Resumos de Matemática de 10º,11º e 12º anos

José Fernando Mendes da Silva Costa

Conteúdo

Revisões	10
Conceitos	10
Domínio	10
Contradomínio	10
Monotonia	10
Vizinhança	10
Como resolver equações	10
Equações polinomiais do 1º grau	10
Equações polinomiais do 2º grau	10
Equações polinomiais do tipo x ⁿ = k	11
Equações com módulo	11
Equações irracionais	12
Equações fracionárias	12
Equações exponenciais	13
Equações com logaritmos	13
Como resolver inequações	14
Inequações polinomiais do 1º grau	14
Inequações polinomiais do 2º grau	14
Inequações polinomiais de grau superior a 2	15
Inequações fracionárias	16
Inequações com módulos	17
Inequações exponenciais	17
Inequações com logaritmos	18
Regras operatórias com radicais	18
Conjunção e junção de condições	19
Negação de condições	19
Leis de De Morgan	19
Redução de condições de circunferências	19
Potências	19
Expoente natural	19
Expoente nulo	19
Expoente inteiro negativo	19

	Expoente fracionário	20
	Expoente irracional	20
	Regras operatórias com potências	20
	Racionalização (exemplos)	20
	Conjunto de números	20
G	eometria	22
	Fórmulas	22
	Comprimento de um arco de circunferência	22
	Área de um perímetro regular	22
	Área de um setor circular	22
	Área lateral de um cone	22
	Área de uma superfície esférica	22
	Volume de uma pirâmide	22
	Volume de um cone	22
	Volume de uma esfera	23
	Equações de planos	23
	Equação de planos paralelos aos planos coordenados no espaço	23
	Equação de qualquer plano	23
	Equações de retas	23
	Equação de retas paralelas aos eixos	23
	Equação cartesiana de qualquer reta	24
	Coroa circular	24
	Equação vetorial de uma reta r	24
	Equação vetorial de uma semirreta AB	24
	Segmento de reta [AB]	24
	Equação reduzida de uma reta (não vertical) no plano	24
	Equação reduzida da reta	25
	Interpretação do declive de uma reta	25
	Posição relativa de duas retas no plano	25
	Interpretação da resolução de sistema de equações no estudo da posição relativa de duas reta	326
	Vetor como diferença de dois pontos	26
	Norma de um vetor	26
	Adição de vetores	26

Produto de um número real por um vetor	26
Vetores colineares	26
Produto escalar de dois vetores	27
Ângulo de dois vetores	27
Ângulo de duas retas	27
Produto de um número real por um vetor	27
Inclinação de uma reta	27
Perpendicularidade entre vetores no plano	28
Perpendicularidade entre retas no plano	28
Paralelismo e perpendicularidade no espaço	28
Condições obtidas recorrendo ao produto escalar	28
Condições obtidas recorrendo à distância entre pontos	29
-unções	32
Função afim	32
Função quadrática	32
y = ax ²	32
y = a(x-h) ²	33
$y = ax^2 + k$	34
y = a(x-h) ²	35
Determinação do vértice da parábola	35
Função módulo	35
Função soma	35
Função diferença	36
Função produto	36
Função quociente	36
Igualdade de funções	36
Função composta	36
Função racional	37
Funções do tipo $y=a+bcx+d$, a,b,c , $d\in\mathbb{R}$	37
Simplificação de frações racionais	38
Transformações do gráfico de uma função	39
Monotonia	39
Extremos	39

Injetividade	40
Paridade	40
Função par	40
Função ímpar	40
Taxa média de variação	40
Taxa de variação	41
Equação reduzida da reta tangente ao gráfico de uma função num ponto	42
Função derivada	42
Derivabilidade num ponto	43
Sinal da derivada e sentido de variação (exemplo)	43
Estudo dos extremos relativos de uma função aplicado às derivadas (exemplo)	43
Segunda derivada de uma função	44
Sinal de f' e o sentido da concavidade	45
Estudo analítico das concavidades e pontos de inflexão (exemplos)	46
Regras de derivação	47
Função inversa	50
Funções irracionais	50
Função exponencial	50
Estudo da função f(x) = a ^x com a > 1	51
Comparação do crescimento exponencial com o da potência	51
Determinação do Contradomínio de uma função exponencial	52
Logaritmo	53
Equação polinomial vs. Equação exponencial	53
Definição	53
Logaritmo de base 10	54
Logaritmo de base e	54
Consequências da definição de logaritmo	54
Regras operatórias dos logaritmos	55
Comparação do crescimento logarítmico com o da potência	56
Função logarítmica de base superior a 1	56
Estudo do gráfico de f(x) = log _a x, a > 1	57
Domínio de uma função logarítmica	57
Função logística	57

Definição de limite de uma função segundo Heine	58
Limites laterais	58
Limite num ponto segundo Heine	58
Continuidade	59
Continuidade lateral	60
Continuidade num intervalo	61
Prolongamento/Restrição de uma função	61
Operações com funções contínuas	62
Funções contínuas	62
Exemplos	62
Continuidade da função composta	63
Teorema de Bolzano-Cauchy	63
Corolário do Teorema de Bolzano	65
Assintotas	66
Assíntotas horizontais (A.H.)	66
Assintotas verticais (A.V.)	67
Assíntotas oblíquas (A.O.)	68
Assíntotas não verticais (A.N.V.)	69
Aspetos a considerar no estudo analítico de uma função	70
Trigonometria	71
Tabela trigonométrica	71
Conversões básicas (Graus ↔ Radianos)	71
Variação das funções trigonométricas	71
Razões trigonométricas de $lpha$ e $-lpha$	72
Função seno	73
Função cosseno	74
Função tangente	74
Equações trigonométricas	75
Fórmulas trigonométricas	75
Função periódica	76
Família de funções (cálculo do Período)	76
Limites em trigonometria	77
Não existem	77

	Limites infinitos	77
	Limites associados a y = sin(x) / x	77
	Regras de derivação das funções trigonométricas	77
Su	cessões	78
	Conceito de sucessão	78
	Modos de definir uma sucessão	78
	Sucessões monótonas	79
	Sucessões limitadas	79
	Progressões aritméticas	79
	Soma dos n primeiros termos	80
	Soma de termos consecutivos	80
	Progressões geométricas	80
	Soma de n termos consecutivos	80
	Indução Matemática	81
	Sucessões convergentes e divergentes	81
	Teorema da Unicidade de limite	81
	Teorema do Critério de convergência das sucessões monótonas	81
	Infinitamente grandes e infinitésimos	81
	Operações com limites finitos	81
	Operações com limites infinitos	82
	Indeterminações	82
	Limite de Nepper	83
	Número de Nepper	83
	Limites notáveis	84
	Cálculo de limites (exemplos)	85
	Indeterminações	86
	Levantamento de indeterminações	87
	0 / 0	87
	∞ - ∞	88
	∞/∞	89
	∞ * 0	90
٦r	obabilidades	91
	Axiomática de probabilidades	91

Teoremas	91
Conceitos	91
Acontecimento impossível	91
Acontecimento elementar	91
Acontecimento certo	91
Reunião	91
Interseção	91
Diferença	92
Contrário ou complementar	92
Acontecimentos incompatíveis ou disjuntos	92
Acontecimentos equiprováveis	92
Tabela de dupla entrada	92
Propriedades dos acontecimentos e conjuntos em geral	92
Acontecimentos contrários	93
Diferença	93
Outras propriedades	93
Definição frequencialista ou empírica de probabilidade	93
Propriedades das probabilidades decorrentes da definição frequencialista	94
Definição clássica de probabilidade (Lei de Laplace)	94
Regra do produto	94
Probabilidade condicionada	94
Probabilidade da interseção de dois acontecimentos	95
Probabilidade total	95
Acontecimentos independentes	95
Análise combinatória (técnicas de contagem)	95
Princípio fundamental da contagem (regra do produto)	95
Arranjos completos (ou com repetição).	95
Permutações	96
Permutações simples	96
Arranjos simples	96
Permutações circulares	96
Sequências vs. Conjuntos	97
Permutações	97

	Utilização de combinações e arranjos (exemplos)	97
	Permutações com elementos repetidos	98
	Triângulo de Pascal	99
	Propriedades do Triângulo de Pascal	99
	Binómio de Newton	99
	Variáveis aleatórias	101
	Variáveis aleatórias discretas (exemplos)	101
	Distribuição de frequências relativas/ Distribuição de probabilidades (exemplos)	103
	Valor médio e desvio padrão	104
	Modelo Binomial ou Distribuição de Bernoulli	104
	Variáveis contínuas	104
	Modelo Normal (Curva de Gauss)	105
٨	lúmeros complexos	107
	Números imaginários	107
	O conjunto dos números complexos	107
	Representação gráfica e vetorial de números complexos: plano de Argand	108
	Representação trigonométrica de números complexos	108
	Representação na forma algébrica e trigonométrica	109
	Operações na forma algébrica	109
	Operações na forma trigonométrica	109
	Reduções do expoente de i	109
	Conversões básicas de forma algébrica para forma trigonométrica	110
	Exemplos de conversões entre forma algébrica e trigonométrica	110
	Fórmula de Moive generalizada	111
	Distância entre dois pontos	112
	Módulo de um número complexo	112
	Figuras planas definidas em ${\mathbb C}$	112
	Circunferência	112
	Círculo	113
	Ângulo de vértice Z ₀	114
	Semirreta com origem em (0;0) e em Z_0	114
	Reta	114
	Semiplano	115

	Reta mediatriz do segmento $[Z_1Z_2]$	115
	Semiplano com origem na mediatriz de $[Z_1Z_2]$	116
	Domínios planos em variável complexa	116
	Retas paralelas aos eixos e respetivos semiplanos	117
	Resolução de equações em C	117
Es	statística	119
	Frequência absoluta	119
	Frequência relativa	119
	Frequência absoluta acumulada	119
	Frequência relativa acumulada	119
	Média	119
	Propriedade 1	119
	Propriedade 2	119
	Moda	120
	Mediana	120
	Amplitude	120
	Amplitude interquartis	120

Revisões

Conceitos

Domínio

Domínio de uma função $f(D_f)$ é o conjunto de partida cujos elementos se chamam objetos.

Contradomínio

Contradomínio de uma função $f(D'_f)$ é o conjunto dos elementos do conjunto de chegada que correspondem a algum objeto. A estes elementos chamam-se imagens.

Monotonia

Uma função f diz-se monótona num intervalo do seu domínio se é apenas crescente ou decrescente nesse intervalo.

Vizinhança

Qualquer intervalo centrado num número real a chama-se vizinhança de centro a.

Por exemplo, o intervalo]4,5; 5,5[é uma vizinhança de centro 5 e raio 0,5 e representa-se por $V_{0.5}(5)$.

$$V_{\delta}(a) = |a - \delta; a + \delta|$$

Como resolver equações

Equações polinomiais do 1º grau

- 1. Desembaraçar de parêntesis;
- 2. Desembaraçar de denominadores;
- Separar os termos com incógnita para o primeiro membro e os termos independentes para o segundo (sem esquecer de trocar os sinais dos termos que mudarem de membro);
- 4. Reduzir os termos semelhantes;
- 5. Passar o coeficiente da incógnita para o segundo membro a dividir.

Exemplo:

$$\frac{3x+1}{2} = \frac{2x-1}{3} + 1 \Leftrightarrow 9x + 3 = 4x - 2 + 6 \Leftrightarrow 5x = 1 \Leftrightarrow x = \frac{1}{5}$$

Equações polinomiais do 2º grau

1. Escrever a equação na forma canónica $ax^2 + bx + c = 0$;

2. Aplicar a fórmula resolvente para equações do 2º grau: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Exemplo:

$$x(x-2) = 4 \Leftrightarrow x^2 - 2x - 4 = 0 \Leftrightarrow x = \frac{2 \pm \sqrt{(-2)^2 - 4 + 2 + (-4)}}{2 + 1} \Leftrightarrow x = \frac{2 \pm \sqrt{20}}{2} \Leftrightarrow x = \frac{2 + \sqrt{20}}{2} \lor x = \frac{2 - \sqrt{20}}{2}$$

Equações polinomiais do tipo $x^n = k$

- n par
 - o se k > 0, então $x^n = k \Leftrightarrow x = -\sqrt[n]{k} \lor x = \sqrt[n]{k}$
 - o se k = 0, então $x^n = 0 \Leftrightarrow x = 0$
 - o se k < 0, então $x^n = k \Leftrightarrow x \in \emptyset$
- n ímpar

$$\lor \forall_k \in P, x^n = k \Leftrightarrow x = \sqrt[n]{k}$$

Exemplos:

a)
$$x^4 = 81 \Leftrightarrow x = \sqrt[4]{81} \Leftrightarrow x = 4$$

b)
$$x^6 = 0 \Leftrightarrow x = 0$$

c)
$$x^8 = -256 \Leftrightarrow x \in \emptyset$$

d)
$$x^3 = 125 \Leftrightarrow x = \sqrt[3]{125} \Leftrightarrow x = 5$$

e)
$$x^7 = -128 \Leftrightarrow x = \sqrt[7]{-128} \Leftrightarrow x = -2$$

Equações com módulo

a) Escrever a equação na forma canónica |f(x)| = d: o primeiro membro deverá conter apenas o módulo, sendo o segundo membro uma constante;

a.
$$d > 0$$
, então $|f(x)| = d \Leftrightarrow f(x) = d \lor f(x) = -d$

b.
$$d = 0$$
, então $|f(x)| = 0 \Leftrightarrow f(x) = 0$

c.
$$d < 0$$
, então $|f(x)| = d \Leftrightarrow x \in \emptyset$

Exemplos:

a)
$$|3x - 4| - 2 = 0 \Leftrightarrow |3x - 4| = 2 \Leftrightarrow 3x - 4 = 2 \vee 3x - 4 = -2 \Leftrightarrow x = 2 \vee x = \frac{2}{3}$$

b)
$$|2x + 8| = 0 \Leftrightarrow 2x + 8 = 0 \Leftrightarrow x = -4$$

c)
$$2 - |4 + 5x| = 3 \Leftrightarrow |4 + 5x| = -1 \Leftrightarrow x \in \emptyset$$

Equações irracionais

Equações que contêm a incógnita sob um símbolo de radical.

- 1. Isolar o radical num dos membros, ou caos haja dois, isolar um em cada membro;
- 2. Elevar ambos os membros ao quadrado (nesta etapa deve ser usado \Rightarrow em vez de \Leftrightarrow ;
- Se a equação obtida for racional, resolve-se da forma habitual, caso contrário voltar ao primeiro passo;
- 4. Verificar as soluções obtidas na equação inicial;
- 5. Indicar o conjunto-solução (as soluções que verificam a equação inicial).

Exemplos:

a)
$$1 + \sqrt{x+5} = x \Leftrightarrow \sqrt{x+5} = x-1 \Rightarrow (\sqrt{x+5})^2 = (x-1)^2 \Leftrightarrow x+5 = x^2 - 2x + 1 \Leftrightarrow -x^2 + 3x - 4 = 0 \stackrel{F.R.}{\Leftrightarrow} x = -1 \lor x = 4$$

$$x = 4 \to 1 + \sqrt{4+5} = 4 \Leftrightarrow 1+3 = 4 \Leftrightarrow 4 = 4$$

$$x = -1 \to 1 + \sqrt{-1+5} = -1 \Leftrightarrow 1+2 = -1 \Leftrightarrow 3 = -1$$

$$C.S. = \{4\}$$

b)
$$\sqrt{3x+1} - \sqrt{2x-1} = 1 \Leftrightarrow \sqrt{3x+1} = 1 + \sqrt{2x-1} \Rightarrow (\sqrt{3x+1})^2 = (1+\sqrt{2x-1})^2 \Leftrightarrow 3x+1 = 1+2\sqrt{2x-1}+2x-1 \Leftrightarrow x+1 = 2\sqrt{2x-1} \Rightarrow (x+1)^2 = (2\sqrt{2x-1})^2 \Leftrightarrow x^2+2x+1 = 4(2x-1) \Leftrightarrow x^2+2x+1 = 8x-4 \Leftrightarrow x^2-6x+5 = 0 \stackrel{F.R.}{\Leftrightarrow} x = 5 \lor x = 1$$

$$x = 5 \to \sqrt{3*5+1} - \sqrt{2*5-1} = 1 \Leftrightarrow 4-3 = 1 \Leftrightarrow 1 = 1$$

$$x = 1 \to \sqrt{3*1+1} - \sqrt{2*1-1} = 1 \Leftrightarrow 2-1 = 1$$

$$C.S. = \{1; 5\}$$

Equações fracionárias

Equações que contêm a incógnita no denominador.

- 1. Passar todos os termos da equação para o primeiro membro;
- 2. Reduzir ao mesmo denominador, sem os eliminar;
- 3. Numerador = $0 \land Denominador \neq 0$;

Exemplo:

$$\frac{5x^2 + 2x}{x^2 - 4} - 5 = \frac{4}{3x + 6} \Leftrightarrow \frac{5x^2 + 2x}{(x - 2)(x + 2)} - 5 = \frac{4}{3(x + 2)} \Leftrightarrow \frac{3(5x^2 + 2x)}{3(x - 2)(x + 2)} - \frac{5(3(x - 2)(x + 2))}{3(x - 2)(x + 2)} = \frac{4(x - 2)}{3(x + 2)(x - 2)} \Leftrightarrow \frac{3(5x^2 + 2x) - 15(x - 2)(x + 2) - 4(x - 2)}{3(x - 2)(x + 2)} = 0 \Leftrightarrow \frac{15x^2 + 6x - 15x^2 + 60 - 4x + 8}{3(x - 2)(x + 2)} = 0 \Leftrightarrow \frac{2x + 68}{3(x - 2)(x + 2)} = 0 \Leftrightarrow 2x + 68 = 0 \land 3(x - 2)(x + 2) \neq 0 \Leftrightarrow x = -34 \land (x \neq 2 \lor x \neq -2) \Leftrightarrow x = -34$$

Equações exponenciais

$$f(x) = a^x$$
 é injetiva: $a^{x_1} = a^{x_2} \Leftrightarrow x_1 = x_2, a > 1, x_1, x_2 \in D_f$

Exemplos:

a)
$$3^{x^2} = 9^x \Leftrightarrow 3^{x^2} = (3^2)^x \Leftrightarrow 3^{x^2} = 3^{2x} \Leftrightarrow x^2 = 2x \Leftrightarrow x^2 - 2x = 0 \Leftrightarrow x(x-2) = 0 \Leftrightarrow x = 0 \lor x - 2 = 0 \Leftrightarrow x = 0 \lor x = 2$$

b)
$$32^x = \sqrt{2} \Leftrightarrow (2^5)^x = 2^{\frac{1}{2}} \Leftrightarrow 5x = \frac{1}{2} \Leftrightarrow x = \frac{1}{10}$$

c)
$$9^{3x-2} = 3^{4x} * 81 \Leftrightarrow (3^2)^{3x-2} = 3^{4x} * 3^4 \Leftrightarrow 3^{6x-2} = 3^{4x+4} \Leftrightarrow 6x - 2 = 4x + 4 \Leftrightarrow x = 4$$

d)
$$2^{x+2} + 2^{-x} = 5 \Leftrightarrow 2^{x+2} + \frac{1}{2^x} = 5 \Leftrightarrow 2^{x+2} * 2^x + 2^x * \frac{1}{2^x} = 5 * 2^x \Leftrightarrow 2^{2x+2} + 1 = 5 *$$

 $2^x \Leftrightarrow 2^{2x} * 2^2 + 1 - 5 * 2^x \Leftrightarrow (2^x)^2 * 2^2 + 1 - 5 * 2^x = 0 \xrightarrow{MV} y = 2^x y^2 * 4 + 1 - 5 * y =$
 $0 \Leftrightarrow 4y^2 - 5y + 1 = 0 \Leftrightarrow y = \frac{1}{4} \lor y = 1 \Leftrightarrow 2^x = \frac{1}{4} \lor 2^x = 1 \Leftrightarrow 2^x = \frac{1}{2^2} \lor 2^x = 2^0 \Leftrightarrow$
 $2^x = 2^{-2} \lor 2^x = 0 \Leftrightarrow x = -2 \lor x = 0$

e)
$$5^{x+1} = 6 - 5^{-x} \Leftrightarrow 5^{x+1} = 6 - \frac{1}{5^x} \Leftrightarrow 5^{2x+1} = 5^x * 6 - 1 \Leftrightarrow 5^{2x} * 5 - 5^x * 6 + 1 = 0$$

 $\stackrel{MV}{\Longleftrightarrow} 5y^2 - 6y + 1 = 0 \stackrel{FR}{\Leftrightarrow} y = 1 \lor y = \frac{1}{5} \Leftrightarrow 5^x = 1 \lor 5^x = \frac{1}{5} \Leftrightarrow 5^x = 5^0 \lor 5^x = 5^{-1} \Leftrightarrow x = 0 \lor x = -1$

f)
$$4^{x} + 2 * 4^{-x} = 3 \Leftrightarrow 4^{x} + \frac{2}{4^{x}} = 3 \Leftrightarrow 4^{2x} + 2 = 3 * 4^{x} \Leftrightarrow 4^{2x} - 3 * 4^{x} + 2 = 0$$

 $\stackrel{MV}{\Longleftrightarrow} y^{2} - 3y + 2 = 0 \stackrel{FR}{\Leftrightarrow} y = 2 \lor y = 1 \Leftrightarrow 4^{x} = 2 \lor 4^{x} = 1 \Leftrightarrow (2^{2})^{x} = 2 \lor 4^{x} = 4^{0} \Leftrightarrow 2x = 1 \lor x = 0 \Leftrightarrow x = \frac{1}{2} \lor x = 0$

Equações com logaritmos

O primeiro passo na resolução de uma equação com logaritmos é a determinação do Domínio.

$$\log_a x_1 = \log_a x_2 \Leftrightarrow x_1 = x_2, \forall_{x_1, x_2} \in D, a > 1$$

Exemplos:

a)
$$2 \log_7(x-1) = \log_7(x+5)$$

 $D = \{x \in \mathbb{R}: x-1 > 0 \land x+5 > 0\} \Leftrightarrow D = \{x \in \mathbb{R}: x > 1 \land x > -5\} \Leftrightarrow D = [1; +\infty[$

$$2\log_7(x-1) = \log_7(x+5) \land x \in]1; +\infty[\Leftrightarrow \log_7(x-1)^2 = \log_7(x+5) \land ---\Leftrightarrow (x-1)^2 = x+5 \Leftrightarrow x^2-2x+1-x-5 = 0 \land ---\Leftrightarrow x^2-3x-4 = 0 \land ---$$

$$\stackrel{FR}{\Leftrightarrow} (x=-1 \lor x=4) \land x \in]1; +\infty[\Leftrightarrow x=4$$

b)
$$\log_2(5-3x)+7=6$$

$$D = \{x \in \mathbb{R}: 5 - 3x > 0\} \Leftrightarrow D = \left] -\infty; \frac{5}{3} \right[$$

$$\log_2(5 - 3x) + 7 = 6 \land x \in \left] -\infty; \frac{5}{3} \right[\Leftrightarrow \log_2(5 - 3x) = -1 \land --- \Leftrightarrow \log_2(5 - 3x) = -1 \land -$$

c)
$$\ln^2(x) - 3\ln(x) + 2 = 0$$

$$D = \{x \in \mathbb{R}: x > 0\} \Leftrightarrow D = \mathbb{R}^+$$

$$\ln^2(x) - 3\ln(x) + 2 = 0 \land x \in \mathbb{R}^+ \xrightarrow{MV \ y = \ln x} y^2 - 3y + 2 = 0 \land --- \Leftrightarrow (y = 1 \lor y = 1)$$

$$\ln^{2}(x) - 3\ln(x) + 2 = 0 \land x \in \mathbb{R}^{+} \iff y^{2} - 3y + 2 = 0 \land - - + \Leftrightarrow (y = 1 \lor y = 2) \land - - + \Leftrightarrow (\ln x = 1 \lor \ln x = 2) \land - - + \Leftrightarrow (x = e \lor x = e^{2}) \land x \in \mathbb{R}^{+} \Leftrightarrow x = e \lor x = e^{2}$$

Como resolver inequações

Inequações polinomiais do 1º grau

- 1. Desembaraçar de parêntesis;
- 2. Desembaraçar de denominadores;
- Isolar no primeiro membro os termos com incógnita e no segundo os termos independentes (trocar o sinal dos termos que mudarem de membro);
- 4. Reduzir os termos semelhantes;
- Se o coeficiente da incógnita for negativo, trocar os sinais dos termos dos dois membros e do sentido da desigualdade;
- 6. Passar o coeficiente da incógnita para o segundo membro a dividir;
- 7. Obter o intervalo de solução.

Exemplo:

$$x - \frac{4x - 2}{3} \le 2x + 2 \Leftrightarrow 3x - 4x + 2 \le 6x + 6 \Leftrightarrow 3x - 4x - 6x \le 6 - 2 \Leftrightarrow -7x \le 4 \Leftrightarrow 7x \ge -4 \Leftrightarrow x \ge -\frac{4}{7} \Leftrightarrow x \in \left[-\frac{4}{7}; +\infty\right]$$

Inequações polinomiais do 2º grau

1. Escrever a equação na forma canónica $ax^2 + bx + c < / > / \le / \ge 0$;

- 2. Em cálculos auxiliares:
 - a. Determinar os zeros de $ax^2 + bx + c$;
 - b. Fazer um esquema da função $ax^2 + bx + c$;
- 3. Com base no esquema, indicar o intervalo de solução.

Exemplo:

$$4x + 6 \le 2x^2 \Leftrightarrow -2x^2 + 4x + 6 \le 0 \Leftrightarrow -x^2 + 2x + 3 \le 0 \Leftrightarrow x \in]-\infty; -1[\cup]3; +\infty[$$
 C.A.

$$-x^2 + 2x + 3 = 0 \stackrel{F.R.}{\Longleftrightarrow} x = -1 \lor x = 3$$

Inequações polinomiais de grau superior a 2

- 1. Escrever a equação na forma canónica $p(x) </>/\le/\ge 0$;
- 2. Em cálculos auxiliares:
 - a. Determinar os zeros de p(x), sendo aplicada a seguir a regra de Ruffini;
 - b. Decompor p(x) em fatores;
 - Elaborar uma tabela de sinais em que cada linha corresponde a um fator da decomposição de p(x);
- 3. Indicar o intervalo de solução.

