$[Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Please in sert \backslash Prerender Unicode \{\tilde{A} \xi\} into preamble] [Ple$

IFCE - Instituto Federal de Ciência e Tecnologia do Ceará

Avaliação 1

Professor: Hugo Victor

Aluno: 🚽

1. Sejam a e b pertencentes ao reais, sendo a e b diferentes de zero. Suponhamos que

$$a$$
 = b Multiplicando os dois lados da igualdade por a temos: a^2 = ab Subtraindo b^2 dos dois lados da igualdade temos: a^2-b^2 = $ab-b^2$ Sabemos (fatoração), que $a^2-b^2=(a+b)(a-b)$. Logo: $(a+b)(a-b)$ = $ab-b^2$ Colocando b em evidência do lado direito temos: $(a+b)(a-b)$ = $b(a-b)$ Dividindo ambos os lados por $(a-b)$ temos: $a+b$ = b Iniciamos com $a=b$, então no lugar de a eu posso colocar b : $b+b$ = b Portanto: $2b$ = b Dividindo ambos os lados por b concluímos que: b = b Dividindo ambos os lados por b concluímos que: b = b Dividindo ambos os lados por b concluímos que: b = b Dividindo ambos os lados por b concluímos que: b = b Dividindo ambos os lados por b concluímos que:

150

Obviamente essa demonstração possui um erro, pois todos nós sabemos que 2 não é igual a 1. Responda:

- (a) Aprendemos sobre três tipos de demonstração: Direta, usando Contrapositiva e Reduzindo a um absurdo. Qual das três foi utilizada? Justifique.
- (b) Qual o erro da demonstração? Em qual linha de texto ele aparece?
- 2. Na matemática financeira dado um capital C aplicado a uma taxa i num sistema de juros compostos durante um tempo t gera um montante M de tal modo que

$$M = C \cdot (1+i)^t$$

Demonstre essa fórmula para t > 0 inteiro.

3. Observe o seguinte grafo e responda:

200

(a) Escreva as relações F e G onde SFT e TGU na forma de gráfico e na forma matricial.

- (b) Alguma dessas relações é função? Se for prove e se não for, justifique o porquê.
- (c) Apresente a relação inversa das relações acima (na forma de gráfico)
- 4. Seja o conjunto universo $U = \{1, 2, 3, 4, 5\}$ e a coleção de conjuntos $T = \{T_1, T_2, T_3, T_4\}$ de subconjuntos de U e considere a relação G como sendo \ni da questão anterior.
 - (a) Apresente os elementos de cada conjunto da coleção T.
 - (b) Verifique se alguma subcoleção de T é uma partição de U e apresente-a.
- 5. A equação $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > 0 e b > 0 representa uma elipse de eixo maior medindo 2a, eixo menor medindo 2b e centro na origem. Essa equação pode ser manipulada b representar duas funções na variável independente b com a variável dependente b. Apresente essas funções, seu domínio e sua imagem.