Lecture Notes On Abstract Algebra (Week 11)

Guohua PENG (彭国华) email: peng@scu.edu.cn

Contents

1	\mathbf{Lec}	ture 20 (Nov 14, 2023): Algebraic Closure and Splitting Field	1
	1.1	Algebraic Closure of A Field	1
	1.2	Splitting Field of a polynomial	;
2	Lecture 21 (Nov 16, 2023): Galois Group and Extensions of an Isomorphism		
4	Lec	ture 21 (Nov 16, 2023): Galois Group and Extensions of an Isomorphism	(
4		Galois Group of a Field Extension	(
4	2.1		(

1 Lecture 20 (Nov 14, 2023): Algebraic Closure and Splitting Field

1.1 Algebraic Closure of A Field

Theorem 1.1 (Kronecker). Let $f(x) \in F[x]$ and $\deg f(x) \ge 1$. Then there exists an extension field K and $\alpha \in K$ such that $[K:F] \le \deg f(x)$ and $f(\alpha) = 0$.

Proof. Let m(x) be an irreducible factor of f(x). Then F[x]/(m(x)) is a field. The inclusion $F \to F[x]$ composed with the obvious epimorphism $\tau : F[x] \twoheadrightarrow F[x]/(m(x))$ induces a natural homomorphism η from F to F[x]/(m(x)):

$$\eta: F \hookrightarrow F[x] \twoheadrightarrow F[x]/(m(x)).$$

Then $\ker \eta = F \cap (m(x)) = 0$, and hence η must be a monomorphism. Notice the restriction of η on F is essentially the identity mao. Thus K = F[x]/(m(x)) may be regarded as an extension field of F and $[K:F] = \deg m(x) \leq \deg f(x)$.

Now focus on the obvious epimorphism

$$\tau: F[x] \to K = F[x]/(m(x))$$

and write $\overline{g(x)} = \tau(g(x))$. In particular, $\overline{x} = \tau(x) \in K$. Since $\overline{m(x)} = 0$ and $\overline{m(x)} = m(\overline{x})$, it follows $m(\overline{x}) = 0$. That is, $\alpha = \overline{x} \in K$ is a root of m(x). Note that every root of m(x) is a root of f(x). This implies that $\alpha = \overline{x} \in K$ is a root of f(x). In other words, f(x) has a root in the extension field K = F[x]/(m(x)).

Remark 1.1. Let f(x) be an irreducible polynomial over F. Then K = F[x]/(f(x)) can be viewed as an extension of F. Let α be the imagine of x under the canonical map $F[x] \to K$. Then $\alpha \in K$ is a root of f(x).

Example 1.1. We know that $x^2 + 1$ has no roots in \mathbb{R} . Hence $x^2 + 1$ is irreducible over \mathbb{R} . Consequently $\mathbb{R}[x]/(x^2 + 1)$ is an extension field of \mathbb{R} . Since $\overline{x^2 + 1} = \overline{x}^2 + \overline{1} = \overline{x}^2 + 1 = 0$ holds in $\mathbb{R}[x]/(x^2 + 1)$, we see that $\overline{x} \in \mathbb{R}[x]/(x^2 + 1)$ is a root of the polynomial $X^2 + 1$. In fact,

$$\mathbb{R}[x]/(x^2+1) = \{a+b\overline{x} \mid a, b \in \mathbb{R}\}.$$

Hence $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$ and \overline{x} corresponds to $i = \sqrt{-1}$ or -i.

Example 1.2. Note that $\mathbb{F}_2 = \{0,1\}$ denote the finite field with 2 elements. One can see that $x^2 + x + 1$ is irreducible over \mathbb{F}_2 . Hence $\mathbb{F}_2[x]/(x^2 + x + 1)$ is an extension field of \mathbb{F}_2 . Write α for the coset of x in $\mathbb{F}_2[x]/(x^2 + x + 1)$. Then $\alpha^2 + \alpha + 1 = 0$ and

$$K = \mathbb{F}_2[x]/(x^2 + x + 1) = \{0, 1, \alpha, \alpha + 1\}.$$

It follows that K is a finite field of 4 elements, which is usually denoted by \mathbb{F}_4 or GF(4). Here "GF" stands for Galois field, since finite fields are also called **Galois fields**.

Remark 1.2. In general, let p be a prime integer. If m(x) is an irreducible polynomial over the finite field \mathbb{F}_p of p elements, then $\mathbb{F}_p[x]/(m(x))$ is a finite field of p^n elements. In other words, if there exists an irreducible polynomial of order n over \mathbb{F}_p , then we can construct a finite field with p^n elements. It's a basic fact that irreducible polynomials of any degree do exist over the finite field \mathbb{F}_p . So

a finite field with prime power order does exist.

