ECE 4750 PSET 2

 $\operatorname{Tim} \operatorname{Yao} (\operatorname{ty} 252)$

Oct 10, 2015

1 PARCv1 Instruction Cache

1.a Categorizing Cache Misses

Addr	Instruction	Iteration 1	Iteration 2
	loop:		
0x108	addiu r1, r1, -1	compulsory	
0x10c	addiu r2, r2, -1		
0x110	j foo	compulsory	conflict
	foo:		
0x218	addiu r6, r6, 1	compulsory	conflict
0x21c	bne r1, r0, loop		

Figure 1: Cache Miss Type

1.b Average Memory Access Latency

Looking at iteration 2, we can see that there are 2 misses out of the 5 instructions. Therefore the miss rate for 64 iterations of the loop is 0.4. The average memory access latency is: $AMAL = (Hit\ Time) + (Miss\ Rate \times Miss\ Penalty)\ AMAL = 1 + (0.4 \times 5)\ AMAL = 3$ cycles The AMAL is dominated by conflict misses, as shown by the miss chart above. Compulsory misses only occur on the first iteration of the loop.

1.c Set-Associativity

The cache performance will increase significantly, because there will no longer be conflict misses during the loop. With this new cache microarchitecture, only compulsory misses will be left.

2 Page-Based Memory Translation

2.a Two-Level Page Tables

The 16-bit virtual address is used as the following:

Bits 14-15	Bits 12-13	Bits 0-11		
XX XX		XXXXXXXXXXX		
Virtual Pa	ge Number	Page Offset		
L1 Index	L2 Index	Page Offset		

Figure 2: Virtual Address Usage

Page Tables:

	Page-Table Entry			
Paddr of PTE	Valid	Paddr		
0xffffc	1	0xfffe0		
0xffff8				
0xffff4				
0xffff0	1	0xfffb0		
0xfffec	1	0x05000		
0xfffe8	1	0x07000		
0xfffe4				
0xfffe0				
0xfffdc				
0xfffd8				
0xfffd4				
0xfffd0				
0xfffcc				
0xfffc8				
0xfffc4				
0xfffc0				
0xfffbc	1	0x01000		
0xfffb8	1	0x04000		
0xfffb4	1	0x00000		
0xfffb0				

Figure 3: Contents of Physical Memory with Page Tables

2.b Translation-Lookaside Buffer

				Total				
Transaction		Page		Num Mem	TLB	Way 0	TLB V	Vay 1
${f Address}$	VPN	Offset	\mathbf{m}/\mathbf{h}	Accesses	VPN	PPN	VPN	PPN
0xeff4	0xe	0xff4	m	3	-	-	-	-
0x2ff0	0x2	0xff0	m	3	0xe	0x07		
0xeff8	0xe	0xff8	h	1			0x2	0x04
0x2ff4	0x2	0xff4	h	1				
0xeffc	0xe	0xffc	h	1				
0x2ff8	0x2	0xff8	h	1				
0xf000	0xf	0x000	m	3				
0x2ffc	0x2	0xffc	h	1	0xf	0x05		
0xf004	0xf	0x004	h	1				
0x3000	0x3	0x000	m	3				
0xf008	0xf	0x008	h	1			0x3	0x01
0x3004	0x3	0x004	h	1			0x2	0x04
0xf00c	0xf	0x00c	h	1				
0x3008	0x3	0x008	h	1				

Figure 4: TLB Contents Over Time

3 Impact of Cache Access Time and Replacement Policy

3.a Miss Rate Analysis

Transaction											
${f Address}$	\mathbf{tag}	idx	\mathbf{m}/\mathbf{h}	L0	L1	${f L2}$	L3	${\bf L4}$	L5	L6	L7
0x024	0x0	0x2	m	-	-	-	-	-	-	-	-
0x030	0x0	0x3	\mathbf{m}			0x0					
0x07c	0x0	0x7	\mathbf{m}				0x0				
0x070	0x0	0x7	h								0x0
0x100	0x2	0x0	\mathbf{m}								
0x110	0x2	0x1	\mathbf{m}	0x2							
0x204	0x4	0x0	\mathbf{m}		0x2						
0x214	0x4	0x1	\mathbf{m}	0x4							
0x308	0x6	0x0	\mathbf{m}		0x4						
0x110	0x2	0x1	\mathbf{m}	0x6							
0x114	0x2	0x1	h		0x2						
0x118	0x2	0x1	h								
0x11c	0x2	0x1	h								
0x410	0x8	0x1	\mathbf{m}								
0x110	0x2	0x1	\mathbf{m}		0x8						
0x510	0xa	0x1	\mathbf{m}		0x2						
0x110	0x2	0x1	\mathbf{m}		0xa						
0x610	0xc	0x1	\mathbf{m}		0x2						
0x110	0x2	0x1	\mathbf{m}		0xc						
0x710	0xe	0x1	\mathbf{m}		0x2						
Number of	Misses	s = 16		•	•			•	•		•
Miss Rate =	= 0.8										

