

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC161260

Page: 1 of 92

FCC Radio Test Report FCC ID: XMF-MID1016-MK

Original Grant

Report No. : TB-FCC161260

Applicant: Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : Tablet PC

Model No. : MID1016-MK

Series Model No. : DL1016, MID1016-MA, MID1016-L, DL1016-MK, DL1016MK,

DL10XXXXXX (X can be 0~9, A~Z)

Brand Name : ---

Receipt Date : 2018-08-02

Test Date : 2018-08-03 to 2018-08-14

Issue Date : 2018-08-15

Standards : FCC Part 15, Subpart C (15.247:2017)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer:

Engineer Supervisor :

Engineer Manager : Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

TB-RF-074-1.0

Page: 2 of 92

the report.

Contents

COL	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	
	6.5 Test Data	19
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21

Page: 3 of 92

8.1 Test Standard and Limit	21
8.2 Test Setup	21
8.3 Test Procedure	21
8.4 EUT Operating Condition	21
POWER SPECTRAL DENSITY TEST	22
9.4 EUT Operating Condition	22
9.5 Test Data	22
ANTENNA REQUIREMENT	23
ACHMENT A CONDUCTED EMISSION TEST DATA	24
ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	54
ACHMENT F POWER SPECTRAL DENSITY TEST DATA	
	8.1 Test Standard and Limit 8.2 Test Setup 8.3 Test Procedure 8.4 EUT Operating Condition 8.5 Test Data POWER SPECTRAL DENSITY TEST 9.1 Test Standard and Limit 9.2 Test Setup 9.3 Test Procedure 9.4 EUT Operating Condition 9.5 Test Data ANTENNA REQUIREMENT 10.1 Standard Requirement 10.2 Antenna Connected Construction ACHMENT A CONDUCTED EMISSION TEST DATA ACHMENT B RADIATED EMISSION TEST DATA ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA ACHMENT D BANDWIDTH TEST DATA ACHMENT E PEAK OUTPUT POWER TEST DATA ACHMENT E PEAK OUTPUT POWER TEST DATA ACHMENT E POWER SPECTRAL DENSITY TEST DATA

Page: 4 of 92

Revision History

Report No.	Version	Description	Issued Date
TB-FCC161260	Rev.01	Initial issue of report	2018-08-15
The state of the s			The state of the s
100			TUDE
3	53	TOTAL TOTAL	
4000			WODE
1000			(COSS
			TO THE
	TUDE TO		TO LIST
THE PERSON NAMED IN			Maria
333	Mr. O		01.7

Page: 5 of 92

1. General Information about EUT

1.1 Client Information

Applicant	:	Lightcomm Technology Co., Ltd.
		RM 1808 18/F FO TAN INDUSTRIAL CENTRE NOS. 26-28, AU PU WAN STREET FO TAN SHATIN NEW TERRITORIES, HONGKONG
Manufacturer : Huizhou Heng Du Electronics Co., Ltd.		
Address		No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue Huizhou, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Tablet PC				
Models No.	M		MID1016-MK, DL1016, MID1016-MA, MID1016-L, DL1016-MK, DL1016MK, DL10XXXXXX (X can be 0~9, A~Z)			
Model Difference	:	All models are in the same PCB layout interior structure and electrical circuits, The only difference is model name.				
a Com		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz			
Paradisa (1	Number of Channel:	802.11b/g/n(HT20):11 channels see note(3) 802.11b/g/n(HT40):9 channels see note(3)			
Product Description		RF Output Power:	802.11b: 8.69dBm 802.11g: 8.66dBm 802.11n (HT20): 7.46dBm 802.11n (HT40): 5.74dBm			
	N	Antenna Gain:	1.81 dBi FPC Antenna			
Power Supply	:	DC Voltage Supply from Adapter(TEKA012-0502000UK). DC Voltage supplied by Li-ion battery.				
Power Rating	>	TEKA012-0502000UK: Input: AC 100-240V 50/60Hz 0.35A(MAX) Output: DC 5.0V 2A by adapter DC 3.7V by 5000mAh Li-ion battery				
Software Version		N/A				
Hardware Version		N/A				
Connecting I/O Port(S)		Please refer to the User's Manual				

