WHAT IS CLAIMED IS:

l	1. A method for measuring blood oxygen saturation, comprising the steps			
2	of:			
3	providing a sensor and a pulse oximeter;			
4	selecting a light source and a light detector;			
5	optimizing a wavelength spectrum of light received by said light detector from			
5	said light source for an oxygen saturation reading less than 80 percent;			
7	placing said sensor on a patient; and			
3	determining said blood oxygen saturation using said sensor and said pulse			
7	oximeter.			
1	2. The method of claim 1, wherein said optimizing step is for an oxygen			
2	saturation of a fetus.			
l	3. The method of claim 2, including optimizing said wavelength spectrum			
2	for an oxygen saturation reading less than 65 percent.			
l	4. The method of claim 2, including optimizing said wavelength spectrum			
2	for an oxygen saturation reading greater than 15%.			
1	5. The method of claim 2 further comprising the step of:			
2	placing a detector on said sensor;			
3	optimizing a spacing of said light source from said detector to reduce the			
4	sensitivity of said sensor to perturbation induced artifact; and			
5	measuring the intensity of light from said light source at said detector using			
5	light scattered through said fetus.			
l -	6. The method of claim 4 wherein a spacing between where said light is			
2	injected into said tissue and collected from said tissue is at least 10 mm.			
1	7. The method of claim 1 wherein said received light comprises a red			
2	spectrum and an infrared spectrum, each of said red and infrared spectrums having an			
3	extinction and a scattering coefficient associated with blood perfused tissue, said optimizing			
4	step comprising choosing wavelength spectrums within said red and infrared spectrums			
5	whose product of their respective extinction and scattering coefficients form first and second			

6 values, a ratio between said first and second values being between 0.5 and 2 for a majority of 7 the oxygen saturation reading range of 0 to 65 percent. 1 8. The method of claim 2 wherein said received light comprises a red 2 spectrum and an infrared spectrum, said optimizing step comprising using a first spectrum 3 within said infrared spectrum in a range useful for a patient having high saturation, and optimizing the red spectrum to a second spectrum for a fetus. 4 1 9. The method of claim 8 wherein the mean wavelength of said second 2 spectrum is between 700 and 790 nanometers. 1 10. The method of claim 8 wherein said second spectrum includes 735 nanometers at an intensity of at least 50% of the intensity of any other wavelengths in said 2 3 second spectrum. 1 11. The method of claim 2 wherein said optimizing step increases a depth 2 of penetration of said light in a fetus compared to an optimum penetration depth for a patient 3 having high saturation. 1 12. The method of claim 1 wherein said optimizing step reduces the sensitivity of said determining step to artifact. 2 1 13. The method of claim 1 wherein said optimizing step includes selecting 2 said light source to have a desired wavelength spectrum. 1 14. The method of claim 1 wherein said optimizing step includes selecting 2 said light detector which detects a limited spectrum of light. 1 15. The method of claim 1 wherein said optimizing step includes filtering 2 said light source to pass a desired wavelength spectrum. 1 16. The method of claim 1 further comprising the step of alternately 2 optimizing said wavelength spectrum of light received by said light detector from said light 3 source for an oxygen saturation reading greater than 80 percent. 1 A method for measuring blood oxygen saturation in a fetus, 17. 2

4

providing a sensor and a pulse oximeter;

comprising the steps of:

3

4	selecting a light source and a light detector;			
5	detecting light at said detector comprising red and infrared spectrums;			
6	selecting the infrared spectrum so as to have a wavelength spectrum useful for			
7	measuring oxygen saturation in a patient with high saturation;			
8	optimizing a wavelength spectrum of said red spectrum to a mean wavelength			
9	between 700 and 790 nanometers for an oxygen saturation reading between 15 and 65			
10	percent, said optimizing increasing an immunity of a measurement of blood oxygen			
11	saturation to perturbation artifact;			
12	placing said sensor on said fetus;			
13	measuring an intensity of at least two light signals from said light source at			
14	said light detector after being scattered through a portion of said fetus; and			
15	determining said blood oxygen saturation using said intensity and said pulse			
16	oximeter.			
1	18. The method of claim 17 further comprising the step of measuring a			
2	third light signal from detected light scattered through a portion of said fetus, the third light			
3	signal having a mean wavelength less than 700 nanometers and being optimized for an			
4	oxygen saturation reading greater than 65% percent.			
1	19. A method for using a pulse oximeter to measure blood oxygen			
2	saturation in a patient, comprising the steps of:			
3	selecting a light source and a light detector for a sensor;			
4	detecting light at said detector comprising first and second light spectrums,			
5	each of the light spectrums having an extinction and a scattering coefficient associated with			
6	blood perfused tissue;			
7	optimizing said light spectrums by choosing wavelength spectrums whose			
8	product of their respective extinction and scattering coefficients form first and second values			
9	a ratio between said first and second values being between 0.5 and 2 for a majority of the			
10	oxygen saturation reading range of 0 to 65 percent;			
11	placing said sensor on said patient; and			
12	determining said blood oxygen saturation using said sensor and said pulse			
13	oximeter.			

