

O I P E
SEP - 7 1999

Please type a plus sign (+) inside this box → +

PATENT & TRADEMARK OFFICE

PTO/SB/21 (12-97)
Approved for use through 9/30/00. OMB 0651-0031

Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Gall 11242

TRANSMITTAL FORM

(to be used for all correspondence after initial filing)

Total Number of Pages in This Submission

Application 09/346,375

Filing Date July 1, 1999

First Named Clement et al.

Group Art Unit 1742

Examiner Name

Attorney Docket Number 2170.00019

ENCLOSURES (check all that apply)

- Fee Transmittal Form
 Fee Attached
 Amendment / Response
 After Final
 Affidavits/declaration(s)
 Extension of Time Request
 Express Abandonment Request
 Information Disclosure Statement
 Certified Copy of Priority Document(s)
 Response to Missing Parts/ Incomplete Application
 Response to Missing Parts under 37 CFR 1.52 or 1.53

- Assignment Papers (for an Application)
 Drawing(s)
 Licensing-related Papers
 Petition Routing Slip (PTO/SB/69) and Accompanying Petition
 To Convert a Provisional Application
 Power of Attorney, Revocation Change of Correspondence Address
 Terminal Disclaimer
 Small Entity Statement
 Request for Refund

Remarks

- After Allowance Communication to Group
 Appeal Communication to Board of Appeals and Interferences
 Appeal Communication to Group (Appeal Notice, Brief, Reply Brief)
 Proprietary Information
 Status Letter

Additional Enclosure(s)
(please identify below):

Return postcard

RECEIVED
COP 9
6/30/99
MAIL ROOM

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT

Firm or Individual name Daniel H. Bliss (Reg. No. 32,398)
Bliss McGlynn, P.C.
2075 West Big Beaver Road, Suite 600, Troy, Michigan 48084

Signature

Date September 1, 1999

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231 on this date:

September 1, 1999

Typed or printed name Daniel H. Bliss

Signature

Date September 1, 1999

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

HIS PAGE BLANK (USPTO)

The Patent Office

INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed *[Signature]*

Dated 12/7/99

THIS PAGE BLANK (USPTO)

The
Patent
Office

12AUG98 E382429-2 000446
P01/7700 25.00 - 9817441.0

Request for Grant of a Patent

The Patent Office
Cardiff Road
Newport
Gwent NP9 1RH

1. Your reference	P67241		
2. Patent Application number <i>(the Patent Office will fill in this part)</i>	9817441.0 (11 AUG 1998)		
3. Full name, address and postcode of the or of each Applicant <i>(underline all surnames)</i>	Belron International N.V. P.O. Box 342, Kaya Krisolito, Kralendijk, Bonaire, Netherlands Antilles 48917441.0 Netherlands Antilles		
Patents ADP Number <i>(if you know it)</i>			
If the applicant is a corporate body, give the country/state of its incorporation			
4. Title of the Invention	Releasing Of Glazing Panels		
5. Name of your Agent <i>(if you have one)</i>	URQUHART-DYKES & LORD		
"Address for Service" in the United Kingdom to which all correspondence should be sent <i>(including the postcode)</i>	Alexandra House 1 Alexandra Road SWANSEA SA1 5ED United Kingdom URQUHART-DYKES		
Patents ADP Number <i>(if you know it)</i>			
6. If you are declaring priority from one or more earlier Patent Applications, give the country and the date of filing of the or of each of these earlier Applications and <i>(if you know it)</i> the or each Application Number	Country	Priority application No. <i>(if you know it)</i>	Date of Filing <i>(Day/month/year)</i>
7. If this Application is divided or otherwise derived from an earlier UK Application, give the Number and the Filing Date of the earlier Application	Number of earlier application		Date of Filing <i>(Day/month/year)</i>
8. Is a Statement of Inventorship and of Right to Grant of a Patent required in support of this request ? <i>(Answer 'Yes' if:</i>	YES		

