Assignment 1

Naman Mishra

07 January, 2024

Problem 1.1. Let $(\mathbb{Z}, +_{\mathbb{Z}}, \cdot_{\mathbb{Z}}, \leq_{\mathbb{Z}})$ be defined as in class. Recall that we identify $n \in \mathbb{N}$ with $[(n,0)] \in \mathbb{Z}$. Show that any element of \mathbb{Z} is either m or -m for some $m \in \mathbb{N}$.

Proof. Proved in the last proposition on integers.

Problem 1.2. Recall the construction of \mathbb{Q} as the set of equivalence classes of the relation R on $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ given by $(a,b)R(c,d) \iff ad = bc$. We say that $[(a,b)] \leq [(c,d)]$ if $(bc-ad)(bd) \geq 0$. Using only the arithmetic and order properties of integers, show that the relation \leq is well-defined. Remember you are no allowed to divide yet!

Proof. Proved immediately after the definition.

Problem 1.3. Without assuming the existence of irrational numbers, show that

- (a) (\mathbb{Z}, \leq) has the least upper bound property.
- (b) (\mathbb{Q},\leq) does not have the least upper bound property.

You may directly cite any theorem(s) proved in class.

Proof.

- (a) Let S be a non-empty bounded above subset of \mathbb{Z} . Let b be an upper bounded of S and let $f: \mathbb{Z} \to \mathbb{N}$ be as f(x) = b x. By the well-ordering principle, f(S) has a least element m. Then b m is the maximum of S.
- (b) Corollary 1.21.

Problem 1.4. Let F be an ordered field. Recall that $\mathbb{Q} \subseteq F$. Show that the following two statements are equivalent.

- (i) For every a, b > 0 in F, there is an $n \in \mathbb{N}$ such that na > b.
- (ii) For every a < b in F, there is an $r \in \mathbb{Q}$ such that a < r < b.

Proof. Suppose (i) holds. Let a < b in F. Then 1/(b-a) > 0. Let $n \in \mathbb{N}$ be such that n > 1/(b-a), that is, 1/n < b-a. We first show that there is a rational at most a. If $a \geq 0$, this is trivial. Otherwise, -a > 0 and so by (i) there is an $m \in \mathbb{N}$ such that $m > 1/(-a) \iff -1/m < a$. Thus the set $S = \left\{k \in \mathbb{Z} \mid k \cdot \frac{1}{n} \leq a\right\}$ is non-empty. By (i), it is bounded above. By problem 1.3(a), it has a maximum M. Then $\frac{M}{n} \leq a < \frac{M+1}{n} \leq a + \frac{1}{n} < b$. Thus $\frac{M+1}{n}$ is the required rational.

Suppose (ii) holds. Let 0 < a, b. Then there exist $p \in \mathbb{N}$ and $q \in \mathbb{N}^*$ such that 0 < b/a < p/q < b/a + 1. Since $1 \le q, p/q \le p$. Then b < pa as required. \square

Problem 1.5. Let F be a field. An absolute value of F is a function $A \colon F \to \mathbb{R}$ satisfying

- (1) $A(x) \ge 0$ for all $x \in F$, (2) A(x) = 0 if and only if x = 0, (3) A(xy) = A(x)A(y) for all $x, y \in F$,
- (4) $A(x+y) \le A(x) + A(y)$ for all $x, y \in F$.

A subset $S \subseteq F$ is said to be A-bounded if there exists an M > 0 such that $A(s) \leq M$ for all $s \in S$. This is a way to define boundedness of sets in the absence of an order relation.

Let $p \in \mathbb{N}$ be a prime number. Define $\nu_p \colon \mathbb{Z} \to \mathbb{Z} \cup \{\infty\}$ by

$$\nu_p(n) = \begin{cases} \max\{k \in \mathbb{N} : p^k \mid n\}, & \text{if } n \neq 0, \\ \infty, & \text{if } n = 0. \end{cases}$$

Extend ν_p to \mathbb{Q} by

$$\nu_p(a/b) = \nu_p(a) - \nu_p(b), \quad a, b \in \mathbb{Z}, b \neq 0.$$

Now, define $A_p: \mathbb{Q} \to \mathbb{R}$ by $A_p(x) = e^{-\nu_p(x)}$ if $x \neq 0$, and $A_p(0) = 0$.

- (a) Show that A_p is an absolute value on \mathbb{Q} .
- (b) Show that

$$A_p(x+y) \le \max\{A_p(x), A_p(y)\}, \quad x, y \in \mathbb{Q}.$$

(c) Show that \mathbb{Z} is A_p -bounded.

You may use basic facts about factorization without proof, but clearly state what you are using.

Proof. A_p satisfies (1) and (2) by definition.

Let x = a/b, y = c/d in \mathbb{Q} . If either is zero, (3) holds trivially. Otherwise xy = ac/bd with $a, b, c, d \in \mathbb{Z}^*$. Let $a = p^{\nu_p(a)}a', c = p^{\nu_p(c)}c'$, where a', c' are coprime to p. Then $ac = p^{\nu_p(a) + \nu_p(c)}(a'c')$. Thus $\nu_p(ac) = \nu_p(a) + \nu_p(c)$. Similarly, $\nu_p(bd) = \nu_p(b) + \nu_p(d)$. Thus $\nu_p(xy) = \nu_p(x) + \nu_p(y)$ and so $A_p(xy) = A_p(x)A_p(y).$

(4) follows from (b), which we prove now. If either x or y is zero, (b) holds trivially. Let

$$x = \frac{p^{\alpha}a}{p^{\beta}b}, \quad y = \frac{p^{\gamma}c}{p^{\delta}d},$$

where $a, b, c, d \in \mathbb{Z}^*$ are coprime to p. Thus $\nu_p(x) = \alpha - \beta$ and $\nu_p(y) = \gamma - \delta$. WLOG suppose that $A_p(x) \geq A_p(y) \iff \nu_p(x) \leq \nu_p(y)$ which gives $\alpha - \beta \leq \gamma - \delta$.

$$\begin{split} x+y &= \frac{p^{\alpha+\delta}ad + p^{\beta+\gamma}bc}{p^{\beta+\delta}bd} \\ &= \frac{p^{\alpha+\delta}(ad + p^{\beta+\gamma-\alpha-\delta}bc)}{p^{\beta+\delta}bd} \end{split}$$

Thus $\nu_p(x+y) \ge \alpha + \delta - \beta - \delta = \alpha - \beta$ and so $A_p(x+y) \le A_p(x) = \max\{A_p(x), A_p(y)\}.$

(c) follows from $\nu_p(x) \geq 0$, so $A_p(x) \leq 1$ for all $x \in \mathbb{Z}$.