BEST AVAILABLE COPY

PCT/JP 2004/009492

日本国特許庁 JAPAN PATENT OFFICE

26.07.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 7月 1日

出 願 番 号 Application Number:

特願2003-270065

[ST. 10/C]:

[JP2003-270065]

REC'D 16 SEP 2004

WIPO

PCT

出 願 人 Applicant(s):

TDK株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH

RULE 17.1(a) OR (b)

2004年 9月 2日

1)1

11]

1/E

【書類名】 特許願 【整理番号】 99P05592 【あて先】 特許庁長官殿 【国際特許分類】 G11B 7/24 【発明者】 【住所又は居所】 【氏名】 菊川 隆 【発明者】 【住所又は居所】

東京都中央区日本橋一丁目13番1号TDK株式会社内

東京都中央区日本橋一丁目13番1号TDK株式会社内

【氏名】 福澤 成敏

【発明者】

東京都中央区日本橋一丁目13番1号TDK株式会社内 【住所又は居所】

【氏名】 小林 龍弘

【特許出願人】

【識別番号】 000003067

【氏名又は名称】 TDK株式会社

【代理人】

【識別番号】 100115738

【弁理士】

【氏名又は名称】 鷲頭 光宏

【手数料の表示】

【予納台帳番号】 215327 【納付金額】 21,000円

平成15年6月27日付けで名称変更届を提出しております。 【その他】

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1

【請求項1】

支持基板と、光透過層と、前記光透過層と前記支持基板との間に前記光透過層から見てこの順に配置された第1の誘電体層、貴金属酸化物層、第2の誘電体層、光吸収層及び第3の誘電体層とを備え、前記支持基板の厚さが0.6m以上、2.0m以下であり、前記光透過層の厚さが 10μ m以上、 200μ m以下であり、前記貴金属酸化物層の厚さが2n m以上、50n m以下であり、前記第2の誘電体層の厚さが5n m以上、100n m以下であり、前記光吸収層の厚さが5n m以上、100 m以下であり、前記第3の誘電体層の厚さが10n m以上、140n m以下であることを特徴とする光記録媒体。

【請求項2】

前記貴金属酸化物層に酸化白金(PtOx)が含まれていることを特徴とする請求項1 に記載の光記録媒体。

【請求項3】

前記支持基板と前記第3の誘電体層との間に設けられた反射層をさらに備えることを特徴とする請求項1又は2に記載の光記録媒体。

【請求項4】

前記反射層の厚さが5 n m以上、200 n m以下であることを特徴とする請求項3 に記載の光記録媒体。

【請求項5】

厚さが 0.6 mm以上、2.0 mm以下である支持基板と、厚さが 10 μ m以上、200μm以下である光透過層と、前記光透過層と前記支持基板との間に前記光透過層から見てこの順に配置された第1の誘電体層、貴金属酸化物層、第2の誘電体層、光吸収層、第3の誘電体層及び反射層とを備えることを特徴とする光記録媒体。

【請求項6】

支持基板上に、反射層、第3の誘電体層、光吸収層、第2の誘電体層、貴金属酸化物層 及び第1の誘電体層をこの順に形成する第1の工程と、前記第1の誘電体層上に光透過層 を形成する第2の工程とを備えることを特徴とする光記録媒体の製造方法。

【請求項7】

前記第1の工程を気相成長法により行い、前記第2の工程をスピンコート法により行う ことを特徴とする請求項6に記載の光記録媒体の製造方法。

【請求項8】

請求項1乃至5のいずれか1項に記載の光記録媒体に対し、前記光透過層側からレーザビームを照射することによってデータを記録するデータ記録方法であって、前記レーザビームの波長を λ 、前記レーザビームを集束するための対物レンズの開口数をNAとした場合、 λ /NAを640nm以下に設定して、長さが λ /4NA以下の記録マークを含む記録マーク列を記録することを特徴とするデータ記録方法。

【請求項9】

請求項1乃至5のいずれか1項に記載の光記録媒体に対し、前記光透過層側からレーザビームを照射することによってデータを再生するデータ再生方法であって、前記レーザビームの波長を λ、前記レーザビームを集束するための対物レンズの開口数をNAとした場合、 λ / NAを640 nm以下に設定して、長さが λ / 4 NA以下の記録マークを含む記録マーク列からのデータ再生を行うことを特徴とするデータ再生方法。

【書類名】明細書

【発明の名称】光記録媒体及びその製造方法、並びに、光記録媒体に対するデータ記録方法及びデータ再生方法

【技術分野】

[0001]

本発明は光記録媒体及びその製造方法に関し、特に、再生限界未満の微小な記録マークの形成及びこのような記録マークからのデータ再生が可能な超解像型の光記録媒体及びその製造方法に関する。また、本発明は、光記録媒体に対するデータ記録方法及びデータ再生方法に関し、超解像型の光記録媒体に対するデータ記録方法及びデータ再生方法に関する。

【背景技術】

[0002]

近年、大容量のデジタルデータを記録するための記録媒体として、CD (Compact Disc) やDVD (Digital Versatile Disc) に代表される光記録媒体が広く用いられている。

[0003]

CDのうち、データの追記や書き換えができないタイプ(CD-ROM)のものは、厚さ約1.2 mmの光透過性基板上に反射層と保護層が積層された構造を有しており、波長約780 nmのレーザビームを光透過性基板側から反射層に照射することによってデータの再生を行うことができる。一方、CDのうち、データの追記が可能なタイプ(CD-R)やデータの書き換えが可能なタイプ(CD-RW)のものは、光透過性基板と反射層との間に記録層が追加された構造を有しており、波長約780 nmのレーザビームを光透過性基板側から記録層に照射することによってデータの記録及び再生を行うことができる。

[0004]

CDでは、レーザビームの集束に開口数が約0.45の対物レンズが用いられ、これにより反射層又は記録層上におけるレーザビームのビームスポット径は約1.6 μ mまで絞られる。これにより、CDでは約700MBの記録容量と、基準線速度(約1.2m/sec)において約1Mbpsのデータ転送レートが実現されている。

[0005]

また、DVDのうち、データの追記や書き換えができないタイプ(DVD-ROM)のものは、厚さ約0.6 mmの光透過性基板上に反射層及び保護層が積層された積層体と、厚さ約0.6 mmのダミー基板とが接着層を介して貼り合わされた構造を有しており、波長約635 nmのレーザビームを光透過性基板側から反射層に照射することによってデータの再生を行うことができる。一方、DVDのうち、データの追記が可能なタイプ(DVD-RW等)のものは、光透過性基板と反射層との間に記録層が追加された構造を有しており、波長約635 nmのレーザビームを光透過性基板側から記録層に照射することによってデータの記録及び再生を行うことができる。

[0006]

DVDでは、レーザビームの集束に開口数が約0.60の対物レンズが用いられ、これにより反射層又は記録層上におけるレーザビームのビームスポット径は約 0.93μ mまで絞られる。このように、DVDに対する記録及び再生においては、CDよりも波長の短いレーザビームが用いられるとともに、開口数が大きい対物レンズが用いられていることから、CDに比べてより小さいビームスポット径が実現されている。これにより、DVDでは、約4.7GB/面の記録容量と、基準線速度(約3.5m/sec)において約11Mbpsのデータ転送レートが実現されている。

[0007]

