

EE 604 Digital Image Processing

Announcements

• First quiz on Aug 23

Lecture outline

- Human visual system
- Image sensing
- Image formation
- Image sampling

Human eye

Photoreceptors

Brightness adaptation

Brightness discrimination

Mach band effect

Perceived brightness is NOT a monotonic function of intensity.

Simultaneous contrast

Perception depends on relative intensity (contrast) rather than absolute intensity level.

Simultaneous contrast

Optical illusions

More illusions:

http://www.michaelbach.de/ot/

HVS Summary

- Light rays enter our eyes through cornea, while iris controls the amount of light that can enter. The indecent light rays get focused by the lens on to the retina. The retina has photoreceptors (rods and cones) which encode the scene information, and pass it on to the visual cortex in the brain through a pair of optic nerves.
- Humans can perceive a large range of light intensity, but not simultaneously.
- How well can we distinguish between different levels of intensity will depend on the background illumination.
- Perceived brightness is a complicated function of true intensity.

Lecture outline

- Human visual system
- Image sensing
- Image formation
- Image sampling

lmage sensor

sensor array

strip sensor

Color filter array

Demosaicing is the process of recovering the complete RGB color channels from the Bayer pattern array. This is done my sophisticated interpolation algorithms (will be covered in later classes).

Lecture outline

- Human visual system
- Image sensing
- Image formation
- Image sampling

Image coordinates

Image coordinates

Image formation

Image formation model

- Let the intensity value at (x,y) of an image be f(x,y).
- f(x,y) = i(x,y) r(x,y)where i(x,y) is the amount of illumination the real-world scene received, and r(x,y) is the reflectance.
- i(x,y) is a positive, finite quantity.
- r(x,y) varies from 0 to 1, where 0 means total absorption and 1 means total reflection.
- f(x,y) thus is always a non-negative and finite quantity.

Lecture outline

- Human visual system
- Image sensing
- Image formation
- Image sampling

Sampling

Sampling is the discretization of space.

The sampling rate is determined by the grid spacing size in the sensor array.

It determines the spatial resolution of an image.

Sampling

2D Sampling

$$f_s(x, y) = f(x, y) comb(x, y, \Delta x, \Delta y)$$

$$comb(x, y, \Delta x, \Delta y) = \sum_{m} \sum_{n} \delta(x - m\Delta x, y - n\Delta y)$$

In Fourier domain

$$\begin{aligned} F_s(\omega_x, \omega_y) &= F(\omega_x, \omega_y) * \omega_{x_s} \omega_{y_s} \sum_p \sum_q \delta(\omega_x - p\omega_{x_s}, \omega_y - q\omega_{y_s}) \\ &= \omega_{x_s} \omega_{y_s} \sum_p \sum_q F(\omega_x - p\omega_{x_s}, \omega_y - q\omega_{y_s}) \end{aligned}$$

where
$$\omega_{xs} = \frac{2\pi}{\Delta x}$$
, and $\omega_{ys} = \frac{2\pi}{\Delta y}$

2D Sampling

2D Sampling

 $F_s(\omega_x,\omega_y)$

 $F_s(\omega_x,\omega_y)$

Aliasing