Provably Adaptive Average Reward Reinforcement Learning for Metric Spaces

Avik Kar

ECE

Rahul Singh

ECE

3rd April 2025

IISc, Bengaluru

This talk contains

Average Reward Reinforcement Learning

Lipschitz Continuity of Average Reward

Algorithm: Zooming in Policy Space

Algorithm: Zooming in State-Action Space

Model of the Environment: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r)$

- S state space, A action space
- *p* transition kernel;

$$p(s, a, B) = \mathbb{P}(s_{t+1} \in B \mid s_t = s, a_t = a)$$

• $r: S \times A \rightarrow [0,1]$ – reward function

Model of the Environment: $\mathcal{M} = (S, \mathcal{A}, p, r)$

- S state space, A action space
- *p* transition kernel;

$$p(s, a, B) = \mathbb{P}(s_{t+1} \in B \mid s_t = s, a_t = a)$$

• $r: S \times A \rightarrow [0,1]$ – reward function

Model of the Environment: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r)$

- S state space, A action space
- *p* transition kernel;

$$p(s, a, B) = \mathbb{P}(s_{t+1} \in B \mid s_t = s, a_t = a)$$

• $r: S \times A \rightarrow [0,1]$ – reward function

Model of the Environment: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r)$

- S state space, A action space
- *p* transition kernel;

$$p(s, a, B) = \mathbb{P}(s_{t+1} \in B \mid s_t = s, a_t = a)$$

• $r: S \times A \rightarrow [0,1]$ – reward function

• Stationary deterministic policy: a function $\phi: S \to A$

Model of the Environment: $\mathcal{M} = (S, \mathcal{A}, p, r)$

- S state space, A action space
- *p* transition kernel;

$$p(s, a, B) = \mathbb{P}(s_{t+1} \in B \mid s_t = s, a_t = a)$$

• $r: S \times A \rightarrow [0,1]$ – reward function

• Stationary deterministic policy: a function $\phi: S \to A$

Average reward criterion:

• Let

$$J_{\mathcal{M}}(\phi) \coloneqq \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}_{\phi} \left[\sum_{t=1}^{T} r_{t} \right]$$

 $[\]star \psi$ – Learning algorithm

 $[\]star \mathbb{E}_{\phi}$ – Expectation taken considering policy ϕ is played

Model of the Environment: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r)$

- S state space, A action space
- *p* transition kernel;

$$p(s, a, B) = \mathbb{P}(s_{t+1} \in B \mid s_t = s, a_t = a)$$

• $r: S \times A \rightarrow [0,1]$ – reward function

• Stationary deterministic policy: a function $\phi: S \to A$

Average reward criterion:

Let

$$J_{\mathcal{M}}(\phi) \coloneqq \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}_{\phi} \left[\sum_{t=1}^{T} r_{t} \right]$$

Optimal average reward

$$J_{\mathcal{M}}^{\star} = \max_{\phi} J_{\mathcal{M}}(\phi)$$

^{*} ψ – Learning algorithm

 $[\]star \mathbb{E}_{\phi}$ – Expectation taken considering policy ϕ is played

Model of the Environment: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r)$

- S state space, A action space
- *p* transition kernel;

$$p(s, a, B) = \mathbb{P}(s_{t+1} \in B \mid s_t = s, a_t = a)$$

• $r: S \times A \rightarrow [0,1]$ – reward function

• Stationary deterministic policy: a function $\phi: S \to A$

Average reward criterion:

Let

$$J_{\mathcal{M}}(\phi) \coloneqq \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}_{\phi} \left[\sum_{t=1}^{T} r_{t} \right]$$

Optimal average reward

$$J_{\mathcal{M}}^{\star} = \max_{\phi} J_{\mathcal{M}}(\phi)$$

Regret:

Cumulative regret of algorithm, ψ is defined as

$$R(T;\psi) \coloneqq TJ_{\mathcal{M}}^{\star} - \sum_{t=1}^{T} r_{t}$$

^{*} ψ – Learning algorithm

 $[\]star \mathbb{E}_{\phi}$ – Expectation taken considering policy ϕ is played

Model of the Environment: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r)$

- S state space, A action space
- *p* transition kernel;

$$p(s, a, B) = \mathbb{P}(s_{t+1} \in B \mid s_t = s, a_t = a)$$

• $r: S \times A \rightarrow [0,1]$ – reward function

• Stationary deterministic policy: a function $\phi: S \to A$

Average reward criterion:

Let

$$J_{\mathcal{M}}(\phi) \coloneqq \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}_{\phi} \left[\sum_{t=1}^{T} r_{t} \right]$$

Optimal average reward

$$J_{\mathcal{M}}^{\star} = \max_{\phi} J_{\mathcal{M}}(\phi)$$

Regret:

Cumulative regret of algorithm, ψ is defined as

$$R(T;\psi) \coloneqq TJ_{\mathcal{M}}^{\star} - \sum_{t=1}^{T} r_t$$

<u>Goal</u>: To propose ψ with low regret upper bound

 $[\]star \psi$ – Learning algorithm

 $[\]star \mathbb{E}_{\phi}$ – Expectation taken considering policy ϕ is played

Policy space, Φ

Assumptions

Assumptions

- 1. <u>Lipschitz continuity:</u> For every (s, a), (s', a') $|r(s, a) r(s', a')| \le L_r \rho((s, a), (s', a')),$ $||p(s, a, \cdot) p(s', a', \cdot)||_{TV} \le L_p \rho((s, a), (s', a')).$
- 2. <u>Uniform ergodicity:</u> $\exists \alpha \in [0,1)$ and $C < \infty$ such that for every (s, a), (s', a')

$$\left\|\mu_{\phi,p,s_0}^{(t)} - \mu_{\phi,p}^{(\infty)}\right\|_{TV} \le C \cdot \alpha^t$$
, $\forall t \in \mathbb{N}$.

3. <u>Upper bound on stationary measure:</u> $\exists \bar{\kappa} > 0$ and a probability measure ν such that for every ϕ , $\mu_{\phi,p}^{(\infty)} \leq \bar{\kappa} \cdot \nu$.

 $[\]star \mu_{\phi,p,s'}^{(t)}$ - distribution of s_t when ϕ is played and initial state is s'

 $[\]star \mu_{\phi,p}^{(\infty)}$ - stationary distribution of $\{s_t\}$ under application of ϕ

Assumptions

- 1. <u>Lipschitz continuity:</u> For every (s, a), (s', a') $|r(s, a) r(s', a')| \le L_r \rho((s, a), (s', a')),$ $||p(s, a, \cdot) p(s', a', \cdot)||_{TV} \le L_p \rho((s, a), (s', a')).$
- 2. <u>Uniform ergodicity:</u> $\exists \alpha \in [0,1)$ and $C < \infty$ such that for every (s,a),(s',a')

$$\left\|\mu_{\phi,p,s_0}^{(t)} - \mu_{\phi,p}^{(\infty)}\right\|_{TV} \le C \cdot \alpha^t$$
, $\forall t \in \mathbb{N}$.