近年、DVDを超えるデータの記録容量を有し、且つ、DVDを越えるデータ転送レートを実現可能な光記録媒体が提案されている。このような次世代型の光記録媒体においては、大容量・高データ転送レートを実現するため、波長約405nmのレーザビームが用いられるとともに、開口数が約0.85の対物レンズが用いられる。これによりレーザビ

[0008]

このように、次世代型の光記録媒体では開口数が非常に高い対物レンズが用いられることから、チルトマージンを十分に確保するとともにコマ収差の発生を抑えるため、レーザビームの光路となる光透過層の厚さが約 100μ mと非常に薄く設定される。このため、次世代型の光記録媒体においては、CDやDVD等、現行型の光記録媒体のように光透過性基板上に記録層等の各種機能層を形成することは困難であり、支持基板上に反射層や記録層を成膜した後、この上にスピンコート法等により薄い樹脂層を形成しこれを光透過層として用いる方法が検討されている。つまり、次世代型の光記録媒体の作製においては、光入射面側から順次成膜が行われる現行の光記録媒体とは異なり、光入射面とは反対側から順次成膜が行われることになる。

[0009]

以上説明したとおり、光記録媒体の大容量化と高データ転送レート化は、主としてレーザビームのビームスポット径の縮小によって達成されている。したがって、これ以上の大容量化と高データ転送レート化を達成するためにはビームスポット径をさらに縮小する必要がある。しかしながら、レーザビームの波長をこれ以上短くすると光透過層におけるレーザビームの吸収が急激に増大したり、光透過層の経年劣化が大きくなることからこれ以上の短波長化は困難であり、また、レンズ設計の困難性やチルトマージンの確保等を考慮すれば、対物レンズの開口数をこれ以上高めることもまた困難である。つまり、レーザビームのビームスポット径をこれ以上縮小することは非常に困難であるといえる。

[0010]

このような事情から、大容量化と高データ転送レート化を達成する別の試みとして、近年、超解像型の光記録媒体が提案されている。超解像型の光記録媒体とは、再生限界を超える微小な記録マークの形成及びこのような記録マークからのデータ再生が可能な光記録媒体を指し、このような光記録媒体を用いれば、ビームスポット径を縮小することなく大容量化と高データ転送レート化を実現することが可能となる。

[0011]

より具体的に説明すると、レーザビームの波長を λ 、対物レンズの開口数をNAとした場合、回折限界 d_1 は

$d_1 = \lambda / 2 N A$

で与えられる。したがって、CDやDVDのようにデータが記録マーク及びブランク領域の長さ、すなわちエッジ間の距離によって表現されるタイプの光記録媒体では、単一信号の再生限界 d_2 は、

$d_2 = \lambda / 4 NA$

で与えられる。つまり、超解像型ではない通常の光記録媒体においては、最短記録マークや最短ブランク領域の長さが再生限界未満であると記録マークとブランク領域の判別ができなくなってしまう。これに対し、超解像型の光記録媒体では、長さが再生限界未満である記録マークやブランク領域を利用することができるので、ビームスポット径を縮小することなく大容量化と高データ転送レート化を実現することが可能となるのである。

[0012]

超解像型の光記録媒体としては、従来より「散乱型スーパレンズ」と呼ばれる超解像型の光記録媒体が提案されている(非特許文献 1 参照)。この光記録媒体には、相変化材料層と金属酸化物からなる再生層が用いられ、レーザビームを照射するとビームスポット中心の高エネルギー部分において再生層を構成する金属酸化物が分解し、これにより生じる金属微粒子によってレーザビームが散乱し接場光が発生するものと考えられている。その結果、相変化材料層には局所的に近接場光が照射されることになるので、その相変化を利用して超解像記録及び超解像再生を行うことが可能になると説明されている。そして、レーザビームが遠ざかると、再生層の分解により生じた金属と酸素が再び結合して元の金属

酸化物に戻るため、繰り返しの書き換えが可能であるとされている。

[0013]

しかしながら、本発明者らの研究によれば、「散乱型スーパレンズ」と呼ばれる超解像型の光記録媒体では、相変化材料層の相変化が信号となって現れることはほとんどなく、しかも再生層の分解は不可逆的であることが明らかとなった。つまり、「散乱型スーパレンズ」と呼ばれる超解像型の光記録媒体は、可逆的な記録マークを相変化材料層に形成可能な書き換え型の光記録媒体としてではなく、不可逆的な記録マークを再生層(貴金属酸化物層)に形成可能な追記型の光記録媒体として実現可能であることが明らかとなった(非特許文献2参照)。

[0014]

ここで、再生限界未満の微小な記録マークを貴金属酸化物層に形成することが可能である理由は、ビームスポット中心の高エネルギー部分において貴金属酸化物層が局所的に分解し、生じる気泡によって当該領域が塑性変形するためである。塑性変形した部分は記録マークとして用いられ、塑性変形していない部分はブランク領域として用いられる。一方、このようにして形成された微小な記録マークからデータ再生が可能である理由は現在のところ明らかとなっていないが、非特許文献2に記載されているように、波長635nmのレーザビームと開口数0.6の対物レンズを用いた超解像再生において良好な信号特性が得られている。波長635nmのレーザビームと開口数0.6の対物レンズは、上述の通りDVDの記録及び再生に用いられる光学系である。したがって、超解像型の光記録媒体においても、次世代型の光記録媒体のようにさらに波長の短いレーザビームとさらに開口数の大きい対物レンズを用いれば、よりいっそうの記録密度とデータ転送レートが得られるものと想像することができる。

[0015]

【非特許文献 1】"A near-field recording and readout technology using a matel lic probe in an optical disk", Jap. J. Appl. Phys., 日本応用物理学会編, 2000年, Volume 39, p.980-981

【非特許文献 2】 "Rigid bubble pit formation and huge signal enhancement in s uper-resolution near-field structure disk with platinum-oxide layer", Applie d Physics Letters, American Institute of Physics, December 16, 2002, Volume 81, Number 25, p.4697-4699

【発明の開示】

【発明が解決しようとする課題】

[0016]

しかしながら、上述の通り、超解像型の光記録媒体において再生限界未満の記録マークからデータ再生が可能であるメカニズムは明らかではないため、波長が635nm未満であるレーザビームや開口数が0.6を超える対物レンズを用いた場合にも超解像再生が可能であるのか不明であり、また可能であるとすれば、層構成や各層の材料、さらには各層の厚み等をどのように設定すれば良好な信号特性が得られるのか、その予想は事実上不可能である。

[0017]

したがって、本発明の目的は、貴金属酸化物層を有する超解像型の光記録媒体であって、より波長の短いレーザビーム及びより開口数の大きい対物レンズを用いて超解像記録及び超解像再生が可能な光記録媒体及びその製造方法を提供することである。

[0018]

また、本発明の他の目的は、貴金属酸化物層を有する超解像型の光記録媒体であって、 次世代型の光記録媒体に用いる光学系、すなわち、波長が約405nmのレーザビーム及 び開口数が約0.85の対物レンズを用いて超解像記録及び超解像再生が可能な光記録媒 体及びその製造方法を提供することである。

[0019]

また、本発明のさらに他の目的は、超解像型の光記録媒体に対し、より波長の短いレー

【課題を解決するための手段】

[0020]

[0021]

本発明によれば、波長(λ)が約635nm未満のレーザビーム及び開口数(NA)が約0.6超の対物レンズを用いることにより、 λ /NAを640nm以下に設定して超解像記録及び超解像再生を行うことができ、特に、次世代型の光記録媒体において用いられる波長が約405nmのレーザビーム及び開口数が約0.85の対物レンズを用いた超解像記録及び超解像再生において、良好な特性を得ることが可能となる。

