Implantação automatizada de coreografias de serviços web de grande escala em ambientes de computação em nuvem

Leonardo Alexandre Ferreira Leite

Dissertação apresentada AO Instituto de Matemática e Estatística da Universidade de São Paulo para A obtenção do título de mestre em Ciência da Computação

Orientador: Prof. Dr. Marco Aurélio Gerosa Coorientador (informal): Prof. Dr. Fabio Kon

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro pelo projeto CHOReOS, financiado pela Comissão Europeia, e pelo projeto Baile, financiado pela HP Brasil.

São Paulo, ToDo ►MÊS de 2014

Implantação automatizada de coreografias de serviços web de grande escala em ambientes de computação em nuvem

Esta é a versão original da dissertação elaborada pelo candidato Leonardo Alexandre Ferreira Leite, tal como submetida à Comissão Julgadora.

Agradecimentos

Valeu galera \o/

Resumo

A implantação automatizada é uma necessidade no ciclo de vida de um sistema de grande escala, mas muitas organizações ainda realizam a implantação de seus sistemas de forma não-sistematizada, tornando o processo de implantação moroso, propenso a erros e não-reprodutível. Esses problemas agravam-se ao implantar um sistema distribuído, como é o caso de coreografias de serviços web, que implementam processos de negócios distribuídos entre várias organizações. A implantação de uma coreografia deve ser coordenada, pois os serviços de uma coreografia precisam conhecer a localização dos outros serviços, informação possivelmente disponível apenas em tempo de implantação. Coreografias de grande escala são mantidas de forma distribuída por várias organizações e a presença de falhas na comunicação entre seus serviços torna-se corriqueira. Considerando as vantagens da virtualização na gerência de ambientes, o crescente uso da computação em nuvem pelas organizações e os requisitos de sistemas de grande escala, investigamos o uso da computação em nuvem na implantação de coreografias de serviços web. Para isso, desenvolvemos o CHOReOS Enactment Engine, um sistema de middleware que possibilita a implantação distribuída e automatizada de coreografias de serviços web, operando como um provedor de computação em nuvem na camada de Plataforma como um Serviço. O middleware desenvolvido será avaliado pela sua escalabilidade em relação ao tempo de implantação das coreografias, operação para a qual a quantidade de serviços a ser implantada é considerada como carga do sistema, enquanto que a quantidade de máquinas virtuais acessíveis são os recursos do sistema. No atual estágio de implementação do Enactment Engine, experimentos preliminares de escalabilidade foram realizados, mostrando que um aumento de 50 vezes no número de serviços implantados provocou um aumento de cerca de apenas duas vezes no tempo de implantação quando os recursos do sistemas eram aumentados na mesma proporção que a carga aplicada, o que consideramos um resultado preliminar muito satisfatório.

Palavras-chave: implantação de software, coreografias, serviços web, computação em nuvem, grande escala.

Abstract

Automated deployment is mandatory in the life cycle of large-scale systems. However, some organizations still deploy their system manually, what is time-consuming, error-prone, and noreproducible. These problems are even worse in distributed deployment, as occurs with web service choreographies, that implement distributed business process among many organizations. The deployment of a choreography must be coordinated, since their services need to retrieve the endpoints of other participant services, and these endpoints may be available only at deployment time. Large scale choreographies are maintained by multiple organizations in a distributed way, and in such scenario communication faults are commonplace. Considering the virtualization advantages in environment management, the increasing use of cloud computing by organizations, and large scale system requirements, we exploit cloud computing in web service choreography deployment. This is achieved by means of the development of the CHOReOS Enactment Engine, a middleware system that enables the automated and distributed deployment of web service choreographies, operating as a cloud computing provider in the Platform as a Service layer. Our middleware is assessed by its scalability regarding choreography deployment time, for which the amount of services to be deployed is the system load, whereas the amount of available virtual machines are the system resources. The current Enactment Engine implementation was assessed regarding its scalability, and we observed an increase about only twice when the number of services was increased by 50 times, and the resources were increased in the same proportion than the load. We consider this preliminary result very satisfactory.

Keywords: software deployment, choreography, web services, cloud computing, large scale.

Sumário

Li	sta de Abreviaturas	ix
Li	sta de Figuras	xi
Li	sta de Tabelas	xiii
1	Introdução	1
2	Conceitos básicos	5
	2.1 Serviços web	5
	2.2 Composições de serviços web	6
	2.3 O processo de implantação de sistemas	8
	2.4 Computação em nuvem	10
	2.5 Desafios na implantação de sistemas de grande escala	12
3	Trabalhos relacionados	17
4	Solução proposta: o Enactment Engine	21
	4.1 Execução do Enactment Engine	22
	4.2 Especificação da composição de serviços	24
	4.3 Ligação entre serviços	24
	4.4 Mapeamento dos serviços na infraestrutura alvo	26
	4.5 Interface do Enactment Engine	27
	4.6 Pontos de extensão	28
	4.7 Aspectos gerais de implementação	30
	4.8 Discussão: auxiliando implantações em grande escala	31
5	Avaliação	37
	5.1 Implantando coreografias com e sem o EE	37
	5.2 Análise de desempenho e escalabilidade	38
6	Conclusões	43
A	Guia do Usuário do Enactment Engine	45
Re	eferências Bibliográficas	47

Lista de Abreviaturas

2PC Two Phase Commit

ADL Architectural Description Language

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

AWS Amazon Web Services

BPEL Business Process Execution LanguageBPMN Business Process Modeling NotationCAP Consistency, Availability, Partitioning

CORBA Common Object Request Broker Architecture

EC2 Elastic Compute Cloud

GNU GNU is not Unix

HTTP Hyper Text Transfer Protocol
IaaS Infrastructure as a Service
J2EE Java Enterprise Edition
JDK Java Development Kit
JMS Java Message Service
JVM Java Virtual Machine

LoC Lines of code

MIL Module Description Language

MIME Multipurpose Internet Mail Extensions

MPL Mozilla Public License

NIST The National Institute of Standards and Technology

PaaS Platform as a Service

REST Representational State Transfer

SaaS Software as a Service

SOA Service Oriented Architecture
TDD Test Driven Development

UDDI Universal Description Discovery and Integration

URI Uniform Resource Identifier
URL Uniform Resource Locator
XML Extensible Markup Language
W3C World Wide Web Consortium

WADL Web Application Description Language

WS-CDL Web Services Choreography Description Language

WSCI Web Service Choreography Interface WSDL Web Service Description Language

Lista de Figuras

1.1	Modelos da computação em nuvem associadas ao CHOReOS Enactment Engine	3
2.1	Exemplo de uma pequena coreografia de serviços em notação BPMN2	7
2.2	Tempos de criação de instâncias EC2 observados, em segundos	13
4.1	Ambiente de execução do CHOReOS Enactment Engine	22
4.2	Processo de implantação implementado pelo Enactment Engine	23
4.3	Estrutura da descrição arquitetural de uma coreografia. ToDo ▶atualizar ✓	25
5.1	The topology of the compositions used in the experiments	39
5.2	Average deployment times (with 95% confidence interval) for increasingly larger com-	
	positions. The ratio between the number of services and the number of virtual ma-	
	chines is kept constant	40

Lista de Tabelas

3.1	Tabela comparativa com os trabalhos relacionados	20
5.1	Deployment scenario in the experiments	39
5.2	Experimental results	39

Capítulo 1

Introdução

O processo de implantação de um software vai do momento de aquisição do software até o momento em que o software encontra-se em execução [OMG06]. Processos totalmente automatizados são importantes na implantação de sistemas [HF11]. No entanto, muitas organizações ainda realizam a implantação de seus sistemas como descrito por Dolstra et al. [DBV05]: um processo manual, moroso, propenso a erros e não reprodutível. Ainda segundo esses autores, o problema agrava-se na implantação de sistemas distribuídos, pois o esforço de implantação cresce com a quantidade de nós do sistema. Em cenários de grande escala, um processo de implantação manual torna-se inviável. Esses cenários vem sendo discutidos academicamente e ainda não há soluções consolidadas [IGH+11].

Pesquisadores acreditam que a arquitetura da Internet atual não comportará todos os requisitos dos serviços do futuro, o que leva à necessidade de criação de uma nova arquitetura, denominada Internet do Futuro [ZPT⁺11]. Na Internet do Futuro, espera-se a existência de complexas composições de bilhões de serviços web, formando coreografias de milhões de recursos, pessoas e coisas [IGH⁺11]. No entanto, o desenvolvimento de colaborações entre serviços trazem desafios para a formulação de mecanismos que funcionem, escalem e que sejam eficientemente implementados em um ambiente distribuído de grande escala [SPV12].

Sistemas distribuídos estão migrando para ambientes de nuvem, onde são compostos e mantidos de modo descentralizado por várias organizações [SPV12]. A computação em nuvem possibilita o acesso a um conjunto compartilhado de recursos computacionais que podem ser providos rapidamente [MG11]. A gerência programática desses recursos virtualizados favorece a criação de processos totalmente automatizado para a implantação de sistemas [HF11].

Steen [SPV12] destaca que um sistema distribuído de grande escala normalmente não é fornecido por uma única organização e que, portanto, ninguém é responsável por "todo o sistema". Essa necessidade de distribuição dificulta a execução de atividades que precisam ser coordenadas entre as organizações, pois nenhuma das partes detém o controle sobre toda a infraestrutura. O aspecto interorganizacional normalmente implica também na heterogeneidade tecnológica, pois partes da aplicação mantidas por organizações diferentes costumam ser construídas com tecnologias diferentes, como por exemplo Java ou .NET. Quando essas partes do sistema precisam comunicar-se diretamente surge a necessidade de uma comunicação interoperável, o que é viabilizado por serviços web.

Serviços web possibilitam a comunicação interoperável entre máquinas pela rede [W3C04b]. Um exemplo é a consulta a um serviço do correio para verificação de preços e prazos de diferentes opções de entrega. A existência de um serviço web que forneça essa funcionalidade possibilita que uma loja, por exemplo, selecione dinamicamente a opção de entrega mais vantajosa de acordo com os requisitos de seus clientes. Serviços também são compostos para implementar processos de negócios sofisticados [PTDL07]. Nessa situação, serviços web são diretamente ligados uns aos outros. Se existem supermercados que oferecem serviços web para consulta de preço e compra de produtos, pode-se elaborar um processo de negócio em que um consumidor faça uma busca automatizada em diferentes supermercados procurando o menor preço para a sua compra. A coordenação de um

2 INTRODUÇÃO 1.0

processo de negócio ocorre de forma centralizada ou distribuída. No caso centralizado, denominado orquestração [NCS04], há um orquestrador que determina como os outros serviços web envolvidos no processo de negócio devem se relacionar. No caso distribuído, denominado coreografia [BWR09], cada serviço sabe como e com quais parceiros deve interagir.

Para compor uma orquestração ou coreografia, é preciso que os serviços identifiquem a localização (URIs) de suas dependências. Em um processo de implantação na nuvem, não se pode fazer suposições sobre os endereços IPs dos serviços antes da implantação, o que requer um modelo de configuração flexível, considerando a natureza dinâmica da nuvem [TF12]. Dessa forma, o processo de implantação de coreografias requer algum mecanismo dinâmico de troca de endereços entre os serviços participantes.

Embora exista uma diversidade de técnicas para aumentar a disponibilidade de aplicações e serviços, quando um sistema interage com outro independente, normalmente pertencente a outra organização, é preciso considerar uma possível indisponibilidade do sistema invocado na outra organização. Em sistemas de grande escala, tais falhas ocorrem com maior frequência. Por isso, esses sistemas precisam ser projetados para que continuem a funcionar na presença de falhas de seus componentes, mesmo que para isso tenham que continuar operando com funcionalidades reduzidas [Ham07, HC09].

Considerando os desafios já colocados, a questão que guia esta pesquisa é "como realizar a implantação automatizada de coreografias de serviços web de grande escala em ambientes distribuídos de computação em nuvem." O objetivo desta dissertação é arquitetar, implementar e avaliar um arcabouço de middleware que dê suporte à implantação automatizada de coreografias de serviços web em ambientes de computação em nuvem.

Em nosso trabalho, as coreografias de serviços web enquadram-se no seguinte contexto:

- Uma coreografia possui serviços web de diferentes organizações.
- Os serviços web de uma mesma coreografia são implantáveis em diferentes infraestruturas, pertencentes a diferentes organizações.
- As organizações utilizarão infraestruturas de computação em nuvem.
- Diferentes organizações podem utilizar diferentes tecnologias de nuvem.

O arcabouço proposto deve ainda contemplar os seguintes requisitos:

- Com o apoio do arcabouço, o processo de implantação das coreografias deve ser totalmente automatizado.
- Deve-se privilegiar construções tolerantes a falha, ou seja, se um componente do sistema falha, o sistema inteiro continua a responder, mesmo que com funcionalidade reduzida.
- Considerando magnitudes de milhares de serviços em centenas de nós, o tempo de implantação deve ser escalável, ou seja, conforme se aumente a quantidade de serviços a serem implantados e a quantidade de nós disponíveis, o tempo de implantação deve permanecer idealmente constante.
- A implantação de uma coreografia com centenas de serviços deve ocorrer com tempo na ordem de poucos minutos.

Nossa solução consiste no desenvolvimento do CHOReOS Enactment Engine, um arcabouço que fornece uma Plataforma como Serviço (PaaS) para a execução de processos automatizados de implantação de coreografias de serviços web. Para realizar a implantação das coreografias em um ambiente de nuvem, o Enactment Engine utiliza Infraestrutura como um Serviço (IaaS) de outros provedores de computação de nuvem. A arquitetura de nossa solução em termos das camadas da computação em nuvem pode ser observada na Figura 1.1.

1.0

Figura 1.1: Modelos da computação em nuvem associadas ao CHOReOS Enactment Engine

Os aspectos de grande escala considerados pelo arcabouço são a 1) automatização do processo de implantação, 2) consideração da natureza dinâmica do ambiente de computação em nuvem, 3) o tratamento adequado de erros de componentes de terceiros, 4) um projeto de API assíncrona e idempotente, e 5) pontos de extensão para lidar com a heterogeneidade tecnológica.

Ainda como avaliação da aplicação do arcabouço em um cenário de grande escala, o mesmo será avaliado pela escalabilidade do tempo de implantação, variando-se a quantidade de serviços a serem implantados e a quantidade de nós disponíveis no ambiente computação em nuvem. O objetivo é que um aumento proporcional na carga – serviços a serem implantados – e nos recursos disponíveis – máquinas virtuais – não altere significativamente o tempo de implantação.

Esta pesquisa é feita no contexto e com financiamento dos projetos CHOReOS e Baile, que estudam a aplicação de coreografias de serviços em ambientes de grande escala. O projeto CHOReOS¹, financiado pela Comissão Europeia e composto por diversas instituições acadêmicas e industriais da Europa conjuntamente com o IME-USP, introduz um processo dinâmico e centrado no usuário para o desenvolvimento de coreografias em um ambiente de escala ultra grande, no qual milhares de serviços são compostos e coordenados por um middleware distribuído. O projeto Baile², uma parceria entre IME-USP e HP Brasil, estuda a solução de problemas para o desenvolvimento de coreografias, como a adoção de Desenvolvimento Guiado por Testes (TDD) no contexto de coreografias e o suporte da Computação em Nuvem à implantação de coreografias.

ToDo ►As contribuições originais desse trabalho são... ◀

Este trabalho organiza-se da seguinte forma: as fundamentações teóricas sobre composição de serviços e computação de grande escala são apresentadas, respectivamente, no Capítulo ?? e no Capítulo ??. Os trabalhos relacionados, sobre implantação de sistemas, são apresentados no Capítulo 3. No Capítulo 4 apresentamos nossa solução proposta. Por fim, temos nosso plano de trabalho no Capítulo ??.

¹http://www.choreos.eu

²http://ccsl.ime.usp.br/baile/

4 INTRODUÇÃO 1.0

Capítulo 2

Conceitos básicos

Neste capítulo apresentaremos conceitos que são base para esta pesquisa. Os conceitos apresentados serão sobre serviços web e suas composições, implantação de sistemas, e por fim os desafios particulares da implantação de sistemas de grande escala.

2.1 Serviços web

ToDo ▶ conceito de serviço vs instância de serviço ◀

Serviços são entidades autônomas e independentes de plataforma, que podem ser descritas, publicadas, encontradas e compostas [PTDL07]. O conceito de serviço é oriundo do conceito de componentes, que foram idealizados para que sistemas fossem construídos com "blocos" fornecidos por terceiros [MBNR68]. Esses blocos teriam interfaces bem definidas e, com isso, seriam conectáveis entre si, sem que o desenvolvedor precisasse entender sobre a implementação desses blocos. Szyperski [Szy03] define componente como uma unidade de composição, possuindo uma especificação de interface contratual e declaração explícita de suas dependências. Dessa forma, um serviço também é considerado um componente, porém com algumas características peculiares, como ser acessível pela rede e expor operações relacionadas a funcionalidades do negócio [Hew09].

