ELEKTRONİK DEVRELER DERS NOTLARI

2.HAFTA

İletken, Yalıtkan, Yarı iletken Kavramları, Yarı iletken Maddelerde İletim Teorisi, Enerji Seviyeleri

- Kullandığımız pek çok cihazın üretiminde bir veya birkaç elektronik devre elemanı kullanılmaktadır.
- Elektronik devre elemanları ise yarıiletken materyaller kullanılarak üretilir.
- Diyot, transistor, FET, tüm-devre (entegre)
 v.b adlarla tanımlanan elektronik devre elemanlarının bir çoğu şekil'de resimlenmiştir.

- Elektronik devre elemanlarının dolayısıyla elektronik cihazların nasıl çalıştığını anlamak için yarıiletken materyallerinin yapısı hakkında bilgiye gereksinim duyarız.
- Bu bilgiyi ulaşmanın en etkin yolu maddenin temel atomik yapısını incelemekle başlar.

- Tüm maddeler atomlardan oluşur.
- Atomlar ise; elektronlar, protonlar ve nötronlardan meydana gelir.
- Elektrik enerjisinin oluşturulmasını ve kontrol edilmesini maddenin atomik yapısı belirler. Atomik yapıya bağlı olarak tüm elementler; iletken, yalıtkan veya yarıiletken olarak sınıflandırılırlar.
- Elektronik endüstrisinde temel devre elemanlarının üretiminde yarıiletken materyaller kullanılır.
- Günümüzde elektronik devre elemanı üretiminde kullanılan iki temel materyal vardır. Bu materyaller; silisyum ve germanyumdur.

- İletken, yalıtkan ve yarıiletken maddelerin işlevlerini ve özelliklerini incelemek için temel atomik yapının bilinmesi gerekir.
- Bu bölümde temel atomik yapıyı inceleyeceğiz.
- Yeryüzünde bilinen 109 element vardır.
- Bir elementin özelliklerini belirleyen en küçük yapıtaşı ise atomlardır.
- Bilinen bütün elementlerin atomik yapıları birbirinden farklıdır.
- Atomların birleşmesi elementleri meydana getirir.

- Klasik Bohr modeline göre atom,
 Şekil1.1'de gösterildiği gibi 3 temel parçacıktan oluşur.
- Bunlar; elektron, proton ve nötron'dur.
- Atomik yapıda; nötron ve protonlar merkezdeki çekirdeği oluşturur.
- Protonlar artı yüklüdür.
- Elektronlar ise çekirdek etrafında sabit bir yörüngede dolaşırlar ve negatif yüklüdürler.

- Elektronlar, negatif yükün temel nesneleridirler.
- Bilinen bütün elementleri bir birinden ayıran temel özellik, atomlarında bulunan proton ve nötron sayılarıdır.
- Her bir atomun, proton ve nötron sayıları faklıdır.
- Örneğin, en basit yapıya sahip atom, hidrojen atomudur.
- Hidrojen atomu; Şekil-1.2.a'da gösterildiği gibi bir proton ve bir elektrona sahiptir. Şekil-1.2.b'de gösterilen helyum atomunun yörüngesinde iki elektron, çekirdeğinde ise; iki proton ve iki nötron bulunmaktadır.

Atom Numarası ve Ağırlığı

- Bütün elementler atom numaralarına uygun olarak periyodik tabloda belirli bir düzen içinde dizilmişlerdir.
- Proton sayıları ile elektron sayıları eşit olan atomlar, elektriksel açıdan kararlı (nötral) atomlardır.
- Elementler, atom ağırlığına göre de belirli bir düzen içindedirler.
- Atom ağırlığı yaklaşık olarak çekirdekteki proton sayıları ile nötron sayılarının toplamı kadardır.
- Örneğin hidrojenin atom numarası 1'dir ve atom ağırlığı da 1'dir.
- Helyumun atom numarası 2'dir ve atom ağırlığı ise 4' tür. Normal veya tarafsız durumda verilen her hangi bir elementin bütün atomlarındaki; elektron ve proton sayıları eşittir.

