Normalization & Transaction

1. Normalization

1.1. Normalization定义

1定义

	操作	目的
Normalization	一大表格 ^{折分} 若干小表格	去除Redundancies从而避免Anomoly
Denormalization	一大表格〈 拼接 若干小表格	避免频繁的Join

- ▲ Fully Normalized = Eliminate All Anomalies, 一般到4NF才算完全归一化
- 2 示例

1. 标准化前

StuID	SName	CID	CName
1	John	101	Math
2	Mary	102	English
1	John	103	Physics
3	Peter	101	Math
2	Mary	103	Physics

2. 标准化后

学生表	StuID	SName	课程表	CID	CName	学生-课程表	StuID	CID
\	1	John	\	101	Math	\	1	101
\	2	Mary	\	102	English	\	2	102
\	1	John	\	103	Physics	\	1	103
\	3	Peter	\	101	Math	\	3	101
\	2	Mary	\	103	Physics	\	2	103

3 Normalization/Denormalization对比

操作	Normalization, 比如 A, B	Denormalization,比如 $\mathbf{A}\bowtie\mathbf{B}$
查询一个表	快	愠
查询两个表	慢	快
插入/修改/删除	容易	困难

1.2. Database Anomalies异常

■概述:期末会给你表格,让你用文字描述举例三种Anomaly

1. 示例表格

Order(PFK)	$\mathbf{Item}(\mathbf{PFK})$	Desc	Qty
27	873	nut	2
28	873	nut	10
30	495	washer	50

2. 基本概念

Anomaly	含义	示例(下表)
Insertion	插入数据→插入其他 数据	插入 $Item/Desc \xrightarrow{\overline{\kappa}}$ 插入 $Order/Qty$
Deletion	删除数据→删除其他 数据	删除Order30 ^{引起} 整行删除
Update	更新数据→更新其他 数据	更新 I tem 873 的 D esc $\xrightarrow{ ext{flat}}$ 两处 D esc

2 用NULL来解决Anomaly:不能根本解决

- 1. Insertion Anomaly可能可以,原因在于PK是不能NULL的
 - 。 可以的示例: 插入 $Order/Item/Desc \rightarrow Qty$ 为NULL
 - 。 不可以的示例: 插入 $Item/Desc \rightarrow Qty$ 为NULL/Order不能为NULL
- 2. Deletion Anomaly: 同理可能可以, 当删除的数据不是PK时, 可考虑设为NULL
- 3. Update Anomaly: 绝对没戏,不可能更新成NULL

1.3. Functional Dependencies

1 概述

1. 定义: A set of attributes X determines another set of attributes Y uniquely

2. 符号: $X \rightarrow Y$ 表示如果知道X就知道Y,比如Stu- $Name \rightarrow Stu$ -FirstName

3. 性质:

。 依赖恒等式: $X \to X$, $PK \to All Column$

。 拆分原则:
$$AB \to CD$$

$$\left\{ egin{aligned} & \exists \ V = AB \to C \\ & \exists \ AB \to CD \\ & \exists$$

2有关概念:以A(X,Y,Z,D)为例

- 1. Determinants:
 - 。 箭头左侧的属性,比如 $X,Y \to Z$ 中的XY
 - 。 至于这其中Z叫什么就无具体说法
- 2. Key/Non-Key属性:包含/不包含PK的属性,比如

属性类型	含义	示例
Key属性	包含PK的属性,或者说是PK的一部分	$\underline{X}, \underline{Y}$
Non-Key属性	其余属性	Z, D

3. 两种Dependency

依赖类型	含义	示例
Partial Functional Dependency	$ ext{Key属性}(PK的一部分) \ ext{\xrightarrow{\mathcal{R}^{\mathcal{L}}} Non ext{-}Key属性$	$\underline{Y} \to Z$
Transitive Dependency(传递性)	$\operatorname{Non-Key属t}^{\stackrel{ otherwise}{\longrightarrow}}\operatorname{Non-Key属t}$	$\mathrm{Z} \to \mathrm{D}$

3 Armstrong's Axioms(公理)

Axioms	条件	\Rightarrow	结果	备注
Reflexivity	$\mathrm{B}\subseteq\mathrm{A}$	\Rightarrow	$\mathrm{A} \to \mathrm{B}$	或者说 $AB o A$
Augmentation(扩展)	$\mathrm{A} \to \mathrm{B}$	\Rightarrow	$\mathrm{AC} \to \mathrm{BC}$	N/A
Transitive	$A \to B \ \wedge \ B \to C$	\Rightarrow	$\mathrm{A} \to \mathrm{C}$	N/A