Como muitos dos trabalhos sobre implantação de componentes, a serem apresentados no Capítulo 3, são diretamente aplicáveis na implantação de serviços, trataremos os termos "componente" e "serviço" como sinônimos, assim como faz Fowler [Fow04]. Neste trabalho utilizaremos também os termos "serviço" e "serviço web" de forma equivalentes, assim como feito por outros autores [WFK+06]. Daremos preferência ao termo "serviço web" para evitar os significados mais gerais que a palavra "serviço" pode assumir. Exceção poderá haver quando estivermos descrevendo trabalhos de terceiros que utilizam o termo "serviço" com algum significado mais amplo que o de "serviço web". Um ponto de acesso (endpoint) de um serviço web é uma entidade referenciável para a qual se envia mensagens construídas de acordo com a especificação do serviço [W3C04a]. Um ponto de acesso é referenciado por uma URI (Uniform Resource Identifier) que possibilita o acesso a esse serviço pela Internet. Assim como Smith e Murray [SM10], também utilizaremos a palavra serviço como simplificação para o ponto de acesso do serviço.

As tecnologias mais utilizadas atualmente para a implementação de serviços são SOAP e REST. Os serviços SOAP utilizam um conjunto específico de protocolos definidos pela W3C. As mensagens trocadas pelos serviços SOAP possuem uma estrutura (envelope) encapsulada em mensagens HTTP, protocolo utilizado como um meio de transporte. Já os serviços REST utilizam o HTTP como protocolo de aplicação, utilizando assim diretamente os princípios arquiteturais que são utilizados para explicar a alta escalabilidade do protocolo HTTP e da própria World Wide Web [PZL08].

O W3C chama os serviços SOAP como "serviços web", fornecendo a seguinte definição: "serviços web possibilitam a comunicação interoperável entre máquinas pela rede, utilizando padrões abertos para a troca de mensagens e descrição da interface dos serviços [W3C04b]". Na prática, a única diferença dos serviços REST para essa definição é que em REST não se exige a descrição do serviço em linguagem legível por máquina, embora isso seja possível com a WADL [Had06]. Além disso, nessa

definição da W3C também poderiam ser enquadradas outras tecnologias como CORBA [OMG95]. Serviços SOAP descrevem suas interfaces com a Web Service Descritption Language (WSDL), interagem entre si pela troca de mensagens SOAP e são publicados e descobertos em repositórios UDDI. Uma interface de um serviço web descrita em WSDL é um arquivo XML com uma estrutura padronizada, o que possibilita a outros sistemas analisarem as possíveis formas de interação com esse serviço. Mensagens SOAP também são estruturadas em XML, sendo normalmente enviadas no corpo de requisições e respostas HTTP. O envelope de uma mensagem SOAP codifica a requisição ou resposta à operação de um serviço web, descrevendo também os tipos de dados e valores envolvidos na operação.

Além dos padrões mencionados (WSDL, SOAP, UDDI), há vários outros padrões que formam o conjunto chamado de WS-*, que inclui especificações para a realização de transações entre serviços, troca de endereços de serviços, composição de processos de negócios e muitos outros. O uso desse conjunto de padrões de forma integrada relaciona-se com a criação de Arquiteturas Orientadas a Serviços (SOA). De acordo com Papazoglou [PTDL07], SOA é uma forma de projetar sistemas que forneçam serviços com interfaces publicadas que possam ser descobertas, de modo que funcionalidades da aplicação sejam reutilizáveis como serviços por outras aplicações ou serviços em um ambiente distribuído.

Serviços REST utilizam como interface uniforme os verbos do protocolo HTTP (GET, POST, PUT e DELETE) e comunicam-se fazendo uso do protocolo HTTP como protocolo de aplicação para a troca de representações de recursos, que são identificados por URIs. Recursos são entidades do domínio do negócio que são de interesse dos clientes, e suas representações não estão presas a um formato de troca de mensagens, pois a cada mensagem o formato é descrito por um tipo MIME (ex: xml, json, png, txt). Em REST, também não existe a noção de registro de serviços, pois a identificação de recursos por URIs e o uso de hyperlinks nas próprias mensagens REST possibilitam que os serviços necessários para a aplicação sejam encontrados [PZL08].

Ainda segundo Pautasso [PZL08], serviços REST são considerados "mais simples" do que serviços web porque fazem uso de padrões já bem estabelecidos, como HTTP, XML, URI e MIME, para os quais já existe uma ampla infraestrutura implantada. Um exemplo disso, é que é possível testar alguns serviços REST apenas com um navegador comum. Parte da escalabilidade atribuída a serviços REST também vem desse uso de padrões bem estabelecidos, pois os *caches* implementados pelos servidores web tornam-se automaticamente caches para serviços REST [1T10].

Apesar das vantagens apresentadas dos serviços REST, serviços que utilizam a tecnologia WS-* ainda são mais propensos a uma série de manipulações automatizadas que se tornam mais difíceis nos serviços REST, como por exemplo a geração automatizada de clientes para uma dada linguagem de programação. Isso se deve principalmente pelo alto nível de padronização da tecnologia WS-* e pela existência de interfaces bem definidas e processáveis por software (WSDL).

2.2 Composições de serviços web

Serviços são compostos para implementar processos de negócios mais sofisticados [PTDL07]. Processos de negócio são sequências bem definidas de passos computacionais executados de uma maneira coordenada [SABS02]. A principal tecnologia para a implementação de processos de negócios são os sistemas de gerenciamento de workflow [ADM00]. Um workflow é a automação, total ou parcial, de um processo de negócio, no qual documentos, informações ou tarefas são passados de um participante (humano ou não) para outros, de acordo com um conjunto de regras de procedimento [Wor99]. Segundo Casati et al. [CCPP98], workflows são compostos de tarefas, unidades de trabalho a serem desempenhadas por agentes humanos ou automatizados e conectores, que definem a ordem em que as tarefas devem ser executadas, o que também é denominado fluxo de controle. Sincronizações de execuções concorrentes também são especificadas por controladores chamados "joins" e "forks". Quando uma tarefa é desempenhada por um agente automatizado, o gerenciador de workflow normalmente realiza a invocação de um serviço web, que é esse agente automatizado que participa do processo de negócio. Um exemplo de linguagem para a criação de processo de

negócio a partir da composição de serviços web é a WS-BPEL [OAS07].

O modelo de composição de serviços web no qual temos um coordenador central que coordenada o fluxo de controle da composição é denominado orquestração [NCS04]. O coordenador central é chamado de orquestrador. No caso em que processos de negócios são executados por sistemas gerenciadores de workflows, o orquestrador é o próprio sistema de workflow. Outro modelo de composição de serviços web é o de coreografia, no qual o conhecimento sobre o fluxo de controle é distribuído entre os participantes, ou seja, cada serviço envolvido na composição sabe quando executar suas operações e com quais outros serviços interagir, sem que seja preciso um controle centralizado [BWR09].

Exemplos de linguagens e notações de descrição de coreografias são WSCI [W3C02], WS-CDL [W3C05] e BPMN2 [OMG11]. Essas linguagens e notações descrevem sequências e restrições nas trocas de mensagens efetuadas pelos participantes da coreografia sob uma perspectiva global. Essa descrição é vista como um contrato de negócios entre duas ou mais organizações [OMG11]. Apesar da perspectiva global, como ressalta a especificação do BPMN2, uma coreografia não possui um controle de execução centralizado e participantes não compartilham um espaço de dados global. Dessa forma, um participante conhece o estado de outro participante apenas pela observação de seu comportamento externo, que consiste nas trocas de mensagens efetuadas [OMG11].

Cada participante da coreografia pode ter o seu comportamento modelado por uma linguagem de orquestração, que no caso do BPMN2 corresponde a um diagrama de processo. Dessa forma, uma coreografia pode também ser modelada como um conjunto de orquestrações distribuídas que interagem entre si, de forma que apenas os orquestradores precisam estar cientes de condições impostas pela coreografia [Pou11].

Um diagrama BPMN2 de coreografia especifica passos na execução da coreografia, que são denominados atividades, e que consistem na troca de mensagens entre participantes [OMG11]. Uma atividade pode ocorrer entre entidades participantes (ex: Magalhães Viagens realiza compra de passagem aérea da Nimbus Airline) ou entre papéis de participantes (ex: uma Agência de Viagem realiza compra de passagem de uma Companhia Aérea). Dizemos que dois serviços desempenham o mesmo papel se fornecem funcionalidades equivalentes. O BPMN2 distingue um dos participantes de uma atividade como o participante iniciador, que é aquele que envia a mensagem ao outro participante. O participante iniciador é também denominado cliente ou consumidor, enquanto que o outro participante é também denominado provedor. O diagrama BPMN da Figura 2.1 ilustra os elementos explicados em um exemplo de uma pequena coreografia com apenas dois serviços.

Figura 2.1: Exemplo de uma pequena coreografia de serviços em notação BPMN2

Serviços podem ser projetados para participarem de uma determinada composição, mas também é possível que uma composição seja projetada para utilizar serviços já existentes. No segundo caso, é necessária a criação de serviços de coordenação que fazem com que serviços já existentes, não-cientes da composição, comuniquem-se adequadamente [$AdRdS^{+}13$].

Em artigos acadêmicos também é comum a modelagem de coreografias com notações mais formais, tais como álgebras de processos, redes de Petri e autômatos. Essas notações possibilitam aos autores realizarem simulações e identificarem propriedades, como a verificação da consistência da evolução dinâmica de coreografias [CFN10]. Em nosso trabalho, como estamos preocupados em viabilizar a execução de coreografias, adotamos como modelagem de referência a notação BPMN2, que é um padrão de indústria.

2.3 O processo de implantação de sistemas

A "Especificação de implantação e configuração de aplicações distribuídas baseadas em componentes" (DEPL [OMG06]) é um padrão da OMG (Object Management Group). A implantação é definida pelo DEPL como um *processo*, que se inicia após a aquisição de um componente, e vai até o momento em que o componente está em execução, pronto para processar chamadas.

Embora nosso trabalho foque na implantação de serviços, os conceitos para implantação de componentes também se aplicam à implantação de serviços. Mas no contexto de implantação, pode-se dizer que a principal diferença seja o fato de que o *implantador* do serviço seja a própria organização que o desenvolveu, enquanto que o conceito de componentes está mais ligado a um suposto mercado de componentes, em que uns desenvolvem, empacotam e publicam o componente, enquanto que outros adquirem e implantam o componente.

Quando possível, utilizaremos a terminologia estabelecida pelo DEPL em nosso trabalho. Os principais termos definidos no DEPL e utilizados neste trabalho são os seguintes:

Implantador: é a pessoa, ou organização, que é a "dona" do componente, e que será responsável pelo processo de implantação. Não é o software que propriamente realiza o processo de implantação.

Ambiente alvo: a máquina, ou conjunto de máquinas, onde os componentes serão implantados.

Nó: um recurso computacional onde se implanta um componente, como por exemplo uma máquina virtual; faz parte do ambiente alvo.

Pacote: artefato executável que contém o código binário do componente. É através do pacote que um serviço pode ser instalado e executado em um determinado sistema operacional. Existem pacotes dependentes de sistema operacional (ex: deb, rpm), e pacotes independentes de sistema operacional (ex: jar, war).

Ainda segundo o DEPL, o processo de implantação é composto pelas seguintes fases:

Instalação: o implantador transfere o componente adquirido para sua própria infraestrutura; a instalação está relacionada ao processo de aquisição do componente, e não se trata de mover o componente para o ambiente alvo, no qual será executado. Consideramos que essa fase não se aplica à implantação de serviços, pois após o desenvolvimento e empacotamento, o serviço já é de propriedade do implantador e já se encontra em sua infraestrutura.

Configuração: edição de arquivos de configuração para alterar o comportamento do software; o código compilado do componente junto de sua configuração são os insumos para a produção do pacote do componente.

Planejamento: resulta em um *plano de implantação*, que mapeia como os componentes serão distribuídos pelos nós do ambiente alvo.

Preparação: procedimentos no ambiente alvo para preparar a execução do componente. Envolve configurações do sistema operacional, instalação de middlewares (e.g. Tomcat), e a transferência do componente para a máquina onde será executado.

Inicialização: é quando finalmente o componente é iniciado e entra em execução, podendo processar chamadas de seus clientes. A inicialização também inclui a ligação entre os componentes de uma composição, para que os componentes conheçam a localização dos componentes dos quais dependem.

Esse processo de implantação pode ter que ser repetido várias vezes para que o componente seja implantado em todas as etapas do "pipeline de implantação" [HF11], como testes de aceitação (automatizados ou não), ambiente de homologação, e finalmente ambiente de produção. Todo o

processo que vai desde o *commit* do código-fonte, passando pelas etapas do *pipeline* de implantação, até a implantação em produção chamaremos de processo de *lançamento* de uma determinada versão do sistema.

Profissionais da acadêmia e da indústria levantam a necessidade de se automatizar o processo de implantação, uma vez que o processo de implantação manual se torna moroso e propenso a erros, principalmente na implantação de sistemas distribuídos [HF11, DBV05]. Humble e Farley [HF11] afirmam que o processo de implantação manual faz com que o lançamento de uma nova versão do sistema se torne um grande evento nas organizações, em que há muita tensão e que faz as pessoas trabalharem até mais tarde. A solução para esses sintomas, segundo os autores, é a automação do processo de implantação. Em um processo de implantação automatizado tudo o que for possível é executado de forma automatizada, geralmente por meio de scripts. O objetivo de um processo de implantação automatizado é proporcionar um processo de implantação reproduzível, confiável e fácil [HF11].

A automação discutida nos trabalhos de Humble, afeta principalmente as fases de preparação e inicialização do modelo de implantação do DEPL. A automação dessas fases normalmente são realizadas com a escrita de scripts, com ou sem ferramentas específicas. Mas há também muitos trabalhos acadêmicos sobre a fase de preparação, envolvendo a escolha automática da máquina alvo de um componente baseado nos requisitos não-funcionais do componente. Por fim, a fase de configuração é menos adequada para se automatizar, pois em geral envolve escolhas que devem ser feitas por humanos (ex: logotipo da empresa, que deve aparecer no cabeçalho do sistema).

Um processo de implantação pode ser automatizado de várias maneiras. Pode-se utilizar linguagens de script de propósito geral (Python, shell script), ferramentas gerais voltados para o processo de implantação (ex: Chef¹, Capistrano²), ou middlewares especializados em determinados tipos de artefatos implantáveis, entre os quais se enquadram as soluções de Plataforma como um Serviço, sobre as quais discutiremos na Seção 2.4. Humble e Farley recomendam a utilização de sistemas especializados, preterindo a utilização de linguagens de scripts de propósito geral.

A concretização de um processo de implantação automatizado depende bastante da integração de diferentes papeis em uma organização, principalmente o dos desenvolvedores com os operadores, uma vez que o desenvolvimento dos scripts de implantação requer habilidades de ambos os perfis. Essa percepção levou à criação do conceito de uma cultura rotulada como DevOps [HM11], na qual times inter-funcionais trabalham para a concretização da implantação automatizada.

A discussão a seguir sobre as vantagens do processo de implantação automatizado são baseadas no livro "Continuous Delivery" [HF11].

Muitos problemas na implantação manual se dão por causa de documentação incompleta, contendo pressupostos não compartilhados por todo o time responsável por um produto ou serviço. Dessa forma é comum que a organização fique bastante dependente de uma única pessoa para realizar a tarefa de implantação. Por outro lado, um script de implantação é uma documentação completa de todos os passos do processo e que mais dificilmente ficará defasada, pois nesse caso deixará de funcionar e a implantação não será possível.

A facilidade de se implantar o sistema com o simples pressionar de um botão leva a sua utilização contínua por diferentes atores. O time de desenvolvimento estará constantemente utilizando esse script para realizar testes de integração e aceitação. Essa execução contínua do processo de implantação nos testes trará os seguintes benefícios:

- Os testes se tornam mais confiáveis por serem executados em um ambiente garantidamente similar ao ambiente de produção.
- A quantidade de execuções de testes de integração e aceitação será maior, o que auxilia na garantia de qualidade do sistema.
- O próprio processo de implantação se torna mais confiável, pois quando o "grande dia" da implantação chega, o processo já terá sido executado várias vezes.

