216 ACC ---Thr

g

207 CAG

CIG

TIC

GIC

CIG

189 CAC

1300

CIG

180 80 80

ည္တ

171 TTC

Sig

33

198 TTC

---Val

Pro

Gln

Len

Phe

Val

--- Iren

His

Leu

Gly

Gly

Phe

Val

1

270 GTG ---

Sic

TAC

261 CGG ---

GAC

GTG

252. GCA

ATC

ACC

243 ACC ---

CTC ---Leu

ACG ---

----Val

Ser

Val

174

GTC ---

234 TTC

CIC

133

225 GTG

TAT

Τγr

Asp

Val

Ala

----Ile

Thr

[Drawing]

Fig. 1

54 CGG 	108 CTC 	162 GGC Gly
CGC	GTG Val	CGC
g : g	GAC (5 2
45 CGG 	99 G TCC G u Ser A	153 GAG Glu
45 GCG CGG G 	TTG	TTC Phe
ATC Ile	GCC 	GCC
36 GTG Val		144 TAT TYT
F 13	90 AAC CTG Asn Leu	GCC
a) - 13	GGC	CTG GCC Leu Ala
27 CTG	81 17 1-	135 ACG
CTG	CTC	CTC Leu
GTC 	타무	CCG
AAC ASn	72 AAC 	126 GTG
955 1- 615	ACG Thr	TGC
GTG 	GTG Val	GCC Ala
ATG	63 AAC Asn	ACC ACC Iffir
GTG GGC ATG GTG GGC AAC GTC CTG Val Gly Met Val Gly Asn Val Leu	CAC His	TGC
GTG 	CTG Leu	ATG

297 ATC 9 ධ් 288 AGG CIG 500 279 CAC GTG ---

Leu

Val

5

54	TAC	i 	17.	301	CAG		Gln	162	GTG	1	Val				
	I CI	 - -	Ser		ACC	 	Thr		CTG	1	Leu				
	CIIG		Leu		GTG	1	Val		TTG	 	Leu				
45	CEC	1 1	Leu	66	133	 	Cγs	153	1330	1	Суs		3,		
	ATC	1	Ile		ပ္ပ	1	G1y		TTC	1	Phe		TAC	 	Τχτ
	GIC	 	Val		ပ္ပ	1	Pro		ACC	1	Thr		TAC	 	꿏
36	CIG	1	Leu	Оb	GIG	1	Val	144	ည	1 1	Arg	198	CCT	1	Pro
	CIG	 	Leu		GIG	 	Val		8	1	Arg		TIC	1	Leu
	CCI	 	Pro		ည	1	Arg		ည	-	Arg		1333		Trp
27	CIC	1 1	Leu	۳	AAC A		Asn	135	ည	1	Arg	189	13 C	1	ζŞs
	CIG	1	Leu		ည္ပ	! 	Arg		Ç		Ala		ATC	 	Ile
	TAC	1	${\rm T}\!\!\!/{\rm T}$		CIC	1	Leu		9	:	Arg		ပ္ပ		Ala
18	ACC	1 1	Thr	77	AAG	1	Lys	126	GAC	 	Asp	180	$ ext{TIT}$	 	Phe
	GIC	1	Val		$_{\mathrm{GIG}}$		Val		TGC	! !	Trp		GIG	\$ † 	Val
	CIG	 	Leu		5		Ser		GAC	1	Asp		GTC	1	Val
σ,	CIG		Leu	C	3 E		Val	117	ည	 	Ala	171	GIG		Val
	CIG	1	Leu		ည်	1	Val Arg		AGC CAG	 	Gln		GIC	 	Val
	900 CTG		$_{ m G1y}$		erc ces		Val		AGC		Ser		CIC		Val
	ŝ														

Fig. 3

Position of amino acid on amino acid sequence

Fig. 4

Position of amino acid on amino acid sequence

50	100	150 150	200	250 250
50 OVE TELANAE	100 LVH PLRRRI- IIN PRGWREN	150 FKDKYVCFDK	160 170 180 190 200 GLILV TYLLELIVIL LSY VRVSVKIRNR VVPGCVTQSQ PPSDSHRISY TRITIVIZYF GPLCFIFICY FKIYIRIKRR NNMADKIRDS	250
40 AL SDA MCTA SF SDA VAVM	90 TT TAV RVVV VL TAVERHQL	140 EPFQNVSLAA	190 VRVSVKLRNR FKIYIR	240
30 NVTNFLICNL NVTNFLIVNE	80 Vivyvsvete Vsttvstese	130 PEVIXQILID	180 LSW GPLCFIFICW	230 VEALCULPIY - FEVCNIPLE
20 LV TARVRRLH II TLKQKEMR	70 LCHLVFELOP MCKLNFELOP	120 IWVLAVASSL	170 TYLEBELEVIL	220 TECLLVVVVV NVMILSIVVA
10 20 30 40 50 1 VGAVGNVLKV LVIARVRRIH NVINFELICNI ALSDVINCTA CVP.TLAYAF 1 LGVSGNABIT IITEKQKEMR NVINFELIONE SFSDLAAVM CLPFTFVYITA	60 70 80 100 EPRGWVFG3G LCHLVFFELOP VIVYVSVFIL TTTAV RVVV LVHPLRRRI- MDH-WVFGET MCKLNPFVQC VSITVSIFSL VLIAV-RHQL IINFRGWRPN	110 120 130 140 150 101	160 GLLLV FPSDSHRLSY	210 220 230 01 ADWDRARRIR TFCILLOVIVIV VERICULEN 01 KYRSSETKRI NVMILISIWYA - FLYCMIELT
нн	51	101 101	151	201
p19P2 S12863	p19P2 S12863	p19P2 S12863	p19P2 S12863	p19.P2 S12863

