

Tools in den Digital Humanities

Vorlesung Einführung in die Digital Humanities

Prof. Dr. Christof Schöch Wintersemester 2021/22

Sitzungsüberblick

- 1. Tools in den DH: Was und warum?
- 2. Literaturverwaltung: Zotero
- 3. Data Wrangling: OpenRefine
- 4. Netzwerkanalyse: Cytoscape
- 5. Korpusanalyse: TXM
- 6. Fazit

(0) Tools in den DH: Was und warum?

Tools, sagen Sie? (Definitionsversuch)

- Software: sehr breiter Überbegriff (alles, was nicht Hardware oder Daten sind)
- Spezifischere Begriffe
 - Betriebssystem: Grundlage für den Einsatz von Tools, Vermittlung zur Hardware
 - Programmiersprache: funktional sehr viel offener als ein Tool
 - Tool: Abgrenzbare Anwendungssoftware für einen bestimmten Zweck

Aspekte der Betrachtung von Tools

- Welche Funktionen hat das Tool?
- Welche Zielgruppe(n) hat das Tool?
- Wer entwickelt das Tool?
- Brauche ich das Tool oder nehme ich lieber Python?
- Um welche Art von Tool handelt es sich?
 - GUI / CLI?
 - Desktop / Webservice?
 - Open Source / proprietär?

Arten von Tools

- spezifisch vs. generisch
 - wenige vs. viele Funktionen
 - kleiner vs. großer Teil eines Workflows
 - wenige vs. viele Parameter
 - eine vs. viele Fächer
- forschungsnah vs. publikumsorientiert
 - CLI oder GUI
 - kleiner vs. großer Umfang der Dokumentation
 - niedrige vs. hohe Usability
 - Desktop-Tool oder Webservice

Tools DH2015-DH2019

- 1. Python (125)
- 2. Twitter (82)
- 3. Gephi (60)
- 4. JavaScript (59)
- 5. Omeka (44)
- 6. GitHub (40)
- 7. HathiTrust (37)
- 8. stylo (35)
- 9. MALLET (33)
- 10. Google Books (31)
- 11. Excel (30)
- 12. MySQL (27)

- 13. D3.js (23)
- 14. NLTK (23)
- 15. WordPress (20)
- 16. Drupal (19)
- 17. TextGrid (19)
- 18. CollateX (18)
- 19. GeoNames (18)
- 20. TXM (18)
- 21. Solr (17)
- 22. Voyant Tools (17)
- 23. EEBO-TCP (15)
- 24. Palladio (15)

Tools CLS 2011-2021

(1) Literaturverwaltung: Zotero

Zotero: Einstieg

- Für die Verwaltung bibliographischer Daten
- Typ: generisch + publikumsorientiert
- Merkmale:
 - Graphische Benutzungsoberfläche
 - Nutzungsfreundlich
 - Umfassende Dokumentation und Forum
 - Fachübergreifend einsetzbar
 - Zielgruppe: Studierende und Wissenschaftler:innen
 - Open Source
- Alternativen: Citavi, Bibtex mit pandoc, Fiduswriter

Zotero: Funktionen

- Import:
 - aus Katalogen und Datenbanken
 - über ISBN oder DOI
- Verwaltung: Sortieren, Filtern, Schlagworte
- Lektüre: PDF-Reader, Annotation, Notizen
- Integration mit Word Processing (Zitate, Bibliographie)
- Export: Datenexporte und API (z.B. Zotpress)

Zotero: Screenshots

Desktop Web

Zotpress backend Zotpress frontend

Zotero: Ressourcen

- Homepage: https://zotero.org
- Screencast aus dem Bachelor: https://www.youtube.com/watch?v=OYG6Fapfueo
- Einführungsvideo: https://www.youtube.com/watch?
 v=PqQp_oUUY5w
- Wikipedia-Artikel: https://en.wikipedia.org/wiki/Zotero

(2) Data Wrangling: OpenRefine

OpenRefine: Einstieg

- Für die Bearbeitung von tabellarischen Daten
- Typ: generisch + foschungsnah
- Merkmale
 - läuft auf lokalem Server im Browser
 - ein bisschen wie Excel/Calc, aber flexibler
 - fachübergreifend einsetzbar
 - gut dokumentiert
 - laufend weiterentwickelt
 - Open Source
- Alternativen: Python RegEx, BeautifulSoup, Excel/Calc

OpenRefine: Funktionen

- Exploration: suchen, sortieren, facettieren
- Transformation: korrigieren, verbessern, vereinheitlichen
- Reconciliation: mit Normdaten verbinden und abgleichen
- Vollständige Versionierung

