

Arrays Made Simpler : An Efficient, Scalable and Thorough Preprocessing

Logic for Programming, Artificial Intelligence and Reasoning

Benjamin Farinier—CEA ListRobin David—QuarkslabSébastien Bardin—CEA ListMatthieu Lemerre—CEA List

Overview

Software verification

• More and more rely on decision procedures

Array theory

- Useful for modelling memory or data structures
- Bottleneck of resolution for large formulas (BMC, SE)

Our proposal

- FAS, an efficient simplification for array theory
- ⇒ Improve existing solvers

Y/N

Array theory

Two basic operations on arrays

- Reading in a at index $i \in \mathcal{I}$: a[i]
- Writing in a an element $e \in \mathcal{E}$ at index $i \in \mathcal{I}$: $a[i] \leftarrow e$

$$\begin{array}{l} \mathsf{read} : \mathsf{Array} \ \mathcal{I} \ \mathcal{E} \to \mathcal{I} \to \mathcal{E} \\ \mathsf{write} : \mathsf{Array} \ \mathcal{I} \ \mathcal{E} \to \mathcal{I} \to \mathcal{E} \to \mathsf{Array} \ \mathcal{I} \ \mathcal{E} \end{array}$$

$$\forall a \, i \, j \, e. \, (a \, [i] \leftarrow e) \, [j] = \left\{ \begin{array}{ll} e & \text{if } i = j \\ a \, [j] & \text{otherwise} \end{array} \right.$$

Prevalent in software analysis

- Modelling memory
- Abstracting data structure (map, queue, stack...)

Hard to solve

- NP-complete
- ROW may require case-splits

Arrays in practice

Unrolling-based verification techniques (BMC, SE)

- may produce huge formula
- high number of reads and writes

In some extremes cases, solvers may spend hours of these formulas

Without proper simplification, array theory might become a bottleneck for resolution

What should we simplify? Read-Over-Write (ROW)!

ROW simplification

 esp_0 : BitVec16

 \mathtt{mem}_0 : Array BitVec16 BitVec16

$$\begin{array}{l} \texttt{assert} \ (\texttt{esp}_0 > 61440) \\ \texttt{mem}_1 \ \triangleq \ \texttt{mem}_0 \ [\texttt{esp}_0 - 16] \leftarrow 1415 \\ \texttt{esp}_1 \ \triangleq \ \texttt{esp}_0 - 64 \\ \texttt{eax}_0 \ \triangleq \ \texttt{mem}_1 \ [\texttt{esp}_1 + 48] \\ \texttt{assert} \ (\texttt{mem}_1 \ [\texttt{eax}_0] = 9265) \end{array}$$

 esp_0 : BitVec16

 ${\tt mem_0}$: Array BitVec16 BitVec16

 $\begin{array}{l} {\tt assert} \, ({\tt esp}_0 > 61440) \\ {\tt assert} \, ({\tt mem}_0 \, [1415] = 9265) \end{array}$

ROW simplification

esp₀ : BitVec16

mem₀ : Array BitVec16 BitVec16

$$\begin{array}{ll} \texttt{assert} \, (\texttt{esp}_0 > 61440) \\ \texttt{mem}_1 \, \triangleq \, \texttt{mem}_0 \, [\texttt{esp}_0 - 16] \leftarrow 1415 \\ \texttt{esp}_1 \, \triangleq \, \texttt{esp}_0 - 64 \\ \texttt{eax}_0 \, \triangleq \, \texttt{mem}_1 \, [\texttt{esp}_1 + 48] \\ \texttt{assert} \, (\texttt{mem}_1 \, [\texttt{eax}_0] = 9265) \end{array}$$

 esp_0 : BitVec16

mem₀ : Array BitVec16 BitVec16

assert ($\exp_0 > 61440$) assert ($mem_0 [1415] = 9265$)

These simplifications depend on two factors

- The equality check procedure
 - \implies verify that $eax_0 = esp_0 16$
- The underlying representation of an array
 - \implies remember that $mem_1 [esp_1 + 48] = 1415$

Outline

- 1 Dedicated data structure
- 2 Approximated equality check
- 3 Experimental evaluation
- 4 Conclusion

Section 1

Dedicated data structure

Standard ROW simplification (using list representation)

Array terms represented as write chains

How to update

Given a write of e at index i

• Add a new head node (i, e)

How to simplify ROW

Given a read at index j

- Let (i, e) be the head
- Is i = j valid? If so return e
- Is $i \neq j$ valid? If so recurse
- Else stop