Exemplo:

$$60 - 12x^{2} \le 2x(5 - x^{2}) \Leftrightarrow 60 - 12x^{2} \le 10x - 2x^{3} \Leftrightarrow 2x^{3} - 12x^{2} - 10x + 60 \le 0 \Leftrightarrow 2(x + \sqrt{5})(x - \sqrt{5})(x - 6) \le 0 \Leftrightarrow x \in]-\infty; -\sqrt{5}] \cup [\sqrt{5}; 6]$$

C.A.

$$p(x) = 2x^3 - 12x^2 - 10x + 60$$

Através da calculadora obtém-se que x = 6 é um zero de p(x).

	2	-12	-10	60
6		+12	0	-60
	2	0	-10	0

$$Q(x) = 2x^2 - 10$$

$$Q(x) = 0 \Leftrightarrow 2x^2 - 10 \Leftrightarrow 0 \stackrel{F.R.}{\Leftrightarrow} x = -\sqrt{5} \lor x = \sqrt{5}$$

Zeros de
$$p(x) = \{-\sqrt{5}; \sqrt{5}; 6\} \Rightarrow p(x) = 2x^3 - 12x^2 - 10x + 60 = 2(x + \sqrt{5})(x - \sqrt{5})(x - 6)$$

Х	-∞	$-\sqrt{5}$		$\sqrt{5}$		6	+∞
2	+	+	+	+	+	+	+
$x + \sqrt{5}$	-	0	+	+	+	+	+
$x-\sqrt{5}$	-	-	-	0	+	+	+
x – 6	-	-	-	-	-	0	+
p(x)	-	0	+	0	-	0	+

Inequações fracionárias

- 1. Passar todos os termos para o primeiro membro;
- 2. Reduzir todos os termos ao mesmo denominador sem eliminar denominadores;
- 3. Em cálculos auxiliares:
 - a. Determinar os zeros do numerador e do denominador;
 - b. Construir uma tabela de sinais;
- 4. Indicar o intervalo de solução

Exemplo:

$$\frac{2x^2+x}{x-5} \geq 3x+12 \Leftrightarrow \frac{2x^2+x}{x-5} - \frac{(3x+12)(x-5)}{(x-5)} \geq 0 \Leftrightarrow \frac{2x^2+x-(3x+12)(x-5)}{x-5} \geq 0 \Leftrightarrow$$

$$\frac{2x^2 + x - 3x^2 + 15x - 12x + 60}{x - 5} \ge 0 \Leftrightarrow \frac{-x^2 + 4x + 60}{x - 5} \ge 0 \Leftrightarrow x \in]-\infty; -6] \cup]5; 10]$$

C.A.

Zeros do numerador:
$$-x^2 + 4x + 60 = 0 \stackrel{F.R.}{\Longleftrightarrow} x = -6 \lor x = 10$$

Zeros do denominador: $x - 5 = 0 \Leftrightarrow x = 5$

x	-∞	-6		5		10	+∞
$-x^2 + 4x + 60$	-	0	+	+	+	0	-
x - 5	-	-	-	0	+	+	+
$\frac{-x^2+4x+60}{x-5}$	+	0	-	S.S.	+	0	-

Inequações com módulos

- a) Escrever a inequação na forma canónica: $|f(x)| < / > / \le / \ge d$;
- b) Se d > 0:
 - 1. $|f(x)| < d \Leftrightarrow f(x) < d \land f(x) > -d$;
 - 2. $|f(x)| > d \Leftrightarrow f(x) > d \lor f(x) < -d$.

Exemplos:

a)
$$|5x + 2| + 4 < 7 \Leftrightarrow |5x + 2| < 3 \Leftrightarrow 5x + 2 < 3 \land 5x + 2 > -3 \Leftrightarrow x < \frac{1}{5} \land x > -1 \Leftrightarrow x \in \left[-1; \frac{1}{5}\right]$$

b)
$$|3 - 4x| \ge 5 \Leftrightarrow 3 - 4x \ge 5 \lor 3 - 4x \le -5 \Leftrightarrow x \le -\frac{2}{4} \lor x \ge 2 \Leftrightarrow x \le -\frac{1}{2} \lor x \ge 2 \Leftrightarrow x \in \left] -\infty; -\frac{1}{2} \right] \cup [2; +\infty[$$

Inequações exponenciais

$$f(x) = a^x, a > 1 \text{ \'e estritamente crescente: } a^{x_1} < a^{x_2} \Leftrightarrow x_1 < x_2, a > 1, \forall_{x_1, x_2} \in D_f$$

Exemplo:

$$5^{3x-x^2} \ge 25 \Leftrightarrow 5^{3x-x^2} \ge 5^2 \Leftrightarrow 3x - x^2 \ge 2 \Leftrightarrow -x^2 + 3x - 2 \ge 0 \Leftrightarrow x \in [1; 2]$$

C.A.

$$-x^2 + 3x - 2 = 0 \stackrel{FR}{\Leftrightarrow} x = 1 \lor x = 2$$

Inequações com logaritmos

O primeiro passo na resolução de uma inequação com logaritmos é a determinação do Domínio.

$$\log_a x_1 < \log_a x_2 \Leftrightarrow x_1 < x_2, \forall_{x_1, x_2} \in D, a > 1$$

Exemplos:

a)
$$\log_2(5-x) > 3 + \log_2(x+1)$$

 $D = \{x \in \mathbb{R}: 5-x > 0 \land x+1 > 0\} \Leftrightarrow D = \{x \in \mathbb{R}: x < 5 \land x > -1\} \Leftrightarrow D =]-1; 5[$
 $\log_2(5-x) > 3 + \log_2(x+1) \land x \in]-1; 5[\Leftrightarrow \log_2(5-x) > \log_2 2^3 + \log_2(x+1) \land$
 $-- \Leftrightarrow \log_2(5-x) > \log_2 \left(2^3(x+1)\right) \land -- \Leftrightarrow \log_2(5-x) > \log_2(8x+8) \land --$
 $-\Leftrightarrow 5-x > 8x+8 \land -- \Leftrightarrow -9x > 3 \land -- \Leftrightarrow x < -\frac{3}{9} \land x \in]-1; 5[\Leftrightarrow x < -\frac{1}{3} \Leftrightarrow x]-1; -\frac{1}{3}[$

b)
$$\log_3(x^2 - 2x) \le 1$$

$$D = \{x \in \mathbb{R}: x^2 - 2x > 0\} \xrightarrow{Resolução\ em\ C.A.} D = x < 0 \land x > 2$$

$$\log_3(x^2 - 2x) \le 1 \land (x < 0 \land x > 2) \Leftrightarrow \log_3(x^2 - 2x) \le \log_3 3^1 \land --- \Leftrightarrow x^2 - 2x \le 3 \land --- \Leftrightarrow x^2 - 2x - 3 \le 0 \land --- \xrightarrow{Resolução\ em\ C.A.} x \in [-1; 3] \land (x < 0 \land x > 2) \Leftrightarrow x \in [-1; 0[\cup]2; 3]$$

Regras operatórias com radicais

•
$$a\sqrt[n]{x} \pm b\sqrt[n]{x} = (a \pm b)\sqrt[n]{x}, \forall_x \in \mathbb{R}_0^+, \forall_n \in \mathbb{N}$$

•
$$\sqrt[n]{x} * \sqrt[n]{y} = \sqrt[n]{xy}, \forall_{x,y} \in \mathbb{R}_0^+, \forall_n \in \mathbb{N}$$

•
$$\frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}}, \forall_{x,y} \in \mathbb{R}_0^+, \forall_n \in \mathbb{N}$$

•
$$(\sqrt[n]{x})^p = \sqrt[n]{x^p}, \forall_x \in \mathbb{R}_0^+, \forall_{n,p} \in \mathbb{N}$$

•
$$\sqrt[n]{\frac{p}{\sqrt{x}}} = \sqrt[np]{x}, \forall_x \in \mathbb{R}_0^+, \forall_{n,p} \in \mathbb{N}$$

Conjunção e junção de condições

Interseção: Λ: ∩

• Reunião: V: U

Negação de condições

$$\sim$$
($x > 1$) = $x \le 1$

$$\sim (x \ge 1) = x < 1$$

Leis de De Morgan

$$\sim \left(a(x) \wedge b(x)\right) \Leftrightarrow \left(\sim \left(a(x)\right) \vee \sim \left(b(x)\right)\right) \Rightarrow \overline{A \cap B} = \bar{A} \cup \bar{B}$$

$$\sim \left(a(x) \vee b(x)\right) \Leftrightarrow \left(\sim \left(a(x)\right) \wedge \sim \left(b(x)\right)\right) \Rightarrow \overline{A \cup B} = \bar{A} \cap \bar{B}$$

Redução de condições de circunferências

a)
$$x^2 + y^2 - 10x - 4y = 7 \Leftrightarrow (x^2 - 10x + 5^2) + (y^2 - 4y + 2^2) = 7 + 25 + 4 \Leftrightarrow (x - 5)^2 + (y - 2)^2 = 36$$

C(5; 2), $r = 6$

b)
$$x^2 + 4x + y^2 = 0 \Leftrightarrow (x^2 + 4x + 2^2) + (y^2 + 0^2) = 0 + 4 + 0 \Leftrightarrow (x - 2)^2 + y^2 = 4$$

C(2; 0), r = 4

c)
$$x^2 + y^2 - 2x + 12y = 4 \Leftrightarrow (x^2 - 2x + 1^2) + (y^2 + 12y + 6^2) = 4 + 1 + 36 \Leftrightarrow (x - 1)^2 + (y + 6)^2 = 41$$

C(1; -6), $r = \sqrt{41}$

Potências

Expoente natural

$$a^n = a*a*a*...*a \ (n \ vezes), n \in \mathbb{N}$$

Expoente nulo

$$a^0 = 1, a \neq 0$$

Expoente inteiro negativo

$$n \in \mathbb{Z}^-$$

$$a^{-n} = \frac{1}{a^n}$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

Expoente fracionário

$$\frac{m}{n} \in \mathbb{Q}$$

$$a^{\frac{m}{n}}=\sqrt[n]{a^m}, n\in\mathbb{N}, m\in\mathbb{Z}$$

Expoente irracional

Seja x um número irracional e u_n uma sucessão tal que $u_n \to x$.

A potência de expoente irracional a^x é, por definição, o limite da sucessão a^{u_n} .

Regras operatórias com potências

- $\bullet \quad a^x a^y = a^{x+y};$
- $\bullet \quad a^x b^x = (ab)^x;$
- $\bullet \quad \frac{a^x}{a^y} = a^{x-y};$
- $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$;
- $(a^x)^y$.

Notas:

- $\bullet \quad \frac{1}{x} = x^{-1};$
- $\bullet \quad \frac{2}{x^3} = 2 * \frac{1}{x^3} = 2x^{-3};$
- $\bullet \quad \frac{1}{2x^3} = (2x^3)^{-2} = 2^{-1}x^{-3}.$

Racionalização (exemplos)

a)
$$\frac{3}{\sqrt{2}} = \frac{3*\sqrt{2}}{\sqrt{2}*\sqrt{2}} = \frac{3\sqrt{2}}{2}$$

b)
$$\frac{x+2}{\sqrt{x-1}} = \frac{(x+2)(\sqrt{x-1})}{x-1}$$

c)
$$\frac{2}{\sqrt{3}-1} = \frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{2\sqrt{3}+2}{3-1} = \frac{2\sqrt{3}+2}{2} = \sqrt{3}+1$$

d)
$$\frac{x-4}{\sqrt{x}+3} = \frac{(x-4)(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)} = \frac{(x-4)(\sqrt{x}-3)}{x-9}$$

Conjunto de números

•
$$\mathbb{N} = \{1,2,3,\dots\}$$

- $\mathbb{Z} = \mathbb{N} \cup \{inteiros \ n\~ao \ positivos\}$
- $\mathbb{Q} = \mathbb{Z} \cup \{fracion\'{a}rios\}$
- $\mathbb{R} = \mathbb{Q} \cup \{irracionais\}$
- $\bullet \quad \mathbb{C} = \mathbb{R} \cup \{imagin\'{a}rios\} \rightarrow conjunto \ dos \ n\'{u}mero \ complexos$

Geometria

Fórmulas

Comprimento de um arco de circunferência

 αr

 $\alpha
ightarrow$ amplitude, em radianos, do ângulo ao centro

 $r
ightarrow {
m raio}$ da circunferência

Área de um perímetro regular

semiperímetro * apótema

Área de um setor circular

$$\frac{\alpha r^2}{2}$$

 $\alpha \rightarrow$ amplitude, em radianos, do ângulo ao centro

 $r
ightarrow {
m raio}$ da circunferência

Área lateral de um cone

 πrg

 $r \rightarrow \text{raio da base}$

 $g \rightarrow \text{geratriz}$

Área de uma superfície esférica

 $4\pi r^2$

 $r
ightarrow {\sf raio}$

Volume de uma pirâmide

$$\frac{1}{3}$$
 * Área da base * Altura

Volume de um cone

$$\frac{1}{3}$$
 * Área da base * Altura

Volume de uma esfera

$$\frac{4}{3}\pi r^3$$

$$r \rightarrow \text{raio}$$

Equações de planos

Equação de planos paralelos aos planos coordenados no espaço

- Plano paralelo a yOz (perpendicular a Ox) que contém o ponto P(a, b, c): x = a;
- Plano paralelo a xOz (perpendicular a Oy) que contém o ponto P(x, y, z): y = b;
- Plano paralelo a xOy (perpendicular a Oz) que contém o ponto P(x, y, z): z = c.

Equação de qualquer plano

Plano que contém $A(x_0, y_0, z_0)$ é normal (perpendicular; \bot) ao vetor $\overrightarrow{n_\alpha} = (a, b, c)$

- Equação geral do plano α : $\alpha = a(x x_0) + b(y y_0) + c(z z_0) = 0$
- Equação cartesiana do plano α : $\alpha = ax + by + cz + d = 0$

Plano que contém 3 pontos não colineares A, B e C

É necessário encontrar as coordenadas de um vetor $\overrightarrow{n_{\alpha}}$, perpendicular ao plano α .

 $\overrightarrow{n_{\alpha}}$ será uma das soluções do seguinte sistema (possível e indeterminado):

$$\begin{cases} \overrightarrow{n_{\alpha}} \cdot \overrightarrow{AB} = 0 \\ \overrightarrow{n_{\alpha}} \cdot \overrightarrow{AC} = 0 \end{cases}$$

Equações de retas

Equação de retas paralelas aos eixos

No plano

- Reta paralela a Ox que contém P(a, b): y = b;
- Reta paralela a Oy que contém P(a, b): x = a.

No espaço

- Reta paralela a Ox (perpendicular a yOz) que contém P(a, b, c): $y = b \land z = c$;
- Reta paralela a Oy (perpendicular a xOz) que contém P(a, b, c): $x = a \land z = c$;
- Reta paralela a Oz (perpendicular a xOy) que contém P(a, b, c): $x = a \land y = b$.

Equação cartesiana de qualquer reta

Reta que contém o ponto A(x₀, y₀, z₀) e tem a direção do vetor $\vec{u} = (u_1, u_2, u_3)$.

- Se $u_1 \neq 0, u_2 \neq 0, u_3 \neq 0$ então $r: \frac{x x_0}{u_1} = \frac{y y_0}{u_2} = \frac{z z_0}{u_3};$
- Se $u_1=0, u_2\neq 0, u_3\neq 0$ então $r: x=x_0 \wedge \frac{y-y_0}{u_2}=\frac{z-z_0}{u_3} \ (r\parallel y0z)$;
- Se $u_1 \neq 0$, $u_2 = 0$, $u_3 \neq 0$ então $r: y = y_0 \land \frac{x x_0}{u_1} = \frac{z z_0}{u_3}$ $(r \parallel xOz)$;
- Se $u_1 \neq 0, u_2 \neq 0, u_3 = 0$ então $r: z = z_0 \wedge \frac{x x_0}{u_1} = \frac{y y_0}{u_2} \ \ (r \parallel xOy);$
- Se $u_1 = 0$, $u_2 = 0$, $u_3 \neq 0$ então $r: x = x_0 \land y = y_0 \ (r \parallel Oz)$;
- Se $u_1 = 0$, $u_2 \neq 0$, $u_3 = 0$ então $r: x = x_0 \land z = z_0 \ (r \parallel 0y)$;
- Se $u_1 \neq 0$, $u_2 = 0$, $u_3 = 0$ então $r: y = y_0 \land z = z_0 \ (r \parallel Ox)$.

Coroa circular

$$r_1^2 \le (x-a)^2 + (y-b)^2 \le r_2^2$$
, com centro $C(a,b)$

Equação vetorial de uma reta r

Seja r a reta que contém o ponto A(a,b) e tem a direção do vetor $\vec{u}(u_1,u_2)$.

- No plano: $(x, y) = (a, b) + k(u_1, u_2), k \in \mathbb{R}$
- No espaço: $(x, y, z) = (a, b, c) + k(u_1, u_2, u_3), k \in \mathbb{R}$

Equação vetorial de uma semirreta AB

$$P = A + k\overrightarrow{AB}, k \ge 0$$
 sendo $A(a_1, a_2) \in \overrightarrow{AB} = (u_1, u_2).$

- No plano: $\dot{A}B$: $(x,y) = (a_1,a_2) + k(u_1,u_2), k \ge 0$
- No espaço: $\dot{A}B$: $(x, y, z) = (a_1, a_2, a_3) + k(u_1, u_2, u_3), k \ge 0$

Segmento de reta [AB]

$$P = A + k\overrightarrow{AB}, k \in [0; 1]$$
 sendo A(a₁, a₂) e $\overrightarrow{AB} = (u_1, u_2)$.

- No plano: $[AB]: (x, y) = (a_1, a_2) + k(u_1, u_2), k \ge 0$
- No espaço: [AB]: $(x, y, z) = (a_1, a_2, a_3) + k(u_1, u_2, u_3), k \ge 0$

Equação reduzida de uma reta (não vertical) no plano

$$y = mx + b$$

 $m \rightarrow \text{declive da reta}$

b o ordenada na origem (ordenada do ponto de interseção da reta com o eixo Oy)

Se A e B forem dois pontos de uma reta não vertical então $m=rac{y_B-y_A}{x_B-x_A}$.

Se $\vec{u}(u_1,u_2)$ for o vetor diretor de uma reta não vertical então $m=\frac{u_2}{u_1}$.

Equação reduzida da reta

Exemplos:

a) A(1; 2) e B(3; 5)

$$P = A + k\overrightarrow{AB}, k \in \mathbb{R} \Leftrightarrow (x, y) = (1, 2) + k((3, 5) - (1, 2)), k \in \mathbb{R} \Leftrightarrow (x, y)$$
$$= (1, 2) + k(2, 3), k \in \mathbb{R}$$

$$\begin{cases} x = 1 + 2k \\ y = 2 + 3k \end{cases} \Leftrightarrow \begin{cases} k = \frac{x - 1}{2} \\ k = \frac{y - 2}{3} \end{cases}$$

$$\frac{x-1}{2} = \frac{y-2}{3} \Leftrightarrow 3x-3 = 2y-4 \Leftrightarrow 2y = 3x+1 \Leftrightarrow y = \frac{3x+1}{2} \Leftrightarrow y = \frac{3}{2}x + \frac{1}{2}$$

b)
$$(x, y) = (1,2) + k(2,5), k \in \mathbb{R}$$

$$r: y = \frac{5}{2}x + b$$

$$(1,2) \in r: 2 = \frac{5}{2} * 1 + b \Leftrightarrow b = -\frac{1}{2}$$

$$r: y = \frac{5}{2}x - \frac{1}{2}$$

Interpretação do declive de uma reta

- m = 0 → reta horizontal;
- $m > 0 \rightarrow reta crescente;$
- m < 0 → reta decrescente.

Posição relativa de duas retas no plano

Sendo $r: y = m_r x + b_r$ e $s: y = m_s + b_s$.

- r e s são paralelas se e só se m_r = m_s;
 - o $r \in s$ são estritamente paralelas $(r \parallel s)$: $m_r = m_s \land b_r \neq b_s$;

- o $r \in s$ são coincidentes $(r \equiv s)$: $m_r = m_s \land b_r = b_s$;
- $r \in s$ são concorrentes ou secantes se e só se $m_r \neq m_s$;
 - $r \in s$ são secantes oblíquas $(r \nmid s)$: $m_r \neq m_s \land m_r = -\frac{1}{m_s}$
 - o r e s são perpendiculares $(r \perp s)$: $m_r = -\frac{1}{m_s}$.

Interpretação da resolução de sistema de equações no estudo da posição relativa de duas retas

- Retas concorrentes: sistema possível e determinado (uma única solução);
- Retas coincidentes: sistema possível e indeterminado (soluções infinitas);
- Retas estritamente paralelas: sistema impossível (sem solução).

Vetor como diferença de dois pontos

$$\overrightarrow{AB} = B - A = (x_B - x_A, y_B - y_A, z_B - z_A)$$

Soma de um ponto com um vetor: $A + \overrightarrow{AB} = B$

Norma de um vetor

Norma de um vetor \vec{u} é a medida do comprimento do vetor e representa-se por $||\vec{u}||$. Assim,

$$||\overrightarrow{AB}|| = d(A, B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

$$||\vec{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}, \vec{u} = (u_1, u_2, u_3)$$

Adição de vetores

$$\vec{u} + \vec{n} = (u_1, u_2, u_3) + (n_1, n_2, n_3) = (u_1 + n_1, u_2 + n_2, u_3 + n_3)$$

Produto de um número real por um vetor

$$k\vec{u} = k(u_1, u_2, u_3) = (ku_1, ku_2, ku_3)$$

Vetores colineares

Dois vetores \vec{u} e \vec{n} dizem-se colineares se têm a mesma direção:

 \vec{u} e \vec{n} são colineares $\Leftrightarrow \exists k \in \mathbb{R} : \vec{u} = k\vec{n}$

Se $u_1 \neq 0$, $u_2 \neq 0$ e $u_3 \neq 0$ tem-se:

$$\vec{u}$$
 e \vec{n} são colineares $\Leftrightarrow \frac{n_1}{u_1} = \frac{n_2}{u_2} = \frac{n_3}{u_3}$, $\vec{u} = (u_1, u_2, u_3)$, $\vec{n} = (n_1, n_2, n_3)$

Produto escalar de dois vetores

$$\vec{u} \cdot \vec{n} = ||\vec{u}|| \cdot ||\vec{n}|| \cdot \cos(\vec{u} \wedge \vec{n})$$

Se
$$\vec{u} = (u_1, u_2)$$
 e $\vec{n} = (n_1, n_2)$ então: $\vec{u} \cdot \vec{n} = u_1 n_1 + u_2 n_2$

$$\vec{u} \perp \vec{n} \Leftrightarrow \vec{u} \cdot \vec{n} = 0$$

$$\angle(\vec{u}, \vec{n})$$
 agudo $\Leftrightarrow \vec{u} \cdot \vec{n} > 0$

$$\angle(\vec{u}, \vec{n})$$
 obtuso $\Leftrightarrow \vec{u} \cdot \vec{n} < 0$

Ângulo de dois vetores

$$\cos(\vec{u} \wedge \vec{n}) = \frac{\vec{u} \cdot \vec{n}}{||\vec{u}|| * ||\vec{n}||}$$

Ângulo de duas retas

É o menor ângulo definido por duas retas.

$$0^{\circ} \le r \land s \le 90^{\circ}$$

$$\cos(r \wedge s) = \frac{|\vec{r} \cdot \vec{s}|}{||\vec{r}|| * ||\vec{s}||}, sendo \ \vec{r} \ e \ \vec{s} \ vetores \ directores \ de \ r \ e \ de \ s$$

- Se r for uma reta oblíqua de equação y = mx + b e $m=rac{c}{d}$ então $ec{r}=k(d,c)$
- Se r for uma reta horizontal de equação y = a então $\vec{r}=k(1,0), k\in\mathbb{R}$
- Se r for uma reta vertical de equação x = a então $\vec{r} = k(0,1), k \in \mathbb{R}$

Produto de um número real por um vetor

$$\vec{n}=k\vec{u},k\in\mathbb{R},\vec{u}\neq\vec{0}$$

- $k > 0 \rightarrow$ mesma direção, mesmo sentido, comprimento = $|k| * ||\vec{u}||$
- $k < 0 \rightarrow$ mesma direção, sentido oposto, comprimento = $|k| * ||\vec{u}||$
- $k = 0 \rightarrow k\vec{u} = \vec{0}$

Inclinação de uma reta

É o menor ângulo θ não negativo que a reta faz com o semieixo positivo das abcissas.

•
$$m = \tan(\theta) \Leftrightarrow \theta = \tan^{-1}(m)$$

o
$$m > 0 \Leftrightarrow \theta \ agudo$$

 \circ $m < 0 \Leftrightarrow \theta \ obtuso$

Perpendicularidade entre vetores no plano

Se $\vec{r} = (r_1, r_2)$ e $\vec{s} \perp \vec{r}$ então $\vec{s} = k(-r_2, r_1), k \in \mathbb{R}$

Perpendicularidade entre retas no plano

Se $r \perp s$ e $m_s = \frac{a}{b}$ então $m_r = -\frac{b}{a}$

Paralelismo e perpendicularidade no espaço

- $\alpha \parallel \beta \Leftrightarrow \overrightarrow{n_{\alpha}} \ colinear \ com \ \overrightarrow{n_{\beta}} \Leftrightarrow \overrightarrow{n_{\alpha}} = k\overrightarrow{n_{\beta}}, k \in \mathbb{R};$
- $\alpha \perp \beta \Leftrightarrow \overrightarrow{n_{\alpha}} \perp \overrightarrow{n_{\beta}} \Leftrightarrow \overrightarrow{n_{\alpha}} \cdot \overrightarrow{n_{\beta}} = 0;$
- $r \parallel \alpha \Leftrightarrow \vec{r} \perp \overrightarrow{n_{\alpha}} \Leftrightarrow \vec{r} \cdot \overrightarrow{n_{\alpha}} = 0;$
- $r \perp \alpha \Leftrightarrow \vec{r} \ colinear \ com \ \overrightarrow{n_{\alpha}} \Leftrightarrow \vec{r} = k\overrightarrow{n_{\alpha}} = 0, k \in \mathbb{R}.$

Condições obtidas recorrendo ao produto escalar

No plano Circunferência

de diâmetro [AB] é o conjunto dos pontos P do plano que satisfazem a condição $\overrightarrow{AB}\cdot\overrightarrow{BP}=0$

Superfície esférica

No espaço

de diâmetro [AB] é o conjunto dos pontos P do espaço que satisfazem a condição $\overrightarrow{AB} \cdot \overrightarrow{BP} = 0$

Mediatriz do segmento de reta

[AB], de ponto médio M, é o conjunto dos pontos P do plano que satisfazem a condição $\overrightarrow{AB} \cdot \overrightarrow{MP} = 0$ Plano mediador do segmento de reta

[AB], de ponto médio M, é o conjunto dos pontos P do espaço que satisfazem a condição \overrightarrow{AB} .