1.4. Normal Form

Overview

Normal Form	Description
0NF	混沌之物 (Non-Relational)
1NF	无Repeating Groups
2NF	无Repeating Groups+Partial Dependency
3NF	无Repeating Groups+Partial Dependency+Transitive Dependency

1 1NF

- 1.1NF 的基本特征,(不满足以下特征的就是Non-Relational Model)
 - 。 不能有重复的列
 - 不能有Repeating Groups,即表中一个单元(Fill)只能有一个数据(不同单元的数据用逗号隔开,但注意有些数据单元内本就有逗号如Address)
- 2. Non-Relational Model \rightarrow 1NF:
 - 。 将Repeating Groups从原表中拆分成新表

。 将原表的
$$\operatorname{PK} \left\{egin{array}{l} -\text{份保留在原关系}
ightarrow \operatorname{作PK} \\ -\text{份复制到新关系}
ightarrow \operatorname{作PFK} \end{array}
ight.$$

3. 示例:注意区分 \underline{PK} , \overline{FK} , \underline{PFK} 的表示方法

Order-Item($\underline{\text{Order}}$, Cust, ($\underline{\text{Item}}$, Desc, Qty)) \rightarrow $\begin{cases} \text{Order}(\underline{\text{Order}}, \text{Cust}) \\ \text{Order-Item}(\underline{\underline{\text{Order}}}, \underline{\text{Item}}, \text{Desc}, \text{Qty}) \end{cases}$

2 2NF

- 1. 2NF基本特征: Part of Composite Key Hon-key Attribut (NO Partial 依赖)
- 2. 1NF→2NF: 移除Partial Dependencies
 - 。 把Partial Dependencies从原关系中剥离出来

3. 示例:注意区分PK, \overline{FK} , \overline{PFK} 的表示方法

。 假设Order-Item(
$$\overline{\text{Order}}$$
, $\underline{\text{Item}}$, Desc, Qty))存在
$$\begin{cases} \overline{\text{Order}}, \underline{\text{Item}} \to \text{Qty} \\ \underline{\text{Item}} \to \text{Desc (Partial Dependency)} \end{cases}$$

示例: 注意区分PK, FK, PFK的表示方法

$$\circ$$
 假设Order-Item(Order, Item, Desc, Qty))存在
$$\begin{cases} \underline{\text{Order}}, \underline{\text{Item}} \to \text{Qty} \\ \underline{\text{Item}} \to \text{Desc (Partial Dependency)} \end{cases}$$
 \circ Order-Item \to
$$\begin{cases} \text{Order}(\underline{\text{Order}}, \text{Cust}) \\ \text{Order-Item}(\underline{\text{Order}}, \underline{\text{Item}}, \text{Desc}, \text{Qty})) \to \begin{cases} \text{Item}(\underline{\text{Item}}, \text{Desc}) \\ \text{Order-Item}(\underline{\text{Order}}, \underline{\text{Item}}, \text{Qty}) \end{cases}$$

3 3NF

- 1. 3NF基本特征: Non-key Attribut $\xrightarrow{\text{Identify}}$ Non-key Attribut (NO Transitive 依赖)
- 2. 2NF→3NF: 移除Transitive Dependencies
 - 把Transitive Dependency从原关系剥离出来

• Transitive Dependency的Determinant
$$\begin{cases} -\text{份保留在原关系} \to \text{作FK} \\ -\text{份剥离到新关系} \to \text{作PK} \end{cases}$$

3. 示例:注意区分PK, FK, PFK的表示方法

。 假设
$$\left\{ rac{\mathrm{Empt}}{\mathrm{Dept}}
ightarrow \mathrm{Ename}, \mathrm{Dept} \ \\ \mathrm{Dept}
ightarrow \mathrm{Dname} \ (\mathrm{Transitive} \ \mathrm{Dependency})
ight.$$