3. <u>Upper bound on stationary measure:</u> $\exists \bar{\kappa} > 0$ and a probability measure ν such that for every ϕ , $\mu_{\phi,p}^{(\infty)} \leq \bar{\kappa} \cdot \nu$.

Metric, ρ_{Φ}

 $[\]star \mu_{\phi,p,s'}^{(t)}$ - distribution of s_t when ϕ is played and initial state is s'

 $[\]star \, \mu_{\phi,p}^{(\infty)}$ - stationary distribution of $\{s_t\}$ under application of ϕ

Assumptions

- 1. <u>Lipschitz continuity:</u> For every (s, a), (s', a') $|r(s, a) r(s', a')| \le L_r \rho((s, a), (s', a')),$ $||p(s, a, \cdot) p(s', a', \cdot)||_{TV} \le L_p \rho((s, a), (s', a')).$
- 2. <u>Uniform ergodicity:</u> $\exists \alpha \in [0,1)$ and $C < \infty$ such that for every (s,a),(s',a')

$$\left\|\mu_{\phi,p,s_0}^{(t)} - \mu_{\phi,p}^{(\infty)}\right\|_{TV} \le C \cdot \alpha^t$$
, $\forall t \in \mathbb{N}$.

3. <u>Upper bound on stationary measure:</u> $\exists \bar{\kappa} > 0$ and a probability measure ν such that for every ϕ , $\mu_{\phi,p}^{(\infty)} \leq \bar{\kappa} \cdot \nu$.

Metric, ρ_{Φ}

• $\rho_{\Phi}(\phi, \phi') \coloneqq \int \rho_{\mathcal{A}}(\phi(s), \phi'(s)) d\nu(s)$, where ν satisfies 3 and $\rho_{\mathcal{A}}$ is a metric on \mathcal{A} .

* $\mu_{\phi,p,s'}^{(t)}$ - distribution of s_t when ϕ is played and initial state is s' * $\mu_{\phi,p}^{(\infty)}$ - stationary distribution of $\{s_t\}$ under application of ϕ

Assumptions

- 1. <u>Lipschitz continuity:</u> For every (s, a), (s', a') $|r(s, a) r(s', a')| \le L_r \rho((s, a), (s', a')),$ $||p(s, a, \cdot) p(s', a', \cdot)||_{TV} \le L_p \rho((s, a), (s', a')).$
- 2. <u>Uniform ergodicity</u>: $\exists \alpha \in [0,1)$ and $C < \infty$ such that for every $(s, \alpha), (s', \alpha')$

$$\left\|\mu_{\phi,p,s_0}^{(t)} - \mu_{\phi,p}^{(\infty)}\right\|_{TV} \le C \cdot \alpha^t$$
, $\forall t \in \mathbb{N}$.

3. <u>Upper bound on stationary measure:</u> $\exists \bar{\kappa} > 0$ and a probability measure ν such that for every ϕ , $\mu_{\phi,p}^{(\infty)} \leq \bar{\kappa} \cdot \nu$.

Metric, ρ_{Φ}

• $\rho_{\Phi}(\phi, \phi') \coloneqq \int \rho_{\mathcal{A}}(\phi(s), \phi'(s)) d\nu(s)$, where ν satisfies 3 and $\rho_{\mathcal{A}}$ is a metric on \mathcal{A} .

Theroem: Under Assumption 1, 2 and 3, for any ϕ , ϕ' $\left\|\mu_{\phi,p}^{(\infty)} - \mu_{\phi',p}^{(\infty)}\right\|_{TV} \leq (\lceil \log_{\alpha^{-1}}(C) \rceil + 1) \frac{\bar{\kappa}L_p}{1-\alpha} \rho_{\Phi}(\phi, \phi')$

 $[\]star \mu_{\phi,p,s'}^{(t)}$ - distribution of s_t when ϕ is played and initial state is s'

 $[\]star \mu_{\phi,p}^{(\infty)}$ - stationary distribution of $\{s_t\}$ under application of ϕ

Assumptions

- 1. <u>Lipschitz continuity:</u> For every (s, a), (s', a') $|r(s, a) r(s', a')| \le L_r \rho((s, a), (s', a')),$ $||p(s, a, \cdot) p(s', a', \cdot)||_{TV} \le L_p \rho((s, a), (s', a')).$
- 2. <u>Uniform ergodicity</u>: $\exists \alpha \in [0,1)$ and $C < \infty$ such that for every $(s, \alpha), (s', \alpha')$

$$\left\|\mu_{\phi,p,s_0}^{(t)} - \mu_{\phi,p}^{(\infty)}\right\|_{TV} \le C \cdot \alpha^t$$
, $\forall t \in \mathbb{N}$.

3. <u>Upper bound on stationary measure</u>: $\exists \bar{\kappa} > 0$ and a probability measure ν such that for every ϕ , $\mu_{\phi,p}^{(\infty)} \leq \bar{\kappa} \cdot \nu$.

Metric, ρ_{Φ}

• $\rho_{\Phi}(\phi, \phi') \coloneqq \int \rho_{\mathcal{A}}(\phi(s), \phi'(s)) d\nu(s)$, where ν satisfies 3 and $\rho_{\mathcal{A}}$ is a metric on \mathcal{A} .

Theroem: Under Assumption 1, 2 and 3, for any ϕ , ϕ'

$$\left\|\mu_{\phi,p}^{(\infty)} - \mu_{\phi',p}^{(\infty)}\right\|_{TV} \le (\lceil \log_{\alpha^{-1}}(\mathcal{C}) \rceil + 1) \frac{\bar{\kappa}L_p}{1 - \alpha} \rho_{\Phi}(\phi, \phi')$$

Corollary: Under Assumption 1, 2 and 3, for any ϕ , ϕ' $|J_{\mathcal{M}}(\phi) - J_{\mathcal{M}}(\phi')| \leq L_{J}\rho_{\Phi}(\phi, \phi')$ where $L_{J} \coloneqq \bar{\kappa} \left(L_{r} + \frac{(\lceil \log_{\alpha^{-1}}(C) \rceil + 1)L_{p}}{(1 - \alpha)} \right)$.