Proposition 1.1. If $f(x) \in F[x]$ has a root α in F, then there exist a polynomial $g(x) \in F[x]$ such that

$$f(x) = (x - \alpha)g(x).$$

Definition 1.1. A field F is called **algebraically closed** (代数闭的) if every polynomial $f(x) \in F[x]$ of degree ≥ 1 has a root in F.

The real number field \mathbb{R} is not algebraically closed, since $x^2 + 1 \in \mathbb{R}[x]$ has no roots in \mathbb{R} . The Fundamental Theorem of Algebra implies that \mathbb{C} is algebraically closed.

Theorem 1.2 (Fundamental Theorem of Algebra, 代数基本定理). Every polynomial $f(x) \in \mathbb{R}[x]$ with deg $f(x) \geq 1$ has a root in \mathbb{C} .

Let

 $\overline{\mathbb{Q}}$ = the set of all algebraic numbers.

Then

 $\overline{\mathbb{Q}}$ and \mathbb{C} are algebraic closed.

Corollary 1.1. Let F be an algebraic closed field. Then every polynomial over F can be decomposed as a product of linear factors in F[x].

Definition 1.2. If the field extension K/F is algebraic and K is algebraically closed, then K is called an algebraic closure (代数闭包) of F.

The Fundamental Theorem of Algebra shows that $\mathbb C$ is algebraically closed. But $\mathbb C$ is NOT an algebraic closure of $\mathbb Q$.

Actually, $\overline{\mathbb{Q}}$ is a proper subfield of \mathbb{C} . The extension $\mathbb{C}/\overline{\mathbb{Q}}$ is purely transcendental. Every complex number outside of $\overline{\mathbb{Q}}$ is transcendental over \mathbb{Q} .

Remark 1.3. 1. An algebraic closed field is an algebraic closure of itself.

- 2. An irreducible polynomial over an algebraic closed field must be of degree one. In other words, every polynomial of degree greater than 1 over an algebraic closed field is reducible.
- 3. For any field F, we can achieve its algebraic closure \overline{F} by adjoining to F all algebraic elements (i.e, all roots of polynomials over F). Hence an algebraic closure of a field F is the "smallest" extension field in which every polynomial over F has a root.
 - For example, $\overline{\mathbb{Q}}$ is obtained by adjoining all algebraic numbers to \mathbb{Q} .
- 4. An algebraic closure of a field does exist and is unique in the following sense: if K_1 and K_2 are two algebraic closures of F, then there exists an isomorphism (of rings) $\tau: K_1 \to K_2$ such that $\tau(a) = a$ for all $a \in F$.

Corollary 1.2. Every polynomial over F can be factored as a product of linear polynomials over its algebraic closure.

Corollary 1.3. A polynomial of degree n over F has exactly n roots in its algebraic closure, counting multiplicity (重数计算在内).

Exercises

- 1. Let $\overline{\mathbb{Q}}$ denote the set of all algebraic numbers.
 - (a) For every $\alpha \in \mathbb{C} \setminus \overline{\mathbb{Q}}$, show that α is transcendental over \mathbb{Q} .
 - (b) Show that $\overline{\mathbb{Q}}/\mathbb{Q}$ is an infinite extension.
 - (c) Let $\alpha \in \mathbb{C}$ be a root of a polynomial $f(x) \in \overline{\mathbb{Q}}[x]$. Show that α is an algebraic number. Deduce that $\overline{\mathbb{Q}}$ is algebraically closed.
 - (d) Show that $\overline{\mathbb{Q}}$ is the algebraically closure of \mathbb{Q} in \mathbb{C} .
 - (e) Let F be an intermediated field of $\overline{\mathbb{Q}}/\mathbb{Q}$ such that $[F:\mathbb{Q}]$ is finite. Show that $\overline{\mathbb{Q}}$ is also an algebraic closure of F.
- 2. Let $\alpha \in \overline{F}$ be a roof of $f(x) \in F[x]$. Show that $f(x) = (x \alpha)g(x)$ for some polynomial g(x) over $F(\alpha)$.
- 3. Let f(x) be a polynomial of degree n over F. Show that f(x) has at most n roots in an algebraic closure \overline{F} .
- 4. Let K be an algebraic closure of F and M be an intermediate subfield of K/F. Show that K is an algebraic closure of M.

1.2 Splitting Field of a polynomial

Recall Kronecker's Theorem: every nonconstant polynomial over a field has a root in some extension field.

Actually, if $p(x) \in F[x]$ is irreducible, we can take $K = F(\alpha)$, where α is the image of x via the canonical map $F[x] \to F[x]/(p(x))$. Then K = F[x]/(p(x)) is an extension field of F and α is a root of p(x). Where is α ? α is an element in some algebraic closure of F.

