

CRC Handbook of Chemistry and Physics

A Ready-Reference Book of Chemical and Physical Data

Editor-in-Chief

Robert C. Weast, Ph.D.

Editor

David R. Lide, Ph.D.

Associate Editors

Melvin J. Astle, Ph.D.
William H. Beyer, Ph.D.

CRC Press, Inc.
Boca Raton, Florida

$$15. \frac{d^2}{dx^2}[f(u)]$$

$$16. \frac{d^n}{dx^n}[uv] =$$

where $\binom{n}{r_1}$

$$17. \frac{du}{dx} = \frac{1}{\frac{dx}{du}}$$

$$18. \frac{d}{dx}(\log_a u)$$

$$19. \frac{d}{dx}(\log_e u)$$

$$20. \frac{d}{dx}(a^u) =$$

$$21. \frac{d}{dx}(e^u) =$$

$$22. \frac{d}{dx}(u^v) =$$

$$23. \frac{d}{dx}(\sin u)$$

$$24. \frac{d}{dx}(\cos u)$$

$$25. \frac{d}{dx}(\tan u)$$

$$26. \frac{d}{dx}(\cot u)$$

$$27. \frac{d}{dx}(\sec u)$$

$$28. \frac{d}{dx}(\csc u)$$

$$29. \frac{d}{dx}(\operatorname{ver} u)$$

$$30. \frac{d}{dx}(\operatorname{arc} u)$$

©1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 by CRC Press, Inc.

©1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973 by THE CHEMICAL RUBBER CO.

©1964, 1965, 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973 by Chemical Rubber Publishing Company
Copyright 1918, 1920 by The Chemical Rubber Company (Copyright renewed 1946, 1948 by Chemical Rubber Publishing Company)

Copyright 1922 (Copyright renewed 1950), 1925 (Copyright renewed 1953), 1926 (Copyright renewed 1954), 1927 (Copyright renewed 1955), 1929 (Copyright renewed 1957), 1936, 1937 (Copyright renewed 1965 by The Chemical Rubber Co.), 1939, 1940 (Copyright renewed 1968 by The Chemical Rubber Co.), 1941 (Copyright renewed 1969 by The Chemical Rubber Co.), 1942 (Copyright renewed 1970 by The Chemical Rubber Co.), 1943 (Copyright renewed 1971 by The Chemical Rubber Co.), 1944 (Copyright renewed 1972 by The Chemical Rubber Co.), 1945 (Copyright renewed 1973 by The Chemical Rubber Co.), 1947, 1949, 1950, 1951, 1952 (Copyright renewed 1980 by CRC Press, Inc.), 1953 (Copyright renewed 1981a by CRC Press, Inc.), 1954 (Copyright renewed 1982 by CRC Press, Inc.), 1955 (Copyright renewed 1983 by CRC Press, Inc.), 1956 by Chemical Rubber Publishing Company

©1957, 1958, 1959, 1960, 1962 by Chemical Rubber Publishing Company

All Rights Reserved
Library of Congress Card No. 13-11056
PRINTED IN U.S.A.

ISBN-0-8493-0470-9

CONVERSION FORMULAE FOR SOLUTIONS HAVING CONCENTRATIONS EXPRESSED IN VARIOUS WAYS

A = Weight per cent of solute
 B = Molecular weight of solvent
 E = Molecular weight of solute
 F = Grams of solute per liter of solution
 G = Molality
 M = Molarity
 N = Mole fraction
 R = Density of solution grams per cc