Standard ROW simplification (using list representation)

Array terms represented as write chains

How to update

Given a write of e at index i

• Add a new head node (i, e)

How to simplify ROW

Given a read at index i

- Let (i, e) be the head
- Is i = j valid? If so return e
- Is $i \neq j$ valid? If so recurse
- Else stop

Good points

- Generic
- Full ROW simplification

Bad points

- n^2 worst case
- k · n if k-bounded, but then partial simplification
- Behave badly with WOW

Specific case from Symbolic Execution (using map representation)

Common preprocessing in SE when all indices are constants

Bad point

Extremelly specific

Good points

- $n \cdot \ln n$ worst case
- Full ROW simplification
- Behave well with wow

So here we are

	list	<i>k</i> -list	map
generic	1	1	X
ROW	1	✓/X	√
WOW	X	X	√
complexity	n^2	k · n	<i>n</i> ⋅ ln <i>n</i>

We would like the best of both worlds!

So here we are

	list	<i>k</i> -list	map
generic	1	1	X
ROW	1	✓/X	√
WOW	Х	X	√
complexity	n^2	k · n	<i>n</i> ⋅ ln <i>n</i>

We would like the best of both worlds!

Our proposal : List-Map representation

- Sets of comparable indexes can be packed together
- Allows efficient search during ROW-simplification
- ⇒ Improve scalability

Improving scalability: list-map representation

How to update

Given a write of e at index i

- Is *i comparable* with indices of elements in the head?
- If so add (i, e) in this map
- Else add a new head map containing only (i, e)

Improving scalability: list-map representation

How to update

Given a write of e at index i

- Is *i comparable* with indices of elements in the head?
- If so add (i, e) in this map
- Else add a new head map containing only (i, e)

How to simplify ROW

Given a read at index j

- Is *j comparable* with indices of elements in the head?
- If so, look for (i, e) with i=j
 - o if succeed then return e
 - o else recurse on next map
- Else stop

Improving scalability: list-map representation

How to update

Given a write of e at index i

- Is *i comparable* with indices of elements in the head?
- If so add (i, e) in this map
- Else add a new head map containing only (i, e)

How to simplify ROW

Given a read at index j

- Is *j comparable* with indices of elements in the head?
- If so, look for (i, e) with i=j
 - o if succeed then return e
 - o else recurse on next map
- Else stop

Section 2

Approximated equality check

- If $y \triangleq z + 1$ then $x \triangleq y + 2 \rightsquigarrow x \triangleq z + 3$
- Together with associativity, commutativity...
- \implies Reduce the number of bases

Propagate "variable+constant" terms

- If $v \triangleq z+1$ then $x \triangleq v+2 \rightsquigarrow x \triangleq z+3$
- Together with associativity, commutativity...
- ⇒ Reduce the number of bases

base/offset inlining constant negation constant packing constant lifting base/offset addition base/offset subtraction

LPAR 2018 — Benjamin Farinier — 12/20

- If $y \triangleq z + 1$ then $x \triangleq y + 2 \rightsquigarrow x \triangleq z + 3$
- Together with associativity, commutativity...
- ⇒ Reduce the number of bases

- If $y \triangleq z + 1$ then $x \triangleq y + 2 \rightsquigarrow x \triangleq z + 3$
- Together with associativity, commutativity...
- ⇒ Reduce the number of bases

```
\begin{array}{llll} & \operatorname{esp_0} : \operatorname{BitVec16} \\ & \operatorname{mem_0} : \operatorname{Array} \operatorname{BitVec16} \operatorname{BitVec16} \end{array} & \operatorname{esp_0} : \operatorname{BitVec16} \operatorname{BitVec16} \\ & \operatorname{assert} (\operatorname{esp_0} > 61440) \\ & \operatorname{mem_1} \triangleq \operatorname{mem_0} [\operatorname{esp_0} - 16] \leftarrow 1415 \\ & \operatorname{esp_1} \triangleq \operatorname{esp_0} - 64 \\ & \operatorname{eax_0} \triangleq \operatorname{mem_1} [\operatorname{esp_1} + 48] \\ & \operatorname{assert} (\operatorname{mem_1} [\operatorname{eax_0}] = 9265) \end{array} & \operatorname{assert} (\operatorname{mem_1} [\operatorname{eax_0}] = 9265) \end{array}
```

