## ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет безопасности информационных технологий

#### КУРСОВАЯ РАБОТА

По дисциплине: «Инженерно-технические средства защиты информации»

На тему: «Проектирование инженерно-технической системы защиты информации на предприятии»

Выполнил(а):

Семенова Юлиана Дмитриевна, студентка группы N34511

**Проверил преподаватель:** Попов Илья Юрьевич,

к.т.н., доцент ФБИТ

(подпись)

Отметка о выполнении:

## ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

#### ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

| Студент                        | Семенова Ю.Д.                                                                             |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------|--|--|
| Факультет                      | Безопасности информационных технологий                                                    |  |  |
| Группа                         | N34511                                                                                    |  |  |
| Направление<br>(специальность) | Информационная безопасность                                                               |  |  |
| Руководитель                   | Попов Илья Юрьевич, к.т.н., доцент ФБИТ (Фамилия И.О., должность, ученое звание, степень) |  |  |
| Дисциплина                     | Инженерно-технические средства защиты информации                                          |  |  |
| Наименование<br>темы           | Проектирование инженерно-технической системы защиты информации на предприятии             |  |  |
| Задание                        | Разработать инженерно-техническую систему защиты информации на предприятии                |  |  |
|                                |                                                                                           |  |  |

#### Краткие методические указания

#### Содержание пояснительной записки

Курсовая работа включает разделы:

Введение

- 1. Общие сведения о защищаемой организации.
- 2. Перечень управляющих документов.
- 3. Анализ защищаемых помещений с точки зрения возможных утечек информации и требуемых для защиты технических средств.
- 4. Анализ рынка технических средств.
- 5. Разработка схемы расстановки выбранных технических средств в защищаемом помещении
- 6. Заключение.

#### Рекомендуемая литература

| Руководитель |                               |
|--------------|-------------------------------|
| Студент      | (Подинсь, дата)<br>19.12.2023 |
| •            | (Йодпись, дата)               |

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

#### ГРАФИК ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ

| Студент         | Семенова Ю.Д.                                                     |  |  |
|-----------------|-------------------------------------------------------------------|--|--|
| Факультет       | Безопасности информационных технологий                            |  |  |
| Группа          | N34511                                                            |  |  |
| Направление     | Информационная болоности                                          |  |  |
| (специальность) | Информационная безопасность                                       |  |  |
| Руководитель    | Попов Илья Юрьевич, к.т.н., доцент ФБИТ                           |  |  |
| Туководитель    | (Фамилия И.О., должность, ученое звание, степень)                 |  |  |
| Дисциплина      | Инженерно-технические средства защиты информации                  |  |  |
| Наименование    | Проектирование инженерно-технической системы защиты информации на |  |  |
| темы            | предприятии                                                       |  |  |
| Задание         | Разработать инженерно-техническую систему защиты информации на    |  |  |
| - ··/           | предприятии                                                       |  |  |

| №   | Наименование этапа                | Дата завершения |             | Оценка и подпись |
|-----|-----------------------------------|-----------------|-------------|------------------|
| п/п | Hanwellobaline Frank              | Планируемая     | Фактическая | руководителя     |
| 1   | Заполнение задания на курс.работу | 01.12.2023      | 01.12.2023  |                  |
| 2   | Анализ собранных материалов       | 05.12.2023      | 05.12.2023  |                  |
| 3   | Написание курсовой работы         | 14.11.2023      | 15.11.2023  |                  |
| 4   | Защита курсовой работы            | 19.12.2023      | 19.12.2023  |                  |

| Руководитель |                                            |
|--------------|--------------------------------------------|
| Студент      | (Подгись, дата) 19.12.2023 (Додпись, дата) |

## ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» АННОТАЦИЯ НА КУРСОВУЮ РАБОТУ

| Студент                                                        | Семенова Ю.Д.                                                                                                                                                                                             |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Факультет                                                      | Безопасности информационных технологий                                                                                                                                                                    |  |  |
| Группа                                                         | N34511                                                                                                                                                                                                    |  |  |
| Направление<br>(специальность)                                 | Информационная безопасность                                                                                                                                                                               |  |  |
| Руководитель                                                   | Попов Илья Юрьевич, к.т.н., доцент ФБИТ (Фамилия И.О., должность, ученое звание, степень)                                                                                                                 |  |  |
| Дисциплина<br>Наименование<br>темы<br>Задание                  | Инженерно-технические средства защиты информации Проектирование инженерно-технической системы защиты информации на предприятии Разработать инженерно-техническую систему защиты информации на предприятии |  |  |
|                                                                | ХАРАКТЕРИСТИКА КУРСОВОГО ПРОЕКТА (РАБОТЫ)                                                                                                                                                                 |  |  |
| <ol> <li>Цель и з</li> <li>Характе</li> </ol>                  | Вадачи работы:  □ Предложены студентом □ Сформулированы при участии студента ■ Определены руководителем  вер работы                                                                                       |  |  |
|                                                                | <ul><li>□ Расчет</li><li>□ Конструирование</li><li>□ Моделирование</li><li>■ Другое: отчёт</li></ul>                                                                                                      |  |  |
| В работ<br>защиты информ<br>информации на<br><b>4. Выво</b> ды | ı .<br>I                                                                                                                                                                                                  |  |  |
| "BLACK.OUT" организации.                                       | вьтате выполнения курсовой работы было проведено обследование НПАО и разработана инженерно-техническая система защиты информации                                                                          |  |  |
| Руководитель _                                                 |                                                                                                                                                                                                           |  |  |
| Студент _                                                      | (Подинсь, дата) 19.12.2023 (П)одпись, дата)                                                                                                                                                               |  |  |

