Aula 3

Provas

A prova de uma proposição é um argumento que demostra que a proposição é verdadeira. Por exemplo, seja P a proposição

P: "n é par $\Rightarrow n^2$ é múltiplo de 4, para todo $n \in \mathbb{N}$."

3.1 Prova Direta

Uma prova da proposição P do exemplo anterior poderia ser como segue.

Demonstração. Vamos provar que

se n é par então n^2 é múltiplo de 4, para todo $n \in \mathbb{N}$.

Seja $n \in \mathbb{N}$ um número par.

Vamos provar que n^2 é múltiplo de 4.

Como n é par, então k = n/2 é inteiro.

Além disso, n = 2k.

Então $n^2 = (2k)^2 = 4k^2$.

Como k é inteiro, então k^2 também é um inteiro.

Então n^2 é o quádruplo de um inteiro.

Então n^2 é múltiplo de 4.

Portanto,

se n é par então n^2 é múltiplo de 4, para todo $n \in \mathbb{N}$.

Comentário 1. Todas as provas começam com

Vamos provar que

proposição

e terminam com

Portanto,

proposição

A proposição P do exemplo anterior é da forma

$$A(x) \Rightarrow B(x)$$
, para todo $x \in X$,

onde

A(x) é o predicado "x é par",

B(x) é o predicado " x^2 é múltiplo de 4",

X é o conjunto \mathbb{N} .

Esquematicamente a prova acima tem a seguinte estrutura

Demonstração. Vamos provar que

$$A(x) \Rightarrow B(x)$$
, para todo $x \in X$.

Seja $x \in X$ tal que A(x).

Vamos provar que B(x).

. . .

Então B(x).

Portanto,

$$A(x) \Rightarrow B(x)$$
, para todo $x \in X$.

O trecho indicado por "..." é chamado de *argumento* da prova. Muitas vezes a prova é abreviada como no seguinte esquema.

Demonstração. Vamos provar que

$$A(x) \Rightarrow B(x)$$
, para todo $x \in X$.

Seja $x \in X$ tal que A(x).

Vamos provar que B(x).

. . .

Então B(x).

3.2 Contrapositiva

Definição 5. A contrapositiva da implicação $A \Rightarrow B$ é a implicação (não B) \Rightarrow (não A).

Corolário 5. Uma implicação e sua contrapositiva são equivalentes, isto é,

$$A \Rightarrow B \equiv (\text{ n\~ao } B) \Rightarrow (\text{ n\~ao } A),$$

quaisquer que sejam as proposições A e B.

Demonstração. Exercicio 3

Exemplo 2. A contrapositiva da implicação

se n é par então n² é múltiplo de 4,

 \acute{e}

se n² não é múltiplo de 4 então n não é par.

A prova por contrapositiva de uma implicação é a prova direta da contrapositiva dessa implicação.

Demonstração. Vamos provar que

se n é par então n^2 é múltiplo de 4, para todo $n \in \mathbb{N}$.

provando que

se n^2 não é múltiplo de 4 então n não é par, para todo $n \in \mathbb{N}$.

Seja $n \in bN$ tal que n^2 não é múltiplo de 4.

Vamos provar que n não é par.

Como n^2 não é múltiplo de 4, então $n^2/4$ não é inteiro.

Como $n^2/4 = (n/2)^2$, então $(n/2)^2$ não é inteiro.

Como o quadrado de um inteiro também é inteiro, e $(n/2)^2$ não é inteiro e, consequentemente, n/2 não pode ser inteiro.

Como n/2 não é inteiro, então n não é par.

Portanto,

se n^2 não é múltiplo de 4 então n não é par, para todo $n \in \mathbb{N}$.

e, consequentemente,

se n é par então n^2 é múltiplo de 4, para todo $n \in \mathbb{N}$.

Esquematicamente a prova acima tem a seguinte estrutura

Demonstração. Vamos provar que

$$A(x) \Rightarrow B(x)$$
, para todo $x \in X$,

provando que

não
$$B(x) \Rightarrow$$
 não $A(x)$, para todo $x \in X$.

Seja $x \in X$ tal que não B(x)

. . .

Então não A(x).

Portanto,

não
$$B(x) \Rightarrow$$
 não $A(x)$, para todo $x \in X$,

e consequentemente,

$$A(x) \Rightarrow B(x)$$
, para todo $x \in X$.

Esse esquema de demonstração é conhecido como "prova pela contrapositiva" e usualmente é abreviado como segue.