¹http://www.getchef.com/

²https://github.com/capistrano/capistrano

• Em particular, é de se esperar que defeitos no script de implantação já tenham sido detectados e corrigidos.

A utilização da implantação automatizada na execução de testes também facilita a execução concorrente de múltiplos testes em ambientes isolados. Isso, por sua vez, contribui para o aumento da bateria de testes, fazendo com que a cobertura dos testes aumente e, por fim, a própria qualidade do sistema testado também melhore.

Outro problema na implantação manual é que quando o sistema finalmente é testado no ambiente de produção, grandes mudanças arquiteturais podem ser economicamente inviáveis. A implantação automatizada favorece a prática da implantação contínua desde as versões embrionárias do sistema, ajudando a garantir que decisões arquiteturais são adequadas e evitando alterações de última hora para adequar o sistema ao ambiente de produção.

A implantação contínua e confiável do sistema é um fator determinante de apoio ao lançamento contínuo de novas versões. Isso é importante para que se consiga o feedback do cliente o quanto antes sobre as últimas alterações no sistema. Esse feedback é importante tanto do ponto de vista técnico para o aprimoramento do sistema, quanto do ponto de vista de negócio, pois é ele que ajuda o time a saber se está construindo a coisa certa. O encurtamento do tempo entre desenvolvimento e feedback do cliente é uma prática pregada pelo movimento da lean startup [Rie11].

Na próxima seção falaremos sobre a computação em nuvem, moderna tecnologia que impacta altamente as técnicas de implantação de sistemas.

2.4 Computação em nuvem

O Instituto Nacional de Padrões e Tecnologias dos Estados Unidos (NIST) define computação em nuvem como um "modelo para possibilitar acesso ubíquo, conveniente e sob demanda pela rede a um conjunto compartilhado de recursos computacionais (por exemplo: redes, servidores, discos, aplicações e serviços) que possam ser rapidamente provisionados e liberados com o mínimo de esforço gerencial ou interação com o provedor do serviço" [MG11].

Zhang et al. [ZCB10] destacam as seguintes características da computação em nuvem: i) separação de responsabilidades entre o dono da infraestrutura de nuvem e o dono do serviço implantado na nuvem; ii) compartilhamento de recursos (serviços de diferentes organizações hospedados na mesma máquina, por exemplo); iii) geodistribuição e acesso aos recursos pela Internet; iv) orientação a serviço como modelo de negócio; v) provisionamento dinâmico de recursos; vi) cobrança baseada no uso de recursos, de forma análoga à conta de eletricidade.

Os serviços de computação em nuvem poder ser oferecidos a clientes internos ou externos à organização administradora da plataforma de nuvem. Quando os clientes são externos dizemos que a nuvem é pública, como no caso da nuvem da Amazon; quando os clientes são internos, dizemos que a nuvem é privada, situação na qual a organização pode utilizar ambientes baseados em um middleware como o OpenStack [ZCB10].

À computação em nuvem é atribuída os seguintes modelos de negócio [ZCB10], ou modelos de serviço [MG11]: Infraestrutura como um Serviço (IaaS), Plataforma como um Serviço (PaaS) e Software como um Serviço (SaaS).

O modelo de Infraestrutura como Serviço (IaaS) fornece acesso aos recursos virtualizados, como máquinas virtuais, de forma programática. Um dos principais fornecedores atuais de IaaS é a Amazon, com os serviços Amazon Web Services (AWS). Dentre os vários serviços fornecidos pela plataforma, destaca-se o EC2, que possibilita a criação e gerenciamento de máquinas virtuais na nuvem da Amazon. Na utilização de IaaS, uma das considerações chaves é "tratar hospedeiros como efêmeros e dinâmicos" [TF12]. É preciso considerar que hospedeiros podem ficar indisponíveis e que nenhuma suposição pode ser feita sobre seus endereços IPs, o que requer um modelo de configuração flexível e que a inicialização do hospedeiro leve em conta essa natureza dinâmica da nuvem. Para que as aplicações sejam escaláveis e tolerantes a falhas, a Amazon recomenda mais do que a criação de máquinas virtuais com o serviço EC2: deve-se utilizar grupos de máquinas replicadas que compartilhem um balanceador de carga [TF12]. Conforme a demanda da aplicação cresce ou diminui,

máquinas podem ser dinamicamente acrescentadas ou removidas desses grupos de replicação, o que proporciona escalabilidade horizontal à aplicação. Naturalmente, essa replicação depende de um prévio preparo da aplicação para esse cenário, pois se deve levar em conta a distribuição, replicação e particionamento dos dados.

O uso de recursos virtualizados, proporcionado pelo modelo IaaS, potencializa a automação do processo de implantação [HF11]. Novos ambientes podem ser criados dinamicamente, em poucos minutos, com a configuração de um sistema operacional recém instalado em uma máquina. Isso traz as seguintes vantagens para o processo de implantação:

- Evita-se a burocracia e custos necessários para o provisionamento de novo hardware.
- A implantação pode ser repetida facilmente no mesmo ambiente, não é preciso reinstalar o sistema operacional ou limpar as configurações do sistema para se obter uma nova implantação do serviço.
- Se executados em diferentes máquinas virtuais, dois serviços podem dividir um mesmo servidor físico sem que a implantação e execução de um serviço afete a execução do outro serviço anteriormente implantado.

Na utilização de serviços IaaS para a implantação de serviços há duas abordagens possíveis: 1) a máquina virtual deve ser criada com base em uma imagem que já contenha o serviço implantado, ou 2) deve ser criada com base em uma imagem contendo apenas um sistema operacional recém instalado, de forma que a implantação do serviço seja feita por scripts. O modelo de imagem pronta pode proporcionar implantações mais rápidas, porém a segunda abordagem é mais flexível e ágil, pois evita-se a manutenção constante das imagens. Um compromisso entre as duas abordagens também é possível: se todos os serviços implantados são WARs, por exemplo, então a imagem base pode conter não só o sistema operacional, mas também o ambiente de execução dos serviços, o Tomcat no caso.

No modelo de Plataforma como Serviço (PaaS) os desenvolvedores da aplicação não precisam preocupar-se diretamente com a gerência dos recursos virtualizados ou com a configuração dos ambientes nos quais a aplicação será implantada, concentrando-se no desenvolvimento do código da aplicação. Um exemplo típico de PaaS é o Google App Engine³, que oferece implantação transparente a projetos em Python, Java ou Go. O App Engine também oferece escalabilidade automática de modo mais simples que os serviços de IaaS, uma vez que a configuração prévia e as alterações na infraestrutura ocorrem de modo totalmente transparente ao desenvolvedor da aplicação. Uma desvantagem presente nos serviços PaaS são as restrições de linguagens, bibliotecas e ambientes impostas aos desenvolvedores da aplicação.

Como exemplo de SaaS temos o Google Docs ou qualquer outro aplicativo online que seja diretamente utilizado pelo usuário final. Uma das aplicações desse tipo é o armazenamento de dados na nuvem, como fornecido pelo Dropbox⁴. Uma confusão comum é definir o conceito de nuvem como se fosse estritamente ligado a esse tipo de serviço de armazenamento de dados.

Com as vantagens aqui apresentadas, é cada vez mais comum o uso dos recursos de nuvem por empresas que desenvolvem software, pois assim seus esforços concentram-se no desenvolvimento do produto, aliviando as preocupações com infraestrutura. A computação em nuvem também possibilita que organizações evitem grandes investimentos antecipados em infraestrutura, pois os recursos virtualizados são dinamicamente acrescentados conforme a carga da aplicação requeira. Pode-se então considerar o uso da nuvem uma realidade do mercado de software atual. Dessa forma, é natural esperar que a implantação de composições de serviços também se dê no ambiente de computação em nuvem, que é a abordagem deste trabalho.

 $^{^3}$ https://developers.google.com/appengine/

⁴http://dropbox.com/

2.5 Desafios na implantação de sistemas de grande escala

Na visão proposta pelo Instituto de Engenharia de Software da Universidade Carnegie Mellon, sistemas de ultra grande escala serão ultra grandes em relação a todas as dimensões possíveis: linhas de código, pessoas, dados, dispositivos, etc. [Sof06]. O número estimado de linhas de código desses sistemas é de bilhões. Para efeito de comparação, o núcleo do sistema operacional GNU/Linux possui cerca de 15 milhões de linhas de código em sua versão 3.2, a mais recente no momento da escrita deste texto [Lee12]. Com isso, talvez o único sistema da atualidade que se assemelha aos sistemas de escala ultra grande previstos é a Internet.

A característica mais importante de um sistema de grande escala não é seu tamanho, mas o fato de ser caracterizado como um "ecossistema sociotécnico" [Sof06], em que pessoas são parte integrante do sistema, interagindo com diferentes objetivos, de modo decentralizado e independente, porém seguindo restrições impostas. A analogia proposta é de que o desenvolvimento dos atuais sistemas de grande escala equipara-se a construção de prédios, enquanto que o desenvolvimento de sistemas de escala ultra grande equivaleriam a construção de cidades, o que é naturalmente um processo contínuo e decentralizado.

Recentemente temos ainda a consolidação da computação em nuvem, que traz um conjunto de tecnologias e práticas que se relacionam com as três características de sistemas de escala ultra grande anteriormente mencionadas. Sistemas distribuídos estão migrando para ambientes de nuvem, onde são compostos e mantidos decentralizadamente por várias organizações [SPV12]. A virtualização, um dos aspectos centrais da computação em nuvem, é de grande auxílio no provisionamento de novos ambientes [HF11], o que é importante para o processo de implantação de sistemas. A virtualização também facilita a criação de ambientes replicados, arquitetura importante para tratar falhas individuais de componentes.

A grande escala afeta os processos envolvidos no ciclo de vida dos sistemas. Estudando a literatura que aborda e discute desafios, princípios e práticas de sistemas de grande escala, identificamos os seguintes desafios que essa nova realidade traz ao processo de implantação de sistemas:

Processo: Como já foi discutido neste capítulo, a automação do processo de implantação vem se firmando como uma tendência crucial na capacidade das equipes de TI entregarem valor o mais continuamente possível, evitando as dificuldades e problemas presentes no processo manual de implantação. Tais dificuldade e problemas se tornam muito mais complicados em ambientes distribuídos e de grande escala. Por isso, nesse caso a automação dos processos se torna ainda mais fundamental. Hamilton [Ham07] lista uma série de boas práticas acumuladas por anos de experiência no desenvolvimento de serviços de grande escala. Dentre elas, Hamilton destaca a automação de todos os processos de operações dos serviços, alegando que processos automatizados são testáveis, reparáveis e, portanto, mais confiáveis.

Falhas de terceiros: Sistemas distribuídos de grande escala devem esperar e tratar falhas de componentes de terceiros [Ham07, HC09, Sof06]. Mesmo se a chance de falhas de cada componente é pequena, a grande quantidade de componentes e interações aumenta as chances de falhas em algum lugar do sistema [Sof06]. Mais do que ser projetado para não falhar, um componente operando em um ambiente de grande escala deve ser projetado para tratar adequadamente situações de exceção e indisponibilidade, tanto do próprio componente, quanto de outros componentes dos quais depende.

Um exemplo de falha típica em um processo de implantação automatizado utilizando um serviço de IaaS envolve o provisionamento de VMs. Quando um novo nó é requisitado para o provedor de infraestrutura, há uma chance de que o provisionamento falhe. Além disso, alguns nós podem levar um tempo muito maior que a média para ficarem prontos. Outras operações que podem falhar durante o processo de implantação são conexões SSH e a execução de scripts nos nós alvos.

A Figura 2.2 mostra a distribuição por nós observada do tempo de criação de VMs quando se requisita concorrentemente a criação de 100 nós na nuvem da Amazon (isso foi repetido 10

vezes). Nós contamos o tempo que vai da requisição de criação do nó até o momento em que a VM se encontra apta a receber conexões SSH, que é quando ela se torna pronta para uso na prática. Nós observamos uma taxa de falha de 0.6% quando se tenta criar concorrentemente 100 nós. É interessante notar que o tempo de criação tem uma mediana estável, mas que alguns valores altos para esse tempo são esperados quando se cria ao mesmo tempo uma grande quantidade de nós. Em nossas observações, falhas e tempos longos de provisionamento afetaram até 7% das requisições de criação de nós.

Figura 2.2: Tempos de criação de instâncias EC2 observados, em segundos.

Nygard [Nyg09] apresenta vários padrões de estabilidade que são de importante aplicação em sistemas de grande escala. Em sua essência, esses padrões dizem respeito a detectar falhas e evitar sua propagação, provendo um tratamento adequado a essas falhas. Dentre as práticas recomendas pelo autor destacam-se 1) o uso de timeouts no cliente, que evita que um cliente fique eternamente esperando uma resposta; 2) a interrupção de tentativas do cliente quando há sintomas de indisponibilidade do provedor; 3) criação de recursos exclusivos para diferentes clientes, evitando que uma falha em um recurso compartilhado afete todos os clientes; e 4) a "falha rápida", que faz com que um provedor forneça uma resposta de erro tão logo quanto seja possível saber que a operação não terá sucesso.

Quando um sistema faz uma requisição a outro serviço, não é possível distinguir um timeout de uma resposta eventualmente mais lenta. Dessa forma, só é seguro, do ponto de vista funcional, o sistema cliente enviar uma nova requisição devido a timeout caso a operação considerada seja idempotente. Em sistemas REST, por exemplo, todas as operações que não sejam POST devem ser idempotentes [All10]. A idempotência de scripts de implantação é um dos principais destaques dentre as funcionalidades do Chef⁵.

Disponibilidade: Embora serviços em um sistema distribuído tenham que estar preparados para lidar com a falha de outros serviços do sistema, cada serviço deve ter sua disponibilidade aumentada tanto quanto possível. Para isso é preciso aplicar técnicas que aumentem o tempo médio entre falhas e/ou diminuam o tempo médio de reparo após uma falha.

O balanceamento de carga entre réplicas de um serviço é uma das práticas mais importantes e recomendados atualmente para aumentar a disponibilidade e escalabilidade de sistemas [TF12]. Com a replicação do serviço, a falha em uma réplica não implica na indisponibilidade do serviço. Além disso, com a utilização das tecnologias de nuvem, caso a quantidade de requisições aumente, pode-se requisitar um aumento na quantidade de réplicas, o que evitará uma indisponibilidade por incapacidade de se atender a todas as requisições.

Outra prática importante para o aumento da disponibilidade é a replicação de dados [Bre01]. No entanto, a replicação síncrona de dados é inviável para sistemas de grande escala [HC09]. O Teorema CAP [Bre12] prevê que um sistema não mantém os níveis de consistência e de disponibilidade na presença de particionamentos de rede. Considerando que particionamentos de

⁵http://docs.opscode.com/chef why.html

rede são intrínsecos ao ambiente da Internet, o aumento no tamanho dos sistemas inviabilizou uma consistência total com tempo de resposta satisfatório. Essa mudança representou uma quebra de paradigma na área de bancos de dados, pois agora os bancos de dados projetados para fornecer as propriedades ACID, que garantem consistência total, cedem lugar aos cada vez mais populares bancos de dados não-relacionais (NoSQL). Essa nova categoria sacrifica a consistência dos dados para obter maior disponibilidade ou escalabilidade [Cat11].

O processo de implantação deve considerar as necessidades de replicação de serviços e dados, para que possa configurar adequadamente as múltiplas instâncias dos serviços e das bases de dados. Deve ser possível também alterar em tempo de execução a quantidade de réplicas para a adequação à demanda observada.

Um processo que pode ser utilizado para reduzir drasticamente o tempo de reparo após uma falha é o "roll-back" automatizado do sistema: se o ambiente de produção encontra-se em algum estado inválido, é preciso uma reversão rápida e segura do sistema e do ambiente para o última estado estável [Ham07, Bre01]. Nygard [Nyg09] advoga que em caso de falha no sistema a prioridade deve ser a reversão imediata do sistema para a sua última versão estável, deixando para depois as investigações sobre as razões do problema, mesmo que a reversão custe a perda de eventuais pistas para o diagnóstico.

Escalabilidade: Quando se implanta uma grande quantidade de serviços em um ambiente distribuído, não é desejável que as implantações dos diferentes serviços sejam sequenciais. Uma vez que a implantação de diferentes serviços são tarefas independentes, implanta-los concorrentemente aumenta drasticamente a escalabilidade do processo de implantação da composição.

Dizemos que uma arquitetura é perfeitamente escalável se ela continua a apresentar o mesmo desempenho por recurso, mesmo que usado em um problema de tamanho maior, conforme o número de recursos aumenta [Qui94]. No contexto de implantação, isso significa que, idealmente, o tempo de implantação deveria permanecer constante quando há um aumento proporcional no número de serviços a serem implantados e no número de nós alvos.

