Github link: https://github.com/yunlinwadonwang/ml-final-project

Model link: https://drive.google.com/drive/folders/1oKaxiLyL4Oi3- eD9PAg74Nc-

7Zt4AFV?usp=sharing

Result

Submis	sion and Description	Private Score (i)	Public Score (i)	Selected
€ ₀	109550038.csv	0.58997	0.58592	

Reference

https://www.kaggle.com/competitions/tabular-playground-series-aug-2022/discussion/349810

將 product code 排列組合,區分出 train data 和 valid data

Introduction and Methodology

Pre-processing:

使用 sklearn 的 SimpleImputer,用平均值填入缺少的值使用 category_encoders 的 WOEEncoder,透過 weight of evidence 對類別型特徵進行編碼

Training:

透過 product code 排列組合產生 train data 和 valid data 使用 sklearn 的 LogisticRegression 作為 model Fit and predict 使用 sklearn 的 roc_auc_score 對 predict 評分 Save 10 models and woeencoder

Inferencing:

Load 10 models and pre-fit woeencoder Predict

Different Approaches

我有嘗試使用神經網路,架構是樹狀結構

不過結果並不理想,loss 沒有收斂的跡象,會一直來回震盪

嘗試過只用一層也無法收斂,又發現 label 分布不平均,所以試著做資料前處理,還是沒有太大的進展,於是放棄換其他方法

©	submission.csv Complete (after deadline) · 2d ago	0.56332
©	submission.csv Complete (after deadline) · 2d ago	0.54081
©	submission.csv Complete (after deadline) · 2d ago	0.55365
©	submission.csv Complete (after deadline) · 2d ago	0.56577
©	submission.csv Complete (after deadline) - 3d ago	0.55378
©	submission.csv Complete (after deadline) · 3d ago	0.56389
©	submission.csv Complete (after deadline) - 3d ago	0.56528
%	submission.csv Complete (after deadline) · 3d ago	0.55852
©	submission.csv Complete (after deadline) · 3d ago	0.55396

Summary

這次作業花了很多時間在訓練神經網路,然而成效都不是很好,因此我明白了神經網路有其侷限性,並不是萬能的,或者說許多調整方面非常困難且麻煩,相較之下,這次使用 LogisticRegression 的成效好,且訓練速度快,讓我了解遇到不同問題需要使用不同的 model。