We say that a polynomial $f(x) \in F[x]$ **splits** (分裂) (or splits completely) over F if there exist elements $\alpha_1, \alpha_2, \ldots, \alpha_n \in F$ such that

$$f(x) = c(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

where $c \in F$ is the leading coefficient of f(x). A polynomial $f(x) \in F[x]$ splits over an extension field K of F if and only if f(x) factors in K[x] as a product of constant or linear factors. Every polynomial over F splits over its algebraic closure \overline{F} . In particular, if F is an algebraic closed field, then every polynomial over F splits.

Remark 1.4. 1. Every polynomial over \mathbb{R} splits over \mathbb{C} .

2. Every polynomial over \mathbb{Q} splits over $\overline{\mathbb{Q}}$.

Definition 1.3. Let K/F be a field extension, and let $f(x) \in F[x]$ be a polynomial with coefficients in F. The field K is said to be a **splitting field** (分裂域) of f(x) over F if the following conditions are satisfied:

- 1. the polynomial f(x) splits over K;
- 2. the polynomial f(x) does not split over any proper subfield of K that contains F.
 - 1. A splitting field of $f(x) \in F[x]$ is the smallest subfield of \overline{F} (an algebraic closure of F) in which f(x) splits completely.
 - 2. A splitting field of $f(x) \in F[x]$ is the smallest subfield of \overline{F} containing all roots of f(x).

Example 1.3. 1. The field $\mathbb{Q}(\sqrt{2})$ is a splitting field for the polynomial $x^2 - 2$ over \mathbb{Q} .

- 2. Let $\omega = e^{\frac{2\pi i}{3}}$ be a 3rd root of unity. We know that $\sqrt[3]{5}$, $\sqrt[3]{5}\omega$, $\sqrt[3]{5}\omega^2$ are all roots of $x^3 5$ in \mathbb{C} . Hence $\mathbb{Q}(\sqrt[3]{5}, \sqrt[3]{5}\omega, \sqrt[3]{5}\omega^2)$ is the unique splitting field contained in \mathbb{C} . But $\mathbb{Q}(\sqrt[3]{5}, \sqrt[3]{5}\omega, \sqrt[3]{5}\omega^2) = \mathbb{Q}(\sqrt[3]{5}, \omega)$. So a splitting field for the polynomial $x^2 5$ over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{5}, \omega)$.
- 3. Let n be a positive integer and $\zeta_n = e^{\frac{2\pi i}{n}}$. Then $\mathbb{Q}(\zeta_n)$ is a splitting field of $x^n 1 \in \mathbb{Q}[x]$.
- 4. let $x^2 + ax + b \in \mathbb{R}[x]$ and $a^2 4b < 0$. Then \mathbb{C} is the splitting field of $x^2 + ax + b$ over \mathbb{R} .

Recall Proposition 1.1: if $f(x) \in F[x]$ has a root α in F, then there exist a polynomial $g(x) \in F[x]$ such that $f(x) = (x - \alpha)g(x)$.

Fix an algebraic closure \overline{F} of F. Let $f(x) = x^n + \cdots \in F[x]$ be a monic polynomial of degree n. Then f(x) has exactly n roots in \overline{F} (Corollary 1.3). Let $\alpha_1 \in \overline{F}$ be a root of f(x) and set $K_1 = F(\alpha_1)$. Then $[K_1 : F] \leq n$. By Proposition 1.1, $f(x) = (x - \alpha_1)f_1(x)$ for some $f_1(x) \in K_1[x]$. Let α_2 be a root of $f_1(x)$, then α_2 is a root of f(x). Replacing f(x) by $f_1(x)$, we can add another root α_2 to K_1 to obtain $K_2 = K_1(\alpha_2) = F(\alpha_1, \alpha_2)$ and $f_1(x) = (x - \alpha_2)f_2(x)$ for some $f_2(x) \in K_2[x]$. Clearly $[K_2 : K_1] \leq n - 1$. Inductively, let α_i be a root of $f_{i-1}(x) \in K_{i-1}[x]$, we have an extension field $K_i = K_{i-1}(\alpha_i)$ and

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_{i-1})(x - \alpha_i) f_i(x),$$

where $f_i(x) = \frac{f_{i-1}(x)}{x-\alpha_i} \in K_i[x], \deg f_i(x) = n-i, i \geq 2$. Hence

$$[K_i:K_{i-1}] = [K_{i-1}(\alpha_i):K_{i-1}] \le n+1-i.$$
(1)

Let $K = K_n = F(\alpha_1, \alpha_2, \dots, \alpha_n)$. Then

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

where $\alpha_1, \alpha_2, \ldots, \alpha_n \in K$ are all roots of f(x). Clearly $K = F(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is the smallest extension subfield of \overline{F} such that f(x) splits.