*a) any Applicant named in part 3 is not an inventor, or
b) there is an inventor who is not named as an Applicant, or
c) any named Applicant is a corporate body.)*

9. Enter the number of sheets for any of the following items you are filing with this Form. Do not count copies of the same document

Continuation sheet of this Form	0
Description	14
Claim(s)	7
Abstract	0
Drawing(s)	5 <i>< S J</i>

10. If you are also filing any of the following state how many against each item

Priority documents	0
Translations of priority documents	0
Statement of Inventorship and Right to Grant a Patent (Patents Form 7/77)	0
Request for Preliminary Examination (Patents Form 9/77)	1
Request for Substantive Examination (Patents Form 10/77)	0
Any other documents (please specify)	0

11.

I/We request the grant of a Patent on the basis of this Application

Signature Date 11 August 1998
URQUHART-DYKES & LORD

12. Name and daytime telephone number of person to contact in the United Kingdom

Mark Davies - 01792 474327

Warning

After an Application for a Patent has been filed, the Comptroller of the Patent Office will consider whether Publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a Patent abroad without first getting written from the Patent Office unless an Application has been filed at least 6 weeks beforehand in the United Kingdom for a Patent for the same invention and either no direction prohibiting Publication or communication has been given, or any such direction has been revoked.

Releasing Of Glazing Panels

5 The present invention relates to the releasing of glazing panels from supporting frames, and more specifically to the releasing of laminated glazing panels from supporting frames (such as laminated vehicle windscreens or architectural window panes).

10 Reference to glazing panels should be understood to mean panels, screens, or windows of glass, plastics or any other material substantially transparent to wavelengths in the visible range of the spectrum.

15 Vehicle windscreens typically comprise a laminated panel structure comprising an outer glass layer, an inner glass layer and an interlayer, interposed between the outer and inner glass layers. The interlayer typically comprises a material transparent to some wavelengths of visible light but absorbent to ultraviolet radiation (U.V.). (In some 20 circumstances the inter layer may be absorbent to some wavelengths of visible light and also typically some infra red radiation.) The inter layer is typically tinted to absorb specific wavelengths (particularly U.V.).

25 WO-A-9617737 discloses a method and apparatus for releasing bonded transparent screens (typically vehicle windscreens) from supporting frames to which they are bonded. An improved technique has now been devised.

30 According to a first aspect, the invention provides a method of releasing a glazing panel from a frame to which the panel is bonded by interposed bonding material, the method comprising:

- 35 i) arranging light energy delivery means adjacent the glazing panel; and,

ii). operating the light energy delivery means to transmit light energy through the screen to effect release of the panel from the frame.

5

According to a second aspect the invention provides apparatus for releasing a glazing panel from a frame to which the panel is bonded by interposed bonding material, the apparatus comprising light energy delivery means arrangeable adjacent the glazing panel, and operable to transmit light energy through the screen to effect release of the panel from the frame.

10

The light energy delivered is preferably of a wavelength substantially in the range 300nm-1500nm (more preferably in the range 400nm-700nm).

15

The light energy delivered is desirably pulsed according to a predetermined regime, preferably such that the pulse duration (T_{on}) is less than the inter-pulse interval (T_{off}).

20

Desirably, a single pulse of light energy delivered is of sufficient energy to effect separation of the screen from the frame along a length of the bonding material.

25

The apparatus preferably includes a pulse forming network (which may include a capacitor and inductor arrangement) to drive the apparatus to produce a light pulse. The apparatus preferably further comprises a trigger network for initiating operation of the pulse forming network.

30

Control means is preferably provided for controlling one or more apparatus parameters including the minimum permissible time elapsing between subsequent light pulses.

35

The control means is therefore preferably linked to the trigger network and/or the pulse forming network.

