Wyznaczyć najmniejszą liczbę naturalną spełniającą układ kongruencji $\left\{\begin{array}{l}x\equiv_61\\x\equiv_{11}6\end{array}\right.$

 ${\sf Zauważmy}$, że mamy $m_1=6$, $m_2=11$, $r_1=1$ i $r_2=6$.

Chińskie twierdzenie o resztach orzeka, że najmniejsze naturalne rozwiązanie układu jest liczbą mniejszą od 66.

 $M_1=11$ i $M_2=6$. Otrzymujemy równania

$$11 \cdot N_1 \equiv_6 1$$
 oraz $6 \cdot N_2 \equiv_{11} 6$.

Rozwiązaniami powyższych równań są $N_1=5$ oraz $N_2=1$. Zatem

$$x = 5 \cdot 11 + 1 \cdot 6 = 61.$$

Stwierdzenie

Relacja przystawania modulo m w pierścieniu liczb całkowitych jest **kongruencją**, to znaczy jest relacją równoważności (zwrotna, symetryczna, przechodnia) oraz dla dowolnych liczb całkowitych a,b,c,d takich, że $a\equiv_m b$ i $c\equiv_m d$ zachodzi

- $\bullet (a+c) \equiv_m (b+d)$
- $ac \equiv_m bd$

Z definicji przystawania modulo m oraz z twierdzenia o dzieleniu z resztą wynika, że każda liczba całkowita przystaje modulo m dokładnie do jednej liczby ze zbioru reszt z dzielenia przez m, czyli zbioru $\{0,1,\ldots,m-1\}$. Każda z tych reszt określa klasę abstrakcji relacji przystawania.

Przykład

Klasy abstrakcji przystawania modulo 3:

$$[0]_3 = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$$

$$[1]_3 = \{\dots, -8, -5, -2, 1, 4, 7, 10, \dots\}$$

$$[2]_3 = \{\dots, -7, -4, -1, 2, 5, 8, 11, \dots\}$$

Wyznaczyć najmniejszą liczbę naturalną spełniającą układ kongruencji

$$\begin{cases} x \equiv_2 1 \\ x \equiv_3 1 \\ x \equiv_5 3 \end{cases}$$

 ${\sf Z}$ danych zadania otrzymujemy $m_1=2,\,m_2=3,\,m_3=5,\,r_1=r_2=1$ oraz $r_3=3.$

 $r_3 = 3$

Mamy $M_1=3\cdot 5=15,\, M_2=2\cdot 5=10$ oraz $M_3=2\cdot 3=6.$ Otrzymujemy równania

$$15 \cdot N_1 \equiv_2 1$$
, $10 \cdot N_2 \equiv_3 1$, $6 \cdot N_3 \equiv_5 3$.

Rozwiązaniami powyższych równań są $N_1=1$, $N_2=1$ oraz $N_3=3$. Zatem

$$x = 1 \cdot 15 + 1 \cdot 10 + 3 \cdot 6 = 43 \equiv_{30} 13.$$

Ostatecznie najmniejszą liczbą naturalną spełniającą dany układ kongruencji jest 13.

Liniowe równania diofantyczne

Definicja

Równaniem diofantycznym nazywamy dowolne równanie typu

$$f(x_1, x_2, \dots, x_n) = 0,$$

w którym szukane rozwiązanie składa się z liczb całkowitych.

Definicja

Niech $a_1,a_2,\ldots,a_n\in\mathbb{Z}/\{0\}$ i niech $b\in\mathbb{Z}$. Równanie diofantyczne postaci

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$

o niewiadomych x_1, x_2, \ldots, x_n nazywamy **liniowym równaniem diofantycznym**, a liczby a_1, a_2, \ldots, a_n nazywamy współczynnikami.

Obliczyć 7^{-1} w \mathbb{Z}_{15} .

Szukamy rozwiązania równania 7x=1 w \mathbb{Z}_{15} . Zauważmy, że rozwiązanie istnieje, ponieważ $7 \perp 15$.

Mnożąc obustronnie równanie $7x \equiv_{15} 1$ przez 2 otrzymujemy

$$14x \equiv_{15} 2,$$

a z faktu $14 \equiv_{15} -1$ otrzymujemy

$$-1 \cdot x \equiv_{15} 2,$$

więc

$$x \equiv_{15} -2 \equiv_{15} 13.$$

Ostatecznie $7^{-1} = 13$ w \mathbb{Z}_{15} .

Sprawdzenie wyniku: $7 \cdot 13 = 91 = 6 \cdot 15 + 1$.