[0022]

ここで、支持基板の厚さは 1.0mm以上、 1.2mm以下に設定することが好ましく、 1.1mm程度であることが特に好ましい。また、光透過層の厚さは 5.0μ m以上、 1.50μ m以下に設定することが好ましく、 7.0μ m以上、 1.20μ m以下に設定することが特に好ましい。支持基板や光透過層の厚さをこのように設定すれば、現在提唱されている次世代型の光記録媒体との互換性を持たせることが可能となる。

[0023]

また、第2の誘電体層の厚さは20nm以上、100nm以下に設定することが好ましく、50nm以上、100nm以下に設定することがより好ましく、50nm以上、70nm以下に設定することが特に好ましい。第2の誘電体層の厚さをこのように設定すれば、貴金属酸化物層を十分に保護しつつ、記録時における変形を過度に阻害することがない。特に、第2の誘電体層の厚さを50nm以上、70nm以下に設定すれば、高いキャリア/ノイズ比(CNR)を得ることが可能となる。

[0024]

また、貴金属酸化物層には酸化白金(PtOx)が含まれていることが好ましい。この場合、貴金属酸化物層の実質的に全てが酸化白金(PtOx)により構成されていることが最も好ましいが、他の材料や不可避的に混入する不純物が含まれていても構わない。貴金属酸化物層の材料として酸化白金(PtOx)を用いれば、良好な信号特性及び十分な耐久性を得ることが可能となる。

[0025]

また、本発明による光記録媒体では、支持基板と第3の誘電体層との間に設けられた反射層をさらに備えることが好ましい。このような反射層を設ければ、再生信号のレベルが高められるとともに再生耐久性が大幅に向上する。ここで「再生耐久性」とは、再生劣化現象、つまり、再生時に照射されるレーザビームのエネルギーによって貴金属酸化物層の状態が変化し、これによりノイズの増加やキャリアの減少が生じてCNRが低下する現象に対する耐性をいう。反射層の厚さとしては、5nm以上、200nm以下であることが好ましく、10nm以上、50nm以下であることが最も好ましい。反射層の厚さをこのように設定することにより、生産性を大きく低下させることなく、十分な再生耐久性向上効果を得ることが可能となる

[0026]

また、前記支持基板の厚さが1.0mm以上、1.2mm以下であり、前記光透過層の 出証特2004-3078737 厚さが 70μ m以上、 120μ m以下であり、前記貴金属酸化物層の厚さが2nm以上、30nm以下であり、前記第2の誘電体層の厚さが50nm以上、100nm以下であり、前記光吸収層の厚さが10nm以上、80nm以下であり、前記第3の誘電体層の厚さが20nm以上、120nm以下であり、前記反射層の厚さが10nm以上、50nm以下であることが非常に好ましい。支持基板や各層の厚さをこのように設定すれば、波長が約405nmのレーザビーム及び開口数が約0.85の対物レンズを用いた超解像記録及び超解像再生において、非常に良好な特性を得ることが可能となる。

[0027]

本発明の他の側面による光記録媒体は、厚さが0.6mm以上、2.0mm以下である支持基板と、厚さが 10μ m以上、 200μ m以下である光透過層と、前記光透過層と前記支持基板との間に前記光透過層から見てこの順に配置された第1の誘電体層、貴金属酸化物層、第2の誘電体層、光吸収層、第3の誘電体層及び反射層とを備えることを特徴とする。この場合も、貴金属酸化物層の材料としては酸化白金(PtOx)を用いることが好ましい。また、各層の厚さについても上記の通りに設定することが好ましい。

[0028]

本発明による光記録媒体の製造方法は、支持基板上に、反射層、第3の誘電体層、光吸収層、第2の誘電体層、貴金属酸化物層及び第1の誘電体層をこの順に形成する第1の工程と、前記第1の誘電体層上に光透過層を形成する第2の工程とを備えることを特徴とする。本発明によれば、波長が約635nm未満のレーザビーム及び開口数が約0.6超の対物レンズを用いることにより、 λ / N A を 640 n m以下に設定して超解像記録及び超解像再生を行うことが可能な光記録媒体を製造することが可能となる。前記第1の工程は気相成長法により行い、前記第2の工程はスピンコート法により行うことが好ましい。

[0029]

本発明によるデータ記録方法は、上述した光記録媒体に対し、前記光透過層側からレーザビームを照射することによってデータを記録するデータ記録方法であって、前記レーザビームを集束するための対物レンズの開口数をNAとした場合、 λ/N Aを640nm以下に設定して、長さが $\lambda/4$ NA以下の記録マークを含む記録マーク列を記録することを特徴とする。また、本発明によるデータ再生方法は、上述した光記録媒体に対し、前記光透過層側からレーザビームを照射することによってデータを再生するデータ再生方法であって、前記レーザビームの波長を λ 、前記レーザビームを集束するための対物レンズの開口数をNAとした場合、 λ/N Aを640nm以下に設定して、長さが $\lambda/4$ NA以下の記録マークを含む記録マーク列からのデータ再生を行うことを特徴とする。いずれの場合も、レーザビームの波長を約405nmに設定し、対物レンズの開口数を約0.85に設定することが最も好ましく、これによれば、次世代型の光記録媒体用の記録再生装置と同様の記録再生装置を用いることができるので、記録再生装置の開発コスト・製造コストを抑制することが可能となる。

【発明の効果】

[0030]

本発明によれば、波長が約635nm未満のレーザビーム及び開口数が約0.6超の対物レンズを用いることにより、 λ/NAを640nm以下に設定して超解像記録及び超解像再生を行うことができ、特に、次世代型の光記録媒体において用いられる波長が約405nmのレーザビーム及び開口数が約0.85の対物レンズを用いた超解像記録及び超解像再生において、良好な特性を得ることが可能となる。したがって、次世代型の光記録媒体用の記録再生装置と同様の記録再生装置を用いることができるので、記録再生装置の開発コスト・製造コストを抑制することが可能となる。

【発明を実施するための最良の形態】

[0031]

以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する

[0032]

図1(a)は、本発明の好ましい実施形態による光記録媒体10の外観を示す切り欠き 斜視図であり、図1(b)は、図1(a)に示すA部を拡大した部分断面図である。

[0033]

図1 (a)に示すように、本実施形態による光記録媒体10は円盤状であり、図1 (b)に示すように、支持基板11と、光透過層12と、支持基板11と光透過層12との間にこの順に設けられた反射層21、光吸収層22及び貴金属酸化物層23と、反射層21と光吸収層22との間、光吸収層22と貴金属酸化物層23との間及び貴金属酸化物層23と光透過層12との間にそれぞれ設けられた誘電体層33、32及び31とを備えて構成されている。データの記録及び再生は、光記録媒体10を回転させながらレーザビーム40を光入射面12a側から照射することによって行うことができる。レーザビーム40を光入射面12a側から照射することによって行うことができる。レーザビーム40を光入射面12a側から照射することが可能であり、特に、次世代型の光記録媒体に対して用いられる405nm程度の波長に設定することが最も好ましい。また、レーザビーム40を集束するための対物レンズの開口数としては0.6超に設定することが可能であり、特に、次世代型の光記録媒体に対して用いられる0.85程度の開口数に設定することが可能である。

[0034]