### СОДЕРЖАНИЕ

| ВВЕДЕНИЕ                                                        | 6    |
|-----------------------------------------------------------------|------|
| 1. ОБЩИЕ СВЕДЕНИЯ О ЗАЩИЩАЕМОЙ ОРГАНИЗАЦИИ                      |      |
| 2. АНАЛИЗ ТЕХНИЧЕСКИХ КАНАЛОВ УТЕЧКИ ИНФОРМАЦИИ                 | 9    |
| 2.1. Акустический канал                                         | 9    |
| 2.2. Материально-вещественный канал                             | 11   |
| 2.3. Визуально-оптический канал                                 | . 12 |
| 2.4. Электромагнитный канал                                     | 12   |
| 3. ПЕРЕЧЕНЬ УПРАВЛЯЮЩИХ ДОКУМЕНТОВ                              | 15   |
| 4. АНАЛИЗ ЗАЩИЩАЕМЫХ ПОМЕЩЕНИЙ С ТОЧКИ ЗРЕНИЯ ВОЗМОЖНЫХ УТЕЧЕ   | ЕΚ   |
| ИНФОРМАЦИИ И ТРЕБУЕМЫХ ДЛЯ ЗАЩИТЫ ТЕХНИЧЕСКИХ СРЕДСТВ           | . 17 |
| 5. АНАЛИЗ РЫНКА ТЕХНИЧЕСКИХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ           | . 21 |
| 6. РАЗРАБОТКА СХЕМЫ РАССТАНОВКИ ВЫБРАННЫХ ТЕХНИЧЕСКИХ СРЕДСТВ В |      |
| ЗАЩИЩАЕМОМ ПОМЕЩЕНИИ                                            | . 28 |
| ЗАКЛЮЧЕНИЕ                                                      | 32   |
| СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ                                  | . 33 |

#### **ВВЕДЕНИЕ**

В организации обрабатываются сведения, содержащие государственную тайну, а разведывательной, именно сведения В области контрразведывательной оперативно-розыскной деятельности, в области противодействия терроризму и обеспечения безопасности лиц, в отношении которых принято решение о применении мер государственной защиты. Для защиты информации необходимо соответствующе оборудовать обеспечить защиту помещение И ОТ утечки информации путём установки инженерно-технического оборудования.

Целью курсовой работы является разработка комплекса инженерно-технической защиты информации, составляющей государственную тайну с грифом «секретно».

Задачи, решаемые в ходе выполнения данной работы:

- 1. Произвести анализ технических каналов утечки информации;
- 2. Составить перечень управляющих документов;
- 3. Произвести анализ защищаемых помещений с точки зрения возможных утечек информации и требуемых для защиты технических средств;
- 4. Произвести анализ рынка технических средств защиты информации разных категорий;
- 5. Разработать схемы расстановки выбранных технических средств в защищаемом помещении.

#### 1. ОБЩИЕ СВЕДЕНИЯ О ЗАЩИЩАЕМОЙ ОРГАНИЗАЦИИ

Наименование организации: НПАО "BLACK.OUT"

Область деятельности: Аутсорсинг IT-специалистов, занимающихся тестированием в формате Red Team.

Основные информационные процессы и потоки в организации, включая описание информации ограниченного доступа:

- сведения составляющие государственную тайну;
- информация конфиденциального характера:
  - персональные данные;
  - коммерческая тайна

Информационные потоки и структура организации представлена на рисунке 1.1.



Рисунок 1.1 – Информационные потоки между отделами предприятия и структура

- Закрытый канал связи
- Открытый канал связи

Прибыль, расходы, стоимость информационных активов:

- Прибыль: 70 000 000 рублей/мес
- Расходы:
  - заработная плата сотрудников: 45 700 000 рублей/месяц;
  - коммунальные услуги, интернет, обслуживание здания: 1 000 000 рублей/месяц;

- закупка и обслуживание оборудования и ПО: 5 000 000 рублей/месяц.
- Информационные активы:
  - сведения, составляющие государственную тайну: 2 000 000 000 рублей;
  - персональные данные сотрудников и клиентов: 200 000 000 рублей;
  - коммерческая тайна (структура, планы закупок, планы помещений и т.д.): 300 000 000 рублей.

Персонал организации: 55 человек.

#### 2. АНАЛИЗ ТЕХНИЧЕСКИХ КАНАЛОВ УТЕЧКИ ИНФОРМАЦИИ

Канал утечки информации – это совокупность источника информации, материального носителя (или среды распространения несущего эту информацию сигнала) и средства выделения информации из сигнала или носителя.

Классификация каналов утечки информации представлены на рисунке 2.1.



Рисунок 2.1 - Классификация каналов утечки информаци

#### 2.1. Акустический канал

Акустический канал утечки информации формируется из трех элементов:

- источника голоса при разговоре в помещении с коллегами или по телефону;
- среды распространения воздуха для акустического сигнала, металлических конструкций и стекол для виброакустического;
- приемника электронного закладного устройства, совмещающего функции снятия информации и передачи ее по радиосигналу.