 $\overrightarrow{MP} = 0$

Reta tangente à circunferência

de centro C no ponto T é o conjunto dos pontos P ${\rm que\ satisfazem\ a\ condição}\ \overrightarrow{CT}\cdot\overrightarrow{TP}=0$

Reta tangente à superfície esférica

de centro C no ponto T é o conjunto dos pontos P ${\rm que\ satisfazem\ a\ condição\ }\overrightarrow{CT}\cdot\overrightarrow{TP}=0$

Condições obtidas recorrendo à distância entre pontos

No plano	No espaço
Ponto médio	Ponto médio
do segmento [AB] com $A(x_1,y_1)$ e $B(x_2,y_2)$	do segmento [AB] com $A(x_1,y_1,z_1)$ e $B(x_2,y_2,z_2)$
$M_{[A,B]} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	$M_{[A,B]} = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2})$
Distância	Distância
entre os pontos $A(x_1,y_1)$ e $B(x_2,y_2)$	entre os pontos $A(x_1,y_1,z_1)$ e $B(x_2,y_2,z_2)$
$\overline{AB} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$	$\overline{AB} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$
Circunferência	Superfície esférica

de centro C(a,b) e raio r, é o conjunto de pontos P(x,y) que se encontram à mesma distância de r e

de C

$$(x-a)^2 + (y-a)^2 = r^2$$

de centro C(a,b,c) e raio r, é o conjunto dos pontos P(x,y,z) que se encontram à mesma distância r de C

$$(x-a)^2 + (y-a)^2 + (z-c)^2 = r^2$$

Círculo

de centro C(a,b) e raio r é o conjunto de pontos P(x,y) que se encontram a uma distância igual ou inferior a r de C

$$(x-a)^2 + (y-a)^2 \le r^2$$

Esfera

de centro C(a,b,c) e raio r, é o conjunto dos pontos P(x,y,z) que se encontram a uma distância igual ou inferior a r de C

$$(x-a)^2 + (y-a)^2 + (z-c)^2 \le r^2$$

Meditatriz

do segmento de reta [AB], com $A(x_1,y_1)$ e $B(x_2,y_2)$ é o conjunto de pontos P(x,y) equidistantes de A

$$(x - x_1)^2 + (y - y_1)^2 = (x - x_2)^2 + (y - y_2)^2$$

Plano mediador

do segmento de reta [AB], com $A(x_1,y_1,z_1)$ e $B(x_2,y_2,z_2)$ é o conjunto de pontos P(x,y,z) equidistantes de A e de B

$$(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2$$
$$= (x - x_2)^2 + (y - y_2)^2$$
$$+ (z - z_2)^2$$

Funções

Função afim

Chama-se função afim a toda a função de domínio \mathbb{R} tal que: $f(x) = mx + b, m, b \in \mathbb{R}$.

Se m = 0, f(x) = b e diz-se que f é uma função constante.

f(x) = mx + b	m > 0	m < 0	m = 0
Domínio	\mathbb{R}	\mathbb{R}	\mathbb{R}
Contradomínio	\mathbb{R}	\mathbb{R}	{b}
Zeros	$-\frac{b}{m}$	$-\frac{b}{m}$	$-\frac{b}{m}$
Representação gráfica	-b/m	-b/m	b
Sinal	$x \in \left] -\infty; -\frac{b}{m} \right[: negativa$ $x \in \left] -\frac{b}{m}; +\infty \right[: positiva$	$x \in \left] -\infty; -\frac{b}{m} \right[: positiva$ $x \in \left] -\frac{b}{m}; +\infty \right[: negativa$	b > 0: positiva b < 0: negativa
Variação	crescente	decrescente	constante

Função quadrática

Uma função real de variável real definida por um polinómio do 2^{o} grau, ou seja, definida por uma expressão do tipo $y=ax^2+bx+c$, $a\neq 0$ é designada por função quadrática.

O gráfico da função quadrática é uma parábola.

$$y = ax^2$$

a > 0	a < 0	

y = ax²	0	0
Domínio	\mathbb{R}	\mathbb{R}
Contradomínio	\mathbb{R}^+_0	\mathbb{R}_0^-
Zeros	0	0
Sinal	Positiva em $\mathbb{R} ackslash \{0\}$	Negativa em $\mathbb{R} ackslash \{0\}$
Monotonia	Decrescente em]-∞; 0[Crescente em]-∞; 0[
ivionotonia	Crescente em $]0; +\infty[$	Decrescente em]0; +∞[
Extremos	Mínimo: 0	Máximo: 0
Extremos	Minimizante: 0	Maximizante: 0

$$y = a(x-h)^2$$

	a > 0	a < 0
y = a(x-h) ²	h	
Domínio	\mathbb{R}	\mathbb{R}
Contradomínio	\mathbb{R}_0^+	\mathbb{R}_0^-
Zeros	h	h
Sinal	Positiva em $\mathbb{R}ackslash\{h\}$	Negativa em $\mathbb{R}ackslash\{h\}$
Monotonia	Decrescente em $]-\infty$; $h[$	Crescente em $]-\infty; h[$
onotoma	Crescente em] h ; + ∞ [Decrescente em $]h; +\infty[$
Extremos	Mínimo: 0	Máximo: 0
2/0.5/1100	Minimizante: h	Maximizante: h

$$y = ax^2 + k$$

	$a > 0 \land k > 0$	$a > 0 \land k < 0$
y = ax² + k	\downarrow k	
Domínio	\mathbb{R}	\mathbb{R}
Contradomínio	[<i>k</i> ,+∞[[<i>k</i> , +∞[
Zeros	Não tem	X ₁ , X ₂
Sinal	Positiva em $\mathbb R$	Positiva em] $-\infty$; $x_1[\ \cup\]x_2; +\infty[$ Negativa em] $x_1; x_2[$
Monotonia	Decrescente em $]-\infty;0]$	Decrescente em $]-\infty;0]$
	Crescente em [0; +∞[Crescente em $[0; +\infty[$
Extremos	Mínimo: k	Máximo: k
LAttenios	Minimizante: 0	Maximizante: 0

	$a < 0 \land k > 0$	$a < 0 \land k < 0$
y = ax² + k	x ₁	x ₁
Domínio	R	\mathbb{R}
Contradomínio]-∞; <i>k</i>]]-∞; <i>k</i>]
Zeros	X ₁ , X ₂	Não tem
Sinal	Positiva em $]x_1; x_2[$ Negativa em $]-\infty; x_1[\ \cup\]x_2; +\infty[$	Negativa em ℝ
Monotonia	Decrescente em [0; +∞[Decrescente em $[0; +\infty[$

	Crescente em] $-\infty$; 0]	Crescente em] $-\infty$; 0]
Extremos	Mínimo: k	Máximo: k
	Minimizante: 0	Maximizante: 0

$$y = a(x-h)^2$$

O gráfico de uma função do tipo $y=a(x-h)^2+k$, $a\neq 0$ é uma parábola com as seguintes características:

- Concavidade voltada para cima se a > 0; concavidade voltada para baixo se a < 0;
- Vértice no ponto de coordenadas (h; k);
- Eixo de simetria é a reta de equação x = h.

Determinação do vértice da parábola

As coordenas do vértice V são $\left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$, com f(x) = ax² +b + c.

$$f(x) = f(0) \Leftrightarrow ax^2 + bx + c = a * 0^2 + b * 0 + c \Leftrightarrow ax^2 + bx + c = c \Leftrightarrow ax^2 + bx = 0 \Leftrightarrow$$
$$x(ax + b) = 0 \Leftrightarrow x = 0 \lor ax + b = 0 \Leftrightarrow x = 0 \lor x = -\frac{b}{a}$$

Os pontos (0; f(0)) e $\left(-\frac{b}{a}; f\left(-\frac{b}{a}\right)\right)$ são simétricos em relação ao eixo de simetria da função, logo a abcissa do vértice é metade de $-\frac{b}{a}$, daí que o vértice V seja dado por $\left(-\frac{b}{2a}; f\left(-\frac{b}{2a}\right)\right)$.

Função módulo

Uma função módulo, analiticamente, é definida por ramos. Uma função diz-se definida por ramos se é definida por expressões diferentes em partes diferentes do seu Domínio.

Exemplo:

$$f(x) = |x| = f(x) = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$$

Função soma

$$D_{f+g} = D_f \cap D_g$$

$$(f+g)(x) = f(x) + g(x)$$

Função diferença

$$D_{f-g} = D_f \cap D_g$$

$$(f-g)(x) = f(x) - g(x)$$

Função produto

$$D_{f*g} = D_f \cap D_g$$

$$(f * g)(x) = f(x) * g(x)$$

Função quociente

$$D_{\frac{f}{g}} = D_f \cap D_g \cap \{x \in \mathbb{R} \colon g(x) \neq 0\}$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Igualdade de funções

Dadas as funções f(x) e g(x), estas são iguais se e só se as seguintes igualdades se verificarem:

$$D_f = D_a$$

$$f(x) = g(x), \forall_x \in D$$

Função composta

$$D_{g \circ f} = \{x \in D_f \colon f(x) \in D_g\} \text{ ou } D_{g \circ f} = \{x \in \mathbb{R} \colon x \in D_f \land f(x) \in D_g\}$$

$$(g \circ f)(x) = g(f(x))$$

Exemplo:

$$f(x) = \sqrt{x+1}; g(x) = \frac{1}{x}$$

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x+1}) = \frac{1}{\sqrt{x+1}}$$

$$D_{g \circ f} = \left\{ x \in \mathbb{R} \colon x \in D_f \land f(x) \in D_g \right\} = \left\{ x \in \mathbb{R} \colon x \in [-1; +\infty[\land \sqrt{x+1} \in \mathbb{R} \setminus \{0\}] \right\} = \left\{ x \in \mathbb{R} \colon x \geq -1 \land \sqrt{x+1} \neq 0 \right\} = \left\{ x \in \mathbb{R} \colon x \geq -1 \land x \neq 0 \right\} =]-1; +\infty[$$

$$g \circ f =]-1; +\infty[\to \mathbb{R}$$

$$\chi \hookrightarrow \frac{1}{\sqrt{x+1}}$$

Função racional

$$f: x \hookrightarrow \frac{P(x)}{Q(x)}$$

O Domínio de uma função racional é o conjunto dos números reais que não anulam o denominador: $D_f=\{x\in\mathbb{R}:Q(x)\neq 0\}.$

A reta x = a é uma Assíntota Vertical (A.V.) de f se f(x) tende para $\pm \infty$ quando x tende para a pelos valores à direta de a (a⁺), pelos valores à esquerda de a (a⁻) ou ambos.

A reta y = b é uma Assíntota Horizontal (A.H.) de f se f(x) tende para b quando x tende para $+\infty$ ou $-\infty$ ou ambos.

Funções do tipo
$$y=a+\frac{b}{cx+d}$$
, $a,b,c,d\in\mathbb{R}$

$y = a + \frac{b}{x+d}, b \neq 0$	Domínio: $\mathbb{R}ackslash\{-d\}$

Simplificação de frações racionais

$$\frac{a}{b} \Leftrightarrow d + \frac{c}{b}$$

Exemplo:

$$f(x) = \frac{2x^2 + x + 3}{x + 1} = 2x - 1 + \frac{4}{x + 1}$$

$$2x^{2} + x + 3$$

$$-2x^{2} - 2x$$

$$-x + 3$$

$$x + 1$$

$$2x - 1$$

$$+x + 1$$

Transformações do gráfico de uma função

• y = f(x) + k

Translação na vertical para cima se k > 0

Translação na vertical para baixo se k < 0

• y = f(x + k)

Translação na horizontal para a esquerda se k > 0

Translação na horizontal para a direita se k < 0

• y = kf(x)

Alongamento vertical se k > 1

Encolhimento vertical se 0 < k < 1

• y = f(kx)

Encolhimento horizontal se k > 1

Alongamento horizontal se 0 < k < 1

• y = -f(x)

Simetria em relação ao eixo Ox

• y = f(-x)

Simetria em relação ao eixo Oy

• y = |f(x)|

Módulo de uma função: os intervalos de f(x) com sinal negativo passam a sinal positivo

Monotonia

- Função crescente: $x_1 < x_2 \Leftrightarrow f(x_1) < f(x_2), \forall_{x_1, x_2} \in D_f$;
- $\bullet \quad \text{Função decrescente: } x_1 > x_2 \Leftrightarrow f(x_1) > f(x_2), \forall_{x_1,x_2} \in D_f;$
- Função constante: $f(x_1) = f(x_2)$, $\forall_{x_1,x_2} \in D_f$.

Extremos

- f tem um máximo absoluto em a se $\forall_x \in D_f : f(x) \le f(a)$;
 - A a chama-se maximizante, a f(a) máximo absoluto;
- f tem um mínimo absoluto em a se $\forall_x \in D_f : f(x) \ge f(a)$;
 - A a chama-se minimizante, a f(a) mínimo absoluto;

- f tem um máximo relativo em a se existir uma vizinhança V de centro a tal que $\forall_x \in V \cap D_f$, $f(x) \leq f(a)$;
 - A a chama-se maximizante, a f(a) máximo relativo;
- f tem um mínimo relativo em a se existir uma vizinhança V de centro a tal que $\forall_x \in V \cap D_f, f(x) \ge f(a)$;
 - \circ A a chama-se minimizante, a f(a) mínimo relativo.

Injetividade

Dada uma função f de Domínio D, f é injetiva se e só se:

$$\forall_{x_1,x_2} \in D_f$$
, se $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$ ou

ou
$$f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2, \forall_{x_1, x_2} \in D_f$$

Paridade

Função par

$$f \in par: f(-x) = f(x), \forall_x \in D_f$$

Função ímpar

$$f \in \text{impar}: f(-x) = -f(x), \forall_x \in D_f$$

Caso nenhuma das duas condições se verifique, diz-se que a função não é par nem ímpar.

Taxa média de variação

A taxa média de variação de uma função f no intervalo [a; b] representa-se por $tmv_{[a;b]}$ e é dada por: $tmv_{[a;b]}=\frac{f(b)-f(a)}{b-a}$.

- Se f é estritamente crescente em $[a;b] \Rightarrow tmv_{[a;b]} > 0$;
- Se f é estritamente decrescente em $[a;b] \Rightarrow tmv_{[a;b]} < 0$;
- Se f é constante em $[a;b] \Rightarrow tmv_{[a;b]} = 0$;
- Interpretação gráfica: representa o declive da reta secante ao gráfico de f; Seja s a reta secante ao gráfico de f em x=a e x=b.

$$m_S = \frac{y_b - y_a}{x_b - x_a} = \frac{f(b) - f(a)}{b - a} = tmv_{[a;b]}$$

Interpretação física: representa a velocidade média da função no intervalo dado;

• Se uma função for estritamente crescente num intervalo do seu Domínio então a tmv é positiva nesse intervalo, mas o recíproco não é verdadeiro.

Taxa de variação

Dada uma função f chama-se derivada de f (ou taxa de variação de f) num ponto x=a do seu Domínio e presenta-se por f'(a) ao valor de $\lim_{h\to 0}tmv_{[a;b]}$, ou seja,

$$f'(a) = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right) \stackrel{MV}{\longleftrightarrow} x = a + h \\ f'(a) = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right)$$

- Interpretação física: f'(a) representa a velocidade instantânea da função em x=a;
- Interpretação gráfica:

$$m_s = tmv[a; a+h]$$

Quando $h \to 0$, a reta secante "transforma-se" numa reta tangente $\Rightarrow f'(a) =$

 m_{tang}

A derivada de uma função num ponto é igual ao declive da reta tangente ao gráfico da função nesse ponto:

$$f'(a) = m_{t_1} > 0$$

$$f'(a) = m_{t_2} = 0$$

$$f'(a) = m_{t_3} < 0$$

Equação reduzida da reta tangente ao gráfico de uma função num ponto

Uma forma de obter a equação de uma reta conhecido o seu declive (m) é um ponto A(a;f(a)) tal que:

$$y - f(a) = m(x - a)$$

No caso da reta em causa ser a reta tangente a x = a, tem-se:

$$y - f(a) = f'(a)(x - a)$$

Exemplo:

Determinar a equação da reta tangente ao gráfico da função $f(x)=x+\ln(x-2)$ no ponto x=3.

$$f(3) = 3 + \ln(3 - 2) = 3 + \ln(1) = 3 + 0 = 3$$

$$f(3+h) = 3+h + \ln(3+h-2) = 3+h + \ln(1+h)$$

$$f'(3) = \lim_{h \to 0} \left(\frac{f(3+h) - f(3)}{h} \right) = \lim_{h \to 0} \left(\frac{(3+h + \ln(1+h)) - 3}{h} \right) = \lim_{h \to 0} \left(\frac{h + \ln(1+h)}{h} \right) = 0 \lim_{h \to 0} \left(\frac{h}{h} + \frac{\ln(1+h)}{h} \right) = 1 + 1 = 2$$

$$y - f(3) = f'(3)(x - 3) \Leftrightarrow y - 3 = 2(x - 3) \Leftrightarrow y = 2x - 6 + 3 \Leftrightarrow y = 2x - 3$$

Função derivada

Seja f uma função, real de variável real, e D o conjunto de todos os elementos do Domínio de f que admitem variável.

Chama-se função derivada de f à função de Domínio D que a cada x faz corresponder o número real f'(x),

A função derivada de f pode ter as seguintes notações: $f'; y'; \frac{df}{dx}; \frac{dy}{dx}$.

Derivabilidade num ponto

Uma função f diz-se derivável (ou diferenciável) num ponto x=a do seu Domínio se e só se existe derivada nesse ponto e é finito, ou seja:

$$\lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h} = k, k \neq \pm \infty$$

ou
$$\lim_{x \to a^-} f'(x) = \lim_{x \to a^+} f'(x) = k, k \neq \pm \infty$$

Não existe derivada em pontos angulosos.

Só existe derivada num ponto de descontinuidade de abcissa a de uma função f se e só se $\lim_{x\to a^-} f(a) = \lim_{x\to a^+} f(a) = f(a)$.

Teorema: se f é derivável num ponto x = a do seu Domínio, então f é contínua nesse ponto.

Nota: derivável \Rightarrow contínua, mas contínua \Rightarrow derivável.

Sinal da derivada e sentido de variação (exemplo)

- f é estritamente crescente em] $-\infty$; a[e]b; c[;
- f'é positiva em] $-\infty$; a[e]b; c[;
- f é estritamente decrescente em a; b[e em d; $+\infty$ [;
- f'é negativa em a; b[e em $d; +\infty$ [;
- $f \in constante \ em \]c; d[;$
- f' = 0 em c; d, x = a (máximo relativo) e em x = b (mínimo relativo).

Estudo dos extremos relativos de uma função aplicado às derivadas (exemplo)

Seja f uma função contínua em x = a.

Se f'(a) = 0 ou $a \notin D_{f'}(f'(a)$ não está definido) e f' muda de sinal em x = a, então f(a) é extremo relativo (máximo ou mínimo) de f.

$$D_f = \mathbb{R}$$

 $D_{f'} = \mathbb{R} \setminus \{c\} \to f'(c)$ não está definido porque x = c é um ponto anguloso

$$zeros_f$$
, = $\{a, b, d\}$

	$-\infty$	а		b		С		d	+∞
sinal de f'	+	0	1	0	+	N.D.	-	0	-
variação de f	7	máx: f(a)	K	min: f(b)	7	máx: f(c)	K	f(d)	Z

Assim, f(a) e f(c) são máximos relativos de f, e f(b) é um mínimo relativo de f.

Segunda derivada de uma função

Seja $a \in D_f$:

A segunda derivada ou derivada de segunda ordem em x=a representa — se por $f^{\prime\prime}(a)$ e representa-se por:

$$f''(a) = \lim_{h \to 0} \left(\frac{f'(a+h) - f'(a)}{h} \right) ou \ f''(a) = \lim_{x \to a} \left(\frac{f'(x) - f'(a)}{x - a} \right)$$

A segunda derivada de f é a derivada de f'.

- Significado físico da segunda derivada: f''(a) é o valor da aceleração da função f em x=a;
- Significado gráfico da segunda derivada (concavidade):

Diz-se que uma função tem a concavidade voltada para cima num intervalo do seu Domínio se em qualquer ponto desse intervalo a curva da função está acima da reta tangente nesse ponto caso contrário diz-se que a concavidade está voltada para baixo.

Uma função tem um ponto de inflexão em x=a se o seu gráfico muda o sentido da concavidade nesse ponto.

Sinal de f' e o sentido da concavidade

Concavidade voltada para cima

 m_t está a aumentar $\Rightarrow f'(x)$ é crescente $\Rightarrow (f'(x))' > 0 \Rightarrow f''(x) > 0$

Concavidade voltada para baixo

 m_t está a diminuir $\Rightarrow f'(x)$ é decrescente $\Rightarrow (f'(x))' < 0 \Rightarrow f''(x) < 0$

Conclusão

Seja f duplamente derivável em a; b:

• f tem concavidade voltada para cima em $]a; b[\Leftrightarrow f''(x) > 0, \forall_x \in]a; b[;$

• f tem concavidade voltada para baixo em] $a; b \in f''(x) < 0, \forall_x \in]a; b[$.

Estudo analítico das concavidades e pontos de inflexão (exemplos)

1.
$$f(x) = (x - 1)e^x$$

$$f'(x) = ((x-1)e^x)' = (x-1)'(e^x) + (x-1)(e^x)' = e^x + xe^x - e^x = xe^x$$

$$f''(x) = (xe^x)' = (x')(e^x) + (x)(e^x)' = e^x + xe^x = e^x(1+x)$$

$$f''(x) = 0 \Leftrightarrow e^x(1+x) = 0 \Leftrightarrow e^x = 0 \lor 1 + x = 0 \Leftrightarrow x \in \emptyset \lor x = -1 \Leftrightarrow x = -1$$

zeros de f'': $\{-1\}$

$$f(-1) = (-1 - 1)e^{-1} = -\frac{2}{e}$$

x	-∞	-1	+∞
f''	-	0	+
f	Λ	$P.I.:f(-1) = -\frac{2}{e}$	U

f tem concavidade voltada para baixo em] $-\infty$; -1[.

f tem concavidade voltada para cima em] -1; $+\infty$ [.

$$\left(-1; -\frac{2}{e}\right)$$
 é Ponto de Inflexão de f.

2.
$$f(x) = \ln(x^2 + 1)$$

$$f'(x) = (\ln(x^2 + 1))' = \frac{(x^2 + 1)'}{x^2 + 1} = \frac{2x}{x^2 + 1}$$

$$f''(x) = \left(\frac{2x}{x^2 + 1}\right)' = \frac{(2x)' * (x^2 + 1) - (2x) * (x^2 + 1)'}{(x^2 + 1)^2} = \frac{2x^2 + 2 - 4x^2}{(x^2 + 1)^2} = \frac{-2x^2 + 2}{(x^2 + 1)^2}$$

$$f^{\prime\prime}(x)=0 \Leftrightarrow \tfrac{-2x^2+2}{(x^2+1)^2}=0 \Leftrightarrow -2x^2+2=0 \wedge (x^2+1)^2 \neq 0 \Leftrightarrow x=\pm 1 \wedge x \in$$

$$\mathbb{R} \Leftrightarrow x = -1 \lor x = 1$$

$$f(-1) = \ln((-1)^2 + 1) = \ln 2$$

$$f(1) = \ln(1^2 + 1) = \ln 2$$

Х	-∞	-1		1	+∞
f''	-	0	+	0	-
f	Λ	P.I.	U	P.I.	Λ

f tem concavidade voltada para baixo em] $-\infty$; $-1[e]1; +\infty[$;

f tem concavidade voltada para cima em]-1;1[.

 $(-1; \ln 2)$ e $(1; \ln 2)$ são Pontos de Inflexão de f.

