Методы машинного обучения. Отбор признаков (feature selection)

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-23-24 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 14 ноября 2023

Содержание

- 🕕 Задача отбора признаков
 - Постановка задачи отбора признаков
 - Подходы к отбору признаков
 - Критерии отбора признаков
- Беспереборные методы
 - Критерии фильтрации признаков
 - Отбор признаков с учителем и без учителя
 - Встроенные методы
- ③ Методы комбинаторной оптимизации
 - Полный перебор
 - Жадные и полужадные алгоритмы
 - Стохастические алгоритмы

Постановка задачи отбора признаков

$$X^\ell = (x_i, y_i)_{i=1}^\ell$$
 — обучающая выборка, $y_i = y(x_i);$ $f_j(x), \ j=1,\dots,n$ — признаки объекта x

Почему полезно отбирать признаки:

- признак может быть неинформативным: $f_i(x)$ не содержит информации об y(x)
- признак может быть зависимым: информация о $f_j(x)$ содержится в других признаках
- признак может быть слишком сильно зашумлённым,
 и тогда его использование может повышать риск ошибки
- минимизация числа используемых признаков может давать экономию ресурсов времени и памяти
- понижение размерности п может уменьшать переобучение

Обзор подходов к отбору признаков

- Без учителя например, по корреляциям признаков
- Обёртки использование готовых методов обучения
- Фильтры оценивание признаков по отдельности
- Встроенные методы, в некоторых моделях (LASSO, ElasticNet)

Jundong Li et al. Feature selection: a data perspective. 2016

Обёртки. Отбор признаков по внешнему критерию

$$F = \left\{ f_j \colon X o D_j \colon j = 1, \dots, n
ight\}$$
 — множество признаков; μ_J — метод обучения, использующий только признаки $J \subseteq F$; $Q(J) = Q(\mu_J, X^\ell)$ — выбранный внешний критерий. $Q(J) o$ min — переборная задача дискретной оптимизации.

Внутренний критерий и внешний критерий:

Напоминание. Разновидности внешних критериев

Эмпирические критерии:

- Проверка на отложенных данных (hold-out validation)
- Кросс-проверка (cross-validation, CV)
- Скользящий контроль (leave one out, LOO)
- ullet Поблочная кросс-проверка (q-fold CV, t imes q-fold CV)
- Непротиворечивость или согласованность моделей
- Устойчивость модели при малых изменениях данных
- Согласованность долгосрочных и краткосрочных прогнозов

Аналитические критерии (регуляризаторы):

- ullet L_{0} -, L_{1} -, L_{2} -регуляризации линейных моделей
- Информационные критерии (AIC, BIC, CIC и др.)
- Сложностные оценки (Вапника-Червоненкиса и др.)

Сколько информации об у содержится в f_i

 $f_i \colon X o V_i$ — дискретный признак, V_i — конечное множество p(v) — частотная оценка вероятности $P(f_i(x) = v)$

Энтропия, мера неопределённости значений у:

$$H(y) = -\sum_{y \in Y} p(y) \log p(y)$$

Условная энтропия, неопределённость у при известном f_i :

$$H(y|f_j) = -\sum_{v \in V_j} p(v) \sum_{y \in Y} p(y|v) \log p(y|v)$$

Взаимная информация (mutual information, information gain):

$$I(y, f_j) = H(y) - H(y|f_j) = \sum_{v \in V_i} \sum_{y \in Y} p(y, v) \log \frac{p(y, v)}{p(y)p(v)}$$

 $I(y, f_i) = 0 \Leftrightarrow$ переменные y и f_i независимы

Фильтры. Отбор признаков с учителем и без учителя

Отбор признаков с учителем:

- ullet вычисление полезности признаков: МI или корреляции (y,f_j)
- ранжирование признаков по их полезности
- ullet отбор top-k полезных признаков по выбранному критерию
- плюс: очень быстро
- минус: не учитываются зависимости между признаками

Отбор признаков без учителя:

- ullet вычисление парных корреляций признаков (f_j,f_s)
- выделение кластеров или связных подграфов
- выбор представителей от каждого кластера (метод корреляционных плеяд П.В.Терентьева, 1928)
- минус: учитываются только парные зависимости

Встроенный отбор признаков в линейных моделях

Негладкие регуляризаторы с параметром селективности μ :

$$\sum\limits_{i=1}^{\ell} \mathscr{L}ig(\langle x_i,w
angle,y_iig) + au\sum\limits_{j=1}^{n} R_{\mu}ig(w_jig) \;
ightarrow \; \min\limits_{w}.$$

