Pág. 41

1.1.

N.º da figura	1	2	3	4	5	6
N.º de quadrados	6	8	10	12	14	16

1.2. 6, 8,10, 12, 14, 16, 18, 20

2.1.

N.º da figura	1	2	3	4	5	6
N.º total de círculos	3	5	7	9	11	13

- 2.2. Cada figura tem sempre mais dois círculos que a figura anterior. Assim, a sequência numérica associada a esta sequência pictórica é:
 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, ...
 Logo, a 10.ª figura tem 21 círculos.
- 2.3. Não, pois o número de círculos de cada uma das figuras que constitui esta sequência é sempre um número ímpar.
- 3.1. Cada termo é obtido, através do anterior, adicionando duas unidades ao elemento anterior: 14, 16, 18
- 3.2. Cada termo é obtido, através do anterior, adicionando três unidades ao elemento anterior: 26, 29, 32
- 3.3. Cada termo é obtido, através do anterior, adicionando três unidades ao numerador e quatro unidades ao denominador: 21/28, 24/32, 27/36

4. Cada termo é obtido, através do anterior, adicionando três unidades ao numerador e duas unidades ao denominador: $\frac{20}{17}$, $\frac{23}{19}$, $\frac{26}{21}$

Pág. 42

4.1.

Ordem	1	2	3	4	5	6	7
Termo	11	8	5	2	-1	-4	- 7

- 4.2. Cada termo da sequência é obtido subtraindo 3 unidades ao termo anterior. Assim, o 8.º termo é -10; o 9.º termo é -13 e o 10.º termo é -16.
- **4.3.** 11.º termo: –19; 12.º termo: –22; 13.º termo: –25. O 13.º termo é 25.
- **4.4.** 5.º termo: -1; 10.º termo: -16; Assim, -1 + (-16) = -1 - 16 = -17
- **4.5.** Por exemplo, o produto do 1.º temo pelo 5.º termo.

1.º termo: 11; 5.º termo: -1;

 $11 \times (-1) = -11$

Basta escolher um termo cujo valor seja positivo e um termo cujo valor seja negativo.

- **5.1.** Cada termo é obtido adicionando 4 unidades ao termo anterior: 5, 9, 13, 17, 21
- **5.2.** Sucessão: 1, 2, 3, 4, 5.

Soma: 1 + 2 + 3 + 4 + 5 = 15

Pág. 43

6.1. 1, 2, 3, 4, 5

- **6.2.** $A, \frac{A}{2}, \frac{A}{3}, \frac{A}{4}, \frac{A}{5}$
- **6.3.** 90°; 45°; 30°; 22,5°; 18°

 Esta sequência tem 4 tijolos, pois o quinto tijolo já estaria todo fora da parede.

N.º do tijolo	1	2	3	4	5
Comprimento					25
fora da	5	10	15	20	Já não
parede (cm)					dá.

Pág. 45

1.1. 21 quadrados

Ordem	1	2	3	4	5	6	7	8	9	10
Termo	3	5	7	9	11	13	15	17	19	21

1.2. 451

5.º termo: 11; 20.º termo: 41; 41 x 11 = 451

1.3. 2*n* + 1

Cada termo é obtido do anterior adicionando duas unidades, sendo da forma 2n. Como o primeiro termo é 3, é necessário adicionar uma unidade: 2n + 1.

2.1. 2n

Cada termo é obtido do anterior adicionando duas unidades, sendo da forma 2*n*.

2.2. 3*n* + 5

Cada termo é obtido do anterior adicionando três unidades, sendo da forma 3*n*. Como o primeiro termo é 8 é necessário adicionar cinco unidades.

2.3. $\frac{3n}{4r}$

Cada termo é obtido do anterior adicionando três unidades ao numerador e quatro unidades ao denominador, sendo da forma $\frac{3n}{4n}$.

2.4. $\frac{3n-1}{2n+3}$

Cada termo é obtido do anterior adicionando três unidades ao numerador e duas unidades ao denominador, sendo da forma $\frac{3n}{2n}$. Como o

primeiro termo é $\frac{2}{5}$ então é necessário subtrair uma unidade ao numerador e somar três unidades ao denominador.

3.1.
$$a_n$$
: 3; -4; -11; -18

$$b_n: 2; \frac{3}{4}; \frac{1}{3}; \frac{1}{8}$$

$$a_1 = -7 + 10 = 3; a_2 = -7 \times 2 + 10 = -4$$

$$a_3 = -7 \times 3 + 10 = -11$$
; $a_4 = -7 \times 4 + 10 = -18$

$$b_1 = \frac{5-1}{2 \times 1} = 2; b_2 = \frac{5-2}{2 \times 2} = \frac{3}{4};$$

$$b_3 = \frac{5-3}{2\times 3} = \frac{1}{3}; b_4 = \frac{5-4}{2\times 4} = \frac{1}{8}$$

3.2. 20

$$a_{10} = -7 \times 10 + 10 = -60$$
; $b_{15} = \frac{5 - 15}{2 \times 15} = -\frac{1}{3}$;

$$-60\times\left(-\frac{1}{3}\right)=20$$

3.3. Verdadeira; falsa

$$b_5 = \frac{5-5}{2\times5} = 0$$
, logo é verdadeira.

$$a_{\rm s} = -7 \times 5 + 10 = -25$$
, logo é falsa, pois

$$5^2 = 25 \neq -25$$
.

