ICON Namelist Overview

May 26, 2016

Contents

1 ICON Namelists

1.1 Scripts, Namelist files and Programs

Run scripts starting the programs for the grid generation and the models are stored in run/. These scripts write namelist files containing the specified Fortran namelists. Programs are stored in < icon home>/build/<architecture>/bin/.

Table 1: Namelist files

Namelist file	Purpose	Made by script	Used by program
NAMELIST_GRAPH	Generate graphs	${ m create_global_grids.run}$	$\operatorname{grid} \operatorname{_command}$
$NAMELIST_GRID$	Generate grids	$create_global_grids.run$	grid _command
NAMELIST_GRIDREF	Gen. nested domains	$create_global_grids.run$	grid _command
NAMELIST_ICON	Run ICON models	exp. < name > .run	$\operatorname{control} _\operatorname{model}$

1.2 Namelist parameters

The following subsections tabulate all available Fortran namelist parameters by name, type, default value, unit, description, and scope:

- Type refers to the type of the Fortran variable, in which the value is stored: I=INTEGER, L=LOGICAL, R=REAL, C=character string
- Default is the preset value, if defined, that is assigned to this parameter within the programs.
- Unit shows the unit of the control parameter, where applicable.
- Description explains in a few words the purpose of the parameter.
- Scope explains under which conditions the namelist parameter has any effect, if its scope is restricted to specific settings of other namelist parameters.

Information on the file, where the namelist is defined and used, is given at the end of each table.

2 Namelist parameters for grid generation

2.1 Namelist parameters defining the atmosphere grid

2.1.1 graph ini (NAMELIST GRAPH)

Parameter	Type	Default	Unit	Description	Scope
nroot	I	2		root subdivision of initial edges	
grid levels	I	4		number of edge bisections following the root	
_				subdivision	
lplane	L	.FALSE.		switch for generating a double periodic planar grid.	
				The root level consists of 8 triangles.	

Defined and used in: src/grid_generator/mo_io_graph.f90

2.1.2 grid_ini (NAMELIST_GRID)

Parameter	Type	Default	Unit	Description	Scope
nroot	I	2		root subdivision of initial edges	
grid levels	I	4		number of edge bisections following the root	
_				subdivision	
lplane	L	.FALSE.		switch for generating planar grid. The root level	
				consists of 8 triangles.	
lread graph	L	.FALSE.		switch for reading graph information from	
_				precomputed file; .TRUE. implies that the graph	
				generator needs to be executed in advance	

Defined and used in: src/grid_generator/mo_grid_levels.f90

${\bf 2.1.3 \quad grid_options \ (NAMELIST_GRID)}$

Parameter	Type	Default	Unit	Description	Scope
x rot angle	R	0.0	deg	Rotation of the icosahedron about the x-axis	
				(connecting the origin and [0°E, 0°N])	
y rot angle	R	0.0	deg	Rotation of the icosahedron about the y-axis	
				(connecting the origin and [90°E, 0°N), done after	
				the rotation about the x-axis.	
z rot angle	R	0.0	deg	rotation of the icosahedron about the z-axis	
				(connecting the origin and [0°E, 90°N), done after	
				the rotation about the y-axis.	
$itype_optimize$	I	4		Grid optimization type	
				0: no optimization	
				1: Heikes Randall	
				2: equal area	
				3: c-grid small circle	
				4: spring dynamics	
l_c_grid	L	.FALSE.		C-grid constraint on last level	
${f maxlev_optim}$	I	100		Maximum grid level where the optimization is	$i_{type_optimize} = 1 \text{ or } 4$
				applied	
beta_spring	R	0.90		tuning factor for target grid length	$i_{type_optimize} = 4$

Defined and used in: src/grid_generator/mo_grid_levels.f90

2.1.4 plane options (NAMELIST GRID)

Parameter	Type	Default	Unit	Description	Scope
tria_arc_km	R	10.0	km	length of triangle edge on plane	lplane = .TRUE.

The number of grid points is generated by root level section and further bisections. The double periodic root level consists of 8 triangles. The spatial coordinates are -1 <= x <= 1, and $-\sqrt{3}/2 <= y <= \sqrt{3}/2$. Currently the planar option can only be used as an f-plane. Defined and used in: $src/grid_generator/mo_grid_levels.f90$

2.1.5 gridref ini (NAMELIST GRIDREF)

Parameter	Type	Default	Unit	Description	Scope
grid_root	I	2		root subdivision of initial edges	
start lev	I	4		number of edge bisections following the root	
, <u> </u>				subdivision	
$n_{ m dom}$	I	2		number of logical model domains, including the	
				global one	
n_{phys}_{dom}	I	n_dom		number of physical model domains, may be larger	
				than n_dom (in this case, domain merging is	
				applied)	
${f parent_id}$	I(n_phys_	i		ID of parent domain (first entry refers to first	
	dom-1)			nested domain; needs to be specified only in case of	
				more than one nested domain per grid level)	
logical_id	I(n_phys_	i+1		logical grid ID of domain (first entry refers to first	
	dom-1)			nested domain; needs to be specified only in case of	
				domain merging, i.e. n_dom < n_phys_dom)	
$l_{ extbf{plot}}$	L	.FALSE.		produces GMT plots showing the locations of the	
				nested domains	
l_circ	L	.FALSE.		Create circular (.T.) or rectangular (.F.) refined	
				domains	
$l_{ m rotate}$	L	.FALSE.		Rotates center point into the equator in case of	lcirc=.FALSE.
				$l_circ = .FALSE.$	

Parameter	Type	Default	Unit	Description	Scope
write_hierarchy	I	1		0: Output only computational grids	
				1: Output in addition parent grid of global model	
				domain (required for computing physics on a	
				reduced grid)	
				2: Output all grids back to level 0 (required for	
				hierarchical search algorithms)	
lsep_gridref_info	L	.FALSE.		.TRUE.: write fields describing parent-child	
				connectivities into separate grid files	
uuid_sourcefile	C(n_dom)	'EMPTY'		If specified, provides the names of existing grid files	
				from which the uuid shall be copied. If a radiation	
				grid is present, the first entry refers to this grid.	
bdy_indexing_depth	I	12		Number of cell rows along the lateral boundary of a	
				model domain for which the refin_ctrl fields	
				contain the distance from the lateral boundary;	
				needs to be enlarged when lateral boundary	
				nudging is required for one-way nesting	
radius	R(n_dom-	30.	deg	radius of nested domain (first entry refers to first	lcirc=.TRUE.
	1)			nested domain; needs to be specified for each nested	
				domain separately)	
ullet hwidth $ullet$ lon	R(n_dom-	20.	deg	zonal half-width of refined domain (first entry refers	lcirc=.FALSE.
	1)			to first nested domain; needs to be specified for	
				each nested domain separately)	
hwidth_lat	R(n_dom-	20.	deg	meridional half-width of refined domain (first entry	lcirc=.FALSE.
	1)			refers to first nested domain; needs to be specified	
_			_	for each nested domain separately)	
$center_lon$	R(n_dom-	30.	deg	center longitude of refined domain (first entry refers	
	1)			to first nested domain; needs to be specified for	
			,	each nested domain separately)	
center_lat	R(n_dom-	90.	deg	center latitude of refined domain (first entry refers	
	1)			to first nested domain; needs to be specified for	
				each nested domain separately)	

Defined and used in: src/grid_generator/mo_gridrefinement.f90

2.1.6 gridref metadata (NAMELIST GRIDREF)

Parameter	Type	Default	Unit	Description	Scope
number_of_grid_used	$I(n_dom +$	0		sets the number of grid used in the netcdf header;	
	1)			the number of entries must be n_dom+1 since the	
				first number refers to the radiation grid	
centre	I	0		centre running the grid generator	
				78: EDZW (DWD)	
				252: MPIM	
subcentre	I	0		subcentre to be assigned by centre, usually 0	
outname_style	I	1		Output name style	
				1: Standard: $iconRXBXX_DOMXX.nc$	
				2: DWD: $icon_grid_XXXX_RXXBXX_X.nc$	

Defined and used in: src/grid_generator/mo_gridrefinement.f90

$2.2 \quad coupling_mode_nml$

Parameter	Type	Default	Unit	Description	Scope
$coupled_mode$	L	.FALSE.		.TRUE.: if yac coupling routines have to be called	

Defined and used in: src/namelists/mo_coupling_nml.f90

3 Namelist parameters defining the atmospheric model

Namelist parameters for the ICON models are organized in several thematic Fortran namelists controling the experiment, and the properties of dynamics, transport, physics etc.

3.1 diffusion nml

Parameter	Type	Default	Unit	Description	Scope
${ m lhdiff_temp}$	L	.TRUE.		Diffusion on the temperature field	

Parameter	Type	Default	Unit	Description	Scope
lhdiff vn	L	.TRUE.		Diffusion on the horizontal wind field	
lhdiff w	L	.TRUE.		Diffusion on the vertical wind field	
hdiff_order	I	4 (hydro)		Order of ∇ operator for diffusion:	Options 2, 24 and 42 are
_		5 (NH)		-1: no diffusion	allowed only in the
				2: ∇^2 diffusion	hydrostatic atm model
				3: Smagorinsky ∇^2 diffusion	(iequations $= 1$ or 2 in
				4: ∇^4 diffusion	dynamics nml).
				5: Smagorinsky ∇^2 diffusion combined with ∇^4	_ /
				background diffusion as specified via	
				hdiff efdt ratio	
				$24 \text{ or } 42$: $\nabla 2$ diffusion from model top to a certain	
				level (cf. k2 pres max and k2 klev max below);	
				∇^4 for the lower levels.	
lsmag 3d	\mid L	.FALSE.		.TRUE.: Use 3D Smagorinsky formulation for	hdiff order=3 or 5;
				computing the horizontal diffusion coefficient	itype_vn_diffu=1
				(recommended at mesh sizes finer than 1 km if the	
				LES turbulence scheme is not used)	
$itype_vn_diffu$	I	1		Reconstruction method used for Smagorinsky	iequations=3,
				diffusion:	$hdiff_order=3 or 5$
				1: u/v reconstruction at vertices only	
				2: u/v reconstruction at cells and vertices	
$itype_t_diffu$	I	2		Discretization of temperature diffusion:	iequations=3,
				1: $K_h \nabla^2 T$	$hdiff_order=3 or 5$
				$2: \nabla \cdot (K_h \nabla T)$	
$k2_pres_max$	R	-99.	Pa	Pressure level above which ∇^2 diffusion is applied.	$hdiff_order = 24 \text{ or } 42,$
					and
					dynamics_nml:iequations
					= 1 or 2.
$k2_klev_max$	I	0		Index of the vertical level till which (from the model	$hdiff_order = 24 \text{ or } 42,$
				top) ∇^2 diffusion is applied. If a positive value is	and
				specified for k2_pres_max, k2_klev_max is reset	dynamics_nml:iequations
				accordingly during the initialization of a model run.	= 1 or 2.

Parameter	Type	Default	Unit	Description	Scope
hdiff_efdt_ratio	R	1.0		ratio of e-folding time to time step (or 2* time step	
		(hydro)		when using a 3 time level time stepping scheme)	
		36.0		(for triangular NH model, values above 30 are	
		(NH)		recommended when using hdiff_order=5)	
hdiff_w_efdt_ratio	R	15.0		ratio of e-folding time to time step for diffusion on vertical wind speed	iequations=3
hdiff min efdt ratio	R	1.0		minimum value of hdiff efdt ratio near model top	iequations=3 .AND.
					hdiff_order=4
hdiff_tv_ratio	R	1.0		Ratio of diffusion coefficients for temperature and normal wind: $T:v_n$	
hdiff_multfac	R	1.0		Multiplication factor of normalized diffusion coefficient for nested domains	n_dom>1
hdiff_smag_fac	R	0.15 (hydro)		Scaling factor for Smagorinsky diffusion	equations=3
		0.015 (NH)			

Defined and used in: src/namelists/mo_diffusion_nml.f90

3.2 dynamics_nml

This namelist is relevant if $run_nml:ldynamics=.TRUE$.

Parameter	Type	Default	Unit	Description	Scope
iequations	I	3		Equations and prognostic variables. Use positive	
				indices for the atmosphere and negative indices for	
				the ocean.	
				0: shallow water model	
				1: hydrostatic atmosphere, T	
				2: hydrostatic atm., θ ·dp	
				3: non-hydrostatic atmosphere	
				-1: hydrostatic ocean	
$idiv_method$	I	1		Method for divergence computation:	

Parameter	Type	Default	Unit	Description	Scope
				1: Standard Gaussian integral.	
				Hydrostatic atm. model: for unaveraged normal	
				components	
				Non-hydrostatic atm. model: for averaged normal	
				components	
				2: bilinear averaging of divergence	
divavg_cntrwgt	R	0.5		Weight of central cell for divergence averaging	$ idiv_method = 2$
lcoriolis	L	.TRUE.		Coriolis force	
sw_ref_height	R	0.9*	m	Reference height of shallow water model used for	
		$2.94\mathrm{e}4/\mathrm{g}$		linearization in the semi-implicit time stepping	
				scheme	

Defined and used in: src/namelists/mo_dynamics_nml.f90

$3.3 \quad echam_conv_nml$

Parameter	Type	Default	Unit	Description	Scope
iconv	I	1		Choice of cumulus convection scheme.	$ ext{iforcing} = 2 ext{ .AND. lconv} $
				1: Nordeng scheme	= .TRUE.
				2: Tiedtke scheme	
				3: hybrid scheme	
ncvmicro	I	0		Choice of convective microphysics scheme.	iforcing = 2 .AND. lconv $ $
					= .TRUE.
lmfpen	L	.TRUE.		Switch on penetrative convection.	iforcing = 2 .AND. lconv
					= .TRUE.
lmfmid	L	.TRUE.		Switch on midlevel convection.	iforcing = 2 .AND. lconv
					= .TRUE.
lmfdd	L	.TRUE.		Switch on cumulus downdraft.	iforcing = 2 .AND. lconv
					= .TRUE.
lmfdudv	L	.TRUE.		Switch on cumulus friction.	iforcing = 2 .AND. lconv
					= .TRUE.
cmftau	R	10800.		Characteristic convective adjustment time scale.	iforcing = 2 .AND. lconv
					= .TRUE.

Parameter	Type	Default	Unit	Description	Scope
cmfctop	R	0.3		Fractional convective mass flux (valid range [0,1])	iforcing = 2 .AND. $lconv$
				across the top of cloud	= .TRUE.
cprcon	R	1.0e-4		Coefficient for determining conversion from cloud	${ m iforcing}=2$.AND. ${ m lconv}$
				water to rain.	= .TRUE.
cminbuoy	R	0.025		Minimum excess buoyancy.	${ m iforcing}=2$.AND. ${ m lconv}$
					= .TRUE.
entrpen	R	1.0e-4		Entrainment rate for penetrative convection.	${ m iforcing}=2$.AND. ${ m lconv}$
					= .TRUE.
dlev	R	3.e4	Pa	Critical thickness necessary for the onset of	${ m iforcing}=2$.AND. ${ m lconv}$
				convective precipitation.	= .TRUE.

Defined and used in: src/namelists/mo_echam_conv_nml.f90

3.4 echam_phy_nml

Parameter	Type	Default	Unit	Description	Scope
lrad	L	.TRUE.		.TRUE. for radiation.	${ m run_nml/iforcing} = 2$
${ m dt}$ rad	R	36 00.	s	time interval for radiative transfer computation	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
lvdiff	L	.TRUE.		.TRUE. for vertical turbulent diffusion	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
lconv	L	.TRUE.		.TRUE. for cumulus convection	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
lcond	L	.TRUE.		.TRUE. for large scale condensation	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
lgw hines	L	.TRUE.		.TRUE. for non-orographic gravity wave drag	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
_				(Hines)	
lssodrag	L	.TRUE.		.TRUE. for subgrid scale orographic effects (Lott	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
				and Miller)	
lice	L	.FALSE.		.TRUE. for sea-ice temperature calculation	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
lmlo	L	.FALSE.		.TRUE. for mixed layer ocean	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
ljsbach	L	.FALSE.		.TRUE. for calculating land surface properties	${ m run_nml/iforcing} = 2$
				(JSBACH)	
lamip	L	.FALSE.		.TRUE. for AMIP boundary conditions	${ m run_nml/iforcing} = 2$

Defined and used in: src/namelists/mo_echam_phy_nml.f90

3.5 ensemble_pert_nml

Parameter	Type	Default	Unit	Description	Scope
$use_ensemble_pert$	L	.FALSE.		Main switch to activate physics parameter	run_nml : $iforcing = inwp$
				perturbations for ensemble forecasts / ensemble	
				data assimilation; the perturbations are applied via	
				random numbers depending on the	
				perturbationNumber (ensemble member ID)	
				specified in gribout_nml	
${ m range_gkwake}$	R	0.333		Variability range for low level wake drag constant	
range_gkdrag	R	0.04		Variability range for orographic gravity wave drag	
				constant	

Parameter	Type	Default	Unit	Description	Scope
range_gfluxlaun	R	0.75e-3		Variability range for non-orographic gravity wave	
				launch momentum flux	
range_zvz0i	R	0.2	m/s	Variability range for terminal fall velocity of ice	$inwp_gscp = 1 \text{ or } 2$
range_entrorg	R	0.2e-3	1/m	Variability range for entrainment parameter in convection scheme	$inwp_convection = 1$
$range_capdcfac_et$	R	0.75		Maximum fraction of CAPE diurnal cycle correction applied in the extratropics	m icapdcycl = 3
$ m range_rhebc$	R	0.05		Variability range for RH threshold for the onset of evaporation below cloud base	$inwp_convection = 1$
range_texc	R	0.05	K	Variability range for temperature excess value in test parcel ascent	$inwp_convection = 1$
range_box_liq	R	0.01		Variability range for box width scale of liquid clouds in cloud cover scheme	$inwp_cldcover = 1$
range_tkhmin	R	0.2		Variability range for minimum vertical diffusion for heat/moisture	$inwp_turb = 1$
$range_tkmmin$	R	0.2		Variability range for minimum vertical diffusion for momentum	$inwp_turb = 1$
$range_tkred_sfc$	R	4.0		Range for multiplicative change of reduction of minimum diffusion coefficients near the surface	$inwp_turb = 1$
range_rlam_heat	R	3.0		Variability range (multiplicative!) of laminar transport resistance parameter	$inwp_turb = 1$
range_charnock	R	1.5		Variability range (multiplicative!) of upper and lower bound of wind-speed dependent Charnock parameter	$inwp_turb = 1$
range_minsnowfrac	R	0.05		Variability range for minimum value to which snow cover fraction is artificially reduced in case of melting snow	$idiag_snowfrac = 20/30/40$
$ m range_z0_lcc$	R	0.25		Variability range (relative change) of roughness length attributed to each landuse class	
$ m range_rootdp$	R	0.2		Variability range (relative change) of root depth attributed to each landuse class	
range_rsmin	R	0.2		Variability range (relative change) of minimum stomata resistance attributed to each landuse class	

Parameter	Type	Default	Unit	Description	Scope
range_laimax	R	0.15		Variability range (relative change) of leaf area index	
				(maximum of annual cycle) attributed to each	
				landuse class	

Defined and used in: src/namelists/mo_ensemble_pert_nml.f90

3.6 gribout_nml

Parameter	Type	Default	Unit	Description	Scope
preset	C	"determ	,	Setting this different to "none" enables a couple of	filetype=2
				defaults for the other gribout_nml namelist	
				parameters. If, additionally, the user tries to set	
				any of these other parameters to a conflicting value,	
				an error message is thrown. Possible values are	
				"none", "deterministic", "ensemble".	
${ m backgroundProcess}$	I	0		Background process	filetype=2
				- GRIB2 code table backgroundProcess.table	
${\it generating Center}$	I	-1		Output generating center. If this key is not set,	filetype=2
				center information is taken from the grid file	
				DWD: 78	
				MPIMET: 98	
				ECMWF: 98	
${ m generating Subcenter}$	I	-1		Output generating Subcenter. If this key is not set,	filetype=2
				subcenter information is taken from the grid file	
				DWD: 255	
				MPIMET: 232	
				ECMWF: 0	
${\it generatingProcess}$	I(n_dom)	1		generating Process Identifier	filetype=2
Identifier				- GRIB2 code table	
				generatingProcessIdentifier.table	
${\it numberOfForecastsIn}$ -	I	-1		Local definition for ensemble products, (only set if	filetype=2
Ensemble				value changed from default)	

