Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Zihang Dai*12, Zhilin Yang*12, Yiming Yang¹, Jaime Carbonell¹,

Quoc V. Le², Ruslan Salakhutdinov¹

Carnegie Mellon University, ²Google Brain

{dzihang, zhiliny, yiming, jgc, rsalakhu}@cs.cmu.edu, qvl@google.com

Review Transformer

Vanilla Transformer

Problem: How to train a Transformer to effectively encode an arbitrarily long context into a fixed size representation

——Split the entire corpus into shorter segments

Vanilla training

分割出来在语义上可能不完整

Vanilla training

- Information never flows across segments
- largest possible dependency is bound by sequence length
- longer sentences/sequences get split up causing context fragmentation

XL training——Segment Level Recurrence

In formula

$$\begin{split} \widetilde{\mathbf{h}}_{\tau+1}^{n-1} &= \left[\mathrm{SG}(\mathbf{h}_{\tau}^{n-1}) \circ \mathbf{h}_{\tau+1}^{n-1} \right], \\ \mathbf{q}_{\tau+1}^{n}, \mathbf{k}_{\tau+1}^{n}, \mathbf{v}_{\tau+1}^{n} &= \mathbf{h}_{\tau+1}^{n-1} \mathbf{W}_{q}^{\top}, \widetilde{\mathbf{h}}_{\tau+1}^{n-1} \mathbf{W}_{k}^{\top}, \widetilde{\mathbf{h}}_{\tau+1}^{n-1} \mathbf{W}_{v}^{\top}, \\ \mathbf{h}_{\tau+1}^{n} &= \mathrm{Transformer-Layer}\left(\mathbf{q}_{\tau+1}^{n}, \mathbf{k}_{\tau+1}^{n}, \mathbf{v}_{\tau+1}^{n}\right). \end{split}$$

Vanilla Prediction

Vanilla Prediction

- Consumes one segment at a time, but only does one prediction
- Relieves context fragmentation
- Extremely expensive

碎片问题

XL prediction

训练的时候,缓存一个segment 预测的时候,一次缓存多个 segment

Extended Context

Position wise embeddings

Vanilla Embeddings

Vanilla Embeddings--Position embedding

$$\mathbf{E}_{\mathbf{s}_{\tau}} \in \mathbb{R}^{L \times d}$$
 Word embeddings

 $\mathbf{U}_{1:L}$ Position wise embeddings

$$\mathbf{h}_{\tau} = f(\mathbf{h}_{\tau-1}, \mathbf{E}_{\mathbf{s}_{\tau}} + \mathbf{U}_{1:L})$$

$$\mathbf{h}_{\tau+1} = f(\mathbf{h}_{\tau}, \mathbf{E}_{\mathbf{s}_{\tau+1}} + \mathbf{U}_{1:L})$$

What to change?

Relative position embeddings

Vanilla transformer

$$\mathbf{A}_{i,j}^{\text{abs}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(b)}$$
$$+ \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(d)}.$$

Transformer-XL

$$\mathbf{A}_{i,j}^{\text{rel}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(b)}$$
$$+ \underbrace{\mathbf{u}^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{v}^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(d)}.$$

Original self attention in other words

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^{T}}{\sqrt{d_k}})V$$

Extend Self attention

- Extend Qi*Ki by four terms:
 - Content Weight: the original score without the addition of the original positional encoding of course
 - Positional bias with respect to the current content (Qi).
 Sinusoidal function that receives the distance between tokens (e.g. i-j).
 - A learned global content bias vector for adjusting key importance
 - A learned global position bias