の 假设
$$\left\{ \frac{\underline{\mathrm{Empt}}}{\mathrm{Dept}} \to \mathrm{Ename}, \, \mathrm{Dept} \right\}$$
 $\left\{ \frac{\mathrm{Empt}}{\mathrm{Dept}} \to \mathrm{Ename}, \, \mathrm{Dept} \right\}$ $\left\{ \mathrm{Emp}(\underline{\mathrm{Emp}}, \, \mathrm{Ename}, \, \overline{\mathrm{Dept}}) \right\}$ $\left\{ \mathrm{Emp}(\underline{\mathrm{Emp}}, \, \mathrm{Ename}, \, \overline{\mathrm{Dept}}) \right\}$ $\left\{ \mathrm{Dept}(\underline{\mathrm{Dept}}, \, \mathrm{Dname}) \right\}$

⁴ 其他级别的NF(课外,可不看)

- 1. BCNF: Non-key Attribut $\xrightarrow{\text{Identify}}$ Part of Composite Key
- 2. 4NF:解决Multivalue Dependency

。 多值依赖: 比如若下列
$$\begin{cases} M \overset{\checkmark}{\longrightarrow} S \\ M \overset{\checkmark}{\longrightarrow} C \to \text{则存在多值依赖,} \ \text{且记为} \\ M \to \to C \end{cases}$$

M	S	C
M1	S1	C1
M1	S1	C2
M1	S2	C1

。 当关系达到4NF时就认为完成Normalization了,已经没有Duplicates了

- 3. 5NF:解决Loss Dependency
 - 。 若表格拆开又拼回去不改变原表格(Lossless-Join分解),则表格就有Loss Dependency
 - 。 但实际上不会如此吹毛求疵了

2. Transaction(事务)

2.1. 概念与概述

- 1 Tansaction定义:
 - 1. 定义:数据库操作序列(A logical unit of work)
 - 2. 根本特性:要么一次性执行完Entirely Completed要么Aborted,是不可分割的工作单位

状态	操作
COMMIT	事务正常结束,完成所有操作(读取数据,更新写回硬盘)
ROLL BACK	事务异常结束,中途不再继续运行,已完成的操作也全部撤回

- 2 Tansaction引入的目的
 - 1. 定义Unit of Work, 适用于一个/多个用户
 - 2. Concurrent Access, 允许多个Command交织执行, 适用于多个用户
- **3** Tansaction种类
 - 1. Implicit Transaction: 单独一句DML/DDL就是Transaction

```
SELECT / INSERT / DELETE / CREATE / ALTER / DROP -- 比如一个SELECT就是一个事务
```

2. User-Defined Transaction: 需要关键字 BEGIN/COMMIMT/RILLBACK

-- 从SATRT到COMMIT不论中间多少语句,都只算一个Transaction START TRANSACTION; -- 开始事务,也可以用BEGIN TRANSACTION

-- SQL 语句1

-- SQL 语句2

COMMIT; -- 提交事务

ROLLBACK; -- 或者如果发生错误,回滚事务

⁴ Transaction性质: ACID

性质	描述
Atomicity	Transaction是不可分割的逻辑工作单位(执行完Or回退)
Consistancy	Transaction执行前后数据库都是一致状态+多用户读取数据时应看到相同值
Isolation	运行结束前一个Transaction的改变对其他Transaction不可见
Durability	一旦Transaction执行完其对数据的改变永久有效(即使系统崩溃)

2.2. Serializability

1 Transaction的交叉执行(Interleaved): 注意 $\operatorname{Transaction} \xrightarrow{\operatorname{\mathfrak{A}S}} \operatorname{TXN}$

Execution种类	含义	备注
Concurrent/Interleaved	不同TXN交叉并行执行	实际TXN执行方式
Serial Execution	不同TXN一个个执行	最安全但最低效的执行方式

2 示例

1. Serial Execution的读写操作

TXN	Stage1	Stage2	Stage3	Stage4
TXN1	R(A)	W(A)	\	\
TXN2	\	\	R(B)	W(B)

2. Concurrent Execution的读写操作: 黄标为Concurrent Execution部分

TXN	Stage1	Stage2	Stage3	Stage4
TXN1	R(A)	R(A)	W(A)	W(A)
TXN2	\	R(B)	\	W(B)

3 Serializable

1. 含义:多个TXN是Serializable ← (多个TXN并行执行效果 ≡ Serial Execution执行效果)

2. 上例中:若AB的读写互不干扰,则两表最终结果一样,则TXN1/2是Serializable

2.3. Concurrent Execution的问题与解决

2.3.1. Concurrent Access Conflict

♡出现问题的根本原因: 多TXN操作同一Object, 并且其中至少一个操作是Write

1 Loss Update Problem: 多次针对一个Object写,Object为最后一次写的内容

TXN	Stage1	Stage2	Stage3	Stage4	Stage5
Bob	R(A)	\	W(A)	\	COMMIT
Alice	\	R(A)	\	W(A)	COMMIT