支持基板11は、光記録媒体10に求められる機械的強度を確保するために用いられる 円盤状の基板であり、その一方の面には、その中心部近傍から外縁部に向けて又は外縁部から中心部近傍に向けて、レーザビーム40をガイドするためのグルーブ11a及びランド11bが螺旋状に形成されている。支持基板11の材料や厚さは、機械的強度の確保が可能である限り特に限定されない。例えば支持基板11の材料としては、ガラス、セラミックス、樹脂等を用いることができ、成形の容易性を考慮すれば樹脂を用いることが好ましい。このような樹脂としてはポリカーボネート樹脂、オレフィン樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、フッ素系樹脂、ABS樹脂、ウレタン樹脂等が挙げられる。中でも、加工性などの点からポリカーボネート樹脂やオレフィン樹脂を用いることが特に好ましい。但し、支持基板11はレーザビーム40の光路とはならないことから、当該波長領域における光透過性の高い材料を選択する必要はない。

[0035]

一方、支持基板11の厚さについては、機械的強度の確保に必要且つ十分である厚さ、例えば、0.6 mm以上、2.0 mm以下に設定することが好ましく、現行の光記録媒体や次世代型の光記録媒体との互換性を考慮すれば、1.0 mm以上、1.2 mm以下、特に、1.1 mm程度に設定することが好ましい。支持基板11の直径についても特に限定されないが、現行の光記録媒体や次世代型の光記録媒体との互換性を考慮すれば、120 mm程度に設定することが好ましい。

[0036]

光透過層 12 は、記録時及び再生時に照射されるレーザビーム 40 の光路となる層である。その材料としては、使用されるレーザビーム 40 の波長領域において光透過率が十分に高い材料である限り特に限定されず、例えば光透過性樹脂等を用いることができる。本実施形態による光記録媒体 10 では、光透過層 12 の厚さは 10 μ m以上、200 μ m以下に設定される。これは、光透過層 12 の厚さが 10 μ m未満であると光入射面 12 a上におけるビーム径が非常に小さくなることから、光入射面 12 a の傷やゴミが記録や再生に与える影響が大きくなりすぎるためであり、200 μ m超であるとチルトマージンの確保やコマ収差の抑制が困難となるからである。また、次世代型の光記録媒体との互換性を考慮すれば、50 μ m以上、150 μ m以下に設定することが好ましく、70 μ m以上、120 μ m以下に設定することが特に好ましい。

[0037]

反射層 2 1 は、再生信号のレベルを高めるとともに再生耐久性を向上させる役割を果たす層である。反射層 2 1 の材料としては、金(A u),銀(A g),銅(C u),白金(P t),アルミニウム(A 1),チタン(Y i),クロム(Y c r),鉄(Y e),コバル

ト(Co),ニッケル(Ni),マグネシウム(Mg),亜鉛(Zn),ゲルマニウム(Ge)等の単体の金属又は合金を用いることができる。反射層 21 の厚さは特に限定されないが、5nm以上、200nm以下に設定することが好ましく、10nm以上、100nm以下に設定することがより好ましく、10nm以上、50nm以下に設定することが最も好ましい。これは、反射層 21 の厚さが 5nm未満であると再生耐久性を向上させる効果が十分に得られないからであり、また、反射層 21 の厚さが 200nmを超えると成膜に時間がかかり生産性が低下する一方で、これ以上の再生耐久性向上効果がほとんど得られないからである。これに対し、反射層 21 の厚さを 10nm以上、100nm以下、特に 10nm以上、50nm以下に設定すれば、生産性を大きく低下させることなく、十分な再生耐久性向上効果を得ることが可能となる。尚、本発明において、光記録媒体に反射層 21 を設けることは必須でないが、これを設けることにより上記の効果を得ることが可能となる。

[0038]

光吸収層 2 2 は、主として、レーザビーム 4 0 のエネルギーを吸収しこれを熱に変換する役割を果たし、その材料としては、使用するレーザビーム 4 0 の波長領域における吸収が大きく、且つ、記録時において貴金属酸化物層 2 3 の変形を妨げないよう比較的硬度の低い材料を用いることが好ましい。波長が 6 3 5 n m未満のレーザビーム 4 0 についてこのような条件を満たす材料としては、書き換え型の光記録媒体において記録層の材料として用いられる相変化材料が挙げられる。相変化材料としては、アンチモン(Sb)、テルル(Te)及びゲルマニウム(Ge)の合金又はこれに添加物が加えられた材料を用いることが好ましい。

[0039]

具体的には、光吸収層22を構成する相変化材料の原子比を

(Sba Te1-a) 1-b Mb

又は、

{ (GeTe) c (Sb2Te3) 1-c} d M1-d

(但し、Mはアンチモン(S b)、テルル(T e)及びゲルマニウム(G e)を除く元素である)

で表したとき、

 $0 \le a \le 1$ 、且つ

 $0 \le b \le 0$. 25

又は、

 $1/3 \le c \le 2/3$ 、且つ

 $0.9 \leq d$

に設定することが好ましい。

[0040]

特に、bの値が0.25を超えると光の吸収係数が光吸収層22に要求される値よりも低くなるおそれがあり、また、熱伝導性が光吸収層22に要求される値よりも低くなるおそれがあるため、好ましくない。

[0041]

元素Mの種類は特に限定されないが、インジウム(In),銀(Ag),金(Au),ビスマス(Bi),セレン(Se),アルミニウム(A1),リン(P),水素(H),シリコン(Si),炭素(C),バナジウム(V),タングステン(W),タンタル(Ta), 理鉛(Zn),マンガン(Mn),チタン(Ti),錫(Sn),パラジウム(Pd),鉛(Pb),窒素(Pb),酸素(Pb),酸素(Pb))からなる群より選ばれたPb0)及びランタノイド)からなる群より選ばれたPb1、以上の元素を選択することが好ましい。特に、波長がPb3 の Pb4 の Pb6 の Pb7 ので発土類元素からなる群より Pb7 には、元素Mとして銀(Pb8 の Pb9 の

性を得ることが可能となる。

[0042]

但し、光吸収層22の材料として相変化材料を用いた場合であっても、記録による相変化が信号となって現れることはほとんどない。光吸収層22の材料として相変化材料を用いることが必須でないのはこのためである。しかしながら、現在のところ光吸収層22の材料として相変化材料、特に上述した組成を有する相変化材料を用いた場合に最も良い信号特性が得られることが発明者により確認されている。

[0043]

光吸収層22の厚さとしては、その材料として相変化材料を用いた場合、5nm以上、100nm以下に設定することが好ましく、10nm以上、80nm以下に設定することがより好ましく、10nm以上、60nm以下に設定することが特に好ましい。これは、光吸収層22の厚さが5nm未満であるとレーザビームのエネルギーを十分に吸収することができないおそれがあるからであり、100nmを超えると成膜に時間がかかり生産性が低下するからである。これに対し、光吸収層22の厚さを10nm以上、80nm以下、特に10nm以上、60nm以下に設定すれば、高い生産性を確保しつつレーザビーム40のエネルギーを十分に吸収することが可能となる。

[0044]

