N79-24934

Академия наук СССР

институт космических исследований

DATE:	RECEIVED BY ESA-SDS 1 1 NOV 1977	Пр-349
DCAF	NO. 438190	5619
	PROCESSED BY NASA STI FACILITY	m-12
	ESA-SDS AIAA	

Р.А.Сюняев

ФЛУКТУАЦИИ РЕЛИКТОВОГО ИЗЛУЧЕНИЯ, ВОЗНИКАЮЩИЕ ПРИ ВТОРИЧНОЙ ИОНИЗАЦИИ ВЕЩЕСТВА ВО ВСЕЛЕННОЙ

R.A. Sunyaev

FLUCTUATIONS IN MICROWAVE BACKGROUND RADIATION

DUE TO SECONDARY IONIZATION OF THE INTERGALACTIC

GAS IN THE UNIVERSE

АКАДЕМИЯ НАУК СССР ИНСТИТУТ КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ

II:2-349

Р.А.Сюняев

ФЛУКТУАЦИИ РЕЛИКТОВОГО ИЗЛУЧЕНИЯ, ВОЗНИКАЮЩИЕ ПРИ ВТОРИЧНОЙ ИОНИЗАЦИИ ВЕЩЕСТВА ВО ВСЕЛЕННОЙ

R.A. Sunyaev

FLUCTUATIONS IN MICROWAVE EACKGROUND RADIATION

DUE TO SECONDARY IONIZATION OF THE INTERGALACTIC

GAS IN THE UNIVERSE

Вторичный разогрев и ионизация межгалактического газа шри красном смещении $2 \sim 10 + 30$ может приводить и большой онтической толще Вселенной по томсоновскому рассеянию и замыванию первичных флуктуаций, возникающих в период рекомбинации водорода $2 \sim 1500$. Показано, что движения, связанные с возмужениями плотности в больших масштабах при $2 \sim 10 + 15$, приводят и возникновению вторичных флуктуаций реликтового излучения. Оценены такжа флуктуации, связанные с богатыми скоплениями галактик и молодими галактиками.

Secondary heating and ionization of the intergalactic gas at redshifts $\geq \sim 10 \div 30$ could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations, formed at $\geq \sim 1500$. It is shown that the gas motions connected with the large scale density perturbations at $\geq \sim 10 \div 15$ must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.

скопления галактик образовались в результате роста малых возмущений плотности и скорости вещества во Вселенной, существовавших на ранних стадиях ее расширения. Взаимодействие
этих возмущений с реликтовым излучением в эпоху рекомоина:
водорода во Вселенной (красное смещение 2~ 1500) должно приводить к мелкомасштабным флуктуациям углового распределения реликтового излучения (Силк, 1967). Расчеты в моделях адиабатических и энтропийных возмущений плотности, проведенные с учетом
неминовенности рекомбинации (Сюняев, Зельдович, 1970, Пиблс
и Ю, 1970, Дорошкевич и др. 1977) предсказывают первичные флуктуации реликтового излучения, которые лежат на пределе возможностей экспериментальной проверки. Последние результаты Парийского (1976) накладывают существенные ограничения на теоретичес-

Согласно современным представлениям наблюдаемые

В связи с этим в литературе неоднократно указывалось (см. Зельдович, Сюняев, 1967) на следующую возможность ослабления первичных флуктуаций. После рекомбинации водорода во Вселенной ($\stackrel{>}{\sim}$ 1500) в какой-то момент $\stackrel{>}{\sim}$ 3.5 преизошла вторичная неравновесная ионизация межгалактического газа (МГТ). При большой оптической толще этого газа по томсоновскому рассеянию $\stackrel{\sim}{\sim}$ первичные флуктуации реликтового излучения должны

кие модели. Вихревая модель (Чибисов и Озерной, 1969)

адиабатическая и энтропийная.

предсказывает значительно большие первичные флуктуации, чем

были замываться, а их амплитуда уменьшается как € . Эта возможность значительного ослабления первичных флуктуаций поаволяет серьезно рассматривать даже теории происхождения галактик, приводящие в период рекомбинации к значительным флуктуаниям.

