演習問題解答

@litharge3141

2020年6月30日

概要

Karatzas-Shreve, Brownian Motion and Stochastic Calculus o Exercise と Problem の解答. 問題は載せません.

1 Chapter1

解答 (1.5 Problem.). 右連続性を利用して連続な時間を可算に落とす.

任意の $t\geq 0$ に対して $P(X_t=Y_t)=1$ が成立する。 $[0,\infty)$ の稠密な部分集合 $(t_m)_{m=1}^\infty$ を取る。任意の $m\in\mathbb{N}$ に対してある P-零集合 N_m が存在して, $\omega\notin N_m$ ならば $X_{t_m}(\omega)=Y_{t_m}(\omega)$ が成立する。そこで $N=\bigcup_{m=1}^\infty N_m$ とおくと,N は P-零集合で, $\omega\notin N$ ならば任意の $m\in\mathbb{N}$ に対して $X_{t_m}(\omega)=Y_{t_m}(\omega)$ が成立する。すなわち, $P(\forall m\in\mathbb{N},X_{t_m}=Y_{t_m})=1$ となる。X,Y はほとんどいたるところ右連続だから, N_X,N_Y という P-零集合を除いて右連続である。 $N\cup N_X\cup N_Y$ を改めて N とおく。N は P-零集合である。 $\omega\notin N$ とする。任意の $t\geq 0$ に対して,t に右から収束する $(t_m)_{m=1}^\infty$ の部分列 $(t_{m(k)})_{k=1}^\infty$ が稠密性から存在する。任意の $k\in\mathbb{N}$ に対して $X_{t_{m(k)}}(\omega)=Y_{t_{m(k)}}(\omega)$ が成立することと,右連続性から $X_t(\omega)=Y_t(\omega)$ となる。t は任意だったから, $P(\forall t\geq 0,X_t=Y_t)=1$ となる。以上により示された。

右連続でなく左連続でもできそうな感じがするが、t=0のところの処理(というか左連続の定義)が若干面倒であるように思われる.