It is preferred that means is provided for selectively
5 adjusting the intensity of the light delivered. This is
important in view of the differing degree to which various
tinted glazing panels absorb light energy in the
wavelength range contemplated. It is preferred that the
apparatus includes different preset parameter settings
10 which may be switched dependent upon the glazing panel
tint to be debonded.

The light energy may be absorbed at the bonding
material/panel interface either by the bonding material
15 itself, or by an absorbing layer comprising the panel
(such as the frit layer commonly found on vehicle glazing
panels) or by a suitable light absorbent coating provided
at the interface.

20 The light energy delivery means may be tracked about the
periphery of the panel, preferably at a predetermined rate
dependent upon the power of the light energy delivery
means and the pulse regime. Advantageously tracking means
25 (preferably motorised tracking means) is provided for this
purpose.

Alternatively, the light energy delivery means may be hand
held and positioned on the glazing manually by an
operator. The delivery means may therefore have a manual
30 trigger for initiating a light pulse when the delivery
head is positioned to the operators satisfaction.

In one embodiment, the light energy delivered comprises a
plurality of wavelengths, most preferably in the visible
35 range of the spectrum. In one embodiment it is preferred
that the light energy is non-coherent. The light energy

preferably attenuates rapidly with distance such that at a few centimetres (preferably less than 10cm, more preferably less than 5cm) from the energy delivery means the light energy density is significantly diminished from its maximum value (preferably falling to 50% maximum value or below). The pulse repetition frequency (defining T off) is beneficially substantially in the range 0.1Hz-10Hz (most preferably substantially in the range 0.3Hz-1Hz). The energy delivered is preferably substantially in the range 100Joules-10,000Joules per pulse (more preferably in the range 500-1500Joules per pulse). The pulse duration (T on) is preferably substantially in the range 1 μ s-100ms, more preferably 1ms-2ms.

In a preferred embodiment, the energy delivery means comprises electrical gas discharge apparatus. Desirably, operation of the gas discharge apparatus is controlled to limit the pulse rate and/or duration of the light pulse.

The operation of the gas discharge apparatus is preferably controlled by:

- i) charging a capacitor arrangement;
- ii) initiating a trigger pulse to discharge the capacitor arrangement; and,
- iii) discharging the capacitor arrangement through an inductor to the gas discharge apparatus.

Accordingly, for this preferred embodiment, apparatus according to the invention includes energy delivery means comprising electrical gas discharge apparatus.

The electrical gas discharge apparatus is controlled to limit the pulse rate of the light delivered. The apparatus preferably includes a pulse forming network having a capacitor and inductor arrangement in which the capacitor discharges through the inductor to drive the electrical gas discharge apparatus to produce a light pulse. The apparatus preferably further comprises a trigger network for initiating the capacitor of the pulse forming network to discharge.

10

Control means is preferably provided for controlling one or more apparatus parameters including the minimum permissible time elapsing between subsequent discharge pulses of the electrical gas discharge apparatus.

15

The electrical gas discharge apparatus preferably comprises an electrical gas discharge tube.

20

The electrical gas discharge apparatus desirably comprises a reflector (preferably a parabolic reflector) arranged to direct emitted light in a predetermined direction.

25

The apparatus preferably includes a window through which emitted light is directed to pass through the glazing panel.

30

In an alternative embodiment, the energy delivery means comprises laser energy delivery means operated to transmit laser radiation through the panel to effect release of the glazing panel from the frame, the laser being operated in quasi continuous wave mode in which a series of discrete pulses of radiation are transmitted.

35

The pulse regime for the laser is preferably such that the pulse duration (T on) is substantially in the range 100 μ s-10ms and the inter-pulse interval (T off) substantially in the range 100 μ s-10ms.

5

In a preferred embodiment, the average laser power is 60W-150W \pm 10% (typical peak power 600W \pm 20%); the laser tracking speed is preferably in the range 12mm/S \pm 20%.