Акустические каналы утечки информации могут быть следующих видов:

- прямой акустический - в прямых акустических (воздушных) технических каналах утечки информации средой распространения акустических сигналов является воздух. В качестве датчиков средств разведки используются высокочувствительные микрофоны, преобразующие акустический сигнал в электрический. Перехват акустической (речевой) информации из выделенных помещений по данному каналу может осуществляться: с использованием портативных устройств звукозаписи (диктофонов), скрытно установленных в выделенном помещении, с использованием

электронных устройств перехвата информации (закладных устройств) с датчиками микрофонного типа (преобразователями акустических сигналов, распространяющихся в воздушной среде), скрытно установленных в выделенном помещении, с передачей информации по радиоканалу, оптическому каналу, электросети 220 В, телефонной линии, соединительным линиям ВТСС и специально проложенным кабелям, с использованием направленных микрофонов, размещенных в близлежащих строениях и транспортных средствах, находящихся за границей контролируемой зоны, без применения технических средств (из-за недостаточной звукоизоляции ограждающих конструкций выделенных помещений и их инженерно-технических систем) посторонними лицами (посетителями, техническим персоналом) при их нахождении в коридорах и смежных помещениях (непреднамеренное прослушивание).

- виброакустический виброакустический канал состоит из тех же элементов, что и акустический: объект сигнала, среда распространения, агент, принимающий данные. Различие состоит в характеристиках среды. Это не воздух, а строительные и иные конструкции, при прохождении по которым акустический канал создает вибрацию, снимаемую при помощи лазерного луча и преобразованную в информацию.
- акустоэлектрический акустоэлектрические технические утечки информации возникают вследствии преобразования информативного сигнала из акустического в электрический за счет "микрофонного" эффекта в электрических элементах вспомогательных технических средств и систем. Перехват акустических колебаний данном канале утечки информации осуществляется непосредственного подключения к соединительным линиям ВТСС, обладающим "микрофонным эффектом", специальных высокочувствительных низкочастотных усилителей (пассивный акустоэлектрический канал)
- акустооптический съем информации осуществляется с плоской поверхности, колеблющейся под действием акустической волны, лазерным лучом в ИК-диапазоне, что обеспечивает невидимость его невооруженным глазом. В качестве поверхности, на которую оказывает воздействие акустическая волна, используется внешнее стекло окна. Стекло облучается источником лазерного излучения с внешней стороны, например из окна соседнего дома. На поверхности соприкосновения лазерного луча со стеклом происходит модуляция лазерного луча акустическими сигналами, генерируемыми в помещении (речь, звуковые колебания работающих технических систем). После отражения от стекла модулированный по амплитуде и фазе лазерный луч принимается приемником ИК-излучения, преобразуется в электрический сигнал и

после соответствующей обработки преобразуется в акустический сигнал, несущий интересующую информацию.

параметрический - образование пассивного акустоэлектро-магнитного канала утечки информации связано с наличием в составе некоторых ВТСС высокочастотных генераторов. В результате воздействия акустического поля меняется давление на все элементы высокочастотных генераторов ВТСС. При этом изменяется (незначительно) взаимное расположение элементов схем, проводов в катушках индуктивности, дросселей и т.п., что может привести к изменениям параметров высокочастотного сигнала, например, к модуляции его информационным сигналом. Поэтому этот канал утечки информации часто называется параметрическим. Это обусловлено тем, что незначительное изменение взаимного расположения, например, проводов в катушках индуктивности (межвиткового расстояния) приводит к изменению их индуктивности, а следовательно, к изменению частоты излучения генератора, то есть к частотной модуляции сигнала. Или воздействие акустического поля на конденсаторы приводит к изменению расстояния между пластинами и, следовательно, к изменению его емкости, что, в свою очередь, также приводит к частотной модуляции высокочастотного генератора. Наиболее часто наблюдается паразитная информационным сигналом излучений гетеродинов радиоприемных и телевизионных устройств, находящихся в выделенных помещениях и имеющих конденсаторы переменной ёмкости с воздушным диэлектриком в колебательных контурах гетеродинов.

#### 2.2. Материально-вещественный канал

Материально-вещественный канал — каналы утечки информации, возникающие за счет неконтролируемого выхода за пределы контролируемой зоны различных материалов и веществ, в которых может содержаться конфиденциальная информация.

Примеры инцидентов и утечек данных по таким каналам:

- хищение или потеря USB-накопителя;
- передача физических документов.

Защитить важную информацию от утечек по материально-физическим каналам помогут организационные и технические меры. Первые предполагают внедрение системы учета физических носителей и документов, а также допусков к ним, принтерам, копировальной и другой технике с обязательным документированием.

Что касается именно USB-накопителей, эффективный способ защиты — использование средств шифрования данных, хранящихся на них с помощью алгоритмов

AES-256, BlowFish-448 и подобных им. В таком случае, даже если носитель попадает в третьи руки, считать с него информацию не получится.

#### 2.3. Визуально-оптический канал

Возникают при дистанционном считывании и фиксации информации с различных носителей: например, фотографирование дисплеев мониторов, экранов для демонстрации презентаций, бумажных носителей, аудиозапись переговоров и пр. Непосредственно физического контакта с носителем данных в этом случае не происходит.

Для защиты информации от утечки по этим каналам специалисты по информационной безопасности рекомендуют:

- ограничивать доступ сотрудников к визуальной информации. В этом помогут специально разработанные политики безопасности.
- оборудовать помещения, в которых работают с визуальными данными, средствами преграждения или ослабления отраженного света: темными стеклами, шторами, роллетами, ставнями.
- располагать экраны и другие защищаемые объекты так, чтобы исключить отражение света в сторону посторонних лиц.
- применять маскировку объектов и носителей информации. Технологий масса от управления контрастом фона, на котором демонстрируется защищаемая информация, до применения аэрозольных завес и других специальных решений.

