textbook.

Empirical Example: Female Labor Force Participation

Linear	regression	Number of o	bs =	753
		F(7, 745)	=	62.48
		Prob > F	=	0.0000
		R-squared	=	0.2642
		Root MSE	=	.42713

inlf		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
nwifeinc	i	0034052	.0015249	-2.23	0.026	0063988	0004115
educ	ı	.0379953	.007266	5.23	0.000	.023731	.0522596
exper	Ī	.0394924	.00581	6.80	0.000	.0280864	.0508983
expersq		0005963	.00019	-3.14	0.002	0009693	0002233
age		0160908	.002399	-6.71	0.000	0208004	0113812
kidslt6		2618105	.0317832	-8.24	0.000	3242058	1994152
kidsge6		.0130122	.0135329	0.96	0.337	013555	.0395795
_cons	1	.5855192	.1522599	3.85	0.000	.2866098	.8844287

Same with heteroskedasticity robust standard errors.

The difference is practically negligible.

Empirical Example: Female Labor Force Participation

This is the linear fit for nwifeinc=20, age=40, exper=10, and no kids. The fitted values would become impossible for values of educ that are well below respectively above any values observed in the data (the largest one being 17). In all, the linear probability model is interpretable here.

Nonlinear Models for Binary Outcomes

The Linear Probability Model is easy to interpret and does a good job in "nice" cases.

Nonetheless, interpretability is a concern and will be first-order if we model small probabilities.

Small probabilities are important:

- probabilities of mortgage or loan default,
- probabilities of specific conditions or diseases,
- "black swans,"...

We therefore look next at models whose fitted values are always in [0,1].

There are several ways to get there, so we will derive them several times.

"Pragmatic" Derivation

The basic issue with

$$E(y|x) = \beta_0 + \beta_1 x$$

is that E(y|x) is necessarily in [0,1] but $\beta_0 + \beta_1 x$ may not be.

Idea:

Let's transform the right-hand side so it is forced to be in [0, 1]:

$$E(y|x) = G(\beta_0 + \beta_1 x),$$

where $G(\cdot)$ is a function of our invention that:

- Maps any real number into [0, 1].
- Is strictly increasing. (This maintains that E(y|x) is strictly increasing in $\beta_0 + \beta_1 x$ and therefore interpretability of the sign of β_1 .)
- Asymptotes 0 for very small arguments and 1 for very large ones.
 (So that in principle, we can model all sorts of probabilities.)

"Pragmatic" Derivation

The basic issue with

$$E(y|x) = \beta_0 + \beta_1 x$$

is that E(y|x) is necessarily in [0,1] but $\beta_0 + \beta_1 x$ may not be.

Idea:

Let's transform the right-hand side so it is forced to be in [0,1]:

$$E(y|x) = G(\beta_0 + \beta_1 x),$$

where the function $G(\cdot)$:

- Maps any real number into [0, 1].
- Is strictly increasing.
- Asymptotes 0 for very small arguments and 1 for very large ones.

Which of the following could we not use?

- (A) The c.d.f. of the standard normal distribution.
- (B) The c.d.f. of the uniform distribution on [0, 1].
- (C) The c.d.f. of the t_5 -distribution.

"Pragmatic" Derivation

The basic issue with

$$E(y|x) = \beta_0 + \beta_1 x$$

is that E(y|x) is necessarily in [0,1] but $\beta_0 + \beta_1 x$ may not be.

Idea:

Let's transform the right-hand side so it is forced to be in [0, 1]:

$$E(y|x) = G(\beta_0 + \beta_1 x),$$

where the function $G(\cdot)$:

- Maps any real number into [0, 1].
- Is strictly increasing.
- Asymptotes 0 for very small arguments and 1 for very large ones.

We could use any c.d.f. of a random variable that is continuously distributed on (all of) the real line.

Conversely, any function $G(\cdot)$ that we could use can be interpreted as a c.d.f.! (The above properties are sufficient for a function to be a c.d.f.)

Probit and Logit

The by far most popular models for binary outcomes are:

The Probit model

$$E(y|x) = \Phi(\beta_0 + \beta_1 x),$$

where $\Phi(\cdot)$ is the standard normal c.d.f.

