

Matemática Computacional

Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

5) Interpolação

Polinômios interpoladores, Formas de Lagrange e de Newton, *Splines*

- Introdução
- Forma de Lagrange
- Forma de Newton
- Forma de Newton-Gregory
- Interpolação inversa
- Estudo do erro
- Convergência
- Funções splines

- Introdução
- Forma de Lagrange
- Forma de Newton
- Forma de Newton-Gregory
- Interpolação inversa
- Estudo do erro
- Convergência
- Funções splines

Definição

- Interpolar significa situar entre dois polos, intercalar, interserir
- Dados alguns valores discretos de uma determinada função, sua interpolação consiste em determinar outra função (em geral, um polinômio) que seja contínua e que coincida nesses pontos
- Exemplo: calor específico da água

°C	20	25	30	35	40	45	50
Calor específico	0,99907	0,99852	0,99826	0,99818	0,99828	0,99849	0,99878

 Esse processo também pode ser útil quando se deseja substituir uma função de difícil integração ou derivação

Formalização

- Dados n+1 valores distintos x_0 , x_1 , ..., x_n , chamados nós ou pontos de interpolação, e os respectivos valores $f(x_0)$, $f(x_1)$, ..., $f(x_n)$, deseja-se determinar um polinômio interpolador $p_n(x)$ de grau máximo n tal que $p_n(x_i) = f(x_i)$, 0≤i≤n
- Como $x_i \neq x_j$, para $0 \le i, j \le n$ e $i \ne j$, então $p_n(x)$ é único
- Demonstração:
 - Seja $p_n(x) = a_0 + a_1.x + a_2.x^2 + ... + a_n.x^n$

$$Xa = y \quad \text{onde:} \quad X = \begin{bmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^n \end{bmatrix} \quad a = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} \quad y = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

Matriz de Vandermonde

Se os x_i são distintos, então $det(X) \neq 0$

Modos de se obter $p_n(x)$

- Há três modos de se calcular $p_n(x)$:
 - Resolução do sistema linear com matriz de Vandermonde
 - Forma de Lagrange
 - Forma de Newton (diferenças divididas)
- Uma alternativa mais simples de interpolação, ao invés de calcular $p_n(x)$, é fazer interpolações em cada grupo de dois ou três nós. Esses casos são chamados, respectivamente, de interpolação *linear* ou *quadrática*

- Introdução
- Forma de Lagrange
- Forma de Newton
- Forma de Newton-Gregory
- Interpolação inversa
- Estudo do erro
- Convergência
- Funções splines

Forma de Lagrange

- Sejam n+1 nós distintos $x_0, x_1, ..., x_n$ e y_i = $f(x_i)$, $0 \le i \le n$. Seja $p_n(x)$ o polinômio de grau máximo n que interpola f nesses nós
- $p_n(x)$ pode ser representado do seguinte modo:
 - $p_n(x) = y_0.L_0(x) + y_1.L_1(x) + ... + y_n.L_n(x)$
 - L_k(x) são polinômios de grau n, 0≤k≤n
- Deseja-se que $p_n(x_i) = y_i$, $0 \le i \le n$
- Há um modo simples de satisfazer essas condições:
 - $L_k(x_i) = 0$, se k $\neq i$
 - $L_k(x_i) = 1$, se k = i
- Basta definir:

$$L_{k}(x) = \frac{(x - x_{0}) \cdot (x - x_{1}) \dots (x - x_{k-1}) \cdot (x - x_{k+1}) \dots (x - x_{n})}{(x_{k} - x_{0}) \cdot (x_{k} - x_{1}) \dots (x_{k} - x_{k-1}) \cdot (x_{k} - x_{k+1}) \dots (x_{k} - x_{n})}$$

Exemplo

- Forma de Lagrange: $p_2(x) = y_0.L_0(x) + y_1.L_1(x) + y_2.L_2(x)$
 - $L_0(x) = (x x_1)(x x_2)/[(x_0 x_1)(x_0 x_2)] = x(x-2)/(-1.-3) = (x^2 2x)/3$
 - $L_1(x) = (x x_0)(x x_2)/[(x_1 x_0)(x_1 x_2)] = (x+1)(x-2)/(1.-2) = (x^2 x 2)/(-2)$
 - $L_2(x) = (x x_0)(x x_1)/[(x_2 x_0)(x_2 x_1)] = (x+1)x/(3.2) = (x^2 + x)/6$

$$p_2(x) = 4(x^2 - 2x)/3 + 1(x^2 - x - 2)/(-2) - 1(x^2 + x)/6$$

 $p_2(x) = 1 - (7/3)x + (2/3)x^2$

- Introdução
- Forma de Lagrange
- Forma de Newton
- Forma de Newton-Gregory
- Interpolação inversa
- Estudo do erro
- Convergência
- Funções splines

