

芯仑光电 IMU 标定操作手册

上海芯仑光电科技有限公司

目 录

1、标定平台搭建	3
1.1 所需硬件说明	3
1.2 平台搭建流程	3
2、标定流程	5
2.1 标定简要介绍	5
2.2 标定前配置	5
2.3 标定方法1: 在线标定	5
2.4 标定方法 2: 在线标定(中断后)	
2.5 标定方法3:离线标定	
2.6 数据实时显示(调试时使用)	
2.7 标定注意事项	11
2.8 文件说明	11
附录一: 常见问题解决方法	12
附录一: 版本说明	13

1、标定平台搭建

1.1 所需硬件说明

需要准备的配套硬件见表 1-1。

 名称
 使用方法和作用

 指南针×1
 测量南北方向

 条形贴纸×1
 在标定平台上标记南北方向

 三角架×1
 支撑作用(可选不同支架)

 万向云台×1
 调节传感器位置

 L型支架×1
 调节传感器位置

表 1-1 配套硬件列表

配件采购可参考《工具配件购买指南》。

1.2 平台搭建流程

标定平台和配套硬件搭建流程:

- i. 南北方向确定。选择开阔的平台(水平),周围至少 50cm 内没有铁磁性物体或手机。 放置指南针,等指针稳定后,在南北方向粘贴条形贴纸,见图 1-1(a)。贴纸后,指南针 可移除。
- ii. 组装支架。L 型支架需要固定在旋转云台上,连接部位在整个标定过程中需要拧紧固定。 旋转云台底部有的三脚架固定端预留的螺丝孔,见图 1-1(b)。
- iii. 把组装支架固定到三角架上。要求三角架足够牢固。搭建好标定平台后的效果,如 1-2 图所示。图 1-2(a) 是桌面小型支架,图 1-2(b) 是常见的相机三角架。

图 1-1 配套硬件配图

图 1-2 搭建好的标定平台

2、标定流程

2.1 标定简要介绍

标定工具具有 4 种功能:

- 1、在线标定。用于开始一次全新的 IMU 标定,最常用;
- 2、在线标定(中断后)。继承在线标定已有的部分数据,进行后续标定,用于标定中断 后再次标定,避免重复相同的标定过程;
- 3、离线标定。如果标定的所有数据都已经保存了,就可以用离线标定,直接得到 IMU 标定参数:
 - 4、实时显示 IMU 的原始数据。

IMU 加速度计(简称 ACC)、陀螺仪(简称 GYRO)和磁力计(简称 MAG)的坐标系都和相机坐标系一致,图 2-1 所示为相机坐标系轴向的定义,图 2-1(a)是 CeleX5_MP 的图片以及轴向定义,图 2-1(b)是 CeleX5 Z 图片以及轴向定义。

图 2-1 相机坐标系 (a) CeleX5 MP; (b) CeleX5 Z

如果从未做过本标定,强烈建议从 2.2 节开始。

2.2 标定前配置

i. CeleX5 Z 参数配置

对于 CeleX5_Z,需要在 config/ Zynq_conf.ini 中,设置 IP 和端口号。其他关于 CeleX5_Z 连接和使用的问题,参考 https://github.com/CelePixel/CeleX5-Zynq。

2.3 标定方法 1: 在线标定

标定前请确定配置参数正确(参考2.2小节),在线流程大约需要5分钟。详细标定操

作如下:

i. 打开标定程序 IMU Calibration.exe,选择 1。此时,控制台打印出传感器运行的状态。

对于 CeleX5 MP:

如果正确打开传感器,控制台出现为如下图所示,说明传感器已经正常启动。

如果出现如下提示,则可能传感器的 USB 连线没有接好,请检查连线从新拔插,再次 启动程序。

```
********* HHXm1Reader::importCommands_Ce1eX5 Begin *******

******** HHXm1Reader::importCommands_Ce1eX5 End *******

[IMUCalibration] Open files.

[IMUCalibration] Open the file : config/IMUAvg.csv
```

如果尝试多次仍然不能正确启动传感器,则可能是固件未更新的问题。

对于 CeleX5 Z:

如果正确打开传感器,控制台出现为如下图所示,说明传感器已经正常启动。

如果出现如下提示,则传感器的 USB 连线没有接好,请检查连线从新拔插,再次启动程序。

Sensor gets ready. connect again, please wait...