Regras de derivação

• $(ax^n)' = nax^{n-1}$

Exemplos:

a)
$$(4x^3)' = 3 * 4x^{3-1} = 12x^2$$

b)
$$\left(-\frac{3}{2}x^4\right)' = -\frac{12}{2}x^3 = -6x^3$$

c)
$$(3)' = 0$$

•
$$(f+g)'(x) = f'(x) + g'(x)$$

Exemplos:

a)
$$\left(5x^3 + \frac{x^2}{2}\right)' = 15x^2 + \frac{2x}{2} = 15x^2 + x$$

b)
$$(4x^2 - 5x + 1)' = 8x - 5$$

•
$$(f * g)'(x) = f'(x) * g(x) + f(x) * g'(x), \forall_x \in D_f \cap D_g$$

Exemplos:

a)
$$(x(3x^2 - 4x))' = (x)'(3x^2 - 4x) + (x)(3x^2 - 4x)' = 1(3x^2 - 4x) + (x)(6x - 4) = 3x^2 - 4x + 6x^2 - 4x = 9x^2 - 8x$$

b)
$$\left((x^2 + 6x) \left(\frac{2}{3}x - 4 \right) \right)' = (x^2 + 6x)' \left(\frac{2}{3}x - 4 \right) + (x^2 + 6x) \left(\frac{2}{3}x - 4 \right)' =$$

 $(2x + 6) \left(\frac{2}{3}x - 4 \right) + (x^2 + 6x) \left(\frac{2}{3} \right) = \frac{4}{3}x^2 - 8x + 4x - 24 + \frac{2}{3}x^2 + 4x = 2x^2 - 24 = x^2 - 12$

c)
$$(5(x^3 - 2x))' = (5)'(x^3 - 2x) + (5)(x^3 - 2x)' = 0(x^3 - 2x) + 5(3x^2 - 2) = 15x^2 - 10 = 3x^2 - 2$$

$$\bullet \quad \left(k * f(x)\right)' = k * f'(x)$$

•
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)*g(x)-f(x)*g'(x)}{\left(g(x)\right)^2}, \forall_x \in D_f \cap D_g: g(x) \neq 0$$

Exemplo:

$$\left(\frac{x^2 - 3x + 2}{4x + 1}\right)' = \frac{\left(x^2 - 3x + 2\right)' * (4x + 1) - \left(x^2 - 3x + 2\right) * (4x + 1)'}{(4x + 1)^2} = \frac{(2x - 3) * (4x + 1) - \left(x^2 - 3x + 2\right) * 4}{(4x + 1)^2} = \frac{8x^2 + 2x - 12x - 3 - 4x^2 + 12x - 8}{(4x + 1)^2} = \frac{4x^2 + 2x - 11}{(4x + 1)^2}$$

 \triangle

•
$$\left(\frac{k}{f(x)}\right)' = -\frac{kf'(x)}{\left(f(x)\right)^2}, \forall_x \in D_{f'}: f(x) \neq 0$$

Exemplo:

$$\left(\frac{5}{3x^2+x}\right)' = -\frac{5(3x^2+x)'}{(3x^2+x)^2} = -\frac{30x+5}{(3x^2+x)^2}$$

•
$$(f^n)'(x) = n * f^{n-1}(x) * f'(x), \forall_n \in \mathbb{R}$$

Exemplos:

a)
$$((2x-5)^3)' = 3*(2x-5)^2*(2x-5)' = 3*(2x-5)^2*2 = 6*(2x-5)^2$$

b)
$$\left(\sqrt[5]{3x+2}\right)' = \left((3x+2)^{\frac{1}{5}}\right)' = \frac{1}{5} * (3x-2)^{\frac{1}{5}-1} * (3x+2)' = \frac{1}{5} * (3x-2)^{-\frac{4}{5}} * 3 = \frac{3}{5} * (3x-2)^{-\frac{4}{5}} = \frac{3}{5} * \frac{1}{\sqrt[5]{(3x-2)^4}} = \frac{3}{5*\sqrt[5]{(3x-2)^4}}$$

•
$$\left(\sqrt[n]{f(x)}\right)' = \frac{f'(x)}{n*\sqrt[n]{(f(x))^{n-1}}}, \forall_x \in D_{\sqrt{f}}: f(x) \neq 0$$

Exemplo:

$$\left(\sqrt[4]{2x-10}\right)' = \frac{(2x-10)'}{4*\sqrt[4]{(2x-10)^3}} = \frac{2}{4*\sqrt[4]{(2x-10)^3}} = \frac{1}{2*\sqrt[4]{(2x-10)^3}}$$

$$\bullet \quad \left(\sqrt{f(x)}\right)' = \frac{f'(x)}{2*\sqrt{f(x)}}$$

Exemplo:

$$(\sqrt{x^2+1})' = \frac{(x^2+1)'}{2*\sqrt{x^2+1}} = \frac{2x}{2*\sqrt{x^2+1}} = \frac{x}{\sqrt{x^2+1}}$$

- $(\sin(u))' = u' \cos(u)$
- $(\cos(u))' = -u'\sin(u)$
- $(\tan(u))' = \frac{u'}{(\cos(u))^2}$
- $(e^x)' = e^x$
- $(e^u)' = u'e^u$

Exemplo:

$$(e^{6x^2-4x+1})' = (6x^2-4x+1)'(e^{6x^2-4x+1}) = (12x-4)(e^{6x^2-4x+1})$$

• $(a^u)' = u' * a^u * \ln(a), a \in \mathbb{R}^+ \setminus \{1\}$

Exemplo:

$$(5^{6x-4})' = (6x - 4)' * (5^{6x-4}) * \ln(5) = 6 * 5^{6x-4} * \ln(5)$$

- $(\ln(x))' = \frac{1}{x}$
- $(\ln(u))' = \frac{u'}{u}$

Exemplo:

$$(\ln(x^2+3))' = \frac{(x^2+3)'}{x^2+3} = \frac{2x}{x^2+3}$$

• $(\log_a(u))' = \frac{u'}{uln(a)}, a \in \mathbb{R}^+ \setminus \{1\}$

Exemplo:

$$\left(\log_5\left(\frac{3}{x^2}\right)\right)' = \frac{\left(\frac{3}{x^2}\right)'}{\left(\frac{3}{x^2}\right)*\ln 5} = \frac{\frac{-6x}{x^4}}{\frac{3\ln 5}{x^2}} = \frac{\frac{-6}{x^3}}{\frac{3\ln 5}{x^2}} = -\frac{6x^2}{3x^3\ln 5} = -\frac{2}{x*\ln 5}$$

• $(f \circ g)'(x) = (f'g(x) * g'(x)) \text{ ou } f'(u) = f'(u) * u$

Exemplo:

$$f(x) = x^{2} - 3x; g(x) = 2x + 1$$

$$f'(x) = 2x - 3; g'(x) = 2$$

$$(f \circ g)'(x) = f'(g(x)) * g'(x) = f'(2x + 1) * 2 = (2(2x + 1) - 3) * 2 = (4x + 2 - 3) *$$

$$2 = (4x - 1) * 2 = 8x - 2 = 4x - 1$$

- Função definida por ramos
 - Derivar cada ramo;
 - Determinar as derivadas laterais (usando limites) nos pontos de transição dos ramos, para verificar se há derivada;
 - Apresentar a função derivada;

 $f(x) = \begin{cases} 2x, & x < 1 \\ 2, & x = 1 \\ \frac{2\sqrt{x}}{x}, & x > 1 \end{cases} \Leftrightarrow f(x) = \begin{cases} 2x, & x \le 1 \\ \frac{2\sqrt{x}}{x}, & x > 1 \end{cases}$

Exemplo:

$$f(x) = \begin{cases} x^2 + 3, & x < 1 \\ 4\sqrt{x}, & x \ge 1 \end{cases}$$

$$f(1) = 4\sqrt{1} = 4$$

$$(x^2 + 3)' = 2x$$

$$(4\sqrt{x})' = 4(\sqrt{x})' = 4 * \frac{(x)'}{2\sqrt{x}} = 4 * \frac{1}{2\sqrt{x}} = \frac{2}{\sqrt{x}} = \frac{2\sqrt{x}}{x}$$

$$f'(1^-) = \lim_{h \to 0} \left(\frac{f(1+h) - f(1)}{h} \right) = \lim_{h \to 0} \left(\frac{(1+h)^2 + 3 - 4}{h} \right) = \lim_{h \to 0} \left(\frac{1 + 2h + h^2 - 1}{h} \right) = \lim_{h \to 0} \left(\frac{h^2 + 2h}{h} \right) = \frac{0}{0} \lim_{h \to 0} \left(\frac{h(h+2)}{h} \right) = \lim_{h \to 0} (h+2) = 0 + 2 = 2$$

$$f'(1^+) = \lim_{h \to 0} \left(\frac{f(1+h) - f(1)}{h} \right) = \lim_{h \to 0} \left(\frac{4\sqrt{1+h} - 4}{h} \right) = \frac{0}{0} \lim_{h \to 0} \left(\frac{4(\sqrt{1+h} - 1)}{h} \right) = 4 \lim_{h \to 0} \left(\frac{\sqrt{1+h} - 1}{h} \right) = 4 \lim_{h \to 0} \left(\frac{(\sqrt{1+h} - 1)(\sqrt{1+h} + 1)}{h(\sqrt{1+h} + 1)} \right) = 4 \lim_{h \to 0} \left(\frac{1}{(\sqrt{1+h} + 1)} \right) = 4 * \frac{1}{\sqrt{1+0} + 1} = 4 * \frac{1}{2} = 2$$

$$f'(1^-) = f'(1^+) = 2 \Rightarrow f'(1) = 2$$

Função inversa

Seja f uma função real de variável real de Domínio A e injetiva:

$$f: A \to \mathbb{R}$$

$$x \hookrightarrow f(x)$$

Se B é o Contradomínio de f, isto é, B = f(A), chama-se função inversa de f e representa-se por f^{-1} à função assim definida:

$$f^{-1}:B\to A$$

$$x \hookrightarrow f^{-1}(x)$$

em que
$$f^{-1}f(x) = x, \forall_x \in A$$
.

Uma função f admite função inversa se e só se f for injetiva.

Funções irracionais

$$f(x) = \sqrt[n]{x}$$
, $n par$

$$g(x) = \sqrt[n]{x}$$
, $n \text{ impar}$

$$D_f = \{x \in \mathbb{R}: x \ge 0\}$$

$$D_g = \mathbb{R}$$

Numa função irracional g de índice n ímpar, o Domínio de g é \mathbb{R} .

Numa função irracional f de índice n par, o Domínio de f é calculado através da equação $x \ge 0$.

Função exponencial

Chama-se função exponencial de base a $(a>0 \land a\neq 1)$ à função $f(x)=a^x$ ou qualquer função desta família.

Estudo da função $f(x) = a^x com a > 1$

- Domínio: $D_f = \mathbb{R}$;
- $\bullet \quad \text{Contradomínio: } D'_f = \]0; + \infty [\ ou \ \mathbb{R}^+;$
- Zeros: f não tem zeros $a^x = 0 \Leftrightarrow x \in \emptyset$;
- Continuidade: f é contínua;
- Pontos relevantes: $P_1(0; 1)$ e $P_2(1; a)$;
- Monotonia: f é estritamente crescente: $x_1 < x_2 \Leftrightarrow f(x_1) < f(x_2)$, $\forall_{x_1,x_2} \in D_f$, ou seja, $x_1 < x_2 \Leftrightarrow a^{x_1} < a^{x_2}$;
- Injetividade: $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2, \forall_{x_1, x_2} \in D_f$, ou seja, $a^{x_1} = a^{x_2} \Leftrightarrow x_1 = x_2$;
- Assíntota: A.H.: reta y = 0;
- Paridade: f não é par nem ímpar;
- Limites:

$$\circ \quad \lim_{x \to -\infty} (a^x) = 0;$$

$$\circ \quad \lim_{x \to +\infty} (a^x) = +\infty.$$

O gráfico de $f(x)=a^x$ com 0 < a < 1 pode ser obtido por simetria relativamente ao eixo Oy de uma função $g(x)=b^x$ com b > 1, sendo $b=\frac{1}{a}$

Comparação do crescimento exponencial com o da potência

$$\forall_{a>1,p\in\mathbb{R}},\exists_{x_0}\in\mathbb{R}:x>x_0\Rightarrow a^x>x^p$$

Para $x > x_0$, $a^x - x^p$ aumenta indefinidamente com x:

$$\lim_{x\to+\infty}\left(\frac{a^x}{x^p}\right)=+\infty, a>1, p\in\mathbb{R}$$

$$\lim_{x \to +\infty} \left(\frac{x^p}{a^x} \right) = 0, a > 1, p \in \mathbb{R}$$

Determinação do Contradomínio de uma função exponencial

Exemplos:

a)
$$f(x) = 5 + 3 * 2^{x+4}$$

$$x \in \mathbb{R}$$

$$x + 4 \in \mathbb{R}$$

$$2^{x+4} > 0 \stackrel{*3}{\to} 3 * 2^{x+4} > 0 \stackrel{+5}{\to} 5 + 3 * 2^{x+4} > 5$$

$$D'_f =]5; +\infty[$$

b)
$$g(x) = -1 + 2 * 5^{3-x^2}$$

$$x \in \mathbb{R}$$

$$x^2 \ge 0$$

$$-x^2 \le 0$$

$$3 - x^2 \le 3$$

$$0 < 5^{3-x^2} \le 5^3 \to 0 < 5^{3-x^2} \le 125 \overset{*2}{\to} 0 < 2 * 5^{3-x^2} \le 250 \overset{-1}{\to} -1 < -1 + 2 * 5^{3-x^2} \le$$

$$D'_f =] - 1;249]$$

c)
$$h(x) = 4 + 3e^{1-x^2}$$

$$x \in \mathbb{R}$$

$$x^2 \ge 0$$

$$-x^2 \le 0$$

$$1 - x^{2} \le 1$$

$$0 < e^{1-x^{2}} \le e^{1} \stackrel{*3}{\to} 0 < 3e^{1-x^{2}} \le 3e \stackrel{+4}{\to} 4 < 4 + 3e^{1-x^{2}} \le 4 + 3e$$

$$D'_{f} =]4; 4 + 3e]$$

$$d) \quad i(x) = 2 + 5 * 3^{x^{2}+4}$$

$$x \in \mathbb{R}$$

$$x^{2} \ge 0$$

$$x^{2} + 4 \ge 4$$

$$3^{x^{2}+4} \ge 3^{4} \stackrel{*5}{\to} 5 * 3^{x^{2}+4} \ge 405 \stackrel{+2}{\to} 2 + 5 * 3^{x^{2}+4} \ge 407$$

$$D'_{f} = [407, +\infty[$$

Logaritmo

Equação polinomial vs. Equação exponencial

 $x^3 = 81 \Leftrightarrow x = \sqrt[3]{81} \to \text{equação polinomial (a incógnita está na base): o número que elevado a 3 é 81 e representa-se por <math>\sqrt[3]{81}$.

 $3^x = 81 \Leftrightarrow x = \log_3 81 \Leftrightarrow x = 4 \to \text{equação exponencial (a incógnita está no expoente da potência): o número ao qual se deve elevar 3 para obter 81.$

Outros exemplos:

a)
$$\log_2 8 = 3 (2^3 = 8)$$

b)
$$\log_5 25 = 2 (5^2 = 25)$$

c)
$$\log_2 32 = 5 (2^5 = 32)$$

d)
$$\log_4 64 = 3 (4^3 = 64)$$

Definição

Seja a>0, com $a\neq 1$ e b>0. Chama-se logaritmo de b na base a e representa-se por $\log_a b$ ao expoente a que é necessário elevar a para obter b.

Assim:
$$\log_a b = x \Leftrightarrow a^x = b$$
.

Nota:

$$\log_a b = \frac{\log b}{\log a} \text{ ou } \log_a b = \frac{\ln b}{\ln a}$$

Logaritmo de base 10

Representa-se por $\log a$ e designa-se por logaritmo decimal

$$\log a = \log_{10} a$$

Exemplos:

a)
$$\log 100 = 2 (10^2 = 100)$$

b)
$$\log 10000 = 4 (10^4 = 10000)$$

c)
$$\log 0.01 = -2 (10^{-2} = 0.01)$$

Logaritmo de base e

Representa-se por $\ln a$ e designa-se por logaritmo neperiano ou natural.

Exemplos:

a)
$$\ln e^3 = 3 (e^3 = e^3)$$

b)
$$\ln \frac{1}{e} = -1 \left(\frac{1}{e} = e^{-1} \right)$$

c)
$$\ln \sqrt{e} = \frac{1}{2} \left(\sqrt{e} = e^{\frac{1}{2}} \right)$$

Consequências da definição de logaritmo

$$\log_a b = x \Leftrightarrow a^x = b, a > 0, a \neq 1$$

•
$$\log_a 1 = 0 \ (a^0 = 1)$$

$$\bullet \quad \log_a a = 1 \ (a^1 = a)$$

•
$$\log_a a^x = x (a^x = a^x)$$

•
$$a^{\log_a x} = x$$

Exemplos:

 \triangle

a)
$$\log_5 125 = \log_5 5^3 = 3$$

b)
$$\ln \sqrt[3]{\frac{1}{e}} = \ln \sqrt[3]{e^{-1}} = \ln(e^{-1})^{\frac{1}{3}} = \ln e^{-\frac{1}{3}} = -\frac{1}{3}$$

c)
$$\log_8 32 = \log_8 2^5 = (2^3)^{\frac{5}{3}} = \log_8 8^{\frac{5}{3}} = \frac{5}{3}$$

d)
$$\log_9 \sqrt{3} = \log_9 3^{\frac{1}{2}} = \log_9 (\sqrt{9})^{\frac{1}{2}} = \log_9 (9^{\frac{1}{2}})^{\frac{1}{2}} = \log_9 9^{\frac{1}{4}} = \frac{1}{4}$$

e)
$$\log_{\sqrt{2}} \frac{1}{4} = \log_{\sqrt{2}} 2^{-2} \log_{\sqrt{2}} \left(2^{\frac{1}{2}}\right)^{-4} = \log_{\sqrt{2}} \sqrt{2}^{-4} = -4$$

Regras operatórias dos logaritmos

$$a \neq 0 \land a > 1, u > 0, n > 0$$

1)

$$\log_a(u*n) = \log_a u * \log_a n$$

Demonstração:

$$u = a^{\log_a u}$$
, $n = a^{\log_a n}$

$$\log_a(u*n) = \log_a(a^{\log_a u} * a^{\log_a n}) = \log_a(a^{\log_a u + \log_a n}) = \log_a u + \log_a n$$

Exemplo

$$\log_2(8*4) = \log_2 8 + \log_2 4 = \log_2 2^3 + \log_2 2^2 = 3 + 2 = 5$$

2)

$$\log_a\left(\frac{u}{n}\right) = \log_a u - \log_a n$$

Demonstração:

$$u = a^{\log_a u}, n = a^{\log_a n}$$

$$\log_a \left(\frac{u}{n}\right) = \log_a \left(\frac{a^{\log_a u}}{a^{\log_a n}}\right) = \log_a a^{\log_a u - \log_a n} = \log_a u - \log_a n$$

Exemplo:

$$\log_3\left(\frac{81}{27}\right) = \log_3 81 - \log_3 27 = \log_3 3^4 - \log_3 3^3 = 4 - 3 = 1$$

3)

$$\log_a\left(\frac{1}{u}\right) = -\log_a u$$

Demonstração:

$$u = \log_a u$$

$$\log_a\left(\frac{1}{u}\right) = \log_a 1 - \log_a u = 0 - \log_a u = -\log_a u$$

Exemplo:

$$\log_5\left(\frac{1}{4}\right) = -\log_5 4$$

4)

$$\log_a u^n = n * \log_a u$$

Exemplo:

$$\log_2 4^3 = 3 * \log_2 4 = 3 * \log_2 2^2 = 3 * 2 = 6$$

5)

$$\log_a u = \frac{\log_b u}{\log_b u}$$

Exemplos:

$$\log_9 \sqrt{3} = \frac{\log_3 \sqrt{3}}{\log_3 9} = \frac{\log_3 3^{\frac{1}{2}}}{\log_3 3^2} = \frac{\frac{1}{2}}{2} = \frac{1}{4}$$

$$\log_{\sqrt{2}}\left(\frac{1}{4}\right) = \frac{\log_2\left(\frac{1}{4}\right)}{\log_2\sqrt{2}} = \frac{\log_22^{-2}}{\log_22^{\frac{1}{2}}} = \frac{-2}{\frac{1}{2}} = -4$$

6)

$$\log^2_a b = (\log_a b)^2$$

Comparação do crescimento logarítmico com o da potência

A função $y = \log_a x \ (a > 1)$, cresce muito mais lentamente do que $y = x^p \ (p > 0)$. Logo:

•
$$\lim_{x \to +\infty} \frac{x^p}{\log_a x} = +\infty;$$

$$\bullet \quad \lim_{x \to +\infty} \frac{\log_a x}{x^p} = 0;$$

•
$$\lim_{x \to +\infty} \log_a x = +\infty;$$

•
$$\lim_{x \to 0^+} \log_a x = -\infty.$$

Função logarítmica de base superior a 1

Seja
$$f(x) = a^{X}$$
, $a > 1$.

A função inversa de f é dada por: $f(x) = y \Leftrightarrow a^x = y \Leftrightarrow x = \log_a y \to y = \log_a x$

Conclusão: a função inversa de $y = a^x$ é $y = \log_a x$.

Gráfico de $y = \log_a x$:

 $f(c) = d \rightarrow P(c; d)$ pertence ao gráfico de $y = \log_a x$.

 $f^{-1}(d) = c \rightarrow P'(d; c)$ pertence ao gráfico de $y = a^x$.

Assim, o gráfico de $y = \log_a x$ é simétrico do gráfico de $y = a^x$ relativamente à reta y = x.

Estudo do gráfico de $f(x) = log_a x$, a > 1

- Domínio: $D_f =]0; +\infty[= \mathbb{R}^+;$
- Contradomínio: $D'_f = \mathbb{R}$;
- Zeros: $\{1\}$ ($\log_a x = 0 \Leftrightarrow x = 1$);
- Continuidade: f é contínua em todo o Domínio;
- Injetividade: f é injetiva;

$$f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2, \forall_{x_1, x_2} \in D_f$$

$$\log_a x_1 = \log_a x_2 \Leftrightarrow x_1 = x_2$$

• Monotonia: f é estritamente crescente;

$$f(x_1) < f(x_2) \Leftrightarrow x_1 < x_2, \forall_{x_1, x_2} \in D_f$$

$$\log_a x_1 < \log_a x_2 \Leftrightarrow x_1 < x_2$$

• Assíntotas: A.V.: x = 0.

Domínio de uma função logarítmica

$$f(x) = \log_a P(x)$$

$$D_f = \{x \in \mathbb{R}: P(x) > 0\}$$

Função logística

$$f(x) = \frac{c}{1+ae^{-bx}}$$
, $a, b, c \in \mathbb{R}^+$

$$\frac{c}{1+ae^{-\infty}} = \frac{c}{1+a*0} = c$$

Definição de limite de uma função segundo Heine

Limites laterais

$$\lim_{x \to 2^{-}} f(x) = 3 \Rightarrow u_n \to 2^{-} \Rightarrow f(u_n) \to 3$$

$$\lim_{x \to 2^+} f(x) = 5 \Rightarrow u_n \to 2^+ \Rightarrow f(u_n) \to 5$$

Limite à direta de a

Diz-se que $\lim_{x\to a^+}f(x)=b$ se e só se, a toda a sucessão u_n que tende para a, de termos pertencentes a D_f e superiores a a, lhe corresponde uma sucessão de $f(u_n)$ que tende para b.

Limite à esquerda de a

Diz-se que $\lim_{x\to a^-} f(x) = b$ se e só se, a toda a sucessão u_n que tende para a, de termos pertencentes a D_f e inferiores a a, lhe corresponde uma sucessão de $f(u_n)$ que tende para b.

Limite em a

Diz-se que existe $\lim_{x\to a} f(x)$ e $\lim_{x\to a} f(x) = b$ se e só se:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = b \Rightarrow \text{os limites laterals são iguais.}$$

Limite num ponto segundo Heine

Diz-se que $\lim_{x\to a} f(x) = b$ se e só se toda a sucessão u_n de termos pertencentes ao D_f que tenda para a por valores diferentes de a, a correspondente sucessão $f(u_n)$ tende para b.

Assim, como consequência da definição: $u_n o a \Leftrightarrow \lim f(u_n) = \lim_{x o a} f(x)$

Exemplos:

a)
$$f(x) = \frac{1 + \ln x}{x}$$

$$\begin{aligned} u_n &= n^2 \\ \lim u_n &= \lim (n^2) = (+\infty)^2 = +\infty \\ \lim f(u_n) &= \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1+\ln x}{x}\right) = \frac{\infty}{\infty} \lim_{x \to +\infty} \left(\frac{1}{x} + \frac{\ln x}{x}\right) = \frac{1}{+\infty} + 0 = 0 \end{aligned}$$
b)
$$f(x) &= \frac{x-1}{e^x-1}$$

$$u_n &= -\frac{1}{n}$$

$$\lim u_n &= \lim \left(-\frac{1}{n}\right) = -\frac{1}{+\infty} = -0 = 0^-$$

$$\lim f(u_n) &= \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(\frac{x-1}{e^x-1}\right) = \frac{0-1}{e^{0-1}} = \frac{-1}{1^--1} = \frac{-1}{0^-} = +\infty$$
c)
$$f(x) &= \ln x$$

$$u_n &= \left(1 + \frac{1}{n}\right)^n$$

$$\lim u_n &= \lim \left(\left(1 + \frac{1}{n}\right)^n\right) = e$$

$$\lim f(u_n) &= \lim_{x \to e} f(x) = \lim_{x \to e} (\ln x) = \ln e = 1$$
d)
$$f(x) &= \ln(e - x)$$

$$u_n &= \left(1 + \frac{1}{n}\right)^n$$

$$\lim u_n &= \lim \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim f(u_n) &= \lim_{x \to e} f(x) = \lim_{x \to e} (\ln(e - x)) = \ln(e - e) = \ln(0^+) = -\infty$$

Continuidade

Uma função f diz-se contínua num ponto x=a do seu Domínio se e só se existe $\lim_{x\to a} f(x)$ e $\lim_{x\to a} f(x) = f(a)$.

Exemplos:

1.

 $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a) \Rightarrow f \text{ \'e contínua em } a$

2.

 $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = b, \text{ ou seja, existe } \lim_{x \to a} f(x) \text{ } mas \text{ } \lim_{x \to a} f(x) \neq f(a) \Rightarrow$

f não é contínua em a

Continuidade lateral

Uma função f diz-se contínua à esquerda no ponto x = a do seu Domínio se e só se $\lim_{x \to a^{-}} f(x) =$

f(a).

Uma função f diz-se contínua à direita no ponto x=a do seu Domínio se e só se $\lim_{x\to a^+} f(x) =$

f(a).

Uma função f é contínua no ponto x = a se e só se for contínua à esquerda e à direita no ponto x

= a.

Exemplos:

1.

 $\lim_{x \to a^{-}} f(x) = fa) \Rightarrow f \text{ \'e contínua \`a esquerda em } x = a$

2.

 $\lim_{x \to a^+} f(x) = f(a) \Rightarrow f \text{ \'e contínua \`a direita em } x = a$

Continuidade num intervalo

Uma função f diz-se contínua num intervalo [a; b] do seu Domínio se e só se for contínua em todos os pontos do intervalo]a; b[e for contínua à direita no ponto x = a e à esquerda em x = b.

Exemplos:

f é contínua em [a; b]

f é contínua em]a; b]

Prolongamento/Restrição de uma função

Exemplo:

$$D_f=[a;b]$$

$$D_g = [a; +\infty[$$

$$f(x) = h(x), \forall_x \in D_f \cap D_g \Rightarrow$$

h é um prolongamento de f a $[a; +\infty[$ ou f é uma restrição de h a [a; b]

Operações com funções contínuas

Se f e g são duas funções contínuas em x=a (com $a\in D_f\cap D_g$) então as seguintes funções também são contínuas em x=a:

- f + g
- f-g
- f * g
- $\frac{f}{g}$, se $g(a) \neq 0$
- $f^n, n \in \mathbb{N}$
- $\sqrt[n]{f}$, se $f(a) \in D_{\sqrt{f}}$

Funções contínuas

As seguintes funções são contínuas em todo o seu Domínio:

• Função polinomial ($D = \mathbb{R}$)

Exemplo:

$$f(x) = x^3 + 2x^2 - x + 1 \rightarrow f$$
 é contínua em \mathbb{R}

• Função racional fracionária

Exemplo:

$$f(x) = \frac{x^2 + 2x}{x - 3} \rightarrow D_f = \mathbb{R} \setminus \{3\} \rightarrow f \text{ \'e contínua em } \mathbb{R} \setminus \{3\}$$

• Função exponencial $(y = a^x, a > 1; D = \mathbb{R})$

Exemplo:

$$f(x) = e^x \rightarrow f$$
 é contínua em \mathbb{R}

• Função logarítmica $(y = \log_a x, a > 1)$

Exemplo:

$$f(x) = \ln x \to f$$
 é contínua em \mathbb{R}^+

Exemplos

a)
$$f(x) = 3^x + x^2$$

f é contínua em \mathbb{R} porque é a soma de uma função exponencial $y=3^x$ (contínua em \mathbb{R}) com uma função polinomial $y=x^2$ (contínua em \mathbb{R}).

b)
$$f(x) = \frac{x^2 + 2}{x - 3} * \log x$$
$$D_{\frac{x^2 + 2}{x - 3}} = \mathbb{R} \setminus \{3\}$$
$$D_{\log x} = \mathbb{R}^+$$

f é contínua em $\mathbb{R}^+\setminus\{3\}$ porque é o produto de uma função racional fracionária $y=\frac{x^2+2}{x-3}$ (contínua em $\mathbb{R}\setminus\{3\}$) por uma função logarítmica $y=\log x$ (contínua em \mathbb{R}^+).

