[back to article]

The Matrix Cheatsheet by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

(last updated: June 22, 2018)

Task	MATLAB/Octave	Python NumPy	R	Julia	Tas
		CREAT	ING MATRICES		
reating Matrices ere: 3x3 matrix)	M> A = [1 2 3; 4 5 6; 7 8 9] A = 1 2 3 4 5 6 7 8 9	<pre>P> A = np.array([[1,2,3], [4,5,6], [7,8,9]]) P> A array([[1, 2, 3],</pre>	<pre>R> A = matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,byrow=T) # equivalent to # A = matrix(1:9,nrow=3,byrow=T) R> A [,1] [,2] [,3] [1,] 1 2 3 [2,] 4 5 6 [3,] 7 8 9</pre>	J> A=[1 2 3; 4 5 6; 7 8 9] 3x3 Array{Int64,2}: 1 2 3 4 5 6 7 8 9	Creating Matrices (here: 3x3 matrix)
Creating an column vector nx1 matrix)	M> a = [1; 2; 3] a = 1 2 3	<pre>P> a = np.array([1,2,3]).reshape(3,1) P> b.shape (3, 1)</pre>	<pre>R> a = matrix(c(1,2,3), nrow=3, byrow=T) R> a [,1] [1,] 1 [2,] 2 [3,] 3</pre>	<pre>J> a=[1; 2; 3] 3-element Array{Int64,1}: 1 2 3</pre>	Creating a column vec (nx1 matrix)
Creating an ow vector (1xn matrix)	M> b = [1 2 3] b = 1 2 3	<pre>P> b = np.array([1,2,3]).reshape(1, 3) P> b array([[1],</pre>	<pre>R> b = matrix(c(1,2,3), ncol=3) R> b [,1] [,2] [,3] [1,] 1 2 3</pre>	<pre>J> b=[1 2 3] lx3 Array{Int64,2}: 1 2 3 # note that this is a 2D array.</pre>	Creating an row vector (1xn matrix)

	1	ı	i	!	1
		P> b.shape			
		(1, 3)			
Creating a	M> rand(3,2)	P> np.random.rand(3,2)	<pre>R> matrix(runif(3*2), ncol=2)</pre>	J> rand(3,2)	Creating a
random m x n matrix	ans =	array([[0.29347865, 0.17920462],	[,1] [,2]	3x2 Array{Float64,2}:	random m x n matrix
	0.21977 0.10220	[0.51615758, 0.64593471],	[1,] 0.5675127 0.7751204	0.36882 0.267725	
	0.38959 0.69911	[0.01067605, 0.09692771]])	[2,] 0.3439412 0.5261893	0.571856 0.601524	
	0.15624 0.65637		[3,] 0.2273177 0.223438	0.848084 0.858935	
Creating a	M> zeros(3,2)	P> np.zeros((3,2))	R> mat.or.vec(3, 2)	J > zeros(3,2)	Creating a
ero m x n matrix	ans =	array([[0., 0.],	[,1] [,2]	3x2 Array{Float64,2}:	zero m x n matrix
	0 0	[0., 0.],	[1,] 0 0	0.0 0.0	
	0 0	[0., 0.]])	[2,] 0 0	0.0 0.0	
	0 0		[3,] 0 0	0.0 0.0	
	Ms (2.2)	((2.2))		(2.2)	Cunating as
Creating an m x n matrix of ones	M> ones(3,2) ans =	<pre>P> np.ones((3,2)) array([[1., 1.],</pre>	R> matrix(1L, 3, 2)	<pre>J> ones(3,2) 3x2 Array{Float64,2}:</pre>	Creating an m x n matrix of ones
n x n matrix or ones	1 1	[1., 1.],	[,1] [,2]	1.0 1.0	m x n matrix or ones
	1 1	[1., 1.]])	[1,] 1 1	1.0 1.0	
	1 1	[1., 1.]])	[2,] 1 1	1.0 1.0	
			[3,] 1 1	1.0 1.0	
`rooting on	M>(2)	Ds(2)		15(2)	Creating on
Creating an	M> eye(3)	P> np.eye(3)	R> diag(3)	<pre>J> eye(3) 3x3 Array{Float64,2}:</pre>	Creating an
dentity matrix	ans =	array([[1., 0., 0.],	[,1] [,2] [,3]		identity matrix
	Diagonal Matrix	[0., 1., 0.],	[1,] 1 0 0	1.0 0.0 0.0	
	1 0 0	[0., 0., 1.]])	[2,] 0 1 0	0.0 1.0 0.0	
	0 1 0		[3,] 0 0 1	0.0 0.0 1.0	
	0 0 1				
Creating a	M> a = [1 2 3]	<pre>P> a = np.array([1,2,3])</pre>	R> diag(1:3)	J > a=[1, 2, 3]	Creating a
liagonal matrix			[,1] [,2] [,3]		diagonal matrix
	M> diag(a)	<pre>P> np.diag(a)</pre>	[1,] 1 0 0	# added commas because julia	
	ans =	array([[1, 0, 0],	[2,] 0 2 0	# vectors are columnar	
	Diagonal Matrix	[0, 2, 0],	[3,] 0 0 3		
	1 0 0	[0, 0, 3]])		J> diagm(a)	