Elektron Kabukları ve Yörüngeler

- Bir atomun, elektron içeren yörüngeleri çekirdekten belirli uzaklıktadır. Çekirdeğe yakın olan yörüngedeki elektronlar, çekirdeğe uzak olan yörüngedeki elektronlardan daha az enerjiye sahiptir.
- Çekirdeğe farklı uzaklıklarda bulunan yörüngelerdeki elektronlar belirli enerji seviyelerine uyar.
- Atomda, enerji bantları şeklinde gruplaşmış yörüngeler "kabuk (shell)" olarak bilinirler.
- Verilen her bir atom, sabit kabuk sayısına sahiptir.
- Kabuklarda barınan elektronlar ise belirli bir sistem dâhilinde dizilirler.

Elektron Kabukları ve Yörüngeler

- Her bir kabuk, izin verilen sayıda maksimum elektron barındırır.
- Bu elektronların enerji seviyeleri değişmez.
- Kabuk içindeki elektronların enerji seviyeleri bir birinden azda olsa küçük farklılıklar gösterir.
- Fakat kabuklar arasındaki enerji seviyelerinin farkı çok daha büyüktür.
- Çekirdek etrafında belirli bir yörüngeyi oluşturan kabuklar, k-l-m-n olarak gösterilirler.
- Çekirdeğe en yakın olan kabuk k 'dır. k ve l kabukları şekil-1.3 'de gösterilmiştir.

Şekil- 1.3 Çekirdekten uzaklıklarına göre enerji seviyeleri.

Elektron Kabukları ve Yörüngeler

- Örnek olarak;
- Germanyum atomunda; 32 elektron K kabuğunda 2, L kabuğunda 8, M kabuğunda 18, N kabuğunda 4 elektron vardır.
- Silisyum atomunda ise; 14 elektron, K kabuğunda 2, L kabuğunda 8 M kabuğunda 4 elektron vardır.

Valans Elektronları

- Atomun en dış kabuğundaki elektronlara ise "valans elektron" adı verilir.
- Valans (atomun değerini ayarlayan elektronlar) elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.
- Bir atomun en dış kabuğundaki elektronlar, çekirdek etrafında simetrik olarak hareket ederler ve kendi aralarında bir bağ oluştururlar.
- Bu bağa "kovelant bağ" denir.

Valans Elektronları

- Elektronlar çekirdekten uzaktadır ve çekirdekten ayrılma eğilimindedir.
- Çekirdek elektronun bu ayrılma eğilimini dengeleyecek güçtedir.
- Çünkü elektron negatif yüklü, çekirdek pozitif yüklüdür.
- Çekirdekten uzakta olan elektronun negatif yükü daha fazladır.
- Bu durum merkezden kaçma kuvvetini dengelemektedir.
- Bir atomun en dıştaki kabuğu, en yüksek enerji seviyeli elektronlara sahiptir.
- Bu durum onu atomdan ayrılmaya daha eğilimli hale getirir.

İyonizasyon

- Bir atom, ısı kaynağından veya ışıktan enerjilendiği zaman elektronlarının enerji seviyeleri yükselir.
- Elektronlar enerji kazandığında çekirdekten daha uzak bir yörüngeye yerleşir. Böylece Valans elektronları daha fazla enerji kazanır ve atomdan uzaklaşma eğilimleri artar.
- Bir valans elektronu yeterli miktarda bir enerji kazandığında ancak bir üst kabuğa çıkabilir ve atomun etkisinden kurtulabilir.
- Bir atom, pozitif şarjın aşırı artması (protonların elektronlardan daha fazla olması) durumunda nötr değere ulaşmaya çalışır.
- Bu amaçla atom, valans elektronlarını harekete geçirir. Valans elektronunu kaybetme işlemi "iyonizasyon" olarak bilinir ve atom pozitif şarj ile yüklenmiş olur ve pozitif iyon olarak adlandırılır.