- If $y \triangleq z + 1$ then $x \triangleq y + 2 \rightsquigarrow x \triangleq z + 3$
- Together with associativity, commutativity...
- ⇒ Reduce the number of bases

```
\begin{array}{llll} \operatorname{esp}_0 & : & \operatorname{BitVec16} \\ \operatorname{mem}_0 & : & \operatorname{Array BitVec16} & \operatorname{bitVec16} & \operatorname{mem}_0 & : & \operatorname{Array BitVec16} & \operatorname{BitVec16} \\ \operatorname{assert} & (\operatorname{esp}_0 > 61440) & & & & & \\ \operatorname{assert} & (\operatorname{esp}_0 > 61440) & & & & \\ \operatorname{mem}_1 & \triangleq & \operatorname{mem}_0 \left[ \operatorname{esp}_0 - 16 \right] \leftarrow 1415 \\ \operatorname{esp}_1 & \triangleq & \operatorname{esp}_0 - 64 & & & \\ \operatorname{eax}_0 & \triangleq & \operatorname{mem}_1 \left[ \operatorname{esp}_0 - 16 \right] \\ \operatorname{eax}_0 & \triangleq & \operatorname{mem}_1 \left[ \operatorname{esp}_0 - 16 \right] \\ \operatorname{assert} & (\operatorname{mem}_1 \left[ \operatorname{eax}_0 \right] = 9265) & & \\ \operatorname{assert} & (\operatorname{mem}_1 \left[ \operatorname{eax}_0 \right] = 9265) & & \\ \end{array}
```

- If $y \triangleq z + 1$ then $x \triangleq y + 2 \rightsquigarrow x \triangleq z + 3$
- Together with associativity, commutativity...
- ⇒ Reduce the number of bases

```
\begin{array}{llll} \operatorname{esp}_0 & : & \operatorname{BitVec16} & & \operatorname{esp}_0 & : & \operatorname{BitVec16} \\ \operatorname{mem}_0 & : & \operatorname{Array BitVec16 BitVec16} & & & \operatorname{mem}_0 & : & \operatorname{Array BitVec16 BitVec16} \\ \operatorname{assert} \left( \operatorname{esp}_0 > 61440 \right) & & & & \operatorname{assert} \left( \operatorname{esp}_0 > 61440 \right) \\ \operatorname{mem}_1 & & & \operatorname{mem}_0 \left[ \operatorname{esp}_0 - 16 \right] \leftarrow 1415 \\ \operatorname{esp}_1 & & & \operatorname{esp}_0 & = \operatorname{mem}_1 \left[ \operatorname{esp}_0 - 64 \right] \\ \operatorname{eax}_0 & & & \operatorname{mem}_1 \left[ \operatorname{esp}_0 + 48 \right] \\ \operatorname{assert} \left( \operatorname{mem}_1 \left[ \operatorname{eax}_0 \right] = 9265 \right) \\ \end{array}
```

- If $y \triangleq z + 1$ then $x \triangleq y + 2 \rightsquigarrow x \triangleq z + 3$
- Together with associativity, commutativity...
- ⇒ Reduce the number of bases

```
\begin{array}{llll} \operatorname{esp}_0 & : & \operatorname{BitVec16} & & \operatorname{esp}_0 & : & \operatorname{BitVec16} \\ \operatorname{mem}_0 & : & \operatorname{Array BitVec16 BitVec16} & & & \operatorname{mem}_0 & : & \operatorname{Array BitVec16 BitVec16} \\ \operatorname{assert} \left( \operatorname{esp}_0 > 61440 \right) & & & & \operatorname{assert} \left( \operatorname{esp}_0 > 61440 \right) \\ \operatorname{mem}_1 & \triangleq & \operatorname{mem}_0 \left[ \operatorname{esp}_0 - 16 \right] \leftarrow 1415 \\ \operatorname{esp}_1 & \triangleq & \operatorname{esp}_0 - 64 \\ \operatorname{eax}_0 & \triangleq & \operatorname{mem}_1 \left[ \operatorname{esp}_1 + 48 \right] \\ \operatorname{assert} \left( \operatorname{mem}_1 \left[ \operatorname{eax}_0 \right] = 9265 \right) \\ \end{array}
```

- If $y \triangleq z + 1$ then $x \triangleq y + 2 \rightsquigarrow x \triangleq z + 3$
- Together with associativity, commutativity...
- ⇒ Reduce the number of bases

```
\begin{array}{lll} \operatorname{esp}_0 & : & \operatorname{BitVec16} & \operatorname{esp}_0 & : & \operatorname{BitVec16} & \operatorname{mem}_0 & : & \operatorname{Array BitVec16} & \operatorname{BitVec16} & \operatorname{mem}_0 & : & \operatorname{Array BitVec16} & \operatorname{BitVec16} & \operatorname{BitVec16} & \operatorname{mem}_0 & : & \operatorname{Array BitVec16} & \operatorname{BitVec16} & \operatorname{BitVec16}
```

