EEC 233: Electronics II ¹ Part 1

1 Bipolar Junction Transistor (BJT)

Figure 1

$$I_E = I_B + I_C \tag{1}$$

(4)

(5)

(6)

(7)

For active mode:

$$I_C = \beta I_B$$

$$I_C = \alpha I_E \approx I_E$$

$$I_B = \frac{I_E}{\beta + 1}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$r_o = rac{V_A}{I_C}$$

Current Mirror

Figure 2

$$\frac{I_{\text{ref}}}{I_o} = \frac{1}{1 + \frac{2}{\beta}} \approx 1$$

$$I_o = \frac{V_{EE} + V_{CC} - V_{BE}}{R_1}$$

Multiple Current Mirror

(3)

Figure 3

$$\frac{I_o}{I_{\text{ref}}} = \frac{1}{1 + \frac{(N+1)}{\beta}}$$

Modified Multiple Current Mirror

Figure 4

$$\frac{I_o}{I_{\text{ref}}} = \frac{1}{1 + \frac{(N+1)}{\beta^2}} \tag{11}$$

(8)
$$I_o = \frac{V_{EE} + V_{CC} - 2V_{BE}}{R_1} \tag{12}$$

Differential Amplifiers

(10)

Figure 5

 r_o : Output resistance.

 V_A : Early voltage.

 $^{^1}$ Taha Ahmed

5.1 DC Analysis

Figure 6

$$V_E = -V_{BE}$$

$$I_{EE} = \frac{V_{EE} - V_{BE}}{R_E}$$

$$I_E = \frac{1}{2}I_{EE} = \frac{V_{EE} - V_{BE}}{2R_E}$$

$$I_C = \alpha I_E \approx I_E$$

$$V_C = V_{CC} - I_C R_C$$

$A_C = \frac{V_{oc}}{V_{ic}} = \frac{-R_c}{2R_{EE}}$

$$R_{ic} = \frac{R_{in}}{2} = \frac{h_{ie} + (\beta + 1)(2R_{EE})}{2}$$
 (19)

$$h_{ie} = r_{\pi} = \beta r_e = \frac{(\beta + 1) \times 25 \text{ mV}}{I_E}$$
 (20)

AC Analysis: Difference Mode

Figure 8

$$A_d = \frac{V_{od}}{V_{id}} = \frac{-\beta R_C}{h_{ie}} \tag{21}$$

$$R_{in} = h_{ie} (22$$

$$R_{id} = 2R_{in} = 2h_{ie}$$

Common mode rejection ratio:

$$CMRR = 20 \log_{10} \left| \frac{A_d/2}{A_c} \right| dB \tag{24}$$

Multistage Differential Amplifier

(17)

(13)

(15)

AC Analysis: Common mode

Figure 7

Figure 9

6.1 DC Analysis

$$I_{EE_1} = \frac{V_{EE} - V_{BE}}{R_{EE_1}} \tag{25}$$

$$I_{EE_2} = \frac{V_{EE} + V_{CC} - I_{C1}R_{C1} - V_{BE}}{R_{EE_1}}$$
 (26)

6.2 AC Analysis: Common Mode

Figure 10

(21)
$$A_C = \frac{V_{oc}}{V_{ic}} = \frac{\beta^2 R_{C1} R_{C3}}{(h_{ie_1} + \beta \times 2R_{EE}) \times (R_{C1} + h_{ie_3} + \beta \times 2R_{EE})}$$
(27)

6.3 AC Analysis: Difference Mode

Substitute with $R_{EE_1}=0$ and $R_{EE_2}=0$

$$A_C = \frac{V_{od}}{V_{id}} = \frac{\beta^2 R_{C1} R_{C3}}{h_{ie_1} \times (R_{C1} + h_{ie_3})}$$
 (28)

Common mode rejection ratio:

$$CMRR = 20 \log_{10} \left| \frac{A_d/2}{A_c} \right| dB$$

MOSFET

Figure 11: N-channel E-MOSFET

$$I_G = 0 (29)$$

$$I_D = \frac{1}{2}K'_n \times \frac{W}{L} \times (V_{GS} - V_T)^2 \tag{30}$$

$$g_m = \frac{\partial I_d}{\partial V_{GS}} = K'_n \times \frac{W}{L} \times (V_{GS} - V_T)$$
 (31)

