ゼミ用ノート 会田先生の資料"Rough path analysis:An Introduction"

基礎工学研究科システム創成専攻 学籍番号 29C17095 百合川尚学

2018年4月20日

目次

0.1	導入	1
0.2	連続性定理	5
0.3	Young 積分 1	18

0.1 導入

以下,d 次元ベクトル $x \in \mathbb{R}^d$ と (m,d) 行列 $a \in \mathbb{R}^m \otimes \mathbb{R}^d$ について,成分を込めて表現する場合は $x = (x^1, \cdots, x^d)$, $a = (a^i_j)_{1 \leq i \leq m, 1 \leq j \leq d}$ と書く.また T > 0 を固定し $C^1 = C^1([0,T] \to \mathbb{R}^d)$ とおく. (端点においては片側微分を考える.) 区間 $[s,t] \subset [0,T]$ の分割を $D = \{s = t_0 < t_1 < \cdots < t_N = t\}$ で表現し,分割の全体を $\delta[s,t]$ とおく. $|D| := \max_{1 \leq i \leq N} |t_i - t_{i-1}|$ とし,

$$\sum_{D} = \sum_{i=1}^{N}$$

と略記する.

定理 0.1.1 (Riemann-Stieltjes 積分). $[s,t] \subset [0,T]$ とし, $D \in \delta[s,t]$ についてのみ考えるとき,任意の $x \in C^1$, $f \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して次の極限が存在する:*1

$$\lim_{|D|\to 0} \sum_{D} f(x_{s_{i-1}})(x_{t_i} - x_{t_{i-1}}) \in \mathbb{R}^m.$$

 s_{i-1} は区間 $[t_{i-1},t_i]$ に属する任意の点であり、極限は s_{i-1} の取り方に依らない.

証明. 各 x^j は C^1 -級であるから、平均値の定理より $\sum_D f(x_{s_{i-1}})(x_{t_i}-x_{t_{i-1}})$ の第k成分を

$$\sum_{j=1}^{d} \sum_{D} f_{j}^{k}(x_{s_{i-1}})(x_{t_{i}}^{j} - x_{t_{i-1}}^{j})$$

$$= \sum_{j=1}^{d} \sum_{D} f_{j}^{k}(x_{s_{i-1}})\dot{x}_{\xi_{i}}^{j}(t_{i} - t_{i-1}), \quad (\exists \xi_{i} \in [t_{i-1}, t_{i}])$$

と表現できる. 各 j,k について

$$\lim_{|D| \to 0} \sum_{D} f_j^k(x_{s_{i-1}}) \dot{x}_{\xi_i}^j(t_i - t_{i-1})$$

 $^{^{*1}}$ 極限の存在を保証する条件としては、f の有界性と微分可能性は必要ない.

は通常の連続関数の Riemann 積分

$$\int_{s}^{t} f_{j}^{k}(x_{u}) \dot{x}_{u}^{j} du$$

に収束する.

定義 0.1.2 (C^1 -級のパスに対する汎関数). $x \in C^1$ と $f \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して, $[s,t] \subset [0,T]$ における Riemann-Stieltjes 積分を I で表現する:

$$I_{s,t}(x) = \int_{s}^{t} f(x_u) dx_u := \lim_{|D| \to 0} \sum_{D} f(x_{t_{i-1}})(x_{t_i} - x_{t_{i-1}}),$$
$$\left[\int_{s}^{t} f(x_u) dx_u \right]^{k} = \sum_{j=1}^{d} \int_{s}^{t} f_j^{k}(x_u) dx_u^{j}, \quad (k = 1, \dots, m).$$

ただし $D \in \delta[s,t]$ のみを考える.

 C^1 は次で定めるノルム $\|\cdot\|_{C^1}$ により Banach 空間となる:

$$||x||_{C^1} := \sup_{t \in [0,T]} |x(t)| + \sup_{t \in [0,T]} |\dot{x}(t)|.$$

定理 0.1.3 ($\|\cdot\|_{C^1}$ に関する連続性). $[s,t] \subset [0,T]$ とし, C^1 には $\|\cdot\|_{C^1}$ でノルム位相を入れる.このとき, $C^1 \ni x \longmapsto I_{s,t}(x) \in \mathbb{R}^m$ は連続である.

証明. C^1 の第一可算性により点列連続性と連続性は一致するから, $x^n \longrightarrow x$ のとき $I_{s,t}(x^n) \longrightarrow I_{s,t}(x)$ が従うことを示せばよい. 各 j,k について

$$\int_{s}^{t} f_{j}^{k}(x_{u}^{n}) dx_{u}^{n,j} \longrightarrow \int_{s}^{t} f_{j}^{k}(x_{u}) dx_{u}^{j}, \quad (n \longrightarrow \infty)$$
 (1)

が成り立つことを示せば十分である. 連続性より $M := \sup_{u \in [s,t]} |f(x_u)| < \infty$ が定まり

$$\left| \int_{s}^{t} f_{j}^{k}(x_{u}^{n}) dx_{u}^{n,j} - \int_{s}^{t} f_{j}^{k}(x_{u}) dx_{u}^{j} \right| = \left| \int_{s}^{t} f_{j}^{k}(x_{u}^{n}) \dot{x}_{u}^{n,j} du - \int_{s}^{t} f_{j}^{k}(x_{u}) \dot{x}_{u}^{j} du \right|$$

$$\leq \int_{s}^{t} \left| f_{j}^{k}(x_{u}^{n}) \dot{x}_{u}^{n,j} - f_{j}^{k}(x_{u}^{n}) \dot{x}_{u}^{j} \right| du + \int_{s}^{t} \left| f_{j}^{k}(x_{u}^{n}) \dot{x}_{u}^{j} - f_{j}^{k}(x_{u}) \dot{x}_{u}^{j} \right| du$$

$$\leq M \| x^{n} - x \|_{C^{1}} (t - s) + \sup_{u \in [s,t]} \left| f_{j}^{k}(x_{u}^{n}) - f_{j}^{k}(x_{u}) \right| \| x \|_{C^{1}} (t - s)$$

$$(2)$$

が成り立つ. いま,任意に $\epsilon > 0$ を取れば,或る $\epsilon > \delta > 0$ が存在して $v,w \in x([s,t]), |v-w| < \delta$ なら $|f_j^k(v) - f_j^k(w)| < \epsilon$ を満たす(一様連続). すなわち $\|x^{(n)} - x\|_{C^1} < \delta$ なら

$$\sup_{t \in [s,t]} \left| f_j^k(x_t^n) - f_j^k(x_t) \right| < \epsilon$$

が成立する. $\|x^n-x\|_{C^1}\longrightarrow 0$ の仮定より,或る自然数 N が存在して $\|x^n-x\|_{C^1}<\delta$ (n>N) が満たされるから, $(2)<\epsilon[M(t-s)+\|x\|_{C^1}$ (t-s)] (n>N) が成り立ち (1) が従う.

定義 0.1.4 (p-variation). [0,T] 上の \mathbb{R}^d 値関数 x に対し,p-variation を次で定める:

$$||x||_{p,[s,t]} := \left\{ \sup_{D \in \delta[s,t]} \sum_{D} |x_{t_i} - x_{t_{i-1}}|^p \right\}^{1/p}.$$

特に, $\|\cdot\|_{p,[0,T]}$ を $\|\cdot\|_p$ と表記する.また $p\geq 1$ として,線形空間 $B_{p,T}(\mathbb{R}^d)$ を

$$B_{p,T}(\mathbb{R}^d) := \left\{ x : [0,T] \longrightarrow \mathbb{R}^d ; \quad x_0 = 0, \ x : \text{continuous}, \ \|x\|_p < \infty \right\}$$

により定める.

次の結果によれば、 $0 に対し <math>B_{p,T}(\mathbb{R}^d)$ を定めても 0 の定数関数のみの空間でしかない.

定理 0.1.5~(0 に対して有界 <math>p-variation なら定数). $x:[0,T] \longrightarrow \mathbb{R}^d$ を連続関数とする. このとき, $p \in (0,1)$ に対し $\|x\|_p < \infty$ が成り立つなら x は定数関数である.

証明. $t \in [0,T]$ を任意に取り固定する. このとき全ての $D \in \delta[0,t]$ に対して,

$$|x_{t} - x_{0}| \leq \sum_{D} |x_{t_{i}} - x_{t_{i-1}}| \leq \max_{D} |x_{t_{i}} - x_{t_{i-1}}|^{1-p} \sum_{D} |x_{t_{i}} - x_{t_{i-1}}|^{p}$$

$$\leq \max_{D} |x_{t_{i}} - x_{t_{i-1}}|^{1-p} ||x||_{p}$$

が成り立ち, x の一様連続性から右辺は $|D| \longrightarrow 0$ で 0 に収束し, $x_t = x_0$ が従う.

定理 0.1.6. $1 \le p \le q$ に対し $B_{p,T}(\mathbb{R}^d) \subset B_{q,T}(\mathbb{R}^d)$ が成立する.

証明. 任意の $x \in B_{p,T}(\mathbb{R}^d)$ と $D \in \delta[0,T]$ に対し

$$\sum_{D} |x_{t_{i}} - x_{t_{i-1}}|^{q} \leq \sum_{D} |x_{t_{i}} - x_{t_{i-1}}|^{p} |x_{t_{i}} - x_{t_{i-1}}|^{q-p}$$

$$\leq 2^{q-p} \sup_{t \in [0,T]} |x_{t}|^{q-p} \sum_{D} |x_{t_{i}} - x_{t_{i-1}}|^{p}$$

$$\leq 2^{q-p} \sup_{t \in [0,T]} |x_{t}|^{q-p} ||x||_{p}^{p}$$

が成立する.