Примем, что вторичная ионизация МТ приводит к большим \mathcal{C} , и рассчитаем "вторичние" флуктуации реликтового излучения, возникающие из—за малых возмущений скорости движения вещества на стадии вторичного разогрева. Эти скорости естественным образом связаны с малыми возмущениями плотности большого масштаба, которые еще не успели привести к выделению гравитационно—связаных объектов. Для упрощения расчетов примем, что основная часть вещества во Вселенной при $\mathcal{Z} > 7$ (область с $\mathcal{Z} < 7$, как будет показано ниже, дает малый вклад во флуктуации) маходилась в виде МТ. Среднюю плотность вещества во Вселенной $\mathcal{L} = \mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}}$, где $\mathcal{H}_{\mathcal{L}} = \mathcal{L}_{\mathcal{L}} = \mathcal{L}_$

Ниже будет показано, что крупномасштабные цвижения должны приводить к возникновению заметных флуктуаций на этой стадии. Будем называть флуктуации, возникающие вследствие вторичного разогрева, "вторичными"в отличие от "первичных", возникающих в период рекомбинации (2 ~ 1500). В заключении будут обсуждаться флуктуации фона, связанные с известными типами объектов: скоплениями галактик, радиоисточниками и молодыми галактиками. Отметим, что Сюняев и Зельдович (1970) и Силк (1974) обсуждали другие источники вторичных флуктуаций.

Флуктуации, связанные с рассеянием на движущихся электронах

Сюняев и Зельдович (1970) обратили внимание на то, что рассеяние фотонов на движущихся электронах (движение связано с возмущениями плотности) приводит в силу доплер-эффекта к изменению частоты фотонов и температуры реликтового излучения

$$\frac{ST}{T} = \int_{0}^{\infty} \frac{u_{1}(z)}{c} e^{-T(z)} \frac{dT(z)}{dz} dz, \qquad (I)$$

где $u_1(z)$ - проекция скорости на направление дуча зрения, $z_1(z)$ - оптическая толща Вселенной по томоновскому рассеянию,

$$dT = G_T N_e(z) c dt(z) = \Omega G_T N_{in} c H_o^{-1} \frac{1+2}{\sqrt{1+\Omega z}} dz$$

множитель «учитывает ослабление флуктуаций из-за последующих рассеяний.

П_редставим, следуя Сюняеву и Зельдовичу (1970), возмущения плотности и связанные с ними скорости вещества в виде интегралов Фурье

$$\frac{sg}{g} = \frac{1}{(2\pi)^3} \int a_p e^{i\vec{p}\vec{z}} d^3p; \quad \vec{u} = \frac{1}{(2\pi)^3} \int_{P} e^{i\vec{p}\vec{z}} d^3p, \quad \vec{u} = \frac{1}{(2\pi)^3} \int_{P$$

причем безразмерную переменную 2 определим как

$$z = 1 - \frac{RH_o}{2C} = (1 + \Omega z)^{-1/2}$$
 (3)

где $R = \int_{a(x)}^{t} \frac{dx}{a(x)} = \frac{2c}{H_o} \left[1 - \left(1 + \Omega Z \right) \right] - \frac{2c}{COПУТСТВУЮЩАЯ КООРДИ
ната. Напомним, что физическая координата <math>x = ct$ и $\frac{dt}{dz} = -\frac{1}{H_o(HZ)^2 \sqrt{H_o Z z}}$. При таком определении z волновое число p не зависит от z. Определим массу возмущения плотности, как массу, заключенную в пределах сферы с радиусом в половину длины волны

$$M = \frac{4\pi}{3} \left(\frac{\pi}{P}\right)^{3} \left(\frac{2c}{H_{o}}\right) \Omega S_{uit}^{3}; P = 2.5.10^{3} \left(\frac{10^{5} M_{o} \Omega}{M h}\right)^{(4)}$$