Solving the quadratic equation, consider the solution such that $V_{GS} > V_T$

8 Current Mirror Using MOSFET

Figure 12

$$\frac{I_{\text{ref}}}{I_o} = \frac{(W/L)_1}{(W/L)_2}$$
 (32)

Design equation:

$$I_{\text{ref}} = \frac{V_{SS} + V_{DD} - V_{GS}}{R_D} \tag{33}$$

9 Differential Amplifier Using MOSFET

Figure 13

9.1 DC Analysis

$$I_{SS} = \frac{V_{SS} - V_{GS}}{R_{SS}} \tag{34}$$

$$I_D = \frac{I_{SS}}{2} = \frac{V_{SS} - V_{GS}}{2R_{SS}} \tag{35}$$

$$I_D = K_n (V_{GS} - V_T)^2$$

Such that $K_n = \frac{1}{2}K'_n \times \frac{W}{L}$. Solve 35 with 36 to get V_{GS}

$$g_m = K'_n \times \frac{W}{L} \times (V_{GS} - V_T)$$

9.2 AC Analysis: Common mode

Figure 14

$$A_C = \frac{V_{OC}}{V_{IC}} = \frac{-g_m R_d}{1 + 2g_m R_{SS}} \tag{37}$$

9.3 AC Analysis: Difference Mode

Substitute with $R_{SS} = 0$

$$A_d = -g_m R_D \tag{38}$$

Common mode rejection ratio:

$$\text{CMRR} = 20 \log_{10} \left| \frac{A_d/2}{A_c} \right| \text{ dB}$$

10 DC Level Shifting

When $v_i = 0$, v_o must be zero. If $v_o \neq 0$, it is called DC offset.

Figure 15: Put a DC source, $|v_c| = |E|$ in opposite directions

Figure 16: $v_o = v_c - i_x R_x$

Figure 17: $v_o = v_c - V_{BE} - i_y R_y$

Operational Amplifiers

11.1 Non Inverting Amplifier

Figure 19

$$\frac{V_{\text{out}}}{V_{\text{in}}} = 1 + \frac{R_2}{R_1} \tag{39}$$

11.2 Inverting Amplifier

Figure 18: Ideal op amp model.

Figure 20

$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_2}{R_1} \tag{40}$$

Summing Amplifier 11.3

Figure 21

$$v_o = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right) \tag{41}$$

11.4 Summing Non Inverting Amplifier

Figure 22

$$V_{\text{out}} = V_1 \frac{R_2}{R_1 + R_2} \left(1 + \frac{R_f}{R_a} \right) + V_2 \frac{R_1}{R_1 + R_2} \left(1 + \frac{R_f}{R_a} \right)$$
(42)

11.5 Difference Amplifier

Figure 23

$$v_o = \frac{R_2(1 + R_1/R_2)}{R_1(1 + R_3/R_4)}v_2 - \frac{R_2}{R_1}v_1$$
 (43)

if $\frac{R_1}{R_2} = \frac{R_3}{R_4}$ op amp circuit is a difference amplifier, Equation 43 becomes

$$v_o = \frac{R_2}{R_1}(v_2 - v_1) \tag{44}$$

11.6 Instrumentation Amplifier

Figure 24

$$v_0 = \frac{R_2}{R_1} \left(1 + \frac{2R_3}{R_4} \right) (v_2 - v_1)$$

11.7 Integrator

Figure 25

$$V_{\rm out} = -\frac{1}{RC} \int V_{\rm in} dt \tag{46}$$

$$\therefore \frac{\Delta V_o}{\Delta t} = -\frac{E}{RC} \tag{47}$$

11.7.1 Triangular Wave generator

Figure 26: Triangular wave oscillator - Output voltage as the switch is thrown back and forth at regular intervals $\,$

Another way to generate triangular wave is discussed in Subsection 13.4.