LASSO (L_1): $R_{\mu}(w) = \mu |w|$

Elastic Net: $R_{\mu}(w) = \mu |w| + w^2$

Support Features Machine (SFM):

$$R_{\mu}(w) = egin{cases} 2\mu |w|, & |w| \leqslant \mu; \ \mu^2 + w^2, & |w| \geqslant \mu; \end{cases}$$

Relevance Features Machine (RFM):

$$R_{\mu}(w) = \ln(\mu w^2 + 1)$$


```
Вход: множество F, внешний критерий Q, параметр d; инициализация: Q^* := Q(\varnothing); для j=1,\ldots,n, где j — сложность наборов J_j := rg \min Q(J) — найти лучший набор сложности j; J: |J| = j если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j - j^* \geqslant d то вернуть J_{j^*};
```


Преимущества:

- простота реализации;
- гарантированный результат;
- полный перебор эффективен, когда
 - информативных признаков не много, $j^* \lesssim 5$;
 - всего признаков не много, $n \lesssim 20..100$.

Недостатки:

- в остальных случаях ооооооочень долго $O(2^n)$;
- чем больше перебирается вариантов, тем больше переобучение (особенно, если лучшие из вариантов существенно различны и одинаково плохи).

Способы устранения:

- эвристические методы сокращённого перебора.

Алгоритм жадного добавления (Add)

```
Вход: множество F, критерий Q, параметр d; инициализация: J_0 := \varnothing; Q^* := Q(\varnothing); для j = 1, \ldots, n, где j — сложность наборов: найти признак, наиболее выгодный для добавления: f^* := \arg\min_{f \in F \setminus J_{j-1}} Q(J_{j-1} \cup \{f\}); добавить этот признак в набор: J_j := J_{j-1} \cup \{f^*\}; если Q(J_j) < Q^* то j^* := j; Q^* := Q(J_j); если j - j^* \geqslant d то вернуть J_{j^*};
```

Преимущество: скорость $O(n^2)$, точнее $O(nj^*)$, вместо $O(2^n)$ **Недостаток:** склонность включать в набор лишние признаки **Способы устранения:** Del, Add-Del, Beam Search

Алгоритм поочерёдного добавления и удаления (Add-Del)

Преимущества:

- как правило, лучше, чем Add и Del по отдельности;
- возможны быстрые инкрементные алгоритмы, пример *шаговая регрессия* (step-wise regression).

Недостатки:

- работает дольше, оптимальность не гарантирует.

Алгоритм поочерёдного добавления и удаления (Add-Del)

```
инициализация: J_0 := \emptyset; Q^* := Q(\emptyset); t := 0;
повторять
    пока |J_t| < n добавлять признаки (итерации Add):
        t:=t+1 — началась следующая итерация;
        f^* := \operatorname{arg\,min} Q(J_{t-1} \cup \{f\}); \ J_t := J_{t-1} \cup \{f^*\};
        если Q(J_t) < Q^* то t^* := t; Q^* := Q(J_t);
        если t - t^* \geqslant d то прервать цикл;
    пока |J_t| > 0 удалять признаки (итерации Del):
        t := t + 1 — началась следующая итерация;
        f^* := \arg \min Q(J_{t-1} \setminus \{f\}); \ J_t := J_{t-1} \setminus \{f^*\};
        если Q(J_t) < Q^* то t^* := t; Q^* := Q(J_t);
        если t - t^* \geqslant d то прервать цикл;
пока значения критерия Q(J_{t^*}) уменьшаются;
```

вернуть J_{t^*} ;

Поиск в глубину (DFS, метод ветвей и границ)

Пример: дерево наборов признаков, n = 4

Основные идеи:

- нумерация признаков по возрастанию номеров чтобы избежать повторов при переборе подмножеств;
- если набор J бесперспективен,
 то больше не пытаться его наращивать.

Поиск в глубину (DFS, метод ветвей и границ)

Обозначим Q_j^* — значение критерия на самом лучшем наборе мощности j из всех до сих пор просмотренных.

Оценка перспективности: набор J не наращивается, если найдётся j такой, что

$$\begin{cases} Q(J) \geqslant (1+\delta)Q_j^*; \\ |J| \geqslant j+d; \end{cases}$$

 $d\geqslant 0$ и $\delta\geqslant 0$ — параметры.

Чем меньше d и δ , тем сильнее сокращается перебор.