• The Logit model (a.k.a. logistic regression)

$$E(y|x) = \operatorname{logitcdf}(\beta_0 + \beta_1 x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}.$$

This uses the logistic function (and c.d.f. of the logistic distribution), which the second expression writes out in closed form.

Probit and Logit

This is how the transformations look. Note the symmetry:

$$\begin{array}{lcl} \Pr(y=1|\beta_0+\beta_1 x=0) & = & 1/2 \\ \Pr(y=1|\beta_0+\beta_1 x=-t) & = & 1-\Pr(y=1|\beta_0+\beta_1 x=t). \end{array}$$

Probit and Logit

Thus,

- y = 1 is more likely than not to occur if $\beta_0 + \beta_1 x > 0$.
- If I flip the sign of the argument, I get the symmetric (about .5) value.

As a result, the *linear index* $\beta_0 + \beta_1 x$ still has some interpretation.

Probit and Logit

How big is the difference?

The transformations as usually defined look rather different. But we will later learn that the transformation's horizontal scale is arbitrary. Rescaling the probit,...

Probit and Logit

How big is the difference?

The transformations as usually defined look rather different. But we will later learn that the transformation's horizontal scale is arbitrary. Rescaling the probit, we see that the transformations are extremely similar.

"Economics" Derivation

We can also derive these models as empirical implications of very stylized economics-type models.

Imagine a firm (Trader Joe's, say) enters a given market (Ithaca, say) if expected profits $y^* = \beta_0 + \beta_1 x - u$ are positive.

Here, x collects observables (e.g., size and wealth of a town, proximity to Trader Joe's distribution chain...) and u is unobservable to us but is observed by management.

(Subtracting u is not a typo. It doesn't matter because we get to pick its distribution, but it has a cute effect on the next slide.)

"Economics" Derivation (ctd.)

Trader Joe's market entry can be modelled as the binary observable y generated as

$$y = \mathbf{1}\{\beta_0 + \beta_1 x - u \ge 0\}$$

and therefore

$$\begin{array}{lcl} \Pr(y=1|x) & = & \Pr(\mathbf{1}\{\beta_0+\beta_1x-u\geq 0\}=1) \\ & = & \Pr(\beta_0+\beta_1x-u\geq 0) \\ & = & \Pr(u\leq \beta_0+\beta_1x) & \leftarrow \text{this is why we subtracted } u \\ & = & F(\beta_0+\beta_1x), \end{array}$$

where F is the c.d.f. of u. Therefore:

- ullet If we assume that u is standard normal, we get the Probit model.
- If we assume that *u* is logistic, we get the Logit model.
- And so on.

"Biostatistics" Derivation of Logit

It can be useful to model causality in terms of relative changes to probabilities.

For example,

- the effect of nutrition on cancer incidence or
- the effect of extant health issues on Covid-19 mortality

might be expressed in terms of the relative risk or the odds ratio.

(For small probabilities, these are essentially the same.)

Define the **odds** that y = 1 as

$$\frac{\Pr(y=1)}{1-\Pr(y=1)} = \text{"odds in favor or against } y=1\text{"}.$$

Question

The odds will always be an element of

- (A) [0, 1]
- (B) $[0, +\infty)$
- (C) [-1, 1]
- (D) $(-\infty, +\infty)$

"Biostatistics" Derivation of Logit

It can be useful to model causality in terms of relative changes to probabilities. For example,

- the effect of nutrition on cancer incidence or
- the effect of extant health issues on Covid-19 mortality

might be expressed in terms of the **relative risk** or the **odds ratio**.

(For small probabilities, these are essentially the same.)

Define the **odds** that y = 1 as

$$\frac{\Pr(y=1)}{1-\Pr(y=1)} = \text{"odds in favor or against } y=1\text{"}.$$

Note:

- The odds are necessarily in $[0, \infty)$.
- Odds of 1 are even odds.
- Odds of and r and 1/r are symmetrically opposed: They correspond to probabilities π and $1-\pi$.

"Biostatistics" Derivation of Logit (ctd.)