貴金属酸化物層 23 は、レーザビーム 40 の照射により記録マークが形成される層であり、貴金属の酸化物を主成分とする。貴金属の種類としては特に限定されないが、白金(Pt)、銀(Ag)及びパラジウム(Pd)の少なくとも 1 種が好ましく、白金(Pt)が特に白金が好ましい。つまり、貴金属酸化物層 23 の材料としては、酸化白金(PtOx)を選択することが特に好ましい。貴金属酸化物層 23 の材料として酸化白金(PtOx)を用いれば、良好な信号特性及び十分な耐久性を得ることが可能となる。貴金属酸化物層 23 の材料として酸化白金(PtOx)を用いる場合、xの値としては、使用するレーザビーム 40 の波長領域において消衰係数(k)が 3 未満(k < 3)となるように設定することが好ましい。

[0045]

貴金属酸化物層 23 の厚さは信号特性に大きな影響を与える。良好な信号特性を得るためには、その厚さを 2 n m以上、5 0 n m以下に設定することが好ましく、2 n m以上、3 0 n m以下に設定することがより好ましい。特に良好な信号特性を得るためには、その厚さを 2 n m以上、8 n m以下に設定することが好ましく、3 n m以上、6 n m以下に設定することがより好ましく、4 n m程度に設定することが特に好ましい。貴金属酸化物層 2 3 の厚さが 2 n m未満又は 5 0 n m超であると、レーザビーム 4 0 を照射しても良好な形状を持った記録マークが形成されず、十分なキャリア/ノイズ比(CNR)が得られないおそれがあるからである。これに対し、貴金属酸化物層 2 3 の厚さを 3 n m以上、3 0 n m以下、特に 4 n m程度に設定すれば良好な形状をもった記録マークを形成することでき、高い 2 CNRを得ることが可能となる。

[0046]

誘電体層 31、 32 及び 33 は、主として、これらに隣接する各層を物理的及び化学的に保護するとともに、光学特性を調整する役割を果たす。本明細書においては、誘電体層 31、 32 及び 33 をそれぞれ第 1、 第2 及び第 3 の誘電体層と呼ぶことがある。誘電体層 31、 32 及び 33 の材料としては、酸化物、硫化物、窒化物又はこれらの組み合わせを主成分として用いることができる。具体的には、A12O3、 A1N、 ZnO、 ZnS、 GeN、 GeCrN、 CeO2、 SiO2、 SiO2、 Si3N4、 SiC、 La2O3、 TaO、 TiO2、 SiA1ON (SiO2, A12O3, Si3N4 及び A1N の混合物)及び LaSiON (La2O3, SiO2 及び Si3N4 の混合物)等、アルミニウム (A1)、 > リコン (Si)、 + リウム (Ce)、 + タン (Ce)、 + タン (Ce) 、 + タンタル (Ce) ・ + タンタル (Ce

モル%以上、30 モル%以下に設定することが好ましく、 $ZnSeSiO_2$ のモル比を80:20 程度に設定することが最も好ましい。

[0047]

誘電体層31、32及び33は、互いに同じ材料で構成されてもよいし、その一部又は全部が異なる材料で構成されてもよい。さらに、誘電体層31、32及び33の少なくとも一つが複数層からなる多層構造であっても構わない。

[0048]

誘電体層 33 の厚さは、10 n m以上、140 n m以下に設定することが好ましく、20 n m以上、120 n m以下に設定することがより好ましい。これは、誘電体層 33 の厚さが 10 n m未満であると光吸収層 22 を十分に保護できないおそれがあるからであり、誘電体層 33 の厚さが 140 n mを超えると成膜に時間がかかり生産性が低下するからである。これに対し、誘電体層 33 の厚さを 20 n m以上、120 n m以下に設定すれば、高い生産性を確保しつつ光吸収層 22 を効果的に保護することが可能となる。

[0049]

誘電体層 3 2 の厚さは、5 n m以上、100 n m以下に設定することが好ましく、20 n m以上、100 n m以下に設定することがより好ましい。これは、誘電体層 3 2 の厚さが 5 n m未満であると貴金属酸化物層 2 3 の分解時に破壊され、貴金属酸化物層 2 3 を保護できなくなるおそれがあるからであり、誘電体層 3 2 の厚さが 100 n mを超えると記録時において貴金属酸化物層 2 3 が十分に変形できなくなるおそれがあるからである。これに対し、誘電体層 3 2 の厚さを 2 0 n m以上、100 n m以下に設定すれば、貴金属酸化物層 2 3 を十分に保護しつつ、記録時における変形を過度に阻害することがない。また、誘電体層 3 2 の厚さはデータ再生時における信号特性にも影響を与え、その厚さを 5 0 n m以上、70 n m以下、特に 6 0 n m程度に設定することにより、高い C N R を得ることが可能となる。

[0050]

誘電体層 31の厚さは、貴金属酸化物層 23 を十分に保護できる限りにおいて、求められる反射率に応じて定めれば良く、例えば、30 n m以上、120 n m以下に設定することが好ましく、50 n m以上、100 n m以下に設定することがより好ましく、70 n m程度に設定することが特に好ましい。これは、誘電体層 31 の厚さが 30 n·m未満であると貴金属酸化物層 23 を十分に保護できないおそれがあるからであり、誘電体層 31 の厚さが 120 n mを超えると成膜に時間がかかり生産性が低下するからである。これに対し、誘電体層 31 の厚さを 50 n m以上、100 n m以下、特に 70 n m程度に設定すれば、高い生産性を確保しつつ貴金属酸化物層 23 を十分に保護することが可能となる。

[0051]

以上が光記録媒体10の構造である。

[0052]

このような構造を有する光記録媒体10の製造においては、まず支持基板11を用意し、グルーブ11a及びランド11bが形成されている側の表面に反射層21、誘電体層3、光吸収層22、誘電体層32、貴金属酸化物層23、誘電体層31及び光透過層12を順次形成することにより作製することができる。つまり、光記録媒体10の作製においては、次世代型の光記録媒体と同様、光入射面12aとは反対側から順次成膜が行われることになる。

[0053]

反射層 2 1、誘電体層 3 3、光吸収層 2 2、誘電体層 3 2、貴金属酸化物層 2 3、誘電体層 3 1の形成は、これらの構成元素を含む化学種を用いた気相成長法、例えば、スパッタリング法や真空蒸着法を用いることができ、中でも、スパッタリング法を用いることが好ましい。一方、光透過層 1 2 の形成については、粘度調整された例えばアクリル系又はエポキシ系の紫外線硬化性樹脂をスピンコート法により皮膜させ、窒素雰囲気中で紫外線を照射して硬化する等の方法により形成することができる。但し、スピンコート法ではなく、光透過性樹脂を主成分とする光透過性シートと各種接着剤や粘着剤を用いて光透過層

12を形成しても構わない。

[0054]

尚、光透過層12の表面にハードコート層を設け、これによって光透過層12の表面を保護しても構わない。この場合、ハードコート層の表面が光入射面12aを構成する。ハードコート層の材料としては、例えば、エポキシアクリレートオリゴマー(2官能オリゴマー)、多官能アクリルモノマー、単官能アクリルモノマー及び光重合開始剤を含む紫外線硬化性樹脂や、アルミニウム(Al)、シリコン(Si)、セリウム(Ce)、チタン(Ti)、亜鉛(Zn)、タンタル(Ta)等の酸化物、窒化物、硫化物、炭化物あるいはそれらの混合物を用いることができる。ハードコート層の材料として紫外線硬化性樹脂を用いる場合には、スピンコート法によってこれを光透過層12上に形成することが好ましく、上記酸化物、窒化物、硫化物、炭化物あるいはそれらの混合物を用いる場合には、これらの構成元素を含む化学種を用いた気相成長法、例えば、スパッタリング法や真空蒸着法を用いることができ、中でも、スパッタリング法を用いることが好ましい。