Поиск в глубину (DFS, метод ветвей и границ)

```
процедура нарастить (J \subseteq F)
   если найдётся j: j\leqslant |J|-d и Q(J)\geqslant (1+\delta)Q_i^*, то
    набор J бесперспективный; выход;
   Q_{|J|}^* := \min\{Q_{|J|}^*, Q(J)\};
   для всех f_s \in F таких, что s > \max\{t \mid f_t \in J\}:
    нарастить (J \cup \{f_s\});
инициализировать массив лучших значений критерия:
Q_i^* := Q(\varnothing) для всех j = 1, \ldots, n;
упорядочить признаки по убыванию информативности;
```

Вход: множество F, критерий Q, параметры d и δ ;

вернуть J, для которого $Q(J) = \min_{i=1,\dots,n} Q_j^*$;

нарастить (\emptyset) ;

Усечённый поиск в ширину (Beam Search)

Он же *многорядный итерационный алгоритм МГУА* (МГУА — метод группового учёта аргументов).

Философия — принцип *неокончательных решений* Габора: принимая решения, следует оставлять максимальную свободу выбора для принятия последующих решений.

Усовершенствуем алгоритм Add:

на каждой j-й итерации будем строить не один набор, а множество из B_j наборов, называемое j-м pядом:

$$R_j = \{J_j^1, \dots, J_j^{B_j}\}, \quad J_j^b \subseteq F, \quad |J_j^b| = j, \quad b = 1, \dots, B_j.$$

где $B_i \leqslant B$ — параметр ширины поиска.

Ивахненко А. Г., Юрачковский Ю. П. Моделирование сложных систем по экспериментальным данным, 1987.

Усечённый поиск в ширину (Beam Search)

```
\mathbf{B}ход: множество F, критерий Q, параметры d, B;
первый ряд состоит из всех наборов длины 1:
R_1 := \{ \{f_1\}, \dots, \{f_n\} \}; \quad Q^* = Q(\emptyset);
для j = 1, ..., n, где j — сложность наборов:
    отсортировать ряд R_i = \left\{J_i^1, \dots, J_i^{B_j}\right\}
    по возрастанию критерия: Q(J_i^1) \leqslant \ldots \leqslant Q(J_i^{B_j});
    если B_i > B то
     R_i := \{J_i^1, \dots, J_i^B\} — оставить B лучших наборов ряда;
    если Q(J_i^1) < Q^* то j^* := j; \quad Q^* := Q(J_i^1);
    если j - j^* \geqslant d то вернуть J_{i^*}^1;
    породить следующий ряд:
    R_{i+1} := \{J \cup \{f\} \mid J \in R_i, \ f \in F \setminus J\};
```

Усечённый поиск в ширину: дополнительные эвристики

- Трудоёмкость: $O(Bn^2)$, точнее $O(Bn(j^*+d))$.
- Проблема дубликатов: после сортировки $Q(J_j^1) \leqslant \ldots \leqslant Q(J_j^{B_j})$ проверить на совпадение только соседние наборы с равными значениями внутреннего и внешнего критерия.
- Адаптивный отбор признаков: на последнем шаге добавлять к j-му ряду только признаки f с наибольшей информативностью $I_i(f)$:

$$I_j(f) = \sum_{b=1}^{B_j} [f \in J_j^b].$$

Эволюционный алгоритм поиска (идея и терминология)

$$J\subseteq F$$
 — индивид (в МГУА «модель»); $R_t:=\left\{J_t^1,\ldots,J_t^{B_t}
ight\}$ — поколение (в МГУА — «ряд»); $eta=(eta_j)_{j=1}^n,\;\;eta_j=[f_j\in J]$ — хромосома, кодирующая J ;

Бинарная операция *скрещивания* (crossover) $\beta = \beta' \times \beta''$:

- ullet вариант 1: $eta_j=
 ho_jeta_j'+(1ho_j)eta_j''$, $ho_j\sim \mathsf{uni}(0,1)$
- вариант 2: $\beta = (\beta_1', \dots, \beta_s', \beta_{s+1}'', \dots, \beta_n'')$, $s \sim \text{uni}(1, \dots, n)$, надо задавать «естественное» ранжирование признаков

Унарная операция *мутации* $\beta = \sim \beta'$:

•
$$\beta_j = \rho_j (1 - \beta_j') + (1 - \rho_j) \beta_j'$$
, $\rho_j \sim \text{bin}(p_m)$, где p_m — параметр вероятности мутации.