Fi	ig.	6																
5,	GTY	: GG	? ?TA ==	e Garc	: ccc	18 AAC	ATC	· cro	27		; cro	36 GTG	ATC	GCG	45 CCG		CGC	54 CGG
-									·									
	Val	L GI	y Met	: Val	. GLY	Asn	ILE	Lec	. Leu	ı vaı	. Leu	ı vaı	116	. Ala	Arg	Val	ALG	Arg
			6.			72			81			90			99		CTC	108
	CIC	TAC	C AAC	GIG	ACG	AAT		CIC	ATC	GGC	AAC			110	100			CTC
	Leu	ı Tyı	: Ası	ı Val	. Thr	Asn	Phe	. Leu	Ile	: Gly	Asn	Leu	Ala	Leu	Ser	Asp	Val	Leu
			117			126			135			144			153			162
	ATG	TGO	ACC	GCC	TGC	GTG	CCG	CIC	ACG	CIG	GCC	TAT	GCC	TIC	GAG	CCA	CGC	GGC
	Met	Cys	Thr	Ala	Cys	Val	Pro	Leu	Thr	Leu	Ala	TYE	Ala	Phe	Glu	Pro	Arg	Gly
			171	_		180			189			198			207			216
	TGG	GIC			GGC			TGC			GTC			CTG	CAG	GCG	GTG	ACC
	Tro	Val	 L Phe	Gly	Gly	Glv	Leu	Cys	His	Leu	 Val	Phe	Phe	Leu	Gln	Ala	Val	The
	2																	
	GTG	TAT	225 GTG		GTG	234 TTC		CIC	243 ACC		ATC	252 GCA		GAC	261 CGC		GTG	270 GTG
	Va l	T) / T		Sar		Dhe	The	 T.A.				 als	 Val			T.00	 Val	 Val
	467	-1-			467		1:	Dea			770		477	ىرىء	_	*3*	741	
	crg	CTG	279 CAC		CIG	288 AGG	ccc	CGC	297 ATC		CIG	306 CGC	CTC	AGC	315 GCC	TAC	GCT	324 GTG
	Leu	val	. Als	PTO	Leu	Arg	Arg	Arg	TIE	Ser	Leu	Arg	Leu	Ser	ALA	īĀī	ALC	Val
	cma		333		~***	342	~~ ~	~~	351			360	~~~		369	C-1770	CAC	378
			ATC			-												
	Leu	Ala	Ile	Trp	Val	Leu	Ser	Ala	Val	Leu	Ala	Leu	Pro	Ala	Ala	Val	His	Thr
			387			396			405			414			423			432
	TAT	CAC	GTG	GAG	CIC	AAG	CCG	CAC	GAC	GTG	CGC	CTC	TGC	GAG	GAG	TIC	TGG	GGC
	Tyr	His	Val	Glu	Leu	Lys	Pro	His	Asp	Val	Arg	Leu	Cys	Glu	Glu	Phe	dil	Gly
			441			450			459			468			477			486
	TCC	CAG	GAG	CGC	CAG	ccc	CAG	CIC	TAC	GCC	TGG	GGG	CIG	CIG	CTG	GTG	ACC	TAC
	·Ser	Gln	Glu	Arg	Gln	Arg	Gln	Leu	Tyr	Ala	Trp	Gly	Leu	Leu	Leu	Val	Thr	Tyr
			495			504			513			522			531			540
	CIG	CIC	CCT	CIG	CTG					TCT	TAC	GCC	CGG	GTG	TCA	GTG	AAC	CIC
	Leu	Leu	Pro	Leu	Leu	Val	Ile	Leu	Leu	 Ser	Tyr	Ala	Arg	Val	Ser	Val	Lys	Leu
			549			558			567			576			585			594
	CGC	AAC	CGC	CIG	GTG		GGC	CGC		ACC	CAG		CAG	GCC	GAC	TGG	GAC	CCC
	Arg	Asn	Arg	Val	Val	Pro	Glv	Arg	Val	The	Glp	Ser	Gln	Ala		سخي 	Acn	Ara
							2			****			U 111.	744	-up	112	, Cap	. L. G
	CCT	CGG	CCC 603	CGG	CGC	612 ACC	TTC	TGC	621 TTG	CIG	CTG	630 GTG	GTC	CIG	639 GTG	crc	مكلمك	648 ACC
	Ala	νtα	wr.d	wed	arg	inr	rne	Cys	Leu	Leu	Val	Val	Val	Val	Val	Val	Phe	Thr
	CTC	ጥርር	657 TCG	CIG :		666	مكس	٦,										
								J										
_	Leu	СЛа	Trp	Leu	Pro	Phe	Phe											

F	i	σ		7
~	-	7	٠	•

p19P2 pG3-2/pG1-10	4 4	10 VGMVGNVELV VGMVGNFELV	20 LVIARVRRLH LVIARVRRLY	30 NVTNFLIGNL NVTNFLIGNL	40 ALSDVLMCTA ALSDVLMCTA	50 CVPLTLAYAF CVPLTLAYAF	20 20
p19P2 pG3-2/pG1-10	51	60 EPRG! NFGGG EPRG! NFGGG	70 LCHLVFFLQE LCHLVFFLQE	70 80 LCHLVFFLQ2 VTVYVSVFTL	90 TTIAVDRYVV TTIAVDRYVV	100 LVHPLRRRI- LVHPLRRRIS	100
n19P2	101	110	120	130	140	150	()
pc3-2/pc1-10	101	LRLSAYAVLA	IWVLSAVLAL	PAAVHTYHVE	LKPHDVRLCE	EFWGSQERQR	150
p19P2 pG3-2/pG1-10	151 151	160 <mark>GLLLV</mark> QLYAW <mark>GLLLV</mark>	170 TYLLPLLVIL TYLLPLLVIL	180 LSY/RVSVKL LSYRRVSVKL	190 RNRVV FGTVT RNRVV FGRVT	200 QSQADVIDRAR QSQADVIDRAR	200
p19P2 pG3-2/pG1-10	201	210 RRRTFCLLVV RRRTFCLLVV	220 VVVVFITCWL VVVVFITCWL	230 PYY	240	250	250 250

