Universidad de San Andrés

Práctica 7: Integrales definidas - Áreas y TFC CON RESPUESTAS.

1. Calcular las siguientes integrales, aplicando la Regla de Barrow ...

(a)
$$1 - e^{-4}$$
,

(d)
$$\frac{5}{2}$$
,

(g)
$$\frac{1}{64}$$
,

(b)
$$\frac{2}{3} \ln 2$$
,

(e)
$$5e^3 + 5e^{-2}$$
,

(h)
$$0$$
,

(c)
$$-\frac{\pi}{2} + \arctan 2$$
,

(i)
$$\frac{42}{5}$$
.

2. (a) Si
$$\int_{-1}^{6} [f(x) - 4] dx = 5 \dots$$
 33.

(b) Si
$$\int_0^5 f(x) dx = 4 \dots$$
 39.

(c) Si
$$\int_{1}^{2} 2f(x) dx = 8$$
 y $\int_{1}^{2} g(x) dx = 3$...

- 3. Decidir, en cada caso, si la afirmación es verdarea o falsa ...
 - (a) Falso.
 - (b) Verdadero.
 - (c) Falso.
- 4. Una compañía determina que el ingreso marginal (en dólares por día) está dado ... $-2\ln 3 \frac{3128}{5} \approx -628\, \rm USD$
- 5. Una población sufre una epidemia de gripe, siendo N(t) el número de personas ... Habrán 736 enfermos.
- 6. En 2010 se publica una estimación para la tasa mundial de consumo de petróleo ... Asumir que t son años a partir del 2010. Se consumirán $\frac{8000}{3} \frac{5600}{3}e^{-3/10} \approx 147$ miles de millones de barriles.
- 7. En cada uno de los siguientes casos, calcular el área de la región acotada encerrada ...

(b)
$$\frac{3}{2}$$
.

- 8. Calcular, en cada caso, el área encerrada por la curva y=f(x) y el eje $x\dots$
 - (a) 8,

(c) 1,

(b) $6 \ln 3 - 6 \ln 2 - 1 \approx 1.43$,

(d) $8 \ln 2 + 6 \approx 11.5$.

9. En cada caso, calcular el área de la región encerrada por las curvas ...

(a) $\frac{1}{3}$,

(c) $\frac{937}{12} \approx 78.1$,

(b) $\frac{1}{4}$,

(d) $\frac{10}{3}$.

10. Calcular, en cada caso, el área encerrada entre las curvas y = f(x) e y = g(x) ...

- (a) $2e + 2e^{-1} 4 \approx 2.17$,
- (b) 1,
- (c) $24 \ln 3 36 \ln 2 + 1 \approx 2.41$.

11. En cada uno de los siguientes casos, calcular el área de la región acotada ...

(a) 36,

(c) $\ln(2) - \frac{1}{2} \approx 0.193$.

(b) $\frac{8}{3}$,

(d) $\frac{3-e}{2} \approx 0.141$.

12. Sean $f(x) = \frac{2x}{x-2}$ y g(x) = -2x-3. Hallar el área de la región acotada ... $4\ln 5 - 20\ln 2 + \frac{63}{4} \approx 8.32$.

13. Calcular el área de la región encerrada por los gráficos de las funciones ... $\frac{10}{27}e^7+\frac{14}{27}e^{-5}\approx 406.$

14. Calcular el área de la región determinada por las restricciones ... $\frac{22}{3}.$

15. Considerar la región limitada por la curva $y=\sqrt{2x+2},$ el eje x entre las rectas ... $a=\frac{1}{8}.$

16. Si el área comprendida entre la parábola $y=4x^2$ (con $x\geq 0$) y una recta ... La pendiente es 12.

17. Considerar la región limitada por la curva $y=\sqrt[n]{x-2}$ y la recta $y=x-2\dots$ n<11.

Teorema fundamental del cálculo

18. Calcular las derivadas de las siguientes funciones en los dominios indicados ...

(a) $F'(x) = e^{-x^2}$,

(d) $F'(x) = 3\frac{3x-1}{1+3x} - 2\frac{2x-1}{1+2x}$,

(b) $F'(x) = 2\ln(4x^2 + 1)$,

(e) $F'(x) = -\tan^2(x)\cos(x)$,

(c)
$$F'(x) = \frac{\sin(x)\cos(x)}{2 + \sin^3(x)}$$
,

(f)
$$F(x) = \frac{3x^2 \sin(x^3)}{1+x^6} - \frac{\sin(\ln x)}{x(1+\ln^2 x)}$$

- 19. Calcular los siguientes límites ...
 - (a) $\frac{2}{3}$,

(b) $\frac{2}{3}$,

- (c) $-\infty$.
- 20. Sea $f: (0, \frac{\pi}{2}) \to \mathbb{R}$ dada por $f(x) = \int_{0}^{\sin(x)} \frac{1}{t^2 \sqrt{1 t^2}} dt$. Probar que f es creciente en $(0, \frac{\pi}{2})$. $f'(x) = \frac{1}{\sin^2 x}$ en $(0, \frac{\pi}{2})$, es estrictamente positiva.
- 21. Hallar el dominio, intervalos de crecimiento y extremos de las siguientes funciones
 - (a) Dom $F = \mathbb{R}$, $C^{\nearrow} = (-\infty, 1) \cup (4, +\infty)$, $C^{\searrow} = (1, 4)$. Extremos: en x = 1 se alcanza un máximo local y en x = 4 un mínimo local.
 - (b) Dom $F = \mathbb{R}$, $C^{\nearrow} = (-\infty, 3) \cup (5, +\infty)$, $C^{\searrow} = (3, 5)$. Extremos: en x = 3 se alcanza un máximo local y en x = 5 un mínimo local.
 - (c) Dom $F = [0, +\infty)$, $C^{\nearrow} = [0, 3)$, $C^{\searrow} = (3, +\infty)$. Extremos: en x = 3 se alcanza un máximo absoluto.
- 22. Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida por $f(x) = 3 + \int\limits_0^x \frac{1+\sin(t)}{2+t^2}\,dt$... $y = 3 + \frac{1}{2}x$.
- 23. Considere la función $f: \mathbb{R} \to \mathbb{R}$ dada por $F(x) = \int_0^x e^{-t^2} dt \dots$ $p_4(x) = x \frac{1}{3}x^3.$
- 24. Sea $g: \mathbb{R} \to \mathbb{R}$ una función tal que su recta tangente en x=4 es ... $p_2(x)=-8(x-2)+3$.