PARTE I: La complejidad del proyecto se analiza según la cantidad de ingenieros part-time, cantidad de ingenieros internos, cohesión del equipo (alto, medio, bajo), complejidad del stack y de arquitectura. Estos 2 últimos factores se evalúan utilizando una escala Likert de 1 a 5, de muy bajo (5) a muy alto (1). La empresa requiere que cada proyecto sea liderado por un ingeniero interno, si la proporción de profesionales internos es mayor a los part-time, es menos complejo, así mismo los proyectos que comienzan en primavera o verano tienden a ser menos complejos en su ejecución. La función para estimar la complejidad de los próximos proyectos de la empresa es (real personas_parttime, real personas_interna, date fecha_inicio_proyecto, string[5] cohesion, int complejidad_stack, int complejidad_arq)

1. Seleccione 1 alternativa con los valores de prueba de partición y valor límite para la variable

1.1.	personas	$_{ m parttime}$	(0.5))
	_ F	_p	(,	,

	<u> </u>					
a)	-9999999	-3	1	3,3	15	99999999
b)	-9999999	-3,4	0	3	3,4	99999999
c)	-8	-1	0	2	2,4	+∞
d)	-9999999	-1	0	1,4	2	99999999
e)	-9999999	-1	1	2,2	3	99999999

1.2. personas interna (0.5)

a)	-9999999	-1	1	5,5	15	9999999
b)	-9999999	-5,4	0	5	5,4	99999999
c)	_∞	-1	1	1,5	5	+∞
d)	-9999999	-1	0	2,4	4	9999999
e)	-9999999	-1	-0,2	0	3	9999999

1.3. fecha_inicio_proy (0.5)

a)	01/01/1900	25/07/2024	21/09/2024	21/01/2025	21/04/2025	23/04/2025	31/12/2099			
b)	01/01/0001	31/10/2022	25/07/2024	11/08/2024	21/09/2024	18/10/2024	21/04/2025	23/04/2025	31/12/9999	
c)	01/01/0001	01/12/1001	25/07/2024	02/08/2024	21/09/2024	18/10/2024	21/12/2024	21/04/2025	21/04/2025	31/12/9999
d)	01/01/0001	01/09/2001	23/01/2021	25/07/2024	11/08/2024	21/09/2024	21/12/2024	21/04/2025	23/04/2025	31/12/9999

 $1.1. complejidad_stack (0.5)$

a)	-99999999	-4	1	2	3	3,4	4	5	99999999	
b)	-99999999	0	1	2	3	4	4,5	5	100	99999999
c)	-∞	0	1	2	3	4	4,5	5	100	+∞
d)	-99999999	-4	1	2	3	4	5	7	22	99999999
e)	-99999999	-2	-1,3	1	2	3	4	5	7	99999999

2. Para cada caso de prueba indique que situación se está probando (1.0)

	personas_partti me	personas_inte	fecha_inicio_proy ecto	cohesi	complejidad_st	complejidad_ arq
a)	2	1	02/08/2024	alta	1	1
b)	1	3,5	18/10/2024	росо	4	1
				T	_	
c)	1	2	18/10/2024	media	5	1,3
				I		
d)	0	3	02/05/2025	alta	5	4

PARTE II

```
ev (real a, real b)
 2
     {
 3
     X=0
    y=0
 4
     for(j=a; hasta <b; ++)
{
   if (a==(x+y)) y=x+1</pre>
 6
 7
 8
          y=0
 9
10
     x=a+b
     while(y<x or x<>0)
11
          y=x+1
12
     return(a)
13
14
     }
```

3. Seleccione 1 alternativa con los valores (a, b) para la prueba de la sentencia IF en la línea 7 con el criterio de cubrimiento de decisión. (0.5)

a)	(4; 4) y (-1;-2)
b)	(-1 ;-2) y (0 ; 0)

_,			-	• •
L١	<i>,</i> ^ ı	111	CIO	N
г \	<i>,</i> Al			14

NOMBRE:

4.	Seleccione 1 alternativa los valores (a, b) para la prueba de la instrucción en la línea 11 co	on el
	criterio de cubrimiento de condición. (0.5)	

a)	(4; 4) y (-1;-2)	C) (-4; 4) y (0; 0)
b)	(-1 ;-2) y (0 ; 0)	d) (4;4) y (-4;4)

- 5. Construya el grafo y Calcule complejidad A-N+2– utilice el espacio. (1.0)
- 6. Defina los caminos y pruebe 2 de ellos. Indique cual camino prueba utilice el espacio. (1.0)