MA 322: Scientific Computing

Department of Mathematics Indian Institute of Technology Guwahati

January 11, 2023

CHAPTER 2: ROOT FINDINGS

Newton's Method: Convergence Analysis

Theorem

Assume $f(x) \in C^2$, $\forall x \in N_{\delta}(\alpha)$, and assume $f(\alpha) = 0$, $f'(\alpha) \neq 0$. Then if x_0 is chosen sufficiently close to α , the iterates x_n

$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}, \qquad n\geq 0$$

will converge to α . Moreover,

$$\lim_{n\to\infty}\frac{\alpha-x_{n+1}}{(\alpha-x_n)^2}=-\frac{f''(\alpha)}{2f'(\alpha)}$$

providing that the iterates have an order of convergence p = 2.

Newton-Fourier Method

Assume $f(x) \in C^2([a,b])$ such that $\alpha \in (a,b)$. Further assume f(a) < 0, f(b) > 0, and that

$$f'(x) > 0$$
 $f''(x) > 0$ for $a \le x \le b$.

Then f(x) is strictly increasing on [a,b], and there is a unique root α in [a,b]. Also, f(x) < 0 for $a \le x < \alpha$, and f(x) > 0 for $\alpha < x \le b$. Let $x_0 = b$ and define the Newton iterates x_0 as

$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}, \qquad n\geq 0.$$

Next define a new sequence of iterates by

$$z_{n+1}=z_n-\frac{f(z_n)}{f'(x_n)}, \qquad n\geq 0$$

with $z_0 = a$. With the use of $\{z_n\}$, we obtain excellent upper and lower bounds for α . This method is called the *Newton-Fourier method*.

Newton's Method: Convergence Analysis

Theorem

Assume $f(x) \in C^2([a,b])$, f(a) < 0, f(b) > 0, and f'(x) > 0 f''(x) > 0 for $a \le x \le b$. Then the iterates x_n are strictly decreasing to α , and the iterates

$$z_{n+1}=z_n-\frac{f(z_n)}{f'(x_n)}, \qquad n\geq 0$$

with $z_0 = a$, are strictly increasing to α . Moreover,

$$\lim_{n\to\infty}\frac{x_{n+1}-z_{n+1}}{(x_n-z_n)^2}=\frac{f''(\alpha)}{2f'(\alpha)}$$

showing the distance between x_n and z_n decreases quadratically with n.

Newton's Method: Algorithm

- 1. Set df as the derivative function f'(x), itmax as the maximum number of iterations to be computed, and ier as an error flag to the user.
- 2. itnum := 1
- 3. denom := $df(x_0)$
- 4. If denom =0, then ier:= 2 and exit
- 5. $x_1 := x_0 f(x_0)/\text{denom}$
- 6. If $|x_1 x_0| \le \epsilon$, then set ier := 0, root := x_1 , and exit.
- 7. If itnum = itmax, set ier := 1 and exit
- 8. Otherwise, itnum := itnum + 1, $x_0 := x_1$ and go to step 3.