0 2 0		3x3 Array{Int64,2}:	
0 0 3		100	
		0 2 0	
		0 0 3	

ACCESSING MATRIX ELEMENTS

Getting the dimension	M> A = [1 2 3; 4 5 6]	P> A = np.array([[1,2,3], [4,5,6]])	<pre>R> A = matrix(1:6,nrow=2,byrow=T)</pre>	J> A=[1 2 3; 4 5 6]	Getting the dimension
of a matrix	A =			2x3 Array{Int64,2}:	of a matrix
(here: 2D, rows x cols)	1 2 3	P> A	R> A	1 2 3	(here: 2D, rows x cols)
	4 5 6	array([[1, 2, 3],	[,1] [,2] [,3]	4 5 6	
		[4, 5, 6]])	[1,] 1 2 3		
	M> size(A)		[2,] 4 5 6	J> size(A)	
	ans =	P> A.shape		(2,3)	
	2 3	(2, 3)	R> dim(A)		
			[1] 2 3		
Selecting rows	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6],	<pre>R> A = matrix(1:9,nrow=3,byrow=T)</pre>	J> A=[1 2 3; 4 5 6; 7 8 9];	Selecting rows
		[7,8,9]])		#semicolon suppresses output	
	% 1st row	# 1st row	# 1st row		
	M> A(1,:)	P> A[0,:]	R> A[1,]	#1st row	
	ans =	array([1, 2, 3])	[1] 1 2 3	J> A[1,:]	
	1 2 3			1x3 Array{Int64,2}:	
		# 1st 2 rows	# 1st 2 rows	1 2 3	
	% 1st 2 rows	P> A[0:2,:]	R> A[1:2,]		
	M> A(1:2,:)	array([[1, 2, 3], [4, 5, 6]])	[,1] [,2] [,3]	#1st 2 rows	
	ans =		[1,] 1 2 3	J> A[1:2,:]	
	1 2 3		[2,] 4 5 6	2x3 Array{Int64,2}:	
	4 5 6			1 2 3	
				4 5 6	
Selecting columns	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	<pre>R> A = matrix(1:9,nrow=3,byrow=T)</pre>	J> A=[1 2 3; 4 5 6; 7 8 9];	Selecting columns
	% 1st column	# 1st column (as row vector)	# 1st column as row vector	#1st column	

