Data Modelling

Rohit Budhiraja

Machine Learning for Wireless Communications (EE798L)

Jan 10, 2024

Today's agenda

- Data modelling lots of data and we want to fit a model to it
- Let's start by motivating data modeling
 - Share market model and predict the market for monetary gains
 - Wireless model and predict the channel for improving the quality of service
 - Human brain needs for learning everything
- Today's topics: data modelling idea and definition of a good model, and linear data modeling
 - Reference: Chapter-1 of FCML

Idea of data modelling

- Figure shows gold medal winning time for men's 100m at each Olympic Games held since 1896
- Aim: use this data to model functional dependence between Olympic year and 100m winning time
 Use the model to predict winning times in future games
- Clearly the year is not the only factor that affects the winning time
 - if we are interested in using our predictions seriously we may want to take other things into account
- We can see that there is at least a statistical dependence between year and winning time

Model definition (1)

- Enough to help us introduce and develop the main ideas of linear modelling
- Modelling learn a relationship between input attributes (Olympic year) and output (winning time)
- Many functions (models) that could be used to define this relationship
- Function takes input x (Olympic year) and will return t (winning time in sec)
 - Mathematically t = f(x). For example, consider a simple linear function f(x) = x

Modelling assumption – linear (1)

- Relationship between x and t is linear t = f(x) = x. What does it mean?
 - Data could be adequately modelled with a straight line
 - ullet Winning time increases by same amount every M years
- Examining figure we can see that this assumption is not perfectly satisfied
 - Winning time reduces as the year increases

Modelling assumption – linear (2)

- Adding a single parameter results in t = f(x; w) = wx where w can be either positive or negative
 - ullet Enhances the model lets us produce a straight line with any gradient through the choice of w
- This is an increase in flexibility but the flexibility is limited
 - At year 0, model predicts a winning time of $w \times 0 = 0$
 - Looking at data, we can see that this is not realistic
- Adding one more parameter to the model overcomes this limitation: $t = f(x; w_0, w_1) = w_0 + w_1 x$

Effect of varying w_0 and w_1

(a) Increasing w_0 changes the point at which the line crosses the t axis.

(b) Increasing w_1 changes the gradient of the line.

Defining a good model

- ullet To choose values of w_0 and w_1 that are somehow best, we need to defined what best means
 - Common sense values of w_0 and w_1 that produce a line as close as possible to all data points
- Common way of measuring how close a particular model gets to one of the data points
- Squared difference between true winning time and winning time predicted by the model
- Using x_n , t_n to denote nth Olympic year and winning time respectively, squared difference is

$$\mathcal{L}_n(t_n, f(x_n; w_0, w_1)) = (t_n - f(x_n; w_0, w_1))^2$$

- Squaring is important without it, we could simply reduce it by increasing $f(x_n; w_0, w_1)$
- Expression is known as squared loss function
 - Describes how much accuracy we are losing through the use of $f(x_n; w_0, w_1)$ to model t_n
- Loss is always positive lower the loss, better our function describes the data
- ullet As we want a low loss for all N years, we consider average loss across the whole dataset, given as

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n(t_n, f(x_n; w_0, w_1))$$

Loss function

ullet Tune w_0 and w_1 to produce the model that results in lowest value of the average loss ${\cal L}$

$$\underset{w_0, w_1}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n(t_n, f(x_n; w_0, w_1))$$

- Minimization of squared loss is the basis of least-squares errors method of function approximation
- Squared loss is a very common choice because we can derive an analytical solution
 - Modern computational power has reduced the importance of mathematical convenience
 - No longer any excuse for choosing a convenient loss function over one more suited to the data
- Common alternative is the absolute loss:

$$\mathcal{L}_n = |t_n - f(x_n; w_0, w_1)|$$

Minimizing the squared loss – Least squares solution (1)

• We focus on squared loss function and simplify it

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n(t_n, f(x_n; w_0, w_1)) = \frac{1}{N} \sum_{n=1}^{N} (t_n - f(x_n; w_0, w_1))^2 = \frac{1}{N} \sum_{n=1}^{N} (t_n - (w_0 + w_1 x_n))^2$$

$$= \frac{1}{N} \sum_{n=1}^{N} (w_1^2 x_n^2 + 2w_1 x_n w_0 - 2w_1 x_n t_n + w_0^2 - 2w_0 t_n + t_n^2)$$

$$= \frac{1}{N} \sum_{n=1}^{N} (w_1^2 x_n^2 + 2w_1 x_n (w_0 - t_n) + w_0^2 - 2w_0 t_n + t_n^2)$$

- Need to calculate w_1 and w_0 to minimize the loss function
- Calculate partial derivatives of loss function wrt w_1 and w_2 and set them to zero

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{2w_1}{N} \left(\sum_{n=1}^N x_n^2 \right) + \frac{2}{N} \left(\sum_{n=1}^N x_n (w_0 - t_n) \right)$$

$$\frac{\partial \mathcal{L}}{\partial w_0} = 2w_0 + \frac{2w_1}{N} \left(\sum_{n=1}^N x_n \right) - \frac{2}{N} \left(\sum_{n=1}^N t_n \right)$$

Least squares solution -calculating value of w_0 and w_1

• Setting $\frac{\partial \mathcal{L}}{\partial w_0} = 0$ we have

$$\widehat{\mathbf{w_0}} = \frac{1}{N} \left(\sum_{n=1}^{N} t_n \right) - \frac{w_1}{N} \left(\sum_{n=1}^{N} x_n \right) = \overline{t} - w_1 \overline{x}$$