Operador Diferenças Divididas

- Seja f(x) uma função tabelada em n+1 nós distintos
 x₀, x₁, ..., x_n
- Definimos o operador diferenças divididas por:
 - $f[x_0] = f(x_0)$ Ordem 0
 - $f[x_0, x_1] = (f[x_1] f[x_0])/(x_1 x_0)$ Ordem 1
 - $f[x_0, x_1, x_2] = (f[x_1, x_2] f[x_0, x_1])/(x_2 x_0)$ Ordem 2
 - $f[x_0, x_1, x_2, x_3] = (f[x_1, x_2, x_3] f[x_0, x_1, x_2])/(x_3 x_0)$ Ordem 3
- Generalizando para a ordem n:
 - $f[x_0, x_1, x_2, ..., x_n] = (f[x_1, x_2, ..., x_n] f[x_0, x_1, ..., x_{n-1}])/(x_n x_0)$
- Dizemos que $f[x_0, x_1, ..., x_k]$ é a diferença dividida de ordem k da função f(x) sobre os k+1 nós $x_0, x_1, ..., x_k$
- Prova-se que $f[x_0, x_1, ..., x_k]$ é simétrica nos argumentos
 - Exemplo: $f[x_0, x_1, x_2] = f[x_1, x_0, x_2] = f[x_2, x_1, x_0]$
 - A demonstração baseia-se em que $f[x_i, x_j] = f[x_j, x_i]$

Tabela de Diferenças Divididas

 As diferenças divididas podem ser calculadas e armazenadas, coluna a coluna, através da seguinte tabela:

×	Ordem 0	Ordem 1	Ordem 2	Ordem 3	•••	Ordem n
x ₀	f[x ₀]					
		$f[x_0, x_1]$				
x_1	$f[x_1]$		$f[x_0, x_1, x_2]$			
		$f[x_1, x_2]$		$f[x_0, x_1, x_2, x_3]$		
x_2	$f[x_2]$		$f[x_1, x_2, x_3]$		•••	
		$f[x_2, x_3]$		$f[x_1, x_2, x_3, x_4]$		
x_3	$f[x_3]$	$f[x_2, x_3]$ $f[x_3, x_4]$	$f[x_2, x_3, x_4]$			$f[x_0, x_1, x_2,, x_n]$
		$f[x_3, x_4]$			•••	
x_4	$f[x_4]$			$f[x_{n-3}, x_{n-2}, x_{n-1}, x_n]$		
			$f[x_{n-2},x_{n-1},x_n]$			
•••		$f[x_{n-1}, x_n]$				
 × _n	$f[x_n]$					

 Cada diferença dividida de ordem k é uma aproximação da derivada de mesma ordem em algum ponto intermediário da curva

Exemplo

×	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
× ₀ = -1	$f[x_0] = 1$				
		$f[x_0, x_1] = 0$			
$x_1 = 0$	$f[x_1] = 1$		$f[x_0, x_1, x_2] = -1/2$		
		$f[x_1, x_2] = -1$		$f[x_0, x_1, x_2, x_3] = 1/6$	
$x_2 = 1$	$f[x_2] = 0$		$f[x_1, x_2, x_3] = 0$		$f[x_0, x_1, x_2, x_3, x_4] = -1/24$
		$f[x_2, x_3] = -1$		$f[x_1, x_2, x_3, x_4] = 0$	
$x_3 = 2$	$f[x_3] = -1$		$f[x_2, x_3, x_4] = 0$		
		$f[x_3, x_4] = -1$			
x ₄ = 3	$f[x_4] = -2$	$f[x_0, x_1] = 0$ $f[x_1, x_2] = -1$ $f[x_2, x_3] = -1$ $f[x_3, x_4] = -1$			

Forma de Newton

- Seja f(x) contínua e com tantas derivadas contínuas quantas necessárias num intervalo [a,b]. Sejam n+1 nós nesse intervalo, onde $a = x_0 < x_1 < ... < x_n = b$
- O polinômio p_n(x) de grau máximo n que interpola f(x) nesses nós pode ser encontrado de modo construtivo:
 - Calcula-se $p_0(x)$ que interpola f(x) em x_0
 - Calcula-se $p_1(x)$ que interpola f(x) em x_0 e x_1
 - Calcula-se $p_2(x)$ que interpola f(x) em x_0 , x_1 e x_2
 - Assim por diante, até $p_n(x)$

Cálculo de $p_0(x)$

- $p_0(x)$ é o polinômio de grau 0 que interpola f(x) em $x = x_0$. Então, $p_0(x) = f(x_0) = f[x_0]$
- Para todo $x \in [a,b], x \neq x_0$:
 - $f[x,x_0] = (f[x_0] f[x])/(x_0 x)$
 - $f[x,x_0] = (f(x_0) f(x))/(x_0 x)$
 - $(x_0 x).f[x,x_0] = f(x_0) f(x)$
 - $f(x) = f(x_0) + (x x_0).f[x,x_0]$
 - $f(x) = p_0(x) + (x x_0).f[x,x_0]$

 $E_0(x)$: erro de aproximação

Cálculo de $p_1(x)$

- $p_1(x)$ é o polinômio de grau máximo 1 que interpola f(x) em x_0 e x_1
- Para todo $x \in [a,b], x \neq x_0 e x \neq x_1$:
 - $f[x_1, x_0, x_1] = (f[x_0, x_1] f[x_1, x_0])/(x_1 x)$
 - $f[x,x_0,x_1] = (f[x,x_0] f[x_0,x_1])/(x x_1)$ (multiplicando por -1)
 - $f[x,x_0,x_1] = (f[x_0,x] f[x_1,x_0])/(x x_1)$ ($f[x,y] \in simétrica$)
 - $f[x,x_0,x_1] = ((f(x) f(x_0))/(x x_0) f[x_1,x_0])/(x x_1)$
 - $f[x,x_0,x_1] = (f(x) f(x_0) (x x_0)f[x_1,x_0])/((x x_0)(x x_1))$