- If $i^{\sharp} \sqcap j^{\sharp} = \bot$ then $(a[i] \leftarrow e)[j] = a[j]$
- Integrated in the list-map representation
- \implies Prove disequality between different bases

- If $i^{\sharp} \sqcap j^{\sharp} = \bot$ then $(a[i] \leftarrow e)[j] = a[j]$
- Integrated in the list-map representation
- ⇒ Prove disequality between different bases

$$c^{\sharp} = [\mathsf{c}, \mathsf{c}] \qquad \qquad \text{for any constant } c$$

$$v^{\sharp} = [m_i, M_j] \qquad \qquad \text{if } i \leq v \leq j$$

$$\left(\mathsf{extract}_{I,h} i\right)^{\sharp} = [0, 2^{h-l+1} - 1] \qquad \qquad \text{if } (M_i \gg l) - (m_i \gg l) \geq 2^{h-l+1}$$

$$= [\mathsf{extract}_{I,h} (m_i), \mathsf{extract}_{I,h} (M_i)] \qquad \qquad \text{if extract}_{I,h} (M_i) \geq \mathsf{extract}_{I,h} (m_i)$$

$$= [0, \mathsf{extract}_{I,h} (M_i)] \qquad \qquad \text{otherwise}$$

$$\sqcup [\mathsf{extract}_{I,h} (m_i), 2^{h-l+1} - 1]$$

$$(i+j)^{\sharp} = [m_i + m_j, M_i + M_j] \qquad \qquad \text{if } M_i + M_j < 2^N$$

$$= [m_i + m_j - 2^N, M_i + M_j - 2^N] \qquad \qquad \text{otherwise}$$

$$\sqcup [0, M_i + M_i - 2^N] \qquad \qquad \text{otherwise}$$

- If $i^{\sharp} \sqcap j^{\sharp} = \bot$ then $(a[i] \leftarrow e)[j] = a[j]$
- Integrated in the list-map representation
- \implies Prove disequality between different bases

- If $i^{\sharp} \sqcap j^{\sharp} = \bot$ then $(a[i] \leftarrow e)[j] = a[j]$
- Integrated in the list-map representation
- \implies Prove disequality between different bases

- If $i^{\sharp} \sqcap j^{\sharp} = \bot$ then $(a[i] \leftarrow e)[j] = a[j]$
- Integrated in the list-map representation
- \implies Prove disequality between different bases

- If $i^{\sharp} \sqcap j^{\sharp} = \bot$ then $(a[i] \leftarrow e)[j] = a[j]$
- Integrated in the list-map representation
- \implies Prove disequality between different bases

```
\begin{array}{lll} \operatorname{esp_0} : \operatorname{BitVec16} & \operatorname{esp_0} : \operatorname{BitVec16} \\ \operatorname{mem_0} : \operatorname{Array BitVec16} \operatorname{BitVec16} & \operatorname{mem_0} : \operatorname{Array BitVec16} \operatorname{BitVec16} \\ \operatorname{assert} \left( \operatorname{esp_0} > 61440 \right) & \\ \operatorname{mem_1} \triangleq \operatorname{mem_0} \left[ \operatorname{esp_0} - 16 \right] \leftarrow 1415 \\ \operatorname{esp_1} \triangleq \operatorname{esp_0} - 64 & \\ \operatorname{eax_0} \triangleq \operatorname{mem_1} \left[ \operatorname{esp_1} + 48 \right] \\ \operatorname{assert} \left( \operatorname{mem_1} \left[ \operatorname{eax_0} \right] = 9265 \right) & \\ \end{array} \\ \begin{array}{l} \operatorname{esp_0} : \operatorname{BitVec16} \\ \operatorname{mem_0} : \operatorname{Array BitVec16} \operatorname{BitVec16} \\ \operatorname{assert} \left( \operatorname{esp_0} - 16 \right) \leftarrow 1415 \\ \operatorname{assert} \left( \operatorname{mem_0} \left[ 1415 \right] = 9265 \right) \\ \end{array}
```

