Лабораторная работа №3 Интерполирование: кубические сплайны

 $\Pi ocmanoe \kappa a\ \, 3a\partial a uu$. Для заданной функции $f:[a,b] \to \mathbb{R}$ (берется из предыдущей лабораторной работы):

- Произвести интерполяцию кубическими сплайнами на отрезке [-2,2] по равноотстоящим узлам с естесственными граничными условиями.
- Построить графики получившихся приближений для сеток с количеством узлов, равным $N_i = 10i, i = 1, 2, \dots, 10$. На графике должны быть изображены построенное приближение и исходная функция.
- Для каждого построения экспериментально определить максимум-норму погрешности: взять сетку из 1000 равноотстоящих узлов и определить максимум величины $|f(x_i) S(x_i)|$, $i = 1, \ldots, 1000$. При каждом вычислении нормы замерять затраченное время с точностью до милисекунд.
- Используя программу из лабораторной работы №2 получить аналогичные данные для интерполяционного многочлена из предыдущей лабораторной работы (используются чебышовские узлы). Результат представить в виде таблицы:

N	Норма (сплайн)	Норма (и.м. из предыдущей ЛР)	Вемя (сплайн)	Время (и.м. из предыдущей ЛР)
10				
20				
				444
10)			

• В таблице под временем подразумевается время, потраченное на построение многочлена (либо сплайна) + время, потраченное на нахождение максимум-нормы ошибки. Время на операции ввода-вывода учитываться не должно. Степень у интерполяционного многочлена взять такую, при которой обеспечивается наилучшая точность приближения.