Concentration of solute SOUGHT	Concentration of solute — GIVEN				
	A	N	G	M	F
A	—	$\frac{100N \times E}{N \times E + (1 - N)B}$	$\frac{100G \times E}{1000 + G \times E}$	$\frac{M \times E}{10R}$	$\frac{F}{10R}$
N	$\frac{A}{E}$	—	$\frac{B \times G}{B \times G + 1000}$	$\frac{B \times M}{M(B - E) + 1000R}$	$\frac{B \times F}{F(B - E) + 1000R \times E}$
G	$\frac{1000A}{E(100 - A)}$	$\frac{1000N}{B - N \times B}$	—	$\frac{1000M}{1000R - (M \times E)}$	$\frac{1000F}{E(1000R - F)}$
M	$\frac{10R \times A}{E}$	$\frac{1000R \times N}{N \times E + (1 - N)B}$	$\frac{1000R \times G}{1000 + E \times G}$	—	$\frac{F}{E}$
F	10AR	$\frac{1000R \times N \times E}{N \times E + (1 - N)B}$	$\frac{1000R \times G \times E}{1000 + E \times G}$	$M \times E$	—

ELECTROCHEMICAL SERIES

Petr Vanýsek

There are three tables for this Electrochemical Series. Each table lists standard reduction potentials, E° values, at 298.15 K (25°C), and at a pressure of 101.325 kPa (1 atm.). Table 1 is an alphabetical listing of the elements according to the symbols for the elements. Thus, data for Silver (Ag) precedes those for Aluminum (Al). Table 2 lists only those reduction reactions which have E° values positive to the potential of the Standard Hydrogen Electrode. In Table 2, the reactions are listed in the order of increasing positive potential and range from 0.000 V to +3.053 V. Table 3 lists only those reduction reactions which have E° values negative to the potential of the Standard Hydrogen Electrode. In Table 3, reactions are listed in the order of increasing negative potential and range from -0.017 to -4.10 V.