Parameter	Type	Default	Unit	Description	Scope
perturbationNumber	I	-1		Local definition for ensemble products, (only set if	filetype=2
				value changed from default)	
productionStatusOfPro-	I	1		Production status of data	filetype=2
$\operatorname{cessedData}$				- GRIB2 code table 1.3	
significanceOfReference-	I	1		Significance of reference time	filetype=2
Time				- GRIB2 code table 1.2	
typeOfEnsembleForecast	I	-1		Local definition for ensemble products (only set if	filetype=2
				value changed from default)	
typeOfGeneratingPro-	I	-1		Type of generating process	filetype=2
cess				- GRIB2 code table 4.3	
${ m typeOfProcessedData}$	I	-1		Type of data	filetype=2
				- GRIB2 code table 1.4	
local Definition Number	I	-1		local Definition Number	filetype=2
				- GRIB2 code table	
				grib 2 Local Section Number. 78. table	
localNumberOfExperi-	I	1		local Number of Experiment	filetype=2
ment					
localTypeOfEnsemble-	I	-1		Local definition for ensemble products (only set if	filetype=2
Forecast				value changed from default)	
lspecialdate_invar	L	.FALSE.		Special reference date for invariant and	$ ext{ filetype} = 2 $
				climatological fields	
				.TRUE.: set special reference date 0001-01-01, 00:00	
				.FASLE.: no special reference date	
ldate_grib_act	L	.TRUE.		GRIB creation date	filetype=2
				.TRUE.: add creation date	
				.FALSE.: add dummy date	
lgribout_24bit	L	.FALSE.		If TRUE, write thermodynamic fields ρ , θ_v , T , p	filetype=2
_				with 24bit precision instead of 16bit	

Defined and used in: src/namelists/mo_gribout_nml.f90

$3.7 \quad \text{grid}_\text{nml}$

Parameter	Type	Default	Unit	Description	Scope
cell_type	I	3		Cell type: not used	
lplane	L	.FALSE.		planar option	
is_plane_torus	L	.FALSE.		f-plane approximation on triangular grid	
corio_lat	R	0.0	deg	Center of the f-plane is located at this geographical latitude	lplane=.TRUE. and is plane torus=.TRUE.
grid_angular_velocity	R	Earth's	rad/s	The angular velocity in rad per sec.	
l limited area	L	.FALSE.			
grid rescale factor	R	1.0		Defined as the inverse of the reduced-size earth	
				reduction factor X. Choose grid_rescale_factor	
				< 1 for a reduced-size earth.	
				The geometry and the timestep will be multiplied	
				by this factor.	
				The angular velocity will be divided by this factor.	
lfeedback	L(n_dom)	.TRUE.		Specifies if feedback to parent grid is performed.	n_dom>1
				Setting lfeedback(1)=.false. turns off feedback for	
				all nested domains; to turn off feedback for selected	
				nested domains, set lfeedback(1)=.true. and set	
				".false." for the desired model domains	
ifeedback_type	I	2		1: incremental feedback	n_dom>1
				2: relaxation-based feedback	
				Note: vertical nesting requires option 2 to run	
				numerically stable over longer time periods	
start_time	R(n_dom)	0.	s	Time when a nested domain starts to be active	n_dom>1
_	/			(namelist entry is ignored for the global domain)	
end_time	R(n_dom)	1.E30	S	Time when a nested domain terminates (namelist	n_dom>1
				entry is ignored for the global domain)	

Parameter	Type	Default	Unit	Description	Scope
patch_weight	R(n_dom)	0.		If patch_weight is set to a value > 0 for any of the	n_dom>1
				first level child patches, processor splitting will be	
				performed, i.e. every of the first level child patches	
				gets a subset of the total number or processors	
				corresponding to its patch_weight. A value of 0.	
				corresponds to exactly 1 processor for this patch,	
				regardless of the total number of processors. For the	
				root patch and higher level childs, patch_weight is	
				not used. However, patch_weight must be set to 0	
				for these patches to avoid confusion.	
lredgrid_phys	L	.FALSE.		If set to .true. radiation is calculated on a reduced	
				grid (= one grid level higher)	
dynamics_grid_	С			Array of the grid filenames to be used by the	
filename				dycore. May contain the keyword <path> which</path>	
	T / 1 \			will be substituted by model_base_dir.	
dynamics_parent_	I(n_dom)	i-1		Array of the indexes of the parent grid filenames, as	
grid_id				described by the dynamics grid filename array.	
	<i>a</i>			Indexes start at 1, an index of 0 indicates no parent.	1 1 11 1 777
radiation_grid_	С			Array of the grid filenames to be used for the	lredgrid_phys=.TRU
filename				radiation model. Filled only if the radiation grid is	
				different from the dycore grid. May contain the	
				keyword <path> which will be substituted by</path>	
3 . 3. 4.	T/ 1)	1 6 . 1		model_base_dir.	
dynamics_radiation_g	I(n_dom)	1 for i=1		Array of the indexes linking the dycore grids, as	
rid_link				described by the dynamics grid filename array,	
				and the radiation_grid_filename array. It provides the link index of the radiation_grid_filename, for	
				each entry of the dynamics grid filename array.	
				Indexes start at 1, an index of 0 indicates that the	
				radiation grid is the same as the dycore grid. Only	
				needs to be filled when the	
				radiation grid filename is defined.	
create vgrid	L	.FALSE.		TRUE: Write vertical grid files containing (vct_a,	
_ vgiid	L	I ALDE.		vct_b, z_ifc, and z_ifv.	

Parameter	Type	Default	Unit	Description	Scope
vertical_grid_filename	C(n_dom)			Array of filenames. These files contain the vertical	
				grid definition (vct_a, vct_b, z_ifc). If empty, the	
				vertical grid is created within ICON during the	
				setup phase.	
$use_duplicated_$	L	.TRUE.		if .TRUE., the zero connectivity is replaced by the	
connectivity				last non-zero value	
use dummy cell closure	L	.FALSE.		if .TRUE. then create a dummy cell and connect it	
				to cells and edges with no neighbor	

Defined and used in: src/namelists/mo_grid_nml.f90

$3.8 \quad \mathbf{gridref_nml}$

Parameter	Type	Default	Unit	Description	Scope
$grf_intmethod_c$	I	2		Interpolation method for grid refinement (cell-based	n_dom>1
				dynamical variables):	
				1: parent-to-child copying	
				2: gradient-based interpolation	
$\operatorname{grf_intmethod_ct}$	I	2		Interpolation method for grid refinement (cell-based	n_dom>1
				tracer variables):	
				1: parent-to-child copying	
				2: gradient-based interpolation	
$\operatorname{grf}_{\operatorname{intmethod}_{\operatorname{e}}}$	I	6		Interpolation method for grid refinement	n_dom>1
				(edge-based variables):	
				1: inverse-distance weighting (IDW)	
				2: RBF interpolation	
				3: combination gradient-based / IDW	
				4: combination gradient-based / RBF	
				5/6: same as $3/4$, respectively, but direct	
				interpolation of mass fluxes along nest interface	
				edges	
grf_velfbk	I	1		Method of velocity feedback:	n_dom>1
				1: average of child edges 1 and 2	

Parameter	Type	Default	Unit	Description	Scope
				2: 2nd-order method using RBF interpolation	
$\operatorname{grf}_\operatorname{scalfbk}$	I	2		Feedback method for dynamical scalar variables	n_dom>1
				(T, p_{sfc}) :	
				1: area-weighted averaging	
				2: bilinear interpolation	
$\operatorname{grf_tracfbk}$	I	2		Feedback method for tracer variables:	n_dom>1
				1: area-weighted averaging	
				2: bilinear interpolation	
$ m grf_idw_exp_e12$	R	1.2		exponent of generalized IDW function for child	n_dom>1
I				edges $1/2$	
$ m grf_idw_exp_e34$	R	1.7		exponent of generalized IDW function for child	n_dom>1
				edges $3/4$	
${ m rbf_vec_kern_grf_e}$	I	1		RBF kernel for grid refinement (edges):	n_dom>1
				1: Gaussian	
				$2: 1/(1+r^2)$	
				3: inverse multiquadric	
rbf_scale_grf_e	R(n_dom)	0.5		RBF scale factor for grid refinement (lateral	n_dom>1
				boundary interpolation to edges). Refers to the	
				respective parent domain and thus does not need to	
				be specified for the innermost nest. Lower values	
				than the default of 0.5 are needed for child mesh	
				sizes less than about 500 m.	
$denom_diffu_t$	R	135		Deniminator for lateral boundary diffusion of	n_dom>1
				temperature	
$denom_diffu_v$	R	200		Deniminator for lateral boundary diffusion of	n_dom>1
				velocity	
$l_mass_consvcorr$	L	.FALSE.		.TRUE.: Apply mass conservation correction in	n_dom>1
				feedback routine	
l_density_nudging	$\mid \mathbf{L} \mid$.FALSE.		TRUE: Apply density nudging near lateral nest	n_dom>1 .AND.
				boundary if grf_intmethod_e ≤ 4	lfeedback = .TRUE.

Parameter	Type	Default	Unit	Description	Scope
fbk_relax_timescale	R	10800		Relaxation time scale for feedback	$n_dom>1$.AND. lfeedback = .TRUE. .AND. $ifeedback_type = 2$

Defined and used in: src/namelists/mo_gridref_nml.f90

$3.9 \quad gw_hines_nml \; (Scope: \; lgw_hines = .TRUE. \; in \; echam_phy_nml)$

Parameter	Type	Default	Unit	Description	Scope
lheatcal	L	.FALSE.		.TRUE.: compute drag, heating rate and diffusion	
				coefficient from the dissipation of gravity waves	
				.FALSE.: compute drag only	
$ m emiss_lev$	I	10		Index of model level, counted from the surface,	
				from which the gravity wave spectra are emitted	
rmscon	R	1.0	m/s	Root mean square gravity wave wind at the	
			,	emission level	
kstar	R	5.0e-5	1/m	Typical gravity wave horizontal wavenumber	
m_min	R	0.0	1/m	Minimum bound in vertical wavenumber	
lrmscon_lat	L	.FALSE.		.TRUE.: use latitude dependent rms wind	
				$ - latitude >= lat_rmscon:$ use rmscon	
				- latitude <= lat_rmscon_eq: use rmscon_eq	
				- lat_rmscon_eq < latitude < lat_rmscon: use	
				linear interpolation between rmscon_eq and rmscon	
				.FALSE.: use globally constant rms wind rmscon	
lat_rmscon_eq	R	5.0	deg N	rmscon_eq is used equatorward of this latitude	$ lrmscon_lat = .TRUE. $
lat_rmscon	R	10.0	deg N	rmscon is used polward of this latitude	$ lrmscon_lat = .TRUE. $
rmscon_eq	R	1.2	m/s	is used equatorward of latitude lat_rmscon_eq	$lrmscon_lat = .TRUE.$

Defined and used in: src/namelists/mo_gw_hines_nml.f90

3.10 ha_dyn_nml

This namelist is relevant if run_nml:ldynamics=.TRUE. and dynamics_nml:iequations=IHS_ATM_TEMP or IHS_ATM_THETA.

Parameter	Type	Default	Unit	Description	Scope
itime_scheme	I	14		Time integration scheme:	
_				11: pure advection (no dynamics)	
				12: 2 time level semi implicit (not yet implemented)	
				13: 3 time level explicit	
				14: 3 time level with semi implicit correction	
				15: standard 4th-order Runge-Kutta method	
				(4-stage)	
				16: SSPRK(5,4) scheme (5-stage)	
ileapfrog_startup	I	1		How to integrate the first time step when the	$ $ itime_scheme= 13 or 14
				leapfrog scheme is chosen. $1 = \text{Euler forward}$; $2 = \text{a}$	
				series of sub-steps.	
asselin_coeff	R	0.1		Asselin filter coefficient	$ $ itime_scheme= 13 or 14
si_2tls	R	0.6		weight of time step $n+1$. Valid range: $[0,1]$	$ itime_scheme=12$
si_expl_scheme	I	2		scheme for the explicit part used in the 2 time level	$ itime_scheme=12$
				semi-implicit time stepping scheme. $1 = \text{Euler}$	
				forward; 2 = Adams-Bashforth 2nd order	
$ ightarrow ext{si_cmin}$	R	30.0	m/s	semi implicit correction is done for eigenmodes with	$ $ itime_scheme=14 and
				speeds larger than si_cmin	$lsi_3d=.FALSE.$
si_coeff	R	1.0		weight of the semi implicit correction	$ itime_scheme=14$
$ m si_offctr$	R	0.7			$ itime_scheme=14$
si_rtol	R	1.0e-3		relative tolerance for GMRES solver	$ itime_scheme=14$
lsi_3d	L	.FALSE.		3D GMRES solver or decomposistion into 2D	$ lshallow_water=.FALSE. $
				problems	\mid and itime_scheme=14
${ m ldry_dycore}$	L	.TRUE.		Assume dry atmosphere	iequations \in {1,2}
${f lref_temp}$	L	.FALSE.		Set a background temperature profile as base state	iequations \in {1,2}
				when computing the pressure gradient force	

${\bf 3.11 \quad initicon_nml}$

Parameter	Type	Default	Unit	Description	Scope
init_mode	I	2		1: MODE_DWDANA	
_				start from DWD analysis or FG	
				2: MODE_IFSANA	
				start from IFS analysis	
				3: MODE_COMBINED	
				IFS atm + ICON/GME soil	
				4: MODE COSMODE	
				start from COSMO-DE forecast	
				5: MODE IAU	
				start from DWD analysis with incremental	
				analysis update. Extension of MODE IAU OLD	
				including snow increments	
				6: MODE IAU OLD	
				start from DWD analysis with incremental	
				analysis update. NOTE: Extension of mode	
				MODE DWDANA INC including W SO	
				increments.	
				7: MODE_ICONVREMAP	
				start from DWD first guess with subsequent	
				vertical remapping (work in progress; so far,	
				changing the number of model levels does not yet	
				work)	
${ m dt_iau}$	R	10800	s	Time interval during which an incremental analysis update (IAU) is performed	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
dt shift	\mathbb{R}	0	s	Time by which the actual model start time is	init mode=5,6
_				shifted ahead of the nominal date. Must be	
				NEGATIVE, usually -0.5 dt iau.	
$start_time_avg_fg$	\mid R	0	s	Start time for calculating temporally averaged first	
0_ 0				guess output for data assimilation.	
end time avg fg	\mid R	0	s	End time for calculating temporally averaged first	
0_0				guess output for data assimilation.	
				Setting end time avg fg > start time avg fg	
				activates the averaging	

Parameter	Type	Default	Unit	Description	Scope
interval_avg_fg	R	0	S	Corresponding averaging interval. Note that	
				end_time_avg_fg - start_time_avg_fg must not	
				be smaller than the averaging interval	
${ m rho_incr_filter_wgt}$	R	0		Vertical filtering weight on density increments	$ $ init_mode=5,6
$type_iau_wgt$	I	1		Weighting function for performing IAU	$ $ init_mode=5,6
				1: Top-Hat	
	_			2: SIN2	
nlevsoil_in	I	4		number of soil levels of input data	$\mid \text{init}_\text{mode}{=}2$
zpbl1	R	500.0	m	bottom height (AGL) of layer used for gradient	
1.10	D	1000.0		computation	
zpbl2	R	1000.0	m	top height (AGL) of layer used for gradient	
l aat in	$ig _{ m L}$.TRUE.		computation Logical switch. If true, the surface temperature of	init mode=2
$l_{\rm sst_in}$	T.	.INUE.		the water sea points is initialized with the SST	IIII_mode=2
				provided in the ifs2icon file. If false, it is initialized	
				with the skin temperature. If the SST is not	
				provided in the ifs2icon file, l sst in is reset to	
				false.	
lread ana	L	.TRUE.		If .FALSE., ICON is started from first guess only.	init mode=1,3
_				Analysis field is not required, and skipped if	_ ′
				provided.	
lconsistency checks	\mid L	.TRUE.		If .FALSE., consistency checks for Analysis and	init mode=1,3,4,5,6
- -				First Guess fields are skipped. On default, checks	
				are performed for uuidOfHGrid and validity time.	
$l_coarse2fine_mode$	L(n_dom)	.FALSE.		If true, apply corrections for coarse-to-fine mesh	
				interpolation to wind and temperature	
${ m lp2cintp_incr}$	L(n_dom)	.FALSE.		If true, interpolate atmospheric data assimilation	$ $ init_mode=5,6
				increments from parent domain.	
				Can be specified separately for each nested domain;	
				setting the first (global) entry to true activates the	
				interpolation for all nested domains.	

Parameter	Type	Default	Unit	Description	Scope
lp2cintp_sfcana	L(n_dom)	.FALSE.		If true, interpolate atmospheric surface analysis	$_{ m init_mode=5,6}$
ltile_init	L	.FALSE.		data from parent domain. Can be specified separately for each nested domain; setting the first (global) entry to true activates the interpolation for all nested domains. True: initialize tiled surface fields from a first guess coming from a run without tiles. Along coastlines and lake shores, a neighbor search is executed to fill the variables on previously	$ m init_mode{=}1,\!5,\!6$
ltile coldstart	L	.FALSE.		non-existing land or water points with reasonable values. Should be combined with ltile_coldstart = .TRUE. If true, tiled surface fields are initialized with	$_{ m init\ mode=1,5,6}$
_				tile-averaged fields from a previous run with tiles. A neighbor search is applied to subgrid-scale ocean points for SST and sea-ice fraction.	
lvert_remap_fg	L	.FALSE.		If true, vertical remapping is applied to the atmospheric first-guess fields, whereas the analysis increments remain unchanged. The number of model levels must be the same for input and output fields, and the z_ifc (alias HHL) field pertaining to the input fields must be appended to the first-guess file.	$_{ m mode=5,6}$
ifs2icon_filename	C			Filename of IFS2ICON input file, default " <path>ifs2icon_R<nroot>B<jlev>_DOM <idom>.nc". May contain the keywords <path> which will be substituted by model_base_dir, as well as nroot, jlev, and idom defining the current patch.</path></idom></jlev></nroot></path>	init_mode=2
dwdfg_filename	C			Filename of DWD first-guess input file, default " <path>dwdFG_R<nroot>B<jlev>_DOM <idom>.nc". May contain the keywords <path> which will be substituted by model_base_dir, as well as nroot, jlev, and idom defining the current patch.</path></idom></jlev></nroot></path>	$ m init_mode=1,3,5,6$

Parameter	Type	Default	Unit	Description	Scope
dwdana_filename	С			Filename of DWD analysis input file, default " <path>dwdana_R<nroot>B<jlev>_DOM <idom>.nc". May contain the keywords <path> which will be substituted by model_base_dir, as well as nroot, jlev, and idom defining the current patch.</path></idom></jlev></nroot></path>	$init_mode=1,3,5,6$
filetype	I	-1 (undef.)		One of CDI's FILETYPE_XXX constants. Possible values: 2 (=FILETYPE_GRB2), 4 (=FILETYPE_NC2). If this parameter has not been set, we try to determine the file type by its extension "*.grb*" or ".nc".	
ana_varlist	C(:)			List of mandatory analysis fields for the global domain that must be present in the analysis file. If these fields are not found, the model aborts. For all other analysis fields, the FG-fields will serve as fallback position.	$ m init_mode=1,5,6$
$ana_varlist_n2$	C(:)			List of mandatory analysis fields for domain 2 that must be present in the analysis file. If these fields are not found, the model aborts. For all other analysis fields, the FG-fields will serve as fallback position.	$ m init_mode=5,6$
ana_varnames_map_file	C			Dictionary file which maps internal variable names onto GRIB2 shortnames or NetCDF var names. This is a text file with two columns separated by whitespace, where left column: ICON variable name, right column: GRIB2 short name.	

Parameter	Type	Default	Unit	Description	Scope
latbc varnames map	С			Dictionary file which maps internal variable names	$num_prefetch_proc=1$
file				onto GRIB2 shortnames or NetCDF var names.	
				This is a text file with two columns separated by	
				whitespace, where left column: ICON variable	
				name, right column: GRIB2 short name. This list	
				contains variables that are to be read	
				asynchronously for boundary data nudging in a	
				HDCP2 simulation. All new boundary variables	
				that in the future, would be read asynchronously.	
				Need to be added to text file dict.latbc in run	
				folder.	

