Tutorial CESM2.1.3

Aspectos prácticos

Antes de Comenzar

Toda la información está en la página de CESM. Visitar para más detalles

https://www.cesm.ucar.ed

Instalación CESM2.1.3

- Repositorio GIT
 - https://github.com/ESCOMP/CESM/tree/release-cesm2.1.3
- Quickstart guide
 - https://escomp.github.io/CESM/versions/master/html/index.html

The Community Earth System Model

See the CESM web site for documentation and information:

http://www.cesm.ucar.edu

The CESM Quickstart Guide is available at:

http://escomp.github.io/cesm

This repository provides tools for managing the external components that make up a CESM tag - alpha, beta and release. CESM tag creation should be coordinated through CSEG at NCAR.

Crear y correr una simulación

- Directorio CESM2.1.3
- 2. Crear un caso:
- 3. Configurar el caso:
- 4. Compilar el caso:
- 5. Correr el modelo
- 6. Revisar datos de salida

- ./create newcase
- ./case.setup
- ./case.build
- ./case.submit

Crear y correr una simulación: 0. Directorios

- 3 carpetas para configuración, corrida y almacenamiento de simulaciones
 - o /case:
 - Configuración de simulacones: modificaciones específicas (CO2, CH3, SST, insolación, etc), tiempo de simulación, output, entre otras.
 - /scratch:
 - Compilación de simulaciones
 - Almacena output mientras simulación está en curso
 - Almacena logs en caso de errores
 - /archive
 - Registra output al finalizar las simulaciones
 - Contiene carpeta logs con información de la simulación (tiempo de corrida, uso de RAM, etc)

Crear y correr una simulación: 1. Crear un caso

Para crear un caso se debe usar ./create newcase, este tiene 3 inputs

- Se ubica en
 - a. cesm/model/cime/scripts/
- Un caso se crea de la sigiente forma
 - a. ./create_newcase --case \$CaseFolder --compset \$COMPSET --res \$GRID

https://www2.cesm.ucar.edu/models/cesm2/config/2.1.3/compsets.html

Scientific - The tested component set has been validated scientifically.

https://www2.cesm.ucar.edu/models/cesm2/config/g rids.html

Crear y correr una simulación: 2. Configurar (./case.setup)

Una vez creado el caso podemos acceder al \$CaseFolder para realizar modificaciones

- Recursos a utilizar
- Los componentes se manejan con listas XML
 - ./xmlquery y./xmlchange permiten consultar y modificar variables de la simulación
- ./case.setup
 - Genera archivos para realizar modificaciones específicas a cada módulo
 - Genera archivos user_nl_xxx (según módulos del compset)
 - Permiten modificar variables de cada componente (e.g. variables y frecuencia de output)

Crear y correr una simulación: Algunas variables

env_archive.xml	Especifica reglas para el el script de corto plazo de case.st_archive
env_batch.xml	Creado por ./create_newcase. Define configuraciones específicas de batch utilizadas por ./case.submit
env_build.xml	Especifica información específica utilizada por ./case.build
env_case.xml	Creado por ./create_newcase. No puede ser modificado
env_mach_pes.xml	Especifica PE layour utilizado por case.run
env_mach_specific.xml	Especifica las características del cluster utilizada por ./case.build
env_run.xml	Especifica el tiempo de corrida

Crear y correr una simulación: 3. Compilar (./case.build)

Una vez configurado el caso se debe invocar ./case.build para compilar.

- Este paso toma ~20 minutos
- Carga librerías y descarga input data en caso de ser necesario
- Luego de completarse es necesario especificar la memoria RAM a utilizar
 - .case.submit
 - case.st_archive
- Tiempo de corrida: esto es modificable en cualquier momento
 - o STOP OPTION: ndays, nyears, nmonths
 - STOP_N: cualquier número natural (e.g. 1, 5, 10, 40)

Crear y correr una simulación: 4. Correr (./case.submit)

Finalmente, es necesario correr el caso. Para esto es necesario utilizar el comando ./case.submit

- Lanzará 2 tareas
 - Simulación
 - Archive: Transporta los archivos de salida una vez concluida la simulación.
- Pueden revisar el estado de avance en /scratch
 - /scratch/CaseFolder/run
 - Contiene outputs mientras la simulación está en curso

Crear y correr una simulación: 5. Datos de salida

/archive contendrá todos los datos de salida

• Librerías *ncview* y *cdo* permiten analizar datos

Otros recursos

- Tutoriales CESM2.1.3
 - http://www.cesm.ucar.edu/events/tutorials/2021/
- Foro
 - https://bb.cgd.ucar.edu/cesm/
- Compsets
 - https://www2.cesm.ucar.edu/models/cesm2/config/2.1.3/compsets.html
- Grillas
 - https://www2.cesm.ucar.edu/models/cesm2/config/g rids.html
- Repositorio GIT con datos del curso
 - https://github.com/nlhpc-training/CES-2703

Simulaciones con CO2 PI, 2xCO2 y 4xCO2

https://esqf-node.llnl.gov/search/cmip6/