[0055]

また、ハードコート層は、光入射面 12a に傷が生じるのを防止する役割を果たすものであることから、硬いだけでなく、潤滑性を有していることが好ましい。ハードコート層に潤滑性を与えるためには、ハードコート層の母体となる材料(例えば、 SiO_2)に潤滑剤を含有させることが有効であり、潤滑剤としては、シリコーン系潤滑剤やフッ素系潤滑剤、脂肪酸エステル系潤滑剤を選択することが好ましく、その含有量としては、0.1 質量%以上、5.0 質量%以下とすることが好ましい。

[0056]

次に、本実施形態による光記録媒体10に対するデータの記録方法及び記録原理について説明する。

[0057]

光記録媒体10へのデータ記録は、光記録媒体10を回転させながら、波長が635 n m未満、特に、次世代型の光記録媒体に対して用いられる405 n m程度の波長を有するレーザビーム40を光入射面12 a 側から貴金属酸化物層23に照射することにより行う。この場合、レーザビーム40を集束するための対物レンズとしては、開口数が0.6超、特に、次世代型の光記録媒体に対して用いられる0.85程度の開口数を有する対物レンズを用いることができる。つまり、次世代型の光記録媒体に対して用いられる光学系と同様の光学系を用いてデータの記録を行うことができる。

[0.058]

図2は、光記録媒体10に対してレーザビーム40を照射した状態を模式的に示す略断面図である。尚、図2に示す光記録媒体10の断面は、グルーブ11a又はランド11bに沿った断面である。

[0059]

図2に示すように、上記波長を有するレーザビーム40を上記開口数を有する対物レンズ50で集束して光記録媒体10に照射すると、ビームスポットの中心部分において貴金属酸化物層23が分解し、酸素ガス(O_2)が充填された気泡23aが形成される。気泡23aの内部には、原料金属の微粒子23bが分散した状態となる。このとき、気泡23aの周囲に存在する各層はその圧力により塑性変形するため、この気泡23aを不可逆的な記録マークとして用いることができる。例えば、貴金属酸化物層23の材料が酸化白金(PtOx)である場合、ビームスポットの中心部分において酸化白金(PtOx)が白金(Pt)と酸素ガス(O_2)に分解し、気泡23a中に白金(Pt)の微粒子が分散した状態となる。貴金属酸化物層23のうち、気泡23aが形成されていない部分はブランク領域である。

[0060]

貴金属酸化物層23の分解は、ビームスポットの全体において生じるのではなく、上述の通り、ビームスポットの中心部分においてのみ生じる。したがって、形成される気泡23a(記録マーク)はビームスポット径に比べて小さく、これにより超解像記録が実現さ

れる。このような超解像記録を行うことができる理由は次の通りである。

[0061]

図3 (a) は貴金属酸化物層23上におけるレーザビーム40のビームスポットを示す 平面図であり、図3(b) はその強度分布を示す図である。

[0062]

図3(a)に示すように、ビームスポット41の平面形状はほぼ円形であるが、ビームスポット41内におけるレーザビーム40の強度分布は一様ではなく、図3(b)に示すようにガウシアン分布を持っている。つまり、ビームスポット41内は中心部ほど高エネルギーとなる。したがって、最大強度の $1/e^2$ を十分に超える所定のしきい値Aを設定すれば、しきい値A以上の強度となる領域42の径W2は、ビームスポット41の径W1よりも十分に小さくなる。このことは、しきい値A以上の強度を持つレーザビーム40が照射された場合に分解するという特性を貴金属酸化物層23が有していれば、レーザビーム40が照射された領域のうち、ビームスポット41内の領域42に相当する部分にのみ気泡23a(記録マーク)が選択的に形成されることを意味する。

[0063]

これにより、図4に示すように、貴金属酸化物層23にはビームスポットの径W1よりも十分に小さい気泡23a(記録マーク)を形成することができ、その径はほぼW2となる。つまり、見かけ上のビームスポット径W2と実際のビームスポット径W1との関係がW1>W2

となり、超解像記録が実現される。ここで、貴金属酸化物層 23の材料として最も好ましい材料である酸化白金(PtOx)は、580 Cに加熱されると分解するという特性を有していることから、照射により貴金属酸化物層 23 が 580 C以上となる強度がしきい値Aとなる。

[0064]

したがって、光記録媒体10を回転させながら強度変調されたレーザビーム40をグループ11a及び/又はランド11bに沿って照射すれば、貴金属酸化物層23の所望の部分に再生限界未満の微細な記録マークを形成することが可能となる。

[0065]

[0066]

図7は、レーザビーム40の記録パワーとその後の再生により得られる再生信号のCN Rとの関係を模式的に示すグラフである。

[0067]

図7に示すように、光記録媒体10では、レーザビーム40の記録パワーがPw1未満であると、その後再生しても有効な再生信号は得られない。これは、レーザビーム40の記録パワーがPw1未満であると、貴金属酸化物層23が実質的に分解しないためであると考えられる。また、レーザビーム40の記録パワーがPw1以上、Pw2(>Pw1)未満の領域では、記録パワーが高いほどその後の再生で高いCNRが得られる。これは、レーザビーム40の記録パワーがPw1以上、Pw2未満の領域では、貴金属酸化物層23の分解が部分的に生じており、このため記録パワーが高いほど分解量が多くなるためであると考えられる。そして、レーザビーム40の記録パワーがPw2以上の領域では、こ

れ以上記録パワーを高めてもその後の再生で得られるCNRはほとんど変化しない。これは、レーザビーム40の記録パワーがPw2以上であると貴金属酸化物層23がほぼ完全に分解するためであると考えられる。以上を考慮すれば、レーザビーム40の記録パワーとしてはPw2以上に設定することが好ましいと言える。

[0068]

以上が光記録媒体10に対するデータの記録方法及び記録原理である。

[0069]

このようにして記録されたデータを再生する場合、光記録媒体10を回転させながら、 所定の強度(再生パワー=Pr)に固定したレーザビーム40をグルーブ11a及び/又 はランド11bに沿って照射すればよい。そして、得られる反射光を光電変換すれば、記 録マーク列に応じた電気信号を得ることが可能となる。このような超解像再生が可能であ る理由は必ずしも明らかではないが、再生パワーに設定されたレーザビーム40を照射す ると、レーザビーム4.0と気泡23a内に存在する金属微粒子23bとが何らかの相互作 用を起こし、これが超解像再生を可能としているものと推察される。

[0070]

図8は、レーザビーム40の再生パワーとCNRとの関係を模式的に示すグラフである

[0071]

図8に示すように、レーザビーム40の再生パワーがPr1未満であると有効な再生信号がほとんど得られないが、再生パワーをPr1以上に設定するとCNRは急速に高まり、再生パワーをPr2(>Pr1)まで高めるとCNRは飽和する。このような現象が生じる理由は必ずしも明らかではないが、Pr1以上に設定されたレーザビーム40の照射により金属微粒子23bと光の相互作用が発生或いは顕著となるためであると推察される。したがって、レーザビーム40の再生パワーとしてはPr1以上に設定する必要があり、Pr2以上に設定することが好ましい。

[0072]