#### 2.4. Электромагнитный канал

Данный канал наиболее широко используется для прослушивания телефонных разговоров, ведущихся по радиотелефонам, сотовым телефонам или по радиорелейным и спутниковым линиям связи.

В электромагнитных каналах утечки информации носителем информации являются различного вида побочные электромагнитные излучения (ПЭМИ), возникающие при работе технических средств, а именно:

- побочные электромагнитные излучения, возникающие вследствие протекания по элементам ТСПИ и их соединительным линиям переменного электрического тока;
- побочные электромагнитные излучения на частотах работы высокочастотных генераторов, входящих в состав ТСПИ;
- побочные электромагнитные излучения, возникающие вследствие паразитной генерации в элементах ТСПИ.

#### Побочные электромагнитные излучения элементов ТСПИ

В некоторых ТСПИ (например, системах звукоусиления) носителем информации является электрический ток, параметры которого (сила тока, напряжение, частота и фаза)

изменяются по закону изменения информационного речевого сигнала. При протекании электрического тока по токоведущим элементам ТСПИ и их соединительным линиям в окружающем их пространстве возникает переменное электрическое и магнитное поле. В силу этого элементы ТСПИ можно рассматривать как излучатели электромагнитного поля, модулированного по закону изменения информационного сигнала.

# Побочные электромагнитные излучения на частотах работы высокочастотных генераторов ТСПИ

В состав ТСПИ могут входить различного рода высокочастотные генераторы. К таким устройствам можно отнести: задающие генераторы, генераторы тактовой частоты, генераторы стирания и подмагничивания магнитофонов, гетеродины радиоприемных и телевизионных устройств, генераторы измерительных приборов и т.д.

В результате внешних воздействий информационного сигнала (например, электромагнитных колебаний) на элементах высокочастотных генераторов наводятся электрические сигналы. Приемником магнитного поля могут быть катушки индуктивности колебательных контуров, дроссели в цепях электропитания и т.д. Приемником электрического поля являются провода высокочастотных цепей и другие элементы. Наведенные электрические сигналы могут вызвать непреднамеренную модуляцию собственных высокочастотных колебаний генераторов, которые излучаются в окружающее пространство.

# Побочные электромагнитные излучения, возникающие вследствие паразитной генерации в элементах ТСПИ

Паразитная генерация в элементах ТСПИ, в том числе, самовозбуждение усилителей низкой частоты (например, усилителей систем звукоусиления и звукового сопровождения, магнитофонов, систем громкоговорящей связи и т.п.), возможна за счет случайных преобразований отрицательных обратных связей (индуктивных или емкостных) в паразитные положительные, что приводит к переводу усилителя из режима усиления в режим автогенерации сигналов. Частота автогенерации (самовозбуждения) лежит в пределах рабочих частот нелинейных элементов усилителей (например, полупроводниковых приборов, электровакуумных ламп и т.п.). Сигнал на частотах самовозбуждения, как правило, оказывается модулированным информационным сигналом. Самовозбуждение наблюдается, в основном, при переводе усилителя в нелинейный режим работы, т.е. в режим перегрузки.

Побочные электромагнитные излучения возникают при следующих режимах обработки информации средствами вычислительной техники:

- вывод информации на экран монитора;
- ввод данных с клавиатуры;

- запись информации на накопители на магнитных носителях;
- чтение информации с накопителей на магнитных носителях;
- передача данных в каналы связи;
- вывод данных на периферийные печатные устройства принтеры, плоттеры;
- запись данных от сканера на магнитный носитель (ОЗУ).

Для перехвата побочных электромагнитных излучений ТСПИ "противником" могут использоваться как обычные средства радио-, радиотехнической разведки, так и специальные средства разведки, которые называются техническими средствами разведки побочных электромагнитных излучений и наводок (ТСР ПЭМИН). Как правило, полагается, что ТСР ПЭМИН располагаются за пределами контролируемой зоны объекта.

#### 3. ПЕРЕЧЕНЬ УПРАВЛЯЮЩИХ ДОКУМЕНТОВ

Для организованной работы с информацией и её защитой в организации необходимо соблюдать требования следующих нормативных актов:

- Закон РФ от 21.07.93 N 5485-I "О государственной тайне";
- Федеральный закон от 29.07.2004 N 98-ФЗ (ред. от 09.03.2021) "О коммерческой тайне";
- Федеральный закон от 27 июля 2006 г. N 149-ФЗ "Об информации, информационных технологиях и о защите информации";
- Федеральный закон "О персональных данных" от 27.07.2006 N 152-ФЗ;
- Указ Президента РФ от 30 ноября 1995 г. N 1203 "Об утверждении перечня сведений, отнесенных к государственной тайне";
  - сведения, раскрывающие методы, способы или средства защиты информации, содержащей сведения, составляющие государственную тайну, планируемые и (или) проводимые мероприятия по защите информации от несанкционированного доступа, иностранных технических разведок и утечки по техническим каналам, а также данные о финансировании этой деятельности, если эти данные раскрывают перечисленные сведения;
  - сведения, раскрывающие методы, средства, организационные, технические или иные меры, направленные на обеспечение режима секретности, а также данные о финансировании этой деятельности, если эти данные раскрывают перечисленные сведения.
- Указ Президента Российской Федерации от 06.03.1997 г. № 188 "Об утверждении перечня сведений конфиденциального характера";
- Постановление Правительства РФ от 15 апреля 1995 г. N 333 "О лицензировании деятельности предприятий, учреждений и организаций по проведению работ, связанных с использованием сведений, составляющих государственную тайну, созданием средств защиты информации, а также с осуществлением мероприятий и (или) оказанием услуг по защите государственной тайны";
- Постановление Правительства РФ от 04.09.1995 N 870 (ред. от 30.10.2021) "Об утверждении Правил отнесения сведений, составляющих государственную тайну, к различным степеням секретности";
- Постановлением Совета Министров Правительства РФ от 15 сентября 1993 г. № 912-51);