Как известно, на стадии расширения после рекомбинации адиабатические и энтропийные возмущения плотности растут по закону $\frac{SP}{P} \sim t \sim \frac{2/3}{1+2}$ до тех пор, пока $\Omega \geq 1$. Для простоты приведем расчет для случая ($\Omega = I$). Используя уравнение неразрывности $\frac{3}{37} = \frac{SP}{P} = -\operatorname{div} \mathcal{U}$ и учитывая условие

$$\left(\frac{SP}{P}\right)^2 = \frac{1}{(2\pi)^2} \int \alpha_P^2 d^3P \tag{5}$$

находим

$$a_{p}(z) = \frac{A_{p}}{1+z}$$
 $u \cdot \hat{b}_{p} = 2i A_{p} \frac{\vec{p}}{p^{2}} \frac{1}{\sqrt{1+z^{2}}}$ (6)

где A_{f} - не зависит от времени и характеризует спектр возмущений. Подставляя в (I) значения u(z) из (2) и (6), z из (3), получаем

где $M = \cos \frac{1}{7} = \frac{2}{3} = \frac{2}{5} - N_{cr} = \frac{2}{3} = \frac{10^{-2}}{10^{-2}} = \frac{$

Во внутреннем интеграле I_1 удобно перейти к переменной $V = \frac{PN}{\sqrt{1+z^2}}$ и оценить его методом перевала, учитывая, что интеграл набирается вблизи $V_0 = PNd^{1/2}$, т.е. $I + Z_0 = d^{-2/2} = 12$

$$I_1 = 2(p_H)^2 \int \exp\{-3l_n V - d \frac{(p_H)^3}{V^3} + i V \} d V \approx$$

Теперь можно провести усреднение по углу Θ и по фазе (третий член в экспоненте)

$$\frac{\overline{\left(\frac{ST}{T}\right)^{2}}}{\left(\frac{T}{T}\right)^{2}} = \frac{1}{(2\pi)^{3}} \int C_{p}^{2} d^{3}p = \frac{2d^{2}l_{3}^{2} - 2}{T} \int A_{p}^{2} dp \int M^{2} \exp\left\{-\frac{(PN)^{2}d^{2}l_{3}^{2}}{9}\right\} dM$$

Интеграл I_2 по углу M легко внчисляется; при PA >> 3

$$I_{2} = \frac{27}{\rho^{3} d} \int_{0}^{\rho d} x^{2} e^{-x^{2}} dx \approx \frac{27}{\rho^{3} d} \left\{ -\frac{1}{2} x e^{-x^{2}} \right\} + \frac{1}{2} \int_{0}^{\rho -x^{2}} dx = \frac{27V_{F}}{4\rho^{3} d},$$

 $\pi pn pd \ll 3 \quad \text{umeem} \quad \overline{I_2} = \frac{1}{3}.$

Получаем в пределе малых масс $p^3 d > 27$,

<10²² M $_{\mathcal{O}}$

$$\frac{\overline{\left(\frac{ST}{T}\right)^{2}}}{\left(\frac{ST}{T}\right)^{2}} = \frac{27e^{-2}}{2\sqrt{\pi}} \int_{0}^{A_{p}^{2}} d\rho \int_{0}^{a} \frac{\overline{\left(\frac{ST}{T}\right)^{2}}}{\sqrt{T}} = \frac{2}{3} \int_{0}^{A_{p}^{2}} d\rho \int_{0}^{a} d\rho$$

в пределе больших масс $M > 10^{22} M_{\odot}$. Сравнивая с нормировкой (5) и предполагая, что A_{F} имеет максимум при P_{\odot} , находим, что

$$\left\langle \frac{ST}{T} \right\rangle = 2.10^{-2} M_{22}^{5/6} \frac{SP}{P} = \left\langle \frac{ST}{T} \right\rangle \approx 2.10^{-2} M_{22}^{1/3} \frac{SP}{P} (8)$$