Continuidade da função composta

Sejam f e g duas funções e a um ponto pertencente ao Domínio da função $g \circ f$.

Se f for contínua em a e g for contínua em f(a) então $g \circ f$ é contínua em a.

Exemplos:

a)
$$(g \circ f)(x) = e^{x^2 - 3x}$$

 $g\circ f$ é contínua em $\mathbb R$ porque é a composta de uma função exponencial $y=e^x$ (contínua em $\mathbb R$), com uma função polinomial $y=x^2-3x$ (contínua em $\mathbb R$).

b)
$$(g \circ f)(x) = \ln(x - 2)$$

 $g\circ f$ é contínua em todo o seu Domínio,]2; $+\infty$ [, porque é a composta de uma função logarítmica $y=\ln x$ (contínua em \mathbb{R}^+), com uma função polinomial y=x-2 (contínua em \mathbb{R}).

Teorema de Bolzano-Cauchy

Uma função contínua num intervalo passa de um valor para o outro sem percorrer todos os valores intermédios.

$$f(x) = k \Leftrightarrow x = c$$
 (1 solução)

$$f(x) = k_1 \Leftrightarrow x = c_1 \lor x = c_2 \lor x = c_3$$
 (3 soluções)

f(x) = k não tem solução porque f não é contínua.

Assim:

f é contínua em $[a;b] \land f(a) < k < f(b)$ ou $f(b) < k < f(a) \Rightarrow \exists_c \in]a;b[:f(c) = k$ Exemplos:

a) Provar que a equação $f(x) = \frac{7}{2}$ tem uma solução em $\frac{1}{2}$; 3[sendo $f(x) = \frac{2^x + 1}{x}$

f é contínua em $[\frac{1}{2};3]$ porque é o quociente entre a soma de uma função exponencial $y=2^x$ com uma função constante y=1 e uma função polinomial y=x, sendo todas estas funções contínuas no intervalo dado.

$$f\left(\frac{1}{2}\right) = \frac{2^{\frac{1}{2}+1}}{\frac{1}{2}} = \frac{\sqrt{2}+1}{\frac{1}{2}} = 2\sqrt{2} + 2 \approx 4.8$$

$$f(3) = \frac{2^3 + 1}{3} = 3$$

$$f(3) < \frac{7}{2} < f\left(\frac{1}{2}\right)$$

O Teorema de Bolzano garante que $\exists_c \in]\frac{1}{2}$; $3[:f(c)=\frac{7}{2}.$

b) Provar que a equação f(x)=10 tem uma solução no intervalo]-3;1[sendo $f(x)=5e^x-1$

f é contínua em [-3;1] porque é a diferença entre o produto de uma função constante y=5 por uma função exponencial $y=e^x$ e uma função constante y=-1, sendo todas estas contínuas no intervalo dado.

$$f(-3) = 5e^{-3} - 1 = \frac{5}{e^3} - 1 = \frac{5 - e^3}{e^3} \approx -0.75$$

$$f(1) = 5e^1 - 1 \approx 12,59$$

$$f(-3) < 10 < f(1)$$

O Teorema de Bolzano garante que $\exists_c \in]-3; 1[:f(c)=10.$

c) Provar que a equação f(x) = x + 5 tem uma solução no intervalo]2; 6[sendo

$$f(x) = x^2 - 3x$$

$$f(x) = x + 5 \Leftrightarrow x^2 - 3x = x + 5 \Leftrightarrow x^2 - 4x = 5$$

$$g(x) = x^2 - 4x$$

g é contínua no intervalo [2; 6] porque é definido por uma função polinomial $y=x^2-4x$, contínua em \mathbb{R} .

$$g(2) = 2^2 - 4 * 2 = -4$$

$$g(6) = 6^2 - 4 * 6 = 12$$

O Teorema de Bolzano garante que $\exists_c \in]2; 6[:g(x)=5,$ ou seja, $\exists_c \in]2; 6[:f(c)=x+5.$

Corolário do Teorema de Bolzano

Se uma função f for contínua num intervalo [a;b] e f(a) e f(b) tiverem sinais contrários podemos garantir que a função f tem pelo menos um zero no intervalo [a;b].

$$f \in \text{continua em } [a; b] \land f(a) * f(b) < 0 \Rightarrow \exists_c \in [a; b[: f(x) = 0]]$$

Exemplo:

Mostrar que a função $f(x) = \log_2(x-2)$ tem um zero em] $\frac{5}{2}$; 6[.

$$D_f = \{x \in \mathbb{R} \colon x - 2 > 0\} \Leftrightarrow D_f =]2; + \infty[$$

f é contínua em $]2; +\infty[$.

f é contínua em $[\frac{5}{2};6]$ porque é contínua em todos o seu Domínio, $]2;+\infty[$, uma vez que é composta por uma função logarítmica $y=\log_2 x$ (contínua em \mathbb{R}^+), e por uma função afim y=x-2 (contínua em \mathbb{R}).

$$f\left(\frac{5}{2}\right) = \log_2\left(\frac{5}{2} - 2\right) = \log_2\left(\frac{1}{2}\right) = \log_2(2^{-1}) = -1$$

$$f(6) = \log_2(6-2) = \log_2(4) = \log_2(2^2) = 2$$

$$f\left(\frac{5}{2}\right) * f(6) < 0$$

O Corolário do Teorema de Bolzano garante que $\exists_c \in]\frac{5}{2}$; 6[:f(x)=0]

Assintotas

Assíntotas horizontais (A.H.)

A reta de equação y=b é uma A.H. do gráfico da função f se e só se:

$$\lim_{x \to +\infty} f(x) = +\infty$$

- No máximo, uma função tem duas A.H.;
- Uma função pode ter uma A.H. bilateral;
- Uma função de Domínio limitado ([a;b] ou [a;b[ou [a;b[ou [a;b[ou [a;b]) não tem A.H.;
- Uma função com Domínio] $-\infty$; α [tem no máximo uma A.H. (em $-\infty$);

ou

• Uma função com Domínio $a; +\infty$ [tem no máximo uma A.H. (em $+\infty$).

Exemplos:

a)
$$f(x) = \frac{3x^2 + 2x}{6x - 3}$$

 $D_f = \{x \in \mathbb{R}: 6x - 3 \neq 0\} = \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$
 $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \left(\frac{3x^2 + 2x}{6x - 3}\right) = \frac{\infty}{\infty} \lim_{x \to \pm \infty} \left(\frac{3x^2}{6x}\right) = \lim_{x \to \pm \infty} \left(\frac{x}{2}\right) = \frac{+\infty}{2} \vee \frac{-\infty}{2} = +\infty \vee -\infty$

Assim conclui-se que f não tem A.H.

b)
$$f(x) = \frac{5}{1+2e^x}$$

 $D_f = \{x \in \mathbb{R}: 1 + 2e^x \neq 0\} = \mathbb{R}$
 $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \left(\frac{5}{1+2e^x}\right) = \frac{5}{1+2e^{+\infty}} \vee \frac{5}{1+2e^{-\infty}} = \frac{5}{1+2*(+\infty)} \vee \frac{5}{1+2*0} = \frac{5}{+\infty} \vee \frac{5}{1} = 0 \vee 5$

Assim conclui-se que y = 0 é A. H. de f em $+ \infty$ e y = 5 é A. H. de f em $- \infty$.

c)
$$f(x) = 3 + \ln(4 - x)$$

 $D_f = \{x \in \mathbb{R}: 4 - x > 0\} =] - \infty; 4]$
 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (3 + \ln(4 - x)) = 3 + \ln(4 - (-\infty)) = 3 + \ln(4 + \infty) = 3 + \ln(+\infty) = 3 + (+\infty) = +\infty$

Assim conclui-se que f não tem A.H.

Assintotas verticais (A.V.)

A reta de equação x=a é A.V. do gráfico da função f se e só se:

$$\lim_{x \to a^-} f(x) = -\infty \quad \text{ou} \quad \lim_{x \to a^-} f(x) = +\infty \quad \text{ou} \quad \lim_{x \to a^+} f(x) = -\infty \quad \text{ou} \quad \lim_{x \to a^+} f(x) = +\infty$$

- Uma função pode ter um número infinito de A.V.;
- Testar pontos de acumulação: pontos que não pertencem ao Domínio, mas em cuja vizinhança há pontos do Domínio;
 - Exemplos:

•
$$D_f = \mathbb{R} \setminus \{3\} \to \text{testar } \lim_{x \to 3^{\pm}} f(x)$$

•
$$D_f =]-\infty; 5[\rightarrow \text{testar } \lim_{x\to 5^-} f(x)]$$

$$D_f =]7; +\infty[\setminus\{10\} \rightarrow \text{testar } \lim_{x \to 7^+} f(x) \text{ e } \lim_{x \to 10^{\pm}} f(x)$$

- Testar pontos de descontinuidade do Domínio;
- Geralmente estes tipos de pontos são os pontos de transição nas funções definidas por ramos;
- Uma função contínua de Domínio $\mathbb R$ não tem A.V.

Exemplos:

a)
$$f(x) = \frac{x-1}{x^2 - 4x + 3}$$

$$D_f = \{x \in \mathbb{R}: x^2 - 4x + 3 \neq 0\} = \mathbb{R} \setminus \{1; 3\}$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \left(\frac{x-1}{x^2 - 4x + 3}\right) = \frac{0}{0} \lim_{x \to 1} \left(\frac{x-1}{(x-1)(x-3)}\right) = \lim_{x \to 1} \left(\frac{1}{x-3}\right) = \frac{1}{1-3}$$

$$= -\frac{1}{2}$$

Assim
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = -\frac{1}{2} \to x = 1$$
 não é A.V. de f.

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \left(\frac{x - 1}{x^2 - 4x + 3} \right) = \frac{3 - 1}{3^2 - 4 \cdot 3 + 3} = \frac{2}{0}$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \left(\frac{x - 1}{x^{2} - 4x + 3} \right) = \frac{3 - 1}{((3^{-})^{2} - 4*(3^{-}) + 3)} = \frac{2}{0^{-}} = -\infty$$

$$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \left(\frac{x - 1}{x^2 - 4x + 3} \right) = \frac{3 - 1}{((3^+)^2 - 4*(3^+) + 3)} = \frac{2}{0^+} = +\infty$$

Assim x = 3 é A.V. bilateral de f.

b)
$$f(x) = \begin{cases} x^2 + 1, & x \le 5 \\ \ln(x - 5), & x > 5 \end{cases}$$

$$D_f = \mathbb{R}$$

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} (x^{2} + 1) = 5^{2} + 1 = 26$$

$$\lim_{x \to 5^+} (\ln(x - 5)) = \ln(5^+ - 5) = \ln(0^+) = -\infty$$

Assim x = 5 é A.V. de f à direita.

Assíntotas oblíquas (A.O.)

A reta de equação $y = mx + b, m \neq 0$, é uma A.O. do gráfico da função f se e só se:

$$\lim_{x \to +\infty} (f(x) - (mx + b)) = 0$$

$$\lim_{x \to -\infty} (f(x) - (mx + b)) = 0$$

Assíntotas não verticais (A.N.V.)

Chamam-se Assíntotas não verticais ao conjunto das A.H. e A.O., ou seja, às assíntotas de equação $y=mx+b, m\in\mathbb{R}$. No máximo, uma função tem duas A.N.V.

ou

$$m = \lim_{x \to +\infty} \left(\frac{f(x)}{x} \right)$$

$$b = \lim_{x \to \pm \infty} (f(x) - mx)$$

Se $m=\pm\infty$ não há A.N.V. (não é preciso calcular b).

Se m=0, a assíntota, se existir, é horizontal (A.H.).

Exemplo:

$$f(x) = \frac{3x^2 - 13x + 5}{x - 4}$$

$$D = \mathbb{R} \setminus \{4\}$$

$$m = \lim_{x \to \infty} \left(\frac{f(x)}{x} \right) = \lim_{x \to \infty} \left(\frac{\frac{3x^2 - 13x + 5}{x - 4}}{x} \right) = \lim_{x \to \infty} \left(\frac{3x^2 - 13x + 5}{x^2 - 4x} \right) = \frac{\infty}{\infty} \lim_{x \to \infty} \left(\frac{3x^2}{x^2} \right) = 3$$

Assim $m = 3 \text{ em } \pm \infty$.

$$b = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} \left(\frac{3x^2 - 13x + 5}{x - 4} - 3x \right) = \lim_{x \to \infty} \left(\frac{3x^2 - 13x + 5 - 3x(x - 4)}{x - 4} \right) = \lim_{x \to \infty} \left(\frac{3x^2 - 13x + 5 - 3x^2 + 12x}{x - 4} \right) = \lim_{x \to \infty} \left(\frac{-x + 5}{x - 4} \right) = \lim_{x \to \infty} \left(\frac{-x}{x} \right) = -1$$

Assim b = -1 em $\pm \infty$, logo y = 3x - 1 é A. O. de f em $\pm \infty$.

Aspetos a considerar no estudo analítico de uma função

- Domínio;
- Paridade;
- Assíntotas;
- Interseção com os eixos;
- Monotonia e extremos (1ª derivada);
- Contradomínio (por observação da tabela de variação);
- Concavidades e pontos de inflexão (2ª derivada);
- Representação gráfica.

Trigonometria

Tabela trigonométrica

α	$\frac{\pi}{6}$ ou 30°	$\frac{\pi}{4}$ ou 45°	$\frac{\pi}{3}$ ou 60°
sin(α)	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos(α)	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tan(α)	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Conversões básicas (Graus ↔ Radianos)

Graus	360°	180°	90°	60°	45°	30°
Radianos	2π	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$

Variação das funções trigonométricas

$$-1 \leq \sin(\alpha) \leq 1$$

$$-1 \leq \cos(\alpha) \leq 1$$

$$-\infty \le \tan(\alpha) \le +\infty$$

 $\tan\left(\frac{\pi}{2}\right) \ e \ \tan\left(\frac{3\pi}{2}\right)$ não estão definidos.

α°	$sin(\alpha)$	$\cos(\alpha)$	tan(\alpha)	αrads
0°	0	1	0	0 rads
90°	1	0	Não definido	$\frac{\pi}{2}$ rads
180°	0	-1	0	π rads
270°	-1	0	Não definido	$\frac{3\pi}{2}$ rads

Razões trigonométricas de α e $-\alpha$

1.
$$cos(-\alpha) = cos(\alpha)$$

2.
$$\sin(-\alpha) = \sin(\alpha)$$

3.
$$tan(-\alpha) = -tan(\alpha)$$

4.
$$cos(\pi - \alpha) = -cos(\alpha)$$

5.
$$\sin(\pi - \alpha) = \sin(\alpha)$$

6.
$$tan(\pi - \alpha) = -tan(\alpha)$$

7.
$$cos(\pi + \alpha) = -cos(\alpha)$$

8.
$$\sin(\pi + \alpha) = -\sin(\alpha)$$

9.
$$tan(\pi + \alpha) = tan(\alpha)$$

10.
$$\sin(90^{\circ} - \alpha) = \cos(\alpha)$$

11.
$$cos(90^{\circ} - \alpha) = sin(\alpha)$$

12.
$$\tan(90^{\circ} - \alpha) = \frac{1}{\tan(\alpha)}$$

13.
$$\sin(90^\circ + \alpha) = \cos(\alpha)$$

14.
$$\cos(90^{\circ} + \alpha) = -\sin(\alpha)$$

15.
$$\tan(90^{\circ} + \alpha) = -\frac{1}{\tan(\alpha)}$$

16.
$$\sin(60^\circ) = \cos(30^\circ)$$

17.
$$\cos(60^\circ) = \sin(30^\circ)$$

18.
$$\tan(60^\circ) = \frac{1}{\tan(30^\circ)}$$

19.
$$\sin(270^{\circ} - \alpha) = -\cos(\alpha)$$

$$20. \cos(270^{\circ} - \alpha) = -\sin(\alpha)$$

21.
$$\tan(270^{\circ} - \alpha) = \frac{1}{\tan(\alpha)}$$

Exemplos:

a.
$$\sin(240^\circ) = \sin(270^\circ - 30^\circ) = -\cos(30^\circ)$$

b.
$$\cos(210^\circ) = \cos(270^\circ - 60^\circ) = -\sin(60^\circ)$$

c.
$$\tan(225^\circ) = \tan(270^\circ - 45^\circ) = \frac{1}{\tan(45^\circ)}$$

22.
$$\sin(270^{\circ} + \alpha) = -\cos(\alpha)$$

23.
$$cos(270^{\circ} + \alpha) = sin(\alpha)$$

24.
$$\tan(270^{\circ} + \alpha) = -\frac{1}{\tan(\alpha)}$$

Exemplos:

a.
$$\sin(300^\circ) = \sin(270^\circ + 30^\circ) = -\cos(30^\circ)$$

b.
$$cos(330^\circ) = cos(270^\circ + 60^\circ) = sin(60^\circ)$$

c.
$$\tan(315^\circ) = \tan(270^\circ + 45^\circ) = \frac{1}{\tan(45^\circ)}$$

Função seno

Domínio	$D=\mathbb{R}$

Contradomínio	D' = [-1; 1]			
Zeros	$k\pi, k \in \mathbb{Z}$			
Máximo	1			
Mínimo	-1			
Maximizante	$\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$			
Minimizante $-rac{\pi}{2}+2k\pi, k\in\mathbb{Z}$				
Função seno é ímpar: $f(x) = -f(x), \forall_x \in D_f$				

Função cosseno

Domínio	$D = \mathbb{R}$		
Contradomínio	D' = [-1; 1]		
Zeros	$\frac{\pi}{2} + k\pi, k \in \mathbb{Z}$		
Máximo	1		
Mínimo	-1		
Maximizante	$2k\pi, k \in \mathbb{Z}$		
Minimizante	$\pi + 2k\pi, k \in \mathbb{Z}$		
Função cosseno é par: $f(x) = f(-x), \forall_x \in D_f$			

Função tangente

Domínio	$D = \mathbb{R} \setminus \{x \in \mathbb{R}: x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$ ou $D = \{x \in \mathbb{R}: x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$			
Contradomínio	$D' =] - \infty; + \infty[$			
Zeros	$k\pi, k \in \mathbb{Z}$			
f(-x) = -f(x)				

Equações trigonométricas

$$\sin(x) = \sin(\alpha) \Leftrightarrow x = \alpha + 2k\pi \lor x = (\pi - \alpha) + 2k\pi, k \in \mathbb{Z}$$

$$cos(x) = cos(\alpha) \Leftrightarrow x = \alpha + 2k\pi \lor x = -\alpha + 2k\pi, k \in \mathbb{Z}$$

$$\tan(x) = \tan(\alpha) \Leftrightarrow x = \alpha + k\pi, k \in \mathbb{Z}$$

Exemplos:

a)
$$\sqrt{12}\sin\left(\frac{x}{5}\right) = -3 \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-3}{\sqrt{12}} \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-3\sqrt{12}}{12} \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-3*2\sqrt{3}}{12} \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-3*2\sqrt{3}}{12} \Leftrightarrow \sin\left(\frac{x}{5}\right) = \frac{-\sqrt{3}}{2} \Leftrightarrow \frac{x}{5} = -\frac{\pi}{3} + 2k\pi \vee \frac{x}{5} = \left(\pi + \frac{\pi}{3}\right) + 2k\pi, k \in \mathbb{Z} \Leftrightarrow x = -\frac{5\pi}{3} + 10k\pi \vee \frac{x}{5} = \frac{4\pi}{3} + 2k\pi \Leftrightarrow x = -\frac{5\pi}{3} + 10k\pi \vee x = \frac{20\pi}{3} + 10k\pi$$

b)
$$2\cos(3x) = -1 \Leftrightarrow \cos(3x) = -\frac{1}{2} \Leftrightarrow 3x = \left(\pi - \frac{\pi}{3}\right) + 2k\pi \vee 3x = \left(\pi + \frac{\pi}{3}\right) + 2k\pi, k \in \mathbb{Z} \Leftrightarrow 3x = \frac{2\pi}{3} + 2k\pi \vee 3x = \frac{4\pi}{3} + 2k\pi \Leftrightarrow x = \frac{2\pi}{9} + 2k\pi \vee x = \frac{4\pi}{9} + 2k\pi$$

c)
$$12 \tan\left(\frac{x}{2}\right) = \sqrt{48}, em\left[-2\pi; 5\pi\right] \Leftrightarrow \tan\left(\frac{x}{2}\right) = \frac{\sqrt{48}}{12} \Leftrightarrow \tan\left(\frac{x}{2}\right) = \frac{4\sqrt{3}}{12} \Leftrightarrow \tan\left(\frac{x}{2}\right) = \frac{\sqrt{3}}{3} \Leftrightarrow \frac{x}{2} = \frac{\pi}{6} + k\pi, k \in \mathbb{Z} \Leftrightarrow x = \frac{\pi}{3} + 2k\pi$$

$$k = 0: x = \frac{\pi}{3}$$

$$k = 1: x = \frac{\pi}{3} + 2\pi = \frac{7\pi}{3}$$

$$k = 2: x = \frac{\pi}{3} + 2 * 2 * \pi = \frac{\pi}{3} + 4\pi = \frac{13\pi}{3}$$

$$k = -1: x = \frac{\pi}{3} - 2\pi = -\frac{5\pi}{3}$$

$$k = -2: x = \frac{\pi}{3} + 2 * (-2) * \pi = \frac{\pi}{3} - 4\pi = -\frac{11\pi}{3}$$

$$x \in \left\{-\frac{5\pi}{3}; \frac{\pi}{3}; \frac{7\pi}{3}; \frac{13\pi}{3}\right\}$$

Fórmulas trigonométricas

$$(\sin(\alpha))^2 + (\cos(\alpha))^2 = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

$$(\tan(\alpha))^2 + 1 = \frac{1}{(\cos(\alpha))^2}$$

$$1 + \frac{1}{(\tan(\alpha))^2} = \frac{1}{(\sin(\alpha))^2}$$

$$\sin(a+b) = \sin(a) * \cos(b) + \sin(b) * \cos(a)$$

$$\cos(a+b) = \cos(a) * \cos(b) - \sin(a) * \sin(b)$$

$$\tan(a+b) = \frac{\tan(a) - \tan(b)}{1 - \tan(a) \cdot \tan(b)}$$

$$\sin(a - b) = \sin(a) * \sin(b) - \sin(b) * \cos(a)$$

$$\cos(a - b) = \cos(a) * \cos(b) + \sin(a) * \sin(b)$$

$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a) \cdot \tan(b)}$$

$$\sin(2a) = 2\sin(a) * \cos(a)$$

$$cos(2a) = (cos(a))^2 - (sin(a))^2$$

$$\tan(2a) = \frac{2\tan(a)}{1 - (\tan(a))^2}$$

Função periódica

Diz-se que f é uma função periódica de período T, se e só se: f(x + T) = f(x), $\forall_x \in D_f$.

Família de funções (cálculo do Período)

Funções do tipo y = c + dsin(ax+b) e y = c dcos(ax +b)

- $D = \mathbb{R}$
- D'(por enquadramentos)
- $T = \frac{2\pi}{|a|}$

Para mostrar que T é período: $f(x + T) = f(x), \forall_x \in D_f$.

Funções do tipo $y = c + d \tan(ax+b)$

$$D = \{ x \in \mathbb{R} : ax + b \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \}$$

- $D' = \mathbb{R}$
- $T = \frac{\pi}{|a|}$

Limites em trigonometria

Não existem

- $\lim_{x \to \pm \infty} (\cos x)$
- $\lim_{x \to \pm \infty} (\sin x)$
- $\lim_{x \to \pm \infty} (\tan x)$

Limites infinitos

- $\lim_{x \to \frac{\pi}{2}^-} (\tan x) = +\infty$
- $\lim_{x \to \frac{\pi^+}{2}} (\tan x) = -\infty$
- $\lim_{x \to \frac{3\pi}{2}^{-}} (\tan x) = +\infty$
- $\lim_{x \to \frac{3\pi}{2}^+} (\tan x) = -\infty$

Limites associados a $y = \sin(x) / x$

- $\lim_{x \to -\infty} \left(\frac{\sin x}{x} \right) = 0$
- $\bullet \quad \lim_{x \to +\infty} \left(\frac{\sin x}{x} \right) = 0$
- $\bullet \quad \lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1$

Demonstração:

$$-1 \le \sin x \le 1 \Leftrightarrow -\frac{1}{x} \le \sin x \le \frac{1}{x} \Leftrightarrow 0 \le \sin x \le 0$$

Assim,
$$\lim_{x \to \pm \infty} \left(\frac{\sin x}{x} \right) = 0.$$

Regras de derivação das funções trigonométricas

- $(\sin u)' = u' * \cos u$
- $(\cos u)' = -u' * \sin u$
- $(\tan u)' = \frac{u'}{\cos^2 u}$
- $(\tan u)' = u' * (1 + \tan^2 u)$

Sucessões

Conceito de sucessão

Chama-se sucessão de números reais, ou simplesmente sucessão, a uma função que a cada número natural faz corresponder um número real, de Domínio \mathbb{N} .

Exemplo:

$$u(1) = 4$$
, $u(2)=7$, $u(3) = 10$, $u(4) = 13$, ...

$$u(n) = 3n + 1$$

$$u: \mathbb{N} \to \mathbb{R}$$

$$n \hookrightarrow 3n + 1$$

A expressão u(1) = 4 pode ser representada por u_1 = 4 e lê-se "o primeiro termo da sucessão é 4".

A expressão u(n) = 3n + 1 pode ser representada por u_n = 3n + 1 e lê-se "o termo de ordem n é 3n + 1". Diz-se que o termo geral da sucessão é 3n + 1.

É usual utilizar a notação u_n para designar a sucessão:

$$u: \mathbb{N} \to \mathbb{R}$$

$$n \hookrightarrow u_n$$

Modos de definir uma sucessão

Seja t_n uma sucessão tal que:

$$t(1) = 1$$
, $t(2) = 3$, $t(3) = 6$, $t(4) = 10$, ...

É possível definir t_n por recorrência:

$$\begin{cases} t_1=1\\ t_n=t_{n-1}+n, n\geq 2 \end{cases}$$

Diz-se que uma sucessão é definida por recorrência se é (são) conhecido(s) o(s) primeiro(s) termo(s) e a "lei" para determinar qualquer outro termo, recorrendo a termos anteriores.

