Graphs

It's all about relationships

Terence Parr
MSDS program
University of San Francisco

What's a graph?

- A graph is a collection of connected element pairs
- As with a tree, a graph is an aggregate of nodes
- Elements/nodes are email addresses, map locations, documents, tasks to perform, URLs on the web, customers, computers on a network, friends, observations, sensors, states in markov chain, ...
- Terms: nodes or vertices connected with edges, which can have labels; e.g., recall the Trie graph with labeled edges
- Directed graphs have arrows as edges but undirected use lines
- For n nodes, num edges is >=0 and <= $\binom{n}{2}$ = n(n-1)/2

Common questions

- Is q reachable from p?
- How many edges are on paths between p and q?
- Is graph connected? (reach any p from any q)
- Is graph cyclic? (p reaches p traversing at least one edge)
- Which nodes are within k edges of node p? (neighborhood)
- What is shortest path (num edges) from p to q?
- What is shortest path using edge weights? [beyond scope of 689]
- Traveling salesman problem [beyond scope of 689]

Adjacency matrix implementations

- Adjacency matrix, n x n matrix of {0,1} if unlabeled or {labels} if edges are labeled; undirected matrices are symmetric
- Wastes space for sparse edges; use sparse matrix
- Fast to access arbitrary node's edges

	а	b	с	d	e	f	g	h	i	j	k	l	m
а	0	1	0	0	1	0	0	0	0	0	0	0	0
b	1	0	1	0	1	1	0	0	0	0	0	0	0
c	0	1	0	1	0	1	1	0	0	0	0	0	0
d	0	0	1	0	0	0	1	0	0	0	0	0	0
e	1	1	0	0	0	1	1	1	0	0	0	0	0
f	0	1	1	0	1	0	1	0	0	0	0	0	0
g	0	0	1	1	1	1	0	0	1	0	0	0	0
h	0	0	0	0	1	0	0	0	0	0	0	0	0
i	0	0	0	0	0	0	1	0	0	0	0	0	0
j	0	0	0	0	0	0	0	0	0	0	1	1	1
k	0	0	0	0	0	0	0	0	0	1	0	1	0
1	0	0	0	0	0	0	0	0	0	1	1	0	1
m	0	0	0	0	0	0	0	0	0	1	0	1	0

Figure 5.11. An adjacency matrix for our example graph.

Adjacency list implementations

- List of edge lists for nodes
- Fast arbitrary node access for numbered nodes, space efficient

Figure 5.9. An adjacency list for our example graph.

Connected nodes implementation

- Most common implementation due to nice mapping to objects
- Each node has info about node and edge list
- Use list or dictionary index if you need to access nodes directly

```
class Node:
    def __init__(self, value):
        self.value = value
        self.edges = []
    def add(self, target:Node):
        self.edges.append(target)
```


Implementation with labels

```
class LNode:
    def __init__(self, value):
        self.value = value
        self.edges = {}
    def add(self, label, target):
        self.edges[label] = target
```

```
Edge->node dictionary, not list sf.add(100,sj) sj.add(150,baker) ...
```


Depth-first search (review)

```
RECURSIVEDFS(v):

if v is unmarked

mark v

for each edge vw

RECURSIVEDFS(w)
```

- The fundamental algorithm for answering graph questions
- Visits all reachable nodes from p, avoiding cycles

```
def walk_graph(p:Node, visited=set()):
   if p in visited: return
   visited.add(p)
   for q in p.edges:
      walk_graph(q, visited)
```


Is there a cycle from p to p?

• If we run into starting node in visited set, return True

```
def iscyclic(p:Node) -> bool:
    return iscyclic_(p,p,set())

def iscyclic_(start:Node, p:Node, visited) -> bool:
    if p in visited:
        if p is start: return True # we find start?
        return False # can't loop forever so stop
    visited.add(p)
    for q in p.edges:
        c = iscyclic_(start, q, visited)
        if c: return True # we can stop
    return False
```

Find set of nodes p can reach

Need two sets, one for avoiding cycles, another for reached nodes

```
def reachable(p:Node) -> set:
    reaches = set();
    reachable_(p, reaches, set())
    return reaches

def reachable_(p:Node, reaches:set, visited:set):
    if p in visited: return
    visited.add(p)
    for q in p.edges:
        reaches.add(q)
        reachable_(q, reaches, visited)
```