- ГОСТ Р ИСО/МЭК 27002-2021 "Методы и средства обеспечения безопасности. Свод норм и правил применения мер обеспечения информационной безопасности";
- Положение «О государственной системе защиты информации в Российской Федерации от иностранных технических разведок и от ее утечки по техническим каналам связи»(утв. Постановлением Совета Министров Правительства РФ от 15 сентября 1993 г. № 912-51).

## 4. АНАЛИЗ ЗАЩИЩАЕМЫХ ПОМЕЩЕНИЙ С ТОЧКИ ЗРЕНИЯ ВОЗМОЖНЫХ УТЕЧЕК ИНФОРМАЦИИ И ТРЕБУЕМЫХ ДЛЯ ЗАЩИТЫ ТЕХНИЧЕСКИХ СРЕДСТВ

Для разработки комплекса инженерно-технической защиты информации, необходимо описать выбранные помещения.

План помещения представлен на рисунке 3.1, рисунке 3.2 и 3.3.



Рисунок 3.1 – План 2-го этажа

#### Легенда:

- лаборатория (1). Здесь находится суперкомпьютер для моделирования системы клиента для нахождения лучшего пути взлома. Также с помощью него происходит перебор ключей для расшифровки необходимых данных;
- кабинет генерального директора (2);
- туалетная комната (3);
- кабинет секретаря (4);
- кабинет отдела безопасности, который занимается документацией и мониторингом (5);
- кабинет HR (6);
- офис для сотрудников, занимающихся работой с госучреждениями (7);
- кабинет начальника отдела безопасности (8), который является администратором ИБ;

- офис для сотрудников по работе с клиентами (9).



Рисунок 3.2 – План 1-го эатажа

#### Легенда:

- место для охраны (10). Там находится щитовая, видеорегистратор и мониторы, ручное управление СКУДом;
- ресепшн (11). Запись на посещение, учёт времени, направление к начальству;
- туалетная комната (12);
- кабинет заместителя директора (13). Там находится потайная дверь с биометрическим идентификатором по радужке глаза для попадания на винтовую лестницу;
- винтовая лестница (14) для спуска на цокольный этаж;
- кухня (15);
- зона отдыха (16);
- офис для ІТ-специалистов (17), лестница на 2-ой этаж;
- переговорная (18) для коммерческих предложений;
- переговорная (19) для сотрудников для проведения планерок.



Рисунок 3.3 – План цокольного этажа

#### Легенда:

- холл с секретарём (20). Учёт посетителей, работа с документами, содержащими сведения государственной тайны;
- переговорная (21) для работы с госучреждениями и для обсуждения сведений, содержащих государственную тайну;
- серверная (22).

Далее представлен результат анализа в виде таблицы 1 с номером защищаемого помещения и возможными каналами утечки информации.

Таблица 1 – Возможные каналы утечки информации

| Номер     | Каналы утечки                       |                        |                          |       |                       |                      |
|-----------|-------------------------------------|------------------------|--------------------------|-------|-----------------------|----------------------|
| помещения | Беспроводн<br>ая и сотовая<br>связь | Акустическ<br>ий канал | Виброакуст ический канал | ПЭМИН | Слаботочн<br>ые линии | Оптически<br>й канал |
| 1         | -                                   | -                      | -                        | -     | -                     | -                    |
| 2         | -                                   | +                      | +                        | +     | +                     | +                    |
| 4         | +                                   | -                      | -                        | +     | +                     | -                    |
| 5         | -                                   | +                      | +                        | +     | +                     | +                    |
| 6         | +                                   | -                      | -                        | +     | +                     | -                    |
| 7         | -                                   | -                      | +                        | +     | +                     | +                    |
| 8         | -                                   | +                      | +                        | +     | +                     | +                    |
| 9         | -                                   | +                      | +                        | +     | +                     | +                    |
| 10        | -                                   | -                      | -                        | +     | +                     | +                    |
| 11        | +                                   | +                      | -                        | +     | +                     | +                    |
| 13        | -                                   | +                      | +                        | +     | +                     | +                    |
| 17        | +                                   | -                      | +                        | +     | +                     | +                    |
| 18        | +                                   | +                      | +                        | -     | -                     | +                    |
| 19        | +                                   | +                      | +                        | -     | -                     | +                    |
| 20        | +                                   | +                      | -                        | +     | +                     | _                    |
| 21        | -                                   | +                      | +                        | +     | +                     | -                    |
| 22        | -                                   | -                      | +                        | +     | +                     | -                    |

#### 5. АНАЛИЗ РЫНКА ТЕХНИЧЕСКИХ СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

Первым каналом для анализа рынка средств выбран визуально-оптический.

