

Unleashing Potentials Shaping the Future

Elementary Statistics

ALLAN G. BLUMAN

Chapter 5: ANOVA

Unit 1 **One-way ANOVA**

Prepared by: Kamarul Ariffin Mansor Department of Mathematical Sciences UiTM Kedah Branch Campus

Learning objective:

Use the one-way ANOVA technique to determine if there is a significant difference among three or more means.

Introduction

- The F test, used to compare two variances, can also be used to compare three of more means.
- This technique is called analysis of variance or ANOVA.
- For three groups, the *F* test can only show whether or not a difference exists among the three means, not where the difference lies.

12-1 One-Way Analysis of Variance

- When an F test is used to test a hypothesis concerning the means of three or more populations, the technique is called analysis of variance (commonly abbreviated as ANOVA).
- The one-way analysis of variance test is used to test the equality of three or more means using sample variances

Assumptions for the *F* Test

The following assumptions apply when using the *F* test to compare three or more means.

- The populations from which the samples were obtained must be normally or approximately normally distributed.
- The samples must be independent of each other.
- 3. The variances of the populations must be equal.

The F Test

- In the *F* test, two different estimates of the population variance are made.
- The first estimate is called the **between-group variance**, and it involves finding the variance of the means.
- The second estimate, the within-group variance, is made by computing the variance using all the data and is not affected by differences in the means.

The F Test

- If there is no difference in the means, the between- group variance will be approximately equal to the within-group variance, and the F test value will be close to 1 do not reject null hypothesis.
- However, when the means differ significantly, the between-group variance will be much larger than the within-group variance; the F test will be significantly greater than 1 - reject null hypothesis.

Example 12-1: Miles per Gallon

A researcher wishes to see if there is a difference in the fuel economy for city driving for three different types of automobiles: small automobiles, sedans, and luxury automobiles. He randomly samples four small automobiles, five sedans, and three luxury automobiles. The miles per gallon for each is shown. At α = 0.05, test the claim that there is no difference among the means. The data are shown.

Small	Sedans	Luxury
36	43	29
44	35	25
34	30	24
35	29	
	40	

Using Traditional Method

Step 1: State the hypotheses and identify the claim.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$ (claim)

 H_1 : At least one mean is different from the others.

Step 2: Find the critical value.

Since
$$k = 3$$
, $N = 12$

$$V1 = d.f.N. = k - 1 = 3 - 1 = 2$$

$$V2= d.f.D. = N - k = 12 - 3 = 9$$

The critical value is 4.26, obtained from Table 9 – F Distribution.

Step 3: Compute the test value. (see the formula from past year question appendix)

- a) Find the mean and variance of each sample
- b) Find the grand mean, the mean of all values in the samples

$$\overline{X}_{GM} = \frac{\sum X}{N} = \frac{36 + 44 + 34 + \dots + 24}{12} = \frac{404}{12} = 33.667$$

Step 3: Compute the test value. (continue)

c) Find between-group variance, S_B^2

$$S_B^2 = \frac{\sum (\bar{X}_i - \bar{X}_{GM})^2}{k-1} \text{ (between group)}$$

$$= \frac{4(37.25 - 33.667)^2 + 5(35.4 - 33.667)^2 + 3(26 - 33.667)^2}{3-1}$$

$$= \frac{242.717}{2} = 121.359$$

d) Find the within-group variance, S_W^2

$$s_W^2 = \frac{\sum (n_i - 1)s_i^2}{\sum (n_i - 1)} = \frac{(4 - 1)(20.917) + (5 - 1)(37.3) + (3 - 1)7}{(4 - 1) + (5 - 1) + (3 - 1)}$$
$$= \frac{225.951}{9} = 25.106$$

Step 3: Compute the test value. (continued)

e) Compute the F value.

$$F = \frac{s_B^2}{s_W^2} = \frac{121.359}{25.106} = 4.83$$

Step 4: Make the decision.

Reject the null hypothesis, since 4.83 > 4.26.

Step 5: Summarize the results.

There is enough evidence to reject the claim and conclude that at least one mean is different from the others.

ANOVA

- The between-group variance is sometimes called the **mean square**, **MS**_B.
- The numerator of the formula to compute MS_B is called the sum of squares between groups, SS_B .
- The within-group variance is sometimes called the **mean square**, MS_{W} .
- The numerator of the formula to compute MS_W is called the sum of squares within groups, SS_W .