For a simple model of how x affects odds, we then need our linear index $\beta_0 + \beta_1 x$ to be mapped onto $[0, \infty)$, ideally such that:

- An index of 0 maps onto 1,
- Indices t and -t map onto reciprocals.

There's an easy way to do that:

"Biostatistics" Derivation of Logit (ctd.)

For a simple model of how x affects odds, we then need our linear index $\beta_0 + \beta_1 x$ to be mapped onto $[0, \infty)$, ideally such that:

- An index of 0 maps onto 1,
- Indices t and -t map onto reciprocals.

There's an easy way to do that:

Take the exponential, i.e., map $\beta_0 + \beta_1 x$ onto $\exp(\beta_0 + \beta_1 x)$.

"Biostatistics" Derivation of Logit (ctd.)

For a simple model of how x affects odds, we then need our linear index $\beta_0 + \beta_1 x$ to be mapped onto $[0, \infty)$, ideally such that:

- An index of 0 maps onto 1,
- Indices t and -t map onto reciprocals.

There's an easy way to do that:

Take the exponential, i.e., map $\beta_0 + \beta_1 x$ onto $\exp(\beta_0 + \beta_1 x)$.

We then have

$$\begin{split} &\frac{\Pr(y=1|x)}{1-\Pr(y=1|x)} &= & \exp(\beta_0+\beta_1x) \\ &\iff \Pr(y=1|x) &= & \frac{\exp(\beta_0+\beta_1x)}{1+\exp(\beta_0+\beta_1x)}, \end{split}$$

i.e. the Logit model.

Next Steps

Probit and Logit raise some interesting questions:

- How do we interpret the coefficients?
- How do we think of the effect of x on y?
- How do we estimate all this?

We will get there in due course.

To make this more tangible, I'll go back to the empirical illustration first.

For the moment, just assume that I (or Stata, really) know how to estimate this.

Next Steps

Probit and Logit raise some interesting questions:

- How do we interpret the coefficients?
- How do we think of the effect of x on y?
- How do we estimate all this?

We will get there in due course.

To make this more tangible, I'll go back to the empirical illustration first.

For the moment, just assume that I (or Stata, really) know how to estimate this.

The example is multivariate, so the models really are

$$\begin{array}{lcl} E(y|x) & = & \Phi(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) & \text{for the probit and} \\ E(y|x) & = & \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)} & \text{for the logit.} \end{array}$$

Empirical Example: Female Labor Force Participation

The linear fit (again at age = 40, exper = 10) is as before.

We can clearly see how logit and probit respect the bounds on E(y|x).

Also, they are somewhat different from the linear fit.

But not from each other.

Interpreting Coefficients

We now discuss interpretation of the estimates.

Here it will be crucial to look at the multivariate case:

$$E(y|x) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k).$$

In this model, the marginal effect of x_j on E(y|x) is

$$\frac{\partial E(y|x)}{\partial x_i} = \beta_j g(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k),$$

where $g(\cdot)$ is the derivative of $G(\cdot)$.

For example,

$$\begin{array}{lll} g(t) & = & \phi(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) & \text{for probit and} \\ g(t) & = & \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{(1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k))^2} & \text{for logit,} \end{array}$$

where $\phi(\cdot)$ is the standard normal p.d.f.

Interpreting Coefficients

Let's first think about effects of continuous regressors. Recall:

$$E(y|x) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

$$\frac{\partial E(y|x)}{\partial x_i} = \beta_j g(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k).$$

Question:

Do the individual coefficients β_i still contain some information?

- (A) No, because you need to evaluate the whole $\beta_j g(X\beta)$ expression to interpret the effects of x_j .
- (B) Yes, because the sign of β_j will tell you weather the change in the x_j makes the outcome more or less likely.
- (C) Yes, because we can tell the relative magnitudes of the effects just by looking at β_i 's.
- (D) Yes, for both reasons B and C.

Interpreting Coefficients

Let's first think about effects of continuous regressors. Recall:

$$E(y|x) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

$$\frac{\partial E(y|x)}{\partial x_j} = \beta_j g(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k).$$

The individual coefficients still have some meaning:

- Because $g(\cdot) > 0$, the sign of β_j gives the direction of the effect of x_j .
- Because the factor $g(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k)$ is the same in all derivatives, the absolute values of coefficients are comparable.