• 最后结果是Alice写入内容

2 Uncommitted Data/Dirty Read Problem: 某TXN回退导致未交付数据被后面TXN使用

TXN	Stage1	Stage2	Stage3	Stage4	Stage5
Bob	R(A)	W(A)	\	\	ROLL BACK
Alice	\	\	R(A)	W(A)	COMMIT

- W(A)数据并未COMMIT但却被Alice使用
- 3 Inconsistent Retrieval Problem: ─个TXN在聚合函数操作+另一个TXN在Update数据

Alice	Bob
SELECT SUM(Salary) FROM Employee;	UPDATE Employee SET Salary = Salary * 1.01 WHERE EmpID = 33;
	UPDATE Employee SET Salary = Salary * 1.01 WHERE EmpID = 44;
(finishes calculating sum)	COMMIT;

• 理论上,可以合理安排Interleaved来避免冲突

2.3.2. Concurrency Control Method: 解决冲突

2.3.2.0. 概述

1 总体思路: 合理安排读写操作的顺序

2 基本思路

基本思路	操作	备注
Pesimistic	先检查有无问题,以选择不执行/更正后执行	比如Lock
Optimistic	先一股脑执行, 执行完后有问题再回来更正	此课程不涉及

• Optimistic方法: Timestamping和Optimistic Concurrency Control

2.3.2.1. Lock Method

1 总体思路:

1. 逻辑上:通过让TXN持有Lock,让当前TXN霸占某个数据项(Exclusive Use of Data)

2. 物理上: 在RAM上设置Lock Manager来管理Lock的数据

2 Level/Gradularity(精细度)of Lock

	含义	使用频率
Database-Level	锁住整个数据库	Slightly Rare
Table-Level	锁住一张表格	Very Common
Page-Level	锁住一页(一张表存储在多页中)	Common
Row-Level	锁住表中的一行	Most Common

Gradularity	含义	使用频率
Field-Level	锁住表中的某个值	Rare

- 1. 理想情况Field-Level最好,但其Lock过于复杂(High Overhead),反倒最不常用
- 2. 在MySQL中,如果多层级Lock被应用,则需要Intention Lock来辅助
- 3 Types of Lock
 - 1. Binary Lock: 仅Lock/Unlock两种状态,只要用到数据(不论读写)都是Lock
 - 2. Shared and Exclusive Locks(Read and Write Locks)
 - ο 描述

Type	适用情况	要求
Share/Read Lock	Read Table Only	无Write Lock
Exclusive/Write Lock	Update(Write) Records in Table	无其他Lock

。 要求表,<mark>这张表很重要</mark>

操作	已有S-Lock	已有X-Lock
申请新的S-Lock	~	×
申请新的X-Lock	×	×

- 4 上锁与解锁Two Phase Policy
 - 1. Two Phase Policy:

Phase	描述
Grow Phase	给Object一个个上锁
Shrink Phase	给Object一个个解锁,当解锁开始时就不能再上锁了

- 2. Strict Two Phase Policy: 相比于非Strict有如下改变
 - 。 只有在Transaction COMMIT后才能解锁
 - 。 解锁不是一个个解锁, 而是一次性全部解锁

2.3.2.2. Unresolvable Problem For Lock: Deadlock

1基本思路

基本思路	操作	备注
Pesimistic	执行前先检查是否死锁,如果死锁就不执行/更正后执行	N/A
Optimistic	先一股脑执行,每隔一段时间检测是否锁死并加以解决	此处不涉及

- 2 死锁Detection的方法: Wait-For Graph
 - 1. 用圈代表TXN,用箭头表示等待 $(A \rightarrow B$ 表示A在等待B释放某个Lock)
 - 2. 当Graph构成闭环ightarrow 死锁,但注意成环不代表闭环,闭环是要形成环路(下图示例)

3 死锁检测例题1: 序列1如下,C=COMMIT,其次不必在意一个Object可以不读就写

序列: TXN	1	2	3	4	5	6	7	8	9
序列1: T1	R(Z)	\	\	\	W(Y)	С	\	\	\
序列1: T2	\	W(X)	W(Y)	\	\	\	С	\	\
序列1: T3	\	\	\	W(Y)	\	\	\	С	\

