Biinfinite Kontrollpolygone: $\mathbf{c}_{\mathbb{Z}} := (\mathbf{c}_i)_{i \in \mathbb{Z}} = (...\mathbf{c}_{-1}\mathbf{c}_0\mathbf{c}_1...)$

Algorithmus

Eingabe:

$$\mathbf{c}_{\mathbb{Z}}^0$$
 ein Polygon $\subset \mathbb{R}^d$ $n \in \mathbb{N}_0$ der Grad

Ausgabe:

$$\mathbb{R}^m \subset \mathbb{R}^d$$

For k = 1, ..., m
For i
$$\in \mathbb{Z}$$
 //verdoppele

$$\mathbf{d}_{2i}^{0} \leftarrow \mathbf{d}_{2i+1}^{0} \leftarrow \mathbf{c}_{i}^{k-1}$$
For j = 1, ..., n
For i $\in \mathbb{Z}$ //mittele

$$\mathbf{d}_{i}^{j} \leftarrow \left(\mathbf{d}_{i-1}^{j-1} + \mathbf{d}_{i}^{j-1}\right) \frac{1}{2}$$

For
$$\mathbf{i} \in \mathbb{Z}$$
 //bennen um
$$\mathbf{c}_{i}^{k} \leftarrow \mathbf{d}_{i}^{n}$$
 Differenzenpolygone: $b_{\nabla}(z) = (1-z)b(z)$
$$= (1-z)\alpha(z)\frac{c_{\nabla}(z^{2})}{(1-z^{2})}$$

$$= (1-z)\alpha(z)\frac{c_{\nabla}(z^{2})}{(1-z^{2})}$$

$$= \frac{\alpha(z)}{1+z}c_{\nabla}(z^{2})$$
 Bem.: Das Differenzenschema zu $\alpha(z)$ existiert nur, wenn gilt:
$$\mathbf{c}_{i}^{m}(z) = (U_{n})^{m}\mathbf{c}_{i} = (U_{n})^{m}\mathbf{c}_{i} = (U_{n})^{m}\mathbf{c}_{i}$$
 bem.: Es muss
$$\sum_{i \in \mathbb{Z}} \alpha_{2i} = \sum_{i \in \mathbb{Z}} \alpha_{2i+1} = 1$$
 gelten, damit die
$$U_{n}^{m}\mathbf{c}_{i} = (U_{n})^{m}\mathbf{c}_{i} = (U_{n})^{m}\mathbf{c}_{i}$$
 vertersitten Polygone: $b_{\nabla}(z) = (1-z)b(z)$

Allgemein enthält U_n in den Spalten die Einträge α_i , jeweils

$$\alpha_i = \begin{cases} \frac{1}{2^n} \binom{n+1}{i}, & i = 0, ..., n+1 \\ 0, & sonst \end{cases}$$

Unterteilungsgleichung:

um zwei Zeilen versetzt:

$$b_i = \sum_{k \in \mathbb{Z}} \alpha_{i-2k} c_k, \ i \in \mathbb{Z}$$

Allgemein

Regelmäßiges biinfinites Kontrollnetz C und das unterteilte Netz B mit den Unterteilungsmatrizen U und V:

$$C := [\mathbf{c}_{ij}]_{i,j \in \mathbb{Z}} = [\mathbf{c_i}]_{\mathbf{i} \in \mathbb{Z}^2} =: \mathbf{c}_{\mathbb{Z}^2}$$

 $B := \mathbf{b}_{\mathbb{Z}^2} := UCV^t$
 (U, V) heißt Tempus

Bem.: Wenn U, V konvergente Kurvenunterteilungsalgorithmen, dann konvergiert $U^kC\left(V^t\right)^k$ gegen eine Fläche.

$$C = \mathbf{c}_{\mathbb{Z}^2} \Rightarrow \mathbf{c}\left(\mathbf{x}\right) := \mathbf{c}\left(x,y\right) := \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \mathbf{c}_{ij} x^i y^j := \sum_{\mathbf{i} \in \mathbb{Z}^2} \mathbf{c}_{\mathbf{i}} \mathbf{x}^{\mathbf{i}}$$

$$B := UCV^t \Rightarrow \mathbf{b}(x, y) := \alpha(x) \mathbf{c}(x^2, y^2) \beta(y)$$
$$(U, V) \Rightarrow \gamma(x, y) := \alpha(x) \beta(y) \text{ (Symbol des Tempus)}$$

Unterteilungsgleichung: $\mathbf{b}\left(\mathbf{x}\right) = \gamma\left(\mathbf{x}\right)\mathbf{c}\left(\mathbf{x}^{2}\right)$ bzw. komponentenweise: $\mathbf{b_{i}} = \sum_{\mathbf{j} \in \mathbb{Z}^{2}} \gamma_{i-2\mathbf{j}}\mathbf{c_{j}}$

Eingabe:

$$t = t_1...t_n$$

 $s = s_1...s_m$ // Suchtext

Solange i \leq n - m // vgl. s mit $t_{i+1}...t_{i+m}$

 $sonst i \leftarrow i + 1$

i < -0

kleinstes
$$i$$
 mit $t_{i+1}...t_{i+m} = s$

Solange j > 0 und $s_j = t_{i+j}$ j < -j - 1

gib i aus; stop

Def.