Page: 6 of 92

Note:

(1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v04.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note: CH 01~CH 11 for 802.11b/g/n(HT20) CH 03~CH 9 for 802.11n(HT40)

- (4) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

USB Charging Mode

100				A CONTRACTOR OF THE PARTY OF TH	
	Adapter		EUT		
	·				
,		Cable 1			

TX Mode

1.4 Description of Support Units

Equipment Information						
Name	Model	Model FCC ID/VOC Manufacturer		Used "√"		
ADAPTER	TEKA012-0502000UK	II TO	TEKA TECHNOLOGY CO., LTD	7		
Cable Information						

Page: 7 of 92

Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	NO	NO	0.8M	400

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	USB Charging with TX B Mode			

For Radiated Test				
Final Test Mode	Description			
Mode 2	TX Mode B Mode Channel 01/06/11			
Mode 3	TX Mode G Mode Channel 01/06/11			
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11			
Mode 5	TX Mode N(HT40) Mode Channel 03/06/09			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps) 802.11n (HT40) Mode: MCS 0 (13 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 92

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	MTE	EKEngineerModeOpen.	exe
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	8.1	8.1	8.1
IEEE 802.11g OFDM	5	5	6
IEEE 802.11n (HT20)	4	4	4
Test Software Version	MTE	EKEngineerModeOpen.	exe
Channel	CH 03	CH 06	CH 09
IEEE 802.11n (HT40)	3	3	3

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
GW -	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Dadioted Emission	Level Accuracy:	. 4 40 dD
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
De dista d Essissian	Level Accuracy:	±4.20 dB
Radiated Emission	Above 1000MHz	±4.20 UB

Page: 9 of 92

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 92

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2					
Standa	rd Section	Took Itom	ludament		
FCC	IC	Test Item Judgmei		t Remark	
15.203	1	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A	

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 11 of 92

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emission	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.25, 2017	Mar. 24, 2018
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.25, 2017	Mar. 24, 2018
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.24, 2017	Mar. 23, 2018
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.24, 2017	Mar. 23, 2018
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	HP	8449B	3008A00849	Mar.25, 2017	Mar. 24, 2018
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.24, 2017	Mar. 23, 2018
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conduct	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018
NE FUWEI SEIISUI	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018

Page: 12 of 92

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Transport (MIN)	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 92

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 92

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3	m (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 15 of 92

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 92

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 17 of 92

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 92

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)

FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of	3m (dBuV/m)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency below 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 19 of 92

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 92

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC	FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item	Test Item Limit Frequency Range(M				
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5			

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 92

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item Limit Frequency Range(
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v04. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 92

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item Limit Frequency Range(MF				
Power Spectral Density 8dBm(in any 3 kHz) 2400~248				

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 92

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.81dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

	Antenna Type			
17	Permanent attached antenna			
		7		
	Professional installation antenna			

24 of 92

Attachment A-- Conducted Emission Test Data

Report No.: TB-FCC161260
Page: 25 of 92

Temperature:	25 ℃	F	Relative Humi	dity:	55%	TOTAL STREET	
Test Voltage:	AC 120V/60 H	łz	THI)		A	Alle	
Terminal:	Neutral	Neutral					
Test Mode:	Charging with	TX B Mode		1 6			
Remark:	Only worse ca	se is reported			- 1	INTERNA	
90.0 dBuV	0.5	WHZ)	Marine Ma		QP: AVG:		
No. Mk.	Readi Freq. Leve		Measure- ment	Limit	Over		
	MHz dBu\	dB	dBuV	dBuV	dB	Detector	
1 0.	1700 37.0	9.64	46.72	64.96	-18.24	QP	
2 0.	1700 21.0	9.64	30.66	54.96	-24.30	AVG	
3 0.	2058 33.1	9.65	42.81	63.37	-20.56	QP	
4 0.	2058 17.1	1 9.65	26.76	53.37	-26.61	AVG	
5 0.	6018 31.8	1 9.59	41.40	56.00	-14.60	QP	
6 * 0.	6018 24.3	9.59	33.98	46.00	-12.02	AVG	
7 1.	4458 27.3	9.60	36.92	56.00	-19.08	QP	
8 1.	4458 14.5	1 9.60	24.11	46.00	-21.89	AVG	
9 2.	9060 26.8	4 9.66	36.50	56.00	-19.50	QP	
10 2.	9060 14.23	3 9.66	23.89	46.00	-22.11	AVG	
11 14.	5137 28.8	3 10.57	39.45	60.00	-20.55	QP	
12 14.	5137 10.1	7 10.57	20.74	50.00	-29.26	AVG	
Emission Level	= Read Level+	Correct Facto	r				