Pág. 46

4.1. 15 círculos

Ordem	1	2	3	4	5
Termo	1	3	6	10	15

4.2. 9.º termo

Ordem	6	7	8	9
Termo	21	28	36	45

4.3. Opção correta: (C)

(A) $1.^{\circ}$ termo: $2 \times 1 + 1 = 3$

(B) 1.º termo: $1 \times (1+1) = 2$

(C) 1.º termo: $\frac{1\times(1+1)}{2} = \frac{2}{2} = 1$

(D) 1.º termo:
$$\frac{2 \times 1 + 1}{2} = \frac{3}{2}$$

5.1.
$$-2$$
; -7 ; -12 ; -17 ; -22

$$u_1 = -5 \times 1 + 3 = -2$$
; $u_2 = -5 \times 2 + 3 = -7$;
$$u_3 = -5 \times 3 + 3 = -12$$
; $u_4 = -5 \times 4 + 3 = -17$;
$$u_5 = -5 \times 5 + 3 = -22$$

5.2. 4559
$$u_{20} = -5 \times 20 + 3 = -97; u_{10} = -5 \times 10 + 3 = -47;$$
$$-97 \times (-47) = 4559$$

 $u_{20} = -5 \times 20 + 3 = -97; u_{21} = -5 \times 21 + 3 = -102$

Pág. 47

7.1. 4 circunferências

5.3. Não.

8.

Ordem	Raio (cm)	Diâmetro (cm)
1	1	2
2	2	4
3	4	8
4	8	16
		32
5	16	Já não dá, pois o azulejo
		tem apenas 20 cm de lado.

7.2. Opção correta: (D) A sequência numérica dos raios das circunferências são potências de base 2.

8.1. Opção correta: (C)O número de quadrados de cada termo tem sempre mais dois quadrados que o termo anterior

e como o 1.º termo tem 4 quadrados, então o termo de ordem n é dado por: 2n+2.

- **8.2.** Termo de ordem 271. 544 2 = 542; 542 : 2 = 271
- 8.3. Sim.
 O número de quadrados azuis do termo de ordem
 n é 2n . Assim, como 100 : 2 = 50, 100 é o
 termo de ordem 50.

8.4.	2n	+	6
•			_

1	2	3	4	5	
8	10	12	14	16	

O termo seguinte é igual ao anterior adicionado de 2 unidades e o $1.^{\circ}$ termo é 8: 2n+6 .

Pág. 49

1.

$$i+5$$

 $i-3$
 $2(i+10)$
 $5-(i+2)$
 $2i \times 3$

2.1.
$$(2-1+10-2)x=9x$$

2.2.
$$(-10+3)a = -7a$$

2.3.
$$(2+7-1)b+(-5-1)a=8b-6a$$

2.4.
$$(5+15+2-8)t=14t$$

2.5.
$$(-3+5+1)m+(5-10)=3m-5$$

2.6.
$$(6-10)p+(-2+15)=-4p+13$$

3.

	2 <i>m</i> -5	m-(2m+1)	$5\left(3-\frac{m}{2}\right)$
m=2	-1	-3	10
<i>m</i> = −3	-11	2	45 2
$m=\frac{2}{5}$	$-\frac{21}{5}$	$-\frac{7}{5}$	14

Cálculos:

$$2 \times 2 - 5 = -1$$

$$2-(2\times2+1)=2-(4+1)=2-5=-3$$

$$5 \times \left(3 - \frac{2}{2}\right) = 5 \times \left(3 - 1\right) = 5 \times 2 = 10$$

$$2 \times (-3) - 5 = -11$$

$$-3-(2\times(-3)+1)=-3-(-6+1)=-3+5=2$$

$$5 \times \left(3 + \frac{3}{2}\right) = 5 \times \frac{9}{2} = \frac{45}{2}$$

$$2 \times \frac{2}{5} - 5 = -\frac{21}{5}$$

$$\frac{2}{5} - \left(2 \times \frac{2}{5} + 1\right) = \frac{2}{5} - \left(\frac{4}{5} + 1\right) = \frac{2}{5} - \frac{9}{5} = -\frac{7}{5}$$

$$5 \times \left(3 - \frac{\frac{2}{5}}{2}\right) = 5 \times \left(3 - \frac{2}{10}\right) = 5 \times \left(\frac{28}{10}\right) = 14$$

- 4.1. Às gomas do saco foram adicionadas 2 unidades.
- **4.2.** Ao triplo das gomas do saco foi retirada 1 unidade.
- 4.3. O dobro da diferença de 3 unidades com o número de gomas existentes no saco.
- **4.4.** O produto do dobro das gomas existentes no saco com 5.

