

Redundant Robots

A kinematically redundant manipulator has more than the minimal number of DoFs required to complete a task

- can have multiple joint configurations which produce same end-effector configuration
 - •extra DoFs to avoid obstacles and kinematics singularities
- •Disadvantages: Loss of rigidity and increased complexity
 - Inverse Kinematics: there may exist infinitely many configurations
- Even if end-effector configuration is fixed, robot can still move
- → Self Motion Manifold

A motion along self-motion manifold is called internal motion

Parallel Robots

A parallel manipulator is one in which two or more series chains connect the end-effector to the base of the robot

Advantages

- more rigidity of mechanism (better accuracy, speed, higher load carrying capabilities vs. open chain robots)
- Placement of actuators

Disadvantages

- Basic problem, two or more chains can fight against each other and apply forces which cause no net end
 - effector wrench. → complex Kinematics
- Generally smaller workspace

A set of joint torques which causes no net end-effector wrench is called an internal force.

Can be fully actuated by controlling Only the first link in each chain, No need to place motors at distal links

Inverse Kinematics

Forward Kinematics

To determine the position and orientation of the end effector with the given values for the joint variables.

Inverse Kinematics

To determine the joint variables with the given end effector's position and orientation.

Solving the inverse kinematics problem, we are interested in finding a closed form (explicit solution) rather than a numerical one.

- There might be no analytic solution
- Multiple solutions or no solutions may exist

Inverse Kinematics

2 classes of Inverse Kinematics Solutions:

- Closed-form solutions (analytical solution exists)
- Numerical solutions (iterative approximation)

Closed form solutions

- Fast and efficient: Real time calculations possible
- Might be too difficult to find need to simplify description by decoupling sets of joints

$$\theta_k = f_k(h_{11}, \dots, h_{34}), \qquad k = 1, \dots, n$$

Numerical solutions

- High computational effort

Instead of finding joint positions that achieve a desired end-effector configuration, we can try to find joint velocities that achieve desired end-effector twist \rightarrow *Inverse Velocity Kinematics*

$$\begin{bmatrix} v^0 \\ \omega^0 \end{bmatrix} = J_{6xN} \begin{bmatrix} \dot{\theta}_1 \\ \vdots \\ \dot{\theta}_N \end{bmatrix} \qquad \dot{\mathbf{\theta}} = J^{-1} \begin{bmatrix} v^0 \\ \omega^0 \end{bmatrix}$$

$$\dot{\mathbf{\theta}} = J^{-1} \begin{bmatrix} v^0 \\ \omega^0 \end{bmatrix}$$

Assignment 6

- Define path (circle)
- Forward Kinematics: Look at the top view for X, Y (planar problem), state parametrized position P

$$X = \dots$$

$$Y = \dots$$

- Analytical Jacobian $J = \begin{bmatrix} \frac{\partial P_x}{\partial \theta_1} & \frac{\partial P_x}{\partial \theta_2} \\ \frac{\partial P_y}{\partial \theta_1} & \frac{\partial P_y}{\partial \theta_2} \end{bmatrix}$
- Inverse Velocity Kinematics $\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = J * \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$

Find V [m/s] = dP/(unit time step)

• Calculate new thetas:
$$\begin{bmatrix} \dot{\theta_1} \\ \dot{\theta_2} \end{bmatrix} = J^{-1} * \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}$$

Use pseudoinverse of J (MATLAB: pinv(J), generalized inverse)

