Example: Standard Basis of

Example: Standard Basis of

The standard basis of \mathbb{R}^n is the most fundamental example of a Basis for a Vector Space.

Definition

The standard basis of \mathbb{R}^n consists of the vectors: - $e_1=(1,0,0,...,0)$ - $e_2=(0,1,0,...,0)$ - $e_3=(0,0,1,...,0)$ - \vdots - $e_n=(0,0,0,...,1)$

where e_i has a 1 in the *i*-th position and 0s elsewhere.

Verification as a Basis

To show that $\{e_1, e_2, ..., e_n\}$ is a basis, we verify:

1. Linear Independence

The vectors are Linear Independence. If $c_1e_1 + c_2e_2 + ... + c_ne_n = 0$, then:

$$(c_1, c_2, ..., c_n) = (0, 0, ..., 0)$$

This implies $c_1 = c_2 = ... = c_n = 0$.

2. Spanning

The vectors Span all of \mathbb{R}^n . Any vector $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ can be written as:

$$(x_1, x_2, ..., x_n) = x_1 e_1 + x_2 e_2 + ... + x_n e_n$$

Special Cases

- n=2: The standard basis of \mathbb{R}^2 is $\{(1,0),(0,1)\}$ the familiar unit vectors along the x and y axes
- n=3: The standard basis of \mathbb{R}^3 is $\{(1,0,0),(0,1,0),(0,0,1)\}$ often denoted $\{\mathbf{i},\mathbf{j},\mathbf{k}\}$ in physics

Properties

- The standard basis is **orthonormal** with respect to the standard inner product
- Any vector's coordinates in the standard basis are simply its components
- The matrix of any linear transformation in the standard basis is particularly simple to compute

Dependency Graph

Local dependency graph