Fig. 8

Ηλατορηοροείτη

Position of amino acid on amino acid sequence

Fig	. 9	
	1 CATCGTCAAGCAGATGAAGATCATCCACGAGGATGGCTACTCCGAGGGCCCAGCAGAAATT 1	60 1
	L CTGCCCTTCTTCCCGCGAGTGCTTTCCCGCTCTCCAAACCCCACTCCCAGGTGGCCATG 1	120 1
12	L GCCTCATCGACCACTCGGGGCCCCAGGGTTTCTGACTTATTTTCTGGGCTGCCGCCGGCG L AlaserSerThrThrArgGlyProArgValSerAspLeuPheSerGlyLeuProProAla	180 21
18: 22	GTCACAACTCCCGCCAACCAGAGCGCAGAGGCCTCGGCGGCAACGGGTCGGTGGCTGGC	240 41
24: 42	GCGGACGCTCCAGCCGTCACGCCCTTCCAGAGCCTGCAGCTGGTGCATCAGCTGAAGGGG AlaAspAlaProAlaValThrProPheGlnSerLeuGlnLeuValHisGlnLeuLysGly	300 61
301 62	CTGATCGTGCTCTACAGCGTCGTGGTGGTCGTGGGGCCTGGTGGGCAACTGCCTGC	360 81
	. GTGCTGGTGATCGCGCGGGTGCGCCGGCTGCACAACGTGACGAACTTCCTCATCGGCAAC ValLeuValIleAlaArgValArgArgLeuHisAsnValThrAsnPheLeuIleGlyAsn	420 101
421 . 102	CTGGCCTTGTCCGACGTGCTCATGTGCACCGCCTGCGTGCCGCTCACGCTGGCCTATGCC LeuAlaLeuSerAspValLeuMetCysThrAlaCysValProLeuThrLeuAlaTyrAla	480 121
	TTCGAGCCACGCGGCTGGTGTTCGGCGGCGGCCTGTGCCACCTGGTCTTCTTCCTGCAG PheGluProArgGlyTrpValPheGlyGlyGlyLeuCysHisLeuValPhePheLeuGln	540 141
541 !42	CCGGTCACCGTCTATGTGTCGGTGTTCACGCTCACCACCATCGCAGTGGACCGCTACGTC ProValThrValTyrValSerValPheThrLeuThrThrIleAlaValAspArgTyrVal	600 161
	GTGCTGGTGCACCCGCTGAGGCGGCGCATCTCGCTGCGCCTCAGCGCCTACGCTGTGCTG ValleuValHisProLeuArgArgArgIleSerLeuArgLeuSerAlaTyrAlaValLeu	660 181
ინ1 (82	GCCATCTGGGCGCTGTCCGCGGTGCTGGCGCGCCGCCGCGCGCGCACACCTATCACGTG AlaIleTrpAlaLeuSerAlaValLeuAlaLeuProAlaAlaValHisThrTyrHisVal	720 201
	GASCTCAASCCSCACGACGTGCGCCTCTGCGAGGAGTTCTGGGGCTCCCAGGAGCGCCAG GluLeuLysProHisAspValArgLeuCysGluGluPheTrpGlySerGlnGluArgGln	780 221
	CGCCAGCTCTACGCCTGGGGGGCTGCTGCTGGTCACCTACCT	840 241
	CTCCTGTCTTACGTCCGGGTGTCAGTGAAGCTCCGCAACCGCGTGGTGCCGGGCTGCGTG LeuLeuSerTyrValArgValSerValLysLeuArgAsnArgValValProGlyCysVal	900 261
	ACCCAGAGCCAGGCCGACTGGGACCGCGCTCGGCGCGCGC	960 281
	GTGGTCGTGGTGTTCGCCGTCTGCTGGCTGCCGCTGCACGTCTTCAACCTGCTGCGG ValValValValPheAlaValCysTrpLeuProLeuHisValPheAsnLeuLeuArg	1020 301
	GACCTCGACCCCCACGCCATCGACCCTTACGCCTTTGGGCTGGTGCAGCTGCTCTGCCAC AspLeuAspProHisAlaIleAspProTyrAlaPheGlyLeuValGlnLeuLeuCysHis	1080 321
1081 322	TGGCTCGCCATGAGTTCGGCCTGCTACAACCCCTTCATCTACGCCTGGCTGCACGACAGC TrpLeuAlaMetSerSerAlaCysTyrAsnProPheIleTyrAlaTrpLeuHisAspSer	1140 341
	TTCCGCGAGGAGCTGCGCAAACTGTTGGTCGCTTGGCCCCGCAAGATAGCCCCCCATGGC PheArgGluGluLeuArgLysLeuLeuValAlaTrpProArgLysIleAlaProHisGly	1200 361
	CAGAATATGACCGTCAGCGTCGTCATCTGATGCCACTTAGCCAGGCCTTGGTCAAGGAGC GlnAsnMetThrValSerValValIle***	1260 371
1261	TCCACTTCAACTGGCCTCCTAGGGCACCACTCGAGGTCAATCTGGTGCTTATTCTCAGCA	1320 371
1321	CCAGAGCTAGC	1331

Fig. 10

Position of amino acid on amino acid sequence

Fig. 12

	EIG		<u>.</u>															
5 '	CIG	T;T	9 GTC		GCG	18 GTG		AGG		GTG			GTG				CGT	54 CGG
	<u>Leu</u>	C∨s	Va l	Ile	Ala	Val	Asp	Arg	Tyr	Val	Val	Leu	Val	His	Pro	Leu	Arg	Arg
	rcr	דידב	63 TCA	CIG	AGG	72 CIC	AGC	GCC	81 TAC		GIG	90 CTG		ATC	99 TGG	GCT	CTA	108 TCT
																		Ser
	223	~~~	117	GCG	CTT.	126	ccc	ccc	135	CAC	አሮር	144 TAC	СЪТ	GTG	153 GAG	CTC	AAG	162 CCC
	Ala	Val	Leu	Ala	Leu	Pro	Ala	Ala	Val	His	Thr	Tyr	His	Val	Glu	Leu	Lys	Pro
	CAC	GAC	171 GTG	AGC	CTC	180 TGC	GAG	GAG	189 TTC	TGG	GGC	198 TCG	CAG	GAG	207 CGC	CAA	CGC	216 CAG
٠.	His	Asp	Val	Ser	Leu	Cys	Glu	Glu	Phe	Trp	Gly	Ser	Gln	Glu	Arg	Gln	Arg	Gln
Ì	ATC	TAC	225 GCC	TGG	GGG	234 CTG	CTT	CTG	243 GGC		TAT	252 TTG	CIC	ccc	261 CTG	CTG	GCC	270 ATC
	Ile	 Tyr	Ala	Trp	Gly	 Leu	Leu	Leu	Gly	Thr	Tyr	Leu	Leu	Pro	Leu	Leu	Ala	Ile
			279			288			297			306			315			324
	CIC	CTG	TCT	TAC	GTA	CGG	GTG	TCA	GIG	AAG	CIG	AGG	AAC	CGC				
	Leu	Leu	Ser	Tyr	Val	Arg	Val	Ser	Val	Lys	Leu	Arg	Asn	Arg	Val	Val	Pro	Gly
	360	ביונים	333	ÇAG	ACT	342 CAA	GCT	GAC		GAC			CGT		3 69 CGC		ACT	378 TTC
																		
	Ser	Val	Thr	Gln	Ser	Gln	Ala	Asp	Trp	Asp	Arg	Ala	Arg	Arg	Arg	Arg	Thr	Pne
	TGT	CTG	387 CTG	GTG	GTG	396 GTG	GTG	GTA	405 GTG	TTC	ACG	414 CTC	TGC	TGG	423 CTG	ccc	TTC	432 TAC
	Cys	Leu	Leu	Val	Val	Val	Val	Val	Val	Phe	Thr	Leu	Cys	Trp	Leu	Pro	Phe	Tyr