However, the absolute value of one coefficient without context has no meaning. This is most easily seen by revisiting the "economics" derivation.

Interpreting Coefficients

Recall the probit model can be interpreted as

$$y = \mathbf{1}\{\beta_0 + \beta_1 x + \dots + \beta_k x_k - u \ge 0\},\$$

where $u \sim N(0, 1)$.

What happens if I double all coefficients and also double u (i.e., assume that $u \sim N(0,4)$)?

- (A) Nothing. The model will remain as before.
- (B) The new coefficient estimates will be 1/4 of what they were before.
- (C) The new coefficient estimates will be 1/2 of what they were before.
- (D) The new coefficient estimates will be 2 times what they were before.
- (E) The new coefficient estimates will be 4 times what they were before.

Interpreting Coefficients

Recall the probit model can be interpreted as

$$y = \mathbf{1}\{\beta_0 + \beta_1 x + \dots + \beta_k x_k - u \ge 0\},\$$

where $u \sim N(0, 1)$.

What happens if I double all coefficients and also double u (i.e., assume that $u \sim N(0,4)$)?

Nothing:

$$y = \mathbf{1}\{2 \times \beta_0 + 2 \times \beta_1 x + \dots + 2 \times \beta_k x_k - 2 \times u \ge 0\}$$

= $\mathbf{1}\{\beta_0 + \beta_1 x + \dots + \beta_k x_k - u \ge 0\},$

so the model would be the same.

Interpreting Coefficients

Recall the probit model can be interpreted as

$$y = \mathbf{1}\{\beta_0 + \beta_1 x + \cdots + \beta_k x_k - u \ge 0\},\$$

where $u \sim N(0, 1)$.

We conclude:

- Setting the variance of u to 1 is a normalization.
 (Same for setting u to logistic rather than "twice logistic.")
- Absolute values of individual coefficients are meaningless.
 (Relative magnitudes of different coefficients are not!)
- The absolute value of $g(\cdot)$ at one particular argument is meaningless. (The relative magnitude across different x is not!)
- This is why I previously said that the horizontal scaling of the probit transform is arbitrary.

The same observations apply to any choice of $G(\cdot)$.

Interpreting Coefficients

So what is "the effect" of x_j ?

As with all nonlinear models, there is no "true" way of expressing this effect in a single number.

But there are some plausible summary measures.

We could report:

- The estimated effect at one or a few values of special interest,
- the estimated effect at the average,
- the average estimated effect.

Interpreting Coefficients

The estimated effect of x_j at the average is

$$\hat{\beta}_j g(\hat{\beta}_0 + \hat{\beta}_1 \overline{x}_1 + \cdots + \hat{\beta}_k \overline{x}_k).$$

The average estimated effect is

$$\hat{\beta}_j \times \frac{1}{n} \sum_{i=1}^n g(\hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_k x_{ki}).$$

These can be numerically quite different!

The estimated effect at the average can be awkward if some regressor other than x_j is discrete.

This can be handled by common-sense adjustment, by switching to the median, or by reporting the average effect.

In the empirical example, I plotted the fit at 0 small kids because I did not want to report predictions for mothers with .27 small kids. The other numbers were rounded sample averages.

Empirical Example: Female Labor Force Participation

Probit regressi	.on			Number o	of obs	=	753
				LR chi2	(7)	=	227.14
				Prob > 0	chi2	=	0.0000
Log likelihood	= -401.30219	9		Pseudo I	R2	=	0.2206
inlf	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
+-							
nwifeinc	0120237	.0048398	-2.48	0.013	0215	096	0025378
educ	.1309047	.0252542	5.18	0.000	.0814	1074	.180402
exper	.1233476	.0187164	6.59	0.000	.0866	641	.1600311
expersq	0018871	.0006	-3.15	0.002	003	3063	0007111
age	0528527	.0084772	-6.23	0.000	0694	1678	0362376
kidslt6	8683285	.1185223	-7.33	0.000	-1.100	628	636029
kidsge6	.036005	.0434768	0.83	0.408	049	208	.1212179
cons	.2700768	.508593	0.53	0.595	7267	473	1.266901

Here is the probit estimation of our empirical example...