 $p \ge 1$ の場合, Minkowski の不等式によれば, 任意の $D \in \delta[s,t]$ に対し

$$\left\{ \sum_{D} \left| (x_{t_{i}} + y_{t_{i}}) - (x_{t_{i-1}} + y_{t_{i-1}}) \right|^{p} \right\}^{1/p} \leq \left\{ \sum_{D} \left| x_{t_{i}} - x_{t_{i-1}} \right|^{p} \right\}^{1/p} + \left\{ \sum_{D} \left| y_{t_{i}} - y_{t_{i-1}} \right|^{p} \right\}^{1/p} \\
\leq \left\| x \right\|_{p,[s,t]} + \left\| y \right\|_{p,[s,t]}$$

が成り立ち $\|x+y\|_{p,[s,t]} \le \|x\|_{p,[s,t]} + \|y\|_{p,[s,t]}$ を得る.

定理 0.1.7. $B_{p,T}(\mathbb{R}^d)$ は $\|\cdot\|_p$ をノルムとする Banach 空間である.

証明. 完備性を示す.

第一段 $(x^n)_{n=1}^\infty\subset B_{p,T}(\mathbb{R}^d)$ を Cauchy 列とすれば、任意の $\epsilon>0$ に対して或る $n_\epsilon\in\mathbb{N}$ が存在し

$$\|x^{n} - x^{m}\|_{p} = \left\{ \sup_{D \in \delta[0,T]} \sum_{D} \left| \left(x_{t_{i}}^{n} - x_{t_{i}}^{m} \right) - \left(x_{t_{i-1}}^{n} - x_{t_{i-1}}^{m} \right) \right|^{p} \right\}^{1/p} < \epsilon, \quad (n, m > n_{\epsilon})$$

を満たす. いま, 任意の $t \in [0,T]$ に対して [0,T] の分割 $D = \{0 \le t \le T\}$ を考えれば

$$|x_t^n - x_t^m| < \epsilon, \quad (n, m > n_\epsilon)$$

が得られ、実数の完備性より或る $x_t \in \mathbb{R}^d$ が存在して

$$|x_t^n - x_t| < \epsilon \quad (n > n_\epsilon)$$

を満たす. この収束は t に関して一様であるから, $t \mapsto x_t$ は 0 出発かつ連続である.

第二段 $\|x^n - x\|_n \longrightarrow 0 (n \longrightarrow \infty)$ を示す. 前段によれば、任意の $D \in \delta[0,T]$ に対し

$$\sum_{D} \left| (x_{t_i}^m - x_{t_i}^n) - (x_{t_{i-1}}^m - x_{t_{i-1}}^n) \right|^p < \epsilon^p, \quad (n, m > n_{\epsilon})$$

が成り立っている. D はせいぜい有限個の分割であるから, $m \longrightarrow \infty$ として

$$\sum_{D} \left| (x_{t_i} - x_{t_i}^n) - (x_{t_{i-1}} - x_{t_{i-1}}^n) \right|^p < \epsilon^p, \quad (n > n_{\epsilon})$$

が従い,D の任意性より $\|x^n - x\|_p < \epsilon (n > n_\epsilon)$ を得る.

定理 0.1.8. $p \ge 1$ とする. また $x_0 = 0$ を満たす $x \in C^1$ の全体が作る線形空間を \tilde{C}^1 とおく.

- (1) $x \in C^1$ ならば $\|x\|_p < \infty$ が成り立つ、ただちに、 $\|\cdot\|_p$ は \tilde{C}^1 においてノルムとなる、
- (2) \tilde{C}^1 において, $\|\cdot\|_{C^1}$ で導入する位相は $\|\cdot\|_n$ で導入する位相より強い.

証明.

p=1 の場合 平均値の定理より、任意の $D \in \delta[0,T]$ に対し

$$\sum_{D} \left| x_{t_i} - x_{t_{i-1}} \right| \le \sum_{D} \| x \|_{C^1} \left(t_i - t_{i-1} \right) = \| x \|_{C^1} T < \infty$$

が成り立ち $||x||_1 < \infty$ が従う.

p>1 の場合 q を p の共役指数とする. 任意の $D \in \delta[0,T]$ に対し、Hölder の不等式より

$$\sum_{D} |x_{t_{i}} - x_{t_{i-1}}|^{p} = \sum_{D} \left| \int_{t_{i-1}}^{t_{i}} \dot{x}_{u} du \right|^{p} \leq \sum_{D} (t_{i} - t_{i-1}) \left(\int_{t_{i-1}}^{t_{i}} |\dot{x}_{u}|^{q} du \right)^{p/q}$$

$$\leq \sum_{D} (t_{i} - t_{i-1}) \left(\int_{0}^{T} ||x||_{C^{1}}^{q} du \right)^{p/q} = ||x||_{C^{1}}^{p} T^{p}$$

が成立し、 $||x||_p < \infty$ が従う.

以上より, $p \ge 1$ ならば $\|x\|_p \le T \|x\|_{C^1}$ $(x \in C^1)$ が成り立ち (2) の主張を得る.

次節の考察対象は主に定理 0.1.3 と定理 0.1.8 に関係する.定理 0.1.3 によれば, C^1 に $\|\cdot\|_{C^1}$ でノルム位相を導入した場合, $f \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して $C^1 \ni x \longmapsto I_{s,t}(x)$ は連続である.一方で定理 0.1.3 によれば,0 出発 C^1 -パス空間 \tilde{C}^1 に $\|\cdot\|_p$ でノルム位相を導入した場合, $\tilde{C}^1 \ni x \longmapsto I_{s,t}(x)$ が連続であるという保証はない.しかし,次節以後の結果により, $1 \le p < 3$ かつ $f \in C^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ が満たされているなら $\tilde{C}^1 \ni x \longmapsto I_{s,t}(x)$ は或る意味での連続性を持つ.

0.2 連続性定理

定義 0.2.1 (記号の定義). $x \in C^1$, $f \in C^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対し次を定める.

$$\Delta_{T} := \{ (s,t) ; \quad 0 \leq s \leq t \leq T \},$$

$$X^{1} : \Delta_{T} \longrightarrow \mathbb{R}^{d} \left((s,t) \longmapsto X_{s,t}^{1} = x_{t} - x_{s} \right),$$

$$X^{2} : \Delta_{T} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d} \left((s,t) \longmapsto X_{s,t}^{2} = \int_{s}^{t} (x_{u} - x_{s}) \otimes dx_{u} \right),$$

$$\tilde{I}_{s,t}(x) := f(x_{s})X_{s,t}^{1} = f(x_{s})(x_{t} - x_{s}),$$

$$J_{s,t}(x) := f(x_{s})X_{s,t}^{1} + (\nabla f)(x_{s})X_{s,t}^{2}.$$

以降, $a,b,c,d \in \mathbb{R}^d$ に対して次の表現を使う:

$$[a \otimes b]_{j}^{i} = a^{i}b^{j},$$

$$\left[(\nabla f)(x_{s})X_{s,t}^{2} \right]^{i} = \sum_{j,k=1}^{d} \partial_{k} f_{j}^{i}(x_{s}) \int_{s}^{t} \left(x_{u}^{k} - x_{s}^{k} \right) dx_{u}^{j},$$

$$\left[(\nabla f)(x_{s})(a \otimes b) \right]^{i} = \sum_{j,k=1}^{d} \partial_{k} f_{j}^{i}(x_{s}) a^{k}b^{j},$$

$$\left[(\nabla^{2} f)(x_{s})(a \otimes b \otimes c) \right]^{i} = \sum_{j,k,\nu=1}^{d} \partial_{\nu} \partial_{k} f_{j}^{i}(x_{s}) a^{\nu}b^{k}c^{j},$$

$$\left[(\nabla^{3} f)(x_{s})(a \otimes b \otimes c \otimes d) \right]^{i} = \sum_{j,k,\nu=1}^{d} \partial_{w} \partial_{\nu} \partial_{k} f_{j}^{i}(x_{s}) a^{w}b^{\nu}c^{k}d^{j}.$$

定理 0.2.2. $[s,t] \subset [0,T], \ x \in C^1, \ f \in C^2(\mathbb{R}^d,L(\mathbb{R}^d \to \mathbb{R}^m))$ とする. $D \in \delta[s,t]$ に対し

$$\tilde{I}_{s,t}(x,D) \coloneqq \sum_{D} \tilde{I}_{t_{i-1},t_i}(x), \quad J_{s,t}(x,D) \coloneqq \sum_{D} J_{t_{i-1},t_i}(x)$$

を定めるとき,次が成立する:

$$I_{s,t}(x) = \lim_{|D| \to 0} \tilde{I}_{s,t}(x,D) = \lim_{|D| \to 0} J_{s,t}(x,D).$$