Defined and used in: src/namelists/mo_initicon_nml.f90

3.12 interpol_nml

Parameter	Type	Default	Unit	Description	Scope
l_intp_c2l	L	.TRUE.		DEPRECATED	
l_mono_c2l	L	.TRUE.		Monotonicity can be enforced by demanding that	
				the interpolated value is not higher or lower than	
				the stencil point values.	
$llsq_high_consv$	L	.TRUE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for high order transport	
lsq_high_ord	I	3		polynomial order for high order reconstruction	
				1: linear	ihadv_tracer=4
				2: quadratic	
				30: cubic (no 3^{rd} order cross deriv.)	
				3: cubic	
llsq_lin_consv	L	.FALSE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for 2nd order (linear)	
				transport	
${ m nudge_efold_width}$	R	2.0		e-folding width (in units of cell rows) for lateral	
				boundary nudging coefficient	

Parameter	Type	Default	Unit	Description	Scope
$nudge_max_coeff$	R	0.02		Maximum relaxation coefficient for lateral	
				boundary nudging	
$\operatorname{nudge_zone_width}$	I	8		Total width (in units of cell rows) for lateral	
				boundary nudging zone. If < 0 the patch	
				boundary_depth_index is used.	
${ m rbf_dim_c2l}$	I	10		stencil size for direct lon-lat interpolation: 4 =	
				nearest neighbor, $13 = $ vertex stencil, $10 = $ edge	
				stencil.	
${ m rbf_scale_mode_ll}$	I	2		Specifies, how the RBF shape parameter is	
				determined for lon-lat interpolation.	
				1 : lookup table based on grid level	
				2: determine automatically.	
				So far, this routine only estimates the smallest	
				value for the shape parameter for which the	
				Cholesky is likely to succeed in floating point	
				arithmetic. 3: explicitly set shape parameter in	
				each output namelist	
$rbf_vec_kern_c$	I	1		Kernel type for reconstruction at cell centres:	
				1: Gaussian	
				3: inverse multiquadric	
${ m rbf_vec_kern_e}$	I	3		Kernel type for reconstruction at edges:	
				1: Gaussian	
				3: inverse multiquadric	
${ m rbf_vec_kern_ll}$	I	1		Kernel type for reconstruction at lon-lat-points:	
				1: Gaussian	
				3: inverse multiquadric	
${ m rbf_vec_kern_v}$	I	1		Kernel type for reconstruction at vertices:	
				1: Gaussian	
				3: inverse multiquadric	
$rbf_vec_scale_c$	R(n_dom)	resolution-		Scale factor for RBF reconstruction at cell centres	
		dependent			
$rbf_vec_scale_e$	R(n_dom)	resolution-		Scale factor for RBF reconstruction at edges	
		dependent			

Parameter	Type	Default	Unit	Description	Scope
rbf_vec_scale_v	R(n_dom)	resolution-		Scale factor for RBF reconstruction at vertices	
		dependent			
support baryctr intp	L	.FALSE.		Flag. If .FALSE. barycentric interpolation is	
				replaced by a fallback interpolation.	

Defined and used in: src/namelists/mo_interpol_nml.f90

3.13 io_nml

Parameter	Type	Default	Unit	Description	Scope
lkeep_in_sync	L	.FALSE.		Sync output stream with file on disk after each	
				timestep	
dt_diag	R	86400.	s	diagnostic integral output interval	<pre>run_nml:output = "totint"</pre>
dt checkpoint	R	2592000	s	Time interval for writing restart files. Note that if	output /= "none"
				the value of dt_checkpoint resulting from model	(run_nml)
				default or user's specification is longer than	
				time_nml:dt_restart, it will be reset (by the	
				model) to dt_restart so that at least one restart file	
				is generated during the restart cycle.	
inextra_2d	I	0		Number of extra 2D Fields for	dynamics_nml:iequations
				${ m diagnostic/debugging\ output.}$	=3 (to be done for 1, 2)
inextra_3d	I	0		Number of extra 3D Fields for	dynamics_nml:iequations
				${ m diagnostic/debugging\ output.}$	=3 (to be done for 1, 2)
lflux_avg	L	.TRUE.		if .FALSE. the output fluxes are accumulated	iequations=3
				from the beginning of the run	iforcing=3
				if .TRUE. the output fluxes are average values	
				from the beginning of the run, except of	
				TOT_PREC that would be accumulated	

Parameter	Type	Default	Unit	Description	Scope
itype_pres_msl	I	1		Specifies method for computation of mean sea level pressure (and geopotential at pressure levels below the surface). 1: GME-type extrapolation, 2: stepwise analytical integration, 3: current IFS method, 4: IFS method with consistency correction	
$itype_rh$	I	1		Specifies method for computation of relative humidity 1: WMO-type: water only (e_s=e_s_water), 2: IFS-type: mixed phase (water and ice), 3: IFS-type with clipping (rh ≤ 100)	
$output_nml_dict$	C	, ,		File containing the mapping of variable names to the internal ICON names. May contain the keyword <path> which will be substituted by model_base_dir. The format of this file: One mapping per line, first the name as given in the ml_varlist, hl_varlist, pl_varlist or il_varlist of the output_nml namelists, then the internal ICON name, separated by an arbitrary number of blanks. The line may also start and end with an arbitrary number of blanks. Empty lines or lines starting with # are treated as comments. Names not covered by the mapping are used as they are.</path>	output_nml namelists

Parameter	Type	Default	Unit	Description	Scope
netcdf _dict	C	, ,		File containing the mapping from internal names to	output_nml namelists,
				names written to NetCDF. May contain the	NetCDF output
				keyword <path> which will be substituted by</path>	
				model_base_dir.	
				The format of this file:	
				One mapping per line, first the name written to	
				Net CDF, then the internal name, separated by an	
				arbitrary number of blanks (inverse to the	
				definition of output_nml_dict). The line may also	
				start and end with an arbitrary number of blanks.	
				Empty lines or lines starting with $\#$ are treated as	
				comments.	
				Names not covered by the mapping are output as	
				they are.	
				Note that the specification of output variables, e. g.	
				in ml_varlist, is independent from this renaming,	
				see the namelist parameter output_nml_dict for	
				this.	
$lnetcdf_flt64_output$	L	.FALSE.		If .TRUE. floating point variable output in NetCDF	
				files is written in 64-bit instead of 32-bit accuracy.	
				This is currently implemented for the atm.	
				dynamical core and ECHAM physics.	
restart_file_type	I	4		Type of restart file. One of CDI's	
				FILETYPE_XXX. So far, only 4	
				(=FILETYPE_NC2) is allowed	
lmask_boundary	L	F		Set to .TRUE., if interpolation zone should be	
				masked in output.	

Defined and used in: src/namelists/mo_io_nml.f90

$3.14 \quad les_nml \; (parameters \; for \; LES \; turbulence \; scheme; \; valid \; for \; inwp_turb=5)$

sst R shflx lhflx r isrfc_type ufric psfc R	-999 -999	$egin{array}{c} K \ Km/s \ m/s \ \end{array}$	sea surface temperature for idealized LES simulations Kinematic sensible heat flux at surface Kinematic latent heat flux at surface surface type 0 = No fluxes and zero shear stress 1 = TERRA land physics 2 = fixed surface fluxes 3 = fixed buoyancy fluxes 4 = RICO test case 5 = fixed SST friction velocity for idealized LES simulations; if < 0 then it is automatically diagnosed	$isrfc_type=5,4$ $isrfc_type=2$ $isrfc_type=2$
lhflx isrfc_type I	-999	m/s	Kinematic sensible heat flux at surface Kinematic latent heat flux at surface surface type $0 = \text{No fluxes and zero shear stress}$ $1 = \text{TERRA land physics}$ $2 = \text{fixed surface fluxes}$ $3 = \text{fixed buoyancy fluxes}$ $4 = \text{RICO test case}$ $5 = \text{fixed SST}$ friction velocity for idealized LES simulations; if <	
lhflx isrfc_type I	-999	m/s	Kinematic latent heat flux at surface surface type 0 = No fluxes and zero shear stress 1 = TERRA land physics 2 = fixed surface fluxes 3 = fixed buoyancy fluxes 4 = RICO test case 5 = fixed SST friction velocity for idealized LES simulations; if <	
isrfc_type I ufric R	-999	m/s	surface type 0 = No fluxes and zero shear stress 1 = TERRA land physics 2 = fixed surface fluxes 3 = fixed buoyancy fluxes 4 = RICO test case 5 = fixed SST friction velocity for idealized LES simulations; if <	$isrfc_type = 2$
isrfc_type I ufric R	-999	,	0 = No fluxes and zero shear stress 1 = TERRA land physics 2 = fixed surface fluxes 3 = fixed buoyancy fluxes 4 = RICO test case 5 = fixed SST friction velocity for idealized LES simulations; if <	_ 0 -
ufric R		,	1 = TERRA land physics 2 = fixed surface fluxes 3 = fixed buoyancy fluxes 4 = RICO test case 5 = fixed SST friction velocity for idealized LES simulations; if <	
		,	2 = fixed surface fluxes 3 = fixed buoyancy fluxes 4 = RICO test case 5 = fixed SST friction velocity for idealized LES simulations; if <	
		,	$3 = { m fixed \ buoyancy \ fluxes}$ $4 = { m RICO \ test \ case}$ $5 = { m fixed \ SST}$ friction velocity for idealized LES simulations; if <	
		,	$4 = { m RICO} \ { m test} \ { m case}$ $5 = { m fixed} \ { m SST}$ friction velocity for idealized LES simulations; if <	
		,	$5 = { m fixed\ SST}$ friction velocity for idealized LES simulations; if $<$	
		,	friction velocity for idealized LES simulations; if $<$	
		,		
psfc R	-999	,	O then it is outometically diagnosed	
psfc R	-999		O then it is automatically diagnosed	
	1 000	Pa	surface pressure for idealized LES simulations; if <	
			0 then it uses the surface pressure from dynamics	
\min_sfc_wind R	1.0	m/s	Minimum surface wind for surface layer useful in	
_			the limit of free convection	
is_dry_cbl L	.FALSE.		switch for dry convective boundary layer	
_			simulations	
smag_constant R	0.23		Smagorinsky constant	
km_min R	0.0		Minimum turbulent viscosity	
max_turb_scale R	300.0		Asymtotic maximum turblence length scale (useful	
			for coarse grid LES and when grid is vertically	
			stretched)	
turb_prandtl R	0.333333		turbulent Prandtl number	
bflux R	0.0007	$\mathrm{m^2/s^3}$	buoyancy flux for idealized LES simulations	$ isrfc_type=3 $
		· ·	(Stevens 2007)	_
tran_coeff R	0.02	m/s	transfer coefficient near surface for idealized LES	$isrfc_type=3$
_			simulation (Stevens 2007)	_
vert_scheme_type I	2		type of time integration scheme in vertical diffusion	
_			1 = explicit	
			2 = fully implicit	

Parameter	Type	Default	Unit	Description	Scope
sampl_freq_sec	R	60	S	sampling frequency in seconds for statistical (1D	
				and 0D) output	
avg_interval_sec	R	900	S	(time) averaging interval in seconds for 1D	
				statistical output	
expname	C	ICOLES		expname to name the statistical output file	
ldiag_les_out	L	.FALSE.		Control for the statistical output in LES mode	
les_metric	L	.FALSE.		Switch to turn on Smagorinsky diffusion with 3D	
				metric terms to account for topography	

Defined and used in: src/namelists/mo_les_nml.f90

$3.15 \quad limarea_nml \; (Scope: \; l_limited_area=.TRUE. \; in \; grid_nml)$

Parameter	Type	Default	Unit	Description	Scope
$itype_latbc$	I	0		Type of lateral boundary nudging. Nudge from	
				0: the initial data,	
				1: IFS data analysis/forecast (if	
				initicon_nml:init_mode=4, we take COSMO-DE	
				data),	
				2: ICON output data (with the identical 3d grid)	
${f dtime_latbc}$	R	10800.0	s	Time difference between two consecutive boundary	$ itype_latbc \ge 1$
				data.	
nlev_latbc	I	0	s	Number of vertical levels in boundary data.	$itype_latbc \ge 1$
${f latbc_filename}$	C			Filename of boundary data input file, default:	$ itype_latbc \ge 1$
				"prepiconR <nroot>B<jlev>_<y><m><d><h>.nc".</h></d></m></y></jlev></nroot>	
				$\langle y \rangle$, $\langle m \rangle$, $\langle d \rangle$, and $\langle h \rangle$ will be automatically	
				replaced during the run-time. In case the time span	
				between two consecutive boundary data is less than	
				1 hour, one can use <min> and <sec>. These files</sec></min>	
				must be located in the latbc_path directory.	
$- latbc_path$	C			Absolute path to boundary data.	$itype_latbc \ge 1$

$3.16 \quad lnd_nml$

Parameter	Type	Default	Unit	Description	Scope
$nlev_snow$	I	2		number of snow layers	lmulti_snow=.true.
${f ntiles}$	I	1		number of tiles	
${f lsnowtile}$	L	.FALSE.		.TRUE.: consider snow-covered and snow-free tiles	ntiles>1
				separately	
$frlnd_thrhld$	R	0.05		fraction threshold for creating a land grid point	ntiles>1
$frlake_thrhld$	R	0.05		fraction threshold for creating a lake grid point	ntiles>1
$frsea_thrhld$	R	0.05		fraction threshold for creating a sea grid point	ntiles>1
$frlndtile_thrhld$	R	0.05		fraction threshold for retaining the respective tile	ntiles>1
				for a grid point	
lmelt	L	.TRUE.		.TRUE. soil model with melting process	
lmelt var	L	.TRUE.		.TRUE. freezing temperature dependent on water	
_				content	
$lana_rho_snow$	L	.TRUE.		.TRUE. take rho snow-values from analysis file	init mode=1
$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	L	.FALSE.		.TRUE. for use of multi-layer snow model (default	_
_				is single-sayer scheme)	
l2lay rho snow	L	.FALSE.		.TRUE. predict additional snow density for upper	lmulti snow = .FALSE.
				part of the snowpack, having a maximum depth of	_
				max toplaydepth	
max toplaydepth	R	0.25	m	maximum depth of uppermost snow layer	lmulti snow=.TRUE. or
_					l2lay rho snow=.TRUE.
idiag snowfrac	I	1		Type of snow-fraction diagnosis:	
<u>-</u>				1 = based on SWE only	
				2-4 = more advanced experimental methods	
				20, 30, 40 = same as 2, 3, 4, respectively, but with	
				artificial reduction of snow fraction in case of	
				melting snow	

Parameter	Type	Default	Unit	Description	Scope
itype_lndtbl	I	3		Table values used for associating surface parameters	
				to land-cover classes:	
				1 = defaults from extpar (GLC2000 and	
				GLOBCOVER2009)	
				2 = Tuned version based on IFS values for	
				globcover classes (GLOBCOVER2009 only)	
				3 = even more tuned operational version	
				(GLOBCOVER2009 only)	
				4 = tuned version for new bare soil evaporation	
				scheme (itype_evsl=4)	
itype_root	I	2		root density distribution:	
				1 = constant	
				2 = exponential	
$itype_evsl$	I	2		type of bare soil evaporation parameterization	
				2 = Dickinson (1984)	
				3 = Noilhan and Planton (1989)	
				4 = Resistance-based scheme by Jan-Peter Schulz	
$itype_heatcond$	I	2		type of soil heat conductivity	
				1 = constant soil heat conductivity	
				2 = moisture dependent soil heat conductivity	
				3 = variant of option 2 with reduced near-surface	
				heat conductivity in the presence of plant cover	
$itype_interception$	I	1		type of plant interception	
				1 = standard scheme, effectively switched off by	
				tiny value cwimax_ml	
				2 = Rain and snow interception (under)	
				development)	
$\operatorname{cwimax}_{-}\operatorname{ml}$	R	1.e-6	m	scaling parameter for maximum interception	$ $ itype_interception = 1
				storage (almost switched off);	
				use 5.e-4 to activate interception storage	
itype_hydbound	I	1		type of hydraulic lower boundary condition	
				1 = none	
				3 = ground water as lower boundary of soil column	

Parameter	Type	Default	Unit	Description	Scope
lstomata	L	.TRUE.		If .TRUE., use map of minimum stomatal resistance	
				If .FALSE., use constant value of 150 s/m.	
l2tls	L	.TRUE.		If .TRUE., forecast with 2-Time-Level integration	
				scheme	
lseaice	L	.TRUE.		.TRUE. for use of sea-ice model	
llake	L	.TRUE.		.TRUE. for use of lake model	
$sstice_mode$	I	1		1: SST and sea ice fraction are read from the	iequations=3
				analysis and kept constant. The sea ice fraction can	iforcing=3
				be modified by the seaice model.	
				2: SST and sea ice fraction are updated daily, based	
				on climatological monthly means	
				3: SST and sea ice fraction are updated daily, based	
				on actual monthly means	
				4: SST and sea ice fraction are updated daily, based	
				on actual daily means, not yet implemented	
$sst_td_filename$	\mid C			Filename of SST input files for time dependent	$sstice_mode=2,3$
				SST. Default is	
				" <path>SST_<year>_<month>_<gridfile>".</gridfile></month></year></path>	
				May contain the keyword <path> which will be</path>	
				substituted by model_base_dir	
$\operatorname{ci_td_filename}$	C			Filename of sea ice fraction input files for time	$sstice_mode=2,3$
				dependent sea ice fraction. Default is	
				" <path>CI_<year>_<month>_<gridfile>".</gridfile></month></year></path>	
				May contain the keyword <path> which will be</path>	
				substituted by model_base_dir	

Defined and used in: src/namelists/mo_lnd_nwp_nml.f90

$3.17 \quad {\rm ls_forcing_nml} \ ({\rm parameters} \ {\rm for} \ {\rm large\text{-}scale} \ {\rm forcing}; \ {\rm valid} \ {\rm for} \ {\rm torus} \ {\rm geometry})$

Parameter	Type	Default	Unit	Description	Scope
is_subsidence_moment	L	.FALSE.		switch for enabling LS vertical advection due to	$is_plane_torus=.TRUE.$
				subsidence for momentum equations	

Parameter	Type	Default	Unit	Description	Scope
is_subsidence_heat	L	.FALSE.		switch for enabling LS vertical advection due to	$is_plane_torus=.TRUE.$
				subsidence for thermal equations	
is_advection	L	.FALSE.		switch for enabling LS horizontal advection	$is_plane_torus=.TRUE.$
				(currently only for thermal equations)	
is_geowind	L	.FALSE.		switch for enabling geostrophic wind	$is_plane_torus=.TRUE.$
is_rad_forcing	L	.FALSE.		switch for enabling radiative forcing	$is_plane_torus=.TRUE.$
					$inwp_rad = .FALSE.$
is_theta	L	.FALSE.		switch to indicate that the prescribed radiative	$is_plane_torus = .TRUE.$
				forcing is for potential temperature	$is_rad_forcing = .TRUE.$

Defined and used in: src/namelists/mo_ls_forcing_nml.f90

${\bf 3.18}\quad {\bf master_model_nml}\ ({\bf repeated}\ {\bf for\ each\ model})$

Parameter	Type	Default	Unit	Description	Scope
model name	C			Character string for naming this component.	
$oxed{ ext{model name list}}$	C			File name containing the model namelists.	
filename					
f model type	I	-1		Identifies which component to run.	
_				1=atmosphere	
				2=ocean	
				3=radiation	
				99=dummy_model	
$model_min_rank$	I	0		Start MPI rank for this model.	
model_max_rank	I	-1		End MPI rank for this model.	
$model_inc_rank$	I	1		Stride of MPI ranks.	

$3.19 \quad master_nml$

Parameter	Type	Default	Unit	Description	Scope
lrestart	L	.FALSE.		If .TRUE.: Current experiment is started from a	
				restart.	

Parameter	Type	Default	Unit	Description	Scope
model base dir	С	, ,		General path which may be used in file names of	
				other name lists: If a file name contains the	
				keyword " <path>", then this model_base_dir will</path>	
				be substituted.	

$3.20 \quad meteogram_output_nml$

Nearest neighbour 'interpolation' is used for all variables.

