MATH 240: Discrete Structures - Assignment 2

Liam Scalzulli liam.scalzulli@mail.mcgill.ca

September 22, 2022

Problem 1

To do this we can simplify the right-hand side using set identities, ultimately showing that it is equivalent to the left-hand side.

$$C \setminus B = (C \setminus B) \setminus (B \setminus A)$$

$$= (C \cap \overline{B}) \cap \overline{(B \cap \overline{A})}$$
 [Definition $A \setminus B = A \cap \overline{B}$]
$$= (C \cap \overline{B}) \cap (\overline{B} \cup A)$$
 [Definition $A \setminus B = A \cap \overline{B}$]
$$= C \cap \overline{B} \cap (\overline{B} \cup A)$$
 [Definition $A \setminus B = A \cap \overline{B}$]
$$= C \cap \overline{B} \cap (\overline{B} \cup A)$$
 [Associative Law: $(A \cap B) \cap C = A \cap (B \cap C)$]
$$= C \cap \overline{B}$$
 [Absorption Law: $A \cap (A \cup B) = A$]
$$= C \setminus B$$

Problem 2

Recall: A tautology is a statement which contains all true in the last column of its truth table.

(a)

p	q	\overline{q}	$p \implies q$	$p \implies q$	$\overline{q} \wedge (\overline{p} \implies \overline{q})$	$(\overline{q} \wedge (\overline{p \implies q})) \iff p$
\overline{T}	T	F	T	F	F	F
T	F	T	F	T	T	T
F	T	F	T	F	F	T
F	F	T	T	F	F	T

 $\therefore (\overline{q} \wedge (\overline{p} \Longrightarrow \overline{q})) \iff p \text{ is } not \text{ a tautology.}$

(b)

p	q	r	$q \implies r$	$p \implies (q \implies r)$	$p \implies q$	$(p \implies q) \implies r$	$\mid (p \implies (q \implies r)) \iff ((p \implies q) \implies r)$
\overline{T}	T	T	T	T	T	T	T
T	$\mid T \mid$	F	F	F	T	F	T
T	F	T	T	T	F	T	T
T	F	F	T	T	F	T	T
F	T	T	T	T	T	T	T
F	$\mid T \mid$	F	F	T	T	F	F
F	F	T	T	T	T	T	T
F	F	F	T	T	T	F	F

$$\therefore (p \implies (q \implies r)) \iff ((p \implies q) \implies r)$$
 is not tautology.

Problem 3

To prove logical equivalence we can simplify either the left-hand side or the right-hand side using the laws of logic, ultimately showing that one side is equivalent to the other.

(a)

$$(p \iff q) \equiv (p \implies q) \land (q \implies p) \qquad \qquad [\text{Definition } (p \iff q) \equiv (p \implies q) \land (q \implies p)]$$

$$\equiv (\overline{p} \lor q) \land (\overline{q} \lor p) \qquad \qquad [\text{Definition } (p \implies q) \equiv \overline{p} \lor q]$$

$$\overline{p \oplus q} \equiv \overline{(p \land \overline{q}) \lor (\overline{p} \land q)} \qquad \qquad [\text{Definition } p \oplus q \equiv (p \land \overline{q}) \lor (\overline{p} \land q)]$$

$$\equiv \overline{(p \land \overline{q})} \land \overline{(\overline{p} \land q)} \qquad \qquad [\text{De Morgan's Law: } \overline{p \lor q} \equiv \overline{p} \land \overline{q}]$$

$$\equiv (\overline{p} \lor q) \land (q \lor \overline{p}) \qquad \qquad [\text{De Morgan's Law: } \overline{p \land q} \equiv \overline{p} \lor \overline{q}]$$

$$\therefore p \iff q \equiv \overline{p \oplus q}$$

(b)

$$\overline{p} \equiv (\overline{p \vee \overline{q}}) \vee (\overline{p} \wedge \overline{q})$$

$$\equiv (\overline{p} \wedge q) \vee (\overline{p} \wedge \overline{q})$$

$$\equiv \overline{p} \wedge (q \vee \overline{q})$$

$$\equiv \overline{p} \wedge 1$$

$$\equiv \overline{p}$$

$$[De Morgan's Law: \overline{p \vee q} \equiv \overline{p} \wedge \overline{q}]$$

$$[Distributive Law: p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)]$$

$$\equiv \overline{p} \wedge 1$$

$$[Tautology: p \vee \overline{p} \equiv 1]$$

$$\equiv \overline{p}$$

$$[Identity Law: p \wedge 1 \equiv p]$$

Problem 4

Recall **NOR**: $(p \downarrow q) \equiv \overline{p} \wedge \overline{q} \equiv \overline{(p \vee q)}$ *as seen in class

(a) OR $(p \lor q)$

(b) AND $(p \wedge q)$

(c) NOT (\overline{p})