1. Lock请求时序: $T_{1,2,3}$ 对X-Lock(Y)的请求构成等待

T1	T2	Т3
$R(Z) \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{$	\	\
\	$W(X) \xrightarrow{\text{$\check{x}$}} X\text{-Lock}(X)$	\
\	$W(Y) \xrightarrow{{}^{-}\!$	\
\	\	$rac{f W(Y)}{f T_2} \xrightarrow{\begin{subarray}{c} egin{subarray}{c} \egin{subarray}{c} \egin{subarray}{c} egin{subarray}{c} \egin{subarray}{c} \egin$
W(Y) 等符 $$ X-Lock (Y)	\	\

2. 对于 $T_{1,2,3}$ 的Wait-For Graph $\xrightarrow{\pi \mbox{\scriptsize MRF}}$ 不构成死锁

3. TXN顺序: T2完成 $\xrightarrow{T_2 \text{ COMMIT}$ 释放X-Lock(Y)} T3完成 $\xrightarrow{T_3 \text{ COMMIT}$ 释放X-Lock(Y)} T1完成

4 死锁检测例题2

序列: TXN	1	2	3	4	5	6	7	8	9
序列2: T1	\	W(Y)	\	\	\	W(X)	С	\	\
序列2: T2	W(X)	\	\	\	W(Y)	\	\	С	\
序列2: T3	\	\	R(Z)	W(Z)	\	\	\	\	С

1. Lock请求时序: $T_{1,2,3}$ 对X-Lock(Y)的

T1	T2	Т3
\	$W(X) \xrightarrow{{}^{\!$	\
$W(Y) \xrightarrow{{}^{-}\!$	\	\
\	\	R(Z) 获得 S-Lock (Z)
\	\	$W(Z) \xrightarrow{\overline{x}} X\text{-Lock}(Z)$
\	$rac{\Psi(Y)}{T_1\pi\dot{m}} \xrightarrow{\begin{subarray}{c} rac{\$\dot{\phi}}{T_1}} X ext{-Lock}(Y)$	\
$\mathrm{W}(\mathrm{X}) \xrightarrow{\mathrm{\mathfrak{S}}^{\mathrm{\mathfrak{S}}}} \mathrm{X} ext{-}\mathrm{Lock}(\mathrm{X})$	\	\

2. 对于 $T_{1,2,3}$ 的Wait-For $Graph \xrightarrow{\beta\pi}$ 构成了死锁

 $3. TXN顺序: 只有T<math>_3$ 可以完成

5 一些课外补充

1. 死锁的解决:选择一个死锁的TXN去(部分)回退,至于是哪个可以根据Age/负载等

2. 死锁的预防: Wait-die and Wound-die Policy

2.3.2.3. Concurrency Control Method

↑ TXN序列: 是一个Loss Update Problem问题

Time	t=0	t=1	t=2	t=3	Final
T1	R(A)	\	\	W(A)	COMMIT
T2	\	R(A)	W(A)	\	COMMIT

2 用Binary Lock解决

1. 规则:

操作	已占用Lock
申请新的Lock	×

2. 执行

阶段	操作
T1-R(A)	获取Lock(A)并执行
T2-R(A)和 $T2$ -W(A)	等待 $T1$ 释放 $Lock(A)$
T1-W(A)	已有Lock(A)并执行
COMMIT	只有 $\mathrm{W}(\mathrm{A})$ 完成执行

3 Shared and Exclusive Locks(Read and Write Locks)解决

1. 规则

操作	已占用S-Lock	已占用X-Lock
申请新的S-Lock	~	×
申请新的X-Lock	×	×

2. 执行

阶段	操作
T1-R(A)	获取S-Lock(A)-1
T2-R(A)	获取S-Lock(A)-2 (在已有S-Lock情况下在获取一个S-Lock是OK的)
T2- $W(A)$	等待 $T1$ 释放 X - $Lock(A)$ - 1
T1-W(A)	等待T2释放X-Lock(A)-2
COMMIT	T1 → 死锁,谁都COMMIT不了

2.4. Transaction Log

- 1 含义:记录数据库事务变化的日志,包括
 - 1. Transaction开始的记录
 - 2. 每个SQL语句的详细信息
 - 3. Transaction COMMIT的记录
- ☑作用:将所有更改恢复到最后一次COMMIT的状态