26 of 92 Page:

Report No.: TB-FCC161260 Page: 27 of 92

Page: 28 of 92

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25 ℃	1		Relative	Humidity	: 55%	
Test Voltage:	AC 120	V/60 Hz	China Control		1	6	11/9
Ant. Pol.	Horizon	ntal		Million		A W	
Test Mode:	TX B M	ode 2412N	ИHz		MID	رالا	a
Remark:	Only wo	orse case i	s reported		670	en	
80.0 dBuV/m							
					(RF)F(CC 15C 3M Ra	ediation
						Ma	argin -6 dB
30		_	4	ı	6		
1		2	3 X	5 X	\^\		mark
an X		\bigwedge	/ \ m	1	Munu 1	Lungahan	Variable.
my	harman de	The same	, Mh	W	V V*		
20							
30.000 40	50 60 70	80	(MHz)		300 400	500 600	700
		Reading	Correct	Measure-		_	
No. Mk	. Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	35.2511	36.96	-16.87	20.09	40.00	-19.91	QP
2	81.7831	44.32	-22.43	21.89	40.00	-18.11	QP
3	133.6184	47.14	-22.46	24.68	43.50	-18.82	QP
4 *	189.7384	48.88	-19.83	29.05	43.50	-14.45	QP
5	281.0074	42.00	-16.57	25.43	46.00	-20.57	QP
6	437.1197	41.86	-12.06	29.80	46.00	-16.20	QP
							-

Page: 29 of 92

	eratur	e:	25 ℃		R	elative Hu	ımidity:	55%		W
Test \	/oltage) :	AC 12	20V/60 Hz	13	= 41	11		J 1	
Ant. F	Pol.		Vertica	al	100	8.6		Alle		
Test N	Mode:		TXBI	Mode 2412	MHz			630	a Til	
Rema	rk:		Only v	worse case	is reported			-	Ann	
80.0 c	BuV/m									
							(R	F)FCC 15C 3M	Radiation	
									Margin -6 dB	
<u> </u>										Щ
30	1 X				5					
	MA	2 3 X X		4	Λ _λ .				www.	~~~
	7	N July		Λ	/ W W	W	www	water March March	AUJANY 1 TO	\top
				Warner M.		ar monday a	WW ³ 1			+
			' W							Ш
-20										
-20 30.000) 40	50	60 70		(MHz)	;	300 4	DO 500 (600 700	1000.0
) 40	50	60 70	Dooding				00 500 (600 700	1000.0
	No. N		60 70 Freq.	Reading Level	Correct	Measure-				1000.0
				Reading Level				Over		-
		Mk.	Freq.	Level	Correct Factor	Measure- ment	Limit	Over m dB	r Detecto	- r
30.000	No. N	Mk.	Freq.	Level dBuV	Correct Factor	Measure- ment dBuV/m	Limit dBu\//	Over dB 0 -8.03	Detecto	- r
30.000	No. No. 1 * 2	Mk. 37 48	Freq. MHz 7.2854 8.3318	Level dBu√ 49.80 45.76	Correct Factor dB/m -17.83 -22.68	Measure- ment dBuV/m 31.97 23.08	Limit dBu\//	Over dB 0 -8.00	Detecto 3 QP 92 QP	- r
30.000	No. No. 1 * 2 3	Mk. 37 48 54	Freq. MHz 7.2854 8.3318 4.8348	Level dBu√ 49.80 45.76 48.26	Correct Factor dB/m -17.83 -22.68 -23.79	Measure- ment dBuV/m 31.97 23.08 24.47	Limit dBuV/ 40.0 40.0	Over dB 0 -8.03 0 -16.9 0 -15.5	Detecto 3 QP 92 QP	- r
30.000	No. N	Mk. 37 48 54 81	Freq. MHz 7.2854 8.3318 4.8348 1.2116	Level dBu√ 49.80 45.76 48.26 43.61	Correct Factor dB/m -17.83 -22.68 -23.79 -22.46	Measure- ment dBuV/m 31.97 23.08 24.47 21.15	Limit dBuV/ 40.0 40.0 40.0 40.0	Over dB 0 -8.03 0 -16.9 0 -15.5 0 -18.8	Detector QP QP QP QP QP QP QP QP	- r
-	No. No. 1 * 2 3	Mk. 37 48 54 87	Freq. MHz 7.2854 8.3318 4.8348	Level dBu√ 49.80 45.76 48.26 43.61	Correct Factor dB/m -17.83 -22.68 -23.79	Measure- ment dBuV/m 31.97 23.08 24.47	Limit dBuV/ 40.0 40.0	Over dB 0 -8.03 0 -15.5 0 -18.8 0 -13.9	Detecto 3 QP 92 QP 53 QP 85 QP	-