Pág. 50

5.1. Triângulo escaleno: 5x+2

Pentágono regular: 10x-15

Pentágono irregular: 11x-3

$$P_{\text{triângulo}} = 2x + x - 1 + 2x + 3 = 5x + 2$$

$$P_{\text{pentágono regular}} = 5 \times (2x - 3) = 10x - 15$$

$$P_{\text{pentágono irregular}} = x + 2x - 2 + 3x + 2 + 2x - 3 + 3x = 11x - 3$$

5.2.
$$P_{\text{triangulo}} = 5 \times 5 \text{ cm} + 2 = 27 \text{ cm}$$

$$P_{\text{pentágono regular}} = 10 \times 5 \, \text{cm} - 15 = 35 \, \text{cm}$$

$$P_{\text{pentágono irregular}} = 11 \times 5 \text{ cm} - 3 = 55 \text{ cm} - 3 = 52 \text{ cm}$$

- **5.3.** Não. Desta forma alguns dos lados dos polígonos ficariam com comprimentos negativos.
- **6.1.** 8p

Bilhete do teatro: 2p; bilhete do cinema: p2 bilhetes de cinema e 3 bilhetes de teatro: 2p + 3 $\times 2p = 8p$

- **6.2.** 8 x 8,40 € = 67,20 €
- **7.1.** 0,40p100% - 60% = 40% (percentagem do valor inicial que vai pagar); $40\% \times p = 0,40 \times p = 0,40p$
- **7.2.** 0,40p + 3,80

8.
$$A_{ABCD} = (3x+2)\times(2x)$$

$$x = \frac{1}{3}$$
 cm:

$$A_{[ABCD]} = \left(3 \times \frac{1}{3} + 2\right) \times \left(2 \times \frac{1}{3}\right) = \left(1 + 2\right) \times \frac{2}{3} = 3 \times \frac{2}{3} = 2 \text{ cm}^2$$

Pág. 51

10.1.
$$V_m = \frac{314 \,\mathrm{km}}{3 \,\mathrm{h}} \approx 104,6 \,\mathrm{km/h}$$

- 10.2.
 - a) Não, pois a velocidade média é superior a 120 km/h.

Porto Editora

4

b) Não chegarão a tempo.

100 km/h x 3h = 300 km; Em 3 horas a 100 km/h conseguiam percorrer apenas 300 km.

Pág. 53

1. Opção correta: (B)

2.

Equação	1.º membro	2.º membro	Termos com incógnita	Termos independentes
5-3x=x-3	5-3 <i>x</i>	x-3	−3 <i>x</i> ; <i>x</i>	5;-3
8m - 3 = -5m	8 <i>m</i> -3	<i>–</i> 5 <i>m</i>	8 <i>m</i> ;–5 <i>m</i>	-3
-3y+3=7y-7	-3y+3	7 <i>y</i> – 7	7 <i>y</i> ;–3 <i>y</i>	-7;3
0=4p-p+5	0	4 <i>p</i> - <i>p</i> +5	4 <i>p</i> ;− <i>p</i>	5

- **3.1.** 8
- **3.2.** 8
- **3.3.** –2
- **3.4.** 6
- **3.5.** 8
- **3.6.** 5
- 4. A IV; B II; C II; D I; E III;

$$2 \times (-1) + (4 - 3 \times (-1)) = 5 \Leftrightarrow -2 + (4 + 3) = 5 \Leftrightarrow$$

 $\Leftrightarrow -2 + 7 = 5 \Leftrightarrow 5 = 5$

Proposição verdadeira

$$3 \times 2 - 6 = 14 - 7 \times 2 \Leftrightarrow 6 - 6 = 14 - 14 \Leftrightarrow 0 = 0$$

Proposição verdadeira

$$0 = -3 \times 2 + 6 \Leftrightarrow 0 = 6 - 6 \Leftrightarrow 0 = 0$$

Proposição verdadeira

$$2\times 1 = -1 - 2\times 1 + 5\times 1 \Leftrightarrow 2 = -1 - 2 + 5 \Leftrightarrow 2 = -3 + 5 \Leftrightarrow$$

⇔ 2 = 2 Proposição verdadeira

$$7 \times 0 - 1 = 3 + 8 \times 0 - 4 \Leftrightarrow 0 - 1 = 3 + 0 - 4 \Leftrightarrow -1 = -1$$

Proposição verdadeira

5.
$$0 = -3x + 6$$
 e $3m - 6 = 14 - 7m$, pois têm o mesmo conjunto solução.

Pág. 54

6.
$$A - II; B - I; C - IV; D - III;$$

7. Opção correta: (D)

$$\frac{2 \times 3 - 1}{5} = 4 - 3 \Leftrightarrow \frac{6 - 1}{5} = 1 \Leftrightarrow \frac{5}{5} = 1 \Leftrightarrow 1 = 1$$

Proposição verdadeira

8.1.
$$7x+6=8x+4$$

$$P_{
m pentágono} = P_{
m trapézio} \Leftrightarrow$$

$$\Leftrightarrow x + 2 + 2x + 1 + 2x + 1 + x + 2 + x =$$

$$= 3x + 2x + 1 + x + 1 + 2x + 2 \Leftrightarrow$$

$$\Leftrightarrow$$
 7 x + 6 = 8 x + 4

8.2. 4, 5, 5, 4, 2 unidades de comprimento O valor de *x* tem de ser um número positivo, pois é um comprimento.