証明. 第一の等号は $I_{s,t}(x)$ の定義によるから、第二の等号を証明する. まず、

$$\begin{split} I_{s,t}(x) &= \int_{s}^{t} f(x_{u}) \, dx_{u} \\ &= \int_{s}^{t} f(x_{s}) + f(x_{u}) - f(x_{s}) \, dx_{u} \\ &= \int_{s}^{t} f(x_{s}) \, dx_{u} + \int_{s}^{t} \int_{0}^{1} (\nabla f)(x_{s} + \theta(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes \dot{x}_{u} \right) \, d\theta \, du \\ &= f(x_{s}) X_{s,t}^{1} + (\nabla f)(x_{s}) X_{s,t}^{2} \\ &+ \int_{s}^{t} \int_{0}^{1} \left\{ (\nabla f)(x_{s} + \theta(x_{u} - x_{s})) - (\nabla f)(x_{s}) \right\} \left(X_{s,u}^{1} \otimes \dot{x}_{u} \right) \, d\theta \, du \\ &= J_{s,t}(x) + \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta} (\nabla^{2} f)(x_{s} + r(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes X_{s,u}^{1} \otimes \dot{x}_{u} \right) \, dr \, d\theta \, du \end{split}$$

が成り立つ. $[0,T] \ni t \mapsto x_t$ の連続性より、最下段式中の $x_s + r(x_u - x_s)$ $(0 \le r \le 1, s \le u \le t)$ は或るコンパクト集合 K に含まれ、f が C^2 -級関数であるから

$$M := \sum_{i,i,k,\nu} \sup_{x \in K} \left| \partial_{\nu} \partial_{k} f_{j}^{i}(x) \right|$$

として *M* < ∞ を定めれば

$$\left| \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta} (\nabla^{2} f)(x_{s} + r(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes X_{s,u}^{1} \otimes \dot{x}_{u} \right) dr d\theta du \right|$$

$$\leq \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta} \left| (\nabla^{2} f)(x_{s} + r(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes X_{s,u}^{1} \otimes \dot{x}_{u} \right) \right| dr d\theta du$$

$$\leq M \int_{s}^{t} |X_{s,u}^{1}|^{2} |\dot{x}_{u}| du$$

$$\leq M ||x||_{C^{1}}^{3} \int_{s}^{t} (u - s)^{2} du$$

が出る. 特に $D \in \delta[s,t]$ に対して

$$\sum_{D} \int_{t_{i-1}}^{t_i} (u - t_{i-1})^2 du \le \sum_{D} |D| \int_{t_{i-1}}^{t_i} (u - t_{i-1}) du$$

$$\le \sum_{D} |D| \int_{t_{i-1}}^{t_i} (u - s) du \le \frac{1}{2} (t - s)^2 |D| \longrightarrow 0 \quad (|D| \longrightarrow 0)$$

が成立するから,

$$\left|I_{s,t}(x)-J_{s,t}(x,D)\right|\leq \sum_{D}\left|I_{t_{i-1},t_{i}}(x)-J_{t_{i-1},t_{i}}(x)\right|\longrightarrow 0\quad (|D|\longrightarrow 0)$$

が従い定理の主張を得る.

定義 0.2.3 (control function). 関数 $\omega: \Delta_T \longrightarrow [0,\infty)$ が連続かつ任意の $s \le u \le t$ に対して

$$\omega(s, u) + \omega(u, t) \le \omega(s, t) \tag{3}$$

を満たすとき, ω を control function と呼ぶ.

式 (3) から $\omega(t,t)=0$ ($\forall t\in[0,T]$) が従う. つまり control function は"対角線上で 0 になる".

定義 0.2.4 (ノルム空間値写像の p-variation). $(V, \|\cdot\|)$ をノルム空間, $p \ge 1$ とする. このとき連続写像 $\psi: \Delta_T \longrightarrow V$ に対する p-variation を

$$\|\psi\|_{p,[s,t]} := \left\{ \sup_{D \in \delta[s,t]} \sum_{D} \|\psi_{t_{i-1},t_i}\|^p \right\}^{1/p}, \quad ((s,t) \subset [0,T])$$

で定める. 特に $\|\cdot\|_{p,[0,T]}$ を $\|\cdot\|_p$ と書く.

定理 0.2.5 (p-variation が定める control function). $(V, \|\cdot\|)$ をノルム空間, $p \ge 1$ とする. $\|\psi\|_p < \infty$ かつ $\psi_{t,t} = 0$ ($\forall t \in [0,T]$) を満たす連続写像 $\psi: \Delta_T \longrightarrow V$ に対して,

$$\omega: \Delta_T \ni (s,t) \longmapsto \|\psi\|_{p,[s,t]}^p$$

により定める ω は control function である.

証明. $\|\psi\|_p < \infty$ の仮定より ω は $[0,\infty)$ 値であるから、以下では式 (3) の成立と連続性を示す.

第一段 ω が式 (3) を満たすことを示す. 実際, 任意に $D_1 \in \delta[s,u], D_2 \in \delta[u,t]$ を取れば

$$\sum_{D_1} \left\| \psi_{t_{i-1},t_i} \right\|^p + \sum_{D_2} \left\| \psi_{t_{i-1},t_i} \right\|^p = \sum_{D_1 \cup D_2} \left\| \psi_{t_{i-1},t_i} \right\|^p \le \left\| \psi \right\|_{p:[s,t]}^p$$

が成り立つ、左辺の D_1, D_2 の取り方は独立であるから、それぞれに対し上限を取れば

$$\left\|\psi\right\|_{p:[s,u]}^p + \left\|\psi\right\|_{p:[u,t]}^p \leq \left\|\psi\right\|_{p:[s,t]}^p$$

が従う.

第二段 任意の $[s,t] \subset [0,T]$ について *2 ,

$$\lim_{h \to +0} \omega(s, t+h) = \inf_{h > 0} \omega(s, t+h), \qquad \lim_{h \to +0} \omega(s-h, t) = \inf_{h > 0} \omega(s-h, t),$$

$$\lim_{h \to +0} \omega(s, t-h) = \sup_{h > 0} \omega(s, t-h), \qquad \lim_{h \to +0} \omega(s+h, t) = \sup_{h > 0} \omega(s+h, t)$$

が成立する. 実際 $\omega(s,t+h)$ について見れば、これは下に有界かつ $h \to +0$ に対し単調減少であるから極限が確定し下限に一致する. 残りの三つも同様の理由で成立する.

第三段 任意の $s \in [0,T)$ に対し、 $(s,T] \ni t \mapsto \omega(s,t)$ の左連続性を示す.ここでは

$$\tilde{\omega}(s,t) := \begin{cases} \lim_{h \to +0} \omega(s,t-h), & (s < t), \\ 0, & (s = t), \end{cases} \quad (\forall (s,t) \in \Delta_T)$$

で定める \tilde{a} が優加法性を持ち、かつ

$$\|\psi_{s,t}\|^p \le \tilde{\omega}(s,t), \quad (\forall (s,t) \in \Delta_T)$$

を満たすことを示す. 実際これが示されれば, 任意の $D \in \delta[s,t]$ に対し

$$\sum_{D} \left\| \psi_{t_{i-1},t_i} \right\|^p \le \sum_{D} \tilde{\omega}(t_{i-1},t_i) \le \tilde{\omega}(s,t)$$

 $^{*^2}$ 下段の二式については s < t と仮定する. また上段についても, t = T 或は s = 0 の場合を除く必要がある.

が成立し $\omega(s,t) \leq \tilde{\omega}(s,t)$ が従い、 $\omega(s,t) \geq \omega(s,t-h)$ ($\forall h > 0$) と併せて

$$\omega(s,t) = \tilde{\omega}(s,t) = \lim_{h \to +0} \omega(s,t-h)$$

を得る. いま, 任意に s < u < t を取れば, 十分小さい $h_1, h_2 > 0$ に対して

$$\omega(s, u - h_1) + \omega(u, t - h_2) \le \omega(s, t - h_2)$$

が満たされ, $h_1 \longrightarrow +0$, $h_2 \longrightarrow +0$ として

$$\tilde{\omega}(s, u) + \tilde{\omega}(u, t) \le \tilde{\omega}(s, t)$$

が成り立ち $\tilde{\omega}$ は優加法性を持つ. また, もし或る $[u,v] \subset [0,T]$ に対して

$$\|\psi_{u,v}\|^p > \tilde{\omega}(u,v)$$

が成り立つと仮定すると

$$\|\psi_{u,v}\|^p > \tilde{\omega}(u,v) \ge \omega(u,v-h) \ge \|\psi_{u,v-h}\|^p$$
, $(\forall h > 0)$

となる. 一方 ψ の連続性より $\|\psi_{u,v-h}\|^p \longrightarrow \|\psi_{u,v}\|^p$ $(h \longrightarrow +0)$ が従い矛盾が生じる. 同様にして, 任意の $t \in (0,T]$ に対し $[0,t) \ni s \longmapsto \omega(s,t)$ の右連続性も出る.