--CI 3,

TOULDELT TOUCH

Fig. 13				
50 50 -30	100 100 21	150 150 71	200 200 121	250 250 171
50 CVPLTLAYAF CVPLTLAYAF	100 LVHPLRRRI- LVHPLRRRIS LVHPLRRRIS	150 EFYGSQERQR EFYGSQERQR	200 QSQAD''IDRAR QSQAD''IDRAR QSQAD''IDRAR	250
40 ALSDVLMCTA ALSDVLMCTA	90 TTIAVDRYVV TTIAVDRYVV CVIAVDRYVV	140 LKPHDVRLCE LKPHDVSLCE	190 RNRVVPG VT RNRVVPGRVT RNRVVPGGVT	240
30 NVTNFLIGNL NVTNFLIGNL	VIVYVSVFTL	130 PAAVHTYHVE PAAVHTYHVE	180 LSYVRVSVKL LSYARVSVKL LSYVRVSVKL	230 PYY PF도
20 LVIARVRRL LVIARVRRL	70 LCHLVFFLQE LCHLVFFLQA	120 IVVLSAVLAL IVVLSAVLAL	170 TYLLPLLVIL TYLLPLLVIL TYLLPLLAIL	220 VVVVFTLCVIL VVVVFTLCVIL
10 VGMVGNV[LLV VGMVGNF[LLV	60 EPRGMVFGGG EPRGMVFGGG	110 LRLSAYAVL LRLSAYAVL	160 GLLLV QLYAVGLLLV QIYAVGLLLG	210 RRRTFCLLVV RRRTFCLLVV
1 1 -79	51 51 -29	101 101 22	151 151 72	201 201 122
p19P2 pG3-2/pG1-10 p5S38	p19P2 pG3-2/pG1-10 p5S38	p19P2 pG3-2/pG1-10 p5S38	p19P2 pG3-2/pG1-10 p5S38	p19P2 pG3-2/pG1-10 p5S38

Position of amino acid on amino acid sequence

Fig. 15

Fig. 16

-college resco

Fig. 17

Fig. 19

Country - Labor

Fig. 20

A215

Fig. 21

- Country Tonoo

A215

Fig. 22

27 GCC CAC CAG CAC TCC ATG GAG ATC CGC ACC CCC GAC ATC AAC CCT GCC TGG TAC Ala His Gln His Ser Met Glu Ile Arg Thr Pro Asp Ile Asn Pro Ala Trp Tyr 72 GCG GGC CGT GGG ATC CGG CCC G 3. Ala Gly Arg Gly Ile Arg Pro P3-2

- Country - Improo

				_	_
F	i	a	_	- 2	3

1	GTGGAATGAAGGCGGTGGGGCCTGGCTCCTCTGCCTGCTGCTGGCCCTGGCCCTG	59
1	MetLysAlaValGlyAlaTrpLeuLeuCysLeuLeuLeuLeuGlyLeuAlaLeu	18
60	CAGGGGCTGCCAGCAGAGCCCACCAGCACTCCATGGAGATCCGCACCCCCGACATCAAC	119
	GlnGlyAlaAlaSerArgAlaHisGlnHisSerMetGluIleArgThrProAspIleAsn	38
	PDN	
120	CCTGCCT	126
20	Probla	40

Fig. 24(a)

59	GTGGAATGAAGGCGGTGGGGCCTGGCTCCTCTGCCTGCTGCTGGCCCTGGCCCTG	1
18		1
119	CAGGGGGCTGCCAGCAGCCCCACCAGCACTCCATGGAGATCCGCACCCCGACATCAAC	60
38		19
179	CCTGCCTGGTACGCRGGCCGTGGGATCCGGCCGTGGGC	20
58	a a a a a a a a a a a a a a a a a a a	39
239	GCCCCGGGGGACGGACCCAGGCCTGGCCCCGGCGTGTGCCGGCCTGCTTCCGCCTGGAA	180
78	and a second second security and a constraint of the language	59
299	GGCGGYGCTGAGCCCTCCCGAGCCCTCCCGGGGCGGCTGACGGCCCAGCTGGTCCAGGAA	240
98	GlyGlyAlaGluProSerArgAlaLeuProGlyArgLeuThrAlaGlnLeuValGlnGlu	79
359	TAACAGCGGGAGCCTGCCCCCCCCCCCCCCCCCCCCCCC	3 0 0
98	,	98
380	AATAAAAGCAGCTGGCTTGTT	360
.98	• • • • • • • • • • • • • • • • • • • •	98

F	i	g	24	(b])

1	GTGGAATGAAGGCGGTGGGGCCTGGCTCCTCTGCCTGCTGCTGGCCCTGCCCTG	59
1	MetLysAlaValGlyAlaTrpLeuLeuCysLeuLeuLeuLeuGlyLeuAlaLeu	18
60	CAGGGGGCTGCCAGCAGAGCCCACCAGCACTCCATGGAGATCCGCACCCCCGACATCAAC	119
19	GlnGlyAlaAlaSerArgAlaHisGlnHisSerMetGluIleArgThrProAsoIleAsn	38
1 20	CCTGCCTGGTACGCRGGCCGTGGGATCCGGCCGTGGGCCGCCGGCGAAGAGCT	179
39	ProAlaTrpTyrAlaGlyArgGlyIleArgProValGlyArgPheGlyArgArgArgAla	58
1 00	GCCTGGGGACGGACCCAGGCCTGGCCCCGGCGTGTGCCGGCCTGCTTCCGCCTGGAA	239
59	AlaLeuGlyAspGlyProArgProGlyProArgArgValProAlaCysPheArgLeuGlu	78
240	GGCGGYGCTGAGCCCTCCCGAGCCCTCCCGGGGCGGCTGACGGCCCAGCTGGTCCAGGAA	299
79	GlyGlyAlaGluProSerArgAlaLeuProGlyArgLeuThrAlaGlnLeuValGlnGlu	98
300	TAACAGCGGGAGCCTGCCCCCACCCTCCTCCTCCACCAGCCACCTTCCCTCCAGTCCT	359
98	TANCAGCOGGAGC TOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	98
360	AATAAAAGCAGCTGGCTTGTT	380
98	Withhamandara	98_

Fig. 25

19P2-L1

19P2-L1(O)

Peptide conc. (x 10⁹M)