Based on our previous discussion, if $\alpha_1, \alpha_2, \ldots, \alpha_n$ are all roots of f(x), then $F(\alpha_1, \alpha_2, \ldots, \alpha_n)$ is a splitting field of f(x). And we have

Proposition 1.2. Let $f(x) \in F[x]$ be a polynomial with degree $n \ge 1$.

- 1. A splitting field of f(x) over F does exist.
- 2. If K is a splitting field for f(x) over F, then $[K:F] \leq n!$.

The second result comes from (1) and the transitivity of extension degree.

One may adjoin all roots of a polynomial to the base field to achieve a splitting field of the polynomial.

Corollary 1.4. Let M/F be a field extension. If a polynomial $f(x) \in F[x]$ splits over M, then there exists a unique subfield K of M which is a splitting field for f(x) over F.

Proof. Let K be the intersection of all subfields L of M containing F with the property that the polynomial f splits over L. One can readily verify that K is the unique splitting field for f over F contained in M.

The Fundamental Theorem of Algebra ensures that a polynomial $f(x) \in \mathbb{Q}[x]$ with rational coefficients always splits over the field \mathbb{C} of complex numbers. Thus some unique subfield L of \mathbb{C} is a splitting field for f(x) over \mathbb{Q} .

Example 1.4. Clearly $K_1 = \mathbb{Q}(\sqrt{-43})$ is a splitting field of $x^2 + 43$ over \mathbb{Q} and $K_2 = \mathbb{Q}(\sqrt{47})$ is a splitting field of $x^2 - 47$ over \mathbb{Q} . Then $K = K_1K_2 = \mathbb{Q}(\sqrt{-43}, \sqrt{47})$ is the splitting of the reducible polynomial

$$(x^2 + 43)(x^2 - 47) = x^4 + 4x^2 - 2021.$$

One can check that $K = \mathbb{Q}(\sqrt{-43} + \sqrt{47}) = \mathbb{Q}(\sqrt{-43} + \sqrt{-2021}) = \mathbb{Q}(\sqrt{-2021} + \sqrt{47})$.

If we take $\alpha = \sqrt{-43} + \sqrt{47}$, then $\alpha^4 - 8\alpha^2 + 8100 = 0$. Therefore K is also a splitting field of the irreducible polynomial

$$x^4 - 8x^2 + 8100$$
.

Remark 1.5. Any two splitting fields of a given polynomial over a field F are F-isomorphic. More precisely, if K_1 and K_2 are two splitting fields of $f(x) \in F[x]$, then there exists an isomorphism (of rings) $\tau: K_1 \to K_2$ such that $\tau(a) = a$ for all $a \in F$.

Exercises

- 1. Let K be a splitting field of a polynomial f(x) over F and M is an intermediate field of K/F. Then K is a splitting field of f(x) over M.
- 2. Let K_1, K_2 be the splitting fields for $x^2 + 3$ and $x^4 3$ over \mathbb{R} respectively. Show that $K_1 = K_2$.

- 3. Let p be a prime and ζ_p a primitive p-th root of unity. Show that $\mathbb{Q}(\zeta_p)$ is a splitting field of $\Phi_p(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$.
- 4. Construct a splitting field K of $f(x) = x^7 5$. What is $[K : \mathbb{Q}]$?
- 5. Construct a splitting field of $f(x) = x^4 4x^2 21$ explicitly.
- 6. Find out the minimal polynomial m(x) of $\alpha = \sqrt{2} + \sqrt{-3}$. Then show that $K = \mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{-3})$ and that K is the splitting field of m(x).
- 7. Let p be a prime integer and f(x) be a polynomial of degree p over F with splitting field E. If $p \mid [E:F]$, show that f(x) is irreducible over F.
- 8. Let F be a field and G a finite group of F^{\times} . Show that G is cyclic.

2 Lecture 21 (Nov 16, 2023): Galois Group and Extensions of an Isomorphism

2.1 Galois Group of a Field Extension

Let K_1/F and K_2/F be two extension fields of F. A ring homomorphism $\sigma: K_1 \to K_2$ is called an F-homomorphism (F-同态) if $\sigma(a) = a$ for all $a \in F$.

- **Remark 2.1.** 1. An F-homomorphism is essentially a ring homomorphism that fixes every element of F.
 - 2. An F-homomorphism must send 1 to 1, hence it is injective. So an F-homomorphism is also an F-embedding (F-嵌入).

Recall that an extension field K of F can be viewed as a vector space over F. So an F-homomorphism is a homomorphism as F-modules, hence a linear map between vector spaces over F.

$$F\text{-homomorphism} = F\text{-embedding}$$

$$= F\text{-module homomorphism} + \text{preserving multiplication}.$$

Let $\sigma: K_1 \to K_2$ be an F-homomorphism. If σ is a bijection, then σ is called an F-isomorphism (F-同构) and we say that K_1 and K_2 are F-isomorphic. An F-homomorphism from K to K is called an F-endomorphism (F-自同态) and an F-isomorphism from K to K is called an F-automorphism (F-自同构).