İyonizasyon

- Örneğin; hidrojenin kimyasal sembolü H'dır.
- Hidrojenin valans elektronları kaybedildiğinde pozitif iyon adını alır ve H+ olarak gösterilir.
- Atomdan kaçan valans elektronları "serbest elektron" olarak adlandırılır.
- Serbest elektronlar, nötr hidrojen atomunun en dış kabuğuna doğru akar.
- Atom negatif yük ile yüklendiğinde (elektronların protonlardan fazla olması)
 negatif iyon diye adlandırılırlar ve H- olarak gösterilirler.

İletim

- Vakum ile gazlarda, sıvılarda ve katı maddelerde uygun koşullar sağlandığında elektrik akımı iletilir.
- Elektronik bilimi 1948'li yıllara kadar vakumda iletim temeline dayanan vakumlu tüpler ile gelişmiş ve 48'lerden sonra transistörün keşfi ile yerini katı hal elektroniğine bırakmıştır.
- Elektriği iletmesine göre elementler; İletken (conductor), Yarı iletken (semi conductor), Yalıtkan (insulator) olarak adlandırılır.

İletim

• Bu elementlerin iletken veya yalıtkan olmasını sağlayan şey son yörüngedeki atom sayılarıdır.

• Şekildeki periyodik cetvelde son yörüngelerinde 1,3,4,5 elektron bulunduran

elementler görülmektedir.

iletkenler (conductor)

- Elektrik akımının iletilmesine kolaylık gösteren materyallere iletken denir. İletken özelliği gösteren materyallere örnek olarak, bakır, gümüş, altın ve alüminyumu sayabiliriz.
- Bu materyallerin ortak özelliği az sayıda valans elektronuna sahip olmalarıdır.
- Dolayısı ile bu elektronlarını kolaylıkla kaybedebilirler.
- Bu tür elementler; 1 veya birkaç valans elektrona sahip olabilirler.
- Örneğin bakır, altın, gümüş v.b...

iletkenler (conductor)

- Son yörüngelerinde 1,2 ve 3 elektron bulunduran elementler bu son yörüngedeki elektronlardan kurtularak kararlı hale gelmek isterler.
- Bu elektronların çekirdekle bağları çok zayıf olduğundan ait oldukları çekirdekten kolayca koparak kristal yapıda serbestçe hareket ederler.
- Katı maddelerin 1cm³ ündeki atom sayısı 10²³ mertebesinde olduğundan, serbest elektron yoğunluğu da bu seviyededir.

İletkenlerin başlıca özellikleri:

- Elektrik akımını iyi iletirler.
- Atomların dış yörüngesindeki elektronlar atoma zayıf olarak bağlıdır. Isı, ışık ve elektriksel etki altında kolaylıkla atomdan ayrılırlar.
- Dış yörüngedeki elektronlara Valans Elektron denir.
- Metaller, bazı sıvı ve gazlar iletken olarak kullanılır.
- Metaller, sıvı ve gazlara göre daha iyi iletkendir.
- Metaller de, iyi iletken ve kötü iletken olarak kendi aralarında gruplara ayrılır.

İletkenlerin başlıca özellikleri:

- Atomları 1 valans elektronlu olan metaller, iyi iletkendir. Buna örnek olarak, altın, gümüş, bakır gösterilebilir.
- Bakır tam saf olarak elde edilmediğinden, altın ve gümüşe göre biraz daha kötü iletken olmasına rağmen, ucuz ve bol olduğundan, en çok kullanılan metaldir.
- Atomlarında 2 ve 3 valans elektronu olan demir (2 dış elektronlu) ve alüminyum (3 dış elektronlu) iyi birer iletken olmamasına rağmen, ucuz ve bol olduğu için geçmiş yıllarda kablo olarak kullanılmıştır.