Chińskie twierdzenie o resztach

Niech $m_1,m_2,\ldots,m_n\in\mathbb{N}/\{1\}$ będą parami względnie pierwsze oraz niech $r_1,r_2,\ldots,r_n\in\mathbb{Z}$. Wtedy układ równań

$$\begin{cases} x \equiv_{m_1} r_1 \\ x \equiv_{m_2} r_2 \\ \vdots \\ x \equiv_{m_n} r_n \end{cases}$$

ma dokładnie jedno rozwiązanie modulo $M=m_1\cdot m_2\cdot\ldots\cdot m_n$ postaci

$$x = N_1 M_1 + N_2 M_2 + \ldots + N_n M_n,$$

gdzie $M_i=\frac{M}{m_i}$ oraz N_i jest rozwiązaniem równania $M_iN_i\equiv_{m_i}r_i$ dla $i=1,2,\ldots,n$.

Oczywiście rozwiązania rozpatrywanego układu równań w zbiorze liczb całkowitych mają postać $x=N_1M_1+N_2M_2+\ldots+N_nM_n+Mt$, gdzie t jest dowolną liczbą całkowitą.

Twierdzenie

Niech $a, b, c, d \in \mathbb{Z}$ i $m, k \in \mathbb{N}/\{1\}$.

- $a \equiv_m b$ wtedy i tylko wtedy, gdy $ak \equiv_{mk} bk$.
- Jeżeli $a \equiv_m b$, to $ac \equiv_m bc$.
- Jeżeli $ac \equiv_m bc$ oraz $c \perp m$, to $a \equiv_m b$.
- Jeżeli $a \equiv_{mk} b$, to $a \equiv_{m} b$ oraz $a \equiv_{k} b$.
- Jeżeli $a \equiv_m b$ oraz $a \equiv_k b$ oraz $m \perp k$, to $a \equiv_{mk} b$.

Równanie w pierścieniu reszt modulo m nazywamy **równaniem modularnym**.

Zauważmy, że <u>każde</u> równanie modularne można traktować jako równanie diofantyczne. Wynika to z faktu, że $a \equiv_m b$ wtedy i tylko wtedy, gdy istnieje liczba całkowita k taka, że a+mk=b.

Twierdzenie

- Równanie ax=b ma rozwiązanie w \mathbb{Z}_m wtedy i tylko wtedy, gdy $\mathsf{NWD}(a,m)|b$.
- Jeżeli x_0 jest rozwiązaniem równania ax=b w \mathbb{Z}_m , to liczba różnych rozwiązań tego równania w \mathbb{Z}_m wynosi $\mathsf{NWD}(a,m)$ oraz każde rozwiązanie ma postać

$$x_t = x_0 +_m t \cdot \frac{m}{\mathsf{NWD}(a, m)}$$

dla $t \in \{0, 1, \dots, \mathsf{NWD}(a, m) - 1\}.$

Twierdzenie Eulera

Dla $a \in \mathbb{Z}$ i $m \in \mathbb{N}/\{1\}$ takich, że $a \perp m$ zachodzi

$$a^{\varphi(m)} \equiv_m 1.$$

Małe twierdzenie Fermata

Dla $a \in \mathbb{Z}$ i $p \in \mathbb{P}$ takich, że $a \perp p$ zachodzi

$$a^{p-1} \equiv_p 1.$$

Przykład

Wyznaczyć ostatnią cyfrę liczby 7^{2022} .

Zadanie jest równoważne z określeniem wartości liczby 7^{2022} modulo 10.

Zauważmy, że

$$7^2 = 49 \equiv_{10} 9 \equiv_{10} (-1).$$

7atem

$$7^{2022} \equiv_{10} (7^2)^{1011} \equiv_{10} (-1)^{1011} = -1 \equiv_{10} 9.$$

Ostatnia cyfra liczby 7^{2022} jest 9.

Na zbiorze \mathbb{Z}_m klas abstrakcji relacji przystawania modulo m definiujemy działania

ullet dodawanie modulo m:

$$[a]_m +_m [b]_m = [a+b]_m$$

ullet mnożenie modulo m:

$$[a]_m \cdot_m [b]_m = [a \cdot b]_m$$

Przykład

$$5 +_6 2 = 1$$
, $4 \cdot_8 6 = 0$.

Twierdzenie

Zbiór \mathbb{Z}_m klas abstrakcji relacji przystawania modulo m z działaniami dodawania modulo m i mnożenia modulo m jest pierścieniem przemiennym z jedynką, który nazywamy **pierścieniem reszt modulo** m.

Oznaczenie

Rząd grafu oznaczamy przez n, a jego rozmiar przez m. Krawędź $\{u,v\}$ będziemy często zapisywać w postaci uv.

Definicja

B. Pawlik

Dany jest graf G i wierzchołki $u, v, w \in V(G)$.

- ullet Jeżeli $uv\in E(G)$, to u nazywamy **wierzchołkiem sąsiednim** do v i do krawędzi uv. Krawędź uv nazywamy **krawędzią sąsiednią** do wierzchołka u i do wierzchołka v.
- ullet Jeżeli $uv,vw\in E(G)$, to uv jest **krawędzią sąsiednią** do krawędzi vw.

