Tutorial – Matching Models

Problem 1. We'll first generate the data we want to use in our analysis. We want a sample consisting of a single marriage market of 500 men and women for whom we observe their education, age, height, and BMI. We'll also prepare the sample for use with the *affinitymatrix* package in R. The example below draws from its documentation, which is based on Chiappori *et al.* (2024).

- 1. Define the number of observations N and the type space (i, j)
- 2. Draw a sample from a centered multivariate normal distribution (hint: use the mvrnorm function from the MASS package). Read in the covariance matrix Tutorial_CovMat.csv and use it in the sampling.¹
- 3. Consider the object you have just generated.
 - What does it represent?
 - How can we connect this covariance matrix to the concepts discussed in class?
- 4. Now create two matrices i and j with observations for individual men and women.

Problem 2. We now estimate the Dupuy and Galichon (2014) model that we looked at in class using the R package *affinitymatrix*.

- 1. Study the documentation of the estimate.affinity.matrix() function.
- 2. Use the function to estimate the affinity matrix for our model. What do we observe?
 - How do we interpret the diagonal elements of this matrix?
 - What about the sign?
 - How does this relate to the concepts we have seen in class?
- 3. Perform a rank-test on the affinity matrix using show.test()
 - What does this tell us?
- 4. Perform a saliency analysis using show.saliency()
 - How can we interpret these estimates?
- 5. Visualize your findings using show.correlations() and interpret the result again.

¹If problems would occur with reading in the covariance matrix, refer to the appendix.

References

CHIAPPORI, P.-A., CISCATO, E. and GUERRIERO, C. (2024). Analyzing matching patterns in marriage: Theory and application to Italian data. *Quantitative Economics*, **15** (3), 737–781.

Dupuy, A. and Galichon, A. (2014). Personality traits and the marriage market. *Journal of Political Economy*, **122** (6), 1271–1319.

Appendix

The covariance matrix for sampling synthetic observations should look as follows:

Γ 1	0.326	0.1446	-0.0668	0.5712	0.4277	0.1847	-0.2883
0.326	1	-0.0372	0.0215	0.2795	0.8471	0.1211	-0.0902
0.1446	-0.0372	1	-0.0244	0.2186	0.0636	0.1489	-0.1301
-0.0668	0.0215	-0.0244	1	0.0192	0.0452	-0.0553	0.2717
0.5712	0.2795	0.2186	0.0192	1	0.3309	0.1324	-0.1896
0.4277	0.8471	0.0636	0.0452	0.3309	1	0.0915	
0.1847	0.1211	0.1489	-0.0553	0.1324	0.0915	1	-0.1959
[-0.2883]	-0.0902	-0.1301	0.2717	-0.1896	-0.1299	-0.1959	1]

If you are unable to read in the supplied covariance matrix, you can input it manually.