Yalıtkanlar

- Normal koşullar altında elektrik akımına zorluk gösterip, iletmeyen materyallere yalıtkan denir.
- Yalıtkanlar son yörüngelerinde 6,7,8 elektron bulunduran maddelerdir.
- Serbest elektron bulundurmazlar.
- Valans bandındaki elektronların iletim bandına geçmesi için gerekli enerji oldukça çok yüksektir (8 eV).
- Cam, ebonit, bakalit, plastik vb. ametaller iyi yalıtkandır.

Yarı İletkenler

- Yarıiletken maddeler; elektrik akımına karşı, ne iyi bir iletken nede iyi bir yalıtkan özelliği gösterirler.
- Yarıiletkenler günümüz teknolojisinin temelini oluşturur.
- 1948'li yıllarda Bell Laboratuar'ında transistörün keşfi ile hızlanan yarıiletken teknolojisi sayesinde günümüzdeki radyo, bilgisayar, televizyon ve telefon teknolojisi gelişmiştir.

Yarı İletkenler

- Temel yarıiletken malzemelerden Silisyum(Si), Germanyum(Ge) ve Karbon(C) kristal yapıda katı malzemelerdir.
- Ancak sıvı veya amorf yarıiletken malzeme de mevcuttur.
- Bu elementler son yörüngelerinde 4 adet valans elektron bulundururlar.
- Saf yarı iletkenler, yarıiletken malzeme saf halde ise Has Yarıiletken (Intrinsic Semiconductor) adı verilir.
- En çok bilinen ve kullanılan saf yarı iletken malzeme Silisyum ve Germanyumdur.

Yarı iletkenlerin başlıca şu özellikleri vardır:

- İletkenlik bakımından iletkenler ile yalıtkanlar arasında yer alırlar,
- Normal halde yalıtkandırlar.
- Ancak ısı, ışık ve magnetik etki altında bırakıldığında veya gerilim uygulandığında bir miktar valans elektronu serbest hale geçer, yani iletkenlik özelliği kazanır.
- Bu şekilde iletkenlik özelliği kazanması geçici olup, dış etki kalkınca elektronlar tekrar atomlarına dönerler.
- Tabiatta basit eleman halinde bulunduğu gibi laboratuarda bileşik eleman halinde de elde edilir.

Yarı iletkenlerin başlıca şu özellikleri vardır:

- Yarı iletkenler kristal yapıya sahiptirler. Yani atomları kübik kafes sistemi denilen belirli bir düzende sıralanmıştır.
- Bu tür yarı iletkenler, yukarıda belirtildiği gibi ısı, ışık, etkisi ve gerilim uygulanması ile belirli oranda iletken hale geçirildiği gibi, içlerine bazı özel maddeler katılarak da iletkenlikleri arttırılmaktadır.
- Katkı maddeleriyle iletkenlikleri arttırılan yarı iletkenlerin elektronikte ayrı bir yeri vardır. Bunun nedeni Tabloda görüldüğü gibi, elektronik devre elemanlarının üretiminde kullanılmalarıdır.

ADI	KULLANILMA YERİ
Germanyum (Ge) (Basit eleman)	Diyot, transistör, entegre, devre
Silikon (Si) (Basit eleman)	Diyot, transistör, entegre, devre
Selenyum (Se) (Basit eleman)	Diyot
Bakır oksit (kuproksit) (CuO) (Bileşik eleman)	Diyot
Galliyum Arsenid (Ga As) (Bileşik eleman)	Tünel diyot, laser, fotodiyot, led
Indiyum Fosfur (In P) (Bileşik eleman)	Diyot, transistör
Kurşun Sülfür (Pb S) (Bileşik eleman)	Güneş pili (Fotosel)