1	20. The method of claim 19 further comprising the step of alternatery			
2	optimizing said light spectrum for an oxygen saturation reading range greater than 65%			
3	percent.			
1	21. A method for measuring blood oxygen saturation in a fetus,			
2	comprising the steps of:			
3	providing a sensor and a pulse oximeter;			
4	selecting a far red and infrared light source and a light detector;			
5	detecting light at said detector including an infrared wavelength spectrum			
6	useful for measuring oxygen saturation in a patient with high saturation, the detected light			
7	including a far red wavelength spectrum which has a mean wavelength between 700 and 790			
8	nanometers;			
9	placing said light sources in a single encapsulated package and mounting said			
10	package on said sensor;			
11	placing said sensor on said fetus;			
12	measuring an intensity of light from said light source at said light detector			
13	after scattering through a portion of said fetus; and			
14	determining said blood oxygen saturation using said intensity and said pulse			
15	oximeter.			
1	22. The method of claim 21 further comprising the steps of:			
2	selecting a second red light source;			
3	selecting a wavelength spectrum of said second red light source to have a			
4	mean wavelength less than 700 nanometers; and			
5	selectively activating either or both said first mentioned or second red light			
6	source.			
1	23. A fetal pulse oximeter sensor comprising:			
2	a housing;			
3	at least one light source mounted in said housing;			
4	at least one detector mounted in said housing;			
5	means for detecting light subsequent to being scattered by fetal tissue, the light			
6	including an infrared light spectrum, said infrared spectrum having a range useful for			
7	measuring oxygen saturation in a patient with high saturation, the detected light also			

8	including a red light spectrum, said red light spectrum having a mean wavelength between			
9	700 and 790 nanometers; and			
10	said detector being mounted in said housing spaced from said light sources			
11	and positione	d to det	tect light from said light sources.	
1		24.	The sensor of claim 23 wherein said light source comprises at least one	
2	LED.		The content of comments of the content of the conte	
-	222.			
ĺ		25.	The sensor of claim 23 wherein said light source comprises red and	
2	infrared light sources spaced from said detector by at least 10 mm.			
1		26.	The sensor of claim 23 wherein said light source comprises red and	
2	infrared light	sources	s spaced from said detector by at least 14 mm.	
	C		•	
1		27.	The sensor of claim 23 wherein said means for providing comprises a	
2	light source which emits a limited spectrum.			
1		28.	The sensor of claim 23 wherein said means for providing comprises a	
2	filter betweer	ı said li	ght source and said detector for passing a limited spectrum of light.	
1		29.	The sensor of claim 23 wherein said means for providing comprises a	
2	wavelength s	ensitive	e detector which detects a limited spectrum of light.	
1		30.	The sensor of claim 23 further comprising:	
2		mean	s for providing a red light spectrum having a mean wavelength less than	
3	700 nanomete	ers.		
•		2.1		
1		31.	The sensor of claim 30 wherein	
2	said means for providing a red light spectrum having a mean wavelength			
3	between 700 and 790 nanometers is a first light emitting diode; and			
4	said means for providing a red light spectrum having a mean wavelength less			
5	than 700 nand	ometers	s is a second light emitting diode.	
1		32.	A sensor for a pulse oximeter for measuring blood oxygen saturation,	
2	comprising:			
3		a ligh	t source;	
4		a ligh	t detector;	

5	one of said light source and light detector including means for providing light			
6	comprising first and second spectrums, each of the spectrums being optimized for the			
7	products of their respective extinction and scattering coefficients in blood perfused tissue, the			
8	products forming first and second values, a ratio between said first and second values being			
9	between 0.5 and 2 for a majority of the oxygen saturations less than 80 percent.			
1	33. The sensor of claim 32 wherein said light source and said detector are			
2	spaced apart by at least 14 mm.			
1	34. The sensor of claim 32 further comprising means for providing a red			
2	spectrum having a mean wavelength less than 700 nanometers.			
1	35. A sensor for a pulse oximeter for measuring blood oxygen saturation in			
2	a fetus, comprising:			
3	a radiation source;			
4	a radiation detector;			
5	at least one of said source and detector being optimized for reducing the			
6	sensitivity of a blood oxygen saturation measurement to perturbation induced artifact for			
7	saturations less than 65 percent.			
1	36. The sensor of claim 35 wherein said radiation source comprises red			
2	and infrared LEDs spaced from said detector by at least 10 mm.			
1	37. The sensor of claim 35 wherein said radiation source comprises red			
2	and infrared LEDs spaced from said detector by at least 14 mm.			
1	38. The sensor of claim 35 further comprising means for alternately			
2	optimizing said source and detector for oxygen saturation readings greater than 65%.			
1	39. The sensor of claim 38 further comprising a second red light source			
2	having a mean wavelength less than 700 nanometers.			
1	40. A sensor for measuring blood oxygen saturation in a fetus, comprising:			
2	an infrared light source having a wavelength spectrum useful for measuring			
3	oxygen saturation in a patient with high saturation;			
4	a deep red light source having a mean wavelength between 700 and 790			
5	nanometers; and			