しかしながら、再生パワーを高く設定しすぎるとブランク領域において貴金属酸化物層 23の分解が生じるおそれがあり、このような分解が生じると大幅な再生劣化をもたらしたり、場合によってはデータが消失してしまう。この点を考慮すれば、レーザビーム40の再生パワーとしてはPr2以上、Pw1未満に設定することが好ましい。

[0073]

本発明は、以上説明した実施の形態に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。

[0074]

例えば、図1に示した光記録媒体10の構造は、あくまで本発明による光記録媒体の基本構造であり、本発明による光記録媒体の構造がこれに限定されるものではない。例えば、光吸収層22から見て支持基板11側にもう一つの貴金属酸化物層を追加しても構わないし、貴金属酸化物層23から見て光透過層12側にもう一つの光吸収層を追加しても構わない。

[0075]

さらに、支持基板11の両面に光吸収層22や貴金属酸化物層23等の各種機能層をそれぞれ設けることにより、両面に記録面を持つ構造とすることも可能であるし、支持基板11の一方の面に透明中間層を介して各種機能層を2層以上積層することによって片面に2層以上の記録面を持つ構造とすることも可能である。

[0076]

以上説明したように、本実施形態によれば、波長が約635nm未満のレーザビーム及び開口数が約0.6超の対物レンズを用いることにより、 λ /NAを640nm以下に設定して超解像記録及び超解像再生を行うことができ、特に、次世代型の光記録媒体において用いられる波長が約405nmのレーザビーム及び開口数が約0.85の対物レンズを

用いた超解像記録及び超解像再生において、良好な特性を得ることが可能となる。したがって、次世代型の光記録媒体用の記録再生装置と同様の記録再生装置を用いることができるので、記録再生装置の開発コスト・製造コストを抑制することが可能となる。

【実施例】

[0077]

以下、本発明の実施例について説明するが、本発明はこの実施例に何ら限定されるものではない。

[0078]

[サンプルの作製]

[0079]

実施例1

[0080]

以下の方法により、図1に示す光記録媒体10と同じ構造を有する光記録媒体サンプル を作製した。

[0081]

まず、射出成型法により、厚さ約1.1mm、直径約120mmであり、表面にグルーブ11a及びランド11bが形成されたポリカーボネートからなるディスク状の支持基板11を作製した。

[0082]

[0083]

ここで、貴金属酸化物層 2 3 の形成においては、ターゲットとして白金(Pt)、スパッタガスとして酸素ガス(O_2)及びアルゴンガス(Ar)を用い(流量比=1:3)、チャンバー内の圧力を 0.14Pa、スパッタパワーを 200 Wに設定した。これにより、形成された酸化白金(PtOx)の消衰係数(k)は約 1.96 となった。

[0084]

そして、誘電体層 3 1 上に、アクリル系紫外線硬化性樹脂をスピンコート法によりコーティングし、これに紫外線を照射して厚さ約 1 0 0 μ mの光透過層 1 2 を形成した。これにより、実施例 1 による光記録媒体サンプルが完成した。

[0085]

実施例2

[0086]

反射層 2 1 を省略するとともに、誘電体層 3 3 、 3 2 及び 3 1 の厚さをそれぞれ約 8 0 n m、約 4 0 n m及び約 1 0 0 n mに設定した他は、実施例 1 による光記録媒体サンプルと同様にして実施例 2 による光記録媒体サンプルを作製した。

[0087]

実施例3

[0088]

貴金属酸化物層23の厚さを約2nmに設定した他は、実施例2による光記録媒体サンプルと同様にして実施例3による光記録媒体サンプルを作製した。

[0089]

実施例4

[0090]

貴金属酸化物層 2 3 の厚さを約 6 n m に設定した他は、実施例 2 による光記録媒体サンプルと同様にして実施例 4 による光記録媒体サンプルを作製した。

[0091]

実施例 5

[0092]

貴金属酸化物層23の厚さを約8nmに設定した他は、実施例2による光記録媒体サンプルと同様にして実施例5による光記録媒体サンプルを作製した。

[0093]

実施例 6

[0094]

誘電体層 3 2 の厚さを約 2 0 n mに設定し、誘電体層 3 1 の厚さを約 1 2 0 n mに設定した他は、実施例 2 による光記録媒体サンプルと同様にして実施例 6 による光記録媒体サンプルを作製した。

[0095]

実施例7

[0096]

誘電体層32の厚さを約60nmに設定し、誘電体層31の厚さを約60nmに設定した他は、実施例2による光記録媒体サンプルと同様にして実施例7による光記録媒体サンプルを作製した。

[0097]

これら実施例1乃至7における各層の厚さを次表にまとめる。

[0098]

【表1】

	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	実施例7
誘電体層31	70nm	100nm	100nm	100nm	100nm	120nm	60nm
貴金属酸化物層23	4nm	4nm	2nm	6nm	8nm	4nm	4nm
誘電体層32	60nm	40nm	40nm	40nm	40nm	20nm	60nm
光吸収層22	60nm	60nm	60nm	60nm	60nm	60nm	60nm
誘電体層33	100nm	80nm	80nm	80nm	80nm	80nm	80nm
反射層21	20nm	-	_	-	_	_	-

[0099]

「特性の評価1]

まず、実施例1及び実施例2の光記録媒体サンプルを光ディスク評価装置(パルステック社製DDU1000)にセットし、約6.0m/sの線速度で回転させながら、開口数が約0.85である対物レンズを介して波長が約405nmであるレーザビームを光入射面12aから貴金属酸化物層23に照射し、所定の記録マーク長及びブランク長からなる単一信号を記録した。記録マーク長及びブランク長については、50nmから320nmの範囲で種々に設定した。尚、上記光学系を用いた場合、

 $d_2 = \lambda / 4 NA$

で与えられる再生限界は約120 nmである。

[0100]

記録時におけるレーザビーム 400パワーについては、いずれの光記録媒体サンプルについても記録パワー (Pw)を最も高いCNRが得られるレベル(最適記録パワー)に設定し、基底パワー (Pb)をほぼ0mWに設定した。また、レーザビーム 400パルスパターンとしては、図5に示すパターンを用いた。

[0101]

そして、記録した単一信号を再生しそのCNRを測定した。レーザビーム40の再生パワー(Pr)については、各光記録媒体サンプルにおいて最も高いCNRが得られるレベル(最適再生パワー)に設定した。最適記録パワー及び最適再生パワーは各光記録媒体サンプルについて表2に示す通りであった。

[0102]

【表2】

	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	実施例7
最適記録パワー	8.8mW	5.5mW	5.5mW	6.0mW	5.0mW	5.0mW	6.5mW
最適再生パワー	2.2mW	2.0mW	2.0mW	2.0mW	2.0mW	2.0mW.	2.0mW

[0103]

CNRの測定結果を図9に示す。

[0104]

図9に示すように、実施例1及び実施例2の光記録媒体サンプルのいずれにおいても、記録マーク長及びブランク長が再生限界(約120nm)未満であっても高いCNRが得られていることが確認できる。例えば、記録マーク長及びブランク長が80nmである場合においても、実施例1の光記録媒体サンプルでは約41dB、実施例2の光記録媒体サンプルでは約37dBのCNRが得られている。これにより、実施例1及び実施例2の光記録媒体サンプルを用いれば、超解像記録及び超解像再生が可能であることが確認された

[0105]

図9に示す結果から明らかなように、実施例1の光記録媒体サンプルでは特に良好な結果が得られている。これは、実施例2の光記録媒体サンプルに比べ、各層の膜厚が上記光学系に対して最適化されているためと考えられる。