An F-isomorphism is an isomorphism of F-modules.

Example 2.1. The field $\mathbb{R}[x]/(x^2+1)=\{a+b\overline{x}\mid a,b\in\mathbb{R}\}$ and \mathbb{C} are extensions of \mathbb{R} . The isomorphism

$$\tau: \mathbb{R}[x]/(x^2+1) \to \mathbb{C}$$

$$a + b\overline{x} \mapsto a + bi$$

is an \mathbb{R} -isomorphism.

Remark 2.2. Every ring homomorphism $\sigma: K_1 \to K_2$ has a canonical extension to polynomial rings

$$\sigma^*: K_1[x] \to K_2[x]$$
$$\sum a_i x^i \mapsto \sum \sigma(a_i) x^i.$$

In particular, $\sigma^*(x) = x$, $\sigma \mid_{K_1} = \sigma$.

<u>Basic Observation</u> Let $K_1 = F(\alpha)$. Then an F-embedding $\sigma : K_1 \to K_2$ is completely determined by $\sigma(\alpha)$, the image of α . In other words, if σ, τ are two F-embeddings from K_1 to K_2 and $\sigma(\alpha) = \tau(\alpha)$, then $\sigma = \tau$.

Theorem 2.1. Let $\sigma: K_1 \to K_2$ be an F-embedding and let $\alpha \in K_1$ be an algebraic element over F.

- 1. the imagine $\sigma(\alpha)$ in K_2 is also algebraic over F;
- 2. $\sigma(\alpha)$ and α have the same minimal polynomial over F.

Two algebraic elements α, β are called F-conjugate (F-共轭) if their minimal polynomials over F are the same. We also simply say that β is a conjugate (共轭元) of α if the base field F is clear. In other words, two roots of the same irreducible polynomial over F are called conjugate over F. For example, $\sqrt{2}$ and $-\sqrt{2}$ are conjugate over \mathbb{Q} , because they are the two roots of $x^2 - 2 \in \mathbb{Q}[x]$. Similarly, $\sqrt[3]{2}$ and $\sqrt[3]{2}\omega^3$ are conjugate over \mathbb{Q} , where $\omega = \frac{-1+\sqrt{-3}}{2}$. They have the same minimal polynomial $x^3 - 2$ over \mathbb{Q} .

If α is an algebraic element of degree n over F, then its minimal polynomial is of degree n. Consequently α has at most n conjugates.

An F-embedding must send an algebraic element to one of its F-conjugates.

Example 2.2. Let $\alpha = \sqrt[3]{2}$ and $\sigma : \mathbb{Q}(\alpha) \to \mathbb{C}$ an \mathbb{Q} -embedding. Then σ is completely determined by the image of α . Note that $x^3 - 2$ is the minimal polynomial of α over \mathbb{Q} . By Theorem 2.1, $\sigma(\alpha) \in \{\alpha, \alpha\omega, \alpha\omega^2\}$, where $\omega = \frac{-1 + \sqrt{-3}}{2}$ and $\alpha, \alpha\omega, \alpha\omega^2$ are all roots of $x^3 - 2$. It follows that there are at most three \mathbb{Q} embedding from $\mathbb{Q}(\alpha)$ to \mathbb{C} . Actually, there are exact three!

Example 2.3. The quadratic extensions $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic. In fact, if $\sigma: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{3})$ is an isomorphism, then σ must be a \mathbb{Q} -isomorphism. Let $\alpha = \sigma(\sqrt{2}) \in \mathbb{Q}(\sqrt{3})$. By Theorem 2.1, the minimal polynomial of α is $x^2 - 2$. Hence $\sigma(\sqrt{2}) = \pm \sqrt{2}$. It follows that $\sqrt{2} \in \mathbb{Q}(\sqrt{3})$. Impossible!

If K/F is an extension of fields, then an F-isomorphism from K to K is called an F-automorphism of K. An F-automorphism of K is also called an automorphism of the field extension K/F. Let $\underline{\mathrm{Gal}(K/F)}$ denote the set of all F-automorphisms on K, or the set of all automorphism of K/F. The composition of two F-automorphisms on K is still an F-automorphisms. It follows that $\mathrm{Gal}(K/F)$ becomes a multiplicative group, called the **Galois group of** K/F (域扩张K/F 的伽罗瓦群).

We can also define $\underline{\mathrm{Aut}(K)}$ to be the set of all automorphisms on K. Then $\mathrm{Aut}(K)$ becomes a group with respect to the composition of maps, called the **automorphism group of** K (K的自同构群).