Demonstração. Vamos provar que

$$A(x) \Rightarrow B(x)$$
, para todo $x \in X$,

por contrapositiva.

Seja $x \in X$ tal que não B(x).

Vamos provar que não A(x)

. . .

Então não A(x).

3.3 Contradição

Teorema 6. Para quaisquer valores de A, B e C,

$$(A \Rightarrow B) \ \mathbf{e} \ (A \Rightarrow C)) \equiv A \Rightarrow (B \ \mathbf{e} \ C).$$

Demonstração. Exercicio 3.

Teorema 7. $Se A \Rightarrow F ent\tilde{a}o n\tilde{a}o A$.

Demonstração. Exercicio 3.

Outra prova da proposição P é como segue.

Demonstração. Vamos provar que a proposição

se n é par então n^2 é múltiplo de 4, para todo $n \in \mathbb{N}$,

é verdadeira, provando que a sua negação é falsa, isto é, que a proposição

não (se n é par então n^2 é múltiplo de 4, para todo $n \in \mathbb{N}$,)

é falsa, ou, equivalentemente, provando que a proposição

(não (se n é par então n^2 é múltiplo de 4)), para algum $n \in \mathbb{N}$,

é falsa ou, equivalentemente, provando que a proposição

n é par e não n^2 é múltiplo de 4, para algum $n \in \mathbb{N}$,

é falsa.

Seja $n \in \mathbb{N}$ tal que n é par e n^2 não é múltiplo de 4.

Como n é par, então n/2 é inteiro.

Como n é par e n/2 é inteiro, então n(n/2) é par.

Em resumo, se n é par e n^2 não é múltiplo de 4, então $n^2/2$ é par.

Por outro lado, como n^2 não é múltiplo de 4, então $n^2/2$ é impar.

Em resumo, se n é par e n^2 não é múltiplo de 4, então $n^2/2$ não é par.

Noutras palavras, se n é par e n^2 não é múltiplo de 4 então $n^2/2$ é par e $n^2/2$ não é par.

Portanto, a proposição

n é par e não n^2 é múltiplo de 4, para algum $n \in \mathbb{N}$,

é falsa e, consequentemente, sua negação que é a proposição

se n é par então n^2 é múltiplo de 4, para todo $n\in\mathbb{N},$

é verdadeira.

Esquematicamente a prova acima tem a seguinte estrutura

Demonstração. Vamos provar que A, provando que não (não A).

Suponha que não A.

Então ... B e, portanto, não $A \Rightarrow B$.

Por outro lado, como não A, então ... não B, isto é não $A \Rightarrow$ não B.

Então, não $A\Rightarrow (B$ e não B) (Teorema 6), ou seja, não $A\Rightarrow F$ e portanto (Teorema 7), não (não A) e consequentemente A.

3.4 Contra Exemplos

Teorema 8.

$$(A \Rightarrow B) \equiv (($$
 $n\~{a}o$ $A)$ ou $B)$

Demonstração. Simplificando a definição,

$$A\Rightarrow B\equiv (A\ \mathrm{e}\ B)\ \mathrm{ou}\ (\ \mathrm{n\~{a}o}\ A)$$

$$\equiv (A\ \mathrm{ou}\ (\ \mathrm{n\~{a}o}\ A))\ \mathrm{e}\ (B\ \mathrm{ou}\ (\ \mathrm{n\~{a}o}\ A))$$

$$\equiv V\ \mathrm{e}\ (B\ \mathrm{ou}\ (\ \mathrm{n\~{a}o}\ A))$$

$$\equiv (\ \mathrm{n\~{a}o}\ A)\ \mathrm{ou}\ B.$$

(ver Exercício
$$5$$
)

Duas consequências diretas do Teorema 8, que são chamados de "contra-exemplos".

Corolário 9.

$$($$
 $n\~{a}o$ $(A \Rightarrow B)) \equiv (A \ e \ n\~{a}o$ $B).$

Demonstração.

não
$$(A\Rightarrow B)\equiv$$
 não (não A ou $B)\equiv$ (não (não $A)$) e não $B\equiv A$ e não B .
 (ver Exercício 6)

Corolário 10.

$$\mbox{\it n\~ao}\;((A(x)\Rightarrow B(x)),\;\mbox{\it para}\;\mbox{\it todo}\;x\in X)\equiv (A(x)\;\mbox{\it e}\;\;\mbox{\it n\~ao}\;B(x)),\;\mbox{\it para}\;\mbox{\it algum}\;x\in X.$$

3.5 Lição de Casa

Exercício 7 (limite).