Page: 30 of 92

Above 1GHz

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	OC 3.7V						
Ant. Pol.	Horizontal	lorizontal						
Test Mode:	TX B Mode 2412MHz							
Remark:	No report for the emission	No report for the emission which more than 10 dB below the prescribed						
	limit.							

No	. Mk.	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4822.560	43.37	14.55	57.92	74.00	-16.08	peak
2	*	4824.108	30.05	14.55	44.60	54.00	-9.40	AVG

Page: 31 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	Million					
Ant. Pol.	Vertical						
Test Mode:	TX B Mode 2412MHz	TX B Mode 2412MHz					
Remark:	below the						

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4825.176	43.18	14.56	57.74	74.00	-16.26	peak
2	*	4825.176	29.45	14.56	44.01	54.00	-9.99	AVG

Page: 32 of 92

1	Temperature:	25 ℃	Relative Humidity:	55%			
	Test Voltage:	DC 3.7V Horizontal					
	Ant. Pol.						
	Test Mode:	TX B Mode 2437MHz	TX B Mode 2437MHz				
	Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	×	4872.500	29.68	14.85	44.53	54.00	-9.47	AVG
2		4875.188	43.20	14.87	58.07	74.00	-15.93	peak

Page: 33 of 92

í	Temperature:	25 ℃	Relative Humidity:	55%				
ì	Test Voltage:	DC 3.7V	OC 3.7V					
	Ant. Pol.	Vertical						
	Test Mode:	TX B Mode 2437MHz	TX B Mode 2437MHz					
	Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No. Mk.		. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4872.650	30.06	14.85	44.91	54.00	-9.09	AVG
2		4875.356	42.96	14.87	57.83	74.00	-16.17	peak

Page: 34 of 92

-							
	Temperature:	25 ℃	Relative Humidity:	55%			
	Test Voltage:	DC 3.7V	Militia	1			
	Ant. Pol.	Horizontal					
	Test Mode:	TX B Mode 2462MHz					
	Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.318	44.21	15.17	59.38	74.00	-14.62	peak
2	*	4924.318	30.17	15.17	45.34	54.00	-8.66	AVG

Page: 35 of 92

í	Temperature:	25 ℃	Relative Humidity:	55%		
	Test Voltage:	DC 3.7V				
	Ant. Pol.	Vertical	31 6			
	Test Mode:	TX B Mode 2462MHz				
	Remark: No report for the emission which more than 10 dB below the prescribed limit.					
				ļ		

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.426	43.26	15.17	58.43	74.00	-15.57	peak
2	*	4924.426	30.02	15.17	45.19	54.00	-8.81	AVG

Page: 36 of 92

Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Horizontal				
Test Mode:	TX G Mode 2412MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.				