第四段 任意の $t \in [0,T)$ に対して次を示す:

$$\lim_{h\to+0}\omega(t,t+h)=\inf_{h>0}\omega(t,t+h)=0.$$

第一の等号は前段より従うから、第二の等号を背理法により証明する. いま

$$\inf_{h>0} \omega(t, t+h) =: \delta > 0$$

と仮定する. ψ の連続性より或る h_1 が存在して

$$\|\psi_{t,t+h}\|^p = \|\psi_{t,t+h} - \psi_{t,t}\|^p < \frac{\delta}{8}, \quad (\forall h < h_1)$$
 (4)

が成立するから、任意に $h_0 < h_1$ を取り固定する. 一方で $\omega(t, t + h_0) \ge \delta$ より

$$\sum_{i=1}^{N} \left\| \psi_{\tau_{i-1},\tau_i} \right\|^p > \frac{7\delta}{8}$$

を満たす $D = \{t = \tau_0 < \tau_1 < \cdots, \tau_N = t + h_0\} \in \delta[t, t + h_0]$ が存在し、(4) と併せて

$$\sum_{i=2}^{N} \| \psi_{\tau_{i-1},\tau_i} \|^p > \frac{7\delta}{8} - \| \psi_{t,\tau_1} \|^p > \frac{7\delta}{8} - \frac{\delta}{8} = \frac{3\delta}{4}$$

を得る. また, $\omega(t,\tau_1) \geq \delta$ より或る $D' \in \delta[t,\tau_1]$ が存在して

$$\sum_{P'} \left\| \psi_{t_{i-1},t_i} \right\|^p > \frac{3\delta}{4}$$

を満たすから、 $D' \cup \{\tau_1 < \cdots, \tau_N = t + h_0\} \in \delta[t, t + h_0]$ より

$$\omega(t, t + h_0) > \sum_{D'} \|\psi_{t_{i-1}, t_i}\|^p + \sum_{i=2}^N \|\psi_{\tau_{i-1}, \tau_i}\|^p > \frac{3\delta}{2}$$

が従うが、 $h_0 < h_1$ の任意性と単調減少性により

$$\delta = \inf_{h>0} \omega(t, t+h) = \inf_{h_1 > h > 0} \omega(t, t+h) \ge \frac{3\delta}{2}$$

となり矛盾が生じる. 同様にして

$$\lim_{h \to +0} \omega(t - h, t) = 0, \quad (\forall t \in (0, T])$$

も成立する.

第五段 任意に $s \in [0,T)$ を取り固定し、 $[s,T) \ni t \mapsto \omega(s,t)$ が右連続であることを示す.

$$\lim_{h \to +0} \omega(s, t+h) \le \omega(s, t) \tag{5}$$

を示せば、第二段より逆向きの不等号も従い右連続性を得る、任意に $h.\epsilon>0$ を取れば、

$$\omega(s, t+h) - \epsilon \le \sum_{D} \|\psi_{t_{i-1}, t_i}\|^p$$

を満たす $D \in \delta[s,t+h]$ が存在する. $D_1 \coloneqq [s,t] \cap D$ とおいて $D_1 = \{t_0 < \cdots < t_k\}$ と表されているとする. このとき $D_2 \coloneqq D \setminus (D_1 \cup \{t_{k+1}\})$ として

$$\omega(s,t+h) - \epsilon \leq \sum_{i=1}^{k} \|\psi_{t_{i-1},t_{i}}\|^{p} + \|\psi_{t_{k},t_{k+1}}\|^{p} + \sum_{D_{2}} \|\psi_{t_{i-1},t_{i}}\|^{p}$$

$$= \sum_{i=1}^{k} \|\psi_{t_{i-1},t_{i}}\|^{p} + \|\psi_{t_{k},t}\|^{p} + \|\psi_{t_{k},t_{k+1}}\|^{p} - \|\psi_{t_{k},t}\|^{p} + \sum_{D_{2}} \|\psi_{t_{i-1},t_{i}}\|^{p}$$

$$\leq \omega(s,t) + \omega(t,t+h) + \|\psi_{t_{k},t_{k+1}}\|^{p} - \|\psi_{t_{k},t}\|^{p}$$

が成り立つ. ψ の (一様) 連続性より $\|\psi_{t_k,t_{k+1}}\|^p \longrightarrow \|\psi_{t_k,t}\|^p$ $(h \longrightarrow +0)$ が成り立つから

$$\lim_{h \to +0} \omega(s, t+h) - \epsilon \le \omega(s, t)$$

が従い, ϵ の任意性より (5) が出る. 同様にして $s \mapsto \omega(s,t)$ の左連続性も成立する. 第六段 ω の $(s,t) \in \Delta_T$ における連続性を示す. $h,k \geq 0$ として考えれば,

$$\begin{aligned} |\omega(s,t) - \omega(s-h,t-k)| \\ &\leq |\omega(s,t) - \omega(s-h,t)| + |\omega(s-h,t) - \omega(s-h,t-k)| \\ &= |\omega(s,t) - \omega(s-h,t)| + \omega(s-h,t) - \omega(s-h,t-k) \\ &\leq |\omega(s,t) - \omega(s-h,t)| + \omega(s-h,t) - \omega(s,t-k) \\ &\leq |\omega(s,t) - \omega(s-h,t)| + |\omega(s-h,t) - \omega(s,t)| + |\omega(s,t) - \omega(s,t-k)|, \\ |\omega(s,t) - \omega(s+h,t+k)| \\ &\leq |\omega(s,t) - \omega(s+h,t)| + |\omega(s+h,t) - \omega(s+h,t+k)| \\ &= |\omega(s,t) - \omega(s+h,t)| + \omega(s+h,t+k) - \omega(s+h,t) \\ &\leq |\omega(s,t) - \omega(s+h,t)| + \omega(s,t+k) - \omega(s+h,t) \\ &\leq |\omega(s,t) - \omega(s-h,t)| + |\omega(s,t+k) - \omega(s,t)| + |\omega(s,t) - \omega(s+h,t)| \end{aligned}$$

が成り立ち、値の差は上述した連続性により縮まる。また $|\omega(s,t)-\omega(s-h,t+k)|$ については、 $h,k\longrightarrow +0$ として $\omega(s-h,t+k)$ は単調減少に $\omega(s,t)$ に近づく。単調性より極限は h,k の近づけ方に依らず

$$\omega(s,t) = \lim_{h \to +0} \lim_{k \to +0} \omega(s-h,t+k) = \lim_{h,k \to +0} \omega(s-h,t+k)$$

となり、同様に

$$\omega(s,t) = \lim_{h \to +0} \lim_{k \to +0} \omega(s+h,t-k) = \lim_{h,k \to +0} \omega(s+h,t-k)$$

も得られ、 $\omega(s-h,t-k)$ は $h,k\to 0$ (近づけ方に依らない) として $\omega(s,t)$ に収束し ω の連続 性が出る.

定理 0.2.6 (control function の例). 以下の関数 $\omega: \Delta_T \longrightarrow [0,\infty)$ は control function である.

(1)
$$\omega: (s,t) \longmapsto \|X^1\|_{p:[s,t]}^p, \quad (p \ge 1, \ x \in B_{p,T}(\mathbb{R}^d)).$$

(2) $\omega: (s,t) \longmapsto \|X^2\|_{p:[s,t]}^p, \quad (p \ge 1, \ x \in C^1).$

(2)
$$\omega: (s,t) \longmapsto \|X^2\|_{p^r[s,t]}^p, \quad (p \ge 1, x \in C^1)$$

一行列
$$a=(a^i_j)$$
 のノルムは $|a|=\sqrt{\sum_{i,j}|a^i_j|^2}$ として考える.

定理 0.2.7.

- $\omega:(s,t) \longmapsto X^1_{s,t} = x_t x_s$ は連続であるから、前定理より ω は control function である.
- 任意の $[s,t]\subset [0,T]$ に対して $\left\|X^2\right\|_{p:[s,t]}^p<\infty$ を示せば、あとは上と同じ理由により定理の 主張が得られる. 実際, 任意の分割 $D = \{s = t_0 < \cdots < t_N = t\}$ に対し

$$\begin{aligned} \left\| X_{t_{i-1},t_{i}}^{2} \right\| & \leq \left| \int_{t_{i-1}}^{t_{i}} (x_{u} - x_{t_{i-1}}) \otimes \dot{x}_{u} \, du \right| \\ & \leq \int_{t_{i-1}}^{t_{i}} \left| (x_{u} - x_{t_{i-1}}) \otimes \dot{x}_{u} \right| \, du \\ & \leq \left\| x \right\|_{C^{1}}^{2} \left\{ \int_{t_{i-1}}^{t_{i}} (u - s) \, du \right\}^{1/p} \left\{ \int_{t_{i-1}}^{t_{i}} (u - s) \, du \right\}^{1-1/p} \\ & \leq \left\| x \right\|_{C^{1}}^{2} \left\{ \int_{t_{i-1}}^{t_{i}} (u - s) \, du \right\}^{1/p} \left\{ \int_{s}^{t} (u - s) \, du \right\}^{1-1/p} \end{aligned}$$

が成り立つから,

$$\sum_{D} \|X_{t_{i-1},t_i}^2\|^p \le \sum_{D} \|x\|_{C^1}^{2p} \left\{ \frac{1}{2} (t-s)^2 \right\}^{p-1} \int_{t_{i-1}}^{t_i} (u-s) \, du$$

$$= \|x\|_{C^1}^{2p} \left\{ \frac{1}{2} (t-s)^2 \right\}^{p-1} \int_{s}^{t} (u-s) \, du = \|x\|_{C^1}^{2p} \left\{ \frac{1}{2} (t-s)^2 \right\}^{p}$$

により $\|X^2\|_{p:[s,t]}^p < \infty$ が従う.

補題 0.2.8. ω を Δ_T 上の control function とする. $D = \{s = t_0 < t_1 < \cdots < t_N = t\}$ について, $N \ge 2$ の場合或る $1 \le i \le N-1$ が存在して次を満たす:

$$\omega(t_{i-1}, t_{i+1}) \le \frac{2\omega(s, t)}{N - 1}.\tag{6}$$

証明. (会田先生のテキスト.)