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{s < t} \mathbb{I}(\phi_s = \phi)$$
, and $\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_s r_s \mathbb{I}(\phi_s = \phi)$

$$\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_{S} r_S \mathbb{I}(\phi_S = \phi)$$

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{S < t} \mathbb{I}(\phi_S = \phi)$$
 , and

$$\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_{s} r_s \mathbb{I}(\phi_s = \phi)$$

Choose $\phi_t \in \underset{\phi \in \Phi}{\operatorname{argmax}} \operatorname{Index}_t(\phi)$, where

$$Index_t(\phi) \coloneqq \bar{r}_t(\phi) + \frac{const}{N_t(\phi)^{\beta}}$$

Then,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}(|\Phi|^{\beta} T^{1-\beta})$$

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{S < t} \mathbb{I}(\phi_S = \phi)$$
 , and

$$\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_{s} r_s \mathbb{I}(\phi_s = \phi)$$

Choose $\phi_t \in \underset{\phi \in \Phi}{\operatorname{argmax}} \operatorname{Index}_t(\phi)$, where

$$Index_t(\phi) \coloneqq \bar{r}_t(\phi) + \frac{const}{N_t(\phi)^{\beta}}$$

Then,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}(|\Phi|^{\beta} T^{1-\beta})$$

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{s < t} \mathbb{I}(\phi_s = \phi)$$
, and $\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_s r_s \mathbb{I}(\phi_s = \phi)$

Choose $\phi_t \in \underset{\phi \in \Phi}{\operatorname{argmax}} \operatorname{Index}_t(\phi)$, where

$$Index_t(\phi) \coloneqq \bar{r}_t(\phi) + \frac{const}{N_t(\phi)^{\beta}}$$

Then,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}(|\Phi|^{\beta} T^{1-\beta})$$

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{s < t} \mathbb{I}(\phi_s = \phi)$$
, and
$$\sum_{s \in t} \mathbb{I}(\phi_s = \phi)$$

$$\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_{s} r_s \mathbb{I}(\phi_s = \phi)$$

Choose $\phi_t \in \underset{\phi \in \Phi}{\operatorname{argmax}} \operatorname{Index}_t(\phi)$, where

$$Index_t(\phi) \coloneqq \bar{r}_t(\phi) + \frac{const}{N_t(\phi)^{\beta}}$$

Then,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}(|\Phi|^{\beta} T^{1-\beta})$$

Policy space, Φ

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{s < t} \mathbb{I}(\phi_s = \phi)$$
, and
$$\sum_{s \in t} \mathbb{I}(\phi_s = \phi)$$

$$\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_{S} r_S \mathbb{I}(\phi_S = \phi)$$

Choose $\phi_t \in \underset{\phi \in \Phi}{\operatorname{argmax}} \operatorname{Index}_t(\phi)$, where

$$Index_t(\phi) \coloneqq \bar{r}_t(\phi) + \frac{const}{N_t(\phi)^{\beta}}$$

Then,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}(|\Phi|^{\beta} T^{1-\beta})$$

Policy space, Φ

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{s < t} \mathbb{I}(\phi_s = \phi)$$
, and $\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_s r_s \mathbb{I}(\phi_s = \phi)$

Choose $\phi_t \in \underset{\phi \in \Phi}{\operatorname{argmax}} \operatorname{Index}_t(\phi)$, where

$$Index_t(\phi) \coloneqq \bar{r}_t(\phi) + \frac{const}{N_t(\phi)^{\beta}}$$

Then,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}(|\Phi|^{\beta} T^{1-\beta})$$

Policy space, Φ

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{s < t} \mathbb{I}(\phi_s = \phi)$$
, and $\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_s r_s \mathbb{I}(\phi_s = \phi)$

Choose $\phi_t \in \underset{\phi \in \Phi}{\operatorname{argmax}} \operatorname{Index}_t(\phi)$, where

$$Index_t(\phi) \coloneqq \bar{r}_t(\phi) + \frac{const}{N_t(\phi)^{\beta}}$$

Then,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}(|\Phi|^{\beta} T^{1-\beta})$$

Policy space, Φ

 ϵ -net of Φ , Φ_{ϵ}

Compact policy set, Φ

If

- 1. $J_{\mathcal{M}}: \Phi \to [0,1]$ is L_I -Lipschitz,
- 2. The algorithm for finite policy set is run with Φ_ϵ
- 3. $\epsilon = T^{-\frac{\beta}{d^{\Phi}\beta+1}}$, where d^{Φ} is the dimension Φ ,

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{s < t} \mathbb{I}(\phi_s = \phi)$$
, and $\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_s r_s \mathbb{I}(\phi_s = \phi)$

Choose $\phi_t \in \underset{\phi \in \Phi}{\operatorname{argmax}} \operatorname{Index}_t(\phi)$, where

$$Index_t(\phi) \coloneqq \bar{r}_t(\phi) + \frac{const}{N_t(\phi)^{\beta}}$$

Then,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}(|\Phi|^{\beta} T^{1-\beta})$$

Policy space, Φ

 ϵ -net of Φ , Φ_{ϵ}

Compact policy set, Φ

If

- 1. $J_{\mathcal{M}}: \Phi \to [0,1]$ is L_I -Lipschitz,
- 2. The algorithm for finite policy set is run with Φ_{ϵ}
- 3. $\epsilon = T^{-\frac{\beta}{d^{\Phi}\beta+1}}$, where d^{Φ} is the dimension Φ , **Then**,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}\left(T \frac{(d^{\Phi} - 1)\beta + 1}{d^{\Phi}\beta + 1}\right)$$

Define Regret w.r.t. Φ as,

$$R_{\Phi}(T; \psi) \coloneqq T \max_{\phi \in \Phi} J_{\mathcal{M}}(\phi) - \sum_{t=1}^{T} r_t$$

Finite policy set, Φ

Suppose that we have

$$|J_{\mathcal{M}}(\phi) - \bar{r}_t(\phi)| \le c_t(\phi) = \tilde{\mathcal{O}}\left(\frac{1}{N_t(\phi)^{\beta}}\right)$$

where

$$N_t(\phi) = \sum_{s < t} \mathbb{I}(\phi_s = \phi)$$
, and $\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_s r_s \mathbb{I}(\phi_s = \phi)$

Choose $\phi_t \in \underset{\phi \in \Phi}{\operatorname{argmax}} \operatorname{Index}_t(\phi)$, where

$$Index_t(\phi) \coloneqq \bar{r}_t(\phi) + \frac{const}{N_t(\phi)^{\beta}}$$

Then,

$$R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}(|\Phi|^{\beta} T^{1-\beta})$$

Policy space, Φ

 ϵ -net of Φ , Φ_{ϵ}

Compact policy set, Φ

If

- 1. $J_{\mathcal{M}}: \Phi \to [0,1]$ is L_I -Lipschitz,
- 2. The algorithm for finite policy set is run with Φ_{ϵ}
- 3. $\epsilon = T^{-\frac{\beta}{d^{\Phi}\beta+1}}$, where d^{Φ} is the dimension Φ , **Then**,

$$R_{\Phi}(T;\psi) \leq \tilde{\mathcal{O}}\left(T^{\frac{\left(d^{\Phi}-1\right)\beta+1}{d^{\Phi}\beta+1}}\right)$$