No.	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.592	42.95	14.55	57.50	74.00	-16.50	peak
2	*	4823.874	30.18	14.55	44.73	54.00	-9.27	AVG

Page: 37 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX G Mode 2412MHz	TX G Mode 2412MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

N	o. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4822.932	29.77	14.55	44.32	54.00	-9.68	AVG
2		4825.002	42.70	14.55	57.25	74.00	-16.75	peak

Page: 38 of 92

í	Temperature:	25 ℃	Relative Humidity:	55%			
ì	Test Voltage:	DC 3.7V	Million				
	Ant. Pol.	Horizontal					
	Test Mode:	TX G Mode 2437MHz	TX G Mode 2437MHz				
	Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.762	43.16	14.86	58.02	74.00	-15.98	peak
2	*	4874.762	29.71	14.86	44.57	54.00	-9.43	AVG

Page: 39 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical						
Test Mode:	TX G Mode 2437MHz	TX G Mode 2437MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
400.0 10.111							

No.	Mk.	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4875.284	43.13	14.87	58.00	74.00	-16.00	peak
2	*	4875.284	29.67	14.87	44.54	54.00	-9.46	AVG

Page: 40 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	OC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX G Mode 2462MHz	TX G Mode 2462MHz					
Remark:	No report for the emis	No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.676	43.25	15.17	58.42	74.00	-15.58	peak
2	*	4923.844	30.43	15.17	45.60	54.00	-8.40	AVG

Page: 41 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	OC 3.7V					
Ant. Pol.	Vertical						
Test Mode:	TX G Mode 2462MHz	TX G Mode 2462MHz					
Remark:	No report for the emission prescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.696	43.88	15.18	59.06	74.00	-14.94	peak
2	*	4925.434	30.35	15.19	45.54	54.00	-8.46	AVG

Page: 42 of 92

	Temperature:	25 ℃	Relative Humidity:	55%			
	Test Voltage:	DC 3.7V					
	Ant. Pol.	Horizontal					
	Test Mode:	TX N(HT20) Mode 2412MHz					
ŕ	Remark:	No report for the emission which more than 10 dB below the					
		prescribed limit.					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	×	4823.778	30.19	14.55	44.74	54.00	-9.26	AVG
2		4824.738	41.52	14.55	56.07	74.00	-17.93	peak

Page: 43 of 92

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		1
Ant. Pol.	Vertical		The second
Test Mode:	TX N(HT20) Mode	2412MHz	
Remark:	No report for the e prescribed limit.	mission which more than 10 dB	3 below the

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.202	43.11	14.55	57.66	74.00	-16.34	peak
2	*	4823.202	29.41	14.55	43.96	54.00	-10.04	AVG

Page: 44 of 92

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	OC 3.7V				
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX N(HT20) Mode 2437M	TX N(HT20) Mode 2437MHz				
Remark:						

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	×	4872.500	29.75	14.85	44.60	54.00	-9.40	AVG
2		4873.310	43.45	14.86	58.31	74.00	-15.69	peak

Page: 45 of 92

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 243	TX N(HT20) Mode 2437MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
400.0 10.111						

N	lo. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4873.448	29.96	14.86	44.82	54.00	-9.18	AVG
2		4874.768	42.85	14.86	57.71	74.00	-16.29	peak

Page: 46 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		- W				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT20) Mode 24	TX N(HT20) Mode 2462MHz					
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4922.860	44.77	15.17	59.94	74.00	-14.06	peak
2	*	4922.860	30.01	15.17	45.18	54.00	-8.82	AVG

Page: 47 of 92

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	Million				
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2462MH:	TX N(HT20) Mode 2462MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
400.0 10.111						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.498	43.51	15.17	58.68	74.00	-15.32	peak
2	*	4924.498	29.96	15.17	45.13	54.00	-8.87	AVG

Page: 48 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT40) Mode	TX N(HT40) Mode 2422MHz					
Remark:	No report for the emission which more than 10 dB below the						
prescribed limit.							