соответственно в области малых и больших М . Здесь М22 = - либо соответствует современной оценке возмущений плотности в данном масштабе, либо равно I+ Z соответствует моменту образования объектов данной массы. Громадная масса $10^{22} \mathrm{M}_{\odot}$ приводится лишь для удобства нормировки; первая из формул (8) верна в области сравнительно малых масс, соответствующих скоплениям галактик. Полученный ответ функционально совпадает с результатом,полученным Сюняевым и Зельдовичем (1970) для первичных флуктуаций. И в том, и в другом случае флуктуации эффективно возникают в зоне с $\mathcal{T} \sim I$, однако при вторичном разогреве эта зона включает в себя большую массу, что приводит к существенному ослаблению флуктуаций. При спектре возмущений плотности вида $A_p \sim P^{"}$, $P_1 < P < P_2$ для спектра флуктуаций температуры имеем $\langle \frac{\delta T}{T} \rangle \sim \rho^{2-1} \theta^{2-1/2}$ в области малых масс и $\langle \frac{\delta T}{T} \rangle \sim \rho^{2+\frac{1}{2}} \sim \theta^{-(n+\frac{1}{2})}$ - угол, соответствующий диа-M-10 $^{\circ}$ M $_{\odot}$ $_{\odot}$ $_{\odot}$ метру возмущения с данным при 2 = 11.

Приведем без нывода результат расчета для произвольного Ω . При всех $\Omega > 0.1$ в зоне $T \sim 1$ имеем $\Omega \geq > 1$, поэтому эффектами, связанными с малой плотностью вещества во Вселенной, можно пренебречь. При этом расчет флуктуаний оказывается весьма простым. Формулы (8) остаются в силе, только под M_{22} следует понимать $\frac{M\Omega^2}{10^{22}M_B}$, а под $\frac{SP}{P}$ либо

по-прежнему (I+ \gtrsim), либо величину $\frac{2}{2\Omega}$ Введе:

ние фактора $\frac{1}{2\Omega}$ грубо учитывает тот факт, что при $2<\frac{1}{\Omega}$ рост возмущений плотности практически прекращается:

(см., например, Сюняев, 1971). Угловой масштаб флуктуаций определяется массой возмущений, величиной Ω и слабо зависит от момента Z II Ω , когда Z II Ω . Пои Ω =I имеем $\Omega = \frac{\lambda}{2} = \frac{2\pi}{2} \frac{1+2\pi}{2} - \frac{1+2\pi}{2} = \frac{10}{2} \frac{M_{\odot}^2}{2}$. При Ω < 1 имеем $\Omega = \frac{\lambda}{2} = \frac{2\pi}{2} \frac{1+2\pi}{2} - \frac{1+2\pi}{2} = \frac{10}{2} \frac{M_{\odot}^2}{2}$.

Вихревые скорости. Скорости вихревых движений уменьщаются в ходе расширения Вселенной $\mathcal{U} = \mathcal{U}_o \left(1+\mathcal{E}\right)$, где \mathcal{U}_o — современные значения скорости. Второе отличие от случая потенциальных движений (соответствующих адиабатическим и энтропийным возмущениям плотности) связано с поперечностью вихревых движений: поэтому формула (7) при Ω = I приобретает вид:

$$\frac{\delta T}{T} = \frac{3d}{2(2\pi)^3} \int_{\mathcal{B}_p} B_p \sqrt{1-N^2} d^3p \int_{0}^{2} (1+2)^{1/2} \exp\left\{\frac{ipN}{1+2} - d(1+2)^{3/2}jdz\right\}.$$
(9)

Здесь В определяется следующим образом

$$\left(\frac{u}{c}\right)^2 = \frac{1}{(2\pi)^3} \int_{c}^{2} d^3P \; ; \quad \delta_p = B_p(1+2).$$

Взяв методом перевала внутренний интеграл и проведя усреднение по μ , получим в пределе малых масс $M < 10^{21} M_{\odot}$

$$\left\langle \frac{\delta T}{T} \right\rangle = 5.6 \left\langle \frac{\mu_0}{c} \right\rangle M_{21}^{3} \quad M \left\langle \frac{\delta T}{T} \right\rangle = 5.6 \left\langle \frac{\mu_0}{c} \right\rangle (10)$$