Empirical Example: Female Labor Force Participation

Logistic regres	ssion			Number of LR chi2(7) =	753 226.22
				Prob > ch	i2 =	0.0000
Log likelihood	= -401.76513	5		Pseudo R2	=	0.2197
inlf	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
nwifeinc	0213452	.0084214	-2.53	0.011	0378509	0048394
educ	.2211704	.0434396	5.09	0.000	.1360303	.3063105
exper	.2058695	.0320569	6.42	0.000	.1430391	.2686999
expersq	0031541	.0010161	-3.10	0.002	0051456	0011626
age	0880244	.014573	-6.04	0.000	116587	0594618
kidslt6	-1.443354	.2035849	-7.09	0.000	-1.842373	-1.044335
kidsge6	.0601122	.0747897	0.80	0.422	086473	.2066974
_cons	.4254524	.8603697	0.49	0.621	-1.260841	2.111746

...and here is the logit.

The absolute values of coefficients differ by a factor of slightly less than 2. But their signs agree, and relative magnitudes are very similar.

Empirical Example: Female Labor Force Participation

	LPM	Probit	Logit
average effect	.0380	.0394	.0395
effect at average	.0380	.0495	.0513
effect at $(20, 12, 10, 40, 0, 0)$.0380	.0454	.0459
effect at $(20, 16, 10, 40, 0, 0)$.0380	.0300	.0276
effect at $(10, 10, 5, 35, 0, 0)$.0380	.0515	.0541

Probit and logit pretty much agree, but there are differences to the linear fit.

In short, probit and logit "price in" saturation effects when estimating the effect at a point where the probability is already high.

The effect at the average is hard to interpret as the average includes fractions of kids, but mathematically it is well-defined.

How to interpret discrete regressors

Conceptually, remarks on discrete regressors are as before.

Note that the effect of a discrete regressor is computed as difference in fitted values as the regressor changes.

This does not in general equal the derivative at either the "before" or "after" value.

How to interpret discrete regressors

Conceptually, remarks on discrete regressors are as before.

Note that the effect of a discrete regressor is computed as difference in fitted values as the regressor changes.

This does not in general equal the derivative at either the "before" or "after" value.

Confession:

I cheated in the example.

Education is actually discrete.

So let's compute the table again but with the difference of fitted values as one year is *added* to the baseline value.

(I omit the averages. I really don't know what it means to move from 12.2 to 13.2 years of education.)

Empirical Example: Female Labor Force Participation

	LPM	Probit	Logit
effect at (20, 12, 10, 40, 0, 0)	.0380	.0437	.0437
previously:	.0380	.0454	.0459
effect at $(20, 16, 10, 40, 0, 0)$.0380	.0280	.0256
previously:	.0380	.0300	.0276
effect at $(10, 10, 5, 35, 0, 0)$.0380	.0507	.0530
previously:	.0380	.0515	.0541

The numbers are similar.

But the saturation effect at educ = 16 is even more pronounced.

How to estimate Logit or Probit

These models are the first *genuinely nonlinear* statistical models in this lecture.

We will informally talk about how to estimate them.

This allows me to briefly mention several estimation principles beyond Least Squares.

In the end, we will take on faith that estimation and inference "work."

Idea 1: Nonlinear Least Squares

With Ordinary Least Squares, the model implication

$$E(y|x) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

motivated the estimator

$$(\hat{\beta}_0,\ldots,\hat{\beta}_k) = \arg\min_{b_0,\ldots,b_k} \sum_{i=1}^n (y_i - b_0 - b_1 x_{1i} - \cdots - b_k x_{ki})^2.$$

Analogously,

$$E(y|x) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

motivates

$$(\hat{\beta}_0,\ldots,\hat{\beta}_k) = \arg\min_{b_0,\ldots,b_k} \sum_{i=1}^n (y_i - G(b_0 - b_1 x_{1i} - \cdots - b_k x_{ki}))^2.$$

This is the **Nonlinear Least Squares** (NLS) estimator. It could be used but is not the standard approach.