- If $i^{\sharp} \sqcap j^{\sharp} = \bot$ then $(a[i] \leftarrow e)[j] = a[j]$
- Integrated in the list-map representation
- \implies Prove disequality between different bases

```
\begin{array}{lll} & \operatorname{esp_0} & : & \operatorname{BitVec16} \\ & \operatorname{mem_0} & : & \operatorname{Array \; BitVec16} \; & \operatorname{BitVec16} \; & \operatorname{mem_0} : \; \operatorname{Array \; BitVec16} \; \operatorname{BitVec16} \; \\ & \operatorname{assert} \left( \operatorname{esp_0} > 61440 \right) & \longrightarrow & \\ & \operatorname{assert} \left( \operatorname{esp_0} > 61440 \right) & \operatorname{assert} \left( \operatorname{esp_0} > 61440 \right) \\ & \operatorname{esp_1} \triangleq \operatorname{esp_0} - 64 & \operatorname{eax_0} \triangleq \operatorname{mem_1} \left[ \operatorname{esp_1} + 48 \right] \\ & \operatorname{assert} \left( \operatorname{mem_0} \left[ \operatorname{esp_0} \right] = 9265 \right) & \operatorname{assert} \left( \operatorname{mem_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right) & \operatorname{assert} \left( \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right) & \operatorname{assert} \left( \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right) & \operatorname{assert} \left( \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right) & \operatorname{assert} \left( \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right) & \operatorname{assert} \left( \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right) & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] - \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \left[ \operatorname{esp_0} \right] & \operatorname{esp_0} \left[ \operatorname{esp_0} \left[
```

Section 3

Experimental evaluation

Experimental setup

FAS implemented as

- preprocessor for SMT formulas
- QF_ABV theory

The implementation comprises

- 6,300 lines of OCaml
- integrated into the TFML formula preprocessing engine
- part of the BINSEC Symbolic Execution (SE) tool

Experiments are carried out on

- Intel(R) Xeon(R) CPU E5-2660 v3 @ 2,60GHz
- three of the best SMT solvers for the QF_ABV theory Boolector, Yices and Z3

Impact of the simplification : medium-size formulas

- 6,590 x 3 medium-size formulas from static SE
- TIMEOUT = 1,000 seconds

		simpl.	#TIMEOUT and resolution time				#ROW		
		time	Во	olector	,	Yices	ices Z3		
ete	default	61	0	163	2	69	0	872	866,155
concrete	FAS	85	0	94	2	68	0	244	1,318
8	FAS-itv	111	0	94	2	68	0	224	1,318
la/	default	65	0	2,584	2	465	31	155,992	866,155
interval	FAS	99	0	2,245	2	487	25	126,806	531,654
].≘	FAS-itv	118	0	755	2	140	14	37,269	205,733
olic	default	61	0	6,173	3	1,961	65	305,619	866,155
symbolic	FAS	91	0	6,117	3	1,965	66	158,635	531,654
	FAS-itv	111	0	4,767	2	1,108	43	80,569	295,333

Impact of the simplification : very large formulas

- 29 x 3 very large formulas from dynamic SE
- TIMEOUT = 1,000 seconds

		simpl.	#TIMEOUT and resolution time			#ROW			
time		time	Boolector		Yices		Z3		#-KOW
a	default	44	10	159	4	1,098	26	3.33	1,120,798
ret	FAS-list	1,108	8	845	4	198	10	918	456,915
concrete	FAS	196	8	820	4	196	10	922	456,915
	FAS-itv	210	4	654	1	12	4	1,120	0
interval	default	44	12	131	12	596	27	0.19	1,120,798
	FAS-list	222	12	129	12	595	26	236	657,594
inte	FAS	231	12	129	12	597	26	291	657,594
	FAS-itv	237	12	58	12	28	19	81	651,449
symbolic	default	40	12	1,522	12	1,961	27	0.13	1,120,798
	FAS-list	187	11	1,199	12	2,018	26	486	657,594
	FAS	194	11	1,212	12	2,081	26	481	657,594
	FAS-itv	200	11	1,205	12	2,063	26	416	657,594

Focus on specific case : the ASPack example

- Huge formula obtained from the ASPack packing tool
- 293 000 ROWs
- 24 hours of resolution!

- #ROW reduced to 2467
- 14 sec for resolution
- 61 sec for preprocessing

Using list representation

- Same result with a bound of 385 024 and beyond...
- ...but 53 min preprocessing

Section 4

Conclusion

Conclusion and future work

Software verification

• More and more rely on decision procedures

Array theory

- Useful for modelling memory or data structures
- Bottleneck of resolution for large formulas (BMC, SE)

Our proposal

- Efficient simplification for array theory
- ⇒ Improve existing solvers

Future work

- Deeper integration inside a dedicated array solver
- Adding more expressive domain reasoning