定理 $0.2.9~(1 \le p < 2$ の場合の連続性定理). $1 \le p < 2$ とし, $x_0 = y_0$ を満たす $x,y \in C^1$ と $f \in C_b^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m)),~0 < \epsilon, R < \infty$ を任意に取る.このとき,

$$\|X^1\|_p$$
, $\|Y^1\|_p \le R$, $\|X^1 - Y^1\|_p \le \epsilon$

なら, 或る定数 C = C(p, R, f) が存在し, 任意の $0 \le s \le t \le T$ に対して次が成立する:

$$\left|I_{s,t}(x)-I_{s,t}(y)\right|\leq \epsilon C.$$

系 0.2.10 (p-variation による閉球上の Lipschitz 連続性). $1 \le p < 2$ とし, $x_0 = y_0$ を満たす $x,y \in C^1$ と $f \in C_b^2(\mathbb{R}^d,L(\mathbb{R}^d \to \mathbb{R}^m)), \ 0 < R < \infty$ を任意に取る.このとき,

$$\|X^1\|_p$$
, $\|Y^1\|_p \le R$

なら、或る定数 C = C(p, R, f) が存在して次を満たす:

$$|I_{0,T}(x) - I_{0,T}(y)| \le C ||X^1 - Y^1||_p$$
.

証明 (系 0.2.10). 定理 0.2.9 において, $\epsilon = \left\| X^1 - Y^1 \right\|_p (x \neq y)^{*3}$ として証明が通る.

証明 (定理 0.2.9). $[s,t] \subset [0,T]$ とする.

第一段 $\omega: \Delta_T \longrightarrow [0, \infty)$ を

$$\omega(\alpha,\beta) = \left\| X^1 \right\|_{p,[\alpha,\beta]}^p + \left\| Y^1 \right\|_{p,[\alpha,\beta]}^p + \epsilon^{-p} \left\| X^1 - Y^1 \right\|_{p,[\alpha,\beta]}^p, \quad ((\alpha,\beta) \in \Delta_T)$$

で定めれば、定理 0.2.6 により $1 \le p$ の下で ω は control function である.

第二段 任意に [s,t] の分割 $D=\{s=t_0<\cdots< t_N=t\}$ $(N\geq 2)$ を取れば、補題 0.2.8 より (6) を満たす $t_{(0)}$ が存在する.ここで、 $D_{-0}\coloneqq D,\ D_{-1}\coloneqq D\setminus\{t_{(0)}\}$ と定める. $N\geq 3$ ならば D_{-1} についても (6) を満たす $t_{(1)}$ が存在するから, $D_{-2}\coloneqq D_{-1}\setminus\{t_{(1)}\}$ と定める.この操作を繰り返せば $t_{(k)},D_{-k}$ $(k=0,1,\cdots,N-1)$ が得られ,

$$\tilde{I}_{s,t}(x,D) - \tilde{I}_{s,t}(y,D)
= \sum_{k=0}^{N-2} \left[\left\{ \tilde{I}_{s,t}(x,D_{-k}) - \tilde{I}_{s,t}(x,D_{-k-1}) \right\} - \left\{ \tilde{I}_{s,t}(y,D_{-k}) - \tilde{I}_{s,t}(y,D_{-k-1}) \right\} \right]
+ \left\{ \tilde{I}_{s,t}(x) - \tilde{I}_{s,t}(y) \right\}$$
(7)

と表現できる.

第三段 式 (7) について、次を満たす定数 C_1 が存在することを示す:

$$|(7)| \le \epsilon C_1 \tag{8}$$

 $^{^{*3}}$ x=y なら $\|X^1-Y^1\|_p=0$ かつ $I_{s,t}(x)=I_{s,t}(y)$ が成り立つ.

見やすくするために $t_k = t_{(k)}$ と書き直せば,

$$\begin{split} & \left\{ \tilde{I}_{s,t}(x, D_{-k}) - \tilde{I}_{s,t}(x, D_{-k-1}) \right\} - \left\{ \tilde{I}_{s,t}(y, D_{-k}) - \tilde{I}_{s,t}(y, D_{-k-1}) \right\} \\ & = \left\{ f(x_{t_k}) - f(x_{t_{k-1}}) \right\} X_{t_k, t_{k+1}}^1 - \left\{ f(y_{t_k}) - f(y_{t_{k-1}}) \right\} Y_{t_k, t_{k+1}}^1 \\ & = \left\{ f(x_{t_k}) - f(x_{t_{k-1}}) \right\} \left\{ X_{t_k, t_{k+1}}^1 - Y_{t_k, t_{k+1}}^1 \right\} \\ & + \left\{ f(x_{t_k}) - f(x_{t_{k-1}}) \right\} Y_{t_k, t_{k+1}}^1 - \left\{ f(y_{t_k}) - f(y_{t_{k-1}}) \right\} Y_{t_k, t_{k+1}}^1 \\ & = \int_0^1 (\nabla f) (x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1}, t_k}^1 \otimes \left(X_{t_k, t_{k+1}}^1 - Y_{t_k, t_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1}, t_k}^1 \otimes Y_{t_k, t_{k+1}}^1 d\theta \\ & - \int_0^1 (\nabla f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}})) Y_{t_{k-1}, t_k}^1 \otimes \left(X_{t_k, t_{k+1}}^1 - Y_{t_k, t_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1}, t_k}^1 \otimes \left(X_{t_k, t_{k+1}}^1 - Y_{t_k, t_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) Y_{t_{k-1}, t_k}^1 \otimes Y_{t_k, t_{k+1}}^1 d\theta \\ & - \int_0^1 (\nabla f) (x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) Y_{t_{k-1}, t_k}^1 \otimes Y_{t_k, t_{k+1}}^1 d\theta \\ & - \int_0^1 (\nabla f) (y_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) Y_{t_{k-1}, t_k}^1 \otimes \left(X_{t_k, t_{k+1}}^1 - Y_{t_k, t_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) \left(X_{t_{k-1}, t_k}^1 \otimes Y_{t_k, t_{k+1}}^1 d\theta \right) \\ & + \int_0^1 (\nabla f) (x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) \left(X_{t_{k-1}, t_k}^1 - Y_{t_{k-1}, t_k}^1 \right) \otimes Y_{t_k, t_{k+1}}^1 d\theta \\ & + \int_0^1 (\nabla f) (x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) \left(X_{t_{k-1}, t_k}^1 - Y_{t_{k-1}, t_k}^1 \right) \otimes Y_{t_k, t_{k+1}}^1 d\theta \\ & + \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}} + x_{t_k}^1 + x_{t_k, t_{k+1}}^1 - y_{t_{k-1}, t_k}^1 - y_{t_{k-1}, t_k}^1 \right) d\theta \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}} + x_{t_k, t_{k+1}}^1 dr d\theta^{*4} \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}, t_k}^1 \otimes Y_{t_k, t_{k+1}}^1 dr d\theta^{*4} \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}, t_k}^1 \otimes Y_{t_k, t_{k+$$

が成り立つ. 補題 0.2.8 より

$$\begin{aligned} \left| X_{t_{k-1},t_{k}}^{1} \right|, \left| Y_{t_{k-1},t_{k}}^{1} \right|, \left| X_{t_{k},t_{k+1}}^{1} \right|, \left| Y_{t_{k},t_{k+1}}^{1} \right| \leq \omega(t_{k-1},t_{k+1})^{1/p} \leq \left(\frac{2\omega(s,t)}{N-k-1} \right)^{1/p}, \\ \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right|, \left| X_{t_{k},t_{k+1}}^{1} - Y_{t_{k},t_{k+1}}^{1} \right| \leq \epsilon \omega(t_{k-1},t_{k+1})^{1/p} \leq \epsilon \left(\frac{2\omega(s,t)}{N-k-1} \right)^{1/p} \end{aligned}$$

が満たされ,また

$$\left|X_{0,t_{k-1}}^{1}-Y_{0,t_{k-1}}^{1}\right| \leq \epsilon \omega(0,t_{k-1})^{1/p} \leq \epsilon \omega(0,T)^{1/p} \leq \epsilon \left(2R^{p}+1\right)^{1/p}$$

でもあるから、

$$M := \sum_{i,j} \sup_{x \in \mathbb{R}^d} |f_j^i(x)| + \sum_{i,j,k} \sup_{x \in \mathbb{R}^d} |\partial_k f_j^i(x)| + \sum_{i,j,k,\nu} \sup_{x \in \mathbb{R}^d} |\partial_\nu \partial_k f_j^i(x)|$$
(9)

 $x_0 = y_0$ の仮定より $x_{t_{k-1}} - y_{t_{k-1}} = X_{0,t_{k-1}}^1 - Y_{0,t_{k-1}}^1$ が成り立つ.

