Algorithmes de flots

Quentin Fortier

October 7, 2021

On considère un graphe orienté $\overrightarrow{G} = (V, \overrightarrow{E})$ avec une **capacité** $c : \overrightarrow{E} \longrightarrow \mathbb{R}^+$.

On considère un graphe orienté $\vec{G} = (V, \vec{E})$ avec une **capacité** $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Notations

Si $A \subseteq V$, on note:

• $A^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A»)

On considère un graphe orienté $\vec{G} = (V, \vec{E})$ avec une **capacité** $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Notations

Si $A \subseteq V$, on note:

- $A^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A»)
- $A^- = \{(u, v) \in \overrightarrow{E} \mid u \notin A, v \in A\}$ (« arcs rentrants dans A»)

On considère un graphe orienté $\vec{G} = (V, \vec{E})$ avec une **capacité** $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Notations

Si $A \subseteq V$, on note:

- $A^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A»)
- $A^- = \{(u, v) \in \overrightarrow{E} \mid u \notin A, v \in A\}$ (« arcs rentrants dans A»)
- Si $v \in V$, $v^+ = \{v\}^+$ et $v^- = \{v\}^-$

On considère un graphe orienté $\vec{G} = (V, \vec{E})$ avec une **capacité** $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Notations

Si $A \subseteq V$, on note:

- $A^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A»)
- $A^- = \{(u, v) \in \overrightarrow{E} \mid u \notin A, v \in A\}$ (« arcs rentrants dans A»)
- Si $v \in V$, $v^+ = \{v\}^+$ et $v^- = \{v\}^-$

Définition

Si $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$ et $B \subseteq \overrightarrow{E}$:

$$f(B) = \sum_{\overrightarrow{e} \in B} f(\overrightarrow{e})$$

Flot

Soit $s, t \in V$.

Un **s-t** flot est une fonction $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$ telle que :

• $\forall \vec{e} \in \vec{E} : \boxed{0 \le f(\vec{e}) \le c(\vec{e})}$

Flot

Soit $s, t \in V$.

Un **s-t** flot est une fonction $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$ telle que :

- $\forall \vec{e} \in \vec{E} : \boxed{0 \le f(\vec{e}) \le c(\vec{e})}$
- $\bullet \ \forall v \in V \{s,t\} : \boxed{f(v^-) = f(v^+)}$

Définition

 $f(s^+)$ est la **valeur** du flot f

Flot

Soit $s, t \in V$.

Un **s-t** flot est une fonction $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$ telle que :

- $\forall \vec{e} \in \vec{E} : \boxed{0 \le f(\vec{e}) \le c(\vec{e})}$
- $\bullet \ \forall v \in V \{s,t\} : \boxed{f(v^-) = f(v^+)}$

Définition

 $f(s^+)$ est la **valeur** du flot f

Problème

Trouver un flot dont la valeur est maximum.

Exemple

Exemple de graphe \overrightarrow{G} avec une capacité c sur les arcs :

Exemple de flot :

Valeur du flot :

Exemple de flot :

Valeur du flot : 4 + 3 = 7

Exemple de flot de valeur maximum :

Valeur de ce flot : 23

 $\underline{\mathsf{Id\acute{e}}}$: partir d'un flot f non optimal (souvent le flot nul partout) et l'améliorer petit à petit.

 $\underline{\mathsf{Id\acute{e}}}$: partir d'un flot f non optimal (souvent le flot nul partout) et l'améliorer petit à petit.

Graphe résiduel

La **capacité résiduelle** d'un arc est le flot que l'on peut encore y ajouter (capacité initiale moins flot)

 $\underline{\mathsf{Id\acute{e}}}$: partir d'un flot f non optimal (souvent le flot nul partout) et l'améliorer petit à petit.

Graphe résiduel

La **capacité résiduelle** d'un arc est le flot que l'on peut encore y ajouter (capacité initiale moins flot)

Le **graphe résiduel** est obtenu en conservant la capacité résiduelle de chaque arc. Si un arc a une capacité résiduelle nulle, il est supprimé.

 $\underline{\mathsf{Id\acute{e}}}$: partir d'un flot f non optimal (souvent le flot nul partout) et l'améliorer petit à petit.