Idea 2: Maximum Likelihood

Every observation of (y, x_1, \dots, x_k) is characterized by

$$\Pr(y = 1 | x_1, \dots, x_k) = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k).$$

So for hypothetical values $\tilde{y} \in \{0, 1\}$, we have

$$\Pr(y = \tilde{y} | x_1, \dots, x_k)$$
= $\tilde{y} G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k) + (1 - \tilde{y})(1 - G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k))$
= $G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)^{\tilde{y}} \times (1 - G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k))^{1 - \tilde{y}}.$

Idea 2: Maximum Likelihood

Every observation of $(y, x_1, ..., x_k)$ is characterized by

$$\Pr(y=1|x_1,\ldots,x_k)=G(\beta_0+\beta_1x_1+\cdots+\beta_kx_k).$$

So for hypothetical values $\tilde{y} \in \{0, 1\}$, we have

$$Pr(y = \tilde{y} | x_1, ..., x_k)$$

$$= \tilde{y} G(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k) + (1 - \tilde{y})(1 - G(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k))$$

$$= G(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k)^{\tilde{y}} \times (1 - G(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k))^{1 - \tilde{y}}.$$

Assuming i.i.d. data, the probability of observing any specific, fictitious sequence $(\tilde{y}_1, \ldots, \tilde{y}_n) \in \{0, 1\}^n$, conditionally on all observed covariates, is

$$\Pr((y_1, ..., y_n) = (\tilde{y}_1, ..., \tilde{y}_n) | x_{11}, ..., x_{kn})$$

$$= \prod_{i=1}^n G(\beta_0 + \beta_1 x_{1i} + ... + \beta_k x_{ki})^{\tilde{y}_i} (1 - G(\beta_0 + \beta_1 x_{1i} + ... + \beta_k x_{ki}))^{1 - \tilde{y}_i}.$$

Idea 2: Maximum Likelihood

Idea:

Our guess of (β_0,\ldots,β_k) given the data is whatever maximizes the ex-ante predictive probability of seeing the outcomes that we in fact saw, given covariates.

Formally, the **Maximum Likelihood** estimator $(\hat{eta}_0,\dots,\hat{eta}_k)$ maximizes

$$\prod_{i=1}^{n} G(b_0 + \beta_1 x_{1i} + \dots + b_k x_{ki})^{y_i} (1 - G(b_0 + b_1 x_{1i} + \dots + b_k x_{ki}))^{1-y_i}$$

in (b_0, \ldots, b_k) , taking the observed values $(y_1, x_{11}, \ldots, x_{kn})$ for granted.

Idea 2: Maximum Likelihood

Idea:

Our guess of $(\beta_0, \ldots, \beta_k)$ given the data is whatever maximizes the ex-ante predictive probability of seeing the outcomes that we in fact saw, given covariates.

Formally, the **Maximum Likelihood** estimator $(\hat{eta}_0,\dots,\hat{eta}_k)$ maximizes

$$\prod_{i=1}^{n} G(b_0 + \beta_1 x_{1i} + \dots + b_k x_{ki})^{y_i} (1 - G(b_0 + b_1 x_{1i} + \dots + b_k x_{ki}))^{1-y_i}$$

in (b_0, \ldots, b_k) , taking the observed values $(y_1, x_{11}, \ldots, x_{kn})$ for granted.

Note that this is the same as maximizing the log likelihood

$$\sum_{i=1}^{n} [y_i \log G(\cdot) + (1 - y_i) \log(1 - G(\cdot))]$$

or also

$$\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log G(\cdot) + (1 - y_i) \log(1 - G(\cdot)) \right].$$

Idea 2: Maximum Likelihood

Idea:

Our guess of (β_0,\ldots,β_k) given the data is whatever maximizes the ex-ante predictive probability of seeing the outcomes that we in fact saw, given covariates.

