MACM 201 - Discrete Mathematics

11. Recurrence relations IV

Department of Mathematics

Simon Fraser University

Non-homogeneous linear recurrences

We will consider recurrence relations of one of the following forms:

$$ax_n + bx_{n-1} = f(n)$$
 $n \ge 1$
 $ax_n + bx_{n-1} + cx_{n-2} = f(n)$ $n \ge 2$

Recall: When f = 0 the relation is **homogeneous** and we have learned how to find general solutions.

Goal: When $f \neq 0$ the relation is **nonhomogeneous** and we will develop techniques to solve such recurrences for certain functions f.

Associated homogeneous relations

Definition

For a recurrence relation of the form

(1)
$$ax_n + bx_{n-1} = f(n)$$
 $n \ge 1$

(2)
$$ax_n + bx_{n-1} + cx_{n-2} = f(n)$$
 $n \ge 2$

the associated homogeneous relation is obtained by setting f to be 0

- (1) $ax_n + bx_{n-1} = 0$ $n \ge 1$
- (2) $ax_n + bx_{n-1} + cx_{n-2} = 0$ $n \ge 2$

Note (on terminology)

- A particular solution is a single sequence x_n satisfying a recurrence (without the initial condition)
- The **general solution** to a recurrence is the set of all sequences x_n satisfying it (no initial condition)
- A unique solution is the unique answer to a recurrence with given initial conditions.

Example

Problem: For the recurrence $x_n - 4x_{n-1} + 3x_{n-2} = 2^n$,

- (a) Find the associated homogeneous recurrence.
- (b) Find the general solution to part (a)
- (c) Check that $x_n = -2^n$ is a particular solution to the non-homogeneous recurrence. (i.e. this sequence satisfies the recurrence).
- (d) Verify that taking $x_n = -2^n$ from (c) and adding the general solution from (b) gives a solution to the non-homogeneous recurrence.

General solutions for non-homogeneous

Theorem

The general solution to a non-homogeneous recurrence is given by one particular solution plus the general solution to the associated homogeneous equation.

Note: As before, to obtain a unique solution satisfying some initial conditions we take the general and solve for the unknown constants.

Problem. Find a closed form solution to the following recurrence relation

$$x_0 = 5$$
, $x_1 = 6$ and $x_n - 4x_{n-1} + 3x_{n-2} = 2^n$ for $n \ge 2$

General Method

Solving non-homogeneous recurrence relations

- (1) Find a particular solution to the non-homogeneous recurrence.
- (2) Find the general solution to the associated homogeneous recurrence.
- (3) Adding (1) and (2) then gives the general solution to the non-homog. recurrence.
- (4) To find a unique solution satisfying given initial conditions, take the general solution from (3) and solve for the constants.

Undetermined Coefficients

Idea: If the function f in the nonhomogenous equation is exponential, say $f(n) = kr^n$, we look for a solution of the form $x_n = Cr^n$ by solving for the unknown coefficient C.

Problem. Find a particular solution to $x_n - 6x_{n-1} = 3^n$

Now assume $x_0 = 7$ and find a unique solution.

Finding particular solutions

Note

To find a particular solution to a non-homog. recurrence of the form

$$ax_n + bx_{n-1} = f(n)$$
 $n \ge 1$

$$ax_n + bx_{n-1} + cx_{n-2} = f(n) \qquad n \ge 2$$

- (1) Exponential functions $f(n) = kr^n$
 - (a) Look for a solution of the form $x_n = Cr^n$
 - (b) If (a) fails, try $x_n = Cnr^n$
 - (c) If (b) fails, try $x_n = Cn^2r^n$
- (2) Power functions $f(n) = kn^d$
 - (a) Look for a solution of the form $f(n) = a_d n^d + a_{d-1} n^{d-1} \dots + a_1 n + a_0$
 - (b) If (a) fails, multiply the form from (a) by n and try again.
 - (c) If (b) fails, multiply the form from (b) by n and try again.

Problem. Find a particular solution to $x_n + x_{n-1} - 6x_{n-2} = 2^n$

Problem. Find a particular solution to $x_n - 3x_{n-1} + 2x_{n-2} = 4n$