MANIPULATING SHAPE AND DIMENSIONS

	1		1		I
		# A.reshape(1,-1)	R> B		
			[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]		
		P> B	[1,] 1 4 7 2 5 8 3 6 9		
		array([[1, 2, 3, 4, 5, 6, 7, 8, 9]])			
Concatenating matrices	M> A = [1 2 3; 4 5 6]	P> A = np.array([[1, 2, 3], [4, 5, 6]])	R> A = matrix(1:6,nrow=2,byrow=T)	J> A=[1 2 3; 4 5 6];	Concatenating matrices
	M> B = [7 8 9; 10 11 12]	P> B = np.array([[7, 8, 9],[10,11,12]])	R> B = matrix(7:12,nrow=2,byrow=T)	J> B=[7 8 9; 10 11 12];	
	M> C = [A; B]	<pre>P> C = np.concatenate((A, B), axis=0)</pre>	<pre>R> C = rbind(A,B)</pre>	J> C=[A; B]	
	1 2 3			4x3 Array{Int64,2}:	
	4 5 6	P> C	R> C	1 2 3	
	7 8 9	array([[1, 2, 3],	[,1] [,2] [,3]	4 5 6	
	10 11 12	[4, 5, 6],	[1,] 1 2 3	7 8 9	
		[7, 8, 9],	[2,] 4 5 6	10 11 12	
		[10, 11, 12]])	[3,] 7 8 9		
			[4,] 10 11 12		
Stacking	M> a = [1 2 3]	<pre>P> a = np.array([1,2,3])</pre>	<pre>R> a = matrix(1:3, ncol=3)</pre>	J> a=[1 2 3];	Stacking
vectors and matrices		<pre>P> b = np.array([4,5,6])</pre>			vectors and matrices
	$M > b = [4 \ 5 \ 6]$		<pre>R> b = matrix(4:6, ncol=3)</pre>	J> b=[4 5 6];	
		<pre>P> np.column_stack([a,b])</pre>			
	M> c = [a' b']	array([[1, 4],	<pre>R> matrix(rbind(A, B), ncol=2)</pre>	J> c=[a' b']	
	c =	[2, 5],	[,1] [,2]	3x2 Array{Int64,2}:	
	1 4	[3, 6]])	[1,] 1 5	1 4	
	2 5		[2,] 4 3	2 5	
	3 6	<pre>P> np.row_stack([a,b])</pre>		3 6	
		array([[1, 2, 3],	R> rbind(A,B)		
	M> c = [a; b]	[4, 5, 6]])	[,1] [,2] [,3]	J> c=[a; b]	
	c =		[1,] 1 2 3	2x3 Array{Int64,2}:	
	1 2 3		[2,] 4 5 6	1 2 3	
	4 5 6			4 5 6	

BASIC MATRIX OPERATIONS

Matrix-scalar	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6],	<pre>R> A = matrix(1:9, nrow=3, byrow=T)</pre>	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix-scalar
operations		[7,8,9]])			operations
	M> A * 2	P> A * 2	R> A * 2	<pre># elementwise operator</pre>	
	ans =	array([[2, 4, 6],	[,1] [,2] [,3]		
	2 4 6	[8, 10, 12],	[1,] 2 4 6	J> A .* 2	
	8 10 12	[14, 16, 18]])	[2,] 8 10 12	3x3 Array{Int64,2}:	
	14 16 18		[3,] 14 16 18	2 4 6	
		P> A + 2		8 10 12	
	M> A + 2		R> A + 2	14 16 18	
		P> A - 2			
	M> A - 2		R> A - 2	J> A .+ 2;	
		P> A / 2			
	M> A / 2		R> A / 2	J> A 2;	
		# Note that NumPy was optimized for		_	
		# in-place assignments		J> A ./ 2;	
		# e.g., A += A instead of			
		# A = A + A			
Matrix-matrix	M> A = [1 2 3; 4 5 6; 7 8 9]	<pre>P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])</pre>	<pre>R> A = matrix(1:9, nrow=3, byrow=T)</pre>	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix-matrix
multiplication					multiplication
				-	
	M> A * A	<pre>P> np.dot(A,A) # or A.dot(A)</pre>	R> A %*% A	J> A * A	
	ans =	array([[30, 36, 42],	[,1] [,2] [,3]	3x3 Array{Int64,2}:	
	30 36 42	[66, 81, 96],	[1,] 30 36 42	30 36 42	
	66 81 96	[102, 126, 150]])	[2,] 66 81 96	66 81 96	
	102 126 150		[3,] 102 126 150	102 126 150	
Matrix-vector	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6],	R> A = matrix(1:9, ncol=3)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix-vector
multiplication		[7,8,9]])			multiplication
	M> b = [1; 2; 3]	<pre>P> b = np.array([[1], [2], [3]])</pre>	<pre>R> b = matrix(1:3, nrow=3)</pre>	J > b=[1; 2; 3];	
	M> A * b	<pre>P> np.dot(A,b) # or A.dot(b)</pre>	R> t(b %*% A)	J> A*b	
	ans =		[,1]	3-element Array{Int64,1}:	
	14	array([[14], [32], [50]])	[1,] 14	14	
	32		[2,] 32	32	
	50		[3,] 50	50	
Element-wise	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9];	Element-wise
matrix-matrix operations					matrix-matrix operations