10

In either embodiment, the apparatus may comprise focussing means arranged to focus the light energy at a predetermined location. For laser delivery means the laser radiation may be focussed to a line, preferably having a line width substantially in the range 200-800 μ m (preferably substantially 600 μ m \pm 20%). Advantageously the line length is substantially in the range 10mm \pm 20%. Where a greater line length is required a composite line comprising a plurality of focussed lines may be generated and arranged in end to end relationship. It is believed that the use of laser radiation focussed to a line for the purpose of releasing a glazing panel from a screen is novel and inventive per se.

20

Desirably, the tracking and quasi-continuous pulsed operation of the laser delivery means is coordinated such that the focussed line moves transversely to its longitudinal direction (that is the line moves in the direction of its width) at a rate such that subsequent pulses of the focussed line overlap. Preferably the degree of linewidth overlap of subsequent pulses is substantially 50% or above (more preferably substantially 80% or above). Operation in this manner ensures good separation of the panel from the frame at the bonding material/panel inner layer interface.

30

35

It is preferred that the laser energy delivery means comprises a plurality of laser sources, advantageously arranged in one or more arrays. The laser energy delivery means preferably comprises laser diode means.

5

It has been found that for laminated screens or panels comprising a tinted interlayer in particular, operation of the light energy delivery means in pulsed mode according to the pulsing regime defined herein (quasi continuous wave mode for the laser delivery means embodiment), provides enhanced results, because energy absorption in the body of the screen or panel, particularly at the interlayer, is minimised.

10

15 The invention will now be further described in specific embodiments by way of example only and with reference to the accompanying drawings in which:

20

Figure 1 is a diagrammatic representation showing pulsed light operation of the light energy and the effect on glazing panel and frit temperature;

25

Figure 2 is a representation similar to that shown in Figure 1 showing prior art continuous wave laser radiation and the effect on frit and glazing panel temperature;

30

Figure 3 is a schematic representation of a first embodiment of light energy delivery means according to the invention;

35

Figure 4 is a system diagram of a apparatus including the light energy delivery means of figure 3;

35

Figure 5 is a block diagram of the pulse forming network of the system shown in figure 4;

Figure 6 is a block diagram of the trigger network of the system shown in figure 4

5 Figure 7 is a schematic representation of an alternative embodiment of exemplary apparatus according to the invention performing the method according to the invention;

10 Figure 8 is schematic representation of the apparatus of Figure 7 in side elevation; and,

15 Figure 9 is a schematic representation of the beam tracking showing overlap of the beam widthwise for subsequent laser pulses for the embodiment of figures 7 and 8.

20 In the application shown, the apparatus 1 is used to release a vehicular glazing panel (windscreen 16) from a supporting frame 7 to which it is bonded by an interposed, dark coloured polyurethane bonding bead 8 which extends around the entire periphery of the panel 16 in contact with frame 7.

25 The windscreen panel 16 comprises an outer glass layer 9, an inner glass layer 10 and intermediately therebetween, an interlayer 11 comprising a tinted sheet material which is transparent to certain wavelengths of visible light but opaque to others and also to ultra violet (U.V.) radiation. The purpose of the interlayer 11 is to provide structural strength for the windscreen 16 such that in the event of impact the screen remains intact, and also to provide a U.V. barrier.

30 Immediately adjacent the bonding bead 8, the periphery of the inner layer 10 of the windscreen panel 16 is provided with a bonded glass frit layer 12 which is typically dark in colour (more typically black in colour). The purpose

of the frit layer is to inhibit the passage of ultra-violet radiation through the screen to impinge upon the polyurethane bonding bead 8 which is typically degradable upon exposure to UV radiation.

Figures 1 and 2 compare light pulsed in accordance with the preferred pulsing regime of the present invention (which will be described in detail hereafter), with continuous wave laser operation known from the prior art system disclosed in WO-A-9617737, and the associated effect on the temperature of the frit layer 12 in relation to threshold of glazing panel integrity (particularly delamination at the panel interlayer 11).