Note que o número de serviços a ser implantado aumenta em duas situações: 1) quando se implanta composições maiores e 2) quando se implanta mais composições simultaneamente. A primeira situação ocorre na implantação de sistemas de grande escala. A segunda situação pode ocorrer, por exemplo, quando se executa uma bateria de testes de aceitação de uma composição de serviços. Note que nesse caso um teste de aceitação pode levar um tempo considerável, já que engloba o provisionamento de um novo nó e a preparação do sistema. Em tal situação, é desejável que testes de aceitação sejam executados em paralelo, o que requer implantação concorrente de múltiplas instâncias da mesma composição. Quanto maior a capacidade de paralelização desse processo, mais testes poderão ser admitidos na bateria de testes.

Heterogeneidade: Componentes de sistemas de grande escala normalmente são construídos com diferentes tecnologias e hospedados em diferentes tipos de ambientes. Um dos principais caminhos para viabilizar a coexistência dessa pletora tecnológica é a Arquitetura Orientada a Serviços, incluindo as composições de serviços web.

Embora serviços web tenha surgido para resolver os problemas de heterogeneidade entre sistemas e organizações, hoje em dia temos mais de um mecanismo para implementar o conceito serviços, principalmente SOAP e REST, além de outros. Portanto, suportar heterogeneidade é importante para sistemas baseados em serviços. A falta de flexibilidade para a escolha de tecnologia para o desenvolvimento de serviços e o provedor de infraestrutura ocorre em muitas soluções PaaS atualmente disponíveis.

Múltiplas organizações: Sistemas de grande escala não possuem um único dono [SPV12], sendo que seus componentes pertencem a diferentes organizações que interagem de forma coorde-

nada. O conceito de coreografias de serviços web e notações como o BPMN surgem para formalizar a interação entre serviços de organizações diferentes em tempo de execução.

Em uma composição inter-organizacional a coordenação do processo de implantação se torna um desafio. Normalmente não se admite que um coordenador em uma organização possa tomar decisões sobre a implantação de serviços de outra organização, pois esse processo envolve custos, acesso a infraestrutura e acesso ao pacote do serviço. Dessa forma, não podemos esperar que haja um orquestrador para coordenar o processo de implantação. As organizações deveriam agir de forma colaborativa para que o processo de implantação da composição tenha sucesso. No entanto isso não é tão simples, pois no caso de implantação simultânea, é preciso haver algum protocolo de comunicação para que uma organização receba por notificação os endereços de serviços recém implantados por outra organização, quando esses serviços são dependências de seus próprios serviços sendo também implantados.

Adaptabilidade: No futuro sistemas deverão operar em um mundo altamente dinâmico, sendo preciso lidar com alterações imprevistas, como condições ambientais, incluindo desastres naturais, adequação legal, etc. [DNGM⁺08]. É de se esperar que em sistemas de grande escala a capacidade de agir autonomicamente seja vital para manter um funcionamento adequado, uma vez que a intervenção manual se torna mais custosa.

Quando requisitos funcionais ou não-funcionais são violados, as possíveis ações a serem tomadas são: 1) substituição de versão de serviços; 2) aumento na quantidade de réplicas de um serviço; e 3) migração da instância de um serviço para outro hospedeiro. Uma vez que todas essas ações tem relação com o processo de implantação, pode-se dizer que sistemas auto-adaptativos e autonômicos precisam estar cientes e ter pleno controle das atividades do processo de implantação.

Para tomar as decisões de adaptação, um sistemas auto-adaptativo precisa monitorar a si próprio para coletar métricas a serem utilizadas em algum algoritmo adaptativo. Exemplos de métricas são utilização de CPU e memória. Coletar tais métricas requer a utilização de uma infraestrutura de monitoramento que deve ser implantada na infraestrutura alvo. Portanto, o processo de implantação de sistemas auto-adaptativos também deve considerar a implantação de sistemas auxiliares que realizam esse monitoramento.

Capítulo 3

Trabalhos relacionados

Neste capítulo apresentamos os trabalhos relacionados à nossa pesquisa e algumas ferramentas utilizadas pela comunidade referentes à implantação automatizada de serviços.

A automação do processo de implantação requer uma descrição formal do sistema a ser implantado, contendo as informações necessárias para sua instanciação. Portanto, um dos aspectos fundamentais de um processo de implantação automatizado é a linguagem de configuração utilizada para definir o processo de implantação. Essa linguagem pode ser procedimental [DBV05] ou declarativa [MK96, BBB+98]. Outro aspecto relevante é o escalonamento de recursos computacionais para os serviços a serem implantados, o que pode ser feito, por exemplo, com o auxílio de sistemas de computação em grade [WFK+06].

Antes de instalar um serviço é preciso configurar adequadamente o sistema operacional e a plataforma na qual o serviço será implantado. Para utilizar ferramentas como Chef¹, Capistrano² e Nix [DBV05], os usuários devem escrever scripts que realizem a configuração do ambiente e a implantação do serviço. No caso do Chef, um script configura a máquina na qual o serviço é instalado, enquanto que o Capistrano possibilita a coordenação da implantação de serviços em diferentes nós. Com as expressões do Nix, é possível também unificar a especificação da implantação com o build da aplicação em um único script, possibilitando a edição parametrizada de arquivos de configuração da aplicação em função do local de implantação.

A abordagem procedimental, com *scripts*, permite ao usuário especificar a implantação de praticamente qualquer tipo de sistema, mas normalmente requer especialização de seus usuários, pois todos os detalhes do processo devem ser especificados. Esses *scripts* de implantação também deveriam ser desenvolvidos com o mesmo rigor do código da aplicação, inclusive com o uso de testes automatizados [HF11]. O descumprimento dessa recomendação torna o processo de implantação pouco robusto e até mesmo não confiável. Uma alternativa que evita essa sobrecarga no processo de desenvolvimento é o uso de sistemas especializados na implantação de determinados tipos de aplicações e que recebam, como entrada, uma simples especificação declarativa do sistema a ser implantado.

Um exemplo de abordagem declarativa é uso de Linguagens de Descrição Arquitetural (ADLs), como a Darwin [MK96]. ADLs são uma evolução do conceito de Linguagens de Interconexão de Módulo (MILs) [DK76], que descrevem a interconexão entre módulos de um sistema. A motivação dos autores da MIL era contribuir com novas formas de se produzir software de grande porte, diferenciando essa atividade da programação de pequenos algoritmos. De forma similar, a linguagem Darwin concentra-se nos aspectos estruturais de sistemas distribuídos, descrevendo a conexão entre os módulos do sistema, mas sem descrever implementações ou sequências de interações entre os módulos. Em nosso trabalho, também descrevemos o sistema a ser implantado através de sua descrição estrutural, uma vez que é esse o aspecto necessário para que se possa automatizar o processo de implantação. Magee e Kramer demonstraram a utilidade prática da linguagem Darwin ao utilizá-la de forma integrada a componentes CORBA [MTK97], padrão de interoperabilidade

¹http://www.opscode.com/chef

²https://github.com/capistrano

de sistemas distribuídos dominante no mercado à época. Darwin possui também um ambiente de execução, Regis [MDK94], que realiza a implantação dos sistemas descritos em Darwin. Regis possui duas políticas de distribuição de programas por estações de trabalho. A primeira é o mapeamento definido pelo usuário de forma estática, abordagem não apropriada para ambientes de computação em nuvem. A segunda opção de política é a alocação automática em função da carga na CPU das estações de trabalho, não havendo flexibilidade para a consideração de outros recursos, como espaço em disco ou memória, por exemplo. Uma similaridade entre Regis e o Enactment Engine desenvolvido em nossa pesquisa é o uso do middleware para o envio de mensagens contendo referências remotas dos componentes implantados para que eles possam estabelecer ligações dinâmicas entre si.

Olan [BBB⁺98] é um ambiente para a descrição, configuração e implantação de aplicações distribuídas em ambientes heterogêneos, e que também utiliza uma ADL própria. Baseando-se na entrada descrita na ADL, Olan gera scripts de Configuração de Máquina, que definem a execução do processo de implantação dos componentes no ambiente distribuído e do ajuste dos canais de comunicação entre esses componentes. A abordagem de gerar um script de configuração a partir de uma especificação declarativa é também implementada pelo Enactment Engine. A ADL de Olan também possibilita a especificação de restrições sobre a localização da implantação do componente, porém sem flexibilidade para a adoção de estratégias dinâmicas de alocação de nós.

Apesar de os trabalhos sobre Darwin e Olan já falarem sobre software de "grande porte", o que se entendia por grande porte já se alterou significativamente desde a época em que esses trabalhos foram feitos. Uma evidência dessa diferente percepção de escala são os exemplos de aplicações fornecidos no artigo sobre Olan, em que se fala sobre componentes muito granulares, como pedaços de interfaces gráficas, e que não consideram possíveis falhas de comunicação que são comuns na Internet. Além disso, os próprios autores do artigo sobre Olan admitem que não se preocuparam com questões de desempenho. Conforme visto no Capítulo ??, hoje há novos desafios e requisitos que precisam ser considerados na construção de qualquer software de grande escala.

O trabalho de Akkerman et al. [ATK05] concentra-se na implantação distribuída de componentes da plataforma J2EE, oferecendo ligações entre os componentes e suas dependências, especificados por uma ADL, e replicação dos componentes para fins de escalabilidade. No entanto, a solução apresentada para o gerenciamento do processo de implantação baseia-se numa aplicação de interface gráfica, o que dificulta a automação completa do processo. Outros trabalhos, como o de Lan et al. [LHM+05], também tratam o processo de implantação como realizado manualmente por um operador humano, enquanto que nosso objetivo é de que o operador tenha apenas que pressionar um botão, conforme advogado por Humble e Farley [HF11].

O estudo de Quéma et al. [QBB⁺04] é o único encontrado a realizar avaliações empíricas sobre desempenho e escalabilidade do processo de implantação de componentes, além de oferecer tolerância a falhas no processo de implantação. Os autores apresentam uma solução na qual agentes executam de forma distribuída o processo de implantação, comunicando-se de forma assíncrona e hierárquica conforme a estrutura da composição de componentes sendo implantada, que é descrita por uma ADL. Essa estrutura hierárquica, no entanto, é apenas um caso particular das possibilidades na topologia de uma coreografia de serviços, o que impossibilita que essa solução seja diretamente adotada em nosso contexto. Os agentes também possuem propriedades transacionais que garantem a tolerância a falhas do processo de implantação, mas isso não é avaliado no texto. Os autores avaliam o desempenho e escalabilidade do processo de implantação variando a quantidade de componentes, a topologia da composição de componentes e a quantidade de máquinas. Embora o objetivo do método proposto seja a escalabilidade, os autores contentam-se com um crescimento linear no tempo de implantação mesmo quando se aumenta na mesma proporção o número de máquinas disponíveis. Os autores explicam que há uma sobrecarga na manutenção das sessões de comunicação entre os agentes, o que impede que o número de agentes seja muito grande. Esses resultados evidenciam a necessidade de novos processos de implantação que sejam escaláveis e ao mesmo tempo tolerantes a falhas. Além disso, as avaliações feitas utilizam no máximo 111 máquinas em um único aglomerado, o que atualmente fica aquém de cenários de grande escala.

3.0 19

Os trabalhos anteriores apresentam abordagens simples para o problema da distribuição dos componentes implantados pelas máquinas disponíveis. Já o trabalho de Watson et al., apresenta uma abordagem mais completa para esse problema com o uso de grades computacionais [WFK⁺06]. O foco dessa solução está em escolher dinamicamente o provedor de infraestrutura e a máquina em que um serviço web deve ser implantado considerando os requisitos não-funcionais do serviço web. Isso é realizado não somente para a primeira implantação do serviço web, mas também para as replicações que ocorrem quando as instâncias existentes não conseguem mais atender aos requisitos não-funcionais. Uma desvantagem dessa abordagem é a carga adicional gerada pela análise dos requisitos não-funcionais a cada troca de mensagens efetuada pelos serviços implantados.

Outro trabalho sobre implantação de componentes em um ambiente de grade é o de Lacour et al. [LPP04], no qual a escolha do nó de implantação é feita dinamicamente de acordo com alguns requisitos do componente. Uma desvantagem desse trabalho é o desenvolvimento específico para componentes CORBA, além de não haver preocupação com falhas no sistema distribuído.

Embora os trabalhos de Watson et al. e Lacour et al. avancem na problemática da distribuição dos serviços, nenhum dos trabalhos analisados considera as potencialidades e desafios dos ambientes de computação em nuvem [TF12], que oferecem serviços de infraestrutura para a gerência de recursos virtualizados. Portanto, em nossa pesquisa, procuramos dar um passo além ao explorar como o ambiente de computação em nuvem pode trazer benefícios ao processo de implantação, bem como ao considerar as restrições que esses ambientes impõem, como a falta de previsibilidade dos endereços das máquinas em tempo de configuração do serviço e as falhas da própria plataforma de nuvem.

Uma tendência recente para se atingir os objetivos de uma implantação simples, rápida, automatizada e escalável é a utilização de serviços de computação em nuvem que oferecem Plataforma como um Serviço (PaaS), que se encarregam não só da implantação da aplicação, como também do processo de criação e configuração do ambiente. O Cloud Foundry³ é um PaaS de código aberto, podendo ser instalado na infraestrutura de uma organização para a oferta de serviços a clientes internos ou externos. O Cloud Foundry suporta uma grande diversidade de linguagens, arcabouços e bancos de dados a serem utilizados pela aplicação. Operadores do Cloud Foundry podem configurálo para utilizar diferentes provedores de Infraestrutura como um Serviço (IaaS), desacoplando as escolhas de IaaS e PaaS, o que será também adotado no Enactment Engine. O Cloud Foundry tem como objetivo facilitar a implantação de aplicações web, e não a implantação de composições de serviços. Durante a implantação de uma aplicação pelo Cloud Foundry, o operador pode realizar ligações entre a aplicação e serviços tipicamente utilizados por aplicações web, como bancos de dados, que serão criados e configurados pela própria plataforma. Essa escolha deve ser feita dentro de um conjunto fechado de serviços oferecidos (MySQL, MongoDB, etc.). No entanto, ao implantarse composições de serviços é preciso estabelecer também ligações entre os próprios serviços sendo implantados, cenário não considerado pelos atuais provedores de PaaS.

A Tabela 3.1 realiza uma comparação entre os estudos e ferramentas apresentados em relação a características presentes em nossa solução. Os símbolos na tabela possuem os seguintes significados: "✓" para "possui a característica", espaço vazio para "não possui a característica", "+/-" para "não possui a característica de forma totalmente satisfatória" e "-" para quando a característica não se aplica ou não foi possível determinar. As características, que formam as colunas da tabela, são listadas a seguir:

Automatizado: processo de implantação automatizado;

ADL: especificação da implantação feita de forma simples e declarativa;

Escala: implantação escalável e capaz de lidar com os problemas típicos de sistemas de grande escala, principalmente com a falha de componentes de terceiros;

Composições: solução voltada para a implantação de composições de serviços, ou componentes; a principal implicação desse item é a realização da ligação entre os serviços implantados;

³http://www.cloudfoundry.com/

Trabalho	Automatizado	ADL	Escala	$Composiç\~oes$	Nuvem
[MDK94, MK96]	-	✓		✓	
$[BBB^+98]$	-	\checkmark		\checkmark	
$[QBB^+04]$	\checkmark	\checkmark	+/-	\checkmark	
[ATK05]	+/-	\checkmark	-	\checkmark	-
[LPP04]	\checkmark	-		\checkmark	
[DBV05]	\checkmark		-	-	
$[WFK^+06]$	\checkmark	-	+/-	\checkmark	
Chef	\checkmark		-	-	-
Capistrano	\checkmark		-	-	-
Cloud Foundry	\checkmark	-	\checkmark		\checkmark
Enactment Engine	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Tabela 3.1: Tabela comparativa com os trabalhos relacionados

Nuvem: consideração das potencialidades e desafios trazidos por ambientes de computação em nuvem.

No próximo capítulo prosseguimos mostrando como o Enactment Engine implementa as características descritas. Também mostraremos os resultados de uma avaliação preliminar da escalabilidade do processo de implantação automatizado pelo Enactment Engine.

Capítulo 4

Solução proposta: o Enactment Engine

O CHOReOS Enactment Engine (EE) é um middleware implementado no contexto deste trabalho. Uma vez instanciado, ele fornece serviços que automatizam a implantação de composições de serviços¹ em ambientes de computação em nuvem, funcionando no modelo de computação em nuvem denominado Plataforma como um Serviço (PaaS). O EE possui funcionalidades e características que foram projetadas para auxiliar o implantador na implantação de composições de grande escala.