Parameter	Type	Default	Unit	Description	Scope
$lmeteogram_enabled$	L(n_dom)	.FALSE.		Flag. True, if meteogram of output variables is	
				desired.	
zprefix	C(n_dom)	"METEO		string with file name prefix for output file	
		GRAM_"			
ldistributed	L(n_dom)	.TRUE.		Flag. Separate files for each PE.	
$loutput_tiles$	L	.FALSE.		Write tile-specific output for some selected	
				surface/soil fields	
$n0_{mtgrm}$	I(n_dom)	0		initial time step for meteogram output.	
$\operatorname{ninc_mtgrm}$	I(n_dom)	1		output interval (in time steps)	
$stationlist_tot$		53.633,		list of meteogram stations (triples with lat, lon,	
		9.983,		name string)	
		'Ham-			
		burg'			
var_list	C(:)	11 11		Positive-list of variables (optional). Only variables	
				contained in this list are included in the meteogram.	
				If the default list is not changed by user input, then	
				all available variables are added to the meteogram	

Defined and used in: src/namelists/mo_mtgrm_nml.f90

$3.21 \quad nonhydrostatic_nml \; (relevant \; if \; run_nml:iequations{=}3)$

Parameter	Type	Default	Unit	Description	Scope
$itime_scheme$	I	4		Options for predictor-corrector time-stepping	
				scheme:	
				4: Contravariant vertical velocity is computed in	iequations=3
				the predictor step only, velocity tendencies are	
				computed in the corrector step only (most efficient	
				option)	
				5: Contravariant vertical velocity is computed in	
				both substeps (beneficial for numerical stability in	
				very-high resolution setups with extremely steep	
				slops, otherwise no significant impact)	
				6: As 5, but velocity tendencies are also computed	
				in both substeps (no apparent benefit, but more expensive)	
rayleigh type		2		Type of Rayleigh damping	
7 3 _ 71				1: CLASSICAL (requires velocity reference state!)	
				2: Klemp (2008) type	
rayleigh coeff	R(n dom)	0.05 for		Rayleigh damping coefficient $1/\tau_0$ (Klemp, Dudhia,	
		i=1		Hassiotis: MWR136, pp.3987-4004); higher values	
				are recommended for R2B6 or finer resolution	
damp height	R(n dom)	45000 for	m	Height at which Rayleigh damping of vertical wind	
	` _ ` /	i=1		starts (needs to be adjusted to model top height;	
				the damping layer should have a depth of at least 20	
				km when the model top is above the stratopause)	
htop moist proc	R	22500.0	m	Height above which moist physics and advection of	
				cloud and precipitation variables are turned off	
hbot qvsubstep	R	22500.0	m	Height above which QV is advected with	ihadv tracer=22, 32, 42
_				substepping scheme (must be at least as large as	or 52
				htop moist proc)	
vwind offetr	R	0.15		Off-centering in vertical wind solver. Higher values	
_				may be needed for R2B5 or coarser grids when the	
				model top is above 50 km.	
rhotheta offctr	R	-0.1		Off-centering of density and potential temperature	
_				at interface level (may be set to 0.0 for R2B6 or	
				finer grids)	

Parameter	Type	Default	Unit	Description	Scope
${ m veladv_offctr}$	R	0.25		Off-centering of velocity advection in corrector step	
ivctype	I	2		Type of vertical coordinate:	
				1: Gal-Chen hybrid	
				2: SLEVE (uses sleve_nml)	
$ndyn_substeps$	I	5		number of dynamics substeps per fast-physics /	
				transport step	
$hdiff_rcf$	L	.TRUE.		TRUE.: Compute diffusion only at advection time	
				steps (in this case, divergence damping is applied in	
				the dynamical core)	
lextra_diffu	L	.TRUE.		.TRUE.: Apply additional momentum diffusion at	
				grid points close to the stability limit for vertical	
				advection (becomes effective extremely rarely in	
				practice; this is mostly an emergency fix for	
				pathological cases with very large orographic	
1. 1		0.000		gravity waves)	
divdamp_fac	R	0.0025		Scaling factor for divergence damping	$\frac{1}{1}$ $\frac{1}$
$\operatorname{divdamp_order}$	I	4		Order of divergence damping:	
				2 = second-order divergence damping	
				4 = fourth-order divergence damping 24 = combined second-order and fourth-order	
				divergence damping and enhanced vertical wind	
				off-centering during the initial spinup phase (does	
				not allow checkpointing/restarting earlier than 2.5 hours of integration)	
divdamp type	I	3		Type of divergence damping:	lhdiff $rcf = .TRUE.$
divdamp_type	1			2 = divergence damping acting on 2D divergence	main_rer = .1160E.
				3 = divergence damping acting on 3D divergence	
				32 = combination of 3D div. damping in the	
				troposphere with transition to 2D div. damping in	
				the stratosphere	
divdamp trans start	R	12500.		Lower bound of transition zone between 2D and 3D	$\operatorname{divdamp} \ \operatorname{type} = 32$
arramip_nam_ban	10	12000.		divergence damping	ar.aamp_0,pc = 02
divdamp trans end	$ _{\mathrm{R}}$	17500.		Upper bound of transition zone between 2D and 3D	$oxed{ ext{divdamp type} = 32}$
	"	1.000.		divergence damping	

Parameter	Type	Default	Unit	Description	Scope
$\operatorname{nest_substeps}$	I	2		Number of dynamics substeps for the child patches.	
				DO NOT CHANGE!!! The code will not work	
				correctly with other values	
l masscorr nest	L	.FALSE.		.TRUE.: Apply mass conservation correction also in	
				nested domain	
iadv rhotheta	I	2		Advection method for rho and rhotheta:	
_				1: simple second-order upwind-biased scheme	
				2: 2nd order Miura horizontal	
				3: 3rd order Miura horizontal (not recommended)	
igradp method	T	3		Discretization of horizontal pressure gradient:	
18144P_111041104	*			1: conventional discretization with metric	
				correction term	
				2: Taylor-expansion-based reconstruction of	
				pressure (advantageous at very high resolution)	
				3: Similar discretization as option 2, but uses	
				hydrostatic approximation for downward	
				extrapolation over steep slopes	
				4: Cubic/quadratic polynomial interpolation for	
				pressure reconstruction	
				5: Same as 4, but hydrostatic approximation for	
1 1·6	T	TOTTE		downward extrapolation over steep slopes	1 1.m 1 9/5 AND
l_zdiffu_t	L	.TRUE.		.TRUE.: Compute Smagorinsky temperature	hdiff_order=3/5 .AND.
11 -1 A:ff	D D	0.025		diffusion truly horizontally over steep slopes	lhdiff_temp = .true.
$thslp_zdiffu$	R	0.025		Slope threshold above which truly horizontal	hdiff_order=3/5 .AND.
				temperature diffusion is activated	lhdiff_temp=.true.
11 11 11 11 11 11 11 11 11 11 11 11 11		200			AND. l_zdiffu_t=.true.
${ m thhgtd_zdiffu}$	R	200	m	Threshold of height difference between neighboring	$hdiff_order=3/5$ AND.
				grid points above which truly horizontal	lhdiff_temp=.true.
				temperature diffusion is activated (alternative	.AND. l_zdiffu_t=.true.
				criterion to thslp_zdiffu)	

Parameter	Type	Default	Unit	Description	Scope
exner_expol	R	1./3.		Temporal extrapolation (fraction of dt) of Exner	
				function for computation of horizontal pressure	
				gradient. This damps horizontally propagating	
				sound waves. For R2B5 or coarser grids, values	
				between $1/2$ and $2/3$ are recommended.	
l open ubc	L	.FALSE.		TRUE.: Use open upper boundary condition	
				(rather than w=0) to allow vertical motions related	
				to diabatic heating to extend beyond the model top	

Defined and used in: src/namelists/mo_nonhydrostatic_nml.f90

3.22 nwp phy nml

The switches for the physics schemes and the time steps can be set for each model domain individually. If only one value is specified, it is copied to all child domains, implying that the same set of parameterizations and time steps is used in all domains. If the number of values given in the namelist is larger than 1 but less than the number of model domains, then the settings from the highest domain ID are used for the remaining model domains. If the time steps are not an integer multiple of the advective time step (dtime), then the time step of the respective physics parameterization is automatically rounded to the next higher integer multiple of the advective time step.

Parameter	Type	Default	Unit	Description	Scope
inwp gscp	I (max_	1		cloud microphysics and precipitation	$run_nml:iforcing = inwp$
_	dom)			0: none	
				1: hydci (COSMO-EU microphysics, 2-cat ice:	
				cloud ice, snow)	
				2: hydci_gr (COSMO-DE microphysics, 3-cat ice:	
				cloud ice, snow, graupel)	
				3: as 1, but with improved ice nucleation scheme by	
				C. Koehler	
				4: Two-moment microphysics by A. Seifert	
				9: Kessler scheme	
qi0	R	0.0	kg/kg	cloud ice threshold for autoconversion	inwp_gscp=1
qc0	R	0.0	kg/kg	cloud water threshold for autoconversion	inwp_gscp=1
mu_rain	R	0.0		shape parameter in gamma distribution for rain	inwp_gscp>0

Parameter	Type	Default	Unit	Description	Scope
mu_snow	R	0.0		shape parameter in gamma distribution for snow	inwp_gscp>0
$icpl_aero_gscp$	I	0		0: off	currently only for
				1: simple coupling between autoconversion and	$\operatorname{inwp_gscp} = 1$
				Tegen aerosol climatology; requires irad_aero=6	
				More advanced options are in preparation	
${f inwp_convection}$	I (max_	1		convection	$ run_nml:iforcing = inwp$
	dom)			0: none	
				1: Tiedtke/Bechtold convection	
$lshallowconv_only$	$\begin{array}{ c c } L & (\max_\\ dom) \end{array}$.FALSE.		.TRUE.: use shallow convection only	$\operatorname{inwp_convection} = 1$
icapdcycl	I	0		Type of CAPE correction to improve diurnal cycle for convection:	$inwp_convection = 1$
				0 = none (IFS default prior to autumn 2013)	
				0 = none (IFS default prior to autumn 2015) 1 = intermediate testing option	
				2 = correctoins over land and water now	
				operational at ECMWF	
				3 = correction over land as in 2 restricted to the	
				tropics, no correction over water (this choice	
				optimizes the NWP skill scores)	
icpl aero conv	I	0		0: off	
10P1_0010_0011				1: simple coupling between autoconversion and	
				Tegen aerosol climatology; requires irad aero=6	
iprog aero	l I	0		0: off	
-F0				1: simple prognostic aerosol scheme, based on 2D	
				aerosol optical depth fields of Tegen climatology;	
				requires irad aero=6	
icpl o3 tp	I	1		0: off	irad o $3 = 7$ or 9
				1: simple coupling between the ozone mixing ratio	_
				and the thermal tropopause, restricted to the	
				extratropics	

Parameter	Type	Default	Unit	Description	Scope
inwp_cldcover	I (max_	1		cloud cover scheme for radiation	$run_nml:iforcing = inwp$
_	dom)			0: no clouds (only QV)	
				1: diagnostic cloud cover (by Martin Koehler)	
				2: prognostic total water variance (not yet started)	
				3: clouds from COSMO SGS cloud scheme	
				4: clouds as in turbulence (turbdiff)	
				5: grid scale clouds	
inwp radiation	I (max_	1		radiation	run nml:iforcing = inwp
- —	dom)			0: none	
	,			1: RRTM radiation	
				2: Ritter-Geleyn radiation	
				3: PSRAD radiation	
inwp satad	I	1		saturation adjustment	run nml:iforcing = inwp
· —				0: none	
				1: saturation adjustment at constant density	
inwp turb	I (max	1		vertical diffusion and transfer	run nml:iforcing = inwp
- —	dom)			0: none	
	,			1: COSMO diffusion and transfer	
				2: GME turbulence scheme	
				3: EDMF-DUALM (work in progress)	
				5: Classical Smagorinsky diffusion	
inwp sso	I (max	1		subgrid scale orographic drag	run nml:iforcing = inwp
· —	dom)			0: none	
	,			1: Lott and Miller scheme (COSMO)	
inwp gwd	I (max	1		non-orographic gravity wave drag	run nml:iforcing = inwp
- = -	dom)			0: none	
	,			1: Orr-Ern-Bechtold-scheme (IFS)	
inwp surface	I (max	1		surface scheme	run nml:iforcing = inwp
	dom)			0: none	
				1: TERRA	
ustart raylfric	R	160.0	m/s	wind speed at which extra Rayleigh friction starts	inwp gwd > 0
efdt min raylfric	R	10800.	s	minimum e-folding time of Rayleigh friction	$ \inf_{\text{inwp gwd}} > 0$
v				(effective for $u > ustart raylfric + 90 m/s$)	

Parameter	Type	Default	Unit	Description	Scope
latm_above_top	L (max_	.FALSE.		.TRUE.: take into account atmosphere above model	$inwp_radiation > 0$
	dom)			top for radiation computation	
itype_z0	I	2		Type of roughness length data used for turbulence	$ \text{inwp_turb} > 0$
				scheme:	
				1 = land-cover-related roughness including	
				contribution from sub-scale orography	
				2 = land-cover-related roughness only	
${ m dt}$ conv	R (max_	600.	s	time interval of convection call	run_nml:iforcing = inwp
_	dom)			currently each subdomain has the same value	
${ m dt}$ rad	R (max	1800.	s	time interval of radiation call	run nml:iforcing = inwp
_	dom)			currently each subdomain has the same value	
${ m dt_sso}$	R (max	1200.	s	time interval of sso call	run nml:iforcing = inwp
_	dom)			currently each subdomain has the same value	
${ m dt} \ { m gwd}$	R (max	1200.	s	time interval of gwd call	run nml:iforcing = inwp
_	dom)			currently each subdomain has the same value	_
lrtm filename	C(:)	"rrtmg		NetCDF file containing longwave absorption	
_		lw.nc"		coefficients and other data for RRTMG LW	
				k-distribution model.	
cldopt filename	C(:)	"ECHAM		NetCDF file with RRTM Cloud Optical Properties	
_		6 CldOpt		for ECHAM6.	
		Props.nc"			

Defined and used in: src/namelists/mo_nwp_phy_nml.f90

$3.23 \quad nwp_tuning_nml$

Please note: These tuning parameters are NOT domain specific.

Parameter	Type	Default	Unit	Description	Scope
SSO (Lott and Miller)					
tune_gkwake	R	1.5		low level wake drag constant	$run_nml:iforcing = inwp$
$tune_gkdrag$	R	0.075		gravity wave drag constant	$run_nml:iforcing = inwp$

Parameter	Type	Default	Unit	Description	Scope
GWD (Warner McIntyre)					
tune_gfluxlaun	R	2.50e-3		total launch momentum flux in each azimuth (rho_o x F_o)	run_nml:iforcing = inwp
Grid scale microphysics	s (one mom	ent)			
tune_zceff_min	R	0.075		Minimum value for sticking efficiency	run_nml:iforcing = inwp
tune_v0snow	R	25.0		factor in the terminal velocity for snow	run_nml:iforcing = inwp
tune_zvz0i	R	1.25	m/s	Terminal fall velocity of ice	$run_nml:iforcing = inwp$
Convection scheme					
tune_entrorg	R	1.85e-3	1/m	Entrainment parameter valid for dx=20 km (depends on model resolution)	run_nml:iforcing = inwp
tune_capdcfac_et	R	0		Fraction of CAPE diurnal cycle correction applied in the extratropics	icapdcycl = 3
${ m tune_rhebc_land}$	R	0.75		RH threshold for onset of evaporation below cloud base over land	run_nml:iforcing = inwp
$tune_rhebc_land_trop$	R	0.70		RH threshold for onset of evaporation below cloud base over land in the tropics	run_nml:iforcing = inwp
tune_rhebc_ocean	R	0.85		RH threshold for onset of evaporation below cloud base over sea	$run_nml:iforcing = inwp$
tune_rhebc_ocean_trop	R	0.80		RH threshold for onset of evaporation below cloud base over sea in the tropics	run_nml:iforcing = inwp
tune_rcucov	R	0.05		Convective area fraction used for computing evaporation below cloud base	run_nml:iforcing = inwp
tune_rcucov_trop	R	0.05		Convective area fraction used for computing evaporation below cloud base in the tropics	run_nml:iforcing = inwp
${ m tune_texc}$	R	0.125	K	Excess value for temperature used in test parcel ascent	run_nml:iforcing = inwp
tune_qexc	R	0.0125		Excess fraction of grid-scale QV used in test parcel ascent	run_nml:iforcing = inwp
Misc					
itume_albedo	I	0		MODIS albedo tuning 0: None 1: dimmed sahara	$egin{array}{ll} { m run_nml:} { m iforcing} = { m inwp} \\ { m albedo_type=2} \end{array}$

Parameter	Type	Default	Unit	Description	Scope
tune_minsnowfrac	R	0.125		Minimum value to which the snow cover fraction is	lnd_nml:idiag_snowfrac
				artificially reduced in case of melting show	=20/30/40
IAU					
max_freshsnow_inc	R	0.025		Maximum allowed freshsnow increment per analysis	$init_mode=5$
				cycle (positive or negative)	(MODE_IAU)

Defined and used in: src/namelists/mo_nwp_tuning_nml.f90

${\bf 3.24 \quad output_nml \; (relevant \; if \; run_nml/output='nml')}$

Please note: There may be several instances of output_nml in the namelist file, every one defining a list of variables with separate attributes for output.

Parameter	Type	Default	Unit	Description	Scope
dom	I(:)	-1		Array of domains for which this name-list is used.	
				If not specified (or specified as -1 as the first array	
				member), this name-list will be used for all	
				domains.	
				Attention: Depending on the setting of the	
				parameter l_output_phys_patch these are either	
				logical or physical domain numbers!	
file_interval	C	5 5		Defines the length of a file in terms of an ISO-8601	
				duration string. An example for this time stamp	
				format is given below. This namelist parameter can	
				be set instead of steps_per_file.	
${f filename_format}$	C	see de-		Output filename format. Includes keywords path,	
		scription.		output_filename, physdom, etc. (see below).	
				Default is	
				<pre><output_filename>_DOM<physdom>_<levtype>_</levtype></physdom></output_filename></pre>	
		H 1 C 1 H		<pre><jfile></jfile></pre>	
$filename_extn$	C	"default"		User-specified filename extension (empty string also	
				possible). If this namelist parameter is chosen as	
				"default", then we have ".nc" for NetCDF output	
				\mid files, and ".grb" for GRIB1/2.	

Parameter	Type	Default	Unit	Description	Scope
filetype	I	4		One of CDI's FILETYPE_XXX constants.	
				Possible values:	
				2=FILETYPE GRB2,	
				4=FILETYPE NC2,	
				5=FILETYPE NC4	
m levels	C	None		Model level indices (optional).	
_				Allowed is a comma- (or semicolon-) separated list	
				of integers, and of integer ranges like "1020". One	
				may also use the keyword "nlev" to denote the	
				maximum integer (or, equivalently, "n" or "N").	
				Furthermore, arithmetic expressions like	
				"(nlev - 2)" are possible.	
				Basic example:	
				m_levels = "1,3,510,20(nlev-2)"	
h_{levels}	R(:)	None	m	height levels	
p_levels	R(:)	None	Pa	pressure levels	
i_levels	R(:)	None	K	isentropic levels	
ml varlist	C(:)	None		Name of model level fields to be output.	
hl varlist	C(:)	None		Name of height level fields to be output.	
pl varlist	C(:)	None		Name of pressure level fields to be output.	
il varlist	C(:)	None		Name of isentropic level fields to be output.	
include last	L L	.TRUE.		Flag whether to include the last time step	
mode	I	2		1 = forecast mode, 2 = climate mode	
		-		In climate mode the time axis of the output file is	
				set to TAXIS ABSOLUTE. In forecast mode it is	
				set to TAXIS RELATIVE. Till now the forecast	
				mode only works if the output is at multiples of 1	
				hour	
	I			11001	1

Parameter	Type	Default	Unit	Description	Scope
taxis_tunit	I	2		Time unit of the TAXIS_RELATIVE time axis.	mode=1
				$1 = TUNIT_SECOND$	
				$2 = { m TUNIT_MINUTE}$	
				$5 = \text{TUNIT}^{-}\text{HOUR}$	
				$9 = \text{TUNIT}^{-}\text{DAY}$	
				For a complete list of possible values see cdilib.c	
output bounds	R(k*3)	None		Post-processing times: start, end, increment. We	
				choose the advection time step matching or	
				following the requested output time, therefore we	
				require output_bounds(3) > dtime. Multiple	
				triples are possible in order to define multiple	
				starts/ends/intervals. See namelist parameters	
				output_start, output_end, output_interval for	
				an alternative specification of output events.	
output time unit	I	1		Units of output bounds specification.	
·				1 = second	
				2 = minute	
				3 = hour	
				4 = day	
				5 = month	
				6 = year	
output filename	\mathbf{C}	None		Output filename prefix (which may include path).	
• –				Domain number, level type, file number and	
				extension will be added, according to the format	
				given in namelist parameter "filename format".	
output grid	L	.FALSE.		Flag whether grid information is added to output.	
output start	C(:)	5 5		ISO8601 time stamp for begin of output. An	
• =				example for this time stamp format is given below.	
				More than one value is possible in order to define	
				multiple start/end/interval triples. See namelist	
				parameter output_bounds for an alternative	
				specification of output events.	