Se
$$x = 1$$
,

$$7 \times 1 + 6 = 8 \times 1 + 4 \Leftrightarrow$$

$$\Leftrightarrow$$
 7 + 6 = 8 + 4 \Leftrightarrow

⇔ 13 = 12 Proposição falsa

Se
$$x = 2$$

$$7 \times 2 + 6 = 8 \times 2 + 4 \Leftrightarrow$$

$$\Leftrightarrow$$
 14 + 6 = 16 + 4 \Leftrightarrow

⇔ 20 = 20 Proposição verdadeira

Pág. 55

9.1. 3

$$7 + 3 + x + 2 = 15 \iff 12 + x = 15 \iff x = 3$$

- 9.2. Não, o PIN poderá ser 7302, 7332, 7362 ou 7392.
 7 + 3 + x + 2 terá de ser um múltiplo de 3
 Isto é, 12 + x terá de ser um múltiplo de 3.
 Assim, x poderá ser 0, 3, 6, ou 9.
- 10. Opção correta: (D)

$$2 - \left(5 - 3 \times \frac{1}{2}\right) = 2 - \left(5 - \frac{3}{2}\right) = 2 - \frac{7}{2} = -\frac{3}{2}$$

(A)
$$-4 \times \frac{1}{2} = -2$$

(B)
$$2-4\times\frac{1}{2}=2-2=0$$

(C)
$$\frac{1}{2} - 3 = -\frac{5}{2}$$

(D)
$$\frac{1}{2} - 2 = -\frac{3}{2}$$

11. Opção correta: (D)

(A) Julieta: $6 \times 14 = 84$

(B) Lucas: 10:2 = 5

(C) Leonor: 72:6=12; André: 4 x 12 = 48

(D) Leonor $6 \times 2 = 12$; Julieta $6 \times 12 = 72$

12. Opção correta: (B)

(A)
$$\frac{5\times10+1}{2} = \frac{51}{2}$$

(B)
$$\frac{5 \times 21 + 1}{2} = \frac{106}{2} = 53$$

Pág. 57

1.1. C.S. =
$$\left\{ \frac{16}{3} \right\}$$

$$3m-4=12 \Leftrightarrow 3m=12+4 \Leftrightarrow 3m=16 \Leftrightarrow m=\frac{16}{3}$$

1.2.
$$C.S. = \{4\}$$

$$5 = 2t - 3 \Leftrightarrow 5 + 3 = 2t \Leftrightarrow 8 = 2t \Leftrightarrow \frac{8}{2} = t \Leftrightarrow t = 4$$

$$5y-3=7 \Leftrightarrow 5y=7+3 \Leftrightarrow 5y=10 \Leftrightarrow y=\frac{10}{5} \Leftrightarrow y=2$$

1.4. C.S. =
$$\left\{ \frac{7}{2} \right\}$$

$$-3 = 2p - 10 \Leftrightarrow -3 + 10 = 2p \Leftrightarrow 7 = 2p \Leftrightarrow p = \frac{7}{2}$$

Pág. 58

2.
$$A - IV$$
; $B - I$; $C - II$; $D - III$;

$$0 = 6 - 2x \Leftrightarrow 2x = 6 \Leftrightarrow x = \frac{6}{2} \Leftrightarrow x = 3$$

$$4y+2=2 \Leftrightarrow 4y=2-2 \Leftrightarrow 4y=0 \Leftrightarrow y=0$$

$$2m-3=3m \Leftrightarrow 2m-3m=3 \Leftrightarrow m=3$$

$$1+p=5p-7 \Leftrightarrow p-5p=-7-1 \Leftrightarrow -4p=-8 \Leftrightarrow p=\frac{-8}{-4} \Leftrightarrow p=2$$

3. x representa a massa da bola de ténis.

2x + 56 = 56 + 56	$2x = 56 + 56 - 56 \Leftrightarrow 2x = 56 \Leftrightarrow$ $\Leftrightarrow x = \frac{56}{2} \Leftrightarrow x = 28$	
3x = 2x + 56	$3x = 2x + 56 \Leftrightarrow 3x - 2x = 56 \Leftrightarrow $ $\Leftrightarrow x = 56$	
2x = 56 + 56 + x	$2x = x + 56 + 56 \Leftrightarrow$ $\Leftrightarrow 2x - x = 56 + 56 \Leftrightarrow$ $\Leftrightarrow x = 112$	

4.1.

$$3-10x = -7 \Leftrightarrow -10x = -7 - 3 \Leftrightarrow$$
$$\Leftrightarrow -10x = -10 \Leftrightarrow x = \frac{-10}{-10} \Leftrightarrow x = 1$$
C.S. = $\{1\}$

$$1 = 8 - 3m \Leftrightarrow 3m = 8 - 1 \Leftrightarrow$$

$$\Leftrightarrow 3m = 7 \Leftrightarrow m = \frac{7}{3}$$

$$C.S. = \left\{\frac{7}{3}\right\}$$

4.3.