Enerji Seviyeler ve Bant Yapıları

- Bilindiği gibi elektronlar, atom çekirdeği etrafında belirli yörüngeler boyunca sürekli dönmektedir.
- Bu hareket, dünyanın güneş etrafında dönüşüne benzetilir.
- Hareket halindeki elektron, şu iki kuvvetin etkisi ile yörüngesinde kalmaktadır:
- 1) Çekirdeğin çekme kuvveti
- 2) Dönme hareketi ile oluşan merkezkaç kuvveti

Enerji Seviyeleri:

- Hareket halinde olması nedeniyle her yörünge üzerindeki elektronlar belirli bir enerjiye sahiptir.
- Eğer herhangi bir yolla elektronlara, sahip olduğu enerjinin üzerinde bir enerji uygulanırsa, ara yörüngedeki elektron bir üst yörüngeye geçer.
- Valans elektrona uygulanan enerji ile de elektron atomu terk eder.
- Yukarıda belirtildiği gibi valans elektronun serbest hale geçmesi, o maddenin iletkenlik kazanması demektir.

Valans elektronlara enerji veren etkenler:

- 1) Elektriksel etki
- 2) Isı etkisi
- 3) Işık etkisi
- 4) Elektronlar kanalıyla yapılan bombardıman etkisi
- 5) Manyetik etki

Valans elektronlara enerji veren etkenler:

Ancak, valans elektronları serbest hale geçirecek enerji seviyeleri madde yapısına göre şöyle değişmektedir:

- İletkenler için düşük seviyeli bir enerji yeterlidir.
- Yarı iletkenlerde oldukça fazla enerji gereklidir.
- Yalıtkanlar için çok büyük enerji verilmelidir.

Bant Yapıları

- Maddelerin iletken, yalıtkan veya yarıiletken olarak sınıflandırılmasında enerji bantları oldukça etkindir.
- Yalıtkan, yarıiletken ve iletken maddelerin enerji bantları şekil–1.4'de verilmiştir.
- Enerji bandı bir yalıtkanda çok geniştir ve çok az sayıda serbest elektron içerir. Dolayısıyla serbest elektronlar, iletkenlik bandına atlayamazlar.
- Bir iletkende ise; valans bandı ile iletkenlik bandı adeta birbirine girmiştir. Dolayısıyla harici bir enerji uygulanmaksızın valans elektronların çoğu iletkenlik bandına atlayabilir.
- Şekil–1.4 dikkatlice incelendiğinde yarıiletken bir maddenin enerji aralığı; yalıtkana göre daha dar, iletkene göre daha geniştir.

Enerji Seviyeleri

- Valans bandı enerji seviyesi:
- Şekil 1.4 'te görüldüğü gibi her maddenin, valans elektronlarının belirli bir enerji seviyesi vardır, buna valans bandı enerjisi denmektedir.
- İletkenlik bandı enerji seviyesi:
- Valans elektronu atomdan ayırabilmek için verilmesi gereken bir enerji vardır. Bu enerji, iletkenlik bandı enerjisi olarak tanımlanır.

Yalıtkanlarda iletim için verilmesi gereken enerji:

- Yalıtkanlarda ise, Şekil 1.4.(a) 'da görüldüğü gibi oldukça geniş bir boşluk bandı bulunmaktadır.
- Yani elektronları, valans bandından iletkenlik bandına geçirebilmek için oldukça büyük bir enerji verilmesi gerekmektedir.

Yarı iletkenlerde iletim için verilmesi gereken enerji:

- Yarı iletkenlerin valans bandı ile iletkenlik bandı arasında Şekil 1.4.(b) 'de görüldüğü gibi belirli bir boşluk bandı bulunmaktadır.
- Yarı iletkeni, iletken hale geçirebilmek için valans elektronlarına, boşluk bandınınki kadar/enerji aralığı kadar ek enerji vermek gerekir.

