Linear Algebra

Aleksis PhamPure Math, HCMUS

Kento Kazuma Philosophy, Munich

Pham BaoComputer Science, MIT

July 31, 2025

1. Vector Spaces

Definition 1.1: Vector Space

A triple $(V, +, \cdot)$ consisting of a set V, an addition map

$$+: V \times V \to V, \quad (x,y) \mapsto x + y$$

and a scalar multiplication map

$$: \mathbb{F} \times V \to V, \quad (\lambda, x) \mapsto \lambda x$$

is called a real vector space if for all $x, y, z \in V$ and $\lambda, \mu \in \mathbb{R}$, the following axioms hold:

1.
$$(x + y) + z = x + (y + z)$$

2.
$$x + y = y + x$$

3.
$$x + 0 = x$$

4.
$$x + (-x) = 0$$

5.
$$\lambda(\mu x) = (\lambda \mu)x$$

6.
$$1x = x$$

7.
$$\lambda(x+y) = \lambda x + \lambda y$$

8.
$$(\lambda + \mu)x = \lambda x + \mu x$$

Note: 0 and 1 here denote the additive and multiplicative identities in \mathbb{R} .

1 Vector Spaces 2

Definition 1.2: Subspace

A subset *U* of *V* is a subspace if:

- 0 ∈ U
- $u, w \in U \Rightarrow u + w \in U$
- $a \in \mathbb{F}$, $u \in U \Rightarrow au \in U$

Definition 1.3: Sum of Subspaces

If V_1, V_2, \ldots, V_m are subspaces of V, their sum is

$$V_1 + V_2 + \cdots + V_m = \{v_1 + v_2 + \cdots + v_m : v_i \in V_i\}$$

Theorem 1.1

The sum $V_1 + \cdots + V_m$ is the smallest subspace of V containing all V_i .

Proof. Because 0 is in V_1, \ldots, V_m , and subspaces are closed under addition, we get $0+0+\cdots+0=0\in V_1+V_2+\cdots+V_m$. Then if x is in any V_i we can always put $0+\cdots+x+0+\cdots=x\in V_1+V_2+\cdots+V_m$. Therefore, $V_1,V_2+\cdots+V_m\in V_1+V_2+\cdots+V_m$. Now we want to prove that it's the smallest subspace. Suppost that there is a subspace of V, namely V_1,\ldots,V_m and V_1,\ldots,V_m and V_2,\ldots,V_m and V_3,\ldots,V_m and V_4,\ldots,V_m . Let V_4,\ldots,V_m but not in V_4,\ldots,V_m and V_4,\ldots,V_m but not in V_4,\ldots,V_m but not in

$$u = v_1 + \cdots + v_m$$

And since U contains V_1, V_2, \ldots, V_m then

$$v_1 + v_2 \in U$$
 $(v_1 + v_2) + v_3 \in U$
 \dots
 $(v_1 + v_2 + \dots + v_{n-1}) + v_n \in U$

Hence, $u \in U$, which contradicts our assumption that x is not in U. Therefore $V_1 + \cdots + V_m$ is the smallest subspace of V containing V_1, \ldots, V_m . \square

Definition 1.4: Direct Sum

The sum $V_1 + \cdots + V_m$ is a *direct sum*, denoted $V_1 \oplus \cdots \oplus V_m$, if each element of the sum can be written uniquely as $v_1 + \cdots + v_m$ with $v_i \in V_i$.

1 Vector Spaces 3

Theorem 1.2

The sum $V_1 + \cdots + V_m$ is a direct sum if and only if the only way to write 0 as $v_1 + \cdots + v_m$ with $v_i \in V_i$ is when all $v_i = 0$.

Proof. It suffices to prove the converse, that is if

$$v_1 + v_2 + \dots + v_m = 0$$

then $v_i = 0$, where each $v_i \in V_i$. Now we suppose that there is an element in the sum can be written in two different ways. Suppose that a vector v can be written as

$$v = x_1 + \dots + x_m = y_m + \dots + y_m$$

where each $x_i, y_i \in V_i$. By subtracting the two expressions we get

$$(x_1 - y_1) + \cdots + (y_1 - y_m) = 0$$

Let $v_i = (x_i - y_i)$ we get $v_1 + \cdots + v_m = 0$. By the hypothesis, this implies v_i must be equal to zero, which means $x_i = y_i$ for all i, This contradicts the assumption that the representations are distinct, that is (x_1, \dots, x_m) is different from (y_1, \dots, y_m)

Therefore, every element in $V_1 + \cdots + V_m$ has a unique representation. Hence, $V_1 + \cdots + V_m$ is a direct sum.

