Galaxy for long-read ONT data analysis and public education

B. Batut¹, M. Miladi¹, S. Hiltemann², W. de Koning², B. Gruening¹

Nanopore data analysis

Advantages

Realtime sequencing Simplified and less ambiguous genome assembly Capability to span repetitive genomic regions Identification of large structural variation

Trends

More accessible and easier/simpler: higher throughputs Rapid and constant tool development and upgrade of algorithms and software

Challenges

Bioinformatics data analysis

NanoGalaxy: A Galaxy toolkit, workflows & training

Polishing, QC & preprocessing Porechop Filtlong Nanopolish Poretools

Genome Assembly Minimap2 Miniasm Racon Flye Unicycler

Wtdbg2 Canu Mapping Minimap2

GraphMap **Visualisation** Nanoplot

Bandage

Taxonomy & metagenomics PlasFlow Staramr Kraken2

Worflows

Genome assembly using Flye for highly repetitive genomes Genome assembly using Unicycler (Illumina and ONT) for K. pneumoniae Antibiotic resistance detection

Training material

Assembly of plasmids and determination of antibiotic resistance following the previous workflow

Available on training.galaxyproject.org

Application to public education: the BeerDEcoded project

Workshops where pupils, students and citizens extract, sequence and analyze the "DNA of beer" to bring them in contact with molecular biology, data-analysis, and open science.

nanopore.usegalaxy.eu

useGalaxy