İletkenlerde iletim için verilmesi gereken enerji:

- İletkenlerin, Şekil 1.4.(c) 'da görüldüğü gibi, valans bandı enerji seviyesi ile iletkenlik bandı enerji seviyesi bitişiktir.
- Bu nedenle verilen küçük bir enerjiyle, pek çok valans elektron serbest hale geçer.

- Diyot, transistor, tümdevre v.b elektronik devre elemanlarının üretiminde iki tip yarı iletken malzeme kullanır.
- Bunlar; SİLİSYUM (SİLİKON) ve GERMANYUM elementleridir.
- Bu elementlerin atomlarının her ikisi de 4 Valans elektronuna sahiptir.
- Bunların birbirinden farkı; Silisyumun çekirdeğinde 14 proton, germanyumun çekirdeğinde 32 proton vardır.
- Şekil–1.5'de her iki malzemenin atomik yapısı görülmektedir.
- Silisyum bu iki malzemenin en çok kullanılanıdır. Peki neden ???

- Yarım asır önce başlayan yarı iletken temelli devre elemanı üretiminde ilk zamanlar germanyum maddesi çok yaygındı.
- Günümüzde ise bu madde silisyuma göre çok daha az kullanılmaktadır.
- Atomik yapıları dikkate alındığında silisyumun da germanyumun da son elektron yörüngelerinde 4'er elektron bulunur, fakat toplam elektron sayısı dikkate alındığında germanyumun 32, silisyumun14 elektronu bulunur.

- Bunun anlamı nedir?
- Elektron sayısı fazla olan malzeme atomun çekim kuvvetinden daha çabuk kurtulacağı için daha küçük bir etki ile iletken olabileceğidir.
- Germanyum diyotun iletime geçme voltajı 0,3 volt iken silisyumun 0,7 volttur.
- Yani iletim konusunda silisyum daha stabil bir malzemedir.
- Germanyum atomik yapı yüzünden özelliğini daha çabuk kaybedebilen bir malzemedir.

- Germanyum maddesi oda sıcaklığında bile çok sayıda elektronunu serbest bırakmakta, bu ise sızıntı akımlarının çoğalmasına yol açmaktadır.
- Sıcaklık arttıkça germanyumdaki iletkenlik iyice artmakta ve bu madde, iletken gibi davranmaya başlamaktadır.
- Silisyum maddesi ise oda sıcaklığında tam bir yalıtkan gibi davranmaktadır.
- İşte bu nedenlerden dolayı diyot, transistor, entegre vb. yapımında silisyum maddesi daha çok kullanılmaktadır.

- Bu malzemeler dışında Ga (Galyum) , Indium(In) , Arsenid (As) , Selenyum (Se) , Antimon (Sb), Galyum Arsenid ve Galyum Fosfid(Ga P) de yarıiletken malzeme üretiminde kullanılır.
- Si ve Ge son yörüngelerinde bulunan dört valans elektronu ortaklaşa kullanarak düzgün bir kristal yapı meydana getirirler. Böylece kararlı hale gelirler (Has yarı iletken).
- Ancak bu valans elektronları yeterli enerji ile uyarıldığında (ısı, ışık) yerinden koparak serbest elektron haline gelir.
- Bir valans elektronun serbest elektron haline geçmesi için gerekli enerji seviyesi yarı iletkenin cinsine bağlıdır.

Kovalent Bağ

- Katı materyaller, kristal bir yapı oluştururlar.
- Silikon, kristallerden oluşmuş bir materyaldir.
- Kristal yapı içerisindeki atomlar ise birbirlerine kovalent bağ denilen bağlarla bağlanırlar.
- Kovalent bağ, bir atomun valans elektronlarının birbirleri ile etkileşim oluşturması sonucu meydana gelir.