• Denote avg. winning time $\bar{t} = \frac{1}{N} \left(\sum_{n=1}^{N} t_n \right)$, avg. Olympic year as $\bar{x} = \frac{1}{N} \left(\sum_{n=1}^{N} x_n \right)$. We have

$$\frac{\partial \mathcal{L}}{\partial w_{1}} = \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) + \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} (\widehat{w_{0}} - t_{n}) \right)$$

$$= \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) + \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} (\overline{t} - w_{1} \overline{x} - t_{n}) \right)$$

$$= \frac{2w_{1}}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) + \frac{2\overline{t}}{N} \left(\sum_{n=1}^{N} x_{n} \right) - \frac{2w_{1}\overline{x}}{N} \left(\sum_{n=1}^{N} x_{n} \right) - \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} t_{n} \right)$$

$$= 2w_{1} \left[\frac{1}{N} \left(\sum_{n=1}^{N} x_{n}^{2} \right) - \overline{x} \overline{x} \right] + 2\overline{t} \overline{x} - \frac{2}{N} \left(\sum_{n=1}^{N} x_{n} t_{n} \right)$$

Least squares solution -calculating value of w_1

Setting it to zero

$$2w_{1}\left[\frac{1}{N}\left(\sum_{n=1}^{N}x_{n}^{2}\right)-\bar{x}\bar{x}\right] + 2\bar{t}\bar{x}-2\frac{1}{N}\left(\sum_{n=1}^{N}x_{n}t_{n}\right)=0$$

$$2w_{1}\left[\frac{1}{N}\left(\sum_{n=1}^{N}x_{n}^{2}\right)-\bar{x}\bar{x}\right] = 2\frac{1}{N}\left(\sum_{n=1}^{N}x_{n}t_{n}\right)-2\bar{t}\bar{x}$$

$$\widehat{w}_{1} = \frac{\frac{1}{N}\left(\sum_{n=1}^{N}x_{n}t_{n}\right)-\bar{t}\bar{x}}{\frac{1}{N}\left(\sum_{n=1}^{N}x_{n}^{2}\right)-\bar{x}\bar{x}}$$

• By denoting $\overline{x^2} = \frac{1}{N} \left(\sum_{n=1}^N x_n^2 \right)$ and $\overline{xt} = \frac{1}{N} \left(\sum_{n=1}^N x_n t_n \right)$, we have

$$\widehat{w_1} = \frac{\overline{xt} - \overline{x}\overline{t}}{\overline{x^2} - (\overline{x})^2}$$

Calculation for Olympic data- least squares fit

\mathbf{n}	x_n	t_n	$x_n t_n$	x_n^2
1	1896	12.00	22752.0	3.5948×10^{6}
2	1900	11.00	20900.0	3.6100×10^{6}
3	1904	11.00	20944.0	3.6252×10^{6}
4	1906	11.20	21347.2	3.6328×10^{6}
5	1908	10.80	20606.4	3.6405×10^{6}
6	1912	10.80	20649.6	3.6557×10^{6}
7	1920	10.80	20736.0	3.6864×10^{6}
8	1924	10.60	20394.4	3.7018×10^{6}
9	1928	10.80	20822.4	3.7172×10^{6}
10	1932	10.30	19899.6	3.7326×10^{6}
11	1936	10.30	19940.8	3.7481×10^{6}
12	1948	10.30	20064.4	3.7947×10^{6}
13	1952	10.40	20300.8	3.8103×10^{6}
14	1956	10.50	20538.0	3.8259×10^{6}
15	1960	10.20	19992.0	3.8416×10^{6}
16	1964	10.00	19640.0	3.8573×10^{6}
17	1968	9.95	19581.6	3.8730×10^{6}
18	1972	10.14	19996.1	3.8888×10^{6}
19	1976	10.06	19878.6	3.9046×10^{6}
20	1980	10.25	20295.0	3.9204×10^{6}
21	1984	9.99	19820.2	3.9363×10^{6}
22	1988	9.92	19721.0	3.9521×10^{6}
23	1992	9.96	19840.3	3.9681×10^{6}
24	1996	9.84	19640.6	3.9840×10^{6}
25	2000	9.87	19740.0	4.0000×10^{6}
26	2004	9.85	19739.4	4.0160×10^{6}
27	2008	9.69	19457.5	4.0321×10^{6}
$(1/N)\sum_{n=1}^{N}$	1952.37	10.39	20268.1	3.8130×10^{6}

Calculation of weights

$$\begin{array}{lcl} w_1 & = & \dfrac{20268.1 - 1952.37 \times 10.39}{3.8130 \times 10^6 - 1952.37 \times 1952.37} = -0.0133 \\ w_0 & = & 10.39 - (-0.0133) \times 1952.37 = 36.416 \end{array}$$

- Function is $f(x; w_0, w_1) = 36.416 0.013x$
- Plot of function:

Making predictions using the developed model (1)

• Predict winning time for a year that we have not yet observed – for 2012 and 2016

$$f(x; w_0 = 36.416, w_1 = -0.0133) = 36.416 - 0.0133x$$

 $t^{2012} = f(2012; w_0, w_1) = 36.416 - 0.0133 \times 2012 = 9.595s$
 $t^{2016} = f(2016; w_0, w_1) = 36.416 - 0.0133 \times 2016 = 9.541s$

Values are very precise

Making predictions using the developed model (2)

- Unlikely that any model can predict outcome of a complex event to such a high degree of accuracy
 - Least of all one based on nothing more than a straight line
- Our model is not even able to predict data that it has seen very precisely
 - Can be seen by the distance of some points to the line
- Precise predictions are of limited use where our model is not perfect (almost all situations)
 - More useful to express a range of values rather than any particular one