• For example, $\beta = 0.5 \Rightarrow R_{\Phi}(T; \psi) \leq \tilde{\mathcal{O}}\left(T^{\frac{d^{\Phi}+1}{d^{\Phi}+2}}\right)$

```
Policy Zooming for RL
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0,
H_0 = 0
for t = 1 to T:
   if h = H_k:
        h = 0, k \leftarrow k + 1
        \Phi_{\mathsf{t}} = \Phi_{t-1}
        while \exists \phi' \in \Phi such that \phi' \in \bigcup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):
               \Phi_t \leftarrow \Phi_t \cup \{\phi'\}
        \phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} \operatorname{Index}_t(\phi)
        H = \max\{1, N_t(\phi_k)\}\
   h \leftarrow h + 1
   Play a_t = \phi_k(s_t)
```

```
Policy Zooming for RL
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0,
H_0 = 0
for t = 1 to T:
   if h = H_k:
        h = 0, k \leftarrow k + 1
                                                                                                   Model-free
        \Phi_{\mathsf{t}} = \Phi_{t-1}
        while \exists \phi' \in \Phi such that \phi' \in \bigcup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):
               \Phi_t \leftarrow \Phi_t \cup \{\phi'\}
        \phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} \operatorname{Index}_t(\phi)
        H = \max\{1, N_t(\phi_k)\}\
                                                                                                Model-based
   h \leftarrow h + 1
   Play a_t = \phi_k(s_t)
```

```
Policy Zooming for RL (Model-free)
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0,
H_0 = 0
for t = 1 to T:
   if h = H_k:
        h = 0, k \leftarrow k + 1
        \Phi_t = \Phi_{t-1}
        while \exists \phi' \in \Phi such that \phi' \in \bigcup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):
               \Phi_t \leftarrow \Phi_t \cup \{\phi'\}
        \phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} \operatorname{Index}_t(\phi)
        H = \max\{1, N_t(\phi_k)\}\
   h \leftarrow h + 1
   Play a_t = \phi_k(s_t)
```

```
where \begin{split} Index_t(\phi) &= \bar{r}_t(\phi) + c_t(\phi) \\ \bar{r}_t(\phi) &= \frac{1}{N_t(\phi)} \sum_t r_t \mathbb{I}(\phi_t = \phi) \,, \\ c_t(\phi) &= const \cdot N_t(\phi)^{-\frac{1}{2}} \text{, and} \\ N_t(\phi) &= \sum_t \mathbb{I}(\phi_t = \phi) \end{split}
```

Policy Zooming for RL (Model-free)

```
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

where
$$\begin{split} Index_t(\phi) &= \bar{r}_t(\phi) + c_t(\phi) \\ \bar{r}_t(\phi) &= \frac{1}{N_t(\phi)} \sum_t r_t \mathbb{I}(\phi_t = \phi) \,, \\ c_t(\phi) &= const \cdot N_t(\phi)^{-\frac{1}{2}} \text{, and} \\ N_t(\phi) &= \sum_t \mathbb{I}(\phi_t = \phi) \end{split}$$

Zooming dimension:

$$d_z^{\Phi} = \inf\{d > 0: N_{\gamma}(\Phi_{\gamma}) \le c_z \gamma^{-d} \ \forall \gamma > 0\}$$

where Φ_{γ} is the set of $[\gamma, 2\gamma)$ -suboptimal policies.

<u>Policy Zooming for RL (Model-free)</u>

```
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

where
$$\begin{split} Index_t(\phi) &= \bar{r}_t(\phi) + c_t(\phi) \\ \bar{r}_t(\phi) &= \frac{1}{\mathsf{N}_t(\phi)} \sum_t r_t \mathbb{I}(\phi_t = \phi) \,, \\ c_t(\phi) &= const \cdot N_t(\phi)^{-\frac{1}{2}} \text{, and} \\ N_t(\phi) &= \sum_t \mathbb{I}(\phi_t = \phi) \end{split}$$

Zooming dimension:

$$d_z^{\Phi} = \inf\{d > 0: N_{\gamma}(\Phi_{\gamma}) \le c_z \gamma^{-d} \ \forall \gamma > 0\}$$

where Φ_{γ} is the set of $[\gamma, 2\gamma)$ -suboptimal policies.

Policy Zooming for RL (Model-free)

```
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}

h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

Zooming dimension:

$$d_z^{\Phi} = \inf\{d > 0: N_{\gamma}(\Phi_{\gamma}) \le c_z \gamma^{-d} \ \forall \gamma > 0\}$$

where Φ_{γ} is the set of $[\gamma, 2\gamma)$ -suboptimal policies.

In this case, $d_z^{\Phi} = 1$, but $d^{\Phi} = 2$.

Policy Zooming for RL (Model-free)

```
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

where $\bar{r}_t(\phi) = \bar{r}_t(\phi) + c_t(\phi)$ where $\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_t r_t \mathbb{I}(\phi_t = \phi) ,$ $c_t(\phi) = const \cdot N_t(\phi)^{-\frac{1}{2}}, \text{ and }$ $N_t(\phi) = \sum_t \mathbb{I}(\phi_t = \phi)$

Zooming dimension:

$$d_z^{\Phi} = \inf\{d > 0: N_{\gamma}(\Phi_{\gamma}) \le c_z \gamma^{-d} \ \forall \gamma > 0\}$$

where Φ_{γ} is the set of $[\gamma, 2\gamma)$ -suboptimal policies.

In this case, $d_z^{\Phi} = 1$, but $d^{\Phi} = 2$.

$$R_{\Phi}(T; PZRLMF) \leq \tilde{\mathcal{O}}\left(\frac{d_z^{\Phi}+1}{T^{d_z^{\Phi}+2}}\right)$$

Policy Zooming for RL (Model-free)

```
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}

h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

where
$$\bar{r}_t(\phi) = \bar{r}_t(\phi) + c_t(\phi)$$
 where
$$\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_t r_t \mathbb{I}(\phi_t = \phi) ,$$

$$c_t(\phi) = const \cdot N_t(\phi)^{-\frac{1}{2}}, \text{and}$$

$$N_t(\phi) = \sum_t \mathbb{I}(\phi_t = \phi)$$

Zooming dimension:

$$d_z^{\Phi} = \inf\{d > 0: N_{\gamma}(\Phi_{\gamma}) \le c_z \gamma^{-d} \ \forall \gamma > 0\}$$

where Φ_{γ} is the set of $[\gamma, 2\gamma)$ -suboptimal policies.

In this case, $d_z^{\Phi} = 1$, but $d^{\Phi} = 2$.

$$R_{\Phi}(T; PZRLMF) \leq \tilde{\mathcal{O}} \left(T^{\frac{d_{Z}^{\Phi} + 1}{d_{Z}^{\Phi} + 2}} \right)$$

Policy Zooming for RL (Model-free)

```
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}

h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

where
$$\bar{r}_t(\phi) = \bar{r}_t(\phi) + c_t(\phi)$$
 where
$$\bar{r}_t(\phi) = \frac{1}{N_t(\phi)} \sum_t r_t \mathbb{I}(\phi_t = \phi) ,$$

$$c_t(\phi) = const \cdot N_t(\phi)^{-\frac{1}{2}}, \text{and}$$

$$N_t(\phi) = \sum_t \mathbb{I}(\phi_t = \phi)$$

Zooming dimension:

$$d_z^{\Phi} = \inf\{d > 0: N_{\gamma}(\Phi_{\gamma}) \le c_z \gamma^{-d} \ \forall \gamma > 0\}$$

where Φ_{γ} is the set of $[\gamma, 2\gamma)$ -suboptimal policies.

