TensorFlow Research

Introduction to TensorFlow:

- Tensorflow
 - Tutorials
 - tf.data API
 - Build TensorFlow Input Pipelines
 - Can create a dataset in 2 ways...
 - 1. Through a data source which constructs a Dataset through memory or files
 - a. tf.data.Dataset.from tensors()
 - b. tf.data.Dataset.from tensor slices(
)
 - 2. Through data transformation which constructs a dataset through tf.data.Dataset objects
 - a. Dataset.map
 - b. Dataset.batch
 - Keras Guide

_

- ML basics (text)
 - 1. Download and explore dataset's directory structure
 - 2. Load the dataset
 - a. Prepare it for training with text dataset from directory utility
 - 3. Prepare the dataset for training
 - a. Use

tf.keras.layers.TextVectorization
layer

- 4. Configure dataset for performance
 - a. Use...
 - i. .cache()
 - ii. .prefetch()
- 5. Create the model
- 6. Loss function and optimizer
- 7. Train the model
- 8. Evaluate the model
- 9. Create a plot of accuracy and loss over time
- 10. Export the model
- 11. Inference on new data
 - a. Call model.predict()

- Set Up
 - Import tensor flow by typing import tensorflow as tf

_

Google Colab Research

Google Colab

- Hosted Jupyter Notebook like setup that is free to use and requires no set up. Good alternative to downloading package or connecting to docker.
- TensorFlow is already installed on Google Colab. Just type import tensorflow as tf to use
- Setting up libraries
 - !pip install
 - !apt-get
 - Access shell
 - !wget
 - !pwd
- "To get in your training data, you can follow these tutorials for popular data sources: BigQuery, Drive, Sheets, or Google Cloud Storage."
- Can easily save to GitHub through one of two ways...
 - 1. Add GitHub path to colab.research.google.com/github/
 - 2. File > Save a copy to GitHub...

-