6	a single encapsulated package enclosing said red and infrared light sources,			
7	said package being mounted on said sensor.			
1	41. A method of using a pulse oximeter, comprising the steps of:			
2	receiving at least first and second signals from a sensor obtained by scattering			
3	light through tissue, the light having at least first and second wavelength spectrums, the first			
4	and second spectrums being optimized for an oxygen saturation reading less than 80%; and			
5	calculating the oxygen saturation using coefficients suitable for the first and			
6	second optimized spectrums.			
1	42. A method for measuring blood oxygen saturation in a fetus,			
2	comprising the steps of:			
3	providing a sensor and a pulse oximeter;			
4	selecting a light source and a far red and infrared light detector;			
5	detecting light at said detector including an infrared light wavelength spectr			
6	useful for measuring oxygen saturation in a patient with high saturation, the detected light			
7	including a far red wavelength spectrum which has a mean wavelength between 700 and 790			
8	nanometers;			
9	placing said light detectors in a single encapsulated package and mounting			
10	said package on said sensor;			
11	placing said sensor on said fetus;			
12	measuring an intensity of light from said light source at said light detectors			
13	after scattering through a portion of said fetus; and			
14	determining said blood oxygen saturation using said intensity and said pulse			
15	oximeter.			
1	43. The method of claim 42 further comprising the steps of:			
, 2	selecting said detector to detect a second red light spectrum;			
3	selecting a wavelength spectrum of said second red light spectrum to have a			
4	mean wavelength less than 700 nanometers; and			
5	selectively detecting either or both said first mentioned or second red light			
6	spectrums.			

1		44.	A pulse oximeter comprising:		
2		an inp	ut connector for receiving at least first and second signals from a sensor		
3	obtained by so	obtained by scattering light through tissue, the light having at least first and second			
4	wavelength sp	ectrum	s;		
5		a memory storing coefficients suitable for said first and second spectrums, the			
6	spectrums being optimized for an oxygen saturation reading less than 80%; and				
7	a processor, coupled to said memory and said input connector, for calculating				
8	the oxygen saturation using said coefficients.				
1		45.	The pulse oximeter of claim 44 wherein said first wavelength spectrum		
2	has a mean wavelength between 700 and 790 nanometers.				
1		46.	The pulse oximeter of claim 45 further comprising:		
2	a detector coupled to said connector for detecting a coding signal from a				
3	sensor indicative of a mean wavelength between 700 and 790 nanometers for said first				
4	wavelength spectrum.				
1		47.	The pulse oximeter of claim 46 further comprising:		
2	a decoder, coupled to said detector and said memory, for selecting appropria				
3	coefficients from said memory based on said coding signal.				
1		48.	The pulse oximeter of claim 46 wherein said detector further comprises		
2	means for passing a current through an impedance element in said sensor, said impedance				
3	element having a value indicative of a mean wavelength between 700 and 790 nanometers for				
4	said first wave	elength	spectrum.		
1		49.	A fetal pulse oximeter comprising:		
2	an input connector for receiving at least first and second signals from a senso				
3	obtained by scattering light through tissue of a fetus, the light having at least red and infrared				
4	spectrums;				
5		a mem	ory storing coefficients suitable for said infrared spectrum having a		
6	range useful for measuring oxygen saturation in a patient with high saturation and said red				
7	light spectrum having a mean wavelength between 700 and 790 nanometers; and				
8	a processor, coupled to said memory and said input connector, for calculating				
9	the oxygen sa	turation	of said fetus using said coefficients		

I		50.	The pulse eximeter of claim 49 wherein said memory further	
2	comprises:			
3		coeffici	ents for a red light spectrum having a mean wavelength less than 700	
4	nanometers.			
1		<i>5</i> 1	A section and section as a section.	
1			A pulse oximeter, comprising:	
2		an input	t connector for receiving at least first and second signals from a sensor	
3	obtained by scattering light through tissue, the light having at least red and infrared			
4	spectrums;			
5		a memo	ry storing coefficients suitable for said spectrums, each of the	
6	spectrums being optimized for the products of their respective extinction and scattering			
7	coefficients in blood perfused tissue, the products forming first and second values, a ratio			
8	between said first and second values being between 0.5 and 2 for a majority of oxygen			
9	saturations less than 80 percent; and			
10		a proces	ssor, coupled to said memory, for calculating the oxygen saturation	
11	using said coefficients.			
1		52.	A pulse oximeter for measuring blood oxygen saturation in a fetus,	
2	comprising:			
3		an input	connector for receiving at least first and second signals from a sensor	
4	obtained by detecting light having at least red and infrared spectrums, the light being			
5	scattered from tissue;			
6	a memory storing coefficients suitable for said spectrums being optimized for			
7	reducing the sensitivity of a blood oxygen saturation measurement to perturbation induced			
8	artifact for saturations less than 65 percent; and			
9		a proces	ssor, coupled to said memory, for calculating the oxygen saturation	
10	using said coe	efficients.		