

A first MatLab code for post-stack inversion

Sérgio Luiz Eduardo

Universiade Federal do Rio Grande do Norte Programa de Pós-Graduação em Física (PPGF) sergioluizufrn@ufrn.edu.br

May 17, 2020

Physica A: Statistical Mechanics and its Applications

Volume 548, 15 June 2020, 124473

Robust full-waveform inversion using *q*-statistics

Sérgio Luiz Eduardo Ferreira da Silva ª ஃ , Carlos A.N. da Costa ª, Pedro Tiago C. Carvalho ª, João Medeiros de Araújo ª, Liacir dos Santos Lucena ª, Gilberto Corso ^b

Article

Tsallis Entropy, Likelihood, and the Robust Seismic Inversion

Igo Pedro de Lima ^{1,†}, Sérgio Luiz E. F. da Silva ^{2,*,†}, Gilberto Corso ^{1,3,†} and João M. de Araújo ^{1,2,†}

Published: 19 April 2020. Entropy 2020, 22(4), 464;

Purpose of this presentation

 Understand how the MbPsiRefEnt2020 code works to estimate the reflectivity of the subsurface of a region of interest from post-stacked-data-driven;

 MbPsiRefEnt2020 — > Model-based post-stack inversion reflectivity - Entropy 2020.

Purpose of this presentation

 Understand how the MbPsiRefEnt2020 code works to estimate the reflectivity of the subsurface of a region of interest from post-stacked-data-driven;

Solve a inverse problem!

 MbPsiRefEnt2020 — > Model-based post-stack inversion reflectivity - Entropy 2020.

Seismic inverse problem

Mathematical and statistical techniques for recovering the subsurface physical parameters from observed seismic data.

Forward Modelling

 $d = \mathcal{F}(m)$: Given a model m, the simulated data d is computed using an operator that represents the relation between them.

Inversion

 $m = \mathcal{F}^{-1}(d)$: Given the observed data d, the predicting model m is computed using the inverse operation.

Inversion

 $m = \mathcal{F}^{-1}(d)$: Given the observed data d, the predicting model m is computed using the inverse operation.

- Acquisition parameters - Starting model Forward modelling Simulated data

BY SERGIO LUIZ EDUARDO

Least-squares approach

$$\min_{\mathbf{r}} \phi_G(\mathbf{r}) := \frac{1}{2} \sum_{i=1}^n \left(d_i^{mod}(t,r) - d_i^{obs}(t) \right)^T \left(d_i^{mod}(t,r) - d_i^{obs}(t) \right)$$

Tsallis approach

$$\min_{\mathbf{r}} \phi_q(\mathbf{r}) := \frac{1}{q-1} \sum_{i=1}^n \ln \left[1 + \left(\frac{q-1}{3-q} \right) \left(Gr_i(t) - d_i^{obs}(t) \right)^T \left(Gr_i(t) - d_i^{obs}(t) \right) \right]_+$$

da Silva et. al, (2020) Phys. A. Stat. Mech. Appl. (548) 124473; de Lima et. al, (2020) Entropy 22(4) 464

$$[a]_+ = \max\{0, a\}$$

 $\label{lem:count_sergioluizedu} Github\ account\ sergioluizedu.\ Source: \\ https://github.com/sergioluizedu/MbPsiRefEnt2020.git$

Github account sergioluizedu. Source: https://github.com/sergioluizedu/MbPsiRefEnt2020.git

Github account sergioluizedu. Source: https://github.com/sergioluizedu/MbPsiRefEnt2020.git

Github account sergioluizedu. Source: https://github.com/sergioluizedu/MbPsiRefEnt2020.git

Let's go!