•
$$p_1(x) = f(x_0) + (x - x_0)f[x_0,x_1]$$

• $p_0(x)$ $q_1(x)$

Generalização

Analogamente, é possível verificar que:

$$p_2(x) = f(x_0) + (x - x_0)f[x_0,x_1] + (x - x_0)(x - x_1)f[x_0,x_1,x_2]$$

$$p_1(x) q_2(x)$$

- $E_2(x) = (x x_0)(x x_1)(x x_2)f[x,x_0,x_1,x_2]$
- Ao generalizarmos esses resultados, encontramos $p_n(x)$ e seu correspondente erro de aproximação $E_n(x)$:
 - $p_n(x) = f(x_0) + (x x_0)f[x_0, x_1] + ... + (x x_0)...(x x_{n-1})f[x_0, x_1, ..., x_n]$
 - $E_n(x) = (x x_0)(x x_1)...(x x_n)f[x,x_0,x_1,...,x_n]$
- Podemos comprovar que, de fato, $p_n(x)$ interpola f(x) em $x_0, x_1, ..., x_n$:
 - $f(x) = p_n(x) + E_n(x)$
 - $f(x_k) = p_n(x_k) + E_n(x_k) = p_n(x_k)$, para $0 \le k \le n$

Exemplo (já visto)

x
 Ordem 0
 Ordem 1
 Ordem 2

$$x_0 = -1$$
 $f[x_0] = 4$
 $f[x_0, x_1] = -3$
 $x_1 = 0$
 $f[x_1] = 1$
 $f[x_1, x_2] = -1$
 $x_2 = 2$
 $f[x_2] = -1$

$$p_2(x) = 4 + (x + 1)(-3) + (x + 1)(x - 0)(2/3)$$

 $p_2(x) = (2/3)x^2 - (7/3)x + 1$
Mesmo resultado

E se utilizássemos os outros valores da tabela?

- Introdução
- Forma de Lagrange
- Forma de Newton
- Forma de Newton-Gregory
- Interpolação inversa
- Estudo do erro
- Convergência
- Funções splines

Forma de Newton-Gregory

- Quando os nós da interpolação são igualmente espaçados, p_n(x) pode ser obtido pela forma de Newton-Gregory
- Sejam $x_0, x_1, ..., x_n$ pontos que se sucedem com passo h. Chamamos Δ de *operador de diferenças ordinárias*:
 - $\Delta f(x) = f(x + h) f(x)$
 - $\Delta^2 f(x) = \Delta f(x + h) \Delta f(x)$
- Naturalmente, $\Delta^{0}f(x) = f(x)$

Tabela de Diferenças Ordinárias

 Analogamente às diferenças divididas, podemos usar uma tabela para armazenar as diferenças ordinárias:

×	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	•••	$\Delta^n f(x)$
x ₀	f(x ₀)					
		$\Delta f(x_0)$				
\boldsymbol{x}_1	$f(x_1)$		$\Delta^2 f(x_0)$			
		$\Delta f(x_1)$		$\Delta^3 f(x_0)$		
x_2	$f(x_2)$		$\Delta^2 f(x_1)$		•••	
		$\Delta f(x_2)$		$\Delta^3 f(x_1)$		
x ₃	$f(x_3)$		$\Delta^2 f(x_2)$			$\Delta^n f(x_0)$
		$\Delta f(x_3)$		•••	•••	
× ₄	f(x ₄)			$\Delta^3 f(x_{n-3})$		
		•••	$\Delta^2 f(x_{n-2})$			
		$\Delta f(x_{n-1})$				
\boldsymbol{x}_{n}	$f(x_n)$					

Exemplo

×	-1	0	1	2	3
f(x)	2	1	2	5	10

×	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
× ₀ = -1	$f(x_0) = 2$	(A((,) = 1)			
x ₁ = 0	$f(x_1) = 1$	$\Delta f(x_0) = -1$	$\Delta^2 f(x_0) = 2$	(13(1))	
× ₂ = 1	f(x ₂) = 2	$\Delta f(x_1) = 1$	$\Delta^2 f(x_1) = 2$	$\Delta^3 f(x_0) = 0$	$\Delta^4 f(x_0) = 0$
x ₃ = 2	f(x ₃) = 5	$\Delta f(x_2) = 3$	$\Delta^2 f(x_2) = 2$	$\Delta^3 f(x_1) = 0$	
x ₄ = 3	f(x ₄) = 10	$\triangle f(x_3) = 5$			

Relação com Diferenças Divididas

- Por indução, é possível demonstrar que, quando os nós $x_0, x_1, ..., x_n$ se sucedem com passo h, então $f[x_0, x_1, ..., x_n] = \Delta^n f(x_0)/(h^n n!)$
 - Base: n=1
 - $f[x_0, x_1] = (f(x_1) f(x_0))/(x_1 x_0) = \Delta f(x_0)/h = \Delta^1 f(x_0)/(h^1 1!)$
 - Suponhamos que seja válido para n-1:
 - $f[x_0, ..., x_{n-1}] = \Delta^{n-1} f(x_0) / (h^{n-1}(n-1)!)$
 - Passo:
 - $f[x_0, x_1, ..., x_n] = (f[x_1, ..., x_n] f[x_0, ..., x_{n-1}])/(x_n x_0)$
 - $f[x_0, x_1, ..., x_n] = (\Delta^{n-1}f(x_1)/(h^{n-1}(n-1)!) \Delta^{n-1}f(x_0)/(h^{n-1}(n-1)!))/nh$
 - $f[x_0, x_1, ..., x_n] = (\Delta^{n-1}f(x_1) \Delta^{n-1}f(x_0))/nh.(h^{n-1}(n-1)!)$
 - $f[x_0, x_1, ..., x_n] = \Delta^n f(x_0)/(h^n n!)$