	M> A .* A	P> A * A	R> A * A	J> A .* A	I
		array([[1, 4, 9],	i i	3x3 Array{Int64,2}:	
	1 4 9	[16, 25, 36],	i	1 4 9	
	16 25 36	[49, 64, 81]])	[2,] 16 25 36	16 25 36	
	49 64 81		[3,] 49 64 81	49 64 81	
		P> A + A			
	M> A .+ A		R> A + A	J> A .+ A;	
		P> A - A			
	M> A A		R> A - A	J> A A;	
		P> A / A		<u> </u> _	
	M> A ./ A	# Note that NumPy was optimized for	R> A / A	J> A ./ A;	
		# in-place assignments			
		# e.g., A += A instead of			
		# A = A + A			
Matrix elements to power n	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6],	<pre>R> A = matrix(1:9, nrow=3, byrow=T)</pre>	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix elements to power n
		[7,8,9]])			
(here: individual elements squared)	M> A.^2	P> np.power(A,2)	R> A ^ 2	J> A .^ 2	(here: individual elements s
	ans =	array([[1, 4, 9],	[,1] [,2] [,3]	3x3 Array{Int64,2}:	
	1 4 9	[16, 25, 36],	[1,] 1 4 9	1 4 9	
	16 25 36	[49, 64, 81]])	[2,] 16 25 36	16 25 36	
	49 64 81		[3,] 49 64 81	49 64 81	
Matrix to power n	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6], [7,8,9]])	R> A = matrix(1:9, ncol=3)	J> A=[1 2 3; 4 5 6; 7 8 9];	Matrix to power n
(here: matrix-matrix multiplication with itself)	M> A ^ 2	<pre>P> np.linalg.matrix_power(A,2)</pre>	# requires the 'expm' package		(here: matrix-matrix multipl itself)
,	ans =	array([[30, 36, 42],		3x3 Array{Int64,2}:	,
	30 36 42	[66, 81, 96],	<pre>R> install.packages('expm')</pre>	30 36 42	
	66 81 96	[102, 126, 150]])		66 81 96	
	102 126 150		R> library(expm)	102 126 150	
			R> A %^% 2		
			[,1] [,2] [,3]		
			[1,] 30 66 102		
			[2,] 36 81 126		
			[3,] 42 96 150		
Matrix transpose	M> A = [1 2 3; 4 5 6; 7 8 9]	P> A = np.array([[1,2,3], [4,5,6],	R> A = matrix(1:9, nrow=3, byrow=T)	J> A=[1 2 3; 4 5 6; 7 8 9]	Matrix transpose
пали папорозе		[7,8,9]])			matrix transpose
				3x3 Array{Int64,2}:	
	M> A'	P> A.T	R> t(A)	1 2 3	