In this case, $d_z^{\Phi} = 1$, but $d^{\Phi} = 2$.

$$R_{\Phi}(T; PZRLMF) \leq \tilde{\mathcal{O}} \left(T^{\frac{d_{Z}^{\Phi}+1}{d_{Z}^{\Phi}+2}} \right)$$

Policy Zooming for RL (Model-free)

```
Inputs: Horizon T, A policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

where
$$\begin{split} Index_t(\phi) &= \bar{r}_t(\phi) + c_t(\phi) \\ \bar{r}_t(\phi) &= \frac{1}{N_t(\phi)} \sum_t r_t \mathbb{I}(\phi_t = \phi) \,, \\ c_t(\phi) &= const \cdot N_t(\phi)^{-\frac{1}{2}} \text{, and} \\ N_t(\phi) &= \sum_t \mathbb{I}(\phi_t = \phi) \end{split}$$

Zooming dimension:

$$d_z^{\Phi} = \inf\{d > 0: N_{\gamma}(\Phi_{\gamma}) \le c_z \gamma^{-d} \ \forall \gamma > 0\}$$

where Φ_{γ} is the set of $[\gamma, 2\gamma)$ -suboptimal policies.

In this case, $d_z^{\Phi} = 1$, but $d^{\Phi} = 2$.

$$R_{\Phi}(T; PZRLMF) \leq \tilde{\mathcal{O}} \left(T^{\frac{d_{Z}^{\Phi}+1}{d_{Z}^{\Phi}+2}} \right)$$

Policy Zooming for RL (Model-based) **Inputs:** Horizon T, A Lipschitz policy class Φ **Initialize:** Set of active policies $\Phi_0 \leftarrow \{\}, k = 0, h = 0,$ $H_0 = 0$ **for** t = 1 to T: if $h = H_k$: $h = 0, k \leftarrow k + 1$ $\Phi_{\mathsf{t}} = \Phi_{t-1}$ **while** $\exists \phi' \in \Phi$ such that $\phi' \in \bigcup_{\phi \in \Phi_t} B(\phi; c_t(\phi))$: $\Phi_t \leftarrow \Phi_t \cup \{\phi'\}$ $\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} \operatorname{Index}_t(\phi)$ $H = \max\{1, N_t(\phi_k)\}\$ $h \leftarrow h + 1$ Play $a_t = \phi_k(s_t)$

Policy Zooming for RL (Model-based)

```
Inputs: Horizon T, A Lipschitz policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

1. Adaptively discretized partition of $S \times A$:

```
\zeta is active at time t \Leftrightarrow N_t(\zeta) \ge diam(\zeta)^{-(d_S+2)} but < 2^{d_S+2}diam(\zeta)^{-(d_S+2)}
```


Policy Zooming for RL (Model-based)

```
Inputs: Horizon T, A Lipschitz policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

1. Adaptively discretized partition of $S \times A$:

```
\zeta is active at time t \Leftrightarrow N_t(\zeta) \ge diam(\zeta)^{-(d_S+2)} but < 2^{d_S+2}diam(\zeta)^{-(d_S+2)}
```

- 2. Confidence set for *p*:
 - Z_t : Representative point of cells $C_t = \{\theta: \|\theta(s, a) \hat{p}_t(s, a)\|_{TV} \le \operatorname{diam}(\zeta_{s, a}) \ \forall (s, a) \in Z_t \}$

<u>Lemma:</u> $p_t \in \mathcal{C}_t \ \forall \ t \in [T]$ with high probability.

Policy Zooming for RL (Model-based)

```
Inputs: Horizon T, A Lipschitz policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

- 1. Adaptively discretized partition of $S \times A$: ζ is active at time $t \Leftrightarrow N_t(\zeta) \geq diam(\zeta)^{-(d_S+2)}$ but $< 2^{d_S+2}diam(\zeta)^{-(d_S+2)}$
- 2. Confidence set for *p*:
 - Z_t : Representative point of cells $\mathcal{C}_t = \left\{\theta \colon \|\theta(s,a) \hat{p}_t(s,a)\|_{TV} \le \operatorname{diam}(\zeta_{s,a}) \ \forall (s,a) \in Z_t \right\}$ **Lemma:** $p_t \in \mathcal{C}_t \ \forall \ t \in [T]$ with high probability.
- 3. Index of policy ϕ :

$$\begin{split} & \bar{V}_0^{\phi}(s) = 0 \\ & \bar{V}_{i+1}^{\phi}(s) = r^+ \left(\zeta_{s,\phi(s)} \right) + \max_{\theta \in \mathcal{C}_t} \sum_{\theta} \theta \left(q\left(\zeta_{s,\phi(s)} \right), s' \right) \bar{V}_i^{\phi}(s') \\ & \text{where } r^+ = r + const \cdot diam, \end{split}$$

 $q(\cdot)$ denotes quantized point $Index_t(\phi) := \lim_{i \to \infty} \frac{1}{i} \bar{V}_i^{\phi}(s)$

Policy Zooming for RL (Model-based)

```
Inputs: Horizon T, A Lipschitz policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

Assumptions (Contd.)

- 4. Lower bound on stationary measure: $\exists \underline{\kappa} > 0$ such that for every ϕ , $\mu_{\phi,p}^{(\infty)} \geq \underline{\kappa} \cdot \lambda$, where λ is the Lebesgue measure on \mathcal{S} .
- 5. Partial derivatives of transition densities are bounded.

Policy Zooming for RL (Model-based)

```
Inputs: Horizon T, A Lipschitz policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

Assumptions (Contd.)

- 4. Lower bound on stationary measure: $\exists \underline{\kappa} > 0$ such that for every ϕ , $\mu_{\phi,p}^{(\infty)} \geq \underline{\kappa} \cdot \lambda$, where λ is the Lebesgue measure on \mathcal{S} .
- 5. Partial derivatives of transition densities are bounded.

