Státnice – Informatika – I4 Diskrétní modely a algoritmy

Kombinatorická optimalizace

Ladislav Láska Jan Musílek

23. května 2015

Obsah

1	Grafové algoritmy	2
2	Algebraické a aritmetické algoritmy	2
3	Teorie mnohostěnů	2
4	Problém obchodního cestujícího	2
5	Speciální matice	2
6	Celočíselnost	2
7	Párování a toky v sítích	2
8	Teorie matroidů 8.1 Definice přes nezávislé množiny 8.2 Definice přes báze	2 2 3 3 3
9	Elipsoidová metoda	3

- 1 Grafové algoritmy
- 2 Algebraické a aritmetické algoritmy
- 3 Teorie mnohostěnů
- 4 Problém obchodního cestujícího
- 5 Speciální matice
- 6 Celočíselnost
- 7 Párování a toky v sítích

8 Teorie matroidů

Matroid je struktura v kombinatorice, která zobecňuje koncept "nezávislosti", jehož konkrétním příkladem je lineární nezávistlost ve vektorových prostorech. Existuje mnoho ekvivalentních způsobů jak zavést matroidy, nejvýznamnějšími jsou nezávislé množiny, báze, kružnice a ranková funkce. Teorie matroidů si často vypůjčuje teminologii z lineární algebry a teorie grafů.

8.1 Definice přes nezávislé množiny

Definice Matroid M je dvojice (S, I), kde S je konečná množina (nazýváme ji nosná množina a $I \subset 2^S$ je množina podmnožin S (nazýváme je nezávislé množiny), splňující následující vlastnosti:

- 1. Prázdná množina je nezávislá, tedy $\emptyset \in I$
- 2. Každá podmnožina nezávislé množiny je nezávislá, tedy pro každé $A'\subseteq A\subseteq S$ platí $A\in I\Rightarrow A'\in I$. Tato vlastnost se nazývá $d\check{e}di\check{c}nost$.
- 3. Pokud A a B jsou dvě nezávislé množiny z I, |A| > |B|, pak existuje prvek $x \in A \setminus B$ tž. $B \cup \{x\}$ je nezávislá. Tato vlastnost se nazývá výměnná vlastnost.

Definice Podmnožina S, která není v I se nazývá $z ilde{a}visl ilde{a}$. Maximální nezávislá množina (po přidání libovolného prvku se stane závislou) se nazývá $b ilde{a}ze$. Naopak minimální závislou množinu (po odebrání libovolného prvku se stane nezávislou) nazýváme $kru ilde{z}nice$.

Poznámka Grafová analogie: S je množina hran grafu, I je množina všech lesů na hranách S. Báze odpovídá kostře grafu G, kružnice cyklu v grafu G.

Poznámka Vektorová analogie: S je množina sloupců matice. Nezávislé množiny jsou pak právě lineárně nezávislé množiny vektorů z S. Báze matroidu odpovídají bázím vektorového prostoru.

8.2 Definice přes báze

Definice Matroid M je dvojice (S, \mathcal{B}) , kde S je konečná množina a \mathcal{B} je množina podmnožinS (tyto podmnožiny nazýváme báze), splňující následující vlastnosti:

- 1. \mathcal{B} je neprázdná.
- 2. Když $A, B \in \mathcal{B}$ jsou různé a $a \in A \setminus B$, pak existuje $b \in B \setminus A$ tž. $A \setminus \{a\} \cup \{b\} \in \mathcal{B}$.

Pozorování Tato definice je ekvivalentní s definicí přes nezávislé množiny. Nezávislé množiny jsou právě podmnožiny bází.

8.3 Definice přes kružnice

Definice Matroid M je dvojice (S, \mathcal{C}) , kde S je konečná množina a \mathcal{C} je množina podmnožinS (tyto podmnožiny nazýváme kružnice), splňující následující vlastnosti:

- 1. $\emptyset \notin \mathcal{C}$
- 2. Pokud A i B jsou kružnice, pak $A \subseteq B \Rightarrow A = B$.
- 3. Když A i B jsou kružnice a $e \in A \cap B$, pak existuje kružnice v $A \cup B$, která neobsahuje e.

Pozorování Tato definice je ekvivalentní s definicí přes nezávislé množiny. Nezávislé množiny jsou právě ty, které neobsahují žádnou kružnici.

8.4 Definice přes rankovou funkci

Definice Ranková funkce je zobrazení $r:2^S\to\mathbb{N}$, která každé podmnožině S přiřadí velikost její největší nezávislé podmnožiny.

Definice Matroid M je dvojice (S, r), kde S je konečná množina a $r: 2^S \to \mathbb{N}$ je ranková funkce, splňující následující vlastnosti:

- 1. $0 \le r(X) \le |X|$
- 2. $X \subseteq Y \Rightarrow r(X) < r(Y)$
- 3. $r(X \cup Y) + r(X \cap Y) \le r(X) + r(Y)$

Pozorování Tato definice je ekvivalentní s definicí přes nezávislé množiny. Nezávislé množiny jsou právě ty, kde r(X) = |X|.

8.5 Přehled jednoduchých vlastností

Tvrzení Všechny báze matroidu M mají stejnou velikost r(M). Toto číslo označujeme jako rank matroidu M. V grafech je zjevně r(G) = n - k, kde n je počet vrcholů a k počet komponent.

Definice Duální matroid M^* definujeme tak, že jeho báze jsou doplňky bází M. Pak zjevně platí $M^{**} = M$.

9 Elipsoidová metoda