

Towards kHz 6-DoF Visual Tracking Using an Egocentric Cluster of Rolling Shutter Cameras

Akash Bapat¹, Enrique Dunn^{1,2} & Jan-Michael Frahm¹, UNC Chapel Hill, USA¹, Stevens Institute of Technology, USA²

AR/VR System Components

AR/VR System Components

Find 6-DoF head pose¹

http://certus.ndigital.com

http://vrshoot.ru/sites/default/files/oculus-rift-dk2-cam.jpg http://i.imgur.com/64LA9Kv.jpg http://cdn.pocketnow.com/wp-content/uploads/2011/04/xpro

LaValle etal, Head Tracking for Oculus Rift

http://certus.ndigital.com

http://vrshoot.ru/sites/default/files/oculus-rift-dk2-cam.jpg http://i.imgur.com/64LA9Kv.jpg http://cdn.pocketnow.com/wp-content/uploads/2011/04/aro.jpg

LaValle etal, Head Tracking for Oculus Rift

http://certus.ndigital.com

http://vrshoot.ru/sites/default/files/oculus-rift-dk2-cam.jpg http://i.imgur.com/64LA9Kv.jpg . LaValle etal, Head Tracking for Oculus Rift

Department of Computer Science 2

[.] http://cdn.pocketnow.com/wp-content/uploads/2011/04/aro.jpg

http://certus.ndigital.com

http://vrshoot.ru/sites/default/files/oculus-rift-dk2-cam.jpg http://i.imgur.com/64LA9Kv.jpg . http://cdn.pocketnow.com/wp-content/uploads/2011/04/aro.jpg

LaValle etal, Head Tracking for Oculus Rift

Rolling shutter capture¹

 Row-by-row acquisition of linescan snapshots at slightly different times

Rolling shutter capture¹

 Row-by-row acquisition of linescan snapshots at slightly different times

Rolling shutter capture¹

Stream of row-images

 Row-by-row acquisition of linescan snapshots at slightly different times

Rolling shutter capture¹

Stream of row-images

 Row-by-row acquisition of linescan snapshots at slightly different times

Rolling shutter capture¹

Stream of row-images

Stream of Rows

- Frequency of row-samples
 - F = FPS * Height = 120 * 720 > 80kHz

Rolling shutter¹

Stream of Rows

- Frequency of row-samples
 - F = FPS * Height = 120 * 720 > 80kHz

Rolling shutter¹

- Enabling component for rendering
 - 1. Zheng et al., 2014
 - 2. Lincoln et al., 2016

- Enabling component for rendering
 - 1. Zheng et al., 2014
 - 2. Lincoln et al., 2016

- Enabling component for rendering
 - 1. Zheng et al., 2014
 - 2. Lincoln et al., 2016
- Use commodity cameras

- Enabling component for rendering
 - 1. Zheng et al., 2014
 - 2. Lincoln et al., 2016
- Use commodity cameras
- Tracking frequency
 - Up to 80 kHz
- Break frame-rate barrier
 - Process each row of image

8

Removing rolling shutter

- Forssen et al., CVPR 2010
- Track points using KLT tracker, estimate rotation
- Parametrize intra-frame rotation as spline

Removing rolling shutter

- Forssen et al., CVPR 2010
- Track
- Parai

Artifact visualisation¹

Removing rolling shutter

- Forssen et al., CVPR 2010
- Track points using KLT tracker, estimate rotation
- Parametrize intra-frame rotation as spline

Geometric problems

- Multi-view stereo: Saurer et al., ICCV 2013
- · Adapt plane sweep stereo for rolling shutter

Artifact visualisation¹

Removing rolling shutter

- Forssen et al., CVPR 2010
- Track points using KLT tracker, estimate rotation
- Parametrize intra-frame rotation as spline

Geometric problems

- Multi-view stereo: Saurer et al., ICCV 2013
- Adapt plane sweep stereo for rolling shutter

Velocity estimation

- Ait-Aider et al., ICVS 2006
- Solve for pose and velocity using bundle adjustment
- Use 2D-3D correspondence, similar to camera calibration

Artifact visualisation¹

- Solve for pose and velocity using bundle adjustment
- Use 2D-3D correspondence, similar to camera calibration

Artifact visualisation¹

Removing rolling shutter

- Forssen et al., CVPR 2010
- Track points using KLT tracker, estimate rotation
- Parametrize intra-frame rotation as spline

Geometric problems

- Multi-view stereo: Saurer et al., ICCV 2013
- Adapt plane sweep stereo for rolling shutter

Velocity estimation

- Ait-Aider et al., ICVS 2006
- Solve for pose and velocity using bundle adjustment
- Use 2D-3D correspondence, similar to camera calibration