Parameter	Type	Default	Unit	Description	Scope
output_end	C(:)	5 5		ISO8601 time stamp for end of output. An example	
_				for this time stamp format is given below. More	
				than one value is possible in order to define	
				multiple start/end/interval triples. See namelist	
				parameter output_bounds for an alternative	
				specification of output events.	
output interval	C(:)	5 5		ISO8601 time stamp for repeating output intervals.	
• =				We choose the advection time step matching or	
				following the requested output time, therefore we	
				require output_bounds(3) > dtime. An example	
				for this time stamp format is given below. More	
				than one value is possible in order to define	
				multiple start/end/interval triples. See namelist	
				parameter output_bounds for an alternative	
				specification of output events.	
pe placement il	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the isentropic level output file.	
				At most stream_partitions_il different ranks	
				can be specified. See namelist parameter	
				pe_placement_ml for further details.	
pe placement hl	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the height level output file. At	
				most stream_partitions_hl different ranks can be	
				specified. See namelist parameter	
				pe_placement_ml for further details.	
$pe_placement_ml$	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the model level output file. At	
				most stream_partitions_ml different ranks can be	
				specified, out of the following list: 0	
				(num_io_procs - 1). If this namelist parameters is	
				not provided, then the output ranks are chosen in a	
				Round-Robin fashion among those ranks that are	
				not occupied by explicitly placed output files.	

Parameter	Type	Default	Unit	Description	Scope
pe_placement_pl	I(:)	-1		Advanced output option: Explicit assignment of	
				output MPI ranks to the pressure level output file.	
				At most stream_partitions_pl different ranks	
				can be specified. See namelist parameter	
				pe_placement_ml for further details.	
ready file	\mid C	'default'		A ready file is a technique for handling	
v <u> </u>				dependencies between the NWP processes. The	
				completion of the write process is signalled by	
				creating a small file with name ready_file.	
				Different output_nml's may be joined together to	
				form a single ready file event. The setting of	
				ready_file = "default" does not create a ready	
				file. The ready file name may contain string tokens	
				<pre><path>, <datetime>, <ddhhmmss> which are</ddhhmmss></datetime></path></pre>	
				substituted as described for the namelist parameter	
				filename_format.	
reg_def_mode	I	0		Specify if the "delta" value prescribes an interval	remap=1
0				size or the total *number* of intervals: 0: switch	1
				automatically between increment and no. of grid	
				points, 1: reg_lon/lat_def(2) specifies increment,	
				2: reg_lon/lat_def(2) specifies no. of grid points.	
remap	I	0		interpolate horizontally	
-				0: none	
				1: to regular lat-lon grid	
north pole	R(2)	0,90		definition of north pole for rotated lon-lat grids	
_•				([longitude, latitude].	
reg lat def	R(3)	None		start, increment, end latitude in degrees.	remap=1
<u> </u>				Alternatively, the user may set the number of grid	
				points instead of an increment. Details for the	
				setting of regular grids is given below together with	
				an example.	

Parameter	Type	Default	Unit	Description	Scope
reg lon def	R(3)	None		The regular grid points are specified by three	remap=1
				values: start, increment, end given in degrees.	
				Alternatively, the user may set the number of grid	
				points instead of an increment. Details for the	
				setting of regular grids is given below together with	
				an example.	
steps per file	I	-1		Max number of output steps in one output file. If	
<u> </u>				this number is reached, a new output file will be	
				opened.	
steps per file inclfirst	L	see descr.		Defines if first step is counted wrt.	
				steps_per_file files count. The default is	
				.FALSE. for GRIB2 output, and .TRUE. otherwise.	
stream partitions hl	I	1		Splits height level output of this namelist into	
				several concurrent alternating files. See namelist	
				parameter stream_partitions_ml for details.	
stream partitions il	I	1		Splits isentropic level output of this namelist into	
				several concurrent alternating files. See namelist	
				parameter stream_partitions_ml for details.	
stream partitions ml	I	1		Splits model level output of this namelist into	
				several concurrent alternating files. The output is	
				split into N files, where the start date of part i gets	
				an offset of $(i-1)$ * output_interval. The output	
				interval is then replaced by $N * \text{output_interval}$,	
				the include_last flag is set to .FALSE., the	
				steps_per_file_inclfirst flag is set to .FALSE.,	
				and the steps_per_file counter is set to 1.	
stream partitions pl	I	1		Splits pressure level output of this namelist into	
-				several concurrent alternating files. See namelist	
				parameter stream_partitions_ml for details.	
rbf scale	\mathbb{R}	-1.		Explicit setting of RBF shape parameter for	interpol nml:rbf scale mode ll=
_				interpolated lon-lat output. This namelist	
				parameter is only active in combination with	
				interpol nml:rbf scale mode ll=3.	

Defined and used in: src/io/shared/mo_name_list_output_init.f90

Interpolation onto regular grids: Horizontal interpolation onto regular grids is possible through the namelist setting remap=1, where the mesh is defined by the parameters

- reg_lon_def: mesh latitudes in degrees,
- reg_lat_def: mesh longitudes in degrees,
- north_pole: definition of north pole for rotated lon-lat grids.

The regular grid points in reg_lon_def, reg_lat_def are each specified by three values, given in degrees: start, increment, end. The mesh then contains all grid points start + k * increment <= end, where k is an integer. Instead of defining an increment it is also possible to prescribe the number of grid points.

- Setting the namelist parameter reg_def_mode=0: Switch automatically from increment specification to no. of grid points, when the reg_lon/lat_def(2) value is larger than 5.0.
- 1: reg_lon/lat_def(2) specifies increment
- 2: reg_lon/lat_def(2) specifies no. of grid points

For longitude values the last grid point is omitted if the end point matches the start point, e.g. for 0 and 360 degrees.

Examples

Time stamp format: The namelist parameters output_start, output_end, output_interval allow the specification of time stamps according to ISO 8601. The general format for time stamps is YYYY-MM-DDThh:mm:ss where Y: year, M: month, D: day for dates, and hh: hour, mm: minute, ss: second for time strings. The general format for durations is PnYnMnDTnHnMnS. See, for example, http://en.wikipedia.org/wiki/ISO_8601 for details and further specifications.

NOTE: as the mtime library underlaying the output driver currently has some restrictions concerning the specification of durations:

1. Any number n in PnYnMnDTnHnMnS must have two digits. For instance use "PTO6H" instead of "PT6H"

2. In a duration string PnyearYnmonMndayDTnhrHnminMnsecS the numbers nxyz must not pass the carry over number to the next larger time unit: 0<=nmon<=12, 0<=nhr<=23, 0<=nmin<=59, 0<=nsec<=59.999. For instance use "P01D" instead of "PT24H", or "PT01M" instead of "PT60S".

Soon the formatting problem will be resolved and the valid number ranges will be enlarged. (2013-12-16).

Examples

```
date and time representation (output_start, output_end) 2013-10-27T13:41:00Z duration (output_interval) POODTO6H00M00S
```

Variable Groups

Keyword "group:": Using the "group:" keyword for the namelist parameters ml_varlist, hl_varlist, pl_varlist, sets of common variables can be added to the output:

```
output of all variables (caution: do not combine with mixed vertical interpolation)
group:all
                                                  basic atmospheric variables on model levels
group:atmo_ml_vars
                                                  same set as atmo ml vars, but except pres
group:atmo_pl_vars
                                                  same set as atmo ml vars, but expect height
group:atmo_zl_vars
                                                  additional prognostic variables of the nonhydrostatic model
group:nh_prog_vars
                                                  derived atmospheric variables
group:atmo_derived_vars
group:rad_vars
group:precip_vars
group:cloud_diag
group:pbl_vars
group:phys_tendencies
group:land_vars
                                                  snow variables
group:snow_vars
group:multisnow_vars
                                                  multi-layer snow variables
group:additional_precip_vars
                                                  DWD first guess fields (atmosphere)
group:dwd_fg_atm_vars
                                                  DWD first guess fields (surface/soil)
group:dwd_fg_sfc_vars
group:ART_AERO_VOLC
                                                  ART volcanic ash fields
                                                  ART radioactive tracer fields
group: ART_AERO_RADIO
group:ART_AERO_DUST
                                                  ART mineral dust aerosol fields
```

group:ART_AERO_SEAS

group:prog_timemean

group:tracer_timemean

group:echam_timemean

group:atmo_timemean

group:atmo_timemean

droup:atmo_timemean

ART sea salt aerosol fields

time mean output: temp, u, v, rho

time mean output: qv, qc, qi

time mean output: most echam surface variables

time mean variables from prog_timemean,tracer_timemean, echam_timemean

Keyword "tiles:": The "tiles:" keyword allows to add all tiles of a specific variable to the output, without the need to specify all tile fields separately. E.g. "tiles:t_g" (read: "tiles of t_g") automatically adds all t_g_t_X fields to the output. Here, X is a placeholder for the tile number. Make sure to specify the name of the aggregated variable rather than the name of the corresponding tile container (i.e. in the given example it must be t_g, and not t_g_t!).

Note:

There exists a special syntax which allows to remove variables from the output list, e. g. if these undesired variables were contained in a previously selected group.

Typing "-<varname>" (for example "-temp") removes the variable from the union set of group variables and other selected variables. Note that typos are not detected but that the corresponding variable is simply not removed!

Keyword substitution in output filename (filename_format):

path substituted by model base dir substituted by output filename output_filename physdom substituted by physical patch ID substituted by level type "ML", "PL", "HL", "IL" levtype like levtype, but in lower case levtype_1 substituted by output file counter jfile substituted by ISO-8601 date-time stamp in format YYYY-MM-DDThh:mm:ss.ssz datetime datetime2 substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmssZ datetime3 substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmss.sssZ substituted by relative day-hour-minute-second string ddhhmmss hhhmmss substituted by relative hour-minute-second string If namelist is split into concurrent files: number of stream partitions. npartitions If namelist is split into concurrent files: stream partition index of this file. ifile_partition total_index If namelist is split into concurrent files: substituted by the file counter

(like in jfile), which an "unsplit" namelist would have produced

$3.25 \quad parallel_nml$

Parameter	Type	Default	Unit	Description	Scope
nproma	I	1		chunk length	
n_ghost_rows	I	1		number of halo cell rows	
division_method	I	1		method of domain decomposition	
				0: read in from file	
				1: use built-in geometric subdivision	
$division_file_name$	C			Name of division file	$division_method = 0$
${ m ldiv_phys_dom}$	L	.TRUE.		.TRUE.: split into physical domains before	$division_method = 1$
				computing domain decomposition (in case of	
				merged domains)	
				(This reduces load imbalance; turning off this	
				option is not recommended except for very small	
				processor numbers)	
p_test_run	L	.FALSE.		.TRUE. means verification run for MPI	
				parallelization (PE 0 processes full domain)	
l_test_openmp	L	.FALSE.		if .TRUE. is combined with p_test_run=.TRUE.	$p_{test_run} = .TRUE.$
				and OpenMP parallelization, the test PE gets only	
				1 thread in order to verify the OpenMP	
				parallelization	
l_\log_checks	L	.FALSE.		if .TRUE. messages are generated during each	
				synchonization step (use for debugging only)	
l_fast_sum	L	.FALSE.		if .TRUE., use fast (not	
				processor-configuration-invariant) global summation	
$use_dycore_barrier$	L	.FALSE.		if .TRUE., set an MPI barrier at the beginning of	
				the nonhydrostatic solver (do not use for	
				production runs!)	
$itype_exch_barrier$	I	0		1: set an MPI barrier at the beginning of each MPI	
				exchange call	
				2: set an MPI barrier after each MPI WAIT call	
				3: 1+2 (do not use for production runs!)	

Parameter	Type	Default	Unit	Description	Scope
iorder_sendrecv	I	1		Sequence of send/receive calls:	
				1 = irecv/send	
				$2=\mathrm{isend/rec}$	
				$3=\mathrm{isend/irecv}$	
itype_comm	I	1		1: use local memory for exchange buffers	
				3: asynchronous halo communication for dynamical	
				core (currently deactivated)	
${f num_io_procs}$	I	0		Number of I/O processors (running exclusively for	
				$\operatorname{doing} I/O)$	
${ m num_restart_procs}$	I	0		Number of restart processors (running exclusively	
				for doing restart)	
${ m num_prefetch_proc}$	I	0		Number of processors for prefetching of boundary	$ itype_latbc \ge 1$
				data asynchronously for a limited area run (running	
				exclusively for reading Input boundary data.	
				Maximum no of processors used for it is limited to	
				1).	
${ m pio_type}$	I	1		Type of parallel I/O. Only used if number of I/O	
				processors greater than number of domains.	
				Experimental!	
${\it use_icon_comm}$	L	.FALSE.		Enable the use of MPI bulk communication through	
				the icon_comm_lib	
$icon_comm_debug$	L	.FALSE.		Enable debug mode for the icon_comm_lib	
$\max_\mathrm{send}_\mathrm{recv}$ -	I	131072		Size of the send/receive buffers for the	
$_\mathrm{buffer}_\mathrm{size}$				icon_comm_lib.	
use_dp_mpi2io	L	.FALSE.		Enable this flag if output fields shall be gathered by	
				the output processes in DOUBLE PRECISION.	
${ m restart_chunk_size}$	I	1		(Advanced namelist parameter:) Number of levels	
				to be buffered by the asynchronous restart process.	
				The (asynchronous) restart is capable of writing	
				and communicating more than one 2D slice at once.	

Defined and used in: src/namelists/mo_parallel_nml.f90

$3.26 \quad psrad_nml$

Parameter	Type	Default	Unit	Description	Scope
fco2	R	1wp		factor by which the CO2 concentration of either a	
				scenario (irad_co2=4) or a constant value	
				$(irad_co2=2)$ is multiplied.	
lradforcing	L(2)	.FALSE.		switch for diagnostics of aerosol forcing in the solar	
				spectral range (lradforcing(1)) and the thermal	
				spectral range $(lradforcing(2))$.	
lw_gpts_ts	I	1		number of g-points in Monte-Carlo spectral	
				integration for thermal radiation, see	
				lw_spec_samp	
lw_spec_samp	I	1		sampling of spectral bands in radiation calculation	
				for thermal radiation	
				lw spec samp = 1: standard broad band sampling	
				lw spec samp = 2: Monte-Carlo spec- tral	
				integration (MSCI); lw gpts ts randomly chosen	
				g-points per column and radiation call	
				$lw_spec_samp = 3$: choose g-points not	
				completely randomly in order to reduce errors in	
				the surface radiative fluxes	
rad_perm	I	0		integer number that influences the perturbation of	
				the random seed from column to column	
sw_gpts_ts	I	1		number of g-points in Monte-Carlo spectral	
				integration for solar radiation, see sw_spec_samp	
sw spec samp	I	1		sampling of spectral bands in radiation calculation	
				for solar radiation	
				sw_spec_samp = 1: standard broad band sampling	
				sw spec samp = 2: Monte-Carlo spectral	
				integration (MSCI); lw_gpts_ts randomly chosen	
				g-points per column and radiation call	
				sw_spec_samp = 3: choose g-points not	
				completely randomly in order to reduce errors in	
				the surface radiative fluxes	

3.27 radiation_nml

Parameter	Type	Default	Unit	Description	Scope
ldiur	L	.TRUE.		switch for solar irradiation:	
				.TRUE.:diurnal cycle,	
				.FALSE.:zonally averaged irradiation	
nmonth	I	0		0: Earth circles on orbit	
				1-12: Earth orbit position fixed for specified month	
lyr_perp	L	.FALSE.		.FALSE.: transient Earth orbit following VSOP87	
				.TRUE.: Earth orbit of year yr_perp of the	
				VSOP87 orbit is perpertuated	
yr_perp	L	-99999		$year used for lyr_perp = .TRUE.$	
isolrad	I	0		Insolation scheme	
				0: Use original SRTM insolation.	
				1: Use insolation from external file containing the	
				spectrally resolved insolation (monthly means)	
				2: Use preindustrial insolation as in CMIP5	
				(average from 1844–1856)	
				3: Use insolation for AMIP-type CMIP5 simulation	
				(average from 1979–1988)	
izenith	I	4		Choice of zenith angle formula for the radiative	
				transfer computation.	
				0: Sun in zenith everywhere	
				1: Zenith angle depends only on latitude	
				2: Zenith angle depends only on latitude. Local	
				time of day fixed at 07:14:15 for radiative transfer	
				computation (sin(time of day) = 1/pi	
				3: Zenith angle changing with latitude and time of	
				day	
				4: Zenith angle and irradiance changing with	
				season, latitude, and time of day (iforcing=inwp	
				only)	

Parameter	Type	Default	Unit	Description	Scope
albedo_type	I	1		Type of surface albedo 1: based on soil type specific tabulated values (dry soil) 2: MODIS albedo	iforcing=inwp
direct_albedo	I	4		Direct beam surface albedo. Options mainly differ in terms of their solar zenith angle (SZA) dependency) 1: SZA dependency following Ritter-Geleyn; applied to unconditionally all grid points 2: SZA dependency following Zaengl (pers. comm.). Same as 1 for water, but for 'rough surfaces' over land the direct albedo is not allowed to exceed the corresponding broadband diffuse albedo. 3: SZA dependency following Yang (2008) for snow-free land points. Same as 1 for water/ice and 2 for snow. 4: SZA dependency following Briegleb (1992) for snow-free land points. Same as 1 for water/ice and 2 for snow.	iforcing=inwp albedo_type=2
icld_overlap	I	2		Method for cloud overlap calculation in shortwave part of RRTM 1: maximum-random overlap 2: generalized overlap (Hogan, Illingworth, 2000) 3: maximum overlap 4: random overlap	iforcing=inwp inwp_radiation=1

Parameter	Type	Default	Unit	Description	Scope
irad_h2o	I	1		Switches for the concentration of radiative agents	Note: until further notice,
irad_co2		2		0: 0.	please use
irad_ch4		3		1: prognostic variable	$irad_h2o = 1$
irad_n2o		3		2: global constant	$irad_co2 = 2$
irad_o3		0		3: externally specified	and 0 for all the other
irad_o2		2		$irad_o3 = 2$: ozone climatology from MPI	agents for
irad_cfc11 irad_cfc12		2 2		irad_o3 = 4: ozone clim for Aqua Planet Exp irad_o3 = 6: ozone climatology with T5 geographical distribution and Fourier series for seasonal cycle for run_nml/iforcing = 3 (NWP) irad_o3 = 7: GEMS ozone climatology (from IFS) for run_nml/iforcing = 3 (NWP) irad_o3 = 8: ozone climatology for AMIP irad_o3 = 9: MACC ozone climatology (from IFS) for run_nml/iforcing = 3 (NWP) irad_o3 = 10: Linearized ozone chemistry (ART extension necessary) for run_nml/iforcing = 3	$egin{aligned} & ext{run_nml/iforcing} = 2 \ & ext{(ECHAM)}. \end{aligned}$
vmr_co2 vmr_ch4 vmr_n2o vmr_o2 vmr_cfc11 vmr_cfc12	R	348.0e-6 1650.0e-9 306.0e-9 0.20946 214.5e-12 371.1e-12		(NWP) Volume mixing ratio of the radiative agents	

Parameter	Type	Default	Unit	Description	Scope
irad_aero	I	2		Aerosols	
				1: prognostic variable	
				2: global constant	
				3: externally specified	
				5: Tanre aerosol climatology for run_nml/iforcing	
				= 3 (NWP)	
				6: Tegen aerosol climatology for run_nml/iforcing	
				= 3 (NWP) .AND. itopo $= 1$	
				9: ART online aerosol radiation interaction, uses	
				Tegen for aerosols not chosen to be represented in	
				$ART ext{ for run_nml/iforcing} = 3 ext{ (NWP)} .AND.$	
				itopo =1 .AND. lart=TRUE .AND. iart_ari=1	
lrad_aero_diag	L	.FALSE.		writes actual aerosol optical properties to output	
ighg	I	0		Select dynamic greenhouse gases scenario (read	run_nml/iforcing=2
				from file)	(ECHAM)
				0 : select default gas volume mixing ratios - 1990	
				values (CMIP5)	
				1 : transient CMIP5 scenario from file	

Defined and used in: src/namelists/mo_radiation_nml.f90

$3.28 \quad run_nml$

Parameter	Type	Default	Unit	Description	Scope
$_{ m nsteps}$	I	-999		Number of time steps of this run. Allowed range is	
				≥ 0 ; setting a value of 0 allows writing initial	
				output (including internal remapping) without	
				calculating time steps.	