The use of continuous wave laser radiation results in excess heat build-up within the body of the panel 16, particularly at the interlayer 11. This has the effect that increased power is required than would be the case where significant heat build up does not occur within the body of panel 16. Furthermore, the heat build-up within the body of panel 16 at interlayer 11 has been found to result in glass fracture in the region of the interlayer, which increases the absorption within the body of panel 6 leading to a "chain event" in which increasingly greater amounts of energy delivered is absorbed within the body of the panel 16. This results in less energy reaching the frit layer 12/bonding bead 8 interface, thereby reducing the effectiveness of the separation.

The use of pulsed light operation provides repeated bursts of energy to be delivered to the frit layer 12/bonding bead 8 interface, with sufficient time between pulsed energy bursts (T_{off}) to allow heat absorbed within the body of the glazing panel (including at interlayer 11) to be dissipated.

Referring to Figure 3, the apparatus generally designated 1 comprises a delivery head 4 including an electric gas discharge tube 2 containing a high pressure Noble/inert gas such as Xenon or Krypton. Discharge tube operates to produce an output burst of light of a range of wavelengths in the visible spectrum (approximately in the range 400nm to 700nm). The energy delivered, per pulse is typically in the range 500-1500 Joules however the energy dissipates (attenuates) rapidly with distance from the tube. (This is an important operational aspect, as will be described further below).

A housing/casing 3 surrounds the discharge tube and includes shielding sidewalls 5,6 and a spanning visible light transmissible window 7. A parabolic reflector wall 8 is positioned opposite the window 7 to reflect light from the reverse side of discharge tube 2 to pass through the window 7.

Referring to figure 4, the tube is controlled to produce high intensity pulses according to a predetermined pulse regime by means of a control unit 29 operating to appropriate programmed instructions. Control unit 29, controls the operation of a trigger network 30 to activate a pulse forming network 31 to supply current to the tube 2 to produce a light pulse having the desired characteristics.

Referring to figure 5, the pulse forming network 31 includes a capacitor bank 32 charged to a preset voltage by a power supply 33. The capacitor bank 32 remains charged until a trigger pulse from the trigger network initiates discharge in the discharge tube 2, when charge stored in capacitor bank 32 discharges through inductor 34 and a secondary trigger transformer 35, to the tube 2. The time constant of the discharge (and hence the light pulse duration and "profile") is determined by the values of the

inductor 34 and capacitor bank 32. For an operational system a pulse duration of 1ms-2ms has been found to be suitable. For present purposes, pulse duration should be understood to be the time interval between the light power reaching half its maximum value and subsequently falling to half its maximum value. The required pulse duration varies depending upon the optical properties of the glazing panel to be released. For example different glazing tints require different levels of energy to be supplied to effect release, and hence different pulse durations and also different power levels. The capacitor bank 32 and inductor 34 can therefore be reset to appropriate values depending upon the glazing panel to be released in order to modify the "profile" and power of the pulse delivered. The apparatus may be provided with preset settings selectable by the operator (or automatically) appropriate to common glazing tints or other known variables. To adjust the optical power of the apparatus the capacitor charging power supply may be varied.

The pulse repetition frequency (corresponding to the length of the inter-pulse interval (T_{off})) is important to ensure that the period between successive pulses is sufficient to allow the heat absorbed in the thickness of the screen to dissipate before more energy is delivered. The control unit 29 acts to override the manual trigger to inhibit the trigger network 30 from initiating discharge until the required time period has elapsed. The pulse repetition frequency is typically controlled to be in the range 0.3Hz-1Hz.

The energy delivered per light pulse is selected according to the tint or other qualities of the glazing panel but typically varies between 500-1500Joules per pulse. Because non-laser light is used, the energy attenuates rapidly with distance from the optical head 4 and is

therefore sufficient to effect debonding of the glazing panel but less susceptible to unauthorised or accidental operator misuse. This is an important safety feature of using this embodiment.

