

Maths Expertes

Pour le 15/05/2024

2024-05-14

Lucas Duchet-Annez

LHB 2023/2024 *101* Maths Expertes Lucas Duchet-Annez

1 Exercices

1.1 Ex 4 p 218

1.1.1

L'ordre du graphe est 9

1.1.2

A: 4 B: 4 C: 4 D: 6 E: 5 F: 6 G: 5 H: 4 I: 4

Ainsi le nombre d'arêtes du graphe est 4 + 4 + 4 + 6 + 5 + 6 + 5 + 4 + 4 = 42

1.2 Ex 5 p 218

1.2.1

L'ordre du graphe est 6

1.2.2

Le graphe n'est pas complet

1.2.3

1.2.3.1

Un sous-graphe d'ordre 2 complet est le graphe $\{A, E\}$

1.2.3.2

Un sous-graphe d'ordre 3 complet est le graphe $\{A, E, D\}$

1.2.3.3

Un sous-graphe d'ordre 4 complet est le graphe $\{A, E, D, F\}$

1.3 Ex 8

Non car tout les graphes doivent être des cycles eulériens et donc possédés des degrès paires à chaque sommets

1.4 Ex 10

1.4.1

L'ordre du graphe est 6

1.4.2

Le graphe n'est pas simple car deux arêtes relient E à F

1.4.3

Les 7 chaines de longeurs 3 reliant les sommets E et C sont

- 1. E C A C
- 2. E C E C
- 3. $E-(a_1)-F_1-(a_1)-E-C$
- 4. $E-(a_2)-F-(a_2)-E-C$

Maths Expertes

Lucas Duchet-Annez

- 5. E C F C
- 6. $E (a_2) F (a_1) E C$
- 7. $E-(a_1)-F-(a_2)-E-C$

1.5 Ex 14

1.5.1

L'ordre du graphe est 7

1.5.2

Le degré entrant du sommet A est 1

1.5.3

Le degré sortant du sommet B est 3

1.5.4

La chaine $A \to B \to C \to E$ est une chaîne de longueur 3 reliant les sommets A et E

1.6 Ex 15

Maths Expertes Lucas Duchet-Annez

1	->	1
1	->	2
1	->	3
1	->	4
1	->	5
1	->	6
1 1	->	1 2 3 4 5 6 7 8
1	->	8
1	->	9
1 1	->	10
1	->	11
1	->	12
2	->	2 4 6
2	->	4
2	->	6
2	->	8
2	->	10
2	->	12
3	->	3
3	->	3 6
1 2 2 2 2 2 2 3 3 3 3	->	9
3	->	12
4	->	4
4	->	8
4	->	12
5	->	5 10
5	->	10
6	->	6
6	->	12
7	->	7
5 5 6 6 7 8	->	12 7 8 9
9	->	9
10	->	> 10
10 -> 10 11 -> 11 12 -> 12		
12 -> 12		

1.7 Ex 31

1.7.1

L'ordre du graphe est 5

1.7.2

$$M = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

1.7.3

Oui on peut car $m_{3,4}=3$ il y a donc trois parcours différents possibles

- 1. D H B F
- 2. D H A F
- 3. D A B F

1.7.4

1.8 Ex 55

1.8.1 Partie A

1.8.1.1

D'après le cours pour une matrice carré de taille 2 l'inverse s'écrit $M^{-1}=\frac{1}{\det(M)}{a-b\choose -c-a}$ avec $M={a-b\choose c-d}$

Ici c=5 et d=3 par conséquent N correspond à cette forme

1.8.1.2

1.8.1.2.1

$$6\times 3 - 3\times 5 = 3$$

Donc (6; 3) est un couple solution

1.8.1.2.2

1.8.2 Partie B

1.8.2.1

$$Q^{-1} = \frac{1}{3 \times 6 - 5 \times 3} \begin{pmatrix} 3 & -3 \\ -5 & 6 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 3 & -3 \\ -5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -\frac{5}{3} & 2 \end{pmatrix}$$

1.8.2.2

On a $X=(3\ 14)$, puis $Y=(60\ 57)$ puis $R=(8\ 5)$. $DO \rightarrow IF$.