Parameter	Type	Default	Unit	Description	Scope
dtime	R	600.0	S	time step.	
				For real case runs the maximum allowable time step	
				can be estimated as	
				$1.8 \cdot \text{ndyn_substeps} \cdot \overline{\Delta x} \text{s km}^{-1},$	
				where $\overline{\Delta x}$ is the average resolution in km and	
				ndyn_substeps is the number of dynamics substeps	
				set in nonhydrostatic_nml. ndyn_substeps should	
				not be increased beyond the default value 5.	
${f ltest case}$	L	.TRUE.		Idealized testcase runs	
${f ldynamics}$	L	.TRUE.		Compute adiabatic dynamic tendencies	
iforcing	I	0		Forcing of dynamics and transport by	
				parameterized processes. Use positive indices for	
				the atmosphere and negative indices for the ocean.	
				0: no forcing	
				1: Held-Suarez forcing	
				2: ECHAM forcing	
				3: NWP forcing	
				4: local diabatic forcing without physics	
				5: local diabatic forcing with physics	
1.	_	DATGE		-1: MPIOM forcing (to be done)	
ltransport	L	.FALSE.		Compute large-scale tracer transport	
ntracer	I	0		Number of advected tracers handled by the	
1 4 4	т	DALCE		large-scale transport scheme	
${f lvert_nest}$	L	.FALSE.		If set to .true. vertical nesting is switched on (i.e.	
1	T/	31		variable number of vertical levels)	lt TRIE
$\operatorname{num_lev}$	$egin{array}{c} I(\max_\\ \mathrm{dom}) \end{array}$	31		Number of full levels (atm.) for each domain	$ lvert_nest = .TRUE. $
nshift	I(max	0		vertical half level of parent domain which coincides	lvert nest=.TRUE.
	dom)			with upper boundary of the current domain	
	,			required for vertical refinement, which is not yet	
				implemented	
ltimer	\mid L	.TRUE.		TRUE: Timer for monitoring the runtime of specific	
				routines is on $(FALSE = off)$	
$timers_level$	I	1		, , ,	

Parameter	Type	Default	Unit	Description	Scope
activate_sync_timers	L	F		TRUE: Timer for monitoring runtime of	
				$oxed{communication routines (FALSE = off)}$	
${ m msg_level}$	I	10		controls how much printout is written during	
				runtime.	
				For values less than 5, only the time step is written.	
$msg_timestamp$	L	.FALSE.		If .TRUE., precede output messages by time stamp.	
test_mode	I	0		Setting a value larger than 0 activates a dummy	iequations = 3
				mode in which time stepping is changed into just	
				doing iterations, and MPI communication is	
				replaced by copying some value from the send	
				buffer into the receive buffer (does not work with	
				nesting and reduced radiation grid because the send	
				buffer may then be empty on some PEs)	
debug_check_level	I	0		Setting a value larger than 0 activates debug checks.	
output	C(:)	"nml",		Main switch for enabling/disabling components of	
		"totint"		the model output. One or more choices can be set	
				(as an array of string constants). Possible choices	
				are:	
				• "none": switch off all output;	
				• "nml": new output mode (cf. output_nml);	
				• "totint": computation of total integrals.	
				• "maxwinds": write max. winds to separate	
				ASCII file "maxwinds.log".	
				If the output namelist parameter is not set	
				explicitly, the default setting "nml", "totint" is	
				assumed.	
restart_filename	C			File name for restart/checkpoint files (containing	
				keyword substitution patterns <gridfile>, <idom>,</idom></gridfile>	
				<pre><rsttime>, <mtype>). default:</mtype></rsttime></pre>	
				" <gridfile>_restart_<mtype>_<rsttime>.nc".</rsttime></mtype></gridfile>	

Parameter	Type	Default	Unit	Description	Scope
profiling_output	I	1		controls how profiling printout is written:	
				TIMER_MODE_AGGREGATED=1,	
				TIMER MODE DETAILED=2,	
				TIMER_MODE_WRITE_FILES=3.	
lart	L	.FALSE.		Main switch which enables the treatment of	
				atmospheric aerosol and trace gases (The ART	
				package of KIT is needed for this purpose)	
check_uuid_gracefully	L	.FALSE.		If this flag is set to .TRUE. we give only warnings	
				for non-matching UUIDs.	

Defined and used in: src/namelists/mo_run_nml.f90

$3.29 \quad sleve_nml \; (relevant \; if \; nonhydrostatic_nml:ivctype{=}2)$

Parameter	Type	Default	Unit	Description	Scope
min_lay_thckn	R	50	m	Layer thickness of lowermost layer; specifying zero	
				or a negative value leads to constant layer	
				thicknesses determined by top_height and nlev	
max_lay_thckn	R	25000	m	Maximum layer thickness below the height given by	
				htop_thcknlimit (NWP recommendation: 400 m)	
				Use with caution! Too ambitious settings may result	
				in numerically unstable layer configurations.	
htop_thcknlimit	R	15000	m	Height below which the layer thickness does not	
				exceed max_lay_thckn	
${f top_height}$	R	23500.0	m	Height of model top	
stretch_fac	R	1.0		Stretching factor to vary distribution of model	
				levels; values <1 increase the layer thickness near	
				the model top	
decay_scale_1	R	4000	m	Decay scale of large-scale topography component	
decay_scale_2	R	2500	m	Decay scale of small-scale topography component	
decay_exp	R	1.2		Exponent of decay function	
flat_height	R	16000	m	Height above which the coordinate surfaces are flat	

Parameter	Type	Default	Unit	Description	Scope
$lread_smt$	L	.FALSE.		read smoothed topography from file (TRUE) or	
				compute internally (FALSE)	

Defined and used in: src/namelists/mo_sleve_nml.f90

$3.30 ext{ synsat } nml^1$

This namelist enables the RTTOV library incorporated into ICON for simulating satellite radiance and brightness temperatures. RTTOV is a radiative transfer model for nadir-viewing passive visible, infrared and microwave satellite radiometers, spectrometers and interferometers, see

https://nwpsaf.eu/deliverables/rtm

for detailed information.

Parameter	Type	Default	Unit	Description	Scope
lsynsat	L	.FALSE.		Main switch: Enables/disables computation of	
	$ (\max_{dom} $)		synthetic satellite imagery for each model domain.	
nlev_rttov	I	51		Number of RTTOV levels.	

Enabling the synsat module makes the following 32 two-dimensional output fields available:

SYNMSG_RAD_CL_IR3.9	SYNMSG_BT_CL_IR3.9	SYNMSG_RAD_CL_WV6.2	SYNMSG_BT_CL_WV6.2
SYNMSG_RAD_CL_WV7.3	SYNMSG_BT_CL_WV7.3	SYNMSG_RAD_CL_IR8.7	SYNMSG_BT_CL_IR8.7
SYNMSG_RAD_CL_IR9.7	SYNMSG_BT_CL_IR9.7	SYNMSG_RAD_CL_IR10.8	SYNMSG_BT_CL_IR10.8
SYNMSG_RAD_CL_IR12.1	SYNMSG_BT_CL_IR12.1	SYNMSG_RAD_CL_IR13.4	SYNMSG_BT_CL_IR13.4
SYNMSG_RAD_CS_IR3.9	SYNMSG_BT_CS_IR3.9	SYNMSG_RAD_CS_WV6.2	SYNMSG_BT_CS_WV6.2
SYNMSG_RAD_CS_WV7.3	SYNMSG_BT_CS_WV7.3	SYNMSG_RAD_CS_IR8.7	SYNMSG_BT_CS_IR8.7
SYNMSG_RAD_CS_IR9.7	SYNMSG_BT_CS_IR9.7	SYNMSG_RAD_CS_IR10.8	SYNMSG_BT_CS_IR10.8
SYNMSG_RAD_CS_IR12.1	SYNMSG_BT_CS_IR12.1	SYNMSG_RAD_CS_IR13.4	SYNMSG_BT_CS_IR13.4

Here, RAD denotes radiance, BT brightness temperature, CL cloudy, and CS clear sky, supplemented by the channel name.

¹Important note: This feature is currently active for configuration dwd+cray only.

$3.31 \quad time_nml$

Parameter	Type	Default	Unit	Description	Scope
calendar	I	1		Calendar type:	
				0=Julian/Gregorian	
				1=proleptic Gregorian	
				2=30 day/month, 360 day/year	
$dt_restart$	R	86400.*30.	s	Length of restart cycle in seconds. This namelist	
				parameter specifies how long the model runs until it	
				saves its state to a file and stops. Later, the model	
				run can be resumed, s. t. a simulation over a long	
				period of time can be split into a chain of restarted	
				model runs.	
				Note that the frequency of writing restart files is	
				controlled by io_nml:dt_checkpoint. Only if the	
				value of dt_checkpoint resulting from model	
				default or user's specification is longer than	
				dt_restart, it will be reset (by the model) to	
				dt_restart so that at least one restart file is	
				generated during the restart cycle. If dt_restart is	
				larger than but not a multiple of dt_checkpoint,	
				restart file will <i>not</i> be generated at the end of the	
		10000		restart cycle.	
${ m ini_datetime_string}$	C	'2008-		Initial date and time of the simulation	
		09-01T			
and detetime atmin	C	00:00:00Z' '2008-		End date and time of the simulation	
end_datetime_string		09-01T		End date and time of the simulation	
		01:40:00Z			
is relative time	\mid L	.FALSE.		.TRUE., if time loop shall start with step 0	
	"	.FALSE.		regardless whether we are in a standard run or in a	
				restarted run (which means re-initialized run).	
				restanted run (which means re-initianzed run).	

Length of the run If "nsteps" in run_nml is positive, then nsteps*dtime is used to compute the end date and time of the run. Else the initial date and time, the end date and time, dt_restart, as well as the time step are used to compute "nsteps".

$3.32 \quad transport_nml \; (used \; if \; run_nml/ltransport=.TRUE.)$

Parameter	Type	Default	Unit	Description	Scope
lvadv_tracer	L	.TRUE.		TRUE: compute vertical tracer advection	
_				FALSE: do not compute vertical tracer advection	
ihadv tracer	I(ntracer)	2		Tracer specific method to compute horizontal	
				advection:	
				0: no horiz. transport (note that the specific tracer	
				quantity q is kept constant and not tracer mass ρq)	
				1: upwind (1st order)	
				2: Miura (2nd order, linear reconstr.)	
				3: Miura3 (quadr. or cubic reconstr.)	$ lsq_high_ord \in [2,3]$
				4: FFSL (quadr. or cubic reconstr.)	$lsq_high_ord \in [2,3]$
				5: hybrid Miura3/FFSL (quadr. or cubic reconstr.)	$ lsq_high_ord \in [2,3]$
				20: miura (2nd order, lin. reconstr.) with	
				subcycling	
				22: combination of miura and miura with	
				subcycling	
				32: combination of miura and miura with	
				subcycling	
				42: combination of FFSL and miura with	
				subcycling	
				52: combination of hybrid FFSL/Miura3 with	
				subcycling	
				Subcycling means that the integration from time	
				step n to n+1 is splitted into substeps to meet the	
			stability requirements. For NWP runs, substepping		
				is generally applied above $z = 22 \mathrm{km}$ (see	
				$nonhydrostatic_nml/hbot_qvsubstep).$	
ivadv_tracer	I(ntracer)	3		Tracer specific method to compute vertical advection:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Parameter	Type	Default	Unit	Description	Scope
				0: no vert. transport (note that tracer mass ρq	
				instead of the specific tracer quantity q is kept	
				constant. This differs from the behaviour in	
				horizontal direction!)	
				1: upwind (1st order)	
				3: ppm_cfl (3^{rd} order, handles CFL > 1)	
				30: ppm (3rd order, CFL<=1)	
$iadv_tke$	I	0		Type of TKE advection	inwp_turb=1
				0: no TKE advection	
				1: vertical advection only	
				2: vertical and horizontal advection	
lstrang	\mid L	.FALSE.		Time splitting method	
				TRUE: second order Strang splitting	
				FALSE: first order Godunov splitting	
ctracer_list	C	,,,		Two purposes:	
				- used for selecting those tracers which should be	[nh/ha]_test_name=
				initialized for idealized testcases.	'jabw','PA','DF'
				- used for tracer output names. In some idealized	iforcing≠ inwp, iecha
				cases tracers are named ' Qx ', with x being a 1-digit	
				integer taken from ctracer_list.	
npassive tracer	I	0		number of additional passive tracers which have no	
				sources and are transparent to any physical process	
				(no effect).	
				Passive tracers are named Qpassive_ID, where ID	
				is a number between ntracer and	
				ntracer+npassive_tracer.	
				NOTE: By default, limiters are switched of for	
				passive tracers and the scheme 52 is selected for	
				horizontal advection.	
$\operatorname{init}_{-} \operatorname{formula}$	C	, ,		Comma-separated list of initialization formulas for	$npassive_tracer > 0$
				additional passive tracers.	
$itype_hlimit$	I(ntracer)	4		Type of limiter for horizontal transport:	
				0: no limiter	
				3: monotonous flux limiter	

Parameter	Type	Default	Unit	Description	Scope
				4: positive definite flux limiter	
$itype_vlimit$	I(ntracer)	1		Type of limiter for vertical transport:	
_				0: no limiter	
				1: semi-monotone slope limiter	
				2: monotonous slope limiter	
				4: positive definite flux limiter	
niter_fct	I	1		number of iterations of monotone flux correction	${ m itype_hlimit} = 3$
				procedure (experimental!)	
beta_fct	R	1.005		factor of allowed over-/undershooting in	${ m itype_hlimit} = 3$
				monotonous limiter	
iord_backtraj	I	1		order of backward trajectory calculation:	
				1: first order	
				2: second order (iterative; currently 1 iteration	ihadv_tracer='miura'
				hardcoded; experimental!)	
igrad_c_miura	I	1		Method for gradient reconstruction at cell center	
				for 2nd order miura scheme	
				1: Least-squares (linear, non-consv)	$ihadv_tracer{=}2$
				2: Green-Gauss	
ivcfl_max	I	5		determines stability range of vertical PPM-scheme	$ivadv_tracer=3$
				in terms of the maximum allowable CFL-number	
llsq_svd	$\mid L$.TRUE.		use QR decomposition (FALSE) or SV	
				decomposition (TRUE) for least squares design	
				matrix A	
lclip_tracer	L	.FALSE.		Clipping of negative values	

Defined and used in: src/namelists/mo_advection_nml.f90

$3.33 \quad turbdiff_nml$

Parameter	Type	Default	Unit	Description	Scope
imode_turb	I	1		Mode of solving the TKE equation for atmosph.	
				layers:	
				0: diagnostic equation	
				1: prognostic equation (current version)	
				2: prognostic equation (intrinsically positive	
				definite)	
imode_tran	I	0		Same as $imode_turb$ but only for the transfer layer	
icldm_turb	I	2		Mode of water cloud representation in turbulence	
				for atmosph. layers:	
				-1: ignoring cloud water completely (pure dry	
				scheme)	
				0: no clouds considered (all cloud water is	
				evaporated)	
				1: only grid scale condensation possible	
				2: also sub grid (turbulent) condensation considered	
icldm_tran	I	2		Same as $icldm_turb$ but only for the transfer layer	
itype_wcld	I	2		type of water cloud diagnosis within the turbulence	icldm_turb=2 or
				scheme:	$ icldm_tran=2 $
				1: employing a scheme based on relative humitidy	
	_			2: employing a statistical saturation adjustment	
itype_sher	I	0		Type of shear forcing used in turbulence:	
				0: only vertical shear of horizontal wind	
				1: previous plus horizontal shear correction	
				2: previous plus shear from vertical velocity	
				3: same as option 1, but (when combined with	
				ltkeshs=.TRUE.) scaling of coarse-grid horizontal	
	_			shear production term with $\frac{1}{\sqrt{Ri}}$	
ltkeshs	L	.FALSE.		Include correction term for coarse grids in	$ itype_sher \ge 1$
				horizontal shear production term (needed at	
				non-convection-resolving model resolutions in order	
1, 1		DATCE		to get a non-negligible impact)	
ltkesso	L	.FALSE.		Consider TKE-production by sub grid SSO wakes	$ \operatorname{inwp_sso} = 1 $
lt kecon	L	.FALSE.		Consider TKE-production by sub grid convective	
				plumes (inactive)	

Parameter	Type	Default	Unit	Description	Scope
lt keshs	L	.FALSE.		Consider TKE-production by separated horizontal	
				shear eddies (inactive)	
ltmpcor	L	.FALSE.		Consider thermal TKE sources in enthalpy equation	
lsflcnd	L	.TRUE.		Use lower flux condition for vertical diffusion	
				calculation (TRUE) instead of a lower	
				concentration condition (FALSE)	
lexpcor	L	.FALSE.		Explicit corrections of implicitly calculated vertical	
				diffusion of non-conservative scalars that are	
				involved in sub grid condensation processes	
tur len	\mathbb{R}	500.0	m	Asymptotic maximal turbulent distance	
_				$(\kappa * tur len is the integral turbulent master length$	
				scale)	
pat len	\mathbb{R}	100.0	m	Effective length scale of thermal surface patterns	
• —				controlling TKE-production by sub grid	
				kata/ana-batic circulations. In case of $pat_len = 0$,	
				this production is switched off.	
c_{diff}	\mathbb{R}	0.2	1	Length scale factor for vertical diffusion of TKE. In	
_				case of c diff = 0, TKE is not diffused vertically.	
a_stab	R	0.0	1	Factor for stability correction of turbulent length	
_				scale. In case of a $stab = 0$, the turbulent length	
				scale is not reduced for stable stratification.	
a hshr	$ ight _{\mathrm{R}}$	0.20	1	Length scale factor for the separated horizontal	ltkeshs=.TRUE.
_				shear mode. In case of a $hshr = 0$, this shear	
				mode has no effect.	
alpha0	R	0.0123	1	Lower bound of velocity-dependent Charnock	
				parameter	
alpha0 max	ight R	0.0335	1	Upper bound of velocity-dependent Charnock	
• –				parameter. Setting this parameter to 0.0335 or	
				higher values implies unconstrained velocity	
				dependence	
tkhmin	\mathbb{R}	0.75	$\rm m^2/s$	Scaling factor for minimum vertical diffusion	
			'	coefficient (proportional to $1/\sqrt{Ri}$) for heat and	
				moisture	

Parameter	Type	Default	Unit	Description	Scope
tkmmin	R	0.75	m^2/s	Scaling factor for minimum vertical diffusion	
				coefficient (proportional to $1/\sqrt{Ri}$) for momentum	
$tkmmin_strat$	R	5	m^2/s	Enhanced scaling factor for minimum vertical	
				diffusion coefficient (proportional to $1/\sqrt{Ri}$) for	
				momentum, valid in the stratosphere above 30 km	
$tkhmin_strat$	R	5	$\rm m^2/s$	Enhanced scaling factor for minimum vertical	
				diffusion coefficient (proportional to $1/\sqrt{Ri}$) for	
				heat and moisture, valid in the stratosphere above	
				30 km	
$itype_synd$	I	2		Type of diagnostics of synoptic near surface	
				variables:	
				1: Considering the mean surface roughness of a grid	
				box	
				2: Considering a fictive surface roughness of a	
				SYNOP lawn	
$rlam_heat$	R	1.0	1	Scaling factor of the laminar boundary layer for	
				heat (scalars). The larger rlam_heat, the larger is	
				the laminar resistance.	
$\mathrm{rat}_\mathrm{sea}$	R	10.0	1	Ratio of laminar scaling factors for scalars over sea	
				and land. The larger rat_sea, the larger is the	
				laminar resistance for a sea surface compared to a	
				land surface.	
tkesmot	R	0.15	1	Time smoothing factor within [0, 1] for TKE. In	
				case of $tkesmot = 0$, no smoothing is active.	
frcsmot	R	0.0	1	Vertical smoothing factor within [0, 1] for TKE	
				forcing terms. In case of $frcmot = 0$, no smoothing	
				is active.	
$imode_frcsmot$	I	1		1 = apply vertical smoothing (if frcsmot>0)	
				uniformly over the globe	
				$2 = ext{restrict vertical smoothing to the tropics}$	
				(reduces the moist bias in the tropics while avoiding	
				adverse effects on NWP skill scores in the	
				extratropics)	
impl s	\mathbb{R}	1.20	1	Implicit weight near the surface (maximal value)	

Parameter	Type	Default	Unit	Description	Scope
impl_t	R	0.75	1	Implicit weight near top of the atmosphere	
				(minimal value)	
$lconst_z0$	L	.FALSE.		TRUE: horizontally homogeneous roughness length	
				z0	
$const_z0$	R	0.001	m	value for horizontally homogeneous roughness	lconst_z0=.TRUE.
				length z0	
ldiff_qi	L	.FALSE.		Turbulent diffusion of cloud ice, if .TRUE.	
itype_tran	I	2		type of surface-atmosphere transfer	
lprfcor	L	.FALSE.		using the profile values of the lowest main level	
				instead of the mean value of the lowest layer for	
				surface flux calculations	
lnonloc	L	.FALSE.		nonlocal calculation of vertical gradients used for	
				turbul. diff.	
lfreeslip	L	.FALSE.		.TRUE.: use a free-slip lower boundary condition,	
				i.e. neither momentum nor heat/moisture fluxes	
				(use for idealized runs only!)	
lcpfluc	L	.FALSE.		consideration of fluctuations of the heat capacity of	
				air	

Defined and used in: src/namelists/mo_turbdiff_nml.f90

$3.34 \quad vdiff_nml$

Parameter	Type	Default	Unit	Description	Scope
lsfc_mon_flux	L	.TRUE.		Switch on surface momentum flux.	lvdiff = .TRUE.
lsfc_heat_flux	L	.TRUE.		Switch on surface sensible and latent heat flux.	lvdiff = .TRUE.