5

In use, the optical delivery head is positioned as shown in Figure 3 and a manually actuatable trigger is operated to produce a single light pulse which passes through the screen 6 and is absorbed at the frit layer 12 and/or the bonding bead 8. The frit 12 or bonding bead rapidly heats up and separates from the screen typically either by glass ablation, temperature carburisation of the bead 8, or other thermal mechanisms. Typically a single shot/pulse is sufficient to effect release over a length of screen corresponding to the length of the discharge tube 2 (typically 5-15cm) although multiple shots may be used (for example at lower power to minimise frit damage). The operator then moves on to an adjacent portion of the screen periphery before instigating a further light pulse. The procedure is repeated about the entire width of the screen to effect complete release.

20

It has been found that significantly improved results are achieved where the light delivered is in the visible range of the spectrum, and the light is pulsed according to a regime in which a series of discrete pulses of light are transmitted, the pulse duration (T_{on}) being substantially in the range $1\mu s$ to $100ms$ (more preferably in the range $1ms$ - $2ms$) and the pulse repetition frequency being substantially in the range $0.1Hz$ - $10Hz$ (more preferably in the range $0.3Hz$ - $1Hz$).

25

Use of the pulsing regime described herein and lower wavelengths of light (in the visible spectrum) have been found to provide significantly enhanced results in which a greater proportion of the energy delivered is concentrated at the frit layer 12/bonding bead 8

30

interface, and excess heat build-up (and associated glass fracture) at interlayer 11 is avoided or at least ameliorated.

5 Referring to the apparatus shown in figures 7 to 9, a six bar array of laser diodes 102 is provided within a housing 103 mounted in a delivery head 104 of the apparatus. The diode array comprises two banks each comprising three diodes 102; focussing optic 105 is provided to focus the
10 beams produced by each bank of diodes 102 to form respective focussed lines (approx. 25 to 30mm from optics 5) arranged in end to end relationship.

15 The laser delivery head 104 is used to deliver laser radiation through the screen, being focussed to line by the focussing optic 105 (as described above) in order for energy to be concentrated at the frit layer 112. Separation of the panel 106 from the frame 107 is effected as a result of energy absorption at the frit layer 20 112/bonding bead 108 interface resulting in rapid heating and either cleavage or degradation of the frit material 112 comprising the panel 106, or degradation of material comprising the bonding bead 108 (or degradation of a primer coat applied to the glazing panel prior to installation in contact with the bonding bead). The release mechanism may comprise a combination of the mechanisms described.
25

30 In the apparatus shown in Figures 7 to 9, the preferred laser parameters for quasi continuous wave operation are as follows:

Wavelength 808nm;
Peak power 600 watts;
35 Average power 120 watts (20% duty cycle)
T on - 1ms;
T off - 4ms;

Repetition rate 200 hertz.

5 The preferred requirements for the optical arrangement 105
are to produce a line focussed beam having the following
characteristics:

10 Focal length 25-30mm;
Line length on screen 20mm (comprising 2 x 9mm and 1mm
space between);
Line width 600 μ m (average).

15 In one embodiment, the delivery head 104 is carried by a
motorised tracking system (not shown) arranged to track
the head 104 about the entire periphery of glazing panel
106 to effect complete release of the panel 106 from frame
107. The operation of the tracking system 104 and laser
delivery by head 104 are co-ordinated (by control means-
not shown) such that the speed of tracking about the frame
20 is maintained at a predetermined rate.

25 As shown in Figure 9 it is an important feature for
optimum performance that subsequent pulses of the line
focussed beam 121a, 121b overlap widthwise; the greater
degree of overlap, the more improved the separating
capacity. As shown in Figure 9, for a system having the
above identified parameters, the translational speed of
the beam could be 6.6mm per second, which would result in
the beam moving widthwise by a distance of 33 μ m per pulse.
30 For a beam of 600 μ m width this would provide a beam
overlap of approximately 95%.

