Ejercicios resueltos de cálculo

Leonardo Andrés Jofré Flor

March 23, 2016

1 Integral doble sobre un rectángulos

Calcular $I = \int_0^1 \int_1^2 \int_2^3 x \cos z + 3yz dx dy dz$ Integral de Riemman en 3 variables Coordenadas cilindricas

2 Integral múltiple sobre dominios más generales

Problem 1. Evalue $\int \int_D \left(x+2y\right) dA$ donde D es la región acotada por las parábolas $y=2x^2$ e $y=1+x^2$

La integral queda definida como

$$\int_{-1}^{1} \int_{2x}^{1+x^2} (x+2y) \, dy dx$$

Problem 2. Encuentre el volumen de sólido que yace debajo del paraboloide $z=x^2+y^2$ y sobre la región la región D en el plano xy acotada por la recta y=2x y la parábola $y=x^2$

La integral queda definida como

$$V = \int_{0}^{2} \int_{x^{2}}^{2x} (x^{2} + y^{2}) dy dx$$

o alternativamente

$$V = \int_0^4 \int_{\frac{y}{2}}^{\sqrt{2}} x^2 + y^2 dx dy$$

Problem 3. Evalue $\int \int_D xy dA,$ donde Des la región acotada por la rectay=x-1y la parábola $y^2=2x+6$

$$\int_{-2}^{4} \int_{\frac{1}{2}y^2 - 3}^{y+1} xy dx dy$$

Problem 4. Encuentre el volumen del tetraedro acotado por los planos x + 2y + z = 2, x = 2y, x = 0, z = 0

La integral es

$$V = \int_0^1 \int_{x/2}^{1-x/2} (2 - 2x - 2y) \, dy dx$$

Problem 5. Evalue la integral

$$\int_0^1 \int_x^1 \sin\left(y^2\right) dy dx$$

Respuesta

$$\int_0^1 \int_0^y \sin\left(y^2\right) dx dy$$

3 Integrales en coordenadas polares

Problem 6. Evalue $\int \int_R (3x+4y^2) dA$, donde R es la región en el semiplano superior acotado por las circunferencias $x^2+y^2=1$ y $x^2+y^2=4$

$$\int_0^{\pi} \int_1^2 \left(3r\cos\left(\theta\right) + 4r^2\sin^2\theta\right) r dr d\theta = \frac{15\pi}{2}$$

Problem 7. Encuentre el volumen del sólido acotado por el plano z=0 y el paraboloide $z=1-x^2-y^2$ en coordenadas rectangulares y polares

$$V = \int_0^{2\pi} \int_0^1 (1 - r^2) r dr d\theta = \frac{\pi}{2}$$

Problem 8. Use la integral doble para ahllar el área encerrada por un pétalo de la rosa de cuadro hojas $r=\cos 2\theta$

$$A = \int_{-\pi/4}^{\pi/4} \int_0^{\cos 2\theta} r dr d\theta = \frac{\pi}{8}$$

Problem 9. Encuentre el volumen del sólido que yace debajo del paraboloide $z=x^2+y^2$, arriba del plano xy y dentro del cilindro x^2 , $y^2=2x$

$$V = \int \int_{D} x^{2} + y^{2} dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^{2} r dr d\theta = \frac{3\pi}{2}$$

4 Integrales triples

4.1 coordenadas rectangulares

Problem 10. Evalue la integral triple $\iiint_B xyz^2dV$ donde B es la caja rectangular $B = \{(x, y, z) / 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$

$$\int_{0}^{3} \int_{-1}^{2} \int_{0}^{1} xyz dx dy dz = \frac{27}{4}$$

Problem 11. Evalue $\iiint_E z dV$ donde E es el tetrahedro solido acotado por los cuatro planos x = 0, y = 0, z = 0, x + y + z = 1

$$\int_0^1 \int_0^{1-x} \int_0^{1-x-y} z dz dy dx = \frac{1}{24}$$

4.2 coordenadas cilindricas

Problem 12. Describa la superficie cuya ecuación en coordenadas cilíndricas es z = r

Problem 13. Un sólido E se encuentra dentro de un cilindro $x^2 + y^2 = 1$, por debajo del plano z=4 y por encima del paraboloide $z=1-x^2-y^2$. La densidad en cualquier punto es proporcional a la distancia del eje del cilindro. Encuentre la masa de E

$$m = \int_0^{2\pi} \int_0^1 \int_{1-r^2}^4 Krr dz dr d\theta = \frac{12\pi K}{5}$$

Problem 14. Evalue $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2+y^2) \, dz \, dy \, dx$ Respuesta $-2 \le x \le 2, -\sqrt{4-x^2} \le y \le \sqrt{4-x^2}, \sqrt{x^2+y^2} \le z \le 2$ que es equivalente a $0 \le \theta \le 2\pi, 0 \le r \le 2, r \le z \le 2$

4.3 coordenadas esféricas

 $x = \rho \sin \phi \cos \theta$

 $y = \rho \sin \phi \sin \theta$

 $z = \rho \cos \phi$

Problem 15. Evalúe $\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$, donde B es la bola unitaria

$$\int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{1} e^{\rho^{3}} \rho^{2} \sin \phi d\rho d\theta d\phi = \frac{4}{3}\pi \left(e - 1\right)$$

Problem 16. Use coordenadas esféricas para hallar el volumen del sólido que yace ariba del cono $z=\sqrt{x^2+y^2}$ y debajo de la esfera $x^2+y^2+z^2=z$ $\rho=\cos\phi$ la ecuación del cono se puede escribir como $\rho\cos\phi=\rho\sin\phi$ que es equivalente a $\phi = \frac{\pi}{4}$

$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^{\cos\phi} \rho^2 \sin\phi d\rho d\phi d\theta = \frac{\pi}{8}$$

5 Suma de Riemman

Aproximación de un volumen mediante suma de rectángulos

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x^{2} + y^{2} + z^{2} dx dy dz = \lim_{m,n,r \to \infty} (x_{i} + y_{i} + z_{i}) \frac{1}{m} \cdot \frac{1}{n} \cdot \frac{1}{r}$$

$$= \lim_{m,n,r \to \infty} \left(\frac{i}{n} + \frac{j}{m} + \frac{k}{r} \right) \frac{1}{m} \cdot \frac{1}{n} \cdot \frac{1}{r}$$