Table 1
ALPHABETICAL LISTING

Reaction	E°, V	Reaction	E°, V
$Ag^+ + e \rightleftharpoons Ag$	0.7996	$Ag_2WO_4 + 2 e \rightleftharpoons 2 Ag + WO_4^{2-}$	0.4660
$Ag^{2+} + e \rightleftharpoons Ag^+$	1.980	$Al^{3+} + 3 e \rightleftharpoons Al$	-1.662
$Ag(ac) + e \rightleftharpoons Ag + (ac)^-$	0.643	$H_2AlO_3^- + H_2O + 3 e \rightleftharpoons Al + 4 OH^-$	-2.33
$AgBr + e \rightleftharpoons Ag + Br^-$	0.07133	$AlF_6^{4-} + 3 e \rightleftharpoons Al + 6 F^-$	-2.069
$AgBrO_3 + e \rightleftharpoons Ag + BrO_3^-$	0.546	$As + 3H^+ + 3 e \rightleftharpoons AsH_3$	-0.608
$Ag_2C_2O_4 + 2 e \rightleftharpoons 2 Ag + C_2O_4^{2-}$	0.4647	$As_2O_3 + 6 H^+ + 6 e \rightleftharpoons 2 As + 3 H_2O$	0.234
$AgCl + e \rightleftharpoons Ag + Cl^-$	0.22233	$HAsO_2 + 3 H^+ + 3 e \rightleftharpoons As + 2 H_2O$	0.248
$AgCN + e \rightleftharpoons Ag + CN^-$	-0.017	$AsO_2^- + 2 H_2O + 3 e \rightleftharpoons As + 4 OH^-$	-0.68
$Ag_2CO_3 + 2 e \rightleftharpoons 2 Ag + CO_3^{2-}$	0.47	$H_3AsO_4 + 2 H^+ + 2 e \rightleftharpoons HAsO_2 + 2 H_2O$	0.560
$Ag_2CrO_4 + 2 e \rightleftharpoons 2 Ag + CrO_4^{2-}$	0.4470	$AsO_4^{3-} + 2 H_2O + 2 e \rightleftharpoons AsO_2^- + 4 OH^-$	-0.71
$AgF + e \rightleftharpoons Ag + F^-$	0.779	$Au^+ + e \rightleftharpoons Au$	1.692
$Ag,[Fe(CN)_6] + 4 e \rightleftharpoons 4 Ag + [Fe(CN)_6]^{4-}$	0.1478	$Au^{3+} + 2 e \rightleftharpoons Au^+$	1.401
$AgI + e \rightleftharpoons Ag + I^-$	-0.15224	$Au^{3+} + 3 e \rightleftharpoons Au$	1.498
$AgIO_3 + e \rightleftharpoons Ag + IO_3^-$	0.354	$AuBr_2^- + e \rightleftharpoons Au + 2 Br^-$	0.959
$Ag_2MoO_4 + 2 e \rightleftharpoons 2 Ag + MoO_4^{2-}$	0.4573	$AuBr_4^- + 3 e \rightleftharpoons Au + 4 Br^-$	0.854
$AgNO_2 + e \rightleftharpoons Ag + NO_2^-$	0.564	$AuCl_4^- + 3 e \rightleftharpoons Au + 4 Cl^-$	1.002
$Ag_2O + H_2O + 2 e \rightleftharpoons 2 Ag + 2 OH^-$	0.342	$Au(OH)_3 + 3 H^+ + 3 e \rightleftharpoons Au + 3 H_2O$	1.45
$Ag_2O_3 + H_2O + 2 e \rightleftharpoons 2 AgO + 2 OH^-$	0.739	$H_2BO_3^- + 5 H_2O + 8 e \rightleftharpoons BH_4^- + 8 OH^-$	-1.24
$2 AgO + H_2O + 2 e \rightleftharpoons Ag_2O + 2 OH^-$	0.607	$H_2BO_3^- + H_2O + 3 e \rightleftharpoons B + 4 OH^-$	-1.79
$AgOCN + e \rightleftharpoons Ag + OCN^-$	0.41	$H_3BO_3 + 3 H^+ + 3 e \rightleftharpoons B + 3 H_2O$	-0.8698
$Ag_2S + 2 e \rightleftharpoons 2 Ag + S^{2-}$	-0.691	$Ba^{2+} + 2 e \rightleftharpoons Ba$	-2.912
$Ag_2S + 2 H^+ + 2 e \rightleftharpoons 2 Ag + H_2S$	-0.0366	$Ba^{2+} + 2 e \rightleftharpoons Ba(Hg)$	-1.570
$AgSCN + e \rightleftharpoons Ag + SCN^-$	0.08951	$Ba(OH)_2 + 2 e \rightleftharpoons Ba + 2 OH^-$	-2.99
$Ag_2SeO_3 + 2 e \rightleftharpoons 2 Ag + SeO_4^{2-}$	0.3629	$Be^{2+} + 2 e \rightleftharpoons Be$	-1.847
$Ag_2SO_4 + 2 e \rightleftharpoons 2 Ag + SO_4^{2-}$	0.654	$Be_2O_3^{2-} + 3 H_2O + 4 e \rightleftharpoons 2 Be + 6 OH^-$	-2.63

