Math 5601 Homework 1

Rajrani Gupta and Jacob Hauck January 25, 2024

1. 1.3 (iv)

Let $\mathbb{T} = {\sqrt{n} \mid n \in \mathbb{N}_0}$. Then for $t = \sqrt{n} \in \mathbb{T}$,

- the next point to the right of \sqrt{n} is $\sqrt{n+1}$, so $\sigma(t) = \sigma(\sqrt{n}) = \sqrt{n+1} = \sqrt{t^2+1}$,
- the next point to the left of \sqrt{n} is $\sqrt{n-1}$ if n>0. If n=0, then there is no point in \mathbb{T} to the left of t=0, so

$$\rho(t) = \rho(\sqrt{n}) = \begin{cases} \sqrt{n-1} & n > 0 \\ 0 & n = 0 \end{cases}$$
$$= \begin{cases} \sqrt{t^2 - 1} & t > 0 \\ 0 & t = 0. \end{cases}$$

• $\mu(t) = \sigma(t) - t = \sqrt{t^2 + 1} - t$.

Every point in \mathbb{T} is right-scattered because $\sigma(t) = \sqrt{t^2 + 1} > t$. If t > 0, then t is left-scattered because $\rho(t) = \sqrt{t^2 - 1} < t$. The point $0 \in \mathbb{T}$ is not left-scattered because $\rho(0) = 0$, and it is not left-dense either because $0 = \inf \mathbb{T}$.

2. 1.4 (ii)

Let $\mathbb{T} = \{0\} \cup [1, 2]$. Then \mathbb{T} is a time-scale, and $1 \in \mathbb{T}$ does not satisfy $\rho(\sigma(1)) = 1$. Indeed, $\sigma(1) = 1$, and $\rho(1) = 0$, so $\rho(\sigma(1)) = 0 \neq 1$.

Given any time-scale \mathbb{T} and $t \in \mathbb{T}$, then $\rho(\sigma(t)) = t$ if and only if t is not left-scattered or t is right-scattered.

Proof. Suppose that t is left-scattered and not right-scattered. Then $\sigma(t) = t$, so $\rho(\sigma(t)) = \rho(t) \neq t$. Hence, $\rho(\sigma(t))$ implies that t is not left-scattered or t is right-scattered.

Conversely, if t is right-scattered, then $\sigma(t) \in \mathbb{T}$ is left-scattered with $\rho(\sigma(t)) = t$. If t is not right-scattered and not left-scattered, then $\rho(t) = t$ and $\sigma(t) = t$, so $\rho(\sigma(t)) = t$.

3. 1.14 (i)

Define $f: \mathbb{T} \to \mathbf{R}$ by $f(t) = t^2$. Then $f^{\Delta}(t) = t + \sigma(t)$.

Proof. Let $t \in \mathbb{T}$, and let $\varepsilon > 0$ be given. Set $\delta = \varepsilon$. Then for all $s \in (t - \delta, t + \delta) \cap \mathbb{T}$,

$$\begin{split} |f(\sigma(t)) - f(s) - (t + \sigma(t))(\sigma(t) - s)| &= |\sigma(t)^2 - s^2 - (t + \sigma(t))(\sigma(t) - s)| \\ &= |ts + \sigma(t)s - s^2 - t\sigma(t)| \\ &= |(s - t)(\sigma(t) - s)| \\ &< \varepsilon |\sigma(t) - s|, \end{split}$$

so $f^{\Delta}(t) = t + \sigma(t)$ by definition.

4. 1.19 (ii)

Let $\mathbb{T} = \{\sqrt{n} \mid n \in \mathbb{N}_0\}$, and define $f : \mathbb{T} \to \mathbf{R}$ by $f(t) = t^2$. Recall from 1.3 (iv) that $\sigma(t) = \sqrt{t^2 + 1}$, and every point in \mathbb{T} is right-scattered. Note that every point $t \in \mathbb{T}$ is (topologically) isolated, so f is continuous on \mathbb{T} . Therefore, by Theorem 1.16, f is differentiable everywhere on \mathbb{T} , and for $t \in \mathbb{T}$,