Theorem 1.3

For subspaces $U, W \subset V$,

$$U + W$$
 is a direct sum $\Leftrightarrow U \cap W = \{0\}$

Proof. We begin by proving the forward direction, then proceed to the converse. Suppose first that U + W is a direct sum and x is a non-zero element such that $x \in U \cap W$ and $x \in U \oplus W$. According to the properties of direct sum, there exists a unique pair (u, w) with $u \in U$ and $w \in W$ such that

$$x = u + w$$

Using the properties of vector subspaces, we have $x, u \in U$ implies $x - u = w \in U$. $x, w \in W$ implies $x - w = u \in W$. $x, w \in U$ implies $x + u = u + w + w \in U$ However, x can be rewritten as

$$x = (u + w + w) - u$$

for $u + w + w \in U$ and $-u \in W$. This contradicts the assumption that the representations are distinct. Hence, x = 0 and $U \cap W = \{0\}$ Secondly, suppose that $U \cap W = \{0\}$ and $x \in U + W$

such that *x* can be written as

$$x = x_1 + y_1 = x_2 + y_2$$

which $(x_1, y_1) \neq (x_2, y_2)$ and $x_1, x_2 \in U$, $y_1, y_2 \in W$. Notice that we have x_1, x_2 implies $x_1 - x_2 \in U$ y_1, y_2 implies $y_2 - y_1 \in W$ By subtracting the two above expression we get

$$0 = x - x = (x_1 - x_2) + (y_2 - y_1)$$

This implies $x_1 - x_2 = y_2 - y_1 = t$, which means $t \in U$ and $t \in W$, or $t \in U \cap W$. However, 0 is the only element that belongs to $U \cap W$, then t = 0 and in particular $x_1 = x_2$ and $y_1 = y_2$ implies $(x_1, y_1) = (x_2, y_2)$, this contradicts the hypothesis that $(x_1, y_1) \neq (x_2, y_2)$. Hence, every element in U + W can only be writen as a unique representation, which means U + W is a direct sum . \square

2. Finite-Dimensional Vector Spaces

- A linear combination of a list v_1, \ldots, v_m of vector in V is a vector of the form

$$a_1v_1 + \cdots + a_mv_m$$

- Set of all linear combinations of a list of vectors is called

$$span(v_1 + \cdots + v_m) = \{a_1v_1 + \cdots + a_mv_m : a_1, \dots a_m \in \mathbb{F}\}\$$

- The span of a list of vectors in V is the smallest subspace of V containing all vectors in the list - If $span(v_1, \ldots, v_m) = V$ we say that list spans V. - a list of vectors in V is called linearly independent if the only choice of $a_1, \ldots, a_m \in \mathbb{F}$ that makes

$$a_1v_1 + \dots a_mv_m = 0$$

is
$$a_1 = \cdots = a_m = 0$$
.

Lemma 2.1: Linear dependence removal

Suppose $v_1, ..., v_m$ is a linearly dependent list in V. Then there exists $k \in \{1, ..., m\}$ such that

$$v_k \in span(v_1, \ldots, v_k)$$

Furthermore, if k satisfies the condition above and the k^{th} term is removed from v_1, \ldots, v_m then the span of remaining list equals $span(v_1, \ldots, v_m)$

Theorem 2.1

In a finite-dimensional vector space, every linearly independent list has length \leq any spanning list.

Proof. Let $A = (v_1, ..., v_m)$ be a linearly independent list, and let $B = (w_1, ..., w_n)$ be a spanning list of V. We aim to prove that $m \le n$.

Since B spans V, each v_i can be written as a linear combination of vectors from B. In particular, v_1 is a linear combination of w_1, \ldots, w_n . Therefore, the list (v_1, w_1, \ldots, w_n) is linearly dependent.

Because A is linearly independent, $v_1 \neq 0$. Hence, there must exist some k > 0 such that w_k is a linear combination of $v_1, w_1, \ldots, w_{k-1}$. Removing w_k from B, we still have a spanning list.