_____ 19P2-L1 (P-3) _____ Des(1-11)19P-2-L1 (P-2)

Peptide conc. (x 10⁹M)

Fig. 28

Fig. 2

					F19. 27
60	50	40	30	20	10
CCTGCAGGGG	TGGGCCTGGC	CTGCTGCTGC	GCTCCTCTGC	TGGGGGCCTG	ATGAAGGCGG
120	110	100	90	80	70
AGCCCCGCCC	GTGAGTGTCT	GAGATCCGCA	GCACTCCATG	GAGCCCACCA	GCTGCCAGCA
180	170	160	150	140	130
TCCTTGCTAA	GGCTGGGACA	CCACTTCCTG	GGGGGCCTGG	GGGTCACAGG	CTGCCCCCAG
240	230	220	. 210	200	190
GTGGCCCGGA	CTTCCCCCAG	TCCCCAGACC	GGCCTCCTGT	GTTGGGGTTT	GCATCCTGGG
300	290	280	270	260	250
ACCACACGGG	GTCACTCCTC	ACGGGGGAGG	GGCCCAGCAC	CAAGGGTCCC	CAGGTGCTCC
360	350	340	330	320	310
GGAAAGGAAG	TGTGAGGACA	AGAACGGGGC	GTCACCCATG	CTGAGTGCAC	TGGCCTGGGG
420	410	400	390	380	370
AGCACCAGAA	AAGCCACCCC	CTACTTCCCA	GTCTGAAATC	CCTGGTGTGA	GGGAGTGTGT
CIGGGGGACA	CIGGCAIGGC	GIGGGIGGIC	TCCTGTGCGG	440 CGGGTGAACC	ATGGGCGCTC
540	530	520	510	500	490
TCCAGGGCAC	GGCTGTATGC	CGGCCACCAG	ACACCCGGCC	AGCTGAGCAC	GGCAGCCATG
600	590	580	570	560	550
CCTGGTACGC	ATCAACCCTG	AGCCCCCGAC	CTCTCTTTCC	GCGCTCTTCT	AGGCCTCCAT
660	650	640	630	620	610
TGGGGGACGG	AGAGCTGCCC	CGGCCGGCGA	TGGGCCGCTT	ATCCGGCCCG	AGGCCGTGGG
720	710	700	690	680	670
GTGCTGAGCC	CTGGAAGGCG	CTGCTTCCGC	GTGTGCCGGC	GGCCCCGGC	ACCCAGGCCT
780	770	760	750	740	730
	CAGGAATAA.	CCAGCTGGTC	GGCTGACGGC	CTCCCGGGGC	CTCCCGAGCC

Fig. 30		
genome cDNA	10 20 30 40 50 1 ATGAAGGCGG TGGGGGCCTG GCTGCTCTGC CTGCTGCTGC TGGGCCTGGC 1 ATGAAGGCGG TGGGGGCCTG GCTGCTCTGC CTGCTGCTGC TGGGCCTGGC	50 50
genome cDNA	60 70 80 90 100 51 CCTGCAGGGG GCTGCCAGCA GAGCCCACCA GCACTGCATG GAGATCCGCA 51 CCTGCAGGGG GCTGCCAGCA GAGCCCACCA GCACTGCATG GAGATCCGCA	100 100
genome cDNA	110 120 130 140 150 101 GTGAGTGTCT AGCCCCGCCC CTGCCCCCAG GGGTCACAGG GGGGGCCTGG 101	150 150
genome cDNA	160 170 180 190 200 151 CCACTTCCTG GGCTGGGACA TCCTTGCTAA GCATCCTGGG GTTGGGGTTT 151	200 200
genome cDNA	210 220 230 240 250 201 GGCCTGCTGT TCCCCAGACC CTTCCCCCAG GTGGCCCGGA CAGGTGCTCC 201	250 250
genome cDNA	260 270 280 290 300 251 CAAGGGTCCC GGGCCAGCAC ACGGGGGAGG GTCACTGCTG ACCACACGGG	300 300
genome cDNA	310 320 330 340 350 301 TGGCCTGGGG CTGAGTGCAC GTCACCCATG AGAACGGGGC TGTGAGGACA 301	350 3 <u>5</u> 0
genome cDNA	360 370 380 390 400	400 400
genome cDNA	410 420 430 440 450 401 AAGCCACCCC AGCACCAGAA ATGGGCGCTC CGGGTGAACC TCCTGTGCGG	450 450
genome cDNA	460 470 480 490 500 451 GTGGGTGGTC CTGGCATGGC CTGGGCGACA GGCAGCCATG AGCTGAGCAC 451	500 500
genome cDNA	510 520 530 540 550 501 ACACCCGGCC CGGCCACCAG GGCTGTATGC TCCAGGGCAC AGGCCTCCAT	550 550
genome cDNA	560 570 580 590 600 551 GCGCTCTTCT CTCTCTTTCC AGCCCCGAC ATCAACCCTG CCTGGTACGC 551	600 600
genome cDNA	610 620 630 640 650 601 AGGCCCTGGG ATCCGGCCG TGGGCCGCTT CGGCCGGCGA AGAGCTGCCC 601 GGGCCGTGGG ATCCGGCCG TGGGCCGCTT CGGCCGGCGA AGAGCTGCCC	650 650
genome cDNA	660 670 680 690 700 651 TGGGGGACGG ACCCAGGCCT GGCCCCGGC GTGTGCCGGC CTGCTTCCGC 651 CGGGGGACGG ACCCAGGCCT GGCCCCGGC GTGTGCCGGC CTGCTTCCGC	700 700
genome cDNA	710 720 730 740 750 701 CTGGAAGGCG GTGCTGAGCC CTCCCGAGCC CTCCCGGGCC GGCTGACGCC 701 CTGGAAGGCG GCGCTGAGCC CTCCCGAGCC CTCCCGGGGC GGCTGACGCC	750 750
genome cDNA	760 770 780 790 800 751 CCAGCTGGTC CAGGAATAA	800 800

