

Sapphire Statistical Characterization and Risk Reduction (SSCARR) Program for Windows and Domes

by
Donald McClure
Army Space & Missile Defense Command
Huntsville, AL
PH: (256) 955-1952
and
Robert Cayse
SY Technology, Inc
Huntsville, AL
PH: (256) 922-9095

Presented

18 August 1999

IRIS Specialty Group Meeting on Materials and Detectors MIT Lincoln Laboratory Lexington, MA

SSCARR081899.

Outline

- Background
- SSCARR/THAAD Flexural Strength Testing Results
- SSCARR/Arrow Flexural Strength Testing Results
- SSCARR/Navy Flexural Strength Testing Results
- Laser Thermostructural Test Results
- NIST Advanced Diagnostics
- Summary

Form SF298 Citation Data

Report Date ("DD MON YYYY") 18081999	Report Type N/A		Dates Covered (from to) ("DD MON YYYY")
Title and Subtitle Sapphire Statistical Characterization and Risk Reduction (SSCARR) Program for Windows and Domes			Contract or Grant Number
			Program Element Number
Authors			Project Number
			Task Number
			Work Unit Number
Performing Organization Name(s) and Address(es) Army Space & Missile Defense Command Huntsville, AL PH: (256) 955-1952			Performing Organization Number(s)
Sponsoring/Monitoring Agency Name(s) and Address(es)			Monitoring Agency Acronym
			Monitoring Agency Report Number(s)
Distribution/Availability Stat Approved for public release, di			
Supplementary Notes			
Abstract			
Subject Terms			
Document Classification unclassified		Classification of SF298 unclassified	
Classification of Abstract unclassified			Limitation of Abstract unlimited
Number of Pages 16			

Acknowledgements

- Sponsors
 - BMDO/AQS
 - PEO-AMD
 - THAAD Project Office
 - Air Force Metrology Laboratory

Technical Team

- Nichols Research Corporation
- SY Technology, Inc.
- University of Dayton Research Institute
- Case Western Reserve University
- The Aerospace Corporation
- Teledyne Brown Engineering
- National Institute of Standards and Technology
- Naval Air Warfare Center
- Arrow Project Office
- THAAD Project Office

SSCARR081899. 3

What is SSCARR?

- Sapphire Statistical Characterization And Risk Reduction Program
- Multi-service Program Primarily Sponsored by BMDO/AQS
- Program Deliverables Support Window/Dome Reliability Assessments for Three Theater Missile Defense Missiles:
 - THAAD, SM-2 Block IVA, and Arrow

SSCAPP081800 /

SSCARR Program Objectives

Primary

• Establish Applicable Statistical Fracture Data to Support Structural Reliability Predictions of Sapphire Windows/Domes Subjected to Missile In-Flight Heating

Secondary

- Provide Experimental Thermostructural Failure Baseline for Benchmarking Reliability Tools With Established Fracture Database
- Understand Observed Sapphire Fractures
- Improve Window/Dome Mechanical Strength

UDRI Flexural Strength Testing

Pretest Characterization

- Polariscopic inspection documented no gross flaws
- Nomarski inspection documented many types of flaws
- PBS documented variations in subsurface damage

Flexural Strength Testing

- Flexural strength of ~1475 specimens determined

Fractography

Documented surface, edge, side, volume, and undetermined failures

SSCARR/THAAD Flexural Strength Testing Overview

Objective	Technical Approach
Build fracture data base for	4-point flexure tests for directionality.
THAAD window flight	THAAD sapphire & surface prep. traceability.
reliability analysis.	Statistical validity: 25 coupons per point.
	Temperatures & orientations traceable to flight.
	Apply Weibull results by window surface type.
	• Fit results by orientation, tensile direction, temp.
Develop understanding of	Maintain cradle-to-grave coupon records.
parameters affecting reliability	Perform extensive diagnostics.
of THAAD window.	Correlate coupon pedigrees, measured.
	strengths, and fractography results.
	 Apply lessons-learned from correlations.

Summary of SSCARR/THAAD Strength Data

- Edge and Side Wall Preparation is Critical
 - Can be difficult
- Bend Bars Satisfied THAAD Window Specifications, but To-Date, Delivered Windows are Superior to Bars
- Strength Differences Detected Between Fabricators Using Identical Sapphire Stock
- Increasing Temperature Tends to Reduce Strength
- · Some Effects of Crystalline Orientation Detected

- Stresses at front of window (cooled) are assumed to be negligible.
- Tensions on bevels and sides are approximately parallel to c-axis.
- Tensions on optical surface, chamfers, and aft face are assumed to be multidirectional
- Optical surfaces are polished (80-50). Perimeter surfaces are ground (220 grit).
- · Temperature is a strength driver.

Summary of SSCARR/Arrow Basic Strength Data

- Bars in c-axis Tension Strongest
 - No other significant orientation effects detected
- Temperature Effect Most Pronounced for Type RW
- Ground Samples Have Strength Comparable to Polished Bars

Summary of SSCARR/Navy Strength Data

- Bend bar (flat) fabrication techniques differ from dome (round) techniques
 - Data not directly applicable to dome reliability assessments
- C-axis tension (Type 1) stronger than m-axis tension (Type 2) at low to moderate temperatures, but high temperatures rapidly degrade c-axis strength
 - previously explained as rhombohedral twinning due to c-axis compression
- Annealing provides some increase in mean strength
- · Coating provides little benefit

Laser Thermostructural Test Results

- CO₂ laser heating is an effective means of characterizing sapphire thermal fracture strength for seeker window performance assessment
- Sapphire strength is highly dependent on the fabrication process
- A first-order failure prediction analysis of thermally fractured window coupons gives conservative results when based on flexural strength test data

SSCARR081899. 29

NIST Advanced Diagnostic Results

Typical X-Ray Topograph

Typical Polariscopic Micrograph

- As expected, x-ray topography proved to be an effective but qualitative method for identifying subsurface damage in polished sapphire
 - Could identify groups of strong & weak bars, but could not readily identify individual critical flaws
 - Not amenable to production screening
- Polariscopic microscopy is useful in locating surface defects
 - Critical flaws are often subsurface
 - Affordable
- Proof testing is required to screen production window/domes for critical flaws

SSCARR Program Summary

- · Technical Findings
 - Methodology established to statistically characterize thermostructural fracture of TMD windows
 - Program-specific strengths measured
 - Using same stock sapphire, strength differences observed between fabricators
 - Temperature effects are strong, orientation effects generally moderate
 - Ground sapphire not significantly weaker than corresponding polished sapphire
 - Annealing is beneficial, coating showed little to no effect
 - Thermostructural performance baseline established
 - Reliability prediction based-on flexure test data was conservative
 - Sapphire diagnostic tools implemented and ranked
 - Proof test required to detect fatal flaws in production sapphire windows/domes
 - Lessons-learned applicable to future material characterization efforts
- Programmatics
 - SSCARR has been a successful model for multi-agency programs
 - A comprehensive report and database will be cleared for public release and made widely available in September