OpenRefine: Screenshots

View Filter

Datentyp Facet

OpenRefine: Ressourcen

- Homepage: https://openrefine.org/
- Dokumentation: https://docs.openrefine.org/
- Wikipedia-Artikel: https://en.wikipedia.org/wiki/OpenRefine
- Kurzes Video: https://www.youtube.com/watch? v=nORS7STbLyk

(3) Netzwerkanalyse: Cytoscape

Cytoscape: Einstieg

- Analyse und Visualisierung von Netzwerkdaten / Graphen
- Typ: forschungnah + generisch
- Merkmale:
 - Desktop-Anwendung mit GUI
 - Großer Funktionsumfang
 - Methoden- aber nicht fachspezifisch
 - Open Source
- Seit 2002, kommt aus der Bioinformatik (!)
- Alternativen: Gephi (DH), NetworkX (Python)

Cytoscape: Funktionen

- Input: Netzwerkdaten erstellen / importieren
- Analyse: Kennzahlen von Graphen berechnen
- Visualisierung: Netzwerke darstellen

Cytoscape: Screenshots

Edge-Table Node-Table

Beispiel 1 Beispiel 2

Cytoscape: Ressourcen

- Homepage: https://cytoscape.org/
- Dokumentation: http://manual.cytoscape.org/
- Tutorial (Slides): https://cytoscape.org/cytoscapetutorials/presentations/network-visualization.html
- Wikipedia-Artikel: https://en.wikipedia.org/wiki/Cytoscape

(4) Korpusanalyse: TXM

TXM: Einstieg

- Software f
 ür die Analyse von Textkorpora
- Typ: forschungsnah + mittelspezifisch
- Merkmale
 - graphische Benutzungsoberfläche
 - moderat fachspezifisch
 - forschungsnahe Entwicklung
 - Open Source
- Entwickelt seit etwa 2008 in Lyon
- Alternativen: Antconc, WordSmith, stylo, Voyant, CollateX

TXM: Funktionen

- Import von Texten mit Annotation und Metadaten (TXT, XML, CSV)
- Annotation von Texten (Lemma, POS)
- Suche: Reguläre Ausdrücke auf Wort, Lemma, POS-Ebene
- Analyse: Häufigkeit, KWIC, Kollokationen, Keyness
- Visualisierung: Dokumentlänge, Keyness, Clustering, uvm.

TXM: Screenshots

Suche nach Mustern Kollokationen

Distinktivität Clustering

TXM: Ressourcen

- Homepage: https://txm.gitpages.humanum.fr/textometrie/en/
- Dokumentation: https://txm.gitpages.humanum.fr/textometrie/en/Documentation/
- Demo der Portal-Version: http://portal.textometrie.org/demo/
- TXM-Tutorial: http://christofs.github.io/txm-tutorial/#/

Abschluss

Viele weitere wichtige Tools

- Netzwerkanalyse: Gephi, Cytoscape
- Kartierung: QGIS, Palladio, Geobrowser
- Webdesign: Wordpress, Drupal, Omeka, Github Pages
- Digitale Edition / XML: oXygen und (mit Plugins): Atom, jEdit, VSC
- Forschungsumgebungen: TextGrid Lab, FuD.
- OCR/Transkription: FineReader, OCR4all, Transkribus, Transcribo
- Projektmanagement: Mediawiki, Redmine, Taiga, Kanban uvm.

Einige nützliche Ressourcen zu Tools

- TAPoR 3: Research Tools for Studying Texts: https://tapor.ca/pa
- DH Toolchest von Alan Liu:
 - http://dhresourcesforprojectbuilding.pbworks.com/w/page/69
- "Which DH Tools Are Actually Used in Research?", https://welt

Literaturhinweise

Referenzlektüre

• Gibbs, Fred, und Trevor Owens. 2012. "Building better digital humanities tools". Digital Humanities Quarterly 6 (2). http://www.digitalhumanities.org/dhq/vol/6/2/000136/000136.html

Weitere Lektüren

- Bulatovic, Natasa et al. 2016. "Usability in digital humanities-Evaluating user interfaces, infrastructural components and the use of mobile devices during research process". In International Conference on Theory and Practice of Digital Libraries, 335–46.
 Springer.
- Burghardt, Manuel, und Claudia Müller-Birn. 2019. "Software Engineering in den Digital Humanities". In: INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik–Informatik für Gesellschaft (Workshop-Beiträge). Gesellschaft für Informatik e.V.
- Burghardt, Manuel, und Christian Wolff. 2014. "Humanist-Computer Interaction: Herausforderungen für die Digital Humanities aus Perspektive der Medieninformatik".
- Gold, Nicolas. 2009. "Service-Oriented Software in the Humanities: A Software Engineering Perspective". Digital Humanities Quarterly 3 (4).

Christof Schöch, 2022 http://www.christof-schoech.de

Lizenz: Creative Commons Attribution 4.0