Fig. 31

			9	ama.	605	18						36			45	~~~		54
5'	AIG	AAG	GCG	GIG	GGG	GCC	TGG	CIC	CIC	160	CIG	CIG	CIG	CIG	GGC	CIG	GCC	CIG
	M	K	A	V	G	A	W	L	L	С	L	L	L	L	G	L	A	L
			63												⁻ 99			108
	CAG	GGG	GCT	GCC	AGC	AGA	GCC	CAC	CAG	CAC	TCC	ATG	GAG	ATC	ĆČC	ACC	CCC	GAC
	Q	G	Α	A	s	R	A	н	Q	Н	s	М	E	I	R	T	P	D D
			117									144		conc.	153	000		162
	AIC	AAC	CCT	GCC	100	TAC	GCA		CCT.	الارزن	ATC			GIG	GGC	CGC	TIC	GGC
	I	N	P	A	W	Y	A	Ğ	R	G	I	R	P	V	G	R	F	G
			171			180			189			198			207			216
	CGG	CGA	AGA	GCT	GCC	CTG	GGG	GAC	GGA	CCC	AGG	CCT	GGC	CCC	CGG	CGT	GTG	CCG
	R	R	R	A	A	L	G	D	G	P	R	P	G	P	R	R	V	P
			225									252			261			270
	GCC	TGC	TTC	CGC	CTG	GAA	GGC	GGT	GCT	GAG	CCC	TCC	CGA	GCC	CIC	CCG	GGG	CGG
	A	С	F	R	L	E	G	G	A	E	P	. s	R	A	L	P	G	R

279 288 297
CTG ACG GCC CAG CTG GTC CAG GAA TAA 3'
L T A Q L V Q E *

Fig. 32

1	GGCATCATCCAGGAAGACGGAGCATGGCCCTGAAGACGTGGCTTCTGTGCTTGCT	59
1	MetAlaLeuLysThrTrpLeuLeuCysLeuLeuLeu	12
60	CTAAGCTTGGTCCTCCCAGGGGCTTCCAGCCGAGCCCACCAGCACTCCATGGAGACAAGA	119
13	LeuSerLeuValLeuProGlyAlaSerSerArgAlaHisGlnHisSerMetGluThrArg	32
120	ACCCCTGATATCAATCCTGCCTGGTACACGGGCCGCGGGATCAGGCCTGTGGGCCGCTTC	179
33	ThrProAspIleAsnProAlaTrpTyrThrGlyArgGlyIleArgProValGlyArgPhe	52
180	GGCAGGAGAAGGGCAACCCCGAGGGATGTCACTGGACTTGGCCAACTCAGCTGCCTCCCA	239
53	GlyArgArgAlaThrProArgAspValThrGlyLeuGlyGlnLeuSerCysLeuPro	72
240	CTGGATGGACGCACCAAGTTCTCTCAGCGTGGATAACACCCCAGCTCGAGAAGACAGTGC	299
73	LeuAspGlyArgThrLysPheSerGlnArgGly***	83
300	TGCTGAGCCCAAGCCCACACTCCCTGTCCCCTGCAGACCCTCCTCTACCCTCCCT	359
83		83
360	CTGCT	364
83		83_

F	i	q	3	3

bovine.aa				мка	VGAWL	L
			20			50
bovine.seq					COGTGGGGGC CTGGCTC	
rat.seq	1	. GGCATCATCO	AGGAAGACGG	AGCATGG	CCCTGAAGAC GTGGCTT	<u>CTG</u> 50
bovine.aa		C L L 1		=	G A A S R A	н 100
	22				GGGGCTGCCA GCAGAGC	
bovine.seq					GGGGCTTCCA GCCGAGC	
rat.seq	21		R1			
bovine.aa		Q H S	MEIR		INSYWY	
		110				150
bovine.seq	83	CCAGCACTCC	ATGGAGATCC	GCACCCCGA	CATCAACCCT GCCTGGT	ACG 132
rat.seq	101	CCAGCACTCC	: ATGGAGACAA	GAACCCCTGA	TATCAATCCT GCCTGGT	<u>ACA</u> 150
bovine.aa		GRG	I R P	VGRF	GRRRA	A
		160		180		200
bovine.seq	133	CGGCCCTGC	GATCCGGCCC	GTGGGCCGCT	TCGGCCGGCG AAGAGCT	GCC 182
rat.seq					TCGGCAGGAG AAGGGCA	
				R4		
bovine.aa		PGDG	PRP		R V P A C F	R
		210				250
bovine.seq					CGTGTGCCGG CCTGCTT	
rat.seq	201	CCGAGGGATG	TCACTGGACT	TGGC	CAACTCA GCTGCCT	CCC 250
bovine.aa		LEG	GAEP	SRA	LPGRLT	A
		260		280		300
bovine.seq	233	CCTGGAAGGC	GGCGCTGAGC	CCTCCCGAGC	CCTCCCGGGG CGGCTGA	CGG 282
rat.seq	251	ACTGGATGGA	. CGCACCAAGT	TCTCTCAGCG	TGGATAACAC CCCAGCT	CGA 300
bovine.aa		QLV	QE *			
		310				350
bovine.seq	283	CCCAGCTGGT	CCAGGAATAA	CAGCGGGAGC	CTGCCCCCCA CCCCTCC	rcc 332
rat.seq	301	GAAGACAGTG	CTGCTGAGCC	CAAGCCCACA	CICCCIGICC CCIGCAG	ACC 350
_						
		360		380		400
bovine.seq					AAAAGCAGCT GGCTTGT	
rat seq	351	CTCCTCTACC	CICCCICICC	TCTGCT		400

1	GGCCTCCTCGGAGGAGCCAAGGGATGAAGGTGCTGAGGGCCTGGCTCCTGTGCCTGCTG	59
1	MetLysValLeuArgAlaTrpLeuLeuCysLeuLeu	12
60	ATGCTGGGCCTGCCGGGGAGCTGCAAGTCGTACCCATCGGCACTCCATGGAGATC	119
13	MetLeuGlyLeuAlaLeuArgGlyAlaAlaSerArgThrHisArgHisSerMetGluIle	32
120	CGCACCCCTGACATCATCCTGCCTGGTACGCCAGTCGCGGGATCAGGCCTGTGGGCCGC	179
33	ArgThrProAspIleAsnProAlaTrpTyrAlaSerArgGlyIleArgProValGlyArg	52
180	TTCGGTCGGAGGAGGCAACCCTGGGGGACGTCCCCAAGCCTGGCCTGCGACCCCGGCTG	239
53	PheGlyArgArgArgAlaThrLeuGlyAspValProLysProGlyLeuArgProArgLeu	72
240	ACCTGCTTCCCCTGGAAGGCGGTGCTATGTCGTCCCAGGATGGCTGACAGCCAGC	299
73	ThrCysPheProLeuGluGlyGlyAlaMetSerSerGlnAspGly***	87
300	CAAGAAACTCACTCTGGAGCCTCCCCCACCCCACCCTCTCCTCTCCTTCGGGCTCCTTTC	359
87		87
160	cc	361
87		87
		

bovine.aa rat.aa human.aa	1	M-ALKTWLIC	LILLSLVLPG	ASSRAHOHSM	ETRTPDINPA	50 WYAGRGIRPV WYTGRGIRPV WYASRGIRPV	50 50 50
		60	70	80	90	100	
bovine.aa	51	GRFGRRRAA P	GDGPRPGPRR	VPACFRLEGG	AEPSRALPGR	LTAQLVQE*.	100
rat.aa	51	GREGRRRATP	RDVTGLG	QLSCL PLDGR	TKFSQRG*		100
human aa	51	GREGRRATL	GDVPKPGLRP	RLTCFPLEGG	AMSSQDG*	• • • • • • • • •	. 100

