# X100/302

NATIONAL QUALIFICATIONS 2011

WEDNESDAY, 18 MAY 10.50 AM - 12.00 NOON MATHEMATICS HIGHER Paper 2

### **Read Carefully**

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.





#### FORMULAE LIST

#### Circle:

The equation  $x^2 + y^2 + 2gx + 2fy + c = 0$  represents a circle centre (-g, -f) and radius  $\sqrt{g^2 + f^2 - c}$ . The equation  $(x - a)^2 + (y - b)^2 = r^2$  represents a circle centre (a, b) and radius r.

**Scalar Product:**  $\mathbf{a}.\mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ , where  $\theta$  is the angle between  $\mathbf{a}$  and  $\mathbf{b}$ 

or 
$$\mathbf{a.b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where  $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$  and  $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ .

**Trigonometric formulae:**  $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$ 

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

| f(x)      | f'(x)       |
|-----------|-------------|
| sin ax    | $a\cos ax$  |
| $\cos ax$ | $-a\sin ax$ |

Table of standard integrals:

| f(x)      | $\int f(x) dx$            |
|-----------|---------------------------|
| sin ax    | $-\frac{1}{a}\cos ax + C$ |
| $\cos ax$ | $\frac{1}{a}\sin ax + C$  |

 $[X100/302] \hspace{3cm} \textit{Page two}$ 

## ALL questions should be attempted.

Marks

1. D,OABC is a square based pyramid as shown in the diagram below.



O is the origin, D is the point (2, 2, 6) and OA = 4 units.

M is the mid-point of OA.

(a) State the coordinates of B.

1

(b) Express DB and DM in component form.

3

(c) Find the size of angle BDM.

5

**2.** Functions f, g and h are defined on the set of real numbers by

• 
$$f(x) = x^3 - 1$$

$$g(x) = 3x + 1$$

• 
$$h(x) = 4x - 5$$
.

(a) Find g(f(x)).

2

(b) Show that  $g(f(x)) + xh(x) = 3x^3 + 4x^2 - 5x - 2$ .

1

- (c) (i) Show that (x-1) is a factor of  $3x^3 + 4x^2 5x 2$ .
  - (ii) Factorise  $3x^3 + 4x^2 5x 2$  fully.

5

(d) Hence solve g(f(x)) + xh(x) = 0.

1

[Turn over

3. (a) A sequence is defined by  $u_{n+1} = -\frac{1}{2}u_n$  with  $u_0 = -16$ . Write down the values of  $u_1$  and  $u_2$ .

- 1
- (b) A second sequence is given by 4, 5, 7, 11, . . . . It is generated by the recurrence relation  $v_{n+1} = pv_n + q$  with  $v_1 = 4$ . Find the values of p and q.

3

- (c) Either the sequence in (a) or the sequence in (b) has a limit.
  - (i) Calculate this limit.
  - (ii) Why does the other sequence not have a limit?

3

**4.** The diagram shows the curve with equation  $y = x^3 - x^2 - 4x + 4$  and the line with equation y = 2x + 4.

The curve and the line intersect at the points (-2, 0), (0, 4) and (3, 10).



Calculate the total shaded area.

10

5. Variables x and y are related by the equation  $y = kx^n$ .

The graph of  $\log_2 y$  against  $\log_2 x$  is a straight line through the points (0, 5) and (4, 7), as shown in the diagram.

Find the values of k and n.



**6.** (a) The expression  $3 \sin x - 5 \cos x$  can be written in the form  $R \sin(x+a)$  where R > 0 and  $0 \le a < 2\pi$ .

Calculate the values of R and a.

4

(b) Hence find the value of t, where  $0 \le t \le 2$ , for which

$$\int_0^t (3\cos x + 5\sin x) \ dx = 3.$$

7

7. Circle C<sub>1</sub> has equation  $(x+1)^2 + (y-1)^2 = 121$ .

A circle  $C_2$  with equation  $x^2 + y^2 - 4x + 6y + p = 0$  is drawn inside  $C_1$ .

The circles have no points of contact.

What is the range of values of p?

9

 $[END\ OF\ QUESTION\ PAPER]$ 