Polinômio interpolador

- Desse modo, é possível encontrar uma fórmula específica de p_n(x) para este caso particular:
 - $p_n(x) = f(x_0) + (x x_0)f[x_0,x_1] + (x x_0)(x x_1)f[x_0,x_1,x_2] + ... + (x x_0)...(x x_{n-1})f[x_0,x_1,...,x_n]$
 - $p_n(x) = f(x_0) + (x x_0)\Delta f(x_0)/h + (x x_0)(x x_1)\Delta^2 f(x_0)/(2h^2) + ... + (x x_0)...(x x_{n-1})\Delta^n f(x_0)/(h^n n!)$
- Uma mudança de variável pode simplificar a expressão de $p_n(x)$:
 - $s = (x x_0)/h \Rightarrow x = sh + x_0$
 - Para O≤i≤n:
 - $x x_i = sh + x_0 x_i$
 - $x x_i = sh + x_0 (x_0 + ih)$
 - $x x_i = (s i)h$
 - $p_n(x) = f(x_0) + s\Delta f(x_0) + s(s-1)\Delta^2 f(x_0)/2 + ... + s(s-1)...(s-n+1)$ $\Delta^n f(x_0)/n!$

Voltando ao exemplo anterior

×	f(x)	Δf(x)	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
-1	2	(-1)			
0	1	1	2	0	
1	2	•	2		0
		3		0	
2	5		2		
		5			
3	10				

•
$$x_0 = -1$$
, $h = 1 \Rightarrow s = (x - x_0)/h = x+1$

•
$$p_4(x) = f(x_0) + s\Delta f(x_0) + s(s-1)$$

 $\Delta^2 f(x_0)/2 + s(s-1)(s-2)\Delta^3 f(x_0)/3! + s(s-1)(s-2)(s-3)\Delta^4 f(x_0)/4!$

$$p_4(x) = 2 + (x+1)(-1) + (x+1)x2/2$$

•
$$p_4(x) = x^2 + 1$$

 Repare que o grau desse polinômio é 2...

Grau do polinômio interpolador

- A tabela de Diferenças Divididas (ou Diferenças Ordinárias) pode nos ajudar na escolha do grau do polinômio interpolador
- Uma vez montada a tabela, examina-se a vizinhança do ponto de interesse: se as Diferenças de ordem k forem praticamente constantes (ou seja, se as Diferenças de ordem k+1 forem quase nulas), então o polinômio interpolador de grau k será a melhor aproximação para a função nessa região
- Vide exemplo anterior...

- Introdução
- Forma de Lagrange
- Forma de Newton
- Forma de Newton-Gregory
- Interpolação inversa
- Estudo do erro
- Convergência
- Funções splines

Interpolação inversa

- Seja f(x) uma função tabelada em n+1 nós distintos $x_0, x_1, ..., x_n$
- Dado $\hat{y} \in (f(x_0), f(x_n))$, o problema da interpolação inversa consiste em encontrar x^* tal que $f(x^*) = \hat{y}$
- Há dois modos de se resolver este problema:
 - 1) Obter $p_n(x)$ que interpola f(x) em $x_0, x_1, ..., x_n$ e em seguida encontrar x^* tal que $p_n(x^*) = \hat{y}$
 - Será preciso encontrar a raiz de um polinômio
 - 2) Se f(x) for inversível no intervalo que contém \hat{y} , fazer a interpolação de $f^{-1}(x)$
 - Isso somente será possível se f(x) for contínua e monotônica nesse intervalo

Exemplo 1)

×	0,5	0,6	0,7	8,0	0,9	1,0
f(x)	1,65	1,82	2,01	2,23	2,46	2,72

- Deseja-se encontrar x^* tal que $f(x^*) = 2$
- Como $2 \in (1,82; 2,01)$, usaremos interpolação linear sobre $x_0 = 0,6$ e $x_1 = 0,7$
- Através de Lagrange:
 - $p_1(x) = f(x_0)(x x_1)/(x_0 x_1) + f(x_1)(x x_0)/(x_1 x_0)$
 - $p_1(x) = 1.9x + 0.68$
- $p_1(x^*) = 2 \Leftrightarrow 1.9x^* + 0.68 = 2 \Leftrightarrow x^* = 0.6947368$
- Neste caso, não é possível fazer nenhuma estimativa sobre o erro cometido...

Exemplo 2)

×	0	0,1	0,2	0,3	0,4	0,5
y = ex	1	1,1052	1,2214	1,3499	1,4918	1,6487

- Deseja-se encontrar x^* tal que $e^{x^*} = 1,3165$
- Usaremos interpolação quadrática em $f^{-1}(x)$

	У	Ordem 0	Ordem 1	Ordem 2	Ordem 3
	1	0			
			0,9506		
	1,1052	0,1		-0,4065	
			0,8606		0,1994
y o	1,2214	0,2		-0,3367	
			0,7782		0,1679
y ₁	1,3499	0,3		-0,2718	
			0,7047		
y ₂	1,4918	0,4			

- Introdução
- Forma de Lagrange
- Forma de Newton
- Forma de Newton-Gregory
- Interpolação inversa
- Estudo do erro
- Convergência
- Funções splines

Estudo do erro na interpolação

- Ao aproximarmos uma função f(x) por um polinômio $p_n(x)$ no intervalo $[x_0,x_n]$, comete-se um erro $E_n(x) = f(x) p_n(x)$
- No exemplo abaixo, considere $p_1(x)$ que interpola $f_1(x)$ e $f_2(x)$ no intervalo $[x_0,x_1]$:

•
$$E_1^1(x) = f_1(x) - p_1(x)$$

•
$$E_1^2(x) = f_2(x) - p_1(x)$$

•
$$E_1^1(x) > E_1^2(x), \forall x \in (x_0, x_1)$$

Erro de aproximação

- Teorema: Sejam n+1 nós x_0 , x_1 , ..., x_n . Seja f(x) com derivadas até ordem n+1 para todo x pertencente ao intervalo $[x_0,x_n]$. Seja $p_n(x)$ o polinômio interpolador de f(x) nesses nós. Então, $\forall x \in [x_0,x_n]$, o erro é dado por $E_n(x) = (x x_0)(x x_1)...(x x_n)f^{(n+1)}(\xi)/(n+1)!$, onde $\xi \in (x_0,x_n)$
- Demonstração:
 - Seja $G(x) = (x x_0)(x x_1)...(x x_n), \forall x \in [x_0, x_n]$
 - Lembrando que $E_n(x) = f(x) p_n(x)$, seja:
 - $H(t) = E_n(x)G(t) E_n(t)G(x), t \in [x_0,x_n]$
 - H(t) possui derivadas até ordem n+1, pois f(t) por hipótese -, $p_n(t)$ e G(t) possuem derivadas até essa ordem
 - H(t) possui pelo menos n+2 raízes em $[x_0,x_n]$:
 - x₀, x₁, ..., x_n são raízes de H(t)
 - x é raiz de H(t)

Demonstração (continuação)

- No intervalo $[x_0,x_n]$, H(t) está definida, possui derivadas até ordem n+1, e tem pelo menos n+2 raízes. Portanto, podemos aplicar sucessivamente o Teorema de Rolle a H(t), H'(t), ..., $H^{(n)}(t)$:
 - H'(t) possui pelo menos n+1 raízes em (x_0,x_n)
 - H"(t) possui pelo menos n raízes em (x_0,x_n)
 - ...
 - $H^{(n+1)}(t)$ possui pelo menos uma raiz em (x_0,x_n)
- $H(t) = E_n(x)G(t) E_n(t)G(x) \Rightarrow H^{(n+1)}(t) = E_n(x)G^{(n+1)}(t) E_n^{(n+1)}(t)G(x)$
- $E_n(x) = f(x) p_n(x) \Rightarrow E_n^{(n+1)}(t) = f^{(n+1)}(t) p_n^{(n+1)}(t) = f^{(n+1)}(t)$
- $G(t) = (t x_0)(t x_1)...(t x_n) \Rightarrow G^{(n+1)}(t) = (n+1)!$
- Substituindo:
 - $H^{(n+1)}(t) = E_n(x)(n+1)! f^{(n+1)}(t)G(x)$
- Seja $\xi \in (x_0, x_n)$ uma raiz de $H^{(n+1)}(t)$:
 - $H^{(n+1)}(\xi) = E_n(x)(n+1)! f^{(n+1)}(\xi)G(x) = 0$
 - $E_n(x) = f^{(n+1)}(\xi)G(x)/(n+1)!$
 - $E_n(x) = (x x_0)(x x_1)...(x x_n)f^{(n+1)}(\xi)/(n+1)!$

Algumas conclusões

- Sabemos que $E_n(x) = (x x_0)(x x_1)...(x x_n)$ $f^{(n+1)}(\xi)/(n+1)!$, onde $\xi \in (x_0,x_n)$
- Como há (n+1)! no denominador de E_n(x), parece que, quando n aumenta, o erro de aproximação tende a diminuir...
- No entanto, raramente é possível calcular $f^{(n+1)}(x)$, e ξ nunca é conhecido...
- Veremos a seguir como esse erro pode ser estimado através das diferenças divididas de ordem n+1

Estimativa para o erro

- Pelo teorema anterior:
 - $E_n(x) = (x x_0)(x x_1)...(x x_n)f^{(n+1)}(\xi)/(n+1)!$
 - $|E_n(x)| \le |(x x_0)(x x_1)...(x x_n)|.M_{n+1}/(n+1)!$, onde $M_{n+1} = m \acute{a} x_{x \in I} |f^{(n+1)}(x)|$ e $I = [x_0, x_n]$
- Pela forma de Newton:
 - $E_n(x) = (x x_0)(x x_1)...(x x_n)f[x,x_0,x_1,...,x_n]$
- Conclusões:
 - $f[x,x_0,x_1,...,x_n] = f^{(n+1)}(\xi)/(n+1)!$, onde $\xi \in (x_0,x_n)$
 - $m \acute{a} x_{x \in I} |f[x, x_0, x_1, ..., x_n]| = M_{n+1}/(n+1)!$
 - Seja D o máximo dos módulos das diferenças divididas de ordem n+1 que foram calculadas
 - $|E_n(x)| \approx |(x x_0)(x x_1)...(x x_n)|.D$

Exemplo

 Deseja-se obter f(0,47) usando um polinômio de grau 2, com uma estimativa para o erro

	×	Ordem 0	Ordem 1	Ordem 2	Ordem 3		
	0,2	0,16					
			0,4286			•	$p_2(x)$
	0,34	0,22		2,0235			(x - x
			0,8333		-17,8963		$p_2(x)$
x ₀ (0,4	0,27		-3,7033			(x - 0)
,			0,1667		18,2494		p ₂ (0,4
x_1 (0,52	0,29		1,0415			E ₂ (0
			0,375		-2,6031	_	-0.5
x_2 (0,6	0,32		0,2085		_	
			0,4167			•	E ₂ (0
	0,72	0,37					