Transformer-XL

$$\mathbf{h}_{ au}^{0}\coloneqq\mathbf{E}_{\mathbf{s}_{ au}}$$

$$\begin{aligned} \text{For } n = 1, \dots, N: \qquad & \widetilde{\mathbf{h}}_{\tau}^{n-1} = \left[\text{SG}(\mathbf{m}_{\tau}^{n-1}) \circ \mathbf{h}_{\tau}^{n-1} \right] \\ \mathbf{q}_{\tau}^{n}, \mathbf{k}_{\tau}^{n}, \mathbf{v}_{\tau}^{n} = \mathbf{h}_{\tau}^{n-1} \mathbf{W}_{q}^{n \top}, \widetilde{\mathbf{h}}_{\tau}^{n-1} \mathbf{W}_{k, I}^{n} \mathbf{R}_{i-j}^{-1} \mathbf{W}_{v}^{n \top} \\ \mathbf{A}_{\tau, i, j}^{n} = \mathbf{q}_{\tau, i}^{n \top} \mathbf{k}_{\tau, j}^{n} + \mathbf{q}_{\tau, i}^{n \top} \mathbf{W}_{k, I}^{n} \mathbf{R}_{i-j} + u^{\top} \mathbf{t}_{\tau, j} + v^{\top} \mathbf{W}_{k, I}^{n} \mathbf{R}_{i-j} \\ \mathbf{a}_{\tau}^{n} = \text{Masked-Softmax}(\mathbf{A}_{\tau}^{n}) \mathbf{v}_{\tau}^{n} \\ \mathbf{o}_{\tau}^{n} = \text{LayerNorm}(\text{Linear}(\mathbf{a}_{\tau}^{n}) + \mathbf{h}_{\tau}^{n-1}) \\ \mathbf{h}_{\tau}^{n} = \text{Positionwise-Feed-Forward}(\mathbf{o}_{\tau}^{n}) \end{aligned}$$

$$W_{k,E}^n$$

Content based

$$R_{i-j}$$
 Relative position embedding $oldsymbol{v}^T$ Global content bias

$$W_{k,R}^n$$
 Location based

$$u^T$$
 Global position bias

WikiText-103

Model	#Params	Validation PPL	Test PPL
Grave et al. (2016b) – LSTM	-	-	48.7
Bai et al. (2018) – TCN	-	-	45.2
Dauphin et al. (2016) – GCNN-8	-	-	44.9
Grave et al. (2016b) – LSTM + Neural cache	-	-	40.8
Dauphin et al. (2016) – GCNN-14	-	-	37.2
Merity et al. (2018) – 4-layer QRNN	151M	32.0	33.0
Rae et al. (2018) – LSTM + Hebbian + Cache	-	29.7	29.9
Ours – Transformer-XL Standard	151M	23.1	24.0
Baevski & Auli (2018) – adaptive input ^{\(\dagger)}	247M	19.8	20.5
Ours – Transformer-XL Large	257M	17.7	18.3

Attention Length 384 training, 1600 test

103M training tokens from 28k articles, with 3.6k tokens per article

enwiki8

Model	#Params	Test bpc
Ha et al. (2016) – LN HyperNetworks	27M	1.34
Chung et al. (2016) – LN HM-LSTM	35M	1.32
Zilly et al. (2016) – Recurrent highway networks	46M	1.27
Mujika et al. (2017) – Large FS-LSTM-4	47M	1.25
Krause et al. (2016) – Large mLSTM	46M	1.24
Knol (2017) – cmix v13	-	1.23
Al-Rfou et al. (2018) – 12-layer Transformer	44M	1.11
Ours – 12-layer Transformer-XL	41M	1.06
Al-Rfou et al. (2018) – 64-layer Transformer	235M	1.06
Ours – 18-layer Transformer-XL	88M	1.03
Ours – 24-layer Transformer-XL	277M	0.99

Attention Length 784 training, 3200 test

text8

Model	#Params	Test bpc
Cooijmans et al. (2016) – BN-LSTM	-	1.36
Chung et al. (2016) – LN HM-LSTM	35M	1.29
Zilly et al. (2016) – Recurrent highway networks	45M	1.27
Krause et al. (2016) – Large mLSTM	45M	1.27
Al-Rfou et al. (2018) – 12-layer Transformer	44M	1.18
Al-Rfou et al. (2018) – 64-layer Transformer	235M	1.13
Ours – 24-layer Transformer-XL	277M	1.08

Attention Length 784 training, 3200 test

Summary

- Enable language modeling with self-attention architecture beyond a fixed length context. (Recurrence in purely self-attentive model)
- can learn longer dependency
 - 80% and 450% more than RNN and vanilla transformer
- 1,800 times faster than vanilla transformer