Lemma: Under Assumption 1 and 5, with high probability $J_{\mathcal{M}}(\phi) \leq Index_t(\phi), \forall t = 1, 2, ..., T.$

Policy Zooming for RL (Model-based)

```
Inputs: Horizon T, A Lipschitz policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

Assumptions (Contd.)

- 4. Lower bound on stationary measure: $\exists \underline{\kappa} > 0$ such that for every ϕ , $\mu_{\phi,p}^{(\infty)} \geq \underline{\kappa} \cdot \lambda$, where λ is the Lebesgue measure on \mathcal{S} .
- 5. Partial derivatives of transition densities are bounded.

Lemma: Under Assumption 1 and 5, with high probability $J_{\mathcal{M}}(\phi) \leq Index_t(\phi), \forall t = 1, 2, ..., T.$

Lemma: Under Assumption 1, 2, 3, 4 and 5, with high probability

```
Index<sub>t</sub>(\phi)

\leq J_{\mathcal{M}}(\phi) + const \cdot \int diam(\zeta_{s,\phi(s)}) d\mu_{\phi,p}^{(\infty)}(s),

\forall t = 1,2,...,T.
```

Policy Zooming for RL (Model-based)

```
Inputs: Horizon T, A Lipschitz policy class \Phi
Initialize: Set of active policies \Phi_0 \leftarrow \{\}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1

\Phi_t = \Phi_{t-1}

while \exists \phi' \in \Phi such that \phi' \in \cup_{\phi \in \Phi_t} B(\phi; c_t(\phi)):

\Phi_t \leftarrow \Phi_t \cup \{\phi'\}

\phi_k \in \operatorname{argmax}_{\phi \in \Phi_t} Index_t(\phi)

H = \max\{1, N_t(\phi_k)\}
h \leftarrow h + 1

Play a_t = \phi_k(s_t)
```

Assumptions (Contd.)

- 4. Lower bound on stationary measure: $\exists \underline{\kappa} > 0$ such that for every ϕ , $\mu_{\phi,p}^{(\infty)} \geq \underline{\kappa} \cdot \lambda$, where λ is the Lebesgue measure on \mathcal{S} .
- 5. Partial derivatives of transition densities are bounded.

Lemma: Under Assumption 1 and 5, with high probability $J_{\mathcal{M}}(\phi) \leq Index_t(\phi), \forall t = 1, 2, ..., T.$

Lemma: Under Assumption 1, 2, 3, 4 and 5, with high probability

Index_t(
$$\phi$$
)
 $\leq J_{\mathcal{M}}(\phi) + const \cdot \int diam(\zeta_{s,\phi(s)}) d\mu_{\phi,p}^{(\infty)}(s),$
 $\forall t = 1,2,...,T.$

$$R_{\Phi}(T; PZRLMB) \le \tilde{\mathcal{O}}\left(\frac{2d_{\mathcal{S}} + d_{\mathcal{Z}}^{\Phi} + 2}{T^{2d_{\mathcal{S}} + d_{\mathcal{Z}}^{\Phi} + 3}}\right)$$

Two Special Cases:

Parameterized policy space:

- $\phi(\cdot; w)$ policy parameterized by w
- $w \in W \subset \mathbb{R}^{d_W}$
- $\|\phi(\cdot; w_1) \phi(\cdot; w_2)\|_{\nu} \le \|w_1 w_2\|$ Then

$$d_z^{\Phi} \le d_w$$

Two Special Cases:

Parameterized policy space:

- $\phi(\cdot; w)$ policy parameterized by w
- $w \in W \subset \mathbb{R}^{d_w}$
- $\|\phi(\cdot; w_1) \phi(\cdot; w_2)\|_{\nu} \le \|w_1 w_2\|$ Then

$$d_z^{\Phi} \le d_w$$

Curvature condition:

If there is a unique maximum of $J_{\mathcal{M}}(\phi(;\cdot)):W\to [0,1]$ at w^* , and $J_{\mathcal{M}}(\phi(\cdot;w^*))-J_{\mathcal{M}}(\phi(\cdot;w))\geq K_w\|w-w^*\|, \forall w\in W.$ Then

$$d_z^{\Phi} = 0$$

Two Special Cases:

Parameterized policy space:

- $\phi(\cdot; w)$ policy parameterized by w
- $w \in W \subset \mathbb{R}^{d_w}$
- $\|\phi(\cdot; w_1) \phi(\cdot; w_2)\|_{\nu} \le \|w_1 w_2\|$ Then

$$d_z^{\Phi} \leq d_w$$

Drawbacks:

- Dimension of Φ could be huge
- Knowledge of low-complexity Φ may not be available
- Computationally heavy

Curvature condition:

If there is a unique maximum of $J_{\mathcal{M}}(\phi(;\cdot)):W\to [0,1]$ at w^* , and $J_{\mathcal{M}}(\phi(\cdot;w^*))-J_{\mathcal{M}}(\phi(\cdot;w))\geq K_w\|w-w^*\|, \forall w\in W.$ Then

$$d_z^{\Phi} = 0$$

```
Zooming for RL (ZoRL)
Inputs: Horizon T
Initialize: Set of \mathcal{P}_0 = \mathcal{S} \times \mathcal{A}, k = 0, h = 0, H_0 = 0
for t = 1 to T:
   if h = H_k:
        h = 0, k \leftarrow k + 1
        Update partition, \mathcal{P}_t
        Construct extended MDP, \mathcal{M}_t^+
        \phi_k \leftarrow \text{EVI}(\mathcal{M}_t^+, 1/\sqrt{T})
        d_k \leftarrow EPE(\mathcal{M}_t^{d,+}, \phi_k, 1/\sqrt{T})
        H_k = const \cdot d_k^{-2(d_{\mathcal{S}}+1)}
   h \leftarrow h + 1
   Play a_t = \phi_k(s_t)
```

```
Zooming for RL (ZoRL)
Inputs: Horizon T
Initialize: Set of \mathcal{P}_0 = \mathcal{S} \times \mathcal{A}, k = 0, h = 0, H_0 = 0
for t = 1 to T:
   if h = H_k:
        h = 0, k \leftarrow k + 1
        Update partition, \mathcal{P}_t
        Construct extended MDP, \mathcal{M}_t^+
        \phi_k \leftarrow \text{EVI}(\mathcal{M}_t^+, 1/\sqrt{T})
        d_k \leftarrow EPE(\mathcal{M}_t^{d,+}, \phi_k, 1/\sqrt{T})
        H_k = const \cdot d_{\nu}^{-2(d_{\mathcal{S}}+1)}
   h \leftarrow h + 1
   Play a_t = \phi_k(s_t)
```