Sucessões monótonas

Dada uma sucessão u_n diz-se que:

- É uma sucessão crescente (em sentido estrito) se e só se $u_n < u_{n+1}, \forall_n \in \mathbb{N}$, ou seja, $u_{n+1} u_n > 0, \forall_n \in \mathbb{N}$;
- É uma sucessão decrescente (em sentido estrito) se e só se: $u_n > u_{n+1}$, $\forall_n \in \mathbb{N}$, $ou\ seja$, $u_{n+1} u_n < 0$, $\forall_n \in \mathbb{N}$;
- É uma sucessão monótona (em sentido estrito) se e só se é crescente ou decrescente.

Se $u_n \leq u_{n+1}$ ou $u_n \geq u_{n+1}$, $\forall_n \in \mathbb{N}$, a sucessão diz-se monótona crescente ou monótona decrescente em sentido lato.

Sucessões limitadas

Um conjunto P de números reais diz-se limitado se tiver majorantes e minorantes.

Uma sucessão u_n diz-se limitada se o conjunto dos seus termos é majorado e/ou minorado:

 $u_n \in limitada se e so se \exists_m, M \in \mathbb{R}: m \leq u_n \leq M, \forall_n \in \mathbb{N}.$

- Se u_n é monótona crescente, então o primeiro termo é um minorante do conjunto dos termos da sucessão $u_1 \le u_n$, $\forall_n \in \mathbb{N}$;
- Se u_n é monótona decrescente, então o primeiro termo é um majorante do conjunto dos termos da sucessão $u_1 \geq u_n$, $\forall_n \in \mathbb{N}$.

Progressões aritméticas

Uma sucessão u_n é progressão aritmética se e só se existe um número real r (razão) tal que:

$$u_{n+1} - u_n = r, \forall_n \in \mathbb{N}$$

Cada termo da sucessão é obtido a partir do anterior adicionando-lhe r, a chamada razão aritmética:

$$u_{n+1} = u_n + r, \forall_n \in \mathbb{N}$$

Se u_n é uma progressão aritmética de razão r, tem-se:

$$u_n = u_1 + (n-1)r, \forall_n \in \mathbb{N}$$
 ou

$$u_n = u_k + (n - k)r$$

Soma dos n primeiros termos

A soma \mathcal{S}_n dos n primeiros termos é dada por:

$$\frac{u_1+u_n}{2}*n$$

Soma de termos consecutivos

A soma dos termos consecutivos desde u_p até u_n é dada por:

$$S = S_n - S_{p-1} \ ou$$

$$S = \frac{u_p + u_n}{2} * (n - p + 1)$$

Progressões geométricas

Uma sucessão u_n é uma progressão geométrica se e só se existe um número real r (razão) tal que:

$$u_{n+1} = u_n * r, \forall_n \in \mathbb{N}$$

Cada termo da sucessão obtém-se do anterior multiplicando-o por r, a chamada razão da progressão geométrica.

$$u_{n+1} = u_n * r, \forall_n \in \mathbb{N}$$

 u_n é uma progressão geométrica se e só se:

$$\frac{u_{n+1}}{u_n} = r, \forall_n \in \mathbb{N}$$

Se u_n é uma progressão geométrica de razão r, então:

$$u_n = u_1 * r^{n-1}$$
, $\forall_n \in \mathbb{N}$ ou

$$u_n = u_k * r^{n-k}$$

Soma de n termos consecutivos

Se u_n tem $r \neq 1$, então S_n é dada por:

$$S_n = u_1 * \frac{1 - r^n}{1 - r}, r \neq 1$$

Se r = 1, todos os termos são iguais ao primeiro, tendo-se $S_n=nst u_1$

Indução Matemática

- Provar a validade para o primeiro elemento do conjunto (b(1))
- Provar a validade para o elemento n do conjunto (b(n))
- Provar a validade para o elemento n + 1 do conjunto (b(n+1))

Sucessões convergentes e divergentes

Uma sucessão u_n é convergente se existir um número real a tal que:

$$\lim(u_n) = a \Leftrightarrow \lim(u_n - a) = 0$$

Neste caso diz-se que u_n converge para a.

Uma sucessão u_n é divergente se não for convergente, isto é, $lim(u_n)$ não existe ou é infinito.

Teorema da Unicidade de limite

Uma sucessão convergente tem limite único.

Teorema do Critério de convergência das sucessões monótonas

Toda a sucessão monótona e limitada é convergente.

Infinitamente grandes e infinitésimos

- Infinitamente grande positivo -> $\lim(u_n) \to +\infty$;
- Infinitamente grande negativo -> $\lim(u_n) \to -\infty$;
- Infinitamente grande em módulo -> $\lim(|u_n|) \to +\infty$;
- Infinitésimo -> $lim(u_n) \rightarrow 0$

Seja u_n uma sucessão tal que $u_n \neq 0$, $\forall_n \in \mathbb{N}$. Então:

- u_n é um infinitésimo $\Rightarrow \frac{1}{u_n}$ é um infinitamente grande, ou seja, $u_n \to 0 \Rightarrow \frac{1}{u_n} \to \infty$;
- u_n é um infinitamente grande $\Rightarrow \frac{1}{u_n}$ é um infinitésimo, ou seja, $u_n \to \infty \Rightarrow \frac{1}{u_n} \to 0$.

Operações com limites finitos

Se $u_n = k$ então $lim(u_n) = k$.

Sendo u_n e v_n sucessões convergentes, então:

- $\lim(u_n \pm v_n) = \lim(u_n) \pm \lim(v_n)$;
- $\lim(k*u_n) = k*\lim(u_n);$
- $\lim(u_n * v_n) = \lim(u_n) * \lim(v_n)$;
- $\lim \left(\frac{u_n}{v_n}\right) = \frac{\lim(u_n)}{\lim(v_n)};$
- $\lim (u_n)^p = (\lim (u_n))^p, p \in \mathbb{Z};$
- $\lim_{x \to \infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to \infty} f(x)}$, $n \in \mathbb{N}$, $f(x) \ge 0$, se n par

Operações com limites infinitos

Notas:

- $a^{-\infty}=0$;
- $\log_a 0^+ = +\infty$.

Indeterminações

- $\infty \infty$;
- $\infty * 0$;
- $\bullet \frac{0}{0}$
- $\frac{\infty}{\infty}$;
- 1[∞];
- 0^0 :
- ∞^0 .

Limite de Nepper

$$\lim \left(1 + \frac{1}{n}\right)^n = e$$

A partir deste limite pode provar-se que:

$$\lim \left(1 + \frac{k}{u_n}\right)^{u_n} = e^k$$
, $com u_n \to +\infty$

Exemplos:

a)
$$\lim \left(1 + \frac{3}{n}\right)^n = e^3$$

b)
$$\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^n = \lim_{n \to \infty} \left(1 + \frac{-5}{n}\right)^n = e^{-5}$$

c)
$$\lim \left(1 + \frac{3}{2n}\right)^n = \lim \left(1 + \frac{\frac{3}{2}}{n}\right)^n = e^{\frac{3}{2}} = \sqrt[2]{e^3} = e\sqrt{e}$$

d)
$$\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^{2n} = \lim_{n \to \infty} \left(1 - \frac{10}{2n}\right)^{2n} = e^{-10} \text{ ou } \lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^{2n} = \lim_{n \to \infty} \left(\left(1 - \frac{5}{n}\right)^{n}\right)^{2} = (e^{-5})^{2} = e^{-10}$$

e)
$$\lim \left(\frac{n+5}{n+2}\right)^n = \lim \left(1 + \frac{3}{n+2}\right)^n = \lim \left(\left(1 + \frac{3}{n+2}\right)^{n+2} * \left(1 + \frac{3}{n+2}\right)^{-2}\right) = e^3 * \left(1 + \frac{3}{+\infty}\right)^{-2} = e^3 * (1+0^+)^{-2} = e^3 * 1 = e^3$$

$$n+5 \left[\frac{n+3}{n+2} \right]$$

$$-n-2 \quad 1$$

f)
$$\lim \left(1 + \frac{5}{n-3}\right)^n = \lim \left(\left(1 + \frac{5}{n-3}\right)^{n-3} * \left(1 + \frac{5}{n-3}\right)^3\right) = e^5 * \left(1 + \frac{5}{(+\infty)-3}\right)^3 = e^5 * (1 + 0^+)^3 = e^5 * 1 = e^5$$

g)
$$\lim \left(1 - \frac{2}{n}\right)^{n+4} = \lim \left(\left(1 - \frac{2}{n}\right)^n * \left(1 - \frac{2}{n}\right)^4\right) = e^{-2} * \left(1 - \frac{2}{+\infty}\right)^4 = e^{-2} * (1 - 0^+)^4 = e^{-2}$$

Número de Nepper

Designa-se por número de Nepper e representa-se por e o limite da sucessão $\left(1+\frac{1}{n}\right)^n$.

Trata-se de um número irracional, sendo $e \approx 2,718281$.

$$\lim \left(1 + \frac{1}{n}\right)^n = e$$

Limites notáveis

•
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e, n \in \mathbb{N}$$

•
$$\lim_{x \to 0} \left(\frac{\sin(x)}{x} \right) = 1$$

$$\bullet \quad \lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = 1$$

Exemplos:

a)
$$\lim_{x \to 0} \left(\frac{x}{e^x - 1} \right) = \lim_{x \to 0} \left(\frac{1}{\frac{e^x - 1}{x}} \right) = \frac{1}{1} = 1$$

b)
$$\lim_{x \to 0} \left(\frac{e^{2x} - 1}{x^3} \right) = \lim_{x \to 0} \left(\frac{2(e^{2x} - 1)}{2x * x^2} \right) = MV y = 2x \lim_{y \to 0} \left(\frac{2(e^y - 1)}{y * x^2} \right) = \lim_{y \to 0} \left(\frac{2}{x^2} * \frac{e^y - 1}{y} \right) = \frac{2}{0^2} * 1 = (+\infty) * 1 = +\infty$$

c)
$$\lim_{x \to 2} \left(\frac{(e^{x+2}-1)}{x+2} \right) = MV y = x-2 \lim_{y \to 0} \left(\frac{e^{y-2+2}-1}{y-2+2} \right) = \lim_{y \to 0} \left(\frac{e^{y-1}}{y} \right) = 1$$

d)
$$\lim_{x \to 3} \left(\frac{1 - e^{x - 3}}{2x - 6} \right) = \lim_{x \to 3} \left(\frac{-(e^{x - 3} - 1)}{2(x - 3)} \right) = {}^{MV} y = x - 3 \lim_{y \to 0} \left(\frac{-(e^{y} - 1)}{2y} \right) = -\frac{1}{2} \lim_{y \to 0} \left(\frac{e^{y} - 1}{y} \right) = -\frac{1}{2} * 1 = -\frac{1}{2}$$

•
$$\lim_{x \to 0} \left(\frac{\ln(x+1)}{x} \right) = 1$$

Exemplos:

a)
$$\lim_{x \to 0} \left(\frac{2x}{\ln(x+1)} \right) = \lim_{x \to 0} \left(2 * \frac{x}{\ln(x+1)} \right) = 2 \lim_{x \to 0} \left(\frac{1}{\frac{\ln(x+1)}{x}} \right) = 2 * \frac{1}{1} = 2$$

b)
$$\lim_{x \to 1} \left(\frac{\ln x}{4x - 4} \right) =^{MV} y = x - 1 \lim_{y \to 0} \left(\frac{\ln(y + 1)}{4y} \right) = \lim_{y \to 0} \left(\frac{1}{4} * \frac{\ln(y + 1)}{y} \right) = \frac{1}{4} * 1 = \frac{1}{4}$$

c)
$$\lim_{x \to 4} \left(\frac{\ln(x-3)^2}{x^2 - 4x} \right) = \lim_{x \to 4} \left(\frac{2\ln(x-3)}{x(x-4)} \right) = MV y = x-4 \lim_{y \to 0} \left(\frac{2\ln(y+4-3)}{(y+4)(y+4-4)} \right) = \lim_{y \to 0} \left(\frac{2\ln(y+1)}{y^2 + 4y} \right) = \lim_{y \to 0} \left(\frac{2}{y^2 + 4y} \right) = \lim_{y \to 0} \left(\frac{2}{y^2 + 4y} \right) = \lim_{y \to 0} \left(\frac{2\ln(y+1)}{y^2 + 4y} \right) = \lim_{y \to 0}$$

d)
$$\lim_{x \to -3} \left(\frac{\ln(5x+16)}{10x+30} \right) = {}^{MV} y = x+3 \lim_{y \to 0} \left(\frac{\ln(5(y-3)+16)}{10(y-3)+30} \right) =$$
$$\lim_{y \to 0} \left(\frac{\ln(5y+1)}{10y} \right) = {}^{MV} z = 5y \lim_{z \to 0} \left(\frac{\ln(z+1)}{2z} \right) = \lim_{z \to 0} \left(\frac{1}{2} * \frac{\ln(z+1)}{z} \right) = \frac{1}{2} * 1 = \frac{1}{2}$$

•
$$\lim_{x \to +\infty} \left(\frac{\ln(x)}{x} \right) = 0$$

Exemplos:

a)
$$\lim_{x \to +\infty} \left(\frac{\ln x}{x^5} \right) = \lim_{x \to +\infty} \left(\frac{1}{x^4} * \frac{\ln x}{x} \right) = \frac{1}{(+\infty)^4} * 0 = \frac{1}{+\infty} * 0 = 0 * 0 = 0$$

b)
$$\lim_{x \to +\infty} \left(\frac{\ln x^5}{x} \right) = \lim_{x \to +\infty} \left(\frac{5 \cdot \ln x}{x} \right) = 5 \cdot 0 = 0$$

c)
$$\lim_{x \to +\infty} \left(\frac{\ln 3x}{x} \right) = \lim_{x \to +\infty} \left(\frac{\ln 3}{x} + \frac{\ln x}{x} \right) = \frac{\ln 3}{+\infty} + 0 = 0 + 0 = 0$$
Ou $\lim_{x \to +\infty} \left(\frac{\ln 3x}{x} \right) = \lim_{x \to +\infty} \left(\frac{3 \ln 3x}{3x} \right) = MV y = 3x \lim_{x \to +\infty} \left(\frac{3 \ln y}{y} \right) = 3 * 0 = 0$

•
$$\lim_{x\to\infty} \left(\frac{e^x}{x^p}\right) = +\infty, p \in \mathbb{R}$$

Exemplos:

a)
$$\lim_{x \to +\infty} \left(\frac{x^5}{e^x} \right) = \lim_{x \to +\infty} \left(\frac{1}{\frac{e^x}{x^5}} \right) = \frac{1}{+\infty} = 0^+$$

b)
$$\lim_{x \to +\infty} \left(\frac{e^x}{\sqrt[3]{x}} \right) = \lim_{x \to +\infty} \left(\frac{e^x}{\frac{1}{x^3}} \right) = +\infty$$

c)
$$\lim_{x \to +\infty} \left(\frac{e^{3x}}{x} \right) = \lim_{x \to +\infty} \left(\frac{\left(e^3\right)^x}{x} \right) = +\infty$$

Ou
$$\lim_{x \to +\infty} \left(\frac{e^{3x}}{x} \right) = \lim_{x \to +\infty} \left(\frac{3e^{3x}}{3x} \right) = MV y = 3x \lim_{y \to +\infty} \left(\frac{3e^{y}}{y} \right) = 3 * (+\infty) = +\infty$$

d)
$$\lim_{x \to -\infty} \left(\frac{e^{-x}}{x^3} \right) = MV y = -x \lim_{y \to +\infty} \left(\frac{e^y}{(-y)^3} \right) = \lim_{y \to +\infty} \left(\frac{e^y}{-y^3} \right) = -\lim_{y \to +\infty} \left(\frac{e^y}{y^3} \right) = -(+\infty) = -\infty$$

Cálculo de limites (exemplos)

a)
$$\lim_{x \to +\infty} (3e^{-x}) = 3e^{-(+\infty)} = 3e^{-\infty} = 3 * 0 = 0$$

b)
$$\lim_{x \to +\infty} (5+2^x) = 5+2^{+\infty} = 5+(+\infty) = +\infty$$

c)
$$\lim_{x \to 0^+} (\log_3 x - 4) = \log_3 0^+ - 4 = -\infty - 4 = -\infty$$

d)
$$\lim_{x \to +\infty} (\ln(x) * x^{-3}) = \lim_{x \to +\infty} \left(\frac{\ln(x)}{x^3}\right) = 0$$

e)
$$\lim_{x \to +\infty} (\sqrt[5]{x^3} * \log x) = \sqrt[5]{(+\infty)^3} * \log(+\infty) = (+\infty) * (+\infty) = +\infty$$

f)
$$\lim_{x \to +\infty} \left(x^5 * \frac{3}{5 \ln x} \right) = \lim_{x \to +\infty} \left(\frac{3x^5}{5 \ln x} \right) = \frac{3}{5} * \frac{x^5}{\ln x} = \frac{3}{5} * (+\infty) = +\infty$$

g)
$$\lim \left(\frac{2}{n}\right) = \frac{2}{+\infty} = 0^+$$

h)
$$\lim \left(3 + \frac{5}{n}\right) = 3 + \frac{5}{+\infty} = 3 + 0^+ = 3^+$$

i)
$$\lim(n^2 + 2n) = (+\infty)^2 + 2 * (+\infty) = (+\infty) + (+\infty) = +\infty$$

j)
$$\lim \left(\frac{-4}{n+1}\right) = \frac{-4}{(+\infty)+1} = \frac{-4}{+\infty} = 0^-$$

k)
$$\lim \left(1 + \frac{5}{4 - 2n^2}\right) = 1 + \frac{5}{4 - 2*(+\infty)^2} = 1 + \frac{5}{4 - (+\infty)} = 1 + \frac{5}{-\infty} = 1 + 0^- = 1^-$$

l)
$$\lim \left(\frac{3n-4}{n}\right) = \frac{3*(+\infty)-4}{+\infty} = \frac{+\infty}{+\infty}$$
 Indeterminação $\lim \left(\frac{3n-4}{n}\right) = \lim \left(\frac{3n}{n} - \frac{4}{n}\right) = \lim \left(3 - \frac{4}{n}\right) = 3 - \frac{4}{+\infty} = 3 - 0^+ = 3^-$
m) $\lim \left(\frac{4n+7}{2n-3}\right) = \frac{\infty}{\infty} \lim \left(2 + \frac{13}{2n-3}\right) = 2 + \frac{13}{2*(+\infty)-3} = 2 + \frac{13}{+\infty} = 2 + 0^+ = 2^+$

$$4n+7 \left[2n-3\right]$$

$$-4n+6 \quad 2$$

n)
$$\lim \left(\frac{5-6n}{3n+1}\right) = \frac{\infty}{\infty} \lim \left(-2 + \frac{7}{3n+1}\right) = -2 + \frac{7}{3*(+\infty)+1} = -2 + \frac{7}{+\infty} = -2 + 0^+ = -2^+$$

 $-6n + 5 \left[\begin{array}{c} 3n + 1 \\ +6n + 2 \end{array}\right]$

o)
$$\lim(3+2^{-n}) = 3+2^{-(+\infty)} = 3+2^{-\infty} = 3+0^+ = 3^+$$

p)
$$\lim(-8\log(n^2+2)) = -8\log((+\infty)^2+2) = -8\log(+\infty) = -8*(+\infty) = -\infty$$

q)
$$\lim(5e^{n+1} + n) = 5e^{(+\infty)+1} + (+\infty) = 5*(+\infty) + (+\infty) = +\infty$$

r)
$$\lim \left(\log \frac{1}{n}\right) = \log \frac{1}{+\infty} = \log 0^+ = -\infty$$

s)
$$\lim_{x \to 0^{+}} (x \ln(x)) = \sum_{x \to 0^{+}}^{\infty * 0} \lim_{x \to 0^{+}} \left(\frac{\ln(x)}{\frac{1}{x}} \right) = -\lim_{x \to 0^{+}} \left(\frac{-\ln(x)}{\frac{1}{x}} \right) = -\lim_{x \to 0^{+}} \left(\frac{\ln(x^{-1})}{\frac{1}{x}} \right) = \lim_{x \to 0^{+}} \left(\frac{\ln(x)}{\frac{1}{x}} \right)$$

Indeterminações

São operações com limites cujo resultado difere de caso para caso.

As indeterminações podem ser de diferentes tipos:

- $\infty \infty$;
- $\frac{\infty}{8}$;
- ∞ * 0;
- \bullet $\frac{0}{0}$

Quando no cálculo de um limite se obtém alguma destas operações é necessário "levantar a indeterminação", ou seja, substituir a expressão dada por outra equivalente que não dê origem a uma indeterminação.

Exemplos:

a)
$$\lim(5n^2 - 3n^2) = 5 * (+\infty)^2 - 3 * (+\infty)^2 = +\infty - (+\infty)$$
 Indeterminação $\lim(5n^2 - 3n^2) = -\infty - \lim(2n^2) = 2 * (+\infty)^2 = +\infty$

b)
$$\lim((3n+5)-3n) = \infty \lim(3n+5-3n) = \lim(5) = 5$$

c)
$$\lim \left(\frac{2n^2}{n^2}\right) = \frac{\infty}{\infty} \lim(2) = 2$$

d)
$$\lim \left(\frac{n}{4n^2}\right) = \frac{\infty}{\infty} \lim \left(\frac{1}{4n}\right) = \frac{1}{4*(+\infty)} = \frac{1}{+\infty} = 0^+$$

e)
$$\lim \left(\frac{5n^3+1}{n}\right) = \frac{\infty}{n} \lim \left(\frac{5n^3}{n} + \frac{1}{n}\right) = \lim \left(5n^2 + \frac{1}{n}\right) = 5 * (+\infty)^2 + \frac{1}{+\infty} = +\infty + 0^+ = +\infty$$

f)
$$\lim \left(n^2 * \frac{1}{n}\right) = \infty * 0 \lim(n) = +\infty$$

g)
$$\lim \left(n * \frac{3}{n}\right) = ^{\infty *0} \lim(3) = 3$$

h)
$$\lim \left(\frac{\frac{1}{n}}{\frac{2}{n}}\right) = \frac{0}{0} \lim \left(\frac{1}{2}\right) = \frac{1}{2}$$

i)
$$\lim \left(\frac{\frac{1}{n}}{\frac{1}{n^2}}\right) = 0 \lim (n) = +\infty$$

Levantamento de indeterminações

0/0

Funções racionais fracionárias

Fatorizar o numerador e o denominador, usando preferencialmente a Regra de Ruffini com o valor para o qual tende x como zero.

Exemplos:

a)
$$\lim_{x \to 2} \left(\frac{3x^2 - 3x - 6}{x^2 - 4} \right) = 0 \lim_{x \to 2} \left(\frac{(x - 2)(3x + 3)}{(x - 2)(x + 2)} \right) = \lim_{x \to 2} \left(\frac{3x + 3}{x + 2} \right) = \frac{3 * 2 + 3}{2 + 2} = \frac{9}{4}$$
C.A.

$$3x^2 - 3x - 6 = 0 \stackrel{FR}{\Leftrightarrow} x = 2 \lor x = -1 \text{ ou}$$

3 +3 0

$$3x^2 - 3x - 6 = 3(x - 3)(x - 2)$$

b)
$$\lim_{x \to 1} \left(\frac{2x - 2}{x^3 - 2x^2 - 5x + 6} \right) = 0 \lim_{x \to 1} \left(\frac{2(x - 1)}{(x - 1)(x^2 - x - 6)} \right) = \lim_{x \to 1} \left(\frac{2}{x^2 - x - 6} \right) = \frac{2}{1^2 - 1 - 6} = -\frac{2}{6} = -\frac{1}{3}$$
 C.A.

$$x^3 - 2x^2 - 5x + 6 = (x - 1)(x^2 - x - 6)$$

Funções irracionais fracionárias

Racionalizar o denominador (ou o numerador).

a)
$$\lim_{x \to 4} \left(\frac{4-x}{\sqrt{x}-2} \right) = 0 \lim_{x \to 4} \left(\frac{(4-x)(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)} \right) = \lim_{x \to 4} \left(\frac{(4-x)(\sqrt{x}+2)}{x-4} \right) = \lim_{x \to 4} \left(\frac{(4-x)(\sqrt{x}+2)}{-(4-x)} \right) = \lim_{x \to 4} \left(\frac{(4-x)(\sqrt{x}+2)}{-(4-x)} \right) = \lim_{x \to 4} \left(\frac{\sqrt{x}+2}{-1} \right) = \frac{\sqrt{4}+2}{-1} = -4$$

b)
$$\lim_{x \to 3^{+}} \left(\frac{\sqrt{x-3}}{9-x^{2}} \right) = 0 \lim_{x \to 3^{+}} \left(\frac{(\sqrt{x-3})(\sqrt{x-3})}{(9-x^{2})(\sqrt{x-3})} \right) = \lim_{x \to 3^{+}} \left(\frac{x-3}{(3+x)(3-x)(\sqrt{x-3})} \right) = \lim_{x \to 3^{+}} \left(\frac{-(3+x)}{(3+x)(3-x)(\sqrt{x-3})} \right) = \lim_{x \to 3^{+}} \left(\frac{-1}{(3-x)(\sqrt{x-3})} \right) = \frac{-1}{(3-3^{+})(\sqrt{3^{+}-3})} = \frac{-1}{0^{+}} = -\infty$$

∞ - ∞

Funções polinomiais

$$\lim_{x \to \pm \infty} (a_0 x^n + a_1 x^{n-1} + \dots + a_n) = \lim_{x \to \pm \infty} a_0 x^n$$

Exemplos:

a)
$$\lim_{x \to +\infty} (2x^5 - 4x^2) = {\infty - \infty} \lim_{x \to +\infty} (2x^5) = 2 * (+\infty)^5 = +\infty$$

b)
$$\lim_{x \to -\infty} (5x^3 + 3x^2 - x) = {\infty - \infty} \lim_{x \to -\infty} (5x^3) = 5 * (-\infty)^3 = 5 * (-\infty) = -\infty$$

c)
$$\lim_{x \to -\infty} (-5x^2 + 3x - 1) = 0^{-\infty} \lim_{x \to -\infty} (-5x^2) = -5 * (-\infty)^2 = -5 * (+\infty) = -\infty$$

d)
$$\lim_{x\to 0} (3x^2 + 4x - 6) = ^{\infty-\infty} 3 * 0^2 + 4 * 0 - 6 = -6$$

Funções racionais fracionárias

Efetua-se a operação (somar/subtrair reduzindo ao mesmo denominador).

