MADSEN-WEISS THEOREM

We know $\mathbb{Q}[e_1,e_2,...] \longrightarrow H^*(MCG(S_0^*))$ Want to show this is surjective Will do this by relating $H^*(MCG(S_0^*))$ to a "familiar" space.

So = (5)...

Gsig = Space of subsurfaces of (0,9] × Roo diffeo to Sig and that agree on OSig with a fixed embedding of Soo.

= K(MCG(Sig),1)

 $Gs_{g} \hookrightarrow Gs_{g+1} \longrightarrow Gs_{\infty} = UGs_{g}$ Haver stability $\Longrightarrow H_{i}(Gs_{\infty}) = \lim_{g} H_{i}(Gs_{g}) = \lim_{g} H_{i}(MCG(S_{g}^{i}))$

AGn,d = affine Grassmannian of 2-planes in \mathbb{R}^n $\cong G_n^{\perp}$,d since affine plane determined by plane thru O & \perp vector AG_n^{\perp} ,d = 1-pt comp \cong Thom space for G_n^{\perp} ,d when $n < \infty$.

Theorem. H* (G50) = H* (120 AG0,2) basept @ 00

In general, the \mathbb{Q} -cohomology of a loop space is a tensor product of a polynomial algebra on even-dim gens and an exterior alg. on odd-dim gens (assuming the loop space is path conn and hos f,g. \mathbb{Z} -homology in each dim).

SCANNING MAP

With a small lens we either see an almost-flat 2-plane or \$. If we identify the lons with R, get a pt in AGn, 2 (slope is Same as in lens but position of plane given by lens $\rightarrow \mathbb{R}^n$).

Near so, lens sees \$ ~~ 5" = R" ~ { 0} - AGn,2

i.e. a point in $\Omega^{1}AG_{n,2}$

As we move in Gn, so can vary the size of the lons continuously. As we let n increase, have: Gn, sq - Gn+1, sq $\Omega^n AG_{n,2}^{\dagger} \longrightarrow \Omega^{n+1} AG_{n+1,2}^{\dagger}$

where bottom row obtained by applying 2 to the map $AG_{n,2}^+ \longrightarrow \Omega AG_{n+1,2}^+$ obtained by translating a plane from -00 to 00 in n+1st coord. Taking limit over n: MATH Gsq - 12 & AGo,2 "Scanning map"

Note that the target does not depend on q, which is why we Should expect to consider some limit over q in order to get on isomorphism.

A FIRST OUTLINE

Fix d (for us d=2)

Cⁿ = space of all smooth, oriented d-dim submanifolds of 1Rⁿ
that are properly embedded (maybe disconn, open, empty).
Topology: pts are close if they are close in C[∞] top. on a large ball
Note Cⁿ is path conn: radial expansion from a pt not on the

manifold gives a path to the empty manifold.

Prop. C" = AGn,d

Pf. Want to rescale from O, but this is not continuous since we can push a manifold off O, changing image from ronempty plane to empty plane.

Fix: For $M \in C^n$ choose tub. nbd N = N(M) continuously.

If $O \notin N$, rescale as above.

If $O \notin N$, rescale in tangent dir from $1 - \infty$ as before

in normal dir $1 - \infty$ where $\lambda = 1$ near 0-sec, $\lambda = \infty$ near frontier.

This takes AGn, d to itself.

Filter C^n by $C^{n,o} \subseteq C^{n,1} \subseteq \ldots \subseteq C^{n,n} = C^n$ where $C^{n,k} = \text{subspace of } C^n$ consisting of manifolds lying in $\mathbb{R}^k \times (0,1)^{n-k}$ i.e. manifolds that extend to ∞ in only k directions.

There is: $C^{n,k} \longrightarrow \mathcal{L}C^{n,k+1}$ by translating from $-\infty$ to ∞ in (k+1) st coord.

Putting these together:

$$C^{n,o} \longrightarrow \mathcal{L}C^{n,1} \longrightarrow \mathcal{L}^2C^{n,2} \longrightarrow \cdots \longrightarrow \mathcal{L}^nC^n$$

The composition takes a compact manifold and translates it to op in all directions. (can think of this as scanning with an ob'ly large lens); Shrinking the lens gives a homotopy to the original scanning map).

Would like: Cn,k - 12Cn,k+1 is a homotopy equivalence.

Easier: K>0 case. works for any d>0.

Harder: k=0 case. when d=2, works after passing to limits

where n, g - 00. Uses group completion theorem.

only get a homology equivalence:

H*(Co) = H*(20C0,1).

So the main thread for the MW Thm is:

$$H_*(C_\infty) \cong H_*(\Omega_0 C^{\infty,1})$$
 harder delooping $\cong \lim_{n \to \infty} H_*(\Omega_0 C^{n,1})$ easier delooping $\cong \lim_{n \to \infty} H_*(\Omega_0^n C^n)$ easier delooping $\cong \lim_{n \to \infty} H_*(\Omega_0^n AG_{n,2}^+)$ above Prop.