35 The invention has primarily been described in relation to
releasing of laminated glazing panels. It will however be
understood that the invention is equally suitable for use
with other glazing panels providing similar benefits in
minimising overheating of material comprising the panel.

Claims:

1. A method of releasing a glazing panel from a frame to which the panel is bonded by interposed bonding material, the method comprising:

5 i) arranging light energy delivery means adjacent the glazing panel; and,

10 ii) operating the light energy delivery means to transmit light energy through the screen to effect release of the panel from the frame.

15 2. A method according to claim 1, wherein the light energy delivered is of a wavelength substantially in the range 300nm-1500nm.

20 3. A method according to claim 2, wherein the light energy delivered is of a wavelength substantially in the range 400nm-700nm.

25 4. A method according to any preceding claim, wherein the light energy delivered comprises a plurality of wavelengths.

30 5. A method according to any preceding claim, wherein the light energy delivered is pulsed according to a predetermined regime.

35 6. A method according to claim 5, wherein the pulse duration (T_{on}) is substantially in the range 1 μ s-100ms.

7. A method according to claim 6, wherein the pulse duration is substantially in the range 1ms-2ms.
8. A method according to any preceding claim, wherein the pulse repetition frequency is substantially in the range 0.1Hz-10Hz.
9. A method according to any preceding claim, wherein the pulse repetition frequency is substantially in the range 0.3Hz-1Hz.
10. A method according to any preceding claim, wherein the pulse duration (T on) is less than the interpulse interval (T off).
15. A method according to any of claims 5 to 10, wherein a single pulse of light energy delivered is of sufficient energy to effect separation of the screen from the frame along a length of the bonding material.
20. A method according to any preceding claim, wherein the light energy delivery means is hand held and positionable relative to the glazing manually by an operator.
25. A method according to any preceding claim, wherein the light energy attenuates rapidly with distance such that at a few centimetres from the energy delivery means the light energy density is significantly diminished from its maximum value.
30. A method according to claim 13, wherein at a distance substantially in the range 5cm or less from the delivery means the light energy density is 50%
35. A method according to claim 13, wherein at a distance substantially in the range 5cm or less from the delivery means the light energy density is 50%

maximum value, or below.

15. A method according to any preceding claim, wherein the light energy is non-coherent.

5

16. A method according to any preceding claim, wherein the energy delivery means comprises electrical gas discharge apparatus.

- 10 17. A method according to claim 16, wherein operation of the gas discharge apparatus is controlled to limit the pulse rate and/or duration of the light pulse.

- 15 18. A method according to claim 17, wherein the operation of the gas discharge apparatus is controlled by:

- 20 i) charging a capacitor arrangement;
ii) initiating a trigger pulse to discharge the capacitor arrangement; and,
iii) discharging the capacitor arrangement through an inductor to the gas discharge apparatus.

- 25 19. Apparatus for releasing a glazing panel from a frame to which the panel is bonded by interposed bonding material, the apparatus comprising light energy delivery means arrangeable adjacent the glazing panel, and operable to transmit light energy through the screen to effect release of the panel from the frame.

30

20. Apparatus according to claim 19, which is controllable to pulse the light energy delivered.

35

21. Apparatus according to claim 20, wherein the apparatus is controllable to adjust and/or limit:

5 the pulse repetition rate of the light delivered; and/or,

the pulse duration of the light delivered, and/or,

10 the light intensity delivered.

22. Apparatus according to any of claims 19 to 21, wherein the delivery means includes a manual trigger 15 for initiating a light pulse when the delivery head is positioned to the operators satisfaction.

23. Apparatus according to any of claims 19 to 22, 20 wherein means is provided for selectively adjusting the intensity of the light delivered.