The Galois group Gal(K/F) is a subgroup of Aut(K).

Remark 2.3. Let $\sigma \in \text{Aut}(K)$. Then $\sigma \in \text{Gal}(K/F)$ if and only if the restriction of σ on F is the identity map (i.e. $\sigma|_F = \text{id}_F$).

Example 2.4. 1. One can see that $\operatorname{Aut}(\mathbb{Q}) = \{1\}$ and $\operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \sigma\} \cong \mathbb{Z}/2\mathbb{Z}$, where σ is the complex conjugate.

- 2. Let K(x) be the field of rational functions in x over a field K and $\theta \in \operatorname{Gal}(K(x)/K)$. Then there exist $a, b, c, d \in K$ such that $ad-bc \neq 0$ and $\theta(x) = \frac{ax+b}{cx+d}$ (exercise!). Hence $\operatorname{Gal}(\mathbb{C}(x)/\mathbb{C}) \cong \operatorname{SL}_2(\mathbb{C})$.
- 3. Let $F = \mathbb{Q}(\sqrt{2})$. Then $\operatorname{Gal}(F/\mathbb{Q}) = \{1, \sigma\}$, where 1 refers to the identity map and σ is the map given by $\sigma(\sqrt{2}) = -\sqrt{2}$.
- 4. Let $\alpha = \sqrt[3]{2}$. Based on the above example and Theorem 2.1, we have $Gal(\mathbb{Q}(\alpha)/\mathbb{Q}) = 1$.

Exercises

- 1. Let F_1, F_2 be two fields and let $\sigma: F_1 \to F_2$ be a ring homomorphism such that $\sigma(1) = 1$. Show that σ is injective and $\sigma(\frac{a}{b}) = \frac{\sigma(a)}{\sigma(b)}$ for all $a, b \in F_1, b \neq 0$.
- 2. Let K/F be a finite extension and σ an F-embedding of K. Show that $[K:F] = [\sigma(K):F]$.
- 3. Let K/F be a finite extension. Show that every F-endomorphism on K is an F-automorphism.
- 4. Let $\alpha \in K$ be an algebraic element over F. Show that an F-automorphism σ of $F(\alpha)$ is completely determined by $\sigma(\alpha)$. In other words, if τ is another F-automorphism of $F(\alpha)$ such that $\sigma(\alpha) = \tau(\alpha)$, then $\sigma(x) = \tau(x)$ for all $x \in F[\alpha]$.
- 5. Prove $Gal(\mathbb{C}(x)/\mathbb{C}) \cong SL_2(\mathbb{C})$.
- 6. Prove $Gal(\mathbb{R}/\mathbb{Q}) = Aut(\mathbb{R}) = 1$.

2.2 Extensions of an Isomorphism

To determine the basic property of Gal(K/F) of a field extension K/F, we need to discuss the extensions of an embedding. Notice a ring homomorphism between fields must be an embedding.

Definition 2.1. Let K_1/F_1 and K_2/F_2 be two extension fields and assume $\tau: F_1 \to F_2$ is a ring homomorphism. If $\sigma: K_1 \to K_2$ is a ring homomorphism such that $\sigma|_{F_1} = \tau$, i.e. $\sigma(\alpha) = \tau(\alpha)$ for all $\alpha \in F_1$, then σ is called an **extension** (扩张) of τ . And τ is called the **restriction** (限制) of σ to F_1 .

$$K_{1} \xrightarrow{\sigma} K_{2} \qquad \sigma|_{F_{1}} = \tau$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{1} \xrightarrow{\tau} F_{2}$$

Remark 2.4. An extension of τ is a ring homomorphism σ that makes the following diagram commute $(\tau \circ \iota_2 = \iota_1 \circ \sigma)$:

$$K_1 \xrightarrow{\sigma} K_2$$

$$\iota_1 \uparrow \qquad \qquad \uparrow \iota_2$$

$$F_1 \xrightarrow{\tau} F_2$$

Here the vertical maps are inclusions.

Recall that an isomorphism σ between two extension fields of F are F-isomorphism if only if $\sigma(a) = a$ for all $a \in F$, or equivalently $\sigma|_{F} = \mathrm{id}|_{F}$.

An F-isomorphism is an extension of the identity map on F.

Consequently, Gal(K/F) is the group of extensions of the identity on F.

Example 2.5. The \mathbb{Q} -isomorphism

$$\sigma: K_1 = \mathbb{Q}(\sqrt[4]{2}) \to K_2 = \mathbb{Q}(i\sqrt[4]{2})$$
$$\sqrt[4]{2} \mapsto i\sqrt[4]{2}$$

is an extension of the \mathbb{Q} -isomorphism

$$\tau: F_1 = \mathbb{Q}(\sqrt{2}) \to F_2 = F_1 = \mathbb{Q}(\sqrt{2})$$

$$\sqrt{2} \mapsto -\sqrt{2}.$$

Consequently, σ is a extension of τ , and τ is the restriction of σ :

Consider the Q-isomorphism $\eta: K_1 \to K_2$ given by $\eta(\sqrt[4]{2}) = -i\sqrt[4]{2}$. One can check that η is also an extension of τ .