ANOVA Summary Table

TABLE 12-1	TABLE 12–1 Analysis of Variance Summary Table				
Source	Sum of squares	d.f.	Mean square	F	
Between Within (error) Total	SS _B SS _W	k − 1 N − k	MS _B MS _W		

TABLE 12–2 Analysis of Variance Summary Table for Example 12–1					
Source Sum of squares d.f. Mean square					
Between Within (error) Total	242.717 225.954 468.671	2 9 11	121.359 25.106	4.83	

SPSS OUTPUT for Example 12-1, ANOVA Table

	ANOVA						
		tu	iel				
	Sum of Squares df Mean Square F Sig.						
Between Groups	242.717	2	121.358	4.834	.038		
Within Groups	225.950	9	25.106				
Total	468.667	11					

 $\alpha = 0.05$

Based on the above table, using *p*-value method:

$$H_0: \mu_1 = \mu_2 = \mu_3$$
 (claim)

 H_1 : At least one mean is different from the others.

Since *p*-value = $0.038 < \alpha = 0.05$, Reject H₀.

Conclusion: At least one mean is different from the others.

TRY THIS YOURSELF:

At the 0.05 level of significance, is there sufficient evidence to conclude that a difference in mean sodium amounts exists among condiments, cereals and desserts. Using p-value method.

Condiments	Cereals	Desserts
270	260	100
130	220	180
230	290	250
180	290	250
80	200	300
70	320	360
200	140	300
		160

ANOVA						
Sodium in milligrams						
Between Groups	Sum of Squares 27543.506	df 2	Mean Square 13771.753	F 2.399	Sig. .118	
Within Groups	109092.857	19	5741.729			
Total	136636.364	21				

Copyright © 2015 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

SPSS PROCEDURES ONE-WAY ANOVA

One-Way ANOVA - F Test

SPSS Procedures Example

You want to see if three different golf clubs yield different distances. You randomly select five measurements from trials on an automated driving machine for each club. At the 0.05 significance level, is there a difference in mean distance?

Club 1	Club 2	Club 3
254	234	200
263	218	222
241	235	197
237	227	206
251	216	204

One-Way ANOVA Example: Scatter Diagram

One-Way ANOVA Example Computations

SSA = 5
$$(249.2 - 227)^2 + 5 (226 - 227)^2 + 5 (205.8 - 227)^2 = 4716.4$$

SSW = $(254 - 249.2)^2 + (263 - 249.2)^2 + ... + (204 - 205.8)^2 = 1119.6$
MSA = $4716.4 / (3-1) = 2358.2$
MSW = $1119.6 / (15-3) = 93.3$

$$F = \frac{2358.2}{93.3} = 25.275$$

One-Way ANOVA Example Solution

 H_0 : $\mu_1 = \mu_2 = \mu_3$

 H_1 : μ_i not all equal

$$\alpha = 0.05$$
 df₁= 2 df₂ = 12

Test Statistic:

$$F = \frac{MSA}{MSW} = \frac{2358.2}{93.3} = 25.275$$

Decision:

Reject H_0 at $\alpha = 0.05$

Conclusion:

There is evidence that at least one μ_j differs from the rest

One-Way ANOVA: Post Hoc Multiple Comparisons

Step 3: Move variable in

Step 5: Select Options button and tick (✓) Descriptive box. Then "Continue"

Step 6: Press "OK" to run analysis.

Equal Variances Assumed LSD S-N-K Maller-Duncan Type I/Type II Error Ratio: 100 Bonferroni Tukey Tukey's-b Dunnett Control Category: Last Scheffe Duncan Hochberg's GT2 R-E-G-W F R-E-G-W Q @ 2-sided @ < Control @ > Control Significance level: 0.05

Copyright © 2015 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

One-Way ANOVA: Options

<u>Fixed</u> and random effects

Homogeneity of variance test

Exclude cases analysis by analysis

Cancel

Help

Statistics

Welch

Means plot

Missing Values

Continue

O Exclude cases listwise

Descriptive

Brown-Forsythe

SPSS Output

Oneway

Descriptives distance 95% Confidence Interval for Mean Ν Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum Mean 249.20 10.402 4.652 236.28 262.12 237 263 215.07 235 226.00 8.803 3.937 236.93 216 3 205.80 9.706 4.341 193.75 217.85 197 222 227.00 Total 20.417 5.272 215.69 238.31 197 263

			ANOVA			
	distance				3	4
+		Sum of Squares	df	Mean Square	F	Sig.
	Between Groups	4716.400	2	2358.200	25.275	.000
	Within Groups	1119.600	12	93.300		
	Total	5836.000	14			

- Sample mean and standard deviations
- grand mean and standard deviation
- **3** Calculated F-statistic value from sample
- p-value (Sig. = .000 means that p-value < 0.001)

Unleashing Potentials Shaping the Future

END OF SLIDES

PRESENTATIONS

Prepared by: Kamarul Ariffin Mansor Department of Mathematical Sciences UiTM Kedah Branch Campus

0234567890

0234567890

