1.	Given that	
	$f(x) = x^2 - 4x + 5 \qquad x \in \mathbb{R}$	
	(a) express $f(x)$ in the form $(x + a)^2 + b$ where a and b are integers to be found.	(2)
	The curve with equation $y = f(x)$	
	• meets the y-axis at the point P	
	 has a minimum turning point at the point Q 	
	(b) Write down	
	(i) the coordinates of P	
	(ii) the coordinates of Q	(2)

2.	The functions f and g are defin	ned by			
		$f(x) = 7 - 2x^2$	$x \in \mathbb{R}$		
		$g(x) = \frac{3x}{5x - 1}$	$x \in \mathbb{R}$	$x \neq \frac{1}{5}$	
	(a) State the range of f				(1)
	(b) Find gf(1.8)				(2)
	(c) Find $g^{-1}(x)$				
					(2)

3.	$f(x) = 2x^2 + 4x + 9 \qquad x \in \mathbb{R}$	
	(a) Write $f(x)$ in the form $a(x+b)^2 + c$, where a , b and c are integers to be found.	(3)
	(b) Sketch the curve with equation $y = f(x)$ showing any points of intersection with the coordinate axes and the coordinates of any turning point.	(3)
	(c) (i) Describe fully the transformation that maps the curve with equation $y = f(x)$ onto the curve with equation $y = g(x)$ where	
	$g(x) = 2(x-2)^2 + 4x - 3$ $x \in \mathbb{R}$	
	(ii) Find the range of the function	
	$h(x) = \frac{21}{2x^2 + 4x + 9} \qquad x \in \mathbb{R}$	(4)

Figure 1

Figure 1 shows a sketch of part of the graph of y = g(x), where

$$g(x) = 3 + \sqrt{x+2}, \qquad x \geqslant -2$$

(a) State the range of g.

(1)

(b) Find $g^{-1}(x)$ and state its domain.

(3)

(c) Find the exact value of x for which

$$g(x) = x \tag{4}$$

(d) Hence state the value of a for which

$$g(a) = g^{-1}(a)$$
 (1)

$$g(x) = \frac{x}{x+3} + \frac{3(2x+1)}{x^2 + x - 6}, \quad x > 3$$

(a) Show that $g(x) = \frac{x+1}{x-2}, x > 3$

(4)

(b) Find the range of g.

(2)

(c) Find the exact value of a for which $g(a) = g^{-1}(a)$.

(4)

6.		
	The function f is defined by	
	$f(x) = 3 + \sqrt{x - 2} \qquad x \in \mathbb{R} x > 2$	
	(a) State the range of f	
		(1)
	(b) Find f^{-1}	(3)
	The function g is defined by	(0)
	$g(x) = \frac{15}{x - 3} \qquad x \in \mathbb{R} x \neq 3$	
	(c) Find gf(6)	(2)
	(1) F' 1.1	(2)
	(d) Find the exact value of the constant a for which	
	$f(a^2+2)=g(a)$	
		(2)

The functions f and g	are defined by		
	$f: x \mapsto e^x + 2$,	$x \in \mathbb{R}$	
	$g: x \mapsto \ln x$,	x > 0	
(a) State the range of	f.		(1)
(b) Find $fg(x)$, giving	g your answer in its simple	est form.	(2)
(c) Find the exact val	lue of x for which $f(2x+3)$	3) = 6	(4)
(d) Find f ⁻¹ , the inve	erse function of f, stating i	ts domain.	(3)
			(4)
	 (a) State the range of (b) Find fg(x), giving (c) Find the exact val (d) Find f⁻¹, the inverse (e) On the same axes 	 g:x → ln x, (a) State the range of f. (b) Find fg(x), giving your answer in its simple (c) Find the exact value of x for which f(2x+3) (d) Find f⁻¹, the inverse function of f, stating it (e) On the same axes sketch the curves with equ 	$f: x \mapsto e^x + 2, \qquad x \in \mathbb{R}$ $g: x \mapsto \ln x, \qquad x > 0$

8. The function f is defined by

$$f(x) = \frac{8x+5}{2x+3} \qquad x > -\frac{3}{2}$$

(a) Find
$$f^{-1}\left(\frac{3}{2}\right)$$

(2)

(b) Show that

$$f(x) = A + \frac{B}{2x+3}$$

where *A* and *B* are constants to be found.

(2)

The function g is defined by

$$g(x) = 16 - x^2 \qquad 0 \leqslant x \leqslant 4$$

(c) State the range of g^{-1}

(1)

(d) Find the range of $f g^{-1}$

(3)

Figure 2

Figure 2 shows a sketch of the curve C with equation y = f(x) where

$$f(x) = 4(x^2 - 2)e^{-2x}$$
 $x \in \mathbb{R}$

(a) Show that $f'(x) = 8(2 + x - x^2)e^{-2x}$

(3)

(b) Hence find, in simplest form, the exact coordinates of the stationary points of C.

(3)

The function g and the function h are defined by

$$g(x) = 2f(x)$$
 $x \in \mathbb{R}$

$$h(x) = 2f(x) - 3 \qquad x \geqslant 0$$

- (c) Find (i) the range of g
 - (ii) the range of h

(3)

Question 9 continued

10.
$$h(x) = \frac{2}{x+2} + \frac{4}{x^2+5} - \frac{18}{(x^2+5)(x+2)}, \qquad x \geqslant 0$$

(a) Show that
$$h(x) = \frac{2x}{x^2 + 5}$$
 (4)

(b) Hence, or otherwise, find h'(x) in its simplest form. (3)

Figure 2 shows a graph of the curve with equation y = h(x).

(c) Calculate the range of h(x).

(5)

Figure 4

Figure 4 shows a sketch of the graph of y = g(x), where

$$g(x) = \begin{cases} (x-2)^2 + 1 & x \le 2 \\ 4x - 7 & x > 2 \end{cases}$$

(a) Find the value of gg(0).

(2)

(b) Find all values of x for which

$$g(x) > 28 \tag{4}$$

The function h is defined by

$$h(x) = (x-2)^2 + 1$$
 $x \le 2$

(c) Explain why h has an inverse but g does not.

(1)

(d) Solve the equation

$$h^{-1}(x) = -\frac{1}{2}$$
 (3)

Question 11 continued

Figure 2

Figure 2 shows a sketch of part of the curve with equation

$$g(x) = x^2(1-x)e^{-2x}, \quad x \geqslant 0$$

- (a) Show that $g'(x) = f(x)e^{-2x}$, where f(x) is a cubic function to be found. (3)
- (b) Hence find the range of g.

(6)

(c) State a reason why the function $g^{-1}(x)$ does not exist.

(1)