Для защиты визуально оптического канала используются: шторы, рольставни, укрепленные двери, отражающая пленка для окон. Все данные средства ограничивают видимость для злоумышленников, что предотвращает возможные утечки информации по визуально-оптическому каналу. В качестве средства выбрана отражающая пленка для окон и рольставни. Рольставни будут располагаться только на первом этаже здания организации.

Следующим пунктом анализа будут средства акустической и вибрационной постановки помех. Результат анализа представлен в таблице 2.

Таблица 2 - Средства акустической и вибрационной постановки помех

| Название устройства | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Цена        |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ЛГШ-304             | Предназначено для защиты акустической речевой информации, путем формирования акустических маскирующих шумовых помех.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25 220 руб. |
| Буран               | Обеспечивает защиту циркулирующей в помещении акустической речевой информации от утечки за счет вибрационных сигналов, возникающих/формируемых под воздействием акустического сигнала на ограждающие конструкции и предметы интерьера, регистрируемых аппаратурой акустической речевой разведки на базе лазеров.                                                                                                                                                                                                                                                                                                                 | 67 500 руб. |
| COHATA<br>AB-46     | Соната-АВ" модель 4Б построена по принципу "единый источник электропитания + генераторы-электроакустические преобразователи (излучатели)" Благодаря этому построению проявляется высокая стойкость защиты информации. Имеет ряд преимуществ перед "классическим" подходом - "центральный генератор + электроакустические преобразователи".                                                                                                                                                                                                                                                                                       | 44 200 руб. |
| ЛГШ-301             | Генератор акустического шума ЛГШ-301 предназначен для защиты речевой информации от перехвата по прямому акустическому, виброакустическому и оптикоакустическому каналам. Изделие позволяет защищать речевую информацию, в обычном помещении, оборудованном сетью 220 В. Принцип действия ЛГШ-301 основан на генерации «белого шума» в акустическом диапазоне частот и, как следствие, повышении отношения акустическая помеха/речевой сигнал. Генератор защищает пространство объемом до 50 куб. м. Если Вы работаете в большом помещении, необходимо использовать несколько генераторов. Диапазон рабочих частот: 180-11300 Гц. | 8 160 руб.  |

| Название<br>устройства | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Цена        |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ЛГШ-404                | Изделие предназначено для защиты акустической речевой информации, циркулирующей в помещениях, специально предназначенных для обсуждения или воспроизведения с помощью средств звукоусиления речевой информации, составляющей государственную тайну, или в помещениях, оборудованных средствами правительственной связи, иных видов специальной связи, а также в помещениях, предназначенных для проведения мероприятий с обсуждением информации ограниченного доступа, не содержащей сведения, составляющие государственную тайну, от утечки информации по виброакустическому и акустическому каналам. | 35 100 руб. |

В ходе анализа рынка средств акустической и вибрационной защиты было выбрано средство производства Лаборатории ППШ ЛГШ-404, данное средство является средством активной защиты.

Далее будет представлен список средств для блокирования беспроводной и сотовой связи. Результат анализа представлен в таблице 3.

Таблица 3 - Средства для блокирования беспроводной и сотовой связи

| Название устройства | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Цена         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ЛГШ-725             | Блокиратор является новой модификацией популярного генератора ЛГШ-719 с дополнительным подавлением сигналов WiFi на частоте 5 ГГц. Блокиратор сотовой связи ЛГШ-725 предназначен для блокировки (подавления) связи между базовыми станциями и мобильными телефонами сетей сотовой связи, работающих в стандартах:  - IMT-MC-450; - GSM900; - DSC/GSM1800, (DECT1800); - IMT-2000/UMTS (3G); - LTE 2600 (4G, WiMAX); - LTE 800 (4G); - Bluetooth; - WiFi 2.4 ГГц; - WiFi 5 ГГц. | 247 000 руб. |
| ЛГШ-702             | Блокиратор работы устройств, работающих в стандартах:                                                                                                                                                                                                                                                                                                                                                                                                                          | 61 100 руб.  |

Продолжение таблицы 3

| Название устройства | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Цена        |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                     | несанкционированной передачи данных, а также, для блокирования работы радиоисполнительных устройств, созданных с использованием стандартов Bluetooth и WiFi.                                                                                                                                                                                                                                                                                                                                                        |             |
| ЛГШ-701             | Изделие ЛГШ-701 предназначено для блокировки (подавления) связи между базовыми станциями и пользовательскими терминалами сетей сотовой связи работающих в стандартах:  - IMT-MC-450(NMT-450i);  - GSM900;  - E-GSM900  - DSC/GSM1800  - DECT1800  - CDMA2000 1x                                                                                                                                                                                                                                                     | 97 500 руб. |
| ЛГШ-703             | Изделие ЛГШ-703 предназначено для блокировки (подавления) связи между базовыми станциями и пользовательскими терминалами сетей сотовой связи, работающих в стандарте IMT-2000/UMTS. Кроме того, изделие может быть использовано для блокировки работы устройств несанкционированного прослушивания, созданных на основе сотовых телефонов. В результате работы изделия происходит потеря сети оператора сотовой связи пользовательским терминалом и возвращение в нормальный режим работы после выключения изделия. | 97 500 руб. |

В ходе анализа были выбраны два средства производства Лаборатории ППШ: ЛГШ-702 и ЛГШ-701. Выбраны два средства, чтобы заблокировать, как стандарты Bluetooth и Wi-Fi, так и стандарты сетей сотовой связи. Они являются средствами активной защиты.