Para utilizar o EE, o implantador, usuário do EE, deve descrever a composição a ser implantada na Linguagem de Descrição Arquitetural do EE, uma especificação de alto nível que diz *o que* deve ser implantado, e não o *como*. Finalmente, o usuário deve fornecer essa descrição ao EE através de sua API remota.

As funcionalidades fornecidas pelo Enactment Engine ao usuário são as seguintes:

- API para automatizar a implantação de composições de serviços em ambientes de computação em nuvem.
- Criação automatiza de infraestrutura virtualizada (nós na nuvem).
- Implantação escalável de coreografias de grande escala.
- Suporte a implantação multi-nuvem.
- Utilização de serviços de terceiros na composição a ser implantada.
- Implantação automatizada de infraestrutura de monitoramento dos recursos utilizados.
- Deleção automática de recursos da nuvem não utilizados.
- API para escalamento vertical e horizontal.

Para a implementação do arcabouço Enactment Engine contribuíram Daniel Cuckier, Carlos Eduardo do Santos, Felipe Pontes, Alfonso Diaz, Nelson Lago, Paulo Moura, Thiago Furtado e demais colegas dos projetos Baile e CHOReOS. O Enactment Engine é software livre sob a Licença Pública Mozilla 2² e está disponível em http://ccsl.ime.usp.br/enactmentengine.

Neste capítulo, nós apresentamos a arquitetura e aspectos de implementação do Enactment Engine. Destacamos ao final do capítulo como as decisões arquiteturais e de implementação auxiliam o implantador a superar os desafios presentes na implantação de composições de grande escala. Alguns aspectos aqui discutidos serão tratados em alto nível, priorizando o que é importante para o entendimento das contribuições acadêmicas deste trabalho. Detalhes de mais baixo nível sobre nosso middleware, principalmente do ponto de vista do usuário, podem ser encontrados no CHOReOS Enactment Engine User Guide (Apêndice A).

 $^{^1\}mathrm{Como}$ explicado na Seção 2.2, usaremos os termos "composição de serviço" e "coreografia" indistintamente.

²http://www.mozilla.org/MPL/2.0/

4.1 Execução do Enactment Engine

O Enactment Engine é um sistema de middleware de código aberto que primeiramente deve ser instalado e configurado por um administrador. Uma vez em execução, a instância do EE fornece serviços que podem ser consumidos por algum sistema cliente, desenvolvido e operado pela figura do implantador. O administrador e o implantador podem pertencer à mesma organização, mas é possível que o administrador forneça o EE como um serviço (SaaS) a terceiros, cobrando por sua utilização. Para esses terceiros a vantagem seria evitar o trabalho de instalação e configuração do EE. O ambiente de execução do EE é exibido na Figura 4.1 e os componentes envolvidos são descritos a seguir.

Figura 4.1: Ambiente de execução do CHOReOS Enactment Engine.

- O provedor de infraestrutura é um serviço capaz de criar e destruir máquinas virtuais (também chamadas de nós), normalmente em um ambiente de computação em nuvem. Atualmente o Enactment Engine suporta o Amazon EC2 e o OpenStack.
- O agente de configuração é executado nos nós alvos e dispara os scripts que implementam as fases de preparação e inicialização da implantação dos serviços³. O Enactment Engine utiliza o Chef Solo⁴ como seu agente de configuração.
- O cliente do Enactment Engine é um programa ou script desenvolvido pelo implantador, no qual a especificação da composição de serviços é definida. Esse script deve enviar a especificação da composição para o Enactment Engine através das operações REST fornecidas pelo Enactment Engine. Uma opção para implementar essas chamadas é utilizar a biblioteca Java por nós fornecida, que abstrai os detalhes das chamadas REST.
- O Enactment Engine implanta os serviços de uma composição com base na especificação enviada pelo cliente. O processo implementado pelo Enactment Engine para efetuar a implementação é descrito na Figura 4.2, e explicado logo em seguida.

A Figura 4.2 exibe o processo de implantação de composições de serviços implementado pelo Enactment Engine:

³Sobre a nomenclatura das fases de implantação, ver a Seção 2.3.

⁴http://docs.opscode.com/chef solo.html

Figura 4.2: Processo de implantação implementado pelo Enactment Engine.

- 1. Requisição do cliente: o EE recebe a especificação da composição a ser implantada. O formato dessa especificação é descrito na Seção 4.2.
- 2. Seleção/criação de nós: para cada serviço especificado, o EE seleciona um ou mais nós onde o serviço será implantado (um serviço pode ter várias réplicas implantadas). Se preciso, o EE requisitará ao provedor de infraestrutura a criação de novos nós. Esse processo de seleção/criação de nós pode levar em conta os requisitos não-funcionais dos serviços a serem implantados. A política de seleção de nós é definida pelo administrador do EE, sendo que novas políticas podem ser criadas.
- 3. Geração de scripts: para cada serviço da composição, o EE gera dinamicamente os scripts de preparação do ambiente e inicialização do serviço. O EE acessa então o nó alvo selecionado para o serviço, e configura o agente de configuração desse nó para executar o script gerado.
- 4. Atualização dos nós: para cada nó alvo que receberá serviços da composição, o EE dispara a execução do agente de configuração, que por sua vez executa os scripts de preparação e inicialização dos serviços atribuídos ao nó. Dessa forma, os serviços entram em estado de execução na infraestrutura alvo.
- 5. Ligação entre serviços: após os serviços terem sido iniciados, para cada relação de dependência na coreografia (ex: serviço TravelAgency depende do serviço Airline), o EE fornece o endereço da dependência (ex: http://airline.com/ws) ao serviço dependente. Mais informações sobre o processo de ligação são fornecidas na Seção 4.3.
- 6. Resposta para o cliente: o EE responde ao seu cliente, informando em que nó cada serviço foi implantado e as URIs de acesso a cada serviço da composição. O formato da resposta é descrito na Seção 4.2.

Há também alguns outros passos opcionais que não descrevemos por estarem fora do escopo deste trabalho. Um exemplo é a implantação da infra-estrutura de monitoramento dos nós alvos. O agente de monitoramento (Ganglia⁵) é implantado nos nós alvos pelo EE e coleta valores de uso de CPU, memória e disco dos nós.

⁵http://ganglia.sourceforge.net

24

4.2 Especificação da composição de serviços

O Enactment Engine recebe de seus clientes a especificação da composição na forma de uma descrição arquitetural com as informações necessárias e suficientes para que se possa realizar a implantação da composição. O EE também devolve ao seu cliente informações sobre o resultado da implantação, em especial as localizações de acesso aos serviços. As descrições da composição e de sua especificação são feitas com uma linguagens de descrição arquitetural (ADL), assim como a dos trabalhos vistos no Capítulo 3. A nossa ADL consiste na descrição de objetos relacionados entre si seguindo a estrutura de classes apresentada na Figura 4.3. Em nossa implementação, essa descrição é concretizada com representações em XML, que são trocadas entre o EE e seu cliente. A descrição detalhada de cada atributo e o schema XML da linguagem são apresentados no CHOReOS Enactment Engine User Guide.

A especificação da coreografia fornece todas as informações para a implantação da composição, possibilitando que o implantador descreva em alto-nível apenas o que deve ser implantado, e não os detalhes de implementação de como deve ser implantado. Essa última situação, o como detalhado, é situação típica na escrita de scripts de implantação.

Em nossa ADL, para cada serviço, especifica-se de onde o pacote do serviço pode ser baixado, qual o tipo do pacote (WAR, JAR, etc.), quantas réplicas devem ser implantadas, etc. Pode-se especificar também a existência de serviços de terceiros que já estão disponíveis na Internet e que devem ser consumidos por serviços da composição.

O implantador pode escrever a especificação da coreografia diretamente em XML ou utilizando objetos Java (POJOs). A Listagem 4.1 apresenta um trecho da especificação escrita em Java, no qual um dos serviços participantes é definido, incluindo sua dependência de outro serviço participante.

Listing 4.1: Trecho da especificação de uma coreografia.

4.3 Ligação entre serviços

Em uma composição de serviços alguns serviços se comunicam com outros serviços para implementar o fluxo de negócio. Quando um serviço A invoca um serviço B, dizemos que o serviço A depende do serviço B. Dizemos também que A é dependente de B, enquanto que B é dependência de A, ou ainda que A é consumidor de B, enquanto que B é provedor de A. Para que uma coreografia funcione, cada serviço precisa saber o endereço de suas dependências, e o processo pelo qual os serviços recebem os endereços de suas dependências é denominado ligação.

Segundo Dearle [Dea07], componentes podem ser ligados entre si em vários momentos: compilação, montagem, configuração e execução. Em nosso contexto, a ligação deve ser efetuada necessariamente em tempo de execução, pois é somente nesse momento que teremos os endereços completos dos serviços implantados. Uma das possibilidades apontadas por Dearle para efetivação da ligação em tempo de execução é a utilização do padrão de injeção de dependência, conforme introduzido por Fowler [Fow04]. A injeção de dependências é utilizada em contêineres como o Springer⁶, no qual o middleware passa ao componente referências de suas dependências. No entanto, Dearle ainda alega que há uma falta de arcabouços para a aplicação da injeção de dependência de forma distribuída.

A solução adotada no Enactment Engine para possibilitar a ligação entre serviços envolve a utilização do middleware para a passagem de endereços dos serviços implantados aos seus consumi-

⁶http://www.springer.org

Figura 4.3: Estrutura da descrição arquitetural de uma coreografia.

ToDo ▶atualizar ◀

dores. Essa solução consiste na aplicação do padrão de injeção de dependência de forma distribuída, e é similar ao que foi feito nos trabalhos sobre a linguagem Darwin [MK96, MDK94]. Note que nessa solução, a "inteligência" em determinar quais serviços satisfazem as necessidades de outros serviços está na camada que produz a entrada do EE. As dependências entre os serviços são definidas na especificação da coreografia, pela lista de objetos ServiceDependency pertencentes a um ServiceSpec. Cada serviço na coreografia que possua dependências deve implementar uma operação denominada setInvocationAddress. Essa operação, por nós padronizada, recebe como argumentos as seguintes informações sobre a dependência:

Papel: é um nome associado a uma interface, ou seja, define as operações fornecidas por um serviço.

A associação entre o nome e a interface deve ser previamente acordada pelas organizações

26

participantes da coreografia e a implementação do serviço deve estar ciente dos nomes e interfaces de suas dependências.

Nome: é um nome que identifica univocamente o serviço no contexto de uma coreografia. Serve para que o serviço dependente possa diferenciar serviços com o mesmo papel. Exemplo: se um serviço de pesquisa de preços utiliza serviços do papel supermercado, ele utilizará o nome do serviço para diferenciar os serviços de supermercados diferentes. Com essa semântica, o EE pode atualizar os endereços de um supermercado com uma nova chamada ao setinvocationAddress, sem que o serviço dependente considere que se trata de um novo supermercado.

Endereços: são as URIs das réplicas pelas quais pode-se acessar a dependência.

Assim, em uma coreografia em que, por exemplo, um serviço de agência de viagem dependa do serviço de uma companhia aérea, o EE executará a seguinte invocação ao serviço da agência de viagens: setInvocationAddress('Companhia Aérea', 'Nimbus Airline', ['http://192.168.56.107:8080/nimbus/ws/']).

A descrição fornecida até aqui é abstrata e independente de tecnologia. A definição exata da assinatura da operação deve ser definida de acordo com a tecnologia utilizada. A versão atual do EE já define essa assinatura para serviços SOAP. Para detalhes, ver o guia do usuário (Apêndice A).

Apesar dos benefícios dessa solução, Dearle [Dea07] também alerta sobre a desvantagem em forçar componentes a aderirem convenções de codificação impostas pelo middleware, o que poderia restringir o serviço a uma determinada linguagem de programação ou a algum middleware específico. Reconhecemos que esse problema existe em nossa solução, mas acreditamos que o desenho adotado ameniza os problemas levantados, pois tudo o que o serviço é obrigado a fazer é implementar a operação setInvocationAddress e conhecer os papeis de suas dependências, o que implica em conhecer a interface sintática de cada papel. Dessa forma, nossa solução não restringe o serviço a nenhuma linguagem e não impede a utilização do serviço em outro middleware.

4.4 Mapeamento dos serviços na infraestrutura alvo

Em algum momento do processo de implantação é preciso definir em que nó cada instância de serviço será hospedado. Chamamos por mapeamento, ou seleção de nós, essa fase do processo de implantação. Na forma mais simples de seleção de nó, o IP do nó alvo é definido estaticamente no script de implantação do serviço. O trabalho de Magee e Kramer [MTK97] apresenta a seleção de nós em função da utilização de CPUs nos nós existentes, não havendo possibilidade de utilização de outros critérios, como memória, disco, custo etc. Nos sistemas apresentados por Dolstra et al. [DBV05] e Balter et al. [BBB⁺98] é preciso que a distribuição dos serviços seja especificada com o uso dos IPs das máquinas nas quais os serviços devem ser implantados, o que não é possível em um ambiente de nuvem. Por fim, o broker apresentado por Watson et al. é o componente que mais se assemelha ao nosso NodeSelector, pois os autores deixam claro que várias implementações diferentes são possíveis, considerando-se diferentes tipo de requisitos e diferentes fontes de monitoramento. Como a escolha é feita em tempo de execução do serviço, seria também possível uma seleção que independa de IPs estabelecidos em tempo de projeto. No entanto, os autores não explicam como os usuários de seu sistema, os provedores de infraestrutura, deveriam proceder para criar seus próprios brokers personalizados.

Para avançar em relação às limitações dos trabalhos anteriormente citados, a seleção de nós no Enactment Engine considera os requisitos de dinamicidade do ambiente de nuvem, que nos impede de conhecer os IPs das máquinas em tempo de desenvolvimento ou configuração do script de implantação. O EE utiliza um seletor de nós automatizado que escolhe em tempo implantação os nós alvos para um dado serviço. A escolha de uma política ótima para o seletor é assunto de diversas pesquisas. Portanto, adotamos aqui uma abordagem extensível, com o fornecimento inicial de políticas como "sempre cria um novo nó" ou "cria nós até um limite, e depois faz rodízio entre eles".

4.5 Interface do Enactment Engine

Os clientes do Enactment Engine utilizam suas funcionalidades por meio de uma API REST, que é descrita nesta seção. Por se tratar de uma API REST, o cliente pode ser implementado em qualquer linguagem e ambiente que possua alguma biblioteca HTTP. Também disponibilizamos um cliente na forma de uma biblioteca na linguagem Java, tornando o uso do EE ainda mais simples para os usuários da linguagem Java, atualmente uma das mais utilizadas do mercado. Seguimos agora com uma descrição de alto nível de cada uma das operações disponíveis na API REST do EE. Detalhes da API, como os códigos de status HTTP retornados, são fornecidos no guia do usuário (Apêndice A).

Criar coreografia: registra a especificação de uma coreografia no EE. Essa especificação é a descrição arquitetural da coreografia, estruturada de acordo com a classe ChorSpec (Figura 4.3). Essa operação não realiza a implantação da coreografia.

Obter coreografia: obtém informações sobre uma coreografia registrada no EE. Essas informações referem-se à especificação da coreografia e ao estado da implantação de seus serviços, como os nós em que os serviços foram implantados, no caso de a implantação já ter sido realizada.

Encenar coreografia: realiza a implantação de uma coreografia já registrada no EE. Ao fim do processo, detalhes do resultado da implantação são retornados de forma estruturada de acordo com a classe Choreography (Figura 4.3). A implementação dessa operação deve possuir duas importantes propriedades: 1) a falha na encenação de parte da coreografia não deve interromper a encenação do resto da coreografia; 2) a operação deve ser *idempotente*, ou seja, uma nova requisição para a encenação da mesma coreografia não deve reimplantar os serviços já implantados, mas somente aqueles cujas implantações falharam na última execução. Para que serviços sejam atualizados, é preciso utilizar um novo valor no atributo "versão" da especificação do serviço.

Atualizar coreografia: registra uma nova versão de uma coreografia no EE. Os serviços atualizados na nova versão da coreografia devem possuir um novo número de versão em suas especificações. Essa operação, assim como a criação da coreografia, não implanta a nova coreografia. Para isso, é preciso invocar novamente a operação de encenação.