Kovalent Bağ

- Örneğin, her silisyum atomu, kendisine komşu diğer 4 atomun valans elektronlarını kullanarak bir yapı oluşturur.
- Bu yapıda her atom, 8 valans elektronunun oluşturduğu etki sayesinde kimyasal kararlılığı sağlar.
- Her bir silisyum atomunun valans elektronu, komşu silisyum atomunun valans elektronu ile paylaşımı sonucunda kovalent bağ oluşur.
- Bu durum; bir atomun diğer atom tarafından tutulmasını sağlar.
- Böylece paylaşılan her elektron birbirine çok yakın elektronların bir arada bulunmasını ve birbirlerini eşit miktarda çekmesini sağlar.

Yarıiletkenlerde iletkenlik

- Çekirdeğin etrafındaki kabuklar enerji bantları ile uyumludur.
- Enerji bantları birbirlerine çok yakın kabuklarla ayrılmıştır.
- Aralarında ise elektron bulunmaz.

• Bu durum şekil–1.6'da silisyum kristalinde (dışarıdan ısı enerjisi uygulanmaksızın) gösterilmiştir.

Şekil-1.6 Durgun silisyum kristalinin enerji band diyagramı.

Elektronlar ve Boşluklarda iletkenlik

• Saf bir silisyum kristali oda sıcaklığında bazı tepkimelere maruz kalır.

Örneğin; bazı valans elektronlar enerji aralıklarından geçerek, valans bandından iletkenlik bandına atlarlar.

- Bunlara serbest elektron veya iletkenlik elektronları denir.
- Bu durum şekil–1.7.a'da enerji diyagramında,
- Şekil–1.7.b'de ise bağ diyagramında gösterilmiştir.

Şekil-1.7.a ve b. Hareketli bir silisyum atomunda bir elektron boşluğunun oluşturulması.

Elektronlar ve Boşluklarda iletkenlik

- Bir elektron; valans bandından iletkenlik bandına atladığında, valans bandında boşluklar kalacaktır.
- Bu boşluklara "delik=boşluk" veya "hol" denir.
- İsi veya işik enerjisi yardımıyla iletkenlik bandına çıkan her elektron, valans bandında bir delik oluşturur.
- Bu durum, elektron boşluk çifti diye adlandırılır.

Elektronlar ve Boşluklarda iletkenlik

- İletkenlik bandındaki elektronlar enerjilerini kaybedip, valans bandındaki boşluğa geri düştüklerinde her şey eski haline döner.
- Özetle; saf silisyumunun iletkenlik bandındaki elektronların bir kısmı oda sıcaklığında hareketli hale geçer.
- Bu hareket, malzemenin herhangi bir yerine doğru rastgeledir.
- Böylece valans bandındaki boşluk sayısına eşit miktarda elektron, iletkenlik bandına atlar.

Elektron ve Delik (hole) akımı

- Saf silisyumun bir kısmına gerilim uygulandığında neler olduğu şekil–1.8 üzerinde gösterilmiştir.
- Şekilde iletkenlik bandındaki serbest elektronların negatif uçtan pozitif uca doğru gittikleri görülmektedir.
- Bu; serbest elektronların hareketinin oluştuğu akımın bir türüdür.
- Buna elektron akımı denir

Elektron ve Delik (hole) akımı

- Akımı oluşturan bir diğer tip ise valans devresindeki değişimlerdir.
- Bu ise; serbest elektronlar neticesinde boşlukların oluşması ile meydana gelir.
- Valans bandında kalan diğer elektronlar ise hala diğer atomlara bağlı olup serbest değillerdir. Kristal yapı içerisinde rastgele hareket etmezler.
- Bununla birlikte bir valans elektronu komşu boşluğa taşınabilir. (enerji seviyesindeki çok küçük bir değişimle).

Elektron ve Delik (hole) akımı

- Böylece bir boşluktan diğerine hareket edebilir.
- Sonuç olarak kristal yapı içerisindeki boşluklarda bir yerden diğer yere hareket edecektir.
- Bu durum şekil–1-8'da gösterilmiştir.
- Boşlukların bu hareketi de "akım" diye adlandırılır.