Graphe résiduel

La **capacité résiduelle** d'un arc est le flot que l'on peut encore y ajouter (capacité initiale moins flot)

Le **graphe résiduel** est obtenu en conservant la capacité résiduelle de chaque arc. Si un arc a une capacité résiduelle nulle, il est supprimé.

Si on trouve un chemin \overrightarrow{P} de s à t dans le graphe résiduel, on peut augmenter le flot du minimum des capacités de \overrightarrow{P} .

Flot augmenté de 12 (et capacité résiduelle diminuée de 12 le long du chemin).

On note sur chaque arc la capacité résiduelle (restante).

Algorithme de Ford-Fulkerson

Tant que \exists un chemin \overrightarrow{P} de s à t dans le graphe résiduel : $c \longleftarrow$ minimum des capacités de \overrightarrow{P} Diminuer de c la capacité des arcs de \overrightarrow{P}

Algorithme de Ford-Fulkerson

Tant que \exists un chemin \overrightarrow{P} de s à t dans le graphe résiduel : $c \longleftarrow$ minimum des capacités de \overrightarrow{P} Diminuer de c la capacité des arcs de \overrightarrow{P}

À la fin, on peut connaître le flot sur chaque arc en retranchant la capacité résiduelle à la capacités initiale.

La comparaison avec le graphe initial permet de connaître le flot sur chaque arc :

Valeur du flot obtenu : 23

Théorème

Si les capacités initiales sont toutes entières, l'algorithme de Ford-Fulkerson termine (ne fait pas boucle infinie).

Preuve:

Théorème

Si les capacités initiales sont toutes entières, l'algorithme de Ford-Fulkerson termine (ne fait pas boucle infinie).

Preuve:

Les capacités résiduelles restent toujours entières

Algorithme de Ford-Fulkerson

Théorème

Si les capacités initiales sont toutes entières, l'algorithme de Ford-Fulkerson termine (ne fait pas boucle infinie).

Preuve:

- Les capacités résiduelles restent toujours entières
- À chaque itération, on diminue au moins de 1 la somme de toutes les capacités résiduelles. Donc il ne peut pas y avoir plus de $c(\vec{E})$ itérations.

Algorithme de Ford-Fulkerson

Théorème

Si les capacités initiales sont toutes entières, l'algorithme de Ford-Fulkerson termine (ne fait pas boucle infinie).

Preuve:

- Les capacités résiduelles restent toujours entières
- À chaque itération, on diminue au moins de 1 la somme de toutes les capacités résiduelles. Donc il ne peut pas y avoir plus de $c(\vec{E})$ itérations.

On a de plus un majorant grossier de la complexité : $O(|c(\vec{E})|)$. La complexité plus précise dépend de la façon dont on choisit les chemins.

Définition

Une **coupe** de \overrightarrow{G} est un ensemble $S \subseteq V$ contenant s mais pas t.

Définition

La capacité d'une coupe S est la somme $c(S^+)$ des capacités des arcs sortant de S :

Définition

La capacité d'une coupe S est la somme $c(S^+)$ des capacités des arcs sortant de S :

La capacité de cette coupe est 20 + 14 = 34.

Problème

Trouver une coupe de capacité minimum dans un graphe.

Plan américain de destruction d'un «min cut» des rails soviétiques

Définition

Le flot sortant d'une coupe ${\it S}$ est définie par :

$$f(S) = f(S^+) - f(S^-)$$

Définition

Le flot sortant d'une coupe S est définie par :

$$f(S) = f(S^+) - f(S^-)$$

Le flot sortant de cette coupe est 5 + 3 - 1 = 7.

Lemme 1

Si *S* est une coupe, $f(S) \leq c(S^+)$.

Lemme 1

Si *S* est une coupe, $f(S) \leq c(S^+)$.

Preuve:

$$f(S) = f(S^+) - f(S^-) \le f(S^+) \le c(S^+)$$

Lemme 2

Si S est une coupe, $f(S) = f(s^+)$.

Lemme 2

Si *S* est une coupe, $f(S) = f(s^+)$.

Preuve:

Lemme 2

Si *S* est une coupe, $f(S) = f(s^+)$.

Preuve:

Soit H_k : « Si S est une coupe avec k sommets alors $f(S) = f(s^+)$ ».

• H_1 est vrai car alors $S = \{s\}$.