	ans =	array([[1, 4, 7],	[,1] [,2] [,3]	4 5 6	
	1 4 7	[2, 5, 8],	[1,] 1 4 7	7 8 9	
	2 5 8	[3, 6, 9]])	[2,] 2 5 8		
	3 6 9		[3,] 3 6 9	J> A'	
				3x3 Array{Int64,2}:	
				1 4 7 2 5 8	
				3 6 9	
Determinant of a matrix:	M> A = [6 1 1; 4 -2 5; 2 8 7]	P> A = np.array([[6,1,1],[4,-2,5],	R > A = matrix(c(6,1,1,4,-2,5,2,8,7), nrow=3,	J> A=[6 1 1; 4 -2 5; 2 8 7]	Determinant of a matrix:
A -> A	A =	[2,8,7]])	byrow=T)	3x3 Array{Int64,2}:	A -> A
[1]	6 1 1	P> A	R> A	6 1 1	
	4 -2 5	array([[6, 1, 1],	[,1] [,2] [,3]	4 -2 5	
	2 8 7	[4, -2, 5],	[1,] 6 1 1	2 8 7	
		[2, 8, 7]])	[2,] 4 -2 5		
	M> det(A)		[3,] 2 8 7	J> det(A)	
	ans = -306	<pre>P> np.linalg.det(A)</pre>		-306	
		-306	R> det(A)		
			[1] -306		
Inverse of a matrix	M> A = [4 7; 2 6]	<pre>P> A = np.array([[4, 7], [2, 6]])</pre>	R> A = matrix(c(4,7,2,6), nrow=2, byrow=T)	J> A=[4 7; 2 6]	Inverse of a matrix
	A =			2x2 Array{Int64,2}:	
	4 7	P> A	R> A	4 7	
	2 6	array([[4, 7],	[,1] [,2]	2 6	
		[2, 6]])	[1,] 4 7		
	M> A_inv = inv(A)		[2,] 2 6	<pre>J> A_inv=inv(A)</pre>	
	A_inv =	<pre>P> A_inverse = np.linalg.inv(A)</pre>		2x2 Array{Float64,2}:	
	0.60000 -0.70000		R> solve(A)	0.6 -0.7	
	-0.20000 0.40000	P> A_inverse	[,1] [,2]	-0.2 0.4	
		array([[0.6, -0.7],	[1,] 0.6 -0.7		
		[-0.2, 0.4]])	[2,] -0.2 0.4		