$$7x - 8 = 6 - 4x \Leftrightarrow 7x + 4x = 6 + 8 \Leftrightarrow$$
$$\Leftrightarrow 11x = 14 \Leftrightarrow x = \frac{14}{11}$$
$$C.S. = \left\{\frac{14}{11}\right\}$$

4.4.

$$8t - 4 = 5 - 10t \Leftrightarrow 8t + 10t = 5 + 4 \Leftrightarrow$$

$$\Leftrightarrow 18t = 9 \Leftrightarrow t = \frac{9}{18} \Leftrightarrow t = \frac{1}{2}$$

$$C.S. = \left\{\frac{1}{2}\right\}$$

4.5.

$$4p-2-3p=5p+3 \Leftrightarrow 4p-3p-5p=3+2 \Leftrightarrow \\ \Leftrightarrow -4p=5 \Leftrightarrow p=-\frac{5}{4}$$
C.S. = $\left\{-\frac{5}{4}\right\}$

4.6.

$$6-3r = 2r-4+r \Leftrightarrow -3r-2r-r = -4-6 \Leftrightarrow$$

$$\Leftrightarrow -6r = -10 \Leftrightarrow r = \frac{-10}{-6} \Leftrightarrow r = \frac{5}{3}$$

$$C.S. = \left\{\frac{5}{3}\right\}$$

4.7.

$$7n-1-n=3n+6 \Leftrightarrow 7n-n-3n=6+1 \Leftrightarrow$$

$$\Leftrightarrow 3n=7 \Leftrightarrow n=\frac{7}{3}$$
C.S. = $\left\{\frac{7}{3}\right\}$

4.8.

$$7 - a + 8a = 12a - 5 \Leftrightarrow -a + 8a - 12a = -5 - 7 \Leftrightarrow$$

$$\Leftrightarrow -5a = -12 \Leftrightarrow a = \frac{-12}{-5} \Leftrightarrow a = \frac{12}{5}$$

$$C.S. = \left\{\frac{12}{5}\right\}$$

(I)

$$5 = 2 + 3x \Leftrightarrow -3x = 2 - 5 \Leftrightarrow$$

$$\Leftrightarrow -3x = -3 \Leftrightarrow x = \frac{-3}{-3} \Leftrightarrow x = 1$$
C.S. = {1}

(II)

$$t-3t-2 = 2t+4 \Leftrightarrow t-3t-2t = 4+2 \Leftrightarrow$$

$$\Leftrightarrow -4t = 6 \Leftrightarrow t = \frac{6}{-4} \Leftrightarrow t = -\frac{3}{2}$$

$$C.S. = \left\{-\frac{3}{2}\right\}$$

(III)

$$3m-m+7 = -2m-1 \Leftrightarrow 3m-m+2m = -1-7 \Leftrightarrow$$

 $\Leftrightarrow 4m = -8 \Leftrightarrow m = \frac{-8}{4} \Leftrightarrow m = -2$
C.S. = $\{-2\}$

(IV)

$$y+3-5y=1-2y \Leftrightarrow y-5y+2y=1-3 \Leftrightarrow$$

 $\Leftrightarrow -2y=-2 \Leftrightarrow y=\frac{-2}{-2} \Leftrightarrow y=1$
C.S. = $\{1\}$

(V)

$$10a+10 = 2a-6 \Leftrightarrow 10a-2a = -6-10 \Leftrightarrow 8a = -16 \Leftrightarrow a = \frac{-16}{8} \Leftrightarrow a = -2$$
C.S. = $\{-2\}$

(VI)

$$2p-1=5+6p \Leftrightarrow 2p-6p=5+1 \Leftrightarrow$$

$$\Leftrightarrow -4p=6 \Leftrightarrow p=\frac{6}{-4} \Leftrightarrow p=-\frac{3}{2}$$
C.S. = $\left\{-\frac{3}{2}\right\}$

6.1. 5x+2-x=8x

$$5x + 2 - x = 8x \Leftrightarrow 4x - 8x = -2 \Leftrightarrow$$
$$\Leftrightarrow -4x = -2 \Leftrightarrow x = \frac{-2}{-4} \Leftrightarrow x = \frac{1}{2}$$
$$C.S. = \left\{\frac{1}{2}\right\}$$

6.2. -5-4x=-1-3x

$$-5-4x=-1-3x \Leftrightarrow -4x+3x=-1+5 \Leftrightarrow$$

 $\Leftrightarrow -x=4 \Leftrightarrow x=-4$
C.S. = $\{-4\}$

6.3.
$$6x+3-2x+7=10$$

$$6x+3-2x+7=10 \Leftrightarrow 4x=10-3-7 \Leftrightarrow 4x=0 \Leftrightarrow 4x=0 \Leftrightarrow x=0$$

$$C.S. = \{0\}$$

7.1.
$$2(x+5)=3x$$

7.2
$$2(x+5)=3x$$

$$2(x+5) = 3x \Leftrightarrow 2x+10 = 3x \Leftrightarrow$$
$$\Leftrightarrow 2x-3x=-10 \Leftrightarrow -x=-10 \Leftrightarrow x=10$$
C.S. = $\{10\}$

Os filhos têm 10 anos e as mães 30 anos.