A atualização de serviços não é o foco de nosso trabalho. Dessa forma, em nosso trabalho a atualização dos serviços será feita da forma mais simples possível: apenas substituindo o serviço existente por sua nova versão. Contudo, tal procedimento pode provocar falhas na comunicação entre os serviços de uma coreografia. Vários trabalhos [MK90, VEBD07, MBG+11] estudam o processo de atualização dinâmica, pelo qual as conversações correntes são preservadas durante a atualização de um serviço. Embora não esteja no escopo de nosso trabalho, esperamos que a arquitetura do EE possa ser evoluída para que a operação de atualização de coreografia utilize procedimentos seguros de atualização dinâmica, dentre os quais destacamos a proposta de Xiaoxing et al [MBG+11].

Na Listagem 4.2 fornecemos um exemplo de um programa Java invocando o EE para implantar uma coreografia. Nesse exemplo, a classe MyChorSpec está escondendo a especificação da coreografia.

```
Choreography chor = ee.enactChoreography(chorId);

System.out.println(chor); // vamos ver o que aconteceu...

yellow chorId;

vamos ver o que aconteceu...
```

Listing 4.2: Programa Java que invoca o Enactment Engine para implantar uma coreografia.

4.6 Pontos de extensão

Para lidar com as particularidades do ambiente de cada organização, o Enactment Engine fornece alguns pontos de extensão. Esses pontos de extensão são classes que desenvolvedores devem escrever na linguagem Java e que, de acordo com as configurações do sistema, poderão ser executadas pelo arcabouço. Neste capítulo descreveremos os pontos de extensão de nosso middleware, mostrando as interface associadas a cada um deles. Para mais detalhes sobre todos os passos necessários para implementar uma extensão, verificar o guia do usuário (Apêndice A).

Provedor de infraestrutura: implementando a interface CloudProvider (Listagem 4.3) é possível acrescentar ao EE o suporte a novos provedores de infraestrutura. Atualmente o EE suporta o serviço EC2 do AWS e o OpenStack como provedores de infraestrutura. Cada um deles possui sua própria implementação de CloudProvider.

```
1 public interface CloudProvider {
3
      public String getCloudProviderName();
4
5
      public CloudNode createNode(NodeSpec nodeSpec) throws
          NodeNotCreatedException;
6
      public CloudNode getNode(String nodeId) throws NodeNotFoundException;
7
8
      public List < CloudNode > getNodes();
9
10
11
      public void destroyNode(String id) throws NodeNotDestroyed,
          NodeNotFoundException;
12
13
      public CloudNode createOrUseExistingNode(NodeSpec nodeSpec) throws
          NodeNotCreatedException;
14
      public void setCloudConfiguration(CloudConfiguration cloudConfiguration
15
          );
16
17 }
```

Listing 4.3: Interface CloudProvider.

Os métodos da interface CloudProvider referem-se basicamente às operações de CRUD de máquinas virtuais em uma infraestrutura de nuvem. Além disso, a implementação pode acessar configurações específicas através do objeto cloudConfiguration. Tais configurações podem incluir credenciais de acesso de uma conta de nuvem (quem paga pelos nós), tipo das instâncias de VMs a serem criadas (afeta preço), chave de acesso aos nós criados, etc. A Listagem 4.4 apresenta um exemplo de configurações fornecidas à implementação AmazonCloud-Provider. Essas informações são definida pelo administrador em um arquivo de configuração do EE.

```
1 LEO_AWS_ACCOUNT.CLOUD_PROVIDER=AWS
2 LEO_AWS_ACCOUNT.AMAZON_ACCESS_KEY_ID=secret!
3 LEO_AWS_ACCOUNT.AMAZON_SECRET_KEY=secret_too!
4 LEO_AWS_ACCOUNT.AMAZON_KEY_PAIR=leofl
5 LEO_AWS_ACCOUNT.AMAZON_PRIVATE_SSH_KEY=/home/leonardo/.ssh/leoflaws.pem
```

```
6 LEO_AWS_ACCOUNT.AMAZON_IMAGE_ID=us-east -1/\mathrm{ami}-3337675\,\mathrm{a} 7 LEO_AWS_ACCOUNT.AMAZON_INSTANCE_TYPE=m1.medium
```

Listing 4.4: Configuração do AmazonCloudProvider.

Para facilitar o desenvolvimento de novas implementações, nós fornecemos uma implementação base, a classe JCloudsCloudProvider. Ela utiliza a biblioteca JClouds⁷, que já é apta a acessar uma ampla gama de provedores de infraestrutura disponíveis no mercado. Essa implementação base foi utilizada para a implementação das classes AmazonCloudProvider e OpenStackKeyStoneCloudProvider, que contaram, respectivamente, com 79 e 96 linhas de código-fonte.

Política de seleção de nós: a implementação da interface NodeSelector (Listagem 4.5) define uma nova política de alocação de serviços em nós da nuvem, que pode levar em conta os requisitos não-funcionais do serviço e propriedades dos nós à disposição. Algumas políticas já fornecidas são "sempre cria um novo nó" e "cria novos nós até um certo limite, depois faz rodízio entre eles".

Listing 4.5: Interface NodeSelector acompanhada de sua classe pai Selector.

As implementações de NodeSelector devem criar novos nós ou devolver nós já cadastrados no EE. Os requisitos não-funcionais podem ser acessados pelo objeto deployableServiceSpec fornecido pelo middleware à implementação do NodeSelector. A implementação deve tomar especial cuidado com concorrência, já que o EE mantêm apenas uma instância por tipo de NodeSelector. Essa característica é importante para que políticas como rodízio de nós funcionem adequadamente.

Tipos de pacotes de serviços: um serviço pode ser distribuído por diferentes tipos de pacotes, como em um JAR ou em um WAR, por exemplo. Como existem muitas outras opções, é preciso que esse seja um ponto de flexibilidade. Para cada novo tipo de pacote, escreve-se um modelo de um cookbook Chef que implemente a preparação e a inicialização do serviço. Um cookbook possui vários arquivos, mas os principais são os arquivos da receita, que é o script de instalação em si, e o arquivo que define atributos a serem usados nas receitas. A Listagem 4.6 mostra a receita do cookbook modelo para implantação de WARs, enquanto que a Listagem 4.7 mostra o arquivo de atributos do mesmo cookbook.

⁷http://jclouds.incubator.apache.org/

 $13 \, \mathrm{end}$

Listing 4.6: Receita modelo para a implantação de WARs.

```
1 default ['CHOReOSData'] ['serviceData'] ['$NAME'] ['PackageURL'] = "
$PACKAGE_URL"
```

Listing 4.7: Arquivo modelo de atributos para a implantação de WARs.

Os arquivos listados acima são modelos não executáveis, uma vez que apenas em tempo de implantação os símbolos \$NAME e \$PACKAGE_URL serão substituídos por valores adequados. Essa substituição é feita pelo próprio EE. Ou seja, criar um novo modelo de cookbok para o EE significa simplesmente criar um novo cookbok Chef utilizando adequadamente os símbolos \$NAME e \$PACKAGE_URL. O símbolo \$PACKAGE_URL será substituído pela URL do pacote do serviço, enquanto que o \$NAME será substituído por uma identificação única dentro do EE.

Tipos de serviços: a ligação entre serviços de uma composição depende da passagem de endereços que é feita do Enactment Engine para os serviços. Para isso, o EE precisa invocar a operação setInvocationAddres dos serviços. A implementação de tal invocação dar-se-á de forma diferente de acordo com o tipo de tecnologia de serviço empregada (SOAP ou REST, por exemplo). A implementação da interface ContextSender define como a operação setInovcationAddress é invocada. Atualmente o EE possui uma implementação de ContextSender, utilizada para serviços SOAP. Nota-se que para cada nova implementação, é preciso definir uma convenção para a assinatura sintática da operação setInvocationAddres.

Listing 4.8: Interface ContextSender.

4.7 Aspectos gerais de implementação

Nesta seção descreveremos alguns detalhes sobre a implementação do Enactment Engine que podem ser especialmente úteis a eventuais desenvolvedores de nosso middleware.

Linguagem: O Enactment Engine é desenvolvido com a linguagem Java 6. Durante o desenvolvimento utilizamos como ambiente de execução a JVM OpenJDK 7. O EE é compilado com o Maven 3.

Chef-solo: O Chef é a pedra angular sobre a qual construímos o Enactment Engine. De certa forma, o EE é uma camada de abstração que facilita o uso do Chef. A versão utilizada do Chef-Solo é a 11.8.0. Em versões anteriores do EE, utilizamos o Chef Server, mas acabamos por abandona-lo, devido ao grande gargalo na escalabilidade que ele gerava, além do pouco benefício funcional que ele agregava. As receitas Chef são escritas em uma Linguagem Específica de Domínio (DSL) que permite a livre utilização da linguagem Ruby, mas que possui construtos específicos para as tarefas de implantação, visando proporcionar principalmente mecanismos de idempotência. Um exemplo pode ser observado na Listagem 4.9, no qual se específica o download de um arquivo que será baixado somente caso ele ainda não exista no sistema alvo.

```
1 remote_file "#{node['easyesb']['downloaded_file']}" do
2 source "#{node['easyesb']['url']}"
3 action :create_if_missing
4 end
```

Listing 4.9: Trecho de receita Chef que ilustra uso de idempotência.

Apache CXF: Uma das principais bibliotecas utilizadas pelo EE é o Apache CXF, que traz uma série de utilidades para o desenvolvimento de serviços em Java, dentre elas a implementação do padrão JAX-RS, voltado ao desenvolvimento de serviços REST.

Configuração por imagem: Na gerência de configuração de ambientes, há duas abordagens, já discutidas na Seção 2.4, sobre como configurar um ambiente: 1) utilização de imagem de disco já contendo serviço a ser implantado e 2) utilização de scripts para instalação do serviço. Enquanto a primeira abordagem prima pelo desempenho, a segunda opção oferece maior flexibilidade e facilidade de evolução. A abordagem padrão no Enactment Engine é se utilizar a configuração por scripts (gerados pelo EE). Mas o EE fornece a opção de que o administrador configure qual imagem será utilizada para criar os nós alvos. Isso possibilita que o administrador configure uma imagem que já contenha o middleware sobre o qual os serviços serão executados. Assim, se o administrador sabe que o EE será utilizado para implantar WARs, ele pode configurar uma imagem que já contenha o Tomcat instalado. Essa abordagem reduz o tempo de implantação.

Testes: Os testes de unidade do Enactment Engine podem ser executados com o comando mvn test. Embora o EE contenha vários testes de unidade e isso seja fundamental, há uma limitação considerável desses testes, já que executar comandos que provoquem efeitos colaterais no sistema operacional não seja adequado em testes de unidade. Tais "efeitos colaterais" são sempre provocados durante a execução das receitas Chef.

Por isso o EE possui também vários testes de *integração* automatizados, no qual máquinas virtuais são utilizados para a execução de testes nos quais o EE possa interagir com um sistema operacional. Esses testes incluem a implantação completa de coreografias. Embora esses testes sejam importantes para validar o correto funcionamento do sistema, eles são muito custosos, tanto em termos financeiros quanto de tempo, uma vez que máquinas virtuais são criadas durante esses testes.

De nossa experiência neste trabalho, acreditamos que o desenvolvimento de tecnologias de máquinas virtuais voltadas para o ambiente de teste de aceitação, de forma que as máquinas sejam criadas mais rapidamente, seja uma contribuição relevante para a prática de desenvolvimento de software.

Software livre: por fim, todos as bibliotecas e sub-sistemas utilizados pelo Enactment Engine são software livre.

4.8 Discussão: auxiliando implantações em grande escala

Nesta seção discutiremos como as características arquiteturais e de implementação do Enactment Engine impactam na implantação de composições de serviço de grande escala. Explicaremos como o EE contribui para a resolução de cada um dos desafios apresentados na Seção 2.5. Durante a discussão destacaremos como uma solução de middleware traz vantagens sobre abordagens ad-hoc de implantação em nosso contexto. Essa discussão, suportada pelo efetivo funcionamento do EE demonstrado por sua avaliação (Capítulo 5), fornece também subsídios para a implementação de novos sistemas de implantação de grande escala, mesmo que não voltados a composições de serviços, e até mesmo para soluções ad-hoc.

Processo: Tornar a implantação de sistemas "Internet-scale" processos totalmente automatizados é necessário para que a implantação se torne testável, flexível e confiável [Ham07], conforme discutido na Seção 2.3. O EE possibilita a automação do processo de implantação graças a sua interface remota (REST), que recebe a especificação da composição a ser implantada e devolve o resultado do processo. Embora uma interface gráfica para a implantação de composições seja viável, tal opção não favorece a implantação automatizada, e por isso não foi priorizada em nosso trabalho.

O uso de uma especificação declarativa, como já utilizado em outros trabalhos [BBB⁺98, MK96], também facilita o desenvolvimento do script de implantação para cada nova composição a ser implantada. Isso ocorre porque com uso de uma linguagem declarativa o implantador descreve em alto nível apenas o que deve ser implantado, e não os detalhes de como deve ser implantado. O uso de linguagens declarativas requer algum tipo de middleware que interprete a descrição declarativa, executando as ações adequadas. Portanto, soluções ad-hoc dificilmente usariam linguagens declarativas, sendo em geral orientadas ao uso de scripts.

O EE segue a tendência atual na implantação de sistemas de grande escala, que é o uso de recursos elásticos possibilitados pela computação em nuvem. Recursos virtualizados fornecidos pela nuvem potencializam a automação do processo de implantação [HF11]. Diferentemente dos cenários estudados em trabalhos anteriores sobre implantação de sistemas baseados em componentes [BBB+98, MK96], em uma infraestrutura de nuvem os nós alvos são mais dinâmicos. Não é possível conhecer os endereços IPs dos nós alvos quando se está escrevendo a especificação da composição a ser implantada. A ligação entre serviços deve ser feita em tempo de execução, o que o EE faz via setInvocationAddress, e a política de alocação de nós deve ser flexível, i.e., um serviço não deve ser alocado a um IP estático antes do tempo de implantação. O EE possibilita que políticas de alocação de nós escolham em tempo de implantação em que nós um serviço deve ser implantado, considerando inclusive o casamento de requisitos não-funcionais do serviço com características dos nós disponíveis.

Falhas de terceiros: Seguindo recomendações gerais feitas por Nygard [Nyg09], adotamos no Enactment Engine uma abordagem simples para tratar falhas externas. A lógica de invocação a sistemas externos foi encapsulada em uma classe, chamada Invoker, que foi usada de forma disciplinada pelo projeto. Toda vez que se deve acessar um sistema externo, utiliza-se um invoker. Nosso Invoker recebe os seguintes parâmetros: uma tarefa, que é uma rotina que se comunicará com algum sistema externo, a quantidade de tentativas para executar a tarefa, o timeout de cada tentativa, e um intervalo entre as tentativas.

Uma instância do Invoker deve ser configurada de acordo com sua tarefa (por exemplo, nós descobrimos que três tentativas não é o suficiente para transferência de arquivos por SCP). Em vez de ter esses valores fixados no código-fonte, eles são explicitamente ajustados em arquivos de configuração. Desta forma, pode-se facilmente ajustar esses valores de acordo com as características do ambiente alvo. Portanto, essa abordagem é também uma estratégia para colaborar com a heterogeneidade de plataformas e tecnologias. A classe Invoker pode ser decorada⁸ para adaptar dinamicamente valores de timeouts baseando-se em heurísticas definidas programaticamente que utilizem o histórico de execução dos *invokers*.

O EE garante a utilização correta e disciplinada dos *invokers* nos momentos adequados e necessários. Isso fornece uma robustez mais facilmente proporcionada por sistemas de middleware, nos quais interesses transversais podem ser implementados sem que o desenvolvedor da aplicação (o script de implantação em nosso caso) tenha que se preocupar com isso.

O EE adota uma estratégia particular par lidar com falhas durante a criação de novas VMs. Quando uma requisição chega, o EE tenta criar um novo nó. Se a criação falha ou demora muito, um nó já criado é recuperado de uma reserva de nós ociosos. Essa estratégia evita que se tenha que esperar novamente pelo tempo de se criar um novo nó. A capacidade inicial

⁸Ver padrão de projeto decorator [GHJV95].

da reserva é definida por configuração e ela é preenchida cada vez que a criação de um nó é requisitada. Se o tamanho da reserva é reduzido e alcança um dado limite, a capacidade é aumentada, de forma a tentar evitar uma situação futura de se encontrar uma reserva vazia em um momento de necessidade.

A abordagem da reserva impõe um custo extra de se manter algumas VMs a mais em execução (em um estado ocioso). Contudo, esse problema é tratado pelo EE por um algoritmo de gerenciamento distribuído em cada nó: se o nó está em um estado ocioso por N-1 minutos, onde N é um limite de tempo que implica custo adicional, o nó envia ao EE um pedido para sua própria destruição. Assim, depois de um tempo de inatividade no EE, a reserva se torna vazia em algum momento, sendo preenchida novamente somente quando chegam novas requisições de criação de nós.