と定めて

$$\begin{split} & \left| \left\{ \tilde{I}_{s,t}(x, D_{-k}) - \tilde{I}_{s,t}(x, D_{-k-1}) \right\} - \left\{ \tilde{I}_{s,t}(y, D_{-k}) - \tilde{I}_{s,t}(y, D_{-k-1}) \right\} \right| \\ & \leq M \left| X_{t_{k-1}, t_{k}}^{1} \right| \left| X_{t_{k}, t_{k+1}}^{1} - Y_{t_{k}, t_{k+1}}^{1} \right| \\ & + M \left| X_{t_{k-1}, t_{k}}^{1} - Y_{t_{k-1}, t_{k}}^{1} \right| \left| Y_{t_{k}, t_{k+1}}^{1} \right| \\ & + M \left| X_{0, t_{k-1}}^{1} - Y_{0, t_{k-1}}^{1} \right| \left| Y_{t_{k-1}, t_{k}}^{1} \right| \left| Y_{t_{k}, t_{k+1}}^{1} \right| \\ & + M \left| X_{t_{k-1}, t_{k}}^{1} - Y_{t_{k-1}, t_{k}}^{1} \right| \left| Y_{t_{k-1}, t_{k}}^{1} \right| \left| Y_{t_{k}, t_{k+1}}^{1} \right| \\ & \leq \epsilon M \left[2 + 2 \left(2R^{p} + 1 \right)^{1/p} \right] \left(\frac{2\omega(s, t)}{N - k - 1} \right)^{2/p} \\ & \leq \epsilon M \left[2 + 2 \left(2R^{p} + 1 \right)^{1/p} \right] 2^{2/p} \left(2R^{p} + 1 \right)^{2/p} \left(\frac{1}{N - k - 1} \right)^{2/p} \end{split}$$

を得る.

$$C_1' := M \left[2 + 2 \left(2R^p + 1 \right)^{1/p} \right] 2^{2/p} \left(2R^p + 1 \right)^{2/p}$$

とおけば

$$|(7)| \le \sum_{k=0}^{N-2} \epsilon C_1' \left(\frac{1}{N-k-1} \right)^{2/p} < \epsilon C_1' \zeta \left(\frac{2}{p} \right)$$

が成立し,p<2 より $\zeta(2/p)<\infty$ であるから $C_1\coloneqq C_1'\zeta(2/p)$ とおいて (8) が従う. 第四段 $x_0=y_0$ の仮定により $x_s-y_s=X_{0,s}^1-Y_{0,s}^1$ が成り立ち

$$\begin{split} \left| \tilde{I}_{s,t}(x) - \tilde{I}_{s,t}(y) \right| &= \left| f(x_s) X_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| \\ &\leq \left| f(x_s) X_{s,t}^1 - f(x_s) Y_{s,t}^1 \right| + \left| f(x_s) Y_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| \\ &\leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + \left| \int_0^1 (\nabla f) (y_s + \theta(x_s - y_s)) \left[\left(X_{0,s}^1 - Y_{0,s}^1 \right) \otimes Y_{s,t}^1 \right] d\theta \right| \\ &\leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + M \left| X_{0,s}^1 - Y_{0,s}^1 \right| \left| Y_{s,t}^1 \right| \\ &\leq M \epsilon \omega(s,t)^{1/p} + M \epsilon \omega(0,s)^{1/p} \omega(s,t)^{1/p} \\ &\leq \epsilon M \left[(2R^p + 1)^{1/p} + (2R^p + 1)^{2/p} \right] \end{split}$$

が従う.ここで $C_2 \coloneqq M\left[(2R^p+1)^{1/p}+(2R^p+1)^{2/p}\right]$ とおく. 第五段 第二段と第三段より,任意の $D\in\delta[s,t]$ に対し

$$\left|\tilde{I}_{s,t}(x,D)-\tilde{I}_{s,t}(y,D)\right|\leq \epsilon(C_1+C_2)$$

が成立し、定理 0.2.2 により $|D| \longrightarrow 0$ として

$$\left|I_{s,t}(x) - I_{s,t}(y)\right| \le \epsilon (C_1 + C_2)$$

が出る.

定理 0.2.11 $(2 \le p < 3$ の場合の連続性定理). $2 \le p < 3$ とし, $x_0 = y_0$ を満たす $x, y \in C^1$ と $f \in C_b^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m)), \ 0 < \epsilon, R < \infty$ を任意に取る.このとき,

$$\begin{split} & \left\| \left\| X^1 \right\|_p, \left\| \left| Y^1 \right\|_p, \left\| X^2 \right\|_{p/2}, \left\| \left| Y^2 \right\|_{p/2} \leq R < \infty, \\ & \left\| \left| X^1 - Y^1 \right\|_p, \left\| \left| X^2 - Y^2 \right| \right|_{p/2} \leq \epsilon \end{split}$$

なら、或る定数 C = C(p, R, f) が存在し、任意の $0 \le s \le t \le T$ に対して次が成立する:

$$\left|I_{s,t}(x)-I_{s,t}(y)\right|\leq \epsilon C.$$

系 0.2.12. $1 \le p < 2$ とし, $x_0 = y_0$ を満たす $x, y \in C^1$ と $f \in C_b^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$, $0 < R < \infty$ を任意に取る.このとき,

$$||X^1||_p$$
, $||Y^1||_p$, $||X^2||_{p/2}$, $||Y^2||_{p/2} \le R$

なら、或る定数 C = C(p, R, f) が存在して次を満たす:

$$|I_{0,T}(x) - I_{0,T}(y)| \le C(||X^1 - Y^1||_p + ||X^2 - Y^2||_{p/2}).$$

証明 (系 0.2.12). 定理 0.2.11 において, $\epsilon = \|X^1 - Y^1\|_p + \|X^2 - Y^2\|_{p/2}$ $(x \neq y)$ として証明が通る.

証明 (定理 0.2.12). $[s,t] \subset [0,T]$ とする.

第一段 $\omega: \Delta_T \longrightarrow [0, \infty)$ を

$$\begin{split} \omega(\alpha,\beta) &= \left\| \left\| X^1 \right\|_{p,[\alpha,\beta]}^p + \left\| \left| Y^1 \right| \right\|_{p,[\alpha,\beta]}^p + \left\| \left| X^2 \right| \right\|_{p/2,[\alpha,\beta]}^{p/2} + \left\| \left| Y^2 \right| \right\|_{p/2,[\alpha,\beta]}^{p/2} \\ &+ \epsilon^{-p} \left\| \left| X^1 - Y^1 \right| \right\|_{p,[\alpha,\beta]}^p + \epsilon^{-p/2} \left\| \left| X^2 - Y^2 \right| \right\|_{p/2,[\alpha,\beta]}^{p/2}, \quad ((\alpha,\beta) \in \Delta_T) \end{split}$$

で定めれば、定理 0.2.6 により $2 \le p$ の下で ω は control function である.

第二段 $D \in \delta[s,t]$ に対し、定理 0.2.9 の証明と同様にして $t_{(k)}, D_{-k}$ を構成すれば

$$J_{s,t}(x,D) - J_{s,t}(y,D)$$

$$= \sum_{k=0}^{N-2} \left[\left\{ J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \right\} - \left\{ J_{s,t}(y,D_{-k}) - J_{s,t}(y,D_{-k-1}) \right\} \right]$$

$$+ \left\{ J_{s,t}(x) - J_{s,t}(y) \right\}$$
(10)

と表現できる.

第三段 $J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1})$ を変形する. 以降 $t_k = t_{(k)}$ と書き直せば

$$\begin{split} J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \\ &= J_{t_{k-1},t_k}(x) + J_{t_k,t_{k+1}}(x) - J_{t_{k-1},t_{k+1}}(x) \\ &= f(x_{t_{k-1}})X^1_{t_{k-1},t_k} + f(x_{t_k})X^1_{t_k,t_{k+1}} - f(x_{t_{k-1}})X^1_{t_{k-1},t_{k+1}} \\ &+ (\nabla f)(x_{t_{k-1}})X^2_{t_{k-1},t_k} + (\nabla f)(x_{t_k})X^2_{t_{k-t_{k+1}}} - (\nabla f)(x_{t_{k-1}})X^2_{t_{k-1},t_{k+1}} \end{split}$$

$$= \{f(x_{l_k}) - f(x_{l_{k-1}})\} X_{l_k,l_{k+1}}^1 \\ + (\nabla f)(x_{l_{k-1}})X_{l_{k-1},l_k}^2 + (\nabla f)(x_{l_k})X_{l_k,l_{k+1}}^2 - (\nabla f)(x_{l_{k-1}})X_{l_{k-1},l_{k+1}}^2 \\ = \int_0^1 \{(\nabla f)(x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) - (\nabla f)(x_{l_{k-1}})\} X_{l_{k-1},l_k}^1 \otimes X_{l_k,l_{k+1}}^1 d\theta \\ + (\nabla f)(x_{l_{k-1}})X_{l_{k-1},l_k}^1 \otimes X_{l_k,l_{k+1}}^1 \\ + (\nabla f)(x_{l_{k-1}})X_{l_{k-1},l_k}^2 + (\nabla f)(x_{l_k})X_{l_k,l_{k+1}}^2 - (\nabla f)(x_{l_{k-1}})X_{l_{k-1},l_{k+1}}^2 \\ = \int_0^1 \int_0^\theta (\nabla f)(x_{l_{k-1}} + r(x_{l_k} - x_{l_{k-1}}))X_{l_{k-1},l_k}^1 \otimes X_{l_{k-1},l_k}^1 \otimes X_{l_k,l_{k+1}}^1 dr d\theta \\ + (\nabla f)(x_{l_k})X_{l_k,l_{k+1}}^2 \\ = \int_0^1 \int_0^\theta (\nabla f)(x_{l_{k-1}} + r(x_{l_k} - x_{l_{k-1}}))X_{l_{k-1},l_k}^1 \otimes X_{l_{k-1},l_k}^1 \otimes X_{l_k,l_{k+1}}^1 dr d\theta \\ + \{(\nabla f)(x_{l_k}) - (\nabla f)(x_{l_{k-1}})\}X_{l_k,l_{k+1}}^2 \\ = \int_0^1 \int_0^\theta (\nabla f)(x_{l_{k-1}} + r(x_{l_k} - x_{l_{k-1}}))X_{l_{k-1},l_k}^1 \otimes X_{l_{k-1},l_k}^1 \otimes X_{l_k,l_{k+1}}^1 dr d\theta \\ + \int_0^1 (\nabla^2 f)(x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}}))X_{l_{k-1},l_k}^1 \otimes X_{l_k,l_{k+1}}^1 d\theta d\theta$$

を得る.

