# COMP9020 Week 3 Recap and Administrivia

### **Administrivia**

- Assignment 1 due at 23:59 this Sunday
- Challenge questions posted
- Quiz 5



## Week 3 Recap

#### Relations and functions:

- Binary relations:
  - Equivalence relations, equivalence classes
  - Partial orders, Hasse diagram, lub, glb
  - Total orders, topological sorting, lexicographic, lenlex
- Functions:
  - Injective, surjective, bijective
  - Inverse function
  - Matrices



#### **Fact**

Let  $R \subseteq S \times S$  be an equivalence relation. Then for all  $s, t \in S$ :

$$[s] = [t]$$
 if and only if  $(s,t) \in R$ .



#### **Proof**

Suppose [s] = [t]. Recall  $[s] = \{x \in S : (s, x) \in R\}$ . We will show that  $(s, t) \in R$ .

Because R is reflexive,  $(t, t) \in R$ .

Therefore  $t \in [t]$ .

Because [t] = [s], it follows that  $t \in [s]$ .

But then  $(s, t) \in R$  by the definition of [s].



#### **Proof**

Now suppose  $(s, t) \in R$ . We will show [s] = [t] by showing  $[s] \subseteq [t]$  and  $[t] \subseteq [s]$ .

Take any  $x \in [s]$ .

By the definition of [s],  $(s,x) \in R$ .

Since R is symmetric  $(x, s) \in R$ .

Since R is transitive and  $(s, t) \in R$  we have that  $(x, t) \in R$ .

Since R is symmetric  $(t, x) \in R$ .

Therefore,  $x \in [t]$ .

Therefore  $[s] \subseteq [t]$ .

#### **Proof**

Now suppose  $(s, t) \in R$ . We will show [s] = [t] by showing  $[s] \subseteq [t]$  and  $[t] \subseteq [s]$ .

Take any  $x \in [t]$ .

By the definition of [t],  $(t,x) \in R$ .

Since R is transitive and  $(s, t) \in R$  we have that  $(s, x) \in R$ .

Therefore  $x \in [s]$ .

Therefore  $[t] \subseteq [s]$ .



### glb and lub

#### **Definition**

Let  $R \subseteq S \times S$  be a partial order and let  $A \subseteq S$ .

- x is an **upper bound** for A if  $(a, x) \in R$  for all  $a \in A$
- x is a **lower bound** for A if  $(x, a) \in R$  for all  $a \in A$
- The **set of upper bounds** for A is defined as  $ub(A) = \{x : (a, x) \in R \text{ for all } a \in A\}$
- The **set of lower bounds** for A is defined as  $lb(A) = \{x : (x, a) \in R \text{ for all } a \in A\}$
- The least upper bound of A, lub(A), is the minimum of ub(A) (if it exists)
- The greatest lower bound of A, glb(A) is the maximum of lb(A) (if it exists)

#### **NB**

Greatest and Least correspond to maximum and minimum resp.

### glb and lub

To show x is glb(()A) you need to show:

- $(x, a) \in R$  for all  $a \in A$ : x is a lower bound
- If  $(y, a) \in R$  for all  $a \in A$  then  $(y, x) \in R$ : x is the greatest of all lower bounds

### **Example**

Pow(X) ordered by  $\subseteq$ .

- $glb(A, B) = A \cap B$
- $lub(A, B) = A \cup B$



## glb and lub examples

### **Examples**

- $\mathbb{F}(\mathbb{N})$  all finite subsets, has no *arbitrary* lub property; glb exists, it is the intersection, hence always finite;
- $\mathbb{I}(\mathbb{N})$  all infinite subsets, may not have an arbitrary glb; lub exists, it is the union, which is always infinite.

### Need to know for this course

- Binary relations:
  - Equivalence relations, equivalence classes
  - Partial orders, Hasse diagram, lub, glb
  - Total orders, topological sorting, lexicographic, lenlex
- Functions:
  - Injective, surjective, bijective
  - Inverse function
  - Matrices

