

FATIGUE OF MATERIALS & STRUCTURES

G. Hénaff

HIGH CYCLE FATIGUE

Loading

Loading

Alternate Stress

Symetric alternate stress (R=-1)

Tensile alternate stress (R>0)

Testing Machines

Electro-mechanical : low cycle fatigue (f < 1 Hz)

Servo-hydraulic: high cycle fatigue, propagation (f < 50 Hz)

Resonant:
high cycle fatigue,
propagation
(100 Hz < f < 200 Hz)

Methodology

Fixed number of samples (geometry, surface);

Stress amplitude levels fixed prior to testing
 ⇒ number of test pieces tested per stress
 level;

 For a given stress level, the distribution of lifetimes (number of cycles to failure) is determined.

Isoprobability curves

Wöhler Diagram

Endurance diagram

Arbitrary fatigue limit

10

Limited Endurance

• About 10⁵ to 10⁷ cycles

• Empirical relations:

- Weibull: $N \times (\sigma - \sigma_D) = Cste$

- Basquin : $N_f \times \sigma^a = Cste$

- Bastenaire : $N_f + B = \frac{A \times e^{-C(\sigma - \sigma_D)}}{\sigma - \sigma_D}$

ε-N curve

ε-N curve

Influence of Mean Stress

Smith-Watson-Topper:
$$P_{SWT} = \sqrt{\left(\sigma_{\max} \times \frac{\Delta \varepsilon_t}{2} \times E\right)} = \sqrt{\left((\sigma_a + \sigma_m) \times \frac{\Delta \varepsilon_t}{2} \times E\right)}$$

Influence of Mean Stress

Influence of Mean Stress

 Experimental observation: The permissible stress amplitude decreases when the mean stress increases

 Taken into account by the use of abacuses (admissible stress as a function of the mean stress)→ Different representations.

Haigh Diagram

Influence of mean stress

Goodman-Smith Diagram

19

Ros diagram

Example: Goodman-Smith

Example: Haigh diagram

Admissible stress amplitude at R=0 with N_f=10⁵ cycles?

$$\sigma_{\text{max}} = 400 \text{ MPa}$$

$$\sigma_{\mathsf{m}} = 200 \ \mathsf{MPa} = \sigma_{\mathsf{max}} - \sigma_{\mathsf{a}}$$

G. Hénaff - 2016

Influence of loading mode

	Plane bending	Tension /	Torsion
		Compression	
$\mathbf{X} \qquad \sigma_{\mathrm{D}} \qquad \mathbf{rotative}$	1.05	0.9	0.6
bending			

Scale effect

 Observation: for a given stress amplitude value, the higher the dimensions of the testpiece, the lower the fatigue strength.

- Causes:
 - mechanical;
 - probabilistic.
- Scale effect coefficient :

Determined on a reference sample with small dimensions

Scale effect: stress gradient

- Difference in stress gradients:
 - small thickness ⇒ high gradient. The less loaded layers support the highly loaded surface layers;
 - high thickness ⇒ small gradient. All the surface layer are nearly loaded in a similar way ⇒ loss in fatigue resistance

Scale effect: probabilistic aspect

 The larger the dimensions of a component (volume, area), the more likely it is to have defects that behave as privileged initiation sites

Influence of surface finishing

Influence of surface finishing

Surface finishing factor: with:

$$K_{S} = \frac{\sigma_{D_{S}}}{\sigma_{D}}$$

 σ_{D_S} fatigue limit with the surface finishing under consideration; σ_D fatigue imit with a reference surface finishing.

Residual stresses

- Induced (on purpose or not) by:
 - Inhomogeneous plastic deformations (especially in the vicinity of stress concentrators)
 - Process
 - Surface treatment (shot blasting, shot peening, coating,...)
 - Expanded holes
 - Joining

Residual stresses near a stress concentrator

Residual stresses induced by machining

				Maximum					
Surface	Machining parameters			surface	Surface	Surface		Fatigue limit (MPa)	
finishing	Depth of	Advance	Cutting	reisudal	roughness		Without	After	
	pass (mm)	(mm/tr)	speed (m/s)	stresses.	(µm)		annealir	ng annealing at	
				(MPa)				650°C	
Polished	0.1			-200	0.6	7	270	250	
Turned	0.5	0.16	120	+100	17		215	240	
Turned	0.5	0.32	120	+200	27		190	220	
Turned	0.5	0.50	120	+600	46		175	205	

Burnishing

The residual stresses introduced by burnishing induce a higher fatigue resistance

Expanded holes

Plastic zone with compressive residual stresses

Before tension

After tension

Influence of environment

- The fatigue life is lower in an active environment (air) than in an inert environment (vacuum)
- Related effect: influence of frequency