Indian Institute of Technology Kanpur

PHY-683 Experimental Techniques in High Energy Physics

Midsem Exam, Date: September 20, 2024

Timing: 8:00 AM to 10:00 AM Max mark: 40

Each question carries 10 marks

 (a) At the LHC, different types of particles produced in high-energy collisions are detected and analyzed based on their momentum components and pseudorapidity. Below is a table of momentum components recorded for three particles (denoted as A, B and C) in a collision event.

Particle	$p_x (\mathrm{GeV}/c^2)$	$p_y (\mathrm{GeV}/c^2)$	$p_z ({\rm GeV}/c^2)$
A (Charged pion π^{\pm})	20.0	15.0	80.0
B (Jet)	30.0	25.0	120.0
C (Photon <i>y</i>)	10.0	5.0	50.0

For each of the particles A, B, and C, calculate the **transverse momentum** p_T and the **pseudorapidity** (η). The analysis selection rule requires particles to have transverse momentum $p_T < 25 \text{ GeV/}c$, and LHC detectors have an acceptance range of $|\eta| < 2.5$. Determine which of the particles (A, B, or C) satisfy these criteria.

- 2. (a) A muon with a momentum of 500 MeV/c and a pion with a momentum of 1 GeV/c are passing through copper detector with a density of $\rho = 8.96$ g/cm³. The approximate value of $\frac{1}{\rho} \left(-\frac{dE}{dx} \right)_{\text{ion}}$ for the muon is 1.4 MeV g⁻¹ cm², and for the pion, it is 1.7 MeV g⁻¹ cm². Given that the detector has a position resolution of 20 cm, can this detector distinguish between the pion and the muon purely by measuring the track length (distance travelled)?
- 3 (a) The appearance probability for neutrino oscillation is given by $P(\nu_{\alpha} \to \nu_{\beta})$ and disappearance probability is $P(\nu_{\alpha} \to \nu_{\alpha})$, where α, β , are neutrino flavors. Assuming CPT conservation, explain CP violation in neutrino sector **cannot** be measured by disappearance experiments.
 - (b) Using one mass scale dominance $(m_1 \sim m_2)$ and the following parametrization, explain how one can get two flavor probability equations. What kind of experiments are useful to measure these all the mixing angles and mass-squared difference

parameters?

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = R(\theta_{23}) R(\theta_{13}, \delta) R(\theta_{12}) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

4. (a) The charged pion decays almost 100% of the time into a muon and a muon-type neutrino:

$$\pi^+ \rightarrow \mu^+ + \nu_{\mu}$$

In the reference frame where the parent pion is at rest, compute the energy E_{μ} and the absolute value of the momentum p_{μ} of the muon as functions of the muon mass m_{μ} , the charged pion mass m_{π} and the muon neutrino mass m_{ν} . Additionally, numerically evaluate the relative change in the muon momentum between the cases where $m_{\nu}=0$ and $m_{\nu}=0.1$ MeV. Also, comment a detector which is able to measure muon momentum from pion decay at the level of 10^{-6} (resolution). Can this detector be used to place limits on the mass of muon neutrinos?

Useful formula and constants

Range,
$$R = \frac{1}{\rho} \int_0^T \frac{dT}{-\frac{1}{\rho} \left(\frac{dE}{dx}\right)_{\text{ion}}}$$
, where T is the kinetic energy.

$$m_{\mu} = 105 \; {\rm MeV}/c^2, \, m_{\pi} = 140 \; {\rm MeV}/c^2$$