Camera Cluster

Our approach

2. http://users.erols.com/njastro/faas/image001/CCD2.jpg

Cluster

Spatial Stereo

Temporal Stereo

Estimation Framework

^{2. &}lt;a href="http://users.erols.com/njastro/faas/image001/CCD2.jpg">http://users.erols.com/njastro/faas/image001/CCD2.jpg

Small vertical FoV

http://shop.gopro.com/hero4/hero4-black/CHDHX-401.html

2. http://users.erols.com/njastro/faas/image001/CCD2.jpg

- N stereo-pairs of rolling shutter camera, N=5
 - Precalibrated intrinsic and extrinsics
 - Temporal sync
 - Known history of motion
- Hi-Ball for ground truth

- N stereo-pairs of rolling shutter camera, N=5
 - Precalibrated intrinsic and extrinsics
 - Temporal sync
 - Known history of motion

Geometry of cluster

Cluster

Spatial Stereo

Temporal Stereo

Estimation Framework

RS cluster

Cluster

Spatial Stereo

Temporal

$$X_{cam_i}^{t+1} = M_{cam_i} \mathbb{V}^1 \qquad X_{cam_i}^t$$

$$X_{cam_i}^{t+1} = V_i M_{cluster} V_i^{-1} X_{cam_i}^t$$

$$\boldsymbol{M}_{cluster} = \begin{bmatrix} R\left(\theta_{x}, \theta_{y}, \theta_{z}\right) & T \\ 0 & 1 \end{bmatrix}$$

$$X_{cam_i}^{t+1} = M_{cam_i} V^1 X_{cam_i}^t$$

$$X_{cam_i}^{t+1} = V_i M_{cluster} V_i^{-1} X_{cam_i}^t$$

$$M_{cluster} = \begin{bmatrix} R(\theta_x, \theta_y, \theta_z) & T \\ 0 & 1 \end{bmatrix} \qquad dM = \begin{bmatrix} 1 & -\theta_z & \theta_y & \delta T_x \\ \theta_z & 1 & -\theta_x & \delta T_y \\ -\theta_y & \theta_x & 1 & \delta T_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$X_{cam_i}^{t+1} = M_{cam_i} V^1 X_{cam_i}^t$$

$$X_{cam_i}^{t+1} = V_i M_{cluster} V_i^{-1} X_{cam_i}^t$$

$$M_{cluster} = \begin{bmatrix} R(\theta_x, \theta_y, \theta_z) & T \\ 0 & 1 \end{bmatrix} \qquad \qquad dM = \begin{bmatrix} 1 & -\theta_z & \theta_y & \delta T_x \\ \theta_z & 1 & -\theta_x & \delta T_y \\ -\theta_y & \theta_x & 1 & \delta T_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$X_{cam_i}^{t+1} = M_{cam_i} V^1 X_{cam_i}^t$$

$$X_{cam_i}^{t+1} = V_i M_{cluster} V_i^{-1} X_{cam_i}^t$$

$$M_{cluster} = \begin{bmatrix} R(\theta_x, \theta_y, \theta_z) & T \\ 0 & 1 \end{bmatrix} \qquad dM = \begin{bmatrix} 1 & -\theta_z & \theta_y & \delta T_x \\ \theta_z & 1 & -\theta_x & \delta T_y \\ -\theta_y & \theta_x & 1 & \delta T_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Stereo Estimation

Stereo Estimation

- Spatial stereo s_d
 - Use stereo-pair of cameras
 - Measure pixel disparity
- Temporal stereo s_t
 - Measure small shifts in pixel
 - Compare row at time t and t-k

Stereo Estimation

- Spatial stereo s_d
 - Use stereo-pair of cameras
 - Measure pixel disparity
- Temporal stereo s_t
 - Measure small shifts in pixel
 - Compare row at time t and t-k

$$\frac{d^2G(x,0,\sigma)}{dx^2} * row$$

19

 $\frac{d^2G(x,0,\sigma)}{dx^2} * row$

Spatial Stereo: Measure Disparity

- Compare binary descriptor of rows of stereo cameras
- Fast hamming cost matching
- $depth = \frac{focal*baseline}{disparity}$

Cluster

Spatial Stereo

Temporal Stereo

Estimation Framework

- Different regions in space are captured at different timestamps
- Stereo in time
 - Need snaps of same space but at different timestamps

Spatial
Stereo

Temporal
Stereo

Estimation
Framework

- Different regions in space are captured at different timestamps
- Stereo in time
 - Need snaps of same space but at different timestamps

Current time

- Different regions in space are captured at different timestamps
- Stereo in time
 - Need snaps of same space but at different timestamps

Current time

Cluster

Spatial Stereo

Temporal Stereo

Estimation

Framework

Spatial
Stereo

Temporal
Stereo

Estimation
Framework

Cluster

- Different regions in space are captured at different timestamps
- Stereo in time
 - Need snaps of same space but at different timestamps