Defined and used in: src/namelists/mo_vdiff_nml.f90

4 Ocean-specific namelist parameters

$4.1 \quad ocean_physics_nml$

Parameter	Type	Default	Unit	Description	Scope
i_sea_ice	I	1		0: No sea ice, 1: Include sea ice	
				.FALSE.: compute drag only	
richardson_factor_tracer	I	0.5e-5	m/s		
richardson factor veloc	I	0.5e-5	m/s		
l_constant_mixing	L	.FALSE.	,		

$4.2 \quad sea_ice_nml \; (relevant \; if \; run_nml/if or cing = 2 \; (ECHAM))$

Parameter	Type	Default	Unit	Description	Scope
i_ice_therm	I	2		Switch for thermodynamic model:	In an ocean run
				1: Zero-layer model	$ i_{sea_ice must be} >= 1.$
				2: Two layer Winton (2000) model	In an atmospheric run
				3: Zero-layer model with analytical forcing (for	the ice surface type must
				diagnostics)	be defined.
				4: Zero-layer model for atmosphere-only runs (for	
				diagnostics)	
i_ice_dyn	I	0		Switch for sea-ice dynamics:	
				0: No dynamics	
				1: FEM dynamics (from AWI)	
i_ice_albedo	I	1		Switch for albedo model. Only one is implemented	
				so far.	
i_Qio_type	I	2		Switch for ice-ocean heat-flux calculation method:	Defaults to 1 when
				1: Proportional to ocean cell thickness (like	$i_ie_dyn=0$ and 2
				MPI-OM)	otherwise.
				2: Proportional to speed difference between ice and	
				ocean	
kice	I	1		Number of ice classes (must be one for now)	
hnull	R	0.5	m	Hibler's h_0 parameter for new-ice growth.	

Parameter	Type	Default	Unit	Description	Scope
hmin	R	0.05	m	Minimum sea-ice thickness allowed.	
ramp_wind	R	10	days	Number of days it takes the wind to reach correct	
				strength. Only used at the start of an	
				OMIP/NCEP simulation (not after restart).	

5 Namelist parameters for testcases (NAMELIST_ICON)

The ICON model code includes several experiments, so-called test cases, for the shallow water model as well as the 3-dimensional atmosphere. Depending on the specified experiment, initial conditions and boundary conditions are computed internally.

$5.1 \quad ha_testcase_nml \; (Scope: \; ltestcase=.TRUE. \; and \; iequations=[0,1,2] \; in \; run_nml)$

Parameter	Type	Default	Unit	Description	Scope
ctest_name	C	'JWw'		Name of test case:	
				'SW_GW': gravity wave	$lshallow_water=.TRUE.$
				'USBR': unsteady solid body rotation	$ lshallow_water=.TRUE.$
				'Will_2': Williamson test 2	$lshallow_water=.TRUE.$
				'Will_3': Williamson test 3	$lshallow_water=.TRUE.$
				'Will_5': Williamson test 5	$lshallow_water=.TRUE.$
				'Will_6': Williamson test 6	$lshallow_water=.TRUE.$
				'GW': gravity wave (nlev=20 only!)	$ lshallow_water=.FALSE.$
				'LDF': local diabatic forcing test without physics	$ lshallow_water=.FALSE.$
					and iforcing=4
				'LDF-Moist': local diabatic forcing test with	lshallow_water=.FALSE.,
				physics initalised with zonal wind field	and iforcing=5
				'HS': Held-Suarez test	$ lshallow_water=.FALSE.$
				'JWs': Jablonowski-Will. steady state	$ lshallow_water=.FALSE.$
				'JWw': Jablonowski-Will. wave test	$ lshallow_water=.FALSE.$
				'JWw-Moist': Jablonowski-Will. wave test	$lshallow_water=.FALSE.$
				including moisture	
				'APE': aqua planet experiment	$lshallow_water=.FALSE.$
				'MRW': mountain induced Rossby wave	$lshallow_water=.FALSE.$

Parameter	Type	Default	Unit	Description	Scope
				'MRW2': modified mountain induced Rossby wave	lshallow water=.FALSE
				'PA': pure advection	lshallow water=.FALSE
				'SV': stationary vortex	lshallow water=.FALSE.
				· ·	$\frac{-}{\text{ntracer}} = 2$
				'DF1': deformational flow test 1	
				'DF2': deformational flow test 2	
				'DF3': deformational flow test 3	
				'DF4': deformational flow test 4	
				'RH': Rossby-Haurwitz wave test	lshallow water=.FALSE.
rotate axis deg	R	0.0	deg	Earth's rotation axis pitch angle	ctest name='Will 2',
=					'Will 3', 'JWs', 'J\overline{Ww'},
					'PA', 'DF1234'
gw_brunt_vais	\mathbb{R}	0.01	1/s	Brunt Vaisala frequency	ctest_name= 'GW'
gw_u0	\mathbb{R}	0.0	m/s	zonal wind parameter	ctest_name= 'GW'
gw_lon_deg	R	180.0	deg	longitude of initial perturbation	ctest_name= 'GW'
gw_lat_deg	R	0.0	deg	latitude of initial perturbation	ctest_name= 'GW'
jw_uptb	R	1.0	m/s	amplitude of the wave pertubation	ctest_name= 'JWw'
			(?)		
mountctr_lon_deg	R	90.0	deg	longitude of mountain peak	ctest_name= 'MRW(2)'
$mountctr_lat_deg$	R	30.0	\deg	latitude of mountain peak	ctest_name= 'MRW(2)'
mountctr_height	R	2000.0	m	mountain height	ctest_name= 'MRW(2)'
$mountctr_half_width$	R	1500000.0	m	mountain half width	ctest_name='MRW(2)'
$mount_u0$	R	20.0	m/s	wind speed for MRW cases	ctest_name= 'MRW(2)'
${\rm rh_wavenum}$	I	4		wave number	ctest_name= 'RH'
${ m rh_init_shift_deg}$	R	0.0	deg	pattern shift	ctest_name= 'RH'
ihs_init_type	I	1		Choice of initial condition for the Held-Suarez test.	ctest_name= 'HS'
				1: the zonal state defined in the JWs test case;	
				other integers: isothermal state (T=300 K,	
				ps=1000 hPa, u=v=0.)	
lhs_vn_ptb	L	.TRUE.		Add random noise to the initial wind field in the	ctest_name= 'HS'
				Held-Suarez test.	
$hs_vn_ptb_scale$	R	1.	m/s	Magnitude of the random noise added to the initial	ctest_name= 'HS'
				wind field in the Held-Suarez test.	

Parameter	Type	Default	Unit	Description	Scope
lrh_linear_pres	L	.FALSE.		Initialize the relative humidity using a linear	ctest_name=
				function of pressure.	'JWw-Moist','APE',
					'LDF-Moist'
rh_at_1000hpa	R	0.75		relative humidity	$ctest_name =$
				0,1	'JWw-Moist','APE',
				at 1000 hPa	'LDF-Moist'
linit tracer fv	\mid L	.TRUE.		Finite volume initialization for tracer fields	ctest_name='PA'
ape sst case	C	'sst1'		SST distribution selection	ctest_name='APE'
ape_sst_ease		5501		'sst1': Control experiment	ocose_name III E
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst qobs': Qobs SST distribution exp	
				'sst ice': Control SST distribution with -1.8 C	
				above 64 N/S.	
ildf init type	I	0		Choice of initial condition for the Local diabatic	ctest name= 'LDF'
v				forcing test. 1: the zonal state defined in the JWs	_
				test case; other: isothermal state (T=300 K,	
				ps=1000 hPa, u=v=0.)	
ldf symm	L	.TRUE.		Shape of local diabatic forcing:	ctest name=
				.TRUE.: local diabatic forcing symmetric about the	'LDF ⁻ ,'LDF-Moist'
				equator (at 0 N)	
				.FALSE.: local diabatic forcing asym. about the	
				equator (at 30 N)	

Defined and used in: src/testcases/mo_ha_testcases.f90

$5.2 \quad nh_testcase_nml \; (Scope: \; ltestcase=.TRUE. \; and \; iequations=3 \; in \; run_nml)$

Parameter	Type	Default	Unit	Description	Scope
nh_test_name	C	'jabw'		test case selection	
				'zero': no orography	

Parameter	Type	Default	Unit	Description	Scope
				'bell': bell shaped mountain at 0E,0N	
				'schaer': hilly mountain at 0E,0N	
				'jabw': Initializes the full Jablonowski Williamson	
				test case.	
				'jabw s': Initializes the Jablonowski Williamson	
				steady state test case.	
				' jabw m': Initializes the Jablonowski Williamson	
				test case with a mountain instead of the wind	
				perturbation (specify mount_height).	
				'mrw nh': Initializes the full Mountain-induced	
				Rossby wave test case.	
				'mrw2 nh': Initializes the modified	
				mountain-induced Rossby wave test case.	
				'mwbr const': Initializes the mountain wave with	
				two layers test case. The lower layer is isothermal	
				and the upper layer has constant brunt vaisala	
				frequency. The interface has constant pressure.	
				'PA': Initializes the pure advection test case.	
				'HS_nh': Initializes the Held-Suarez test case. At	
				the moment with an isothermal atmosphere at rest	
				(T=300K, ps=1000hPa, u=v=0, topography=0.0).	
				'HS_jw': Initializes the Held-Suarez test case with	
				Jablonowski Williamson initial conditions and zero	
				topography.	
				'APE_nwp, APE_echam, APE_nh,	
				APEc_nh, ': Initializes the APE experiments.	
				With the jabw test case, including moisture.	
				'wk82': Initializes the Weisman Klemp test case	l = limited = area = .TRUE.
				'g_lim_area': Initializes a series of general	
				limited area test cases: itype_atmos_ana	
				determines the atmospheric profile,	
				itype_anaprof_uv determines the wind profile and	
				itype topo and determines the topography	

Parameter	Type	Default	Unit	Description	Scope
				'dcmip_pa_12': Initializes Hadley-like	
				meridional circulation pure advection test case.	
				'dcmip rest 200': atmosphere at rest test	lcoriolis = .FALSE.
				(Schaer-type mountain)	
				'dcmip mw 2x': nonhydrostatic mountain	lcoriolis = .FALSE.
				waves triggered by Schaer-type mountain	
				'dcmip gw 31': nonhydrostatic gravity waves	
				triggered by a localized perturbation (nonlinear)	
				'dcmip gw 32': nonhydrostatic gravity waves	l limited area = .TRUE.
				triggered by a localized perturbation (linear)	$\overline{\text{and lcoriolis}} = .\text{FALSE}.$
				'dcmip tc 51': tropical cyclone test case with	lcoriolis = .TRUE.
				'simple physics' parameterizations (not yet	
				implemented)	
				'dcmip tc 52': tropical cyclone test case with	lcoriolis = .TRUE.
				with full physics in Aqua-planet mode	
				'CBL': convective boundary layer simulations for	is plane torus= .TRUE.
				LES package on torus (doubly periodic) grid	
jw_up	R	1.0	m/s	amplitude of the u-perturbation in jabw test case	nh_test_name='jabw'
$u0_mrw$	R	20.0	m/s	wind speed for mrw(2) and mwbr_const cases	$nh_test_name =$
					$'mrw(2)$ _nh' and
					'mwbr_const'
$mount_height_mrw$	R	2000.0	m	maximum mount height in mrw(2) and	$nh_test_name =$
				mwbr_const	$'mrw(2)$ _nh' and
					'mwbr_const'
$mount_half_width$	R	1500000.0	m	half width of mountain in mrw(2), mwbr_const	$nh_test_name =$
				and bell	'mrw(2)_nh',
					'mwbr_const' and 'bell'
$mount_lonctr_mrw_deg$	R	90.	\deg	lon of mountain center in mrw(2) and mwbr_const	$nh_test_name =$
					$'mrw(2)$ _nh' and
					'mwbr_const'
$mount_latctr_mrw_deg$	R	30.	\deg	lat of mountain center in mrw(2) and mwbr_const	$nh_test_name =$
					$'mrw(2)$ _nh' and
					'mwbr_const'

Parameter	Type	Default	Unit	Description	Scope
temp_i_mwbr_const	R	288.0	K	temp at isothermal lower layer for mwbr_const case	$nh_test_name =$
					'mwbr_const'
$p_{int_mwbr_const}$	\mid R	70000.	Pa	pres at the interface of the two layers for	nh_test_name=
				mwbr const case	'mwbr_const'
$bruntvais_u_mwbr_const$	R	0.025	1/s	constant brunt vaissala frequency at upper layer for	$nh_{test_name} =$
				mwbr_const case	'mwbr_const'
mount _height	R	100.0	m	peak height of mountain	nh_test_name= 'b
$layer_thickness$	R	-999.0	m	thickness of vertical layers	If layer_thickness ·
					the vertical level
					distribution is read
					from externally giv
					HYB_PARAMS_X
n_{flat} level	I	2		level number for which the layer is still flat and not	layer_thickness >
				terrain-following	
$\mathrm{nh}\mathrm{_u0}$	R	0.0	m/s	initial constant zonal wind speed	$nh_{test_name} = $
$\mathrm{nh_t0}$	R	300.0	K	initial temperature at lowest level	$nh_{test_name} = $
nh_brunt_vais	R	0.01	1/s	initial Brunt-Vaisala frequency	$nh_{test_name} = $
$torus_domain_length$	R	100000.0	m	length of slice domain	$nh_{test_name} = $
					lplane=.TRUE.
${ m rotate_axis_deg}$	R	0.0	\deg	Earth's rotation axis pitch angle	nh_test_name= 'I
$lhs_nh_vn_ptb$	L	.TRUE.		Add random noise to the initial wind field in the	$nh_{test_name} =$
				Held-Suarez test.	'HS_nh'
lhs_fric_heat	L	.FALSE.		add frictional heating from Rayleigh friction in the	$nh_test_name =$
				Held-Suarez test.	'HS_nh'
$hs_nh_vn_ptb_scale$	R	1.	m/s	Magnitude of the random noise added to the initial	$nh_test_name =$
				wind field in the Held-Suarez test.	'HS_nh'
${ m rh_at_1000hpa}$	R	0.7	1	relative humidity at 1000 hPa	$nh_{test_name} = 'j$
					nh_test_name= 'r
qv_max	R	20.e-3	kg/kg	specific humidity in the tropics	nh_test_name= 'ja
					\mid nh test name= 'n

Parameter	Type	Default	Unit	Description	Scope
ape_sst_case	C	'sst1'		SST distribution selection	nh_test_name='APE_nwp
				'sst1': Control experiment	'APE_echam'
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp.	
				'sst_const': constant SST	
ape_sst_val	R	29.0	$_{ m degC}$	aqua planet SST for ape_sst_case='sst_const'	$nh_test_name =$
					'APE_nwp',
					'APE_echam'
$linit_tracer_fv$	L	.TRUE.		Finite volume initialization for tracer fields	pure advection tests, only
$lcoupled_rho$	$\mid L$.FALSE.		Integrate density equation 'offline'	pure advection tests, only
qv_max_wk	R	0.014	Kg/kg	maximum specific humidity near	nh_test_name='wk82'
				the surface, range 0.012 - 0.016	
				used to vary the buoyancy	
u_infty_wk	R	20.	m/s	zonal wind at infinity height	nh_test_name='wk82'
				range 0 45.	
				used to vary the wind shear	
bub_amp	R	2.	K	maximum amplitud of the thermal perturbation	nh_test_name='wk82'
bubctr_lat	R	0.	deg	latitude of the center of the thermal perturbation	nh_test_name='wk82'
$bubctr_lon$	R	90.	\deg	longitude of the center of the thermal perturbation	nh_test_name='wk82'
$bubctr_z$	R	1400.	m	height of the center of the thermal perturbation	nh_test_name='wk82'
bub_hor_width	R	10000.	m	horizontal radius of the thermal perturbation	nh_test_name='wk82'
bub_ver_width	R	1400.	m	vertical radius of the thermal perturbation	nh_test_name='wk82'
$itype_atmo_ana$	I	1		kind of atmospheric profile:	nh_test_name=
				1 piecewise N constant layers	'g_lim_area'
				2 piecewise polytropic layers	
$itype_anaprof_uv$	I	1		kind of wind profile:	nh_test_name=
				1 piecewise linear wind layers	'g_lim_area'
				2 constant zonal wind	
				3 constant meridional wind	

Parameter	Type	Default	Unit	Description	Scope
itype_topo_ana	I	1		kind of orography:	$nh_test_name =$
				1 schaer test case mountain	'g_lim_area'
				2 gaussian_2d mountain	
				3 gaussian_3d mountain	
				any other no orography	
$nlayers_nconst$	I	1		Number of the desired layers with a constant	$nh_test_name =$
				Brunt-Vaisala-frequency	'g_lim_area' and
					itype_atmo_ana=1
p_base_nconst	\mathbb{R}	100000.	Pa	pressure at the base of the first N constant layer	$ \begin{array}{c} \text{nh_test_name} = \end{array} $
					'g_lim_area' and
					itype_atmo_ana=1
$theta0_base_nconst$	\mathbb{R}	288.	K	potential temperature at the base of the first N	$nh_test_name =$
				constant layer	'g_lim_area' and
					itype_atmo_ana=1
h_nconst	R(nlayers	0., 1500.,	m	height of the base of each of the N constant layers	$nh_test_name =$
	$_{\rm nconst})$	12000.			'g_lim_area' and
					itype_atmo_ana=1
N_{nconst}	R(nlayers	0.01	1/s	Brunt-Vaisala-frequency at each of the N constant	$nh_test_name =$
	$_{ m nconst})$			layers	'g_lim_area' and
					$itype_atmo_ana=1$
${ m rh_nconst}$	R(nlayers	0.5	%	relative humidity at the base of each N constant	${ m nh_test_name} =$
	$_{\rm nconst}$			layers	'g_lim_area' and
					$ itype_atmo_ana=1$
${ m rhgr_nconst}$	R(nlayers	0.	%	relative humidity gradient at each of the N constant	$\mid ext{nh_test_name} =$
	$_{\rm nconst})$			layers	'g_lim_area' and
					$ itype_atmo_ana=1$
$nlayers_poly$	I	2		Number of the desired layers with constant gradient	ho = 1.00 $ ho = 1.00$
				temperature	\mid 'g $_{ m lim}$ _area' and
					itype_atmo_ana=2
p_base_poly	R	100000.	Pa	pressure at the base of the first polytropic layer	$nh_test_name =$
					'g_lim_area' and
					itype atmo ana=2