[0106]

「特性の評価2]

次に、実施例2乃至実施例5の光記録媒体サンプルを上述した光ディスク評価装置にセットし、上述した「特性の評価1」と同じ条件のもと、記録マーク長及びブランク長が80nmである単一信号並びに記録マーク長及びブランク長が60nmである単一信号を記録した。尚、実施例2乃至実施例5の光記録媒体サンプルは、それぞれ貴金属酸化物層23の厚さが異なっている他は、互いに同じ構成を有している。

[0107]

そして、記録した単一信号を再生しそのCNRを測定した。レーザビーム40の再生パワー(Pr)は、各光記録媒体サンプルの最適再生パワーに設定した。測定の結果を図10に示す。

[0108]

図10に示すように、貴金属酸化物層23の厚さと得られるCNRとの間には強い相関が認められ、貴金属酸化物層23の厚さを約4nmに設定した場合(実施例2)に最も良好なCNRが得られることが確認された。

[0109]

「特性の評価3]

[0110]

次に、実施例2、実施例6及び実施例7の光記録媒体サンプルを上述した光ディスク評価装置にセットし、上述した「特性の評価1」と同じ条件のもと、所定の記録マーク長及びブランク長からなる単一信号を記録した。記録マーク長及びブランク長については、60nmから320nmの範囲で種々に設定した。尚、実施例2、実施例6及び実施例7の

光記録媒体サンプルは、それぞれ誘電体層31、32の厚さが異なっている他は、互いに同じ構成を有している。

[0111]

そして、記録した単一信号を再生しそのCNRを測定した。レーザビーム40の再生パワー(Pr)は、各光記録媒体サンプルの最適再生パワーに設定した。測定の結果を図11に示す。

[0112]

図11に示すように、誘電体層32の厚さと得られるCNRとの間にはある程度の相関が認められ、誘電体層32の厚さを約60nmに設定した場合(実施例7)に最も良好なCNRが得られることが確認された。

[0113]

[特性の評価4]

[0114]

次に、「特性の評価1」において実施例1及び実施例2の光記録媒体サンプルに記録した単一信号のうち、記録マーク長及びブランク長が80nmである単一信号を繰り返し再生し、得られる再生信号のスペクトルを観測した。レーザビーム40の再生パワー(Pr)については、各光記録媒体サンプルの最適再生パワーに設定した。

[0115]

実施例1及び実施例2の光記録媒体サンプルについて、初期のスペクトルを図12(a)、(b)にそれぞれ示し、4000回繰り返し再生時のスペクトルを図13(a)、(b)にそれぞれ示す。

[0116]

図12(a)、(b)に示すように、初期のスペクトルについては実施例1の光記録媒体サンプルと実施例2の光記録媒体サンプルとの間に実質的な差は見られなかったが、4000回繰り返し再生すると、実施例2の光記録媒体サンプルでは図13(b)に示すようにスペクトルが広がり、再生劣化が生じていることが確認された。これに対し実施例1の光記録媒体サンプルでは、図13(a)に示すように4000回繰り返し再生後も初期のスペクトルと比べて実質的な差がなく、高い再生耐久性を有していることが確認された。実施例1の光記録媒体サンプルと実施例2の光記録媒体サンプルとの間にこのような差が生じたのは、反射層21の有無によるものと考えられる。

[0117]

以上、特性の評価1乃至4の結果を総合的に判断すれば、実施例1の光記録媒体サンプルが最も良好な特性を有しているといえる。

【図面の簡単な説明】

[0118]

- 【図1】(a)は、本発明の好ましい実施形態による光記録媒体10の外観を示す切り欠き斜視図であり、(b)は(a)に示すA部を拡大した部分断面図である。
- 【図2】光記録媒体10に対してレーザビーム40を照射した状態を模式的に示す図である。
- 【図3】(a)は貴金属酸化物層23上におけるレーザビーム40のビームスポットを示す平面図であり、(b)はその強度分布を示す図である。
- 【図4】 気泡23 a (記録マーク) のサイズを説明するための図である。
- 【図5】記録時におけるレーザビーム40の強度変調パターンの一例を示す波形図である。
- 【図6】記録時におけるレーザビーム40の強度変調パターンの他の例を示す波形図である。
- 【図7】レーザビーム40の記録パワーとその後の再生により得られる再生信号のCNRとの関係を模式的に示すグラフである。
- 【図8】レーザビーム40の再生パワーとCNRとの関係を模式的に示すグラフである。

- ページ: 17/E
- 【図9】特性の評価1における測定結果を示すグラフである。
- 【図10】特性の評価2における測定結果を示すグラフである。
- 【図11】特性の評価3における測定結果を示すグラフである。
- 【図12】特性の評価4における測定結果(初期のスペクトル)を示すグラフであり、(a) は実施例1の光記録媒体サンプルについての結果、(b) は実施例2の光記録媒体サンプルについての結果を示している。
- 【図13】特性の評価4における測定結果(4000回繰り返し再生時のスペクトル)を示すグラフであり、(a)は実施例1の光記録媒体サンプルについての結果、(b)は実施例2の光記録媒体サンプルについての結果を示している。

【符号の説明】

[0119]

- 10 光記録媒体
- 11 支持基板
- 11a グルーブ
- 11b ランド
- 12 光透過層
- 12a 光入射面
- 2 1 反射層
- 22 光吸収層
- 23 貴金属酸化物層
- 23a 気泡
- 23b 金属微粒子
- 31~33 誘電体層
- 40 レーザビーム
- 40a レーザビームの強度
- 41 ビームスポット
- 42 しきい値A以上の強度となる領域
- 50 対物レンズ

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

貴金属酸化物層32の厚さ (nm)

【図12】

【曹類名】要約曹

【要約】

【課題】 次世代型の光記録媒体用の光学系を用いて、超解像記録及び超解像再生を行う

【解決手段】 本発明の光記録媒体10は、支持基板11と、光透過層12と、光透過層12と支持基板11との間に配置された第1の誘電体層31、貴金属酸化物層23、第2の誘電体層32、光吸収層22、第3の誘電体層33及び反射層21とを備える。支持基板11の厚さは0.6~2.0mmであり、光透過層12の厚さは10~200 μ mであり、貴金属酸化物層23の厚さは2~50nm以下であり、第2の誘電体層32の厚さは5~100nm以下であり、光吸収層22の厚さは5~100nm以下であり、第3の誘電体層33の厚さは10~140nm以下である。これにより、次世代型の光記録媒体用の光学系を用いた超解像記録及び超解像再生において、良好な特性を得ることが可能となる。

【選択図】

図 1

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-270065

受付番号 50301097258

書類名 特許願

担当官 塩野 実 2151

作成日 平成15年 7月 3日

<認定情報・付加情報>

【提出日】 平成15年7月1日

【特許出願人】

【識別番号】 000003067

【住所又は居所】 東京都中央区日本橋1丁目13番1号

【氏名又は名称】 TDK株式会社

【代理人】 申請人

【識別番号】 100115738

【住所又は居所】 東京都中央区銀座一丁目5番1号 第三太陽ビル

8 F 鷲頭国際特許事務所

【氏名又は名称】 鷲頭 光宏

特願2003-270065

出願人履歴情報

識別番号

[000003067]

1. 変更年月日

2003年 6月27日

[変更理由]

名称変更

住所

東京都中央区日本橋1丁目13番1号

氏 名

TDK株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: □

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.