如果尝试多次仍然不能正确启动传感器,则可能是配置参数错误(参考 2.2 小节)、固件未更新或存储卡配置不正确的问题。

- ii. 本文以 CeleX5_MP 为例子,展示标定过程,操作方法同样适用于 CeleX5_Z。具体调节方法如下所示:
- iii. 刚开始,即 No. = 1 时,需要按照下图(a)所示安装摆放支架,并安装传感器如下图(b) 所示,此时传感器的 Z 轴垂直于南北条形贴纸。此时传感器状态如图 No.1 所示。等待系统静止,按"s"键保存 IMU 数据(注意在输入法调整至英文半角模式,无需回车),控制台打印"Get IMU data."。如果显示"Warning, no imu data! Please restart.",没有获得 imu 数据,请检查连接是否牢固,固件是否升级成最新版本。

注: 随后,依次出现 No.** 对应的提示图片,控制台显示"(No.**) position as shown in the window. Click 's' to get IMU data."提示语,此时需要根据提示图片调节传感器位置。

iv. 当 No.=2~12 时,每次云台旋转 30°(始终保持传感器的 Z 轴垂直于南北条形贴纸)。 图 No.2 和图 No.3 为两个例子,此后的旋转类似。云台旋转方法如下图所示: 先拧松 旋钮,再转动云台滚珠(L 型支架和云台连接部位要保持固定)。

v. 当 No.=13 时,需要大幅调整传感器位置,调节方式如下图所示。此时传感器的 X 轴垂直于南北条形贴纸。

- vi. 当 No.= 14~24,每次云台绕 X 轴旋转 30°,其他操作同 No. 2~12 相同。
- vii. 当 No. = 25 时,需要再次大幅调整传感器位置,调节方式如下图所示。

viii. 当 No.=26~36 时,每次调节 L 型支架的传感器固定螺丝,使传感器绕 Y 轴旋转 30°, 如下图所示。

- ix. 每次点's'后,程序自动判断传感器是否稳定。如果控制台会显示"Keep stationary and wait.",则需要保持稳定继续等待片刻。如果控制台显示"Position is wrong!.",则此时的相机位置和前一次一样,没有变化,请根据提示图片调整位置。如果数据稳定了,控制台打印"Save (No.**) data successfully."和 IMU 部分数据,并保存数据(写入config/IMUAvg.csv 文件)。控制台打印"Finish recording IMU data"。
- x. 在完成 36 个数据获取后,务必保持静止,会出现"Keep waiting until temperature is stable.
 d_temperature shoud be smaller than temp_threshold = 0.02.",请在静止条件下等待传感器热平衡,当达到热平衡时,数据采集结束。
- xi. 最后程序自动完成标定。自动打印标定结果"Calibration results:"和"Create a new IMUCalib.ini."。如果正常完成标定,控制台提示"Finish calibration!"。如果误差较大,控制台提示"Calibration might be error! The error of the calibration is too large. please calibrate again.",需要重新标定一次。
- xii. 标定结束时出现下图所示窗口,可以通过改窗口数据估计标定精度。需要保证 6 个窗口中的数据都组成圆圈,圆圈越圆代表标定精度越高。而且每个窗口中包含 12 个圆圈数据。第一行三个窗口代表加速度计数据,第二行代表磁力计。下图所示的标定数据为标定精度较高的数据。

2.4 标定方法 2: 在线标定(中断后)

如果在线标定过程(2.2 节内容)被中断,可以采用该标定方法,可以继承在线标定的数据,提高标定效率。标定过程如下:

- i. 打开 config/IMUAvg.csv 文件,获得第一列数据最后一个数值,即 rotation_no 最大值 (范围 1-36)。该数值代表了在线标定完成的数据获取次数。
- ii. 用该数值修改 config/imu calib config.ini 中的 latest rotation no 参数。
- iii. 打开标定程序 IMU_Calibration.exe,选择 2。控制台打印"Calibration should be started at No.",检查该数值是不是正好等于目前出现图片对应的 No。如果不等说明未正确导入中断前采集的全部数据,请返回 2.4 小节 i 和 ii 步骤。
- iv. 根据提示图片完成余下标定过程。参考 2.3 节内容。