= Hx (12° AG0,2)

DELOOPING - THE EASIER CASE

Want: $C^{n,k} \simeq \Omega C^{n,k+1}$ k > 0. Road map: $C^{n,k} \simeq M^{n,k} \simeq \Omega B M^{n,k} \simeq \Omega C_0^{n,k+1}$

Step 1. $M^{n,k} = \left\{ (M, \alpha) \in C^n \times [o, \infty) : M \subseteq \mathbb{R}^k \times (o, \alpha) \times \mathbb{Z}^k (o, 1)^{n-k-1} \right\}$ This is a monoid version of $C^{n,k}$, analogous to the Moore loopspace, which is a monoid version of $\Omega \times \mathbb{Z}$.

The map $C^{n,k} \longrightarrow M^{n,k}$ $M \longmapsto (M,1)$ is a homotopy equivalence.

Step 2. Mnik ~ DBMnik

A topological monoid M has a classifying space BM

Construction is analogous to group case: p-simplices (mi,...,mp)

faces obtained by dropping mi,mp

& multiplying mimit

There is a space of p-simplices with topology from $\coprod_{p} \Delta^{p} \times M^{p}$ and face identifications.

There is a map $M \longrightarrow \Omega BM$ $m \longmapsto (m)$

General fact: This is a hom. eq. when ToM is a group with mult. coming from mult. in M.

So we want: M. M. K is a group.

$$P_{rop}$$
. To $C^{n,k} = \begin{cases} 0 & k > d \\ \Omega_{d-k,n-k}^{so} & k \leq d \end{cases}$

$$Cobordism group of closed, oriented $(d-k)$ -manifolds$$

Pf. A point of $C^{n,k}$ is a d-mnfld $M \subseteq \mathbb{R}^n$ with $p: M \longrightarrow \mathbb{R}^k$ proper.

Can perturb M s.t. p is transverse to $0 \in \mathbb{R}^k$.

k > d : p(M) misses O. Expand radially from O in \mathbb{R}^{K} to get path to empty manifold.

 $k \leq d: \quad p^{-1}(0) = M \cap \left(\left\{ 0 \right\} \times \mathbb{R}^{n-k} \right) = M_0 \longrightarrow \left[M_0 \right] \bullet \in \Omega_{d-k,n-k}^{50}$ $\sim \quad \left(e: \pi_0 C^{n,k} \longrightarrow \Omega_{d-k,n-k}^{50} \right)$ $\left[M \right] \longmapsto \left[M_0 \right]$

This is a homom since both group ops are disj. union. and surjective since $[\mathbb{R}^k \times M_0] \longmapsto [M_0]$ Remains: φ injective.

First we claim any M is path conn to $\mathbb{R}^k \times M_0$ (first make M agree with $\mathbb{R}^k \times M_0$ on a nbd of M_0 , then expand radially) Now if $\varphi([M]) = [M_0]$ equals $\varphi([M']) = [M_0']$ can assume $M = \mathbb{E}\mathbb{R}^k \times M_0$, $M' = \mathbb{R}^k \times M_0'$ and $M_0 \sim M_0'$ Build a manifold:

 $\mathbb{R}_{+}^{k} \times M_{o}$ Cobordism $\mathbb{R}_{+}^{k} \times M_{o}'$

Translating right gives path to $\mathbb{R}^k \times M_0$, and left gives path to $\mathbb{R}^k \times M_0'$ so [M] = [M'] in $\mathbb{R}^k \setminus M_0'$.

STEP 3. BMn, ~ Co, k+1

We will define a natural map $\nabla: BM^{n,k} \longrightarrow C_o^{n,k+1}$

A point in $BM^{n,k}$ is given by $(m_1,...,m_p) \in (M^{n,k})^p$, $(w_0,...,w_p)$ A stupid map (ignoring the Wi) is:

(m,...,mp) - m,m2...mp = UMi where Mi is a manifold with (k+1)st coord in [ai-1,ai]

This map is not continuous upon passage to faces:

1) When we or we - 0, Me or Mp suddenly deleted.

(2) When we - 0 m2...mp suddenly shifts by a1-a0 in (K+1) stoord

Can easily address 2: translate in (k+1)st coord so barycenter b = Ewia; equals 0.

Idea for D: truncate M, Mp a little at a time

precisely: at = max {ai,b} b = Zwiati "upper & lower at = min {ai,b} b = Zwiati baryunters"

 $\nabla(M_1 \cdots m_p)$ obtained by stretching $\mathbb{R}^k \times (b^-, b^+) \times \mathbb{R}^{n-k-1}$ to $\mathbb{R}^k \times \mathbb{R} \times \mathbb{R}^{n-k-1}$

Need to check of is \(\times \) on Tig \(\times \) q.