Name:	v	er. Orașină	1	
Roll No. :		•		
Invigilator's Signature :		6.7		

CONTROL SYSTEMS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Semi log paper and Graph Sheet/(s) will be provided by the institution

GROUP -- A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following:
 - $10\times1=10$
 - i) A system having transfer function $G(s) = \frac{1}{2(s+0.5)}$ is subjected to a unit step input, the steady value of the output is
 - a) 1

b)

c) $\frac{1}{2}$

- d) $\frac{1}{10}$.
- ii) The natural frequency of oscillations of the output for the equation $\frac{d^2x}{dt^2} + 1.5 \frac{dx}{dt} + 4x = 1$ is
 - a) 0 rad/sec
- b) 1.5 rad/sec
- c) 2 rad/sec
- d) 4 rad/sec.

55904

[Turn over

- xi) State variable approach converts an nth order system into
 - a) n 2nd order differential equations
 - b) 2 differential equations
 - c) n 1st order differential equations
 - d) a low order system.
- xii) The number of forward paths in the signal flow graph shown below is

c) 3 d) 5.

GROUP - B (Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

2. A unity feedback heat treatment system has open loop transfer function

$$G(s) = \frac{10000}{(1+s)(1+0.5s)(1+0.02s)}$$
. The output set point is 500°C. What is the steady state temperature?

55904

3. Find the range of k to keep the system shown in figure to be stable.

4. Determine the transfer function of the network shown in figure relating $E_o(s) \& E_i(s)$

5. Find the transfer function from the following signal flow graph using Mason's gain farmula.

6. Construct the state model for a system characterized by the differential equation

$$\ddot{Y} + 5\dot{y} + 6y = 4.$$

55904

5

[Turn over

- 10. a) Find Z transform of cos wt.
 - b) Obtian Z transer function for the block diagram shown in the figure.

5 + 10

- 11. a) Explain with an example the steps to find the phase trajectory of a second order system using method of isoclines.
 - b) Write a note on PID controller.

10 + 5

55904