Given a homomorphism $\tau: F \to K$ of fields, we define

$$\tau^* : F[x] \to K[x]$$

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \mapsto \tau^*(f)(x) = \tau(a_0) + \tau(a_1) x + \dots + \tau(a_n) x^n.$$

Note that $\tau^*(1) = 1$ and

$$\tau^*(f+q) = \tau^*(f) + \tau^*(q), \ \tau^*(fq) = \tau^*(f)\tau^*(q)$$

for all $f, g \in F[x]$. Hence τ^* is a homomorphism from F[x] to K[x]. In particular, if $f \mid g$, then $\tau^*(f) \mid \tau^*(g)$.

$$\begin{array}{ccc} F_1[x] & \stackrel{\tau^*}{----} & F_2[x] \\ \uparrow & & \uparrow \\ F_1 & \stackrel{\tau}{----} & F_2 \end{array}$$

A homomorphism between two rings can be canonically extended to a homomorphism between their polynomial rings.

Lemma 2.1. Let $\tau: F_1 \to F_2$ be an isomorphism between F_1 and F_2 and let α be a root of a polynomial $f(x) \in F_1[x]$. Fix an algebraic closure \overline{F}_2 of F_2 .

- 1. The isomorphism τ can be naturally extended to be a ring isomorphism τ^* from $F_1[x]$ to $F_2[x]$. Consequently, $f(x) \in F_1[x]$ is irreducible over F_1 if and only if $\tau^*(f)(x)$ is irreducible over F_2 .
- 2. If $\sigma: F_1(\alpha) \hookrightarrow \overline{F}_2$ is an embedding extending τ , then $\sigma(\alpha)$ is root of $\tau^*(f) \in F_2[x]$.
- 3. If f(x) is irreducible and $\beta \in \overline{F}_2$ is a root of $\tau^*(f)(x) \in F_2[x]$, then there exists an extension $\sigma: F_1(\alpha) \to F_2(\beta)$ of τ such that $\sigma(\alpha) = \beta$.

Proof. 1. Clear.

- 2. This is all because of $\sigma(g(\alpha)) = \tau^*(g)(\sigma(\alpha))$ for any $g(x) \in F_1[x]$ and $\alpha \in F_1$.
- 3. Define

$$\sigma: F_1(\alpha) \to F_2(\beta)$$
$$\sum a_i \alpha^i \mapsto \sum \tau(a_i) \beta^i.$$

Direct check shows that σ is as required.

$$F_{1}(\alpha) \xrightarrow{\sigma} F_{2}(\beta)$$

$$\uparrow \qquad \qquad \uparrow$$

$$F_{1}[x]/(f) \xrightarrow{\tau^{*}} F_{2}[x]/(\tau^{*}(f))$$

$$\uparrow \qquad \qquad \uparrow$$

$$F_{1}[x] \xrightarrow{\tau^{*}} F_{2}[x]$$

$$\uparrow \qquad \qquad \uparrow$$

$$F_{1} \qquad \qquad \uparrow$$

If $F_1 = F_2$, we can take τ to be the identity map in the above lemma and obtain the following

Theorem 2.2. Let α, β be algebraic elements over F. Then there exists an F-isomorphism $\sigma: F(\alpha) \to F(\beta)$ such that $\sigma(\alpha) = \beta$ if and only if α and β are conjugate over F.

A splitting field of a polynomial can be achieved by adjoining roots successively. Applying the above results to the identity map, we have

Corollary 2.1. Two splitting fields of a polynomial over F must be F-isomorphic. That is, if K_1/F and K_2/F are two splitting fields of f(x) over F, then there exists an isomorphism $\theta: K_1 \to K_2$ such that $\theta|_{F} = \mathrm{id}_{F}$.

An algebraic closure of a filed F can be achieved by adjoining all algebraic elements to F, so we can prove

Corollary 2.2. Every automorphism of a field can be lifted to an automorphism of its algebraic closure. Hence two algebraic closures of a field F are F-isomorphic.

It follows that an algebraic closure of a field does exist and the algebraic closure is essentially unique. We always use \overline{F} or F^{ac} to denote the algebraic closure of F.

If K/F is an algebraic extension, then K can be obtained from F by adjoining a series if algebraic element. By Lemma 2.1, there is a subfield K' of \overline{F}/F such that K' is F-isomorphic to K. In other words, every algebraic extension of F can be F-embedded in \overline{F}/F . Therefore, every algebraic extension of F can be regarded as a subextension of \overline{F}/F . Consequently, if K/F is algebraic, $\overline{K} = \overline{F}$.