- Spatial
 Stereo

 Temporal
 Stereo

 Estimation
 Framework
- Different regions in space are captured at different timestamps
- Stereo in time
 - Need snaps of same space but at different timestamps

Spatial
Stereo

Temporal
Stereo

Estimation
Framework

- Different regions in space are captured at different timestamps
- Stereo in time
 - Need snaps of same space but at different timestamps

Temporal Stereo: Measure Shift s_t

- Reconstruct row using per- row homography
- Use binary descriptors and hamming distance

Cluster

Spatial Stereo

Temporal Stereo

23

- Leave sufficient motion
 - Row-to-row motion
 - Interpolation & pixel measurement noise

Noisy measurements

Current frame

Reference should not be far away

Cluster

Spatial Stereo

Temporal Stereo

- Leave sufficient motion
 - Row-to-row motion
 - Interpolation & pixel measurement noise

Noisy

Current frame

- Satisfy small-motion assumption
 - Reference should not be far away

Cluster

Spatial Stereo

Temporal Stereo

- Leave sufficient motion
 - Row-to-row motion
 - Interpolation & pixel measurement noise

Current frame

- Satisfy small-motion assumption
 - Reference should not be far away

Cluster

Spatial Stereo

Temporal Stereo

Confidence Scores

High confidence

Low Confidence Spatial
Stereo

Temporal
Stereo

Estimation
Framework

- 1. Quality of minimum: c_{PKR}
 - Is the valley unique?
 - Use Peak ratio (PKR)^[1]
- 2. Temporal consistency : c_t
 - · Consistent shifts in time
 - Penalize sudden changes

3. $c_{i,t} = c_{PKR} * c_t$

Confidence Scores

- High confidence
- Low Confidence
- Temporal Stereo

Estimation Framework

Cluster

Spatial

Stereo

- Quality of minimum: c_{PKR}
 - Is the valley unique?
 - Use Peak ratio (PKR)^[1]
- Temporal consistency: c_t
 - · Consistent shifts in time
 - Penalize sudden changes

3.
$$c_{i,t} = c_{PKR} * c_t$$

$$\mathbf{C}(\mathsf{t}) = \begin{bmatrix} c_{1,t} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & c_{n,t} \end{bmatrix}$$

Motion Estimation

Weighted Linear System

•
$$X_{cam_i}^{t+1} = V_i M_{cluster} V_i^{-1} X_{cam_i}^t$$

- One equation from each camera
- Use more cameras for robustness

$$\begin{bmatrix} \delta T_x \\ \delta T_y \\ \delta T_z \\ \theta_x \\ \theta_y \\ \theta_z \end{bmatrix} = C B$$

Stream of rows

Input

Simulator

- Developed in OpenGL+Qt and Unity3D
 - Support for Hi-Ball tracker data
 - Motion Blur

Simulator

- Developed in OpenGL+Qt and Unity3D
 - Support for Hi-Ball tracker data
 - Motion Blur

Experiments

- Camera specs:
 - 640 × 480 pixels
 - FoV = 60°
 - Stereo pairs = 10
 - 120 fps

- Quantify errors in terms of display pixel errors
 - Display specs : HTC Vive
 - 120° FoV
 - 1080 × 1200 pixels per eye
 - Point 1m in front

Display Pixel Error

_		 	 	

Pixels shown in HMD

Display Pixel Error

Pixels shown in HMD

Experiments : Real motion¹ in Synthetic Room

Experiments : Real motion¹ in Synthetic Room

f= 56.7kHz

Experiments: Synthetic Large Motion

f= 56.7kHz v= 1.4 m/s ω = 120 deg/s

Experiments: Synthetic Large Motion

f= 56.7kHz

Experiments: Synthetic Extreme Motion

f= 56.7 kHz v= 1.4 m/s $\omega = 500 deg/s$

Experiments: Synthetic Extreme Motion

Results for Real Imagery

f= 80.4kHz

- High frequency visual tracker
 - Up to 80 kHz
 - Off-the-shelf cameras

High Frequency

- High frequency visual tracker
 - Up to 80 kHz
 - Off-the-shelf cameras

- High frequency visual tracker
 - Up to 80 kHz
 - Off-the-shelf cameras

- High frequency visual tracker
 - Up to 80 kHz
 - Off-the-shelf cameras

- High frequency visual tracker
 - Up to 80 kHz
 - Off-the-shelf cameras

Thank you!

Contact: akash@cs.unc.edu

Camera tracking: The spectrum

Global Shutter

Rolling Shutter as 1-D sensor

1-D sensor

1-D camera¹

- + No distortion
- + Drift correction
- High cost
- Low fps ≈ 200Hz
- Higher noise
- Distortion
- + Drift correction
- + Cheap
- + High fps, 56 kHz
- + Low noise

- + No distortion
- No drift correction
- + High Cost
- + High fps, till 87 kHz
- Higher noise