Find set of nodes p can reach, track depth

Track node->depth map, not just set of nodes

```
def reachable(p:Node) -> dict:
    reaches = dict()
    reachable_(p, reaches, set(), depth=0)
    return reaches

def reachable_(p:Node, reaches:dict, visited:set, depth:int):
    if p in visited: return
    visited.add(p)
    reaches[p] = depth
    for q in p.edges:
        reachable_(q, reaches, visited, depth+1)
```

Find neighborhood within k edges

Track dict node->depth, stop when we reach depth

```
def neighbors(p:Node, k:int) -> dict:
    reaches = dict()
    neighbors_(p, k, reaches, set(), depth=0)
    return reaches

def neighbors_(p:Node, k:int, reaches:dict, visited:set, depth:int):
    if p in visited or depth>k: return
    visited.add(p)
    reaches[p] = depth
    for q in p.edges:
        neighbors_(q, k, reaches, visited, depth+1)
```

Find path from p to q

```
def path(p:Node, q:Node) -> list:
    return path_(p, q, [p], set())

def path_(p:Node, q:Node, path:list, visited:set):
    if p is q: return path
    if p in visited: return None
    visited.add(p)
    for t in p.edges:
        pa = path_(t, q, path+[t], visited)
        if pa is not None: return pa
    return None
```


Must track path not set of nodes

Breadth-first search vs DFS

• Visit all children then grandchildren...

BFS implementation

Maintains work list of nodes and visited set

BFS	DFS
Visit A	Visit A
Visit B	Visit B
Visit D	Visit C
Visit C	Visit D
Visit E	Visit E

 Add to work list end, pull from front (queue)

Find shortest path from p to q?

- BFS where work list is a list of paths not list of nodes
- Tail of path is where we left off work on it
- By searching all children before going deeper, we automagically find paths with shortest lengths

Topological sort (acyclic graphs) (sort)

 Problem: Find linear ordering of nodes in directed acyclic graph such that all constraints, u->v, are satisfied where u depends on v so v must come before u

- Can also have u->v mean u precedes v. E.g., 502 is prereq for 621 and 601...
 Find order we should take classes
- Sort is not usually unique

Example topological sort

If u depends on v, any linear ordering where edges point to left is solution

Example where u precedes v

• In this case, edges must point to the right

How to approach the problem

What order should we do these tasks (u depends v)?
 Think in terms of traversal order

What if we add party goal?

• BTW, cycles would cause trouble; are meaningless when dealing with dependencies; how can 630-01 be attended before itself?

DFS-based topo sort implementation

- Lots of very complex algorithms on the web
- Simplest solution: DFS-based topological sort
- A valid sort is just the post-order graph traversal if u depends v!
- If u precedes v, reverse the post-order traversal
- Well, we have to make sure to do DFS on all root nodes (nodes w/o incoming edges) but core is just DFS
- With one root, it's just postorder traversal via DFS

Example walk through

DFS starting with party:
 party -> 628 -> 630
 back out then hit 689 then lunch
 back out and hit seminar

- Postorder traversal processes after visiting children:
 630, lunch, seminar, 689, 628, party
- Solution: 630-01, lunch, seminar, 689-02, 628 hw, party

DFS postorder traversal

```
def postorder(p:Node, sorted:set, visited:set):
   if p in visited: return
   visited.add(p)
   for q in p.edges:
        postorder(q, sorted, visited)
   sorted.append(p)
```

With multiple roots, hit them all

Summary

- Graphs are for showing relationships between elements
- DFS for finding a path or multiple paths or cycles
- BFS for find shortest (in edges) path or neighborhood
- DFS postorder great for topo sort
- Recursive alg's all use visited set to avoid cycles
- Non-recursive DFS: (use work list stack)
 - push targets in reverse order onto work list
 - pop last work list item for next node to process
- Non-recursive BFS: (use work list queue)
 - push targets in order onto work list
 - pull from first position

Sample graph problems

Exercise

- Given a directed graph, detect all direct or indirect cycles
- For p in nodes: report iscyclic(p)

Exercise

- Given 2 lists P,Q and function conn(p,q)=true if edge p->q exists. P is origin (starting) nodes and Q destination nodes. Report 1 for P[i] reaches Q[i] directly or indirectly.
- Create graph using conn(p,q) for all nodes in P and Q
- For each P[i], see if Q[i] is in reaches(P[i]) set.

Exercise: Boggle

 Given m x n matrix of letters. Find all English words possible by taking one adjacent step to another letter, starting with any letter; one occurrence of each letter per word; you're given a dictionary (/usr/share/dict/words)

T A E
O C P
O C P

- For each node in graph, find all words
- For a specific starting node p, perform DFS; at each node, look up word consisting of all letters on path from p