How to Get Your Questions Answered Quickly

Paul Lim 05/17/2017

Objective

We all have questions...

- 1. What features are important in getting quality answers?
- 2. Optimize the complexity of models and prediction time of new observations.

Target Selection

- Pos. Label: < 30 minutes
- Neg. Label: >= 30 minutes

Modeling

Approach

What went wrong?

- Small precision increases
- Logistic Regression model was always predicting the positive label

$NLP \rightarrow Multinomial NB \rightarrow \overline{Stacking}$

- Find the balance between precision and recall
- No more guessing only the positive label
- Limited to ~10,000 obs.

Scores

- FBeta with a beta of 0.5 places a higher weight on precision.
- **Stacking** = Multinomial NB + RandomForest → Logistic Regression

<u>Model:</u>	<u>FBeta:</u>
Logistic Regression	0.487
Multinomial NB	0.693
Stacking	0.698

Visualization

Conclusions

Takeaways

- According to the model, ~70% FBeta is possible.
- When something goes wrong.. try again!

Future Works

Next steps

- Different combinations of stacking or boosting for better scores
- Find a way to use all of the available data rather than a subset of it.

Appendix

Logistic Regression

How to Get Your Questions Answered Quickly

Paul Lim 05/17/2017

Objective

We all have questions...

- 1. What features are important in getting quality answers?
- 2. Optimize the complexity of models and prediction time of new observations.

Target Selection

- Pos. Label: < 30 minutes
- Neg. Label: >= 30 minutes

Modeling

Approach

What went wrong?

- Small precision increases
- Logistic Regression model was always predicting the positive label

NLP → Multinomial NB → Stacking

- Find the balance between precision and recall
- No more guessing only the positive label
- Limited to ~10,000 obs.

Scores

- FBeta with a beta of 0.5 places a higher weight on precision.
- **Stacking** = Multinomial NB + RandomForest → Logistic Regression

<u>Model:</u>	<u>FBeta:</u>
Logistic Regression	0.487
Multinomial NB	0.693
Stacking	0.698

Visualization

Conclusions

Takeaways

- According to the model, ~70% FBeta is possible.
- When something goes wrong.. try again!

Future Works

Next steps

- Different combinations of stacking or boosting for better scores
- Find a way to use all of the available data rather than a subset of it.

Appendix

Logistic Regression

Multinomial NB

Multinomial NB