Na powyższym rysunku przedstawiono fragment grafu, w którym

- ullet wierzchołki u i v są sąsiednie, bo istnieje krawędź uv,
- ullet wierzchołki v i w są sąsiednie, bo istnieje krawędź vw,
- ullet wierzchołki u i w nie są sąsiednie, bo nie istnieje krawędź uw,
 - krawędzie uv i vw są sąsiednie, bo mają wspólny wierzchołek v . \Longrightarrow

9 września 2024

Multigrafem (grafem z krawędziami wielokrotnymi) nazywamy graf, w którym krawędzie mogą się powtarzać (E(G) jest multizbiorem).

Niech G = (V(G), E(G)) będzie grafem.

- **Drogą** nazywamy ciąg wierzchołków (v_1,v_2,\ldots,v_n) w grafie G taki, że $v_iv_{i+1}\in E(G)$ dla każdego $1\leqslant i\leqslant n-1$.
- Ścieżką nazywamy drogę w której każdy wierzchołek występuje co najwyżej jeden raz.
- Cyklem nazywamy drogę w której $v_1=v_n$ oraz wszystkie pozostałe wierzchołki występują co najwyżej jeden raz.
- Cyklem niewłaściwym nazywamy drogę w której $v_1=v_n$.
- ullet Graf G jest **spójny**, gdy dla każdej pary jego wierzchołków istnieje ścieżka zawierająca te wierzchołki.
- Maksymalny (w sensie zawierania) podgraf spójny danego grafu nazywamy składową spójności.

Izomorfizm grafów

Przykład

Czy można uznać poniższe rysunki za dwie różne reprezentacje graficzne tego samego grafu?

Tak!

Grafem nazywamy parę zbiorów $G=\big(V(G),E(G)\big)$, gdzie V(G) to **zbiór** wierzchołków, a E(G) (**zbiór krawędzi**) to zbiór nieuporządkowanych par elementów zbioru V(G).

Parę zbiorów spełniającą powyższą definicję nazywa się niekiedy **grafem** nieskierowanym.

Definicja

- ullet Rzędem grafu G nazywamy liczbę jego wierzchołków |V(G)|.
- ullet Rozmiarem grafu G nazywamy liczbę jego krawędzi |E(G)|.
- Wierzchołki x i y nazywamy **końcami krawędzi** $\{x,y\}$.
- Krawędź $\{x,x\}$ nazywamy **pętlą**.

Przykład

Rząd grafu G z przykładu 1 wynosi 6, a jego rozmiar to 8.

Rozpatrzmy parę zbiorów:

$$\begin{split} V(G) &= \{1, 2, 3, 4, 5, 6\}, \\ E(G) &= \Big\{\{1, 2\}, \ \{1, 4\}, \ \{1, 5\}, \{2, 3\}, \ \{2, 5\}, \ \{3, 4\}, \ \{3, 5\}, \ \{5, 6\}\Big\}. \end{split}$$

Jak można przedstawić graficznie te zbiory? Przykładowa reprezentacja to:

Podstawowe grafy proste

Graf pusty E_n

$$V(E_n) = \{1, 2, \dots, n\},$$

$$E(E_n) = \emptyset.$$

Graf pełny (klika) K_n

$$V(K_n) = \{1, 2, \dots, n\},\ E(K_n) = \{\{i, j\} : i, j \in V(K_n), i \neq j\}.$$

4 D > 4 A > 4 E > 4 E > E 9 9 9

Podstawowe grafy proste

Inne

• Graf dwudzielny - graf w którym zbiór wierzchołków można podzielić na dwa rozłączne podzbiory V_1, V_2 takie, że

$$E(G) \subset \{\{i, j\} : i \in V_1, j \in V_2\}.$$

- Drzewo graf spójny nie zawierający cykli.
- Las graf nie zawierający cykli.
- ullet Graf r-regularny graf w którym stopień każdego wierzchołka wynosi r.

Definicja

Jeżeli $\deg v=1$ dla pewnego wierzchoła $v\in V(G)$, to v nazywamy liściem.

Teoria grafów — podstawy

dr inż. Bartłomiej Pawlik

9 września 2024

Dowód. (2/2)

(⇐)

Zakładamy, że G nie zawiera cyklu nieparzystej długości.

Graf G jest dwudzielny wtedy i tylko wtedy, gdy każda jego składowa jest grafem dwudzielnym, więc możemy założyć, że G jest spójny.

Niech $x \in V(G)$ i niech V_1 bedzie zbiorem wierzchołków, których odległość od xjest nieparzysta i niech $V_2 = V \setminus V_1$. Nie ma krawędzi łączących dwa wierzchołki ze zbioru V_i , bo gdyby taka krawędź istniała, to G zawierałby cykl nieparzystej długości. Zatem G jest dwudzielny.