2.5 标定方法 3: 离线标定

如果在线/在线(中断后)过程已经完成,并已经生成 config/IMUAvg.csv 文件,则可以利用离线标定过程,再次获得 IMU 标定参数。该参数应该和在线/在线(中断后)过程得到参数一致。标定过程如下:

i. 打开 config/IMUAvg.csv 文件,检查是否有 36 行数据。如果数据不足,标定仍然可以进行,但是结果误差会增加。

ii. 打开标定程序 IMU_Calibration.exe,选择 3。程序自动完成,标定参数文件保存在config/IMUCalib.ini。

2.6 数据实时显示(调试时使用)

- i. (针对 CeleX5_Z)检查 config/Zynq_config.ini 文件中的 IP 和端口号,保证配置正确。
- ii. 打开 IMU_Calibration.exe, 选择 4, 控制台将打印实时的 IMU 数据, 数据按如下格式 打印: time_stamp =, GYROS >>> x =, y =, z =, ACC >>> x =, y =, z =, MAG >>> x =, y =, z =, TEMP >>> 。

2.7 标定注意事项

- i. 需要空旷区域标定,避免电子设备和铁磁金属接近传感器,影响磁力计标定。
- ii. 对精度要求不高的场合也可手动旋转,旋转角度 30°,但不严格。为了更精确标定,旋转云台可以换成有旋转刻度的。
- iii. 标定结束后使用标定验证工具,检查标定正确性。

2.8 文件说明

标定涉及文件在表 1-2 中列出。

表 1-2 标定相关文件列表

名称	位置	作用	可修改的参数	
imu_calib_config.ini	config/	保存标定程序配置	latest_rotation_no	
		参数		
Zynq_config.ini	config/	配置 CeleX5_Z	IP, 端口号	
IMUCalib.ini	config/	保存标定参数	Sensor ID(可选)	
IMUAvg.csv	config/	保存标定每一循环	-	
		的数据		

附录一: 常见问题解决方法

i. 程序启动后出现"FrontPanel Device not found..."。

问题: Sensor 未正常启动。

解决:检查电源和数据线是否链接正确。断开电源,重启 Sensor。

ii. 键盘按键,但控制台没有反应。

问题: 控制台为被激活

解决:鼠标点击控制台窗口的标题栏后,立刻键盘输入按键。鼠标尽量不要点击控制台内任意位置,避免程序显示中断。

附录二: 版本说明

版本	版本说明(修改章节)	时间	作者	校验
号				
v3.1	增加 CeleX5_Z 工具, 文档做相应更改。合	2019.07.19	何启盛	张玉
	并 IMU_Calibration 和 IMU_Verification			
	文件夹。			
v3.0.1	小修改	2019.04.22	何启盛	
v3.0	优化文档	2019.04.17	何启盛	张玉
v2.4	针对 CeleX5, 改回直接获取 IMU 的方	2019.04.11	何启盛	宋九豆
	法, 采用新的旋转支架			
v2.3	采用 Callback 方式获取 IMU 数据	2019.01.24	何启盛	
	采用新的标定配套硬件			
	每轮数据获取人为控制获取数据的时间,			
	并增加图片提示			
	增加温度信息,热稳定后获取陀螺偏置数			
	据			
	多种模式可选:在线、离线标定、利用部			
	分 数据在线标定或简单显示实时数据。			
v2.2	添加操作说明(按"q")		何启盛	
v2.1	优化标定顺序和规则, 旋转 36 次		何启盛	
	提高磁力计标定精度			
	删掉程序不必要的输出信息和文件。			
v2.0	确定标定顺序,旋转 30 次。		何启盛	
v1.2	完成磁力计标定的集成。		何启盛	
v1.1	参数用.ini 文件输出		何启盛	
	增加对每次操作数据稳定性的判断/提示。			
v1.0	创建加速度计/陀螺标定 exe		何启盛	