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4844.876	29.74	14.68	44.42	54.00	-9.58	AVG
2		4845.308	42.89	14.68	57.57	74.00	-16.43	peak

Page: 49 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical		TIES OF				
Test Mode:	TX N(HT40) Mode 2422M	Hz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4842.944	42.58	14.67	57.25	74.00	-16.75	peak
2	*	4845.500	29.35	14.68	44.03	54.00	-9.97	AVG

Page: 50 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		- The same of the				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT40) Mode	2437MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4875.062	42.71	14.87	57.58	74.00	-16.42	peak
2	*	4875.062	30.02	14.87	44.89	54.00	-9.11	AVG

Page: 51 of 92

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		Till a
Test Mode:	TX N(HT40) Mod	e 2437MHz	
Remark:	No report for the	emission which more than 10 dE	3 below the
	prescribed limit.		

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.580	43.77	14.86	58.63	74.00	-15.37	peak
2	*	4873.580	29.62	14.86	44.48	54.00	-9.52	AVG

Page: 52 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	Military	- W				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT40) Mode 2452MH	z					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4902.500	30.02	15.03	45.05	54.00	-8.95	AVG
2		4902.836	43.32	15.04	58.36	74.00	-15.64	peak

Page: 53 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	Military	- W				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX N(HT40) Mode 2452MH	z					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No	. Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4902.500	40.90	15.03	55.93	74.00	-18.07	peak
2	*	4902.500	29.85	15.03	44.88	54.00	-9.12	AVG

Page: 54 of 92

Attachment C-- Restricted Bands Requirement Test Data

(1) Radiation Test

Page: 55 of 92

Page: 56 of 92

Page: 57 of 92

Page: 58 of 92

Page: 59 of 92

Page: 60 of 92

No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2467.000	85.67	3.30	88.97	Fundamental Frequency		AVG
2	X	2468.600	96.26	3.31	99.57	Fundamental F	requency	peak
3		2483.500	49.95	3.41	53.36	74.00	-20.64	peak
4		2483.500	37.99	3.41	41.40	54.00	-12.60	AVG

Page: 61 of 92

Page: 62 of 92

Page: 63 of 92

Page: 64 of 92

Page: 65 of 92

Page: 66 of 92

Page: 67 of 92

Page: 68 of 92

Page: 69 of 92

Page: 70 of 92

Page: 71 of 92

Page: 72 of 92

Page: 73 of 92

Page: 74 of 92

Attachment D-- Bandwidth Test Data

Temperature:	25 °C	Relative Humidity:	55%
Test Voltage:	DC 3.7V		11:30
Test Mode:	TX 802.11B Mode		
Channel frequence	y 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	9.912	14.248	
2437	9.958	14.253	>=0.5
2462	9.544	14.268	
			•

802.11B Mode

2412 MHz

Page: 75 of 92

Page: 76 of 92

Temperature:	25 ℃			Relative Humidity:		dity:	55%	
est Voltage:	DC 3	.7V	3				1	
Test Mode:	TX 80	TX 802.11G Mode)
Channel freque	ncy	6dB Bandw	vidth	99% B	andwi	dth		Limit
(MHz)	(MHz) (MHz)			(1	ИHz)			(MHz
2412 16.58			16	6.477				
2437		16.59		16	6.514			>=0.5
2462		16.59		16	6.521			
_		8	02.11G N	lode			I	
			2412 M	Нz				
Center Fred	m Analyzer - Occupied RF 75 \(\text{ \ \text{ \t	00 GHz #FGain:Low	Talan Fara Dan	ALIGN AUTO	ld:>10/10	Radio	09:59:31 PM Aug Std: None Device: BTS	
10 dB/div Log 10.0	RF 75Ω AC 2.41200000	#FGain:Low	Center Freq: 2 Trig: Free Rui #Atten: 10 dB	ALIGN AUTO		Radio Radio	9:59:31 PM Aug Std: None	9 07, 2018
10 dB/div Log 10.00 -10.0 -20.0 -40.0 -50.0	Ref 20.00 dE	#FGain:Low	Center Freq: : Trig: Free Rui #Atten: 10 dB	ALIGN AUTO 2.412000000 GHz n Avg Ho		Radio Radio	Std: None Device: BTS	107,2018
10 dB/div Log 10.0	Ref 20.00 dE	#FGain:Low	Center Freq: : Trig: Free Rui #Atten: 10 dB	ALIGN AUTO 2.412000000 GHz Avg Ho		Radio Radio	99-59:31 PMAug Std: None Device: BTS	107,2018
Center Frequency 10 dB/div Log 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ref 20.00 dE	#FGain:Low	Center Freq: i Trig: Free Rui #Atten: 10 dB	ALIGN AUTO 2.412000000 GHz Avg Ho 300 kHz		Radio Radio	99-59:31 PMAug Std: None Device: BTS	107,2018