Необходимо также обеспечить защиту от ПЭМИН. Для этого необходимо проанализировать средства пространственного зашумления. Анализ представлен в таблице 4.

Таблица 4 - Средства пространственного зашумления

| Название устройства | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Цена        |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ЛГШ-501             | Генератор шума по цепям электропитания, заземления и ПЭМИ «ЛГШ-501» предназначен для использования в целях защиты информации, содержащей сведения, составляющие государственную тайну и иной информации с ограниченным доступом, обрабатываемой техническими средствами и системами, от утечки за счет побочных электромагнитных излучений и наводок путем формирования маскирующих шумоподобных помех.  Напряжение шумового сигнала - 0,01 - 400 МГц; 10 - 58 дБ.  Электрическое поле - 0,01 - 1800 МГц; 15 - 75 дБ.  Магнитное - 0,01 - 30 МГц; 20 - 65 дБ. | 29 900 руб. |
| ЛГШ-503             | Генератор шума по цепям электропитания, заземления и ПЭМИ «ЛГШ-503» предназначен для использования в целях защиты информации, содержащей сведения, составляющие государственную тайну и иной информации с ограниченным доступом, обрабатываемой техническими средствами и системами, от утечки за счет побочных электромагнитных излучений и наводок путем формирования маскирующих шумоподобных помех.  Напряжение шумового сигнала - 0,01 - 400 МГц; 10 - 58 дБ. Электрическое поле - 0,01 - 1800 МГц; 15 - 75 дБ. Магнитное - 0,01 - 30 МГц; 20 - 65 дБ.   | 44 200 руб. |
| СОНАТА-<br>ФС 10.1  | СЗИ помехоподавляющий сетевой фильтр "Соната-ФС10.1", предназначен для защиты информации, содержащей сведения, составляющие государственную тайну, и иной информации с ограниченным доступом, обрабатываемой техническими средствами и системами, от утечки за счет побочных электромагнитных наводок информативного сигнала на линии электропитания напряжением 220 В с частотой 50 Гц.                                                                                                                                                                      | 50 400 руб. |
| ЛГШ-513             | Генератор шума по цепям электропитания, заземления и ПЭМИ «ЛГШ-513» предназначен для использования в целях защиты информации, содержащей сведения, составляющие государственную тайну и иной информации с ограниченным доступом, обрабатываемой техническими средствами и системами, от утечки за счет побочных электромагнитных излучений и наводок путем формирования маскирующих шумоподобных помех.                                                                                                                                                       | 39 000 руб. |

Лучшим средством для постановки пространственных помех в ходе анализа выбрано средство производства Лаборатории ППШ ЛГШ-513, что является средством активной защиты.

Следующими средствами защиты для анализа выбраны средства защиты слаботочных линий и линий связи. Результат анализа представлен в таблице 5.

Таблица 5 - Защита слаботочных линий и линий связи

| Название устройства | Описание                                    | Цена       |
|---------------------|---------------------------------------------|------------|
| ЛУР 2               | Размыкатель слаботочных линий питания       | 5 590 руб. |
| ЛУР 4               | Размыкатель слаботочных линий Телефон       | 5 590 руб. |
| ЛУР 8               | Размыкатель слаботочных линий Ethernet      | 5 590 руб. |
| Буран-К1            | Размыкатель аналоговых телефонных линий     | 3 400 руб. |
| Буран-К2            | Размыкатель линий оповещения и сигнализации | 3 400 руб. |
| Буран-К3            | Размыкатель компьютерных сетей 3            |            |

Лучшими средствами для постановки пространственных помех в ходе анализа выбрано средства производства Лаборатории ППШ ЛУР 2 и ЛУР 8, так как они входят в состав ЛГШ-404, а данное средство выбрано лучшим средством акустической и вибрационной постановки помех. ЛУР 4 не выбран, так как в организации отсутствуют слаботочные линии Телефон. Данные средства являются средствами пассивной защиты.

Последними для анализа выбраны средства защиты сети переменного тока. Результат анализа представлен в таблице 6.

Таблица 6 - Средства защиты сети переменного тока

| Название устройства | Описание                                                                                                                                                                                                                                                                                                                                                                                                                           | Цена        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ЛФС-10-1<br>Ф       | Фильтр сетевой помехоподавляющий ЛФС-40-1Ф предназначен для защиты информации, обрабатываемой техническими средствами и системами и содержащей сведения, составляющие государственную тайну, иной информации ограниченного доступа от утечки по каналам побочных электромагнитных наводок на линии электропитания напряжением 220 В с частотой 50 Гц. Предельное значение тока, при котором допускается эксплуатация изделия 10 А. | 47 060 руб. |
| ЛФС-40-1<br>Ф       | Фильтр сетевой помехоподавляющий ЛФС-40-1Ф предназначен для защиты информации, обрабатываемой техническими средствами и системами и содержащей сведения, составляющие государственную тайну, иной информации ограниченного доступа от утечки по каналам                                                                                                                                                                            | 70 200 руб. |