Table 1 (continued)
ALPHABETICAL LISTING

Reaction	E°, V	Reaction	E°, V	Reaction
PbSO ₄ + 2 e ⇌ Pb(Hg) + SO ₄ ²⁻	-0.3505	Se + 2 H ⁺ + 2 e ⇌ H ₂ Se(aq)	-0.399	WO ₂ +
Pd ²⁺ + 2 e ⇌ Pd	0.951	H ₂ SeO ₃ + 4 H ⁺ + 4 e ⇌ Se + 3 H ₂ O	-0.74	WO ₃ +
[PdCl ₄] ²⁻ + 2 e ⇌ Pd + 4 Cl ⁻	0.591	SeO ₃ ²⁻ + 3 H ₂ O + 4 e ⇌ Se + 6 OH ⁻	-0.366	2 WO ₃
[PdCl ₄] ²⁻ + 2 e ⇌ [PdCl ₄] ²⁻ + 2 Cl ⁻	1.288	SeO ₄ ²⁻ + 4 H ⁺ + 2 e ⇌ H ₂ SeO ₃ + H ₂ O	1.151	Y ³⁺ +
Pd(OH) ₂ + 2 e ⇌ Pd + 2 OH ⁻	0.07	SeO ₄ ²⁻ + H ₂ O + 2 e ⇌ SeO ₃ ²⁻ + 2 OH ⁻	0.05	Zn ²⁺ +
Pt ²⁺ + 2 e ⇌ Pt	1.118	SiF ₆ ²⁻ + 4 e ⇌ Si + 6 F ⁻	-1.24	Zn ²⁺ +
[PtCl ₄] ²⁻ + 2 e ⇌ Pt + 4 Cl ⁻	0.755	SiO ₂ (quartz) + 4 H ⁺ + 4 e ⇌ Si + 2 H ₂ O	0.857	REI
[PtCl ₄] ²⁻ + 2 e ⇌ [PtCl ₄] ²⁻ + 2 Cl ⁻	0.68	SiO ₃ ²⁻ + 3 H ₂ O + 4 e ⇌ Si + 6 OH ⁻	-1.697	
Pt(OH) ₂ + 2 e ⇌ Pt + 2 OH ⁻	0.14	Sn ²⁺ + 2 e ⇌ Sn	-0.1375	
Pu ³⁺ + 3 e ⇌ Pu	-2.031	Sn ⁴⁺ + 2 e ⇌ Sn ²⁺	0.151	
Pu ⁴⁺ + e ⇌ Pu ³⁺	1.006	HSnO ₂ ⁻ + H ₂ O + 2 e ⇌ Sn + 3 OH ⁻	-0.909	
Pu ⁵⁺ + e ⇌ Pu ⁴⁺	1.099	Sn(OH) ₆ ²⁻ + 2 e ⇌ HSnO ₂ ⁻ + 3 OH ⁻ + H ₂ O	-0.93	
PuO ₂ (OH) ₂ + 2 H ⁺ + 2 e ⇌ Pu(OH) ₄	1.325	Sr ⁺ + e ⇌ Sr	-4.10	2 H ⁺ +
PuO ₂ (OH) ₂ + H ⁺ + e ⇌ PuO ₂ OH + H ₂ O	1.062	Sr ²⁺ + 2 e ⇌ Sr	-2.89	Cu ₂ ⁺ +
Rb ⁺ + e ⇌ Rb	-2.98	Sr ²⁺ + 2 e ⇌ Sr(Hg)	-1.793	Ge ⁴⁺ +
Re ³⁺ + 3 e ⇌ Re	0.300	Sr(OH) ₂ + 2 e ⇌ Sr + 2 OH ⁻	-2.88	NO ₃ ⁻ +
ReO ₄ ⁻ + 4 H ⁺ + 3 e ⇌ ReO ₂ + 2 H ₂ O	0.510	Ta ₂ O ₅ + 10 H ⁺ + 10 e ⇌ 2 Ta + 5 H ₂ O	-0.750	Tl ₂ O ₃ +
ReO ₂ + 4 H ⁺ + 4 e ⇌ Re + 2 H ₂ O	0.2513	Tc ²⁺ + 2 e ⇌ Tc	0.400	SeO ₄ ²⁻ +
ReO ₄ ⁻ + 2 H ⁺ + e ⇌ ReO ₃ + H ₂ O	0.768	TcO ₄ ⁻ + 4 H ⁺ + 3 e ⇌ TcO ₂ + 2 H ₂ O	0.782	UO ₂ ⁺ +
