Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 293.1 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 7.64, tilsynelatende blå størrelseklass $m_B = 9.57$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 2.08, tilsynelatende blå størrelseklass $m_B=4.01$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\cdot}\mathrm{V}=2.08,$ tilsynelatende

blå størrelseklass m_B = 5.01

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 7.64, tilsynelatende blå størrelseklass $m_B = 10.57$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.29 og store halvakse a=71.67 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.29 og store halvakse a=71.46 AU.

Filen 1F.txt

Ved bølgelengden 488.48 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 8.75 8.50 Tilsynelatende størrelsklasse m_V 8.25 8.00 7.75 7.50 7.25 7.00 6.75 20 ò 40 60 80 100 120 140 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 22.80 solmasser, temperatur på 40.30 Kelvin og tetthet 9.75e-21 kg per kubikkmeter

Gass-sky B har masse på 16.30 solmasser, temperatur på 11.50 Kelvin og tetthet 1.16e-20 kg per kubikkmeter

Gass-sky C har masse på 3.20 solmasser, temperatur på 62.70 Kelvin og

tetthet 5.35e-21 kg per kubikkmeter

Gass-sky D har masse på 10.20 solmasser, temperatur på 24.90 Kelvin og tetthet 5.07e-21 kg per kubikkmeter

Gass-sky E har masse på 12.80 solmasser, temperatur på 26.30 Kelvin og tetthet 4.87e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

STJERNE B) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE C) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE D) stjernas energi kommer fra Planck-stråling alene

STJERNE E) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

Filen 1L.txt

Stjerne A har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V = 7.88

Stjerne B har spektralklasse G9 og visuell tilsynelatende størrelseklasse m_V = 5.55

Stjerne C har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 7.38

Stjerne D har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V

= 6.18

Stjerne E har spektralklasse K2 og visuell tilsynelatende størrelseklasse m_V = 1.34

Filen 1P.txt

Alle gasspartiklene har fart 100 m/s i tilfeldige (uniformt fordelte) retninger.

$Filen~2A/Oppgave 2A_Figur 1.png$

1 -

i

ź

3

Figur 1

10

9

8

7

6

5

4

3

2

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż ġ ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.715999999999999980193 AU.

Tangensiell hastighet er 46865.818206888456188608 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.840 AU.

Kometens avstand fra jorda i punkt 2 er r2=7.725 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=16.614.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9400 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00071 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=970.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9956 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 598.50 nm.

Filen 4A.txt

Stjernas masse er 2.42 solmasser.

Stjernas radius er 0.53 solradier.

Filen 4C.png

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 25.55 millioner K

Filen 4G.txt

Massen til det sorte hullet er 3.26 solmasser.

r-koordinaten til det innerste romskipet er r $=9.98~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=18.45~\mathrm{km}.$