11.7.2 Sawtooth Wave generator

Figure 27: Sawtooth wave generator

11.8 Differentiator

Figure 28

$$V_{\text{out}} = -RC \frac{\mathrm{d}V_{\text{in}}}{\mathrm{d}t} \tag{48}$$

12 Converters

12.1 Voltage to Current Converters

Figure 29

$$I_D = \frac{E}{R} \tag{49}$$

$$V_o = -0.7 \text{ Volt} \tag{50}$$

$$I_L = \frac{V_o}{R_L} \tag{51}$$

Figure 30

$$V_o = -E - V_z \tag{52}$$

$$I_L = \frac{V_o}{R_L} \tag{53}$$

 V_z : Zener voltage.

We don't want I_L to be dependent of the load R_L

Figure 31: Constant current source

$$I_L = \frac{V_i}{R} \tag{54}$$

Figure 32: Constant current source - Voltage to current converter $\,$

Figure 33: Constant high current source with grounded load

12.2 Current to Voltage Converters

Figure 34

Figure 35

$$V_o = I_\lambda R_f \tag{56}$$

$I_{\lambda} = \frac{E}{\text{photo resistance}} \tag{57}$

12.3 Basic Bridge Circuit

Figure 36

Figure 37

$$V_o = \frac{-\Delta R}{R_1 + R} E \tag{58}$$

Figure 38

From superposition:

$$V_o = V_{o1} + V_{o2}$$

$$V_{o1} = -V_i$$

$$V_{o2} = 2V_x = 2V_i \frac{\frac{1}{j\omega C_x}}{R_x + \frac{1}{j\omega C_x}} = 2V_i \frac{1}{1 + j\omega C_x R_x}$$

$$\therefore V_o = \frac{2V_i}{1 + j\omega C_x R_x} - V_i = V_i \times \frac{2 - (1 + j\omega C_x R_x)}{1 + j\omega C_x R_x}$$

$$\therefore \frac{V_o}{V_i} = \frac{1 - j\omega C_x R_x}{1 + j\omega C_x R_x}$$

$$\left| \frac{V_o}{V_i} \right| = 1 \quad \text{(unity gain)}$$

$$(59)$$

$$\theta = \frac{\sqrt{-\tan^{-1}(\omega C_x R_x)}}{\sqrt{+\tan^{-1}(\omega C_x R_x)}} = -2\tan^{-1}(\omega C_x R_x)$$

$$\therefore -\frac{\theta}{2} = \tan^{-1}(\omega C_x R_x)$$
(60)

$$\therefore \omega C_x R_x = -\tan\left(\frac{\theta}{2}\right) \tag{61}$$

13 Operational Amplifier Applications

13.1 Negative Impedance Circuit

Figure 39

$$R_{\rm in} = \frac{V_i}{I_i} = -\frac{R_A R}{R_B} \tag{62}$$

If R is replaced by Z, the circuit develops negative impedance.

(e.g. if replaced by a capacitor, it develops -ve \times -ve = positive impedance)

Figure 40

$$I_l = \frac{V_i}{R + R_L || - R} = \frac{V_i}{R + \frac{-R_L R}{R_L - R}} = \frac{V_i (R_L - R)}{-R^2}$$

From current divider:

$$I_L = I_i \frac{-R}{R_L - R} = \frac{V_i (R_L - R)}{-R^2} \times \frac{-R}{R_L - R}$$

$$\therefore I_L = \frac{V_i}{R}$$
(63)

Doesn't depend on the load, it is considered as voltage to Notice that there are no negative sign, unlike the integrator current converter.

Figure 41

From Equation 63:

$$I_L = \frac{V_i}{R}$$

$$V_o = V_x \left(1 + \frac{R}{R} \right) = 2V_x$$

$$V_x = V_c = \frac{1}{C} \int I_L dt = \frac{1}{C} \int \frac{V_i}{R} dt$$

$$\therefore V_o(t) = \frac{2}{RC} \int V_i dt$$
 (64)

discussed in Subsection 11.7.