ReO ₄ ⁻ + 4 H ₂ O + 7 e ⇌ Re + 8 OH ⁻	-0.584	Te + 2 e ⇌ Te ²⁻	-1.143	Pd(OH) ₂
ReO ₄ ⁻ + 8 H ⁺ + 7 e ⇌ Re + 4 H ₂ O	0.368	Te + 2 H ⁺ + 2 e ⇌ H ₂ Te	-0.793	AgBr +
Rh ⁺ + e ⇌ Rh	0.600	Te ⁴⁺ + 4 e ⇌ Te	0.568	AgSCN
Rh ²⁺ + 2 e ⇌ Rh	0.600	TeO ₂ + 4 H ⁺ + 4 e ⇌ Te + 2 H ₂ O	0.593	N ₂ + 2
Rh ³⁺ + 3 e ⇌ Rh	0.758	TeO ₃ ²⁻ + 3 H ₂ O + 4 e ⇌ Te + 6 OH ⁻	-0.57	HgO +
[RhCl ₆] ³⁻ + 3 e ⇌ Rh + 6 Cl ⁻	0.431	TeO ₄ ⁻ + 8 H ⁺ + 7 e ⇌ Te + 4 H ₂ O	0.472	Ir ₂ O ₃ +
Ru ²⁺ + 2 e ⇌ Ru	0.455	H ₆ TeO ₆ + 2 H ⁺ + 2 e ⇌ TeO ₂ + 4 H ₂ O	1.02	2 NO +
Ru ³⁺ + e ⇌ Ru ²⁺	0.2487	Th ⁴⁺ + 4 e ⇌ Th	-1.899	[Co(NH ₃) ₆] ²⁺
RuO ₂ + 4 H ⁺ + 2 e ⇌ Ru ²⁺ + 2 H ₂ O	1.120	ThO ₂ + 4 H ⁺ + 4 e ⇌ Th + 2 H ₂ O	-1.789	Hg ₂ O +
RuO ₄ ⁻ + e ⇌ RuO ₄ ⁻	0.59	Th(OH) ₄ + 4 e ⇌ Th + 4 OH ⁻	-2.48	Ge ⁴⁺ +
RuO ₄ + e ⇌ RuO ₄ ⁻	1.00	Ti ²⁺ + 2 e ⇌ Ti	-1.630	Hg ₂ Br ₂
S + 2 e ⇌ S ²⁻	-0.47627	Ti ³⁺ + e ⇌ Ti ²⁺	-0.368	Pt(OH) ₂
S + 2H ⁺ + 2 e ⇌ H ₂ S(aq)	0.142	TiO ₂ + 4 H ⁺ + 2 e ⇌ Ti ²⁺ + 2 H ₂ O	-0.502	S + 2H
S + H ₂ O + 2 e ⇌ HS ⁻ + OH ⁻	-0.478	TiO ³⁺ + H ⁺ + e ⇌ Ti ³⁺ + H ₂ O	-0.055	Np ⁴⁺ +
2 S + 2 e ⇌ S ₂ ²⁻	-0.42836	Ti ⁴⁺ + e ⇌ Ti	-0.336	Ag ₂ [Fe(CN) ₆]
S ₂ O ₈ ²⁻ + 4 H ⁺ + 2 e ⇌ 2 H ₂ SO ₃	0.564	Ti ⁴⁺ + e ⇌ Ti(Hg)	-0.3338	IO ₃ ⁻ + 2
S ₂ O ₈ ²⁻ + 2 e ⇌ 2 SO ₄ ²⁻	2.010	Ti ³⁺ + 2 e ⇌ Ti ⁺	1.252	Mn(OH) ₂
S ₂ O ₈ ²⁻ + 2 H ⁺ + 2 e ⇌ 2 HSO ₄ ⁻	2.123	TlBr + e ⇌ Tl + Br ⁻	-0.658	2 NO ₂ ⁻ +
S ₄ O ₆ ²⁻ + 2 e ⇌ 2 S ₂ O ₃ ²⁻	0.08	TlCl + e ⇌ Tl + Cl ⁻	-0.5568	Sn ⁴⁺ +
2 H ₂ SO ₃ + H ⁺ + 2 e ⇌ HS ₂ O ₄ ⁻ + 2 H ₂ O	-0.056	TlI + e ⇌ Tl + I ⁻	-0.752	Sb ₂ O ₃ +