8.1.
$$3x-4-x+6+3x-4-x+6=40$$

8.2.
$$3x-4-x+6+3x-4-x+6=40$$

 $3x-4-x+6+3x-4-x+6=40 \Leftrightarrow$
 $\Leftrightarrow 4x+4=40 \Leftrightarrow 4x=36 \Leftrightarrow$
 $\Leftrightarrow x=\frac{36}{4} \Leftrightarrow x=9$
C.S. = {9}

Largura: 6 cm; Comprimento: 14 cm

8.3.
$$3x-4-x+6+3x-4-x+6=12$$

 $3x-4-x+6+3x-4-x+6=12 \Leftrightarrow 4x-8=0 \Leftrightarrow 4x=8 \Leftrightarrow x=2$

$$C.S. = \{2\}$$

Largura:
$$3\times2-4-2=0$$
cm

Logo, o perímetro não poderá ser 12 cm.

$$3x-4-x+6+3x-4-x+6=8 \Leftrightarrow$$

 $\Leftrightarrow 4x-4=0 \Leftrightarrow 4x=4 \Leftrightarrow x=1$
C.S. = $\{1\}$

Largura:
$$3 \times 1 - 4 - 1 = 3 - 5 = -2 \text{ cm}$$

Logo, o perímetro não poderá ser 8 cm.

1.
$$5x-2=7x-2x-5$$
; C.S. = \emptyset

Equação impossível

$$5x-2=7x-2x-5 \Leftrightarrow$$

$$\Leftrightarrow$$
 5 x - 7 x + 2 x = -5 + 2 \Leftrightarrow

$$\Leftrightarrow$$
 0x = -3 Proposição falsa

$$3-y=-3y+5$$
; C.S. = $\{1\}$

Equação possível determinada

$$3-y=-3y+5 \Leftrightarrow$$

$$\Leftrightarrow$$
 $-y+3y=5-3 \Leftrightarrow$

$$\Leftrightarrow$$
 2 $y = 2 \Leftrightarrow y = 1$

$$2-m=-3m+2+2m$$
, C.S. = \mathbb{Q}

Equação possível indeterminada

$$2-m=-3m+2+2m \Leftrightarrow$$

$$\Leftrightarrow$$
 $-m+3m-2m=2-2 \Leftrightarrow$

⇔ 0*m* = 0 Proposição verdadeira

$$5 = 3t - 10$$
; C.S. = $\{5\}$

Equação possível determinada

$$5 = 3t - 10 \Leftrightarrow$$

$$\Leftrightarrow$$
 $-3t = -10 - 5 \Leftrightarrow$

$$\Leftrightarrow t = \frac{-15}{-3} \Leftrightarrow t = 5$$

$$-a = 8a - 18$$
; C.S. = $\{2\}$

Equação possível determinada

$$\Leftrightarrow$$
 $-a-8a=-18 \Leftrightarrow$

$$\Leftrightarrow a = \frac{-18}{-9} \Leftrightarrow a = 2$$

$$2p-5=5p+4$$
; C.S. = $\{-3\}$

Equação possível determinada

$$2p-5=5p+4 \Leftrightarrow$$

$$\Leftrightarrow$$
 2p-5p=4+5 \Leftrightarrow

$$\Leftrightarrow p = \frac{9}{-3} \Leftrightarrow p = -3$$

$$-x=3-x$$
; C.S. = \emptyset

Equação impossível

$$-x = 3 - x \Leftrightarrow$$

$$\Leftrightarrow$$
 $-x + x = 3 \Leftrightarrow$

$$\Leftrightarrow 0x = 3$$

$$5m = 10 + 3m$$
, C.S. = $\{5\}$

Equação possível determinada

$$5m-3m=10 \Leftrightarrow 2m=10 \Leftrightarrow m=5$$

2. Opção correta: (B)

$$5x+3-2x=3x-5 \Leftrightarrow$$

⇔ 0x = −8 Proposição falsa

Pág. 62

3. Erro: $0x = -2 \Leftrightarrow x = -2$

Logo, a equação é impossível.

A equação 0x = -2 é equivalente a 0 = -2, sendo esta uma proposição falsa. Desta forma, a equação é impossível.

4.1. 50 não é termo da sequência.

$$10n - 1 = 50 \Leftrightarrow 10n = 51$$

$$\Leftrightarrow n = \frac{51}{10}$$
 C.S. $= \left\{ \frac{51}{10} \right\}$

Como $\frac{51}{10}$ não é um número natural, 50 não é

termo da sequência.

4.2. Não.

$$10n-1 = -19 \iff 10n = -18$$

$$\Leftrightarrow n = -\frac{18}{10}$$
 C.S. $= \left\{-\frac{18}{10}\right\}$

Como $-\frac{18}{10}$ não é um número natural, não faz

sentido no contexto do problema, pois –19 não é termo de sequência.

4.3. Não.

$$10n-1 = 5n + 20 \iff 5n = 21$$

$$\Leftrightarrow n = \frac{21}{5}$$
 C.S. $= \left\{ \frac{21}{5} \right\}$

Como $\frac{21}{5}$ não é número natural, as sequências

não têm termos em comum.