```
• \mathcal{M}_t^+ = (S_t, A_t, \mathcal{C}_t, r_t^+) where r_t^+(s, a) = r(s, a) + L_r diam(\zeta_{s,a}^t)
• \mathcal{M}_t^{d,+} = (S_t, A_t, \mathcal{C}_t, d_t) where d_t(s, a) = diam(\zeta_{s,a}^t)
```

Zooming for RL (ZoRL) Inputs: Horizon TInitialize: Set of $\mathcal{P}_0 = \mathcal{S} \times \mathcal{A}, k = 0, h = 0, H_0 = 0$ for t = 1 to T: if $h = H_k$: $h = 0, k \leftarrow k + 1$ Update partition, \mathcal{P}_t Construct extended MDP, \mathcal{M}_t^+ $\phi_k \leftarrow \text{EVI}(\mathcal{M}_t^+, 1/\sqrt{T})$ $d_k \leftarrow EPE(\mathcal{M}_t^{d,+}, \phi_k, 1/\sqrt{T})$ $H_k = const \cdot d_k^{-2(d_{\mathcal{S}}+1)}$ $h \leftarrow h + 1$ Play $a_t = \phi_k(s_t)$

• $\mathcal{M}_t^+ = (S_t, A_t, \mathcal{C}_t, r_t^+)$ where $r_t^+(s, a) = r(s, a) + L_r diam(\zeta_{s,a}^t)$ • $\mathcal{M}_t^{d,+} = (S_t, A_t, \mathcal{C}_t, d_t)$ where $d_t(s, a) = diam(\zeta_{s,a}^t)$ Consider the average reward optimality equation (AROE) of ${\mathcal M}$

$$J + h(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h(s') \}$$

Zooming for RL (ZoRL) Inputs: Horizon TInitialize: Set of $\mathcal{P}_0 = \mathcal{S} \times \mathcal{A}$, k = 0, h = 0, $H_0 = 0$ for t = 1 to T: if $h = H_k$: h = 0, $k \leftarrow k + 1$ Update partition, \mathcal{P}_t Construct extended MDP, \mathcal{M}_t^+ $\phi_k \leftarrow \text{EVI}(\mathcal{M}_t^+, 1/\sqrt{T})$ $d_k \leftarrow \text{EPE}(\mathcal{M}_t^{d,+}, \phi_k, 1/\sqrt{T})$ $H_k = const \cdot d_k^{-2(d_{\mathcal{S}}+1)}$ $h \leftarrow h + 1$ Play $a_t = \phi_k(s_t)$

• $\mathcal{M}_t^+ = (S_t, A_t, \mathcal{C}_t, r_t^+)$ where $r_t^+(s, a) = r(s, a) + L_r diam(\zeta_{s,a}^t)$ • $\mathcal{M}_t^{d,+} = (S_t, A_t, \mathcal{C}_t, d_t)$ where $d_t(s, a) = diam(\zeta_{s,a}^t)$ Consider the average reward optimality equation (AROE) of ${\mathcal M}$

$$J + h(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h(s') \}$$

$$\star \exists h_{\mathcal{M}} : S \to \mathbb{R} \text{ s.t.}$$

$$J_{\mathcal{M}}^{\star} + h_{\mathcal{M}}(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h_{\mathcal{M}}(s') \}$$

```
Zooming for RL (ZoRL)
Inputs: Horizon T
Initialize: Set of \mathcal{P}_0 = \mathcal{S} \times \mathcal{A}, k = 0, h = 0, H_0 = 0
for t = 1 to T:

if h = H_k:

h = 0, k \leftarrow k + 1
Update partition, \mathcal{P}_t
Construct extended MDP, \mathcal{M}_t^+
\phi_k \leftarrow \text{EVI}(\mathcal{M}_t^+, 1/\sqrt{T})
d_k \leftarrow EPE(\mathcal{M}_t^{d,+}, \phi_k, 1/\sqrt{T})
H_k = const \cdot d_k^{-2(d_{\mathcal{S}}+1)}
h \leftarrow h + 1
Play a_t = \phi_k(s_t)
```

• $\mathcal{M}_t^+ = (S_t, A_t, \mathcal{C}_t, r_t^+)$ where $r_t^+(s, a) = r(s, a) + L_r diam(\zeta_{s,a}^t)$ • $\mathcal{M}_t^{d,+} = (S_t, A_t, \mathcal{C}_t, d_t)$ where $d_t(s, a) = diam(\zeta_{s,a}^t)$ Consider the average reward optimality equation (AROE) of ${\mathcal M}$

$$J + h(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h(s') \}$$

$$\star \exists h_{\mathcal{M}} : \mathcal{S} \to \mathbb{R} \text{ s.t.}$$

$$J_{\mathcal{M}}^{\star} + h_{\mathcal{M}}(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h_{\mathcal{M}}(s') \}$$

$$\star gap(s, a) \coloneqq J_{\mathcal{M}}^{\star} + h_{\mathcal{M}}(s) - (r(s, a) + \int p(s, a, ds') h_{\mathcal{M}}(s'))$$

Zooming for RL (ZoRL) Inputs: Horizon TInitialize: Set of $\mathcal{P}_0 = \mathcal{S} \times \mathcal{A}$, k = 0, h = 0, $H_0 = 0$ for t = 1 to T: if $h = H_k$: h = 0, $k \leftarrow k + 1$ Update partition, \mathcal{P}_t Construct extended MDP, \mathcal{M}_t^+ $\phi_k \leftarrow \text{EVI}(\mathcal{M}_t^+, 1/\sqrt{T})$ $d_k \leftarrow \text{EPE}(\mathcal{M}_t^{d,+}, \phi_k, 1/\sqrt{T})$ $H_k = const \cdot d_k^{-2(d_{\mathcal{S}}+1)}$ $h \leftarrow h + 1$ Play $a_t = \phi_k(s_t)$

•
$$\mathcal{M}_t^+ = (S_t, A_t, \mathcal{C}_t, r_t^+)$$
 where $r_t^+(s, a) = r(s, a) + L_r diam(\zeta_{s,a}^t)$
• $\mathcal{M}_t^{d,+} = (S_t, A_t, \mathcal{C}_t, d_t)$ where $d_t(s, a) = diam(\zeta_{s,a}^t)$

Consider the average reward optimality equation (AROE) of ${\mathcal M}$

$$J + h(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h(s') \}$$

$$\star \exists h_{\mathcal{M}} : \mathcal{S} \to \mathbb{R} \text{ s.t.}$$

$$J_{\mathcal{M}}^{\star} + h_{\mathcal{M}}(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h_{\mathcal{M}}(s') \}$$

$$\star gap(s, a) \coloneqq J_{\mathcal{M}}^{\star} + h_{\mathcal{M}}(s) - \left(r(s, a) + \int p(s, a, ds') h_{\mathcal{M}}(s') \right)$$

Zooming dimension:

$$d_{z} = \inf\{d > 0: N_{\gamma}(Z_{\gamma}) \le c_{z}\gamma^{-d} \ \forall \gamma > 0\}$$
where $Z_{\gamma} = \{(s, a) \mid gap(s, a) \le \gamma\}.$

Zooming for RL (ZoRL) Inputs: Horizon TInitialize: Set of $\mathcal{P}_0 = \mathcal{S} \times \mathcal{A}$, k = 0, h = 0, $H_0 = 0$ for t = 1 to T: if $h = H_k$: h = 0, $k \leftarrow k + 1$ Update partition, \mathcal{P}_t Construct extended MDP, \mathcal{M}_t^+ $\phi_k \leftarrow \text{EVI}(\mathcal{M}_t^+, 1/\sqrt{T})$ $d_k \leftarrow EPE(\mathcal{M}_t^{d,+}, \phi_k, 1/\sqrt{T})$ $H_k = const \cdot d_k^{-2(d_{\mathcal{S}}+1)}$ $h \leftarrow h + 1$ Play $a_t = \phi_k(s_t)$

•
$$\mathcal{M}_t^+ = (S_t, A_t, \mathcal{C}_t, r_t^+)$$
 where $r_t^+(s, a) = r(s, a) + L_r diam(\zeta_{s,a}^t)$
• $\mathcal{M}_t^{d,+} = (S_t, A_t, \mathcal{C}_t, d_t)$ where $d_t(s, a) = diam(\zeta_{s,a}^t)$

Consider the average reward optimality equation (AROE) of ${\mathcal M}$

$$J + h(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h(s') \}$$

$$\star \exists h_{\mathcal{M}} : \mathcal{S} \to \mathbb{R} \text{ s.t.}$$

$$J_{\mathcal{M}}^{\star} + h_{\mathcal{M}}(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h_{\mathcal{M}}(s') \}$$

$$\star gap(s, a) \coloneqq J_{\mathcal{M}}^{\star} + h_{\mathcal{M}}(s) - \left(r(s, a) + \int p(s, a, ds') h_{\mathcal{M}}(s') \right)$$

Zooming dimension:

$$\begin{aligned} d_z &= \inf\{d > 0 : N_\gamma(\mathbf{Z}_\gamma) \le c_z \gamma^{-d} \ \forall \gamma > 0\} \\ where \ \mathbf{Z}_\gamma &= \{(s,a) \mid gap(s,a) \le \gamma\}. \\ \star \ d_z &\le d_{\mathcal{S}} + d_{\mathcal{A}} \end{aligned}$$

Zooming for RL (ZoRL) Inputs: Horizon TInitialize: Set of $\mathcal{P}_0 = \mathcal{S} \times \mathcal{A}, k = 0, h = 0, H_0 = 0$ for t = 1 to T: if $h = H_k$: $h = 0, k \leftarrow k + 1$ Update partition, \mathcal{P}_t Construct extended MDP, \mathcal{M}_t^+ $\phi_k \leftarrow \text{EVI}(\mathcal{M}_t^+, 1/\sqrt{T})$ $d_k \leftarrow EPE(\mathcal{M}_t^{d,+}, \phi_k, 1/\sqrt{T})$ $H_k = const \cdot d_k^{-2(d_{\mathcal{S}}+1)}$ $h \leftarrow h + 1$ Play $a_t = \phi_k(s_t)$

•
$$\mathcal{M}_t^+ = (S_t, A_t, \mathcal{C}_t, r_t^+)$$
 where $r_t^+(s, a) = r(s, a) + L_r diam(\zeta_{s,a}^t)$
• $\mathcal{M}_t^{d,+} = (S_t, A_t, \mathcal{C}_t, d_t)$ where $d_t(s, a) = diam(\zeta_{s,a}^t)$

Consider the average reward optimality equation (AROE) of ${\mathcal M}$

$$J + h(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h(s') \}$$

$$\star \exists h_{\mathcal{M}} : \mathcal{S} \to \mathbb{R} \text{ s.t.}$$

$$J_{\mathcal{M}}^{\star} + h_{\mathcal{M}}(s) = \max_{a \in \mathcal{A}} \{ r(s, a) + \int p(s, a, ds') h_{\mathcal{M}}(s') \}$$

$$\star gap(s, a) \coloneqq J_{\mathcal{M}}^{\star} + h_{\mathcal{M}}(s) - (r(s, a) + \int p(s, a, ds') h_{\mathcal{M}}(s'))$$

Zooming dimension:

$$\begin{split} d_z &= \inf\{d>0 : N_\gamma\big(\mathbf{Z}_\gamma\big) \leq c_z \gamma^{-d} \ \forall \gamma>0\} \\ where \ \mathbf{Z}_\gamma &= \{(s,a) \mid gap(s,a) \leq \gamma\}. \\ \star \ d_z &\leq d_{\mathcal{S}} + d_{\mathcal{A}} \end{split}$$

$$R(T; ZoRL) \le \tilde{\mathcal{O}}\left(T^{\frac{2d_{\mathcal{S}}+d_{\mathbf{z}}+2}{2d_{\mathcal{S}}+d_{\mathbf{z}}+3}}\right)$$

Truncated Linear System, 2x2

Truncated Linear System, 2x4

Nonlinear System, 2x2

Continuous RiverSwim

Truncated Linear System, 2x2

Truncated Linear System, 2x4

Nonlinear System, 2x2

Continuous RiverSwim

4000 PZRL-MF (d_w = 1)
--- PZRL-MF (d_w = 2)
--- PZRL-MB (d_w = 1)
--- PZRL-MB (d_w = 2)
--- PZRL-MB (d_w = 2

Continuous RiverSwim

ZoRL

- I. is statistically efficient
- II. covers a broad class of MDPs
- III. is computationally efficient

ZoRL

- I. is statistically efficient
- II. covers a broad class of MDPs
- III. is computationally efficient

Future directions:

- I. Generalization of zooming idea beyond Lipschitz assumption
- II. Relaxation of other assumptions such as ergodicity
- III. Exploring connection with existing complexity measures

ZoRL

- I. is statistically efficient
- II. covers a broad class of MDPs
- III. is computationally efficient

Future directions:

- I. Generalization of zooming idea beyond Lipschitz assumption
- II. Relaxation of other assumptions such as ergodicity
- III. Exploring connection with existing complexity measures

Preprints:

- 1. Kar, Avik, and Rahul Singh. "Provably Adaptive Average Reward Reinforcement Learning for Metric Spaces." arXiv preprint arXiv:2410.19919 (2024).
- 2. Kar, Avik, and Rahul Singh. "Policy Zooming: Adaptive Discretization-based Infinite-Horizon Average-Reward Reinforcement Learning." arXiv preprint arXiv:2405.18793 (2024).

Thank you!