в пределе больших масс M > 10^{21} M₀. Вчлно, что даже при наличии вторичного разогрева наблюдения флуктуаций накладывают жесткие ограничения на вихревые скорости в больших масштабах, а значит и на смектр первичной турбулентности. Так, например, если в масштабе $M \sim 10^{19}$ M_{\odot} при $\Omega = I$ современное среднекван ратичное значение вихревой скорости составляло бы треть от хаболовской скорости в том же масштабе $\left\langle \frac{\omega}{c} \right\rangle \simeq \frac{1}{3c} \mathcal{H}, \frac{\lambda}{2} \simeq \frac{\pi}{3P} \simeq \frac{M_{\odot}^2}{3P} \simeq \frac{M_{\odot}^2}{3P} \simeq \frac{10^{-2}}{10^{-2}}$, то вторичние флуктуации достигали бы $\frac{ST}{c} > \frac{10^{-2}}{c}$ в угловой шкале $\theta \sim 4^{\circ}$. Учет отличия Ω от единици $\Omega < 0$ слаба. полнительного фактора $\Omega < 0$ т.е. зависимость от $\Omega < 0$ слаба.

Эйфект Сакса и Вольфа. Сакс и Вольф (1967) исследовали влияние возмущений плотности и скорости на реликтовое излучение в рамках ОТО. Ньютоновская трактовка рассмотренных ими эффектов дана Зельдовичем и Новиковым (1975). При $\lambda << ct$ и резкой границе видимости (ширина границы много меньше λ) в момент t_A

$$\frac{ST}{T} = \frac{-u_n(t_0) + u_n(t_1)}{c} + \frac{1}{c^2} \left[\gamma(t_0) - \gamma(t_1) \right]_{II}$$

Этот результат получен для одной из волн в интеграле Фурье; u_2 проекция пекулярной скорости на дуч зрения, Y — потенциал
возмущения; t_a : современный момент времени. Первый член в (II)
соответствует доплер-эффекту и позволяет оценивать скорости в
момент $t_4 \ll t_a$ (мелкомасштабные флуктуации) и t_a (скорость
движения Земли относительно реликтового излучения, 24— часовая
анизотропия), второй член описывает чисто гравитационное влия—
ние на частоту. При $\lambda \ll c t$ второй член всегда меньше перво-

В случае рекомбинации водорода во Вселенной (2~1500) рекомбинацию кожно считать мгновенной лишь при рассмотрении крупномасштабных возмущений м > 1016 м (Сюняев, Зельдович,

1970). В меньших масштабах эффект Сакса и Вольфа резко уменьшается из—за немгновенности рекомбинации. Точно так же нельзя считать резкой и границу $\mathcal{T}_{\tau} \sim \mathbf{I}$ при вторичной ионизации. В этом случае для потенциальных движений эффект Сакса и Вольфа описывается формулой вида

 $\frac{8T}{T} = \frac{1}{c} \int_{0}^{t} \frac{du_{n}(t)}{dt} e^{-T(t)} dt - \frac{1}{c} \int_{0}^{t} grad_{n} Y(t) e^{-T(t)} dt,$

которая в пределе больших масс (когда рекомбинацию можно считать мгновенной) сводится к (II). Первое слагаемое в правой части (I2) легко интегрируется по частям

Так как $\mathcal{T}(t\to 0)\to \infty$, то первый член в правой части этой формулы описывает 24— часовую анизотропию, а второй, очевидно, соответствует эффекту рассеяния на электронах, описанному выше. Если учесть связь между потенциалом $\mathscr P$ и возмущениями плотности $\frac{SP}{P}$, следующую из уравнения Пуассена $\Delta \mathscr P=$ $=-4\pi \mathcal G_P \mathcal S_P \mathcal S$