Lemme 2

Si *S* est une coupe, $f(S) = f(s^+)$.

Preuve:

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un $k \ge 1$.

Lemme 2

Si *S* est une coupe, $f(S) = f(s^+)$.

Preuve:

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un $k \ge 1$. Soit S une coupe avec k + 1 sommets.

Lemme 2

Si *S* est une coupe, $f(S) = f(s^+)$.

Preuve:

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un $k \ge 1$. Soit S une coupe avec k+1 sommets. Soit $v \in S$. Alors, en utilisant la définition : $f(S) = f(S - \{v\}) + f(\{v\})$.

Lemme 2

Si *S* est une coupe, $f(S) = f(s^+)$.

Preuve:

Soit H_k : « Si S est une coupe avec k sommets alors $f(S) = f(s^+)$ ».

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un $k \ge 1$.

Soit S une coupe avec k + 1 sommets.

Soit $v \in S$. Alors, en utilisant la définition :

$$f(S) = f(S - \{v\}) + f(\{v\}).$$

Or $f(S\setminus \{v\}) = f(s^+)$ par hypothèse de récurrence et $f(\{v\}) = 0$.

Lemme 2

Si *S* est une coupe, $f(S) = f(s^+)$.

Preuve:

Soit H_k : « Si S est une coupe avec k sommets alors $f(S) = f(s^+)$ ».

- H_1 est vrai car alors $S = \{s\}$.
- Supposons H_k vraie pour un $k \ge 1$.

Soit S une coupe avec k+1 sommets.

Soit $v \in S$. Alors, en utilisant la définition :

 $f(S) = f(S - \{v\}) + f(\{v\}).$

Or $f(S \setminus \{v\}) = f(s^+)$ par hypothèse de récurrence et $f(\{v\}) = 0$.

Donc $f(S) = f(s^+)$: H_{k+1} est vraie.

Lemme 1

Si f est un flot et S une coupe, $f(S) \leq c(S^+)$.

Lemme 2

Si f est un flot et S une coupe, $f(S) = f(s^+)$.

Théorème max flow - min cut

Si un flot f et une coupe S vérifient f(S) = c(S) alors :

- f est un flot de valeur maximum
- S une coupe de capacité minimum

Preuve:

Lemme 1

Si f est un flot et S une coupe, $f(S) \le c(S^+)$.

Lemme 2

Si f est un flot et S une coupe, $f(S) = f(s^+)$.

Théorème max flow - min cut

Si un flot f et une coupe S vérifient f(S) = c(S) alors :

- f est un flot de valeur maximum
- S une coupe de capacité minimum

Preuve : Soit f^* un flot de valeur maximum.

Lemme 1

Si f est un flot et S une coupe, $f(S) \le c(S^+)$.

Lemme 2

Si f est un flot et S une coupe, $f(S) = f(s^+)$.

Théorème max flow - min cut

Si un flot f et une coupe S vérifient f(S) = c(S) alors :

- f est un flot de valeur maximum
- S une coupe de capacité minimum

<u>Preuve</u>: Soit f^* un flot de valeur maximum.

$$f^*(s^+) = f^*(S) \le c(S) = f(S) = f(s^+)$$

Question

Comment prouver que ce flot est maximum ?

Question

Comment prouver que ce flot est maximum ?

$$c(S)=23=f(S)$$

Donc f est un flot maximum et S une coupe minimum.

Théorème

Si l'algorithme de Ford-Fulkerson termine, le flot obtenu est un flot maximum

Preuve:

Théorème

Si l'algorithme de Ford-Fulkerson termine, le flot obtenu est un flot maximum

Preuve:

Soit S l'ensemble des sommets accessibles depuis s dans le graphe résiduel.

Théorème

Si l'algorithme de Ford-Fulkerson termine, le flot obtenu est un flot maximum

Preuve:

Soit S l'ensemble des sommets accessibles depuis s dans le graphe résiduel.

Tout arc \overrightarrow{e} sortant de S a une capacité résiduelle nulle, donc $c(\overrightarrow{e}) = f(\overrightarrow{e})$. D'où :

$$c(S) = \sum_{\overrightarrow{e} \in \overrightarrow{E}} c(\overrightarrow{e}) = \sum_{\overrightarrow{e} \in \overrightarrow{E}} f(\overrightarrow{e}) = f(S)$$