Fig. 36

TOTAL TENDES

cells; 0.5 x 107 cells/ml

[125 []-19P2-L31; 200pM(avg.63857.3cpm)

NSB; 200nM(x 1,000)

reaction; RT, 2.5hr

in HBSS + 0.05% BSA + 0.05% CHAPS

in 100 µl

Fig. 37

Fig. 38

- COUNTRY TERROR

Fig. 39

COURT TOPOCO

Concertainer.

Time (min)

Time (min)

Fig. 46

-convecta tapoo

Fig. 47 Pulse wave

Average blood pressure

TOULDE TOUCH

The state of the state of

Time (min)

Time (min)

ii |-±

IgG conc. (ug/ml)

9 19 17 ATE ACT THE CTG CCC CCT CEA ACT ACT CCC CAC CCC CAT THE THT TOT CCC CCC
HEE THE Ser Lau Pro Pro Cly The The Cly Amp Pro Amp Lau Pha Ser Cly Pro 63 72 81 90 99 108
TOG CCA CCC CCC TCC ACT CCA CCC AAC CAC ACT CCA CAG CCC TCA CAG ACC AAC
Ser Pro Ale Cly Ser Thr Pro Ale Aen Gin Ser Ale Glu Ale Ser Glu Ser Aen 117 126 135 144 153 162
GTG TCT GCG AGC GTT GCG AGA GCT GCA GCA GTG ACG GCC TTC GAG AGC GTG CAA
Val. Ser Ale Thr Val. Pro Arg Ale Ale Ale Val Thr Pro Phe Gln Ser Leu Gln CTA GTG CAC CAG GTG AAG GCA GTG ATC GTG ATC GTG TAC ACC ATC GTG GTG GTG
Let Val His Gin Let Lys Gly Let IIa Val Het Let Tyr Ser IIe Val Val Val The Law Care and Law Care and Arc for 600 000 for 600 fo TOU ONE THE OUT OAX OUT CHE TOU CAC CHT ONT THE THE ONE CAE CHE AND THE VAL Phe Bly Cly Cly Cly Let Cys Kis Let Val Phe Phe Let Gla Pro Val Thr GRE DAG GRA TICE GRE TITE ACA CITE ACE ACE ACE GRE GRE GRE CACE TARE GRE GRE VAL PAR VAL ACE TARE RESERVANT PAR THE LEW THE THE THE THE ALE VAL AND ANY TYPE VAL VAL 503 612 611 630 639 648

DC CM GDA CMG GDG AMG GDG CMC CMC GDG CDC CDC TCC CMC CMC TDC TCC GCC

Tyr Kis Val Clu Leu Lys Pro Kis App Val Arg Leu Cys Glu Glu Phe Tpp Gly 711 720 729 738 747 756
THE GRE GOT CHE GRE GOT AFT GRE GRE TOT TAK CHE COS GRE TOT GRE AKT THE
Leu Leu Pro Leu Leu Ala Ile Leu Leu Ser Tyr Val Ary Val Ser Val Lys Leu gric too too org out one can are the sile the Am Leu Leu Ary Amp Leu Amp Pro Arg OUT ATC ONE OUT THE OUT THE OUT OF ONE OF ONE OF OTO CHE TOO CITY OUT
ALE REP PTO THE ALE PIN GLY LOU VEL GIT LOU LOU CHE THE TEP LOU ALE 981 990 999 1008 1017 1026 AND ACC TOO COO TOO DAY COO THE AND TAX COO TOO CAD CAD AND THE Met. Ser Ser Ale Cys Tyr Amt Pro Phe Ile Tyr Ala Tep Leu Kis Asp Ser Phe 1015 1044 1013 1062 1071 1060
CCA CAG CAG CATA COTT AND AND CTT CTD TOT COT COT AND AND CTT CTT CAT
Ary Glu Glu Lau Ary Lya Mac Lau Lau Sar Txp Pro Ary Lya Ila Val Pro Mia CON CAG AAT AND ACT ONC ACT ONG ONC ATT THE THE TELL IN