 $\frac{q_{ZAd_{R}} \varphi = -\frac{8\pi i \, \mathcal{G}_{S}(2)}{(2\pi)^{3}} \frac{c \, (1+2z)}{H_{o} \, \Omega(1+2z)} \int \frac{a_{P} H}{P} \, e^{i\vec{p}\vec{z}} \frac{3}{d\vec{p}} = \frac{3i \, c \, H_{o} \, (1+\Omega z)}{(2\pi)^{3}} \int \frac{A_{P} H}{P} \, e^{i\vec{p}\vec{z}} \, d^{3}p.$

После этого легко оценить вклад в $\frac{\mathcal{E}\mathcal{T}}{\mathcal{T}}$ второго члена в правой части (I2). При $\mathcal{Q}=I$

 $B_{\rm H}$ утренний интеграл в (I3) заменой переменной $\frac{Por}{\sqrt{l+2}} = V$ и интегрированием по частям приводится к форме, удобной для вычисления изложенным выше методом

 $\frac{2}{PM}$ $\int \exp \left\{iV - \frac{dP^3M^3}{V^3} + d\right\} dV = \frac{2}{PM} \int \frac{i\exp\left[iV - \frac{dP^3M^3}{V^3} + d\right]}{e^{2}} + d$ Первый член справа описывает влияние локального гравитационного

Первый член справа описывает влияние локального гравитационного поля $\frac{V(t_0)/c^2}{c^2}$, а второй — вклад флуктуаций, формирующихся в зоне с $\tilde{c} \sim 1$, $\tilde{c} \sim 10$. Проведя элементарные выкладки и усреднение по углам, находим

(ST)=3.10-2 M22 8/0 11 (ST) = 2,5.10 = SP(14)

соответственно в области малых и больших масс. Видно, что в случае потенциальных возмущений и малых масс эффекты рассеяния и Сакса и Вольфа дают сравнимый вклад в мелкомасштабные флуктуации. В области больших масс доминирует эффект Сакса и Вольфа. Приведем численный пример для случая Ω =1. Предположим, что объекты с массой порядка массы скопления кома $M \approx 6 \cdot 10^{15} M_{\odot}$ образовались при $C_{\odot} = 5$, тогда $C_{\odot} = 2 \cdot 10^{-6}$ в масштабе $C_{\odot} = 18$. Это значение сравнимо с результатом, полученным для первичных флуктуаций (Сюняев, Зельдович, 1970). Таким образом, даже при надичии "вторичного" разогрева движения вещества приводят к значительным флуктуациям, если велики возмущения в больших масштабах. Так же, как и в случае "первичных" флуктуаций, наблюдения могут ограничить амплитуду возмущений больших масштабов и по-видимому противоречат единому спектру возмущений $C_{\odot} = 1$.

Наблюдаемые объекты как источники флуктуаций. Лонгейр и Сюняев (1969) показали, что наблюдаемые на длинных радиоволнах () = =75см) и вошедшие в каталоги радиоисточники должны приводить к заметным = 10-5 ÷10-6 флуктуациям фона в области сантиметровых волн. Главный вклад во флуктуации дают источники, плотность которых на небе равна одному источнику на диаграмме чувствительности телескопа. Популяция радиоисточников с плоскими спектрами увеличивает приведенную оценку

Скопления галактик. (Сюняев, Зельдович, 1972б) показали, что

наличие горячего межгалактического газа в богатых скойлениях галактик типа Комы, наблюдаемого по его рентгеновскому излучению, должно приводить вследствие комптонизации к уменьшению яркостной температуры реликтового излучения в направлении на скопление $\begin{pmatrix} \mathcal{T} \\ \mathcal{T} \end{pmatrix}_{i} = -2 \frac{N_{e}}{m_{e}C^{2}} \mathcal{E}_{f} N_{e} \mathcal{E} \approx 2 \cdot 10^{-4}$. Величина эффекта не зависит от \mathcal{Z}_{i} , на котором расположено скопление. Принимая пространственную плотность таких скоплений равной $\mathcal{N}_{o} \approx 1.5 \cdot 10^{-7} \mathrm{Muc}^{-3}$ их радиус равным $\mathcal{R} = 1$ Мпс и считая, что скопления образовались при $\mathcal{Z}_{i} = 4$ легко найти среднее число их на луче зрения

$$z = -\int_{0}^{2} N(z) \pi R^{2} c \frac{dt}{dz} dz = c H_{0} N_{0} \pi R^{2} \int_{0}^{2} \frac{2max}{\sqrt{1+2}} dz.$$