Exemplo:

$$\lim_{x \to 3^+} \left(\frac{1}{x-3} - \frac{6}{x^2 - 9} \right) =^{\infty - \infty} \lim_{x \to 3^+} \left(\frac{1}{x-3} - \frac{6}{(x-3)(x+3)} \right) = \lim_{x \to 3^+} \left(\frac{x+3}{(x-3)(x+3)} - \frac{6}{(x-3)(x+3)} \right) = \lim_{x \to 3^+} \left(\frac{x+3-6}{(x-3)(x+3)} \right) = \lim_{x \to 3^+} \left(\frac{x-3}{(x-3)(x+3)} \right) = \lim_{x \to 3^+} \left(\frac{1}{x+3} - \frac{1}{3+3} \right) = \frac{1}{3+3} = \frac{1}{6}$$

Funções irracionais

Exemplo:

$$\lim_{x \to +\infty} \left(\sqrt{9x^2 + 2} - 3x \right) =^{\infty - \infty} \lim_{x \to +\infty} \left(\frac{\left(\sqrt{9x^2 + 2} - 3x \right) \left(\sqrt{9x^2 + 2} + 3x \right)}{\sqrt{9x^2 + 2} + 3x} \right) = \lim_{x \to +\infty} \left(\frac{\left(\sqrt{9x^2 + 2} \right)^2 - (3x)^2}{\sqrt{9x^2 + 2} + 3x} \right) = \lim_{x \to +\infty} \left(\frac{2}{\sqrt{9x^2 + 2} + 3x} \right) = \lim_{x \to +\infty} \left(\frac{2}{\sqrt{9x^2 + 2} + 3x} \right) = \frac{2}{\sqrt{9x(+\infty)^2 + 2} + 3x(+\infty)} = \frac{2}{(+\infty) + (+\infty)} = \frac{2}{+\infty} = 0^+$$

∞ / ∞

Funções racionais fracionárias

$$\lim_{x \to \pm \infty} \left(\frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_n} \right) = \lim_{x \to \pm \infty} \left(\frac{a_0 x^n}{b_0 x^m} \right)$$

Exemplos:

a)
$$\lim_{x \to +\infty} \left(\frac{5x^3 - x^2 + 1}{2x^3 + x} \right) = \frac{\infty}{\infty} \lim_{x \to +\infty} \left(\frac{5x^3}{2x^3} \right) = \lim_{x \to +\infty} \left(\frac{5}{2} \right) = \frac{5}{2} \text{ (significa que y = } \frac{5}{2} \text{ seria uma A. H. da função em} + \infty)$$

b)
$$\lim_{x \to +\infty} \left(\frac{x^3 - 5x}{x^4 + x^3 - 4x + 1} \right) = \frac{\infty}{\infty} \lim_{x \to +\infty} \left(\frac{x^3}{x^4} \right) = \lim_{x \to +\infty} \left(\frac{1}{x} \right) = \frac{1}{+\infty} = 0^+ \text{ (logo y = 0.5)}$$

0 é uma A. H. da função em +∞)

c)
$$\lim_{x \to -\infty} \left(\frac{4x^5 - 2x^2 + x}{3x^2 - 5x} \right) = \frac{\infty}{\infty} \lim_{x \to -\infty} \left(\frac{4x^5}{3x^2} \right) = \lim_{x \to -\infty} \left(\frac{4x^3}{3} \right) = \frac{4*(-\infty)^3}{3} = \frac{-\infty}{3} = -\infty$$
 (logo não há A. H. em $-\infty$)

d)
$$\lim_{x \to -\infty} \left(\frac{2x+2}{x+3} \right) = \frac{\infty}{\infty} \lim_{x \to -\infty} \left(\frac{2x}{x} \right) = \lim_{x \to -\infty} (2) = 2 \ (\log o \ y = 2 \ \text{\'e} \ A. \ H. \ da \ função \ em - \infty)$$

e)
$$\lim_{x \to 0} \left(\frac{x^3 + 5x - 1}{2x + 3} \right) = \frac{0^3 + 5 \times 0 - 1}{2 \times 0 + 3} = -\frac{1}{3}$$

Funções irracionais fracionárias

(1) Ter em conta que
$$\sqrt{x^2} = |x|$$
, ou $seja$, $\sqrt{x^2} = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}$, ou $ainda$, $x = \begin{cases} -\sqrt{x^2}, & x < 0 \\ \sqrt{x^2}, & x \ge 0 \end{cases}$

Exemplos:

a)
$$\lim_{x \to +\infty} \left(\frac{5 + \sqrt{x^2}}{x} \right) = \frac{\infty}{\infty} \lim_{x \to +\infty} \left(\frac{5 + x}{x} \right) = \lim_{x \to +\infty} \left(\frac{x}{x} \right) = 1 \text{ (y = 1 \'e A. H. da função em} + \infty)$$

b)
$$\lim_{x \to -\infty} \left(\frac{5 + \sqrt{x^2}}{x} \right) = \frac{\infty}{\infty} \lim_{x \to -\infty} \left(\frac{5 - x}{x} \right) = \lim_{x \to -\infty} \left(\frac{-x}{x} \right) = -1 \text{ (y = -1 \'e A. H. da função em - } \infty \text{)}$$

c)
$$\lim_{x \to +\infty} \left(\frac{\sqrt{x+3}}{x} \right) = \sum_{\infty}^{\infty} \lim_{x \to +\infty} \left(\frac{\sqrt{x+3}}{\sqrt{x^2}} \right) = \lim_{x \to +\infty} \left(\sqrt{\frac{x+3}{x^2}} \right) = \lim_{x \to +\infty} \left(\sqrt{\frac{x}{x^2}} \right) = \lim_{x \to +\infty} \left(\sqrt{\frac{1}{x}} \right) = \lim_{x \to$$

d)
$$\lim_{x \to -\infty} \left(\frac{\sqrt{3-x}}{x} \right) = \sum_{\infty}^{\infty} \lim_{x \to -\infty} \left(\frac{\sqrt{3-x}}{-\sqrt{x^2}} \right) = \lim_{x \to -\infty} \left(-\sqrt{\frac{3-x}{x^2}} \right) = \lim_{x \to -\infty} \left(-\sqrt{\frac{-x}{x^2}} \right) = \lim_{x \to -\infty} \left(-\sqrt{\frac{-x}$$

(2) Pôr em evidência o termo de mais alto grau do numerador e do denominador.

Exemplo:

$$\lim_{x \to +\infty} \left(\frac{x + \sqrt{x}}{x^2 + x} \right) = \sum_{\infty}^{\infty} \lim_{x \to +\infty} \left(\frac{x \left(1 + \frac{\sqrt{x}}{x} \right)}{x^2 \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \frac{\sqrt{x}}{x}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \frac{\sqrt{x}}{\sqrt{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \frac{\sqrt{x}}{\sqrt{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_{x \to +\infty} \left(\frac{1 + \sqrt{\frac{x}{x^2}}}{x \left(1 + \frac{1}{x} \right)} \right) = \lim_$$

Efetuam-se as operações, de forma a transformar $\infty * 0$ numa outra indeterminação.

Probabilidades

Axiomática de probabilidades

Chama-se probabilidade à função P que a cada acontecimento A de um espaço de resultados Ω de uma experiência aleatória, faz corresponder um número real P(A) que verifica os seguintes axiomas:

- 1. $P(\Omega) = 1$: a probabilidade do acontecimento certo é 1;
- 2. $P(A) \ge 0$: a probabilidade de qualquer acontecimento A é um número real não negativo;
- 3. $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$: se $A \in B$ são acontecimentos incompatíveis, a probabilidade da reunião de A com B é a soma das probabilidades de A e de B.

Teoremas

- 1. $P(\emptyset) = 0$: a probabilidade do acontecimento impossível é zero;
- 2. $P(\bar{A}) = 1 P(A)$
- 3. $B \subset A \Rightarrow P(B) \leq P(A)$
- 4. $0 \le P(A) \le 1$
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 6. $P(A \backslash B) = P(A) P(A \cap B)$ ou $P(A) = P(A \cap B) + P(A \cap \overline{B})$

Conceitos

Acontecimento impossível

$$P(A) = \emptyset$$

Acontecimento elementar

Acontecimento com um só resultado

Acontecimento certo

$$P(A) = 1 = \Omega$$

Reunião

É o conjunto de todos os resultados que verificam A e/ou B.

A reunião entre dois acontecimentos A e B representa-se por $P(A \cup B)$.

Interseção

É o conjunto de todos os resultados que verificam A e B.

A interseção entre dois acontecimentos A e B representa-se por $P(A \cap B)$.

Diferença

É o conjunto de resultados que verificam um acontecimento A mas não verificam um acontecimento B. Representa-se por $P(A \setminus B)$ ou P(A - B).

Contrário ou complementar

É o conjunto de elementos do espaço amostral, Ω , que não pertencem a um acontecimento A.

Representa-se por $P(\bar{A})$.

Acontecimentos incompatíveis ou disjuntos

São acontecimentos que não têm elementos em comum, ou seja, que nunca se verificam em conjunto.

Dados dois acontecimentos A e B, se $P(A \cap B) = \emptyset$ diz-se que estes dois acontecimentos são incompatíveis ou disjuntos.

Nota:

- Se A e B são contrários ⇒ A e B incompatíveis;
- Mas se A e B são incompatíveis

 A e B contrários.

Acontecimentos equiprováveis

São acontecimentos com a mesma probabilidade de ocorrência.

Dados dois acontecimentos A e B, estes são equiprováveis se P(A) = P(B).

Tabela de dupla entrada

	А	$ar{A}$	Total
В	$A \cap B$	$\bar{A} \cap B$	#B
B	$A \cap \bar{B}$	$\bar{A} \cap \bar{B}$	$\#ar{B}$
Total	#A	$\#ar{A}$	Ω

Propriedades dos acontecimentos e conjuntos em geral

Propriedade	Reunião(∪)	Interseção(∩)
-		

Comulativa	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Associativa	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributiva	$A \cup (B \cup C) = (A \cup B) \cap (B \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Elemento neutro	$A \cup \emptyset = A$	$A \cap \Omega = A$
Elemento	$A \cup \Omega = \Omega$	$A \cap \emptyset = \emptyset$
absorvente		
Leis de De	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
Morgan		
•••	$A \subset A \cup B$	$A \cap B \subset A$
	$B \subset A \cup B$	$A \cap B \subset B$

Acontecimentos contrários

- $A \cap \bar{A} = \emptyset$
- $A \cup \bar{A} = \Omega$
- $\bar{\bar{A}} = A$
- $\overline{\Omega} = \emptyset$
- $\overline{\emptyset} = \Omega$

Diferença

- $A \backslash B = A \cap \overline{B}$
- $A \setminus B \subset A$
- $\Omega \backslash A = \bar{A}$
- $A \subset B \Rightarrow A \setminus B = \emptyset$

Outras propriedades

- $A = (A \cap B) \cup (A \cap \overline{B}) \Leftrightarrow A = (A \cap B) \cup A \setminus B$
- $\#(A \cup B) = \#A + \#B \#(A \cap B)$

Definição frequencialista ou empírica de probabilidade

Também conhecida como Lei dos grandes números de Bernoulli.

A probabilidade de um acontecimento A de uma experiência aleatória é o valor para o qual tende a frequência relativa da realização de A quando o número de repetições da experiência tende para o infinito:

$$p(a) = \frac{\text{n\'umero de ocorr\'encias de A}}{\text{n\'umero de realiza\'e\~es da experi\'encia}}$$

Propriedades das probabilidades decorrentes da definição frequencialista

- $p(\emptyset) = 0$
- $p(\Omega) = 1$
- $0 \le p(A) \le 1, A \subset \Omega$
- $A = \{a_1, a_2, ..., a_n\} \Rightarrow p(A) = p(\{a_1\}) + p(\{a_2\}) + ... + p(\{a_n\})$
- $\bullet \quad p(\bar{A}) = 1 p(A)$

Definição clássica de probabilidade (Lei de Laplace)

Seja Ω um espaço de resultados finito constituído por n acontecimentos elementares equiprováveis e A um acontecimento de Ω constituído por acontecimentos elementares.

Então, a probabilidade do acontecimento A é dada pelo quociente entre o número de casos favoráveis ao acontecimento A (m) e o número de casos possíveis (n).

$$A \subset \Omega$$
, $p(A) = \frac{n \text{\'umero de casos favor\'aveis a } A}{n \text{\'umero de casos possíveis}} = \frac{\# A}{\# \Omega} = \frac{m}{n}$

Regra do produto

Quando é necessário realizar k escolhas sucessivas em que na primeira há n_1 alternativas, na segunda há n_2 alternativas, ..., e na escolha de ordem k há n_k alternativas, então o número total de alternativas é dado por $n_1*n_2*...*n_k$

Exemplo:

Quantas combinações é possível fazer de 1 casaco, 1 saia e 1 blusa tendo 4 casacos, 2 saias e 3 blusas? Resposta: 4*2*3 = 24 combinações.

Probabilidade condicionada

Chama-se probabilidade condicionada de A dado B (ou probabilidade de A sabendo que ocorreu B) e representa-se por p(A|B) ao seguinte quociente:

$$p(A|B) = \frac{\#(A \cap B)}{\#B}$$

$$P(A|B) = \frac{\frac{\#(A \cap B)}{\#B}}{\frac{\#B}{\#D}} = \frac{P(A \cap B)}{P(B)} \Leftrightarrow p(A|B) = \frac{P(A \cap B)}{P(B)}$$

Probabilidade da interseção de dois acontecimentos

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Leftrightarrow P(A \cap B) = P(A|B) * P(B)$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \Leftrightarrow P(A \cap B) = P(B|A) * P(A)$$

Probabilidade total

$$P(B) = P(A \cap B) + P(\bar{A} \cap B) \Leftrightarrow P(B) = P(A) * P(B|A) + P(\bar{A}) * P(B|\bar{A})$$

Generalizando:

Seja $\Omega = A_1 \cup A_2 \cup ... \cup A_n$ tais que $A_1, A_2, ..., A_n$ são disjuntos entre si. Então:

$$P(B) = P(A_1) * P(B|A_1) + P(A_2) * P(B|A_2) + \dots + P(A_n) * P(B|A_n)$$

Acontecimentos independentes

Dois acontecimentos A e B dizem-se independentes se a ocorrência de um não influencia a probabilidade de outro.

A e B independentes $\Rightarrow p(A|B) = p(A)$ e p(B|A) = p(B)

Tendo em conta que $p(A \cap B) = p(a) * p(B|A)$, se A e B forem independentes, então:

$$p(A \cap B) = p(A) * p(B)$$

Análise combinatória (técnicas de contagem)

Princípio fundamental da contagem (regra do produto)

Arranjos completos (ou com repetição).

Dado um conjunto com n elementos, o número total de sequências com p elementos, repetidos ou não, e escolhidos entre os n elementos iniciais é designado por número de arranjos completos tomados p a p, e é dado por:

$${}^{n}A'_{n}=n^{p}$$

n → número de elementos disponíveis

p → número de elementos da sequência

Permutações

Dado um número natural n, chama-se fatorial de n! ao produto dos primeiros n números naturais:

$$n! = 1 * 2 * 3 * ... * n$$
 ou

$$n! = n * (n - 1) * (n - 2) * ... * 1$$

Permutações simples

Dado um conjunto com n elementos, o número total de sequências de n elementos sem repetições, que é possível formar com os n elementos iniciais é designado por número de permutações de n elementos e é dado por: $P_n=n!$.

n → número de elementos de cada permutação

Arranjos simples

Dado um conjunto com n elementos, o número total de sequências de p elementos distintos escolhidos entre os n elementos do conjunto designa-se por número de arranjos simples de n elementos tomados p a p e é dado por:

$${}^{n}A_{p} = n * (n - 1) * ... * 1$$

$${}^{\mathsf{n}}A_p = \frac{n!}{(n-p)!}$$

n → número de elementos disponíveis

p -> número de elementos da sequência

Nota:
$${}^{\mathsf{n}}A_n = P_n$$

Permutações circulares

Dados n objetos, o número de formas distintas de os dispor em círculo é dado por:

$$\frac{n!}{n}$$
, ou seja, $(n-1)!$

n → número de objetos disponíveis

Sequências vs. Conjuntos

Um conjunto distingue-se de uma sequência pelo facto de um conjunto não se alterar quando se troca a ordem dos elementos, e ainda por não se poderem considerar elementos repetidos num conjunto.

Exemplos:

$${A, B, C, D} = {B, C, D, A} mas (A, B, C, D) \neq (B, C, D, A)$$

$$\{A, A, B, C\} \Rightarrow \{A, B, C\}$$
 mas (A, A, B, C) existe

Permutações

A cada conjunto de p elementos correspondem p! sequências distintas, ou seja, o número de sequências de p elementos:

p! * número de conjuntos de elementos

Ou ainda número de conjuntos de p elementos:

 $\frac{n\'umero\ de\ sequências\ de\ p\ elementos}{n!}$

Generalizando:

$${}^{n}C_{p} = \frac{{}^{n}A_{p}}{p!} = \frac{\frac{n!}{(n-p)!}}{p!} = \frac{n!}{p!(n-p)!}$$

n → número de elementos disponíveis

p → número de elementos de cada conjunto

O número total de subconjuntos de p elementos que é possível fazer a partir de um conjunto com n elementos designa-se por número de combinações de n elementos tomados p a p e é dado por:

$${}^{\mathrm{n}}C_{p} = \frac{{}^{\mathrm{n}}A_{p}}{p!} ou {}^{\mathrm{n}}C_{p} = \frac{n!}{p!(n-p)!}$$

Utilização de combinações e arranjos (exemplos)

- a) De quantas formas é possível colocar 4 jarras iguais numa estante de 7 lugares?
 Resposta: ⁷C₄
- b) De quantas formas é possível colocar 4 jarras diferentes numa estante de 7 lugares?
 Resposta: ⁷A₄

c) De quantas formas se podem colocar 2 jarras iguais, 4 copos iguais e 3 chávenas iguais numa estante de 9 lugares?

d) De quantas formas distintas se podem colocar 2 jarras iguais, 4 copos diferentes e 3 chávenas iguais numa estante de 9 lugares?

Resposta:
$${}^{9}C_{2} * {}^{7}A_{4} * {}^{3}C_{3}$$

Permutações com elementos repetidos

O número de permutações de n elementos, dos quais n_1 elementos são repetidos, n_2 são repetidos, ..., n_k são repetidos, e é dado pela expressão:

$$\frac{n!}{n_1!*n_2!*...*n_k!}$$

n → número total de elementos

 $n_1, n_2, ..., n_k \rightarrow elementos repetidos$

Exemplo:

Quantos anagramas podem ser feitos com a palavra MATEMATICA?

MATEMATICA → 10 letras: 3'A', 2'M', 2'T', 3 letras diferentes

1º processo:

$$^{10}C_3 \rightarrow 3'A'$$

$$^{7}C_{2} \rightarrow 2'M'$$

$$^5C_2 \rightarrow 2'T'$$

 $3! \rightarrow 3$ letras diferentes (equivalente a ${}^{3}A_{3}$ ou P_{3})

2º processo:

10! → todas as trocas possíveis entre as 10 letras

 $3! \rightarrow 3'A'$

 $2! \rightarrow 2'M'$

 $2! \rightarrow 2'T'$

Triângulo de Pascal

Propriedades do Triângulo de Pascal

- Todas as linhas começam e acabam em 1: ${}^{n}C_{0} = {}^{n}C_{n} = 1$, $\forall_{n} \in \mathbb{N}$;
- O Triângulo é simétrico: ${}^{n}C_{p} = {}^{n}C_{n-p}$, $\forall_{n,p} \in \mathbb{N}_{0}$, $com \ n \geq p$;
- A soma de dois números consecutivos de uma linha é igual ao número que se situa entre eles na linha seguinte: ${}^{n}C_{p} + {}^{n}C_{p+1} = {}^{n+1}C_{p+1}, \forall_{n,v} \in \mathbb{N}_{0}, com \ n \geq p;$
- A soma de qualquer linha n é 2^n : ${}^nC_0 + {}^nC_1 + ... + {}^nC_{n-1} + {}^nC_n = 2^n$, $\forall_n \in \mathbb{N}$;
- O segundo e penúltimo elementos da linha n são iguais a n: ${}^{n}C_{1} = {}^{n}C_{n-1} = n$;
- A linha n tem n+1 elementos;
- Se n é par, a linha n do triângulo tem um número ímpar de elementos, sendo o maior deles o elemento central: $n \ par \Rightarrow maior \ elemento \ da \ linha$: ${}^{n}C_{n/2}$;
- Se n é ímpar, a linha n do triângulo tem um número par de elementos, sendo os maiores os dois elementos centrais (iguais entre si): n ímpar \Rightarrow maior elemento da linha: ${}^{n}C_{(n+1)/2}$ ou ${}^{n}C_{(n-1)/2}$.

Binómio de Newton

$$(a+b)^1 = 1a + 1b$$

$$(a+b)^2 = 1a^2 + 2ab + 1b^2$$

$$(a+b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$$

$$(a+b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$$

$$(a+b)^5 = 1a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + 1b^5$$

(...)

$$(a+b)^n = {}^nC_0a^n + nC_1a^{n-1}b^1 + {}^nC_2a^{n-2}b^2 + ... + {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n, \forall_n \in \mathbb{N}_0$$

$$(a+b)^n = \sum_{k=0}^n ({}^nC_k a^{n-k} b^k)$$

No desenvolvimento de (a+b)ⁿ:

- O polinómio obtido tem n+1 elementos;
- A soma dos expoentes da parte literal de cada termo é n;
- O termo de ordem p+1 é da forma $T_{p+1} = {}^{n}C_{p}a^{n-p}b^{p}$.

Notas:

$$\frac{1}{x} = x^{-1}$$

$$\frac{1}{x^2} = x^{-2}$$

$$\sqrt{x} = x^{\frac{1}{2}}$$

$$\sqrt[3]{x} = x^{\frac{1}{3}}$$

Exemplos:

 \triangle

$$n = 4 \rightarrow 1 \quad 4 \quad 6 \quad 4 \quad 1$$

$$n = 7 \rightarrow 1$$
 7 21 35 35 21 7 1

a)
$$(x+2)^7 = 1x^7 + 7x^62 + 21x^52^2 + 21x^42^3 + 35x^32^4 + 35x^22^5 + 21x^22^6 + 1 * 2^7 = x^7 + 14x^2 + 84x^5 + 280x^4 + 560x^3 + 672x^2 + 648x + 128$$

b)
$$\left(x^2 + \frac{1}{x}\right)^4 = (x^2 + x^{-1})^4 = 1(x^2)^4 + 4(x^2)^3(x^{-1}) + 6(x^2)^2(x^{-1})^2 + 4(x^2)(x^{-1})^3 + 1(x^{-1})^4 = x^8 + 4x^6x^{-1} + 6x^4x^{-2} + 4x^2x^{-3} + x^{-4} = x^8 + 4x^5 + 6x^2 + 4x^{-1} + x^{-4}$$

c) Qual o 4º termo no desenvolvimento de (a+b)9?

$$T_4 = ?; n = 9$$

 $p + 1 = 4 \Leftrightarrow p = 3$
 $T_4 = {}^9C_3a^{9-3}b^3 \Leftrightarrow T_4 = 84a^6b^3$

d) Qual o termo de grau 6 no desenvolvimento de $(x^2 + x)^5$?

n = 5
$$T_{p+1} = {}^{5}C_{p}(x^{2})^{5-p}x^{p} \Leftrightarrow T_{p+1} = {}^{5}C_{p}x^{10-2p}x^{p} \Leftrightarrow T_{p+1} = {}^{5}C_{p}x^{10-p} \rightarrow grau \ 6 \Rightarrow expoente \ de \ x = 6 \Rightarrow 10 - p = 6 \Leftrightarrow p = 4$$

$$p = 4 \Rightarrow T_{4+1} = {}^{5}C_{4}x^{10-4} \Leftrightarrow T_{5} = 5x^{6}$$

Variáveis aleatórias

Dada uma experiência aleatória, chama-se variável aleatória (v.a.) a toda a função que a cada elemento do espaço de resultados associa um número real.

As variáveis aleatórias representam-se habitualmente pelas últimas letras maiúsculas do alfabeto (..., X, Y, Z).

As variáveis aleatórias dividem-se entre dois tipos:

- Discretas: tomam um número finito de valores ou um infinito numerável de valores;
- Contínuas: tomam valores num intervalo real.

Variáveis aleatórias discretas (exemplos)

a) Lançamento de uma moeda três vezes

X: "número de vezes que ocorre a face Euro"

$$\Omega = \{ (P, P, P), (P, P, E), (P, E, P), (E, P, P), (P, E, E), (E, P, E), (E, E, P), (E, E, E) \}$$

$$p(X = 0) = \frac{1}{8}$$

$$p(X = 1) = \frac{3}{8}$$

$$p(X = 2) = \frac{3}{8}$$

$$p(X = 3) = \frac{1}{8}$$

Tabela de distribuição de probabilidades da variável X

x_i	0	1	2	3
$p(x=x_i) ou P_i$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	1 8

Nota: $\frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$

b) Lançamento de dois dados tetraédricos com as faces numeradas de 1 a 4

Y: "soma dos pontos obtidos"

+	1	2	3	4
1	2	3	4	5
2	3	4	5	6
3	4	5	6	7
4	5	6	7	8

$$\Omega = \{2,3,4,5,6,7,8\}$$

Y_i	2	3	4	5	6	7	8
P_i	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{3}{16}$	$\frac{1}{8}$	$\frac{1}{16}$

c) Extração de um conjunto de cinco cartas de um baralho de 40 cartas

Z: "número de Reis obtidos"

$$\Omega = \{0,1,2,3,4\}$$

Casos possíveis = 40C₅

$$p(Z=0) = \frac{^{36}C_5}{^{40}C_5}$$

$$p(Z=1) = \frac{{}^{36}C_4*4C_1}{{}^{40}C_5}$$

$$p(Z=2) = \frac{36c_3*4c_2}{40c_5}$$

$$p(Z=3) = \frac{36_{C_2} * 4_{C_3}}{40_{C_5}}$$

$$p(Z=4) = \frac{{}_{36_{C_1}*4_{C_4}}}{{}_{40_{C_5}}}$$

 \triangle

Z_i	0	1	2	3	4
$\overline{P_i}$	5236 9139	6545 18278	595 9139	35 9139	$\frac{1}{18278}$

Distribuição de frequências relativas/ Distribuição de probabilidades (exemplos)

a) Faz-se rodar uma roleta dividida em seis secções, três numeradas com 1, uma numerada com 2 e duas numeradas com 3, 200 vezes. Obteve-se a seguinte a tabela do número de ocorrências de cada número:

X: "número saído na jogada"

x_i	f_i	
1	98	
2	34	
3	68	
Total	200	

a. Construir a tabela de distribuição de frequências relativas da variável estatística X

$$f_r(x=1) = \frac{98}{200} \approx 0.49$$

$$f_r(x=2) = \frac{34}{200} \approx 0.17$$

$$f_r(x=3) = \frac{68}{200} \approx 0.34$$

x_i	1	2	3
f_{r_i}	0,49	0,17	0,34

b) Construir a tabela de distribuição de probabilidades da variável aleatória Y, dos resultados esperados de rodar uma roleta dividida em seis secções iguais, três numeradas com 1, uma numerada com 2 e duas numeradas com 3.