24. Apparatus according to any of claims 19 to 23, 25 wherein the apparatus includes different preset settings which may be switched to alter one or more parameters of the light energy delivered, dependent upon the tint of the glazing panel to be debonded.

25. Appartus according to claim 24, wherein light energy parameters include:

30 light intensity; and/or,

 pulse duration; and/or,

35 pulse interval.

26. Apparatus according to any of claims 19 to 23, wherein the energy delivery means comprises electrical gas discharge apparatus.
- 5 27. Apparatus according to claim 25 or claim 26, including a pulse forming network having a capacitor and inductor arrangement in which the capacitor discharges through the inductor to drive the electrical gas discharge apparatus to produce a light pulse.
- 10 28. Apparatus according to claim 27, including a trigger network for initiating the capacitor of the pulse forming network to discharge.
- 15 29. Apparatus according to claim 27 or claim 28, including control means for controlling one or more apparatus parameters including the minimum permissible time elapsing between subsequent discharge pulses of the electrical gas discharge apparatus.
- 20 30. Apparatus according to any of claims 26 to 29, wherein the discharge apparatus comprises an electrical gas discharge tube.
- 25 31. Apparatus according to any of claims 26 to 30, wherein the electrical gas discharge apparatus comprises a reflector arranged to direct emitted light in a predetermined direction.
- 30 32. Apparatus according to any of claims 19 to 31, wherein the apparatus comprises a window through which emitted light is directed to pass through the glazing panel.
- 35

- 5 33. A method according to any of claims 1 to 14 , wherein the energy delivery means comprises laser energy delivery means operated to transmit laser radiation through the panel to effect release of the glazing panel from the frame, the laser being operated in quasi continuous wave mode in which a series of discrete pulses of radiation are transmitted.
- 10 34. A method according to claim 33, wherein the laser radiation is focussed to a line at the interface between the bonding material and the panel.
- 15 35. A method according to claim 34, wherein the focussed line has a line width substantially in the range 200-800 μ m.
- 20 36. A method according to claim 34 or claim 35, wherein the focussed line has a line width substantially in the range 600 μ m \pm 20%.
- 25 37. A method according to any of claims 33 to 36, wherein the laser delivery means is tracked about the panel at a pre-determined rate, the tracking and quasi-continuous wave pulsed operation of the laser delivery means being coordinated such that the focussed line moves in the direction of its width at a rate such that subsequent pulses of the focussed line overlap.
- 30 38. A method according to claim 37, wherein the degree of linewidth overlap of subsequent pulses is substantially 50% or above.
- 35 39. A method according to claim 37 or claim 38, wherein the degree of linewidth overlap of subsequent pulses is substantially 80% or above.

40. A method according to any of claims 33 to 36, wherein the laser energy delivery means is hand held and positionable relative to the glazing manually by an operator.

5

41. A method according to any of claims 33 to 40, wherein the wavelength of the laser energy is substantially in the range 650-1000nm.

10

42. A method according to any of claims 33 to 41, wherein the wavelength of the laser energy is substantially in the range 650-750nm.

15

43. Apparatus according to any of claims 33 to 42, wherein the laser delivery means comprises a plurality of laser sources arranged in one or more arrays.

20

44. Apparatus according to any of claims 33 to 43, wherein the laser delivery means comprises laser diode means.

25

45. A method and/or apparatus according to any preceding claim for use in releasing a vehicular glazing panel from a supporting frame.

THIS PAGE BLANK (USPTO)

FIG 1

FIG 2

THIS PAGE BLANK (USPTO)

Fig 3

THIS PAGE BLANK (USPTO)

FIG. 4

FIG. 5

FIG. 6

THIS PAGE BLANK (USPTO)

Fig 7

Fig 8

THIS PAGE BLANK (USPTO)

FIG 9

Beam overlap = 89%

THIS PAGE BLANK (USPTO)