Figure 5: Direct-Mapped Cache Contents Over Time

Miss Rate = 0.7

Transaction				Se	t 0	Se	t 1	Se	t 2	Set	3
Address	\mathbf{tag}	idx	\mathbf{m}/\mathbf{h}	Way 0	Way 1						
0x024	0x0	0x2	m	-	-	-	-	-	-	-	-
0x030	0x0	0x3	\mathbf{m}					0x0			
0x07c	0x1	0x3	\mathbf{m}							0x0	
0x070	0x1	0x3	h								0x1
0x100	0x4	0x0	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}	0x4							
0x204	0x8	0x0	\mathbf{m}			0x4					
0x214	0x8	0x1	\mathbf{m}		0x8						
0x308	0xc	0x0	\mathbf{m}				0x8				
0x110	0x4	0x1	h	0xc							
0x114	0x4	0x1	h								
0x118	0x4	0x1	h								
0x11c	0x4	0x1	h								
0x410	0x10	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x10				
0x510	0x14	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x14				
0x610	0x18	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x18				
0x710	0x1c	0x1	\mathbf{m}								
Number of	Misses	= 12									
Miss Rate =	= 0.6										

Figure 6: Two-Way Set-Associative Cache Contents Over Time with LRU Replacement

Transaction				Set	t 0	Se	t 1	Se	t 2	Set	3
${f Address}$	$_{ m tag}$	idx	\mathbf{m}/\mathbf{h}	Way 0	Way 1						
0x024	0x0	0x2	m	-	-	-	-	-	-	-	-
0x030	0x0	0x3	\mathbf{m}					0x0			
0x07c	0x1	0x3	\mathbf{m}							0x0	
0x070	0x1	0x3	h								0x1
0x100	0x4	0x0	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}	0x4							
0x204	0x8	0x0	\mathbf{m}			0x4					
0x214	0x8	0x1	\mathbf{m}		0x8						
0x308	0xc	0x0	\mathbf{m}				0x8				
0x110	0x4	0x1	h	0xc							
0x114	0x4	0x1	h								
0x118	0x4	0x1	h								
0x11c	0x4	0x1	h								
0x410	0x10	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x10				
0x510	0x14	0x1	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}			0x14					
0x610	0x18	0x1	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}				0x18				
0x710	0x1c	0x1	m								
Number of	$\overline{ ext{Misses}}$	$=\overline{14}$									

Figure 7: Two-Way Set-Associative Cache Contents Over Time with FIFO Replacement

3.b Sequential Tag Check then Memory Access

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$addr_reg_M0$	1	1
$tag_decoder$	$3+2{ imes}2$	7
tag_mem	10 + [(4+27)/16]	12
tag_cmp	$3 + 2[\log 2(26)]$	13
tag_and	2 - 1	1
$data_decoder$	$3+2{ imes}3$	9
$data_mem$	10 + [(8+128)/16]	19
$rdata_mux$	$3[\log 2(4)] + [32/8]$	10
$rdata_reg_M1$	1	1
Total		73
$addr_reg_M0$	1	1
$tag_decoder$	$3+2{ imes}2$	7
tag_mem	10 + [(4+27)/16]	12
tag_cmp	$3+2[\log 2(26)]$	13
tag_and	2 - 1	1
$data_decoder$	$3+2{ imes}3$	9
$data_mem$	10 + [(8+128)/16]	19
Total		62

Figure 8: Critical Path and Cycle Time for 2-Way Set-Associative Cache with Serialized Tag Check before Data Access

The reason that the 2-way set-associative microarchitecture is slower than the direct-mapped microarchitecture is the need for the tag check result to go through the data_decoder. It happens that the data_decoder?s delay is relatively significant (9τ) . This connection is needed so that the data can be outputted from the correct way.

3.c Parallel Read Hit Path

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$addr_reg_M0$	1	1
$\operatorname{addr}_{\operatorname{mux}}$	$3[\log 2(2)] + [5/8]$	4
$data_decoder$	$3+2{ imes}3$	9
$data_mem$	10 + [(8+128)/16]	19
$rdata_mux$	$3[\log 2(4)] + [32/8]$	10
$rdata_reg_M1$	1	1
Total		44

Figure 9: Critical Path and Cycle Time for Direct Mapped Cache with Parallel Read Hit

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$addr_reg_M0$	1	1
$\operatorname{addr}_{\operatorname{mux}}$	$3[\log 2(2)] + [5/8]$	4
$data_decoder$	$3+2{ imes}2$	7
$data_mem$	10 + [(8+128)/16]	19
$rdata_mux$	$3[\log 2(4)] + [32/8]$	10
way_mux	$3[\log 2(2)] + [32/8]$	7
$rdata_reg_M1$	1	1
Total		49

Figure 10: Critical Path and Cycle Time for 2-Way Set-Associative Cache with Parallel Read Hit

The reason that the 2-way set-associative microarchitecture is slower than the direct-mapped microarchitecture is the way_mux, which is needed to output the data from the correct way. This mux has a delay of 7τ , which is relatively significant.

3.d Pipelined Write Hit Path

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$addr_reg_M0$	1	1
$tag_decoder$	$3+2{ imes}3$	9
tag_mem	10 + [(8+26)/16]	13
tag_cmp	$3 + 2[\log 2(25)]$	13
tag_and	2 - 1	1
wen_and	2 - 1	1
wen_reg_M1	1	1
Total		39

Figure 11: Critical Path and Cycle Time for Direct Mapped Cache with Pipelined Write Hit

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$\overline{\mathrm{addr}_{\mathrm{reg}}\mathrm{M0}}$	1	1
$tag_decoder$	$3+2{ imes}2$	7
tag_mem	10 + [(4+27)/16]	12
tag_cmp	$3 + 2[\log 2(25)]$	13
tag_and	2 - 1	1
wen_and	2 - 1	1
wen_reg_M1	1	1
Total		36

Figure 12: Critical Path and Cycle Time for 2-Way Set-Associative Cache with Pipelined Write Hit