Эволюционный (генетический) алгоритм

```
Вход: множество F, критерий Q, параметры: d, p_m,
        B — размер популяции, T — число поколений;
инициализировать случайную популяцию из B наборов:
B_1 := B; R_1 := \{J_1^1, \dots, J_1^{B_1}\}; Q^* := Q(\emptyset);
для t = 1, ..., T, где t — номер поколения:
    ранжирование индивидов: Q(J_t^1) \leqslant \ldots \leqslant Q(J_t^{B_t});
   если B_t > B то селекция: R_t := \{J_t^1, \dots, J_t^B\};
   если Q(J_t^1) < Q^* то t^* := t; Q^* := Q(J_t^1);
   если t-t^*\geqslant d то вернуть J_{t^*}^1;
   породить t+1-е поколение путём скрещиваний и мутаций:
   R_{t+1} := \{ \sim (J' \times J'') \mid J', J'' \in R_t \} \cup R_t;
```

Эвристики для управления процессом эволюции

- Увеличивать вероятности перехода признаков от более успешного родителя к потомку.
- Накапливать оценки информативности признаков.
 Чем более информативен признак, тем выше вероятность его включения в набор во время мутации.
- Применение совокупности критериев качества.
- Скрещивать только лучшие индивиды (элитаризм).
- Переносить лучшие индивиды в следующее поколение.
- В случае стагнации увеличивать вероятность мутаций.
- Параллельно выращивается несколько изолированных популяций (островная модель эволюции).

Обобщение: случайный поиск с адаптацией (СПА)

```
\mathbf{B}ход: множество F, критерий Q, параметры: d,
        B — размер популяции, T — число поколений;
равные вероятности признаков: p_1 = \cdots = p_n := 1/n;
инициализировать случайную популяцию из B_1 наборов:
R_1 := \{J_1^1, \ldots, J_1^{B_1} \sim \{p_1, \ldots, p_n\}\}; \quad Q^* := Q(\emptyset);
для t=1,\ldots,T, где t — номер поколения:
    ранжирование индивидов: Q(J_t^1) \leqslant \ldots \leqslant Q(J_t^{B_t});
   если B_t > B то селекция: R_t := \{J_t^1, \dots, J_t^B\};
   если Q(J_t^1) < Q^* то t^* := t; Q^* := Q(J_t^1);
    если t-t^*\geqslant d то вернуть J_{t^*}^1;
   увеличить p_i для признаков из лучших наборов;
   уменьшить p_i для признаков из худших наборов;
    породить t+1-е поколение из B_t наборов:
   R_{t+1} := \{J_{t+1}^1, \dots, J_{t+1}^{B_t} \sim \{p_1, \dots, p_n\}\} \cup R_t;
```

Попытка обоснования. Теорема схемы

Схема — вектор
$$H=(h_1,\ldots,h_n)$$
, где $h_j\in\{0,1,*\}$ $o(H)$ — порядок схемы, число не* в схеме $d(H)$ — длина схемы, расстояние между первым и последним не*, число мест, в которых кроссовер может нарушить схему $f(H,t)$ — степень приспособленности схемы, среднее Q по всем векторам, подходящим под схему в поколении t $\bar{f}(t)=f(*^n,t)$ — средняя приспособленность популяции p_c — вероятность кроссовера (только второй вариант) p_m — вероятность мутации

Теорема схемы [Холланд, 1975]

Число индивидов схемы H в популяции поколения t:

$$\mathsf{E} m(H,t+1) \geqslant m(H,t) \frac{f(H,t)}{\bar{f}(t)} \left(1 - p_c \frac{d(H)}{n-1} - p_m o(H) \right)$$

Интерпретация теоремы схемы

Число индивидов схемы H в популяции поколения t:

$$\mathsf{E} m(H,t+1) \geqslant m(H,t) \frac{f(H,t)}{\bar{f}(t)} \left(1 - p_c \frac{d(H)}{n-1} - p_m o(H) \right)$$

- Строительный блок схема H с низким порядком o(H), короткой длиной d(H), высокой приспособленностью f(H,t)
- Если приспособленность строительного блока выше средней в популяции, то число его индивидов будет расти экспоненциально в последующих популяциях
- Гипотеза (building block hypothesis): «строительные блоки объединяются, чтобы сформировать ещё лучшие блоки»

John Henry Holland. Adaptation in natural and artificial systems. 1992 David White. An overview of schema theory. 2014

Резюме. Методы отбора признаков

 Для отбора признаков могут использоваться любые эвристические методы дискретной оптимизации

$$Q(J) \to \min_{J \subseteq F}$$
.

- Q(J) должен быть внешним критерием, с характерным минимумом по сложности модели
- Большинство эвристик эксплуатируют две основные идеи:
 - признаки ранжируются по их полезности;
 - -Q(J) изменяется не сильно при малом изменении J.
- МГУА, ЭА и СПА очень похожи на их основе можно изобретать новые «симбиотические» мета-эвристики.