При $\mathcal{Q}=1$ имеем $\mathcal{K}\approx 5\cdot 10^{-2}$, угловой размер скопления с $\mathcal{Z}=4$ составляет $\mathcal{O}_1\approx\frac{2\mathcal{E}}{\mathcal{D}}=5$. Следовательно одно скопление приходится в среднем на $\mathcal{O}\sim\mathcal{O}_1\mathcal{E}^{-\frac{2}{3}}$ 22, и следует ожидать флуктуаций фона $\left\langle \frac{\delta T}{T}\right\rangle\approx\mathcal{E}\left(\frac{\delta T}{T}\right)_2=10$, связанных со скоплениями, которые мы не в состоянии наблюдать современными методами. Вид зависимости от \mathcal{E} ясен: фон приходит в антенну с большой площади $\frac{T}{\eta}\mathcal{O}^2$, а уменьшение интенсивности происходит лишь на площади $\frac{T}{\eta}\mathcal{O}^2$, а уменьшение интенсивности происходит лишь на площади $\frac{T}{\eta}\mathcal{O}^2$. Флуктуации максимальны, когда в диаграмму чувствительности радиотелескопа попадает в среднем одно скопление (то есть, то нет). При $\mathcal{Q}=0.1$ и $\mathcal{Z}=4$ получаем $\mathcal{E}=3.0$ = 11 и $\left\langle \frac{\delta T}{T}\right\rangle=1.5\cdot 10^{-5}$.

Молодые галактики также могут приводить к заметным флуктуа— циям фона в сантиметровом диапазоне. Согласно современным представлениям, в первые $A t \approx 10^8$ лет их жизни светимость молодых галактик определялась яркими O и B звездами и достигала 10^{46} эрг/с . Основная энергия уходила в виде ультрафиолетового ионизующего излучения с A < 912 A (Вейман, 1966, Парт-

ридж и Пиблс, 1967). Предположим, что в галактике с массой $M=2 \cdot 10^{11}$ М₆ на ранней стадии ее эволюции половина вещества на-кодится в виде межзвездного газа однородно распределенного в сфере радмусом R=10 кис. Тогда плотность газа составляет $M=\frac{3M}{87m_{p}R^{3}}\approx 1$ см $^{-3}$. Количество рекомбинаций в таком монизованном облаке газа с $T=10^{4}$ к в единицу времени $\frac{47R^{3}}{87}N^{2}L_{1}\approx 3\cdot10^{5}$ с $^{-1}$ примерно в 10 раз меньше числа ионизурищих фотонов, излучаемых молодой галактикой за то же время $\frac{L_{MN}}{RN}\approx 3\cdot10^{56}$ I/c $\frac{1}{2}$ Здесь $L=3\cdot10^{-13}$ см $\frac{3}{2}$ коэффициент рекомбинации, а $\frac{1}{N}=15$ зв. Следовательно, облако будет полностью ионизовано и будет представлять собой гигантскую зону Ні. Оптическая толща облака по тормозному поглощению (Каплан, Пикельнер, 1963) равна $\frac{1}{N}=\frac{C_{10}2}{N^{2}}\frac{N^{2}}{2}\cdot\frac{2R}{2}=8\cdot10^{-5}\frac{\lambda}{3cn}$.