H ₂ SO ₃ + 4 H ⁺ + 4 e ⇌ S + 3 H ₂ O	0.449	Tl ₂ O ₃ + 3 H ₂ O + 4 e ⇌ 2 Tl ⁺ + 6 OH ⁻	0.02	Cu ²⁺ +
2 SO ₃ ²⁻ + 2 H ₂ O + 2 e ⇌ S ₂ O ₄ ²⁻ + 4 OH ⁻	-1.12	TlOH + e ⇌ Tl + OH ⁻	-0.34	BiOCl +
2 SO ₃ ²⁻ + 3 H ₂ O + 4 e ⇌ S ₂ O ₃ ²⁻ + 6 OH ⁻	-0.571	Tl(OH) ₃ + 2 e ⇌ TlOH + 2 OH ⁻	-0.05	Bi(Cl) ₄ +
SO ₄ ²⁻ + 4 H ⁺ + 2 e ⇌ H ₂ SO ₃ + H ₂ O	0.172	Tl ₂ SO ₄ + 2 e ⇌ Tl + SO ₄ ²⁻	-0.4360	Co(OH) ₃
2 SO ₄ ²⁻ + 4 H ⁺ + 2 e ⇌ S ₂ O ₆ ²⁻ + H ₂ O	-0.22	U ³⁺ + 3 e ⇌ U	-1.798	SO ₄ ²⁻ +
SO ₄ ²⁻ + H ₂ O + 2 e ⇌ SO ₃ ²⁻ + 2 OH ⁻	-0.93	U ⁴⁺ + e ⇌ U ³⁺	-0.607	SbO ⁺ +
Sb + 3 H ⁺ + 3 e ⇌ SbH ₃	-0.510	UO ₂ ⁺ + 4 H ⁺ + e ⇌ U ⁴⁺ + 2 H ₂ O	0.612	AgCl +
Sb ₂ O ₃ + 6 H ⁺ + 6 e ⇌ 2 Sb + 3 H ₂ O	0.152	UO ₂ ²⁺ + e ⇌ UO ⁺ ₂	0.062	As ₂ O ₃ +
Sb ₂ O ₅ (senarmontite) + 4 H ⁺ + 4 e ⇌ Sb ₂ O ₃ + 2 H ₂ O	0.671	UO ₂ ²⁺ + 4 H ⁺ + 2 e ⇌ U ⁴⁺ + 2 H ₂ O	0.327	Calomel
Sb ₂ O ₅ (valentinite) + 4 H ⁺ + 4 e ⇌ Sb ₂ O ₃ + 2 H ₂ O	0.649	UO ₂ ²⁺ + 4 H ⁺ + 6 e ⇌ U + 2 H ₂ O	-1.444	Ge ²⁺ +
Sb ₂ O ₅ + 6 H ⁺ + 4 e ⇌ 2 SbO ⁺ + 3 H ₂ O	0.581	V ²⁺ + 2 e ⇌ V	-1.175	Calomel
SbO ⁺ + 2 H ⁺ + 3 e ⇌ Sb + 2 H ₂ O	0.212	V ³⁺ + e ⇌ V ²⁺	-0.255	PbO ₂ +
SbO ₂ ⁻ + 2 H ₂ O + 3 e ⇌ Sb + 4 OH ⁻	-0.66	VO ²⁺ + 2 H ⁺ + e ⇌ V ³⁺ + H ₂ O	0.337	HAsO ₂ ⁻
SbO ₃ ⁻ + H ₂ O + 2 e ⇌ SbO ₂ ⁻ + 2 OH ⁻	-0.59	VO ²⁺ + 2 H ⁺ + e ⇌ VO ⁺ ₂ + H ₂ O	0.991	Ru ³⁺ +
Sc ³⁺ + 3 e ⇌ Sc	-2.077	V(OH) ₄ ⁻ + 2 H ⁺ + e ⇌ VO ²⁺ + 3 H ₂ O	1.00	ReO ₂ +
Se + 2 e ⇌ Se ²⁻	-0.924	V(OH) ₄ ⁻ + 4 H ⁺ + 5 e ⇌ V + 4 H ₂ O	-0.254	IO ₃ ⁻ + 3
		W ₂ O ₅ + 2 H ⁺ + 2 e ⇌ 2 WO ₂ + H ₂ O	-0.031	Hg ₂ Cl ₂ +
				Calomel
				Calomel