5.1.
$$3x-10+x+3x-10+x=24$$

5.2. C.S. =
$$\left\{\frac{11}{2}\right\}$$
; Equação possível determinada

$$3x-10+x+3x-10+x=24 \Leftrightarrow$$

$$\Leftrightarrow 8x = 24 + 20 \Leftrightarrow x = \frac{44}{8} = \frac{11}{2}$$

$$C.S. = \left\{ \frac{11}{2} \right\}$$

5.3. A solução faz sentido no contexto do problema, pois a largura do retângulo seria 5,5 cm e o comprimento 6,5 cm.

6.1.
$$4n+3=3n+2 \Leftrightarrow n=-1$$

$$C.S. = \{-1\}$$

6.2. Equação possível determinada

6.3. Não é possível, pois a ordem dos termos de uma sucessão é sempre um número natural e –1 não é um número natural.

Pág. 63

7.1.
$$6x-2=4x+2$$

$$\Leftrightarrow 2x = 4 \Leftrightarrow x = 2$$
 C.S. = $\{2\}$

7.2.
$$4x+2=1+4x$$

$$\Leftrightarrow 0x = 1 - 2 \Leftrightarrow 0 = -1$$
 Proposição falsa

$$C.S. = \emptyset$$

7.3.
$$-x-3+6x+1=5x-2+x$$

$$\Leftrightarrow$$
 $-x = -2 + 3 - 1 \Leftrightarrow -x = 0 \Leftrightarrow x = 0$

$$C.S.=\{0\}$$

7.4.
$$5x-2+x=6x-2$$

$$\Leftrightarrow$$
 6x - 6x = -2 + 2 \Leftrightarrow 0x = 0 \Leftrightarrow 0 = 0

Proposição verdadeira

$$\text{C.S.} = \mathbb{Q}$$

8.1.
$$65 + x = 65 + 65 + 18$$

8.2.
$$65 + x = 65 + 65 + 18 \Leftrightarrow x = 83$$
 C.S. = $\{83\}$

Equação possível determinada

O novo autocarro tem 83 lugares.

8.3. Para sobrar o menor número de lugares vazios devem alugar dois autocarros pequenos e um grande.

N.º de autocarros		e e	(A)	
souenbed	médios	grandes	Total do n.º de lugares	N⁰ de lugares vagos
3	1	0	149 149–130=19	
0	3	0	177 177–130=47	
2	0	1	140 140-130=10	

Pág. 65

1.1.
$$i+i+4+2i=24$$

1.2. Lucas: 5 anos; Laura: 9 anos; Leonor: 10 anos.

$$i+i+4+2i=24$$

 $\Leftrightarrow 4i+4=24 \Leftrightarrow 4i=20$
 $\Leftrightarrow i=5$ C.S. = $\{5\}$

2.1. r: representa o número de tulipas cor-de-rosa.

$$r + r + 8 = 30$$

2.2. O ramo tinha 11 tulipas cor-de-rosa.

$$r + r + 8 = 30 \Leftrightarrow 2r = 22 \Leftrightarrow r = 11$$
 C.S. = $\{11\}$

3.1. Opção correta: (B)

x representa o número de bonecos de neve de chocolate oferecidos.

3.2.
$$2x + x + x - 2 = 26 \Leftrightarrow 4x = 28 \Leftrightarrow x = 7$$
 C.S. = $\{7\}$

Foram distribuídos 14 pais natais de chocolate na turma da Teresa.

4.1.
$$3x+1+3x+3+2x=52$$

4.2.
$$3x+1+3x+3+2x=52 \Leftrightarrow 8x=48$$

 $\Leftrightarrow x=6$ C.S. = $\{6\}$
12 cm; 19 cm; 21 cm

5.1.
$$x+2+x+2+x+2=2x+3+x+1+2x+3+x+1$$

5.2. Medida dos lados do triângulo: $\frac{4}{3}$ cm;

Comprimento do retângulo: $\frac{5}{3}$ cm; Largura do

retângulo:
$$\frac{1}{3}$$
cm.

$$x+2+x+2+x+2=2x+3+x+1+2x+3+x+1$$

$$\Leftrightarrow$$
 3 x + 6 = 6 x + 8

$$\Leftrightarrow -3x = 2 \Leftrightarrow x = -\frac{2}{3}$$

6. Comprou 5 laranjas.

x: Número de laranjas compradas

$$1,80x = 0,95x + 4,25 \Leftrightarrow 0,85x = 4,25$$

$$\Leftrightarrow x = \frac{4,25}{0.85} = 5$$
 C.S. = $\{5\}$

7.1. 10 horas.

$$2h = 30 - 10 \Leftrightarrow 2h = 20 \Leftrightarrow x = \frac{20}{2}$$

 $\Leftrightarrow h = 10$ C.S. = $\{10\}$

7.2. Se tiveres 11 anos deverás dormir 9 horas e 30 minutos.

Se tiveres 12 anos deverás dormir 9 horas.

Se tiveres 13 anos deverás dormir 8 horas e 30 minutos.