Здесь фактор Гаунта g принят равным 6. Яркостная температура облака составляет $ST = T_e T_{eff} = C_s S \left(\frac{\lambda}{3C_s}\right)^2$. Число молодых галактик на луче зрения примерно равно $\kappa = \pi R^2 N_\rho C H_o \int C_s^2 r_d e$ функция $f(z_{max})$ учитывает отношение Δt к космологическому времени и эффекты расширения. При $N_\rho = 0.03$ Мпс $^{-3}$, $\Omega = I$ и $Z_{max} = 15\div20$ получаем E = I. Угловой диаметр галактики с R = I0 кис при E = I5 и Ω и I составляет примерно I0. Следует ожидать флуктуации в этом масштабе порядка

При Ω =0,1 существенно до 2 уменьшается угловой масштаб. В цепи приведенного выше рассмотрения не входило получение точной оценки флуктуаций, связанных с молодыми галактиками. Тем не менее оно показывает, что современные модели молодых галактик и данные наблодений фона легко согласуются лишь при достаточно раннем ≥> 5 образовании галактик. Ясно, что учет неоднород-

ности газа, сопровождающейся повышением меры эмиссии должен увеличить интегральное тепловое радиоизлучение зон НП в молодой галактике (если ту < 1 в каждой области), т.е. усилить обсуждаемый эффект. Эффект ограничен сверху, так как суммарная мера эмиссии зон НП ограничена сверху числом ионизующих фотонов, излучаемых в единицу времени молодой галактикой. Он не может превишать полученный результат более чем в 10 раз.

При $2\sim5$ 20 молодые галантики должны подвергаться заметному скучиванию, так как в это время уже велика 5>0.2 вмилитуда флуктуаций в масштабе скоплений галантик. Оценки показывают, что молодые галантики при $2\sim10$ могут обеспечить флуктуации реликтового излучения порядка $5\sim10^{-5}$ и в масштабе $6\sim10$.

Автор благодарен Я.Б.Зельповичу и Л.А.Цозднякову за обсуждения.

JUTEPATYPA

- Arons J., Wingert D.W. (Aponc M Burepr), Astrophys.J. 1972
- Weymann R., (Berman), Preprint University of Arizona (USA),
- Дорошкевич А.Г., Зельдович Я.Б., Сюняев Р.А., Препринт ИПМ АН СССР.№ 110. 1977.
- Дорошкевич А.Г., Шандарин С.Ф. Астрон.ж., 1975, 52, 9.
- Зельдович Я.Б., Новиков И.Д. Строение и эволюция Вселенной М., "Наука", 1975.
- Каплан С.А., Пикельнер С.Б. Межзвездная среда. М., Физматгиз, 1963.
- Лонгейр М.С., Сюняев Р.А. Nature, 1960, 223, 719.
- Озерной Л.М., Черномордия В.В. Астрон.ж., 1976, 53, 459.
- Парийский Ю.Н. Тезисн Всесоюзной конференции по радиоастрономии, Харьков, Ин-т радиофизики и электроники АН УССР,
- Partridge R.B., Peebles P.J.E. (Партридж и Пиблс) Astrophys. J., 1967, 147, 868.
- Peebles P.J.E., Yu I.T. (Пислс и Ю.) Astrophys J., 1970, 162, 815.
- Sachs R.K., Wolfe A.M. (Сакс и Вольд) Astrophys.J., 1967, 147,
- Silk J. (Силк) Nature, 1967, 215, 1155.
- Silk J. (Силк) Astrophys. J., 1974, 194, 215.
- Sunyaev R.A. Astron. Astrophys., 1971, 12, 190.
- Sunyaev R.A. In Proceedings of IAU Symposium N 76 "Radioastrono-my and Cosmology", Reidel, Dordrecht, 1976.
- Sunyaev R.A., Zeldovich Ya.B. Astrophys. Spa. Sci., 1970, 7, 3.
- Sunyaev R.A., Zeldovich Ya.B. Astron. Astrophys. 1972(a), 20.189.
- Sunyaev R.A., Zeldovich Ya.B. Comments Astrophys. Spa. Physics, 1972 (b), 4, 173.
- Чибисов Г.В., Озерной Л.М. Astrophys. Letters, 1969, 3, 189.

© 055(02)2 T-I4255 3akas 1284

Отпечатано в ИКИ АН СССР

Подписано и печати 19.07.77 Тираж 90 Объем 0,7 уч.-изд.л.