•
$$p_2(x) = f(x_0) + (x - x_0)f[x_0,x_1] + (x - x_0)(x - x_1)f[x_0,x_1,x_2]$$

$$p_2(x) = 0.27 + (x - 0.4)0.1667 + (x - 0.4)(x - 0.52)1.0415$$

•
$$p_2(0,47) = 0,2780 \approx f(0,47)$$

•
$$|E_2(0,47)| \approx |(0,47 - 0,4)(0,47 - 0,52)(0,47 - 0,6)|.|18,2494|$$

•
$$|E_2(0,47)| \approx 8,303.10^{-3}$$

CCI-22

- Introdução
- Forma de Lagrange
- Forma de Newton
- Forma de Newton-Gregory
- Interpolação inversa
- Estudo do erro
- Convergência
- Funções splines

Convergência

- Sejam o intervalo [a,b] coberto pelos pontos $a=x_0, x_1, ..., x_n=b$, o valor da função f nesses nós $e p_n(x)$ o polinômio interpolador de f(x)
- Uma questão importante:
 - Vale sempre a pena utilizar o polinômio interpolador de grau máximo?
 - Em outras palavras, à medida que aumenta o número de nós de interpolação, ou seja, quando $n \to \infty$, $p_n(x)$ sempre converge para f(x) nesse intervalo?
- Teorema: Para qualquer sequência de nós de interpolação $a=x_0, x_1, ..., x_n=b$ no intervalo [a,b], existe uma função contínua f(x) tal que $p_n(x)$ não converge para f(x) quando $n \to \infty$

Fenômeno de Runge

- No caso em que os nós de interpolação são igualmente espaçados, essa divergência pode ser ilustrada através de um caso conhecido como Fenômeno de Runge
- Seja, por exemplo, $f(x) = 1/(1+25x^2)$ tabelada no intervalo [-1;1] nos nós $x_i = -1 + 2i/n$, $0 \le i \le n$
- Veja abaixo f(x) com duas interpolações polinomiais:

À medida que aumenta o número de nós de interpolação, $|f(x) - p_n(x)|$ torna-se arbitrariamente grande nesse intervalo

Alternativas

- Em casos como esse, há três alternativas:
 - Não aproximar f(x) através de polinômios, mas com outro tipo de funções
 - Trocar a aproximação em pontos igualmente espaçados pela aproximação em nós de Chebyshev, que distribui o erro mais homogeneamente: $x_i = (x_0 + x_n)/2 + (x_n x_0)\xi_i/2$, $0 \le i \le n$, onde $\xi_i = \cos((2i+1)\pi/(2n+2))$
 - Usar funções splines, com convergência garantida

CCI-22

- Introdução
- Forma de Lagrange
- Forma de Newton
- Forma de Newton-Gregory
- Interpolação inversa
- Estudo do erro
- Convergência
- Funções splines

Funções splines

- Splines são hastes flexíveis (de plástico ou de madeira), fixadas em certos pontos de uma mesa de desenho, para traçar curvas suaves
- A ideia deste método é interpolar a função em grupos de poucos nós (geralmente, dois a dois), e ao mesmo tempo impor condições para que a aproximação e suas derivadas (até certa ordem) sejam contínuas. Desse modo, serão obtidos polinômios de grau menor

- Veremos os casos das splines quadráticas e cúbicas, formadas por polinômios de grau 2 e 3, respectivamente
- Na prática, as *splines* cúbicas são as mais utilizadas: além de serem melhores (veremos por quê), podem ser obtidas em tempo linear

Splines quadráticas

- Dados n+1 nós distintos $a=x_0, x_1, ..., x_n=b$ e seus respectivos valores $f(x_0) = y_0, f(x_1) = y_1, ..., f(x_n) = y_n, a$ spline quadrática será formada por n parábolas $s_i(x)$, $0 < i \le n$, uma em cada intervalo
- Os 3n coeficientes das n parábolas podem ser calculados através das seguintes condições:

• $s_i(x_i) = s_{i+1}(x_i) = y_i$, 0 <i<n< th=""><th>Parábolas adjacentes devem coincidir nos nós internos</th><th>2n-2</th></i<n<>	Parábolas adjacentes devem coincidir nos nós internos	2n-2
• $s_1(x_0) = y_0 e s_n(x_n) = y_n$	A primeira e a última parábola passam pelos nós extremos	2
• $s_i'(x_i) = s_{i+1}'(x_i)$, 0 <i<n< th=""><th>Garantia de que não haja "bicos"</th><th>n-1</th></i<n<>	Garantia de que não haja "bicos"	n-1
• $s_1''(x_0) = 0$ Condição ruim	Condição extra: os dois nós iniciais serão ligados por uma reta	1

n° equações

 Essas equações geram um sistema linear de ordem 3n, que pode ser resolvido através da Eliminação de Gauss

Splines cúbicas

Dados n+1 nós distintos $a=x_0, x_1, ..., x_n=b$ e seus respectivos valores $f(x_0) = y_0, f(x_1) = y_1, ..., f(x_n) = y_n, a$ spline cúbica será formada por n polinômios cúbicos $s_i(x)$, 0<i≤n, com as seguintes propriedades:

		•	nº equações
• $s_i(x_i) = s_{i+1}(x_i) = y_i$, 0 <i<n< td=""><td></td><td>Coincidem nos nós internos e</td><td>2n-2</td></i<n<>		Coincidem nos nós internos e	2n-2
• $s_1(x_0) = y_0 e s_n(x_n) = y_n$		passam pelos nós extremos	2
• $s_i'(x_i) = s_{i+1}'(x_i)$, 0 <i<n< td=""><td>}</td><td>Garantia de que a <i>spline</i> não tenha "bicos", nem troque a</td><td>n-1</td></i<n<>	}	Garantia de que a <i>spline</i> não tenha "bicos", nem troque a	n-1
• $s_i''(x_i) = s_{i+1}''(x_i)$, 0 <i<n< td=""><td></td><td>curvatura nos nós internos</td><td>n-1</td></i<n<>		curvatura nos nós internos	n-1

- Acima há 4n-2 equações, mas existem 4n incógnitas...
- Veremos a seguir como é possível deduzir os n polinômios cúbicos s_i(x)

As derivadas segundas são retas

Exigência da spline:

$$s_i''(x_i) = s_{i+1}''(x_i) = \Phi_i$$

Equação da reta: $s_i''(x) = \Phi_{i-1} + (\Phi_i - \Phi_{i-1})(x - x_{i-1})/h_i$

- Desenvolvendo a equação da reta:
 - $s_i''(x) = \Phi_{i-1} + (\Phi_i x \Phi_i x_{i-1} \Phi_{i-1} x + \Phi_{i-1} x_{i-1})/h_i$
 - $s_i''(x) = (\Phi_{i-1}(x_i x_{i-1}) + (\Phi_i x \Phi_i x_{i-1} \Phi_{i-1} x + \Phi_{i-1} x_{i-1}))/h_i$
 - $s_i''(x) = \Phi_{i-1}(x_i x)/h_i + \Phi_i(x x_{i-1})/h_i$

- Sem perda de generalidade

- Integrando:
 - $s_i'(x) = -\Phi_{i-1}(x_i x)^2/2h_i + c_i + \Phi_i(x x_{i-1})^2/2h_i d_i$

- $s_i'(x) = -\Phi_{i-1}(x_i x)^2/2h_i + c_i + \Phi_i(x x_{i-1})^2/2h_i d_i$
- Integrando novamente:

•
$$s_i(x) = \Phi_{i-1}(x_i - x)^3/6h_i + \Phi_i(x - x_{i-1})^3/6h_i + c_i(x - x_{i-1}) + d_i(x_i - x)$$

Sem perda de generalidade

- Substituindo x por x_{i-1} :
 - $s_i(x_{i-1}) = \Phi_{i-1}h_i^2/6 + d_ih_i$
- Sabemos que $s_i(x_{i-1}) = y_{i-1}$:
 - $d_i = y_{i-1}/h_i h_i \Phi_{i-1}/6$
- Substituindo x por x_i em s_i :
 - $s_i(x_i) = \Phi_i h_i^2 / 6 + c_i h_i$
- Sabemos que $s_i(x_i) = y_i$:
 - $c_i = y_i/h_i h_i\Phi_i/6$
- Substituindo c_i e d_i na fórmula de $s_i(x)$:
 - $s_i(x) = \Phi_{i-1}(x_i x)^3/6h_i + \Phi_i(x x_{i-1})^3/6h_i + (\gamma_i/h_i h_i\Phi_i/6)(x x_{i-1}) + (\gamma_{i-1}/h_i h_i\Phi_{i-1}/6)(x_i x)$

- $s_i(x) = \Phi_{i-1}(x_i x)^3/6h_i + \Phi_i(x x_{i-1})^3/6h_i + (y_i/h_i h_i\Phi_i/6)(x x_{i-1}) + (y_{i-1}/h_i h_i\Phi_{i-1}/6)(x_i x)$
- Derivando $s_i(x)$:
 - $s_i'(x) = -\Phi_{i-1}(x_i x)^2/2h_i + \Phi_i(x x_{i-1})^2/2h_i + y_i/h_i h_i\Phi_i/6 y_{i-1}/h_i + h_i\Phi_{i-1}/6$
- Substituindo x por x_i :
 - $s_i'(x_i) = h_i \Phi_i / 3 + y_i / h_i y_{i-1} / h_i + h_i \Phi_{i-1} / 6$
- Calculemos também $s_{i+1}'(x_i)$:
 - $s_{i+1}'(x) = -\Phi_i(x_{i+1} x)^2/2h_{i+1} + \Phi_{i+1}(x x_i)^2/2h_{i+1} + y_{i+1}/h_{i+1} h_{i+1}\Phi_{i+1}/6 y_i/h_{i+1} + h_{i+1}\Phi_i/6$
 - $s_{i+1}'(x_i) = -h_{i+1}\Phi_i/3 + y_{i+1}/h_{i+1} h_{i+1}\Phi_{i+1}/6 y_i/h_{i+1}$
- Sabemos que $s_i'(x_i) = s_{i+1}'(x_i)$:
 - $h_i \Phi_i / 3 + y_i / h_i + h_i \Phi_{i-1} / 6 y_{i-1} / h_i = -h_{i+1} \Phi_i / 3 + y_{i+1} / h_{i+1} h_{i+1} \Phi_{i+1} / 6 y_i / h_{i+1}$
 - $h_i \Phi_{i-1} + 2(h_i + h_{i+1})\Phi_i + h_{i+1}\Phi_{i+1} = 6((y_{i+1} y_i)/h_{i+1} (y_i y_{i-1})/h_i)$

- $h_i \Phi_{i-1} + 2(h_i + h_{i+1}) \Phi_i + h_{i+1} \Phi_{i+1} = 6((y_{i+1} y_i)/h_{i+1} (y_i y_{i-1})/h_i)$
- Essa igualdade é válida para 0<i<n:</p>
 - n-1 equações
 - n+1 incógnitas: $\Phi_0, ..., \Phi_n$

Estas condições não são ruins..