54/61

Fig. 53

10	20	30	40	50	60
AGATCTGGCA	TCATCCAGGA	AGACGGAGCA	TGGCACCGAG	GACCTGGCTT	CTGTGCTTGC
70	80	90	100	110	120
TGCTGCTAGG	CTTAGTCCTC	CCAGGAGCTT	CCAGCCGAGC	CCACCAGCAC	TCCATGGAGA
*		150 TATGGAGGAC			
190	200	210	220	230	240
CCAAATGCCT	TGAGTACCCA	GCCCCTGAAT	GGGAGGTTAG	CCATCTCCTA	AGCCAGTGGT
250	260	270	280	290	300
TTCCAACCTT	CCTAATACAG	AACTTTTAAT	ACAGATCCTT	ATGTTGTGGT	GACCCCCAGC
310	320	330	340	350	360
CAGAAAATTA	TTGTGATGCT	GTTTTCATAG	TTGTAAGTTT	TGCTACTGTT	ATGGATCATA
370	380	390	400	410	420
ATGTTAATAT	CTGAAATGCA	GGAŢGTCTGA	TATGCGCCCT	TCCCCCAAA	CAAAAGGGAC
430	440	450	460	470	480
ACAACCCACA	GGTTGAGAGC	CTCTGGGATC	TAAGCAAAAG	CTACCTTACC	ATGCAGTCAG
TTGGGAGATT	500 GGTCCTGTTA	AGATCTCCCC	520 AGAATGGTCC	530 TGTTTCCTGT	540 CCTCATCATT
550	560	570	580	590	600
CCCCTAACCC	ATCTTTGTGG	GGTCCCTTAA	GACTTTGGAG	GATGACAGTC	AGACAGGAAG
610					
AGAATACTGA	620	630	640	650	660
	TCCTGGCATA	TGTCTAAATA	AATTCCCTAA	AGCCACACCA	CTGCCCAGAT
AGAATACTGA 670	TCCTGGCATA 680	630 TGTCTAAATA 690 GGGTGGGTGC	AATTCCCTAA 700	AGCCACACCA 710	CTGCCCAGAT 720
AGAATACTGA 670 ATGCCCAGCC 730	TCCTGGCATA 680 AGTGTAATCA 740	TGTCTAAATA 690	AATTCCCTAA . 700 CAACATGGCC 760	AGCCACACCA 710 TGGTGCCCAG 770	720 GTTTCCATCA 780
AGAATACTGA 670 ATGCCCAGCC 730 GCTTAGGGGC 790	680 AGTGTAATCA 740 TCCCGTGTCC	TGTCTAAATA 690 GGGTGGGTGC 750	AATTCCCTAA 700 CAACATGGCC 760 TCTGACTCTT	AGCCACACCA 710 TGGTGCCCAG 770 TCCTTTCCAG	720 GTTTCCATCA 780 CCCCTGACAT
AGAATACTGA 670 ATGCCCAGCC 730 GCTTAGGGGC 790 CAATCCTGCC	680 AGTGTAATCA 740 TCCCGTGTCC 800 TGGTACACGG	TGTCTAAATA 690 GGGTGGGTGC 750 CATACGCTGC 810 GTCGTGGGAT	AATTCCCTAA 700 CAACATGGCC 760 TCTGACTCTT 820 CAGGCCTGTG	AGCCACACCA 710 TGGTGCCCAG 770 TCCTTTCCAG 830 GGCCGCTTCG	720 GTTTCCATCA 780 CCCCTGACAT 840 GGAGGAGGAG
AGAATACTGA 670 ATGCCCAGCC 730 GCTTAGGGGC 790 CAATCCTGCC 850 GGCAGCCCTG	TCCTGGCATA 680 AGTGTAATCA 740 TCCCGTGTCC 800 TGGTACACGG 860 AGGGATGTCA	GTCTAAATA 690 GGGTGGGTGC 750 CATACGCTGC 810 GTCGTGGGAT	AATTCCCTAA 700 CAACATGGCC 760 TCTGACTCTT 820 CAGGCCTGTG 880 CCTGCGGTGC	AGCCACACCA 710 TGGTGCCCAG 770 TCCTTTCCAG 830 GGCCGCTTCG 890 CGGCTAAGCT	720 GTTTCCATCA 780 CCCCTGACAT 840 GGAGGAGGAG 900 GCTTCCCACT

55/61

Fig. 54

AG ATC TOG CAT CAT CCA GGA AGA CGG AGC ATG GCA CCG AGG ACC TGG CTT CTG TGC

Mec Ala Pro Arg Thr Trp Leu Leu Cys

TCC ATG GAG ACC CGC A GT CAG TGC CTG GCA TAT GGA GGA CAG CCA CTG TCA CCT Ser Met Glu Thr Arg

CCC ATC CAT ATG CTT CCC AAA TGC CTT GAG TAC CCA GCC CCT GAA TGG GAG GTT

AGC CAT CTC CTA AGC CAG TGG TTT CCA ACC TTC CTA ATA CAG AAC TTT TAA TAC

AGA TOO THA TOT TOT GOT GAC COO CAG CCA GAA AAT TAT TOT GAT GOT GIT TIC

ATA GIT GIA AGI TIT GCT ACT GIT ATG GAT CAT AAT GIT AAT ATC TGA AAT GCA

GGA TGT CTG ATA TGC GCC CTT CCC CCC AAA CAA AAG GGA CAC AAC CCA CAG GTT

CAG AGC CTC TGG GAT CTA AGC AAA AGC TAC CTT ACC ATG CAG TCA GTT GGG AGA

TTG GTC CTG TTA AGA TCT CCC CAG AAT GGT CCT GTT TCC TGT CCT CAT CAT TCC

CCT AAC CCA TCT TTG TGG GGT CCC TTA AGA CTT TGG AGG ATG ACA GTC AGA CAG

GAA CAG AAT ACT GAT CCT GGC ATA TGT CTA AAT AAA TTC CCT AAA GCC ACA CCA

CTG CCC AGA TAT GCC CAG CCA GTG TAA TCA GGG TGG GTG CCA ACA TGG CCT GGT

GCC CAG GTT TCC ATC AGC TTA GGG GCT CCC GTG TCC CAT ACG CTG CTC TGA CTC

THE CCT THE CAG CE CET GAE ATE AAT CET GEE TGG TAC ACG GGT CGT GGG ATE
THE Pro Asp lle Ash Pro Ala Tep Tyr The Gly Arg Gly Ile

ACG CCT GTG GGC CCC TTC GGG AGG AGG AGG GCA GCC CTG AGG GAT GTC ACC GGA AGG Pro Val Gly Arg Phe Gly Arg Arg Arg Ala Ala Leu Arg Asp Val Thr Gly

CCT GGC CTG CGG TGC CGG CTA AGC TGC TTC CCA CTG GAT GGA AGT GCC AAG TTC Pro Gly Leu Arg Cya Arg Leu Ser Cya Phe Pro Leu Asp Gly Ser Ala Lys Phe

TCT CAC AGC TOG AGA AGA CAG TGC TGC TGA GTC GAC Ser His Ser Ser Arg Arg Gln Cys Cys ...

PRL RIA RC-4B/C P19
Dose-Response for 30 min

12

-=

19P2-L31 conc. (x10 ⁻⁹ M)

Cell Culture: RC-48/C P19

1x10 S/well, for 2 Oays (12 well-plates) (control: n=2, other points: n=4)

Wash 3 times
Pre-Incubation (for 15 min)
Wash twice, Add Samples
Incubation (for 30min)
Sup. Collected, Centrifuged

Assay: Rat [1251] Prolactin
Assay System (RIA) (Amersham)

**: p<0.01 (students' t-test)

on PRL Secretion from Pituitary Cells Effect of bovine 19P2-L31 Peptides

(Poly-D-Lys. coated 24 well-plates) (from F344/N Female Lactating) Cell Culture: Rat Anterior Pituitary for 4 Days (n=4) Primary Culture 5.0x10 5/well,

Sup. Collected, Centrifuged Wash twice, Add Samples Pre-Incubation (for 1 hr) Incubation (for 1 hr) Wash 3 times

Assay System (RIA) (Amersham) Assay: Rat [1251] Prolactin

* : p<0.05 (students' t-test, compared to control) ** : p<0.01 (students' t-test, compared to control)

Peptide Concentration (Log (M))

Fig. 57

Days of pregnancy

61/61

diestrus