Bem.

Ein Präfix eines Wortes w, das zugleich ein Suffix von w ist, $\gamma(0 \dots m)$ heißt Präsuffix. geps(w) ist das größte echte Präsuffix von w. $\sigma(1 \ldots m)$ $w_j := s_{j+i}...s_m$.

 $\Gamma_{\mathbf{i}} := [\gamma_{\mathbf{i}-2\mathbf{j}}]_{\mathbf{i} \in \mathbb{Z}^2}$ heißen Masken für $\mathbf{i} = (0,0), (1,0), (0,1), (1,1)$

$$s_m$$
.
$$\gamma\left(j\right) := \left|geps\left(w_j\right)\right| \qquad \qquad \text{For } \; \mathrm{j} \; :$$

Suffix funkion σ wird dargestellt:

Masken

Wenn $\Gamma := \gamma_{\mathbb{Z}^2}$ biinfinite Matrix. Also

 $\gamma(x,y) := [...x^{-1}x^0x^1...]\Gamma[...y^{-1}y^0y^1...]^t$

$$\sigma\left(j\right)=\min\left(\left\{k\in\left\{ 1,...,j\right\} \right|\gamma\left(j-k\right)=m-j\right\}\cup\left\{ m-\gamma\left(0\right)\right\}\right)$$

Änderungen in "Naive Suche"

Sei $t_{i+j} \neq s_j$ und $t_{i+j+1}...t_{i+m} = s_{j+1}...s_m$. Dann ist $v := v(t_{i+j}) \neq j$ und

• falls
$$v < j$$
, kann i um $j - v$ erhöht werden

• falls v > j, kann i um m - v + 1 erhöht werden

Bsp. α eines stationären Unterteilungsalgorithmus:

 $\alpha_n(z) := \frac{1}{2^n} \sum_{i=0}^{n+1} \binom{n+1}{i} z^i = \frac{1}{2^n} (1+z)^{n+1}$

Rückwärtsdifferenzen: $\nabla \mathbf{c} := (\nabla c_i)_{i \in \mathbb{Z}}$

Differenzenpolygone: $b_{\nabla}(z) = (1-z)b(z)$

Symbol: v(z) := 1 - z

 $\nabla c_i := c_i - c_{i-1}$

 $=\left(1-z\right)\alpha\left(z\right)\frac{c_{\nabla}\left(z^{2}\right)}{\left(1-z^{2}\right)}$

 $\nabla \mathbf{c}\left(z\right) = v\left(z\right)c\left(z\right)$

 $\alpha(z) := \sum_{j \in \mathbb{Z}} \alpha_j z^j$

Differenzenschema

Vorkommensfunktion:

$$v: A \to 0, ..., m$$

 $a \mapsto v(a),$

Für kleines m und großes Alphabet A nun Laufzeit $O(\frac{n}{m})$

 $v(a) := min\{ k | a \notin s_{k+1}...s_m \ und \ (a = s_k \lor k = 0) \}$

$$(j) = min\left(\{k \in \{1, ..., j\} | \gamma(j-k) = m-j\} \cup \{m-\gamma(0)\}\right)$$

$$\text{nderungen in "Naive Suche"}$$

$$j \leftarrow m - \gamma(i)$$

$$// \text{ Es gilt jetzt } \gamma(j-k) = falls \sigma(j) > k$$

$$\text{denotes the proof } (j) \leftarrow k$$

For
$$j=1,\ldots,m$$

$$\sigma(j) \leftarrow m-gamma(0)$$
For $i=0,\ldots,m-1$

$$k \leftarrow m-\gamma(i)-i$$

$$j \leftarrow m-\gamma(i)$$
// Es gilt jetzt $\gamma(j-k)=$

$$j \leftarrow m - \gamma(i) - 1
j \leftarrow m - \gamma(i) - 1
// Es gilt jetzt $\gamma(j-k) = m - j$
falls $\sigma(j) > k$

$$dann \sigma(j) \leftarrow k$$$$

// Es gilt jetzt
$$\gamma(j-k) = m$$
 falls $\sigma(j) > k$ dann $\sigma(j) \leftarrow k$

// wie in "Naiver Suche", letzte Zeile // durch folgendes ersetzt
$$v \leftarrow v(t_{i+j})$$
 falls $v < j$ $i \leftarrow i + \max\{j-v, \sigma(j)\}$ separt

// wie in "Naiver Suche", letzte Ze
// durch folgendes ersetzt
v
$$\leftarrow$$
 v(t_{i+j})
falls v $<$ j
i \leftarrow i + max{j-v, σ (j)}
sonst
i \leftarrow i + max{m-v+1, σ (j)}