Theorem 2.3. Let $\tau: F_1 \to F_2$ be an embedding from F_1 to F_2 .

1. Let α be an algebraic element of degree n over F_1 . Then there are at most n embeddings from $F_1(\alpha)$ to \overline{F}_2 that extend τ .

Moreover, there are exactly n such embeddings if and only if the minimal polynomial of α over F_1 has no multiple roots.

- 2. If K/F_1 is an extension of degree n, then there are at most n embeddings from K to \overline{F}_2 that extend τ .
- Proof. 1. Let m(x) be the minimal polynomial of α over F_1 . Clearly $\deg \tau^*(m(x)) = n$ and $\tau^*(m(x))$ has at most n distinct roots in \overline{F}_2 . For each root β of $\tau^*(m(x))$, we can define an embedding $\sigma: F_1(\alpha) \hookrightarrow F_2(\beta) \subset \overline{F}_2$ so that $\sigma(\alpha) = \beta$ and $\sigma(a) = \tau(a)$ for all $a \in F_1$ by Lemma 2.1. Moreover, every embedding from $F_1(\alpha)$ to \overline{F}_2 must be of this form. It follows that there are at most n embeddings from $F_1(\alpha)$ to \overline{F}_2 extending τ and there are exact n such embeddings if and only if m(x) has exactly n roots.
 - 2. Let $\alpha_1, \ldots, \alpha_m \in K$ such that $K = F_1(\alpha_1, \ldots, \alpha_m)$. Set $L_0 = F_1, L_i = F_1(\alpha_1, \ldots, \alpha_i), 1 \le i \le m$. Then

$$L_1 = F_1(\alpha_1), L_i = L_{i-1}(\alpha_i), L_m = K.$$

Let $[L_1:F_1]=n_1$ and $[L_i:L_{i-1}]=n_i$, $i\geq 2$. Then α_1 is an algebraic element of degree n_1 over F_1 , α_i is an algebraic element of degree n_i over L_{i-1} . Hence, for each embedding from L_{i-1} to \overline{F}_2 , there are at most n_i extensions form L_i to \overline{F}_2 by the previous claim. Note that $n_1n_2\cdots n_m=n$ by the Tower Law (Transitivity of Extension Degree). It follows that there are at most n embeddings from K to \overline{F}_2 extending τ .

Let $\tau: F_1 \to F_2$ be an embedding from F_1 to F_2 and α an algebraic element over F_1 with minimal polynomial m(x). If m(x) has totally n distinct roots in \overline{F}_1 , then there are exactly n extensions of τ from $F_1(\alpha)$ into \overline{F}_2 .

$$\begin{array}{ccc} F_1(\alpha) & \stackrel{\sigma}{\hookrightarrow} & \overline{F}_2 \\ \mid & & \mid \\ F_1 & \stackrel{\tau}{\hookrightarrow} & F_2 \end{array}$$

Recall that Gal(K/F) denotes the group of all F-automorphisms on K. By Theorem 2.3, we immediately have

Theorem 2.4. If K/F is a finite extension, then $|Gal(K/F)| \leq [K:F]$.

Corollary 2.3. Let K/F be a field extension of degree n. Then the identity map on F has at most n extensions to K.

If
$$F(\alpha)$$
 contains exactly m conjugates of α , then $|\mathrm{Gal}\,(K/F)|=m$.

Exercises

1. Let F(x) be the rational function field in one variable. Let

$$\tau: F(x) \to F(x)$$

 $f(x) \mapsto f(x^2).$

Show that τ is an F-endomorphism, but not surjective (hence not an F-automorphism).

- 2. Let K/F be a finite extension. Show that an F-homomorphism from K to itself must be an F-automorphism. Is this true for infinite extension?
- 3. Let K/F be an algebraic extension. Then every F-homomorphism from K to itself is an F-automorphism.
- 4. Let $\sigma \in \operatorname{Aut}(K)$ and $\alpha \in K^*$. Is it true that $\sigma^{-1}(\alpha) = \sigma(\alpha^{-1})$?
- 5. Determine the structure of $\operatorname{Gal}(K/\mathbb{Q})$ for
 - (a) $K = \mathbb{Q}(\sqrt{2}, \sqrt{-2});$
 - (b) $K = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3});$
 - (c) K is a spliting field of $x^3 x 1$;
 - (d) K is a spliting field of $x^4 + 2x^2 3$.
 - (e) K is a spliting field of $x^4 + x^2 1$.

Homework Exercise 9, 10(1), 11, 13, 27 on page 242-244. Exercise 2, 4 on page 314-315.