COMS 4771 Machine Learning (2018 Fall) Homework 2

 $\operatorname{Jing\ Qian}$ - jq2282@columbia.edu

November 19, 2018

Problem 3

(Jing, Nov 14)

(i)

With the matrix A, binary vector x_i is hashed to b could be expressed as following:

$$b = Ax_{i}$$

$$\begin{bmatrix} b^{1} \\ b^{2} \\ \dots \\ b^{p} \end{bmatrix} = \begin{bmatrix} A^{1} \\ A^{2} \\ \dots \\ A^{p} \end{bmatrix} x_{i}$$

$$= \begin{bmatrix} (\sum_{l=1}^{n} A^{1l} x_{i}^{l}) \mod 2 \\ (\sum_{l=1}^{n} A^{2l} x_{i}^{l}) \mod 2 \\ \dots \\ (\sum_{l=1}^{n} A^{pl} x_{i}^{l}) \mod 2 \end{bmatrix}$$

$$(1)$$

Take the t-th element of b as an example: $b^t = ((\sum_{l=1}^n A^{tl} x_i^l) \mod 2)$. Since $x^i \in \{0,1\}^n$, supposing there are n_i nonzero elements in x_i , then $\sum_{l=1}^n A^{tl} x_i^l$ is actually to randomly pick nonzero elements from the n_i nonzero elements in x_i . And $b^t = ((\sum_{l=1}^n A^{tl} x_i^l) \mod 2)$ is in fact describing whether we pick even or odd number of nonzero elements from all the nonzero elements in x_i . Since A^t is picked uniformly at random, the probability of the t-th entry of b, $b^t = 0$ is 1/2 and that of $b^t = 1$ is also 1/2. And this is true for any t between 1 and t p. Because different entries of matrix t are independent with each other, t probt prob

(ii)

We could do this problem in two methods.

METHOD 1: From part (i), the probability of x_i hashing to any b is $1/2^p$, the probability of x_j hashing to any b is $1/2^p$. So the probability of x_j hashing to the same vector that x_i is hashing to is $1/2^p$.

METHOD 2: x_i and x_j hash to the same vector means: $Ax_i = Ax_j$

$$\begin{bmatrix} (\sum_{l=1}^{n} A^{1l} x_i^l) \mod 2 \\ (\sum_{l=1}^{n} A^{2l} x_i^l) \mod 2 \\ & \dots \\ (\sum_{l=1}^{n} A^{pl} x_i^l) \mod 2 \end{bmatrix} = \begin{bmatrix} (\sum_{l=1}^{n} A^{1l} x_j^l) \mod 2 \\ (\sum_{l=1}^{n} A^{2l} x_j^l) \mod 2 \\ & \dots \\ (\sum_{l=1}^{n} A^{pl} x_j^l) \mod 2 \end{bmatrix}$$
(2)

Then

$$\begin{bmatrix}
(\sum_{l=1}^{n} A^{1l}[x_i^l - x_j^l]) \mod 2 \\
(\sum_{l=1}^{n} A^{2l}[x_i^l - x_j^l]) \mod 2 \\
& \dots \\
(\sum_{l=1}^{n} A^{pl}[x_i^l - x_j^l]) \mod 2
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
\dots \\
0
\end{bmatrix}$$
(3)

which means $A(x_i - x_j) = 0$.

Supposing x_i and x_j have m different elements. Then any $A^t(x_i - x_j) = 0$ for $(1 \le t \le p)$ means to pick even number of elements from the m elements. This is the probability of a random variable X with binomial distribution Binomial (m, p_x) being even where $p_x = 1/2$ because this is a random and uniform case. So:

$$Prob(A^{t}(x_{i} - x_{j}) = 0) = Prob (X_{m,p_{x}} \text{ is even})$$

$$= \frac{1}{2}(1 + (1 - 2p_{x})^{m})$$

$$= \frac{1}{2}(1 + (1 - 2 \times \frac{1}{2})^{m})$$

$$= \frac{1}{2}$$

$$(4)$$

Because diffferent elements of b are independent with each other, $Prob(A(x_i - x_j) = 0) = \prod_{t=1}^{p} Prob(A^t(x_j - x_j) = 0) = \prod_{t=1}^{p} 1/2 = 1/2^p$.

(iii)

The probability of no collisions among the x_i could be represented as following:

Prob (no collisions) = 1 - Prob (exist collisions)

$$\geq 1 - \sum_{1 \leq i < j \leq m} \operatorname{Prob}(x_i, x_j \text{ collide})$$

$$= 1 - \sum_{1 \leq i < j \leq m} 1/2^p$$

$$= 1 - \binom{m}{2} \frac{1}{2^p}$$

$$= 1 - \frac{m(m-1)}{2} \frac{1}{2^p}$$

$$\geq 1 - \frac{m^2}{2} \frac{1}{2^p}$$

$$\geq 1 - \frac{m^2}{2} \frac{1}{2^p}$$

If $p \ge 2\log_2 m$,

Prob (no collisions)
$$\geq 1 - \frac{m^2}{2} \frac{1}{2^p}$$

 $\geq 1 - \frac{m^2}{2} \frac{1}{m^2}$
 $= 1 - 1/2$
 $= 1/2$ (6)

So if $p \ge 2 \log_2 m$, there are no collisions among the x_i with probability at least 1/2.