Formally, the **Maximum Likelihood** estimator $(\hat{\beta}_0, \dots, \hat{\beta}_k)$ maximizes

$$\prod_{i=1}^{n} G(b_0 + \beta_1 x_{1i} + \dots + b_k x_{ki})^{y_i} (1 - G(b_0 + b_1 x_{1i} + \dots + b_k x_{ki}))^{1-y_i}$$

in (b_0,\ldots,b_k) , taking the observed values $(y_1,x_{11},\ldots,x_{kn})$ for granted. Your computer probably maximizes

$$\sum_{i=1}^{n} [y_i \log G(\cdot) + (1-y_i) \log(1-G(\cdot))].$$

The sum is much easier to handle than the product.

Idea 2: Maximum Likelihood

Idea:

Our guess of (β_0,\ldots,β_k) given the data is whatever maximizes the ex-ante predictive probability of seeing the outcomes that we in fact saw, given covariates.

Formally, the **Maximum Likelihood** estimator $(\hat{\beta}_0, \dots, \hat{\beta}_k)$ maximizes

$$\prod_{i=1}^{n} G(b_0 + \beta_1 x_{1i} + \dots + b_k x_{ki})^{y_i} (1 - G(b_0 + b_1 x_{1i} + \dots + b_k x_{ki}))^{1-y_i}$$

in (b_0,\ldots,b_k) , taking the observed values $(y_1,x_{11},\ldots,x_{kn})$ for granted.

A statistician will pretend that you maximize

$$\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log G(\cdot) + (1 - y_i) \log(1 - G(\cdot)) \right].$$

The objective is a sample average \Rightarrow it converges to an expectation as $n \to \infty$. This is the starting point for proving consistency etc., but we will not go there.

Idea 2: Maximum Likelihood

Here is a one-slide intuition for why Maximum Likelihood "should" work. It is a "good" intuition in the sense that the formal proof indeed formalizes it. The sample objective function

$$\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log G(\cdot) + (1 - y_i) \log(1 - G(\cdot)) \right]$$

can be thought of as "estimator" of the true expected log likelihood

$$E(y \log G(b_0 + b_1 x_{1i} + \dots + b_k x_{ki}) + (1 - y) \log(1 - G(b_0 + \beta_1 x_{1i} + \dots + b_k x_{ki})).$$

The above function of (b_0, \ldots, b_k) is maximized by the true $(\beta_0, \ldots, \beta_k)$.

This is not obvious! It follows from mathematical insights about relative entropy (a.k.a. Kullback-Leibler divergence) that go beyond this lecture.

But if we take it on faith, then there is an intuition for consistency of Maximum Likelihood. It will be visualized on the next slide.

Inference for Maximum Likelihood

Precise formal analysis of Maximum Likelihood goes well beyond this lecture.

There are no simple analogs to our finite-sample results (e.g., unbiasedness) from linear regression.

It is possible to show that, under reasonable assumptions,

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \overset{d}{\to} N\left(\mathbf{0}, \left(E\left(\frac{g(\mathbf{x}^{\top}\boldsymbol{\beta})^2\mathbf{x}\mathbf{x}^{\top}}{G(\mathbf{x}^{\top}\boldsymbol{\beta})(1 - G(\mathbf{x}^{\top}\boldsymbol{\beta})}\right)\right)^{-1}\right).$$

The expression resembles earlier ones.

- The denominator is $\Pr(y=1|\mathbf{x})(1-\Pr(y=1|\mathbf{x}))$. Recalling the formula for variance of Bernoulli variables, we recognize it as conditional variance of y. Thus, it is analogous to σ^2 .
- The numerator involves xx^{\top} , which is analogous to $X^{\top}X$ or $(x E(x))^2$. The premultiplying factor adjusts this for the nonlinearity of x's effect on y.
- Numerator and denominator appear flipped, but note the outside $(\cdot)^{-1}$. (We cannot just flip the fraction because the numerator is a matrix.)

Inference for Maximum Likelihood

What do I need to take away from this?

- Asymptotic (not finite sample) inference is possible.
- Under reasonable assumptions, results have similar flavor as before.
- We can use output from estimation packages to test hypotheses and so on.

If you really want to know more:

- ECON 4110,
- Graduate textbooks,
- Grad school!