Parameter	Type	Default	Unit	Description	Scope
h_poly	R(nlayers	0., 12000.	m	height of the base of each of the polytropic layers	nh_test_name=
	_poly)				'g_lim_area' and
					$ itype_atmo_ana=2 $
t_poly	R(nlayers	288., 213.	K	temperature at the base of each of the polytropic	$\mid ext{ nh_test_name} = \mid$
	poly)			layers	'g_lim_area' and
					itype_atmo_ana=2
rh_poly	R(nlayers	0.8, 0.2	%	relative humidity at the base of each of the	$nh_test_name =$
	_poly)			polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
rhgr_poly	R(nlayers	5.e-5, 0.	%	relative humidity gradient at each of the polytropic	$nh_test_name =$
	_poly)			layers	'g_lim_area' and
					itype_atmo_ana=2
nlayers_linwind	I	2		Number of the desired layers with constant U	$nh_test_name =$
				gradient	'g_lim_area' and
					itype_anaprof_uv=1
h_linwind	R(nlayers	0., 2500.	m	height of the base of each of the linear wind layers	nh_test_name=
	_lin-				'g_lim_area' and
	wind)		,		itype_anaprof_uv=1
u_linwind	R(nlayers	5, 10.	m/s	zonal wind at the base of each of the linear wind	$nh_test_name = $
	_lin-			layers	'g_lim_area' and
	wind)				itype_anaprof_uv=1
ugr_linwind	R(nlayers	0., 0.	1/s	zonal wind gradient at each of the linear wind layers	nh_test_name=
	lin-				'g_lim_area' and
	wind)		,		itype_anaprof_uv=1
vel_const	R	20.	m/s	constant zonal/meridional wind	nh_test_name=
				$(itype_anaprof_uv=2,3)$	'g_lim_area' and
			_		$ itype_anaprof_uv=2,3 $
$mount_lonc_deg$	R	90.	\deg	longitud of the center of the mountain	nh_test_name=
			_		'g_lim_area'
mount_latc_deg	R	0.	\deg	latitud of the center of the mountain	nh_test_name=
					'g_lim_area'
schaer_h0	R	250.	m	h0 parameter for the schaer mountain	nh_test_name=
					'g_lim_area' and
					itype_topo_ana=1

Parameter	Type	Default	Unit	Description	Scope
$schaer_a$	R	5000.	m	-a- parameter for the schaer mountain,	$nh_test_name =$
				also half width in the north and south side of the	'g_lim_area' and
				finite ridge to round the sharp edges	$itype_topo_ana=1,2$
$schaer_lambda$	R	4000.	m	lambda parameter for the schaer mountain	${ m nh_test_name} =$
					'g_lim_area' and
					$itype_topo_ana=1$
$lshear_dcmip$	L	FALSE		run dcmip_mw_2x with/without vertical wind	$nh_test_name =$
				shear	'dcmip_mw_2x'
				FALSE: dcmip_mw_21: non-sheared	
				TRUE : dcmip_mw_22: sheared	
${ m halfwidth_2d}$	R	10000.	m	half lenght of the finite ridge in the north-south	${ m nh_test_name} =$
				direction	'g_lim_area' and
					$itype_topo_ana=1,2$
${ m m_height}$	R	1000.	m	height of the mountain	${ m nh_test_name} =$
					'g_lim_area' and
					$itype_topo_ana=2,3$
$m_{width}x$	R	5000.	m	half width of the gaussian mountain in the	${ m nh_test_name} =$
				east-west direction	'g_lim_area' and
				half width in the north-south direction in the	$itype_topo_ana=2,3$
				rounding of the finite ridge (gaussian_2d)	
m_width_y	R	5000.	m	half width of the gaussian mountain in the	$nh_test_name =$
				north-south direction	'g_lim_area' and
					$itype_topo_ana=2,3$
gw_u0	R	0.	m/s	maximum amplitude of the zonal wind	$nh_test_name =$
					'dcmip_gw_3X'
gw_clat	R	90.	\deg	Lat of perturbation center	$nh_test_name =$
					'dcmip_gw_3X'
${ m gw_delta_temp}$	R	0.01	K	maximum temperature perturbation	$nh_test_name =$
					'dcmip_gw_32'
$u_cbl(2)$	R	0:0	m/s	to prescribe initial zonal velocity profile for	$nh_test_name=CBL$
			and	convective boundary layer simulations where	
			1/s	$u_{cbl}(1)$ sets the constant and $u_{cbl}(2)$ sets the	
1				vertical gradient	

Parameter	Type	Default	Unit	Description	Scope
v_cbl(2)	R	0:0	m/s	to prescribe initial meridional velocity profile for	$nh_test_name=CBL$
			and	convective boundary layer simulations where	
			1/s	v_cbl(1) sets the constant and v_cbl(2) sets the	
				vertical gradient	
$th_cbl(2)$	R	290:0.006	K and	to prescribe initial potential temperature profile for	$nh_test_name=CBL$
			K/m	convective boundary layer simulations where	
				th_cbl(1) sets the constant and th_cbl(2) sets the	
				gradient	

Defined and used in: src/testcases/mo_nh_testcases.f90

6 External data

$6.1 \quad extpar_nml \; (Scope: \; itopo{=}1 \; in \; run_nml)$

Parameter	Type	Default	Unit	Description	Scope
itopo	I	0		0: analytical topography/ext. data	
				1: topography/ext. data read from file	
$n_iter_smooth_topo$	I(n_dom)	0		iterations of topography smoother	itopo = 1
fac_smooth_topo	R	0.015625		pre-factor of topography smoother	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
hgtdiff_max_smooth_topo	R	0.	m	RMS height difference to neighbor grid points at which the smoothing pre-factor fac_smooth_topo reaches its maximum value (linear proportionality for weaker slopes)	n_iter_smooth_topo > 0
heightdiff_threshold	R(n_dom)	3000.	m	height difference between neighboring grid points above which additional local nabla2 diffusion is applied	
l_emiss	L	.TRUE.		read and use external surface emissivity map	itopo = 1
${f extpar_filename}$	C			Filename of external parameter input file, default:	
				" <path>extpar_<gridfile>". May contain the keyword <path> which will be substituted by model_base_dir.</path></gridfile></path>	

Parameter	Type	Default	Unit	Description	Scope
extpar_varnames_map_	С	, ,		Filename of external parameter dictionary, This is a	
file				text file with two columns separated by whitespace,	
				where left column: NetCDF name, right column:	
				GRIB2 short name. It is required, if external	
				parameter are read from a file in GRIB2 format.	

Defined and used in: src/namelists/mo_extpar_nml.f90

7 External packages

8 Information on vertical level distribution

If no vertical sleve coodinate is chosen (ivctype / =2), the hydrostatic and nonhydrostatic models need hybrid vertical level information to generate the terrain following coordinates. The hybrid level specification is stored in <icon home>/hyb_params/HYB_PARAMS_<nlev>. The hydrostatic model assumes to get pressure based coordinates, the nonhydrostatic model expects height based coordinates. For further information see <icon home>/hyb_params/README.

A Arithmetic expression evaluation

The mo_expression module evaluates basic arithmetic expressions specified by character-strings. It is possible to include mathematical functions, operators, and constants. An application of this module is the evaluation of arithmetic expressions povided as namelist parameters.

Besides, Fortran variables can be linked to the expression and used in the evaluation. The implementation supports scalar input variables as well as 2D and 3D fields.

From a users' point of view, the basic usage of this module is described in Section ?? below. Technically, infix expressions are processed based on a Finite State Machine (FSM) and Dijkstra's shunting yard algorithm. A more detailed described of the Fortran interface is given in Section ??.

A.1 Examples for arithmetic expressions

Basic examples:

• "sqrt(2.0)"

- "sin(45*pi/180.) * 10 + 5"
- "if(1. > 2, 99, -1.*pi)"
- "min(1,2)"

Variables are used with a bracket notation:

• "sqrt([u]^2 + [v]^2)"

Note that the use of variables requires that these are enabled ("linked") by the Fortran routine that calls the mo_expression module.

A.2 Expression syntax

A.2.1 List of functions

name	$\# { m args}$	description
log(), exp()	1	natural logarithm and its inverse function.
sin(), cos()	1	trigonometric functions
sqrt()	1	square root
min(), max()	2	minimum and maximum of two values
if(value, then, else)	3	conditional expression ($value > 0.$)

A.2.2 List of operators

name	evaluates to
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(a+b), (a-b), (a*b), (a/b)$ a^b
a > b	$\begin{cases} 1, & \text{if } a > b, \\ 0, & \text{otherwise.} \end{cases}$
a < b	$\begin{cases} 1, & \text{if } a < b, \\ 0, & \text{otherwise.} \end{cases}$

A.2.3 List of available constants

name of constant	assigned value	description
pi	4 atan(1)	mathematical constant equal to a circle's cir-
		cumference divided by its diameter
r	$6.371229 \cdot 10^6$	Earth's radius ¹

A.3 Usage with Fortran

The minimal Fortran interface is as follows:

- 1. The TYPE expression which is initialized with the character-string that specifies the arithmetic expression.
- 2. The type-bound procedure evaluate(), which returns the result (scalar or array-shaped) as a POINTER.
- 3. The type-bound procedure link() connecting a variable to a name in the character-string expression.

A.3.1 Fortran examples

The following examples illustrate the arithmetic expression parser. The calls to DEALLOCATE the data structures have been ommitted for the sake of brevity:

1. Scalar arithmetic expression:

```
formula = expression("sin(45*pi/180.) * 10 + 5")
CALL formula%evaluate(val)
... use "val" for some purpose ...
```

2. Masking of a 2D array as an example for the link procedure:

```
formula = expression("if([z_sfc] > 2., [z_sfc], 0. )")
CALL formula%link("z_sfc", z_sfc)
CALL formula%evaluate(val_2D)
... use "val_2D(:,:)" for some purpose ...
```

A.3.2 Error handling

Invalid arithmetic expressions yield "empty" expression objects. When these are evaluated, a NULL() pointer is returned. A successful expression evaluation can be tested with the err_no variable:

```
IF (formula%err_no == ERR_NONE) THEN
    ...
END IF
```

In case of error, the err_no variable also provides the reason for the aborted evaluation process.

A.4 Remarks

- Variable names are treated case-sensitive!
- For 3D array input it is implicitly assumed that 2D fields are embedded in 3D fields as "3D(:,level,:) = 2D(:,:)".

B Changes incompatible with former versions of the model code

Change: var_names_map_file, out_varnames_map_file

Date of Change: 2013-04-25

Revision: 12016

- $\bullet \ \operatorname{Renamed} \ \mathbf{var_names_map_file} \to \mathbf{output_nml_dict}.$
- $\bullet \ \, \mathrm{Renamed} \ \, \mathbf{out_varnames_map_file} \rightarrow \mathbf{netcdf_dict}.$
- The dictionary in $netcdf_dict$ is now reversed, s.t. the same map file as in output_nml_dict can be used to translate variable names to the ICON internal names and back.

Change: output_nml: namespace
Date of Change: 2013-04-26
Revision: 12051

¹ This number seems to be based on Hayford's 1910 estimate of the Earth. It is used in ICON as well as MPAS and was almost certainly taken from the Jablonowski and Williamson test case (QJRMS, 2006).

• Removed obsolete namelist variable namespace from output nml.

Change:gribout_nml:generatingCenter, generatingSubcenterDate of Change:2013-04-26Revision:12051

- Introduced new namelist variables generatingCenter and generatingSubcenter.
- If not set explicitly, center and subcenter information is copied from the input grid file

Change:radiation_nml: albedo_typeDate of Change:2013-05-03Revision:12118

- Introduced new namelist variable **albedo type**
- If set to 2, the surface albedo will be based on the MODIS data set.

Change:initicon_nml: dwdinc_filenameDate of Change:2013-05-24Revision:12266

 \bullet Renamed dwdinc_filename to dwdana_filename

Change:initicon_nml: l_ana_sfcDate of Change:2013-06-25Revision:12582

• If true, soil/surface analysis fields are read from the analysis fiel dwdfg filename. If false, surface analysis fields are not read. Soil and surface are initialized with the first guess instead.

Change: new_nwp_phy_tend_list: output names consistent with variable names

Date of Change: 2013-06-25

12590

- temp tend radlw \rightarrow ddt temp radlw
- temp tend $turb \rightarrow ddt$ temp turb
- temp tend $drag \rightarrow ddt$ temp drag

- Removed the sources for the "prepicon" binary!
- The "prepicon" functionality (and most of its code) has become part of the ICON tools.

ullet The number of vertical input levels is now read from file. The namelist parameter ${\bf nlev_in}$ has become obsolete in r12700 and has been removed.

 $\begin{array}{ccc} {\it Change:} & {\it parallel_nm} \\ {\it Date of Change:} & {\it 2013-10-14} \\ {\it Revision:} & {\it 14160} \end{array}$

• The namelist parameter exch msgsize has been removed together with the option iorder sendrecv=4.

 $\begin{array}{ll} {\it Change:} & {\it parallel_nml} \\ {\it Date of Change:} & {\it 2013-08-14} \\ {\it Revision:} & {\it 14164} \end{array}$

• The namelist parameter use sp output has been replaced by an equivalent switch use dp mpi2io (with an inverse meaning, i.e. we have use $dp mpi\overline{2io} = .NOT$. use sp output).

 $egin{array}{ll} {\it Change:} & {\it parallel_nml} \ {\it Date of Change:} & {\it 2013-08-15} \ {\it Revision:} & {\it 14175} \ \end{array}$

• The above-mentioned namelist parameter use dp mpi2io got the default .FALSE. By this, the output data are sent now in single precision to the output processes.

Change:initicon_nml: l_ana_sfcDate of Change:2013-10-21Revision:14280

• The above-mentioned namelist parameter l ana sfc has been replaced by lread ana. The default is set to .TRUE., meaning that analysis fields are required and read on default. With Iread ana=.FALSE. ICON is able to start from first guess fields only.

Change:output_nml:lwrite_ready, ready_directoryDate of Change:2013-10-25Revision:14391

• The namelist parameters lwrite ready and ready directory have been replaced by a single namelist parameter ready file, where ready_file /= 'default' enables writing ready files.

• Different output_nml's may be joined together to form a single ready file event - they share the same ready_file.

Change:output_nml:output_boundsDate of Change:2013-10-25Revision:14391

• The namelist parameter **output bounds** specifies a start, end, and increment of output invervals. It does no longer allow multiple triples.

Change:output_nml:steps_per_fileDate of Change:2013-10-30Revision:14422

 \bullet The default value of the namelist parameter ${\bf steps_per_file}$ has been changed to ${\tt -1}.$

 $\begin{array}{ll} \textit{Change:} & \text{run_nml} \\ \textit{Date of Change:} & \textbf{2013-11-13} \\ \textit{Revision:} & \textbf{14759} \end{array}$

- The dump/restore functionality for domain decompositions and interpolation coefficients has been removed from the model code. This means, that the parameters
 - ldump_states,
 - lrestore_states,
 - ldump_dd,
 - lread_dd,
 - nproc_dd,
 - dd_filename,
 - dump_filename,

```
- l_one_file_per_patch
```

have been removed together with the corresponding functionality from the ICON model code.

Change:output_nml:filename_formatDate of Change:2013-12-02Revision:15068

• The string token <ddhhmmss> is now substituted by the relative day-hour-minute-second string, whereas the absolute date-time stamp can be inserted using <datetime>.

Change:output_nml: ready_fileDate of Change:2013-12-03Revision:15081

• The ready file name has been changed and may now contain string tokens <path>, <datetime>, <ddhhmmss> which are substituted as described for the namelist parameter filename_format.

 $\begin{array}{ll} \textit{Change:} & \text{interpl_nml: rbf_vec_scale_ll} \\ \textit{Date of Change:} & \textbf{2013-12-06} \end{array}$

15156

- The real-valued namelist parameter rbf_vec_scale_11 has been removed.
- Now, there exists a new integer-valued namelist parameter, rbf_scale_mode_11 which specifies the mode, how the RBF shape parameter is determined for lon-lat interpolation.

io nml
 Change:
 10_ IIIII

 Date of Change:
 2013-12-06

15161

- Removed remaining vlist-related namelist parameter. This means that the parameters
 - out_filetype
 - out expname
 - dt data
 - dt file
 - lwrite_dblprec, lwrite_decomposition, lwrite_vorticity, lwrite_divergence, lwrite_pres, lwrite_z3, lwrite_tracer, lwrite_tend_phy, lwrite_radiation, lwrite_precip, lwrite_cloud, lwrite_tke, lwrite_surface, lwrite_omega, lwrite_initial, lwrite_oce_timestepping

are no longer available.

 Change:
 gridref_nml

 Date of Change:
 2014-01-07

 Revision:
 15436

• Changed namelist defaults for nesting: grf_intmethod_e, 1_mass_consvcorr, 1_density_nudging.

 $\begin{array}{ll} {\it Change:} & {\it interpol_nml} \\ {\it Date~of~Change:} & {\it 2014-02-10} \\ {\it Revision:} & {\it 16047} \end{array}$

• Changed namelist default for rbf_scale_mode_11: The RBF scale factor for lat-lon interpolation is now determined automatically by default.

 Change:
 echam_phy_nml

 Date of Change:
 2014-02-27

 Revision:
 16313

• Replace the logical switch lcover by the integer switch icover that is used in ECHAM-6.2. Values are transferred as follows: .FALSE. = 1 (=default), .TRUE. = 2.

• Change constant minimum vertical diffusion coefficients to variable ones proportional to $1/\sqrt{Ri}$ for inwportion turb = 10; at the same time the defaults for tkhmin and tkmmin are increased from $0.2 \,\mathrm{m}^2/\mathrm{s}$ to $0.75 \,\mathrm{m}^2/\mathrm{s}$.

 Change:
 nwp_phy_nml

 Date of Change:
 2014-03-13

 Revision:
 16560

• Removed namelist parameter dt_ccov, since practically it had no effect. For the quasi-operational NWP-setup, the calling frequency of the cloud cover scheme is the same as that of the convection scheme. I.e. both are synchronized.

 Change:
 nwp_phy_nml

 Date of Change:
 2014-03-24

 Revision:
 16668

• Changed namelist default for **itype z0**: use land cover related roughness only (itype z0=2).

Change:nonhydrostatic_nmlDate of Change:2014-05-16Revision:17293

• Removed switch for vertical TKE advection in the dynamical core (lvadv tke). TKE advection has been moved into the transport scheme and can be activated with iadv tke=1 in the transport nml.

Change:nonhydrostatic_nmlDate of Change:2014-05-27Revision:17492

• Removed namelist parameter model_restart_info_filename in namelist master_model_nml.

Change:transport_nmlDate of Change:2014-06-05Revision:17654

• Changed namelist default for itype_hlimit from monotonous limiter (3) to positive definite limiter (4).

 $\begin{array}{ll} \textit{Change:} & \text{nh_pzlev_nml} \\ \textit{Date of Change:} & 2014\text{-}08\text{-}28 \\ \textit{Revision:} & 18795 \end{array}$

• Removed namelist nh_pzlev_nml. Instead, each output namelist specifies its separate list of p_levels, h_levels, and i_levels.

Change:nonhydrostatic_nmlDate of Change:2014-10-27Revision:19670

• Removed namelist parameter l_nest_rcf in namelist nonhydrostatic_nml.

Change:nonhydrostatic_nmlDate of Change:2014-11-24Revision:20073

• Removed namelist parameter iadv_rcf in namelist nonhydrostatic_nml. The number of dynamics substeps per advective step are now specified via ndyn_substeps. The meaning of run_nml:dtime has changed and denotes the advective time step.

 $\begin{array}{ccc} {\it Change:} & & io_nml \\ {\it Date of Change:} & & 2015\text{-}03\text{-}25 \\ {\it Revision:} & & 21501 \end{array}$

• Namelist parameter lzaxis_reference is deprecated and has no effect anymore. However, users are not forced to modify their scripts instantaneously: lzaxis_reference=.FALSE. is still a valid namelist setting, but it has no effect and a warning will be issued. lzaxis_reference finally removed in r24606.

 $\begin{array}{ll} {\it Change:} & {\it limarea_nml} \\ {\it Date of Change:} & {\it 2016-02-08} \\ {\it Revision:} & {\it 26390} \end{array}$

• Namelist parameter dt_latbc has been removed. Its value is now identical to the namelist parameter dtime_latbc.

 $\begin{array}{ll} {\it Change:} & {\it interpol_nml} \\ {\it Date of Change:} & {\it 2016-02-11} \\ {\it Revision:} & {\it 26423} \end{array}$

• Namelist parameter l_intp_c2l is deprecated and has no effect anymore.