第四段 式 (10) について、次を満たす定数 C_1 が存在することを示す:

$$|(10)| \le \epsilon C_1. \tag{11}$$

実際,前段の結果より

$$\begin{split} &\{J_{s,t}(x,D_{-k})-J_{s,t}(x,D_{-k-1})\}-\{J_{s,t}(y,D_{-k})-J_{s,t}(y,D_{-k-1})\}\\ &=\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k,t_{k+1}}}^{1}dr\ d\theta\\ &+\int_{0}^{1}(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k,t_{k+1}}}^{1}d\theta\\ &-\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(y_{t_{k-1}}+r(y_{t_{k}}-y_{t_{k-1}}))Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k,t_{k+1}}}^{1}dr\ d\theta\\ &-\int_{0}^{1}(\nabla^{2}f)(y_{t_{k-1}}+\theta(y_{t_{k}}-y_{t_{k-1}}))Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k,t_{k+1}}}^{1}d\theta\\ &=\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k-1},t_{k}}^{1}-Y_{t_{k-1},t_{k}}^{1}\right)dr\ d\theta\\ &+\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k-1},t_{k}}^{1}-Y_{t_{k-1},t_{k}}^{1}\right)\otimes Y_{t_{k},t_{k+1}}^{1}dr\ d\theta\\ &+\int_{0}^{1}\int_{0}^{\theta}\left\{(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))-(\nabla^{2}f)(y_{t_{k-1}}+r(y_{t_{k}}-y_{t_{k-1}}))\right\}\\ &X_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k},t_{k+1}}^{1}dr\ d\theta\\ &+\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(y_{t_{k-1}}+r(y_{t_{k}}-y_{t_{k-1}}))\left(X_{t_{k-1},t_{k}}^{1}-Y_{t_{k-1},t_{k}}^{1}\right)\otimes Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k},t_{k+1}}^{1}dr\ d\theta\\ &+\int_{0}^{1}\left(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_{k},t_{k+1}}^{1}\right)d\theta\\ &+\int_{0}^{1}\left(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_{k},t_{k+1}}^{2}\right)d\theta\\ &+\int_{0}^{1}\left\{(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_{k},t_{k+1}}^{2}\right)d\theta\\ &+\int_{0}^{1}\left\{(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))-(\nabla^{2}f)(y_{t_{k-1}}+\theta(y_{t_{k}}-y_{t_{k-1}}))\right\} \end{split}$$

$$\begin{split} X_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^2 \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^2 \, d\theta \\ = \int_0^1 \int_0^\theta (\nabla^2 f) (x_{l_{k-1}} + r(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes X_{l_{k-1},l_k}^1 \otimes \left(X_{l_k,l_{k+1}}^1 - Y_{l_k,l_{k+1}}^1 \right) \, dr \, d\theta \\ + \int_0^1 \int_0^\theta (\nabla^2 f) (x_{l_{k-1}} + r(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^1 \, dr \, d\theta \\ + \int_0^1 \int_0^\theta \int_0^1 (\nabla^3 f) (y_{l_{k-1}} + r(y_{l_k} - y_{l_{k-1}}) + u(x_{l_{k-1}} + r(x_{l_k} - x_{l_{k-1}}) - y_{l_{k-1}} - r(y_{l_k} - y_{l_{k-1}})) \right) \\ \left\{ \left(X_{0,l_{k-1}}^1 - Y_{0,l_{k-1}}^1 \right) + r \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \right\} \otimes X_{l_{k-1},l_k}^1 \otimes Y_{l_{k-1},l_k}^1 \otimes Y_{l_{k,l_{k+1}}}^1 \, du \, dr \, d\theta \\ + \int_0^1 \int_0^\theta (\nabla^2 f) (y_{l_{k-1}} + r(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \otimes Y_{l_{k-1},l_k}^1 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes \left(X_{l_{k-1},l_k}^2 - Y_{l_{k-1},l_k}^1 \right) \, d\theta \\ + \int_0^1 (\nabla^3 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}}) + r(x_{l_{k-1},l_k} - Y_{l_{k-1},l_k}^1) \right) \otimes X_{l_{k-1},l_k}^1 \otimes Y_{l_{k-1},l_k}^2 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}}) + r(x_{l_{k-1},l_k} - Y_{l_{k-1},l_k}^1) \right) \otimes X_{l_{k-1},l_k}^1 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \, dr \, d\theta \\ + \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_{k-1},l_k}^1 \, d\theta$$

が成り立つから,

$$M := \sum_{i,j} \sup_{x \in \mathbb{R}^d} |f_j^i(x)| + \sum_{i,j,k} \sup_{x \in \mathbb{R}^d} |\partial_k f_j^i(x)|$$

$$+ \sum_{i,j,k,v} \sup_{x \in \mathbb{R}^d} |\partial_v \partial_k f_j^i(x)| + \sum_{i,j,k,v,w} \sup_{x \in \mathbb{R}^d} |\partial_w \partial_v \partial_k f_j^i(x)|$$

$$(12)$$

とおいて

$$\begin{split} \left| \left\{ J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \right\} - \left\{ J_{s,t}(y,D_{-k}) - J_{s,t}(y,D_{-k-1}) \right\} \right| \\ &\leq M \left| X_{t_{k-1},t_k}^1 \right| \left| X_{t_{k-1},t_k}^1 \right| \left| X_{t_{k-1},t_k}^1 - Y_{t_{k,t_{k+1}}}^1 \right| \\ &+ M \left| X_{t_{k-1},t_k}^1 \right| \left| X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right| \left| Y_{t_{k-1},t_k}^1 \right| \\ &+ M \left| X_{0,t_{k-1}}^1 - Y_{0,t_{k-1}}^1 \right| \left| X_{t_{k-1},t_k}^1 \right| \left| Y_{t_{k-1},t_k}^1 \right| \left| Y_{t_{k-1},t_k}^1 \right| \\ &+ M \left| X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right| \left| X_{t_{k-1},t_k}^1 \right| \left| Y_{t_{k},t_{k+1}}^1 \right| \\ &+ M \left| X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right| \left| Y_{t_{k-1},t_k}^1 \right| \left| Y_{t_{k},t_{k+1}}^1 \right| \\ &+ M \left| X_{t_{k-1},t_k}^1 - Y_{0,t_{k-1}}^1 \right| \left| X_{t_{k-1},t_k}^1 \right| \left| Y_{t_k,t_{k+1}}^2 \right| \\ &+ M \left| X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right| \left| X_{t_{k-1},t_k}^1 \right| \left| Y_{t_k,t_{k+1}}^2 \right| \\ &+ M \left| X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right| \left| X_{t_{k-1},t_k}^1 \right| \left| Y_{t_k,t_{k+1}}^2 \right| \\ &+ M \left| X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right| \left| X_{t_{k-1},t_k}^2 \right| \left| Y_{t_k,t_{k+1}}^2 \right| \\ &\leq \epsilon M \left[5 + 2\omega(0,t_{k-1})^{1/p} + 2\omega(t_{k-1},t_k)^{1/p} \right] \left(\frac{2\omega(s,t)}{N-k-1} \right)^{3/p} \\ &\leq \epsilon M \left[2 + 4 \left(2R^p + 2R^{p/2} + 2 \right)^{1/p} \right] 2^{3/p} \left(2R^p + 2R^{p/2} + 2 \right)^{3/p} \left(\frac{1}{N-k-1} \right)^{3/p} \\ &\leq \epsilon M \left[2 + 4 \left(2R^p + 2R^{p/2} + 2 \right)^{1/p} \right] 2^{3/p} \left(2R^p + 2R^{p/2} + 2 \right)^{3/p} \left(\frac{1}{N-k-1} \right)^{3/p} \end{split}$$

と定めれば

$$|(10)| \le \sum_{k=0}^{N-2} \epsilon C_1' \left(\frac{1}{N-k-1} \right)^{3/p} < \epsilon C_1' \zeta \left(\frac{3}{p} \right)$$