We continue this process: successively add each v_i into the list and eliminate one redundant vector in B each time to maintain a spanning list. Eventually, we obtain a list containing all of v_1, \ldots, v_m and still spanning V. Since we remove one vector from B for each v_i added, we cannot perform this more than n times. Therefore, $m \le n$.

Theorem 2.2

Every subspace of a finite-dimensional vector space is finite-dimensional.

Proof. Let V be a finite-dimensional vector space, and let $U \subseteq V$ be a subspace. We aim to show that U is finite-dimensional.

If $U = \{0\}$, then U is clearly finite-dimensional. Otherwise, there exists a nonzero vector $u_1 \in U$. Let $A = \{u_1\}$.

Proceed inductively: suppose we have constructed a linearly independent list $A = \{u_1, u_2, \dots, u_{k-1}\} \subseteq U$. If $U \subseteq \text{span}(A)$, then U is spanned by finitely many vectors, and we are done.

Otherwise, there exists $u_k \in U$ such that

$$u_k \notin \text{span}(u_1, u_2, \dots, u_{k-1}).$$

Add u_k to A and repeat the process.

Since V is finite-dimensional, any linearly independent set in V contains at most dim V vectors. Therefore, this process must terminate after finitely many steps. At termination, we have a finite linearly independent set $A \subseteq U$ such that $U \subseteq \text{span}(A)$, i.e., U = span(A).

Hence, *U* is finite-dimensional.

Definition 2.1: Basis

A basis of *V* is a linearly independent list that spans *V*.

Every $v \in V$ has a unique representation in a basis:

$$v = a_1v_1 + \cdots + a_mv_m$$

Every spanning list can be reduced to a basis.

Every finite-dimensional space has a basis.

Every linearly independent list can be extended to a basis.

Theorem 2.3

Suppose *V* is finite-dimensional and *U* is a subspace of *V*. Then there is a subspace *W* of *V* such that $V = U \oplus W$.

Proof. Let u_1, \ldots, u_n be a basis of U. This basis can be extended to $u_1, \ldots, u_n, w_1, \ldots, w_m$ which is a basis of V, and of course spans V. Now let $W = span(w_1, \ldots, w_n)$. We are processed to prove $V = U \oplus W$ and $U \cap W = \{0\}$. First of all let $v \in V$, by the above hypothesis

$$v = (a_1w_1 + \cdots + a_nw_n) + (b_1u_1 + \cdots + b_mu_m) = x + y$$

Indeed, $x \in U$, $y \in W$ and $u_1, \dots, u_n, w_1, \dots, w_m$ is linearly independent. Therefore, there is unique pair $(x, y) \in U \times W$ such that v = x + y. This means $v \in U \oplus W$, hence $V = U \oplus W$.

Definition 2.2: Dimension, dim *V*

- The dimension of a finite-dimensional vector space is the length of any basis of the vector space.
- The dimension of a finite-dimensional vector space *V* is denoted by dim *V*.

Theorem 2.4: Basis length does not depend on basis

Any two bases of a finite-dimensional vector space have the same length

Proof. Let X and Y be the basis set of V. Now we consider that X is linearly independent and Y is spanning list of V. By the lemma 2.1 $|X| \le |Y|$. Conversely, X is spanning list of V and Y is linearly independent, then $|X| \ge |Y|$. Hence |X| = |Y|.

Definition 2.3

We consider these properties

- If *V* is finite-dimensional and *U* is a subspace of *V*, then dim $U \leq \dim V$.
- Every linearly independent list of vectors in *V* of length dim *V* is a basis of *V*.

- If *U* is subspace of *V* and dim $U = \dim V$, then U = V.
- Every spanning list of vectors in *V* of length dim *V* is a basis of *V*.

Theorem 2.5: Dimension of a sum

f V_1 and V_2 are subspaces of a finite-dimensional vector space, then

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$$

Proof. Let v_1, \ldots, v_m be a basis of $V_1 \cap V_2$. This basis can be extended to $v_1, \ldots, v_m, a_1, \ldots, a_k$ which is basis of V_1 . We also have $v_1, \ldots, v_m, b_1, \ldots, a_l$ is a basis of V_2 .