Cavallaro, Jeffery Math 275A Homework #1

Theorem: Exercise 1.3

For a function $f: X \to Y$ and sets $A, B \subset Y$:

•
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

•
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Proof.

$$x \in f^{-1}(A \cup B) \iff f(x) \in A \cup B$$

$$\iff f(x) \in A \text{ or } f(x) \in B$$

$$\iff x \in f^{-1}(A) \text{ or } x \in f^{-1}(B)$$

$$\iff x \in f^{-1}(A) \cup f^{-1}(B)$$

Therefore, $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

$$x \in f^{-1}(A \cap B) \iff f(x) \in A \cap B$$

$$\iff f(x) \in A \text{ and } f(x) \in B$$

$$\iff x \in f^{-1}(A) \text{ and } x \in f^{-1}(B)$$

$$\iff x \in f^{-1}(A) \cap f^{-1}(B)$$

Therefore,
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
.

Theorem: Restatement of 1.8

Let A and B be sets such that $A \subset B$. If B is countable then A is countable.

Lemma

Let $\{U_i : i \in N\}$ be a countably infinite number of countably infinite sets such that the U_i are pairwise disjoint. Then:

$$U = \bigcup_{i \in \mathbb{N}} U_i$$

is countable.

Proof. Let $U_i = \{u_{ij} : j \in \mathbb{N}\}$ and arrange the U_i as the rows of a matrix. Note that the u_{ij} are distinct and in one-to-one correspondence with the elements of U.

Now, enumerate the u_{ij} along the diagonals as follows:

$$y_{11}$$
 y_{12} y_{13} y_{14} y_{15} \cdots
 y_{21} y_{22} y_{23} y_{24} y_{25} \cdots
 y_{31} y_{32} y_{33} y_{34} y_{35} \cdots
 y_{41} y_{42} y_{43} y_{44} y_{45} \cdots
 y_{51} y_{52} y_{53} y_{54} y_{55} \cdots
 \vdots \vdots \vdots \vdots \vdots

This is a one-to-one correspondence between the u_{ij} and \mathbb{N} and hence the u_{ij} are countable.

Therefore, U is countable.

Theorem: 1.12

The union of countably many countable sets is countable.

Proof. Let $A = \bigcup_{i \in I} A_i$ be a union of countably many countable sets. In order to remove duplicates from the A_i (elements in the intersections of two or more A_i), let:

$$A'_1 = A_1$$

$$A'_i = A_i - \bigcup_{j=1}^{i-1} A_j$$

Note that the A_i' are pairwise disjoint and $A = \bigcup_{i \in I} A_i'$

Now arrange the A_i' as the rows of a matrix B. This means that the b_{ij} are distinct and in one-to-one correspondence with the elements of A. Let U be a matrix consisting of a countably infinite number of rows and columns as described in the preceding lemma. There is an injection between the rows in B and the rows in B. Furthermore, there is an injection between the columns of each row B_i and its corresponding row B_i . Thus, there is a one-to-one correspondence between the elements of B, and hence the elements of A, and the elements of some subset C of the elements of B. But the subset of a countable set is countable (Theorem 1.8) and so C is countable.

Therefore A is countable.

Theorem: 1.13

The set \mathbb{Q} is countable.

Proof. Let $\{Q_i : i \in \mathbb{N}\}$ be a family of sets where $Q_i = \{\frac{p}{i} \mid p \in \mathbb{Z}\}$. Note that:

$$\mathbb{Q} = \bigcup_{i \in \mathbb{N}} Q_i$$

But $\{Q_i : i \in \mathbb{N}\}$ is a countable number of countable sets, and hence is countable (Theorem 1.2).

Therefore, Q is countable.

Theorem: 1.16

The set of real numbers \mathbb{R} is uncountable.

Proof. ABC that (0,1) is countable. This means that there exists some bijection $f: \mathbb{N} \to (0,1)$. Let a_{ij} be j^{th} decimal digit of the i^{th} number:

$$f(1) = 0.a_{11}a_{12}a_{13}a_{14}a_{15} \cdots$$

$$f(2) = 0.a_{21}a_{22}a_{23}a_{24}a_{25} \cdots$$

$$f(3) = 0.a_{31}a_{32}a_{33}a_{34}a_{35} \cdots$$

$$f(4) = 0.a_{41}a_{42}a_{43}a_{44}a_{45} \cdots$$

$$f(5) = 0.a_{51}a_{52}a_{53}a_{54}a_{55} \cdots$$

$$\vdots = \vdots$$

If f(n) is rational with more than one representation, for example: $0.4\bar{9}=0.5\bar{0}$, then the repeating 0 case is selected.

Now, let $b = b_1b_2b_3b_4b_5\cdots$ where:

$$b_i = \begin{cases} 1, & a_{ii} \neq 1 \\ 2, & a_{ii} = 1 \end{cases}$$

So b never contains a 0 or 9 digit and thus the non-unique cases are avoided. This means that $b \in (0,1)$ but $b \notin f(\mathbb{N})$, contradicting the bijectiveness of f. Thus, (0,1) is uncountable. But $(0,1) \subset \mathbb{R}$.

Therefore, by the contrapositive of Theorem 1.8, $\mathbb R$ is uncountable.