| Название устройства | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Цена         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                     | побочных электромагнитных наводок на линии электропитания напряжением 220 В с частотой 50 Гц. Предельное значение тока, при котором допускается эксплуатация изделия 40 А.                                                                                                                                                                                                                                                                                   |              |
| ЛФС-200-3<br>Ф      | Фильтр сетевой помехоподавляющий «ЛФС-200-3Ф» предназначен для использования в целях защиты информации, обрабатываемой техническими средствами и системами и содержащей сведения, составляющие государственную тайну, иной информации ограниченного доступа от утечки по каналам побочных электромагнитных наводок на линии электропитания напряжением 380 В с частотой 50 Гц. Предельное значение тока, при котором допускается эксплуатация изделия 200 А. | 377 000 руб. |
| ЛГШ-221             | Сетевой генератор шума «ЛГШ-221» предназначен для использования в целях защиты информации, содержащей сведения, составляющие государственную тайну и иной информации с ограниченным доступом, обрабатываемой техническими средствами и системами, от утечки за счет наводок путем формирования маскирующих шумоподобных помех.                                                                                                                               |              |
| COHATA-P<br>C3      | Сетевой генератор шума СОНАТА-РСЗ - средство активной защиты конфиденциальной информации от утечки по проводам электросети. Это устройство предназначено для использования в помещениях, в которых на электронно-вычислительных машинах обрабатываются данные, являющиеся коммерческой либо государственной тайной.                                                                                                                                          | 32 400 руб.  |

В ходе анализа в качестве средств защиты сети переменного тока выбраны средства производства Лаборатории ППШ: ЛГШ-221, как средство активной защиты и ЛФС-40-1Ф, как средство пассивной защиты.

В итоге в ходе анализа рынка технических средств были выбраны:

- 1. Средства акустической и вибрационной постановки помех: средство производства Лаборатории ППШ ЛГШ-404, активная защита.
- 2. Средства для блокирования беспроводной и сотовой связи: средства производства Лаборатории ППШ: ЛГШ-702 и ЛГШ-701, активная защиты.
- 3. Средства пространственного зашумления: средство производства Лаборатории ППШ ЛГШ-513, активная защиты
- 4. Защита слаботочных линий и линий связи: средства производства Лаборатории

- ППШ ЛУР 2 и ЛУР 8, пассивная защита.
- 5. Средства защиты сети переменного тока: средства производства Лаборатории ППШ: ЛГШ-221, как средство активной защиты и ЛФС-40-1Ф, как средство пассивной защиты.
- 6. Средства защиты визуально-оптического канала: отражающая пленка для окон и рольставни, пассивная защита

### 6. РАЗРАБОТКА СХЕМЫ РАССТАНОВКИ ВЫБРАННЫХ ТЕХНИЧЕСКИХ СРЕДСТВ В ЗАЩИЩАЕМОМ ПОМЕЩЕНИИ

На основе результатов анализа плана помещения предприятия и результатов анализа рынка инженерно-технических средств защиты информации была разработана защиты информации предприятия НПАО инженерно-техническая система ДЛЯ "BLACK.OUT". Легенда для средств защиты представлена в таблице 7.

Таблица 7 – Легенда

| Графическое обозначение | Сокращение | Определение                                |
|-------------------------|------------|--------------------------------------------|
|                         | СПА        | Система постановки акустических помех      |
| $\approx$               | СПВ        | Система постановки виброакустических помех |
| A                       | ББС        | Блокиратор беспроводной связи              |
|                         | БСС        | Блокиратор сотовой связи                   |
|                         | СФ         | Сетевой фильтр                             |
|                         | СГШ        | Сетевой генератор шума                     |
|                         | ГПШ        | Генератор пространственного зашумления     |
| <b></b> 1=              | PE         | Размыкатель Ethernet                       |
|                         | PC         | Размыкатель слаботочной линии              |
|                         | ОП         | отражающая пленка для окон                 |
|                         | Р          | Рольставни                                 |

Состав и размещение инженерно-технических средств защиты информации представлен на рисунке 5.1, 5.2 и 5.3.



Рисунок 5.1– План для 2-го этажа



Рисунок 5.2– План для 1-го этажа



Рисунок 5.3– План для цокольного этажа

#### **ЗАКЛЮЧЕНИЕ**

В ходе исследования был осуществлен анализ технических каналов утечки информации предприятия НПАО "BLACK.OUT", что позволило выявить потенциальные уязвимости в системе безопасности. Произведено обследование организации с целью выявления существующих проблемных зон и определения особенностей рабочего процесса, влияющих на безопасность информации.

На основе проведенного анализа был составлен перечень руководящих документов, регламентирующих вопросы безопасности информации на предприятии. Также было предоставлено обоснование необходимости внедрения и совершенствования мер по защите информации в соответствии с принятыми нормами и стандартами.

Одним из важных этапов работы стал анализ рынка технических средств, предназначенных для обеспечения безопасности информации. Полученные данные позволили выявить актуальные технологии в этой области, что послужило основой для выбора оптимальных средств и методов защиты.

В результате интеграции всех проведенных исследований и аналитических данных была разработана инженерно-техническая система защиты информации.

Результаты исследования предоставляют основу для последующих шагов по внедрению инженерно-технической системы защиты информации на предприятии, что способствует повышению общего уровня безопасности и уверенности в защищенности конфиденциальных данных.

Цель работы достигнута, все задачи выполнены.

#### СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Лаборатория ППШ URL: http://www.pps.ru/ (дата обращения: 5.12.2023).
- 2. Detector Systems URL: https://detsys.ru/ (дата обращения: 5.12.2023).
- 3. Постановление Совета Министров Правительства РФ "О государственной системе защиты информации в российской федерации от иностранных технических разведок и от ее утечки по техническим каналам" от 15.09.1993 № 912-51.
- 4. Закон Российской Федерации "О государственной тайне" от 21.07.1993 № 5485-1.