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t} = \frac{\left(\sqrt{t^2 + 1}\right)^2 - t^2}{\sqrt{t^2 + 1} - t} = \sqrt{t^2 + 1} + t.$$

5. 1.19 (iii)

Let $\mathbb{T} = \left\{ \frac{n}{2} \mid n \in \mathbb{N}_0 \right\}$, and define $f : \mathbb{T} \to \mathbf{R}$ by $f(t) = t^2$. Then for $t = \frac{n}{2} \in \mathbb{T}$, the next point to the right of t is $\frac{n+1}{2} = t + \frac{1}{2}$. Hence, $\sigma(t) = t + \frac{1}{2}$. Moreover, every point in \mathbb{T} is right-scattered, and every point in \mathbb{T} is (topologically) isolated, so f is continuous on \mathbb{T} . By Theorem 1.16, for $t \in \mathbb{T}$,

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t} = \frac{\left(t + \frac{1}{2}\right)^2 - t^2}{t + \frac{1}{2} - t} = 2\left(t + \frac{1}{4}\right) = 2t + \frac{1}{2}.$$

6. 1.22

Suppose that $f: \mathbb{T} \to \mathbf{R}$ is differentiable at $t \in \mathbb{T}$, and $f(t)f(\sigma(t)) \neq 0$. Then $\frac{1}{f}$ is differentiable at t, and

$$\left(\frac{1}{f}\right)^{\Delta}(t) = -\frac{f^{\Delta}(t)}{f(t)f(\sigma(t))}.$$

Proof. We know from Theorem 1.16 that f is continuous at t. Since $f(t) \neq 0$ by assumption, it follows that f is bounded away from 0 in a neighborhood of t. That is, there exists C > 0 and $\delta_0 > 0$ such that for all $s \in (t - \delta_0, t + \delta_0) \cap \mathbb{T}$, we have $|f(s)| \geq C$.

Let $\varepsilon > 0$ be given, and set

$$\varepsilon^* = \varepsilon \left(\frac{1}{C|f(\sigma(t))|} + \frac{\left| f^{\Delta}(t) \right|}{C\left| f(t)f(\sigma(t)) \right|} \right)^{-1}.$$

Since f is continuous and delta-differentiable at t, we can choose $\delta \in (0, \delta_0]$ such that for all $s \in (t-\delta, t+\delta) \cap \mathbb{T}$,

- 1. $|f(\sigma(t)) f(s) f^{\Delta}(t)(\sigma(t) s)| \le \varepsilon^* |\sigma(t) s|$,
- 2. $|f(t) f(s)| \le \varepsilon^*$.

Note also that $|f(s)| \geq C$ for all $s \in (t - \delta, t + \delta) \cap \mathbb{T}$ because $\delta < \delta_0$.

Then

$$\begin{split} \left| \frac{1}{f(\sigma(t))} - \frac{1}{f(s)} - \left(-\frac{f^{\Delta}(t)}{f(t)f(\sigma(t))} \right) (\sigma(t) - s) \right| \\ &= \left| \frac{f(t)f(s) - f(t)f(\sigma(t)) + f(s)f^{\Delta}(t)(\sigma(t) - s)}{f(t)f(\sigma(t))f(s)} \right| \\ &= \left| \frac{f(t) \left[f(s) - f(\sigma(t)) + f^{\Delta}(t)(\sigma(t) - s) \right] + (f(s) - f(t))f^{\Delta}(t)(\sigma(t) - s)}{f(t)f(\sigma(t))f(s)} \right| \\ &\leq \frac{\varepsilon^* |\sigma(t) - s|}{|f(\sigma(t))f(s)|} + \frac{\varepsilon^* \left| f^{\Delta}(t) \right| \cdot |\sigma(t) - s|}{|f(t)f(\sigma(t))f(s)|} \\ &\leq \left(\frac{1}{C|f(\sigma(t))|} + \frac{|f^{\Delta}(t)|}{C|f(t)f(\sigma(t))|} \right) \varepsilon^* |\sigma(t) - s| \\ &= \varepsilon |\sigma(t) - s|, \end{split}$$

so

$$\left(\frac{1}{f}\right)^{\Delta}(t) = -\frac{f^{\Delta}(t)}{f(t)f(\sigma(t))}$$

by definition.

7. 1.26