Figure 42

$$V_{\text{upper limit}} = +V_{\text{saturation}} \times \frac{R_3}{R_2}$$
 (65)

$$V_{\text{lower limit}} = -V_{\text{saturation}} \times \frac{R_3}{R_2}$$
 (66)

$$f = \frac{1}{4R_1C} \times \frac{R_2}{R_3} \tag{67}$$

f: frequency of oscillations.

Another way to generate triangular wave is discussed in Subsubsection 11.7.1.

13.5 Square Wave Oscillator

Figure 43

$$V_{\text{upper limit}} = +V_{\text{saturation}} \times \frac{R_2}{R_1 + R_2}$$
 (68)

$$V_{\text{lower limit}} = -V_{\text{saturation}} \times \frac{R_2}{R_1 + R_2}$$
 (69)

$$T = 2\tau \ln \left(\frac{1+\beta}{1-\beta}\right) \tag{70}$$

$$f = \frac{1}{T} \tag{71}$$

$$\tau = R_x C_x \tag{72}$$

$$\beta = \frac{R_2}{R_1 + R_2} \tag{73}$$

13.6 Voltage Comparetor (Saturation Comparetor)

We operate the op-amp in the open loop mode depending on the high open loop gain $A \approx \infty$ to drive the op-amp into saturation.

Figure 44

Figure 45

$$V_o = \begin{cases} +V_{\text{sat}} & V_i > V_{\text{ref}} \\ 0 & V_i = V_{\text{ref}} \\ -V_{\text{sat}} & V_i < V_{\text{ref}} \end{cases}$$
 (74)

13.7 Zero Voltage Comparetor

Figure 46

$$V_{\text{ref}} = 0$$

$$V_{o} = \begin{cases} +V_{\text{sat}} & V_{i} > 0\\ 0 & V_{i} = 0\\ -V_{\text{sat}} & V_{i} < 0 \end{cases}$$
(75)

The output toggles when the input crosses zero

13.8 Voltage (Saturation) Comparetor With Inverting Op-Amp

Connect V_i to the inverting terminal to invert the functionality of the comparetor

Figure 47

$$V_o = \begin{cases} -V_{\text{sat}} & V_i > V_{\text{ref}} \\ 0 & V_i = V_{\text{ref}} \\ +V_{\text{sat}} & V_i < V_{\text{ref}} \end{cases}$$
 (76)

13.8.1 Control Street Light

Figure 50

Two Zener diodes arranged as shown in Figure 51 limit the output voltage to the zener voltage plus the forward voltage drop $(0.7~\rm V)$ of the forward biased zener both positively and negatively

13.10 Schmitt Trigger

Figure 53

13.9 Comparetor With Bounded Output

Figure 49

The operation is as follows, since the anode of the zener is connected to the inverting (-) input, it is a virtual ground $(=0~\rm V)$. Therefore, when the output voltage reaches a positive value equals to the zener voltage, it limits at that value. When the output switches negative, the zener acts as regular diode and becomes forward biased at 0.7 V, limiting the negative output to that value . Turnung the zener around limits the output voltages in the opposite direction

Figure 51

Figure 52

Made with positive feedback to eliminate the effect of noise.

Upper threshold voltage is the input voltage V_i when the output voltage V_o equals $V_{\text{saturation}}$.

Similarly, lower threshold voltage is the input voltage V_i when the output voltage V_o equals $-V_{\text{saturation}}$.

$$V_{\text{upper threshold}} = +V_{\text{sat}} \frac{R_2}{R_1 + R_2} \tag{77}$$

$$V_{\text{upper threshold}} = -V_{\text{sat}} \frac{R_2}{R_1 + R_2} \tag{78}$$

$$V_{o} = \begin{cases} -V_{\text{sat}} & V_{i} > V_{\text{upper threshold}} \\ \text{No change} & V_{\text{lower threshold}} < V_{i} < V_{\text{upper threshold}} \\ +V_{\text{sat}} & V_{i} < V_{\text{lower threshold}} \end{cases}$$

$$(79)$$

Figure 54

Another design of the schmitt trigger:

Figure 55

Note that:

$$R_2 > R_1$$

$$V_{o} = \begin{cases} +V_{\text{sat}} & V_{i} > \frac{R_{1}}{R_{2}}V_{\text{sat}} \\ \text{No change} & -\frac{R_{1}}{R_{2}}V_{\text{sat}} < V_{i} < \frac{R_{1}}{R_{2}}V_{\text{sat}} \\ -V_{\text{sat}} & V_{i} < -\frac{R_{1}}{R_{2}}V_{\text{sat}} \end{cases}$$
(80)

13.10.1 Schmitt Trigger With Reference

Figure 56

$$V_{\rm UT} = V_{\rm ref} + \frac{+V_{\rm sat} - V_{\rm ref}}{R_A + R_B} R_B \tag{81}$$

$$V_{\rm LT} = V_{\rm ref} + \frac{-V_{\rm sat} - V_{\rm ref}}{R_A + R_B} R_B \tag{82}$$

$$V_o = \begin{cases} -V_{\text{sat}} & V_i > V_{\text{UT}} \\ \text{No change} & V_{\text{LT}} < V_i < V_{\text{UT}} \\ +V_{\text{sat}} & V_i < V_{\text{LT}} \end{cases}$$
(83)

13.11 Window Comparetor

Figure 57

$$V_o$$
 (on) when $V_{\rm LT} < V_i < V_{\rm UT}$

13.12 Logarithmic Amplifier

Figure 58

$$V_{\text{out}} = -V_{BE}$$

$$V_{\text{out}} = -V_T \ln \left(\frac{V_{\text{in}}}{R_1 I_S} \right) = -K \ln(V_{\text{in}})$$
 (85)

 I_S : Saturation current.

K: constant.

The output is therefore proportional to the natural loga- (84) rithm of $V_{\rm in}$

C	ontents		12 Converters	6
1	Bipolar Junction Transistor (BJT)	1	12.1 Voltage to Current Converters	6 6
1	Dipolar Junction Transistor (DJT)	_	12.3 Basic Bridge Circuit	7
2	Current Mirror	1	12.4 Phase Shifter Circuit	7
3	Multiple Current Mirror	1	13 Operational Amplifier Applications	7
4	Modified Multiple Current Mirror	1	13.1 Negative Impedance Circuit	7 8 8
5	Differential Amplifiers	1	13.4 Triangular Wave Oscillator	8
•	5.1 DC Analysis	2	13.5 Square Wave Oscillator	9
	5.2 AC Analysis: Common mode	2	13.6 Voltage Comparetor (Saturation Comparetor)	9
	5.3 AC Analysis: Difference Mode	2	13.7 Zero Voltage Comparetor13.8 Voltage (Saturation) Comparetor With In-	9
6	Multistage Differential Amplifier	2	verting Op-Amp	9
Ŭ	6.1 DC Analysis	2	13.8.1 Control Street Light	10 10
	6.2 AC Analysis: Common Mode	2	13.10Schmitt Trigger	10
	6.3 AC Analysis: Difference Mode	2	13.10.1 Schmitt Trigger With Reference 13.11Window Comparetor	11 11
7	MOSFET	2	13.12Logarithmic Amplifier	11
	MOSILI	4	1011220801101111101 11111111111111111111	11
8	Current Mirror Using MOSFET	3	2012-20 ₀	11
8	Current Mirror Using MOSFET		20122200	11
	Current Mirror Using MOSFET Differential Amplifier Using MOSFET	3	20122200	11
	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3	20122200	11
	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3	20122200	11
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3		11
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3 3		
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3 3 3		
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3 3 3		
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3 3 4 4		
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3 3 4 4 4 4		
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3 3 4 4 4 4 4		
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3 3 4 4 4 4 4		
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis 9.2 AC Analysis: Common mode 9.3 AC Analysis: Difference Mode DC Level Shifting Operational Amplifiers 11.1 Non Inverting Amplifier 11.2 Inverting Amplifier 11.3 Summing Amplifier 11.4 Summing Non Inverting Amplifier 11.5 Difference Amplifier	3 3 3 3 4 4 4 4 5		
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3 3 4 4 4 4 5 5		
9	Current Mirror Using MOSFET Differential Amplifier Using MOSFET 9.1 DC Analysis	3 3 3 3 3 4 4 4 4 5 5 5		