Considerando que o tempo de criação de um nó é bem maior que o tempo de inicialização (boot) desse nó, uma melhoria a ser feita na reserva de nós ociosos é manter o nó ocioso desligado até o momento de uso, uma vez que provedores de infraestrutura, como a Amazon, costumam não cobrar por máquinas desligadas. Essa abordagem pode diminuir um pouco o desempenho da reserva de nós, mas irá economizar mais recursos.

Outra prática importante relacionada a tolerância a falhas é a degradação suave [Bre01, Ham07]. Em nosso contexto, degradação suave significa que se um serviço não foi implantado apropriadamente, não é aceitável que o processo de implantação de toda a composição seja interrompido. Com o EE, se algum serviço não é implantado, o processo de implantação continua, e a resposta do EE fornece informações sobre os problemas ocorridos, possibilitando ações de recuperação.

Contudo, é importante destacar que a responsabilidade pela degradação suave debe ser compartilhada com a implementação dos serviços, uma vez que cada serviço debe saber como se comportar na ausência de uma ou mais de suas dependências. De outra forma, cada serviço se tornaria um ponto de falha único na composição, o que é altamente indesejável.

Disponibilidade: A especificação de um serviço na ADL do Enactment Engine possibilita a definição da quantidade de réplicas de um serviço a ser implantado pelo EE. Essa quantidade inicial de réplicas pode ser alterada pelo implantador em tempo de execução com a atualização da especificação da coreografia. A definição da quantidade adequada de réplicas, definida pelo implantador, permite não só uma melhora de desempenho, mas também um aumento na disponibilidade do serviço, já que uma falha em uma réplica específica não afeta as outras réplicas disponíveis.

Por questões de simplificação, em nosso trabalho omitimos a relação que serviços possuem com bancos de dados. Dessa forma, é importante que versões futuras do EE contemplem a automação da implantação de bancos de dados a serem utilizados pelos serviços implantados. Nesse estágio, deverá ser considerado também a replicação do banco de dados, e que os dados são utilizados simultaneamente por várias réplicas do serviço.

Escalabilidade: Embora o conhecimento de programação concorrente para implementar um processo de implantação escalável seja básico (dentro do contexto de computação concorrente), programação concorrente por si própria é difícil e propensa a erros. Muitas vezes, linguagens de scripts não oferecem um bom suporte à programação concorrente. O tratamento adequado de falhas de terceiros também é um requisito importante para a obtenção de um sistema escalável. Portanto, implementar concorrência e tratamento a falhas na camada de middlware é um passo significativo em facilitar a implementação efetiva de um processo de implantação escalável. No Capítulo 5 avaliaremos em detalhes a escalabilidade fornecida pelo Enactment Engine.

Heterogeneidade: Na Seção 4.6 apresentamos os pontos de extensão do Enactment Engine, que permitem mais facilmente equipá-lo para diversos provedores de infraestrutura e tecnologias

de desenvolvimento e empacotamento de serviços. Essa flexibilidade ajuda a superar as atuais limitações de soluções de Plataformas como um Serviço que restrigem as opções tecnológicas disponíveis aos desenvolvedores de aplicações. Essas restrições normalmente se aplicam justamente sobre provedor de infraestruturas e a linguagem de programação da aplicação.

Suportar variações de um padrão é um desafio para sistemas de middleware. Adequar um middleware para a particularidade de uma aplicação pode não ser fácil. No suporte a diferentes tecnologias, as abordagens *ad-hoc* encontram realmente um espaço de importância. No entanto, uma vez que a adequação para uma nova tecnologia seja feita no middleware, podese aplicar mais facilmente a melhoria para diferentes aplicações utilizando essa mesma nova tecnologia.

Múltiplas organizações: O Enactment Engine possui dois principais mecanismos para implantar composições cujos serviços pertencem a diferentes organizações. O primeiro mecanismo é a definição da "conta de nuvem" a ser usada na implantação de um serviço. Essa definição é feita na especificação do serviço e deve bater com configurações previamente feitas pelo administrador no EE. Uma "conta de nuvem" não indica apenas a nuvem alvo (Amazon, por exemplo), mas também que vai pagar pela infraestrutura (qual conta da Amazon será utilizada, por exemplo). Uma vez que os serviços de cada organização sejam configurados para serem implantados nas contas de nuvem adequadas, o EE irá implantar adequadamente uma composição multi-organizacional. No entanto essa abordagem ainda apresenta limitações sérias no quesito de segurança, pois a configuração da conta de nuvem deve ser fornecida ao administrador do EE, que seria uma das organizações ou um terceiro. Esse e outros problemas surgem do fato que diferentes organizações teriam que compartilhar uma mesma instância do EE.

O segundo mecanismo é a utilização da entidade serviço legado na especificação da composição. O serviço legado é um serviço já existente e disponível na Internet, e que portanto não será implantado pelo EE. A utilidade em utilizar esse mecanismo está na fase de ligação entre serviços, pois o EE irá fornecer aos serviços implantados os endereços dos serviços legados declarados como suas dependências. A maior limitação dessa abordagem é a dificuldade em se lidar com a alteração de URIs dos serviços legados. Quando isso ocorre, uma nova especificação da composição deve ser feita e enviada ao EE, mas o problema é saber quando isso deve ser feito.

Considerando as limitações dos mecanismos até aqui implementados, divisamos como importante trabalho futuro uma arquitetura de federação entre instâncias do EE. Caso um serviço S_A , implantado com o EE pela organização O_A , dependa de um serviço legado B, também implantado com o EE, mas para a organização O_B , a instância do EE em O_B poderia manter a instância do EE em O_A informada sobre o estado de S_B . Para que essa funcionalidade seja implementada é preciso projetar um protocolo de comunicação entre instâncias do EE.

Nesse estágio proposto (federação dos sistemas implantadores de cada organização) uma abordagem orientada a middleware se torna importante por questão de padronização. Abordagens ad-hoc deveriam ser desenvolvidas de forma coordenada entre as diferentes organizações, o que seria mais custoso do que a adoção de uma plataforma comum.

Adaptabilidade: O Enactment Engine por si só não garante que uma composição será autonômica ou auto-adaptativa. Contudo, ele fornece suporte para o desenvolvimento de tais sistemas.

Sistemas auto-adaptativos e autonômicos precisam estar cientes e ter pleno controle das atividades de implantação. Para empoderar tais sistemas, o EE fornece informação e controle das seguintes funcionalidades:

- atualização das composições;
- migração de serviços;

- replicação de serviços;
- implantação de infraestrutura de monitoramento.

Atualização de composições de serviços podem ser necessárias quando as regras de negócio ou os requisitos não-funcionais mudam. O EE permite, por uma API REST, a adição, remoção e reconfiguração dos serviços e seus recursos computacionais associados.

O controle de migração de serviço do EE pode ser usado para agrupar mais de um serviço em um único recurso computacional ou para migrar o serviço para um recurso diferente para aumentar seu desempenho.

Replicação de serviço é um tipo particular e importante de atualização de composição. Associado a um balanceamento de carga, é uma estratégia comum para a construção de sistemas escaláveis [TF12]. O EE possibilita a replicação de serviço através da implantação de múltiplas instâncias do serviço e informando aos seus serviços consumidores sobre a existência dessas réplicas durante a fase de ligação de serviços. A quantidade inicial de réplicas é definida por atributo na especificação do serviço fornecida ao EE, e, depois, pode ser redefinida dinamicamente. Um trabalho futuro é configurar automaticamente um balancemanto de carga entre réplicas de um serviço, de forma que o consumidor de um serviço não tenha a necessidade de saber sobre suas diversas réplicas.

Por fim, o EE fornece opcionalmente a implantação de uma infraestrutura de monitoramento na infraestrutura alvo. Utilizamos o Ganglia, que coleta métricas do sistema operacional, como consumo de CPU, por exemplo. As métricas coletadas são enviadas a um serviço previamente configurado no EE. Esse serviço de monitoramento pode então disparar ações de adaptação com base nos dados recebidos. Uma ação de adaptação envolve a geração de uma nova especificação de composição e a atualização da composição em execução de acordo com a nova especificação.

Essas funcionalidades fazem do EE uma opção adequada para uma ferramenta de apoio à pesquisa de auto-adaptação de composição de serviços. O EE facilita a implementação de sistemas adaptativos por possibilitar que pesquisadores se foquem mais nos problemas de adaptação em alto nível, abstraindo detalhes altamente específicos do gerenciamento de implantação. Diferentes pesquisadores desse campo de pesquisa podem se beneficiar ao utilizarem uma plataforma comum, potencializando a troca de experiência entre eles sobre o processo de implantação. Essa troca de experiência é bem mais limitada se os membros da comunidade adotam cada um sua própria solução ad-hoc.

Capítulo 5

Avaliação

5.1 Implantando coreografias com e sem o EE

Nesta seção, nós avaliaremos como o Enactment Engine melhora o processo de implantação pelo fato de ser uma solução baseada em middleware. Para essa avaliação, nós desenvolvemos uma solução ad-hoc para a implantação de uma coreografia particular. A "coreografia do aeroporto" é um exemplo fornecido por especialistas no domínio aeroportuário [CV12] e que contém 15 serviços. Nós também implantamos a mesma coreografia utilizando o EE. Ambas as soluções estão disponíveis em https://github.com/choreos/airport_enactment.

Para implantar a coreografia do aeroporto com o EE, nós escrevemos a especificação da coreografia e o programa cliente para invocar o EE, disparando assim a implantação. A especificação da coreografia foi escrita com objetos Java em 40 minutos, contendo 162 linhas de código (LoC), uma média de 11 linhas por serviço. A programa cliente, a classe AirportEnact, utiliza a API Java do EE e tem apenas 22 linhas de código. Depois que essas classes foram escritas, a implantação da coreografia em três nós, utilizando o EE, levou apenas 4 minutos.

Para desenvolver a solução *ad-hoc* foi necessário aproximadamente 9 horas de desenvolvimento de um programados, e mais 60 minutos para o mesmo programador executar a implantação, distribuindo os 15 serviços por três nós alvos. Essa solução precisou da escrita de 100 LoC de shell scripts, 220 LoC de Java, and 85 LoC de Ruby (para o Chef).

No restante dessa seção, descreveremos o processo de criação e execução da solução *ad-hoc*. Destacaremos as dificuldades no processo que o implantador encontra sem o uso do EE.

A implantação de cada serviço é executada por uma receita Chef contida em um *cookbook*. Nós escrevemos um *cookbook* modelo, para implantar pacotes JARs, e o usamos para gerar *cookbooks* para os 15 serviços participantes. O processo de criar os 15 *cookbooks* foi parcialmente automatizado pelo script generate que nós escrevemos. As URLs dos pacotes dos serviços tiveram que ser manualmente inseridas nos *cookbooks* depois da execução da script generate.

Para implementar a ligação enter serviços, desenvolvemos um pequeno mas não trivial programa Java, chamado called context_sender. Ele é responsável por invocar a operação setInvocationAddress de um dado serviço. Nós implementamos o context_sender como um programa Java para aproveitar a API SOAP fornecida pelo ambiente Java SE. Nós também desenvolvemos o script bind_services, responsável por executar o programa context_sender para cada dependência presente na coreografia. Uma vez que os IPs dos serviços são conhecidos apenas após a implantação, o script bind_services é na verdade um modelo com lacunas que devem ser manualmente preenchidas com os IPs dos serviços implantados.

A execução da solução ad-hoc possui vários passos, inclusive alguns manuais. Para cada nó alvo, o implantador deve se conectar ao nó (SSH), instalar o git, baixar os cookbooks, executar o script install_chef para instalar o Chef, editar alguns arquivos de configuração para definir quais serviços serão implantados no nó, e executar o Chef-Solo. Após implantar os serviços, o implantador

38 Avaliação 5.2

deve editar o script bind_services com os IPs dos serviços implantados, e finalmente executar o script bind_services. Alguns dos problemas dessa solução *ad-hoc* são:

- Três diferentes tecnologias são utilizadas: shell script, Java e Chef. Expertise em linha de comando também foi necessário em alguns passos, como utilizar o editor vim ou o comando ps para verificar o estado dos processos dos serviços implantados. Isso sugere que se requer uma ampla gama de habilidades técnicas do desenvolvedor de soluções de implantação. Algumas dessas habilidades, como utilizar o Chef, são notoriamente não-fáceis de se aprender. O código Java utilizado para realizar a invocação de serviços SOAP pode também ser considerado como não-trivial para um programador não acostumado com o padrão SOAP.
- Replicação de código nos cookbooks gerados. Se alguma coisa muda no modelo, é preciso regenerar todos os cookbooks e realizar a edição manual também. Contudo, nós reconhecemos que as edição manuais mencionadas poderia ser evitada com um script mais complexo. Replicação de código poderia também ter sido evitada com a criação de um "LWRP" (light weight resource provider) do Chef, mas isso seria uma tarefa para usuários avançados do Chef.
- Para cada nó alvo, o implantador deve realizar alguns passos manuais que são demorados. Alguns deles (executar install_chef, por exemplo) poderiam ser evitados com a utilização de uma ferramenta como Capistrano¹, mas isso demandaria mais uma tecnologia a ser aprendida. Outros passo manuais, como a edição de arquivos de configuração, são bastante propensos a erros. Esquecer-se de vírgulas ou digitar errado o nome de serviços são erros bem prováveis de acontecerem.
- Há muita pouca paralelização no processo. Com o scripts construídos, o implantador poderia melhorar um pouco o paralelismo utilizando ferramentas como o Byobu² para digitar o mesmo comando em várias máquinas. Mas isso demandaria mais uma habilidade ser aprendida pelo implantador e é uma forma muito limitada de escalar o processo.

Note que, nesse exemplo, nós usamos uma composição de apenas 15 serviços. Composições de grande escala aumentariam muito mais a complexidade da solução ad-hoc. Para se obter uma solução completa com a abordagem ad-hoc, um esforço extra de desenvolvimento seria necessário para implementar funcionalidades já presentes no EE, como o tratamento de falhas de terceiros, atualização de coreografias, seleção dinâmica de nós, implantação concorrente, etc. Além disso, para desenvolver a solução ad-hoc nós utilizamos códigos que já estavam disponíveis no EE, tais como os modelos dos cookbooks e o context_sender. Implantadores teriam que começar tudo do zero.

Nós reconhecemos que essa avaliação por comparação com uma solução ad-hoc tem suas limitações, uma vez que os resultados dependem fortemente das habilidades técnicas do implantador. Conduzir um experimento rigoroso de engenharia de software com vários desenvolvedores assumindo o papel de implantador traria uma evidência melhor. Contudo, acreditamos que a avaliação descrita aqui já é o suficiente para expandir nosso entendimento sobre o valor agregado por uma solução com suporte de middleware, como o Enactment Engine, uma vez que temos agora uma boa ilustração do esforço necessário para se implantar composições de serviços.

5.2 Análise de desempenho e escalabilidade

We conducted experiments to evaluate the performance and scalability of the proposed Enactment Engine in terms of its capability to deploy a significant number of compositions in a real-world cloud computing platform.

Our experiments use a synthetic workload modeled as depicted in Figure 5.1. The arrow direction is from the requester to the requested service. Although replies are not drawn for simplicity reasons,

¹http://www.capistranorb.com/

²http://byobu.co/

Scenario	Compositions	Size	Nodes	Serv/Node
1	10	10	9	11 or 12
2	10	100	90	11 or 12
3	100	10	90	11 or 12
4	10	10	5	20

Tabela 5.1: Deployment scenario in the experiments

Tabela 5.2: Experimental results

Scenario	Time	Successful	Successful
		Compositions	Services
1	467.9 ± 34.8	10.0 ± 0	$100.0 \pm 0 \ (100\%)$
2	1477.1 ± 130.0	9.3 ± 0.3	$999.3 \pm 0.4 \ (99.9\%)$
3	1455.2 ± 159.1	98.9 ± 0.8	$998.5 \pm 1.3 \ (99.9\%)$
4	585.2 ± 38.1	10.0 ± 0.1	$100.0 \pm 0.1 \; (100\%)$

they are always sent back in a synchronous manner. This topology was chosen because (1) it is a representative example of the most common business process (those composed by branches – calls to other systems – and subsequent joints) and (2) it follows a repetitive pattern that can be used to smoothly increase the size of the composition to analyze how the performance of the Enactment Engine behaves as its workload increases.

Figura 5.1: The topology of the compositions used in the experiments.