Page: 77 of 92

Page: 78 of 92

emperature:	25 ℃		Re	lative Humi	dity:	55%
est Voltage:	DC 3.7	7V	3	all o		
est Mode:	TX 802.11N(HT20) Mode					
hannel frequency 6		6dB Bandwi	dth 9	9% Bandwi	dth	Limi
(MHz)		(MHz)		(MHz)		(MHz
2412		17.78	17.78 17.656			
2437		17.77		17.647		>=0.5
2462		17.82		17.654		
		802.11	1N(HT20) M	ode		
			2412 MHz			
Center Freq	Analyzer - Occupied BV = 75 Ω AC 2.412000000 Ref 20.00 dBn	GHz #FGain:Low	ENSE:INT Center Freq: 2.4120000 Trig: Free Run #Atten: 10 dB	ALIGN AUTO 00 GHz Avg Hold:>10/10	10-07 Radio Std Radio Dev	
10 dB/div Log 10.0 -10.0 -20.0 -30.0	75 Ω AC 2.41200000 0	GHz #FGain:Low	Center Freq: 2.4120000 Trig: Free Run	00 GHz	Radio Std	:10 PM Aug 07, 2018 : None vice: BTS
10 dB/div Log 10.0 -20.0 -30.0 -40.0	2.4120000000 Ref 20.00 dBn	GHz #FGain:Low	Center Freq: 2.4120000 Trig: Free Run	00 GHz Avg Hold:>10/10	Radio Dev	:10 PM Aug 07, 2018 : None vice: BTS
10 dB/div Log 10.0	2.412000000 Ref 20.00 dBn GHz GHz D kHz	#FGain:Low	Center Freq: 2.4120000 Trig: Free Run #Atten: 10 dB	00 GHz Avg Hold:>10/10	Radio Dev	ince: BTS
10 dB/div Log 10.0	2.412000000 Ref 20.00 dBn GHz 0 kHz d Bandwidt 17	#FGain:Low	Center Freq: 2.4120000 Trig: Free Run #Atten: 10 dB	Avg Hold:>10/10 Avg Hold:>10/10	Radio Dev	ince: BTS

Page: 79 of 92

Page: 80 of 92

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	TX 802.11N(HT40) Mode		
Channel frequen	cy 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2422	36.41	36.044	
2437	36.44	36.033	>=0.5
2452	36.41	36.048	
	802.11N(H	Γ40) Mode	
	2422	MUz	

Page: 81 of 92

Page: 82 of 92

Attachment E-- Peak Output Power Test Data

Test Conditions	: Continuous Transn	nitting Mode	
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	8.54	
802.11b	2437	8.69	
	2462	8.29	
	2412	8.40	
802.11g	2437	7.96	
	2462	8.66	30
802.11n	2412	7.46	30
(HT20)	2437	6.93	
(11120)	2462	6.68	
802.11n	2422	5.62	
(HT40)	2437	5.18	
(11140)	2452	5.74	
	Resi	ult: PASS	

Duty Cycle				
Mode	Channel frequency (MHz)	Test Result		
	2412			
802.11b	2437			
	2462			
	2412			
802.11g	2437			
	2462	. 000/		
000 44	2412	>98%		
802.11n	2437			
(HT20)	2462			
	2422			
802.11n	2437			
(HT40)	2452			

83 of 92 Page:

Page: 84 of 92

Page: 85 of 92

Attachment F-- Power Spectral Density Test Data

Temperature:	25 ℃	Relative Hu	midity:	55%
Test Voltage:	DC 3.7V		65	THE STATE
Test Mode:	TX 802.1	1B Mode	J K	
Channel Freq	uency	Power Density		Limit
(MHz)		(dBm/3 kHz)		(dBm/3 kHz)
2412		-21.924		
2437		-21.806		8
2462		-22.246	1	
		902 11D Mada	ı	

802.11B Mode

2412 MHz

Page: 86 of 92

Page: 87 of 92

V 90 V 1-10-		7 10	Iei	mpera	iture:	2	5 ℃
DC 3.7V	1116	3		011	العاليا		2
TX 802.11	IG Mode		18	1		TITE.	19
uency	P	ower De	nsity			L	.imit
		(dBm/3	kHz)			(dBn	n/3 kHz
		-25.56	0				
		-25.45	51				8
		-25.51	3				
	8	02.11G I	Mode		1		
		2412 M	Hz				
75 Ω AC		SENSE:INT		Avg Type:	Log-Pwr	TR	PM Aug 07, 2018 ACE 1 2 3 4 5 6 YPE M
O.T. 10 00 1D	IFGain:Low	Atten: 30 dB					055 GHz
22.63 dBm						-25.	560 dBm
		∳ ¹					
ľ	verent	****	****	***	MM		
J.		<u> </u>	`		h.,		
					The state of the s		
					<u> </u>	Į į	
La Mahana A da Maria					111	Lange Hall and	յուր, վահաների և նա
	uency malyzer - Swept SA 75 Ω AC 2.412000000 GHz	TX 802.11G Mode uency P 8 10 10 10 10 10 10 10 10 10	DC 3.7V TX 802.11G Mode Power De	DC 3.7V TX 802.11G Mode power Density (dBm/3 kHz) -25.560 -25.451 -25.513 802.11G Mode 2412 MHz PNO: Fast FGain:Low Trig: Free Run Atten: 30 dB Offset 2.63 dBm	DC 3.7V TX 802.11G Mode Power Density (dBm/3 kHz) -25.560 -25.451 -25.513 802.11G Mode 2412 MHz Aug Type: Avg Hold: in Figaln:Low Avg Type: Avg Hold: in	DC 3.7V TX 802.11G Mode Power Density (dBm/3 kHz)	DC 3.7V TX 802.11G Mode Uency

TOBY

<u>د بالسائد بالسائد بالمسائد المسائد .</u> Center 2.46200 GHz #Res BW 3.0 kHz

#VBW 10 kHz

Page: 89 of 92

Temperature:	25 ℃		Temperature:	25 ℃
Test Voltage:	DC 3.7V		CHILD ST	
Test Mode:	TX 802.1	1N(HT20) Mode	2.0	
Channel Freq	uency	Power De	nsity	Limit
(MHz)		(dBm/3 l	(Hz)	(dBm/3 kHz)
2412		-25.20	9	
2437		-25.81	8	8
2462		-26.96	4	
		802.11N(HT2	0) Mode	
		2412 M	Hz	
Keysight Spectrum A	75 Ω AC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	10:07:29 PM Aug 07, 2018 TRACE 12.3.4.56
Center Freq 2	2.412000000 GH	PNO: Fast Trig: Free Ru IFGain:Low Atten: 30 dB		TYPE MWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
	Offset 2.63 dB 22.63 dBm		N	/kr1 2.418 610 GHz -25.209 dBm

90 of 92

#VBW 10 kHz

TOBY

Center 2.46200 GHz #Res BW 3.0 kHz Span 35.63 MHz Sweep 3.757 s (10001 pts)

Page: 91 of 92

Temperature:	25 ℃	Temperatu	re: 25 °C
Test Voltage:	DC 3.7V		
Test Mode:	TX 802.1	IN(HT40) Mode	
Channel Freq	uency	Power Density	Limit
(MHz)		(dBm/3 kHz)	(dBm/3 kHz)
2422		-29.788	
2437		-30.683	8
2452	52 -29.158		
		802.11N(HT40) Mode	
		2422 MHz	

Page: 92 of 92

----END OF REPORT----