ADVANCED MATRIX OPERATIONS

Calculating the covariance matrix	M> x1 = [4.0000 4.2000 3.9000 4.3000 4.1000]'	P> x1 = np.array([4, 4.2, 3.9, 4.3, 4.1])	R> x1 = matrix(c(4, 4.2, 3.9, 4.3, 4.1), ncol=5)	J> x1=[4.0 4.2 3.9 4.3 4.1]';	Calculating the covariance
of 3 random variables					of 3 random variables
	M> x2 = [2.0000 2.1000 2.0000 2.1000 2.2000]'	P> x2 = np.array([2, 2.1, 2, 2.1, 2.2])	R> x2 = matrix(c(2, 2.1, 2, 2.1, 2.2), ncol=5)	J> x2=[2. 2.1 2. 2.1 2.2]';	
(here: covariances of the means					(here: covariances of the m
of x1, x2, and x3)	M> x3 = [0.60000 0.59000 0.58000 0.62000 0.63000]'	P> x3 = np.array([0.6, 0.59, 0.58, 0.62, 0.63])	R> x3 = matrix(c(0.6, 0.59, 0.58, 0.62, 0.63), ncol=5)	J> x3=[0.6 .59 .58 .62 .63]';	of x1, x2, and x3)
	M> cov([x1,x2,x3])	P> np.cov([x1, x2, x3])	R> cov(matrix(c(x1, x2, x3), ncol=3))	J> cov([x1 x2 x3])	
	ans =	Array([[0.025	[,1] [,2] [,3]	3x3 Array{Float64,2}:	
	2.5000e-02 7.5000e-03 1.7500e-03	[0.0075 , 0.007 , 0.00135],	[1,] 0.02500 0.00750 0.00175	0.025 0.0075 0.00175	
	7.5000e-03 7.0000e-03 1.3500e-03	[0.00175, 0.00135, 0.00043]])	[2,] 0.00750 0.00700 0.00135	0.0075 0.007 0.00135	
	1.7500e-03 1.3500e-03 4.3000e-04		[3,] 0.00175 0.00135 0.00043	0.00175 0.00135 0.00043	
Calculating	M> A = [3 1; 1 3]	P> A = np.array([[3, 1], [1, 3]])	R> A = matrix(c(3,1,1,3), ncol=2)	J > A=[3 1; 1 3]	Calculating
eigenvectors and eigenvalues	A =			2x2 Array{Int64,2}:	eigenvectors and eigenvalu
	3 1	P> A	R> A	3 1	
	3 1 1 3	P> A array([[3, 1],	R> A [,1] [,2]	3 1 1 3	
		array([[3, 1],	[,1] [,2]		
	1 3	array([[3, 1],	[,1] [,2] [1,] 3 1	1 3	
	<pre>1 3 M> [eig_vec,eig_val] = eig(A)</pre>	array([[3, 1], [1, 3]])	[,1] [,2] [1,] 3 1	1 3 J> (eig_vec,eig_val)=eig(a)	
	<pre>1 3 M> [eig_vec,eig_val] = eig(A) eig_vec = -0.70711 0.70711</pre>	array([[3, 1], [1, 3]])	[,1] [,2] [1,] 3 1 [2,] 1 3	<pre>1 3 J> (eig_vec,eig_val)=eig(a) ([2.0,4.0],</pre>	
	<pre>1 3 M> [eig_vec,eig_val] = eig(A) eig_vec = -0.70711 0.70711</pre>	array([[3, 1],	[,1] [,2] [1,] 3 1 [2,] 1 3 R> eigen(A)	<pre>1 3 J> (eig_vec,eig_val)=eig(a) ([2.0,4.0], 2x2 Array{Float64,2}:</pre>	
	<pre>1 3 M> [eig_vec,eig_val] = eig(A) eig_vec = -0.70711 0.70711 0.70711 0.70711</pre>	array([[3, 1],	[,1] [,2] [1,] 3 1 [2,] 1 3 R> eigen(A) \$values	<pre>1 3 J> (eig_vec,eig_val)=eig(a) ([2.0,4.0], 2x2 Array{Float64,2}: -0.707107 0.707107</pre>	
	<pre>1 3 M> [eig_vec,eig_val] = eig(A) eig_vec = -0.70711 0.70711 0.70711 0.70711 eig_val =</pre>	array([[3, 1],	[,1] [,2] [1,] 3 1 [2,] 1 3 R> eigen(A) \$values	<pre>1 3 J> (eig_vec,eig_val)=eig(a) ([2.0,4.0], 2x2 Array{Float64,2}: -0.707107 0.707107</pre>	
	<pre>1 3 M> [eig_vec,eig_val] = eig(A) eig_vec = -0.70711 0.70711 0.70711 0.70711 eig_val = Diagonal Matrix</pre>	<pre>array([[3, 1],</pre>	[,1] [,2] [1,] 3 1 [2,] 1 3 R> eigen(A) \$values [1] 4 2	<pre>1 3 J> (eig_vec,eig_val)=eig(a) ([2.0,4.0], 2x2 Array{Float64,2}: -0.707107 0.707107</pre>	
	1 3 M> [eig_vec,eig_val] = eig(A) eig_vec = -0.70711 0.70711 0.70711 0.70711 eig_val = Diagonal Matrix 2 0	<pre>array([[3, 1],</pre>	[,1] [,2] [1,] 3 1 [2,] 1 3 R> eigen(A) \$values [1] 4 2 \$vectors	<pre>1 3 J> (eig_vec,eig_val)=eig(a) ([2.0,4.0], 2x2 Array{Float64,2}: -0.707107 0.707107</pre>	
	1 3 M> [eig_vec,eig_val] = eig(A) eig_vec = -0.70711 0.70711 0.70711 0.70711 eig_val = Diagonal Matrix 2 0	<pre>array([[3, 1],</pre>	[,1] [,2] [1,] 3 1 [2,] 1 3 R> eigen(A) \$values [1] 4 2 \$vectors [,1] [,2]	<pre>1 3 J> (eig_vec,eig_val)=eig(a) ([2.0,4.0], 2x2 Array{Float64,2}: -0.707107 0.707107</pre>	
Generating a Gaussian dataset:	1 3 M> [eig_vec,eig_val] = eig(A) eig_vec = -0.70711 0.70711 0.70711 0.70711 eig_val = Diagonal Matrix 2 0 0 4	<pre>array([[3, 1],</pre>	[,1] [,2] [1,] 3 1 [2,] 1 3 R> eigen(A) \$values [1] 4 2 \$vectors [,1] [,2] [1,] 0.7071068 -0.7071068	<pre>1 3 J> (eig_vec,eig_val)=eig(a) ([2.0,4.0], 2x2 Array{Float64,2}: -0.707107 0.707107</pre>	Generating a Gaussian date