Initially, we conducted a multi-variable analysis of the Enactment Engine performance by deploying service compositions in the following scenarios: 1) a small set of small compositions; 2) a small set of larger compositions; 3) a larger set of small composition; 4) a larger ratio of services per node. Table 5.1 quantifies each scenario.

In our experiments, the node allocation policy was "limited round robin", in which services are distributed across the available nodes, and the quantity of nodes is configured before each experiment. If the amount of services is not divisible by the number of nodes, some nodes will host one additional service. The idle node reservoir size was five, and the node creation timeout was 300 seconds. We used Amazon EC2 as the cloud computing service and the VMs were EC2 small instances, each one with 1.7 GiB of RAM, one vCPU with processing power equivalent to 1.0–1.2 GHz, and running Ubuntu GNU/Linux 12.04. The Enactment Engine was executed on a machine with 8 GB of RAM, an Intel Core i7 CPU with 2.7 GHz and GNU/Linux kernel 3.6.7. The Enactment Engine version used for the experiments and raw data retrieved from executions are available online³ for reproducibility of the results.

Each scenario was executed 30 times and the Table 5.2 presents, for each scenario, the time necessary to deploy all compositions plus the time to invoke them to make sure they were correctly deployed. The values are averages with 95% confidence intervals. It also shows how many compositions and services were successfully deployed.

³http://ccsl.ime.usp.br/enactmentengine

The results show that the Enactment Engine scales well in terms of the number of services being deployed. Although the number of services was multiplied by 10, the deployed time increased only 3 times approximately in scenarios 2 and 3. This time increment was caused mainly by the fact that the higher the number of services, the higher the likelihood of a fault triggering the re-execution of some routine.

The results also show that when the number of services per node was doubled (scenario 4), the deployment time increased nearly 25%. Part of this overhead was caused by the increase on the number of Chef scripts that must be executed (sequentially) on the nodes.

During our experiments, we observed that, thanks to the Enactment Engine fault tolerance mechanisms, the amount of failures was low: all the services were successfully deployed in more than 75% of the executions. By a failure, we mean that one service was not properly deployed. In scenario 1 we got no failures, whereas in scenario 4 we had only one failure. In scenario 2, the worst situation was 3 failures out of 1,000 services. In scenario 3, we got one execution with 20 failures, but it was an exceptional event, since the second worst situation had only 3 failures.

Finally, we observed that 80% of the executions did not use the node reservoir. When it was used, there was a maximum of six uses but, most of the time, there was only one use. We also observed that the deployment time was not significantly affected when the failures on the cloud environment occurred, because new nodes were immediately retrieved from the reservoir.

We also conducted experiments to evaluate the performance and scalability of the CHOReOS Enactment Engine in terms of its capability to deploy large service compositions. These experiments were conducted in 5 scenarios by varying the deployed choreography size and the amount of nodes available on the cloud environment, whereas keeping constant the ratio of 20 deployed services per virtual machine. Each scenario was executed 10 times.

The composition topology used was the same as before (Figure 5.1) and the environment used to run the Enactment Engine was a virtual machine (8 GiB of RAM and 4 vCPUs) hosted in our University infrastructure. The created nodes were Amazon EC2 small instances and node creation timeout was set to 250 seconds. The average deployment times with 95% confidence intervals are shown in Figure 5.2.

Concerning service deployment failures, the worst executions of each scenario had 1, 1, 2, 2 and 4 services not successfully deployed out of 200, 600, 1000, 1400 and 1800 services, respectively.

Figura 5.2: Average deployment times (with 95% confidence interval) for increasingly larger compositions. The ratio between the number of services and the number of virtual machines is kept constant.

These results show a good scalability in terms of deployed services. Increasing 9 times the

number of deployed services, the deployment time increased 3.5 times. In absolute numbers, each increase in 400 deployed services was responsible for increasing the deployment time from 180 to 460 seconds. Note that even the highest time to deploy the service composition (about 35 minutes for 1,800 services) may be considered low if we consider the long period that such a large-scale composition is supposed to last until next update.

42 AVALIAÇÃO 5.2

Capítulo 6

Conclusões

Fim :)

Apêndice A

Guia do Usuário do Enactment Engine

Referências Bibliográficas

- [ADM00] Alessandra Agostini e Giorgio De Michelis. Improving flexibility of workflow management systems. Em *Business Process Management*, volume 1806 of *Lecture Notes in Computer Science*, páginas 289–342. Springer Berlin / Heidelberg, 2000. 6
- [AdRdS⁺13] Marco Autilli, Davide di Ruscio, Amleto di Selle, Paola Inverardi e Massimo Tivoli. A model-based synthesis process for choreography realizability enforcement. Em 16th International Conference on Fundamental Approaches to Software Engineering (FASE), 2013. 7
 - [All10] Subu Allamaraju. RESTful Web Services Cookbook. O'Reilly Media, Inc., 2010. 13
 - [ATK05] Anatoly Akkerman, Alexander Totok e Vijay Karamcheti. Infrastructure for automatic dynamic deployment of J2EE applications in distributed environments. Em Component Deployment, volume 3798 of Lecture Notes in Computer Science, páginas 17–32. Springer Berlin Heidelberg, 2005. 18, 20
 - [BBB⁺98] R. Balter, L. Bellissard, F. Boyer, M. Riveill e J.-Y. Vion-Dury. Architecturing and configuring distributed application with Olan. Em *Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing* (Middleware '98), páginas 241–256. Springer-Verlag, 1998. 17, 18, 20, 26, 32
 - [Bre01] Eric A. Brewer. Lessons from giant-scale services. *Internet Computing*, *IEEE*, 5(4):46 –55, 2001. 13, 14, 33
 - [Bre12] Eric A. Brewer. Cap twelve years later: How the "rules" have changed. Computer, $45(2):23-29,\ 2012.\ 13$
 - [BWR09] Adam Barker, Christopher D. Walton e David Robertson. Choreographing Web Services. *IEEE Transactions on Services Computing*, 2(2):152–166, 2009. 2, 7
 - [Cat11] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec., 39(4):12–27, 2011. 14
 - [CCPP98] F. Casati, S. Ceri, B. Pernici e G. Pozzi. Workflow evolution. Data & Knowledge Engineering, 24(3):211–238, 1998. 6
 - [CFN10] Franco Cicirelli, Angelo Furfaro e Libero Nigro. A service-based architecture for dynamically reconfigurable workflows. Journal of Systems and Software, 83(7):1148– 1164, 2010. 7
 - [CV12] Pierre Chatel e Hugues Vincent. Deliverable D6.2. Passenger-friendly airport services & choreographies design. Disponível on-line em: http://choreos.eu/bin/Download/Deliverables, 2012. 37
 - [DBV05] Eelco Dolstra, Martin Bravenboer e Eelco Visser. Service configuration management. Em Proceedings of the 12th international workshop on Software configuration management (SCM '05), páginas 83–98. ACM, 2005. 1, 9, 17, 20, 26

- [Dea07] Alan Dearle. Software deployment, past, present and future, 2007. 24, 26
- [DK76] F. DeRemer e H. H. Kron. Programming-in-the-large versus programming-in-the-small. *IEEE Transactions on Software Engineering*, SE-2(2):80–86, 1976. 17
- [DNGM⁺08] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou e K. Pohl. A journey to highly dynamic, self-adaptive service-based applications. *Automated Software Engineering*, 15(3):313–341, 2008. 15
 - [Fow04] Martin Fowler. Inversion of control containers and the dependency injection pattern, Janeiro 2004. http://martinfowler.com/articles/injection.html. 5, 24
 - [GHJV95] Erich Gamma, Richard Helm, Ralph Johnson e John Vlissides. Chap. 4 Structural patterns. Em Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995. 32
 - [Had06] Marc Hadley. Web application description language (wadl), Abril 2006. http://labs.oracle.com/techrep/2006/abstract-153.html. 5
 - [Ham07] James Hamilton. On designing and deploying internet-scale services. Em *Proceedings* of the 21st Large Installation System Administration Conference (LISA '07), páginas 231–242. USENIX, 2007. 2, 12, 14, 32, 33
 - [HC09] Pat Helland e Dave Campbell. Building on quicksand. arXiv.org, 2009. http://arxiv.org/abs/0909.1788, acessado em fevereiro de 2013. 2, 12, 13
 - [Hew09] Eben Hewitt. Introduction to soa. Em Java SOA Cookbook. O'Reilly, 2009. 5
 - [HF11] Jez Humble e David Farley. Continuous Delivery. Addison-Wesly, 2011. 1, 8, 9, 11, 12, 17, 18, 32
 - [HM11] Jez Humble e Joanne Molesky. Why enterprises must adopt devops to enable continuous delivery. Cutter IR Journal, The Journal of Information Technology Management, 24(8):6–12, 2011. 9
 - [IGH+11] Valérie Issarny, Nikolaos Georgantas, Sara Hachem, Apostolos Zarras, Panos Vassiliadist, Marco Autili, Marco Aurélio Gerosa e AmiraBen Hamida. Service-oriented middleware for the future internet: state of the art and research directions. *Journal of Internet Services and Applications*, 2:23–45, 2011.
 - [Lee12] Thorsten Leemhuis. What's new in linux 3.2, Janeiro 2012. http://h-online.com/-1400680, acessado em fevereiro de 2013. 12
 - [LHM⁺05] Ling Lan, Gang Huang, Liya Ma, Meng Wang, Hong Mei, Long Zhang e Ying Chen. Architecture based deployment of large-scale component based systems: The tool and principles. Em *Component-Based Software Engineering*, volume 3489 of *Lecture Notes in Computer Science*, páginas 123–138. Springer Berlin Heidelberg, 2005. 18
 - [LPP04] Sébastien Lacour, Christian Pérez e Thierry Priol. Deploying CORBA components on a computational grid: General principles and early experiments using the globus toolkit. Em *Component Deployment*, volume 3083 of *Lecture Notes in Computer Science*, páginas 35–49. Springer Berlin Heidelberg, 2004. 19, 20
 - [lT10] Kent Ka lok Tong. Creating scalable web services with rest. Em Developing We Services with Apache CXF and Axis2. TipTec Development, 2010. 6

- [MBG⁺11] Xioxing Ma, Luciano Baresi, Carlo Ghezzi, Valerio Panzica La Manna e Jian Lu. Version-consistent dynamic reconfiguration of component-based distributed systems. Em Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering (ESEC/FSE 2011), páginas 245–255, 2011. 27
- [MBNR68] M. Douglas McIlroy, J. M. Buxton, Peter Naur e Brian Randell. Mass-produced software components. Em Software Engineering Concepts and Techniques, 1968 NATO Conference on Software Engineering, páginas 88–98, 1968. 5
 - [MDK94] Jeff Magee, Naranker Dulay e Jeff Kramer. A constructive development environment for parallel and distributed programs. Em Proceedings of 2nd International Workshop on Configurable Distributed Systems, 1994, páginas 4–14, 1994. 18, 20, 25
 - [MG11] Peter Mell e Timothy Grance. The NIST definition of cloud computing (draft), 2011. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Acessado em 2 de dezembro de 2012. 1, 10
 - [MK90] Jeff Magee e Jeff Kramer. The evolving philosophers problem: Dynamic change management. *IEEE Transactions on Software Engineering*, 16(11):1293–1306, 1990. 27
 - [MK96] Jeff Magee e Jeff Kramer. Dynamic structure in software architectures. Em *Proceedings of the 4th ACM SIGSOFT symposium on Foundations of software engineering* (SIGSOFT '96), páginas 3–14. ACM, 1996. 17, 20, 25, 32
 - [MTK97] Jeff Magee, Andrew Tseng e Jeff Kramer. Composing distributed objects in CORBA. Em Proceedings of the Third International Symposium on Autonomous Decentralized Systems, 1997. ISADS 97., páginas 257–263, 1997. 17, 26
 - [NCS04] Mangala Gowri Nanda, Satish Chandra e Vivek Sarkar. Decentralizing execution of composite web services. Em Proceedings of the 19th annual ACM SIGPLAN conference on object oriented programming, systems, languages, and applications (OOPSLA '04), páginas 170–187. ACM, 2004. 2, 7
 - [Nyg09] Michael T. Nygard. Release It! Design and Deploy Production-Ready Software. Pragmatic Bookshelf, 2009. 13, 14, 32
 - [OAS07] OASIS. Web services business process execution language, version 2.0, Abril 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. 7
 - [OMG95] OMG. The common object request broker architecture and specification, 1995. Revision 2.0. 6
 - [OMG06] OMG. Deployment and configuration of component-based distributed applications (DEPL), Abril 2006. http://www.omg.org/spec/DEPL/. 1, 8
 - [OMG11] OMG. Business process model and notation (BPMN), version 2.0, Janeiro 2011. http://www.omg.org/spec/BPMN/2.0. 7
 - [Pou11] Michael Poulin. Collaboration patterns in the SOA ecosystem. Em *Proceedings of the* 3rd Workshop on Behavioural Modelling, páginas 12–16. ACM, 2011. 7
- [PTDL07] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar e Frank Leymann. Service-oriented computing: State of the art and research challenges. *Computer*, 40(11):38–45, 2007. 1, 5, 6

- [PZL08] Cesare Pautasso, Olaf Zimmermann e Frank Leymann. Restful web services vs. "big" web services: making the right architectural decision. Em *Proceedings of the 17th international conference on World Wide Web (WWW '08)*, páginas 805–814. ACM, 2008. 5, 6
- [QBB+04] Vivien Quéma, Roland Balter, Luc Bellissard, David Féliot, André Freyssinet e Serge Lacourte. Asynchronous, hierarchical, and scalable deployment of component-based applications. Em Component Deployment, volume 3083 of Lecture Notes in Computer Science, páginas 50-64. Springer Berlin Heidelberg, 2004. 18, 20
 - [Qui94] Michael Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, 2nd edition edição, 1994. 14
 - [Rie11] Eric Ries. The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Crown Business, 2011. 10
- [SABS02] Heiko Schuldt, Gustavo Alonso, Catriel Beeri e Hans-Jörg Schek. Atomicity and isolation for transactional processes. *ACM Transactions on Database Systems (TODS)*, 27(1):63–116, 2002. 6
 - [SM10] Virginia Smith e Bryan Murray. Automated service evolution. dynamic version coordination between client and server. Em SERVICE COMPUTATION 2010: The Second International Conferences on Advanced Service Computing, páginas 21–26. IARIA, 2010. 5
 - [Sof06] Software Engineering Institute of Carnegie Mellon University. *Ultra-Large-Scale Systems, The Software Challenge of the Future*. 2006. 12
 - [SPV12] Maarten Steen, Guillaume Pierre e Spyros Voulgaris. Challenges in very large distributed systems. *Journal of Internet Services and Applications*, 3(1):59–66, 2012. 1, 12, 14
 - [Szy03] Clemens Szyperski. Component technology: what, where, and how? Em *Proceedings* of the 25th International Conference on Software Engineering, páginas 684–693, 2003.
 - [TF12] Matt Tavis e Philip Fitzsimons. Web Application Hosting in the AWS Cloud: Best Practices. Relatório técnico, Amazon, Setembro 2012. 2, 10, 13, 19, 35
- [VEBD07] Yves Vandewoude, Peter Ebraert, Yolande Berbers e Theo D'Hondt. Tranquility: A low disruptive alternative to quiescence for ensuring safe dynamic updates. *IEEE Transactions on Software Engineering*, 33(12):856–868, 2007. 27
- [W3C04a] W3C. Web services addressing (ws-addressing), Agosto 2004. http://www.w3.org/Submission/ws-addressing/. 5
- [W3C04b] W3C. Web services architecture, Fevereiro 2004. http://www.w3.org/TR/ws-arch/. $1,\,5$
- [W3C05] W3C. Web services choreography description language (WS-CDL), version 1.0, Novembro 2005. http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109.
- [WFK⁺06] Paul Watson, Chris Fowler, Charles Kubicek, Arijit Mukherjee, John Colquhoun, Mark Hewitt e Savas Parastatidis. Dynamically deploying web services on a grid

- using Dynasoar. Em Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing, ISORC 2006, página 8, 2006. 5, 17, 19, 20
- [Wor99] Workflow Management Coalition. Workflow management coalition terminology & glossary, Fevereiro 1999. 6
- [ZCB10] Qi Zhang, Lu Cheng e Raouf Boutaba. Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010. 10
- [ZPT+11] Theodore Zahariadis, Dimitri Papadimitriou, Hannes Tschofenig, Stephan Haller, Petros Daras, GeorgeD. Stamoulis e Manfred Hauswirth. Towards a future internet architecture. Em *The Future Internet*, volume 6656 of *Lecture Notes in Computer Science*, páginas 7–18. Springer Berlin Heidelberg, 2011. 1