Y: "número saído na jogada"

$$p(y=1) = \frac{3}{6} = \frac{1}{2}$$

$$p(y=2) = \frac{1}{6}$$

$$p(y=3) = \frac{2}{6} = \frac{1}{3}$$

${\mathcal Y}_i$	1	2	3
p_i	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{3}$

Valor médio e desvio padrão

x_i	x_1	x_2	 x_n
$p(x=x_i)$	p_1	p_2	 p_n

Então chama-se valor médio ou esperança matemática da variável aleatória X a:

$$\mu = p_1 * x_1 + p_2 * x_2 + \dots + p_n * x_n$$

Chama-se desvio padrão da variável aleatória X a:

$$\sigma = \sqrt{p_1(x_1-\mu)^2 + \cdots + p_n(x_n-\mu)^2}$$

Modelo Binomial ou Distribuição de Bernoulli

Considere-se uma experiência aleatória em que apenas interessa observar a ocorrência de um acontecimento A (sucesso) e a do seu contrário \bar{A} (insucesso).

Suponhamos que a experiência é repetida n vezes e que os resultados obtidos em cada prova são independentes dos resultados obtidos em provas anteriores.

Seja p a probabilidade de sucesso em cada prova.

A variável aleatória X: "número de sucessos nas n provas" chama-se variável aleatória com distribuição Binomial de parâmetros n e p e representa-se po:

B(n; p)

Seja X a variável aleatória binomial B(n; p). A probabilidade de obter exatamente k sucessos nas n provas é dado por:

$$p(x = k) = {}^{\mathsf{n}}\mathsf{C}_{\mathsf{k}}p^{k}(1-p)^{n-k}, k = 0,1,2,...,n$$

Assim, a tabela de distribuição das probabilidades da variável aleatória binomial B(n; p) é:

k	0	1	 n
P(n = k)	${}^{n}C_0p^0(1-p)^{n-0}$	$^{n}C_1p^1(1-p)^{n-1}$	 ${}^{n}C_{n}p^n(1-p)^0$

Variáveis contínuas

Função densidade de probabilidade ou função de probabilidade é a função cuja representação gráfica é a linha curva para a qual evolui o polígono de frequências relativas de uma variável contínua

quando o número de experiências realizadas é muito elevado e a amplitude das classes consideradas tende para zero.

Exemplo genérico:

Notas:

- A área total sob a curva de uma função densidade de probabilidade é igual a 1;
- A probabilidade de que a variável tome valores no intervalo [a; b] é igual à área da curva correspondente ao intervalo [a; b].

Modelo Normal (Curva de Gauss)

- > Tem forma de sino;
- Atinge o máximo no ponto de abcissa igual à média;
- É simétrica em relação à média (a reta x = média);
- A cada par ordenado $(\mu; \sigma)$ corresponde uma curva normal, que se representa por $N(\mu; \sigma)$;
- \triangleright Quanto maior for o desvio padrão, σ , mais achatada é a curva;
- ightharpoonup A área limitada pela curva e correspondente ao intervalo $[\mu-\sigma;\mu+\sigma]$ é aproximadamente igual a 0,6827

$$P(\mu-\sigma \leq x \leq \mu+\sigma) \approx 0,6827$$

ightharpoonup A área limitada pela curva e correspondente ao intervalo $[\mu-2\sigma;\ \mu-2\sigma]$ é aproximadamente igual a 0,9545

$$P(\mu-2\sigma \leq x \leq \mu+2\sigma) \approx 0.9545$$

ightharpoonup A área limitada pela curva e correspondente ao intervalo $[\mu-3\sigma;\ \mu-3\sigma]$ é aproximadamente igual a 0,9973

$$P(\mu - 3\sigma \le x \le \mu + 3\sigma) \approx 0.9973$$

Números complexos

Números imaginários

Chama-se unidade imaginária e representa-se por i, o número $\sqrt{-1}$.

Exemplos:

a)
$$\sqrt{-3} = \sqrt{3} * \sqrt{-1} = \sqrt{3}i$$

b)
$$\sqrt{-25} = \sqrt{25} * \sqrt{-1} = 5i$$

c)
$$\sqrt{\frac{-2}{9}} = \sqrt{\frac{2}{9}} * \sqrt{-1} = \frac{\sqrt{2}}{3}i$$

d)
$$x^2 + 4 = 0 \Leftrightarrow x = \pm \sqrt{-4} \Leftrightarrow x = 2i \lor x = -2i$$

e)
$$x^2 - 4x + 13 = 0 \Leftrightarrow x = \frac{4 \pm \sqrt{(-4)^2 - 4 + 1 + 13}}{2 + 1} \Leftrightarrow x = \frac{4 \pm \sqrt{-36}}{2} \Leftrightarrow x = \frac{4 + \sqrt{-36}}{2} \lor x = \frac{4 - \sqrt{-36}}{2} \Leftrightarrow x = \frac{4 + 6i}{2} \lor x = \frac{4 - 6i}{2} \Leftrightarrow x = 2 + 3i \lor x = 2 - 3i$$

Nota: dividir por *i* é equivalente a multiplicar por -*i*.

$$\frac{z}{i} \Leftrightarrow (-i)z$$

$$\frac{1}{i} = -i$$

O conjunto dos números complexos

$$\mathbb{C} = \{ a + bi : a, b \in \mathbb{R} \land i = \sqrt{-1} \}$$

$$z = a + bi$$

- ightharpoonup a
 ightharpoonup parte real
- ightharpoonup b
 ightharpoonup parte imaginária
- ightharpoonup a+bi o número complexo
- ightharpoonup Re(z) = a
- \geq Im(z) = b
- $ightharpoonup b=0\Rightarrow z=a\Rightarrow$ número real
- ightharpoonup b
 eq 0
 ightharpoonupnúmero imaginário:
 - $\circ \quad a=0 \Rightarrow z=bi \rightarrow {\sf n\'umero}$ imaginário puro
 - $\circ \quad a \neq 0 \Rightarrow z = a + bi \rightarrow \text{número complexo}$

Representação gráfica e vetorial de números complexos: plano de Argand

- $z = a + bi \rightarrow representação algébrica;$
- $ponto\ P(a;b) \rightarrow representação\ geométrica\ ou\ afixo;$
- $vetor \overrightarrow{OP} = (a; b) \rightarrow representação vetorial.$

Representação trigonométrica de números complexos

Seja z = a + bi e P(a; b) o afixo de z.

Seja θ o ângulo que \overrightarrow{OP} faz com o semieixo positivo real.

 θ designa-se por argumento de z, com $\theta \in \mathbb{R}$.

 $\theta \in [0; 2\pi[\rightarrow \theta \text{ designa-se por argumento positivo mínimo.}]$

 $\theta \in]-\pi;\pi] \to \theta$ designa-se por argumento principal.

$$\rho = |z| = \sqrt{a^2 + b^2} \rightarrow \text{m\'odulo de } z.$$

$$\cos\theta = \frac{a}{\rho} \Leftrightarrow a = \rho\cos\theta$$

$$\sin\theta = \frac{b}{\rho} \Leftrightarrow b = \rho \sin\theta$$

$$\tan\theta = \frac{b}{a}$$

 $z=a+bi \Leftrightarrow z=\rho\cos\theta+i\rho\sin\theta \Leftrightarrow z=\rho(\cos\theta+i\sin\theta) \Leftrightarrow z=\rho(\mathrm{cis}\,\theta) \to$ forma trigonométrica de *z*

Representação na forma algébrica e trigonométrica

	Representação	Simétrico	Conjugado	Inverso
Forma algébrica	z = a + bi	-z = -a - bi	$\bar{z} = a - bi$	$z^{-1} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$
Forma trigonométrica	$z = \rho cis(\theta)$	$-z = \rho cis(\pi + \theta)$	$\bar{z} = \rho cis(-\theta)$	$z^{-1} = \frac{1}{\rho} cis(-\theta)$

Operações na forma algébrica

$$z_1, z_2 = a_1 + b_1 i, a_2 + b_2 i$$

Soma	$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$
Diferença	$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i$
Produto	$z_1 * z_2 = (a_1 + b_1 i) * (a_2 + b_2 i)$
Quociente	$\frac{z_1}{z_2} = \frac{z_1 * \overline{z_2}}{z_2 * \overline{z_2}} = \frac{(a_1 + b_1 i) (a_2 - b_2 i)}{(a_2 + b_2 i)(a_2 - b_2 i)}$
Potenciação	$z^n = (a+bi)^n = (a+bi)(a+bi) \dots (a+bi), n \in \mathbb{N}$
Igualdade	$z_1 = z_2 \Longleftrightarrow a_1 = a_2 \land b_1 = b_2$

Operações na forma trigonométrica

$$z_1, z_2 = \rho_1 cis(\theta_1), \rho_2 cis(\theta_2)$$

Produto	$z_1 z_2 = \rho_1 \rho_2 cis(\theta_1 + \theta_2)$	
Quociente	$\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} cis(\theta_1 - \theta_2)$	
Potenciação	$z^n = \rho^n cis(n\theta)$	
Radiciação	$\sqrt[n]{z} = \sqrt[n]{\rho} cis\left(\frac{\theta + 2k\pi}{n}\right), k \in \{0, 1, 2, \dots, n - 1\}$	
Igualdade	$z_1 = z_2 \Longleftrightarrow \rho_1 = \rho_2 \land \theta_1 - \theta_2 = 2k\pi, k \in \mathbb{Z}$	

Reduções do expoente de i

$$n = 4Q + R \Rightarrow i^n = i^R$$

Potência de i	Valor
i ¹	i
i ²	-1
i ³	-i
i ⁴	1

Conversões básicas de forma algébrica para forma trigonométrica

Forma algébrica	Forma trigonométrica
1	cis(heta)
-1	$cis(\pi)$
i	$cis(\frac{\pi}{2})$
-i	$cis(\frac{3\pi}{2})$
$a + bi$ $\rho cis(\theta) = \rho(cos(\theta) + isin(\theta))$	$ \rho cis(\theta), \rho = \sqrt{a^2 + b^2}, \tan(\theta) = \frac{b}{a} $

Exemplos de conversões entre forma algébrica e trigonométrica

a)
$$z = 6 \operatorname{cis} \frac{\pi}{4} = 6 \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = 6 \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right) = 3\sqrt{2} + 2\sqrt{2}i$$

b)
$$z = 4 \operatorname{cis} \frac{2\pi}{3} = 4 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) = 4 \left(-\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) = 4 \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right) = -2 + 2\sqrt{3}i$$

c)
$$z = 2 \operatorname{cis} \frac{35\pi}{6} = 2 \left(\cos \frac{35\pi}{6} + i \sin \frac{35\pi}{6} \right) = 2 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right) = 2 \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} \right) = 2 \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i \right) = \sqrt{3} - i$$

d)
$$z = -1 + \sqrt{3}i$$

$$P(-1; \sqrt{3}) \rightarrow 2^{9} Q$$

$$\rho = \sqrt{(-1)^{2} + (\sqrt{3})^{2}} = 2$$

$$\tan\theta = \frac{\sqrt{3}}{-1} \land \theta \in 2^{9}Q \Leftrightarrow \tan\theta = -\sqrt{3} \land \theta \in 2^{9}Q \Leftrightarrow \theta = \pi - \frac{\pi}{3} \land \theta \in 2^{9}Q \Leftrightarrow \theta = \frac{2\pi}{3}$$

$$z = 2 \operatorname{cis} \frac{2\pi}{3}$$

$$e) \quad z = 6 - \sqrt{12}i$$

$$P(6; -\sqrt{12}) \to 4^{9}Q$$

$$\rho = \sqrt{6^{2} + (-\sqrt{12})^{2}} = \sqrt{48} = 4\sqrt{3}$$

$$\tan\theta = \frac{-\sqrt{12}}{6} \land \theta \in 4^{9}Q \Leftrightarrow \tan\theta = \frac{-2\sqrt{3}}{6} \land \theta \in 4^{9}Q \Leftrightarrow \tan\theta = \frac{-\sqrt{3}}{3} \land \theta \in 4^{9}Q \Leftrightarrow \theta = -\frac{\pi}{6}$$

$$z = 4\sqrt{3} \operatorname{cis} - \frac{\pi}{6}$$

$$f) \quad z = -3 - 3i$$

$$P(-3; -3) \to 3^{9}Q$$

$$\rho = \sqrt{(-3)^{2} + (-3)^{2}} = \sqrt{18} = 3\sqrt{2}$$

$$\tan\theta = \frac{-3}{-3} \land \theta \in 3^{9}Q \Leftrightarrow \tan\theta = 1 \land \theta \in 3^{9}Q \Leftrightarrow \theta = \pi + \frac{\pi}{4} \Leftrightarrow \theta = \frac{5\pi}{4}$$

$$z = 3\sqrt{2} \operatorname{cis} \frac{5\pi}{4}$$

Fórmula de Moive generalizada

Se $z=
ho cis(\theta)$ é um número complexo não nulo, então tem n raízes de índice n que são dadas por:

$$z_k = \sqrt[n]{\rho} cis\left(\frac{\theta + 2k\pi}{n}\right), k \in \{0, 1, 2, \dots, n - 1\}$$

As imagens geométricas das soluções da equação $z^n=w$ são os vértices de um polígono regular com n lados, inscrito numa circunferência de centro na origem e raio $\sqrt[n]{\rho}$.

Exemplo:

Determinar as raízes cúbicas de $z=8cis\left(\frac{3}{5}\pi\right)$

$$z_k = \sqrt[3]{8} cis\left(\frac{\frac{3}{5}\pi + 2k\pi}{3}\right), k \in \{0,1,2\} \Leftrightarrow z_k = 2cis\left(\frac{\pi}{5} + \frac{2k\pi}{3}\right), k \in \{0,1,2\}$$

$$z_0 = 2cis\left(\frac{\pi}{5} + \frac{2*0*\pi}{3}\right) = 2cis\left(\frac{\pi}{5}\right)$$

$$z_1 = 2cis\left(\frac{\pi}{5} + \frac{2*1*\pi}{3}\right) = 2cis\left(\frac{\pi}{5} + \frac{2\pi}{3}\right) = 2cis\left(\frac{3\pi}{15} + \frac{10\pi}{15}\right) = 2cis\left(\frac{13\pi}{15}\right)$$

$$z_2 = 2cis\left(\frac{\pi}{5} + \frac{2*2*\pi}{3}\right) = 2cis\left(\frac{\pi}{5} + \frac{4\pi}{3}\right) = 2cis\left(\frac{3\pi}{15} + \frac{20\pi}{15}\right) = 2cis\left(\frac{23\pi}{15}\right)$$

Distância entre dois pontos

$$z_1 = a_1 + b_1 i \rightarrow Z_1(a_1; b_1)$$

$$z_2 = a_2 + b_2 i \rightarrow Z_2(a_2; b_2)$$

 $|z_1 - z_2| \rightarrow \text{distância entre os afixos de } z_1 \text{ e } z_2$

$$|z_1 - z_2| = \overline{Z_1 Z_2}$$

Exemplo:

$$z_1 = 3 + 2i$$
; $z_2 = 4 - i$

$$|z_1 - z_2| = |(3 + 2i) - (4 - i)| = |3 + 2i - 4 + i| = |-1 + 3i| = \sqrt{(-1)^2 + 3^2} = \sqrt{10}$$

Módulo de um número complexo

 $|z| \rightarrow \text{m\'odulo de } z \text{ (distância de } z \text{ à origem)}$

$$z = a + bi \Rightarrow |z| \Leftrightarrow \rho = \sqrt{a^2 + b^2}$$

Exemplos:

a)
$$z = 2 - 3i \rightarrow |z| = \sqrt{2^2 + (-3)^2} = \sqrt{13}$$

b)
$$z = \sqrt{2} + i \rightarrow |z| = \sqrt{(\sqrt{2})^2 + 1^2} = \sqrt{3}$$

c)
$$z = -4i \rightarrow |z| = \sqrt{0^2 + (-4)^2} = \sqrt{16} = 4$$

Figuras planas definidas em C

Circunferência

Centro na origem	Centro arbitrário (Z₀)

Círculo

Ângulo de vértice Z₀

$$\alpha \le \arg(z - z_0) \le \alpha + \theta$$

Semirreta com origem em (0;0) e em Z_0

 $\arg(z)= heta o {
m semirreta}$ com origem em (0; 0), cuja reta suporte tem inclinação heta $\arg(z-z_0)= heta o {
m semirreta}$ com origem em ${
m Z}_1$ e cuja reta suporte tem inclinação heta

Reta

 $\arg(z-z_0)=\theta$ V $\arg(z-z_0)=\theta+\pi$ o reta que contém Z $_1$ e tem inclinação θ

Semiplano

Superior: $\theta \le arg(z - z_0) \le \theta + \pi$

 $\text{Inferior: } \theta + \pi \leq \arg(z - z_0) \leq \theta + 2\pi$

Reta mediatriz do segmento $[Z_1Z_2]$

$$|Z - Z_1| = |Z - Z_2|$$

Semiplano com origem na mediatriz de $[Z_1Z_2]$

Superior à mediatriz: $|Z - Z_1| \ge |Z - Z_2|$

Inferior à mediatriz: $|Z - Z_1| \le |Z - Z_2|$

Domínios planos em variável complexa

 $z = x + yi \rightarrow ponto genérico (incógnita) \rightarrow Z(x; y)$

 $z_1 = a + bi \rightarrow ponto conhecido \rightarrow Z_1(a; b)$

 $|z-z_1|=r,r\in\mathbb{R}^+ o \operatorname{circunfer\hat{e}ncia}$ de centro em Z_1 e raio r

 $|z-z_1| \leq r o$ círculo de centro Z_1 e raio r

 $r_1 \leq |z-z_1| \leq r_2 o$ coroa circular

Exemplos:

a) $|z - i| = 1 \Leftrightarrow |z - (0 + 1i)| = 1$

Circunferência de centro (0; 1) e raio 1

b) $|z-1+i| < 2 \Leftrightarrow |z-(1-i)| < 2$

Região interior de uma circunferência de centro (1; -1) e raio 2

c) $|z-i| \ge 1 \land |z| \le 2 \Leftrightarrow |z-(i)| \ge 1 \land |z| \le 2$

Reunião entre a região exterior de uma circunferência de centro (0; 1) de raio 1 e a região exterior de uma circunferência de centro (0; 0) e raio 2

d) $|z-2+3i| \le 3 \land |z| \ge 2 \Leftrightarrow |z-(2-3i)| \le 3 \land |z| \ge 2$

Reunião entre a região interior de uma circunferência de centro (2; -3) de raio 3 e a região exterior de uma circunferência de centro (0; 0) de raio 2

Retas paralelas aos eixos e respetivos semiplanos

$$Re(z-z_1)=c \rightarrow reta\ vertical, c \in \mathbb{R}$$

$$Im(z-z_1)=c \rightarrow reta\ vertical, c \in \mathbb{R}$$

Exemplos:

a)
$$Re(z-3+2i) = 5 \Leftrightarrow Re(x+yi-3+2i) = 5 \Leftrightarrow Re((x-3)+(y+2)i) = 5 \Leftrightarrow x-3=5 \Leftrightarrow x=8$$

b)
$$Im(z-3+2i) = 5 \Leftrightarrow Im(x+yi-3+2i) = 5 \Leftrightarrow Im((x-3)+(y+2)i) = 5 \Leftrightarrow y+2=5 \Leftrightarrow y=3$$

- c) $Re(z-5i) \ge 2 \Leftrightarrow x \ge 2$
- d) $Im(z+4-i) < 1 \Leftrightarrow y-1 < 1 \Leftrightarrow y < 2$
- e) $Re(z+4) < 3 \land Im(z+1-3i) \ge 1 \Leftrightarrow x+4 < 3 \land y-3 \ge 1 \Leftrightarrow x < -1 \land y \ge 4$

Resolução de equações em C

Deve-se procurar resolver a equação com a incógnita z, mas quando tal não é possível (nomeadamente quando a equação envolve z e \bar{z}) pode ser mesmo necessário substituir z por x + yi.

Exemplos:

a)
$$iz^2 - z = 0 \Leftrightarrow z(iz - 1) = 0 \Leftrightarrow z = 0 \lor iz - 1 = 0 \Leftrightarrow z = 0 \lor z = \frac{1}{i} = -i$$

 $C.S. = \{0; -i\}$

b)
$$2z - 3i = zi \Leftrightarrow 2z - zi = 3i \Leftrightarrow z(2-i) = 3i \Leftrightarrow z = \frac{3i}{2-i} \Leftrightarrow z = \frac{3i(2+i)}{(2-i)(2+i)} \Leftrightarrow z = \frac{6i+3i^2}{4+2i-2i-i^2} \Leftrightarrow z = \frac{6i-3}{4-(-1)} \Leftrightarrow z = \frac{-3+6i}{5} \Leftrightarrow z = -\frac{3}{5} + \frac{6i}{5}$$

c)
$$\frac{2z}{i} + \frac{\bar{z}}{i^3} = i \Leftrightarrow \frac{2(x+yi)}{i} + \frac{x-yi}{i^3} = i \Leftrightarrow (-i)(2x+2yi) + \frac{x-yi}{i*i^2} = i \Leftrightarrow -2xi - 2yi^2 + (x-yi)*(-1)*(-i) = i \Leftrightarrow -2xi + 2y + xi - yi^2 = i \Leftrightarrow -xi - 2y + y = i \Leftrightarrow -xi + 3y = i \Leftrightarrow \begin{cases} 3y = 0 \\ -xi = i \end{cases} \Leftrightarrow \begin{cases} y = 0 \\ x = -1 \end{cases}$$
$$z = -1 + 0i \Leftrightarrow z = -1$$
$$C.S. = \{-1\}$$

d)
$$z^3 + 3z = 0 \Leftrightarrow z(z^2 + 3) = 0 \Leftrightarrow z = 0 \lor z^2 + 3 = 0 \Leftrightarrow z = 0 \lor z = \pm \sqrt{-3} = \pm \sqrt{3}i$$

$$C. S. = \{0; -\sqrt{3}i; \sqrt{3}i\}$$

e)
$$z^2 - z + 2 = 0 \Leftrightarrow z = \frac{1 \pm \sqrt{(-1)^2 - 4 + 1 + 2}}{2 + 1} \Leftrightarrow z = \frac{1 \pm \sqrt{-7}}{2} \Leftrightarrow z = \frac{1 \pm \sqrt{7}i}{2} \Leftrightarrow z = \frac{1 + \sqrt{7}i}{2} \lor z$$

f)
$$2z - i\bar{z} = 1 + 3i \Leftrightarrow 2(x + yi) - i(x - yi) = 1 + 3i \Leftrightarrow 2x + 2yi - xi + yi^2 = 1 + 3i \Leftrightarrow 2x + 2yi - xi - y = 1 + 3i \Leftrightarrow (2x - y) + i(-x + 2y) = 1 + 3i \Leftrightarrow \begin{cases} 2x - y = 1 \\ -x + 2y = 3 \end{cases} \Leftrightarrow \begin{cases} y = -1 + 2x \\ -x + 2(-1 + 2x) = 3 \end{cases} \Leftrightarrow \begin{cases} y = -1 + 2x \\ -x - 2 + 4x = 3 \end{cases} \Leftrightarrow \begin{cases} y = -1 + 2x \\ 3x = 5 \end{cases} \Leftrightarrow \begin{cases} y = -1 + 2\left(\frac{5}{3}\right) \\ x = \frac{5}{3} \end{cases} \Leftrightarrow \begin{cases} y = -1 + \frac{10}{3} = \frac{7}{3} \\ x = \frac{5}{3} \end{cases}$$

$$z = \frac{5}{3} + \frac{7}{3}i$$

$$C.S. = \left\{\frac{5}{3}; \frac{7}{3}i\right\}$$

Estatística

Frequência absoluta

Frequência absoluta (efetivo n) de um valor ou modalidade da variável é o número de vezes que esse valor ou modalidade se repete.

Frequência relativa

Frequência relativa (f_i) de um valor ou modalidade é o quociente entre a frequência absoluta, n, e o número total de observações (dados).

$$f_i = \frac{n_i}{N}$$

O somatório das frequências relativas é 1 (ou 100%): $f_1 + f_2 + ... + f_k = 1$ (ou 100%).

$$\sum_{i=1}^{k} f_i = 1 (ou \ 100\%)$$

Frequência absoluta acumulada

Frequência absoluta acumulada (N_i) de índice i é a soma das frequências absolutas dos valores da variável desde o primeiro até ao de ordem i, inclusive.

À frequência absoluta de um valor somam-se as anteriores: $N_i=n_1+n_2+\cdots+n_i$.

Frequência relativa acumulada

A frequência relativa acumulada (F_i) é semelhante à frequência absoluta acumulada, só que aplicada à frequência relativa.

$$F_i = f_1 + f_2 + \dots + f_i$$

Média

Média (\bar{x}) é o quociente entre a soma de todos os dados da amostra e a dimensão da amostra.

Propriedade 1

Dada uma distribuição de média \bar{x} , se adicionar uma constante k a todos os dados, obtém-se uma nova distribuição de média $\bar{x}+k$.

Propriedade 2

Dada uma distribuição de média \bar{x} , se se multiplicar todos os dados por uma constante k, obtém-se uma nova distribuição de média $\bar{x}*k$.

Moda

A Moda (M_o) é(são) o(s) valor(es) com maior frequência absoluta de uma variável estatística.

Mediana

A partir de um conjunto n de dados ordenados, a Mediana $(\tilde{x} \ ou \ M_e)$ é o valor que divide esse conjunto ao meio (50% dos dados são maiores do que a mediana, os outros 50% são menores).

Assim, a Mediana é dada por:

$$x_k$$
 se n impar, $k = \frac{n+1}{2}$

$$\frac{x_k+x_{k+1}}{2}$$
 se n par, $k=\frac{n}{2}$

Amplitude

A Amplitude (total) de um conjunto de dados quantitativos é a diferença entre o maior e o menor valor da variável.

Se os dados estão agrupados em classes, a amplitude é a diferença entre o limite superior da última classe e o limite inferior da primeira classe.

Amplitude interquartis

A Amplitude interquartis é a diferença entre o 3º e 1º quartis.