- Basta acrescentar duas condições: $\Phi_0 = 0$ e $\Phi_n = 0$
- Sistema linear tridiagonal de ordem n-1:

$$\begin{bmatrix} 2(h_1+h_2) & h_2 \\ h_2 & 2(h_2+h_3) & h_3 \\ & h_3 & 2(h_3+h_4) & h_4 \\ & & \ddots & \\ & & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \\ & & & h_{n-1} & 2(h_{n-1}+h_n) \end{bmatrix} \begin{bmatrix} \underline{\Phi}_1 \\ \underline{\Phi}_2 \\ \underline{\Phi}_3 \\ \vdots \\ \underline{\Phi}_{n-2} \\ \underline{\Phi}_{n-1} \end{bmatrix} = \begin{bmatrix} b_1-b_0 \\ b_2-b_1 \\ b_3-b_2 \\ \vdots \\ b_{n-2}-b_{n-3} \\ b_{n-1}-b_{n-2} \end{bmatrix}$$

onde
$$b_i = 6(y_{i+1} - y_i)/h_{i+1}, 0 \le i < n$$

Exemplo

Deseja-se obter f(0,25) através de spline cúbica:

×	0	0,5	1,0	1,5	2,0
f(x)	3	1,8616	-0,5571	-4,1987	-9,0536

- Será preciso determinar $s_1(x)$, $s_2(x)$, $s_3(x)$ e $s_4(x)$
- Nesse exemplo, h_i = 0,5, para 0<i≤4</p>
- Sistema tridiagonal:

$$\begin{bmatrix} 2 & 0.5 & 0 \\ 0.5 & 2 & 0.5 \\ 0 & 0.5 & 2 \end{bmatrix} \begin{bmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{bmatrix} = \begin{bmatrix} -15.3636 \\ -14.6748 \\ -14.5598 \end{bmatrix} \qquad \qquad \Phi_3 = -6.252$$

$$\Phi_2 = -4.111$$

$$\Phi_1 = -6.654$$

- Como se deseja obter uma aproximação para f(0,25), basta calcular s₁(0,25):
 - $s_i(x) = \Phi_{i-1}(x_i x)^3/6h_i + \Phi_i(x x_{i-1})^3/6h_i + (y_i/h_i h_i\Phi_i/6)(x x_{i-1}) + (y_{i-1}/h_i h_i\Phi_{i-1}/6)(x_i x)$
 - $s_1(0.25) = \Phi_1(0.25 0)^3/6.0.5 + (y_1/0.5 0.5\Phi_1/6)(0.25 0) + (y_0/0.5)(0.5 0.25)$
 - $s_1(0.25) = 2.5348 \approx f(0.25)$

Implementação

- No cálculo da spline cúbica, é preciso resolver um sistema linear tridiagonal
- Através da Eliminação de Gauss, é possível triangularizar este sistema, mas de uma forma ainda mais eficiente
- Vejamos um caso particular (n=4):

$$\begin{bmatrix} 2(h_1 + h_2) & h_2 & 0 \\ h_2 & 2(h_2 + h_3) & h_3 \\ 0 & h_3 & 2(h_3 + h_4) \end{bmatrix} = \begin{bmatrix} c_1 & h_2 & 0 \\ h_2 & c_2 & h_3 \\ 0 & h_3 & c_3 \end{bmatrix} \longleftarrow L_2 = L_2 - (h_2/c_1).L_1$$

$$\begin{bmatrix} c_1 & h_2 & 0 \\ 0 & c'_2 & h_3 \\ 0 & h_3 & c_3 \end{bmatrix} \qquad \longleftarrow \qquad L_3 = L_3 - (h_3/c'_2).L_2$$

Em cada passo, apenas um novo elemento precisa ser calculado!

Algoritmo

- Cálculo de Φ_i, O<i<n:
 - $c_1 = 2(h_1 + h_2)$
 - Para 1<i<n, calcular $c_i = 2(h_i + h_{i+1}) (h_i)^2/c_{i-1}$
 - $d_1 = b_1 b_0$
 - Para 1<i<n, calcular $d_i = (b_i b_{i-1}) (h_i d_{i-1})/c_{i-1}$
 - $\Phi_{n-1} = d_{n-1}/c_{n-1}$
 - Para n-1>i>0, calcular $\Phi_i = (d_i h_{i+1}\Phi_{i+1})/c_i$
- Os cálculos acima podem ser realizados em tempo O(n)
- Dado $x \in [x_0,x_n]$, em tempo O(n) é possível encontrar o s_i adequado, 0 < i ≤ n, e calcular $s_i(x)$

MatLab

- interp1(x, y, xi, method)
 - Vetor com resultados associados aos valores xi, usando interpolação a partir dos dados dos vetores x e y
 - method pode ser: 'nearest', 'linear' (padrão), 'cubic', 'spline'
- spline(x,y,xi)
 - Idem, usando spline cúbica
 - Importante: *MatLab* calcula as *splines* cúbicas de um modo diferente; por isso, os resultados obtidos são ligeiramente distintos...