No caso de teres 12 anos:

$$2h+12=30$$

$$2h = 30 - 12 \Leftrightarrow 2h = 18 \Leftrightarrow x = \frac{18}{2}$$

$$\Leftrightarrow h = 9 \text{ C.S.} = \{9\}$$

Pág. 67

8.1. 28,00 €

3,20 € + 3,20 € + 6,70 € + 6,70 € + 8,20 €=28,00 €

8.2. 12 dias

x: Número de dias que ficaram no parque de campismo.

$$28x = 336$$

$$\Leftrightarrow x = \frac{336}{28}$$

$$\Leftrightarrow x = 12 \text{ C.S.} = \{12\}$$

8.3. 4 crianças

x: Número de crianças

$$8,70\times10+6,70\times10\times2+3,20\times10\times x=349$$

$$\Leftrightarrow$$
 87 + 134 + 32 x = 349 \Leftrightarrow 32 x = 128

$$\Leftrightarrow x = \frac{128}{32} \Leftrightarrow x = 4 \text{ C.S.} = \{4\}$$

9.1. 9,80 €

9.2. 65,33 €

$$p \times 0.15 = 9.80 \Leftrightarrow$$

$$\Leftrightarrow p = \frac{9,80}{0,15} \approx 65,33$$
 C.S. = $\{65,33\}$

Sendo p o preço inicial do casaco do Vasco.

Pág. 68

- 1. Opção correta: (C)
- 2.1. 16 pontos

A sequência numérica associada é: 4, 7, 10, 13, 16, ... cada termo tem mais 3 unidades que o anterior.

- 2.2. Opção correta: (C)
- 2.3. Termo de ordem 50.

$$3n+1=151 \Leftrightarrow 3n=150 \Leftrightarrow n=\frac{150}{3}=50$$

2.4. 1 cm

O termo de ordem quatro tem 4 quadrados

Quadrado					
1.º	1.0 2.0		4.0		
8 cm	4 cm	2 cm	1 cm		
de lado	de lado	de lado	de lado		

Pág. 69

3.1. 21 círculos

A sequência numérica associada é: 1, 3, 6, 10, 15, 21, ...

- 3.2. Opção correta: (C)
- **4.1.** 5

$$V_5 = \frac{5+5}{2} = \frac{10}{2} = 5$$

4.2. É o termo de ordem 13.

$$2n+3=29 \Leftrightarrow 2n=26 \Leftrightarrow n=\frac{26}{2} \Leftrightarrow n=13$$

4.3. $\frac{207}{2}$

$$v_4 = \frac{5+4}{2} = \frac{9}{2}; u_{10} = 2 \times 10 + 3 = 23;$$

$$\frac{9}{2} \times 23 = \frac{207}{2}$$

5. Opção correta: (D)

$$3(2\times1-1)=\frac{1+5}{2} \Leftrightarrow$$

$$\Leftrightarrow 3 \times 1 = \frac{6}{2}$$

⇔ 3 = 3 Proposição verdadeira

6.1. $5x-4=-x+3 \Leftrightarrow 5x+x=3+4$

$$\Leftrightarrow$$
 6x = 7 \Leftrightarrow x = $\frac{7}{6}$

 $C.S. = \left\{ \frac{7}{6} \right\} \quad \text{Possível determinada}$

6.2. $-3x-x+1=3-4x \Leftrightarrow -3x-x+4x=3-1$

 \Leftrightarrow 0 x = 2 Proposição falsa

 $C.S. = \emptyset$ Impossível

6.3.
$$x-3=2x-4-x+1 \Leftrightarrow x-2x+x=-4+1+3$$
 $\Leftrightarrow 0x=0$ Proposição verdadeira C.S. = \mathbb{Q} Possível indeterminada

6.4.
$$x-4=2-3x+2 \Leftrightarrow x+3x=4+2+2$$

 $\Leftrightarrow 4x=8 \Leftrightarrow x=2$
 $C.S. = \{2\}$ Possível determinada

$$2-5=x-3x \Leftrightarrow -3=-2x \Leftrightarrow x=\frac{3}{2}$$

$$5x-3x=2+1 \Leftrightarrow 2x=3 \Leftrightarrow x=\frac{3}{2}$$

$$-3x+x-2x=-4+4 \Leftrightarrow -4x=0 \Leftrightarrow x=0$$

$$3x-5=22 \Leftrightarrow 3x=27 \Leftrightarrow x=\frac{27}{3}=9$$

$$5 \times (x+30+x+x+30+x) = 1700$$

$$\Leftrightarrow 4x + 60 = 340 \Leftrightarrow x = \frac{280}{4} = 70$$

$$C.S. = \{70\}$$

Preço dos bilhetes: avós e crianças: 9 € cada um;
 prima e pais: 18 € cada um.

$$x + x + 2x + 2x + x + 2x = 81$$

$$\Leftrightarrow 9x = 81 \Leftrightarrow x = \frac{81}{9} = 9$$

$$C.S. = \{9\}$$

12. 65 €

$$x \times 0,80 = 38 + 14$$

$$\Leftrightarrow 0.80 x = 52 \Leftrightarrow x = \frac{52}{0.80} = 65$$

$$C.S. = \{65\}$$