が成立し、p < 3 より $\zeta(3/p) < \infty$ であるから $C_1 := C_1'\zeta(3/p)$ とおいて (11) が出る. 第五段 $x_0 = y_0$ の仮定により

$$\begin{aligned} & \left| J_{s,t}(x) - J_{s,t}(y) \right| \\ & \leq \left| f(x_s) X_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| + \left| (\nabla f)(x_s) X_{s,t}^2 - (\nabla f)(y_s) Y_{s,t}^2 \right| \\ & \leq \left| f(x_s) X_{s,t}^1 - f(x_s) Y_{s,t}^1 \right| + \left| f(x_s) Y_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| \\ & \quad + \left| (\nabla f)(x_s) X_{s,t}^2 - (\nabla f)(x_s) Y_{s,t}^2 \right| + \left| (\nabla f)(x_s) Y_{s,t}^2 - (\nabla f)(y_s) Y_{s,t}^2 \right| \\ & \leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + \left| \int_0^1 (\nabla f)(y_s + \theta(x_s - y_s))(x_s - y_s) \otimes Y_{s,t}^1 \, d\theta \right| \\ & \quad + M \left| X_{s,t}^2 - Y_{s,t}^2 \right| + \left| \int_0^1 (\nabla^2 f)(y_s + \theta(x_s - y_s))(x_s - y_s) \otimes Y_{s,t}^2 \, d\theta \right| \\ & \leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + M \left| X_{0,s}^1 - Y_{0,s}^1 \right| \left| Y_{s,t}^1 \right| \\ & \quad + M \left| X_{s,t}^2 - Y_{s,t}^2 \right| + M \left| X_{0,s}^1 - Y_{0,s}^1 \right| \left| Y_{s,t}^2 \right| \\ & \leq \epsilon M \omega(s,t)^{1/p} + \epsilon M \omega(0,s)^{1/p} \omega(s,t)^{1/p} \\ & \quad + \epsilon M \omega(s,t)^{2/p} + \epsilon M \omega(0,s)^{1/p} \omega(s,t)^{2/p} \\ & \leq \epsilon M \left[\omega(0,T)^{1/p} + 2\omega(0,T)^{2/p} + \omega(0,T)^{3/p} \right] \\ & \leq \epsilon M \left[\left(2R^p + 2R^{p/2} + 2 \right)^{1/p} + 2 \left(2R^p + 2R^{p/2} + 2 \right)^{2/p} + \left(2R^p + 2R^{p/2} + 2 \right)^{3/p} \right] \end{aligned}$$

が従う. ここで最下段の ϵ の係数を C_2 とおく.

第六段 以上より、任意の $D \in \delta[s,t]$ に対し

$$\left|J_{s,t}(x,D) - J_{s,t}(y,D)\right| \le \epsilon (C_1 + C_2)$$

が成り立ち、定理 0.2.2 により $|D| \longrightarrow 0$ として

$$\left|I_{s,t}(x) - I_{s,t}(y)\right| \le \epsilon (C_1 + C_2)$$

が出る.

系 0.2.13 (パスが 0 出発なら f の有界性は要らない). 定理 0.2.9 と定理 0.2.11 について, $x,y\in \tilde{C}^1$ ならば $f\in C^2(\mathbb{R}^d,L(\mathbb{R}^d\to\mathbb{R}^m))$ として主張が成り立つ.

証明. $x_0 = 0$ なら

$$\|X^1\|_p \le R \quad \Rightarrow \quad |x_t| \le R \quad (\forall t \in [0, T])$$

が成り立つから、式 (9) と (12) において $\sup_{x \in \mathbb{R}^d}$ を $\sup_{|x| < 9R}$ に替えればよい.

0.3 Young 積分

補題 0.3.1. $x \in C^1$, $f \in C^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ とする.

(1) $1 \le p < 2$ の場合, 或る control function ω が存在して

$$\left|X_{s,t}^{1}\right| \le \omega(s,t)^{1/p}, \quad (0 \le \forall s \le \forall t \le T)$$

を満たすとき, ある定数 C = C(p, f) があり

$$|I_{s,t}(x)| \le C\left(\omega(s,t)^{1/p} + \omega(s,t)^{2/p}\right).$$

が成立する.

(2) $2 \le p < 3$ の場合, 或る control function ω が存在して

$$\left|X_{s,t}^{1}\right| \le \omega(s,t)^{1/p}, \quad \left|X_{s,t}^{2}\right| \le \omega(s,t)^{2/p}, \quad (0 \le \forall s \le \forall t \le T)$$

を満たすとき,ある定数 C = C(p, f) があり

$$\left|I_{s,t}(x)\right| \le C\left(\omega(s,t)^{1/p} + \omega(s,t)^{2/p} + \omega(s,t)^{3/p}\right).$$

が成立する.

証明.

(1) $D = \{s = t_0 < \dots < t_N = t\} \ (N \ge 2)$ に対し、補題 0.2.8 により存在する i を取り $D_{-1} \coloneqq D \setminus \{i\}$ と書く、補題 0.2.8 の添数を除く作業を続けて D_{-k} $(k = 1, \dots, N-1)$ を構成する.

$$M := \max_{\substack{t \in [0,T] \\ 1 \le i \le m \\ 1 \le j,k \le d}} \left| \partial_k f^i_j(x_t) \right|, \quad M' := \max_{t \in [0,T]} |f(x_t)|$$

とおけば $M,M'<\infty$ であり, $\left|X_{t_i,t_{i+1}}^1\right|\leq \omega(t_i,t_{i+1})^{1/p}\leq \omega(t_{i-1},t_{i+1})^{1/p}$ と補題 0.2.8 により

$$\begin{split} \left| \tilde{I}_{s,t}(x,D) - \tilde{I}_{s,t}(x,D_{-1}) \right| &= \left| \tilde{I}_{t_{i-1},t_{i}}(x) + \tilde{I}_{t_{i},t_{i+1}}(x) - \tilde{I}_{t_{i-1},t_{i+1}}(x) \right| \\ &\leq \left| \left\{ f(x_{t_{i}}) - f(x_{t_{i-1}}) \right\} X_{t_{i},t_{i+1}}^{1} \right| \\ &\leq \left| \left\{ \int_{0}^{1} (\nabla f)(x_{t_{i-1}} + \theta(x_{t_{i}} - x_{t_{i-1}})) \ d\theta \right\} X_{t_{i-1},t_{i}}^{1} \otimes X_{t_{i},t_{i+1}}^{1} \right| \\ &\leq md^{2}M \left| X_{t_{i},t_{i+1}}^{1} \right|^{2} \\ &\leq md^{2}M \left(\frac{2\omega(s,t)}{N-1} \right)^{2/p} \end{split}$$

が成立する. 同様に

$$\left| \tilde{I}_{s,t}(x, D_{-k}) - \tilde{I}_{s,t}(x, D_{-k-1}) \right| \le md^2 M \left(\frac{2\omega(s, t)}{N - k - 1} \right)^{2/p}, \quad (k = 0, \dots, N - 2)$$

が成り立ち $(D_{-0} = D)$

$$\begin{split} \left| \tilde{I}_{s,t}(x,D) - f(x_s) X_{s,t}^1 \right| &\leq \sum_{k=0}^{N-2} \left| \tilde{I}_{s,t}(x,D_{-k}) - \tilde{I}_{s,t}(x,D_{-k-1}) \right| \\ &\leq m d^2 M (2\omega(s,t))^{2/p} \sum_{k=0}^{N-2} \left(\frac{1}{N-k-1} \right)^{2/p} \\ &\leq m d^2 M (2\omega(s,t))^{2/p} \zeta \left(\frac{2}{p} \right) \end{split}$$

が従う. いま, 仮定より p < 2 であるから $\zeta(2/p) < \infty$ であり, 定理 0.2.2 より

$$\left|I_{s,t}(x)\right| \leq M'\omega(s,t)^{1/p} + md^2M(2\omega(s,t))^{2/p}\zeta\left(\frac{2}{p}\right)$$

を得る.

(2) (1) と同様に D_{-k} $(k=1,\cdots,N-1)$ を構成する. 会田先生のノートの通りに

$$\begin{split} J_{s,t}(x,D) - J_{s,t}(x,D_{-1}) &= \left\{ \int_0^1 \int_0^\theta (\nabla^2 f) (x_{t_{i-1}} + \theta(x_{t_i} - x_{t_{i-1}})) \ dr \ d\theta \right\} X_{t_{i-1},t_i}^1 \otimes X_{t_{i-1},t_i}^1 \otimes X_{t_i,t_{i+1}}^1 \\ &+ \left\{ \int_0^1 (\nabla^2 f) (x_{t_{i-1}} + \theta(x_{t_i} - x_{t_{i-1}})) \ d\theta \right\} X_{t_{i-1},t_i}^1 \otimes X_{t_i,t_{i+1}}^2 \end{split}$$

を得る. ここで (1) の M, M' に加えて

$$M'' := \max_{\substack{t \in [0,T]\\1 \le i \le m\\1 \le j,k,\nu \le d}} \left| \partial_{\nu} \partial_{k} f_{j}^{i}(x_{t}) \right|$$

とおけば

$$\begin{split} \left| J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \right| &\leq md^2 M \left(\frac{2\omega(s,t)}{N-k-1} \right)^{3/p} + md^2 M'' \left(\frac{2\omega(s,t)}{N-k-1} \right)^{1/p} \left(\frac{2\omega(s,t)}{N-k-1} \right)^{2/p} \\ &\leq md^2 (M+M'') \left(\frac{2\omega(s,t)}{N-k-1} \right)^{3/p} \end{split}$$

が成立し,会田先生のノートの通りに

$$\left| J_{s,t}(x,D) - \left(f(x_s) X_{s,t}^1 + (\nabla f)(x_s) X_{s,t}^2 \right) \right| \le 2^{3/p} m d^2 (M + M'') \zeta \left(\frac{3}{p} \right) \omega(s,t)^{3/p}$$

が従い、p < 3 の仮定より $\zeta(3/p) < \infty$ である. (1) と同じく定理 0.2.2 より

$$\left|I_{s,t}(x)\right| \leq M'\omega(s,t)^{1/p} + md^2M\omega(s,t)^{2/p} + 2^{3/p}md^2(M+M'')\zeta\left(\frac{3}{p}\right)\omega(s,t)^{3/p}$$

となる.